

Galileo's velocity addiction rule

$$u = u' + v$$

Einstein's velocity addiction rule

$$u = \frac{u' + v}{1 + \frac{u'v}{c^2}}$$

for people at stationary coordination, b happens first for people on the car, a and b happens at the same time.

$$(c\Delta t)^2 = h^2 + (v\Delta t)^2$$
$$h^2 = (c^2 - v^2)\Delta t$$
$$c^2 \Delta t'^2 = (c^2 - v^2)\Delta t$$
$$\Delta t' = \sqrt{1 - \frac{v^2}{c^2}}\Delta t$$
$$\Delta t' < \Delta t$$

$$\Delta t' = 2\frac{\Delta x'}{c}$$

$$\Delta t_1 = \frac{\Delta x + v\Delta t_1}{c} \implies \Delta t_1 = \frac{\Delta x}{c - v}$$

$$\Delta t_2 = \frac{\Delta x - v\Delta t_2}{c} \implies \Delta t_2 = \frac{\Delta x}{c + v}$$

$$\Delta t = \Delta t_1 + \Delta t_2 = \frac{2\Delta x}{c} \frac{1}{1 - \frac{v^2}{c^2}}$$

$$\Delta x' = \frac{c}{2} \Delta t'$$

$$= \frac{c}{2} \Delta t \sqrt{1 - \frac{v^2}{c^2}}$$

$$= \frac{c}{2} \frac{2\Delta x}{c} \frac{1}{1 - \frac{v^2}{c^2}} \sqrt{1 - \frac{v^2}{c^2}}$$

$$= \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \Delta x$$

$$\implies \Delta x' > \Delta x$$

0.1 The barn and ladder paracby

- (A) Back end of the ladder makes it in the door
- (B) Front end of the ladder hits the wall of the born

Farmer: (A) before (B) Son: (B) before (A)

0.2 The Lorentz Transformations

- Event: Something that take place at a specific location at precise time.
- Knowing (x, y, z, t), what is (x', y', z', t') of the same event
- Let x be the same position as x'.
 The stick's length measured in the stationary coordiate be d.

$$d = \sqrt{1 - \frac{v^2}{c^2}} \Delta x'$$
$$(x - vt) = \sqrt{1 - \frac{v^2}{c^2}} x'$$
$$x' = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} (x - vt)$$

Let x be the same position as x'.
 The stick's length measured in the stationary coordiate be d.

$$x' = d' - vt'$$

$$d' = \sqrt{1 - \frac{v^2}{c^2}}x$$

$$x' = \sqrt{1 - \frac{v^2}{c^2}}x - vt' = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}(x - vt)$$

$$vt' = (\sqrt{1 - \frac{v^2}{c^2}} - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}})x - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}vt$$

$$= \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}(\frac{v}{c^2}x - vt)$$

$$-vt$$

Let x be the same position as x'.
 The stick's length measured in the stationary coordiate be d.

$$x' = d' - vt'$$

$$d' = \sqrt{1 - \frac{v^2}{c^2}}x$$

$$x' = \sqrt{1 - \frac{v^2}{c^2}}x - vt' = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}(x - vt)$$

$$vt' = (\sqrt{1 - \frac{v^2}{c^2}} - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}})x - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}vt$$

$$= \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}(vt - \frac{v^2}{c^2}x)$$

$$t' = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}(t - \frac{v}{c^2}x)$$

0.3 HW note

$$f' = f\sqrt{rac{1-eta}{1+eta}}$$
 $v = rac{\Delta \lambda}{\lambda} c$

$$v = \frac{\Delta \lambda}{\lambda}$$