HOOVEGIE INCLEDE

10

ABSTRACT

Selective MMP-13 inhibitors are isophthalic acid derivatives of the formula

$$\begin{array}{c|c}
R^3 & R^2 \\
R & R^1 \\
R & R^2 \\
R &$$

5 wherein:

 R^1 , R^2 , and R^3 independently are hydrogen, halo, hydroxy, C_1 - C_6 alkyl,

 $\label{eq:c1-C6} C_1\text{-}C_6 \text{ alkoxy, } C_2\text{-}C_6 \text{ alkenyl, } C_2\text{-}C_6 \text{ alkynyl, } NO_2, NR^4R^5, CN, \text{ or } CF_3;$ E is independently O or S;

A and B independently are OR⁴ or NR⁴R⁵;

each R^4 and R^5 independently are H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $(CH_2)_n$ aryl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ heteroaryl, or R^4 and R^5 when taken together with the nitrogen to which they are attached complete a 3- to 8-membered ring, optionally containing a heteroatom selected from O, S, or NH, and optionally substituted or unsubstituted;

n is 0 to 6;

or a pharmaceutically acceptable salt thereof. The compounds are useful for treating diseases in a mammal that are mediated by MMP enzymes.