5 .

10

15

20

25

35

40

527975US01 (G419US)

TITLE OF THE INVENTION

PLASMA PROCESSING SYSTEM IN WHICH WAFER IS RETAINED BY ELECTROSTATIC CHUCK PLASMA PROCESSING METHOD AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE

Background of the Invention

1. Field of the Invention

The present invention relates to a plasma processing system, and to a plasma processing method, and to a method of manufacturing a semiconductor device using the plasma processing system and method. More particularly, the present invention relates to a method of manufacturing a semiconductor device in which a wafer is chucked and secured by utilization of an electrostatic chuck.

2. Description of the Background Art

A method of manufacturing an integrated circuit called an IC or a LSI usually employs an etching process in a process of forming a pattern. In a system to be used for the etching process, there has been employed an electrostatic chuck for securing a wafer to an electrode. The wafer is secured by means of utilizing an electrostatic force developing in the electrode. The electrostatic force is generated by means of applying a high frequency, such as microwaves, to the inside of a processing chamber where the wafer is to be processed.

Fig. 3 is a view for describing the structure of a conventional plasma processing system (wafer etching system).

In Fig. 3, reference numeral 1 designates a wafer. For instance, there is used a Si wafer 8 inches in diameter as the wafer 1. Although not shown, a film to be etched, for example, an oxide film (SiO₂) is formed on the wafer 1. Reference numeral 2 designates an insulating 30 coating placed on a power electrode 3 disposed in a processing chamber (not shown). The wafer 1 is to come into contact with the insulating coating 2. For instance, a film containing titania or alumina is used as material of the insulating coating 2. The power electrode 3 chucks and retains the wafer 1 thereon by way of the insulating coating 2. For instance, an aluminum alloy A5052 is used as material for the power electrode 3. Reference numeral 4 designates a matching circuit for matching the voltage of a high-frequency power supply 5 and the voltage applied to the power electrode 3.

The high-frequency power supply 5 produces a voltage for producing plasma to be used for effecting an etching reaction. Further,