PROTOKOLL

Name der Übenden:	1. Rafal Dabek 2. Lucas Hore 3.		
Gruppennummer:	316	Platznummer: 66	
Titel der Übung: N	afenometrie		
Ausgeführt am: 8.	11.2023	Betreuer:	

Punkte: 1. 2. 3.

1. Inhaltsverzeichnis

1.	Inhaltsverzeichnis	. :
2.	Interferometrische Längenmessung	. :
3.	Strahlgangmessung mit erwärmtem Widerstand	. :
4.	Interferometrische Wellenlängenbestimmung von der Natriumdampflampe	. :
_	Bestimmung des spektralen Abstandes benachbarter Linien	
٥.	bestimming des spektralen Abstandes behatibarter Limen	٠,
6	Restimmung der Kohärenzlänge	

2. Interferometrische Längenmessung

In diesem Versuch wurde die Länge $\Delta L=\frac{m\lambda}{2}$ bestimmt, wobei $\lambda=630nm$ die Wellenlänge des Lasers bezeichnet und m=M/n die Zahl der am Schirm auftauchenden Striche pro Skaleneinheiten ist.

Wir erhalten die nachstehende Wertetabelle:

n	M	ΔL (in nm)
7	14	633
10	22	696
8	15	593
9	16	562
10	17	538
11	16	460

Berechnung von Mittelwert und Standardabweichung ergeben $\overline{\Delta L} = 581 \pm 16 \ nm$.

3. Strahlgangmessung mit erwärmtem Widerstand

Durch Erwärmung des Widerstands ergeben sich Brechzahländerungen die sich auf unsere Abbildung am Schirm auswirken. Links wurde ein Foto mit dem Widerstand bei Raumtemperaturen gemacht, rechts nach dem Erwärmen des Widerstands mit einer Spannung von U=30V.

4. Interferometrische Wellenlängenbestimmung von der Natriumdampflampe

Mit dem Wissen aus 1. wird nun die Wellenlänge der Natriumdampflampe bestimmt.

n	M	λ (in nm)
14	29	560
12	22	633
11	23	555
13	25	604
13	26	581

Mittelwertbilden und Berechnung der Standardabweichung ergibt $\bar{\lambda}=587\pm12~nm$

5. Bestimmung des spektralen Abstandes benachbarter Linien

Wir bestimmen den spektralen Abstand benachbarter Linien. Dafür verwenden wir unsere Ergebnisse aus 4. und die Formel für den spektralen Abstand $\Delta\lambda=\frac{\lambda^2}{2\Delta L}$.

N	$\Delta\lambda$ (in nm)
28	0,61
31	0,56
33	0,52
34	0,51
24	0,72

Der Mittelwert ergibt $\Delta \lambda = 0.58nm$.

6. Bestimmung der Kohärenzlänge

Wir bestimmen die Kohärenzlänge $\,l_c=2\Delta l\,$ über N:

N	l_c (in mm)
157	3,14
203	4,06
249	4,98
220	4,4

Mittelwertbildung ergibt $l_c=4$,15mm.