4과목: 데이터롱신/정보통신개론

Check 1. 통신개요

[출제빈도: 下]

1. 통신 이해하기

1) 통신정의 : 거리가 떨어진 상태에서 수단이나 매체를 통해서 정보를 교환하는 것

2) 통신의 방법

- -전기 개발 전: 파발, 봉화, 북소리 등 -전기 개발 이후: 전화, 팩스, 컴퓨터, TV
- 3) 컴퓨터 통신의 발달 과정

2. 데이터 통신 C 정보통신

1) 데이터 통신 정의

- 컴퓨터와 각종 통신기기 사이에서 디지털 형태(0, 1)로 표현된 정보를 송수신 하는 것
- 컴퓨터가 처리한 것을 송수신 하는 것

2) 정보 통신 정의

- 컴퓨터와 통신 기술의 결합에 의해 통신 처리 기능과 정보 처리 기능(컴퓨터를 포함한 모든 처리 장치)은 물론 정보의 변환, 저장 과정이 추가된 형태의 통신 (디지털 형태 포함한 모든 정보)
- 통신 처리 : 기계 대 기계의 통신에서 일어날 수 있는 과정으로써 속도변환, 프로토콜 변환, 포맷변환 등

3) 정보 통신 필요성

- 원격지의 정보처리기기 사이의 효율적 정보교환
- 자원 공유
- 정보통신망의 초고속화 및 글로벌화

4) 정보통신시스템 처리방식

- 오프라인 처리방식 : 초기 전송 방식 (사람이 정보 운반)
- 거래 처리방식 : 거래 상황을 전달
- 원격 일괄 처리방식 : 원거리에서 일괄 처리
- 온라인 처리방식 : 회선을 통해 연결 처리 (시분할 처리방식 사용)
- 실시간 처리방식 : 데이터 발생 즉시 처리

5) SAGE : 최초의 데이터 통신 시스템 (군사용)

6) 통신의 3요소

Check 2. 데이터통신 시스템의 구성 (기본요소) [출제빈도: 中]

1. 단말 장치 (DTE : Data Terminal Equipment) ★☆☆☆☆

- 데이터 통신 시스템과 외부 사용자와의 접속점에 위치하여 최종적 으로 데이터를 입·출력하는 장치
- 지능형(스마트, 인텔리전트) 단말 장치 : CPU와 저장 장치가 내장 된 단말 장치로 프로그램을 설치하여 단독으로 일정 수준 이상의 작업 처리가 가능
- 비지능형(더미) 단말 장치
- : 입력 장치와 출력 장치로만 구성되어 단독으로 작업을 처리할 수 있는 능력이 없는 단말 장치

2. 신호변환 장치 (DCE: Data Circuit Equipment) ★☆☆☆☆

- 전송장치, 회선 종단장치
- 컴퓨터나 단말 장치의 데이터를 통신 회선에 적합한 신호로 변경 하거나, 통신 회선의 신호를 컴퓨터나 단말 장치에 적합한 데이터 로 변경하는 신호 변환 기능을 수행
- 종류 : MODEM, DSU, CODEC

3. 통신제어 장치 (CCU: Communication Control Unit) ★★☆☆☆

- 통신회선을 통하여 송/수신되는 과정을 제어하고 감시한다.

1) 통신제어장치 기능

- 통신회선의 전송속도와 중앙처리장치의 처리속도 사이에서 조정을 수행
- 데이터 전송회선과 컴퓨터와의 전기적 결합과 전송문자를 조립, 분해
- 통신방식 제어, 다중접속 제어, 전송 제어, 오류검출 및 정정, 회선 의 감시 및 접속 제어
- 단말 제어, 변환, 자원 관리, 검색, 시스템 관리, 암호화 (X)
- 전 처리기(FEP)
- : 호스트 컴퓨터와 단말기 사이에 고속 통신 회선으로 설치

2) 통신 소프트웨어 기능

- 데이터 송수신, 하드웨어 제어 기능, 이용자 인터페이스

Check 3. 통신회선

[출제빈도: 中]

- 1. 꼬임선 (Twisted Pair Wire) : 이중나선 ★☆☆☆☆
- 전기적 간섭 현상을 줄이기 위해서 균일하게 서로 감겨있는 형태
- 가격이 저렴하고, 설치가 간편함 -> PC용 LAN
- 거리, 대역폭, 데이터 전송률 면에서 제약이 많음 (고속 전송 X)
- 다른 전기적 신호의 간섭이나 잡음에 영향을 받기가 쉬움
- 2. 동축 케이블 (Coaxial Cable) ★☆☆☆☆
- 주파수 범위가 넓어서 데이터 전송율이 높다
- 꼬임선에 비해 외부간섭이 적다
- 광대역 전송에 적합
- CATV, 근거리 통신망, 장거리 전화에 사용
- 3. 광 섬유 케이블 (Optical Fiber Cable) ★☆☆☆☆
- 유리원료로 광섬유를 여러 가닥 묶어서 케이블의 형태로 만든것
- 빛의 반사 원리를 이용, 세심 경량성, 고속성, 광대역성
- 도청이 어려워 보안 우수, 전기적으로 무유도성, 무누화성
- 전송 손실, 감쇠율 적다 -> 리피터의 설치 간격이 넓으므로 리피터의 소요가 적음
- 설치 비용은 비싸지만 단위 비용은 저렴 (확장 시 고도의 기술 필요)
- 설치, 보수 용이
- LAN의 전송매체 가장 좋음
- 분기나 접속이 가능하지만 어려움 있음
- 4. 위성통신 ★☆☆☆☆
- 위성 통신에 사용하고 있는 주파수 대역은 3~30GHz의 극초단파 (SHF)
- 위성 통신 시스템은 통신 위성, 지구국, 채널(전송로)로 구성됨
- 전송 지연 시간이 길고, 보안성이 취약
- 눈, 비 등으로 감쇠 현상
- 다중 접속 방법
- : 주파수분할(FDMA), 시분할(TDMA), 코드분할(CDMA)

Check 4. 통신용어

[출제빈도: 中]

- 1. bps 와 Baud(보) ★★★★☆
- 1) 데이터 신호 속도 (bps : Bit per second)
- 초당 전송할 수 있는 비트(bit)의 수
- 1200 bps : 1 초 동안에 1,200개의 bit를 전송
- 2) 변조 속도 (Baud)
- 초당 전송할 수 있는 단위 신호의 수
- Baud = 1 / T [T:신호당 속도, 신호 1개 전송에 걸리는 시간(초)]
- 3) bps 와 Baud 의 상관 관계
- Di-bit : Baud당 2비트 전송, tri-bit : 3비트, quad-bit : 4비트
- bps = Baud × N
- 기출) 한 신호당 5(ms)일 때 변조 속도는?
- 신호당 속도 구하기 : 5(ms) = 5 ★ (1/1000)s = 1/200초, T=1/200

- 변조속도(Baud) 구하기 : 1/T = 1/(1/200) = 200 Baud
 - 기출) 쿼드 비트를 사용하여 1,600[baud]의 변조 속도를 지니는 데이터 신호가 있다. 이 때 데이터 신호 속도[bps]는?
 - Baud 당 4비트 이므로, 1,600 * 4 = 6,400 bps
 - 기출) 8비트로 구성된 문자를 2400보우로 전송할 때 문자/분? (단 보우당 2비트)
 - 보우 당 2비트 전송 -> 2bit * 2400Baud = 4800bps
 - 1초에 4800비트를 전송하므로 1초에 8비트로 구성된 문자의 전송 개수 -> 4800/8=600
 - 1초에 600문자 전송
 - -> 1분에 계산 : 600 * 60초 = 36,000문자/분
 - 2. 베이러(Bearer) 속도 ★☆☆☆☆
 - 반응속도: 데이터 신호+동기신호+상태신호
 - 단위속도: bps
 - 3. 주파수(Frequency), 대역폭(Bandwidth) ★☆☆☆☆
 - 주파수 : 초당 신호 수 (그림, 3 Hz)
 - 대역폭 : 최고 주파수와 최저 주파수 사이 간격 -> 음성 주파수 300 ~ 3,400Hz (대역폭 3,100Hz)
 - 4. 샤논(Shannon)의 전송용량 ★★☆☆☆
 - 잡음이 있는 채널의 전송 속도는 그 주파수 대역폭과 신호대 잡음비에 의해 결정된다.
 - 공식 : <u>C = Blog2(1+S/N)</u>
 - **C**apacity : 전송용량(bps), **B**andwidth : 주파수 대역폭,

Signal : 신호 세기

- **N**oise : 잡음 세기, S/N : 신호 대 잡음비
- -> 전송 용량을 증가시키기 위한 방법 : 주파수 대역폭 / 신호 세기 / 신호 대 잡음비 증가
- 기출) 4000Hz의 채널 폭을 가진 채널에서 음성 신호의 S/N비가 7이면 전송속도는?
- B = 4000. S/N = 7 이므로
- -C = 4000 * log2(1+7) = 4000 * 3 = 12,000bps
- 5. 데이터
- 1) 아날로그 데이터: 셀 수 없는 연속적인 값 (소리, 온도 등)
- 2) 디지털 데이터: 셀 수 있는 비연속적(이산적)인 값(숫자 등)
- 6. 주요 데이터의 주파수
- HF (High Frequence): 3 ~ 30 MHz
- VHF (Very High Frequence): 30 ~ 300 MHz
- UHF (Ultra High Frequence) : 300 \sim 3,000 MHz
- SHF (Super High Frequence) : 3,000 \sim 30,000 MHz

Check 5. 전송방식

[출제빈도: 上]

1. 아날로그/디지털 송신 ★☆☆☆☆

- 1) 아날로그 전송 (전화기)
- 2) 디지털 전송 (컴퓨터)
- 리피터 -> 신호 감쇠, 왜곡을 줄일 수 있다
- 암호화를 쉽게 구현할 수 있음
- 전송 장비의 소형화, 가격의 저렴화

2. 직렬/병렬 전송

- 1) 직렬 전송 (통신망)
- 하나의 전송 매체를 통하여 한 비트씩 순서적으로 전송
- 전송 속도가 느리지만 구성 비용이 적게 듬 -> 원거리 전송
- 2) 병렬 전송 (컴퓨터 내부 통신)
- 각 비트들을 여러 개의 전송 매체를 통하여 동시에 전송
- 전송 속도는 빠르지만 구성 비용이 많이 듬 -> 근거리 전송

3. 통신 방식 ★★★★★

단방향 통신 (simple)	- 한 방향으로만 전송 (라디오)
전이중통신	- 양방향 전송이 가능하지만
(Full-Duplex)	동시에 양쪽 방향에서 전송 할 수 없는 방식 (무전기)
반이중 통신	- 동시에 양방향 전송이 가능
(Half-Duplex)	- 전송량이 많고, 전송 매체의 용량이 클때
(i.i.a.i. Supiox)	사용 (전화)

4. 비동기식, 동기식 전송 ★

1) 비동기식 전송 (예비군) : 불규칙 → 저속, 단거리

- 송신측에 관계없이 수신측에서 수신신호로 타이밍을 식별하는 것
- 한 번에 한 문자씩 전송 (앞뒤에 Start Bit와 Stop Bit를 붙여서 구별)
- 전송 효율이 낮다 🗲 저속, 단거리 전송
- 문자와 문자 사이의 휴지 시간(Idle Time)이 불규칙함

2) 동기식 전송 (군인) : 규칙적 🗲 고속, 원거리

- 미리 정해진 수 만큼의 문자열을 한 **블록(프레임)**으로 만들어 일시 에 전송하는 방식
- 전송 속도가 빠름, 시작/종료 비트로 인한 오버헤드가 없고, 휴지 시간이 없으므로, 효율이 좋음

동기,제어 문자 송신 (군인) data SYN 수신 (군대)

3) 효율 계산하기

- 전송효율 = (정보비트 / 전송비트) * 100%
- 전송비트 = 정보비트 + 제어비트

기출) ASCII문자를 전송할 경우 1개의 start bit와 2개의 stop bit 그리고 1개의 parity bit를 사용할 경우에 전송효율은?

- 정보비트 : ascii code=7bit로 구성, 제어비트

: 시작과 끝을 의미 3비트 + 오류검출 1비트

- 전송효율 = 7 / (7+4) * 100% = 7/11 *100% = 63.6%

Check 6. 신호변환

[출제빈도: 上]

1. 변조 방식 구분 ★★☆☆☆

데이터	통신회선	DCE	변조방식
아날로그	아날로그	전화, 라디오	AM,FM,PM
아글도그	디지털	코덱	PCM
	아날로그	모뎀	ASK, FSK,
디지털	Mexi	Τ-0	PSK, QAM
니시크	디지털	DSU	베이스밴드
	니시크	D30	전송

2. 아날로그 변조 방식 : A→A

: 아날로그 데이터 → 아날로그 신호 (전화, 라디오)

1) 진폭 변조 (AM : Amplitude Modulation) : 신호의 높낮이를 변조

2) 주파수 변조 (FM : Frequence Modulation) : 신호의 주기를 변조

3) 위상 변조 (PM: Phase Modulation): 신호의 각도, 모양을 변조

3. PCM (펄스코드 변조 방식): A→D ★

[송신측] [수신측]

순서: A →<u>표본화 →양자화 →부호화</u> →**D 신호** →**복호화 →여파화**

표본화 (샘플링)

양자화 : 정수화

부호화 : 디지털 코드

- 샘플링 갯수 : 최고 주파수의 2배

- 샘플링 간격: 1/샘플링 갯수(횟수)

4. 코덱 (CPDEC: COder+DECoder)

- 펄스코드변조(PCM) 방식을 이용해서 변환
- 이동통신, 멀티미디어 분야 사용
- 5. 디지털 변조 방식: D→A ★
- 1) 진폭 편이 변조(ASK: Amplitude Shift Keying) : 0 (진폭 ↓), 1(진폭 ↑)

2) 주파수 편이 변조(FSK: Frequency Shift Keying)

: 0 (저주파), 1(고주파)

3) 위상 편이 변조(PSK: Phase Shift Keying)

: 신호의 시작 각도를 다르게 줌 (동기식 모뎀)

00 01 10 11

[2위상 편이 변조] -> 신호당 1 bit 전송

[4위상 편이 변조] -> 신호당 2 bit 전송

- 기출) 8위상 변복조를 사용하는 모뎀의 데이터 신호속도가 4800[bps]일때 변조속도는 몇 보[baud]인가
 - -> 신호당 3 bit 전송하므로 4800 / 3 = 1600 baud
- 4) 진폭 위상 편이 변조(QAM : Quadrature Amplitude Modulation) : 고속데이터 전송

[8위상 2진폭 변조] -> 신호당 4 bit 전송

- 기출) 8 위상변조와 2 진폭변조를 혼합하여 변조속도가 1200[baud] 인 경우, 이는 몇 [bps]에 해당 되는가?
 - -> 신호당 4 bit 전송하므로 1200 X 4 = 4800 bps

6. 모뎀 (MODEM: MOdulator + DEModulator) 변복조기 ★★★☆☆

- : 디지털 신호를 음성대역(0.3~3.4㎞)내의 아날로그 신호로 변환 (변조)한 후 음성 전송용으로 설계된 전송로에 송신한다든지 반대로 전송로부터의 아날로그 신호를 디지털 신호로 변환(복조) 하는 장치
- 기능 : 자동 응답, 자동 호출, 자동 속도 조절, 모뎀 시험 기능 (라우팅 기능 X)

7. 디지털 변조 방식: D→D ★★☆☆☆

- 베이스밴드 전송 방식
 - : 펄스 파형(디지털 데이터)을 변조 없이 직류 전기 신호로 전송 (디지털 변조 방식 : 바이폴라, RZ, NRZ, 맨체스터)
- PCM 변조 방식도 베이스밴드 전송 방식 이용

8. DSU (Digital Service Unit) ★★★☆☆

- : 전송회선 양단의 데이터 회선 종단 장치로서 단말에서 출력되는 디지털 신호를 디지털 전송에 적합한 신호 형식으로 변화하거나 또는 그 반대의 동작을 하는 장치
- 유니폴라(단극성, +) 신호를 바이폴라(쌍극성, + -) 신호로 변환
- 속도가 빠르고, 오류률이 낮음

Check 7. 다중화기

[출제빈도: 上]

1. 다중화기(MUX, MUltipleXer) ★★★★★

- * 개념 이해하기 : 사무실에서 인터넷 공유 (ex. 허브, 인터넷 공유기)
- 회선 공유 기술 : 하나의 통신 회선을 여러 대의 단말기가 동시에 사용할 수 있도록 하는 장치
- 통신 회선 공유 -> 전송 효율을 높임, 비용 절감
- 여러 대의 단말기의 속도의 합 <= 고속 통신 회선의 속도 (A+B+C <= D)
- 다중화기는 주파수 분할 다중화기와 시분할 다중화기로 구분됨
- 기출) 송수신 각 2개의 터미널이 다중화기와 공동 통신채널을 통해 정보를 전송하려고 한다. 첫째 터미널은 1200[bps], 두 번째 터미널은 2400[bps]로 동작한다고 할 때, 데이터가 공동 통신 채널을 통해 전송될 수 있는 최소 속도 => 3600 bps

2. 주파수 분할 다중화기 ★

(FDM: Frequency Division Multiplexer)

- * 개념 이해하기 : 라디오를 이용해서 원하는 프로그램 채널을 선택 (ex. 라디오, TV -> 실시간 방송)
- 통신 회선의 주파수를 여러 개로 분할
- 여러 개의 정보 신호를 한 개의 전송선로에서 동시 에 전송 가능
- <u>각 채널들 간의 상호 간섭을 방지하기 위한 보호 대역</u> (Guard Band)이 필요 -> 대역폭의 낭비
- 전송 신호에 필요한 대역폭보다 전송 매체의 유효 대역폭이 큰 경우에 사용
- 다른 다중화기에 비해 구조가 간단하고 가격이 저렴함 (라디오는 싸다)
- <u>아날로그 신호</u> 전송에 적합, 통신 채널 낭비 -> 비효율적
- 다중화기 자체에 <u>변·복조 기능이 내장되어 있어 모뎀을 설치할</u> 필요가 없음

3. 시분할 다중화기(TDM: Time Division Multiplexer) 🕇

- * 개념 이해하기 : 사무실에서 인터넷 공유 (ex. 허브, 인터넷 공유기, 데이터 통신)
- 시간 폭(Time Slot)으로 나누어 여러 대의 단말 장치가 동시에 사 용할 수 있도록 한 것
- 디지털 회선에서 주로 이용 -> 고속 전송
- 다중화기의 내부 속도와 단말 장치의 속도 차이를 보완해 주는 버퍼가 필요함
- 시분할 교환 기술 : TDM 버스 교환 방식, 타임슬롯 교환 방식, 시간 다중화 교환 방식

4. 동기식 시분할 다중화기 (STDM) : 타임 슬롯 고정 💢

- * 개념 이해하기 : 사무실에서 10대 컴퓨터 중에 1대만 인터넷을 사용하는 경우에도 나머지 컴퓨터에 대해 시간이 할당된다.
- 모든 단말 장치에 타임 슬롯 고정 🗲 낭비 발생 🗲 비효율적
- 전송되는 데이터의 시간 폭을 정확히 맞추기 위한 동기 비트가
- 전송 매체의 데이터 전송률이 전송 디지털 신호의 데이터 전송률 을 능가할 때 사용

5. 비동기식 시분할 다중화기(ATDM) : 타임 슬롯 동적 🏋

- * 개념 이해하기 : 사무실에서 10대 컴퓨터 중에 1대만 인터넷을 사용하는 경우에 사용하는 컴퓨터에대해 시간이 할당된다.
- 전송할 데이터가 있는 단말 장치에만 타임 슬롯 동적 할당 → 전송 효율이 높음
- 같은 속도일 경우 동기식 다중화기보다 더 많은 수의 터미널을 접속할 수 있다.
- 데이터 전송량이 많아질수록 전송 지연이 길어짐
- 동기식 시분할 다중화기에 비해 접속에 소요되는 시간이 김
- 주소, 흐름, 오류 제어 등의 기능이 필요하므로 장비가 복잡하고, 가격이 비쌈
- 지능 다중화기, 통계적 시분할 다중화기라고도 함
- 다중화된 회선의 데이터 전송율 < 접속 장치들의 데이터 전송률합

6. 역다중화기 (Inverse Multiplexer) ★☆☆☆☆

- 광대역 회선 대신에 두 개의 음성 대역 회선을 이용하여 데이터를 전송할 수 있도록 하는 장치
- 광대역 통신 회선을 사용하지 않고도 광대역 속도를 얻을 수 있다 -> 비용 절감
- 하나의 통신 회선이 고장 나더라도 회선 경로를 변경해서 계속 전송할 수 있다.

7. 집중화기 (Concentrator) ★☆☆☆☆

- * 개념 이해하기 : 10명의 사원이 동시에 프린트 하는 경우 하나만 선택된다. (ex. 프린터)
- 여러 개의 채널을 몇 개의 소수 회선으로 공유화 시키는 장치
- 실제 전송할 데이터가 있는 단말기에만 통신 회선을 할당하여 동적으로 통신 회선을 이용
- 한 개의 단말 장치가 통신 회선을 점유하게 되면 다른 단말 장치 는 회선을 사용할 수가 없다

- 입력 회선의 수가 출력 회선의 수보다 같거나 많음

- 여러 대의 단말 장치의 속도의 합이 통신 회선의 속도보다 크거나 같음 (A+B+C ≥ D)
- 회선의 이용률이 낮고, 불규칙적인 전송에 적합

Check 8. 전송제어방식-회선제어

[출제빈도: 上]

1. 전송제어

-데이터릐 원활한 흐름을 위해 입출력 제어, **회선제어**, 동기제어, **흐름제어** 등 수행

2. 회선(전송) 제어 5단계 절차 📩

*개념이해하기: 메일 발송 단계를 생각해 보세요.

1 단계) 회선 접속

: 송·수신간 물리적인 경로 확보 (컴퓨터에 인터넷선 연결)

2 단계) 데이터 링크 확립

- : 송·수신간 논리적인 경로 확보 (메일발송 창 띄움 -> 로그인)
- 3 단계) 데이터 전송
- : 오류, 순서 확인하면서 데이터 전송 (메일 발송)

4 단계) 데이터 링크 해제

: 설정된 논리적인 경로 절단 (로그오프 -> 메일전송 창 닫기)

5 단계) 회선 절단

: 송·수신간 물리적인 경로 절단 (인터넷선 끊기)

- 회선 : 물리적인 경로, 링크 : 논리적인 경로
- 전용선을 사용할 경우는 1, 5번 필요 없음

3. 데이터 링크 제어 프로토콜

-전송 제어를 수행하는 프로토콜(통신 규약)

-종류: BSC(문자지향) → SDLC (비트 지향) → HDLC (비트 지향)

4. BSC (Binary Synchronous Control, BASIC) 💢

: 문자(바이트) 지향

1) 정의 : 문자 동기 방식, 각 프레임에 전송 제어 문자를 삽입해서 전송을 제어

2) 특징

- <u>반이중 전송만 지원</u>, 에러 제어를 위해 정지-대기 ARQ 방식 사용
- 점대점(Point to Point) 링크 뿐만 아니라 멀티 포인트(Multi-Point) 링크에서도 사용됨
- 주로 동기식 전송 방식을 사용하나 비동기식 전송 방식을 사용하 기도 함

3) 프레임 구조

SYN SYN SOH 해당 STX 본문 ETX

4) 전송 제어 문자

- SYN (SYNchronous idle) : 동기 문자,

- SOH (Start of Heading) : 혜딩 시작

STX (Start of Text)

: TEXT(본문) 시작, 헤딩 종료, 전송할 데이터 집합의 시작

- DLE (Data Link Escape)

: 데이터 투과성을 위해 삽입

(전송제어문자와 전송 테이터 구분하기 위한 보조적인 제어의 목적)

- ETX (End of Text) : TEXT 종료
- ENQ (ENQuiry) : 상대국의 응답을 요구
- EOT (End Of Transmission): 전송 종료
- ACK (ACKnowledge) : 긍정 응답

- NAK (Negative AcKnowledge) : 부정 응답

수신측 -> 송신측

5. HDLC (High-level Link Control) : 비트 지향 🕇

1) 정의

: 비트 프레임 동기 방식, 각 프레임에 비트열을 삽입해서 전송을 제어 (문자, BYTE방식 X)

2) 특징

- 포인트 투 포인트, 멀티 포인트, 루프 방식 사용 가능
- 단방향, 반이중, 전이중 통신을 모두 지원
- 에러 제어를 위해 Go-Back-N과 선택적 재전송(Selective Repeat) ARQ를 사용
- 전송 효율과 신뢰성 높음
- 데이터 전송 모드
 - : 정규(표준) 응답 모드, 비동기 응답 모드, 비동기 평형(균형) 모드

3) 프레임 구조

Flag	주소부	제어부	정보부	FCS	Flag
1				(검사부)	

- 플래그 (Flag) : 프레임의 시작과 끝 (01111110), 동기 유지 -> 혼선 방지
- 주소부 : 송,수신 스테이션(컴퓨터, 단말기) 구별
- 제어부 : 프레임의 종류

(정보 프레임 : 사용자 데이터, 감독 프레임 : 오류 제어,

비번호 프레임 : 링크 동작 모드)

- FCS (Frame Check Sequence Field)
- : 프레임 내용에 대한 오류 검출
- 비트 투과성 : 1차 오류 검출

(플래그를 제외하고 '1'이 6개 이상 연속되지 않도록 함)

01111110001111111111101111110 (X)

 \rightarrow 0111111000111111011111101(O)

6. 회선제어방식 ★★★★☆

- 정의 : (문제점) 여러 대의 단말기가 회선 공유 -> (해결) 규칙

1) 회선 경쟁 선택 방식 (Contention)

- : 송신 요구를 먼저 한 쪽이 송신권을 갖는 방식
- 개념 이해하기
 - : 교실에서 먼저 손 든 학생에게 질문할 수 있는 권한을 줌
- 포인트 투 포인트 방식에서 주로 사용 (가장 간단한 형태)
- 데이터 전송을 하고자하는 모든 단말장치에 서로 대등한 입장
- 송신측이 전송할 메시지가 있을 경우 사용 가능한 회선이 있을 때 까지 기다려야 함
- 예) ALOHA 방식 (최초의 무선 패킷 교환 시스템)

2) 폴링, 셀렉션 방식 (Polling, Selection)

: 컴퓨터가 송,수신권을 가지고 있음

- 멀티 포인트 방식에서 주로 사용

- 폴링 : 컴퓨터 -> 단말기 (질의:전송할 데이터가 있는가?). 컴퓨터 <- 단말기 (전송)
- 셀렉션 : 컴퓨터 -> 단말기 (질의:받을 준비가 되어 있는가?). 컴퓨터 -> 단말기 (전송)

Check 9. 전송제어방식-오류제어

[출제빈도: 上]

1. 오류제어

- -정의: 오류를 검출하고 수정하는 기능
- -개념이해하기: 네이버 접속이 나되는 경우 '새로고침'버튼 클릭해서 오류해결

2. 오류 원인 ★★☆☆☆

- 1) 감쇠 : 전송매체의 저항으로 신호의 세기가 약해지는 현상
- 2) 지연 왜곡
 - : 전송매체를 공유해서 여러 신호(주파수)를 전달했을 때 속도 차이가 생기는 오류
- 3) 백색 잡음 (열 잡음) : 전송매체의 온도에 따라 생기는 오류
- 4) 상호 변조(간섭) 잡음
- : 전송매체를 공유할 때 주파수 간의 합(合)이나 차(差)로 인해 새 로운 주파수가 생성되는 잡음
- 5) 누화 잡음
- : 인접한 전송 매체의 전자기적 상호 유도 작용에 의해 생기는
- 6) 충격 잡음 : 외부의 전자기적 충격이나 기계적인 통신 시스템에서 의 결함 등이 원인 (ex. 번개, 시스템 파손)
- * 우연적 왜곡과 시스템적 왜곡
- 우연적 왜곡 (예측 X) : 백색 잡음, 누화 잡음, 충격 잡음
- 시스템적 왜곡 (언제든지) : 감쇠, 손실

3. 오류 제어 방식 ★★☆☆☆

- 1) 전진(순방향) 에러 수정 (FEC, Forward Error Correction)
- 수신측에서 재전송 없이 스스로 수정 (ex. 해밍코드, 상승코드)
- 2) 후진(역방향) 에러 수정 (BEC, Backward Error Correction)
- 송신측에 에러 발생을 알림 (ex. ARQ)

4. ARQ (Automatic Repeat reQuest) = 자동 반복 요청 💢

: 통신 경로에서 오류 발생 시 수신측은 오류의 발생을 송신측에 통보하고 송신측은 오류가 발생한 프레임을 재전송하는 오류 제어 방식

1) 정지-대기(Stop-and-Wait) ARQ

: 송신측은 하나의 블록을 전송한 후 수신측에서 에러의 발생을 점 한 다음 에러 발생 유무 신호 (긍정 : ACK, 부정 : NAK)를 보내올 때까지 기다리는 방식 (오버헤드 가장 큼)

2) 연속 ARQ > Go-Back-N ARQ

- 여러 블록을 연<u>속적(continuous)으로 전송</u>하고 부정 응답(NAK) 이후 모든 블록을 재전송

3) 연속 ARQ > Selective-Repeat ARQ (선택적 재전송)

- 여러 블록을 연속적으로 전송하고 부정 응답(NAK)이 있던 블록만 재전송

4) 적응적(Adaptive) ARQ

: 동적 블록(프레임) -> 전송 효율 우수 -> 구현 복잡

5. 오류 검출 방식 ★

1) 패리티 검사

- 짝수(우수) 패리티 : 1000 0010, 홀수(기수) 패리티 : 1000 0011

2) CRC (Cyclic Redundancy Check) : 순환 중복 검사

- 동기전송 (HDLC 프레임-FCS 필드)에 사용 -> 검출율 우수
- 특정 다항식에 의한 연산 결과를 데이터에 삽입하여 전송

3) 해밍 코드: 검출 O, 1bit 정정 O

4) 상승 코드: 검출 O, 여러 bit 정정 O

5) 궤환 전송 방식 : 송신측으로 원본 데이터를 보내 비교

6) 연속 전송 방식 : 동일 데이터를 두 번 이상 전송해서 비교

* 오류 제어용 코드 부가 방식

: 패리티 검사, CRC, 해밍 코드, 상승 코드

Check 10. 통신망의 분류

[출제빈도: 下]

1. 전용회선, 교환 회선

1) 전용 회선 (직통 회선)

- 통신 회선이 항상 고정되어 있는 방식
- 전송 속도가 빠르고, 전송 오류 적다
- 사용 방법이 간편하며 업무 적용이 쉬움
- 전송할 데이터의 양이 많고, 회선의 사용 시간이 많을 때 효율적
- 고장 발생시 유지 및 보수 유리
- 연결 방식에는 포인트 투 <u>포인트 방식과 멀티 드롭(포인트) 방식이</u> 있음

2) 교환 회선 (전화망, 인터넷망)

- 교환기에 의해서 연결되는 방식
- 전송속도가 느리다
- 보안 문제 발생
- 회선을 공유하므로 효용도가 높다. > 통신장치와 회선 비용 절감
- 적은 양의 데이터 전송 시, 회선 사용시간이 적을 때 유리

2. 회선 구성 방식

1) Point-to-Point (성형)

- 송수신 측이 일대일로 연결

2) Multi-Point = Multi-drop (버스형)

- 여러 단말기를 한 개의 통신 회선에 연결 (비용 절감)
- 단말기는 주소 판단 기능과 버퍼를 가지고 있어야 함
- 단말기 수를 결정하는 요인 : 선로의 속도, 단말기에 의해 생기는 교통량, 하드웨어와 소프트웨어의 처리 능력 (선로의 길이 X)

3) 다중화 방식

- 여러 단말기를 다중화 장치를 이용하여 연결
- 고속 회선 연결 -> 전송 속도 및 효율 높음

Check 11. 교환기술

1. 교환기술(=교환회선)

[출제빈도: 中]

2. 회선 교환 방식 ★★★★★

1) 특징

- 통신을 원하는 두 지점을 교환기를 이용하여 물리적으로 접속시키 는 방식
- 전송 과정 : <u>통신망 연결 →</u> 호(링크) 설정 → 전송 → 호 해제
- 접속이 되고 나면 그 통신 회선은 전용 회선처럼 전송 (전송 속도 유지)
- 접속에는 긴 시간 소요, 일단 접속되면 전송 지연이 거의 없음 (실시간 전송이 가능, 고정된 대역폭 전송방식)

→ 가장 느림

- 전송된 데이터의 있어서의 오류 제어나 흐름 제어는 사용자에 의해 수행되어야 함
- 전송 중 동일한 경로를 갖는다.
- 연속적인 전송에 적합하다.
- 속도나 코드의 변환이 불가능하다.
- 종류
- : 공간 분할 교환 방식과 <u>시분할 교환 방식</u> (TDM 버스 교환 방식,타임 슬롯 교환 방식,시간 다중화 교환 방식)

2) 제어 신호

- **감**시 제어 신호 : 서비스 요청, 응답, 경보 및 휴지 상태 복귀 신호 등의 기능
- 주소 제어 신호 : 상대방을 식별하고 경로를 배정
- **호** 정보 제어 신호 : 신호음, 연결음, 통화중 신호음 등 호의 상태 정보를 송신자에게 제공
- **통**신망 관리 제어 신호 : 통신망의 전체적인 운영, 유지, 고장 수 리 등을 위해 사용

3. 축적 교환 방식

: 교환기에 저장시켰다가 전송하는 방식 (store-and-forward)

1) 메시지 교환방식 (버스 → 느리다) ★★☆☆☆

- 하나의 메시지 단위 전송
- 수신측이 준비되지 않더라도 지연 후 전송이 가능하다.
- 속도나 코드 변환이 가능하다.
- 데이터 전송 지연시간이 길다.
- 각 메시지마다 전송 경로를 결정하고, 수신 주소를 붙여서 전송
 가 전송 경로가 다르다

- 응답 시간이 느려 대화형 데이터 전송에 부적절

2) 패킷 교환방식 (택시 → 빠르다) ★★★☆☆

- 메시지 교환방식의 단점 보완 (응답시간 개선) > 대화형
- (송신) 메시지를 일정한 크기의 패킷으로 분해, 전송, (수신) 패킷 재조립
 - → 오류, 안전성 ↓, Packet 분해/결합 지연 시간 발생
- 회선 공유 → 회선 이용률 ↑
- 데이터전송에 적합
- 대량의 데이터 전송시 전송지연 발생
- * 패킷(Packet): 전송 혹은 다중화를 목적으로, 메시지를 일정한 비 트 수로 분할하여 송·수신측 주소와 제어 정보 등을 부가하여 만든 데이터 블록 (ex. 웹 서핑)

4. 패킷 교환방식 💢

1) 가상 회선 방식 (가상 경로 설정, 연결 지향형)

- 정보 전송 전에 제어 패킷에 의해 가상(논리적) 경로를 설정 → 순서적으로 전달 (신뢰성 ↑)
- 패킷의 송,수신 순서가 같음
- 전송 과정 : 호 설정 → 데이터 전송 → 호 해제

(회선 교환 방식 공통점)

2) 데이터그램 방식 (가상 경로 설정 X)

- 주소, 패킷 번호 포함해서 전송

* 패킷 교환망 기능

- 다중화 : 하나의 회선을 사용해서 다수의 단말기와 통신

- 논리 채널 : 가상 회선 설정 - 오류 제어 : 오류 검출, 정정

- 트래픽 제어 : 패킷의 흐름과 양을 조절 - 경로 선택 제어 : 가장 효율적인 경로 선택 - 순서 제어 : 패킷의 송,수신 순서 같도록

- flow control : 패킷수를 적절히 조절하여 전체시스템의 안전성을

기하고 서비스의 품질저하를 방지

5. 네트워크 구성 형태 ★

	- 모든 사이트가 하나의 중앙 사이트에
	직접 연결 (중앙 <u>집중형</u>)
성형	- 중앙 사이트가 고장 날 경우 모든 통신이
(<u>스타형</u>)	단절됨
	- 교환 노드의 수가 가장 적다
	- 공유 버스에 연결된 구조
버스형	- 사이트의 고장은 다른 사이트의 통신에
用金器	영향을 주지 않지만 버스의 고장은 전체
	시스템에 영향을 줌
	- 인접하는 다른 두 사이트와만 직접 연결
	된 구조
	- 정보는 단방향 또는 양방향으로 전달될
21-1	수 있음
리형 (환형,루프형)	- 노드(node)가 절단되어도 우회로를 구성
	하며 통신이 가능 (융통성)
	- 목적 사이트에 데이터를 전달하기 위해
	링을 순환할 경우 <u>통신 비용이</u> 증가함
	- 노드의 추가와 변경이 비교적 어렵다

계층형	- 분산 처리 시스템의 가장 대표적인 형태
(트리형,분산형,	- 부모 사이트가 고장 나면 그 자식 사이트
Hierarchy)	들은 통신이 불가능함
Tileratory)	- 성형에 비해 신뢰도는 높음
	- 각 사이트들이 시스템 내의 다른 모든 사
	이트들과 직접 연결된 구조
망형	- 기본 비용은 많이 들지만 통신 비용은 적
(Mesh)	게 들고, 신뢰성이 높음
	- 많은 양의 통신에 유리
	- 통신 회선의 총 경로가 가장 길게 소요

* 기출) 25개의 구간을 망형으로 연결하면 필요한 회선의 수는 몇 회선인가?

: 회선 수 = n(n-1)/2 = 25*24/2 = 300

Check 12. 공유회선 점유방식

[출제빈도: 中]

- 1. 공유회선점유방식 (MAC: Media Access Control, 엑세스 제어) ***
- LAN에서 하나의 통신 회선을 여러 단말장치들이 원활하게 공유할 수 있도록 해주는 방식
- 종류 (LAN 에 사용되는 프로토콜)
- : CSMA/CD, 토큰 버스 방식, 토큰 링 방식 (IEEE 802.5)

2. CSMA/CD ★★★☆☆

1) 정의

- CS (Carrier Sense) : 회선의 사용 유무 확인
- MA (Multiple Access) : 회선이 비워져 있으면 누구나 사용가능
- CD (Collision Detection)
- : 데이터 프레임을 전송하면서 충돌여부를 검사

2) 동작

- ① 회선상에 이미 다른 신호(Carrier)가 있는지 감지(Sense)를 한다.
- ② 이미 회선이 사용 중이면 잠시 기다린 후 1번을 반복 한다.
- ③ 회선을 사용할 수 있게 되면 즉시 데이터를 전송한다
- ④ 다른 신호와 충돌이 발생하면 일정 시간 동안 대기후 다시 1번 부터 실시한다.
- * IEEE (Institute of Electrical and Electronics Engineers) : 미국 전기 전자 학회

3) 특징

- **버스형** LAN에서 사용
 - -> 전송량이 적을 때 매우 효율적이며, 신뢰성 높다 (트래픽이 많을 경우 부적합)
- LAN에 연결되어 있는 어느 한 DTE가 고장이 나더라도 다른 DTE 의 통신에는 전혀 영향을 미치지 않는다
- 알고리즘이 간단 -> 장애처리가 쉽다
- 모든 제어기는 동등한 액세스 권리를 갖는다
- 충돌이 발생하면 다른 노드에서는 데이터 전송을 할수 없다 -> 지연 시간을 예측하기 어려움
- 일정 길이 이하의 데이터를 송신할 경우 충돌을 검출할 수 없음
- 네트워크 표준안 : IEEE 802.3
- CSMA/CD 방식을 사용하는 LAN을 이더넷(Ethernet)이라고 함

3. 이더넷(Etfernet) ★☆☆☆☆

1) 특징

- 이더넷은 CSMA/CD방식(IEEE802.3)을 사용하는 LAN으로 가장 많이 보급된 형태

2) 규격

- 10 BASE T : 10은 전송속도(Mbps), BASE는 베이스밴드 방식, T 는 전송매체(꼬임선)
- 10 BASE 5 : 굵은 동축케이블, 5는 케이블 길이는 최대 500m
- 3) 고속 이더넷(Fast Ethernet): 100 BASE T
- 기존의 LAN과 같은 구성과 MAC 프로토콜을 그대로 사용할 수 있다
- 4) 기가비트 이더넷(Gigabit Ethernet) : 1Gbps 속도 지원

Check 13. 경로제어

[출제빈도: 中]

1. 경로제어 (Routing) ★★☆☆☆

1) 라우터 (Router)

- 두 개의 서로 다른 형태의 네트워크를 상호 접속하는 장비 (최적의 경로를 선택하는 기능 내장)
- 개념 이해하기 : 자동차(패킷)는 네비게이션(라우터)으로 최적의 운행 경로를 선택한다.

2) 경로 제어 (라우팅)

- 송수신측 간의 전송 경로 중에서 <u>최적 패킷 교환 경로</u>를 선택하는 기능
- 경로설정은 경로 제어표(Routing Table) 참조, 라우터에 의해 수행

3) 경로 배정(선택) 요소

- 성능 기준, 경로의 결정 시간과 장소, 네트워크 정보 발생지, 경로 정보 갱신시간

2. 경로 선택 알고리즘 ★☆☆☆☆

1) 범람 경로 (Flooding)

- 네트워크 정보를 요구하지 않으며, 송신측과 수신측 사이에 존재하는 모든 경로로 패킷을 전송하는 방법
- 복사해서 모든 경로로 전송하므로 경로 제어표가 필요 없다.

2) 임의 경로 (Random)

- 임의로 선택하여 전송

3) 고정 경로(Fixed) = 착국 부호 방식

- 네트워크 상태 변화와 관계없이 송신측 교환기가 경로 제어표를

참조하여 경로를 선택하고 전송

- 각 노드마다 접속하려는 상대방에 미리 붙여둔 번호를 해석해서 접속로의 선정을 행하는 링크 선택방식

4) 적응 경로(Adaptive)

- 네트워크 상태 변화에 따라 동적으로 경로 결정
- 3. 라우팅(경로 선택) 프로토콜 ★★☆☆☆

1) RIP (Routing Information Protocol)

: 소규모 동종의 네트워크 내에서 효율적인 방법

- 2) IGP (Interior Gateway Protocol) : 내부 게이트웨이 프로토콜
- 3) EGP (Exterior Gateway Protocol) : 외부 게이트웨이 프로토콜
- 4) BGP (Border Gateway Protocol)
 - : EGP의 단점을 보완하기 위해 만든 프로토콜
- 여러 자율 시스템 (Autonomous System)간에 라우팅 정보를 교환

Check 14. 트래픽제어

[출제빈도: 中]

1. 트래픽 제어 ★★★★☆

-전송되는 패킷의 흐름과 그 양을 조절하는 기능

1) 흐름 제어

- : 네트워크내의 원활한 흐름을 위해 송,수신측 사이에 전송되는 패킷 의 양, 속도 규제
- 데이터 프레임의 전송률을 조정

① 정지 및 대기 (stop-and-wait)

- 수신측의 확인신호(ACK)를 받은 후 다음 패킷을 전송
- 한 번에 하나의 패킷만 전송

② 슬라이딩 원도우 (sliding window)

- 한번에 여러 패킷(프래임)을 전송할 수 있어 전송효율이 좋다
- <u>송신 윈도우(패킷 수)가 증가하는 경우?</u> 수신측으로부터 이전에 송신한 프레임에 대한 긍정(ACK) 수신 응답이 왔을 때

2) 혼잡 제어

- 네트워크 내에서 패킷의 대기 지연이 너무 높아지게 되어 트래픽 이 붕괴되지 않도록 패킷의 흐름을 제어하는 트래픽 제어 (목적 : 네트워크 오버플로우 방지)

3) 교착상태 회피

Check 15. 인터넷, 통신망,네트워크 장비

[출제빈도: 上]

1. LAN (Local Area Network) : 근거리 통신망 🜟

1) 정의

- <u>구내나 동일 건물 내에서</u> 프로그램, 파일 또는 주변장치 등 <u>자원을</u> <u>공유</u>할 수 있는 컴퓨터 통신망
- 광대역 통신망과는 달리 빌딩이나 공장 구내 등 한정된 지역 내에 서 컴퓨터나 단말기들을 고속전송회선으로 연결한 네트워크 형태

2) 특징

- 자원 공유 🗲 비용 절감
- 자원(자료, 프로그램, 장비)의 효율적인 Backup

- 네트워크의 확장이나 재배치가 용이, 오류 발생율이 낮다
- 전송매체로는 꼬임선, 동축케이블, 광섬유 케이블 사용
- 망의 형태로는 성형, 버스형, 링형, 계층형으로 분류
- LAN 표준안 : OSI 7계층의 하위 2개 계층을 대상 (물리계층, 데이터 링크 계층)
- 경로 선택 (X), 본사의 주컴퓨터와 원격지점간에 정보의 교류 (X), 공중 통신망 (X)

3) IEEE에 의한 LAN 표준 규격

802.3: CSMA/CD 방식의 매체접근제어계층에 관한 규약 802.5 : 토큰 링 방식의 매체접근제어계층에 관한 규약

802.11: 무선 LAN에 관한 규약

4) WAN (Wide Area Network)

: 각기 다른 LAN을 통합시켜 관련이 있는 기관과 상호 연결시킨 광역통신망

5) CO-LAN

: 대학, 병원 및 연구소 등 근거리 통신망이 필요하면서도 여건이 안 되는 기관간에 인근 전화국의 데이터 교환망과 기존 통신망을 연동시켜 구성하는 통신망

2.VAN (Value Added Network) : 부가 가치 통신망 💢

1) 정의

: 정보 제공 시 통신 회선을 공중 통신 사업자로부터 임차하여 하나의 사설망을 구축하고, 이를 통해 축적해 놓은 갖가지 부가적<u>인 정보 서비스</u>를 유통시키는 <u>정보 통신 서비스</u>

2) VAN 계층 구조

: 전송계층 - 네트워크계층 - 통신처리계층 - 정보처리계층

3) VAN 기능

① 정보 처리 기능 (정보처리계층)

- 응용 S/W를 처리하는 기능 (데이터베이스 구축 등)

② 통신 처리 기능 (통신처리계층)

- 전자사서함 기능 : 메시지 저장

- 동보 통신

: 한 단말기에서 여러 단말기로 같은 내용 동시 전송 (시간 X)

- 정시 집신, 배신기능 : 정해진 시간에 통신

- 프로<u>토콜 변환 : 회선 제어, 접속 등의 통신 절차 변환</u>

③ 교환 기능 (네트워크계층)

- 광범위하게 분산 되어있는 컴퓨터 시스템, 프로그램 또는 데이 터 등의 각종 지원을 통신 선로를 거쳐서 이용함을 목적으로 하 는 서비스

④ 전송 기능 (전송계층)

- 정보를 전송할 수 있도록 하는 가장 기본적인 기능

3. ISDN (Integrated Service Digital Network) 🗡

: 종합 정보 통신망

- 동일한 통신망으로 음성(전화), 비음성(컴퓨터) 등의 통신 서비스 를 제공할 수 있는 통신망
- 음성, 화상, 데이터 등을 별개의 통신망으로 서비스되고 있는 것을 하나의 디지털 통신망에 통합 처리할 수 있는 통신망 (모든 통신망을 하나로 통합)

일반 통신망

종합 정보 통신망

* PSTN (Public Switched Telephone Network). PSDN (Public Switched Data Network)

1) 특징

- 다양한 통신 기능과 획기적인 통신 능력.
- 64Kbps 1회선 교환 서비스를 기본으로 함 (B 채널)
- 기존의 회선교환망이나 패킷교환망도 이용가능

2) ISDN 채널 종류 (A. B. C. D. E. H)

① B (Bearer Channel)

- 디지털 정보 전달용, 64Kbps (ex. 전화 음성)
- PCM화된 디지털 음성이나 회선 교환 혹은 패킷 교환 등에 이 (기본적인 사용자 데이터 채널)

2 D (Data Channel)

- 디지털 신호 전달용, <u>16Kbps</u>, <u>64Kbps</u> (ex. 전화 따르릉 신호)
- 서비스 제어를 위한 채널과 저속의 패킷 전송

3 H (Hybrid Channel)

- 고속 디지털 정보 전달용, 384kbps, 1536kbps, 1920kbps (ex. 화상 회의)
- 3) ISDN 서비스 기능

(상위 계층) (하위 계층)

텔레 서비스 베어러 서비스

- -> 실제로 단말을 조작하고 통신하는 이용자 측에서 본 서비스
- -> <u>회선 교환</u> 혹은 <u>패킷 교환</u> 서비스 제공
- * 채널(Channel) : 정보나 제어신호를 전달하기 위한 통신 경로

* OSI 참조모델에 정의된 계층화된 프로토콜 구조가 적용된다.

4) 기타 용어

- 분계점
- : 정보 통신망 상호간을 연결할 때 시설, 운영 및 유지, 보수의 책임 한계를 구분하기 위한 접속점
- B-ISDN (Broadband ISDN) : 광대역(고속) ISDN
- ATM (Asynchronous Transfer Mode)
- : B-ISDN을 실현하기 위한 방식으로, 데이터 전송에서 대량의 <u>정보</u> <u>를 셀 이라고 불리는 짧은 패킷으로 분할</u>하여 비동기로 <u>고속 디지</u> 털 정보를 다중 전송하는 방식
- 4. ADSL (Asymmetric Digital Subscriber) ★☆☆☆☆ : 비대칭 디지털 가입자 회선
- <u>기존 전화의 동선케이블을 이용</u>해서 데이터 <u>통신(컴퓨터)과 일반</u> 전화를 동시에 이용할 수 있는 고속 통신 기술
- 양쪽 방향의 전송 속도가 다름 : 다운로드 속도 > 업로드 속도
- 5. 인터넷 ★★☆☆☆

1) 특징

- 미국방성의 ARPANET에서 시작
- TCP/IP 프로토콜을 기반
- 백본(Backbone)
 - : 다른 네트워크 또는 같은 네트워크를 연결하여 그 중추 역할을 하는 네크워크
- 장비 : 브리지, 라우터, 게이트웨이 등

2) 인터넷 서비스 (TCP/IP 상에서 운용되는 서비스)

- ① WWW (World Wide Web) = HTTP (Hyper Text Transfer Protocol) 서비스
- 하이퍼텍스트를 기반으로 멀티미디어(문자, 그림 동화상, 음성)를 볼 수 있도록 하는 서비스
- 웹브라우저 : www를 효과적으로 검색할 수 있도록 도와주는 프로 그램 (E-Mail, FTP, HTTP)
- ② E-Mail (전자우편)
- SMTP: 메일 전송에 사용되는 프로토콜, POP3: 메일 수신에 사용되는 프로토콜
- ③ FTP (File Transfer Protocol)
- 인터넷에서 파일을 전송하는 서비스

- ④ Telnet (원격 접속)
- 가상 터미널 기능 : 원격지에서 컴퓨터에 접속
- 6. IP 주소 (Internet Protocol Address) ★★☆☆☆
- 인터넷에 연결된 모든 컴퓨터의 자원을 구분하기 위한 고유한 주소
- 예) 211.48.179.177 (도메인 주소 : www.gisafirst.com)
- 숫자로 8비트씩 4부분, 총 32비트로 구성, A ~ E 클래스까지 총 5개 클래스로 나뉨

111010011 00110000 10110011 10110001

- 시작 주소 : 0 ~ 127
- 연결 가능 호스트 수 : 256 X 256 X 256
- *서브넷 마스크
- : IP Addre에서 네트워크 ID와 호스트 ID를 구별하는 방식

- 시작 주소 : 128 ~ 191
- 연결 가능 호스트 수: 256 X256

- 시작 주소 : 192 ~ 223
- 연결 가능 호스트 수 : 256 (실제 할당할 수 있는 IP 개수 : 254 개)
- -시작주소:192~191
- -연결가능 호스트 수: 256 (실제 할당할 수있는 IP 개수: 254개)
- 7. 도메인 네임 (Domain Name) ★☆☆☆☆

- DNS (Domain Name System): IP 주소와 호스트 이름(도메인 네임) 간의 변환을 제공하는 시스템

8. 네트워크 장비 ★

- 하나 이상의 네트워크를 상호 연결하는 장비

허브(Hub)	-컴퓨터 연결 장치
리피터(Repeater) 신호증폭	-장거리 데이터 전송에서 신호를 증폭하는 장치 -OSI 1계층 장비
브리지 (Bridge) 동종 LAN 연결	-두개 LAN이 데이터 링크 계층에서 서로 결합되어 있는 경우에 이들을 연결하는 요소 -OSI 2계층 장비
라우터(Router) 네트워크연결 +경로설정	 네트워크 계층에서 연동하여 경로를 설정하고 전달하는 기능을 제공하는 장비 OSI 3계층 장비 1계층에서 3계층 사이의 프로토콜이서로 다른 네트워크를 상호 접속 게이트웨이(gateway) 기능을 지원
게이트웨이 (Gateway) 프로토콜이 전혀 다른 네트워크 사이를 결합	- 프로토콜 구조가 전혀 다른 외부 네트워크와 접속하기 위한 장비

Check 16. 프로토콜

[출제빈도: 上]

1. 프로토콜 (Protocol) 💢

- 컴퓨터 통신에서 컴퓨터 상호 간 또는 컴퓨터와 단말기 간에 데이 터를 송,수신하기 위한 통신규약

1) 프로토콜의 기본 요소

- 구문 (Syntax) : 데이터 형식 - **타이밍 (Timing)** : 순서, 속도 조절 - **의미 (Semantics)** : 오류, 제어 정보

2) 프로토콜의 기능

- 캡슐화(요약화)

: 데이터 + 제어정보(프로토콜 제어 정보, 에러 검출 코드, 주소) → 기법) HDLC

Flag 주소부 제어부 정보부 FCS Flag

- 동기 제어 : 기법) 동기/비동기식

- 경로 제어(라우팅): 기법) Flooding, RIP, EGP

- 에러 제어 : <u>기법) ARQ, 해밍 코드</u>

- 흐름 제어 : 기법) stop-and-wait, sliding window

- 순서 제어 : 순서적으로 전송되도록 하여 흐름 제어 및 오류 제어

를 용이하게 하는 기능

- 주소 지정 : 정확하게 전송될 수 있도록 목적지 이름, 주소, 경로

를 부여하는 기능

- 다중화 : 기법) FDM, TDM, STDM, ATDM

* 역다중화 (X)

2. OSI 7계층 (Open System Interconnection) 🕇

- 다른 시스템 간의 원활한 통신을 위해 ISO(국제표준화기구)에서 제안한 7단계 표준화 프로토콜

1) 계층화(부품화) 개념 이해하기

- 자동차, 컴퓨터 (모듈화 VS 단일화) : 호환(통신) 효율적, 독립성 유지, 상호 작용 최소화

3. OSI 참조 모델의 목적 및 특징 ★★☆☆☆

- 시스템 상호 간을 접속하기 위한 개념
- OSI 규격을 개발하기 위한 범위를 정함
- 관련 규격의 적합성을 조정하기 위한 공동적인 기반 제공
- 적절한 수의 계층을 두어 시스템의 <u>복잡도를 최소화</u>
- 서비스 접점의 경계를 두어 되도록 적은 상호 작용 유지
- 인접한 상, 하위 계층 간에는 인터페이스를 둠
- 특수성 유지 (X), 동일 계층에 서로 다른 프로토콜 둠 (X)

4. OSI 참조 모델의 계층 기능 및 표준 프로토콜 🛨

* 물데네전세표응!

	- 매체 간의 인터페이스
물리계층	: 전기적, 기능적, 절차적 기능 정의
	(RS-232C)
데이터링크계층	-흐름제어, 프레임의 동기화, 오류제어 ,
네이디잉크게등	에러검출 및 정정, 순서제어(HDLC)
	-네트워크 연결을 설정, 유지, 해제하는
네트워크계층	기능
	- 교활기술, 경로설정,패킷정보전송 (X.25)
전송계층 (트랜스포트)	- 종단 시스템(End-to-End) 간에 데이터
	전송 가능 (TCP, UDP)
	- 주소 설정, 다중화
	- 전송 서비스 단계
	: 연결 설정 -> 전송 -> 연결 해제
	- 대화(회화) 제어 를 담당
	- 전송하는 정보의 일정한 부분에 체크점
세션계층	을 둔다.
	- 소동기점과 대동기점을 이용하여 회화
	 동기를 조절
표현계층	- 코드 변환, 구문 검색, 암호화, 형식
(프리젠테이션)	변환, 압축
	- 사용자가 OSI 환경에 접근할 수 있도록
응용계층	서비스 제공

5. 물리계층 > RS-232C ★★☆☆☆

- 컴퓨터와 주변 장치 또는 <u>데이터 단말 장치(DTE)</u>와 데이터 <u>회선 종단 장치(DCE)</u>를 상호 접속하는 물리적 인터페이스
- 변복조장치를 단말기에 접속할 때 적용
- OSI 7계층 중 하위 1계층(물리 계층)의 표준 프로토콜
- DTE/DCE 접속규격 : RS-232C, V.24, X.21

6. 네트워크 계층 > X.25 ★

- 공중 데이터망에서의 패킷 형태(패킷 교환망)를 위한 <u>DTE(데이터</u> <u>터미널 장치)</u>와 DCE(데이터 회선 종단 장치)간의 인터페이스 제공 하는 ITU-T에서 제정한 프로토콜
- 강력한 오류체크 기능 -> 신뢰성이 높다
- 가장 중요한 기능 : 다중화

- LAP B : X.25 패킷 교환망 표준의 한 부분 - X.75 : 패킷 교환망과 패킷 교환망의 연결
- X.25 3계층 구조 : OSI 7계층(물리, 데이터링크, 네트워크) → (물리, 프레임(링크), 패킷)

7. TCP/IP ★

- Transmission Control Protocol + Internet protocol
- 서로 다른 기종의 컴퓨터들이 데이터를 주고 받을 수 있도록 하는 인터넷 표준 프로토콜

OSI계층	TCP/IP	기능
응용계층 표현계층 세션계층	응용계층	- 응용 프로그램간의테이터 송수신제공 - TELNET, FTP, SMTP, SNMP, DNS
전송계층	전송계층	- 호스트들 간의 신뢰성 있는 통신제공 - TCP, UDP
네트워크계층	인터넷계층 (네트워크계층)	- 테이터 전송을 위한 주소지정, 경로설정 제공 - IP, ICMP, IGMP, ARP, RAPP
데이터 링크계층 물리계층	링크계층	- 실제 데이터를 송수신하는역할 - Ethernet, IEEE802, HDLC, X. 25, RS-232C

1) 전송 계층

① TCP (Transmission Control Protocol)

- 가상 회선 연결 형태 → 신뢰성(안정성)↑
- 패킷의 다중화, 순서 제어, 오류 제어, 흐름 제어 기능

2 UDP (User Datagram Protocol)

- 비연결 형태 → 신뢰성↓, 속도↑ (실시간 전송 유리)

2) 인터넷 계층

1) IP (Internet Protocol)

- OSI 7계층의 네트워크 계층에 해당
- 데이터그램을 기반으로 하는 비연결형 서비스 (안정성 X)
- 패킷 분해/조립, 주소 지정, 경로 선택 기능

2 ARP (Address Resolution Protocol), RARP (Reverse ARP)

8. 국제 표준화 기구 ★★★★

1) 정보통신 관련 국제표준기구 : ISO, ITU, ICC, IEC, IETF

2) ITU: 국제전기통신연합의 약칭으로 국제 간 통신규격을 제정

- V 시리즈 : 공중 전화망을 통한 데이터 전송 - X 시리즈 : 공중 데이터망을 통한 데이터 전송

- I 시리즈 : ISDN의 표준화
- 3) IETF : 변화하는 망 환경에 따라 새로운 기술을 제시하고 인터넷 표준안을 제정하기 위한 기술 위원회
- * 이동 통신망 ★☆☆☆☆

1) 셀룰러 시스템

① 서비스 지역을 셀(Cell)이라고 하는 여러 개의 영역으로 나눈 후 각 셀마다 하나의 기지국을 설치하여 인접 셀 간에는 상호 간섭을 받지 않도록 하고, 어느 정도 떨어진 셀 간에는 동일 주파수 채널 을 사용하도록 하는 방식

② 특징

- 주파수 재사용
- : 특정한 주파수가 A 셀에서 사용되어도 B 셀에서 사용가능 의미
- 해드 오ㅍ
 - : 통화 중인 가입자가 새로운 셀로 진입할 때 통화의 단절 없이 계속 통화 가능
- 국가 간 로밍 서비스
- CDMA(코드 분할 다중화 접근)는 셀룰러 시스템의 다중화 방식으로서 셀(Cell)을 분할하는 방법은 고정(정적) 분할과, 가변(동적)분할 방법으로 모두 사용

2) IMT-2000

- 통신과 방송이 결합한 위성 멀티미디어 환경에서 가장 각광받을 것으로 기대되는 미래의 이동통신 서비스

Check 17. 뉴 미디어

[출제빈도: 上]

1) 분류

분류	미디어
방송계	CATV 등
통신계	원격회의 등
유선계	CATV 등
무선계	위성통신 등
패키지계	ODDOM VED HILLO CLA 3 E
(독립계)	CDROM, VTR, 비디오 디스크 등

2) 특징

- 정보교환의 고속화와 대용량화
- 다채널성과 쌍방향성 (단방향성 X)
- 정보형태의 다양화 (획일성 X)
- 반도체와 디지털 기술화

2. CATV

- 원래 난시청 해소를 목적으로 설치했던 공동시청 안테나를 이용하 여 수신한 TV 신호를 일정한 전송로를 통하여 수용자에게 제공함
- 양방향 통신이 가능
- 수용자의 범위가 한정적임
- 다채널로서 방송뿐만 아니라 종합 정보 서비스가 가능
- 전송로는 동축 케이블이나 광섬유 케이블을 사용함
- 기존 TV와 방송 방식이 동일

3. 비디오텍스 (Videotex): TV+전화→정보서비스

- 정보센터로부터 필요한 정보를 선택하여 공중전화망을 통해 일반 TV로 쌍방향 수신 가능

4. 텔레텍스트(Teletext): TV+문자

- TV 전파의 빈틈을 이용하여 TV 방송과 함께 문자나 도형 정보를 제공하는 문자 다중 방송

5. 텔레텍스(Teletext): 전화망.데이터망+워드프로세서

- 워드프로세서 전용기와 같이 문서작성과 편집기능을 갖는 기기에 통신기능을 부가하여 공중 전화망이나 공중 데이터망을 통해서 문서를 교환하는 시스템

Check 18. 멀티미디어

「출제빈도: 上]

1. 멀티미디어(Multimedia) ★★☆☆☆

- 다중 매체(정보 전달 수단)를 의미하는 것으로, 텍스트, 그래픽, 사운드, 동영상, 애니메이션 등의 다양한 매체를 디지털 데이터로 통합하여 전달함

1) 정지영상 압축 표준

- JPEG, 허프만 압축 기법, LZW 압축 기법

2) 동영상 압축 표준

- AVI, DVI, 퀵 타임, H.261, MPEG

(MPEG-I: VTR 품질(1.5Mbps)의 영상)

3) 오디오 압축 기술

- WAVE, MIDI, MP3