INDIAN INSTITUTE OF TECHNOLOGY

Date: 29.4.11

Time: 3 Hrs.

Full Marks 100

No. of Students 82 Sub. No. EC21006

Dept. of E & ECE Sub.: Electromagnetic Engineering

End Sem.

Instructions: 1) ATTEMPT ALL THE QUESTIONS

- 2) MAKE NECESSARY ASSUMPTIONS WITH JUSTIFICATIONS, IF NECESSARY
- 3) ATTEMPT ALL THE PARTS OF A QUESTIION AT ONE PLACE
- 4) USE SMITH CHART IF NECESSARY
- 5) ALL QUESTIONS CARRY EQUAL MARKS OF 10.
- 1. In a region where $\mu_r = \epsilon_r = 1$ and $\sigma = 0$, the retarded potentials are given by V = $(z-ct)x \ Volt$ and $A = \left(\frac{z}{c}-t\right)x \ \hat{a}_z$ Wb/m, where $c = 1/\sqrt{\mu_0 \epsilon_0}$. a) Show that $\nabla \cdot \vec{A} = -\mu \epsilon \frac{\partial V}{\partial t}$

 - b) Find \vec{B} , \vec{H} , \vec{E} and \vec{D}
- c) Show that these fields satisfy Maxwell's equations in a source-free region.
- 2. A standing wave ratio of 2.5 exists on a lossless 60Ω line, whose location is marked by a small scratch on the line. When the load is replaced by a short circuit, the successive minima are 25 cm apart and one minima is located at a point 7 cm toward the source from the scratch. Find Z_{L_r} in two ways.
 - a) Using Smith Chart
 - b) Without using Smith Chart.

3.

The transmission line shown is having characteristic resistance of 50Ω . It is terminated by a load resistance of 25 Ω . The source is a dc voltage source of value V_s with resistance of 25 Ω . The switch S_1 is closed at t = 0 and is opened again at $t = \frac{L}{4v}$, thus creating a rectangular voltage pulse in the line. v is the wave velocity through the line. Construct an appropriate lattice diagram for this case and use it to make a plot of the voltage at the load resistor as a function of time for 0 < t < 8L/v.

- 4. A certain non-magnetic material has the material constants $\epsilon'_r = 2$ and $\epsilon''/\epsilon' = 4 \times 10^{-4}$ at $\omega = 1.5$ G rad/s. Find the distance a uniform plane wave can propagate through the material for the three cases:
 - a) before it gets attenuated by 1 Np.
 - b) before the power level is reduced by 3 dB
 - c) before the phase shifts by 360°.

5. The electric field of a uniform plane wave in free space is given by

$$\tilde{E} = 100 (\hat{a}_z + j \hat{a}_x) e^{-j50} y V/m$$

Determine

- a) frequency
- b) Magnetic field phasor
- c) Time average power flow
- d) polarisation of the wave.
- 6. The region z<0 is characterised by $\epsilon'_r = \mu_r = 1$ and $\epsilon''_r = 0$. The total \tilde{E} field in this region is given as the sum of two uniform plane waves

$$\tilde{E} = 150 e^{-j10z} \hat{a}_x + (50 < 20^0) e^{j10z} \hat{a}_x V/m.$$

- a) What is the operating frequency?
- b) Specify the intrinsic impedance of the region z>0 that would provide the appropriate reflected wave?
- c) At what value of z, -10cm < z < 0, is the amplitude of total electric field intensity a maximum?
- 7. Consider a Hertzin dipole of length 1 cm carrying a phasor current of $\tilde{I}=10<30^{0}A$. If the frequency is 100 MHz, determine the electric and magnetic fields at a distance of 10 cm away from the dipole and $\theta=45^{0}$. Compute the ratio $|\tilde{E}_{\theta}|/|\tilde{E}_{r}|$ and $|\tilde{E}_{\theta}|/|\tilde{H}_{\phi}|$ at this point. Repeat for distances of 1 m and 10 m and $\theta=45^{0}$. Is the result for 10 m distance expected?
- 8. A lossless 100Ω transmission line is connected between a 50Ω source and a load of $(100 + j 70)\Omega$. Determine a length of this line such that maximum time-average power is delivered from the source to the load.
- 9. We want to determine the value of an unknown impedance Z_L attached to a length of a transmission line having a characterisation resistance of 100Ω . Removing the load yields an input impedance of $-j80\Omega$. With the unknown impedance attached, the input impedance is $(30+j40)\Omega$. Determine the unknown impedance using Smith Chart.
- 10. A rectangular coil is composed of 150 turns of a filamentary conductor. Find the mutual inductance in free space between this coil and an infinite straight filament on the z axis if the four corners of the coil are located at (1,1,0), (1,3,0) (1,3,1) and (1,1,1).

The Complete Smith Chart

Black Magic Design

