mas651 exercises

Jaemin Oh

May 18, 2021

Problem (5.1.1).

Let (S, \mathcal{S}) be a state space of X_n where $S = \{1, 2, \dots N\}$ and $\mathcal{S} = 2^S$. Note that N is an absorbing state. And $X_1 = 1$ with probability 1. For fixed k such that $1 \le k < N$, $k \le n$,

$$P(X_{n+1} = k+1|X_n = k) = \frac{N-k}{N}$$

and

$$P(X_{n+1} = k | X_n = k) = \frac{k}{N}.$$

If k > n, then the above are all 0. So it is a temporally inhomogeneous. The Markov property is trivial since the very next state only depends on the current state.

Problem (5.1.2).

$$P(X_4 = 2|X_3 = 1, X_2 = 1, X_1 = 1, X_0 = 0) = (1/16)/(1/4) = 1/4$$

but

$$P(X_4 = 2|X_3 = 1, X_2 = 0, X_1 = 0, X_0 = 0) = (1/16)/(1/8) = 1/2.$$

Thus X_n is not a Markov chain.

Problem (5.1.5).

$$P(X_{n+1} = k+1|X_n = k) = \frac{m-k}{m} \frac{b-k}{m}$$

because we must choose a white ball in the left urn and a black ball in the right urn.

$$P(X_{n+1} = k | X_n = k) = \frac{k}{m} \frac{b-k}{m} + \frac{m-k}{m} \frac{m+k-b}{m}$$

since there are two cases, choosing both black or both white.

$$P(X_{n+1} = k - 1 | X_n = k) = \frac{k}{m} \frac{m + k - b}{m}$$

since we must choose a black ball in the left urn and a white ball in the right urn. Note that the sum of the above is 1, so there is no other transition probability.

Problem (5.1.6).

$$P(S_{n+1} = k+1 | S_n = k) = \frac{P(X_{n+1} = 1, S_n = k)}{P(S_n = k)}$$

2

where the denominator is

$$\int_{\theta \in (0,1)} P(S_n = k|\theta) dP = \binom{n}{x} \frac{x!y!}{(n+1)!} = \frac{1}{n+1}$$

for x = the number of i such that $U_i \le \theta$ and y = n - x. Note that x = (n+k)/2 and y = (n-k)/2 since x + y = n and x - y = k. The numerator is

$$\int_{\theta \in (0,1)} P(X_{n+1} = 1, S_n = k|\theta) dP = \binom{n}{x} \frac{(x+1)!y!}{(n+2)!}$$

These are because $P(S_n = k|\theta) = \theta^x (1-\theta)^y \binom{n}{x}$ and $P(X_{n+1} = 1, S_n = k|\theta) = P(X_{n+1} = 1|\theta)P(S_n = k|\theta) = \binom{n}{x}\theta^{x+1}(1-\theta)^y$ and using the kernel of beta distribution.

Thus, the probability what we want is (n+k+2)/(2n+4) which depends on n. So X_n is temporally inhomogeneous.

$$P(S_{n+1} = k+1 | S_1 = t_1, \dots, S_n = k) = P(X_{n+1} = 1 | X_1 = t_1, \dots, X_n = t_n)$$

where $\sum_{i=1}^{n} t_i = k$. We can show the above is equal to $P(S_{n+1} = k + 1 | S_n = k) = (n+k+2)/(2n+4)$ similarly, by omitting the $\binom{n}{x}$ term of both denominator and numerator.

Problem (5.2.1).

By the given hint,

$$E(1_A 1_B | \mathcal{F}_n) = E(1_A E(1_B | \mathcal{F}_n) | X_n)$$

so it suffices to show that $E(1_B|\mathcal{F}_n) = E(1_B|X_n)$.

Let $Y = 1_{B_n}(\omega_0) \cdots 1_{B_{n+k}}(\omega_k)$. Then $Y \circ \theta_n =$ the indicator function of $\{X_n \in B_n, \cdots, X_{n+k} \in B_{n+k}\} = B$. By the markov property,

$$P(B|\mathcal{F}_n) = E_{X_n}Y.$$

Let $\varphi(x) = E_x Y$ then $\varphi(X_n)$ is $\sigma(X_n)$ -measurable mapping. Thus, when B has a form of $\{X_n \in B_n, \dots, X_{n+k} \in B_{n+k}\}$ for some nonnegative integer k,

$$P(B|\mathcal{F}_n) = P(B|X_n).$$

Note that a collection of such B generates $\sigma(X_n, X_{n+1}, \cdots)$.

Now let $\mathcal{G} = \{C : P(C|\mathcal{F}_n) = P(C|X_n)\}$. By putting $B_{n+i} = S$ for $0 \le i \le k$, we earn $\Omega_0 \in \mathcal{G}$. If $C, D \in \mathcal{G}$ and $C \subset D$, then by properties of conditional expectation, $D \setminus C \in \mathcal{G}$. If $C_i \in \mathcal{G}$ and $C_i \uparrow C$ then by monotone convergence theorem for conditional expectation, $C \in \mathcal{G}$. Thus \mathcal{G} is a lambda system containing a collection of B's which generates $\sigma(X_n, \cdots)$. Therefore, by Dynkin's theorem, the third equation is satisfied by any $B \in \sigma(X_n, \cdots)$. By the first equation, we can derive the conclusion.

Problem (5.2.4).

First, claim that

$$P_x(X_n = y | T_y = m) = P_y(X_{n-m} = y).$$

This is because

$$\begin{split} P_x\left(X_n = y | T_y = m\right) &= \frac{P_x\left(X_n = y, T_y = m\right)}{P_x\left(T_y = m\right)} \\ &= \frac{\int_{T_y = m} 1_{(X_n = y)} dP_x}{P_x\left(T_y = m\right)} \\ &= \frac{\int_{T_y = m} E\left(1_{(X_n = y)} | \mathcal{F}_m\right) dP_x}{P_x\left(T_y = m\right)} \\ &= \frac{\int_{T_y = m} E_{X_m} 1_{(X_{n - m} = y)} dP_x}{P_x\left(T_y = m\right)} \\ &= \frac{P_x\left(T_y = m\right) P_y\left(X_{n - m} = y\right)}{P_x\left(T_y = m\right)}. \end{split}$$

Now, note that $P_x(X_n = y) = \sum_{m=1}^n P_x(X_n = y, T_y = m)$. From this and

the above discussion,

$$p^{n}(x,y) = P_{x}(X_{n} = y) = \sum_{m=1}^{n} P_{x}(X_{n} = y | T_{y} = m) P_{x}(T_{y} = m)$$
$$= \sum_{m=1}^{n} P_{y}(X_{n-m} = y) P_{x}(T_{y} = m) = \sum_{m=1}^{n} P_{x}(T_{y} = m) p^{n-m}(y,y).$$

Problem (5.2.6).

Fix $x \in S \setminus C$. Since $P_x(T_C = \infty) = \lim_{M \to \infty} P_x(T_C > M) < 1$, we can choose N_x and ε so that

$$P_x(T_C > M) \le 1 - \varepsilon$$

whenever $M \ge N_x$. Note that we can choose N_x as an integer. Put $N = \max_{x \in S \setminus C} N_x$. Now we get

$$\begin{split} P_y(T_C > 2N) &= \sum_{x \in S \setminus C} P_y(T_C > 2N, T_C > N, X_N = x) \\ &= \sum_{x \in S \setminus C} P_y\left(T_C > 2N | X_N = x, T_C > N\right) P_y(X_n = x, T_C > N) \\ &\leq \sum_{x \in S \setminus C} P_x(T_C > N) P_y(X_N = x, T_C > N) \\ &\leq (1 - \varepsilon) \sum_{x \in S \setminus C} P_y(X_N = x, T_C > N) \\ &\leq (1 - \varepsilon)^2. \end{split}$$

By induction, the result follows.

Remark 1. By $k \to \infty$, we can say that $P_y\left(T_C = \infty\right) = 0$. That is, $P_y\left(T_C < \infty\right) = 1$.

Problem (5.2.7).

1. It is similar to the manipulation of problem 5.2.4:

$$P_x (V_A < V_B) = \sum_y P_x (V_A < V_B, X_1 = y) = \sum_y P_x (V_A < V_B | X_1 = y) P_x (X_1 = y)$$

$$= \sum_y p(x, y) P_x (V_A < V_B | X_1 = y) = \sum_y p(x, y) P_y (V_A < V_B)$$

where the first term is h(x) and the last term is $\sum_{y} p(x,y)h(y)$.

2. I think we must further assume that h is bounded and measurable. For convenience, let $\tau = V_A \wedge V_B = V_{A \cup B}$. By the equation (5.2.2) of our textbook, we get

$$E_x (h(X_{n+1})|\mathcal{F}_n) = \sum_y p(X_n, y)h(y)$$
$$= h(X_n)$$

for $X_n \notin A \cup B$.

Now, put $Y_n = h(X_n)$. Then

$$Y_{n \wedge \tau} - Y_0 = h(X_{n \wedge \tau}) - h(X_0) = \sum_{k=1}^{n} 1_{(\tau \ge k)} (Y_k - Y_{k-1}).$$

By using the above,

$$E_x (Y_{n+1 \wedge \tau} - Y_0 | \mathcal{F}_n) = \sum_{k=1}^{n+1} 1_{(\tau \ge k)} E_x (Y_k - Y_{k-1} | \mathcal{F}_n)$$

$$= 1_{(\tau \ge n+1)} (Y_n - Y_0) + 1_{(\tau < n+1)} (Y_\tau - Y_0)$$

$$= 1_{(\tau > n)} (Y_n - Y_0) + 1_{(\tau \le n)} (Y_\tau - Y_0)$$

$$= Y_{n \wedge \tau} - Y_0.$$

So $h(X_{n\wedge\tau})$ is a martingale. Note that the first equality is due to (5.2.2), and the last is due to optional stopping.

3. We assumed that h is bounded. Thus, our martingale is uniformly bounded, so the optional stopping theorem can be applied:

$$x = E_x h(X_0) = E_x h(X_\tau) = E_x [E_x (h(X_\tau) | \mathcal{F}_\tau)]$$

where the last term is equal to

$$E_x [E_{X_{\tau}} h(X_0)] = E_x [1_{(X_{\tau} \in A)} + 0 \cdot 1_{(X_{\tau} \in B)}] = E_x [1_{(X_{\tau} \in A)}].$$

The above is because $P_x(\tau < \infty) = 1$ and h is 1 on A and 0 on B. Note that this implies the result, since $X_{\tau} \in A$ is equivalent to $V_A < V_B$.

Problem (5.2.8).

Let $\tau = V_0 \wedge V_N$. Then $X_{n \wedge \tau}$ is an uniformly bounded martingale since the state space of X_n is finite. By the optional stopping theorem, we get

$$E_x X_0 = E_x X_\tau$$

where the LHS is equal to x. Note that, by the remark 1, we can say that $P_x(\tau < \infty) = 1$. Then the RHS of the above eqn is equal to $0P_x(V_0 < V_N) + NP_x(V_N < V_0)$. Thus,

$$x = NP_x \left(V_N < V_0 \right).$$

Problem (5.2.11).

1. It is similar to the manipulation of problem 5.2.7:

$$\begin{split} E_x V_A &= \sum_{k \geq 1} P_x \left(V_A \geq k \right) \\ &= P_x \left(V_A \geq 1 \right) + \sum_{k \geq 2} P_x \left(V_A \geq k \right) \\ &= 1 + \sum_{k \geq 2} P_x \left(V_A \geq k \right) \\ &= 1 + \sum_{k \geq 2} \sum_y P_x \left(V_A \geq k | X_1 = y \right) P_x \left(X_1 = y \right) \\ &= 1 + \sum_y p(x,y) \sum_{k \geq 2} P_y \left(V_A \geq k - 1 \right) = 1 + \sum_y p(x,y) E_y V_A \end{split}$$

where $P_x(V_A \ge 1) = 1$ since x lies outside of A.

Also, $E_x V_A < \infty$ because

$$E_x \frac{V_A}{N} = \sum_{k \ge 1} P_x (V_A \ge kN)$$
$$\le \sum_{k \ge 1} (1 - \varepsilon)^k < \infty.$$

2. I think we should assume the measurability, and boundedness of g. By the manipulation used in problem 5.2.7, we get:

$$E_x (g(X_{n+1}) + n + 1 | \mathcal{F}_n) = n + 1 + \sum_y p(X_n, y) g(y)$$

= $n + g(X_n)$

for $X_n \notin A$.

Now put $Y_n = g(X_n) + n$ and $\tau = V_A$ for convenience. Then

$$E_x (Y_{n+1 \wedge \tau} - Y_0 | \mathcal{F}_n) = \sum_{k=1}^{n+1} 1_{(\tau \ge k)} E_x (Y_k - Y_{k-1} | \mathcal{F}_n)$$

$$= 1_{(\tau \ge n+1)} (Y_n - Y_0) + 1_{(\tau < n+1)} (Y_\tau - Y_0)$$

$$= Y_{n \wedge \tau} - Y_0.$$

So $X_{n \wedge V_A} + n \wedge V_A$ is a martingale.

3. From the boundedness of g and the fact that V_A is L^1 function, our martingale is uniformly integrable. Thus we can apply optional stopping theorem:

$$E_x g(X_0) = E_x \left[V_A + g(X_{V_A}) \right]$$

where the first term is g(x) and the second term is $E_xV_A + E_xg(X_{V_A})$. But X_{V_A} lies in A and g is 0 on A. Thus the second term of the equation is E_xV_A .

Problem (5.3.1).

Abbreviation of notation: $P(X_1 \leq x_1, \dots, X_n \leq x_n)$ as $P(X \leq x)$, which is a distribution function of a random vector.

First, let's see that they are identically distributed. Since y is recurrent, the strong Markov property always holds when we are considering \mathcal{F}_{R_k} .

$$P_y(\nu_k \le x) = E_y P_y(\nu_k \le x | \mathcal{F}_{R_{k-1}}) = E_y E_{X_{R_{k-1}}} 1_{(\nu_1 \le x)} = P_y(\nu_1 \le x).$$

So ν_k are identically distributed.

Now, let's see that they are independent.

$$P_{y}(\nu_{1} \leq x_{1}, \cdots, \nu_{n} \leq x_{n}) = E_{y}P_{y}(\nu_{1} \leq x_{1}, \cdots, \nu_{n} \leq x_{n}|\mathcal{F}_{R_{n-1}})$$

$$= E_{y}\left[1_{(\nu_{1} \leq x_{1})} \cdots 1_{(\nu_{n-1} \leq x_{n-1})}P_{y}(\nu_{1} \leq x_{n})\right]$$

$$= P_{y}(\nu_{1} \leq x_{n})P_{y}(\nu_{1} \leq x_{1}, \cdots, \nu_{n-1} \leq x_{n-1})$$

$$= \cdots$$

$$= P_{y}(\nu_{n} \leq x_{n}) \cdots P_{y}(\nu_{1} \leq x_{1})$$

since they are identically distributed. Note that $\nu_1, \dots \nu_{n-1}$ are $\mathcal{F}_{R_{n-1}}$ measurable. This is because $\{X_{R_{n-2}+i} \in B\} \cap \{R_{n-1} = k\} \in \mathcal{F}_k$.

Problem (5.3.2).

On $\{T_y < \infty\}$, by the strong Markov property,

$$\rho_{xy} = P_y(T_z < \infty) = E_x \left(1_{(T_y + T_z < \infty)} | \mathcal{F}_{T_y} \right).$$

Thus,

$$\rho_{xy}\rho_{yz} = E_x 1_{(T_y < \infty)} E_x \left(1_{(T_y + T_z < \infty)} | \mathcal{F}_{T_y} \right)$$

$$= E_x 1_{(T_y < \infty)} 1_{(T_y + T_z < \infty)}$$

$$= P_x \left(T_y + T_z < \infty \right) \le P_x \left(T_z < \infty \right) = \rho_{xz}.$$

Problem (5.3.5).

As in the proof of theorem 5.3.8, $\varphi(X_{n\wedge\tau})$ is a nonnegative supermartingale. So the supmartingale converges to Y a.s. From the modified condition $\varphi \to 0$, we know that $\{x:\varphi(x)>M\}$ is a finite set. So X_n visits $\{x:\varphi(x)>M\}$ only finitely many times for all M>0. Thus $\varphi(X_n)\to 0$ as $n\to\infty$. If $\tau<\infty$ almost surely, then $\varphi(X_{n\wedge\tau})\to\varphi(X_\tau)=0$. But we have the other condition: $\varphi>0$ on F. So $\varphi(X_\tau)=0$ cannot happen; thus $P_x(\tau=\infty)>0$.

If the chain is recurrent, then $\tau < \infty$ a.s. But our case is not the case, so the chain must be transient.

Problem (5.3.7).

First assume the recurrence. Let f be a superharmonic function, so $f(X_n)$ is a nonnegative supermartingale. By the martingale convergence theorem, $f(X_n) \to$

Y a.s. By the recurrence, $P(X_n = x \ i.o.) = 1$ for all $x \in S$. So $P(f(X_n) = f(x) \ i.o.) = 1$, which says $f(X_n) \to f(x) = Y$ a.s. But $x \in S$ is arbitrary, f must be a constant.

Now, assume the transience. Fix $z \in S$. Let $V = \inf\{n \geq 0 : X_n = z\}$. Let $f(x) = P_x(V < \infty)$. We will show that f is a nonconstant superharmonic function. For $x \neq z$,

$$f(x) = P_x(V < \infty) = \sum_y p(x, y) P_y(V < \infty) = \sum_y p(x, y) f(y).$$

For x = z,

$$\sum_{y} p(z,y) f(y) \le \sum_{y} p(z,y) = 1 = f(z)$$

since $f \leq 1$. Thus, f is superharmonic.

Now claim that there is $y \in S$ such that f(y) < 1. If no such y exists, then f(y) = 1 for all $y \in S$. This says that $P_y(V < \infty) = 1$ for all y which is equivalent to the recurrence of z. But we assumed the recurrence of our chain. So there is $y \in S$: f(y) < 1. And this says f is nonconstant.

Problem (5.5.2).

Let N_y^x be the number of hittings to y before returning to x. Then $\mu_x(y) = E_x N_y^x$. Also, we can write

$$N_y^x = \sum_{k=1}^{\infty} 1_{\left(T_y, \cdots, T_y^k < T_x\right)} = \sum_{k=1}^{\infty} 1_{\left(T_y^k < T_x\right)}.$$

By using the strong Markov property and the induction, we get

$$E_{x}N_{y}^{x} = \sum_{k=1}^{\infty} P_{x} \left(T_{y}^{k} < T_{x} \right)$$

$$= \sum_{k=1}^{\infty} E_{x} \left[P_{x} \left(T_{y}, T_{y}^{k} < T_{x} | \mathcal{F}_{T_{y}} \right) \right]$$

$$= \sum_{k=1}^{\infty} E_{x} \left[1_{(T_{y} < T_{x})} P_{y} \left(T_{y}^{k-1} < T_{x} \right) \right]$$

$$= \cdots$$

$$= \sum_{k=1}^{\infty} P_{x} (T_{y} < T_{x}) P_{y} (T_{y} < T_{x})^{k-1}$$

$$= \frac{P_{x} (T_{y} < T_{x})}{1 - P_{y} (T_{y} < T_{x})} = \frac{w_{xy}}{w_{yx}}.$$

Problem (5.5.3).

Irreducibility and recurrence implies the existence of unique(up to constant multiple) stationary measure. The recurrence implies that $y \mapsto \mu_x(y)$ is the stationary measure. Thus, for some c > 0, $\mu_y(z) = \mu_x(z) \cdot c$. So $\mu_y(z)p(z,y) = c\mu_x(z)p(z,y)$. By adding over z,

$$1 = \mu_y(y) = \sum_z \mu_y(z) p(z, y) = c \sum_z \mu_x(z) p(z, y) = c \mu_x(y).$$

Thus $c = 1/\mu_x(y)$ and this leads the result.

Problem (5.5.4).

 $E_xT_y=\infty$ says that the chain is expected to not reach the state y. So $\mu_x(y)=0$, contradiction. Also

$$\sum_{x} E_x T_y p(x, y) + 1 = E_y T_y < \infty$$

by positive recurrence. Therefore E_xT_y should be finite.

Problem (5.5.5).

On the contrary, assume that p is positive recurrent. Then, with irreducibility, the existence of stationary distribution π is guaranteed. Also, any stationary measure is constant multiple of π by theorem 5.5.9. Thus $c\pi(x) = \mu(x)$ for some constant c > 0. Then,

$$\infty = \sum_{x} \mu(x) = c \sum_{x} \pi(x) = c < \infty,$$

which is a contradiction. Hence p cannot be positive recurrent.

Problem (5.5.9).

Note that $Y_{n \wedge \tau} - Y_0 = \sum_{k=1}^n 1_{(\tau > k)} (Y_k - Y_{k-1})$. Using this,

$$E_{x}(Y_{n+1\wedge\tau} - Y_{0}|\mathcal{F}_{n}) = \sum_{k=1}^{n} 1_{(\tau \geq k)} (Y_{k} - Y_{k-1}) + 1_{(\tau \geq n+1)} [E_{x}(X_{n+1}|\mathcal{F}_{n}) - X_{n} + \varepsilon]$$

$$\leq \sum_{k=1}^{n} 1_{(\tau \geq k)} (Y_{k} - Y_{k-1}) + 1_{(\tau \geq n+1)} [X_{n} - \varepsilon - X_{n} + \varepsilon]$$

$$= Y_{n\wedge\tau} - Y_{0}.$$

Thus $Y_{n\wedge\tau}$ is a nonnegative supermartingale. Now, by theorem 4.8.4, we have

$$x = E_x[Y_0] \ge E_x[Y_\tau] = E_x[X_\tau + \tau \varepsilon] \ge \varepsilon E_x[\tau]$$

since $X_n \geq 0$. By dividing both sides by ε , we earn the result.

Problem (5.6.1).

For n=1,

$$P_{\mu}(X_1 = 0) = \mu(0)p(0,0) + (1 - \mu(0))p(1,0) = (1 - \alpha - \beta)\mu(0) + \beta.$$

Now,

$$\begin{split} P_{\mu}(X_{n+1} = 0) &= E_{\mu} P_{\mu} \left(X_{n+1} = 0 | \mathcal{F}_{n} \right) \\ &= E_{\mu} \left[P_{0} \left(X_{1} = 0 \right) 1_{(X_{n} = 0)} + P_{1} \left(X_{1} = 0 \right) 1_{(X_{n} = 1)} \right] \\ &= P_{\mu}(X_{n} = 0) p(0,0) + P_{\mu}(X_{n} = 1) p(1,0) \\ &= (1 - \alpha) P_{\mu}(X_{n} = 0) + \beta (1 - P_{\mu}(X_{n} = 0)) \\ &= (1 - \alpha - \beta) P_{\mu}(X_{n} = 0) + \beta \\ &= (1 - \alpha - \beta)^{n+1} \left[\mu(0) - \frac{\beta}{\alpha + \beta} \right] + \frac{\beta (1 - \alpha - \beta)}{\alpha + \beta} + \beta \end{split}$$

where the last term is what we desired.

Problem (5.6.2).

Aperiodicy of state x is defined only when the state x is recurrent. So aperiodicy of the chain necessarily contains recurrence of the chain. Note that recurrent chain has stationary measure, $\mu_x(y)$. With finiteness of the state space, by normalizing, we can earn the stationary distribution π . With irreducibility of the chain, by existence of the stationary measure, the chain is positive recurrent. Now, for any $x, y \in S$, by convergence theorem,

$$p^m(x,y) \to \pi(y) > 0.$$

So we can find M_{xy} such that $m \ge M_{xy}$ implies $p^m(x,y) > \pi(y)/2 > 0$. Take $M = \max_{x,y} M_{xy}$. Then $M < \infty$ because of the finiteness. For any $x, y \in S$,

$$p^{M}(x,y) > \pi(y)/2 > 0.$$

Problem (5.6.3).

By the previous problem, there is m > 0 such that $p^m(x,y) > 0$ for all $x, y \in S$. Fix $y \in S$. Let $p = \min_{x \in S} p^m(x,y)$. Then

$$P(X_{n+m} = Y_{n+m} = y | X_n = x_1, Y_n = x_2) \ge p^2$$

for all $x_1, x_2 \in S$ by the definition of \bar{p} . So $P(X_{n+m} = Y_{n+m} | X_n, Y_n) \geq p^2$,

which is equivalent to $P(X_{n+m} \neq Y_{n+m}|X_n,Y_n) \leq 1-p^2$. Now, consider

$$\begin{split} &P(T > km) \\ &= P\left(X_1 \neq Y_1, \cdots, X_{km} \neq Y_{km}\right) \\ &= EP(\ \cdot \mid \mathcal{F}_{(k-1)m}) \\ &= EP_{X_{(k-1)m}, Y_{(k-1)m}} \left(X_{km} \neq Y_{km}, \cdots, X_{(k-1)m+1} \neq Y_{(k-1)m+1}\right) \mathbb{1}_{\left(X_{(k-1)m} \neq Y_{(k-1)m}, \cdots, X_{1} \neq Y_{1}\right)} \\ &\leq (1 - p^2) P(X_1 \neq Y_1, \cdots, X_{(k-1)m} \neq Y_{(k-1)m}) \\ &\leq \cdots \\ &\leq (1 - p^2)^k. \end{split}$$

Therefore

$$P(T > n) \le P(T > \left[\frac{n}{m}\right]m) \le (1 - p^2)^{\left[\frac{n}{m}\right]} \le (1 - p^2)^{\frac{n}{m}}$$

where $[\cdot]$ is the floor function. So the convergence occurs at least exponentially fast.

Problem (5.6.5).

Note that $P_x(T_x^k < \infty) = 1$. Let $V_k^f = V_k$, and $V_k^{|f|} = V_k'$.

1. By the strong Markov property,

$$P(V_k \le a) = EP(V_k \le a | \mathcal{F}_{T_x^k})$$

= $P_x(f(X_0) + \dots + f(X_{T_x^1 - 1}) \le a) = P_x(V_0 \le a).$

Thus $\left\{V_k^f\right\}_{k=1}^{\infty}$ is an identically distributed sequence.

By the strong Markov property,

$$P(V_{k} \leq a_{0}, \dots, V_{k+m} \leq a_{m}) = EP(\cdot | \mathcal{F}_{T_{x}^{k+m}})$$

$$= EP_{x}(V_{1} \leq a_{m})1_{(V_{k} \leq a_{0}, \dots, V_{k+m-1} \leq a_{m-1})}$$

$$= \dots$$

$$= \prod_{n=0}^{m} P_{x}(V_{0} \leq a_{n})$$

$$= P(V_{k} \leq a_{0}) \dots P(V_{k+m} \leq a_{m})$$

where the last equality is due to the previous result. So they are independent.

Now, consider $E|V_1|$.

$$\leq E \sum_{k\geq 1} 1_{(T_x^1 < k \leq T_x^2)} |f(X_k)| (= EV_1')$$

$$= E \sum_{k\geq 1} 1_{(T_x^1 < k \leq T_x^2)} \sum_{y} |f(y)| 1_{(X_k = y)}$$

$$= \sum_{y} |f(y)| E \sum_{k\geq 1} 1_{(T_x^1 < k \leq T_x^2)} 1_{(X_k = y)}$$

$$= \sum_{y} |f(y)| \mu_x(y) = \sum_{y} |f(y)| \pi(y) E_x T_x^1 < \infty.$$

Similarly, we can get $EV_1 = \sum_y f(y)\pi(y)E_xT_x^1$.

2. Note that $N_n(x) = \sup \{k : T_x^k \le n\}$. So $N_n(x) \le K_n$. If $N_n(x) < K_n$, then $K_n = N_n(x) + 1$. By SLLN and theorem 5.6.1, as $n \to \infty$,

$$\frac{1}{n} \sum_{m=1}^{K_n} V_m = \frac{N_n(x)}{n} \frac{K_n}{N_n(x)} \frac{1}{K_n} \sum_{m=1}^{K_n} V_m \to \frac{EV_1}{E_x T_x^1} = \sum_y f(y) \pi(y)$$

 P_{μ} almost surely since $N_n(x) \to \infty$.

3. Refer to problem 2.3.17, sufficient(in fact, necessary also) condition for $\max_{m \le n} V'_m/n \to 0$ is $EV'^+_m < \infty$ for all m. This is because

$$\sum_{n\geq 1} P(V_n' \geq n\delta) < \infty$$

for all $\delta > 0$. Thus, by Borel Cantelli lemma, $P(V'_n \geq n\delta \ i.o.) = 0$. So

$$P(V'_n/n < \delta \text{ all but finitely many } n) = 1.$$

Also,

$$\frac{1}{n} \max_{m \le n} V_m' \le \frac{1}{n} \left(\max_{m \le M} V_m' + \max_{M < m \le n} V_m' \right) \le \frac{\max_{m \le M} V_m'}{n} + \max_{M < m \le n} \frac{V_m'}{m}$$

where the last term $\leq \delta$ as $n \to \infty$. Since δ is arbitrary, we can get $\max_{m \leq n} V'_m/n \to 0$ a.s.

Now, note that $K_n \leq n$. Then

$$\frac{1}{n} \left| \sum_{m=1}^{n} f(X_m) - \sum_{m=1}^{K_n} V_m \right| \le \frac{1}{n} \max_{m \le n} V_m' \to 0$$

 $as n \to \infty$.

Problem (6.1.1).

Let φ be a measure preserving map of Ω into Ω . First, $\varphi^{-1}\Omega = \Omega$ since codomain contains the range. Second, if A is an invariant set, then $\varphi^{-1}A^c = (\varphi^{-1}A)^c = A^c$, so the complement of A is invariant. Third, if A_i is an increasing sequence of invariant set, then $\varphi^{-1}A = \bigcup_i \varphi^{-1}A_i = \bigcup_i A_i = A$, so $A = \bigcup_i A_i$ is also invariant. Therefore \mathcal{I} is a sigma field.

We say two sets A, B are equal a.s. if their corresponding indicator functions are equal a.s.

Let B be a Borel set. Assume that $X \circ \varphi = X$ a.s. Then $\varphi^{-1}X^{-1}B = X^{-1}B$ a.s. so $X^{-1}B$ is invariant, which says X is \mathcal{I} measurable. Let's consider the converse. If X is an indicator function, then the result trivially holds. So we can extend the result to where X is an simplie function, measurable with respect to \mathcal{I} . If X is nonnegative function of \mathcal{I} , then $s_n \uparrow X$. Since $s_n \circ \varphi = s_n$ a.s, $X \circ \varphi = \lim_n s_n \circ \varphi = \lim_n s_n = X$ a.s. If $X \in \mathcal{I}$ any r.v, then by decomposing it to $X = X^+ - X^-$, we can conclude the result.

Problem (6.1.2).

1.

$$\omega \in \varphi^{-1}(B) \Rightarrow \varphi(\omega) \in B \Rightarrow \varphi(\omega) \in \varphi^{-n}(A) \Rightarrow \varphi^{n+1}(\omega) \in A$$
$$\Rightarrow \omega \in \varphi^{-n-1}(A) \Rightarrow \omega \in B$$

for some $n \geq 0$. Therefore $\varphi^{-1}(B) \subset B$.

2.

$$\omega \in \varphi^{-1}(C) \Rightarrow \varphi(\omega) \in \varphi^{-n}(B) \Rightarrow \varphi^{n+1}(\omega) \in B$$
$$\Rightarrow \omega \in \varphi^{-n-1}(B) \Rightarrow \omega \in \varphi^{-n}(B) \Rightarrow \omega \in C$$

for all $n \geq 0$. Therefore $\varphi^{-1}(C) \subset C$.

$$\omega \in C \Rightarrow \varphi^{n}(\omega) \in B \Rightarrow \omega \in (\varphi^{-n+1} \circ \varphi^{-1})(B)$$
$$\Rightarrow \omega \in \varphi^{-n+1}(B) \Rightarrow \omega \in \bigcap_{n \ge 1} \varphi^{-n}(B) = \varphi^{-1}(C)$$

for all $n \ge 0$. Therefore $C = \varphi^{-1}(C)$.

3. Let B, C be same as above. Assume that A is almost invariant. Then $A = \varphi^{-n}(A)$ almost surely, so A = B a.s. So A = C a.s, which is equivalent to $P(A\Delta C) = 0$.

Conversely, assume that $P(A\Delta D)=0$ for some strictly invariant D. Since φ is measure preserving, $P(\varphi^{-1}(A\Delta D))=P(A\Delta D)=0$. So $\varphi^{-1}(A)=\varphi^{-1}(D)$ a.s. But $A=C=\varphi^{-1}(C)$ a.s. Thus $A=\varphi^{-1}(A)$ a.s, equivalent to almost invariance of A.

Problem (6.1.4).

Let m be any integer, n be any nonnegative integer. Define

$$\mu_{m,\dots,m+n}(A_0,\dots,A_n) = P(X_0 \in A_0,\dots,X_n \in A_n).$$

 \Box .

Then $\mu_{m,\dots,m+n}$ is consistent, so the Kolmogorov extension thm applies. Let Y_n be a coordinate map. Then any length n+1 distribution of consecutive sequence of Y has same distribution with X_0, \dots, X_n . It means Y_n is a two sided stationary process, and X_n is embedde in Y_n

Problem (6.2.1).

Assume $X \in L^p$. Let $A_n(X_M') = \sum_{m=0}^{n-1} X_M' \circ \varphi^m / n$. Since $A_n(X_M') \to E(X_M' | \mathcal{I})$ a.s. and $|A_n(X_M') - E(X_M' | \mathcal{I})|^p \le (2M)^p \in L^1$, DCT implies L^p convergence of $A_n(X_M') \to E(X_M' | \mathcal{I})$.

Now consider $||A_n(X_M'') - E(X_M'|\mathcal{I})||_p \le ||A_n(X_M'')||_p + ||X_M''||_p$. But $||A_n(X_M'')||_p \le \sum_{m=0}^{n-1} ||X_M'' \circ \varphi^m||_p / n = ||X_M''||_p$. Since $||X_M''||^p \le ||X||^p \in L^1$ and $||X_M''|| \to 0$ a.s, DCT implies $||L^p||_p = L^p$ convergence of $||A_n(X_M'')||_p \to E(X_M''|\mathcal{I})$.

Problem (6.2.2).

1. Fix M > 0. Let $h_M = \sup_{m \geq M} |g_m - g|$. By our assumption, $h_M \in L^1$ and $h_M \downarrow 0$ a.s. as $M \uparrow \infty$. Since $g \in L^1$,

$$\frac{1}{n} \sum_{m=0}^{n-1} g_m \circ \varphi^m \to E(g|\mathcal{I}) \ a.s$$

So, it is sufficient to show that

$$\frac{1}{n}\sum_{m=0}^{n-1}(g_m-g)\circ\varphi^m\to 0\ a.s.$$

Consider

$$\frac{1}{n} \sum_{m=0}^{n-1} |g_m - g| \circ \varphi^m \le \frac{1}{n} \sum_{m=0}^{M-1} |g_m - g| \circ \varphi^m + \frac{1}{n} \sum_{m=M}^{n-1} h_M \circ \varphi^m.$$

By taking $\limsup_{n\to\infty}$ on both sides,

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} |g_m - g| \circ \varphi^m \le E(h_M | \mathcal{I}).$$

By theorem 4.1.9 (Monotone convergence theorem for conditional expectation), as $M \uparrow \infty$, the last term goes to 0 a.s.

2. Since $g \in L^1$,

$$\frac{1}{n} \sum_{m=0}^{n-1} g \circ \varphi^m \to E(g|\mathcal{I})$$

a.s. and in L^1 by the Ergodic theorem. Now, it is sufficient to show that

$$\frac{1}{n}\sum_{m=0}^{n-1}(g_m-g)\circ\varphi^m\to 0$$

in L^1 sense. Fix $\varepsilon > 0$. Since $||g_n - g||_1 \to 0$, we can choose N such that $||g_n - g||_1 < \varepsilon$ whenever $n \ge N$. Then,

$$\left\| \frac{1}{n} \sum_{m=0}^{n-1} (g_m - g) \circ \varphi^m \right\|_1 \le \frac{1}{n} \sum_{m=0}^{N} \|g_m - g\|_1 + \varepsilon.$$

If n is sufficiently large, then the above is bounded by ε . Since ε is arbitrary, the above goes to 0 in L^1 sense.

Problem (6.2.3).

Note that

$$D_k - \alpha > 0 \Leftrightarrow \sup_{i \le k} \frac{S_i - i\alpha}{i} > 0 \Leftrightarrow \sup_{i \le k} \frac{\sum_{j=0}^{i-1} (X_j - \alpha)}{i} > 0 \Leftrightarrow \sup_{i \le k} \sum_{j=0}^{i-1} (X_j - \alpha) > 0.$$

Let the last condition be $M_k > 0$. Then the above says $D_k - \alpha > 0$ is equivalent to $M_k > 0$. Therefore by lemma 6.2.2,

$$0 \le E\left[(X - \alpha) 1_{(M_k > 0)} \right].$$

Thus,

$$\alpha P(D_k > \alpha) \le EX1_{(M_k > 0)} \le E|X|.$$

Problem (7.1.1).

First, let F be the distribution function of standard normal, f = F'. Let

$$I(a) = \int_0^\infty F(ax)f(x)dx.$$

Then

$$I'(a) = \int_0^\infty x f(ax) f(x) dx = \frac{1}{2\pi(1+a^2)}.$$

Note that I(0) = 1/4. So,

$$I(a) = \frac{1}{4} + \frac{1}{2\pi} \int_0^a \frac{dt}{1+t^2} = \frac{1}{4} + \frac{\arctan a}{2\pi}.$$

Now, assume that $B_0 = 0$.

$$P(B_s > 0, B_t > 0) = \int_0^\infty P(B_t - B_s > -B_s | B_s = x) f_{B_s}(x) dx$$

$$= \int_0^\infty P(B_t - B_s > -x) f_{B_s}(x) dx$$

$$= \int_0^\infty P(B_t - B_s \le x) f_{B_s}(x) dx$$

$$= \int_0^\infty F\left(\frac{x}{\sqrt{t-s}}\right) f_{B_s}(x) dx$$

$$= \int_0^\infty F\left(\frac{\sqrt{su}}{\sqrt{t-s}}\right) f(u) du$$

$$= \frac{1}{4} + \frac{1}{2\pi} \arctan \sqrt{\frac{s}{t-s}}.$$

When $B_0 = y$, the desired one is

$$\int_{-y/\sqrt{s}}^{\infty} F\left(\frac{\sqrt{s}u+y}{\sqrt{t-s}}\right) f(u) du.$$

Problem (7.1.2).

Decompose it by $(B_3 - B_2), (B_2 - B_1), B_1$.

Problem (7.1.3).

By using the definition of Riemann integration,

$$W = \lim_{n \to \infty} \sum_{k=1}^{n} \sum_{i=1}^{k} \frac{t}{n} \left(B\left(\frac{i}{n}t\right) - B\left(\frac{i-1}{n}t\right) \right).$$

This is equal to $N(B_0, t^3/3)$ by considering the characteristic function because Wiener process has stationary independent increment.

Problem (7.1.4).

Let \mathcal{G} be the collection of such sets. Note that the generator of \mathcal{F}_0 is contained in \mathcal{G} . So, if \mathcal{G} is a σ -field, then $\mathcal{F}_0 \subset \mathcal{G}$.

Take any sequence and $B = \mathbb{R}^{\mathbb{N}}$. This shows $\Omega_0 \in \mathcal{G}$. Now assume $A \in \mathcal{G}$. Then $A = \{\omega : (\omega(t_1), \cdots) \in B\}$ for some sequence t_n and $B \in \mathbb{R}^{\mathbb{N}}$. The complement of A is $\{\omega : (\omega(t_1), \cdots) \notin B\}$. Since B is Borel set, $A^c \in \mathcal{G}$. To show that \mathcal{G} is a sigma fiel Let $A_i \uparrow A$. Let $\{t_n^i\}_{n=1}^{\infty}$ be the corresponding sequence of A_i . Let q_n be an enumeration of $\bigcup_i \{t_n^i\}$. Then we can express $A_i = \{\omega : (\omega(q_1), \cdots) \in E_i\}$ where E_i is a Borel set. Thus

$$\bigcup_{i} A_{i} = \left\{ \omega : (\omega(q_{1}), \cdots) \in \bigcup_{i} E_{i} \right\} \in \mathcal{G}.$$

This says G is a sigma field.

Now, let me show that $\mathcal{G} \subset \mathcal{F}_0$. Fix $A \in \mathcal{G}$. Let $\{t_n\}$ be the corresponding sequence of time. Let $\pi_t : t \mapsto w(t)$ be the coordinate map. Then, by elementary measure theory, $\sigma(\pi_t : t \in \{t_n\}) = \{\{w : (w(t_1), \cdots) \in B\} : B \in \mathcal{B}^{\mathbb{N}}\}$. Since \mathcal{F}_0 is the smallest sigma field which makes all coordinate maps measurable, $\sigma(\pi_t : t \in \{t_n\}) \subset \mathcal{F}_0$. Therefore, since $A \in \sigma(\pi_t : t \in \{t_n\})$, A must lie in \mathcal{F}_0 .

Problem (7.1.5).

Let $\gamma > 1/2 + 1/m$. A_n is the set defined in 7.1.6, with C|t-s| replaced by $C|t-s|^{\gamma}$. $Y_{n,k}$ is the set defined in 7.1.6, with j=0,1,2 replaced by $j=0,\cdots,m$. B_n is the set defined in 7.1.6, with 5C/n replaced by $C(5/n)^{\gamma}$.

By the same argument,

$$P(A_n) \le P(B_n) \le nP \left(|B(1/n)| \le C(5/n)^{\gamma} \right)^m$$
$$= nP \left(|Z| \le 5^{\gamma} C/n^{\gamma - 1/2} \right)^m$$
$$\le D \frac{n}{n^{m\gamma - m/2}}.$$

But $m\gamma - m/2 > 1$. So, by letting $n \to \infty$, the result follows.

Problem (7.1.6).

Let

$$Y_n = \sum_{m < 2^n} \Delta_{m,n}^2.$$

Note that $\Delta_{m,n} \sim N(0,t/2^n)$. So

$$\frac{2^n}{t}\Delta_{m,n} \sim \chi_1^2.$$

By definition of chi-squared distribution and property of gamma distribution,

$$\sum_{m\leq 2^n}\Delta_{m,n}^2\sim Gamma(2^{n-1},\frac{t}{2^{n-1}}).$$

Thus $EY_n = t$ and $VarY_n = t^2/2^{n-1}$. By the Markov inequality,

$$P\left(|Y_n - t| > \frac{1}{n}\right) \le n^2 E(Y_n - t)^2$$
$$= \frac{n^2 t^2}{2^{n-1}}.$$

So $\sum_{n} P(|Y_n - t| > 1/n) < \infty$. By the Borel-Cantelli lemma,

$$P\left(|Y_n - t| > \frac{1}{n} \text{ i.o. }\right) = 0.$$

This says, for almost every $\omega \in \Omega$, there is $N(\omega)$ such that $n \geq N(\omega)$ implies $|Y_n - t| \leq 1/n$. Thus $Y_n \to t$ almost surely.

Problem (7.2.2).

Note that

$$1_{(L < t)} = 1_{(T_0 > 1 - t)} \circ \theta_t$$

because the RHS means there is no visits to 0 during 1-t from time t. It is equal to the LHS.

Therefore, by the Markov property,

$$P_0(L \le t) = E_0 1_{(L \le t)} = E_0 E_{B_t} 1_{(T_0 > 1 - t)} = \int p_t(0, y) P_y(T_0 > 1 - t) dy.$$

Problem (7.2.4).

Note that $P_0(B(t) \ge 0) = P_0(B(t)/f(t) \ge 0) = 1/2 > 0$. Let $X = \limsup_{t \downarrow 0} \frac{B(t)}{f(t)}$. Then X is \mathcal{F}_0^+ measurable. Let $t_n \downarrow 0$. Then

$$P(X \geq 0) \geq P\left(\limsup_n \frac{B(t_n)}{f(t_n)}\right) \geq \limsup_n P\left(\frac{B(t_n)}{f(t_n)}\right).$$

Since $t_n \downarrow 0$ is arbitrary, we can observe that

$$P\left(X\geq 0\right)\geq \limsup_{t\downarrow 0}P\left(\frac{B(t)}{f(t)}\right).$$

But the RHS of the above is bigger than 0 since $P_0(B(t)/f(t) \ge 0) = 1/2 > 0$. Thus, by Bluementhal's 0 - 1 law, $P(X \ge 0) = 1$.

Let $\alpha \in \mathbb{R}$. Then $P_0(X \leq \alpha) \in \{0,1\}$ by 0-1 law. But $F(\alpha) = P_0(X \leq \alpha)$ is a cdf. So $F(\alpha)$ is nondecreasing, right continuous function. Since $F(\alpha) \in \{0,1\}$ for each α , we can observe that F has exactly one jump discontinuity or constant function.

First, consider discontinuous case. Let c be the discontinuity of F. Then F(c) = 1 but $F(c^-) = 0$, and $P_0(X = c) = F(c) - F(c^-) = 1$. But $P_0(X \ge 0) = 1$, so $c \in [0, \infty)$.

Now, consider the case when F is constant. Since $P(Z \ge 0) = 1$, F(0) = 0 so F = 0. This says, for each $\alpha \in \mathbb{R}$, $P(X > \alpha) = 1$. This means that $P(X = \infty) = 1$.

Therefore, X = c almost surely for some $c \in [0, \infty]$.

Problem (7.3.2).

1. $\{S \land T < t\} = \{S < t\} \cup \{T < t\} \in \mathcal{F}_t$.

2. $\{S \vee T < t\} = \{S < t\} \cap \{T < t\} \in \mathcal{F}_t$.

3. ${S + T < t} = \bigcup_{q \le t} {S < q} \cap {T < t - q} \in \mathcal{F}_t \text{ since } q, t - q \le t.$

4. $\{S \land t < r\} = \{S < r\} \cup \{t < r\} \in \mathcal{F}_r \text{ since } t \text{ is constant function.}$

- 5. $\{S \lor t < r\} = \{S < r\} \cap \{t < r\} \in \mathcal{F}_r$.
- 6. $\{S + t < r\} = \{S < r t\} \in \mathcal{F}_r \text{ because } r t \le r.$

Problem (7.3.3).

- 1. $\left\{\sup_{k \neq n} T_k \leq t\right\} = \bigcap_{k \geq n} \left\{T_k \leq t\right\} \in \mathcal{F}_t$. So $\sup_{k \geq n} T_k$ is a stopping time. By taking n = 1, $\sup_n T_n$ is a stopping time.
- 2. $\{\inf_{k \geq n} T_k < t\} = \bigcup_{k \geq n} \{T_k < t\} \in \mathcal{F}_t$. By taking n = 1, $\inf_n T_n$ is a stopping time.
- 3. Let $S_n = \sup_{k \ge n} T_k$. By 1, S_n is a stopping time. Thus by 2, $\inf_n S_n = \limsup_n T_n$ is a stopping time.
- 4. Let $R_n = \inf_{k \geq n} T_k$. Similarly, by 1, 2, $\sup_n R_n = \liminf_n T_n$ is a stopping time.

Problem (7.3.5).

- 1. $\{S < T\} \cap \{S < t\} = \bigcup_{q \le t} \{S < q\} \cap \{q < T\} \in \mathcal{F}_t \text{ since } q \le t.$ Thus $\{S < T\} \in \mathcal{F}_S$.
- 2. $\{S > T\} \cap \{S < t\} = \bigcup_{q \le t} \{T < q\} \cap \{q < S < t\} \in \mathcal{F}_S$. By 1, 2 and symmetry, $\{S < T\}, \{S > T\} \in \mathcal{F}_S \cap \mathcal{F}_T$.
- 3. But $\{S = T\} = \{S \le T\} \cap \{S \ge T\} = \{S < T\}^c \cap \{S > T\}^c \in \mathcal{F}_S \text{ since } \mathcal{F}_S \text{ is a sigma field.}$