Prova 2 - Parte 1

SME0821 - Análise de Sobrevivência e Confiabilidade

Sidnei Gazola Junior – ${\rm N}^{\rm o}$ USP: 9378888

Exercício 1

a)

Leitura dos dados

Limpeza dos dados

Foi verificado que a variavel 'diag' conta com dois valores iguais a 6, o que não confere com a descrição, então é necessário a limpeza dos dados retirando essas linhas.

```
InsufCardiaca<- subset(InsufCardiaca, InsufCardiaca[,"diag"]!=6)</pre>
```

Análise descritiva

```
st_options(lang = 'pt',footnote = NA,style = "rmarkdown",plain.ascii = FALSE )
dfSummary(InsufCardiaca,na.col = F,varnumbers = F,valid.col = F)
```

Resumo dos dados

InsufCardiaca Dimensões: 945 x 15

Duplicatas: 0

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Grafo
tempo	Média (dp) : 31.1 (14.4)	691 valores distintos	:
[numeric]	mín $<$ m ediana $<$ m áx:		.::
	0.1 < 33.3 < 67.2		.:::
	IQE (CV) : 18.3 (0.5)		::::
			::::::
censura	Mín: 0	0:777~(82.2%)	IIIIIIIIIIIIII
[numeric]	Média : 0.2	$1: 168 \ (17.8\%)$	III
	Máx:1		

Idade				
	Média (dp) : $2.7 (1.2)$	0:52 (5.5%)	I	
[integer]	$\min < \text{mediana} < \max$:	$1:95\ (10.1\%)$	II	
	0 < 3 < 4	$2:251\ (26.6\%)$	IIIII	
	IQE (CV) : 2 (0.4)	3:262~(27.7%)	IIIII	
		$4:285\ (30.2\%)$	IIIIII	
sexo	1. 1	542 (57.4%)	IIIIIIIIII	
[factor]	2. 2	403~(42.6%)	IIIIIIII	
imc	Média (dp) : 27.6 (6)	724 valores distintos		
[numeric]	min < mediana < máx:		::	
	10.7 < 26.7 < 63.6		::	
	IQE (CV) : 7.5 (0.2)		.:::	
			::::.	
pas	Média (dp) : 143.4 (29.3)	55 valores distintos	:	
[numeric]	mín < mediana < máx:		.::	
	80 < 140 < 250		:::.	
	IQE (CV) : 40 (0.2)		.::::	
			::::::	
diag	1. 1	129 (13.6%)	II	
[factor]	2. 2	192 (20.3%)	IIII	
	3. 3	449 (47.5%)	IIIIIIII	
	4. 4	104 (11.0%)	II	
	5. 5	71 (7.5%)	I	
class	Média (dp) : 2.7 (1.5)	1: 140 (14.8%)	II	
[numeric]	mín < mediana < máx:	2: 372 (39.4%)	IIIIIII	
	1 < 2 < 9	3: 247 (26.1%)	IIIII	
	IQE(CV): 1(0.6)	4: 152 (16.1%)	III	
		9:34(3.6%)		
hb	Média (dp) : 14 (1.8)	99 valores distintos	:	
[numeric]	mín < mediana < máx:		. :	
. ,	5.9 < 14.1 < 19.2		::.	
	IQE (CV) : 2.1 (0.1)		::::	
	• ()		.::::	
trigli	Média (dp) : 137.8 (90.8)	268 valores distintos	:	
[numeric]	mín < mediana < máx:		:	
[]	28 < 110 < 931		: .	
	IQE (CV) : 90 (0.7)		::	
	• (, ()		:::.	
frac	1. 1	429 (45.4%)	IIIIIIII	
[factor]	2. 2	273 (28.9%)	IIIII	
[-30001]	3. 3	243 (25.7%)	IIIII	

Variável	Estatísticas / Valores	Freqs (% de Válidos)	Grafo
ritmo	1. 1	581 (61.5%)	IIIIIIIIII
[factor]	2. 2	141 (14.9%)	II
	3. 3	162 (17.1%)	III
	4. 4	61 (6.5%)	I
droga1	Min: 0	$0: 257\ (27.2\%)$	IIIII
[numeric]	Média : 0.7	1:688 (72.8%)	IIIIIIIIIIII
	Máx: 1		
droga2	Min: 0	0:516~(54.6%)	IIIIIIIII
[numeric]	Média : 0.5	1: 429 (45.4%)	IIIIIIIII
	Máx: 1		
droga3	Min: 0	0:626~(66.2%)	IIIIIIIIIII
[numeric]	Média : 0.3	1: 319 (33.8%)	IIIIII
. ,	Máx : 1	, ,	

#style = "grid", tmp.img.dir = "/imgt", graph.magnif = 0.5, split.cells = Inf, split.tables = Inf

b)

Gráficos de sobrevivência

Para confecção dos gráficos de sobrêvivencia é necessario categorizar as váriaveis continuas, esse processo foi realizado por meio da mediana, valores menor que a mediana receberam 1, e maiores que a mediana receberam 2.

```
InsufCardiacaT = InsufCardiaca %>%
  transmute( imc = ifelse(imc > 25, 2, 1),
            pas = ifelse(pas > median(pas), 2, 1),
             hb = ifelse(hb > median(hb), 2, 1),
             trigli = ifelse(trigli>200, 2, 1))%>%
  mutate(across(.cols = everything(), factor))
var = names(InsufCardiaca)
covn = c("imc", "pas", "hb", "trigli")
covc = var[!var %in% c("tempo", "censura", covn)]
InsufCardiaca[,covc]<- lapply(InsufCardiaca[,covc], factor)</pre>
dadoscor = cbind(InsufCardiaca[, var[!var %in% covn]], InsufCardiacaT)
varc = var[-c(1,2,5,6,9,10)]
for ( i in 1:length(varc)){
   ncol = length(levels(dadoscor[,varc[i]]))
   km = survfit(Surv(tempo, censura)~ get(varc[i]), data = dadoscor, se.fit = F)
   plot(km, xlab = "Meses", ylab = "Função S", main = varc[i], col = 1:ncol, lwd = 2, cex.lab = 1, ce
   legend("bottomleft",levels(as.factor(dadoscor[,varc[i]])), bty="n", lty = 1, col = 1:ncol)
}
plot(survfit(Surv(tempo, censura)~ pas, data = dadoscor, se.fit = F), xlab = "Meses", ylab = "Função S
legend("bottomleft", levels(as.factor(dadoscor[,"pas"])), bty="n", lwd = 2, col = 1:2)
plot(survfit(Surv(tempo, censura)~ imc, data = dadoscor, se.fit = F), xlab = "Meses", ylab = "Função S
legend("bottomleft", levels(as.factor(dadoscor[,"imc"])), bty="n", lwd = 2, col = 1:2)
plot(survfit(Surv(tempo, censura)~ trigli, data = dadoscor, se.fit = F), xlab = "Meses", ylab = "Função
legend("bottomleft", levels(as.factor(dadoscor[,"trigli"])), bty="n", lwd = 2, col = 1:2)
plot(survfit(Surv(tempo, censura)~ hb, data = dadoscor, se.fit = F), xlab = "Meses", ylab = "Função S",
legend("bottomleft", levels(as.factor(dadoscor[,"hb"])), bty="n", lwd = 2, col = 1:2)
```


sexo

Testes logrank

```
ptest1 =c()
estatc = c()
testelog = data.frame()
for ( i in 1:length(var)){
    tlr = survdiff(Surv(tempo, censura)~ get(var[i]), data = dadoscor, rho = 0)
    estatc[i] = tlr$chisq
    ptestl[i] = 1 - pchisq(tlr$chisq, ncol-1)
}
testelog <- data.frame(Variavel = var, Estatistica = estatc, pvalor = ptestl)
xtable(testelog,digits = 2,caption = "Teste logrank")</pre>
```

	Variavel	Estatistica	pvalor
1	tempo	4131.39	0.00
2	censura	1164.04	0.00
3	Idade	8.47	0.00
4	sexo	1.71	0.19
5	imc	14.60	0.00
6	pas	13.27	0.00
7	diag	15.68	0.00
8	class	18.74	0.00
9	hb	5.20	0.02
10	trigli	6.00	0.01
11	frac	2.63	0.10
12	ritmo	7.41	0.01
13	droga1	0.03	0.86
14	droga2	4.24	0.04
15	droga3	1.04	0.31

Tabela 2: Teste logrank

Para complementar os gráficos de sobrevivência é realizado testes logrank. Nesses testes é comumente adotado nível de significância de 25%. Com este nível de significância as variáveis 'droga3', 'frac' e 'droga1' tiveram p-valor abaixo do esperado, e portanto, não serão inclusas no modelo.

Ajuste do modelo Weibull

Para este exercío primeiramente será escolhido o modelo Weibull para ajuste dos dados, caso o modelo não se adequate satisfatoriamente aos dados, serão ajustados outros modelos, como por exemplo Log-Normal e Log-Logística.

```
m_wei <- survreg(Surv(tempo, censura) ~ Idade + sexo + imc + pas + diag + class
                + hb + trigli + ritmo + droga2, data = dadoscor, dist ="weibull")
a = 1/m_wei$scale
exp = (dadoscor$tempo * exp(-m_wei$linear.predictors ))^a
mkap = survfit( Surv(exp, dadoscor$censura)~ 1)
time = mkap$time
fs = mkap$surv
fse = exp(-mkap$time)
par(mfrow = c(1,2))
plot(fs, fse, xlab = "S: K-M", ylab = "S: Exp", pch =16, cex = 1.5)
plot(mkap, conf.int = F, xlab = "Res Cox-Snell", ylab = "Sei est", cex = 1.5)
lines(time, fse, lty = 4)
summary(m_wei)
##
## Call:
## survreg(formula = Surv(tempo, censura) ~ Idade + sexo + imc +
##
       pas + diag + class + hb + trigli + ritmo + droga2, data = dadoscor,
       dist = "weibull")
##
                Value Std. Error
##
## (Intercept)
               2.833
                           0.414 6.84 7.7e-12
## Idade1
                0.266
                           0.287 0.93 0.3541
## Idade2
                0.193
                           0.241 0.80 0.4248
## Idade3
                0.154
                           0.243 0.63 0.5270
## Idade4
               -0.118
                           0.234 -0.50 0.6137
## sexo2
                0.260
                           0.117 2.23 0.0255
## imc
                0.301
                           0.109 2.76 0.0058
## pas
                0.295
                           0.121 2.44 0.0146
## diag2
                           0.162 -0.50 0.6206
               -0.080
## diag3
                0.273
                           0.156 1.75 0.0806
## diag4
                0.264
                           0.197 1.34 0.1794
## diag5
                0.452
                           0.262 1.73 0.0839
## class2
                0.103
                           0.170 0.61 0.5427
## class3
               -0.316
                           0.169 -1.87 0.0614
## class4
               -0.401
                           0.182 -2.21 0.0274
## class9
               -0.576
                           0.260 -2.22 0.0265
                           0.112 2.48 0.0133
## hb
                0.278
## trigli
                0.291
                           0.167 1.75 0.0808
```

```
## ritmo2
                0.245
                           0.154 1.59 0.1121
## ritmo3
                0.206
                           0.150
                                 1.37 0.1718
## ritmo4
                0.735
                           0.304 2.41 0.0158
## droga21
               -0.261
                           0.107 -2.45 0.0143
## Log(scale)
               -0.422
                           0.068 -6.21 5.3e-10
##
## Scale= 0.656
##
## Weibull distribution
## Loglik(model) = -978.2
                           Loglik(intercept only) = -1023.3
   Chisq= 90.05 on 21 degrees of freedom, p= 1.6e-10
## Number of Newton-Raphson Iterations: 8
## n= 945
```

AIC(m_wei)

[1] 2002.455

Com o modelo ajustado podemos notar que o AIC do modelo é de 2002.455. Como valor-p para o teste de máxima verossimilhança é 1.6×10^{-10} rejeitamos a hipótese de todos os parâmetros serem nulos.

Fator de aceleração das Covariáveis

	FatorGamma
(Intercept)	17.00
Idade1	1.30
Idade2	1.21
Idade3	1.17
Idade4	0.89
sexo2	1.30
imc	1.35
pas	1.34
$\operatorname{diag2}$	0.92
diag3	1.31
diag4	1.30
diag5	1.57
class2	1.11
class3	0.73
class4	0.67
class4	0.56
hb	
	1.32
trigli	1.34
ritmo2	1.28
ritmo3	1.23
ritmo4	2.08
droga21	0.77

Tabela 3: Fator de aceleração das Covariáveis

Com o fator de aceleração $\gamma=e^{\beta i}$ calculado para cada coeficiente do modelo, pode-se verificar se tal coeficiente influencia no tempo de sobrevida do paciente. Para valores maiores que 1 podemos concluir que tal coeficiente influencia diminuindo o tempo de sobrevida, para valores iguais a 1 podemos concluir que tal coeficiente não afeta o tempo de sobrevida e para valores maiores que 1 podemos concluir que tal coeficiente influencia aumentando o tempo de sobrevida.

Portanto de acordo com os resultados da tabela a acima podemos concluir que as unicas caraterísticas benéficas ao tempo de sobrevida do paciente foram: Idade4(ter 65 anos ous mais), diag2 (ter doença cardiaca hipertensiva), droga (usar Digoxina). Em relação a váriável classes, a unica que aumentou o risco de morte foi class2 (limitado a grandes esforços).