

ttctttttt aaatgttaagg accaaacttc taaaactaatt gttctttgt tgcttaatt
 2100
 tttaaaaatt acattttctt gatgtaacat gtgatacata caaaaagaata tagtttaata
 2160
 tgtattgaaa taaaacacaa taaaattaac acttgaaaaa aaaaaaaaaa aaaaaaa
 2216

<210> 5832
 <211> 322
 <212> PRT
 <213> Homo sapiens

<400> 5832
 Gly Leu Glu Pro Gly Ile Gln Ile Gln Glu Glu Val Asn Ile Pro Asn
 1 5 10 15
 Arg Arg Val Leu Val Thr Gly Ala Thr Gly Leu Leu Gly Arg Ala Val
 20 25 30
 His Lys Glu Phe Gln Gln Asn Asn Trp His Ala Val Gly Cys Gly Phe
 35 40 45
 Arg Arg Ala Arg Pro Lys Phe Glu Gln Val Asn Leu Leu Asp Ser Asn
 50 55 60
 Ala Val His His Ile Ile His Asp Phe Gln Pro His Val Ile Val His
 65 70 75 80
 Cys Ala Ala Glu Arg Arg Pro Asp Val Val Glu Asn Gln Pro Asp Ala
 85 90 95
 Ala Ser Gln Leu Asn Val Asp Ala Ser Gly Asn Leu Ala Lys Glu Ala
 100 105 110
 Ala Ala Val Gly Ala Phe Leu Ile Tyr Ile Ser Ser Asp Tyr Val Phe
 115 120 125
 Asp Gly Thr Asn Pro Pro Tyr Arg Glu Glu Asp Ile Pro Ala Pro Leu
 130 135 140
 Asn Leu Tyr Gly Lys Thr Lys Leu Asp Gly Glu Lys Ala Val Leu Glu
 145 150 155 160
 Asn Asn Leu Gly Ala Ala Val Leu Arg Ile Pro Ile Leu Tyr Gly Glu
 165 170 175
 Val Glu Lys Leu Glu Glu Ser Ala Val Thr Val Met Phe Asp Lys Val
 180 185 190
 Gln Phe Ser Asn Lys Ser Ala Asn Met Asp His Trp Gln Gln Arg Phe
 195 200 205
 Pro Thr His Val Lys Asp Val Ala Thr Val Cys Arg Gln Leu Ala Glu
 210 215 220
 Lys Arg Met Leu Asp Pro Ser Ile Lys Gly Thr Phe His Trp Ser Gly
 225 230 235 240
 Asn Glu Gln Met Thr Lys Tyr Glu Met Ala Cys Ala Ile Ala Asp Ala
 245 250 255
 Phe Asn Leu Pro Ser Ser His Leu Arg Pro Ile Thr Asp Ser Pro Val
 260 265 270
 Leu Gly Ala Gln Arg Pro Arg Asn Ala Gln Leu Asp Cys Ser Lys Leu
 275 280 285
 Glu Thr Leu Gly Ile Gly Gln Arg Thr Pro Phe Arg Ile Gly Ile Lys
 290 295 300
 Glu Ser Leu Trp Pro Phe Leu Ile Asp Lys Arg Trp Arg Gln Thr Val
 305 310 315 320
 Phe His

<210> 5833
<211> 805
<212> DNA
<213> Homo sapiens

<400> 5833
aagcttgcag cagcacaggg acaggcaccc ttggagccca cccaaatgg gagtgccatt
60
gaaacatgtc caaaaaggaga cgagccaaga ggtgacgagc aacaggtgga aagtatgacc
120
cctaaacctg tgctccagga agaaaacaac caagagtctt ttattgcatt tgctcggtg
180
ttcagtggtg tggctcgaag aggaaagaaa atttttgtct tggggcccaa atacagtctt
240
cttgagttt tacgaagggt accattaggc ttctcagctc caccagatgg cttcccccaa
300
gtcccccaca tggcatactg tgctctggaa aacctgtatc ttctgatgg aagggactg
360
gaatatctag aggaggtacc tccagggaaat gtgcttaggaa taggaggcct tcaagatttt
420
gtgctgaaat ctgcaacact gtgtagectg ccattctgcc caccatttat accactcaac
480
ttcgaagcca ctccattgt gagagttgt gttgaaccaa aacatccaag taaaatgcct
540
cagctcgtaa aaggaatgaa actgttaaac caggctgatc cctgtgtcca gatTTtaatt
600
caggaaacgg gagagcacgt tttagtcaca gcaggagaag tccacccatca gcgatgcctg
660
gatgacttaa aagaaaggatt tgcaaagatt catatcagtg tatctgaacc tattattcca
720
ttcagagaaa caatcacaaa acccccaaaa gttgacatgg tcaatgaaga aataggcaaa
780
cagaaaaaag ttgcagtcat acacc
805

<210> 5834
<211> 268
<212> PRT
<213> Homo sapiens

<400> 5834
Lys Leu Ala Ala Ala Gln Gly Gln Ala Pro Leu Glu Pro Thr Gln Asp
1 5 10 15
Gly Ser Ala Ile Glu Thr Cys Pro Lys Gly Asp Glu Pro Arg Gly Asp
20 25 30
Glu Gln Gln Val Glu Ser Met Thr Pro Lys Pro Val Leu Gln Glu Glu
35 40 45
Asn Asn Gln Glu Ser Phe Ile Ala Phe Ala Arg Val Phe Ser Gly Val
50 55 60
Ala Arg Arg Gly Lys Lys Ile Phe Val Leu Gly Pro Lys Tyr Ser Pro
65 70 75 80
Leu Glu Phe Leu Arg Arg Val Pro Leu Gly Phe Ser Ala Pro Pro Asp

85	90	95
Gly Leu Pro Gln Val Pro His Met Ala Tyr Cys Ala Leu Glu Asn Leu		
100	105	110
Tyr Leu Leu Met Gly Arg Glu Leu Glu Tyr Leu Glu Glu Val Pro Pro		
115	120	125
Gly Asn Val Leu Gly Ile Gly Gly Leu Gln Asp Phe Val Leu Lys Ser		
130	135	140
Ala Thr Leu Cys Ser Leu Pro Ser Cys Pro Pro Phe Ile Pro Leu Asn		
145	150	155
Phe Glu Ala Thr Pro Ile Val Arg Val Ala Val Glu Pro Lys His Pro		
165	170	175
Ser Glu Met Pro Gln Leu Val Lys Gly Met Lys Leu Leu Asn Gln Ala		
180	185	190
Asp Pro Cys Val Gln Ile Leu Ile Gln Glu Thr Gly Glu His Val Leu		
195	200	205
Val Thr Ala Gly Glu Val His Leu Gln Arg Cys Leu Asp Asp Leu Lys		
210	215	220
Glu Arg Phe Ala Lys Ile His Ile Ser Val Ser Glu Pro Ile Ile Pro		
225	230	235
Phe Arg Glu Thr Ile Thr Lys Pro Pro Lys Val Asp Met Val Asn Glu		
245	250	255
Glu Ile Gly Lys Gln Gln Lys Val Ala Val Ile His		
260	265	

<210> 5835

<211> 420

<212> DNA

<213> Homo sapiens

<400> 5835

nngctggagc agcgctgggg ttcggcctg gaggagttgt acggcctggc actgcgccttc
60
ttcaaagaaa aagatggcaa agcatttcat ccaacttatg aaaaaaaatt gaagcttgc
120
gcactgcata agcaagttct tatgggccca tataatccag acacttgtcc tgaggttgaa
180
ttctttatgt tgttgggaa tgacaggagg agagaatggg cagccctggg aaacatgtct
240
aaagaggatg ccatggtgga gtttgtcaag ctcttaataa ggtgttgcca tctctttca
300
acatatgttgcgtccacaa aatagagaag gaagagcaag aaaaaaaaaag gaaggaggaa
360
gaggagcgaa ggcggcgtga agaggaagaa agagaacgtc tgcaaaagga ggaagagaaaa
420

<210> 5836

<211> 140

<212> PRT

<213> Homo sapiens

<400> 5836

Xaa Leu Glu Gln Arg Trp Gly Phe Gly Leu Glu Glu Leu Tyr Gly Leu
1 5 10 15
Ala Leu Arg Phe Phe Lys Glu Lys Asp Gly Lys Ala Phe His Pro Thr

20	25	30
Tyr Glu Glu Lys Leu Lys Leu Val Ala Leu His Lys Gln Val Leu Met		
	40	45
Gly Pro Tyr Asn Pro Asp Thr Cys Pro Glu Val Gly Phe Phe Asp Val		
	55	60
Leu Gly Asn Asp Arg Arg Arg Glu Trp Ala Ala Leu Gly Asn Met Ser		
	70	80
Lys Glu Asp Ala Met Val Glu Phe Val Lys Leu Leu Asn Arg Cys Cys		
	85	95
His Leu Phe Ser Thr Tyr Val Ala Ser His Lys Ile Glu Lys Glu Glu		
	100	110
Gln Asp Lys Lys Arg Lys Glu Glu Glu Arg Arg Arg Arg Glu Glu		
	115	125
Glu Glu Arg Glu Arg Leu Gln Lys Glu Glu Glu Lys		
	130	140

<210> 5837

<211> 582

<212> DNA

<213> Homo sapiens

<400> 5837
 nnccgtcttt caccatttct acccccacgac cacctcggtt tggctgtctt ctccatgctg
 60
 tggtgtttct ggcccggttg catcgctgcc ttctgtctag cccagaagac caacaaggct
 120
 tggggcaagg gggacatcca gggggcaggg gcccgcctccc gccgtgcctt cctgctgggg
 180
 gtccctcgccg tcgggctggg cgtgtgcacg tatgcggctg ccctggtgac cctggccgcc
 240
 taccttgctt cccgagaccc gcccttagttg cccctacagc cctcaactgtg aaccctgagg
 300
 ccggcagccc agcaaatttg tgggcagaga gtggagaatc ttgggtggatg aggctgcggc
 360
 ggcggcagga gcatctagaa acgggagcga gctggactgg aacccttccc cttectggcc
 420
 accgctcttc gggcggcagc aacctgagat taaacaccag acacccttgg cctgggctca
 480
 cgaggaaggg gctgcagttc tccaaggatt cccgcctgtt cccagatccc cgggagtcgt
 540
 aggaaccctgtt tccctggacgc tgacgtcggc tttcaggat cc
 582

<210> 5838

<211> 88

<212> PRT

<213> Homo sapiens

<400> 5838
 Xaa Arg Leu Ser Pro Phe Leu Pro His Asp His Leu Gly Leu Ala Val
 1 5 10 15
 Phe Ser Met Leu Cys Cys Phe Trp Pro Val Gly Ile Ala Ala Phe Cys
 20 25 30
 Leu Ala Gln Lys Thr Asn Lys Ala Trp Ala Lys Gly Asp Ile Gln Gly

35 40 45
Ala Gly Ala Ala Ser Arg Arg Ala Phe Leu Leu Gly Val Leu Ala Val
50 55 60
Gly Leu Gly Val Cys Thr Tyr Ala Ala Ala Leu Val Thr Leu Ala Ala
65 70 75 80
Tyr Leu Ala Ser Arg Asp Pro Pro
85

<210> 5839
<211> 1895
<212> DNA
<213> Homo sapiens

<400> 5839
ttttttttt ttaacaata aaatagctct ttgtttattc acttgattt ggatcattgg
60
aaatattaaa caataaataa aacagagcg ggctgagga aagcaggatc ttgctgaagt
120
cattcgaatg catcccaacc agtgctcagc tgcgtaacga catggagaga ggcagggggg
180
aatagaaagc aaattaaaa acaccaacac ccaaacacac aagactgcac acaagaaaaa
240
gtgctcaaga aactttggct ttgaaggaa ttcagtgaag ggaagcgtt gtgcaggagg
300
aagggaaagaa acccacgatc accctaaggg gcgggggct ggagggcgag gccctgagac
360
aggcttagggt taaagctgac gtcccacagc tcaggacgta caaccgatgg cagttttgt
420
ctaggaagaa gctgagtgtat gaggctgggt gatggatcg cttgacggc tggagggag
480
gacaggaggt gtaaaggtgg ctcacccccc cctaggaaat tcagtgtct tttggtaaga
540
aaaaatagtc ggtaatcccc tgatcctgac aagctgtgag atgctgtctt gcctgtct
600
gccttttctt ctaagtttc ctccctttct ttgcacaggt gtcaggtgc accccagggg
660
tgcaaggagct ggtgtttca tgacaaacaa aaatggggag gttgactcta tctcaaaaact
720
acttagccccca gtccacaggg caggataatc ctgatggcgt gtagccacat ttgctgcaaa
780
ccagatgtct gcatggata taatgataacc cccggggctc ttctcagggg tgaggacagg
840
tgctgggtcc tgatggtgca tggctgggtt ccagtcatct ttagctggc agtggccct
900
cgaggctcgg gttccctgc acaaggatt tttgatcctt gccagcggag ggagagag
960
ttatcttgtt ttcctttca ctgtttcg ggctgcttca aagcaaacat cccagttcca
1020
aatgttcttt gtgggttgaa tcctggcaga ggccagggtc acatccaagt gggactggcc
1080
tctagcacca cttctggcc acagcagaga atgggattcc atcaaagcct ctcaaccagc
1140
cgttcccta aagaatcacc cagatctaa ctgccccttc caccttctt tttttcccc
1200

tcctattta cattctatcc tctcatatcc agctttctc tctaaggcta accaaatgct
1260 ttggtaatg atgcggaa aagctggagt ttaaaaggc attcatccat ttatgaactt
1320 tcttccagcc caggatccct gcagagaacc agaggttaca aatctgccct cctttctccc
1380 ctaaaagggtg gctgagggga ggagaggtgc atgttagctcc agctatagca aatcagtgcc
1440 ctgactcaact ggggagaccc agggggttgg gatgttgctg acacctcatg ggccacacctca
1500 tcagccccatc ttttagctt caggttcagc tctgggtgct gcaggcaggg accccctctgc
1560 tccctgcctg aatgcagggc cagtctccaa ggaactctgt ctgcagagta gaaagagctg
1620 tgggctggga atcaggggcc tgagggagcc cctgccactg cctgcccaga accagtgc
1680 ctcattctcc tgctgacagc atgcatgtgc cttttggcta acacacactc ttgtctaatt
1740 cccagccacc ttcacccag ggatgagttc cagttggttt aagccagact ggtgcattta
1800 attctggctg caacaactgg attctgttaa gtgccattg ctaagccaat gagctatctg
1860 ctgggctgtg ggaaagagaa atgcagtctc ntata
1895

<210> 5840

<211> 138

<212> PRT

<213> Homo sapiens

<400> 5840

```

Met Ala Cys Ser His Ile Cys Cys Lys Pro Asp Val Cys Asp Gly Tyr
1 5 10 15
Asn Asp Thr Pro Gly Ala Leu Leu Arg Gly Glu Asp Arg Cys Trp Phe
20 25 30
Leu Met Val His Gly Trp Cys Pro Val Ile Phe Ser Trp Ala Val Ala
35 40 45
Pro Arg Gly Ser Gly Phe Pro Ala Gln Gly Ile Phe Asp Pro Cys Gln
50 55 60
Arg Arg Glu Arg Glu Leu Ser Trp Phe Pro Phe His Leu Phe Ser Gly
65 70 75 80
Cys Phe Lys Ala Asn Ile Pro Val Pro Asn Val Leu Cys Gly Leu Asn
85 90 95
Pro Gly Arg Gly Gln Gly His Ile Gln Val Gly Leu Ala Ser Ser Thr
100 105 110
Thr Phe Trp Pro Gln Gln Arg Met Gly Phe His Gln Ser Leu Ser Thr
115 120 125
Ser Arg Phe Pro Lys Glu Ser Pro Arg Ser
130 135

```

<210> 5841

<211> 3411

<212> DNA

<213> Homo sapiens

<400> 5841
ngggccttct ggtggacctc cactcccacg cggggcgaaaa tgcaggtggc gaagtggaaa
60
tggaggcgaa agatggaacg cccccaccct ccctcgacac tttggggcca tgaaaaccca
120
ttctcgacc ttccccagcg caccctcaat tttcacccgg tgtggacatc tcgaacttgc
180
tcccggccac ccttcgtct ctctcaaata gtacagctta aagcaataaa tgttagatctt
240
caaaagtgtatc ctgctctgca ggtggacatt tctgatgctc ttagtgagcg ggataaaagta
300
aaattcactg ttcacacaaa gagttcattt ccaaattttt aacaaaacga gttttcagtt
360
gttcggcaac atgaggaatt tatctggctt catgatttct ttgttggaaaa tgaagactat
420
gcaggttata tcattccacc agcaccacca agacctgatt ttgatgcttc aaggggaaaa
480
ctacagaagc ttggtaagg agaagggtca atgacgaagg aagaattcac aaagatgaaa
540
caggaactgg aagctgaata tttggcaata ttcaagaaga cagttgcgt gcatgaagt
600
ttcctgtgtc gtgtggcagc acatcctatt ttgagaagag atttaattt ccatgtcttc
660
ttgaaatata atcaagattt gagtggtgcga ggaaaaaaaata aaaaagagaa acttgaagac
720
ttctttaaaa acatggtaa atcagcagat ggagtaatcg tttcaggagt aaaggatgta
780
gatgatttct ttgagcacga acgaacattt cttttgaaat atcataaccg agttaaggat
840
gcatctgcata aatctgatag aatgacaaga tcccacaaaa gtgctgcaga tgattacaat
900
agaattggtt cttcattata tgcttttagga actcaggatt ctacagatat atgcaagttt
960
tttctcaaag tttcagaact gttcgataaa acaagaaaa tagaagcacg agtgtctgct
1020
gatgaagacc tcaaacttcc tgatcttttta aaatattact taagagaatc tcaagctgct
1080
aaggatctcc tgcatacgag gtcttaggtca ctatggatt atgaaaatgc taataaagca
1140
ctggataaaag caagagcaaa aaataaagat gttctacagg ccggaaacttc ccaacaatta
1200
tgttgtcaga aatttggaaaa aatatctgag tctgcacaaa aagaacttat agatttttaag
1260
acaagaagag ttgctgcatt cagaaaaat ttagtggAAC tggcagagtt agaactgaag
1320
catgcaaaagg gtaatctaca gttgctgcag aactgcctgg cagtgtttaa tggagacaca
1380
taagccacac tccgccttcc tgtaaaaaag ggctgccttc cttcaattt tattttgtt
1440
ttcttaatga tgtaagcat ttatgctcac tggaaacaaa caaaaagcag ctgaaaaagt
1500
gcatcaactc ctcttttct gagaaacatg gagcagcgca cgcccaggcg atgccagtct
1560

gtgtgccgtg atgcccact gtgtccca tgacagtggt ccatcatcggt gcactcgta
1620 tactcagaag tccaaagtgc attttcttt aaagtagcct ctataactct gtttatttt
1680 taaaatgtat tccttatggc tgccactt atttacctt aaataatttc tgaaatttt
1740 cctttcaga atgcattgtt gaaacaagat aaagattgcc tttttgaat tttttaaatt
1800 ttgttttaa aagcatatac caccttagtt cattcatgta tcctggtaaa gcatcttaat
1860 cagacttattt ttttaattact gaatatttct tagacgtttt gggacagatt ttatgtatc
1920 ttatataagta tgatttctga agaaaagcaa atgcatttagt atgtttgcct taaacttgta
1980 gactaaaccca agtattgtaa aataaacagc gataacagtg atagtttttta actctatgg
2040 cattgtatca ctctggaaaa tgtggagtag ctgtaataaa tctactcctg tattatgctt
2100 tacagtgcag gtcttagttt ttctttttc tcatttctt tgaaatggca tctcgaacaa
2160 agtccaccaa tcccttaca aaagaatgaa ctgctcctct gtgtgtactt catagaagg
2220 ggaatcggac agaggcagg tagtgacagt tattcctgaa atacaggagc agagtacagt
2280 ctgttgtgtt ttccggatt ccgcgcctag ctcagccaat taagcatgag acataggcca
2340 ttgagccact tagtagttt gcgagtgat agattggat gtagagggaa agaggtctgc
2400 tggaaagaac aacacttgg tgcgtgtgg gaaagaaaag cagaatactt gagatgaaag
2460 ttggcataca aataggatac tatgccagt agttatatta caaacattt cggccttct
2520 agtgtgaatg aacattagac acattattgt cattcctgtt taaaagttt gggtgcgtgg
2580 ttggattttt ccactatctt ttcttaattt ttctaccatt tggagaccgt aggcatgg
2640 gcctgtcacc cttggatgg gttccttagtt tgttacatt ttccctgaacc ctccctgagcg
2700 cccgttctg gtctaattccc cagtcgtgat gattccacac ttccctcagcc gcatgttgc
2760 ttgcctcatt catgagctgg tcagcgtttgc tgcgttttca ctgacatgtt ccccaagtgt
2820 gtttgaactg ttgagttcc gttgcgtggc gagtgcgtt tgcccttcac gtaaccttcg
2880 ctggtaaaaaa taagcccatg tgatgtccac cagtgatga atgctggacc gagagcccta
2940 gcttctggat ccaggtctag gcccttcatt tgctgcgttgg cggccctggc caggtttgct
3000 tgacctctgc ctcagttctc gactctaaag gacatactga cctacccac aggggtgttgc
3060 tgaggattaa taaatgttgg tactctgctt tggaaatgtg aaaatgtgt gtaaaatgtt
3120 agaaatacta agtataaggc cagaagctat acagtgtttc acttaaccgt ttgccattct
3180

gtatTTacca aggtggtctt ttctgggaa ggaagttagag tggaagggtgc atcccttggc
 3240
 ccctggTTta cattattagg gtgcttattg taggaatgca ctctaaaaag tgggcgtaga
 3300
 atgaaagcag ccgtccagtg gtcctccctt ttctgttagtt tcactttct tgcttcaagt
 3360
 tacagcagtc acctgaaaatc tgaaaatact aaatgaaaaa ctccagaaac a
 3411

<210> 5842
 <211> 460
 <212> PRT
 <213> Homo sapiens

<400> 5842
 Xaa Ala Phe Trp Trp Thr Ser Thr Pro Thr Arg Gly Gly Val Gln Val
 1 5 10 15
 Ala Lys Trp Lys Trp Arg Arg Glu Met Glu Arg Pro His Pro Pro Ser
 20 25 30
 Thr Leu Trp Gly His Glu Asn Pro Phe Ser Asp Leu Pro Ser Gly Thr
 35 40 45
 Leu Asn Phe His Pro Val Trp Thr Ser Arg Thr Cys Ser Arg Pro Pro
 50 55 60
 Phe Cys Leu Ser Gln Ile Val Gln Leu Lys Ala Ile Asn Val Asp Leu
 65 70 75 80
 Gln Ser Asp Ala Ala Leu Gln Val Asp Ile Ser Asp Ala Leu Ser Glu
 85 90 95
 Arg Asp Lys Val Lys Phe Thr Val His Thr Lys Ser Ser Leu Pro Asn
 100 105 110
 Phe Lys Gln Asn Glu Phe Ser Val Val Arg Gln His Glu Glu Phe Ile
 115 120 125
 Trp Leu His Asp Ser Phe Val Glu Asn Glu Asp Tyr Ala Gly Tyr Ile
 130 135 140
 Ile Pro Pro Ala Pro Pro Arg Pro Asp Phe Asp Ala Ser Arg Glu Lys
 145 150 155 160
 Leu Gln Lys Leu Gly Glu Gly Glu Ser Met Thr Lys Glu Glu Phe
 165 170 175
 Thr Lys Met Lys Gln Glu Leu Glu Ala Glu Tyr Leu Ala Ile Phe Lys
 180 185 190
 Lys Thr Val Ala Met His Glu Val Phe Leu Cys Arg Val Ala Ala His
 195 200 205
 Pro Ile Leu Arg Arg Asp Leu Asn Phe His Val Phe Leu Glu Tyr Asn
 210 215 220
 Gln Asp Leu Ser Val Arg Gly Lys Asn Lys Lys Glu Lys Leu Glu Asp
 225 230 235 240
 Phe Phe Lys Asn Met Val Lys Ser Ala Asp Gly Val Ile Val Ser Gly
 245 250 255
 Val Lys Asp Val Asp Asp Phe Phe Glu His Glu Arg Thr Phe Leu Leu
 260 265 270
 Glu Tyr His Asn Arg Val Lys Asp Ala Ser Ala Lys Ser Asp Arg Met
 275 280 285
 Thr Arg Ser His Lys Ser Ala Ala Asp Asp Tyr Asn Arg Ile Gly Ser
 290 295 300
 Ser Leu Tyr Ala Leu Gly Thr Gln Asp Ser Thr Asp Ile Cys Lys Phe

305	310	315	320
Phe Leu Lys Val Ser Glu Leu Phe Asp Lys Thr Arg Lys Ile Glu Ala			
325	330	335	
Arg Val Ser Ala Asp Glu Asp Leu Lys Leu Ser Asp Leu Leu Lys Tyr			
340	345	350	
Tyr Leu Arg Glu Ser Gln Ala Ala Lys Asp Leu Leu Tyr Arg Arg Ser			
355	360	365	
Arg Ser Leu Val Asp Tyr Glu Asn Ala Asn Lys Ala Leu Asp Lys Ala			
370	375	380	
Arg Ala Lys Asn Lys Asp Val Leu Gln Ala Glu Thr Ser Gln Gln Leu			
385	390	395	400
Cys Cys Gln Lys Phe Glu Lys Ile Ser Glu Ser Ala Lys Gln Glu Leu			
405	410	415	
Ile Asp Phe Lys Thr Arg Arg Val Ala Ala Phe Arg Lys Asn Leu Val			
420	425	430	
Glu Leu Ala Glu Leu Glu Leu Lys His Ala Lys Gly Asn Leu Gln Leu			
435	440	445	
Leu Gln Asn Cys Leu Ala Val Leu Asn Gly Asp Thr			
450	455	460	

<210> 5843
<211> 6446
<212> DNA
<213> Homo sapiens

<400> 5843
ncgtacccg ccaatgtcta cacctcagtg gtggaaagagc tggcccgccg ccagcagcgc
60
cggttcatcg ctgtggagca ggagtttttc cggctgtggt gggatggcgt cgccctggac
120
cagcagaaat accaggtccg ccagtcctg gaggaaggac gccttggatt tgtcatcgga
180
ggccagggtca tgcatgacga ggctgtgacg caccttgatg accagatcct gcagctcaca
240
gaaggacacg gtttctcta taaaacattt gggatccggc cacagttctc ctggcacgtt
300
gaccctttg gcccctctgc cacgacgccc accctattt cgctggcggg cttcaatgcc
360
cacctcggtt cccggatcga ctacgacctg aaggcagcca tgcaaggaggc ccgggggctg
420
cagtctgtgt ggcgagggtc cccatccctc tcagagcggc agggaaatctt cacgcacatc
480
atggaccagt acagtaactg caccctgtcc cacatccctt tctccaacag gtcaggattt
540
tactggaatg gcgtggctgt cttccccaaag cctcccccaag atggggtgta ccccaacatg
600
agttagctg tcaccccaage caacatcaac ctctatgccc aggccctggt ggccaaacgtg
660
aagcagaggg ccgcctgggtt ccggacacccg cacgtctct ggccctgggg atgtgacaag
720
cagttctca atgcctcggt gcagtttgc aacatggacc cgctgctggc ccacatcaac
780
agccatgctg ccgagctcgg tgcctcggtt cagttatgcca cgctggcga ctacttccgt
840

gcccctgcacg ctctcaatgt cacctggcgt gtccgcgacc accacgactt cctgccctat
900
tccacagaaac cattccaggc ctggacgggc ttctacacgt cccgcagctc actgaagggg
960
ctggcccgcc gagccagcgc cttgttgtat gccggggagt ccatgttcac acgctacctg
1020
tggccggccc cccgtggca tctggacccc acctggccc tgcagcagct ccagcagctt
1080
cgctggcccg tctccgaggt ccagcaccat gatgccatca ctgggactga gtcccccaag
1140
gtgagagaca tgtacgcaac gcacctggcc tcggggatgc tggcgtgcg caagctgatg
1200
gcctccatcg tcctagatga gctccagccc caggcaccca tggcggccag ctccgatgca
1260
ggacctgcag gacatttgc ctcggtctac aacccgctgg cctggacggc caccaccatc
1320
gtcaccctga ctgttggtt ccctggagtc cgctcacag atgaggcggg ccacccagtg
1380
ccctcgcaga tccagaactc aacagagacc ccatctgcgt atgacctgct tattctgacc
1440
acaatcccag gcctcagtta cccggcactac agcatcagac ccactgcagg ggcccaagag
1500
ggcacccagg agccggctgc cactgtggcg agcacccttc aatttggccg caggctgagg
1560
agacgcacca gccatgcggg caggtacttg gtgcctgtgg caaacgactg ctacatttg
1620
ctgctcgacc aggataccaa cctgatgcac agcatctggg agagacagag taaccgaacg
1680
gtgcgcgtga cccaggaatt cctggagttac cacgtcaaca gggatgtgaa acagggcccc
1740
atttccgata actacctgtt cacaccgggc aaggccgcgg tgccctgcgt ggaagctgt
1800
gaaaatggaga ttgtggcggg acagcttgc actgagatcc ggcagtactt ctacaggaac
1860
atgacagcac agaattacac gtatgcaatc cgctccggc tcacccatgt gccgcaggc
1920
catgacgggg agctgctctg ccaccggata gagcaggagt accaagccgg cccctggag
1980
ctgaaccctg aggctgtcct gaggaccagc accaacctaa acagccagca ggtcatctac
2040
tcagacaaca acggctacca gatgcagcgg aggccttacg tttcttatgt gaacaacagc
2100
atcgccccga attactaccc catggtttag tcggccttca tggaggatgg caaaagcagg
2160
cttgtgtgc tgtcggagcg ggcacatggc atctccagcc aagggatgg gcaggtggag
2220
gtcatgtcc accggcggct gtggaacaac ttcgactggg acctgggcta caacctcag
2280
ctgaacgaca cctcagtcgt ccacccagtg ctctggcttc tgctgggatc ctggccctc
2340
accactgccc tgcgccagag gagcgcactg ggcgcagc acaggcccgt ggtgctgttc
2400
ggagacacctg ctgggactgc gccgaagctc ccaggacccc agcagcaaga ggccgtgacg
2460

ctgcccccgaa atcttcacccgt gcagatccctg agcatccctg gctggcgcta cagctccaaac
2520 cacacggagc actctcagaa tctccggaaa ggccatcgag gggaaagccca ggctgaccctc
2580 cggccgtgtcc tgctgcggct ctaccacccgt tatgaagtgg gcgaggaccc agtccctgtct
2640 cagccagtaa cagtgaatct ggaggtgaac ttccccaccc ccatccagac cataagccag
2700 ggaagccaaac cctagatgaa gccccaagaa actgccttgg caaagagatc cacgaggct
2760 tcctcccaaata tggacgctgg tatggggccc accccgcctt tcttcatggt cttctgggt
2820 tgtcaggat tatcaactggc ctggttttt agggtttttt gtgtatatgt gagacaggat
2880 ctcactctgt tgcccaagt ggggtgcagt ggcacaatct cagtcactg caacctctgc
2940 ctccctggct caagtgatcc tcccacctca acctcccaag taactggat cacagggcg
3000 cgccaccacg atggctaagt tttttttttt ttttttttga gaccgagttt cgctctcg
3060 ccccaggctg gagtgcaatg gtgcgtctc agctggctgc aacctccatc tcccagggt
3120 aagtgattct cctgcctcag cctcccgagt agctgggatt acaggcatgt gccaccacgc
3180 ccggctaatt tttttgtact ttttagtagag acagggttgc tccatgttgg tcaggctgg
3240 cacgaacccc tgacttcagg tgatccacccgt gcctcgccct cgccaaagtgc tgggattaca
3300 ggcgtgagcc accaaggctg gcctagtttt ttttttttta gtagagacac ggtcttgctg
3360 ttttgctcag gctggctctcg aacgtctggc ctcaagcaat ctgcctgtct tagcctccctg
3420 aagtgctggg attacaggcg tgagtggctt gtatttctt tcttattttat tctgtggtaa
3480 aactttaaa acacagacaa catctgtgtatccaaaaac aaaacagatt cccatagag
3540 ttgccttgaa aggtgactta gagtcagaca atccagggtc cacacccagg cccctctacg
3600 ggggcacatctc cggcacccca tgcctctggg cctcagtttc ccccatgttta aaatggggag
3660 aggtgagagt tctttggccca gaagggtgtt gtagggccct ggcactaagg ggcctcg
3720 agtgtcaggcc ccccccaggcc tctgtccctt ccagggttccctt ctcttggctg atgttgc
3780 ctcagctcta ctatcaggcg aggcttccgc cacctggccct gcccacgctc cctccccaga
3840 aggcatgacc tgagccgcct catttttttccctt ccagtttgcata ttctttctat ttcatttcc
3900 gctcatggag aatttctgtt gatctctgtt tttctgcctt gggcctccctt cgacatctga
3960 gtcttcaggaaatccagag aagccccaggat accttttcgc catgtatgtct tactggccca
4020 cccacccctt ctttcatgtat cctcgccagg gaggatccctt tcctcacggt ccctggccctg
4080

cctgagagca ggtctaggcc atggcgggta ccagtcccc gcacaggccc ggcctgcct
4140
gggaagcaag gaggccggcg tgggacctgg aagttggtca tctgatgctc ccccgttca
4200
cagatggaaag caccaaggcc ctgagacaag gagacggttg ggatggacac catgactccc
4260
tgcccaacgt ggacggtggt ggggtggaaa gaccatttag ttaggaacgc agtgagttg
4320
gctgcaagtc aaaaaacacc taacagatgt gcttagaaca gaggacagag tgtttctca
4380
ccgaacaggc atgtccgatg gaccccaagc gctgtcaccc tggcccgat cactgtcg
4440
ttccccccat cgccggcaga ctggcttttgc tcttttgc tctgcttgc tgccgtcaca
4500
agatggcaca ggcctccctc atgagcaa at ttcaaggcag ggtggggctc ggcagtagtg
4560
gccagaaaagg cttggcccta gcgtggctct ctccctccgt cagcacacag aagcttctcc
4620
aagagccacc cccacccctc ctgctccaca gactttcca gacccctaag ggcctccctgc
4680
ctcccttagg tgtaagggag gctgggacaa ggcctattgg gaaaggggaa tggggtaact
4740
gtggctggct tccctccctgg actggggcacg gggccaccc tgcataatgtgg ggagaggaga
4800
actccgcgtt ggggtgggca gctcaaaatg ccacacccctc cgggctgctc ctccagctcg
4860
gccacccctt aaagcatgca cctccctgg cagtgtccctc atctgtaaag tacacggcca
4920
gtcctgtcct cgcagatgtg ctgtgagaag cagatgaggg agctgtgtca ggcaccaggg
4980
gaggacccctgg gtccttgagg acaccgagtt cgtgggtgtgt ctgcctgct gctgtcttgg
5040
ttctctgctc agctctggaa cttgggtgcag ctcactctcc ctctgtcct ctccctgcag
5100
gctgtgctgc aggccgtggg gtccgtgggtg gcagtggagg agcgctcgct cacagggacc
5160
tgggatttga gcatgctgca ccgctggagc tggaggacgg ggcctggccg ccacagaggt
5220
gacaccaccc ctccctcgag gccaccagga ggccccatca tcaccatcca cccaaaggaa
5280
atccggacgt tctttattca ctttcaacag cagtggaccc tgggcagatg ccccgcccc
5340
agggctccccc ccaggaactc catgtAACAG aacagacccaa ggacaggaa aagcagtgc
5400
gagggatggg actggggagt cagctgctca tctgcaggct aatggcagga aatggtcata
5460
tttgggggtt ttccctaatt ttttaaaca aaaattacat tacaagatcc aggttcttcc
5520
ccccccacact caatcaagcc agccctctcc tcttctgtca cgtaaaggat atttggcaca
5580
ctcatgcgtc attcattcac aaaacacaaa cccaggactt tctgcctaaag gcagagcaca
5640
agactcacag cagcaccgaa ggcgcacatctgc cgtccggggcc ctgcccaggct tgccaggctg
5700

ccagtggtaa ctgtggacct actgcgtgcc acgtgtttc atagactcat cccatgctgg
 5760
 caacagccct gcaagggct tggctctgcc acagggcagg agaggaagtt gtagcgcccta
 5820
 gcgagagttc cagccccaga cgcccacctg tgccctcaggg caccgcctgc cgagcagaga
 5880
 aggcacagca gccgtcagag tccatgagag gtgaaaccac acagcaggaa tgtccaatat
 5940
 cagaactatt aatatcaata aaagtataac cttcccaggt ctatgccaa gagaattgaa
 6000
 aacatccatc cacacaatac ctgtgctccc gcgttcatag cagcattact caaaagtcaa
 6060
 acggtagcaa caacccaaat gtccatccac agatgaatta agacatgaag tgtgttctgt
 6120
 ccatacaatg gaatattatt tgccataaaa aaggaaggaa attctgacgc atgccacagc
 6180
 ctgagtgaat cctacaaaata ttacgctaag tgaaagaagc caatcacgag tttatgtgaa
 6240
 atgtccagaa taggcaaatac tgtgtatcag agacaaagca cattggtggt tgccaggta
 6300
 tggaggaaga gagaagaggc atgacagcta acagggacgg gctttctttg gaagatgtg
 6360
 aaattgtgga atgatggttg cacaactttg tgaatatact agaaaccaat gaattaaaaaa
 6420
 ctttggaaaga tgaaaaaaaaaaaaa
 6446

<210> 5844

<211> 823

<212> PRT

<213> Homo sapiens

<400> 5844
 Gly His Gly Phe Leu Tyr Glu Thr Phe Gly Ile Arg Pro Gln Phe Ser
 1 5 10 15
 Trp His Val Asp Pro Phe Gly Ala Ser Ala Thr Thr Pro Thr Leu Phe
 20 25 30
 Ala Leu Ala Gly Phe Asn Ala His Leu Gly Ser Arg Ile Asp Tyr Asp
 35 40 45
 Leu Lys Ala Ala Met Gln Glu Ala Arg Gly Leu Gln Phe Val Trp Arg
 50 55 60
 Gly Ser Pro Ser Leu Ser Glu Arg Gln Glu Ile Phe Thr His Ile Met
 65 70 75 80
 Asp Gln Tyr Ser Tyr Cys Thr Pro Ser His Ile Pro Phe Ser Asn Arg
 85 90 95
 Ser Gly Phe Tyr Trp Asn Gly Val Ala Val Phe Pro Lys Pro Pro Pro
 100 105 110
 Asp Gly Val Tyr Pro Asn Met Ser Glu Pro Val Thr Pro Ala Asn Ile
 115 120 125
 Asn Leu Tyr Ala Glu Ala Leu Val Ala Asn Val Lys Gln Arg Ala Ala
 130 135 140
 Trp Phe Arg Thr Pro His Val Leu Trp Pro Trp Gly Cys Asp Lys Gln
 145 150 155 160
 Phe Phe Asn Ala Ser Val Gln Phe Ala Asn Met Asp Pro Leu Leu Asp

165	170	175
His Ile Asn Ser His Ala Ala Glu Leu Gly Val Ser Val Gln Tyr Ala		
180	185	190
Thr Leu Gly Asp Tyr Phe Arg Ala Leu His Ala Leu Asn Val Thr Trp		
195	200	205
Arg Val Arg Asp His His Asp Phe Leu Pro Tyr Ser Thr Glu Pro Phe		
210	215	220
Gln Ala Trp Thr Gly Phe Tyr Thr Ser Arg Ser Ser Leu Lys Gly Leu		
225	230	235
Ala Arg Arg Ala Ser Ala Leu Leu Tyr Ala Gly Glu Ser Met Phe Thr		
245	250	255
Arg Tyr Leu Trp Pro Ala Pro Arg Gly His Leu Asp Pro Thr Trp Ala		
260	265	270
Leu Gln Gln Leu Gln Leu Arg Trp Ala Val Ser Glu Val Gln His		
275	280	285
His Asp Ala Ile Thr Gly Thr Glu Ser Pro Lys Val Arg Asp Met Tyr		
290	295	300
Ala Thr His Leu Ala Ser Gly Met Leu Gly Val Arg Lys Leu Met Ala		
305	310	315
Ser Ile Val Leu Asp Glu Leu Gln Pro Gln Ala Pro Met Ala Ala Ser		
325	330	335
Ser Asp Ala Gly Pro Ala Gly His Phe Ala Ser Val Tyr Asn Pro Leu		
340	345	350
Ala Trp Thr Val Thr Thr Ile Val Thr Leu Thr Val Gly Phe Pro Gly		
355	360	365
Val Arg Val Thr Asp Glu Ala Gly His Pro Val Pro Ser Gln Ile Gln		
370	375	380
Asn Ser Thr Glu Thr Pro Ser Ala Tyr Asp Leu Leu Ile Leu Thr Thr		
385	390	395
Ile Pro Gly Leu Ser Tyr Arg His Tyr Ser Ile Arg Pro Thr Ala Gly		
405	410	415
Ala Gln Glu Gly Thr Gln Glu Pro Ala Ala Thr Val Ala Ser Thr Leu		
420	425	430
Gln Phe Gly Arg Arg Leu Arg Arg Thr Ser His Ala Gly Arg Tyr		
435	440	445
Leu Val Pro Val Ala Asn Asp Cys Tyr Ile Val Leu Asp Gln Asp		
450	455	460
Thr Asn Leu Met His Ser Ile Trp Glu Arg Gln Ser Asn Arg Thr Val		
465	470	475
Arg Val Thr Gln Glu Phe Leu Glu Tyr His Val Asn Arg Asp Val Lys		
485	490	495
Gln Gly Pro Ile Ser Asp Asn Tyr Leu Phe Thr Pro Gly Lys Ala Ala		
500	505	510
Val Pro Ala Trp Glu Ala Val Glu Met Glu Ile Val Ala Gly Gln Leu		
515	520	525
Val Thr Glu Ile Arg Gln Tyr Phe Tyr Arg Asn Met Thr Ala Gln Asn		
530	535	540
Tyr Thr Tyr Ala Ile Arg Ser Arg Leu Thr His Val Pro Gln Gly His		
545	550	555
Asp Gly Glu Leu Leu Cys His Arg Ile Glu Gln Glu Tyr Gln Ala Gly		
565	570	575
Pro Leu Glu Leu Asn Arg Glu Ala Val Leu Arg Thr Ser Thr Asn Leu		
580	585	590
Asn Ser Gln Gln Val Ile Tyr Ser Asp Asn Asn Gly Tyr Gln Met Gln		

595	600	605
Arg Arg Pro Tyr Val Ser Tyr	Val Asn Asn Ser Ile Ala Arg Asn Tyr	
610	615	620
Tyr Pro Met Val Gln Ser Ala Phe Met Glu Asp Gly Lys Ser Arg Leu		
625	630	635
Val Leu Leu Ser Glu Arg Ala His Gly Ile Ser Ser Gln Gly Asn Gly		640
645	650	655
Gln Val Glu Val Met Leu His Arg Arg Leu Trp Asn Asn Phe Asp Trp		
660	665	670
Asp Leu Gly Tyr Asn Leu Thr Leu Asn Asp Thr Ser Val Val His Pro		
675	680	685
Val Leu Trp Leu Leu Leu Gly Ser Trp Ser Leu Thr Thr Ala Leu Arg		
690	695	700
Gln Arg Ser Ala Leu Ala Leu Gln His Arg Pro Val Val Leu Phe Gly		
705	710	715
Asp Leu Ala Gly Thr Ala Pro Lys Leu Pro Gly Pro Gln Gln Glu		720
725	730	735
Ala Val Thr Leu Pro Pro Asn Leu His Leu Gln Ile Leu Ser Ile Pro		
740	745	750
Gly Trp Arg Tyr Ser Ser Asn His Thr Glu His Ser Gln Asn Leu Arg		
755	760	765
Lys Gly His Arg Gly Glu Ala Gln Ala Asp Leu Arg Arg Val Leu Leu		
770	775	780
Arg Leu Tyr His Leu Tyr Glu Val Gly Glu Asp Pro Val Leu Ser Gln		
785	790	795
Pro Val Thr Val Asn Leu Glu Val Asn Phe Pro Thr Pro Ile Gln Thr		800
805	810	815
Ile Ser Gln Gly Ser Lys Pro		
820		

<210> 5845
<211> 2762
<212> DNA
<213> Homo sapiens

<400> 5845
aaatttgtat ccaggtccgt tccagctttc tttcacagtg ccctgtcctg ggggcagcac
60
gtgctgagca agggtaaggc tgccggaagc agcgtgtggg gtgcttggaa gatggacagc
120
acatccctgc tggtggcagc agccttcctg agggaggtgt ctcctgtga ttatagggcc
180
ttgtcaggtg gagatggaat tggttggccg ggcacattgg ctcacaccta taatcccagc
240
attttggag accgaggtga gcggatcaact tgagctcagg agtttcaaacc caacctggga
300
aacataggga gacccatct ctccctcctc atctccccac agcccgatct gctcaacttc
360ggatgtcgat cttggacgag cttggagagc ctccctcccc ctcgctcacc 420
accacctcta cttcgcagtg gaagaaaat tggttgtgc tgacagatcc aagtctcaaa
480
tattacagag actccactgc tgaggaggca gatgagctgg atggtgagat cgacctgcgt
540
tcctgcacgg atgtcactga gtacgcggtg cagcgcaact atggcttcca gatccacacc
600

aaggatgctg tctatacctt gtcggccatg acctcaggca tccggcgaa ctggatcgag
660
gctctgagaa agaccgtacg tccaacttca gccccagatg tcaccaagct ctcggactct
720
aacaaggaga acgcgcgtca cagctacagc acccagaagg gccccctgaa ggcaggggag
780
cagcggcggg cgtctgaggt catcagccgg ggtggccctc ggaaggcgga cgggcagcgt
840
caggccttgg actacgtgga gctctcgccg ctgacccagg cttcccgca gcggggcccgc
900
accccagccc gcactcctga ccgcctggcc aaggcaggagg agctggagcg ggacctggcc
960
cagcgctccg aggagcggcg caagtggttt gaggccacag acagcaggac cccagaggtg
1020
cctgctggtg agggggcccg ccggggccctg ggtgcccccc tgactgagga ccagcaaaac
1080
cggcttagtg aggagatcga gaagaagtgg caggagctgg agaagctgcc cctgccccgg
1140
aataagcggg tgccctcac tgccctgctc aaccaaagcc gcggagagcg ccgagggccc
1200
ccaagtgacg gccacgaggc actggagaag gaggaggcat gtgagcgcag cctggcagag
1260
atggagtcct cgcaccagca ggtgatggag gagctgcagc ggcaccacga gcgggagctg
1320
cagcgcctgc agcaggagaa ggagtggctc ctggctgagg agacggcagc cacggcctca
1380
gccattgaag ccatgaagaa ggcctatcag gaagagctga gccgagagct gagcaaaaaca
1440
cggagtctcc agcagggccc ggatggccctc cggaagcagc accagtcaga tgtggaggca
1500
ctgaagcgag agctgcaggt gctatcgag cagtactcgc agaagtgcct ggagattggg
1560
gcactcatgc ggcaggctga ggagcgcgag cacacgctgc gccgctgcca gcaggaggc
1620
caggagctgc tgcgccacaa ccaggagctg catggccgcc tgcagagga gatagaccag
1680
ctgcgcggct tcattgcctc gcagggcatg ggcaatggct gcgggcccgcag caacgagcgg
1740
agttcctgcg agctagaggt gctgcttcgc gtaaaagaaa acgaactcca gtacctaag
1800
aaggaggtgc agtgcctccg ggacgagctc cagatgatgc agaaggacaa ggcgttccacc
1860
tcgggaaagt accaggacgt ctatgtggag ctgagccaca tcaagacacg gtctgagcgg
1920
gagatcgagc agctgaagga gcacctgcgt cttgccatgg ccgcctcca ggagaaggag
1980
tcgatgcgcgca acagcctggc tgagtagagg tccggccag ctgcagaccc tccaggctgg
2040
aggaccagcc gcctcccttc cctcctggat ggaagtaaaa agccaagctt tctccccacc
2100
ctctgtgggc cacacgtgca cttgcacccca ccacacacac acacacacac acacacacac
2160
acagacacac acacacatac gcacacacgt gcacacatgt acacacggat acacacacac
2220

acacacacac acacacactg catatctgag cacgcccctc gcactgggtc tcaccttgca
 2280
 ccttcttcag gattttatat gtgaagagat ttttatatacg attttttcc ttttttcca
 2340
 aaacacttta tactttaaaa aaaaaaaaaaa aaaagcaatt cctggtggct gtgtgcctcc
 2400
 aaccctggtc cccctctgtc tccagccacc ctctgctgg gcttctgagc tggtggccct
 2460
 ggcccagagg tctggcggag gcccaggcag cagccatggc ggggtgtctc tacaggggag
 2520
 aggccccggc ctgccaccct cttectgccc tacctcctac taacacttcc tgccccatt
 2580
 ggacccgtac catggggctc aggacagagg gagctagcag ctggcctcca tggccccaca
 2640
 gcctccttcg aggctgtgct gggtgcagaa ccgcccagagc cacccaaaag gtgtttctct
 2700
 tctgctccct gaacctctta acttaataaa acgttccagc agcaaaaaaaaaaaaaaaaa
 2760
 ag
 2762

<210> 5846
 <211> 257
 <212> PRT
 <213> Homo sapiens

<400> 5846
 Glu Ala Cys Glu Arg Ser Leu Ala Glu Met Glu Ser Ser His Gln Gln
 1 5 10 15
 Val Met Glu Glu Leu Gln Arg His His Glu Arg Glu Leu Gln Arg Leu
 20 25 30
 Gln Gln Glu Lys Glu Trp Leu Leu Ala Glu Glu Thr Ala Ala Thr Ala
 35 40 45
 Ser Ala Ile Glu Ala Met Lys Lys Ala Tyr Gln Glu Glu Leu Ser Arg
 50 55 60
 Glu Leu Ser Lys Thr Arg Ser Leu Gln Gln Gly Pro Asp Gly Leu Arg
 65 70 75 80
 Lys Gln His Gln Ser Asp Val Glu Ala Leu Lys Arg Glu Leu Gln Val
 85 90 95
 Leu Ser Glu Gln Tyr Ser Gln Lys Cys Leu Glu Ile Gly Ala Leu Met
 100 105 110
 Arg Gln Ala Glu Glu Arg Glu His Thr Leu Arg Arg Cys Gln Gln Glu
 115 120 125
 Gly Gln Glu Leu Leu Arg His Asn Gln Glu Leu His Gly Arg Leu Ser
 130 135 140
 Glu Glu Ile Asp Gln Leu Arg Gly Phe Ile Ala Ser Gln Gly Met Gly
 145 150 155 160
 Asn Gly Cys Gly Arg Ser Asn Glu Arg Ser Ser Cys Glu Leu Glu Val
 165 170 175
 Leu Leu Arg Val Lys Glu Asn Glu Leu Gln Tyr Leu Lys Lys Glu Val
 180 185 190
 Gln Cys Leu Arg Asp Glu Leu Gln Met Met Gln Lys Asp Lys Arg Phe
 195 200 205
 Thr Ser Gly Lys Tyr Gln Asp Val Tyr Val Glu Leu Ser His Ile Lys

210 215 220
Thr Arg Ser Glu Arg Glu Ile Glu Gln Leu Lys Glu His Leu Arg Leu
225 230 235 240
Ala Met Ala Ala Leu Gln Glu Lys Glu Ser Met Arg Asn Ser Leu Ala
245 250 255
Glu

<210> 5847
<211> 1021
<212> DNA
<213> Homo sapiens

<400> 5847
ggcacgagct cgtgcggccg ggtgagagcg tgcggccgga ttcaccacaa catggcaaat
60
ctttttataa ggaaaatggt gaaccctctg ctctatctca gtcgtcacac ggtgaaggct
120
cgagccctct ccacatttct atttggatcc attcgaggtg cagccccgt ggctgtggaa
180
cccgccccag cagtgcgcgc acttctctca cccggcctcc tgccccatct gctgcctgcg
240
ctggggttca aaaacaagac tgccttaag aagcgctgca aggactgtta cctggtaag
300
aggcgccccgc ggtggtacgt ctactgtaaa acccatccga ggcacaagca gagacagatg
360
tggacccttt ccctccagag tcacgcacat actcgtcattc gcatcacttg ggagaatgg
420
tgttatctt ggaaggaatt atcacatcaa ggagtcaagg gaaagtgact ggaagcaaac
480
gccctaaaaag ttacccatca cgtttcagtg taaatgagta actatagaag acattgcgtt
540
atcttatttc caaaacgttc caactaaaaa acattttcct attaaaatag accttccgaa
600
tagcttagtt cattcattct ctctgaactc aggctgcagg tagggattgg atgggtctgg
660
gtgaggctgg gcaggacttc tctatgtctc cgtgaggctg cttagagcct cttggaagaa
720
gtgggtttt ggtcacccgt cgctgtacaa gccaaggctt ggtggcttaa atcagccatt
780
ttacattgtt cacgattttg tgagggcattt gggatgggct cagctgagca gtttgtctga
840
tctgtgtggc attaactgca ggacccactt ccaagatggc accggctctc ctgtctgggg
900
tctcagtgtct cctcaggctg tacgttagcac ctccctcaggc agggccccaca gcgtgctttg
960
caactgccccca cagtgagctt cccgagagtg ttccgagaga cccaaagcaga tgctacgagg
1020
c
1021

<210> 5848
<211> 120
<212> PRT

<213> Homo sapiens

<400> 5848
 Gly Thr Ser Ser Cys Gly Arg Val Arg Ala Cys Gly Arg Ile His His
 1 5 10 15
 Asn Met Ala Asn Leu Phe Ile Arg Lys Met Val Asn Pro Leu Leu Tyr
 20 25 30
 Leu Ser Arg His Thr Val Lys Pro Arg Ala Leu Ser Thr Phe Leu Phe
 35 40 45
 Gly Ser Ile Arg Gly Ala Ala Pro Val Ala Val Glu Pro Gly Ala Ala
 50 55 60
 Val Arg Ser Leu Leu Ser Pro Gly Leu Leu Pro His Leu Leu Pro Ala
 65 70 75 80
 Leu Gly Phe Lys Asn Lys Thr Val Leu Lys Lys Arg Cys Lys Asp Cys
 85 90 95
 Tyr Leu Val Lys Arg Arg Gly Arg Trp Tyr Val Tyr Cys Lys Thr His
 100 105 110
 Pro Arg His Lys Gln Arg Gln Met
 115 120

<210> 5849

<211> 3174

<212> DNA

<213> Homo sapiens

<400> 5849

ttaccaacgg gagatgcagt ttatttacac cagcagccat gggggcagag
60
ggaatacaca gcgttacaa agttagctac ctgtacagaa tggattacat atgcaaaaat
120
aaaaatctca agaccacagg acagcgtgag ccccaccccc ctcccccaat gaccccgca
180
tgccgtaatg ccaggcgggt ggccctggg catgcggggg ggagtgatgc atggaaggaa
240
aagccaccgg ccatggaaat tagtacagaa cccccccaca cacactcaga cacaggatac
300
agggtgtggacg acacctagcc ggggtggaa ggatggaat tgaaacccac acagcctgct
360
gttagagggg ggggagtgccc gagctcctag cccctgttca actacatggt aggggggggc
420
actctctccc cagaaggaaa agggtttgtt ccctcagggt ccctgctgga ccaagcccat
480
ctcttaccca gcctgggcag ggggctctgc cctgagggcg ggccaaggaa caatggggaa
540
gttatgtgg acaaaccagt tcccaagcta cttcccactt ctccctcctc caaccagaag
600
gggggaaaag ggagaggcca cagggcaaag agtgtattag ggcctgagct gcagctgcct
660
ctcagaaggg agagtggccc acagccttcc tcccttcacc ttcagcccac tccccagact
720
gcatctggaa gcggctagag gcctgctgag atcctcctct ccctctggcc tcctctcgga
780
ggagactac ggagggccaa gaatagagaa gcccaggccc cggttattat tctaactcct
840

gccaaaawyy mmttggctt ttaaaaaata atcacaattt gtgggttaaa aaccaatttg
900
caaccaggca tgagccacaa tcagaaccac cccagcgga gagcgagtt ccagacaggg
960
nattgcagcc ccatctctgt tggccctta accctctagg gtccttaacc cgatcagtcc
1020
aaccgtctt gggtaactaac tacccaaatg tgggatggct cctttggga agagggttagg
1080
ggacatgtcc agcaagtgcc agagaacttg gctcagggtc aactccaccc cgtgtcagtc
1140
agctctgctc ccagcccags msgsggtctt ccagsttggty tcctgggagt nnggtgcc
1200
gcatmgaggg gggacggtaatctcttttag gatgttagacc aggcaaggtagg gcacactggc
1260
atgacagtcc cacagagggg cagtgacacc cttccccctc cactgacaac ctggggcaca
1320
gaggccaccc tctttccca cccaactctt agcaaagggg gagaggcaca agattaggat
1380
tttcctcaga gccccaaacc acaagtacag aataaataac ttaaaagcgc taaggaaggg
1440
aaacagggca cgctttggag gcaggagcgc tgagaggaac tgaagccagt caaggtgaag
1500
ggggtggaaag cagcagttgg gaacctgggc tgccccggta gggcagtggg gcagggtgg
1560
caggaggaac acggggccac cccaggaggg tgaggctggg tcccttcctg gggcagggaa
1620
tgaggttaaga aaacattca aataaagcag caccgttccc tctcaccttgc gggccccact
1680
cctcaccagc cctgggtcag ggaggagagg cagggggagg aattctgaca cttctccctc
1740
ttcctaccct ccctttccca ttccctgaag ctgtagaggc tggaggccct ttcctggcac
1800
ccaacaaaag gacagctctt gctgccaagg aggcccattgg ggactgaggg gaaaggctg
1860
ccccctgtgag gggcagggaa ggtggcggca gttctggacg cccacctcag cagacagcac
1920
tctgtgcctg cttacccttgc ggactggggg catttataa gattctgcac acagacagga
1980
catgcccage cttgccccctc agtccaaagc accggaccca ttcacattgc tgagggcggc
2040
cgaggcagggc cccctccagg ctcagcttcc aacccacagc ctcccggtc gccacattgc
2100
ccctcagcag ggcttagtcc agttcctggg gtgggggca ggcagtgcctt tggcacagtg
2160
cccagggtca ggcgcctgg cctagcttggc catccagtaa ctcacagaat aaataggaaa
2220
acccgcctccc caccaaactt atgtccaaagg cataatatgt ccaggtctga gtcctgcacg
2280
ccgaggaggc gtgctccatt gcagaggact ttgacacccc ccaggggcgc ataatcgat
2340
cctctgcctg cctggccac caagcttccc aagccccaaac ccccacccgc cgtccatttgc
2400
ccaggctatg ccacctgggt gggggcagg agagaggctt ctgctcagcc aaaggctatc
2460

cttgcaccc aagtca gttt atgtcatcat agatgctggg cgtcgggggt gccgggtggct
 2520
 ttggc tttt ctttttggt gaaaccttaggc cgaggcaggt ccctaccagg ctcagatggg
 2580
 atttctttt cttggtttcc cgtgactcag agctgttggt acctagaccc catccctgat
 2640
 tttcactcg tttggaggag cctgaatcag agggtgagag gtcagaggag cctggggact
 2700
 gaagccggct gatcagggcc tggctgtcag tcattgtcaaa gctgtcatta tccaggggac
 2760
 tctcgaccc tggaggaca gcccggggcc cgagaaaata aatccgtacg gttcgccct
 2820
 gctcatctgt gtgctgtggg cagcgcaggg accttgcata catcttctt gttgttgc
 2880
 aaatcacccc acattgcgtg gttagcaggg tgcaagctc ctccggcccc agggtctcat
 2940
 agctgatccc agttgaattt ttatacttaa aaggatccga attgctaagt tccccatttt
 3000
 tgtgtttaa tgacttggat cttcgagggg aattgggtt ctggatggg agataccata
 3060
 gcttggggaa aagggttaacg aaaaggggaa gcccagaacc cagggaaagga aaaaagattt
 3120
 gacaaagcag catcctcaaa ttccctactct tcctcccaag taggaggcct gtct
 3174

<210> 5850

<211> 154

<212> PRT

<213> Homo sapiens

<400> 5850
 Gly Ala Gly Lys Val Ala Ala Val Leu Asp Ala His Leu Ser Arg Gln
 1 5 10 15
 His Ser Val Pro Ala Tyr Pro Trp Asp Trp Gly His Leu Ile Arg Phe
 20 25 30
 Cys Thr Gln Thr Gly His Ala Gln Pro Cys Pro Ser Ala Pro Ser Thr
 35 40 45
 Gly Pro Ile His Ile Ala Glu Gly Gly Arg Gly Arg Pro Pro Pro Gly
 50 55 60
 Ser Ala Ser Asn Pro Gln Pro Pro Gly Ser Pro His Cys Pro Ser Ala
 65 70 75 80
 Gly Leu Ser Pro Val Pro Gly Val Gly Gly Arg Gln Cys Pro Gly Thr
 85 90 95
 Val Pro Arg Val Arg Arg Pro Gly Leu Ala Gly His Pro Val Thr His
 100 105 110
 Arg Ile Asn Arg Lys Thr Ala Ser Pro Pro Asn Leu Cys Pro Arg His
 115 120 125
 Asn Met Ser Arg Ser Glu Ser Cys Thr Pro Arg Ser Arg Ala Pro Leu
 130 135 140
 Gln Arg Thr Leu Thr Pro Pro Arg Gly Ala
 145 150

<210> 5851

<211> 488

<212> DNA
<213> Homo sapiens

<400> 5851
ttttttttt tataaaaaaa gcagcaactc tttagtgatc atggattaa tctgacagca
60
attaaatgtg tttaagcatc tggatatct cctcaattgc accaaaagaa tttggaagca
120
cttggtttgg tctcaaaggc aaaaggaaag gacgaggaag gggccaggcc tcccggcagg
180
ccccccgcccc cctcacatTT ctgagtccgc atacatcccc ttgattaagt agtccacctg
240
ggtgttagtcc ttcttcttgt agctctcata ggcatacgatc ctgcttgtgt cctctgttgc
300
gacttccata gagttgaggt gggctgccga agtcccttg gtcaatgtga caggagaagc
360
tgctgccatg gttacatcct cagacgtttt attatcaact gtttccacag atgcattcct
420
cttgactaat cccttccaca ttttggtagg gacaaagttt cctggggaggg ctgcgggttcc
480
tgacgcgt
488

<210> 5852
<211> 82
<212> PRT
<213> Homo sapiens

<400> 5852
Met Trp Lys Gly Leu Val Lys Arg Asn Ala Ser Val Glu Thr Val Asp
1 5 10 15
Asn Lys Thr Ser Glu Asp Val Thr Met Ala Ala Ala Ser Pro Val Thr
20 25 30
Leu Thr Lys Gly Thr Ser Ala Ala His Leu Asn Ser Met Glu Val Thr
35 40 45
Thr Glu Asp Thr Ser Arg Thr Asp Ala Tyr Glu Ser Tyr Lys Lys Lys
50 55 60
Asp Tyr Thr Gln Val Asp Tyr Leu Ile Asn Gly Met Tyr Ala Asp Ser
65 70 75 80
Glu Met

<210> 5853
<211> 487
<212> DNA
<213> Homo sapiens

<400> 5853
nacgcgtgaa gggaaatggaa ggtgcagaga ccagagctga gggaggcttc aggggattac
60
agacggcttc aagagggagg cccagcccg tccgcggccc ctgacacccc atcaggccgc
120
tcaggcccag cagctccatg gaggacgccc gcgaggaccc caccacgttt gctgcccact
180

ctctgcccag tgaccccggt ctctggcca ctgtgaccaa cgcatcacctg ggcacacgag
240
tgtttcacga cacgctgcac gtgagcggcg tgtacaatgg ggctggcggg gacacgcacc
300
gggccatgtct cccagcccc ctcaacgtcc ggctggaggc ccccgaggg atgggggagc
360
agctgaccga gaccttcgccc ctggacacca acacaggctc ctttcttcac accctggagg
420
gcccccgctt ccgggcctcc cagtgcataatgc caccgtgccc cacgtgctgg
480
ctttccg
487

<210> 5854
<211> 68
<212> PRT
<213> Homo sapiens

<400> 5854
Arg Glu Trp Lys Val Gln Arg Pro Glu Leu Arg Glu Ala Ser Gly Asp
1 5 10 15
Tyr Arg Arg Ser Gln Glu Gly Gly Pro Ala Arg Pro Ala Ala Pro Asp
20 25 30
Thr Pro Ser Gly Arg Ser Gly Pro Ala Ala Pro Trp Arg Thr Pro Ala
35 40 45
Arg Thr Pro Pro Arg Leu Leu Pro Thr Leu Cys Pro Val Thr Pro Val
50 55 60
Ser Trp Pro Leu
65

<210> 5855
<211> 362
<212> DNA
<213> Homo sapiens

<400> 5855
gcgcgccagg ggcaggggag ggatggagcc agcgagggtc gggatagcga gcgagggtgg
60
gagggactcc gtaacagccc ctctgtgctc agcgatccc cttcttagcag tccctccctc
120
tcctcccgac cctcccgac gacacctgctg gggctgtgg ggcccaaagc gggaggagg
180
taacgagggtt gttcagaag tcctcctggc ggcacacgaa ggtgttaggag atcaggaga
240
ggccggggcc catccgggtgc tcagtgacgc ggggctcctg gtccttggcc tccgtgcagc
300
ccttggagag caccaggctc acttggggtc cgctctcaat gagcatcaac gtgtcctggc
360
an
362

<210> 5856
<211> 113
<212> PRT

<213> Homo sapiens

<400> 5856

Met	Glu	Pro	Ala	Arg	Val	Gly	Ile	Ala	Ser	Glu	Gly	Gly	Arg	Asp	Ser
1										10					15
Val	Thr	Ala	Pro	Leu	Cys	Ser	Ala	Asp	Pro	Leu	Leu	Ala	Val	Pro	Pro
										20					25
Ser	Pro	Pro	Asp	Pro	Pro	Ala	Gly	Thr	Cys	Trp	Gly	Leu	Trp	Gly	Pro
										35					40
Lys	Arg	Glu	Gly	Val	Asn	Glu	Val	Val	Ala	Glu	Val	Leu	Leu	Ala	Ala
										50					55
His	Glu	Gly	Val	Gly	Asp	Gln	Gly	Glu	Ala	Gly	Ala	His	Pro	Val	Leu
										65					70
Ser	Asp	Ala	Gly	Leu	Leu	Val	Leu	Gly	Leu	Arg	Ala	Ala	Leu	Gly	Glu
										85					90
His	Gln	Ala	His	Leu	Gly	Ser	Ala	Leu	Asn	Glu	His	Gln	Arg	Val	Leu
										100					105
Ala															110

<210> 5857

<211> 1751

<212> DNA

<213> Homo sapiens

<400> 5857

ggggcgccgccc	gagctgagggt	ggtgagggac	tagctcccg	atgtggagaa	gctggggaga
60					
aggcgtggga	ggaagatgga	ctcggtggag	aaggggcccg	ccacacctcg	ctccaaccgg
120					
cgggggcgac	cgtccccgggg	ccggccgccc	aagctgcagc	gcaactctcg	cggcggccag
180					
ggcccgagggt	gggagaagcc	ccgcacactg	gcagccctaa	ttctggcccg	gggaggcagc
240					
aaaggcatcc	ccctgaagaa	cattaagcac	ctggcgaaaa	tcccgctcat	tggctgggtc
300					
ctgcgtgcgg	ccctggattc	aggggccttc	cagagtgtat	gggtttcgac	agaccatgat
360					
gaaattgaga	atgtggccaa	acaatttggt	gcacaagttc	atcgaagaag	ttctgaagtt
420					
tcaaaaagaca	gctctacctc	actagatgcc	atcatagaat	ttcttaatta	tcataatgag
480					
gttgacattt	taggaaatat	tcaagctact	tctccatgtt	tacatcctac	tgatctcaa
540					
aaagttgcag	aatgattcg	agaagaagga	tatgattctg	ttttctctgt	tgtgagacgc
600					
catcagttt	gatggagtga	aattcagaaa	ggagttcgtg	aagtgaccga	acctctgaat
660					
ttaaatccag	ctaaacggcc	tcgtcgacaa	gactggatg	gagaattata	tgaaaatggc
720					
tcattttatt	ttgctaaaag	acatttgata	gagatgggtt	acttgcaggg	tggaaaaatg
780					
gcatactacg	aaatgcgagc	tgaacatagt	gtggatata	atgtggatat	tgattggcct
840					

attgcagaggc aaagagtatt aagatatggc tattttggca aagagaagct taaggaaata
 900
 aaacttttgg tttgcaatat tgatggatgt ctcaccaatg gccacattta tgtatcagga
 960
 gaccaaaaag aaataaatatc ttatgtatgtaa aagatgcta ttgggataag tttattaaag
 1020
 aaaagtggta ttgaggtgag gctaatctca gaaagggcct gttcaaagca gacgctgtct
 1080
 tctttaaaac tggattgcaa aatggaagtc agtgtatcatc acaagcttagc agttgttagat
 1140
 gaatggagaa aagaaatggg cctgtgctgg aaagaagtgg cataatcttgg aatgaagtg
 1200
 tctgatgaag agtgcttcaa gagagtggc ctaagtggcg ctccctgctga tgccctgttct
 1260
 actgcccaga aggctgttgg atacatttgc aatgtaatg gtggccgtgg tgccatccga
 1320
 gaatttgcag agcacatttgc cctactaatg gaaaaggta ataattcatg caaaaaatag
 1380
 aaatttagct aatattgaga aaaaaatgtat acagccttct tcagccagtt tgcttttatt
 1440
 tttgattaag taaattccat gttgtatgt tacagagagt gtgatttgggt ttgtgatata
 1500
 tatatattgt gctctacttt tctctttacg caagataatt atttagagac tgattacagt
 1560
 ctttctcaga ttttagtaa atgcaagtaa gaacatcatc aaagttcaact ttgtattgtta
 1620
 ccctgtaaaaa ctgtgtgtt gtgtgttttca aagatgttg ggattttatt tatctgggga
 1680
 cagtggttat ggtaagacat gcccttctat taataaaaact acatttctca aaaaaaaaaaa
 1740
 aaaaaaaaaaaa a
 1751

<210> 5858
 <211> 434
 <212> PRT
 <213> Homo sapiens

<400> 5858
 Met Asp Ser Val Glu Lys Gly Ala Ala Thr Ser Val Ser Asn Pro Arg
 1 5 10 15
 Gly Arg Pro Ser Arg Gly Arg Pro Pro Lys Leu Gln Arg Asn Ser Arg
 20 25 30
 Gly Gly Gln Gly Arg Gly Gly Glu Lys Pro Pro His Leu Ala Ala Leu
 35 40 45
 Ile Leu Ala Arg Gly Gly Ser Lys Gly Ile Pro Leu Lys Asn Ile Lys
 50 55 60
 His Leu Ala Gly Val Pro Leu Ile Gly Trp Val Leu Arg Ala Ala Leu
 65 70 75 80
 Asp Ser Gly Ala Phe Gln Ser Val Trp Val Ser Thr Asp His Asp Glu
 85 90 95
 Ile Glu Asn Val Ala Lys Gln Phe Gly Ala Gln Val His Arg Arg Ser
 100 105 110
 Ser Glu Val Ser Lys Asp Ser Ser Thr Ser Leu Asp Ala Ile Ile Glu

115	120	125
Phe Leu Asn Tyr His Asn Glu Val Asp Ile Val Gly Asn Ile Gln Ala		
130	135	140
Thr Ser Pro Cys Leu His Pro Thr Asp Leu Gln Lys Val Ala Glu Met		
145	150	155
Ile Arg Glu Glu Gly Tyr Asp Ser Val Phe Ser Val Val Arg Arg His		
165	170	175
Gln Phe Arg Trp Ser Glu Ile Gln Lys Gly Val Arg Glu Val Thr Glu		
180	185	190
Pro Leu Asn Leu Asn Pro Ala Lys Arg Pro Arg Arg Gln Asp Trp Asp		
195	200	205
Gly Glu Leu Tyr Glu Asn Gly Ser Phe Tyr Phe Ala Lys Arg His Leu		
210	215	220
Ile Glu Met Gly Tyr Leu Gln Gly Lys Met Ala Tyr Tyr Glu Met		
225	230	235
Arg Ala Glu His Ser Val Asp Ile Asp Val Asp Ile Asp Trp Pro Ile		
245	250	255
Ala Glu Gln Arg Val Leu Arg Tyr Gly Tyr Phe Gly Lys Glu Lys Leu		
260	265	270
Lys Glu Ile Lys Leu Leu Val Cys Asn Ile Asp Gly Cys Leu Thr Asn		
275	280	285
Gly His Ile Tyr Val Ser Gly Asp Gln Lys Glu Ile Ile Ser Tyr Asp		
290	295	300
Val Lys Asp Ala Ile Gly Ile Ser Leu Leu Lys Lys Ser Gly Ile Glu		
305	310	315
Val Arg Leu Ile Ser Glu Arg Ala Cys Ser Lys Gln Thr Leu Ser Ser		
325	330	335
Leu Lys Leu Asp Cys Lys Met Glu Val Ser Val Ser Asp Lys Leu Ala		
340	345	350
Val Val Asp Glu Trp Arg Lys Glu Met Gly Leu Cys Trp Lys Glu Val		
355	360	365
Ala Tyr Leu Gly Asn Glu Val Ser Asp Glu Glu Cys Leu Lys Arg Val		
370	375	380
Gly Leu Ser Gly Ala Pro Ala Asp Ala Cys Ser Thr Ala Gln Lys Ala		
385	390	395
Val Gly Tyr Ile Cys Lys Cys Asn Gly Gly Arg Gly Ala Ile Arg Glu		
405	410	415
Phe Ala Glu His Ile Cys Leu Leu Met Glu Lys Val Asn Asn Ser Cys		
420	425	430
Gln Lys		

<210> 5859
<211> 2267
<212> DNA
<213> Homo sapiens

<400> 5859
ttttttttt tttttgaca gtagacaatg ttgttgttta tttaaaatgt ttactccaag
60
aaatatataat ataaaaaaaaa taataagaca attacagcac taaaccaggc accttcgacc
120
aaatcacaac ctcctcttg attcccttgc acgctaagcc tctttcaaat tcttttcct
180

gagctggaaag accagtcaaga tgcccgagg gtcagcgcca agcacattcc caaccggca
240 actgtgtacc ttctcttagg agtgcacgac acccttcccc cacaactcct ttttttaag
300 gatTTAACCC attaggaagc ccatgtttca atctaagcca gaaggagctg cgggacaagg
360 cagtctcac tttgaaggc ccttcctgc tccagtcct gggctagggt tctagaagag
420 gctggctgcc acgtttacat gaggccaccc aagatctaag tccagctaag cccagggagg
480 ctctcgaaa ggctgggacc tcgggtgctg cgctctcaac cctctcggtg accacggctc
540 aaaggagaga cctcaagggt gccaggagca caggtgcctg ggctgcattc caggaaagag
600 acctgtccag ggaaacggat caggctgtcg catggaagct tacgtcagag atggtggtt
660 tgggtgatt tggacaaatt aggttagttt agcaaagctc tgaagtagca gaagcttctc
720 ccctggacta ctgattgaac acagaacaag agatgcgcgt ggcgtcagac taagtcttag
780 agagatgcag gccagtcctcc tcccacaggg cttggact ggcaggacag acactgctac
840 atgcccctcca agggcaggag tcacgtaag gagcgaactgg ggtggaaaat agggaaaaaa
900 gcaacaacaa ctacatcatt tttggcattt taacatggag acagtgacaa gtggtaacaa
960 agcaaaagaa aaaaaaaaaact tgaagagacc aatattaac tttcccatcc acccaagtct
1020 cacacttaag ttcttagtccc atctccccca taagcaccac tgaactaaat atctatttt
1080 aagcacccaa accagtccag accctctgga aaccaagagc cccagccaca gctgtcgct
1140 ctcttgggtc caggcgagag gagggttccg ggaaaggcac ctcataactc actcagcgca
1200 gcacacacgg cggcgagctc gggcacttga cggggacacg ggtggcagtc acggcatccg
1260 tgctgacatg tgaggaaggg gactctttgg taatcccaac tatttggtagtac tagagccaaag
1320 caaacgtgac taaagggagc tgggtcagca gaacggtacc ccgagtctca gcaacaggat
1380 gccccgcacg aggcaggatc caggcgaaaa ggagaaaaag agaccaaagc acaaggcgat
1440 cgaggctggc acagaaaaggc ctgateccttc ttgcaaggac tggagaatgc acttgactgc
1500 tggctggtcc atctcttaat tggcgagtgc gcgtgacaag gctcagccct ggctccacag
1560 ggagccacca agctgactca actgatacaa atgttccac ctctgccccca ccccccaagtc
1620 cccatggttc cacaatcacc tgatTTcat ttggacctct ttaacagcta aagttagatata
1680 aaatggctaa acacagatcc ccaatcccc accagggggg acacggccga ttctataatg
1740 tcgcagccag aaggctgtgg gcgtacaggc agccaagggg agaaacagaa ccgacaccgg
1800

cctaggccca tctgcaagaa aaagcggaga aggagtgacc cggatgcttc cgaagcacgc
 1860
 gagcgtgatt ttggatggag gcgggcccgt gactgcctag ctgctgccgg ttcctgttaag
 1920
 ggacatttt tctgagtaaa tggcgattcc tcttccatgt ggcatctgct tggatcacga
 1980
 tgctaattgt aactggaaag ggggttttg gggagtgtat tcaggagagg aagaaaagaaa
 2040
 aaacctaaaa aaaaaaaaaa aaccttagatt gctcaaagtt tctgcctctt ttgttaggaat
 2100
 gtaaatcaa ctatgagcaa gtatTTAAT tcaacattaa gggaaaaaaaa aggactttgg
 2160
 aaagcataca gaaaaaaaaa tagttaacgt tggatcatgt gtAAAACGGA acctcaggga
 2220
 gtctaaacaa aaatgcacct tcggtcaact tttgttttt taaattt
 2267

<210> 5860
 <211> 96
 <212> PRT
 <213> Homo sapiens

<400> 5860
 Met Glu Glu Glu Ser Pro Phe Thr Gln Lys Lys Cys Pro Leu Gln Glu
 1 5 10 15
 Pro Ala Ala Ala Arg Gln Ser Pro Ala Arg Leu His Pro Lys Ser Arg
 20 25 30
 Ser Arg Ala Ser Glu Ala Ser Gly Ser Leu Leu Leu Arg Phe Phe Leu
 35 40 45
 Gln Met Gly Leu Gly Arg Cys Arg Phe Cys Phe Ser Pro Trp Leu Pro
 50 55 60
 Val Arg Pro Gln Pro Ser Gly Cys Asp Ile Ile Glu Ser Ala Val Ser
 65 70 75 80
 Pro Leu Val Gly Asp Trp Gly Ser Val Phe Ser His Leu Tyr Leu Leu
 85 90 95

<210> 5861
 <211> 1951
 <212> DNA
 <213> Homo sapiens

<400> 5861
 ncaattgcag ctttctatgg cggcaagtcc attctcatca cggggggccac aggctttctg
 60
 ggcaaagtgc tgatggagaa gctgtttcgc accagccccag acctgaaagt catttacatc
 120
 cttgtgaggg ccaaggctgg ccagacactg cagcagaggg tttccagat cctagacagt
 180
 aagctatttgc agaaagtcaa agaagttgt ccaaattgtgc atgagaagat cagagctatt
 240
 tatgcagatc tcaatcagaa tgactttgcc atcagcaaag aggacatgca ggagcttctc
 300
 tcctgtacaa acataatatt tcactgtgca gccactgtac gctttgacga cactctcaga
 360

catgctgtgc aacttaacgt cactgccacc cgccagctct tgcttatggc tagtcagatg
420
ccaaagctgg aaggctttat acatatctct actgcctatt caaattgtaa cctgaagcac
480
atcgatgaag ttatctatcc gtgccctgtg gagccaaaaaaa aaaaaatcat tgattccctt
540
gagtggtagt acgatgtat tattgacgag attacaccca agctgatcag agattggccc
600
aatatttata cctacaccaa ggccttggga gaaatggtgg tgcagcaaga gagcaggaac
660
ctgaacatttgc ccatcataag gccctccatt gtgggagcaa cttggcagga gcctttccca
720
ggttgggttg ataataaaa tggaccta ggaatcatta ttgcgactgg gaaagggttt
780
cttcgggcca taaaagctac tccaaatggct gtggcagacg taattccagt tgatacagtc
840
gtcaatctca tgctagctgtt aggatggat actgcagttc acagacctaa gtcaacattt
900
gtctaccaca ttacatctgg taacatgaat ccctgcaattt ggcacaaaaat gggagtccaa
960
gtcttggcaa cctttgaaaaa aatccccattt gagagacctt tcaggaggcc aaatgctaat
1020
tttaccagca acagcttcac atcacagttac tggaaatgcgg tcagccacccg ggccccctgcc
1080
attatctatg actgctatct gcccgtact ggaaggaagc ccaggatgac aaagctcatg
1140
aatcggcttt taagaactgt ttccatgtt gagtatttca tcaaccggag ttgggaatgg
1200
agcacgtaca atacagaaat gctgatgtct gagctgagtc ctgaagacca gagagtattt
1260
aactttgacg tgcgccagtt gaactgggtt gaaatacatttggaaaattatgtttttggagtt
1320
aaaaaataact tattgaaaga ggtatggct gggatccaa aagcaaagca acgctaaaaa
1380
aggctccgaa atattacta cctctttaat actgcctct tccttatacgc ctggcgccctt
1440
ctcattgcaa gatctcagat ggctcggaaat gtctgggtct tcattgttgc cttctgttat
1500
aaattcccttctt cctactttttttagt agcatccagc acgctcaaag tttaagagca ttttagccatc
1560
gccttttatac tggaaacctctt cagataccctc taaaacagca aactgtgattt ctcaagatattt
1620
gaaagtaaca aggaatatgc cccaaactgtc aaatgtcacc tggatgttat tggcccttat
1680
tccttaacta tggatgttta tttcagttagt agaagggaaag ttgtaaacta gcccatagtc
1740
acctatattt tagggaaaaa aatccaaattt gtttccttaac attctatattt atgccttgc
1800
gtattaaacg tgaaagtact cccacttttc tatatttagt ttttccttgc tctctgagat
1860
gattcatttta aactcagtaa atatggaaag atgcattggca gaagctgaaa tgagctcaag
1920
cagtactaac cttggaaacca ttctgggtac c
1951

<210> 5862
<211> 514
<212> PRT
<213> Homo sapiens

<400> 5862
Xaa Ile Ala Ala Phe Tyr Gly Gly Lys Ser Ile Leu Ile Thr Gly Ala
1 5 10 15
Thr Gly Phe Leu Gly Lys Val Leu Met Glu Lys Leu Phe Arg Thr Ser
20 25 30
Pro Asp Leu Lys Val Ile Tyr Ile Leu Val Arg Pro Lys Ala Gly Gln
35 40 45
Thr Leu Gln Gln Arg Val Phe Gln Ile Leu Asp Ser Lys Leu Phe Glu
50 55 60
Lys Val Lys Glu Val Cys Pro Asn Val His Glu Lys Ile Arg Ala Ile
65 70 75 80
Tyr Ala Asp Leu Asn Gln Asn Asp Phe Ala Ile Ser Lys Glu Asp Met
85 90 95
Gln Glu Leu Leu Ser Cys Thr Asn Ile Ile Phe His Cys Ala Ala Thr
100 105 110
Val Arg Phe Asp Asp Thr Leu Arg His Ala Val Gln Leu Asn Val Thr
115 120 125
Ala Thr Arg Gln Leu Leu Met Ala Ser Gln Met Pro Lys Leu Glu
130 135 140
Ala Phe Ile His Ile Ser Thr Ala Tyr Ser Asn Cys Asn Leu Lys His
145 150 155 160
Ile Asp Glu Val Ile Tyr Pro Cys Pro Val Glu Pro Lys Lys Ile
165 170 175
Ile Asp Ser Leu Glu Trp Leu Asp Asp Ala Ile Ile Asp Glu Ile Thr
180 185 190
Pro Lys Leu Ile Arg Asp Trp Pro Asn Ile Tyr Thr Tyr Thr Lys Ala
195 200 205
Leu Gly Glu Met Val Val Gln Gln Glu Ser Arg Asn Leu Asn Ile Ala
210 215 220
Ile Ile Arg Pro Ser Ile Val Gly Ala Thr Trp Gln Glu Pro Phe Pro
225 230 235 240
Gly Trp Val Asp Asn Ile Asn Gly Pro Asn Gly Ile Ile Ile Ala Thr
245 250 255
Gly Lys Gly Phe Leu Arg Ala Ile Lys Ala Thr Pro Met Ala Val Ala
260 265 270
Asp Val Ile Pro Val Asp Thr Val Val Asn Leu Met Leu Ala Val Gly
275 280 285
Trp Tyr Thr Ala Val His Arg Pro Lys Ser Thr Leu Val Tyr His Ile
290 295 300
Thr Ser Gly Asn Met Asn Pro Cys Asn Trp His Lys Met Gly Val Gln
305 310 315 320
Val Leu Ala Thr Phe Glu Lys Ile Pro Phe Glu Arg Pro Phe Arg Arg
325 330 335
Pro Asn Ala Asn Phe Thr Ser Asn Ser Phe Thr Ser Gln Tyr Trp Asn
340 345 350
Ala Val Ser His Arg Ala Pro Ala Ile Ile Tyr Asp Cys Tyr Leu Arg
355 360 365
Leu Thr Gly Arg Lys Pro Arg Met Thr Lys Leu Met Asn Arg Leu Leu

370	375	380
Arg	Thr Val Ser Met Leu Glu Tyr Phe Ile Asn Arg Ser Trp Glu Trp	
385	390	395
Ser Thr Tyr Asn Thr Glu Met Leu Met Ser Glu Leu Ser Pro Glu Asp		400
405	410	415
Gln Arg Val Phe Asn Phe Asp Val Arg Gln Leu Asn Trp Leu Glu Tyr		
420	425	430
Ile Glu Asn Tyr Val Leu Gly Val Lys Lys Tyr Leu Leu Lys Glu Asp		
435	440	445
Met Ala Gly Ile Pro Lys Ala Lys Gln Arg Leu Lys Arg Leu Arg Asn		
450	455	460
Ile His Tyr Leu Phe Asn Thr Ala Leu Phe Leu Ile Ala Trp Arg Leu		
465	470	475
Leu Ile Ala Arg Ser Gln Met Ala Arg Asn Val Trp Phe Phe Ile Val		480
485	490	495
Ser Phe Cys Tyr Lys Phe Leu Ser Tyr Phe Arg Ala Ser Ser Thr Leu		
500	505	510
Lys Val		

<210> 5863

<211> 438

<212> DNA

<213> Homo sapiens

<400> 5863
acgcgttaggt gtgatcttgc tctaataatg tccccctggca ggtaagattt ctgcagccaa
60
gggggttttag aggaagatcc tttaataactc ttcttggAAC agaattttggg tctctaAGCA
120
agaagtGCCA gtcttaacat tcactgtttg tgactgattt atagaaaaAG gggctggatt
180
ctggtagCCG ggggagCCCa gggtaaacAC tgaggTTCTA ccctgttCTA gtggttgCtt
240
tgattgatac tcagccatGA aaggAACATA gtcagatac tgacAAAACA gctttgtatt
300
tgagtgtgtt tgtccaactg gcaaggaaca gtctggggac aaacagtGCC ttattttggag
360
ttgcttattc ttctccccca tggagtgacc tcagataacc tttcccagct tggaaagacc
420
tgaatcagat tttgtaca
438

<210> 5864

<211> 104

<212> PRT

<213> Homo sapiens

<400> 5864
Met Gly Glu Lys Asn Lys Gln Leu Gln Ile Arg His Cys Leu Ser Pro
1 5 10 15
Asp Cys Ser Leu Pro Val Gly Gln Thr His Ser Asn Thr Lys Leu Phe
20 25 30
Cys Gln Tyr Leu Ser Tyr Val Pro Phe Met Ala Glu Tyr Gln Ser Lys

35 40 45
Gln Pro Leu Glu Gln Gly Arg Thr Ser Val Phe Thr Leu Gly Ser Pro
50 55 60
Gly Tyr Gln Asn Pro Ala Pro Phe Ser Ile Asn Gln Ser Gln Thr Val
65 70 75 80
Asn Val Lys Thr Gly Thr Ser Cys Leu Glu Thr Gln Ile Leu Phe Gln
85 90 95
Glu Glu Tyr Leu Arg Ile Phe Leu
100

<210> 5865

<211> 1229

<212> DNA

<213> Homo sapiens

<400> 5865
nnntccggaaa caggtgtggc ccggggcata gacttccacc atgtgtctgc tggctcaac
60 tttgatcttc ccccaacccc tgaggcctac atccatcgag ctggcaggac agcacgcgt
120 aacaacccag gcatagtctt aacctttgtg cttccacgg agcagttcca cttaggcaag
180 attgaggagc ttctcggtga gagaacaggg gccccattct gctccctac cagttccgga
240 tggaggagat cgagggtttc cgctatcgct gcaggtgtcc acccccagga tgccatgcgc
300 tcagtgacta agcaggccat tcgggaggca agattgaagg agatcaagga agagcttctg
360 cattctgaga agcttaagac atactttgaa gacaaccta gggacctcca gctgctgcgg
420 catgacctac ctttgcaccc cgcaagtggtg aagccccacc tggccatgt tcctgactac
480 ctgggttcctc ctgctctccg tggcctggta cgccctcaca agaagcggaa gaagctgtct
540 tcctcttgtta ggaaggccaa gagagcaaag tcccagaacc cactgcgcag cttcaagcac
600 aaaggaaaaga aattcagacc cacagccaag ccctcctgag gttgttggc ctctctggag
660 ctgagcacat tgtggagcac aggcttacac cttcgtggc caggcaggc tctgggtgtt
720 actgcacagc ctgaacagac agttctgggg ccggcagtgc tggcccttt agctccttgg
780 cacttccaag ctggcatctt gcccttgac aacagaataa aaatttttagc tgccccagtt
840 tgtgcctcca gcatatgaaa aggactattt gaatcccaa aacatcagga gtcgggaaac
900 ttcggaaagac agctgtgcct ggctctgtgg ctgcatgcag tgcttcactt ggccagcaga
960 ggtcagctgt gcccagactgc cccagccatg agaagagaag cctgcccctg ctggcagggt
1020 gctatggccg gcccagagcc ttccctgcccc gctcctgcag ccctgctgcc tgggatcagg
1080 ctgggagatg ggccttcctg accgcccagcc ttccctcccc cgagcacacg cacatgtaga
1140

ttcgggggga agctgcctgc tcttccttag aggagccggg gcagctatct gctggtccct

1200

ttctgaacaa ctgttgatgt gtaaaaaaa

1229

<210> 5866

<211> 212

<212> PRT

<213> Homo sapiens

<400> 5866

Xaa Pro Glu Thr Gly Val Ala Arg Gly Ile Asp Phe His His Val Ser
 1 5 10 15
 Ala Val Leu Asn Phe Asp Leu Pro Pro Thr Pro Glu Ala Tyr Ile His
 20 25 30
 Arg Ala Gly Arg Thr Ala Arg Ala Asn Asn Pro Gly Ile Val Leu Thr
 35 40 45
 Phe Val Leu Pro Thr Glu Gln Phe His Leu Gly Lys Ile Glu Glu Leu
 50 55 60
 Leu Val Glu Arg Thr Gly Ala Pro Phe Cys Ser Pro Thr Ser Ser Gly
 65 70 75 80
 Trp Arg Arg Ser Arg Ala Ser Ala Ile Ala Ala Gly Val His Pro Gln
 85 90 95
 Asp Ala Met Arg Ser Val Thr Lys Gln Ala Ile Arg Glu Ala Arg Leu
 100 105 110
 Lys Glu Ile Lys Glu Glu Leu Leu His Ser Glu Lys Leu Lys Thr Tyr
 115 120 125
 Phe Glu Asp Asn Pro Arg Asp Leu Gln Leu Leu Arg His Asp Leu Pro
 130 135 140
 Leu His Pro Ala Val Val Lys Pro His Leu Gly His Val Pro Asp Tyr
 145 150 155 160
 Leu Val Pro Pro Ala Leu Arg Gly Leu Val Arg Pro His Lys Lys Arg
 165 170 175
 Lys Lys Leu Ser Ser Ser Cys Arg Lys Ala Lys Arg Ala Lys Ser Gln
 180 185 190
 Asn Pro Leu Arg Ser Phe Lys His Lys Gly Lys Lys Phe Arg Pro Thr
 195 200 205
 Ala Lys Pro Ser
 210

<210> 5867

<211> 1882

<212> DNA

<213> Homo sapiens

<400> 5867

tcctatcgta taccagaga tcttcctgcc atctgaggat gagtgtgggg acgtcctcgta
 60
 catgagaaag aactcatccc catcctccat taccacttat gagacctgcc agacctacga
 120
 gcgtccccatt gccttcactg cccgttccag gaagctctgg atcaacttca agacaagcga
 180
 ggccaacacgc gcccgtggct tccagattcc ctatgttacc tatgtatgagg actatgagca
 240

gctggtagaa gacattgtgc gagatggccg gctctatgcc tctgaaaacc accaggagat
300
tttaaaggac aagaagctca tcaaggcctt ctttgaggtg cttagcccacc cccagaacta
360
cttcaagtac acagagaaac acaaggagat gctgccaaaa tccttcata agctgctccg
420
ctcccaaagg ttccagcttcc tgaggcccta caaatagtaa ccctaggctc agagacccaa
480
tttttaagc ccccagactc cttagccctc agagccggca gccccctacc ctcagacaag
540
gaactctctc ctctctttt ggagggaaaa aaaaatatca ctacacaaac caggcactct
600
ccctttctgt ctttctagtt tccttcctt gtctctctc gcctgcctct ctactgttcc
660
ccctttctta acacactacc tagaaaagcc attcagtaact ggctctagtc cccgtgagat
720
gtaaaagaaac agtacagccc ctccactgc ccattttacc agtcacatt cccgacccca
780
tcagcttgg agggtgctag aggcccata aggaagtggg tctgggtggg aacggggagg
840
ggaaagaagg gcttctgcca ttatagggtt gtgccttgct agtcaggggc caaaatgtcc
900
cctggctctg ctccctaggg tgattctaac agcccagggt cctgccaaag aagccttga
960
tttacaggct taatgccagc accagtcctc tggggcacat ggtttgagct ctggacttcc
1020
cacatggcca gctttctgt ctatacagat cctctcttcc ttccctacg tctgcctgg
1080
gtctactcca taagggtta caaatggccc acaacactga gttagtggac accggctaaa
1140
tgaggaagag cagcaggcat tgtcatggtg aatgccccgc ttagtcccc tgagagaaaag
1200
actgttaactc tgcaggacag aaacaagggtt ttaaagcatt gccaaaaaaaaa agaaaacaga
1260
aagaaaaaaaaat gtatcatcta aaggtctaga cacagaacaa ttggaagtca acttcaaaca
1320
ctaattccctt ttcttgtctt ccctggccca gccacctcct cagccccatg tgatgctccc
1380
tgggggagcc ctactccccct tgctacatgt tgccctaaa catggttatt gacctgaagc
1440
cagcctaggc ctgcctac agttttttt cccttgtagc cccagctggc ttgtggcct
1500
caccaaagag gacccactc tgaagccagc ctggagccac ctacctctgg cctcaggctg
1560
tgggcagcaa aaggaatgtg tgtgcacttg gcgagctcc tgcccacccct gtccacacct
1620
aataagtgca atcattttga gtctttctat gttgtctaga cggaggggtt tttgtttct
1680
gggtttgtt ttgtttttg ttctttcttc ctctattagc aaaaccctat ttatagctgc
1740
ccaagagaaa agagtgtatg ttggagtgg aagaaaatcg gtttgaatc tcatgaacct
1800
tgagtgctgg agcatctgat ctgtctctat gccaccacccg gccacctaga gcccctggct
1860

gtggtaatca catggtaat tg
1882

<210> 5868
<211> 131
<212> PRT
<213> Homo sapiens

<400> 5868
Met Arg Lys Asn Ser Ser Pro Ser Ser Ile Thr Thr Tyr Glu Thr Cys
1 5 10 15
Gln Thr Tyr Glu Arg Pro Ile Ala Phe Thr Ala Arg Ser Arg Lys Leu
20 25 30
Trp Ile Asn Phe Lys Thr Ser Glu Ala Asn Ser Ala Arg Gly Phe Gln
35 40 45
Ile Pro Tyr Val Thr Tyr Asp Glu Asp Tyr Glu Gln Leu Val Glu Asp
50 55 60
Ile Val Arg Asp Gly Arg Leu Tyr Ala Ser Glu Asn His Gln Glu Ile
65 70 75 80
Leu Lys Asp Lys Lys Leu Ile Lys Ala Phe Phe Glu Val Leu Ala His
85 90 95
Pro Gln Asn Tyr Phe Lys Tyr Thr Glu Lys His Lys Glu Met Leu Pro
100 105 110
Lys Ser Phe Ile Lys Leu Leu Arg Ser Lys Val Ser Ser Phe Leu Arg
115 120 125
Pro Tyr Lys
130

<210> 5869
<211> 910
<212> DNA
<213> Homo sapiens

<400> 5869
tgatcgtac aaagcacaag aatttccctt catctgtat aggaggtttc ttcctccct
60
tctaggggct cacaggccac aggctaacct ggtggctcct ggcagccatc ttgggactga
120
aagaaactca ccctgacgaa gctcgccat tagtgactgc aatttctgtt ttttagagtt
180
tggtattccg tgatattcaa atactaaaat acatgagttt ttattggtgt aattccatca
240
ttatccatt attcaacat taaaaattt gcaagtctat gactcaatga ttccacagaa
300
aagacaaacg gatgggttgg cttcaagtct agactcgct tcagagtctg tttctccag
360
agaatcatcg cagatcacaa caggcagcct tctaattatg catcacgaag cttctaccca
420
caggtaatt cccactctgg ttcaaacagg tttgcattgt cgtcacatcc tggggagaca
480
cgtatccgg tctgcggcaa accttttag ttgtgccata gaccaggttt ttccgaacga
540
aggctgtctt ccatttcct gccaagaacc aaactcatca ctccagtttccaaatccagtc
600

agtggtgagg atgaagtgtg gaggttttgt gacagaggag gccgtggaga ggccggcgagc
660
ctgggttagca ccgtaagtca tggcgtaaaa gttcagacaa tgagagtcaa aggtactggc
720
tgactcagag cacaggatcc tttctatccc gggattgcaa tatgcctctt caataagttc
780
catgttgtcc aaatccccc atttgcctct atccaagaat tgccatcgat acggcaaatg
840
gaaatgaact ctatggcaact tatcttggaaa gctacaactt ttccggatat ggtacaaaca
900
910
gatctgatca

<210> 5870
<211> 129
<212> PRT
<213> Homo sapiens

<400> 5870
Met Ile Pro Gln Lys Arg Gln Thr Asp Gly Leu Ala Ser Ser Leu Asp
1 5 10 15
Ser Pro Ser Glu Ser Val Phe Ser Arg Glu Ser Ser Gln Ile Thr Thr
20 25 30
Gly Ser Leu Leu Ile Met His His Glu Ala Ser Thr His Arg Val Ile
35 40 45
Pro Thr Leu Val Gln Thr Gly Leu His Gly Arg His Ile Leu Gly Arg
50 55 60
His Val Phe Gly Ser Ala Ala Asn Leu Phe Ser Cys Ala Ile Asp Gln
65 70 75 80
Val Phe Pro Asn Glu Gly Cys Leu Pro Tyr Ser Cys Gln Glu Pro Asn
85 90 95
Ser Ser Leu Gln Tyr Gln Ile Gln Ser Val Val Arg Met Lys Cys Gly
100 105 110
Gly Leu Val Thr Glu Glu Ala Val Glu Arg Arg Arg Ala Trp Val Ala
115 120 125
Pro

<210> 5871
<211> 2217
<212> DNA
<213> Homo sapiens

<400> 5871
ntanatttct ctctaaacac tgcctnagct gcatccata gattgtggta cattttgtct
60
ttgttctcat tggtttcaaa taacttggttt atttctgtct taattgcatt gtttacccag
120
tagtcattca ggagcaagtt gttcagtttc catatagatt ctgtgtgttt tagtcttgc
180
taaattatctt ctactacttc tttgcaccccc tttgcttagtt ttctcagtgc cgtagggttt
240
attnaataat aattggactc tagtaatccc ttttaatgag agagagggaa actatatttg
300

aaattggatt gggacat~~tta~~ tttact~~taa~~ acagaag~~ttt~~ gcttatgaca cataatctag
360 atgggatata tcttatctat agtgtatcca cctgctgtaa gtagatactg tatttgata
420 gccattattt tgctgttaagt actttatcat tttaattaaa ttgattaaga ggaaaaaaaaa
480 agaatggaaat tctcttgat gcaactttt ccccccagac cagaatccgt agaagctagc
540 cctgtggtag ttgagaaatc caacagttat cccaccagt tatataccag cagctcacat
600 cattcacaca gttacattgg tttgcctat gcggaccata attatggtgc tcgtcctcct
660 ccgacaccc tcgctcccc tcctccatca gtccttatta gcaaaaatga agtaggcata
720 ttaccactc ctaatttga taaaacttcc agtgctacta caatcagcac atctgaggat
780 ggaagttatg gtactgatgt aaccaggtgc atatgtggtt ttacacatga tgatggatac
840 atgatctgtt gtgacaaatg cagcg~~ttt~~gg caacatattg actgc~~at~~g~~gg~~ gattgatagg
900 cagcatat~~t~~c tgatacata tctatgt~~gaa~~ cg~~t~~tg~~t~~cagc ctaggaattt ggataaagag
960 agggcag~~tgc~~ tactacaacg cccggaaaagg gaaaatatgt cagatgg~~t~~ga taccagt~~g~~ca
1020 actgagagtg gtgatgaggt tcctgtggaa ttatatactg catttcagca tactccaaca
1080 tcaattactt taactgcttc aagagt~~ttt~~cc aaagttaatg ataaaagaag gaaaaaaagc
1140 ggggagaaag aacaacacat tcaaaatgt aaaaaggcat ttcgtgaagg atcttaggaag
1200 tcatcaagag ttaaggg~~ttc~~ agctccagag attgatc~~ttt~~ catctgatgg ttcaaattt
1260 g~~g~~atgggaga caaagatcaa agcatggatg gatcgat~~at~~g aagaagcaaa taacaaccag
1320 tacagtgagg gtgttcagag ggaggcacaa agaata~~g~~ctc tgagattagg caatggaaat
1380 gacaaaaaaag agatgaataa atccgattt~~g~~ aataccaaca atttgct~~c~~tt caaac~~c~~c~~t~~c~~t~~
1440 gtagagagcc atataaaaaa gaataagaaa attcttaat ctgcaaaaga tttgcctcct
1500 gatgcactta tcattgaata cagagggaa~~g~~ tttatgctga gagaacagtt tgaagcaat
1560 ggg~~t~~atttct taaaagacc atacc~~ttt~~tt gtgttattct actctaaatt tcatggc~~t~~a
1620 gaaatgtgtg ttgatgcaag gactttggg aatgaggctc gattcatcag g~~c~~gg~~t~~tt~~t~~gt
1680 acacccaaatg cagaggtgag gcatgaaatt caagatggaa coatacatct ttatattat
1740 tctatacaca gtattccaaa gggactgaa attactattg cctttgattt tgactatgga
1800 aattgtaagt acaaggtgga ctgtgc~~t~~atgc ctcaaagaaa acccagagtg ccctgttcta
1860 aaacgttagtt ctgaatccat ggaaaatatc aatagtgg~~t~~t atgagaccag acggaaaaaa
1920

10/04/93, le49
B2

WO 00/58473

PCT/US00/08621

ggaaaaaaaag acaaagatat ttcaaaagaa aaagatacac aaaatcagaa tattacttg
1980
gattgtgaag gaacgaccaa caaatgaag agcccagaaa ctaaacaaag aaagcttct
2040
ccactgagac tatcagtatc aaataatcag gaaccagatt ttattgatga tatagaagaa
2100
aaaactcta ttagtaatga agtagaaatg gaatcagagg agcagattgc agaaaggaaa
2160
aggaagatga caagagaaga aagaaaaatg gaagcaattt tgcaagctt tgccggc
2217

<210> 5872

<211> 578

<212> PRT

<213> Homo sapiens

<400> 5872

Met Glu Phe Ser Leu Met Gln Leu Phe Pro Pro Arg Pro Glu Ser Val
1 5 10 15
Glu Ala Ser Pro Val Val Val Glu Lys Ser Asn Ser Tyr Pro His Gln
20 25 30
Leu Tyr Thr Ser Ser Ser His His Ser His Ser Tyr Ile Gly Leu Pro
35 40 45
Tyr Ala Asp His Asn Tyr Gly Ala Arg Pro Pro Pro Thr Pro Pro Ala
50 55 60
Ser Pro Pro Pro Ser Val Leu Ile Ser Lys Asn Glu Val Gly Ile Phe
65 70 75 80
Thr Thr Pro Asn Phe Asp Glu Thr Ser Ser Ala Thr Thr Ile Ser Thr
85 90 95
Ser Glu Asp Gly Ser Tyr Gly Thr Asp Val Thr Arg Cys Ile Cys Gly
100 105 110
Phe Thr His Asp Asp Gly Tyr Met Ile Cys Cys Asp Lys Cys Ser Val
115 120 125
Trp Gln His Ile Asp Cys Met Gly Ile Asp Arg Gln His Ile Pro Asp
130 135 140
Thr Tyr Leu Cys Glu Arg Cys Gln Pro Arg Asn Leu Asp Lys Glu Arg
145 150 155 160
Ala Val Leu Leu Gln Arg Arg Lys Arg Glu Asn Met Ser Asp Gly Asp
165 170 175
Thr Ser Ala Thr Glu Ser Gly Asp Glu Val Pro Val Glu Leu Tyr Thr
180 185 190
Ala Phe Gln His Thr Pro Thr Ser Ile Thr Leu Thr Ala Ser Arg Val
195 200 205
Ser Lys Val Asn Asp Lys Arg Arg Lys Lys Ser Gly Glu Lys Glu Gln
210 215 220
His Ile Ser Lys Cys Lys Lys Ala Phe Arg Glu Gly Ser Arg Lys Ser
225 230 235 240
Ser Arg Val Lys Gly Ser Ala Pro Glu Ile Asp Pro Ser Ser Asp Gly
245 250 255
Ser Asn Phe Gly Trp Glu Thr Lys Ile Lys Ala Trp Met Asp Arg Tyr
260 265 270
Glu Glu Ala Asn Asn Asn Gln Tyr Ser Glu Gly Val Gln Arg Glu Ala
275 280 285
Gln Arg Ile Ala Leu Arg Leu Gly Asn Gly Asp Lys Lys Glu Met

5039

290	295	300
Asn Lys Ser Asp Leu Asn Thr Asn Asn Leu Leu Phe Lys Pro Pro Val		
305	310	315
Glu Ser His Ile Gln Lys Asn Lys Lys Ile Leu Lys Ser Ala Lys Asp		320
325	330	335
Leu Pro Pro Asp Ala Leu Ile Ile Glu Tyr Arg Gly Lys Phe Met Leu		
340	345	350
Arg Glu Gln Phe Glu Ala Asn Gly Tyr Phe Phe Lys Arg Pro Tyr Pro		
355	360	365
Phe Val Leu Phe Tyr Ser Lys Phe His Gly Leu Glu Met Cys Val Asp		
370	375	380
Ala Arg Thr Phe Gly Asn Glu Ala Arg Phe Ile Arg Arg Ser Cys Thr		
385	390	395
400		
Pro Asn Ala Glu Val Arg His Glu Ile Gln Asp Gly Thr Ile His Leu		
405	410	415
Tyr Ile Tyr Ser Ile His Ser Ile Pro Lys Gly Thr Glu Ile Thr Ile		
420	425	430
Ala Phe Asp Phe Asp Tyr Gly Asn Cys Lys Tyr Lys Val Asp Cys Ala		
435	440	445
Cys Leu Lys Glu Asn Pro Glu Cys Pro Val Leu Lys Arg Ser Ser Glu		
450	455	460
Ser Met Glu Asn Ile Asn Ser Gly Tyr Glu Thr Arg Arg Lys Lys Gly		
465	470	475
480		
Lys Lys Asp Lys Asp Ile Ser Lys Glu Lys Asp Thr Gln Asn Gln Asn		
485	490	495
Ile Thr Leu Asp Cys Glu Gly Thr Thr Asn Lys Met Lys Ser Pro Glu		
500	505	510
Thr Lys Gln Arg Lys Leu Ser Pro Leu Arg Leu Ser Val Ser Asn Asn		
515	520	525
Gln Glu Pro Asp Phe Ile Asp Asp Ile Glu Glu Lys Thr Pro Ile Ser		
530	535	540
Asn Glu Val Glu Met Glu Ser Glu Glu Gln Ile Ala Glu Arg Lys Arg		
545	550	555
560		
Lys Met Thr Arg Glu Glu Arg Lys Met Glu Ala Ile Leu Gln Ala Phe		
565	570	575
Ala Gly		

<210> 5873
 <211> 3463
 <212> DNA
 <213> Homo sapiens

<400> 5873
 nccgcagtcc ttttccgggt gatggcggcc gggtgccccg gatgttagccc tggcgcaagc
 60
 atctcttctt ttttccacct cgccttccgc ggattcccaag cttagaaaaac acctcttgc
 120
 cccgtcatgc caaagaggaa agtgacccttc caaggcgtgg gagatgagga ggatgaggat
 180
 gaaaatcattg tcccccaagaa gaagctggtg gaccctgtgc ctgggtcagg gggtcctggg
 240
 agccgcttta aaggcaaaca ctctttggat agcgatgagg aggaggatga tgatgatggg
 300

gggtccagca aatatgacat cttggcctca gaggatgtag aaggtcagga ggcagccaca
360
ctccccagcg aggggggtgt tcggatcaca cccttaacc tgcaggagga gatggagga
420
ggccactttg atgcccgttgg caactacttc ctgaaccggg atgctcagat ccgagacagc
480
tggctggaca acattgactg ggtgaagatc cgggagcggc cacctggcca gcgccaggcc
540
tcagactcg aggaggagga cagcttggc cagaccta tgagtgccta agccctttg
600
gagggacttt tggagctcct attgcctaga gagacagtgg ctggggact gaggcgtctg
660
ggggcccgag gaggaggcaa agggagaaag gggcctggc aaccctggc ccctcagcgc
720
ctggaccggc tctccgggtt ggccgaccag atggggccc gggcaacct tggtgtgtac
780
cagaaacaa gggAACGGTT ggctatgcgt ctgaagggtt tgggtgtca gacccttagga
840
ccccacaatc ccacacccccc accctccctg gacatgttcg ctgaggagtt ggccggaggag
900
gaactggaga ccccaaccccc tacccagaga ggagaagcag agtcgcgggg agatggtctg
960
gtggatgtga tgtggata taagtggag aacacgggg atgcccagct gtatggccc
1020
ttcaccagcg cccagatgca gacctgggtg agtgaaggct acttcccgga cgggttttat
1080
tgccggaagc tggacacccccc tgggtgttag ttctacaact ccaaacgcac tgactttgac
1140
ctctacacct gagcctgtcg gggcccagt ttgggtggcc ctctttctt ggactttgtg
1200
gaggaggcac caagtgtctc aggcagcag gaaattggag gccatTTTC agtcaatttc
1260
ccttcccaa taaaagcctt tagttgtta ctggggcctt ggctgtgtcg atggccagaa
1320
gccaggggcc ttctccacag tccctttgga ctgtgtttgg tccctgagta ctcccatgaa
1380
gatcctttttt ggaggtgcct gtcaggtatc ctgtggcctc cctgcctgga ctctgcttgc
1440
cgtgtaaaca ccccaactg cgctgctctg tgctcctctc ccaggtttct tgttcgattc
1500
ctcttaggtc tttggcttcc aggacctcg attctttatc ctgttagcca ccagaggaca
1560
gagccccaga agtggatgtt ttaggcccag aaggaccagg gcatcgagaa gacattggga
1620
ccctgttggg ggtgagcatg gaaccctctt actctcgctt caccctctca agctccttag
1680
atgctggca gaagtggat gagtggccca agaccgagat ccctaagggtt ctgagagcca
1740
gtgtcttccc taatctggct ttccctatc cttggcgtcg ttccctcagc cttcagtga
1800
agtgc当地 cagtggccaa gtgtggccca agtgc当地 gtactggcac agagagggc
1860
agtgc当地 tggagatcac aggaatcaa gggctggccc agaccctggc agaccctggc
1920

ccagacccctt cttggcacaa agcctttgct gcctggcctt ggaggccctg cggcctacat
1980
tctctggacc ccactatgtg cctggcacag ggctagtgcc ttgagggaaac tgaggttagct
2040
gggttggcc cttccagga attcagagtc tggtggcagg ggcattggaa atagacagat
2100
gtaattctat agcctggcgc ctggcacccct ccacccacac gccccaccag cattgcctta
2160
cgccctccctt gccccacgtt agatggtttc ttccggtttt gcactctggc tgccccttgg
2220
agtctcttgg ggagctgtaa tatctctttg gagattcaga ttgagctggt ctaggttgc
2280
gcccaggcat tgggcatttt ggaagccccc aggtgttttc agcttcgc caggccgagg
2340
gagagccctt gagtcagatc cccatggttt aggacacac agcgggaggg gtggctcctg
2400
gacccacccg tgggtggaga gctgagcatg tgtgtggctt tagtggggc tgtagtttat
2460
gggggtctgg gcactggagc tgcaggacac ttgggatccc aggtcagaaa gggccagatg
2520
agcaactagg aaagacttgg gggccaggggc ggagtgggtt cacctgacac tcttgtgagg
2580
ccccctcttag tgcctgctca caccggaaatt tcattcactc caagaagcca tcaggggtaa
2640
gataccttcc tttaaacgtc actaagaaag aagaggcctg ccggtgacac agtaagatgc
2700
cattgatcta aagatgcgtc ttgatttcag aaaggtccgg aagtggaaag caggtttcag
2760
ggctgctgag gtacagggtt ctccctgttagg ccccaaggat ggtctcagggt gtgctgagtg
2820
cgtgcgtggt aaatggatgg agcccagggg cgcctcctgc cagtgtcctc caggcactca
2880
aacctagccc ttctgaagcc gacctcacgt gacccacag cccctctga aggcgcctca
2940
ctgatgacgg tgggtggaat aacagccccc agagatgtcc aggtttggaa ccccaggacg
3000
tgggaaagtg ttaccttgcg tggcaaaagg gacccggcgc ctgtgcttca gttcaggatt
3060
tcgtgggtgg gagatgaccg tggatgggtg aggtggggccc tgagtaatca tggggggccct
3120
tataaggaa ggggagtcac gagggtctgc gcatgaagca aggaagcttc tggctgtgaa
3180
gatggcaaga aggcctgggg ccaggcgatg aggtggccccc tggaggagct ggaaaaggca
3240
ttggattctg ccccaagagcc tccgtggaga aacaaagccg cactgacaag acttcagcct
3300
ggtaaaaacc atttggact cctgacctct agaactgaac caagccggag acctggacat
3360
gcccagctcc tcctgatgcc aagacctgag aggagttct cccaaggatg gatttcaaga
3420
cgaggatctcg ctctgtctcc caggctgaag tgcagtggcgc cgc
3463

<210> 5874

<211> 341
<212> PRT
<213> Homo sapiens

<400> 5874
Met Pro Lys Arg Lys Val Thr Phe Gln Gly Val Gly Asp Glu Glu Asp
1 5 10 15
Glu Asp Glu Ile Ile Val Pro Lys Lys Leu Val Asp Pro Val Pro
20 25 30
Gly Ser Gly Gly Pro Gly Ser Arg Phe Lys Gly Lys His Ser Leu Asp
35 40 45
Ser Asp Glu Glu Asp Asp Asp Gly Ser Ser Lys Tyr Asp
50 55 60
Ile Leu Ala Ser Glu Asp Val Glu Gly Gln Glu Ala Ala Thr Leu Pro
65 70 75 80
Ser Glu Gly Gly Val Arg Ile Thr Pro Phe Asn Leu Gln Glu Glu Met
85 90 95
Glu Glu Gly His Phe Asp Ala Asp Gly Asn Tyr Phe Leu Asn Arg Asp
100 105 110
Ala Gln Ile Arg Asp Ser Trp Leu Asp Asn Ile Asp Trp Val Lys Ile
115 120 125
Arg Glu Arg Pro Pro Gly Gln Arg Gln Ala Ser Asp Ser Glu Glu Glu
130 135 140
Asp Ser Leu Gly Gln Thr Ser Met Ser Ala Gln Ala Leu Leu Glu Gly
145 150 155 160
Leu Leu Glu Leu Leu Pro Arg Glu Thr Val Ala Gly Ala Leu Arg
165 170 175
Arg Leu Gly Ala Arg Gly Gly Lys Gly Arg Lys Gly Pro Gly Gln
180 185 190
Pro Ser Ser Pro Gln Arg Leu Asp Arg Leu Ser Gly Leu Ala Asp Gln
195 200 205
Met Val Ala Arg Gly Asn Leu Gly Val Tyr Gln Glu Thr Arg Glu Arg
210 215 220
Leu Ala Met Arg Leu Lys Gly Leu Gly Cys Gln Thr Leu Gly Pro His
225 230 235 240
Asn Pro Thr Pro Pro Ser Leu Asp Met Phe Ala Glu Glu Leu Ala
245 250 255
Glu Glu Glu Leu Glu Thr Pro Thr Pro Thr Gln Arg Gly Glu Ala Glu
260 265 270
Ser Arg Gly Asp Gly Leu Val Asp Val Met Trp Glu Tyr Lys Trp Glu
275 280 285
Asn Thr Gly Asp Ala Glu Leu Tyr Gly Pro Phe Thr Ser Ala Gln Met
290 295 300
Gln Thr Trp Val Ser Glu Gly Tyr Phe Pro Asp Gly Val Tyr Cys Arg
305 310 315 320
Lys Leu Asp Pro Pro Gly Gly Gln Phe Tyr Asn Ser Lys Arg Ile Asp
325 330 335
Phe Asp Leu Tyr Thr
340

<210> 5875
<211> 5933
<212> DNA
<213> Homo sapiens

<400> 5875
cttaccattc accttcctgc agcagtgctg cttaaaggaga tacatatatcca gcctcatctg
60
ncttttcttg caacctgccc ttccctcagtg tctgttgaag taagtgcaga tggggtaaat
120
atgctacacctt tgtccactcc ttttgtcaca agtggcctca cctacataaaa aattcagctt
180
gtaaaaagccg aagtagcttc tgctgtctgc cttagactac atcgtccacg ggatgccagc
240
acattaggcc tttcacaaat taaaattattt gggctcaactg cttttggtaac cacctcttct
300
gcaacagtta ataatccatt cttccatct gaagatcagg tatccaaaac aagtatttgg
360
tggttacggt tattacatca ttgccttact cacataagtg atctagaagg aatgatggca
420
agtgcagctg cacctactgc taatctgctg cagacttgtg cggccttatt gatgtcacct
480
tactgtggaa tgcattcacc caacatcgag gttgtgctt taaagatagg actgcagct
540
actagaattt gcctgaagct catagacatt ctccctgagaa attgtgcagc atcaggcagt
600
gatcctacag atttgaatag tcctttactt tttggaaagac taaatggact ctcttctgac
660
tctacgatag atattctta ccagcttggaa acaactcagg atcctggtaac aaaagacaga
720
attcaggcct tggtaaaatg gtttagttagt tctgcaagag tggctgctat gaagagaagt
780
ggcaggatga actacatgtg tcctaactcc tcaacagtag agtatggct tctgatgcca
840
tctccttctc atttgcactg ttagcagcc attctctggc atagttatga gctgcttgc
900
aatatgact taccagcaact cctggaccaa gagctctttt agttactttt taattggcc
960
atgtctcttc cctgcaatat gttttgaag aaagctgtt acagtctact ttgctcaatg
1020
tgtcacgtac acccaaacta tttttctttt ctcatggctt ggatggaaat tacccttc
1080
ccagtgcataat gtcatcatag actgtccatg acagatgata gcaaaaagca ggatcttagt
1140
tcatctttaa cagatgactc taaaaatgca caagcaccc tcgcattaaac tgaatcacat
1200
ttggctaccc ttgcttcctc ttctcaatct cctgaagcta ttaaacaatt actagactca
1260
ggtttgcctt ctcttcttgc gaggagtctg gctagtttctt gctttaggcca catttcttagc
1320
tcagaaagca ttgcccagtc aatagatatt tcccaggaca aactcaggcg ccatcatgtc
1380
ccacaacaat gtaataagat gcctatcaca gccgacctag ttgctcctat tcttaggttt
1440
ttgacagaag ttggcaatag ccatattatg aaagattggc ttgggtggttc tgaagtcaat
1500
ccactatgga cagcaattctt gtttttattt tgcactctg ggtccacttc tggaagccat
1560

aatttaggtg cacaacagac cagtgcaga tcagcttc tttcttcagc tgctacaaca
1620
ggactgacta ctcaacagcg cacagcaatt gagaatgcaa ctgttgcgtt ctttctacag
1680
tgcatttcat gccatcctaa taatcaaaaag ctgatggcac aggttctttg tgaactattt
1740
cagacatctc ctcaaagagg gaaccttcca acatctggga acatttcagg gtttatacga
1800
agatttattt tacagttgat gctggaagat gagaaagtga caatgtttct tcagtctcca
1860
tgtccactgt acaaaggtag aattaatgct actagccacg tcatccagca tccaatgttat
1920
ggagcaggcc acaaattccg tactcttcat ttgccagtct caacaacatt atcagatgtt
1980
cttgacagag tgtcagatac tccaaagtatc acagctaaat taattagtga aaaaaaagat
2040
gacaaagaaaa agaaaaaacca tgaagagaaaa gaaaaagttt aagcggaaaa tggatttcaa
2100
gacaattaca gtgttgtgt tgcctctggg ctgaagtctc aatctaaacg tgctgtgtca
2160
gctacaccac ctcgcccacc atccaggagg gggaggacaa tacctgataa aataggaagt
2220
acttcaggag cagaggctgc caacaaaata attactgtcc cagtgtttca cctgtttcac
2280
aaactcttgg cagggcagcc attgccagct gaaatgacac ttgccagct tttaactctc
2340
ctatatgacc gaaaacttcc tcagggttac cgctcaatag atctgactgt taaattggga
2400
tcaagagtttta acacagaccc cagtctatca aaaacagatt cttataaaaag actacaccct
2460
aaaaaaagatc atggagactt acttgcttagc tgtccagaag atgaggctct cactccaggt
2520
gatgaatgca tggatggat actggatgaa tctttgcttg aaacctgtcc aattcagtca
2580
ccattacaag tttttgcagg aatgggtgga ctggcttta ttgctgaaag actaccatg
2640
ctatatccag aagtaattca acaggtgagt gctccagttg taacatctac cactcaggaa
2700
aagccgaagg atagcgatca gtttgaatgg gtgaccattg aacagtctagg ggagtttagtt
2760
tatgaagcac cagaaaactgt tgcggctgaa cctccaccta tcaagtctac agtacagacc
2820
atgtctccca tacctgcccc ttctttggct gctttggat tatttcttcg tcttccgggc
2880
tatgcggaaag tgctactgaa agagagaaaa catgcccagt gccttcttcg attggatttg
2940
ggagtgacag atgatggaga aggaagtcat attcttcaat ctccatcagc caatgtgctt
3000
ccaaacccttc ctttccacgt cttcgttagc ttgttttagca ctacaccttt gacaactgat
3060
gatgggtgtac ttcttaaggcg gatggcattt gaaattggag ctttacacctt cattcttgc
3120
tgtctctctg ctttgagcca ccattccccca cgagttccaa actctagcgt gaatcaaact
3180

gagccacagg tgtcaagctc tcataaccct acatcaacag aagaacaaca gttatattgg
3240
gccaaggga ctggcttgg aacaggctct acagcttctg ggtggatgt ggaacaagcc
3300
ttaactaagc aaaggctgga agaggaacat gttacctgcc ttctgcaggt tcttgccagt
3360
tacataaaatc ccgtcagtag tgcggtaaat ggagaagctc agtcatctca tgagactaga
3420
ggcagaaca gtaatgccct tccttctgta cttctcgagc ttctcagtc gtcctgcctc
3480
atcccagcca tgtcatctta tctacgaaat gattcagttc tggacatggc aagacatgtg
3540
ccactctatc gggcactgct ggaattgctt cgggcatttgc cttcttgatc tgccatggtg
3600
ccccatttgt tgccctttc tacagagaac ggtgaagagg aagaagaaca gtcagaatgt
3660
caaacttctg ttggcacatt gttagccaaa atgaagacct gtgttgatac ctataccaac
3720
cgtttaagat ctaaaaggga aatgttaaa acaggagtaa aaccagatgc gtctgatcaa
3780
gaaccagaag gacttactct tttggcacca gacatccaaa agactgctga gatagtttat
3840
gcagccacca ccagttgcg gcgagcaaat caggaaaaaa aactgggtga atactccaag
3900
aaggcggcta taaaacccaa acctttgtca gtattaaagt cacttgaaga aaaatatgtg
3960
gctgttatga agaaattaca gtttgatacg tttgaatgg tttctgaaga tgaagatggg
4020
aaattggat taaaagtaaa ttaccactac atgtctcagg tggaaaatgc taatgatgcg
4080
aacagtgtc ccagagctcg ccgccttgc caggaagctg tgacactttc aacctcactg
4140
cctctgtctt catcctctag tgggtttgtca cgctgtgatg aggagcgact tgatatcatg
4200
aaggttctaa taactggtcc agcggacacc cttatgcaa atggctgctt tgagtttgat
4260
gtgtatttc ctcaagatta tcccagttca cccctcttgc tgaatctaga gacaactgg
4320
ggtcatacg tgcgattcaa tccaaacctt tataatgtat gcaaggtttgc ttaagcattc
4380
ttaaacacgt ggcacggaa accagaagag aagtggaaatc ctcagacccctc aagcttttg
4440
caagtgtgg tggctgtccca gtccttata ttagtagctg agccttattt taatgaaccg
4500
ggatatgaac ggtctagagg cactcccagt ggcacacaga gttctcgaga atatgatgg
4560
aacattcgac aagcaacagt taagtggca atgctagaac aaatcagaaaa cccttcacca
4620
tgttttaaag aggtaataaca caaacattt tacttggaaa gagttgagat aatggcccaa
4680
tgtgaggagt ggattgcggaa tatccagcag tacagcagtg ataagcgggt aggcaggact
4740
atgtctcacc atgcagcagc tctcaagcgt cacactgctc agctccgcga agagttgctg
4800

aaactccct gccctgaagg cttggatcct gacactgacg atgccccaga ggtgtgcaga
4860
gccacaacag gtgctgagga gactctaatt catgatcagg ttaaacccag cagcagcaaa
4920
gaactccccca gtgacttcca gttatgagct gcattgatgt ggacttcata gacacaaagg
4980
cttcgaagca caagccaaat atgtcaatat ttgtatgtaa gaaactaatt atgtaatagg
5040
taatgaaact gaaactatac tatgccctta aggagatcca gttaattca aggtgatctt
5100
ttattnacct gtacaggagt gtaaactttt ttgtgctttt attttcaat tgtgagaacc
5160
actgatttgtt atgttcaaca aatttgtgtt tacaaagaaa tggataaattc actgctata
5220
aaggaaact accttaggaa agaatgtttt ctgaatgtttt attttattttt tttttttttt
5280
tactatagag tgaggggttg ttaacaaaga atatatattt gtcatttta caactactat
5340
ttaaagtcaag caacttttca ctgaatttga tagattttt gtttggccat atcttcatgc
5400
tcacatttga ttctgttcaaga cctcctacat acacttcaat aaaagttaaa tggacataact
5460
ccctttttt tgatttactg gtacattttt aaaataataa atctgccata aaatgcattt
5520
tatctggaga cttgcacttg tatggatgaa tttatttacat tcaacatatt taattttatg
5580
ccttctaatt ctaagatgca gaaaaaaaata aatgaacatg attttattct atgccaacat
5640
ttggccctct gaatgtatct gtttttttga tttaagtatt tgaaaaggaa tggtaattt
5700
gaaagtcaattt ctaaactgat ttttttttca taaaggctc cttttttctt ggactatgt
5760
gttttatgac taaagtcaaa ttttttttca taaaggctc cttttttctt ggactatgt
5820
tgtacctctc tgggtgtt acagttacatt ctgtacctgc catacaggct cattttcatg
5880
caaatttttca ttagagccaa ataaataaaag acttaggtga aaaaaaaaaaaa aaa
5933

<210> 5876

<211> 1648

<212> PRT

<213> Homo sapiens

<400> 5876

Leu	Thr	Ile	His	Leu	Pro	Ala	Ala	Val	Leu	Leu	Lys	Glu	Ile	His	Ile
1									5			10			15
Gln	Pro	His	Leu	Xaa	Phe	Leu	Ala	Thr	Cys	Pro	Ser	Ser	Val	Ser	Val
								20		25		30			
Glu	Val	Ser	Ala	Asp	Gly	Val	Asn	Met	Leu	Pro	Leu	Ser	Thr	Pro	Val
								35		40		45			
Val	Thr	Ser	Gly	Leu	Thr	Tyr	Ile	Lys	Ile	Gln	Leu	Val	Lys	Ala	Glu
							50		55		60				
Val	Ala	Ser	Ala	Val	Cys	Leu	Arg	Leu	His	Arg	Pro	Arg	Asp	Ala	Ser

65	70	75	80
Thr	Leu	Gly	Leu
Ser	Gln	Ile	Lys
Asn	Leu	Leu	Gly
Asn	Pro	Phe	Gly
Val	Leu	Pro	Ser
Asp			
100		105	110
Gln	Val	Ser	Lys
Thr	Thr	Ser	Ile
Cys	Ala	Asn	Gly
Asn	Asn	Pro	Trp
Leu	Leu	Phe	Leu
Arg	Arg	Leu	Arg
Leu	Leu	Leu	Leu
His	His	Leu	His
Cys	Val	Leu	His
115		120	125
Leu	Thr	His	Ile
Asp	Asp	Ser	Ser
Leu	Glu	Gly	Met
Met	Met	Met	Ala
Ala	Ser	Ala	Ala
Ala	Ala	Ala	Ala
130		135	140
Pro	Thr	Ala	Asn
Asn	Leu	Leu	Gln
Leu	Thr	Cys	Ala
Ala	Ala	Leu	Leu
Leu	Met	Leu	Met
Ser	Pro	Leu	Leu
Tyr	Cys	Gly	Val
Met	His	Ser	Val
His	Ser	Pro	Leu
Asn	Ile	Glu	Val
Ile	Glu	Val	Val
145		150	155
Tyr	Cys	Gly	Leu
Met	His	Met	Val
His	Ser	Asn	Val
Pro	Asn	Ile	Val
Ile	Gly	Glu	Leu
165		170	175
Gly	Leu	Gln	Ser
Thr	Arg	Ile	Gly
Ile	Gly	Leu	Lys
Leu	Ile	Ile	Asp
Asp	Ile	Leu	Leu
180		185	190
Arg	Asn	Cys	Ala
Ala	Ala	Ser	Gly
Ser	Asp	Pro	Thr
Asp	Leu	Asp	Asp
Leu	Asn	Ser	Leu
Asn	Pro	Ser	Asn
Pro	Thr	Asp	Ser
Asp	Leu	Ile	Asp
Leu	Asn	Asn	Asn
Asn	Thr	Gly	Asn
Thr	Leu	Gly	Asn
Leu	Asn	Asn	Asn
Asn	Asn	Asn	Asn
195		200	205
Leu	Leu	Phe	Gly
Arg	Arg	Leu	Asn
Leu	Asn	Gly	Leu
Asn	Ser	Ser	Asp
Ser	Ser	Thr	Ile
Asp	Ser	Asp	Asp
Ile	Asp	Ser	Ser
Asp	Ile	Tyr	Gly
Ile	Tyr	Gly	Leu
Gly	Leu	Gly	Asn
Thr	Thr	Gly	Asn
Gly	Gly	Asn	Asn
210		215	220
Ile	Ile	Tyr	Gly
Leu	Leu	Gly	Thr
Leu	Leu	Thr	Gly
Gly	Asp	Asp	Pro
Asp	Leu	Leu	Gly
Leu	Asp	Asp	Asp
Asp	Asp	Pro	Gly
Leu	Asp	Asp	Asp
Asp	Asp	Asp	Asp
225		230	235
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Pro
Asp	Asp	Pro	Gly
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
240		245	255
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
255		260	265
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
270		275	280
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
285		290	295
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
295		300	305
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
320		310	315
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
335		325	330
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
350		340	345
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
365		355	360
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
380		370	375
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
400		385	390
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
415		405	410
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
435		420	425
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
445		435	440
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
460		450	455
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
480		465	470
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
495		485	490
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
Ile	Ile	Gly	Asp
Gly	Gly	Asp	Asp
Asp	Asp	Asp	Asp
Asp	Asp	Asp	Asp
5048			

	500	505	510												
Ser	Gly	Ser	Thr	Ser	Gly	Ser	His	Asn	Leu	Gly	Ala	Gln	Gln	Thr	Ser
515															
Ala	Arg	Ser	Ala	Ser	Leu	Ser	Ser	Ala	Ala	Thr	Thr	Gly	Leu	Thr	Thr
530															
Gln	Gln	Arg	Thr	Ala	Ile	Glu	Asn	Ala	Thr	Val	Ala	Phe	Phe	Leu	Gln
545															
Cys	Ile	Ser	Cys	His	Pro	Asn	Asn	Gln	Lys	Leu	Met	Ala	Gln	Val	Leu
565															
Cys	Glu	Leu	Phe	Gln	Thr	Ser	Pro	Gln	Arg	Gly	Asn	Leu	Pro	Thr	Ser
580															
Gly	Asn	Ile	Ser	Gly	Phe	Ile	Arg	Arg	Leu	Phe	Leu	Gln	Leu	Met	Leu
595															
Glu	Asp	Glu	Lys	Val	Thr	Met	Phe	Leu	Gln	Ser	Pro	Cys	Pro	Leu	Tyr
610															
Lys	Gly	Arg	Ile	Asn	Ala	Thr	Ser	His	Val	Ile	Gln	His	Pro	Met	Tyr
625															
Gly	Ala	Gly	His	Lys	Phe	Arg	Thr	Leu	His	Leu	Pro	Val	Ser	Thr	Thr
645															
Leu	Ser	Asp	Val	Leu	Asp	Arg	Val	Ser	Asp	Thr	Pro	Ser	Ile	Thr	Ala
660															
Lys	Leu	Ile	Ser	Glu	Gln	Lys	Asp	Asp	Lys	Glu	Lys	Lys	Asn	His	Glu
675															
Glu	Lys	Glu	Lys	Val	Lys	Ala	Glu	Asn	Gly	Phe	Gln	Asp	Asn	Tyr	Ser
690															
Val	Val	Val	Ala	Ser	Gly	Leu	Lys	Ser	Gln	Ser	Lys	Arg	Ala	Val	Ser
705															
Ala	Thr	Pro	Pro	Arg	Pro	Pro	Ser	Arg	Arg	Gly	Arg	Thr	Ile	Pro	Asp
725															
Lys	Ile	Gly	Ser	Thr	Ser	Gly	Ala	Glu	Ala	Ala	Asn	Lys	Ile	Ile	Thr
740															
Val	Pro	Val	Phe	His	Leu	Phe	His	Lys	Leu	Leu	Ala	Gly	Gln	Pro	Leu
755															
Pro	Ala	Glu	Met	Thr	Leu	Ala	Gln	Leu	Leu	Thr	Leu	Leu	Tyr	Asp	Arg
770															
Lys	Leu	Pro	Gln	Gly	Tyr	Arg	Ser	Ile	Asp	Leu	Thr	Val	Lys	Leu	Gly
785															
Ser	Arg	Val	Ile	Thr	Asp	Pro	Ser	Leu	Ser	Lys	Thr	Asp	Ser	Tyr	Lys
805															
Arg	Leu	His	Pro	Glu	Lys	Asp	His	Gly	Asp	Leu	Leu	Ala	Ser	Cys	Pro
820															
Glu	Asp	Glu	Ala	Leu	Thr	Pro	Gly	Asp	Glu	Cys	Met	Asp	Gly	Ile	Leu
835															
Asp	Glu	Ser	Leu	Leu	Glu	Thr	Cys	Pro	Ile	Gln	Ser	Pro	Leu	Gln	Val
850															
Phe	Ala	Gly	Met	Gly	Gly	Leu	Ala	Leu	Ile	Ala	Glu	Arg	Leu	Pro	Met
865															
Leu	Tyr	Pro	Glu	Val	Ile	Gln	Gln	Val	Ser	Ala	Pro	Val	Val	Thr	Ser
885															
Thr	Thr	Gln	Glu	Lys	Pro	Lys	Asp	Ser	Asp	Gln	Phe	Glu	Trp	Val	Thr
900															
Ile	Glu	Gln	Ser	Gly	Glu	Leu	Val	Tyr	Glu	Ala	Pro	Glu	Thr	Val	Ala
915															
Ala	Glu	Pro	Pro	Pro	Ile	Lys	Ser	Ala	Val	Gln	Thr	Met	Ser	Pro	Ile
920															
925															

930	935	940
Pro Ala His Ser Leu Ala Ala Phe Gly Leu Phe Leu Arg Leu Pro Gly		
945	950	955
Tyr Ala Glu Val Leu Leu Lys Glu Arg Lys His Ala Gln Cys Leu Leu		960
965	970	975
Arg Leu Val Leu Gly Val Thr Asp Asp Gly Glu Gly Ser His Ile Leu		
980	985	990
Gln Ser Pro Ser Ala Asn Val Leu Pro Thr Leu Pro Phe His Val Leu		
995	1000	1005
Arg Ser Leu Phe Ser Thr Thr Pro Leu Thr Thr Asp Asp Gly Val Leu		
1010	1015	1020
Leu Arg Arg Met Ala Leu Glu Ile Gly Ala Leu His Leu Ile Leu Val		
1025	1030	1035
Cys Leu Ser Ala Leu Ser His His Ser Pro Arg Val Pro Asn Ser Ser		1040
1045	1050	1055
Val Asn Gln Thr Glu Pro Gln Val Ser Ser Ser His Asn Pro Thr Ser		
1060	1065	1070
Thr Glu Glu Gln Leu Tyr Trp Ala Lys Gly Thr Gly Phe Gly Thr		
1075	1080	1085
Gly Ser Thr Ala Ser Gly Trp Asp Val Glu Gln Ala Leu Thr Lys Gln		
1090	1095	1100
Arg Leu Glu Glu Glu His Val Thr Cys Leu Leu Gln Val Leu Ala Ser		
1105	1110	1115
Tyr Ile Asn Pro Val Ser Ser Ala Val Asn Gly Glu Ala Gln Ser Ser		1120
1125	1130	1135
His Glu Thr Arg Gly Gln Asn Ser Asn Ala Leu Pro Ser Val Leu Leu		
1140	1145	1150
Glu Leu Leu Ser Gln Ser Cys Leu Ile Pro Ala Met Ser Ser Tyr Leu		
1155	1160	1165
Arg Asn Asp Ser Val Leu Asp Met Ala Arg His Val Pro Leu Tyr Arg		
1170	1175	1180
Ala Leu Leu Glu Leu Leu Arg Ala Ile Ala Ser Cys Ala Ala Met Val		
1185	1190	1195
Pro Leu Leu Leu Pro Leu Ser Thr Glu Asn Gly Glu Glu Glu Glu		1200
1205	1210	1215
Gln Ser Glu Cys Gln Thr Ser Val Gly Thr Leu Leu Ala Lys Met Lys		
1220	1225	1230
Thr Cys Val Asp Thr Tyr Thr Asn Arg Leu Arg Ser Lys Arg Glu Asn		
1235	1240	1245
Val Lys Thr Gly Val Lys Pro Asp Ala Ser Asp Gln Glu Pro Glu Gly		
1250	1255	1260
Leu Thr Leu Leu Val Pro Asp Ile Gln Lys Thr Ala Glu Ile Val Tyr		
1265	1270	1275
Ala Ala Thr Thr Ser Leu Arg Arg Ala Asn Gln Glu Lys Lys Leu Gly		1280
1285	1290	1295
Glu Tyr Ser Lys Lys Ala Ala Met Lys Pro Lys Pro Leu Ser Val Leu		
1300	1305	1310
Lys Ser Leu Glu Glu Lys Tyr Val Ala Val Met Lys Lys Leu Gln Phe		
1315	1320	1325
Asp Thr Phe Glu Met Val Ser Glu Asp Glu Asp Gly Lys Leu Gly Phe		
1330	1335	1340
Lys Val Asn Tyr His Tyr Met Ser Gln Val Lys Asn Ala Asn Asp Ala		
1345	1350	1355
Asn Ser Ala Ala Arg Ala Arg Arg Leu Ala Gln Glu Ala Val Thr Leu		1360

1365	1370	1375
Ser Thr Ser Leu Pro Leu Ser Ser Ser Ser Val Phe Val Arg Cys		
1380	1385	1390
Asp Glu Glu Arg Leu Asp Ile Met Lys Val Leu Ile Thr Gly Pro Ala		
1395	1400	1405
Asp Thr Pro Tyr Ala Asn Gly Cys Phe Glu Phe Asp Val Tyr Phe Pro		
1410	1415	1420
Gln Asp Tyr Pro Ser Ser Pro Pro Leu Val Asn Leu Glu Thr Thr Gly		
1425	1430	1435
Gly His Ser Val Arg Phe Asn Pro Asn Leu Tyr Asn Asp Gly Lys Val		
1445	1450	1455
Cys Leu Ser Ile Leu Asn Thr Trp His Gly Arg Pro Glu Glu Lys Trp		
1460	1465	1470
Asn Pro Gln Thr Ser Ser Phe Leu Gln Val Leu Val Ser Val Gln Ser		
1475	1480	1485
Leu Ile Leu Val Ala Glu Pro Tyr Phe Asn Glu Pro Gly Tyr Glu Arg		
1490	1495	1500
Ser Arg Gly Thr Pro Ser Gly Thr Gln Ser Ser Arg Glu Tyr Asp Gly		
1505	1510	1515
Asn Ile Arg Gln Ala Thr Val Lys Trp Ala Met Leu Glu Gln Ile Arg		
1525	1530	1535
Asn Pro Ser Pro Cys Phe Lys Glu Val Ile His Lys His Phe Tyr Leu		
1540	1545	1550
Lys Arg Val Glu Ile Met Ala Gln Cys Glu Glu Trp Ile Ala Asp Ile		
1555	1560	1565
Gln Gln Tyr Ser Ser Asp Lys Arg Val Gly Arg Thr Met Ser His His		
1570	1575	1580
Ala Ala Ala Leu Lys Arg His Thr Ala Gln Leu Arg Glu Glu Leu Leu		
1585	1590	1595
Lys Leu Pro Cys Pro Glu Gly Leu Asp Pro Asp Thr Asp Asp Ala Pro		
1605	1610	1615
Glu Val Cys Arg Ala Thr Thr Gly Ala Glu Glu Thr Leu Met His Asp		
1620	1625	1630
Gln Val Lys Pro Ser Ser Ser Lys Glu Leu Pro Ser Asp Phe Gln Leu		
1635	1640	1645

<210> 5877
<211> 683
<212> DNA
<213> Homo sapiens

<400> 5877
nccggcggcg cgacgggcgg cggcggcggt tccagcatga aggggagagc tggcctgggg
60
ggcagcatga ggtcagtggt gggcttcttg tcccagcggg gcttgcattgg ggaccccttg
120
ctcaactcagg actttcagag gagacgcctg cggggctgca gaaacctcta caagaaggac
180
ctcctcggcc acttcggctg tgtcaatgcc attgaattct ccaacaatgg aggccagtgg
240
ctggtctcag gaggagatga ccgccccgtt ctgctatggc acatggaaaca agccatccac
300
tccagggtca agccataca gctgaaagga gagcaccatt ccaacatttt ttgcctggct
360

ttcaacagt ggaacactaa agtgttctct ggaggcaatg atgagcaagt tatcctccat
 420
 gatgttggaaa gcagttagac attggacgtg tttgctcatg aagatgcagt atatggcttg
 480
 tctgtgagcc cagtgaatga caacatTTTt gccagttcct cagatgatgg ccgggttctc
 540
 atttgggaca ttcccggaaatc cccccatgga gagcccttct gctgggcaaa ctatccatca
 600
 660
 gccttcata gtgtcatgtt taaccctgtg gagcccaggt tttggcccc agccaattca
 aaggaaggag tgggactctg gga
 683

<210> 5878

<211> 227

<212> PRT

<213> Homo sapiens

<400> 5878

Xaa	Gly	Gly	Ala	Thr	Gly	Gly	Gly	Gly	Ser	Ser	Met	Lys	Gly	Arg	
1					5				10			15			
Ala	Gly	Leu	Gly	Gly	Ser	Met	Arg	Ser	Val	Val	Gly	Phe	Leu	Ser	Gln
						20			25			30			
Arg	Gly	Leu	His	Gly	Asp	Pro	Leu	Leu	Thr	Gln	Asp	Phe	Gln	Arg	Arg
					35				40			45			
Arg	Leu	Arg	Gly	Cys	Arg	Asn	Leu	Tyr	Lys	Lys	Asp	Leu	Leu	Gly	His
					50				55			60			
Phe	Gly	Cys	Val	Asn	Ala	Ile	Glu	Phe	Ser	Asn	Asn	Gly	Gly	Gln	Trp
					65			70			75			80	
Leu	Val	Ser	Gly	Gly	Asp	Asp	Arg	Arg	Val	Leu	Leu	Trp	His	Met	Glu
					85				90			95			
Gln	Ala	Ile	His	Ser	Arg	Val	Lys	Pro	Ile	Gln	Leu	Lys	Gly	Glu	His
					100				105			110			
His	Ser	Asn	Ile	Phe	Cys	Leu	Ala	Phe	Asn	Ser	Gly	Asn	Thr	Lys	Val
					115				120			125			
Phe	Ser	Gly	Gly	Asn	Asp	Glu	Gln	Val	Ile	Leu	His	Asp	Val	Glu	Ser
					130				135			140			
Ser	Glu	Thr	Leu	Asp	Val	Phe	Ala	His	Glu	Asp	Ala	Val	Tyr	Gly	Leu
					145				150			155			160
Ser	Val	Ser	Pro	Val	Asn	Asp	Asn	Ile	Phe	Ala	Ser	Ser	Ser	Asp	Asp
					165				170			175			
Gly	Arg	Val	Leu	Ile	Trp	Asp	Ile	Arg	Glu	Ser	Pro	His	Gly	Glu	Pro
					180				185			190			
Phe	Cys	Trp	Ala	Asn	Tyr	Pro	Ser	Ala	Phe	His	Ser	Val	Met	Phe	Asn
					195				200			205			
Pro	Val	Glu	Pro	Arg	Leu	Leu	Ala	Pro	Ala	Asn	Ser	Lys	Glu	Gly	Val
					210				215			220			
Gly	Leu	Trp													
		225													

<210> 5879

<211> 1555

<212> DNA

<213> Homo sapiens

<400> 5879
ttttttttt tttttttttt ttttgaacag ggaaagtta atatagagaa ttactggctt
60 taacagtgaa ctggaataat gagggcattca ctggtaaat gcttctgaat tgactggaaa
120 tccatttggg gtgctgggg acgttattcc cagagaggtg cctcagtgg agcgcgtgtgt
180 ctcctacgca acttctgagg gctggaggt gccaaaggca gctgctgacc gcctggtgct
240 tcaggagctg ggtgctgggg aagccacatg cactgcggcg tccagaggca gaagcacaac
300 caacaagaac cacgaaggag ggcctttcc tcctataatg cctgtttggt gcctctact
360 gacaaagctt atccccttc aaaaaacagc caactgaaaa agctgaattt ggaacataaa
420 gtcataataat ccataaccag caataactatg gggcctgggg tgcgctggcc tttagtgagt
480 ggagtggggc gaaggatgct gcatgtcctg cagtggcac agcggccctg cacggggag
540 aaccatccct gtaaagtgtc agtagtagcc cctgtgtcag tcagggtccc tgcaagaaat
600 ggcagtgcac tcacataagg acagtttag aagagtctcc tgacaaggtg agtgtggctc
660 tctgcggcta ctaacagcct gagccttac ctccccaggc ctgaacaggg gcatggaaag
720 ggctgcctga cagggtgaca ggagctgtga ccttagcca agggcagcca ggaataaaata
780 ctgggaactc acgctctctc ctgtgattgg ccagcaccac tcccccaccc tgacgttgag
840 tgaagacaaa tggaagccag aagtgtggtg agtaccaga catccatgc agcccgctga
900 gaagccacgt gagtggggac agggctaaag gctaggcagg gacaggcgtg gctgtgtccc
960 gaggctgctc ctccggccct gacttcaggc cctcagccca gtcgactccc acaacctcgc
1020 aattggcag catctcctcc accaatatct gagtgaggcc agggttggac acggcaggga
1080 ggtccgagat gtccagcctg cggaggttcg gagttatcc agggccctcg agttgatgtc
1140 acagtcaccg gcatccacag ctgcacagg cacttcacag aaattccaga actcctgaga
1200 gaaatggcca tacttatctg gcctgatcca ctccctgtct cgaaacttga ctgcgcctcc
1260 ctgcttcagg atgaaaaagg cacctgcgcc gtatggacca tggcttcc ccagccaggt
1320 gtaagatcga ttttctcat gcaccttgcata catctccctt tggagcaagt aatccctcag
1380 agcctccaca tcgtagaaat agttggtcag gaactggagt attgtccctt tcttcttctg
1440 actgcctct gggccactg ccgcacccag gcatggatg cccctgatac gcccattcca
1500 catggggcgc accaggcgca gggacgccc gggagccgc atcttgctaa ggttt
1555

<210> 5880
<211> 185
<212> PRT
<213> Homo sapiens

<400> 5880
Met Ala Ala Pro Trp Ala Ser Leu Arg Leu Val Ala Pro Met Trp Asn
1 5 10 15
Gly Arg Ile Arg Gly Ile His Arg Leu Gly Ala Ala Val Ala Pro Glu
20 25 30
Gly Ser Gln Lys Lys Lys Arg Thr Ile Leu Gln Phe Leu Thr Asn Tyr
35 40 45
Phe Tyr Asp Val Glu Ala Leu Arg Asp Tyr Leu Leu Gln Arg Glu Met
50 55 60
Tyr Lys Val His Glu Lys Asn Arg Ser Tyr Thr Trp Leu Glu Lys Gln
65 70 75 80
His Gly Pro Tyr Gly Ala Gly Ala Phe Phe Ile Leu Lys Gln Gly Gly
85 90 95
Ala Val Lys Phe Arg Asp Lys Glu Trp Ile Arg Pro Asp Lys Tyr Gly
100 105 110
His Phe Ser Gln Glu Phe Trp Asn Phe Cys Glu Val Pro Val Glu Ala
115 120 125
Val Asp Ala Gly Asp Cys Asp Ile Asn Tyr Glu Gly Leu Asp Asn Leu
130 135 140
Arg Thr Ser Ala Gly Trp Thr Ser Arg Thr Ser Leu Pro Cys Pro Thr
145 150 155 160
Leu Ala Ser Leu Arg Tyr Trp Trp Arg Arg Cys Cys Pro Ile Ala Arg
165 170 175
Leu Trp Glu Ser Thr Gly Leu Arg Ala
180 185

<210> 5881
<211> 327
<212> DNA
<213> Homo sapiens

<400> 5881
ngcgcgcccc ggcccgctggc ccgcgagaag acctcgctgg gcagcttcaa gcgcgccagc
60
gtggacgtgg acctgctggc cccgcgcagc cccatggcca aggagaacat ggtgacccttc
120
agccacacgc tgcccagggc cagcgcgccc tcgctggacg accccgcgcg cgcgcacatg
180
accatccacg tgcccgctgga cgcctcgcc tcacaaggcagc tcatcagcga gtggaaggcag
240
aagagcctgg agggccgcgg cctggggctg cccgacgcacg ccagccccgg gcacctgcgc
300
gccccggccg aacccatgcc ggaggan
327

<210> 5882
<211> 109
<212> PRT

<213> Homo sapiens

<400> 5882

Xaa Ala Pro Arg Pro Val Ala Arg Glu Lys Thr Ser Leu Gly Ser Leu
1 5 10 15
Lys Arg Ala Ser Val Asp Val Asp Leu Leu Ala Pro Arg Ser Pro Met
20 25 30
Ala Lys Glu Asn Met Val Thr Phe Ser His Thr Leu Pro Arg Ala Ser
35 40 45
Ala Pro Ser Leu Asp Asp Pro Ala Arg Arg His Met Thr Ile His Val
50 55 60
Pro Leu Asp Ala Ser Arg Ser Lys Gln Leu Ile Ser Glu Trp Lys Gln
65 70 75 80
Lys Ser Leu Glu Gly Arg Gly Leu Gly Leu Pro Asp Asp Ala Ser Pro
85 90 95
Gly His Leu Arg Ala Pro Ala Glu Pro Met Pro Glu Xaa
100 105

<210> 5883

<211> 579

<212> DNA

<213> Homo sapiens

<400> 5883

nggtcgacct ctgccttcctt acagcacccc cacctgccag agctgatcct ccctaggccc
60
tgccctaacct tgagttggcc cccaatccct ctggctgcag aagtccccctt acccccaatg
120
agaggagggg caggaccaga tcttttgaga gctgagggtt gagggcattg agccaacaca
180
cagatttgc gcctctgtcc cogaagacac ctgcaccctc catgcggagc caagatgggg
240
aatggaactg aggaagatta taactttgtc ttcaaggtgg tgctgatcgg cgaatcaggt
300
gtggggaaga ccaatctact ttcccgattc acgcgcaatg agttcagcca cgacagccgc
360
accaccatcg gggttgagtt ctccacccgc actgtgatgt tgggcaccgc tgctgtcaag
420
gctcagatct gggacacagc tggtgtttga cctAACCAAG caccagacct atgctgtgg
480
ggagcgatgg ctgaaggagc tctatgacca tgctgaagcc acgatcgtcg tcattgtcgt
540
gggttaacaaa agtgaccta gccaggcccc ggaagtgcc
579

<210> 5884

<211> 71

<212> PRT

<213> Homo sapiens

<400> 5884

Met Gly Asn Gly Thr Glu Glu Asp Tyr Asn Phe Val Phe Lys Val Val
1 5 10 15
Leu Ile Gly Glu Ser Gly Val Gly Lys Thr Asn Leu Leu Ser Arg Phe

20 25 30
Thr Arg Asn Glu Phe Ser His Asp Ser Arg Thr Thr Ile Gly Val Glu
35 40 45
Phe Ser Thr Arg Thr Val Met Leu Gly Thr Ala Ala Val Lys Ala Gln
50 55 60
Ile Trp Asp Thr Ala Gly Val
65 70

<210> 5885
<211> 1905
<212> DNA
<213> Homo sapiens

<400> 5885
ggcaaggaa aaccggctgt ggagaaggaa atagggcccg ggcgtgagtg agcgtggttg
60
cgtgtcctt gcagacactt tctggggcga ggtgacatgg cgagagtctt ggatcggtgg
120
acgttagacgg tagacagttc gcgtgcgttt ctttcgccta ctggcctac atgccttctg
180
cccgtaagc gatgtttccc ctcgaaaaggc ctagacgcc gtcagaatcg gtttttcagt
240
gagtttgac ccctccgacg ctccgtctct gacagaatcg cggcgttctt cgtacccgccc
300
catcctccgc ggacgcccgc tgccatggcg actctgctgc gccctgtctt ccgtcggctc
360
tgcgggctcc cgggcctaca gcggcctgcg gcagaaatgc ccctccgggc taggagcgac
420
ggcgccggcc cgctataactc gcaccaccc tcacccctccc cgctgcagaa agcgtgttg
480
ggccggcgct ccggcgat ggcgtctat aaccctacc gccacgacat ggtcgcagtt
540
ctaggggaga ccacaggaca ccgcacccctg aaggccctca gggaccagat gaggaggat
600
ccagagggtg cccagatcct gcaggagcgt cccggattt cgacatccac cctcgacctg
660
ggcaagctcc agagcctgcc ggaaggctcc ctggcgcgc agtatctccg tttccctggat
720
gtgaacaggg tctccccaga cacccgagca cccacccgt tcgtggatga tgaggagcta
780
gcgttatgtga ttcaagcgta cggggaggtg cacgacatgc ttcacacccct gctggggatg
840
cccatccaaca tcctggggga gatcgtggtg aaatggtttggatg aggtgtccaa gactggcctg
900
cccatgtgca tcctgggtgc attctttgga ccgatccgac ttggcgcctca gagcctgcaa
960
gtgctggctc cggagttgtat cccatggggc gttcagaacg ggcgcagagc cccatgtgtc
1020
ctcaacctgt actatgagcg ggcgtggag cagtcctga gggctctgcg ggaggagctg
1080
ggcattacag caccacccat gcacgtccag ggcttgcct gagtcctga gccagcgggg
1140
cctggcctac ctccccatc ccctgcttcc cttggaggca gagggctccc ttgactacct
1200

ttgttcctct tctttgaaca ctgacccttg gacaacattt atcataatccatcataacca
 1260
 ctgctgagtg gccttgagga cgaacccgc agggagcaag cagtagtgc gcattcccag
 1320
 ggggaccaggc agctacccaa ggagaaccat gcatgaacag tatcagtcgt ctgggctcat
 1380
 gctgggatgt cgcaatgcctc ctgttgcac ac tcctccagc cagccaggtt tgctggggc
 1440
 caggctgggt gtcctcacag gagtgaggc tacacccaaat tccaaaagcc tgagaagaga
 1500
 gaagtggagg gggaggcgag tgtgtgaata aaggctccca tcaggtcaaa aaaaaaaaaa
 1560
 aaagaaaaaca aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaactccgg gggggggccc
 1620
 agtaccattt ttgccctta agtggggctt atttacccctt taacttggcc ccggttttt
 1680
 aaaccttttgc atcttggga aaccccgaaa ggtttcccc ccttttaattt cccttttaag
 1740
 ggcattcccc tctttgcca ctggggaaat ttttgcac ag gggcccccc atttagcctt
 1800
 tttccaagct ttggacgcc catttggag ttggccattt tagcgttatt tttttttttt
 1860
 taattacggc gggactattt tgttttaat cgaccctttt tttt
 1905

<210> 5886

<211> 265

<212> PRT

<213> Homo sapiens

<400> 5886

Met	Ala	Thr	Leu	Leu	Arg	Pro	Val	Leu	Arg	Arg	Leu	Cys	Gly	Leu	Pro		
1									10						15		
Gly	Leu	Gln	Arg	Pro	Ala	Ala	Glu	Met	Pro	Leu	Arg	Ala	Arg	Ser	Asp		
														20	25	30	
Gly	Ala	Gly	Pro	Leu	Tyr	Ser	His	His	Leu	Pro	Thr	Ser	Pro	Leu	Gln		
														35	40	45	
Lys	Ala	Leu	Leu	Ala	Ala	Gly	Ser	Ala	Ala	Met	Ala	Leu	Tyr	Asn	Pro		
														50	55	60	
Tyr	Arg	His	Asp	Met	Val	Ala	Val	Leu	Gly	Glu	Thr	Thr	Gly	His	Arg		
														65	70	75	80
Thr	Leu	Lys	Val	Leu	Arg	Asp	Gln	Met	Arg	Arg	Asp	Pro	Glu	Gly	Ala		
														85	90	95	
Gln	Ile	Leu	Gln	Glu	Arg	Pro	Arg	Ile	Ser	Thr	Ser	Thr	Leu	Asp	Leu		
														100	105	110	
Gly	Lys	Leu	Gln	Ser	Leu	Pro	Glu	Gly	Ser	Leu	Gly	Arg	Glu	Tyr	Leu		
														115	120	125	
Arg	Phe	Leu	Asp	Val	Asn	Arg	Val	Ser	Pro	Asp	Thr	Arg	Ala	Pro	Thr		
														130	135	140	
Arg	Phe	Val	Asp	Asp	Glu	Glu	Leu	Ala	Tyr	Val	Ile	Gln	Arg	Tyr	Arg		
														145	150	155	160
Glu	Val	His	Asp	Met	Leu	His	Thr	Leu	Leu	Gly	Met	Pro	Thr	Asn	Ile		
														165	170	175	
Leu	Gly	Glu	Ile	Val	Val	Lys	Trp	Phe	Glu	Ala	Val	Gln	Thr	Gly	Leu		

180	185	190
Pro Met Cys Ile Leu Gly Ala Phe Phe Gly Pro Ile Arg Leu Gly Ala		
195	200	205
Gln Ser Leu Gln Val Leu Val Ser Glu Leu Ile Pro Trp Ala Val Gln		
210	215	220
Asn Gly Arg Arg Ala Pro Cys Val Leu Asn Leu Tyr Tyr Glu Arg Arg		
225	230	235
Trp Glu Gln Ser Leu Arg Ala Leu Arg Glu Glu Leu Gly Ile Thr Ala		
240	245	250
Pro Pro Met His Val Gln Gly Leu Ala		
260	265	

<210> 5887
<211> 3779
<212> DNA
<213> Homo sapiens

<400> 5887
gcggcgaca gcaggcaagg cgggcggcgc ggccgtggc atcaccgaac ccgagcacac
60
caaggagcgc gtcaaacttg aagggtcaaa gtgcaaaggc cagctttga tttttggggc
120
aaccaactgg gacttggattt gtcgaaaaga agtgcctaaa cagcaagctg cttaccgcaa
180
tctcggtcag aatttgggg ggccccacag atatgggtgc ctggcgaaaa tccgggtgcg
240
gacagtggc tcgggctcgt gtgctgcaca cagccttcctc atcaccacgg aagggcagct
300
gtggagctgg ggtcgaaatg agaaggggca gctgggacat ggtgacacca agagagtaga
360
agccctaga ctcatcgagg gtcttagcca cgaagtgatt gtgtctgcag catgtggcgc
420
gaaccacacc ttggccttga cggaaacggg ctccgtttt gcgtttgggg aaaacaagat
480
ggggcagctg ggccttggca accagacaga cgctgttccc agccccgcgc agataatgt
540
caacggccag ccaattacca aaatggcctg tgggctgaa ttcagtatga taatggactg
600
caaaggaaac ctctattcct ttgggtgccc tgaatatggt cagctggac acaactcaga
660
tgggaagttc atcgccccggg cacagcggat agagtacgac tgtgaactag ttccccggcg
720
agtggccatc ttcatgtt gaga agacgaaaga tggacagatt ctgcctgtac caagcggaaag
780
tgggaggagg accggggacac cgtggtcgaa gggctgaggc gcctgtcgga ctaccccgag
840
tacatgttgtt ttctcctgtta ctgcgagggg acgcgcctca cggagaccaa gcaccgcgtt
900
agcatggagg tggggctgc taaggggctt cctgtcctca agtaccacct gctgccgcgg
960
accaagggtc tcaccaccgc agtcaagtgc ctccggggga cagtcgcagc tgtctatgt
1020
gtaaccctga acttcagagg aaacaagaac ccgtccctgc tggggatcct ctacggaaag
1080

aagtacgagg cggacatgtg cgtgaggaga tttcctctgg aagacatccc gctggatgaa
1140
aaggaagcag ctcagtggct tcataaaactg taccaggaga aggacgcgct ccaggaggta
1200
aagactctgg atggcatgtt tccaggggag cagttttaga ctccctccccg gagccgttgg
1260
accctctga acttcctgtc ctgggccacc attctctgt ctcccccttt cagtttnng
1320
tcttggcggt ctttgcacgc ggatcaccc tcctgatcct gactttcttgg gggtttgg
1380
gagcagcttc ctttggagtt cgcaactga taggagtaac tgagatagaa aaagggtcc
1440
agctacggaa accaagagtt taagaaaaag gaataattaa tggctgtgac tgaacacacg
1500
cgcccctgac ggtggtatcc agttaactca aaaccaacac acagagtgcgaa gggaaaagaca
1560
attagaaaact atttttctta ttaactggtg actaatatta acaaaaacttg agccaagagt
1620
aaagaattca gaaggcctgt caggtgaagt ctccagccctc ccacagcgca gggcccagc
1680
atctccacgc gcgcgggtgg gaggtgggtc cggccggaga ggccctccgc ggacgcgc
1740
tctccagaac tccgcttcca agagggagcc tttggctgtc ttctctctt aaacttagat
1800
caaattttttt ggttttaat cagttatctt gggaaacttaa cctggcccct cacctcttct
1860
gcaccccccgc ccccccggaaac tgtctcgtaa tgaatttctg ctgtcccttgg gggagtg
1920
ggccgggtcc cgtccccggg gagcatcgct cggctcagca cttggctcc cagtggggc
1980
cccgtggagg gcgcgggttag tgataaggcac accggcacga acgtcagggtc cattcctcg
2040
agtcggagcc ctcaactctgc cctgtcctgg ggctggctga gggcgaacgc cccacccac
2100
tttctagagc cctgtctgtc ctatgtccata tctgaccttgg tggtaaata cgtacatctg
2160
tttttaaagt ggtggggccc ctgagaactc agtggaaatgc agagttctcc atgcacccaa
2220
agtccttttgc tcgtctcat ggctgtcaga tcctgggtccc tccacactgg gtgtgggg
2280
gggaggaccc tcggggctac cgcgcgc cccatccac agatcaggag ccaaggagg
2340
agaacagggc agcctgtggg actcttaggt gtttcagaag aagcgcggc accgtcaacc
2400
ctctgtttttt taaagggtgg tggagactgt taacactgag ctcattgact tctagagatt
2460
ttatTTTAC tgggtgatct cttgggtggtt ttcaacttcc tgctggaaac tagaggtgg
2520
gcaccccccac ccccccagcc tcgcactgtc tccttggggaa gggccggccccc ccacccctggc
2580
cggtgtcact gtggccggc caccctgag cggccagctc cttaccccttgg gacgtctct
2640
gagagtccag gcagagcaga gggcagcgct cggccggta tgctggctcc cttggcccttgg
2700

cagcgagccc ctggcccacg ccgagcgagg gatgcttc cctacagcat gtccactccc
 2760
 cccgcattgc caggtgggc ccctgggc atggcagtgg tagaacgctc aacttggtg
 2820
 cggtaccatc agcccacctg catttggct tcgacttgct tttctaaatg cacagcgtcc
 2880
 tcatctttt agcaaggtaa aaaaaccaa atgggtgtta tctctgatat cttgaaacca
 2940
 gcgttctgaa tagaggttagg ttgagtttc tagggaaaaa caaatggaga aaagaggcat
 3000
 gaagaaaaat aaaccgagaa cataattagg catcgggcct aagtgtcctg gggagattgg
 3060
 aggggacggc agcgttctgc atgatggagg cgctgccggg ccccggtct gtggggccg
 3120
 tgctctcagg gcgtgtgcgg gacgccacct gtgcacacct gctcagagca cggctcctcg
 3180
 caggggtgaa gggcagacc aacgaaacca gatgagacca acgacacccat gcgagacacg
 3240
 cttgcagaca ctgttgggg ggaaatgtgc ttcctccat ctgaaatctc atccctccac
 3300
 ccgcactc gggcagctgt gccgtggca gggcatgcgc tccccggct gagcacccca
 3360
 gagattctcc tgcacccctc tcatgccgca cgctgctcat ccgtctccat gtgtgttag
 3420
 atccatgcca ttcactgact cactaacacc tgcaaatct ttaaggaaaa aagctgaagg
 3480
 gtacgaccat gcacatatgt gacctggaaa atgcaaatgg agatctttt tgatttaatt
 3540
 gttattgttt cccatagaag ttccctccct ttgaaattaa tatataatgt ataaattctg
 3600
 cactgagcca tggcggagct gggcagccccc taggttagag tggagacgga gcccaggcg
 3660
 caggggtcac acctcatctg gttccctcc catctcacag cttagctgt gcttctcaac
 3720
 accaagtctt taagagcaat aaaaactaca ccatggaaaa aaaaaaaaaa aaaaaaaaaa
 3779

<210> 5888
 <211> 166
 <212> PRT
 <213> Homo sapiens

<400> 5888
 Glu Asp Glu Arg Trp Thr Asp Ser Ala Cys Thr Lys Arg Lys Trp Glu
 1 5 10 15
 Glu Asp Arg Asp Thr Val Val Glu Gly Leu Arg Arg Leu Ser Asp Tyr
 20 25 30
 Pro Glu Tyr Met Trp Phe Leu Leu Tyr Cys Glu Gly Thr Arg Phe Thr
 35 40 45
 Glu Thr Lys His Arg Val Ser Met Glu Val Ala Ala Ala Lys Gly Leu
 50 55 60
 Pro Val Leu Lys Tyr His Leu Leu Pro Arg Thr Lys Gly Phe Thr Thr
 65 70 75 80
 Ala Val Lys Cys Leu Arg Gly Thr Val Ala Ala Val Tyr Asp Val Thr

85	90	95
Leu Asn Phe Arg Gly Asn Lys Asn Pro Ser	Leu Leu Gly Ile Leu Tyr	
100	105	110
Gly Lys Lys Tyr Glu Ala Asp Met Cys Val	Arg Arg Phe Pro Leu Glu	
115	120	125
Asp Ile Pro Leu Asp Glu Lys Glu Ala Ala Gln	Trp Leu His Lys Leu	
130	135	140
Tyr Gln Glu Lys Asp Ala Leu Gln Glu Val	Lys Thr Leu Asp Gly Met	
145	150	155
Phe Pro Gly Glu Gln Phe		160
		165

<210> 5889

<211> 2198

<212> DNA

<213> Homo sapiens

<400> 5889

gctagccgtc cgagccgagc cgtccgagcc ggggaagccg ggccgcgtgct gccgctcgta
60
gcggggccgag acagtcttgc actgtttcct aggctggagt gcagtggcac aatcacagct
120
caactgcagcc ttgacttccc aggctcaagc catttcctta cctcagcctc ccaaggcagg
180
gggaccacag gagaggagag gcagcagcat ggcgagtgta ctgtcccgac gccttgaaaa
240
gcgggtccctc ctgggagcccc gggtgttggg acccagtgcc tcggaggggc cctcggctgc
300
cccacccctcg gagccactgc tagaaggggc cgctccccag cctttcacca cctctgtatga
360
caccccccctgc caggagcagc ccaaggaagt ccttaaggct cccagcacct cgggccttca
420
gcaggtggcc tttcagcctg ggcagaaggt ttatgtgtgg tacgggggtc aagagtgcac
480
aggactggtg gagcagcaca gctggatgga gggtcaggtg accgtctggc tgctggagca
540
540
gaagctgcag gtctgctgca gggtgaggaa ggtgtggctg gcagagctgc agggccctg
600
tccccaggca ccacccctgg agcccgagc ccaggccctg gcctacaggc ccgtctccag
660
gaacatcgat gtcccaaaga ggaagtcgga cgcagtggaa atggatgaga tcatggccgc
720
catggtgctg acgtccctgt cctgcagccc tggatcag agtccctcccg ggaccgaggc
780
caacctctct gcttccctgt cggcctgcga cccatggaaag gagagtggtg acatctcgga
840
cagcggcagc agcactacca gcggtcaactg gagtgggagc agtgggtgtct ccacccctc
900
gccccccac ccccaggcca gccccaaagta tttggggat gctttgggtt ctccccaaac
960
tgatcatggc tttgagaccg atcctgaccc tttcctgctg gacgaaccag ctccacgaaa
1020
aagaaagaac tctgtgaagg tcatgtacaa gtgcctgtgg ccaaactgtg gcaaaggttct
1080

gctgtccatt gtgggcattca aacgacacgt caaaggccctc catctggggg acacagtgg
1140
ctctgatcag ttcaagcgaa aggaggattt ctactacaca gaggtgcagc tgaaggagga
1200
atctgctgct gctgctgctg ctgctgccgc aggcacccca gtccctggga ctccccaccc
1260
cgagccagct cccacccca gcatgactgg cctgcctctg tctgcttcc caccacctct
1320
gcacaaagcc cagtcctccg gcccagaaca tcctggcccg gagtcctccc tgccctcagg
1380
ggctctcagc aagttagctc ctgggtcctt ctggcacatt cagggcagatc atgcatacca
1440
ggctctgcca tccttcaga tcccagtctc accacacatc tacaccagtg tcagctggc
1500
tgctgcccccc tccggccct gctctctctc tccgggtccgg agccggtcgc taagcttcag
1560
cgagccccag cagccagcac ctgcgtatgaa atctcatctg atcgtcactt ctccaccccg
1620
ggccccaggt ggtgccagga aagcccgagg ggaggctaag aagtggccca aggtgtatgg
1680
catcgagcac cgggaccagt ggtgcacggc gtgcccgtgg aagaaggcct gccagcgctt
1740
tctggactga gctgtgctgc aggttctact ctgttccctgg ccctgcccgc agccactgac
1800
aagaggccag tgtgtcacca gcccctcagca gaaaccgaaa gagaaagaac ggaaacacgg
1860
agtttgggct ctgttggcta aggtgttaaca cttaaagcaa ttttctccca ttgtgcgaac
1920
attttatttt taaaaaaaaaa gaaacaaaaaa tattttccc cctaaaaatag gagagagcca
1980
aaactgacca aggctattca gcagtgaacc agtgacccaaa gaattaatta ccctccgttt
2040
cccacatccc cactctctag gggatttagct tgtgcgtgtc aaaagaaggaa acagctcggt
2100
ctgcttcctg ctgagtcgggt gaattcttg ctttctaaac tcttccagaa aggactgtga
2160
gcaagatgaa ttacttttc taaaaaaaaaa aaaaaaaaa
2198

<210> 5890
<211> 118
<212> PRT
<213> Homo sapiens

<400> 5890
Ala Ser Arg Pro Ser Arg Ala Val Arg Ala Gly Glu Ala Gly Arg Val
1 5 10 15
Leu Pro Leu Val Ala Gly Arg Asp Ser Leu Ala Leu Phe Pro Arg Leu
20 25 30
Glu Cys Ser Gly Thr Ile Thr Ala His Cys Ser Leu Asp Phe Pro Gly
35 40 45
Ser Ser His Ser Pro Thr Ser Ala Ser Gln Ala Val Gly Thr Thr Gly
50 55 60
Glu Glu Arg Gln Gln His Gly Glu Cys Pro Val Pro Thr Pro Trp Lys

65 70 75 80
Ala Val Pro Pro Gly Ser Pro Gly Val Gly Thr Gln Cys Leu Gly Gly
85 90 95
Ala Leu Gly Cys Pro Thr Leu Gly Ala Thr Ala Arg Arg Gly Arg Ser
100 105 110
Pro Ala Phe His His Leu
115

<210> 5891
<211> 1459
<212> DNA
<213> Homo sapiens

<400> 5891
nggtgagaca gggctcaact gtcgcccagg catgagtgcac gcagaaaacag cctatacg
60
ccacgagtcg gcggcgctac cgaggggctg tgggcgcgca gctggAACCT ccggctgtca
120
gtgcgcTTAC agttcctaAC cccgaccCTG cgcgcAGCCC gcactatggc agccccGCC
180
cagctaaggg ctctgctcgt agtgcgtcaac gcactgctgc gcaagcGCCg ctaccacgct
240
gcgttggCCG tgcttaaggg ctTccggaac ggggctgtct atggagccaa aatccggcc
300
cctcacgcgc tggcatgac ctTTCtcttc cggaaatggca gcctccagga gaagctgtgg
360
gccatactgc aggccacata tatccactcc tggAACCTGG cacggTTTGT gttcacctac
420
aagggtctcc gtgcctgca gtcctacata caaggcaaga cctacCCAGC acacgcattc
480
ctggcggcct tcctcggggg tATCCTGGTG ttggagaaa acaataacat caacagCCAG
540
atcaacatgt acctgttgTC acgcgtcctg ttgcctGA gcccctggc tgttagagaag
600
ggctacatcc ctgaaACCCAG gtgggACCCCG ttcccgtgc tcactgcggT ggtgtgggg
660
ctgggtgtgt ggctcttGA gtatCACCGA tccacCCtGC agccctcgct gcagtccTCC
720
atgacctacc tctatgagga cagcaatgtA tggcacgaca tctcagactt ctcgttat
780
aacaagagcc gtccctccaa ttaatgcAGC cctgaggtgt ctggctgtgg ctcaagattt
840
ggccccatgc agaccctccc aaaggatact gcTTCTCAA gatcataggc ctcagactcc
900
aactgggttt atccCAGGGT tccgtttgt gaagtaaaaa cactgatttt aaaatcccAG
960
tgggtacctt tggatgggg cacaagtggc cgaatcaggc tgaggaatct acggcttgg
1020
tccagctgtg cagctgactt ctgtgagact ggggCCAGCC acactactct ctaggcctca
1080
ggggtcaagg agctcagagg agggccctGA ggtctttc cggtggttat gttcatttt
1140
caactgttct tatgtcacag agggctcctt gctggtgggc agtgggttgt aaatacttt
1200

taaaaaaacac taagttcctt atctcagatg ctgttctact ggagaagttc tagattccca
1260
ctgtccaata gaaacacgtg agccatatat gtaattaaaa tggttctagt agctgcatta
1320
caaaaaagaa gcctgggcac tgtggctcac tcctgtaatc tcagaacttt gggaggctga
1380
ggcaggtgga tcacttgagc tcaggagctt gagaccagcc tggcaacat ggtgaaaccc
1440
agtttctaca aaaaaaaaaa
1459

<210> 5892
<211> 212
<212> PRT
<213> Homo sapiens

<400> 5892
Met Ala Ala Pro Pro Gln Leu Arg Ala Leu Leu Val Val Val Asn Ala
1 5 10 15
Leu Leu Arg Lys Arg Arg Tyr His Ala Ala Leu Ala Val Leu Lys Gly
20 25 30
Phe Arg Asn Gly Ala Val Tyr Gly Ala Lys Ile Arg Ala Pro His Ala
35 40 45
Leu Val Met Thr Phe Leu Phe Arg Asn Gly Ser Leu Gln Glu Lys Leu
50 55 60
Trp Ala Ile Leu Gln Ala Thr Tyr Ile His Ser Trp Asn Leu Ala Arg
65 70 75 80
Phe Val Phe Thr Tyr Lys Gly Leu Arg Ala Leu Gln Ser Tyr Ile Gln
85 90 95
Gly Lys Thr Tyr Pro Ala His Ala Phe Leu Ala Ala Phe Leu Gly Gly
100 105 110
Ile Leu Val Phe Gly Glu Asn Asn Ile Asn Ser Gln Ile Asn Met
115 120 125
Tyr Leu Leu Ser Arg Val Leu Phe Ala Leu Ser Arg Leu Ala Val Glu
130 135 140
Lys Gly Tyr Ile Pro Glu Pro Arg Trp Asp Pro Phe Pro Leu Leu Thr
145 150 155 160
Ala Val Val Trp Gly Leu Val Leu Trp Leu Phe Glu Tyr His Arg Ser
165 170 175
Thr Leu Gln Pro Ser Leu Gln Ser Ser Met Thr Tyr Leu Tyr Glu Asp
180 185 190
Ser Asn Val Trp His Asp Ile Ser Asp Phe Leu Val Tyr Asn Lys Ser
195 200 205
Arg Pro Ser Asn
210

<210> 5893
<211> 1389
<212> DNA
<213> Homo sapiens

<400> 5893
nnngatccga tgccggcagc gtcctggggc ccccgtagcg gggctggacc atgagcctgc
60

tggacggcct cgccctcg ccgcgggctc cgctgcagtc cagcaaggcc aggatgaaaa
120
agctcccgaa gaagagccag aatgagaagt accggctgaa gtacctgcgg ctgcgcaaag
180
cggccaaggc cacggtgttt gaaaatgctg ctattgtga taaaattgct cgtcttgg
240
aaaaatttct taaagcaaaa gaagaaagaa ggtacttgct aaagaagctc ctccagcttc
300
aggctctaac tgaagggaa gtacaggctg cagcccttc ccacagttcc agtttgc
360
tgacttatgg tgtggccagc tctgtggaa ctatacaggg agctggcct atttcagg
420
ccagcaactgg ggctgaggaa ccatttggaa agaaaactaa gaaggagaaaa aaagaaaaag
480
gcaaagagaa caacaaactg gaagatcatc accgaccgac ctggcttca tgatgagagt
540
gccatctacc ccgtggccta ttgcagtact cgaatatatg ccagcatgaa gtgcccagac
600
cagaagtgtc tatatacctg tcagatcaag gatgggtgg tgccgcctca gtttgaatt
660
gttcctgaag atgacccca gaatgccatt gtcagcttt ctgcagatgc ttgtcatgca
720
gaactgctca ggactataag cactactatg gggaaactaa tgccctaacct gcttccagct
780
ggagctgact ttttggatt ttctcatcca gccatccaca acctgatcca gagctgtcca
840
ggagctcgaa aatgcatcaa ttaccagtgg gtgaaatttg atgtgtgcaa acctggagat
900
gggcagctac ctgaggggct gccggagaat gatcagctta tgagctttga agccttc
960
agacagatct ttgatgaaga tcagaatgat cccctctgc caggatcctt ggacctccca
1020
gagcttcagc ctgcagcctt tgtgtcttct taccagccca tgtacctgac acatgaaccc
1080
ttggtagata ctcacctgca gcacttgaag tctccatcac agggtagccc aattcagtct
1140
tcagattgaa caagaaggga tcagatgcca catcgaaaa gtcgtgatta atttaactta
1200
aactaaaatt ttgggtatat gaaagaaggc agcaattcag aagtaaagaa gataactaac
1260
tatttcatca tggaaggtcc tgtggtgatg gtttccctg ggaaaaacctt cagctgctt
1320
attttagta ataaaattct cttgtcaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
1380
aaaaaaaaaa
1389

<210> 5894

<211> 260

<212> PRT

<213> Homo sapiens

<400> 5894

Met Val Trp Pro Ala Leu Trp Glu Leu Tyr Arg Glu Leu Gly Leu Phe

1	5	10	15												
Gln	Gly	Pro	Ala	Leu	Gly	Leu	Arg	Asn	His	Leu	Gly	Arg	Lys	Leu	Arg
				20		25									30
Arg	Arg	Lys	Lys	Lys	Ala	Lys	Arg	Thr	Thr	Asn	Trp	Lys	Ile	Ile	
				35		40								45	
Thr	Asp	Arg	Pro	Gly	Phe	His	Asp	Glu	Ser	Ala	Ile	Tyr	Pro	Val	Gly
				50		55								60	
Tyr	Cys	Ser	Thr	Arg	Ile	Tyr	Ala	Ser	Met	Lys	Cys	Pro	Asp	Gln	Lys
				65		70								80	
Cys	Leu	Tyr	Thr	Cys	Gln	Ile	Lys	Asp	Gly	Gly	Val	Gln	Pro	Gln	Phe
				85		90								95	
Glu	Ile	Val	Pro	Glu	Asp	Asp	Pro	Gln	Asn	Ala	Ile	Val	Ser	Ser	Ser
				100		105								110	
Ala	Asp	Ala	Cys	His	Ala	Glu	Leu	Leu	Arg	Thr	Ile	Ser	Thr	Thr	Met
				115		120								125	
Gly	Lys	Leu	Met	Pro	Asn	Leu	Leu	Pro	Ala	Gly	Ala	Asp	Phe	Phe	Gly
				130		135								140	
Phe	Ser	His	Pro	Ala	Ile	His	Asn	Leu	Ile	Gln	Ser	Cys	Pro	Gly	Ala
				145		150								160	
Arg	Lys	Cys	Ile	Asn	Tyr	Gln	Trp	Val	Lys	Phe	Asp	Val	Cys	Lys	Pro
				165		170								175	
Gly	Asp	Gly	Gln	Leu	Pro	Glu	Gly	Leu	Pro	Glu	Asn	Asp	Ala	Ala	Met
				180		185								190	
Ser	Phe	Glu	Ala	Phe	Gln	Arg	Gln	Ile	Phe	Asp	Glu	Asp	Gln	Asn	Asp
				195		200								205	
Pro	Leu	Leu	Pro	Gly	Ser	Leu	Asp	Leu	Pro	Glu	Leu	Gln	Pro	Ala	Ala
				210		215								220	
Phe	Val	Ser	Ser	Tyr	Gln	Pro	Met	Tyr	Leu	Thr	His	Glu	Pro	Leu	Val
				225		230								240	
Asp	Thr	His	Leu	Gln	His	Leu	Lys	Ser	Pro	Ser	Gln	Gly	Ser	Pro	Ile
				245		250								255	
Gln	Ser	Ser	Asp												
			260												

<210> 5895

<211> 2748

<212> DNA

<213> Homo sapiens

<400> 5895

```

gcaacaataa gaaagatgct gagtttctgg tggcctttgn gtctaattct ggccacacag
60
agaatcagtc ggcctattgt caacctcttt gtttccccggg accttgggtgg cagttctgca
120
gccacagagg cagtggcgat tttgacagacc acataccctg tgggtcacat gccatacggc
180
tggttgacgg aaatccgtgc tgtgtatccct gctttcgaca agaataaccc cagcaacaaa
240
ctgggtgagca cgagcaacac agtcacggca gcccacatca agaagttcac cttcgtctgc
300
atggctctgt cactcacgct ctgtttcggt atgttttggc cacccaacgt gtctgagaaa
360
atcttgatag acatcatcggt agtggacttt gcctttgcag aactctgtgt tgttcccttg
420

```

cgatcttttccatccccc agttccagtc acagtggagg cgcatctcac cgggtggctg
480
atgacactga agaaaacctt cgtccttgcc cccagctctg tgctgcggat catcgccctc
540
atcgccagcc tcgtggtcct accctacctg ggggtgcacg gtgcgaccct gggcggtggc
600
tccctctgg cgggcttgt gggagaatcc accatggtcg ccatcgctgc gtgctatgtc
660
taccggaagc agaaaaagaa gatggagaat gagtcggcca cggagggggg agactctgcc
720
atgacagaca tgcctccgac agaggaggtg acagacatcg tggaaatgag agaggagaat
780
gaataaggca cgggacgcca tgggcactgc agggacagtc agtcaggatg acacttcggc
840
atcatctctt ccctctcccc tcgtattttgc ttccctttt tttgttttgt tttggtaatg
900
aaagaggcct tgatttaaag gtttcgtgtc aattctcttag catactgggt atgctcacac
960
tgacgggggg acctagtcaa tggtctttac tggcgtatg taaaaacaaa cggaaacaact
1020
gacttcatac ccctgcctca cggaaacccca aaagacacag ctgcctcacg gttgacggt
1080
tgcctccctc ccctggacaa tctcctcttg gaaccaaagg actgcagctg tgccatcg
1140
cctcggtcac cctgcacagc agggcacaga ctctcctgtc ccccttcatac gctcttaaga
1200
atcaacaggt taaaactcgg cttcccttga tttgttccc agtcacatgg cggtaacaaag
1260
agatggagcc cgggtggcct cttaaatttc cttccgcca cggagttcga aaccatctac
1320
tccacacatg caggaggcgg gtggcacgct gcagccggaa gtccccgttc acactgagga
1380
acggagacct gtgaccacag caggctgaca gatggacaga atctcccgta gaaaggttt
1440
gtttgaaatg ccccgaaaaa agcaaactga catggttcaa tgatagcatt tcactctgc
1500
ttctcctaga tctgagcaag ctgtcagttc tcaccccccac cgtgtatata catgagctaa
1560
ctttttaaa ttgtcacaaa agcgcacatc cagattccag accctgcccgc atgactttc
1620
ctgaaggcct gctttccct cgccttcctt gaaggtcgca ttagagcggag tcacatggag
1680
catcctaact ttgcattta gttttacag tgaactgaag cttaagtaa gtctcatcca
1740
gcattctaat gccaggttgc tgttagggtaa ctttgaagt agatataatta cctgggtctg
1800
ctatccttag tcataactct gcggcacagg taattgagaa tgtactacgg tacttcctc
1860
ccacaccata cgataaagca agacattta taacgataacc agagtcacta tgtggtcctc
1920
cctgaaataa cgcattcgaa atccatgcag tgcagttat ttttctaagt tttggaaagc
1980
aggtttttc cttaaaaaaaa attatagaca cggttcaacta aattgattta gtcagaattc
2040

ctagactgaa agaacctaaa caaaaaata ttttaagat ataaatatat gctgtatatg
 2100
 ttatgtatt tatTTtaggc tataatacat ttcctatTTT cgcatTTca ataaaatgtc
 2160
 tctaatacaa tacgggtatt gcttgtgtgc tcaacatacc tgcaGTTgaa acgtattgt
 2220
 tcaatgaaca ttgtaccta ttggcagcag ttttataaag tccgtcattt gcatttgaat
 2280
 gtaaggctca gtAAATgaca gaactatTT tcattatggg taactgggaa atAAATgggt
 2340
 cactggagta ggaatagaag tgcaagctgg aaaggaaaa atgagaaaaga aaaaggcagg
 2400
 ccctttgtgt ctaccgttt cagtgtgtg tgatcatatt gttcctcaca gcaaaaaaga
 2460
 atgcaagggc ataAtgttag ctgtgaacat gccagggttg cattcacatt cctgggtacc
 2520
 cagtgtgtat ggggtgtgcc cacgtgggg catgtccttg gcgtgcttcc tcagagtggc
 2580
 ttttcctcca ttaatacata tatgagtact gaagaattaa ttgcatacg tgctttcag
 2640
 tggtttcaga ggcagatctg agaagattaa aaaaaaatct caatgtatca gctttttta
 2700
 aaggacatta ctagaaaatt aaacagtatt ttttaacaaa aaaaaaaaa
 2748

<210> 5896

<211> 261

<212> PRT

<213> Homo sapiens

<400> 5896

Ala	Thr	Ile	Arg	Lys	Met	Leu	Ser	Phe	Trp	Trp	Pro	Leu	Xaa	Leu	Ile
1					5				10				15		
Leu	Ala	Thr	Gln	Arg	Ile	Ser	Arg	Pro	Ile	Val	Asn	Leu	Phe	Val	Ser
					20				25				30		
Arg	Asp	Leu	Gly	Gly	Ser	Ser	Ala	Ala	Thr	Glu	Ala	Val	Ala	Ile	Leu
					35				40				45		
Thr	Ala	Thr	Tyr	Pro	Val	Gly	His	Met	Pro	Tyr	Gly	Trp	Leu	Thr	Glu
					50				55				60		
Ile	Arg	Ala	Val	Tyr	Pro	Ala	Phe	Asp	Lys	Asn	Asn	Pro	Ser	Asn	Lys
					65				70				75		80
Leu	Val	Ser	Thr	Ser	Asn	Thr	Val	Thr	Ala	Ala	His	Ile	Lys	Lys	Phe
					85				90				95		
Thr	Phe	Val	Cys	Met	Ala	Leu	Ser	Leu	Thr	Leu	Cys	Phe	Val	Met	Phe
					100				105				110		
Trp	Thr	Pro	Asn	Val	Ser	Glu	Lys	Ile	Leu	Ile	Asp	Ile	Ile	Gly	Val
					115				120				125		
Asp	Phe	Ala	Phe	Ala	Glu	Leu	Cys	Val	Val	Pro	Leu	Arg	Ile	Phe	Ser
					130				135				140		
Phe	Phe	Pro	Val	Pro	Val	Thr	Val	Arg	Ala	His	Leu	Thr	Gly	Trp	Leu
					145				150				155		160
Met	Thr	Leu	Lys	Lys	Thr	Phe	Val	Leu	Ala	Pro	Ser	Ser	Val	Leu	Arg
					165				170				175		
Ile	Ile	Val	Leu	Ile	Ala	Ser	Leu	Val	Val	Leu	Pro	Tyr	Leu	Gly	Val

180 185 190
His Gly Ala Thr Leu Gly Val Gly Ser Leu Leu Ala Gly Phe Val Gly
195 200 205
Glu Ser Thr Met Val Ala Ile Ala Ala Cys Tyr Val Tyr Arg Lys Gln
210 215 220
Lys Lys Lys Met Glu Asn Glu Ser Ala Thr Glu Gly Glu Asp Ser Ala
225 230 235 240
Met Thr Asp Met Pro Pro Thr Glu Glu Val Thr Asp Ile Val Glu Met
245 250 255
Arg Glu Glu Asn Glu
260

<210> 5897

<211> 1930

<212> DNA

<213> Homo sapiens

<400> 5897
ngcgccgata agagggcagca gttcggaaagc cggttcctga gagatccggc gcgcgttcc
60
caccacaaatg cctggtaatc actctgcccc ttgcggccggc ctgtcgctga ccctctgtcc
120
cgccgcctcg gagcattccg aaaagcccct gaccgcggc cacgagtcaa gctgcctac
180
ccggccacga gtcaagctgc cctacccgag gcactctcca aggggagaga aactcctagg
240
ccagcgactc accctgcccc cagccaggac gtgaagcccc taagctgcc gtttgatttt
300
ctcagggaca atgtggagtg gtcggaagag caagccgcgg cggcggagag aaaagtccag
360
gagaacagta tccagcgggt gtgccaggag aaacaagttt attatgagat caatccccac
420
aaatactgga atgacttcta caaaatccac gaaaatgggt ttttcaagga tagacattgg
480
cttttaccg aattccctga gctggcacct agccaaaatc aaaatcattt gaaggactgg
540
ttcttgaga acaagagtga agtatgtgaa tgttagaaaca atgaggatgg acctggtttta
600
ataatggaag aacagcacaa gtgttcttcg aagagccttg aacataaaac acagacacct
660
cctgtggagg agaatgtaac tcagaaaatt agtgcacctgg aaatttgc tgatgagttt
720
cctggatcct cagccaccta ccgaataactg gaggtggct gtgggtgtgg aaacacagtc
780
tttccaattt tacaaacgaa caatgaccca ggactcttg tttattgctg tgattttct
840
tccacagcta tagaactggc ccagacaaat tcagaatatg atccttctcg gtgtttgcc
900
tttggtcacg acctgtgtga tgaagagaag agttacccag tgcccaaggg cagtcttgat
960
attatcattc tcatatttgt tctttcagca attgttccag acaagatgca gaaggctatc
1020
aacaggctga gcaggcttct gaaacctggg gggatggtac ttctgcgaga ttacggccgc
1080

tatgacatgg ctcagcttcg gttaaaaaa ggtcagtgtc tatctggaaa tttctacgtg
 1140
 agaggtgatg gaaccagagt ttacttcttc acacaagagg aactggacac gctttcacc
 1200
 actgctggac tggaaaaagt tcagaacctg gtggatcgcc gactgcaggt gaaccgagga
 1260
 aagcaactga caatgtaccc ggtttggatt cagtcaaata actgcaagcc cttctgtcc
 1320
 agcaccagct gagaggcacc tgctgccaac acgatgcaag cccattgtgt ttccgggctt
 1380
 tttaaaaaa aaaattgttag cactggcgt ggtgcattgcc ttaatccca gccactcagg
 1440
 aggctgaggc ggggaggatc cattgagccc agcagtccaa cctgggcaaa atagtgagag
 1500
 accctgtatc tgaaagtaat aataaaaata aaagaatata aatgaggtct cgttgatgtt
 1560
 ggacaattca agaattcaga cttgaacctt aaaccttagga aaagttactt tgtatcagga
 1620
 ttctaacaat tatgcttcat atttgtgaag tcctttaaaa cataatttc tcaagttctt
 1680
 tctttgagat ctcaatctgt cttagcattt tgtaactaat aactgaaatt ttattcaaag
 1740
 gaattgtaaa ccttaaacca ccaatttatt tccatgtgaa aaagtgttat atatgacaag
 1800
 tgtttttga ttgtaattgc gttaaatctt ttgagagtgt aaatgcccggc aaagttcgc
 1860
 tcttgtaacc taggctggag tgcagtgggt cgatctcggc tcactgcaac ctctgcctcc
 1920
 agggntcaag
 1930

<210> 5898
 <211> 242
 <212> PRT
 <213> Homo sapiens

<400> 5898
 Met Glu Glu Gln His Lys Cys Ser Ser Lys Ser Leu Glu His Lys Thr
 1 5 10 15
 Gln Thr Pro Pro Val Glu Glu Asn Val Thr Gln Lys Ile Ser Asp Leu
 20 25 30
 Glu Ile Cys Ala Asp Glu Phe Pro Gly Ser Ser Ala Thr Tyr Arg Ile
 35 40 45
 Leu Glu Val Gly Cys Gly Val Gly Asn Thr Val Phe Pro Ile Leu Gln
 50 55 60
 Thr Asn Asn Asp Pro Gly Leu Phe Val Tyr Cys Cys Asp Phe Ser Ser
 65 70 75 80
 Thr Ala Ile Glu Leu Val Gln Thr Asn Ser Glu Tyr Asp Pro Ser Arg
 85 90 95
 Cys Phe Ala Phe Val His Asp Leu Cys Asp Glu Glu Lys Ser Tyr Pro
 100 105 110
 Val Pro Lys Gly Ser Leu Asp Ile Ile Ile Leu Ile Phe Val Leu Ser
 115 120 125
 Ala Ile Val Pro Asp Lys Met Gln Lys Ala Ile Asn Arg Leu Ser Arg

130 135 140
Leu Leu Lys Pro Gly Gly Met Val Leu Leu Arg Asp Tyr Gly Arg Tyr
145 150 155 160
Asp Met Ala Gln Leu Arg Phe Lys Lys Gly Gln Cys Leu Ser Gly Asn
165 170 175
Phe Tyr Val Arg Gly Asp Gly Thr Arg Val Tyr Phe Phe Thr Gln Glu
180 185 190
Glu Leu Asp Thr Leu Phe Thr Thr Ala Gly Leu Glu Lys Val Gln Asn
195 200 205
Leu Val Asp Arg Arg Leu Gln Val Asn Arg Gly Lys Gln Leu Thr Met
210 215 220
Tyr Arg Val Trp Ile Gln Cys Lys Tyr Cys Lys Pro Leu Leu Ser Ser
225 230 235 240
Thr Ser

<210> 5899
<211> 1589
<212> DNA
<213> Homo sapiens

<400> 5899
nngctagcag cccgcacgt ggacacaccc tgcaatgaga tgaacaccga caccttcctc
60
gaggagatta acaaagttgg aaaggaactg gggatcatcc caaccatcat ccgggatgag
120
gaactgaaga cgagaggatt tggaggaatc tatggggttg gcaaagccgc cctgcacccc
180
ccagccctgg ccgtcctcag ccacacccca gatggagcca cgcagaccat cgcctgggtg
240
ggcaaaggca tcgtctatga cactggaggc ctcagcatca aaggaaagac taccatgccg
300
gggatgaagc gagactgcgg gggtgctgctg gccgtcctgg gggccttcag .agccgcaatc
360
aagcagggtt tcaaagacaa cctccacgct gtgttctgct tggctgagaa ctcgggtgggg
420
cccaatgcga caaggccaga tgacatccac ctgctgtact cagggaaagac ggtggaaatc
480
aacaacacgg atgccgaggg caggctggtg ctggcagatg gcgtgtccta tgcttgcaag
540
gacctgggg ccgacatcat cctggacatg gccacccctga ccggggctca gggcattgcc
600
acaggaaagt accacgcgc ggtgctcacc aacagcgctg agtgggaggg cgcctgtgtg
660
aaggcgggca ggaagtgtgg ggacctggtg caccgcgtgg tctactgccc cgagctgcac
720
ttcagcgagt tcacctcagc tgtggcggac atgaagaact cagtggcggg ccgagacaac
780
agccccagct cctgtgctgg cctcttcatc gcctcacaca tcggcttcga ctggcccgga
840
gtctgggtcc acctggacat tgctgcacccg gtgcacatgctg gtgagcgagc cacaggctc
900
ggtgtggccc tcctgctggc gctcttcggc cgtgcctctg aggaccctct gctgaacctg
960

gtgtccccac tgggctgtga ggtggatgtc gaggaggggg acctggggag ggactccaag
 1020
 agacgcaggc ttgtgtgagc ctccctgcctc ggccctgaca aacggggatc ttttacctca
 1080
 ctttgcactg attaattta agcaattgaa agattgcct tcataatgggt tttggtttgt
 1140
 ctttctggtc gtcagcgtgg tggtgaaaac agctgaagtt ttaggagaca gcttagggtt
 1200
 tgggtgcgggc cacggggagg ggaccgggaa gcgcgtgggc ttgtttctgt ttgttactta
 1260
 caggactgag acatcttctg taaactgcta cccctggggc ctctgcacc ccgggggtgag
 1320
 gcctcctgcc tgcctggtgc cctgtcccag cccaggtcc tgtgcagggc acctgcgtgg
 1380
 ctgacagcca ggctcttaact ccagccgggg ctgccagcgc atccagccag cccagccctg
 1440
 tgaaagatgg agctgacttg ctgcagggga cctgatttat agggcaagag aagtacact
 1500
 ccggcctctc agaattcaact tgaggttcaa taaaatacag tcacaccgcc ccctcaaaaa
 1560
 aaaaaaaaaa aaaaaaaaaaca aaaaaaaaaa
 1589

<210> 5900
 <211> 345
 <212> PRT
 <213> Homo sapiens

<400> 5900
 Xaa Leu Ala Ala Arg Ile Val Asp Thr Pro Cys Asn Glu Met Asn Thr
 1 5 10 15
 Asp Thr Phe Leu Glu Glu Ile Asn Lys Val Gly Lys Glu Leu Gly Ile
 20 25 30
 Ile Pro Thr Ile Ile Arg Asp Glu Glu Leu Lys Thr Arg Gly Phe Gly
 35 40 45
 Gly Ile Tyr Gly Val Gly Lys Ala Ala Leu His Pro Pro Ala Leu Ala
 50 55 60
 Val Leu Ser His Thr Pro Asp Gly Ala Thr Gln Thr Ile Ala Trp Val
 65 70 75 80
 Gly Lys Gly Ile Val Tyr Asp Thr Gly Gly Leu Ser Ile Lys Gly Lys
 85 90 95
 Thr Thr Met Pro Gly Met Lys Arg Asp Cys Gly Ala Ala Val
 100 105 110
 Leu Gly Ala Phe Arg Ala Ala Ile Lys Gln Gly Phe Lys Asp Asn Leu
 115 120 125
 His Ala Val Phe Cys Leu Ala Glu Asn Ser Val Gly Pro Asn Ala Thr
 130 135 140
 Arg Pro Asp Asp Ile His Leu Leu Tyr Ser Gly Lys Thr Val Glu Ile
 145 150 155 160
 Asn Asn Thr Asp Ala Glu Gly Arg Leu Val Leu Ala Asp Gly Val Ser
 165 170 175
 Tyr Ala Cys Lys Asp Leu Gly Ala Asp Ile Ile Leu Asp Met Ala Thr
 180 185 190
 Leu Thr Gly Ala Gln Gly Ile Ala Thr Gly Lys Tyr His Ala Ala Val

195	200	205
Leu Thr Asn Ser Ala Glu Trp Glu Ala Ala Cys Val Lys Ala Gly Arg		
210	215	220
Lys Cys Gly Asp Leu Val His Pro Leu Val Tyr Cys Pro Glu Leu His		
225	230	235
Phe Ser Glu Phe Thr Ser Ala Val Ala Asp Met Lys Asn Ser Val Ala		
245	250	255
Asp Arg Asp Asn Ser Pro Ser Ser Cys Ala Gly Leu Phe Ile Ala Ser		
260	265	270
His Ile Gly Phe Asp Trp Pro Gly Val Trp Val His Leu Asp Ile Ala		
275	280	285
Ala Pro Val His Ala Gly Glu Arg Ala Thr Gly Phe Gly Val Ala Leu		
290	295	300
Leu Leu Ala Leu Phe Gly Arg Ala Ser Glu Asp Pro Leu Leu Asn Leu		
305	310	315
Val Ser Pro Leu Gly Cys Glu Val Asp Val Glu Glu Gly Asp Leu Gly		
325	330	335
Arg Asp Ser Lys Arg Arg Arg Leu Val		
340	345	

<210> 5901

<211> 984

<212> DNA

<213> Homo sapiens

<400> 5901

```

ncggccgccc cagccatgac cgtggagtgc gaggagtgc tcaaggactc cccgcgttc
60
aggcgacca ttgacgaggt ggagacggac gtgggtggaga ttgaggccaa actggacaag
120
ctggtaagc tgtgcagtgg catggtgaa gccggtaagg cttacgttag caccagcagg
180
ctttcgtga gcggcgcccc cgacctgtcc cagcagtgcc agggcgacac cgtcatctcg
240
aatgtctgc agaggttcgc tgacagccta caggaggtag tgaactacca catgatcctg
300
tttgcaccagg cccagaggc cgtgcggcag cagctccaga gctttgtcaa agaggatgtg
360
cgaaagtca aggagacaaa gaagcagttt gacaaggtagc gggaggaccc ggagctgtcc
420
ctggtgagga acgcccaggc cccgaggcac cggccccacg aggtggagga agccaccggg
480
gccctcaccc tcaccaggaa gtgcttccgc cacctggcac tggactatgt gctccagatc
540
aatgttctgc aggccaagaa gaagtttgag atcctggact ctatgctgtc cttcatgcac
600
gcccagtcca gcttcttcca gcagggtac agcctcctgc accagctgga cccctacatg
660
aagaagctgg cagccgagct ggaccagctg gtgatcgact ctgcgggtgg aaagcgttag
720
atggagcggaa agcacgcccc catccagcac cggaccctta gggacttctc ctacgatgag
780
tcgaaagtgg agtttgacgt ggacgcgc c agtggggtag ttagtggagg ctaccttcc
840

```

aagaggccca gcaacnctt caagacatgg aaccggcgct gggtctccat tcagaacacgc
 900
 cagctggct accagaagaa gctcaaggat gccctcaccg tggtggtgga tgacctccgc
 960
 ctgtgctctg tgaagccgtg tgag
 984

<210> 5902
 <211> 328
 <212> PRT
 <213> Homo sapiens

<400> 5902
 Xaa Ala Ala Ala Ala Met Thr Val Glu Phe Glu Glu Cys Val Lys Asp
 1 5 10 15
 Ser Pro Arg Phe Arg Ala Thr Ile Asp Glu Val Glu Thr Asp Val Val
 20 25 30
 Glu Ile Glu Ala Lys Leu Asp Lys Leu Val Lys Leu Cys Ser Gly Met
 35 40 45
 Val Glu Ala Gly Lys Ala Tyr Val Ser Thr Ser Arg Leu Phe Val Ser
 50 55 60
 Gly Val Arg Asp Leu Ser Gln Gln Cys Gln Gly Asp Thr Val Ile Ser
 65 70 75 80
 Glu Cys Leu Gln Arg Phe Ala Asp Ser Leu Gln Glu Val Val Asn Tyr
 85 90 95
 His Met Ile Leu Phe Asp Gln Ala Gln Arg Ser Val Arg Gln Gln Leu
 100 105 110
 Gln Ser Phe Val Lys Glu Asp Val Arg Lys Phe Lys Glu Thr Lys Lys
 115 120 125
 Gln Phe Asp Lys Val Arg Glu Asp Leu Glu Leu Ser Leu Val Arg Asn
 130 135 140
 Ala Gln Ala Pro Arg His Arg Pro His Glu Val Glu Ala Thr Gly
 145 150 155 160
 Ala Leu Thr Leu Thr Arg Lys Cys Phe Arg His Leu Ala Leu Asp Tyr
 165 170 175
 Val Leu Gln Ile Asn Val Leu Gln Ala Lys Lys Phe Glu Ile Leu
 180 185 190
 Asp Ser Met Leu Ser Phe Met His Ala Gln Ser Ser Phe Phe Gln Gln
 195 200 205
 Gly Tyr Ser Leu Leu His Gln Leu Asp Pro Tyr Met Lys Lys Leu Ala
 210 215 220
 Ala Glu Leu Asp Gln Leu Val Ile Asp Ser Ala Val Glu Lys Arg Glu
 225 230 235 240
 Met Glu Arg Lys His Ala Ala Ile Gln Gln Arg Thr Leu Arg Asp Phe
 245 250 255
 Ser Tyr Asp Glu Ser Lys Val Glu Phe Asp Val Asp Ala Pro Ser Gly
 260 265 270
 Val Val Met Glu Gly Tyr Leu Phe Lys Arg Ala Ser Asn Xaa Phe Lys
 275 280 285
 Thr Trp Asn Arg Arg Trp Phe Ser Ile Gln Asn Ser Gln Leu Val Tyr
 290 295 300
 Gln Lys Lys Leu Lys Asp Ala Leu Thr Val Val Val Asp Asp Leu Arg
 305 310 315 320
 Leu Cys Ser Val Lys Pro Cys Glu

325

<210> 5903
<211> 3734
<212> DNA
<213> Homo sapiens

<400> 5903
ctctgggctc caaggtcacg ggaggccagc ctcccttcct cccagctgcc tcctcctggc
60
aggggacctc tggcacacgc tccatgcccc cctgcccctc cagatctgtc cccaagccaa
120
gcaggggacc tcacttaatc ccaattatgt aatctgcaat taaaacagtt ggcggatgag
180
gaggcgcttg gagccacgccc caggagtggg ggcaaaagga cccagctggg tcagggctga
240
caaacttaggc ttggcctctt gcctatactg gccaccactc ctcaagcccc agccagcacg
300
atgagcggca gagtcggcga tctgagcccc aggcagaagg aggcattggc caagttcg
360
gagaatgtcc aggatgtgct gccggccctg ccgaatccag atgactattt tctcctgcgt
420
tggctccgag ccagaagctt cgacctgcag aagtccgagg ccatgctccg gaagcatgtg
480
gagttccgaa agcaaaagga cattgacaac atcattagct ggcagcctcc agaggtgatc
540
caacagtatc tgtcaggggg tatgtgtggc tatgacctgg atggctgcc agtctggta
600
gacataattt gacctctgga tgccaagggt ctccctgtgt cagcctccaa gcaggatatg
660
atccggaaag gcatcaaagt ctgtgagctg ctgttgcatt agtgtgagct gcagactcag
720
aagctggca ggaagatcga gatggcgctg atgggtttt acatggaggg gctgagcctg
780
aaacacctgt ggaagccagc tgtggaggc taccagcagt ttttagcat cctggaagca
840
aattatcctg agaccctgaa gaatttaatt gttattcgag ccccaaaact gttccccatg
900
gccttcaact tggcaagtc gttcatgagt gaggacactc gtaagaagat catggcctg
960
ggagcaaatt ggaaggaggt tttactgaaa catatcagcc ctgaccagg gctgtggag
1020
tatggggca ccatgactga ccctgatgga aaccccaagt gcaaatccaa gatcaactac
1080
gggggtgaca tccccaggaa gtattatgtg cgagaccagg tgaaacagca gtatgaacac
1140
agcgtgcaga tttccctgg ctccctccaa caagtggagt atgagatcct cttccctggc
1200
tgtgtcctca ggtggcagtt tctgtgagat ggagcggatg ttggtttgg gatccctcg
1260
aagaccaaga tgggagagag gcagcggca gggagatga cagaggtgct gccaaccag
1320
aggtacaact cccacctggt ccctgaagat gggaccctca cctgcagtga tcctggcatc
1380

5075

tatgtcctgc ggtttacaa cacctacagc ttcattcatg ccaagaaggtaaatttcaact
1440
gtggagggtcc tgcttccaga caaaggctca gaagagaaga taaaacagct gggggcaggc
1500
accccgaat aacacccctt cctatagcag gcctggcccc ctcagtgtct ccctgtcaat
1560
ttctaccct ttagcagtc atttcgac aaccctgaag cccaaagaaa ctgggctgga
1620
ggacagacct caggagctt catttcagtt aggcagagga agagcgactg cagtgggtct
1680
ccgtgtctat caaataccta aggagtcccc aggagctggc tggccatcgt gataggatct
1740
gtctgtcctg taaaactgtgc caacttcacc tgtccaggga cagcgaagct ggggggtggcg
1800
gggggcattgt accacagggt ggcagcaggaa aaaaaaatta gaaaagggtg aaagattggg
1860
acttaacact tcagggaaat cagctgccgg ggagaaactt gctcctaaat gaacacataa
1920
gtttagatcg caatgaggag tagcagggtt gctgggtct agagttacgg tggggatcag
1980
aaactcttcc aaacattttt gcaactgaggc tggggtagct tttggctttt cccaggtctc
2040
aggaggtggc ctgagtcagc acacatcttc ccactcggtt gacaggctgg cctctccctc
2100
actttgagac tttggcaact cctggggcac acggcctgcc tctttgatta ctaatgattg
2160
tcagtgactc agagttccct gggacttcgg gtaccacccc gctgttctcc atgcaaacaa
2220
agcgcgcaggaa aatgaccca cagggatcgc agctgcaggag agggccaggaggg aggttgggg
2280
tgggagtgaa tgctaaaagc agatcgtcca gtgcctttt cagtgctacc ggctctcac
2340
caagcagtcc tccatgtgag caaccccgag aaaaaatgc taagtggat caagagagca
2400
gcactcgaggag agggtgtttt ccagtcttagt tgtcccgccgg tgcccgccaa cccgcttct
2460
gactgacctg agcaaggctt tactaagcag tcccatctct gtgggaggca tgcaacgcgt
2520
gcagggagtt caggtgccgg tcggcgttagc caggcctggaa ggccccccag gcaggaggcc
2580
gccccaaaggc gggggccggcg tctcgcagac taggggctgg gggcggccac agacggcctc
2640
gaaaccacag cccttacccc aatcccacga gcccccccaa cgaaccacag gtgctggct
2700
ttagagaaca tgggaaggcg gccccagacc tggcgaaaac gccttccct cagagccagg
2760
ccccggcccccc gtctgggaag ctcatcttcga aagctgagg gagctcaggaa caaaggccag
2820
gctagcgcgg accggaagggg gccgaggctg cacgggcctc tgccagaac ctcagacat
2880
cccgccctgg gtttacaacg ctgttaggaa aattaaccaa tgaataaagc aacgttcagt
2940
gcgcagggag tggaaattcaa tgcccaccgc taggctcctc gctgcctctc actcaagagg
3000

cccaaactca gacggcgtca gggacccgga cccagcagcc gtttcacgcc aatagatagg
 3060
 gcgcatgcgc agaaatcctc ctcggctctc tagcgtgagc tttccaagg ggccacgccc
 3120
 agcttgcctt ctgattggtc cagctggtgg gttgtcttcc gccatcttg atcagggcac
 3180
 taaggatgct cccgacggcc ttcacagtga cggcggagac cctgccccgc cagctgctca
 3240
 gtacgtgccc cgtagcccg tgcagccaag tgtgagtccg ggcgagcgcc tgcggagcta
 3300
 gcactgggcc cagaatgaga gggaggcgga ggagcagcga tcacgtggtt ttagggactg
 3360
 tctaataatt ccacgccage attgccggtg tttcaggggg tgggaaccgc tgcgttcccc
 3420
 atcaactttt ctcccaccca ccaccctccc caacctacaa gcccagctca gcttgaggta
 3480
 actgctgacc ggactgtctt atacagccct acaagacaga ggccgcctagg gctgaaagcg
 3540
 ggggcctccg tagggagcca gcgggggcct caatagttac tcatttctc taccttgat
 3600
 gaaaataaga gctaattctt aataaggcct accgggtatc acgaaaaaac cctgtgctta
 3660
 ctattatact ttgggttgtt gcaaagatta aaggaaataa gccgtgcaaa gcgcttaaaa
 3720
 aaaaaaaaaa aaaa
 3734

<210> 5904

<211> 308

<212> PRT

<213> Homo sapiens

<400> 5904
 Met Ser Gly Arg Val Gly Asp Leu Ser Pro Arg Gln Lys Glu Ala Leu
 1 5 10 15
 Ala Lys Phe Arg Glu Asn Val Gln Asp Val Leu Pro Ala Leu Pro Asn
 20 25 30
 Pro Asp Asp Tyr Phe Leu Leu Arg Trp Leu Arg Ala Arg Ser Phe Asp
 35 40 45
 Leu Gln Lys Ser Glu Ala Met Leu Arg Lys His Val Glu Phe Arg Lys
 50 55 60
 Gln Lys Asp Ile Asp Asn Ile Ile Ser Trp Gln Pro Pro Glu Val Ile
 65 70 75 80
 Gln Gln Tyr Leu Ser Gly Gly Met Cys Gly Tyr Asp Leu Asp Gly Cys
 85 90 95
 Pro Val Trp Tyr Asp Ile Ile Gly Pro Leu Asp Ala Lys Gly Leu Leu
 100 105 110
 Leu Ser Ala Ser Lys Gln Asp Met Ile Arg Lys Gly Ile Lys Val Cys
 115 120 125
 Glu Leu Leu Leu His Glu Cys Glu Leu Gln Thr Gln Lys Leu Gly Arg
 130 135 140
 Lys Ile Glu Met Ala Leu Met Val Phe Asp Met Glu Gly Leu Ser Leu
 145 150 155 160
 Lys His Leu Trp Lys Pro Ala Val Glu Val Tyr Gln Gln Phe Phe Ser

165	170	175
Ile Leu Glu Ala Asn Tyr Pro Glu Thr	Leu Lys Asn Leu Ile Val Ile	
180	185	190
Arg Ala Pro Lys Leu Phe Pro Met Ala Phe Asn Leu Val Lys Ser Phe		
195	200	205
Met Ser Glu Asp Thr Arg Lys Lys Ile Met Val Leu Gly Ala Asn Trp		
210	215	220
Lys Glu Val Leu Leu Lys His Ile Ser Pro Asp Gln Val Pro Val Glu		
225	230	235
Tyr Gly Gly Thr Met Thr Asp Pro Asp Gly Asn Pro Lys Cys Lys Ser		
245	250	255
Lys Ile Asn Tyr Gly Gly Asp Ile Pro Arg Lys Tyr Tyr Val Arg Asp		
260	265	270
Gln Val Lys Gln Gln Tyr Glu His Ser Val Gln Ile Ser Arg Gly Ser		
275	280	285
Ser Gln Gln Val Glu Tyr Glu Ile Leu Phe Pro Gly Cys Val Leu Arg		
290	295	300
Trp Gln Phe Leu		
305		

<210> 5905
<211> 2280
<212> DNA
<213> Homo sapiens

<400> 5905
nngttacttt aaaccttgta tgggttcaa gaacagagta tattctgggtt aggatgtgtt
60
catagctgat gcatctccaa aaattttttc atgaaggcgcc ccagcttctg aacgtcttca
120
attgtgacag cattatacag agaggccccgg atgcctccca cagacacgta gaatccttga
180
gaatttatcaa taatctcata aattgtttga gatttgcatttgg agctaagctt ctccatggcc
240
gcggcacctc cattgtttttt aatccactcc agaaccaagc ccatgacgta gatgctgaaa
300
catggaggcg tgggttacaa ggagctgttt ccagcctgca ccttgcatttgc caggaccgg
360
gggcactctc ggaggggcaaa ccccaaggcagg tcattcacgga caatcaccac ggtgacccca
420
gcagagccaa cattttctg ggcaccagca aaaatcacac caaacttgga aacatccact
480
ggcttggaca ggaagtggactt ggacatgtca caaaccagta ctgtccctt gacatgggt
540
ataaaagtcaa actccacacc atgcaccgtc tcatttgcgc aataatacac gtaggaggca
600
tctgggttga gggttgactt tatacccgat gtcaaggag cagttactgggt ttgtgacatg
660
tcctcaactt tcctgtccaa gccagtggat gtttccaagt ttaggggtat ttttgctgg
720
gcccagaaga atgttggctc tgctgggtc accgtggta ttgtccgtga tgacctgctg
780
gggtttggcc tccgagagtg cccctcggtc ctggaaataca aggtgcaggc tggaaacagc
840

tccttgcata acacgcctcc atgtttcagc atctacgtca tgggcttggt tctggagtgg
900
ataaaaaaca atggaggtgc cgcggccatg gagaagctta gctccatcaa atctctaaca
960
atttatgaga ttattgataa ttctcaagga ttctacgttt gtccagtgg accccaaaat
1020
agaagcaaga tgaatattcc attccgcatt ggcaatgcc aaggagatga tgcttagaa
1080
aaaagatttc ttgataaagc tcttgaactc aatatgttgt ccttgaagg gcataggct
1140
gtgggaggca tccgggcctc tctgtataat gctgtcacaa ttgaagacgt tcagaagctg
1200
gccgcctca tgaaaaaatt tttggagatg catcagctat gaacacatcc taaccaggat
1260
atactctgtt cttgaacaac atacaaagtt taaagtaact tggggatggc tacaaaaagt
1320
taacacagta ttttctcaa atgaacatgt ttattgcaga ttcttcttt ttgaaagaac
1380
aacagcaaaa catccacaac tctgtaaagc tggtggacc taatgtcacc ttaattctga
1440
cttgaactgg aagcattta agaaatcttgg ttgctttct aacaaattcc cgcttatttt
1500
gcctttgctg ctacttttc tagtttagatt tcaaacttgc ctgtggactt aataatgcaa
1560
gttgcgatta attatttctg gagtcatggg aacacacagc acagagggtt gggggccct
1620
ctaggtgctg aatctacaca tctgtgggt ctctgggtt cagcggctgt tgattcaagg
1680
tcaacattga ccattggagg agtggttaa gagtgcagg cgaaggccaa actgttagatc
1740
gatctttatg ctgttattac aggagaagtg acatacttta tatatgttta tattagcaag
1800
gtctgtttt aataccatatt actttatatt tctatacatt tatatttcta ataatacagt
1860
tatcactgat atatgttagac acttttagaa tttatataat ctttgacattt gtgcattata
1920
gcattccatt agcaagagtt gtacccctc cccagtcttc gccttcctct ttttaagctg
1980
ttttatgaaa aagacctaga agttcttgcatt tcattttac cattttcc ataggttagaa
2040
gagaaagtttgg attgggttgg tgggttcaa ttatgccatt aaactaaaca tttctgtttaa
2100
attaccctat ctttgcattt ctactgtttt ctttgcattt tatgactacg agagtgatac
2160
tttgcgtaaa agtctttccc ctattgttta tctattgtca gtattttatg ttgaatatgt
2220
aaagaacatt aaagtccctaa aacatctaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
2280

<210> 5906
<211> 215
<212> PRT
<213> Homo sapiens

<400> 5906
 Glu Ala Ser Gly Leu Arg Phe Asp Phe Ile Pro Asp Val Lys Gly Ala
 1 5 10 15
 Val Leu Val Cys Asp Met Ser Ser Asn Phe Leu Ser Lys Pro Val Asp
 20 25 30
 Val Ser Lys Phe Arg Val Ile Phe Ala Gly Ala Gln Lys Asn Val Gly
 35 40 45
 Ser Ala Gly Val Thr Val Val Ile Val Arg Asp Asp Leu Leu Gly Phe
 50 55 60
 Ala Leu Arg Glu Cys Pro Ser Val Leu Glu Tyr Lys Val Gln Ala Gly
 65 70 75 80
 Asn Ser Ser Leu Tyr Asn Thr Pro Pro Cys Phe Ser Ile Tyr Val Met
 85 90 95
 Gly Leu Val Leu Glu Trp Ile Lys Asn Asn Gly Gly Ala Ala Ala Met
 100 105 110
 Glu Lys Leu Ser Ser Ile Lys Ser Leu Thr Ile Tyr Glu Ile Ile Asp
 115 120 125
 Asn Ser Gln Gly Phe Tyr Val Cys Pro Val Glu Pro Gln Asn Arg Ser
 130 135 140
 Lys Met Asn Ile Pro Phe Arg Ile Gly Asn Ala Lys Gly Asp Asp Ala
 145 150 155 160
 Leu Glu Lys Arg Phe Leu Asp Lys Ala Leu Glu Leu Asn Met Leu Ser
 165 170 175
 Leu Lys Gly His Arg Ser Val Gly Gly Ile Arg Ala Ser Leu Tyr Asn
 180 185 190
 Ala Val Thr Ile Glu Asp Val Gln Lys Leu Ala Ala Phe Met Lys Lys
 195 200 205
 Phe Leu Glu Met His Gln Leu
 210 215

<210> 5907

<211> 1989

<212> DNA

<213> Homo sapiens

<400> 5907
 nnattggcta aataaggtgt tatcagctgc ttgatataaga gctgataaaa tcttcagcta
 60
 ggcataacttg aggcttgatt acagaagtga ccgtagtcca cccacacacc tgaaatttat
 120
 ttaagagacc aagctaggct cttcctggcc ttttaggaaga ggactggcat ggagaaatat
 180
 gttcctcaact agtctccca agccatggca cgtcccaaca aattcctcct ttggtttgc
 240
 tgctttgcct ggctgtgtt tcctattagc cttgggtctc aggcttctgg gggagaagct
 300
 cagattgctg ctatgtctga gttggaatct ggggctatgc cttggtcctt gctgcagcat
 360
 atagatgaga gagacagagc tggcctcctt cccgcgcctt tcaaagttct atctgttggg
 420
 cgaggtgggt cacctaggct gcagccagac tccagagctt tgcactacat gaagaagctc
 480
 tataagacat atgctaccaa ggaagggatt cctaaatcca atagaagtca cctctacaac
 540

actgttcggc tcttcacccc ctgtacccgg cacaaggcagg ctcctggaga ccaggttaaca
600
ggaatccttc catcagtggaa actgctatTTT aacctggatC gcattactac cgTTgaacac
660
ttactcaagt cagtcttgcT gtacaatATC aacaactcag tttcttttc ctctgctgTC
720
aaatgtgtgt gcaatctaT gataaaggag ccaaagtctT ctagcaggac tctcggcaga
780
gctccataCT catttacCTT taactcacAG tttgaatttg gaaagaaaaca caaatggatt
840
cagattgatG tgaccAGCCT cCTTcaACCT ttAGTggCCT ccaacaAGAG aagtattcAC
900
atgtctataa attttacttg catgaaAGAC cagCTggAGC atcCTTCAGC acagaatggT
960
ttgtttaaca tgactctggT gtccccCTCA ctgatCTTAT atttgaatGA cacaagtGCT
1020
caggCCttATC acagCTggTA ttCCCTTCAC tataAAAGGA ggCCttCCCA gggtCCTgAC
1080
caggagagaa gCTgtCTGC CTatCCTGTG ggagaAGAGG ctgCTgAGGA tggagatCT
1140
tcccattacc GTCACCGCAG aggtcAGGAA actgtcAGTT ctgatTTGA gaagCCttG
1200
ggcccAGCTT CCTTCAATCT gagTgAATAC ttCAgACAA tTCTTCTTC ccaAAATgAG
1260
tgtgagCTCC atgactttAG acttagCTT agtcaGCTGA agtgggacAA ctggattgtG
1320
gCTCCGcaca ggtacaACCC tcgataACTGT aaaggGGACT gTCCAAGGGC agttggACAT
1380
cggtatggCT CTCAGTTCA caccatggTA cagaACATCA tCTATgAGAA gCTggACTCC
1440
tcAGTgCCAA gaccgtcatG tGtacCTGCC aaatacAGCC CCTTGAGTGT tttgaccATT
1500
gagCCCGATG gCTCAATTGc CTATAAAGAG tacGAAGATA tgATAGCTAC aaAGTgCACC
1560
tgtcgTTAAC aaatggTCCT CTTAAAACCT tgAGCCTATT TGGCAAAGTA actACTgtGT
1620
gcCTATgtGT gCCTTCAAGA gaaAGCTTCa TATATTAAGT CTCTAAATGT AGCATATgtT
1680
atataAAAGAG gagCCTgtGT aggTTAGTAC CTTCTATGGC ATCTATCAGG atAAAGGGAT
1740
aacatcaATT gttgctACAG agcTTTTT TATTTCCAAA TTAAATGAA atataATTAT
1800
tgtggagaAC tttacATTTT tttcTTGAG tgATTTTTT TCTTTCTATA ggAGTCTTAT
1860
tCTTgATAGG gaaaaAAACCT TAATTAGCAT CAATCCTGGa TGGACTTGCA gCTATAAATA
1920
ggcaattcAG attgctgtAG tCTTAATAGA agaATAAATT tactgtcaAT ggcaAAAAAA
1980
aaaaaaaa
1989

<210> 5908
<211> 454
<212> PRT

<213> Homo sapiens

<400> 5908

Met Ala Arg Pro Asn Lys Phe Leu Leu Trp Phe Cys Cys Phe Ala Trp
 1 5 10 15
 Leu Cys Phe Pro Ile Ser Leu Gly Ser Gln Ala Ser Gly Gly Glu Ala
 20 25 30
 Gln Ile Ala Ala Ser Ala Glu Leu Glu Ser Gly Ala Met Pro Trp Ser
 35 40 45
 Leu Leu Gln His Ile Asp Glu Arg Asp Arg Ala Gly Leu Leu Pro Ala
 50 55 60
 Leu Phe Lys Val Leu Ser Val Gly Arg Gly Ser Pro Arg Leu Gln
 65 70 75 80
 Pro Asp Ser Arg Ala Leu His Tyr Met Lys Lys Leu Tyr Lys Thr Tyr
 85 90 95
 Ala Thr Lys Glu Gly Ile Pro Lys Ser Asn Arg Ser His Leu Tyr Asn
 100 105 110
 Thr Val Arg Leu Phe Thr Pro Cys Thr Arg His Lys Gln Ala Pro Gly
 115 120 125
 Asp Gln Val Thr Gly Ile Leu Pro Ser Val Glu Leu Leu Phe Asn Leu
 130 135 140
 Asp Arg Ile Thr Thr Val Glu His Leu Leu Lys Ser Val Leu Leu Tyr
 145 150 155 160
 Asn Ile Asn Asn Ser Val Ser Phe Ser Ser Ala Val Lys Cys Val Cys
 165 170 175
 Asn Leu Met Ile Lys Glu Pro Lys Ser Ser Ser Arg Thr Leu Gly Arg
 180 185 190
 Ala Pro Tyr Ser Phe Thr Phe Asn Ser Gln Phe Glu Phe Gly Lys Lys
 195 200 205
 His Lys Trp Ile Gln Ile Asp Val Thr Ser Leu Leu Gln Pro Leu Val
 210 215 220
 Ala Ser Asn Lys Arg Ser Ile His Met Ser Ile Asn Phe Thr Cys Met
 225 230 235 240
 Lys Asp Gln Leu Glu His Pro Ser Ala Gln Asn Gly Leu Phe Asn Met
 245 250 255
 Thr Leu Val Ser Pro Ser Leu Ile Leu Tyr Leu Asn Asp Thr Ser Ala
 260 265 270
 Gln Ala Tyr His Ser Trp Tyr Ser Leu His Tyr Lys Arg Arg Pro Ser
 275 280 285
 Gln Gly Pro Asp Gln Glu Arg Ser Leu Ser Ala Tyr Pro Val Gly Glu
 290 295 300
 Glu Ala Ala Glu Asp Gly Arg Ser Ser His His Arg His Arg Arg Gly
 305 310 315 320
 Gln Glu Thr Val Ser Ser Glu Leu Lys Lys Pro Leu Gly Pro Ala Ser
 325 330 335
 Phe Asn Leu Ser Glu Tyr Phe Arg Gln Phe Leu Leu Pro Gln Asn Glu
 340 345 350
 Cys Glu Leu His Asp Phe Arg Leu Ser Phe Ser Gln Leu Lys Trp Asp
 355 360 365
 Asn Trp Ile Val Ala Pro His Arg Tyr Asn Pro Arg Tyr Cys Lys Gly
 370 375 380
 Asp Cys Pro Arg Ala Val Gly His Arg Tyr Gly Ser Pro Val His Thr
 385 390 395 400
 Met Val Gln Asn Ile Ile Tyr Glu Lys Leu Asp Ser Ser Val Pro Arg

405 410 415
Pro Ser Cys Val Pro Ala Lys Tyr Ser Pro Leu Ser Val Leu Thr Ile
 420 425 430
Glu Pro Asp Gly Ser Ile Ala Tyr Lys Glu Tyr Glu Asp Met Ile Ala
 435 440 445
Thr Lys Cys Thr Cys Arg
 450

<210> 5909

<211> 4343

<212> DNA

<213> Homo sapiens

<400> 5909

nncggccgcg ggagggtcct tgtggcgccg ggcggcgggg tcctgcgtgg agagtggac
60
gcaacgcga gaccgcgagc agaggctgcg cacagccgga tccggcactc agcgaccgga
120
cccaggatc cgccggggaa caagccacag gagagcgact caggaacaag tgtggagag
180
gaagcggcgg cggcggcgcc gggcccgggg gtggtgacag caggtctgag gttgcattcat
240
aaatacaaag gactgaagtt ataaaagaga aaagagaagt ttgctgctaa aatgaatctg
300
agcaatatgg aatatgggtt gccacacaca aaaaggtact gaagatttac ccccaaaaaa
360
aaattgtcaa tgagaaataa agctaactga tatcaaaaag cagagcctgc tctactggcc
420
atcatgcgtt aagggggtgct gaaggaccca gagattgccg atctattctt caaagatgtat
480
cctgaggaac ttttattgg tttgcatgaa attggacatg gaagtttgg agcagtttat
540
tttgctacaa atgctcacac cagtggatgt gtggcaatta agaagatgtc ctatagtg
600
aagcagaccc atgagaaatg gcaagatatt cttaaggaag taaaattttt acgacaattt
660
aagcatccta atactattga gtacaaaggc tgtaacttga aagaacacac tgcttggtt
720
gtgtatgaaat attgcttagg ctcagccctt gatttattttt aagtttataaa aaaaccactt
780
caggaagtgg agatcgctgc cattactcat ggagccttgc atggacttagc ctacccat
840
tctcatgcattt tgattcatat ggatattttt gcatggaaata ttcttcttac agagccagg
900
caggtaaaac tagctgatgg tggatctgtc tcaatggctt ctcctgccaa ctccttcgt
960
ggcacaccc actggatggc tccagagggtg atcttagctt tggatgaagg acagttatgt
1020
gggaaagttt atatttggtc acttggcattt acttgttattt aattggcgga acggaagccg
1080
ccccctttca acatgaatgc aatgagtgcc ttatcatcaca ttgcccagaa tgactcccc
1140
acgttacagt ctaatgaatg gacagactcc tttaggatgtt gatgttgcattt ctgcttgcag
1200

aaaatacctc aggaaaggcc aacatcagca gaactattaa ggcatgactt tgttcgacga
1260
gaccggccac tacgtgtcct cattgacctc atacagagga caaaagatgc agttcgttag
1320
ctagataacc tacagtaccg aaaaatgaaa aaaatacttt tccaagagac acggaatgga
1380
cccttgaatg agtcacagga ggatgaggaa gacagtgaac atggaaccag cctgaacagg
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280
2340
2400
2460
2520
2580
2640
2700
2760
2820
aaaaggagg caaaggtacg tgcagcagat gagaagaatg tccagcaaca gatcttggcc
cagcagaaga aagatttgac aactttctta gaaagtcaga agaagcagta taagatttgt
aaggaaaaaa taaaagagga aatgaatgag gaccatagca caccaagaa agagaagcaa
gagcggatct tcaaacataa agagaacttg caacacacac aggctgaaga ggaagcccac
cttctcactt caacaggaga ctggactacg accaaaaatt gtcgtttctt caagcggaaa
ataatgatca agcggcacga ggtggagcag cagaacattc gggaggaact aaataaaaag
aggaccatga aggagatgga gcatgccatg ctaatccgc acgacgagtc cacccgagag
ctagagtaca ggcagctgca cacgttacag aagctacgga tggatctgat ccgtttacag
caccagacgg aactggaaaa ccagctggag tacaataaga ggcgagaaag agaactgcac
agaaagcatg tcatggaact tcggcaacag ccaaaaaact taaaggccat ggaaatgcaa
attaaaaaaaaac agtttcagga cacttgaaaa gtacagacca aacagtataa agcactcaag
aatcaccagt tggaagttac tccaaagaat gagcacaaaa caatctaaa gacactgaaa
gatgagcaga caagaaaaact tgccatTTT gcagagcagt atgaacagag tataaatgaa
atgatggcct ctcaagcggt acggcttagat gaggctcaag aagcagaatg ccaggccttg

aggctacagc tccagcagga aatggagctg ctcaacgcct accagagcaa aatcaagatg
2880
caaacagagg cacaacatga acgtgagctc cagaagctag agcagagagt gtctctgcgc
2940
agagcacacc ttgagcagaa gattgaagag gagctggctg cccttcagaa ggaacgcagc
3000
gagagaataa agaacctatt ggaaaggcaa gagcgagaga ttgaaaacttt tgacatggag
3060
agcctcagaa tgggatttgg gaatttgggtt acattagatt ttcctaagga ggactacaga
3120
tgagattaaa tttttgccca tttacaaaaa aaaaaaaaaa aaagaaaaca aaaaaaaaaatt
3180
cagaccctgc aaaaccacat tccccatttt aacgggcgtt gctctcactc tctctctc
3240
ttactcttac tgacatcgta tcggactagt gcctgttat tcttactcca tcagggccc
3300
ccttcctccc cccgtgtcaa ctttcagtgc tggccaaaac ctggccgtct cttctattca
3360
cagtagacgt cacagtattt atgtgattca aaatgtttca gtggaaaactt tggagacagt
3420
tttaacaaaa ccaataaaacc aacaacaaaa aaagtggatg tatattgctt taagcaatca
3480
ctcattacca ccaatctgtg aaagtaaagc aaaaaataat aataataaaat gccaaggggg
3540
agagagacac aatatccgca gccttacacc ttaacttagct gctgcattat tttattttat
3600
tttatttttt tggtattttat tcatcaggaa taaaaaaaaac aaagttttat taaagattga
3660
aaatttgata cattttacag aaactaattt tgatgtacat atcagtggtg acatatttt
3720
actttttgg ggacgggggg tgggtggggt gaagagatct tggatttttt aagaacctgc
3780
tggcaagagt ttaacttgtc ttcagcatat tctgattgta tcataatcat tttctgctgt
3840
tgcagaggat gtgaatacac ttaaggagct cacagaatcc cagtagcaca aattgggctt
3900
tggcaaatcg tgtatttgt gtatagaagg aatthaagga gaggttattac ttatttcat
3960
attgtatttt aactgtttct ctgatcaaattt tttttactt cctcctcctg ttcctcccc
4020
cctccctcct tttccagttc agtatttggta gttcaacact gtctctcaat cagatcatct
4080
tgatctttt ctatcttcc ctcccccttc ctaagtcctt tttcttggtc ataaatattt
4140
cattattcac actttcaaac tgtgtatttt cttacaataa aaaatgtga aaaaaaaaaaaa
4200
ggctttactt cttttgcattt cactttaaaa aaaaaacaaa acattttca ggttccaagg
4260
aagagcatga taactgtcag agcttttaat tatattgta aataaaaagtg ttcatcacaa
4320
aaaaaaaaaaa aaaaaaaaaaaa aaa
4343

<210> 5910

<211> 899
<212> PRT
<213> Homo sapiens

<400> 5910
Met Arg Lys Gly Val Leu Lys Asp Pro Glu Ile Ala Asp Leu Phe Tyr
1 5 10 15
Lys Asp Asp Pro Glu Glu Leu Phe Ile Gly Leu His Glu Ile Gly His
20 25 30
Gly Ser Phe Gly Ala Val Tyr Phe Ala Thr Asn Ala His Thr Ser Glu
35 40 45
Val Val Ala Ile Lys Lys Met Ser Tyr Ser Gly Lys Gln Thr His Glu
50 55 60
Lys Trp Gln Asp Ile Leu Lys Glu Val Lys Phe Leu Arg Gln Leu Lys
65 70 75 80
His Pro Asn Thr Ile Glu Tyr Lys Gly Cys Tyr Leu Lys Glu His Thr
85 90 95
Ala Trp Leu Val Met Glu Tyr Cys Leu Gly Ser Ala Ser Asp Leu Leu
100 105 110
Glu Val His Lys Pro Leu Gln Glu Val Glu Ile Ala Ala Ile Thr
115 120 125
His Gly Ala Leu His Gly Leu Ala Tyr Leu His Ser His Ala Leu Ile
130 135 140
His Arg Asp Ile Lys Ala Gly Asn Ile Leu Leu Thr Glu Pro Gly Gln
145 150 155 160
Val Lys Leu Ala Asp Phe Gly Ser Ala Ser Met Ala Ser Pro Ala Asn
165 170 175
Ser Phe Val Gly Thr Pro Tyr Trp Met Ala Pro Glu Val Ile Leu Ala
180 185 190
Met Asp Glu Gly Gln Tyr Asp Gly Lys Val Asp Ile Trp Ser Leu Gly
195 200 205
Ile Thr Cys Ile Glu Leu Ala Glu Arg Lys Pro Pro Leu Phe Asn Met
210 215 220
Asn Ala Met Ser Ala Leu Tyr His Ile Ala Gln Asn Asp Ser Pro Thr
225 230 235 240
Leu Gln Ser Asn Glu Trp Thr Asp Ser Phe Arg Arg Phe Val Asp Tyr
245 250 255
Cys Leu Gln Lys Ile Pro Gln Glu Arg Pro Thr Ser Ala Glu Leu Leu
260 265 270
Arg His Asp Phe Val Arg Arg Asp Arg Pro Leu Arg Val Leu Ile Asp
275 280 285
Leu Ile Gln Arg Thr Lys Asp Ala Val Arg Glu Leu Asp Asn Leu Gln
290 295 300
Tyr Arg Lys Met Lys Lys Ile Leu Phe Gln Glu Thr Arg Asn Gly Pro
305 310 315 320
Leu Asn Glu Ser Gln Glu Asp Glu Glu Asp Ser Glu His Gly Thr Ser
325 330 335
Leu Asn Arg Glu Met Asp Ser Leu Gly Ser Asn His Ser Ile Pro Ser
340 345 350
Met Ser Val Ser Thr Gly Ser Gln Ser Ser Ser Val Asn Ser Met Gln
355 360 365
Glu Val Met Asp Glu Ser Ser Ser Glu Leu Val Met Met His Asp Asp
370 375 380
Glu Ser Thr Ile Asn Ser Ser Ser Val Val His Lys Lys Asp His

385	390	395	400
Val Phe Ile Arg Asp Glu Ala Gly His Gly Asp Pro Arg Pro Glu Pro			
405	410	415	
Arg Pro Thr Gln Ser Val Gln Ser Gln Ala Leu His Tyr Arg Asn Arg			
420	425	430	
Glu Arg Phe Ala Thr Ile Lys Ser Ala Ser Leu Val Thr Arg Gln Ile			
435	440	445	
His Glu His Glu Gln Glu Asn Glu Leu Arg Glu Gln Met Ser Gly Tyr			
450	455	460	
Lys Arg Met Arg Arg Gln His Gln Lys Gln Leu Ile Ala Leu Glu Asn			
465	470	475	480
Lys Leu Lys Ala Glu Met Asp Glu His Arg Leu Lys Leu Gln Lys Glu			
485	490	495	
Val Glu Thr His Ala Asn Asn Ser Ser Ile Glu Leu Glu Lys Leu Ala			
500	505	510	
Lys Lys Gln Val Ala Ile Ile Glu Lys Glu Ala Lys Val Ala Ala Ala			
515	520	525	
Asp Glu Lys Lys Phe Gln Gln Ile Leu Ala Gln Gln Lys Lys Asp			
530	535	540	
Leu Thr Thr Phe Leu Glu Ser Gln Lys Lys Gln Tyr Lys Ile Cys Lys			
545	550	555	560
Glu Lys Ile Lys Glu Glu Met Asn Glu Asp His Ser Thr Pro Lys Lys			
565	570	575	
Glu Lys Gln Glu Arg Ile Phe Lys His Lys Glu Asn Leu Gln His Thr			
580	585	590	
Gln Ala Glu Glu Glu Ala His Leu Leu Thr Ser Thr Gly Asp Trp Thr			
595	600	605	
Thr Thr Lys Asn Cys Arg Phe Phe Lys Arg Lys Ile Met Ile Lys Arg			
610	615	620	
His Glu Val Glu Gln Gln Asn Ile Arg Glu Glu Leu Asn Lys Lys Arg			
625	630	635	640
Thr Met Lys Glu Met Glu His Ala Met Leu Ile Arg His Asp Glu Ser			
645	650	655	
Thr Arg Glu Leu Glu Tyr Arg Gln Leu His Thr Leu Gln Lys Leu Arg			
660	665	670	
Met Asp Leu Ile Arg Leu Gln His Gln Thr Glu Leu Glu Asn Gln Leu			
675	680	685	
Glu Tyr Asn Lys Arg Arg Glu Arg Glu Leu His Arg Lys His Val Met			
690	695	700	
Glu Leu Arg Gln Gln Pro Lys Asn Leu Lys Ala Met Glu Met Gln Ile			
705	710	715	720
Lys Lys Gln Phe Gln Asp Thr Cys Lys Val Gln Thr Lys Gln Tyr Lys			
725	730	735	
Ala Leu Lys Asn His Gln Leu Glu Val Thr Pro Lys Asn Glu His Lys			
740	745	750	
Thr Ile Leu Lys Thr Leu Lys Asp Glu Gln Thr Arg Lys Leu Ala Ile			
755	760	765	
Leu Ala Glu Gln Tyr Glu Gln Ser Ile Asn Glu Met Met Ala Ser Gln			
770	775	780	
Ala Leu Arg Leu Asp Glu Ala Gln Glu Ala Glu Cys Gln Ala Leu Arg			
785	790	795	800
Leu Gln Leu Gln Gln Glu Met Glu Leu Leu Asn Ala Tyr Gln Ser Lys			
805	810	815	
Ile Lys Met Gln Thr Glu Ala Gln His Glu Arg Glu Leu Gln Lys Leu			

820	825	830
Glu Gln Arg Val Ser Leu Arg Arg Ala His Leu Glu Gln Lys Ile Glu		
835	840	845
Glu Glu Leu Ala Ala Leu Gln Lys Glu Arg Ser Glu Arg Ile Lys Asn		
850	855	860
Leu Leu Glu Arg Gln Glu Arg Glu Ile Glu Thr Phe Asp Met Glu Ser		
865	870	875
Leu Arg Met Gly Phe Gly Asn Leu Val Thr Leu Asp Phe Pro Lys Glu		
885	890	895
Asp Tyr Arg		

<210> 5911
<211> 645
<212> DNA
<213> Homo sapiens

<400> 5911
nnaagtactt aagatggaaa gccagaaaatc ccgggtttgt gcttcgctca cgctgggagc
60
ttagacccgg agctgttcct attcggaat cttggctctt ccgcagagga tctcattttg
120
ccgcacggtg gtactccagc aggtacttca agtccagctt ctcatcttc cttctcaac
180
agacttcagc ttgatgatga tattgatggt gagactagag atctcttcgt tatagtcgt
240
gatccaaaga agcatgtgtg tacaatggag acttacatca cctataggat caccaccaa
300
agtactcggg tggagtttga cctgccagaa tattctgttc gtcgaagata ccaggatttt
360
gactgggtga ggagcaaact ggaagaatcc cagcccaactc atctcattcc ccctcttccc
420
gagaagtttgc tgtaaaagg tttgtggat cgttttcag aagagtttgtt ggagaccaga
480
agaaaaagctt tggataaatt tctaaaaaga attacggacc atcctgtgct gtctttcaat
540
gaacacttta atatttcct tactgctaag gacctgaacg cctacaagaa gcaaggata
600
gcattgctga ccagaatggg cgagtcagtc aagcacgtca cgcgt
645

<210> 5912
<211> 211
<212> PRT
<213> Homo sapiens

<400> 5912
Asp Gly Lys Pro Glu Ile Pro Val Leu Cys Phe Ala His Ala Gly Ser
1 5 10 15
Cys Arg Pro Glu Leu Phe Leu Phe Gly Asn Leu Gly Ser Ser Ala Glu
20 25 30
Asp Leu Ile Leu Pro Asp Gly Gly Thr Pro Ala Gly Thr Ser Ser Pro
35 40 45
Ala Ser Ser Ser Ser Leu Leu Asn Arg Leu Gln Leu Asp Asp Asp Ile

50	55	60
Asp	Gly	Glu
Thr	Arg	Asp
Leu	Phe	Val
Ile	Val	Asp
Asp	Asp	Pro
Lys		Lys
65	70	75
His	Val	Cys
Thr	Met	Glu
Thr	Tyr	Thr
Ile	Tyr	Arg
85		90
Ser	Thr	Arg
Val	Glu	Phe
Asp	Leu	Pro
100	105	110
Tyr	Gln	Asp
Phe	Asp	Trp
Leu	Arg	Ser
Lys	Leu	Glu
Glu	Ser	Gln
115	120	125
Thr	His	Leu
Ile	Pro	Pro
Leu	Pro	Glu
Lys	Phe	Val
130	135	140
Val	Asp	Arg
Phe	Ser	Glu
Glu	Glu	Phe
145	150	155
Asp	Lys	Phe
Leu	Lys	Arg
Ile	Thr	Asp
165		170
Glu	His	Phe
Asn	Ile	Phe
Leu	Thr	Ala
Lys	Asp	Lys
180	185	190
Lys	Gln	Gly
Ile	Ala	Leu
Leu	Thr	Arg
195	200	205
Met	Gly	Glu
Ser	Val	Lys
His		
210		

<210> 5913

<211> 2495

<212> DNA

<213> Homo sapiens

<400> 5913

attttttttt tttttttttt tttttttttt tttttttttt ttttaatct tctcttcctc
 60
 cattttatag ggagaaaaacc aagccactgg ccccggtaca cagcaagtta gtagtaagac
 120
 tgagattcga accctggtca aacagacttt ccattttgtt ccactgactc agtcttctct
 180
 tttacacttg aatcagactt ttagtttat ttagttttt gagtccatag ctgtcttcct
 240
 gtactgtctt gactcttga ctaaactgat ttcacatctt taaaattatg cttcccttt
 300
 aggctcattt ttagctcagc tggcacagc tattttaaa tgtaacatga cataatatat
 360
 ttcctaaata attaaaata atctagctt agctgctctg aaggtagtc agttggtggt
 420
 gtgcatacagag gtagagcctt cccccactct caaggatgct gtgaggggtt ttcctaccat
 480
 gtggtgagtt gggaggttt cctgaggccc tttccatcc tgagactctg gtttccatt
 540
 ttgtttctca caggccaggg ctttggccga cacttgggg ctctggccga tctggcagca
 600
 gcanaaggga tcacccatcc tgagctctac ctggaccctg catacgggca gataaaccac
 660
 aatgtcctgt ccacgagcac actgagcagc ccagcagtga accntttagt gtttgcct
 720
 gtggtgctctg atgctttgg tggggat gctgttcatg acaactggat aggctgcaat
 780

gtctcttcc acccaggccg caatgcccgg gagttctcc aatgtgtgga gaaggctnta
840
gaagacatgt ttgatgcctt agaaggcaaa tccatcaaaa gttaacttct gggcagatga
900
aaagctacca tcacttcctc atcatgaaaaa ctgggaggcc gggcatggtg gctcatgcct
960
gtaatcccag catttgaga ggctgaggcg ggtggatcac ttgaggtcag gagtttgaga
1020
ccaacctggc caacatggtg aaaccttgc tctactaaaa atacaaaaat tagctgggtg
1080
tggtggcatg tgcctataat cccagctact tgggaggttg aagcagaatt gcttgaaccc
1140
aggaggtgga ggttcagtg agctgagatc acaccactgc actccggcct gggcgacaga
1200
gcgagactgt ctcaaaaaaaaaa caaaaaagaa aaaaaaaactg gggcctgtgt agccagtggg
1260
tgctattctg tgaaactaat cataagctgc ctaggcagcc agctacaggc ttgagcttta
1320
aattcatggt tttaaagcta aacgttaattt ccacttggg atagatcaca actgaagata
1380
acaagagatt taagtttaa gggcatttaa tcaggaggaa aggtttggaa aactaactca
1440
ggtgttattta ttgtttaagc agaaataaag tttaattttt gcttgaagat gtttcctaat
1500
ttcttttaac ctaattccta atcctcacaa agatcttcc aacagcaagt tcagtaagtt
1560
caggtaacag tacgtcacca ttggcttctg gtcatttag tgatggtggg atcgcggttt
1620
catctctgta aacttgcctt tgactgggaa gataccatct cctaaaaat actcttcatt
1680
ttcctaagga gtgaactgct gctgcacgaa ttcttatttg tggagggagt agctgcctcc
1740
ttacttcacc ttcatgcacc agtgcagcgt gaacaggggc tttattgatg gggcttggaa
1800
agctgtata aagtccagca tgcagattgt gaaggttcg tatagccacc aggagacaag
1860
ggtcaaagga acgagcctct gtgggctctg ctgcttagag tactttgtcc tttctcagtt
1920
cttaaggca actgggaagg aagagggatc agcacttcac aaactggtgg gtgacctcat
1980
agattcccac agactcctgg gcctttcat catagtcagt ccagtccttc tcctgcagat
2040
taatgtcact gaaggctgtc cctgactcca caccttcagc agcaaaccctt gcctgcggct
2100
ggaaatcaac tggtaagg cccccggact caaaactccac tattgtcttg aagttctcat
2160
tgtcttcagc attgtaaggc ttgatggtgc tgcttaaaat ctcgatggaa ttttctcttg
2220
cacacagctt gcacttctgg accatggaag cactgccacg gcccccccttc agtgcacac
2280
tgtccatcag ccggatgtac tgccacttgtt ccgaaatctc accacagttt ccacattca
2340
tcttcaggta ccaccggaag tccctgcccc cggccggag gttggtgatg ttctccagcg
2400

tggcttgag ttgcagcgat atttccca tggtagccct ctccgcccgg tgctggctgc
 2460
 ggccttgcc gttgtttcc ggccgcgtcgt aaaaag
 2495

<210> 5914
 <211> 158
 <212> PRT
 <213> Homo sapiens

<400> 5914
 Ser Val Gly Gly Val His Arg Gly Arg Ala Phe Pro His Ser Gln Gly
 1 5 10 15
 Cys Cys Glu Gly Tyr Ser Tyr His Val Val Ser Trp Glu Val Phe Leu
 20 25 30
 Arg Ser Phe Ser Ile Leu Arg Leu Trp Phe Ser Ile Leu Phe Leu Thr
 35 40 45
 Gly Gln Gly Phe Asp Arg His Leu Phe Ala Leu Arg His Leu Ala Ala
 50 55 60
 Ala Xaa Gly Ile Ile Leu Pro Glu Leu Tyr Leu Asp Pro Ala Tyr Gly
 65 70 75 80
 Gln Ile Asn His Asn Val Leu Ser Thr Ser Thr Leu Ser Ser Pro Ala
 85 90 95
 Val Asn Xaa Cys Arg Phe Ala Pro Val Val Ser Asp Ala Phe Gly Val
 100 105 110
 Gly Tyr Ala Val His Asp Asn Trp Ile Gly Cys Asn Val Ser Ser Tyr
 115 120 125
 Pro Gly Arg Asn Ala Arg Glu Phe Leu Gln Cys Val Glu Lys Ala Xaa
 130 135 140
 Glu Asp Met Phe Asp Ala Leu Glu Gly Lys Ser Ile Lys Ser
 145 150 155

<210> 5915
 <211> 457
 <212> DNA
 <213> Homo sapiens

<400> 5915
 taccgaagac tcagcaactc cagcctctgt agcattgaag aagagcacccg aatggtgtat
 60
 gaaatggtagtac agcggattct cttgtcaaca cgaggatgtatc tcaacttcgt gaatgaagta
 120
 tttcaccagg cattttgtt gccttcctgt gagatagctg taacaagaaa agtagttcaa
 180
 gtgtacagaa agtggattct ccaggacaaa cctgtgttca tggaggagcc agatagaaaa
 240
 gatgttgcac aagaagatgc tgaaaaatta ggattttccg agactgatag caaggaggcc
 300
 tcatctgaaa gttctggtca taaacgatct tccagttggg gacgcacata ctccttcaca
 360
 agtgcaatga gcagagggtg tgtgacagag gagaaaaata caaatgtcaa agccggcgatc
 420
 caggcttgcgtt tgcaggtatt tttggcgaac tctgcag
 457

<210> 5916
<211> 152
<212> PRT
<213> Homo sapiens

<400> 5916
Tyr Arg Arg Leu Ser Asn Ser Ser Leu Cys Ser Ile Glu Glu Glu His
1 5 10 15
Arg Met Val Tyr Glu Met Val Gln Arg Ile Leu Leu Ser Thr Arg Gly
20 25 30
Tyr Val Asn Phe Val Asn Glu Val Phe His Gln Ala Phe Leu Leu Pro
35 40 45
Ser Cys Glu Ile Ala Val Thr Arg Lys Val Val Gln Val Tyr Arg Lys
50 55 60
Trp Ile Leu Gln Asp Lys Pro Val Phe Met Glu Glu Pro Asp Arg Lys
65 70 75 80
Asp Val Ala Gln Glu Asp Ala Glu Lys Leu Gly Phe Ser Glu Thr Asp
85 90 95
Ser Lys Glu Ala Ser Ser Glu Ser Ser Gly His Lys Arg Ser Ser Ser
100 105 110
Trp Gly Arg Thr Tyr Ser Phe Thr Ser Ala Met Ser Arg Gly Cys Val
115 120 125
Thr Glu Glu Glu Asn Thr Asn Val Lys Ala Gly Val Gln Ala Leu Leu
130 135 140
Gln Val Phe Leu Ala Asn Ser Ala
145 150

<210> 5917
<211> 3727
<212> DNA
<213> Homo sapiens

<400> 5917
gcttgcggcc gcgtgacggt ggcgacacaag aaggctccgc cggccctgat cgacgagtgc
60
atcgagaagt tcaatcacgt cagcggcagc cgggggtccg agagcccccg ccccaacccg
120
ccccatgccc cgccgccacag ggagccagga cctgtgcgca ggcccatgcg caagtccctc
180
tcccaaaaaa gcctgcgctc gctggccttt aggaaggagc tgcaggatgg gggcctccga
240
agcagcggct tttcagctc ctgcaggag agcgacattg agaaccacct cattagcgga
300
cacaatattg tgcagcccc acatatcgag gaaaatcgaa ctatgcttt cacgattggc
360
cagtctgaag tttacctcat cagtcctgac accaaaaaaaa tagcattggaa gaaaaatttt
420
aaggagatat ccttttgcctc tcagggcatc agacacgtgg accactttgg gtttatctgt
480
cgggagttt ccggagggtgg cggcttcat tttgtctgtt acgtgtttca gtgcacaaat
540
gaggctctgg ttgatgaaat tatgtatgacc ctgaaacagg cttcacggt ggccgcagtg
600

cagcagacag ctaaggcgcc agcccagctg tgtgagggct gccccctgca aagcctgcac
660
aagctctgtg agaggataga ggaaatgaat tcttccaaaa caaaaactaga actgcaaaag
720
cacctgacga cattaaccaa tcaggagcag gcgactatTT ttgaagaggt tcagaaattg
780
agaccgagaa atgagcagcg agagaatgaa ttgattatTT ctttctgag atgtttatAT
840
gaagagaaAC agaaagaaca catccatATT ggggagatga agcagacatC gcagatggca
900
gcagagaata ttggaagtga attaccacCC agtGCCactC gatTTaggCT agatATgCTG
960
aaaaacAAAG caaagagatC tttaacagag tcttagAAA gtatTTgtC ccggggtaat
1020
aaagccagag gcctgcagga acactccatC agtgtggatC tggatagCTC CCTgtCTAGT
1080
acattaagta acaccagcaa agagccatCT gtgtgtAAA aggaggcTT gcccattCT
1140
gagagCTCCT ttaagCTCCT cggtcCTCG gaggacCTGT ccagtgactC ggagagtcat
1200
ctccccagaag agccagCTCC gctgtcgccc cagcaggcCT tcaggaggcG agcaaACacc
1260
ctgagTCact tccccatCga atGCCaggAA cctccacaAC ctGCCCGGGG gtccccGGGG
1320
gtttcgcaAA gaaacttat gaggtatCAC tcagtgagCA cagagacGCC tcatgaacGA
1380
aaggactttg aatccaaAGC aaaccatCTT ggtgattCTG gtgggactCC tgtgaagACC
1440
cgaggGCatt CCTggaggca gcagatATTC CTCCGAGTAG CCACCCGca gaaggcgtgc
1500
gattCTTCCA gcagatATGA agattATTCA gagCTGGGAG agCTTCCCCC acgatCTCCT
1560
ttagaaccAG tttgtgaAGA tggggccCTT ggccccCACC agaggAAAAG aaaaggacat
1620
ctcgtgagCT ccgagAGCTG tggCAAAGGG CTATTCTCA acagataCTG CNTGCTTAgA
1680
atggagaAGG aaaatCAGAA gCTCCAAAGCC tctgAAAATG ATTTGCTGAA caAGCgcCTG
1740
aagCTcgatt atgaagAAAT tactCCCTGT CTTAAAGAAG taactACAGT gtgggAAAAG
1800
atgCTtagCA CTCCAGGAAG atcaAAAtt aagTTGACA tggAAAAAAT gCactCGGCT
1860
gttgggcaAG gtgtGCCAcG tcatCACCGA ggtgAAATCT ggAAATTTCT agCTGAGCAA
1920
ttccacCTTA AACACCAGTT tcccAGCAA cagcAGCCAA aggATGTGCC ATACAAAGAA
1980
ctctAAAGC agCTGACTTC CCAGCAGCAT GCGATTCTTA ttgacCTTGG GCGAACCTT
2040
cctacacACC cataCTTCTC tGCCAGCTT ggAGCAGGAC agCTATCGCT ttacaACATT
2100
ttGAAGGCTT ACTCACTTCT agaccAGGAA gtgggatATT gCCAAGGTCT cagTTTGTa
2160
gcaggcATTt tgCTTCTCA tatgagtGAG gaAGAGGCGT taaaATGCT caagTTTCTG
2220

atgtttgaca tggggctgcg gaaacagtat cggccagaca tgattatTTT acagatccag
2280
atgttaccAGC tctcgaggTT gcttcATGAT taccACAGAG accttCTACAA tcacctGGAG
2340
gagcACGAGA tcggccccAG cctctacGCT gccccCTGGT tcctCACCAT gtttGCCTCA
2400
cagttCCCGC tgggattcGT agccAGAGTC tttgatATGA ttttCTTCa gggAACAGAG
2460
gtcatATTa aagtggCTTT aagtctgttG ggaAGCCATA agccCTTGAT tctgcAGCAT
2520
gaaaACCTAG aaACCATAGT tgactttATA AAAAGCACGC tacCCAAACt tggCTTGGTA
2580
cagatggAAA agaccatCAA tcaggtATT gaaatggACA tcgctAAACA gttacaAGCT
2640
tatgaAGTTG agtaccACGT ccttcaAGAA gaACTTATCG attcCTCTCC tctcAGTgAC
2700
aacCAAAGAA tggataAAatt agagAAAACC AACAGCAGCT tacgcaaACA gAACCTTGAC
2760
ctcCTTGAAC agttgcAGGT ggcaaATGGT aggatccAAA gccttgaggc caccattGAG
2820
aagctCCTGA gcagtGAGAG caagctGAAG caggCCATGC ttacCTTAGA actggAGCGG
2880
tcgcCTGCTG cagacGGTGG aggAGCTGCG gcccGGAGC gcAGAGCCC GCGACCggGA
2940
gcctgagtGC acgcAGCCCg agcccACGGG cgactGACAG cttgcAGGAG agattGCAAC
3000
accatCACAC tgcTCCAGGCC ttaactGAGA gggacAGAAAG acgctGGAAG gagagaAGGA
3060
agcggGAAGT gtgCTTCTCA gggagGAAC cggcttGCCA gcaAGTAGAT tcttacGAAC
3120
tccaACTTGC aattcAGGGG gcatgtCCCA gtgtttttt tgTTgtttt agataactAAA
3180
tcgtCCCTTC tccAGTcCTG attactGTAC acAGTAGCTT tagatGGCGT ggacGTGAAT
3240
aaatGCAACT tatgttttCT tgTTggTTCC ttttGAGTG tcactGTGTT tgtaaAGAGC
3300
attcacaATA cggTggAAATT tcaAAAGCTG gaAGAGCTG agatcatGCC tcaggCAAAG
3360
gcgtgggtCC atcgTTCTTC cgagAGGGTT tgcgtggcGA ctacACCCTC agcgtCCCTG
3420
gcaaggTGCA gttggctCTC gcccATTCTT gttatggAAA CCTAAGATGA tcattggAA
3480
gatcAGTGAT ctTgggtCAT tgatCCCTGG CTCAGAGGAT agcggTTCC atcataAAACC
3540
aaAGATGATGA gttcAGCCTT tatCCCTCGT ggttCCACTA gatGtaACTT aaaggAGTTA
3600
acatTTGAGG actTTGTTCT acatCAGATT ttactATTTG aatGTTTAAG atcactTTAT
3660
tgaattGAA gatcatCAAAt taaATAAAA tgatttATTT aattggATA tcctgAAAAAA
3720
aaaaaaaa
3727

<210> 5918

<211> 981

<212> PRT

<213> Homo sapiens

<400> 5918

Ala Cys Gly Arg Val Thr Val Ala His Lys Lys Ala Pro Pro Ala Leu
1 5 10 15
Ile Asp Glu Cys Ile Glu Lys Phe Asn His Val Ser Gly Ser Arg Gly
20 25 30
Ser Glu Ser Pro Arg Pro Asn Pro Pro His Ala Ala Arg His Arg Glu
35 40 45
Pro Gly Pro Val Arg Arg Pro Met Arg Lys Ser Phe Ser Gln Pro Gly
50 55 60
Leu Arg Ser Leu Ala Phe Arg Lys Glu Leu Gln Asp Gly Gly Leu Arg
65 70 75 80
Ser Ser Gly Phe Phe Ser Ser Phe Glu Glu Ser Asp Ile Glu Asn His
85 90 95
Leu Ile Ser Gly His Asn Ile Val Gln Pro Thr Asp Ile Glu Glu Asn
100 105 110
Arg Thr Met Leu Phe Thr Ile Gly Gln Ser Glu Val Tyr Leu Ile Ser
115 120 125
Pro Asp Thr Lys Lys Ile Ala Leu Glu Lys Asn Phe Lys Glu Ile Ser
130 135 140
Phe Cys Ser Gln Gly Ile Arg His Val Asp His Phe Gly Phe Ile Cys
145 150 155 160
Arg Glu Ser Ser Gly Gly Gly Phe His Phe Val Cys Tyr Val Phe
165 170 175
Gln Cys Thr Asn Glu Ala Leu Val Asp Glu Ile Met Met Thr Leu Lys
180 185 190
Gln Ala Phe Thr Val Ala Ala Val Gln Gln Thr Ala Lys Ala Pro Ala
195 200 205
Gln Leu Cys Glu Gly Cys Pro Leu Gln Ser Leu His Lys Leu Cys Glu
210 215 220
Arg Ile Glu Gly Met Asn Ser Ser Lys Thr Lys Leu Glu Leu Gln Lys
225 230 235 240
His Leu Thr Thr Leu Thr Asn Gln Glu Gln Ala Thr Ile Phe Glu Glu
245 250 255
Val Gln Lys Leu Arg Pro Arg Asn Glu Gln Arg Glu Asn Glu Leu Ile
260 265 270
Ile Ser Phe Leu Arg Cys Leu Tyr Glu Glu Lys Gln Lys Glu His Ile
275 280 285
His Ile Gly Glu Met Lys Gln Thr Ser Gln Met Ala Ala Glu Asn Ile
290 295 300
Gly Ser Glu Leu Pro Pro Ser Ala Thr Arg Phe Arg Leu Asp Met Leu
305 310 315 320
Lys Asn Lys Ala Lys Arg Ser Leu Thr Glu Ser Leu Glu Ser Ile Leu
325 330 335
Ser Arg Gly Asn Lys Ala Arg Gly Leu Gln Glu His Ser Ile Ser Val
340 345 350
Asp Leu Asp Ser Ser Leu Ser Ser Thr Leu Ser Asn Thr Ser Lys Glu
355 360 365
Pro Ser Val Cys Glu Lys Glu Ala Leu Pro Ile Ser Glu Ser Ser Phe
370 375 380
Lys Leu Leu Gly Ser Ser Glu Asp Leu Ser Ser Asp Ser Glu Ser His

385	390	395	400
Leu Pro Glu Glu Pro Ala Pro Leu Ser Pro Gln Gln Ala Phe Arg Arg			
405	410	415	
Arg Ala Asn Thr Leu Ser His Phe Pro Ile Glu Cys Gln Glu Pro Pro			
420	425	430	
Gln Pro Ala Arg Gly Ser Pro Gly Val Ser Gln Arg Lys Leu Met Arg			
435	440	445	
Tyr His Ser Val Ser Thr Glu Thr Pro His Glu Arg Lys Asp Phe Glu			
450	455	460	
Ser Lys Ala Asn His Leu Gly Asp Ser Gly Gly Thr Pro Val Lys Thr			
465	470	475	480
Arg Arg His Ser Trp Arg Gln Gln Ile Phe Leu Arg Val Ala Thr Pro			
485	490	495	
Gln Lys Ala Cys Asp Ser Ser Ser Arg Tyr Glu Asp Tyr Ser Glu Leu			
500	505	510	
Gly Glu Leu Pro Pro Arg Ser Pro Leu Glu Pro Val Cys Glu Asp Gly			
515	520	525	
Pro Phe Gly Pro His Gln Arg Lys Arg Lys Gly His Leu Val Ser Ser			
530	535	540	
Glu Ser Cys Gly Lys Gly Leu Phe Phe Asn Arg Tyr Cys Xaa Leu Arg			
545	550	555	560
Met Glu Lys Glu Asn Gln Lys Leu Gln Ala Ser Glu Asn Asp Leu Leu			
565	570	575	
Asn Lys Arg Leu Lys Leu Asp Tyr Glu Glu Ile Thr Pro Cys Leu Lys			
580	585	590	
Glu Val Thr Thr Val Trp Glu Lys Met Leu Ser Thr Pro Gly Arg Ser			
595	600	605	
Lys Ile Lys Phe Asp Met Glu Lys Met His Ser Ala Val Gly Gln Gly			
610	615	620	
Val Pro Arg His His Arg Gly Glu Ile Trp Lys Phe Leu Ala Glu Gln			
625	630	635	640
Phe His Leu Lys His Gln Phe Pro Ser Lys Gln Gln Pro Lys Asp Val			
645	650	655	
Pro Tyr Lys Glu Leu Leu Lys Gln Leu Thr Ser Gln Gln His Ala Ile			
660	665	670	
Leu Ile Asp Leu Gly Arg Thr Phe Pro Thr His Pro Tyr Phe Ser Ala			
675	680	685	
Gln Leu Gly Ala Gly Gln Leu Ser Leu Tyr Asn Ile Leu Lys Ala Tyr			
690	695	700	
Ser Leu Leu Asp Gln Glu Val Gly Tyr Cys Gln Gly Leu Ser Phe Val			
705	710	715	720
Ala Gly Ile Leu Leu Leu His Met Ser Glu Glu Ala Phe Lys Met			
725	730	735	
Leu Lys Phe Leu Met Phe Asp Met Gly Leu Arg Lys Gln Tyr Arg Pro			
740	745	750	
Asp Met Ile Ile Leu Gln Ile Gln Met Tyr Gln Leu Ser Arg Leu Leu			
755	760	765	
His Asp Tyr His Arg Asp Leu Tyr Asn His Leu Glu Glu His Glu Ile			
770	775	780	
Gly Pro Ser Leu Tyr Ala Ala Pro Trp Phe Leu Thr Met Phe Ala Ser			
785	790	795	800
Gln Phe Pro Leu Gly Phe Val Ala Arg Val Phe Asp Met Ile Phe Leu			
805	810	815	
Gln Gly Thr Glu Val Ile Phe Lys Val Ala Leu Ser Leu Leu Gly Ser			

820	825	830
His Lys Pro Leu Ile Leu Gln His	Glu Asn Leu Glu Thr Ile Val Asp	
835	840	845
Phe Ile Lys Ser Thr Leu Pro Asn Leu Gly Leu Val Gln Met Glu Lys		
850	855	860
Thr Ile Asn Gln Val Phe Glu Met Asp Ile Ala Lys Gln Leu Gln Ala		
865	870	880
Tyr Glu Val Glu Tyr His Val Leu Gln Glu Glu Leu Ile Asp Ser Ser		
885	890	895
Pro Leu Ser Asp Asn Gln Arg Met Asp Lys Leu Glu Lys Thr Asn Ser		
900	905	910
Ser Leu Arg Lys Gln Asn Leu Asp Leu Leu Glu Gln Leu Gln Val Ala		
915	920	925
Asn Gly Arg Ile Gln Ser Leu Glu Ala Thr Ile Glu Lys Leu Leu Ser		
930	935	940
Ser Glu Ser Lys Leu Lys Gln Ala Met Leu Thr Leu Glu Leu Glu Arg		
945	950	960
Ser Pro Ala Ala Asp Gly Gly Ala Ala Ala Ala Glu Arg Arg Ala		
965	970	975
Gln Arg Pro Gly Ala		
980		

<210> 5919

<211> 1320

<212> DNA

<213> Homo sapiens

<400> 5919

```

ggctgtgcatactccgc gctatggctg cgttcgcccg tcaggaaatt aaagagggtg
60
ctttactgtt gccctgaaat tttcaccatg cgccagcagg acattaacga cactgtcagg
120
cttctcaagg agaagtgcct tttcacggta cagcaagtca ccaagatttt gcacagttgc
180
ccctctgttc ttcgagagga cctgggtcaa ctggaataaca agtttcagca gcctcgcttt
240
acagcgtgac tgcaaagaaaa aagacttttg ttttgcaaaa gaaaagcagc tcggtgactc
300
cgtccacatc gccacagttt agtcagatgg cagtggcagt cctttgccag tggaggagt
360
tcctgctaag gggaggtgca ggaggactaa tttattattt tgcaactgcc agtcctgcgc
420
atcccagcta cgctaagcgc cctgcccagg cacgtaacaa aacatagacc tgtttgaag
480
tggcttgttccaagggtg cctcaactcat ctgcgccacc aggaagatga actgtgaggg
540
ctccataag gggcaggaag agcaaagctg tcctaggcca accagagatt catcttcat
600
gcagtgcacat gttgataaaaa aatgatggtc agtatgaaac tggtAACAGG ttgttagatgg
660
ctttctatgg tatatcccag tctcttgcaa acgattgtga agaatgccag tgttgtttaa
720
gattcggcag tttgtgtggg gaggtggggg caggatgggg tttggttgcc aaaagagttt
780

```

gggaaatgt ggcttaaaca aaggcgagag gaagttcctt tcacgtcagg atttatgaat
840
gcctatgagc ccagtgttag tgacgacttt ctagccgg tcttcaaacac tttctaaata
900
ttaagcgatc aaggcccctg cccccactttt agttccaaca gaatgccgtt cacaagatct
960
gggaggcact ctcteageccc ttcctggag cccccggaat ttctcagcag cccaggccct
1020
cccgctgccc gtggcccctc ctcagggtg ccaggtggtc ttccagcctc tccaagggcc
1080
caccccccctg ccttcctc ccactgcagc tgatctaggg gtttcttggc cacattccc
1140
ttgagagaga gtgggatttg ccctatccac agagagcctc atttccacct gaaggtgtat
1200
ttgtcagtgg ctagaccagg ttcatgtctg tttcccttg gggacttctg aaccttcctg
1260
cccgggagtc tgtaaacagc agcacaggac cgcgcttcct ttagcagtgc tgagtaagca
1320

<210> 5920

<211> 93

<212> PRT

<213> Homo sapiens

<400> 5920

Met Arg Leu Ser Val Asp Arg Ala Asn Pro Thr Leu Ser Gln Gly Lys
1 5 10 15
Cys Gly Gln Glu Thr Pro Arg Ser Ala Ala Val Gly Gly Arg Gly Arg
20 25 30
Gly Val Gly Pro Trp Arg Gly Trp Lys Thr Thr Trp His Leu Gly Gly
35 40 45
Gly Ala Thr Gly Ser Gly Arg Ala Trp Ala Ala Glu Lys Phe Arg Gly
50 55 60
Leu Gln Glu Arg Ala Glu Arg Val Pro Pro Arg Ser Cys Glu Arg His
65 70 75 80
Ser Val Gly Thr Lys Ser Gly Ala Gly Ala Leu Ile Ala
85 90

<210> 5921

<211> 4130

<212> DNA

<213> Homo sapiens

<400> 5921

nncaccc tac ttccagccct caagggacac aaagacactg tgtactgtgt ggcatatgcg
60
aaggatggca agcgcttgc ttctggatca gctgacaaaa gcgttattat ctggacatca
120
aaactggaag gcattctgaa gtacacgcac aatgatgcta tacaatgtgt ctcctacaat
180
cctattactc atcaactggc atcttgtcc tccagtact ttgggttgtg gtctcctgaa
240
cagaagtctg tctccaaaca caaatcaagc agcaagatca tctgctgcag ctggacaaat
300

gatggtcagt acctggcgct ggggatgttc aatgggatca tcagcatacg gaacaaaaat
360
ggcgaggaga aagtaaagat cgagcggccg gggggctccc tctcgccaat atggtccatc
420
tgcttggaaacc cttcaagccg atgggagagt ttctggatga acagagagaa tgaggatgcc
480
gaggatgtca ttgtcaacag atatattcag gaaatccctt ccactctgaa gtcagcagtg
540
tacagtagtc aggtagtga ggcagaggag gaagaaccag aggaagagga cgacagtccc
600
agggacgaca acttagagga acgtaatgac atcctggctg tggctgactg gggacagaaa
660
gtttcccttctt accagctgag tggaaaacag attggaaagg atcgggcact gaactttgac
720
ccctgtcgca tcagctactt tactaaaggc gactacattt tgctgggggg ttcagacaag
780
caagtttctc tttcaccaa ggatggagtg cggctggga ctgttggggg gcagaactcc
840
tgggtgtgga cgtgtcaagc gaaaccggat tccaactatg tgggtgtcgg ctgccaggac
900
ggcaccattt cttctacca gcttattttc agcacagtcc atgggcttta caaggaccgc
960
tatgcctaca gggatagcat gactgacgac attgtgcagc acctgatcac tgagcagaaa
1020
gttcggatta aatgcaaaga gcttgtcaag aagattgcca tctacagaaa tcgattggct
1080
atccaaactgc cagagaaaat cctcatctat gagttgtatt cagaggactt atcagacatg
1140
cattaccggg taaaggagaa gattatcaag aagtttgagt gcaacccctt ggtgggtgt
1200
gccaatcaca tcattctgtg ccaggagaaa cggctgcagt gcctgtcctt cagcggagtg
1260
aaggagcggg agtggcagat ggagtctctc attcgttaca tcaagggtat cggtggccct
1320
cctggaaagag aaggccttctt agtggggctg aagaatggac agatcctgaa gatcttcgtg
1380
gacaatctctt ttgttatcgt cctgctgaag caggccacag ctgtgcgtc cttggacatg
1440
agtgcctccc gtaagaagct gcccgtggta gatggaaaatg acacttgcctt ggtgtatgac
1500
atcgacacca aggagctgctt tttcaggaa ccaaacgcca acagtgttagc ttggaacacc
1560
cagtgtgagg acatgctctg cttctcggtt ggaggctacc tcaacatcaa agccagcacc
1620
ttccctgtgc accggcagaa gctgcagggc tttgtggcgt gctacaatgg ctccaaagatc
1680
ttctgcctcc atgtcttctc catttctgcc gtggaggtgc cgcgtccgc tccccatgtac
1740
cagtacctgg ataggaaact gttcaaggaa gcctaccaga ttgtttgtttt ggggtgtcaca
1800
gacactgatt ggctgtgaact ggccatggaa ggcgttggaa gtttagatcc tgaaacagca
1860
aagaaggccct tcattcagagt acaagaccc tcgtatccatcg cagcatttag
1920

gagaggaaga agcggggaga gaccaacaat gacctgtttc tggcagatgt gtttcctac
1980 cagggaaagt tccatgaggc cgccaaactg tacaagagga gtgggcacga gaacctcgcg
2040 cttgaaatgt acaccgacct ctgcattgtt gaggatgcc aaggatttcct tggatctgga
2100 gaccccaaag aaacaaagat gctaattcacc aaacaggctg actggccag aaatatcaag
2160 gagcccaaag cgcgcgtgga gatgtacatc tcagcaggag agcacgtcaa ggccatcgag
2220 atctgtggtg accatggctg ggttgacatg ttgatcgaca tcgcccggaa actggacaag
2280 gctgagcgcg agccctgct gctgtgcgt acctacctca agaagctgga cagccctggc
2340 tatgctgctg agacctacct gaagatgggt gacctcaagt ccctggtgca gctgcacgtg
2400 gagacccagc gctgggatga ggcctttgct ttgggtgaga agcatcctga gtttaaggat
2460 gacatctaca tgccgttatgc tcagtggcta gcagagaacg atcgcttga ggaagccag
2520 aaagcggtcc acaaggctgg ggcacagaga gaagcggtcc aggtgctgga gcagctcaca
2580 aacaatgccc tggcggagag caggttaat gatgctgcct attattactg gatgctgtcc
2640 atgcagtgcc tcgatatacg tcaaggcagat cctgcccaga aggacacaat gcttggcaag
2700 ttctaccact tccagcggtt ggcagagctg taccatggtt accatgccat ccattggccac
2760 acggaagatc cgttcagtgt ccattgtccct gaaactcttt tcaacatctc caggccctg
2820 ctgcacagcc tgcccaagga cacccctcg ggcattctca aagtaaaaat actcttcacc
2880 ttggccaaagc agagcaaggc ctcgggtcc tacaggctgg cccggcacgc ctatgacaag
2940 ctgcgtggcc tgtacatccc tgccagattc caaaagtcca ttgagctggg taccctgacc
3000 atccgcgcca agcccttcca cgacagttag gagtttgtgc ccttgtgcta ccgtgcgtcc
3060 accaacaacc cgctgctcaa caacctgggc aacgtctgca tcaactgccc ccagcccttc
3120 atcttctccg ccttcccta cgacgtgcta cacctgggtt agttctacat ggaggaaggg
3180 atcaactgatg aagaagccat ctccctcata gacctggagg tgctgagacc caagcgggat
3240 gacagacagc tagagattgc aaacaacagc tcccagattc tgccggctagt ggagaccaag
3300 gactccatcg gagatgagga cccgttcaca gctaagctga gctttgagca aggtggctca
3360 gagttcggtc cagttgggtt gagccggctg gtgctgcgtt ccatgagccg ccggatgtc
3420 ctcatcaagc gatggccccc acccctgagg tggcaataact tccgctcaact gctgcctgac
3480 gcctccatta ccatgtgccc ctccctgcttc caggttaggtg gccaccctgg tagctcacat
3540

gtgcttctct tggccacttt tcccttgccc aaatgtccct ctgggaggcg gggccccctgg
 3600
 gagggagggg cacatccatg gctccaagtt gggacagagg cttgtctgtc ctctccccctg
 3660
 cttgcattcc atgtgcacatct aaagtggact tcactggccc ctgcgtgtc cacatccctcc
 3720
 ccaaattctg gggcccagc aagcgtgatg tgcccttgac cttcaactcag aaaacaagaa
 3780
 acccccacgc cccctccat ctcccccttcc agccctcaaa caaagggtgct gcaggtctgt
 3840
 gtccagccct gaccactgcc aagcccccctc cccttgagag gcagtgcgtc ctggcccccag
 3900
 gcgttagggct gatgagcact agggcttcag cctggtctta cagctgtctt cccttagatg
 3960
 ttccattctg aggactatga gttgctggtg cttcagcatg gctgctgccc ctactgccgc
 4020
 aggtgcaagg atgaccctgg cccatgacca gcatcctggg gacggcctgc accctctgcc
 4080
 cgccctgggg tctgctgggc tgtgaaggag aataaagagt taaaactgtca
 4130

<210> 5922
 <211> 1252
 <212> PRT
 <213> Homo sapiens

<400> 5922
 Xaa Thr Leu Leu Gln Pro Leu Lys Gly His Lys Asp Thr Val Tyr Cys
 1 5 10 15
 Val Ala Tyr Ala Lys Asp Gly Lys Arg Phe Ala Ser Gly Ser Ala Asp
 20 25 30
 Lys Ser Val Ile Ile Trp Thr Ser Lys Leu Glu Gly Ile Leu Lys Tyr
 35 40 45
 Thr His Asn Asp Ala Ile Gln Cys Val Ser Tyr Asn Pro Ile Thr His
 50 55 60
 Gln Leu Ala Ser Cys Ser Ser Asp Phe Gly Leu Trp Ser Pro Glu
 65 70 75 80
 Gln Lys Ser Val Ser Lys His Lys Ser Ser Ser Lys Ile Ile Cys Cys
 85 90 95
 Ser Trp Thr Asn Asp Gly Gln Tyr Leu Ala Leu Gly Met Phe Asn Gly
 100 105 110
 Ile Ile Ser Ile Arg Asn Lys Asn Gly Glu Glu Lys Val Lys Ile Glu
 115 120 125
 Arg Pro Gly Gly Ser Leu Ser Pro Ile Trp Ser Ile Cys Trp Asn Pro
 130 135 140
 Ser Ser Arg Trp Glu Ser Phe Trp Met Asn Arg Glu Asn Glu Asp Ala
 145 150 155 160
 Glu Asp Val Ile Val Asn Arg Tyr Ile Gln Glu Ile Pro Ser Thr Leu
 165 170 175
 Lys Ser Ala Val Tyr Ser Ser Gln Gly Ser Glu Ala Glu Glu Glu
 180 185 190
 Pro Glu Glu Glu Asp Asp Ser Pro Arg Asp Asp Asn Leu Glu Glu Arg
 195 200 205
 Asn Asp Ile Leu Ala Val Ala Asp Trp Gly Gln Lys Val Ser Phe Tyr

210	215	220															
Gln	Leu	Ser	Gly	Lys	Gln	Ile	Gly	Lys	Asp	Arg	Ala	Leu	Asn	Phe	Asp		
225			230			235						240					
Pro	Cys	Cys	Ile	Ser	Tyr	Phe	Thr	Lys	Gly	Glu	Tyr	Ile	Leu	Leu	Gly		
			245			250						255					
Gly	Ser	Asp	Lys	Gln	Val	Ser	Leu	Phe	Thr	Lys	Asp	Gly	Val	Arg	Leu		
			260			265						270					
Gly	Thr	Val	Gly	Glu	Gln	Asn	Ser	Trp	Val	Trp	Thr	Cys	Gln	Ala	Lys		
			275			280						285					
Pro	Asp	Ser	Asn	Tyr	Val	Val	Val	Gly	Cys	Gln	Asp	Gly	Thr	Ile	Ser		
			290			295						300					
Phe	Tyr	Gln	Leu	Ile	Phe	Ser	Thr	Val	His	Gly	Leu	Tyr	Lys	Asp	Arg		
			305			310						315			320		
Tyr	Ala	Tyr	Arg	Asp	Ser	Met	Thr	Asp	Val	Ile	Val	Gln	His	Leu	Ile		
						325						330			335		
Thr	Glu	Gln	Lys	Val	Arg	Ile	Lys	Cys	Lys	Glu	Leu	Val	Lys	Lys	Ile		
						340						345			350		
Ala	Ile	Tyr	Arg	Asn	Arg	Leu	Ala	Ile	Gln	Leu	Pro	Glu	Lys	Ile	Leu		
						355						360			365		
Ile	Tyr	Glu	Leu	Tyr	Ser	Glu	Asp	Leu	Ser	Asp	Met	His	Tyr	Arg	Val		
						370						375			380		
Lys	Glu	Lys	Ile	Ile	Lys	Lys	Phe	Glu	Cys	Asn	Leu	Leu	Val	Val	Cys		
						385						390			395		400
Ala	Asn	His	Ile	Ile	Leu	Cys	Gln	Glu	Lys	Arg	Leu	Gln	Cys	Leu	Ser		
						405						410			415		
Phe	Ser	Gly	Val	Lys	Glu	Arg	Glu	Trp	Gln	Met	Glu	Ser	Leu	Ile	Arg		
						420						425			430		
Tyr	Ile	Lys	Val	Ile	Gly	Gly	Pro	Pro	Gly	Arg	Glu	Gly	Leu	Leu	Val		
						435						440			445		
Gly	Leu	Lys	Asn	Gly	Gln	Ile	Leu	Lys	Ile	Phe	Val	Asp	Asn	Leu	Phe		
						450						455			460		
Ala	Ile	Val	Leu	Leu	Lys	Gln	Ala	Thr	Ala	Val	Arg	Cys	Leu	Asp	Met		
						465						470			475		480
Ser	Ala	Ser	Arg	Lys	Lys	Leu	Ala	Val	Val	Asp	Glu	Asn	Asp	Thr	Cys		
						485						490			495		
Leu	Val	Tyr	Asp	Ile	Asp	Thr	Lys	Glu	Leu	Leu	Phe	Gln	Glu	Pro	Asn		
						500						505			510		
Ala	Asn	Ser	Val	Ala	Trp	Asn	Thr	Gln	Cys	Glu	Asp	Met	Leu	Cys	Phe		
						515						520			525		
Ser	Gly	Gly	Gly	Tyr	Leu	Asn	Ile	Lys	Ala	Ser	Thr	Phe	Pro	Val	His		
						530						535			540		
Arg	Gln	Lys	Leu	Gln	Gly	Phe	Val	Val	Gly	Tyr	Asn	Gly	Ser	Lys	Ile		
						545						550			555		560
Phe	Cys	Leu	His	Val	Phe	Ser	Ile	Ser	Ala	Val	Glu	Val	Pro	Gln	Ser		
						565						570			575		
Ala	Pro	Met	Tyr	Gln	Tyr	Leu	Asp	Arg	Lys	Leu	Phe	Lys	Glu	Ala	Tyr		
						580						585			590		
Gln	Ile	Ala	Cys	Leu	Gly	Val	Thr	Asp	Thr	Asp	Trp	Arg	Glu	Leu	Ala		
						595						600			605		
Met	Glu	Ala	Leu	Glu	Gly	Leu	Asp	Phe	Glu	Thr	Ala	Lys	Lys	Ala	Phe		
						610						615			620		
Ile	Arg	Val	Gln	Asp	Leu	Arg	Tyr	Leu	Glu	Leu	Ile	Ser	Ser	Ile	Glu		
						625						630			635		640
Glu	Arg	Lys	Lys	Arg	Gly	Glu	Thr	Asn	Asp	Leu	Phe	Leu	Ala	Asp			

645	650	655
Val Phe Ser Tyr Gln Gly Lys Phe His Glu Ala Ala Lys Leu Tyr Lys		
660	665	670
Arg Ser Gly His Glu Asn Leu Ala Leu Glu Met Tyr Thr Asp Leu Cys		
675	680	685
Met Phe Glu Tyr Ala Lys Asp Phe Leu Gly Ser Gly Asp Pro Lys Glu		
690	695	700
Thr Lys Met Leu Ile Thr Lys Gln Ala Asp Trp Ala Arg Asn Ile Lys		
705	710	715
Glu Pro Lys Ala Ala Val Glu Met Tyr Ile Ser Ala Gly Glu His Val		
725	730	735
Lys Ala Ile Glu Ile Cys Gly Asp His Gly Trp Val Asp Met Leu Ile		
740	745	750
Asp Ile Ala Arg Lys Leu Asp Lys Ala Glu Arg Glu Pro Leu Leu Leu		
755	760	765
Cys Ala Thr Tyr Leu Lys Lys Leu Asp Ser Pro Gly Tyr Ala Ala Glu		
770	775	780
Thr Tyr Leu Lys Met Gly Asp Leu Lys Ser Leu Val Gln Leu His Val		
785	790	795
Glu Thr Gln Arg Trp Asp Glu Ala Phe Ala Leu Gly Glu Lys His Pro		
805	810	815
Glu Phe Lys Asp Asp Ile Tyr Met Pro Tyr Ala Gln Trp Leu Ala Glu		
820	825	830
Asn Asp Arg Phe Glu Glu Ala Gln Lys Ala Phe His Lys Ala Gly Arg		
835	840	845
Gln Arg Glu Ala Val Gln Val Leu Glu Gln Leu Thr Asn Asn Ala Val		
850	855	860
Ala Glu Ser Arg Phe Asn Asp Ala Ala Tyr Tyr Tyr Trp Met Leu Ser		
865	870	875
Met Gln Cys Leu Asp Ile Ala Gln Ala Asp Pro Ala Gln Lys Asp Thr		
885	890	895
Met Leu Gly Lys Phe Tyr His Phe Gln Arg Leu Ala Glu Leu Tyr His		
900	905	910
Gly Tyr His Ala Ile His Arg His Thr Glu Asp Pro Phe Ser Val His		
915	920	925
Arg Pro Glu Thr Leu Phe Asn Ile Ser Arg Phe Leu Leu His Ser Leu		
930	935	940
Pro Lys Asp Thr Pro Ser Gly Ile Ser Lys Val Lys Ile Leu Phe Thr		
945	950	955
Leu Ala Lys Gln Ser Lys Ala Leu Gly Ala Tyr Arg Leu Ala Arg His		
965	970	975
Ala Tyr Asp Lys Leu Arg Gly Leu Tyr Ile Pro Ala Arg Phe Gln Lys		
980	985	990
Ser Ile Glu Leu Gly Thr Leu Thr Ile Arg Ala Lys Pro Phe His Asp		
995	1000	1005
Ser Glu Glu Leu Val Pro Leu Cys Tyr Arg Cys Ser Thr Asn Asn Pro		
1010	1015	1020
Leu Leu Asn Asn Leu Gly Asn Val Cys Ile Asn Cys Arg Gln Pro Phe		
1025	1030	1035
Ile Phe Ser Ala Ser Ser Tyr Asp Val Leu His Leu Val Glu Phe Tyr		
1045	1050	1055
Leu Glu Glu Gly Ile Thr Asp Glu Glu Ala Ile Ser Leu Ile Asp Leu		
1060	1065	1070
Glu Val Leu Arg Pro Lys Arg Asp Asp Arg Gln Leu Glu Ile Ala Asn		

1075	1080	1085
Asn Ser Ser Gln Ile Leu Arg	Leu Val Glu Thr Lys Asp Ser Ile Gly	
1090	1095	1100
Asp Glu Asp Pro Phe Thr Ala Lys	Leu Ser Phe Glu Gln Gly Gly Ser	
1105	1110	1115
Glu Phe Val Pro Val Val Val Ser	Arg Leu Val Leu Arg Ser Met Ser	1120
1125	1130	1135
Arg Arg Asp Val Leu Ile Lys Arg	Trp Pro Pro Pro Leu Arg Trp Gln	
1140	1145	1150
Tyr Phe Arg Ser Leu Leu Pro Asp	Ala Ser Ile Thr Met Cys Pro Ser	
1155	1160	1165
Cys Phe Gln Val Gly Gly His	Pro Gly Ser Ser His Val Leu Leu Leu	
1170	1175	1180
Ala Thr Phe Pro Leu Pro Lys Cys	Pro Ser Gly Arg Arg Gly Pro Trp	
1185	1190	1195
Glu Gly Gly Ala His Pro Trp Leu Gln Val	Gly Thr Glu Ala Cys Leu	1200
1205	1210	1215
Ser Ser Pro Leu Leu Ala Phe His	Val His Leu Lys Trp Thr Ser Leu	
1220	1225	1230
Ala Pro Ala Leu Ser Thr Ser Ser Pro	Asn Pro Gly Gly Pro Ala Ser	
1235	1240	1245
Val Met Cys Pro		
1250		

<210> 5923

<211> 1989

<212> DNA

<213> Homo sapiens

<400> 5923

```

ggggcccccgc aaggtccccg gccgtgcgcg aggcagcatg atgaggcgca ccctggaaaa
60
ccggaacgct caaacgaaac aactgcaaac agctgtctca aatgtggaga agcattttgg
120
agaactgtgc caaatcttcg ctgcctatgt gcggaaaact gccaggctga gagacaaagc
180
agacctcctg gtgaatgaaa ttaacgcgta tgctgctaca gagacccgc atttaagct
240
gggcctgatg aactttgcag atgagttgc caaacttcag gattatcgac aagcagaggt
300
tcaaagactt gaagccaaa aaggttgaaa gacttgaagc caaagttagtt gaacccttga
360
aaacttatgg gaccattgtg aaaatgaaac gggatgacct caaagcaaca ctcacagcaa
420
ggaatcgaga agctaagcaa ttaactcagt tagaaagaac acgtcagcga aacccatctg
480
atcgacatgt tattgtatcc ttgtatgg ggtctttaaa aaaatgttta aggcagaaac
540
ggaattacag agagctgcaa tggatgctag ccgaacaagt cgtcatctgg aggaaactat
600
taacaacttt gaaaggcaga aatgaagggataaaagact atatttctg aatttatcac
660
aatcgaaatg ttatccacg gcaaagcttt agaggtctac actgctgcct accagaatat
720

```

acaaaacatt gatgaagatg aagatttaga ggtttccga aattctctgt atgcaccaga
780
ttattcatct cgtttagata ttgtaaagagc aaattcaaag tcacctcttc agagatcaact
840
gtcagctaag tgttatctg gaacaggaca ggtatccact tgtcgactaa gaaaggatca
900
acaaggcagaa gatgatgagg atgacgagtt agatgttaca gaagaagaaa attttcttaa
960
gttaaactaca cattccatt ttcattataa atgacttgaa atccacaatg actaaattgt
1020
agaactttat actcaacttg ctatgttaag cctcaaagtg aagtccaact ggaaacagaa
1080
aaataattaa aggaaactta tgctgaccaa aaatgaaggc tttaaaaaat attgcatacc
1140
agtcaattca acatcctacc tagtgttaca tgattttgt gtaagtgcct tttttttaa
1200
agatggtgta tttcaaagta tttcatatta atgtactata tctacttgaa gttccaatag
1260
tacattatga cagaaaccaa aagatctaac aattctgctt agcttttgg ttaagactcc
1320
atgcatttcatt taccagaaaa gggcttacg tagtcattat gattcatgga attctattcc
1380
atgaagcctt aagaaaaaaaaa actttttta actttccctg aaactttatc atttgataag
1440
taaatttact tttcaagaag agtataacca aagagtaaag ataatgtgac actaagttat
1500
caatgtttta tgaatacaca taaggcataa atttcagctg taaaaagct acattcaatc
1560
tgactctggt tttaaaacaa aactgctgatc ataattatac atgataactgc aacttttgaa
1620
aggctaattt ggtggaatgt tgcctcatca tagaacacca tagatcatta aaaattctat
1680
aaaaatttta ccaagctacc atatagttaa taaaaggta tacagtcact tttattctg
1740
aaaatataaa acattgagcc tttcagtgtt tctgatgctt ctctttgg aaggaataact
1800
tttatttcattt ggatcccagg caggcatata aaagttacgg aatttataaa atcatttggg
1860
ataatttagaa aatgcaatta ttcataacag aaaaataaaag actttctaga aagcttctga
1920
ctttgtcaat catggctctg ttcttaacaa agcactcctt cctgagaata gtcctaagtg
1980
acaaagttg
1989

<210> 5924

<211> 146

<212> PRT

<213> Homo sapiens

<400> 5924

Met Phe Lys Ala Glu Thr Glu Leu Gln Arg Ala Ala Met Asp Ala Ser
1 5 10 15
Arg Thr Ser Arg His Leu Glu Glu Thr Ile Asn Asn Phe Glu Arg Gln

20	25	30													
Lys	Met	Lys	Asp	Ile	Lys	Thr	Ile	Phe	Ser	Glu	Phe	Ile	Thr	Ile	Glu
35															
Met	Leu	Phe	His	Gly	Lys	Ala	Leu	Glu	Val	Tyr	Thr	Ala	Ala	Tyr	Gln
50															
Asn	Ile	Gln	Asn	Ile	Asp	Glu	Asp	Glu	Asp	Leu	Glu	Val	Phe	Arg	Asn
65															
Ser	Leu	Tyr	Ala	Pro	Asp	Tyr	Ser	Ser	Arg	Leu	Asp	Ile	Val	Arg	Ala
85															
Asn	Ser	Lys	Ser	Pro	Leu	Gln	Arg	Ser	Leu	Ser	Ala	Lys	Cys	Val	Ser
100															
Gly	Thr	Gly	Gln	Val	Ser	Thr	Cys	Arg	Leu	Arg	Lys	Asp	Gln	Gln	Ala
115															
Glu	Asp	Asp	Glu	Asp	Asp	Glu	Leu	Asp	Val	Thr	Glu	Glu	Glu	Asn	Phe
130															
Leu	Lys														
145															

<210> 5925

<211> 4538

<212> DNA

<213> Homo sapiens

<400> 5925

gctagccagc tgtgtgaggg ccgttgcctt atctgagctc tgagttat^{ttttaat}
60
ggaaacaaga ccccccgcaga cacgcaggaa aacacaatc cctatcat^{gat} cagcagccat
120
ggacgtggag acgtggcctt tgccttcgt tccca^{cgccgtgtgt} agttggactt
180
ggcagtgtgc agcgc^t tagaa aggaattgtc tgacc^{cc}c^{ag} attgcttc^{ct} ggctcc^{tt} tc
240
ttccttttc aggagagcat cctgccgacc acagcc^{ct} ccactgtgag cttcctgac
300
agcctcatcg cgccccatcc ctggcataca tggatgagca gggctgtgaa
360
cacac^{tt} cccgg^{gg} ggactgagga cccgtt^{at} cagcccacgg acttcggtcc ctcagagccg
420
ccactgagtg tcccg^{cc} c^{tt} c^{cc} c^{ct} gtcttacca tggcc^{ct} gtctcc^{cc} agc
480
cccgccccac cgcccatctc ccccg^{gt} g^{tt} ta ccattagttc ctcc^{ct} ctgc cactg^{cc} ctg
540
aac^{cc} c^{cc} c^{cc} c^{cc} c^{cc} c^{cc} c^{cc} c^{cc} c^{cc} c^{cc} aacaaaagcg
600
ccgtctgtca tcacccacac ggc^{ct} ctg^{cc} acc^{ct} caccc acgatgcccc cgccaccacc
660
tttagccaga gtcagg^{cc} t^{tt} gatcacc acc^{cc} atcacc ctgcccc^{gt} c agcggcccc
720
tgtggctgg cactgtctcc tgc^{cc} c^{cc} c^{cc} c^{cc} c^{cc} c^{cc} c^{cc} c^{cc} cacggtaac tttt^{gt} gcac
780
cccaaacctg tatc^{cc} ttgac tggggc^{agg} ccta^{agg} c^{cc} c^{cc} aaaaat agtgc^{cc} ctg^{cc}
840
cccaaaccag agccc^{gt} gtc cttgg^{gt} ttg aagaatgccc gtatgc^{cccc} agctgc^{cc} ttt
900

tcaggccaac cacaagcggt gatcatgacg tcagggcctc tgaagagaga agggatgtt
960
gcctccaccg tgtcccagtc caacgtggc attgcgcctg ctgccatgc cagggctcct
1020
ggggtcccg agttccacag cagcatcctg gtgacagatc tcggccatgg cacgagcagc
1080
ccgcctgccc ccgtctcccg gctttccca agcacagcgc aagacccctt gggaaaggc
1140
gagcagggtcc cgctgcatgg gggcagcccc caggtcactg tcacagggcc cagtcggac
1200
tgcccaaact cagggcagggc ctctccgtgt gcacggcgc agagccccag tcctcaatct
1260
ccccagaaca actgctcagg gaaatccgac cccaaaaatg tggctgcact aaagaaccgg
1320
cagatgaagc acatctcagc tgagcagaaa aggcgcttca acatcaagat gtgcttcgac
1380
atgctcaaca gcctcatctc caacaattcc aagctgacca gtcacgccc cacactgcag
1440
aagactgtgg agtacatcac caagctgcag caggagagag gccagatgca ggaggaggcc
1500
cgccggctgc gggaggagat cgaggagctc aatgccacca tcatctcctg ccagcagctg
1560
ctccctgcca cggaggtccc cgtaaaaaa cggccagttt atcacatgaa agacatgtt
1620
gacgaatacg tgaaaacccg gaccttgcag aattgaaatg tctggattt cagcatcatc
1680
atcaagccgc tgtttgagtc gttcaagggc atgggttcca ccagcagcct ggaggagctg
1740
caccggacgg cgctctcctg gctggaccag cactgtccc tgcccatcct caggccgatg
1800
gtatttagca cgctgcggca gctgagcacc tccacccca tcctcacaga cccggcacag
1860
ctgcccagagc aggcgtccaa ggctgtcacc aggattggca agagattggg agagtccatg
1920
ctgcttagct ggcattgtggc cgcatgagat gccaggagac cttccctgc ccatggagag
1980
taggctgcgc cccccagccc ttccctgacgc tcagccctgg ggccctctctc caactctgcc
2040
ggccccaccgt ggcattggga ggccatgctc aggtctgaag caggtttggg gcctgctgac
2100
agcaatagcc cgcctttggg aacccttgc tgtgaactct ctcactcagt gacccatgc
2160
accacaccc tctgcctcg gggcagccca cacaaggaa aagtgtggc cgtgtggc
2220
ctgcctctgt ggtggcctgc cggccctggc gccggtgagc ggaatcgatg ggatgagggt
2280
gacagggcct gtcctgtcc tgaggcccag cttgtccct cctgccacgt cctgtccaca
2340
tgcatgcctc tgcctgatgc cctgtccac tctctggtct gcccgtgggg cagttggaaag
2400
gcgtcttcc ttctccctc aactctgaca gcacccagcc cttgtggatg gacttgggt
2460
tctattcagg cttatgcatg gcaggctgcc agggggaaatg gccttcttca gaggtccctcc
2520

aggacacatg tgcagaaa cggatgtt ggaacacaca ggaccagaat ggaagcgtgt
2580
gatgcacggt ggctgctctg gctgagaggc cctgctggc atgtttcatc tgtcccctt
2640
tagctccacc tgacattgca ggatccatgg ggactcagcc cagggccttc tcggatgtca
2700
cctcaccgct gtggcccttc tgccgttctt ctccacttgg ctccagctgc agctgttgac
2760
agatcaagca tgcctgtgg gagcttagaa ccctgaagtt ctatgtctg aaagatcaga
2820
ctccacgtcc tgctgtcagc cttgtcatct tgcgtatgt ctgtcagctg ggagccccaa
2880
accaggacag ttctcgacc aaagatgcc ccacactcaa aagtctgtcc cgtcttgtt
2940
ttggagaagg aaacaatgtt ggcaggcagc actctgtggt ggtcagccct cagagctgtt
3000
tctaggatc tctcagatca gacagcaaag aatctaccca gatctggct gggtggaggt
3060
gtggctggc tggggccat tctgagcctg cagttagt ttggccagc ctcagtcctt
3120
gctttctct ggctacctct gcagggagct gcagggcaa gcactctctc cagcactcag
3180
gaagccggc cgagggtacc tcctcgtgga aagaatgcac tttaaagctc tgctgaggag
3240
ttcggagccc aggcttcag gcgacccctg ccctccctgc ctctcctcac cctccctctc
3300
ttcctgcagg gcctggaaag ggcttgagg gagcctggaa gccatgtgaa gaggggcacg
3360
cctggctgtt cccacagttt agatccagtt ggaggtctc cctggctcct gcaggcctgc
3420
ggggatctct cccacttca ggctccggc cagctgcctg ccctcttgc tgcgtttcag
3480
ccctgcacaa aagcagctt gtcacaccac tcagccaccc agactacgtt ttacaggct
3540
ttccagatca cttctgtt gggtaacgtt aatgaggcgg ggctggctt tggaatttcc
3600
cctggaaaat ggtaacagac tccatcctt acccggtt gggatgaa gcatgttccc
3660
aaaggcagag gccaccgtgg taggaattcc accaaggcca gaaggaaaa aggaagaacc
3720
caccgtgtt ggctgtgcgg gcccggggat gggatgtt gtcagccct ctctacttcc
3780
gtgccttgc taaaacgtgtt gataaccgca gtggggctt gagccaaatc ctctcctaaa
3840
tcagtggctt tctccccacc cttctgtt gggatgtt taaaaaaatc tgtggatat
3900
aaaattggcc tcctgtgtt tcagccatcc tctccctctg ctgacttaat gtcgtgttcc
3960
tgtttttca gatatttaag gtcgttaggt tgcgtgtt gggatgtt tgcgtgttcc
4020
ccagcgactg tccactgtcc aggagatgca tgcgtttgtt ttggagatat ttctgttaact
4080
cattcttttgc gtgctcacga ttgccatggc catagggcca cagtgccgtt tctgtgttcc
4140

acatgattgt ttcttggc agaggtttc ttgtttcga atcttcgcgt atgaatccag
 4200
 ccagaccaag gggccttagat ttgacctctg tcctggcgtc ctgggccagg tgcaggaaca
 4260
 tctgaggcca ctctgctggc cacctccagt gggtgctgac cacaggatgg gctttgtta
 4320
 cactcattt caccctgatt cttgccccca ctttcataaaa agaaacttca aaatgctgac
 4380
 gctttggaga gtaagaaaat caatcttggc tggcacggg ggctcctgcc tgtgatccta
 4440
 gcactttggg aggctgaagc tgaaggatca cttgagctca ggagttggag accaaccctg
 4500
 gcaacataac aagaccctgt ctctacaaaa aaaaaaaaa
 4538

<210> 5926

<211> 526

<212> PRT

<213> Homo sapiens

<400> 5926

Met	Asp	Glu	Gln	Gly	Cys	Glu	His	Thr	Ser	Arg	Thr	Glu	Asp	Pro	Phe
1															15
Ile	Gln	Pro	Thr	Asp	Phe	Gly	Pro	Ser	Glu	Pro	Pro	Leu	Ser	Val	Pro
															20
															25
															30
Gln	Pro	Phe	Leu	Pro	Val	Phe	Thr	Met	Pro	Leu	Leu	Ser	Pro	Ser	Pro
															35
															40
															45
Ala	Pro	Pro	Pro	Ile	Ser	Pro	Val	Leu	Pro	Leu	Val	Pro	Pro	Pro	Ala
															50
															55
															60
Thr	Ala	Leu	Asn	Pro	Pro	Ala	Pro	Pro	Thr	Phe	His	Gln	Pro	Gln	Lys
															65
															70
															75
															80
Phe	Ala	Gly	Val	Asn	Lys	Ala	Pro	Ser	Val	Ile	Thr	His	Thr	Ala	Ser
															85
															90
															95
Ala	Thr	Leu	Thr	His	Asp	Ala	Pro	Ala	Thr	Thr	Phe	Ser	Gln	Ser	Gln
															100
															105
															110
Gly	Leu	Val	Ile	Thr	Thr	His	His	Pro	Ala	Pro	Ser	Ala	Ala	Pro	Cys
															115
															120
															125
Gly	Leu	Ala	Leu	Ser	Pro	Val	Thr	Arg	Pro	Pro	Gln	Pro	Arg	Leu	Thr
															130
															135
															140
Phe	Val	His	Pro	Lys	Pro	Val	Ser	Leu	Thr	Gly	Gly	Arg	Pro	Lys	Gln
															145
															150
															155
															160
Pro	His	Lys	Ile	Val	Pro	Ala	Pro	Lys	Pro	Glu	Pro	Val	Ser	Leu	Val
															165
															170
															175
Leu	Lys	Asn	Ala	Arg	Ile	Ala	Pro	Ala	Ala	Phe	Ser	Gly	Gln	Pro	Gln
															180
															185
															190
Ala	Val	Ile	Met	Thr	Ser	Gly	Pro	Leu	Lys	Arg	Glu	Gly	Met	Leu	Ala
															195
															200
															205
Ser	Thr	Val	Ser	Gln	Ser	Asn	Val	Val	Ile	Ala	Pro	Ala	Ala	Ile	Ala
															210
															215
															220
Arg	Ala	Pro	Gly	Val	Pro	Glu	Phe	His	Ser	Ser	Ile	Leu	Val	Thr	Asp
															225
															230
															235
															240
Leu	Gly	His	Gly	Thr	Ser	Ser	Pro	Pro	Ala	Pro	Val	Ser	Arg	Leu	Phe
															245
															250
															255
Pro	Ser	Thr	Ala	Gln	Asp	Pro	Leu	Gly	Lys	Gly	Glu	Gln	Val	Pro	Leu

260	265	270
His Gly Gly Ser Pro Gln Val Thr Val Thr Gly Pro Ser Arg Asp Cys		
275	280	285
Pro Asn Ser Gly Gln Ala Ser Pro Cys Ala Ser Glu Gln Ser Pro Ser		
290	295	300
Pro Gln Ser Pro Gln Asn Asn Cys Ser Gly Lys Ser Asp Pro Lys Asn		
305	310	315
Val Ala Ala Leu Lys Asn Arg Gln Met Lys His Ile Ser Ala Glu Gln		
325	330	335
Lys Arg Arg Phe Asn Ile Lys Met Cys Phe Asp Met Leu Asn Ser Leu		
340	345	350
Ile Ser Asn Asn Ser Lys Leu Thr Ser His Ala Ile Thr Leu Gln Lys		
355	360	365
Thr Val Glu Tyr Ile Thr Lys Leu Gln Gln Glu Arg Gly Gln Met Gln		
370	375	380
Glu Glu Ala Arg Arg Leu Arg Glu Glu Ile Glu Glu Leu Asn Ala Thr		
385	390	395
Ile Ile Ser Cys Gln Gln Leu Leu Pro Ala Thr Gly Val Pro Val Thr		
405	410	415
Arg Arg Gln Phe Asp His Met Lys Asp Met Phe Asp Glu Tyr Val Lys		
420	425	430
Thr Arg Thr Leu Gln Asn Trp Lys Phe Trp Ile Phe Ser Ile Ile Ile		
435	440	445
Lys Pro Leu Phe Glu Ser Phe Lys Gly Met Val Ser Thr Ser Ser Leu		
450	455	460
Glu Glu Leu His Arg Thr Ala Leu Ser Trp Leu Asp Gln His Cys Ser		
465	470	475
Leu Pro Ile Leu Arg Pro Met Val Leu Ser Thr Leu Arg Gln Leu Ser		
485	490	495
Thr Ser Thr Ser Ile Leu Thr Asp Pro Ala Gln Leu Pro Glu Gln Ala		
500	505	510
Ser Lys Ala Val Thr Arg Ile Gly Lys Arg Leu Gly Glu Ser		
515	520	525

<210> 5927

<211> 1786

<212> DNA

<213> Homo sapiens

<400> 5927

ctccacactt tattttgct ggctggattt gtcattttgc tgtcagaaca ggcctacaac
 60
 atacctcaga tgggtttcct ttaccttgtc attctgagca aaagcatgac tccatcacct
 120
 gtctggcac ataccgagtc tttgtctgga tggtgtcagc acatcctgca cactcagcgg
 180
 caaccctgaa aataacatct accacctgcc aggcaattgg ctgactgcct ccgtgatctt
 240
 cagggccatc gagggacaat gtattnagtc atgcacctct gtaagtgcag ggaaatgtac
 300
 tgggacacctt ttcgattccc aaggaaataa aaggaaaatg acaaacacat agtcacgctg
 360
 tggatccctg ttatccca tctctggca ggcctgtaaa gagcatcgac ccaggtctca
 420

accccactgc tggtaactga gccacagaaa ctgtaagcaa gtgacactca tccaggaga
480
actactcccc taaaccggtt cttagccagc aagagaggcc cacaggaagg tctctgataa
540
cctgaagttt tgaaaagctt agaactgtgt gatcaggcca tatgcccctc agttcctgaa
600
tgttcaactac cctgtggtgt cccttgcca tggaagagac tccaaccaca cacatcagtt
660
aagctgccaa cactgtttcc tccccattct gctctgcgaa caacgcacag tccagccagg
720
agctcaacag ggagggttt cttgttgtgt catggctgag atcaaagtca ttgtacacca
780
aggacatagt ggacagaagg gagccaacaa catttatgcc aaatcccatt cccaagatga
840
ctatattta tagtttatta tgaggttaact gcctccagac agataagccc ctgcatgatg
900
ctgaaagtca gagcctgggg gtgaatgccca ctttatctt gtcctcctca gctggctgc
960
gtgtctctgc tcagaacgct gtgttagtagt gtccttgcgt gctgacaatg tcactctggt
1020
cctccaggag ctccagaact tgctgcagca cagcctcgct cagggccggg cggatgctca
1080
ggcgagcaca ggccaagatg tgcaggaagt gacagccctt ctccatgtga tttggttct
1140
ggcagtcctg ctgaatgatc cggtggatct ttctgtgcag gtctttgtct tctctggta
1200
catagtatag gttatcaaaa ccatcatctt tctggaaaac aagtcccttt tcctgcagca
1260
gttgtatagc attcttaaat atactatgaa ttgccttggaa agtgggtgtcc ttcttaaat
1320
tcacttggtc ggagcaggca ctgtgaatca caggctgatt ggcaagggac agcaaagact
1380
cgaccatttc cagtcctgc tggtaaaagc tctgcactct gttctccatg aggaattctt
1440
tggcttttc actcagcaaa ctcgtgagac tggggaggc cagggcgccct ggattgctta
1500
gtgcctcttc tttctctagg gctgagctgt gaaaaggctg gtcataaaact ttccctgtaga
1560
tagtggcag ctcaagcatc cttgcaattt gaatgttcca cactgggtcg tccactttat
1620
agtaagcggt ggcataatc ttcgcgtctt ctctgtatgt gcgatgtactg cctctgactc
1680
ggatcgtgtc cccgatctct atctttgttt tctgtcaat ggtctttgt agcttcttaa
1740
gttgtgaggt taagctgagc tctcttgctg cacttggagc agccct
1786

<210> 5928

<211> 202

<212> PRT

<213> Homo sapiens

<400> 5928

Met Leu Glu Leu Pro Thr Ile Tyr Arg Lys Val Tyr Asp Gln Pro Phe

1	5	10	15
His Ser Ser Ala Leu Glu Lys Glu Glu Ala		Leu Ser Asn Pro Gly Ala	
20	25	30	
Leu Asp Leu Pro Ser Leu Thr Ser Leu Leu Ser	Glu Lys Ala Lys Glu		
35	40	45	
Phe Leu Met Glu Asn Arg Val Gln Ser Phe Tyr	Gln Gln Glu Leu Glu		
50	55	60	
Met Val Glu Ser Leu Leu Ser Leu Ala Asn Gln	Pro Val Ile His Ser		
65	70	75	80
Ala Cys Ser Asp Gln Val Asn Phe Lys Lys Asp	Thr Thr Ser Lys Ala		
85	90	95	
Ile His Ser Ile Phe Lys Asn Ala Ile Gln Leu Leu	Gln Glu Lys Gly		
100	105	110	
Leu Val Phe Gln Lys Asp Asp Gly Phe Asp Asn Leu	Tyr Tyr Val Thr		
115	120	125	
Arg Glu Asp Lys Asp Leu His Arg Lys Ile His Arg	Ile Ile Gln Gln		
130	135	140	
Asp Cys Gln Lys Pro Asn His Met Glu Lys Gly Cys	His Phe Leu His		
145	150	155	160
Ile Leu Ala Cys Ala Arg Leu Ser Ile Arg Pro Gly	Leu Ser Glu Ala		
165	170	175	
Val Leu Gln Gln Val Leu Glu Leu Leu Glu Asp Gln	Ser Asp Ile Val		
180	185	190	
Ser Thr Met Glu His Tyr Tyr Thr Ala Phe			
195	200		

<210> 5929

<211> 606

<212> DNA

<213> Homo sapiens

<400> 5929

nngcgcgccc cgcgtcccc agacaaaggc ttggccggcg gccccggccc gctgcgcct
60
cgctcccccgc ctccccagct cttctccgct cctccccccc gcgcttggct cggcgcgctc
120
cggccggcccg caaagttcc cgggcggcag cggcggctgc gcctcgcttc agcgatggcc
180
gcggagctga gcatggggcc agagctgcc accagccccgc tggccatgga gtatgtcaac
240
gacttcgacc tgctcaagtt cgacgtgaag aaggagccac tggggcgcgc ggagcgtccg
300
ggcaggccct gcacacgcct gcagccagcc ggctcggtgt cctccacacc gtcagcact
360
ccgttagct ccgtgccctc gtcgcccagc ttcagcccga ccgaacagaa gacacacctc
420
gaggatctgt actggatggc gagcaactac cagcagatga accccgaggc gtcacacctg
480
acgcccgagg acgcggtgga agcgctcatc ggctcgacc cagtgccaca gccgctgcaa
540
agttcgaca gcttcgcgg cgctcaccac caccaccatc accaccaccc tcacccgcac
600
cacgcg
606

<210> 5930
<211> 144
<212> PRT
<213> Homo sapiens

<400> 5930
Met Ala Ala Glu Leu Ser Met Gly Pro Glu Leu Pro Thr Ser Pro Leu
1 5 10 15
Ala Met Glu Tyr Val Asn Asp Phe Asp Leu Leu Lys Phe Asp Val Lys
20 25 30
Lys Glu Pro Leu Gly Arg Ala Glu Arg Pro Gly Arg Pro Cys Thr Arg
35 40 45
Leu Gln Pro Ala Gly Ser Val Ser Ser Thr Pro Leu Ser Thr Pro Cys
50 55 60
Ser Ser Val Pro Ser Ser Pro Ser Phe Ser Pro Thr Glu Gln Lys Thr
65 70 75 80
His Leu Glu Asp Leu Tyr Trp Met Ala Ser Asn Tyr Gln Gln Met Asn
85 90 95
Pro Glu Ala Leu Asn Leu Thr Pro Glu Asp Ala Val Glu Ala Leu Ile
100 105 110
Gly Ser His Pro Val Pro Gln Pro Leu Gln Ser Phe Asp Ser Phe Arg
115 120 125
Gly Ala His His His His His His His His Pro His Pro His His Ala
130 135 140

<210> 5931
<211> 478
<212> DNA
<213> Homo sapiens

<400> 5931
nggagatggc ggagtgcgtt gaggtctccg cgccgcctccc tgtacaaaact ggtgggctcg
60
ccgccttggaa aagaggcttt ccggcagaga tgcctggaga gaatgagaaaa cagccgggac
120
aggctcctaa acaggttaccg ccaggctgga agcagtggc cagggatttc tcagaacacgc
180
tttctagttc aagaggtgat ggaagaagag tggaatgctt tgcagtcagt ggagaattgt
240
ccagaagact tggctcagct ggaggagctg atagacatgg ctgtgctgga ggaaattcaa
300
caggagctga tcaaccaagg tacaacctga gaatcacaag cggtgtggtg gtgtgtcagt
360
gtggcctgta catccccatct cattcttctg agttgacaga gcagaagctt cgtgcctgtt
420
tagagggttag tataaatgag cacagtgcac attgtccccca cacacccct tcacgcgt
478

<210> 5932
<211> 109
<212> PRT
<213> Homo sapiens

<400> 5932
 Xaa Arg Trp Arg Ser Arg Leu Arg Ser Pro Arg Arg Ser Leu Tyr Lys
 1 5 10 15
 Leu Val Gly Ser Pro Pro Trp Lys Glu Ala Phe Arg Gln Arg Cys Leu
 20 25 30
 Glu Arg Met Arg Asn Ser Arg Asp Arg Leu Leu Asn Arg Tyr Arg Gln
 35 40 45
 Ala Gly Ser Ser Gly Pro Gly Asn Ser Gln Asn Ser Phe Leu Val Gln
 50 55 60
 Glu Val Met Glu Glu Glu Trp Asn Ala Leu Gln Ser Val Glu Asn Cys
 65 70 75 80
 Pro Glu Asp Leu Ala Gln Leu Glu Glu Leu Ile Asp Met Ala Val Leu
 85 90 95
 Glu Glu Ile Gln Gln Glu Leu Ile Asn Gln Gly Thr Thr
 100 105

<210> 5933

<211> 1953

<212> DNA

<213> Homo sapiens

<400> 5933
 atggagatcc gagagaaggg ctccgagttc ctgaaggagg agctgcacag agcgcagaag
 60
 gagctgaagc taaaggacga ggaatgtgag cggctgtcca aggtgcggga gcagctagaa
 120
 caggagctgg aagagctgac ggccagcctg tttgaggaag ctcacaagat ggttcgagaa
 180
 gccaacatga agcaggcggc atcagaaaag cagctgaagg aggctcgggg caagatcgac
 240
 atgctgcagg cagaggtgac agcattgaag acactggtca tcacgtccac accagcctct
 300
 cccaaaccgcg agcttcaccc ccagctgctg agccccacca aggccggggcc ccgaaaggc
 360
 cactctcgcc acaagagcac cagcagcacc ctctgccccg ccgtgtgtcc cgctgcggga
 420
 cacacccctca ccccagacag agagggcaag gaggtggaca caatcctgtt tgcagagttc
 480
 caggccctggaa gggaatcccc caccctggac aagacctgcc cttccctggaa aagggtgtac
 540
 cgagaggacg tggggccctg cctggacttc acaatgcagg agctctcggt gctggtaacgg
 600
 gcccgcgtgg aggacaacac gtcaccatt gagccgggtgg ctccgcagac gctgccacaca
 660
 gtgaagggtgg ccgaggttga ctgttagcagc accaacacat gtgccctgag cgggctgacc
 720
 cgcacctgcc gccaccgaat ccggctcgaaa gactccaaaa gcccattacta catctcgcca
 780
 tcttccccggg ccaggatcac cgcagtgtgc aacttcttca cctacatccg ctacatccag
 840
 caaggccctgg tgccggcagga cgcagagccc atgttctggg agatcatgag gttgcggaaag
 900
 gagatgtcac tggccaagct cggcttcttc ccccaggagg cttagggcgc ggcccaggcc
 960

tgaaggggag ctctgagaca gagcaaacac ccaccccaga acaagccgac acacagggag
 1020
 acgggggcct ggagccagcc ctgagccaga ggcagaatgg atggacagac aggccatgga
 1080
 ggcagcactg agccagcacc acacgtccat cctggacag acgggcctgg acttcacggc
 1140
 aagacccccc tctcttcccc actgggttct gccaccacca ggaggatttc aagaaagcac
 1200
 caaagaccag ggagctcgga tccatactcg gggggcctca gcccctggga ggggacacct
 1260
 gaggcagcca gcgcgcgcctc cccagtcccc agaactgcct gcaggtgcct tggcgtggc
 1320
 ttgtcttcag aaaggactg ttctgggtgg ctggatctcc agggtaccct ccaccccagc
 1380
 tgccaaagccc tggccagca gcacccctt gtggccatcc tggccttgt tcccggtggc
 1440
 ctcccttattg gactactagg aggggctggc agggcctcca tagcacagaa ttgccccaaa
 1500
 gccttgtaa gatgagtcaa gacccctccc ccgccttcctc cttcccttc ccccttcctc
 1560
 cttcccccctt cataaaggcc tcccttgtaa cttcccttc cacccctgtct cagccctgtg
 1620
 ctccctggagg ccctgctccc aaaaccgctg gaaggactgg ggcactttct gccacagtag
 1680
 aacacagaca gggcttcaga tcacccacgc ctgtttcag ctgtgggtgg ccatgcagac
 1740
 acgcgccttg gcatgtgggg cttgggtggg caggcaggac ctggccctc ccacccatca
 1800
 gagccactc aggaccagcg ttccggagctc ccacctggac gcatccctca ccacgtccgg
 1860
 attcccttct ttggatggaa tgtaacgcga tctctattta ataaaggcag gctttgttgg
 1920
 tacaggcaaa aaaaaaaaaa aaaaaaaaaa aaa
 1953

<210> 5934
 <211> 314
 <212> PRT
 <213> Homo sapiens

<400> 5934
 Met Glu Ile Arg Glu Lys Gly Ser Glu Phe Leu Lys Glu Glu Leu His
 1 5 10 15
 Arg Ala Gln Lys Glu Leu Lys Leu Lys Asp Glu Glu Cys Glu Arg Leu
 20 25 30
 Ser Lys Val Arg Glu Gln Leu Glu Gln Glu Leu Glu Leu Thr Ala
 35 40 45
 Ser Leu Phe Glu Glu Ala His Lys Met Val Arg Glu Ala Asn Met Lys
 50 55 60
 Gln Ala Ala Ser Glu Lys Gln Leu Lys Glu Ala Arg Gly Lys Ile Asp
 65 70 75 80
 Met Leu Gln Ala Glu Val Thr Ala Leu Lys Thr Leu Val Ile Thr Ser
 85 90 95
 Thr Pro Ala Ser Pro Asn Arg Glu Leu His Pro Gln Leu Leu Ser Pro

100	105	110
Thr Lys Ala Gly Pro Arg Lys Gly His Ser Arg His Lys Ser Thr Ser		
115	120	125
Ser Thr Leu Cys Pro Ala Val Cys Pro Ala Ala Gly His Thr Leu Thr		
130	135	140
Pro Asp Arg Glu Gly Lys Glu Val Asp Thr Ile Leu Phe Ala Glu Phe		
145	150	155
Gln Ala Trp Arg Glu Ser Pro Thr Leu Asp Lys Thr Cys Pro Phe Leu		160
165	170	175
Glu Arg Val Tyr Arg Glu Asp Val Gly Pro Cys Leu Asp Phe Thr Met		
180	185	190
Gln Glu Leu Ser Val Leu Val Arg Ala Ala Val Glu Asp Asn Thr Leu		
195	200	205
Thr Ile Glu Pro Val Ala Ser Gln Thr Leu Pro Thr Val Lys Val Ala		
210	215	220
Glu Val Asp Cys Ser Ser Thr Asn Thr Cys Ala Leu Ser Gly Leu Thr		
225	230	235
Arg Thr Cys Arg His Arg Ile Arg Leu Gly Asp Ser Lys Ser His Tyr		240
245	250	255
Tyr Ile Ser Pro Ser Ser Arg Ala Arg Ile Thr Ala Val Cys Asn Phe		
260	265	270
Phe Thr Tyr Ile Arg Tyr Ile Gln Gln Gly Leu Val Arg Gln Asp Ala		
275	280	285
Glu Pro Met Phe Trp Glu Ile Met Arg Leu Arg Lys Glu Met Ser Leu		
290	295	300
Ala Lys Leu Gly Phe Phe Pro Gln Glu Ala		
305	310	

<210> 5935
<211> 2727
<212> DNA
<213> Homo sapiens

<400> 5935
nngtcgcctc cgccctgatcc ccggcctgtc ggccgacccc acctcgccaa ccgaggcgga
60
ccgcggagtg tgcgaacgac cccaccgcgtc ctttcttcctc cccccagatca cgcaccccg
120
ctccggaata tggggaaactg cctcaaattcc cccacacctgg atgacatctc cctgcttcac
180
gagtctcagt ccgaccgggc tagctttggc gaggggacgg agccggatca ggagccgccc
240
ccgccccatatac aggaacaagt tccagttcca gtctaccacc caaacaccttag ccagactcgg
300
ctagcaactc agctgactga agaggaacaa attaggatag ctcaaagaat aggtcttata
360
caacatctgc ctaaaggagt ttatgaccct ggaagagatg gatcagaaaa aaagatccgg
420
gagtgtgtga tctgtatgat ggactttgtt tatggggacc caattcgatt tctgccgtgc
480
atgcacatct atcacctgga ctgtatagat gactgggtga tgagatcctt cacgtgcccc
540
tcctgcatgg agccagttga tgcagcactg ctttcattcc atgagactaa ttgagccagg
600

gtctcttatac tgacttcaag tgaaccacca ttttggttgtt tttgatcttt tgtcaactgag
660
cccaaagagc cagggattag gaattaagat cgtgcacaaa agtttcctta aaattcctgg
720
atggctgcag atgttggggg aaaaagtacg tgatattttt gaaacttagt gggaaaaagta
780
ggatggtatt tttatgtaaa gccttgaccc aatgtttaaa aatataattt gatatttagatc
840
ttgttattgc tccagttacat aggaatttg taaagtgtta acagcagctg tattttttt
900
aattgtgtgtt attgaagatt agggaaaaaga tagtagttat ttttccttaaa tgaaataact
960
ttcttcctt cccctcccc acccgaattc ttttctgaag ttgctggcat ttgggtcaag
1020
gttttattaa aagctacatt ttataacact ggcacacaca aaaaagtagt tttaagctt
1080
tttgcacagt tcttttttc cattggaaat ggaatttcatt gccttaggtc tttttaaata
1140
gtgttattttt atcggtgggg ctggctctat gcttggaaac cagtttattt ataacctgtt
1200
ataagtgtcta tattctgttt gcagtttagga aatgcagaat tcaaagtgtat ctcctagctt
1260
gtaagcaaac tgagatgcac tatccctttt ctataaaaaaa taagttaatg tgtcaagaaaa
1320
ccaactctat taaggtgggg tttaatatta cccttccta ttttttttat ctaatttattt
1380
tggtttttaa tatggtgata atggaaagtc aagttaaattt ttaaatatta agaattctga
1440
tttatttgaga ttgaattatg ccaccacgtt tatgtaaaaaa tgaaggtggc accgtggtga
1500
gacctaatga gaaatagtta ctcagttgtt aaaaatttga tttattctct ttcttcgtac
1560
ctccttcctt cttgtcttga accatagcaa aaggataactg catctctcat tactgttagtg
1620
ctgaggttat tgaagttata caaaacacat ctcagttctt gtttcttggaa aaggtatcta
1680
ttacatcctg ctagctgact gacaaaacta agcagggaga ataaagataa ttgttattttt
1740
tgttttgcac acaaacgcag aattttgtata accatatgac ttcatatgtt tgatctcaa
1800
aaagaaggaa ttcttccttt gtttcttgcg gttaatgtaa gaatactttt aatctctaag
1860
cttctgttat gtttagggta gagatggctt agtaaagatg tagtagtaat gttttatcca
1920
tttagcatgt gtttattttt tcataatgtac tcaaagggtga cttattgggt cacctcagtg
1980
atattacagc taaaaaaaaatc attcatttagc aaaaggaaaa gtggtctcaa cctaacatca
2040
gaagtgtttc ttattattat ttatattgtt gttgaatattt gaaactctaac agttttctac
2100
atacaaaaca cagtgcatg aaggttatttca actgttagtat ccatatgtt gttttatcca
2160
cataagtact ttgttaaagat ttgacattca actgttagtat ccatatgtt gttttatcca
2220

cttatgagcc ccatgatgga aagacttaaa gatgaattt agaaaaattt aaagaaaatta
2280
gattatcagg ttctgttaaa ttgttacatg tatcttgctt aaatttctgt ttattaattt
2340
atatccaccc aagtacataa agcaaattt gagggaaacaa ctgaagttgt gcaatatttt
2400
ctgataattt cttttttat tcttgcgtt tctacttaaa cataatgtct gtgtcatcaa
2460
gttataatgt cagacttttc ttttttcta gattgttaaa attggcaaattt gaacttttt
2520
aaaaatcatc ttccatgttg cagttagttt ttctttcat tacaagtctt tcacagaagt
2580
ttgggtgtaa tattgaaaga actagcatg ggcagaatgt gtctttttt ggcactttat
2640
attctcaaca tacaatgtta agaaccatca attttgactt ttactaagtt gttaaataaaa
2700
gttataatac agctgtgaaa aaaaaaaaa
2727

<210> 5936

<211> 154

<212> PRT

<213> Homo sapiens

<400> 5936

Met	Gly	Asn	Cys	Leu	Lys	Ser	Pro	Thr	Ser	Asp	Asp	Ile	Ser	Leu	Leu
1				5				10					15		
His	Glu	Ser	Gln	Ser	Asp	Arg	Ala	Ser	Phe	Gly	Glu	Gly	Thr	Glu	Pro
					20				25				30		
Asp	Gln	Glu	Pro	Pro	Pro	Pro	Tyr	Gln	Glu	Gln	Val	Pro	Val	Pro	Val
							35		40			45			
Tyr	His	Pro	Thr	Pro	Ser	Gln	Thr	Arg	Leu	Ala	Thr	Gln	Leu	Thr	Glu
						50		55			60				
Glu	Glu	Gln	Ile	Arg	Ile	Ala	Gln	Arg	Ile	Gly	Leu	Ile	Gln	His	Leu
						65		70			75			80	
Pro	Lys	Gly	Val	Tyr	Asp	Pro	Gly	Arg	Asp	Gly	Ser	Glu	Lys	Lys	Ile
						85			90			95			
Arg	Glu	Cys	Val	Ile	Cys	Met	Met	Asp	Phe	Val	Tyr	Gly	Asp	Pro	Ile
						100			105			110			
Arg	Phe	Leu	Pro	Cys	Met	His	Ile	Tyr	His	Leu	Asp	Cys	Ile	Asp	Asp
						115			120			125			
Trp	Leu	Met	Arg	Ser	Phe	Thr	Cys	Pro	Ser	Cys	Met	Glu	Pro	Val	Asp
						130			135			140			
Ala	Ala	Leu	Leu	Ser	Ser	Tyr	Glu	Thr	Asn						
						145			150						

<210> 5937

<211> 1536

<212> DNA

<213> Homo sapiens

<400> 5937

naagcttttag tgattgtggc ttattcacag ctattcttg ctgcaacctg attgaaaatg
60

ttcagagatt aggcttgaca cccaccactg tcattagatt aaataaaacat cttttgagtc
120
tttgcattcag ttatctcaag gtctgagacc tgtgggtgtc gaaccccagt ggacttttagt
180
agtactcaga tcctcccttg tttgggtgcgt agtatattaa caagtaaaacc tgccctgtatg
240
ctcaccagaa aggaaacaga gcatgtcagt gctttgattc ttagagcctt tttgcttaca
300
attccagaaa atgctgaagg ccacatcatt ttaggaaaga gtttaattgt accttttaaa
360
gggtcaagag ttatagattc cactgttatta cctggatac tcattgaaat gtcagaagtt
420
caattaatga ggcttattacc tatcaaaaaa tcaactgccc tcaaggtggc actctttgt
480
acaactttat ccggagacac ttctgacact ggagaaggaa ctgtgggtggt cagttatggg
540
gtttctcttg aaaatgcagt ctggaccag ctgcttaacc taggaaggca gctaattcagt
600
gaccacgttag atcttgcct gtgccaaaaa gttatacatac catcttgaa gcagtttctc
660
aatatgcattc gtattattgc catagacaga attggagtga ctctgatgga acccctgact
720
aaaatgacag gaacacagcc tattggatcc ctaggctcaa tatgtcctaa tagttatgga
780
agtgtgaaag atgtgtgcac tgcaaaattt ggctccaaac attttttca tcttattcct
840
aatgaagcaa caatctgcag ctgcattctc tgcaacagaa atgacactgc ctgggatgag
900
ctgaagctca cgtgtcagac ggcactgcat gtcctgcagt taacactcaa ggaaccatgg
960
gctttgttgg gaggtggctg tactgaaact cattggctg catatatcag acacaagact
1020
cacaacgacc cagaaagcat tctcaaagat gatgaatgta ctcaaacaga acttcaatta
1080
attgctgaag cattttgcag tgccctagaa tctgttggc gctctttaga acatgatgga
1140
ggtgaaattc tcactgacat gaagtatgga cacctttggc cagttcaggc agattctccc
1200
tgtgttgcta actggccaga tttgcttca cagtgtggct gtggattata caatagccag
1260
gaagaactca actggcttt cttaagaagc acacgtcgtc catttgcgcc acaaagctgc
1320
cttccacatg aagctgtggg ctcagccagc aacctgaccc tggactgttt gactgcaaag
1380
cttagtggcc tacaggtggc tgttagagaca gccaatttga ttttggatct ttcatatgtt
1440
attgaagata aaaactaaga gaatagcatg ttctgttacc aagagaaaaca aataaactag
1500
tctgttggca attgaaaaaaaaaaaaaaaaaaaaaa
1536

<210> 5938
<211> 406
<212> PRT

<213> Homo sapiens

<400> 5938

Met Leu Thr Arg Lys Glu Thr Glu His Val Ser Ala Leu Ile Leu Arg
1 5 10 15
Ala Phe Leu Leu Thr Ile Pro Glu Asn Ala Glu Gly His Ile Ile Leu
20 25 30
Gly Lys Ser Leu Ile Val Pro Phe Lys Gly Ser Arg Val Ile Asp Ser
35 40 45
Thr Val Leu Pro Gly Ile Leu Ile Glu Met Ser Glu Val Gln Leu Met
50 55 60
Arg Leu Leu Pro Ile Lys Lys Ser Thr Ala Leu Lys Val Ala Leu Phe
65 70 75 80
Cys Thr Thr Leu Ser Gly Asp Thr Ser Asp Thr Gly Glu Gly Thr Val
85 90 95
Val Val Ser Tyr Gly Val Ser Leu Glu Asn Ala Val Leu Asp Gln Leu
100 105 110
Leu Asn Leu Gly Arg Gln Leu Ile Ser Asp His Val Asp Leu Val Leu
115 120 125
Cys Gln Lys Val Ile His Pro Ser Leu Lys Gln Phe Leu Asn Met His
130 135 140
Arg Ile Ile Ala Ile Asp Arg Ile Gly Val Thr Leu Met Glu Pro Leu
145 150 155 160
Thr Lys Met Thr Gly Thr Gln Pro Ile Gly Ser Leu Gly Ser Ile Cys
165 170 175
Pro Asn Ser Tyr Gly Ser Val Lys Asp Val Cys Thr Ala Lys Phe Gly
180 185 190
Ser Lys His Phe Phe His Leu Ile Pro Asn Glu Ala Thr Ile Cys Ser
195 200 205
Leu Leu Leu Cys Asn Arg Asn Asp Thr Ala Trp Asp Glu Leu Lys Leu
210 215 220
Thr Cys Gln Thr Ala Leu His Val Leu Gln Leu Thr Leu Lys Glu Pro
225 230 235 240
Trp Ala Leu Leu Gly Gly Cys Thr Glu Thr His Leu Ala Ala Tyr
245 250 255
Ile Arg His Lys Thr His Asn Asp Pro Glu Ser Ile Leu Lys Asp Asp
260 265 270
Glu Cys Thr Gln Thr Glu Leu Gln Leu Ile Ala Glu Ala Phe Cys Ser
275 280 285
Ala Leu Glu Ser Val Val Gly Ser Leu Glu His Asp Gly Gly Glu Ile
290 295 300
Leu Thr Asp Met Lys Tyr Gly His Leu Trp Ser Val Gln Ala Asp Ser
305 310 315 320
Pro Cys Val Ala Asn Trp Pro Asp Leu Leu Ser Gln Cys Gly Cys Gly
325 330 335
Leu Tyr Asn Ser Gln Glu Glu Leu Asn Trp Ser Phe Leu Arg Ser Thr
340 345 350
Arg Arg Pro Phe Val Pro Gln Ser Cys Leu Pro His Glu Ala Val Gly
355 360 365
Ser Ala Ser Asn Leu Thr Leu Asp Cys Leu Thr Ala Lys Leu Ser Gly
370 375 380
Leu Gln Val Ala Val Glu Thr Ala Asn Leu Ile Leu Asp Leu Ser Tyr
385 390 395 400
Val Ile Glu Asp Lys Asn

405

<210> 5939
 <211> 795
 <212> DNA
 <213> Homo sapiens

<400> 5939
 nnctgtctcc ccctccgcct ctccctgcat tcttggttgtc tctgggctct ccctgggacc
 60
 ttatgtgcat tcgcctttcc ccaacgtgtc ccttctcccc tcctccat cctccggcg
 120
 gcgtgcgcct cctgcctctc cccggccggc cacacgggtgg cgctgtgtcc cgctcgcccg
 180
 cccgcccgc gctcgcccgc agcctgcaag cgcaaggaac aggagcagca gaaggagcgc
 240
 300
 gcccctgcagc ccaagaagca ggcgcctggtg ttcaccgacc tgcaagcgcacg cacgctgatc
 gccatcttca aggagaacaa gcggccgtcc aaggagatgc aggtcaccat ctgcagcag
 360
 420
 ctccggcttgg agctcaaacac cgtcagcaac ttcttcatga acgcgcggcg ccgctgcatt
 aaccgctggg ctgaggagcc cagcacggcc cccgggggccc ccgcggcgcc cacggccact
 480
 540
 ttctccaagg cctgaggcgcc cccggccccc cgccctccct gcctccacgg cctgggccc
 gtgccccccac gtcacccccc cacatcctgc cggccggag acccgccccc agggggcacc
 600
 tggaggggggt gctatccggg ccccccacac cgggggaggg ggaagcagca caccggcc
 660
 cccaaagtgc caaaaaggc ccccttcct ccctccatgc ccactccctc caggccaaag
 720
 gaagccctcc accccccccc ggaggggagg gagtgacaga aaggggttc ccagccccc
 780
 ctccattcag gacgc
 795

<210> 5940
 <211> 96
 <212> PRT
 <213> Homo sapiens

<400> 5940
 Cys Lys Arg Lys Glu Gln Glu Gln Gln Lys Glu Arg Ala Leu Gln Pro
 1 5 10 15
 Lys Lys Gln Arg Leu Val Phe Thr Asp Leu Gln Arg Arg Thr Leu Ile
 20 25 30
 Ala Ile Phe Lys Glu Asn Lys Arg Pro Ser Lys Glu Met Gln Val Thr
 35 40 45
 Ile Ser Gln Gln Leu Gly Leu Glu Leu Asn Thr Val Ser Asn Phe Phe
 50 55 60
 Met Asn Ala Arg Arg Arg Cys Met Asn Arg Trp Ala Glu Glu Pro Ser
 65 70 75 80
 Thr Ala Pro Gly Gly Pro Ala Gly Ala Thr Ala Thr Phe Ser Lys Ala

5121

85

90

95

<210> 5941
<211> 2590
<212> DNA
<213> Homo sapiens

<400> 5941
ttttttttt ttttttttt ttaatcttct aagtcccttt aattgttctt ataaaacttagc
60 ataagatata aacttaagta gtacacatga gttttataat ttactaatct ctgacagata
120 gctaaggata gcacatcaga gcataacaca gtgtgaggga aataaaagtgt acaatgacat
180 cttctattct ggacctaata attcaataga gaaagaacta ctgttagtca ctgtggttac
240 agaagggttc atggacagcg aacataaagc tctactagct aacaaatagg tcttaatgat
300 aaaaacgtgg gccttcagag aactaaaggt accaatgtgt ggcagtccaa aattacgagg
360 aaaatgagtt cccttcatgg gtcacatcag caattttttt ttccccctttt gagacagagt
420 cttgctctgc tgncccaggt tggagtgcag tggcatgatc caggctcaact gcaaccccg
480 cctcccccgtt tcaagcaatt ctcatgcctc agcctcccgaa gtagctggga ttacaggtgc
540 ctgtcatcac ggctggctac tttttgtatt ttttagtagag acagggtttc accatgttg
600 ccaggctgggt ctcaaactcc tgacctcaag tgatctgctt gettcagcct cccaaagtgc
660 tagggttaca gacatgagcc actgtgccca gctacctcat caattcttaa tctataaacc
720 atggataggc ttccggagaa cccaaagaacc aatgaaatct gttggtaagt tttatgtgt
780 cggttttcta cagagagggt caacagcatg tatatttca aagaagtctg tggcaaaaaaaa
840 gagagtttat tggatggaaat cttggccaa tcaacttgga aaagggtggaa ttgagaatgg
900 gggctgtcta gatcaggata atgttgaatt tgaccctcac ttgaggctt tgtacagagg
960 atgagaagac ggttaattca agggtaatc agaaattaac accaacatga cttggtgatg
1020 agtgagatgt gaaacgtgag aaaaacatca atgatgaaat caagcttctg acttgcaaca
1080 gtgagatatac caagagctac aggcttgaa gatgaataaa gttgggagca ttctgtttt
1140 tcatgagtgc ccatgggaca gacagggaga aatggacagt tggaaatgaca agtctagaca
1200 ggcacagtgg ctcatgtctg taacccttagc actttggag gctgagatag gagaattact
1260 agggttcagg agttttagac gaaacctgggt gacatagtga gagctcatct ctacaaaaaa
1320 taaaatttagc tcggcatggt gctgcaagat tatagtccct cagcctctga gtagctggga
1380

ttacagatgc tcaccaccat gccttagtaa ttttgtatt ttagtagag atggggtttc
1440
accatattgg ccaggcaggt cttgaactcc tgacctccag agatctgcc acttcagect
1500
cccaaagtgc tgggattaca ggcgtattcc actgtgccc gcctgagttt ctgttttagaa
1560
acaacagtct atgatagttat aatcctctct ttttgtaca cagagtaaag aggacaaaata
1620
ggtgaaagaa taaatgaaag gctggaatcc cactcccccc gctgtcccag ggcattggat
1680
attgacggat aggaggcagc aaaccactca cagagccagg aagaaatgaa tgcgttggta
1740
ttgccaggag gggaaagccgg cccggctgaa atatgctatg accatagcca ggagatactg
1800
atggagagaa aggaacacag agagggagag gtcacatctt ggaagaggaa gattgtggag
1860
agggggaaatg agggctgccc gaggggctgc ccatcagaga agggacctca gtgttgggt
1920
gactactcat ttgaaatttgc cgggatggag gggtatgttga aggtcgatg caaatccgag
1980
aagccagagg aagggttttg ggtgatgctc ccaggatggt gggctctgat gggatcttg
2040
gaggggggtgt gtctaggtcg gctgggtgtca ggagggtctt ttgtgtgcca ggcagagaac
2100
tgtcccgaaag agctgagagt agagggccca ggagcttcag ggctgcggcc agactgtggc
2160
ccagagctca gatcccaaag gacccatagg agaggcaggg gccactcatt cactctgaa
2220
gagaccagca gaatcctgag ggagatgctg acaaattata aaaagaccaa gaatagccgg
2280
gagtggccggc tcaaggctgt gatcccagta cttttgaga ggtggagaca ggaggatcat
2340
gtgagccag cggttcgaga acaacctggg caacatggtg agaccctgtt tctacaaaca
2400
tttcaaaaat tagtggca tggtggcatg tgcctagtc cagctcctca ggaggctgag
2460
gaaagaagat tgcttgagcc caggaattag aggctgcaat gagctatgat catgccactg
2520
cactccatcc tgggtggctt gagaccctgt tggtagattc tagtcttgtc cattgtttt
2580
gagctttta
2590

<210> 5942
<211> 89
<212> PRT
<213> Homo sapiens

<400> 5942
Met Ser Ser Leu His Gly Ser His Gln Gln Phe Phe Phe Pro Leu Leu
1 5 10 15
Arg Gln Ser Leu Ala Leu Leu Xaa Gln Val Gly Val Gln Trp His Asp
20 25 30
Pro Gly Ser Leu Gln Pro Pro Pro Pro Gly Phe Lys Gln Phe Ser Cys

35	40	45
Leu Ser Leu Pro Ser Ser Trp Asp Tyr Arg Cys	Leu Ser Ser Arg Leu	
	55	60
Ala Thr Phe Cys Ile Phe Ser Arg Asp Arg Val Ser Pro Cys Trp Pro		
	70	75
Gly Trp Ser Gln Thr Pro Asp Leu Lys		
	85	

<210> 5943

<211> 781

<212> DNA

<213> Homo sapiens

<400> 5943
nacgcgttgg cagcggcagg agtaaccaga gggagcatat acgccagttg ggtaaaagac
60 tgcttgattt gaatttgtgg aaatgatctc gactcggcgc aaactaaacc aactctggat
120 ggacaacttg ttgttaattgg taaggatgaa tcttatagca agacttctgg ggtttccagc
180 atcaccaagc ttcaaagaca accatggaa gttgagacca agcctggaaat cctttgctgt
240 tttcaaaaacg agtttgagaa cccttgctt ccaaagtctc attttctgt cacccaagct
300 ggagagcaat ggcgcgatct cagtcacca caacctccgc ctcccagggtt caagcaattc
360 tcctgtctca gcctcccgag tagctggac cacaggcacc cgccaccacg cccggctaacc
420 ttttgtatTT ttagtagaga cgaggtttca ccgcggcttc gatctcctga cctcatgnna
480 tccggccacc tcggcctccc aaagtgttgg gattacagggc gtgagccact gcgcggccagcc
540 cagatcagcc ttttatttag caagtcacca tcacaagaca tacaggctaa ggcttaaaag
600 aagcccttgg gtttaaaaca aatgtttagg aggagatgag aagtttctca tctttgtatgg
660 ctacaaaaat catcaaaaca aattcaggtt cagagtctag aaaagatgtt actatttgca
720 gcatgggtct gatacagcag ttcttaacgg gttaactgct ttgttttaat ttatattaca
780 g
781

<210> 5944

<211> 174

<212> PRT

<213> Homo sapiens

<400> 5944
Ile Val Gly Asn Asp Leu Asp Ser Ala Gln Thr Lys Pro Thr Leu Asp
1 5 10 15
Gly Gln Leu Val Val Ile Gly Lys Asp Glu Ser Tyr Ser Lys Thr Ser
20 25 30
Gly Val Ser Ser Ile Thr Lys Leu Gln Arg Gln Pro Phe Gly Val Glu

35	40	45
Thr Lys Pro Gly Ile Leu Cys Cys Phe Gln Asn Glu Phe Glu Asn Pro		
50	55	60
Cys Phe Pro Lys Ser His Phe Ser Val Thr Gln Ala Gly Glu Gln Trp		
65	70	75
Arg Asp Leu Ser Ser Pro Gln Pro Pro Pro Arg Phe Lys Gln Phe		80
85	90	95
Ser Cys Leu Ser Leu Pro Ser Ser Trp Asp His Arg His Pro Pro Pro		
100	105	110
Arg Pro Ala Asn Phe Cys Ile Phe Ser Arg Asp Glu Val Ser Pro Arg		
115	120	125
Ser Arg Ser Pro Asp Leu Met Xaa Ser Ala His Leu Gly Leu Pro Lys		
130	135	140
Cys Trp Asp Tyr Arg Arg Glu Pro Leu Arg Pro Ala Gln Ile Ser Leu		
145	150	155
Leu Phe Ser Lys Ser Pro Ser Gln Asp Ile Gln Ala Lys Ala		160
165	170	

<210> 5945

<211> 869

<212> DNA

<213> Homo sapiens

<400> 5945

```

nnttcggcct gagagcgggc cgaggagatt ggcgacggtg tccgggttt tcgttggcgg
60
gtgcctgggc tgggtggaaac accgccccaa gaagcaccat gatttcggcc gcgcagttgt
120
tggatgagtt aatggggccgg gaccgaaacc tagccccgga cgagaagcgc agcaacgtgc
180
ggtgggacca cgagagcgtt tgtaaatatt atctctgtgg tttttgtcct gcggaattgt
240
tcacaataac acgttctgat cttgatgtat ttggaagagg agataacatt agagatgtca
300
gcaaattttt ggaagatgac aagtggatgg aggagtagca gcaaacgcaa cagagcagag
360
caacctgtac cctaaaagcc tgcagaaggg gataactaac agaagcagt gtttgcgtcag
420
cagaaccctg gacaggctca ggatttggag gcaccaggca gaagaaaaga ggattcttct
480
ctagagaaaag tgaacagttc ctgagaagtg atctctgcag gtccgtgtga aaaaattcat
540
gatgaaaatc tacgaaaaca gatatgaaag agctctcggt tcatgaaagt tggctatgag
600
agagattttt tgcgatactt acagagctta cttgcagaag tagaacgtag gatcagacga
660
ggccatgttc gtttggcatt atctcaaaac cagcagtctt ctggggccgc tggcccaaca
720
ggcaaaaatg gagaaaaaat tcaggttcta acagacaaaa ttgatgtact tctgcaacag
780
attgaagaat tagggtctga aggaaaagta gaagaagccc agggatgtat gaaaattttt
840
gagcaattaa aagaagagag agaactgct
869

```

<210> 5946
<211> 121
<212> PRT
<213> Homo sapiens

<400> 5946
Glu Val Ile Ser Ala Gly Pro Cys Glu Lys Ile His Asp Glu Asn Leu
1 5 10 15
Arg Lys Gln Tyr Glu Lys Ser Ser Arg Phe Met Lys Val Gly Tyr Glu
20 25 30
Arg Asp Phe Leu Arg Tyr Leu Gln Ser Leu Leu Ala Glu Val Glu Arg
35 40 45
Arg Ile Arg Arg Gly His Ala Arg Leu Ala Leu Ser Gln Asn Gln Gln
50 55 60
Ser Ser Gly Ala Ala Gly Pro Thr Gly Lys Asn Gly Glu Lys Ile Gln
65 70 75 80
Val Leu Thr Asp Lys Ile Asp Val Leu Leu Gln Gln Ile Glu Glu Leu
85 90 95
Gly Ser Glu Gly Lys Val Glu Glu Ala Gln Gly Met Met Lys Leu Val
100 105 110
Glu Gln Leu Lys Glu Glu Arg Glu Leu
115 120

<210> 5947
<211> 2283
<212> DNA
<213> Homo sapiens

<400> 5947
gacaagtggaa ggcgccgctc tagcgccgga ctctgaacta tggccgttag tgatacagag
60
cgagatggac tagccccaga aaagacatca ccagatagag ataagaaaaa agagcagtca
120
gaagtatctg ttcttcctag agcttcaaaa catcattatt caagatcacg atcaaggta
180
agagaaaagaa aacgaaaagtc agataatgaa ggaagaaaac acaggagccg gagcagaagc
240
aaagagcgtg cttatgcgcg aagagactga actgaagacg ctgcagactc agatagcaaa
300
ataataagcc tacttcatga tnnaagaacc aacttcttct taaaacaggg aagaagacat
360
gaatccaaag ataaatcctc taagaaacat aagtctgagg aacataatga caaagaacat
420
tcttctgata aaggaagaga gcgactaat tcatctgaaa atggtgagga cagggcacaaa
480
cgcaaagaaa gaaaagtcatc aagaggcaga agtcaactcaa gatcttaggtc tcgtgaaaga
540
cgccatcgta gtagaagcag ggagcggaaag aagtctcgat ccaggagtag ggagcggaaag
600
aaatcgagat ccagaagcag agagaggaag aaatcgagat ccagaagcag ggaaagaaaa
660
cggcggatca ggtctcgatcc cgctcaaga tcaagacaca ggcataaggac tagaagcagg
720

agtaggacaa ggagtaggag tcgagataga aagaagagaa ttgaaaagcc gagaagattt
780
agcagaagtt taagccggac tccaagtcca cctccctca gaggcagaaa cacagcaatg
840
gatgcacagg aagctttagc tagaaggttg gaaagggcaa agaaattaca agaacagcga
900
gaaaaggaaa tggttgaaaa acaaaaacaa caagaaatag ctgcagcagc tgcaagctact
960
ggaggttctg ttctcaatgt tgctgccctg ttggcatcg gaacacaagt aacacccatcg
1020
atagccatgg cagtcagat ggcagccctg caagctaaag ctttggcaga gacaggaata
1080
gctgttccta gctactataa cccagccgct gttaatccaa taaaatttgc tgaacaagag
1140
aaaaaaaaagga aaatgctttg gcagggcaag aaagaagggg acaaattccca atctgctgaa
1200
atatggaaa aattgaattt tggaaacaag gaccaaaatg taaaattttag gaaatttgatg
1260
ggtattaaga gtgaagatga agctggatgt agctcagttg atgaagaaag ttacaagact
1320
ctgaagcagc aggaagaagt atttcgaaat ttagatgctc agtatgaaat ggcaagatca
1380
caaaccacaca cacaaagagg aatgggtttg gtttcacat cttcaatgcg aggaatggat
1440
gcagttgaa aatgatcaca cttgtaaagt ttggactta tagacttctt gttctgtatgt
1500
cacgtccttg ttcaccaaac agcttagcact ctatgtcga tgggtgtgc attgacttta
1560
atttattgaa aaatacaaattt tttgtaaat atcagatcg tgatactggt gtttgtttg
1620
taatcaggtt aaacccactt ccattaaact tgacaggact atagaaggat aatattttt
1680
agttcatgaa ttctactttt caaatatata aaagctgcag gtggggataa aatctcatac
1740
atggattttt tcgtgtccgc tgtttgtgt actttgtac ttaaccttgc acagttttt
1800
tcatcttttggaa aacatgaaa gaaatgttat gtagatgttc tttagaagat ctggccattt
1860
ggtacataat ccagcacaga taagctgggt ggtatgata ataaaaatgg ttttctaaaa
1920
actgggttta atttaagtta cctggatgt ttcttgaat ttgtttata gtttctgttag
1980
catttggcaa ttgtgttag aaaacactag ctatgttcc accctttta
2040
aggccagtttta actatactac agtcaataacc gtggtgagca aaaatgtaaa aggtggaagg
2100
agaaaaactta ctaaaatagt atgtttctt attataaggg acagacttgg tattcagtt
2160
ttgtcaata ttacatgtgt tattcaggag atagattaat gcattaaagg gatgtaaagca
2220
cttttattttt aataaaagtgc cttataacaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
2280
aaa
2283

<210> 5948
<211> 76
<212> PRT
<213> Homo sapiens

<400> 5948
Met Ala Ala Ser Asp Thr Glu Arg Asp Gly Leu Ala Pro Glu Lys Thr
1 5 10 15
Ser Pro Asp Arg Asp Lys Lys Lys Glu Gln Ser Glu Val Ser Val Ser
20 25 30
Pro Arg Ala Ser Lys His His Tyr Ser Arg Ser Arg Ser Arg Ser Arg
35 40 45
Glu Arg Lys Arg Lys Ser Asp Asn Glu Gly Arg Lys His Arg Ser Arg
50 55 60
Ser Arg Ser Lys Glu Arg Ala Tyr Ala Arg Arg Asp
65 70 75

<210> 5949
<211> 4706
<212> DNA
<213> Homo sapiens

<400> 5949
nggcggtagt gcgtcggctg ctgcccgggt ctggcagaac tcgggtgttt tgggctgaga
60 cagtggcagc tgcggccccc accccaagtg cggggacctc cggcgaataa aggtcggcct
120 gcgggttaggc cggttagggcc tgcggtccgg cctgcggag aactgggtcg tcagtcctcc
180 gagtgggtggg gctggggact ttgagggagt tggctctagg gcacagtccc tgcctggcca
240 ggtcggagga acaagtgctg ggatctggcg tgtgtgcctc aggggctctt tccgcggccc
300 tttccacctc tttcacttt gggacggta ggcctttata aacggactaa tgctgggtga
360 tttgttcctg tgggttgtga tgccgagggaa agactctggg ccccaggact cacctaaact
420 ggagttcgaa tactgttcgc tcgctgtgtg accttgaaa aaataacaag cttttctgaa
480 gtgagaagct gtttcagcc acgagtcctg tgcaagatca ctaatgatta cctggcattt
540 ctgcgacaca ggcaggtect cagggttgt gcaagttgc aaacatgttc accctgtctc
600 agacctcgag agcatggttc atcgatagag cccgtcaggc acgagaagaa aggcttgc
660 agaaggaacg ggagcgggca gctgttgta tccaggccca tgtccggagt tttctctgtc
720 ggagtcgact gcagagagat atcaggagag agattgtga cttttttaaa gcagatgacc
780 ctgagtccac taaaagaagt gcactttgtt aaaaaggat tgccaggaaa ctgctgttcc
840 tattcagaat caaagaggat aatgagagat ttgagaagtt gtgtcgcagc atcctgagca
900

gcatggatgc tgagaatgag cctaagggtgt ggtatgtgtc cctggcttgt tctaaggacc
960
tcacccctcct ttggattcaa cagatcaaga acattttgtg gtactgctgt gatTTTctca
1020
agcagctcaa gcctgaaatc ctgcaggact cccgactcat caccctgtac ctcacgatgc
1080
ttgtcacctt cacagacact tcaacgtgga aaattcttcg gggaaaaggt gaaagtctc
1140
gaccagcgat gaaccacatt tgtgcaaata taatggaca tctcaaccag catggattt
1200
attctgtgct gcagatattg ttaaccgtg gcctggcaag accccgtctt tgtctatcca
1260
aaggcactt aacagcagct ttttctctag cgttacgccc tgtgattgct gcacagttct
1320
cagacaatct gattcggccg ttcctcatcc acatcatgtc tgtgcctgtc ctggtgactc
1380
atctcagcac agtgcacccct gagcgcctca ctgttttaga atcccatgac atgcttcgta
1440
aattcatcat atttttaaga gaccaagatc gatgccgtga tgtatgtgaa agtttagaag
1500
gatgccatac gctttgtcta atgggcaacc tcctacactt gggctccctc agccccagag
1560
tgttagagga ggagacagat gggttcgtga gtttgctcac ccagacgctg tgctactgtc
1620
ggaagtatgt gtctcagaag aagtccaaacc tgacccactg gcatcctgtc cttggctgg
1680
tctcccaatc tgtggattat ggccttaacg agtcaatgca ctgtatcacc aaacagctgc
1740
agttcttgcgt ggggggtgcct ctgatccgga tcttcttctg tgacatcctg agcaagaagc
1800
tactggagag ccaggagcca gcccacgcac agccagcatc ccctcagaat gtgctccag
1860
tgaagagtct cctaaagcgt gctttcaaa agtcggcatc agtccggaaat attctcaggc
1920
ctgtcgaaaa taaacgggtc gactctgcag aagtccagaa ggttgcaac atctgtgtcc
1980
tctaccagac ctcgctgaca actctcacac agattcggct gcaagatactc acaggtctca
2040
cttaccttga tgacctgctt cccaaactgt gggcatttat ctgtgagctc gggccccacg
2100
gagggttaaa gctcttcttga aatgcctga acaatgacac tgaagagtcc aagcaactct
2160
tggccatgct gatgctgttc tgtgactgtt cgccggcacct catcacaatc cttgatgaca
2220
ttgaagttt tgaagaacag atttcattca aactggaaga gctggtaact atctcctctt
2280
tcctgaattc ttttgtgttt aagatgatct gggatggaat tgtagagaac gccaagggtg
2340
agaccttggaa gctgttccag tctgtccacg ggtggcttat ggtgctgtac gagcgggact
2400
gccccggcg ctccacccccc gaggaccact ggctgcgaaa ggatctcaaa cctagcgtgc
2460
tcttccaaga actcgacagg gacagaaaac gggcacagtt gatcctgcag tacatcccac
2520

atgtcatccc tcacaaaaac agagttctac tgtttcaac catggttacc aaggagaagg
2580
agaaaactggg gctggtgaa accagctctg cctcccgca tgtcaactcac atcaccatcc
2640
gccccgtccag gatgtggag agcttgggg agtgcctgtg gccactgggt atcaatggcg
2700
agagctgcta ggaaggcagt gtgtgctgaa cagtggatgt ttctgacatt cttcaaggac
2760
ggctacgagc agcttaggca gctctccag cacgccatga agggggcat ccgtgtgaag
2820
tttgtcaatg acctcggggt ggacgaagca gggattgatc aagacgggtgt ttttaaggag
2880
ttcttggaaag agatcatcaa gagagttttt gacccagcac tcaatctgtt caagacaacc
2940
agtggggatg agaggctgta cccctcaccc acatcctaca tccatgagaa ttacctgcag
3000
ctcttcgagt ttgtggggaa gatgtgggg aaggctgtgt atgagggat ttttgtggac
3060
gtgccatttg catccttctt cctgagccaa ctgcttggc accaccacag cgtcttctat
3120
agctcggtgg atgaactgcc ttctctggac tccgagttct ataaaaaccc cacctccatc
3180
aagcgctatg atggggacat cactgacctg ggcctgacgc tgtcttacga cgaggacgtc
3240
atgggtcagc ttgtttgcca tgaactgatt cctggagggaa agaccattcc ttttacaaat
3300
gaaaataaaa ttagctacat ccatctgtat gcacattttcaaatgcacac tcaaataaaa
3360
aaccacaaacag ctgcctcat tagcggattc cggtccatta tcaaaccgcgttccga
3420
atgttctcaa ctccctgaact gcagcgtctc atctctggcg acaatgctga gattgatctg
3480
gaagatttaa agaagcacac agtctactac ggtggttcc atggaagtca cagagtcatc
3540
atctggctct gggatattct ggcctccgac ttcacaccgg atgagagagc tatgtttctg
3600
aagttcgtga ccagctgctc cagacccccc ctcctggat tcgcctaccc caagcctcca
3660
ttctccatcc gctgcgtgga ggtgtcggac gatcaggaca ccggggacac tctggcagc
3720
gtcctccggg gcttcttac catccgcaag cgggagccag gcggccgcct gcccacctcc
3780
tccacactgtc tcaacctgct caagctgccc aactacagca agaagagcgt cctccgcgag
3840
aagctgcgtc acgccccatcag catgaacacg ggcttgaac tctccttagct cctgtcccag
3900
ccctgcctcc agggctcctg ggctgccagg gaccttcagc tcccaagggc agtgtggtcc
3960
tgggaatgtg accaacatgc caggtgacat tggcccttag accctctcta tagccatgag
4020
actcccttgc gcctcaagaa atttagacgc ccacgacagc actacacagc atctccaggt
4080
gatgccccaaag gcacagggtgcagaaaata aacctccaga ttccaccaac acgggtccat
4140

tcttccttgtt gatggcagag gggcttcttt tagctagttt gatctttgg gagtctgtct
4200
ttccttagcc gtctgagtga gctgtgtatg aacaagtccc aggagttcca agagtttaga
4260
gtggtttttg cagcatgggt tgagtgtaca aagcctactg tgcgtgagat cctctccttc
4320
cgtttctgaa atctcttact caggttaaggc ctgcctaaggc ctctatgcac cccacaaaat
4380
ttctgcctcc atgccgtcca cagcgccctt tcccagacag ccaggcccat ctgctgccc
4440
gggaagcgca ggcgcctgct agggacgcta tggacaccgt gagtccaagg cgctgctcct
4500
gccttgaagc cacgcgtcc acgcccggc cctccattt tctgcgtcct cagcgggctg
4560
agctgccaga gagtcttccc ggacctattc ccgtcttatg cattcacatt ggcacatcctgg
4620
tttggggaa gaaaaacaac ggcccttagc agcagccccg tttccagaat gtgctgcctg
4680
ttccccaaag cctgcttgcc cccgg
4706

<210> 5950

<211> 397

<212> PRT

<213> Homo sapiens

<400> 5950

Met Pro Arg Ala Ala Arg Lys Ala Val Cys Ala Glu Gln Trp Met Phe
1 5 10 15
Leu Thr Phe Phe Lys Asp Gly Tyr Glu Gln Leu Arg Gln Leu Ser Gln
20 25 30
His Ala Met Lys Gly Val Ile Arg Val Lys Phe Val Asn Asp Leu Gly
35 40 45
Val Asp Glu Ala Gly Ile Asp Gln Asp Gly Val Phe Lys Glu Phe Leu
50 55 60
Glu Glu Ile Ile Lys Arg Val Phe Asp Pro Ala Leu Asn Leu Phe Lys
65 70 75 80
Thr Thr Ser Gly Asp Glu Arg Leu Tyr Pro Ser Pro Thr Ser Tyr Ile
85 90 95
His Glu Asn Tyr Leu Gln Leu Phe Glu Phe Val Gly Lys Met Leu Gly
100 105 110
Lys Ala Val Tyr Glu Gly Ile Val Val Asp Val Pro Phe Ala Ser Phe
115 120 125
Phe Leu Ser Gln Leu Leu Gly His His His Ser Val Phe Tyr Ser Ser
130 135 140
Val Asp Glu Leu Pro Ser Leu Asp Ser Glu Phe Tyr Lys Asn Leu Thr
145 150 155 160
Ser Ile Lys Arg Tyr Asp Gly Asp Ile Thr Asp Leu Gly Leu Thr Leu
165 170 175
Ser Tyr Asp Glu Asp Val Met Gly Gln Leu Val Cys His Glu Leu Ile
180 185 190
Pro Gly Gly Lys Thr Ile Pro Val Thr Asn Glu Asn Lys Ile Ser Tyr
195 200 205
Ile His Leu Met Ala His Phe Arg Met His Thr Gln Ile Lys Asn Gln

210 215 220
Thr Ala Ala Leu Ile Ser Gly Phe Arg Ser Ile Ile Lys Pro Glu Trp
225 230 235 240
Ile Arg Met Phe Ser Thr Pro Glu Leu Gln Arg Leu Ile Ser Gly Asp
245 250 255
Asn Ala Glu Ile Asp Leu Glu Asp Leu Lys Lys His Thr Val Tyr Tyr
260 265 270
Gly Gly Phe His Gly Ser His Arg Val Ile Ile Trp Leu Trp Asp Ile
275 280 285
Leu Ala Ser Asp Phe Thr Pro Asp Glu Arg Ala Met Phe Leu Lys Phe
290 295 300
Val Thr Ser Cys Ser Arg Pro Pro Leu Leu Gly Phe Ala Tyr Leu Lys
305 310 315 320
Pro Pro Phe Ser Ile Arg Cys Val Glu Val Ser Asp Asp Gln Asp Thr
325 330 335
Gly Asp Thr Leu Gly Ser Val Leu Arg Gly Phe Phe Thr Ile Arg Lys
340 345 350
Arg Glu Pro Gly Gly Arg Leu Pro Thr Ser Ser Thr Cys Phe Asn Leu
355 360 365
Leu Lys Leu Pro Asn Tyr Ser Lys Lys Ser Val Leu Arg Glu Lys Leu
370 375 380
Arg Tyr Ala Ile Ser Met Asn Thr Gly Phe Glu Leu Ser
385 390 395

<210> 5951
<211> 1724
<212> DNA
<213> Homo sapiens

<400> 5951
ngaaatcttg tataccgcccc gcgagaagaa gccgatcgag cctttgtctg gaaagtca
60
atctccggct ccggctgcaa tgtgttcctg gtgacattag catcgggcag acccgccagg
120
agaggagggg tcgccaggtt cccgtctgct ttccggaggcg gatcgagcgg gtgacttt
180
tgcattcgtt ttaatttttg gaaatctctc tttttcttc cctcgctcgc tgccggcat
240
gtccctgatct ggccggccgct cctaccaccc tggcagccg agcagagtgg tccccagcgg
300
tctccctccc tgcctccctg actttgcaac accgcgttcc gggaggaccg gcctcggcga
360
gggaggaggc gggggagctg cgaacaccca gacccaaacc ctgacatgct ctggggcgg
420
gaggaggaag ccaggagctg agcgcgcgcgt gtgggctgct tcgcctccg gctccgagcg
480
ccgggctccg ggccgcctgc cctgcgcctg ggcagcagcc ttgctggct tgggggcgg
540
ccccgcttcc cgcccgaaaa gttcgcggcc ggcaggacca tgctgctgaa agagtacccgg
600
atctgcattgc cgctcaccgt agacgagtac aaaattggac agctgtacat gatcagcaaa
660
cacagccatg aacagagtga ccggggagaa ggggtggagg tcgtccagaa tgagcccttt
720

gaggaccctc accatggcaa tgggcagttc accgagaagc gggtgtatct caacagcaaa
 780
 ctgcctagtt gggctagagc tggtgtcccc aaaatattt atgtgacaga gaaggcttgg
 840
 aactattatc cctacacaat tacagaatac acatgttcct ttctgccgaa attctccatt
 900
 catatagaaa ccaagtatga ggacaacaaa ggaagcaatg acaccattt cgacaatgaa
 960
 gccaaagacg tggagagaga agtttgcttt attgatattg cctgcgatga aattccagag
 1020
 cgctactaca aagaatctga ggatcctaag cacttcaagt cagagaagac aggacggga
 1080
 cagttgaggg aaggctggag agatagtcat cagcctatca tgtgctccta caagctggtg
 1140
 actgtgaagt ttgaggtctg ggggcttcag accagagtgg aacaatttgc acacaaggta
 1200
 gtccgagaca ttctgctgat tggacataga caggctttg catgggttga tgagtggtat
 1260
 gacatgacaa tggatgaagt ccgagaattt gaacgagcca ctcaggaagc caccaacaag
 1320
 aaaatcgca ttttcccacc tgcaatttct atctccagca tccccctgct gccttcttcc
 1380
 gtccgcagtgcgccttcttag tgctccatcc acccctctct ccacagacgc acccgaattt
 1440
 ctgtccgttc ccaaagatcg gccccggaaa aagtctgccc cagaaactct cacacttcca
 1500
 gaccctgaga aaaaagccac cctgaattt cccggcatgc actcttcaga taagccatgt
 1560
 cggcccaaat ctgagtaact ttatataaat atctcatggg gtttatatt ttcatttttt
 1620
 gttgttgtt ttttttaaga atcttctgat agagaaaaag actgctttgt cactcaaaca
 1680
 tgttccttcg accttaaaaa aaaaaaaaaa aaaaaaaaaa aaaa
 1724

<210> 5952
 <211> 378
 <212> PRT
 <213> Homo sapiens

<400> 5952
 Ala Arg Arg Val Gly Cys Phe Ala Leu Arg Leu Arg Ala Pro Gly Ser
 1 5 10 15
 Gly Arg Pro Ala Leu Arg Leu Gly Ser Ser Leu Ala Gly Leu Gly Gly
 20 25 30
 Ala Pro Arg Phe Pro Pro Gly Gly Phe Ala Ala Gly Arg Thr Met Leu
 35 40 45
 Leu Lys Glu Tyr Arg Ile Cys Met Pro Leu Thr Val Asp Glu Tyr Lys
 50 55 60
 Ile Gly Gln Leu Tyr Met Ile Ser Lys His Ser His Glu Gln Ser Asp
 65 70 75 80
 Arg Gly Glu Gly Val Glu Val Val Gln Asn Glu Pro Phe Glu Asp Pro
 85 90 95
 His His Gly Asn Gly Gln Phe Thr Glu Lys Arg Val Tyr Leu Asn Ser

100	105	110
Lys Leu Pro Ser Trp Ala Arg Ala Val Val Pro Lys Ile Phe Tyr Val		
115	120	125
Thr Glu Lys Ala Trp Asn Tyr Tyr Pro Tyr Thr Ile Thr Glu Tyr Thr		
130	135	140
Cys Ser Phe Leu Pro Lys Phe Ser Ile His Ile Glu Thr Lys Tyr Glu		
145	150	155
Asp Asn Lys Gly Ser Asn Asp Thr Ile Phe Asp Asn Glu Ala Lys Asp		
165	170	175
Val Glu Arg Glu Val Cys Phe Ile Asp Ile Ala Cys Asp Glu Ile Pro		
180	185	190
Glu Arg Tyr Tyr Lys Glu Ser Glu Asp Pro Lys His Phe Lys Ser Glu		
195	200	205
Lys Thr Gly Arg Gly Gln Leu Arg Glu Gly Trp Arg Asp Ser His Gln		
210	215	220
Pro Ile Met Cys Ser Tyr Lys Leu Val Thr Val Lys Phe Glu Val Trp		
225	230	235
Gly Leu Gln Thr Arg Val Glu Gln Phe Val His Lys Val Val Arg Asp		
245	250	255
Ile Leu Leu Ile Gly His Arg Gln Ala Phe Ala Trp Val Asp Glu Trp		
260	265	270
Tyr Asp Met Thr Met Asp Glu Val Arg Glu Phe Glu Arg Ala Thr Gln		
275	280	285
Glu Ala Thr Asn Lys Lys Ile Gly Ile Phe Pro Pro Ala Ile Ser Ile		
290	295	300
Ser Ser Ile Pro Leu Leu Pro Ser Ser Val Arg Ser Ala Pro Ser Ser		
305	310	315
Ala Pro Ser Thr Pro Leu Ser Thr Asp Ala Pro Glu Phe Leu Ser Val		
325	330	335
Pro Lys Asp Arg Pro Arg Lys Lys Ser Ala Pro Glu Thr Leu Thr Leu		
340	345	350
Pro Asp Pro Glu Lys Lys Ala Thr Leu Asn Leu Pro Gly Met His Ser		
355	360	365
Ser Asp Lys Pro Cys Arg Pro Lys Ser Glu		
370	375	

<210> 5953

<211> 777

<212> DNA

<213> Homo sapiens

<400> 5953

```

tttcggcacg aggcccgagg tcgttaagagg tctccgcgcc gctccctgta caaactggtg
60
ggctcggccgc cttggaaaga ggctttccgg cagagatgcc tggagagaat gagaaacagc
120
cgggacaggc tcctaaacag gtaccgccag ctgngaagca gtgggccagg gaattctcag
180
aacagcttc tagttcaaga ggtgatggaa gaagagtggc atgccttgca gtcagtggag
240
aattgtccag aagacttggc tcagctggag gagctgatag acatggctgt gctggagggaa
300
attcaacagg agctgatcaa ccaagagcag tccatcatca gcgagttatga gaagagcttg
360

```

cagtttcatg aaaagtgtct cagcatcatg ctggctgagt gggaggcaaa cccactcatc
420
tgtcctgtat gtacaaagcc tgtgatactt gggctgtat cctctagagc cagcttggac
480
tcacatcatt ctatgggtt gaagacaact cattccctct gaggagcctt gtacatacaa
540
gcctttatt tataacttat tttgtattga aactttaaa caatactgaa gaaaaaaaaa
600
cttttccgac atctgttctt ggtctttgt gacgcaggtt gaagggggag gaatagaaaa
660
agacaaaactg cttggagga gataaaccaa tttatgtct atcatgttat aaaaaaatct
720
agaaaataata gattgtaca gaaaaaaaaatg ataataaaatg agaacacaaa acatata
777

<210> 5954

<211> 152

<212> PRT

<213> Homo sapiens

<400> 5954

Phe Arg His Glu Ala Arg Ser Arg Lys Arg Ser Pro Arg Arg Ser Leu
1 5 10 15
Tyr Lys Leu Val Gly Ser Pro Pro Trp Lys Glu Ala Phe Arg Gln Arg
20 25 30
Cys Leu Glu Arg Met Arg Asn Ser Arg Asp Arg Leu Leu Asn Arg Tyr
35 40 45
Arg Gln Leu Xaa Ser Ser Gly Pro Gly Asn Ser Gln Asn Ser Phe Leu
50 55 60
Val Gln Glu Val Met Glu Glu Glu Trp Asn Ala Leu Gln Ser Val Glu
65 70 75 80
Asn Cys Pro Glu Asp Leu Ala Gln Leu Glu Glu Leu Ile Asp Met Ala
85 90 95
Val Leu Glu Glu Ile Gln Gln Glu Leu Ile Asn Gln Glu Gln Ser Ile
100 105 110
Ile Ser Glu Tyr Glu Lys Ser Leu Gln Phe Asp Glu Lys Cys Leu Ser
115 120 125
Ile Met Leu Ala Glu Trp Glu Ala Asn Pro Leu Ile Cys Pro Val Cys
130 135 140
Thr Lys Pro Val Ile Leu Gly Leu
145 150

<210> 5955

<211> 1459

<212> DNA

<213> Homo sapiens

<400> 5955

nncaatttggaa ctgcatttac aaacacatgt gctatgtaca tcctcagtgc acctgccagc
60
agatatatctg gagggctcat gaggtaattt agtccaagat ttaaagccct gcccccaagg
120
gctcagcctg tgatctgtat ccactcagca tgcacttggg cagatgattt gtctgtgtgc
180

tacccttccc cccatattac catacatatg cacggcgaaa ccagcagcga cggttagcagc
240
agcatggccg cgatctatgg gggtagatgg gggggaggca cacgatccga ggtcctttta
300
gtctcagagg atggaaatg cctggcagaa gcagatggac tgagcacaaa ccactggctg
360
atcgggacag acaagtgtgt ggagaggatc aatgagatgg tgaacagggc caaacggaaa
420
gcaggggtgg atcctctgg accgctgcga agcttgggcc tatctctgag cggtggggac
480
caggaggacg cggggaggat cctgatcgag gagctgaggg accgatttcc ctacctgagt
540
gaaagctact taatcaccac cgatgccgccc ggctccatcg ccacagctac accggatgg
600
ggagttgtgc tcataatctgg aacaggctcc aactgcaggg tcataaacc tcatggctcc
660
ccctcagcct actggatcgc acaccaagca gtgaaaatag tgtttgactc cattgacaac
720
780
ctagaggcgg ctcctcatga tatcggtac gtcaaaccagg ccatgttcca ctatccag
840
gtgccagatc ggcttagggat actcaactcac ctgtataggg actttgataa atgcaggatt
900
960
gctgggtttt gccggaaaat tgcagaagg gctcagcagg gagacccct ttcccgctat
1020
atcttcagga aggctggggaa gatgctgggc agacacatcg tagcagtgtt gcccgagatt
1080
aagagctggg agctgctgaa ggaaggtttt ctttggcgc tgacccaggg cagagagatc
1140
caggctcaga acttcttctc cagttcacc ctgatgaagc tgaggcactc ctccgctctg
1200
1260
ggtggggcca gcctaggggc caggcacatc gggcacctcc tccccatggc ctatagcgcc
1320
aatgccattg ctttcttattc ctacacccctt tcctaggggg ctggtcccggtt ctccacccccc
1380
tccaaagctca gtggacactg ggtctgaaag gaaggagtct ttgtttctt ttctcccttt
1440
tacaaaaaca aacatagaag aaaataaaatg cactttatcc actccccaaa aaaaaaaaaaaa
1459
aaaaaaaaaaa aagtcgacg

<210> 5956

<211> 431

<212> PRT

<213> Homo sapiens

<400> 5956

Xaa	Asn	Trp	Thr	Ala	Leu	Ser	Asn	Thr	Cys	Ala	Met	Tyr	Ile	Leu	Ser
1	5				10				15						
Ala	Pro	Ala	Ser	Arg	Tyr	Pro	Gly	Gly	Leu	Met	Ser	Glu	Phe	Ser	Pro

	20	25	30													
Arg	Phe	Lys	Ala	Leu	Pro	Pro	Gly	Ala	Gln	Pro	Val	Ile	Cys	Ile	His	
		35		40								45				
Ser	Ala	Cys	Thr	Trp	Ala	Asp	Asp	Leu	Ser	Val	Cys	Tyr	Pro	Ser	Pro	
		50		55							60					
His	Ile	Thr	Ile	His	Met	His	Gly	Gly	Thr	Ser	Ser	Asp	Gly	Ser	Ser	
		65		70					75			80				
Ser	Met	Ala	Ala	Ile	Tyr	Gly	Gly	Val	Glu	Gly	Gly	Thr	Arg	Ser		
													85		95	
Glu	Val	Leu	Leu	Val	Ser	Glu	Asp	Gly	Lys	Ile	Leu	Ala	Glu	Ala	Asp	
										100	105		110			
Gly	Leu	Ser	Thr	Asn	His	Trp	Leu	Ile	Gly	Thr	Asp	Lys	Cys	Val	Glu	
										115	120		125			
Arg	Ile	Asn	Glu	Met	Val	Asn	Arg	Ala	Lys	Arg	Lys	Ala	Gly	Val	Asp	
										130	135		140			
Pro	Leu	Val	Pro	Leu	Arg	Ser	Leu	Gly	Leu	Ser	Leu	Ser	Gly	Gly	Asp	
										145	150		155		160	
Gln	Glu	Asp	Ala	Gly	Arg	Ile	Leu	Ile	Glu	Glu	Leu	Arg	Asp	Arg	Phe	
										165		170		175		
Pro	Tyr	Leu	Ser	Glu	Ser	Tyr	Leu	Ile	Thr	Thr	Asp	Ala	Ala	Gly	Ser	
										180	185		190			
Ile	Ala	Thr	Ala	Thr	Pro	Asp	Gly	Gly	Val	Val	Leu	Ile	Ser	Gly	Thr	
										195	200		205			
Gly	Ser	Asn	Cys	Arg	Leu	Ile	Asn	Pro	Asp	Gly	Ser	Glu	Ser	Gly	Cys	
										210	215		220			
Gly	Gly	Trp	Gly	His	Met	Met	Gly	Asp	Glu	Gly	Ser	Ala	Leu	Ser	Ala	
										225	230		235		240	
Pro	Ser	Ala	Tyr	Trp	Ile	Ala	His	Gln	Ala	Val	Lys	Ile	Val	Phe	Asp	
										245	250		255			
Ser	Ile	Asp	Asn	Leu	Glu	Ala	Ala	Pro	His	Asp	Ile	Gly	Tyr	Val	Lys	
										260	265		270			
Gln	Ala	Ala	Met	Phe	His	Tyr	Phe	Gln	Val	Pro	Asp	Arg	Leu	Gly	Ile	Leu
										275	280		285			
Thr	His	Leu	Tyr	Arg	Asp	Phe	Asp	Lys	Cys	Arg	Phe	Ala	Gly	Phe	Cys	
										290	295		300			
Arg	Lys	Ile	Ala	Glu	Gly	Ala	Gln	Gln	Gly	Asp	Pro	Leu	Ser	Arg	Tyr	
										305	310		315		320	
Ile	Phe	Arg	Lys	Ala	Gly	Glu	Met	Leu	Gly	Arg	His	Ile	Val	Ala	Val	
										325	330		335			
Leu	Pro	Glu	Ile	Asp	Pro	Val	Leu	Phe	Gln	Gly	Lys	Ile	Gly	Leu	Pro	
										340	345		350			
Ile	Leu	Cys	Val	Gly	Ser	Val	Trp	Lys	Ser	Trp	Glu	Leu	Leu	Lys	Glu	
										355	360		365			
Gly	Phe	Leu	Leu	Ala	Leu	Thr	Gln	Gly	Arg	Glu	Ile	Gln	Ala	Gln	Asn	
										370	375		380			
Phe	Phe	Ser	Ser	Phe	Thr	Leu	Met	Lys	Leu	Arg	His	Ser	Ser	Ala	Leu	
										385	390		395		400	
Gly	Gly	Ala	Ser	Leu	Gly	Ala	Arg	His	Ile	Gly	His	Leu	Leu	Pro	Met	
										405	410		415			
Asp	Tyr	Ser	Ala	Asn	Ala	Ile	Ala	Phe	Tyr	Ser	Tyr	Thr	Phe	Ser		
										420	425		430			

<210> 5957
<211> 855

<212> DNA
<213> Homo sapiens

<400> 5957
atggcggagt cgttgaggtc tccgcgccgc tccctgtaca aactggtggg ctcgcccct
60 tggaaaagagg ctttccggca gagatgcctg gagagaatga gaaacagccg ggacaggctc
120 ctaaacaggt accgcccaggc tggaaagcagt gggccaggga attctcagaa cagctttcta
180 gttcaagagg tgatggaaga agagtgaaat gctttgcagt cagtggagaa ttgtccagaa
240 gacttggctc agctggagga gctgatagac atggctgtgc tggaggaaat tcaacaggag
300 ctgatcaacc aaggcctgtg atacttgggc tgtgatcctc tagagccagc ttggactcac
360 atcattctat ggggttgaag acaactcatt ccctctgagg agccttgtac atacaagcct
420 ttatattata acttattttg tattgaaact tttaaacaat actgaagaaa aaaaaacttt
480 tccgacatct gttcttggtc ttttgtgaca caggttgaag ggggaggaat agaaaaagac
540 aaactgcctt ggaggagata aaccaatttt atgtctatca tgttatacaa aaatctagaa
600 ataatagatt tgtacagaaa aaaatgataa taaatgagag cacaaaacat ataatttaaa
660 tctggtatTT tttccccat gatatttagga tgataatcat ttcaaagcac atgtctagct
720 tcagagtagg atttgttcac tggccaaagc ctgccatgaa actatggctt tcagcatctg
780 tctgctctac tggctttga caaaaactctt gaggtcttca agaaaagtaa tgtactcctg
840 gtgctccagg gctgt
855

<210> 5958
<211> 106
<212> PRT
<213> Homo sapiens

<400> 5958
Met Ala Glu Ser Leu Arg Ser Pro Arg Arg Ser Leu Tyr Lys Leu Val
1 5 10 15
Gly Ser Pro Pro Trp Lys Glu Ala Phe Arg Gln Arg Cys Leu Glu Arg
20 25 30
Met Arg Asn Ser Arg Asp Arg Leu Leu Asn Arg Tyr Arg Gln Ala Gly
35 40 45
Ser Ser Gly Pro Gly Asn Ser Gln Asn Ser Phe Leu Val Gln Glu Val
50 55 60
Met Glu Glu Glu Trp Asn Ala Leu Gln Ser Val Glu Asn Cys Pro Glu
65 70 75 80
Asp Leu Ala Gln Leu Glu Leu Ile Asp Met Ala Val Leu Glu Glu
85 90 95
Ile Gln Gln Glu Leu Ile Asn Gln Gly Leu

100

105

```

<210> 5959
<211> 830
<212> DNA
<213> Homo sapiens

<400> 5959
gatgagaaga ttcagccaat attagacaaa gtaggctctt tggtaaacgc aaggcttcaa
60
ttttctcggg gccttatgtat gctggttctt gagaagtttag ccactgatat tccttgctgt
120
ctatatgtatg acaatctctt ctgtcatttg gtggatgaag tactcttggtt tgaaaggag
180
ctacacagtg ttcatggcta tcctggcact tttgctaatt gtatgcataat tctatcagag
240
gaaacacctgtt ttcaaagatg ggtgacgggg gagagaaaaat ttgctttca aaaaatggac
300
tcaatgctt ctcagaagc tgcctgggtt tcgcaatata agatatacac tgacgtggat
360
gaaatgaaag ttccagattt tgcagaaact tttatgactc tactcttgggt tataactgac
420
aggtaaaaaa atcttcccac agttcccgaa aagcttcagt tcctggagtt acagaaggac
480
tttagtagatg attttaggat acgattaaca caagtgtatga aagaagagac tagagttcc
540
cttggctttc gatactgtgc aattcttaat gctgtgaact acatctcaac agtactagca
600
gattgggctg acaatgtttt ctttctacaaa cttcaacagg ctgcactggaa ggtgtttgc
660
gagaataata ctctgagtaa attgcagcta ggacagctag cctctatggaa gagctctgtc
720
tttgatgaca tgattaaacctt cttagaacgt ttaaagcatg atatgttgc acggtaagta
780
gaccacgttt ttagagaagt taaagatgct gcaaaattgt ataaaaaaaga
830

<210> 5960
<211> 251
<212> PRT
<213> Homo sapiens

<400> 5960
Met Met Leu Val Leu Glu Lys Leu Ala Thr Asp Ile Pro Cys Leu Leu
1 5 10 15
Tyr Asp Asp Asn Leu Phe Cys His Leu Val Asp Glu Val Leu Leu Phe
20 25 30
Glu Arg Glu Leu His Ser Val His Gly Tyr Pro Gly Thr Phe Ala Asn
35 40 45
Cys Met His Ile Leu Ser Glu Glu Thr Cys Phe Gln Arg Trp Val Thr
50 55 60
Gly Glu Arg Lys Phe Ala Leu Gln Lys Met Asp Ser Met Leu Ser Ser
55 70 75 80
Glu Ala Ala Trp Val Ser Gln Tyr Lys Asp Ile Thr Asp Val Asp Glu

```

85	90	95
Met Lys Val Pro Asp Cys Ala Glu Thr Phe Met Thr Leu Leu Leu Val		
100	105	110
Ile Thr Asp Arg Tyr Lys Asn Leu Pro Thr Ala Ser Arg Lys Leu Gln		
115	120	125
Phe Leu Glu Leu Gln Lys Asp Leu Val Asp Asp Phe Arg Ile Arg Leu		
130	135	140
Thr Gln Val Met Lys Glu Glu Thr Arg Ala Ser Leu Gly Phe Arg Tyr		
145	150	155
160		
Cys Ala Ile Leu Asn Ala Val Asn Tyr Ile Ser Thr Val Leu Ala Asp		
165	170	175
Trp Ala Asp Asn Val Phe Phe Leu Gln Leu Gln Ala Ala Leu Glu		
180	185	190
Val Phe Ala Glu Asn Asn Thr Leu Ser Lys Leu Gln Leu Gly Gln Leu		
195	200	205
Ala Ser Met Glu Ser Ser Val Phe Asp Asp Met Ile Asn Leu Leu Glu		
210	215	220
Arg Leu Lys His Asp Met Leu Thr Arg Gln Val Asp His Val Phe Arg		
225	230	235
240		
Glu Val Lys Asp Ala Ala Lys Leu Tyr Lys Lys		
245	250	

<210> 5961

<211> 585

<212> DNA

<213> Homo sapiens

<400> 5961

gctcgggct gcagtgcgt ctaatggtgc ctgtgaataa ccactgcatt cagcctggc
 60
 aatgaagcga gacccgtct ctaaaaaaaaaa aattgagggg tcaaagagga tgccaaacctt
 120
 aatttagagac tgagacaggg cagggtgccg aggtgtctgc atgcgtttca tgtggatgcc
 180
 cgtgtctatt ctggcctgct cctggggcccc ctccccactc agccctggct gatgagaatg
 240
 ggacaggac tcccttctcg tgtccctgtg cagcgtcggc ccaggaggta gcagagcagt
 300
 atatgcacat ctgggtgtgc ctcctgcat gtccccacac atctgtcatt cctgtcttg
 360
 cacacctatg tgactcccgc atgtttgtgt ccttatgtgt cccatgcatttgc
 420
 gacccctggcgt gttctcgct gtctgtgtgc ggccagtcct gccttcactc tctcatgggt
 480
 ggccctggca gcatgtctgg ctccccagca ggtgagctca ggagataaga tggaagatgc
 540
 aacagccaat ggtcaagaag actccaaggc cccagatggg tccac
 585

<210> 5962

<211> 114

<212> PRT

<213> Homo sapiens

<400> 5962

Met Cys Gly Asp Met Gln Glu Gly Thr Pro Arg Cys Ala Tyr Thr Ala
 1 5 10 15
 Leu Leu Pro Pro Gly Pro Thr Leu His Arg Asp Thr Arg Arg Glu Ser
 20 25 30
 Leu Ser His Ser His Gln Pro Gly Leu Ser Gly Glu Gly Ala Gln Glu
 35 40 45
 Gln Ala Arg Ile Asp Thr Gly Ile His Met Lys Arg Met Gln Thr Pro
 50 55 60
 Arg His Pro Ala Leu Ser Gln Ser Leu Ile Lys Phe Gly Ile Leu Phe
 65 70 75 80
 Asp Pro Ser Ile Phe Phe Leu Glu Thr Gly Ser Arg Phe Ile Ala Gln
 85 90 95
 Ala Glu Cys Ser Gly Tyr Ser Gln Ala Pro Leu Glu Arg Thr Ala Ala
 100 105 110
 Pro Ser

<210> 5963

<211> 1288

<212> DNA

<213> Homo sapiens

<400> 5963

atggggctgt ttgaaaagac ccaggagaag ccgcggaaag aactggtcaa tgagtggtca
 60
 ttgaagataa gaaaggaaat gagagttttt gacaggcaaa taagggatat ccaaagagaa
 120
 gaagaaaaag taaaacgatc tgtgaaagat gctgccaaga agggccagaa ggatgtctgc
 180
 atagttctgg ccaaggagat gatcaggatc aggaaggctg tgagcaagct gtatgcattc
 240
 aaagcacaca tgaactcagt gctcatgggg atgaagaacc agctcgccgt cttgcgagtg
 300
 gctggttccc tgcagaagag cacagaagtg atgaaggcca tgcaaagtct tgtgaagatt
 360
 ccagagattc aggccaccat gagggagttt tccaaagaaa tgatgaaggc tgggatcata
 420
 gaggagatgt tagaggacac ttttggaaagc atggacgatc aggaagaaat ggaggaagaa
 480
 gcagaaatgg aaattgacag aattctttt gaaattacag cagggccctt gggcaaagca
 540
 cccagtaaag tgactgatgc cttccagag ccagaacatc caggagcgat ggctgcctca
 600
 gaggatgagg aggaggagga agaggctctg gaggccatgc agtccccgtt ggccacactc
 660
 cgcagctagg ggctgcctac cccgctgggt gtgcacacac tcctctcaag agctgccatt
 720
 ttatgtgtct cttgcactac acctctgttg tgaggactac cattttggag aaggttctgt
 780
 ttgtctcttt tcattctctg cccaggtttt gggatcgcaa agggattgtt cttataaaag
 840
 tggcataaat aaatgcata ttttaggag tatagacaga tatatcttat tgtggggagg
 900

ggaaagaaaat ccatctgctc atgaaggact tctgaaaata tagtgattg cctgaatgtc
 960
 gaagactcta ctttgtcta taaaacacta tataaatgaa ttttaataaa ttttgcttc
 1020
 agcaacttggc cccattgttag attgccctgt gcagtaaact ttcaaggtgt cagctgcccc
 1080
 agattgcttc atttgctggg tgtggaaaga gttgctatgg ccaggcatat gggatttgga
 1140
 agctcagcag aagtgacttc tgctctgtgg ttgctgtcc ccggctttca cagacatggt
 1200
 atggcagcca ttctttatc tatttaacca agaggatgct gggaaattgt gctgcttgc
 1260
 ctgttggctg gtggctgcat tatgtccg
 1288

<210> 5964
<211> 222
<212> PRT
<213> Homo sapiens

<400> 5964
 Met Gly Leu Phe Gly Lys Thr Gln Glu Lys Pro Pro Lys Glu Leu Val
 1 5 10 15
 Asn Glu Trp Ser Leu Lys Ile Arg Lys Glu Met Arg Val Val Asp Arg
 20 25 30
 Gln Ile Arg Asp Ile Gln Arg Glu Glu Glu Lys Val Lys Arg Ser Val
 35 40 45
 Lys Asp Ala Ala Lys Lys Gly Gln Lys Asp Val Cys Ile Val Leu Ala
 50 55 60
 Lys Glu Met Ile Arg Ser Arg Lys Ala Val Ser Lys Leu Tyr Ala Ser
 65 70 75 80
 Lys Ala His Met Asn Ser Val Leu Met Gly Met Lys Asn Gln Leu Ala
 85 90 95
 Val Leu Arg Val Ala Gly Ser Leu Gln Lys Ser Thr Glu Val Met Lys
 100 105 110
 Ala Met Gln Ser Leu Val Lys Ile Pro Glu Ile Gln Ala Thr Met Arg
 115 120 125
 Glu Leu Ser Lys Glu Met Met Lys Ala Gly Ile Ile Glu Glu Met Leu
 130 135 140
 Glu Asp Thr Phe Glu Ser Met Asp Asp Gln Glu Glu Met Glu Glu Glu
 145 150 155 160
 Ala Glu Met Glu Ile Asp Arg Ile Leu Phe Glu Ile Thr Ala Gly Ala
 165 170 175
 Leu Gly Lys Ala Pro Ser Lys Val Thr Asp Ala Leu Pro Glu Pro Glu
 180 185 190
 Pro Pro Gly Ala Met Ala Ala Ser Glu Asp Glu Glu Glu Glu Glu Glu
 195 200 205
 Ala Leu Glu Ala Met Gln Ser Arg Leu Ala Thr Leu Arg Ser
 210 215 220

<210> 5965
<211> 1011
<212> DNA
<213> Homo sapiens

<400> 5965
 gggAACGGGT ctgtggctt tgtctccgc gaagaggaga tggcggagtc gttgaggct
 60
 ccgcggcgct ccctgtacaa actggtgccc tcgccccctt ggaaagaggg tttccggcag
 120
 agatgcctgg agagaatgag aaacagccgg gacaggctcc taaacaggtt cgcggaggct
 180
 ggaaggcagtggccaggaa ttctcagaac agctttctag ttcaagaggtt gatgaaagaa
 240
 gagtggaatg ctttgcagnn tcagtgggnag aattgtccag aagacttggc tcagttggag
 300
 gagctgatag acatggctgt gctggaggaa attcaacagg agctgatcaa ccaagagcag
 360
 tccatcatca gcgagttatga gaagagctt cagtttgcgtt aaaagtgtct cagcatcatg
 420
 ctggctgagt gggaggcaaa cccactcatc tgccctgtat gtacaaaagta caacctgaga
 480
 atcacaagcg gtgtgggtgt gtgtcagtgtt ggcctgtcca tcccatctca ttcttctgag
 540
 ttgacagagc agaagcttcg tgccctgttta gagggttagta taaatgagca cagtgcacat
 600
 tgcctccaca cacctgaatt ttcaagtcaactt ggaggaacag aagaaaaagtc cagtcttc
 660
 atgagctgtc tggcctgtga tacttggct gtgatcctt agagccagct tggactcaca
 720
 tcattctatg ggggtgaaga caactcatc cctctgagga gccttgcata tacaaggcctt
 780
 ttatttataa cttattttgtt attgaaactt ttaaacaata ctgaagaaaa aaaaactttt
 840
 ccgacatctg ttcttggctt tttgtgacgc aggttgaagg gggaggaata gaaaaagaca
 900
 aactgcctt gaggagataa accaatttttgtt tgcattatcat gttatacaaa aatctagaaa
 960
 taatagattt gtacagaaaaaa aaatgataat aaatgagaac acaaaacata t
 1011

<210> 5966
 <211> 233
 <212> PRT
 <213> Homo sapiens

<400> 5966
 Gly Asn Gly Ser Cys Gly Phe Val Ser Arg Glu Glu Glu Met Ala Glu
 1 5 10 15
 Ser Leu Arg Ser Pro Arg Arg Ser Leu Tyr Lys Leu Val Gly Ser Pro
 20 25 30
 Pro Trp Lys Glu Ala Phe Arg Gln Arg Cys Leu Glu Arg Met Arg Asn
 35 40 45
 Ser Arg Asp Arg Leu Leu Asn Arg Tyr Arg Gln Ala Gly Ser Ser Gly
 50 55 60
 Pro Gly Asn Ser Gln Asn Ser Phe Leu Val Gln Glu Val Met Glu Glu
 65 70 75 80
 Glu Trp Asn Ala Leu Gln Xaa Gln Trp Xaa Asn Cys Pro Glu Asp Leu

85 90 95
Ala Gln Leu Glu Glu Leu Ile Asp Met Ala Val Leu Glu Glu Ile Gln
100 105 110
Gln Glu Leu Ile Asn Gln Glu Gln Ser Ile Ile Ser Glu Tyr Glu Lys
115 120 125
Ser Leu Gln Phe Asp Glu Lys Cys Leu Ser Ile Met Leu Ala Glu Trp
130 135 140
Glu Ala Asn Pro Leu Ile Cys Pro Val Cys Thr Lys Tyr Asn Leu Arg
145 150 155 160
Ile Thr Ser Gly Val Val Val Cys Gln Cys Gly Leu Ser Ile Pro Ser
165 170 175
His Ser Ser Glu Leu Thr Glu Gln Lys Leu Arg Ala Cys Leu Glu Gly
180 185 190
Ser Ile Asn Glu His Ser Ala His Cys Pro His Thr Pro Glu Phe Ser
195 200 205
Val Thr Gly Gly Thr Glu Glu Lys Ser Ser Leu Leu Met Ser Cys Leu
210 215 220
Ala Cys Asp Thr Trp Ala Val Ile Leu
225 230

<210> 5967

<211> 1806

<212> DNA

<213> Homo sapiens

<400> 5967
natttttaat ctcttttaaa aaaactcaat ttttttttcc acttactgat taaaatcttga
60 gtcttttgc tccagtggt cagtgatttt tcagcagaaa atcttcctc tccattgttt
120 tgtgcttttgc ttgctaggca gtcaacagca gggctactaa agcacttcta atttagacaa
180 atcttttcc tctatttaga aatggatttc aatggtgttc agtttgggtt cagaaaccta
240 ctgaaagtga gcatgtttt gaacacatta acacccaatg tctacgtggc cctaacaaggc
300 acttcctcac taatatcagg gcttattttg atatttgaat ggtggatttt tcgcaaatac
360 ggaacttcat tcattgaaca agtctcagta agccacttgc gcccccttct gggaggggtt
420 gacaacaact cttccaacaa ttcttaattcc agtaacgggg actcagattc caataggcaa
480 agtgtctcag aatgcaaagt atggcgaaat ccactaaatt tatttagggg tgctgaatac
540 aatcggtata cttgggtgac aggacgagag cctcttactt actatgacat gaatctct
600 gcccacacc accagacatt ctttacttgt gactcggacc atctgcgtcc cgccatgc
660 ataatgcaga aagcctggag agagagaaac ccccaagcta ggatttctgc agctcatgaa
720 gccttggaga taaaatgagac gagacaccaa tgtctggtg tacatcaaaa gaaggctagc
780 aatgtgtgcc agaagactcg ggaggaccag ggaagcaaag cccttctgga actacaagca
840

tatgctgatg ttcagggagt cttagcaaag tatgatgata taagcttacc aaagtcagca
 900
 acaatatgtc acacagctgc tttgctcaaa gcaagagctg tctctgacaa attctctcc
 960
 gaggctgcat ctcggcgaaa gctgagcaca gcagagatga atgcagtaga ggccattcat
 1020
 agagctgtgg aattcaatcc tcatgtgccaa aataacctac tagaaatgaa aagcttaatc
 1080
 ctacccccag aacatatcct gaagagagga gacagtgaag caatagcata tgcattctt
 1140
 catcttgcac actggaagag agtggaaaggg gctttgaatc ttttgcattt tacgtggaa
 1200
 ggcacttttc ggatgatccc ttatcccttg gaaaaggggc acctatttta tccttaccca
 1260
 atctgtacag aaacagcaga ccgagagctg cttccatctt tccatgaagt ctcatgttac
 1320
 ccaaagaagg agctccctt ctttattctc tttactgctg gattatgttc cttcacagcc
 1380
 atgctggccc tcctgacaca tcagttcccg gaacttatgg gggcttcgc aaaagctgtg
 1440
 agtgtttgcc tagagggagg ctttgggaa tggatgggaa aagccaaggg cataaaagca
 1500
 gcgtgagaga aatggggttt ctttacagaa atgggtacga gcctgcaaag atcattgtc
 1560
 accatTTAAT tttcatgatc gtcaatggaa tcaaagcatt aagggtcaaa tgagaaagt
 1620
 caggttGTTA ctgcatgcct tgcctcattt cacaacaaat tcttagcagt ttccaaaaaa
 1680
 tgcaggaggt ccaaaaggat ggaatgattt aggaaatctt agcaaatgaa aatgtgtgg
 1740
 aagttaactcg gtttctgta aattgaatga cattatttcc aatcggttggaa tattgtgggt
 1800
 ctttcc
 1806

<210> 5968
 <211> 434
 <212> PRT
 <213> Homo sapiens

<400> 5968
 Met Asp Phe Asn Gly Val Gln Phe Val Cys Arg Asn Leu Leu Lys Val
 1 5 10 15
 Ser Met Phe Leu Asn Thr Leu Thr Pro Lys Phe Tyr Val Ala Leu Thr
 20 25 30
 Gly Thr Ser Ser Leu Ile Ser Gly Leu Ile Leu Ile Phe Glu Trp Trp
 35 40 45
 Tyr Phe Arg Lys Tyr Gly Thr Ser Phe Ile Glu Gln Val Ser Val Ser
 50 55 60
 His Leu Arg Pro Leu Leu Gly Gly Val Asp Asn Asn Ser Ser Asn Asn
 65 70 75 80
 Ser Asn Ser Ser Asn Gly Asp Ser Asp Ser Asn Arg Gln Ser Val Ser
 85 90 95
 Glu Cys Lys Val Trp Arg Asn Pro Leu Asn Leu Phe Arg Gly Ala Glu

100	105	110
Tyr Asn Arg Tyr Thr Trp Val Thr Gly Arg Glu Pro Leu Thr Tyr Tyr		
115	120	125
Asp Met Asn Leu Ser Ala Gln Asp His Gln Thr Phe Phe Thr Cys Asp		
130	135	140
Ser Asp His Leu Arg Pro Ala Asp Ala Ile Met Gln Lys Ala Trp Arg		
145	150	155
Glu Arg Asn Pro Gln Ala Arg Ile Ser Ala Ala His Glu Ala Leu Glu		160
165	170	175
Ile Asn Glu Thr Arg His Gln Cys Leu Gly Val His Gln Lys Lys Ala		
180	185	190
Ser Asn Val Cys Gln Lys Thr Arg Glu Asp Gln Gly Ser Lys Ala Leu		
195	200	205
Leu Glu Leu Gln Ala Tyr Ala Asp Val Gln Ala Val Leu Ala Lys Tyr		
210	215	220
Asp Asp Ile Ser Leu Pro Lys Ser Ala Thr Ile Cys Tyr Thr Ala Ala		
225	230	235
Leu Leu Lys Ala Arg Ala Val Ser Asp Lys Phe Ser Pro Glu Ala Ala		240
245	250	255
Ser Arg Arg Gly Leu Ser Thr Ala Glu Met Asn Ala Val Glu Ala Ile		
260	265	270
His Arg Ala Val Glu Phe Asn Pro His Val Pro Lys Tyr Leu Leu Glu		
275	280	285
Met Lys Ser Leu Ile Leu Pro Pro Glu His Ile Leu Lys Arg Gly Asp		
290	295	300
Ser Glu Ala Ile Ala Tyr Ala Phe Phe His Leu Ala His Trp Lys Arg		
305	310	315
Val Glu Gly Ala Leu Asn Leu Leu His Cys Thr Trp Glu Gly Thr Phe		320
325	330	335
Arg Met Ile Pro Tyr Pro Leu Glu Lys His Leu Phe Tyr Pro Tyr		
340	345	350
Pro Ile Cys Thr Glu Thr Ala Asp Arg Glu Leu Leu Pro Ser Phe His		
355	360	365
Glu Val Ser Val Tyr Pro Lys Lys Glu Leu Pro Phe Phe Ile Leu Phe		
370	375	380
Thr Ala Gly Leu Cys Ser Phe Thr Ala Met Leu Ala Leu Leu Thr His		
385	390	395
Gln Phe Pro Glu Leu Met Gly Val Phe Ala Lys Ala Val Ser Val Cys		400
405	410	415
Leu Glu Gly Leu Gly Glu Trp Met Gly Lys Ala Lys Gly Ile Lys		
420	425	430
Ala Ala		

<210> 5969

<211> 429

<212> DNA

<213> Homo sapiens

<400> 5969

cggccgccccg tgtgtgacgt cagggagctg caggcccagg aagccttgca gaacggccag
 60 ctggggcgccg gggaaagggtt cccggatctg cagcctgggg tcttggccag ccaggccatg
 120

attgagaaga tcctgagcga ggaccccccgg tggcaagatg ccaacttcgt gctgggcage
 180
 tacaagacgg agcagtgccca gaagccgcca cgcctgtgcc gccaggggcta tgcgtgcccc
 240
 cactaccaca atagccggga caggcggcgc aaccccccggc ggttccagta caggtccacg
 300
 ccctgccccca gcgtgaagca cggggatgag tggggggaaac cctcacgctg cgatggcgcc
 360
 gacggctgcc agtattgccca ctcccgacg gagcagcagt tccatcccga gatctacaaa
 420
 tctacaaaa
 429

<210> 5970
 <211> 143
 <212> PRT
 <213> Homo sapiens

<400> 5970
 Arg Pro Pro Val Cys Asp Val Arg Glu Leu Gln Ala Gln Glu Ala Leu
 1 5 10 15
 Gln Asn Gly Gln Leu Gly Gly Glu Gly Val Pro Asp Leu Gln Pro
 20 25 30
 Gly Val Leu Ala Ser Gln Ala Met Ile Glu Lys Ile Leu Ser Glu Asp
 35 40 45
 Pro Arg Trp Gln Asp Ala Asn Phe Val Leu Gly Ser Tyr Lys Thr Glu
 50 55 60
 Gln Cys Pro Lys Pro Pro Arg Leu Cys Arg Gln Gly Tyr Ala Cys Pro
 65 70 75 80
 His Tyr His Asn Ser Arg Asp Arg Arg Arg Asn Pro Arg Arg Phe Gln
 85 90 95
 Tyr Arg Ser Thr Pro Cys Pro Ser Val Lys His Gly Asp Glu Trp Gly
 100 105 110
 Glu Pro Ser Arg Cys Asp Gly Gly Asp Gly Cys Gln Tyr Cys His Ser
 115 120 125
 Arg Thr Glu Gln Gln Phe His Pro Glu Ile Tyr Lys Ser Thr Lys
 130 135 140

<210> 5971
 <211> 565
 <212> DNA
 <213> Homo sapiens

<400> 5971
 gcgcgcccat ttccggagagt tccctcagcc ccaggactct ggatgttagcc gttttcatgc
 60
 tgtgaatagc acagtcttcc ctttcatgtg gcactgaagt taaaatgcattt agagctcttt
 120
 catgtccctt aggtcagcta agcccacatc agtgtccaaa taggcaacat ccctatttta
 180
 tagatggtca tccccatttt agagatagct ccctttata tccccatttt acaggtgaag
 240
 gaatttgggc acagaagggtt aggtcacttc tgcaagatga ccagctgaac caaaatttca
 300

gggcttcaaa caccaaatgt gttccttgt cttccgttcc ccacttgctt cccagaggct
360
cagcaagtag cctctggcca ctgagcatcc tcccggccac tttgctccct gcctcctgat
420
cccaggactg tggccgtgga tgccagagcg aggatgtgaa tcctgttggg ttctgaagcc
480
cacacctacc ctcagccttg aagctgcagc aatggctgct tccagatgag cacaccctcg
540
gggtgcangc gtccagtgtc acgat
565

<210> 5972

<211> 104

<212> PRT

<213> Homo sapiens

<400> 5972
Met His Arg Ala Leu Ser Cys Pro Leu Gly Gln Leu Ser Pro His Gln
1 5 10 15
Cys Pro Asn Arg Gln His Pro Tyr Phe Ile Asp Gly His Pro His Phe
20 25 30
Arg Asp Ser Ser Leu Leu Tyr Pro His Phe Thr Gly Glu Gly Ile Glu
35 40 45
Ala Gln Lys Val Arg Ser Leu Leu Gln Asp Asp Gln Leu Asn Gln Asn
50 55 60
Phe Arg Ala Ser Asn Thr Lys Cys Val Pro Leu Ser Ser Val Ser His
65 70 75 80
Leu Leu Pro Arg Gly Ser Ala Ser Ser Leu Trp Pro Leu Ser Ile Leu
85 90 95
Pro Pro Thr Leu Leu Pro Ala Ser
100

<210> 5973

<211> 797

<212> DNA

<213> Homo sapiens

<400> 5973
ggccccaggg gcggcttcc caacactggt cgcaagtatt gttggataa cggctagaga
60
cgccccagtga gtttagcatgg agggcagtgg gaccggaaaa agacgtggaa aagctgcgaa
120
aacgagcctt cgaatcatgg acgcgcgggc ccagctcctc ctccgagttc ctcatccgg
180
cccggtcactc acatccgggg ccctcactca catccggac cctcatccgg ggctctcacc
240
cacatccggg accctcatgc ctggcggag gagggggggc ctttcattcg ggaccctgc
300
actccgtcgc cgaaagtgcc accgagaagc gccggcctcg gggctgtcta cagcggcccg
360
ggagagggctg tggtgccccc gagcgcgagt gtgttaggtga caggacagcg gccaggcccg
420
ccccctccccct cggtgagtac ccggaagccg ttttggggtc gcagcgggggt ggcagcttgt
480

tttgccttca cgggagtaga aggaggcggc gtccgccgcg gcccacggta gttcgcttcc
540
ccgagagtgc gcggaggccc gggtgcgagg agggcctgtt tctcttcage cctggttcat
600
tcacctcgcg gaccgagggc ccgcccgtcag gagccggcga ccgtccccctg gtgcgagctg
660
gtctgtatgt cctcactggt cctttggga ctttgcccttgc gcctcggtgc tctcaggatt
720
ccggaaaaag gccggtcttag ctggtctgag tttagcgaagg gcctgacccc aaaagtggat
780
tttcctcggtt ccgaatt
797

<210> 5974
<211> 107
<212> PRT
<213> Homo sapiens

<400> 5974
Met Glu Gly Ser Gly Thr Gly Lys Arg Arg Gly Lys Ala Ala Lys Thr
1 5 10 15
Ser Leu Arg Ile Met Asp Ala Arg Ala Gln Leu Leu Leu Arg Val Pro
20 25 30
His Pro Gly Pro Ser Leu Thr Ser Gly Ala Leu Thr His Ile Arg Asp
35 40 45
Pro His Pro Gly Leu Ser Pro Thr Ser Gly Thr Leu Met Pro Gly Arg
50 55 60
Arg Arg Gly Gly Pro Ser Phe Gly Thr Pro Ala Leu Arg Arg Arg Lys
65 70 75 80
Cys His Arg Glu Ala Pro Ala Ser Gly Leu Ser Thr Ala Ala Arg Glu
85 90 95
Arg Leu Trp Trp Pro Arg Ala Arg Val Cys Arg
100 105

<210> 5975
<211> 2175
<212> DNA
<213> Homo sapiens

<400> 5975
nntcaggta ccacatacta ttatgttggg tttgcatttt tgatgtatgcg tcgttaccag
60
gatgccatcc gggtcttcgc caacatcctc ctctacatcc agaggaccaa gagcatgttc
120
cagaggccca cgtacaagta tgagatgatt aacaagcaga atgagcagat gcatgcgcgt
180
ctggccattt ccctcacatg gtacccatg cgtatcgatg agagcattca cctccagctg
240
cgggagaaat atggggacaa gatgttgcgc atgtcttatac ccgctgtatga ttatgagtct
300
gaggcggctt atgaccctta cgcttatccc agcgactatg atatgcacac aggagatcca
360
aagcaggacc ttgcttatga acgtcagttt gaacagcaaa cctatcaggt gatccctgag
420

gtgatcaaaa acttcatcca gtatttccac aaaactgtct cagatttgat tgaccagaaa
480
gtgtatgagc tacaggccag tcgtgtctcc agtcatgtca ttgaccagaa ggtgtatgag
540
atccaggaca tctatgagaa cagctggacc aagctgactg aaagattctt caagaataca
600
ccttggccc aggctgaagc cattgctcca caggttggca atgatgctgt cttcctgatt
660
ttatacaaag aattatacta caggcacata tatgccaaag tcagtggggg accttcctt
720
gagcagaggt ttgaatccta ttacaactac tgcaatctct tcaactacat tcttaatgcc
780
gatggctctg ctcccccttga actacccaaac cagtggctct gggatattat cgatgagttc
840
atctaccagt ttcaagtctt cagtcagtac cgctgttaga ctgccaagaa gtcagaggag
900
gagattgact ttcttcgttc caatcccaa atctggaaatg ttcatagtgt cctcaatgtc
960
cttcattccc tggtagacaa atccaacatc aaccgacagt tggaggtata cacaagcgga
1020
ggtacctg agagtgtggc tggggagtat gggccggact ccctctacaa aatgcttgg
1080
tacttcagcc tggcggct tctccgcctg cactccctgt taggagatta ctaccaggcc
1140
atcaagggtgc tggagaacat cgaactgaac aagaagagta tgtattcccg tggccagag
1200
tgccaggctca ccacatacta ttatgttggg tttgcataatt tgatgtgcg tggccatcc
1260
gatgccatcc gggcttcgc caacatcctc ctctacatcc agaggaccaa gagcatgtt
1320
cagaggacca cgtacaagta tgagatgatt aacaaggcaga atgagcagat gcatgcgt
1380
ctggccattt ccctcacgt gtacccatg cgtatcgatg agagcattca cctccagct
1440
cgggagaaat atggggacaa gatgttgcgc atgcagaaag gtgaccacaa agtctatgaa
1500
gaactttca gttactcctg ccccaagttc ctgtcgctg tagtgccaa ctatgataat
1560
gtgcacccca actaccacaa agagcccttc ctgcagcagc tgaagggttt ttctgtgaa
1620
gtacagcagc agggccagct ttcaaccatc cgcagcttcc tgaagctcta caccaccatg
1680
cctgtggcca agctggctgg cttccctggac ctcacagagc aggagttccg gatccagctt
1740
cttgttca aacacaagat gaagaacctc gtgtggacca gcggtatctc agccctggat
1800
ggtaatttc agtcagcctc agaggttgc ttctacattt ataaggacat gatccacatc
1860
gcggacacca aggtcgccag gcgttatggg gatttttca tccgtcagat ccacaaattt
1920
gaggagctt aatcgaaccctt gaagaagatg ggacagagac cttgtatgata ttccacacaca
1980
ttcaggaaacc tggatgttgc tattataggc aggaagtgtt tttgctaccg tgaaaccc
2040

accttagatca gccatcagcc tgtcaactca gttaacaagt taaggaccga agtgtttcaa
 2100
 gtggatctca gtaaaggatc tttggagcca gaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
 2160
 aaaaaaaaaaaa aaaaaa
 2175

<210> 5976
 <211> 564
 <212> PRT
 <213> Homo sapiens

<400> 5976
 Met Ser Tyr Pro Ala Asp Asp Tyr Glu Ser Glu Ala Ala Tyr Asp Pro
 1 5 10 15
 Tyr Ala Tyr Pro Ser Asp Tyr Asp Met His Thr Gly Asp Pro Lys Gln
 20 25 30
 Asp Leu Ala Tyr Glu Arg Gln Tyr Glu Gln Gln Thr Tyr Gln Val Ile
 35 40 45
 Pro Glu Val Ile Lys Asn Phe Ile Gln Tyr Phe His Lys Thr Val Ser
 50 55 60
 Asp Leu Ile Asp Gln Lys Val Tyr Glu Leu Gln Ala Ser Arg Val Ser
 65 70 75 80
 Ser Asp Val Ile Asp Gln Lys Val Tyr Glu Ile Gln Asp Ile Tyr Glu
 85 90 95
 Asn Ser Trp Thr Lys Leu Thr Glu Arg Phe Phe Lys Asn Thr Pro Trp
 100 105 110
 Pro Glu Ala Glu Ala Ile Ala Pro Gln Val Gly Asn Asp Ala Val Phe
 115 120 125
 Leu Ile Leu Tyr Lys Glu Leu Tyr Tyr Arg His Ile Tyr Ala Lys Val
 130 135 140
 Ser Gly Gly Pro Ser Leu Glu Gln Arg Phe Glu Ser Tyr Tyr Asn Tyr
 145 150 155 160
 Cys Asn Leu Phe Asn Tyr Ile Leu Asn Ala Asp Gly Pro Ala Pro Leu
 165 170 175
 Glu Leu Pro Asn Gln Trp Leu Trp Asp Ile Ile Asp Glu Phe Ile Tyr
 180 185 190
 Gln Phe Gln Ser Phe Ser Gln Tyr Arg Cys Lys Thr Ala Lys Lys Ser
 195 200 205
 Glu Glu Glu Ile Asp Phe Leu Arg Ser Asn Pro Lys Ile Trp Asn Val
 210 215 220
 His Ser Val Leu Asn Val Leu His Ser Leu Val Asp Lys Ser Asn Ile
 225 230 235 240
 Asn Arg Gln Leu Glu Val Tyr Thr Ser Gly Gly Asp Pro Glu Ser Val
 245 250 255
 Ala Gly Glu Tyr Gly Arg His Ser Leu Tyr Lys Met Leu Gly Tyr Phe
 260 265 270
 Ser Leu Val Gly Leu Leu Arg Leu His Ser Leu Leu Gly Asp Tyr Tyr
 275 280 285
 Gln Ala Ile Lys Val Leu Glu Asn Ile Glu Leu Asn Lys Lys Ser Met
 290 295 300
 Tyr Ser Arg Val Pro Glu Cys Gln Val Thr Thr Tyr Tyr Tyr Val Gly
 305 310 315 320
 Phe Ala Tyr Leu Met Met Arg Arg Tyr Gln Asp Ala Ile Arg Val Phe

325	330	335
Ala Asn Ile Leu Leu Tyr Ile Gln Arg Thr Lys Ser Met Phe Gln Arg		
340	345	350
Thr Thr Tyr Lys Tyr Glu Met Ile Asn Lys Gln Asn Glu Gln Met His		
355	360	365
Ala Leu Leu Ala Ile Ala Leu Thr Met Tyr Pro Met Arg Ile Asp Glu		
370	375	380
Ser Ile His Leu Gln Leu Arg Glu Lys Tyr Gly Asp Lys Met Leu Arg		
385	390	395
Met Gln Lys Gly Asp Pro Gln Val Tyr Glu Glu Leu Phe Ser Tyr Ser		
405	410	415
Cys Pro Lys Phe Leu Ser Pro Val Val Pro Asn Tyr Asp Asn Val His		
420	425	430
Pro Asn Tyr His Lys Glu Pro Phe Leu Gln Gln Leu Lys Val Phe Ser		
435	440	445
Asp Glu Val Gln Gln Ala Gln Leu Ser Thr Ile Arg Ser Phe Leu		
450	455	460
Lys Leu Tyr Thr Thr Met Pro Val Ala Lys Leu Ala Gly Phe Leu Asp		
465	470	475
Leu Thr Glu Gln Glu Phe Arg Ile Gln Leu Leu Val Phe Lys His Lys		
485	490	495
Met Lys Asn Leu Val Trp Thr Ser Gly Ile Ser Ala Leu Asp Gly Glu		
500	505	510
Phe Gln Ser Ala Ser Glu Val Asp Phe Tyr Ile Asp Lys Asp Met Ile		
515	520	525
His Ile Ala Asp Thr Lys Val Ala Arg Arg Tyr Gly Asp Phe Phe Ile		
530	535	540
Arg Gln Ile His Lys Phe Glu Glu Leu Asn Arg Thr Leu Lys Lys Met		
545	550	555
Gly Gln Arg Pro		560

<210> 5977

<211> 2320

<212> DNA

<213> Homo sapiens

<400> 5977

```

naactttctt tagatttgtc tttgcttttt ccaaacttcct ttattttctat tataactttata
60
attttgcttt ttgccttatac tttcattttaga aacttttcgc aaatgtctgt taaatgctac
120
cccagtgtact ttgggcttgg tcatgtact tgctttggc aatgaaaatgt gagtagacat
180
caagtataacc accatcacac agaaaattta ttttttattt tattttttat agagacaggg
240
tctcaactaca ttgccttagat tggctctaaa ctccctggct caagcaatct tcctttttctt
300
ggcctcccaa agtgttggga ttgcagggtgt ggcactac gcccagcttgg aaaaattttt
360
taatgcatgt ggtaatccac aggagatcac atttagtata tgaccaagtt aattaagaag
420
tcaaaaaaaca cgtaaatttt aagcagaata aggctgggtt cggtggctca tgcctgtgtat
480

```

cccgacactt tgggaggcag aggtgggcag atcatnagg ccaggagttc gagaccagcc
540
tggacaacat ggcganaagt cttaactaaa aataaaaaa tcagctggc gtggtggtac
600
acacccgtga tcccagctac tcaggaggct taggcacatg atncgcttga acctggaga
660
tggaaagctgc agtaagctag atcctgccac tgtactccag cctgggtgac agatcaagac
720
tctaactaaa aaacccccc aaaaacaat agttacttgg aaaacttccg acatttattt
780
acttctggac aaacaaatga gtgggaagaa tcaagtatac acctcttaat tgtatTTT
840
ttttttttt agacagagtc ttgctctgtc gcccaggctg gagtacagtg gacgatctca
900
gctcactgca acctttgcct cccgggttca ggtgattctc ctgcctcagc ctcccagta
960
gccgggattta taggcatgga gaaccacacc tggctagttt ttgtatTTT agtagagatg
1020
aagtttcacc atgttggcct ggctggtctc aaactcctga cctcaagtga tctgcccgc
1080
tggtctccta aagtgttggg attacaggcg tgagccaccc tgccctggcca atgttagtt
1140
ttatccttaa aattgcctga gttcttagaa cacagaaaaa acaaatttga atgcatttt
1200
aacagcttaa taatttataat gtcccattat gatTTtagcg gaatgtttt aagcaaagca
1260
taattcactg caaagataaa cctgaaaaag caaacaact tacaatggt atgttatgac
1320
ctagacaaaaa ctgattatca actagtaata ctcataatta gcacatgcaa cagattgaga
1380
aattaaatcc tgtgtatat atctttaagt attttgtcag atatatctt aaatgttcta
1440
tcaattgcat tccttccac acatattttt aacaagaaaa caattgtctt tcctccagat
1500
tctcatgttt atcagtgcaa aacgttgcaa tctcagtaaa aatggTTTtataatgtt
1560
tttttagaaaaa gcttagtcct caaaactgttg aaaatgtact taaaagatgt ccaaataatg
1620
agaatgatca acttcaatgg ctccctctgc ctccaaacttg gcttctgcat gtccttcctg
1680
tgactcatca agagaggcca aggccctcatt cgtgtcactt gcaaaagttt ctcgtatgt
1740
atcatcatct tcttggaaaat ttagactttt aatagcttgc ttcatctttt tccccaaacac
1800
tttgtttctc ctcttcctag cagttttttt attttcatat tccttttggt tttcaatgtt
1860
aaaaatgtcc ttaattgtt cctcgctgat actaggagtg ttttcaaga gattcagaaa
1920
aactccaccc ggtgttctc ttgcactacc attcattata aagagaccac cattttgttc
1980
aacttcagcg gttccatca gaagttcaat tgccttttg ttaccaataa tcctcaetac
2040
tcgggctatc aggtctttct ttggttcctg taacctgaat gaaatttcat cagccacttt
2100

ctcttgagaa tcttccgctg tcatctcgta tcgacccat tagttcattt ctggctgtt
2160 cccttagcctg tctttgacag gtcgtttctt tttgagatga ccttgcctat tttccctttc
2220 ctttgatccc attttttgc caccatgcat atattcatct agttcccttgt ctagatcctt
2280 tgtatgctct tgagattcct tcctaagttt cttggcaagc
2320

<210> 5978

<211> 77

<212> PRT

<213> Homo sapiens

<400> 5978

Met Thr Lys Leu Ile Lys Lys Ser Lys Asn Thr Leu Asn Leu Ser Arg
1 5 10 15
Ile Arg Leu Gly Ser Val Ala His Ala Cys Asp Pro Ser Thr Leu Gly
20 25 30
Gly Arg Gly Gly Gln Ile Ile Xaa Ala Arg Ser Ser Arg Pro Ala Trp
35 40 45
Thr Thr Trp Arg Xaa Val Phe Thr Lys Asn Thr Lys Ile Ser Trp Ala
50 55 60
Trp Trp Tyr Thr Pro Val Ile Pro Ala Thr Gln Glu Ala
65 70 75

<210> 5979

<211> 1095

<212> DNA

<213> Homo sapiens

<400> 5979

nntttctttt ttgagacgac gtcttgcct gtcacccagg ctagagtgc atggcacat
60 ctcggctcac tggtagccttg acctcctggg ctcaagcgat ctccgcctca gcctcccgag
120 tagctgcac cacaggcctg tgcagcactc ctggcttgct gccattgtt tagatgagga
180 aattgaggcc taaggcaggg tcacttgctt ggcccccttcc ctttcaccccg tcagagtcca
240 gacagggagg ggacgtcccc tgaccccccgc tgctctgtgc tttcagggca agaagactat
300 gaccggctgc ggccccctgtc ctaccagaac acccacctcg tgctcatctg ctatgacgtc
360 atgaatcccc caagctacga caacgtcctc atcaagtggt tccctgaggt cacgcatttc
420 tgccgcggga tccccatggt gtcatcgcc tgcaagacag acctgaggaa ggacaaggag
480 cagctgcgga agctccgggc cgccccagctg gagcccatca cctacatgca gggcctgagc
540 gcctgcgaac agatccgagc tgctctctac ctggaatgtt ccggccaagtt tcgggagaat
600 gtggaggacg tcttccggga ggccgc当地 ggccgtctca ggcgtctgaa gaaggcgc当地
660

cggcagaaga agcgccggct ctgcctgctg ctctgaccca gggcagacag acctcacgac
 720
 agcaactgaca gggccccgggg gcccagggtgc cgattgeacc agggagggctg ccccatcccg
 780
 accctccagc tcataggtgc tggggcctgc ggctagactc ttggaacatt ctgaaactct
 840
 ctcccttcct ggctggggct ctgaccacaa actccccctcc aggctgcccc tggacatgg
 900
 tggtgatgtg ggtcaggag ccagtgtctg ttgttggac tcgcaagtgc cctcatcaca
 960
 gccaccccca ccacgagtgt ctccccagtg cagactcaag ttatgcttga aatgaaaaag
 1020
 tctatctggt agtggtaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 1080
 aaaaaaaaaa aaaaa
 1095

<210> 5980
 <211> 169
 <212> PRT
 <213> Homo sapiens

<400> 5980
 Gly Leu Arg Gln Gly His Leu Pro Gly Pro Phe Pro Phe Thr Arg Gln
 1 5 10 15
 Ser Pro Asp Arg Glu Gly Thr Ser Pro Asp Pro Arg Cys Ser Val Leu
 20 25 30
 Ser Gly Gln Glu Asp Tyr Asp Arg Leu Arg Pro Leu Ser Tyr Gln Asn
 35 40 45
 Thr His Leu Val Leu Ile Cys Tyr Asp Val Met Asn Pro Thr Ser Tyr
 50 55 60
 Asp Asn Val Leu Ile Lys Trp Phe Pro Glu Val Thr His Phe Cys Arg
 65 70 75 80
 Gly Ile Pro Met Val Leu Ile Gly Cys Lys Thr Asp Leu Arg Lys Asp
 85 90 95
 Lys Glu Gln Leu Arg Lys Leu Arg Ala Ala Gln Leu Glu Pro Ile Thr
 100 105 110
 Tyr Met Gln Gly Leu Ser Ala Cys Glu Gln Ile Arg Ala Ala Leu Tyr
 115 120 125
 Leu Glu Cys Ser Ala Lys Phe Arg Glu Asn Val Glu Asp Val Phe Arg
 130 135 140
 Glu Ala Ala Lys Val Ala Leu Ser Ala Leu Lys Lys Ala Gln Arg Gln
 145 150 155 160
 Lys Lys Arg Arg Leu Cys Leu Leu Leu
 165

<210> 5981
 <211> 677
 <212> DNA
 <213> Homo sapiens

<400> 5981
 cgctttccccc agccccctgcg cccggccccga acgagagggtc cggagccccg gcgcggcg
 60

gttctgggt gtagacgctg ctggccagcc ctccccagcc gaggttctcg gcaccgcctt
120
gagagcttca gctccccag ggtgtgcagg tttgcttag agggtcggcg ggcggagctt
180
cgggaaagag gagctctggg agagtcattc cggccagtgc gagtaccgtc gtcgctctg
240
ggaatccttg gccgcccaga cagaaggaa gtaggcgccg gagaccgtt ctgcatttg
300
attcatctcg ggccctgtaa gggcatatc ttgtaaaaat aacctgtaaa atcaatttaa
360
cgttcagtgc agcgtgtaaa gacagctcta agaatttaaa agacgcctga gtcagaacat
420
ttaaatgctt gggccctgt agcagcgtt taacacgtct gagtgcagag ggtggagaat
480
cgagcctgat tgccgttcac gccctgtaac cttaagaag ggtaaagaaa ggcaccctaa
540
aaaacgcaag gggacactta ccctaggggt ggacgaacag ctagctttt ggaatttggg
600
ttggtcttca ttccaagtg cgaaatttgc ctgcaaaact ttttatttgc agtcatagat
660
caacgataaa cagaatt
677

<210> 5982
<211> 98
<212> PRT
<213> Homo sapiens

<400> 5982
Met Gln Asn Gly Ser Pro Ala Pro Thr Ser Leu Leu Ser Gly Arg Pro
1 5 10 15
Arg Ile Pro Lys Ser Asp Asp Gly Thr Arg Thr Gly Arg Asn Asp Ser
20 25 30
Pro Arg Ala Pro Leu Pro Arg Ser Ser Ala Arg Arg Pro Ser Lys Ala
35 40 45
Asn Leu His Thr Leu Gly Gln Leu Lys Leu Ser Arg Arg Cys Arg Glu
50 55 60
Pro Arg Leu Gly Arg Ala Gly Gln Gln Arg Leu His Pro Arg Thr Arg
65 70 75 80
Pro Arg Arg Gly Ser Gly Pro Leu Val Arg Ala Gly Arg Arg Gly Trp
85 90 95
Gly Lys

<210> 5983
<211> 790
<212> DNA
<213> Homo sapiens

<400> 5983
gctcgacata tacagaatat ttcttccca gaaagttctc caggaataaa gagacgcact
60
tatagtcaag aggttataaa aagggtgaat tggtagttt tttcctatta
120

cattgtttc cttaaattac tggtaaattt tgaaataaac agtcccaaga tgtgattatt
 180
 tgtgtatTT ttTTTTaa ttgtaaaca gggatatgac agatcttcaa ccatgttaac
 240
 attggggcct ttttagaaatt ctaatttaac tgaactgggt ctgcaagaaa taaagactat
 300
 tggttatacg agcccttagga gtaggactga agtcaacagg cagtgtcctg gagaaaagga
 360
 acctgtgtca gaccTtcage taggactcga tgcagtttag ccaactgccc tacataaaac
 420
 cctggaaacg cctgcacatg acagggctga gcccaacagc caactggact cgactcactc
 480
 tggacggggc acaatgtatt ctTcctgggt aaagagccct gacagaacag gagttactt
 540
 ctcagtgaac tccaacttga gggacctgac accctcgcat cagttggagg ttggaggagg
 600
 ctTccgaata agtgagtcaa agtgccctgat gcaggatgat actagaggca tgTTtatgga
 660
 aacaactgtg ttTTgtactt ccgaagatgg gcttgtatct ggTTcggac ggactgttaa
 720
 tgacaatttG atcgacggga attgcacacc ccagaatcca ccacaaaaga aaaaggTTc
 780
 tctattagaa
 790

<210> 5984
 <211> 186
 <212> PRT
 <213> Homo sapiens

<400> 5984
 Met Leu Thr Leu Gly Pro Phe Arg Asn Ser Asn Leu Thr Glu Leu Gly
 1 5 10 15
 Leu Gln Glu Ile Lys Thr Ile Gly Tyr Thr Ser Pro Arg Ser Arg Thr
 20 25 30
 Glu Val Asn Arg Gln Cys Pro Gly Glu Lys Glu Pro Val Ser Asp Leu
 35 40 45
 Gln Leu Gly Leu Asp Ala Val Glu Pro Thr Ala Leu His Lys Thr Leu
 50 55 60
 Glu Thr Pro Ala His Asp Arg Ala Glu Pro Asn Ser Gln Leu Asp Ser
 65 70 75 80
 Thr His Ser Gly Arg Gly Thr Met Tyr Ser Ser Trp Val Lys Ser Pro
 85 90 95
 Asp Arg Thr Gly Val Asn Phe Ser Val Asn Ser Asn Leu Arg Asp Leu
 100 105 110
 Thr Pro Ser His Gln Leu Glu Val Gly Gly Phe Arg Ile Ser Glu
 115 120 125
 Ser Lys Cys Leu Met Gln Asp Asp Thr Arg Gly Met Phe Met Glu Thr
 130 135 140
 Thr Val Phe Cys Thr Ser Glu Asp Gly Leu Val Ser Gly Phe Gly Arg
 145 150 155 160
 Thr Val Asn Asp Asn Leu Ile Asp Gly Asn Cys Thr Pro Gln Asn Pro
 165 170 175
 Pro Gln Lys Lys Lys Val Ser Leu Leu Glu

180

185

<210> 5985
<211> 737
<212> DNA
<213> Homo sapiens

<400> 5985
tgagcttggc cttccgggc ctcgcttccc ccagccccctg cgcccgcccc gaacgagagg
60
ttccggagcc ccggcgccgg cgggttctgg ggtgttagacg ctgctggcca gcccggccca
120
gccgaggttc tcggcaccgc cttgagagct tcagctgccc cagggtgtgc agattagaat
180
cccaagaaaa tcaaattggca tccggggatt tctgctcacc tggagaaggg atggaaatac
240
ttcaacaagt gtgcagcaaa caacttcctc cttgtaacct gagtaaagag gacctgttac
300
agaacccata cttcagcaag cttctcctga atctctcaca gcatgtggat gagagtggct
360
taagcctcac cctagcaaag gagcaggctc aggcatggaa ggaagttcga ctgcataaga
420
caacatggtt gaggtctgag attttacaca gagtcattca agagttgctt gtggactact
480
atgtgaagat acaagacaca aatgttaactt ctgaggacaa aaagtttcat gagacccttg
540
aacagcggct gctttaact gaactgatgc ggctcttagg tcctagccag gagagggaga
600
tacctccact gctggggctg gagaaagcgg accttctgga actcatgcca ctctcagagg
660
ttggcgggaa gatattggaa ccaaataaat gaaatggttt aatttctccc atatcttaa
720
aaaaaaaaaaa aaaaaaaaa
737

<210> 5986
<211> 165
<212> PRT
<213> Homo sapiens

<400> 5986
Met Ala Ser Gly Asp Phe Cys Ser Pro Gly Glu Gly Met Glu Ile Leu
1 5 10 15
Gln Gln Val Cys Ser Lys Gln Leu Pro Pro Cys Asn Leu Ser Lys Glu
20 25 30
Asp Leu Leu Gln Asn Pro Tyr Phe Ser Lys Leu Leu Leu Asn Leu Ser
35 40 45
Gln His Val Asp Glu Ser Gly Leu Ser Leu Thr Leu Ala Lys Glu Gln
50 55 60
Ala Gln Ala Trp Lys Glu Val Arg Leu His Lys Thr Thr Trp Leu Arg
65 70 75 80
Ser Glu Ile Leu His Arg Val Ile Gln Glu Leu Leu Val Asp Tyr Tyr
85 90 95
Val Lys Ile Gln Asp Thr Asn Val Thr Ser Glu Asp Lys Lys Phe His

100 105 110
Glu Thr Leu Glu Gln Arg Leu Leu Val Thr Glu Leu Met Arg Leu Leu
115 120 125
Gly Pro Ser Gln Glu Arg Glu Ile Pro Pro Leu Leu Gly Leu Glu Lys
130 135 140
Ala Asp Leu Leu Glu Leu Met Pro Leu Ser Glu Val Gly Gly Glu Ile
145 150 155 160
Leu Glu Pro Asn Lys
165

<210> 5987

<211> 1444

<212> DNA

<213> Homo sapiens

<400> 5987

nnctggattt gatatgaagga ggctgaatct cagtcaggag ctgagctccc cagccagagg
60
ggcatgtttt tttctccttg ttgtaatctc aaaggtcaca gcatctgctg aggaggcgac
120
caccgcgtgg agctttacaa ggtgctgagt tcccttggtt accatgtggt cacccttgac
180
tacagaggtt ggggtgactc agtgggaacg ccatactqagc ggggcattgac ctatgacgca
240
ctccacgttt ttgactggat caaagcaaga agtggtgaca accccgtgta catctggggc
300
cactctctgg gcactggcgt ggcgacaatc tggtgccgcg cctctgtgag cgagacgcct
360
ccagatgccc ttatattgga atctccattt actaatatcc gcgaagaagc taagagccat
420
ccattttcag tgatatatcg atactccctt gggtttgact ggttcttctt tgatcctatt
480
acaagtagtg gaattaaatt tgcaaattgtat gaaaacgtga agcacatctc ctgtccccctg
540
ctcatcctgc acgctgagga cgaccgggtt gtgccttcc agcttggcag aaagctctat
600
agcatcgccg caccagctcg aagcttccga gatttcaaag ttcagtttgt gcccttccat
660
tcagacccctt gctacaggca caaaatacatt tacaagagcc ctgagctgcc acggatactg
720
agggaaattcc tggggaaagtc ggagcctgag caccagcaact gagcctggcc gtgggaagga
780
agcatgaaga cctctgcctt cctcccttcc tcctccagtc agcagccccgg tatacctgaag
840
ccccgggggg ccggcacctg caatgctcg gagcccaact cgcacctgga gagcacctca
900
gatcccaggt ggggaggccc ctgcaggccct gcagtgcggc gaggcctgag catggctgt
960
tggaaagcgt ggggtggcagg catgtggctc tccttgcgcg ccctcaacct gagatcttg
1020
tgggagactt aatggcagca ggcagccatc actgcctgct tgatgctgca ctgagctgga
1080
cagggggaggt ccgggcaggg gactcttggg gctcgggacc atgctgagct ttttggcacc
1140

acccacagag aacgtggggt ccaggttctt tctgcacccccc cccagcacat gcagaatgac
1200
tccagtgggtt ccatcgcccccc ctccctgccct gtgtacctgc ttgcctttct cagctgcccc
1260
acctccccctg ggctggccca ctcacccaca gtggaagtgc ccgggatctg cacttcctcc
1320
ccttcacccct acctgtacac ctaacctggc ctttagactga gctttatTTT agaataaaat
1380
cgtgggtggtg gtcctttgt ctcaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
1440
aaaaa
1444

<210> 5988

<211> 216

<212> PRT

<213> Homo sapiens

<400> 5988
Gly Gly Asp His Arg Val Glu Leu Tyr Lys Val Leu Ser Ser Leu Gly
1 5 10 15
Tyr His Val Val Thr Phe Asp Tyr Arg Gly Trp Gly Asp Ser Val Gly
20 25 30
Thr Pro Ser Glu Arg Gly Met Thr Tyr Asp Ala Leu His Val Phe Asp
35 40 45
Trp Ile Lys Ala Arg Ser Gly Asp Asn Pro Val Tyr Ile Trp Gly His
50 55 60
Ser Leu Gly Thr Gly Val Ala Thr Ile Trp Cys Gly Ala Ser Val Ser
65 70 75 80
Glu Thr Pro Pro Asp Ala Leu Ile Leu Glu Ser Pro Phe Thr Asn Ile
85 90 95
Arg Glu Glu Ala Lys Ser His Pro Phe Ser Val Ile Tyr Arg Tyr Phe
100 105 110
Pro Gly Phe Asp Trp Phe Phe Leu Asp Pro Ile Thr Ser Ser Gly Ile
115 120 125
Lys Phe Ala Asn Asp Glu Asn Val Lys His Ile Ser Cys Pro Leu Leu
130 135 140
Ile Leu His Ala Glu Asp Asp Pro Val Val Pro Phe Gln Leu Gly Arg
145 150 155 160
Lys Leu Tyr Ser Ile Ala Ala Pro Ala Arg Ser Phe Arg Asp Phe Lys
165 170 175
Val Gln Phe Val Pro Phe His Ser Asp Leu Gly Tyr Arg His Lys Tyr
180 185 190
Ile Tyr Lys Ser Pro Glu Leu Pro Arg Ile Leu Arg Glu Phe Leu Gly
195 200 205
Lys Ser Glu Pro Glu His Gln His
210 215

<210> 5989

<211> 1583

<212> DNA

<213> Homo sapiens

<400> 5989

ccccctgat cagtttttgggtgc taaagttcc caggatcccg atgttgtcat
60
acactccgaa catggccctt ttctcggtcc aacgatcaac cactttgggg ggcgggagag
120
tgagccttat accgatcaat ctaggcacac ctcccttcct ggggtgact gaatgccag
180
ccagggacgc gacgtctcg gccagcagaa atacggcctc ctcccccggc actgggcaaa
240
gggggacagc aagtgtccca tcacccaccc atctcctgct tctactgtga gtgcgaggag
300
aagagactgt gcgtcaacac tcatgtatgg accaaaagca agttcatggg catgtccgt
360
ggggtctcta tgatagggga aggtgtgttg aggctcctgg aacacggggaa ggagtacgta
420
ttcacccctgc ctagtgccta cgcccggtcc attctcacca tcccgtgggt ggagctcgga
480
ggaaaagtca gcatcaactg tgccaagact gggtaactcg cgacagtgat attccacacg
540
aaggcttct atggagggaa agtccacagg gttaccgcag aagtgaagca caacccaacc
600
aacaccattg tttgtaaagc ccatggggaa tggaatggta ctttagagtt cacctacaac
660
aatggagaaa ccaaagtcat cgacacaacc acactgccag tgtatccaa gaagatcaga
720
cctcttgaga agcagggacc catggagtcc aggaacctct ggccggaggt gacccgatac
780
ctgcggctgg gggacattga cgcagccacc gagcagaagc ggcacctgga ggagaagcaa
840
cgggtggagg aacggaagcg cgagaacctc cgcacaccat ggaagccaa atatttatc
900
caggagggcg atggctgggt atacttcaat cccctctgga aagcacactg atggggtgga
960
ggtgtcagagc tttccagtat agccctgtt ttgttaggaat attaaatgt tagagtatca
1020
gggtttgtt ggcattcaact gagaccttgc attagcatcc aagaaatgt gagagagaga
1080
gaaattatat actatgaaaa gtgcacccccc acactctgct agaggaatga atttattcaa
1140
gagccattcg gggcacgtgt gtgtacacac cgtatacggt cacacacatg cactatgtaa
1200
acatctgagt atgattacac atttaaatac tgcactcacc aaggtaaag tggtaatca
1260
taagctccctt tttatcaatg aagtttgaag tttttctatt tttcactttt cc当地atgt
1320
tttacactca caaagatatt ctcacttagt caactccgtt caaatgaag gtgaactggc
1380
atggcccgat cactgtccat aaggagaaaa gtggctcatt cctggtagaa gtatgggtgg
1440
ttatcatttc aaaattatttgc tgattctcac ctccctcccc acctcagtgt tttgtctgtc
1500
cgcgcccaag aaagataagc aagtatttcc tgctggatgg ggggtggcag gaagctgtta
1560
aagatttatg cccagagcct tgc
1583

<210> 5990
<211> 260
<212> PRT
<213> Homo sapiens

<400> 5990
Leu Asn Ala Gln Pro Gly Thr Arg Arg Leu Trp Pro Ala Glu Ile Arg
1 5 10 15
Pro Pro Pro Arg Arg Leu Gly Lys Gly Gly Gln Gln Val Ser His His
20 25 30
Pro Pro Ile Ser Cys Phe Tyr Cys Glu Cys Glu Glu Lys Arg Leu Cys
35 40 45
Val Asn Thr His Val Trp Thr Lys Ser Lys Phe Met Gly Met Ser Val
50 55 60
Gly Val Ser Met Ile Gly Glu Gly Val Leu Arg Leu Leu Glu His Gly
65 70 75 80
Glu Glu Tyr Val Phe Thr Leu Pro Ser Ala Tyr Ala Arg Ser Ile Leu
85 90 95
Thr Ile Pro Trp Val Glu Leu Gly Gly Lys Val Ser Ile Asn Cys Ala
100 105 110
Lys Thr Gly Tyr Ser Ala Thr Val Ile Phe His Thr Lys Pro Phe Tyr
115 120 125
Gly Gly Lys Val His Arg Val Thr Ala Glu Val Lys His Asn Pro Thr
130 135 140
Asn Thr Ile Val Cys Lys Ala His Gly Glu Trp Asn Gly Thr Leu Glu
145 150 155 160
Phe Thr Tyr Asn Asn Gly Glu Thr Lys Val Ile Asp Thr Thr Leu
165 170 175
Pro Val Tyr Pro Lys Lys Ile Arg Pro Leu Glu Lys Gln Gly Pro Met
180 185 190
Glu Ser Arg Asn Leu Trp Arg Glu Val Thr Arg Tyr Leu Arg Leu Gly
195 200 205
Asp Ile Asp Ala Ala Thr Glu Gln Lys Arg His Leu Glu Glu Lys Gln
210 215 220
Arg Val Glu Glu Arg Lys Arg Glu Asn Leu Arg Thr Pro Trp Lys Pro
225 230 235 240
Lys Tyr Phe Ile Gln Glu Gly Asp Gly Trp Val Tyr Phe Asn Pro Leu
245 250 255
Trp Lys Ala His
260

<210> 5991
<211> 2440
<212> DNA
<213> Homo sapiens

<400> 5991
gccctgcacg aaaatcccgataattatt gcccacccccg gacgggttgtt gcatgtggct
60
gtggaaatga gcctgaagct gcagagtgtg gaatacgtgg tgttcgatga agctgaccgg
120
ctttttgaaa tgggtttcgc agagcagctg caggagatca tcgccccctt ccccgaaaa
180

caccagacgg tgctgttctc cgccacgctg cccaaactgc tggtggaatt tgcccggct
240
ggcctcacgg agcccggtct catccggctt gacgtggata ccaagctcaa cgagcagctg
300
aagacacctt tcttcctcggt gcgggaggac accaaggctg ccgtgctgtcc acacctgctg
360
cacaacgtgg tgccggccca ggaccagacc gtgggttttgg tggccacgaa gcaccacgccc
420
gagtaccta ctgagctgct gacgacccag ncggtgagct gcccacat ctatagtgcc
480
ctagacccga cagcccgaa gatcaatctc gccaaattca cgcttggcaa gtgctccact
540
ctcattgtga ctgacctggc cgcccgaggc ctggacatcc cgctgctgga caatgtcatc
600
aactacagct tccccgccaa gggcaaactc ttctgcacc gcgtggggcg tgtggctcg
660
gctggccgaa gtggcacagc ctactccttg gtggcccttg atgaaatccc ctacctgctg
720
gatctgcacc tggccctggg ccgctccctc naccctcgcc cgacccctca aggagccctc
780
agggtgtggcc ggtgtggatg gcatgctggg tcgggtgcca cagagtgtgg tggacgagga
840
ggacagtggc ctgcagagca ccctggaggc atcgctggag ctacggggcc tggcccgctg
900
tgctgataac gcccagcagc agtatgtgctg ctcacgcccgc gcccctcgcc ctgagtccat
960
caagaggggcc aaggagatgg accttgtggg gctgggcctg cacccctct tcagctcg
1020
ttttgaggag gaggagctgc agcggctgag gctggtggac agcataaaaga actaccgctc
1080
ccggggcgact atcttgaga tcaacgcctc cagccgagac ctgtgcagcc aggtgatgctg
1140
cgcccaagcgg cagaaggacc gcaagccatc gcccgttcc agcagggaca gcagggggcgg
1200
caggagcagc aggagggccc agtggggccc gcccggagcc gcccagcact gcaggagaag
1260
cagcctgaga aggaggagga ggaggaggcg ggagagagtg tggaggacat tttctcagag
1320
gtcgtggcc ggaagcggca gcggtcagga cccaacaggg gagccaagag ggggaggag
1380
gaggcccgcc agcgggacca ggaattctac atccctacc gccccttcc ctggacagc
1440
gagcggggcc tgagcatcag cggggaaagggg ggagcccttg agcagcagggc agctggcgct
1500
gtcctggact tgatggggta tgaagccctg aacctgacga gggggccggca gcagctcaag
1560
tgggaccgta agaagaagcg gtttggggta cagtcaggac aggaagacaa gaagaagatt
1620
aagacagaga gcccggctta catcagcagc tcctacaagc gagacctcta tcagaagtgg
1680
aaacagaaaac agaaaaattga tgatcgtgac tcggacgaaag aaggggcatt tgaccggcga
1740
ggcccgagc gaagaggtgg gaagcggagac cgtggccaag caggtgcattt ccggcccccac
1800

gccccaggca cccctgcagg ccgagtccgc ccggaactca agaccaagca gcagatcctg
1860
aagcagcggc gcccggccca gaagctgcac ttccctgcagc gtggtggcct caagcagctc
1920
tctgccccca accgcccggc cgtccaggag ctgcagcagg ggcgccttcgg ccggggtgcc
1980
cgctccaaga agggcaagat gcggaagagg atgtgaggac caggaccag ccccggtggct
2040
ccttgattgg ccttagggtg ggcattcagca gacgttcccg tgcaccactg tgtgcctggc
2100
cctgtgtgg gcactggggg cactccctgc aggagccatc atctgtgaaa aggagcactg
2160
tatggccaca gaagggcagc agctgcgtca gcctaagaca gagacatttgc aacagggcct
2220
tgaagggtgt gcagggatc gccagcaaag ccaggcagggc caagacttgc gttggcaact
2280
cagctgctgc tgcttccatg tggctgggt tcagaggtca tggctgcacc ggtcagagcc
2340
ctgagtgct cagggtttgg caatggaaatt ttaatgtaa taaatcttta ttgagcactg
2400
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
2440

<210> 5992

<211> 301

<212> PRT

<213> Homo sapiens

<400> 5992
Ala Leu His Glu Asn Pro Asp Ile Ile Ile Ala Thr Pro Gly Arg Leu
1 5 10 15
Val His Val Ala Val Glu Met Ser Leu Lys Leu Gln Ser Val Glu Tyr
20 25 30
Val Val Phe Asp Glu Ala Asp Arg Leu Phe Glu Met Gly Phe Ala Glu
35 40 45
Gln Leu Gln Glu Ile Ile Ala Arg Leu Pro Gly Gly His Gln Thr Val
50 55 60
Leu Phe Ser Ala Thr Leu Pro Lys Leu Leu Val Glu Phe Ala Arg Ala
65 70 75 80
Gly Leu Thr Glu Pro Val Leu Ile Arg Leu Asp Val Asp Thr Lys Leu
85 90 95
Asn Glu Gln Leu Lys Thr Ser Phe Phe Leu Val Arg Glu Asp Thr Lys
100 105 110
Ala Ala Val Leu Leu His Leu Leu His Asn Val Val Arg Pro Gln Asp
115 120 125
Gln Thr Val Val Phe Val Ala Thr Lys His His Ala Glu Tyr Leu Thr
130 135 140
Glu Leu Leu Thr Thr Gln Xaa Val Ser Cys Ala His Ile Tyr Ser Ala
145 150 155 160
Leu Asp Pro Thr Ala Arg Lys Ile Asn Leu Ala Lys Phe Thr Leu Gly
165 170 175
Lys Cys Ser Thr Leu Ile Val Thr Asp Leu Ala Ala Arg Gly Leu Asp
180 185 190
Ile Pro Leu Leu Asp Asn Val Ile Asn Tyr Ser Phe Pro Ala Lys Gly

195	200	205
Lys Leu Phe Leu His Arg Val Gly Arg Val Ala Arg Ala Gly Arg Ser		
210	215	220
Gly Thr Ala Tyr Ser Leu Val Ala Pro Asp Glu Ile Pro Tyr Leu Leu		
225	230	235
Asp Leu His Leu Phe Leu Gly Arg Ser Leu Xaa Pro Arg Pro Thr Pro		240
245	250	255
Gln Gly Ala Leu Arg Cys Gly Arg Cys Gly Trp His Ala Gly Ser Gly		
260	265	270
Ala Thr Glu Cys Gly Gly Arg Gly Gly Gln Trp Ser Ala Glu His Pro		
275	280	285
Gly Gly Ile Ala Gly Ala Thr Gly Pro Gly Pro Arg Cys		
290	295	300

<210> 5993

<211> 7858

<212> DNA

<213> Homo sapiens

<400> 5993

nccatggagg gcaaagattt caactatgag tacgtacaga gagaagctct cagggttccc
60
ctgatatttc gagaaaagga tggactggga attaagatgc ctgaccctga tttcacagtc
120
cgagacgtca aactcctagt ggggagccgg cggcttgtgg acgtgatgga tgtgaacacc
180
cagaaaaggca cggagatgag catgtcccaag tttgtgcgtt actacgagac gccccaggcc
240
cagcgggaca agctgtacaa cgtcatcagc ctagagttca gccacaccaa gctggagcac
300
ttggtcaagc gtccgactgt ggttagacctg gtggactggg tggacaacat gtggcccccag
360
catctgaagg agaagcagac agaagccacg aacgccattt cagagatgaa gtacccgaaa
420
gtgaaaaagt actgtctgat gagcgtaaa ggttgtttca ccgacttcca catcgacttt
480
ggaggcactt ccgttggta ccatgtttc cgggtggga agattttttgc gctgattcct
540
ccaacgctgc acaatttggc gctgtacgag gagtgggtgc tgcaggcaaa acagagtgac
600
atctttctgg gagaccgtgt ggaacgatgc caaagaattt agctgaagca gggctacaca
660
tttttcatcc ttcccggttg gatccatgcc gtctacaccc ctgttagactc tttgggtgttc
720
ggcggaaaca tcctgcacag cttaacgtg cccatgcagc tgccgatcta cgagatcgag
780
gacaggacgc gggtcagcc caaattccgt tacccttctt actatgagat gtgctggat
840
gtcctggaga gatacgtgta ctgtgtgacc cagcgctccc acctcactca ggaataccag
900
agggagtctga tgcttattga tgcccccagg aagcccgacca tagacggctt ctcttcggat
960
tcctggctgg agatggagga ggaggcctgt gatcagcagc ctcaggagga ggaggagaag
1020

gacgaggagg gcgagggcag ggacagggca cccaaaccgc ccaccgatgg ctccacttca
1080
cccaccagca cgccctctga ggaccaggag gccctcgga agaagccaa agcacctgcc
1140
ctgcgattcc tcaaaaaggac ttgtctaat gagtcggagg aaagtgtgaa gtccaccaca
1200
ttggccgtag actacccaa gacccccacc ggctctcccg ccacggaggt ctctgccaaa
1260
tggacccatc tcactgagtt tgaactgaag ggctgaaaag ctctggtgaa gaaaactggaa
1320
tccctcccg agaacaagaa gtgtgtcccc gagggcatcg aggacccca ggcactccctg
1380
gagggtgtga agaacgtcct gaaggagcac gcagatgatg accctagtct ggccatcact
1440
ggggtccctg tggtgacttg gccaaagaag actccaaaga accgggctgt gggtcggccc
1500
aaggggaaac tggggccggc ctccgcggtg aagttggccg ccaaccggac aacggcagga
1560
gctcggcggc gccggacgac atgcccgaag tgcgaggcct gcctgcggac cgagtgcggaa
1620
gagtgcact tctgcaagga catgaagaag ttcccccc ccgggcgcata gaagcagagc
1680
tgcatacatgc ggcagtgcata cgccgcagtg ctgccccaca ccggcgtgtg ctttgtgt
1740
ggcgaggccg ggaaggaaga cacggtgaa gaggagaag gcaagttaa cctcatgctc
1800
atggagtgtatccatgcata tgaaatcatc caccctggat gccttaaggt gagtggccca
1860
gtggggacag gtggtgctga cgctctgggg caggtaggat tgctggagat gctggtgaga
1920
tggtggtatc caggtcgtgc agtgaattcc tggaggaccc ctgagtctgg gtgatcctgt
1980
gtgtcaaggg ataagccgg ggcaaggagg gcctggagta cctcagagac ccagtgtcat
2040
caaaggaata aacacacccca caccccccag gatgtcagaa ccagagaggg tttccagagc
2100
ctcagcggat ggcaaacaca ggctgcttg ttgtagctgg gccagaggga gggcctccag
2160
gtggctccag gcttctggga gaacaaggcc ccacaccaca cttttcccc cagcaccac
2220
tagagtccatc tgcagagtcc tttctgcata ccagggcgtg agctggtgcc tttacctgg
2280
tcataacccca ccagtgagat gggcacacta acttttatgg ccgagggcac cagccac
2340
agacggagtg tcttgcacccag ggtcccaagag aagcaaaggg gctcagcctc tgaaccctgg
2400
cctggatcca cagctgcccc tctctgcac cctctgcac tgcgttttct tttggctgg
2460
aacgggatag atgtgacgtt ggggagggggg tgctgtgtat tctggaaagac gtggcgtcac
2520
agagccttgtt gcccgtgggc catcttcaccc gcccgtccct cttctgagtc ctgggttcc
2580
ccgcagatta aggagtcaga ggggtgtggtc aacgacgagc ttccaaactg ctgggagtg
2640

ccgaagtgt a accacgccc caagaccggg aaacaaaagc gtggccctgg ctttaagtac
2700
gcctccaacc tgcccggtc cctgctcaag gagcagaaga tgaaccggga caacaaggaa
2760
gggcggaac ctgccaagcg gaggagttag tgtgaggagg cgccccggcg caggtcgat
2820
gagcactcga agaaggtgcc gccggacggc cttctgcga gaaagtctga cgacgtgcac
2880
ctgaggaaga agcggaaata tgagaagccc caggagctga gtggacgcaa gcgggcctca
2940
tcgcttcaaa cgtccccgg ttccctctcacctctcg c gaggcccccc tctaggcagc
3000
agcctcagcc cctgggtggag atccagtctc acttacttcc agcagcaggt gctccacga
3060
cgcacgcct cctgaggccc cggggactgg cgagtcctgg gctgtcccccc accccacccc
3120
gctggcttcc caccccaactg ctgcctctcc tgaggcttcc caggtctcg ccccaagatct
3180
ctggctcgtg gttctggctt ggggcctggg aagctgtctg tgccctagagc ctctgttgg
3240
tgggatggaa gctgtgagtc cagggAACCT ctgaggagcc tggtgccct gctccaccca
3300
cgggcccgtgc tgcaccaggc cacaagggtgg cgccaggagt ctctcccage tctagccatt
3360
cctgctggc cggggattcc cacagggtcg tgctccagaa ctggctccca gagccgagga
3420
tgatTTGAAT gggcggtgc acatctccag gtctgtgggg tgggaggtca gttgggtgg
3480
aacagttcaa ctgtactcct acttccagct tcttccttga aagctgcagg cagggctcgc
3540
ccgtctgtcg gtcagacgtg gagatggcat ttgtggggaa ggctccctc cagccctcc
3600
tctggagact gtggactcgt ggtgggggtgg ggtgtcgagg agaccaaata ccacgagccc
3660
ggggagcaag ctctgcgtcc ttttttttc gtgacagctc aaacctggca aagaagataa
3720
gcttttcagg aaaaaggta catctccccc tccctctgt gccccaggcc tgagcggta
3780
gagctgcacc gcaagtcctt gggccacagt cccgtggcag gggggcggga ggccttggc
3840
gggcgcagcc ctgagccca gaggctgacg cgtctccgct ctcgcctca gggcggtcc
3900
tggaaagaacg ccgaggaccg catggcgctg gccaacaagc ccctccggcg cttcaagcag
3960
gaacccgagg acgaactgcc cgaggcgccc cccaagacca gggagagcga tcactcccgc
4020
tccagctccc ccaccgcggg acccagcacc gaagggccg agggccggga ggagaagaag
4080
aaggtaaga tgcgccggaa gcggcggtt cccaacaagg agctgagcag ggagctgagc
4140
aaggagctca accacgagat ccagaggacg gagaacagcc tggccaacga gaaccagcag
4200
cccatcaagt cggagcctga gagcggaggc gaggagccca agcggcccccc gggcatctgc
4260

gagcgtcccc accgcttcag caaggggctc aacggcaccc cccgggagct gcggcaccag
4320
ctggggccca gcctgcgcag cccgccccgt gtcatctccc ggccccacc ctccgtgtcc
4380
ccgccccaaat gtatccagat ggagcgccat gtgatccggc caccccccatt cagccccccg
4440
cctgactcgc tacccttggc cgatggggca gcccacgtca tgacacaggga ggtgtggatg
4500
gccgtcttca gctacccatcg ccaccaagac ctgtgtgtgt gcatgcgggt ctgcaggacc
4560
tggAACCGCT ggtgctgcga taagcggttg tggacccgca ttgacctgaa ccactgcaag
4620
tctatcacac ccctgatgct gagtggcattc atccggcgac agcccgatc cctcgaccc
4680
agctggacca atatctccaa gaagcagctg agctggctca tcaacccgct gcctgggctc
4740
cgggacttgg tgctgtcagg ctgctcatgg atcgcggatc cggccctttg cagctccagg
4800
tgtccgcgtgc tccggaccct ggatgtccag tgggtggagg gactaaagga tgcccaaatg
4860
cgggatctcc tgtccccggcc cacagacaac agggccaggatc agttgccagg ctgggggtt
4920
ctgtgggggt ggggtgagcg agctagactg ttggatctgc ttttaccctc agaccccaagc
4980
tgttcccaa aggacatagg gatgagtctc tgctgccatg ttctcagtt gcttcaggca
5040
cagaggggat ctgggaggag gcaggggctc ctgtgcacac gtgagactcg ctccctgggc
5100
tccgcgtgcg tctctctgct tccctgttga ctgcgtcatg gggctctgcg tgtgtctcac
5160
tgctttctta ttgactcgct catggggctc tgctgcacac tcacttcttt tctgttact
5220
tgccccctcg tggtttcaag cctccactgc catcggttgc agtgtggttg tgcaaaggct
5280
tccaggatgg cacccccc tggactggc tggactgcct aggtccgtgc ttctcgccaa
5340
gcacatgggaa tcggagatgc tgctgcagcct ctgcactggc tggctgtatgc ctactgggtg
5400
aatgtgggc atagtgtttc taggtctttt agttttcaa gagaatctga aaatctaagt
5460
ttttagatgg agtctgatgg ttcactgttg gaattatgtat tttggagga agcagtttat
5520
aactaaatga aatctgatgc ttctgtctgg ctggggggcc ttttagatgc tcatgtcagc
5580
atgaccaggc ctccctcggtc agattgacgg gttggcccccct cttccctgccc ccaccaggcc
5640
agatggacaa tcggagcaag ctccggaaaca tcgtggagct ggcctggca ggcctggaca
5700
tcacagatgc ctccctgcgg ctcatcatcc gccacatgcc cctgcgtctcc aagctccacc
5760
tcagttactg taaccacgtc accgaccaggat ctatcaacct gtcactgct gttggcacc
5820
ccacccggaga ctcccttaacc gagatcaacc tgtctgactg caataaggc actgatcagt
5880

gcctgtcctt cttcaaacgc tgtggaaaca tctgtcatat tgacctgagg tactgcaagc
5940
aagtccacaa ggaaggctgt gagcagttca tagccagat gtctgtgagt gtccagtttg
6000
ggcaagtaga agaaaaactc ctgcaaaaac tgagttagtc caaggataag tatgtaaata
6060
cggggcgggc tctgggaggg gagagacttt acaaaaatga gggcttttat tttccatttg
6120
gaacgtggga caacagacca caacgcaatt ccattttgca agtctttcca agggagaagc
6180
tgttcaacca cccgtttggg ggatgagtga gccgacactt tccttggc tttctgaatc
6240 tgctttctgg accatttcta aggccgcctt tacaagaaga cattcctgta 6300
ggagaggagg gtggacttcg gagaaattct catactgaag catgagctt ggagttctg
6360
ttagtggtag tgggttttg gacacttcat tccttgcac accgaggttt tgggtgttga
6420
cataaaagtgg accacacacc acatctgctg ccgtcttgac actttttttt gtttgggtgg
6480
tttggttaca tcttacatta tgcagaacta tttttgtaca aattgtttaa aagttattha
6540
tgcaagggtt gaatgcatac cagttttttt attgtttga gattgccaat ttccctgatt
6600
tccttaaggt aggagagaat ttaacgtgtt cttcatcgac acaacccatc tacaatgtg
6660
cccagatcta acaaagttagg ctaagacctt ccactaaaaa gcatgtttaa ctggaaagttg
6720
agagtctgct ttgtacctca agagttacat gagcatgtt gggataaatg taaattatag
6780
tcaaagtaag atactctgcc aagtttcctc tggtagagaat tcactttct caaattttaa
6840
aatttcgact tcagcccttg cactcaggag gttctgctcc agcatgagct cttgtactta
6900
catagatcta atttatacag tgagtcaaga cgtagaataa atgccccac atagcccttc
6960
ttttgctttt gcttctctcc tctgaagtgt gagttgagtt ctcatttagg tttgtAACAT
7020
ggctatttcc tagttgtaaa gttctgcatt tataagtgcc attgttttaa ggtgggttt
7080
cctagacctt ccctgatgctg atttacctt tggtgaattt gtataaacaa ttgtacaaaa
7140
aaaaaaaaacaga ccacaacgcata attccattttt gcaagtcttt ccaagggaga agctgttcaa
7200
ccacccgttt gggggatgag tgagccgaca ctttcctttg gtctttctga atcgtaactg
7260
caactgcttc tggaccattt ctaaggcggc ctttacaaga agacattcct gtcggagagg
7320
agggtggact tcggagaaat tctcatactg aagcatgagc ttaggagttt ctgttagtgg
7380
tagtgggttt ttggacactt cattccttgc aacacccgagg ttttgggtgt tgacataaaag
7440
tggaccacac accacatctg ctgcccgtt gacactttt tttgtttgg tgggtttgtt
7500
acatcttaca ttatgcagaa ctatTTTGT acaaattgtt taaaagttat ttatgcaagg
7560

tttgaatgca taccagtgtt ttatttgtt tgagattgcc aatttcctg attccttaa
7620
ggtaggagag aatttaacgt gtacttcatc gacacaaccc atctacaaat gtgcaggat
7680
ctaacaaagt aggctaagac cttccactt aaagcatgtt taactggaag ttgagagtct
7740
gctttgtacc tcaagagttt catgagcatg ttgtggataa atgtaaatta tagtcaaagt
7800
aagatactt gccaagttt ctctgttagag aattcacttt tctcaaattt taaaattt
7858

<210> 5994

<211> 402

<212> PRT

<213> Homo sapiens

<400> 5994

Met Ala Leu Ala Asn Lys Pro Leu Arg Arg Phe Lys Gln Glu Pro Glu	15
1 5 10	
Asp Glu Leu Pro Glu Ala Pro Pro Lys Thr Arg Glu Ser Asp His Ser	30
20 25 30	
Arg Ser Ser Ser Pro Thr Ala Gly Pro Ser Thr Glu Gly Ala Glu Gly	45
35 40 45	
Pro Glu Glu Lys Lys Val Lys Met Arg Arg Lys Arg Arg Leu Pro	60
50 55 60	
Asn Lys Glu Leu Ser Arg Glu Leu Ser Lys Glu Leu Asn His Glu Ile	80
65 70 75 80	
Gln Arg Thr Glu Asn Ser Leu Ala Asn Glu Asn Gln Gln Pro Ile Lys	95
85 90 95	
Ser Glu Pro Glu Ser Glu Gly Glu Glu Pro Lys Arg Pro Pro Gly Ile	110
100 105 110	
Cys Glu Arg Pro His Arg Phe Ser Lys Gly Leu Asn Gly Thr Pro Arg	125
115 120 125	
Glu Leu Arg His Gln Leu Gly Pro Ser Leu Arg Ser Pro Pro Arg Val	140
130 135 140	
Ile Ser Arg Pro Pro Ser Val Ser Pro Pro Lys Cys Ile Gln Met	160
145 150 155 160	
Glu Arg His Val Ile Arg Pro Pro Ile Ser Pro Pro Pro Asp Ser	175
165 170 175	
Leu Pro Leu Asp Asp Gly Ala Ala His Val Met His Arg Glu Val Trp	190
180 185 190	
Met Ala Val Phe Ser Tyr Leu Ser His Gln Asp Leu Cys Val Cys Met	205
195 200 205	
Arg Val Cys Arg Thr Trp Asn Arg Trp Cys Cys Asp Lys Arg Leu Trp	220
210 215 220	
Thr Arg Ile Asp Leu Asn His Cys Lys Ser Ile Thr Pro Leu Met Leu	240
225 230 235 240	
Ser Gly Ile Ile Arg Arg Gln Pro Val Ser Leu Asp Leu Ser Trp Thr	255
245 250 255	
Asn Ile Ser Lys Lys Gln Leu Ser Trp Leu Ile Asn Arg Leu Pro Gly	270
260 265 270	
Leu Arg Asp Leu Val Leu Ser Gly Cys Ser Trp Ile Ala Val Ser Ala	285
275 280 285	
Leu Cys Ser Ser Ser Cys Pro Leu Leu Arg Thr Leu Asp Val Gln Trp	

290	295	300													
Val	Glu	Gly	Leu	Lys	Asp	Ala	Gln	Met	Arg	Asp	Leu	Leu	Ser	Pro	Pro
305															
Thr	Asp	Asn	Arg	Pro	Gly	Glu	Leu	Pro	Gly	Trp	Gly	Phe	Leu	Trp	Gly
325															
Trp	Gly	Glu	Arg	Ala	Arg	Leu	Leu	Asp	Leu	Leu	Leu	Pro	Ser	Asp	Pro
340															
Ser	Cys	Ser	Pro	Lys	Asp	Ile	Gly	Met	Ser	Leu	Cys	Cys	His	Val	Leu
355															
Ser	Leu	Leu	Gln	Ala	Gln	Arg	Gly	Ser	Gly	Arg	Arg	Gln	Gly	Leu	Leu
370															
Cys	Thr	Arg	Glu	Thr	Arg	Ser	Trp	Gly	Ser	Ala	Cys	Val	Ser	Leu	Leu
385															
Ser	Cys														
390															
395															
400															

<210> 5995

<211> 1528

<212> DNA

<213> Homo sapiens

<400> 5995

ntccggacga gtctaggcga gcaggtcatc gtcggccctt cagaaatgga gaggtgtcct
60
ggtgccctt cagtctgtga cattcagttt aaccagggtgt cgccctgctga cttaactgtc
120
ctcagtatgt tgctgcataat gttcagcggt gacttcagca agcaagtcag cagctcggca
180
gcgtgccata gcaggcagtt tgcacccctt ggcgtctggcc aagcacaggt ggttctctcg
240
tggtgggaca ttgaaatgga ccctgagggc aagatcaagt gcaccatggc ccccttctgg
300
gcacactcag acccagagga gatgcagttt cgggaccact ggnatgcagt gtgtgtactt
360
cctgccacaa gaggagcctg tggcagggc tcacccgttc tatctggtag cccaccacga
420
tgactactgc gtatggtaca gcctgcagag gaccagccct gaaaagaatg agagagtccg
480
ccagatgcgc cccgtgtgtg actgccaggc tcacccgttc tggaaaccggc ctcggtttgg
540
540
agagatcaat gaccaggaca gaactgatcg atacgtccag gctctgagga ccgtgctgaa
600
600
gccagacagc gtgtgcctgt gtgtcagcga tggcagccctg ctctccgtgc tggcccatca
660
660
cctgggggtg gagcagggtgt ttacagtcga gagttcagca gcttctcaca aactgtttag
720
720
aaaaaatcttc aaggctaacc acttggaaaga taaaattcac atcatagaga aacggccggaa
780
780
attattaaca aatgaggacc tacagggcag aaaggtctct ctccctctgg gcgagccgtt
840
840
cttcactacc agcctgctgc cgtggcgcaa cctctacttc tggtaacgtgc ggaccgctgt
900
900
ggaccagcac ctggggccag gtgccatggt gatgccccag gcagcctcgc tgcacgctgt
960

ggttgtggag ttcagggacc tgtggcggat ccggagcccc tgtggtgact gcgaaggctt
1020
cgacgtgcac atcatggacg acatgattaa gcgtgccctg gacttcaggg agagcaggga
1080
agctgagccc cacccgctgt gggagtaccc atgccgcage ctctccgagc cctggcagat
1140
cctgacctt gacttccagc agccggtgcc cctgcagccc ctgtgtgccg agggcaccgt
1200
ggagctcaga aggcccggc agagccacgc agcggtgcta tggatggagt accacctgac
1260
cccgaggatgc acgctcagca ctggcctcct ggagcctgca gaccccgagg ggggctgctg
1320
ctgaaacccc cactgcaagc aggccgtcta cttcttcagc cctgccccag atcccagagc
1380
actgctgggt ggcccacgga ctgtcagcta tgcaagtggag tttcaccccg acacaggcga
1440
catcatcatg gagttcaggc atgcagatac cccagactga ccactcttga gcaataaaagt
1500
ggcctgaggg ctggggaaaaaa aaaaaaaaa
1528

<210> 5996
<211> 140
<212> PRT
<213> Homo sapiens

<400> 5996
Xaa Arg Thr Ser Leu Gly Glu Gln Val Ile Val Pro Pro Ser Glu Met
1 5 10 15
Glu Arg Cys Pro Gly Ala Pro Ser Val Cys Asp Ile Gln Leu Asn Gln
20 25 30
Val Ser Pro Ala Asp Phe Thr Val Leu Ser Asp Val Leu Pro Met Phe
35 40 45
Ser Val Asp Phe Ser Lys Gln Val Ser Ser Ala Ala Cys His Ser
50 55 60
Arg Gln Phe Val Pro Leu Ala Ser Gly Gln Ala Gln Val Val Leu Ser
65 70 75 80
Trp Trp Asp Ile Glu Met Asp Pro Glu Gly Lys Ile Lys Cys Thr Met
85 90 95
Ala Pro Phe Trp Ala His Ser Asp Pro Glu Glu Met Gln Trp Arg Asp
100 105 110
His Trp Xaa Ala Val Cys Val Leu Pro Ala Thr Arg Gly Ala Cys Gly
115 120 125
Ala Gly Leu Ser Ala Leu Ser Gly Ser Pro Pro Arg
130 135 140

<210> 5997
<211> 1759
<212> DNA
<213> Homo sapiens

<400> 5997
ttttttttttttttt aacaaaacatg tttatttagaa aagtaaaaaaaaa tattgcata

60

gtcttaatac ttgaacatca agtgttattca tgaacagtga gtatcttatac ttcatgtaaa
120
cagttctaga tggaagaccc agatggcaact cctcccgaaa aggggttcca gcccccaccc
180
tctcagcccc tcccctgcca gctcaactct gcagtgacacg atggggaaag gcttaaacgc
240
agctgccagg tgtaattttt caagtgtcaa agatcccaag tgatccctga cacccacccc
300
ttcctactct tacattcatg cgtctgtaaag atagctgcct acaacaggtc agtagtgatg
360
ctccgatcag aaaaacaaga tacaaaacaa acaacaaaca cacttggtcc cttagaccca
420
gtaagataca caaaccacct ccacgaccc cgacccccc cctccctccg gctgctctga
480
ggagcacgtg cctttccctt caccctgggc cgggctgggg cgggagcagc ccagctgctc
540
tctggatgtc acaccactgt taactgtcaag taacaaaaat aataaggtac atgctacaca
600
cacatccagc tggaagcctt gttggccctt aagccctttgt ttcatgctac agtactgagg
660
ggtatgtgtc cccaatgcac agccacccgc acacaactca atgagcttcc tggaaacac
720
tattccccc cctccaccc aggtggctgc ctcaagtttc caaccactgg aatcaactccc
780
tcagctctg cctctagtct ccacccaaa agttcagtcg tctctgtctt ggagggcaact
840
gtcgcccccc tcaggttcaa gttcaacact cctcaatgag cagctgtcc gagctgtaca
900
gcttcttctt gatgactcgg aagccagtgc tcagcgtcaag ggactggctg aagccaggaa
960
ggaagggaga gttggcggag ctaaacagcc cctggatctt gggccagagt cgtgagtcca
1020
ggcgcagcac gagggtcagc tggaaggtgg gcaccaggct ggggtcgagt gccagctggc
1080
ccacgctgtg ctagcttgc ccctgtccca cgcagacgtc cagcagcgcc ccccgagc
1140
cgcacggctc gctgttaggcc aggccgcagta gttcttgcc cacctggctt accaactggc
1200
taggcatacg caggcgcgca gggcgctcgag agccacggc cgcctggcc aggctctt
1260
gcagcagctg catcaggttg gcacacaagt gttcatctc agggtcactg agcagctcga
1320
agtcgggcaa cgacacccca tccaggtaaag cctgtcttc ctccggcccg aagccactgt
1380
tgctgctgtc caggactcg cagtccgagc tctccaggct cgtggagcgg tcaaaccct
1440
cctccgggt cgccgacccc caggctgagc gggcgcccg atctgggtg ggagttcggg
1500
gcaaggacga gggcgaagag gaggtggacg acgacgagaa ggggtcccaa aggctaggca
1560
tggtgaggac agacgccagg gcgtttgtc atgaactcaag agtgcggag cgtagaagcc
1620
gcagtagcgc ggtcagcag aactgctaag acaagtgcgt cctgccgtt gaatgggtgt
1680

gCGaACCCGT gCCAACCACC gagAGCCGCC cAGACCCGTC CCAGGTCCAC gCTCGCACCT
1740
cccccccccTTT gCCGAATTc
1759

<210> 5998
<211> 72
<212> PRT
<213> Homo sapiens

<400> 5998
Thr Ala Pro Gly Ser Trp Ala Arg Val Val Ser Pro Gly Ala Ala Arg
1 5 10 15
Gly Ser Ala Gly Arg Trp Ala Pro Gly Trp Gly Arg Val Pro Ala Gly
20 25 30
Pro Arg Cys Gly Ser Ser Cys Pro Ala Pro Arg Arg Arg Pro Ala Ala
35 40 45
Pro Pro Ala Gly Arg Thr Ala Arg Cys Arg Pro Gly Ala Val Val Leu
50 55 60
Cys Pro Pro Gly Leu Pro Thr Gly
65 70

<210> 5999
<211> 2759
<212> DNA
<213> Homo sapiens

<400> 5999
ncggccggaa gtggcgccgg cggcgtcgcc ggcggcgtag ccgtagaggt gcacagagaa
60
caccccttagc atgaacagtg tgaggattcc accagcttt tcaccatgaa ggagacagac
120
cgggaggccg ttgcgacagc agtgcaaagg gttgctggga tgctccagcg cccggaccag
180
ctggacaagg tggagcagta tcgcaggaga gaagcgcgga agaaggcctc cgtggaggcc
240
agattgaagg cgcgcattca gtcacagttg gacggggtgc gcacaggcct cagccagctc
300
cacaacgcgc tgaatgacgt caaagacatc cagcagtcgc tggcagacgt cagcaaggac
360
tggaggcaga gcatcaacac cattgagagc ctcaaggacg tcaaagacgc cgtgggtcag
420
cacagccagc tcgccgcagc cgtggagaac ctcaagaaca tcttctcagt gcctgagatt
480
gtgagggaga cccaggacct aattgaacaa ggggactcc tgcagccca cggaaagctg
540
atggacaccttgg agtgctcccg ggacgggctg atgtacgagc agtaccgcatt ggacagtgg
600
aacacgcgtg acatgaccct catccatggc tactttggca gcacgcagg gctctctgat
660
gagctggcta agcagctgtg gatggtgctg cagaggtcac tggcactgt ccggcgtgac
720
cccacccTTGC tggtctcagt tgtcaggatc attgaaaagg aagagaaaaat tgacaggcgc
780

atacttgacc ggaaaaagca aactggctt gttcctcctg ggaggccaa gaattggaag
840
gagaaaatgt tcaccatctt ggagaggact gtgaccacca gaattgaggg cacacaggca
900
gataccagag agtctgacaa gatgtggctt gtccgccacc tgaaaattat aaggaagtac
960
gtcctggatg acctcattgt cgccaaaaac ctgatggttc agtgcttcc tccccactat
1020
gagatcttta agaacctcct gaacatgtac caccaagccc tgagcacgcg gatgcaggac
1080
ctcgcatcgg aagacctgga agccaatgag atcgtgagcc tcttgacgtg ggtcttaaac
1140
acctacacaa gtactgagat gatgaggaac gtggagctgg ccccgaaagt ggatgtcggc
1200
acccctggagc cattgcttcc tccacacgtg gtctctgagc tgcttgacac gtacatgtcc
1260
acgctcaactt caaacatcat cgccctggctg cgaaagcgc tggagacaga caagaaagac
1320
tgggtcaaaag agacagagcc agaagccgac caggacgggt actaccagac cacactccct
1380
gccattgtct tccagatgtt tgaacagaat cttcaagttt ctgctcagat aagtgaagat
1440
ttgaaaacaa aggtactagt tttatgtctt cagcagatga attctttctt aagcagatata
1500
aaagatgaag cgccagctgta taaagaagag cacctgagga atcggcagca ccctcaactgc
1560
tacgttcagt acatgatcgc catcatcaac aactgccaga cttcaagga atccatagtc
1620
agtttaaaaa gaaagtattt aaagaatgaa gtggaaagagg gtgtgtctcc gagccagccc
1680
agcatggacg ggattttaga cgccatcgcg aaggaggct gcagcggttt gctggaggag
1740
gtcttcctgg acctggagca acatctgaat gaattgatga cgaagaagtg gctattaggg
1800
tcaaacgctg tagacattat ctgtgtcacc gtggaaagact atttcaacga ttttgccaaa
1860
ataaaaaaagc cgtataagaa gaggatgacg gccgaggcgc accggcgcgt ggtgggtggag
1920
tacctgcggg cggcatgca gaagcgcatt tccttcggaa gcccggagga ggcgaaggag
1980
ggtgtccgaga agatggtag ggaggcagag cagcggcgct tcctgttccg gaagctggcg
2040
tccgggttcg gggaaagacgt ggacggatac tgcgacacca tcgtggctgt gggcgaagtg
2100
atcaagctga cagacccttc tctgctctac ctggaggtct ccactctggt cagcaagtat
2160
ccagacatca gggatgacca catcggtgcg ctgctggctg tgctggggaa cgccagccgt
2220
gacatgaagc agaccatcat ggagaccctg gagcaggccc cagcacaggc cagccccagc
2280
tacgtgcccc tttcaagga cattgtggtg cccagcctga acgtggccaa gctgctcaag
2340
tagcctccgc cggcctgccc tgctcgcccc tccacagcct cggccctgc cttagaaac
2400

gcgggacagc tgattgtct ccttggccac acgtgtcct ttttagctgca cggcctgtct
2460 ttaggtgcca gtgtgatgca ccgggtgtgc gtcgagttag cgccccgagg ccacgtgcgg
2520 agggccctca ctgtgtgtc aaaggcctgt gggtgcaggg ctctgccgca cagcctctct
2580 tgggtgcttg tttgttgca ggttggaaag tgtgtggggc acagaggacg tgcacccccc
2640 tgcacccccc tgcacccccc cttcacccgca ccccatctgc ttaagtgctc ggaaccccggt
2700 cacctaatta aagtttctcg gtttctcg agaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
2759

<210> 6000
<211> 757
<212> PRT
<213> Homo sapiens

<400> 6000
His Glu Gln Cys Glu Asp Ser Thr Ser Phe Phe Thr Met Lys Glu Thr
1 5 10 15
Asp Arg Glu Ala Val Ala Thr Ala Val Gln Arg Val Ala Gly Met Leu
20 25 30
Gln Arg Pro Asp Gln Leu Asp Lys Val Glu Gln Tyr Arg Arg Arg Glu
35 40 45
Ala Arg Lys Lys Ala Ser Val Glu Ala Arg Leu Lys Ala Ala Ile Gln
50 55 60
Ser Gln Leu Asp Gly Val Arg Thr Gly Leu Ser Gln Leu His Asn Ala
65 70 75 80
Leu Asn Asp Val Lys Asp Ile Gln Gln Ser Leu Ala Asp Val Ser Lys
85 90 95
Asp Trp Arg Gln Ser Ile Asn Thr Ile Glu Ser Leu Lys Asp Val Lys
100 105 110
Asp Ala Val Val Gln His Ser Gln Leu Ala Ala Ala Val Glu Asn Leu
115 120 125
Lys Asn Ile Phe Ser Val Pro Glu Ile Val Arg Glu Thr Gln Asp Leu
130 135 140
Ile Glu Gln Gly Ala Leu Leu Gln Ala His Arg Lys Leu Met Asp Leu
145 150 155 160
Glu Cys Ser Arg Asp Gly Leu Met Tyr Glu Gln Tyr Arg Met Asp Ser
165 170 175
Gly Asn Thr Arg Asp Met Thr Leu Ile His Gly Tyr Phe Gly Ser Thr
180 185 190
Gln Gly Leu Ser Asp Glu Leu Ala Lys Gln Leu Trp Met Val Leu Gln
195 200 205
Arg Ser Leu Val Thr Val Arg Arg Asp Pro Thr Leu Leu Val Ser Val
210 215 220
Val Arg Ile Ile Glu Arg Glu Lys Ile Asp Arg Arg Ile Leu Asp
225 230 235 240
Arg Lys Lys Gln Thr Gly Phe Val Pro Pro Gly Arg Pro Lys Asn Trp
245 250 255
Lys Glu Lys Met Phe Thr Ile Leu Glu Arg Thr Val Thr Arg Ile
260 265 270
Glu Gly Thr Gln Ala Asp Thr Arg Glu Ser Asp Lys Met Trp Leu Val

275	280	285
Arg His Leu Glu Ile Ile Arg	Lys Tyr Val Leu Asp Asp	Leu Ile Val
290	295	300
Ala Lys Asn Leu Met Val Gln Cys Phe Pro Pro	His Tyr Glu Ile Phe	
305	310	315
Lys Asn Leu Leu Asn Met Tyr His Gln Ala Leu Ser Thr Arg Met Gln		320
325	330	335
Asp Leu Ala Ser Glu Asp Leu Glu Ala Asn Glu Ile Val Ser	Leu Leu	
340	345	350
Thr Trp Val Leu Asn Thr Tyr Thr Ser Thr Glu Met Met Arg Asn Val		
355	360	365
Glu Leu Ala Pro Glu Val Asp Val Gly Thr Leu Glu Pro Leu Leu Ser		
370	375	380
Pro His Val Val Ser Glu Leu Leu Asp Thr Tyr Met Ser Thr Leu Thr		
385	390	395
Ser Asn Ile Ile Ala Trp Leu Arg Lys Ala Leu Glu Thr Asp Lys Lys		400
405	410	415
Asp Trp Val Lys Glu Thr Glu Pro Glu Ala Asp Gln Asp Gly Tyr Tyr		
420	425	430
Gln Thr Thr Leu Pro Ala Ile Val Phe Gln Met Phe Glu Gln Asn Leu		
435	440	445
Gln Val Ala Ala Gln Ile Ser Glu Asp Leu Lys Thr Lys Val Leu Val		
450	455	460
Leu Cys Leu Gln Gln Met Asn Ser Phe Leu Ser Arg Tyr Lys Asp Glu		
465	470	475
Ala Gln Leu Tyr Lys Glu Glu His Leu Arg Asn Arg Gln His Pro His		
485	490	495
Cys Tyr Val Gln Tyr Met Ile Ala Ile Ile Asn Asn Cys Gln Thr Phe		
500	505	510
Lys Glu Ser Ile Val Ser Leu Lys Arg Lys Tyr Leu Lys Asn Glu Val		
515	520	525
Glu Glu Gly Val Ser Pro Ser Gln Pro Ser Met Asp Gly Ile Leu Asp		
530	535	540
Ala Ile Ala Lys Glu Gly Cys Ser Gly Leu Leu Glu Glu Val Phe Leu		
545	550	555
Asp Leu Glu Gln His Leu Asn Glu Leu Met Thr Lys Lys Trp Leu Leu		
565	570	575
Gly Ser Asn Ala Val Asp Ile Ile Cys Val Thr Val Glu Asp Tyr Phe		
580	585	590
Asn Asp Phe Ala Lys Ile Lys Lys Pro Tyr Lys Lys Arg Met Thr Ala		
595	600	605
Glu Ala His Arg Arg Val Val Val Glu Tyr Leu Arg Ala Val Met Gln		
610	615	620
Lys Arg Ile Ser Phe Arg Ser Pro Glu Glu Arg Lys Glu Gly Ala Glu		
625	630	635
Lys Met Val Arg Glu Ala Glu Gln Arg Arg Phe Leu Phe Arg Lys Leu		
645	650	655
Ala Ser Gly Phe Gly Glu Asp Val Asp Gly Tyr Cys Asp Thr Ile Val		
660	665	670
Ala Val Ala Glu Val Ile Lys Leu Thr Asp Pro Ser Leu Leu Tyr Leu		
675	680	685
Glu Val Ser Thr Leu Val Ser Lys Tyr Pro Asp Ile Arg Asp Asp His		
690	695	700
Ile Gly Ala Leu Leu Ala Val Arg Gly Asp Ala Ser Arg Asp Met Lys		

705 710 715 720
Gln Thr Ile Met Glu Thr Leu Glu Gln Gly Pro Ala Gln Ala Ser Pro
725 730 735
Ser Tyr Val Pro Leu Phe Lys Asp Ile Val Val Pro Ser Leu Asn Val
740 745 750
Ala Lys Leu Leu Lys
755

<210> 6001
<211> 2490
<212> DNA
<213> Homo sapiens

<400> 6001
nggcgcctt cagctaaaa acagctcgcg ctgcagcaag ctagctggga agctcccagt
60 tctaaagaga ggctgtttac cagaacagca taacaagggc aggtctgact gcaaggctgg
120 gactgggagg cagagccgcc gccaagggggg cctcggttaa acactggtcg ttcaatcacc
180 tgcaagacga aggaggcaag gatgctgttg gcctgggtac aagcattcct cgtagcaac
240 atgctcctag cagaagccta tggatctgga ggctgtttct gggacaacgg ccacctgtac
300 cgggaggacc agacctcccc cgccggggc ctccgctgcc tcaactggct ggacgcgcag
360 agcgggctgg cctcgcccc cgtgtcgggg gccggcaatc acagttactg ccgaaacccg
420 gacgaggacc ccgcggggcc ctggtgctac gtcagtgcg aggccggcgt ccctgagaaa
480 cggccttgcg aggacctgcg ctgtccagag accacccccc aggccttgcc agccttcacg
540 acagaaatcc aggaagcgtc tgaaggccca ggtgcagatg aggtgcaggt gttagctcct
600 gccaacgccc tgcccgctcg gagtgaggcg gcagctgtgc agccagtgtat tggatcagc
660 cagcgggtgc ggtgaactc caaggagaaa aaggacctgg gaactctggg ctacgtgtc
720 ggcattacca ttagtggat catcattgcc atcggagctg gcatcatctt gggctactcc
780 tacaagaggg ggaaggatgg gaaagaacag catgatcaga aagtatgtga gagggagatg
840 cagcgaatca ctctgcccgtt gtctgccttc accaaccctt cctgtgagat tgtggatgag
900 aagactgtcg tggccacac cagccagact ccagttgacc ctcaggaggg caccaccccc
960 cttatggccc aggcggggac tcctggggcc tgagcccccc cagtgcccgag gagcccatgc
1020 agacacttgtt gcaggacagc ccaccctctt acagcttagga ggaactacca ctttgttgc
1080 tggtaaaaac cctaccactc ccccgctttt ttggcgaatc ctagtaagag tgacagaagc
1140 aggtggccct gtggctgag ggtaggctg ggtagggtcc taacagtgtc ctttgtccat
1200

cccttggagc agatttgtc tgtggatgga gacagtggca gctcccacag ttagtgctgc
1260
gctaagggtc tccaaacatt gcctgcaccc ctggaactga accagggata gacggggagc
1320
tcccccaggc tcctctgtgc tttactaaga tggcctcagt ctccactgtg ggcttgagtg
1380
gcatacactg ttattcatgg ttaaggtaaa gcaggtcaag ggatggcatt gaaaaaatat
1440
attttagttt taaaatatTTT gggatggaac tccctactga cctctgagaa ctggaaacga
1500
gtttgtacag aagtcaaac tttgggttgg gaatgagatc taggttgtgg ctgctggtat
1560
gcttcagctt gctggcaatg atgtgccttg acaaccgtgg gccaggcctg ggcccaggga
1620
cttttcctgt ttcataagga aaggaagaat tgcaactgagc attccactta ggaagaggat
1680
agagaaggat ctgctccgccc tttggccaca ggagcagagg cagacctggg atgccccagt
1740
ttcttcctcag ggtatggatag tgacctgtct tcattttgca caggtaagag agtagttac
1800
taacctatgg gaattatact gtggggcctt gtgagctgct tctaagaggc taacctggaa
1860
actaagctca gaggcaaggt aataaagcac ttcaggcctt gtccttcaag tgggcctgat
1920
tttagcaggcg gtcctgcggg cgtccaggc acgacccttcc ttagggcac tggggcttagg
1980
gtcacagccc ctaactcata aagcaatcaa agaaccatta gaaaggcgtc attaagccct
2040
ttggacacag gacccagag aggaaaaagt gacttgcctt aggtcgtaag caagctactg
2100
gcatggcaag agcccaagctt cctgacggag cgcaacattt ctccactgca ctgtgctagc
2160
agctcaggcag ggcctctaac ctgtgatgtc acactcaaga ggccttggca gtccttagcc
2220
atagagcttc ctttccagaa cccttccact gccaatgtg gagacagggg ttagtggggc
2280
tttctatgga gccatctgct ttggggacct agacctcagg tggctcttg gtgttagtga
2340
tgctggagaa gagaatatta ctggtttcta cttttctata aaggcatttc tctatataaca
2400
tgttttatat acctcattct gacacctgca tatagtgtgg gaaattgctc tgcatttgac
2460
ttaattaaaa aaaaaaaaaa gactccaaaa
2490

<210> 6002

<211> 263

<212> PRT

<213> Homo sapiens

<400> 6002

Met Leu Le

1

10 15
Ala Glu Ala Tyr Gly Ser Gly Gly Cys Phe Trp Asp Asn Gly His Leu

Digitized by srujanika@gmail.com

20	25	30
Tyr Arg Glu Asp Gln Thr Ser Pro Ala Pro Gly Leu Arg Cys Leu Asn		
35	40	45
Trp Leu Asp Ala Gln Ser Gly Leu Ala Ser Ala Pro Val Ser Gly Ala		
50	55	60
Gly Asn His Ser Tyr Cys Arg Asn Pro Asp Glu Asp Pro Ala Gly Pro		
65	70	75
Trp Cys Tyr Val Ser Gly Glu Ala Gly Val Pro Glu Lys Arg Pro Cys		
85	90	95
Glu Asp Leu Arg Cys Pro Glu Thr Thr Ser Gln Ala Leu Pro Ala Phe		
100	105	110
Thr Thr Glu Ile Gln Glu Ala Ser Glu Gly Pro Gly Ala Asp Glu Val		
115	120	125
Gln Val Phe Ala Pro Ala Asn Ala Leu Pro Ala Arg Ser Glu Ala Ala		
130	135	140
Ala Val Gln Pro Val Ile Gly Ile Ser Gln Arg Val Arg Met Asn Ser		
145	150	155
Lys Glu Lys Lys Asp Leu Gly Thr Leu Gly Tyr Val Leu Gly Ile Thr		
165	170	175
Met Met Val Ile Ile Ala Ile Gly Ala Gly Ile Ile Leu Gly Tyr		
180	185	190
Ser Tyr Lys Arg Gly Lys Asp Leu Lys Glu Gln His Asp Gln Lys Val		
195	200	205
Cys Glu Arg Glu Met Gln Arg Ile Thr Leu Pro Leu Ser Ala Phe Thr		
210	215	220
Asn Pro Thr Cys Glu Ile Val Asp Glu Lys Thr Val Val Val His Thr		
225	230	235
Ser Gln Thr Pro Val Asp Pro Gln Glu Gly Thr Thr Pro Leu Met Gly		
245	250	255
Gln Ala Gly Thr Pro Gly Ala		
260		

<210> 6003
<211> 3107
<212> DNA
<213> Homo sapiens

400> 6003	
ttttttttttt tttttttttc tttttttttt tttttttttt ttttttttca ctatagaaaa	
60	
ttgacttggt ttattaccgt cactatagaa acaggcgacc tgttcccta ggtggctccc	
120	
agcagcgtgg cccacgcgttg gacacccac tccccagaaa tctggactga gaccccaggc	
180	
ctctgtctgg cttctcacga acagctgtct ggagagcttc acgtgctgga gagctgtgc	
240	
tccgtcatcg ctcacagagg catgggcccg aatttcagcc ccctctgcct ctccgtccag	
300	
tggccagcaa tgggctgtcc agcgaagggc ctcgcacaac ctgtcaggga ctggtctggc	
360	
acgcagccag cgtgaaatcc tcaggttggt tctcttcaga tgtgggaggt gaccgcagcc	
420	
ctgctcacag agagggtgga aactggcgca ggtgtggag cagcctccct tcggggctc	
480	

ctcgaagtac ccagggctct ccccagcgct gcccggcccc agcttctga acacctgcca
540
cgtggatcac aacttgtcg ctcttctcg tcaactaga agcaactgca gcatggccct
600
tcccgtttc caggtgcatt tcgaaaagcg tgcagtggcc ttgtgacgtg gccggggcct
660
tggcaaggaa gtcctggcggt gtatcagcct ctgcactgca ccctgggtgg actgagtcgg
720
ggccaggatt gtgtcagggg aggtggagga gacgcgggaa cagccggttc acagccgcct
780
ggacggagca ctccggggcc agagctgttc tgagacttgg tgcagattca aagatttaa
840
aatgcctggg gctacataag gggcagcact tctcagacga gggcttctga aaggggcatt
900
ccttggcaact gagatggaga cggcagtgcc ttttaccct ctccgtgagg ctttgtctg
960
tgtcagcct tggtgtgcag agatgggcag aggggaggca gaggctctgc cagacggta
1020
tgtggggagc agggttgtgg ccagggcccc cgctctgccc tctcgggatt gcagagctgg
1080
agctcctccc agttctcat gtgagtctga gtcgtccaca gaagccactg aggccaccag
1140
gaatgagccc ctggtgcccc gtcgtccaccc gcagggtgct ccgtgagctg ggcctgggct
1200
cagtgtcaa gaggcatctc ctctcacgtg accgtgggct cagatctgcc aacactccgg
1260
agaacagggt agggggcagg ggctgcacga aggagatcct acccctccag aggaggtggg
1320
gcccgggcc cgggcctgca accctggcca cctgcccacc agcagtgcag ttgtgagcac
1380
gccacctgca gtgacacaca cagccatgg gtcctactca ggcctccgtg gctgacttg
1440
ggggctaagg ggagctcagg agaaacccaa agtccagcca gcagggcccc cccacagaca
1500
ccccctgcac acacaggcag ggggcctac tgtgtctcat gcatcatcac accggaggc
1560
aaactctgcg tggtgagcct ggccccagcc ggcctccat gaatggtgac cacacccagc
1620
tggtggccgg tggcccttg gtttctggt gggccacgg gatgcacaga gctgggtct
1680
tgggagacgg tgccaaaggcc agctgtcccg aaggtggccc ctggcacaat gcccaccaga
1740
cctgagggag ggactgagac cacctaatt ctgnagttc ctgggtcac gcagagtcca
1800
cgtggggaaa gggcagttt accccatgcg gtgcagggtg tggcttgcc angcagaggg
1860
agcccgcgtg gcccggcc cagggctccg gcccgtggca gagactgcgg tggaaatggc
1920
cctgcagagg cccagcccc cttgtctct gcattccagc cacctgcctt gggccagct
1980
ccaaaggaag ggggccccaa ctctctgaat aaaaggtgca catgaggacc aaggaggct
2040
gacactggga ggggacagct ccaccccttc tcccccggaca cccaaaagg cggagacgtt
2100

cacaagctgt cctgtcggcg gctgctgttt gtggaggagt aaagcatcct agcgagactg
 2160
 caggctcggt gtacatctga ttactgaat tttaaagtct gggatgttag tgggaaagag
 2220
 gcgaggtgag cattgcgtga cgccgaggac taggcggggc gggactgca cctggctagg
 2280
 caccccccacc ctgggcaact tgcccacgga ccccaggca gtgagtagtg acaggaggta
 2340
 gccccgggtg agacctctca cagcaagaag atggtgtggt tgctgggccc tccctggaga
 2400
 gtgtcgcccc tgcggccctt gggaaagtgtct ccctcacgac ggaaggtttc ctgtcagtgc
 2460
 ggtccccggg cctgatagtg gcgggtggcg ggtgggtca cgtgtcctca aggtcctgaa
 2520
 tgcccagtc tgcccccattc ctctgattcc cagtggctgc tagctggacc cagctgggt
 2580
 cctgggcattg aaggcagggc caccgtcccc agcaggtgtc gcctcctgg ccagctgagc
 2640
 atcctggcca ccatcagegt ccaggtgccc ctactcgccc ttccctttct tcagaagcct
 2700
 ttgcggaccc gacctgggcc agcttcccgc gattccctt ccgttcccta tcaacgtcca
 2760
 ggacccaaagc tgcccgcccc aggccagccc ttgccacttg gggcccggtc ttcacacgtg
 2820
 ggagtctgac cggggctcct ccctgaacag tcctgggtct gacgtctca attatcaccc
 2880
 acggaccac acgacgcccc gctctggcg gggatggggc cggggctgtc gcggggtccc
 2940
 gccaggcgag gccccagcaa ccacccatc ttcttgctgt gagaggtctc accccggct
 3000
 acctcctgtc actactcagt gcccgtgggtt ccgtggccaa gttgcccagg gtgggggtgc
 3060
 ctagccaggt gcagtcggcc tagtccctcg tccctggcgta cacgcgt
 3107

<210> 6004

<211> 140

<212> PRT

<213> Homo sapiens

<400> 6004
 Met Val Thr Thr Pro Ser Trp Trp Ala Val Trp Pro Trp Val Ser Gly
 1 5 10 15
 Gly Ala Thr Gly Cys Thr Glu Leu Gly Ser Trp Glu Thr Val Pro Arg
 20 25 30
 Pro Ala Val Pro Lys Val Ala Pro Gly Thr Met Pro Thr Arg Pro Glu
 35 40 45
 Gly Gly Thr Glu Thr Thr Ser Met Leu Xaa Val Pro Gly Val Thr Gln
 50 55 60
 Ser Pro Arg Gly Glu Arg Gly Ser Gly Pro His Ala Val Gln Gly Val
 65 70 75 80
 Ala Leu Pro Xaa Arg Gly Ser Pro Arg Gly Pro Gly Pro Arg Ala Pro
 85 90 95
 Gly Arg Gly Arg Asp Cys Gly Gly Asn Gly Pro Ala Glu Ala Pro Ala

100	105	110
Pro Leu Ser Ser Ala Phe Gln Pro Pro Ala Leu Gly Pro Ala Pro Lys .		
115	120	125
Glu Gly Gly Pro Ser Ser Leu Asn Lys Arg Cys Thr		
130	135	140

<210> 6005
<211> 1735
<212> DNA
<213> Homo sapiens

<400> 6005
gagcttggat tgcccggtgc cccaggaatc gatggagaga agggcccaa aggacagaaa
60
ggagaccagg gagagcctgg gccagcagga ctcaaaggaa aagcaggcga gatgggcttg
120
tccggcctcc cgggcgctga cggcctcaag ggggagaagg gggagtcggc atctcagcct
180
acaggagagc ctggctcagc tcatagttag ccagggcccc ctggccccc tggccccc
240
ggcccgatgg gcctccaggg aatccagggt cccaagggt tggatggagc aaaggagag
300
aagggtgcgt cgggtgagag aggctccagc ggctgcctg gcccagttgg cccaccggc
360
cttattggc tgccaggaac caaaggagag aagggcagac cggggagcc aggactagat
420
ggttccctg gaccccgagg agagaaaaggat gatcgagcg agcgtggaga gaaggagaa
480
cgagggttcc cggccggaa aggagtgaag ggccagaagg gcgagccgg accaccaggc
540
ctggaccagc cgtgtccctg gggcccgac gggctgcctg tgccctggctg ctggcataag
600
tgacccacag gcccagctca cacctgtaca gatccgtgtg gacatttta attttgtaa
660
aaacaaaaaca gtaatatatt gatttttt catggaatgc gctacctgtg gcctttaac
720
attcaagagt atgcccaccc agccccaaag ccaccggcat gtgaagctgc cgaaagtgg
780
acaggccaga ccagggagat gtgtacctga gggcacccct tggcctggg ctttccagg
840
aaggagatga aggtagaagc acctggctcg ggcaaggcta gaaagatgct acgttggcc
900
ttcagtccacc tgatcagcag agagactctc agctgtggta ctggccctgta agaacctgcc
960
cccgcaaaac tctggagtcc ctgggacaca ccctatccaa gaagacccag gggtggaaaca
1020
scggctgcgt ttgctccctgg cctcatcagc ctccaaactc aaccacaacc agctgcctct
1080
gcagttggac aagacttggc ccccgacaa gactcgccca gcacttgcgg ctggcccg
1140
ggagcagtga gtggaaatcc cccacgaggg tctagctcta ccacattcag gaggcctcag
1200
gaggccagcc tgccatgaga gcacatgtcc tctggccagg agtagtggct gagctctgt
1260

atcgctgtga tgtggaccca gctccaggga gcagagtgtc ggggatggag gggcccagcc
1320 tggactgact gctacttcct gtctctgttt ccattatcac ccagagaggg acaagatagg
1380 acatggcctg gaccagggag gcaggcctcc cactcagagt ctgggtctca ctggccccaa
1440 gtctccacc cagaactctg gccaaaaatg gctctctagg tgggtgtgc aggcaaagca
1500 aagctcaggg ctggtccca gctggcctga gcagggggcc tgccaccaga cccacccacg
1560 ctctgacgag aggctttcc acctccagca agtgttccca gcaaccagct ccatcctggc
1620 tgcttgccct ccattccgt gtagatggag atcaactgtgt gtaataaacc acaagtgcgt
1680 gaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaag
1735

<210> 6006

<211> 200

<212> PRT

<213> Homo sapiens

<400> 6006
Glu Leu Gly Leu Pro Gly Ala Pro Gly Ile Asp Gly Glu Lys Gly Pro
1 5 10 15
Lys Gly Gln Lys Gly Asp Pro Gly Glu Pro Gly Pro Ala Gly Leu Lys
20 25 30
Gly Glu Ala Gly Glu Met Gly Leu Ser Gly Leu Pro Gly Ala Asp Gly
35 40 45
Leu Lys Gly Glu Lys Gly Glu Ser Ala Ser Gln Pro Thr Gly Glu Pro
50 55 60
Gly Ser Ala His Ser Glu Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro
65 70 75 80
Gly Pro Met Gly Leu Gln Gly Ile Gln Gly Pro Lys Gly Leu Asp Gly
85 90 95
Ala Lys Gly Glu Lys Gly Ala Ser Gly Glu Arg Gly Ser Ser Gly Leu
100 105 110
Pro Gly Pro Val Gly Pro Pro Gly Leu Ile Gly Leu Pro Gly Thr Lys
115 120 125
Gly Glu Lys Gly Arg Pro Gly Glu Pro Gly Leu Asp Gly Phe Pro Gly
130 135 140
Pro Arg Gly Glu Lys Gly Asp Arg Ser Glu Arg Gly Glu Lys Gly Glu
145 150 155 160
Arg Gly Val Pro Gly Arg Lys Gly Val Lys Gly Gln Lys Gly Glu Pro
165 170 175
Gly Pro Pro Gly Leu Asp Gln Pro Cys Pro Val Gly Pro Asp Gly Leu
180 185 190
Pro Val Pro Gly Cys Trp His Lys
195 200

<210> 6007

<211> 693

<212> DNA

<213> Homo sapiens

<400> 6007
cagccctta agccatctcc ctccagtgc aacctctatt cagccttac cagtgtatgg
60
gccatccatg taccaaggct ttctgctcca ggtcaaggaa agatggtgaa aaaagtctgt
120
ccttgcacc accgtctgttag aaccagcagc acaaaactg ttggggcaac agtgaacagc
180
caagccgccc aagctcagcc tcctgccccatg acgtccagca ggaagggcac attcacagat
240
gacttgcaca agtttgtaga caattggccc cgagatgcca tgaatctctc aggccaggaga
300
ggaagcaaag ggcacatgaa ttatgagggc cctggaatgg caaggaagtt ctctgcacct
360
ggcactgt gcacatccat gacctcgaaac ctgggtggct ctgccccat ctctgcagca
420
tcagctacct ctctaggtca ctccaccaag tctatgtgcc ccccacagca gtatggctt
480
ccagctaccc cattggcgc tcaatggagt gggacgggtg gcccagcacc acagccactt
540
ggccagttcc aacctgtggg aactgcctcc ttgcagaatt tcaacatcag caatttgcag
600
aaatccatca gcaacccccc aggctccaac ctgcggacca cttagaccta gagacattaa
660
ctgaatagat ctggggcag gagatggaat gct
693

<210> 6008

<211> 214

<212> PRT

<213> Homo sapiens

<400> 6008

Gln	Pro	Leu	Lys	Pro	Ser	Pro	Ser	Ser	Asp	Asn	Leu	Tyr	Ser	Ala	Phe
1				5			10					15			
Thr	Ser	Asp	Gly	Ala	Ile	Ser	Val	Pro	Ser	Leu	Ser	Ala	Pro	Gly	Gln
				20			25					30			
Gly	Lys	Met	Val	Lys	Lys	Val	Cys	Pro	Cys	Asn	Gln	Leu	Cys	Arg	Thr
				35			40					45			
Ser	Ser	Thr	Asn	Thr	Val	Gly	Ala	Thr	Val	Asn	Ser	Gln	Ala	Ala	Gln
				50			55					60			
Ala	Gln	Pro	Pro	Ala	Met	Thr	Ser	Ser	Arg	Lys	Gly	Thr	Phe	Thr	Asp
				65			70			75			80		
Asp	Leu	His	Lys	Leu	Val	Asp	Asn	Trp	Ala	Arg	Asp	Ala	Met	Asn	Leu
				85			90					95			
Ser	Gly	Arg	Arg	Gly	Ser	Lys	Gly	His	Met	Asn	Tyr	Glu	Gly	Pro	Gly
				100			105					110			
Met	Ala	Arg	Lys	Phe	Ser	Ala	Pro	Gly	Gln	Leu	Cys	Ile	Ser	Met	Thr
				115			120					125			
Ser	Asn	Leu	Gly	Gly	Ser	Ala	Pro	Ile	Ser	Ala	Ala	Ser	Ala	Thr	Ser
				130			135					140			
Leu	Gly	His	Phe	Thr	Lys	Ser	Met	Cys	Pro	Pro	Gln	Gln	Tyr	Gly	Phe
				145			150				155			160	
Pro	Ala	Thr	Pro	Phe	Gly	Ala	Gln	Trp	Ser	Gly	Thr	Gly	Gly	Pro	Ala

165 170 175
Pro Gln Pro Leu Gly Gln Phe Gln Pro Val Gly Thr Ala Ser Leu Gln
180 185 190
Asn Phe Asn Ile Ser Asn Leu Gln Lys Ser Ile Ser Asn Pro Pro Gly
195 200 205
Ser Asn Leu Arg Thr Thr
210

<210> 6009

<211> 1570

<212> DNA

<213> Homo sapiens

<400> 6009
nnctgcacca tggcgccccg gcttgtcagc cgatgcgggg ctgtgcgtgc agctccccac
60
agcggcccccgc tggctgtcct ggccgcagggtg gtccggcgct caacagacac cgtgtatgac
120
gtggtggtgt cgggtggagg cctggtgggc gctgccatgg cctgtgcctt gggatatgat
180
attcaacttc atgacaagaa aatccctgttgc ctcgaagcag gtccaaagaa agtactggag
240
aaatttgtcag aaacttacag caacagggtc agctccattt cccctggctc tgcaacgctt
300
ctcagtagtt ttgggtgcctg ggaccatatac tgcaacatga gatacagagc ctttcggcga
360
atgcaggtgt gggacgcctg ctcagaggcc ctgataatgt ttgataagga taattttagat
420
gacatgggct atatcgtgga gaatgatgtc atcatgcatg ctctcaactaa gcagttggag
480
gctgtgtctg accgagtgtac ggttctctac aggagcaaag ccattcgcta tacctggct
540
tgtccatttc ctatggccga ctccagccct tgggttcata ttaccctagg ttagtggcagc
600
accttccaga ccaaattgtt gataggtgca gatggtcaca actccggagt acggcaggct
660
gttggaatcc agaatgtgag ctggaactat gaccagtctg ctgttgcggc tactctgcat
720
ttatcagagg ccacagaaaa caacgtagcc tggcagagat ttcttccctc tgggcctatt
780
gctctgtcc cgctctcaga caccttgagt tccttggttt ggtccacgtc ccatgaacat
840
gcagcagagc tagttagcat ggtgaggaa aaatttgcgg atgcccgttaa ctctgcctt
900
tggagtgtatg ctgaccacac ggacttcatc gacacagctg gtgccatgtc gcagtatcct
960
gtcagccttc tgaagccccac taagggtctcg gtcggccage tgcccccaag cgtaccatgg
1020
gtggatgcca aaagccgagt tctgtttcct cttgggttgg gacatgtgc tgagtacgtc
1080
aggcctcggg tggcgctcat tggggatgca gcccacagag tccatccgct tgcaggacag
1140
ggtgtcaaca tgggctttgg ggatatctcc agcttggccc atcacctcag tacggcagcc
1200

ttcaatggga aggacttagg ttccgtgagc cacctcacag gttatgaaac agaaagacag
 1260
 cgtcacacaaca ctgcctttct ggctgctaca gacttactaa aaaggctcta ttctaccagt
 1320
 gcctccccgc ttgtgttgct caggacgtgg ggcttgcagg ccacaaatgc agtgtctcca
 1380
 ctc当地
 1440
 acgttcatga aaaagaacat cctgcccagg acccatcata catatttca agatcttatt
 1500
 taatthaata aacttacttt acattaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 1560
 aaaaaaaaaa
 1570

<210> 6010
 <211> 468
 <212> PRT
 <213> Homo sapiens

<400> 6010
 Met Ala Ala Arg Leu Val Ser Arg Cys Gly Ala Val Arg Ala Ala Pro
 1 5 10 15
 His Ser Gly Pro Leu Ala Val Leu Ala Gln Val Val Arg Arg Ser Thr
 20 25 30
 Asp Thr Val Tyr Asp Val Val Ser Gly Gly Gly Leu Val Gly Ala
 35 40 45
 Ala Met Ala Cys Ala Leu Gly Tyr Asp Ile His Phe His Asp Lys Lys
 50 55 60
 Ile Leu Leu Leu Glu Ala Gly Pro Lys Lys Val Leu Glu Lys Leu Ser
 65 70 75 80
 Glu Thr Tyr Ser Asn Arg Val Ser Ser Ile Ser Pro Gly Ser Ala Thr
 85 90 95
 Leu Leu Ser Ser Phe Gly Ala Trp Asp His Ile Cys Asn Met Arg Tyr
 100 105 110
 Arg Ala Phe Arg Arg Met Gln Val Trp Asp Ala Cys Ser Glu Ala Leu
 115 120 125
 Ile Met Phe Asp Lys Asp Asn Leu Asp Asp Met Gly Tyr Ile Val Glu
 130 135 140
 Asn Asp Val Ile Met His Ala Leu Thr Lys Gln Leu Glu Ala Val Ser
 145 150 155 160
 Asp Arg Val Thr Val Leu Tyr Arg Ser Lys Ala Ile Arg Tyr Thr Trp
 165 170 175
 Pro Cys Pro Phe Pro Met Ala Asp Ser Ser Pro Trp Val His Ile Thr
 180 185 190
 Leu Gly Asp Gly Ser Thr Phe Gln Thr Lys Leu Leu Ile Gly Ala Asp
 195 200 205
 Gly His Asn Ser Gly Val Arg Gln Ala Val Gly Ile Gln Asn Val Ser
 210 215 220
 Trp Asn Tyr Asp Gln Ser Ala Val Val Ala Thr Leu His Leu Ser Glu
 225 230 235 240
 Ala Thr Glu Asn Asn Val Ala Trp Gln Arg Phe Leu Pro Ser Gly Pro
 245 250 255
 Ile Ala Leu Leu Pro Leu Ser Asp Thr Leu Ser Ser Leu Val Trp Ser

	260	265	270
Thr Ser His Glu His Ala Ala Glu Leu Val Ser Met Asp Glu Glu Lys			
275	280	285	
Phe Val Asp Ala Val Asn Ser Ala Phe Trp Ser Asp Ala Asp His Thr			
290	295	300	
Asp Phe Ile Asp Thr Ala Gly Ala Met Leu Gln Tyr Pro Val Ser Leu			
305	310	315	320
Leu Lys Pro Thr Lys Val Ser Ala Arg Gln Leu Pro Pro Ser Val Pro			
325	330	335	
Trp Val Asp Ala Lys Ser Arg Val Leu Phe Pro Leu Gly Leu Gly His			
340	345	350	
Ala Ala Glu Tyr Val Arg Pro Arg Val Ala Leu Ile Gly Asp Ala Ala			
355	360	365	
His Arg Val His Pro Leu Ala Gly Gln Gly Val Asn Met Gly Phe Gly			
370	375	380	
Asp Ile Ser Ser Leu Ala His His Leu Ser Thr Ala Ala Phe Asn Gly			
385	390	395	400
Lys Asp Leu Gly Ser Val Ser His Leu Thr Gly Tyr Glu Thr Glu Arg			
405	410	415	
Gln Arg His Asn Thr Ala Leu Leu Ala Ala Thr Asp Leu Leu Lys Arg			
420	425	430	
Leu Tyr Ser Thr Ser Ala Ser Pro Leu Val Leu Leu Arg Thr Trp Gly			
435	440	445	
Leu Gln Ala Thr Asn Ala Val Ser Pro Leu Lys Glu Gln Ile Met Ala			
450	455	460	
Phe Ala Ser Lys			
465			

<210> 6011
<211> 1331
<212> DNA
<213> Homo sapiens

<400> 6011
ngcaggcccg cctaagccaa gggcaaccta ggcatgcagc ttggtttgc tgacttcatg
60
ggtgtgttca gcaaagggt tcgggaagtg gagcggttc tacagctgcc caaggaaccg
120
ggtgattctg cacagttcac caaagccatt gccatcatct tccccttct gtatctgtg
180
gagaagggtgg agtgcacccc cagccaggag cacctgaagc accagaccgt ctaccgcctg
240
ctcaagtgcg cgcccagggg caagaacggc ttcacccctc tgcacatggc tgtggacaag
300
gacaccacaa acgtggcccg statcccgtg ggcagattcc cctccctgca cgtggtaaaa
360
gtgctgtcg actgcggggc cgaccggac agcaggatt ttgacaacaa caccggctca
420
cacatagcag cccagaacaa ctgccccggcc atcatgaatg ccctgatcga agcaggggcc
480
cacatggacg ccaccaatgc cttcaagaag acggcctacg agctgctgga cgagaagctg
540
ctggccaggg gtaccatgca gcccattcaac tacgtgaccc tgcagtgcct tgcggcccg
600

gccctggata agaacaagat cccttacaag ggcttcattcc cgaaagatct agaggcattc
 660
 atcgaactgc actgacacctc ccagaacatc tgcaccctca cctctccccct ctccctgctga
 720
 gatgggggaa atccggctgg ggtatagcag atgctcggttc ttgcctcctt caggcaccaa
 780
 tcaggagaag gttctgcct cccatcccctt ctacctgcag acagggtcgg aggtgttagc
 840
 gagccttgg tgctagaagc ctgcggggtc atgtgctaag aggacagtct ttctccggga
 900
 gcccgcac tcattctgag ttagaaaaag acacaagacc ttccccacat cctgtctgcc
 960
 tgggttaggg aggccttgc cttgttacctt agaggcggag ggactgaagc cattgcgttc
 1020
 ctcccctgct agaaacacag gaagaagttt aggacggctc gcctccctc gtccctttac
 1080
 ctggccagat aactccagcc gctgaataca gtgttaggac tgggggctcc tgagatgaga
 1140
 gtttgagatt caggaatga gaccacctctt catttcttcc agcatgatcg cgccgttcc
 1200
 cgtgccaccg tagtccctgg caggcaggca gggctctgcc cagggcagcc tgccacttgc
 1260
 atagcttcg gttgggttgg tttttttttt atttaataag tgggcagggtt gcaagcgttg
 1320
 cacagaaaatt t
 1331

<210> 6012

<211> 219

<212> PRT

<213> Homo sapiens

<400> 6012

Ala	Lys	Gly	Asn	Leu	Gly	Met	Gln	Leu	Gly	Phe	Ala	Asp	Phe	Met	Gly
1				5				10						15	
Val	Phe	Ser	Lys	Gly	Val	Arg	Glu	Val	Glu	Arg	Val	Leu	Gln	Leu	Pro
	20				25				30						
Lys	Glu	Pro	Gly	Asp	Ser	Ala	Gln	Phe	Thr	Lys	Ala	Ile	Ala	Ile	Ile
	35				40				45						
Phe	Pro	Phe	Leu	Tyr	Leu	Leu	Glu	Val	Glu	Cys	Thr	Pro	Ser	Gln	
	50				55				60						
Glu	His	Leu	Lys	His	Gln	Thr	Val	Tyr	Arg	Leu	Leu	Lys	Cys	Ala	Pro
	65				70			75					80		
Arg	Gly	Lys	Asn	Gly	Phe	Thr	Pro	Leu	His	Met	Ala	Val	Asp	Lys	Asp
	85				90				95						
Thr	Thr	Asn	Val	Gly	Arg	Tyr	Pro	Val	Gly	Arg	Phe	Pro	Ser	Leu	His
	100				105				110						
Val	Val	Lys	Val	Leu	Leu	Asp	Cys	Gly	Ala	Asp	Pro	Asp	Ser	Arg	Asp
	115				120				125						
Phe	Asp	Asn	Asn	Thr	Pro	Leu	His	Ile	Ala	Ala	Gln	Asn	Asn	Cys	Pro
	130				135				140						
Ala	Ile	Met	Asn	Ala	Leu	Ile	Glu	Ala	Gly	Ala	His	Met	Asp	Ala	Thr
	145				150			155					160		
Asn	Ala	Phe	Lys	Lys	Thr	Ala	Tyr	Glu	Leu	Leu	Asp	Glu	Lys	Leu	Leu

165	170	175
Ala Arg Gly Thr Met Gln Pro Phe Asn Tyr Val Thr Leu Gln Cys Leu		
180	185	190
Ala Ala Arg Ala Leu Asp Lys Asn Lys Ile Pro Tyr Lys Gly Phe Ile		
195	200	205
Pro Glu Asp Leu Glu Ala Phe Ile Glu Leu His		
210	215	

<210> 6013

<211> 2204

<212> DNA

<213> Homo sapiens

<400> 6013

acgcgtgaag gggcgagg tgggtgggaa ggtggcagtg tggctcctaa gccaccacgg
60
ggccggaaga agaagcgat gctggaatca gggctgcccg agatgaatga cccttatgtc
120
ctctccccctg aggatgtga tgaccatcg aaagacggcg agacctacag gtgccggatg
180
tgctcactga cattctactc caagtcggag atgcagatcc actccaagat gcacacggag
240
accatcaagc cccacaagtg cccacactgc tccaagacct tcgccaacag ctccctacctg
300
gcccagcaca tccgtatcca ctcaggggcc aagccctaca actgttaactt ttgtgagaaa
360
tccttccgtc agctctcaca cttccagcag cacacacgaa tccacactgg tgatagacca
420
tacaaatgtg cacacccagg ctgtgagaaa gccttcacac aactctccaa tctgcagtcc
480
cacagacggc aacacaacaa agataaaccc ttcaagtgcc acaactgtca tcggggcgtac
540
acggatgcag cctcaactaga ggtgcacctg tctacgcaca cagtgaagca tgccaaaggtg
600
tacacctgca ctatctgcag tcgggcatac acatcagaaa cataccttat gaaacatatg
660
cgcaaacaca acccgctga tcttcagcaa caggtgcagg cagcagcagc agcggcagca
720
gtggcccagg cccaggctca agctcaagcc caggctcagg ctcaggctca agcccaggcc
780
caggcccagg cttccaggc atcacagcag cagcagcagc agcagcagca gcagcagcag
840
cagcaacagc caccaccaca cttccagtc tctggggcag ccccccaggg tgggggtgg
900
ggggacagca atcccaaccc tccacccag tggccctttg acctgacccc gtataagacg
960
gcggagcatc ataaggacat ctgcctcaact gtcaccacca gcaccatcca ggtggagcac
1020
ctggccagct cttagagatc cgtgctgcca cccactggga agaggaagaa gtagtcctgg
1080
tgtcttcctt ctccaactct tggtggaaa agtccttttc ttcccttgaca ggccttggct
1140
ccatctcctt gggctctgt cacggcttgc cttcacagga taccatcctt tttctgaact
1200

cttcttcaaa aggaacatca gcccctcgtga ttgcaaagga atactgagct gatggtgtca
 1260
 tccagcagcc tccccctccca agcaaagctt ctaaaactgg gggtcgggtgc tcaaggaaag
 1320
 gatttgctat gacctcatag aaccttgcgtcc agtgtggcca cttaccctat cttaccctc
 1380
 ctatcctca aagtttggc tgatgttaaga cttagaggctg gcccctccag ataacagaga
 1440
 aaaggggagcc ccaaatgcaa ccagccttctt gttctattct tgcctgcaaa agaacagagg
 1500
 ttctcaaat gcctcagtcc ctgagagcca tttcttcccc tacatcgctc cactttgtt
 1560
 cctattgact gctggtagaa ggagatttgg ggttagggct agacccctt ttatggaaag
 1620
 ggggcaaggg ctgagatgtg gtccccagg ggccagaaat tcccaagttg gtcacaggtg
 1680
 gcttagaagt gtgtgttatg gttttacgga tttccttgaa gcctctctcc ttctctgcct
 1740
 acaaagaccc tatactctca gtctccccaa cccacccca aggagctgtg ggaggcttg
 1800
 tggtatctgt gaaactccaa aacaggggtg ttgcggagaa gggagagttc aaggcaaacg
 1860
 caaggactgg acttagctcc cttagtgcctt cagtcagatg ccggacacgg atttatatat
 1920
 aaatatatat atataatccca ctcacacgg ccatcttgcgttg tgtaaccatt
 1980
 tctgtgttta taaatgcatt atctctgaga atttcatat ttgatgtttt gtttatttt
 2040
 gtcctttttt tccctctctc cacccctgtc ctctagccac agcattttc ttttgcct
 2100
 tttttttttt ttttaatca tggcagattt cagagggaaag gaaataaaaa aaaaaatcag
 2160
 gaaaccagtt gttataaagt aattttaaaaa tgaagaaaaa aaaa
 2204

<210> 6014

<211> 182

<212> PRT

<213> Homo sapiens

<400> 6014

Arg	Gln	His	Asn	Lys	Asp	Lys	Pro	Phe	Lys	Cys	His	Asn	Cys	His	Arg
1															15

Ala	Tyr	Thr	Asp	Ala	Ala	Ser	Leu	Glu	Val	His	Leu	Ser	Thr	His	Thr
															20

Val	Lys	His	Ala	Lys	Val	Tyr	Thr	Cys	Thr	Ile	Cys	Ser	Arg	Ala	Tyr
															35

Thr	Ser	Glu	Thr	Tyr	Leu	Met	Lys	His	Met	Arg	Lys	Asn	Pro	Pro	
															50

Asp	Leu	Gln	Gln	Gln	Val	Gln	Ala	Ala	Ala	Ala	Ala	Ala	Val	Ala	
															65

Gln	Ala														
															85

Gln	Ala	Gln	Ala	Gln	Ala	Ser	Gln							

100 105 110
Gln Gln Gln Gln Gln Gln Gln Pro Pro Pro His Phe Gln Ser
115 120 125
Pro Gly Ala Ala Pro Gln Gly Gly Gly Gly Asp Ser Asn Pro Asn
130 135 140
Pro Pro Pro Gln Cys Ser Phe Asp Leu Thr Pro Tyr Lys Thr Ala Glu
145 150 155 160
His His Lys Asp Ile Cys Leu Thr Val Thr Thr Ser Thr Ile Gln Val
165 170 175
Glu His Leu Ala Ser Ser
180

<210> 6015

<211> 612

<212> DNA

<213> Homo sapiens

<400> 6015

gccgagttag aacaagactt caggacttt acaattttta ttgattttta ctatataac
60
tgccgtatgg attgaaatga atgacttttt ttttagaaaaa tggtgtaaaaa ggcaggcttc
120
tgagaatcct gattgaatgg aagtgaagag ccatgagaag ctcgcccagg agagtcta
180
ttattctgtat tacagctcat ggagagtgtt gggcatgtt ggcactcca gctattttta
240
ttcaacttgc atctgccccct gctgatcccc tgagaggctg gcagcctctc agggctc
300
gggcgggttag ccctccctcg cagcctgcaa gccttttac ctctttccat cacctgagcc
360
tgaaaatgtt gctgccccac cttgctcctg gccttatttc tcttcctatc ttatctccat
420
tccgcagggtg cctcagccat tgcctaccct tttgcacaaa attaaaaaaga aaagaaaaaa
480
gccagttaga gaacagtac acgataaagg cacagcacag cagttggttt gctctttta
540
aacaggaagt agcagtcatt ctatatggat gttcagctag acccacgggg ctttaacctt
600
acctggcatg gc
612

<210> 6016

<211> 99

<212> PRT

<213> Homo sapiens

<400> 6016

Met Glu Arg Gly Lys Ala Cys Arg Leu Arg Arg Arg Ala His Arg
1 5 10 15
Pro Arg Ser Pro Glu Arg Leu Pro Ala Ser Gln Gly Ile Ser Arg Gly
20 25 30
Arg Cys Lys Leu Asn Asn Ser Trp Ser Gly Leu Thr Cys Pro Thr
35 40 45
Leu Ser Met Ser Cys Asn Gln Asn Lys Leu Asp Ser Pro Gly Arg Ala

50 55 60
Ser His Gly Ser Ser Leu Pro Phe Asn Gln Asp Ser Gln Lys Pro Ala
65 70 75 80
Phe Tyr Asn Ile Phe Leu Lys Lys Ser His Ser Phe Gln Ser Leu Leu
85 90 95
Gln Tyr Ile

<210> 6017

<211> 2091

<212> DNA

<213> Homo sapiens

<400> 6017

ccggccaaat ttaactttgc tagtgatgtg ttggatcaat gggctgacat ggagaaggct
60
ggcaagcgac tccccaaagcccc agccctgtgg tgggtgaatg ggaaggggaa ggaattaatg
120
tggaaattca gagaactgag tgaaaacagc cagcaggcag ccaacgtcct ctcggggagcc
180
tgtggccctgc agcgtggggta tcgtgtggca gtgtatgtgc cccgagtgcc tgagtgggtgg
240
ctggtgatcc tgggctgcat tcgagcaggat ctcatctta tgcctggAAC catccagatg
300
aaatccactg acatactgta taggttgcag atgtctaagg ccaaggctat tggctgggg
360
gatgaagtca tccaaagaatg ggacacagtg gcatctgaat gtccttctct gagaattaag
420
ctactgggtgt ctgagaaaaag ctgcgtatggg tggctgaact tcaagaaaact actaaatgag
480
gcatccacca ctcatcactg tgtggagact ggaagccagg aagcatctgc catctacttc
540
actagtggga ccagtggctt tccccaaagatg gcagaacatt cctactcgag cctggggctc
600
aaggccaaaga tggatgctgg ttggacaggc ctgcaaggct ctgatataat gtggaccata
660
tcagacacag gttggataact gaacatcttgg ggctcaatggg tggatcttg gacatttagga
720
gcatgcacat ttgttcatct cttggccaaag tttgacccac tggattttct aaagacactc
780
tccagttatc caatcaagag tatgtatgggt gcccattttt tttaccggat gttgtacag
840
caggatcttt ccagttacaa gttccccat ctacagaact gcctcgctgg aggggagttcc
900
cttcttccag aaactctggaa gaactggagg gcccagacag gactggacat ccgagaattc
960
tatggccaga cagaaacggg attaacttgc atggttcca agacaatgaa aatcaaacca
1020
ggatacatgg gaacggctgc ttcctgttat gatgtacagg ttatagatga taagggcaac
1080
gtcctgcctt ccggcacaga aggagacatt ggcacatggg tcaaaccat caggcctata
1140
ggcatcttctt ctggctatgt ggaaaatccc gacaagacag cagccaaacat tcgaggagac
1200

ttttggctcc ttggagaccc gggaaatcaa gatgaagatg ggtattcca gtttatggga
 1260
 cgggcagatg atatcattaa ctccagcggg taccggattg gaccctcgga ggttagagaat
 1320
 gcactgatga agcacccctgc tgtggtttag acggctgtga tcagcagccc agaccccgta
 1380
 cgaggagagg tggtaaggc atttgtggc ctggcctcgc agttcctgtc ccatgaccca
 1440
 1440
 gaacagctca ccaaggagct gcagcagcat gtgaagtcag tgacagcccc atacaagtac
 1500
 ccaagaaaaga tagagttgt cttgaacctg cccaagactg tcacaggaa aattcaacga
 1560
 gccaagcttc gagacaagga gtggaagatg tccggaaaag cccgtgcgcgtgagacatc
 1620
 taagagacat tcattggat tcccctcttc tttcttttcc tttccctttt gggcccttgg
 1680
 ccttactatg atgatatgag attctttatg aaagaacatg aatgttaagtt ttgtcttgcc
 1740
 ctggttatta gccttggta ttagcacaaa actttaccat gttagatgtt gaaagaagaa
 1800
 1800
 agggaaaggaa tgagagagag tgaaaaggag agggtaacag aaaaaaaagga aagaaaagta
 1860
 1860
 agtcaggaa atattaaaac tgcaaggaa agcaattgaa aaagaaataa agtagggaaa
 1920
 1920
 gaaggagaga ggaagcaagg gaaggagaa gaaaggaaag aggagatgaa agggggagaa
 1980
 1980
 aagatagaag aaaaataattt gaagggagaa tcagaaaaat aaagagaaga aaggaaagaa
 2040
 2040
 ataaagagagaa aagagaaaag aagaaagagc aaaagaacac aagaaagaaa g
 2091

<210> 6018
 <211> 537
 <212> PRT
 <213> Homo sapiens

<400> 6018
 Pro Ala Lys Phe Asn Phe Ala Ser Asp Val Leu Asp His Trp Ala Asp
 1 5 10 15
 Met Glu Lys Ala Gly Lys Arg Leu Pro Ser Pro Ala Leu Trp Trp Val
 20 25 30
 Asn Gly Lys Gly Lys Glu Leu Met Trp Asn Phe Arg Glu Leu Ser Glu
 35 40 45
 Asn Ser Gln Gln Ala Ala Asn Val Leu Ser Gly Ala Cys Gly Leu Gln
 50 55 60
 Arg Gly Asp Arg Val Ala Val Met Leu Pro Arg Val Pro Glu Trp Trp
 65 70 75 80
 Leu Val Ile Leu Gly Cys Ile Arg Ala Gly Leu Ile Phe Met Pro Gly
 85 90 95
 Thr Ile Gln Met Lys Ser Thr Asp Ile Leu Tyr Arg Leu Gln Met Ser
 100 105 110
 Lys Ala Lys Ala Ile Val Ala Gly Asp Glu Val Ile Gln Glu Val Asp
 115 120 125
 Thr Val Ala Ser Glu Cys Pro Ser Leu Arg Ile Lys Leu Leu Val Ser

130	135	140
Glu Lys Ser Cys Asp Gly Trp Leu Asn Phe Lys	Lys Leu Leu Asn Glu	
145	150	155
Ala Ser Thr Thr His His Cys Val Glu Thr Gly Ser Gln Glu Ala Ser		160
165	170	175
Ala Ile Tyr Phe Thr Ser Gly Thr Ser Gly Leu Pro Lys Met Ala Glu		
180	185	190
His Ser Tyr Ser Ser Leu Gly Leu Lys Ala Lys Met Asp Ala Gly Trp		
195	200	205
Thr Gly Leu Gln Ala Ser Asp Ile Met Trp Thr Ile Ser Asp Thr Gly		
210	215	220
Trp Ile Leu Asn Ile Leu Gly Ser Leu Leu Glu Ser Trp Thr Leu Gly		
225	230	235
240		
Ala Cys Thr Phe Val His Leu Leu Pro Lys Phe Asp Pro Leu Val Ile		
245	250	255
Leu Lys Thr Leu Ser Ser Tyr Pro Ile Lys Ser Met Met Gly Ala Pro		
260	265	270
Ile Val Tyr Arg Met Leu Leu Gln Gln Asp Leu Ser Ser Tyr Lys Phe		
275	280	285
Pro His Leu Gln Asn Cys Leu Ala Gly Gly Glu Ser Leu Leu Pro Glu		
290	295	300
Thr Leu Glu Asn Trp Arg Ala Gln Thr Gly Leu Asp Ile Arg Glu Phe		
305	310	315
320		
Tyr Gly Gln Thr Glu Thr Gly Leu Thr Cys Met Val Ser Lys Thr Met		
325	330	335
Lys Ile Lys Pro Gly Tyr Met Gly Thr Ala Ala Ser Cys Tyr Asp Val		
340	345	350
Gln Val Ile Asp Asp Lys Gly Asn Val Leu Pro Pro Gly Thr Glu Gly		
355	360	365
Asp Ile Gly Ile Arg Val Lys Pro Ile Arg Pro Ile Gly Ile Phe Ser		
370	375	380
Gly Tyr Val Glu Asn Pro Asp Lys Thr Ala Ala Asn Ile Arg Gly Asp		
385	390	395
400		
Phe Trp Leu Leu Gly Asp Arg Gly Ile Lys Asp Glu Asp Gly Tyr Phe		
405	410	415
Gln Phe Met Gly Arg Ala Asp Asp Ile Ile Asn Ser Ser Gly Tyr Arg		
420	425	430
Ile Gly Pro Ser Glu Val Glu Asn Ala Leu Met Lys His Pro Ala Val		
435	440	445
Val Glu Thr Ala Val Ile Ser Ser Pro Asp Pro Val Arg Gly Glu Val		
450	455	460
Val Lys Ala Phe Val Val Leu Ala Ser Gln Phe Leu Ser His Asp Pro		
465	470	475
480		
Glu Gln Leu Thr Lys Glu Leu Gln Gln His Val Lys Ser Val Thr Ala		
485	490	495
Pro Tyr Lys Tyr Pro Arg Lys Ile Glu Phe Val Leu Asn Leu Pro Lys		
500	505	510
Thr Val Thr Gly Lys Ile Gln Arg Ala Lys Leu Arg Asp Lys Glu Trp		
515	520	525
Lys Met Ser Gly Lys Ala Arg Ala Gln		
530	535	

<210> 6019
<211> 3002

<212> DNA
<213> Homo sapiens

<400> 6019
attccccctcc ttcatggctg catatctggc tagcgtgaag agatagtcac tgagtctgtt
60 taagaacttg gccacgttcg catcggtctc tcccatactgg acaagaggca ccacacgtct
120 ctcggcccccgg cggtcacacgg cccggcagaa atgcagcgcc gagctgatct tgcctcccgaa
180 cgggcacgct gctccagagt gggcagggct gggagggacc ggtgaggacc tggagggact
240 tggggaaactg gaggacagcg tctgtcaagg caggatgaag gccgtgagtg gtgggagctg
300 gctgggtgtac ttgtcgatcc actgctccag ctccaggatg ggccccggct tgaacgtgg
360 atacttaag tgagcctccc gggccgagga gcatggtgtc gccaggccg agccgacgctc
420 ctgcaatgtg cactggattt tctgaagctc ttccggcaa at gtatggccct tttctgtgac
480 taattccaga gcaaacccaa tagctgaact taattcatct gtatgtccca cagccttcct
540 cgaagacacc caggatcccc aagatttaca cccaaacggg agacaaaaggg ttttcttagta
600 ccttcacagg agaaaggaga cccaaagatg accaagtgtt tgaagccgtg ggaactacag
660 atgaattaag tttagctatt gggtttgctc tggaaattagt cacagaaaaag ggccatacat
720 ttgccgaaga gcttcagaaa atccagtgca cattgcagga cgtcggctcg gcccctggcga
780 caccatgtc ctcggcccg gaggctcaact taaagtatac cacgttcaag gcggggccca
840 tcctggagct ggagcagtgg atcgacaagt acaccagcca gctcccacca ctcacggcct
900 tcatacctgcc ttccggaggc aagatcagct cggcgctgca tttctggccgg gccgtgtgcc
960 gcccggccga gagacgtgtg gtgcctcttg tccagatggg agagaccgat gcgaacgtgg
1020 ccaagttctt aaacagactc agtgactatc tcttcacgct agccagatatac gcagccatga
1080 aggagggaa tcaagagaaa atatacaaga aaaatgaccc atccggccgag tctgagggac
1140 tctgaaatca cagaaagtgg gagcttggag gatccctcca tggcgatggc cgtggagaga
1200 ggagcttgc cttctgggggt cctgggttcct gaagagctca cccagagagg ctcaaaagcag
1260 cctttgtcc cagctcagct ttgtatctaca cctcttgcca ctttcctcaa gggactgtga
1320 ccctttgggg attctgtccc tgaccctgtc tcccaagct ctcctgggtc ttggagggat
1380 gtggaaatga attggcattt cagggaaagac aggtaaagtg attgctgcaa tgagaaggag
1440 ctgtgcggaa aaggaataaa agtttggaaagc cccggaccac tggAACCTTG AACCCACCAAG
1500

ctggctgtac ccggagccgt ggcagcagcc ctcatccccca tggcgccat cccagccctg
1560
gaccaggagg ccgagcccag catggacgtg attttggtgg gatccagtga gctctcaagc
1620
tccgttcac ccgggacagg cagagatctt attgcatatg aagtcaaggc taaccagcga
1680
aatatagaag acatctgcat ctgctgcgg agtctccagg ttcacacaca gcaccctctg
1740
tttgagggag ggatctgcgc cccatgtaaag gacaagttcc tggatgccct cttccctgtac
1800
gacgatgacg ggtaccaatc ctactgctcc atctgctgct ccggagagac gctgctcatc
1860
tgcggaaacc ctgattgcac ccgatgtac tgcttcgagt gtgtggatag cctggtcggc
1920
cccggaacct cggggaaaggt gcacgccatg agcaactggg tgtgctaccc tgcctgccc
1980
tcctcccgaa gcgggctgct gcagcgtcgg aggaagtggc gcagccagct caaggccctc
2040
tacgaccgag agtcggagaa tcccctttag atgttcgaaa ccgtgcctgt gtggaggaga
2100
cagccagtcg cgggtgctgtc cctttttagaa gacatcaaga aagagctgac gagtttgggc
2160
tttttggaaa gtgggtctga cccgggacaa ctgaagcatg tggatgtgt cacagacaca
2220
gtgaggaagg atgtggagga gtggggaccc ttgcatacttgc tgcacggcgc cacagctccc
2280
ctgggccaca cctgtgaccg tcctccagc tggtaacctgt tccagttcca ccggttctg
2340
cagtacgcac ggcggaaagcc aggcaagcccc aggccttct tctggatgtt cgtggacaat
2400
ctggtgctga acaaggaaga cctggacgtc gcatctcgct tcctggagat ggagccagtc
2460
accatcccgat atgtccacgg cggatccttgc cagaatgtgc tccgcgtgtc gagcaacatc
2520
ccagccataa ggagcagcag gcactgggct ctggttcgg aagaagaatt gtccctgctg
2580
gcccagaaca agcagagctc gaagctcgcg gccaagtggc ccaccaagct ggtgaagaac
2640
tgctttctcc ccctaagaga atatttcaag tattttcaa cagaactcac ttccctctta
2700
taaatgagtc actataactgt gaagaaaaag acttttccta gaacaaaggc aactttcctc
2760
acgttgtctc ttccctcttc ggattcttgc tttttgcgt tcctggatgtc actgcagacc
2820
cacgttccgt tgggttctgg agactcaggg tctctcccccc atcacgctgg ctcatggac
2880
ggggcgaggg ccacgcccgt gcacacagga ccacacgtgg tggtgccgcga tgtacttcct
2940
gaaaagcattt ctgtgttcta gttgagaagt tcgagtatat ttattataag atagttattg
3000
gt
3002

<210> 6020

<211> 387
<212> PRT
<213> Homo sapiens

<400> 6020
Met Ala Ala Ile Pro Ala Leu Asp Pro Glu Ala Glu Pro Ser Met Asp
1 5 10 15
Val Ile Leu Val Gly Ser Ser Glu Leu Ser Ser Ser Val Ser Pro Gly
20 25 30
Thr Gly Arg Asp Leu Ile Ala Tyr Glu Val Lys Ala Asn Gln Arg Asn
35 40 45
Ile Glu Asp Ile Cys Ile Cys Cys Gly Ser Leu Gln Val His Thr Gln
50 55 60
His Pro Leu Phe Glu Gly Gly Ile Cys Ala Pro Cys Lys Asp Lys Phe
65 70 75 80
Leu Asp Ala Leu Phe Leu Tyr Asp Asp Asp Gly Tyr Gln Ser Tyr Cys
85 90 95
Ser Ile Cys Cys Ser Gly Glu Thr Leu Leu Ile Cys Gly Asn Pro Asp
100 105 110
Cys Thr Arg Cys Tyr Cys Phe Glu Cys Val Asp Ser Leu Val Gly Pro
115 120 125
Gly Thr Ser Gly Lys Val His Ala Met Ser Asn Trp Val Cys Tyr Leu
130 135 140
Cys Leu Pro Ser Ser Arg Ser Gly Leu Leu Gln Arg Arg Arg Lys Trp
145 150 155 160
Arg Ser Gln Leu Lys Ala Phe Tyr Asp Arg Glu Ser Glu Asn Pro Leu
165 170 175
Glu Met Phe Glu Thr Val Pro Val Trp Arg Arg Gln Pro Val Arg Val
180 185 190
Leu Ser Leu Phe Glu Asp Ile Lys Lys Glu Leu Thr Ser Leu Gly Phe
195 200 205
Leu Glu Ser Gly Ser Asp Pro Gly Gln Leu Lys His Val Val Asp Val
210 215 220
Thr Asp Thr Val Arg Lys Asp Val Glu Glu Trp Gly Pro Phe Asp Leu
225 230 235 240
Val Tyr Gly Ala Thr Ala Pro Leu Gly His Thr Cys Asp Arg Pro Pro
245 250 255
Ser Trp Tyr Leu Phe Gln Phe His Arg Phe Leu Gln Tyr Ala Arg Pro
260 265 270
Lys Pro Gly Ser Pro Arg Pro Phe Phe Trp Met Phe Val Asp Asn Leu
275 280 285
Val Leu Asn Lys Glu Asp Leu Asp Val Ala Ser Arg Phe Leu Glu Met
290 295 300
Glu Pro Val Thr Ile Pro Asp Val His Gly Gly Ser Leu Gln Asn Ala
305 310 315 320
Val Arg Val Trp Ser Asn Ile Pro Ala Ile Arg Ser Ser Arg His Trp
325 330 335
Ala Leu Val Ser Glu Glu Glu Leu Ser Leu Leu Ala Gln Asn Lys Gln
340 345 350
Ser Ser Lys Leu Ala Ala Lys Trp Pro Thr Lys Leu Val Lys Asn Cys
355 360 365
Phe Leu Pro Leu Arg Glu Tyr Phe Lys Tyr Phe Ser Thr Glu Leu Thr
370 375 380
Ser Ser Leu

385

<210> 6021
<211> 3145
<212> DNA
<213> Homo sapiens

<400> 6021
nactcttgag gacaaggacc ttctctggac acagatatgc ctcagagtaa ctgttgata
60
gcattcagac actgctggtt gaattgtcca tttacttggc atgcaacaca tggcaaagta
120
aagggggaag gagattttct gctgcatgtg gcttaacca agagagcaga tccagctgag
180
cttagaacaa tattttgaa gtatgcaagc attgagaaaa acggtaatt tttcatgtcc
240
cccaatgact ttgtcactcg atacttgaac atttttggag aaagccagcc taatccaaag
300
actgtgaaac ttttaagtgg agtgggtggat cagaccaaag atggattaat atctttcaa
360
gaatttggc ccttgaatc tgtcctgtgt gcccctgatg ctttgtttat gtagccctt
420
cagctgtttg acaaagctgg caaaggagaa gtaacttttggat aggatgttaa gcaagtttt
480
ggacagacca caattcatca acatattcca tttaactggg attcagaatt tgtgcaacta
540
catttggaa aagaaagaaa aagacacctg acatatgcgg aatttactca gttttatttgg
600
gaaatacaac tggagcacgc aaagcaagcc tttgtcaac gggacaatgc taggactggg
660
agagtcacag ccatcgactt ccgagacatc atggtcacca tccggccccca tgtcttgact
720
cctttttagt aagaatgtct agtagctgct gctggaggta ccacatccca tcaagtttagt
780
ttctcctatt ttaatggatt taattcgctc cttaacaaca tggactcat tagaaagatc
840
tatagcactc tggctggcac cagggaaagat gttgaagtga ctaaggagga gtttggctgg
900
gcagctcaga aatttggtca gtttacaccc atggaaagttt acatcttgc tcaagtttagca
960
gatttatatg agccaaggggg acgtatgacc ttagcagaca ttgaacggat tgctcctctg
1020
gaagagggaa ctctggccctt taacttggct gaggcccaga ggcagcagaa ggcctcaggt
1080
gattcagctc gaccagttct tctacaaggat gcagagtcgg cctacaggat tggctgggt
1140
tctgttgctg gagctgttgg agccactgct gtgtatccta tcgatcttgc aaaaactcga
1200
atgcagaacc aacgatcaac tggctctttt gtgggagaac tcatagtataa aaacagctt
1260
gactgttttta agaaagtgtt acgctatgaa ggcttctttt gactgtatag aggtctgtt
1320
ccacagttat tggagttgc cccagagaag gccataaaac ttacagtcaa cgattttgtt
1380

agggataaaat ttatgcacaa agatggttcg gtcccacttg cagcagaaaat tcttgctgga
1440 ggctgcgcgtg gaggctccca ggtgattttc acaaattcctt tagaaatcgtaaagatccgt
1500 ttgcaagtgg caggagaaaat caccactggt cctcgagtca gtgctctgtc tgtcgtgcgg
1560 gacctggggat ttttggat ctacaagggt gccaaagcat gctttctgcg ggacattcct
1620 ttctcgccca tctactttcc gtgctatgct catgtgaagg cttecccttgc aaatgaagat
1680 gggcaggta gcccaggaag cctgctctta gctggtgcctagctggat gcctgcagca
1740 tcttttagtga cccctgctga tgttatcaag acgagattac aggtggctgc ccgggctggc
1800 caaaccactt acagcggagt gatagactgc tttagaaaaga tactgcgtga agaaggacca
1860 aaagctctgt ggaagggagc tggtgctcgt gtatccat cctcacccca gtttgggtta
1920 actttgctga cttacgaatt gctacagcga tggttctaca ttgattttgg aggagtaaaa
1980 cccatgggat cagagccagt tcctaaatcc aggtcaacc tgccctgcccc gaatccctgat
2040 cacgttgggg gctacaaaact ggcagttgct acatggcag ggattgaaaa caaatttgg
2100 cttaacctac ctctcttcaa gccatcagta tctacctcaa aggctattgg tggaggccca
2160 taggaagatc agccctggga tagtgctgta ttttgggg tactgcagta aagaacatcc
2220 ctccctggaa tgaagcaatg cttcatccct tttacgtcca tctcttggaaattcaagt
2280 ccaggctttt ttatcatgtg aaatcattca ttttggggat gtttcttcaa ccagatcatt
2340 gtgaaattat tcataattat tatttggccc tctgcccaga aacctttgtt tgcacatcgaa
2400 aattgtatggg atttggtaa cactaacatg atttggggaa aggagcaagt cagaatagaa
2460 attagtactc ccctccttga actaggatg tagtccaaa gaggctactg taaggcaatc
2520 atggtgctca gagcagtgtt tctgtgtgt tttaaactgg taggaaacta ggtgcattt
2580 tataaaaata aaaaacactg ggagaaaatga aaaaatatata atcaaataata ttcagcctgg
2640 cttcaatttgc taagcatgca caaattctgt ctctggatta tattatgaag cttttatgtg
2700 aaacatgttt ctttgcataatg aaaaccacat tggagatgtt tagtaatcat attgttactg
2760 gtaccaagac tactagggaa atgccttgtt acttttagggaa agtacttttg gcattttact
2820 gtacagacag aaaaaactga gatgtagccc ctctcctggaa agtgctaatt ttgaaaaact
2880 gctcatatga tgtacatgta ctgattactg cctattttaa taaacactct tgaaaaatgc
2940 atgttgcctt gttgctgcctt gcccatttctt cctcatctcc ccatcattgg tacccacttg
3000

cttttaaat ccactttatc ttgataatg taagacaaat atgttctgac ataagtatt
3060
aattcatgtt gccttgcata atggtcagag ggcgcataat ttgtgaaggt ggaaataaac
3120
tatttgtaaa gtgaaaaaaaaaaaa
3145

<210> 6022
<211> 708
<212> PRT
<213> Homo sapiens

<400> 6022

Met	Pro	Gln	Ser	Asn	Cys	Cys	Ile	Ala	Phe	Arg	His	Cys	Trp	Leu	Asn
1					5				10					15	
Cys	Pro	Phe	Thr	Trp	His	Ala	Thr	His	Gly	Lys	Val	Lys	Gly	Gly	
					20				25					30	
Asp	Phe	Leu	Leu	His	Val	Ala	Leu	Thr	Lys	Arg	Ala	Asp	Pro	Ala	Glu
					35				40					45	
Leu	Arg	Thr	Ile	Phe	Leu	Lys	Tyr	Ala	Ser	Ile	Glu	Lys	Asn	Gly	Glu
					50				55					60	
Phe	Phe	Met	Ser	Pro	Asn	Asp	Phe	Val	Thr	Arg	Tyr	Leu	Asn	Ile	Phe
					65				70					75	
Gly	Glu	Ser	Gln	Pro	Asn	Pro	Lys	Thr	Val	Glu	Leu	Leu	Ser	Gly	Val
					85				90					95	
Val	Asp	Gln	Thr	Lys	Asp	Gly	Leu	Ile	Ser	Phe	Gln	Glu	Phe	Val	Ala
					100				105					110	
Phe	Glu	Ser	Val	Leu	Cys	Ala	Pro	Asp	Ala	Leu	Phe	Met	Val	Ala	Phe
					115				120					125	
Gln	Leu	Phe	Asp	Lys	Ala	Gly	Lys	Gly	Glu	Val	Thr	Phe	Glu	Asp	Val
					130				135					140	
Lys	Gln	Val	Phe	Gly	Gln	Thr	Thr	Ile	His	Gln	His	Ile	Pro	Phe	Asn
					145				150					155	
Trp	Asp	Ser	Glu	Phe	Val	Gln	Leu	His	Phe	Gly	Lys	Glu	Arg	Lys	Arg
					165				170					175	
His	Leu	Thr	Tyr	Ala	Glu	Phe	Thr	Gln	Phe	Leu	Leu	Glu	Ile	Gln	Leu
					180				185					190	
Glu	His	Ala	Lys	Gln	Ala	Phe	Val	Gln	Arg	Asp	Asn	Ala	Arg	Thr	Gly
					195				200					205	
Arg	Val	Thr	Ala	Ile	Asp	Phe	Arg	Asp	Ile	Met	Val	Thr	Ile	Arg	Pro
					210				215					220	
His	Val	Leu	Thr	Pro	Phe	Val	Glu	Glu	Cys	Leu	Val	Ala	Ala	Ala	Gly
					225				230					235	
Gly	Thr	Thr	Ser	His	Gln	Val	Ser	Phe	Ser	Tyr	Phe	Asn	Gly	Phe	Asn
					245				250					255	
Ser	Leu	Leu	Asn	Asn	Met	Glu	Leu	Ile	Arg	Lys	Ile	Tyr	Ser	Thr	Leu
					260				265					270	
Ala	Gly	Thr	Arg	Lys	Asp	Val	Glu	Val	Thr	Lys	Glu	Glu	Phe	Val	Leu
					275				280					285	
Ala	Ala	Gln	Lys	Phe	Gly	Gln	Val	Thr	Pro	Met	Glu	Val	Asp	Ile	Leu
					290				295					300	
Phe	Gln	Leu	Ala	Asp	Leu	Tyr	Glu	Pro	Arg	Gly	Arg	Met	Thr	Leu	Ala
					305				310					315	
Asp	Ile	Glu	Arg	Ile	Ala	Pro	Leu	Glu	Glu	Gly	Thr	Leu	Pro	Phe	Asn
					3145				3150					3200	

325	330	335
Leu Ala Glu Ala Gln Arg Gln Gln Lys Ala Ser Gly Asp Ser Ala Arg		
340	345	350
Pro Val Leu Leu Gln Val Ala Glu Ser Ala Tyr Arg Phe Gly Leu Gly		
355	360	365
Ser Val Ala Gly Ala Val Gly Ala Thr Ala Val Tyr Pro Ile Asp Leu		
370	375	380
Val Lys Thr Arg Met Gln Asn Gln Arg Ser Thr Gly Ser Phe Val Gly		
385	390	395
Glu Leu Met Tyr Lys Asn Ser Phe Asp Cys Phe Lys Lys Val Leu Arg		
405	410	415
Tyr Glu Gly Phe Phe Gly Leu Tyr Arg Gly Leu Leu Pro Gln Leu Leu		
420	425	430
Gly Val Ala Pro Glu Lys Ala Ile Lys Leu Thr Val Asn Asp Phe Val		
435	440	445
Arg Asp Lys Phe Met His Lys Asp Gly Ser Val Pro Leu Ala Ala Glu		
450	455	460
Ile Leu Ala Gly Gly Cys Ala Gly Gly Ser Gln Val Ile Phe Thr Asn		
465	470	475
Pro Leu Glu Ile Val Lys Ile Arg Leu Gln Val Ala Gly Glu Ile Thr		
485	490	495
Thr Gly Pro Arg Val Ser Ala Leu Ser Val Val Arg Asp Leu Gly Phe		
500	505	510
Phe Gly Ile Tyr Lys Gly Ala Lys Ala Cys Phe Leu Arg Asp Ile Pro		
515	520	525
Phe Ser Ala Ile Tyr Phe Pro Cys Tyr Ala His Val Lys Ala Ser Phe		
530	535	540
Ala Asn Glu Asp Gly Gln Val Ser Pro Gly Ser Leu Leu Leu Ala Gly		
545	550	555
Ala Ile Ala Gly Met Pro Ala Ala Ser Leu Val Thr Pro Ala Asp Val		
565	570	575
Ile Lys Thr Arg Leu Gln Val Ala Ala Arg Ala Gly Gln Thr Thr Tyr		
580	585	590
Ser Gly Val Ile Asp Cys Phe Arg Lys Ile Leu Arg Glu Glu Gly Pro		
595	600	605
Lys Ala Leu Trp Lys Gly Ala Gly Ala Arg Val Phe Arg Ser Ser Pro		
610	615	620
Gln Phe Gly Val Thr Leu Leu Thr Tyr Glu Leu Leu Gln Arg Trp Phe		
625	630	635
Tyr Ile Asp Phe Gly Gly Val Lys Pro Met Gly Ser Glu Pro Val Pro		
645	650	655
Lys Ser Arg Ile Asn Leu Pro Ala Pro Asn Pro Asp His Val Gly Gly		
660	665	670
Tyr Lys Leu Ala Val Ala Thr Phe Ala Gly Ile Glu Asn Lys Phe Gly		
675	680	685
Leu Tyr Leu Pro Leu Phe Lys Pro Ser Val Ser Thr Ser Lys Ala Ile		
690	695	700
Gly Gly Gly Pro		
705		

<210> 6023

<211> 1014

<212> DNA

<213> Homo sapiens

<400> 6023
ttttaaaaaa agaatgacat agagccttta taaaactggt tctgaggtat gtgggactag
60 cctggctggc tgaccaggct tcttaagccc cacaggcctc tttcacagaa agggagttg
120 gatcaacaag accatgtaca aaagggggat aatacaccta cgtgaggagc caagttcca
180 tggatggatgtt aatggaaaaa acttttgagt cagagctgag ctctgggaca aaaaggaaaa
240 agaagagggga tgaagggaaag gggcccaatt cctctgact gattctaaag ctcatagggg
300 gattccaact cacagctagc cctctgtact aaggaaccag acgaatcttgc acctcccagg
360 gaaccttagac ctgggaaggc tgaacttgct atttgagggt caagtctact ccctgaaggt
420 ggagtgtcg atatttgat gggacaagg aggacaata gatcaacctc agcaaaggct
480 ggtaagcctg ggcaagggttc cacagggatg gatcttccta aggggtgggg gggcttccca
540 gttcctagaa aatggcggtg cgcgcagact gcctccctcc tcttcattgt agcttgatcc
600 tgcgcagtga ccgttcacgg aaagagtcag gcctgggagg gccggaccg gggcacaaat
660 gctggaggtt tcagagatgg ctggcgctgg cgaaggcagg tctgccagtg acgtattgt
720 cctgtgggtc ctggctctt tcgtggcacg cagggcacac tccttcctgg gatgggagaa
780 tggaaattctt ctaggcgagg acgggcagca gcggccctgg gaaggcttcc gtggaaactt
840 ccaaaccac cttgccaggt aagtgaaagt gcgcctcggt ctctagccac atcctaggcc
900 aagtaagttc ttcttcattc tttcagcagt cctgatcttc ttggggagca cccctaaatc
960 agcctgtcaa gaaggaaggc aggctacggg tatcttctca ggaacagatg aagg
1014

<210> 6024

<211> 100

<212> PRT

<213> Homo sapiens

<400> 6024
Met Lys Arg Arg Glu Ala Val Cys Ala His Arg His Phe Leu Gly Thr
1 5 10 15
Gly Lys Pro Pro His Pro Leu Gly Arg Ser Ile Pro Val Glu Pro Cys
20 25 30
Pro Gly Leu Pro Ala Phe Ala Glu Val Asp Leu Leu Ser Leu Leu Val
35 40 45
Pro Ile Lys Ile Ser Ser Thr Pro Pro Ser Gly Ser Arg Leu Asp Pro
50 55 60
Gln Ile Ala Ser Ser Ala Phe Pro Gly Leu Gly Ser Leu Gly Gln
65 70 75 80
Asp Ser Ser Gly Ser Leu Val Gln Arg Ala Ser Cys Glu Leu Glu Ser

85

90

95

Pro Tyr Glu Leu
100

<210> 6025

<211> 5905

<212> DNA

<213> Homo sapiens

<400> 6025

nacagggtgt ggatatacag gctgggaggg tctgtggca gcagccgagg cccaggttgg
60
gggagcctca cctaggatga ggctagggtct ggcagaagat cccccacagag gagccaggag
120
gaccacacag tcactcttagc tcccagggcc tggaggtgca ggcgagcccc gtggtctccg
180
ggcagccggc cctgccccac tcacctctcc tgcccttccc gctgcaggct aaccttgccg
240
cgggccgagc cctgcctcgc catggaccag gactatgagc ggcgcctgtct tcgcccagatc
300
gtcatccaga atgagaacac gatgccacgc gtcacagaga tgcggccggac cctgacgcct
360
gccagctccc cagtgtcctc gcccagcaag cacggagacc gcttcatccc ctccagagcc
420
ggagccaact ggagcgtgaa cttccacagg attaacgaga atgagaagtc tcccagtcag
480
aaccggaaag ccaaggacgc cacctcagac aacggcaaag acggcctggc ctactctgcc
540
ctgtcaaga atgagctgct gggtgccggc atcgagaagg tgcaggaccc gcagactgag
600
gaccgcagggc tgcagccctc cacgcctgag aagaagggtc tggcacgtta ttcccttagc
660
accaagcgct ccagccccga tgacggcaac gatgtgtctc cctactccct gtctcccgct
720
agcaacaaga gccagaagct gtcgggtcc ccccgaaac ccacccgcaa gatctccaag
780
atccccctca aggtgctgga cgcccccggag ctgcaggacg acttctaccc caatctggtg
840
gactggcgtc ctctcaatgt gtcagcgtg gggctaggca cctgcgtgtt cctgtggagt
900
gcctgtacca gccaggtgac gcccgtctgt gacctctcag tggaaagggggta ctcagtgacc
960
tccgtggct ggtctgagcg gggaaacctg gtggccgtgg gcacacacaa gggcttcgtg
1020
cagatctggg acgcagccgc agggaaagaag ctgtccatgt tggagggcca cacggcacgc
1080
gtcgccggcgc tggcctggaa tgctgagcag ctgtcgccg ggagccgcga ccgcattgtc
1140
ctgcagaggg acatccgcac cccgcactg cagtcggagc ggccggctgca gggccaccgg
1200
caggaggtgt gcgggctcaa gtggtccaca gaccaccagc tcctcgccctc gggggcaac
1260
gacaacaaggc tgctggtctg gaatcactcg agcctgagcc ccgtgcagca gtacacggag
1320

cacctggcgg ccgtgaaggc catgcctgg tccccacatc agcacggct gctggcctcg
1380
ggggggcggca cagctgaccg ctgtatccgc ttcttgaaca cgctgacagg acaaccactg
1440
cagtgtatcg acacgggctc ccaagtgtgc aatctggctt ggtccaagca cgccaaacgag
1500
ctggtgagca cgacacggcta ctcacagaac cagatccttg tcttggaaatgt cccctccctg
1560
acccaggtgg ccaagctgac cggggactcc taccgcgtgc tgtacctggc aatgtccct
1620
gatggggagg ccacatgtcac tggtgcttgg aacgagaccc tgaggttctg gaacgtcttt
1680
agcaaaaaccc gttcgacaaa ggtaaagtgg gagtctgtgt ctgtgctcaa cctcttcacc
1740
aggatccgtt aaacctgcca ggcaggaccg tgccacacca gctgtccaga gtcggaggac
1800
cccagcttcat cagcttgcattt ggactctgcc ttccctagcgc ttgtccccccg aggaaggcgg
1860
ctggggcgggc ggggagctgg gcctggagga tcctggagtc tcattaaatg cctgatttgt
1920
aaccatgtcc accagtatct ggggtgggca cgtggtcggg gaccctcagc agcagggct
1980
ctgtctccct tcccaaaggg cgagaaccac attggacggt cccggctcag accgtctgt
2040
ctcagagcga cggatgcccc ctgggaccct cactgcctcc gtctgttcat cacctgcca
2100
ccggagccgc atgcctttcc tggaaactgcc cacgtctgca cagaacacagac caccagacgc
2160
cagggctgat tggtgggggc ctgagacccc cggttggcca ttcatggctg caccacca
2220
tgtcaaaaccc aagaccagcc ccaaggccag accaaggcat gttaggcctgg gcaggtggct
2280
cgggggccact ggcggagcca gcttggat ccaagagaca gtcccccaccc gggcttcac
2340
gcattccttc agccacccct gctgtactg ctcgaagcag cagtctctt gcaagcatct
2400
gtgtcatggc catgcctgg cggtcagtgg gcttcagatg ggcctgtgca tcctggccaa
2460
gcgtcacccct cacactggag gaggatgtct gctctggact tatcacccca ggagaactga
2520
acccggacccct gctcaactgcc ctggctggag aggagcacaa cagatgccac gtcttcgtgc
2580
atcgcacccac acgtgccttc acaggggccag cgtcctccctt ccctgcgcaaa gacttgcgt
2640
ccccatgcct gctgggtggc tgggtccctgt ggaggccagc agcgggtgtgg ccccccggcc
2700
caggctgcct gtgtttcac ctgtcctgtc caccagcgc aacagccgtg gggaaagccaa
2760
ggagacccaa ggggtccagg aggtgggcgc cctccatccct tcgagaagct tcccaggctc
2820
ctctgccttct ctgtctcatg ctcccaaggct gcacagcagg cagggaggga ggcaaggcag
2880
gggagtgccccg cctgagctga gcaactgcccc ctcacccccc caccacccct tcccatttca
2940

tcgggtgggga cgtggagagg gtggggcggg ctggggttgg agggtcccac ccaccaccc
3000 gctgtgcctt ggaaccccca ctccccactc cccacatccc aacatcctgg tgtctgtccc
3060 cagtggggtt ggcgtgcatt tgtacatatg tatttgtac tttctttgg atttgtttt
3120 tggtttttttt gactagtctt ggaaatgttt gaggctagac ggggaggggc caggaccac
3180 ccactgcctt tggggatga ggtcctgggtt ttaaagcccc gtcatttcaa gcgggtcgat
3240 ctccccatatt cactggagag actctccca cctctgtctg ggtggggcgc ggaccctca
3300 ctgtgcgcct gtgcaggggg tgctggtgca cgtggcagtg tggatttcca gtggtcacgg
3360 tcttactgtt tcaaggtttt taaataagaa aaccaaccct gccttcgccc atgcccggcc
3420 ctgcccgcag ttgccaaaga gccgccttgc cgctgtggc gtcagggctt ggctggctca
3480 gtgcacaacc cacagtggcc ttcagaggct ctcctggga ctgggaaccg ccgcagggcc
3540 aggccggacgg cgtgaggttt gtgttggggc tggttctgcc catgctaggg ggtggggag
3600 ctccccaggac agaccagcct tgggtctcat gtaatgcagt gacgctgtca ttaaacadgt
3660 ggattcatgt gtggccggga ctggctggct ctagtcccc ggctcgggtg gggtcacacg
3720 gtcctgcctt agagccccca tctggccctg gagctgcaga agcagcttct gaggggcttc
3780 ccaggcctgc atttcacaga tggggagctc agccctcgaa ggccgcagag acgcctccca
3840 ggcccgcttg ccagggcgcc ggccacaatc ctgcagggcc aaggactgga ctccaggcaa
3900 gtcctgcgc tccagctgga cggccctgtt ccagggagga ggtgctcggt tgacaccatc
3960 agggagggag ggtggcact gctggctga gttcacccccc agggctggcc agatggggcc
4020 aggaggagaca gagcaagggg ggtgaaggcc gtggggagag ggtcccatga tgatgggcca
4080 gggctcgtgt agaaatgggg gaattgggtc cccatggccc aggacagctg agaggaggtg
4140 gagggggccccc agggaggtgt acgtcaggct ttgcggggca cggggggccac tcagcagcgc
4200 tggggcaggt gcctctgctg tcagctccac ccgacaggca gacgaaggcc agtggggcca
4260 tcgcttcctg gggcgaccct ggcagtggtt gggagacgcc cagatggagg gggaggctga
4320 ccaaggggccc cgcaggcgcc gctgcaactt ttctgttgc gctggaaatgt agctgggtca
4380 gtgagagggaa aagagaattt aaaaactca gctgccatag gttctgcgt gtaggtgca
4440 ggaggcagga gcctggccca ggggggtgctg gtgcctccccc ggggtctggg cggagagaac
4500 aggaggaatg gctgggaagt ggctgaggga gccaggaggc cggggggcccg ggggctgcag
4560

gggaggctgt ggggtcctg gcagccagga ggccccaggt ggtttgagg ctcgctctg
4620
cgccgtgcct gagaagaggg tgaaggagct ggggcaggcc ccatcctggg cattggagat
4680
gatgaaaccg agcagacctg gcccatgtgg agctggcatg ggggacacag cccagagaca
4740
gagaagctta tgaggaagtg aggaggtggc gtcacaaggg tggggagggg gccttggga
4800
agggcggcct tggatcagag gtcaccaca agcctggcat ttcagccagg gctggagaag
4860
gcagggacgc ctgggtgaga ggcaaagggc acagccatgc aaaggccctg gggcaggacg
4920
gcacctggta tgcgggagga acagagttag gagaggaggg cagggcgtgc agggccttgt
4980
gggcctcagg gaggacttgg gcacctaccc cgagggagtg gagctcctgg gtgcgtgtcc
5040
agatggaaaa ggcagggtcg tatctgtggg gacctgacaa gggcagggga agcggagacc
5100
agggtgcagg ctccgcccc acccaaggcc gggcccagcc agaggagggg cagggcaggg
5160
caggaggtt ctggatgtt gttgggtttt gtttggttt gtttggttt gtttattgt
5220
gtaaaataca aaatctaccg tcttacagtg aggtggcggt cagtaccc accacgcct
5280
gcagccatcc catctgattc cagaacattc tcattcaccca gaaggcagcc ctgtccccat
5340
tatgtcacct agtcacccccc aggtccccct ccccagtccc ggcacccacg aatcctctcc
5400
ctgattctgt ggattggctt gtcctggaca tttcatagaa gtgggatcac agcgtaccct
5460
tctgtgtctg gtgtctctca ctgagcgtga catcctcaag gtgcattccgc actgtggcct
5520
gggtcagagc ttgcacccctt cttgtggctg agtctcattc cagcgcgtgg gtgcgtgggt
5580
ggccggcccg tgctgatccc ctcacccctca ctgggtttc ggtgttctcc gcctcggcct
5640
gtcacaaatc gtgctgctgt gagccactgc gtgcaggtct catcctgggt gtatttaca
5700
aacggactgg atgtgagtgg gtgaggagtg aggagctggg gtgacaggtg cctgcgaccc
5760
cgccaggca ctgcctcctg cgatcgaagg ggcaggggg gacagaagcc cctcaagggg
5820
gtgtggagat ggagaagcca gacccaggt ggggggtgca tagagctggg gtcaggcca
5880
cgacccacc tggcagtgcc ctgcc
5905

<210> 6026
<211> 496
<212> PRT
<213> Homo sapiens

<400> 6026
Met Asp Gln Asp Tyr Glu Arg Arg Leu Leu Arg Gln Ile Val Ile Gln

1	5	10	15
Asn	Glu	Asn	Thr
Met	Met	Pro	Arg
Val	Thr	Glu	Met
20	25	30	
Pro	Ala	Ser	Ser
Pro	Val	Ser	Ser
35	40	45	
Ile	Pro	Ser	Arg
Ala	Gly	Ala	Asn
Trp	Ser	Val	Asn
50	55	60	
Asn	Glu	Asn	Glu
Lys	Ser	Pro	Ser
Gln	Asn	Arg	Lys
65	70	75	80
Thr	Ser	Asp	Asn
Gly	Lys	Asp	Gly
Leu	Ala	Tyr	Ser
85	90	95	
Asn	Glu	Leu	Leu
Gly	Ala	Gly	Ile
Ile	Glu	Lys	Val
100	105	110	
Glu	Asp	Arg	Arg
Leu	Gln	Pro	Ser
115	120	125	
Thr	Tyr	Ser	Leu
Ser	Thr	Lys	Arg
130	135	140	
Val	Ser	Pro	Tyr
145	150	155	160
Leu	Arg	Ser	Pro
165	170	175	
Lys	Val	Leu	Asp
180	185	190	
Val	Asp	Trp	Ser
195	200	205	
Val	Tyr	Leu	Trp
210	215	220	
Leu	Ser	Val	Glu
225	230	235	240
Gly	Asn	Leu	Val
245	250	255	
Asp	Ala	Ala	Gly
260	265	270	
Arg	Val	Gly	Ala
275	280	285	
Arg	Asp	Arg	Met
290	295	300	
Ser	Glu	Arg	Arg
305	310	315	320
Trp	Ser	Thr	Asp
325	330	335	
Leu	Leu	Val	Trp
340	345	350	
Glu	His	Leu	Ala
355	360	365	
Gly	Leu	Leu	Ala
370	375	380	
Trp	Asn	Thr	Leu
385	390	395	400
Gln	Val	Cys	Asn
405	410	415	
Thr	His	Gly	Tyr
420	425	430	
Leu	Thr	Gln	Val

435	440	445
Leu Ala Met Ser Pro Asp Gly Glu Ala Ile Val Thr Gly Ala Gly Asp		
450	455	460
Glu Thr Leu Arg Phe Trp Asn Val Phe Ser Lys Thr Arg Ser Thr Lys		
465	470	475
Val Lys Trp Glu Ser Val Ser Val Leu Asn Leu Phe Thr Arg Ile Arg		480
485	490	495

<210> 6027

<211> 305

<212> DNA

<213> Homo sapiens

<400> 6027

nncgggggc tgggaaagac caccctggca cacgtgattt cgcgtaacgc ggggtactct
 60
 gtgggtggaga tgaatgccag tgacgaccgt agccggagg tcttccgcac acgcacatcgag
 120
 gcggccacccc aaatggagtc ggggcttggg gctgccggga agcccaactg cctggtcattc
 180
 gatgagatcg acggggcccc cgtgggtgggc tccttgatgc ctgggttaggt gggtgggcgg
 240
 gcaggcaggc gggcagcagg gcctggactc accgtgttct ctgacctccc ccaaggccgc
 300
 catca
 305

<210> 6028

<211> 75

<212> PRT

<213> Homo sapiens

<400> 6028

Xaa Pro Gly Leu Gly Lys Thr Thr Leu Ala His Val Ile Ala Arg His			
1	5	10	15
Ala Gly Tyr Ser Val Val Glu Met Asn Ala Ser Asp Asp Arg Ser Pro			
20	25	30	
Glu Val Phe Arg Thr Arg Ile Glu Ala Ala Thr Gln Met Glu Ser Gly			
35	40	45	
Leu Gly Ala Ala Gly Lys Pro Asn Cys Leu Val Ile Asp Glu Ile Asp			
50	55	60	
Gly Ala Pro Val Val Gly Ser Leu Met Pro Gly			
65	70	75	

<210> 6029

<211> 1350

<212> DNA

<213> Homo sapiens

<400> 6029

tttttttttttttttga tgaaaaatag gatttattgg ggaaaccgta caagcagagg
 60
 agaaggcaggc gtgccaggc tgtcacagcc ttgcagtgca tgggggttc cgtggccaac
 120

ttgccagggg acaggcctgt tgctggcaact ccccccacaa ttacagggtg ggagtgaagg
180 acctcgccgc tgccgacagg tccttggtag taaggaggag gctctgcagt cccgggtgggg
240 tcatcttgcc tctccggact gctccctctg actggtaag ccacactctg tgaagctgtc
300 tgacagaagg ggacacgcct ttgctgccc gatggacct gggccaccca gatggccgct
360 ggcctcagcc agggcacgtg tgcccagcgc tggctcctgc tgaccctgg actggctccc
420 atctcgaaa tgacgcctgc cgtggaaatc gtggagaggg ggttaattt aacttggaaag
480 gagcacagaa aggaaagtgt ggagtgcgga gcgaggcctc tggggccggcc ggctccgggt
540 gctggggatg gccacacccct ggcagcaggc ggccagagac caggaaggcc tacccagcac
600 ctgtccagaa aagattggtg tgggttgacc tggcctatgc gggcagctc agtttgaagc
660 aggaacttcc ccaaactgc ccaggctcca agacagcagc attcactttg caccgtgctg
720 agcagagcgg ggcctcgcca ggtggaaagc cctaggaagg ctgcgtgctc tgcaaacc
780 ggggtgtgt ggccgtacag cagggcgctc cgtgtccagg cagtttgc atgtcttcca
840 aaggtcagga aggccacc accctgcccc acgacagctg cgtctgcaag cgccagctct
900 gagcaactt ccggccgac atgaggacac catccaagaa ttccctctgg gagacctc
960 gaggagacgc gaagaccatc gatgctttgg aagaatgaaa agaagttct gctaagccaa
1020 acctagggtgg atggaaagtg cctgtgtgg tgtgaagcca cttgggtgg gggctcgga
1080 gtcctctgc ccacatcgcc tcaactggac tcgccatcca gtctgacgctc tttgatgtcc
1140 ccataaatct gctggcttcc aggagaacac gtcttgaagc acagctgaac ttgaatctt
1200 tctgggtcct cctgctggc cgtgggggg agccgctccc gttgcctcaa ggcctccaag
1260 cctgccagg caggctgatg gcagtggctg cgcatgacca tggatgcggtg gcccctgg
1320 atgcgcggct tcggcagccc agccgagcct
1350

<210> 6030
<211> 99
<212> PRT
<213> Homo sapiens

<400> 6030
Met Gly Thr Ser Lys Thr Ser Asp Trp Met Ala Ser Pro Ser Glu Ala
1 5 10 15
Met Trp Ala Glu Glu Leu Arg Ala Ala His Pro Arg Trp Leu His Ile
20 25 30
His Thr Gly Thr Ser His Pro Pro Arg Phe Gly Leu Ala Glu Thr Ser

35 40 45
Phe His Ser Ser Lys Ala Ser Met Val Phe Ala Ser Pro Gln Glu Val
50 55 60
Ser Gln Glu Glu Phe Leu Asp Gly Val Leu Met Ser Ala Glu Asn Ser
65 70 75 80
Ala Gln Ser Trp Arg Leu Gln Thr Gln Leu Ser Trp Gly Arg Ala Val
85 90 95
Ala Pro Ser

<210> 6031
<211> 1316
<212> DNA
<213> Homo sapiens

<400> 6031
nntctagacc agtatgcccc agatgtggcc gaactcatcc ggacccctat ggaaatgcgt
60
tacatccctt tgaaagtggc cctgttctat ctcttaaatac cttacacgat tttgtcttgt
120
gttgccaagt ctacctgtgc catcaacaac accctcattt ctttcttcattttgactacg
180
ataaaaaggca gtgctttcct cagtgcattttt tttcttgccct tagcgacata ccagtctctg
240
tacccactca ctttgggttccc cccaggactc ctctatctcc tccagcggca gtacataacct
300
gtgaaaatga agagcaaagc cttctggatc ttttcttggg agtatgccat gatgtatgt
360
ggaaggcttag tggtaatcat ttgcctctcc ttcttccttc tcagcttttgcggat
420
cccgcaatct atggctttat actttctgtt ccagatctca ctccaaacat tggcttttc
480
tggtaatcatat ttcaggatgtt gtttggcac ttccatctcttc tctttgtatg tggat
540
atcaacgtct ttttctacac catccccctta gccataaaagc taaaggagca ccccatcttc
600
ttcatgttta tccagatcgc tgtcatcgcc atcttaagt cctacccgac agtgggggac
660
gtggcgctct acatggccctt cttcccccgtt tggaaccatc tctacagatt cctgagaaac
720
atctttgtcc tcacctgtcat catcatcgcc ttttttttttgc ttttttttttgc
780
ctctggattt atgcaggaag tgccaaactct aattttttttt atgccatcac actgaccc
840
aacgttgggc agatccctgtt catctctgtat tacttctatg ctttctgtcg gcggggagtt
900
tacccacac atggccctca cttgaccgccc aaggatggca cagaggccat gctcgatgt
960
aagttaggcct ggctggcaca gggctgcattt gacccatgggg ggctgtgggg ccagaagctg
1020
ggccaaagccc tccagccaga gttgccagca ggccgatgttgc tggcagaag aggttcgagt
1080
ccagggtcac aagtctctgg tacccaaagg gacccatggc tgactgacag caaggccat
1140

gggaaagaac tggagctcc ccaacttggc ccccccacccctt gtggctctgc acacccaagga
 1200
 gccccctccc agacaggaag gagaagaggc aggtgagcag ggcttggtag attgtggcta
 1260
 cttaataaat gtttttggat atgaagtctt aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa
 1316

<210> 6032
<211> 321
<212> PRT
<213> Homo sapiens

<400> 6032
Xaa Leu Asp Gln Tyr Ala Pro Asp Val Ala Glu Leu Ile Arg Thr Pro
 1 5 10 15
Met Glu Met Arg Tyr Ile Pro Leu Lys Val Ala Leu Phe Tyr Leu Leu
 20 25 30
Asn Pro Tyr Thr Ile Leu Ser Cys Val Ala Lys Ser Thr Cys Ala Ile
 35 40 45
Asn Asn Thr Leu Ile Ala Phe Phe Ile Leu Thr Thr Ile Lys Gly Ser
 50 55 60
Ala Phe Leu Ser Ala Ile Phe Leu Ala Leu Ala Thr Tyr Gln Ser Leu
 65 70 75 80
Tyr Pro Leu Thr Leu Phe Val Pro Gly Leu Leu Tyr Leu Leu Gln Arg
 85 90 95
Gln Tyr Ile Pro Val Lys Met Lys Ser Lys Ala Phe Trp Ile Phe Ser
 100 105 110
Trp Glu Tyr Ala Met Met Tyr Val Gly Ser Leu Val Val Ile Ile Cys
 115 120 125
Leu Ser Phe Phe Leu Leu Ser Ser Trp Asp Phe Ile Pro Ala Val Tyr
 130 135 140
Gly Phe Ile Leu Ser Val Pro Asp Leu Thr Pro Asn Ile Gly Leu Phe
 145 150 155 160
Trp Tyr Phe Phe Ala Glu Met Phe Glu His Phe Ser Leu Phe Phe Val
 165 170 175
Cys Val Phe Gln Ile Asn Val Phe Phe Tyr Thr Ile Pro Leu Ala Ile
 180 185 190
Lys Leu Lys Glu His Pro Ile Phe Met Phe Ile Gln Ile Ala Val
 195 200 205
Ile Ala Ile Phe Lys Ser Tyr Pro Thr Val Gly Asp Val Ala Leu Tyr
 210 215 220
Met Ala Phe Phe Pro Val Trp Asn His Leu Tyr Arg Phe Leu Arg Asn
 225 230 235 240
Ile Phe Val Leu Thr Cys Ile Ile Val Cys Ser Leu Leu Phe Pro
 245 250 255
Val Leu Trp His Leu Trp Ile Tyr Ala Gly Ser Ala Asn Ser Asn Phe
 260 265 270
Phe Tyr Ala Ile Thr Leu Thr Phe Asn Val Gly Gln Ile Leu Leu Ile
 275 280 285
Ser Asp Tyr Phe Tyr Ala Phe Leu Arg Arg Glu Tyr Tyr Leu Thr His
 290 295 300
Gly Leu Tyr Leu Thr Ala Lys Asp Gly Thr Glu Ala Met Leu Val Leu
 305 310 315 320
Lys

<210> 6033
<211> 5157
<212> DNA
<213> Homo sapiens

<400> 6033
caattgctct atgttagtgcc ctttggatgcc aaagtcttag aatcttagcat tcgttagtgc
60
gttttttaggc caccaaacc ttggacaatg gcaattatga atgtatttagc tgagctacat
120
caggagcatg acttaaagtt aaacttgaag tttgaaatcg aggttctctg caagaacctt
180
gcatttagaca tcaatgagct aaaacctgga aacctcctaa aggataaaga tcgcctgaag
240
aatttagatg agcaactctc tgctccaagg aaagatgtca agcagccaga agaactccct
300
cccattcacaa ccacaacaac ttctactaca ccagctacca acaccacttg tacagccacg
360
gttccaccac agccacagta cagctaccac gacatcaatg tctattccct tgcgggcttg
420
gcaccacaca ttactctaaa tccacaacatt cccttgcatttcc agggccatcc acagttgaag
480
cagtgtgtgc gtcaggcaat tgaacgggct gtccaggagc tggccatcc tgtgggtggat
540
cgatcaatta agattgccat gactacttgt gagcaaatacg tcaggaagga ttttgccttg
600
gattcggagg aatctcgaaat gcgaatagca gctcatcaca tcatgcgtaa cttgacagct
660
ggaatggcta tgattacatg cagggAACCT ttgctcatga gcatatctac caactaaaa
720
aacagtttg cctcagccct tcgtactgct tccccacaac aaagagaaaat gatggatcag
780
gcagctgctc aattagctca ggacaattgt gagttggctt gctgttttat tcagaagact
840
gcagtagaaaa aagcaggccc tgagatggac aagagattag caactgaatt tgagctgaga
900
aaacatgcta ggcaagaagg acgcagatac tggatccctg ttgttttaac atatcaagct
960
gaacggatgc cagagcaaatt caggctgaaa gttgggtggt tggacccaaa gcagttggct
1020
gtttacgaag agttgcacg caatgttcct ggcttcttac ctacaaatga cttaaatcag
1080
cccacgggat ttttagccca gcccatgaag caagcttggg caacagatga tggatctcag
1140
atttatgata agtgttattac agaactggag caacatctac atgcccattcc accaactttg
1200
gccatgaacc ctcaagctca ggcttccatgc agtctttgg aggtttagt tttatctcga
1260
aactctcggg atgcccatacg tgctttggaa ttgctccaaa aggctgtaga gggcttacta
1320
gatgccacaa gtgggtgctga tgctgacctt ctgctgcgtc acaggaaatg ccaccccttg
1380

gtcctaaaaag ctctgcagga tggccgggca tatgggtctc catggtgcaa caaacagatc
1440
acaagggtgcc taattgaatg tcgagatgaa tataaatata atgtggaggc tgtggagctg
1500
ctaattcgca atcatttggt taatatgcag cagttatgatc ttcacctagc gcagtcaatg
1560
gagaatggct taaaactacat ggctgtggca tttgctatgc agtttagtaaa aatcctgctg
1620
gtggatgaaa ggagtgttgc tcatgttact gaggcagatc tggccacac cattgaaacc
1680
ctcatgagga ttaatgctca ttccagaggc aatgctccag aaggattgcc ccagctgatg
1740
gaagtagtgc gatccaacta tgaagcaatg attgatcgatc ttcatggagg cccaaactt
1800
atgatgcatt ctgggatctc tcaagcctca gagttatgatc accctccagg cctgagggag
1860
aaggcagagt atcttctgag ggaatgggtg aatctctacc attcagcagc agctggccgc
1920
gacagtacca aagctttctc tgcatttggt ggacaggttag agcttttggaa aagaaagatg
1980
caccagcaag gaatactgaa gaccgatgatc ttcataacaa ggttcttgc tctgtgtact
2040
gaaatgtgtg ttgaaatcag ttaccgtgct caggctgagc agcagcacaa tcctgctgcc
2100
aatccccacca tgatccgagc caagtgcstat cacaacctgg atgcctttgt tcgactcatt
2160
gcactgctcg tgaaacactc aggggaggcc accaacactg tcacaaagat taatctgctg
2220
aacaaggctcc ttggtatagt agtgggagtt ctccctcagg atcatgatgt tcgtcagagt
2280
gaatttcage aactcccta ccatcgaatt tttatcatgc ttctcttggaa actcaatgca
2340
cctgagcatg tggggaaac cattaatttc cagacactta cagctttctg caatacattc
2400
cacatcttga ggcctaccaa agtcctggc tttgtatatg cctggcttga actgattcc
2460
catcgatcat ttatttgcag aatgctggca catacgccac agcagaaggg gtggcctatg
2520
tatgcacacgc tactgattga tttattcaaa tatttagcgc ctttccttag aaatgtggaa
2580
ctcacacaaac ctatgcaaat cctctacaag ggcactttaa gagttgcgtct ggttcttttgc
2640
catgatttcc cagagttcct ttgtgattac cattatgggt tctgtgtatgt gatcccaccc
2700
aattgtatcc agttaagaaa tttgatcctg agtgccttcc caagaaacat gaggctcccc
2760
gacccttca ctcctaatct aaaggtggac atgttgagtg aaattaacat tgctccccgg
2820
attctcacca atttcactgg agtaatgcca ctcagttca aaaaggattt ggattccttat
2880
ctttaaaactc gatcaccagt cacttccctg tctgtatctgc gcagcaacct acaggtatcc
2940
aatgaacacctg ggaatcgcta caacctccag ctcataatg cactggtgct ctatgtcggg
3000

actcaggcca ttgcgcacat ccacaacaag ggcagcacac cttcaatgag caccatcact
3060
caactcagcac acatggatat cttccagaat ttggctgtgg acttggacac tgagggtcgc
3120
tatctcttt tgaatgcaat tgcaaattcag ctccggtacc caaatagcca cactcactac
3180
ttcagttgca ccatgctgta ccttttgca gaggccaata cgaaagccat ccaagaacag
3240
atcacaagag ttctcttggg acgggttgatt gtaaaataggc cacatccttgggtcttctt
3300
attaccttca ttgagctgat taaaaaccca gcgttaagt tctggAACCA tgaatttggta
3360
cactgtgccc cagaaatcga aaagttatttc cagtcggtcg cacagtgctg catgggacag
3420
aaggcaggccc agcaagtaat ggaagggaca ggtgccagtt agacgaaact gcatctctgt
3480
tgtacgtgtc agtcttaggg tctcaactgca ccgagttcat aaactgactg aagaatcctt
3540
tcagcttttc ctgactttcc cagccctttg gtttgggtt atctggccccca actactgttg
3600
ggatcagcct cctgtcttat gtgggcacgt tccaaagttt aaatgcattt ttttgactct
3660
tggccaaaat ttagaagatg ctgtgaatat catttgaac ttgtgtaaat acatgaaaga
3720
aaaaacccccc gtctggact tcttggcttt gtgcagctg tgtccaaggc aagtacataaa
3780
actggtagct ttaatgaag aggtagctga tgccatgcac ttgtctgagg gcatagctcc
3840
atgtcttctg acattctgg tgccttccaaag aatagaaaaa agccagtttgg aatattatgt
3900
aacttatttt ttaatgtgg acaggggacc ttgaaaatca ctaagttattt aaaaatgtgg
3960
atgtgctaga attggatatg tccaggaaca tgggaaggc tcactattgg aatccatga
4020
gtttccattt tgccttctacc caaacgtatt ccaaagctga ctgcatttgt accatcttat
4080
ttctttggg gattatacac ctcagccgccc tgagatgggg gtcagctctt tatataaaagg
4140
gaaaccagac caggcctaaa gcccacccccc tacccctcacc cccacaatcc tctcctgaaa
4200
ctaaaaaaca gtgggaatat aggaaaggga accaaatctc attaattaat tggctcccc
4260
cattacccca ctgaatgaat ggccatacag gctaagctga ataatgacaa agttgaaagg
4320
accaatacag ccccttttat aaggatttttgc aatgttttgc aaatgtatttgc tccctgtgt
4380
tgtatTTTGT agcctttcc tgggcttcag ctccctact tcttgtatgt gtatgcatac
4440
tgttagctaac cattaaagtc atgacacacaca catgagtcctt ctgtgcctt ctcagtagca
4500
gcaggcagtg ctgggggtga ggaggaaaag tggacaatcc agccctgttag accttggggc
4560
catggggaaac caacaactaa cttcttgcgtg aatgattgtat ttgattgatt gattgatagg
4620

tcattcctac tactaagctg gcatgtttaa ggaaattgta tttttttcc tatttatcc
 4680
 aacactggac aaatgctgga gcagggttat ctggtaagc tgagttaaa atacccagtt
 4740
 ttaatacct tttccccag gtatTTTT tttttttaa agaaaatgag tagatacgta
 4800
 tttaaaaact taacccactt aaaatttgc ttaccttca tgactgtcaa gttttatggc
 4860
 cagagaggac aaaacagttc aaaattaaat aattgaagtc ctcccttgagt gatgtcttag
 4920
 ggttattcc ctgagaggtg gtttgtCCA tctagactga actttggta actatcgagt
 4980
 accagttaca cagcttatta aatccagagt ctttcaata aaggtaagt gacttcctca
 5040
 aactagactt agatTTAAAC caggggtcta cctccaaagt ctattattaa atgctgaaac
 5100
 acaacaagac ttacttatta ctaccgtatg tccactggct ttggtaaaa ctgagaa
 5157

<210> 6034

<211> 1096

<212> PRT

<213> Homo sapiens

<400> 6034
 Lys Asn Leu Ala Leu Asp Ile Asn Glu Leu Lys Pro Gly Asn Leu Leu
 1 5 10 15
 Lys Asp Lys Asp Arg Leu Lys Asn Leu Asp Glu Gln Leu Ser Ala Pro
 20 25 30
 Arg Lys Asp Val Lys Gln Pro Glu Glu Leu Pro Pro Ile Thr Thr Thr
 35 40 45
 Thr Thr Ser Thr Thr Pro Ala Thr Asn Thr Cys Thr Ala Thr Val
 50 55 60
 Pro Pro Gln Pro Gln Tyr Ser Tyr His Asp Ile Asn Val Tyr Ser Leu
 65 70 75 80
 Ala Gly Leu Ala Pro His Ile Thr Leu Asn Pro Thr Ile Pro Leu Phe
 85 90 95
 Gln Ala His Pro Gln Leu Lys Gln Cys Val Arg Gln Ala Ile Glu Arg
 100 105 110
 Ala Val Gln Glu Leu Val His Pro Val Val Asp Arg Ser Ile Lys Ile
 115 120 125
 Ala Met Thr Thr Cys Glu Gln Ile Val Arg Lys Asp Phe Ala Leu Asp
 130 135 140
 Ser Glu Glu Ser Arg Met Arg Ile Ala Ala His His Met Met Arg Asn
 145 150 155 160
 Leu Thr Ala Gly Met Ala Met Ile Thr Cys Arg Glu Pro Leu Leu Met
 165 170 175
 Ser Ile Ser Thr Asn Leu Lys Asn Ser Phe Ala Ser Ala Leu Arg Thr
 180 185 190
 Ala Ser Pro Gln Gln Arg Glu Met Met Asp Gln Ala Ala Ala Gln Leu
 195 200 205
 Ala Gln Asp Asn Cys Glu Leu Ala Cys Cys Phe Ile Gln Lys Thr Ala
 210 215 220
 Val Glu Lys Ala Gly Pro Glu Met Asp Lys Arg Leu Ala Thr Glu Phe

225	230	235	240
Glu	Leu	Arg	Lys
His	Ala	Arg	Gln
Glu	Gly	Arg	Arg
Tyr	Cys	Tyr	Cys
Asp	Pro		
245	250	255	
Val	Val	Leu	Thr
Tyr	Gln	Ala	Glu
Arg	Met	Pro	Glu
260	265	270	
Lys	Val	Gly	Val
Gly	Asp	Pro	Lys
275	280	285	
Ala	Arg	Asn	Val
Pro	Gly	Phe	Leu
290	295	300	
Thr	Gly	Phe	Leu
Ala	Gln	Pro	Met
305	310	315	320
Val	Ala	Gln	Ile
Tyr	Asp	Lys	Cys
Ile	Thr	Glu	Leu
Glu	Gln	His	Leu
325	330	335	
His	Ala	Ile	Pro
Pro	Pro	Thr	Leu
Ala	Met	Asn	Pro
340	345	350	
Arg	Ser	Leu	Glu
Leu	Val	Val	Val
355	360	365	
Ile	Ala	Ala	Leu
Gly	Leu	Leu	Gln
370	375	380	
Ala	Thr	Ser	Gly
Asp	Ala	Asp	Ala
385	390	395	400
His	Leu	Leu	Val
Leu	Lys	Ala	Leu
Gln	Asp	Gly	Arg
405	410	415	
Pro	Trp	Cys	Asn
Gln	Ile	Thr	Arg
420	425	430	
Glu	Tyr	Lys	Tyr
Tyr	Asn	Val	Glu
435	440	445	
Leu	Val	Asn	Met
Gln	Gln	Tyr	Asp
450	455	460	
Asn	Gly	Leu	Asn
Tyr	Met	Ala	Val
465	470	475	480
Ile	Leu	Leu	Val
Asp	Glu	Arg	Ser
485	490	495	
Leu	Phe	His	Thr
Ile	Glu	Thr	Leu
500	505	510	
Gly	Asn	Ala	Pro
Glu	Gly	Leu	Pro
515	520	525	
Asn	Tyr	Glu	Ala
Ala	Met	Ile	Asp
530	535	540	
Met	His	Ser	Gly
Ile	Ser	Gln	Ala
545	550	555	560
Leu	Arg	Glu	Lys
Ala	Glu	Tyr	Leu
565	570	575	
His	Ser	Ala	Ala
Ala	Gly	Arg	Asp
580	585	590	
Val	Gly	Gln	Val
Glu	Leu	Leu	Glu
595	600	605	
Leu	Lys	Thr	Asp
Asp	Leu	Ile	Thr
610	615	620	
Met	Cys	Val	Glu
Ile	Ser	Tyr	Arg
625	630	635	640
Pro	Ala	Ala	Asn
Ala	Pro	Thr	Met
645	650	655	
Asp	Ala	Phe	Val
Arg	Leu	Ile	Ala
Leu	Leu	Val	Lys
			His
			Ser
			Gly
			Gl

660 665 670
Ala Thr Asn Thr Val Thr Lys Ile Asn Leu Leu Asn Lys Val Leu Gly
675 680 685
Ile Val Val Gly Val Leu Leu Gln Asp His Asp Val Arg Gln Ser Glu
690 695 700
Phe Gln Gln Leu Pro Tyr His Arg Ile Phe Ile Met Leu Leu Leu Glu
705 710 715 720
Leu Asn Ala Pro Glu His Val Leu Glu Thr Ile Asn Phe Gln Thr Leu
725 730 735
Thr Ala Phe Cys Asn Thr Phe His Ile Leu Arg Pro Thr Lys Ala Pro
740 745 750
Gly Phe Val Tyr Ala Trp Leu Glu Leu Ile Ser His Arg Ile Phe Ile
755 760 765
Ala Arg Met Leu Ala His Thr Pro Gln Gln Lys Gly Trp Pro Met Tyr
770 775 780
Ala Gln Leu Leu Ile Asp Leu Phe Lys Tyr Leu Ala Pro Phe Leu Arg
785 790 795 800
Asn Val Glu Leu Thr Lys Pro Met Gln Ile Leu Tyr Lys Gly Thr Leu
805 810 815
Arg Val Leu Leu Val Leu Leu His Asp Phe Pro Glu Phe Leu Cys Asp
820 825 830
Tyr His Tyr Gly Phe Cys Asp Val Ile Pro Pro Asn Cys Ile Gln Leu
835 840 845
Arg Asn Leu Ile Leu Ser Ala Phe Pro Arg Asn Met Arg Leu Pro Asp
850 855 860
Pro Phe Thr Pro Asn Leu Lys Val Asp Met Leu Ser Glu Ile Asn Ile
865 870 875 880
Ala Pro Arg Ile Leu Thr Asn Phe Thr Gly Val Met Pro Pro Gln Phe
885 890 895
Lys Lys Asp Leu Asp Ser Tyr Leu Lys Thr Arg Ser Pro Val Thr Phe
900 905 910
Leu Ser Asp Leu Arg Ser Asn Leu Gln Val Ser Asn Glu Pro Gly Asn
915 920 925
Arg Tyr Asn Leu Gln Leu Ile Asn Ala Leu Val Leu Tyr Val Gly Thr
930 935 940
Gln Ala Ile Ala His Ile His Asn Lys Gly Ser Thr Pro Ser Met Ser
945 950 955 960
Thr Ile Thr His Ser Ala His Met Asp Ile Phe Gln Asn Leu Ala Val
965 970 975
Asp Leu Asp Thr Glu Gly Arg Tyr Leu Phe Leu Asn Ala Ile Ala Asn
980 985 990
Gln Leu Arg Tyr Pro Asn Ser His Thr His Tyr Phe Ser Cys Thr Met
995 1000 1005
Leu Tyr Leu Phe Ala Glu Ala Asn Thr Glu Ala Ile Gln Glu Gln Ile
1010 1015 1020
Thr Arg Val Leu Leu Glu Arg Leu Ile Val Asn Arg Pro His Pro Trp
1025 1030 1035 1040
Gly Leu Leu Ile Thr Phe Ile Glu Leu Ile Lys Asn Pro Ala Phe Lys
1045 1050 1055
Phe Trp Asn His Glu Phe Val His Cys Ala Pro Glu Ile Glu Lys Leu
1060 1065 1070
Phe Gln Ser Val Ala Gln Cys Cys Met Gly Gln Lys Gln Ala Gln Gln
1075 1080 1085
Val Met Glu Gly Thr Gly Ala Ser

1090

1095

<210> 6035
<211> 320
<212> DNA
<213> Homo sapiens

<400> 6035
tgatcacaaa gtcctgctg agtctgggg ataggaagg tctcaatcat ggtccatgg
60 taatctctt gccatgtga atgtgccaa tgtatcaaag gctccattct aaatggcatg
120 gtggggcagt ggtggcatt gtggctctgt gatctggcc aggctccag ccaccctgg
180 gttccctgc tggctcctg gaggacctgc ctcaaccctt ggatatgggg ttccacctga
240 cagcagaaaa agagatttga ggcctggagt ccaggcagga cagatggtag aaaccaatgg
300 agatgcatgg ccctggcgcc
320

<210> 6036
<211> 102
<212> PRT
<213> Homo sapiens

<400> 6036
Met His Leu His Trp Phe Leu Pro Ser Val Leu Pro Gly Leu Gln Ala
1 5 10 15
Ser Asn Leu Phe Ser Cys Cys Gln Val Glu Pro His Ile Gln Gly Leu
20 25 30
Arg Gln Val Leu Gln Glu Pro Ser Arg Glu Pro Pro Gly Trp Leu Gly
35 40 45
Ala Trp Pro Arg Ser Gln Ser His Asn Ala His His Cys Pro Thr Met
50 55 60
Pro Phe Arg Met Glu Pro Leu Ile His Trp Ala His Ser His Gly Gln
65 70 75 80
Arg Asp Tyr Pro Trp Thr Met Ile Glu Thr Leu Pro Ile Pro Gln Thr
85 90 95
Gln Gln Gly Leu Cys Asp
100

<210> 6037
<211> 3910
<212> DNA
<213> Homo sapiens

<400> 6037
aagcagccgn agcgtagctt ggctccggcc ctgcctggcg ccctgtctat cacggcgctg
60
tgcactgccc tcgcccagcc cgccctggttg cacatccacg gaggcacctg ttgcgcgccag
120
gagctggggg tctccgacgt gttgggctat gtgcacccgg acctgctgaa agatttctgc
180

atgaatcccc agacagtgtc gtcctgcgg gtcatgccc cttctgttt cctgggcata
240
ctgtgtagtc tctccgctt cttctggat gtcttggc cgaagcatcc tgctctgaag
300
atcaactcgtc gctatgcctt cgcccatatc ctaacggttc tgcagtgtgc caccgtcatt
360
ggctttctt attgggcttc tgaactcatc ttggcccage agcagcagca taagaagtac
420
catggatccc aggtctatgt caccttcgccc gttagcttct acctgggtggc aggagctgg
480
ggagccctcaa tcctggccac ggcagccaac ctccctgcgcc actacccac agaggaagag
540
gagcaggcgc tggagctgtc ctcagagatg gaagagaacg agccctaccc ggcgaaat
600
gaggtcatca accagttcca gccacccct gcttacacac cctaattgcca gcccctggct
660
ctcttcctcg gcagccctc cctcaactct gcagctctc tcgcacccag aggagctcct
720
ttccccagca ggcttcactg gtaggatctt gaccatcttcc tccaaacctt cccaggaga
780
gactctgcct ttagggtcat ccaagtatcc ctgctctcag aaccggaggt ccactggttt
840
tctataatgt actctttccc tcctgcccaca tcctgcccc ttcacattca cgagtattt
900
ccagccaggg aaggtcatcc aagttccctc cagcatggc gatatcttg ggaccgagac
960
tttccttggg gagctgtga gagcggacag tccaaaaaac aagtgtcaaa gggcccaagg
1020
gaaaggggac tgtgcccctgg aggctcaattt cacagggatc agtgtttgtt ccacagctgt
1080
agctctgggc tgacgcccc cagaccctt cttctcgga gtgacccgccc cccaggccac
1140
ctgctccggg gagttctgtc cactttactc tttggacttc tcctcacgtg tgccctgggt
1200
ttatggggag agggaatcgc tgttggaaag gcagagcagt tgcaaccctc tctgcccctg
1260
cttcatgtgg ctggagccca ggcaaggaga gcaggagcca gcgtgagact gaggccccct
1320
ggtgccatatc aaggaccaga gtgaagggga ctacatctcc cagcccttca cttttaaat
1380
atgagtggtt taaaaggaa aaaaatgaaa ccaggcaaca gcaacaatat tctgttttt
1440
aaatagggac aagactgttg tcactttta gacatgtatc ccattcctt tggctctgca
1500
atatttgggg ctgtagctcc ttccaagccc atggtagtcc ctcccccagt ctctccagt
1560
agaatgcagc ctcccttccc tggcccttcc cttctcagtg acggtgactc cctggggcct
1620
tctcgtggaa cccagagggg ctgaggactg tggctggct ggcggggccag cgtggtgctc
1680
ctcaggactg cagcaactgag atgaaacctg gcctcagttt aggaacaggg gccacaacag
1740
ggcaggaacc caccaccctc cacataggaa tacaaccagt gggccacat catgtgaggc
1800

atcagaccca cactgtcagc ccagcaggcc gggctgtgtc cttagacacc agtgctgccc
1860
tagactctga ctcgggactc cagcttgcca cgtgcctct ccccttttga atgtactctg
1920
gtcttcagt gtgctgtgg gactttttt ctcagccatc actctggta ccttgggg
1980
tctgggtctg gctgaatttt ctgccttgag atctggcat aaagtggatg aaacttgaaa
2040
gaccttcagt gtagatccag atggccaacc tgccttgtt aagttacttg cttcttggga
2100
atcagtgtcc cctgctgagc tgaaaaggaa atggattcca atctttcca acctttaagg
2160
tgatagatag tttagcaag actggagaat ggacaacact atgaagctgt ggctagaaag
2220
ggactgtcat gtcccatcct ttggccagat tgactggggta tgtccggaca gatgcctgca
2280
tgggtggta gggccacatc tgcacacgag ccagtggctg cttcgatc actgctgtga
2340
tgccagagtg tgttcaaagg tgactctct gctttctgg actcttctct caggcaagaa
2400
aggctgcagg ctgcctgcta tgtgatgcct gagcacaaag ccaaggaact gaactaagtc
2460
tttctgttaa gtcctgagtt tgtcattggc aggtttactt gtggccagct ctctctgccc
2520
ttgggtgtct gagcaggcag accagaagac caggcactgg acctgcattc caaagggact
2580
ggtcataatcc tgaggacctg tacatgaccc tgtggactgt tccgcacgat ccggAACCC
2640
cttttattt actccccatg tctttggct tccttttctt tcttttccc tctccatcc
2700
tgacactgat agtttgcatt ataaattccc cgggttgtt tttttttctt agaaaaaaaaat
2760
taaaaggaa aacaaaaacca aaaaaaccag aaaccacgaa taagaatgga aatgacaatg
2820
gctgcctgtt atttttctgt cacgatttc ctgatttggt ttgttccctt tgtctcagag
2880
aaggcaggaga tggtgatgag gctgtatTTT tttttttttt tcttgggggagag
2940
tctcgctctg tcacccgggc tggagtgtaa cgtggcatga tctcagctca ctgcaacctc
3000
tgcctctgg gttcaagcga ttatcctgcc tcagcctctt gagtagctgg gattacaggc
3060
atgcgccact atgcccagat aattttttt tatttttagt agagacaggg tttcaccatg
3120
ttggccaggc tggtctggaa ctccaaacctt caggttatcc acccaccttgcctccaaa
3180
gtgctggat tataggcatg aaccaccgtg cctggccaaa gatgtatTTT aaaatagtt
3240
gaaggactt ggcattggcc agctccgtgc atggcatttt cacccccaga gcttcctaatt
3300
cctgtttca cacaggaagt ttcttaggtct ttctagaaca gctagaaata gtagctgact
3360
cccgcccaag gcccaacctt caaaccctga gctttcagg ctgcattcctc tggtagct
3420

tagaggagaa cgtggctcct aaactcttagc catcctgtgg gaggaaatag acttctttgg
 3480
 gctgtggctt gcagaacaaa ctacactttt tttccctcta ttgtttaaat tttatataat
 3540
 aatttgtgtg ttttctgtc ttatatttct gtatttcacg tgttccttca ctcccstagaa
 3600
 actgcacttt ctttgaaacc ataggtaatg aatcttacta ggagaggcat ggggatagag
 3660
 acagttctgg gagtgtgacc tgtaagcctc ctgttagggca gtgccaggcc ttgattgcc
 3720
 acgttctctc cgttccttct tccttcatac atttgatcac acagcctaca cccagccccg
 3780
 agtgtgcate acggtaaaag agctgagggc tctttcagg gagcagccca tttaggtctc
 3840
 ttttgggtt gtagggaga atacacatct ttcttgaaa aaaaaaaaaa aaaaaaaaaa
 3900
 aaaaaaaaaagg
 3910

<210> 6038
 <211> 214
 <212> PRT
 <213> Homo sapiens

<400> 6038
 Lys Gln Pro Xaa Arg Ser Leu Ala Pro Ala Leu Pro Gly Ala Leu Ser
 1 5 10 15
 Ile Thr Ala Leu Cys Thr Ala Leu Ala Glu Pro Ala Trp Leu His Ile
 20 25 30
 His Gly Gly Thr Cys Ser Arg Gln Glu Leu Gly Val Ser Asp Val Leu
 35 40 45
 Gly Tyr Val His Pro Asp Leu Leu Lys Asp Phe Cys Met Asn Pro Gln
 50 55 60
 Thr Val Leu Leu Leu Arg Val Ile Ala Ala Phe Cys Phe Leu Gly Ile
 65 70 75 80
 Leu Cys Ser Leu Ser Ala Phe Leu Leu Asp Val Phe Gly Pro Lys His
 85 90 95
 Pro Ala Leu Lys Ile Thr Arg Arg Tyr Ala Phe Ala His Ile Leu Thr
 100 105 110
 Val Leu Gln Cys Ala Thr Val Ile Gly Phe Ser Tyr Trp Ala Ser Glu
 115 120 125
 Leu Ile Leu Ala Gln Gln Gln His Lys Lys Tyr His Gly Ser Gln
 130 135 140
 Val Tyr Val Thr Phe Ala Val Ser Phe Tyr Leu Val Ala Gly Ala Gly
 145 150 155 160
 Gly Ala Ser Ile Leu Ala Thr Ala Ala Asn Leu Leu Arg His Tyr Pro
 165 170 175
 Thr Glu Glu Glu Gln Ala Leu Glu Leu Leu Ser Glu Met Glu Glu
 180 185 190
 Asn Glu Pro Tyr Pro Ala Glu Tyr Glu Val Ile Asn Gln Phe Gln Pro
 195 200 205
 Pro Pro Ala Tyr Thr Pro
 210

<210> 6039
<211> 1130
<212> DNA
<213> Homo sapiens

<400> 6039
nncggnttag ctatttgtt tatccatgca gcccgcgtggg cctcggaggg gtcctcgcg
60
gtgctgcgcg ccgggccggg gccggaggcg ttactgcagg tctggccgc cgaatcggcg
120
ctgcgtgggg agccattgtg ggcccagaat gtggtgcccc aggccgaagg ggaagacgat
180
ccggccgggtg aggcccaggg tgggaggcta cccctgtgc cctgcgcggc tgcc tacgtg
240
agccccgcggg cgcccttcta cccgcctctg gtcgggagc tgccggcacg ccagctggag
300
ctgggcgcgg agcacgcgtt gtcgtggac gtcgtggcc aggtgttctc ctggggccgg
360
ggcaggcatg gacagctggg ccatgggacc ctggaggcag agctggagcc acggctgtt
420
gaggcgttgc agggcctagt catggctgag gtggccgcgg ggggctggca ttctgtgt
480
gtgagtgaga ctggggatat ttatatctgg ggctggaatg aatcaggca gtcggccctg
540
cccaccagga acctggcaga ggatggagag actgtcgaa gggagccac agaactgaat
600
gaagatggtt ctcaggtgaa gagaacgggt ggggctgagg atggagccccc tgcccccttc
660
atacgtgtcc agcccttccc ggcattactg gatctccca tggctcaga tgcagtcaag
720
gccagctgtg gatccggca cacagctgtg gtgacacgaa cagggagct ctacacctgg
780
ggctgggta aatatggaca gctggccac gaggacacca ccagcttggaa tcggcctcg
840
cgtgtgaaat actttgtaga taagcaactc caagtaaagg ctgtcacctg tggccgtgg
900
aacacctacg tgtatgtgt ggagaaagg aagagctgac atgtgtacgt atatgtatat
960
gcaacacacgt tgagacccccc attcaggtca aggaaaacca ttgcctgcac cccaaggggcc
1020
ccatatttgc ccctcccat cacagtccctg cccttcaccc tcaagcacgg tcctaaactt
1080
gtctgcactt tagaaacacc tggagagcat tgaaaactct gctgcctaag
1130

<210> 6040
<211> 312
<212> PRT
<213> Homo sapiens

<400> 6040
Xaa Gly Leu Ala Ile Leu Phe Ile His Ala Ala Ala Trp Ala Ser Glu
1 5 10 15
Gly Leu Leu Ala Val Leu Arg Ala Gly Pro Gly Pro Glu Ala Leu Leu

20	25	30
Gln Val Trp Ala Ala Glu Ser Ala Leu Arg Gly Glu Pro Leu Trp Ala		
35	40	45
Gln Asn Val Val Pro Glu Ala Glu Gly Glu Asp Asp Pro Ala Gly Glu		
50	55	60
Ala Gln Ala Gly Arg Leu Pro Leu Leu Pro Cys Ala Arg Ala Tyr Val		
65	70	80
Ser Pro Arg Ala Pro Phe Tyr Arg Pro Leu Ala Pro Glu Leu Arg Ala		
85	90	95
Arg Gln Leu Glu Leu Gly Ala Glu His Ala Leu Leu Asp Ala Ala		
100	105	110
Gly Gln Val Phe Ser Trp Gly Gly Arg His Gly Gln Leu Gly His		
115	120	125
Gly Thr Leu Glu Ala Glu Leu Glu Pro Arg Leu Leu Glu Ala Leu Gln		
130	135	140
Gly Leu Val Met Ala Glu Val Ala Ala Gly Gly Trp His Ser Val Cys		
145	150	155
Val Ser Glu Thr Gly Asp Ile Tyr Ile Trp Gly Trp Asn Glu Ser Gly		
165	170	175
Gln Leu Ala Leu Pro Thr Arg Asn Leu Ala Glu Asp Gly Glu Thr Val		
180	185	190
Ala Arg Glu Ala Thr Glu Leu Asn Glu Asp Gly Ser Gln Val Lys Arg		
195	200	205
Thr Gly Gly Ala Glu Asp Gly Ala Pro Ala Pro Phe Ile Ala Val Gln		
210	215	220
Pro Phe Pro Ala Leu Leu Asp Leu Pro Met Gly Ser Asp Ala Val Lys		
225	230	235
Ala Ser Cys Gly Ser Arg His Thr Ala Val Val Thr Arg Thr Gly Glu		
245	250	255
Leu Tyr Thr Trp Gly Trp Gly Lys Tyr Gly Gln Leu Gly His Glu Asp		
260	265	270
Thr Thr Ser Leu Asp Arg Pro Arg Arg Val Glu Tyr Phe Val Asp Lys		
275	280	285
Gln Leu Gln Val Lys Ala Val Thr Cys Gly Pro Trp Asn Thr Tyr Val		
290	295	300
Tyr Ala Val Glu Lys Gly Lys Ser		
305	310	

<210> 6041
<211> 291
<212> DNA
<213> Homo sapiens

<400> 6041
acgcgtgaag ggaaagaaaag agaacgtctg caaaaaggagg aagagaaaacg taggagagaa
60
gaagaggaaa ggcttcgacg ggaggaagag gaaaggagac ggatagaaga agaaaaggcctt
120
cggttggagc agcaaaagca gcagataatg gcagctttaa actcccagac tgccgtgcag
180
ttccacgt atgcagccca acagtatcca gggactacg aacagcagca aattctcatc
240
cgccagttgc aggagcaaca ctatcagcag tacatgcagc agttgtatca c
291

<210> 6042
<211> 97
<212> PRT
<213> Homo sapiens

<400> 6042
Thr Arg Glu Gly Glu Glu Arg Glu Arg Leu Gln Lys Glu Glu Glu Lys
1 5 10 15
Arg Arg Arg Glu Glu Glu Arg Leu Arg Arg Glu Glu Glu Arg
20 25 30
Arg Arg Ile Glu Glu Glu Arg Leu Arg Leu Glu Gln Gln Lys Gln Gln
35 40 45
Ile Met Ala Ala Leu Asn Ser Gln Thr Ala Val Gln Phe Gln Gln Tyr
50 55 60
Ala Ala Gln Gln Tyr Pro Gly Asn Tyr Glu Gln Gln Gln Ile Leu Ile
65 70 75 80
Arg Gln Leu Gln Glu Gln His Tyr Gln Gln Tyr Met Gln Gln Leu Tyr
85 90 95
His

<210> 6043
<211> 558
<212> DNA
<213> Homo sapiens

<400> 6043
tttttttttt tttttttt tttgacattc aaacacaaggc tttaatagga gatatcaagg
60
cacaggggtgg agggaggggg ttgctccagg gaattctgaa tgtcccagtt catgcagaag
120
ttcaaggtgt cttgtacaac ccactggga aacaggatct gggaccggtg cgggcacatt
180
ctcctggccc agcacagggg cggtgccacc cacattcggc cccgggtcttgc cctaatacat
240
gttttggtaa acactcggtc agagcacccct ctgttttttc cagtcccgaa gctccccgca
300
ggaatccaca ccccccggcc acccctctcg ggacacggat tcaatgtccc tggtgggtca
360
tctggccctt tcggcctgtg atgtgattcg agcggtgcta tctttaacct cgggcagggg
420
tgttctcccc cgtcgacgtt gctcagataa cagtcctgca attccatggg ggtggcggca
480
cccggggtct ggcaaagcat aggggcctgc ttgtgtcccc tgctgctgcc ccaagtagtc
540
agaggaggat gtgaattc
558

<210> 6044
<211> 152
<212> PRT
<213> Homo sapiens

<400> 6044

Met	Leu	Cys	Gln	Thr	Pro	Gly	Ala	Ala	Thr	Pro	Met	Glu	Leu	Gln	Asp
1					5				10					15	
Cys	Tyr	Leu	Ser	Asn	Val	Asp	Gly	Gly	Glu	His	Pro	Cys	Pro	Arg	Leu
					20				25					30	
Lys	Ile	Ala	Pro	Leu	Glu	Ser	His	His	Arg	Pro	Lys	Arg	Pro	Asp	Asp
					35				40				45		
Pro	Pro	Gly	Thr	Leu	Asn	Pro	Cys	Pro	Glu	Arg	Gly	Gly	Ala	Gly	Val
					50				55			60			
Trp	Ile	Pro	Ala	Gly	Ser	Phe	Gly	Thr	Gly	Lys	Asn	Arg	Gly	Cys	Ser
					65				70			75			80
Asp	Arg	Val	Phe	Thr	Lys	Thr	Cys	Ile	Arg	Gln	Asp	Pro	Gly	Arg	Met
					85				90				95		
Trp	Val	Ala	Pro	Pro	Leu	Cys	Trp	Ala	Arg	Arg	Met	Cys	Pro	His	Arg
					100				105				110		
Ser	Gln	Ile	Leu	Phe	Pro	Gln	Trp	Val	Val	Gln	Asp	Thr	Leu	Asn	Phe
					115				120				125		
Cys	Met	Asn	Trp	Asp	Ile	Gln	Asn	Ser	Leu	Glu	Gln	Pro	Pro	Pro	Ser
					130				135				140		
Thr	Leu	Cys	Leu	Asp	Ile	Ser	Tyr								
					145				150						

<210> 6045

<211> 1916

<212> DNA

<213> Homo sapiens

<400> 6045

acgcgtgtcg	agacgcactt	ccagccccgc	ggcgctggcg	aagggtggccc	ctacggctgc
60					
aaggacgctc	tgcgccagca	gctccgctcg	gcgcgcagagg	tgattgcagt	ggtcatggac
120					
gtgttcacag	acatcgacat	cttcagagac	ctgcaagaaa	tatgcaggaa	acagggagtt
180					
gctgtgtata	tccttctgga	ccaggctctc	ctctctcaat	ttctggatat	gtgcatggat
240					
ctgaaaagttc	atccctgaaca	ggaaaagttt	atgacagttc	ggactatcac	aggaaatatc
300					
tactatgcaa	ggtcaggaac	taagattatt	ggaaagggttc	acgaaaagtt	cacgttgatt
360					
gatggcatcc	gcgtggcaac	aggctctac	agttttacat	ggacggatgg	caaattaaac
420					
agcagtaact	tggttaattct	gtctggccaa	gtggttgaac	actttgatct	ggagttccga
480					
atcctgtatg	cccagtccaa	gcccatcagc	cccaaactcc	tgtctcaatt	ccagagcagc
540					
aacaagtttgc	atcacctcac	caaccgaaaa	ccacagtcca	aggagctcac	cctgggcaac
600					
ctgctgcgga	tgcggctggc	taggctgtca	agtactccca	ggaaggcggaa	cctggaccca
660					
gagatgcccc	cagagggcaa	ggcagagcgc	aagccccatg	actgtgagtc	ctctactgtt
720					
agtgaggaag	actacttcag	cagccacagg	gacgagctcc	agagcagaaa	ggccattgac
780					

gctgccactc aaacagagcc aggagaggag atgccagggc tgagtgttag tgaggtggga
840
acacaaacca gcatcaccac agcatgtgct ggtacccaga ctgcagtcata caccaggata
900
gcaagctctc aaaccacgat ttggtccaga tcgaccacta ctcagactga catggatgag
960
aacattctct ttcctcgagg aactcaatct acagaagggt caccagtcata aaaaatgtct
1020
gtatcgagat cttccagttt gaagtcttcc tcctctgtgt ctcccagg ctctgtggca
1080
agctccactg gttctccgc ttccatcaga accactgact tccacaatcc tggctatccc
1140
aagtacctgg gcaccccca cctggaaactg tacttgagtg actcacttag aaacttgaac
1200
aaagagccgc aattccactt cgctggatc aggtcccggc tcaaccacat gctggctatg
1260
ctgtcaagga gaacactctt tactgaaaac caccttggcc ttcattctgg caatttcagc
1320
agagtttaatt tgcttgctgt tagagatgta gcactttatc cttcctatca gtaactgctc
1380
cgtttcaga ctcctggttt cttccaggct tacagtggac atcatcagct tcctgcttta
1440
aaaaaatatct tatgtcccta attgccttcc ttttacctga ctttgtcacc tttgttgtct
1500
ttgaattctt taggctgcat attatttac atgcttggtt ttgtcatgta tataccaggt
1560
attggttta tggttaaac actatggata caggggtttt tttgcacaa ttttaatagt
1620
catgcactac ataatgatgt tttggtcaat gacagaccac gtatatgttgcagtcata
1680
aagattataa tactgtatcc ttactatacc ttttctgtgt ttagatacaa ataccattat
1740
gttacagttt cctacagtat tcagtgcaat aacatgatgt acagggtttgtt agcctgtttt
1800
gcattttct taggttgtat gctttctgt tttaaagggtt tgaatcacca gcattttgtt
1860
gatcaaatac ctattttagaa aaaataaaac tactttctgt taaaaaaaaa aacaaa
1916

<210> 6046

<211> 457

<212> PRT

<213> Homo sapiens

<400> 6046

```

Thr Arg Val Glu Thr His Phe Gln Pro Arg Gly Ala Gly Glu Gly Gly
   1          5          10          15
Pro Tyr Gly Cys Lys Asp Ala Leu Arg Gln Gln Leu Arg Ser Ala Arg
   20         25         30
Glu Val Ile Ala Val Val Met Asp Val Phe Thr Asp Ile Asp Ile Phe
   35         40         45
Arg Asp Leu Gln Glu Ile Cys Arg Lys Gln Gly Val Ala Val Tyr Ile
   50         55         60
Leu Leu Asp Gln Ala Leu Leu Ser Gln Phe Leu Asp Met Cys Met Asp

```

65	70	75	80
Leu Lys Val His Pro Glu Gln Glu Lys Leu Met Thr Val Arg Thr Ile			
85	90	95	
Thr Gly Asn Ile Tyr Tyr Ala Arg Ser Gly Thr Lys Ile Ile Gly Lys			
100	105	110	
Val His Glu Lys Phe Thr Leu Ile Asp Gly Ile Arg Val Ala Thr Gly			
115	120	125	
Ser Tyr Ser Phe Thr Trp Thr Asp Gly Lys Leu Asn Ser Ser Asn Leu			
130	135	140	
Val Ile Leu Ser Gly Gln Val Val Glu His Phe Asp Leu Glu Phe Arg			
145	150	155	160
Ile Leu Tyr Ala Gln Ser Lys Pro Ile Ser Pro Lys Leu Leu Ser His			
165	170	175	
Phe Gln Ser Ser Asn Lys Phe Asp His Leu Thr Asn Arg Lys Pro Gln			
180	185	190	
Ser Lys Glu Leu Thr Leu Gly Asn Leu Leu Arg Met Arg Leu Ala Arg			
195	200	205	
Leu Ser Ser Thr Pro Arg Lys Ala Asp Leu Asp Pro Glu Met Pro Ala			
210	215	220	
Glu Gly Lys Ala Glu Arg Lys Pro His Asp Cys Glu Ser Ser Thr Val			
225	230	235	240
Ser Glu Glu Asp Tyr Phe Ser Ser His Arg Asp Glu Leu Gln Ser Arg			
245	250	255	
Lys Ala Ile Asp Ala Ala Thr Gln Thr Glu Pro Gly Glu Met Pro			
260	265	270	
Gly Leu Ser Val Ser Glu Val Gly Thr Gln Thr Ser Ile Thr Thr Ala			
275	280	285	
Cys Ala Gly Thr Gln Thr Ala Val Ile Thr Arg Ile Ala Ser Ser Gln			
290	295	300	
Thr Thr Ile Trp Ser Arg Ser Thr Thr Gln Thr Asp Met Asp Glu			
305	310	315	320
Asn Ile Leu Phe Pro Arg Gly Thr Gln Ser Thr Glu Gly Ser Pro Val			
325	330	335	
Ser Lys Met Ser Val Ser Arg Ser Ser Leu Lys Ser Ser Ser Ser			
340	345	350	
Val Ser Ser Gln Gly Ser Val Ala Ser Ser Thr Gly Ser Pro Ala Ser			
355	360	365	
Ile Arg Thr Thr Asp Phe His Asn Pro Gly Tyr Pro Lys Tyr Leu Gly			
370	375	380	
Thr Pro His Leu Glu Leu Tyr Leu Ser Asp Ser Leu Arg Asn Leu Asn			
385	390	395	400
Lys Glu Arg Gln Phe His Phe Ala Gly Ile Arg Ser Arg Leu Asn His			
405	410	415	
Met Leu Ala Met Leu Ser Arg Arg Thr Leu Phe Thr Glu Asn His Leu			
420	425	430	
Gly Leu His Ser Gly Asn Phe Ser Arg Val Asn Leu Leu Ala Val Arg			
435	440	445	
Asp Val Ala Leu Tyr Pro Ser Tyr Gln			
450	455		

<210> 6047

<211> 773

<212> DNA

<213> Homo sapiens

<400> 6047
 ggatcctgac ccccgagctt gcgcgcctcg ggcgcctccat tcagtcccg gccgacagcg
 60
 ccaccgtgtg gccacagcgt ctccctagcgg cctccttacc taggggtcgg gtgagctcct
 120
 gatggaaat gggggatctc atcgcttgcgt agtagaggag actttgggg gaaagtatg
 180
 gaggatgggg caagggatcc ggtgtccaac tctgtgtgtc cctgcagtc ccgtagccca
 240
 300
 gcagggaga tgaccttctg gcccctaagc aggccgaagg caggtggccg ccgccccgg
 360
 aatggtgcaa acagctcttc tccagttgtgg tcccccgtgtc gctgggggac ccagaggagg
 420
 480
 agccgggtgg gcggcagtc ctggacactca attgctttt gtccgacata tcggacactc
 540
 tcttacccat gactcagtcc gcgccttcgc ccctgcagct gcccctgag gatgcctacg
 600
 tcggcaatgc tgacatgatc cagccggacc tgacgccact gcagccaagc ctggatgact
 660
 tcatggacat ctcagatttc ttaccaact cccgcctccc acagccccc atgccttcaa
 720
 acttcccaga gcccccaac ttcagccccg tggttgactc cctcttcagc agtgggaccc
 780
 tggggccaga ggtgcccccg gtttcctcgg ccatgaccca cctctctgga cacagccgtc
 773
 tgcaggctcg gaacagctgc cctgccttc tgctgtcac taaaatgaatt gcg

<210> 6048
 <211> 129
 <212> PRT
 <213> Homo sapiens

<400> 6048
 Met Val Lys Arg Val Ser Glu Met Ser Asp Lys Lys Gln Leu Arg Ser
 1 5 10 15
 Arg Ser Cys Arg Pro Pro Gly Ser Ser Ser Gly Ser Pro Ser Ser Thr
 20 25 30
 Gly Thr Thr Leu Glu Lys Ser Cys Leu His His Cys Ser Gly Gly
 35 40 45
 His Leu Pro Ser Ala Cys Leu Gly Ala Arg Arg Ser Ser Leu Leu
 50 55 60
 Gly Tyr Gly Ser Cys Arg Asp Thr Gln Ser Trp Thr Pro Asp Pro Leu
 65 70 75 80
 Pro His Pro Pro Ser Leu Ser Pro Gln Ser Leu Leu Tyr Ser Gln Ala
 85 90 95
 Met Arg Ser Pro Ile Ser His Gln Glu Leu Thr Arg Pro Leu Gly Lys
 100 105 110
 Glu Ala Ala Arg Arg Cys Gly His Thr Val Ala Leu Ser Ala Arg
 115 120 125
 Asp

<210> 6049
<211> 479
<212> DNA
<213> Homo sapiens

<400> 6049
accggttttt cttcccccag tccctcagct gctgctgctg ctcaggaggt cagatctgcc
60
actgtatggta ataccagcac cactccgccc acctctgcc a agaagagaaa gttaaacagc
120
agcagcagta gcagcagtaa cagtagtaac gagagagaag actttgattc cacctttcc
180
tcctttcca tccttcctt acaaccagg gattcggcat ccccttcaac ctcgtccttc
240
tgcctggggg tttcagtggc tgcttccagc cacgtaccga tacagaagaa gctgcgttt
300
gaagacaccc tggagtttgtt agggtttgat gcgaagatgg ctgaggaatc ctcctcctcc
360
tcctcctcat cttcaccaac tgctgcaaca tctcaggagc agcaacttaa aaataagagt
420
atattaatct cttctgtggg ttcggtgcat catgcagacg ggctagccga atcttctac
479

<210> 6050
<211> 159
<212> PRT
<213> Homo sapiens

<400> 6050
Thr Gly Phe Ser Ser Pro Ser Pro Ser Ala Ala Ala Ala Ala Gln Glu
1 5 10 15
Val Arg Ser Ala Thr Asp Gly Asn Thr Ser Thr Thr Pro Pro Thr Ser
20 25 30
Ala Lys Lys Arg Lys Leu Asn Ser Ser Ser Ser Ser Ser Asn Ser
35 40 45
Ser Asn Glu Arg Glu Asp Phe Asp Ser Thr Ser Ser Ser Ser Ser Thr
50 55 60
Pro Pro Leu Gln Pro Arg Asp Ser Ala Ser Pro Ser Thr Ser Ser Phe
65 70 75 80
Cys Leu Gly Val Ser Val Ala Ala Ser Ser His Val Pro Ile Gln Lys
85 90 95
Lys Leu Arg Phe Glu Asp Thr Leu Glu Phe Val Gly Phe Asp Ala Lys
100 105 110
Met Ala Glu Glu Ser Ser Ser Ser Ser Ser Ser Pro Thr Ala
115 120 125
Ala Thr Ser Gln Glu Gln Gln Leu Lys Asn Lys Ser Ile Leu Ile Ser
130 135 140
Ser Val Gly Ser Val His His Ala Asp Gly Leu Ala Glu Ser Ser
145 150 155

<210> 6051
<211> 2404
<212> DNA
<213> Homo sapiens

<400> 6051
attnacaatg gaagtataa agaaatcg caagagaaag aaaggctgt ggatttaac
60 tttctccat cgggttatcc tgaaacagtt ctccagacag ggcataattt gtttccgaa
120 ttacagcagc gtcgatttaa tggctcagac ggaggggttt catggctcc tatggatgat
180 gaactcttg cacagccaca gttatgaaa ttattagatt cactccgaga gcaatatacc
240 cgctaccagg aagttttag gcaacgtac aagcgcacac agttagaaga gattcaacag
300 aaggtaatgc aggtggtaa ctggctagaa gggctggat cagaacaact aagagcccag
360 tggggcattg gagactccat tagggcctcc caggccctac agcagaaaca cgaagagatt
420 gagagccagc acagttaatg gtttgcagtg tatgtggAAC ttaatcagca aattgcagca
480 ctcttgaatg ctggcgatga ggaagatctt gtggactaa agtcactgca gcaacaactt
540 agtcatgttt ttatcgaca ggccagtcag ctggattta ggcaaaatct cttacaagca
600 gctctgaat ttcatggtgt tgcccaagat ttgtctcagc agttggatgg cttattaggg
660 atgttgtgcg tagatgtac accagctgtat ggacatcgat ttcagcaaactg
720 cttgaagaga agctgaaaag tggatgtg ggattgcaag gtttgcgtga aaaaggtcaa
780 ggtctctgg atcagatctc caatcaggca tccnntggc ctagggaaag gatgntaacc
840 attgaaaata aagaaaatgt ggaccacata caaggagtga tggagatata gcaatgtt
900 aaacaaaatgt gtgaagacat ggttagatgtg cgaaggtaa agatgctca gatggcag
960 ttgtttaat gtgaagaaga tgctgccaag gcagtagataat ggctaagtga acttctggat
1020 gctctgctta agactcacat cagattggc gatgtatgtc aagaaacgaa agtttgctg
1080 gaaaagcata gaaaatttgat tgatgtgca cagacactt atgactatgg caggcagtt
1140 ctacaggcca cagttgttt atgcaggatct ttgcgtgc cttctcggtc atctggat
1200 acacttcctc gactgaacag agtataaaaa caatttacaa tagcatctga agagagat
1260 catagattgg aatggctat tgcatttcac tcaaattgtg aaaagatttt gcaggactgt
1320 ccagaagagc ctgaagctat taatgtatgag gagcaatttg atgaaattga agcagttgg
1380 aaatcacttt tggatagatt aactgttcca gtatgttacat ctgatggAAC cgaacaatata
1440 tttggggatc caagtgcacat ggcttctact gcagaaaaaca tcagagacag gatgaaacta
1500 gttaatctca aaaggcagca gctgagacat cctgaaatgg tgaccacaga gagctaata
1560

ctaccagcta cctacagatt tgcaagtccat aatcccgcat gttgtcaaca tactacagca
 1620
 ttagccacca caccttaaga tgcatttcac agccaaaata agtctcattt ctttcatga
 1680
 cacatttctc ttacatgtt aacacttgc tactaccaag gcataattac ttaacatgct
 1740
 tcgaggctgt agattccaag tatcttaaaa gaaggaacta taaacattgc actgaaaact
 1800
 tgctttaaag ctttacactga cctgtcagtt tgtagacaaa caactgataa taagcttga
 1860
 atggtgctaa taagagttagg aattctctct attaaaaaaga aaaaaaaaaaag ttgccttcc
 1920
 tccacaggtg atttagtaaa tttagacagt agttaaactc ttgttagtag acagtggtgt
 1980
 cctcaaaatt ttactttgtt attcttcaga attgattatt ttattgtgt caatacagag
 2040
 aaagcccttc agatcttga tatatcatag tcattaaaag acctttcct atttgtattt
 2100
 ataatgtatt aaaagttgtt tgtgcttaat aaaagacttc tttaaacatc ttatthaatt
 2160
 tagtagttac atccttatttc caaacatgag tgccttattt aaaagggcat tcttaggact
 2220
 gtgaggatgg ttaatattt gtttttcat ggtggttgca tgtatTTtag acaggaaata
 2280
 catatgttaag catgtgtata taataaataa gcatgtttta tcatgaaaaaa ttattgtgaa
 2340
 caatttagat cttaagaac ttattaataa tggaaatacta tttctaattt ttctttttt
 2400
 caac
 2404

<210> 6052
 <211> 518
 <212> PRT
 <213> Homo sapiens

<400> 6052
 Ile Asn Asn Gly Ser Asp Lys Gly Asn Gln Gln Glu Lys Glu Arg Ser
 1 5 10 15
 Val Asp Leu Asn Phe Leu Pro Ser Val Asp Pro Glu Thr Val Leu Gln
 20 25 30
 Thr Gly His Glu Leu Leu Ser Glu Leu Gln Gln Arg Arg Phe Asn Gly
 35 40 45
 Ser Asp Gly Gly Val Ser Trp Ser Pro Met Asp Asp Glu Leu Leu Ala
 50 55 60
 Gln Pro Gln Val Met Lys Leu Leu Asp Ser Leu Arg Glu Gln Tyr Thr
 65 70 75 80
 Arg Tyr Gln Glu Val Cys Arg Gln Arg Ser Lys Arg Thr Gln Leu Glu
 85 90 95
 Glu Ile Gln Gln Lys Val Met Gln Val Val Asn Trp Leu Glu Gly Pro
 100 105 110
 Gly Ser Glu Gln Leu Arg Ala Gln Trp Gly Ile Gly Asp Ser Ile Arg
 115 120 125
 Ala Ser Gln Ala Leu Gln Gln Lys His Glu Glu Ile Glu Ser Gln His

130	135	140
Ser Glu Trp Phe Ala Val Tyr Val Glu Leu Asn Gln Gln Ile Ala Ala		
145	150	155
Leu Leu Asn Ala Gly Asp Glu Glu Asp Leu Val Glu Leu Lys Ser Leu		160
165	170	175
Gln Gln Gln Leu Ser Asp Val Cys Tyr Arg Gln Ala Ser Gln Leu Glu		
180	185	190
Phe Arg Gln Asn Leu Leu Gln Ala Ala Leu Glu Phe His Gly Val Ala		
195	200	205
Gln Asp Leu Ser Gln Gln Leu Asp Gly Leu Leu Gly Met Leu Cys Val		
210	215	220
Asp Val Ala Pro Ala Asp Gly Ala Ser Ile Gln Gln Thr Leu Lys Leu		
225	230	235
Leu Glu Glu Lys Leu Lys Ser Val Asp Val Gly Leu Gln Gly Leu Arg		240
245	250	255
Glu Lys Gly Gln Gly Leu Leu Asp Gln Ile Ser Asn Gln Ala Ser Xaa		
260	265	270
Gly Pro Met Glu Arg Met Xaa Thr Ile Glu Asn Lys Glu Asn Val Asp		
275	280	285
His Ile Gln Gly Val Met Glu Asp Met Gln Leu Arg Lys Gln Arg Cys		
290	295	300
Glu Asp Met Val Asp Val Arg Arg Leu Lys Met Leu Gln Met Val Gln		
305	310	315
Leu Phe Lys Cys Glu Glu Asp Ala Ala Lys Ala Val Glu Trp Leu Ser		320
325	330	335
Glu Leu Leu Asp Ala Leu Leu Lys Thr His Ile Arg Leu Gly Asp Asp		
340	345	350
Ala Gln Glu Thr Lys Val Leu Leu Glu Lys His Arg Lys Phe Val Asp		
355	360	365
Val Ala Gln Ser Thr Tyr Asp Tyr Gly Arg Gln Leu Leu Gln Ala Thr		
370	375	380
Val Val Leu Cys Gln Ser Leu Arg Cys Thr Ser Arg Ser Ser Gly Asp		
385	390	395
Thr Leu Pro Arg Leu Asn Arg Val Trp Lys Gln Phe Thr Ile Ala Ser		400
405	410	415
Glu Glu Arg Val His Arg Leu Glu Met Ala Ile Ala Phe His Ser Asn		
420	425	430
Ala Glu Lys Ile Leu Gln Asp Cys Pro Glu Glu Pro Glu Ala Ile Asn		
435	440	445
Asp Glu Glu Gln Phe Asp Glu Ile Glu Ala Val Gly Lys Ser Leu Leu		
450	455	460
Asp Arg Leu Thr Val Pro Val Val Tyr Pro Asp Gly Thr Glu Gln Tyr		
465	470	475
Phe Gly Ser Pro Ser Asp Met Ala Ser Thr Ala Glu Asn Ile Arg Asp		480
485	490	495
Arg Met Lys Leu Val Asn Leu Lys Arg Gln Gln Leu Arg His Pro Glu		
500	505	510
Met Val Thr Thr Glu Ser		
515		

<210> 6053

<211> 3257

<212> DNA

<213> Homo sapiens

<400> 6053
nngggccccc tgtcaggagg agacagcctc ccggccccggg gaggacaagt cgctgccacc
60 tttggctgcc gacgtgattc cctggacgg tccgttccct gccgtcagct gcccggccgag
120 ttgggtctcc gtggttcagg ccggccccc cttcctggtc tcccttctcc cgctggcccg
180 gtttatcggg aggagattgt cttccagggc tagcaattgg acttttgatg atgtttgacc
240 cagcggcagg aatagcaggc aacgtgattt caaagctggg ctcagccctt gtttcttc
300 tcgtgtaaatc gcaaaaaccca ttttgagca ggaattccaa tcatgtctgt gatgggtggtg
360 agaaaagaagg tgacacggaa atgggagaaa ctcccaggca ggaacacccctt ttgctgtgat
420 gggccgcgtca tcatggcccg gcaaaaaggc attttctacc tgacccttt cctcatcctg
480 gggacatgta cactttctt cgcctttagt tgccgctacc tggctgttca gctgtctcc
540 gccatccctg tatttgctgc catgctcttc ctttctcca tggctacact gttgaggacc
600 agcttcagtg accctggagt gattcctcgg gcgcgtaccag atgaagcagc tttcatagaa
660 atggagatag aagctaccaa tggtgccgtg ccccaaggcc agagaccacc gcctcgtatc
720 aagaatttcc agataaaacaa ccagattgtg aaactgaaat actgttacac atgcaagatc
780 ttccggccctc cccggggccctc ccattgcagc atctgtgaca actgtgtgga ggcgcgtatc
840 catcaactgcc cctgggtggg gaattgtgtt ggaaagagga actaccgcta cttctaccc
900 ttcatccctt ctctctccct cctcacaatc tatgtcttcg cttcaacat cgtctatgtg
960 gcccctaaat cttgaaaat tggcttcttg gagacattga aagaaaactcc tggactgtt
1020 ctagaagtcc tcatttgctt ctttacactc tggccgtcg tggactgac tggatttcat
1080 actttctcg tggctctcaa ccagacaacc aatgaagaca tcaaaggatc atggacaggg
1140 aagaatcgcg tccagaatcc ctacagccat ggcaatattt tgaagaactg ctgtgaagtg
1200 ctgtgtggcc ctttggccccc cagtgtgtcg gatcgaaggg gtatccgtcc actggagggaa
1260 atgccaatcgac gaccccccag tactcaagag accagtagca gcctcttgc acagagccca
1320 gcccccacag aacacctgaa ctcaaatttgc atgccggagg acagcagcac tcccaagag
1380 atgccacccctc cagagcccccc agagccacca caggaggcag ctgaagctga gaagtagcc
1440 atctatggaa gagacttttgc tttgtgttta attagggtca tgagagatcc caggtgagaa
1500 gttaaacctg agacagagag caagtaagct gtccctttta actgttttcc tttggcttt
1560

agtacacccag ttgcacactg gcattttctt gctgcaagct ttttaaatt tctgaactca
1620
aggcagtggc agaagatgtc agtcacctct gataactgga aaaatgggtc tcttgggccc
1680
tggcaactggt tctccatggc ctcagccaca gggccccctt ggaccccttc tcttccctcc
1740
agatcccagc cctccctgctt ggggtcaact gtctcattct ggggctaaaa gtttttgaga
1800
ctggctcaaa tcctcccaag ctgctgcacg tgctgagtcc agaggcagtc acagagacct
1860
ctggccaggg gatcctaact gggttttgg ggttttcagg actgaagagg agggagagtg
1920
gggtcagaag atttcctgg ccaccaagtg ccagcattgc ccacaaatcc ttttaggaat
1980
gggacaggta ccttccactt gttgtatTTA tttagttagc ttctccTTG tctccatcc
2040
actctgacac ctaagccccca ctctttccc attagatata tgtaagtagt tgttagtagag
2100
ataataattg acatttctcg tagactaccc agaaaactttt ttaataacctg tgccattctc
2160
aataagaatt tatgagatgc cagcggcata gcccttcaca ctctctgtct catctctct
2220
cctttctcat tagccccctt taatttggg ttcctttga ctctgtcc cattaggagc
2280
aggaatggca gtaataaaag tctgcactt ggtcatttct tttcctcaga ggaaggctga
2340
gtgctcactt aaacactatc ccctcagact ccctgtgtga ggcctgcaga ggcctgaat
2400
gcacaaatgg gaaaccaagg cacagagagg ctctccctc ctctccctc ccccgatgt
2460
ccctcaaaaa aaaaaaaaaat gctaaccagt tcttccatta agcctcggt gagtgaggga
2520
aagccagca ctgctgccct ctgggtAAC tcaccctaAG gcctggccc acctctggct
2580
atggtaacca cactgggggc ttccccaAG ccccgcttt ccagcacttc caccggcaga
2640
gtcccagagc cacttcaccc tgggggtggg ctgtggccc cagtcagctc tgctcaggac
2700
ctgctctatt tcagggaaAG agatttatgt attatatgtg gctatatttc cttagcacc
2760
tgtgtttcc tctttctaAG ccagggtcct gtctggatga cttatgcgggt gggggagtgt
2820
aaaccggAAC ttttcatcta tttgaaggcg attaaactgt gtctaATGCA aacttcctgc
2880
ctcctccctc ccccttccat ttcaagaATA tgTTTGTGTG taggggtgggg gtgggggttg
2940
gaagggggttg ctgttactc cccaaacttc cattaaccag ggcacccctt ggttggagag
3000
gtagttccaa actctccatt gatctataCT acattctggg ctgaaggTTT tcttattctg
3060
gactatgaag aaaggacttt caaggagata tagtgtgaAC aggatcagGA aggttagaggg
3120
attatattta cttaagagaa caagctctat attaggatAT tgTTTGAAG cagatggatg
3180

ccgttaattt ctaataagtc ttagttatta acgcaggctc atcagggccc ccccttgggg
 3240
 aaatatttga tcagtgg
 3257

<210> 6054
 <211> 382
 <212> PRT
 <213> Homo sapiens

<400> 6054
 Leu Phe Leu Leu Ser Cys Asn Arg Lys Thr His Phe Gly Ala Gly Ile
 1 5 10 15
 Pro Ile Met Ser Val Met Val Val Arg Lys Lys Val Thr Arg Lys Trp
 20 25 30
 Glu Lys Leu Pro Gly Arg Asn Thr Phe Cys Cys Asp Gly Arg Val Met
 35 40 45
 Met Ala Arg Gln Lys Gly Ile Phe Tyr Leu Thr Leu Phe Leu Ile Leu
 50 55 60
 Gly Thr Cys Thr Leu Phe Phe Ala Phe Glu Cys Arg Tyr Leu Ala Val
 65 70 75 80
 Gln Leu Ser Pro Ala Ile Pro Val Phe Ala Ala Met Leu Phe Leu Phe
 85 90 95
 Ser Met Ala Thr Leu Leu Arg Thr Ser Phe Ser Asp Pro Gly Val Ile
 100 105 110
 Pro Arg Ala Leu Pro Asp Glu Ala Ala Phe Ile Glu Met Glu Ile Glu
 115 120 125
 Ala Thr Asn Gly Ala Val Pro Gln Gly Gln Arg Pro Pro Pro Arg Ile
 130 135 140
 Lys Asn Phe Gln Ile Asn Asn Gln Ile Val Lys Leu Lys Tyr Cys Tyr
 145 150 155 160
 Thr Cys Lys Ile Phe Arg Pro Pro Arg Ala Ser His Cys Ser Ile Cys
 165 170 175
 Asp Asn Cys Val Glu Arg Phe Asp His His Cys Pro Trp Val Gly Asn
 180 185 190
 Cys Val Gly Lys Arg Asn Tyr Arg Tyr Phe Tyr Leu Phe Ile Leu Ser
 195 200 205
 Leu Ser Leu Leu Thr Ile Tyr Val Phe Ala Phe Asn Ile Val Tyr Val
 210 215 220
 Ala Leu Lys Ser Leu Lys Ile Gly Phe Leu Glu Thr Leu Lys Glu Thr
 225 230 235 240
 Pro Gly Thr Val Leu Glu Val Leu Ile Cys Phe Phe Thr Leu Trp Ser
 245 250 255
 Val Val Gly Leu Thr Gly Phe His Thr Phe Leu Val Ala Leu Asn Gln
 260 265 270
 Thr Thr Asn Glu Asp Ile Lys Gly Ser Trp Thr Gly Lys Asn Arg Val
 275 280 285
 Gln Asn Pro Tyr Ser His Gly Asn Ile Val Lys Asn Cys Cys Glu Val
 290 295 300
 Leu Cys Gly Pro Leu Pro Pro Ser Val Leu Asp Arg Arg Gly Ile Leu
 305 310 315 320
 Pro Leu Glu Glu Ser Gly Ser Arg Pro Pro Ser Thr Gln Glu Thr Ser
 325 330 335
 Ser Ser Leu Leu Pro Gln Ser Pro Ala Pro Thr Glu His Leu Asn Ser

340	345	350
Asn Glu Met Pro Glu Asp Ser Ser Thr Pro Glu Glu Met Pro Pro Pro		
355	360	365
Glu Pro Pro Glu Pro Pro Gln Glu Ala Ala Ala Glu Ala Glu Lys		
370	375	380

<210> 6055
<211> 2089
<212> DNA
<213> Homo sapiens

<400> 6055
nnngccgggg cgagcggagg cgagcaccgg gaaggggagc gtggggccgc tggaaatgggt
60
gaatttaagg cccatcgagt acgtttctt aattatgttc catcaggaat ccgcgtgtg
120
gcttacaata accagtcaaa cagattggct gttcacgaa cagatggcac tggaaatt
180
tataacttgt cagcaaacta ctttcaggag aaattttcc caggtcatga gtctcggct
240
acagaagctt tggctgggc agaaggacag cgactctta gtgcgtggct caatggcag
300
attatggagt atgatttaca ggcgttaaac atcaagtatg ctatggatgc ctttggagga
360
cctatttggc gcatggctgc cagccccagt ggctctcaac ttttggttgg ttgtgaagat
420
ggatctgtga aactatttca aattacccca gacaaaatcc agtttgaaag aaattttgt
480
cgccagaaaa gtcgcatttgc gaggctcagc tggcatccct ctggtaccca cattgcagct
540
gttccatag actacattag tggctttgtat gtcaaattcag gcagcgctgt tcataagatg
600
attgtggaca ggcgttatat gggcgtgtct aagcggaaatgt gcatcgtgtg ggggtgtcgcc
660
ttcttgcgg atggcactat cataagtgtg gactctgtg ggaagggtgca gttctgggac
720
tcagccactg ggacgcttgc gaaagccat ctcatcgcta atgctgacgt gcagtcatt
780
gctgttagctg accaagaaga cagttcgtg gtggcacag cgaggaaaca gtcttccatt
840
ttcagctggc ccctgtgaca tctaacagca gtgagaagca gtgggtgcgg aaaaaaccgt
900
tccagcatca cactcatgac gtgcgcactg tggcccacag cccaaacagcg ctgatatctg
960
gaggcactga cacccactta gtcttcgtc ctctcatgga gaaggtggaa gtaaagaatt
1020
acgtatccgc tctccgaaaa atcaccttgc cccaccgtatg tctcatctcc tggtctaaaa
1080
agaggcagct tctccttttc cagtttgcgtc atcacttaga actttggcga ctggatcca
1140
cagttgcaac aggcaagaat ggggatactc ttccactctc taaaaatgca gatcattac
1200
tgcacctaaa gacaaagggt cctgagaaca ttatctgttag ctgtatctcc ccatgtggaa
1260

gttggatagc ctattctaca gtttctcggt ttttctcta tcggctgaat tatgaacatg
 1320
 acaacataag cctcaaaaagg gttccaaaa tgccagcatt cttcgctct gcccttcaga
 1380
 ttttgtttc tgaagattca acaaagctct ttgttagcatc aaatcaagga gctctgcata
 1440
 ttgttcagct gtcaggagga agcttcaagc acctgcattc tttccagcct cagtcaggaa
 1500
 cagtggaggc catgtgtt ttggcagtca gtccagatgg gaattggcta gctgcattcag
 1560
 gtaccagtgc tggagtccat gtctacaacg taaaacagct aaagcttcac tgcacgggtgc
 1620
 ctgcttacaa tttcccagtg actgctatgg ctattgcccc caataccaac aaccttgtca
 1680
 tcgctcattc ggaccagcag gtatggagt acagcatccc agacaaacag tatacagatt
 1740
 ggagccggac tgtccagaag cagggcttc accaccttg gctccaaagg gatactccta
 1800
 tcacacacat cagtttcat cccaagagac cgatgcacat cttctccat gatgcctaca
 1860
 tggatgtcat cattgacaag tcattgcccc ttccaaatga caaaacctta ctctacaatc
 1920
 catttcctcc cacgaatgac atcattgctc agctcccacc acccattaaa aagaagaaat
 1980
 ttggAACCTA aaacaggcctt ctgtctgtgt cttcccttga actgtctacc ctgttgcttt
 2040
 tcacaaatca tggtataaaa acaagttatt cttgaaaaaaaaaaaaaaaaaaaa
 2089

<210> 6056
 <211> 285
 <212> PRT
 <213> Homo sapiens

<400> 6056
 Xaa Ala Gly Ala Glu Arg Gly Glu His Arg Glu Gly Glu Arg Gly Ala
 1 5 10 15
 Ala Gly Met Gly Glu Phe Lys Ala His Arg Val Arg Phe Phe Asn Tyr
 20 25 30
 Val Pro Ser Gly Ile Arg Cys Val Ala Tyr Asn Asn Gln Ser Asn Arg
 35 40 45
 Leu Ala Val Ser Arg Thr Asp Gly Thr Val Glu Ile Tyr Asn Leu Ser
 50 55 60
 Ala Asn Tyr Phe Gln Glu Lys Phe Phe Pro Gly His Glu Ser Arg Ala
 65 70 75 80
 Thr Glu Ala Leu Cys Trp Ala Glu Gly Gln Arg Leu Phe Ser Ala Gly
 85 90 95
 Leu Asn Gly Glu Ile Met Glu Tyr Asp Leu Gln Ala Leu Asn Ile Lys
 100 105 110
 Tyr Ala Met Asp Ala Phe Gly Gly Pro Ile Trp Ser Met Ala Ala Ser
 115 120 125
 Pro Ser Gly Ser Gln Leu Leu Val Gly Cys Glu Asp Gly Ser Val Lys
 130 135 140
 Leu Phe Gln Ile Thr Pro Asp Lys Ile Gln Phe Glu Arg Asn Phe Asp

145	150	155	160
Arg Gln Lys Ser Arg Ile Leu Ser Leu Ser Trp His Pro Ser Gly Thr			
165	170	175	
His Ile Ala Ala Gly Ser Ile Asp Tyr Ile Ser Val Phe Asp Val Lys			
180	185	190	
Ser Gly Ser Ala Val His Lys Met Ile Val Asp Arg Gln Tyr Met Gly			
195	200	205	
Val Ser Lys Arg Lys Cys Ile Val Trp Gly Val Ala Phe Leu Ser Asp			
210	215	220	
Gly Thr Ile Ile Ser Val Asp Ser Ala Gly Lys Val Gln Phe Trp Asp			
225	230	235	240
Ser Ala Thr Gly Thr Leu Val Lys Ser His Leu Ile Ala Asn Ala Asp			
245	250	255	
Val Gln Ser Ile Ala Val Ala Asp Gln Glu Asp Ser Phe Val Val Gly			
260	265	270	
Thr Ala Arg Glu Gln Ser Ser Ile Phe Ser Trp Ser Leu			
275	280	285	

<210> 6057

<211> 3924

<212> DNA

<213> Homo sapiens

<400> 6057

tgacataaac atcaagtatt tttgctctaa gattataatc tttacataag tttagaatata
60
tttaaacata agggggagct aaaagcaaat ggggtaaac aaaccagaaa aatcaaaata
120
caaataataca cagagccaaa atagtatttc cgtcagcagc aaaacagaaa caattccaaa
180
attaatgtgc aaatgaaaat aaagtagtta acagtcattc atttaataag cttgtgtatt
240
tgataatgaa aacgcttagc tttcctttc tgacctcgga aaagtaatca ccatctttag
300
taaggattta cttttaaaag tatgacttta acaagtgaat aaagcatgtt tagagtatgt
360
ttatgtttag aaacaataacc ttgaacacta cagaaaacaa caatattctg aaaacccagt
420
ttatccca tgcgtggac agatccagtc agtgtgatca ggtttctgc atgtgtata
480
atttatcaaa ataagtttc tcacaagact ctttccatc aactctgaaa accctgatct
540
gacaacatac cccaataaaag ctctggacaa gcaccccta aagcttggaa gaaaatgtgc
600
caagtccttt cctgtAACAT ttactgcact acaaattggct aaagagcaat ttatggttta
660
aaaggtaat agtacaacag gtgagttcag gaaattgttt tagtgcactt tgctccagtt
720
ttagccaaca tgctacattt tccttttgg tttttgtttt gttgttgg ttttttgggg
780
gaaggagagg gagaccgcac aaagtggact tgaggatttc cattgtacga aaaagatatg
840
actctgcaag caaaacagtg taagctgcct ttttcttaa gacctggaca ttttaagaca
900

gaaactttgc aaaacattac acaattttt attattaaat gagaaaaatct cattgttac
960 atcgtcacat tgctagtcag agaaatgtt cagtgtatgaa gaaagtcaat gttggaccaa
1020 cccaaagtccct cattcctaca acattcattt acaaagaat aatgttcaac acagcccaac
1080 aaaacattct tggtttctt catattgaag tcccccaaaa aatcctcttc taatggggta
1140 ttccactaca taaattatag ttcttcattt ttacaattca ccccaaactg tatgagagat
1200 gtatcacact aagatttcta aagctgttag gaaatccttc acacatcgac gtcatctgat
1260 gtatcaactgc tacttgtctc tgtgtcatca ttctcagttg tgggttgaa agtgcgttc
1320 ttccacggtc caaacttgaa gtcacagatc aagccatttt tcaaaataacc atttttctc
1380 agaccattct tctgttaactg ttcaactaata acttggaaatt ctctcatttc atcctcagg
1440 aagggagcac atgtttcatc atttcactg tcttcctgcc agcccatatc ctttaacaat
1500 ctgtgttctg cctcaagtga acttgaaaga acatcagttt gtgggaaggt tgaagaccga
1560 atgatctgct gggaaatcac tgaggcattt ccattcttcat gaggaaattt attttcatcg
1620 aagttcgggt ttatatccct ttcttggta gtactattgc tgttatgtaa attaaatgag
1680 tcgtcatcct tctctgagcc agcacggctt tcattttcat gttcctcttc tactctgtct
1740 ctttcaatg ctttcaaaaaa ttcaactcttc ttatcagtgc gcattcgtgt cagttgggt
1800 agacgaggct gotgattaag tttgtcaaca ggagaagagg aattttagcg attacactct
1860 ttcaactgaat ttgttagatgg actaaagttt ttggcagttt atttaaaagc attaaatgtt
1920 ccaacgccaat atgtggactc atgaggaaaa gaagttccaa ctttattttc ttttgggg
1980 cttttccatt gtgttaggttt tggtaggttgc gcagcagggtt tagggactaa acctttataa
2040 acacttggac cagttccatt cttaactggc tggacggaa gatttcctac tactggaaat
2100 ccagatagct gtaagtctt tggattacct ttcttaatga ccagcatctt tggagctcta
2160 gatttaggat tcggaggata ttctaaagaga ggagcttggg agatttttt ggttgggtat
2220 gtgtgtgtct gggcgtgttag gccccacaca cctgcagctt aagacttattt gtgattttgg
2280 tctctctcat actcaggatt taaagacgga aaatcctcag cttcaaaactg tttgcgttct
2340 ctcttgcattt ctttccccc ggtttcatttgc tggatgttgc tggatgttgc
2400 cttttcctg catggaaaat actgctacga gaacgggaac ttccaccatg gtatccac
2460 cgatgatcta tggggatgttgc accattttttt ccatgtgtac gccatccattt ttttctt
2520

cttccaaagt tacctccatt aggacgtcca atagcagaat caaagccatc tgaagagttg
2580
tgtcgac ggttcacatc ataacgattc tctgtccatg caaagtttc agaatgcttc
2640
tcaaattca atgacgattt caaactgctg gtcaggacct ttgttgatga tggtggagta
2700
ggaaattaa gccaggctgg agcaaagtca tgctgcgcca ttttaggtcca gtctctccaa
2760
ctcagtgaaa caaggcttca acacccatg gcaagtcccc taatagtact tacaaattcc
2820
aacaggactg cacaggaagg tgttggttt ttctctgtaa tctttatttt ccagtttgta
2880
tttttatttt gtatcctctg aaataatatac gaagttcttt gaagataactt aacctacgac
2940
tatttgacat agagttactt caagtcagct acccataactt ctgtttaaa gttttcatat
3000
ggctatctcc cgaatttagcc aagttctta gatttaagat caaagtcttc tttattattc
3060
catgtacttg ccactgttgt acttgtccac tccagatgaa atatccaatt tacgagccaa
3120
aaagcaaaaa caaaaagaaa atttcacatc tgaagagcat tccctaaacat cagcatatac
3180
agagacacac atagctatct caataactacc atgctgccgg aaaactgcaa catcttaaat
3240
ttccacgtaa ataaaagata aaaggaaaaa aactctgtat tctttcaatc tcttcattca
3300
aaaaaagtgt cccattgtga catgaaagag ctgaaagtcaa aaattcctaa aactttcaat
3360
aaaggtaaaa ataaaactgcc atgaaacttc agcaataactc agtcatttga aactgctgaa
3420
actactcagt acacaaatca acgtctctca gttcggctg aagaacccca acaacggggt
3480
gggggaaggg gaggcaaaaa ttaccaccag ctgaaatact gtaaccagtt atataatccg
3540
tttgaaccaa aatactgaag aaatgctgcc tgggtctctt ttaagttagc ttgctgaatt
3600
gttcaactact atcaattcac ttcacagacg attcttgcca attttaataa acttctgggg
3660
caaaattatc caaaaacact gtaaatccaa aatggccact taaaatatcc agggcctttt
3720
acacaaaacc tagatgatga tcttcataatc tgagtaattc aatcaccttc tgccccacca
3780
gagggtcccc tggcctgggg gtgccgcccgc gcctgatccc gggagaaggt tttcggtact
3840
ttgaataatc ccctttgcc gctttccct cccccacaac cagtctcagt cccaaaatgg
3900
cgccgacccg atccgcaatg ttct
3924

<210> 6058
<211> 500
<212> PRT
<213> Homo sapiens

<400> 6058

Met Ala Gln His Asp Phe Ala Pro Ala Trp Leu Asn Phe Pro Thr Pro
 1 5 10 15
 Pro Ser Ser Thr Lys Val Leu Thr Ser Ser Leu Lys Ser Ser Leu Asn
 20 25 30
 Phe Glu Lys His Ser Glu Asn Phe Ala Trp Thr Glu Asn Arg Tyr Asp
 35 40 45
 Val Asn Arg Arg Arg His Asn Ser Ser Asp Gly Phe Asp Ser Ala Ile
 50 55 60
 Gly Arg Pro Asn Gly Gly Asn Phe Gly Arg Lys Glu Lys Asn Gly Trp
 65 70 75 80
 Arg Thr His Gly Arg Asn Gly Thr Glu Asn Ile Asn His Arg Gly Gly
 85 90 95
 Tyr His Gly Gly Ser Ser Arg Ser Arg Ser Ser Ile Phe His Ala Gly
 100 105 110
 Lys Ser Gln Gly Leu His Glu Asn Asn Ile Pro Asp Asn Glu Thr Gly
 115 120 125
 Arg Lys Glu Asp Lys Arg Glu Arg Lys Gln Phe Glu Ala Glu Asp Phe
 130 135 140
 Pro Ser Leu Asn Pro Glu Tyr Glu Arg Glu Pro Asn His Asn Lys Ser
 145 150 155 160
 Leu Ala Ala Gly Val Trp Gly Leu His Ala Gln Thr His Thr Tyr Pro
 165 170 175
 Thr Lys Lys Ile Ser Gln Ala Pro Leu Leu Glu Tyr Pro Pro Asn Pro
 180 185 190
 Lys Ser Arg Ala Pro Arg Met Leu Val Ile Lys Lys Gly Asn Thr Lys
 195 200 205
 Asp Leu Gln Leu Ser Gly Phe Pro Val Val Gly Asn Leu Pro Ser Gln
 210 215 220
 Pro Val Lys Asn Gly Thr Gly Pro Ser Val Tyr Lys Gly Leu Val Pro
 225 230 235 240
 Lys Pro Ala Ala Pro Pro Thr Lys Pro Thr Gln Trp Lys Ser Gln Thr
 245 250 255
 Lys Glu Asn Lys Val Gly Thr Ser Phe Pro His Glu Ser Thr Phe Gly
 260 265 270
 Val Gly Asn Phe Asn Ala Phe Lys Ser Thr Ala Lys Asn Phe Ser Pro
 275 280 285
 Ser Thr Asn Ser Val Lys Glu Cys Asn Arg Ser Asn Ser Ser Ser Pro
 290 295 300
 Val Asp Lys Leu Asn Gln Gln Pro Arg Leu Thr Lys Leu Thr Arg Met
 305 310 315 320
 Arg Thr Asp Lys Lys Ser Glu Phe Leu Lys Ala Leu Lys Arg Asp Arg
 325 330 335
 Val Glu Glu Glu His Glu Asp Glu Ser Arg Ala Gly Ser Glu Lys Asp
 340 345 350
 Asp Asp Ser Phe Asn Leu His Asn Ser Asn Ser Thr His Gln Glu Arg
 355 360 365
 Asp Ile Asn Arg Asn Phe Asp Glu Asn Glu Ile Pro Gln Glu Asn Gly
 370 375 380
 Asn Ala Ser Val Ile Ser Gln Gln Ile Ile Arg Ser Ser Thr Phe Pro
 385 390 395 400
 Gln Thr Asp Val Leu Ser Ser Ser Leu Glu Ala Glu His Arg Leu Leu
 405 410 415
 Lys Glu Met Gly Trp Gln Glu Asp Ser Glu Asn Asp Glu Thr Cys Ala

420 425 430
Pro Leu Thr Glu Asp Glu Met Arg Glu Phe Gln Val Ile Ser Glu Gln
435 440 445
Leu Gln Lys Asn Gly Leu Arg Lys Asn Gly Ile Leu Lys Asn Gly Leu
450 455 460
Ile Cys Asp Phe Lys Phe Gly Pro Trp Lys Asn Ser Thr Phe Lys Pro
465 470 475 480
Thr Thr Glu Asn Asp Asp Thr Glu Thr Ser Ser Ser Asp Thr Ser Asp
485 490 495
Asp Asp Asp Val
500

<210> 6059
<211> 1442
<212> DNA
<213> Homo sapiens

<400> 6059
aatgcattga gaactcacaa tttccatgt gttatgcata tttacatac tttatgtcat
60
ttaaatgtaa tgattttctt taaagtaatt taaacactac taaaaacaca ggaactactt
120
ttaagcttaa acataaccat attatacttt acaaggcctt tatccacttg actgtaaatt
180
gtatttgatg ctgagctatt cattaaattt aattcagctc cagtaagagt attcaataaa
240
caaacattga ttgccttcct atcttacatt ttttaggag tgcgaaataa gtgagtcac
300
atgaattggg aaaatgagag ctccccaaaa gagttatac tactggcctt ctcagatagg
360
gcttggctac aaatgccctt ttttgtggtc ctgttaatat catacacaat caccatattt
420
ggcaatgtgt ccatcatgat ggtgtgcatt ctggatccca aacttcatac tcccatgtat
480
ttctttctca ctaatctctc catcttagat ctctgctata ccacaactac agtccctcat
540
atgttggtaa atattggttg caacaaaaaag accatcagct atgctggctg tgtggccac
600
ctcatcatct tcctggccctt aggtgctaca gagtgtctcc ttctggctgt tatgtccttt
660
gacagatatg tggctgtttg cagacccttc cactatgttag tcatcatgaa ttattggttc
720
tgcctaagga tggcagcctt ctcattggctc attggttcg gcaactcagt gctgcagtct
780
tccttgactc ttaacatgcc acgctgtggt caccaggaag tggaccactt tttctgtgag
840
gtgcctgcac ttctcaagtt gtcattgtgt gacacaaagc ctattgaggc tgagctcttc
900
ttcttttagtg tactaattct tctaattcca gtgacattga tcctcatctc ctatggcttc
960
atagctcaag cagtattaaa aatcaggctca gcagaaggac ggcaaaaagc atttgggaca
1020
tgtgggtccc acatgattgt ggtgtccctc ttttatggaa cagccattta tatgtatctt
1080

caaccacctt catccacctc taaggactgg ggaaagatgg tttccctttt ctatggaatc
 1140
 atcacatcca tggtgaactc cctcatctac agccttagaa ataaagatat gaaggaggcc
 1200
 ttcaagaggc tgatgccaag aatcttttc tgtaagaaat aagaagtact ccattgtat
 1260
 gagaatcttc ttagtcttc cttatcttca atgatggtaa tgaccttga actcattttc
 1320
 ctatttcca ggctctggtg atttcaactaa attctgtcaa caatttagaaa atccttcctc
 1380
 tggtggctgg gcgcgggtgg tcacgcctgt aatcccagta ctttgtgggg gccaagggtgg
 1440
 gc
 1442

<210> 6060
 <211> 313
 <212> PRT
 <213> Homo sapiens

<400> 6060
 Met Asn Trp Glu Asn Glu Ser Ser Pro Lys Glu Phe Ile Leu Leu Gly
 1 5 10 15
 Phe Ser Asp Arg Ala Trp Leu Gln Met Pro Leu Phe Val Val Leu Leu
 20 25 30
 Ile Ser Tyr Thr Ile Thr Ile Phe Gly Asn Val Ser Ile Met Met Val
 35 40 45
 Cys Ile Leu Asp Pro Lys Leu His Thr Pro Met Tyr Phe Phe Leu Thr
 50 55 60
 Asn Leu Ser Ile Leu Asp Leu Cys Tyr Thr Thr Thr Val Pro His
 65 70 75 80
 Met Leu Val Asn Ile Gly Cys Asn Lys Lys Thr Ile Ser Tyr Ala Gly
 85 90 95
 Cys Val Ala His Leu Ile Ile Phe Leu Ala Leu Gly Ala Thr Glu Cys
 100 105 110
 Leu Leu Leu Ala Val Met Ser Phe Asp Arg Tyr Val Ala Val Cys Arg
 115 120 125
 Pro Leu His Tyr Val Val Ile Met Asn Tyr Trp Phe Cys Leu Arg Met
 130 135 140
 Ala Ala Phe Ser Trp Leu Ile Gly Phe Gly Asn Ser Val Leu Gln Ser
 145 150 155 160
 Ser Leu Thr Leu Asn Met Pro Arg Cys Gly His Gln Glu Val Asp His
 165 170 175
 Phe Phe Cys Glu Val Pro Ala Leu Leu Lys Leu Ser Cys Ala Asp Thr
 180 185 190
 Lys Pro Ile Glu Ala Glu Leu Phe Phe Ser Val Leu Ile Leu Leu
 195 200 205
 Ile Pro Val Thr Leu Ile Leu Ile Ser Tyr Gly Phe Ile Ala Gln Ala
 210 215 220
 Val Leu Lys Ile Arg Ser Ala Glu Gly Arg Gln Lys Ala Phe Gly Thr
 225 230 235 240
 Cys Gly Ser His Met Ile Val Val Ser Leu Phe Tyr Gly Thr Ala Ile
 245 250 255
 Tyr Met Tyr Leu Gln Pro Pro Ser Ser Thr Ser Lys Asp Trp Gly Lys

260	265	270
Met Val Ser Leu Phe Tyr Gly Ile Ile Thr Ser Met	Leu Asn Ser Leu	
275	280	285
Ile Tyr Ser Leu Arg Asn Lys Asp Met Lys Glu Ala	Phe Lys Arg Leu	
290	295	300
Met Pro Arg Ile Phe Phe Cys Lys Lys		
305	310	

<210> 6061
<211> 1582
<212> DNA
<213> Homo sapiens

<400> 6061
nggcaggccc gcgcggcgcc cggactttg ccatcgccgg ggcagtcgcg ggatgcgc
60
gggagccaca gcctgaggcc ctcaggtctc tgcaggtgtc gtggaggaac ctgcac
120
ccatcccttt ccccaatttg ccacttccag cagcttagc ccatgaggag gatgtgacc
180
ggactgagtc aggagccctc tggaagcatg gagactgtgg tgattgttgc cata
240
ggccacca tctttctggc ttgcgttgca gccttgggtc tggtttgcag gcagcg
300
tgccggccgc gagacctgct gcagcgctat gattctaagc ccattgtgga cctcatt
360
gccatggaga cccagtctga gcctctgag tttagaactgg acgatgtcgt tat
420
ccccacatttgcgaggcattct ggagaatgaa gactggatcg aagatgcctc ggg
480
tccccactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
540
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
600
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
660
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
720
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
780
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
840
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
900
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
960
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
1020
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
1080
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
1140
tgcactgca ttgcctatctt gaagatttgt cacactctga cagagaagct tg
1200

tcttaagaaaat caagagggtt cacattaaaa tttagaatttc tggcctctcgatcgatcggtca
 1260
 gaatgtgtgg caattctgat ctgcattttc agaagaggac aatcaattga aactaagttag
 1320
 gggtttcttc ttttggcaag acttgtactc tctcacctgg cctgtttcat ttatttgat
 1380
 tatctgcctg gtccctgagg cgtctggtc tctcctctcc cttgcaggaa tggggttgaa
 1440
 gctgaggaac tacaaagttg atgatttctt ttttatctt atgcctgcaa ttttacctag
 1500
 ctaccactag gtggatagta aatttatact tatgtttcaa aaaaaaatca tcaactttgt
 1560
 agttccctcag cttcagtcga cg
 1582

<210> 6062
<211> 226
<212> PRT
<213> Homo sapiens

<400> 6062
Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile Phe
 1 5 10 15
Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg Tyr Cys
 20 25 30
Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro Ile Val Asp
 35 40 45
Leu Ile Gly Ala Met Glu Thr Gln Ser Glu Pro Ser Glu Leu Glu Leu
 50 55 60
Asp Asp Val Val Ile Thr Asn Pro His Ile Glu Ala Ile Leu Glu Asn
 65 70 80
Glu Asp Trp Ile Glu Asp Ala Ser Gly Leu Met Ser His Cys Ile Ala
 85 90 95
Ile Leu Lys Ile Cys His Thr Leu Thr Glu Lys Leu Val Ala Met Thr
 100 105 110
Met Gly Ser Gly Ala Lys Met Lys Thr Ser Ala Ser Val Ser Asp Ile
 115 120 125
Ile Val Val Ala Lys Arg Ile Ser Pro Arg Val Asp Asp Val Val Lys
 130 135 140
Ser Met Tyr Pro Pro Leu Asp Pro Lys Leu Leu Asp Ala Arg Thr Thr
 145 150 155 160
Ala Leu Leu Leu Ser Val Ser His Leu Val Leu Val Thr Arg Asn Ala
 165 170 175
Cys His Leu Thr Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser Ala
 180 185 190
Ala Glu Glu His Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser Glu
 195 200 205
Pro Asp Lys Gly Leu Pro Gly Pro Glu Gly Phe Leu Gln Glu Gln Ser
 210 215 220
Ala Ile
 225

<210> 6063
<211> 2286

<212> DNA

<213> Homo sapiens

<400> 6063

nnacgcgtga agggtgccggg gtgcagttgc ggctccaggg ccatggcgga ggagcagggc
60
cggAACGGG actcggttcc caagccgtcg gtgcgttcc tccacccaga cctgggcgtg
120
ggcggcgctg agcggctggt gttggacgca gcgcgtggcgc tgcaggcgcg cgggtgttagc
180
gtgaagatct ggacagcgca ctacgaccccg ggcactgtt tcgcccagag ccgcgagcta
240
ccgggtgcgt gtgccgggaa ctggctgccg cgaggcctgg gctggggcgg ccgcggcgcc
300
gcgcgtctgcg cctacgtgcg catggtttc ctggcgctct acgtgctgtt cctcgccgac
360
gaggagttcg acgtggtagt gtgcgaccag gtgtctgcct gtatcccagt gttcaggctg
420
gctagacggc ggaagaagat cctattttac tgtcaattcc cagatctgt ttcaccaag
480
agagattctt ttcttaaacg actatacagg gccccattt gactggataga ggaatacacc
540
acaggcatgg cagactgcat ctttgtcaac agccagttca cagctgctgt ttttaaggaa
600
acattcaagt ccctgtctca catagaccct gatgtctct atccatctct aaatgtcacc
660
agctttgact cagttgttcc tgaannaagc tggatgacct agtccccaaag gggaaaaaaa
720
ttcctgtgc tctccatcaa cagatacgaa aggaagaaaa atctgacttt ggcactggaa
780
gccttagtac agctgcgtgg aagattgaca tcccaagatt gggagagagt tcatctgatc
840
gtggcaggtg gttatgacga gagagtcctg gagaatgtgg aacattatca ggaattgaag
900
aaaatggtcc aacagtccga cttggccag tatgtgacct ttttgaggc tttctcagac
960
aaacagaaaa tctccctctt ccacagctgc acgtgtgtgc tttacacacc aagcaatgag
1020
cactttggca ttgtccctctt ggaagccatg tacatgcagt gcccagtc tgcgttaat
1080
tcgggtggac cttggagtc cattgaccac agtgcacag gtttctgtg tgaggctgac
1140
ccgggtgcact tctcagaagc aatagaaaaag ttcatccgtg aaccttcctt aaaagccacc
1200
atgggcctgg ctggaagagc cagagtgaag gaaaaatttt cccctgaagc attacagaa
1260
cagctctacc gatatgttac caaactgctg gtataatcag attgtttta agatctccat
1320
taatgtcatt tttatggatt gtagaccag ttttggaaacc aaaaaagaaa cctagaatct
1380
aatgcagaag agatctttta aaaaataaac ttgagtcttg aatgtgagcc actttcctat
1440
ataccacacc tccctgtcca ctttcagaa aaaccatgtc ttttatgcta taatcattcc
1500

aaatttgcc agtgttaagt tacaaatgtg gtgtcattcc atgttcagca gagtatttt
 1560
 attatatttt ctcgggatta ttgctttct gtctataaat tttgaatgat actgtgcctt
 1620
 aattggttt catagttaa gtgtgtatca ttatcaaagt tgattaattt ggcttcata
 1680
 tataatgaga gcagggctat ttagttccc agattcaatc caccgaagtg ttcactgtca
 1740
 tctgttaggg aattttgtt tgcctgtct ttgcctggat ccatacgag agtgcctgt
 1800
 attttttttta agataatttg tattttgca cactgagata taataaaagg tgtttatcat
 1860
 aaaaaagaaa cagtattaga ttttggtctc cataatctat tttggtattt ttacgaacat
 1920
 ggatatgaca accaaactgg aaatcagaac actaggtaa agtggatatt gaaatgaagc
 1980
 aagaatatttgc acacacatgt gttgtgcattt ttgttttaggg tatatttctt aatgtcatct
 2040
 aggtcattag ttttgttaat atttgtgttg tcttgaccaa gctcctacta agtataaggac
 2100
 acaaatgttt ttatcttcc aaggcctggc tcaaatgcca ctgctgcaaa gcttttttg
 2160
 accctctggc cacctcccaa gccagaagtt atttcccccc tccatgtact ctgcctttt
 2220
 catgacactg gatatttcg tgacactgac ttatagttca ctgtttaccc ggttggtcta
 2280
 acagca
 2286

<210> 6064
 <211> 233
 <212> PRT
 <213> Homo sapiens

<400> 6064
 Xaa Arg Val Lys Gly Ala Gly Cys Ser Cys Gly Ser Arg Ala Met Ala
 1 5 10 15
 Glu Glu Gln Gly Arg Glu Arg Asp Ser Val Pro Lys Pro Ser Val Leu
 20 25 30
 Phe Leu His Pro Asp Leu Gly Val Gly Gly Ala Glu Arg Leu Val Leu
 35 40 45
 Asp Ala Ala Leu Ala Leu Gln Ala Arg Gly Cys Ser Val Lys Ile Trp
 50 55 60
 Thr Ala His Tyr Asp Pro Gly His Cys Phe Ala Glu Ser Arg Glu Leu
 65 70 75 80
 Pro Val Arg Cys Ala Gly Asp Trp Leu Pro Arg Gly Leu Gly Trp Gly
 85 90 95
 Gly Arg Gly Ala Ala Val Cys Ala Tyr Val Arg Met Val Phe Leu Ala
 100 105 110
 Leu Tyr Val Leu Phe Leu Ala Asp Glu Glu Phe Asp Val Val Val Cys
 115 120 125
 Asp Gln Val Ser Ala Cys Ile Pro Val Phe Arg Leu Ala Arg Arg Arg
 130 135 140
 Lys Lys Ile Leu Phe Tyr Cys His Phe Pro Asp Leu Leu Thr Lys

145 150 155 160
Arg Asp Ser Phe Leu Lys Arg Leu Tyr Arg Ala Pro Ile Asp Trp Ile
165 170 175
Glu Glu Tyr Thr Thr Gly Met Ala Asp Cys Ile Leu Val Asn Ser Gln
180 185 190
Phe Thr Ala Ala Val Phe Lys Glu Thr Phe Lys Ser Leu Ser His Ile
195 200 205
Asp Pro Asp Val Leu Tyr Pro Ser Leu Asn Val Thr Ser Phe Asp Ser
210 215 220
Val Val Pro Glu Xaa Ser Trp Met Thr
225 230

<210> 6065
<211> 2084
<212> DNA
<213> Homo sapiens

<400> 6065
tgatcattta aatacatatg gatagtgata gaaatctgtg tgtgtgtttt ttaaggtatt
60
gccatcagag agtcagcaaa ggtagttgac caagctcaaa ggagagtgtt gaggggagtt
120
gatgaccttg actttttcat aggagatgaa gccatcgata aacctacata tgctacaaaag
180
tggccgattc gacatggaat cattgaagac tggatctta tggaaagggtt catggagcaa
240
gtgggtttta aatatcttcg agctgaacct gaggaccatt attttttaat gggtaacta
300
tctcccccct gctgtaatca gtggccacca gaacctcccc ctccaacccc cgaaaacaga
360
gagtatcttg cagaaattat gttgaaatca tttaacgtac caggactcta cattgcagtt
420
caggcagtgc tggccttggc ggcattttgg acatctcgac aagtgggtga acgtacgtta
480
acggggatag tcattgacag cggagatgga gtcacccatg ttatcccagt ggcagaaggt
540
tatgtaattg gaagctgcat caaacacatc ccgattgcag gtagagatat tacgtatttc
600
attcaacagc tgctaaggaa atactgttac atttgcggcc atatagtcaa ggaatttgcc
660
gaaaaagcca ttaaggagaa atactgttac atttgcggcc atatagtcaa ggaatttgcc
720
aagtatgatg tggatccccg gaagtggatc aaacagtaca cgggtatcaa tgcgatcaac
780
cagaagaagt ttgttataga cgttgggtac gaaagattcc tgggacctga aatattctt
840
cacccggagt ttgccaaccc agactttatg gagtccatct cagatgttgt tcatgaaatgt
900
atacagaact gccccatcga tgtgcggcgc ccgctgtata agaatgtcgt actctcaggaa
960
ggctccacca tgttcaggaa ttccggacgc cgactgcaga gggatttcaa gagagtgggt
1020
gatgcttaggc tgaggctcag cgaggagctc agcggcggga ggtcaagcc gaaggctgtg
1080

gaggtccagg tggcacgca tcacatgcag cgctacgccc tgggttcgg aggctccatg
 1140
 ctggcctcga ctccccagtt ctttcaggc tgccacacca agaaggacta tgaagagtac
 1200
 gggcccgca tctgccgcca caaccccgcc tttggagtca tgtccttagtgc tctgcctgaa
 1260
 cgcgtcggtc gatgggtgtca cggtggggaa caagtgtcct tcagaaccca gagaaggccg
 1320
 ccgttctgtta aatagcgacg tcgggtgtgc tgcccagcag cgtgttgca ttgcccgtgc
 1380
 atgaggcgcg gcgcgggccc ttcaaaaaa gccatttac cgtgtgccga ccgcgtgtcg
 1440
 ccagcctcct ccttctcccg ccctcctcac cctcgctc cctcctcctc ctcctccgag
 1500
 ctgctagctg acaaatacaa ttctgaagga atccaaatgt gactttgaaa attgttagag
 1560
 aaaacaacat tagaaaaatgg cgcaaaatcg ttaggtccca ggagagaatg tggggcgca
 1620
 aacccttttc ctccccagcct atttttgtaa ataaaatgtt taaacttggaa atacaaatcg
 1680
 atgttttatat ttccatatcat tttgtatattt atgttatttgc gtacaactgg ctgatactaa
 1740
 gcacgaatag atattgtatgt tatggagtgc tgtaatccaa agtttttaat tgtgaggcat
 1800
 gttctgatat gtttataaggc aaacaaataa aacagcaaac ttttttgcgc catgtttgc
 1860
 agaaaaatgtatatactttat tggagtgaca tgaagtttgc acactaaaca gtaatgtatg
 1920
 agaattacta cagatacatg tatcttttag tttttttgt ttgaactttc tggagctgtt
 1980
 ttatagaaga tgatggtttgc ttgtcgggtga gtgttggatg aaatacttcc ttgcaccatt
 2040
 gtaaaaaaag ctgttagaat atttgtaaat atcaaaaaaaaaa aaaa
 2084

<210> 6066
 <211> 80
 <212> PRT
 <213> Homo sapiens

<400> 6066
 Gly Ile Ala Ile Arg Glu Ser Ala Lys Val Val Asp Gln Ala Gln Arg
 1 5 10 15
 Arg Val Leu Arg Gly Val Asp Asp Leu Asp Phe Phe Ile Gly Asp Glu
 20 25 30
 Ala Ile Asp Lys Pro Thr Tyr Ala Thr Lys Trp Pro Ile Arg His Gly
 35 40 45
 Ile Ile Glu Asp Trp Asp Leu Met Glu Arg Phe Met Glu Gln Val Val
 50 55 60
 Phe Lys Tyr Leu Arg Ala Glu Pro Glu Asp His Tyr Phe Leu Met Gly
 65 70 75 80

<210> 6067
 <211> 406

<212> DNA
 <213> Homo sapiens

<400> 6067
 aggccctggca aggtcctcat cttcccacc acattgcacc ggtgcctttt ctgtggagtc
 60
 tccctgagct gactgcaccc ctcttcctgg gtagcggtgg cctccccaca gcactgtgtg
 120
 aatatgtgg gcatggggcg gctcgggccca ctgctccctg gccaaacgga agccctggag
 180
 ggcatggcca gtgcctggga catgcagggg gctcactgga acgactagcg gtcctcatcc
 240
 tcctagaact tacattccca gagagaaaaga gactcctggg aattataaga gtggagaaag
 300
 gactataata atcgcaacag ctaacactct tccagctaac actgcatgct gggcaactgtc
 360
 ccgagtacat gaccaccctc acaatactcc tgcagagcgc acgcgt
 406

<210> 6068
 <211> 117
 <212> PRT
 <213> Homo sapiens

<400> 6068
 Met Tyr Ser Gly Gln Cys Pro Ala Cys Ser Val Ser Trp Lys Ser Val
 1 5 10 15
 Ser Cys Cys Asp Tyr Tyr Ser Pro Phe Ser Thr Leu Ile Ile Pro Arg
 20 25 30
 Ser Leu Phe Leu Ser Gly Asn Val Ser Ser Arg Arg Met Arg Thr Ala
 35 40 45
 Ser Arg Ser Ser Glu Pro Pro Ala Cys Pro Arg His Trp Pro Cys Pro
 50 55 60
 Pro Gly Leu Pro Phe Gly Gln Gly Ala Val Ala Arg Ala Ala Pro Cys
 65 70 75 80
 Pro Ala Tyr Ser His Ser Ala Val Gly Arg Pro Pro Leu Pro Arg Lys
 85 90 95
 Arg Gly Ala Val Ser Ser Gly Arg Leu His Arg Arg Gly Thr Gly Ala
 100 105 110
 Met Trp Trp Glu Gly
 115

<210> 6069
 <211> 456
 <212> DNA
 <213> Homo sapiens

<400> 6069
 nggaaaggcc taaaaaatgt catttttacc aactgtgtaa aggatgaaaa tgtcaagcag
 60
 atcatcccgaa tggtcaactga actgattggg agaagccacc gctaccacccg aaaagagaac
 120
 ctggagtgact gtatcatggt cattggggtc cccaaacgtgg gcaagtcctc cctcatcaac
 180

tccctccgga ggcagcacct caggaaaggg aaagccacca gggtggttgg cgagcctggg
 240
 atcaccagag ctgtatgtc caaaattcag gtggagtctt cagggccag gcccagcact
 300
 ctgtcaagag ctctgcaggc gtctggcacc tgccgaccc tttgtggctt ccggctgctg
 360
 accacgcttc cctccctcc actcagtgtc cccgctgagc acccccgggg caggcactgc
 420
 cctgccctta ttccacagtc gtcatagtct ttgcgc
 456

<210> 6070
 <211> 148
 <212> PRT
 <213> Homo sapiens

<400> 6070
 Xaa Glu Gly Leu Lys Asn Val Ile Phe Thr Asn Cys Val Lys Asp Glu
 1 5 10 15
 Asn Val Lys Gln Ile Ile Pro Met Val Thr Glu Leu Ile Gly Arg Ser
 20 25 30
 His Arg Tyr His Arg Lys Glu Asn Leu Glu Tyr Cys Ile Met Val Ile
 35 40 45
 Gly Val Pro Asn Val Gly Lys Ser Ser Leu Ile Asn Ser Leu Arg Arg
 50 55 60
 Gln His Leu Arg Lys Gly Lys Ala Thr Arg Val Gly Glu Pro Gly
 65 70 75 80
 Ile Thr Arg Ala Val Met Ser Lys Ile Gln Val Glu Ser Ser Gly Ala
 85 90 95
 Arg Pro Ser Thr Leu Ser Arg Ala Leu Gln Ala Ser Gly Thr Cys Arg
 100 105 110
 Pro Leu Cys Gly Phe Arg Leu Leu Thr Thr Leu Pro Ser Pro Pro Leu
 115 120 125
 Ser Val Pro Ala Glu His Pro Arg Gly Arg His Cys Pro Ala Leu Ile
 130 135 140
 Pro Gln Ser Ser
 145

<210> 6071
 <211> 2633
 <212> DNA
 <213> Homo sapiens

<400> 6071
 nctgaggcggttggcatggc ggagaaggat gacacccggat tttgacgaag aggtggtttt
 60
 tgagaattctt ccactttacc aatacttaca ggatctggga cacacagact ttgaaatatg
 120
 ttcttccttg tcacaaaaaa cagaaaaatg cacaacagag ggacaacaaa agcctcctac
 180
 aagagtcccta cccaaatacc tggatatacg taatcactca atgaatataa actgcactta
 240
 ctggcatgct caaggaatgg gctattaagc aaggtatcct gttaaaatgt gctgaaacca
 300

tcaaaaagttg gatTTTTTT tctcagtgcA ataagaaAGA tgacttACTT cacaaggTTG
360
atattggatt ccgactcgac tcattacata ccattcTGCA acaggaAGTC ctgttacaAG
420
aggatgtGGA gctgattGAG ctacttgATC ccAGTATCCT gtctgcAGGG caatctcaAC
480
aacaggaaaa tggacacCTT ccaacACTT gctccCTGGC aACCCCTAAT atttgggATC
540
tctcaatgCT atttgcCTTC attagCTTGC tcgttatGCT tcccacttGG tggattGTgt
600
cttcCTGGCT ggtatGGGGa gtgattCTAT ttgtgtatCT ggtcataAGA gctttgAGat
660
tatggaggAC agccAAactA caagtGACCC taAAAAAAATA cAGCGTTcat ttGGAAGATA
720
tggccacAAA cAGCCGAGCT tttaCTAACc tcgtgAGAAA agctttACGT ctcattcaAG
780
aaaccGAAGT gatTTCCAGA ggatttACAC tggTCAGTGC tgcttGCCA tttaATAAAG
840
ctggacAGCA tccaAGTCAG catctCATCG gtcttcGGAA agctgtCTAC cgaACTCTAA
900
gagccAACTT ccaAGCAGCA aggCTAGCTA ccCTATATAT gctgAAAAAC tacCCCCTGA
960
actCTGAGAG tgacaATGTA accaACTACA tctgtgtGGT gcctttAAA gagctGGGCC
1020
ttggacttag tgaAGAGCAG atttCAGAAG aggaAGCACA taactttACA gatggCTTC
1080
gcctgcCTGC attgaAGGTT ttgttCCAAc tctgggtGGC acagAGTTCA gagttttCA
1140
gacggTTAGC CCTATTACTT tctacAGCCA attCACCTCC tggggCCCTTA CTTACTCCAG
1200
cacttctGCC tcatCGTATC ttatCTGATG tgactcaAGG tctacCTCAT gctcattCTG
1260
cctgttGGA agagCTTAAG cgcAGCTATG agttCTATCG gtactttGAA actcAGCACC
1320
agtcAGTACc gcAGTGTtTA tccAAAactC aacAGAAGTC aAGAGAactG aataatGtC
1380
acacAGCAGT gcgtAGCTT cagCTCCATC tgaAAAGCATT actGAATGAG gtaATAATTc
1440
ttgaAGATGA acttGAAAAG cttgtttGTA ctaaAGAAAC acaAGAACTA gtgtcAGAGG
1500
cttATCCAT CCTAGAAACAG AAATTAAGT tgattcAGCC ccacGTTCAA gcaAGCAACA
1560
attGCTGGGA agaggCCATT tctcAGGTGCG acAAACTGCT acGAAGAAAT acAGATAAAA
1620
aaggCAAGCC tgaAAATAGCA tGTGAAAACC cacATTGTAC agTAGTACCT ttGAAGCAGC
1680
ctactCTACA cattGcAGAC aaAGATCCAA tccCAGAGGA GcAGGAATTa gaAGCTTATG
1740
tagatGATAT agatATTGAT agtGATTCA gaaAGGATGA ttttTATTAC ttgtCTCAAG
1800
aAGACAAAGA gagacAGAAG cgtGAGCATG aagaATCCAA gaggGTGCTC caAGAATTAA
1860
aatCTGTGCT gggatttAAA gcttcAGAGG cAGAAAGGCA gaAGTGGAAAG caACTTCTAT
1920

ttagtgatca tggtaagcac tgactttaaa gtaacagggtt atttcaatgt aggggattct
 1980
 ttcttcttg aaccatgaat gttattttag ctgaagaatt cttggggttt tataagggtc
 2040
 caccagtatg catagtactt tttcttcttag atgctaaatc aatttgatta ataaaagagt
 2100
 aggaatgtaa tcacattgga aatatgaagt catactttt tatgagttat ttaattttt
 2160
 agtaaatttg ttttagaatg ggcagtgagt tgaataattt gggatattt aaatgttatt
 2220
 ttcaaattta gtgaatttga gattctcaac tctgttgtcc atatgttaaa atattnaaaa
 2280
 atacctcagt gaagcacaaa attaataact gtgctcacat tgaaaaaaaaat ggcccaggcg
 2340
 cggcggcaca tgcttgtaat atcagcacgt tgggaagctg aggccgggtgg atcatttgag
 2400
 gtcaggagtt caagaccagc ctggccaaca tggcgaaacc ccatctctac taaaaataca
 2460
 aaaattaaca aggcattgtg gcgcgtgcct gtagtcccag ctactcgaga ggctgaggca
 2520
 ggagaatcac ttgaacccgg gaggcggagg tttcagtgag ccaagatcac gccactgcac
 2580
 tccagctgg gcaacagang ggagactcca tctcaaaaaa aaaaaaaaaaaa aaa
 2633

<210> 6072
 <211> 76
 <212> PRT
 <213> Homo sapiens

<400> 6072
 Met Ala Gln Ala Arg Arg His Met Leu Val Ile Ser Ala Arg Trp Glu
 1 5 10 15
 Ala Glu Ala Gly Gly Ser Phe Glu Val Arg Ser Ser Arg Pro Ala Trp
 20 25 30
 Pro Thr Trp Arg Asn Pro Ile Ser Thr Lys Asn Thr Lys Ile Asn Lys
 35 40 45
 Ala Trp Trp Arg Val Pro Val Val Pro Ala Thr Arg Glu Ala Glu Ala
 50 55 60
 Gly Glu Ser Leu Glu Pro Gly Arg Arg Arg Phe Gln
 65 70 75

<210> 6073
 <211> 387
 <212> DNA
 <213> Homo sapiens

<400> 6073
 ntgtcactta agttgccacc tctgcataag agctctctga tcagaaagca gtttctttgt
 60
 tgaccccagc cagccttggc tctcggttg ggaaatacag tcacggtatac catggagacc
 120
 tcttgaggtg gagacggcg ttaaacccctt ctcaggcagt ctgaggtggc cagagtctga
 180

agcaaggcgc ctctatggag cgaggggagc aggtgggccc agcctgagcg gggcctctgc
240
acagccagct ttccccaca cctgtctcca gccagggcac ccacaggccc tttctctccc
300
aggatgaagc ctgctggag cgtaatgac atggccctgg atgccttcga cttggaccgg
360
atgaaggcagg agatcctaga ggaggtg
387

<210> 6074
<211> 69
<212> PRT
<213> Homo sapiens

<400> 6074
Ser Lys Gln Pro Leu Trp Ser Glu Gly Ser Arg Trp Ala Gln Pro Glu
1 5 10 15
Arg Gly Leu Cys Thr Ala Ser Phe Pro Pro His Leu Ser Pro Ala Arg
20 25 30
Ala Pro Thr Gly Pro Phe Ser Pro Arg Met Lys Pro Ala Gly Ser Val
35 40 45
Asn Asp Met Ala Leu Asp Ala Phe Asp Leu Asp Arg Met Lys Gln Glu
50 55 60
Ile Leu Glu Glu Val
65

<210> 6075
<211> 4668
<212> DNA
<213> Homo sapiens

<400> 6075
nncttaggacg cctcgctgag gctggcgggc tgctcaactgc tccggcctgg ctcacacctta
60
gacggcaaga tgagtgagcc ataaaacttct atccaattaa agtcactgtc tttttgaagt
120
ctcattacag catctggctg tactctaaca tatacaaata tgtttctgg tcaacatctc
180
ctgtgcacgg agaaaagcaca ggcatgtttc tcacaagtca caaaactacta agttaaaatc
240
cttaacttctt gggaatgttt tttaaaagga ggtaaaaatt ggttacaact ttactttct
300
taccttgtta agataactcat aagcctctac atcatttcca ctgtgatagt ttcggatccc
360
ttgaagtaag tagagtctta gaaacagtac cttcttttc ccacaatttc ctttatgtg
420
gaccagtctc tgatgatttt ctccgtaaca atttttaag catttctggg ccaagttaa
480
tttttttctt gcatcatcaa ggcattccag ctgttccagg cggaaagtaac accacactat
540
atccagctgg aggacggcat agttatccac tgtgtccagc agctctctgc aacactcaca
600
gaaatatttg tcagcgtcca acagacatgg caaggctatt ccatattttt ttctttcag
660

gaaagctctg cccttctcat gatatcccat agctaacata agggctttc tttctgtatgg
720
gggaattctg attgatctgc ctgtctgggt agctatgtct aagtacggtg tcatttctgg
780
atccaccact gtctctgctg ctctcttgc cagtagttct agtcctctct tggccctctg
840
aatttgggtt tctttgagtt tggccctcatt ttgctcctct tcctctaact ggaagtttt
900
cctcgcggtcc tttcagatt gtttagttc aaggaccatc gctttcacat tgtgagccac
960
gccttggctc tcaagggttt tccctagttg tagttgcttc ttatttatga caatttgtat
1020
ataattttct tgaagtccaa aggtttcagc tattttggac ctcagttctc tgccagtgtat
1080
gtgcaatcgg gtctccaaca agttttccct atctttttt agtcttggtg gtaaaaacac
1140
ctcgatgtta gcaattccccg ttgttctata attgtcattt cctgttccac gctcaattgc
1200
cttgcaacgt atttcttcta ttacctttc tacttcattt tcacagcatt ctatgtgtc
1260
agagtactgc ttagcaaggt ctttttttag tcttgggtt aaaaacacct cgattgttagc
1320
aattcccggtt gttctataat tgcatttcc tggccacgc tcaattgcct tgcaacgtat
1380
ttcttcattt accttttcta cttcattttc acagcattct agtctgtcag agtactgctt
1440
agcaagggtcc tttaatgccca aaccaacttt tttatttca tctgtatatg gaggtttcca
1500
aagttgaatc ctgtttccc ttaaaaactg ggtcaatttt gcttgaagat atttcttttg
1560
tgccatccct gggccacgccc actccccggc cgaccagcag agatggcaca aaagaaaatat
1620
cttcaagcaa aattgaccctt gtttttaagg gaagacagga ttcaactttt gaaaccccttcca
1680
tatactgaag aaaataaaaga agttggtttgc gccttaaagg accttgctaa gcagttactct
1740
gacagactag aatgttgta aaatgaagta gaaaaggtaa tagaagaaat acgttgtcaag
1800
gcaattgagc gtggAACAGGAAATGACAAT TATAGAACCAA CGGGAAATTGC TACAATCGAG
1860
gtgtttttac caccaagact aaaaaaagat aggaaaaact tggggagac ccgattgcac
1920
atcaactggca gagaactgag gtccaaaata gctgaaacct ttggacttca agaaaattat
1980
atcaaaaatttgc tcataaataa gaagcaacta caactaggga aaacccttga agaacaaggc
2040
gtggctcaca atgtgaaagc gatggtgctt gaactaaaac aatctgaaga ggacgcgagg
2100
aaaaacttcc agtttagagga agaggagcaa aatgaggcca aactcaaaga aaaacaaatt
2160
cagaggacca agagaggact agaaatactg gcaaaagagag cagcagagac agtgggtggat
2220
ccagaaatga caccgtactt agacatactt aaccagacag gcagatcaat cagaattcccc
2280

ccatcagaaa gaaaagccct tatgttagct atgggatatac atgagaaggg cagagctttc
2340
ctgaaaagaa aagaatatgg aatagccttg ccatgtctgt tggacgctga caaatatttc
2400
tgtgagtgtt gcagagagct gctggacaca gtggataact atgccgtcct ccagctggat
2460
atagtgtggt gttacttccg cctggaacag ctggaatgcc ttgatgatgc agaaaaaaaaa
2520
ttaaacttgg cccagaaaatg cttaaaaat tgttacggag aaaatcatca gagactggtc
2580
cacataaaaag gaaattgtgg gaaagagaag gtactgttcc taagactcta cttacttcaa
2640
gggatccgaa actatcacag tggaaatgat gttagaggctt atgagtatct taacaggcac
2700
gtcagctctt taaagagcta tatattgatc cataaaaagt ggacaatttg ttgcagttgg
2760
ggtttactgc ccaggaagnc ccggcttggc ctgagggcgt gtgatggaa cgtggatcat
2820
gcggccactc atattacaa ccgcagagag gaactggccc aaataaggaa ggaggaaaaaa
2880
gagaagaaaa gacgcccct cgagaacatc aggttctga aagggatggg ctactccacg
2940
cacgcggccc agcagattct gctcagcaat cctcagatgt ggtggtaaa tgattccaat
3000
cctgaaaccg acaaccgtca agaaaagtctt tccaggaaa acattgaccg attgggttac
3060
atgggttttg atgcactcgt ggccgaagct gcgcgtgagag tgttcagagg caacgtccag
3120
ctggccgccc agacccttgc tcacaacgga ggaagcctgc ctcggagct gccgctgtcg
3180
ccagaagact ctttgcctcc gccagccacg tcccttctg actccgcagg aacctcttagt
3240
gcctcaacag acgaagacat ggagacagag gccgtcaatg agataactgga agacattcca
3300
gagcatgagg aagactatct tgactcaact ctggaagatg aagaaattat tattgcagag
3360
tacctatcct atgtagaaaa taggaagtca gcaacaaaga aaaactaaat aatgaacaga
3420
aatagcgcta attttctgct tataaatgct atcattatga aaaggcta at gcaatcttt
3480
ctgttcttac ttttatctg aattacaagt cctcttggg tgttaggaggg ggtgggcagg
3540
ggacaagtcc aggaggggtc ccagggcctt catgcattgt ctcggggaaag aagcttcttt
3600
tggcctggcg caagccgttc catctggctc ccaagtctgc gtccctaaacc cttccccag
3660
cttgggtttt taccccgaaa caggaaggaa caggggtcct gttagaacagg ggtcctgggg
3720
aagggttcca gggcagggtc ctgggaaggg tgtcccgact gtttcctctc cagctgtggc
3780
tccatctgcc cagcttgcct gcctcctgca cccactgccc tgaccttcct gttccccacg
3840
ctgccatctc tgccagggtg ccacatgggt tcctgtgcca cccttcccc gcccctcaaa
3900

tcgtccttta agtccctt ccaagtgcg tggggataa cgatgaggcg ctggccttgg
 3960
 gggcacacca ggtcgagca aatggcttca gcctggacg ccagtgttt atgctcttag
 4020
 ttcaaaaaaa tacgcccccg aaattcaaga ttgagtgtca ggctttatat atattcagca
 4080
 ttcccttatta cagaaatctt ctattgaatg ggaaaggttt aaatgctaac caaagcaatt
 4140
 tatttttaat taatattttt agactctgtg ctgtcatact gaactcaactg ctagctaaga
 4200
 gacctatcag agattttagat atatttctc caggtttttt gtggggtttc tttgttgg
 4260
 ttgttgttct accatgtga cagaggctct ttctaaaagt atgtagttcg ctgtgtgtcg
 4320
 gctccagcag taaccgtcct cactgcgcca cgcaactcctc tgttagatgtg tgcccagtg
 4380
 gagttccttc cagccccagg accgcagcag cagccaggtg ccgagtgat tgagtgccag
 4440
 gtgcattccaa gactttccct cccttccaga aggcaactgac tgaagacagg atggatcatg
 4500
 cggagccggc tgaaatgctc caacttttc aaagtgtggg tggactcagtt tggactgatg
 4560
 ggaatcttct tgcattctt tttaaacgga tgataccgat gaaataaaaa ggtggaaat
 4620
 atattcaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 4668

<210> 6076
 <211> 601
 <212> PRT
 <213> Homo sapiens

<400> 6076
 Met Ala Gln Lys Lys Tyr Leu Gln Ala Lys Leu Thr Gln Phe Leu Arg
 1 5 10 15
 Glu Asp Arg Ile Gln Leu Trp Lys Pro Pro Tyr Thr Glu Glu Asn Lys
 20 25 30
 Glu Val Gly Leu Ala Leu Lys Asp Leu Ala Lys Gln Tyr Ser Asp Arg
 35 40 45
 Leu Glu Cys Cys Glu Asn Glu Val Glu Lys Val Ile Glu Glu Ile Arg
 50 55 60
 Cys Lys Ala Ile Glu Arg Gly Thr Gly Asn Asp Asn Tyr Arg Thr Thr
 65 70 75 80
 Gly Ile Ala Thr Ile Glu Val Phe Leu Pro Pro Arg Leu Lys Lys Asp
 85 90 95
 Arg Lys Asn Leu Leu Glu Thr Arg Leu His Ile Thr Gly Arg Glu Leu
 100 105 110
 Arg Ser Lys Ile Ala Glu Thr Phe Gly Leu Gln Glu Asn Tyr Ile Lys
 115 120 125
 Ile Val Ile Asn Lys Lys Gln Leu Gln Leu Gly Lys Thr Leu Glu Glu
 130 135 140
 Gln Gly Val Ala His Asn Val Lys Ala Met Val Leu Glu Leu Lys Gln
 145 150 155 160
 Ser Glu Glu Asp Ala Arg Lys Asn Phe Gln Leu Glu Glu Glu Gln

	165	170	175
Asn Glu Ala Lys Leu Lys Glu Lys Gln Ile Gln Arg Thr Lys Arg Gly			
180	185	190	
Leu Glu Ile Leu Ala Lys Arg Ala Ala Glu Thr Val Val Asp Pro Glu			
195	200	205	
Met Thr Pro Tyr Leu Asp Ile Ala Asn Gln Thr Gly Arg Ser Ile Arg			
210	215	220	
Ile Pro Pro Ser Glu Arg Lys Ala Leu Met Leu Ala Met Gly Tyr His			
225	230	235	240
Glu Lys Gly Arg Ala Phe Leu Lys Arg Lys Glu Tyr Gly Ile Ala Leu			
245	250	255	
Pro Cys Leu Leu Asp Ala Asp Lys Tyr Phe Cys Glu Cys Cys Arg Glu			
260	265	270	
Leu Leu Asp Thr Val Asp Asn Tyr Ala Val Leu Gln Leu Asp Ile Val			
275	280	285	
Trp Cys Tyr Phe Arg Leu Glu Gln Leu Glu Cys Leu Asp Asp Ala Glu			
290	295	300	
Lys Lys Leu Asn Leu Ala Gln Lys Cys Phe Lys Asn Cys Tyr Gly Glu			
305	310	315	320
Asn His Gln Arg Leu Val His Ile Lys Gly Asn Cys Gly Lys Glu Lys			
325	330	335	
Val Leu Phe Leu Arg Leu Tyr Leu Leu Gln Gly Ile Arg Asn Tyr His			
340	345	350	
Ser Gly Asn Asp Val Glu Ala Tyr Glu Tyr Leu Asn Arg His Val Ser			
355	360	365	
Ser Leu Lys Ser Tyr Ile Leu Ile His Gln Lys Trp Thr Ile Cys Cys			
370	375	380	
Ser Trp Gly Leu Leu Pro Arg Lys Xaa Arg Leu Gly Leu Arg Ala Cys			
385	390	395	400
Asp Gly Asn Val Asp His Ala Ala Thr His Ile Thr Asn Arg Arg Glu			
405	410	415	
Glu Leu Ala Gln Ile Arg Lys Glu Glu Lys Glu Lys Arg Arg Arg			
420	425	430	
Leu Glu Asn Ile Arg Phe Leu Lys Gly Met Gly Tyr Ser Thr His Ala			
435	440	445	
Ala Gln Gln Ile Leu Leu Ser Asn Pro Gln Met Trp Trp Leu Asn Asp			
450	455	460	
Ser Asn Pro Glu Thr Asp Asn Arg Gln Glu Ser Pro Ser Gln Glu Asn			
465	470	475	480
Ile Asp Arg Leu Val Tyr Met Gly Phe Asp Ala Leu Val Ala Glu Ala			
485	490	495	
Ala Leu Arg Val Phe Arg Gly Asn Val Gln Leu Ala Ala Gln Thr Leu			
500	505	510	
Ala His Asn Gly Gly Ser Leu Pro Pro Glu Leu Pro Leu Ser Pro Glu			
515	520	525	
Asp Ser Leu Ser Pro Pro Ala Thr Ser Pro Ser Asp Ser Ala Gly Thr			
530	535	540	
Ser Ser Ala Ser Thr Asp Glu Asp Met Glu Thr Glu Ala Val Asn Glu			
545	550	555	560
Ile Leu Glu Asp Ile Pro Glu His Glu Glu Asp Tyr Leu Asp Ser Thr			
565	570	575	
Leu Glu Asp Glu Glu Ile Ile Ala Glu Tyr Leu Ser Tyr Val Glu			
580	585	590	
Asn Arg Lys Ser Ala Thr Lys Lys Asn			

595

600

<210> 6077
<211> 2093
<212> DNA
<213> Homo sapiens

<400> 6077
cgccccggca ggtctccgg aagtggccgg tccagagctg tggggtgccct ccgcggggc
60 tctggcgat cgggaaatcg gatcaaggcg agaggatccg gcagggaagg agtttcgggg
120 cccggggttg ggccgcacat ttacgtgcgc gaagcggagg accgggagct ggtgacgatg
180 gcggggccgc agcccctggc gctgcaactg gaacagttgt tgaaccgcg accaagcgag
240 gcggaccctg aagcggaccc cgaggaagcc actgctgcc a gggtgattga caggtttga
300 gaagggaag atggggaaagg tgatttccta gtatgtggta gcattagaaa actggcatca
360 gcctccctct tggacacgga caaaaggat tgcggcaaaa ccacctctag aaaagcatgg
420 aatgaagacc attgggagca gactctgcc a gatcgtctg atgaggaaat atctgatgag
480 gaagggtctg gagatgaaga ttcagagggc ctgggtctgg aggaatatga tgaggacgac
540 ctgggtgctg ctgaggaaca ggagtgtggt gatcaggag agcaagaaga cgagaagcca
600 ctctgcaaaa acaccgggct tcagtgtcca gagtatcgt gactttgaga aatttaccaa
660 ggaatggat gacctggag cagtgaggag gaggaagacg aagagagtgg catggaagaa
720 gggatgacg cggaaagactc ccaaggcgag agtgaggaag acagggtctgg agatagaaac
780 agtgaggatg atggtgtggt gatgaccttc tctagtgtca aagtttctga ggaagtggag
840 aaaggaagag ccgtgaagaa ccagatagca ctgtgggacc agcttttggaa aggaaggatc
900 aaactacaaa aagctctgtt gaccaccaac cagtttctc aaccagatgt tttccattg
960 ttcaaggaca aaggtggccc agaattttcc agtgccttga aaaatagtca caaggcactt
1020 aaagcattgt tgaggtcatt ggttaggtctt caggaagagt tgctttcca gtacccagac
1080 actagatatc tagtagatgg gacaaagccc aatgcggaa gtgaggagat ttctagtgaa
1140 gatgatgagc tggtagaaga gaagaagcag caacgaagaa gggtccctgc aaagaggaag
1200 ctggagatgg aggactatcc cagttcatg gcaaagcgct ttgcccactt tacagtctac
1260 aggaacccgca cacttcagaa atggcacgat aagaccaaac tggcttctgg aaaactgggg
1320 aagggttttgc gtgcctttga acgctcaatc ttgactcaga tcgaccatat tctgatggac
1380

5260

aaagagagat tacttcgaag gacacagacc aagcgctctg tctatcgagt tcttggcaaa
 1440
 cctgagccag cagctcagcc tgtcccagag agtttgccag gggAACCGGA gatccttcct
 1500
 caagccccctg ctaatgctca tctgaaggac ttggatgaag aaatcttga tgatgtgac
 1560
 ttttaccacc agctccttcg agaactcata gaacggaaga ccagctcctt ggatcccaac
 1620
 gatcaggtgg ccatggaaag gcagtggctt gcaatccaga agttacgaag caaaatccac
 1680
 aaaaaaagttag ataggaaagc cagcaaaggc aggaaacttc ggtttcatgt ccttagcaag
 1740
 ctactgagtt tcatggcacc tattgaccat actacaatga atgatgtgc caggacagaa
 1800
 ctgtaccgct ctcttttgg ccagctccac cctcccgacg aaggccacgg ggattgacat
 1860
 cgccccacctc cgacacccag tgggcgcctt ggctggtgcg gctgctggtc cagatggagg
 1920
 aaaccagtga ctttatgggg ctgagctagt aggaaagccc ctggaaagat gctgcgttcc
 1980
 gaacctgtgc ctaatacacg caagggcgct gtcccgccca accccgcctt taaacgccac
 2040
 aaataaaagag cattgttacc gccaaaaaaaaaaaaaaaaaaa aaa
 2093

<210> 6078
 <211> 213
 <212> PRT
 <213> Homo sapiens

<400> 6078
 Arg Pro Gly Arg Ser Pro Gly Ser Gly Arg Ser Arg Ala Val Gly Cys
 1 5 10 15
 Leu Arg Ala Val Ser Gly Gly Ser Gly Asn Arg Ile Lys Ala Arg Gly
 20 25 30
 Ser Gly Arg Glu Gly Ala Ser Gly Pro Gly Val Gly Pro His Ile Tyr
 35 40 45
 Val Arg Glu Ala Glu Asp Arg Glu Leu Val Thr Met Ala Gly Pro Gln
 50 55 60
 Pro Leu Ala Leu Gln Leu Glu Gln Leu Leu Asn Pro Arg Pro Ser Glu
 65 70 75 80
 Ala Asp Pro Glu Ala Asp Pro Glu Glu Ala Thr Ala Ala Arg Val Ile
 85 90 95
 Asp Arg Phe Asp Glu Gly Glu Asp Gly Glu Gly Asp Phe Leu Val Val
 100 105 110
 Gly Ser Ile Arg Lys Leu Ala Ser Ala Ser Leu Leu Asp Thr Asp Lys
 115 120 125
 Arg Tyr Cys Gly Lys Thr Thr Ser Arg Lys Ala Trp Asn Glu Asp His
 130 135 140
 Trp Glu Gln Thr Leu Pro Gly Ser Ser Asp Glu Glu Ile Ser Asp Glu
 145 150 155 160
 Glu Gly Ser Gly Asp Glu Asp Ser Glu Gly Leu Gly Leu Glu Glu Tyr
 165 170 175
 Asp Glu Asp Asp Leu Gly Ala Ala Glu Gln Glu Cys Gly Asp Gln

180	185	190
Gly Glu Gln Glu Asp Glu Lys Pro Leu Cys Lys Asn Thr Gly Leu Gln		
195	200	205
Cys Pro Glu Tyr Gln		
210		

<210> 6079
<211> 651
<212> DNA
<213> Homo sapiens

<400> 6079
ggccagtcct ccgcctcgct ccgtcagttt cccccctgctg aactactggg tgccggagccg
60
gtgcgtgcgc agcctgcgca tgtgcattgg ggtcgactgc cgctgcggtg catgaggccg
120
catgcgcagc gggccgtgg gtgtacgcgg cgccgcgcgg cagtcctgtat ggcccgcat
180
gggttaccgc tgcgtccct gctgtcgctc ctggtcggcg cgtggctcaa gctaggaaat
240
ggacaggcta cttagcatggt ccaactgcag ggtgggagat tcctgatggg aacaattct
300
ccagacagca gagatggtga agggcctgtg cgggaggcga cagtgaaacc ctttgcac
360
gacatatttc ctgtcaccaa caaagatttc agggattttg tcagggagaa aaagtatcgg
420
acagaagctg agatgtttgg atggagcttt gtctttgagg actttgtctc tcatgagctg
480
agaaaacaaag ccacccagcc aatgaagtct gtactctgtt ggcttccagt ggaaaaggca
540
ttttggaggc agcctgcagg tcctggctct ggcattccgag agagactgga gcacccagtg
600
ttacacgtga gctggaatga cgcccggtgcc tactgtgctt ggcggggaaaa a
651

<210> 6080
<211> 162
<212> PRT
<213> Homo sapiens

<400> 6080
Leu Met Ala Arg His Gly Leu Pro Leu Leu Pro Leu Leu Ser Leu Leu
1 5 10 15
Val Gly Ala Trp Leu Lys Leu Gly Asn Gly Gln Ala Thr Ser Met Val
20 25 30
Gln Leu Gln Gly Gly Arg Phe Leu Met Gly Thr Asn Ser Pro Asp Ser
35 40 45
Arg Asp Gly Glu Gly Pro Val Arg Glu Ala Thr Val Lys Pro Phe Ala
50 55 60
Ile Asp Ile Phe Pro Val Thr Asn Lys Asp Phe Arg Asp Phe Val Arg
65 70 75 80
Glu Lys Lys Tyr Arg Thr Glu Ala Glu Met Phe Gly Trp Ser Phe Val
85 90 95
Phe Glu Asp Phe Val Ser Asp Glu Leu Arg Asn Ala Thr Gln Pro

100	105	110
Met Lys Ser Val Leu Trp Trp Leu Pro Val Glu Lys Ala Phe Trp Arg		
115	120	125
Gln Pro Ala Gly Pro Gly Ser Gly Ile Arg Glu Arg Leu Glu His Pro		
130	135	140
Val Leu His Val Ser Trp Asn Asp Ala Arg Ala Tyr Cys Ala Trp Arg		
145	150	155
Gly Lys		

<210> 6081
<211> 655
<212> DNA
<213> Homo sapiens

<400> 6081
gataatgatc aggaacctcc ctattcaatg ataacattac acgaaatggc agaaacagat
60
gaaggatggt tggatgttgt ccagtcttta attagagttt ttccactgga agatccactg
120
ggaccagctg ttataacatt gttacttagat gaatgtccat tgcccactaa agatgcactc
180
cagaaattga ctgaaattct caatttaaat ggagaagtag cttgccagga ctcaagccat
240
cctgccaaac acaggaacac atctgcagtc ctaggctgct tggccgagaa actagcaggt
300
cctgcaagta tagtttact tagccagga atactggaat acttgctaca gtgtctgaag
360
ttacagtccc accccacagt catgctttt gcacttatcg cactggaaaa gtttgcacag
420
acaagtggaaa ataaattgac tatttctgaa tccagtatta gtgaccggct tgtcacattg
480
gagtcctggg ctaatgatcc tgattatctg aaacgtcaag ttggttctg tgcccactgg
540
agcttagaca atctctttt aaaagaaggt agacagctga cctatgagaa agtgaacttg
600
agtagcatta gggccatgct gaatagcaat gatgtcagcg agtacctgaa gatct
655

<210> 6082
<211> 218
<212> PRT
<213> Homo sapiens

<400> 6082
Asp Asn Asp Gln Glu Pro Pro Tyr Ser Met Ile Thr Leu His Glu Met
1 5 10 15
Ala Glu Thr Asp Glu Gly Trp Leu Asp Val Val Gln Ser Leu Ile Arg
20 25 30
Val Ile Pro Leu Glu Asp Pro Leu Gly Pro Ala Val Ile Thr Leu Leu
35 40 45
Leu Asp Glu Cys Pro Leu Pro Thr Lys Asp Ala Leu Gln Lys Leu Thr
50 55 60
Glu Ile Leu Asn Leu Asn Gly Glu Val Ala Cys Gln Asp Ser Ser His

65	70	75	80
Pro Ala Lys His Arg Asn Thr Ser Ala Val Leu Gly Cys Leu Ala Glu			
85	90	95	
Lys Leu Ala Gly Pro Ala Ser Ile Gly Leu Leu Ser Pro Gly Ile Leu			
100	105	110	
Glu Tyr Leu Leu Gln Cys Leu Lys Leu Gln Ser His Pro Thr Val Met			
115	120	125	
Leu Phe Ala Leu Ile Ala Leu Glu Lys Phe Ala Gln Thr Ser Glu Asn			
130	135	140	
Lys Leu Thr Ile Ser Glu Ser Ser Ile Ser Asp Arg Leu Val Thr Leu			
145	150	155	160
Glu Ser Trp Ala Asn Asp Pro Asp Tyr Leu Lys Arg Gln Val Gly Phe			
165	170	175	
Cys Ala Gln Trp Ser Leu Asp Asn Leu Phe Leu Lys Glu Arg Gln			
180	185	190	
Leu Thr Tyr Glu Lys Val Asn Leu Ser Ser Ile Arg Ala Met Leu Asn			
195	200	205	
Ser Asn Asp Val Ser Glu Tyr Leu Lys Ile			
210	215		

<210> 6083

<211> 358

<212> DNA

<213> Homo sapiens

<400> 6083

```

nnacgcgtga ggggacaggc tgagaaaaaa gaattacgac ataaaataga tgaaatggaa
60
gaaaaagaac aggagctcca ggcaaaaata gaagcttgc aagctgataa tgatttcacc
120
aatgaaaggc taacagcttt acaagagaag ctgatcgctg aagggcatct aaccaaagcg
180
gtagaagaaa caaagcttcc aaaagaaaaat cagacaagag caaaagaatc tgattttca
240
gatactctga gtccaagcaa ggaaaaaaagc agtgacgaca ctacagacgc ccaaatggat
300
gagcaagacc taaatgagcc tcttgccaaa gtgtcccttt taaaagatga cttgcagg
358

```

<210> 6084

<211> 101

<212> PRT

<213> Homo sapiens

<400> 6084

1	5	10	15
Met Glu Glu Lys Glu Gln Glu Leu Gln Ala Lys Ile Glu Ala Leu Gln			
20	25	30	
Ala Asp Asn Asp Phe Thr Asn Glu Arg Leu Thr Ala Leu Gln Glu Lys			
35	40	45	
Leu Ile Val Glu Gly His Leu Thr Lys Ala Val Glu Glu Thr Lys Leu			
50	55	60	
Ser Lys Glu Asn Gln Thr Arg Ala Lys Glu Ser Asp Phe Ser Asp Thr			
Leu Ser Pro Ser Lys Glu Lys Ser Ser Asp Asp Thr Thr Asp Ala Gln			

65 70 75 80
Met Asp Glu Gln Asp Leu Asn Glu Pro Leu Ala Lys Val Ser Leu Leu
85 90 95
Lys Asp Asp Leu Gln
100

<210> 6085
<211> 2307
<212> DNA
<213> Homo sapiens

<400> 6085
nnntccggatc agttcgagtg cctctaccca taccctgttc atcacccatg tgacagacag
60
agccagggtgg actttgacaa tcccgactac gagaggttcc ctaatttcca aaatgtggtt
120
ggttacgaaa cagtgggtgg ccctggatgat gttctttaca tcccaatgtt ctgggtggcat
180
cacatagagt cattactaaa tggggggatt accatcaactg tgaacttctg gtataagggg
240
gctcccaccc ctaagagaat tgaatatcct ctcaaagctc atcagaaaatg ggccataatg
300
agaaacattt agaagatgct tggagaggcc ttggggaaacc cacaagaggt ggggccttg
360
ttgaacacaa tcatcaaggg ccgatacaac tagcctgcca ggggtcaagg ctcctgcca
420
ggtgactgct atcccgttcca caccgcttca ttgatgagga caggagactc caagcgctag
480
tattgcacgc tgcacttaat ggactggact cttgccatgg cccaggagtc aggtgtttgg
540
agcgaggcag ggcagttggc actccactcc tatttggagg gacttcatac cttgcctct
600
tgtgccccctg caccttctct ctctgcccc cgcctaaatg cctgcattca gtgtgtggag
660
ccccagctt tgggtgtcat catgtctgtg tgtatgttag tctgtcaact tcggaatgtg
720
tgcgtgtgtg tgcacatcaca cgcatgtatg tatctgttcc ctgttccctc tgggtcaggc
780
tgtcacttcc ggctctcagc cctatctcc gcaacctcag tgcctcagcc tgagagagag
840
atgagatgct cttggactcc ccactgcattc tgggctgcag ggccagagct agtctgacca
900
ttaggtcagt ctgcctcctg acagtttttgc cgtactcaag ctctaggcgg tatggaaatg
960
gctaccggga ctctaattggg gtgaaagaga ggggaggctt gcctttgaga gccttatatag
1020
ccttcctgtg agagaggatt agatagggtt ccaactgggc ctacaagctc aagccataaca
1080
taaaaggacc ttgggacata agaaccaatg attgtgcata agttctaaat tagagacaca
1140
tatagtttct ctcttcagc accagcttcc gcccctatgc tgggtaccaa gggagttctc
1200
ctagctgtgg ctctcttagg ttcttaggggt gcaaggctct gtgtgtttgt ttgtgtgtgt
1260

ctgtgtgtgc gtatcacact aggggtgcaa gcctctgggt gtgtgtgtgt gtgtgcgtgc
 1320
 gtgtgtgtgt gtgtgtccgt gtgtgtgtgt gtgtgtgtcc acactggcca gcctccctac
 1380
 ttaccaaggt tctccactgc ttacctttc cagtggaca gtacagtgtg agccccccggg
 1440
 aagtactgcc tgaccttatcc taagctttta cacttggatt ttagccatca tatgttggcc
 1500
 aggtctcaact gcagcctgcc cgaggctaac tggctagage ctccagccct atgatgctcc
 1560
 ctgcccaggc catatccttt attcctgctg agcttcctgg ctgaatagat gaaatgggg
 1620
 caagcccagg cagctcatc actacgtgt atccaccta gggcacgggc aaacacatag
 1680
 gcttgcgtct taaagccagc tcctctgcca gaccccggtt taatgtgcca caacaccctc
 1740
 aataagtcaagg gcaactggtg gagcatggaa gtcgaatttc cttttctgtt aggagctact
 1800
 cctgggaacc cctctcaggg ctgcagctta caggtggca gctgtgattt cacaacttga
 1860
 agggccatca ttcacatcta ttcaagtggga gtggggtccc tgggattggg cagtggttg
 1920
 gcccctgtgtc tcctcacctc tgctcctgtc ttcatcacct tctctctgga agggaaagagg
 1980
 agttggaaagg tctctggttt tctttttttt tttttttttt ttgccaaagg tttacttcca
 2040
 gcatctgagc tctggcttc acccctgaag ctcagttata gtgcactgat gaactgagag
 2100
 gatgcgtgtg gatgtgtgtg catgcctgag tgcgaaaaaaa ggggaggggt gtttattttt
 2160
 agtaccccat tctgggttc tctgatgcag tgtggatgtg aagatatggt accttctcaa
 2220
 gtgttagctct ttcaaataata gtcaatgctg ggaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 2280
 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
 2307

<210> 6086
 <211> 84
 <212> PRT
 <213> Homo sapiens

<400> 6086
 Met Leu Gly Thr Lys Gly Val Leu Leu Ala Val Ala Ser Leu Gly Ser
 1 5 10 15
 Arg Gly Ala Ser Leu Cys Val Phe Val Cys Val Cys Leu Cys Val Arg
 20 25 30
 Ile Thr Leu Gly Val Gln Ala Ser Gly Cys Val Cys Val Cys Ala Cys
 35 40 45
 Val Cys Val Cys Val Ser Val Cys Val Cys Val Cys Val His Thr Gly
 50 55 60
 Gln Pro Pro Tyr Leu Pro Arg Phe Ser Thr Ala Tyr Leu Phe Gln Trp
 65 70 75 80
 Asp Ser Thr Val

<210> 6087
<211> 1506
<212> DNA
<213> Homo sapiens

<400> 6087
ncggcccccgg gagctgtgc tctatggagc tattgcggcc gtgggtggtc gcgggcgatg
60
cggggctgcc agtcctcgg gcttcgttagc tcttggcccg gggacctact aagtgtcg
120
ctcttgcccc aagagaagcg ggcagcgaa acgcactttgg tttttagac ttttgtcgaa
180
gaggagaagg gggcaaaatg ctatcaggtt tttgaaaatgt tggctaagaa gtatgtatgt
240
atgaatgata tttatgttct cggcatccat cgtgttttgg aggatttgcgt gctctggaaag
300
atgcacccgc tgcccgac ccagctgctc gacatggctg gaggcacagg tgacattgc
360
ttccgggttcc ttaattatgt tcagtccttgg catcagagaa aacagaagag gcagttaaagg
420
gccccaaacaaa atttatcctg ggaagaaatt gccaaagagt accagaatga agaagattcc
480
tttgggggggt ctcgtgtcggt ggtgtgtgac atcaacaagg agatgtaaa ggttggaaag
540
cagaaaggct tggctcaagg atacagagct ggacttgcatt gggtatttgg agatgtgaa
600
gaactgccc ttgtatgttca caagtttgcatttacacca ttgcctttgg gatccggaaat
660
gtcacacacaca ttgtatcaggc actccaggaa gctcatcggt tgctgaaacc aggaggacgg
720
tttctctgtc tggaaatttag ccaagtgaac aatccctca tatccaggtt ttatgtatcta
780
tatagcttcc aggtcatccc tgcctggga gaggtcatcg ctggagactg gaagtcctat
840
cagtacccctt tagagagttat ccgaagggtt ccgtctcagg aagagttcaa ggacatgata
900
gaagatgcag gctttcacaa ggtgacttac gaaagtctaa catcaggcat tttggccatt
960
cattctggct tcaaacttta attcccttcc tatcatggag catgaaccag tcataatcctg
1020
ttgaaaggct ggaactgaag gataatctgg caaatgagac agcagcagag catctcttct
1080
taaggatacg tgccttggac tcatgtttga atcgaacagt ctc当地tgg aagaacaaat
1140
tcttgcact ttttacagc tttctttggc gctgcttcag tccatctccc agaggcattt
1200
ggctgtatc tttgctcaac tgctaaatttc tcttggctgt aggggtgtgt gttaaaggat
1260
aaccacccctt aaagctcagt tttgaagtga gtgtatattt agcttctctg ctgggtgtgc
1320
cttcttagagg gatgatagat catttgaacc caatgacaat ttttaaccag aaaatttaat
1380

tgtacctgaa tcaaccttgc agcctaggac gaagtctagg cccaaatcg agtattaatg
 1440
 atcatgagaa ttgtgtgctg aaccagtaaa cgagttacc tttaaaaaaaaaaaaaaa
 1500
 aaaaaaa
 1506

<210> 6088
<211> 326
<212> PRT
<213> Homo sapiens

<400> 6088

Xaa	Ala	Pro	Gly	Ser	Cys	Ala	Leu	Trp	Ser	Tyr	Cys	Gly	Arg	Gly	Trp
1						5			10				15		
Ser	Arg	Ala	Met	Arg	Gly	Cys	Gln	Leu	Leu	Gly	Leu	Arg	Ser	Ser	Trp
							20		25				30		
Pro	Gly	Asp	Leu	Leu	Ser	Ala	Arg	Leu	Leu	Ser	Gln	Glu	Lys	Arg	Ala
						35			40			45			
Ala	Glu	Thr	His	Phe	Gly	Phe	Glu	Thr	Val	Ser	Glu	Glu	Lys	Gly	
						50			55			60			
Gly	Lys	Val	Tyr	Gln	Val	Phe	Glu	Ser	Val	Ala	Lys	Lys	Tyr	Asp	Val
						65			70		75		80		
Met	Asn	Asp	Met	Met	Ser	Leu	Gly	Ile	His	Arg	Val	Trp	Lys	Asp	Leu
						85			90			95			
Leu	Leu	Trp	Lys	Met	His	Pro	Leu	Pro	Gly	Thr	Gln	Leu	Leu	Asp	Met
						100			105			110			
Ala	Gly	Gly	Thr	Gly	Asp	Ile	Ala	Phe	Arg	Phe	Leu	Asn	Tyr	Val	Gln
						115			120			125			
Ser	Gln	His	Gln	Arg	Lys	Gln	Lys	Arg	Gln	Leu	Arg	Ala	Gln	Gln	Asn
						130			135			140			
Leu	Ser	Trp	Glu	Glu	Ile	Ala	Lys	Glu	Tyr	Gln	Asn	Glu	Glu	Asp	Ser
						145			150		155		160		
Leu	Gly	Gly	Ser	Arg	Val	Val	Val	Cys	Asp	Ile	Asn	Lys	Glu	Met	Leu
						165			170			175			
Lys	Val	Gly	Lys	Gln	Lys	Ala	Leu	Ala	Gln	Gly	Tyr	Arg	Ala	Gly	Leu
						180			185			190			
Ala	Trp	Val	Leu	Gly	Asp	Ala	Glu	Glu	Leu	Pro	Phe	Asp	Asp	Asp	Lys
						195			200			205			
Phe	Asp	Ile	Tyr	Thr	Ile	Ala	Phe	Gly	Ile	Arg	Asn	Val	Thr	His	Ile
						210			215			220			
Asp	Gln	Ala	Leu	Gln	Glu	Ala	His	Arg	Val	Leu	Lys	Pro	Gly	Gly	Arg
						225			230		235		240		
Phe	Leu	Cys	Leu	Glu	Phe	Ser	Gln	Val	Asn	Asn	Pro	Leu	Ile	Ser	Arg
						245			250			255			
Leu	Tyr	Asp	Leu	Tyr	Ser	Phe	Gln	Val	Ile	Pro	Val	Leu	Gly	Glu	Val
						260			265			270			
Ile	Ala	Gly	Asp	Trp	Lys	Ser	Tyr	Gln	Tyr	Leu	Val	Glu	Ser	Ile	Arg
						275			280			285			
Arg	Phe	Pro	Ser	Gln	Glu	Glu	Phe	Lys	Asp	Met	Ile	Glu	Asp	Ala	Gly
						290			295			300			
Phe	His	Lys	Val	Thr	Tyr	Glu	Ser	Leu	Thr	Ser	Gly	Ile	Val	Ala	Ile
						305			310		315			320	
His Ser Gly Phe Lys Leu															

325

<210> 6089
<211> 4211
<212> DNA
<213> Homo sapiens

<400> 6089
ncggggcgact cgccgggtgtg acgttgaaga tgcggcctt ctgagccgac tgccgggtgc
60
aagagtgtaa cacagccagc ctcgaagact tccctcttag ttgaaatgtat aatgaccgaa
120
tccccgagaag ttatagactt agaccccca gctgagactt cccaggagca ggaagacctt
180
ttcatatgtga aggtggaaga agaagactgc acctggatgc aggagtacaa cccgccaacg
240
tttgagactt ttaccagcg cttcaggcac ttccagtacc atgaggcttc aggaccccg
300
gaggctctca gccaaactccg ggtgctctgc tgtgagtggc tgaggcccga gctgcacacg
360
aaggagcaga tcctggagct gctggtgctg gagcagttcc tgaccatcct gcctgaagag
420
ttccagccct gggtgaggga acatcaccct gaaagtggag aagaggcggt ggccgtgata
480
gaaaatatac agcgagaact tgaggaacgc agacagcaga ttgttgcctg ccctgatgtg
540
cttcctcggaa agatggcaac acctggagca gtgcaggagt cctgcagccc ccattccctg
600
accgtggaca cccagcctga gcaagcgcga cagaagcctc gtctcctgga gaaaaatgcc
660
cttcctgttc tccaagttcc ttcccttccc ctgaaggaca gccaggagct gacagctca
720
cttctctcaa ctgggtccca gaagttggtg aaaattgaag aggtggctga tgtggctgta
780
tccttcatcc tggaggaatg ggggcatttg gaccagtccc agaagtcctt ttataggat
840
gacaggaagg agaactatgg gagtattact tccatgggtt atgagtccag ggacaatatg
900
gagctcatag tgaagcagat ttctgtatgac tctgaatcac actgggtggc gccagaacac
960
accgaaagga gcgttcctca ggatccagac tttcagaag tcagtgcacct taaaggcatg
1020
gtacaaaagggt ggcaggtcaa ccccactgtg gggaaatcaa ggcagaatcc ttcccagaaa
1080
agggatctgg atgcaatcac agacatcagc cctaagcaaa gcacacatgg cgagagaggg
1140
cacagatgca gcgattgtgg caaatttttc ctccaagcct caaactttat tcagcatcg
1200
cgcatccaca ctggagaaaa accgtttaag tgccgagaat gtgggaagag ctacaatcag
1260
cggtgcacc tcacccagca ccagcgcgtc cacacagggg agaaacccta caaatgtcag
1320
gtgtgcggaa aggctttccg ggtgagttcc cacctggttc agcaccacag tgtccacagc
1380

5269

ggagagaggc cctatggctg caatgagtgt gggagaact tcggtcgcca ttgcacatctg
1440
atcgaacacc taaaacgcca ctccaggag aaatcccaga gatcagtga caaaagaagt
1500
aagaacacaa aattaagtgt taagaagaaa atttcagaat attcagaagc agacatggaa
1560
ctatctggaa aaacccaaag aaatgtttct caagttcaag attttggaga aggctgtgag
1620
tttcaaggca agctggatag aaagcaggaa attccatga aagagatact aggacaacca
1680
tcttcaaaga ggatgaacta cagtgaagtc ccatatgtcc aaaaaaaaaatc ctccactgga
1740
gagagaccac ataaatgtaa cgagtgtggg aaaagttca tttagtgc acatcttatt
1800
caacatcaaa gaatacacac tggggagaaa ccattcaggt gtgaggaatg tggaaaagc
1860
tacaaccaac gcgtgcaccc aactcagcat cagcgcgtcc acacaggtga gaagccctac
1920
acctgtccct tatgtggaa agcttcaga gtgaggccc accttggta gcatcagagc
1980
gtgcacagtg gggagagacc cttcaagtgt aacaaatgtg ggaaaggctt tggaggcgt
2040
tccccacctgg ctggacatct tcgactccac tcccgagaga aatccatca gtgtcgtgaa
2100
tgtggggaaa tctttttca gtacgttagc ctaattgaac atcaggtct ccacatgggt
2160
cagaaaaatg aaaaaaatgg catctgtgag gaagcatata gttggaaactt gacagtgatt
2220
gaagacaaga agattgagtt acaagagcag ctttatcagt gtgatatctg tggaaaagcc
2280
tttggttata gctcagaccc cattcagcat tacagaactc atacagcaga gaagccctat
2340
caatgtgata tatgttagaga aaatgttggc cagtgtccc acaccaaaca acataaaaa
2400
atctactcca gcacaaaaatc ccatcaatgt catgaatgtg gcagaggctt cactctgaag
2460
tcacatctta atcaacatca gagaatccat actggtgaga aacctttca atgtaaagaa
2520
tgtggaatga atttcagctg gagtttagc ctctttaaac acctgagaag ccatgagagg
2580
acagatccca taaatacctt aagtgttagag gggctctgt tgtagaatag ctcttaattt
2640
tagagaaaacc ttccctggagg gaaaccatac tcctataatg agcaaagtaa caacttcaag
2700
cattttcca gcgttaccat caaaactcaca aatagggtga aatcccttag ttataactca
2760
gcctttagga acaccggaga acccacaata atagaaatct ttctgttcc cccattgaga
2820
aatgcttag ttagcatctt catgcttgaa aatctagaca agaagagaat ccatggatgg
2880
acatggcga ggaattcggaa aagcctgcag ttgacattca gtcttcactt gaaactcaaa
2940
actgacacacta ggaacagctt catgagttca gttagaagtaa gctttatgg tagcttctgc
3000

cttgtttgc ggcgtatcta ttcagggaaag cgcacagtaa aagaattcct tagcatgatg
3060
tctgtttgg tacctcagca atgaacccttt tctagaaatt attattccaa ccactagaat
3120
acccttagtca ctattcccac tttgagcatt aaccctttg aaaagaaaatg gacttaaagt
3180
atctctgttt tggcaaaatt caggttcagg ggctggatgg tatgtgtttc tgctgcctt
3240
ttcaatccac cacttctctg tcaaacaactc taccttgttt ttggtttcat tctactgatg
3300
tcagggtttgc gccggtagaa ggagtagttc agtttgtcaa ttcaggagaa actgtactgg
3360
tcagtcacat cttacggcga agggagaggg accttagggg agcagagaag acaggcaaag
3420
ttgtggactg ttgtatcttgc tattaccac aggaatgagg gcagctaaac ccatagaagg
3480
agttggacca aggcgaatta cgagtcctgg tcccagcagt atgtgtgctg acttctgggt
3540
gccccagaaa tagacctctc ctgttagagtgt gtgatataca gaatgagttt cagtttgcatt
3600
tgcagctggg attgaaagta atcagtcatg agcaggcagg caggaggcc tgtagccct
3660
gccttcagg aagggtgggg tgggagttt gaggggaaa gaggatgaca tgtgtgagag
3720
agttctgagc ctgtttgcata gggagagtga gtgagtgc tttggcactg ctcaggccgt
3780
ttctgtgtac ttgcctggct tacaataaat gccaataaaa tatttgttga ccataatgtgt
3840
tgtacactgt ggtgcctgtt ccagtcctt ctaccaagct gagacccca tccccagctg
3900
ctctgagttt gggctgcaag tgctcacagc tcttgcctc cagaaactgg agaattgccc
3960
tcaggagatg agagccatct cacccaccc aggagtcaact tcctctctac accccaacac
4020
ctgggttcatt tgattaaagc ggagaaaaact ccagggtgt atgactgc tggcaccctt
4080
ggatcaggcc aagctagact ttttctgagc cttcatccgt gctaagctct ctccttctc
4140
tatccctgttt cattccctcc ctcaaaggcg tttccaaat aaatcacact gtcaatcaca
4200
tggttctgaa a
4211

<210> 6090
<211> 839
<212> PRT
<213> Homo sapiens

<400> 6090
Met Ile Met Thr Glu Ser Arg Glu Val Ile Asp Leu Asp Pro Pro Ala
1 5 10 15
Glu Thr Ser Gln Glu Gln Glu Asp Leu Phe Ile Val Lys Val Glu Glu
20 25 30
Glu Asp Cys Thr Trp Met Gln Glu Tyr Asn Pro Pro Thr Phe Glu Thr

35	40	45
Phe	Tyr	Gln
Arg	Gln	Arg
Phe	Arg	His
His	Phe	Gln
Tyr	Gln	Tyr
His	Glu	Ala
Glu	Ala	Ser
Leu	Ser	Gly
Gln	Leu	Arg
Leu	Arg	Val
Val	Leu	Cys
Leu	Cys	Glu
Cys	Glu	Trp
Glu	Trp	Leu
Trp	Leu	Arg
Arg	Glu	Ala
Ala	Leu	Ser
Ser	Gln	Leu
Gln	Leu	Arg
Leu	Arg	Val
Val	Leu	Glu
Glu	Leu	Leu
Leu	Leu	Leu
Leu	Leu	Val
Val	Leu	Glu
Glu	Leu	Ile
Ile	Leu	Glu
Glu	Ile	Leu
Ile	Leu	Leu
Leu	Leu	Val
Val	Leu	Glu
Glu	Ile	Ile
Ile	Ile	Glu
Glu	Ile	Leu
Ile	Ile	Asn
Asn	Ile	Ile
Ile	Ile	Glu
Glu	Ile	Asn
Asn	Ile	Val
Val	Ile	Ala
Ala	Ile	Val
Val	Ile	Gln
Gln	Ile	Glu
Glu	Ile	Arg
Arg	Ile	Arg
Arg	Ile	Gln
Gln	Ile	Gln
Gln	Ile	Ile
Ile	Ile	Cys
Cys	Ile	Pro
Pro	Ile	Asp
Asp	Ile	Gln
Gln	Ile	Pro
Pro	Ile	Trp
Trp	Ile	Val
Val	Ile	Gln
Gln	Ile	Glu
Glu	Ile	Asp
Asp	Ile	Gly
Gly	Ile	Ser
Ser	Ile	Gln
Gln	Ile	Lys
Lys	Ile	Leu
Leu	Ile	Glu
Glu	Ile	Asn
Asn	Ile	Leu
Leu	Ile	Pro
Pro	Ile	Glu
Glu	Ile	His
His	Ile	Val
Val	Ile	Asn
Asn	Ile	Phe
Phe	Ile	Ile
Ile	Ile	Gln
Gln	Ile	His
His	Ile	Arg
Arg	Ile	Arg
Arg	Ile	Ile
Ile	Ile	His
His	Ile	Arg
Arg	Ile	Arg
Arg	Ile	Ile
Ile	Ile	Asn
Asn	Ile	Leu
Leu	Ile	Thr
Thr	Ile	Gln
Gln	Ile	His
His	Ile	Arg
Arg	Ile	Val
Val	Ile	His
His	Ile	Thr
Thr	Ile	Gly
Gly	Ile	Glu
Glu	Ile	Asp
Asp	Ile	Gly
Gly	Ile	Ser
Ser	Ile	Tyr
Tyr	Ile	Asn
Asn	Ile	Ile
Ile	Ile	Gly
Gly	Ile	Asn
Asn	Ile	Leu
Leu	Ile	Arg
Arg	Ile	Arg
Arg	Ile	Ile
Ile	Ile	Asn
Asn	Ile	Leu
Leu	Ile	Thr
Thr	Ile	Lys
Lys	Ile	Leu
Leu	Ile	Ser
Ser	Ile	Val
Val	Ile	Lys
Lys	Ile	Lys
Lys	Ile	Ile
Ile	Ile	Ser
Ser	Ile	Glu
Glu	Ile	Tyr
Tyr	Ile	Ser

465	470	475	480
Glu Ala Asp Met Glu Leu Ser Gly Lys Thr Gln Arg Asn Val Ser Gln			
485	490	495	
Val Gln Asp Phe Gly Glu Gly Cys Glu Phe Gln Gly Lys Leu Asp Arg			
500	505	510	
Lys Gln Gly Ile Pro Met Lys Glu Ile Leu Gly Gln Pro Ser Ser Lys			
515	520	525	
Arg Met Asn Tyr Ser Glu Val Pro Tyr Val His Lys Lys Ser Ser Thr			
530	535	540	
Gly Glu Arg Pro His Lys Cys Asn Glu Cys Gly Lys Ser Phe Ile Gln			
545	550	555	560
Ser Ala His Leu Ile Gln His Gln Arg Ile His Thr Gly Glu Lys Pro			
565	570	575	
Phe Arg Cys Glu Glu Cys Gly Lys Ser Tyr Asn Gln Arg Val His Leu			
580	585	590	
Thr Gln His Gln Arg Val His Thr Gly Glu Lys Pro Tyr Thr Cys Pro			
595	600	605	
Leu Cys Gly Lys Ala Phe Arg Val Arg Ser His Leu Val Gln His Gln			
610	615	620	
Ser Val His Ser Gly Glu Arg Pro Phe Lys Cys Asn Glu Cys Gly Lys			
625	630	635	640
Gly Phe Gly Arg Arg Ser His Leu Ala Gly His Leu Arg Leu His Ser			
645	650	655	
Arg Glu Lys Ser His Gln Cys Arg Glu Cys Gly Glu Ile Phe Phe Gln			
660	665	670	
Tyr Val Ser Leu Ile Glu His Gln Val Leu His Met Gly Gln Lys Asn			
675	680	685	
Glu Lys Asn Gly Ile Cys Glu Glu Ala Tyr Ser Trp Asn Leu Thr Val			
690	695	700	
Ile Glu Asp Lys Lys Ile Glu Leu Gln Glu Gln Pro Tyr Gln Cys Asp			
705	710	715	720
Ile Cys Gly Lys Ala Phe Gly Tyr Ser Ser Asp Leu Ile Gln His Tyr			
725	730	735	
Arg Thr His Thr Ala Glu Lys Pro Tyr Gln Cys Asp Ile Cys Arg Glu			
740	745	750	
Asn Val Gly Gln Cys Ser His Thr Lys Gln His Gln Lys Ile Tyr Ser			
755	760	765	
Ser Thr Lys Ser His Gln Cys His Glu Cys Gly Arg Gly Phe Thr Leu			
770	775	780	
Lys Ser His Leu Asn Gln His Gln Arg Ile His Thr Gly Glu Lys Pro			
785	790	795	800
Phe Gln Cys Lys Glu Cys Gly Met Asn Phe Ser Trp Ser Cys Ser Leu			
805	810	815	
Phe Lys His Leu Arg Ser His Glu Arg Thr Asp Pro Ile Asn Thr Leu			
820	825	830	
Ser Val Glu Gly Ser Leu Leu			
835			

<210> 6091
<211> 1336
<212> DNA
<213> Homo sapiens

<400> 6091

ttttttcttt tttttttttt tccataaaaaa gcactttgtt taattttattc aaatcgatct
60
gtacaaaagt tagcgttgct tggtcagaaa ggagtgaagg cagcagggga gtgaggggtgc
120
gtcctccgaa cgccggtgcca agggagacgc tgcattaaac gggctctgcga cggctcccg
180
ccccccacccc caccccccaga gaaatagaag cagaggcatt atctttttt tctacaaaaa
240
agtaggaaaaa gttagaaaaaag tacaaagaag caacttctcg gctgtgtta agttacaaa
300
gtttaaaggc acaagttcc gtgaagttagg cgctattgta tgctctatgc tcagcacaca
360
gggaaaggcag tgcaggtgaa tcaggtatga ctgcgttaga actgaggccc taacgacgtt
420
tagtggagaa ggttttagttt cacagcttgg taggtggcac tggtgccctgc gagccaagat
480
caacctctgaa gccaccactt tccaggaatt cctgtgtcct gtgtcctacc acatggcaca
540
gtcatgggca aggacccagg aattcctgtg tcctatgtgt cctaccacgt ggcacagtcg
600
gggacagggga cggagtcctg cttcccaaac cccaaactgg tactgggtgc tgggcaccc
660
caacctgatc agagatgtca caaggcaggt cccttctcct ccctcggggtt ttgcgttgcc
720
aagctcgagg catgaggggc ccagtcctcc cagggacett gggacctccg ggcctccag
780
ggcggcctcc cataagccga gcaacgagca acgtgatgcc ggccaacagc tgcaactcca
840
cctcctgcct gccctcaagg gaagcttccc agcttccgtt ttgtcttaaa ttctactctt
900
tgcccgatt acctcattaa ttaaagataa aataacacag aacataaata catcttaac
960
agctttcaga agaaacacat ttaagcttca aaaataaaaaa ttatcaaaaa cataaaaaata
1020
aaagagagat gtgttcatca cagccagccc tcgcgtgagc gcactctgcc agcaaggaga
1080
cacctcagat ctgacaggca ggtccggag atgctcgagt agactcatcc cagtcgtcgg
1140
acagacaccc cggatcccg acagccctg cagccgttgt cgaggaaatg tggccttgag
1200
tgcaggggtct ctcggcgcca agaccggcct ggacctcaca ggcgcctgca aggcccctgc
1260
caccccccctcc ttgggtcctt gggctgtgct ggcgttctc ctctaccgag atgcaaagcg
1320
aagggtgctgg tgccgc
1336

<210> 6092
<211> 118
<212> PRT
<213> Homo sapiens

<400> 6092
Met Ala Gln Ser Trp Ala Arg Thr Gln Glu Phe Leu Cys Pro Met Cys

1	5	10	15
Pro	Thr	Thr	Trp
His	Ser	Arg	Gly
Gln		Gly	Arg
		Ser	Pro
			Ala
			Ser
			Gln
	20	25	30
Thr	Pro	Asn	Trp
Tyr	Trp	Val	Leu
			Gly
			His
			Pro
			Asn
			Leu
			Ile
			Arg
			Asp
	35	40	45
Val	Thr	Arg	Gln
Val	Pro	Ser	Pro
Pro	Pro	Ser	Gly
			Phe
			Arg
			Leu
			Pro
			Ser
	50	55	60
Ser	Arg	His	Glu
Gly	Pro	Ser	Pro
Pro	Pro	Arg	Asp
			Leu
			Gly
			Thr
			Ser
			Gly
	65	70	75
Pro	Ser	Arg	Ala
Ala	Ala	Ser	His
Lys	Pro	Ser	Asn
Glu	Gln	Gln	Arg
			Asp
			Ala
	85	90	95
Gly	Gln	Gln	Leu
Leu	Leu	His	Leu
			Leu
			Pro
			Ala
			Leu
			Lys
			Gly
			Ser
	100	105	110
Pro	Ala	Ser	Val
Val	Leu	Ser	
	115		

<210> 6093
<211> 1998
<212> DNA
<213> Homo sapiens

<400> 6093
tttttttttt tttttttttt tttttttttt ttttttttcc ataaaaatgg atttattgcc
60
aaactttaag aaaggcgctt cataagcaga agacacagaa tgccaccctc ctcaaggagg
120
caagcacgga atgccacctt cctcaagcac gcaagctagg caggccctgc acgttctcac
180
tcctctccca gaagccagct tcctgcctag ggcccagcct gctaaaggat ggaaattaat
240
agcatttgtt cacttgaggt ggccccagag ctacttgccct acccaccagg ccccagggag
300
agtggctggg cctcaacctg tgacctacat gcagggcttc tgcacccaca gactctgcc
360
tcagtccagc tgctgcagtt agctacttga cacaggaggg aactgaggct ccaattcctg
420
gcagtaggtg gcttggctaa agccccagcc agccatggct gctggtgggg gaaggctgtt
480
cctaaggcaa gatggcaggg gatcacatga ctgggcaact gatgtccttc ttgctttgt
540
cctggggcag atggagggaa agccagactg tggcatgggg gcccagttt cacaaggagg
600
ctgatggggg ctcccgaaacc agtgcattgc tgctcacctc tgctccggcc ccacgcagcc
660
cagagaagac atctgccccct cctgatcctt gactactacc tcaagaacaa agtgacagta
720
caataaacat aacgaaggca ttgacctgtg cagcaggcct cagtggggtt ggggaacaga
780
gcagaaaaggc cagggcatgt tgctgtgacc cccccccttc tctctttcag taaacaaaag
840
tgcacatgca gaaatctggg caggtccatat cgaaagctgc tctcacccca gaggccccag
900
ggagaggtggc tggacctcggt gagccagggc ctctgcaccc acaggctctg ccctcagtc
960

agctgctgca gcacgatgga gactggatgt gcccccagag tcagggacaa tgtggggag
 1020
 aggctggag aggaccaggg tgcagggatg gaccaggaaa gggaaagaag aaaatgtctc
 1080
 ttctcctaga aagttacagg agagcagccc atctgggct tgaaggcggg gaagtggctt
 1140
 cggattccaa cataccccta tcagcatttgc aagaaatgac tggatactg gacctgttc
 1200
 ggctgagaag gaaccacaga gatccagata aatccccatc tgaggaggca cagaagttgg
 1260
 tggggattct cttctgaagg ctgacatgtat cattacaagt aagttttctt aatgtggaca
 1320
 tcagagccac tctggatcc acctcttcag aaatatacaa ggctggacac tatccagggg
 1380
 cagagactag actagggac cccttaaatt ccttccac tcttgaatcc tccagaccta
 1440
 agccctccaa tcatalogtca ctgagagggaa gggctgcag aaaatgtcct tggggca
 1500
 aaaaaggaaa cagggccaaa gagagagagg ccacacagct aatgtccctc tcacaaagag
 1560
 gcctctcatc tccctcaaga ggctccagct gggctctacg ttcccccctt ctgaggatg
 1620
 aaccttaggc ctggacccaa ggcctctgca gctactcaga ataggtggga ggagggctg
 1680
 gcttgaggc tgccttagcc atgaggctct ttgccttagga atagctggag atggagctg
 1740
 cagggggctc agctgtgctg tattcagaag tcaggaatgt aaactactgg ggatggggaa
 1800
 cagagatgtat gtcattccca gatacccaa ctgccggccc caaagccctg gggcagttt
 1860
 gaacgaccac acaaacacat aggtcccagc gtgtgtgctc ccagccccag cccagccca
 1920
 gagccaggc cagatagcca gcagtagccc tgggtggcac ctggcaccac tggccagagc
 1980
 agagtaggaa ggacgccc
 1998

<210> 6094
 <211> 136
 <212> PRT
 <213> Homo sapiens

<400> 6094

Met	Ile	Met	Ser	Ala	Phe	Arg	Arg	Glu	Ser	Pro	Pro	Thr	Ser	Val	Pro
1															15
Pro	Gln	Met	Gly	Ile	Tyr	Leu	Asp	Leu	Cys	Gly	Ser	Phe	Ser	Ala	Glu
															30
Thr	Gly	Pro	Val	Ser	Gln	Ser	Phe	Leu	Gln	Met	Leu	Ile	Gly	Val	Cys
															45
Trp	Asn	Pro	Lys	Pro	Leu	Pro	Arg	Leu	Gln	Ala	Pro	Asp	Gly	Leu	Leu
															60
Ser	Cys	Asn	Phe	Leu	Gly	Glu	Glu	Thr	Phe	Ser	Ser	Phe	Pro	Phe	Leu
															80
Val	His	Pro	Cys	Thr	Leu	Val	Leu	Ser	Gln	Pro	Leu	Pro	His	Ile	Val

	85	90	95												
Pro	Asp	Ser	Arg	Gly	Thr	Ser	Ser	Leu	His	Arg	Ala	Ala	Ala	Gly	
			100				105							110	
Leu	Arg	Ala	Glu	Pro	Val	Gly	Ala	Glu	Ala	Leu	Ala	Pro	Glu	Val	Gln
			115				120							125	
Pro	Leu	Ser	Leu	Gly	Pro	Leu	Gly								
								130							
									135						

<210> 6095

<211> 441

<212> DNA

<213> Homo sapiens

<400> 6095

```

naacgtctcc gccgtcggct ccgcggcgcc gccatggccg acgtggaaga cggagaggaa
60
acctgcgcgg tggcctctca ctccgggagc tcaggctcca agtcgggagg cgacaagatg
120
ttctccctca agaagtggaa cgcggtggcc atgtggagct gggacgtgga gtgcgatacg
180
tgcgcacatct gcagggtcca ggtgatggtg gtctggggag aatgtaatca ttccctccac
240
aactgctgta tgtccctgtg ggtgaaacag aacaatcgct gccctctctg ccagcaggac
300
tgggtggtcc aaagaatcg caaatgagag tggttagaag gcttcttagc gcagttgttc
360
agagccctgg tggatcttgt aatccagtgc cctacaaagg ctagaacact acaggggatg
420
aattctcaa atagggaccg t
441

```

<210> 6096

<211> 97

<212> PRT

<213> Homo sapiens

<400> 6096

Met	Ala	Asp	Val	Glu	Asp	Gly	Glu	Glu	Thr	Cys	Ala	Leu	Ala	Ser	His
			1		5			10						15	
Ser	Gly	Ser	Ser	Gly	Ser	Lys	Ser	Gly	Gly	Asp	Lys	Met	Phe	Ser	Leu
					20			25						30	
Lys	Lys	Trp	Asn	Ala	Val	Ala	Met	Trp	Ser	Trp	Asp	Val	Glu	Cys	Asp
			35				40				45				
Thr	Cys	Ala	Ile	Cys	Arg	Val	Gln	Val	Met	Val	Val	Trp	Gly	Glu	Cys
											50		55		60
Asn	His	Ser	Phe	His	Asn	Cys	Cys	Met	Ser	Leu	Trp	Val	Lys	Gln	Asn
											65		70		75
Asn	Arg	Cys	Pro	Leu	Cys	Gln	Gln	Asp	Trp	Val	Val	Gln	Arg	Ile	Gly
										85		90		95	
Lys															

<210> 6097

<211> 2404

<212> DNA

<213> Homo sapiens

<400> 6097

cggtttgtgg cccgggaaaa gataatgtct gtgctgagtg aatggggcct gttccggggc
60
ctccagaacc accccatggt actgccate tgcagccgtt ctggggatgt gatagaatac
120
ctgctgaaga accagtggtt tgtccgctgc caggaaatgg gggcccggc tgccaaggct
180
gtggagtcgg gggccctgga gctcagtcac tccttccacc agaagaactg gcaacactgg
240
ttttccata ttggggactg gtgtgtctcc cggcagctgt ggtggggcca tcagattcca
300
gcctacactgg ttntantagg accatgcgca nngggagaag agnngacactg ttgggtggc
360
ggccggtcag gggctgaggc cagagagttt gcagcggAAC tgacagggag gcaagggggca
420
gagccgaccc tggagagggta tcctgatgtc ctagacacat ggTTTCTTC tgccctgttc
480
ccctttctg ccctgggctg gccccaaagag accccagacc ttgtcggtt ctacccctg
540
tcactttgg aaacgggcag cgaccccttg ctgttctggg tggggcccat ggtcatgttg
600
gggacccagc tcacagggca gctgcccttc agcaaggtgc ttcttcacgg catggttcgg
660
gacaggcagg gccggaagat gagcaagtcc ctggggatg tgctggaccc aagagacatc
720
atcagtgggg tggagatgca gttgctgcag gaaaagctga gaagcggaaa tttggaccct
780
gcagagctgg ccattgtggc tgcagcacag aaaaaggact ttccctacgg gatccctgag
840
tgtggacag atgccctgag attcacactc tgctccatg gagttcaggc gggcgacttg
900
cacctgtcag tctctgaggt ccagagctgc cgacatttct gcaacaagat ctggaatgtc
960
cttcgcttta tcctcaatgc ttttagggag aaatttgcac cacagcctgc tgaggagctg
1020
tctccctcct ccccgatgga tgcctggatc ctgagccgac ttgcccctggc tgcccaggag
1080
tgtgagcggg gcttcctcac ccgagagctc tgcgtcgta ctcatgcct gcaccacttc
1140
tggcttcaca acctctgtga cgtctacctg gaggctgtga agcccgtgtc gtggcactcg
1200
ccccgggggg tgggggggggg tcaggtcctg ttctcctgcg ctgacccctgg cctccgcctc
1260
ctggccccac tcatggctt cctggctgaa gagctctggc agaggctgac cccaggcct
1320
ggttgg
1380
cactggcggcc agccagagct ggagcggcgc ttctccggg tccaaagaggt cgtcaggtg
1440
ctaaggggctc tccgagccac gtaccagctc accaaagccc ggccccggagt gctgctgcag
1500

agtcagagc ctggggacca gggcctttc gaggccttct tggagccctt gggcacccctg
 1560
 ggctactgtg gggctgtggg cctgttaccc ccaggcacag cagtccttc cggctggcc
 1620
 caggctccac tcagtacac ggctcaagtc tacatggagc tgcagggctt ggtggacccg
 1680
 cagatccagc tacctctgtt agccgcccga aggtacaagt tgcagaagca gcttgacagc
 1740
 ctcacagcca ggacccatc agaaggggag gcagggactc agaggcaaca aaagcttct
 1800
 tccctccagc tgaaattgtc aaaactggac aaggcagcct ctcacccatc gagctgtatc
 1860
 gatgagcctc cagccccagg gagcccgag ctctaactca tcataccatc cagtttct
 1920
 ccctctcaga cctgtctttg aggacaaaca gatttgtcag ctgtcaggggt gcagtggac
 1980
 gtcagagact atgtggtcca tcgccttcat tgtgtaaatg aggacacaga ctggcttgg
 2040
 cgcaactgact gtgggtgcct tgagatgctc acattactgc ccggcctgcc tcccacctgg
 2100
 aagtctggga atgaggagat tgagataaac tttgaaatc ccaaacatgt ctgttatgg
 2160
 ctctttggtc ccctttgctc ccagtggta cttttgtgct tctgagttgt cccctgagag
 2220
 ctgggtctgg gaaaagagga ggaggggtcc tcactggagg aagaggaacc tttcagtcac
 2280
 gggtaggta atggacagt ggttccggtt ctacccctt tcttggactg acaggtgcct
 2340
 ggcttttgc agggtccttc tcctccaatt tcactaaat ggaaggttcc ccgctccttg
 2400
 gctt
 2404

<210> 6098
 <211> 631
 <212> PRT
 <213> Homo sapiens

<400> 6098
 Arg Phe Val Ala Arg Glu Lys Ile Met Ser Val Leu Ser Glu Trp Gly
 1 5 10 15
 Leu Phe Arg Gly Leu Gln Asn His Pro Met Val Leu Pro Ile Cys Ser
 20 25 30
 Arg Ser Gly Asp Val Ile Glu Tyr Leu Leu Lys Asn Gln Trp Phe Val
 35 40 45
 Arg Cys Gln Glu Met Gly Ala Arg Ala Ala Lys Ala Val Glu Ser Gly
 50 55 60
 Ala Leu Glu Leu Ser Pro Ser Phe His Gln Lys Asn Trp Gln His Trp
 65 70 75 80
 Phe Ser His Ile Gly Asp Trp Cys Val Ser Arg Gln Leu Trp Trp Gly
 85 90 95
 His Gln Ile Pro Ala Tyr Leu Val Xaa Xaa Gly Pro Cys Ala Xaa Gly
 100 105 110
 Glu Glu Xaa Thr Cys Trp Val Val Gly Arg Ser Gly Ala Glu Ala Arg

115	120	125
Glu Leu Ala Ala Glu Leu Thr Gly Arg Gln Gly Ala Glu Pro Thr Leu		
130	135	140
Glu Arg Asp Pro Asp Val Leu Asp Thr Trp Phe Ser Ser Ala Leu Phe		
145	150	155
Pro Phe Ser Ala Leu Gly Trp Pro Gln Glu Thr Pro Asp Leu Ala Arg		
165	170	175
Phe Tyr Pro Leu Ser Leu Leu Glu Thr Gly Ser Asp Leu Leu Leu Phe		
180	185	190
Trp Val Gly Arg Met Val Met Leu Gly Thr Gln Leu Thr Gly Gln Leu		
195	200	205
Pro Phe Ser Lys Val Leu Leu His Pro Met Val Arg Asp Arg Gln Gly		
210	215	220
Arg Lys Met Ser Lys Ser Leu Gly Asn Val Leu Asp Pro Arg Asp Ile		
225	230	235
Ile Ser Gly Val Glu Met Gln Leu Leu Gln Glu Lys Leu Arg Ser Gly		
245	250	255
Asn Leu Asp Pro Ala Glu Leu Ala Ile Val Ala Ala Gln Lys Lys		
260	265	270
Asp Phe Pro His Gly Ile Pro Glu Cys Gly Thr Asp Ala Leu Arg Phe		
275	280	285
Thr Leu Cys Ser His Gly Val Gln Ala Gly Asp Leu His Leu Ser Val		
290	295	300
Ser Glu Val Gln Ser Cys Arg His Phe Cys Asn Lys Ile Trp Asn Ala		
305	310	315
Leu Arg Phe Ile Leu Asn Ala Leu Gly Glu Lys Phe Val Pro Gln Pro		
325	330	335
Ala Glu Glu Leu Ser Pro Ser Pro Met Asp Ala Trp Ile Leu Ser		
340	345	350
Arg Leu Ala Leu Ala Ala Gln Glu Cys Glu Arg Gly Phe Leu Thr Arg		
355	360	365
Glu Leu Ser Leu Val Thr His Ala Leu His His Phe Trp Leu His Asn		
370	375	380
Leu Cys Asp Val Tyr Leu Glu Ala Val Lys Pro Val Leu Trp His Ser		
385	390	395
Pro Arg Pro Leu Gly Pro Pro Gln Val Leu Phe Ser Cys Ala Asp Leu		
405	410	415
Gly Leu Arg Leu Leu Ala Pro Leu Met Pro Phe Leu Ala Glu Glu Leu		
420	425	430
Trp Gln Arg Leu Pro Pro Arg Pro Gly Cys Pro Pro Ala Pro Ser Ile		
435	440	445
Ser Val Ala Pro Tyr Pro Ser Ala Cys Ser Leu Glu His Trp Arg Gln		
450	455	460
Pro Glu Leu Glu Arg Arg Phe Ser Arg Val Gln Glu Val Val Gln Val		
465	470	475
Leu Arg Ala Leu Arg Ala Thr Tyr Gln Leu Thr Lys Ala Arg Pro Arg		
485	490	495
Val Leu Leu Gln Ser Ser Glu Pro Gly Asp Gln Gly Leu Phe Glu Ala		
500	505	510
Phe Leu Glu Pro Leu Gly Thr Leu Gly Tyr Cys Gly Ala Val Gly Leu		
515	520	525
Leu Pro Pro Gly Thr Ala Ala Pro Ser Gly Trp Ala Gln Ala Pro Leu		
530	535	540
Ser Asp Thr Ala Gln Val Tyr Met Glu Leu Gln Gly Leu Val Asp Pro		

545 550 555 560
Gln Ile Gln Leu Pro Leu Leu Ala Ala Arg Arg Tyr Lys Leu Gln Lys
565 570 575
Gln Leu Asp Ser Leu Thr Ala Arg Thr Pro Ser Glu Gly Glu Ala Gly
580 585 590
Thr Gln Arg Gln Gln Lys Leu Ser Ser Leu Gln Leu Glu Leu Ser Lys
595 600 605
Leu Asp Lys Ala Ala Ser His Leu Arg Gln Leu Met Asp Glu Pro Pro
610 615 620
Ala Pro Gly Ser Pro Glu Leu
625 630

<210> 6099
<211> 3957
<212> DNA
<213> Homo sapiens

<400> 6099
ggggctgccc gggccgggac tgggggagcc gggccccggg gcccgcgtct gcctccgccc
60
gcccgggggt ccccaagccgc ccccgctgcc gtgtccccctg cggccggcca gccgcgtccc
120
ccagccccgg cctcccgccgg acccatgccc gcccgtatcg gctactacga gatcgaccgc
180
accatccggca agggcaactt cgccgtggtc aagcgggcca cgcacctcgta caccaaggcc
240
aaggttgcta tcaagatcat agataagacc cagctggatg aagaaaaactt gaagaagatt
300
ttccggaaag ttcaaattat gaagatgctt tgccacccccc atatcatcg gctctaccag
360
gttatggaga cagaacggat gatttatctg gtgacagaat atgcttagtgg agggaaata
420
tttgaccacc tggtagccca tggtagaaatg gcagaaaaagg aggcacgtcg gaagttcaaa
480
cagatcgta cagctgtcta ttttgcac tgcggaaaca ttgttcatcg tgatttaaaa
540
gctgaaaaatt tacttctgga tgccaatctg aatatcaaaa tagcagatgg tggtttcaat
600
aacctttca ctccctggca gctgctgaag acctgggtgtg gcagccctcc ctatgctgca
660
cctgaactct ttgaaggaaa agaatatgat gggcccaaag tggacatctg gagccttgg
720
gttgtccctct acgtgcttgcgtgt gtgcgggtgcc ctgcatttg atgaaagcac actgcagaat
780
ctgcggggccc gcgtgctgag tggaaagtgc cgcattccat ttttatgtc cacagaatgt
840
gagcatttga tccgccccat gttgggttta gatcccaata agcgcctctc catggagcag
900
atctgcaagc acaagtggat gaagctaggg gacgcccgtc ccaactttga caggttaata
960
gctgaatgcc aacaactaaa ggaagaaaga caggtggacc ccctgaatga ggatgtccctc
1020
ttggccatgg aggacatggg actggacaaa gaacagacac tgcaggcggc gcaggcaggt
1080

actgctatga acatcagcgt tccccaggtg cagctgatca acccagagaa ccaaattgtg
1140
gagccggatg ggacactgaa tttggacagt gatgagggtg aagagccttc ccctgaagca
1200
ttggtgcgct atttgtcaat gaggaggcac acagtgggtg tggctgaccc acgcacggaa
1260
gttatggaag atctgcagaa gtccttacct ggcttcctg gagtcaaccc ccaggctcca
1320
ttcctgcagg tggcccctaa tgtgaacttc atgcacaacc tggctgcctat gcaaaaacttg
1380
caaccaaccg ggcaacttga gtacaaggag cagtctctcc tacagccgcc cacgctacag
1440
ctgttgaatg gaatgggccc ccttggccgg agggcatcag atggaggagc caacatccaa
1500
ctgcatgccc agcagctgct gaagcgcaca cggggaccct ctccgcttgc caccatgaca
1560
ccagcagtgc cagcagttac ccctgtggac gaggagagct cagacgggga gccagaccag
1620
gaagctgtgc agagctctac ctacaaggac tccaacactc tgcacccccc tacggagcgt
1680
ttctccctg tgccgcgggtt ctcaagatgg gctgcgagca tccaggcctt caaagctcac
1740
ctggaaaaaaaaa tggcaacaa cagcagcatc aaacagctgc agcaggagtg tgagcagctg
1800
cagaagatgt acggggggca gattgatgaa agaaccctgg agaagaccca gcagcagcat
1860
atgttataacc agcaggagca gcaccatcaa attctccagc aacaaattca agactctatc
1920
tgtcctccctc agccatctcc acctcttcag gctgcgttg aaaatcagcc agccctccctt
1980
accatcagc tccagagggtt aaggattcag cttcaagcc caccggggaa ccaccccaac
2040
aaccatctct tcaggcagcc cagtaatagt cttttttttt tgagcagtgc catgatccag
2100
cctcacgggg ctgcatcttc ttcccagttt caaggcttac cttccgcag tgcaatctt
2160
cagcagcaac ctgagaactg ttctctctt cccaacgtgg cactaacctg cttgggtatg
2220
cagcagcctg ctcagtcaca gcaggtcacc atccaaatc aagagcctgt tgacatgctc
2280
agcaacatgc caggtcacgc tgcaaggctcc agtgggcgcg gcatctccat cagccccagt
2340
gctgggtcaga tgcaaatgca gcaccgttacc aacctgtatgg ccaccctcag ctatggcac
2400
cgtcccttgtt ccaagcagct gagtgctgac agtgcagagg ctcacagctt gaacgtgaat
2460
cggttctccc ctgctaacta cgaccaggcg catttacacc cccatctgtt ttggaccag
2520
tccccgggtt ccccccagcag ctacagccct tcaacaggag tggggttctc tccaaacccaa
2580
gccctgaaag tccctccact tgaccaattc cccaccccttcc ctcccaatgc acatcagcag
2640
ccggccacact ataccacgtc ggcactacag caggccctgc tgtctccac gccggccagac
2700

tataacaagac accagcaggt acccccacatc cttcaaggac tgctttctcc ccggcattcg
 2760
 ctcaccggcc actcggacat ccggctgccc ccaacagagt ttgcacagct cattaaaagg
 2820
 cagcagcaac aacggcagca gcagcagcaa cagcagcaac agcaagaata ccaggaactg
 2880
 ttcaggcaca tgaaccaagg ggatgcgggg agtctggctc ccagccttgg gggacagagc
 2940
 atgacagagc gccaggctt atcttatcaa aatgctgact cttatcacca cacgatccag
 3000
 aacagcgcacg atgcttatgt acagctggat aacttgcag gaatgagtct cgtggctggg
 3060
 aaagcactta gctctgccc gatgtcggt gcagttctca gtcagtcttc gtcatgggc
 3120
 agccagcagt ttcaggatgg ggaaaatgag gaatgtgggg caagcctggg aggtcatgag
 3180
 caccagacc tgagtgtatgg cagccagcat taaactcct cttgctatcc atctacgtgt
 3240
 attacagaca ttctgctcag ctacaagcac cccgaagtct ctttcagcat ggagcaggca
 3300
 ggcgtgtaac aagaaacaga gagagagcaa gaggtcccga gtcccccctt agtctttcat
 3360
 cctgaatttg cacagaggaa agcgggtgcc cggcatggcc atcctgatgt tgctggaggg
 3420
 atccccatgc accttgcct tctccactga tactggcagc tcggctcctg gacccaagat
 3480
 cccttgagtg gaattctgca gtgcaagagc cttcgtggg agctgtccca tgttccatg
 3540
 gtccccagtc tccccccac ttgggtgggt caccactac tcaccagaag ggggcttacc
 3600
 aagaaagccc taaaaagctg ttgacttatac tgcgcttgtt ccaactctta tgcccccaac
 3660
 ctgccttacc accaccacgc gtcagcctg atgtgtttac atggtaactgt atgtatggga
 3720
 gagcagactg cacccgccag caacatcaga tgaaagccag tgagcctact aaccgtgcc
 3780
 tcttgcaaac tacactttaa aaaaaactca ttgcttgc ttgttagtaac caatatgtgc
 3840
 agtatacggtt gaatgtatat gaacataactt tcctatttct gttcttgc aatgtcagaa
 3900
 atatttttt ctttcatt ttatgttgc aaaaaagga taaaaaaaaa aatctcc
 3957

<210> 6100
 <211> 1102
 <212> PRT
 <213> Homo sapiens

<400> 6100
 Gly Ala Ala Gly Ala Gly Thr Gly Gly Ala Gly Pro Ala Gly Arg Leu
 1 5 10 15
 Leu Pro Pro Pro Ala Pro Gly Ser Pro Ala Ala Pro Ala Ala Val Ser
 20 25 30
 Pro Ala Ala Gly Gln Pro Arg Pro Pro Ala Pro Ala Ser Arg Gly Pro

35	40	45
Met Pro Ala Arg Ile Gly Tyr Tyr Glu Ile Asp Arg Thr Ile Gly Lys		
50	55	60
Gly Asn Phe Ala Val Val Lys Arg Ala Thr His Leu Val Thr Lys Ala		
65	70	75
Lys Val Ala Ile Lys Ile Ile Asp Lys Thr Gln Leu Asp Glu Glu Asn		
85	90	95
Leu Lys Lys Ile Phe Arg Glu Val Gln Ile Met Lys Met Leu Cys His		
100	105	110
Pro His Ile Ile Arg Leu Tyr Gln Val Met Glu Thr Glu Arg Met Ile		
115	120	125
Tyr Leu Val Thr Glu Tyr Ala Ser Gly Gly Glu Ile Phe Asp His Leu		
130	135	140
Val Ala His Gly Arg Met Ala Glu Lys Glu Ala Arg Arg Lys Phe Lys		
145	150	155
160		
Gln Ile Val Thr Ala Val Tyr Phe Cys His Cys Arg Asn Ile Val His		
165	170	175
Arg Asp Leu Lys Ala Glu Asn Leu Leu Asp Ala Asn Leu Asn Ile		
180	185	190
Lys Ile Ala Asp Phe Gly Phe Ser Asn Leu Phe Thr Pro Gly Gln Leu		
195	200	205
Leu Lys Thr Trp Cys Gly Ser Pro Pro Tyr Ala Ala Pro Glu Leu Phe		
210	215	220
Glu Gly Lys Glu Tyr Asp Gly Pro Lys Val Asp Ile Trp Ser Leu Gly		
225	230	235
240		
Val Val Leu Tyr Val Leu Val Cys Gly Ala Leu Pro Phe Asp Gly Ser		
245	250	255
Thr Leu Gln Asn Leu Arg Ala Arg Val Leu Ser Gly Lys Phe Arg Ile		
260	265	270
Pro Phe Phe Met Ser Thr Glu Cys Glu His Leu Ile Arg His Met Leu		
275	280	285
Val Leu Asp Pro Asn Lys Arg Leu Ser Met Glu Gln Ile Cys Lys His		
290	295	300
Lys Trp Met Lys Leu Gly Asp Ala Asp Pro Asn Phe Asp Arg Leu Ile		
305	310	315
320		
Ala Glu Cys Gln Gln Leu Lys Glu Glu Arg Gln Val Asp Pro Leu Asn		
325	330	335
Glu Asp Val Leu Leu Ala Met Glu Asp Met Gly Leu Asp Lys Glu Gln		
340	345	350
Thr Leu Gln Ala Glu Gln Ala Gly Thr Ala Met Asn Ile Ser Val Pro		
355	360	365
Gln Val Gln Leu Ile Asn Pro Glu Asn Gln Ile Val Glu Pro Asp Gly		
370	375	380
Thr Leu Asn Leu Asp Ser Asp Glu Gly Glu Glu Pro Ser Pro Glu Ala		
385	390	395
400		
Leu Val Arg Tyr Leu Ser Met Arg Arg His Thr Val Gly Val Ala Asp		
405	410	415
Pro Arg Thr Glu Val Met Glu Asp Leu Gln Lys Leu Leu Pro Gly Phe		
420	425	430
Pro Gly Val Asn Pro Gln Ala Pro Phe Leu Gln Val Ala Pro Asn Val		
435	440	445
Asn Phe Met His Asn Leu Leu Pro Met Gln Asn Leu Gln Pro Thr Gly		
450	455	460
Gln Leu Glu Tyr Lys Glu Gln Ser Leu Leu Gln Pro Pro Thr Leu Gln		

465	470	475	480
Leu Leu Asn Gly Met Gly Pro Leu Gly Arg Arg Ala Ser Asp Gly Gly			
485	490	495	
Ala Asn Ile Gln Leu His Ala Gln Gln Leu Leu Lys Arg Pro Arg Gly			
500	505	510	
Pro Ser Pro Leu Val Thr Met Thr Pro Ala Val Pro Ala Val Thr Pro			
515	520	525	
Val Asp Glu Glu Ser Ser Asp Gly Glu Pro Asp Gln Glu Ala Val Gln			
530	535	540	
Ser Ser Thr Tyr Lys Asp Ser Asn Thr Leu His Leu Pro Thr Glu Arg			
545	550	555	560
Phe Ser Pro Val Arg Arg Phe Ser Asp Gly Ala Ala Ser Ile Gln Ala			
565	570	575	
Phe Lys Ala His Leu Glu Lys Met Gly Asn Asn Ser Ser Ile Lys Gln			
580	585	590	
Leu Gln Gln Glu Cys Glu Gln Leu Gln Lys Met Tyr Gly Gly Gln Ile			
595	600	605	
Asp Glu Arg Thr Leu Glu Lys Thr Gln Gln His Met Leu Tyr Gln			
610	615	620	
Gln Glu Gln His His Gln Ile Leu Gln Gln Ile Gln Asp Ser Ile			
630	635	640	
Cys Pro Pro Gln Pro Ser Pro Pro Leu Gln Ala Ala Cys Glu Asn Gln			
645	650	655	
Pro Ala Leu Leu Thr His Gln Leu Gln Arg Leu Arg Ile Gln Pro Ser			
660	665	670	
Ser Pro Pro Pro Asn His Pro Asn Asn His Leu Phe Arg Gln Pro Ser			
675	680	685	
Asn Ser Pro Pro Pro Met Ser Ser Ala Met Ile Gln Pro His Gly Ala			
690	695	700	
Ala Ser Ser Ser Gln Phe Gln Gly Leu Pro Ser Arg Ser Ala Ile Phe			
705	710	715	720
Gln Gln Gln Pro Glu Asn Cys Ser Ser Pro Pro Asn Val Ala Leu Thr			
725	730	735	
Cys Leu Gly Met Gln Gln Pro Ala Gln Ser Gln Gln Val Thr Ile Gln			
740	745	750	
Val Gln Glu Pro Val Asp Met Leu Ser Asn Met Pro Gly Thr Ala Ala			
755	760	765	
Gly Ser Ser Gly Arg Gly Ile Ser Ile Ser Pro Ser Ala Gly Gln Met			
770	775	780	
Gln Met Gln His Arg Thr Asn Leu Met Ala Thr Leu Ser Tyr Gly His			
785	790	795	800
Arg Pro Leu Ser Lys Gln Leu Ser Ala Asp Ser Ala Glu Ala His Ser			
805	810	815	
Leu Asn Val Asn Arg Phe Ser Pro Ala Asn Tyr Asp Gln Ala His Leu			
820	825	830	
His Pro His Leu Phe Ser Asp Gln Ser Arg Gly Ser Pro Ser Ser Tyr			
835	840	845	
Ser Pro Ser Thr Gly Val Gly Phe Ser Pro Thr Gln Ala Leu Lys Val			
850	855	860	
Pro Pro Leu Asp Gln Phe Pro Thr Phe Pro Pro Ser Ala His Gln Gln			
865	870	875	880
Pro Pro His Tyr Thr Thr Ser Ala Leu Gln Gln Ala Leu Leu Ser Pro			
885	890	895	
Thr Pro Pro Asp Tyr Thr Arg His Gln Gln Val Pro His Ile Leu Gln			

900	905	910
Gly Leu Leu Ser Pro Arg His Ser Leu Thr Gly	HIS	Arg
915	920	925
Leu Pro Pro Thr Glu Phe Ala Gln Leu Ile Lys	Arg	Gln Gln Gln Gln
930	935	940
Arg Gln Gln Gln Gln Gln Gln Gln Gln	Tyr	Gln Glu Leu
945	950	955
Phe Arg His Met Asn Gln Gly Asp Ala Gly	Ser	Leu Ala Pro Ser Leu
965	970	975
Gly Gly Gln Ser Met Thr Glu Arg Gln Ala	Leu Ser Tyr Gln Asn Ala	
980	985	990
Asp Ser Tyr His His Thr Ile Gln Asn Ser Asp	Asp Ala Tyr Val Gln	
995	1000	1005
Leu Asp Asn Leu Pro Gly Met Ser Leu Val Ala	Gly Lys Ala Leu Ser	
1010	1015	1020
Ser Ala Arg Met Ser Asp Ala Val Leu Ser Gln	Ser Ser Leu Met Gln	
1025	1030	1035
Ser Gln Gln Phe Gln Asp Gly Glu Asn Glu Glu	Cys Gly Ala Ser Leu	
1045	1050	1055
Gly Gly His Glu His Pro Asp Leu Ser Asp Gly	Ser Gln His Leu Asn	
1060	1065	1070
Ser Ser Cys Tyr Pro Ser Thr Cys Ile Thr Asp	Ile Leu Leu Ser Tyr	
1075	1080	1085
Lys His Pro Glu Val Ser Phe Ser Met Glu Gln	Ala Gly Val	
1090	1095	1100

<210> 6101
<211> 1447
<212> DNA
<213> Homo sapiens

<400> 6101
tttttttttt tttttttttt tttttttttt ttttttttc actgcaaccca gtacttatgt
60
ttattactgt acctaataaaa cagcccagcg tggtgattcc tattcactta gtagcctccc
120
catctagaaa tatactccgt gatctttctt gatggccaga ctgtgtaaaa ttcatacagt
180
gtttactaca gggatccccaa aatattgtta gttgaatgaa caaacacaca tttcaaggag
240
ggcactacag tgtagtagatg aacagtttc tgataggaga ttgtacaagt aatgtttca
300
ccagtgtatt ttaggacagc agattcagat taatgcgctg ggactgaatg caaatagtaa
360
aattacaaat ataaagtaaa aatttggAAC cttgccaca gagaggaata ataaatttat
420
ttaataattt gaaagaactg taaggtttag gttttgttct tatttttagt gcgactgaga
480
ttggagtcg tttgtagaca tatctgaaaa aagtgaaggg ggagatggaa gatggtaat
540
gcccaaggaaaa agatggaagg ataaatcagt gtaataaaaa ggagcaccc ttttcgcca
600
acagaagtaa aggtaaaggt taagtgtctg agttaacgaa tggattgttg acctctgggg
660

agggtgctcc catcagctca gctttgtgac gacctaaagaa tatcccttcc acacctttcc
 720
 tgatccaatc gtctggctg cataaaaacca cctaaatcaa tcaactgtta cacttccctt
 780
 agtgcttagga catattcata taactcccac gtattaaatg aaaatacatc catctaaaaaa
 840
 taaaacaaca agattgctgc tacaccaaga aaggattttt aaaaaggcctg ttcacaagct
 900
 aagtgagggc cagagggaaag gtgttcgttt aaactgaaat tcgagctgctg ataacaccc
 960
 ctaatgcaat caaacgctgt tgcagcacac ttcttaggag atcgggttca acggcaggga
 1020
 ttgggttaagg tgagaatctg gcttggcgcc tccggccccg gccatctggt tcccttgggc
 1080
 tccggccgccc accatccact cgacggctct cggccccgaaac gcttggtcgc accgcctgccc
 1140
 gaggtccttag atgaatcgct tcagggctgg aaacgaggaa gccgtctccg gagaccatcg
 1200
 ccaacgctga cgcccgccgt ctgaggtcgc catgggaaga gcggtaggcc accctgctccc
 1260
 tctgatcacc ggaggacagg gacacattgt tcagggccat attcaaacac tgcccgca
 1320
 acttgcgtta cgtccctttt tgaaggcagg cccttcgcgg ctccccagat cagtccagcc
 1380
 tgtgtcggac ccgatgacta agcacacagg aacccataac tgagctgcgg aagagccaga
 1440
 agccgcc
 1447

<210> 6102
 <211> 123
 <212> PRT
 <213> Homo sapiens

<400> 6102
 Met Ala Leu Asn Asn Val Ser Leu Ser Ser Gly Asp Gln Arg Ser Arg
 1 5 10 15
 Val Ala Tyr Arg Ser Ser His Gly Asp Leu Arg Pro Arg Ala Ser Ala
 20 25 30
 Leu Ala Met Val Ser Gly Asp Gly Phe Leu Val Ser Arg Pro Glu Ala
 35 40 45
 Ile His Leu Gly Pro Arg Gln Ala Val Arg Pro Ser Val Arg Ala Glu
 50 55 60
 Ser Arg Arg Val Asp Gly Gly Arg Ser Pro Arg Glu Pro Asp Gly
 65 70 75 80
 Arg Gly Arg Ser Arg Gln Ala Arg Phe Ser Pro Tyr Pro Ile Pro Ala
 85 90 95
 Val Glu Pro Asp Leu Leu Arg Ser Val Leu Gln Gln Arg Leu Ile Ala
 100 105 110
 Leu Gly Gly Val Ile Ala Ala Arg Ile Ser Val
 115 120

<210> 6103
 <211> 309

<212> DNA

<213> Homo sapiens

<400> 6103

agatcttctt tttagttctt aggttctctg gaacacactc ctgaatgtgc acagcgccct
60
ctactgcttc ggccagggttg ccacagccac tgatgagaga cagctccagc cacaatggac
120
agaacctatg cctttagtcaa gaagattggg cagtccccag tgagagtctt gaaggagatt
180
gacggcttcg tcctgaaccg cctgcagttac gccgtcatca gtgaggcctg gagactggtg
240
gaggaagaaa tagtatctcc tagcgaccta gacctggtca tgtcagacgg gctgggcatg
300
cggtacgctg
309

<210> 6104

<211> 71

<212> PRT

<213> Homo sapiens

<400> 6104

Glu Thr Ala Pro Ala Thr Met Asp Arg Thr Tyr Ala Leu Met Lys Lys
1 5 10 15
Ile Gly Gln Ser Pro Val Arg Val Leu Lys Glu Ile Asp Gly Phe Val
20 25 30
Leu Asn Arg Leu Gln Tyr Ala Val Ile Ser Glu Ala Trp Arg Leu Val
35 40 45
Glu Glu Glu Ile Val Ser Pro Ser Asp Leu Asp Leu Val Met Ser Asp
50 55 60
Gly Leu Gly Met Arg Tyr Ala
65 70

<210> 6105

<211> 1846

<212> DNA

<213> Homo sapiens

<400> 6105

ncaccagcag cagcaggcag ctttactcca cggggagggc gcctcacagc agccgcggca
60
caggggccag aaccggggat gcccccaac cctatgaact caacacagcc atcaactgca
120
ggatgaagt ggtgtctccc cttccatctg ctctgcaggg gtccctcagg ctccctatca
180
gccccctccag ctgcctcagt tatctctgca ccccatctt ctcctcccg acatcgcaaa
240
cgtcgcagga ctccagcaa gtcggaggca gggcttaggg gtggaggcca gggttccaag
300
gaaaagggcc gagggagttg gggaggccgc caccaccacc accacccact gcctgcagca
360
ggcttcaaaa agcaacagcg caagttccag tatggaaatt attgcaaata ctatgggtac
420

cgcaatcctt cctgtgagga tgggcgcctt cgggtgtga agcctgagtg gtttcggggc
480
cgggacgtcc tagatctggg ctgcaatgtg gccatctga ccctgagcat tgccctgcaag
540
tggggccccgt cccgcatggt gggcctggat atcgattccc ggctcatcca ttctgcccgc
600
caaaacatcc gacactaccc ttccgaggag ctgcgtctcc cacccagac tttggaaggg
660
gaccgggggg cagagggtga ggaagggacc accaccgttc gaaagaggag ctgcttccca
720
gcctcgctga ctgccagccg gggtcccatc gctgcccccc aagtgcctt ggatggagcg
780
gacacatcag tcttcccaa caatgttgc ttcgtcacgg gtaattatgt gctggatcga
840
gatgacctgg tggaggccca aacacctgag tatgatgtgg tgctctgcct cagcctcacc
900
aagtgggtgc atctgaactg gggagacgag ggcctgaagc gcatgtttcg ccggatctac
960
cggcacctac gccctggggg catcctggtc ctagagcccc aaccctggtc gtcgtatggc
1020
aagagaaaaga ctcttacaga aacgatctac aagaactact accgaatcca attgaagcca
1080
gagcagttca gttcctaccc gacatcccc gacgtggct tctccagcta tgagcttgc
1140
gccacaccccc acaacaccc tc aaaggcttc cagcgtcctg tgtacctgtt ccacaaggcc
1200
cgatccccca gccactaagt ggccttctaa acagaaaatg tgaagaggct gccctcgctg
1260
ctcataagga cctggggaa gaggaaatg tcccaaggtc ttccctttct gactccaaaa
1320
atagttcct ttcttgatc tgcaaagaaa gctttcttc cgtcgtgcc tcagcctcct
1380
ccctatgcct ctggcacctg cgcagcaagg ctggctgtgc tggagtcaacc atcatcttcc
1440
tctccccag cctcccaggc tggatggcat ggactgtttg ctgacctctg ttctcttagg
1500
gcatgggagg tggaggata tcaaattctc tagcccttc ctcctattct ctggcccttc
1560
tattctccca aggagagaga ttcccatttc tcctggcca ttgtacctag ctctgtccc
1620
tagctgcatt tcagtggacc atggatagag ggactgaggg ttagacgggg aagactggca
1680
gggaggcact caggtactgt gaaaatcctt cccttgccc tccccagtg ggagaggggg
1740
ttgggttttc aatgtgagaa cagcacaata aacttgatgt cttagggcagt ggccccaaaa
1800
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa
1846

<210> 6106
<211> 405
<212> PRT
<213> Homo sapiens

<400> 6106

Xaa	Pro	Ala	Ala	Ala	Gly	Ser	Leu	Thr	Pro	Arg	Gly	Gly	Arg	Leu	Thr
1					5				10					15	
Ala	Ala	Ala	Ala	Gln	Gly	Pro	Glu	Pro	Gly	Met	Pro	Pro	Asn	Pro	Met
				20			25			30					
Asn	Ser	Thr	Gln	Pro	Ser	Thr	Ala	Gly	Met	Lys	Trp	Cys	Leu	Pro	Phe
				35			40			45					
His	Leu	Leu	Cys	Arg	Gly	Pro	Ser	Gly	Ser	Leu	Ser	Ala	Pro	Pro	Ala
				50			55			60					
Ala	Ser	Val	Ile	Ser	Ala	Pro	Pro	Ser	Ser	Ser	Arg	His	Arg	Lys	
65					70			75			80				
Arg	Arg	Arg	Thr	Ser	Ser	Lys	Ser	Glu	Ala	Gly	Ala	Arg	Gly	Gly	
				85			90			95					
Gln	Gly	Ser	Lys	Glu	Lys	Gly	Arg	Gly	Ser	Trp	Gly	Gly	Arg	His	His
				100			105			110					
His	His	His	Pro	Leu	Pro	Ala	Ala	Gly	Phe	Lys	Lys	Gln	Gln	Arg	Lys
				115			120			125					
Phe	Gln	Tyr	Gly	Asn	Tyr	Cys	Lys	Tyr	Tyr	Gly	Tyr	Arg	Asn	Pro	Ser
				130			135			140					
Cys	Glu	Asp	Gly	Arg	Leu	Arg	Val	Leu	Lys	Pro	Glu	Trp	Phe	Arg	Gly
145					150			155			160				
Arg	Asp	Val	Leu	Asp	Leu	Gly	Cys	Asn	Val	Gly	His	Leu	Thr	Leu	Ser
				165			170			175					
Ile	Ala	Cys	Lys	Trp	Gly	Pro	Ser	Arg	Met	Val	Gly	Leu	Asp	Ile	Asp
				180			185			190					
Ser	Arg	Leu	Ile	His	Ser	Ala	Arg	Gln	Asn	Ile	Arg	His	Tyr	Leu	Ser
				195			200			205					
Glu	Glu	Leu	Arg	Leu	Pro	Pro	Gln	Thr	Leu	Glu	Gly	Asp	Pro	Gly	Ala
				210			215			220					
Glu	Gly	Glu	Gly	Thr	Thr	Val	Arg	Lys	Arg	Ser	Cys	Phe	Pro		
225					230			235			240				
Ala	Ser	Leu	Thr	Ala	Ser	Arg	Gly	Pro	Ile	Ala	Ala	Pro	Gln	Val	Pro
				245			250			255					
Leu	Asp	Gly	Ala	Asp	Thr	Ser	Val	Phe	Pro	Asn	Asn	Val	Val	Phe	Val
				260			265			270					
Thr	Gly	Asn	Tyr	Val	Leu	Asp	Arg	Asp	Asp	Leu	Val	Glu	Ala	Gln	Thr
				275			280			285					
Pro	Glu	Tyr	Asp	Val	Val	Leu	Cys	Leu	Ser	Leu	Thr	Lys	Trp	Val	His
				290			295			300					
Leu	Asn	Trp	Gly	Asp	Glu	Gly	Leu	Lys	Arg	Met	Phe	Arg	Arg	Ile	Tyr
				305			310			315			320		
Arg	His	Leu	Arg	Pro	Gly	Gly	Ile	Leu	Val	Glu	Pro	Gln	Pro	Trp	
				325			330			335					
Ser	Ser	Tyr	Gly	Lys	Arg	Lys	Thr	Leu	Thr	Glu	Thr	Ile	Tyr	Lys	Asn
				340			345			350					
Tyr	Tyr	Arg	Ile	Gln	Leu	Lys	Pro	Glu	Gln	Phe	Ser	Ser	Tyr	Leu	Thr
				355			360			365					
Ser	Pro	Asp	Val	Gly	Phe	Ser	Ser	Tyr	Glu	Leu	Val	Ala	Thr	Pro	His
				370			375			380					
Asn	Thr	Ser	Lys	Gly	Phe	Gln	Arg	Pro	Val	Tyr	Leu	Phe	His	Lys	Ala
				385			390			395			400		
Arg	Ser	Pro	Ser	His											
				405											

<210> 6107
<211> 896
<212> DNA
<213> Homo sapiens

<400> 6107
nnaaatttga cccgcacagt gatgaggcca gggctggag ggagggcaggg tctatcctca
60
gatctcaggg gggcctctgg actgctgctg cctgcacctg cttgtctttt gggcaggcct
120
tggatgtcaa ggagatgctc aaggctggc tcaacaccac ccccagctcc agcctcccc
180
gtggagtc cccgaccttc acccgccctt tcagccttcatcattacc ctctgatgga
240
tgggggagtt cagttggctc ggggttgccct tggcctgcca ccaggtggtc cacatgcccc
300
agggtggagga cgatgtgtc gcctgctgac acaatagcgc ccaggagctg gttgttaccg
360
ctgtctgcta ctaggtttaga gagccaagct aggaccaagg ctagaatcag caccaccaca
420
cctgccacca ccatcacctc attaccacca ccctcaatga gggtgacatc agtgacccccc
480
ttagccgacc ctactcctca ctggccggga caactggtct tatcacggag gctggggcca
540
ggcagccctt cggttcgggt gggcccagac cccagtccaa cgccgaggga ataggaccat
600
ccaaaagcgg aaccttcgccc tcagaaaaag ggtgcgggac ccctcctcac cgtgcggta
660
cggtacggac agggtagatc acaggctgag ggacagagca aagacccctg aggccggaca
720
cctggggtcc tgccggggccc ctccccacga gagttccctg tgtctgtgcc aatcgttttc
780
gtctttcttt gccgcagttt cttttcctgt aaatcatggt taatgacatt aaccttctta
840
ccatcagggg tttagttgtgg ttgtgataaa taattactac cgtttattaag caattg
896

<210> 6108
<211> 124
<212> PRT
<213> Homo sapiens

<400> 6108
Xaa Asn Leu Thr Arg Thr Val Met Arg Pro Gly Leu Gly Gly Arg Gln
1 5 10 15
Gly Leu Ser Ser Asp Leu Arg Gly Ala Ser Gly Leu Leu Pro Ala
20 25 30
Pro Ala Cys Leu Leu Gly Arg Pro Trp Met Ser Arg Arg Cys Ser Arg
35 40 45
Leu Gly Ser Thr Pro Pro Ala Pro Ala Ser Pro Val Glu Ser Pro
50 55 60
Arg Pro Ser Pro Ala Ser Ser Ala Phe Ser Ser Leu Pro Ser Asp Gly
65 70 75 80
Trp Gly Ser Ser Val Gly Ser Gly Leu Pro Trp Pro Ala Thr Arg Trp

85	90	95
Ser Thr Cys Pro Arg Trp Arg Thr Asp Val Ser Pro Ala Asp	Thr Ile	
100	105	110
Ala Pro Arg Ser Trp Leu Leu Pro Leu Ser Ala Thr		
115	120	

<210> 6109
<211> 2087
<212> DNA
<213> *Homo sapiens*

<400> 6109
aggccggaag cgccggaga ccatgttagt agaccctgc gaggtctgag agtcactgga
60
gctaccagaa gcatcatggg gccctgggaa gagccagagc tcctggtgtg gcgccccgag
120
ggtagctca gagcctccag tgccctgtgg gctggaggtg aagttggggg ccctggtgct
180
gctgctggtc tcacccctct ctgcagccctg gtgccatct gtgtgctgcg ccggccagga
240
gctaaccatg aaggctcagc ttcccgcag aaagccctga gcctagtaag ctgtttcgcg
300
ggggggcgct ttttggccac ttgtcteectg gacctgctgc ctgactacct ggctgcata
360
gatgaggccc tggcagccctt gcacgtgacg ctccagttcc cactgcaaga gttcatcctg
420
gccccatgggt tcttccctggt cctggtgatg gagcagatca cactggctta caaggagcag
480
tcagggccgt cacctctgga ggaaacaagg gctctgctgg gaacagtgaa tggtggcccg
540
cagcattggc atgatggcc aggggtccca caggcgagtg gagccccago aacccctca
600
gccttgcgtg cctgtgtact ggtgttctcc ctggccctcc actccgtgtt cgagggcgt
660
gcggtagggc tgcagcgaga cgggctcg gccatggagc tgtgcctggc tttgctgctc
720
cacaaggcga tcctggctgt cagcctgtcc ctgcggctgt tgcagagcca ccttagggca
780
cagggtgggg ctggctgtgg gatcctcttc tcatgcatga cacctctagg catgggctg
840
ggtgcagctc tggcagagtc ggcaggaccc ctgcaccagc tggcccagtc tgtgctagag
900
ggcatggcag ctggcacctt tctctataatc accttctgg aaatcctgcc ccaggagctg
960
gccagttctg agcaaaggat cctcaaggat attctgtcc tagcaggctt tgccctgtc
1020
actggcctgc tcttcatcca aatctagggg gcttcaagag aggggcaggg gagattgtat
1080
atcagggtgcc cctgttctcc ctccccctcc ccagttgtgg ggaataggaa ggaaaggggg
1140
agggaaatac tgaggaccaa aaagttctct gggagctaaa gatagagcct ttggggctat
1200
ctgactaatg agagggaaatg gggcagacaa gaggctggcc ccagtcctaa ggaacaagag
1260

atggtaagt cgctagagac atatcagggg acattaggat tgggaaagac acttgactgc
 1320
 tagaatcaga gggtggacac tatacataag gacaggctca catgggaggc tggaggtgg
 1380
 tacccagctg ctgttggaaacg ggtatggaga ggtcataaac ctagagtcag tgtccctgtt
 1440
 gtccttagccc atttcagcac cctgccactt ggagtggacc ctcctactc ttcttagcgc
 1500
 ctaccctcat acctatctcc ctccctccat ctcctagggg actggcgcca aatggctct
 1560
 ccctgccaat ttttgtatct tctctggcct ctccagtcct gcttactcct ctattttaa
 1620
 agtgccaaac aaatccccctt cctctttctc aaagcacagt aatgtggcac tgagccctac
 1680
 ccagcacctc agtgaagggg gcctgcttgc tctttatTTT ggtcccgat cctgggtgg
 1740
 ggcagaaaata ttttctggc tggggtagga ggaagggtgt tgcagccatc tactgctgct
 1800
 gtaccctagg aatatggga catggacatg gtgtcccatg cccagatgat aaacactgag
 1860
 ctgccaaaac attttttaa atacacccga ggagcccaag gggaaaggc aatgcctacc
 1920
 cccagcgtta ttttggga gggagggctg tgcataggga catattctt agaatctatt
 1980
 ttattaaactg acctgttttggacacctgtta cccaaataaa agatgttttctt agacatctgt
 2040
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 2087

<210> 6110
 <211> 323
 <212> PRT
 <213> Homo sapiens

<400> 6110
 Met Gly Pro Trp Gly Glu Pro Glu Leu Leu Val Trp Arg Pro Glu Gly
 1 5 10 15
 Ser Phe Arg Ala Ser Ser Ala Cys Gly Ala Gly Glu Val Gly Gly
 20 25 30
 Pro Gly Ala Ala Ala Gly Leu Thr Leu Leu Cys Ser Leu Val Pro Ile
 35 40 45
 Cys Val Leu Arg Arg Pro Gly Ala Asn His Glu Gly Ser Ala Ser Arg
 50 55 60
 Gln Lys Ala Leu Ser Leu Val Ser Cys Phe Ala Gly Gly Val Phe Leu
 65 70 75 80
 Ala Thr Cys Leu Leu Asp Leu Leu Pro Asp Tyr Leu Ala Ala Ile Asp
 85 90 95
 Glu Ala Leu Ala Ala Leu His Val Thr Leu Gln Phe Pro Leu Gln Glu
 100 105 110
 Phe Ile Leu Ala Met Gly Phe Phe Leu Val Leu Val Met Glu Gln Ile
 115 120 125
 Thr Leu Ala Tyr Lys Glu Gln Ser Gly Pro Ser Pro Leu Glu Glu Thr
 130 135 140
 Arg Ala Leu Leu Gly Thr Val Asn Gly Gly Pro Gln His Trp His Asp

145	150	155	160
Gly Pro Gly Val Pro Gln Ala Ser Gly Ala Pro Ala Thr Pro Ser Ala			
165	170	175	
Leu Arg Ala Cys Val Leu Val Phe Ser Leu Ala Leu His Ser Val Phe			
180	185	190	
Glu Gly Leu Ala Val Gly Leu Gln Arg Asp Arg Ala Arg Ala Met Glu			
195	200	205	
Leu Cys Leu Ala Leu Leu His Lys Gly Ile Leu Ala Val Ser Leu			
210	215	220	
Ser Leu Arg Leu Leu Gln Ser His Leu Arg Ala Gln Val Val Ala Gly			
225	230	235	240
Cys Gly Ile Leu Phe Ser Cys Met Thr Pro Leu Gly Ile Gly Leu Gly			
245	250	255	
Ala Ala Leu Ala Glu Ser Ala Gly Pro Leu His Gln Leu Ala Gln Ser			
260	265	270	
Val Leu Glu Gly Met Ala Ala Gly Thr Phe Leu Tyr Ile Thr Phe Leu			
275	280	285	
Glu Ile Leu Pro Gln Glu Leu Ala Ser Ser Glu Gln Arg Ile Leu Lys			
290	295	300	
Val Ile Leu Leu Ala Gly Phe Ala Leu Leu Thr Gly Leu Leu Phe			
305	310	315	320
Ile Gln Ile			

<210> 6111
<211> 1706
<212> DNA
<213> Homo sapiens

<400> 6111
nnagatctgc ctgcctctct gcccccaaag tggtggatt acaggtgtga gccactgctc
60
ccagccaaga aattctttat atgttagatac tattttcttg tcaagttcag atgttggaaa
120
taacttgcca tttgttcatt cttgtctttg ttgttttca tataatagaa atcccccaa
180
tgttttatat ctttatgtc tttatttgt tttgtttgt ttttgagatg gagttccct
240
cttggccc aggctggagt gnagtggcac agtcteggct cactgcaacc tccacttcct
300
gggttcaagc agttctcggt ccgcagcctc ccaagtagct gggactacag gcatgcgcc
360
ccacgccagg ctaattttt tatttttagt agagatgggg tttcaccatg ttggccgggc
420
tggtctcaa ctcctgacct caggcgatcc acccacctca gcgtcccaa gtgctggat
480
tataaggcgatg agccaccgca cctggcctat gagtggctt ttaatttagga acaaatctaa
540
tggaaaggag agttgactga agttggccca caggattgtg agctgggcag tgccttcatg
600
aaggcttgcc accttgggac gccccagttt actgggggtt cttgcggagt gcagaaggct
660
ttctggcagc tgccctgggtt tggccagacc ctgcctcccc tcccggcggc caaccctag
720

tcccccttcct gtctccactt gcattcaggg gtggctgctg ttctgagaac attagaactg
 780
 ggaagagaga tggagtcaca tggattttg gtgggcatta ttctgaactt tcgtatccaa
 840
 gtttagtcccc ctattccac tgtggcattg ccgttctaag cagttacctg atgcctgctg
 900
 ctgaagagct gctcacagga ggcggcggcg gccctggcac tgccccttgc attaggtctt
 960
 gtgtttgatg tggcttgc aatttactt gtcagaacaa aatatttacg cgttgggttc
 1020
 aggaatttctt tttagctccc catctggctg tgaaattcag gaaacctccc gttgcctagt
 1080
 aatcacccca ttaggtgtta cattgtgaca aagtgcacatc gaccactaag gggccccctt
 1140
 ggtgaccaccgc acacattcac agcagtgtta aaatggcctg cattttggag atgctggctg
 1200
 gccttcagt gcctccagg aagacacatg gccttcctt cttcagatgc ctgaagggag
 1260
 tgctttgagg caggtgatgt gctggagtg tggcggcct ccctctggcc cggggccct
 1320
 ctgtggacct tggctccctc cgtggacctg ggcttcgtgg tgagcactgc agcctccctg
 1380
 ggcattccctt ccagcgccag caccactgca acatataagac ctgagtgcta ttgtatTTT
 1440
 gcttgggtgtg tatgcttttc attgtgtaaa attgctgttc ttttacaat ttaagtgatt
 1500
 gttttgttta ctgtaagttt gaaaataaaa atgaagaaaa aaaattccaa tgactgtgct
 1560
 gtgggtggag actttatTTT ccaagatgtt tactttctt ttcccccttcc attttggagga
 1620
 gctgtgtcac tcctccccc ccccagtgtct ttgttagtctc tcctatgtca taataaagct
 1680
 acattttctc tgaaaaaaaaaaaa
 1706

<210> 6112
 <211> 110
 <212> PRT
 <213> Homo sapiens

<400> 6112
 Met Ser Leu Phe Cys Phe Val Leu Phe Leu Arg Trp Ser Phe Pro Leu
 1 5 10 15
 Val Ala Gln Ala Gly Val Xaa Trp His Ser Leu Gly Ser Leu Gln Pro
 20 25 30
 Pro Leu Pro Gly Phe Lys Gln Phe Ser Cys Arg Ser Leu Pro Ser Ser
 35 40 45
 Trp Asp Tyr Arg His Ala Pro Pro Arg Gln Ala Asn Phe Cys Ile Phe
 50 55 60
 Ser Arg Asp Gly Val Ser Pro Cys Trp Pro Gly Trp Ser Gln Thr Pro
 65 70 75 80
 Asp Leu Arg Arg Ser Thr His Leu Ser Val Pro Lys Cys Trp Asp Tyr
 85 90 95
 Arg Arg Glu Pro Pro His Leu Ala Tyr Glu Trp Ser Phe Asn

100

105

110

<210> 6113
<211> 1095
<212> DNA
<213> Homo sapiens

<400> 6113
nnccggccgc aagcgatccc tgctccgcgc gacactgcgt gcccgcgcac gcagagaggc
60
ggtgacgcac tttacggcg cagcgtaagt gcgtgacgct cgtcagtggc ttcagttcac
120
acgtggcgcc agcggaggca ggttgatgtg tttgtgttc cttctacagc caatatgaaa
180
aggccctagta agtggggtcg ggaggcgggc gtggagggac ccacgtctgg aagttgctgc
240
agccaccacg acgctttct acggctacgg ctttgtctct gctggtatgg ggggtggagc
300
atacgcgtag gccttggccc tatttcctgg tagaacccgag agttggaagt ccctacggcg
360
atcatgttaa ccgcgcgggc tcattctgcg gaacgaagcc gggcagaggg tgggaaagac
420
taggcttagat ttgcgttaagg aagcagcgtc tgagccaggt ttgaggccca atattttctt
480
tccgtggcca cgtgcagact ggcggcggc agagctgaga atcgccccc agactcagtg
540
ttcctctctt gccttatgtat tcgtgtgtt tgacacgaaag tggttgtcgt tttgtgtctc
600
atacgctgtt gtgtatgatcc ccattctaattt attgtgaggg taagtgcagg gaattttgac
660
tccattctgg atctactgaa tttaattctc tgggatttga aagtagcactg tatgtttgca
720
ttaggcattt cgcatttagac ttaacgttag gtttggtagc caataacaca agaaaaggat
780
ataactccat agtgcgttaa cccagaacta atcattttggg ttaacagatt tgtgtatgt
840
ttctttgttag agttaaagaa agcaagtaaa cgcattgttcc aacagtgcgc ctttaagga ggctttctt
900
caaaaaaagg ttgcagaaca tcatcgaaaa ttaagaaagg aggctaaaaa gcggggtcac
960
aagaagccta gaaaaagaccc aggagttcca aacagtgcgc ctttaagga ggctttctt
1020
gaggaagctg agctaaggaa acagaggctt gaagaactaa aacagcagca gaaacttgac
1080
aggcagaagg aacta
1095

<210> 6114
<211> 87
<212> PRT
<213> Homo sapiens

<400> 6114

Met Cys Phe Phe Val Glu Leu Lys Lys Ala Ser Lys Arg Met Thr Cys

1	5	10	15
His Lys Arg Tyr Lys Ile Gln Lys Lys Val Arg Glu His His Arg Lys			
20	25	30	
Leu Arg Lys Glu Ala Lys Lys Arg Gly His Lys Lys Pro Arg Lys Asp			
35	40	45	
Pro Gly Val Pro Asn Ser Ala Pro Phe Lys Glu Ala Leu Leu Glu Glu			
50	55	60	
Ala Glu Leu Arg Lys Gln Arg Leu Glu Glu Leu Lys Gln Gln Gln Lys			
65	70	75	80
Leu Asp Arg Gln Lys Glu Leu			
85			

<210> 6115
<211> 411
<212> DNA
<213> Homo sapiens

<400> 6115
gcgcgcctgg ccccgcagg gcctaagttc cctgactcg ctccccgcc tgcgcgc
60
gcgcgcgcgc gcagccctcc ttctcggtgg cgctgggaa gaaactcgtc ggcgggtcta
120
actgtggcgt cccagggcgg tggagggagc aacttcgggg gcacgtcctc gttaatcccg
180
tggaggacac tgaccctgta ccccacccctc gaggccagaa gtcggttcct ttgggggaac
240
tgaggggcga gagcaactcgc cccctgact tgcaaagttg gcgtcttac ttggcctccg
300
ggattctcgcatggcgtgt ctccaggctg ctgatggca agacagatgt gccaggtcca
360
gaatgaacctt gagaagagtt tgcgtccatt cctgaatcac cttatactag t
411

<210> 6116
<211> 129
<212> PRT
<213> Homo sapiens

<400> 6116
Met Ala Thr Asn Ser Ser Gln Val His Ser Gly Pro Gly Thr Ser Val
1 5 10 15
Leu Pro Ile Ser Ser Leu Glu Thr Arg His Ala Gln Asn Pro Gly Gly
20 25 30
Gln Val Lys Thr Pro Thr Leu Gln Val Arg Gly Ala Ser Ala Leu Ala
35 40 45
Pro Gln Phe Pro Gln Arg Asn Arg Leu Leu Ala Ser Arg Val Gly Tyr
50 55 60
Arg Val Ser Val Leu His Gly Ile Tyr Glu Asp Val Pro Pro Lys Leu
65 70 75 80
Leu Pro Pro Pro Trp Asp Ala Thr Val Arg Pro Ala Asp Glu Phe
85 90 95
Leu Pro Gln Arg Pro Arg Glu Gly Gly Leu Arg Ala Ala Ala Ala
100 105 110
Thr Gly Gly Glu Ala Ser Ala Gly Asn Leu Gly Pro Gly Gly Ala Arg

Arg 115 120 125

```
<210> 6117  
<211> 962  
<212> DNA  
<213> Homo sapiens
```

<400> 6117
cttccgcctt ccccaagcca acgtctccgc cgtcggctcc gcggcgccgc catggccgac
60
gtggaagacg gagaggaaac ctgcgcctcg gcctctcaact ccggggagagctc aggtctcaag
120
tcggggaggcg acaagatgtt ctcccctcaag aagtggAACG cggtggccat gtggagctgg
180
gacgtggagt gcgatacgtg cgccatctgc agggtccagg tgatggatgc ctgtcttaga
240
tgtcaagctg aaaacaaaaca agaggactgt gttgtggctc ggggagaatg taatcattcc
300
ttccacaact gctgcatgtc cctgtgggtg aaacagaaca atcgctgccc tctctgccag
360
caggactggg tggtccaaag aatcgccaaa tgagagtgg tagaaggctt cttagcgcag
420
ttgttcagag ccctggtgga tcttgttaatc cagtgcctta caaaggctag aacactacag
480
gggatgaatt ctcaaatacg gagccgatgg atctgtggtc ctttggact catcaaagcc
540
ttggtttagc atttgtcag ttttatctc agaaattctc tgcgattaag aagataattt
600
attaaagggtg gtccttccta cctctgtggt gtgtgtcgcg cacacagctt agaagtgcata
660
taaaaaagga aagagctcca aattgaatca ctttataat ttacccattt ctatacaaca
720
ggcagtggaa gcagttcag agaactttt gcatgcttat gggtgatcag ttaaaaaaaga
780
atgttacagt aacaataaa gtgcagtttta aaacccaaact cttactctta atttgttcct
840
aatacgtatt tttggcaggg agagggAACG gtccatgaaa tctttatgtg atataaggat
900
tttaagtttgc ggcagtgaa cagggtaat aaaatthaac tttttagcat aaaaaaaaaaa
960
aa
962

<210> 6118
<211> 113
<212> PRT
<213> *Homo sapiens*

<400> 6118
Met Ala Asp Val Glu Asp Gly Glu Glu Thr Cys Ala Leu Ala Ser His
1 5 10 15
Ser Gly Ser Ser Gly Ser Lys Ser Gly Gly Asp Lys Met Phe Ser Leu

20	25	30
Lys Lys Trp Asn Ala Val Ala Met Trp Ser Trp Asp Val Glu Cys Asp		
35	40	45
Thr Cys Ala Ile Cys Arg Val Gln Val Met Asp Ala Cys Leu Arg Cys		
50	55	60
Gln Ala Glu Asn Lys Gln Glu Asp Cys Val Val Val Trp Gly Glu Cys		
65	70	75
Asn His Ser Phe His Asn Cys Cys Met Ser Leu Trp Val Lys Gln Asn		
85	90	95
Asn Arg Cys Pro Leu Cys Gln Gln Asp Trp Val Val Gln Arg Ile Gly		
100	105	110

Lys

<210> 6119
<211> 375
<212> DNA
<213> Homo sapiens

<400> 6119
accgggtgac aacctcccta tggggaaagct agatacagcc ccatggacat gccccactga
60
cccccacacc ccacacggac tgcacggaaa tatcacagta accatctctc agtcacagcg
120
tggcccccaca gaactcatgc ctgcttgctt taaacccacc aatgaaaact ccccatggga
180
aacctgcttg gataatactt tggaccccaa taaatgcttt aatcccacaa gtcctctgtc
240
tctgcctctc tcttgccccct acccaactggc tgagcatgtg tgcctccaaac ggccctgcaa
300
ggtgtgctgc cctgttcttt ctgggctctg tcaaggaatc aaactgcttc tgttatgtga
360
tgtgtcatgt tgtgc
375

<210> 6120
<211> 118
<212> PRT
<213> Homo sapiens

<400> 6120
Met Gly Lys Leu Asp Thr Ala Pro Trp Thr Cys Pro Thr Asp Pro His
1 5 10 15
Thr Pro His Gly Leu His Gly Asn Ile Thr Val Thr Ile Ser Gln Ser
20 25 30
Gln Arg Gly Pro Thr Glu Leu Met Pro Ala Cys Phe Lys Pro Thr Asn
35 40 45
Glu Asn Ser Pro Trp Glu Thr Cys Leu Asp Asn Thr Leu Asp Pro Asn
50 55 60
Lys Cys Phe Asn Pro Thr Ser Pro Leu Ser Leu Pro Leu Ser Cys Pro
65 70 75 80
Tyr Pro Leu Val Glu His Val Cys Pro Lys Arg Pro Cys Lys Val Cys
85 90 95
Cys Pro Val Leu Ser Gly Leu Cys Gln Gly Ile Lys Leu Leu Leu

100
Cys Asp Val Ser Cys Cys
115

105

110

<210> 6121
<211> 1039
<212> DNA
<213> Homo sapiens

<400> 6121
gacggAACGG CGGTGGTGGC CGCGGGACCG GACGGGGCAC TATGAACGAA GAGGAGCAGT
60
ttgttaaacat tgatttgaat gatgacaaca tttgcagtgt ttgtaaactg ggaacagaca
120
aagaaaacact ctccttctgc cacattgtt ttgagctaaa tattgagggg gtaccaaagt
180
ctgatctctt gcacacccaa tcattaaggg gccataaaga ctgcttgaa aaataccatt
240
taattgcaaa ccagggttgt cctcgatcta agcttcaaa aagtacttat gaagaagtta
300
aaaccatttt gagtaagaag ataaactgga ttgtcagta tgcacaaaat aaggatctgg
360
attcagattc tgaatgttct aaaaagcccc agcatcatct gtttaatttc aggcatcagc
420
cagaagaaaa attactccca cagtttgagt cccaaagtacc aaaatattct gcaaaatgga
480
tagatggaag tgcaggtggc atctctaact gtacacaaag aattttggag cagagggaaa
540
atacagactt tggactttct atgttacaag attcaggtgc cactttatgt cgtaacagtg
600
tattgtggcc tcatagtcac aaccaggcac agaaaaaaaaga agagacaatc tctagtcag
660
aggctaattgt ccagacccag catccacatt acagcagaga ggaataagtt tttgaagagt
720
taactcacca agtgcaagaa aaagattttt tggcctcaca gctccatgtc cgccacgttg
780
ccatcgaaca gcttctgaag aactgttcta agttaccatg tctgcaagta gggcgaacag
840
gaatgaagtc gcacacctacc ataaacaact gacctaaaca gacttacttc gtatgccctg
900
ccctttatttgc tctcccaga catgcaaact ttgaagaagt ttgaagaaaat ttgtggtccg
960
ttttttatgt gtcattaaat ttgccaaca taaggcagta tttAACATCT ttgtcaaata
1020
aagcagatca ttatactct
1039

<210> 6122
<211> 221
<212> PRT
<213> Homo sapiens

<400> 6122
Met Asn Glu Glu Glu Gln Phe Val Asn Ile Asp Leu Asn Asp Asp Asn

1	5	10	15
Ile Cys Ser Val Cys Lys Leu Gly Thr Asp Lys Glu Thr Leu Ser Phe			
20	25	30	
Cys His Ile Cys Phe Glu Leu Asn Ile Glu Gly Val Pro Lys Ser Asp			
35	40	45	
Leu Leu His Thr Lys Ser Leu Arg Gly His Lys Asp Cys Phe Glu Lys			
50	55	60	
Tyr His Leu Ile Ala Asn Gln Gly Cys Pro Arg Ser Lys Leu Ser Lys			
65	70	75	80
Ser Thr Tyr Glu Glu Val Lys Thr Ile Leu Ser Lys Lys Ile Asn Trp			
85	90	95	
Ile Val Gln Tyr Ala Gln Asn Lys Asp Leu Asp Ser Asp Ser Glu Cys			
100	105	110	
Ser Lys Lys Pro Gln His His Leu Phe Asn Phe Arg His Lys Pro Glu			
115	120	125	
Glu Lys Leu Leu Pro Gln Phe Glu Ser Gln Val Pro Lys Tyr Ser Ala			
130	135	140	
Lys Trp Ile Asp Gly Ser Ala Gly Gly Ile Ser Asn Cys Thr Gln Arg			
145	150	155	160
Ile Leu Glu Gln Arg Glu Asn Thr Asp Phe Gly Leu Ser Met Leu Gln			
165	170	175	
Asp Ser Gly Ala Thr Leu Cys Arg Asn Ser Val Leu Trp Pro His Ser			
180	185	190	
His Asn Gln Ala Gln Lys Lys Glu Glu Thr Ile Ser Ser Pro Glu Ala			
195	200	205	
Asn Val Gln Thr Gln His Pro His Tyr Ser Arg Glu Glu			
210	215	220	

<210> 6123
<211> 900
<212> DNA
<213> Homo sapiens

<400> 6123
ntgcatgcct gtataccaca gctactcgaa aggctgaggc gggagaatcg cttgaaccca
60
ggaggcggag gttgcgtga gctgagatcg caccattgca ctccagcctg ggcaacaaga
120
gcaaaacaac aagagaaaaaa aaaggaagct gccctctgcc caaaaacccac gtcgaggtcc
180
ccaaacctgg gacccttagg tctttctca cttagcgtgc ccaaccttct cctggcagga
240
aacaaggctc caggtctgct tccccgcaaa ggactataca tggcaaatga cttaaagctc
300
ctgagacacc atctccagat tcccatccac ttcccaagg atttcttgc tgcgtatgctt
360
.gaaaaaggaa gtttgtctgc catgcgttcc ctcaccgcgg tgaacttggaa gcatccagag
420
atgctggaga aagcgccccg ggagctgtgg atgcgcgtct ggtcaagggt gagtgtgggg
480
ctctggaaat cctctggag gaccttggat gacttctga cttccccag gcacgttttc
540
agggtcatga tcctgcccccc gcccggggga tctactgtcc tcccaagtac accccctctcc
600

ccgcaccgcc ttcctgtgt cttctttct tccccagaatg aagacatcac cgagccgcag
 660
 agcatcctgg cggctgcaga gaaggctggt atgtctgcag aacaagccca gggacttctg
 720
 gaaaagatcg caacgc当地 ggtgaagaac cagctcaagg agaccactga ggcagcctgc
 780
 agatacggag cctttggct gcccattcacc gtggcccatg tggatggcca aaccacatg
 840
 ttatttgct ctgaccggat ggagctgctg ggcacactgc tggagagagaa gtggatggc
 900

<210> 6124
 <211> 300
 <212> PRT
 <213> Homo sapiens

<400> 6124
 Xaa His Ala Cys Ile Pro Gln Leu Leu Gly Arg Leu Arg Arg Glu Asn
 1 5 10 15
 Arg Leu Asn Pro Gly Gly Gly Cys Gly Glu Leu Arg Ser His His
 20 25 30
 Cys Thr Pro Ala Trp Ala Thr Arg Ala Lys Gln Gln Glu Lys Lys Lys
 35 40 45
 Glu Ala Ala Leu Cys Pro Lys Pro Thr Ser Arg Ser Pro Asn Leu Gly
 50 55 60
 Pro Leu Gly Leu Phe Ser Leu Ser Val Pro Asn Leu Leu Ala Gly
 65 70 75 80
 Asn Lys Pro Pro Gly Leu Leu Pro Arg Lys Gly Leu Tyr Met Ala Asn
 85 90 95
 Asp Leu Lys Leu Leu Arg His His Leu Gln Ile Pro Ile His Phe Pro
 100 105 110
 Lys Asp Phe Leu Ser Val Met Leu Glu Lys Gly Ser Leu Ser Ala Met
 115 120 125
 Arg Phe Leu Thr Ala Val Asn Leu Glu His Pro Glu Met Leu Glu Lys
 130 135 140
 Ala Ser Arg Glu Leu Trp Met Arg Val Trp Ser Arg Val Ser Val Gly
 145 150 155 160
 Leu Trp Glu Ser Ser Gly Arg Thr Leu Asp Asp Phe Leu Thr Phe Pro
 165 170 175
 Arg His Val Phe Arg Val Met Ile Leu Pro Pro Gly Gly Ser Thr
 180 185 190
 Val Leu Pro Val Thr Pro Leu Ser Pro His Arg Leu Pro Ala Val Phe
 195 200 205
 Ser Ser Ser Gln Asn Glu Asp Ile Thr Glu Pro Gln Ser Ile Leu Ala
 210 215 220
 Ala Ala Glu Lys Ala Gly Met Ser Ala Glu Gln Ala Gln Gly Leu Leu
 225 230 235 240
 Glu Lys Ile Ala Thr Pro Lys Val Lys Asn Gln Leu Lys Glu Thr Thr
 245 250 255
 Glu Ala Ala Cys Arg Tyr Gly Ala Phe Gly Leu Pro Ile Thr Val Ala
 260 265 270
 His Val Asp Gly Gln Thr His Met Leu Phe Gly Ser Asp Arg Met Glu
 275 280 285
 Leu Leu Ala His Leu Leu Gly Glu Lys Trp Met Gly

290

295

300

<210> 6125

<211> 468

<212> DNA

<213> Homo sapiens

<400> 6125

nctacagtca ctcaggagaa gtcccgcatg gaggcttctt acttggctga caagaaaaag
 60
 atgaaaacagg acttagagga tgccagtaac aaggcggagg aggagagggc ccgcctggag
 120
 ggagaattga aggggctgca ggagcaaata gcagaaacca aagccccgt tatcacgcag
 180
 cagcatgatc gggcccaaga gcagagtgac catgccttga tgctgcgtga gctccagaag
 240
 ctgctgcagg aggagaggac ccagcgcag gacttggagc ttaggttaga agagacccga
 300
 gaagccctgg caggacgagc atatgcagct gaacagatgg aaggatttga actgcagacc
 360
 aagcagctga cccgtgaggt ggaggagctg aaaagtgaac tgcaggccat tcgagatgag
 420
 aagaatcagc cagacccccc gctgcaagaa cttcaggaag aggccgcc
 468

<210> 6126

<211> 156

<212> PRT

<213> Homo sapiens

<400> 6126

Xaa	Thr	Val	Thr	Gln	Glu	Lys	Ser	Arg	Met	Glu	Ala	Ser	Tyr	Leu	Ala
1				5					10				15		
Asp	Lys	Lys	Met	Lys	Gln	Asp	Leu	Glu	Asp	Ala	Ser	Asn	Lys	Ala	
	20					25				30					
Glu	Glu	Glu	Arg	Ala	Arg	Leu	Glu	Gly	Glu	Leu	Lys	Gly	Leu	Gln	Glu
	35					40				45					
Gln	Ile	Ala	Glu	Thr	Lys	Ala	Arg	Leu	Ile	Thr	Gln	Gln	His	Asp	Arg
	50				55				60						
Ala	Gln	Glu	Gln	Ser	Asp	His	Ala	Leu	Met	Leu	Arg	Glu	Leu	Gln	Lys
	65				70				75			80			
Leu	Leu	Gln	Glu	Glu	Arg	Thr	Gln	Arg	Gln	Asp	Leu	Glu	Leu	Arg	Leu
	85					90			95						
Glu	Glu	Thr	Arg	Glu	Ala	Leu	Ala	Gly	Arg	Ala	Tyr	Ala	Ala	Glu	Gln
	100				105					110					
Met	Glu	Gly	Phe	Glu	Leu	Gln	Thr	Lys	Gln	Leu	Thr	Arg	Glu	Val	Glu
	115					120				125					
Glu	Leu	Lys	Ser	Glu	Leu	Gln	Ala	Ile	Arg	Asp	Glu	Lys	Asn	Gln	Pro
	130					135				140					
Asp	Pro	Arg	Leu	Gln	Glu	Leu	Gln	Glu	Glu	Ala	Ala				
	145				150				155						

<210> 6127

<211> 1900

<212> DNA

<213> Homo sapiens

<400> 6127

gtttcctgga ttacaggcca ggcantggag ataggcagcn ncagcctgac tatacctggta
60
aatgtctggg atgggcacct gacacccctt gaggttgcatt ccctggctga cagggcatca
120
cgggcaagag actccaatat ggtgagggcg gcagcagagc tggccctgag ctgcctgcct
180
cacgcccattt cattgaaccc taatgagatc cagcgggccc tggtgcaatg caaggaacag
240
gacaacctga tggggagaa ggccctgcattt gcagtggaaag aggccagctaa gggtgggggc
300
gtgttaccctg aagtgttgtt tgagggttgcattt caccagtggt tctggctata tgagcaaact
360
gcagggtggctt catccacago ccgtgaaggg gctacaagct gtatgtccag tgggatcagg
420
gcagggtgggg aagctggcg gggtatgcctt gagggttagag ggggcccagg gactgagccg
480
gttacagtgg cagcggcagc agtgcacagca gcagccacag tggtgccctt catatcggt
540
gggtcttagtt tataccccggg tccaggactt gggcatggcc actccctgg cctgcaccc
600
tacactgctc tacagccccca cctgcctgtt agccctcaatc atctcaatca cccagctcac
660
cctgcccacc ccatgcctca catgccccgg cctgcccgtt tccctgtgcc cagctctgca
720
tacccacagg gtgtgcattt tgcatttcata ggggttcagt acccttattt agtgcactt
780
ccctcaatttgc tggccactgc tgggttttgc cccgttcattt ccatggcacc catcacagta
840
catccctacc acacagagcc agggcttcca ctgccccacca gtgtggccgt tgagttgtgg
900
ggccaggaa cagtgcacat tggccatcca gcatccacgt ttccagccat ccaaggtgcc
960
tcactgccttgc ccctgaccac acagccacgc cctctggta gcggagggtt tccaccggcc
1020
gaggaggaga cacacagtca gccagtcaat cccacagcc tgcaccacat gcatgtgcc
1080
taccgtgtcg gaatgtggc actggagatg ctgggtcgcc gggcacacaa cgatcaccc
1140
aacaacttcc cccgtcccccc cccctacact gatgtgtca aatgggttgcattt ggggtggca
1200
gcaaagctgg gaggtaacta cgtgcaccag ttctgtgtgg gggcagccaa ggggtgtcg
1260
agcccgtttgc tgctgcaggat gatgtcatg gagacgtgc agcggctgag tcccgctcat
1320
gccccacaacc acctgcgtgc cccggccatttcc caccaactgg tgcagcgtcg ccagcaggca
1380
tacatgcagt acatccacca ccgtttgattt cacctgactc ctgcggacta cgacgacttt
1440
gtgaatgcga tccggagtgc ccgcagcgcc ttctgcctga cgcccatggg catgtatgcag
1500

ttcaacgaca tcctacagaa cctcaagcgc agcaaacaga ccaaggagct gtggcagcgg
 1560
 gtctcaactcg agatggccac cttctcccc tgagtcttcc acccttaggg tcctatacag
 1620
 ggaccaggc ctgtggctat gggggccct cacacagggg gagtgaaact tggctggaca
 1680
 gatcatcctc actcagttcc ctggtagcac agactgacag ctgctttgg gctatagctt
 1740
 gggccaaga tgtctcacac cctagaagcc tagggctggg ggagacagcc ctgtctggga
 1800
 gggggcgttg ggtggcctct ggtatttatt tggcatttat aaatatataa actcctttt
 1860
 tactctagtc gacctggcc tttccctct ttccaaattt
 1900

<210> 6128
 <211> 530
 <212> PRT
 <213> Homo sapiens

<400> 6128
 Val Ser Trp Ile Thr Gly Gln Ala Xaa Glu Ile Gly Ser Xaa Ser Leu
 1 5 10 15
 Thr Ile Leu Val Glu Cys Trp Asp Gly His Leu Thr Pro Pro Glu Val
 20 25 30
 Ala Ser Leu Ala Asp Arg Ala Ser Arg Ala Arg Asp Ser Asn Met Val
 35 40 45
 Arg Ala Ala Ala Glu Leu Ala Leu Ser Cys Leu Pro His Ala His Ala
 50 55 60
 Leu Asn Pro Asn Glu Ile Gln Arg Ala Leu Val Gln Cys Lys Glu Gln
 65 70 75 80
 Asp Asn Leu Met Leu Glu Lys Ala Cys Met Ala Val Glu Glu Ala Ala
 85 90 95
 Lys Gly Gly Val Tyr Pro Glu Val Leu Phe Glu Val Ala His Gln
 100 105 110
 Trp Phe Trp Leu Tyr Glu Gln Thr Ala Gly Ser Ser Thr Ala Arg
 115 120 125
 Glu Gly Ala Thr Ser Cys Ser Ala Ser Gly Ile Arg Ala Gly Gly Glu
 130 135 140
 Ala Gly Arg Gly Met Pro Glu Gly Arg Gly Gly Pro Gly Thr Glu Pro
 145 150 155 160
 Val Thr Val Ala Ala Ala Val Thr Ala Ala Ala Thr Val Val Pro
 165 170 175
 Val Ile Ser Val Gly Ser Ser Leu Tyr Pro Gly Pro Gly Leu Gly His
 180 185 190
 Gly His Ser Pro Gly Leu His Pro Tyr Thr Ala Leu Gln Pro His Leu
 195 200 205
 Pro Cys Ser Pro Gln Tyr Leu Thr His Pro Ala His Pro Ala His Pro
 210 215 220
 Met Pro His Met Pro Arg Pro Ala Val Phe Pro Val Pro Ser Ser Ala
 225 230 235 240
 Tyr Pro Gln Gly Val His Pro Ala Phe Leu Gly Ala Gln Tyr Pro Tyr
 245 250 255
 Ser Val Thr Pro Pro Ser Leu Ala Ala Thr Ala Val Ser Phe Pro Val

260	265	270
Pro Ser Met Ala Pro Ile Thr Val His Pro Tyr His Thr Glu Pro Gly		
275	280	285
Leu Pro Leu Pro Thr Ser Val Ala Cys Glu Leu Trp Gly Gln Gly Thr		
290	295	300
Val Ser Ser Val His Pro Ala Ser Thr Phe Pro Ala Ile Gln Gly Ala		
305	310	315
Ser Leu Pro Ala Leu Thr Thr Gln Pro Ser Pro Leu Val Ser Gly Gly		
325	330	335
Phe Pro Pro Pro Glu Glu Glu Thr His Ser Gln Pro Val Asn Pro His		
340	345	350
Ser Leu His His Leu His Ala Ala Tyr Arg Val Gly Met Leu Ala Leu		
355	360	365
Glu Met Leu Gly Arg Arg Ala His Asn Asp His Pro Asn Asn Phe Ser		
370	375	380
Arg Ser Pro Pro Tyr Thr Asp Asp Val Lys Trp Leu Leu Gly Leu Ala		
385	390	395
Ala Lys Leu Gly Val Asn Tyr Val His Gln Phe Cys Val Gly Ala Ala		
405	410	415
Lys Gly Val Leu Ser Pro Phe Val Leu Gln Glu Ile Val Met Glu Thr		
420	425	430
Leu Gln Arg Leu Ser Pro Ala His Ala His Asn His Leu Arg Ala Pro		
435	440	445
Ala Phe His Gln Leu Val Gln Arg Cys Gln Gln Ala Tyr Met Gln Tyr		
450	455	460
Ile His His Arg Leu Ile His Leu Thr Pro Ala Asp Tyr Asp Asp Phe		
465	470	475
Val Asn Ala Ile Arg Ser Ala Arg Ser Ala Phe Cys Leu Thr Pro Met		
485	490	495
Gly Met Met Gln Phe Asn Asp Ile Leu Gln Asn Leu Lys Arg Ser Lys		
500	505	510
Gln Thr Lys Glu Leu Trp Gln Arg Val Ser Leu Glu Met Ala Thr Phe		
515	520	525
Ser Pro		
530		

<210> 6129
 <211> 2012
 <212> DNA
 <213> Homo sapiens

<400> 6129
 ataggaggcag tttcagtacc agcccgagta ggatggaatc aaacacgggt ctggAACATT
 60
 cctaccggaa agtggccccg acCCCCCTCC ccccgTcccgg gcctcccacg cacgggggggg
 120
 ggggggggggg gggctgatcg ggcgtaccgg attggacaac ttggcatggg gcggggcctc
 180
 tgggaggcgt ggcctccggc cggctccctt gctgttgcca agggaaaactg ccgcgaggag
 240
 gcggaaaggag cagaggaccg gcagccggcg tcgaggcggg gcgcggaaac gacggcggcc
 300
 atggcggcct cggggcccggt gtgtcgccgc tggtgcttgt gtcccgaggt gccatccggcc
 360

accttcttca ctgcgctgtc ctcgctgctg gttccgggc ctcgcctgtt cctgctgcag
420
cagccccctgg cgccctcgaa cctcacgctg aagtccgagg cccttcgcaa ctggcaagtt
480
tacaggctgg taacctacat ctttgcgtac gagaatccca tctccctgtc ctggggcgct
540
atcatcatct ggcgcgttgc tggcaatttc gagagaaccg tgggcaccgt ccgcactgc
600
ttcttcaccc tgatcttcgc catcttcgc getatcatct tcctgtcatt cgaggctgtg
660
tcatcactgt caaagctggg ggaagtggag gatgccagag gtttcacccc agtggcctt
720
gccatgctgg gagtcaccac cgtccgttct cggatgaggc gggccctggt gtttggcatg
780
gttgtgcctt cagtcctggt tccgtggctc ctgctgggtg cctcggtc cattccccag
840
acctcttcc tcagtaatgt ctgcgggctg tccatcggtc tggcctatgg ctcacccatc
900
tgcatacca tcgaccccttc agagcgagtg gcgcgtgaagc tcgatcagac cttcccttc
960
agcctgatga ggaggatata cgtgttcaag tacgtctcag ggtttcagc cgagaggagg
1020
gcagccccaga gccggaaaact gaacccggtg cctggctctt accccacaca gagctgccac
1080
cctcacctgt ccccaagccca ccctgtgtcc cagacgcagc acgcccagtgg tcagaagctg
1140
gcctcctggc ctcctgcac ccccgccac atgcccacct tgcctccgtt ccagcctgccc
1200
tccggcctgt gctatgtgca gaaccactt ggtccaaacc ccaccccttc cagtgctac
1260
ccagcttctg cgggcaccc cctgggcac cagccccccca cgcctgtgaa cagccctggc
1320
acgggttatt ctggggcctt gggcacacca ggggctgcag gtcacaaggaa gtcctccagg
1380
gtccccatgc cctgagagaa tttcttaggaa agtcatctca cttggcccttc tgaaggccct
1440
ccctaagagt ctccctgacaa aagttactta ttgaacaccc ctatgtgccca ggctctgtgt
1500
tgggtacttt gatcaatgcc cctgtttcag tctcatctgt actcacggca gcccctggaa
1560
gtacgggtgtt ctggcccagc ttacagatgc agaaagcgag acgttctgcc atcagataaa
1620
gtcacgtggc tcttttagtaa cacggacaag gtcctcgcc aaggaactcg tggcagaaga
1680
gggcagcagt tggcagtagc tgccgatgtc tgtccccagc tccaccatcc ctccctgtgg
1740
ctgtgcccgtc ctcgtggttt cagtgtccgt gtgtccatgt gtctggccctt caggagctcg
1800
cagctgggtgt gcttggcggtt cccaggccctg tgttagtgc tctccctgtc gccccccccc
1860
ccaccccgat tcctctcccc agaagcggtg ggatggggccc ccatgaactg cagcagcatg
1920
ctgaggtgtc catgttgc tgccttgc taaagaaaacag cctctgaccc gcaaaaaaaaaa
1980

aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa
2012

<210> 6130
<211> 364
<212> PRT
<213> Homo sapiens

<400> 6130
Met Ala Ala Ser Gly Pro Gly Cys Arg Ser Trp Cys Leu Cys Pro Glu
1 5 10 15
Val Pro Ser Ala Thr Phe Phe Thr Ala Leu Leu Ser Leu Leu Val Ser
20 25 30
Gly Pro Arg Leu Phe Leu Leu Gln Gln Pro Leu Ala Pro Ser Gly Leu
35 40 45
Thr Leu Lys Ser Glu Ala Leu Arg Asn Trp Gln Val Tyr Arg Leu Val
50 55 60
Thr Tyr Ile Phe Val Tyr Glu Asn Pro Ile Ser Leu Leu Cys Gly Ala
65 70 75 80
Ile Ile Ile Trp Arg Phe Ala Gly Asn Phe Glu Arg Thr Val Gly Thr
85 90 95
Val Arg His Cys Phe Phe Thr Val Ile Phe Ala Ile Phe Ser Ala Ile
100 105 110
Ile Phe Leu Ser Phe Glu Ala Val Ser Ser Leu Ser Lys Leu Gly Glu
115 120 125
Val Glu Asp Ala Arg Gly Phe Thr Pro Val Ala Phe Ala Met Leu Gly
130 135 140
Val Thr Thr Val Arg Ser Arg Met Arg Arg Ala Leu Val Phe Gly Met
145 150 155 160
Val Val Pro Ser Val Leu Val Pro Trp Leu Leu Leu Gly Ala Ser Trp
165 170 175
Leu Ile Pro Gln Thr Ser Phe Leu Ser Asn Val Cys Gly Leu Ser Ile
180 185 190
Gly Leu Ala Tyr Gly Leu Thr Tyr Cys Tyr Ser Ile Asp Leu Ser Glu
195 200 205
Arg Val Ala Leu Lys Leu Asp Gln Thr Phe Pro Phe Ser Leu Met Arg
210 215 220
Arg Ile Ser Val Phe Lys Tyr Val Ser Gly Ser Ser Ala Glu Arg Arg
225 230 235 240
Ala Ala Gln Ser Arg Lys Leu Asn Pro Val Pro Gly Ser Tyr Pro Thr
245 250 255
Gln Ser Cys His Pro His Leu Ser Pro Ser His Pro Val Ser Gln Thr
260 265 270
Gln His Ala Ser Gly Gln Lys Leu Ala Ser Trp Pro Ser Cys Thr Pro
275 280 285
Gly His Met Pro Thr Leu Pro Pro Tyr Gln Pro Ala Ser Gly Leu Cys
290 295 300
Tyr Val Gln Asn His Phe Gly Pro Asn Pro Thr Ser Ser Ser Val Tyr
305 310 315 320
Pro Ala Ser Ala Gly Thr Ser Leu Gly Ile Gln Pro Pro Thr Pro Val
325 330 335
Asn Ser Pro Gly Thr Val Tyr Ser Gly Ala Leu Gly Thr Pro Gly Ala
340 345 350
Ala Gly Ser Lys Glu Ser Ser Arg Val Pro Met Pro

355

360

<210> 6131
<211> 3526
<212> DNA
<213> Homo sapiens

<400> 6131
nngggagcgg cgagtaagat ggaagatgag gaggtcgctg agagctggga agaggcggca
60
gacagcgggg aatatagacag acggttggaa aaaaaactga agatcacaca aaaagagagc
120
aggaaatcca aatctcctcc caaagtgcgg attgtgattc aggacgatag cttccccgct
180
gggccccctc cacagatccg catcctcaag aggcccacca gcaacggtgt ggtcagcagc
240
cccaactcca ccagcaggcc cacccttcca gtcaagtccc tagcacagcg agaggccgag
300
tagcccgagg cccggaaagcg gatcctggc agcggcagcc ccgaggagga gcaggagaaa
360
cccatcctcg acaggtcttc ctctgatctt cttcccttca ggccaaccag gatctcccaa
420
cccgaagaca gcaggcagcc caataatgtg atcagacagc ctttgggtcc tgatgggtca
480
cacggcttca aacagcgcag ataaatgcag gcaagaaaag atgcccgggt tgctgccgtc
540
accgcctcctt gggtcgtccg ccacgggttg cactgccgtg gcagacagct ggacttgagc
600
agagggAACG acctgactta cttgcactgt gatccccctt gctccggcca ctgtgacctt
660
gaaccccatg cactgtgacc tcccccttc tcccccttca cactgtgatt ggcacatcga
720
caagggctgt cccaagtcaa tggaaaggga aagggtgggg gtttagggaa ggttgggggg
780
acccagcaag gactcagaga gtcagacagt gccacttggc cacttgggt aaagccagtg
840
ccagcaataa cagtttatca tgctcattaa ttgggattt caaaacacaa ataaaaactc
900
acacccaccc acccccaagt gcatgtctcc atcacttaaa aagtaagtcc catttggaaa
960
tatcccttct ttttttttc ttccatttt tgtttggta tacaatatac tgatttgcac
1020
aaaaaaagtgc atgggagggg ttttagtggt ttaatgaatt ttaatattaag aaagggttagt
1080
ttggtagtct actaaaaat gtttctggga aattcactag aaacattaac caataggatt
1140
ttggtagtct tagttctgt attcctactg ccgcccagaa aaggggcagg gctctgcagc
1200
cgccaggaca gacgagcacc ccatgcctat acctccctcc ccgagctaag tcccaggcga
1260
tctgggcctt gcctggagac tgggctagct ctgtaggctc ggagagcctg gggagggtgc
1320
caacccacc tctagtattt tgggagatag ggaaagtgaa ccgacttccc cttccatcac
1380

5309

ccctcagggt ggttccctac cagccaggct tactacttct agaagaaaagc agagtgccag
1440
ggagtgagat tgcatccctg ggcttagaag tgacggagag aagacttgtt tagtattttg
1500
ccatcagcac aaggaaaaacc aggagagagt ctgcctccag gactctgagc cttctgcctc
1560
gtatgttcag aaggtggata ggtcttccca ctccagcatg gcttgaactc tttaggggtct
1620
gcagtgctcc atctccattg gtggccccag ctcagtaact atacctggta catttcctgt
1680
gtgcaatcag taccttgaag gcagaacatt ctgaataaaag ttggaaaaag aacagctttg
1740
cttgccaaag attgatgaca gactggttcc tcagaggcct aggctaccccg tcaccccttt
1800
ttccagagcg agggcctgga atgaaggcag tttatcctct gtccctggag cctggggttt
1860
gtttggctc ctgaggtgg aagagactaa gagggcagct gcccagagca gctgtgtgt
1920
cctggctcc ctcaaggcttc ctgatccctt ccattgact gcgccttatac ctcagccag
1980
ccagacagcc tccctgctcc tgaccagcag atacgtttcg gagtggttgg tgtggtttt
2040
gtgatgaggg cagcacgtgg tggccaaggt gacaagctga gtctcacagg ctcactccct
2100
cgttggttcc ctgtggaat ggtaggccag gcccagtaag ccatgccccca acacgtccctc
2160
tcctccggag gaaggccag ctgccagctg agtcagcagc tagtccatag cacagccta
2220
taactgtaaa gccaggcatt gcccatgagc agagctggaa ccagagcttc agtcagtaag
2280
agggaggatt acttcagga gaaggcaagg aaaaaactg gctgttatct ttatagttcc
2340
actgcctaa ccaagtgtcc acattctaaa tgttagtgtt ccatccctta tgtaatagt
2400
gtttccgccc caaagtgaga ctttccttt aattggagaa ggtatagag gtagtccagg
2460
tgggaacgcc agaagtgctg attgccagc catggacc acctgttctt gccccactac
2520
cctctagtgg gagggccaaag taaaggctgg ctggtgggtg tctgtggatt gaggatgtgg
2580
cagggactgg tcctccacc tccctctggc caaagatggg ctttgcggc tgggtgcct
2640
tcaccaccca ccagcagtca tgccctggc ttcccaaatg gagaggtagc aggcaacgtt
2700
ttaaaaaga aaaaaacag gaaactgtat tgtgtcgaaa gaggcgggag ggagatgagg
2760
aaacggtttg gatTTGTGT gtgggagggt atTTTTGGG ggtagttgtc tgtaactttc
2820
ctaagtgtttt tttttccctt tctttttaa agtaagttgc aggctttggc ttggaaaaacc
2880
ccagggggat gggggccagg aacctgagge tgctgccccct ttatctgcct tcacggtaact
2940
gtccccctcc cccagctccct ccctgaccccc atggggccagg cctcagaccc tccagctaacc
3000

cgcttccat gagccactac tctgatgtca gcctataacc aaaggagctg gggggtccag
 3060
 gcctggtgac caacctttct cagcccactc aatcagggtg ctccccacct gcaggcagga
 3120
 ggcaacaccc tatctgctac catcagcccc ttccagagcc catctgcccc gcccagccct
 3180
 gccctgcca gccataccct gctctgcccc atctgggggt gccctgctca gggatgggct
 3240
 ggcagggctg tacccagcct ccctggtaag cagagactca agaaacctct ggggtctgt
 3300
 ttctggtcg tgtgatccca ggggtgcaca tgggcccctt gggtgtctga acagaaggc
 3360
 atgggaggga gggctgcacc cctgcagtct tactctgctg gtgtagcggg cagctgcca
 3420
 ctccccaccc accctgcacc gcgggctcct gagtcggcag attaaggcatt ttataaattg
 3480
 tattttaaat acatgtttta aacttgtaaa aaaaaaaaaa aaaaaa
 3526

<210> 6132
 <211> 167
 <212> PRT
 <213> Homo sapiens

<400> 6132
 Xaa Gly Ala Ala Ser Lys Met Glu Asp Glu Glu Val Ala Glu Ser Trp
 1 5 10 15
 Glu Glu Ala Ala Asp Ser Gly Glu Ile Asp Arg Arg Leu Glu Lys Lys
 20 25 30
 Leu Lys Ile Thr Gln Lys Glu Ser Arg Lys Ser Lys Ser Pro Pro Lys
 35 40 45
 Val Pro Ile Val Ile Gln Asp Asp Ser Leu Pro Ala Gly Pro Pro Pro
 50 55 60
 Gln Ile Arg Ile Leu Lys Arg Pro Thr Ser Asn Gly Val Val Ser Ser
 65 70 75 80
 Pro Asn Ser Thr Ser Arg Pro Thr Leu Pro Val Lys Ser Leu Ala Gln
 85 90 95
 Arg Glu Ala Glu Tyr Ala Glu Ala Arg Lys Arg Ile Leu Gly Ser Ala
 100 105 110
 Ser Pro Glu Glu Glu Gln Glu Lys Pro Ile Leu Asp Arg Ser Ser Ser
 115 120 125
 Asp Leu Leu Pro Phe Arg Pro Thr Arg Ile Ser Gln Pro Glu Asp Ser
 130 135 140
 Arg Gln Pro Asn Asn Val Ile Arg Gln Pro Leu Gly Pro Asp Gly Ser
 145 150 155 160
 His Gly Phe Lys Gln Arg Arg
 165

<210> 6133
 <211> 4156
 <212> DNA
 <213> Homo sapiens

<400> 6133

nngcggccgc cgccgcgggg cccagccgga gccgccccc tcgcccgtgc ctttgccgtc
60
gcggctcaga atcaccatcc gcggcgccgg agacgagccg gccgtcccg gccggggac
120
ccgcccccca tggccaccaa ggctcggtt atgtatgatt ttgctgctga acctggaaat
180
aatgaactga cggttaatga aggagaaaatc atcacaatca caaatccgga tgttaggtgga
240
ggatggctgg aaggaagaaa catcaaagga gaacgaggc tggttcccac agactacgtt
300
gaaattttac ccagtgtatgg aaaagatcaa ttttcttgtg gaaattcagt ggctgaccaa
360
gccttccttg attctctctc agccagcaca gctcaggcca gttcgtcggc tgccagcaac
420
aatcaccagg ttggcagtgg caatgacccc tggtcagcct ggagtgcctc caaatctggg
480
aactggaaa gctcagaagg ctggggggcc cagccagagg gggctggagc ccaaagaaaac
540
acaaacactc ccaacaactg ggacactgcc ttcggccacc cccaggccta ccaaggacca
600
gcaactggtg atgatgatga ctgggatgaa gactggatg ggcccaaatac ctcttcctac
660
tttaaggatt cagagtcagc tgatgcagggc ggcgctcagc gaggaaacag tcgtgttagt
720
tcctcatcca taaaaattcc ctttacaaa tttcctggat ttgcgaaacc tggcacggaa
780
cagtatttgt tggccaaaca actagaaaa cccaaagaga aaattccat cattgttggaa
840
gattatggcc caatgtgggt ttatcctacc tctacttttg actgtgtggt agcagatccc
900
agaaaaggct ccaaaatgtt tggctaaag agctacatcg aatatcagct aacacctact
960
aacactaatac gatctgtaaa ccacaggat aagcacttttgc actggttata tgagcgtctc
1020
ctggtaagt ttgggtcagc cattccaatc ctttctcttc cagacaaaca agtcacagggc
1080
cgctttgaag aggaatttat caaaatgcgc atggagagac ttcaggcctg gatgaccagg
1140
atgtgtcgcc atccagtaat ctcagaaagt gaagtttcc agcagttcct aaatttccga
1200
gatgagaagg aatggaaaac tggaaagagg aaggccgaga gagatgagct ggcgggagtc
1260
atgatatttt ccaccatgga accagaggca cctgacttgg acttagttaga aatagagcag
1320
aagtgcgagg ctgtggggaa gttcaccaag gcatggatg acggcgtgaa ggagctgctg
1380
acgggtgggc aggagcactg gaagcgtgc acgggcccatt tacccaagga atatcagaag
1440
atagggaaagg ctttgcagag tttggccaca gtgttcagtt ccagtggtca tcaaggtgaa
1500
acagatctca atgatgcaat aacagaagca ggaaagactt atgaagaaat tgccagtctc
1560
gtggcagaac agccaaagaa agatctccat ttccctgtatgg aatgtaatca cgagtataaa
1620

ggttttcttg gctgcttccc tgacatcatt ggcactcaca agggagcaat agaaaaagtg
1680
aaagaaaagtg acaaactagt tgcaacaagt aaaatcaccc tacaagacaa acagaacatg
1740
gtgaagagag tcagcatcat gtcttacgcg ttgcaagctg agatgaatca ctttcacagt
1800
aaccggatct atgattacaa cagtgtcattc cgctgtacc tggagcagca agtgcattt
1860
tacgaaacga ttgcagaaaa gctgaggcag gcctctagcc gctttccagt gattaggac
1920
agaacgggcc ttgaagagaa tgccgcgtgc tttctctga cttggggcaa tgcaattcaa
1980
aactttttt cccctattat tcagaaaaaa aaggaaacaa aaccaaaaag aaagagttgc
2040
aaaaaaactgc atttatttttta ttagccaccc taaatgcgtc agttatttttag ggtatggtctt
2100
ttgttcattt ccgcattccat tatttaaacc agtggaaatt gtctctattt ttggaaagta
2160
cttaaaaagtt accagaattt tcaatggaaa atgaggggtt tctccccact gatattttac
2220
atagagtcat aatttatatg tcttataaat tataagtctt atataattta taagtctccc
2280
acaatcttcc agttcttacc cagtgtcaga taattaatta ctaattactt tcttaaaaac
2340
atgaactatg ccagaataaa aaatatctat gtttgtat ttttataact ctttcagtc
2400
ctctggggct cctgtcattt agggaaagtgc ttacgcctt cactgccaca gttacagtc
2460
aagtgttac acttcaagag ggaggacgct gggggccccct ggggctgcta gtgccatcg
2520
ggtgtgtggc aggtgggcca tcccatgtcc ctccaggggg accccacagc ctggcagatg
2580
agcagatacc cctggccacc catgtcctca gcgcatttc tgatgtgctg ctcttatgt
2640
aggaccagtg ctttctctct ttgcacttcc ttcctaattct tggtaaggc atgtttatg
2700
ccatgaagaa tacattagaa gaattgaggg actttgtaga gaattttgtg gctttggtcc
2760
aacgggtgag tggctgtgcg gaggcctgtg ttctggaggg cctggagaa ggagggcacc
2820
cagcaccccg gcgtctctgg ccctttctta ttctttggct cctcatccac cgtgatgaga
2880
agcgctgctg tggccacggc acactgcttgc gcttgggtgg cgggttcatg gccagttgg
2940
gtcatcagca aagagaaaaa gcacaggta gctccccatt agatggaaaa gtgttagggac
3000
tgagaaggc tgcaagcctca gcagtgtaca gagtccccgg cgctctgagg ttggagagaa
3060
agaacagacc agcgcccttc ctgactacat ccgaaacttc acacagggtg tttctgagca
3120
ccagcaacttc cagcgcttca cttaacggca taaagcaaaa caggaccttgc gcacaccgtc
3180
agctcgaact caacactggc agccaccgtc tcacccctgc ggaggagcgc tcccgtctcc
3240

cacaggtgcc ttaccgcgtt ccctcccgct gcttcattt ttctgaccta ataattacgg
 3300
 gaaatggaaa gtctgggcca gcatcaataa aatgacacca aaaataagta gatgaaatca
 3360
 aatgaatatg agaacatctt gttcttcaat atcacgggtt tttgttaatg tttcataagt
 3420
 aattctcccc acttgatttt tcttctataa aatcccatag aacaatgttt atgctatagc
 3480
 cattaatat atgtacaaat tgtaaagaat atgtataaaat gtttacacg aatgtaagag
 3540
 catgtagaag ccaacatata aataaattgt ttaaaaaaaac tgtacagtaa attctcaaag
 3600
 cacttttca aaacactttt tggactttgt gtgtgatttt tgggtttgtt gttaagtact
 3660
 ttttattcca gctgctgaaa atggtccagg taatgaattc ttccccaaat cctatttctt
 3720
 ctgacatgaa ttcatcattt cagttccgta ggtcagtgtt gcggtccggg aagcgtatca
 3780
 taaccacctg ggagttgccca agaagcagac agtctccag tgcgtgactc tcggatattt
 3840
 ggatttgact ggtgtgaggc aaagtaaaaa agggatgggg gaaatggaga tggcacgggc
 3900
 tcctcagagc gtggtagccg actgtgagga aaagcagagg gaatgtgaaa gaaaataaga
 3960
 gaatccacgg gatttgatgc ctggaagatt ctccctcaag tggcaacatg gcataatatat
 4020
 ctttctccgg ggagtcacat gcaccatttgc ttcttagat acgttgatgt tttgattttt
 4080
 aatgatttgt atcaacctgt aggtaccaca gaagagctgt agtcatacaa tcacataact
 4140
 tttacaaata tagtgg
 4156

<210> 6134
 <211> 595
 <212> PRT
 <213> Homo sapiens

<400> 6134
 Met Ala Thr Lys Ala Arg Val Met Tyr Asp Phe Ala Ala Glu Pro Gly
 1 5 10 15
 Asn Asn Glu Leu Thr Val Asn Glu Gly Glu Ile Ile Thr Ile Thr Asn
 20 25 30
 Pro Asp Val Gly Gly Trp Leu Glu Gly Arg Asn Ile Lys Gly Glu
 35 40 45
 Arg Gly Leu Val Pro Thr Asp Tyr Val Glu Ile Leu Pro Ser Asp Gly
 50 55 60
 Lys Asp Gln Phe Ser Cys Gly Asn Ser Val Ala Asp Gln Ala Phe Leu
 65 70 75 80
 Asp Ser Leu Ser Ala Ser Thr Ala Gln Ala Ser Ser Ser Ala Ala Ser
 85 90 95
 Asn Asn His Gln Val Gly Ser Gly Asn Asp Pro Trp Ser Ala Trp Ser
 100 105 110
 Ala Ser Lys Ser Gly Asn Trp Glu Ser Ser Glu Gly Trp Gly Ala Gln

115	120	125
Pro Glu Gly Ala Gly Ala Gln Arg Asn Thr Asn Thr	Pro Asn Asn Trp	
130	135	140
Asp Thr Ala Phe Gly His Pro Gln Ala Tyr Gln Gly Pro Ala Thr Gly		
145	150	155
Asp Asp Asp Asp Trp Asp Glu Asp Trp Asp Gly Pro Lys Ser Ser Ser		160
165	170	175
Tyr Phe Lys Asp Ser Glu Ser Ala Asp Ala Gly Gly Ala Gln Arg Gly		
180	185	190
Asn Ser Arg Ala Ser Ser Ser Met Lys Ile Pro Leu Asn Lys Phe		
195	200	205
Pro Gly Phe Ala Lys Pro Gly Thr Glu Gln Tyr Leu Leu Ala Lys Gln		
210	215	220
Leu Ala Lys Pro Lys Glu Lys Ile Pro Ile Ile Val Gly Asp Tyr Gly		
225	230	235
Pro Met Trp Val Tyr Pro Thr Ser Thr Phe Asp Cys Val Val Ala Asp		240
245	250	255
Pro Arg Lys Gly Ser Lys Met Tyr Gly Leu Lys Ser Tyr Ile Glu Tyr		
260	265	270
Gln Leu Thr Pro Thr Asn Thr Asn Arg Ser Val Asn His Arg Tyr Lys		
275	280	285
His Phe Asp Trp Leu Tyr Glu Arg Leu Leu Val Lys Phe Gly Ser Ala		
290	295	300
Ile Pro Ile Pro Ser Leu Pro Asp Lys Gln Val Thr Gly Arg Phe Glu		
305	310	315
Glu Glu Phe Ile Lys Met Arg Met Glu Arg Leu Gln Ala Trp Met Thr		
325	330	335
Arg Met Cys Arg His Pro Val Ile Ser Glu Ser Glu Val Phe Gln Gln		
340	345	350
Phe Leu Asn Phe Arg Asp Glu Lys Glu Trp Lys Thr Gly Lys Arg Lys		
355	360	365
Ala Glu Arg Asp Glu Leu Ala Gly Val Met Ile Phe Ser Thr Met Glu		
370	375	380
Pro Glu Ala Pro Asp Leu Asp Leu Val Glu Ile Glu Gln Lys Cys Glu		
385	390	395
Ala Val Gly Lys Phe Thr Lys Ala Met Asp Asp Gly Val Lys Glu Leu		400
405	410	415
Leu Thr Val Gly Gln Glu His Trp Lys Arg Cys Thr Gly Pro Leu Pro		
420	425	430
Lys Glu Tyr Gln Lys Ile Gly Lys Ala Leu Gln Ser Leu Ala Thr Val		
435	440	445
Phe Ser Ser Ser Gly Tyr Gln Gly Glu Thr Asp Leu Asn Asp Ala Ile		
450	455	460
Thr Glu Ala Gly Lys Thr Tyr Glu Glu Ile Ala Ser Leu Val Ala Glu		
465	470	475
Gln Pro Lys Lys Asp Leu His Phe Leu Met Glu Cys Asn His Glu Tyr		480
485	490	495
Lys Gly Phe Leu Gly Cys Phe Pro Asp Ile Ile Gly Thr His Lys Gly		
500	505	510
Ala Ile Glu Lys Val Lys Glu Ser Asp Lys Leu Val Ala Thr Ser Lys		
515	520	525
Ile Thr Leu Gln Asp Lys Gln Asn Met Val Lys Arg Val Ser Ile Met		
530	535	540
Ser Tyr Ala Leu Gln Ala Glu Met Asn His Phe His Ser Asn Arg Ile		

545	550	555	560
Tyr Asp Tyr Asn Ser Val Ile Arg Leu Tyr Leu Glu Gln Gln			
565	570	575	
Phe Tyr Glu Thr Ile Ala Glu Lys Leu Arg Gln Ala Leu Ser Arg Phe			
580	585	590	
Pro Val Met			
595			
<210> 6135			
<211> 526			
<212> DNA			
<213> Homo sapiens			
<400> 6135			
tcgacgtccc tccttctgag ccatcagcaa ctaggcgact acaggaaact tactccaaat			
60			
tgctactaga aaagaccttg cttgaagagc catctcatca acatgttacg cagggaaacac			
120			
aggccaaacc agggtatcag ccatctggag aatctgacaa agaaaacaaa gtacagggAAC			
180			
gtcccccaag tgcgtcttcc agtagtgaca tgtctcttc agaacctcca cagcctttg			
240			
caagaaaaaga cttgatggaa tctacatgga tgcagcctga aagattgagc ccacaagttc			
300			
accattctca accacagcct tttgctggaa cagctggaaag tttactctcc catctttga			
360			
gttttagagca tgttaggaatt ttgcataagg attttgaatc tatTTTACCA accaggaaga			
420			
atcataatat ggcttcaagg ccattaactt ttacacctca accatatgtg acctcaccag			
480			
ctgcttatac agatgccttg gtaaaaccta gtgccagcca atataa			
526			
<210> 6136			
<211> 105			
<212> PRT			
<213> Homo sapiens			
<400> 6136			
Met Ser Leu Ser Glu Pro Pro Gln Pro Leu Ala Arg Lys Asp Leu Met			
1	5	10	15
Glu Ser Thr Trp Met Gln Pro Glu Arg Leu Ser Pro Gln Val His His			
20	25	30	
Ser Gln Pro Gln Pro Phe Ala Gly Thr Ala Gly Ser Leu Leu Ser His			
35	40	45	
Leu Leu Ser Leu Glu His Val Gly Ile Leu His Lys Asp Phe Glu Ser			
50	55	60	
Ile Leu Pro Thr Arg Lys Asn His Asn Met Ala Ser Arg Pro Leu Thr			
65	70	75	80
Phe Thr Pro Gln Pro Tyr Val Thr Ser Pro Ala Ala Tyr Thr Asp Ala			
85	90	95	
Leu Val Lys Pro Ser Ala Ser Gln Tyr			
100	105		

<210> 6137
<211> 2073
<212> DNA
<213> Homo sapiens

<400> 6137
ngcggccgccc aagcgatccc tgctccgcgc gacactgcgt gccccgcac gcagagaggc
60 ggtgacgcac tttacggcgg cagcgtaagt gcgtgacgct cgtaagtggc ttcagttcac
120 acgtggcgcc agcggaggca ggttgctgtg tttgtgcttc cttctacagc caatatgaaa
180 aggccctaagt taaagaaaagc aagtaaaacgc atgacctgcc ataagcggta taaaatccaa
240 aaaaagggttc gagaacatca tcgaaaatta agaaaggagg ctaaaaagca gggtcacaag
300 aaggcttagga aagacccagg agttccaaac agtgctccct ttaaggaggc tcttcttagg
360 gaagctgagc taaggaaaca gaggcttcaa gaactaaaac agcagcagaa acttgacagg
420 cagaaggaac tagaaaaagaa aagaaaactt gaaactaatac ctgatattaa gnccatcaaa
480 ttttgttccn ntatggaaaa ggagtttggg ctttgcaaaa ctgagaacaa agccaagtcg
540 ggccaaacaga attcaaagaa gctgtactgc caagaactta aaaaggttat tgaaggctcc
600 gatgttgtcc tagaggtgtt ggatgccaga gatcctcttgc ttgcagatg tcctcaggt
660 gaagaggcca ttgtccagag tggacagaaa aagctggtaat ttatattaaa taaatcagat
720 ctggtaacaa aggagaattt ggagagctgg ctaaattatt tgaagaaaaga attgccaaca
780 gtggtgttca gagcctcaac aaaaccaaag gataaaggga agataaccaa gcgtgtgaag
840 gccaaagaaga atgctgtcc attcagaagt gaagtctgtt ttggggaaaga gggcccttgg
900 aaacttcttgc gaggtttca ggaaacttgc agccaaagcca ttcgggttgg agtaattgg
960 ttcccaaattt tgaaaatggg cagcattatc aatagcttaa aacaagaaca gatgtgtat
1020 gttgggtgtat ccatggggct tacaaggagc atgcaagttt tcccccttggaa caaacagatc
1080 acaatcatag atagtccgag cttcatcgta tctccactta attcctccctc tgccgttgc
1140 ctgcgaagtc cagcaagtat tgaagtagta aaaccgatgg aggctgccag tgccatcctt
1200 tccccaggctg atgctcgaca ggttagtactg aaatatactg tcccaggctt caggaattct
1260 ctggaaatttt ttactgtgtt tgctcagaga agaggtatgc accaaaaagg tggaaatccca
1320 aatgttgaag gtgctgccaactgctgtgg tctgagtgaa caggtgcctc attagcttac
1380 tattggccatc cccctacatc ttggactccct cctccatatt ttaatgagag tattgtggta
1440

gacatgaaaa gcggttcaa tctgaaagaa ctggaaaaga acaatgcaca gagcataaga
 1500
 gccatcaagg gccctcattt ggccaatagc atcctttcc agtcttccgg tctgacaaat
 1560
 ggaataatag aagaaaagga catacatgaa gaattgccaa aacggaaaaga aaggaagcag
 1620
 gaggagaggg aggatgacaa agacagtgc acggaaactg ttgatgaaga agttgatgaa
 1680
 aacagcttag gcatgttgc tgcaagag acaggggagg cactgtctga ggagactaca
 1740
 gcaggtgaac agtctacaag gtctttatc ttggataaaa tcattgaaga ggatgatgct
 1800
 tatgacttca gtacagatta tgttaacag aacaatggct ttttatgatt tttttttta
 1860
 acattttaag cagactgcta aactgttctc tgtataagtt atggatgca tgagctgtgt
 1920
 aaatttttg aatatgtatt atattaaac caggcaactt ggaatcccta aattctgtaa
 1980
 aaagacaatt catctcattt tgagtggaaag tagttatctg gaataaaaaaa agaagataacc
 2040
 tattgaaaaa aaaaaaaaaa aaaaaaaaaa aaa
 2073

<210> 6138
 <211> 550
 <212> PRT
 <213> Homo sapiens

<400> 6138
 Met Lys Arg Pro Lys Leu Lys Lys Ala Ser Lys Arg Met Thr Cys His
 1 5 10 15
 Lys Arg Tyr Lys Ile Gln Lys Lys Val Arg Glu His His Arg Lys Leu
 20 25 30
 Arg Lys Glu Ala Lys Lys Gln Gly His Lys Lys Pro Arg Lys Asp Pro
 35 40 45
 Gly Val Pro Asn Ser Ala Pro Phe Lys Glu Ala Leu Leu Arg Glu Ala
 50 55 60
 Glu Leu Arg Lys Gln Arg Leu Glu Glu Leu Lys Gln Gln Lys Leu
 65 70 75 80
 Asp Arg Gln Lys Glu Leu Glu Lys Lys Arg Lys Leu Glu Thr Asn Pro
 85 90 95
 Asp Ile Lys Xaa Ile Lys Cys Gly Thr Xaa Met Glu Lys Glu Phe Gly
 100 105 110
 Leu Cys Lys Thr Glu Asn Lys Ala Lys Ser Gly Lys Gln Asn Ser Lys
 115 120 125
 Lys Leu Tyr Cys Gln Glu Leu Lys Lys Val Ile Glu Ala Ser Asp Val
 130 135 140
 Val Leu Glu Val Leu Asp Ala Arg Asp Pro Leu Gly Cys Arg Cys Pro
 145 150 155 160
 Gln Val Glu Glu Ala Ile Val Gln Ser Gly Gln Lys Lys Leu Val Leu
 165 170 175
 Ile Leu Asn Lys Ser Asp Leu Val Pro Lys Glu Asn Leu Glu Ser Trp
 180 185 190
 Leu Asn Tyr Leu Lys Lys Glu Leu Pro Thr Val Val Phe Arg Ala Ser

195	200	205
Thr Lys Pro Lys Asp Lys Gly Lys Ile Thr Lys Arg Val Lys Ala Lys		
210	215	220
Lys Asn Ala Ala Pro Phe Arg Ser Glu Val Cys Phe Gly Lys Glu Gly		
225	230	235
Leu Trp Lys Leu Leu Gly Gly Phe Gln Glu Thr Cys Ser Lys Ala Ile		
245	250	255
Arg Val Gly Val Ile Gly Phe Pro Asn Val Gly Lys Ser Ser Ile Ile		
260	265	270
Asn Ser Leu Lys Gln Glu Gln Met Cys Asn Val Gly Val Ser Met Gly		
275	280	285
Leu Thr Arg Ser Met Gln Val Val Pro Leu Asp Lys Gln Ile Thr Ile		
290	295	300
Ile Asp Ser Pro Ser Phe Ile Val Ser Pro Leu Asn Ser Ser Ser Ala		
305	310	315
Leu Ala Leu Arg Ser Pro Ala Ser Ile Glu Val Val Lys Pro Met Glu		
325	330	335
Ala Ala Ser Ala Ile Leu Ser Gln Ala Asp Ala Arg Gln Val Val Leu		
340	345	350
Lys Tyr Thr Val Pro Gly Tyr Arg Asn Ser Leu Glu Phe Phe Thr Val		
355	360	365
Leu Ala Gln Arg Arg Gly Met His Gln Lys Gly Gly Ile Pro Asn Val		
370	375	380
Glu Gly Ala Ala Lys Leu Leu Trp Ser Glu Trp Thr Gly Ala Ser Leu		
385	390	395
Ala Tyr Tyr Cys His Pro Pro Thr Ser Trp Thr Pro Pro Pro Tyr Phe		
405	410	415
Asn Glu Ser Ile Val Val Asp Met Lys Ser Gly Phe Asn Leu Glu Glu		
420	425	430
Leu Glu Lys Asn Asn Ala Gln Ser Ile Arg Ala Ile Lys Gly Pro His		
435	440	445
Leu Ala Asn Ser Ile Leu Phe Gln Ser Ser Gly Leu Thr Asn Gly Ile		
450	455	460
Ile Glu Glu Lys Asp Ile His Glu Glu Leu Pro Lys Arg Lys Glu Arg		
465	470	475
Lys Gln Glu Glu Arg Glu Asp Asp Lys Asp Ser Asp Gln Glu Thr Val		
485	490	495
Asp Glu Glu Val Asp Glu Asn Ser Ser Gly Met Phe Ala Ala Glu Glu		
500	505	510
Thr Gly Glu Ala Leu Ser Glu Glu Thr Thr Ala Gly Glu Gln Ser Thr		
515	520	525
Arg Ser Phe Ile Leu Asp Lys Ile Ile Glu Glu Asp Asp Ala Tyr Asp		
530	535	540
Phe Ser Thr Asp Tyr Val		
545	550	

<210> 6139

<211> 2249

<212> DNA

<213> Homo sapiens

<400> 6139

nnccggccgca gggggccggcg ctgtcgcagc ccgtccgcct cgctcatggt acgggcgcga

60

gcctcacccg cagaaaccac ctcacactga gcgccgcgg ctcagactcc acaggcgctc
120 acagacgatg atggccaggc cccggaggct aaggacggca gtccttttag cgccagagtt
180 ttccgagtga ccttcttgat gctggctgtt tctctcaccc ttccccctgct tggagccatg
240 atgctgctgg aatctcctat agatccacag cctctcagct tcaaagaacc cccgctcttg
300 ctttgtgttc tgcatccaaa tacgaagctg cgacaggcag aaaggctgtt tgaaaatcaa
360 cttgttggac cggagtcac agcacatatt gggatgtga tttttactgg gacagcagat
420 ggccgggtcg taaaacttga aatggtcaa atagagacca ttgcccgggtt tnggttcggg
480 cccnnnttgc aaaaaacgaga tcatgagcct gtgtgtggg gacccctggg tatccgtgca
540 gggcccaatg ggactctt ttttttttttgcat gcatacaagg gactatttga agtaaatccc
600 tggaaacgtg aagtgaaact gctgctgtcc tccgagacac ccattgaggg gaagaacatg
660 tcctttgtga atgatcttac agtcacttag gatgggagga agatttattt caccgattct
720 agcagcaaat ggcaaaagacg agactacctg cttctggtga tggagggcac agatgacggg
780 cgcctgtgg agtatgatac ttttttttttgcat gacttttttttgcat gacttttttttgcat
840 ttcccaatg gagtccagct gtctcctgca gaagacttttgcat ttttttttttgcat gacttttttttgcat
900 atggccagga tacgaagagt ctacgttttgcat gacttttttttgcat gacttttttttgcat
960 gtggagaaca tgcctggatt tccagacaac atccggccca gcatggggccat gacttttttttgcat
1020 atggccagga taaaaggat gattttaag ggaagctgca ttttttttttgcat gacttttttttgcat
1080 agaccctggat ttttttttttgcat gacttttttttgcat gacttttttttgcat
1140 agtcaagaga cggtgatgaa gtttggcccg cggtagccat tcgtccatgaa actcagcgac
1200 agcggtgccat tccggagaag cttcttgcat gacttttttttgcat gacttttttttgcat
1260 gaggtgcacg aacacgatgg gcacctgtac ctgggttttgcat gacttttttttgcat
1320 agactcagcc tccaggctgt ttttttttttgcat gacttttttttgcat gacttttttttgcat
1380 agtcttcaca ctcaggcacc aggcctggtc caggaggagc ttttttttttgcat gacttttttttgcat
1440 aagtgtccac atgcacactgt ttttttttttgcat gacttttttttgcat gacttttttttgcat
1500 gaggtgcacg aacacgatgg gcacctgtac ctgggttttgcat gacttttttttgcat
1560 ggccttgcac ggccttgcac ggccttgcac ggccttgcac ggccttgcac
1620 agtacagtca ttctcttagga ttttttttttgcat gacttttttttgcat gacttttttttgcat
1680

tggaggcagta aggcaactacc cagagagctt gctgctgcgg ccctgtccctg cggcctcaaa
 1740
 gttcttcttt actatatata acgtgcggtc atacctttct tcgttgttgt ggggatggaa
 1800
 gagcagaggg agcatggccc aggggtgttg agggcagcgg tgagagccgt gttagccaag
 1860
 acatggaact gtgttctcaa gggttatgtg gggcgtggc tctccatagt gtgtatgaaa
 1920
 agcttggta ctctagcgcc tcagagagga cttgctggg tttcttctg tgaatatctc
 1980
 cgtgctgacc atgctggaat tggatgattc tgcaattcgg gacctactgc aggggtccgt
 2040
 ttagtaacgt cttgtctgtg atctttgttc ttgacctcta gaccccaaga tgtgaacagt
 2100
 gcacgtgtta atgtcatctt tgctcatgtg ttataagccc caagttgctg tatatttca
 2160
 caagtatgtc tacacactgg tcatgattt gataataaat aacgataaaat cgacttctgc
 2220
 tgattaacct ttaaaaaaaaaaaaaaaa
 2249

<210> 6140
 <211> 381
 <212> PRT
 <213> Homo sapiens

<400> 6140
 Met Leu Ala Val Ser Leu Thr Val Pro Leu Leu Gly Ala Met Met Leu
 1 5 10 15
 Leu Glu Ser Pro Ile Asp Pro Gln Pro Leu Ser Phe Lys Glu Pro Pro
 20 25 30
 Leu Leu Leu Gly Val Leu His Pro Asn Thr Lys Leu Arg Gln Ala Glu
 35 40 45
 Arg Leu Phe Glu Asn Gln Leu Val Gly Pro Glu Ser Ile Ala His Ile
 50 55 60
 Gly Asp Val Met Phe Thr Gly Thr Ala Asp Gly Arg Val Val Lys Leu
 65 70 75 80
 Glu Asn Gly Glu Ile Glu Thr Ile Ala Arg Phe Xaa Phe Gly Pro Xaa
 85 90 95
 Cys Lys Thr Arg Asp Asp Glu Pro Val Cys Gly Arg Pro Leu Gly Ile
 100 105 110
 Arg Ala Gly Pro Asn Gly Thr Leu Phe Val Ala Asp Ala Tyr Lys Gly
 115 120 125
 Leu Phe Glu Val Asn Pro Trp Lys Arg Glu Val Lys Leu Leu Leu Ser
 130 135 140
 Ser Glu Thr Pro Ile Glu Gly Lys Asn Met Ser Phe Val Asn Asp Leu
 145 150 155 160
 Thr Val Thr Gln Asp Gly Arg Lys Ile Tyr Phe Thr Asp Ser Ser Ser
 165 170 175
 Lys Trp Gln Arg Arg Asp Tyr Leu Leu Val Met Glu Gly Thr Asp
 180 185 190
 Asp Gly Arg Leu Leu Glu Tyr Asp Thr Val Thr Arg Glu Val Lys Val
 195 200 205
 Leu Leu Asp Gln Leu Arg Phe Pro Asn Gly Val Gln Leu Ser Pro Ala

210	215	220
Glu	Asp	Phe
Val	Leu	Val
Ala	Glu	Thr
Met	Asp	Arg
Ile	Arg	Arg
225	230	235
240		
Val	Tyr	Val
Ser	Gly	Leu
Met	Lys	Gly
Gly	Ala	Asp
Leu	Phe	Val
245	250	255
255		
Asn	Met	Pro
Gly	Phe	Pro
Asp	Asn	Ile
Arg	Pro	Arg
Pro	Ser	Ser
Ser	Gly	Gly
260	265	270
270		
Tyr	Trp	Val
Gly	Met	Ser
Thr	Ile	Arg
Pro	Asn	Pro
Gly	Phe	Ser
Phe	Ser	Met
275	280	285
285		
Leu	Asp	Phe
Leu	Ser	Glu
Arg	Pro	Trp
Ile	Lys	Arg
Met	Ile	Phe
290	295	300
295		
Gly	Ser	Cys
Ala	Gly	Cys
Asp	Leu	Leu
Phe	Ser	Gln
Thr	Val	Glu
Met	305	310
310		315
320		
Lys	Phe	Val
Pro	Arg	Tyr
Ser	Leu	Val
Leu	Glu	Leu
Ser	Asp	Ser
Gly	325	330
330		335
335		
Ala	Phe	Arg
Arg	Ser	Leu
His	Asp	Pro
Gly	Leu	Val
Val	340	345
345		350
350		
Ile	Ser	Glu
Val	His	Glu
His	Asp	Gly
Gly	His	Leu
Tyr	Leu	Gly
Ser	Phe	
355	360	365
365		
Arg	Ser	Pro
Phe	Leu	Cys
Arg	Leu	Ser
Leu	Gln	Ala
370	375	380
380		

<210> 6141
 <211> 5651
 <212> DNA
 <213> Homo sapiens

<400> 6141
 cttcgccacc tctcttagcct gggcaactgg gggcgccccg gacgaccatg agagataagg
 60
 actgagggcc aggaagggga agcgagccccg ccgagaggtg gcggggactg ctcacgc当地
 120
 gggccacacgc gggccgcgtc cggcctcgct cggccgctcc acgcctcgcg ggatccgc当地
 180
 gggcagccccg gcccggcggg gatgccgggg ctggggcggg gggcgcagtg gctgtgctgg
 240
 tggtgggggc tgcgtgtcag ctgcgtcggg ccccccgcgc tgccggccgccc cttggccgct
 300
 gccgcggcccg cgcgcgcgg gggcagctg ctgggggacg gcgggagccc cggccgcacg
 360
 gagcagccgc cgccgtcgcc gcagtcctcc tcgggcttcc tgtaccggcg gctcaagacg
 420
 caggagaagc gggagatgca gaaggagatc ttgtcggtgc tggggctccc gcaccggccc
 480
 cggcccccgc acggcctcca acagccgcag ccccccgcgc tccggcagca ggaggagcag
 540
 cagcagcagc agcagctgcc tcgcggagag ccccccgcgc ggcgactgaa gtccgc当地
 600
 ctcttcatgc tggatctgta caacgcctg tccggccaca acgacgagga cggggcgctcg
 660
 gagggggaga ggcagcagtc ctggcccccac gaagcagcca gtcgtcccc gctgtcggcag
 720
 ccgcggccgg gcgccgc当地 cccgctcaac cgcaagagcc ttctggcccc cggatctggc
 780

agcggcgccg cgtccccact gaccagcg cgaggacagcg ctttcctcaa cgacgcggac
840
atggtcatga gctttgtgaa cctggtgag tacgacaagg agttctcccc tcgtcagcga
900
caccacaaag agttcaagtt caacttatcc cagattcctg agggtgtgggt ggtgacggct
960
gcagaattcc gcatctacaa ggactgtgtt atggggagtt taaaaaacca aacttttctt
1020
atcagcattt atcaagtctt acaggagcat cagcacagag actctgacct gttttgttg
1080
gacacccgtg tagtatgggc ctcagaagaa ggctggctgg aatttgacat cacgccact
1140
agcaatctgt gggttgtgac tccacagcat aacatgggc ttcagctgag cgtggtgaca
1200
agggatggag tccacgtcca ccccccggcc gcaggcctgg tgggcagaga cggcccttac
1260
gataaggcgc ctttcattgtt ggcttttttc aaagttagtgg aggtccacgt ggcaccacc
1320
aggtcagcct ccagccggcg ccgacaacag agtcgttaatc gctctaccca gtcccaggac
1380
gtggcgcggg tctccagtgc ttccagattac aacagcagtg aattgaaaac agcctgcagg
1440
aagcatgagc tgtatgtgag ttccaaagac ctggatggc aggactggat cattgcaccc
1500
aagggtatg ctgccaatta ctgtgatgga gaatgctct tcccactcaa cgcacacatg
1560
aatgcaacca accacgcgtat tgtgcagacc ttggttcacc ttatgaaaccc cgagtatgtc
1620
cccaaaccgt gctgtgcgc aactaagcta aatgccatct cggttcttta cttcaatgac
1680
aattccaaaa tcaccttgaa aaaatacaga aatatggttg taagagcttg tggatattgc
1740
taactgaaa ccagatgctg gggacacaca ttctgccttg gattccttg tcatacgctc
1800
cttaaaaaac atacagaagc acagttggag gtgggacgtat gagactttga aactatctca
1860
tgctgatgcc ttactgccc agaaaaattt taacggacact tgctaataat ttgctcactt
1920
ggtaagtaac atgagtagtt gttggctgt actaagctga gtttggatgt ctgttagcata
1980
aggtctggta actgcagaaa cataaccgtg aagctttcc taccctccctc ccccaaaaac
2040
ccacccaaaat tagtttagc tgtagatcaa gctattttgg gtgtttgtta gtaaataggg
2100
aaaataatct caaaggagtt aaatgtattc ttggctaaag gatcagctgg ttcagtgactg
2160
tctatcaaag gttagattta cagagaacag aaatcgggga agtggggggga acgcctctgt
2220
tcagttcatt cccagaagtc cacaggacgc acagcccagg ccacagccag ggctccacgg
2280
ggcgccttg tctcagtcat tgctgtgtt gttcggtt ggagttttgt tgggtgtaaa
2340
atacacttat ttcaagccaaa acataaccatt tctacacccctc aatcctccat ttgctgtact
2400

ctttgttagt accaaaagta gactgattac actgaggtga ggctacaagg ggtgtgtAAC
2460
cgtgtAACAC gtgaaggcaa tgctcacctc ttctttacca gaacggttct ttgaccagca
2520
cattaacttc tgactGCCG gctctagtag cttttcagta aagtggttct ctgccttttt
2580
actatacAGC ataccacGCC acagggttag aaccaacgaa gaaaataaaa tgagggtgCC
2640
cagttataa gaatgggttt agggggatga gcatgctgtt tatgaacgga aatcatgatt
2700
tccctttagt aaagtgaggc tcagattaaa ttttagaata ttttctaaat gtcttttca
2760
caatcatgtA ctgggaaggc aatttcatac taaactgatt aaataataca tttataatct
2820
acaactgttt gcacttacag cttttttgtt aaatataaac tataattttat tgtcttattt
2880
atatctgttt tgctgtAAcA ttGAAGGAAA gaccagactt ttAAAAAAAG agagtttatt
2940
tagaaagtat catagtgtAA acaaacAAat tgtaccactt tgattttctt ggaatacaAG
3000
actcggtatg caaagctgaa gttgtgtgtA caagacttt gacagttgtg cttctctagg
3060
aggttgggtt ttttAAAGAA aagaatttac tGTGAACCAT acgtgattAA taaagatttC
3120
ctttaaggca gaggctggc gagatgtgc ttttatcttc tgcctcagac agacagtata
3180
agtggcttg tttctaagat tcctaccacc agttactttg ggccaagtat ccacatcccc
3240
ttgcgtatgg gaggtgggtg aagagtgttg gatgcaaagt ggttattatg ggaagtagct
3300
cgatggtaaa aggacAAACA cctatctatc ttagagcttA agcctgtatg tgcttattcc
3360
caaggagat agaggtttt aatcacaagg acagcatgag ttagaggaca ctggcatcaa
3420
cagctGCCAC agccgtgcAC accaggGCCA gagcagcccc ctgacatctg tcttggct
3480
ttagatcaaa tgcattccat ttttcataca ttGAAGGTC gaccccttg aagcagacca
3540
agtatagcaa gcctctaaaa ggactactga gaaacagaat cagaaactct agaactctag
3600
ttaggcccct tcagcagggc tgcagagcct ccctggatac ccaggcctgg gaaaggctgt
3660
ctggcttgc cacccaggt gacAAataca actggaatct ttcaatgagt taatgagata
3720
ctgagaatga gcctcggtGA attttccatg cctaccctt ctaaggAAAGA catccaacAG
3780
ttcatgtggg ctctggcttc gtgttaacat gaggAAacttA agacatgttt cacccgtga
3840
gaaacagaag gatcccctga acagtaactg atttgacaag tatcgacaca taaagttatg
3900
gcatcagcat tctcttactc aggcacggc agaagtaacg ctgcttcat cacggctaaC
3960
ctctcacact gagagaagta ttcacagcaa cagaagctcc agcagcggcc gtgaaggtat
4020

cttccagagg tggggtttt tgcattcaa tctgctccat gctacggacc aacacagtat
4080
tgagtcaact gtgaccttaa gatcagagga acgtcaatac tgccacaagg ccaccttcc
4140
agaactcgtg ggcaggtaaa ctatgcttg gatgtgctt cttcaccaa aatcactcaa
4200
ctcaggagcc acaaatagtc cagcaatttc attccctca acgctatTTT agtctcaaag
4260
gaaaccatgt aaatttcatc aagagaaggt caaaggggat atatgccac tgaaaatgtt
4320
tacacagtga ccatgagttt cacattact tagagaaact taacttaata aagaatctgt
4380
agagtgtgtt ggcttgaaa acacacacac aaagaagata cctcacgctt agtatgttct
4440
gcttctgaa cagccaccac tggaaaccca gtggcctctg tggactgaa ctcctaaacg
4500
cagggcgg gagctggca ggagaggtga cctccaaactg tttcttaaa gttcgcttt
4560
cgcttggctc aggacaaagc ggtgtaacga gtcaaggctt ctgcctccac tgtgctca
4620
gacttcttc ctcctcgga aaagcaataa cgtggggtag ctcgtaccg aatacttgt
4680
gcagatattc cgttcagcag tgcagtctac ttccggcgtac ttgacccccc ccagaccagg
4740
gaattcttt ttagagagtt cctccaaagt aggagccaga gtcttacaat gaccacacca
4800
tggagcataa aacttgatga aggttattcc ttctgcaatg gtgtcatcga agttatTTT
4860
agttagtgcc aacacagtgc cttgtcagc ctggggctca gtcggcagca ccggggctc
4920
tgagggcgtg acggctcccg tcgctccagt ctctgtgcgc tgcagctgcg actccacgta
4980
ctccctcagt gactccaaat cccgcttcc ttgtactga tccaccttt tcccatctcg
5040
gaaccagaga agagtggat agccacgaac ctggttccg gagcagagtt catagtgc
5100
tgtacaatca accttgccaa tcttgacagt ttccgaatgt tcaaggccca gagccagctg
5160
ctcccaggtt ggagccaggg ctggcgttg accacaccac ggagcgaaga acttgataaa
5220
gtggcgtctt tggcaacgt gcagctaaa gttgtttgtt gagagctcat acagcccttgc
5280
cttgagctcg gggcactgg gcgggtccac ttccggctct ggtgtcactg gtcctcg
5340
cagtgtctgc agcatccagt ttccagttgt ctggaaagtcc cgaggaccct ggtacttcac
5400
agcttcttgg cctggcttga aaagctttaa ggtggggat ctcgcaccc cctggccgga
5460
gcacacgtcg gagtggcccg tgcagttccac tttagccaca tagactttgg catctccat
5520
gctgtgtat ttgtctccca ggtcatcga agtcggctgc agccgctggc agtgc
5580
ccagggcgcg aagaacatga cgaagtgcgc ggcgtctgg atcccgatgc tgaacatgtc
5640

ggccgtgtac a
5651

<210> 6142
<211> 513
<212> PRT
<213> Homo sapiens

<400> 6142
Met Pro Gly Leu Gly Arg Arg Ala Gln Trp Leu Cys Trp Trp Trp Gly
1 5 10 15
Leu Leu Cys Ser Cys Cys Gly Pro Pro Pro Leu Arg Pro Pro Leu Pro
20 25 30
Ala Ala Ala Ala Ala Ala Gly Gly Gln Leu Leu Gly Asp Gly Gly
35 40 45
Ser Pro Gly Arg Thr Glu Gln Pro Pro Pro Ser Pro Gln Ser Ser Ser
50 55 60
Gly Phe Leu Tyr Arg Arg Leu Lys Thr Gln Glu Lys Arg Glu Met Gln
65 70 75 80
Lys Glu Ile Leu Ser Val Leu Gly Leu Pro His Arg Pro Arg Pro Leu
85 90 95
His Gly Leu Gln Gln Pro Gln Pro Pro Ala Leu Arg Gln Gln Glu Glu
100 105 110
Gln Gln Gln Gln Leu Pro Arg Gly Glu Pro Pro Pro Gly Arg
115 120 125
Leu Lys Ser Ala Pro Leu Phe Met Leu Asp Leu Tyr Asn Ala Leu Ser
130 135 140
Ala Asp Asn Asp Glu Asp Gly Ala Ser Glu Gly Glu Arg Gln Gln Ser
145 150 155 160
Trp Pro His Glu Ala Ala Ser Ser Ser Gln Arg Arg Gln Pro Pro Pro
165 170 175
Gly Ala Ala His Pro Leu Asn Arg Lys Ser Leu Leu Ala Pro Gly Ser
180 185 190
Gly Ser Gly Gly Ala Ser Pro Leu Thr Ser Ala Gln Asp Ser Ala Phe
195 200 205
Leu Asn Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu Tyr
210 215 220
Asp Lys Glu Phe Ser Pro Arg Gln Arg His His Lys Glu Phe Lys Phe
225 230 235 240
Asn Leu Ser Gln Ile Pro Glu Gly Gly Val Val Thr Ala Ala Glu Phe
245 250 255
Arg Ile Tyr Lys Asp Cys Val Met Gly Ser Phe Lys Asn Gln Thr Phe
260 265 270
Leu Ile Ser Ile Tyr Gln Val Leu Gln Glu His Gln His Arg Asp Ser
275 280 285
Asp Leu Phe Leu Leu Asp Thr Arg Val Val Trp Ala Ser Glu Glu Gly
290 295 300
Trp Leu Glu Phe Asp Ile Thr Ala Thr Ser Asn Leu Trp Val Val Thr
305 310 315 320
Pro Gln His Asn Met Gly Leu Gln Leu Ser Val Val Thr Arg Asp Gly
325 330 335
Val His Val His Pro Arg Ala Ala Gly Leu Val Gly Arg Asp Gly Pro
340 345 350
Tyr Asp Lys Gln Pro Phe Met Val Ala Phe Phe Lys Val Ser Glu Val

355	360	365
His Val Arg Thr Thr Arg Ser Ala Ser Ser Arg Arg Arg Gln Gln Ser		
370	375	380
Arg Asn Arg Ser Thr Gln Ser Gln Asp Val Ala Arg Val Ser Ser Ala		
385	390	395
Ser Asp Tyr Asn Ser Ser Glu Leu Lys Thr Ala Cys Arg Lys His Glu		400
405	410	415
Leu Tyr Val Ser Phe Gln Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala		
420	425	430
Pro Lys Gly Tyr Ala Ala Asn Tyr Cys Asp Gly Glu Cys Ser Phe Pro		
435	440	445
Leu Asn Ala His Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu		
450	455	460
Val His Leu Met Asn Pro Glu Tyr Val Pro Lys Pro Cys Cys Ala Pro		
465	470	475
Thr Lys Leu Asn Ala Ile Ser Val Leu Tyr Phe Asn Asp Asn Ser Lys		
485	490	495
Ile Thr Leu Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Tyr		
500	505	510
Cys		

<210> 6143
<211> 1137
<212> DNA
<213> Homo sapiens

<400> 6143
ttttttttt ttttgagct gcagagcaact gagctttatt tacaaaacttc cacagaatcc
60
ctcacccctcc accccagggt cctccctctc tggaactca gca gca gaca agcttgggtc
120
ccccacacccg cccaaacctag gacagctggg cctgagctgg gcgggcagg gattccatct
180
cctgggtgcg cctgccagag gggagaggct ggaggcggcg ggaatgctgt tctccccag
240
gagtcagtcc tcaggccttc tgccgtggga cgtggggccg agggacctgg ggcactgacc
300
aggtcgggt cgggggcagc atctgcattg gtgaggccgg gtgaaaagg ctgctggtgc
360
cggacagctt ctggtgctgg gcctagcgg gacagaggac cagaggtcca gttcctgg
420
ggctgagctt ttctcagact tcggaggaaa aatgtcccag cccagcaggc agtgcgggg
480
caggccagg gtgtcagagg cgtcaaagct ctttcgggtg gatgtggta cggtgccgg
540
gctccaggat cgacagcggg atgctcaccc tgccgcagg ggctgacgtg cgctgtgcg
600
ccagggtcccc agggccctgc tggctcgcg atgtcctgca caggcggcag ggggtaccgg
660
gatccacagg caccggaaac aggccgggt tgacacggta acagtacacg cattcatgg
720
cttcctccac gccgctgcca ctgctctcac gcaggcctgg caactgggt tcaggatggc
780

tgcagataca ctccctccttg ttggtttccc gaaaactcctg cagcttggag aagaaggcct
 840
 caggctggct ggtgatggaa gagctggtgt ccagagaccc tgcaatccag tcataccc
 900
 ggtatggcct gaggcgccag ctcccttcag gaactgcaga ctccctcagag aaggtcaccc
 960
 tgggcttggaa cagcttgcgc tggtgagcca ggatggacct cggggtctgt gcctccctggg
 1020
 gtcctggatc acccagecctc cctgagggtct cttgggtccct caggcttgag gtgcccagcg
 1080
 agggtgctga gtggggtctc ggtcgccccca gggactcctg gtgctggcat ttggcag
 1137

<210> 6144
 <211> 141
 <212> PRT
 <213> Homo sapiens

<400> 6144
 Phe Phe Phe Phe Glu Leu Gln Ser Thr Glu Leu Tyr Leu Gln Thr
 1 5 10 15
 Ser Thr Glu Ser Leu Thr Leu His Pro Arg Val Leu Pro Leu Trp Asn
 20 25 30
 Ser Gly Ser Arg Gln Ala Trp Val His Pro Pro Ala Gln Pro Arg Thr
 35 40 45
 Ala Gly Pro Glu Leu Gly Gly Gln Gly Ile Pro Ser Pro Gly Cys Ala
 50 55 60
 Cys Gln Arg Gly Glu Ala Gly Gly Gly Asn Ala Val Leu Pro Gln
 65 70 75 80
 Glu Ser Val Leu Arg Ala Ser Ala Val Gly Arg Gly Ala Glu Gly Pro
 85 90 95
 Gly Ala Leu Thr Arg Ser Gly Ser Gly Ala Ala Ser Ala Leu Val Arg
 100 105 110
 Pro Gly Glu Lys Gly Cys Trp Cys Arg Thr Ala Ser Gly Ala Gly Pro
 115 120 125
 Ser Gly Asp Arg Gly Pro Glu Val Gln Val Pro Gly Gly
 130 135 140

<210> 6145
 <211> 766
 <212> DNA
 <213> Homo sapiens

<400> 6145
 nacaagggtct cagcctcctc tcctgggtc cagcttgcgc cctctggctc acctgttccct
 60
 agagcaatgt ctccccagca gcagcagcgg caggcagcag tgcccacccc agaggccccag
 120
 cagcagcaag tgaaggcagcc ttgtcagcca cccctgtta aatgtcaaga gacatgtgca
 180
 cccaaaacca aggtatccatg tgctccccag gtcaagaagc aatgcccacc gaaagacacc
 240
 atcatccag cccagcagaa gtgtccctca gcccagcaag cctccaagag caaacagaag
 300

taaggatgga ctggatatta ccatcatcca ccatcctggc taccagatgg aaccttctct
 360
 tcttccttct cctttccct ccagcttttg agcctaccct cctctcacat ctcctcctgc
 420
 ccaagatgta aggaagcatt gtaaggattt cttccatcg tacccttccc cacacatacc
 480
 accttggctt cttctatatac ccaccccgat gctctccag gtgggtgtga gagagacctc
 540
 attctctgca ggctccagcg tggccacagc taaggccat ccatttccca aagtgaggaa
 600
 agtgtctggg cttcttctgg ggttccaccc tgacaagtag ggtcacagag gctggtgac
 660
 agtttctgcc tcattcctct ccatgatgcc ccctgctctg ggcttctctc ctgtttcccc
 720
 caataaatat gtgcctcatg taataaatgt gtctgcttcc tgggct
 766

<210> 6146
 <211> 100
 <212> PRT
 <213> Homo sapiens

<400> 6146
 Xaa Lys Gly Ser Ala Ser Ser Pro Gly Val Gln Leu Val Ala Ser Gly
 1 5 10 15
 Ser Pro Val Pro Arg Ala Met Ser Ser Gln Gln Gln Gln Arg Gln Ala
 20 25 30
 Ala Val Pro Thr Pro Glu Ala Gln Gln Gln Val Lys Gln Pro Cys
 35 40 45
 Gln Pro Pro Pro Val Lys Cys Gln Glu Thr Cys Ala Pro Lys Thr Lys
 50 55 60
 Asp Pro Cys Ala Pro Gln Val Lys Lys Gln Cys Pro Pro Lys Asp Thr
 65 70 75 80
 Ile Ile Pro Ala Gln Gln Lys Cys Pro Ser Ala Gln Gln Ala Ser Lys
 85 90 95
 Ser Lys Gln Lys
 100

<210> 6147
 <211> 1852
 <212> DNA
 <213> Homo sapiens

<400> 6147
 ntgctaactc aaggagctac tgtactaaa aacatgcaaa atatgttga tttgtggcat
 60
 agttcatatt tacactatca taaaattatg gccgagaagt taaatattct aaatgtgtca
 120
 acatagttct ctgtaaaact gacttacttt ccaaataataat tttgaaataa aacaataaa
 180
 aatgttttc tgaaaaatgg aatggtgaa agcagcagac ataattggag tgggttggat
 240
 aagcaaaatgt atattcaaaa tttaaatgaa gagagaatct tagcttaca gctttgtgg
 300

tggataaaaga aaggaacgga tggtagacgtg gggccat^{ttt} tgaactccct tgtacaagaa
360
ggggaaatggg aaagagctgc tgctgtggca ttgttcaact tggatattcg ccgagcaatc
420
caaattcctga atgaaggggc atcttctgaa aaaggagatc tgaatctcaa tgtggtagca
480
atggctttat cgggttatac ggatgagaag aactccctt ggagagaaaat gtgttagcaca
540
ctgcgattac agctaaataa cccgtat^{ttt} tggtagcatgt ttgcatttct gacaagtgaa
600
acaggatctt acgatggagt tttgtatgaa aacaaagttg cagtagtgc cagagtggca
660
tttgcttgta aattccttag tgataactcag ttaaatagat acatcgaaaa gttgaccaat
720
gaaatgaaaag aggctggaaa tttggaaagga attttgctta caggccttac taaagatgga
780
gtggacttaa tggagagttt tggataga actggagatg ttcaaacagc aagttactgt
840
atgttacagg gttcacctt agatgtctt aaagatgaaa gggttcagta ctggatttag
900
aattatagaa atttattaga tgcctggagg tttggcata aacgagctga attttagatatt
960
cacaggagta agttggatcc cagttccaag ccttagcac aagttttgt gagttgcaat
1020
ttctgtggca agtcaatctc ctacagctgt tcagctgtgc ctcacatcaggg cagaggttt
1080
agtcaatcgtatg gtgtgagttt ctcaccaacg aaatctaaag tcacaagttg tcctggctgt
1140
cgaaaaccac ttccctcgatg tgcgc^{ttt} ctcattaata tggaaacacc agtttctagc
1200
tgtccctggag gaaccaaatac agatgaaaaa gtggacttga gcaaggacaa aaaatttagcc
1260
caatttaaca actggtttac atgggtcat aattgcaggc acggtgacca tgctggacat
1320
atgcttagtt gttcaggga ccatgcagag tgccctgtgt ctgcacatgcac gtgtaaatgt
1380
atgcagttgg atacaacggg gaatctggta cctgcagaga ctgtccagcc ataaaatgtt
1440
accaccttaa gagaaccctt caagtgtggc gctttctagt aggtgtcctt catagctcag
1500
aaacataacct cagaacaacgc cattcatgac ttacctgtaa tggaaaata aatcattcta
1560
tcagatcagc agttttgatg tttgagtttgc ttcacagaga caaatgctgc
1620
caaaataaac atcgaagtat agacatgagt tctgttcagc aggttggaaa gtctgattta
1680
gaaaaacttt ctaagtttg gttgaaattha tgaacactct agaagcagaa tttctggaaag
1740
agccaaagaac agacttttag cctatatctt caaagctgaa actggatatac tttcaataaa
1800
atatgtgcac ttttaaaaata aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa
1852

<210> 6148

<211> 410
<212> PRT
<213> Homo sapiens

<400> 6148

Met	Val	Glu	Ser	Ser	Arg	His	Asn	Trp	Ser	Gly	Leu	Asp	Lys	Gln	Ser
1		5							10						15
Asp	Ile	Gln	Asn	Leu	Asn	Glu	Glu	Arg	Ile	Leu	Ala	Leu	Gln	Leu	Cys
				20					25						30
Gly	Trp	Ile	Lys	Lys	Gly	Thr	Asp	Val	Asp	Val	Gly	Pro	Phe	Leu	Asn
					35			40				45			
Ser	Leu	Val	Gln	Glu	Gly	Glu	Trp	Glu	Arg	Ala	Ala	Ala	Val	Ala	Leu
				50				55				60			
Phe	Asn	Leu	Asp	Ile	Arg	Arg	Ala	Ile	Gln	Ile	Leu	Asn	Glu	Gly	Ala
					65			70			75				80
Ser	Ser	Glu	Lys	Gly	Asp	Leu	Asn	Leu	Asn	Val	Val	Ala	Met	Ala	Leu
					85				90				95		
Ser	Gly	Tyr	Thr	Asp	Glu	Lys	Asn	Ser	Leu	Trp	Arg	Glu	Met	Cys	Ser
				100				105				110			
Thr	Leu	Arg	Leu	Gln	Leu	Asn	Asn	Pro	Tyr	Leu	Cys	Val	Met	Phe	Ala
				115				120				125			
Phe	Leu	Thr	Ser	Glu	Thr	Gly	Ser	Tyr	Asp	Gly	Val	Leu	Tyr	Glu	Asn
				130				135				140			
Lys	Val	Ala	Val	Arg	Asp	Arg	Val	Ala	Phe	Ala	Cys	Lys	Phe	Leu	Ser
				145				150			155				160
Asp	Thr	Gln	Leu	Asn	Arg	Tyr	Ile	Glu	Lys	Leu	Thr	Asn	Glu	Met	Lys
					165				170				175		
Glu	Ala	Gly	Asn	Leu	Glu	Gly	Ile	Leu	Leu	Thr	Gly	Leu	Thr	Lys	Asp
				180				185				190			
Gly	Val	Asp	Leu	Met	Glu	Ser	Tyr	Val	Asp	Arg	Thr	Gly	Asp	Val	Gln
				195				200				205			
Thr	Ala	Ser	Tyr	Cys	Met	Leu	Gln	Gly	Ser	Pro	Leu	Asp	Val	Leu	Lys
				210				215				220			
Asp	Glu	Arg	Val	Gln	Tyr	Trp	Ile	Glu	Asn	Tyr	Arg	Asn	Leu	Leu	Asp
				225				230			235				240
Ala	Trp	Arg	Phe	Trp	His	Lys	Arg	Ala	Glu	Phe	Asp	Ile	His	Arg	Ser
					245				250				255		
Lys	Leu	Asp	Pro	Ser	Ser	Lys	Pro	Leu	Ala	Gln	Val	Phe	Val	Ser	Cys
				260				265				270			
Asn	Phe	Cys	Gly	Lys	Ser	Ile	Ser	Tyr	Ser	Cys	Ser	Ala	Val	Pro	His
				275				280				285			
Gln	Gly	Arg	Gly	Phe	Ser	Gln	Tyr	Gly	Val	Ser	Gly	Ser	Pro	Thr	Lys
				290				295			300				
Ser	Lys	Val	Thr	Ser	Cys	Pro	Gly	Cys	Arg	Lys	Pro	Leu	Pro	Arg	Cys
				305				310			315				320
Ala	Leu	Cys	Leu	Ile	Asn	Met	Gly	Thr	Pro	Val	Ser	Ser	Cys	Pro	Gly
					325				330				335		
Gly	Thr	Lys	Ser	Asp	Glu	Lys	Val	Asp	Leu	Ser	Lys	Asp	Lys	Leu	
					340				345				350		
Ala	Gln	Phe	Asn	Asn	Trp	Phe	Thr	Trp	Cys	His	Asn	Cys	Arg	His	Gly
					355				360				365		
Gly	His	Ala	Gly	His	Met	Leu	Ser	Trp	Phe	Arg	Asp	His	Ala	Glu	Cys
					370				375				380		
Pro	Val	Ser	Ala	Cys	Thr	Cys	Lys	Cys	Met	Gln	Leu	Asp	Thr	Thr	Gly

385 390 395 400
Asn Leu Val Pro Ala Glu Thr Val Gln Pro
405 410

<210> 6149
<211> 1949
<212> DNA
<213> Homo sapiens

<400> 6149
ngggccgcggg ctgcatggc agcgcccgcg cccgcgcgt gagccgtcgc ggagccgcgc
60
agccctcgga gcacgaatat atacagccct gctctggac acacctccat tggatttaaa
120
agacagtcct cgtcagcaact gactttcagc tatggaatcg cagacggttg atgatgaagc
180
gccggccgtg taaatgaaga tcgggtgagg agcaggacga tgcccaaggg tgggtgcct
240
aaagcaccac agcaggaaga gttcccctc agcagcgaca tggtgagaa gcagactgg
300
aaaaaggata aagataaaagt ttctctaacc aagacccaa aactggagcg tggcgatggc
360
gggaaggagg tgagggagcg agccagcaag cgaaagctgc ctttcaccgc gggcgccaat
420
ggggagcaga aggactcgga cacagagaag cagggccctg agcggaaagag gattaagaag
480
gagcctgtca cccggaaggc cgggctgctg tttggcatgg ggctgtctgg aatccgagcc
540
ggctaccccc tctccgagcg ccagcaggtg gccttctca tgcagatgac ggccgaggag
600
tctgccaaca gcccagtgga cacaacacca aagacccct cccagtctac agtgtgtcag
660
aaggaaacgc ccaactctgc ctcaaaaacc aaagataaaac tgaacaagag aaacgagcgt
720
ggagagaccc gcctgcaccg agccgcccatt cgccgggacg cccggcgcat caaagagctc
780
atcagcgagg gggcagacgt caacgtcaag gacttcgcag gctggacggc gctgcacgag
840
gcctgttaacc gggctacta cgacgtcgcg aagcagctgc tggctgcagg tgcggaggtg
900
aacaccaagg gccttagatga cgacacgcct ttgcacgacg ctgccaacaa cgggcactac
960
aagggtgtga agctgctgct gcggtacgga gggAACCCGC agcagagcaa cagggaaaggc
1020
gagacgcgc gtaaaagtggc caactcccc acgatggtga acctccctgtt aggcaaaggc
1080
acttacactt ccagcgagga gagctcgacg gagagctcag aagaggaaga cgcaccatcc
1140
ttcgcacctt ccagttcagt cgacggcaac aacacggact ccgagttcga aaaaggcctc
1200
aagcacaagg ccaagaaccc agagccacag aaggccacgg ccccccgtcaa ggacgagtat
1260
gagtttgatg aggacgacga gcaggacagg gttccctccgg tggacgacaa gcacctattg
1320

aaaaaggact acagaaaaga aacgaaatcc aatagttta tctctataacc caaaatggag
 1380
 gttaaaaagt acactaaaaa taacacgatt gcaccaaaga aagcgtccca tcgtatcctg
 1440
 tcagacacgt cggacgagga ggacgcgagt gtcaccgtgg ggacaggaga gaagctgaga
 1500
 ctctcggcac atacgatatt gcctggtagt aagacacgag agcttctaa tgccaagcag
 1560
 cagaaggaaa aaaataaagt gaaaaagaag cgaaagaaag aaacaaaagg cagagaggtt
 1620
 cgcttcggaa agcggagcna tagttctgct cctcggagtc ggagagcag tcctcagaga
 1680
 gtggggagga tgacagggac tctctggga gctctggctg cctcaagggg tccccgctgg
 1740
 tgctgaagga cccctccctg ttcagctccc tctctgcctc ctccacctcg tctcacggga
 1800
 gctctgccgc ccagaagcag aaccccagcc acacagacca gcacaccaag cactggcgga
 1860
 cagacaattg gaaaaccatt tcttccccgg cttggtcaga ggtcagttct ttatcagact
 1920
 ccacaaggac gagactgaca agcgagtct
 1949

<210> 6150
 <211> 508
 <212> PRT
 <213> Homo sapiens

<400> 6150
 Met Pro Lys Gly Gly Cys Pro Lys Ala Pro Gln Gln Glu Glu Leu Pro
 1 5 10 15
 Leu Ser Ser Asp Met Val Glu Lys Gln Thr Gly Lys Lys Asp Lys Asp
 20 25 30
 Lys Val Ser Leu Thr Lys Thr Pro Lys Leu Glu Arg Asp Gly Gly
 35 40 45
 Lys Glu Val Arg Glu Arg Ala Ser Lys Arg Lys Leu Pro Phe Thr Ala
 50 55 60
 Gly Ala Asn Gly Glu Gln Lys Asp Ser Asp Thr Glu Lys Gln Gly Pro
 65 70 75 80
 Glu Arg Lys Arg Ile Lys Lys Glu Pro Val Thr Arg Lys Ala Gly Leu
 85 90 95
 Leu Phe Gly Met Gly Leu Ser Gly Ile Arg Ala Gly Tyr Pro Leu Ser
 100 105 110
 Glu Arg Gln Gln Val Ala Leu Leu Met Gln Met Thr Ala Glu Glu Ser
 115 120 125
 Ala Asn Ser Pro Val Asp Thr Thr Pro Lys His Pro Ser Gln Ser Thr
 130 135 140
 Val Cys Gln Lys Gly Thr Pro Asn Ser Ala Ser Lys Thr Lys Asp Lys
 145 150 155 160
 Leu Asn Lys Arg Asn Glu Arg Gly Glu Thr Arg Leu His Arg Ala Ala
 165 170 175
 Ile Arg Gly Asp Ala Arg Arg Ile Lys Glu Leu Ile Ser Glu Gly Ala
 180 185 190
 Asp Val Asn Val Lys Asp Phe Ala Gly Trp Thr Ala Leu His Glu Ala

195	200	205
Cys Asn Arg Gly Tyr Tyr Asp Val Ala Lys Gln Leu Leu Ala Ala Gly		
210	215	220
Ala Glu Val Asn Thr Lys Gly Leu Asp Asp Asp Thr Pro Leu His Asp		
225	230	235
Ala Ala Asn Asn Gly His Tyr Lys Val Val Lys Leu Leu Leu Arg Tyr		
245	250	255
Gly Gly Asn Pro Gln Gln Ser Asn Arg Lys Gly Glu Thr Pro Leu Lys		
260	265	270
Val Ala Asn Ser Pro Thr Met Val Asn Leu Leu Leu Gly Lys Gly Thr		
275	280	285
Tyr Thr Ser Ser Glu Glu Ser Ser Thr Glu Ser Ser Glu Glu Glu Asp		
290	295	300
Ala Pro Ser Phe Ala Pro Ser Ser Ser Val Asp Gly Asn Asn Thr Asp		
305	310	315
Ser Glu Phe Glu Lys Gly Leu Lys His Lys Ala Lys Asn Pro Glu Pro		
325	330	335
Gln Lys Ala Thr Ala Pro Val Lys Asp Glu Tyr Glu Phe Asp Glu Asp		
340	345	350
Asp Glu Gln Asp Arg Val Pro Pro Val Asp Asp Lys His Leu Leu Lys		
355	360	365
Lys Asp Tyr Arg Lys Glu Thr Lys Ser Asn Ser Phe Ile Ser Ile Pro		
370	375	380
Lys Met Glu Val Lys Ser Tyr Thr Lys Asn Asn Thr Ile Ala Pro Lys		
385	390	395
Lys Ala Ser His Arg Ile Leu Ser Asp Thr Ser Asp Glu Glu Asp Ala		
405	410	415
Ser Val Thr Val Gly Thr Gly Glu Lys Leu Arg Leu Ser Ala His Thr		
420	425	430
Ile Leu Pro Gly Ser Lys Thr Arg Glu Pro Ser Asn Ala Lys Gln Gln		
435	440	445
Lys Glu Lys Asn Lys Val Lys Lys Lys Arg Lys Lys Glu Thr Lys Gly		
450	455	460
Arg Glu Val Arg Phe Gly Lys Arg Ser Xaa Ser Ser Ala Pro Arg Ser		
465	470	475
Arg Arg Ala Ser Pro Gln Arg Val Gly Arg Met Thr Gly Thr Leu Trp		
485	490	495
Gly Ala Leu Ala Ala Ser Arg Gly Pro Arg Trp Cys		
500	505	

<210> 6151

<211> 648

<212> DNA

<213> Homo sapiens

<400> 6151

```

ttttttttttt ttttttttga agggtgagaa atttatttcag atttcttcat aattccccc
60
aaaagctcca accacgttgc cagtccttgg gtgctgcagt tggtcgggga gaggggctgt
120
gtggaggtca cttctggta gacggagacc cgctttcag actctgtggc gcagcaggcg
180
ggccaggaac atttgggcca ctattgtct tagccctgcc ggcgcctgact ttctctccctc
240

```

tactttcctt ccgaccgtag ggacaagtgt gggatccgc tttgggctcc aaggccctgc
300
ccgcactggc agcaccaagc gggtgttagaa tgactggaag gagcagggaa ggaagatggg
360
tgtcaactgt cccggccagt ggctgcgtgc atgtgtgtgt gaacagggaa aaggccaccc
420
tctcccatgt ttctcccgtc tcctcggttc tcctcgaga cccgcagggc tgcccaggt
480
agctccgagt tgccctgggt cgctggggct tggtccgcat cctccctccgc tagtccgctc
540
ccgcgttcca cagcgccccg ccgctcggtg tgcacgcact gcggcttaac ccagccgaca
600
aggcacgctt gccaaagagg cgcggtgtg tgggtgcggg gtccgcgg
648

<210> 6152
<211> 130
<212> PRT
<213> Homo sapiens

<400> 6152
Met Arg Thr Lys Pro Gln Arg Pro Arg Ala Thr Arg Ser Tyr Leu Gly
1 5 10 15
Gln Pro Cys Gly Ser Pro Arg Arg Thr Glu Glu Thr Gly Glu Thr Trp
20 25 30
Glu Arg Val Ala Phe Ser Leu Phe Thr His Thr Cys Thr Gln Pro Leu
35 40 45
Ala Gly Thr Val Asp Thr His Leu Pro Ser Leu Leu Leu Pro Val Ile
50 55 60
Leu His Pro Leu Gly Ala Ala Ser Ala Gly Arg Ala Leu Glu Pro Lys
65 70 75 80
Ala Asp Pro His Thr Cys Pro Tyr Gly Arg Lys Glu Ser Arg Gly Glu
85 90 95
Lys Val Arg Arg Gly Arg Ala Lys Ser Asn Ser Gly Pro Asn Val Pro
100 105 110
Gly Pro Pro Ala Ala Pro Gln Ser Leu Lys Ser Gly Ser Pro Ser Thr
115 120 125
Arg Arg
130

<210> 6153
<211> 1810
<212> DNA
<213> Homo sapiens

<400> 6153
gatgcagtta cctgtgtgga cttcagtatac aacacaaagc agctggccag tggtnccatg
60
gactcatgcc tcatggtctg gcacatgaag ctgcagtcac ggccttaccc cttaactggc
120
cacaaggatg ccgtcacctg tgtgaacttc tctcccttcgg gacacctgtct tgcttccggc
180
tcccagagaca agactgtccg catctggta cccaatgtca aaggtgagtc cactgtgttt
240

cgtgcacaca cagccacagt gaggagtgtc cacttctgca gtgatggcca gtccttcgtg
300
acagcctctg acgacaagac agtcaaagtg tggcaactc atcgccagaa attcctgttc
360
tccctgagcc agcatatatcaa ctgggtccgc tgtgccaagt tctccccga cggggggctc
420
atcgtgtctg ccagtgtatga caagactgtt aagctgtggg acaagagcag ccggaaatgt
480
gtccactcgt attgtgagca tggcggcttt gtacacatgt tggacttcca ccccagtggg
540
acgtgcattt ccgctgccc catggacaac acagtgaagg tgtggacgt gcggactcac
600
cggctgctgc agcattatca gttgcacagt gcagcagtga acgggctctc tttccacccg
660
tcggggaaact acctgatcac agcctccagt gactcaaccc tgaagatcct ggacctgatg
720
gagggccggc tgctctacac actccacggg catcagggac cagccaccac tggcctt
780
tcaagaacgg gggagtattt tgcttctgga ggctctgatg aacaagtgtat ggtttggaag
840
agtaactttg atattgtga tcatggagaa gtcacgaaag tgccgaggcc cccagccaca
900
ctggccagct ccatggggaa tctgccagaa gtggacttcc ctgtcccccc aggcagaggc
960
tggagtgtgg agtctgtgca gagccagccc caggagccc tgagtgtgcc ccagacactg
1020
actagcacgc tggagcacat tgtggccag ctggatgtcc tcactcagac agtctccatt
1080
ctggagcagc ggttgacact gacagaagac aagctgaagc agtgtctgga gaaccagcag
1140
ctaattatgc agagagcaac accatgatca gggagcagg aatcaggagc tcggtgatt
1200
tgcaggtggc aggccaggga tttgtaccat gggacttggg taaataaagg ggactgaact
1260
ctgtggaaat cacatccata ctggagccct ggattttgc agttctgccc tccaccttgc
1320
tatctgcacc aggaggctct ccacctggca gccagaggc cccagtgcc cgggctcaca
1380
cacaatgat gcttcagacc cgaatgagag gaccacattt tgcttaatgt aaaggagcca
1440
cttgaaaatg tctgctcctt cggggtcctg agattgtggc tccccctctg gaggaggtgg
1500
ctccacgatg ccttgatttt cactcatcat ttggacatgt gactggcttt tcctacctct
1560
gccatggtgt agaaattgtat tgcacattga ttggatgagc cgggggtttt ctctaaatct
1620
gactaaaggc ccaaagtggg cccatctgag tcaggtttgt tgagaacaag ccctctcaag
1680
tgggtgggtgg ctttcagtg gcccgtatgg ctgtccaca cgtgttcaact ggagccaggt
1740
gacttcctcc ttgcgtgagt gagggcacag gaatctaaa attaaacctg acttcattgc
1800
aaaaaaaaaaaa
1810

<210> 6154
<211> 388
<212> PRT
<213> Homo sapiens

<400> 6154
Asp Ala Val Thr Cys Val Asp Phe Ser Ile Asn Thr Lys Gln Leu Ala
1 5 10 15
Ser Gly Xaa Met Asp Ser Cys Leu Met Val Trp His Met Lys Leu Gln
20 25 30
Ser Arg Ala Tyr Arg Phe Thr Gly His Lys Asp Ala Val Thr Cys Val
35 40 45
Asn Phe Ser Pro Ser Gly His Leu Leu Ala Ser Gly Ser Arg Asp Lys
50 55 60
Thr Val Arg Ile Trp Val Pro Asn Val Lys Gly Glu Ser Thr Val Phe
65 70 75 80
Arg Ala His Thr Ala Thr Val Arg Ser Val His Phe Cys Ser Asp Gly
85 90 95
Gln Ser Phe Val Thr Ala Ser Asp Asp Lys Thr Val Lys Val Trp Ala
100 105 110
Thr His Arg Gln Lys Phe Leu Phe Ser Leu Ser Gln His Ile Asn Trp
115 120 125
Val Arg Cys Ala Lys Phe Ser Pro Asp Gly Arg Leu Ile Val Ser Ala
130 135 140
Ser Asp Asp Lys Thr Val Lys Leu Trp Asp Lys Ser Ser Arg Glu Cys
145 150 155 160
Val His Ser Tyr Cys Glu His Gly Gly Phe Val Thr Tyr Val Asp Phe
165 170 175
His Pro Ser Gly Thr Cys Ile Ala Ala Ala Gly Met Asp Asn Thr Val
180 185 190
Lys Val Trp Asp Val Arg Thr His Arg Leu Leu Gln His Tyr Gln Leu
195 200 205
His Ser Ala Ala Val Asn Gly Leu Ser Phe His Pro Ser Gly Asn Tyr
210 215 220
Leu Ile Thr Ala Ser Ser Asp Ser Thr Leu Lys Ile Leu Asp Leu Met
225 230 235 240
Glu Gly Arg Leu Leu Tyr Thr Leu His Gly His Gln Gly Pro Ala Thr
245 250 255
Thr Val Ala Phe Ser Arg Thr Gly Glu Tyr Phe Ala Ser Gly Gly Ser
260 265 270
Asp Glu Gln Val Met Val Trp Lys Ser Asn Phe Asp Ile Val Asp His
275 280 285
Gly Glu Val Thr Lys Val Pro Arg Pro Pro Ala Thr Leu Ala Ser Ser
290 295 300
Met Gly Asn Leu Pro Glu Val Asp Phe Pro Val Pro Pro Gly Arg Gly
305 310 315 320
Trp Ser Val Glu Ser Val Gln Ser Gln Pro Gln Glu Pro Val Ser Val
325 330 335
Pro Gln Thr Leu Thr Ser Thr Leu Glu His Ile Val Gly Gln Leu Asp
340 345 350
Val Leu Thr Gln Thr Val Ser Ile Leu Glu Gln Arg Leu Thr Leu Thr
355 360 365
Glu Asp Lys Leu Lys Gln Cys Leu Glu Asn Gln Gln Leu Ile Met Gln

370
Arg Ala Thr Pro
385

<210> 6155
<211> 995
<212> DNA
<213> Homo sapiens

<400> 6155
aacagccaca gacgtatgtg taatatgatg ggcttagaa tgtacctgca aagcagttt
60
ttttttttt ccattttggag gaaaaaagat gaaccaaaaa agactgaatt gggatgctaa
120
aataacagcg atttattatt aaggaaatga tacgcttttgc tcccattcaa ataatgtttt
180
tattccctt ttctttattc ttgggagggtt cctattgttg tgccaggtcg ttttcactga
240
acgattttta aaggtattca ccagtcccac gtgtgaccgg ttgcattttt actgtgcagg
300
accatcgtga agcctgtggc caaagagttt gatccagaca tggcttagt atctgctgga
360
tttgatgcat tggaaaggcca cacccctcctt ctaggagggtt acaaaagtgac ggcaaaatgt
420
tttggtcatt tgacgaagca attgatgaca ttggctgatg gacgtgtgg gttggctcta
480
gaaggaggac atgatctcac agccatctgt gatgcatcag aagcctgtgtt aaatgccctt
540
ctagaaaaatg agctggagcc acttgcagaa gatattctcc accaaagccc gaatatgaat
600
gctgttattt cttaacagaa gatcattgaa attcaaaaac tgctggtag gctatggaag
660
aggagccagc cttgtgaagt gccaagtccc cctctgatat ttccctgtgtg tgacatcatt
720
gtgtatcccc ccaccccaagt accctcagac atgtcttgc tgctgcctgg gtggcacaga
780
ttcaatggaa cataaacact gggcacaaaa ttctgaacag cagcttcaact tgttcttgg
840
atggacttga aagggcatta aagattcctt aaacgtaacc gctgtgattc tagagttaca
900
gtaaaccacg attggaagaa actgcttcca gcatgctttt aatatgctgg gtgaccact
960
cctagacacc aagtttgaac tagaaacatt cagta
995

<210> 6156
<211> 164
<212> PRT
<213> Homo sapiens

<400> 6156
Thr Ile Val Lys Pro Val Ala Lys Glu Phe Asp Pro Asp Met Val Leu
1 5 10 15
Val Ser Ala Gly Phe Asp Ala Leu Glu Gly His Thr Pro Pro Leu Gly

20	25	30
Gly Tyr Lys Val Thr Ala Lys Cys Phe Gly His Leu Thr Lys Gln Leu		
35	40	45
Met Thr Leu Ala Asp Gly Arg Val Val Leu Ala Leu Glu Gly Gly His		
50	55	60
Asp Leu Thr Ala Ile Cys Asp Ala Ser Glu Ala Cys Val Asn Ala Leu		
65	70	75
Leu Gly Asn Glu Leu Glu Pro Leu Ala Glu Asp Ile Leu His Gln Ser		
85	90	95
Pro Asn Met Asn Ala Val Ile Ser Leu Gln Lys Ile Ile Glu Ile Gln		
100	105	110
Lys Leu Leu Val Ser Leu Trp Lys Arg Ser Gln Pro Cys Glu Val Pro		
115	120	125
Ser Pro Pro Leu Ile Phe Pro Val Cys Asp Ile Ile Val Tyr Pro Pro		
130	135	140
Thr Pro Val Pro Ser Asp Met Ser Cys Leu Leu Pro Gly Trp His Arg		
145	150	155
Phe Asn Gly Thr		160

<210> 6157
<211> 2135
<212> DNA
<213> Homo sapiens

<400> 6157
natttcattt tatcccaact acttttgagg taggtattat cctgttttac aaacgaagaa
60
actaaggctc agtgagatta atgatccaag gtcataataat ctaagtggta gagctggat
120
ttgaacttca gtttgactaa ctatgaaact tttaactgct attctttctc aactttcctt
180
ttttctgcag gatctggcga catggccaga aaggctctca agcttgcctc gtggaccagc
240
atggctttg ctgcctctgg catctacttc tacagtaaca agtacttgga ccctaattgac
300
tttggcgctg tcaggggtggg cagagcagtt gctacgacgg ctgtcatcag ttacgactac
360
ctcaattccc tgaagagtgt cccttatggc tcagaggagt acttgcagct gagatctaag
420
atccatgatt tgttccagag cttcgatgac acccctctgg ggacggccctc cctggcccag
480
gtccacaagg cagtgctgca tcatggcgg acggtgcccg tgaaggtcca gcacccaaag
540
gtgcgggctc agagctcgaa ggacattctc ctgatggagg tgctcggtct ggctgtgaag
600
cagctgttcc cagagtttga gtttatgtgg cttgtggatg aagccaagaa gaacctgcct
660
ttggagctgg atttcctcaa tgaagggagg aatgctgaga aggtgtccca gatgctcagg
720
cattttgact tcttgaaggt cccccaaatc cactggacc tgtccacgga gcgggtcctc
780
ctgatggagt ttgtggatgg cgggcaggctc aatgacagag actacatgga gaggaacaag
840

atcgacgtca atgagatctc acgccacctg ggcaagatgt atagtgagat gatcttcgtc
900
aatggcttcg tgcactgcga tccccacccc ggcaacgtac tggtgccgaa gcaccccgcc
960
acggaaaagg cggagattgt cctgttggac catgggcttt accagatgtc cacggaagaa
1020
ttccgcctga attactgcca cctctggcag tctctgtatct ggactgacat gaagagagt
1080
aaggagtaca gccagcgtact gggagccggg gatctctacc ccttgtttgc ctgcgt
1140
acggcgcgtat cgtgggactc ggtcaacaga ggcattcagcc aagctccgt cactgccact
1200
gaggacttag agattcgcaa caacgcggcc aactacctcc cccagatcag ccatactcctc
1260
aaccacgtgc cgccgcagat gctgctcatc ttgaagacca acgacactgtc gcgtggcatt
1320
gaggccgccc tgggcaccccg cgccagcgcc agctccttcc tcaacatgtc acgttgctgc
1380
atcagagcgc tagctgagca caagaagaag aataaccttt cattcttcag aaggacccag
1440
atctcttca gcgaggcctt caacttatgg cagatcaacc tccatgagct catcctgcgt
1500
gtgaaggggt tgaagctggc tgaccgggtc ttggccctaa tatgctggct gttccctgt
1560
ccactctgag tggaaattgtc ctccctgccc cattctggtg tctttccact cctcagcccc
1620
tcatcttgc tccacccagc tgctccattt ttgccacatc gtggcccgca gccccagagt
1680
caactgtccat gtcaccatcc ttctccctt ttggaaatcct ctccgcacac tgtggccctt
1740
gtctcagggc ccacaagctg aactgtggca tagctctctc ttcttctcca agaagactca
1800
gcagcctaca ttcccattcc tggtatgtgc cattgggttg gatgtccca ctactccgt
1860
taacccttcc cattgtcaag atgtgccacg ggtgccactg ggggcacact gaactttag
1920
ggagtgtgat ttgttggag gtgcacatgg tctctgaatt tgacagagaa cacctccct
1980
ttccttgcca tgcaccctc cagaggaatg cacacccatc cgaggtggtt tggcatctgg
2040
ggccaaactcc attacagcta tgagctact gctgtcagtg acgtttgggt tttctgtac
2100
tgtgtttcaa taaaaactcc ttcaaggttg aaaaa
2135

<210> 6158
<211> 455
<212> PRT
<213> Homo sapiens

<400> 6158
Met Ala Arg Lys Ala Leu Lys Leu Ala Ser Trp Thr Ser Met Ala Leu
1 5 10 15
Ala Ala Ser Gly Ile Tyr Phe Tyr Ser Asn Lys Tyr Leu Asp Pro Asn

	20	25	30
Asp Phe Gly Ala Val Arg Val Gly Arg Ala Val Ala Thr Thr Ala Val			
35	40	45	
Ile Ser Tyr Asp Tyr Leu Thr Ser Leu Lys Ser Val Pro Tyr Gly Ser			
50	55	60	
Glu Glu Tyr Leu Gln Leu Arg Ser Lys Ile His Asp Leu Phe Gln Ser			
65	70	75	80
Phe Asp Asp Thr Pro Leu Gly Thr Ala Ser Leu Ala Gln Val His Lys			
85	90	95	
Ala Val Leu His Asp Gly Arg Thr Val Ala Val Lys Val Gln His Pro			
100	105	110	
Lys Val Arg Ala Gln Ser Ser Lys Asp Ile Leu Leu Met Glu Val Leu			
115	120	125	
Val Leu Ala Val Lys Gln Leu Phe Pro Glu Phe Met Trp Leu			
130	135	140	
Val Asp Glu Ala Lys Lys Asn Leu Pro Leu Glu Leu Asp Phe Leu Asn			
145	150	155	160
Glu Gly Arg Asn Ala Glu Lys Val Ser Gln Met Leu Arg His Phe Asp			
165	170	175	
Phe Leu Lys Val Pro Arg Ile His Trp Asp Leu Ser Thr Glu Arg Val			
180	185	190	
Leu Leu Met Glu Phe Val Asp Gly Gly Gln Val Asn Asp Arg Asp Tyr			
195	200	205	
Met Glu Arg Asn Lys Ile Asp Val Asn Glu Ile Ser Arg His Leu Gly			
210	215	220	
Lys Met Tyr Ser Glu Met Ile Phe Val Asn Gly Phe Val His Cys Asp			
225	230	235	240
Pro His Pro Gly Asn Val Leu Val Arg Lys His Pro Gly Thr Gly Lys			
245	250	255	
Ala Glu Ile Val Leu Leu Asp His Gly Leu Tyr Gln Met Leu Thr Glu			
260	265	270	
Glu Phe Arg Leu Asn Tyr Cys His Leu Trp Gln Ser Leu Ile Trp Thr			
275	280	285	
Asp Met Lys Arg Val Lys Glu Tyr Ser Gln Arg Leu Gly Ala Gly Asp			
290	295	300	
Leu Tyr Pro Leu Phe Ala Cys Met Leu Thr Ala Arg Ser Trp Asp Ser			
305	310	315	320
Val Asn Arg Gly Ile Ser Gln Ala Pro Val Thr Ala Thr Glu Asp Leu			
325	330	335	
Glu Ile Arg Asn Asn Ala Ala Asn Tyr Leu Pro Gln Ile Ser His Leu			
340	345	350	
Leu Asn His Val Pro Arg Gln Met Leu Leu Ile Leu Lys Thr Asn Asp			
355	360	365	
Leu Leu Arg Gly Ile Glu Ala Ala Leu Gly Thr Arg Ala Ser Ala Ser			
370	375	380	
Ser Phe Leu Asn Met Ser Arg Cys Cys Ile Arg Ala Leu Ala Glu His			
385	390	395	400
Lys Lys Lys Asn Thr Cys Ser Phe Phe Arg Arg Thr Gln Ile Ser Phe			
405	410	415	
Ser Glu Ala Phe Asn Leu Trp Gln Ile Asn Leu His Glu Leu Ile Leu			
420	425	430	
Arg Val Lys Gly Leu Lys Leu Ala Asp Arg Val Leu Ala Leu Ile Cys			
435	440	445	
Trp Leu Phe Pro Ala Pro Leu			

450

455

<210> 6159
<211> 4310
<212> DNA
<213> Homo sapiens

<400> 6159
ctcgagggtgc gcgcgggccc ggactcggcg ggcatcgccc tctacagcca tgaagatgtg
60
tgtgtcttta agtgctcagt gtcccgagag acagagtgca gccgtgtggg caagcagtcc
120
ttcatcatca ccctgggctg caacagcgtc ctcattcagt tcgccacacc caacgatttc
180
tgttcccttct acaaacatcct gaaaacctgc cggggccaca ccctggagcg gtctgtgttc
240
agcgagcggaa cggaggagtc ttctgccgtg cagtacttcc agtttatgg ctacctgtcc
300
cagcagcaga acatgatgca ggactacgtg cggacaggca cctaccagcg cgccatcctg
360
caaaaccaca ccgacttcaa ggacaagatc gttcttgatg ttggctgtgg ctctggatc
420
ctgtcgaaaa ttgccggcca agctggagca cggaaaaatct acgcggtgga ggccagcacc
480
atggcccaagc acgctgaggt cttggtaag agtaacaacc tgacggaccg catcggttc
540
atccccggca aggtggagga ggtgtcaactc cccgagcagg tggacatcat catctcgag
600
ccccatggct acatgctctt caacgagcgc atgctggaga gctacctcca cgccaagaag
660
tacctgaagc ccagcggaaa catgtttctt accattggtg acgtccaccc tgcacccttc
720
acggatgaac agctctacat ggagcagttc accaaggcca acttctggta ccagccatct
780
ttccatggag tggacctgtc ggccctccga ggtgccgccc tggatgagta tttccggcag
840
cctgtggtgg acacatttga catccggatc ctgatggcca agtctgtcaa gtacacggtg
900
aacttcttag aagccaaaga aggagatttgc cacaggatag aaatcccatt caaattccac
960
atgctgcatt cagggctggc ccacggcctg gctttctggc ttgacgttgc tttcatcgcc
1020
tccataatga ccgtgtggct gtccacagcc cccacagac ccctgacccca ctggtaccag
1080
gtgcgggtcc tggccatggc accactgttc gccaaggcag gggacacgct ctcagggaca
1140
tgtctgctta ttgccaacaa aagacagagc tacgacatca gtattgtggc ccaggtggac
1200
cagaccggct ccaagtccag taacccctcg gatctgaaaa acccccttctt tagatacacg
1260
ggcacacaacgc cctcacccttcc acccggtcc cactacacat cttccctcgga aaacatgtgg
1320
aacacgggca gcacccatcaa cctcagcagc gggatggccg tggcaggat gcccggcc
1380

tatgacttga gcagtgttat tgccagtggc tccagcgtgg gccacaacaa cctgattcct
1440
ttagccaaca cggggattgt caatcacacc cactcccggta tgggctccat aatgagcacg
1500
gggattgtcc aagggtccctc cggcgccccag ggcaagtggtg gtggcagcac gagtgcac
1560
tatgcagtca acagccagtt caccatggc ggccccggca tctccatggc gtcgccccatg
1620
tccatcccga ccaacacccat gcactacggg agctaggggc cggccccgac gactgacagc
1680
accagggaaac caaatgatgt ccctgccccgc cgccccccgccc gggcggcttt ccccccttgc
1740
ctggagaagc tcgaacacccc ggtcacagct ctctttgcta tgggaactgg gacactttt
1800
tacacgatgt tgccgcccgtc cccaccctaa ccccccaccc cggccctgta gcgtgtgtcg
1860
ctgccccatatt ttacacaaaaa tcatgttgtg ggagccctcg tccccccctcc tgcccgctct
1920
accctgacct gggcttgcata tctgctggaa caggcgccat ggggcctgcc agccctgcct
1980
gccaggtccc ttagcacctg tccccctgcc tgcgtccagt gggaaaggtag cctggccagg
2040
cgggggcctcc ctttcgacga ccaggccctcg gtcacaacgg acgtgacatg ctgcttttt
2100
taattttatt tttttatgaa aagaaccagt gtcaatccgc agaccctctg tgaagccagg
2160
ccggccgggc cgagccagca gccccctccctt ctagactcag aggccggcg gggaggggtg
2220
gccccccgca ggcttcaggg gccccctccc caccaaaggg ttcacccctac acttgaatgt
2280
acaacccacc ccactgtcgg gaaggccctcc gtcctcggcc cctgcctttt gctgctgtcc
2340
tgcgtcccgag cccctgcagg tccccccctcg ccccccact caagagttag agcaggtggc
2400
tgcaggccctt gggccggag ggaaggccac tgccggccac ttggggcaga cacagacacc
2460
tcaaggatct gtcacggaaag gcgtcccttt tcctttagc taacgttagg cctgagtagc
2520
tccccctccat cttttagac gtcaggatcc ctagactgt gacggcatcc ccatccctcc
2580
cctggccggg aaggggacctt gcagggaccc cccctccaa aaaaagaaaa aaagaaaaag
2640
aaagaaaaaa taaatgagga aacgtgtgc agcacaggca gttttcttct ctttctgctc
2700
ccctgtttct cataccccc aactcagatg ctggagctca gggccggcg gtgtgcaccc
2760
aggcaggagc gggcgctgtc caggctggc cggcccccttg gtcctccctc ctgttccagg
2820
ggagccatag gagggaaagc aggtggcccg gggggatata gggggcccca gcccgtccc
2880
aaagctccct gtcggctgc ccctcgccccg ctttataata aattctctgta atcaccttg
2940
catagaaaaat aaaagtgttt gctttgtaaag aaaagtctgg aaagttagcag aatcatctca
3000

aggtgtcaaa ggagcattca gtcatcgctc ggggggcagg acaggcagag gggttggtcc
3060
acttaggtgt tgcctgaaag aaagaattgt ctgtggacc cgggccttcc taggaggggg
3120
ccaggactg cggcaaggta ggggacagcg cgatgttga gggcagagat gtgatttggg
3180
gtggaggagc cacgttctcc ggaggcagcg actggaagaa gtacaactta cagcccatgg
3240
ccaggagggc gtggagcagc acgaccacgg acagcagcac tgtggccacc agcctggtgt
3300
cctcacggac cacggggccag agggtaata ccagccggc ggctgacagg cccagggcca
3360
gcgc(ccaaa gagccactgc agccaggca cagggatgag ccacaggacc accatgggg
3420
tgaagacaaa gagggagtag ccgtagatgc acacagtctc caggaaggta tagggcccc
3480
tgcgctcctg gacacccttgc gcccaccgca ggaagccca cagggccagg ggcaccagcc
3540
acgcatagca gtagatgctg atgcctgcca cggcacctt gtggactgg gggctgtagt
3600
ggatggaggg gtccttcctc tggccagca ccagcgtcag gttgccagtg acggccagga
3660
caaaggccaa cgtggcacag atccagaagg ggccatacag atccggccga ttccgcagat
3720
ggtgcgcac aaagttgtgg ccaggccggg gcagcgtga gccttgatc cggtccagga
3780
cctgtgaggt gtccacgtca aagaagctc gatagttagt gaaggtccag aatcccgct
3840
gctgtgctg ctgctgctcc tgcaggagcg cggccttgc actctcctcc tccacctcat
3900
cctcggtcc atagctgcca cctgagccca cggccacagc cacgtccct tgggggtca
3960
gctgatcgct tctgctggtg gtggctgcat ctgggggtgc agccagaaga tttagtggct
4020
cctcgaaattc atggaaggtc agtcgtcgg ccgatgccc ggtcggtcag gggcgctcc
4080
gcattccctcg ctggcgacca actgcacccca cggaggcttgc aactcgctgt cccgtcccc
4140
caggtgcgtt cccgggggggg tcacctgagg ccacctggc cggcgtggct ggggctcatc
4200
cctgtgcctt ggctgcagtg gctcttggg gcgctggccc tgggcctgtc agccggccggg
4260
ctggtatcca ccctctggcc cgtggccgt gaggacacca ggctggtgcc
4310

<210> 6160
<211> 551
<212> PRT
<213> Homo sapiens

<400> 6160
Leu Glu Val Arg Ala Gly Pro Asp Ser Ala Gly Ile Ala Leu Tyr Ser
1 5 10 15
His Glu Asp Val Cys Val Phe Lys Cys Ser Val Ser Arg Glu Thr Glu

Cys	Ser	Arg	Val	Gly	Lys	Gln	Ser	Phe	Ile	Ile	Thr	Leu	Gly	Cys	Asn
35							40							45	
Ser	Val	Leu	Ile	Gln	Phe	Ala	Thr	Pro	Asn	Asp	Phe	Cys	Ser	Phe	Tyr
50							55						60		
Asn	Ile	Leu	Lys	Thr	Cys	Arg	Gly	His	Thr	Leu	Glu	Arg	Ser	Val	Phe
65							70			75			80		
Ser	Glu	Arg	Thr	Glu	Glu	Ser	Ser	Ala	Val	Gln	Tyr	Phe	Gln	Phe	Tyr
85							90						95		
Gly	Tyr	Leu	Ser	Gln	Gln	Asn	Met	Met	Gln	Asp	Tyr	Val	Arg	Thr	
100							105						110		
Gly	Thr	Tyr	Gln	Arg	Ala	Ile	Leu	Gln	Asn	His	Thr	Asp	Phe	Lys	Asp
115							120						125		
Lys	Ile	Val	Leu	Asp	Val	Gly	Cys	Gly	Ser	Gly	Ile	Leu	Ser	Phe	Phe
130							135				140				
Ala	Ala	Gln	Ala	Gly	Ala	Arg	Lys	Ile	Tyr	Ala	Val	Glu	Ala	Ser	Thr
145							150				155			160	
Met	Ala	Gln	His	Ala	Glu	Val	Leu	Val	Lys	Ser	Asn	Asn	Leu	Thr	Asp
165							170						175		
Arg	Ile	Val	Val	Ile	Pro	Gly	Lys	Val	Glu	Glu	Val	Ser	Leu	Pro	Glu
180							185						190		
Gln	Val	Asp	Ile	Ile	Ile	Ser	Glu	Pro	Met	Gly	Tyr	Met	Leu	Phe	Asn
195							200						205		
Glu	Arg	Met	Leu	Glu	Ser	Tyr	Leu	His	Ala	Lys	Lys	Tyr	Leu	Lys	Pro
210							215						220		
Ser	Gly	Asn	Met	Phe	Pro	Thr	Ile	Gly	Asp	Val	His	Leu	Ala	Pro	Phe
225							230				235			240	
Thr	Asp	Glu	Gln	Leu	Tyr	Met	Glu	Gln	Phe	Thr	Lys	Ala	Asn	Phe	Trp
245							250						255		
Tyr	Gln	Pro	Ser	Phe	His	Gly	Val	Asp	Leu	Ser	Ala	Leu	Arg	Gly	Ala
260							265						270		
Ala	Val	Asp	Glu	Tyr	Phe	Arg	Gln	Pro	Val	Val	Asp	Thr	Phe	Asp	Ile
275							280						285		
Arg	Ile	Leu	Met	Ala	Lys	Ser	Val	Lys	Tyr	Thr	Val	Asn	Phe	Leu	Glu
290							295						300		
Ala	Lys	Glu	Gly	Asp	Leu	His	Arg	Ile	Glu	Ile	Pro	Phe	Lys	Phe	His
305							310				315			320	
Met	Leu	His	Ser	Gly	Leu	Val	His	Gly	Leu	Ala	Phe	Trp	Phe	Asp	Val
325							330						335		
Ala	Phe	Ile	Gly	Ser	Ile	Met	Thr	Val	Trp	Leu	Ser	Thr	Ala	Pro	Thr
340							345						350		
Glu	Pro	Leu	Thr	His	Trp	Tyr	Gln	Val	Arg	Cys	Leu	Phe	Gln	Ser	Pro
355							360						365		
Leu	Phe	Ala	Lys	Ala	Gly	Asp	Thr	Leu	Ser	Gly	Thr	Cys	Leu	Leu	Ile
370							375						380		
Ala	Asn	Lys	Arg	Gln	Ser	Tyr	Asp	Ile	Ser	Ile	Val	Ala	Gln	Val	Asp
385							390						395		
Gln	Thr	Gly	Ser	Lys	Ser	Ser	Asn	Leu	Leu	Asp	Leu	Lys	Asn	Pro	Phe
405							410						415		
Phe	Arg	Tyr	Thr	Gly	Thr	Thr	Pro	Ser	Pro	Pro	Pro	Gly	Ser	His	Tyr
420							425						430		
Thr	Ser	Pro	Ser	Glu	Asn	Met	Trp	Asn	Thr	Gly	Ser	Thr	Tyr	Asn	Leu
435							440						445		
Ser	Ser	Gly	Met	Ala	Val	Ala	Gly	Met	Pro	Thr	Ala	Tyr	Asp	Leu	Ser

450	455	460
Ser Val Ile Ala Ser Gly Ser Ser Val Gly His Asn Asn Leu Ile Pro		
465	470	475
Leu Ala Asn Thr Gly Ile Val Asn His Thr His Ser Arg Met Gly Ser		
485	490	495
Ile Met Ser Thr Gly Ile Val Gln Gly Ser Ser Gly Ala Gln Gly Ser		
500	505	510
Gly Gly Ser Thr Ser Ala His Tyr Ala Val Asn Ser Gln Phe Thr		
515	520	525
Met Gly Gly Pro Ala Ile Ser Met Ala Ser Pro Met Ser Ile Pro Thr		
530	535	540
Asn Thr Met His Tyr Gly Ser		
545	550	

<210> 6161
<211> 1489
<212> DNA
<213> Homo sapiens

<400> 6161
ggctgcata tcttcagcag attcagtaca gagggaaatg agctgtggga gaggaaggag
60 gatggggaa atggcaagaa aaggagcacc ctgcttagaa agggAACGGA gcccgggtgt
120 gtggctcacg cctgcaatcc anacacccatgg ggaggccgaa gcaaggagat cacctgagcc
180 caagagtttgc agaccaccca catagcaaga ccccatctt attttttggaa aaaaaaaaaa
240 aaaagcagca accagcagga tgggtggaaa aaagttgctg aaggcttttc aagatcctt
300 ctgcctgctc ttctcttcac agagggacag gggagggtga tgagtcagtg gactaatgt
360 ccccatgggg atgaaggatg gttgggtca gggctctaga gggagggtcg gaaggaggaa
420 aggagatggc cagagaagga tgttaggacac agaggtgccg ccgtggatca ccaagaggat
480 caggactggc cagaggaagg agaggagatc aaggcaagca tgaggactt gggagatgca
540 tctgtgcctg cacacagctg aaatccccatgg gaaataagac gggagcaggg tgggtttctg
600 cagccgaggt gagaccaaag tgccagctca ctgccaccct cagtaaagac taacttgc
660 ttccccacaa ctcccccccc agaagttagct tgctcttc tgcctgccac acatcgaaaa
720 gctcaggaa agctccccct ccctggacag ctgtgttcc cttaggcaag gccagtc
780 gcagagatga ggagctggaa aatccccctcc tcccatcccc cacgtccacg cgtgccagat
840 cctgtgc tggctttca cacacagctt cttagacgt tagcctgtga ggcgggtgt
900 gttgtcattt tgcactgag caaacagctt gaaagagaca aaaaccaggat
960 agtttagcatg accccaaagc cactccctgg tctacgctgt tctgcagcct gagcctgggg
1020

tggccaggtg gggttgtca gtgagggggg gaaggagaat agcccccaaa aatgctgccg
1080
gaatggtaaa gggcctggac tgcaaagcta gtgacttgag ctttattttg tggcaactgga
1140
ggttttccca gtcattgtaa tgataacaatc agatttgcgt tgtcttcaag ttaccatgg
1200
aaccgtactt ccacccacca agagtggatt ggagaaggca aaacttagggc agagaagcca
1260
gggagtgttg agaaggctcg aacccagaca gtggcagct gggccccaag acggatgggg
1320
gactccagaa gcgtggagct ggcagagaga aacctgccc gggcatcaga gaaaaggcg
1380
actgtcagg aacagagtag atgaggtggg gAACCTTGG gtaagaagag ctgaatcagg
1440
agcattgagg cagcggtttt caaacctcag aagcaacagc agggccggc
1489

<210> 6162
<211> 58
<212> PRT
<213> Homo sapiens

<400> 6162
Gly Cys Met Ile Phe Ser Arg Phe Ser Thr Glu Gly Ser Glu Leu Trp
1 5 10 15
Glu Arg Lys Glu Asp Gly Gly Asn Gly Lys Lys Arg Ser Thr Leu Leu
20 25 30
Arg Lys Gly Thr Glu Pro Gly Val Val Ala His Ala Cys Asn Pro Xaa
35 40 45
Thr Leu Gly Gly Arg Ser Lys Glu Ile Thr
50 55

<210> 6163
<211> 713
<212> DNA
<213> Homo sapiens

<400> 6163
gtggaaatga gcctctcatt aaaacacgtg ctttctggga gccgtgatga acgtgagtgt
60
gagatgagtc cagctgcgtt cagagccatg ggatgtgggt cactgtgacc cagtgggtca
120
caggtgctga gcaaggaagg gctggagge tcaagcaaaa tctacaagaa aaatctaaag
180
ggggccagcc tctgccagga aaagcaggcc tggctctgtt gaaaccccaa tcacgctctg
240
atggataccg gtacctgggc aaggataccg tggatggact tgattttctt ctcctgaaat
300
gtacgagaag gtgcattgcgg ggatttcggc tgcctgaaaa gcaaccctct aaaacccgag
360
tgtcattttt agaatcaaaa aggaaggaag gcagtggctg gtcactgg tcaagtaacga
420
gatctggagc ttttcgcctt aaggtaactg tttaaaactc tgccctgggt cagttgtaac
480

agaaaagtac aactccctca caggcatcag ggtgcaactt tgaatgccaa gaggggctgt
540
gtctgttgtt accacgcgg cgagctccc ggacacctcc tgacacctcc tgacagtgtc
600
tctttctcta ggagtctct ctcttccac ccaccatggc ggcctggct ggaggggagg
660
cattggggac tgagtcccttc cccgacaggg agtctcttc cccccctggcg cgc
713

<210> 6164
<211> 120
<212> PRT
<213> Homo sapiens

<400> 6164
Met Trp Val Thr Val Thr Gln Trp Val Thr Gly Ala Glu Gln Gly Arg
1 5 10 15
Ala Gly Arg Leu Lys Gln Asn Leu Gln Glu Lys Ser Lys Gly Ala Gln
20 25 30
Pro Leu Pro Gly Lys Ala Gly Leu Ala Leu Leu Lys Pro Gln Ser Arg
35 40 45
Ser Asp Gly Tyr Arg Tyr Leu Gly Lys Asp Thr Val Asp Gly Leu Asp
50 55 60
Ser Ser Leu Leu Lys Cys Thr Arg Arg Cys Met Arg Gly Phe Arg Leu
65 70 75 80
Pro Glu Lys Gln Pro Ser Lys Thr Arg Val Ser Phe Leu Glu Ser Lys
85 90 95
Arg Lys Glu Gly Ser Gly Trp Leu His Trp Ser Val Thr Arg Ser Gly
100 105 110
Ala Phe Arg Leu Lys Val Thr Val
115 120

<210> 6165
<211> 1004
<212> DNA
<213> Homo sapiens

<400> 6165
cccagccgga tcgggcggcg aaggccggcg cggcgagcag caaccatgtc ggtgttcggg
60
aagctgttcg gggctggagg gggtaaggcc ggcaaggcg gcccgacccc ccaggaggcc
120
atccagcggc tgcgggacac ggaagagatg ttaagcaaga aacaggagtt cctggagaag
180
aaaatcgagc aggagctgac ggccgccaag aagcacggca caaaaacaa gcgcgcggcc
240
ctccaggcac tgaagcgtaa gaagaggtat gagaagcagc tggcgagat cgacggcaca
300
ttatcaacca tcgagttcca gcgggaggcc ctggagaatg ccaacaccaa caccgaggtg
360
ctcaagaaca tgggctatgc cgccaaggcc atgaaggcg cccatgacaa catggacatc
420
gataaaagttt atgagttat gcaggacatt gctgaccagc aagaacttgc agaggagatt
480

tcaacagcaa tttcgaaacc tgtagggttt ggagaagagt ttgacgagga tgagctcatg
 540
 gcggaaattag aagaactaga acaggaggaa ctagacaaga atttgctgga aa~~c~~actggttga
 600
 cccgaaacag tccctctacc aaatgttccc tctatagccc taccatcaaa acccgccaag
 660
 aagaaaagaag aggaggacga cgacatgaag gaattggaga actgggctgg atccatgtaa
 720
 tggggtccag cgctggctgg gcccagacag actgtggtgg cctgcgcagc gagcaggcgt
 780
 gtgcgtgtgt ggggcaggca ggatgtggtg caggcaggtt ccatcgcttt cgactctcac
 840
 tccaaagcag tagggccgag ttgctgctca ctctctgcat agcatggtct gcacctggga
 900
 gttggccggg gggaggggggg cgagcgggct ggcacgtgcc tgctgttat aatgttgaat
 960
 ttctgtaaaa taaaactgtat ttgcaaatcc aaaaaaaaaaaa aaaa
 1004

<210> 6166
<211> 239...
<212> PRT
<213> Homo sapiens

<400> 6166
 Pro Ser Arg Ile Gly Arg Arg Arg Pro Ala Arg Arg Ala Ala Thr Met
 1 5 10 15
 Ser Val Phe Gly Lys Leu Phe Gly Ala Gly Gly Gly Lys Ala Gly Lys
 20 25 30
 Gly Gly Pro Thr Pro Gln Glu Ala Ile Gln Arg Leu Arg Asp Thr Glu
 35 40 45
 Glu Met Leu Ser Lys Lys Gln Glu Phe Leu Glu Lys Lys Ile Glu Gln
 50 55 60
 Glu Leu Thr Ala Ala Lys Lys His Gly Thr Lys Asn Lys Arg Ala Ala
 65 70 75 80
 Leu Gln Ala Leu Lys Arg Lys Arg Tyr Glu Lys Gln Leu Ala Gln
 85 90 95
 Ile Asp Gly Thr Leu Ser Thr Ile Glu Phe Gln Arg Glu Ala Leu Glu
 100 105 110
 Asn Ala Asn Thr Asn Thr Glu Val Leu Lys Asn Met Gly Tyr Ala Ala
 115 120 125
 Lys Ala Met Lys Ala Ala His Asp Asn Met Asp Ile Asp Lys Val Asp
 130 135 140
 Glu Leu Met Gln Asp Ile Ala Asp Gln Gln Glu Leu Ala Glu Glu Ile
 145 150 155 160
 Ser Thr Ala Ile Ser Lys Pro Val Gly Phe Gly Glu Glu Phe Asp Glu
 165 170 175
 Asp Glu Leu Met Ala Glu Leu Glu Leu Glu Gln Glu Leu Asp
 180 185 190
 Lys Asn Leu Leu Glu Ile Ser Gly Pro Glu Thr Val Pro Leu Pro Asn
 195 200 205
 Val Pro Ser Ile Ala Leu Pro Ser Lys Pro Ala Lys Lys Lys Glu Glu
 210 215 220
 Glu Asp Asp Asp Met Lys Glu Leu Glu Asn Trp Ala Gly Ser Met

225

230

235

<210> 6167
<211> 1220
<212> DNA
<213> Homo sapiens

<400> 6167
ngccatacag catttagtt ttgttcttc cattaactga agtcacgagg tatgcctcct
60 tggaaaactcc aacagttaag agattctcat gtattccatg aaataaaaag caaagaaaaa
120 tcaaacttgt cttaatgaga tggaagtgtt ggatcaaaca ctgattgagc tgttctatgt
180 cctccacttc cccagtgccc tctctccccc cgggtctgcg cggacgcggc ctcccttaccc
240 catttgcctc cgccccctccc cgtccctcta cgcgttttgg tccctgtttg gtgctttctg
300 tttgcagcta cggcagttag tatgtatgtg acggaccccg agtcacccgc ggcctggac
360 ccctgcctac cttccgtctc gccagccgag ctgtggaaact agcgcgtgcc ccctcgccga
420 cctcggcgtc tccggtccgc ccctcacttg tggtggggcg cagctcctgg tccctcagct
480 gcgcgcgc ccacgcggcc gggctgcggg tctaggggggt ccgcacatctcc ctggctttcc
540 aagggtctaag gtcgtgattc tagggcggtt gggcgccag ggcctcggtg ggggtggcgt
600 gtctgcctt tttatctccc cgcaaggccc ccagtttctt agggaaagcca gtcagtgaag
660 cgcggaggc cggcgccgc gagagagagt ccagttttg aggaccgagt agtcctggc
720 cacctcccgc ctctgctgtc agaagcagca gctgccggc tggaatccaa aatttcggga
780 gctgtgaccc tttcctcatg taaaacgagt agtctggac gatctggca taggaaccaa
840 tcagaaacaa tcgcttcagc aatcaagacc attgttcatc atggaggaac ccatggatac
900 ctctgagcct ctatctgcat taccattcac tggcgccagc tctttgagc caagtggcaa
960 atttggacag tatccatcga tgcagatgaa ccacatccag gcactggggaa agtggaggac
1020 atagaacagc tcaatcagtg tttgatccaa cacttccatc tcattaagac aagtttgatt
1080 tttcttgct ttttatttca tggaatacat gagaatctct taactgttgg agtttccaag
1140 gaggcataacc tcatgacttc agttaatgga aagaacaaaa ctaaaatgct gtatggccaa
1200 agccacaaag ggaaggatcc
1220

<210> 6168
<211> 90
<212> PRT

<213> Homo sapiens

<400> 6168

Ala Lys Trp Gln Ile Trp Thr Val Ser Ile Asp Ala Asp Glu Pro His
1 5 10 15
Pro Gly Thr Gly Glu Val Glu Asp Ile Glu Gln Leu Asn Gln Cys Leu
20 25 30
Ile Gln His Phe His Leu Ile Lys Thr Ser Leu Ile Phe Leu Cys Phe
35 40 45
Leu Phe His Gly Ile His Glu Asn Leu Leu Thr Val Gly Val Ser Lys
50 55 60
Glu Ala Tyr Leu Met Thr Ser Val Asn Gly Lys Asn Lys Thr Lys Met
65 70 75 80
Leu Tyr Gly Gln Ser His Lys Gly Lys Asp
85 90

<210> 6169

<211> 720

<212> DNA

<213> Homo sapiens

<400> 6169

tgagggttgc gatcccttct ctgatttgct gtcagccatg aacggatgga tgtgatgcct
60
gcttagccaaa aggcttccct ctgtgtgttg cagtcctgtg gcattatgca tgccccctcc
120
cagtgacccc aggctttta tggctgtgaa acacgttaaa atttcagggt aagacgtgac
180
ctttttaggt gactataact gaagattgct ttacagaagc ccaaaaaggt ttttttagtc
240
atgatgcaag aatctggac tgagacaaaa agtaacggtt cagccatcca gaatgggtcg
300
ggcggcagca accacttact agagtgcggc ggcttcggg aggggcccgc caacggagag
360
acgcggcccg tggacatcg ggtagctgac ctcgcacacg cccagcagca gcagcaacag
420
tggcatctca taaaccatca gccccttagg agtcccagca gttggcttaa gagactaatt
480
tcaagccctt gggagttgga agtcctgcag gtccctgtg gggagcagtt gctgagacga
540
agatgagtgg acctgtgtgt cagcctaacc cttcccccatt ttgaataaaa ttatttttg
600
gagaatggc tcccactgct ttcatgcaaa aataaaaatt aaacgaaaaa cagcttaagc
660
ctgtgaagaa gggaaatactg agctagccag caaaagagag aaagaagagg aggggagagg
720

<210> 6170

<211> 101

<212> PRT

<213> Homo sapiens

<400> 6170

Met Met Gln Glu Ser Gly Thr Glu Thr Lys Ser Asn Gly Ser Ala Ile

1 5 10 15
Gln Asn Gly Ser Gly Gly Ser Asn His Leu Leu Glu Cys Gly Gly Leu
20 25 30
Arg Glu Gly Arg Ser Asn Gly Glu Thr Pro Ala Val Asp Ile Gly Ala
35 40 45
Ala Asp Leu Ala His Ala Gln Gln Gln Gln Trp His Leu Ile
50 55 60
Asn His Gln Pro Ser Arg Ser Pro Ser Ser Trp Leu Lys Arg Leu Ile
65 70 75 80
Ser Ser Pro Trp Glu Leu Glu Val Leu Gln Val Pro Cys Gly Glu Gln
85 90 95
Leu Leu Arg Arg Arg
100

<210> 6171
<211> 1130
<212> DNA
<213> Homo sapiens

<400> 6171
nncccgctag gagttcctag taaagtggcg ggagccgcag ctatggagcc gcaggaggag
60
agagaaaacgc aggttgcgtc gtggtaaaaa aaaatatttg gagatcatcc tattccacag
120
tatgaggtga acccacggac cacagagatt ttacatcacc tttcagaacg caacagggtc
180
cgggacaggg atgtctacct ggtataagag gacttgaagc agaaagcaag tgaatacgg
240
tcagaagcca agtatcttca agaccttctc atggagagtg tgaatttttc ccccgccaaat
300
ctctctagca ctggttccag gtagtctaat gctttggttt acagtgcggc ggcccttgaa
360
acaaaaggata cctcgcttagc tagtttatac cctgcgtga atgatttgac ctctgatctc
420
tttcgtacca aatccaaaag tgaagaaatc aagattgaac tggaaaaact tgaaaaaaaaat
480
ttaactgcaa cttagtattt agaaaaatgt ctacaagagg atgtcaagaa agcagagttg
540
catctgtcta cagaaaggc caaagttgat aatcgctgac agaacatggc ctttctaaaa
600
gcaaaagtccatc aggaatttgc attttggaaatc aaggctgcag aggagcaact ttcagccaga
660
ggcatggatg cttctctgtc tcatacgatcc ttatgtacatc tatcagagaa actggcaaga
720
ttaaagcaac agactataacc tttgaagaaaa aaattggagt cctatggaa cttaatgccg
780
aatccgtctc ttgctcaagt gaaaattgaa gaagcaaagc gagaactaga tagcattgaa
840
gctgaactta caagaagagt agacatgtatc gaactgtgac aaaagccaaa taaacatcct
900
tttccctaac aaagttaaattt gaataggact ttacagatc tttttccctc ttggcatttc
960
ctaataacaa aactttctgt gttcttagat tacagaatat cataattgtat agaatatgg
1020

ttcttactgt gtgtgcatt tttgtgccca aatacatagt tttcatatta aaaagccccc
 1080
 tctctaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 1130

<210> 6172
 <211> 292
 <212> PRT
 <213> Homo sapiens

<400> 6172
 Xaa Pro Leu Gly Val Pro Ser Lys Val Ala Gly Ala Ala Ala Met Glu
 1 5 10 15
 Pro Gln Glu Glu Arg Glu Thr Gln Val Ala Ala Trp Leu Lys Ile
 20 25 30
 Phe Gly Asp His Pro Ile Pro Gln Tyr Glu Val Asn Pro Arg Thr Thr
 35 40 45
 Glu Ile Leu His His Leu Ser Glu Arg Asn Arg Val Arg Asp Arg Asp
 50 55 60
 Val Tyr Leu Val Ile Glu Asp Leu Lys Gln Lys Ala Ser Glu Tyr Glu
 65 70 75 80
 Ser Glu Ala Lys Tyr Leu Gln Asp Leu Leu Met Glu Ser Val Asn Phe
 85 90 95
 Ser Pro Ala Asn Leu Ser Ser Thr Gly Ser Arg Tyr Leu Asn Ala Leu
 100 105 110
 Val Asp Ser Ala Val Ala Leu Glu Thr Lys Asp Thr Ser Leu Ala Ser
 115 120 125
 Phe Ile Pro Ala Val Asn Asp Leu Thr Ser Asp Leu Phe Arg Thr Lys
 130 135 140
 Ser Lys Ser Glu Glu Ile Lys Ile Glu Leu Glu Lys Leu Glu Lys Asn
 145 150 155 160
 Leu Thr Ala Thr Leu Val Leu Glu Lys Cys Leu Gln Glu Asp Val Lys
 165 170 175
 Lys Ala Glu Leu His Leu Ser Thr Glu Arg Ala Lys Val Asp Asn Arg
 180 185 190
 Arg Gln Asn Met Asp Phe Leu Lys Ala Lys Ser Glu Glu Phe Arg Phe
 195 200 205
 Gly Ile Lys Ala Ala Glu Glu Gln Leu Ser Ala Arg Gly Met Asp Ala
 210 215 220
 Ser Leu Ser His Gln Ser Leu Val Ala Leu Ser Glu Lys Leu Ala Arg
 225 230 235 240
 Leu Lys Gln Gln Thr Ile Pro Leu Lys Lys Lys Leu Glu Ser Tyr Leu
 245 250 255
 Asp Leu Met Pro Asn Pro Ser Leu Ala Gln Val Lys Ile Glu Glu Ala
 260 265 270
 Lys Arg Glu Leu Asp Ser Ile Glu Ala Glu Leu Thr Arg Arg Val Asp
 275 280 285
 Met Met Glu Leu
 290

<210> 6173
 <211> 1483
 <212> DNA
 <213> Homo sapiens

<400> 6173
agagagagag actagttctc tcttactcta ggcccttcgg tttgcgcgac ggggcaggaa
60
agcgtgcgtg cggctaagag agtggggcgct ctgcggcgc tgacgatgga agaactggag
120
caaggcctgt tcatgcagcc atgggcgtgg ctacagcttg cagagaactc cctcttggcc
180
aaggtttta tcaccaagca gggctatgcc ttgttggttt cagatctca acaggtgtgg
240
catgaacagg tggacactag tgtggtcagc cagcgagcca aggagctgaa caagcggctc
300
actgctcctc ctgcagctt cctctgtcat ttggataatc tccttcgccc atttgtgaag
360
gacgctgctc acccttagcga agctaccctc tcctgtgatt gtgtggcaga tgcactgatt
420
ctacgggtgc gaagtgagct ctctggcctc cccttctatt ggaatttcca ctgcattgcta
480
gctagtcctt ccctggtctc ccaacatttgc attcgtcctc tcatggcat gagtctggca
540
ttacagtgcc aagtggggaa gctagcaacg ttacttcata taaaagacct agagatccaa
600
gactaccagg agagtggggc tacgctgatt cgagatcgat tgaagacaga accatttcaa
660
gaaaattcct tcttggaaaca atttatgata gaaaaactgc cagaggcatg cagcattgg
720
gatggaaaagc cctttgtcat gaatctgcag gatctgtata tggcagtcac cacacaagag
780
gtccaagtgg gacagaagca tcaaggcgct ggagatcctc atacctaaaa cagtgcctcc
840
ctgcaaggaa tcgatagccaa atgtgtaaac cagccagaac aactggtctc ctcagcccc
900
accctctcag cacctgagaa agagtccacg ggtacttcag gccctctgca gagacctcag
960
ctgtcaaagg tcaagaggaa gaatccagg ggtctttca gttaatctgt tggcctca
1020
gctgctgagg atggacttgg agaatacg tcaagcttca ctttggaaaga agcttacatg
1080
gcagcaatat ttctaaaata gtgatacagt cagaggcctc ctgtaaaggc gagagaactg
1140
aagttgatgt tgacaggccc acaggaaatt ggcctccct gttcaagtgg aagccagtct
1200
ctgagaatcc cgtgctctcc tctctttgg tggaggttct gtaggttcag gtttctacca
1260
tggacttttag gtatataggg caagtcagca agaaagcacc acacactcag gaagccttgc
1320
ctacctttcc ctacgtctc tagccagcca gccccagata ctcctcagag acccacttct
1380
ctcttttgc tggataaaaa agcactcaca gtcctgctt ttgggattaa aaaacaaaaaa
1440
aaaaaaaaaaaaaaa aaaaaaaaaat ctcatgccc aat
1483

<210> 6174

<211> 299
<212> PRT
<213> Homo sapiens

<400> 6174
Met Glu Glu Leu Glu Gln Gly Leu Leu Met Gln Pro Trp Ala Trp Leu
1 5 10 15
Gln Leu Ala Glu Asn Ser Leu Leu Ala Lys Val Phe Ile Thr Lys Gln
20 25 30
Gly Tyr Ala Leu Leu Val Ser Asp Leu Gln Gln Val Trp His Glu Gln
35 40 45
Val Asp Thr Ser Val Val Ser Gln Arg Ala Lys Glu Leu Asn Lys Arg
50 55 60
Leu Thr Ala Pro Pro Ala Ala Phe Leu Cys His Leu Asp Asn Leu Leu
65 70 75 80
Arg Pro Leu Leu Lys Asp Ala Ala His Pro Ser Glu Ala Thr Phe Ser
85 90 95
Cys Asp Cys Val Ala Asp Ala Leu Ile Leu Arg Val Arg Ser Glu Leu
100 105 110
Ser Gly Leu Pro Phe Tyr Trp Asn Phe His Cys Met Leu Ala Ser Pro
115 120 125
Ser Leu Val Ser Gln His Leu Ile Arg Pro Leu Met Gly Met Ser Leu
130 135 140
Ala Leu Gln Cys Gln Val Arg Glu Leu Ala Thr Leu Leu His Met Lys
145 150 155 160
Asp Leu Glu Ile Gln Asp Tyr Gln Glu Ser Gly Ala Thr Leu Ile Arg
165 170 175
Asp Arg Leu Lys Thr Glu Pro Phe Glu Asn Ser Phe Leu Glu Gln
180 185 190
Phe Met Ile Glu Lys Leu Pro Glu Ala Cys Ser Ile Gly Asp Gly Lys
195 200 205
Pro Phe Val Met Asn Leu Gln Asp Leu Tyr Met Ala Val Thr Thr Gln
210 215 220
Glu Val Gln Val Gly Gln Lys His Gln Gly Ala Gly Asp Pro His Thr
225 230 235 240
Ser Asn Ser Ala Ser Leu Gln Gly Ile Asp Ser Gln Cys Val Asn Gln
245 250 255
Pro Glu Gln Leu Val Ser Ser Ala Pro Thr Leu Ser Ala Pro Glu Lys
260 265 270
Glu Ser Thr Gly Thr Ser Gly Pro Leu Gln Arg Pro Gln Leu Ser Lys
275 280 285
Val Lys Arg Lys Asn Pro Arg Gly Leu Phe Ser
290 295

<210> 6175
<211> 349
<212> DNA
<213> Homo sapiens

<400> 6175
acgcgtttgc cgggagatgc ggccgcttcg tcctctgcag ttaagaagct gggcgcgctcg
60
aggactggga tttcaaatat gcgtgcatta gagaatgact ttttcaattc tcccccaaga
120

aaaactgttc agtttgggtgg aactgtgaca gaagtcttgc tgaagtacaa aaagggtgaa
 180
 acaaatgact ttgagttgtt gaagaaccag ctgttagatc cagacataaa gagattgcct
 240
 tggttgaata gaagtcaaac agtagtgaa gagtatttgg cttttcttgg taatcttcta
 300
 tcagcacaga ctgtttccct cagaccgtgt ctcagcatga ttgcttccc
 349

<210> 6176
 <211> 90
 <212> PRT
 <213> Homo sapiens

<400> 6176
 Met Arg Ala Leu Glu Asn Asp Phe Phe Asn Ser Pro Pro Arg Lys Thr
 1 5 10 15
 Val Gln Phe Gly Gly Thr Val Thr Glu Val Leu Leu Lys Tyr Lys Lys
 20 25 30
 Gly Glu Thr Asn Asp Phe Glu Leu Leu Lys Asn Gln Leu Leu Asp Pro
 35 40 45
 Asp Ile Lys Arg Leu Pro Trp Leu Asn Arg Ser Gln Thr Val Val Glu
 50 55 60
 Glu Tyr Leu Ala Phe Leu Gly Asn Leu Val Ser Ala Gln Thr Val Phe
 65 70 75 80
 Leu Arg Pro Cys Leu Ser Met Ile Ala Ser
 85 90

<210> 6177
 <211> 1536
 <212> DNA
 <213> Homo sapiens

<400> 6177
 cggcccaacc atggcgctcc ccgcggccgg ctgcgtggtg atcggtggca gaattaaaac
 60
 tctgtaccca ttgaacaaca gctgctcatt tccccccagcc ccagccccctg gcatccaccc
 120
 ttcttagctt ctgtctctat gggtaacctca gtggagtcat tgggcgaatg ggccatgctg
 180
 tttgccagtg gaggcttcca ggtgaaactc tatgacattt agcaacagca gataaggaac
 240
 gcccggaaa acatcagaaa ggagatgaag ttgctggagc aggccaggttc tctgaaaggc
 300
 tccctgagtg tggaaagagca gctgtcactc atcagtggtt gtcccaatat ccaagaagca
 360
 gtagagggtg ccatgcacat tcaggaatgt gttccagaag atctagaact gaagaagaag
 420
 atttttgctc agttagatc catcatttat gatcgagtga tcttaagcag ttccacttct
 480
 tgtctcatgc ctcccaagtt gtttgcgtggc ttggccatg tgaagcaatg catcggtggct
 540
 catcctgtga atccggccata ctacatcccg ctgggttgc tggtccccca cccggagacg
 600

gcccctacga cagtggacag aaccacgccc ctgatgaaga agattgganc agtgccccat
 660
 gcgagtcagg aaggaggtgg ccggcttcgt tctgaaccgc ctgcaatatg caatcatcag
 720
 cgaggcctgg cggctagtgg aggaaggaat ncgtgtctcc tagtgacactg gnaccttgc
 780
 atgtcagaag ggttgggcat gcggtatgca ttcattggac ccctggaaac catgcacatc
 840
 aatgcagaag gtatgttaag ctactgcac agatacagcg aaggcataaa acatgtccta
 900
 cagacttttgc gacccattcc agagtttcc agggccactg ctgagaaggt taaccaggac
 960
 atgtcgtatga aggtccctga tgaccggag cacttagctg ccaggaggca gtggagggac
 1020
 gagtgctca tgagactcgc caagttgaag agtcaagtgc agccccagtg aatttcttgt
 1080
 aatgcagctt ccactcctct cattggaggc cctatttggg aacactgcaa gcccttaatc
 1140
 agccctctgt gacataggta gcagccacg gagatcctaa gctggctgtc ttgtgtgcag
 1200
 cctgagtggg gtgggtgcagg ccggtagtct gcccgtcaact ttggatcata gccctgggcc
 1260
 tggcggcaca gcagcacttg cggtctcggg gctgtcgatt tcctgccacc tggcagata
 1320
 acctggagat ttccacaccc tcttttcagc ttgattgcat ttgactatat tttacagcca
 1380
 gtgattgttag tttcatgtta atatgtggca aaatattttt gtaattattt tctaattcc
 1440
 ttctgagtag tctggggccc tgcatttatg aggacacctac cttcatttg ctaacgctta
 1500
 ttctgaataa aagtttttga ttccctaaaa aaaaaa
 1536

<210> 6178
 <211> 310
 <212> PRT
 <213> Homo sapiens

<400> 6178
 Met Gly Thr Ser Val Glu Ser Leu Gly Glu Trp Ala Met Leu Phe Ala
 1 5 10 15
 Ser Gly Gly Phe Gln Val Lys Leu Tyr Asp Ile Glu Gln Gln Ile
 20 25 30
 Arg Asn Ala Leu Glu Asn Ile Arg Lys Glu Met Lys Leu Leu Glu Gln
 35 40 45
 Ala Gly Ser Leu Lys Gly Ser Leu Ser Val Glu Glu Gln Leu Ser Leu
 50 55 60
 Ile Ser Gly Cys Pro Asn Ile Gln Glu Ala Val Glu Gly Ala Met His
 65 70 75 80
 Ile Gln Glu Cys Val Pro Glu Asp Leu Glu Leu Lys Lys Ile Phe
 85 90 95
 Ala Gln Leu Asp Ser Ile Ile Asp Asp Arg Val Ile Leu Ser Ser Ser
 100 105 110
 Thr Ser Cys Leu Met Pro Ser Lys Leu Phe Ala Gly Leu Val His Val

115	120	125
Lys Gln Cys Ile Val Ala His Pro Val Asn Pro Pro Tyr Tyr Ile Pro		
130	135	140
Leu Val Glu Leu Val Pro His Pro Glu Thr Ala Pro Thr Thr Val Asp		
145	150	155
Arg Thr His Ala Leu Met Lys Lys Ile Gly Xaa Val Pro His Ala Ser		
165	170	175
Pro Glu Gly Gly Arg Leu Arg Ser Glu Pro Pro Ala Ile Cys Asn		
180	185	190
His Gln Arg Gly Leu Ala Ala Ser Gly Gly Arg Asn Xaa Cys Leu Leu		
195	200	205
Val Thr Trp Xaa Leu Val Met Ser Glu Gly Leu Gly Met Arg Tyr Ala		
210	215	220
Phe Ile Gly Pro Leu Glu Thr Met His Leu Asn Ala Glu Gly Met Leu		
225	230	235
Ser Tyr Cys Asp Arg Tyr Ser Glu Gly Ile Lys His Val Leu Gln Thr		
245	250	255
Phe Gly Pro Ile Pro Glu Phe Ser Arg Ala Thr Ala Glu Lys Val Asn		
260	265	270
Gln Asp Met Cys Met Lys Val Pro Asp Asp Pro Glu His Leu Ala Ala		
275	280	285
Arg Arg Gln Trp Arg Asp Glu Cys Leu Met Arg Leu Ala Lys Leu Lys		
290	295	300
Ser Gln Val Gln Pro Gln		
305	310	

<210> 6179

<211> 2940

<212> DNA

<213> Homo sapiens

<400> 6179

```

nnctgcagg ggcgcgggag gctacgcgcg gggcggtgc tgcttgctgc aggctctggg
60
gagtcgccat gcctacaaca cagcagtccc ctcaggatga gcaggaaaag ctcttggatg
120
aagccataca ggctgtgaag gtccagtcat tccaaatgaa gagatgcctg gacaaaaaca
180
agcttatgga tgctctaaaa catgcttcta atatgcttgg tgaactccgg acttctatgt
240
tatcacaaaa gagttactat gaactttata tggccatttc tgatgaactg cactacttgg
300
aggncttacc tgacagatga gtttgcataa ggaaggaaag tggcagatct ctacgaactt
360
gtacagttatg ctggaaacat tatcccaagg ctttacctt tgatcacagt tggagttgta
420
tatgtcaagt catttcctca gtccaggaag gatatttga aagatttgtt agaaatgtgc
480
cgtgggtgc aacatccctt gaggggtctg tttttcgaa attaccttct tcagtgtacc
540
agaaatatct tacctgatga aggagagcca acagatgaag aaacaactgg tgacatcagt
600
gattccatgg attttgtact gctcaacttt gcagaaatga acaagctctg ggtgcgaatg
660

```

cagcatcagg gacatagccg agatagagaa aaaagagaac gagaaagaca agaactgaga
720
attttagtgg gaacaaattt ggtgcgcctc agtnncagtt ggaggtgtaa atgtggaacg
780
ttacaacaga ttgtttgac tggcatattg gagcaagttg taaactgttag ggatgtttt
840
gctcaagaat atctcatgga gtgtattatt caggcccc ctgatgaatt tcaccccg
900
actttgaatc ctttcttcg ggcctgtgct gagttacacc agaatgtaaa tgtgaagaac
960
ataatcattt ctttaatttga tagatttagt ttatggctc accgtgaaga tggacctgga
1020
atcccagccg atattaaact ttttgatata tttcacagc aggtggctac agtgatacag
1080
tctagacaag acatgccttc agaggatgtt gtatcttac aagtctctc gattaatctt
1140
gccatgaaat gttaccctga tcgtgtggac tatgttata aagttctaga aacaacagt
1200
gagatattca ataagctcaa ctttgaacat attgctacca gtatgcagt ttcaaaggaa
1260
ctcaccagac ttttggaaat accagttgac acttacaaca atattttac agtcttggaaa
1320
ttaaaacatt ttcacccact ctttgagtttac ttgactacg agtccagaaa gagcatgagt
1380
tgttatgtgc ttagtaatgt tctggattat aacacagaaa ttgtctctca agaccagggt
1440
gattccataa tgaatttgggt atccacgtt attcaagatc agccagatca acctgttagaa
1500
gaccctgatc cagaagatcc tgctgttag cagagccctg tggccgcctt cattcatctg
1560
ctgcgtctg aggaccctga ccagcagtac ttgatttga acacagcacg aaaacatttt
1620
ggagctgggt gaaatcagcg gattcgcttc acactgccac ctttggatt tgcaagcttac
1680
cagctggctt ttgcataaa agagaattct aagtggatga caaatggaa aagaaatgcc
1740
agaagatttt ttcatggcc cnaccagact atcagtgcctt tgatcaaagc agagctggca
1800
gaattgcct taagactttt tcttcaagga gcactagctg ctggggaaat tggttttgaa
1860
aatcatgaga cagtcgcata tgaattcatg tccaggcat tttctctgta tgaagatgaa
1920
atcagcgatt ccaaaggcaca gctagctgcc atcaccttga tcattggcac tttgaaagg
1980
atgaagtgc tcaatgttgaaga gaatcatgaa cctctgagga ctcagtgtgc ctttgctgca
2040
tccaaacttc taaagaaacc tgatcaggc cgagctgagc acctgtgcac atctcttgg
2100
tctggcagaa acacggacaa aaatggggag gagcttcacg gaggcaagag ggtaatggag
2160
tgcctaaaaa aagctctaaa aatagcaaat cagtgcatttgg accccctctc acaagtgcag
2220
cttttatag aaattctgaa cagatatac tattttatg aaaaggaaaa tgcgtggta
2280

acaattcagg ttttaaacca gcttatccaa aagattcgag aagacccccc gaatcttcaa
 2340
 tccagtgaag aaacagagca gattaacaaa catttcata acacactgga gcattgcgc
 2400
 ttgcggcggg aatcaccaga atccgagggg ccaatttatg aaggctcat ccttaaaaa
 2460
 gaaaaatagct caccatactc cttccatgt acatccagtg agggtttt tacgcttaggt
 2520
 ttcccttcca tagattgtgc cttcagaaa tgctgaggta ggtttccat ttcttacctg
 2580
 tgatgtgttt tacccagcac ctccggacac tcaccttcag gaccttaata aaattattca
 2640
 cttggtaagt gtcagaatct ttctgatcac cccaaatgtc atgactgate tgcaattttt
 2700
 agagctttt ttaggcactc cattaccctc ttgcctccgt gaagctccctc cccatTTT
 2760
 tccgtgtttc tgccagacca gaagagatgt gcacaggtgc tcacagctcg gccctgatca
 2820
 ggtttctta gaagtttggc tgccagcaagg gcacactgag tcctcagagg ttcatgattc
 2880
 tcttcactga agcacttcat ctttcaaaa gtgccaatga tcaaggtgat ggcagctagc
 2940

<210> 6180
 <211> 751
 <212> PRT
 <213> Homo sapiens

<400> 6180
 Met Leu Leu Ile Cys Leu Val Asn Ser Gly Leu Leu Cys Tyr His Gln
 1 5 10 15
 Arg Val Thr Met Asn Phe Ile Trp Pro Phe Leu Met Asn Cys Thr Thr
 20 25 30
 Trp Arg Xaa Tyr Leu Thr Asp Glu Phe Ala Lys Gly Arg Lys Val Ala
 35 40 45
 Asp Leu Tyr Glu Leu Val Gln Tyr Ala Gly Asn Ile Ile Pro Arg Leu
 50 55 60
 Tyr Leu Leu Ile Thr Val Gly Val Val Tyr Val Lys Ser Phe Pro Gln
 65 70 75 80
 Ser Arg Lys Asp Ile Leu Lys Asp Leu Val Glu Met Cys Arg Gly Val
 85 90 95
 Gln His Pro Leu Arg Gly Leu Phe Leu Arg Asn Tyr Leu Gln Cys
 100 105 110
 Thr Arg Asn Ile Leu Pro Asp Glu Gly Glu Pro Thr Asp Glu Glu Thr
 115 120 125
 Thr Gly Asp Ile Ser Asp Ser Met Asp Phe Val Leu Leu Asn Phe Ala
 130 135 140
 Glu Met Asn Lys Leu Trp Val Arg Met Gln His Gln Gly His Ser Arg
 145 150 155 160
 Asp Arg Glu Lys Arg Glu Arg Glu Arg Gln Glu Leu Arg Ile Leu Val
 165 170 175
 Gly Thr Asn Leu Val Arg Leu Ser Xaa Ser Trp Arg Cys Lys Cys Gly
 180 185 190
 Thr Leu Gln Gln Ile Val Leu Thr Gly Ile Leu Glu Gln Val Val Asn

195	200	205
Cys Arg Asp Ala Leu Ala Gln Glu Tyr Leu Met Glu Cys Ile Ile Gln		
210	215	220
Val Phe Pro Asp Glu Phe His Leu Gln Thr Leu Asn Pro Phe Leu Arg		
225	230	235
Ala Cys Ala Glu Leu His Gln Asn Val Asn Val Lys Asn Ile Ile Ile		
245	250	255
Ala Leu Ile Asp Arg Leu Ala Leu Phe Ala His Arg Glu Asp Gly Pro		
260	265	270
Gly Ile Pro Ala Asp Ile Lys Leu Phe Asp Ile Phe Ser Gln Gln Val		
275	280	285
Ala Thr Val Ile Gln Ser Arg Gln Asp Met Pro Ser Glu Asp Val Val		
290	295	300
Ser Leu Gln Val Ser Leu Ile Asn Leu Ala Met Lys Cys Tyr Pro Asp		
305	310	315
Arg Val Asp Tyr Val Asp Lys Val Leu Glu Thr Thr Val Glu Ile Phe		
325	330	335
Asn Lys Leu Asn Leu Glu His Ile Ala Thr Ser Ser Ala Val Ser Lys		
340	345	350
Glu Leu Thr Arg Leu Leu Lys Ile Pro Val Asp Thr Tyr Asn Asn Ile		
355	360	365
Leu Thr Val Leu Lys Leu Lys His Phe His Pro Leu Phe Glu Tyr Phe		
370	375	380
Asp Tyr Glu Ser Arg Lys Ser Met Ser Cys Tyr Val Leu Ser Asn Val		
385	390	395
Leu Asp Tyr Asn Thr Glu Ile Val Ser Gln Asp Gln Val Asp Ser Ile		
405	410	415
Met Asn Leu Val Ser Thr Leu Ile Gln Asp Gln Pro Asp Gln Pro Val		
420	425	430
Glu Asp Pro Asp Pro Glu Asp Phe Ala Asp Glu Gln Ser Leu Val Gly		
435	440	445
Arg Phe Ile His Leu Leu Arg Ser Glu Asp Pro Asp Gln Gln Tyr Leu		
450	455	460
Ile Leu Asn Thr Ala Arg Lys His Phe Gly Ala Gly Gly Asn Gln Arg		
465	470	475
Ile Arg Phe Thr Leu Pro Pro Leu Val Phe Ala Ala Tyr Gln Leu Ala		
485	490	495
Phe Arg Tyr Lys Glu Asn Ser Lys Trp Met Thr Asn Gly Lys Arg Asn		
500	505	510
Ala Arg Arg Phe Phe His Leu Pro Xaa Gln Thr Ile Ser Ala Leu Ile		
515	520	525
Lys Ala Glu Leu Ala Glu Leu Pro Leu Arg Leu Phe Leu Gln Gly Ala		
530	535	540
Leu Ala Ala Gly Glu Ile Gly Phe Glu Asn His Glu Thr Val Ala Tyr		
545	550	555
Glu Phe Met Ser Gln Ala Phe Ser Leu Tyr Glu Asp Glu Ile Ser Asp		
565	570	575
Ser Lys Ala Gln Leu Ala Ala Ile Thr Leu Ile Ile Gly Thr Phe Glu		
580	585	590
Arg Met Lys Cys Phe Ser Glu Glu Asn His Glu Pro Leu Arg Thr Gln		
595	600	605
Cys Ala Leu Ala Ala Ser Lys Leu Leu Lys Lys Pro Asp Gln Gly Arg		
610	615	620
Ala Glu His Leu Cys Thr Ser Leu Trp Ser Gly Arg Asn Thr Asp Lys		

625	630	635	640
Asn Gly Glu Glu Leu His Gly Gly Lys Arg Val Met Glu Cys Leu Lys			
645	650	655	
Lys Ala Leu Lys Ile Ala Asn Gln Cys Met Asp Pro Ser Leu Gln Val			
660	665	670	
Gln Leu Phe Ile Glu Ile Leu Asn Arg Tyr Ile Tyr Phe Tyr Glu Lys			
675	680	685	
Glu Asn Asp Ala Val Thr Ile Gln Val Leu Asn Gln Leu Ile Gln Lys			
690	695	700	
Ile Arg Glu Asp Leu Pro Asn Leu Glu Ser Ser Glu Glu Thr Glu Gln			
705	710	715	720
Ile Asn Lys His Phe His Asn Thr Leu Glu His Leu Arg Leu Arg Arg			
725	730	735	
Glu Ser Pro Glu Ser Glu Gly Pro Ile Tyr Glu Gly Leu Ile Leu			
740	745	750	

<210> 6181

<211> 1135

<212> DNA

<213> Homo sapiens

<400> 6181

gc~~ca~~aggcgt act~~cctgg~~tc cggcatggc cgc~~atcc~~caca agggcatccg cgagcaggc
60
cggtac~~ct~~ca acagccggcc ctccatccag aagccc~~agg~~ tcttcttctt gccc~~ac~~ctg
120
cccaccacgc cctatttctc ccggac~~gc~~a caga~~aa~~catg atgtggaagt gctggaac~~cg~~g
180
aacttccaga ccatcctgtg tgagtttgag acc~~ct~~t~~c~~aca aagctttctc aaactgc~~ag~~c
240
ctcccc~~ca~~ag gatggaaaat gaacagcacc cccagc~~gg~~gg agtgg~~tt~~cac ct~~ttt~~act~~tt~~g
300
gt~~ca~~atcagg ggg~~ttt~~gtgt tccc~~agg~~aaac tgttaggaagt gccc~~ac~~ggac gtaccg~~ct~~tg
360
ctcg~~ga~~agcc tt~~cgg~~ac~~ct~~g tattgg~~aa~~ac aatgtttt~~tg~~ ggaac~~gc~~gtg catct~~ct~~gtg
420
ctgagcc~~ct~~g ggactgtgat aac~~gg~~agcac tatgg~~accc~~a ccaac~~atcc~~g catccgatgc
480
cat~~tt~~agg~~tc~~ tgaaaactcc aaatggctgt gagctgg~~tg~~gg tggggggaga gccc~~ag~~tg~~tc~~
540
tggc~~ca~~gaag ggc~~gtgc~~c~~c~~t tcttttgat gact~~ttt~~cc tgc~~atgc~~tg~~tc~~ gttccatgaa
600
gg~~tt~~c~~ag~~c~~ag~~ aggatggccc acgggtgg~~tt~~ t~~c~~atgg~~tt~~gg attt~~gtgg~~ca tccaaac~~gt~~tc
660
gc~~ag~~cg~~gg~~ccg aac~~gg~~c~~agg~~gc tcttgatttc atctttgctc cgggac~~gt~~atg agagtatttc
720
ccatg~~ct~~g~~ga~~ gtc~~gg~~cg~~ag~~ga agggcc~~gg~~agg cggggc~~ct~~gg gc~~ag~~actgtg gtcc~~gg~~tcca
780
gtcc~~cc~~taccg gtgtt~~ttt~~tc catg~~ct~~caga aac~~ct~~gc~~ct~~c agc~~gg~~aa~~ag~~c tcttattt~~gg~~
840
gattttat~~at~~ catgtc~~gg~~gt cc~~ct~~ctt~~cc~~c ct~~gg~~ttattt gtaaa~~atgg~~aa acttt~~tc~~ggc
900
ttgttatttcc ttagat~~tttt~~ttt~~ttt~~cc tccaatcatt tgcttc~~ag~~ag actc~~ttt~~ct
960

ggcctaacag cgcattcctt tgattggtcc ttgagtgacc agagacttag tgcccttgta
 1020
 agtctgtctt ctgttgctac ttgtttttt cagtgtctg aaatagagta actaaatgg
 1080
 tatttgtctg aataataataa tgtaaaactt cttgtggtca tcttaaaaaaa aaaaa
 1135

<210> 6182
<211> 236
<212> PRT
<213> Homo sapiens

<400> 6182
Ala Lys Arg Tyr Ser Trp Ser Gly Met Gly Arg Ile His Lys Gly Ile
 1 5 10 15
Arg Glu Gln Gly Arg Tyr Leu Asn Ser Arg Pro Ser Ile Gln Lys Pro
 20 25 30
Glu Val Phe Phe Leu Pro Asp Leu Pro Thr Thr Pro Tyr Phe Ser Arg
 35 40 45
Asp Ala Gln Lys His Asp Val Glu Val Leu Glu Arg Asn Phe Gln Thr
 50 55 60
Ile Leu Cys Glu Phe Glu Thr Leu Tyr Lys Ala Phe Ser Asn Cys Ser
 65 70 75 80
Leu Pro Gln Gly Trp Lys Met Asn Ser Thr Pro Ser Gly Glu Trp Phe
 85 90 95
Thr Phe Tyr Leu Val Asn Gln Gly Val Cys Val Pro Arg Asn Cys Arg
 100 105 110
Lys Cys Pro Arg Thr Tyr Arg Leu Leu Gly Ser Leu Arg Thr Cys Ile
 115 120 125
Gly Asn Asn Val Phe Gly Asn Ala Cys Ile Ser Val Leu Ser Pro Gly
 130 135 140
Thr Val Ile Thr Glu His Tyr Gly Pro Thr Asn Ile Arg Ile Arg Cys
 145 150 155 160
His Leu Gly Leu Lys Thr Pro Asn Gly Cys Glu Leu Val Val Gly Gly
 165 170 175
Glu Pro Gln Cys Trp Ala Glu Gly Arg Cys Leu Leu Phe Asp Asp Ser
 180 185 190
Phe Leu His Ala Ala Phe His Glu Gly Ser Ala Glu Asp Gly Pro Arg
 195 200 205
Val Val Phe Met Val Asp Leu Trp His Pro Asn Val Ala Ala Ala Glu
 210 215 220
Arg Gln Ala Leu Asp Phe Ile Phe Ala Pro Gly Arg
 225 230 235

<210> 6183
<211> 2530
<212> DNA
<213> Homo sapiens

<400> 6183
acgcgtcggt cgttggggcg ttgagcaagt gcgaccccg agtcatttg gctggggttg
 60
gaggattagc atctgccatt gactcgcat aaaggcccc gctctcgcg tgagaggttg
 120

aggttgtgtt gcgggggtcg ggttagctgta ggcttttagaa atggcatcaa aggtggcctt
180
ggcgaagttg cccagggtgg cagtgcagcc ccgggctgag gtgttagcagt catcgatacc
240
agccatcatg agcagcttct taggcacagg tgccggagacg atgccagtgcc ccctgggtgc
300
agggatgagg cgtaccagca cagagccgca gcggcctgtc acctggtgag ggaaggagtc
360
aggagacggg ggcccggaggg agcctgcccc acggcaggcc catcacctgc caccagccta
420
ccttgcaagg gacagtgtgg ggcttgcga tcttggccc ccagtagcct ctgcgcacgg
480
ggacgatgga gagcttggcc aggatgatgg cccacggat ggccggtgcc acctcccttgg
540
agcaactaac acccagaccc acgtggccat tgttagtcccc gatagcaaca aatgccttga
600
acctgggtcg ctggccggca cgggtctgct tctgcactgg cataatcttc aaaacctcat
660
ccttgagaga ggccccccagg aaaaagtcaa tgatctctga ttcccttaatg ggcagagaga
720
agagatagat ctccctccagg gacttgatct tcattgcctt gaccaagcgg cccaacttgg
780
tgacgggcat ccactcccta tctccggcct tgccctccgag agctccgcgg cctccggcccc
840
ggccccctcc acggccgcga ccccccgcct ggtggccctg ggatggggaa ccgcggtgcc
900
ttcccgccgag gtttccggcag tggcatccgg ggccggggtc gcggccgtgg acggggccgg
960
ggccgaggcc gcggagctcg cggaggcaag gccgaggata aggagtggat gcccgtcacc
1020
aagttgggcc gcttggtcaa ggacatgaag atcaagtccc tggaggagat ctatctttc
1080
tccctgcccc ttaaggaatc agagatcatt gatttcttcc tggggggcctc tctcaaggat
1140
gaggaaaaatgaa agattatgcc agtgcagaag cagaccgtg ccggccagcg caccaggttc
1200
aaggcatttgc ttgttatcg ggactacaat ggccacgtcg gtctgggtgt taagtgtcc
1260
aaggaggtgg ccaccggccat ccgtggggcc atcatcctgg ccaagctctc catcgcccc
1320
gtgcgcagag gctactgggg gaacaagatc ggcaagcccc acactgtccc ttgcaagggt
1380
acaggccgct gcccgtctgt gctggtaacgc ctcatccctg cacccagggg cactggcatc
1440
gtctccgcac ctgtgcctaa gaagctgctc atgatggctg gtatcgatga ctgctacacc
1500
tcagccccgg gctgcactgc caccctggc aacttcgcca aggccaccc ttgatggcatt
1560
tctaagaccc acagctaccc gaccccccac ctctggagg agactgtatt caccaagtct
1620
ccctatcagg agttcactga ccacccgtc aagacccaca ccagagctctc cgtgcagcgg
1680
actcaggctc cagctgtggc tacaacatag ggttttata caagaaaaat aaagtgaatt
1740

aagctgtcac cccaccatgg agaaaagagt ctttgggatc ttttaacat aagtgattag
 1800
 tttaagagta tgctgaggag ccactgggct taaagaagga tgtaaataag acccaaatac
 1860
 atagggacca ggcgctgctt tctcatgttc aaaaaagcag tcctccacca ctgaactcca
 1920
 ttctctcagg gggctcaatg aaggctaacc aatccgatgc atgtgttagt aacagtc
 1980
 tggactggca cttgtaaaca gccaatgcc aaccatcag gttcccaatg agatagacca
 2040
 aaccctgaag aaacttctgg cttgaacttt ctaacatctt gaaagtggct gaaatggcca
 2100
 taagtgcctg aatgggtcgc caggccatca tacacacca catacgatggg aagatggaga
 2160
 tagtattgcc tgccatgtac atgatgaaga gattcatggg aatctgttg aggggaccca
 2220
 aggcgatgtc ccagcagcgc ttctccacca ggatccggc tgcgttgc acgctggat
 2280
 caggcacttg cttgtccaag taaccgactg ggttagagcga gtctccctgg ccactgcccc
 2340
 ggtcacttcg acccctgctg cttccctccag gcccgccttgc ctcaatggcc cacttgaagc
 2400
 gccggccctcg gttagccacc agggcccccct gggccgtcat ggcaacagct gcgtccctata
 2460
 gcctcgatgc ttctcagtc aaagcgtact ccacaacagg cccaccagcg ttctcccgctt
 2520
 tgtctcaccc
 2530

<210> 6184
 <211> 308
 <212> PRT
 <213> Homo sapiens

<400> 6184
 Arg Ala Ser Thr Pro Tyr Leu Arg Pro Cys Leu Arg Glu Leu Arg Gly
 1 5 10 15
 Leu Gly Pro Gly Pro Val His Gly Arg Asp Pro Gly Pro Gly Pro
 20 25 30
 Gly Met Gly Asn Arg Gly Gly Phe Arg Gly Gly Phe Gly Ser Gly Ile
 35 40 45
 Arg Gly
 50 55 60
 Ala Arg Gly Gly Lys Ala Glu Asp Lys Glu Trp Met Pro Val Thr Lys
 65 70 75 80
 Leu Gly Arg Leu Val Lys Asp Met Lys Ile Lys Ser Leu Glu Glu Ile
 85 90 95
 Tyr Leu Phe Ser Leu Pro Ile Lys Glu Ser Glu Ile Ile Asp Phe Phe
 100 105 110
 Leu Gly Ala Ser Leu Lys Asp Glu Val Leu Lys Ile Met Pro Val Gln
 115 120 125
 Lys Gln Thr Arg Ala Gly Gln Arg Thr Arg Phe Lys Ala Phe Val Ala
 130 135 140
 Ile Gly Asp Tyr Asn Gly His Val Gly Leu Gly Val Lys Cys Ser Lys

145 150 155 160
Glu Val Ala Thr Ala Ile Arg Gly Ala Ile Ile Leu Ala Lys Leu Ser
165 170 175
Ile Val Pro Val Arg Arg Gly Tyr Trp Gly Asn Lys Ile Gly Lys Pro
180 185 190
His Thr Val Pro Cys Lys Val Thr Gly Arg Cys Gly Ser Val Leu Val
195 200 205
Arg Leu Ile Pro Ala Pro Arg Gly Thr Gly Ile Val Ser Ala Pro Val
210 215 220
Pro Lys Lys Leu Leu Met Met Ala Gly Ile Asp Asp Cys Tyr Thr Ser
225 230 235 240
Ala Arg Gly Cys Thr Ala Thr Leu Gly Asn Phe Ala Lys Ala Thr Phe
245 250 255
Asp Ala Ile Ser Lys Thr Tyr Ser Tyr Leu Thr Pro Asp Leu Trp Lys
260 265 270
Glu Thr Val Phe Thr Lys Ser Pro Tyr Gln Glu Phe Thr Asp His Leu
275 280 285
Val Lys Thr His Thr Arg Val Ser Val Gln Arg Thr Gln Ala Pro Ala
290 295 300
Val Ala Thr Thr
305

<210> 6185
<211> 1231
<212> DNA
<213> Homo sapiens

<400> 6185
cacagcttgt tccttaggaag ggcttagcaa acgggggtgg ttgtccttct tggaagccac
60
atttgtttgc ctggtgagtg gtggaggca ctgctaggcc tgctaggct gacacggcca
120
gagtcagatg acctcatctc acatccagca ggtgaaatgc agtctttgat ccctgaaac
180
ccaccctcta ggaccaaggt cactgcagta ttggatagga cctcagggag ttagcagggg
240
gctcatggtt aagagtgtga actacagctt agacctacag ggttccctgc ccagctcctc
300
cacaaccacat ctgtcaacc ctagacaagt gagttaatgt ccctgggcct cagttcttc
360
tttagaaaaat gtgtgtagcc atagagggct gttatgagga ttcagtcaaa tgacacatga
420
tgtcttggc acacctggcg tggattatgg cgccctgtagg agcaggaggg cttcctggag
480
gagggggcta gttgaacaga gtctagaaag tatagattgg gaagagcact ctgggaggca
540
ggatcaccat gtgcaaaggc tcagagaatg ccacccacta cctcctggaa atcaagggga
600
ttctgtgtgt ccaagggcat tggtggtctc taggcccccg acctgtgtct gggaggtgtc
660
aaggggaagc cagatccgag gcccacactt gcatgttttc aggtgaggtc cagagatata
720
tccagagagg agtggaaaggc ctcggagacc tacagccccca atactgcata tggtgtggac
780

ttcctggtgc ccgtgatggg ctatatctgc cgcatctgcc acaagttcta tcacagcaac
840
tcaggggcac agctctccca ctgcaagtcc ctggggccact ttgagaacct gcagaaaatac
900
aaggcgccca agaacccccag ccccaccacc cgacctgtga gccgcccgtg cgcaatcaac
960
gcccggAACG ctttgacagc cctgttccacc tccagcggcc gcccacccctc ccagcccaac
1020
acccaggaca aaacacccag caaggtgacg gctcgaccct cccagcccc actacctcg
1080
cgctcaaccc gcctcaaaac ctgatagagg gacccctctg tccctggcct gcctgggtcc
1140
agatctgcta atgctttta ggagtctgcc tggaaaacttt gacatggtac atgcttttac
1200
tcaaaatcca ataaaacaag gtaagttgg c
1231

<210> 6186
<211> 133
<212> PRT
<213> Homo sapiens

<400> 6186
Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr
1 5 10 15
Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met
20 25 30
Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly
35 40 45
Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln
50 55 60
Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser
65 70 75 80
Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr
85 90 95
Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro
100 105 110
Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser
115 120 125
Thr Arg Leu Lys Thr
130

<210> 6187
<211> 909
<212> DNA
<213> Homo sapiens

<400> 6187
nagtcctccc aaagtacttg tgtccgggtg gtggactgga ttcgctgccc agccctggaa
60
gctgccttcc ttctccctg tgcttaacca gaggtgccca tgggttggac aatgaggctg
120
gtcacacgacg cactgttact gggctctcatg atgggttgtca ctggagacga ggtatgagaac
180

agcccgtgtg cccatgaggc cctttggac gaggacaccc tctttgccca gggccttgaa
 240
 gttttctacc cagagttggg gaacattggc tgcaagggttgc ttccctgattt taacaactac
 300
 agacagaaga tcaccttctg gatggagccg atagtcaagt tccccggggc cgtgtacggc
 360
 gcaacctata tcctggtgat ggtggatcca gatgccccta gcagagcaga acccagacag
 420
 agatttctgga gacattggct ggtaaacagat atcaagggcg ccgacctgaa gaaagggaaag
 480
 attcagggcc aggagttatc agcctaccag gctccctccc caccggcaca cagtggcttc
 540
 catcgctacc agttcttgc tstatcttag gaaggaaaag tcatctctt ccttcccaag
 600
 gaaaacaaaaa ctcgaggctc ttggaaaatg gacagatttc tgaaccgtt ccacctggc
 660
 gaacctgaag caagcaccca gttcatgacc cagaactacc aggactcacc aaccctccag
 720
 gctcccaagaa aaagggccag cgagcccaag cacaaaaacc aggccggagat agctgcctgc
 780
 tagatagccg gctttgccat ccgggcatgt ggccacactg cccaccaccc acgatgtggg
 840
 tatggAACCC cctctggata cagaaccctt tctttccaa attaaaaaaaaaaa aaaatcatcc
 900
 agggcaaaaa
 909

<210> 6188
 <211> 227
 <212> PRT
 <213> Homo sapiens

<400> 6188
 Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu Leu Leu Gly Leu
 1 5 10 15
 Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys Ala His
 20 25 30
 Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly Leu Glu Val
 35 40 45
 Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val Val Pro Asp Cys
 50 55 60
 Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met Glu Pro Ile Val Lys
 65 70 75 80
 Phe Pro Gly Ala Val Tyr Gly Ala Thr Tyr Ile Leu Val Met Val Asp
 85 90 95
 Pro Asp Ala Pro Ser Arg Ala Glu Pro Arg Gln Arg Phe Trp Arg His
 100 105 110
 Trp Leu Val Thr Asp Ile Lys Gly Ala Asp Leu Lys Lys Gly Lys Ile
 115 120 125
 Gln Gly Gln Glu Leu Ser Ala Tyr Gln Ala Pro Ser Pro Pro Ala His
 130 135 140
 Ser Gly Phe His Arg Tyr Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys
 145 150 155 160
 Val Ile Ser Leu Leu Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys

165 170 175
Met Asp Arg Phe Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser
180 185 190
Thr Gln Phe Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala
195 200 205
Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile
210 215 220
Ala Ala Cys
225

<210> 6189
<211> 2761
<212> DNA
<213> Homo sapiens

<400> 6189
ngccgcgctg gcattttctc ctggacaagg agagagtgcg gctgctgaga gccgagccca
60
gcaatccccga tcctctgagt cgtgaagaag ggaggcagcg agggggttgg gtttggggcc
120
tgagggcaagc ccccaggctc cgctttgcc agagggacag gagccatggc tcagaaaatg
180
gactgtggtg cgggcctcct cggcttcag gctgaggcct ccgtagaaga cagcgccttg
240
cttatgcaga ctttgatgga ggccatccag atctcagagg ctccacctac taaccaggcc
300
accgcagctg ctagtccccca gagttcacag cccccaactg ccaatgagat ggctgacatt
360
caggttccag cagctgccgc taggcctaag tcagcctta aagtccagaa tgccaccaca
420
aaaggcccaa atggtgtcta tgatttctct caggtcata atgccaaggaa tgtgcccac
480
acgcagccca aggccgcctt taagtcccaa aatgcatacc caaagggtcc aaatgtgcc
540
540
tatgattttt cccaggcage aaccactggt gagttagctg ctaacaagtc tgagatggcc
600
ttcaaggccc agaatgccac tactaaagtg ggcccaaatg ccacctacaa ttctctcag
660
tctctcaatg ccaatgaccc ggccaaacagc aggccctaaga ccccttcaa ggcttggaaat
720
gataccacta aggccccaac agctgatacc cagacccaga atgtaaatca ggccaaaatg
780
ggccacttccc aggctgacat agagaccgac ccaggtatct ctgaacctga cggtgcaact
840
gcacagacat cagcagatgg ttcccaggct cagaatctgg agtcccggac aataattcgg
900
ggcaagagga cccgcaagat taataacttg aatgttgaag agaacagcag tggggatcag
960
aggcggggccc cactggctgc agggacctgg aggtctgcac cagttccagt gaccactcag
1020
aacccacctg ggcacccccc caatgtgctc tggcagacgc cattggcttg gcagaacccc
1080
tcaggctggc aaaaccagac agccaggcag accccaccag cacgtcagag ccctccagct
1140

aggcagaccc caccagectg gcagacccag aaccaggatcg cttggcagaa cccagtgatt
1200
tggccaaacc cagtaatctg gcagaaccca gtgatctggc caaaccat tgcgtggccc
1260
ggccctgttg tctggccgaa tccactggcc tggcagaatc cacctggatg gcagactcca
1320
cctggatggc agacccacc gggctggcag gtcctccag actggcaagg tcctcctgac
1380
tggccgctac caccggactg gccactgcca cctgattggc cacttccac tgactggcca
1440
ctaccacctg actggatccc cgctgattgg ccaattccac ctgactggca gaacctgcgc
1500
ccctcgcccta acctgcgccc ttctccaaac tcgcgtgcct cacagaaccc aggtgctgca
1560
cagccccgag atgtggccct tcttcaggaa agagcaaata agttggtcaa gtacttgatg
1620
cttaaggact acacaaaagg tcccatcaag cgctcagaaa tgctgagaga tatcatccgt
1680
gaatacactg atgttatcc agaaatcatt gaacgtgcatt gctttgtcct agagaagaaa
1740
tttgggattc aactgaaaaga aattgacaaa gaagaacacc tgtatattct catcagtacc
1800
cccgagtcctc tggctggcat actggaaacg accaaagaca cacccttgcct cggctccctc
1860
ttgggtattc tgggtgtcat cttcatgaat ggcaaccgtg ccagtgaggc tgcctctgg
1920
gaggcactac gcaagatggg actgcgtcct ggggtgagac atcccttcct tggagatcta
1980
aggaaacttc tcacctatga gtttgtaaag cagaaatacc tggactacag acgagtgccc
2040
aacagcaacc ccccgaggta tgagttccctc tggggccctcc gttcctacca tgagactagc
2100
aagatgaaag tgctgagatt cattgcagag gttcagaaaa gagaccctcg tgactggact
2160
gcacagttca tggaggctgc agatgaggcc ttggatgctc tggatgctgc tgcaagctgag
2220
gccgaagccc gggctgaagc aagaacccgc atggaaattt gtagatgaggc tgcgtctgg
2280
ccctggagct gggatgacat tgagttttagt ctgcgtaccc gggatgaggaa aggagattt
2340
ggagatccct ggtccagaat tccatttacc ttctggccca gataccacca gaatgcccgc
2400
tccagattcc ctcagacccctt tgccggccccc attattggtc ctggatggatc agccagtgc
2460
aacttcgctg ccaactttgg tgccatttgg ttcttctggg ttgagtgaga tggatggat
2520
tgctatcaat cgcaatggatc tttccctgt gtgaggctga agcctcagat tccttctaaa
2580
cacagctatc tagagagccatccctgttg actgaaatgt gcatgcaaga taaaatttt
2640
tgctgttcct tgcgtactgc tttttttttt cttgtgtgct gtcagtttt ggtatcgaaa
2700
ataaacattt gaaatttgcataa gtgaa
2760

a
2761

<210> 6190
<211> 576
<212> PRT
<213> Homo sapiens

<400> 6190
Met Ala Thr Ser Gln Ala Asp Ile Glu Thr Asp Pro Gly Ile Ser Glu
1 5 10 15
Pro Asp Gly Ala Thr Ala Gln Thr Ser Ala Asp Gly Ser Gln Ala Gln
20 25 30
Asn Leu Glu Ser Arg Thr Ile Ile Arg Gly Lys Arg Thr Arg Lys Ile
35 40 45
Asn Asn Leu Asn Val Glu Glu Asn Ser Ser Gly Asp Gln Arg Arg Ala
50 55 60
Pro Leu Ala Ala Gly Thr Trp Arg Ser Ala Pro Val Pro Val Thr Thr
65 70 75 80
Gln Asn Pro Pro Gly Ala Pro Pro Asn Val Leu Trp Gln Thr Pro Leu
85 90 95
Ala Trp Gln Asn Pro Ser Gly Trp Gln Asn Gln Thr Ala Arg Gln Thr
100 105 110
Pro Pro Ala Arg Gln Ser Pro Pro Ala Arg Gln Thr Pro Pro Ala Trp
115 120 125
Gln Thr Gln Asn Pro Val Ala Trp Gln Asn Pro Val Ile Trp Pro Asn
130 135 140
Pro Val Ile Trp Gln Asn Pro Val Ile Trp Pro Asn Pro Ile Val Trp
145 150 155 160
Pro Gly Pro Val Val Trp Pro Asn Pro Leu Ala Trp Gln Asn Pro Pro
165 170 175
Gly Trp Gln Thr Pro Pro Gly Trp Gln Thr Pro Pro Gly Trp Gln Gly
180 185 190
Pro Pro Asp Trp Gln Gly Pro Pro Asp Trp Pro Leu Pro Pro Asp Trp
195 200 205
Pro Leu Pro Pro Asp Trp Pro Leu Pro Thr Asp Trp Pro Leu Pro Pro
210 215 220
Asp Trp Ile Pro Ala Asp Trp Pro Ile Pro Pro Asp Trp Gln Asn Leu
225 230 235 240
Arg Pro Ser Pro Asn Leu Arg Pro Ser Pro Asn Ser Arg Ala Ser Gln
245 250 255
Asn Pro Gly Ala Ala Gln Pro Arg Asp Val Ala Leu Leu Gln Glu Arg
260 265 270
Ala Asn Lys Leu Val Lys Tyr Leu Met Leu Lys Asp Tyr Thr Lys Val
275 280 285
Pro Ile Lys Arg Ser Glu Met Leu Arg Asp Ile Ile Arg Glu Tyr Thr
290 295 300
Asp Val Tyr Pro Glu Ile Ile Glu Arg Ala Cys Phe Val Leu Glu Lys
305 310 315 320
Lys Phe Gly Ile Gln Leu Lys Glu Ile Asp Lys Glu Glu His Leu Tyr
325 330 335
Ile Leu Ile Ser Thr Pro Glu Ser Leu Ala Gly Ile Leu Gly Thr Thr
340 345 350
Lys Asp Thr Pro Lys Leu Gly Leu Leu Val Ile Leu Gly Val Ile

355	360	365
Phe Met Asn Gly Asn Arg Ala Ser Glu Ala Val Leu Trp Glu Ala Leu		
370	375	380
Arg Lys Met Gly Leu Arg Pro Gly Val Arg His Pro Leu Leu Gly Asp		
385	390	395
Leu Arg Lys Leu Leu Thr Tyr Glu Phe Val Lys Gln Lys Tyr Leu Asp		
405	410	415
Tyr Arg Arg Val Pro Asn Ser Asn Pro Pro Glu Tyr Glu Phe Leu Trp		
420	425	430
Gly Leu Arg Ser Tyr His Glu Thr Ser Lys Met Lys Val Leu Arg Phe		
435	440	445
Ile Ala Glu Val Gln Lys Arg Asp Pro Arg Asp Trp Thr Ala Gln Phe		
450	455	460
Met Glu Ala Ala Asp Glu Ala Leu Asp Ala Leu Asp Ala Ala Ala		
465	470	475
Glu Ala Glu Ala Arg Ala Glu Ala Arg Thr Arg Met Gly Ile Gly Asp		
485	490	495
Glu Ala Val Ser Gly Pro Trp Ser Trp Asp Asp Ile Glu Phe Glu Leu		
500	505	510
Leu Thr Trp Asp Glu Glu Gly Asp Phe Gly Asp Pro Trp Ser Arg Ile		
515	520	525
Pro Phe Thr Phe Trp Ala Arg Tyr His Gln Asn Ala Arg Ser Arg Phe		
530	535	540
Pro Gln Thr Phe Ala Gly Pro Ile Ile Gly Pro Gly Gly Thr Ala Ser		
545	550	555
Ala Asn Phe Ala Ala Asn Phe Gly Ala Ile Gly Phe Phe Trp Val Glu		
565	570	575

<210> 6191
<211> 3021
<212> DNA
<213> Homo sapiens

<400> 6191
ctttgagaag gAACCTGTCC CCTCAGGGAT TAAGCAAGCA CAGCCCTAGT TGATCACCCA
60
gcATGAAAAG TCCTGGAATC TCTCAGAGAT AACCTGTGT ATGGGAGTT TGCTTAAGTG
120
gtACTTCAAG AAGGTGCCTC TGTTTACCTT GGTTTGAC TGCCATGCAG CCAGGTGGTG
180
cAGGTCTCCC AAATGCCACC CCCCTCCAAG CTTCCTCTT TGCTCTAAGT CCTCAGGCCT
240
CCTGGGCCTG GGACAGATGG TTGTTGTGT CATCAGGACT CGTGGGGTTC TATGCGTGG
300
gcACTCACCG CAGCCTAAGC TGGGATCCCA GCTCAGAGGT CAGGCCATGT TGGGATGTT
360
AGGGAAAGGTG ATGCATTATC AGGAGACATA TCTACTGTCC CCTGCCCTGT ACCCCCCAGGC
420
ATTGATCTGG AGAACATTGT GTACTACAAG GACGACACCC ACTACTTTGT GATGACAGCC
480
AAGAACAGT GCCTGCTGCG GCTGGGGGTG CTGCGCCAGG ACTGGCCAGA CACCAATCGG
540
CTGCTGGGCA GTGCCAATGT GGTGACCGAG GCTCTGCAGC GCTTTACCCG GGCAGCTGCT
600

gactttgccca cccatggcaa gctcgggaaa ctagagtttgc cccaggatgc ccatgggcag
660
cctgatgtct ctgcctttga cttcacgagc atgatgcggg cagagagtgc tgctcgtgtg
720
caagagaagc atggcgccccg cctgctgctg ggactggtgg gggactgcct ggtggagccc
780
ttctggcccc tgggcactgg agtggcacgg ggcttcctgg cagcctttga tgcagcctgg
840
atggtgaagc ggtgggcaga gggcgctgag tccctagagg tggggctgaa gcgtgagagc
900
ctgtaccagc ttctgtcaca gacatccccca gaaaacatgc atcgcaatgt ggcccaagtat
960
gggctggacc cagccaccccg ctaccccaac ctgaacctcc gggcagtgac ccccaatcag
1020
gtacgagacc tgtatgtatgt gctagccaag gagcctgtgc agaggaacaa cgacaagaca
1080
gatacaggga tgccagccac cgggtcggca ggcacccagg aggagctgat acgctggtgc
1140
caggaggcaga cagctggta cccgggagtc cacgtctccg atttgccttc ctccctggct
1200
gatgggctag ctctgtgtgc cctgggtgtac cggctgcagc ctggcctgct ggaaccctca
1260
gagctgcagg ggctgggagc tctggaagca actgcttggg cactaaaggt ggcagagaat
1320
gagctggca tcacacccgt ggtgtctgca caggccgtgg tagcagggag tgacccactg
1380
ggcctcattg cctacacctag ccacttccac agtgccttca agagcatggc ccacagccc
1440
ggccctgtca gccaggccctc cccagggacc tccagtgctg tattattcct tagtaaactt
1500
cagaggaccc tgcagcgatc cccggccaag gacttattgc aggaaaatgc agaggatgt
1560
ggtggcaaga agctgcgtt ggagatggag gccagacccc caagtactga ggtgccaccc
1620
gaccctggcgc accggatgtt cctgacacccc ccaccccaac accaggaggc cggctgtgg
1680
gacctgtgtg cactttgtgg ggaacacccctc tatgtcctgg aacgcctctg tgtcaacggc
1740
catttcttcc accggagctg cttccgtgc catacctgtg aggccacact gtggccaggt
1800
ggctatgagc agcaccacagg agatggacat ttctactgcc tccagcaccc gccccagaca
1860
gaccacaaag cggaaaggcag cgatagaggc cctgagagtc cggagctccc cacaccaagt
1920
gagaatagca tgccaccagg cctctcaact cccacagccct cgcaggaggg ggcgggtcct
1980
gttccagatc ccagccagcc caccctgtgg cagatccgcc tctccagccccc ggagcgccag
2040
cggttgttctt cccttaaccc tacccctgac cggaaatgg agcctccacc caagcctccc
2100
cgccagctgtt ccgccttggc cgcacccgc ctggagagca gctttgtggg ctggggcctg
2160
ccagttccaga gccctcaagc tcttgtggcc atggagaagg agaaaaaaga gagtcccttc
2220

tccagtgaag aggaagaaga agatgtgcct ttggactcag atgtgaaaca ggccctgcag
 2280
 acctttgcca agacctcagg caccatgaat aactacccaa catggcgctg gactctgctg
 2340
 cgcgcgtgcga aggaggagga gatgaagagg ttctgcaagg cccagaccat ccaacggcga
 2400
 ctaaatgaga ttgaggctgc cttgagggag ctagaggccg agggcggtgaa gctggagctg
 2460
 gccttggagc gccagagcag ttccccagaa cagcaaaaga aactatgggt aggacagctg
 2520
 ctacagctcg ttgacaagaa aaacagcctg gtggctgagg aggccgagct catgatcacf
 2580
 gtgcaggaat tgaatctgga ggagaaaacag tggcagctgg accaggagct acgaggctac
 2640
 atgaaccggg aagaaaacct aaagacagct gctgatcggc aggctgagga ccaggtcctg
 2700
 aggaagctgg tggatttggc caaccagaga gatgccctca tccgcttcca ggaggagcgc
 2760
 aggctcagcg agctggcctt ggggacaggg gcccagggt agacgagggt gggccgtctg
 2820
 ctttcgttcc cacaagaaaa gcacctcacc ccagcacagt gccacccctg ttcatctggg
 2880
 ctgcctggca gagagccttg ctgtttacaa ttaaatgtt tctgccacaa aaaaaaaaaa
 2940
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 3000
 aaaaaaaaaa aaaaaaaaaa a
 3021

<210> 6192
 <211> 815
 <212> PRT
 <213> Homo sapiens

<400> 6192
 Met Phe Arg Glu Gly Asp Ala Leu Ser Gly Asp Ile Ser Thr Val Pro
 1 5 10 15
 Cys Pro Val Pro Pro Gly Ile Asp Leu Glu Asn Ile Val Tyr Tyr Lys
 20 25 30
 Asp Asp Thr His Tyr Phe Val Met Thr Ala Lys Lys Gln Cys Leu Leu
 35 40 45
 Arg Leu Gly Val Leu Arg Gln Asp Trp Pro Asp Thr Asn Arg Leu Leu
 50 55 60
 Gly Ser Ala Asn Val Val Thr Glu Ala Leu Gln Arg Phe Thr Arg Ala
 65 70 75 80
 Ala Ala Asp Phe Ala Thr His Gly Lys Leu Gly Lys Leu Glu Phe Ala
 85 90 95
 Gln Asp Ala His Gly Gln Pro Asp Val Ser Ala Phe Asp Phe Thr Ser
 100 105 110
 Met Met Arg Ala Glu Ser Ser Ala Arg Val Gln Glu Lys His Gly Ala
 115 120 125
 Arg Leu Leu Leu Gly Leu Val Gly Asp Cys Leu Val Glu Pro Phe Trp
 130 135 140
 Pro Leu Gly Thr Gly Val Ala Arg Gly Phe Leu Ala Ala Phe Asp Ala

145	150	155	160
Ala Trp Met Val Lys Arg Trp Ala Glu Gly Ala Glu Ser Leu Glu Val			
165	170	175	
Leu Ala Glu Arg Glu Ser Leu Tyr Gln Leu Leu Ser Gln Thr Ser Pro			
180	185	190	
Glu Asn Met His Arg Asn Val Ala Gln Tyr Gly Leu Asp Pro Ala Thr			
195	200	205	
Arg Tyr Pro Asn Leu Asn Leu Arg Ala Val Thr Pro Asn Gln Val Arg			
210	215	220	
Asp Leu Tyr Asp Val Leu Ala Lys Glu Pro Val Gln Arg Asn Asn Asp			
225	230	235	240
Lys Thr Asp Thr Gly Met Pro Ala Thr Gly Ser Ala Gly Thr Gln Glu			
245	250	255	
Glu Leu Leu Arg Trp Cys Gln Glu Gln Thr Ala Gly Tyr Pro Gly Val			
260	265	270	
His Val Ser Asp Leu Ser Ser Trp Ala Asp Gly Leu Ala Leu Cys			
275	280	285	
Ala Leu Val Tyr Arg Leu Gln Pro Gly Leu Leu Glu Pro Ser Glu Leu			
290	295	300	
Gln Gly Leu Gly Ala Leu Glu Ala Thr Ala Trp Ala Leu Lys Val Ala			
305	310	315	320
Glu Asn Glu Leu Gly Ile Thr Pro Val Val Ser Ala Gln Ala Val Val			
325	330	335	
Ala Gly Ser Asp Pro Leu Gly Leu Ile Ala Tyr Leu Ser His Phe His			
340	345	350	
Ser Ala Phe Lys Ser Met Ala His Ser Pro Gly Pro Val Ser Gln Ala			
355	360	365	
Ser Pro Gly Thr Ser Ser Ala Val Leu Phe Leu Ser Lys Leu Gln Arg			
370	375	380	
Thr Leu Gln Arg Ser Arg Ala Lys Asp Leu Leu Gln Glu Asn Ala Glu			
385	390	395	400
Asp Ala Gly Gly Lys Lys Leu Arg Leu Glu Met Glu Ala Glu Thr Pro			
405	410	415	
Ser Thr Glu Val Pro Pro Asp Pro Glu Pro Gly Val Pro Leu Thr Pro			
420	425	430	
Pro Ser Gln His Gln Glu Ala Gly Ala Gly Asp Leu Cys Ala Leu Cys			
435	440	445	
Gly Glu His Leu Tyr Val Leu Glu Arg Leu Cys Val Asn Gly His Phe			
450	455	460	
Phe His Arg Ser Cys Phe Arg Cys His Thr Cys Glu Ala Thr Leu Trp			
465	470	475	480
Pro Gly Gly Tyr Glu Gln His Pro Gly Asp Gly His Phe Tyr Cys Leu			
485	490	495	
Gln His Leu Pro Gln Thr Asp His Lys Ala Glu Gly Ser Asp Arg Gly			
500	505	510	
Pro Glu Ser Pro Glu Leu Pro Thr Pro Ser Glu Asn Ser Met Pro Pro			
515	520	525	
Gly Leu Ser Thr Pro Thr Ala Ser Gln Glu Gly Ala Gly Pro Val Pro			
530	535	540	
Asp Pro Ser Gln Pro Thr Arg Arg Gln Ile Arg Leu Ser Ser Pro Glu			
545	550	555	560
Arg Gln Arg Leu Ser Ser Leu Asn Leu Thr Pro Asp Pro Glu Met Glu			
565	570	575	
Pro Pro Pro Lys Pro Pro Arg Ser Cys Ser Ala Leu Ala Arg His Ala			

580	585	590
Leu Glu Ser Ser Phe Val Gly Trp Gly Leu Pro Val Gln Ser Pro Gln		
595	600	605
Ala Leu Val Ala Met Glu Lys Glu Glu Lys Ser Pro Phe Ser Ser		
610	615	620
Glu Glu Glu Glu Asp Val Pro Leu Asp Ser Asp Val Glu Gln Ala		
625	630	635
Leu Gln Thr Phe Ala Lys Thr Ser Gly Thr Met Asn Asn Tyr Pro Thr		
645	650	655
Trp Arg Arg Thr Leu Leu Arg Arg Ala Lys Glu Glu Met Lys Arg		
660	665	670
Phe Cys Lys Ala Gln Thr Ile Gln Arg Arg Leu Asn Glu Ile Glu Ala		
675	680	685
Ala Leu Arg Glu Leu Glu Ala Glu Gly Val Lys Leu Glu Leu Ala Leu		
690	695	700
Arg Arg Gln Ser Ser Ser Pro Glu Gln Gln Lys Lys Leu Trp Val Gly		
705	710	715
Gln Leu Leu Gln Leu Val Asp Lys Lys Asn Ser Leu Val Ala Glu Glu		
725	730	735
Ala Glu Leu Met Ile Thr Val Gln Glu Leu Asn Leu Glu Glu Lys Gln		
740	745	750
Trp Gln Leu Asp Gln Glu Leu Arg Gly Tyr Met Asn Arg Glu Glu Asn		
755	760	765
Leu Lys Thr Ala Ala Asp Arg Gln Ala Glu Asp Gln Val Leu Arg Lys		
770	775	780
Leu Val Asp Leu Val Asn Gln Arg Asp Ala Leu Ile Arg Phe Gln Glu		
785	790	795
Glu Arg Arg Leu Ser Glu Leu Ala Leu Gly Thr Gly Ala Gln Gly		
805	810	815

<210> 6193
 <211> 2893
 <212> DNA
 <213> Homo sapiens

<400> 6193
 nntgtatTTT aaaacttGTT ttttagTTT cattctgaga aattacattG aggtagAGC
 60
 ctgttcatta ccttatccat gcattttct gcttatttaa attatTTAC ttcaccaAGC
 120
 cattcatttt tttagAACAT ctttcaaAGA gttcatgcat cttactgagg acacctgacc
 180
 ttttgaagct tcataATTCA catctAGATG tcacGGTCT ttcccATGTT aacagtTCTG
 240
 accatTTTT attatatATG cttcggcgc CGAGCCAGGA cagctacaAG aggAGAAATG
 300
 atgaacacCC atAGAGCTAT agaatCAAAC AGCCAGACTT cccctctaa TGCAGAGGTa
 360
 gtccAGTATG ccaaAGAAGT agtggattTC agtcccatt atggAAgtGA gaatAGTATG
 420
 tcctataCTA tgtggAAATT ggctgggtGA ccaaATGTAT tcccaAGTTC tggtgactTT
 480
 actcAGACAG ctgtgtttcg aacttatGGG acatGGTGGG atcagtgtCC tagtgcttCC
 540

ttgccattca agaggacgcc acctaatttt cagagccagg actatgtgga acttacttt
600
gaacaacagg tgtatcctac agctgtacat gttctagaaa cctatcatcc cggagcagtc
660
attagaattc tcgcgtgttc tgcaaattct tattccccaa atccaccagc tgaagtaaga
720
tgggagattc tttggtcaga gagacctacg aaggtaatg ctcccaga tcgcccagt
780
aaaccttgta ttaagcagat aaattcccc acaaatttta tacgactgga agtaaatagt
840
tctcttctgg aatattacac tgaatttagat gcagttgtgc tacatggtgt gaaggacaag
900
ccagtgcctt ctctcaagac ttcaatttatt gacatgaatg atatagaaga tgatgcctat
960
gcagaaaaagg atgggtgtgg aatggacagt cttaacaaaa agtttagcag tgctgtcetc
1020
ggggaaaggc caaataatgg gtattttgat aaactacattt atgagcttat tcagctgatt
1080
ctgaatcatc ttacactacc agacctgtgt agattagcac agacttgcaa actactgagc
1140
cagcattgct gtgatcctct gcaatacatc cacctcaatc tgcaaccata ctggcaaaa
1200
ctagatgaca cttctctgga atttctacag tctcgctgca ctcttgccttca gtggcttaat
1260
ttatcttggc ctggcaatag aggcttcatc tctgttgcag gattttagcag gtttctgaag
1320
gtttgtggat ccgaatttagt acgccttgaa ttgtcttgca gccactttct taatgaaact
1380
tgcttagaag ttatcttga gatgtgttcca aatctacagg ccttaaatct ctccctctgt
1440
gataagctac cacctcaagc ttcaaccac attgccaagt tatgcagcct taaacgactt
1500
gttctctatc gaacaaaaagt agagcaaaca gcactgctca gcattttgaa cttctgttca
1560
gagcttcage acctcagttt aggcaattgtgt gtcattgttgc aagactatga tgtgatagct
1620
agcatgatag gagccaagtg taaaaaaactc cggaccctgg atctgtggag atgtaagaat
1680
attactgaga atggaatagc agaactggct tctgggtgtc cactactgga ggagcttgac
1740
cttggctggc gcccaactct gcagagcagc accgggtgct tcaccagact ggcacaccag
1800
ctcccaaaact tgcaaaaaact ctttcttaca gctaataatgat ctgtgtgtga cacagacatt
1860
gatgaattgg catgtatattc taccaggta cagcagctgg acatattagg aacaagaatg
1920
gtaagtcggc catcctttaag aaaactccctg gaatcttgta aagatcttcc tttacttgat
1980
gtgtccctct gttcgcatat tgataacaga gctgtgttag aactgaatgc aagctttcca
2040
aaagtgttca taaaaaaagag cttaactcag tgacttaata tatgttctgt attaaaatta
2100
atgtgccttgc ttggggttta attttggat tggttttggg ttttgtttt agttgtttta
2160

atggtaagaa ttaagacatt ttagatTTT aaagaaaaat atgaaattgt ccattaaatc
 2220
 aagtaaaaat gtgcacaaat gtttccataa aatactgcaa gcacttcctc tcaagaatat
 2280
 gagtgatat tattttacc ttatgttaat cagtgatatg cttagtcaa taatatgatt
 2340
 gataaaagaa taacatggaa tcacatgtaac ttatTTCAA aggaacactg agcaataaaag
 2400
 tatacggtca tttatgcaaa aaaaaaagtt aatttttac accttcatgt aaggatgtct
 2460
 tattaaggct gtgacctggc aagtgtttg tttggtatgt aaaaaatggt cagagctgt
 2520
 tggagaatga gacatgttt tccagctgtt tggttatttc tctggattaa ctgttcaact
 2580
 gaaaaatttt tagttttct agccaggtgt ggtggcacac acttgttagtc ctacgcacac
 2640
 gggaggtgga ggcaggagga ttacttgaga tgggattttg agactctagt gtacttatga
 2700
 ttgcacctgt gagcagccac tgcactccaa cctgggcaat atagcgagtc cctttctctt
 2760
 aaaaaaaaaattt gtagtgttt cactttctt ctgatatttt tgtctatttc actactggat
 2820
 aatgc当地 aaaaaattt ggtataatca agaataagag gtaaactact aaataaaaaaa
 2880
 agctttccaa ctg
 2893

<210> 6194
 <211> 621
 <212> PRT
 <213> Homo sapiens

<400> 6194
 Met Ser Pro Val Phe Pro Met Leu Thr Val Leu Thr Met Phe Tyr Tyr
 1 5 10 15
 Ile Cys Leu Arg Arg Arg Ala Arg Thr Ala Thr Arg Gly Glu Met Met
 20 25 30
 Asn Thr His Arg Ala Ile Glu Ser Asn Ser Gln Thr Ser Pro Leu Asn
 35 40 45
 Ala Glu Val Val Gln Tyr Ala Lys Glu Val Val Asp Phe Ser Ser His
 50 55 60
 Tyr Gly Ser Glu Asn Ser Met Ser Tyr Thr Met Trp Asn Leu Ala Gly
 65 70 75 80
 Val Pro Asn Val Phe Pro Ser Ser Gly Asp Phe Thr Gln Thr Ala Val
 85 90 95
 Phe Arg Thr Tyr Gly Thr Trp Trp Asp Gln Cys Pro Ser Ala Ser Leu
 100 105 110
 Pro Phe Lys Arg Thr Pro Pro Asn Phe Gln Ser Gln Asp Tyr Val Glu
 115 120 125
 Leu Thr Phe Glu Gln Gln Val Tyr Pro Thr Ala Val His Val Leu Glu
 130 135 140
 Thr Tyr His Pro Gly Ala Val Ile Arg Ile Leu Ala Cys Ser Ala Asn
 145 150 155 160
 Pro Tyr Ser Pro Asn Pro Pro Ala Glu Val Arg Trp Glu Ile Leu Trp

165	170	175
Ser Glu Arg Pro Thr Lys Val Asn Ala Ser Gln Ala Arg Gln Phe Lys		
180	185	190
Pro Cys Ile Lys Gln Ile Asn Phe Pro Thr Asn Leu Ile Arg Leu Glu		
195	200	205
Val Asn Ser Ser Leu Leu Glu Tyr Tyr Thr Glu Leu Asp Ala Val Val		
210	215	220
Leu His Gly Val Lys Asp Lys Pro Val Leu Ser Leu Lys Thr Ser Leu		
225	230	240
Ile Asp Met Asn Asp Ile Glu Asp Asp Ala Tyr Ala Glu Lys Asp Gly		
245	250	255
Cys Gly Met Asp Ser Leu Asn Lys Lys Phe Ser Ser Ala Val Leu Gly		
260	265	270
Glu Gly Pro Asn Asn Gly Tyr Phe Asp Lys Leu Pro Tyr Glu Leu Ile		
275	280	285
Gln Leu Ile Leu Asn His Leu Thr Leu Pro Asp Leu Cys Arg Leu Ala		
290	295	300
Gln Thr Cys Lys Leu Leu Ser Gln His Cys Cys Asp Pro Leu Gln Tyr		
305	310	320
Ile His Leu Asn Leu Gln Pro Tyr Trp Ala Lys Leu Asp Asp Thr Ser		
325	330	335
Leu Glu Phe Leu Gln Ser Arg Cys Thr Leu Val Gln Trp Leu Asn Leu		
340	345	350
Ser Trp Thr Gly Asn Arg Gly Phe Ile Ser Val Ala Gly Phe Ser Arg		
355	360	365
Phe Leu Lys Val Cys Gly Ser Glu Leu Val Arg Leu Glu Leu Ser Cys		
370	375	380
Ser His Phe Leu Asn Glu Thr Cys Leu Glu Val Ile Ser Glu Met Cys		
385	390	400
Pro Asn Leu Gln Ala Leu Asn Leu Ser Ser Cys Asp Lys Leu Pro Pro		
405	410	415
Gln Ala Phe Asn His Ile Ala Lys Leu Cys Ser Leu Lys Arg Leu Val		
420	425	430
Leu Tyr Arg Thr Lys Val Glu Gln Thr Ala Leu Leu Ser Ile Leu Asn		
435	440	445
Phe Cys Ser Glu Leu Gln His Leu Ser Leu Gly Ser Cys Val Met Ile		
450	455	460
Glu Asp Tyr Asp Val Ile Ala Ser Met Ile Gly Ala Lys Cys Lys Lys		
465	470	480
Leu Arg Thr Leu Asp Leu Trp Arg Cys Lys Asn Ile Thr Glu Asn Gly		
485	490	495
Ile Ala Glu Leu Ala Ser Gly Cys Pro Leu Leu Glu Glu Leu Asp Leu		
500	505	510
Gly Trp Cys Pro Thr Leu Gln Ser Ser Thr Gly Cys Phe Thr Arg Leu		
515	520	525
Ala His Gln Leu Pro Asn Leu Gln Lys Leu Phe Leu Thr Ala Asn Arg		
530	535	540
Ser Val Cys Asp Thr Asp Ile Asp Glu Leu Ala Cys Asn Cys Thr Arg		
545	550	560
Leu Gln Gln Leu Asp Ile Leu Gly Thr Arg Met Val Ser Pro Ala Ser		
565	570	575
Leu Arg Lys Leu Leu Glu Ser Cys Lys Asp Leu Ser Leu Leu Asp Val		
580	585	590
Ser Phe Cys Ser Gln Ile Asp Asn Arg Ala Val Leu Glu Leu Asn Ala		

595	600	605
Ser Phe Pro Lys Val Phe Ile Lys Lys Ser Phe Thr Gln		
610	615	620

<210> 6195
<211> 518
<212> DNA
<213> Homo sapiens

<400> 6195
ggatccaaag agatattttc tgagctgaac tatgtggtca cagaaggcca gctcccagca
60
gcacggact atgagggttc gccctgttct gttagcccc agctggttcc ctggggaaaa
120
gttccactt ctgctgtcaa gaaccacaag ggtcaagccc catccctaca aataccaagt
180
acatccaaat tcttcactgg cacagaaatg gtgttacatc cactggAAC aaacctgcAT
240
ccccacccca aggcatgtga caacagggac tgctaatgag ctttgtccgg gtaactcatt
300
cacgccatca tcttgctttt tccatagtca cttattaAGC acaaaactatG ccaaaaACTA
360
tgtccagcac cgcacaggat ggtaaaatgc cctgaggggc caccccccAC TGACTCCCGT
420
tgagcgaggT gggcagccct gcctgggagc tccagcctcc tgcacccacg tgcccccttg
480
ttatctctgc ctggatgcct cacaggcata tcacgcgt
518

<210> 6196
<211> 117
<212> PRT
<213> Homo sapiens

<400> 6196
Met Trp Ser Gln Lys Ala Ser Ser Gln Gln His Gly Thr Met Arg Val
1 5 10 15
Arg Pro Val Leu Cys Ser Pro Ser Trp Phe Pro Gly Glu Lys Phe Pro
20 25 30
Leu Leu Leu Ser Arg Thr Thr Arg Val Lys Pro His Pro Tyr Lys Tyr
35 40 45
Gln Val His Pro Asn Ser Ser Leu Ala Gln Lys Trp Cys Tyr Ile His
50 55 60
Trp Glu Gln Thr Cys Ile Pro Thr Pro Arg His Val Thr Thr Gly Thr
65 70 75 80
Ala Asn Glu Leu Cys Pro Gly Asn Ser Phe Thr Pro Ser Ser Cys Ser
85 90 95
Phe His Ser His Leu Leu Ser Thr Asn Tyr Ala Lys Asn Tyr Val Gln
100 105 110
His Arg Thr Gly Trp
115

<210> 6197
<211> 2841

<212> DNA

<213> Homo sapiens

<400> 6197

nagcattctt ccatctgttag atgtttcagc tgctgtacaa gggagtccca tttcaggtgt
60
ggggctgggc atggtcactc ctgctggatg tctggaaggt gaaaaccaag gacctaggga
120
aataccaggta acagccttcc cccgctcatc cagagcagga caaacaggcc aggtggatc
180
aggagccca gtcctccagct ggagggaaatg tcaaccctgc agtgggagca ggggcccata
240
acgcattccta ggcacagatg ctaatgcagg cactgcaggta aagctgggt tggatccctt
300
ccctggcttc agaaagaagc caacaaggag cgtttgcag aatgaaacctt ttgtttccag
360
aagcaactgct gactgttaagt gttgccgtt tggcggatgt agcattttgtt ccattctgag
420
gttggattgg tttctccctt tggccttgcc ctgcccata gaccataaag gagaacagca
480
agaagccccca agcaaacatc cacagatggc cctggacatc agccacattc tgaggaacat
540
gtcatgttctt gggagggcta aggcatcaag taaggcctgtt ggggctggag gatcacaggg
600
cagggtgggc aatccagagc catgggggtt tcccatgggaa attgggaggt cccaaggcag
660
agtcaaggtt tccacaggag gagtcagaga gtcaccaagg gtcctcctgg cccagggagc
720
agtcaacacc atggactgaa cacccactgg gtcaccaaccc ttggggccagg ctggggcatg
780
tggggccagg aggcagctca gagtgggagg cagagagaga agtgtgttca gagggcaccc
840
atatctggat gtaatgtggt cctgagactc tggctggaa gtgcctccag ggtttcatat
900
gtgttatgca gctacttcctt ctcccccaacc ttaccgtgca ggaatcccag tgaatatgtt
960
gccaccatct tggagctcag tggccatcata gtgtacagc accagcagat ctgcctgtgc
1020
acagacttcc tggacttacactt cactcctgag gggagatgtt tctgcaggc ctgcgacactg
1080
gtgcacaaact ttnnagacac catcatcctg gagcggcaact gcaccctcac tagccagggt
1140
gttgcgtact tcctcaatgc caaggccacg ttcaagattt tcgacttcag tgcgtcgat
1200
gtgcgtactt aggtgggctt ctccgggatt ttagttcagg aggtagaatg cagcttggaa
1260
tcaagtgtctt gatcaaataa cttgaacttg atctggagag ctctggggag ccatagaagt
1320
tgttgataa aggagggaca gtcgtatatg ttttagagat gactgtggaa ggctgcctgg
1380
aaggagtgaa caagagccag gagaccaggag agggagctt tggggcaggt ctggagatga
1440
caagggaggg atccctgctttt gatgaaaggt ctccaggaa tgtctcaggt tacactcagg
1500

tgtcctcaga gctagtgtgt tcaggggtct tgcctccagg atgaaaatga gaaggagttg
1560
tcagacaaga acatataaat gaaggctggc atcttcgtga gtgccaatcg ttgtcctggt
1620
gtggactact gtggaaatag gggctctcc atccagggac atggtgatg gaccctacat
1680
caactccattc tgcccttcct ttccctccca ttctgagggc ctcagtgcaa gggcgctgtc
1740
caacctctgg tgctgaagca gccgagagac ccaaggctgc caactcaggat atgacagcac
1800
agccagtggc ctctactgga tcctgtacaa cctcagaaga cacctagaca ctggagatgc
1860
tgccaccacg tggtgcagaaga gttctgaggg accgcaattc tgaagacatt gaatgctgt
1920
tcctgctccc tccatggacc tgcacagaat tgtcccatgt ttctgtttgt ttggcacca
1980
ctgaggaagg aagcatgaag gacgcagagg tcagggcatt ctattgcct cctgctgt
2040
ggtcttaat cctgagatgg cttcagggc tggccttct ccatggcccc ctccacatat
2100
ctcagccatt ttgcaaacc tggtcagaat gaaacattcc ttgggaactc gggccatgag
2160
aagcatcctt cctgaccacc tgactgcgga aacatccta tcgcacccctc ccgggcgaag
2220
gcccaacagc ctgactgcag gaacatcctt gccatatcct gccgggcagc aagctctacc
2280
gcccgaccc ctccctccca gtcccatgat cgccccagcc tgtgagcggc agttggtgat
2340
ggcactaagc tgatttcctc ctctgcaggg ttttgcgt aataaagggtg ttgctgttga
2400
agccgtcaac tgtctttcta tgtctttctt taacccttgc cttgccttca aaatctaaca
2460
atagctctac ctctccatTT taccaaggag gatatgagac tcaaggagag caagagactt
2520
acccagaatt acacagccag tgagtcacag aacttgaact tgagctcagt tcagctgaat
2580
ccagaactca tgtcttcctg agagtccagg gaaggaaagg tggaaactgca gccagtgggt
2640
cccacaggct tgtccttagga gaccacatgc agactcctgg gaattgtgtc ctctggca
2700
caaaaagaaga actgttcacc tgtgctgcat cagctaagtg tccccattgt cccaaattgt
2760
tatatttttt caaagttca ttttagtaac tagatttctc acagctcagt gttgaaaaca
2820
aagcacagag gcatatagaa a
2841

<210> 6198
<211> 124
<212> PRT
<213> Homo sapiens

<400> 6198
Met Gly Ala Ser His Gly Asn Trp Glu Val Pro Arg Gln Ser Gln Arg

1	5	10	15
Phe	His	Arg	Arg
Arg	Ser	Gln	Arg
Ser	Gln	Arg	Val
20	25	30	
Thr	Lys	Gly	Ser
Ser	Ser	Gly	Pro
Gly	His	Leu	Gly
35	40	45	
Asn	Thr	His	Trp
Pro	Trp	Gly	Ala
Gly	Met	Trp	Ala
50	55	60	
Trp	Gly	Gly	Ala
Arg	Glu	Gln	Ala
Cys	Val	Arg	Pro
65	70	75	80
Leu	Arg	Ala	Ile
Leu	Trp	Ser	Ser
85	90	95	
Trp	Leu	Arg	Val
Ser	Tyr	Val	Ser
Tyr	Phe	Tyr	Leu
100	105	110	
Leu	Ser	Pro	Pro
115	120		
Val	Ala	Thr	Ile
Ala	Leu	Leu	Glu
Thr	Ile	Glu	Leu
115	120		
Val	Leu	Ser	Ala
Leu	Ile	Ile	Val

<210> 6199

<211> 1777

<212> DNA

<213> Homo sapiens

<400> 6199

ctgcctttcc cagcagtatt agtgtccccc aggcaggggaa ccttttccac attacatcac
 60
 tgccccatcc caccttacaa cactctggcc cctctgcttg gtcccccttt tccccaggca
 120
 ggaggcaatc ccaggggcct gcctgataga ggcatttcct gtccctgtct ctcctgcat
 180
 ctcccttatac ctgcaactgcc accctctatt cccattctg tggactt tgaaggcccc
 240
 aagcccgacc aaagcaactga gttcccccatt aagacacaccc cacaccctcc ccacaagcaa
 300
 agcacaatt ttgggtcca ttagcatgg gccacgtagg aggctctga cttgccaggg
 360
 gccccagcctc agcataaccca ccgaggcagc tgccagcctg ggctgagggt gggcatgagg
 420
 caggagtcag cacttgacc tagggatgtg aggtttctg tgcccaagt ttgtggaaag
 480
 gtgggcacta ctgctggcc cacagacaca gccagctggc aaaagggagg tctagcccag
 540
 cagagagatg aggacatttt gcttcctt catgcccaca gcatgagctg agttctgt
 600
 ttgctggaaa taaaataaac ttggtatgaa ttgtgccaag gcctccccag ttgtcatcct
 660
 gcctcttggtt gcctccctg tccttgcccc ccacccacca cccatgcccc tgttccctta
 720
 cagatttga tattgttcta atgtgtataa gaaccagccg agtccccctt tattcagaagg
 780
 gtctgaaaag cagcagcaca gagtaggtga acacaggcct gcaagtgcga ccacctcaga
 840
 cccagtagt gtgcccacag tggacacact cacacccca acacacccac ggcgcaggcat
 900
 gtgtacacgc atgtacacac gcatgcatgc acagccagat ggccactcag cacagatgt
 960

gcagagggaa tggtctgatc ctgctaaaag ccattaagga gaaacgaatt tcccagtgc
 1020
 cgggctgcaa gagagccta tagggccct gttcctggg catgcgttc ctctgccagc
 1080
 caacccccac ttgccaagt cactggtgca ataactttc tgcccttc agaggagaga
 1140
 aattggaaat tgtgttaggt ggggtgggc agctctgctg agccaagcag acacggatgt
 1200
 cccctttct gggaggaggg tagtgctccc aggctcagg agtccagaca gagaccccca
 1260
 aaggctgact gccaacagaa accctctcct agtgaggggc aggtgggtgt gccnnncagg
 1320
 tccccacacc cacagggagg ctacacac tgcccagtac cggggatgcc aggaggcagg
 1380
 cccctctgct gctgccactg ctgccaacac tgcccagctt gtgaggccag gaggagcccc
 1440
 tgtcccaactc ggtgctgctg ctcttctgac ccctgctgtg aggaatggga ttcttggtcg
 1500
 aaaaaattgg tttcccttt ttgtataaat gaaaagaatc caggagaagc tgccaccctc
 1560
 ccctcccagc gtgatgcgct accttgcctc ggcttgcgtt cgcccttcc gccttggtc
 1620
 cagggacagc ccagcagatc ctccctggttc tgacctgggg ggtgtttgca tcacccctt
 1680
 ttactgtat taaaaaaaaa tgatgggttg aaaatgtact gaggattaaa aatgtacttt
 1740
 tttataaaata aagtgtttaa aacaaaaaaaa aaaaaaaaa
 1777

<210> 6200
 <211> 164
 <212> PRT
 <213> Homo sapiens

<400> 6200
 Val Gly Val Gly Ser Ser Ala Glu Pro Ser Arg His Gly Cys Pro Leu
 1 5 10 15
 Phe Trp Glu Glu Gly Ser Ala Pro Arg Pro Gln Glu Ser Arg Gln Arg
 20 25 30
 Pro Pro Lys Pro Asp Cys Gln Gln Lys Pro Ser Pro Ser Glu Gly Gln
 35 40 45
 Val Gly Val Pro Xaa Arg Ser Pro His Pro Gln Gly Gly Phe Thr His
 50 55 60
 Cys Pro Val Pro Gly Met Pro Gly Gly Arg Pro Leu Cys Cys Cys His
 65 70 75 80
 Cys Cys Gln His Cys Pro Ala Cys Glu Ala Arg Arg Ser Pro Cys Pro
 85 90 95
 Thr Arg Cys Cys Cys Ser Ser Asp Pro Cys Cys Glu Glu Trp Asp Ser
 100 105 110
 Trp Ser Lys Lys Leu Val Phe Leu Phe Cys Ile Asn Glu Lys Asn Pro
 115 120 125
 Gly Glu Ala Ala Thr Leu Pro Ser Gln Arg Asp Ala Leu Pro Cys Phe
 130 135 140
 Gly Val Leu Ser Pro Phe Pro Pro Leu Val Gln Gly Gln Pro Ser Arg

145
Ser Ser Trp Phe

150

155

160

<210> 6201
<211> 604
<212> DNA
<213> *Homo sapiens*

<400> 6201
acgcgtggc atgtcacgt gtgtgcctgt gcatgcgtga atatgcgtgt gtgtgcgtgc
60
tgtgctgagg acagcgtgag tttcacaga agcaggtaaa aagttccaca ggaacagaga
120
ccaggacaag accagccctg atgggagaag ccagaggacc cagaggaact tccaggaggc
180
ccttagctcc ctcagacaga atgcgggatc gcaatgccc gcaaaggcca attcaaggac
240
agtggacgct ggggagagga gcagagtggg cagctctcag gagggcagga ctgcgaggct
300
360
gcagggagga gttcggtggg aaggcacgc ctcagagcct aagctgcgcc tcctggaaa
420
ggggtatgac tggcaggcac acaaatgtct ctcaaggaag gtgggcctgg ggccacagag
480
ctccccagagg agggagtgga gagggagagc ccgcagagga gagaccaggc agggctggcg
540
atcacgcagg tgcacagggt gaacgtcagg actgaaacgg aagacaatgt ccccatgcaa
600
gactggctga aacgaactca cacagaattt ttaagaggct cctgtgttgg gtgaaaaccg
660
gccc
694

<210> 6202
<211> 124
<212> PRT
<213> *Homo sapiens*

```

<400> 6202
Met Gly Glu Ala Arg Gly Pro Arg Gly Thr Ser Arg Arg Pro Leu Ala
      1           5           10          15
Pro Ser Asp Arg Met Arg Asp Arg Asn Ala Gln Gln Arg Ala Ile Gln
      20          25          30
Gly Gln Trp Thr Leu Gly Arg Gly Ala Glu Trp Ala Ala Leu Arg Arg
      35          40          45
Ala Gly Leu Arg Gly Cys Arg Glu Glu Phe Gly Gly Lys Gly Gln Pro
      50          55          60
Gln Ser Leu Ser Cys Ala Ser Trp Glu Arg Gly Met Thr Gly Arg His
      65          70          75          80
Thr Asn Val Ser Gln Gly Arg Trp Ala Trp Gly His Arg Ala Pro Arg
      85          90          95
Gly Gly Ser Gly Glu Gly Glu Pro Ala Glu Glu Arg Pro Gly Arg Ala
      100         105         110
Gly Asp His Ala Gly Ala Gln Gly Glu Arg Gln Asp

```

115

120

<210> 6203
<211> 3462
<212> DNA
<213> Homo sapiens

<400> 6203
nnaccgttgc ggccgcaggg gtctgggcag ggctggcag tgctgccgga gcaaaagcgg
60 tagcgggagc cccggccggag ctgggtctgg agacgccgtg gcagcctgaa cggagtgtgc
120 gacggattgg gaggtttgtc tacagatTTT gagcgttcga agttgacccc tgactaagta
180 tactttgtcgt ctccctcagc ctttgaaaaa atgtctgtca catatgtga ttccgttgaa
240 gtagaaagtgt ccagcgacag cttctggag gtcgggaact acaagcggac tgtgaagcgg
300 atcgacgatg gccaccgcct gtgcagcgtac ctcataact gcctgcatga gcggggcgcgc
360 atcgagaagg cgtatgcgca gcagctcact gagtgggccc ggcgcgtggag gcagctcggt
420 gagaaggc cccagttacgg gaccgtggag aaggcctgga tggccttcat gtccgaggca
480 gagagggtga gcgagctgca cctcgaggtg aaggcctcac tgatgaacga tgacttcgag
540 aagatcaaga actggcagaa ggaagccttt cacaaggcaga tgatggcgg cttcaaggag
600 accaaggaag ctgaggacgg ctttcggaag gcacagaagc cctggccaa gaagctgaaa
660 gaggtagaag cagcaaagaa agccccaccat gcagcgtgca aagaggagaa gctggctatc
720 tcacgagaag ccaacagcaa ggcagaccca tccctcaacc ctgaacagct caagaaattg
780 caagacaaaa tagaaaagtg caagcaagat gttcttaaga ccaaagagaa gtatgagaag
840 tccctgaagg aactcgacca gggcacacccc cagttacatgg agaacatgga gcaggtgttt
900 gagcagtgcc agcagttcga ggagaaacgc cttcgcttct tccggaggt tctgctggag
960 gttcagaagc accttagaccc tccaaatgtg gctggctaca aagccatTTA ccatgacctg
1020 gagcagagca tcagagcagc tgatgcagtg gaggacctga ggtggttccg agccaatcac
1080 gggccggca tggccatgaa ctggccgcag tttgaggagt ggtccgcaga cctgaatcga
1140 accctcagcc ggagagagaa gaagaaggcc actgacggcg tcaccctgac gggcatcaac
1200 cagacaggcg accagtctct gccgagtaag cccagcagca cccttaatgt cccgagcaac
1260 cccgcccagt ctgcgcagtc acagtccagc tacaacccct tcgaggatga ggacgacacg
1320 ggcagcaccg tcagtgagaa ggacgacact aaggccaaaa atgtgagcag ctacgagaag
1380

acccagagct atcccaccga ctggtcagac gatgagtcta acaacccctt ctcctccacg
1440
gatgccaatg gggactcgaa tccattcgac gacgacgcca cctcggggac ggaagtgcga
1500
gtccggggcc tcgtatgacta tgaggggcag gagcatgatg agctgagctt caaggctggg
1560
gatgagctga ccaagatgga ggacgaggat gagcagggt ggtgcaaggg acgcttggac
1620
aacgggcaag ttggcctata cccggcaaata tatgtggagg cgatccagtg atgagtcggg
1680
gacaggccag cggggggacg gaggcggcgg gcccaggagc ctcagccagc cacgtggca
1740
tccactcctt ttccctgcaag agatgatggt tccattgctc ttggcttcat ggtttccctg
1800
gaaggcagat gagctggtca ttccgcctgg gactcggcac ctttcccgagt gcagctggag
1860
ggatctgagc gcaggaagac gcagaacaac agaaatagcc gccccccccccc gcccactgtg
1920
cctgttggcc tatcatagat ctctatgttc ttgactttgt ctctccttgc cgagtcaatg
1980
gtgggttaca ctgatcttgt tccactgatt actctctctg acgagtcac cacctgcaac
2040
ttaaatgaac aagcttacat cccatttga gtgaagattt tgaggtttt aattaaagg
2100
ctgtgtacag ttatactttt ttatacacct gttcatttct acttaaatta tggcacagat
2160
tgatgcgcac cagtcttgag gaaacgatct ccctattccc ttaccctgtt actcagccac
2220
gccgtgtgta ggcttagcct caggtggcag atgtttgagg aaaggaatta tgccaggaag
2280
gtgggaccgg gttatggtcg ggtttctatt gggaatgctc tttgtgttt tgggcacatctg
2340
aatggaaagct ttacatagaa ccttaggtag aactccccca aatcgccata tttaaaaatt
2400
attttcactc tattcttgct taaaactgta ctctttgca aattaacaat tttatcactg
2460
attcagagtt aaaaagaaga ctaactttc aagcaaatgc atctgtaaag atgctttaga
2520
ttagactgtc atgtctcagt gtctatctgt atatattatt tgatattcag agaatctaaa
2580
gcactcgtct actgttttaa tgagatttaa cagctttaa cagtgagttt cgtttggaaa
2640
ctgcttgaag tctgtggcat tcaggcacac atctggctgg ccggctgggt ctcccccgg
2700
gctcagtgccc cctggggcct ctctgacgtg gtgcctgctg gagggaggt cgtcgacc
2760
agctgactgc tggtccggct tctgaccggc ctttgcctg gctccgtagc agaacactgt
2820
aaaagtgcggc gcgtctttgc agtagttgca gatttcagtc gtcgtgttac ttgtgcacaa
2880
acagaagctg ggtcttaccc gcagcacgag tgctctgggc tgcccgagggt cgcccccggag
2940
caggtgctgc agccagagtt acgcgggggc cacgcggggcc ggcgggggtg gggggAACGT
3000

gggggAACCT gtgtttcACG tgactcAGCA gtgcCcCGCCG ccgtcaccAG ctatgcATTc
 3060
 actccgTTTC cAGTgAGCAG atgtcttGCT tggAAAGtGG acctgtGTCT gtgtctgtCC
 3120
 tgagaACTTA ccAGCAGAAA tcctcattTC tGTgCTACGG atttacAAA aattgtcaAG
 3180
 tcttttCAG ttAAACAGtt ccttACATG tGTAGTATTt gaggAAAAAA atcaataAAAC
 3240
 agttgatCTC gtgcataTGG aagtCCCTTC gCCatcatCT gtcttcATGC ccACTTCaCT
 3300
 tggcgGGGGt ggcctCCCTG gggcttACTA gctttggAGC tgggcaAGat ccagggcaca
 3360
 ggACCCtGC ccaaAAGGCC acggcccACT gcccctGCca aactggaggt tgggatttG
 3420
 aggCACCTGA gcccCTtGGG gttccCTtCT ccccgagACC tG
 3462

<210> 6204
 <211> 486
 <212> PRT
 <213> Homo sapiens

<400> 6204
 Met Ser Val Thr Tyr Asp Asp Ser Val Gly Val Val Glu Val Ser Ser Asp
 1 5 10 15
 Ser Phe Trp Glu Val Gly Asn Tyr Lys Arg Thr Val Lys Arg Ile Asp
 20 25 30
 Asp Gly His Arg Leu Cys Ser Asp Leu Met Asn Cys Leu His Glu Arg
 35 40 45
 Ala Arg Ile Glu Lys Ala Tyr Ala Gln Gln Leu Thr Glu Trp Ala Arg
 50 55 60
 Arg Trp Arg Gln Leu Val Glu Lys Gly Pro Gln Tyr Gly Thr Val Glu
 65 70 75 80
 Lys Ala Trp Met Ala Phe Met Ser Glu Ala Glu Arg Val Ser Glu Leu
 85 90 95
 His Leu Glu Val Lys Ala Ser Leu Met Asn Asp Asp Phe Glu Lys Ile
 100 105 110
 Lys Asn Trp Gln Lys Glu Ala Phe His Lys Gln Met Met Gly Gly Phe
 115 120 125
 Lys Glu Thr Lys Glu Ala Glu Asp Gly Phe Arg Lys Ala Gln Lys Pro
 130 135 140
 Trp Ala Lys Lys Leu Lys Glu Val Glu Ala Ala Lys Lys Ala His His
 145 150 155 160
 Ala Ala Cys Lys Glu Glu Lys Leu Ala Ile Ser Arg Glu Ala Asn Ser
 165 170 175
 Lys Ala Asp Pro Ser Leu Asn Pro Glu Gln Leu Lys Lys Leu Gln Asp
 180 185 190
 Lys Ile Glu Lys Cys Lys Gln Asp Val Leu Lys Thr Lys Glu Lys Tyr
 195 200 205
 Glu Lys Ser Leu Lys Glu Leu Asp Gln Gly Thr Pro Gln Tyr Met Glu
 210 215 220
 Asn Met Glu Gln Val Phe Glu Gln Cys Gln Gln Phe Glu Glu Lys Arg
 225 230 235 240
 Leu Arg Phe Phe Arg Glu Val Leu Leu Glu Val Gln Lys His Leu Asp

245	250	255
Leu Ser Asn Val Ala Gly Tyr Lys Ala Ile Tyr His Asp Leu Glu Gln		
260	265	270
Ser Ile Arg Ala Ala Asp Ala Val Glu Asp Leu Arg Trp Phe Arg Ala		
275	280	285
Asn His Gly Pro Gly Met Ala Met Asn Trp Pro Gln Phe Glu Glu Trp		
290	295	300
Ser Ala Asp Leu Asn Arg Thr Leu Ser Arg Arg Glu Lys Lys Lys Ala		
305	310	315
Thr Asp Gly Val Thr Leu Thr Gly Ile Asn Gln Thr Gly Asp Gln Ser		
325	330	335
Leu Pro Ser Lys Pro Ser Ser Thr Leu Asn Val Pro Ser Asn Pro Ala		
340	345	350
Gln Ser Ala Gln Ser Gln Ser Ser Tyr Asn Pro Phe Glu Asp Glu Asp		
355	360	365
Asp Thr Gly Ser Thr Val Ser Glu Lys Asp Asp Thr Lys Ala Lys Asn		
370	375	380
Val Ser Ser Tyr Glu Lys Thr Gln Ser Tyr Pro Thr Asp Trp Ser Asp		
385	390	395
Asp Glu Ser Asn Asn Pro Phe Ser Ser Thr Asp Ala Asn Gly Asp Ser		
405	410	415
Asn Pro Phe Asp Asp Asp Ala Thr Ser Gly Thr Glu Val Arg Val Arg		
420	425	430
Ala Leu Tyr Asp Tyr Glu Gly Gln Glu His Asp Glu Leu Ser Phe Lys		
435	440	445
Ala Gly Asp Glu Leu Thr Lys Met Glu Asp Glu Asp Glu Gln Gly Trp		
450	455	460
Cys Lys Gly Arg Leu Asp Asn Gly Gln Val Gly Leu Tyr Pro Ala Asn		
465	470	475
Tyr Val Glu Ala Ile Gln		
485		

<210> 6205

<211> 926

<212> DNA

<213> Homo sapiens

<400> 6205

```

nngcgcctcc canagagaat aggccccagc ttcaatggag gctgtggaga gatggagaag
60
tggggtaag attttgaga atctcgaaaa agagcaagg aaggaaagga gtttgccgac
120
agccagaagt tgctgttcat ggaaacttcg gccaaactga accaccaggt gtcggaggtg
180
ttcaatacag tggcccaaga gctactgcag agaagcgacg aggagggcca ggctctacng
240
ggggaaagaca cccccctgcct gggccatggc cagctctagg tggattctga ttcactgtca
300
atgctgggtt gctcccggc cctagatgtt cctggaagtt ggcccccttt atgaaaacca
360
cttccccacag ccagtggaa ctgccagagg aagatctggc gtcacatggc tcccaggaaa
420
gtgctgtgcc ctatccccac tgataccatc tgattccccg atgcctgtgc ctgttccacc
480

```

tggacggtgg cccccctcago ctggcagcct ctggacagag aggaaggaag gattggaaaa
540
gtccccgcag cacagcgacg gtgggaagat gccttacgtc tcatcttgcat gggggcactg
600
gcctggagcc tggcccccacc tgcttctggg gggttgggg a gcaggccaga tggaggtgg
660
ggtgccagga agaaatggag cgatgactga ctgtgggtg ggcccaggat ttccgcacat
720
tggtaagtt gccctggg a agggcagctg gggcagtgg cgccagttcc cttccatgg
780
ctcccgctg gcaatgtggt gaagctgagt ttctgtccaa tgagcaggaa gattctgaga
840
catttcgcct gagatataag ttgtactgcg tatgcagttt ttccctccaaa aattaaattg
900
cttttgacaa tctgaaaaaaaaaaaa
926

<210> 6206
<211> 92
<212> PRT
<213> Homo sapiens

<400> 6206
Xaa Arg Leu Pro Xaa Arg Ile Gly Pro Ser Phe Asn Gly Gly Cys Gly
1 5 10 15
Glu Met Glu Lys Trp Gly Glu Asp Phe Gly Glu Ser Arg Gly Arg Ala
20 25 30
Arg Glu Gly Lys Glu Phe Ala Asp Ser Gln Lys Leu Leu Phe Met Glu
35 40 45
Thr Ser Ala Lys Leu Asn His Gln Val Ser Glu Val Phe Asn Thr Val
50 55 60
Ala Gln Glu Leu Leu Gln Arg Ser Asp Glu Glu Gly Gln Ala Leu Xaa
65 70 75 80
Gly Glu Asp Thr Pro Cys Leu Gly His Gly Gln Leu
85 90

<210> 6207
<211> 1384
<212> DNA
<213> Homo sapiens

<400> 6207
nntgatcaga ggtcctgggt gtctggggaa gctgggctgt gcgtgtatgc gtctaccatg
60
tgggggtgcc tgtgagtgtg ctggggcgtc tgcagtgaag gcctcctgag accactccac
120
ggaaacacccg ggaatccctg cagctgagcc tgcgtctcac gggaccggaa agctggagag
180
agcccccaacc ctgccccctg gggccgagct ccctgctcct gcagcagtcc cgtccccac
240
actctgagtc tgccttatcc acagctgctg ggccctctctg tggccaccat ggtgactctt
300
acctaattcg gggcccaactt tgctgtcatac cgccgagcgt ccctggagaa gaacccgtac
360

caggctgtgc accaatgggc cttctctgctg ggggtttagcc tgggtgggcct cctgactctg
 420
 ggagccgtgc tgagcgctgc agccaccgtg agggaggccc agggcctcat ggcaggggc
 480
 ttccctgtgc tctccctggc gttctgygca caggtgcagg tggtgttctg gagactccac
 540
 agccccaccc aggtggagga cgccatgctg gacacctacg acctggata tgagcaggcg
 600
 atgaaaaggta cgtccccacgt ccggcggcag gagctggcgg ccatccagga cgtgtttctg
 660
 tgctgtggga agaagtctcc tttcagccgt ctggggagca cagaggctga cctgtgtcag
 720
 ggagagggagg cggcgagaga ggactgcctt cagggcatcc ggagcttcct gaggacacac
 780
 cagcaggtcg cctccagcct gaccagcatc gcctggccc tcacggtgctc cgccttgctc
 840
 ttcagctcct tccctgtggtt tgccatccgc tgtggctgca gcttggaccg caaggggcaaa
 900
 tacaccctga ccccacgagc atgtggccgc cagccccagg agcccagcct cttgagatgc
 960
 tcccagggtg gacccacaca ttgtctccac tccgaaggcag ttgctattgg tccaagagga
 1020
 tgctcgggta gtcttcggtg gctgcaggag agcgatgctg cgcctctgcc cctctctgc
 1080
 cacctggctg cccacagagc tctccagggc agaagtgcgc gtgggctcag tgggtgcct
 1140
 gagcggggtc tctcagactg acgtcaggcc ttgggtggct gcactctcac ctggaggctc
 1200
 cggggaaagca tctgcctcca ggaccattca ggctgttgac aagtcaactc ctcatggctg
 1260
 taggactgag gttcccaagt cttgtccct ggtccctgtgg tccctccacc ttcaaaccag
 1320
 caatggtgca ttgagcaaat tgtggtcaaa tatacatcac atcaaattta ccatttaaaa
 1380
 aaaa
 1384

<210> 6208
 <211> 290
 <212> PRT
 <213> Homo sapiens

<400> 6208
 Met Val Thr Leu Thr Tyr Phe Gly Ala His Phe Ala Val Ile Arg Arg
 1 5 10 15
 Ala Ser Leu Glu Lys Asn Pro Tyr Gln Ala Val His Gln Trp Ala Phe
 20 25 30
 Ser Ala Gly Leu Ser Leu Val Gly Leu Leu Thr Leu Gly Ala Val Leu
 35 40 45
 Ser Ala Ala Ala Thr Val Arg Glu Ala Gln Gly Leu Met Ala Gly Gly
 50 55 60
 Phe Leu Cys Phe Ser Leu Ala Phe Xaa Ala Gln Val Gln Val Val Phe
 65 70 75 80
 Trp Arg Leu His Ser Pro Thr Gln Val Glu Asp Ala Met Leu Asp Thr

85	90	95
Tyr Asp Leu Val Tyr Glu Gln Ala Met Lys Gly Thr Ser His Val Arg		
100	105	110
Arg Gln Glu Leu Ala Ala Ile Gln Asp Val Phe Leu Cys Cys Gly Lys		
115	120	125
Lys Ser Pro Phe Ser Arg Leu Gly Ser Thr Glu Ala Asp Leu Cys Gln		
130	135	140
Gly Glu Glu Ala Ala Arg Glu Asp Cys Leu Gln Gly Ile Arg Ser Phe		
145	150	155
Leu Arg Thr His Gln Gln Val Ala Ser Ser Leu Thr Ser Ile Gly Leu		
165	170	175
Ala Leu Thr Val Ser Ala Leu Leu Phe Ser Ser Phe Leu Trp Phe Ala		
180	185	190
Ile Arg Cys Gly Cys Ser Leu Asp Arg Lys Gly Lys Tyr Thr Leu Thr		
195	200	205
Pro Arg Ala Cys Gly Arg Gln Pro Gln Glu Pro Ser Leu Leu Arg Cys		
210	215	220
Ser Gln Gly Gly Pro Thr His Cys Leu His Ser Glu Ala Val Ala Ile		
225	230	235
Gly Pro Arg Gly Cys Ser Gly Ser Leu Arg Trp Leu Gln Glu Ser Asp		
245	250	255
Ala Ala Pro Leu Pro Leu Ser Cys His Leu Ala Ala His Arg Ala Leu		
260	265	270
Gln Gly Arg Ser Arg Gly Gly Leu Ser Gly Cys Pro Glu Arg Gly Leu		
275	280	285
Ser Asp		
290		

<210> 6209
<211> 2269
<212> DNA
<213> Homo sapiens

<400> 6209
ggcaggctgg gaattagcca gcaaagatgc cgatgaggtc atcaagcaga aggaatctc
60
acccacacca ggtggactta caaggctgtg tgcgcctgg gcagggtgga catgtccagg
120
gcggggaaac cctggatatt tcactctgaa gtggttctt gaaagaaaac tcaactgact
180
caggccatga gcatcttta cactgaagca agcatctcct cacaagtgcc tcctacaagt
240
caactagatc atattcaaca ttacaaaatg cagtgctact taaattttaa agcaactgagg
300
gaccaagaaa tgggctgatc aagtccctgg ccactcactg ttaagagcca ggatttacag
360
atcaatgact gttcctattt tccaagaaat aattttcttag caaagcatac acactttatt
420
aaatttcaca gccagcagcg ctttcagtcc acaacagatt tctcagagga aacatggata
480
ttttgcgtatgcagaaacag tgaggagtac aaagcaaagc tataaaatacc accaatgggt
540
ctgctatgtc catccgatat ttttgcctgg atctgaaata ctgcaagggc ttaaccattc
600

aaacaccgca tgacaacgaa cccagtgac tggtaaactc aggctgcagg agggtggctt
660
gtcagctggt gaagccactt ggcttggac tccatcggtc atctttacgc aagagcagag
720
atgaacggtg ggtcacggct atgacgtgaa ggagaaaagag aagacacact cacagaacag
780
gatggagagc ttcaataatt ttttaaaagc ttggaaccac cacctgctt cccaatctt
840
ggctggggtt ttgacttttc ttgatcatca atctgacttg aagccttta ccagttacaa
900
tacagacatg gccagatgac ctgcttgtt ggaaggctgt ggccatctt gtttctgaaa
960
cagtcttatac tcatctgtcc actgctgctc tggaaagggtc aggaccagca ctgcagacac
1020
tcggccatgc tggtagtgag cccagacata cgctgttgaat ctgaacaccc aacgctggcg
1080
ttccctgtcc agtctgaggg ctgcggctcc agcgcttgc cacacacacg cctgcctctc
1140
tctagttcctt ccactgcctg gcttcctcgc ttgcaaaacc cagcatgtga aatgaggaca
1200
cctccacgga gacccttccg agcagggagg tttcatcaca cctttcggtt ttgccaaggaa
1260
gtctatcgcc tcatccacaa catctgcttgc cgggagaaac agcaaatgtg tccctctgag
1320
ggaaggactg aggagggctt tggtagtcac agattgagac acatttctgc gaaaactgg
1380
attatgtttc tgcacaggaa aacaaagtgt taaaaatatt cccatcctcc ctccaactcc
1440
cttctgtcac acagtcacca gtgaacttga aaaaggtcca gaagtgaaca cttagggtgc
1500
atttaccttt ctccctgaaga tggaaagaca cacggatgtc tgcctaaaat atctgccgag
1560
aggtgagcag ctgtggcctg ggaaggcgct tgctcttccct ccacatcagc cagaaggcag
1620
atcacacctt cagagcaccc tacagaaccc agatggcgaa tcaaagtgc gaaaaagaac
1680
acccgcttcc tcattagtca ttttaggaaga taagatagca tggcacaggg agaacaacca
1740
tgttctgaat ggagactttt tcaggttccc aaacttggga cagttagtgc gacccacat
1800
cctgtggttt ctgcctgacc cttctaagcc agaggtgaga aaacaactcc cagagaccac
1860
gactctcacc ctggaggta cctgtttcccc tgcaagggtgt gctctctgac aacccttagg
1920
caggggtggg ctccagcttt tggaagcaac cctacctagc tggcccccca agcattaaga
1980
agcttccctg atggggccat gttttggctc ctttttaagc ctcagtcac aatgtacctt
2040
ctgagcttgc cttactattc agatgatattt ctctctgagt tgcaatactg ctcaatttag
2100
gtggctacct gtgttcattc aagctctgga agtgtggaa ggaacttaat cattgagttt
2160
ctgtgaagta ttttgcattc ctaaaatccc tgagagtgaa actgttgaat catgctcact
2220

ttcttcacat acatactctt ggactatggg gaccaagtct gttgaattc
2269

<210> 6210
<211> 165
<212> PRT
<213> Homo sapiens

<400> 6210
Met Gly Ile Phe Leu Thr Leu Cys Phe Pro Val Gln Lys His Asn Thr
1 5 10 15
Ser Phe Arg Arg Asn Val Ser Gln Ser Val Thr Thr Lys Ala Leu Leu
20 25 30
Ser Pro Ser Leu Arg Gly Thr His Leu Leu Phe Leu Pro Gln Ala Asp
35 40 45
Val Val Asp Glu Ala Ile Asp Ser Leu Ala Arg Thr Lys Gly Val Met
50 55 60
Lys Pro Pro Cys Ser Glu Gly Ser Pro Trp Arg Cys Pro His Phe Thr
65 70 75 80
Cys Trp Val Leu Gln Ala Arg Lys Pro Gly Ser Gly Gly Thr Arg Glu
85 90 95
Arg Gln Ala Cys Val Trp Thr Ser Ala Gly Ala Ala Leu Arg Leu
100 105 110
Ala Arg Glu Arg Gln Arg Trp Val Phe Arg Phe His Ala Tyr Val Trp
115 120 125
Ala His Ser Gln His Gly Arg Val Ser Ala Val Leu Val Leu Thr Leu
130 135 140
Pro Glu Gln Gln Trp Thr Asp Glu Ile Arg Leu Phe Gln Lys Gln Arg
145 150 155 160
Trp Pro Gln Pro Ser
165

<210> 6211
<211> 2163
<212> DNA
<213> Homo sapiens

<400> 6211
ngccgcggc ctcagccaa catggcgatg cacaacaagg cggcgccgcc gcagatcccg
60
gacaccggc gggagctggc ggagctcgta aaggggaagc aggagctggc gaaacattg
120
gcaaatttgg agcgacagat ctatgtttt gagggaaagct acctggaaga cactcagatg
180
tatggcaata ttattcgtgg ctggngatcg gtatctgacc aaccannaaa aaactccaat
240
agcaaaaatg atcgaaggaa ccggaagttt aaggaagctg agcggcttt cagtaaatcc
300
tcggttacct cagcagctgc agtaagtgc ttggcaggag ttcaggacca gtcattgaa
360
aagaggggagc caggaagtgg gacggaaagt gacacttctc cagacttcca caatcaggaa
420
aatgagccca gccaggagga ccctgaggat ctggatggat ctgtgcaggg agtggaaacct
480

cagaaggctg ctttttctac ttcctcaggg agtcaccaca gcagccataa aaagcgaaag
540
aataaaaacc ggcacagccc gtctggcatg tttgattatg actttgagat tgatctgaag
600
ttaaacaaaa aaccacgagc tgactattag aagacacatt agtgcagaag cttcaggct
660
gttagagccct gttcccttc tctgacctca caaagataaa catccttcac ctgagttcgt
720
ggccatccac ctctgctc ccagacccag tgctgtgac tttgagtagt ttgttctaaa
780
tgtggtgaca aacaagtcat ttctgtaaga cattgggtct tactttatgt gatttttagt
840
aacagaactg caggaagatc aagacaatgt tgtaatcccg gcaagttgct aactgtgcgt
900
ttctcccttc ttagaatgaa tgtctcccc aaaactggct ggcaccagct tcacatgtga
960
tacccttcaa gaaatgttct ctgggtttgt tttatgctga aagtagaaca caagtcacat
1020
ttcagatgga ggctgtaaat atctggcatt ttcttatatt gtttatgtt ttctgtttt
1080
tctctgttg ttttatctt attttcttg gggtttttt gtaatgcctt tgtacagctc
1140
atacttcct gctgacatat ctgatcatct cttcatgca gttgccaata ttcataactg
1200
aaaataatct gtttatcat aagtaaaatg ggaaacttgc ctctgtttt tgcaagggga
1260
ggttaagagt gtttagtaat tacctatctt aaatctttct gagttggtag tagattcatg
1320
ttcaaggaac aggaaaaatg gaaaaacata agtttaaate agttttttt aaataacttt
1380
ttattctttt gtataaataa aatttcacag gctcaaatt ctcatgctt acttttaaac
1440
ccgagattgt tttttcaact tatttattca tatcatgcct tatggaaatt tcttttctg
1500
tatttctct cttgctggt attcacctga ttaaatattt ctctaaaaat caccatggca
1560
tatggaaagt ctcaaaatta taccaaaagt gataacttat gtcgttctta agtggagtga
1620
aaggatagca tcagtgatag ccagtgtgc ccaccaggc tccctttctt ggagggcttg
1680
ttggggctga ggaatctgct agtaatcggt acctgcctct agtgctgtgg tgaacttgcg
1740
acagggtctg gctgcacatt ggaatcacct gagaagctt aaaatactca tgcctggatc
1800
ccatccctag agactgggt acagcctagt tattggaaat ttctttaaaa gagttcctgg
1860
gattctgata agaagccagg ttgagaacca ctacattaga agactgaatg gtttaattt
1920
catcctatgt tatgattggt ccaaggata agatttgggg tctaaccctt ctttcactc
1980
tagtttagtca tagtccttga cttatgccta tatctttgtt agaaatagta tgtttcattt
2040
gtgatagtagt tggtagggct gaatatggat ggcacatctact gtaaaacaag tctacccgt
2100

cagatgtgca aaagcttca ctcttgttct caaataaaact tttgtgggtt tttttaaaaa

2160

aaa

2163

<210> 6212

<211> 209

<212> PRT

<213> Homo sapiens

<400> 6212

Xaa Arg Pro Pro Gln Pro Asn Met Ala Met His Asn Lys Ala Ala Pro

1 5 10 15

Pro Gln Ile Pro Asp Thr Arg Arg Glu Leu Ala Glu Leu Val Lys Gly
20 25 30

Lys Gln Glu Leu Ala Glu Thr Leu Ala Asn Leu Glu Arg Gln Ile Tyr
35 40 45

Ala Phe Glu Gly Ser Tyr Leu Glu Asp Thr Gln Met Tyr Gly Asn Ile
50 55 60

Ile Arg Gly Trp Xaa Ser Val Ser Asp Gln Pro Xaa Lys Asn Ser Asn
65 70 75 80

Ser Lys Asn Asp Arg Arg Asn Arg Lys Phe Lys Glu Ala Glu Arg Leu
85 90 95

Phe Ser Lys Ser Ser Val Thr Ser Ala Ala Val Ser Ala Leu Ala
100 105 110

Gly Val Gln Asp Gln Leu Ile Glu Lys Arg Glu Pro Gly Ser Gly Thr
115 120 125

Glu Ser Asp Thr Ser Pro Asp Phe His Asn Gln Glu Asn Glu Pro Ser
130 135 140

Gln Glu Asp Pro Glu Asp Leu Asp Gly Ser Val Gln Gly Val Lys Pro
145 150 155 160

Gln Lys Ala Ala Ser Ser Thr Ser Ser Gly Ser His His Ser Ser His
165 170 175

Lys Lys Arg Lys Asn Lys Asn Arg His Ser Pro Ser Gly Met Phe Asp
180 185 190

Tyr Asp Phe Glu Ile Asp Leu Lys Leu Asn Lys Lys Pro Arg Ala Asp
195 200 205

Tyr

<210> 6213

<211> 1160

<212> DNA

<213> Homo sapiens

<400> 6213

acgcgtgaag ggaaggggaa agaggtcacc aagggcagag gtgtccaggc cggagccagg

60

ggccccactg ttgggatgct ggctgcagtg gggcgccccca agcccaggtc ccctctgtct

120

tctcttcgaa ctttgcagct gtacttgtt tgctcctcta cccgcaggag ctgacatgga

180

cccaaattcct cgggcccggcc tggagcgcaca gcagctccgc cttcgggagc ggcaaaaatt

240

cttcgaggac atttacagc cagagacaga gtttgttt cctctgtccc atctgcatct
300
cgagtcgcag agacccccc taggtatctcatccatg gaagtgaatg tggacacact
360
ggagcaagta gaacttattg accttggga cccggatgca gcagatgtgt tcttgccttg
420
cgaagatcct ccaccaaccc cccagtcgtc tgggtggac aaccatttgg aggagctgag
480
cctgccnngt gcctacatca gacaggacca catctaggac ctccctctcc tcctctcccg
540
actcctccac caacctgcat agcccaaatc caagtgtga tggagcagat acgccttgg
600
cacagtcgga tgaagaggag gaaaggggtg atggaggggc agagcctgga gcctgcagct
660
agcagtggc ccctgcctac agactgacca cgctggctat tctccacatg agaccacagg
720
cccagccaga gcctgtcggg agaagaccag actcttact tgcaagtaggc accagaggtg
780
ggaaggatgg tggattgt taccttcta agaattaacc ctctcctgct ttactgctaa
840
tttttcctg ctgcaaccct cccaccagtt tttggcttac tcctgagata tgatttgcaa
900
atgaggagag agaagatgag gttggacaag atgccactgc ttttcttagc actcttccct
960
ccccctaaacc atcccgtagt cttctaatac agtctctcag acaagtgtct ctagatggat
1020
gtgaactcct taactcatca agtaaggtgg tactcaagcc atgctgcctc cttacatcct
1080
ttttggaaaca gagcacggta taaaataata actaataata atatgccaac aaaaaaaaaaa
1140
aaaaaaaaaaaa aaaaaaaaaa
1160

<210> 6214
<211> 101
<212> PRT
<213> *Homo sapiens*

<400> 6214
 Pro Trp Gly Pro Gly Cys Ser Arg Cys Val Leu Ala Leu Arg Arg Ser
 1 5 10 15
 Ser Thr Asn Pro Pro Val Val Trp Gly Gly Gln Pro Phe Gly Gly Ala
 20 25 30
 Glu Pro Ala Xaa Cys Leu His Gln Thr Gly Pro His Leu Gly Pro Pro
 35 40 45
 Pro Pro Pro Pro Pro Thr Pro Pro Pro Thr Cys Ile Ala Gln Ile Gln
 50 55 60
 Val Met Met Glu Gln Ile Arg Pro Trp His Ser Arg Met Lys Arg Arg
 65 70 75 80
 Lys Gly Val Met Glu Gly Gln Ser Leu Glu Pro Ala Ala Ser Ser Gly
 85 90 95
 Pro Leu Pro Thr Asp
 100

<210> 6215
<211> 651
<212> DNA
<213> Homo sapiens

<400> 6215
ncagctccat aatccccctcc agaacattct gcaacagccc catgatcccc tctagaacat
60
tccacaatacg cctcacaggt cccctgtaga acattccacc acagccccat gatccccttg
120
ctcctcagag catgtggccg ccagccccag gagcccagcc tcttgagatg ctcccagggt
180
ggacccacac attgtctcca ctccgaagca gttgttattg gtccaaaggagg atgctcggt
240
agtcttcgggt ggctgcagga gagcgatgt gcgcctctgc ccctctcctg ccacctggct
300
gcccacagag ctctccaggg cagaagtcgc ggtgggctca gtgggtgcc tgagcggt
360
ctctcagact gacgtcaggg cttgggtggc tgcactctca cctggaggtc ccgggaaagc
420
atctgcctcc aggaccattc aggctgttga caagtcaact cctcatggct gtaggactga
480
ggttcccaag tccttgcctcc tggctctgtg gtccctccac cttcaaaccg gcaatgggtgc
540
attgagcaaa ttgtggtaa atatacatca catcaaattt accatcttaa ccattgttaa
600
gtgtatggtt tgtggcatta aatacattca cattgttgc caaccatcac c
651

<210> 6216
<211> 87
<212> PRT
<213> Homo sapiens

<400> 6216
Met Ile Pro Leu Leu Leu Arg Ala Cys Gly Arg Gln Pro Gln Glu Pro
1 5 10 15
Ser Leu Leu Arg Cys Ser Gln Gly Gly Pro Thr His Cys Leu His Ser
20 25 30
Glu Ala Val Ala Ile Gly Pro Arg Gly Cys Ser Gly Ser Leu Arg Trp
35 40 45
Leu Gln Glu Ser Asp Ala Ala Pro Leu Pro Leu Ser Cys His Leu Ala
50 55 60
Ala His Arg Ala Leu Gln Gly Arg Ser Arg Gly Gly Leu Ser Gly Cys
65 70 75 80
Pro Glu Arg Gly Leu Ser Asp
85

<210> 6217
<211> 2955
<212> DNA
<213> Homo sapiens

<400> 6217

ngcagcgggg aggcgggagc cgccggcgga gcccggcggc gagggcgtggg ggctgcgggg
60
ccggccatc cgtggggcg acttgagcgt tgagggcgcg cggggaggcg agccaccatg
120
ttcagccagc agcagcagca gcagctccag caacagcagc agcagctcca gcagttacag
180
cagcagcagc tccagcagca gcaattgcag cagcagcagt tactgcagct ccagcagctg
240
ctccagcagt cccaccaca ggccccgtt cccatggctg tcagccgggg gctccccccg
300
cagcagccac agcagccgct tctgaatctc cagggcacca actcagccctc ctcctcaac
360
ggctccatgc tgcagagagc tttgtttta cagcagttgc aaggactgga ccagttgca
420
atgccaccag ccacgtatga cactgccgt ctcaccatgc ccacagcaac actggtaac
480
ctccgaggct atggcatggc atccccaggc ctcgcagccc ccagcctcac acccccacaa
540
ctggccactc caaatggca acagttttt ccccaggcca ctcgcagtc cttgctggga
600
cctcctccctg ttggggtccc catgaacctt tcccaagttca acctttcagg acggaacccc
660
cagaaacagg cccggacctc ctcccttacc acccccaatc gaaaggattc ttcttctcag
720
acaatgcctg tggaaagacaa gtcagacccc ccagaggggt ctgaggaagc cgcagagccc
780
cgatggaca caccagaaga ccaagatttta ctgcctgcc cagaggacat cgccaaaggaa
840
aaacgcactc cagcacctga gcctgaggct tgtgaggcgt ccgagctgcc agcaaagaga
900
ttgaggagct cagaagagcc cacagagaag gaacctccag ggcagttaca ggtgaaggcc
960
cagccgcagg cccggatgac agtaccgaaa cagacacaga caccagacct gctgccttag
1020
gccctggaag cccaaagtgtt gccacgattc cagccacggg tcctgcaggt ccaggcccg
1080
gtgcagtcac agactcagcc gcggatacca tccacagaca cccaggtgca gccaaagctg
1140
cagaagcagg cgccaaacaca gacctctcca gagcacttag tgctgcaaca gaagcaggtag
1200
cagccacagc tgcagcagga ggcagagcca cagaagcagg tgcagccaca ggtacagcca
1260
cagggcacatt cacagggccc aaggcaggtg cagctgcagc aggaggcaga gccgctgaag
1320
caggtgcagc cacaggtgca gccccaggca cattcacagc ccccaaggca ggtgcagctg
1380
cagctgcaga agcaggtcca gacacagaca tatccacagg tccacacaca ggcacagcca
1440
agcgtccagc cacaggagca tcctccagcg caggtgtcag tacagccacc agagcagacc
1500
catgagcagc ctcacaccca gccgcaggtg tcgttgctgg ctccagagca aacaccagtt
1560
gtggttcatg tctgcgggct ggagatgcca cctgatgcag tagaagctgg tggaggcatg
1620

gaaaagacct tgccagagcc tggggcacc caagtcagca tggaaagagat tcagaatgag
1680
tcggcctgtg gcctagatgt gggagaatgt gaaaacagag cgagagagat gccaggggta
1740
tggggcgccg ggggctccc gaaggtcacc attctgcaga gcagtgcacag ccgggccttt
1800
agcaactgtac ccctgacacc tgtccccgc cccagtgact ccgtctcctt cacccctgcg
1860
gctaccagca ctccctctaa gcaggccctc cagttcttct gctacatctg caaggccagc
1920
tgctccagcc agcaggagtt ccaggaccac atgtcggagc ctcagcacca gcagcggcta
1980
ggggagatcc agcacatgag ccaagcctgc ctcctgtccc tgctgcccgt gccccgggac
2040
gtcctggaga cagaggatga ggagcctcca ccaaggcgct ggtgcaacac ctgccagctc
2100
tactacatgg gggacctgat ccaacaccgc aggacacagg accacaagat tgccaaacaa
2160
tccttgcac cttctgcac cgtttgcac cgctacttca aaaccctcg caagtttgt
2220
gagcacgtga agtcccaggg gcataaggac aaagccaagg agctgaagtc gcttgagaaa
2280
gaaattgctg gccaagatga ggaccacttc attacagtgg acgctgtggg ttgcttcgag
2340
ggtgatgaag aagaggaaga ggatgatgag gatgaagaag agatcgaggt tgaggaggaa
2400
ctctgcaagc aggtgaggtc cagagatata tccagagagg agtggaaaggg ctggagacc
2460
tacagccccca atactgcata tggtgtggac ttccctggcgc ccgtgatggg ctatatctgc
2520
cgcacatctgcc acaagttcta tcacagcaac tcagggcac agctctccca ctgcaagtcc
2580
ctggggccact ttgagaacct gcagaaatac aaggcgcca agaaccaggcc cccaccacc
2640
cgacacctgtga gccgcccgtg cgcaatcaac gcccggAACG ctttgacagc cctgttccacc
2700
tccagcggcc gcccaccctc ccagcccaac acccaggaca aaacaccagg caaggtgacg
2760
gctcgaccct cccagccccc actacctcg cgctcaaccc gcctcaaaac ctgatagagg
2820
gacctccctg tccctggcct gcctgggtcc agatctgcta atgctttta ggagtctgcc
2880
tggaaacttt gacatggttc atgtttttac taaaaatcca ataaaacaag gttagttggc
2940
aaaaaaaaaaaa
2955

<210> 6218
<211> 133
<212> PRT
<213> Homo sapiens

<400> 6218
Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr

1 5 10 15
Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met
20 25 30
Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly
35 40 45
Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln
50 55 60
Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser
65 70 75 80
Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr
85 90 95
Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro
100 105 110
Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser
115 120 125
Thr Arg Leu Lys Thr
130

<210> 6219
<211> 2495
<212> DNA
<213> Homo sapiens

<400> 6219
ttttttttt ttttttcgct gtggaggatc aggtttaatg gtcactatga gggtatcgta
60
catcgttcca agcccgccc ccgcggcagc cctcccttag ctggaaacac agccaggtgc
120
cctcagaccc ctggctctgc acaagggggg cctgccccct cgccccagnn ctatatacac
180
gacagcccat cctgctggcc gtggacaaaa gctggagct ccntgtgcc agtcaggagc
240
ccctacagtc caccagctgc gcggccgggt ccagggngcc cactgtggtg ccagcagatt
300
tctcaaaacc cagggcccag ccccagcnnt gggccctgc caagccccag gcctgtgtgc
360
tgggatggag cctccacact gaggctggta aaagctgaac tcaacagcag caatgagagt
420
gctgggtggg cttggggggga tggggagcag gccccaccca gagcctccctc tgaaggaggg
480
gacgctgcgc cttcccttcc tgctgcccag actgccccta ccgggtccgg cgccggctga
540
ggtctaaagta agcagggatg gggggtgca agaggagtgt aagtgaaagc acagacagtc
600
ggagactcgg ccagtgtaga cagacccaga gactcgccca gtgtagacag agccaggctg
660
ggcagcccg cgacgctggc cccacgcaca cgggccaccc tggtgctggt gatcgatacg
720
gcagggaggg ggtgggcagg gagggtcctg aacacatgtg ggctgctggg ctgctggcc
780
gggggtgccta cactgttaact agcagcatag tgcttaacta gttacaaga aatgctgctt
840
ccctttgaat tgggggggg gtgtagaaat tgcacttatt tctatgaacc ccatggaggg
900

atgcccacag ctgagcctcc aggcgaggca tggcaggtca gtgcctggcc gctgagcatc
960
cacgggccac agggcggtat cctcccgccccc cccagggact gcagcctctg cggccacggg
1020
tgcagcgagg accggAACCC acagggggaa cctgagcaac gtctgagggtg ccctgaagt
1080
gctccaggcg agaccggagc cacacagtcc cggggagcac gagggggcccc agccccaggt
1140
cccggtgcag agggagtggc ctgatggtga ctggggcggag gcctctgccc ctcacaggac
1200
gtcgtcaaag tccagcagct tcgagtgtcg gcggcttttc cacaggcgat acaaccggaa
1260
gtcAAAGTAC gtctcgatca tctgtttttt ttgggctgag agctccaggg gtgactcgaa
1320
ggtgacccta taaggagtca tgagggtcct gaggttctgg aacagcttct ctccattggg
1380
gttccccaga atgttagcago ccatgtatgt gatgacgttc ggctctgggt tcactttgt
1440
catcaggcggtt ctcagccgct tccagaagtg aatcatgtcc tcttccttct ccactttggc
1500
aaagggtggcc accttggtct tgaggagata gaggtgtcca ggacccctt ggcagaaaaat
1560
cagcattttc cagatcttgg ctccctgtg gtagacgttc agcttccttct ctatctcctc
1620
aaggatgtcc tcgaagggtt cgtgctcatg gtctgttggg atggggatga tggaggggtc
1680
atccccggcg atgatagtgg ggatgtactc agccttgggc accttggagg aaatgagcat
1740
gaccttgggt ggcacgaagc cttcggtgtc gcaggccaca gcctccaggg cttctcagt
1800
gtcccagtcc aggttcctcga aggctcggtc cagcgtgcag tggagctct gcaggtcact
1860
gctgtctcgag gagtcgtggg aagtgtcggtc ttcatgggg gtgggggtcgc tccaggaccg
1920
gctgaagctc cgctcgccgc ctcagcgaac gtctgggcct tacaccctcc ggctgccgac
1980
catcgccagg tggttgcggg agttcccttg gattacagac gcggaatcat tctcccggtt
2040
ccggcgcttc ctctcccggt agccctgaa caccgagatg gcttgcatacg ttgtgggtgc
2100
tgtctggaaag ctgaaaagat ttcccttggg gaaccaggta cgaataggaa tgtctcgaga
2160
cacacggtca acgctgtaca tcctctccag cttcttgcgg cgaccggagg tctcaggcag
2220
aggtggctgg tccagcccaa aggcccggagg ggtggggccca ggagccagct gggcacatac
2280
cggggcactc cttggagcc cctggcgngc tgcccgccca gcttctggc agggcctgct
2340
gacgttcctcc cggctgccac cagggctggc ggcgcaggggc tggctgtat ggtgagggtg
2400
ccgctggccgc cgcccccttca ccaccggccag ctcaatggcc tccgcctcag ggctgggcag
2460
cagggcaggc tccccagaga tgaagtacac tcgag
2495

<210> 6220
<211> 179
<212> PRT
<213> Homo sapiens

<400> 6220
Phe Phe Phe Phe Ser Arg Trp Arg Ile Arg Phe Asn Gly His Tyr
1 5 10 15
Glu Gly Ile Val His Arg Ser Lys Pro Gly Pro Arg Pro Ser Pro Pro
20 25 30
Ser Ala Gly Asn Thr Ala Arg Cys Pro Gln Thr Pro Gly Ser Ala Gln
35 40 45
Gly Gly Pro Ala Pro Ser Pro Gln Xaa Tyr Ile His Asp Ser Pro Ser
50 55 60
Cys Trp Pro Trp Thr Lys Ala Gly Ser Ser Xaa Cys Pro Val Arg Ser
65 70 75 80
Pro Tyr Ser Pro Pro Ala Ala Arg Pro Gly Pro Gly Xaa Pro Leu Trp
85 90 95
Cys Gln Arg Val Ser Gln Asn Pro Gly Pro Ser Pro Ser Xaa Gly Pro
100 105 110
Leu Pro Ser Pro Arg Pro Val Cys Trp Asp Gly Ala Ser Thr Leu Arg
115 120 125
Leu Val Lys Ala Glu Leu Asn Ser Ser Asn Glu Ser Ala Gly Trp Ala
130 135 140
Trp Gly Asp Gly Glu Gln Ala Pro Pro Arg Ala Ser Ser Glu Gly Gly
145 150 155 160
Asp Ala Ala Pro Phe Leu Pro Ala Ala Gln Thr Ala Pro Thr Gly Ser
165 170 175
Gly Ala Gly

<210> 6221
<211> 1487
<212> DNA
<213> Homo sapiens

<400> 6221
nnctgcagga aaaagtgcgt ctctgacgca gatgctctag tgttttctaa gtgacagctc
60
ttagggcacc ctggatgccc cttgattcca ccctcattac ttgtcccttc tcggtgctc
120
ctcttgttcc cttgctttgt tttgtttca tattactccc gtatccctg acatatctgc
180
atttttctac ttactgtgtc ccecatgcage tgctccctgtt tttcacatcc aaggtttctc
240
ctccatggca ctactgacgt tttgggctga cgaattctt ggggacagga tggggcatgt
300
cctgtgcatt ttaggatgtt gagtagcagc cctggcctgc atccactaga tgccagttga
360
acctccccag gttctgaagc cagacacaag atgaaaaagc taactccaaa acagaaaattt
420
tctgaagatt tagagtcata taagatatca gtggtaatgc aggaatcagc tgagaaaactt
480

tcagaaaaagt tacataaagtg taaagaattt gtggacagtt gcaggcttac tttccctact
 540
 agtgtgtatg aatacagcag gggcttcctt caaaaacctta accttattca agatcagaat
 600
 ggc当地 ggtggaaagca gggcagatat gatgaggatg gcaaaccctt caatcaaaga
 660
 tcttgcttt tggggcatga gcgaaattctc acaagagcaa agtcttatga atgcagtgaa
 720
 tgtggaaaag tcatttaggcg taaggcatgg tttgatcaac atcaaagaat tcactttta
 780
 gagaatcctt ttgagtgtaa ggtctgtggg caagccttca gacagcggtc agctcttacg
 840
 gtccataaac agtgtcacct gcaaaacaag ccatacagat gtcatgactg tggaaagtgt
 900
 tttcggcagc tcgcgtatct tggtgaacat aagaggattc acaccaaaga aaaaccttat
 960
 aaatgttagca aatgtgaaaa aacgtttagt cagaattcaa cccttattcg acatcaggtg
 1020
 atccatagtg gagaaaaacg ccataaatgc cttgagtgtg gaaaagcctt tggccggcat
 1080
 tcaacccttc tatgtcatca acagattcac agtaaaccga acacccataa atgcagtgaa
 1140
 tgtggacagt cctttggtag gaatgtggat ctcattcagc atcaaagaat ccatacaaag
 1200
 gaggaattct ttcaatgtgg agaatgtggg aaaacgttta gttttaaagag gaatctttt
 1260
 cgacatcagg tcattcacac tggaaagccaa ctctaccaat gtgtcatatg tggaaaatct
 1320
 ttcaagtggc acacaagctt tattaagcac cagggcactc acaaaggaca gatatccaca
 1380
 ttagttaat tggaaagcag tcattggaga actagaactt ataaacctct acttcaagtg
 1440
 tgtatcacgt aattgttcc atgaaaagca ataaatgtaa caaagg
 1487

<210> 6222
 <211> 330
 <212> PRT
 <213> Homo sapiens

<400> 6222
 Met Lys Lys Leu Thr Pro Lys Gln Lys Phe Ser Glu Asp Leu Glu Ser
 1 5 10 15
 Tyr Lys Ile Ser Val Val Met Gln Glu Ser Ala Glu Lys Leu Ser Glu
 20 25 30
 Lys Leu His Lys Cys Lys Glu Phe Val Asp Ser Cys Arg Leu Thr Phe
 35 40 45
 Pro Thr Ser Gly Asp Glu Tyr Ser Arg Gly Phe Leu Gln Asn Leu Asn
 50 55 60
 Leu Ile Gln Asp Gln Asn Ala Gln Thr Arg Trp Lys Gln Gly Arg Tyr
 65 70 75 80
 Asp Glu Asp Gly Lys Pro Phe Asn Gln Arg Ser Leu Leu Leu Gly His
 85 90 95
 Glu Arg Ile Leu Thr Arg Ala Lys Ser Tyr Glu Cys Ser Glu Cys Gly

100	105	110
Lys Val Ile Arg Arg Lys Ala Trp Phe Asp Gln His Gln Arg Ile His		
115	120	125
Phe Leu Glu Asn Pro Phe Glu Cys Lys Val Cys Gly Gln Ala Phe Arg		
130	135	140
Gln Arg Ser Ala Leu Thr Val His Lys Gln Cys His Leu Gln Asn Lys		
145	150	155
160		
Pro Tyr Arg Cys His Asp Cys Gly Lys Cys Phe Arg Gln Leu Ala Tyr		
165	170	175
Leu Val Glu His Lys Arg Ile His Thr Lys Glu Lys Pro Tyr Lys Cys		
180	185	190
Ser Lys Cys Glu Lys Thr Phe Ser Gln Asn Ser Thr Leu Ile Arg His		
195	200	205
Gln Val Ile His Ser Gly Glu Lys Arg His Lys Cys Leu Glu Cys Gly		
210	215	220
Lys Ala Phe Gly Arg His Ser Thr Leu Leu Cys His Gln Gln Ile His		
225	230	235
240		
Ser Lys Pro Asn Thr His Lys Cys Ser Glu Cys Gly Gln Ser Phe Gly		
245	250	255
Arg Asn Val Asp Leu Ile Gln His Gln Arg Ile His Thr Lys Glu Glu		
260	265	270
Phe Phe Gln Cys Gly Glu Cys Gly Lys Thr Phe Ser Phe Lys Arg Asn		
275	280	285
Leu Phe Arg His Gln Val Ile His Thr Gly Ser Gln Leu Tyr Gln Cys		
290	295	300
Val Ile Cys Gly Lys Ser Phe Lys Trp His Thr Ser Phe Ile Lys His		
305	310	315
320		
Gln Gly Thr His Lys Gly Gln Ile Ser Thr		
325	330	

<210> 6223
 <211> 944
 <212> DNA
 <213> Homo sapiens

<400> 6223
 acccccaccc tcactgtgca ccccccaccc tccaccccaca ccccccattcc cacctgcacc
 60
 ccaccccaaca ctcacaaccc cccactccca cctgcaacac ccccaactccc caccggcacc
 120
 ccccaacttc ccatcccccc actcctctcc attccctctc ttgcttgcgc gcataagcaa
 180
 gtcccaactca ttgcaactgt aaccaatacc aagcatgaga acaggaacta gtcacccct
 240
 ctaaccccca ctccagctgc agacgccacg gagtttgtgc agggcgccag cgctccagcc
 300
 atggcgcggtt cgctcgatca cgacaccgtg ttctactgccc tgagtgtata ccaggtaaaa
 360
 ataagcccca cacctcagct gggggcagca tcaagcgccag aaggccatgt tggccaagga
 420
 gctccaggcc tcatgggtaa tatgaaccct gagggcggtg tgaaccacga gaacggcatg
 480
 aaccgcgcgtg gccccatgtat ccccgagggc ggccgtggaa accaggagcc tcggcagcag
 540

ccgcagcccc cgccggagga gcccggccag gcggccatgg agggtccgca gcccgagaac
 600
 atgcagccac gaactcggcg cacgaaggtc acgctgtgc aggtggagga gctggaaagt
 660
 gtttccgac acactcaata ccctgatgtg cccacaagaa gggaaacttgc cgaaaactta
 720
 ggtgtgactg aagacaaagt gcgggtcagt acacttgaaa aagcaatttg agaggacagc
 780
 840
 cattctaaaa cctgcttcag ggcattgaag gcttgaagg ctgtccctg aacgttctaa
 900
 agttgttgtt tttattattg tcttttttat gttgacaaat aagttttgaa gtttgggttc
 944

<210> 6224
 <211> 156
 <212> PRT
 <213> Homo sapiens

<400> 6224
 Met Ala Arg Ser Leu Val His Asp Thr Val Phe Tyr Cys Leu Ser Val
 1 5 10 15
 Tyr Gln Val Lys Ile Ser Pro Thr Pro Gln Leu Gly Ala Ala Ser Ser
 20 25 30
 Ala Glu Gly His Val Gly Gln Gly Ala Pro Gly Leu Met Gly Asn Met
 35 40 45
 Asn Pro Glu Gly Val Asn His Glu Asn Gly Met Asn Arg Asp Gly
 50 55 60
 Gly Met Ile Pro Glu Gly Gly Gly Asn Gln Glu Pro Arg Gln Gln
 65 70 75 80
 Pro Gln Pro Pro Pro Glu Glu Pro Ala Gln Ala Ala Met Glu Gly Pro
 85 90 95
 Gln Pro Glu Asn Met Gln Pro Arg Thr Arg Arg Thr Lys Phe Thr Leu
 100 105 110
 Leu Gln Val Glu Glu Leu Glu Ser Val Phe Arg His Thr Gln Tyr Pro
 115 120 125
 Asp Val Pro Thr Arg Arg Glu Leu Ala Glu Asn Leu Gly Val Thr Glu
 130 135 140
 Asp Lys Val Arg Val Ser Thr Leu Glu Lys Ala Ile
 145 150 155

<210> 6225
 <211> 3851
 <212> DNA
 <213> Homo sapiens

<400> 6225
 nggatccagc tgctgcgcag gtcagaccca gctgttttg agtcccgct ggagaaacgc
 60
 agtgaatttc ggaaggcagcc agtggggcat tccaggcaag gtgattttat caaatgtgtg
 120
 180
 gaacagaaga cagatgcctt gggaaacag tctgtgaaca gaggattcac taaggacaag

actctcagtt caatcttaa cattgagatg gtaaaagaaa aaactgcaga agaaataaaa
240
cagatttggc agcaatattt tgcagcaaaa gatacagtct acgcagttat tcctgcagaa
300
aagtttgatt tgatctggaa ccgggctcag tcctgtccaa catttctatg tgctctgcc
360
agaagggaaag gttatgagtt tttttagga caatggacag gtactgaact ccacttcact
420
gcacttataa atattcagac ccgagggaa gctgcagcca gccagctgat tttatatcac
480
tatcctgaac ttaaggaaga aaagggcata gtgctgatga ctgcagaaat ggattccaca
540
tttctgaatg ttgctgaggg acagtgcattc gccaaccaag ttcagcttctt ctacgctact
600
gatcggaaag agacctacgg gttagtggag acctttaacc tcagaccaaa tgagttcaaa
660
tatatgtctg tcatcgctga attggagcaa agcggacttg gagcagaact gaaatgtgcc
720
cagaaccaaa ataagactta gaactgtaca ggttggccct tcacctagtt gactcagccc
780
tcgatagtct agagccccacc ccctcctcag gaactcaaga gctcagcatt tataatgagc
840
agttggtaat gagttggccct atgtgcttgt cgcaaggagt cacagagatg agccctatta
900
cttgatattc aggaacaaag gtacctgaac attctgataa ttatctcagc atacttgagg
960
tttcctttt taagtgttcg aggttataac aagagacagc caaggaccta caagacagtt
1020
gacttgattt tgacagttgt aacagcgcag ttgcattctg gccacttga ccttatacg
1080
cccaaatgat gagttgtca tctttatgaa ctcatgacag gataataagc ttgaagacct
1140
gctgttagtta gatatggct ttaatccctc ccatgcacca gtcagctgaa caaaagcata
1200
agccaaacat cctgtttaaa ctgtagaata accagatatt cccatcaggt taaagacttc
1260
atctagatga tgccccccag agatgccttt agtgaagta gctggcttgg ggtatcagca
1320
aatttcaggt atagtttagat aaacaggtac agggcctgca tactattaaa ccatagtttgc
1380
tggcacccgc ttttctact ccacctgtta gaagctatgt gtttgaaggaa atgaatcagt
1440
gcagtataaa taaaattctt ttgttaaggag aagattaatc ctggtttgc tgatttttt
1500
aaaaacaact ctaaacatga tacaaaaaag tggatgaaag caaatgttcc cagattggat
1560
gtggggaaaa tatagcaata atttttttt aagtctggct tacaatgttt gttatacaaaa
1620
ataatgaaat ctgagttatg tactgtccat tgtgtcaggg ctatggctg attttatcaa
1680
aactcatctt gggactgaaa aattgtttgg aatgccagaa ataagaaagt tggctccag
1740
agctggaaac ccatcttcg tttgttagtgt cactgttgc gctccaagct cagtgatagg
1800

aaaggacggt ggttacacac cagccttctg aaccgaaggc ccccagtatt gttgtcagct
1860
gccttacca tggcatttct ttctctttct ttttttcctg agatgaagtc ttgtctgtc
1920
ttgcccaggc tggagtagac tagcgtgatc tcagctcgct gcaacctcta cctccctgg
1980
tcaagtgatt ctgctgcgtc agcctcctga ggagcttagga ttacaggcgc atgccaccat
2040
acctggctta tttttgtatt gtttagaga cagggtttca ctttgttggc caggetggct
2100
ggtctcgaac tcctggcctc aagtgatcca ccaccttgac ctccccaaagt gctgggatta
2160
caggtgtgag ccaccgtgcc tggcctgaca tttctttatt gatctaacat gctccactct
2220
gctgctcctg cctaagatct ggttatatga cactgaatgt ggtgagtggg aatttaagca
2280
gtattcgcag tttgtgtgt tggttttct tccttccaga agaattttta taggttgggc
2340
ctgtccctaa gctcttaaa tagggtgac atcccactat tctctgagcc gtgtctattt
2400
tggcgtcacct ttgagtcata gtattgagag agacagatag tattttttta aactggggaa
2460
gctgctatcc tttcactatt tctctaaagg ttgagctgtt aactaatgt aattctggac
2520
ctgcttctgg tcctggcagt ttatctttg agaaacttga gtcttatctg ccctgccatt
2580
ttcattaaat gccttctgac cttctgaatg ttttgggtcc caagaatttt tgacatcaga
2640
tgggggtgtt tttattggta tccagttatg tttgtttgtc tttccagatg ggcccagtt
2700
ttagccatac atagtagcatt gatacacctc caccagcggg tgaggaaatg atggaaaaag
2760
gagtaagaag tggccattcg ttttaatcat tcctcctgga tttgtcctca gtccccaaact
2820
gccaagttagg atgtgtccat gtataaatgt gtggggcatg actaaagtac cacgtagctg
2880
ttctttatata ttatattacct agaaagatct ggcaaagaac tcaaagaaaa ttgtaccatt
2940
taatcagtaa atttgtcccc tggtgctagc atgggtttat agaaagtggc caggctttag
3000
agttaaatgt atctgggttc atatgttagt gttgttattc attagctcta tactgttggaa
3060
caaattgtt aaactatcta attttgggt tttttttcc atctaaaata gggataataaa
3120
tatctacctc ataggattat tgtgagaatt aaattaactt cactatagta gaaaatata
3180
actaccatcc ttttctctac ttcccttgc cctcattaaa gactaataca agtttagcatt
3240
tcagatgtgt agatcattct ttattccagt taaaagaaca aactttatct catcagttct
3300
gaaaactttaa gatgcagtag catcacctaa agtgcatttta aatgcagat tctcaggcct
3360
caaccgtaca ccaccccccc acacacgtac taaatcaaga atatgtgcag aaggtaactgg
3420

245

<210> 6227
<211> 830
<212> DNA
<213> Homo sapiens

<400> 6227
nnacagcctt cctgaaaaca cacccagcgc aggcaccagg ggtcccacccg atggacacac
60
cttggaggca gcacctacag agcggtgatt ttgcacatgg gcggagttct cattccttct
120
ccagggagag tcgctgcaga atgggaggta cagaatcgta tcccttctgg aactatatta
180
aaggccttga tggaaggtgg tgaaaatggg ccctggatga gatttatgag agcagaaaata
240
acagcagagg gtttttacg agaatttggg agactttgct ctgaaatgtt aaagacacctc
300
gtgcctgtgg actcattttt ctctctgttg accagtgagc gagtggcaaa gcagttccca
360
gtgatgactg aggccataac tcaaattcgg gcaaaaggtc ttcagactgc agtcttgagc
420
aataattttt atcttcccaa ccagaaaagc ttttgcccc tggaccggaa acagtttgat
480
gtgattgtgg agtcctgcat ggaagggatc tgtaagccag accctaggat ctacaagctg
540
tgcttggagc agctcggcct gcagccctct gагtccatct ttcttgatga ccttggaaaca
600
aatctaaaag aagctgccag acttggtatt cacaccatta aggttaatga cccagagact
660
gcagtaaagg aattagaagc tctttgggt tttacattga gagtaggtgt tccaaacact
720
cggcctgtga aaaagacgat ggaaattccg aaagattcct tgcagaagta cctcaaagac
780
ttactgggta tccagaccac aggcccattg gaactacttc agttttagatca
830

<210> 6228
<211> 271
<212> PRT
<213> Homo sapiens

<400> 6228
Lys His Thr Gln Arg Arg His Gln Gly Ser His Arg Trp Thr His Leu
1 5 10 15
Gly Gly Ser Thr Tyr Arg Ala Val Ile Phe Asp Met Gly Gly Val Leu
20 25 30
Ile Pro Ser Pro Gly Arg Val Ala Ala Glu Trp Glu Val Gln Asn Arg
35 40 45
Ile Pro Ser Gly Thr Ile Leu Lys Ala Leu Met Glu Gly Gly Glu Asn
50 55 60
Gly Pro Trp Met Arg Phe Met Arg Ala Glu Ile Thr Ala Glu Gly Phe
65 70 75 80
Leu Arg Glu Phe Gly Arg Leu Cys Ser Glu Met Leu Lys Thr Ser Val

85	90	95
Pro Val Asp Ser Phe Phe Ser Leu	Leu Thr Ser Glu Arg Val Ala Lys	
100	105	110
Gln Phe Pro Val Met Thr Glu Ala Ile Thr Gln Ile Arg Ala Lys Gly		
115	120	125
Leu Gln Thr Ala Val Leu Ser Asn Asn Phe Tyr Leu Pro Asn Gln Lys		
130	135	140
Ser Phe Leu Pro Leu Asp Arg Lys Gln Phe Asp Val Ile Val Glu Ser		
145	150	155
Cys Met Glu Gly Ile Cys Lys Pro Asp Pro Arg Ile Tyr Lys Leu Cys		
165	170	175
Leu Glu Gln Leu Gly Leu Gln Pro Ser Glu Ser Ile Phe Leu Asp Asp		
180	185	190
Leu Gly Thr Asn Leu Lys Glu Ala Ala Arg Leu Gly Ile His Thr Ile		
195	200	205
Lys Val Asn Asp Pro Glu Thr Ala Val Lys Glu Leu Glu Ala Leu Leu		
210	215	220
Gly Phe Thr Leu Arg Val Gly Val Pro Asn Thr Arg Pro Val Lys Lys		
225	230	235
Thr Met Glu Ile Pro Lys Asp Ser Leu Gln Lys Tyr Leu Lys Asp Leu		
245	250	255
Leu Gly Ile Gln Thr Thr Gly Pro Leu Glu Leu Leu Gln Phe Asp		
260	265	270

<210> 6229

<211> 3105

<212> DNA

<213> Homo sapiens

<400> 6229

```

nngagcggcc gcccgggcag gtaggaggct gagtcctggc cgcgggcccc ggccggggcg
60
ccgctggcag gagcgcttgg ggatcctcca agggcgacca tggccttgct gggtaagcgc
120
tgtgacgtcc ccaccaacgg ctgcggaccc gaccgctgga actccgcgtt caccgc当地
180
gacgagatca tcaccagcct cgtgtctgcc ttagactcca tgtgctcagc gctgtccaaa
240
ctgaacgccc aggtggcctg tgtcgccgtg cacgatgaga ggcgccttgc ggtggcaca
300
gagaagggga gaatgttccct gaatgcccgg aaggagctac agtcagactt cctcagggttc
360
tgccgagggc ccccgtggaa ggatccggag gcagagcacc ccaagaaggt gcagcggggc
420
gagggttggag gccgtagcct ccctcggtcc tccctggAAC atggctcaga tgtgtacatt
480
ctgcggaaga tggtagagga ggtgtttgtat gttctttata ggcaggccct gggaaagggcc
540
agtgtggtgc cactgccccta tgagaggctg ctcaggagc cagggctgct ggccgtgcag
600
gggctgcccgg aaggcctggc cttccgaagg ccagccgagt atgaccccaa ggccctcatg
660
gccatcctgg aacacagcca ccgcacccgc ttcaagctca agaggccact tgaggatggc
720

```

gggcgggact cgaaggccct ggtggagctg aacggtgtct ccctgattcc caaggggtca
780
cgggactgtg gcctgcatgg ccaggcccc aaggtgccac cccaggacct gcccccaacc
840
gccacccctt cctccatggc cagtttctg tacagcacgg cgctcccaa ccacgcccatt
900
cgagagctca agcaggaagc accttcctgc ccccttgcgg ccagcgacct gggcctgagt
960
cggcccatgc cagagccaa ggccaccggt gcccaagact tctccgactg ttgtggacag
1020
aagccactg ggctggtgg gcctctcatc cagaacgtcc atgcctccaa ggcattctc
1080
ttctccatcg tccatgacaa gtcagagaag tggacgcct tcataaagga aaccgaggac
1140
atcaacacgc tccgggagtg tgtgcagatc ctgttaaca gcagatatgc ggaagccctg
1200
ggcctggca acatggtccc cgtgcctac cgaaagattt cctgtgaccc ggaggctgtg
1260
gagatcgtgg gcatcccgga caagatcccc ttcaagcgcc cctgcactta cggagtcccc
1320
aagctgaagc ggatcctgga ggagcgccat agtatccact tcatttcattaa gaggatgtt
1380
gatgagcgaa ttttcacagg gaacaagttt accaaagaca ccacgaagct ggagccagcc
1440
agccccccag aggacacccctc tgcagaggc tctagggcca ccgtccttga ctttgctggg
1500
aatgctcggt cagacaaggg cagcatgtct gaagactgtg ggccaggaac ctccggggag
1560
ctggccgggc tgaggccgat caaaattttag ccagaggatc tggacatcat tcaggtcacc
1620
gtcccaagacc cctcgccaaac ctctgagggaa atgacagact cgatgcctgg gcacccgttca
1680
tcggaggatt ctggttatgg gatggagatg ctgacagaca aaggtctgag tgaggacgcg
1740
cgccccgggg agaggccccgt ggaggacagc cacggtgacg tgatccggcc cctgcggaaag
1800
caggtggagc tgctcttcaa cacacgatac gccaaggcca ttggcatctc ggagcccgct
1860
aaggtcccgat actccaagtt tctgatgcac ccggaggagc tgtttgcgtt gggactgcct
1920
gaaggcatct ccctccgcag gccaactgc ttcgggatcg ccaagctccg gaagattctg
1980
gaggccagca acagcatcca gtttgcattc aagaggcccc agctgctcac tgagggagtc
2040
aaagagccca tcgtggatag tcaagagagg gattccgggg accctctggg ggacgagagc
2100
ctgaagagac agggctttca agaaaattat gacgcgaggc tctcacggat cgacatcgcc
2160
aacacactaa gggagcaggt ccaggacctt ttcaataaga aatacggggaa agccttgggc
2220
atcaagtacc cggtccaggt cccctacaag cgatcaaga gtaaccccggtt ctcgtgatc
2280
atcgaggggc tgccccagg aatcccggtt cggaaaggccct gtacccctcggtt ctcccagaac
2340

ctggagagga ttcttgctgt ggctgacaag atcaagttca cagtcaccag gccttccaa
 2400
 ggactcatcc caaaggctga tgaagatgac gccaacagac tcggggagaa ggtgatcctg
 2460
 cgggagcagg tgaaggaact cttcaacgag aaatacggtg aggcctggg cctgaaccgg
 2520
 ccgggtctgg tcccttataa actaatccgg gacagcccag acgccgtgga ggtcacgggt
 2580
 ctgcctgatg acatcccctt ccggaaccccc aacacgtacg acatccacccg gctggagaag
 2640
 atcctgaagg cccgagagca tgtccgcattg gtcatcatta accagctcca accctttgca
 2700
 gaaatctgca atgatgccaa ggtgccagcc aaagacagca gcattccaa ggcgaagaga
 2760
 aagcgggtct cggaaaggaaa ttccgtctcc tcttctctt cgtcttcctc ttccctcgcc
 2820
 tctaaccggg attcagtggc atcggccaac cagatctcac tcgtgcaatg gccaatgtac
 2880
 atggtgttact atgccggctt gaacgtgcag ctccgggac ctcttaatta ctagacctca
 2940
 gtactgaatc aggacctcac tcagaaagac taaaggaaat gtaatttatg tacaaaatgt
 3000
 atattcggat atgtatcgat gccttttagt tttccaatg atttttacac tatattcctg
 3060
 ccaccaaggc ctttttaaat aagaaaaaaaaaaaaaaaaaaaa
 3105

<210> 6230
 <211> 944
 <212> PRT
 <213> Homo sapiens

<400> 6230

Met	Ala	Leu	Leu	Gly	Lys	Arg	Cys	Asp	Val	Pro	Thr	Asn	Gly	Cys	Gly
1				5						10			15		
Pro	Asp	Arg	Trp	Asn	Ser	Ala	Phe	Thr	Arg	Lys	Asp	Glu	Ile	Ile	Thr
					20				25				30		
Ser	Leu	Val	Ser	Ala	Leu	Asp	Ser	Met	Cys	Ser	Ala	Leu	Ser	Lys	Leu
					35			40			45				
Asn	Ala	Glu	Val	Ala	Cys	Val	Ala	Val	His	Asp	Glu	Ser	Ala	Phe	Val
					50			55			60				
Val	Gly	Thr	Glu	Lys	Gly	Arg	Met	Phe	Leu	Asn	Ala	Arg	Lys	Glu	Leu
					65			70			75			80	
Gln	Ser	Asp	Phe	Leu	Arg	Phe	Cys	Arg	Gly	Pro	Pro	Trp	Lys	Asp	Pro
					85			90			95				
Glu	Ala	Glu	His	Pro	Lys	Lys	Val	Gln	Arg	Gly	Glu	Gly	Gly	Arg	
					100			105			110				
Ser	Leu	Pro	Arg	Ser	Ser	Leu	Glu	His	Gly	Ser	Asp	Val	Tyr	Leu	Leu
					115			120			125				
Arg	Lys	Met	Val	Glu	Glu	Val	Phe	Asp	Val	Leu	Tyr	Ser	Glu	Ala	Leu
					130			135			140				
Gly	Arg	Ala	Ser	Val	Val	Pro	Leu	Pro	Tyr	Glu	Arg	Leu	Leu	Arg	Glu
					145			150			155			160	
Pro	Gly	Leu	Leu	Ala	Val	Gln	Gly	Leu	Pro	Glu	Gly	Leu	Ala	Phe	Arg

	165	170	175
Arg Pro Ala Glu Tyr Asp Pro Lys Ala Leu Met Ala Ile Leu Glu His			
180	185	190	
Ser His Arg Ile Arg Phe Lys Leu Lys Arg Pro Leu Glu Asp Gly Gly			
195	200	205	
Arg Asp Ser Lys Ala Leu Val Glu Leu Asn Gly Val Ser Leu Ile Pro			
210	215	220	
Lys Gly Ser Arg Asp Cys Gly Leu His Gly Gln Ala Pro Lys Val Pro			
225	230	235	240
Pro Gln Asp Leu Pro Pro Thr Ala Thr Ser Ser Ser Met Ala Ser Phe			
245	250	255	
Leu Tyr Ser Thr Ala Leu Pro Asn His Ala Ile Arg Glu Leu Lys Gln			
260	265	270	
Glu Ala Pro Ser Cys Pro Leu Ala Pro Ser Asp Leu Gly Leu Ser Arg			
275	280	285	
Pro Met Pro Glu Pro Lys Ala Thr Gly Ala Gln Asp Phe Ser Asp Cys			
290	295	300	
Cys Gly Gln Lys Pro Thr Gly Pro Gly Gly Pro Leu Ile Gln Asn Val			
305	310	315	320
His Ala Ser Lys Arg Ile Leu Phe Ser Ile Val His Asp Lys Ser Glu			
325	330	335	
Lys Trp Asp Ala Phe Ile Lys Glu Thr Glu Asp Ile Asn Thr Leu Arg			
340	345	350	
Glu Cys Val Gln Ile Leu Phe Asn Ser Arg Tyr Ala Glu Ala Leu Gly			
355	360	365	
Leu Gly Asn Met Val Pro Val Pro Tyr Arg Lys Ile Ala Cys Asp Pro			
370	375	380	
Glu Ala Val Glu Ile Val Gly Ile Pro Asp Lys Ile Pro Phe Lys Arg			
385	390	395	400
Pro Cys Thr Tyr Gly Val Pro Lys Leu Lys Arg Ile Leu Glu Glu Arg			
405	410	415	
His Ser Ile His Phe Ile Ile Lys Arg Met Phe Asp Glu Arg Ile Phe			
420	425	430	
Thr Gly Asn Lys Phe Thr Lys Asp Thr Thr Lys Leu Glu Pro Ala Ser			
435	440	445	
Pro Pro Glu Asp Thr Ser Ala Glu Val Ser Arg Ala Thr Val Leu Asp			
450	455	460	
Leu Ala Gly Asn Ala Arg Ser Asp Lys Gly Ser Met Ser Glu Asp Cys			
465	470	475	480
Gly Pro Gly Thr Ser Gly Glu Leu Gly Gly Leu Arg Pro Ile Lys Ile			
485	490	495	
Glu Pro Glu Asp Leu Asp Ile Ile Gln Val Thr Val Pro Asp Pro Ser			
500	505	510	
Pro Thr Ser Glu Glu Met Thr Asp Ser Met Pro Gly His Leu Pro Ser			
515	520	525	
Glu Asp Ser Gly Tyr Gly Met Glu Met Leu Thr Asp Lys Gly Leu Ser			
530	535	540	
Glu Asp Ala Arg Pro Glu Glu Arg Pro Val Glu Asp Ser His Gly Asp			
545	550	555	560
Val Ile Arg Pro Leu Arg Lys Gln Val Glu Leu Leu Phe Asn Thr Arg			
565	570	575	
Tyr Ala Lys Ala Ile Gly Ile Ser Glu Pro Val Lys Val Pro Tyr Ser			
580	585	590	
Lys Phe Leu Met His Pro Glu Glu Leu Phe Val Val Gly Leu Pro Glu			

595	600	605
Gly Ile Ser Leu Arg Arg Pro Asn Cys Phe Gly	Ile Ala Lys Leu Arg	
610	615	620
Lys Ile Leu Glu Ala Ser Asn Ser Ile Gln Phe Val Ile Lys Arg Pro		
625	630	640
Glu Leu Leu Thr Glu Gly Val Lys Glu Pro Ile Val Asp Ser Gln Glu		
645	650	655
Arg Asp Ser Gly Asp Pro Leu Val Asp Glu Ser Leu Lys Arg Gln Gly		
660	665	670
Phe Gln Glu Asn Tyr Asp Ala Arg Leu Ser Arg Ile Asp Ile Ala Asn		
675	680	685
Thr Leu Arg Glu Gln Val Gln Asp Leu Phe Asn Lys Lys Tyr Gly Glu		
690	695	700
Ala Leu Gly Ile Lys Tyr Pro Val Gln Val Pro Tyr Lys Arg Ile Lys		
705	710	720
Ser Asn Pro Gly Ser Val Ile Ile Glu Gly Leu Pro Pro Gly Ile Pro		
725	730	735
Phe Arg Lys Pro Cys Thr Phe Gly Ser Gln Asn Leu Glu Arg Ile Leu		
740	745	750
Ala Val Ala Asp Lys Ile Lys Phe Thr Val Thr Arg Pro Phe Gln Gly		
755	760	765
Leu Ile Pro Lys Pro Asp Glu Asp Asp Ala Asn Arg Leu Gly Glu Lys		
770	775	780
Val Ile Leu Arg Glu Gln Val Lys Glu Leu Phe Asn Glu Lys Tyr Gly		
785	790	800
Glu Ala Leu Gly Leu Asn Arg Pro Val Leu Val Pro Tyr Lys Leu Ile		
805	810	815
Arg Asp Ser Pro Asp Ala Val Glu Val Thr Gly Leu Pro Asp Asp Ile		
820	825	830
Pro Phe Arg Asn Pro Asn Thr Tyr Asp Ile His Arg Leu Glu Lys Ile		
835	840	845
Leu Lys Ala Arg Glu His Val Arg Met Val Ile Ile Asn Gln Leu Gln		
850	855	860
Pro Phe Ala Glu Ile Cys Asn Asp Ala Lys Val Pro Ala Lys Asp Ser		
865	870	880
Ser Ile Pro Lys Arg Lys Arg Val Ser Glu Gly Asn Ser Val		
885	890	895
Ser Ser Ser Ser Ser Ser Ser Ser Ser Asn Pro Asp Ser		
900	905	910
Val Ala Ser Ala Asn Gln Ile Ser Leu Val Gln Trp Pro Met Tyr Met		
915	920	925
Val Asp Tyr Ala Gly Leu Asn Val Gln Leu Pro Gly Pro Leu Asn Tyr		
930	935	940

<210> 6231
<211> 471
<212> DNA
<213> Homo sapiens

<400> 6231
tgatcattgg gatcaacttgt tggaatggcc gggttcctgt gcagggcacct agcaaatgtc
60
taccaatgac aggcctact cacagccact gcactccagc ttggggcgaca gaacgaggcc
120

ttgcctttt aaaaaaaaaaaa aaaaggctca aaaaaaagagt atgctggcc aaaaatctgg
 180
 cccctcaggc ctcctgacct ggaggagaaa aaggggcccg aagccccccg ttgccccat
 240
 ctccatatgg aatggcacaa cccctcgagg ggaacccccc cctaaccata gttctaaaaa
 300
 ggggacaaaa aaatgggcgc tggattttc aacgccggaa acccaattcc cacccctgg
 360
 ccggccgttc ttagggattc caacttgga cccaacctgg gcgtattctg ggccttactt
 420
 gtttcttgtg ggaattggta ttccgttccc atttcccca ctttccaacc c
 471

<210> 6232
 <211> 138
 <212> PRT
 <213> Homo sapiens

<400> 6232
 Met Ser Thr Asn Asp Arg Pro Tyr Ser Gln Pro Leu His Ser Ser Leu
 1 5 10 15
 Gly Asp Arg Thr Arg Pro Cys Leu Phe Lys Lys Lys Lys Ala Gln
 20 25 30
 Lys Lys Ser Met Leu Gly Gln Lys Ser Gly Pro Ser Gly Leu Leu Thr
 35 40 45
 Trp Arg Arg Lys Arg Gly Pro Lys Pro Pro Val Ala Pro Ile Ser Ile
 50 55 60
 Trp Asn Gly Thr Thr Pro Arg Gly Glu Pro Pro Pro Asn His Ser Ser
 65 70 75 80
 Lys Lys Gly Thr Lys Lys Trp Ala Leu Asp Phe Ser Thr Pro Glu Thr
 85 90 95
 Gln Phe Pro Pro Pro Gly Arg Pro Phe Leu Gly Ile Pro Thr Trp Asp
 100 105 110
 Pro Thr Trp Ala Tyr Ser Gly Pro Tyr Leu Phe Leu Val Gly Ile Gly
 115 120 125
 Ile Pro Phe Pro Phe Pro Pro Pro Ser Asn
 130 135

<210> 6233
 <211> 894
 <212> DNA
 <213> Homo sapiens

<400> 6233
 acgcgtgaag ggaaaaagag aaggcgctgt cccgctttg ctacggtggc ctggaggagt
 60
 ggcgaaaccg gaacagagaa tttatcactt ctggactca cagtcgtat gtcttcaag
 120
 agggaaaggag acgattggag tcaactcaat gtgctaaaa aaagaagagt cggggacctc
 180
 ctagccagtt acattccaga ggatgaggcg ctgatgcttc gggatggacg ctttgttgt
 240
 gccatctgcc cccatcgacc ggtactggac accctggcca tgctgactgc ccaccgtgca
 300

ggcaagaaac atctgtccag cttgcagctt ttctatggca agaaggcagcc gggaaaggaa
 360
 agaaaagcaga atccaaaaca tcagaatgaa ttgagaaggg aagaaaccaa agctgaggct
 420
 cctctgctaa ctcagacacg acttatcacc cagagtgc tgcacagacg tccccactat
 480
 aacagttgct gccgcccggaa gtacagacca gaagcccctg gtccctctgt ctccctttcc
 540
 cctatgccac cctcagaggt caaactccaa agtggaaaga tcagtaggga acctgaacct
 600
 gcggctggcc cacaggccga ggagtcagca actgtctcag cccctgcacc catgagcccc
 660
 acaagaagac gagccctgga ccattatctc acccttcgaa gctctggatg gatcccagat
 720
 ggacgaggc gatgggtaaa agatgaaaat gttgagtttg actctgatga ggaggaacca
 780
 cctgatctcc ccttggactg ataccctttt cccattcatt cacaataaaa ttacaatggg
 840
 tgctgagaac ttaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaa
 894

<210> 6234
 <211> 230
 <212> PRT
 <213> Homo sapiens

<400> 6234
 Met Ser Phe Lys Arg Glu Gly Asp Asp Trp Ser Gln Leu Asn Val Leu
 1 5 10 15
 Lys Lys Arg Arg Val Gly Asp Leu Leu Ala Ser Tyr Ile Pro Glu Asp
 20 25 30
 Glu Ala Leu Met Leu Arg Asp Gly Arg Phe Ala Cys Ala Ile Cys Pro
 35 40 45
 His Arg Pro Val Leu Asp Thr Leu Ala Met Leu Thr Ala His Arg Ala
 50 55 60
 Gly Lys Lys His Leu Ser Ser Leu Gln Leu Phe Tyr Gly Lys Lys Gln
 65 70 75 80
 Pro Gly Lys Glu Arg Lys Gln Asn Pro Lys His Gln Asn Glu Leu Arg
 85 90 95
 Arg Glu Glu Thr Lys Ala Glu Ala Pro Leu Leu Thr Gln Thr Arg Leu
 100 105 110
 Ile Thr Gln Ser Ala Leu His Arg Ala Pro His Tyr Asn Ser Cys Cys
 115 120 125
 Arg Arg Lys Tyr Arg Pro Glu Ala Pro Gly Pro Ser Val Ser Leu Ser
 130 135 140
 Pro Met Pro Pro Ser Glu Val Lys Leu Gln Ser Gly Lys Ile Ser Arg
 145 150 155 160
 Glu Pro Glu Pro Ala Ala Gly Pro Gln Ala Glu Glu Ser Ala Thr Val
 165 170 175
 Ser Ala Pro Ala Pro Met Ser Pro Thr Arg Arg Ala Leu Asp His
 180 185 190
 Tyr Leu Thr Leu Arg Ser Ser Gly Trp Ile Pro Asp Gly Arg Gly Arg
 195 200 205
 Trp Val Lys Asp Glu Asn Val Glu Phe Asp Ser Asp Glu Glu Pro

210 215 220

Pro Asp Leu Pro Leu Asp
225 230

<210> 6235
<211> 3427
<212> DNA
<213> Homo sapiens

<400> 6235
cctaggcgcc ccgaaacccgc ggcggcggtg gggacaatgt ggttcttgc ccgggacccg
60
gtccggact ttccgttcga gtcatccc gagccccca agggcggctt gccccggggcc
120
tgggcctgc accgcggccg caagaaggcc acaggcagcc ccgtgtccat ctgcgtctat
180
gatgtgaagc ctggcgccga agagcagacc cagtgccca aagctgcctt caagcgcttc
240
aaaactctac ggcaccccaa catcctggct tacatcgatg gactggagac agaaaaatgc
300
ctccacgtcg tgacagagggc tgtgaccccg ttggaaatat acctaaggc gagagtggag
360
gctgggtggcc tgaaggagct ggagatctcc tggggctac accagatcgt gaaagccctc
420
agttcctgg tcaacgactg cagcctcatc cacaacaatg tctgcattgc cgccgtgttc
480
gtggaccgag ctggcgagtg gaagcttggg ggcctggact acatgtattc ggcccaggc
540
aacgggtgggg gacctccccg caaggggatc cccgagctt agcagtatga cccccggag
600
ttggctgaca gcagtggcag agtggtcaga gagaagtggc cagcagacat gtggcgcttgc
660
ggctgcctca tttggaaatg cttcaatggg cccctaccc gggcagcagc cctacgcaac
720
cctggaaaga tccccaaaac gctggtgccc cattactgtg agctggtggg agcaaacccc
780
aaagtacgtc ccaacccagc ccgttccctg cagaactgcc gggcacctgg tggcttcatg
840
agcaaccgct ttgtggagac caacctgttc ctggaggaga ttcagatcaa agagccagcc
900
gagaagcaaa aattttcca agagctgagc aagagctgg acgcattccc tgaggatttc
960
tgtcggcaca aggtgctgcc ccagctgctg accgccttgc agttcggcaa tgctggggcc
1020
gttgcctca cgcccccttt caaggtggc aagttcctga ggcgtgagga gtatcagcag
1080
aagatcatcc ctgtggtggt caagatgttc tcattcaactg accggggccat gcgcattccgc
1140
ctccctgcagc agatggagca gttcatccag taccttgacg agccaaacagt caacacccag
1200
atcttcccccc acgtcgtaca tggcttcctg gacaccaacc ctgcattccg ggagcagacg
1260
gtcaagtcca tgctgctcct ggccccaaag ctgaacgagg ccaacctcaa tgtggagctg
1320

atgaagcaact ttgcacggct acaggccaag gatgaacagg gccccatccg ctgcaacacc
1380
acagtcgtcc tggcaaaat cggctcctac ctcagtgcta gcaccagaca cagggtcctt
1440
acctctgcct tcagccgagc cactaggac ccgtttgcac cgccccgggt tgcgggtgtc
1500
ctgggcttg ctgccaccca caacctctac tcaatgaacg actgtgcccga aagatcctg
1560
cctgtctcgct gggcttcac tgttagatcct gagaatccg tgcgagacca ggccttcaag
1620
gccattcggc gcttcctgtc caaattggag tctgtgtcgg aggacccgac ccagctggag
1680
gaagtggaga aggatgtcca tgcagctcc agccctggca tgggaggagc cgcaagctagc
1740
tgggcaggct gggccgtgac cggggctcctcc tcactcacct ccaagctgat ccgttcgcac
1800
ccaaccactg ccccaacaga aaccaacatt cccaaagac ccacgcctga aggagttcct
1860
gccccagccc ccacccctgt tcctgccacc cctacaacct cagggcactg ggagacgcag
1920
gaggaggaca aggacacagc agaggacagc agcaactgctg acagatggga cgacgaagac
1980
tggggcagcc tggagcagga gggcgagtct gtgtggccc agcaggacga ctggagcacc
2040
gggggccaag tgagccgtgc tagtcaggc agcaactccg accacaaatc ctccaaatcc
2100
ccagagtccg actggagcag ctggaaagct gagggctcct gggAACAGGG ctggcaggag
2160
ccaagctccc aggagccacc tcctgacggt acacggctgg ccagcgagta taactggggt
2220
ggcccagagt ccagcgacaa gggcgacccc ttgcgtaccc tgtctgcacg tcccagcacc
2280
cagccgaggc cagactcttgg gggtgaggac aactgggagg gcctcgagac tgacagtcga
2340
caggtcaagg ctgagctggc ccggaaagaag cgcgaggagc ggcggcggga gatggaggcc
2400
aaacgcgccc agaggaaggt ggccaagggc cccatgaagc tgggagcccg gaagctggac
2460
tgaaccgtgg cggtgtccct tcccggtcgc ggagagcccg ccccacagat gtatttattg
2520
tacaaaccat gtgagcccg ccggcccagc cagggcatct cacgtgtaca taatcagagc
2580
cacaataaat tctatttcac accccttgc ccgggtcag tctagccct gggaggcggc
2640
tggggtctgg cgccgcctgc gcagcccgcc cccacgtcag acgtgaacat caatttgcct
2700
cgaaagccaa gggtaaagag gcacgtctg atttatcagt ttcttagaaaa caccctctgg
2760
gaggaaggca ggcagcgccc gccggagacc ttacaaccgc ccgctaaccg gggagggggg
2820
ccggtagggg cgccctcggtt ctcaaggcgc cgggagggtc tgcggggccct gaaggccct
2880
gggtccgagc cacaagtcgg ggcagaagtg agggcgagct cgccggaaatc cctcaagtgat
2940

caccgaggtc tggccgagg gcggcgctgg cggcgctcgc ggcggcgctg gggAACGcag
 3000
 gccccgtgcg ggccggctgcg cgcaagccg gcttgcaga cgcagcggaa ggagccgctg
 3060
 gtgttacgc agcgctcgct cttgcacagc agcccgctg gttcagctc tcggcactcg
 3120
 tcgatatcca cgcagcgggc gcgggaggcg tcgagctgga agccgcccgg acactcgac
 3180
 acggcgccgc ccggccgcgg cacgcagegg ccactcacgc agcgacactc gtctgaatcc
 3240
 tcctctgaac tgtcctcatc tcttgagggc ttcaactccca cccaggacca gcacgggtgt
 3300
 gagggaggtgg agcagccccca ccacaagaag gagtgctacc tgaacttcga tgacacagtg
 3360
 ttctgcgaca gcgtattggc caccaacgtg acccagcagg agtgctgctg ctctctgggg
 3420
 gcccggcc
 3427

<210> 6236
<211> 820
<212> PRT
<213> Homo sapiens

<400> 6236
Pro Arg Ala Pro Glu Pro Ala Ala Ala Val Gly Thr Met Trp Phe Phe
 1 5 10 15
Ala Arg Asp Pro Val Arg Asp Phe Pro Phe Glu Leu Ile Pro Glu Pro
 20 25 30
Pro Glu Gly Gly Leu Pro Gly Pro Trp Ala Leu His Arg Gly Arg Lys
 35 40 45
Lys Ala Thr Gly Ser Pro Val Ser Ile Phe Val Tyr Asp Val Lys Pro
 50 55 60
Gly Ala Glu Glu Gln Thr Gln Val Ala Lys Ala Ala Phe Lys Arg Phe
 65 70 80
Lys Thr Leu Arg His Pro Asn Ile Leu Ala Tyr Ile Asp Gly Leu Glu
 85 90 95
Thr Glu Lys Cys Leu His Val Val Thr Glu Ala Val Thr Pro Leu Gly
 100 105 110
Ile Tyr Leu Lys Ala Arg Val Glu Ala Gly Gly Leu Lys Glu Leu Glu
 115 120 125
Ile Ser Trp Gly Leu His Gln Ile Val Lys Ala Leu Ser Phe Leu Val
 130 135 140
Asn Asp Cys Ser Leu Ile His Asn Asn Val Cys Met Ala Ala Val Phe
 145 150 160
Val Asp Arg Ala Gly Glu Trp Lys Leu Gly Gly Leu Asp Tyr Met Tyr
 165 170 175
Ser Ala Gln Gly Asn Gly Gly Pro Pro Arg Lys Gly Ile Pro Glu
 180 185 190
Leu Glu Gln Tyr Asp Pro Pro Glu Leu Ala Asp Ser Ser Gly Arg Val
 195 200 205
Val Arg Glu Lys Trp Ser Ala Asp Met Trp Arg Leu Gly Cys Leu Ile
 210 215 220
Trp Glu Val Phe Asn Gly Pro Leu Pro Arg Ala Ala Leu Arg Asn

225	230	235	240
Pro Gly Lys Ile Pro Lys Thr Leu Val Pro His Tyr Cys Glu Leu Val			
245	250	255	
Gly Ala Asn Pro Lys Val Arg Pro Asn Pro Ala Arg Phe Leu Gln Asn			
260	265	270	
Cys Arg Ala Pro Gly Gly Phe Met Ser Asn Arg Phe Val Glu Thr Asn			
275	280	285	
Leu Phe Leu Glu Glu Ile Gln Ile Lys Glu Pro Ala Glu Lys Gln Lys			
290	295	300	
Phe Phe Gln Glu Leu Ser Lys Ser Leu Asp Ala Phe Pro Glu Asp Phe			
305	310	315	320
Cys Arg His Lys Val Leu Pro Gln Leu Leu Thr Ala Phe Glu Phe Gly			
325	330	335	
Asn Ala Gly Ala Val Val Leu Thr Pro Leu Phe Lys Val Gly Lys Phe			
340	345	350	
Leu Ser Ala Glu Glu Tyr Gln Gln Lys Ile Ile Pro Val Val Val Lys			
355	360	365	
Met Phe Ser Ser Thr Asp Arg Ala Met Arg Ile Arg Leu Leu Gln Gln			
370	375	380	
Met Glu Gln Phe Ile Gln Tyr Leu Asp Glu Pro Thr Val Asn Thr Gln			
385	390	395	400
Ile Phe Pro His Val Val His Gly Phe Leu Asp Thr Asn Pro Ala Ile			
405	410	415	
Arg Glu Gln Thr Val Lys Ser Met Leu Leu Ala Pro Lys Leu Asn			
420	425	430	
Glu Ala Asn Leu Asn Val Glu Leu Met Lys His Phe Ala Arg Leu Gln			
435	440	445	
Ala Lys Asp Glu Gln Gly Pro Ile Arg Cys Asn Thr Thr Val Cys Leu			
450	455	460	
Gly Lys Ile Gly Ser Tyr Leu Ser Ala Ser Thr Arg His Arg Val Leu			
465	470	475	480
Thr Ser Ala Phe Ser Arg Ala Thr Arg Asp Pro Phe Ala Pro Ser Arg			
485	490	495	
Val Ala Gly Val Leu Gly Phe Ala Ala Thr His Asn Leu Tyr Ser Met			
500	505	510	
Asn Asp Cys Ala Gln Lys Ile Leu Pro Val Leu Cys Gly Leu Thr Val			
515	520	525	
Asp Pro Glu Lys Ser Val Arg Asp Gln Ala Phe Lys Ala Ile Arg Ser			
530	535	540	
Phe Leu Ser Lys Leu Glu Ser Val Ser Glu Asp Pro Thr Gln Leu Glu			
545	550	555	560
Glu Val Glu Lys Asp Val His Ala Ala Ser Ser Pro Gly Met Gly Gly			
565	570	575	
Ala Ala Ala Ser Trp Ala Gly Trp Ala Val Thr Gly Val Ser Ser Leu			
580	585	590	
Thr Ser Lys Leu Ile Arg Ser His Pro Thr Thr Ala Pro Thr Glu Thr			
595	600	605	
Asn Ile Pro Gln Arg Pro Thr Pro Glu Gly Val Pro Ala Pro Ala Pro			
610	615	620	
Thr Pro Val Pro Ala Thr Pro Thr Thr Ser Gly His Trp Glu Thr Gln			
625	630	635	640
Glu Glu Asp Lys Asp Thr Ala Glu Asp Ser Ser Thr Ala Asp Arg Trp			
645	650	655	
Asp Asp Glu Asp Trp Gly Ser Leu Glu Gln Glu Ala Glu Ser Val Leu			

660	665	670
Ala Gln Gln Asp Asp Trp Ser Thr Gly Gly Gln Val Ser Arg Ala Ser		
675	680	685
Gln Val Ser Asn Ser Asp His Lys Ser Ser Lys Ser Pro Glu Ser Asp		
690	695	700
Trp Ser Ser Trp Glu Ala Glu Gly Ser Trp Glu Gln Gly Trp Gln Glu		
705	710	715
Pro Ser Ser Gln Glu Pro Pro Pro Asp Gly Thr Arg Leu Ala Ser Glu		
725	730	735
Tyr Asn Trp Gly Gly Pro Glu Ser Ser Asp Lys Gly Asp Pro Phe Ala		
740	745	750
Thr Leu Ser Ala Arg Pro Ser Thr Gln Pro Arg Pro Asp Ser Trp Gly		
755	760	765
Glu Asp Asn Trp Glu Gly Leu Glu Thr Asp Ser Arg Gln Val Lys Ala		
770	775	780
Glu Leu Ala Arg Lys Lys Arg Glu Glu Arg Arg Arg Glu Met Glu Ala		
785	790	795
Lys Arg Ala Glu Arg Lys Val Ala Lys Gly Pro Met Lys Leu Gly Ala		
805	810	815
Arg Lys Leu Asp		
820		

<210> 6237

<211> 494

<212> DNA

<213> Homo sapiens

<400> 6237

```

cggcctggga ccatggcgaa acatgttccc gattttaggt gaaacatgaa gagaaaatag
60
aataacttaat aatgcgtttc cgcaaccgct tcttgctgct gctggccctg gctgcgctgc
120
tggcctttgt gagcctcagc ctgcagttct tccacctgat cccgggtgtcg actcctaaga
180
atggaatgag tagcaagagt cgaaaagagaa tcatgcccga ccctgtgacg gagccccctg
240
tgacagaccc cgtttatgaa gctcttttgt actgcaacat ccccagcgtg gccgagcgc
300
gcatggaagg tcatgccccg catcattta agctggtctc agtgcattgtg ttcattcgcc
360
acggagacag gtacccactg tatgtcattc caaaaacaaa gcgaccagaa attgactgca
420
ctctggtggc taacaggaaa ccgtatcacc caaaaactgga agctttcatt agtcacatgt
480
tgagaggatc cgga
494

```

<210> 6238

<211> 141

<212> PRT

<213> Homo sapiens

<400> 6238

Met Leu Phe Arg Asn Arg Phe Leu Leu Leu Ala Leu Ala Ala Leu

1.	5	10	15
Leu Ala Phe Val Ser Leu Ser Leu Gln Phe Phe His Leu Ile Pro Val			
20	25	30	
Ser Thr Pro Lys Asn Gly Met Ser Ser Lys Ser Arg Lys Arg Ile Met			
35	40	45	
Pro Asp Pro Val Thr Glu Pro Pro Val Thr Asp Pro Val Tyr Glu Ala			
50	55	60	
Leu Leu Tyr Cys Asn Ile Pro Ser Val Ala Glu Arg Ser Met Glu Gly			
65	70	75	80
His Ala Pro His His Phe Lys Leu Val Ser Val His Val Phe Ile Arg			
85	90	95	
His Gly Asp Arg Tyr Pro Leu Tyr Val Ile Pro Lys Thr Lys Arg Pro			
100	105	110	
Glu Ile Asp Cys Thr Leu Val Ala Asn Arg Lys Pro Tyr His Pro Lys			
115	120	125	
Leu Glu Ala Phe Ile Ser His Met Leu Arg Gly Ser Gly			
130	135	140	

<210> 6239
<211> 911
<212> DNA
<213> Homo sapiens

<400> 6239
nnggcgggtt aaagagcgcg ttgctggctg ggcacgcgtg cttgagaagg ttcaatggcg
60
tggcagggac tagcggccga gttcctgcag gtgccggcgg tgacgcggc ttacaccgca
120
gcctgtgtcc tcaccaccgc cgccgtgcag ctggagctcc tcagcccctt tcaactctac
180
ttcaacccgc accttgtgtt ccggaagttc caggtctgga ggctcgtcac caacttcctc
240
ttcttcgggc ccctgggatt cagcttc ttcAACATGC ttttcgtgtt ccgctactgc
300
cgcatgctgg aagagggctc cttccgcggc cgacacggccg acttcgtctt catgtttctc
360
ttcggggcgc tccttatgac cctgctggga ctccctggca gcctgttctt cctggccag
420
gccttcatgg ccatgctggt gtacgtgtgg agccgcgcga gccttcgggt gagggtaaac
480
ttcttcggcc tgctcaactt ccaggcaccc ttcctgcctt gggcgctcat gggcttcctcg
540
ctgctgctgg gcaactccat cctcgtggac ctgctggggta ttgcgggtgg ccataatctac
600
tacttcctgg aggacgtctt ccccaaccag cctggaggca agaggctcct gcagacccct
660
ggcttcctaa agctgctcct ggatgcccct gcagaagacc ccaattacct gcccctccct
720
gaggaacagc caggacccca tctgccaccc ccgcagcagt gaccccccacc cagggccagg
780
cctaagaggc ttctggcagc ttccatccta cccatgaccc ctacttgggg cagaaaaaac
840
ccatcctaaa ggctggccccc atgcaagggc ccacctgaat aaacagaatg agctgaaaa
900

aaaaaaaaaa a
911

<210> 6240
<211> 235
<212> PRT
<213> Homo sapiens

<400> 6240
Met Ala Trp Gln Gly Leu Ala Ala Glu Phe Leu Gln Val Pro Ala Val
1 5 10 15
Thr Arg Ala Tyr Thr Ala Ala Cys Val Leu Thr Thr Ala Ala Val Gln
20 25 30
Leu Glu Leu Leu Ser Pro Phe Gln Leu Tyr Phe Asn Pro His Leu Val
35 40 45
Phe Arg Lys Phe Gln Val Trp Arg Leu Val Thr Asn Phe Leu Phe Phe
50 55 60
Gly Pro Leu Gly Phe Ser Phe Phe Asn Met Leu Phe Val Phe Arg
65 70 75 80
Tyr Cys Arg Met Leu Glu Glu Gly Ser Phe Arg Gly Arg Thr Ala Asp
85 90 95
Phe Val Phe Met Phe Leu Phe Gly Gly Val Leu Met Thr Leu Leu Gly
100 105 110
Leu Leu Gly Ser Leu Phe Phe Leu Gly Gln Ala Leu Met Ala Met Leu
115 120 125
Val Tyr Val Trp Ser Arg Arg Ser Pro Arg Val Arg Val Asn Phe Phe
130 135 140
Gly Leu Leu Thr Phe Gln Ala Pro Phe Leu Pro Trp Ala Leu Met Gly
145 150 155 160
Phe Ser Leu Leu Leu Gly Asn Ser Ile Leu Val Asp Leu Leu Gly Ile
165 170 175
Ala Val Gly His Ile Tyr Tyr Phe Leu Glu Asp Val Phe Pro Asn Gln
180 185 190
Pro Gly Gly Lys Arg Leu Leu Gln Thr Pro Gly Phe Leu Lys Leu Leu
195 200 205
Leu Asp Ala Pro Ala Glu Asp Pro Asn Tyr Leu Pro Leu Pro Glu Glu
210 215 220
Gln Pro Gly Pro His Leu Pro Pro Pro Gln Gln
225 230 235

<210> 6241
<211> 1515
<212> DNA
<213> Homo sapiens

<400> 6241
tgcggccgt gccttgacc cagcgccacc cgcacacggc gtcggcttag ccaggccggg
60
agcaagagcc aggcggtgga gaagccgccc tcggagaagc cgccggctgag gcgctcgatcg
120
cgccggccccc caggaggagg gccgggggag ccggccggc ctgagctggc gttgtccccg
180
ccaccggccgc cgccggccgc gactcccgcg accccgacgt cctcggcgtc caacctggac
240

ctggcgagc agcgggacgc ctggagacg ttccagaagc ggcagaagct tacctccgag
300
ggtgcgcca agtcctgct agacacctt gaataccagg gcctggtaa gcacacagga
360
ggctgccact gtggagcagt tcgtttgaa gttgggcct cagcagactt gcatatatatt
420
gactgcaatt gcagcatttga caagaagaag cagaatagac acttcattgt tccagcttct
480
cgcttcaagc tcctgaaggg agctgagcac ataacgactt acacgttcaa tactcacaaa
540
gcccagcata ccttctgtaa gagatgtggc gttcagagct tctatactcc acgatcaaac
600
ccccggaggct tcggaattgc cccccactgc ctggatgagg gcactgtgcg gagtatggc
660
actgaggaat tcaatggcag cgattggag aaggccatga aagagcacaa gaccatcaag
720
aacatgtcta aagagtgagc ttctgcctct cctgcccgtaa aaaggaggaa tgattgggc
780
cagcaactt gctctccctg ccgtgcctcg gtggtgctcc tgaatgtggc tgacctggc
840
tgctggttcc gttgactagg gtcatcttga tctctgcagt ttgctccagc taccagttc
900
tttaggcagc tccttgcctt ccctctgccc agatttgat gtagtctaattgacatcctt
960
ctcttcccaa cttttgtgtg atccagcaga gcatgtgaga ctctttgata tgcacccatca
1020
tgtattatct tgccatgttc tctgagggttggatcattat tatttccat tttgcagatg
1080
agagaattga ggcagagaaa ggtcagcac cttgccttg gttacacagc tggtcattct
1140
ggcttcaatc gcaggactac cagcctgtgc tcttcaccac ttagcttccc tgactcaggc
1200
cacttccctg gagcgttagc tggattctga gagtagtttc caagccagag ctccagaga
1260
gctttgttc gtaggacaat tttaagacat caggttcttg aatgtttgt gttttttaa
1320
gtctcagatt tatcttccta cttcctactt ctccaaaaag actgagagct gacatatttgc
1380
attgtaaatct ctttggggca gagttttgt aatcgtctct gtataaaaca gtgcccaccc
1440
cagtgacctg tacttggatg cttcaatcag agctgtcttg tttaaatagag caagtttttc
1500
ctagacccac attct
1515

<210> 6242
<211> 245
<212> PRT
<213> Homo sapiens

<400> 6242
Cys Gly Arg Cys Leu Gly Pro Ser Ala Thr Arg Thr Arg Arg Ser Ala
1 5 10 15
Ser Gln Ala Gly Ser Lys Ser Gln Ala Val Glu Lys Pro Pro Ser Glu

	20	25	30
Lys	Pro Arg Leu Arg Arg Ser Ser Arg Arg Ala Pro Gly Gly Gly Pro		
35	40	45	
Gly	Glu Pro Pro Pro Glu Leu Ala Leu Leu Pro Pro Pro Pro		
50	55	60	
Pro	Pro Pro Thr Pro Ala Thr Pro Thr Ser Ser Ala Ser Asn Leu Asp		
65	70	75	80
Leu	Gly Glu Gln Arg Asp Ala Trp Glu Thr Phe Gln Lys Arg Gln Lys		
85	90	95	
Leu	Thr Ser Glu Gly Ala Ala Lys Leu Leu Leu Asp Thr Phe Glu Tyr		
100	105	110	
Gln	Gly Leu Val Lys His Thr Gly Gly Cys His Cys Gly Ala Val Arg		
115	120	125	
Phe	Glu Val Trp Ala Ser Ala Asp Leu His Ile Phe Asp Cys Asn Cys		
130	135	140	
Ser	Ile Cys Lys Lys Gln Asn Arg His Phe Ile Val Pro Ala Ser		
145	150	155	160
Arg	Phe Lys Leu Leu Lys Gly Ala Glu His Ile Thr Thr Tyr Thr Phe		
165	170	175	
Asn	Thr His Lys Ala Gln His Thr Phe Cys Lys Arg Cys Gly Val Gln		
180	185	190	
Ser	Phe Tyr Thr Pro Arg Ser Asn Pro Gly Gly Phe Gly Ile Ala Pro		
195	200	205	
His	Cys Leu Asp Glu Gly Thr Val Arg Ser Met Val Thr Glu Glu Phe		
210	215	220	
Asn	Gly Ser Asp Trp Glu Lys Ala Met Lys Glu His Lys Thr Ile Lys		
225	230	235	240
Asn	Met Ser Lys Glu		
	245		

<210> 6243

<211> 326

<212> DNA

<213> Homo sapiens

<400> 6243

gcgcgccagg gagagaagga gaggaactga tggaacaaag tcaaagagga agtggataa
60

gataggacat aaggcacacgt ggagcattca gatccagaga ggatgatcat caccctttcc

120

tctgagacca gagggacaaa ccataatgag tgaagagatg aggacattct taaagtggag
180ctagcaaagc tggaatggc cttccacaag agggAACcta agactggacc cagaatagta
240aagggtggtt tggggacttg aggcaagtga gaaagctctg gaaatgccgc tggataaatt
300ctgttagggat gcattcctgg agagtg
326

<210> 6244

<211> 104

<212> PRT

<213> Homo sapiens

<400> 6244

Met His Pro Tyr Arg Ile Tyr Pro Ala Ala Phe Pro Glu Leu Ser His
1 5 10 15
Leu Pro Gln Val Pro Lys Pro Thr Phe Thr Ile Leu Gly Pro Val Leu
20 25 30
Gly Phe Leu Leu Trp Lys Ala Ile Pro Ser Phe Ala Ser Ser Thr Leu
35 40 45
Arg Met Ser Ser Ser Leu His Ser Leu Trp Phe Val Pro Leu Val Ser
50 55 60
Glu Glu Glu Val Leu Ile Ile Leu Ser Gly Ser Glu Cys Ser Thr Cys
65 70 75 80
Pro Tyr Val Leu Ser Tyr Pro Thr Ser Ser Leu Thr Leu Phe His Gln
85 90 95
Phe Leu Ser Phe Ser Pro Trp Arg
100

<210> 6245

<211> 6609
<212> DNA
<213> Homo sapiens

<400> 6245

tctggagtct gcctcatttt gaatataatct ctctggtctt tgggctgctg attttaaaat
60
aagttcttgg ttcaagtcaa cctgttactt gccattggat ggtaatattt gactttccaa
120
tcttatcctg attgataagc ggactcccag ttttgcctt ctcttgccc cagaatttgg
180
agacctcgaa cctctccctt gctttctcc tcttccttag attttctcaa gtgtccccgt
240
ttagtcttcc ctcttcagct tggctcctga gaacatttgc tgctgctttt gttttttag
300
gtgttggaca atcagataaa gaaagacctg gctgacaagg agacactgga gaacatgatg
360
cagagacacg aggaggaggc ccatgagaag ggcaaaattc tcagcgaaca gaaggcgatg
420
atcaatgcta tggattccaa gatcagatcc ctggAACAGA ggattgtgga actgtctgaa
480
gccaataaac ttgcagcaaa tagcagtctt tttacccaaa ggaacatgaa ggcccaagaa
540
gagatgattt ctgaactcag gcaacagaaa ttttacctgg agacacaggc tgggaagttg
600
gaggccaga accgaaaact ggaggagcag ctggagaaga tcagccacca agaccacagt
660
gacaagaatc ggctgctgga actggagaca agattgcggg aggtcagtct agagcacgag
720
gagcagaaac tggagctcaa gcgccagctc acagagctac agctctccct gcaggagcgc
780
gagtcacagt tgacagccct gcaggctgca cgggcggccc tggagagcca gcttcgcccag
840
gcgaagacag agctggaaga gaccacagca gaagctgaag aggagatcca ggcactcactg
900
gcacatagag atgaaatcca gcgcaaattt gatgctttc gtaacagctg tactgtaatc
960

acagacacctgg aggaggcagct aaaccagact accgaggaca acgctgaact caacaaccaa
1020
aacttctact tgtccaaaca actcgatgag gcttctggcg ccaacgacga gattgtacaa
1080
ctgcgaagtg aagtggacca tctccgcgg gagatcacgg aacgagagat gcagcttacc
1140
agccagaagc aaacgatgga ggctctgaag accacgtgca ccatgctgga ggaacaggtc
1200
atggatttg aggcccataaa cgatgagctg ctagaaaaag agcggcagtg ggaggcctgg
1260
aggagcgtcc tgggtgatga gaaatcccag tttgagtgtc gggttcgaga gctgcagaga
1320
atgctggaca ccgagaaaaca gagcagggcg agagccgatc acggatcac cgagtctcgc
1380
caggtggtgg agctggcagt gaaggagcac aaggctgaga ttctcgctct gcagcaggct
1440
ctcaaagagc agaagctgaa ggccgagagc ctctctgaca agctcaatga cctggagaag
1500
aagcatgcta tgcttgaat gaatgccgaa agttacagc agaagctgga gactgaacga
1560
gagctcaaac agaggcttct ggaagagcaa gccaaattac agcagcagat ggacctgcag
1620
aaaaatcaca tttccgtct gactcaagga ctgcaagaag ctctagatcg ggctgatcta
1680
ctgaagacag aaagaagtga cttggagtt cagctggaaa acattcaggt tctctattct
1740
catgaaaagg taaaaatgga aggcaactatt tctcaacaaa ccaaactcat tgattttctg
1800
caagccaaaa tggaccaacc tgctaaaaag aaaaaggttc ctctgcagta caatgagctg
1860
aagctggccc tggagaagga gaaagctcgc tgtgcagagc tagaggaagc cttcagaag
1920
acccgcatcg agctccggtc cgcccgaggag gaagctgccc accgcaaagc aacggaccac
1980
ccacacccat ccacgcccagc caccgcgagg cagcagatcg ccatgtctgc catcgtgcgg
2040
tcgcccagagc accagcccag tgccatgagc ctgctggccc cgccatccag ccgcagaaag
2100
gagtctcaa ctccagagga atttagtcgg cgtcttaagg aacgcattgca ccacaatatt
2160
cctcaccat tcaacgtagg actgaacatg cgagccacaa agtgtgctgt gtgtctggat
2220
accgtgcact ttggacgcca ggcattccaaa tgtctcaat gtcaggtgat gtgtcacccc
2280
aagtgcctca cgtgcttgcc agccacctgc ggcttgcctg ctgaatatgc cacacacttc
2340
accgaggcct tctgcgtga caaatgaac tccccaggc tccagaccaa ggagccagc
2400
agcagcttgc acctggaaagg gtggatgaag gtgcccagga ataacaaacg aggacagcaa
2460
ggctggaca ggaagtacat tgtcctggag ggatcaaaag tcctcattta tgacaatgaa
2520
gccagagaag ctggacagag gcccgtggaa gaatttgagc tgtgccttcc cgacggggat
2580

gtatcttac atgggccgt tgggtttcc gaactcgcaa atacagccaa agcagatgc
2640
ccatacatac tgaagatgga atctcacccg cacaccacct gctggcccg gagaaccctc
2700
tacttgctag ctcccagctt ccctgacaaa cagcgctggg tcaccgcctt agaattcagtt
2760
gtcgcaggta ggagagtttc tagggaaaaa gcagaagctg atgctaaact gcttgaaac
2820
tccctgctga aactggaagg tgatgaccgt ctagacatga actgcacgct gcccttcagt
2880
gaccagggtgg tggtgggtggg caccgaggaa gggctctacg ccctgaatgt cttgaaaaac
2940
tccctaacc accgtcccagg aattggagca gtcttccaaa ttatattat caaggacctg
3000
gagaagctac tcatgatagc aggagaagag cgggcactgt gtcttgttgg a cgtgaagaaa
3060
gtgaaacagt ccctggccca gtcccacctg cctgcccagc ccgacatctc acccaacatt
3120
tttgaagctg tcaagggttg ccacttgttt gggcaggca agattgagaa cgggcctctgc
3180
atctgtgcag ccatgcccag caaagtcgtc attctccgct acaacgaaaa cctcagcaaa
3240
tactgcattcc ggaaagagat agagacctca gagccctgca gctgtatcca cttcaccaat
3300
tacagtatcc tcatttggAAC caataaattt tacgaaatcg acatgaagca gtacacgctc
3360
gaggaattcc tggataagaa tgaccattcc ttggcacctg ctgtgtttgc cgccctttcc
3420
aacagcttcc ctgtctcaat cgtgcaggta aacagcgcag ggcagcggaga ggagtacttg
3480
ctgtgttcc acgaatttgg agtgttctgt gattttacg gaagacgtag ccgcacagac
3540
gatctcaagt ggagtcgtt acctttggcc tttgcctaca gagaacccta tctgtttgtg
3600
acccacttca actcactcga agtaatttgg atccaggcac gctcctcagc agggacccct
3660
gccccgagcgt acctggacat cccgaaccccg cgctacctgg gccctgcccatttccctcagga
3720
gcatgttact tggcgccctc ataccaggat aaattaaggg tcatttgcgt caaggaaac
3780
ctcgtgaagg agtccggcac tgaacaccac cggggcccg ccacccccc cagcagcccc
3840
aacaagcgag gcccacccac gtacaacgag cacatcacca agcgcgtggc ctccagccca
3900
gccccggcccg aaggccccag ccacccgcga gagccaagca caccggcccg ctaccgcgag
3960
ggccggaccg agctgcgcag ggacaagtct cctggccgccc ccctggagcg agagaagtcc
4020
ccccggcccg tgcgtcagcac gcggagagag cggccccccgg ggaggctgtt tgaagacagc
4080
agcaggggcc ggctgcctgc gggagccgtg aggacccgc tgcctccaggtaacaagggtc
4140
tgggaccagt cttcgtata aatctcagcc agaaaaacca actcctcattc ttgatctgca
4200

ggaaaacacc aaacacacta tggaactctg ctgatggga cccaagcgcc cacgtgctca
4260
gccaccctct ggctcagcgg ggcccagacc cacctcgca cgacaccccc tgtctccagg
4320
aggggcagggt ggctgaggct ctteggagct gtcagcggcc ggtgcctgcc ctggcacct
4380
ccctgcagtc atctcttgc actttgtac tcttcaaag cattcacaaa ctttgtacc
4440
tagctctagc ctgtaccagt tagttcatca aaggaaacca accggatgc taactacaac
4500
atggtagaa tcctaattag ctacttaag atcctaggat tggttggtt ttctttttt
4560
tttcttttg tttctttcct tttttttt ttttttaag acaacagaat tcttaataga
4620
tttgaatagc gacgtatttc ctgtttagt cattttagc tcgaccacat catcaggct
4680
ttgccaccga ggcatagtgt agaacagtcc cggtcagttg gccaacctcc cgccagccaa
4740
taggttcatc ctgttccctg ttcatttca tagatggccc tgctttcccc agggtgacat
4800
cgtagccaaa ttttactgt tttcattgcc ttttatggcc ttgacgactt cccctccac
4860
cagctgagaa tttatggagg tttatggggc ctcagctgg aggcagtgac ttggggccaa
4920
gggacccgaa gacgcttcc ttccccaccc cccagcgtca tctccccagc ctgctgtcc
4980
cgcttccat atagcttgg ccaggaaagc atgaaataga cttgctcgga gcccagcact
5040
cctgggtctc ggggtcgaaaa aggggacggg ggcacccact tccctgtctg tgacggcgtg
5100
ttgttccca ctctggatg gggaaagaggc ccgtcggag ttctgcattt cagttcactg
5160
catgtctgc ccccttgggt tgctctgcc atgtattat accatccat agctcctgcc
5220
aaatcgagac cctctgacga cttgccact aactggccac cacaagctgc agtctgttagc
5280
actgaacaaa caaaaaacaa aacgctcaag ctttacgacc agagaaggat ttcagcaaac
5340
caccacccctcc cactcagtgt cccctccaaa cttcacactt ccctgcctgc agaggatgac
5400
tctgttcaca cccaatccag cgccgttcta ccccacgaaa ctgtgacttt ccaaattgagc
5460
ctttccctag ggctagaccc aagaccagga agttttagag agcagccgca gctcaactct
5520
tccagctccg ccagggttgg gaagtcctta ggtgcagtgc ggctccact gggctttcg
5580
gaccctccata ttagagtacg aaattcctgg caactggat agaaccaacc tagaggctt
5640
gcagttggca agctaactcg cggccttatt tctgccttta atctccacca aggcatctgt
5700
tgctttgggt cctccacgac tcttagggcc gcctcaacaa cccaggcacc tccttaggtag
5760
gctcaaggt agaccgttt ccaccgcagc aggtgaacat gaccgtgtt tcaactgtgt
5820

ccacagttca gatcccttgc cagattgcaa cctggcctgc atcccagctc cttccctgctc
 5880
 gtgtcttaac ctaagtgc ttctgtttga aacgcctaca aacctccatg tggtagctcc
 5940
 tttggcaa at gtcctgctgt ggcgtttat gtgttgc ttg gagtctgtgg ggtcgta tc
 6000
 cctccctcc cgtccccagg gcagattga ttgaatgttt gctgaagttt tgtctcttgg
 6060
 tccacagtat ttggaaaggt cactgaaa at gggctttca gtcttggcat ttcattttagg
 6120
 atctccatga gaaatgggct tcttgagccc tgaaaatgta tattgtgtgt ctcatctgtg
 6180
 aactgcttc tgctatatag aactagctca aaagactgta catatttaca agaaaacttta
 6240
 tattcgtaaa aaaaaaaaaga ggaaattgaa ttggttctta ctttttattt gtaaaaagggtg
 6300
 cattttcaa cacttacttt tggttcaat ggtggtagtt gtggacagcc atcttcactg
 6360
 gaggggtgggg agctccgtgt gaccaccaag atgccagcag gatataccgt aacacgaaat
 6420
 tgctgtcaaa agcttattag catcaatcaa gattctaggt ctccaaaagt acaggctttt
 6480
 ttttcatttac ctttttattt cagaacgagg aagagaacac aaggaatgat tcaagatcca
 6540
 ctttgagagg aatgaacttt gttgttgaac aatttagtcaa ataaagcaat gatctaaact
 6600
 aaaaaaaaaa
 6609

<210> 6246
 <211> 1286
 <212> PRT
 <213> Homo sapiens

<400> 6246
 Val Leu Asp Asn Gln Ile Lys Lys Asp Leu Ala Asp Lys Glu Thr Leu
 1 5 10 15
 Glu Asn Met Met Gln Arg His Glu Glu Glu Ala His Glu Lys Gly Lys
 20 25 30
 Ile Leu Ser Glu Gln Lys Ala Met Ile Asn Ala Met Asp Ser Lys Ile
 35 40 45
 Arg Ser Leu Glu Gln Arg Ile Val Glu Leu Ser Glu Ala Asn Lys Leu
 50 55 60
 Ala Ala Asn Ser Ser Leu Phe Thr Gln Arg Asn Met Lys Ala Gln Glu
 65 70 75 80
 Glu Met Ile Ser Glu Leu Arg Gln Gln Lys Phe Tyr Leu Glu Thr Gln
 85 90 95
 Ala Gly Lys Leu Glu Ala Gln Asn Arg Lys Leu Glu Glu Gln Leu Glu
 100 105 110
 Lys Ile Ser His Gln Asp His Ser Asp Lys Asn Arg Leu Leu Glu Leu
 115 120 125
 Glu Thr Arg Leu Arg Glu Val Ser Leu Glu His Glu Glu Gln Lys Leu
 130 135 140
 Glu Leu Lys Arg Gln Leu Thr Glu Leu Gln Leu Ser Leu Gln Glu Arg

145	150	155	160
Glu Ser Gln Leu Thr Ala Leu Gln Ala Ala Arg Ala Ala Leu Glu Ser			
165	170	175	
Gln Leu Arg Gln Ala Lys Thr Glu Leu Glu Glu Thr Thr Ala Glu Ala			
180	185	190	
Glu Glu Glu Ile Gln Ala Leu Thr Ala His Arg Asp Glu Ile Gln Arg			
195	200	205	
Lys Phe Asp Ala Leu Arg Asn Ser Cys Thr Val Ile Thr Asp Leu Glu			
210	215	220	
Glu Gln Leu Asn Gln Leu Thr Glu Asp Asn Ala Glu Leu Asn Asn Gln			
225	230	235	240
Asn Phe Tyr Leu Ser Lys Gln Leu Asp Glu Ala Ser Gly Ala Asn Asp			
245	250	255	
Glu Ile Val Gln Leu Arg Ser Glu Val Asp His Leu Arg Arg Glu Ile			
260	265	270	
Thr Glu Arg Glu Met Gln Leu Thr Ser Gln Lys Gln Thr Met Glu Ala			
275	280	285	
Leu Lys Thr Thr Cys Thr Met Leu Glu Glu Gln Val Met Asp Leu Glu			
290	295	300	
Ala Leu Asn Asp Glu Leu Leu Glu Lys Glu Arg Gln Trp Glu Ala Trp			
305	310	315	320
Arg Ser Val Leu Gly Asp Glu Lys Ser Gln Phe Glu Cys Arg Val Arg			
325	330	335	
Glu Leu Gln Arg Met Leu Asp Thr Glu Lys Gln Ser Arg Ala Arg Ala			
340	345	350	
Asp Gln Arg Ile Thr Glu Ser Arg Gln Val Val Glu Leu Ala Val Lys			
355	360	365	
Glu His Lys Ala Glu Ile Leu Ala Leu Gln Gln Ala Leu Lys Glu Gln			
370	375	380	
Lys Leu Lys Ala Glu Ser Leu Ser Asp Lys Leu Asn Asp Leu Glu Lys			
385	390	395	400
Lys His Ala Met Leu Glu Met Asn Ala Arg Ser Leu Gln Gln Lys Leu			
405	410	415	
Glu Thr Glu Arg Glu Leu Lys Gln Arg Leu Leu Glu Glu Gln Ala Lys			
420	425	430	
Leu Gln Gln Gln Met Asp Leu Gln Lys Asn His Ile Phe Arg Leu Thr			
435	440	445	
Gln Gly Leu Gln Glu Ala Leu Asp Arg Ala Asp Leu Leu Lys Thr Glu			
450	455	460	
Arg Ser Asp Leu Glu Tyr Gln Leu Glu Asn Ile Gln Val Leu Tyr Ser			
465	470	475	480
His Glu Lys Val Lys Met Glu Gly Thr Ile Ser Gln Gln Thr Lys Leu			
485	490	495	
Ile Asp Phe Leu Gln Ala Lys Met Asp Gln Pro Ala Lys Lys Lys Lys			
500	505	510	
Val Pro Leu Gln Tyr Asn Glu Leu Lys Leu Ala Leu Glu Lys Glu Lys			
515	520	525	
Ala Arg Cys Ala Glu Leu Glu Ala Leu Gln Lys Thr Arg Ile Glu			
530	535	540	
Leu Arg Ser Ala Arg Glu Glu Ala Ala His Arg Lys Ala Thr Asp His			
545	550	555	560
Pro His Pro Ser Thr Pro Ala Thr Ala Arg Gln Gln Ile Ala Met Ser			
565	570	575	
Ala Ile Val Arg Ser Pro Glu His Gln Pro Ser Ala Met Ser Leu Leu			

	580	585	590
Ala Pro Pro Ser Ser Arg Arg Lys Glu Ser Ser Thr Pro Glu Glu Phe			
595	600	605	
Ser Arg Arg Leu Lys Glu Arg Met His His Asn Ile Pro His Arg Phe			
610	615	620	
Asn Val Gly Leu Asn Met Arg Ala Thr Lys Cys Ala Val Cys Leu Asp			
625	630	635	640
Thr Val His Phe Gly Arg Gln Ala Ser Lys Cys Leu Glu Cys Gln Val			
645	650	655	
Met Cys His Pro Lys Cys Ser Thr Cys Leu Pro Ala Thr Cys Gly Leu			
660	665	670	
Pro Ala Glu Tyr Ala Thr His Phe Thr Glu Ala Phe Cys Arg Asp Lys			
675	680	685	
Met Asn Ser Pro Gly Leu Gln Thr Lys Glu Pro Ser Ser Leu His			
690	695	700	
Leu Glu Gly Trp Met Lys Val Pro Arg Asn Asn Lys Arg Gly Gln Gln			
705	710	715	720
Gly Trp Asp Arg Lys Tyr Ile Val Leu Glu Gly Ser Lys Val Leu Ile			
725	730	735	
Tyr Asp Asn Glu Ala Arg Glu Ala Gly Gln Arg Pro Val Glu Glu Phe			
740	745	750	
Glu Leu Cys Leu Pro Asp Gly Asp Val Ser Ile His Gly Ala Val Gly			
755	760	765	
Ala Ser Glu Leu Ala Asn Thr Ala Lys Ala Asp Val Pro Tyr Ile Leu			
770	775	780	
Lys Met Glu Ser His Pro His Thr Thr Cys Trp Pro Gly Arg Thr Leu			
785	790	795	800
Tyr Leu Leu Ala Pro Ser Phe Pro Asp Lys Gln Arg Trp Val Thr Ala			
805	810	815	
Leu Glu Ser Val Val Ala Gly Gly Arg Val Ser Arg Glu Lys Ala Glu			
820	825	830	
Ala Asp Ala Lys Leu Leu Gly Asn Ser Leu Leu Lys Leu Glu Gly Asp			
835	840	845	
Asp Arg Leu Asp Met Asn Cys Thr Leu Pro Phe Ser Asp Gln Val Val			
850	855	860	
Leu Val Gly Thr Glu Glu Gly Leu Tyr Ala Leu Asn Val Leu Lys Asn			
865	870	875	880
Ser Leu Thr His Val Pro Gly Ile Gly Ala Val Phe Gln Ile Tyr Ile			
885	890	895	
Ile Lys Asp Leu Glu Lys Leu Leu Met Ile Ala Gly Glu Glu Arg Ala			
900	905	910	
Leu Cys Leu Val Asp Val Lys Lys Val Lys Gln Ser Leu Ala Gln Ser			
915	920	925	
His Leu Pro Ala Gln Pro Asp Ile Ser Pro Asn Ile Phe Glu Ala Val			
930	935	940	
Lys Gly Cys His Leu Phe Gly Ala Gly Lys Ile Glu Asn Gly Leu Cys			
945	950	955	960
Ile Cys Ala Ala Met Pro Ser Lys Val Val Ile Leu Arg Tyr Asn Glu			
965	970	975	
Asn Leu Ser Lys Tyr Cys Ile Arg Lys Glu Ile Glu Thr Ser Glu Pro			
980	985	990	
Cys Ser Cys Ile His Phe Thr Asn Tyr Ser Ile Leu Ile Gly Thr Asn			
995	1000	1005	
Lys Phe Tyr Glu Ile Asp Met Lys Gln Tyr Thr Leu Glu Glu Phe Leu			

1010	1015	1020
Asp Lys Asn Asp His Ser Leu Ala Pro Ala Val Phe Ala Ala Ser Ser		
1025	1030	1035
Asn Ser Phe Pro Val Ser Ile Val Gln Val Asn Ser Ala Gly Gln Arg		1040
1045	1050	1055
Glu Glu Tyr Leu Leu Cys Phe His Glu Phe Gly Val Phe Val Asp Ser		
1060	1065	1070
Tyr Gly Arg Arg Ser Arg Thr Asp Asp Leu Lys Trp Ser Arg Leu Pro		
1075	1080	1085
Leu Ala Phe Ala Tyr Arg Glu Pro Tyr Leu Phe Val Thr His Phe Asn		
1090	1095	1100
Ser Leu Glu Val Ile Glu Ile Gln Ala Arg Ser Ser Ala Gly Thr Pro		
1105	1110	1115
Ala Arg Ala Tyr Leu Asp Ile Pro Asn Pro Arg Tyr Leu Gly Pro Ala		1120
1125	1130	1135
Ile Ser Ser Gly Ala Ile Tyr Leu Ala Ser Ser Tyr Gln Asp Lys Leu		
1140	1145	1150
Arg Val Ile Cys Cys Lys Gly Asn Leu Val Lys Glu Ser Gly Thr Glu		
1155	1160	1165
His His Arg Gly Pro Ser Thr Ser Arg Ser Ser Pro Asn Lys Arg Gly		
1170	1175	1180
Pro Pro Thr Tyr Asn Glu His Ile Thr Lys Arg Val Ala Ser Ser Pro		
1185	1190	1195
Ala Pro Pro Glu Gly Pro Ser His Pro Arg Glu Pro Ser Thr Pro His		1200
1205	1210	1215
Arg Tyr Arg Glu Gly Arg Thr Glu Leu Arg Arg Asp Lys Ser Pro Gly		
1220	1225	1230
Arg Pro Leu Glu Arg Glu Lys Ser Pro Gly Arg Met Leu Ser Thr Arg		
1235	1240	1245
Arg Glu Arg Ser Pro Gly Arg Leu Phe Glu Asp Ser Ser Arg Gly Arg		
1250	1255	1260
Leu Pro Ala Gly Ala Val Arg Thr Pro Leu Ser Gln Val Asn Lys Val		
1265	1270	1275
Trp Asp Gln Ser Ser Val		1280
1285		

<210> 6247
<211> 497
<212> DNA
<213> Homo sapiens

<400> 6247
gcggccgcag cgctgaatgg ggtggaccga cgttccctgc agcgttcaca aggctggctc
60
tagaagtgct ggagagggcc aagaggaggg cggtggactg gcatgccctg gagcgtccca
120
aaggctgcat gggggtcctt gccccggagg cgccccacct agagaaacag ccggcagccg
180
ccccgcagcg cgttctcccg ggagagaaaat attattcatc tgtgccagag gaaggagggg
240
caaccatgt ctatcgatat cacagaggcg agtcgaagct gcacatgtgc ttggacatag
300
ggaatggtca gagaaaaagac agaaaaaaaga catcccttgg tcctggaggc agctatcaa
360

tatcagagca tgctccagag gcatcccagc ctgtgagtac ggaactgctt acgcactggg
 420
 tttcaccacc gttgcaactc catgaaccag ttgacatggc tcttagaggg ctatttgaat
 480
 tgagtctata gtatttt
 497

<210> 6248
 <211> 142
 <212> PRT
 <213> Homo sapiens

<400> 6248
 Met Gly Trp Thr Asp Val Pro Cys Ser Val His Lys Ala Gly Ser Arg
 1 5 10 15
 Ser Ala Gly Glu Gly Gln Glu Glu Gly Gly Leu Ala Cys Pro Gly
 20 25 30
 Ala Ser Gln Arg Leu His Gly Gly Pro Cys Pro Gly Gly Ala Pro Pro
 35 40 45
 Arg Glu Thr Ala Gly Ser Arg Pro Ala Ala Arg Ser Pro Gly Arg Glu
 50 55 60
 Ile Leu Phe Ile Cys Ala Arg Gly Arg Arg Gly Asn Pro Cys Leu Ser
 65 70 75 80
 Leu Ser Gln Arg Arg Val Glu Ala Ala His Val Leu Gly His Arg Glu
 85 90 95
 Trp Ser Glu Lys Arg Gln Lys Lys Asp Ile Pro Trp Ser Trp Arg Gln
 100 105 110
 Leu Ser Asn Ile Arg Ala Cys Ser Arg Gly Ile Pro Ala Cys Glu Tyr
 115 120 125
 Gly Thr Ala Tyr Ala Leu Gly Phe Thr Thr Val Ala Thr Pro
 130 135 140

<210> 6249
 <211> 1217
 <212> DNA
 <213> Homo sapiens

<400> 6249
 nntgagcaac aaaccgagtt ctggagaacg ccatcagctc gctgcttaaa ctggaaacaa
 60
 aagtctcaac ttccaacctc tttgcagcta ggagtggcca agtagcatag atctggtaa
 120
 tgaactgcag gtggaaattt ctgagaaggt ttccttctta aatagaaaaga ttaaaccaca
 180
 ggttccatta tgggtcgact ttagtggaaa gtcatcatcc tgacggccgc tgctcagggg
 240
 attggccaag cagctgcctt agctttgca agagaaggta ccaaagtcat agccacagac
 300
 attaatgagt ccaaacttca ggaactggaa aagtacccgg gtattcaaac tcgtgcctt
 360
 gatgtcacaa agaagaaaaca aattgatcag tttgccatg aagttgagag acttgatgtt
 420
 ctcttaatg ttgctggttt tgtccatcat ggaactgtcc tggattgtga ggagaaaagac
 480

tgggacttct cgatgaatct caatgtgcgc agcatgtacc tgatgatcaa ggcattcctt
 540
 cctaaaatgc ttgctcagaa atctggcaat attatcaaca tgtcttctgt ggcttccagc
 600
 gtcaaaggag ttgtgaacag atgtgtgtac agcacaacca aggcagccgt gattggcctc
 660
 acaaaaatctg tggctgcaga tttcatccag cagggcatca ggtgcaactg tgtgtgccca
 720
 ggaacagttg atacgcccattc tctacaagaa agaatacaag ccagagggaaa tcctgaagag
 780
 gcacggaatg atttcctgaa gagacaaaag acgggaagat tcgcaactgc agaagaaaata
 840
 gccatgtct gcgtgtatTTT ggcttctgtat gaatctgctt atgttaactgg taaccctgtc
 900
 atcattgatg gaggctggag cttgtgattt taggatctcc atggtgggaa ggaaggcagg
 960
 cccttccttat ccacagtgaa cctgggttacg aagaaaactc accaatcatc tccttcctgt
 1020
 taatcacatg ttaatgaaaaa taagctcttt ttaatgatgt cactgtttgc aagagtctga
 1080
 ttctttaagt atattaatct ctttgtaatc tcttctgaaa tcattgtaaa gaaataaaaaa
 1140
 tattgaactc atagcaggag aatagttttt aaaataaaatc tcgatttgtt agcaaaaaaaaa
 1200
 aaaaaaaaaa aaaaaaaaa
 1217

<210> 6250
 <211> 245
 <212> PRT
 <213> Homo sapiens

<400> 6250
 Met Gly Arg Leu Asp Gly Lys Val Ile Ile Leu Thr Ala Ala Ala Gln
 1 5 10 15
 Gly Ile Gly Gln Ala Ala Ala Leu Ala Phe Ala Arg Glu Gly Ala Lys
 20 25 30
 Val Ile Ala Thr Asp Ile Asn Glu Ser Lys Leu Gln Glu Leu Glu Lys
 35 40 45
 Tyr Pro Gly Ile Gln Thr Arg Val Leu Asp Val Thr Lys Lys Lys Gln
 50 55 60
 Ile Asp Gln Phe Ala Asn Glu Val Glu Arg Leu Asp Val Leu Phe Asn
 65 70 75 80
 Val Ala Gly Phe Val His His Gly Thr Val Leu Asp Cys Glu Glu Lys
 85 90 95
 Asp Trp Asp Phe Ser Met Asn Leu Asn Val Arg Ser Met Tyr Leu Met
 100 105 110
 Ile Lys Ala Phe Leu Pro Lys Met Leu Ala Gln Lys Ser Gly Asn Ile
 115 120 125
 Ile Asn Met Ser Ser Val Ala Ser Ser Val Lys Gly Val Val Asn Arg
 130 135 140
 Cys Val Tyr Ser Thr Thr Lys Ala Ala Val Ile Gly Leu Thr Lys Ser
 145 150 155 160
 Val Ala Ala Asp Phe Ile Gln Gln Gly Ile Arg Cys Asn Cys Val Cys

165 170 175
Pro Gly Thr Val Asp Thr Pro Ser Leu Gln Glu Arg Ile Gln Ala Arg
180 185 190
Gly Asn Pro Glu Glu Ala Arg Asn Asp Phe Leu Lys Arg Gln Lys Thr
195 200 205
Gly Arg Phe Ala Thr Ala Glu Glu Ile Ala Met Leu Cys Val Tyr Leu
210 215 220
Ala Ser Asp Glu Ser Ala Tyr Val Thr Gly Asn Pro Val Ile Ile Asp
225 230 235 240
Gly Gly Trp Ser Leu
245

<210> 6251
<211> 1611
<212> DNA
<213> Homo sapiens

<400> 6251
ttttttttt tttttttttt tttttttttt tttttttttt ttttccagat caggaagttt
60 tattgtgac atgcaggaag agtccccatg tagtacaaaa atatgtctt atacaaactt
120 ttttgtgact ttttccgttt cttaacaata ggacttctct cagtgtgtga caccaggatgaa
180 gggctgaccc atcctcctct cctttgttc accaggaatg tcatacgaca catggcttga
240 ccttggaaagg gcccaagtctg tctgacaggg ctttgcagac ccggcggcta ttgccttgaa
300 aaggaggaga aagaccacgc acggggcagca gcctggaggg accccgggtggg ctgctgagag
360 ggggctccgc tgcgacgggc cctggcccag cttagggccc tcacaggagg acagtcaagg
420 480 tatagaaaag agggcatccc ccagccccac agcacaagac cctggccctc agcgctggac
540 agctgagaca gacgcaggct cgctgctcag gggagtaag tgctggcgtc cagtaggctc
600 ccacaggccc actgaggcag aggcattgagt cgcccaagtg ctggatgggg catggggaga
660 aaggggcgtg ggcagccctg ctactgctgg caagaggtgg ccccatttt tccagatggg
720 gaaactgagg cacaaggagg tttgggaaact tgcccaaggt cactcacagt gagtcagctt
780 ttttagggga ggagagcggc tcacactctg ggaaacacag tcacccccc actggggagc
840 agggccaggc aggagggggcc tcagggccca tgactgcctg gaggggacac tcagcccttc
900 tgaggacata tggggggtag gcctctgggg aagggtctt gcttggcatc aggcagggcc
960 aagtccagta agggcaaggg gagggggcat tctggtgaga acagcatttc tggcaagacg
1020 ggcatccact tcaaaaatctc ggctcaaaag ggcagcaggc ctgttctcaa gccaggcagg
1080

cagggtcccc caatccctac aattctcctg agtcctcac caccatggag gacccttgct
 1140
 agggtctacc gggagagtca ccacatctat tatgaggcaa gggcaactggg atatgttccc
 1200
 accatccctt aaacacaaga gtaggctagg ggagcgtgca ggcagccccc gtcacggcc
 1260
 aggccctgcag cccaaacccat gggcccttc gcactggag tccacgtgag ctcagtagcca
 1320
 1320
 cggggaagga tagagaaggg aacaggttaa cgcgctgtta cagcacctca gagaagccac
 1380
 tgagacggga gagaaagagc caggtctaga aaggcctccc atcaccggca gcagagaggg
 1440
 actggtgccc tgaaaaggga cagggactgg caggagggc ttccctgcct gggggtgagg
 1500
 agggagctca cgtgtgggct gtggattcct tgctgtccag ccaggctggg ggcagggagt
 1560
 ggcacatggac tgagccacct agagatggga gagaagttgg tatggtaan a
 1611

<210> 6252
<211> 100
<212> PRT
<213> Homo sapiens

<400> 6252
 Met Gly Gly Arg Pro Leu Gly Lys Gly Leu Cys Leu Ala Ser Gly Arg
 1 5 10 15
 Ala Lys Ser Ser Lys Gly Lys Gly Arg Gly His Ser Gly Glu Asn Ser
 20 25 30
 Ile Ser Gly Lys Thr Gly Ile His Phe Lys Ile Ser Ala Gln Lys Gly
 35 40 45
 Ser Arg Ala Val Leu Lys Pro Gly Arg Gln Gly Pro Pro Ile Pro Thr
 50 55 60
 Ile Leu Leu Ser Pro Ser Pro Pro Trp Arg Thr Leu Ala Arg Val Tyr
 65 70 75 80
 Arg Glu Ser His His Ile Tyr Tyr Glu Ala Arg Ala Leu Gly Tyr Val
 85 90 95
 Pro Thr Ile Pro
 100

<210> 6253
<211> 1953
<212> DNA
<213> Homo sapiens

<400> 6253
 nnngtgggta gcgggcaagg cgggcgccga gtttgcaaag gctcgcagcg gccagaaacc
 60
 cggctccgag cggcggcgcc cggcgttccg ctgcccgtga gctaaggacg gtccgcctcc
 120
 tctagccagc tccgaatccct gatccaggcg ggggccaggg gcccctcgcc tccccctctga
 180
 ggaccgaaga tgagcttcct cttcagcagc cgctttctaa aaacattcaa accaaagaag
 240

aatatccctg aaggatctca tcagtatgaa ctcttaaaac atgcagaagc aactcttagga
300
agtggaaatc tgagacaagc tggttatgtt cctgagggag aggatctcaa tgaatggatt
360
gctgtgaaca ctgtggattt cttaaccag atcaacatgt tatatggAAC tattacagaa
420
ttctgcactg aagcaagctg tccagtcatg tctgcaggc cgagatatga atatcactgg
480
gcagatggta ctaatattaa aaagccaatc aaatgttctg caccaaaaata cattgactat
540
ttgatgactt gggttcaaga tcagcttgat gatgaaactc ttttccttc taagatttgt
600
gtcccatttc ccaaaaactt tatgtctgtg gcaaagacta ttctaaagcg tctgttcagg
660
gtttatgccc atatttatca ccagcactt gattctgtga tgcagctgca agaggaggcc
720
cacctaaca ctcctttaa gcactttatt ttctttgttc aggagtttaa tctgattgt
780
aggcgtgagc tggcacctct tcaagaatta atagagaaac ttggatcaaa agacagataa
840
atgtttcttc tagaacacag ttacccctt gcttcatcta ttgctagaac tatctcattt
900
ctatctgtta tagacttagt atacaaactt taagaaaaca ggataaaaaag atacccattt
960
cctgtgtcta ctgataaaat tatcccaaag gtaggttgt gtgatagttt ccgagtaaga
1020
ccttaaggac acagccaaat cttaagtact gtgtgaccac tcttggttt atcacatgt
1080
catacttggt tgaatatgt gatggtaac ctgtagctt taaatttact tattatttt
1140
ttactcattt actcagtcat ttctttacaa gaaaatgatt gaatctgtt taggtgacag
1200
cacaatggac attaagaatt tccatcaata atttatgaat aagttccag aacaaattt
1260
ctaataacac aatcagattt gtttattct tttatTTAC gaataaaaaa tgtatTTTC
1320
agtacccctt agatTTAGAA catctgtgtc acttcagata acatTTAGT ttcaagttt
1380
tatggtagtg ttttataga taagatacgt ctatTTTC aaaattcatg attgcagttt
1440
aaatcatcat atgacgtgt ggtgggagca accaaagtta ttttacagg gactttatTT
1500
tttgatcttt atttgagatt gtttcatat ctatctaaat tattaggagt gtgtgtatca
1560
gaagtaattt tttaatgtct tctaaggatg gtctccagg ctTTAAACT gaaaagctt
1620
attcagatag tagctttgg ctgagaaaaag gaatccaaaa tattaataaa tttagatctc
1680
aaaaccacta ttttattat ttcatttattt ttcagaggcc taaaattct gggtaagaga
1740
atggagggaaa atactcagag tacttgatta ttTTATTTCC ttTTATTAAA aaattactt
1800
tatgtttta ttgtcttttgc agccttagtt aagagtagtg tagaaatgca tgaacttcat
1860

cctaataagg ataaaactta aggaaaacca caataaacca tgaaggtgta cacatcttaa

1920

aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa

1953

<210> 6254

<211> 216

<212> PRT

<213> Homo sapiens

<400> 6254

Met Ser Phe Leu Phe Ser Ser Arg Ser Ser Lys Thr Phe Lys Pro Lys

1 5 10 15

Lys Asn Ile Pro Glu Gly Ser His Gln Tyr Glu Leu Leu Lys His Ala

20 25 30

Glu Ala Thr Leu Gly Ser Gly Asn Leu Arg Gln Ala Val Met Leu Pro

35 40 45

Glu Gly Glu Asp Leu Asn Glu Trp Ile Ala Val Asn Thr Val Asp Phe

50 55 60

Phe Asn Gln Ile Asn Met Leu Tyr Gly Thr Ile Thr Glu Phe Cys Thr

65 70 75 80

Glu Ala Ser Cys Pro Val Met Ser Ala Gly Pro Arg Tyr Glu Tyr His

85 90 95

Trp Ala Asp Gly Thr Asn Ile Lys Pro Ile Lys Cys Ser Ala Pro

100 105 110

Lys Tyr Ile Asp Tyr Leu Met Thr Trp Val Gln Asp Gln Leu Asp Asp

115 120 125

Glu Thr Leu Phe Pro Ser Lys Ile Gly Val Pro Phe Pro Lys Asn Phe

130 135 140

Met Ser Val Ala Lys Thr Ile Leu Lys Arg Leu Phe Arg Val Tyr Ala

145 150 155 160

His Ile Tyr His Gln His Phe Asp Ser Val Met Gln Leu Gln Glu Glu

165 170 175

Ala His Leu Asn Thr Ser Phe Lys His Phe Ile Phe Phe Val Gln Glu

180 185 190

Phe Asn Leu Ile Asp Arg Arg Glu Leu Ala Pro Leu Gln Glu Leu Ile

195 200 205

Glu Lys Leu Gly Ser Lys Asp Arg

210 215

<210> 6255

<211> 622

<212> DNA

<213> Homo sapiens

<400> 6255

nntccggagg ctgagacagg agaatcgctt gaaccaggaa ggccgaggtt gcagttagcc

60

gagatcatgc cattgcactc cagcctggc aacagagtga gacttcatct caaaaaaaaa

120

aaagccacag tggctgcctt cacagccagc gagggccacg cacatcccacg ggtagtggag

180

ctacccaaga cggatgaggg cctaggcttc aacatcatgg gtggcaaaga gcaaaactcg

240

cccatctaca tctcccggtt catcccaggg ggtgtggctg accgccatgg aggcctcaag
 300
 cgtggggatc aactgttgtc ggtgaacggt gtgagcgttg agggtgagca gcatgagaag
 360
 gcggtgttggagc tgctgaaggc ggcccaggc tcgggtgaagc tgggtgtccg ttacacaccg
 420
 cgagtgttggaggc ggcccgggttc gagaagatgc gctctgcccgc cggcgccaa
 480
 cagcatcaga gctactcgtc cttggagtct cgagggttggaa accacagatc tggacgttca
 540
 cgtgcactct cttcctgtac agtatttatt gttcctggca ctttatttaa agattttga
 600
 ccctcaaaaa aaaaaaaaaaa aa
 622

<210> 6256
 <211> 150
 <212> PRT
 <213> Homo sapiens

<400> 6256
 Met Pro Leu His Ser Ser Leu Gly Asn Arg Val Arg Leu His Leu Lys
 1 5 10 15
 Lys Lys Lys Ala Thr Val Ala Ala Phe Thr Ala Ser Glu Gly His Ala
 20 25 30
 His Pro Arg Val Val Glu Leu Pro Lys Thr Asp Glu Gly Leu Gly Phe
 35 40 45
 Asn Ile Met Gly Gly Lys Glu Gln Asn Ser Pro Ile Tyr Ile Ser Arg
 50 55 60
 Val Ile Pro Gly Gly Val Ala Asp Arg His Gly Gly Leu Lys Arg Gly
 65 70 75 80
 Asp Gln Leu Leu Ser Val Asn Gly Val Ser Val Glu Gly Glu Gln His
 85 90 95
 Glu Lys Ala Val Glu Leu Leu Lys Ala Ala Gln Gly Ser Val Lys Leu
 100 105 110
 Val Val Arg Tyr Thr Pro Arg Val Leu Glu Glu Met Glu Ala Arg Phe
 115 120 125
 Glu Lys Met Arg Ser Ala Arg Arg Arg Gln Gln His Gln Ser Tyr Ser
 130 135 140
 Ser Leu Glu Ser Arg Gly
 145 150

<210> 6257
 <211> 2216
 <212> DNA
 <213> Homo sapiens

<400> 6257
 nttttttttt tttttttttt tttttgttc agcaatcttt attcagttct tcttgggggt
 60
 gggatgcctc ccttccccatg ctccccacccc tcccatccca gaactccgtt gggctcagtg
 120
 tcctctgttg agggaaaggtc ttgggtgccc gatgcctact ctgcaggaga gggaggaacc
 180

ttgtcccttt gccccggatcg ctggtctctt ctgttgtggg gaagaaggaa ggtggggaggg
240
gcactgtcca ccagcaactca gagctccatt atgtccccag ctggggttgc agggtagggg
300
ggactggggg tgccccccag cctcagcaga cggagggcct cagggatgag gctgccagga
360
tagcgccaga gaagcagctc agagcaaggg ctcctgagtg ggggcaggc tggggagaag
420
gtcatggggg ggctgcagta ggggtggtca ttgtgcagggc tgagttgaga gaagtgggtg
480
gccatgttct cctcagacag aaactgcttg cgcaaggct cctgctccctc ctccaggcgc
540
cgcttggtgc tcatggcac agctcctcg agaggggagc tggcgtccag gccccaaagtc
600
acccccaagg cggcccgcgg gaggcgctgg gccccctccct gggggcctcg ctgcaaggc
660
tgctgcagga tcattgggtt ttggggtccct ggggtggga tctgggcac aggggaggag
720
tctctgaggg cgtggccaag agaggatggg cgtggctta ggcgggcaca gccgcgaggt
780
tctgcgcggg cgcggaaagac gggcggcgcg tggcggaaagg caggcttgc cctcggggc
840
ggggagggta tccggcttaa gggggctgcg gtggacacca cttcttaatg tcgggggtct
900
tcgcggcgct cacctcggtc cctagggttc gggacggtaac gcaccagcca cttcgcgc
960
gaaggcggta gggcgccacg gagaggaacc gctctaggca cgtaaggcct cgtgaggttg
1020
cgtcgcgcgc ggagcaactct gggacttgcgatggata gttctggaga tggagcgcgc tggccgc
1080
gcgggtgcctc tgggtcagac agaggtgttc caggcctgc acggctcca tatgaccatc
1140
ttctcccaga gcgtctcacc atgtgggaag tttctggcg ctggcaacaa ttacgggcag
1200
attgcacatct tcagcttgct ctctgctttg agctcagaag ccaaagagga aagtaagaag
1260
ccgggtggta ctttccaagc ccatgatggg cccgtctata gcatggtttc caccgatcga
1320
catctgctta gtgctggggta tggggaggtg aaggcctggc tttgggcgga gatgctcaag
1380
aaggcgtgta aggagctgtg gcgtcgta cttccatata ggaccagcct ggaagtgc
1440
gagatcaacg ctttgcgtct ggtccccaaag gagaattccc tcattctggc tgggggagac
1500
tgtcagttgc acactatggc cttgaaaact gggactttca cgagggtcct cggggccac
1560
acagactaca tccactgcct ggcactgcgg gaaaggagcc cagaggtgct gtcaggtggc
1620
gaggatggag ctgttcgact ttgggacactg cgacacagcca aggaggtcca gacgatcgag
1680
tctataagca cgaggagtgcc tcgaggcccc acaatggcgc ctggattggta tgtttgact
1740
gattccgact ggatggtctg tggagggggc ccagccctca cctctggca cctccgatcc
1800

tccacaccca ccaccatctt cccccatccgg ggcacacaga agcacgtcac cttctaccag
 1860
 gacctgattc tgcgtcgactgg ccaggcccgc tgcgtcaacc agtggcagct gagcggggag
 1920
 ctgaaggccc aggtgcctgg ctcctccccca gggctgctca gcctcagcct caaccagcag
 1980
 cctgccgcgc ctgagtgcaa ggtcctgaca gctgcaggca acagctgccg ggtggatgtc
 2040
 ttccaccaacc tgggttaccc agccttctcc ctgtccttct gatctctgac gacaccccca
 2100
 gccagcttagt gtttttagag tgttttcat ttttttttt ttttttttt tacaataaaag
 2160
 ttccaggctt ttaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
 2216

<210> 6258
 <211> 340
 <212> PRT
 <213> Homo sapiens

<400> 6258
 Met Glu Arg Ala Val Pro Leu Ala Val Pro Leu Gly Gln Thr Glu Val
 1 5 10 15
 Phe Gln Ala Leu Gln Arg Leu His Met Thr Ile Phe Ser Gln Ser Val
 20 25 30
 Ser Pro Cys Gly Lys Phe Leu Ala Ala Gly Asn Asn Tyr Gly Gln Ile
 35 40 45
 Ala Ile Phe Ser Leu Ser Ser Ala Leu Ser Ser Glu Ala Lys Glu Glu
 50 55 60
 Ser Lys Lys Pro Val Val Thr Phe Gln Ala His Asp Gly Pro Val Tyr
 65 70 75 80
 Ser Met Val Ser Thr Asp Arg His Leu Leu Ser Ala Gly Asp Gly Glu
 85 90 95
 Val Lys Ala Trp Leu Trp Ala Glu Met Leu Lys Lys Gly Cys Lys Glu
 100 105 110
 Leu Trp Arg Arg Gln Pro Pro Tyr Arg Thr Ser Leu Glu Val Pro Glu
 115 120 125
 Ile Asn Ala Leu Leu Leu Val Pro Lys Glu Asn Ser Leu Ile Leu Ala
 130 135 140
 Gly Gly Asp Cys Gln Leu His Thr Met Asp Leu Glu Thr Gly Thr Phe
 145 150 155 160
 Thr Arg Val Leu Arg Gly His Thr Asp Tyr Ile His Cys Leu Ala Leu
 165 170 175
 Arg Glu Arg Ser Pro Glu Val Leu Ser Gly Gly Glu Asp Gly Ala Val
 180 185 190
 Arg Leu Trp Asp Leu Arg Thr Ala Lys Glu Val Gln Thr Ile Glu Ser
 195 200 205
 Ile Ser Thr Arg Ser Ala Arg Gly Pro Thr Met Gly Ala Gly Leu Asp
 210 215 220
 Val Trp Thr Asp Ser Asp Trp Met Val Cys Gly Gly Gly Pro Ala Leu
 225 230 235 240
 Thr Leu Trp His Leu Arg Ser Ser Thr Pro Thr Thr Ile Phe Pro Ile
 245 250 255
 Arg Ala Pro Gln Lys His Val Thr Phe Tyr Gln Asp Leu Ile Leu Ser

260	265	270
Ala Gly Gln Gly Arg Cys Val Asn Gln Trp Gln Leu Ser Gly Glu Leu		
275	280	285
Lys Ala Gln Val Pro Gly Ser Ser Pro Gly Leu Leu Ser Leu Ser Leu		
290	295	300
Asn Gln Gln Pro Ala Ala Pro Glu Cys Lys Val Leu Thr Ala Ala Gly		
305	310	315
Asn Ser Cys Arg Val Asp Val Phe Thr Asn Leu Gly Tyr Arg Ala Phe		
325	330	335
Ser Leu Ser Phe		
340		

<210> 6259

<211> 384

<212> DNA

<213> Homo sapiens

<400> 6259

ccatgcagcg atccccataga acacagctca gagtctgata acagtgtcct tgaaattcca
 60
 gatgcttcg atagaacaga gaacatgtta tctatgcaga aaaatgaaaa gataaaagtat
 120
 tctagtttg ctgccacaaa cactaggta aaagcaaaac agaaggctct cattagtaac
 180
 tcacatacag accacttaat gggttgtact aagagtgcag agcctgaaac cgagacgtct
 240
 caggttaatt ccttctctga tctgaaggca tctactcttg ttcacaaaacc ccagtcagat
 300
 tttacaaatg atgctctctc tccaaaattc aacctgtcat caagcatatc cagtgagaac
 360
 tcgttaataa agggtgtgggc agca
 384

<210> 6260

<211> 128

<212> PRT

<213> Homo sapiens

<400> 6260

Pro Cys Ser Asp Pro Ile Glu His Ser Ser Glu Ser Asp Asn Ser Val		
1	5	10
		15
Leu Glu Ile Pro Asp Ala Phe Asp Arg Thr Glu Asn Met Leu Ser Met		
20	25	30
Gln Lys Asn Glu Lys Ile Lys Tyr Ser Arg Phe Ala Ala Thr Asn Thr		
35	40	45
Arg Val Lys Ala Lys Gln Lys Pro Leu Ile Ser Asn Ser His Thr Asp		
50	55	60
His Leu Met Gly Cys Thr Lys Ser Ala Glu Pro Gly Thr Glu Thr Ser		
65	70	75
		80
Gln Val Asn Ser Phe Ser Asp Leu Lys Ala Ser Thr Leu Val His Lys		
85	90	95
Pro Gln Ser Asp Phe Thr Asn Asp Ala Leu Ser Pro Lys Phe Asn Leu		
100	105	110
Ser Ser Ser Ile Ser Ser Glu Asn Ser Leu Ile Lys Gly Gly Ala Ala		

115

120

125

<210> 6261
<211> 3619
<212> DNA
<213> Homo sapiens

<400> 6261
ntcctgcag gctctgcgtc gggaaagccg ctcattctcg cttcccccttc cctttcccg 60
60
ctcaagtccct tcctctctct ttcctttctt tccgcctatc ttttttctgc tgccgctccg 120
120
ggtccgggcc atttccggg ccggggcac taaggtgcgc ggccccgggg cccagtata 180
180
gaccggccgt cctgctatcc ttcgcttccc ccgcggcatg tggctgcggg gccgggggg 240
240
cgctgcccac tatggcccgg aaagtagtta gcaggaagcg gaaagcgccc gcctgcggg 300
300
gagctggag cgacgctcat gggccgcag tttggctggg atcactcgct tcacaaaagg 360
360
aaaagacttc ctccgtgaa gagatccta gtatactact tgaagaacccg ggaagtcagg 420
420
ctacagaatg aaaccagcta ctctcgagt ttcgcatttgc atgcagcaca gcaacttccc 480
480
agtctcctga aggagagaga gttcacctt gggaccctta ataaagtgtt tgcatttcag 540
540
tggttgaatc ataggcaagt ggtgtgtggc aaaaaatgca acacgctatt tgtcgtagat 600
600
gtccagacaa gccagatcac caagatcccc attctgaaag accgggagcc tggaggtgt 660
660
acccagcagg gctgtggtat ccatgcctc gagctgaatc cttctagaac actgttagcc 720
720
actggaggag acaaccccaa cagtctgcc atctatcgac tacctacgct ggatcctgtg 780
780
tgtgttaggag atgatggaca caaggactgg atctttcca tcgcattggat cagcgacact 840
840
atggcagtgt ctggctcacg tgcgtttct atggactct gggaggtgac agatgtatgtt 900
900
ttgacccaaa gtgatgcgag acacaatgtg tcacgggtcc ctgtgtatgc acacatca 960
960
cacaaggcct taaaggacat cccaaagaa gacacaaacc ctgacaactg caaggttcgg 1020
1020
gctctggcct tcaacaacaa gaacaaggaa ctggggcag tgcgtctggc tggctacttt 1080
1080
catctctgga aggctgaaaa tacactatct aagctcctct ccaccaaact gccatattgc 1140
1140
cgtgagaatg tgcgtctggc ttatggtagt gaatggtcag tttatgcagt gggctcccaa 1200
1200
gctcatgtct cttcttggc tccacggcag ccatcataca acgtcaagtc tgcgtctggc 1260
1260
aggggcggag gcagtggaat ccggtcagtg agtttctacg agcacatcat cactgtggg 1320
1320
acagggcagg gctccctgct gttctatgac atccgagctc agagatttct ggaagagagg 1380
1380

ctctcagctt gttatgggtc caagcccaga ctagcagggg agaatctgaa actaaccact
1440
ggcaaaggct ggctgaatca tcatgaaacc tggaggaatt acttttcaga cattgacttc
1500
ttccccatg ctgttacac ccactgctac gactcgctg gaacgaaact ctttgtggca
1560
ggaggtcccc tcccttcagg gctccatgga aactatgctg ggctctggag ttaatgacaa
1620
ctccccaaat gcagagattt acactaactt ccattctcag tttccttggt tctttgatt
1680
tttttttcc taattgtgtg aggctctgt gttttagtgg gaacacaaaa gttgcctat
1740
agtttaggca cttaatagga agaagctctg tacagaaatc tgaaagtgt tttgctttt
1800
gttttccct ttggtaatca aaattttact atctttatt atttctggct tttcaaccaa
1860
acattgtgc taatccctat tttctttaa gtgacacaca ttctcctgtc tctggcttct
1920
tcaggctgaa atgacatagt ctttctcacc cttacttcac tcttgagagg tagggctcct
1980
ttataattac atgggtgctc tcagacttcc tgtgaaagtt tgggagctgt gtgtgtctgt
2040
gtgtgtgtga gagagagatc ttgtctgcgt gtgtgtgt gatcttgtgt gcctgttaggt
2100
actgtgtgtc actgaaatta cctggagtga ggattacttg taattaaaat atttataaaa
2160
gaaacaactt tattcacaga gtccagctt gggactagtc ttttatctgt ttttaagtc
2220
taacaacact gataatagga agtaaaaaca gaaaggaaaa gaaattacca ctggaaaaat
2280
cttttagtt agattgtagg cttcctgggg cctccatgc caggactgca aagtgatcca
2340
gccctacctg tcttccacc tgtgtgtccc ccgtgtggga agttgggtgtc acttccctt
2400
cccaccccta catctgctta gccagtagcc acacccctaa aacatcagac tcaccatcca
2460
ggtcagctc cagaggctac aaaaggcttc atgggacttg aatccccatc ctagcttc
2520
tctcctccct ctcagacact gatctggttt taagggccct ggagctggga gtctcaagtc
2580
tgcttaagatt cacatccata gccccatgg ctttgaggag aatcctctt gcccattttc
2640
caatctcccc agtgggtttt gctattattt tctaaattgg gttaagtcta agaaggtggg
2700
ggtgagcagg gggtttatct gtgtgttagtg agtgcattcat gtgtggata ttcattttct
2760
tactgcagtg ggacttgggg ttgaagccac ccctcctact ctgttggctt agccctgaga
2820
tggtgacagg ctggcctgca gtcagcatca ttgtgcattgt gacagcatca atgtgattag
2880
taattttgtct gttcctccct tgaactgtct gttagtctg aggtttttaa acttgcaggc
2940
agctgactgt gatgtccact tgttccctga ttttacaca tcattgtcaaa gataacagct
3000

gttcccaccc accagttctt ctaagcacat actctgtttt tctgtcaaca tccccatttg
 3060
 gggaaaggaa aagtcatatt tattcctgca ccccagttt ttaacttgtt ctcccagttg
 3120
 tcccccttt ctctgggtgt aagaaggaa attggaaaaaa aaatttatata tatattctcc
 3180
 ttttaatggt ggggggctac tggagaggag agacagcaag tccaccctaa cttgttacac
 3240
 agcacatacc acaggttctg gaattctcat cttcgAACCT agagaaaatag gtgcataaa
 3300
 cagggattt agcaaaatgc tggatgctat agatcttttta attgtcttaa tttttttct
 3360
 attattaaac tacaggctgt agattctta gtttcacag aacttctatc attttaaact
 3420
 gacttgtata tttaaaaaaa aaatcttcag taggatgttt tgtactattt ctagaccctc
 3480
 ttctgtaatg ggtaatgcgt ttgattgttt gagattttct gtttttaaaa atgttagact
 3540
 tgacttttg ccaaggaaaaaa aaataaaaat tattccagtg caaaaaaaaaa aaaaaaaaaa
 3600
 aaaaaaaaaa aaaaaaaaaa
 3619

<210> 6262
 <211> 431
 <212> PRT
 <213> Homo sapiens

<400> 6262
 Met Gly Pro Gln Phe Gly Trp Asp His Ser Leu His Lys Arg Lys Arg
 1 5 10 15
 Leu Pro Pro Val Lys Arg Ser Leu Val Tyr Tyr Leu Lys Asn Arg Glu
 20 25 30
 Val Arg Leu Gln Asn Glu Thr Ser Tyr Ser Arg Val Leu His Gly Tyr
 35 40 45
 Ala Ala Gln Gln Leu Pro Ser Leu Leu Lys Glu Arg Glu Phe His Leu
 50 55 60
 Gly Thr Leu Asn Lys Val Phe Ala Ser Gln Trp Leu Asn His Arg Gln
 65 70 75 80
 Val Val Cys Gly Thr Lys Cys Asn Thr Leu Phe Val Val Asp Val Gln
 85 90 95
 Thr Ser Gln Ile Thr Lys Ile Pro Ile Leu Lys Asp Arg Glu Pro Gly
 100 105 110
 Gly Val Thr Gln Gln Gly Cys Gly Ile His Ala Ile Glu Leu Asn Pro
 115 120 125
 Ser Arg Thr Leu Leu Ala Thr Gly Gly Asp Asn Pro Asn Ser Leu Ala
 130 135 140
 Ile Tyr Arg Leu Pro Thr Leu Asp Pro Val Cys Val Gly Asp Asp Gly
 145 150 155 160
 His Lys Asp Trp Ile Phe Ser Ile Ala Trp Ile Ser Asp Thr Met Ala
 165 170 175
 Val Ser Gly Ser Arg Asp Gly Ser Met Gly Leu Trp Glu Val Thr Asp
 180 185 190
 Asp Val Leu Thr Lys Ser Asp Ala Arg His Asn Val Ser Arg Val Pro

195	200	205
Val Tyr Ala His Ile Thr His Lys Ala Leu Lys Asp Ile Pro Lys Glu		
210	215	220
Asp Thr Asn Pro Asp Asn Cys Lys Val Arg Ala Leu Ala Phe Asn Asn		
225	230	235
Lys Asn Lys Glu Leu Gly Ala Val Ser Leu Asp Gly Tyr Phe His Leu		
245	250	255
Trp Lys Ala Glu Asn Thr Leu Ser Lys Leu Leu Ser Thr Lys Leu Pro		
260	265	270
Tyr Cys Arg Glu Asn Val Cys Leu Ala Tyr Gly Ser Glu Trp Ser Val		
275	280	285
Tyr Ala Val Gly Ser Gln Ala His Val Ser Phe Leu Asp Pro Arg Gln		
290	295	300
Pro Ser Tyr Asn Val Lys Ser Val Cys Ser Arg Glu Arg Gly Ser Gly		
305	310	315
Ile Arg Ser Val Ser Phe Tyr Glu His Ile Ile Thr Val Gly Thr Gly		
325	330	335
Gln Gly Ser Leu Leu Phe Tyr Asp Ile Arg Ala Gln Arg Phe Leu Glu		
340	345	350
Glu Arg Leu Ser Ala Cys Tyr Gly Ser Lys Pro Arg Leu Ala Gly Glu		
355	360	365
Asn Leu Lys Leu Thr Thr Gly Lys Gly Trp Leu Asn His Asp Glu Thr		
370	375	380
Trp Arg Asn Tyr Phe Ser Asp Ile Asp Phe Phe Pro Asn Ala Val Tyr		
385	390	395
Thr His Cys Tyr Asp Ser Ser Gly Thr Lys Leu Phe Val Ala Gly Gly		
405	410	415
Pro Leu Pro Ser Gly Leu His Gly Asn Tyr Ala Gly Leu Trp Ser		
420	425	430

<210> 6263

<211> 2508

<212> DNA

<213> Homo sapiens

<400> 6263

nngcacgag gcaacctgcc ctcatcctgg cccgcgactg taagaccgga cccacatcca
 60
 gaccaatctt cctgtccggg ctgctgcac gcgggctccg caggttgcag gcgggcggcc
 120
 ggggcgcctg aaggttaccg agtgcatgag cgcctagcgc ttcccgcgct gccccgcccc
 180
 ctggccgcgc gacccgcccc cgggctcgcc cgccagcccc tcggcgcccc gcggcgccgg
 240
 cggcggtggc ggcgacggtc gcaggaggtg ccgtctgcct cccaggtgcg cgcttcgctc
 300
 ccggagccgc ggaactcgcc ggccgcctatg gcgtccaaca tggaccggga gatgatcctg
 360
 gcggattttc aggcatgtac tggcattgaa aacattgacg aagctattac attgcttgaa
 420
 caaaaataatt gggacttagt ggcagctatc aatggtgtaa taccacagga aaatggcatt
 480
 ctacaaagtg aatatggagg tgagaccata ccaggacctg catttaatcc agcaagtcat
 540

ccagcttcag ctcc tacttc ctcttcttc tcagcgttc gacctgtaat gccatccagg
600
cagattgttag aaaggcaacc tcggatgctg gacttcaggg ttgaatacag agacagaaat
660
gttgatgtgg tacttgaaga cacctgtact gttggagaga ttaaacagat tctagaaaat
720
gaacttcaga tacctgtgtc caaaatgctg ttaaaaggct ggaagacggg agatgtggaa
780
gacagtacgg tcctaaaatc tctacacttg caaaaaaaaaca acagtcttta tgtccttaca
840
ccagattgc caccaccccttc atcatctagt catgctggtg ccctgcagga gtcattaaat
900
caaaaactca tgctgatcat cacccaccga gaagtccagc gggagttacaa cctgaacttc
960
tcaggaagca gtactattca agaggtaaag agaaatgtgt atgaccttac aagtatcccc
1020
gttcgccacc aattatggga gggctggcca acttctgcta cagacgactc aatgtgtctt
1080
gctgaatcag ggctctctta tccctgccat cgacttacag tgggaagaag atcttcaccc
1140
gcacagaccc gggAACAGTC ggaagaacaa atcacccatg ttcatatggt tagtgatagc
1200
gatggagatg actttgaaga tgctacagaa tttgggtgg atgatggaga agtatttggc
1260
atggcgtcat ctgcctttag aaaatcttca atgatttggt ttttagtgcc agaaaacgca
1320
aaaaatgaag gagatgcctt attacaatTT acagcagatg tttcttcaag atatggatgat
1380
tgccatcctg tatttttat tggctcatta gaagctgctt ttcaagaggc cttctatgtg
1440
aaagcccag atagaaagct tcttgctatc tacctccacc atgatgaaag tgtgttaacc
1500
aacgttgtct gctcacaaat gctttgtgtc gaatccattt gttttatct gactcaaaat
1560
tttataacct gggcttggga tctgacaaag gactccaaca gagcaagatt tctcactatg
1620
tgcaatagac actttggcag tgggtggca caaaccattc ggactcaaaa aacggatcag
1680
tttccgctt tcctgattat tatggaaag cgatcatcta atgaagtgtt gaatgtgata
1740
caaggaaaca caacagttaga tgagttaatg atgagactca tggctgcaat ggagatctt
1800
acagcccaac aacaggaaga tataaaggac gaggatgaac gtgaagccag agaaaatgtg
1860
aagagagagc aagatgaggc ctatgcctt tcacttgagg ctgacagagc aaagagggaa
1920
gctcacgaga gagagatggc agaacagttt cgttggagc agattcgcaa agaacaagaa
1980
gaggaacgtg aggccatccg gctgtcctta gagcaagccc tgcctcctga gccaaggaa
2040
gaaaatgctg agcctgttag caaaactgcgg atccggaccc ccagtggcga gttcttggag
2100
cgccgtttcc tggccagcaa caagctccag attgtcttgc attttgttagc ttccaaagga
2160

tttccatggg atgagtacaa gttactgagc accttccta ggagagacgt aactcaactg
 2220
 gacccaaata aatcattatt ggaggtaaag ttgtccctc aagaaaccct ttccttcaa
 2280
 gcaaaagagt aaacacggcc cagcggtgga accagccatt cttgacaag ccagcagcct
 2340
 gcgtcaggag aagggtctct cgccaaccca cccacacgct cgtctcactc aattcaatgt
 2400
 cacacttctg cctcttgaa aattgctgga aaaagtaata ataaatatag ctacttaaga
 2460
 tttccaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa
 2508

<210> 6264
 <211> 654
 <212> PRT
 <213> Homo sapiens

<400> 6264
 Met Ala Ser Asn Met Asp Arg Glu Met Ile Leu Ala Asp Phe Gln Ala
 1 5 10 15
 Cys Thr Gly Ile Glu Asn Ile Asp Glu Ala Ile Thr Leu Leu Glu Gln
 20 25 30
 Asn Asn Trp Asp Leu Val Ala Ala Ile Asn Gly Val Ile Pro Gln Glu
 35 40 45
 Asn Gly Ile Leu Gln Ser Glu Tyr Gly Gly Glu Thr Ile Pro Gly Pro
 50 55 60
 Ala Phe Asn Pro Ala Ser His Pro Ala Ser Ala Pro Thr Ser Ser Ser
 65 70 75 80
 Ser Ser Ala Phe Arg Pro Val Met Pro Ser Arg Gln Ile Val Glu Arg
 85 90 95
 Gln Pro Arg Met Leu Asp Phe Arg Val Glu Tyr Arg Asp Arg Asn Val
 100 105 110
 Asp Val Val Leu Glu Asp Thr Cys Thr Val Gly Glu Ile Lys Gln Ile
 115 120 125
 Leu Glu Asn Glu Leu Gln Ile Pro Val Ser Lys Met Leu Leu Lys Gly
 130 135 140
 Trp Lys Thr Gly Asp Val Glu Asp Ser Thr Val Leu Lys Ser Leu His
 145 150 155 160
 Leu Pro Lys Asn Asn Ser Leu Tyr Val Leu Thr Pro Asp Leu Pro Pro
 165 170 175
 Pro Ser Ser Ser His Ala Gly Ala Leu Gln Glu Ser Leu Asn Gln
 180 185 190
 Asn Phe Met Leu Ile Ile Thr His Arg Glu Val Gln Arg Glu Tyr Asn
 195 200 205
 Leu Asn Phe Ser Gly Ser Ser Thr Ile Gln Glu Val Lys Arg Asn Val
 210 215 220
 Tyr Asp Leu Thr Ser Ile Pro Val Arg His Gln Leu Trp Glu Gly Trp
 225 230 235 240
 Pro Thr Ser Ala Thr Asp Asp Ser Met Cys Leu Ala Glu Ser Gly Leu
 245 250 255
 Ser Tyr Pro Cys His Arg Leu Thr Val Gly Arg Arg Ser Ser Pro Ala
 260 265 270
 Gln Thr Arg Glu Gln Ser Glu Glu Gln Ile Thr Asp Val His Met Val

275	280	285
Ser Asp Ser Asp Gly Asp Asp Phe Glu Asp Ala Thr	Glu Phe Gly Val	
290	295	300
Asp Asp Gly Glu Val Phe Gly Met Ala Ser Ser Ala	Leu Arg Lys Ser	
305	310	315
320		
Pro Met Ile Cys Phe Leu Val Pro Glu Asn Ala Glu	Asn Glu Gly Asp	
325	330	335
Ala Leu Leu Gln Phe Thr Ala Glu Phe Ser Ser Arg	Tyr Gly Asp Cys	
340	345	350
His Pro Val Phe Phe Ile Gly Ser Leu Glu Ala Ala	Phe Gln Glu Ala	
355	360	365
Phe Tyr Val Lys Ala Arg Asp Arg Lys Leu Leu Ala	Ile Tyr Leu His	
370	375	380
His Asp Glu Ser Val Leu Thr Asn Val Phe Cys Ser	Gln Met Leu Cys	
385	390	395
400		
Ala Glu Ser Ile Val Ser Tyr Leu Ser Gln Asn Phe	Ile Thr Trp Ala	
405	410	415
Trp Asp Leu Thr Lys Asp Ser Asn Arg Ala Arg Phe	Leu Thr Met Cys	
420	425	430
Asn Arg His Phe Gly Ser Val Val Ala Gln Thr Ile	Arg Thr Gln Lys	
435	440	445
Thr Asp Gln Phe Pro Leu Phe Ile Ile Met Gly Lys	Arg Ser Ser	
450	455	460
Asn Glu Val Leu Asn Val Ile Gln Gly Asn Thr	Thr Val Asp Glu Leu	
465	470	475
480		
Met Met Arg Leu Met Ala Ala Met Glu Ile Phe Thr	Ala Gln Gln Gln	
485	490	495
Glu Asp Ile Lys Asp Glu Asp Glu Arg Glu Ala Arg	Glu Asn Val Lys	
500	505	510
Arg Glu Gln Asp Glu Ala Tyr Arg Leu Ser Leu Glu	Ala Asp Arg Ala	
515	520	525
Lys Arg Glu Ala His Glu Arg Glu Met Ala Glu Gln	Phe Arg Leu Glu	
530	535	540
Gln Ile Arg Lys Glu Gln Glu Glu Arg Glu Ala Ile	Arg Leu Ser	
545	550	555
560		
Leu Glu Gln Ala Leu Pro Pro Glu Pro Lys Glu Glu	Asn Ala Glu Pro	
565	570	575
Val Ser Lys Leu Arg Ile Arg Thr Pro Ser Gly Glu	Phe Leu Glu Arg	
580	585	590
Arg Phe Leu Ala Ser Asn Lys Leu Gln Ile Val Phe	Asp Phe Val Ala	
595	600	605
Ser Lys Gly Phe Pro Trp Asp Glu Tyr Lys Leu Leu	Ser Thr Phe Pro	
610	615	620
Arg Arg Asp Val Thr Gln Leu Asp Pro Asn Lys Ser	Leu Leu Glu Val	
625	630	635
640		
Lys Leu Phe Pro Gln Glu Thr Leu Phe Leu Glu Ala	Lys Glu	
645	650	

<210> 6265
<211> 1344
<212> DNA
<213> Homo sapiens

<400> 6265

nnagcaattc cagcctctca ccgaccggaa caacaaggc ttaacccata ttactttg
60
aacacctctg gtagtggAAC aattttata gatctgtctc ctgatgataa agagttcag
120
tctgtggagg aagagatgca aagtacagtt cgagagcaca gagatggagg tcatgcagg
180
ggaatcttca acagatacaa tattctcaag attcagaagg tttgtAACAA gaaactatgg
240
gaaagataca ctcaccggag aaaagaagtt tctgaagAAA accacaacca tgccaatgaa
300
cgaatgctat ttcatgggtc tcctttgtg aatgcaatta tccacAAagg ctttgatgaa
360
aggcatgcgt acatagggtgg tatgtttggc gctggcattt atttgtcga aaactttcc
420
aaaagcaatc aatatgtata tggaattggc ggaggtactg ggtgtccagt tcacaaagac
480
agatcttgtt acatttgcCA caggcagctg ctctttgcc gggtaacctt gggaaagtct
540
ttccctgcagt tcagtgcAAT gaaaatggcA catttcctc caggtcatca ctcagtcact
600
ggttaggcccA gtgtAAatgg cctagcatta gctgaatatg ttatTTACAG aggagaacag
660
gcttatcctg agtatttaat tacttaccag attatgaggc ctgaaggat ggtcgatgg
720
taaatAGTta tttaagAAA ctaattccac tgaacctAAA atcatcaaAG cagcagtggc
780
ctctacgttt tactcctttg ctgaaaaAAA atcatcttgc ccacaggcct gtggcaaaag
840
gataAAAatg tgaacgaagt ttaacattct gacttgataa agctttata atgtacagt
900
ttttctaaat atttcctgtt ttTCAGCAC tttaacagat gccattccag gttAAactgg
960
gttgcgtgtA ctaaattata aacagagtta acttgaacct tttatATGTT atgcattgt
1020
tctaacaacA tgtaatgccc tcaacagaac taatTTACT aatacaatac tgtgttctt
1080
aaaacacAGC atttacactg aatacaattt cattgtAAA actgtAAATA agagctttg
1140
tactagcccA gtatttattt acattgcTTT gtaatataAA tctgttttag aactgcagcg
1200
gtttacaaaaA tttttcata tgtattgttc atctatactt catcttacat cgtcatgatt
1260
gagtgatctt tacatttgat tccagaggct atgttcagtt gttagttggg aaagattgag
1320
ttatcagatt taatTTGCCG atgg
1344

<210> 6266

<211> 240

<212> PRT

<213> Homo sapiens

<400> 6266

Xaa Ala Leu Pro Ala Ser His Arg Pro Gly Gln Gln Gly Leu Asn Pro

1	5	10	15												
Tyr	Leu	Thr	Leu	Asn	Thr	Ser	Gly	Ser	Gly	Thr	Ile	Leu	Ile	Asp	Leu
20							25								30
Ser	Pro	Asp	Asp	Lys	Glu	Phe	Gln	Ser	Val	Glu	Glu	Glu	Met	Gln	Ser
35							40								45
Thr	Val	Arg	Glu	His	Arg	Asp	Gly	Gly	His	Ala	Gly	Gly	Ile	Phe	Asn
50							55								60
Arg	Tyr	Asn	Ile	Leu	Lys	Ile	Gln	Lys	Val	Cys	Asn	Lys	Lys	Leu	Trp
65							70								80
Glu	Arg	Tyr	Thr	His	Arg	Arg	Lys	Glu	Val	Ser	Glu	Glu	Asn	His	Asn
85															95
His	Ala	Asn	Glu	Arg	Met	Leu	Phe	His	Gly	Ser	Pro	Phe	Val	Asn	Ala
100									105						110
Ile	Ile	His	Lys	Gly	Phe	Asp	Glu	Arg	His	Ala	Tyr	Ile	Gly	Gly	Met
115									120						125
Phe	Gly	Ala	Gly	Ile	Tyr	Phe	Ala	Glu	Asn	Ser	Ser	Lys	Ser	Asn	Gln
130									135						140
Tyr	Val	Tyr	Gly	Ile	Gly	Gly	Gly	Thr	Gly	Cys	Pro	Val	His	Lys	Asp
145									150						160
Arg	Ser	Cys	Tyr	Ile	Cys	His	Arg	Gln	Leu	Leu	Phe	Cys	Arg	Val	Thr
165															175
Leu	Gly	Lys	Ser	Phe	Leu	Gln	Phe	Ser	Ala	Met	Lys	Met	Ala	His	Ser
180									185						190
Pro	Pro	Gly	His	His	Ser	Val	Thr	Gly	Arg	Pro	Ser	Val	Asn	Gly	Leu
195									200						205
Ala	Leu	Ala	Glu	Tyr	Val	Ile	Tyr	Arg	Gly	Glu	Gln	Ala	Tyr	Pro	Glu
210									215						220
Tyr	Leu	Ile	Thr	Tyr	Gln	Ile	Met	Arg	Pro	Glu	Gly	Met	Val	Asp	Gly
225									230						240

<210> 6267

<211> 328

<212> DNA

<213> Homo sapiens

<400> 6267

gggcctccg gtttctcag ccctgggtgg tgagggttgt ggccagggcc tggccaatc
60gggagagggg agggctaagc agagtggggta tgcccgccag tgaccagcc tctctcccc
120gatgacgcctt tcctgcagtt ccgaaggAAC gtgttcttcc caaAGCggcg ggagctccag
180atccatgacg aggaggtcct gcggctgctc tatgaggagg ccaaggcaa cgtgctggct
240gcacggtacc cgtgcacgt ggaggactgc gaggctctgg gcgccttgt gtgcgcgtg
300cagctgggc cctaccagcc cggccggc
328

<210> 6268

<211> 83

<212> PRT

<213> Homo sapiens

<400> 6268
Ala Glu Trp Gly Cys Pro Ala Val Thr Gln Pro Leu Ser Pro Asp Glu
1 5 10 15
Pro Phe Leu Gln Phe Arg Arg Asn Val Phe Phe Pro Lys Arg Arg Glu
20 25 30
Leu Gln Ile His Asp Glu Glu Val Leu Arg Leu Leu Tyr Glu Glu Ala
35 40 45
Lys Gly Asn Val Leu Ala Ala Arg Tyr Pro Cys Asp Val Glu Asp Cys
50 55 60
Glu Ala Leu Gly Ala Leu Val Cys Arg Val Gln Leu Gly Pro Tyr Gln
65 70 75 80
Pro Gly Arg

<210> 6269
<211> 923
<212> DNA
<213> Homo sapiens

<400> 6269
nggcggaaaga tggcgacgccc cctcgggtgg tcgaaggcgg ggtcaggatc tgtgtgtctc
60
gctttagatc aactgcggga cgtgatttag tctcaggagg aactaatcca ccagctgagg
120
aacgtgtatgg ttctccagga cgaaaatttt gtcaagtttcaag aagagtccca ggcagtggag
180
aagaagctgg tggaaagagaa agctgccccat gccaaaacca aggtcctcct ggccaaggaa
240
gaggagaagt tacagtttgc cctcggagag gtagaggtgc tatccaagca gctggagaaa
300
gagaagctgg cctttgaaaaa agcgctctcc agtgtcaaga gcaaagtccct tcaggagtcc
360
agcaagaagg accagctcat caccaagtgc aatgagattt agtctcacat tataaagcaa
420
gaagatatac ttaatggcaa agagaatgag attaaagagt tgcagcaagt tatcagccag
480
cagaaacaga tcttcagcccc accaccagcc ggctccgttg caggaatcac atgtctgact
540
tccggatcca gaagcagcag gaaagctaca tggcccgagg tctggaccag aagcataaga
600
aagcctcagg gacacgtcag gcccgcagcc accagcatcc cagggaaaaaa taaaatggcc
660
gccgccttcc tttctctgg ctgttatccc cagcctctgc cttctctgtc ctgggagtcc
720
ccagcctcta gcccctgcta cttccctccc tcttggatag tggttaggggt ccacaaggtg
780
ggggcttcta gccttagggga ggagctgggt ctttgttgc tggtaggcac caccgcttcc
840
tttgggtatt taatcccttc ctatataaac agccctggtt acccagtaat attccacccc
900
actcccagtgc tcctggtaaaa ttt
923

<210> 6270

<211> 307
<212> PRT
<213> *Homo sapiens*

<400> 6270
 Xaa Arg Lys Met Ala Thr Pro Leu Gly Trp Ser Lys Ala Gly Ser Gly
 1 5 10 15
 Ser Val Cys Leu Ala Leu Asp Gln Leu Arg Asp Val Ile Glu Ser Gln
 20 25 30
 Glu Glu Leu Ile His Gln Leu Arg Asn Val Met Val Leu Gln Asp Glu
 35 40 45
 Asn Phe Val Ser Lys Glu Glu Phe Gln Ala Val Glu Lys Lys Leu Val
 50 55 60
 Glu Glu Lys Ala Ala His Ala Lys Thr Lys Val Leu Leu Ala Lys Glu
 65 70 75 80
 Glu Glu Lys Leu Gln Phe Ala Leu Gly Glu Val Glu Val Leu Ser Lys
 85 90 95
 Gln Leu Glu Lys Glu Lys Leu Ala Phe Glu Lys Ala Leu Ser Ser Val
 100 105 110
 Lys Ser Lys Val Leu Gln Glu Ser Ser Lys Lys Asp Gln Leu Ile Thr
 115 120 125
 Lys Cys Asn Glu Ile Glu Ser His Ile Ile Lys Gln Glu Asp Ile Leu
 130 135 140
 Asn Gly Lys Glu Asn Glu Ile Lys Glu Leu Gln Gln Val Ile Ser Gln
 145 150 155 160
 Gln Lys Gln Ile Phe Ser Pro Pro Pro Ala Gly Ser Val Ala Gly Ile
 165 170 175
 Thr Cys Leu Thr Ser Gly Ser Arg Ser Ser Arg Lys Ala Thr Trp Pro
 180 185 190
 Arg Cys Trp Thr Arg Ser Ile Arg Lys Pro Gln Gly His Val Arg Pro
 195 200 205
 Ala Ala Thr Ser Ile Pro Gly Lys Asn Lys Met Ala Ala Ala Phe Leu
 210 215 220
 Phe Ser Gly Cys Asn Pro Gln Pro Leu Pro Ser Leu Leu Trp Glu Ser
 225 230 235 240
 Pro Ala Ser Ser Pro Cys Tyr Phe Pro Pro Ser Trp Ile Val Val Gly
 245 250 255
 Val His Lys Val Gly Ala Cys Ser Leu Gly Glu Glu Leu Gly Leu Cys
 260 265 270
 Cys Leu Val Gly Thr Thr Ala Ser Phe Gly Tyr Leu Ile Pro Ser Tyr
 275 280 285
 Ile Asn Ser Pro Gly Tyr Pro Val Ile Phe His Pro Thr Pro Ser Val
 290 295 300
 Leu Val Asn
 305

<210> 6271
<211> 1437
<212> DNA
<213> *Homo sapiens*

<400> 6271
nccatggcga cgggcggcca gcagaaggag aacacgctgc ttcacctctt cgccggcgaa
60

tgtggaggca cagttggtgc tatttcact tgtccactag aagtcattaa gacacggttg
120
cagtctcaa gattagctct ccggacagtc tactatcctc aggttcatct ggggaccatt
180
agtggagctg gaatggtgag accaacatcc gtgacacctg gactcttca ggttctgaag
240
gctgtatact ttgcatgtta ctccaaagcc aaagagcaat ttaatggcat tttcggtcct
300
aacagcaata ttgtgcacatct tttctcagct ggctctgcag ctttatcac aaattccta
360
atgaatccta tatggatggt taaaacccga atgcagctag aacagaaagt gaggggctct
420
aagcagatga atacactcca gtgtgctcgt tacgttacc agaccgaagg cattcgtggc
480
ttctatagag gattaactgc ctcgtatgct ggaatttccg aaactataat ctgctttgct
540
atttatgaaa gtttaaagaa gatatctgaaa gaagctccat tagcctctc tgcaaattgg
600
actgagaaaa attccacaag ttttttggc cttatggcag ctgctgctct ttctaagggc
660
tgtgcctcct gcattgctta tccacacgaa gtcataagga cgaggctccg ggaagagggc
720
accaagtaca agtctttgtt ccagacggcg cgccctgggt tccgggaaga aggctacctt
780
gcctttata gaggactgtt tgcccagctt atccggcaga tcccaaatac tgccattgt
840
ttgtctactt atgagttat tggatgttgc tttagaagacc gtactcagta acaggccgga
900
aaatttgctt ctagaagaat aaaactgaaa aactctagag aaaaaaaaaa cccattgt
960
gttttagaaa ttgagactg aaacaggaaa ggcataaaa tatctggttc atatcacctg
1020
ttggacattt ccttttggat tcatgcttc tggaggttt aaattcatta acgttaatag
1080
ttaattataa cttttttttt aacttaagag gattcagggt taagcaccaa ctaaattaaa
1140
tcatgctatt taatttaagt atacatttg cttgtgtcct ctttatgct cactatacta
1200
tgaaggactt aagtaattca gataaacctg ccctagaact gcagagaaaa atgataaaagt
1260
gagaatacaa cttgttttat aatctgactt taagatcttgc cactgtttaga cagggaaagaa
1320
gtgtcgcatt ttggctgggc actgtggctc acgcctgtaa tcccgact ttggaggcc
1380
gagggtgggtg gatcacaagg tcaggagatc gagaccatcc tggctaaacca cctgcag
1437

<210> 6272

<211> 296

<212> PRT

<213> Homo sapiens

<400> 6272

Xaa Met Ala Thr Gly Gly Gln Gln Lys Glu Asn Thr Leu Leu His Leu

1	5	10	15
Phe Ala Gly Gly Cys Gly Gly Thr Val Gly Ala Ile Phe Thr Cys Pro			
20	25		30
Leu Glu Val Ile Lys Thr Arg Leu Gln Ser Ser Arg Leu Ala Leu Arg			
35	40		45
Thr Val Tyr Tyr Pro Gln Val His Leu Gly Thr Ile Ser Gly Ala Gly			
50	55		60
Met Val Arg Pro Thr Ser Val Thr Pro Gly Leu Phe Gln Val Leu Lys			
65	70		75
			80
Ala Val Tyr Phe Ala Cys Tyr Ser Lys Ala Lys Glu Gln Phe Asn Gly			
85	90		95
Ile Phe Val Pro Asn Ser Asn Ile Val His Leu Phe Ser Ala Gly Ser			
100	105		110
Ala Ala Phe Ile Thr Asn Ser Leu Met Asn Pro Ile Trp Met Val Lys			
115	120		125
Thr Arg Met Gln Leu Glu Gln Lys Val Arg Gly Ser Lys Gln Met Asn			
130	135		140
Thr Leu Gln Cys Ala Arg Tyr Val Tyr Gln Thr Glu Gly Ile Arg Gly			
145	150		155
			160
Phe Tyr Arg Gly Leu Thr Ala Ser Tyr Ala Gly Ile Ser Glu Thr Ile			
165	170		175
Ile Cys Phe Ala Ile Tyr Glu Ser Leu Lys Lys Tyr Leu Lys Glu Ala			
180	185		190
Pro Leu Ala Ser Ser Ala Asn Gly Thr Glu Lys Asn Ser Thr Ser Phe			
195	200		205
Phe Gly Leu Met Ala Ala Ala Leu Ser Lys Gly Cys Ala Ser Cys			
210	215		220
Ile Ala Tyr Pro His Glu Val Ile Arg Thr Arg Leu Arg Glu Glu Gly			
225	230		235
			240
Thr Lys Tyr Lys Ser Phe Val Gln Thr Ala Arg Leu Val Phe Arg Glu			
245	250		255
Glu Gly Tyr Leu Ala Phe Tyr Arg Gly Leu Phe Ala Gln Leu Ile Arg			
260	265		270
Gln Ile Pro Asn Thr Ala Ile Val Leu Ser Thr Tyr Glu Leu Ile Val			
275	280		285
Tyr Leu Leu Glu Asp Arg Thr Gln			
290	295		

<210> 6273
<211> 2355
<212> DNA
<213> *Homo sapiens*

<400> 6273
ncgaggatca ttgcagaggc cctgactcga gtcatctaca acctgacaga gaaggggaca
60
ccccagacat gccgggttgc acagagcaga tgatccagca ggagcagctg gactcggtga
120
tggactggct caccaccagg ccgcggccgg cagctggtgg acaaggacag caccttcctc
180
agcacgctgg agcaccacct gagccgcatac ctgaaggacg tgaaggcagca ccacgtcaag
240
gctgacaaggc gggaccacaga gtttgttttc tacgaccacgc tgaagcaagt gatgaatgcg
300

tacagagtca agccggccgt ctttgacctg ctccctggctg ttggcattgc tgcctacctc
360
ggcatggcct acgtggctgt ccaggtgagc agtgcggcagg ctcagcaccc cagccctc
420
tacaagaccg tccagaggct gtcgtgaag gccaagacac agtgacacag ccaccccccac
480
agccggagcc cccggccgtc cacagtccct gggggccgagc acgagtgagt ggacactgcc
540
ccggccgggg cggeccctgca gggacagggg ccctctccct ccccgccgt ggttggaaaca
600
ctgaattaca gagctttttt ctgttgcctc ccgagactgg ggggggattt tttttttttt
660
tccttgtctt tgaacttcct tggaggagag cttggagac gtccccgggc caggctacgg
720
acttgccggac gagcccccca gtcctggag ccggccggcc tcggtctgg gtaagcacac
780
atgcacgatt aaagaggaga cgccgggacc ccctgcccga tcgcgcgcgg cctccggccca
840
ccgcctccctg ccgcaagggg cctggactgc aggccctgacc tgctccctgc tccgtgtctg
900
tccttaggacg tccccctcccg ctcccccgt gtcggcgtgga catggttatt tatctctgt
960
ccttcttgcc tggaggaggg cagtgcctggc cctgggggttc tgggattcca gcccctctgg
1020
agccctttgt tccccatgtg gtctcagtga cccgtcccccc tgacagtggg ctcggggagc
1080
tgcatcaccc agcctcccccc ttctccgact gcagggtctg atgtcatcgt tgacagcctt
1140
tgcttcgtgg gggcctggca ggcctgnnc tccccgaccc ccgacccact gcaaacc
1200
gttccccctgc actccctttc tcccagccca tccctccggc ccctgtgcct ctgcggggcc
1260
agcccagctc ccagggccgt cacctgtttt gcccctggca gtcctgtcc ctgagtcctg
1320
agccagtgcc tgggtttcc tgggctcggt actggggcccc caggcnatcc agggctttgc
1380
acggccagtt ggtccccct ggggaactgg gtgcgggtgg agtactggg ggcaggaggt
1440
ggccccggga ggccttgc gtcctccct cgtccctcgc cctggggctc aagttcctca
1500
tcaatagaaa ggatgtgttc ggggtgggggg cgtcaggtga gaacgtttgc tgggaaggag
1560
aggacttggg gcatggctct ggggcacccct tcctggact cagagaggaa ggtccgggccc
1620
ctcgggaagc cttggacaga accctccacc ccgcagacca ggcgtcggtgt gtgtgtggg
1680
gagaaggagg cccgtgttga gtcaggagag accccgggtgt gtcctgttcc tagcaatata
1740
acctaaccag tgcgtgccga gcaggcttgg tggggaaaggg acttgagctg ggcaagtcc
1800
ggcctggcac ccgcagccgt ctccctccg tggcccaggg aggtgtttgc tgcggaaagg
1860
acctggggccg gcccattggga gtcctggggtt ctgtccagat aggaccaggg ggtctcactt
1920

tggccaccag ttcttcggcc agcacctctg ccctccagaa cctgcagcct ggaggggtga
1980
ggggacaacc acccctctt cctccaggtt ggcagggac cctcttcgc cgtctgcct
2040
gcgggttgcc cgccctctcc agagacttgc ccaagggccc atcaccactg gcctctggc
2100
acttgtgctg agactctggg acccaggcag ctgccacctt gtcaccatga gagaatttgg
2160
ggagtgctg catgcttagcc agcaggctcc tgtctgggtg ccacggggcc agcattttgg
2220
agggagctc cttccctcct tcctggacag gtcgtcagga tggatgact gactgaccgt
2280
ctggggctca ggctgggtg gnatgcagcc ggccgatgag aaaataaagc catattgaat
2340
gatcaaaaaa aaaaaa
2355

<210> 6274
<211> 70
<212> PRT
<213> Homo sapiens

<400> 6274
Asp Pro Glu Phe Val Phe Tyr Asp Gln Leu Lys Gln Val Met Asn Ala
1 5 10 15
Tyr Arg Val Lys Pro Ala Val Phe Asp Leu Leu Leu Ala Val Gly Ile
20 25 30
Ala Ala Tyr Leu Gly Met Ala Tyr Val Ala Val Gln Val Ser Ser Ala
35 40 45
Gln Ala Gln His Phe Ser Leu Leu Tyr Lys Thr Val Gln Arg Leu Leu
50 55 60
Val Lys Ala Lys Thr Gln
65 70

<210> 6275
<211> 1534
<212> DNA
<213> Homo sapiens

<400> 6275
ggcggtgcgacaggccag agctgcggcc tgagcagcca gcgtccggca tgaaggctcg
60
gggtctggct gctgcctgct tcttgcctcca gcaccatgga atgcctgcgc agtttaccct
120
gcctcctgcc ccgcgcgatg agactcccc ggccggacgct gtgtgccctg gccttggacg
180
tgacctctgt gggtcctccc gttgctgcct gcggccgccc agccaacctg attgaaagga
240
gcccggcgcgc gcagcttgc gggcccgacc ggctccgcgt ggcaggtgaa gtgcaccgg
300
ttagaacctc tgacgtctct caagccactt tagccagtgt agccccagta tttactgtga
360
caaaaatttga caaacaggga aacgttactt ctttgaaag gaagaaaact gaattataacc
420

aagagttagg tcttcaagcc agagatttg aatttcagca tgtaatgagt atcacagtca
 480
 gaaacaata gattatcatg agaatggagt atttgaagc tgtgataact ccagagtgc
 540
 ttctgatatt agattatcg aattttaact tagagcaatg gctgttccgg gaactccctt
 600
 cacagttgtc tggagagggt caactcgta cataccctt accttttag ttttagagcta
 660
 tagaaggact cctgcaatat tggatcatgt tgatcttag atcaacaccc ttcaggggaa
 720
 acttagcatt ttgcagccac tgatccttga gaccttggat gcttttgtgg accccaaaca
 780
 ttcttcgtt gacagaagca aactgcacat tttactacag aatggcaaaa gtctatcaga
 840
 gttagaaaca gatattaaaaa ttttcaaaga gtcaattttg gagatcttgg atgaggaaga
 900
 gttgctagaa gagctctgt tatcaaaatg ggagtgaccc acaagtctt gnaaaagagc
 960
 agtgctgggta ttgaccatgc agaagaaatg gagtgctgt tggaaaacta ctaccgattt
 1020
 gctgacgatc tctccaatgc agctcgtag cttagggtag tgattgatga ttcacaaagt
 1080
 attattttca ttaatcttggc cagccaccga aacgtgatga ttaggttggaa tctacagctg
 1140
 accatggaa cttctctct ttcgctctt ggactaatgg gagttgctt tgaaatgaat
 1200
 ttggaaatctt cccttgaaga ggaccataga atttttggc tgattacagg aattatgttc
 1260
 atggaaatgt gcctcatctg gaggcgctg ctttcattcc ttggacgaca gctagaagct
 1320
 ccattgcctc ctatgatggc ttcttacct aaaaagactc ttctggcaga tagaagcatg
 1380
 gaattaaaaa atagccttag actggatgga cttggatcag gaaggagcat cctaacaac
 1440
 cgtaggaac agccccgtgg atactgaatg ttttttatg gtagttacag gaaacttctg
 1500
 atactctttt tattatttc ttgtatagag tcag
 1534

<210> 6276
 <211> 172
 <212> PRT
 <213> Homo sapiens

<400> 6276
 Met Gly Val Thr His Lys Ser Leu Xaa Lys Ser Ser Ala Gly Ile Asp
 1 5 10 15
 His Ala Glu Glu Met Glu Leu Leu Leu Glu Asn Tyr Tyr Arg Leu Ala
 20 25 30
 Asp Asp Leu Ser Asn Ala Ala Arg Glu Leu Arg Val Leu Ile Asp Asp
 35 40 45
 Ser Gln Ser Ile Ile Phe Ile Asn Leu Asp Ser His Arg Asn Val Met
 50 55 60
 Ile Arg Leu Asn Leu Gln Leu Thr Met Gly Thr Phe Ser Leu Ser Leu

65	70	75	80
Phe	Gly	Leu	Met
Gly	Leu	Met	Gly
Val	Ala	Phe	Gly
		Met	Asn
		Leu	Glu
		Ser	Ser
		Leu	
85		90	95
Glu	Glu	Asp	His
Arg	Ile	Phe	Trp
		Leu	Ile
		Thr	Gly
		Ile	Met
		Phe	Met
100		105	110
Gly	Ser	Gly	Leu
		Ile	Trp
		Arg	Arg
		Leu	Leu
		Ser	Phe
		Leu	Gly
			Arg
115		120	125
Leu	Glu	Ala	Pro
Leu	Pro	Pro	Pro
		Met	Met
		Ala	Ser
		Ser	Leu
		Leu	Pro
		Lys	Lys
130		135	140
Leu	Leu	Ala	Asp
		Asp	Arg
		Ser	Met
		Glu	Leu
		Lys	Ser
		Asn	Leu
		Ser	Arg
145		150	155
Gly	Leu	Gly	Ser
		Ser	Ile
		Ile	Leu
		Thr	Asn
165		170	

<210> 6277

<211> 1206

<212> DNA

<213> Homo sapiens

<400> 6277

gctagcatgg cggtgatgga aggagacttg gtgaaggagg aaagctttgg tgtgaagctt
 60
 atggacttcc agggccaccg gcgggggtggc actctaaata gaaagcacat atcccccgct
 120
 ttccagccgc cacttccgccc cacagatggc agcaccgtgg tgcccgctgg cccagagccc
 180
 cctccccaga gctcttagggc tgaaagcagc tctgggggtg ggactgtccc ctctccgctg
 240
 ggcatactgg agcagggggcc gagcccaggc gacggcagtc ctcccaaacc gaaggaccct
 300
 gtatctgcag ctgtgccagc accangggag aaacaacagt cagatagcat ctggccaaaa
 360
 tcagccccag gcagctgctg gctccacca gctctccatg ggccacctca caatgctgca
 420
 gggcccagcc cgccatacact gcgcgcagct gttaaaaaac ccgctccagc acccccggaaa
 480
 ccgggcaacc cacctcctgg ccaccccggt ggccagagtt cttcaggaac atctcagcat
 540
 ccacccagtc tgtcaccaaa gccacccacc cgaagccct ctcctccacc cagcacacgg
 600
 gccagcctcc aggccagccc tccgccccct cccagctctc agcaccccggt aggtactcca
 660
 ngcagcttgt ctccaatcca agctccaat cacccacccgc cgccagccccc tacgcaggcc
 720
 acgcccactga tgcacaccaa acccaatagc cagggccctc ccaacccat ggcattgccc
 780
 agtgagcatg gacttgagca gccatctcac acccctccccc agactccaaac gccccccagt
 840
 actccccc tagaaaaaca gaacccagtc ctgccagctc ctcagaccct ggcagggggt
 900
 aaccctgaaa ctgcacagcc acatgctgga accttaccga gaccgagacc agtaccaaag
 960
 ccaaggaacc ggcccagcgt gccccacccc ccccaacctc ctgggtgtcca ctcagctggg
 1020

gacagcagcc tcacccaacac agcaccaaca gcttccaaga tagtaacaga ctccaattcc
 1080
 agggtttcag aaccgcacg cagcatctt cctgaaatgc actcagactc agccagcaaa
 1140
 gacgtgcctg gccgcacccct gctggatata gacaatgata ccgagagcac tgccctgtga
 1200
 agaaag
 1206

<210> 6278
 <211> 399
 <212> PRT
 <213> Homo sapiens

<400> 6278
 Ala Ser Met Ala Val Met Glu Gly Asp Leu Val Lys Lys Glu Ser Phe
 1 5 10 15
 Gly Val Lys Leu Met Asp Phe Gln Ala His Arg Arg Gly Thr Leu
 20 25 30
 Asn Arg Lys His Ile Ser Pro Ala Phe Gln Pro Pro Leu Pro Pro Thr
 35 40 45
 Asp Gly Ser Thr Val Val Pro Ala Gly Pro Glu Pro Pro Gln Ser
 50 55 60
 Ser Arg Ala Glu Ser Ser Ser Gly Gly Thr Val Pro Ser Ser Ala
 65 70 75 80
 Gly Ile Leu Glu Gln Gly Pro Ser Pro Gly Asp Gly Ser Pro Pro Lys
 85 90 95
 Pro Lys Asp Pro Val Ser Ala Ala Val Pro Ala Pro Xaa Glu Lys Gln
 100 105 110
 Gln Ser Asp Ser Ile Trp Pro Lys Ser Ala Pro Gly Ser Cys Trp Leu
 115 120 125
 Pro Pro Ala Leu His Gly Pro Pro His Asn Ala Ala Gly Pro Ser Pro
 130 135 140
 His Thr Leu Arg Arg Ala Val Lys Lys Pro Ala Pro Ala Pro Pro Lys
 145 150 155 160
 Pro Gly Asn Pro Pro Pro Gly His Pro Gly Gly Gln Ser Ser Ser Gly
 165 170 175
 Thr Ser Gln His Pro Pro Ser Leu Ser Pro Lys Pro Pro Thr Arg Ser
 180 185 190
 Pro Ser Pro Pro Pro Ser Thr Arg Ala Ser Leu Gln Ala Ser Pro Pro
 195 200 205
 Pro Pro Pro Ser Ser Gln His Pro Gly Gly Thr Pro Xaa Ser Leu Ser
 210 215 220
 Pro Ile Gln Ala Pro Asn His Pro Pro Pro Gln Pro Pro Thr Gln Ala
 225 230 235 240
 Thr Pro Leu Met His Thr Lys Pro Asn Ser Gln Gly Pro Pro Asn Pro
 245 250 255
 Met Ala Leu Pro Ser Glu His Gly Leu Glu Gln Pro Ser His Thr Pro
 260 265 270
 Pro Gln Thr Pro Thr Pro Pro Ser Thr Pro Pro Leu Gly Lys Gln Asn
 275 280 285
 Pro Ser Leu Pro Ala Pro Gln Thr Leu Ala Gly Gly Asn Pro Glu Thr
 290 295 300
 Ala Gln Pro His Ala Gly Thr Leu Pro Arg Pro Arg Pro Val Pro Lys

305 310 315 320
Pro Arg Asn Arg Pro Ser Val Pro Pro Pro Gln Pro Pro Gly Val
 325 330 335
His Ser Ala Gly Asp Ser Ser Leu Thr Asn Thr Ala Pro Thr Ala Ser
 340 345 350
Lys Ile Val Thr Asp Ser Asn Ser Arg Val Ser Glu Pro His Arg Ser
 355 360 365
Ile Phe Pro Glu Met His Ser Asp Ser Ala Ser Lys Asp Val Pro Gly
 370 375 380
Arg Ile Leu Leu Asp Ile Asp Asn Asp Thr Glu Ser Thr Ala Leu
 385 390 395

<210> 6279
<211> 2795
<212> DNA
<213> Homo sapiens

<400> 6279
atggctgctg agaagcaggt cccaggcggc ggccggcgcg gcggcgccag tggccggcgcc
60
ggtggacgtg gtgccggagg ggaagaaaaat aaagaaaaacg aacgccttc ggccggatcg
120
aaggcaaaaca aagaatttgg ggatagcctg agtttgaga ttcttcagat tattaaggaa
180
tcccagcagc agcatggttt acggcatgga gatttcaga ggtacagggg ctactgttcc
240
cgttagacaaa gacgtcttcg aaaaacactc aacttcaaga tggtaacag acacaaattc
300
acagggaaaga aagtgactga agagcttctg accgataata gatacttgct tctggttctg
360
atggatgctg aaagagcctg gagctacgac atgcagctga aacaggaagc caacactgaa
420
ccccgaaaaac gtttcactt gttatctcg ctacgcaaag ccgtgaagca tgcagaggaa
480
ttggaaacgct tgtgttaagag caatcgcgtg gatgccaaga ccaaattaga ggctcaggct
540
tacacagctt acctctcagg aatgctacgt tttgaacatc aagaatggaa agctgccatt
600
gaggctttta acaaatgcaa aactatctat gagaagctag ccagtcttt cacagaggag
660
caggctgtgc tgtataacca acgtgtggaa gagattcac ccaacatccg ctattgtgca
720
tataatattg gggaccagtc agccatcaat gaactcatgc agatgagatt gaggtctggg
780
ggcactgaag gtctcttggc tgaaaaattt gaggcttga tcactcagac tcgagccaaa
840
caggcagcta ccatgagtga agtggagtg agagggagaa cggttccagt gaagattgac
900
aaagtgcgca ttttcttatt aggactggct gataacgaag cagctattgt ccaggctgaa
960
agcgaagaaa ctaaggagcg cctgtttgaa tcaatgctca gcgagtgtcg ggacgccatc
1020
caggtggttc gggaggagct caagccagat cagaaacaga gagattatat ctttgaagga
1080

gagccaggga aggtgtctaa tcttcaatac ttgcatacgct acctgactta catcaagcta
1140
tcaacggcaa tcaagcgtaa tgagaacatg gccaaaggtc tgcacaggc tctgctgcag
1200
cagcagccag aggatgacag caagcgctca cccccggcccc atggacacctat ccgactctat
1260
gacatcatct tacagaatct ggtggatttgc ctccagcttc ctggtttaga ggaagacaaa
1320
gccttcaga aagagatagg cctcaagact ctgggttca aagcttacag gtgtttttc
1380
attgctcagt cctatgtgct ggtgaagaag tggagcgaag cccttgcct gtatgacaga
1440
gtcctgaaat atgcaaatttca agttaatttct gatgtggcg ccttcaagaa cagcctaaag
1500
gacctgcctg atgtgcaaga gtcatacttca caagtgcggc cagagaagtgc tccctgcag
1560
gccgcagcca tccttgatgc aaacgacgct catcaaacag agaccttc ctcggcact
1620
aaggacaata agcctctggt tgaacggttt gagacatttct gcctggaccc ttcccttgct
1680
accaagcaag ccaaccttgt gcacttccca ccaggcttcc agcccattcc ctgcaaggct
1740
ttgttcttg acctggccctt caaccatgtg gcttccac cccttgagga caagttggaa
1800
cagaagacca agagtggccctt cactggatac atcaagggca tctttggatt caggagctaa
1860
ccaggcttcc cctcgaaaaa gggggagatt ctgactcttta atctgtatttgc tgagaaaatc
1920
ccagcaagttt ccatgatattt aaatccaggtt ctgcattggc ccggggcaag agttaacat
1980
cttcggccctt gcatttccatc atcttggtc tgtacacgtt cttaagcagc gtgtcaggag
2040
agcacccctgt tgcattttgtt gaaatgtgtg cagggtcattt ctgtctccctt taccttcc
2100
gaaagggcc gctgctgtctt ggtgcctgtt gagctgtgtt tgattgcctt tggtcagtt
2160
tgcgttcagg agtccacacc aggcacagat gggcccttga aacgctttgtt catgcttctt
2220
cagtaccatg gatttggaaat gaactcatcc ttgctgtgag catccaggag cccttgagaa
2280
gtttatctat gactatgaaa ctggcaacgtt caccccaagaa ttacggtcag ccttattttcc
2340
cttcacccctt cagtgaacgc taagaagttt cagacaagca gagagcttta tttttagaaag
2400
aaatatgtta cactcagaaa tgatgaaacc aaatcttata ttaaaaggca aagatgacgg
2460
agactgtgcc catttcttat atgccttcc tcatgtccag tccccgttctt ctcctcgaaa
2520
gccttagttgc gtgaagccgg tgaggtcaag tgtaacctga cttaccggca actaggtgag
2580
gctgatgcca gatacacatgtt tagaggcac tattttcag gacttccaa tgtgtatattt
2640
ttagatgcca ttatattttta atcccccttgc ttaccccccgtt tttttccctt gtcatccctt
2700

ttcacttcta ttataacatc aataatagaa gtcacaaaaa caatgtaaga aagcaaggaa
 2760
 taaaagtat ttaaacatgt aaaaaaaaaa aaaaa
 2795

<210> 6280
 <211> 619
 <212> PRT
 <213> Homo sapiens

<400> 6280
 Met Ala Ala Glu Lys Gln Val Pro Gly Gly Gly Gly Gly Gly Gly Gly
 1 5 10 15
 Ser Gly Gly Gly Gly Arg Gly Ala Gly Gly Glu Glu Asn Lys Glu
 20 25 30
 Asn Glu Arg Pro Ser Ala Gly Ser Lys Ala Asn Lys Glu Phe Gly Asp
 35 40 45
 Ser Leu Ser Leu Glu Ile Leu Gln Ile Ile Lys Glu Ser Gln Gln Gln
 50 55 60
 His Gly Leu Arg His Gly Asp Phe Gln Arg Tyr Arg Gly Tyr Cys Ser
 65 70 75 80
 Arg Arg Gln Arg Arg Leu Arg Lys Thr Leu Asn Phe Lys Met Gly Asn
 85 90 95
 Arg His Lys Phe Thr Gly Lys Lys Val Thr Glu Glu Leu Leu Thr Asp
 100 105 110
 Asn Arg Tyr Leu Leu Leu Val Leu Met Asp Ala Glu Arg Ala Trp Ser
 115 120 125
 Tyr Ala Met Gln Leu Lys Gln Glu Ala Asn Thr Glu Pro Arg Lys Arg
 130 135 140
 Phe His Leu Leu Ser Arg Leu Arg Lys Ala Val Lys His Ala Glu Glu
 145 150 155 160
 Leu Glu Arg Leu Cys Lys Ser Asn Arg Val Asp Ala Lys Thr Lys Leu
 165 170 175
 Glu Ala Gln Ala Tyr Thr Ala Tyr Leu Ser Gly Met Leu Arg Phe Glu
 180 185 190
 His Gln Glu Trp Lys Ala Ala Ile Glu Ala Phe Asn Lys Cys Lys Thr
 195 200 205
 Ile Tyr Glu Lys Leu Ala Ser Ala Phe Thr Glu Glu Gln Ala Val Leu
 210 215 220
 Tyr Asn Gln Arg Val Glu Glu Ile Ser Pro Asn Ile Arg Tyr Cys Ala
 225 230 235 240
 Tyr Asn Ile Gly Asp Gln Ser Ala Ile Asn Glu Leu Met Gln Met Arg
 245 250 255
 Leu Arg Ser Gly Gly Thr Glu Gly Leu Leu Ala Glu Lys Leu Glu Ala
 260 265 270
 Leu Ile Thr Gln Thr Arg Ala Lys Gln Ala Ala Thr Met Ser Glu Val
 275 280 285
 Glu Trp Arg Gly Arg Thr Val Pro Val Lys Ile Asp Lys Val Arg Ile
 290 295 300
 Phe Leu Leu Gly Leu Ala Asp Asn Glu Ala Ala Ile Val Gln Ala Glu
 305 310 315 320
 Ser Glu Glu Thr Lys Glu Arg Leu Phe Glu Ser Met Leu Ser Glu Cys
 325 330 335
 Arg Asp Ala Ile Gln Val Val Arg Glu Leu Lys Pro Asp Gln Lys

340	345	350
Gln Arg Asp Tyr Ile Leu Glu Gly	Glu Pro Gly Lys Val Ser Asn Leu	
355	360	365
Gln Tyr Leu His Ser Tyr Leu Thr Tyr Ile Lys Leu Ser Thr Ala Ile		
370	375	380
Lys Arg Asn Glu Asn Met Ala Lys Gly Leu His Arg Ala Leu Leu Gln		
385	390	395
Gln Gln Pro Glu Asp Asp Ser Lys Arg Ser Pro Arg Pro Gln Asp Leu		
405	410	415
Ile Arg Leu Tyr Asp Ile Ile Leu Gln Asn Leu Val Glu Leu Leu Gln		
420	425	430
Leu Pro Gly Leu Glu Glu Asp Lys Ala Phe Gln Lys Glu Ile Gly Leu		
435	440	445
Lys Thr Leu Val Phe Lys Ala Tyr Arg Cys Phe Phe Ile Ala Gln Ser		
450	455	460
Tyr Val Leu Val Lys Lys Trp Ser Glu Ala Leu Val Leu Tyr Asp Arg		
465	470	475
Val Leu Lys Tyr Ala Asn Glu Val Asn Ser Asp Ala Gly Ala Phe Lys		
485	490	495
Asn Ser Leu Lys Asp Leu Pro Asp Val Gln Glu Leu Ile Thr Gln Val		
500	505	510
Arg Ser Glu Lys Cys Ser Leu Gln Ala Ala Ala Ile Leu Asp Ala Asn		
515	520	525
Asp Ala His Gln Thr Glu Thr Ser Ser Ser Gln Val Lys Asp Asn Lys		
530	535	540
Pro Leu Val Glu Arg Phe Glu Thr Phe Cys Leu Asp Pro Ser Leu Val		
545	550	555
Thr Lys Gln Ala Asn Leu Val His Phe Pro Pro Gly Phe Gln Pro Ile		
565	570	575
Pro Cys Lys Pro Leu Phe Phe Asp Leu Ala Leu Asn His Val Ala Phe		
580	585	590
Pro Pro Leu Glu Asp Lys Leu Glu Gln Lys Thr Lys Ser Gly Leu Thr		
595	600	605
Gly Tyr Ile Lys Gly Ile Phe Gly Phe Arg Ser		
610	615	

<210> 6281

<211> 741

<212> DNA

<213> Homo sapiens

<400> 6281

```

nnctgggttg agagctgtcc ccggttctcc gttctgtct cgggggcacc ttccggggtt
60
cctaagccgc gggccccctc gctgcccctc gagggccctt ccctgaccta ggctttggcc
120
.tgggctactc gttccggagc cgccatgtcg tccgacttcg aaggttacga gcaggacttc
180
gcgggtgctca ctgcagagat caccagcaag attgcgaggg tcccacgact cccgcctgat
240
gaaaagaaaac agatggttgc aaatgtggag aaacagcttgc aagaagcgaa agaactgctt
300
gaacagatgg atttggaaagt ccgagagata ccacccaaa gtcgagggat gtacagcaac
360

```

agaatgagaa gctacaaaca agaaatggga aaactcgaaa cagatttaa aaggcacgg
 420
 atcgccatac gtgacgaagt acggaatgag ctcctgggg atgatggaa ttcctcagag
 480
 aaccagaggg cacatctgct cgataacaca gagaggctgg aaaggtcatc tcggagacta
 540
 gaggctggat accaaatagc agtggaaacc ggtgagaatt ctgagagtga gcaaattgtc
 600
 ttgcattatgc acagcagtct tcacaacaca tgacattca gggaaacttc aaaggagtag
 660
 cagagacagc agcccgagat gtggtttaca tattggggag acaattggga gcttatctgc
 720
 gcttatcttt ttgcaagttt g
 741

<210> 6282
 <211> 162
 <212> PRT
 <213> Homo sapiens

<400> 6282
 Met Ser Ser Asp Phe Glu Gly Tyr Glu Gln Asp Phe Ala Val Leu Thr
 1 5 10 15
 Ala Glu Ile Thr Ser Lys Ile Ala Arg Val Pro Arg Leu Pro Pro Asp
 20 25 30
 Glu Lys Lys Gln Met Val Ala Asn Val Glu Lys Gln Leu Glu Glu Ala
 35 40 45
 Lys Glu Leu Leu Glu Gln Met Asp Leu Glu Val Arg Glu Ile Pro Pro
 50 55 60
 Gln Ser Arg Gly Met Tyr Ser Asn Arg Met Arg Ser Tyr Lys Gln Glu
 65 70 75 80
 Met Gly Lys Leu Glu Thr Asp Phe Lys Arg Ser Arg Ile Ala Tyr Ser
 85 90 95
 Asp Glu Val Arg Asn Glu Leu Leu Gly Asp Asp Gly Asn Ser Ser Glu
 100 105 110
 Asn Gln Arg Ala His Leu Leu Asp Asn Thr Glu Arg Leu Glu Arg Ser
 115 120 125
 Ser Arg Arg Leu Glu Ala Gly Tyr Gln Ile Ala Val Glu Thr Gly Glu
 130 135 140
 Asn Ser Glu Ser Glu Gln Ile Val Leu Leu Met His Ser Ser Leu His
 145 150 155 160
 Asn Thr

<210> 6283
 <211> 2312
 <212> DNA
 <213> Homo sapiens

<400> 6283
 nnattcttga agtggtttcc atattctgat ctcaggcctg tgcgagtgaa gagttttatg
 60
 agcaaggact ggaaggaacc agagacaaac aaggtggttg ggtttgctgg gagtggatg
 120

gtagctaaggc atgtcattta ctgttcttgt tgcttgggta ataggccaca atgaggaagc
180 tagcacggta gtgggcaatg ccaggtggga aggtttgagt tgtgaaagaa gagccaggga
240 gcagagatgg ggaggaggca ctgatggggt gggatgtgct ttggtcacac atagcacagt
300 cgggtgtgtc ctcccccttttgc tccacagtgg ttccctggctt ttgctgtctt cccctgtccc
360 tggcgcca tggctgtcg cagcctccata aaacctatcc acgtctttt tggagccgcc
420 atccctcttc tgcacatcgc atccgtcatt tcggcatta atgagaagct tttcttcagt
480 ttgaaaaaca ccaccaggcc ataccacagc ctgcccagtg aggcggctt tgccaaacagc
540 accgggatgc tggtggtggc ctttggctg ctgggtgtct acatccttctt ggcttcatct
600 tggaaagcgcc cagagccggg gatcctgacc gacagacagc ccctgctgca tggatgggag
660 tgaagcagca ggaaggggct cccaaagagct cctgggtggc cagcctgtgc tccctcaga
720 agctctgtc ttcccaggc tcccggtggc tttcagcagg cgactttctt ccaatgctgg
780 gcccagactt cttgcctggg tgctggctg ccctctccgg ccgcttgcgtg cctgtctgt
840 ttccctggcgtc gctttgcctg ggtgctgggc ctgccccttc cggccgcttg ctgcctgtct
900 gctttccctg gtggcttgc ctgggtgtc ggctgcctt ctctggctgc ttgctgcctg
960 tctgcttcc ttgggtggctt tggcttgc actccttgc gtcagcctct caggcctcc
1020 attcacacga ggtcctcctc gctctggccg ctcttgc tccctgtctga agaaaatcaga
1080 ctgatttccctt cttaagactc ctagggatgt ggtgaagagc tgggactcaa gtgcagtcc
1140 cggtgtgaaa catgagggag gtgaggtgtc cgtccacttc ccccataaaag gtgtgcattt
1200 cagttaggct gccccgccac agagcaggct tcacatgtc tgccatccag ccccatctgg
1260 atgtgagggtg gggtgagac atcatggggt gattgcagaa agggggagtg gccccccacg
1320 cagcttctgc tgaggagctg accgctctga gctgttctgt ttcgtattgc tgctctgtgt
1380 ctgcatttat tggaccgtc cggctccacc tcttccagct gctgctacag ctgaggcctg
1440 gatccccggcc ttccctgtc acttacgtt ctgtcaccgg cagggcagccc tacaaatcct
1500 ggtgacactgc tctcccaaga acagagcctg tccccagatg tcccagttagc gatgagtaac
1560 agaggtggct gtggacttcc tctacttctc cttgctggat cagggccttc ctgcctcccg
1620 ctggccagggt ctggccttgc tcttggca gggccccagc ccctctgacc actctgcagc
1680 tcaccatgca gctgatgcca aagttgtggt gtccagtgtc cagcagccct gggagccact
1740

gccacccatca gagggggttcc ttgctgagac ccacattgct tcacctggcc ccaccatggc
 1800
 tgcttccttg gcccaaccta gcgttctgtg ccatgctaga gcttgagctg ttgctttct
 1860
 tcaggggagg aaataggggtg gagagcggga aggttcttgc tcctaagtgt tgctgtgtg
 1920
 gctttttgc cttctccaaa gacgcactgc caggtcccaa gcttcagact gctgtgctta
 1980
 gtaagcaagt gagaagcctg gggtttggag cccacctact ctctggcagc atcagcatcc
 2040
 tactcctggc aacatcaggc caacgtccac cccagcctca cattgccaga tggggcaga
 2100
 agggctaata ttgaccgtct tgactggctg gagccttcaa agccactggg atgtcctcca
 2160
 ggcacctggg tcccatgacc agctccccgt ctccataggg gttaggcattt cactggttt
 2220
 tgaagctcga gtttcattaa atatgttaag aatcaaagct gtctttgttc aggctgctat
 2280
 aacaaaaata taatagcctg ggtggcttaa ac
 2312

<210> 6284
 <211> 122
 <212> PRT
 <213> Homo sapiens

<400> 6284
 His Ser Arg Val Cys Pro Pro Phe Cys Pro Gln Trp Phe Leu Gly Phe
 1 5 10 15
 Ala Val Phe Leu Leu Pro Trp Ala Ser Met Trp Leu Arg Ser Leu Leu
 20 25 30
 Lys Pro Ile His Val Phe Phe Gly Ala Ala Ile Leu Ser Leu Ser Ile
 35 40 45
 Ala Ser Val Ile Ser Gly ile Asn Glu Lys Leu Phe Phe Ser Leu Lys
 50 55 60
 Asn Thr Thr Arg Pro Tyr His Ser Leu Pro Ser Glu Ala Val Phe Ala
 65 70 75 80
 Asn Ser Thr Gly Met Leu Val Val Ala Phe Gly Leu Leu Val Leu Tyr
 85 90 95
 Ile Leu Leu Ala Ser Ser Trp Lys Arg Pro Glu Pro Gly Ile Leu Thr
 100 105 110
 Asp Arg Gln Pro Leu Leu His Asp Gly Glu
 115 120

<210> 6285
 <211> 2542
 <212> DNA
 <213> Homo sapiens

<400> 6285
 nttttttttt tttttctgt ttatgacact ttattgatgc tgggggggtg gggaggagac
 60
 ctggagaaaat atgtgggggc aagagtcccc aggtggggac agggaaaagtg ttgaagcctg
 120

gccactactg ggcagggaaag acagagttgc cactgtatgc acaggggatg agcagctgcc
180
ggtactccag gggcaggtgc cgctccacta gcacgtgcag tgagacttgg tcagtgacca
240
ggccctgccc ccgcattcaggc agctccaggt cctctggctt cacagtcttgc cggccagcat
300
gagcagcaaa tacctccaga tcatcacaaa gatgctggaa atatttatct aggcaattct
360
ccaccatctc aagagccttc ctctccatgg gcatttggc atagaagcta aagagttca
420
catagtgctc agtccagcct tgtgggatc ttgccggggc ctggggccgg tggtccgggc
480
ctagggggat gctgaccaa cagaggctct gcaggctctg aagataagac tgcagcacca
540
ggcgctgggg ctggctcaag aaactgatga tgtcgcttgg cctggagaga ctcaggggtg
600
ctggaggccg actctggact tgtcgccctg ccagaggcat cctcatcccc tgaagatgt
660
cctggccctg cagcctcaggc agtccccctgg gatccccctg cttctgtcac ctctgtgt
720
ccctcagcct ctcttaccct gctgggtcct tgtcgccctg ttgcctccat ttcactcaca
780
ctcacacctt ctcttccat cttttctct gccttttcaa ctccatcgtg taagggtct
840
acttcatctt ctccagagac accactgctg gtgctcagga agcccagagc aaaggcattg
900
acccctctg cctctctgc cagaaactgg gctggttcc cagggcctga gtgaagggga
960
gagaatacag gccggagacg cagcaggcca aggctgcata gctcagagaa ggtaaagat
1020
ggactctgtt cttggatgaa ggaggcagcc acagccaggg tgctcttaggg gcacagaggg
1080
gcttgaggaa ggaaaactac cattgtcaac ttcacccaa gctaaatttg gctccaggcc
1140
accagtgcac cacactcaact attcttctgc agcccaggcc cactgctctg tgtcttgcga
1200
ccggcagcct gctcagcgtc ttcagccca gttgaggcg tgcaggcag ggagtgatac
1260
acgttggggg agccaaaccat gggctgagag aacggctggg tgtcctccaa cacaatgtt
1320
gagggagcca gggaaagtatc tcgcagatcc cgcaaaaagg caccacgtc tacagctcg
1380
cgggctggag gtctgcgggc caagccaggc ctctgcactg actgtggctg aagaggtgt
1440
gcaaaggta ggttgaggga tctggtgagg gaagaggcat cagcattccc ttgaggctct
1500
tgggagagag acagccccctg gtccactccc tgctgaaaca ctgacagtct cagcctctgt
1560
ttcctctgc caggggccag cagacctgga gccagggttg tggggggctc gagctcagga
1620
agttgcagct ccaggctgcc gcaactgctc tcttgcactgg agggttggac cgcctgcgg
1680
gctggcactg gtttcaactac cgactcaggc atcaggatgg aagattctgg ggcagtttagt
1740

aggatgttct tcagcagcgt ccgaggtgtc tggccctcca agtgcccact ggccctgaata
 1800
 tggcccgatc tgccaacaga cctggctcca tggaaacgcc ctctggctat cgtccttgc
 1860
 tggccactca acttcctggg ggaagccggt tcaagcaggc ctctccgggc tccagccccga
 1920
 gcactccggg gtcgcccggg ggtgcgcggg tccgctgtat ccagcacgcg tcgcagcagc
 1980
 gtgcgcggcg tggagtgcgt gtcagggttg tggtcagcca tcgtctcgcc cccggggccct
 2040
 cctaaccgcc cagccagctg caggctccgc cttcccggc ccacagttaa tgtaactctc
 2100
 gcgatgtcc cgacacagccc cacggaaatt gtatgttcgt cactatcgca gtcgcgggg
 2160
 tggacagtga tggttgcaaa ctccggatgc tttggaggca gcctcgctgc gggtaaacct
 2220
 cggtaatgt aatgcaagca gcccaagtct tgggttcttc atcatattct gtttagtgttt
 2280
 tcctccgtat tttcactgg ttgacaatcc tctcacctta agttttcatg gcaactgaat
 2340
 tagaacttgg tttctgagtc ttccgtggag ttcaagttcc cagaatctat aattccatct
 2400
 attcggaaa gtgaggcagg agcattgtt gatccttggg aggcagaggt tgcatatctg
 2460
 agatcgagcc acaatactcc atcttggcg gttaaagaggg ccccgttccc agcctatgcc
 2520
 ttcccacttc cctgttcaaa ta
 2542

<210> 6286

<211> 57

<212> PRT

<213> Homo sapiens

<400> 6286

Pro	Gly	Pro	Ala	Ala	Ala	Ser	Ala	Ala	Pro	Gly	Pro	Leu	Ala	Ser	Gln
1															15
Ser	Cys	Gly	Gln	His	Glu	Gln	Gln	Ile	Pro	Pro	Asp	His	His	Lys	Asp
				20				25				30			
Ala	Gly	Asn	Ile	Tyr	Leu	Gly	Thr	Ser	Pro	Pro	Ser	Gln	Glu	Pro	Ser
				35				40				45			
Ser	Pro	Trp	Ala	Ser	Trp	His	Arg	Ser							
								55							

<210> 6287

<211> 1674

<212> DNA

<213> Homo sapiens

<400> 6287

ntcgcgattc ggcgcggcg ggagcgggag gaggaggcat cgtccccggg gctgggctgc
 60
 agcaagccgc acctggagaa gctgaccctg ggcacacgc gcacccataga atctccccca
 120

ggtgtgactg aggtgaccat catagaaaag cctcctgctg aacgtcatat gatttcttcc
180
tgggaacaaa agaataactg tgtgatgcct gaagatgtga agaactttta cctgatgacc
240
aatggcttcc acatgacatg gagtgtaag ctggatgagc acatcattcc actggaaagc
300
atggcaatta acagcatctc aaaactgact cagtcaccc agtcttccat gtattcactt
360
cctaattgcac ccactctggc agacctggag gacgatacac atgaagccag ttagatgatcag
420
ccagagaagc ctcactttga ctctcgagt gtgatatttgc agctggattc atgcaatggc
480
agtggaaag tttgccttgt ctacaaaagt gggaaaccag cattagcaga agacactgag
540
atctggttcc tggacagagc gttatactgg cattttctca cagacaccc tactgcctat
600
taccgcctgc tcatcaccca cctggcctg ccccaagtggc aatatgcctt caccagctat
660
ggcattagcc cacaggccaa gcaatggttc agcatgtata aaccttatcac ctacaacaca
720
aacctgctca cagaagagac cgactccccc gtgaataagc tagatccag caaagtgttt
780
aagagcaaga acaagatcgt aatccaaaaa aagaaaggc ctgtgcagcc tgcaagggtggc
840
cagaaaggc cctcaggacc ctccggtccc tccacttcct ccacttctaa atcctcctct
900
ggctctggaa accccaccccg gaagtgagca cccctccctc caactcccta ccagctccag
960
agtgggtgtt tccatgcaca gatggcccta ggggtgaccc ccagtttgc gtgtggaccg
1020
taggcctctt tctagttgaa tgacccaaat tgtaaggctt ttagtcccac cgacattagc
1080
caggctcgta gtgaggcctc cagagcaggt tgtgctgtcc cctgcctctg gaagcaatgg
1140
ggaatttggaa atcttggta agtgcacaaa taagtctgag tgctttctc ttcttcaaca
1200
ctcaaccctc aatcccttag cactgattga ttagagaggt ccccaaaga aaccactgg
1260
tttgaccat gaagcattag aactgcatttgc ttcatcagg agccactagt cacatatgac
1320
tatttaatt taaagtaaat tgtatgaaaa attcatttct tcaattgcat tagccacatt
1380
ttgagtttgc atgtggctgg tagattctgt attagcacaa agatatggaa catttccatc
1440
accacagaaa gttctgttgg acagcactgc attagaatat tttcataactg ctcttcctca
1500
attaattttt gttgttaatg ttgatgtctt cattggatgg gtcataatgt tccatgaaac
1560
ctctcaagta cacaattgta tggatgttgc atcccttacc acaaataatct cgctctgctc
1620
attttttg cagttcccta taaagttgt ctccctcatac aaaaaaaaaaaa aaaa
1674

<210> 6288

<211> 269
<212> PRT
<213> Homo sapiens

<400> 6288
Pro Gly Val Thr Glu Val Thr Ile Ile Glu Lys Pro Pro Ala Glu Arg
1 5 10 15
His Met Ile Ser Ser Trp Glu Gln Lys Asn Asn Cys Val Met Pro Glu
20 25 30
Asp Val Lys Asn Phe Tyr Leu Met Thr Asn Gly Phe His Met Thr Trp
35 40 45
Ser Val Lys Leu Asp Glu His Ile Ile Pro Leu Gly Ser Met Ala Ile
50 55 60
Asn Ser Ile Ser Lys Leu Thr Gln Leu Thr Gln Ser Ser Met Tyr Ser
65 70 75 80
Leu Pro Asn Ala Pro Thr Leu Ala Asp Leu Glu Asp Asp Thr His Glu
85 90 95
Ala Ser Asp Asp Gln Pro Glu Lys Pro His Phe Asp Ser Arg Ser Val
100 105 110
Ile Phe Glu Leu Asp Ser Cys Asn Gly Ser Gly Lys Val Cys Leu Val
115 120 125
Tyr Lys Ser Gly Lys Pro Ala Leu Ala Glu Asp Thr Glu Ile Trp Phe
130 135 140
Leu Asp Arg Ala Leu Tyr Trp His Phe Leu Thr Asp Thr Phe Thr Ala
145 150 155 160
Tyr Tyr Arg Leu Leu Ile Thr His Leu Gly Leu Pro Gln Trp Gln Tyr
165 170 175
Ala Phe Thr Ser Tyr Gly Ile Ser Pro Gln Ala Lys Gln Trp Phe Ser
180 185 190
Met Tyr Lys Pro Ile Thr Tyr Asn Thr Asn Leu Leu Thr Glu Glu Thr
195 200 205
Asp Ser Phe Val Asn Lys Leu Asp Pro Ser Lys Val Phe Lys Ser Lys
210 215 220
Asn Lys Ile Val Ile Pro Lys Lys Lys Gly Pro Val Gln Pro Ala Gly
225 230 235 240
Gly Gln Lys Gly Pro Ser Gly Pro Ser Gly Pro Ser Thr Ser Ser Thr
245 250 255
Ser Lys Ser Ser Ser Gly Ser Gly Asn Pro Thr Arg Lys
260 265

<210> 6289
<211> 1321
<212> DNA
<213> Homo sapiens

<400> 6289
acactgcgtc cggggccaga cgacgatatac agcgcggtt cccccacaacg ccatggggca
60
gagccaactc tcgagcgcgt gatcgaagcc cgcagttttt tcgccccgt cacttccggg
120
tgcgacaatc tcttctgtcc ggccagccgc tggagtcgtt aggtgccgcc ttgcttctga
180
cgagccacac gtttgcttct tccctgtgtt cccagctgga gggacatgag tgtccctggg
240

ccgtcgctc cggacggggc cctgacacgg ccaccctact gcctggaggc cggggagccg
 300
 acgcctggtt taagtgacac ttctccagat gaagggttaa tagaggactt gactatagaa
 360
 gacaaagcag tggagcaact ggcagaagga ttgcttcattt attatggcc agatctgcag
 420
 agatcaaaac aagccctcca ggaactcaca cagaacccaag ttgtattgtt agacacactg
 480
 gaacaagaga tttcaaaatt taaagaatgt cattctatgt tggatattaa tgcttgaaa
 540
 gctgaggcta aacactatca tgccaaatgtt gtgaatataa gaaaagagat gctgatgctt
 600
 catgaaaaaa catcaaagtt aaaaaaaaaa gcaactaaac tgcagcagaa gaggcaaaaa
 660
 gaagagttgg aaaggagca gcaacgagag aaggggttg aaagagaaaa gcagttact
 720
 gccagaccag cccaaaggat gtgaaaagtt gtgtttgtgt gttttcttctt cctgtccccat
 780
 atttgggtta tgatgactca agttagact gaagttgagg tagtgcctta tgccattatg
 840
 tcataatgtt aaatccttat tccggattta ctgtgtctcc atgcctttt tccaaatgc
 900
 agacgtcatg ttgcattttt atatgttaatgtt tttcaattt ttgcatttt
 960
 ttaaaaattta ttattttattt cttgaattat ttataaaactg gaaagtggtt tgattattgt
 1020
 gagtcaaaac tctaagtgggt taaaatttag tatgaatttt ttagcttctt aatgaatatg
 1080
 gattaaaaac tctccagttt ttattttattg aaatgacttg cttttctgggt aatacaatgc
 1140
 tgatttttttta gtaattgcct tttcattact ttgttaagaa gaaatgccag ctgtttaatc
 1200
 acacccatccc ctggaaaaga ggttaaacctt ttgaacagtt gaatttcattc agaagctcta
 1260
 tagtttttg gtgagaggaa gtgatactct ttattacaag aaacaaggaa ttaacaaaaaa
 1320
 t
 1321

<210> 6290
 <211> 172
 <212> PRT
 <213> Homo sapiens

<400> 6290
 Met Ser Val Pro Gly Pro Ser Ser Pro Asp Gly Ala Leu Thr Arg Pro
 1 5 10 15
 Pro Tyr Cys Leu Glu Ala Gly Glu Pro Thr Pro Gly Leu Ser Asp Thr
 20 25 30
 Ser Pro Asp Glu Gly Leu Ile Glu Asp Leu Thr Ile Glu Asp Lys Ala
 35 40 45
 Val Glu Gln Leu Ala Glu Gly Leu Leu Ser His Tyr Leu Pro Asp Leu
 50 55 60
 Gln Arg Ser Lys Gln Ala Leu Gln Glu Leu Thr Gln Asn Gln Val Val

65	70	75	80
Leu	Leu	Asp	Thr
Leu	Glu	Gln	Glu
Ile	Ile	Ser	Lys
		Phe	Lys
		Glu	Cys
			His
85		90	95
Ser	Met	Leu	Asp
Ile	Asn	Ala	Leu
		Phe	Ala
		Glu	Ala
		Lys	Tyr
			His
100		105	110
Ala	Lys	Leu	Val
Asn	Ile	Arg	Lys
		Glu	Met
		Leu	Met
			Leu
			His
			Glu
115		120	125
Thr	Ser	Leu	Lys
		Lys	Arg
		Ala	Leu
		Lys	Lys
		Leu	Gln
			Gln
			Lys
			Arg
			Gln
130		135	140
Lys	Glu	Leu	Glu
		Arg	Glu
		Gln	Gln
		Arg	Glu
		Lys	Gly
			Phe
			Glu
145		150	155
Glu	Lys	Gln	Leu
		Leu	Thr
		Arg	Ala
		Pro	Arg
		Lys	Arg
			Met
165			170

<210> 6291
<211> 2718
<212> DNA
<213> Homo sapiens

<400> 6291
nagggtgtct tggcgggggg cgtggcacct gcactgttcc gggggatgcc agtcacttc
60
tcggacagcg cccagactga ggccctgtac cacatgctga gccggccccca gcccacccc
120
gaccacctcc tgcgtccagcg tctgcccacgg cccagctccc tgtcagacaa gaccagctc
180
cacagcaggt ggctggactc gtgcgggtgt ctcatgcagc agggcatcaa ggctggggac
240
gcactctggc tgcgtttcaa gtactacagc ttcttcgatt tggatcccaa gacagacccc
300
gtgcggctga cacagctgtta tgagcaggcc cggggacc tgctgctgga ggagattgac
360
tgcaccgagg aggagatgtat ggtgtttgcc gcctgcagt accacatcaa caagctgtcc
420
cagagcgggg aggtggggga gccggctggc acagacccag ggctggacga cctggatgtg
480
gcctgagca acctggaggt gaagctggag gggtcggcgc ccacagatgt gctggacagc
540
ctcaccacca tcccagagct caaggactat ctccgaatct ttccggccccg gaagctgacc
600
ctgaagggtt accgccaaca ctgggtggtg ttcaaggaga ccacactgtc ctactacaag
660
agccaggacg agggccctgg ggacccatt cagcagctca acctaagggg ctgtgaggtg
720
gttcccgatg ttaacgtctc cggccagaag ttctgcatta aactccttagt gcctccct
780
gagggcatga gtgagatcta cctgcgggtgc caggatgagc agcagtatgc ccgcgtggatg
840
gctggctgcc gcctggcctc caaaggccgc accatggccg acagcagcta caccagcgag
900
gtgcaggcca tcctggcctt cctcagcctg cagcacgggc agtgggggcc caggcaacca
960
cccccacggc ctgatgcctc tgccgagggc ctcaacccct acggccttgt tgccccccgt
1020

ttccagcgaa agttcaaggc caagcagctc acccccacgga tcctggaaagc ccaccagaat
1080
gtggccagt tgcgcgtggc agaggcccag ctgcgcctca tccaggcctg gcagtccctg
1140
cccgacttcg gcatctcccta tgtcatggtc aggttcaagg gcagcaggaa agacgagatc
1200
ctgggcattcg ccaacaaccg actgatccgc atcgacttgg ccgtgggtga cgtggtaag
1260
acctggcggt tcagcaacat ggcgcgtgg aatgtcaact gggacatccg gcaggtggcc
1320
atcgagtttgc atgaacacat caatgtggcc tttagtgcgtg tgcgcgttgc
1380
gtacacgagt atatcgaaaa ctacatttc ctgcgcgtcc gggagcgggc cgggtgggg
1440
gagctggatg aagacctctt cctgcagctc accggggggcc atgaggcctt ctgaggcgt
1500
tctgattgcc cctgcctgc tcaccacccct gtacacagcca ctcccaagcc cacacccaca
1560
ggggctcaact gccccacacc cgctccaggc aggacacccag ctgggcattt cacctgctgt
1620
cactgacttt gtgcaggcca aggacctggc agggccagac gctgtaccat caccaggcc
1680
agggatgggg gtgggggtcc ctgagctcat gtggtgcccc ctttccttgt ctgagtggt
1740
gaggctgata cccctgaccc atctgcagtc ccccaagcaca caaggaagac cagatgtac
1800
tacaggatga tgaaacatgg tttcaaaccga gttttttttt gttactttttt aaaattttt
1860
ttttataaat taatattttt ttgttgatc ctccctttt ctctggagct gtgtttgggg
1920
ctactctgac actctgtctc ttcatcacca gccaaggaaa ggggcttgc ggtagggcgt
1980
agctgcaggg ctccttgaa gtacttggaa aggaggaagc catcagtatt ccctggagtc
2040
agaatcaccc cattggcaga gccaaggaaa ggggcttgc ggtagggcgt
2100
tcgatgaaca cagctatttc acaatggac cgcacatccac tgcacatggc ggggtctcca
2160
ggcagtcctg gggccagggtg aatgtgcgtc ctccctggc aggacaggcc tttgagtagg
2220
atggatggcc agtgcttcca gaatgtacca tggactagca tcggggcag ggctgcggtg
2280
tctccagggg catcagctcc aacttaggtt cctgcaggaa atggccctgg ttggcccgaa
2340
tgagaaggcc agtgctggaa tccccagct gcagggcgaa ccgcgtcttc ctattgggt
2400
ccaccacgcg ctgcacatct tcacacatggc agccgcggaa ctggggcaac tgcaggaggg
2460
tgcccagggg cacgaagccca tctgtggca ggcagggtgc tcaggagcta accttgcgt
2520
ggactggcc agggtaaca gggagccaca ggcaaccgaa acaaagtctg ggcttggaga
2580
tcgttggc atcctctgtt ggacccctttag aaagtctccc ctttctggc cgcagtttc
2640

aacttacata aaaagaggat ctgcctcacf gaggggcagg gaggtgagtg cccagcatag
 2700
 cgctggcccg gagtgcac
 2718

<210> 6292
 <211> 497
 <212> PRT
 <213> Homo sapiens

<400> 6292
 Xaa Val Val Leu Ala Gly Gly Val Ala Pro Ala Leu Phe Arg Gly Met
 1 5 10 15
 Pro Ala His Phe Ser Asp Ser Ala Gln Thr Glu Ala Cys Tyr His Met
 20 25 30
 Leu Ser Arg Pro Gln Pro Pro Asp Pro Leu Leu Gln Arg Leu
 35 40 45
 Pro Arg Pro Ser Ser Leu Ser Asp Lys Thr Gln Leu His Ser Arg Trp
 50 55 60
 Leu Asp Ser Ser Arg Cys Leu Met Gln Gln Gly Ile Lys Ala Gly Asp
 65 70 75 80
 Ala Leu Trp Leu Arg Phe Lys Tyr Ser Phe Phe Asp Leu Asp Pro
 85 90 95
 Lys Thr Asp Pro Val Arg Leu Thr Gln Leu Tyr Glu Gln Ala Arg Trp
 100 105 110
 Asp Leu Leu Leu Glu Glu Ile Asp Cys Thr Glu Glu Met Met Val
 115 120 125
 Phe Ala Ala Leu Gln Tyr His Ile Asn Lys Leu Ser Gln Ser Gly Glu
 130 135 140
 Val Gly Glu Pro Ala Gly Thr Asp Pro Gly Leu Asp Asp Leu Asp Val
 145 150 155 160
 Ala Leu Ser Asn Leu Glu Val Lys Leu Glu Gly Ser Ala Pro Thr Asp
 165 170 175
 Val Leu Asp Ser Leu Thr Thr Ile Pro Glu Leu Lys Asp Tyr Leu Arg
 180 185 190
 Ile Phe Arg Pro Arg Lys Leu Thr Leu Lys Gly Tyr Arg Gln His Trp
 195 200 205
 Val Val Phe Lys Glu Thr Thr Leu Ser Tyr Tyr Lys Ser Gln Asp Glu
 210 215 220
 Ala Pro Gly Asp Pro Ile Gln Gln Leu Asn Leu Lys Gly Cys Glu Val
 225 230 235 240
 Val Pro Asp Val Asn Val Ser Gly Gln Lys Phe Cys Ile Lys Leu Leu
 245 250 255
 Val Pro Ser Pro Glu Gly Met Ser Glu Ile Tyr Leu Arg Cys Gln Asp
 260 265 270
 Glu Gln Gln Tyr Ala Arg Trp Met Ala Gly Cys Arg Leu Ala Ser Lys
 275 280 285
 Gly Arg Thr Met Ala Asp Ser Ser Tyr Thr Ser Glu Val Gln Ala Ile
 290 295 300
 Leu Ala Phe Leu Ser Leu Gln His Gly Gln Trp Gly Pro Arg Gln Pro
 305 310 315 320
 Pro Pro Arg Pro Asp Ala Ser Ala Glu Gly Leu Asn Pro Tyr Gly Leu
 325 330 335
 Val Ala Pro Arg Phe Gln Arg Lys Phe Lys Ala Lys Gln Leu Thr Pro

340	345	350
Arg Ile Leu Glu Ala His Gln Asn Val Ala Gln	Leu Ser Leu Ala Glu	
355	360	365
Ala Gln Leu Arg Phe Ile Gln Ala Trp Gln Ser	Leu Pro Asp Phe Gly	
370	375	380
Ile Ser Tyr Val Met Val Arg Phe Lys Gly	Ser Arg Lys Asp Glu Ile	
385	390	400
Leu Gly Ile Ala Asn Asn Arg Leu Ile Arg	Ile Asp Leu Ala Val Gly	
405	410	415
Asp Val Val Lys Thr Trp Arg Phe Ser Asn Met	Arg Gln Trp Asn Val	
420	425	430
Asn Trp Asp Ile Arg Gln Val Ala Ile Glu Phe	Asp Glu His Ile Asn	
435	440	445
Val Ala Phe Ser Cys Val Ser Ala Ser Cys Arg	Ile Val His Glu Tyr	
450	455	460
Ile Gly Gly Tyr Ile Phe Leu Ser Thr Arg Glu	Arg Ala Arg Gly Glu	
465	470	475
Glu Leu Asp Glu Asp Leu Phe Leu Gln Leu Thr	Gly Gly His Glu Ala	
485	490	495
Phe		

<210> 6293

<211> 750

<212> DNA

<213> Homo sapiens

<400> 6293

```

nggccccggcg ccatggcacc gtggggcaag cggctggctg gcggtgcgcgg ggtgctgctt
60
gacatctcg ggctgctgtta cgacagcggc gcgtgcggcg gcacggccat cgccggctcg
120
gtggaggcgg tggccagact gaagcgttcc cggctgaagg tgaggttctg caccaacgag
180
tcgcagaagt cccgggcaga gctgggtgggg cagttcaga ggctgggatt tgacatctct
240
gagcaggagg taaccgcggc ggcaccagct gcctgccaga tcctgaagga gcgaggcctg
300
cgaccatacc tgctcatcca tgacggagtc cgctcagaat ttgatcagat cgacacatcc
360
aacccaaact gtgtggtaat tgcagacgca ggagaaagct tttcttatca aaacatgaat
420
aacgccttcc aggtgctcat ggagctggaa aaacctgtgc tcataatcact gggaaaaggg
480
cgttactaca aggagacctc tggcctgatg ctggacgttg gtccctacat gaaggcgctt
540
gagttatgcct gtggcatcaa agccgaggtg gtggggaaagc cttctcctga gttttcaag
600
tctgcctgc aagcgatagg agtggaagcc caccaggccg tcatgatgg ggacgatatc
660
gtggggcgacg tcggcggtgc ccagcggtgt ggaatgagag cgctgcaggt ggcgcaccggg
720
aagttcaggc ccagtgacga gcaccatccg
750

```

<210> 6294
<211> 250
<212> PRT
<213> Homo sapiens

<400> 6294
Xaa Pro Gly Ala Met Ala Pro Trp Gly Lys Arg Leu Ala Gly Val Arg
1 5 10 15
Gly Val Leu Leu Asp Ile Ser Gly Val Leu Tyr Asp Ser Gly Ala Cys
20 25 30
Gly Gly Thr Ala Ile Ala Gly Ser Val Glu Ala Val Ala Arg Leu Lys
35 40 45
Arg Ser Arg Leu Lys Val Arg Phe Cys Thr Asn Glu Ser Gln Lys Ser
50 55 60
Arg Ala Glu Leu Val Gly Gln Leu Gln Arg Leu Gly Phe Asp Ile Ser
65 70 75 80
Glu Gln Glu Val Thr Ala Pro Ala Pro Ala Cys Gln Ile Leu Lys
85 90 95
Glu Arg Gly Leu Arg Pro Tyr Leu Leu Ile His Asp Gly Val Arg Ser
100 105 110
Glu Phe Asp Gln Ile Asp Thr Ser Asn Pro Asn Cys Val Val Ile Ala
115 120 125
Asp Ala Gly Glu Ser Phe Ser Tyr Gln Asn Met Asn Asn Ala Phe Gln
130 135 140
Val Leu Met Glu Leu Glu Lys Pro Val Leu Ile Ser Leu Gly Lys Gly
145 150 155 160
Arg Tyr Tyr Lys Glu Thr Ser Gly Leu Met Leu Asp Val Gly Pro Tyr
165 170 175
Met Lys Ala Leu Glu Tyr Ala Cys Gly Ile Lys Ala Glu Val Val Gly
180 185 190
Lys Pro Ser Pro Glu Phe Phe Lys Ser Ala Leu Gln Ala Ile Gly Val
195 200 205
Glu Ala His Gln Ala Val Met Ile Gly Asp Asp Ile Val Gly Asp Val
210 215 220
Gly Gly Ala Gln Arg Cys Gly Met Arg Ala Leu Gln Val Arg Thr Gly
225 230 235 240
Lys Phe Arg Pro Ser Asp Glu His His Pro
245 250

<210> 6295
<211> 2091
<212> DNA
<213> Homo sapiens

<400> 6295
ggcgccgggg gcgggggtgg gagggcggagg cggggccggg gcccgcggg cggggcgccg
60
ggggcggggc gagtcggag gactcctcgg actgcgcgg aatggcgtt ctggggttgg
120
cgcgcggcgg cagccctccg gctgtggggc cggtagttg aacgggtcga ggccggggga
180
ggcgtggggc cgttttaggc ctgcggctgt cggctggtgc ttggcggcag ggacgatgtg
240

agtgcggggc tgagaggcag ccatggggcc cgcggtgagc cttggaccc ggcgcccc
300 ttgcagagc ctcccagacc cgaggtgcc agggcattcc ggaggcagcc gagggcagca
360 gctcccagtt ttttctttc gatattaaa ggttggaa ggtccatatac ttttctgtg
420 ggtgttcaa gtgttgggg aagtggagc agcagtgaca aggggaagct ttccctgcag
480 gatgttagctg agctgattcg ggccagagcc tgccagaggg tggtggtcat ggtggggcc
540 ggcacatcagca cacccagtgg cattccagac ttcagatcgc cggggagtgg cctgtacagc
600 aacctccagc agtacgatct cccgtacccc gagggcattt ttgaactccc attcttctt
660 cacaacccca agccctttt cactttggcc aaggagctgt accctggaaa ctacaagccc
720 aacgtcactc actacttct ccggctgttt catgacaagg ggctgcttct gcggctctac
780 acgcagaaca tcgatggct tgagagagtg tcgggcatcc ctgcctcaaa gctggttgaa
840 gctcatggaa ctttgcctc tgccacctgc acagtctgcc aaagaccctt cccagggag
900 gacattcggg ctgacgtgat ggcagacagg gttcccccgt gcccggctcg caccggcggt
960 gtgaagcccg acattgtgtt cttttggag ccgtgtcccc agaggttctt gctgcattgt
1020 gttgatttcc ccatggcaga tctgtgtctc atccttggga cttccctgga ggtggagcct
1080 tttgcacgt tgaccgagc cgtgcggagc tcagttcccc gactgctcat caaccggac
1140 ttgggtgggc ctttggcttg gcatcctcgc agcaggacg tggcccagct gggggacgtg
1200 gttcacggcg tgaaagcct agtggagctt ctgggctgga cagaagagat gcgggacctt
1260 gtgcagcggg aaactggaa gcttgatgga ccagacaaat aggatgatgg cttgaccgag
1320 gccgtgcgga cgtcagttcc ccgactgctc atcaaccggg acttgggtgg gcccctggct
1380 tggcatcctc gcagcaggga cgtggccag ctggggacg tggttcacgg cgtggaaagc
1440 ctagtggagc ttctggctg gacagaagag atgcgggacc ttgtgcagcg ggaaactgg
1500 aagcttgatg gaccagacaa ataggatgat ggctgcccc acacaataaa tggtaacata
1560 ggagacatcc acatccaaat tctgacaaga cctcatgcct gaagacagct tggcaggtg
1620 aaaccagaat atgtgaactg agtggacacc cgaggctgcc actggaatgt cttctcaggc
1680 catgagctgc agtgaactggt agggctgtgt ttacagtcag ggccaccccg tcacatatac
1740 aaaggagctg cctgcctgtt tgctgtgtt aactcttcac tctgctgaag ctcctaattgg
1800 aaaaagcttt cttctgactg tgaccctctt gaactgaatc agaccaactg gaatcccaga
1860

ccgagtcgc tttctgtgcc tagttgaacg gcaagctcg catctgttgg ttacaagatc
 1920
 cagacttggg ccgagcggtc cccagccctc ttcatgttcc gaagtgtagt cttgaggccc
 1980
 tggtgccgca cttctagcat gttggcttcc ttttagtgggg ctattttaa tgagagaaaa
 2040
 tctgttcttt ccagcatgaa atacatttag tctcctcaaa aaaaaaaaaac a
 2091

<210> 6296
 <211> 399
 <212> PRT
 <213> Homo sapiens

<400> 6296
 Met Ala Phe Trp Gly Trp Arg Ala Ala Ala Ala Leu Arg Leu Trp Gly
 1 5 10 15
 Arg Val Val Glu Arg Val Glu Ala Gly Gly Gly Val Gly Pro Phe Gln
 20 25 30
 Ala Cys Gly Cys Arg Leu Val Leu Gly Gly Arg Asp Asp Val Ser Ala
 35 40 45
 Gly Leu Arg Gly Ser His Gly Ala Arg Gly Glu Pro Leu Asp Pro Ala
 50 55 60
 Arg Pro Leu Gln Arg Pro Pro Arg Pro Glu Val Pro Arg Ala Phe Arg
 65 70 75 80
 Arg Gln Pro Arg Ala Ala Ala Pro Ser Phe Phe Ser Ser Ile Lys
 85 90 95
 Gly Gly Arg Arg Ser Ile Ser Phe Ser Val Gly Ala Ser Ser Val Val
 100 105 110
 Gly Ser Gly Gly Ser Ser Asp Lys Gly Lys Leu Ser Leu Gln Asp Val
 115 120 125
 Ala Glu Leu Ile Arg Ala Arg Ala Cys Gln Arg Val Val Val Met Val
 130 135 140
 Gly Ala Gly Ile Ser Thr Pro Ser Gly Ile Pro Asp Phe Arg Ser Pro
 145 150 155 160
 Gly Ser Gly Leu Tyr Ser Asn Leu Gln Gln Tyr Asp Leu Pro Tyr Pro
 165 170 175
 Glu Ala Ile Phe Glu Leu Pro Phe Phe His Asn Pro Lys Pro Phe
 180 185 190
 Phe Thr Leu Ala Lys Glu Leu Tyr Pro Gly Asn Tyr Lys Pro Asn Val
 195 200 205
 Thr His Tyr Phe Leu Arg Leu Leu His Asp Lys Gly Leu Leu Leu Arg
 210 215 220
 Leu Tyr Thr Gln Asn Ile Asp Gly Leu Glu Arg Val Ser Gly Ile Pro
 225 230 235 240
 Ala Ser Lys Leu Val Glu Ala His Gly Thr Phe Ala Ser Ala Thr Cys
 245 250 255
 Thr Val Cys Gln Arg Pro Phe Pro Gly Glu Asp Ile Arg Ala Asp Val
 260 265 270
 Met Ala Asp Arg Val Pro Arg Cys Pro Val Cys Thr Gly Val Val Lys
 275 280 285
 Pro Asp Ile Val Phe Phe Gly Glu Pro Leu Pro Gln Arg Phe Leu Leu
 290 295 300
 His Val Val Asp Phe Pro Met Ala Asp Leu Leu Ile Leu Gly Thr

305	310	315	320
Ser Leu Glu Val Glu Pro Phe Ala Ser	Leu Thr Glu Ala Val Arg Ser		
325	330	335	
Ser Val Pro Arg Leu Leu Ile Asn Arg Asp	Leu Val Gly Pro Leu Ala		
340	345	350	
Trp His Pro Arg Ser Arg Asp Val Ala Gln	Leu Gly Asp Val Val His		
355	360	365	
Gly Val Glu Ser Leu Val Glu Leu Leu Gly	Trp Thr Glu Glu Met Arg		
370	375	380	
Asp Leu Val Gln Arg Glu Thr Gly Lys Leu Asp	Gly Pro Asp Lys		
385	390	395	

<210> 6297

<211> 472

<212> DNA

<213> Homo sapiens

<400> 6297

ngggcccgct ggccgagagg ctgagggcggc gtcatgtcct ccgaggtgtc cgccgcgcgc
 60
 gacccaaga agctggtgcg ctccccgagc ggccctgcga tggtgcccgaa acaccgcgc
 120
 ttccggaaagcc cgttcggcct ggaggagccg cagtgggtcc cggacaagga gtgtcggaga
 180
 tgtatgcagt gtgacgccaa gtttacttt ctcaccagaa agcaccactg tcgcccgtgc
 240
 gggaaagtgtc tctgcgacag gtgctgcagc cagaaggtgc cgctgcggcg catgtgttt
 300
 gtggaccccg tgccggcgttg cgccggagtgc gccctggtgt ccctcaagga ggccggagtcc
 360
 tacgacaagc agctcaaagt gtcctgagc ggttaaggacg ggtgtcctgc acagtcctgc
 420
 gcgcctccgccc agccggctcc tcgtgtctgt ggcgatgctg tgggctgtgc ac
 472

<210> 6298

<211> 146

<212> PRT

<213> Homo sapiens

<400> 6298

Met Ser Ser Glu Val Ser Ala Arg Arg Asp Ala Lys Lys	Leu Val Arg		
1	5	10	15
Ser Pro Ser Gly Leu Arg Met Val Pro Glu His Arg Ala Phe	Gly Ser		
20	25	30	
Pro Phe Gly Leu Glu Glu Pro Gln Trp Val Pro Asp Lys	Glu Cys Arg		
35	40	45	
Arg Cys Met Gln Cys Asp Ala Lys Phe Asp Phe Leu Thr	Arg Lys His		
50	55	60	
His Cys Arg Arg Cys Gly Lys Cys Phe Cys Asp Arg Cys	Cys Ser Gln		
65	70	75	80
Lys Val Pro Leu Arg Arg Met Cys Phe Val Asp Pro Val Arg	Gln Cys		
85	90	95	
Ala Glu Cys Ala Leu Val Ser Leu Lys Glu Ala Glu Phe Tyr	Asp Lys		

100 105 110
Gln Leu Lys Val Leu Leu Ser Gly Lys Asp Gly Cys Pro Ala Gln Ser
115 120 125
Cys Ala Leu Arg Gln Pro Ala Pro Arg Val Cys Gly Asp Ala Val Gly
130 135 140
Cys Ala
145

<210> 6299
<211> 1466
<212> DNA
<213> Homo sapiens

<400> 6299
ctgattccgg gctgtcatgg cgaccccaa caatctgacc cccaccaact gcagctggtg
60
ggccatctcc gcgctggaga gcgatgcggc caagccagcg gaggcccccg acgctcccgaa
120
ggcggccagc ccgcccattg gcccaggag agcctggttc tgtaccactg gacccagtcc
180
ttcagctcgc agaaggtgcg gctggtgatc gccgagaagg gcctggtgtg cgaggagcgg
240
gacgtgagcc tgccacagag cgagcacaag gagccctggt tcatgcggct caacctgggc
300
gaggaggtgc ccgtcatcat ccaccgcgac aacatcatca gtgactatga ccagatcatt
360
gactatgtgg agcgcacctt cacaggagag cacgtggtgg ccctgatgcc cgaggtgggc
420
480
gcctacacgc atggctgcat cctgcattttt gagtcacca ccgactccat gatccccaaag
540
tacgccacgg ccgagatccg cagacattt gccaatgcca ccacggacct catgaaactg
600
660
gaccatgaag aggagccca gctctccgag ccctaccttt ctaaacaaaa gaagctcatg
720
gccaagatct tggagcatga tgatgtgagc tacctgaaga agatcctcg ggaactggcc
780
atgggtctgg accagattga ggcggagctg gagaagagga agctggagaa cgagggggcag
840
aaatgcgagc tgtggctctg tggctgtgcc ttccacccctcg ctgatgtccct cctgggagcc
900
accctgcacc gcctcaagtt cctgggactg tccaagaaat actggaaaga tggcagccgg
960
cccaacctgc agtccttctt tgagagggtc cagagacgct ttgccttccg gaaagtccctg
1020
ggtgacatcc acaccacccct gctgtcggcc gtcattccca atgctttccg gctggtcaag
1080
aggaaacccc catccttctt cggggcgtcc ttccctcatgg gctccctggg tggatgggc
1140
tactttgcct actggtaccc caagaaaaaa tacatctagg gccaggcctg gggcttggtg
1200
tctgactgtc ggtgtctctg tgctgtgtga ttcccccgtga gctctcagta actcaactgtc

tcatgaacac ttggacagcc ctccccgccc ttctttctga gtaataatac cgtcagtgtg
 1260
 aaaacattcc gtatgtttaga agtagacgtt gcaaattgttg tgactcaagg ccacggctct
 1320
 gctaaaagag agagaaggaa cgagagagag agagaaaaaa caaaaaacca gaaaaccacg
 1380
 aatgccttt tctatcgatt tcaaggcttc aagatggaa ctgtgggaga ctgggttagg
 1440
 atctgagggg aactcttca caggga
 1466

<210> 6300
 <211> 372
 <212> PRT
 <213> Homo sapiens

<400> 6300
 Leu Ile Pro Gly Cys His Gly Asp Pro Gln Gln Ser Asp Pro His Gln
 1 5 10 15
 Leu Gln Leu Val Ala His Leu Arg Ala Gly Glu Arg Cys Gly Gln Ala
 20 25 30
 Ser Gly Gly Pro Arg Arg Ser Arg Gly Gly Gln Pro Ala His Trp Pro
 35 40 45
 Arg Glu Ser Leu Val Leu Tyr His Trp Thr Gln Ser Phe Ser Ser Gln
 50 55 60
 Lys Val Arg Leu Val Ile Ala Glu Lys Gly Leu Val Cys Glu Glu Arg
 65 70 75 80
 Asp Val Ser Leu Pro Gln Ser Glu His Lys Glu Pro Trp Phe Met Arg
 85 90 95
 Leu Asn Leu Gly Glu Val Pro Val Ile Ile His Arg Asp Asn Ile
 100 105 110
 Ile Ser Asp Tyr Asp Gln Ile Ile Asp Tyr Val Glu Arg Thr Phe Thr
 115 120 125
 Gly Glu His Val Val Ala Leu Met Pro Glu Val Gly Ser Leu Gln His
 130 135 140
 Ala Arg Val Leu Gln Tyr Arg Glu Leu Leu Asp Ala Leu Pro Met Asp
 145 150 155 160
 Ala Tyr Thr His Gly Cys Ile Leu His Pro Glu Leu Thr Thr Asp Ser
 165 170 175
 Met Ile Pro Lys Tyr Ala Thr Ala Glu Ile Arg Arg His Leu Ala Asn
 180 185 190
 Ala Thr Thr Asp Leu Met Lys Leu Asp His Glu Glu Glu Pro Gln Leu
 195 200 205
 Ser Glu Pro Tyr Leu Ser Lys Gln Lys Lys Leu Met Ala Lys Ile Leu
 210 215 220
 Glu His Asp Asp Val Ser Tyr Leu Lys Lys Ile Leu Gly Glu Leu Ala
 225 230 235 240
 Met Val Leu Asp Gln Ile Glu Ala Glu Leu Glu Lys Arg Lys Leu Glu
 245 250 255
 Asn Glu Gly Gln Lys Cys Glu Leu Trp Leu Cys Gly Cys Ala Phe Thr
 260 265 270
 Leu Ala Asp Val Leu Leu Gly Ala Thr Leu His Arg Leu Lys Phe Leu
 275 280 285
 Gly Leu Ser Lys Lys Tyr Trp Glu Asp Gly Ser Arg Pro Asn Leu Gln

290	295	300
Ser Phe Phe Glu Arg Val Gln Arg Arg Phe Ala Phe Arg Lys Val Leu		
305	310	315
Gly Asp Ile His Thr Thr Leu Leu Ser Ala Val Ile Pro Asn Ala Phe		320
325	330	335
Arg Leu Val Lys Arg Lys Pro Pro Ser Phe Phe Gly Ala Ser Phe Leu		
340	345	350
Met Gly Ser Leu Gly Gly Met Gly Tyr Phe Ala Tyr Trp Tyr Leu Lys		
355	360	365
Lys Lys Tyr Ile		
370		

<210> 6301
<211> 911
<212> DNA
<213> Homo sapiens

<400> 6301
nnacgggttt tagaaaaaca agaattacag cagccaacct atgttgcct gagttacata
60
aatagattca tgacagatgc tgcccgccga gaggcaggagt ccctaaagaa gaagattcag
120
ccgaagctct cgctgactct gtccagctca gtgtctcgag ggaatgtgtc cactccccca
180
cgccacagca gtggaagcct tactcccccc gtgacccac ccatcacccc ctcccttca
240
ttcccgagca gcactccgac aggcagcgag tatgacgagg aggaggtgga ctatgaggag
300
tcggacagcg atgagtcctg gaccacagag agtgccatca gctccgaagc catcctcagc
360
tccatgtgca tgaatggagg ggaagagaag cctttgcct gcccagttcc tggatgtaaa
420
aagagataca agaatgtcaa tggcataaaag tatcacgcta agaatggtca cagaacacag
480
attcgtgtcc gcaaaccatt caagtgtcgc tgtggaaaga gttacaagac agctcagggc
540
ctgcggcacc acacaatcaa tttccatccc ccgggtgtcgg ctgagattat caggaagatg
600
cagcaataac atgctggtca taactgtgcc aagaaatcct caccagcagt tgctgatttt
660
aaaaacagcc acctttttc agggaaagca tttagcaacc ctttaaagaa aaagaattaa
720
atgcatttgcatt taaatttttt ctgtatgtt ggaatgtatgt atctttgttag agttaatgtat
780
tttgtacatt tgcacatgtat atcatcatac ccattttcat tactttgata taagggtgcta
840
aacaaaaaaaaaa gctcttaggtt cttcagcaca tttcccccaa aacaaaataa aattgaggc
900
atgttgcaaa a
911

<210> 6302
<211> 202
<212> PRT

<213> Homo sapiens

<400> 6302

Xaa	Arg	Val	Leu	Glu	Lys	Gln	Glu	Leu	Gln	Gln	Pro	Thr	Tyr	Val	Ala
1					5				10					15	
Leu	Ser	Tyr	Ile	Asn	Arg	Phe	Met	Thr	Asp	Ala	Ala	Arg	Arg	Glu	Gln
						20			25				30		
Glu	Ser	Leu	Lys	Lys	Lys	Ile	Gln	Pro	Lys	Leu	Ser	Leu	Thr	Leu	Ser
						35			40			45			
Ser	Ser	Val	Ser	Arg	Gly	Asn	Val	Ser	Thr	Pro	Pro	Arg	His	Ser	Ser
						50			55			60			
Gly	Ser	Leu	Thr	Pro	Pro	Val	Thr	Pro	Pro	Ile	Thr	Pro	Ser	Ser	Ser
						65			70			75			80
Phe	Arg	Ser	Ser	Thr	Pro	Thr	Gly	Ser	Glu	Tyr	Asp	Glu	Glu	Val	
						85			90			95			
Asp	Tyr	Glu	Glu	Ser	Asp	Ser	Asp	Glu	Ser	Trp	Thr	Thr	Glu	Ser	Ala
						100			105			110			
Ile	Ser	Ser	Glu	Ala	Ile	Leu	Ser	Ser	Met	Cys	Met	Asn	Gly	Gly	Glu
						115			120			125			
Glu	Lys	Pro	Phe	Ala	Cys	Pro	Val	Pro	Gly	Cys	Lys	Lys	Arg	Tyr	Lys
						130			135			140			
Asn	Val	Asn	Gly	Ile	Lys	Tyr	His	Ala	Lys	Asn	Gly	His	Arg	Thr	Gln
						145			150			155			160
Ile	Arg	Val	Arg	Lys	Pro	Phe	Lys	Cys	Arg	Cys	Gly	Lys	Ser	Tyr	Lys
						165			170			175			
Thr	Ala	Gln	Gly	Leu	Arg	His	His	Thr	Ile	Asn	Phe	His	Pro	Pro	Val
						180			185			190			
Ser	Ala	Glu	Ile	Ile	Arg	Lys	Met	Gln	Gln						
						195			200						

<210> 6303

<211> 676

<212> DNA

<213> Homo sapiens

<400> 6303

aaagttcatg	ttgttgatct	aaaggcagaa	tctgttagctg	ctcctataac	tgttcgtgct
60					
tacttaaatc	agacagttac	agaattcaaa	caactgattt	caaaggccat	ccatttacct
120					
gctgaaacaa	tgagaatagt	gctggaacgc	tgctacaatg	atttgcgtct	tctcagtgtc
180					
tccagtaaaa	ccctgaaagc	tgaaggatTT	tttagaagta	acaagggttt	tgttggaaagc
240					
tccgagactt	tggattacca	gatggccttt	gcagactctc	atttatggaa	actcctggat
300					
cggcatgcaa	atacaatcag	attattgtt	ttgctacctg	aacaatcccc	agtatcttat
360					
tccaaaagga	cagcatacca	gaaagctgga	ggcgattctg	gtaatgtgga	tgatgactgt
420					
gaaagagtca	aaggacctgt	aggaaggcta	aagtctgtgg	aagctattct	agaagaaaagc
480					
actaaaaaac	tcaaaagctt	gtcactgcag	caacagcagg	atggagataa	tggggacagc
540					

agcaaaagta ctgagacaag tgactttgaa aacatcgaaat cacctctcaa tgagagggac
600
tcttcagcat cagtggataa tagagaacctt gaacagcata ttcagacttc tgatccagaa
660
aaattttcag tctgaa
676

<210> 6304
<211> 181
<212> PRT
<213> *Homo sapiens*

<400> 6304
 Met Arg Ile Val Leu Glu Arg Cys Tyr Asn Asp Leu Arg Leu Leu Ser
 1 5 10 15
 Val Ser Ser Lys Thr Leu Lys Ala Glu Gly Phe Phe Arg Ser Asn Lys
 20 25 30
 Val Phe Val Glu Ser Ser Glu Thr Leu Asp Tyr Gln Met Ala Phe Ala
 35 40 45
 Asp Ser His Leu Trp Lys Leu Leu Asp Arg His Ala Asn Thr Ile Arg
 50 55 60
 Leu Phe Val Leu Leu Pro Glu Gln Ser Pro Val Ser Tyr Ser Lys Arg
 65 70 75 80
 Thr Ala Tyr Gln Lys Ala Gly Gly Asp Ser Gly Asn Val Asp Asp Asp
 85 90 95
 Cys Glu Arg Val Lys Gly Pro Val Gly Ser Leu Lys Ser Val Glu Ala
 100 105 110
 Ile Leu Glu Glu Ser Thr Glu Lys Leu Lys Ser Leu Ser Leu Gln Gln
 115 120 125
 Gln Gln Asp Gly Asp Asn Gly Asp Ser Ser Lys Ser Thr Glu Thr Ser
 130 135 140
 Asp Phe Glu Asn Ile Glu Ser Pro Leu Asn Glu Arg Asp Ser Ser Ala
 145 150 155 160
 Ser Val Asp Asn Arg Glu Leu Glu Gln His Ile Gln Thr Ser Asp Pro
 165 170 175
 Glu Lys Phe Ser Val
 180

<210> 6305
<211> 3853
<212> DNA
<213> *Homo sapiens*

<400> 6305
cagtgc~~cc~~agg ctggaggc~~gg~~ cagcggtt~~gg~~ aggcttc~~gg~~ cggctttgca gcggggactt
60
cggcg~~gg~~gc~~gg~~ gcctcaggca cctcg~~gg~~cccc gacacgatga ggcgag~~t~~ggt c~~gg~~cag~~gg~~
120
aaattcc~~gg~~gc atgtgtt~~cg~~ gg cagcc~~gg~~tc aagaacgacc agtgctatga ggacattc~~gc~~
180
gtgtccc~~gt~~tg ttacctggga cagcac~~tt~~tc tgccgc~~gt~~ca accccaagtt cctggcg~~gt~~g
240
attgtggagg ccag~~t~~ggagg ggg~~t~~gc~~tt~~tt ctgg~~t~~gc~~tc~~ ccctaagcaa gacggggcc~~gc~~
300

attgacaagg cctaccctac agtatgtggg cacacaggac cagtgcgttga catcgactgg
360
tgcccacata acgatcaggt cattgccagc ggttcagagg actgcacggt catggtatgg
420
cagatccccag aaaatggact cacctccccg ctgacagagc cggtgggttgt actggagggg
480
cacaccaagc gagtgccat catgcctgg cacccacgg cccgaaacgt gctgctcagt
540
gcaggctgcg acaacgttgt actcatctgg aatgtggca cagcggagga gctgtaccgc
600
ctggacagcc tgcaccctga cctcatctac aatgtcagct ggaaccacaa tggcagcctg
660
ttttgcttag catgcaagga caagagcgtg cgcatcatcg accccccgtcg gggcaccctg
720
gtggcagagc gggagaaggc tcatgagggg gcccgccca tgccggccat cttcctggca
780
gatggcaagg tggccaccac aggcttcagc cgaatgagcg agcggcagct ggcgtctgg
840
aatccaaaa atatgcagga accaattgct cttcatgaga tggacactag caatggggtg
900
ttgctgcctt tctatgaccc tgacaccagc atcattact tatgtggaaa gggtgacagc
960
agtattcgtt attttgagat cacggatgaa tcccccgtacg tccactacct caacacattc
1020
agcagcaagg agcctcagag agggatgggt tacatgccc agagggact tggatgttaac
1080
aaatgtgaga ttgcccattt cttcaaactt catgagagaa agtgtgaacc tattattatg
1140
actgttccca ggaagtctga cctttccaa gatgacctgt atcctgacac agcggggcca
1200
gaggccgcgc tggaggcaga agagtggttc gaaggcaaga atgcagaccc aatcctcatc
1260
tccttgaagc acgggtacat tccaggcaaa aacagggtac tcaagggttgt caagaagaac
1320
attctggata gcaagccccac tgcaaacaag aagtgcgacc tgatcagcat ccccaagaaa
1380
accacagaca cggccagtgt gcaaaatgaa gccaagttgg atgagattt aaaagagatc
1440
aaatctataa aagacacaat ctgcaatcaa gatgagcgtt tttccaagtt agaacagcag
1500
atggcaaaga tagcagcctg aaggtccccac ccccccacccct acagaaaaaa tgggagcaag
1560
aacttgtgt tgggagctgg ttattgggtgt ggtcttaggg agggcggaaa gggaggcact
1620
gccatttggaa gacattccat ttcagatttg tcaaccagcg ataggccaca ttccagtaag
1680
aactcaattt gtctccaaa tttgcagaaaa caaaacgtga tttaaaagct gagctttta
1740
tcagaaaagct ttttgcgtt tttaaatgtt atgtgacttg ttgaacttt taaaaaagtgc
1800
tacttttaaa atcccagata ctctgaattt tagaaaaacaa actaattctg attgtgtcgt
1860
gcccaagttac cttttttttt ttaatgaata gggaccaatg ccacattgct ttttatattt
1920

10/04/3, 649
B2

ctttctttt taatgttgcc aaaaccaaaa gtagctttgt tttcctttgt attttgcac
1980
tttcagttat ttgtgtgtgt ggttttttt ccttaatttgc aaaggacag cactgtgtat
2040
gtttataaaac taaaatgaaga taagatatta ttttgtataa acattcatct gagaacaatc
2100
aaagcagtag ccacatggtg ctggctcctt tgcaacacaa acctggcat tttgatgact
2160
gtacaacagg aagacttcaa aaatcacgtg gattcatatt accaccgctc tcatttcatg
2220
gagtcttctg atcaaaaaag ctcacgtcgt atttcttctt ttcctttctc ttttctagaa
2280
atgggtgtt tgtaccagaa tggaattttg cttctcggtt atcctgtgct tcagatgatt
2340
ataatctaac ccaaacttagc atgtgtttct gcagtttgc acacacccat gatcatattg
2400
cattcatcac tttaaacatc atgtttcagg tttggtaaa tacttgacaa gggtgcccag
2460
gacaggaaga cgtgtactgc tgagtgttcc ttcttgcctt ttccagcagc ttgcccagct
2520
ctttagtaca gtgggtggga ctaaaaatgt gggcatgtgg agaggggtat ttggccctggg
2580
tgatcctgtt tccctgtgct gtccccatgc tgggtggag gaggaagtgg ctctccttcc
2640
accaacaaag ctcctgtctt acccttcc tcacatgtgc tgccacccctt ctcaggcctc
2700
ccccagccat tccttcttcc ttccctgcct tttagctcta accacattaa gctaagacaa
2760
ggccagaggg tgcgattgaa tgagtattga gactgaggag aatgatagag agtgaagcag
2820
aaacaggagc gcagacccctt gctgttagtt taatgcatac aaacatgtcc tcggccacaa
2880
ctaacctgcc ctgcctctcc atctcgacc aaggctgcgt caagcacaag aggctccccg
2940
gactcggagg gggccagaga ctgagctctg gtcacctgtt cattcctcggtt tagctggaa
3000
ctttggccctt tttccagttt cttatagtgc atgcttggga aacaagattt aaggagccctc
3060
tggtttggaa gggctgtctg tgattgaacg tgaaatgtgt agtgcattt ggaccacgaa
3120
gggaattctt gcacatgctc gtgcgtgtt gggcatggga ctggctggaa acgtctgtat
3180
gcagggagcc agggtgaggg cagagtgtgg tgacagccga acttggagta atgtccgtgt
3240
agaaaaaagga ccatgttctt atccagccaa tactggagtt gctgtctcca caatttcagg
3300
gcacatgtaat gtttgcgtt gttttgtgtg tggatgtatgtat tttttttat attgaagtgg
3360
atcatgagat gtaaagaaaa caataatggc aatgacttat attcaaatct gtatttgcgtt
3420
ctttatcaat gtaatgtgtt gaggacccctt tggatgtatgtat tttttttat attgaagtgg
3480
tgatatcgaa ttaatgaagt aaagttgttg atgggtggta aacaccgttag ggcacatgtgg
3540

tcaaagagaa gcaggagggc aaggaaagt taccctgatc ttagtttta gcttatgact
 3600
 tatttaatga atggatgccc agccaagctc agagtaggcg cccaaagcat tgtggattat
 3660
 tttccgtttt tgtctttttt ttttttttt ttaagccatg acatcccaga agaggacagt
 3720
 gaattactcc taggtcggtt cttatagagt gccatagtg ttctgtcaaa acacttgctt
 3780
 ccatttcag agataaaaaat cattgattac aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 3840
 aaaaaaaaaa aaa
 3853

<210> 6306
 <211> 474
 <212> PRT
 <213> Homo sapiens

<400> 6306
 Met Arg Arg Val Val Arg Gln Ser Lys Phe Arg His Val Phe Gly Gln
 1 5 10 15
 Pro Val Lys Asn Asp Gln Cys Tyr Glu Asp Ile Arg Val Ser Arg Val
 20 25 30
 Thr Trp Asp Ser Thr Phe Cys Ala Val Asn Pro Lys Phe Leu Ala Val
 35 40 45
 Ile Val Glu Ala Ser Gly Gly Ala Phe Leu Val Leu Pro Leu Ser
 50 55 60
 Lys Thr Gly Arg Ile Asp Lys Ala Tyr Pro Thr Val Cys Gly His Thr
 65 70 75 80
 Gly Pro Val Leu Asp Ile Asp Trp Cys Pro His Asn Asp Gln Val Ile
 85 90 95
 Ala Ser Gly Ser Glu Asp Cys Thr Val Met Val Trp Gln Ile Pro Glu
 100 105 110
 Asn Gly Leu Thr Ser Pro Leu Thr Glu Pro Val Val Leu Glu Gly
 115 120 125
 His Thr Lys Arg Val Gly Ile Ile Ala Trp His Pro Thr Ala Arg Asn
 130 135 140
 Val Leu Leu Ser Ala Gly Cys Asp Asn Val Val Leu Ile Trp Asn Val
 145 150 155 160
 Gly Thr Ala Glu Glu Leu Tyr Arg Leu Asp Ser Leu His Pro Asp Leu
 165 170 175
 Ile Tyr Asn Val Ser Trp Asn His Asn Gly Ser Leu Phe Cys Ser Ala
 180 185 190
 Cys Lys Asp Lys Ser Val Arg Ile Ile Asp Pro Arg Arg Gly Thr Leu
 195 200 205
 Val Ala Glu Arg Glu Lys Ala His Glu Gly Ala Arg Pro Met Arg Ala
 210 215 220
 Ile Phe Leu Ala Asp Gly Lys Val Phe Thr Thr Gly Phe Ser Arg Met
 225 230 235 240
 Ser Glu Arg Gln Leu Ala Leu Trp Asn Pro Lys Asn Met Gln Glu Pro
 245 250 255
 Ile Ala Leu His Glu Met Asp Thr Ser Asn Gly Val Leu Leu Pro Phe
 260 265 270
 Tyr Asp Pro Asp Thr Ser Ile Ile Tyr Leu Cys Gly Lys Gly Asp Ser

275	280	285
Ser Ile Arg Tyr Phe Glu Ile Thr Asp Glu Ser Pro	Tyr Val His Tyr	
290	295	300
Leu Asn Thr Phe Ser Ser Lys Glu Pro Gln Arg Gly	Met Gly Tyr Met	
305	310	315
Pro Lys Arg Gly Leu Asp Val Asn Lys Cys Glu Ile	Ala Arg Phe Phe	
325	330	335
Lys Leu His Glu Arg Lys Cys Glu Pro Ile Ile Met	Thr Val Pro Arg	
340	345	350
Lys Ser Asp Leu Phe Gln Asp Asp Leu Tyr Pro Asp	Thr Ala Gly Pro	
355	360	365
Glu Ala Ala Leu Glu Ala Glu Glu Trp Phe Glu Gly	Lys Asn Ala Asp	
370	375	380
Pro Ile Leu Ile Ser Leu Lys His Gly Tyr Ile Pro	Gly Lys Asn Arg	
385	390	395
Asp Leu Lys Val Val Lys Lys Asn Ile Leu Asp Ser	Lys Pro Thr Ala	
405	410	415
Asn Lys Lys Cys Asp Leu Ile Ser Ile Pro Lys Lys	Thr Thr Asp Thr	
420	425	430
Ala Ser Val Gln Asn Glu Ala Lys Leu Asp Glu Ile	Leu Lys Glu Ile	
435	440	445
Lys Ser Ile Lys Asp Thr Ile Cys Asn Gln Asp	Glu Arg Ile Ser Lys	
450	455	460
Leu Glu Gln Gln Met Ala Lys Ile Ala Ala		
465	470	

<210> 6307

<211> 2119

<212> DNA

<213> Homo sapiens

<400> 6307

nncctggctt ctttctaccc ttgcggccct caacgtctcc ttgggtgcggg acccgcttca
60
ctttcggctc ccggagtc tc cttccactgc tcagacctct ggacctgaca ggagacgcct
120
acttggctct gacgcggcgc cccagccccg ctgtgtcccc ggccgcggg accaccctcc
180
ctgccggctt tgggtgcgtt gtggggtccc gaggattcgc gagatttgtt gaaagacatt
240
caagattacg aagttagat gacaaaatg gatatccgag gtgctgtgga tgctgctgta
300
cccaccaata ttattgctgc caaggctgca gaagttcgtg caaacaagt caactggcaa
360
tcctatcttc agggacagat gatttctgct gaagattgtg agtttattca gaggttgaa
420
atgaaacgaa gccctgaaga gaagcaagag atgcttcaaa ctgaaggcag ccagtgtgct
480
aaaacattta taaatctgat gactcatatc tgcaaagaac agaccgttca gtatatacta
540
actatggtgg atgatatgct gcaggaaaat catcagcgtg ttagcatttt ctttgactat
600
gcaagatgta gcaagaacac tgcgtggccc tactttctgc caatgttcaa tcgcccaggat
660

cccttcactg ttcatatggc agcaagaatt attgccaagt tagcagctt gggaaaagaa
720
ctgatggaag gcagtgactt aaattactat ttcaattgga taaaaactca gctgagttca
780
cagaaactgc gtggtagcgg tggtgcgtt gaaacaggaa cagtctttc aagtgtatgt
840
tcgcagtatg tgcagtgcgt ggccgggtgt ttgcagctga tgctccgggt caatgagttac
900
cgcttgctt gggtggaaagc agatgggta aattgcataa tgggagtgtt gagtaacaag
960
tgtggcttc agctccagta tcaaattgatt tttcaatat ggctcctggc attcagtcc
1020
caaattgtgt aacacctgcg gcgcataat atcattccag ttctgtctga tatccttcag
1080
gagtcgtca aagagaaaagt aacaagaatc attcttcag catttcgtaa ctttttagaa
1140
aaatcaactg aaagagaaaac tcgccaagaa tatgccttgg ctatgattca gtgcaaagtt
1200
ctgaaacagt tggagaactt ggaacagcag aagtacgtatc atgaagatatac cagcgaagat
1260
atcaaatttc ttttggaaaaa acttggagag agtgtccagg accttagttc atttgtatgaa
1320
tacagttcag aacttaaattc tggagggtt gaatggagtc ctgtgcacaa atctgagaaa
1380
ttttggagag agaatgctgt gaggttaat gagaagaatt atgaactttt gaaaatctt
1440
acaaaacttt tggaaagtgtc agatgatccc caagtcttag ctgtgcgtc tcacgtatgt
1500
ggagaatatg tgcggcatta tccacgaggc aaacgggtca tcgagcagct cggtggaaag
1560
cagctggtca tgaaccacat gcatcatgaa gaccagcagg tccgctataa tgctctgctg
1620
gccgtgcaga agctcatggt gcacaactgg gaataccttgc gcaagcagct ccagtcggag
1680
cagccccaga ccgctgccgc ccgaagctaa gcctgcctct ggccccc tccgcctcaa
1740
tgcagaacca gtagtggag cactgtgttt agagttttaa gtagtgcgtt gtaacactg tttgatttt
1800
cttggaaattt cctctgttat atagttttc ccaatgctaa tttccaaaca acaacaacaa
1860
aataacatgt ttgcctgtta agttgtataa aagtaggtga ttctgtatTTT aaagaaaata
1920
ttactgttac atataactgtc tgcaatttct gtatttttgc ttctctggaa ataaatatag
1980
ttattaaagg attcttcactc caaacatggc ctctctttt acttggactt tgaacaaaag
2040
tcaactgttg tctttttca aaccaaatttgg gtagtgcgtt tgcaaaatgt tgaatggcaa
2100
ataaaatgttt taaaatcta
2119

<210> 6308
<211> 483
<212> PRT

<213> Homo sapiens

<400> 6308

Met	Thr	Lys	Met	Asp	Ile	Arg	Gly	Ala	Val	Asp	Ala	Ala	Val	Pro	Thr
1					5					10				15	
Asn	Ile	Ile	Ala	Ala	Lys	Ala	Ala	Glu	Val	Arg	Ala	Asn	Lys	Val	Asn
					20					25				30	
Trp	Gln	Ser	Tyr	Leu	Gln	Gly	Gln	Met	Ile	Ser	Ala	Glu	Asp	Cys	Glu
					35					40				45	
Phe	Ile	Gln	Arg	Phe	Glu	Met	Lys	Arg	Ser	Pro	Glu	Glu	Lys	Gln	Glu
					50					55				60	
Met	Leu	Gln	Thr	Glu	Gly	Ser	Gln	Cys	Ala	Lys	Thr	Phe	Ile	Asn	Leu
65					70					75				80	
Met	Thr	His	Ile	Cys	Lys	Glu	Gln	Thr	Val	Gln	Tyr	Ile	Leu	Thr	Met
					85					90				95	
Val	Asp	Asp	Met	Leu	Gln	Glu	Asn	His	Gln	Arg	Val	Ser	Ile	Phe	Phe
					100					105				110	
Asp	Tyr	Ala	Arg	Cys	Ser	Lys	Asn	Thr	Ala	Trp	Pro	Tyr	Phe	Leu	Pro
					115					120				125	
Met	Leu	Asn	Arg	Gln	Asp	Pro	Phe	Thr	Val	His	Met	Ala	Ala	Arg	Ile
					130					135				140	
Ile	Ala	Lys	Leu	Ala	Ala	Trp	Gly	Lys	Glu	Leu	Met	Glu	Gly	Ser	Asp
145					150					155				160	
Leu	Asn	Tyr	Tyr	Phe	Asn	Trp	Ile	Lys	Thr	Gln	Leu	Ser	Ser	Gln	Lys
					165					170				175	
Leu	Arg	Gly	Ser	Gly	Val	Ala	Val	Glu	Thr	Gly	Thr	Val	Ser	Ser	Ser
					180					185				190	
Asp	Ser	Ser	Gln	Tyr	Val	Gln	Cys	Val	Ala	Gly	Cys	Leu	Gln	Leu	Met
					195					200				205	
Leu	Arg	Val	Asn	Glu	Tyr	Arg	Phe	Ala	Trp	Val	Glu	Ala	Asp	Gly	Val
					210					215				220	
Asn	Cys	Ile	Met	Gly	Val	Leu	Ser	Asn	Lys	Cys	Gly	Phe	Gln	Leu	Gln
225					230					235				240	
Tyr	Gln	Met	Ile	Phe	Ser	Ile	Trp	Leu	Leu	Ala	Phe	Ser	Pro	Gln	Met
					245					250				255	
Cys	Glu	His	Leu	Arg	Arg	Tyr	Asn	Ile	Ile	Pro	Val	Leu	Ser	Asp	Ile
					260					265				270	
Leu	Gln	Glu	Ser	Val	Lys	Glu	Lys	Val	Thr	Arg	Ile	Ile	Leu	Ala	Ala
					275					280				285	
Phe	Arg	Asn	Phe	Leu	Glu	Lys	Ser	Thr	Glu	Arg	Glu	Thr	Arg	Gln	Glu
					290					295				300	
Tyr	Ala	Leu	Ala	Met	Ile	Gln	Cys	Lys	Val	Leu	Lys	Gln	Leu	Glu	Asn
305					310					315				320	
Leu	Glu	Gln	Gln	Lys	Tyr	Asp	Asp	Glu	Asp	Ile	Ser	Glu	Asp	Ile	Lys
					325					330				335	
Phe	Leu	Leu	Glu	Leu	Gly	Glu	Ser	Val	Gln	Asp	Leu	Ser	Ser	Phe	
					340					345				350	
Asp	Glu	Tyr	Ser	Ser	Glu	Leu	Lys	Ser	Gly	Arg	Leu	Glu	Trp	Ser	Pro
					355					360				365	
Val	His	Lys	Ser	Glu	Lys	Phe	Trp	Arg	Glu	Asn	Ala	Val	Arg	Leu	Asn
					370					375				380	
Glu	Lys	Asn	Tyr	Glu	Leu	Leu	Lys	Ile	Leu	Thr	Lys	Leu	Leu	Glu	Val
385					390					395				400	
Ser	Asp	Asp	Pro	Gln	Val	Leu	Ala	Val	Ala	Ala	His	Asp	Val	Gly	Glu

405	410	415
Tyr Val Arg His Tyr Pro Arg Gly Lys Arg Val Ile Glu Gln Leu Gly		
420	425	430
Gly Lys Gln Leu Val Met Asn His Met His His Glu Asp Gln Gln Val		
435	440	445
Arg Tyr Asn Ala Leu Leu Ala Val Gln Lys Leu Met Val His Asn Trp		
450	455	460
Glu Tyr Leu Gly Lys Gln Leu Gln Ser Glu Gln Pro Gln Thr Ala Ala		
465	470	475
Ala Arg Ser		480

<210> 6309
<211> 564
<212> DNA
<213> Homo sapiens

<400> 6309
cgccgcgcagc gttcacgggtg acatcgcaaa aggcgagggg gagacgcgcc cgcgggaccc
60
cttcccggtg tgctcccacg tggcgtcgac cgggaagaag gggccggtag ggagcccttc
120
ccaggcgccct cccacgggtt tcccccgcaag ccgcgcacacc accaacagtc gccgcaaccg
180
ccgcgtggaa cagacgaccc gggctctaaa gaggcggcgc gggcgggacg cagccccctgg
240
tccatctcgg gcgcgcctg atgcactcct actgcgcctg ggtccctcccg gcctgtctca
300
ctttgggggg ctcagggtcc tcacggggga cgccctgcacg taagccagga cggcgttctg
360
caggaagctc gccctctggg ctcctcgac ccggatgcgg gcatctccg cctccggag
420
ccgcagcttc tcccgagag acgcgttctc gctctccctg tccagcagcg cgatctgagc
480
tcactggaac ctccacactcc caggttcgag tgattctctt gcctcagcct cctgagtagc
540
tggtattaca ggggccacc acta
564

<210> 6310
<211> 83
<212> PRT
<213> Homo sapiens

<400> 6310
Cys Thr Pro Thr Ala Pro Gly Ser Ser Arg Pro Val Ser Leu Trp Gly
1 5 10 15
Ala Gln Gly Pro His Gly Gly Arg Leu His Val Ser Gln Asp Gly Val
20 25 30
Leu Gln Glu Ala Arg Pro Leu Gly Leu Leu Val Pro Asp Ala Gly Asp
35 40 45
Leu Arg Leu Pro Glu Pro Gln Leu Leu Pro Glu Arg Arg Val Leu Ala
50 55 60
Leu Pro Val Gln Gln Arg Asp Leu Ser Ser Leu Glu Pro Pro Pro

65 Arg Phe Glu

70

75

80

<210> 6311
<211> 1548
<212> DNA
<213> Homo sapiens

<400> 6311
nggttggca agagaccaac ctcagcttag actttccatc tgagcacagc cgtttggcta
60
tgagctttt actgaatttt atagcaactc tgatttcttc ctttaaatga ttggaggctt
120
tttaaagatc ttatggggct caaatactaa cttcataaaat ggcctttga ataacagcag
180
caaataatct ctcagctgat atttcaattt actaaggaag cacaaattaa aacattcctg
240
ctacacagtc atgggctggc acatgtctgg ttggatgaat acaaggagca gtattttcc
300
ttaagacctg acctgaagac gaaaagctat ggcaatatac gtgagcgtgt ggaactgaga
360
aagaagttgg gctgtaaatc atttaaatgg tatttggata atgtataaccc agagatgcag
420
atatctgggt cccacgccaa accccaacaa cccatTTTtca tcaatagagg gccaaaacga
480
cccaaagtcc ttcaacgtgg aaggctctat cacctccaga ccaacaatg cctggtggcc
540
caggcccggcc caagtcagaa gggaggtctc gtggtgctta aggctgtga ctacagtgac
600
ccaaatcaga tctggatcta taatgaagag catgaattgg ttttaatag tctcctttgt
660
ctagatatgt cagagactcg ctcatcagac ccgccacggc tcataatgc ccacgggtca
720
ggaggatccc agcagtggac ctttggaaa aacaatcggc tataccaggt gtcgggttgg
780
cagtgcctga gagcagtggc tccccctgggt cagaaggct ctgtcgccat ggcgatctgc
840
gatggctcct cttcacagca gtggcatTTtgaag gtggatgctg tggcgggaac
900
gttgcTTcat caggcgTTgc ctccggTgtg gagTTTgggg ctttagggaaa gcctgggttg
960
ggtggagcag aaccatcttgc gagaagatga cagttccctg tcctcccgga gatgcctgg
1020
tgtgttagca gaggtgacac gtgtctgaca gagacgggag ctctgagtgt ccacgggtga
1080
agaagtgagt gtccacgggt gaagaagtga gtatgtttca cctggacatt aaggtgatgt
1140
ttgagctgct gttaaggaat ttcttgctta tagaggcaaa ccacagtatc attttaactc
1200
tagaaATTggg cttgtacaga aggataaaac ccaggaaaat ggatatttctt attcagattt
1260
atttatgcct ctttttaatc cccttaatg atgcagtggc ttttatctga tcagggactt
1320

```
gtcatgatt ccttccttag acttcatagg agatagtgc taaaaaaaaaaa aaaaacttct  
1380  
attatttgtt tagtatgttg taagtagatc attttaaaaaa actgaatcta tattatgttt  
1440  
aacttcagaa ggcatcattt ataagacagt atggcagttt attataaaat tattttgatg  
1500  
aattatgata caatctacat aataaagaat ccttttgatt aaaaaaaaaa  
1548
```

<210> 6312
<211> 234
<212> PRT
<213> *Homo sapiens*

<400> 6312
 Gln Gln Gln Ile Ile Ser Gln Leu Ile Phe Gln Phe Thr Lys Glu Ala
 1 5 10 15
 Gln Ile Lys Thr Phe Leu Leu His Ser His Gly Leu Ala His Val Trp
 20 25 30
 Leu Asp Glu Tyr Lys Glu Gln Tyr Phe Ser Leu Arg Pro Asp Leu Lys
 35 40 45
 Thr Lys Ser Tyr Gly Asn Ile Ser Glu Arg Val Glu Leu Arg Lys Lys
 50 55 60
 Leu Gly Cys Lys Ser Phe Lys Trp Tyr Leu Asp Asn Val Tyr Pro Glu
 65 70 75 80
 Met Gln Ile Ser Gly Ser His Ala Lys Pro Gln Gln Pro Ile Phe Val
 85 90 95
 Asn Arg Gly Pro Lys Arg Pro Lys Val Leu Gln Arg Gly Arg Leu Tyr
 100 105 110
 His Leu Gln Thr Asn Lys Cys Leu Val Ala Gln Gly Arg Pro Ser Gln
 115 120 125
 Lys Gly Gly Leu Val Val Leu Lys Ala Cys Asp Tyr Ser Asp Pro Asn
 130 135 140
 Gln Ile Trp Ile Tyr Asn Glu Glu His Glu Leu Val Leu Asn Ser Leu
 145 150 155 160
 Leu Cys Leu Asp Met Ser Glu Thr Arg Ser Ser Asp Pro Pro Arg Leu
 165 170 175
 Met Lys Cys His Gly Ser Gly Ser Gln Gln Trp Thr Phe Gly Lys
 180 185 190
 Asn Asn Arg Leu Tyr Gln Val Ser Val Gly Gln Cys Leu Arg Ala Val
 195 200 205
 Asp Pro Leu Gly Gln Lys Gly Ser Val Ala Met Ala Ile Cys Asp Gly
 210 215 220
 Ser Ser Ser Gln Gln Trp His Leu Glu Gly
 225 230

<210> 6313
<211> 725
<212> DNA
<213> *Homo sapiens*

<400> 6313
ttttttttttt tttttttttt ttttttttttg gtaat^aaca taatttatta cgcaaaaaat
60

gagaaaaat acagcaggag ggatgaggag tacacatagg aaatttctgt gattttcttc
 120
 attttgatcg tattgcttcc ttgtcttcag gagggaaat ttcgacttca aaagtaacaa
 180
 aatatttaag aagagaattc acatcttct gttcttagctg gtattcttgc attattttct
 240
 cagcagtcca ggtttctggg aaaagcttat gattattgag aagtgtcaat gcttctacaa
 300
 tggaaatttt gccttgggaa atgctctaa tatttatcat atcaaaatga tggctttcg
 360
 gcaatctgaa ttcccttcggc tcttgacatg tttcagcagc ttttacctgc aaggaagaca
 420
 caggatctt ggaatcaaca tacacatctt ttagaaacga cagcagctt tcacatttac
 480
 gagcaatctc tcctttaact tctggataga gactaatctg ctctcgagg aggctgttgg
 540
 tagaggggtg tctgggagcg acagagggtc tcacatctgct gatttccctgt tccgctcggt
 600
 tctctaggtt gaaattcctg ataccgcgaa tcactagtgc tcccatctcc tcataacatt
 660
 atgcgctcag gttcaggccg cacgtggaa caccggcgca ggacaactct cgggacacccc
 720
 ggagc
 725

<210> 6314
 <211> 175
 <212> PRT
 <213> Homo sapiens

<400> 6314
 Met Gly Ala Leu Val Ile Arg Gly Ile Arg Asn Phe Asn Leu Glu Asn
 1 5 10 15
 Arg Ala Glu Arg Glu Ile Ser Lys Met Lys Pro Ser Val Ala Pro Arg
 20 25 30
 His Pro Ser Thr Asn Ser Leu Leu Arg Glu Gln Ile Ser Leu Tyr Pro
 35 40 45
 Glu Val Lys Gly Glu Ile Ala Arg Lys Asp Glu Lys Leu Leu Ser Phe
 50 55 60
 Leu Lys Asp Val Tyr Val Asp Ser Lys Asp Pro Val Ser Ser Leu Gln
 65 70 75 80
 Val Lys Ala Ala Glu Thr Cys Gln Glu Pro Lys Glu Phe Arg Leu Pro
 85 90 95
 Lys Asp His His Phe Asp Met Ile Asn Ile Lys Ser Ile Pro Lys Gly
 100 105 110
 Lys Ile Ser Ile Val Glu Ala Leu Thr Leu Leu Asn Asn His Lys Leu
 115 120 125
 Phe Pro Glu Thr Trp Thr Ala Glu Lys Ile Met Gln Glu Tyr Gln Leu
 130 135 140
 Glu Gln Lys Asp Val Asn Ser Leu Leu Lys Tyr Phe Val Thr Phe Glu
 145 150 155 160
 Val Glu Ile Phe Pro Pro Glu Asp Lys Lys Ala Ile Arg Ser Lys
 165 170 175

<210> 6315
<211> 378
<212> DNA
<213> Homo sapiens

<400> 6315
caagaatcca ttgaagccag caagactgca ctttgtcctg aaagatttgc accctaagt
60
gctcaaaaca gaaaacttgt ggaggccata aaacaaggtc acattcctga gctccaggag
120
tatgtaaaat ataaatatgc aatggatgaa gctgatgaaa aaggatggtt tccattgcat
180
gaagctgttg ttcaacccat tcaacaaata cttgagatttgc atccataag
240
acactctggg aattcaagac ctgtgatgga gaaacaccct tgactttggc agtcaaagct
300
ggctctggtgg aaaatgttaag aactttatta gaaaagggag tgtggccaa cacaaaaaat
360
gataaaggag agaccccc
378

<210> 6316
<211> 126
<212> PRT
<213> Homo sapiens

<400> 6316
Gln Glu Ser Ile Glu Ala Ser Lys Thr Ala Leu Cys Pro Glu Arg Phe
1 5 10 15
Val Pro Leu Ser Ala Gln Asn Arg Lys Leu Val Glu Ala Ile Lys Gln
20 25 30
Gly His Ile Pro Glu Leu Gln Glu Tyr Val Lys Tyr Lys Tyr Ala Met
35 40 45
Asp Glu Ala Asp Glu Lys Gly Trp Phe Pro Leu His Glu Ala Val Val
50 55 60
Gln Pro Ile Gln Gln Ile Leu Glu Ile Val Leu Asp Ala Ser Tyr Lys
65 70 75 80
Thr Leu Trp Glu Phe Lys Thr Cys Asp Gly Glu Thr Pro Leu Thr Leu
85 90 95
Ala Val Lys Ala Gly Leu Val Glu Asn Val Arg Thr Leu Leu Glu Lys
100 105 110
Gly Val Trp Pro Asn Thr Lys Asn Asp Lys Gly Glu Thr Pro
115 120 125

<210> 6317
<211> 1201
<212> DNA
<213> Homo sapiens

<400> 6317
nnngggccag aactacaact ctgcagcgaa agatagagat gcccttgaaa atgtgtcaca
60
ttcttaagat gtcttgccga agtagcaaga gcggagggtg actgtgtgag caggagcgg
120

agggcgccag ctccctgcggg ggagggttcct actgcgcgcc ccaccctgtg caagaatgtc
 180
 aggctttagg gcagctgcca taggccccag gggcatcagg actctgcctc tgaaccagag
 240
 ctgcttccc gactaacttc aatctggaga gatggtaagt tatctaaccg gctttctt
 300
 tggcgagact gctcttcctc cttaatcaga gccccccatg cccttgca gtcagagtcg
 360
 ttttcctcag cgccaggcac cctgtgatcc actttcttcg tattttttc ttttgtttc
 420
 ggtgcagttc ctaggcgagt ccataaaatta cctgatttct tctcccgagt atcggcgtag
 480
 aggccttac tattcctgcct gggAACACCT agcctactat gcacatcaga agagggctc
 540
 ctccgaacga cggggttact actaaaagcc tttccggag aatgtggtct ttttccta
 600
 cgctggcgtat tatctgattt agtactgctg actgggtggcc gtggacggga gtgctgacgt
 660
 ttctcatcta atagatgtcg gacatctgca aatttctcag gtggtaattt gttaccaatt
 720
 cggtttttga tattgcttga agatacacta tctgcctca tggagtttctt aatattttc
 780
 aactgagatt ccacttcgtc agcatacata gtcatttca tgcttttctt tggtaaggc
 840
 gtggaaatca ttttcagttc tagatcatag tccatttcat ctgagtttca gctgtggca
 900
 ctggatcgatc tagacgcgatcc cccgtcccg ggctgcttga gagccgggag ctcctcgat
 960
 tactctacca ccactctgtc atctgcattcc atgtcctggc tttttttttt ctcttcctt
 1020
 tccttccttcc ctccttccttcc ctccctttca atgggtttccctt cgggaacatt cactagccca
 1080
 gaatgtcgat gtttatacga cgtcaagcca acgtcatccc caatcagggc tcttttttgc
 1140
 atcacgtccc gctgaatacgt acgggaatga tatcttcgtt tccatgaatt gctaagaatt
 1200
 C
 1201

<210> 6318
 <211> 94
 <212> PRT
 <213> Homo sapiens

<400> 6318
 Ser Ile Ser Ser Glu Ser Glu Leu Leu Ala Leu Asp Arg Leu Asp Ala
 1 5 10 15
 Leu Arg Ser Arg Gly Cys Leu Arg Ala Gly Ser Ser Ser Trp Tyr Ser
 20 25 30
 Thr Thr Thr Leu Ser Ser Ala Ser Met Ser Trp Ser Ser Ser Ser Ser
 35 40 45
 Ser Met Gly Ser Ser
 50 55 60
 Gly Thr Phe Thr Ser Pro Glu Cys Arg Cys Leu Tyr Asp Val Lys Pro

65	70	75	80
Thr Ser Ser Pro Ile Arg Ala Leu Phe Leu Ile Thr Ser Arg			
85		90	

<210> 6319
<211> 345
<212> DNA
<213> Homo sapiens

<400> 6319
gccccccgc tggggccgc ctccgcagcc ggccacctgg acgtggtgcg gagcctgctg
60
cgccgcgggg cctcggtgaa ccgcaccacg cgacaccaact ccacgcctct ccgcgcggcc
120
tgcttcgacg gccacctgga ggtggtgcg tacctggtcg gcgagcacca ggccgacctg
180
gagggtggcca accggcacgg ccacacgtgc ctcatgtatct cgtgctacaa gggccaccgt
240
gagatcgccc gctacctgct ggagcagggc gcccaggtga accggcgcag cgccaagggc
300
aacacggccc tgcataactg cgccgagtcc ggcagcctgg agatc
345

<210> 6320
<211> 115
<212> PRT
<213> Homo sapiens

<400> 6320
Ala Pro Pro Leu Trp Ala Ala Ser Ala Ala Gly His Leu Asp Val Val
1 5 10 15
Arg Ser Leu Leu Arg Arg Gly Ala Ser Val Asn Arg Thr Thr Arg Thr
20 25 30
Asn Ser Thr Pro Leu Arg Ala Ala Cys Phe Asp Gly His Leu Glu Val
35 40 45
Val Arg Tyr Leu Val Gly Glu His Gln Ala Asp Leu Glu Val Ala Asn
50 55 60
Arg His Gly His Thr Cys Leu Met Ile Ser Cys Tyr Lys Gly His Arg
65 70 75 80
Glu Ile Ala Arg Tyr Leu Leu Glu Gln Gly Ala Gln Val Asn Arg Arg
85 90 95
Ser Ala Lys Gly Asn Thr Ala Leu His Asp Cys Ala Glu Ser Gly Ser
100 105 110
Leu Glu Ile
115

<210> 6321
<211> 1442
<212> DNA
<213> Homo sapiens

<400> 6321
aagcttgcg agagtggttt ggctacagtc agctcttcta caggaagtgg cattttccac
60

ttgtgaaacg gtaggtcatt ccctgcctca tgcagaactc agccctgtgg agctccacca
120
cctggcccag gccctgcccc catgcaacct cccggggtgg ccctcaatga cctgcacgtc
180
ccttcactct aaggaaccct gagttacagt ggccttaagg acatgtgtat ttagaaggcct
240
tttgtacaa actagctctg tgcgctctca gtttaccgtc ctcacacttt attgttagct
300
gttcttaag tttctcacac attattggca attatgtaaa aatcaagaac ctctataaaa
360
caacctggct ttccaggtgg aattccgcat acagccaaaa ctggattcca gtgtggccag
420
acaacgcccc tgtcccaatt taagagtgc tgcttcacc accatccgga gtggcctctc
480
tgtcagtgtg tgatgtggcc agggcagtgt ccacctgaac ttccctctca tcggactgaa
540
caacggggga ctccccaccc tcactgatgt cccgggtggc cgagtcggtg caggtggagg
600
aagaagaagg tggcttggct ctttaattctg agggatttg aacctggagg gtaatctcat
660
tctgacaggt actggattca ggcctctaagg cgggggacag cacagtgtc tcttcctctc
720
cagagttcag gaagacgtcc agggcctcct ggtccgatat gtccatcagg tccatctgct
780
ccagcatgtc cacgttcaact tccatggatg acatgctgcc tatggctct cgccgctctg
840
caatctgcag gtagccagtg gacaggtact gctgctccat gtcctgctgg aaggcttcct
900
caaaaaactt ctgcccgtcc ttcagcttca tttgctgggt gtgctccatt tccaggacct
960
tctgggcgtg ctctgcacatc agttcagagg gatccctctg actatttcg gtgagtcctg
1020
gagatgacat ggatgtgaga cctgaatgag tgaacagaag ctcagtgtg gtcaagtgaa
1080
gcctccagtt accaggcagc tgccctcacg tgcacatcttct gggatgtaga acaaaggaag
1140
tgaggctgaa gccagaagca ggttttcca aagaaattgt agtaagccta ttagttttt
1200
gctgatggct taagcagata tacattggaa tctactgcct ctataaaagc aaaatgcag
1260
ctctcagggg ctctagtgta caaagatgta tgcacccgtc tgggaccata ccaaattgcag
1320
ctcaaaaatgg aggggaggga aggctgaaaa taactaaatc caacagaatt tgtcatctag
1380
gtacaaaagat gctttagtaa cacagaaaa gagagatgaa atcttgcgt ttagaaagtag
1440
ta
1442

<210> 6322
<211> 196
<212> PRT
<213> Homo sapiens

<400> 6322

Met Ser Ser Pro Gly Leu Thr Glu Asn Ser Gln Arg Asp Pro Ser Glu
1 5 10 15
Leu Asp Ala Glu His Ala Gln Lys Val Leu Glu Met Glu His Thr Gln
20 25 30
Gln Met Lys Leu Lys Glu Arg Gln Lys Phe Phe Glu Glu Ala Phe Gln
35 40 45
Gln Asp Met Glu Gln Gln Tyr Leu Ser Thr Gly Tyr Leu Gln Ile Ala
50 55 60
Glu Arg Arg Glu Pro Ile Gly Ser Met Ser Met Glu Val Asn Val
65 70 75 80
Asp Met Leu Glu Gln Met Asp Leu Met Asp Ile Ser Asp Gln Glu Ala
85 90 95
Leu Asp Val Phe Leu Asn Ser Gly Gly Glu Glu Asn Thr Val Leu Ser
100 105 110
Pro Ala Leu Gly Pro Glu Ser Ser Thr Cys Gln Asn Glu Ile Thr Leu
115 120 125
Gln Val Pro Asn Pro Ser Glu Leu Arg Ala Lys Pro Pro Ser Ser Ser
130 135 140
Ser Thr Cys Thr Asp Ser Ala Thr Arg Asp Ile Ser Glu Gly Gly Glu
145 150 155 160
Ser Pro Val Val Gln Ser Asp Glu Glu Glu Val Gln Val Asp Thr Ala
165 170 175
Leu Ala Thr Ser His Thr Asp Arg Glu Ala Thr Pro Asp Gly Gly Glu
180 185 190
Asp Ser Asp Ser
195

What is claimed is:

1. An isolated nucleic acid molecule encoding a polypeptide comprising an amino acid sequence that is at least 85% identical to a polypeptide including an amino acid sequence selected from the group consisting of SEQ ID NO:2 n , wherein n is any integer 1-3161, or the complement thereof.
2. The isolated nucleic acid molecule of claim 1, said molecule hybridizing under stringent conditions to a nucleic acid sequence complementary to a nucleic acid molecule comprising the sequence of nucleotides selected from the group consisting of SEQ ID NO:2 n , wherein n is any integer 1-3161, or the complement thereof.
3. The isolated nucleic acid molecule of claim 1, said molecule encoding a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2 n , wherein n is any integer 1-3161, or an amino acid sequence comprising one or more conservative substitutions in the amino acid sequence selected from the group consisting of SEQ ID NO: 2 n .
4. The isolated nucleic acid molecule of claim 1, wherein said molecule encodes a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2 n , wherein n is any integer 1-3161.
5. The isolated nucleic acid molecule of claim 1, wherein said molecule comprise the sequence of nucleotides selected from the group consisting of SEQ ID NO:2 n -1, wherein n is any integer 1-3161, or the complement thereof.
6. An oligonucleotide less than 100 nucleotides in length and comprising at least contiguous nucleotides selected from the group consisting of SEQ ID NO:2 n -1, wherein n is a integer 1-3161, or the complement thereof.
7. A vector comprising the nucleic acid molecule of claim 1.

8. The vector of claim 7, wherein said vector is an expression vector.

9 A host cell comprising the isolated nucleic acid molecule of claim 1.

10. A substantially purified polypeptide comprising an amino acid sequence at least 80% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO: 2 n , wherein n is any integer 1-3161.

11. The polypeptide of claim 10, wherein said polypeptide comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 2 n , wherein n is any integer 1-3161.

12. An antibody that selectively binds to the polypeptide of claim 10.

13. A pharmaceutical composition comprising a therapeutically or prophylactically effective amount of a therapeutic selected from the group consisting of:

- a) the nucleic acid of claim 1;
 - b) the polypeptide of claim 10; and
 - c) the antibody of claim 12;
- and a pharmaceutically acceptable carrier.

14. A kit comprising in one or more containers, a therapeutically or prophylactically effective amount of the pharmaceutical composition of claim 13.

15. A method of producing the polypeptide of claim 10, said method comprising culturing the host cell of claim 9 under conditions in which the nucleic acid molecule is expressed.

16. A method of detecting the presence of the polypeptide of claim 10 in a sample, comprising contacting the sample with a compound that selectively binds to said polypeptide under conditions allowing the formation of a complex between said polypeptide and said

compound, and detecting said complex, if present, thereby identifying said polypeptide in said sample.

17. A method of detecting the presence of a nucleic acid molecule of claim 1 in a sample, the method comprising contacting the sample with a nucleic acid probe or primer that selectively binds to the nucleic acid molecule and determining whether the nucleic acid probe or primer bound to the nucleic acid molecule of claim 1 is present in the sample.

18. A method for modulating the activity of the polypeptide of claim 10, the method comprising contacting a cell sample comprising the polypeptide of claim 10 with a compound that binds to said polypeptide in an amount sufficient to modulate the activity of the polypeptide.

19. The use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a ORFX-associated disorder, wherein said therapeutic is selected from the group consisting of:

- a) the nucleic acid of claim 1;
- b) the polypeptide of claim 10; and
- c) the antibody of claim 12.

20. A method for screening for a modulator of activity or of latency or predisposition to an ORFX-associated disorder, said method comprising:

- a) contacting a test compound with the polypeptide of claim 10; and
- b) determining if said test compound binds to said polypeptide,

wherein binding of said test compound to said polypeptide indicates the test compound is a modulator of activity or of latency or predisposition to an ORFX-associated disorder.

21. A method for screening for a modulator of activity or of latency or predisposition to an ORFX-associated disorder, said method comprising:

- a) administering a test compound to a test subject at an increased risk ORFX-associated disorder, wherein said test subject recombinantly expresses a polypeptide encoded by the nucleotide of claim 1;

- b) measuring expression the activity of said protein in said test subject;
- c) measuring the activity of said protein in a control subject that recombinantly expresses said protein and is not at increased risk for an ORFX-associated disorder; and
- d) comparing expression of said protein in said test subject and said control subject, wherein a change in the activity of said protein in said test subject relative to said control subject indicates the test compound is a modulator or of latency of predisposition to an ORFX-associated disorder.

22. The method of claim 20, wherein said test animal is a recombinant test animal that expresses a test protein transgene or expresses said transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein said promoter is not the native gene promoter of said transgene.

23. A method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide of claim 11 in a subject, the method comprising:

- a) measuring the amount of the polypeptide in a sample from said subject; and
- b) comparing the amount of said polypeptide in step (a) to the amount of the polypeptide present in a control sample,

wherein an alteration in the level of the polypeptide in step (a) as compared to the control sample indicates the presence of or predisposition to a disease in said subject.

24. The method of claim 23, wherein said subject is a human.

25. A method for determining the presence of or predisposition to a disease associated with altered levels the nucleic acid molecule of claim 1 in a subject, the method comprising:

- a) measuring the amount of the nucleic acid in a sample from the mammalian subject; and
- b) comparing the amount of said nucleic acid in step (a) to the amount of the nucleic acid present in a control sample,

wherein an alteration in the level of the nucleic acid in step (a) as compared to the corresponding sample indicates the presence of or predisposition to said disease in said subject.

26. The method of claim 25, wherein said subject is a human.

27. A method of treating or preventing a pathological condition associated with an ORFX-associated disorder in a subject, the method comprising administering to said subject a polypeptide of claim 10 in an amount sufficient to alleviate or prevent said pathological condition.

28. The method of claim 27, wherein said subject is a human.

29. A method of treating or preventing a pathological condition associated with an ORFX-associated disorder in a subject, the method comprising administering to said subject a nucleic acid molecule of claim 1 in an amount sufficient to alleviate or prevent said pathological condition.

30. The method of claim 29, wherein said subject is a human.

31. A method of treating or preventing a pathological condition associated with an ORFX-associated disorder in a subject, the method comprising administering to said subject an antibody of claim 12 in an amount sufficient to alleviate or prevent said pathological condition.

32. The method of claim 31, wherein said subject is a human.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 October 2000 (05.10.2000)

PCT

(10) International Publication Number
WO 00/58473 A3

(51) International Patent Classification⁷: C12N 15/12,
C07K 14/47, 16/18, G01N 33/566, C12Q 1/68, C12N
15/11, 15/62, A01K 67/027, A61K 38/00

Richard, A. [US/US]; 191 Leete Street, West Haven,
CT 06516 (US). LEACH, Martin [GB/US]; 884 School
Street, Webster, MA 01570 (US).

(21) International Application Number: PCT/US00/08621

(74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris,
Glovesky and Popeo, P.C., One Financial Center, Boston,
MA 02111 (US).

(22) International Filing Date: 31 March 2000 (31.03.2000)

(25) Filing Language:

English

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,
DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
UG, US, UZ, VN, YU, ZA, ZW.

(26) Publication Language:

English

(30) Priority Data:

60/127,607	31 March 1999 (31.03.1999)	US
60/127,636	2 April 1999 (02.04.1999)	US
60/127,728	5 April 1999 (05.04.1999)	US
09/540,763	30 March 2000 (30.03.2000)	US

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier applications:

US	60/127,607 (CIP)
Filed on	31 March 1999 (31.03.1999)
US	60/127,636 (CIP)
Filed on	2 April 1999 (02.04.1999)
US	60/127,728 (CIP)
Filed on	5 April 1999 (05.04.1999)
US	09/540,763 (CIP)
Filed on	30 March 2000 (30.03.2000)

(71) Applicant (*for all designated States except US*): CURA-
GEN CORPORATION [US/US]; 555 Long Wharf Drive,
11th Floor, New Haven, CT 06511 (US).

(88) Date of publication of the international search report:
25 January 2001

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): SHIMKETS,

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 00/58473 A3

(54) Title: NUCLEIC ACIDS INCLUDING OPEN READING FRAMES ENCODING POLYPEPTIDES; "ORFX"

(57) Abstract: The present invention provides open reading frames encoding isolated polypeptides, as well as polynucleotides en-
coding ORFX and antibodies that immunospecifically bind to ORFX or any derivative, variant, mutant, or fragment of the ORFX
polypeptides, polynucleotides or antibodies. The invention additionally provides methods in which the ORFX polypeptide, polynu-
cleotide and antibody are used in detection and treatment of a broad range of pathological states, as well as to other uses.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/08621

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	C12N15/12	C07K14/47	C07K16/18	G01N33/566	C12Q1/68
	C12N15/11	C12N15/62	A01K67/027	A61K38/00	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C07K G01N A01K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS, EMBASE, MEDLINE, CAB Data, PAJ, EPO-Internal, WPI Data, STRAND

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	COLE S.T.: "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence." NATURE, vol. 393, 11 June 1998 (1998-06-11), XP002144873 sequence --- LAMERDIN J.E.: "Sequence analysis of a 3.5 Mb contig in human 19p13.3 containing a serine protease gene cluster." EMEST DATABASE ENTRY, 8 February 1999 (1999-02-08), XP002144874 sequence --- -/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

21 August 2000

Date of mailing of the international search report

23.11.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Hix, R

INTERNATIONAL SEARCH REPORT

Internet Application No

PCT/US 00/08621

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	M.D. ADAMS ET AL.: "The genome sequence of <i>Drosophila melanogaster</i> ." SCIENCE, vol. 287, 24 March 2000 (2000-03-24), pages 2185-2195, XP002144875 the whole document -----	6

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inte International application No.
PCT/US 00/08621

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 27 to 32 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

claims 1 to 32 partially

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claim : 1 to 32 partially

Isolated nucleic acid molecule encoding a polypeptide comprising an amino acid sequence that is at least 85% identical to a polypeptide including an amino acid sequence selected from a group consisting of SEQ ID NO 2n wherein n is 1, oligonucleotides less than 100 nucleotides in length and comprising at least 6 contiguous nucleotides from the above sequence, polypeptides encoded by said nucleotides, antibodies that bind to said polypeptide, pharmaceutical composition comprising said polypeptide and methods of detection, screening, therapeutic uses involving said polypeptide.

2. Claim : .

Inventions 2 to 3161

claims 1 to 32 partially :

Isolated nucleic acid molecule encoding a polypeptide comprising an amino acid sequence that is at least 85% identical to a polypeptide including an amino acid sequence selected from a group consisting of SEQ ID NO 2n wherein n is 2 to 3161, oligonucleotides less than 100 nucleotides in length and comprising at least 6 contiguous nucleotides from the above sequence, polypeptides encoded by said nucleotides, antibodies that bind to said polypeptide, pharmaceutical composition comprising said polypeptide and methods of detection, screening, therapeutic uses involving said polypeptide.

