1

3. Logica

3.1 Logica delle proposizioni

Una **proposizione** è una espressione matematica o verbale che può assumere i valori di verità vero (V) o falso (F).

Esempio: "3 è un numero primo" è una proposizione vera.

Esempio: "3-2=5" è una proposizione falsa.

Esempio: "7 è un bel numero" non è una proposizione in senso matematico, in quanto non si può stabilire se è vera o falsa.

L'**OR** inclusivo o *vel*, insimboli \vee , di due proposizioni $p \in q$ è la proposizione $p \vee q$, che risulta essere falsa quando $p \in q$ sono contemporaneamente false e vera negli altri casi.

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

L'**OR** esclusivo o *aut*, in simbolo \vee , di due proposizioni p e q è la proposizione $p \vee q$ che è vera se le due proposizioni hanno valori logici diversi, falsa se le due proposizioni hanno valori logici uguali.

p	q	p∨q
V	V	F
V	F	V
F	V	V
F	F	F

La **congiunzione logica**, o *and logico*, in simboli \wedge di due proposizioni $p \in q$ è la proposizione $p \wedge q$ che risulta essere vera se le due proposizioni sono vere, risulta falsa se almeno una delle due è falsa.

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

La **negazione logica**, o *not*, di una proposizione p è il predicato $\neg p$ (si usano anche i simboli -p oppure p o anche p) che è vera quanto p è falso, è falsa quando p è vero.

p	$\neg p$
V	F
F	V

L'**implicazione** tra due proposizioni p e q, che si indica con il simbolo $p \Rightarrow q$, è una proposizione sempre vera ad eccezione del caso in cui p è vera e q è falsa, quindi ad eccezione del caso in cui una proposizione vera ne implica una falsa.

p	q	$p \Rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

......www.matematicamente.it

2

Si dice anche che p è **condizione sufficiente** per q, cioè è sufficiente che si realizzi p affinché si realizzi anche q.

Si dice che q è **condizione necessaria** per p, cioè se q non si realizza non si realizza nemmeno p.

La **coimplicazione** o **doppia implicazione** tra due proposizioni $p \in q$, che si indica con il simbolo $p \Leftrightarrow q$ è una proposizione vera se $p \in q$ hanno valori logici uguali, falsa altrimenti. La coimplicazione è equivale a $(p \to q) \land (q \to p)$

p	q	$p \Leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Si dice che p è condizione necessaria e sufficiente per q.

3.2 Logica dei predicati

Predicati. Un predicato è una proprietà che si riferisce a una classe di individui.

La **logica dei predicati** del primo ordine è quella in cui si introducono nomi per individui e per predicati e le variabili sono solo individuali.

Il **quantificatore universale** si indica con il simbolo \forall e si legge "per ogni". La scrittua $\forall x \in A$ si legge "per ogni x appartenente all'insieme A". Se p(x) è una proposizione logica, l'enunciato $\forall x \in A$ p(x) è vero se e soltanto se p(x) assume valore vero per ogni x appartenente all'insieme A.

Il **quantificatore esistenziale** si indica con il simbolo \exists e si legge "esiste". La scrittua $\exists x \in A$ si legge "esiste x appartenente all'insieme A". Se p(x) è una proposizione logica, l'enunciato $\exists x \in A$ p(x) è vero se e soltanto se p(x) assume valore vero per qualche (almeno uno) x appartenente all'insieme A.

Scambio tra quantificatori

 $\forall x A(x) \Leftrightarrow \neg \exists x \neg A(x)$ "Per ogni x vale la proprietà A" equivale a dire "Non esiste un x per il quale non vale la proprietà A.

 $\exists x A(x) \Leftrightarrow \neg \forall x \neg A(x)$ "Esiste almeno un x che verifica la proprietà A" equivale a dire che "Non è vero che per ogni x non vale la proprietà A).

 $\exists x \neg A(x) \Leftrightarrow \neg \forall x A(x)$ "Esiste almeno un x per il quale non vale la proprietà A" equivale a dire che "Non è vero che per ogni x vale la proprietà A".

 $\neg \exists x A(x) \Leftrightarrow \forall x \neg A(x)$ "Non esiste un x che verifica la proprietà A" equivale a "Per ogni x non vale la proprietà A".

3.3 Sillogismi

Un **sillogismo** è un'inferenza costituita da due premesse e una conclusione, le due premesse devono avere una proprietà in comune e nella conclusione ci sono le altre due proprietà presenti nelle premesse.

Esempio: Mario è un Italiano. Ogni italiano è un europeo. Quindi Mario è un europeo.

3

I sillogismi sono di questi quattro tipi:

- Universale affermativa: "Tutti i P sono Q" ("Ogni P è Q")
- Universale negativa: "Tutti i P non sono Q" ("Nessun P è Q")
- Particolare affermativa: "Qualche P è Q" ("Esiste un P che è Q")
- Particolare negativa: "Qualche P non è Q" ("Esiste un P che non è Q")

Possono essere rappresentati con dei diagrammi di Eulero-Venn

Figura 1. I quattro tipi di sillogismo rappresentati con diagrammi di Eulero-Venn

Modus tollens è una proposizione composta del tipo $(p \Rightarrow q) \land \neg q \Rightarrow \neg p$, cioè se la proposizione p implica la proposizione q e se q è falsa, allora è falsa anche p.

Modus ponens è una proposizione composta del tipo $(p \Rightarrow q) \land p \Rightarrow q$, cioè se la proposizione p implica la proposizione q e se p è vera allora necessariamente anche q è vera.

Una **tautologia** è una proposizione logica che assume sempre il valore di verità, indipendentemente dall'assegnazione di verità delle variabili logiche.

Esempio: $p \lor \neg p$ è una tautologia, in quanto è vera sia se p è vera sia se p è falsa.

3.4 Algebra di Boole

L'algebra di Boole è una strutture algebrica che descrive l'essenza del calcolo proposizionale. Su un insieme B, formato da almeno due elementi, si danno le operazioni AND \wedge , OR \vee , NOT \neg e due elementi particolari 0, 1; il primo corrisponde a falsol, il secondo a vero.

Degli operatori AND e OR si hanno i corrispondenti termini negativi NAND (not and) e NOR (not or), e il termine esclusivo XOR (or esclusivo).

Regole di calcolo

$x \lor 1 = 1$	V è l'elmento assorbente di \vee
$x \wedge 1 = x$	V è l'elemento neutro di \wedge
$x \wedge 0 = 0$	F è l'elemento assorbente di \land
$x \lor 0 = x$	F è l'elemento neutro di \vee
$x \wedge (\neg x) = 0$	teorema della complementazione
$x \vee (\neg x) = 1$	teorema della complementazione
$x \lor x = x$	teorema di idempotenza
$x \wedge x = x$	teorema di idempotenza
$\neg(\neg x) = x$	teorema di involuzione
$x \lor y = y \lor x$	proprietà commutativa
$x \wedge y = y \wedge x$	proprietà commutativa
$x \lor (y \lor z) = (x \lor y) \lor z$	proprietà associativa
$x \wedge (y \wedge z) = (x \wedge y) \wedge z$	proprietà associativa
$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$	proprietà distributiva di A rispetto a V
$x \lor (y \land z) = (x \lor y) \land (x \lor z)$	proprietà distributiva di 🗸 rispetto a ∧
$x \lor (x \land y) = x$	proprietà di assorbimento
$x \wedge (x \vee y) = x$	proprietà di assorbimento
$(x \wedge y) \vee ((\neg x) \wedge z) \vee (y \wedge z) = (x \wedge y) \vee ((\neg x) \wedge z)$	proprietà del consenso
$(x \lor y) \land ((\neg x) \lor z) \land (y \lor z) = (x \lor y) \land ((\neg x) \lor z)$	proprietà del consenso

Leggi di De Morgan. Nell'algebra di Boole valgono due importati leggi, duali l'una dell'altra, il cui enunciato è il seguente:

$$\neg(x_1 \lor x_2 \lor \dots \lor x_n) = (\neg x_1) \land (\neg x_2) \land \dots \land (\neg x_n)$$

$$\neg(x_1 \land x_2 \land \dots \land x_n) = (\neg x_1) \lor (\neg x_2) \lor \dots \lor (\neg x_n)$$

Queste due leggi affermano che il complemento dell'OR (inclusivo) di n variabili logiche equivale all'AND logico dei complementi delle singole variabili e che il complemento dell'AND logico di n variabili logiche equivale all'OR (inclusivo) dei complementi delle singole variabili. Pertanto l'OR inclusivo può essere espresso facendo uso degli operatori NOT e AND logico e viceversa per l'AND logico. Quindi gli operatori AND, OR inclusivo, NOT formano un insieme ridondante.

4