Семинар №5 по курсу «Основы высшей алгебры и теории кодирования»

Репеев Роман, Шиманогов Игорь

Определение 1	Действие группы
Определение 2	Действие сдвигами
Определение 3	Орбита
Определение 4	Транзитивное действие
Определение 5	Стабилизатор
Определение 6	Сопряженный элемент
Определение 7	Действие сопряжениями
Определение 8	Нормализатор
Определение 9	Цикловой тип перестановки
Определение 10	Неподвижная точка
Теорема 1 Лем	има Бернсайда
Лемма 3 Непо	движные точки сопряженных
Задача 2 Раск	раски куба

Определение 1 (Действие группы)

Действием группы G на множестве X называется гомоморфизм φ $G \to S(X)$ группы G в группу S(X) биекций множества X (взаимно однозначных отображений множества X на себя). Говорят также, что группа G действует на множестве X.

Если ясно, о каком действии идёт речь, то $\varphi(g)(x)$ записывают как g(x). Элементы множества X будем называть точками, чтобы отличать их от элементов группы G. Элементы группы g будем называть биекциями на X, имея в виду образ элемента при гомоморфизме φ .

Определение 2 (Действие сдвигами)

Группа G действует сама на себе левыми (для правых аналогично) сдвигами:

$$(\varphi(g))(h) = gh$$

Несложно проверить, что φ является гомоморфизмом, более того, $\varphi(G) \cong G$.

Определение 3 (Орбита)

 $\mathit{Opбumo\~u}$ действия называется множество образов некоторо" фиксированно" точки x:

$$Orb_x(G) = \{ y \in X \mid y = g(x), g \in G \}$$

Утверждение 1

Орбиты действия разбивают точки множества X на классы эквивалентности по отношению

$$x \sim y \iff x \in Orb_y$$

Определение 4 (Транзитивное действие)

Действие называется *транзитивным*, если у него ровно одна орбита, то есть всякая точка переводится в любую другую действием какого-то элемента группы.

Определение 5 (Стабилизатор)

Cmaбuлизатором точки x называется множество элементов G, оставляющих точку x неподвижной:

$$\operatorname{Stab}_{x}(G) = \{ g \in G \mid g(x) = x \}$$

Утверждение 2

 $\operatorname{Stab}_{x}(G)$ является подгруппой G.

Лемма 1

Отображение $\varphi: y \mapsto \{g \in G \mid g(x) = y\}$ сопоставляет каждой точке орбиты Orb_x смежный класс по стабилизатору Stab_x . Это соответствие взаимно однозначно.

В частности, выполняется соотношение

$$|G| = |\operatorname{Stab}_x| \cdot |\operatorname{Orb}_x|$$

Следствие 1

Мощность орбиты равен индексу стабилизатора

$$|Orb_x| = (G : Stab_x)$$

Определение 6 (Сопряженный элемент)

Элемент b называется сопряженным элементу a посредством элемента g, если $b = gag^{-1}$. Будем говорить, что b сопряжен a, если он сопряжен посредством какого либо элемента.

Утверждение 3

Сопряженность является отношением эквивалентности, поэтому группа разбивается на κ лассы сопряженности.

Пример 1

В коммутативной группе каждый элемент является классом сопряженности, так как

$$x = gyg^{-1} \Leftrightarrow x = gg^{-1}y = y$$

Пример 2

Рассмотрим центр группы, то есть

$$Z(G) = \{ x \mid \forall y \in G \ xy = yx \}$$

Каждый элемент центра является классом сопряженности, так как

$$y = gxg^{-1} = gg^{-1}x = x$$

Определение 7 (Действие сопряжениями)

Для фиксированной группы G мы можем определить $\partial e \ddot{u} cm bue$ conpare huamu так:

$$g(x) = gxg^{-1}$$

Из определений видно, что орбиты действия сопряжениями — это классы сопряженности. Отсюда получаем следствие.

Утверждение 4

Количество элементов в классе сопряженности делит порядок группы.

Определение 8 (Нормализатор)

 $Hopmaлизатором\ N(S)$ подмножества $S\subseteq G$ называется множество элементов g таких, что gS=Sg.

Стабилизатор действия сопряжениями: $\mathrm{Stab}_h = \{g \in G \mid h = ghg^{-1}\} = N(h).$

Определение 9 (Цикловой тип перестановки)

Каждой перестановке сопоставим иикловой mun: (c_1, \ldots, c_n) , где c_i — количество циклов длины i в цикловом разложении.

Лемма 2

Перестановки сопряжены тогда и только тогда, когда их цикловые типы совпадают.

Задача 1

Найти все классы сопряженности в группе S_5

Каждый класс сопряженности — это цикловой тип. Различные цикловые типы — это различные разбиения числа 5 в неупорядоченную сумму слагаемых.

Всего классов получается 7:

$$5=5$$
 (циклы длины 5) $\frac{5!}{5}=24$ штуки $5=4+1$ (циклы длины 4) $5\cdot\frac{4!}{4}=30$ штук $5=3+2$ (циклы длины 3 и 2) $\binom{5}{3}\cdot\frac{3!}{3}=20$ штук $5=3+1+1$ (циклы длины 3) 20 штук $5=2+2+1$ (два цикла длины 2) $\binom{5}{2}\cdot\binom{3}{2}\cdot\frac{1}{2}=15$ штук $5=2+1+1+1$ (циклы длины 2) $\binom{5}{2}=10$ штук $5=1+1+1+1+1$ (тождественная перестановка) 1 штука

Можно убедиться, что сумма числа элементов в полученных классах действительно равна 5! = 120.

Из теории действия групп вытекает следующая лемма, которая позволяет решать многие комбинатоные задачи про помощи механизмов теории групп.

Определение 10 (Неподвижная точка)

Множеством неподвижных точек относительно элемента g называется

$$X_g = \{ x \in X \mid gx = x \}$$

Теорема 1 (Лемма Бернсайда)

Пусть конечная группа G действует на конечном множестве X. Количество орбит действия даётся формулой:

#орбит =
$$\frac{1}{|G|} \sum_{g \in G} |X_g|$$

В использовании леммы Бернсайда также показывается следующий полезный факт

Лемма 3 (Неподвижные точки сопряженных)

Пусть группа G действует на множестве X, а элементы группы g_1 и g_2 сопряжены. Тогда $|X_{q_1}| = |X_{q_2}|$.

Задача 2 (Раскраски куба)

Сколько есть раскрасок граней куба в 3 цвета, если считать одинаковыми раскраски, совмещающиеся поворотами?

Решение Нам нужно найти количество орбит действия группы куба на функциях $\{1,2,3,4,5,6\} \rightarrow \{1,2,3\}$, для этого нужно найти для каждого класса сопряжённости группы куба количество функций $\{1,2,3,4,5,6\} \rightarrow \{1,2,3\}$, которые сохраняются при действии симметрий из этого класса сопряжённости. Группа куба изоморфна S_4 , поэтому в ней 5 классов сопряжённости. Рассмотрим сколько элементов находится в каждом классе

S_4	элементов в классе	
()	1	
(ijk)	$4 \cdot 3 \cdot 2 \ / \ 3$ (потому что у каждого цикла 3 разных сдвига) = 8	
(ijkl)	$4 \cdot 3 \cdot 2 \cdot 1 / 4 = 6$	
(ij)(kl)	$4 \cdot 3 \cdot 2 \cdot 1 \ / \ 2 \cdot 2 \cdot 2$ (потому что циклы еще можно переставить местами) = 3	
(ij)	$4 \cdot 3 / 2 = 6$	

Теперь поймем геометрический смысл каждой перестановки, ведь это перестановки больших диагоналей.

S_4	геометрия	
()	тождественная	
(ijk)	вокруг большой диагонали	
(ijkl)	вокруг центров противоположных сторон на 90	
(ij)(kl)	вокруг центров противоположных сторон на 180	
(ij)	вокруг центров противоположных ребер на 180	

Теперь нужно занумеровать грани куба и для каждого класса сопряжённости записать действие какого-нибудь элемента из этого класса на множестве граней, то есть чисел от 1 до 6. Мы используем этот элемент для подсчета мощности множества неподвижных точек, а она равна для всех элементов.

S_4	действие на гранях	элементов в классе	$ X_g $
()	()	1	3^{6}
(ijk)	(142)(356)	8	3^2
(ijkl)	(1265)	6	3^3
(ij)(kl)	(16)(25)	3	3^4
(ij)	(14)(25)(36)	6	3^3

В последнем столбце указаны величины $|X_g|$ для каждого класса сопряжённости. Давайте приведем пример их вычисления на примере второй строки. Во второй строке указано количество функций, которые сохраняются перестановкой (142)(356). Такие функции должны удовлетворять условиям f(1) = f(4) = f(2), f(3) = f(5) = f(6). Поэтому они однозначно задаются значениями f(1) и f(3), причём любая пара значений возможна. Поэтому общее количество функций равно 3^2 . С помощью этой таблицы применение леммы Бернсайда сводится к простому арифметическому вычислению:

#раскрасок =
$$\frac{1}{24} \left(3^6 + 8 \cdot 3^2 + 6 \cdot 3^3 + 3 \cdot 3^4 + 6 \cdot 3^3 \right) = 57$$