Math 113 Definitions.

- 1. **Set.** A set is an unordered collection of elements.
- 2. **Map.** A map from X to Y is $f: X \to Y$ (a rule that assigns elements to Y to elements in X). So, for any $x \in X$ there exists a unique $y \in Y$ such that f(x) = y.
- 3. **Cartesian Product.** The Cartesian product of *X* and *Y* is the set $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$.
- 4. **Equivalence Relation.** An equivalence relation R, \sim on X is a subset $R \subseteq X \times X$ such that
 - (a) Reflexive. $((x,x) \in R \text{ for all } x \in X)$.
 - (b) Symmetric. (if $(x, y) \in R$, then $(y, x) \in R$).
 - (c) Transitive. (if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$).
- 5. **Equivalence Class.** Let X be a set and R be an equivalence relation on X. Then, an equivalence class of $x \in X$ is the set $[x] = [x]_R = [x]_\sim = \{a \in X \mid x \sim a\}$.
- 6. $\mathbb{Z}/m\mathbb{Z}$. The set of distinct equivalence classes of $\equiv \pmod{n}$ is $\mathbb{Z}/m\mathbb{Z}$.
- 7. **Group.** A group G (denote: (G, \star)) is a set G with a closed binary operation $\star : G \times G \to G$ such that:
 - (a) Associativity: $(a \star b) \star c = a \star (b \star c)$ for all $a, b, c \in G$.
 - (b) Identity: There exists an $e \in G$ such that for any $a \in G$, we have $a \star e = e \star a = a$.
 - (c) Inverse: For any $a \in G$, there exists an $a^{-1} \in G$ such that $a \star a^{-1} = a^{-1} \star a = e$.
- 8. **Symmetric Group.** The symmetric group on n letters is S_n .
- 9. **Disjoint Cycles.** Two cycles $(a_1, ..., a_k)$ and $(b_1, ..., b_l)$ are disjoint if $a_i \neq b_j$ for all i, j.
- 10. **Transpositions.** The simplest permutation is a cycle of length 2, which is called a transposition.

- 11. **Even, Odd Permuatations.** A permutation is even if it can be expressed as an even number of transpositions. A permutation is odd if it can be expressed as an odd number of transpositions.
- 12. **Subgroup.** A subgroup H of a group G is a subset H of G such that when the group operation of G is restricted to H, then H is a group.
- 13. **Trivial/Proper Subgroup.** The trivial subgroup of a group G is $\{e\}$ and a proper subgroup is a subgroup H of G where H is a proper subset of G.
- 14. **General/Special Linear Group.** $GL_2(\mathbb{R})$ is the set of 2x2 invertible matrices with real entries. $SL_2(\mathbb{R})$ is the set of 2x2 invertible matrices with real entries and with determinant 1.
- 15. Cyclic Group. A cyclic group is a group generated by one element.
- 16. **Isomorphism.** An isomorphism is a homomorphism which is bijective.
- 17. **Kernel of homomorphism.** If $\phi : G \to H$ is a homomorphism, then $\ker \phi$ is the pre-image of $e_H \in H$, that is, $\ker \phi \{ g \in G \mid \phi(g) = e_H \}$.
- 18. **Coset.** Let $(G, \star) \ge (H, \star)$ and $g \in G$. Then, an H- coset of g is a (sub)set of G where $gH = g \star H = \{g \star h \mid h \in H\}$ (left coset) and $Hg = \{h \star g \mid h \in H\}$ (right coset).
- 19. **Index.** A set of distinct equivalence classes with respect to H is G/H, a quotient of G by H. Then, |G/H| = [G:H] is the index of H in G.
- 20. The following are definitions listed in the homeworks:
 - (a) Group of units in $\mathbb{Z}/n\mathbb{Z}$ is the set $(\mathbb{Z}/n\mathbb{Z})^{\times} = \mathbb{Z}/n\mathbb{Z}^{\times} := \{[a] \in \mathbb{Z} \mid \exists [b] \in \mathbb{Z}/n\mathbb{Z} \text{ with } [a] \times [b] = [1]\}.$
 - (b) If G is a group, then the center of G is the set $Z(G) := \{a \in G \mid ga = ag \forall g \in G\}.$
 - (c) \mathbb{C}^{\times} is the set of nonzero complex numbers.
 - (d) \mathbb{R}^{\times} is the set of nonzero real numbers.
 - (e) GL(n, K) is the set of nxn invertible matrices with entries in K.
 - (f) If G is a group, then the torsion subgroup of G is called G_T , which is the set of all elements of G with finite order.

- (g) The Klein four-group is V is a subgroup of S_4 and consists of $V = \{id, (12), (34), (12)(34)\}.$
- 21. **(External) Direct Product** Let $G = (G, \star)$ and $H = (H, \circ)$ be groups. Then, $G \times H = \{G \times H, (\star, \circ)\}.$
- 22. **Normal Subgroup.** Let G be a group and H a subgroup of G. Then H is a normal subgroup (write $H \subseteq G$) iff for all $g \in G$, gH = Hg, or equivalently, for all hinH, $ghg^{-1} \in H$ for all $g \in G$.