Chiffrement symétrique

Christophe Viroulaud

Terminale NSI

Chiffrement symétrique

1 Toblematiqu

iffrement

Principe : le code de César

polyalphabétique Principe

Ch:((------

Protocole TCP/IP

La communication sur internet est organisée en couches.

Couche application (Navigateur)
Couche TCP (Transport)
Couche IP (Internet)
Couche réseau (Matérielle)

Chiffrement symétrique

Problématique

Chiffrement

Principe : le code de César

polyalphabétique Principe

Chiffrement par ou

Chiffrement symétrique

Problématique

niffrement

Principe : le code de César

olyalphabétique Principe

Ch:((-----

chiffrement

En théorie, rien n'interdit à un routeur d'inspecter un paquet et donc d'en connaître son contenu.

Comment chiffrer le contenu des communications?

Chiffrement symétrique

Principe : le code de César

La source utilise une fonction de chiffrement pour coder un message m avec une clé de chiffrement k. La fonction produit en sortie un message chiffré s.

chiffrement(m, k) \rightarrow s

Problématique

Chillrement

Principe : le code de César

Principe

Chiffrement par ou exclus

chiffrement symétrique

► La source utilise une fonction de chiffrement pour coder un message m avec une clé de chiffrement k. La fonction produit en sortie un message chiffré s.

 $chiffrement(m, k) \rightarrow s$

► Le destinataire utilise une fonction de déchiffrement pour décoder le message s avec la clé de chiffrement k. La fonction produit en sortie le message clair m.

 ${\tt d\'echiffrement(s, k)} \, \to \, {\tt m}$

À retenir

Dans un chiffrement symétrique on utilise la même clé pour chiffrer et déchiffrer le message.

Chiffrement symétrique

Problématique

on the state of th

Principe : le code de César

Principe

Chiffrement na

- Écrire la fonction chiffrement (message: str, cle: int) → str qui code le message. On n'utilisera que des caractères majuscules ASCII dans le message et on supprimera les espaces.
- Écrire la fonction dechiffrement (message: str, cle: int) → str qui déchiffre le message.
- 3. Tester la méthode avec une clé k=+3 sur le message : LANSIESTFANTASTIQUE
- 4. Quelles sont les faiblesses de cette méthode?

Chiffrement

Principe : le code de César

olyalphabétique

Principe

Chiffrement par ou exclusion

chiffrement

```
def chiffrement (message: str, cle: int) -> str:
sortie = ""
for lettre in message:
sortie += chr(ord(lettre)+cle)
return sortie
```

Chiffrement symétrique

Problématique

Chiffrement

Principe : le code de César

Chiffrement polyalphabétique

Chiffrement par ou exclusi

wantages du hiffrement

Principe : le code de César

polyalphabétique Principe

Princip

Chiffrement par ou exclus

hiffrement

```
Chiffrement
symétrique
```

Principe : le code de César

Chiffrement polyalphabétique

Principe

Chiffrement par ou exclus

chiffrement symétrique

```
1  k = 3
2  entree = "LANSIESTFANTASTIQUE"
3  m_chiffre = chiffrement(entree, k)
4  print(m_chiffre)
```

ODQVLHVWIDQWDVWLTXH

Chiffrement symétrique

Problèmatique

Chiffrement

Principe : le code de César

polyalphabétique Principe

Chiffrement par ou exclu

Avantages du chiffrement

Quelle particularité si la clé est 13?

Chiffrement symétrique

'roblematique

Chiffrement

Principe : le code de César

polyalphabétique Principe

Chiffrement par ou exc

chiffrement

Quelle particularité si la clé est 13? Les fonctions de chiffrement et déchiffrement sont identiques.

► Il n'y a que 25 clés possibles.

Chiffrement symétrique

Problématiqu

Chiffrement

Principe : le code de César

polyalphabétique

Chiffrement par ou exclusif

vantages du iiffrement

- ► Il n'y a que 25 clés possibles.
- ► La fréquence d'apparition des lettres est une méthode simple à mettre en place pour décrypter un message.

FIGURE – Fréquences d'apparition des lettres ¹

Chiffrement symétrique

Problématiqu

/. ·

Principe : le code de César

polyalphabétique Principe

Chiffrement par ou exc

^{1.} source : apprendre-en-ligne

Problématique

Chiffrement

Principe : le code de César

Chiffrement polyalphabétique Principe

Chiffrement par ou evolu

chiffrement symétrique

Plutôt que d'opérer un simple décalage, on recopie la clé de chiffrement de façon à obtenir une chaîne de la longueur du message.

B R A V O N S I N S

Une même lettre ne sera plus forcément codée par le même symbole.

Activité 2 :

- 1. Remplacer chaque lettre en son équivalent ASCII.
- 2. Écrire la fonction $int_en_bin(nb: int) \rightarrow str$ qui renvoie la représentation binaire de l'entier nb.
- 3. Convertir chaque entier en binaire.

Chiffrement symétrique

Problématique

Initirement

Principe : le code de César

uffrement Iyalphabétique

Principe

Chiffrement par ou exclusi-

chiffrement symétrique

```
Chiffrement symétrique
```

Problématique

hiffrement

Principe : le code de César

Chiffrement Jolyalphabétiqu

Principe

	В	R	Α	V	0
6	66	82	65	86	79
	N	S	I	Ν	S
7	78	83	73	78	83

Principe : le code de Césal Chiffrement

Principe

Chiffrement par ou exclusi-

chiffrement symétrique

```
def int_en_bin(nb: int) -> str:
1
        11 11 11
       Convertit un entier en sa repré
           sentation binaire
        11 11 11
4
       q = nb
6
       while q > 0:
7
           r = str(q \% 2) + r
           q = q//2
       return r
10
```

Principe : le code de César

polyalphabét Principe

Chiffrement par ou evolus

66	82	65	86	79
1000010	1010010	1000001	1010110	1001111
78	83	73	78	83
1001110	1010011	1001001	1001110	1010011

On applique la porte logique *xor* entre chaque bit du message et de la clé. Une propriété intéressante de cette porte est qu'elle est réversible :

Si
$$A \oplus B = C$$
 alors $A \oplus C = B$ et $B \oplus C = A$

Chiffrement symétrique

Problématique

hiffrement

Principe : le code de César

iffrement lyalphabétique

Chiffrement par ou exclusif

1. Appliquer le ou exclusif pour chaque bit du message.

- Écrire la fonction bin_en_int(paquet: str) →
 int qui renvoie l'entier correspondant au paquet
 de bits.
- 3. Utiliser la fonction pour trouver l'entier correspondant à chaque paquet de sept bits.
- 4. Donner alors le message chiffré.

Problématique

hittrement

Principe : le code de César

polyalphabétique Principe

Chiffrement par ou exclusif

Chiffrement symétrique

Problématique

hittrement

Principe : le code de César

polyalphal

Chiffrement par ou exclusif

	1000010	1010010	1000001	1010110	1001111
\oplus	1001110	1010011	1001001	1001110	1010011
	0001100	0000001	0001000	0011000	0011100

Chiffrement symétrique

Problématique

hiffrement

Principe : le code de César

lyalphabétique Principe

Chiffrement par ou exclusif

0001100	0000001	0001000	0011000	0011100
12	1	8	24	28

Une clé trop courte ne garantit pas une bonne sécurité

▶ algorithme DES (*Data Encryption Standard*) obsolète à cause d'une clé maximale de 56 bits.

Problematique

Chiffrement

Symetrique

polyalphabétique

Chiffrement par ou exclus

Principe : le code de César

polyalphabétique Principe

Chiffrement par ou exclus

Avantages du chiffrement symétrique

Une clé trop courte ne garantit pas une bonne sécurité

- ▶ algorithme DES (Data Encryption Standard) obsolète à cause d'une clé maximale de 56 bits.
- ▶ algorithme AES : clé 128 bits

Chiffrement par ou exclus

- Une clé trop courte ne garantit pas une bonne sécurité
 - ▶ algorithme DES (Data Encryption Standard) obsolète à cause d'une clé maximale de 56 bits.
 - ▶ algorithme AES : clé 128 bits
 - Une clé de la taille du message garantit une protection sûre (téléphone rouge).

Avantages : rapidité

Chiffrement symétrique

Problématique

hiffrement

symétrique

Chiffrement polyalphabétique

Principe

Chiffrement par ou exclusif

Avantages du chiffrement symétrique

Fonctionnement similaire à la méthode du ou exclusif.

Avantages : rapidité

Chiffrement symétrique

Problématique

hiffrement

Principe : le code de César

polyalphabétique Principe

Chiffrement par ou exclusi

- ► Fonctionnement similaire à la méthode du *ou exclusif*.
- xor est une fonction implémentée dans les processeurs

Avantages : rapidité

- Chiffrement symétrique
- Problématique
- hiffrement
- Principe : le code de César
- Principe
- Chiffrement par ou exclusi

- Fonctionnement similaire à la méthode du *ou exclusif*.
- xor est une fonction implémentée dans les processeurs
- Possibilité de chiffrer en temps réel (données du disque dur par exemple)

Chiffrement par ou exclus

- AES pour Advanced Encryption Standard: choisi par l'institut de standardisation américain NIST (National Institute of Standards and Technology) en décembre 2001.
- Chacha20 : date de 2008 et améliore les performances d'un autre algorithme (Salsa20)