TP#2-MOVIMIENTOS DE TRASLACIÓN

Laboratorio de Física I Facultad de Ciencias Fisicomatemáticas e Ingeniería Universidad Católica Argentina

Objetivos

- Observar y analizar movimientos rectilíneos uniformes y uniformemente acelerados.
- Obtener los distintos parámetros que intervienen en las ecuaciones horarias para cada uno de los movimientos.

[INTRO] Para repasar ...

- ¿Qué representa la trayectoria de un cuerpo?
- ¿Qué es la velocidad media? ¿Y la velocidad instantánea? ¿Cómo se relacionan?
- ¿Qué es la aceleración media? ¿Y la aceleración instantánea? ¿Cómo se relacionan?
- ¿Qué es un movimiento rectilíneo?
- ¿Cuándo un movimiento rectilíneo es uniforme? ¿Cómo son las ecuaciones para la trayectoria, la velocidad y la aceleración?
- ¿Cuándo un movimiento rectilíneo es uniformemente variado? ¿Qué significa que sea retardado? ¿Y acelerado? ¿Cómo son sus ecuaciones?

[DES EXP] Montaje del experimento

- **1.** Coloquen el móvil (ej. carrito) de medición sobre un riel.
- **2.** Conecten el móvil al sistema de registro, que puede ser una PC, un sistema de registro con cintas de papel termosensible, etc.
- **3.** Se registrará la posición a intervalos de tiempo regulares, de acuerdo a la frecuencia de registro elegida. ¿Cómo se relacionan la frecuencia y el tiempo de registro? ¿Con qué error se determina el tiempo?

[DES EXP] Registro de datos

- **1.** Simulen un movimiento rectilíneo uniformemente retardado. El móvil deberá frenarse en su recorrido. ¿Por qué?
- **2.** Al inclinar el riel, lograrán que el móvil tenga un movimiento rectilíneo uniformemente acelerado. ¿Por qué?
- 3. Registren un movimiento rectilíneo uniforme. ¿Qué deben lograr?
- **4.** Atar una pesa al carro y dejarla colgar en un extremo del riel, interponiendo entre la pesa y el piso una silla. Se intenta aquí estudiar la evolución de un movimiento acelerado y determinar su velocidad final luego de que tal aceleración haya cesado de actuar. ¿Qué ocurrirá cuando la pesa toque la silla?
- **5.** Para cada uno de los movimientos simulados, obtendrán una tabla de intervalos de tiempo y distancia recorrida.

[RES y DISC] Cálculos y análisis de datos

- **1.** A partir del registro de distancia y tiempo para cada movimiento, graficar como dispersión de puntos:
 - a) La trayectoria recorrida en función del tiempo
 - b) La velocidad en función del tiempo
 - c) La aceleración en función del tiempo
- **2.** Obtener las velocidad y aceleracion mediante ajustes de los datos usando cuadrados mínimos (ver apunte), según corresponda.
- **3.** Comparar los gráficos obtenidos con las curvas esperadas para cada magnitud, según el movimiento que se analice.
- **4.** ¿Cuáles son las principales fuentes de error?

dentificar las magnitudes directas e indirectas.

ecuerden colocar ejes a los gráficos, indicando a qué magnitud corresponden (con sus unidades).

A nalizar TODOS los gráficos obtenidos. ¿Qué información puede obtenerse en cada caso?

ecuerden! Todas las mediciones tienen un error. Parte de la medición consiste en determinar estos errores..

Preguntas para discutir

Estas deberán agregarse en el cuerpo del informe. NO contestarlas como ítems.

Analice las funciones matemáticas que representan los datos experimentales del desplazamiento, la velocidad y la aceleración en función del tiempo. ¿Qué relación encuentra entre ellas?

¿Si la aceleración es, por ejemplo negativa, se puede asegurar que la velocidad del móvil disminuye?