КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра прикладних інформаційних систем

Звіт до лабораторної роботи №5

з курсу

«Системний аналіз та теорія прийняття рішень»

студентки 3 курсу групи ПП-33 спеціальності 122 «Комп'ютерні науки» ОП «Прикладне програмування» Матвіїв Анастасії Юріївни

> Викладач: Білий Р.О.

Тема: Теорія ігор

Мета роботи: Набути навички пошуку раціональних рішень в умовах конфліктів.

Хід роботи:

Завдання 1: розв'язання гри (в чистих стратегіях) з заданою матрицею платежів.

	b1	b2	b3	b4
a1	0.8	0.6	0.2	-0.8
a2	-0.8	0.9	-0.4	0.5
a3	1.7	0.5	0.3	0.6

						Нижня
	_b1	b2	b3	b4	min a	ціна гри
a1	0.8	0.6	0.2	-0.8	-0.8	0.3
a2	-0.8	0.9	-0.4	0.5	-0.8	
a3	1.7	0.5	0.3	0.6	0.3	
max b	1.7	0.9	0.3	0.6		
Верхня ціна						
гри	0.3					

```
      CheckSaddlePoint(matrix, maxA, minB)

      Руфол

      ... Сідлові точки та їх значення:

      Ціна гри - елемент на позиції (2, 2): 0.3

      Сідлова точка - {(2, 2)}

      Отже, стратегія 3(з індексом 2) є оптимальною
```

Завдання 2: розв'язання гри

Сільськогосподарське підприємство вирощує картоплю. Площа ділянки картоплі становить 100 га. Господарство має договір з магазином, який гарантовано закупить всю картоплю по ціні 4 у.г.о. за 1 кг. При вирощуванні картоплі господарство може прийняти одне з трьох рішень, що розрізняються за сумою витрат на виробництво тощо про продукції:

- А 1. Провести комплексну обробку рослин для запобігання ураження бур'янами, шкідниками і хворобами (витрати 6 млн. У.г.о .).
 - А 2. Провести часткову обробку рослин (витрати 4 млн. У.г.о .).
 - А 3. Чи не проводити обробку рослин (витрати 2.5 млн. У.г.о .).

Залежно від погодних умов, наявності та розвитку бур'янів, шкідників і хвороб можливі наступні ситуації:

- S 1. Умови для розвитку бур'янів, шкідників і хвороб несприятливі.
- S 2. Умови для розвитку бур'янів, шкідників і хвороб звичайні.
- S 3. Умови для розвитку бур'янів, шкідників і хвороб сприятливі.

Значення врожайності картоплі (ц / га) залежно від рішень сільськогосподарського підприємства і розвитку бур'янів, шкідників і хвороб тощо і наведені в таблиці

Визначте найбільш оптимальну стратегію підприємства і ціну гри.

	b1	b2	b3
a1	260	260	260
a2	255	200	145
a3	250	100	40

costs	6	4	2.5
-------	---	---	-----

cost/k	
g	4

440000	440000	440000
0	0	0
620000	400000	180000
0	0	0
750000	150000	
0	0	-900000

	750000	440000	440000
max b	0	0	0

0

min a -900000

```
min_A = np.min(transpose, axis = 1)
max_A = max(min_A)

print(min_A)
print(max_A)

... [4400000. 18000000. -9000000.]
44000000.0

max_B= np.max(transpose, axis = 1)
min_B = min(max_B)
print(max_B)
print(min_B)

162]

... [4400000. 62000000. 75000000.]
44000000.0
```

```
CheckSaddlePoint(transpose, max_A, min_B)

Ciдлові точки та їх значення:
Ціна гри - елемент на позиції (0, 1): 4400000.0
Ціна гри - елемент на позиції (0, 2): 4400000.0
Ціна гри - елемент на позиції (0, 0): 4400000.0
Сідлова точка - {(0, 1), (0, 2), (0, 0)}

Отже, стратегія 1(з індексом 0) є оптимальною.
```

Висновок:

Під час виконання лабораторної роботи я набула навички пошуку раціональних рішень в умовах конфліктів.