# Optimization for Data Science ETH Zürich, FS 2023 261-5110-00L

Lecture 5: Coordinate Descent

#### Bernd Gärtner Niao He

https://www.ti.inf.ethz.ch/ew/courses/ODS23/index.html
March 17. 2023

#### **Motivation**

Gradient descent:

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t)$$

- computes and update d values in each iteration
- ightharpoonup For large d, this can be problematic.

Coordinate descent: select some  $i \in [d]$  and update only the i-th coordinate:

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_i \nabla_i f(\mathbf{x}_t) \mathbf{e}_i$$

- ▶ How do we choose the coordinate to update?
- ▶ Price to pay: more iterations?

## Warmup: Alternative analysis of gradient descent...

... on smooth and strongly convex functions.

Before (Theorem 3.14):  $\mathbf{x}_T$  converges to  $\mathbf{x}^{\star}$  ( $\Rightarrow f(\mathbf{x}_T)$  converges to  $f(\mathbf{x}^{\star})$ ).

$$\|\mathbf{x}_T - \mathbf{x}^{\star}\|^2 \le \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.$$

Now:  $f(\mathbf{x}_T)$  converges to  $f(\mathbf{x}^*)$ :

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \left(1 - \frac{\mu}{L}\right)^T \left(f(\mathbf{x}_0)\right) - f(\mathbf{x}^*)$$

For this, we can relax strong convexity. This allows to deal with

- several minimizers;
- even certain nonconvex functions!

# The Polyak-Łojasiewicz inequality (1963)

#### Definition 5.1

Let  $f:\mathbb{R}^d\to\mathbb{R}$  be a differentiable function with a global minimum  $\mathbf{x}^\star$ . We say that f satisfies the Polyak-Łojasiewicz inequality (PL inequality) if the following holds for some  $\mu>0$ :

$$\frac{1}{2} \|\nabla f(\mathbf{x})\|^2 \ge \mu(f(\mathbf{x}) - f(\mathbf{x}^*)), \quad \forall \ \mathbf{x} \in \mathbb{R}^d.$$

- ► Squared gradient norm at x is at least proportional to the error in objective function value at x.
- ▶ Direct consequence:  $\nabla f(\mathbf{x}) = \mathbf{0}$  (critical point)  $\Rightarrow \mathbf{x}$  is a global minimum.
- Strong convexity implies the PL inequality.

## **Strong convexity** ⇒ **PL inequality**

#### Lemma 5.2

Let  $f:\mathbb{R}^d\to\mathbb{R}$  be differentiable and strongly convex with parameter  $\mu>0$  (in particular, a global minimum  $\mathbf{x}^\star$  exists by Lemma 3.12). Then f satisfies the PL inequality for the same  $\mu$ .

Proof.

$$\begin{split} f(\mathbf{x}^{\star}) & \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{x}^{\star} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{x}^{\star} - \mathbf{x}\|^{2} \quad \text{(strong convexity)} \\ & \geq f(\mathbf{x}) + \min_{\mathbf{y}} \left( \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|^{2} \right) \\ & = f(\mathbf{x}) - \frac{1}{2\mu} \|\nabla f(\mathbf{x})\|^{2}. \end{split}$$

The PL inequality follows by simple rewriting. Last equation in the above proof:

- ightharpoonup Solve for a critical point  $\mathbf{y}^*$  of the convex minimization problem.
- $\triangleright$  By Lemma 2.22,  $\mathbf{v}^*$  is a global minimum.

# Strong convexity vs. PL inequality

The PL inequality is strictly weaker than strong convexity.

Example:  $f(x_1, x_2) = x_1^2$ 

- Not strongly convex: every point  $(0, x_2)$  is a global minimum.
- Satisfies the PL inequality in which it behaves like the strongly convex function  $x \to x^2$ , since gradient / function values do not depend on  $x_2$ .

There are even nonconvex functions satisfying the PL inequality (Exercise 35).

## Gradient descent on smooth functions with PL inequality

Theorem 5.3

Let  $f:\mathbb{R}^d\to\mathbb{R}$  be differentiable with a global minimum  $\mathbf{x}^\star$ . Suppose that f is smooth with parameter L and satisfies the PL inequality with parameter  $\mu>0$ . Choosing stepsize  $\gamma=1/L$ , gradient descent with arbitrary  $\mathbf{x}_0$  satisfies

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \left(1 - \frac{\mu}{L}\right)^T (f(\mathbf{x}_0)) - f(\mathbf{x}^*), \quad T > 0.$$

Proof.

For all t:

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2$$
 (sufficient decrease, Lemma 3.7)   
  $\leq f(\mathbf{x}_t) - \frac{\mu}{L} (f(\mathbf{x}_t) - f(\mathbf{x}^*))$  (PL inequality).

Subtract  $f(\mathbf{x}^*)$  on both sides:

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) \le \left(1 - \frac{\mu}{I}\right) (f(\mathbf{x}_t) - f(\mathbf{x}^*)).$$

#### Coordinate-wise smoothness

A refined notion of smoothness that we can apply per coordinate.

#### Definition 5.4

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be differentiable, and  $\mathcal{L} = (L_1, L_2, \dots, L_d) \in \mathbb{R}^d_+$ . Function f is called coordinate-wise smooth (with parameter  $\mathcal{L}$ ) if for every coordinate  $i = 1, 2, \dots, d$ ,

$$f(\mathbf{x} + \lambda \mathbf{e}_i) \le f(\mathbf{x}) + \lambda \nabla_i f(\mathbf{x}) + \frac{L_i}{2} \lambda^2 \quad \forall \mathbf{x} \in \mathbb{R}^d, \lambda \in \mathbb{R},.$$

If  $L_i = L$  for all i, f is said to be coordinate-wise smooth with parameter L.

- ▶ If f is smooth with parameter L, then f is coordinate-wise smooth with parameter L. Proof: Apply standard smoothness inequality with  $\mathbf{y} = \mathbf{x} + \lambda \mathbf{e}_i$ .
- $f(x_1, x_2) = x_1^2 + 10x_2^2$  is smooth with L = 20 and coordinate-wise smooth with  $\mathcal{L} = (2, 20)$ .
- ▶  $f(x) = x_1^2 + x_2^2 + Mx_1x_2$  is smooth only with  $L \ge (M+2)\sqrt{2}$  but coordinate-wise smooth with L = 2.

## Coordinate descent algorithms

In Iteration t:

choose some 
$$i \in [d]$$
  
 $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_i \nabla_i f(\mathbf{x}_t) \mathbf{e}_i.$ 

- $ightharpoonup 
  abla_i f(\mathbf{x}_t)$  is the *i*-th entry of the gradient (*i*-th partial derivate).
- $ightharpoonup e_i$  is the *i*-th unit vector, so only the *i*-th coordinate of  $\mathbf{x}_t$  is updated.
- $ightharpoonup \gamma_i$  is the stepsize for coordinate i.

#### Coordinate-wise sufficient decrease

#### Lemma5.5

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be differentiable and coordinate-wise smooth with parameter  $\mathcal{L} = (L_1, L_2, \dots, L_d)$ . With active coordinate i in iteration t and stepsize  $\gamma_i = \frac{1}{L_i}$ , coordinate descent satisfies

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L_i} |\nabla_i f(\mathbf{x}_t)|^2.$$

#### Proof.

Apply coordinate-wise smoothness with  $\lambda = -\nabla_i f(\mathbf{x}_t)/L_i$  and  $\mathbf{x}_{t+1} = \mathbf{x}_t + \lambda \mathbf{e}_i$ .

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \lambda \nabla_i f(\mathbf{x}_t) + \frac{L_i}{2} \lambda^2$$

$$= f(\mathbf{x}_t) - \frac{1}{L_i} |\nabla_i f(\mathbf{x}_t)|^2 + \frac{1}{2L_i} |\nabla_i f(\mathbf{x}_t)|^2$$

$$= f(\mathbf{x}_t) - \frac{1}{2L_i} |\nabla_i f(\mathbf{x}_t)|^2.$$

#### Randomized coordinate descent

sample 
$$i \in [d]$$
 uniformly at random  $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_i \nabla_i f(\mathbf{x}_t) \mathbf{e}_i.$ 

#### Nesterov [Nes12]:

ightharpoonup At least as fast as gradient descent on smooth functions, if it is d times cheaper to update one coordinate than the full iterate.

### Karimi et al. [KNS16]:

The same holds when we additionally assume the PL inequality.

## Randomized coordinate descent: smooth functions, PL inequality

#### Theorem 5.6

Let  $f:\mathbb{R}^d\to\mathbb{R}$  be differentiable with a global minimum  $\mathbf{x}^\star$ . Suppose that f is coordinate-wise smooth with parameter L and satisfies the PL inequality with parameter  $\mu>0$ . Choosing stepsize  $\gamma_i=1/L$  for all coordinates, randomized coordinate descent with arbitrary  $\mathbf{x}_0$  satisfies

$$\mathbb{E}[f(\mathbf{x}_T) - f(\mathbf{x}^*)] \le \left(1 - \frac{\mu}{dL}\right)^T (f(\mathbf{x}_0) - f(\mathbf{x}^*)), \quad T > 0.$$

#### Comparison with gradient descent:

- ▶ Number of iterations to reach error at most  $\varepsilon$  is by a factor of d higher.
- ▶ Follows from  $(1 \frac{\mu}{dL})$  vs.  $(1 \frac{\mu}{L})$ .
- ➤ Zero-sum game: moved a factor of *d* from per-iteration complexity to iteration count.

# **Randomized coordinate descent:** $\mathbb{E}[f(\mathbf{x}_T) - f(\mathbf{x}^*)] \le (1 - \frac{\mu}{dL})^T (f(\mathbf{x}_0) - f(\mathbf{x}^*))$

Coordinate-wise sufficient decrease:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} |\nabla_i f(\mathbf{x}_t)|^2.$$

Taking expectations with respect to the choice of the active coordinate i:

$$\begin{split} \mathbb{E}\left[f(\mathbf{x}_{t+1})|\mathbf{x}_{t}\right] & \leq f(\mathbf{x}_{t}) - \frac{1}{2L}\sum_{i=1}^{d}\frac{1}{d}|\nabla_{i}f(\mathbf{x}_{t})|^{2} \\ & = f(\mathbf{x}_{t}) - \frac{1}{2dL}\|\nabla f(\mathbf{x}_{t})\|^{2} \quad \text{(Euclidean norm is very convenient)} \\ & \leq f(\mathbf{x}_{t}) - \frac{\mu}{dL}(f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star})) \quad \text{(PL inequality)}. \end{split}$$

Subtracting  $f(\mathbf{x}^*)$  from both sides:

$$\mathbb{E}[f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*)|\mathbf{x}_t] \le \left(1 - \frac{\mu}{dI}\right)(f(\mathbf{x}_t) - f(\mathbf{x}^*)).$$

Taking expectations with respect to  $\mathbf{x}_t$ :

$$\mathbb{E}[f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*)] \le \left(1 - \frac{\mu}{dI}\right) \mathbb{E}[f(\mathbf{x}_t) - f(\mathbf{x}^*)].$$

## Importance sampling

Improves over uniform sampling when coordinate-wise smoothness parameters  $L_i$  differ.

sample 
$$i \in [d]$$
 with probability  $\dfrac{L_i}{\sum_{j=1}^d L_j}$   $\mathbf{x}_{t+1} := \mathbf{x}_t - \dfrac{1}{L_i} \nabla_i f(\mathbf{x}_t) \mathbf{e}_i.$ 

#### Theorem 5.7 (Exercise 36)

Let  $f:\mathbb{R}^d \to \mathbb{R}$  be differentiable with a global minimum  $\mathbf{x}^\star$ , coordinate-wise smooth with parameter  $\mathcal{L}=(L_1,L_2,\ldots,L_d)$ , and satisfying the PL inequality with parameter  $\mu>0$ . Let  $\bar{L}=\frac{1}{d}\sum_{i=1}^d L_i$  be the average of all coordinate-wise smoothness constants. Then coordinate descent with importance sampling and arbitrary  $\mathbf{x}_0$  satisfies

$$\mathbb{E}[f(\mathbf{x}_T) - f(\mathbf{x}^*)] \le \left(1 - \frac{\mu}{d\overline{L}}\right)^T (f(\mathbf{x}_0) - f(\mathbf{x}^*)), \quad T > 0.$$

## Steepest coordinate descent

Deterministic algorithm, also known as the Gauss-Southwell rule:

choose 
$$i = \operatorname*{argmax}_{i \in [d]} |\nabla_i f(\mathbf{x}_t)|$$
  
 $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma_i \nabla_i f(\mathbf{x}_t) \mathbf{e}_i.$ 

Corollary 5.8: Same number of iterations as randomized coordinate descent.

- Use  $\max_i |\nabla_i f(\mathbf{x})|^2 \ge \frac{1}{d} \sum_{i=1}^d |\nabla_i f(\mathbf{x})|^2$ .
- ▶ Do the analysis as for randomized coordinate descent, without expectations.

Iterations are more costly than in randomized coordinate descent, and we don't need less iterations. What's the point?

- ▶ We can still speed it up in some cases (next slide).
- ▶ Maximum absolute gradient may efficiently be maintainable throughout iterations.

# Strong convexity with respect to $\ell_1$ -norm

Trick due to Nutini et al. [NSL+15]:

▶ Measure strong convexity w.r.t.  $\ell_1$ -norm instead of  $\ell_2$ -norm:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu_1}{2} \|\mathbf{y} - \mathbf{x}\|_1^2, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.$$

- Then f is also strongly convex with  $\mu = \mu_1$  in the usual sense. Proof:  $\|\mathbf{y} - \mathbf{x}\|_1 \ge \|\mathbf{y} - \mathbf{x}\|$ .
- If f is strongly convex with  $\mu$  in the usual sense, then f is strongly convex with  $\mu_1 = \mu/d$  w.r.t.  $\ell_1$ -norm. Proof:  $\|\mathbf{y} - \mathbf{x}\| > \|\mathbf{y} - \mathbf{x}\|_1 / \sqrt{d}$ .
- ▶ If  $\mu_1 > \mu/d$ , we can speed up steepest coordinate descent.

# Strong convexity w.r.t. $\ell_1$ -norm $\Rightarrow$ PL inequality w.r.t. $\ell_{\infty}$ -norm Lemma 5.9 (Exercise 38)

Let  $f:\mathbb{R}^d\to\mathbb{R}$  be differentiable and strongly convex with parameter  $\mu_1>0$  w.r.t.  $\ell_1$ -norm. (In particular, f is  $\mu_1$ -strongly convex w.r.t. Euclidean norm, so a global minimum  $\mathbf{x}^\star$  exists by Lemma 3.12). Then f satisfies the PL inequality w.r.t.  $\ell_\infty$ -norm with the same  $\mu_1$ :

$$\frac{1}{2} \|\nabla f(\mathbf{x})\|_{\infty}^2 \ge \mu_1(f(\mathbf{x}) - f(\mathbf{x}^*)), \quad \forall \mathbf{x} \in \mathbb{R}^d.$$

Same proof strategy as for the  $\ell_2$ -norm /  $\ell_2$ -norm case:

Exercise 38: solve

$$\min_{\mathbf{y}} \left( \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu_1}{2} \|\mathbf{y} - \mathbf{x}\|_{\mathbf{1}}^{2} \right).$$

- ► This is still convex but non-differentiable, can't solve for a critical point.
- ▶ Elementary techniques apply (deeper reason why it works: convex conjugates).

# Steeper (than steepest) coordinate descent

#### Theorem 5.10

Let  $f:\mathbb{R}^d\to\mathbb{R}$  be differentiable with a global minimum  $\mathbf{x}^\star$ . Suppose that f is coordinate-wise smooth with parameter L and satisfies the PL inequality w.r.t.  $\ell_\infty$ -norm with parameter  $\mu_1>0$ . Choosing stepsize  $\gamma_i=1/L$ , steepest coordinate descent with arbitrary  $\mathbf{x}_0$  satisfies

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \left(1 - \frac{\mu_1}{L}\right)^T (f(\mathbf{x}_0) - f(\mathbf{x}^*)), \quad T > 0.$$

#### Speedup?

- ▶ Normal steepest coordinate descent:  $(1 \frac{\mu}{dL})$ .
- ▶ Worst case:  $\mu_1 = \mu/d$ , no speedup.
- ▶ Best case:  $\mu_1 = \mu$ , speedup by a factor of d.

# **Steeper coordinate descent:** $f(\mathbf{x}_T) - f(\mathbf{x}^*) \le (1 - \frac{\mu_1}{L})^T (f(\mathbf{x}_0) - f(\mathbf{x}^*))$

For all t:

Coordinate-wise sufficient decrease for  $i = \operatorname{argmax}_{i \in [d]} |\nabla_i f(\mathbf{x}_t)|$ :

$$\begin{split} f(\mathbf{x}_{t+1}) & \leq f(\mathbf{x}_t) - \frac{1}{2L} |\nabla_i f(\mathbf{x}_t)|^2 = f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|_{\infty}^2 \\ & \leq f(\mathbf{x}_t) - \frac{\mu_1}{L} (f(\mathbf{x}_t) - f(\mathbf{x}^*). \quad \text{(PL inequality w.r.t. } \ell_{\infty}\text{-norm)} \end{split}$$

Now it continues as for gradient descent (subtracting  $f(\mathbf{x}^{\star})$  from both sides):

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}^*) \le \left(1 - \frac{\mu_1}{L}\right) (f(\mathbf{x}_t) - f(\mathbf{x}^*)),$$

## **Greedy coordinate descent**

Make the step that maximizes the progress in the chosen coordinate!

$$\mathbf{choose} \; i \in [d] \\ \mathbf{x}_{t+1} := \operatornamewithlimits{argmin}_{\lambda \in \mathbb{R}} f(\mathbf{x}_t + \lambda \mathbf{e}_i)$$

This requires to perform a line search.

- ▶ This can sometimes be done analytically, or approximately by some other means.
- ▶ Differentiable case: previous convergence bounds still hold as stepwise progress can only be better.
- Nondifferentiable case: algorithm may fail to converge!

## **Greedy coordinate descent failure**

Example:  $f(\mathbf{x}) := ||\mathbf{x}||^2 + |x_1 - x_2|$ .



Figure by Alp Yurtsever & Volkan Cevher, EPFL

Global minimum is (0,0).

Greedy coordinate descent cannot escape any point  $(x, x), |x| \le 1/2$ .

## Saving greedy coordinate descent: the separable case

#### Theorem 5.11

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be of the form

$$f(\mathbf{x}) := g(\mathbf{x}) + h(\mathbf{x})$$
 with  $h(\mathbf{x}) = \sum_{i} h_i(x_i)$ ,  $\mathbf{x} \in \mathbb{R}^d$ ,

with g convex and differentiable, and the  $h_i$  convex. Let  $\mathbf{x} \in \mathbb{R}^d$  be a point such that greedy coordinate descent cannot make progress in any coordinate. Then  $\mathbf{x}$  is a global minimum of f.

A function h as in the theorem is called separable.

Popular examples: regularizers  $h(\mathbf{x}) = \|\mathbf{x}\|_1$  and  $h(\mathbf{x}) = \|\mathbf{x}\|^2$ .

Convergence of greedy coordinate descent does not automatically follow but can be proved (under mild conditions) [Tse01].

## **Example: LASSO, Lagrange dual version**

LASSO with tuning parameter R:

Lagrange dual function  $g(\lambda), \lambda \geq 0$ :

minimize 
$$f(\mathbf{w}) = \sum_{i=1}^n \|\mathbf{w}^\top \mathbf{x}_i - y_i\|^2$$
 minimize  $F_{\lambda}(\mathbf{w}) = f(\mathbf{w}) + \lambda(\|\mathbf{w}\|_1 - R)$  subject to  $\|\mathbf{w}\|_1 \leq R$ ,

If  $n \geq d$ , we can assume that f (and hence  $F_{\lambda}$ ) are strictly convex, so the LASSO solution  $\mathbf{w}^{\star}$  and the dual solutions  $\mathbf{w}(\lambda)$  are unique.

▶ LASSO is a convex program with a Slater point, so by Theorem 2.48, there is  $\lambda^* \geq 0$  such that—using complementary slackness in the first equation:

$$F_{\lambda^{\star}}(\mathbf{w}^{\star}) = f(\mathbf{w}^{\star}) = g(\lambda^{\star}) = \min_{\mathbf{w}} F_{\lambda^{\star}}(\mathbf{w}) = F_{\lambda^{\star}}(\mathbf{w}(\lambda^{\star})) \quad \Rightarrow \mathbf{w}^{\star} = \mathbf{w}(\lambda^{\star}).$$

- ▶ Hence,  $\mathbf{w}^*$  is also a minimizer of  $f(\mathbf{w}) + \lambda^* ||\mathbf{w}||_1$ , but  $\lambda^*$  is unknown.
- ▶ LASSO, dual version: minimize  $f(\mathbf{w}) + \lambda \|\mathbf{w}\|_1$  with tuning parameter  $\lambda$ .
- ▶  $f(\mathbf{w})$  is convex and differentiable,  $\lambda \|\mathbf{w}\|_1$  nondifferentiable but separable.

## **Summary**

Coordinate descent methods are used widely in machine learning.

State of the art for generalized linear models, including linear classifiers and regression models, with separable convex regularizers (e.g.  $\ell_1$ -norm or squared  $\ell_2$ -norm).

Results on coordinate-wise smooth and strongly convex functions (we only need the PL inequality, a consequence of strong convexity):

| Algorithm               | PL norm  | Smoothness             | Bound                             | Result        |
|-------------------------|----------|------------------------|-----------------------------------|---------------|
| Randomized              | $\ell_2$ | L                      | $1-\frac{\mu}{dL}$                | Theorem 5.6   |
| Importance sampling     | $\ell_2$ | $(L_1,L_2,\ldots,L_d)$ | $1 - \frac{\widetilde{\mu}}{dL}$  | Theorem 5.7   |
| Steepest                | $\ell_2$ | L                      | $1 - \frac{\alpha \mu}{dL}$       | Corollary 5.8 |
| Steeper (than Steepest) | $\ell_1$ | L                      | $1 - \frac{\widetilde{\mu}_1}{L}$ | Theorem 5.10  |

In the worst case, nothing is gained over gradient descent, and Steepest may even lose.

In the best case, Importance sampling and Steeper (than Steepest) may be up to  $\boldsymbol{d}$  times faster than gradient descent.

# **Bibliography**



Hamed Karimi, Julie Nutini, and Mark Schmidt.

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition.

In ECML PKDD 2016: Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.



Yurii Nesterov.

Efficiency of coordinate descent methods on huge-scale optimization problems.

SIAM Journal on Optimization, 22(2):341-362, 2012.



Julie Nutini, Mark W Schmidt, Issam H Laradji, Michael P Friedlander, and Hoyt A Koepke. Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection. In *ICML - Proceedings of the 32nd International Conference on Machine Learning*, pages 1632–1641, 2015.



P. Tseng.

Convergence of a block coordinate descent method for nondifferentiable minimization.

Journal of Optimization Theory and Applications, 109(3):475-494, 2001.