机密★启用前

西南交通大学 2019 年硕士研究生 招生入学考试试卷

试题代码: 924 试题名称:信号与系统一

考试时间: 2018年12月

考生请注意:

1.本试题共六题, 共 6 页, 满分 150 分, 请认真检查;

- 2.答题时,直接将答题内容写在考场提供的答题纸上,答在试卷上的内容无效:
- 3.请在答题纸上按要求填写试题代码和试题名称:
- 4. 证明不得拆开, 咨閱遺失后果自负。

一、选择题(共60分,共20小题)(答在试卷上的内容无效)

1.
$$\sum_{n=0}^{k} 2^{n} \delta[n-2]$$
等于 ()。

- A. 1 B. 4 C. 4u[k] D. 4u[k-2]

2. 某连续时间 LTI 系统的单位冲激响应 $h(t) = 2\delta(t) + \frac{d\delta(t)}{dt}$, 则系统的微分方程

为()。

A.
$$2y(t) + \frac{dy(t)}{dt} = x(t)$$
 B. $y(t) + 2\frac{dy(t)}{dt} = x(t)$

B.
$$y(t) + 2\frac{dy(t)}{dt} = x(t)$$

C.
$$y(t) = 2x(t) + \frac{dx(t)}{dt}$$
 D. $\frac{dy(t)}{dt} = x(t) + 2\frac{dx(t)}{dt}$

D.
$$\frac{dy(t)}{dt} = x(t) + 2\frac{dx(t)}{dt}$$

3. 若 f(t) 为系统的输入激励,v(t) 为系统的输出响应,y(0) 为系统的初始状态, 下列哪个输出响应所对应的系统是线性系统?(

1

A.
$$y(t) = 5y^2(0) + 3f(t)$$

A.
$$y(t) = 5y^2(0) + 3f(t)$$
 B. $y(t) = 3y(0) + 2f(t) + \frac{df(t)}{dt}$

C.
$$y(t) = 2y(0)f(t) + 2f(t)$$
 D. $y(t) = 4y(0) + 2f^{2}(t)$

D.
$$y(t) = 4y(0) + 2f^2(t)$$

- 5. 信号 $x(t) = 2\sin\left(\frac{2\pi}{3}t\right) + 4\cos\left(\frac{\pi}{2}t\right) + 4\cos\left(\frac{1}{3}t \frac{1}{5}\pi\right)$ 的周期 T = (

- A. 7 B. 12 C. 12π
- 6. 已知信号 x(t) 的傅里叶变换为 $X(j\omega)$,则 $t\frac{dx(t)}{dt}$ 的傅里叶变换为 (
- A. $X(j\omega) \omega \frac{dX(j\omega)}{d\omega}$ B. $-X(j\omega) + \omega \frac{dX(j\omega)}{d\omega}$
- C. $-X(j\omega) \omega \frac{dX(j\omega)}{d\omega}$ D. $X(j\omega) + \omega \frac{dX(j\omega)}{d\omega}$
- 7. 已短信号 f(2t-3) 的拉普拉斯变换为 F(s),则 f(t) 的拉普拉斯变换为
- A. $\frac{1}{2}F\left(\frac{s}{2}\right)e^{\frac{3s}{2}}$ B. $2F(2s)e^{6s}$ C. $\frac{1}{2}F\left(\frac{s}{2}\right)e^{\frac{3s}{2}}$ D. $2F(2s)e^{3s}$

- 8. 某连续时间系统的单位阶跃响应为 $s(t)=(1+te^{-2t})u(t)$,则该系统的系统函数 $H(s) = ()_{\circ}$
- A. $1 + \frac{s}{(s+2)^2}$
- B. $\frac{1}{s} + \frac{s}{(s+2)^2}$
- C. $\frac{1}{s} + \frac{1}{s+2} + \frac{1}{(s+2)^2}$ D. $1 + \frac{1}{(s+2)^2}$
- 9. 已知一LTI 系统的系统函数 $H(z) = \frac{1}{z-0.5} \frac{z}{z+2}$, 若该系统是稳定的,则系

统的单位脉冲响应h[n]=()。

- A. $0.5^{n-1}u[n-1]-(-2)^nu[n]$ B. $0.5^{n-1}u[n-1]-(-2)^nu[-n-1]$
- C. $-0.5^{n-1}u[n-1] + (-2)^n u[-n-1]$ D. $0.5^{n-1}u[n-1] + (-2)^n u[-n-1]$
- 10. 信号 f(t) 的频谱 $F(j\omega)$ 如图所示,则 f(t) = ()。

- A. $\mathcal{E}(t) \frac{1}{\pi} Sa(t)e^{j2t}$
- B. $\delta(t) \frac{1}{\pi} Sa(t)e^{-j2t}$
- C. $\delta(t) 2Sa(t)e^{j2t}$
- D. $\delta(t) 2Sa(t)e^{-j2t}$