ASSIGNMENT NUMBER 2, 21.630

Due Wednesday, January 30, 2013

- 1. Let g be a given continuous function from $[0,\infty)$ to the reals and consider $\mathcal{F} \colon \mathcal{C} \ [0,\infty) \to \mathcal{C} \ [0,\infty)$ defined by $\mathcal{F} \ [X](t) = g(t) + \int_0^t X(s) ds$.
- A) For T > 1 is \mathcal{F} a contraction from $\mathcal{C}[0,T]$ to itself?
- B) Let $X^{(0)}(t)=0$ and $X^{(n+1)}(t)=\mathcal{F}\left[X^{(n)}\right](t)$. For any T>0 show that $X^{(n)}$ converges uniformly on [0,T]. Outline: First show that

$$|X^{(n+1)}(t) - X^{(n)}(t)| \le ||g|| \frac{t^n}{n!}$$

for any $n \ge 0$ where ||g|| is the supremum of g over the set [0,T]. Then show that

$$|X^{(n+k)}(t) - X^{(n)}(t)| \le ||g|| \sum_{l=n}^{\infty} \frac{t^l}{l!}$$

for all $n \geq 0$ and $k \geq 0$. Since $\sum_{l=0}^{\infty} \frac{t^l}{l!}$ converges, this shows that $X^{(n)}$ is uniformly Cauchy, and hence uniformly convergent, on [0,T].

2. Define $f:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ by f(t,x)=2t if $x\leq 0,\ f(t,x)=2t-4x/t$ if $0< x< t^2$ and f(t,x)=-2t if $t^2\leq x.$ Define $X^{(0)}(t)=0$ and

$$X^{(n+1)}(t) = \int_0^t f(s, X^{(n)}(s))ds.$$

Compute $X^{(n)}(t)$. Does $X^{(n)}$ have any convergent subsequences? If so, do their limits satisfy

$$\frac{dX}{dt}(t) = f(t, X(t))?$$

- 3. Let $g \in \mathcal{C}[0,1] = \mathcal{C}$ with $||g||_{\mathcal{C}} < 1/4$ be given.
- A) Use the contraction mapping theorem to show there is $X \in \mathcal{C}$ with $||X||_{\mathcal{C}} \leq B$ and $X(t) = g(t) + \int_0^1 X^2(s) ds$ where B is chosen suitably.
- B) How many solutions of $X(t) = g(t) + \int_0^1 X^2(s) ds$ are there? Find them.
- 4. Define $X^{(n)}(t) = \frac{t^2}{t^2 + (1-nt)^2}$ for $t \in [0,1]$.

- A) Show that $X^{(n)}$ is uniformly bounded on [0,1].
- B) Assume that $X^{(n)}$ is equicontinuous on [0,1] and derive a contradiction from this.
- 5. Let $X^{(n)}$ be a sequence of continuously differentiable functions on [0,1]. Assume that

$$\left| \frac{dX^{(n)}}{dt}(t) \right| \le 1000t^{-2/3}$$

for all n and all $t \in (0,1].$ For any $\epsilon > 0$ explicitly find $\delta > 0$ such that

$$|t - s| < \delta \Rightarrow |X^{(n)}(t) - X^{(n)}(s)| < \epsilon$$

for all $t, s \in [0, 1]$ and all n.