Настройка нейронной сети

Марина Горлова

С чего начать?

- 1 Определиться с тем какую задачу решаем
- 2 Подготовить данные
- 3 Построить бейзлайн
- 4 Перейти к более сложным моделям и настройке параметров

Задача регрессии

Функция активации ReLU

mse, mae

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

Задача бинарной классификации

сигмоидная функция активации

binary_crossentropy

$$-(y\log(p) + (1-y)\log(1-p))$$

Задача многоклассовой классификации

активация softmax

category_crossentropy

$$-\sum_{c=1}^{M} y_{o,c} \log(p_{o,c})$$

$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

Подготовка данных

- тренировочный сет
- валидационный сет
- тестовый

Пропорция, в которой разбиваем данные, зависит от их количества, задачи и способа валидации

Нормализация данных

Bias / Variance

bias

- большая сеть
- больше epoch

variance

- больше данных
- регуляризация

Регуляризация

L1, L2 регуляризация

Dropout

Dropout

Dropout

0.3	0.2	1.5	0.0		0.0	0.2	1.5	0.0
0.6	0.1	0.0	0.3	50% dropout	0.6	0.1	0.0	0.3
0.2	1.9	0.3	1.2	_	0.0	1.9	0.3	0.0
0.7	0.5	1.0	0.0		0.7	0.0	0.0	0.0

Figure 4.8 Dropout applied to an activation matrix at training time, with rescaling happening during training. At test time, the activation matrix is unchanged.

Vanishing / Exploding gradient

Vanishing gradient - веса на близких

к X слоях становятся близкими к 0

Exploding gradient - веса резко растут

Exploding gradient

Определить можно по training loss

решение проблемы регуляризация и clipping, уменьшить learning rate

Vanishing gradient

Нет надежного способа определить эту проблему

Sigmoid и tanh activation могут усугубить проблему

Vanishing gradient

Решение: использовать ReLU и его модификации на скрытых слоях

Поменять инициализацию весов

- N(0,1)*0.001
- N(0,1) *0.001 *1/sqrt(n)
- N(0,1) *0.001 *sqrt(2/n)
- $N(0,1) *0.001 *sqrt(2/(n_{input} + n_{output}))$

Оптимизация mini-batch gradient descent

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)}).$$

pros

- меньше застревает в локальных минимумах
- эффективнее обучается
- требует меньше памяти

cons

• не оптимальное решение

Mini-batch gradient descent

на каждом шаге

Оптимизация

- Застревание в локальных минимумах или седловых точках
- Плато чередуются с регионами сильной нелинейности
- Некоторые параметры обновляются значительно реже других, особенно когда в данных встречаются информативные, но редкие признаки
- Слишком маленькая скорость обучения заставляет алгоритм сходиться очень долго и застревать в локальных минимумах, слишком большая «пролетать» узкие глобальные минимумы или вовсе расходиться

Оптимизация: momentum

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$$

 $\theta = \theta - v_t$

Сохраняет информацию о предыдущем направлении

Оптимизация: AdaGrad

$$g_t \equiv \nabla_{\theta} J(\theta_t)$$

$$G_t = G_t + g_t^2$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \epsilon}} g_t$$

Уменьшает степень обновления параметров, которые часто обновляются

Комбинация этих двух идей - Adam

Настройка гиперпараметров

learning rate и другие параметры оптимизации

mini-batch

количество элементов на скрытых слоях

количество слоев

learning rate decay

Настройка гиперпараметров

Batch normalization

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;
Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

На тесте используются экспоненциально взвешенные значения по mini-batch