Ekstrema funkcji wielu zmiennych

Anna Bahyrycz

Twierdzenie 1 (warunek konieczny istnienia ekstremum)

Jeżeli funkcja f ma w punkcie (x_0, y_0) ekstremum lokalne i istnieja pochodne cząstkowe

$$\frac{\partial f}{\partial x}(x_0, y_0), \ \frac{\partial f}{\partial y}(x_0, y_0)$$

to

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 i $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Uwaga 2

- 1. Punkty, w których obie pochodne cząstkowe pierwszego rzędu się zerują nazywamy stacjonarnymi (krytycznymi).
- 2. W powyższym twierdzeniu implikacja odwrotna nie jest prawdziwa.
- 3. Funkcja może mieć ekstremum lokalne tylko w punkcie stacjonarnym lub

w punkcie, w którym przynajmniej jedna pochodna nie istnieje. Punkty te nazywamy krytycznymi.

Ekstremai funkcji dwóch zmiennych

Mówimy, że funkcja f ma w punkcie (x_0, y_0) minimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0, y_0)$ takie, że dla dowolnego punktu $(x,y) \in S(x_0,y_0)$ zachodzi nierówność

$$f(x,y) > f(x_0,y_0).$$

Mówimy, że funkcja f ma w punkcie (x_0, y_0) maksimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0, y_0)$ takie, że dla dowolnego punktu $(x,y) \in S(x_0,y_0)$ zachodzi nierówność

$$f(x,y) < f(x_0,y_0).$$

Uwaga 1

- 1. Jeżeli w powyższej definicji zastąpimy ostre nierówności przez słabe $(tzn. f(x,y) \ge f(x_0,y_0))$ lub $f(x,y) \le f(x_0,y_0)$, to mówimy, że funkcja f ma w punkcie (x_0, y_0) minimum lokalne lub maksimum lokalne.
- 2. Maksima i minima lokalne funkcji (właściwe lub niewłaściwe) nazywamy ekstremami lokalnymi.

Przykład 1 (implikacja odwrotna w Twierdzeniu 4 nie jest prawdziwa)

Wyznaczyć punkty stacjonarne funkcji $f(x,y) = x^3$.

Zbadać, czy funkcja f ma ekstrema lokalne.

 $D_f = \mathbb{R}^2$. Wyznaczamy pochodne cząstkowe pierwszego rzędu funkcji

 $\frac{\partial f}{\partial x}(x,y) = 3x^2, \qquad \frac{\partial f}{\partial y}(x,y) = 0 \quad - \ \, \text{funkcje ciągłe.}$ Wyznaczamy punkty stacjonarne funkcji $\ \, f$

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow 3x^2 = 0 \Leftrightarrow x = 0.$$

Punkty stacjonarne funkcji f mają postać (0, y), gdzie $y \in \mathbb{R}$. Pokażemy, korzystając z definicji, że funkcja f nie ma ekstremum lokalnego.

Niech un bedzie dowolną liczbą rzeczywistą. Wówczas

$$f(0,y_0) = 0$$
, $f(\frac{1}{n},y_0) = \frac{1}{n^3} > 0$, $f(-\frac{1}{n},y_0) = -\frac{1}{n^3} < 0$,

co oznacza, że funkcja f nie ma ekstremum w punkcie $(0, y_0)$. Zerowanie się w punkcie obu pochodnych cząstkowych funkcji nie gwarantuje istnienia ekstremum lokalnego funkcji w tym punkcie.

Punkty stacjonarne funkcji $f(x,y) = x^3$

Twierdzenie 2 (warunek wystarczający istnienia ekstremum)

Niech funkcja f ma ciągłe pochodne cząstkowe drugiego rzędu na pewnym otoczeniu punktu (x_0, y_0) oraz niech

- wyznacznik, zwany hesjanem

$$H(x_0, y_0) = \det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{bmatrix} > 0$$

to funkcja f ma w punkcie (x_0,y_0) ekstremum lokalne właściwe i jest to: minimum lokalne właściwe, gdy $\frac{\partial^2 f}{\partial x^2}(x_0,y_0) > 0$ albo maksimum lokalne właściwe, gdy $\frac{\partial^2 f}{\partial x^2}(x_0,y_0) < 0$.

Uwaga 3

- 1. Jeżeli hesjan $H(x_0, y_0) < 0$, to funkcja f nie ma ekstremum lokalnego w punkcie (x_0, y_0) .
- 2. Jeżeli hesjan $H(x_0, y_0) = 0$, to twierdzenie nie rozstrzyga.

Przykład 2

Zbadać ekstrema lokalne funkcji $f(x,y) = \sqrt{x^2 + y^2}$.

Pochodne cząstkowe funkcji f w punkcie (0,0) nie istnieją, zatem w tym punkcie funkcja f może mieć ekstremum.

Ponieważ
$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2+y^2}}$$
 i $\frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2+y^2}}$ dla $(x,y) \neq (0,0)$, więc funkcja f nie ma punktów stacjonarnych.

Funkcja f ma w punkcie (0,0) minimum lokalne właściwe, bo

$$f(x,y) = \sqrt{x^2 + y^2} \ge 0$$
 if $f(x,y) = 0$ when $f(x,y) = 0$ with $f(x,y) = 0$ with $f(x,y) = 0$ in $f(x,y) = 0$ with $f(x,y) = 0$ with

Przykład 3

Wyznaczyć ekstrema lokalne funkcji $f(x,y) = x^3 + 3xy^2 + 12xy$.

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y^2 + 12y, \qquad \frac{\partial f}{\partial y}(x,y) = 6xy + 12x \quad - \text{ funkcje ciągłe.}$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 3(x^2 + y^2 + 4y) = 0\\ 6x(y+2) = 0 \end{cases} \Leftrightarrow (x = 0 \land y(y+4) = 0) \lor (y = -2 \land x^2 = 4).$$

Punkty stacjonarne

$$f: P_1 = (0,0), P_2 = (0,-4), P_3 = (2,-2), P_4 = (-2,-2)$$

$$H(x,y) = \det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{bmatrix} = \det \begin{bmatrix} 6x & 6y + 12 \\ 6y + 12 & 6x \end{bmatrix}$$

$$=36x^2-36(y+2)^2=36(x^2-(y+2)^2)$$

 $H(P_1)$ = $36\cdot(-4)<0,\ H(P_2)$ = $36\cdot(-4)<0$ - brak ekstremum w P_1 i w P_2

 $H(P_3)=H(P_4)=36\cdot 4>0$ - funkcja f ma ekstrema w P_3 i P_4 i są to minimum lokalne w P_3 , bo $\frac{\partial^2 f}{\partial x^2}(P_3)=12>0$, - $f_{min}(P_3)=-16$ i maksimum lokalne w P_4 bo $\frac{\partial^2 f}{\partial x^2}(P_4)=-12<0$ - $f_{max}(P_4)=16$.

Ekstrema lokalne funkcji $f(x,y) = x^3 + 3xy^2 + 12xy$

Algorytm szukania ekstremów warunkowych

Ekstremów lokalnych funkcji f dwóch zmiennych z warunkiem g(x,y) = 0 szukamy następująco:

- 1. Krzywą $\Gamma: g(x,y) = 0$ dzielimy na łuki, które są wykresami funkcji postaci y = h(x), gdzie $x \in I$ lub postaci x = p(y), gdzie $y \in J$.
- 2. Szukamy ekstremów funkcji jednej zmiennej f(x, h(x)) na przedziale I lub funkcji f(p(y), y) na przedziale J.
- 3. Porównujemy wartości otrzymanych ekstremów na krzywej Γ i ustalamy ekstrema warunkowe.

Definicja 2 (ekstrema warunkowe)

Mówimy, że funkcja f ma w punkcie (x_0,y_0) minimum lokalne właściwe z warunkiem g(x,y)=0, gdy $g(x_0,y_0)=0$ oraz istnieje sąsiedztwo $S(x_0,y_0)$ takie, że dla dowolnego punktu $(x,y)\in S(x_0,y_0)$ spełniającego warunek g(x,y)=0 zachodzi nierówność $f(x,y)>f(x_0,y_0)$.

Analogicznie, funkcja f ma maksimum warunkowe, gdy zachodzi odwrotna nierówność, tzn. $f(x,y) < f(x_0,y_0)$.

Definicja 3

Niech A będzie niepustym podzbiorem dziedziny funkcji f.

Mówimy, że liczba m jest najmniejszą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0, y_0) \in A$ taki, że $f(x_0, y_0) = m$ oraz dla każdego $(x, y) \in A$ zachodzi nierówność $f(x, y) \ge m$. Piszemy wtedy $f_{min} = m$.

Mówimy, że liczba M jest największą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0, y_0) \in A$ taki, że $f(x_0, y_0) = M$ oraz dla każdego $(x, y) \in A$ zachodzi nierówność $f(x, y) \leq M$. Piszemy wtedy $f_{max} = M$.

Twierdzenie 3 (Weiestrassa)

Niech $D \subset \mathbb{R}^2$ będzie obszarem domkniętym i ograniczonym. Wówczas jeżeli funkcja $f: D \to \mathbb{R}$ jest ciągła w D to:

- 1. jest ograniczona,
- 2. przyjmuje co najmniej raz w zbiorze D wartość najmniejszą i wartość największą.

Algorytm szukania ekstremów globalnych na obszarze domknietym

Wartość najmniejszą i największą funkcji f dwóch zmiennych na ograniczonym i domkniętym obszarze D znajdujemy następująco:

- 1. Na obszarze otwartym (wnętrzu obszaru $\,D$) szukamy punktów, w których funkcja $\,f\,$ może mieć ekstremum lokalne.
- 2. Na brzegu obszaru D szukamy punktów, w których funkcja f może mieć ekstremum warunkowe.
- 3. Porównujemy wartości funkcji $\,f\,$ w otrzymanych punktach i na tej podstawie ustalamy najmniejszą i największą wartość funkcji $\,f\,$ na obszarze $\,D.$

Przykład 4 c.d.

1. Wyznaczamy punkty, w których funkcja $\,f\,$ może mieć ekstrema lokalne we wnętrzu trójkąta $\,T.\,$

$$f(x,y) = x^2 + y^2 - xy + x + y$$

Znajdujemy pochodne cząstkowe pierwszego rzędu funkcji $\,f:\,$

$$\frac{\partial f}{\partial x}(x,y) = 2x - y + 1, \qquad \frac{\partial f}{\partial y}(x,y) = 2y - x + 1$$
 – funkcje ciągłe.

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 2x - y + 1 = 0\\ 2y - x + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} y = 2x + 1\\ 2(2x + 1) - x + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -1\\ y = -1 \end{cases}.$$

Punkt stacjonarny funkcji $\,f:\,P_0=(-1,-1)\,$ - należy do wnętrza trójkąta $\,T.$

Przykład 4

Znaleźć wartość najmniejszą i największą funkcji

$$f(x,y) = x^2 + y^2 - xy + x + y$$

w trójkącie domkniętym T ograniczonym przez proste o równaniach

$$x = 0$$
, $y = 0$, $x + y + 3 = 0$.

Przykład 4 c.d.

$$f(x,y) = x^2 + y^2 - xy + x + y$$

- Wyznaczamy punkty, w których funkcja f może mieć ekstrema lokalne na każdym z boków trójkąta.
 Boki trójkąta to:
 - 1. Γ_1 : x = 0, gdzie -3 < y < 0;
 - 2. Γ_2 : y = 0, gdzie -3 < x < 0;
 - 3. Γ_3 : y = -x 3, gdzie -3 < x < 0.

Mamy zatem:

$$f_1(y) = f(0,y) = y^2 + y$$
, gdzie $-3 < y < 0$;

$$f_2(x) = f(x,0) = x^2 + x$$
, gdzie $-3 < x < 0$;

$$f_3(x) = f(x, -x - 3) = x^2 + (-(x + 3))^2 + x(x + 3) + x - x - 3 =$$

= $x^2 + x^2 + 6x + 9 + x^2 + 3x - 3 = 3x^2 + 9x + 6$, gdzie $-3 < y < 0$.

Wyznaczamy punkty, w których funkcje f_1, f_2, f_3 mogą mieć ekstrema lokalne:

$$f_1'(y) = 2y + 1$$
; $f_1'(y) = 0 \Leftrightarrow 2y + 1 = 0 \Leftrightarrow y = -\frac{1}{2} \in (-3, 0)$; $P_1 = (0, -\frac{1}{2}) \in \Gamma_1$:

$$f_2'(x) = 2x + 1; \ f_2'(x) = 0 \Leftrightarrow 2x + 1 = 0 \Leftrightarrow x = -\frac{1}{2} \in (-3, 0); \ P_2 = (-\frac{1}{2}, 0) \in \Gamma_2$$
:

$$f_3'(x) = 6x + 9$$
; $f_3'(x) = 0 \Leftrightarrow 6x + 9 = 0 \Leftrightarrow x = -\frac{3}{2} \in (-3, 0)$; $P_3 = (-\frac{3}{2}, -\frac{3}{2}) \in \Gamma_3$.

Przykład 4 c.d.
$$f(x,y) = x^2 + y^2 - xy + x + y$$

3. Wyznaczamy wartości funkcji w punktach wyznaczonych z warunków 1. i 2. oraz w wierzchołkach trójkąta T. Porównujemy otrzymane wartości funkcji f i na tej podstawie ustalamy najmniejszą i największą wartość funkcji f na trójkącie T. Wyznaczamy wartości funkcji w punktach P_0, P_1, P_2, P_3

$$f(-1,-1) = -1;$$

 $f(0,-\frac{1}{2}) = -\frac{1}{4};$
 $f(-\frac{1}{2},0) = -\frac{1}{4};$
 $f(-\frac{3}{2},-\frac{3}{2}) = -\frac{3}{4};$
oraz w wierzchołkach trójkąta T
 $f(0,0) = 0;$
 $f(-3,0) = 6;$
 $f(0,-3) = 6.$

Najmniejsza wartość funkcji $\,f\,$ na trójkącie domkniętym $\,T\,$ to $\,-1,$ największa wartość funkcji $\,f\,$ na domkniętym trójkącie $\,T\,$ to $\,6.$

Ekstrema funkcji wielu zmiennych Definicja 4

Mówimy, że funkcja $f:D\to\mathbb{R},\ D\subset\mathbb{R}^n$ ma w punkcie $x_0\in D$ minimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0)$ takie, że dla dowolnego punktu $x\in S(x_0)$ zachodzi nierówność

$$f(x) > f(x_0).$$

Mówimy, że funkcja f ma w punkcie x_0 , maksimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0)$ takie, że dla dowolnego punktu $x \in S(x_0)$ zachodzi nierówność

$$f(x) < f(x_0).$$

Uwaga 4

- 1. Jeżeli w powyższej definicji zastąpimy ostre nierówności przez słabe (tzn. $f(x) \ge f(x_0)$ lub $f(x) \le f(x_0)$), to mówimy, że funkcja f ma w punkcie x_0 minimum lokalne lub maksimum lokalne.
- 2. Maksima i minima lokalne funkcji (właściwe lub niewłaściwe) nazywamy ekstremami lokalnymi.

Przykład 4 c.d.

$$f(x,y) = x^2 + y^2 - xy + x + y$$

T trójkąt domknięty ograniczony przez proste: $x=0, \ y=0, \ x+y+3=0.$

Twierdzenie 4 (warunek konieczny istnienia ekstremum)

Jeżeli funkcja $f:D\to\mathbb{R},\ D\subset\mathbb{R}^n$ ma w punkcie $x_0\in D$ ekstremum lokalne i wszystkie pochodne cząstkowe pierwszego rzędu istnieją w x_0 , to są one równe zero.

Uwaga 5

- 1. Punkty, w których wszystkie pochodne cząstkowe pierwszego rzędu się zerują nazywamy stacjonarnymi.
- 2. W powyższym twierdzeniu implikacja odwrotna nie jest prawdziwa.
- 3. Funkcja może mieć ekstremum lokalne tylko w punkcie stacjonarnym lub
 - w punkcie, w którym przynajmniej jedna pochodna cząstkowa pierwszego rzędu nie istnieje.

Macierz Hessego

Niech funkcja $f:D\to\mathbb{R},\ D\in\mathbb{R}^n$ ma wszystkie pochodne cząstkowe drugiego rzędu. Macierz

$$Hf(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(x) \end{bmatrix}$$

nazywamy macierzą Hessego funkcji f. Definiujemy funkcje

$$\Delta_{i}(x) \coloneqq \begin{vmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{i}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{i}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{i} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{i} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}(x) \end{vmatrix}$$
 dla $i = 1, \dots, n$.

Uwaga 6

Zauważmy, że
$$\Delta_1(x)=rac{\partial^2 f}{\partial x_*^2}(x)$$
 i $\Delta_n(x)=\det Hf(x)$.

Twierdzenie 5 (warunek wystarczający istnienia ekstremum)

Niech $D \subset \mathbb{R}^n$ i funkcja $f: D \to \mathbb{R}$ spełnia warunki:

- ▶ f ma ciągłe pochodne cząstkowe drugiego rzędu na pewnym otoczeniu punktu $x_0 \in D$,
- $ightharpoonup \frac{\partial f}{\partial x_i}(x_0) = 0$ dla $i = 1, \dots, n$.

Wówczas:

- 1. Jeżeli $\Delta_i(x_0) > 0$ dla i = 1, ..., n, to w punkcie x_0 funkcja f ma minimum lokalne właściwe.
- 2. Jeżeli $(-1)^i \Delta_i(x_0) > 0$ dla i = 1, ..., n, to w punkcie x_0 funkcja f ma maksimum lokalne właściwe.