Introducción al Diseño Lógico (E0301)

Ingeniería en Computación

Gerardo E. Sager

Clase 5 curso 2021

Introducción al Diseño Lógico

- Temas que se tratan
 - Variables booleanas o lógicas
 - Tablas de verdad. (TdV)
 - Ejemplos de TdV para compuertas AND, NAND,
 OR, y NOR, y el circuito inversor NOT.
 - Expresiones booleanas para compuertas lógicas.
 - Teoremas de Boole y DeMorgan para simplificar expresiones lógicas.

Variables booleanas o lógicas

- Constantes y Variables Booleanas:
 - Solamente puede adoptar dos valores
 - Muchas veces se utilizan distintas palabras como sinónimos de estos valores. En la tabla se muestran los más usuales

0 lógico	1 lógico
Falso	Verdadero
Apagado	Encendido
Bajo	Alto
No	Si
Interruptor abierto	Interruptor cerrado

Operaciones lógicas

- Operaciones básicas
 - Conjunción: AND, Y, intersección. (A B)
 - Disyunción inclusiva : OR, Ó, unión. (A+B)
 - Negación: Not, No, complemento. (IA) o también \overline{A}
- Minterm o minitérmino
 - Expresion con una o más variables no repetidas, directas o negadas, relacionadas entre sí mediante conjunción
 - Ejemplos: $\overline{A}.B.C$
- *X* . <u>*y</u> . <i>z*</u>
- Maxterm o maxitérmino
 - Expresion con una o más variables no repetidas, directas o negadas, relacionadas entre sí mediante disyunción inclusiva
 - Ejemplos: $(\overline{A}+B+C)$ $(x+\overline{y}+z)$

Tablas de Verdad (TdV)

- La Tabla de Verdad describe la relación entre entradas y salidas.
- Los valores posibles de las entradas y salidas son valores binarios (0 o 1).
- El número de entradas define la cantidad de combinaciones posibles a considerar
- N entradas → 2^N combinaciones
- Deben listarse todas las combinaciones posibles de entradas y los valores que toma la salida para cada combinación.
- Esto puede interpretarse como que la TdV, define una *función lógica* cuyo dominio son las combinaciones posibles de entradas y su imagen son los valores que adopta la salida en cada caso

Tablas de Verdad 1, 2, 3 y 4 variables

1 entrada → 2 combinaciones

Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

2 entradas → 4 combinaciones

A		
_B>	??	<u>_x</u> >
_C>		

3 entradas → 8 combinaciones

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

4 entradas → 16 combinaciones

Tablas de verdad de funciones lógicas

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	Х
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	0

- De una variable: NOT
 - Invierte el valor lógico de la entrada
- De dos variables OR, AND, XOR
 - OR da una salida Verdadera, cuando cualquiera de sus entradas es verdadera
 - AND da una salida Verdadera cuando todas sus entradas son Verdaderas
 - XOR da una salida Verdadera si sus entradas son distintas.

Funciones y compuertas

- Las primeras implementaciones de funciones lógicas digitales recibieron el nombre de compuertas lógicas (logical gates).
- La Compuerta NOT (También llamada INVERSOR) tiene una sola entrada.
 - NOT: la salida es opuesta a la entrada.
- Los tipos más comunes que poseen más de una entrada son OR, NOR, AND, NAND, XOR y XNOR.
 - OR: la salida es verdadera si cualquier entrada es verdadera.
 - NOR: la salida es la opuesta a la de la OR.
 - AND: la salida es verdadera si todas las salidas son verdaderas.
 - NAND: la salida es la opuesta a la AND.
 - XOR: (Or Exclusiva o disyunción exclusiva) la salida es verdadera si un número impar de entradas es verdadera.
 - XNOR: XOR Negada, la salida es verdadera si un número par de entradas es verdadera.

Funciones y compuertas

- Las funciones lógicas pueden denotarse de distintas maneras, hemos visto la TdV y los nombres de algunas de ellas. Tambíen pueden representarse de manera gráfica con los símbolos de compuerta que veremos más adelante o con una notación de tipo algebraico que permite operar matemáticamente (algebra de boole)
- Función NOT si la entrada es x la salida es \overline{x} . Como es difícil escribir la barra sobre la variable, se suele usar otra notación $\overline{x} = \xspace x$.
- Función AND: si las entradas son A y B, y la salida es x, se escribe como si fuera un producto $x = A \cdot B = AB$
- Función OR: si las entradas son A y B, y la salida es x, se escribe como si fuera una suma: x = A + B
- XOR: si las entradas son A y B, y la salida es x, se escribe como se muestra a continuación: $x = A \oplus B$
- NAND: si las entradas son A y B, y la salida es x, se escribe como se muestra a continuación: $x = \overline{AB} = \setminus (AB)$
- NOR: si las entradas son A y B, y la salida es x, se escribe como se muestra a continuación: $x = \overline{A + B} = \setminus (A + B)$
- XNOR: si las entr<u>adas</u> son A y B, y la salida es x, se escribe como se muestra a continuación: $x = A \oplus B = \setminus (A \oplus B)$

Compuerta OR

Compuerta OR de tres entradas, Función y Tabla de Verdad

Α	В	С	X = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Compuerta AND

Compuerta AND de tres entradas, Función y Tabla de Verdad

Α	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Compuerta Not o Inversor

Él inversor genera una salida que es la opuesta de la entrada para todos los puntos de la señal de entrada. La operación se llama también NOT o complementación.

Siempre que la entrada sea = 0, salida = 1, y viceversa.

Sumario de reglas para OR, AND y NOT

OR	AND	NOT
0 + 0 = 0	$0 \cdot 0 = 0$	$\overline{0} = 1$
0 + 1 = 1	$0 \cdot 1 = 0$	$\overline{1} = 0$
1 + 0 = 1	$1 \cdot 0 = 0$	
1 + 1 = 1	$1 \cdot 1 = 1$	

Cualquier operación booleana puede escribirse mediante estas tres operaciones elementales

Como estas compuertas implementan las operaciones elementales, con ellas se puede implementar cualquier operación booleana.

El símbolo AND en un circuito lógico dice que la salida va a ir a HIGH sólo si todas las entradas son HIGH

El símbolo OR dice que la salida va a ir a HIGH cuando *cualquier* entrada sea HIGH

Operaciones y Precedencia

- Én una expresión booleana, se analiza de izquierda a derecha.
- La operación AND (•) tiene precedencia sobre la operación OR (+).
- Como en la multiplicación, la operación AND puede tomarse como implícita ABC=A•B•C
- Si se quiere explicitar o modificar la precedencia puede utilizarse paréntesis:
 - A+BC=A+(BC)
 - x=(A+B)C es distinto que x=A+BC
- La operación de negación tiene la mayor precedencia \ AB = (\A)•B

Ejemplos: Análisis

 Determinar cual es la función lógica que implementa un circuito dado

 También se procede de izquierda a derecha y se va operando con los resultados parciales como se muestra en las figuras.

Ejemplos: Análisis

 Determinaremos las tablas de verdad de ambos circuitos.

x=A•B+C				
Α	В	С	X	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

	x=(A+B)•C				
Α	В	С	X		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	0		
1	1	1	1		

Se ve claramente que son distintas

Ejemplos. Se animan a hacer la TdV?

Evaluar expresiones booleanas

- Reglas para la evaluación de expresiones booleanas:
 - Realizar todas las inversiones de términos simples.
 - Realizar todas las operaciones dentro de paréntesis.
 - Realizar las operaciones AND antes que las OR a menos que los paréntesis indiquen otra cosa.
 - Si una expresión tiene una barra sobre ella, realizar todas las operaciones dentro de la expresión y luego invertir el resultado.

Teoremas de Boole (Propiedades)

Una Variable

1.
$$x.0 = 0$$

2.
$$x.1 = x$$

3.
$$x.x = x$$

4.
$$x.\bar{x} = 0$$

5.
$$x+0 = x$$

6.
$$x+1=1$$

7.
$$x+x = x$$

8.
$$x + \overline{x} = 1$$

Dos Variables

9.
$$x + y = y + x$$

$$10. x.y = y.x$$

11.
$$x + (y + z) = (x + y) + z = x + y + z$$

12. x.
$$(y . z) = (x . y) .z = x.y.z = xyz$$

13. a)
$$x (y + z) = x y + x z$$

$$a) \times (y + 2) = x y + x 2$$

$$14. x + xy = x$$

15. a)
$$x + \overline{x} y = x + y$$
 b) $x + xy = x + y$

b)
$$(w + x) (y + z) = wy + wz + xy + xz$$
 (distributiva)

b)
$$\overline{x}$$
 + xy = \overline{x} + y

Teoremas de De Morgan

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

$$x \cdot y = x + \overline{y}$$

Son muy útiles para simplificar expresiones booleanas. Puede demostrarse fácilmente que además:

$$\overline{x+y+z} = \overline{x} \cdot \overline{y} \cdot \overline{z}$$

$$\overline{x \cdot y \cdot z} = \overline{x} + \overline{y} + \overline{z}$$

Ejemplos:

$$z = \overline{(A+C)(B+\overline{D})} = \overline{(A+C)} + \overline{(B+\overline{D})} = \overline{A}\,\overline{C} + \overline{B}\,\overline{D} = A\,\overline{C} + \overline{B}\,D$$

$$z = \overline{A+\overline{B}+C} = \overline{A}\,\overline{B}\,\overline{C} = \overline{A}\,B\,\overline{C}$$

$$z = \overline{(A+BC)(D+EF)} = \overline{(A+BC)} + \overline{(D+EF)} = \overline{A}\,\overline{(BC)} + \overline{D}\,\overline{(EF)}$$

$$= \overline{A}\,\overline{(B+\overline{C})} + \overline{D}\,\overline{(E+F)} = \overline{A}\,\overline{B} + \overline{A}\,\overline{C} + \overline{D}\,\overline{E} + \overline{D}\,\overline{F}$$

Formas canónicas

- Se definen dos formas canónicas de expresión booleana
 - Conjunción de maxitérminos o "Producto de Sumas"
 - Ejemplo (A+\B)(\A+ B)
 - Disyunción de minitérminos o "Suma de Productos"
 - Ejemplo A\B + \AB
- Podemos llevar cualquier expresión booleana a una fora canónica, operando sobre ella mediantes los teoremas de Boole y De Morgan.
- En los ejemplos de la transparencia anterior se han llevado las expresiones a la forma de una "suma de productos".

Introducción al Diseño Lógico (E0301)

Ingeniería en Computación

Gerardo E. Sager

Clase 5 curso 2021

Introducción al Diseño Lógico Curso 2021

Facultad de Ingeniería UNLP

Introducción al Diseño Lógico

- Temas que se tratan
 - Variables booleanas o lógicas
 - Tablas de verdad. (TdV)
 - Ejemplos de TdV para compuertas AND, NAND,
 OR, y NOR, y el circuito inversor NOT.
 - Expresiones booleanas para compuertas lógicas.
 - Teoremas de Boole y DeMorgan para simplificar expresiones lógicas.

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Variables booleanas o lógicas

- Constantes y Variables Booleanas:
 - Solamente puede adoptar dos valores
 - Muchas veces se utilizan distintas palabras como sinónimos de estos valores. En la tabla se muestran los más usuales

0 lógico	1 lógico
Falso	Verdadero
Apagado	Encendido
Bajo	Alto
No	Si
Interruptor abierto	Interruptor cerrado

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Operaciones lógicas

- Operaciones básicas
 - Conjunción: AND, Y, intersección. (A B)
 - Disyunción inclusiva : OR, Ó, unión. (A+B)
 - Negación: Not, No, complemento. (IA) o también \overline{A}
- Minterm o minitérmino
 - Expresion con una o más variables no repetidas, directas o negadas, relacionadas entre sí mediante conjunción
 - Ejemplos: $\overline{A}.B.C$ $x.\overline{y}.z$
- · Maxterm o maxitérmino
 - Expresion con una o más variables no repetidas, directas o negadas, relacionadas entre sí mediante disyunción inclusiva
 - Ejemplos: $(\overline{A} + B + C)$ $(x + \overline{y} + z)$

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Tablas de Verdad (TdV)

- La Tabla de Verdad describe la relación entre entradas y salidas.
- Los valores posibles de las entradas y salidas son valores binarios (0 o 1).
- El número de entradas define la cantidad de combinaciones posibles a considerar
- N entradas → 2^N combinaciones
- Deben listarse todas las combinaciones posibles de entradas y los valores que toma la salida para cada combinación.
- Esto puede interpretarse como que la TdV, define una función lógica cuyo dominio son las combinaciones posibles de entradas y su imagen son los valores que adopta la salida en cada caso

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Tablas de Verdad 1, 2, 3 y 4 variables

Tablas de verdad de funciones lógicas

- De una variable: NOT
 - Invierte el valor lógico de la entrada
- De dos variables OR, AND, XOR
 - OR da una salida Verdadera, cuando cualquiera de sus entradas es verdadera
 - AND da una salida Verdadera cuando todas sus entradas son Verdaderas
 - XOR da una salida Verdadera si sus entradas son distintas.

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Funciones y compuertas

- Las primeras implementaciones de funciones lógicas digitales recibieron el nombre de compuertas lógicas (*logical gates*).
- La Compuerta NOT (También llamada INVERSOR) tiene una sola entrada.
 - NOT: la salida es opuesta a la entrada.
- Los tipos más comunes que poseen más de una entrada son OR, NOR, AND, NAND, XOR y XNOR.
 - OR: la salida es verdadera si cualquier entrada es verdadera.
 - NOR: la salida es la opuesta a la de la OR.
 - AND: la salida es verdadera si todas las salidas son verdaderas.
 - NAND: la salida es la opuesta a la AND.
 - XOR: (Or Exclusiva o disyunción exclusiva) la salida es verdadera si un número impar de entradas es verdadera.
 - XNOR: XOR Negada, la salida es verdadera si un número par de entradas es verdadera.

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Funciones y compuertas

- Las funciones lógicas pueden denotarse de distintas maneras, hemos visto la TdV y los nombres de algunas de ellas. Tambíen pueden representarse de manera gráfica con los símbolos de compuerta que veremos más adelante o con una notación de tipo algebraico que permite operar matemáticamente (algebra de boole)
- Función NOT si la entrada es x la salida es \overline{x} . Como es difícil escribir la barra sobre la variable, se suele usar otra notación $\overline{x} = \backslash x$.
- Función AND: si las entradas son A y B, y la salida es x, se escribe como si fuera un producto x = A . B = AB
- Función OR: si las entradas son A y B, y la salida es x, se escribe como si fuera una suma: x = A + B
- XOR: si las entradas son A y B, y la salida es x, se escribe como se muestra a continuación: x = A ⊕ B
- NAND: si las entradas son A y B, y la salida es x, se escribe como se muestra a continuación: $x = \overline{AB} = \setminus (AB)$
- NOR: si las entradas son A y B, y la salida es x, se escribe como se muestra a continuación: $x = \overline{A + B} = \setminus (A + B)$
- XNOR: si las entr<u>adas</u> son A y B, y la salida es x, se escribe como se muestra a continuación: $x = \overline{A} \oplus \overline{B} = \setminus (A \oplus B)$

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Compuerta OR

Compuerta OR de tres entradas, Función y Tabla de Verdad

Α	В	С	X = A + B + C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Introducción al Diseño Lógico Curso 2021

Facultad de Ingeniería UNLP

Compuerta AND

Compuerta AND de tres entradas, Función y Tabla de Verdad

Α	В	С	x = ABC
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Introducción al Diseño Lógico Curso 2021

Facultad de Ingeniería UNLP

Compuerta Not o Inversor

Él inversor genera una salida que es la opuesta de la entrada para todos los puntos de la señal de entrada. La operación se llama también NOT o complementación.

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

y viceversa.

Sumario de reglas para OR, AND y NOT

OR
 AND
 NOT

$$0 + 0 = 0$$
 $0 \cdot 0 = 0$
 $\overline{0} = 1$
 $0 + 1 = 1$
 $0 \cdot 1 = 0$
 $\overline{1} = 0$
 $1 + 0 = 1$
 $1 \cdot 0 = 0$
 $1 + 1 = 1$
 $1 \cdot 1 = 1$

Cualquier operación booleana puede escribirse mediante estas tres operaciones elementales

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

El símbolo AND en un circuito lógico dice que la salida va a ir a HIGH sólo si todas las entradas son HIGH

El símbolo OR dice que la salida va a ir a HIGH cuando *cualquier* entrada sea HIGH

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Operaciones y Precedencia

- Én una expresión booleana, se analiza de izquierda a derecha.
- La operación AND (•) tiene precedencia sobre la operación OR (+).
- Como en la multiplicación, la operación AND puede tomarse como implícita ABC=A•B•C
- Si se quiere explicitar o modificar la precedencia puede utilizarse paréntesis:
 - A+BC=A+(BC)
 - x=(A+B)C es distinto que x=A+BC
- La operación de negación tiene la mayor precedencia \ AB = (\A)•B

Introducción al Diseño Lógico

Facultad de Ingeniería UNLP

Ejemplos: Análisis

Determinar cual es la función lógica que implementa un circuito dado

 También se procede de izquierda a derecha y se va operando con los resultados parciales como se muestra en las figuras.

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Ejemplos: Análisis

 Determinaremos las tablas de verdad de ambos circuitos.

x=A•B+C			
Α	В	С	Х
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

x=(A+B)•C			
Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Se ve claramente que son distintas

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Ejemplos. Se animan a hacer la TdV?

Evaluar expresiones booleanas

- Reglas para la evaluación de expresiones booleanas:
 - Realizar todas las inversiones de términos simples.
 - Realizar todas las operaciones dentro de paréntesis.
 - Realizar las operaciones AND antes que las OR a menos que los paréntesis indiquen otra cosa.
 - Si una expresión tiene una barra sobre ella, realizar todas las operaciones dentro de la expresión y luego invertir el resultado.

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Teoremas de Boole (Propiedades)

Una Variable

1.
$$x.0 = 0$$

2. x.1 = x

3. x.x = x

4. $x.\bar{x} = 0$

5. x+0 = x

6. x+1=1

7. x+x = x

8. $x + \overline{x} = 1$

Dos Variables

9.
$$x + y = y + x$$

(conmutativa)

10. x.y = y.x

(conmutativa)

11. x + (y + z) = (x + y) + z = x + y + z

(asociativa)

12. x. (y . z) = (x . y) .z = x.y.z = xyz

(asociativa)

13. a) x (y + z) = x y + x z

(distributiva)

b) (w + x) (y + z) = wy + wz + xy + xz (distributiva)

14. x + xy = x

15. a) $x + \overline{x} y = x + y$

b) \overline{x} + xy = \overline{x} + y

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Teoremas de De Morgan

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

$$x \cdot y = x + y$$

Son muy útiles para simplificar expresiones booleanas. Puede demostrarse fácilmente que además:

$$\overline{x+y+z} = \overline{x} \cdot \overline{y} \cdot \overline{z}$$

$$\overline{x \cdot y \cdot z} = \overline{x} + \overline{y} + \overline{z}$$

Ejemplos:

$$z = \overline{(A+C)(B+D)} = \overline{(A+C)} + \overline{(B+D)} = \overline{A} \, \overline{C} + \overline{B} \, \overline{D} = A \, \overline{C} + \overline{B} \, D$$

$$z = \overline{A+B+C} = \overline{A} \, \overline{B} \, \overline{C} = \overline{A} \, B \, \overline{C}$$

$$z = \overline{(A+BC)(D+EF)} = \overline{(A+BC)} + \overline{(D+EF)} = \overline{A} \, \overline{(BC)} + \overline{D} \overline{(EF)}$$

$$= \overline{A} \, \overline{(B+C)} + \overline{D} \overline{(E+F)} = \overline{A} \, \overline{B} + \overline{A} \, \overline{C} + \overline{D} \, \overline{E} + \overline{D} F$$

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP

Formas canónicas

- Se definen dos formas canónicas de expresión booleana
 - Conjunción de maxitérminos o "Producto de Sumas"
 - Ejemplo (A+\B)(\A+ B)
 - Disyunción de minitérminos o "Suma de Productos"
 - Ejemplo A\B + \AB
- Podemos llevar cualquier expresión booleana a una fora canónica, operando sobre ella mediantes los teoremas de Boole y De Morgan.
- En los ejemplos de la transparencia anterior se han llevado las expresiones a la forma de una "suma de productos".

Introducción al Diseño Lógico Curso 2021 Facultad de Ingeniería UNLP