Assignment 2

Texas A&M University AERO-430-500 Numerical Simulation Andrew Hollister

October 5th, 2021

Contents

1	Ab	stract	4
2	Ana	alytical Solution	4
	2.1	Initialization	4
	2.2	Piecewise Functions	4
	2.3	Boundary Conditions	5
	2.4	Heat Transfer	5
3	Fin	ite Difference Method	6
	3.1	Discretization of the Domain	6
	3.2	Taylor Series Derivation	6
	3.3	Bi-material Considerations	7
	3.4	Heat Transfer	9
4	Per	formance Analysis	9
	4.1	Error	9
	4.2	Percent Error	9
	4.3	Extrapolation and Convergence	9
5	Res	sults	
	5.1	Analytical Results	11
	5.1	.1 Case 1: Interface Located at L/2	11
	5.1	.2 Case 2: Interface Located at 3L/4	12
	5.2	Finite Difference Method Results	12
	5.2	.1 Case 1: Interface Located at L/2	13
	5.2	.2 Case 2: Interface Located at 3L/4	14
	5.3	FDM Compared to Analytical Results	15
	5.3	.1 Case 1: Interface Located at L/2	15
	5.3	.2 Case 2: Interface Located at 3L/4	17
	5.4	Convergence of FDM Against the Exact Solution	19
	5.4	.1 Case 1: Interface Located at L/2	19
	5.4	.2 Case 2: Interface Located at 3L/4	21
	5.5	Convergence of FDM Against the Extrapolated Solution	23
	5.5	.1 Case 1: Interface Located at L/2	23
	5.5	.2 Case 2: Interface Located at 3L/4	25
6	Dis	cussion	27

7	Appendix A – FDM/Exact Solution Comparison Graphs	28
8	Appendix B – Temperature Tables for Various Number of Nodes	31
9	Appendix C – Convergence Graphs and Tables	36
10	Appendix D – Code	38

1 Abstract

The purpose of this assignment is to formulate the analytical solution to the problem of heat conduction in a bi-material rod, a behavior governed by a second order ODE, as well as finding the total heat loss to the environment. Both analytical and finite difference method (FDM) techniques were used in the analysis of two separate cases. For the first case, the first material will range from $0 \le x \le 1/2$ and the second material will range from $1/2 \le x \le 1$. For the second case, the material will range from $0 \le x \le 3/4$ and the second material will range from $3/4 \le x \le 1$. In both cases, the boundary conditions of $T(0) = 0^{\circ}$ C and $T(L) = 100^{\circ}$ C were used.

2 **Analytical Solution**

2.1 Initialization

The analytical solution can be derived by breaking up the function over the entire bar into a piecewise function, each defining the section of the bar either side of the interface.

Case 1:
$$T(x) = \begin{cases} T_1(x) & 0 < x < 1/2 \\ T_2(x) & 1/2 < x < 1 \end{cases}$$

Case 2:
$$T(x) = \begin{cases} T_1(x) & 0 < x < 3/4 \\ T_2(x) & 3/4 < x < 1 \end{cases}$$

2.2 **Piecewise Functions**

In order to obtain the respective equations in the previous section, it is necessary to derive separate expressions to define each subdomain. This can be accomplished by utilizing harmonic interpolation functions.

Case 1:

$$T^{+}(x) = -\frac{T_{0}}{\sinh\left(\frac{\alpha_{0}}{2}\right)}\sinh\left(\alpha_{0}\left(x - \frac{1}{2}\right)\right) + \frac{T_{\frac{1}{2}}}{\sinh\left(\frac{\alpha_{0}}{2}\right)}\sinh(\alpha_{0}x) \qquad 0 < x < 1/2$$

$$T^{-}(x) = -\frac{T_{\frac{1}{2}}}{\sinh\left(\frac{\alpha_{1}}{2}\right)}\sinh\left(\alpha_{1}\left(x - \frac{1}{2}\right)\right) + \frac{T_{1}}{\sinh\left(\frac{\alpha_{1}}{2}\right)}\sinh(\alpha_{1}x) \qquad 1/2 < x < 1$$

Case 2:

$$T^{+}(x) = -\frac{T_{0}}{\sinh\left(\frac{3\alpha_{0}}{4}\right)} \sinh\left(\alpha_{0}\left(x - \frac{3}{4}\right)\right) + \frac{T_{\frac{3}{4}}}{\sinh\left(\frac{3\alpha_{0}}{4}\right)} \sinh(\alpha_{0}x) \qquad 0 < x < 3/4$$

$$T^{-}(x) = -\frac{T_{\frac{3}{4}}}{\sinh\left(\frac{\alpha_{1}}{4}\right)} \sinh\left(\alpha_{1}\left(x - \frac{1}{4}\right)\right) + \frac{T_{1}}{\sinh\left(\frac{\alpha_{1}}{4}\right)} \sinh(\alpha_{1}x) \qquad 3/4 < x < 1$$

$$T^{-}(x) = -\frac{T_{\frac{3}{4}}}{\sinh\left(\frac{\alpha_{1}}{4}\right)} \sinh\left(\alpha_{1}\left(x - \frac{1}{4}\right)\right) + \frac{T_{1}}{\sinh\left(\frac{\alpha_{1}}{4}\right)} \sinh(\alpha_{1}x) \qquad 3/4 < x < 1$$

Here, it is clear that there is unknown in each case. $T_{\frac{1}{2}}$ for case one, and $T_{\frac{3}{4}}$ for case two. The following sections will delve into how these values can be determined.

2.3 Boundary Conditions

The equation governing the temperature along the bar includes two boundary conditions that we can use to obtain the above unknowns.

Case 1:

1.
$$Q\left(\frac{1}{2} - 0\right) = Q\left(\frac{1}{2} + 0\right)$$

 $-k_0 A T_1' \left(\frac{1}{2} - 0\right) = -k_1 A T_2' \left(\frac{1}{2} + 0\right)$

Case 2:

1.
$$Q\left(\frac{1}{2} - 0\right) = Q\left(\frac{1}{2} + 0\right)$$

 $-k_0 A T_1' \left(\frac{1}{2} - 0\right) = -k_1 A T_2' \left(\frac{1}{2} + 0\right)$

Using these boundary conditions for each case, we can obtain the following values for the unknown in each case.

Case 1:

$$T_{\frac{1}{2}} = -\frac{T_1\alpha_1k_1}{\sinh\left(\frac{\alpha_1}{2}\right)} \left[\frac{k_0\alpha_0^2}{\left(\frac{h}{k}\sinh^2\frac{\alpha_0}{2} - \alpha_0\sinh\left(\frac{\alpha_0}{2}\right)\cosh\left(-\frac{\alpha_0}{2}\right)\right)} - \frac{k_0\alpha_0}{\sinh\left(\frac{\alpha_0}{2}\right)}\cosh\left(\frac{\alpha_0}{2}\right) - \frac{k_1\alpha_1}{\sinh\left(\frac{\alpha_1}{2}\right)}\cosh\left(-\frac{\alpha_1}{2}\right) \right]^{-1}$$

Case 2:

$$T_{\frac{3}{4}} = -\frac{T_{1}\alpha_{1}k_{1}}{\sinh\left(\frac{\alpha_{1}}{4}\right)} \left[\frac{k_{0}\alpha_{0}^{2}}{\left(\frac{h}{L}\sinh^{2}\frac{3a_{0}}{4} - \alpha_{0}\sinh\left(\frac{3\alpha_{0}}{4}\right)\cosh\left(-\frac{3\alpha_{0}}{4}\right)\right)} - \frac{k_{0}\alpha_{0}}{\sinh\left(\frac{3\alpha_{0}}{4}\right)}\cosh\left(\frac{3\alpha_{0}}{4}\right) - \frac{k_{1}\alpha_{1}}{\sinh\left(\frac{\alpha_{1}}{4}\right)}\cosh\left(-\frac{\alpha_{1}}{4}\right) \right]^{-1}$$

2.4 Heat Transfer

In order to derive the equation for the heat transfer at the right end of the bar, the derivative of the temperature equation of the right bar is taken at L.

Case 1:

$$\frac{dT}{dx} \mid_{L} = -k_{1}A \left[-\frac{T_{\frac{1}{2}}\alpha_{1}}{\sinh\left(\frac{\alpha_{1}}{2}\right)} + \frac{T_{L}\alpha_{1}\cosh\left(\frac{\alpha_{1}}{2}\right)}{\sinh\left(\frac{\alpha_{1}}{2}\right)} \right]$$

Case 2:

$$\frac{dT}{dx} \mid_{L} = -k_{1}A \left[-\frac{T_{\frac{3}{4}}\alpha_{1}}{\sinh\left(\frac{\alpha_{1}}{4}\right)} + \frac{T_{L}\alpha_{1}\cosh\left(\frac{\alpha_{1}}{4}\right)}{\sinh\left(\frac{\alpha_{1}}{4}\right)} \right]$$

3 Finite Difference Method

3.1 Discretization of the Domain

To utilize the FDM, the domain must be discretized into N+1 evenly spaced points. As shown in the figure below, the discretized domain is x_i for i = 0, 1, ..., N with the spacing between the nodes $\Delta x = h$ and $u_i = u(x_i)$.

3.2 Taylor Series Derivation

From Taylor Series, the following is derived:

$$\begin{split} u(x_{i+1}) &= u(x_i + dx) = u(x_i) + dx u'(x_i) + \frac{dx^2}{2} u''(x_i) + \frac{dx^3}{6} u'''(x_i) + \frac{dx^4}{24} u^{(4)}(x_i) + \dots \\ u(x_{i-1}) &= u(x_i - dx) = u(x_i) - dx u'(x_i) + \frac{dx^2}{2} u''(x_i) - \frac{dx^3}{6} u'''(x_i) + \frac{dx^4}{24} u^{(4)}(x_i) - \dots \end{split}$$

Adding these equations yields:

$$u(x_{i+1}) + u(x_{i-1}) = 2u(x_i) + dx^2 u''(x_i) + \frac{dx^4}{12}u^{(4)}(x_i) + \dots$$

Solving for $u''(x_i)$ yields:

$$u''(x_i) = \frac{u(x_{i-1}) - 2u(x_i) + u(x_{i+1})}{dx^2} + O(dx^2)$$

By neglecting the truncation error of the second order Taylor Series expansion, we can obtain an approximate value for $u''(x_i)$ which we denote by \bar{u}_i'' as shown below:

$$u''(x_i) \approx \bar{u}_i'' = \frac{\bar{u}_{i-1} - 2\bar{u}_i + \bar{u}_{i+1}}{dx^2}$$

Substituting this approximation into Equation 1 yields the following set of equations:

$$\mp \frac{\bar{u}_0 - 2\bar{u}_1 + \bar{u}_2}{dx^2} + w^2\bar{u}_1 = 0$$

$$\mp \frac{\bar{u}_1 - 2\bar{u}_2 + \bar{u}_3}{dx^2} + w^2\bar{u}_2 = 0$$

$$\mp \frac{\bar{u}_2 - 2\bar{u}_3 + \bar{u}_4}{dx^2} + w^2\bar{u}_3 = 0$$

$$\vdots$$

$$\mp \frac{\bar{u}_{N-2} - 2\bar{u}_{N-1} + \bar{u}_N}{dx^2} + w^2\bar{u}_{N-1} = 0$$

If these are now multiplied by our h^2 , our equations take on the form:

$$\mp (\bar{u}_{i-1} - 2\bar{u}_i + \bar{u}_{i+1}) + w^2 dx^2 \bar{u}_i = 0$$

$$\mp \bar{u}_{i-1} \pm 2\bar{u}_i \mp \bar{u}_{i+1} + w^2 dx^2 \bar{u}_i = 0$$

$$\mp \bar{u}_{i-1} + (\pm 2 + w^2 dx^2) \bar{u}_i \mp \bar{u}_{i+1} = 0$$

If these are now multiplied by \mp , this yields:

$$-\bar{u}_{i-1} + (2 \pm w^2 dx^2)\bar{u}_i - \bar{u}_{i+1} = 0$$

The specified boundary conditions are u(0) = 0 and u(1) = 100. If we let $\kappa = 2 \mp \omega^2 dx^2$, then the above expressions can be represented by a matrix below. This matrix can then calculate the unknowns $\overline{u_1}$, $\overline{u_2}$, $\overline{u_3}$, ... $\overline{u_{N-1}}$.

$$\begin{bmatrix} \kappa & -1 & 0 & \dots & 0 & 0 \\ -1 & \kappa & -1 & \dots & 0 & 0 \\ 0 & -1 & \kappa & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & -1 & 0 \\ 0 & 0 & 0 & -1 & \kappa & -1 \\ 0 & 0 & 0 & 0 & -1 & \kappa \end{bmatrix} \begin{bmatrix} \bar{u}_1 \\ \bar{u}_2 \\ \bar{u}_3 \\ \vdots \\ \bar{u}_{N-2} \\ \bar{u}_{N-1} \end{bmatrix} = \begin{bmatrix} \bar{u}_0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \bar{u}_L \end{bmatrix}$$

Thus, values for all the nodes, i = 0, 1, ..., N, and the intermediate values can be obtained by performing interpolation.

3.3 Bi-material Considerations

However, since this is a bi-material bar, some additional modifications must be made to the original matrix equation above. The first segment of the bar will have parameters denoted with a subscript of 0 and the second segment of the bar will have parameters denoted with a subscript of 1. The third and most important medication that must be made is that continuity must be kept at the interface between the two halves. The first segment of the matrix will use the same matrix formulation and will use $\kappa_0 = 2 \mp \omega_0^2 dx^2$. Here $\omega_0^2 = \frac{hP}{k_0 A}$. The second segment of the bar will also use the same matrix formulation and will have $\kappa_0 = 2 \mp \omega_0^2 dx^2$. Here $\omega_0^2 = \frac{hP}{k_0 A}$.

At the interface, it is known that $Q\left(\frac{1}{2}-0\right)=Q(\frac{1}{2}+0)$, where $Q\left(\frac{1}{2}-0\right)=-k_0Au_0'\left(\frac{1}{2}-0\right)$ and $Q\left(\frac{1}{2}+0\right)=-k_1Au_1'\left(\frac{1}{2}+0\right)$. From here, $u_{0,\left(\frac{N}{2}-1\right)}$ can be approximated.

$$\begin{split} u_0' \Big(\frac{1}{2} - 0 \Big) &= \frac{Q_{\frac{1}{2}}}{-k_0 A} \\ \frac{u_{0,(\frac{N}{2}+1)} - u_{0,(\frac{N}{2}-1)}}{\Delta x} &= -\frac{Q_{\frac{1}{2}}}{k_0 A} \\ u_{0,(\frac{N}{2}+1)} &= u_{0,(\frac{N}{2}-1)} - \frac{Q_{\frac{1}{2}} \Delta x}{k_0 A} \end{split}$$

The original differential equation can also be rewritten in the form $-k_i A u_i'' + h P u_i = 0$. Combining this equation with the second order approximation yields:

$$\begin{split} -k_0Au_0''(1/2) + hPu(1/2) &= 0 \\ -k_0A\frac{u_{0(\frac{N}{2}-1)} - 2u_{0(\frac{N}{2})} + u_{0(\frac{N}{2}+1)}}{\Delta x^2} + hPu_{0(\frac{N}{2})} &= 0 \end{split}$$

Plugging in the previous equation yields:

$$-k_0A\frac{u_{0(\frac{N}{2}-1)}-2u_{0(\frac{N}{2})}+u_{0,(\frac{N}{2}-1)}-\frac{Q_{\frac{1}{2}}\Delta x}{k_0A}}{\Delta x^2}+hPu_{0(\frac{N}{2})}=0$$

Rearranging and simplifying yields:

$$-k_0 A \frac{2(u_{0(\frac{N}{2}-1)} - u_{0(\frac{N}{2})})}{\Delta x^2} + h P u_{0(\frac{N}{2})} = \frac{Q_{\frac{1}{2}}}{\Delta x}$$

For the other segment of the bar:

$$-k_1 A \frac{2(u_{1(\frac{N}{2}+1)} - u_{1(\frac{N}{2})})}{\Delta x^2} + h P u_{1(\frac{N}{2})} = -\frac{Q_{\frac{1}{2}}}{\Delta x}$$

Adding the two equations and enforcing continuity yields:

$$-\frac{k_{0}A}{\Delta x}u_{\frac{N}{2}-1} + \left(\frac{k_{0}A}{\Delta x} + \frac{k_{1}A}{\Delta x} + hP\Delta x\right)u_{\frac{N}{2}} - \frac{k_{1}A}{\Delta x}u_{\frac{N}{2}+1} = 0$$

If $k_0 = k_1$ then the same results will be obtained as before. Now that the interface equation has been established, a proper matrix equation for bi-material heat conduction can be created.

$$\begin{bmatrix} \kappa_0 & -1 & 0 & & \dots & & \dots & 0 & 0 \\ -1 & \kappa_0 & -1 & & 0 & & \dots & 0 & 0 \\ 0 & -1 & \ddots & & -1 & & 0 & 0 & 0 \\ 0 & 0 & \frac{-k_0 A}{\Delta x} & (\frac{k_0 A}{\Delta x} + \frac{k_1 A}{\Delta x} + h P \Delta x) & \frac{-k_1 A}{\Delta x} & 0 & 0 \\ 0 & 0 & 0 & & -1 & & \ddots & -1 & 0 \\ 0 & 0 & 0 & & 0 & & -1 & \kappa_1 & -1 \\ 0 & 0 & \dots & & \dots & & 0 & -1 & \kappa_1 \end{bmatrix} \begin{bmatrix} \bar{u}_1 \\ \bar{u}_2 \\ \vdots \\ \bar{u}_{\frac{N}{2}} \\ \vdots \\ \bar{u}_{N-2} \\ \bar{u}_{N-1} \end{bmatrix} = \begin{bmatrix} \bar{u}_0 \\ 0 \\ 0 \\ \vdots \\ \bar{u}_{N-2} \\ \bar{u}_{N-1} \end{bmatrix}$$

In order to derive the matrix for the interface at x=3L/4, some modifications to the above matrix can be made:

$$\begin{bmatrix} \kappa_0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & \kappa_0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & \kappa_0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & \ddots & \vdots & \cdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \kappa_0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & -1 & \kappa_0 & & -1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -\frac{k_0 A}{\Delta x} & (\frac{k_0 A}{\Delta x} + \frac{k_1 A}{\Delta x} + h P \Delta X) & -\frac{k_1 A}{\Delta x} \\ 0 & 0 & 0 & \cdots & 0 & 0 & -1 & \kappa_1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_{2n} \\ u_{N-1} \end{bmatrix} = \begin{bmatrix} u_0 \\ 0 \\ 0 \\ \vdots \\ u_{3N} \\ u_{N-1} \end{bmatrix}$$

3.4 Heat Transfer

The heat transfer in the bar can be obtained by calculating the derivate of the right end of the bar at x = L. This operation can be performed with the following expression:

$$Q_n = \frac{-k_1 A U_{N-1} + k_1 A + \frac{\Delta x^2}{2} h P U_N}{\Lambda x}$$

4 Performance Analysis

4.1 Error

The errors of the numerical solutions are calculated using the equations below:

$$e_h = u(x) - u_h(x)$$

4.2 Percent Error

The percent error of an estimated quantity $Q_{Estimated}$ (calculated using FDM) against its exact values Q_{Exact} is calculated using the equation below:

$$\%Error = \left| \frac{Q_{Exact} - Q_{Estimated}}{Q_{Exact}} \right| \times 100\%$$

4.3 Extrapolation and Convergence

Richardson's Extrapolation was used to extrapolate an approximate of the exact value from a series of approximated values. In general, error is modeled as:

$$Q_{ex} - Q_h = Ch^{\beta}$$

Where Q is the quantity of interest, Q_h is the approximate value at some mesh size h, C is some constant, and β is the convergence rate. In general, it is rare for the exact value to be known, and it is often difficult or impossible to obtain analytical solutions. In this case it is possible to use Richardson's Extrapolation to obtain reasonably accurate approximate value of the exact

solution. If we write this equation at another mesh size, say h/2, the two can be divided and the unknown β can be found.

$$Q_{ex} - Q_h = C(h)^{\beta}$$

$$Q_{ex} - Q_{\frac{h}{2}} = C\left(\frac{h}{2}\right)^{\beta}$$

$$\frac{Q_{ex} - Q_h}{Q_{ex} - Q_{\frac{h}{2}}} = \frac{C(h)^{\beta}}{C(\frac{h}{2})^{\beta}}$$

$$log\left(\frac{Q_{ex} - Q_h}{Q_{ex} - Q_{\frac{h}{2}}}\right) = log\left(\frac{C(h)^{\beta}}{C(\frac{h}{2})^{\beta}}\right)$$

$$log(Q_{ex} - Q_h) - log(Q_{ex} - Q_{\frac{h}{2}}) = \beta log(h) - \beta log\left(\frac{h}{2}\right)$$

$$\beta = \frac{log(Q_{ex} - Q_h) - log(Q_{ex} - Q_{\frac{h}{2}})}{log(h) - log(\frac{h}{2})}$$

Again, Richardson's Extrapolation will be used to derive an expression for an extrapolated value. Here we will have to utilize three mesh sizes rather than the previous two.

$$\begin{split} Q_{ex} - Q_h &= C(h)^{\beta} \approx 2^{\beta} \\ Q_{ex} - Q_{\frac{h}{2}} &= C\left(\frac{h}{2}\right)^{\beta} \approx 2^{\beta} \\ Q_{ex} - Q_{\frac{h}{4}} &= C\left(\frac{h}{4}\right)^{\beta} \approx 2^{\beta} \\ \frac{Q_{ex} - Q_h}{Q_{ex} - Q_{\frac{h}{2}}} \approx 2^{\beta} \approx \frac{Q_{ex} - Q_{\frac{h}{2}}}{Q_{ex} - Q_{\frac{h}{4}}} \\ \frac{Q_{extr} - Q_h}{Q_{extr} - Q_{\frac{h}{2}}} &= 2^{\beta} = \frac{Q_{extr} - Q_{\frac{h}{2}}}{Q_{extr} - Q_{\frac{h}{4}}} \\ (Q_{extr} - Q_h)(Q_{extr} - Q_{\frac{h}{4}}) &= (Q_{extr} - Q_{\frac{h}{2}})^2 \\ Q_{extr} &= \frac{Q_{\frac{h}{2}}^2 - Q_h * Q_{\frac{h}{4}}}{2Q_{\frac{h}{2}} - Q_h - Q_{\frac{h}{4}}} \end{split}$$

From here Q_{extra} can be substituted to solve for β , which yields:

$$\frac{\log\left(\frac{Q_{extr}-Q_h}{Q_{extr}-Q_{\frac{h}{2}}}\right)}{\log(2)} = \beta = \frac{\log\left(\frac{Q_{extr}-Q_{\frac{h}{2}}}{Q_{extr}-Q_{\frac{h}{4}}}\right)}{\log(2)}$$

5 Results

In this section, the results of the analytical solution and the FDM solution for the interface located at x = L/2 and x = 3L/4 are provided. For each case, the analysis was conducted for mesh sizes varying as following: [8, 16, 32, 64, 128, 256, 512, 1024] and k_1 values varying as follows: $k_1 = k_0$ [0.01, 0.1, 1, 10, 100]. Once again, the temperatures at the left end of the two segmented bar was kept at a constant value of 0°C, while the right end of the bar was kept at 100°C. The radius of the bar was set to 0.1 cm, h = 0.4, $k_0 = 0.5$, and $\alpha_1 = 4$.

5.1 Analytical Results

The exact solutions for varying c values are presented below along a range from x = 0 to x = 1. The table below provides the exact numerical values shown in the figure below. The results displayed correspond for a 16-node analysis. Additional data performed for each mesh size can be found in the appropriate section in the appendix section of this report.

5.1.1 Case 1: Interface Located at L/2

Temperature Vs. Nodes = 16	Position Tables	for Exact Analy	sis		
Position (cm)	T, k1 = 0.05	T, k1 = 0.5	T, $k1 = 5$	T, k1 = 50	T, k1 = 500
0	0	0	0	0	0
0.0625	2.52455e-09	0.00583127	0.925662	4.87636	6.69103
0.125	5.2077e-09	0.0120289	1.90948	10.0591	13.8024
0.1875	8.21803e-09	0.0189822	3.01326	15.8738	21.781
0.25	1.17447e-08	0.0271282	4.30636	22.6857	31.128
0.3125	1.60092e-08	0.0369785	5.87	30.923	42.4306
0.375	2.12795e-08	0.049152	7.80244	41.103	56.399
0.4375	2.78867e-08	0.0644135	10.2251	53.8654	73.9107
0.5	3.6246e-08	0.083722	13.2901	70.0119	96.0659
0.5625	2.49706e-06	0.351725	17.1901	72.0483	96.3451
0.625	3.05891e-05	0.851247	22.1701	74.5352	96.6845
0.6875	0.000372665	1.91109	28.543	77.4882	97.0843
0.75	0.00453999	4.22889	36.7091	80.9258	97.5448
0.8125	0.0553084	9.3303	47.1815	84.8694	98.0663
0.875	0.673795	20.5733	60.6181	89.3438	98.6491
0.9375	8.2085	45.3583	77.8631	94.3768	99.2935
1	100	100	100	100	100

5.1.2 Case 2: Interface Located at 3L/4

Temperature Vs. Position Tables for Exact Analysis Nodes = 16

Position (cm)	T, kl = 0.05	T, k1 = 0.5	T, kl = 5	T, kl = 50	T, k1 = 500
0	0	0	0	0	0
0.0625	2.07211e-05	0.0511431	0.925662	2.18777	2.48418
0.125	4.27441e-05	0.105499	1.90948	4.51298	5.12443
0.1875	6.74525e-05	0.166484	3.01326	7.12173	8.08662
0.25	9.63987e-05	0.237928	4.30636	10.1779	11.5569
0.3125	0.000131401	0.32432	5.87	13.8735	15.7532
0.375	0.000174659	0.431087	7.80244	18.4408	20.9392
0.4375	0.000228891	0.564939	10.2251	24.1666	27.4408
0.5	0.000297502	0.734283	13.2901	31.4107	35.6664
0.5625	0.000384805	0.94976	17.1901	40.6282	46.1327
0.625	0.000496283	1.22491	22.1701	52.3982	59.4974
0.6875	0.000638941	1.57701	28.543	67.4602	76.6001
0.75	0.000821741	2.02819	36.7091	86.7605	98.5153
0.8125	0.0550032	8.33901	47.1815	89.2138	98.7936
0.875	0.67377	20.1389	60.6181	92.225	99.1337
0.9375	8.2085	45.1949	77.8631	95.8129	99.5358
1	100	100	100	100	100

5.2 Finite Difference Method Results

The finite difference method solutions for varying c values are presented below along a range from x = 0 to x = 1. The table below provides the exact numerical values shown in the figure below. The results displayed correspond for a 16-node analysis. Additional data performed for each mesh size can be found in the appropriate section in the appendix of this report.

5.2.1 Case 1: Interface Located at L/2

Temperature Vs. Position of Bi-metallic Bar Alpha=4, Interface=0.5, Nodes=16

Temperature Vs. Position Tables for FDM Analysis

Mod	 _	16

Position (cm)	T, kl = 0.05	T, kl = 0.5	T, kl = 5	T, kl = 50	T, kl = 500
0	0	0	0	0	0
0.0625	9.74424e-08	0.00716406	0.932824	4.88467	6.7082
0.125	2.00975e-07	0.0147759	1.92395	10.0746	13.8357
0.1875	3.17069e-07	0.0233112	3.03532	15.8942	21.8279
0.25	4.52979e-07	0.0333034	4.3364	22.7073	31.1843
0.3125	6.172e-07	0.0453771	5.90851	30.9395	42.4897
0.375	8.19997e-07	0.0602869	7.8499	41.1054	56.4508
0.4375	1.07404e-06	0.0789646	10.2819	53.8404	73.94
0.5	1.39522e-06	0.102578	13.3565	69.9405	96.0505
0.5625	4.22327e-05	0.402819	17.2659	71.9876	96.3316
0.625	0.000347025	0.954821	22.2545	74.4846	96.673
0.6875	0.00282072	2.10359	28.6339	77.4472	97.0747
0.75	0.0229239	4.5671	36.803	80.8939	97.5372
0.8125	0.186302	9.88504	47.2722	84.8461	98.0606
0.875	1.51407	21.3811	60.6959	89.3286	98.6453
0.9375	12.3047	46.2404	77.9132	94.3694	99.2916
1	100	100	100	100	100

5.2.2 Case 2: Interface Located at 3L/4

Temperature Vs. Position of Bi-metallic Bar Alpha=4, Interface=0.75, Nodes=16

Temperature Vs. Position Tables for FDM Analysis

10.7	~	а.	_		_	- 1	6
TM	v	u	⊏	3	=	_	О

Position (cm)	T, k1 = 0.05	T, k1 = 0.5	T, k1 = 5	T, kl = 50	T, k1 = 500
0	0	0	0	0	0
0.0625	0.000158595	0.0583121	0.932824	2.1978	2.49682
0.125	0.000327102	0.120269	1.92395	4.53295	5.1497
0.1875	0.000516054	0.189742	3.03532	7.15142	8.12443
0.25	0.000737258	0.271075	4.3364	10.2169	11.6069
0.3125	0.00100454	0.369349	5.90851	13.9208	15.8149
0.375	0.00133461	0.490708	7.8499	18.4949	21.0112
0.4375	0.00174809	0.642736	10.2819	24.2248	27.5208
0.5	0.00227082	0.834935	13.3565	31.4689	35.7504
0.5625	0.00293549	1.07932	17.2659	40.6797	46.2145
0.625	0.00378362	1.39116	22.2545	52.433	59.5669
0.6875	0.00486822	1.78994	28.6339	67.4634	76.6423
0.75	0.00625709	2.3006	36.803	86.7102	98.5078
0.8125	0.184251	8.84507	47.2722	89.1768	98.788
0.875	1.51381	20.9177	60.6959	92.2008	99.1299
0.9375	12.3047	46.0639	77.9132	95.801	99.5339
1	100	100	100	100	100

5.3 FDM Compared to Analytical Results

The finite difference method results compared to the exact solution are presented below along a range from x = 0 to x = 1. The table below provides the exact numerical values shown in the figure below. The results displayed correspond for a 16-node analysis. Additional data performed for each mesh size can be found in the appropriate section in the appendix section of this report.

5.3.1 Case 1: Interface Located at L/2

As can be noted from the graph above, the exact and FDM solutions align very closely. A more detailed comparison of these values are listed on the next page in the form of tables for each value of k_1 .

Temperature Vs. Position Tables for Exact and FDM Analysis $kl = 0.005 \; Nodes = 16$

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.0625	2.52455e-09	0.0625	9.74424e-08
0.125	5.2077e-09	0.125	2.00975e-07
0.1875	8.21803e-09	0.1875	3.17069e-07
0.25	1.17447e-08	0.25	4.52979e-07
0.3125	1.60092e-08	0.3125	6.172e-07
0.375	2.12795e-08	0.375	8.19997e-07
0.4375	2.78867e-08	0.4375	1.07404e-06
0.5	3.6246e-08	0.5	1.39522e-06
0.5625	2.49706e-06	0.5625	4.22327e-05
0.625	3.05891e-05	0.625	0.000347025
0.6875	0.000372665	0.6875	0.00282072
0.75	0.00453999	0.75	0.0229239
0.8125	0.0553084	0.8125	0.186302
0.875	0.673795	0.875	1.51407
0.9375	8.2085	0.9375	12.3047
1	100	1	100

Temperature Vs. Position Tables for Exact and FDM Analysis

k1 = 0.05 Nodes	= 16		
Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.0625	0.00583127	0.0625	0.00716406
0.125	0.0120289	0.125	0.0147759
0.1875	0.0189822	0.1875	0.0233112
0.25	0.0271282	0.25	0.0333034
0.3125	0.0369785	0.3125	0.0453771
0.375	0.049152	0.375	0.0602869
0.4375	0.0644135	0.4375	0.0789646
0.5	0.083722	0.5	0.102578
0.5625	0.351725	0.5625	0.402819
0.625	0.851247	0.625	0.954821
0.6875	1.91109	0.6875	2.10359
0.75	4.22889	0.75	4.5671
0.8125	9.3303	0.8125	9.88504
0.875	20.5733	0.875	21.3811
0.9375	45.3583	0.9375	46.2404
1	100	1	100

Temperature Vs. Position Tables for Exact and FDM Analysis ${\it kl}$ = 0.5 Nodes = 16

T Exact	Position (cm)	T FDM
0	0	0
0.925662	0.0625	0.932824
1.90948	0.125	1.92395
3.01326	0.1875	3.03532
4.30636	0.25	4.3364
5.87	0.3125	5.90851
7.80244	0.375	7.8499
10.2251	0.4375	10.2819
13.2901	0.5	13.3565
17.1901	0.5625	17.2659
22.1701	0.625	22.2545
28.543	0.6875	28.6339
36.7091	0.75	36.803
47.1815	0.8125	47.2722
60.6181	0.875	60.6959
77.8631	0.9375	77.9132
100	1	100
	0 0.925662 1.90948 3.01326 4.30636 5.87 7.80244 10.2251 13.2901 17.1901 22.1701 28.543 36.7091 47.1815 60.6181 77.8631	0.925662 0.0625 1.90948 0.125 3.01326 0.1875 4.30636 0.25 5.87 0.3125 7.80244 0.375 10.2251 0.4375 13.2901 0.5 17.1901 0.5625 22.1701 0.625 28.543 0.6875 36.7091 0.75 47.1815 0.8125 60.6181 0.875 77.8631 0.9375

Temperature Vs. Position Tables for Exact and FDM Analysis $kl = 5.0 \; \text{Nodes} = 16$

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.0625	4.87636	0.0625	4.88467
0.125	10.0591	0.125	10.0746
0.1875	15.8738	0.1875	15.8942
0.25	22.6857	0.25	22.7073
0.3125	30.923	0.3125	30.9395
0.375	41.103	0.375	41.1054
0.4375	53.8654	0.4375	53.8404
0.5	70.0119	0.5	69.9405
0.5625	72.0483	0.5625	71.9876
0.625	74.5352	0.625	74.4846
0.6875	77.4882	0.6875	77.4472
0.75	80.9258	0.75	80.8939
0.8125	84.8694	0.8125	84.8461
0.875	89.3438	0.875	89.3286
0.9375	94.3768	0.9375	94.3694
1	100	1	100

Temperature Vs. Position Tables for Exact and FDM Analysis $\mathrm{k}1\,=\,50.0$ Nodes = $16\,$

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.0625	6.69103	0.0625	6.7082
0.125	13.8024	0.125	13.8357
0.1875	21.781	0.1875	21.8279
0.25	31.128	0.25	31.1843
0.3125	42.4306	0.3125	42.4897
0.375	56.399	0.375	56.4508
0.4375	73.9107	0.4375	73.94
0.5	96.0659	0.5	96.0505
0.5625	96.3451	0.5625	96.3316
0.625	96.6845	0.625	96.673
0.6875	97.0843	0.6875	97.0747
0.75	97.5448	0.75	97.5372
0.8125	98.0663	0.8125	98.0606
0.875	98.6491	0.875	98.6453
0.9375	99.2935	0.9375	99.2916
1	100	1	100

5.3.2 Case 2: Interface Located at 3L/4

As can be noted from the graph above, the exact and FDM solutions align very closely. A more detailed comparison of these values are listed on the next page in the form of tables for each value of k_1 . The translation of the interface location has had a major impact in the heat transfer within the bar, as expected.

Temperature Vs. Position Tables for Exact and FDM Analysis ${\tt kl} = 0.005~{\tt Nodes} = 16$

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.0625	2.07211e-05	0.0625	0.000158595
0.125	4.27441e-05	0.125	0.000327102
0.1875	6.74525e-05	0.1875	0.000516054
0.25	9.63987e-05	0.25	0.000737258
0.3125	0.000131401	0.3125	0.00100454
0.375	0.000174659	0.375	0.00133461
0.4375	0.000228891	0.4375	0.00174809
0.5	0.000297502	0.5	0.00227082
0.5625	0.000384805	0.5625	0.00293549
0.625	0.000496283	0.625	0.00378362
0.6875	0.000638941	0.6875	0.00486822
0.75	0.000821741	0.75	0.00625709
0.8125	0.0550032	0.8125	0.184251
0.875	0.67377	0.875	1.51381
0.9375	8.2085	0.9375	12.3047
1	100	1	100

Temperature Vs. Position Tables for Exact and FDM Analysis ${\tt kl} = 0.05 \; {\tt Nodes} = 16$

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.0625	0.0511431	0.0625	0.0583121
0.125	0.105499	0.125	0.120269
0.1875	0.166484	0.1875	0.189742
0.25	0.237928	0.25	0.271075
0.3125	0.32432	0.3125	0.369349
0.375	0.431087	0.375	0.490708
0.4375	0.564939	0.4375	0.642736
0.5	0.734283	0.5	0.834935
0.5625	0.94976	0.5625	1.07932
0.625	1.22491	0.625	1.39116
0.6875	1.57701	0.6875	1.78994
0.75	2.02819	0.75	2.3006
0.8125	8.33901	0.8125	8.84507
0.875	20.1389	0.875	20.9177
0.9375	45.1949	0.9375	46.0639
1	100	1	100

Temperature Vs. Position Tables for Exact and FDM Analysis ${\it kl}$ = 0.5 Nodes = 16

Position (cm)		Position (cm)	T FDM
0	0	0	0
0.0625	0.925662	0.0625	0.932824
0.125	1.90948	0.125	1.92395
0.1875	3.01326	0.1875	3.03532
0.25	4.30636	0.25	4.3364
0.3125	5.87	0.3125	5.90851
0.375	7.80244	0.375	7.8499
0.4375	10.2251	0.4375	10.2819
0.5	13.2901	0.5	13.3565
0.5625	17.1901	0.5625	17.2659
0.625	22.1701	0.625	22.2545
0.6875	28.543	0.6875	28.6339
0.75	36.7091	0.75	36.803
0.8125	47.1815	0.8125	47.2722
0.875	60.6181	0.875	60.6959
0.9375	77.8631	0.9375	77.9132
1	100	1	100
0.1875 0.25 0.3125 0.375 0.4375 0.5 0.5625 0.625 0.625 0.75 0.8125 0.875	3.01326 4.30636 5.87 7.80244 10.2251 13.2901 17.1901 22.1701 28.543 36.7091 47.1815 60.6181 77.8631	0.1875 0.25 0.3125 0.375 0.4375 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875	3.03532 4.3364 5.90851 7.8499 10.2819 13.3565 17.2659 22.2545 28.6339 36.803 47.2722 60.6959 77.9132

Temperature Vs. Position Tables for Exact and FDM Analysis ${\tt kl}\,=\,5.0~{\tt Nodes}\,=\,16$

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.0625	2.18777	0.0625	2.1978
0.125	4.51298	0.125	4.53295
0.1875	7.12173	0.1875	7.15142
0.25	10.1779	0.25	10.2169
0.3125	13.8735	0.3125	13.9208
0.375	18.4408	0.375	18.4949
0.4375	24.1666	0.4375	24.2248
0.5	31.4107	0.5	31.4689
0.5625	40.6282	0.5625	40.6797
0.625	52.3982	0.625	52.433
0.6875	67.4602	0.6875	67.4634
0.75	86.7605	0.75	86.7102
0.8125	89.2138	0.8125	89.1768
0.875	92.225	0.875	92.2008
0.9375	95.8129	0.9375	95.801
1	100	1	100

Temperature Vs. Position Tables for Exact and FDM Analysis ${\tt kl}\,=\,50.0$ Nodes = 16

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.0625	2.48418	0.0625	2.49682
0.125	5.12443	0.125	5.1497
0.1875	8.08662	0.1875	8.12443
0.25	11.5569	0.25	11.6069
0.3125	15.7532	0.3125	15.8149
0.375	20.9392	0.375	21.0112
0.4375	27.4408	0.4375	27.5208
0.5	35.6664	0.5	35.7504
0.5625	46.1327	0.5625	46.2145
0.625	59.4974	0.625	59.5669
0.6875	76.6001	0.6875	76.6423
0.75	98.5153	0.75	98.5078
0.8125	98.7936	0.8125	98.788
0.875	99.1337	0.875	99.1299
0.9375	99.5358	0.9375	99.5339
1	100	1	100

5.4 Convergence of FDM Against the Exact Solution

The following graphs and tables show the convergence of the FDM solution with the exact solution.

5.4.1 Case 1: Interface Located at L/2

		Log ax		
Convergence	using exact	solution with kl	= 0.005	
dx	q_dot(1)	q_dot(1)_exact	% Error	Beta
0.125	-1.6918	-0.628319	169.258	nan
0.125	-1.6918	-0.628319	169.258	1.49431
0.0625	-1.0058	-0.628319	60.0781	1.74489
0.03125	-0.740943	-0.628319	17.9248	1.91017
0.015625	-0.658284	-0.628319	4.76909	1.97473
0.0078125	-0.635942	-0.628319	1.21334	1.99347
0.00390625	-0.630233	-0.628319	0.304712	1.99835
			0.000000	1 00050
0.00195312	-0.628798	-0.628319	0.0762649	1.99959
		-0.628319 solution with kl		1.99959
	using exact		= 0.05	
Convergence	using exact	solution with kl	= 0.05	
Convergence	using exact	solution with kl	= 0.05 % Error	
Convergence dx	using exact q_dot(1)	solution with kl q_dot(1)_exact	= 0.05 % Error 	Beta nan
Convergence dx 0.125	q_dot(1) 	g_dot(1)_exact 	= 0.05 % Error 	Beta nan 1.86761
Convergence dx 0.125 0.125	q_dot(1) 	solution with kl q_dot(1)_exact 	= 0.05 % Error 	Beta nan 1.86761 1.96058
Convergence dx 0.125 0.125 0.0625	q_dot(1)2.53285 -2.53285	g_dot(1)_exact 	= 0.05 % Error 	Beta nan 1.86761 1.96058 1.98962
Convergence dx 0.125 0.125 0.0625 0.03125 0.015625	e using exact q_dot(1)2.53285 -2.53285 -2.13652 -2.02536	-1.98692 -1.98692 -1.98692 -1.98692 -1.98692 -1.98692	= 0.05 % Error 	Beta nan 1.86761 1.96058 1.98962 1.99737
Convergence dx 0.125 0.125 0.0625 0.03125 0.015625 0.0078125	e using exact q_dot(1)2.53285 -2.53285 -2.13652 -2.02536 -1.9966	-1.98692 -1.98692 -1.98692 -1.98692 -1.98692 -1.98692 -1.98692	= 0.05	Beta nan 1.86761 1.96058 1.98962 1.99737 1.99934

		solution with kl		
dx	q_dot(1)	q_dot(1)_exact	% Error	Beta
0.125	-6.48127	-6.2874	3.08348	nan
0.125	-6.48127		3.08348	1.98369
0.0625	-6.33642		0.779635	1.99583
0.03125	-6.29969		0.195473	1.99895
0.015625	-6.29048		0.0489036	1.99974
	-6.28817		0.0122281	1.99993
	-6.28759		0.00305717	1.99998
0.00195312	-6.28745		0.000764302	2
	using swast	solution with kl		
dx	_	q dot(1)_exact		Beta
dx	q_doc(1)	q_dot(1)_exact	10113 8	Deta
0.125	-15.0367	-14.9029	0.897749	nan
0.125	-15.0367	-14.9029	0.897749	1.98576
0.0625	-14.9367	-14.9029	0.226664	1.99635
0.03125	-14.9114	-14.9029	0.0568095	1.99908
0.015625	-14.905	-14.9029	0.0142114	1.99977
0.0078125	-14.9034	-14.9029	0.00355342	1.99994
0.00390625	-14.903	-14.9029	0.00088839	1.99999
0.00195312	-14.9029	-14.9029	0.000222099	1.99991
Convergence	using exact	solution with kl	= 50.0	
dx		q_dot(1)_exact		Beta
0.125	-18.7366	-18.5395	1.06324	nan
0.125	-18.7366	-18.5395	1.06324	1.98511
0.0625	-18.5893	-18.5395	0.268569	1.99619
0.03125	-18.552	-18.5395	0.0673196	1.99904
0.015625	-18.5426	-18.5395	0.0168411	1.99976
0.0078125	-18.5403	-18.5395	0.00421097	1.99994
0.00390625	-18.5397	-18.5395	0.00105279	1.99992
0.00195312	-18.5396	-18.5395	0.000263212	1.99878

5.4.2 Case 2: Interface Located at 3L/4

Convergence using exact solution with kl = 0.005

dx	q_dot(1)	q_dot(1)_exact	% Error	Beta
0.125	-1.6918	-0.628319	169.259	nan
0.125	-1.6918	-0.628319	169.259	1.49432
0.0625	-1.0058	-0.628319	60.0781	1.74489
0.03125	-0.740943	-0.628319	17.9248	1.91017
0.015625	-0.658284	-0.628319	4.76909	1.97473
0.0078125	-0.635942	-0.628319	1.21334	1.99347
0.00390625	-0.630233	-0.628319	0.304712	1.99835
0.00195312	-0.628798	-0.628319	0.0762649	1.99959

Convergence using exact solution with kl = 0.05

dx	q_dot(1)	q_dot(1)_exact	% Error	Beta
0.125	-2.53957	-1.99063	27.5761	nan
0.125	-2.53957	-1.99063	27.5761	1.86854
0.0625	-2.14096	-1.99063	7.55176	1.96084
0.03125	-2.02925	-1.99063	1.93989	1.98969
0.015625	-2.00036	-1.99063	0.48845	1.99739
0.0078125	-1.99307	-1.99063	0.122334	1.99934
0.00390625	-1.99124	-1.99063	0.0305973	1.99984
0.00195312	-1.99079	-1.99063	0.0076502	1.99996

Convergence	using exact	solution with kl	= 0.5	
dx	q_dot(1)	q_dot(1)_exact	% Error	Beta
0.125	-6.48127	-6.2874	3.08348	nan
0.125	-6.48127	-6.2874	3.08348	1.98369
0.0625	-6.33642	-6.2874	0.779635	1.99583
0.03125	-6.29969	-6.2874	0.195473	1.99895
0.015625	-6.29048	-6.2874	0.0489036	1.99974
0.0078125	-6.28817	-6.2874	0.0122281	1.99993
0.00390625	-6.28759	-6.2874	0.00305717	1.99998
0.00195312	-6.28745	-6.2874	0.000764302	2
Convergence	using exact	solution with kl	= 5.0	
dx	q_dot(1)	q_dot(1)_exact	% Error	Beta
0.125	-11.4608	-11.2973	1.44739	nan
0.125	-11.4608	-11.2973	1.44739	1.9836
0.0625	-11.3386	-11.2973	0.365985	1.99581
0.03125	-11.3076	-11.2973	0.0917627	1.99895
0.015625	-11.2999	-11.2973	0.0229574	1.99974
0.0078125	-11.2979	-11.2973	0.00574041	1.99993
0.00390625	-11.2974	-11.2973	0.00143517	1.99999
0.00195312	-11.2973	-11.2973	0.000358796	1.99995
Convergence	using exact	solution with kl	= 50.0	
dx	q_dot(1)	q_dot(1)_exact	% Error	Beta
0.125	-12.6439	-12.452	1.5408	nan
0.125	-12.6439	-12.452	1.5408	1.98389
0.0625	-12.5005	-12.452	0.389526	1.99588
0.03125	-12.4642	-12.452	0.0976597	1.99897
0.015625	-12.4551	-12.452	0.0244324	1.99974
0.0078125	-12.4528	-12.452	0.00610921	1.99993
0.00390625	-12.4522	-12.452	0.00152737	1.99995
0.00195312	-12.4521	-12.452	0.000381857	1.99934

5.5 Convergence of FDM Against the Extrapolated Solution The following graphs and tables represent the convergence of the FDM solution with the extrapolated values of the FDM solution.

5.5.1 Case 1: Interface Located at L/2

Convergence using Richardson extrapolation with kl = 0.005 q_dot(1) q_dot(1)_extra % Error 0.03125 -1.6918 -0.574374 194.547 1.37299 0.015625 -1.0058 -0.620783 62.0214 1.67996 -0.740943 0.0078125 -0.627667 18.0472 1.88746 0.00390625 -0.658284 -0.628273 4.77661 1.96839 0.00195312 -0.635942 -0.628316 1.21381 1.99184 0.000976562 -0.630233 -0.628318 0.304741 1.99794

Convergence	using Richardson	n extrapolation	with $kl = 0$.05
dx	q_dot(1)	q_dot(1)_extra	% Error	Beta
0.03125	-2.53285	-1.98203	27.7911	1.83402
0.015625	-2.13652	-1.98657	7.54852	1.95067
0.0078125	-2.02536	-1.9869	1.93564	1.98703
0.00390625	-1.9966	-1.98692	0.487176	1.99671
0.00195312	-1.98935	-1.98692	0.122002	1.99918
0.000976562	-1.98753	-1.98692	0.0305136	1.99979

Convergence using Richardson extrapolation with kl = 0.5dx q_dot(1) q_dot(1)_extra % Error Beta 0.03125 -6.48127 -6.28722 3.08654 0.015625 -6.33642 -6.28739 0.779825 1.99479
 0.0078125
 -6.29969
 -6.2874
 0.195484
 1.99869

 0.00390625
 -6.29048
 -6.2874
 0.0489044
 1.99967

 0.00195312
 -6.28817
 -6.2874
 0.0122282
 1.99992

 0.000976562
 -6.28759
 -6.2874
 0.00305717
 1.99998
 Convergence using Richardson extrapolation with kl = 5.0 dx q_dot(1) q_dot(1)_extra % Error Beta -15.0367 -14.9028 0.898506 1.98219 0.03125 0.015625 -14.9367 -14.9029 0.226712 0.0078125 -14.9114 -14.9029 0.0568125 1.99885 0.00390625 -14.905 -14.9029 0.0142116 1.99971 0.00195312 -14.9034 -14.9029 0.00355343 1.99992 0.000976562 -14.903 -14.9029 0.000888387 1.99998 0.0078125 -14.9029 0.0568125 1.99885 0.000976562 -14.903 -14.9029 0.000888387 1.99998 Convergence using Richardson extrapolation with kl = 50.0 dx q_dot(1) q_dot(1)_extra % Error Beta 0.03125 -18.5393 1.06418 -18.7366 1.98138

 0.015625
 -18.5893
 -18.5395
 0.268628
 1.99524

 0.0078125
 -18.552
 -18.5395
 0.0673233
 1.9988

 0.00390625
 -18.5426
 -18.5395
 0.0168413
 1.9997

 0.00195312
 -18.5403
 -18.5395
 0.00421096
 1.99994

 0.000976562
 -18.5397
 -18.5395
 0.00105269
 2.00032

5.5.2 Case 2: Interface Located at 3L/4

FDM Error Convergence Vs. Extrapolated Solution Interface Located at L*0.75

Convergence using Richardson extrapolation with kl = 0.005

d	x q_dot(1)	q_dot(1)_extra	% Error	Beta
0.03125	-1.6918	-0.574375	194.547	1.373
0.015625	-1.0058	-0.620783	62.0214	1.67996
0.0078125	-0.740943	-0.627667	18.0472	1.88746
0.00390625	-0.658284	-0.628273	4.77661	1.96839
0.00195312	-0.635942	-0.628316	1.21381	1.99184
0.00097656	2 -0.630233	-0.628318	0.304741	1.99794

Convergence using Richardson extrapolation with kl = 0.05

dx	q_dot(1)	q_dot(1)_extra	% Error	Beta
0.03125	-2.53957	-1.98575	27.8898	1.8352
0.015625	-2.14096	-1.99028	7.57102	1.951
0.0078125	-2.02925	-1.99061	1.94108	1.98711
0.00390625	-2.00036	-1.99063	0.488524	1.99673
0.00195312	-1.99307	-1.99063	0.122338	1.99918
0.000976562	-1.99124	-1.99063	0.0305976	1.9998

Convergence using Richardson extrapolation with kl = 0.5

dx	q_dot(1)	q_dot(1)_extra	% Error	Beta
0.03125	-6.48127	-6.28722	3.08654	1.9796
0.015625	-6.33642	-6.28739	0.779825	1.99479
0.0078125	-6.29969	-6.2874	0.195484	1.99869
0.00390625	-6.29048	-6.2874	0.0489044	1.99967
0.00195312	-6.28817	-6.2874	0.0122282	1.99992
0.000976562	-6.28759	-6.2874	0.00305717	1.99998

Convergence using Richardson extrapolation with kl = 5.0

d	ix q_dot(1)	q_dot(1)_extra	% Error	Beta
0.03125	-11.4608	-11.2971	1.44881	1.97949
0.015625	-11.3386	-11.2972	0.366075	1.99476
0.0078125	-11.3076	-11.2973	0.0917683	1.99868
0.00390625	-11.2999	-11.2973	0.0229578	1.99967
0.00195312	-11.2979	-11.2973	0.00574044	1.99992
0.00097656	52 -11.2974	-11.2973	0.00143516	2.00001

Convergence using Richardson extrapolation with kl = 50.0

	dx q	_dot(1) (q_dot(1)_extra	% Error	Beta
0.03125	-	12.6439	-12.4518	1.54229	1.97986
0.015625	-	12.5005	-12.452	0.389619	1.99485
0.0078125	_	12.4642	-12.452	0.0976655	1.99871
0.0039062	5 -	12.4551	-12.452	0.0244328	1.99968
0.0019531	2 -	12.4528	-12.452	0.00610921	1.99993
0.0009765	62 -	12.4522	-12.452	0.0015273	2.00016

6 Discussion

In this assignment, the heat transfer within a bi-material bar with boundary conditions of T(0) = 0°C and T(L) = 100°C was analyzed using two methods. The first method consisted of deriving the analytical solution with the utilization of harmonic functions. The benefit of this method is that this exact solution will derive the temperature at any place within the bar. However, obtaining an exact solution is not always a possibility, thus, a solution derived utilizing the finite difference method can be used instead. This second method can derive a solution for the temperature of the bar at several nodes within the bar. However, its accuracy is dependent on the number of nodes used. These two methods were utilized in two different cases. In the first case, the interface between the two materials was located at the midpoint of the bar. In the second case, the interface between the two materials was located at the three-fourths point of the bar.

As evident from the various graphs provided in the results section of this report, the heat conduction as a relatively smooth transition for values of $k_1 < k_0$. When the value of $k_1 = k_0$, the heat transfer within the bar resembles the solution of a bar made of a singular material. This result is expected. For values of $k_1 > k_0$, a sharper transition in the heat transfer solution can be seen. This result makes intuitive sense as materials with a lower heat conductivity value will resist changes in temperature and will produce a greater heat gradient.

An investigation into the convergence plots of the FDM solution against the exact solution shows that the slope of the plots is 2, which approximately corresponds to the β values found in the convergence tables. This also matched the second order finite difference method solution. An similar investigation into the convergence plots of the FDM solution against the Richardson's extrapolated solution shows the same results. This shows that the Richardson's Extrapolation is an extremely useful tool in quickly deriving values close to the exact solution when an exact solution is incapable of being derived.

7 Appendix A – FDM/Exact Solution Comparison Graphs

The following graphs show the comparison of the FDM and exact solutions at various thermal conductivity values. Each graph was obtained using a different number of nodes. It is notable that the exact and FDM solutions tend to align over top of each other and thus may falsely give the appearance that there is missing data.

8 Appendix B – Temperature Tables for Various Number of Nodes

Note that the tables for nodes greater than 32 are not provided due to the abundance in data provided by these tables. These unincluded tables can be generated using the attached python script.

mperature Vs. = 0.005 Nodes		s for Exact and F	DM Analysis	, ,	8 T Exact	Position (cm)	T FDM
		Position (cm)		0		0	
				-	1.90948	•	•
0		•	0				
0.125				0.25			7.98993
				0.375			
0.375							13.5521
0.5							
0.625	3.05891e-05	0.625	0.00509732	0.75	36.7091	0.75	37.0783
0.75	0.00453999	0.75	0.137552	0.875	60.6181	0.875	60.9237
0.875	0.673795	0.875	2 7000		400	1	
1		1		1		_	100
1 nperature Vs. = 0.05 Nodes	100 Position Tables = 8	1 s for Exact and F	100 DM Analysis	Temperature Vs. k1 = 5.0 Nodes =	Position Tak	les for Exact and Position (cm)	d FDM Anal
1 aperature Vs. = 0.05 Nodes	100 Position Tables = 8	1 for Exact and F Position (cm)	100 DM Analysis	Temperature Vs. k1 = 5.0 Nodes = Position (cm)	Position Tak 8 T Exact	Position (cm)	d FDM Anal
1 aperature Vs. = 0.05 Nodes	100 Position Tables = 8 T Exact	1 for Exact and F Position (cm)	100 DM Analysis	Temperature Vs. k1 = 5.0 Nodes = Position (cm)	Position Tak 8 T Exact	Position (cm)	d FDM Anal T FDM
1 aperature Vs. = 0.05 Nodes Position (cm)	100 Position Tables = 8 T Exact	for Exact and F Position (cm)	100 DM Analysis T FDM	Temperature Vs. k1 = 5.0 Nodes = Position (cm)	Position Tak 8 T Exact	Position (cm)	d FDM Anal T FDM
1 mperature Vs. = 0.05 Nodes Position (cm) 0 0.125	100 Position Tables = 8 T Exact 0 0.0120289	for Exact and F Position (cm) 0 0.125	100 DM Analysis T FDM 0 0.0239775	Temperature Vs. k1 = 5.0 Nodes = Position (cm)	Position Tak 8 T Exact 0 10.0591	Position (cm) 0 0.125	T FDM
nperature Vs. = 0.05 Nodes	100 Position Tables = 8 T Exact	for Exact and F Position (cm) 0 0.125	T FDM 0 0.0239775 0.0539494	Temperature Vs. k1 = 5.0 Nodes = Position (cm)	Position Tak 8 T Exact 0 10.0591 22.6857	Position (cm) 0 0.125	T FDM
1 aperature Vs. = 0.05 Nodes Position (cm) 0 0.125 0.25 0.375	100 Position Tables = 8 T Exact 0 0.0120289 0.0271282 0.049152	1 Position (cm) 0 0.125 0.25 0.375	T FDM O 0.0239775 0.0539494 0.0974086	Temperature Vs. k1 = 5.0 Nodes = Position (cm) 0 0 0.125 0.25	Position Tak 8 T Exact 0 10.0591 22.6857 41.103	Position (cm) 0 0.125 0.25 0.375	T FDM
1 mperature Vs. = 0.05 Nodes Position (cm) 0 0.125 0.25 0.375 0.5	100 Position Tables = 8 T Exact 0 0.0120289 0.0271282 0.049152 0.083722	1 Position (cm) 0 0.125 0.25 0.375 0.5	T FDM T FDM 0 0.0239775 0.0539494 0.0974086 0.16522	Temperature Vs. k1 = 5.0 Nodes = Position (cm) 0 0.125 0.25 0.375	Position Tak 8 T Exact	Position (cm) 0 0.125 0.25 0.375 0.5	T FDM Anal T FDM 0 10.1198 22.7695 41.1115 69.7315
1 mperature Vs. = 0.05 Nodes Position (cm) 0 0.125 0.25 0.375	100 Position Tables = 8 T Exact 0 0.0120289 0.0271282 0.049152 0.083722	1 Position (cm) 0 0.125 0.25 0.375 0.5 0.625	T FDM O 0.0239775 0.0539494 0.0974086	Temperature Vs. k1 = 5.0 Nodes = Position (cm) 0 0.125 0.25 0.375 0.5	Position Tak 8 T Exact 0 10.0591 22.6857 41.103 70.0119 74.5352	Position (cm) 0 0 0.125 0.25 0.375 0.5 0.625	T FDM Anal T FDM 0 10.1198 22.7695 41.1115 69.7315 74.3368
1 mperature Vs. = 0.05 Nodes Position (cm) 0 0.125 0.25 0.375 0.5 0.625 0.75	100 Position Tables = 8 T Exact 0 0.0120289 0.0271282 0.049152 0.083722 0.851247	1 Position (cm) 0 0.125 0.25 0.375 0.5 0.625 0.75	T FDM T FDM 0 0.0239775 0.0539494 0.0974086 0.16522 1.25638	Temperature Vs. k1 = 5.0 Nodes = Position (cm) 0 0.125 0.25 0.375 0.5 0.625	Position Tak 8 T Exact 	Position (cm) 0 0.125 0.25 0.375 0.5 0.625 0.75	T FDM Anal T FDM 10.1198 22.7695 41.1115 69.7315 74.3368

Temperature Vs. Position Tables for Exact and FDM Analysis $k1\,=\,50.0$ Nodes = 8

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
0.125	13.8024	0.125	13.9327
0.25	31.128	0.25	31.3485
0.375	56.399	0.375	56.6015
0.5	96.0659	0.5	96.0049
0.625	96.6845	0.625	96.6389
0.75	97.5448	0.75	97.5146
0.875	98.6491	0.875	98.634
1	100	1	100

Temperature Vs. Nodes = 8	Position Tables	for Exact Analys	sis		
Position (cm)	T, k1 = 0.05	T, k1 = 0.5	T, k1 = 5	T, k1 = 50	T, $k1 = 500$
0	0	0	0	0	0
0.125	5.2077e-09	0.0120289	1.90948	10.0591	13.8024
0.25	1.17447e-08	0.0271282	4.30636	22.6857	31.128
0.375	2.12795e-08	0.049152	7.80244	41.103	56.399
0.5	3.6246e-08	0.083722	13.2901	70.0119	96.0659
0.625	3.05891e-05	0.851247	22.1701	74.5352	96.6845
0.75	0.00453999	4.22889	36.7091	80.9258	97.5448
0.875	0.673795	20.5733	60.6181	89.3438	98.6491
1	100	100	100	100	100
Temperature Vs.	Position Tables	for FDM Analysis	3		
Position (cm)	T, k1 = 0.05	T, k1 = 0.5	T, k1 = 5	T, k1 = 50	T, k1 = 500
Position (cm)	T, k1 = 0.05	T, k1 = 0.5	T, k1 = 5	T, k1 = 50	T, k1 = 500
	T, k1 = 0.05		T, k1 = 5		
0		0	0	0	0
0 0.125	0	0 0.0239775	0 1.96675	0 10.1198	0 13.9327
0 0.125 0.25	0 1.10339e-05	0 0.0239775 0.0539494	0 1.96675 4.42519	0 10.1198 22.7695	0 13.9327 31.3485
0 0.125 0.25 0.375	0 1.10339e-05 2.48263e-05	0 0.0239775 0.0539494 0.0974086	0 1.96675 4.42519 7.98993	0 10.1198 22.7695 41.1115	0 13.9327 31.3485 56.6015
0 0.125 0.25 0.375 0.5	0 1.10339e-05 2.48263e-05 4.48253e-05	0 0.0239775 0.0539494 0.0974086 0.16522	0 1.96675 4.42519 7.98993 13.5521	0 10.1198 22.7695 41.1115 69.7315	0 13.9327 31.3485 56.6015 96.0049
0 0.125 0.25 0.375 0.5	0 1.10339e-05 2.48263e-05 4.48253e-05 7.60306e-05	0 0.0239775 0.0539494 0.0974086 0.16522 1.25638	0 1.96675 4.42519 7.98993 13.5521 22.5024	0 10.1198 22.7695 41.1115 69.7315 74.3368	0 13.9327 31.3485 56.6015 96.0049 96.6389
0 0.125 0.25 0.375 0.5 0.625 0.75	0 1.10339e-05 2.48263e-05 4.48253e-05 7.60306e-05 0.00509732	0 0.0239775 0.0539494 0.0974086 0.16522 1.25638 5.48851	0 1.96675 4.42519 7.98993 13.5521 22.5024 37.0783	0 10.1198 22.7695 41.1115 69.7315 74.3368 80.8005	0 13.9327 31.3485 56.6015 96.0049 96.6389 97.5146

Temperature Vs. Position Tables for Exact and FDM Analysis
k1 = 0.005 Nodes = 16
Position (cm) T Exact Position (cm) T FDM
Position (cm) T Exact Position (cm) T FDM
Position (cm) T Exact Position (cm) T FDM

Temperature Vs. Position Tables for Exact and FDM Analysis
Temperature Vs. Position Tables for Exact and FDM Analysis k1 = 5.0 Nodes = 16 | Position (cm) | T Exact | FOSITION (Cm) | T Exact | T Exact | F Exact | Exac

Temperature Vs. Position Tables for Exact and FDM Analysis $k1\,=\,50.0$ Nodes = 16

Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0
-	6.69103		6.7082
	13.8024		13.8357
0.1875	21.781	0.1875	21.8279
0.25	31.128	0.25	31.1843
0.3125	42.4306	0.3125	42.4897
0.375	56.399	0.375	56.4508
0.4375	73.9107	0.4375	73.94
0.5	96.0659	0.5	96.0505
0.5625	96.3451	0.5625	96.3316
0.625	96.6845	0.625	96.673
0.6875	97.0843	0.6875	97.0747
0.75	97.5448	0.75	97.5372
0.8125	98.0663	0.8125	98.0606
0.875	98.6491	0.875	98.6453
0.9375	99.2935	0.9375	99.2916
1	100	1	100

Temperature Vs. Position Tables for Exact Analysis

Nodes	= 16
-------	------

Position (cm)	T, k1 = 0.05	T, k1 = 0.5	T, k1 = 5	T, k1 = 50	T, k1 = 500
0	0	0	0	0	0
0.0625	2.52455e-09	0.00583127	0.925662	4.87636	6.69103
0.125	5.2077e-09	0.0120289	1.90948	10.0591	13.8024
0.1875	8.21803e-09	0.0189822	3.01326	15.8738	21.781
0.25	1.17447e-08	0.0271282	4.30636	22.6857	31.128
0.3125	1.60092e-08	0.0369785	5.87	30.923	42.4306
0.375	2.12795e-08	0.049152	7.80244	41.103	56.399
0.4375	2.78867e-08	0.0644135	10.2251	53.8654	73.9107
0.5	3.6246e-08	0.083722	13.2901	70.0119	96.0659
0.5625	2.49706e-06	0.351725	17.1901	72.0483	96.3451
0.625	3.05891e-05	0.851247	22.1701	74.5352	96.6845
0.6875	0.000372665	1.91109	28.543	77.4882	97.0843
0.75	0.00453999	4.22889	36.7091	80.9258	97.5448
0.8125	0.0553084	9.3303	47.1815	84.8694	98.0663
0.875	0.673795	20.5733	60.6181	89.3438	98.6491
0.9375	8.2085	45.3583	77.8631	94.3768	99.2935
1	100	100	100	100	100

Temperature Vs. Position Tables for FDM Analysis

Nodes	=	16

Position (cm)	T, $k1 = 0.05$	T, k1 = 0.5	T, k1 = 5	T, $k1 = 50$	T, $k1 = 500$
0	0	0	0	0	0
0.0625	9.74424e-08	0.00716406	0.932824	4.88467	6.7082
0.125	2.00975e-07	0.0147759	1.92395	10.0746	13.8357
0.1875	3.17069e-07	0.0233112	3.03532	15.8942	21.8279
0.25	4.52979e-07	0.0333034	4.3364	22.7073	31.1843
0.3125	6.172e-07	0.0453771	5.90851	30.9395	42.4897
0.375	8.19997e-07	0.0602869	7.8499	41.1054	56.4508
0.4375	1.07404e-06	0.0789646	10.2819	53.8404	73.94
0.5	1.39522e-06	0.102578	13.3565	69.9405	96.0505
0.5625	4.22327e-05	0.402819	17.2659	71.9876	96.3316
0.625	0.000347025	0.954821	22.2545	74.4846	96.673
0.6875	0.00282072	2.10359	28.6339	77.4472	97.0747
0.75	0.0229239	4.5671	36.803	80.8939	97.5372
0.8125	0.186302	9.88504	47.2722	84.8461	98.0606
0.875	1.51407	21.3811	60.6959	89.3286	98.6453
0.9375	12.3047	46.2404	77.9132	94.3694	99.2916
1	100	100	100	100	100

Temperature Vs. Position Tables for Exact and FDM Analysis

Temperature Vs. Position Tables for Exact and FDM Analysis $k1\,=\,0.5$ Nodes = 32

k1 = 0.05 Nodes Position (cm)		Position (cm)	T FDM	Position (cm)	T Exact	Position (cm)	T FDM
0	0	0	0	0	0	0	0
0.03125	0.002893	0.03125	=	0.03125	0.459238	0.03125	0.460134
			0.00305429	0.0625	0.925662	0.0625	0.927457
0.0625	0.00583127	0.0625		0.09375	1.40657	0.09375	1.40927
0.09375	0.00886077	0.09375	0.00935452	0.125	1.90948	0.125	1.91311
0.125	0.0120289	0.125	0.0126989	0.15625	2.44227	0.15625	2.44683
0.15625	0.0153852	0.15625	0.0162417	0.1875	3.01326	0.1875	3.01879
0.1875	0.0189822	0.1875	0.0200383	0.21875	3.6314	0.21875	3.63792
0.21875	0.0228763	0.21875	0.0241479	0.25	4.30636	0.25	4.31389
0.25	0.0271282	0.25	0.0286349	0.28125	5.04869	0.28125	5.05726
0.28125	0.0318045	0.28125	0.0335693	0.3125	5.87	0.3125	5.87966
0.3125	0.0369785	0.3125	0.0390282	0.34375	6.78316	0.34375	6.79392
0.34375	0.042731	0.34375	0.045097	0.375		0.375	
0.375	0.049152	0.375		0.40625	8.94379	0.40625	8.95686
0.40625	0.056342	0.40625	0.0594542	0.4375	10.2251	0.4375	
0.4375	0.0644135	0.4375		0.46875	11.6663	0.46875	11.6818
0.46875	0.0734928	0.46875	0.0775418	0.10075	13.2901	0.10075	13.3068
0.5	0.083722	0.5	0.0883282	0.53125	15.1218	0.53125	
0.53125	0.201755	0.53125	0.209993	0.5625	17.1901	0.5625	17.2091
0.5625	0.351725	0.5625	0.36447				
0.59375	0.557371	0.59375	0.575895	0.59375			
0.625	0.851247	0.625	0.877304	0.625	22.1701	0.625	22.1913
0.65625	1.27987	0.65625	1.31579	0.65625		0.65625	
0.6875	1.91109	0.6875	1.95987	0.6875	28.543	0.6875	28.5658
0.71875	2.84483	0.71875	2.91018	0.71875	32.3728	0.71875	32.3961
0.75	4.22889	0.75	4.31521	0.75	36.7091	0.75	36.7326
0.78125	6.28236	0.78125	6.39448	0.78125	41.6197	0.78125	41.6431
0.8125	9.3303	0.8125	9.4729	0.8125	47.1815	0.8125	47.2043
0.84375	13.8552	0.84375	14.0315	0.84375	53.4814	0.84375	53.503
0.875	20.5733	0.875	20.7824	0.875	60.6181	0.875	60.6376
0.90625	30.548	0.90625	30.7807	0.90625	68.7032	0.90625	68.7198
0.9375	45.3583	0.9375	45.5884	0.9375	77.8631	0.9375	77.8757
0.96875	67.3487	0.96875	67.5192	0.96875	88.2413	0.96875	88.2484
1	100	1	100	1	100	1	100

Temperature Vs. Position Tables for Exact and FDM Analysis k1 = 5.0 Nodes = 32Temperature Vs. Position Tables for Exact and FDM Analysis Position (cm) T Exact Position (cm) k1 = 50.0 Nodes = 32Position (cm) T Exact Position (cm) ______ ____ 0 0 0 0 0 0.03125 3.31955 0.0625 6.69103 0.09375 10.1672
 0.03125
 2.41925
 0.03125
 2.42031

 0.0625
 4.87636
 0.0625
 4.87845

 0.09375
 7.40975
 0.09375
 7.4128

 0.125
 10.0591
 0.125
 10.063

 0.15625
 12.8658
 0.15625
 12.8704
 0 0 0.03125 3.32172
 0.03125
 3.31955
 0.03125
 3.3217

 0.0625
 6.69103
 0.0625
 6.6953

 0.09375
 10.1672
 0.09375
 10.1736

 0.125
 13.8024
 0.125
 13.8108

 0.15625
 17.6536
 0.15625
 17.6638

 0.1875
 21.781
 0.1875
 21.7928

 0.21875
 26.2491
 0.21875
 26.2623

 0.25
 31.128
 0.25
 31.1421
 6.69535 0.1875 15.8789 0.1875 15.8738 0.21875 19.1355 0.25 22.6912 0.21875 19.1301 22.6857 0.25 0.28125 26.5963 0.28125 26.6013 0.28125 36.4938 0.28125 36.5086 0.3125 30.923 0.3125 30.9271 0.3125 42.4306 0.34375 49.0312 0.3125 42.4455 0.34375 49.0456 0.34375 35.7362 0.34375 35.7335 0.375 41.1036 0.40625 47.1133 0.4375 53.8591 0.375 41.103 0.375 56.399 0.40625 64.6491 0.375 56.412 0.40625 47.1156 0.40625 64.6599 0.4375 53.8654 0.40625 64.6359 0.4375 73.9181 0.46875 84.3312 0.5 96.0621 0.53125 96.1944 0.4375 73.9107 0.46875 61.4578 0.46875 61.4465 0.46875 84.3286 0.5 96.0659 0.5 70.0119 69.9939 0.5 0.53125 70.958 0.5625 72.033 0.53125 70.9746 0.53125 96.198 0.5625 96.3451 72.0483 0.5625 0.5625 96.3417 0.59375 73.2206 0.59375 73.2345 0.59375 96.5073 0.59375 96.5041 0.625 74.5225 0.65625 75.9409 74.5352 0.625 0.625 96.6845 0.65625 96.8769 0.625 96.6816 0.625 96.6816 0.65625 96.8742 0.65625 75.9524 0.6875 77.4882 0.6875 77.4779 0.6875 97.0843 0.71875 97.307 0.75 97.5448 0.6875 97 0819 0.71875 79.1452 0.71875 79.136 0.71875 97.3048 0.75 80.9178 0.75 97.5448 0.78125 97.7979 0.8125 98.0663 0.84375 98.35 0.75 80.9258 0.75 97.5429 0.78125 82.8329 0.78125 82.826 0.78125 97.7963 84.8636 0.8125 84.8694 0.8125 0.8125 98.0649 0.84375 87.0338 0.84375 87.0386 0.84375 98.35 0.875 98.6491 0.84375 98.3488 0.875 89.34 0.90625 91.7857 89.3438 0.875 98.6491 0.875 98.6481 0 90625 91 7886 0.90625 98.9636 0.90625 98.9628 0.9375 99.2935 0.96875 99.639 0.9375 94.3768 0.9375 94.3749 0.9375 99.293 0.96875 97.1116 0.96875 97.1125 0.96875 99.6387 100 100 1 100 1 100 Temperature Vs. Position Tables for Exact Analysis Temperature Vs. Position Tables for FDM Analysis Position (cm) T, k1 = 0.05 T, k1 = 0.5 T, k1 = 5 T, k1 = 50 Nodes = 32 Position (cm) T, k1 = 0.05 T, k1 = 0.5 T, k1 = 5 T, k1 = 50 0 3.31955 2.41925 4.87636 0.03125 0.002893 0.459238 0 0 0 0.925662 0.03125 0.00305429 0.460134 2,42031 3.32172 0.0625 0.00583127 6.69103 0.0625 0.00615631 0.927457 4.87845 0.09375 0.00886077 1.40657 7.40975 10.1672 6.69535 0.09375 0.00935452 1,40927 7.4128 10.1736 0.0120289 1.90948 13.8024 0.0126989 1.91311 2.44227 0.15625 0.0153852 12.8658 17.6536 0.15625 0.1875 0.21875 0.0162417 2.44683 12 8704 17.6638 0.1875 0.0189822 3.01326 15.8738 21.781 0.0200383 3.01879 15.8789 21.7928 0.0228763 3.6314 19.1301 26.2491 0.0241479 3.63792 22.6857 19.1355 26,2623 0.0271282 4.30636 31.128 0.25 0.0286349 4.31389 22,6912 31,1421 0.28125 26.5963 36.4938 0.0318045 5.04869 0.28125 0.0335693 5.05726 36.5086 0.0369785 5.87 30.923 42.4306 26.6013 0.3125 0.0390282 5.87966 30.9271 42.4455 0.042731 6.78316 0.34375 35.7335 49.0312 0.34375 0.045097 6.79392 35.7362 49.0456 0.375 0.049152 7.80244 41.103 56.399 0.0518703 7.81434 0.40625 0.056342 8.94379 47.1156 64.6491 0.0594542 0.40625 8.95686 47.1133 64.6599 0.4375 0.0644135 10.2251 73.9107 0.4375 0.067967 10.2393 53.8591 73.9181 0.0734928 0.46875 11.6663 61.4578 84.3286 0.0775418 0.46875 11.6818 84.3312 0.5 0.083722 13.2901 70.0119 96.0659 0.5 0.0883282 13.3068 69.9939 96.0621 0.53125 0.201755 15.1218 96.198 0.53125 0.209993 96.1944 15.1397 70.958 0.5625 0.351725 17.1901 72.0483 96.3451 0.5625 0.36447 17.2091 72.033 96.3417 0.557371 0.59375 19.5274 73.2345 96.5073 0.575895 0.59375 19.5475 73.2206 96.5041 22,1701 96.6845 0.877304 22.1913 96.6816 0.65625 1.27987 25.1597 75.9524 96.8769 0.65625 1.31579 25.1818 75.9409 96.8742 77.4882 0.6875 1.91109 28.543 97.0843 0.6875 1.95987 28.5658 77.4779 97.0819 0.71875 2.84483 32.3728 79.1452 97.307 2.91018 0.71875 32.3961 79.136 97.3048 4.22889 36.7091 97.5448 0.75 80.9258 0.75 4.31521 36.7326 80.9178 97.5429 0.78125 6.28236 41.6197 82.8329 97.7979 0.78125 6.39448 41.6431 97.7963 82.826 98.0663 9.3303 47.1815 0.8125 84.8694 0.8125 9.4729 47.2043 84.8636 98.0649 0.84375 13.8552 53.4814 87.0386 98.35 0.84375 14.0315 53.503 87.0338 98.3488 0.875 20.5733 60.6181 89.3438 98.6491 0.90625 30.548 68.7032 98.9636 68.7198 77.8757 91.7886 0.90625 30.7807 91.7857 98.9628 77.8631 99.2935 45.3583 94.3768 45.5884 94.3749 0.9375 99.293 0.96875 67.3487 88.2413 97.1125 99.639 0.96875 67.5192 88.2484 97.1116 99.6387

100

100

100

100

100

100

100

100

9 Appendix C – Convergence Graphs and Tables

Convergence using Richardson extrapolation with k1 = 5.0				Convergence using Richardson extrapolation with k1 = 50.0					
dx	q_dot(1)	q_dot(1)_extra	% Error	Beta	dx	q_dot(1)	q_dot(1)_extra	% Error	Beta
0.03125	-15.0367	-14.9028	0.898506	1.98219	0.03125	-18.7366	-18.5393	1.06418	1.98138
0.015625	-14.9367	-14.9029	0.226712	1.99544	0.015625	-18.5893	-18.5395	0.268628	1.99524
0.0078125	-14.9114	-14.9029	0.0568125	1.99885	0.0078125	-18.552	-18.5395	0.0673233	1.9988
0.00390625	-14.905	-14.9029	0.0142116	1.99971	0.00390625	-18.5426	-18.5395		1.9997
0.00195312	-14.9034	-14.9029	0.00355343	1.99992	0.00195312	-18.5403	-18.5395		1.99994
0.000976562	-14.903	-14.9029	0.000888387	1.99998	0.000976562	-18.5397	-18.5395	0.00105269	2.00032
Convergence using exact solution with k1 = 5.0				Convergence using exact solution with k1 = 50.0					
dx	_	q_dot(1)_exact	% Error	Beta		_	q_dot(1)_exact		Beta
0.125	-15.0367	-14.9029	0.897749	nan	0.125	-18.7366		1.06324	nan
0.125	-15.0367	-14.9029	0.897749	1.98576	0.125	-18.7366	-18.5395	1.06324	1.98511
0.0625	-14.9367	-14.9029	0.226664	1.99635	0.0625	-18.5893	-18.5395	0.268569	1.99619
0.03125	-14.9114	-14.9029	0.0568095	1.99908	0.03125	-18.552	-18.5395	0.0673196	1.99904
0.015625	-14.905	-14.9029	0.0142114	1.99977	0.015625	-18.5426	-18.5395	0.0168411	1.99976
0.0078125	-14.9034	-14.9029	0.00355342	1.99994	0.0078125	-18.5403	-18.5395	0.00421097	1.99994
0.00390625	-14.903	-14.9029	0.00088839	1.99999	0.00390625	-18.5397	-18.5395	0.00105279	1.99992
0.00195312	-14.9029	-14.9029	0.000222099	1.99991	0.00195312	-18.5396	-18.5395	0.000263212	1.99878

10 Appendix D – Code

```
omega_1 = h*P/(k_1*area)
kappa_0 = 2 + omega_0 * dx ** 2
kappa_1 = 2 + omega_1 * dx ** 2
```