Topics of Complex Social Networks: Domination, Influence and Assortativity

Moses A. Boudourides¹ & Sergios T. Lenis²

Department of Mathematics University of Patras, Greece

1Moses.Boudourides@gmail.com
2sergioslenis@gmail.com

5th Ph.D. School–Conference on "Mathematical Modeling of Complex Systems" Patras, Greece, July 20-30, 2015

July 25, 2015

Python Code at github:

 $\verb|https://github.com/mboudour/GraphMultilayerity/tree/master/vartopics|$

Slides at slideshare:

http://www.slideshare.net/MosesBoudourides/topics-of-complex-socialnetworks-domination-influence-and-assortativity

Table of Contents

- A. Dominating Sets
- ♣ B. Network Influence and Scalar Attribute Assortativity
- C. Multilayer Networks and Enumerative Attribute Assortativity

A. Dominating Sets

Dominating Sets in a Graph

Definition

Let G = (V, E) be a (simple undirected) graph. A set $S \subseteq V$ of vertices is called a **dominating set** (or **externally stable**) if every vertex $v \in V$ is either an element of S or is adjacent to an element of S.

Remark

A set $S \subseteq V$ is a dominating set if and only if:

- for every $v \in V \setminus S$, $|N(v) \cap S| \ge 1$, i.e., $V \setminus S$ is enclaveless;
- $\bullet \ \mathsf{N}[S] = V;$
- for every $v \in V \setminus S$, $d(v, S) \leq 1$.

Above N(v) is the open neighborhood of vertex v, i.e., $N(v) = \{w \in V : (u, w) \in E\}$, N[v] is the closed neighborhood of vertex v, i.e., $N[v] = N(v) \cup \{v\}$, d(v, x) is the geodesic distance between vertices v and x and $d(v, S) = \min\{d(v, s) : s \in S\}$ is the distance between vertex v and the set of vertices S.

Standard Reference

Haynes, Teresa W., Hedetniemi, Stephen T., & Slater, Peter J. (1998). *Fundamentals of Domination in Graphs*. New York: Marcel Dekker.

Definition

Let S be a set of vertices in graph G.

- *S* is called **independent** (or **internally stable**) if no two vertices in *S* are adjacent.
- If S is a dominating set, then
 - S is called **minimal dominating set** if no proper subset $S' \subset S$ is a dominating set;
 - S is called a minimum dominating set if the cardinality of S is minimum among the cardinalities of any other dominating set;
 - The cardinality of a minimum dominating set is called the domination number of graph G and is denoted by $\gamma(G)$;
 - *S* is called **independent dominating set** if *S* is both an independent and a dominating set.

Example

The sets $\{1,3,5\}$, $\{3,6,7,8\}$ and $\{2,4,6,7,8\}$ (red circles) are all minimal dominating sets. However, only the first is a minimum dominating set. Apparently $\gamma=3$ for this graph.

Theorem (Ore, 1962)

A dominating set S is a minimal dominating set if and only if, for each vertex $u \in S$, one of the following two conditions holds:

- ① u is such that $N(u) \subseteq V \setminus S$, i.e., u is an isolate of S,
- ② there exists a vertex $v \in V \setminus S$ such that $N(v) \cap S = \{u\}$, i.e., v is a *private neighbor* of u.

Theorem (Ore, 1962)

Every connected graph G of order $n \ge 2$ has a dominating set S.

Complexity of the Dominating Set Problem

Theorem (Johnson, 1974)

The dominating set problem is \mathcal{NP} -complete.

Algorithmic Computation of Dominating Sets

- As the dominating set problem is NP-complete, there are certain efficient algorithms (typically based on linear and integer programming) for its approximate solution.
- Here, we are algorithms that have been already implemented in Python's Sage. However, these implementations return only one of the minimum or independing (minimum) dominating sets.

An Algebraic Computation of All Minimal Dominating Sets

A Brute Force Heuristics (Berge)

- Given two elements x and y of a set, let
 - "x + y" denote *logical summation* of x and y (i.e., "x or y")
 - and " $x \cdot y$ " denote their logical multiplication (i.e., "x and y").
- Thus, for each vertex v, $N[v] = v + u_1 + ... + u_k$, where $u_1, ..., u_k$ are all vertices adjacent to v.
- In this way, $Poly(G) = \prod_{v \in V} N[v]$ becomes a polynomial in graph vertices.
- Notice that each monomial of Poly(G) can be simplified by removing numerical coefficients and repeated (more than once) vertices in it.
- Therefore, each simplified monomial of Poly(G) including r vertices is a minimal dominating set of cardinality r and a minimum dominating set corresponds to the minimal r.

Example

As N[a] = a + b + c + d, N[b] = a + b + c + e, N[c] = a + b + c, N[d] = a + d, N[e] = b + e, we find:

Poly(G) =
$$N[a] N[b] N[c] N[d] N[e] =$$

= $(a+b+c+d)(a+b+c+e)(a+b+c)(a+d)(b+e) =$
= $(a+b+c)^3(a+d)(b+e) +$
 $+(a+b+c)^2(d+e)(a+d)(b+e) =$
= $ab+ae+bd+$
 $+abc+abd+abe+ace+ade+bcd+bde+cde+$
 $+abcd+abde+abce+acde+bcde+$

Therefore,

- $\{\{a,b\},\{a,e\},\{b,d\}\}$ is the collection of minimum dominating sets (each one of cardinality 2 equal to the domination number of this graph),
- $\{\{a,b,c\},\{a,b,d\},\{a,b,e\},\{a,c,e\},\{a,d,e\},\{b,c,d\},$ $\{b,d,e\},\{c,d,e\}\}$ is the collection of minimal dominating sets of cardinality 3,
- $\{\{a,b,c,d\},\{a,b,d,e\},\{a,b,c,e\},\{a,c,d,e\},\{a,d,e\},$ $\{b,c,d,e\}\}$ is the collection of minimal dominating sets of cardinality 4 and
- $\{a, b, c, d, e\}$ is the minimal dominating set of cardinality 5.

Egocentric Subgraphs Induced by a Dominating Set in a Graph

Definition

Let G = (V, E) be a (simple undirected) graph.

- Let $U \subset V$ be a set of vertices in a graph G and let $u \in U$.
 - The subgraph induced by U (in G) is called an egocentric (sub)graph (in G) if

$$U = N[u],$$

i.e., if all vertices of U are dominated by u;

- vertex u is the **ego** of the egocentric (sub)graph N[u];
- vertices $w \in N(u)$ are called **alters** of ego u.
- Let $S \subset V$ be a dominating set in G and let $v \in S$.
 - The subgraph induced by N[v] (in G) is called a **dominating** egocentric (sub)graph;
 - vertex v is the dominating ego;
 - vertices $w \in N(v)$ are the **dominated alters** by v.
 - Graph G is called multiple egocentric or |S|-egocentric graph corresponding to the dominating set S.

Remark

- Given a (simple undirected) graph, typically, there is a multiplicity of dominating sets for that graph.
- Therefore, any egocentric decomposition of a graph depends on the dominating set that was considered in the generation of the constituent egocentric subgraphs.

Private and Public Alters

Definition

Let S be a dominating set in graph G = (V, E) ($|S| \ge 2$) and let $v \in S$ an ego.

- An alter $w \in N(v)$ ($w \notin S$) is called **private alter** if $N(w) \subset N[v]$.
- An alter $w \in N(v)$ ($w \notin S$) is called **public alter** if $N(w) \setminus N[v] \neq \emptyset$.

Remark

- Two adjacent egos u, v are not considered alters to each other! Nevertheless, they define an ego—to—ego edge (bridge).
- A private alter is always adjacent to a single ego.
- A public alter is adjacent either to at least two egos or to a single ego and to another alter which is adjacent to a different ego.

Figure : Five private alters (blue circles) adjacent to an ego (red square).

Figure : *Left*: one public alter (green circle) shared by two egos (red squares). *Right*: two public alters (green circles), each one adjacent to a different ego (red square).

Dominating and Dominated Bridges

Definition

Let S be a dominating set in a graph G = (V, E) $(|S| \ge 2)$.

- If two egos $v_1, v_2 \in S$ are adjacent, then edge $(v_1, v_2) \in E$ is called **dominating edge** or **bridge of egos**.
- If two private alters $w_1 \in N(v_1)$, $w_2 \in N(v_2)$ are adjacent (possibly $v_1 = v_2$), then edge $(w_1, w_2) \in E$ is called **dominated edge among private alters** or **bridge of private alters**.
- If two public alters $w_1 \in N(v_1), w_2 \in N(v_2)$ are adjacent (possibly $v_1 = v_2$), then edge $(w_1, w_2) \in E$ is called **dominated edge among public alters** or **bridge of public alters**.
- If a private alter $w_1 \in N(v_1)$ and a public alter $w_2 \in N(v_2)$ are adjacent (possibly $v_1 = v_2$), then edge (w_1, w_2) is called dominated edge among private—public alters or bridge of private—to—public alters.

Figure: One edge (bridge) among private alters (yellow line), two edges (bridges) among public alters (magenta lines) and one edge (bridge) among private—to—public alters (brown lines).

Notation

• The set of all private alters in G is denoted as:

$$\textcolor{red}{V_{\mathsf{private}}} = \{ w \in V \smallsetminus S \colon \exists v \in S \text{ s.t. } w \in N(v) \smallsetminus S \text{ and } N(w) \subset N[v] \}.$$

The set of all public alters in G is denoted as:

$$V_{\text{public}} = \{ w \in V \setminus S \colon N(w) \setminus N[v] \neq \emptyset, \forall v \in S \}.$$

The set of all dominating bridges (among egos) in G is denoted as:

$$E_{\text{ego}} = \{(v_1, v_2) \in E: v_1, v_2 \in S\}.$$

• The set of all dominated bridges among private alters in G is denoted as:

$$E_{private} = \{(v_1, v_2) \in E: v_1, v_2 \in V_{private}\}.$$

• The set of all dominated bridges among public alters in G is denoted as:

$$E_{\text{public}} = \{(v_1, v_2) \in E: v_1, v_2 \in V_{\text{public}}\}.$$

• The set of all dominated bridges among private—public alters in G is denoted as:

$$E_{\text{private}} = \text{public} = \{(v_1, v_2) \in E: v_1 \in V_{\text{private}}, v_2 \in V_{\text{public}}\}.$$

Definition

Let $G \setminus S$ be the graph remaining from G = (V, E) after removing a dominating set S (together with all edges which are incident to egos in S). Sometimes, $G \setminus S$ is called **alter (sub)graph** (or **alter-to-alter (sub)graph**) (of G). In other words, $G \setminus S$ is the subgraph induced by $V \setminus S$ and the set of edges of $G \setminus S$ is the set

$$E_{\mathsf{private}} \cup E_{\mathsf{public}} \cup E_{\mathsf{private} - \mathsf{public}}.$$

Proposition

If S is a dominating set of a graph G = (V, E), then

$$|S| + |V_{private}| + |V_{public}| = |V|,$$

$$\sum_{v \in \mathcal{E}} \mathsf{degree}(v) + |E_{\mathsf{private}}| + |E_{\mathsf{public}}| + |E_{\mathsf{private}}| + |E_{\mathsf{private}}| = |E|.$$

The Network of the 15 Florentine Families: All Dominating Egocentric

Subgraphs

Minimum Dominating Set (S)	IDS ¹	$ V_{private} $	$ V_{public} $	$\sum_{v \in S} degree(v)$	$ E_{private} $	$ E_{\text{public}} $	$ E_{private-public} $	$ E_{\rm ego} $
$\{A,C,K,J,M\}$		3	7	14	0	5	2	1
$\{C, E, F, I, J\}$	~	2	8	15	0	5	0	0
$\{C, F, I, J, M\}$	~	1	9	12	0	8	0	0
$\{C,I,K,J,M\}$		2	8	13	0	8	0	1
$\{C, D, F, I, M\}$		2	8	14	0	7	0	1
$\{C, E, D, F, L\}$		3	7	17	0	5	0	2
$\{A,C,E,K,J\}$		4	6	17	0	2	2	1
${A, C, F, J, M}$	_	2	8	13	0	5	2	0
$\{C, E, I, K, J\}$		3	7	16	0	5	0	1
$\{A,C,D,F,M\}$		3	7	15	0	4	2	1
$\{A,C,E,D,K\}$		5	5	19	0	2	2	3
$\{A, C, D, K, M\}$		4	6	16	0	4	2	2
$\{C, E, K, J, L\}$		3	7	16	0	5	0	1
$\{C, E, F, J, L\}$	~	2	8	15	0	5	0	0
$\{C, E, D, F, I\}$		3	7	17	0	5	0	2
$\{A,C,E,D,F\}$		4	6	18	0	2	2	2
$\{C, D, I, K, M\}$		3	7	15	0	7	0	2
$\{C, E, D, I, K\}$		4	6	18	0	5	0	3
$\{A,C,E,F,J\}$	~	3	7	16	0	2	2	0
$\{C, E, D, K, L\}$		4	6	18	0	5	0	3

The 15 Florentine Families: A = Strozzi, B = Tornabuoni, C = Medici, D = Albizzi, E = Guadagni, F = Pazzi, G = Acciaiuoli, H = Bischeri, I = Peruzzi, J = Ginori, K = Salviati, L = Castellani, M = Lamberteschi, N = Ridolfi, O = Barbadori.

¹Independent Dominating Set (IDS).

Example (Florentine Families Network)


```
\begin{split} |S| &= 5 \text{ (5 egos, red big circles);} \\ |V_{\text{private}}| &= 5 \text{ (5 private alters, blue circles);} \\ |V_{\text{public}}| &= 5 \text{ (5 public alters, green circles);} \\ |E_{\text{private}}| &= 0 \text{ (no edges among private alters);} \\ |E_{\text{public}}| &= 2 \text{ (2 edges among public alters, magenta lines);} \\ |E_{\text{private}}| &= p_{\text{ublic}}| &= 2 \text{ (2 edges among private-to-public alters, brown lines).} \\ |E_{\text{ego}}| &= 3 \text{ (3 among egos, red lines).} \end{split}
```

Example (The Voyaging Network among 14 Western Carolines Islands, Hage & Harary, 1991)

|S| = 3 (3 egos, red big circles);

 $|V_{\text{private}}| = 5$ (5 private alters, blue circles);

 $|V_{\text{public}}| = 6$ (6 public alters, green circles);

 $E_{private} = 3$ (3 edges among private alters, blue lines);

 $E_{\text{public}} = 6$ (6 edges among public alters, magenta lines);

 $E_{private - public} = 4$ (4 edges among private-to-public alters, brown lines).

(Three communities enclosed in dotted rectangles.)

Minimum Dominating Set (S)	IDS	$ V_{private} $	$ V_{\text{public}} $	$\sum_{v \in S} degree(v)$	$ E_{private} $	$ E_{\text{public}} $	$ E_{private-public} $	$ E_{\rm ego} $
$\{G,I,M\}$	~	5	6	11	3	6	4	0
$\{C,I,M\}$	~	5	6	11	3	6	4	0

The Dominant Western Carolines Islands: C = Puluwat, G = Pulap, I = Fais, M = Elato.

Community Partitions in a Graph

Definition (Newman & Girvan, 2004)

Let G = (V, E) be a graph.

- A **clustering** of vertices of G is a partition of the set of vertices V into a (finite) family $C \subset 2^V$ of subsets of vertices, often called **modules**, such that $\bigcup_{C \in C} C = V$ and $C \cap C' = \emptyset$, for each $C, C' \in C, C \neq C'$.
- A clustering C may be assessed by a quality function Q = Q(C), called **modularity**, which is defined as:

$$Q = \sum_{C \in \mathcal{C}} \left[\frac{|E(C)|}{|E|} - \left(\frac{2|E(C)| + \sum_{C' \in \mathcal{C}, C \neq C'} |E(C, C')|}{2|E|} \right)^2 \right]$$
$$= \sum_{C \in \mathcal{C}} \left[\frac{|E(C)|}{|E|} - \left(\frac{\sum_{v \in C} degree(v)}{2|E|} \right)^2 \right],$$

where E(C) is the number of edges inside module C and E(C,C') is the number of edges among modules C and C'. Essentially, modularity compares the number of edges inside a given module with the expected value for a randomized graph of the same size and same degree sequence.

 A clustering that maximizes modularity is usually called community partition and the corresponding modules are called communities. Theorem (Brandes, Delling, Gaertler, Görke, Hoefer, Nikoloski & Wagner, 2008)

Modularity is strongly \mathcal{NP} -complete.

Algorithmic Computation of Dominating Sets

Here, we are using the community detection algorithm (through modularity maximization) of the **Louvain method** (Blondel, Guillaume, Lambiotte & Lefebvre, 2008) as implemented in Python by **Thomas Aynaud**.

Communities in the Network of Florentine Families

The Florentine Families Network: All Dominating Egocentric Subgraphs and their Community Partitions

Minimum Dominating Set (S)	γ	C	Community Partition (C)
${A, C, K, J, M}$	5	4	${A(-), C(-), J + M, K(-)}$
$\{C, E, F, I, J\}$	5	4	$\{I, C(-), E(-) + J, F\}$
$\{C, F, I, J, M\}$	5	4	$\{I,C(-),J+M,F\}$
$\{C,I,K,J,M\}$	5	4	$\{I, C(-), J + M, K(-)\}$
$\{C,D,F,I,M\}$	5	4	$\{I, C(-), D(-) + M, F\}$
$\{C, E, D, F, L\}$	5	4	$\{L(-), C(-), E(-) + D(-), F\}$
$\{A,C,E,K,J\}$	5	4	$\{A(-), C(-), E(-) + J, K(-)\}$
$\{A,C,F,J,M\}$	5	4	$\{A(-), C(-), J+M, F\}$
$\{C, E, I, K, J\}$	5	4	$\{I, C(-), E(-) + J, K(-)\}$
$\{A,C,D,F,M\}$	5	4	$\{A(-), C(-), D(-) + M, F\}$
$\{A,C,E,D,K\}$	5	4	$\{A(-), C(-), E(-) + D(-), K(-)\}$
$\{A,C,D,K,M\}$	5	4	$\{A(-), C(-), D(-) + M, K(-)\}$
$\{C, E, K, J, L\}$	5	4	$\{L(-), C(-), E(-) + J, K(-)\}$
$\{C, E, F, J, L\}$	5	4	$\{L(-), C(-), E(-) + J, F\}$
$\{C, E, D, F, I\}$	5	4	$\{I, C(-), E(-) + D(-), F\}$
$\{A,C,E,D,F\}$	5	4	$\{A(-), C(-), E(-) + D(-), F\}$
$\{C, D, I, K, M\}$	5	4	$\{I, C(-), D(-) + M, K(-)\}$
$\{C, E, D, I, K\}$	5	4	$\{I, C(-), E(-) + D(-), K(-)\}$
$\{A,C,E,F,J\}$	5	4	$\{A(-), C(-), E(-) + J, F\}$
$\{C, E, D, K, L\}$	5	4	$\{L(-), C(-), E(-) + D(-), K(-)\}$

The 15 Florentine Families: A = Strozzi, B = Tornabuoni, C = Medici, D = Albizzi, E = Guadagni, F = Pazzi, G = Acciaiuoli, H = Bischeri, I = Peruzzi, J = Ginori, K = Salviati, L = Castellani, M = Lamberteschi, N = Ridolfi, O = Barbadori.

The Network of Florentine Families: Egos in Communities

Five egos distributed inside four communities.

Egos are colored red, private alters blue and public alters green.

Dotted rectangles embrace vertices lying inside the same communities.

B. Network Influence and Scalar Attribute Assortativity

The Friedkin-Johnsen Model of Social Influence

- Let G = (V, E) be a (simple undirected) graph.
- Vertices represent persons.
- For $i \in V$ and at each time t, person i holds an opinion (or attitude) x_i^t , where x_i^t is a considered to be a **scalar attribute** of graph vertices that takes values in the interval [0,1].
- ullet Each person interacts with all her graph neighbors and updates her opinion at the subsequent time t+1 as follows:

$$x_i^{t+1} = \sigma_i \sum_{j \in N(i) \neq \varnothing} \frac{1}{k_i} A_{ij} x_i^t + (1 - \sigma_i) x_i^t,$$

where $\mathbf{A}=A_{ij}$ is the adjacency matrix of the graph, k_i is the degree of i, N(i) is the set of neighbors of i and $\sigma_i \in [0,1]$ is the **susceptilibity** of i to the influence of her neighbors. Let \mathbf{S} be the diagonal matrix such that $S_{ii}=\frac{\sigma_i}{k_i}$, for all $i\in V$. Note that when $k_i=0$, then $A_{ij}=0$, for all $j\in V$ and, thus, \mathbf{S} is well defined, if G is assumed to be free of isolated vertices.

Proposition

If G is a connected graph, then, for any person $i \in V$ and any initial opinion $x_i^0 \in [0,1]$, there exists a **consensus** opinion $x^\infty \in [0,1]$ such that

$$\lim_{t\to\infty} x_i^t = x^{\infty}.$$

In fact, x^{∞} is given by

$$\mathbf{x}^{\infty} = (\mathbf{I} - \mathbf{S}\mathbf{A})^{-1}(\mathbf{I} - \mathbf{S})\mathbf{x}^{0},$$

where I is the unit matrix (1's on the diagonal and 0's elsewhere).

Contrary Influence

- The previous mechanism of social influence converges to a consesus, because at each time step each person's opinion is compromized with the opinions of her neighbors.
- However, one can also think of a mechanism of negative influence, when at each time step each person's opinion tends to diverge from the opinions of her neighbors in the following way:

$$\begin{aligned} x_i^{t+1} &= \sigma_i D(x_i^t) + (1-\sigma_i) x_i^t, \\ \text{where, denoting } y_i^t &= \sum_{j \in N(i) \neq \varnothing} \frac{1}{k_i} A_{ij} x_i^t, \\ D(x_i^t) &= \left\{ \begin{array}{ll} \max\{2x_i^t - y_i^t, 0\}, & \text{when } x_i^t \leq y_i^t \\ \min\{2x_i^t - y_i^t, 1\}, & \text{when } x_i^t > y_i^t. \end{array} \right. \end{aligned}$$

Proposition

For the model of negative influence, if G is a connected graph, then, for any person $i \in V$ and any initial opinion $x_i^0 \in [0, 1]$,

$$\lim_{t\to\infty} x_i^t = 0 \text{ or } 1.$$

Scalar Attribute Assortativity Coefficient

- Let G = (V, E) be a graph with adjacency matrix A_{ij} , k_i be the degree of $i \in V$ and |E| = m.
- Let each vertex *i* possess a scalar attribute x_i ($\in \mathbb{R}$).
- Then one can define (cf. Mark Newman, 2003), the (normalized) scalar attribute assortativity as follows:

$$r = \frac{\sum_{i,j \in V} (A_{ij} - \frac{k_i k_j}{2m}) x_i x_j}{\sum_{i,j \in V} (k_i \delta_{ij} - \frac{k_i k_j}{2m}) x_i x_j},$$

where δ_{ij} is the Kronecker delta. This is an example of a (Pearson) correlation coefficient with a covariance in its numerator and a variance in the denominator.

• Clearly, $r \in [-1,1]$ and, as we will discuss later in the case of enumerative attributes, r is a measure of assortative (or disassortative) mixing according to the scalar attribute x_i , with vertices having similar values of this attribute being more (or less) likely to be connected by an edge.

C. Multilayer Networks and Enumerative Attribute Assortativity

Graph Partitions

Let

$$G=(V,E)$$

be a (simple undirected) graph with (finite) set of vectors V and (finite) set of edges E.

- The terms "graph" and "(social) network" are used here interchangeably.
- If $S_1, S_2, \ldots, S_s \subset V$ (for a positive integer s) are s nonempty (sub)sets of vertices of G, the (finite) family of subsets

$$\mathcal{S} = \mathcal{S}(G) = \{S_1, S_2, \dots, S_s\},\$$

forms a **partition** (or s-**partition**) in G, when, for all $i, j = 1, 2, \dots, s, i \neq j$,

$$S_i \cap S_j = \emptyset$$
 and

$$V = \bigcup_{i=1}^{s} S_i.$$

• S_1, S_2, \ldots, S_s are called **groups** (of vertices) of partition S.

- For every graph, there exists (at least one) partition of its vertices.
- Two trivial graph partitions are:
 - ullet the |V|-partition into singletons of vertices and

$$S_{point} = S_{point}(G) = \{\{v\} : v \in V\},$$

the 1-partition into the whole vertex set

$$S_{\text{total}} = S_{\text{total}}(G) = \{V\}.$$

 If G is a bipartite graph with (vertex) parts U and V, the bipartition of G is denoted as:

$$S_{\text{bipartition}} = S_{\text{bipartition}}(G) = \{U, V\}.$$

Examples of Nontrivial Graph Partitions

Structural (endogenous) partitions:

- Connected components
- Communities
- Chromatic partitions (bipartitions, multipartitions)
- Degree partitions
- Time slicing of temporal networks
- Domination bipartitions (ego- and alter-nets)
- Core–Periphery bipartitions

Ad hoc (exogenous) partitions:

- Vertex attributes (or labels or colors)
- Layers (or levels)

Multilayer Partitions and Multilayer Graphs

• A multilayer partition of a graph G is a partition

$$\mathcal{L} = \mathcal{L}(G) = \{L_1, L_2, \dots, L_\ell\}$$

into $\ell \geq 2$ groups of vertices $L_1, L_2, \dots, L_{\ell}$, which are called **layers**.

 A graph with a multilayer partition is called a multilayer graph.

Ordering Partitions

- Let $\mathcal{P} = \{P_1, P_2, \dots, P_p\}$ and $\mathcal{Q} = \{Q_1, Q_2, \dots, Q_q\}$ be two (different) partitions of vertices of graph G = (V, E).
- Partition \mathcal{P} is called **thicker** than partition \mathcal{Q} (and \mathcal{Q} is called **thinner** than \mathcal{P}), whenever, for every $j=1,2,\cdots,q$, there exists a $i=1,2,\cdots,p$ such that

$$Q_j \subset P_i$$
.

• Partitions \mathcal{P} and \mathcal{Q} are called (enumeratively) equivalent, whenever, for all $i=1,2,\cdots,p$ and $j=1,2,\cdots,q$,

$$P_i \cap Q_j \neq \emptyset$$
.

ullet Obviously, if partitions ${\mathcal P}$ and ${\mathcal Q}$ are equivalent, then

$$pq \leq |V|$$
.

Self–Similarity of Partitions

• A partition \mathcal{P} of vertices of graph G (such that $|V| \geq p^2$) is called (**enumeratively**) **self–similar**, whenever, for any $i = 1, 2, \dots, p$, there is a p–(sub)partition

$$\mathcal{P}^i = \{P_1^i, P_2^i, \dots, P_p^i\}$$

- of the (induced) subgraph P_i .
- In this case, graph G is called (enumeratively) self–similar with respect to partition \mathcal{P} .

A Sierpinski (Cantor-type) Graph with k = 2.5 and depth 4

Graph Partitions as Enumerative Attribute Assignments

 An assignment of enumerative attributes (or discrete attribute assignment) to vertices of graph G is a mapping

$$A: V \to \{1, 2, \cdots, \alpha\}, \text{ for some } \alpha \leq |V|,$$

through which the vertices of G are classified according to the values they take in the set $\{1, 2, \dots, \alpha\}$.

- Every p-partition $\mathcal{P} = \{P_1, P_2, \dots, P_p\}$ of vertices of G corresponds to a p-assignment $\mathcal{A}_{\mathcal{P}}$ of enumerative attributes to vertices of G distributing them in the groups of partition \mathcal{P} .
- Conversely, every assignment of enumerative attributes to vertices of G taking values in the (finite) set $\{1,2,\cdots,\alpha\}$ corresponds to a partition $\mathcal{P}^{\alpha}=\{P_{1}^{\alpha},P_{2}^{\alpha},\ldots,P_{p}^{\alpha}\}$ of the vertices of G such that, for any $k=1,2,\cdots,\alpha$,

$$P_k^{\alpha} = \{ v \in V : \mathcal{A}(v) = k \} = \mathcal{A}^{-1}(k).$$

 Thus, vertex partitions and enumerative vertex attribute assignments are coincident.

- Let \mathcal{P} be a partition of G into p groups of vertices and \mathcal{A} be an assignment of α discrete attributes to vertices of G.
- Partition \mathcal{P} is called **compatible** with attribute assignment \mathcal{A} , whenever partition \mathcal{P} is thinner than partition \mathcal{P}^{α} , i.e., whenever, for every $k=1,2,\cdots,\alpha$, there exists (at least one) $i=1,2,\cdots,p$ such that

$$P_i = \mathcal{A}^{-1}(k).$$

• Apparently, if partition \mathcal{P} is compatible with attribute assignment \mathcal{A} , then

$$p \geq \alpha$$
.

 Trivially, every discrete attributes assignment (or every partition) is compatible to itself.

Assortativity of a Partition

- Let $\mathcal{P} = \{P_1, P_2, \dots, P_p\}$ be a vertex partition of graph G.
- Identifying \mathcal{P} to a p-assignment $\mathcal{A}_{\mathcal{P}}$ of enumerative attributes to the vertices of G, one can define (cf. Mark Newman, 2003), the (normalized) enumerative attribute assortativity (or discrete assortativity) coefficient of partition \mathcal{P} as follows:

$$r_{\mathcal{P}} = r_{\mathcal{P}}(\mathcal{A}_{\mathcal{P}}) = \frac{\operatorname{tr} \mathbf{M}_{\mathcal{P}} - ||\mathbf{M}_{\mathcal{P}}^2||}{1 - ||\mathbf{M}_{\mathcal{P}}^2||},$$

where $\mathbf{M}_{\mathcal{P}}$ is the $p \times p$ (normalized) mixing matrix of partition \mathcal{P} . Equivalently:

$$r_{\mathcal{P}} = \frac{\sum_{i,j \in V} (A_{ij} - \frac{k_i k_j}{2m}) \delta(\mathcal{A}_{\mathcal{P}}(i), \mathcal{A}_{\mathcal{P}}(j))}{2m - \sum_{i,j \in V} (\frac{k_i k_j}{2m}) \delta(\mathcal{A}_{\mathcal{P}}(i), \mathcal{A}_{\mathcal{P}}(j))},$$

where $\{A_{ij}\}$ is the adjacency matrix of graph G, m is the total number of edges of G, k_i is the degree of vertex i and $\delta(x,y)$ is the Kronecker delta.

• In general,

$$-1 \leq r_{\mathcal{P}} \leq 1$$
,

where

- $r_P = 0$ signifies that there is no assortative mixing of graph vertices with respect to their assignment to the p groups of partition \mathcal{P} , i.e., graph G is configured as a perfectly mixed network (the random null model).
- $r_{\mathcal{P}}=1$ signifies that there is a perfect assortative mixing of graph vertices with respect to their assignment to the p groups of partition \mathcal{P} , i.e., the connectivity pattern of these groups is perfectly homophilic.
- When $r_{\mathcal{P}}$ atains a minimum value, which lies in general in the range [-1,0), this signifies that there is a perfect disassortative mixing of graph vertices with respect to their assignment to the p groups of partition \mathcal{P} , i.e., the connectivity pattern of these groups is perfectly heterophilic.

Assortative Mixing Among Partitions

- Let $\mathcal{P} = \{P_1, P_2, \dots, P_p\}$ and $\mathcal{Q} = \{Q_1, Q_2, \dots, Q_q\}$ be two (different) partitions of vertices of graph G.
- Then, for any $i=1,2,\cdots,p, j=1,2,\cdots,q, P_i\cap Q_j\neq\varnothing$ and the intersection of $\mathcal P$ and $\mathcal Q$

$$\mathcal{P} \cap \mathcal{Q} = \{P_i \cap Q_j \colon i = 1, 2, \cdots, p, j = 1, 2, \cdots, q\}$$

is also a vertex partition of G.

- Notice that partition $\mathcal{P} \cap \mathcal{Q}$ is compatible with any one of the following three discrete attribute assignments on G:
 - $\mathcal{A}_{\mathcal{P}}$, in which, for any group $P_i \cap Q_j$ of $\mathcal{P} \cap \mathcal{Q}$, all vertices of $P_i \cap Q_j$ are assigned a value in the set $\{1, 2, \dots, p\}$,
 - $\mathcal{A}_{\mathcal{Q}}$, in which, for any group $P_i \cap Q_j$ of $\mathcal{Q} \cap \mathcal{Q}$, all vertices of $P_i \cap Q_j$ are assigned a value in the set $\{1, 2, \dots, q\}$ and
 - $\mathcal{A}_{\mathcal{P}\cap\mathcal{Q}}$, in which, for any group $P_i\cap Q_j$ of $\mathcal{P}\cap\mathcal{Q}$, all vertices of $P_i\cap Q_j$ are assigned a value in the set $\{1,2,\cdots,r\}$, for some $r\leq pq$.

- Thus, we may define a discrete assortativity coefficient of partition $\mathcal{P} \cap \mathcal{Q}$ according to each one of the three compatible attribute assignments.
- Here we will focus on the third case and we define the discrete assortativity coefficient of the joint partition for P and Q as follows:

$$r_{\mathcal{PQ}}=r_{\mathcal{P}\cap\mathcal{Q}}(\mathcal{A}_{\mathcal{P}\cap\mathcal{Q}}).$$

Apparently now,

$$r_{\mathcal{PQ}} = r_{\mathcal{QP}}$$
.

Special Cases

• If $\mathcal{Q} = \mathcal{S}_{\mathsf{point}}$, then $r_{\mathcal{P}\mathcal{S}_{\mathsf{point}}}$ is the attribute assortativity coefficient $r_{\mathcal{P}}$ of graph G equipped with the vertex attributes corresponding to partition \mathcal{P} , i.e.,

$$r_{\mathcal{P}}S_{\text{point}} = r_{\mathcal{P}}.$$

• If $\mathcal{P} = \mathcal{S}_{\text{total}}$, then, for any partition \mathcal{P} ,

$$r_{\mathcal{P}\mathcal{S}_{\mathsf{total}}} = 1.$$

• If G is bipartite and $\mathcal{P} = \mathcal{S}_{bipartition}$, then, for any partition \mathcal{P} ,

$$r_{\mathcal{PS}_{\mathsf{bipartition}}} \in [-1, 0).$$

