Ш

T.S.V.P

DS PSC N°1 (Durée 1h30- pas de documents)

<u>Question1</u>: Que signifie cette relation : $\int |\varphi(x)|^2 dx = 1$, ou $\phi(x)$ représente la fonction d'onde. (2 lignes max.) Pensité de probabilité.

Question2: Pourquoi le modèle de Sommerfeld a un domaine d'application limité? (2 lignes) Les électrons sont liés au cristal par les forces d'attraction

Coulombienne et Sont piégés <u>Exercice 1</u>: On mesure les d_{hki} et les intensités de 2 composés <u>cubiques</u>. En déduire pour chaque composé le paramètre de maille, les indices de raies (hkl) et le type de réseau.

(REMPLIR LE TABLEAU SUR LA FEUILLE)

EXPLIQUER VOTRE METHODE UTILISEE. (sans les explications, des points seront enlevés)

а		b		
D (Å)	hkl	D (Å)	hkl	
3.55		4.12		
2.513		2.917		
2.051		2.380		
1.776		2.062		
1.590		1.844		
1.451		1.683		
1.343		1.457		
1.1852		1.374		
1.1236		1.304		

Exercice 2 : On considère le potentiel à une dimension représenté sur la figure ci-dessous. On suppose que l'énergie totale de l'électron est $E > V_2$. Les particules proviennent de moins l'infini. Les constantes k sont définies par :

$$k_1 = \sqrt{\frac{2mE}{\hbar^2}}, \qquad k_2 = \sqrt{\frac{2m(E - V_1)}{\hbar^2}}, \qquad k_3 = \sqrt{\frac{2m(E - V_2)}{\hbar^2}}, \qquad \underbrace{\begin{matrix} \\ \\ \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \\ \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \\ \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}}_{x=0} \qquad \underbrace{\begin{matrix} \end{matrix}$$

Le coefficient de transmission T est donné par : $T = \frac{k_3}{k_1} \frac{A_3 A_3^*}{A_1 A_1^*}$ Tégion I $(A_1 X) = A_1 e^{i K_1 X} + B_1 e^{i K_1 X}$ Tégion II $(A_2 X) = A_3 e^{i K_3 X} + B_1 e^{i K_1 X}$ Tégion II $(A_3 X) = A_3 e^{i K_3 X}$ $(A_3 X) = A_3 e^{i K_3 X}$ $(A_3 X) = A_3 e^{i K_3 X}$

On exprimera les fonctions d'onde sous la forme :

$$\Psi_n(x) = A_n e^{(--)x} + B_n e^{-(--)x}$$

Ecrire l'équation de Schrödinger et les solutions ondulatoires qui s'appliquent aux

trois régions Expliquer pourquoi B₃ est nul pas de réflexion Ecrire les équations qui résultent de l'application des conditions aux limites

- (continuité)
- 4. En supposant le cas spécial où $k_2a = 2n\pi$ (avec n=1, 2, 3,...), déterminer l'expression du facteur de transmission T en fonction de K₁ et K₃.

Formulaire et aide:

(hkl)	Р	I	F	Diamant
				c
				.)
	h2+k2+l2	h2+k2+l2	h2+k2+l2	h2+k2+l2
100	1			
110	2	2		
111	3		3	3
200	4	4	4	
210	5			
211	6	6		
220	8	8	8	8
300,221	9			
310	10	10		
311	11		11	11
222	12	12	12	
320	13			
321	14	14		
400	16	16	16	16
410,322	17			
411,330	18	18		
331	19		19	19
420	20	20	20	
421	21			
332	22	22		
422	24	24	24	24

Facteur de structure :

$$\begin{split} S_{hkl} &= \sum_{j} f_{j} \exp[-i2\pi(x_{j}h + y_{j}k + z_{j}l)] \sum_{p} \exp[-i2\pi(x_{p}h + y_{p}k + z_{p}l)] \\ \text{Schrödinger}: & & -\frac{\hbar^{2}}{2m} \frac{\partial^{2}\varphi(x)}{\partial x^{2}} + V(x)\varphi(x) = E\varphi(x) \end{split}$$

Schrödinger:
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \varphi(x)}{\partial x^2} + V(x)\varphi(x) = E\varphi(x)$$

On exprimera les fonctions d'onde sous la forme :

$$\Psi_n(x) = A_n e^{(--)x} + B_n e^{-(--)x}$$

Ecrire l'équation de Schrödinger et les solutions ondulatoires qui s'appliquent aux

trois régions Expliquer pourquoi B₃ est nul pas de réflexion Ecrire les équations qui résultent de l'application des conditions aux limites

- (continuité)
- 4. En supposant le cas spécial où $k_2a = 2n\pi$ (avec n=1, 2, 3,...), déterminer l'expression du facteur de transmission T en fonction de K₁ et K₃.

Formulaire et aide:

(hkl)	Р	I	F	Diamant
				c
				.)
	h2+k2+l2	h2+k2+l2	h2+k2+l2	h2+k2+l2
100	1			
110	2	2		
111	3		3	3
200	4	4	4	
210	5			
211	6	6		
220	8	8	8	8
300,221	9			
310	10	10		
311	11		11	11
222	12	12	12	
320	13			
321	14	14		
400	16	16	16	16
410,322	17			
411,330	18	18		
331	19		19	19
420	20	20	20	
421	21			
332	22	22		
422	24	24	24	24

Facteur de structure :

$$\begin{split} S_{hkl} &= \sum_{j} f_{j} \exp[-i2\pi(x_{j}h + y_{j}k + z_{j}l)] \sum_{p} \exp[-i2\pi(x_{p}h + y_{p}k + z_{p}l)] \\ \text{Schrödinger}: & & -\frac{\hbar^{2}}{2m} \frac{\partial^{2}\varphi(x)}{\partial x^{2}} + V(x)\varphi(x) = E\varphi(x) \end{split}$$

Schrödinger:
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \varphi(x)}{\partial x^2} + V(x)\varphi(x) = E\varphi(x)$$