BUNDESREPUBLIK DEUTSCHLAND

REC'D **2 1 JAN 2004**WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 54 685.1

Anmeldetag:

22. November 2002

Anmelder/Inhaber:

ROCHE DIAGNOSTICS GMBH,

Mannheim/DE

Bezeichnung:

Messeinrichtung zur optischen Untersuchung eines

Testelements

IPC:

G 01 N, H 01 L

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 16. Oktober 2003 Deutsches Patent- und Markenamt Der Präsident

Auftrag

Pauce

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

A 9161 06/00 EDV-L

Patentanwälte

European Patent and Trademark Attorneys

STUTTGART

Dr.-Ing. Dipl.-Phys. Eckhard Wolf* Dr. rer. nat. Dipl.-Phys. Johannes, Lutz* Dr. rer. nat. Dipl.-Phys. Thomas Pfiz*

BADEN-BADEN

Dr. rer. nat. Dipl.-Phys. Thilo Corts

Zustelladresse: Hauptmannsreute 93 D-70193 Stuttgart

Telefon 0711 - 187760 Telefax 0711 - 187765

Roche Diagnostics GmbH Sandhofer Straße 116 D-68305 Mannheim

Messeinrichtung zur optischen Untersuchung eines Testelements

> A 16 569 5116 NDR

Messeinrichtung zur optischen Untersuchung eines Testelements

Beschreibung

5

Die Erfindung betrifft eine Messeinrichtung zur optischen Untersuchung eines insbesondere diagnostischen Testelements mit einer Lichtquelle, einem Photodetektor und einer Vorrichtung zum Positionieren des Testelements in einem Strahlengang zwischen Lichtquelle und Photodetektor.

Analysesysteme dieser Art werden in der medizinischen

10

15

20

25

Diagnostik eingesetzt, um mit einem Analyten beaufschlagbare Einmal-Teststreifen optisch beispiels-weise auf Farbänderungen zu untersuchen. Der dafür benötigte photometrische Aufbau in einem gegebenenfalls von dem Probanden selbst einsetzbaren Messmodul erfordert eine genaue Ausrichtung der einzelnen Komponenten, um die gewünschte Performance zu erreichen. Bei der Herstellung werden üblicherweise Lichtquelle, Optik und Detektor als diskrete Einzelbauteile durch so genannte "Pick-and-Place"-Verfahren in großen Stückzahlen montiert. Dies ist nur mit begrenzter Genauigkeit und Reproduzierbarkeit möglich, und umso aufwendiger, je kleiner die Komponenten und die zur Verfügung stehende optische Baugröße bzw. Brennweite sind.

Für Anzeigeelemente in elektronischen Geräten ist es an sich bekannt, Anzeigepixel auf Basis von organischen Leuchtdioden (OLED) zu bilden, die im Unterschied zu herkömmlichen anorganischen LEDs, welche auf kristallinen Halbleiterstrukturen beruhen, großflächig als sehr dünne flexible Flächenemitter gefertigt werden können

- Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, eine Messeinrichtung der eingangs genannten Art zu verbessern, insbesondere um eine einfache kompakte Bauform bei hoher Fertigungs- und Messpräzision zu erreichen.
- 20 Zur Lösung dieser Aufgabe wird die im Patentanspruch 1 angegebene Merkmalskombination vorgeschlagen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
- Die Erfindung geht von dem Gedanken aus, einen festen Verbund aus Beleuchtungsquelle, Optik und/oder Detektor zu schaffen. Dementsprechend wird erfindungsgemäß vorgeschlagen, dass die Lichtquelle eine oder mehrere organische Leuchtdioden (OLEDs) aufweist und die OLEDs über ein Trägersubstrat mit einer Abbildungsoptik und/oder dem Photodetektor eine Verbundstruktur bilden.

Damit ist eine vereinfachte chargenweise Herstellung mit hoher, gleichmäßiger Lagepräzision der Komponenten und geringer Fertigungsstreuung möglich. Aufgrund des planaren Aufbaus zumindest der Lichtquelle kann die Baugröße erheblich verringert werden. Durch den Einsatz von OLEDs ergeben sich vielfältige Vorteile wie hohe Leuchtstärke bei relativ niedrigem Energieverbrauch, weiter Blickwinkel, potenziell geringe Herstellkosten und Reduzierung der Materialkosten und ein in großem Maßstab automatisierbarer Produktionsprozess zur Herstellung photometrischer Module für Analysegeräte.

5

15

20

25

Gegenüber herkömmlichen LED-Lichtquellen ergeben sich weitere unerwartete Vorteile des Einsatzes von OLEDs in photometrischen Messeinheiten: Es besteht die Möglichkeit zur variablen Formgestaltung der Lichtquelle, die für den photometrischen Aufbau optimiert werden kann. Aufgrund der homogenen Lichtverteilung über der OLED-Oberfläche kann die Abbildungsoptik als solche verbessert werden, ohne dass eine Anpassung an abschattende Elektroden wie bei herkömmlichen LEDs erforderlich wäre. Durch die wesentlich geringeren Toleranzen im Abstand zwischen Optik und Lichtquelle sowie in der lateralen Positionsgenauigkeit ist es eher möglich, das Messlicht zu kollimieren, um eine weitgehend abstandsunabhängige Beleuchtung des Testfeldes zu erzielen. Selbst bei nicht perfekter Kollimierung ergibt sich zumindest eine geringere Empfindlichkeit auf Abstandstoleranzen. Hinzu kommt, dass die geringe Lagetoleranz in dem Verbundaufbau eine kleine Brennweite erlaubt, die einen effizienteren Betrieb ermöglicht. Insbesondere kann dadurch mit geringerem Energiebedarf auf der Senderseite gemessen werden oder ein besseres Signal/Rauschverhältnis auf der Empfängerseite erzielt werden.

5

- Vorteilhafterweise sind eine Vielzahl von OLEDs als
 ein- oder zweidimensionales Leuchtpixelarray auf dem
 Trägersubstrat angeordnet. Dabei ist es möglich, dass
 die OLEDs voneinander unterschiedliche Emissionswellenlängenbereiche aufweisen und/oder vorzugsweise rasterförmig auf unterschiedliche Beleuchtungszielflächen
 ausgerichtet sind. Auf diese Weise kann eine ortsaufgelöste Beleuchtung erfolgen, um so die Zielfläche
 beispielsweise bei mikroskopischen Probenmengen einzugrenzen oder zusätzliche Auswertungen zu ermöglichen.
- Die OLEDs lassen sich in eindimensionaler Kompaktheit aus zwei Elektrodenschichten und einer sandwichartig dazwischenliegenden, vorzugsweise aus einem Polymermaterial gebildeten elektrolumineszierenden Leuchtschicht aufbauen. Dabei kann eine Pixelgröße von weniger als 500 μ m, vorzugsweise weniger als 200 μ m erreicht werden.

Eine vorteilhafte Ausführung sieht vor, dass die OLEDs eine an das Substrat angrenzende transparente Frontelektrodenschicht zur Lichteinstrahlung durch das Substrat hindurch und eine davon abgewandte Rückelektrodenschicht aufweisen. Dabei kann die Front- oder die Rückelektrodenschicht für alle OLEDs gemeinsam ausgebildet bzw. kontaktierbar sein, während über eine jeweils gegenüberliegende Einzelelektrode eine gesonderte Ansteuerung einzelner Pixel möglich ist.

Vorteilhafterweise besitzt die Abbildungsoptik mindestens eine optische Linse zur Abbildung der Lichtquelle auf eine Zielfläche des Testelements und/oder einer Zielfläche des Testelements auf den Photodetektor.

15

20

25

Für eine weitergehende Integration ist es von Vorteil, wenn die Abbildungsoptik eine Vielzahl von in flächiger Anordnung mikrostrukturierten, vorzugsweise asphärischen Linseneinheiten aufweist. Dabei ist die Abbildungsoptik vorteilhafterweise durch eine auf dem Trägersubstrat insbesondere durch Prägen eingeformte Linsenstruktur gebildet. Alternativ ist es auch möglich, dass die Abbildungsoptik durch ein insbesondere durch Prägen (Heiß- oder Spritzprägen), Spritzgießen oder Reaktionsgießen als Linsenstruktur vorgeformtes und mit dem Trägersubstrat flächig verbundenes Folienmaterial vorzugsweise auf Polymerbasis gebildet ist.

Ein kompakter Aufbau mit günstigem Strahlengang wird dadurch erreicht, dass die OLEDs auf der einen Seite und die Abbildungsoptik auf der gegenüberliegenden Seite des Trägersubstrats angeordnet sind. Dabei sollte das Trägersubstrat aus einem transparenten Flachmaterial, insbesondere aus einem Dünnglas oder einem Polymerfilm bestehen.

5

Eine weitere bevorzugte Ausgestaltung der Erfindung sieht vor, dass der Photodetektor durch mindestens eine schichtförmige organische Photodiode gebildet ist. Dadurch lässt sich eine weitere Verbesserung in der Positionierung der optischen Komponenten erreichen, wobei die Schichtdeposition von Lichtemitter und - empfänger auch im Sinne einer integrierten Fertigung besondere Vorteile bringt.

ΤU

15 Vorteilhafterweise sind eine Vielzahl von organischen Photodioden als lineares oder planares Sensorpixelarray auf dem Trägersubstrat angeordnet, um eine ortsaufgelöste Abtastung zu ermöglichen. In weiterer vorteilhafter Ausgestaltung bilden eine Vielzahl von auf einer Oberfläche des Trägersubstrats matrixartig angeordneten und als Elementarphotometer lokal kombinierten OLEDs und Photodioden ein Vielfachphotometer.

25

Eine weitere Verbesserung sieht vor, dass die Vorrichtung zur Positionierung eine Halterung, eine Führung oder einen Anschlag für das Testelement umfasst. Die Vorrichtung zur Positionierung kann auch eine zwischen einer Beladestelle und einer Messstelle verfahrbare Testelementaufnahme umfassen.

Um die Langlebigkeit zu erhöhen, ist es vorteilhaft, wenn die OLEDs an ihrer Oberfläche insbesondere durch eine Beschichtung oder ein Gehäuse gegenüber der Umgebung stoffdicht abgeschirmt sind.

Eine weitere vorteilhafte Ausgestaltung sieht vor, dass das Testelement durch einen mit optisch abtastbaren Indikatorfeldern für nachzuweisende biologische Substanzen versehenen, insbesondere als Einmalartikel bestimmten Teststreifen, beispielsweise einen Glucoseteststreifen gebildet ist.

Im folgenden wird die Erfindung anhand eines in der Zeichnung in schematisch vereinfachter Weise dargestellten Ausführungsbeispiels näher erläutert. Es zeigen

- Fig. 1 eine photometrische Messeinrichtung als Verbundstruktur aus organischen Leucht- und Photodioden
 sowie Abbildungsoptik zur Auswertung von diagnostischen Teststreifen in geschnittener Darstellung;
- 25 Fig. 2 und 3 weitere Ausführungsformen von organischen Leuchtdioden und zugeordneten Abbildungsoptiken im Schnitt;

- Fig. 4 eine in einem Gehäuse hermetisch abgeschirmte organische Leuchtdiodenanordnung im Schnitt; und
- Fig. 5 eine Matrixanordnung von Einzelphotometern auf Basis von kombinierten organischen Leucht- und Photodioden in einer Draufsicht.

5

15

Die in der Zeichnung dargestellte optische Messeinrichtung dient zur photometrischen Untersuchung bzw.
Auswertung von diagnostischen Teststreifen 10 beispielsweise für Glucosetests in Blutproben. Sie umfasst eine Positioniereinheit 12 für den Teststreifen
10 sowie eine Verbundstruktur aus einer durch mindestens eine organische Leuchtdiode (OLED 14) gebildeten
Lichtquelle 16, einem Trägersubstrat 18, einer Abbildungsoptik 20 und einem mindestens eine Polymerphotodiode 22 aufweisenden Photodetektor 24.

Bei der in Fig. 1 gezeigten Ausführungsform sind mehrere matrixartig angeordnete OLEDs 14 vorgesehen, welche unterschiedliche Emissionswellenlängen besitzen.
Die filmartigen OLEDs 14 basieren auf mindestens einer
dünnen organischen Leuchtschicht 26, welche in Sandwich-Formation zwischen zwei Elektrodenschichten 28,
30 angeordnet ist. Bei angelegter Spannung werden von
der Anodenschicht 28 positive Ladungen in die Leuchtschicht 26 gedrängt, während an der Kathodenschicht 30
Elektronen injiziert werden. Auf Grund des elektrischen Feldes bewegen sich die injizierten Ladungsträ-

ger zur jeweils gegenüberliegenden Elektrodenschicht. Treffen Elektronen und Löcher aufeinander, so bilden sich Elektron-Loch-Paare, welche strahlend rekombinieren können. Das Emissionsspektrum wird dabei von dem verwendeten organischen Halbleitermaterial bestimmt. Hocheffiziente OLEDs enthalten weitere Injektions- und Transportschichten zur Optimierung dieses Injektionselektrolumineszenzeffekts sowie Hilfsschichten als Diffusionsbarriere und zur Homogenisierung.

In der Ausführung nach Fig. 1 ist eine an das Trägersubstrat 18 angrenzende gemeinsame Anode 28 vorgesehen, die aus ITO (Indium-Zinn-Oxid) oder aus verwandten oxidischen Verbindungen sowie leitenden Polymeren besteht und für das emittierte Licht durchlässig ist. Dagegen sind die aus einer Metallschicht bestehenden Kathoden 30 über gesonderte Abgriffe 32 einzeln ansteuerbar.

10

Über die verschiedenen Wellenlängen der angesteuerten OLEDs können unterschiedliche optisch nachweisbare Reaktionen oder Eigenschaften der analytischen Testflächen 34 auf dem Teststreifen 10 evaluiert werden. Daneben lassen sich aufgrund der Matrixanordnung der OLEDs verschiedene Beleuchtungszielflächen bzw. Beleuchtungsspots bestrahlen, beispielsweise um geringste Probenvolumina auf einer gegebenen Testfläche 34 ortsaufgelöst zu untersuchen.

Das Trägersubstrat 18 besteht aus einem für das erzeugte Licht durchlässigen dünnen Flachmaterial, speziell einem Dünnglas oder flexiblen Polymerfilm oder einer geeigneten Multischicht. Die darauf aufgebrachten OLEDs 14 lassen sich als Schichtemitter in äußerst geringen Dimensionen fertigen. Beispielsweise kann die Pixelgröße zwischen 50 und 200 µm betragen, während die Schichtdicke der Leuchtschicht 26 im Bereich von 100 nm liegen kann. Solche Strukturen lassen sich mit verschiedensten Prozesstechniken wie Tauchverfahren, Spin- und Dip-coating, Sieb- und Tirtenstrahldruck, PVD- und CVD-Verfahren mit hoher Präzision erzeugen.

Die Abbildungsoptik 20 ist auf der den OLEDs 14 gegenüberliegenden Seite des Trägersubstrats 18 angebracht. Sie weist eine Vielzahl von flächig verteilten Linseneinheiten 36 zur emitterseitigen Auskopplung und detektorseitigen Einkopplung des Messlichts auf. Diese können als vorgefertigte mikrostrukturierte Linsenstruktur 38 beispielsweise in Form eines heiß geprägten Filmmaterials an der dem Testelement 10 zugewandten Substratseite auflaminiert sein. Alternativ ist es möglich, die Linsenstruktur an der freien Substratseite beispielsweise durch Prägen direkt einzuformen.

25

20

5

15

Die Polymerphotodiode 22 ist ähnlich den OLEDs in Sandwichbauweise aus zwei Elektrodenschichten 40, 42 und einer halbleitenden Polymerschicht 44 aufgebaut. Solche photosensitiven Schichtzellen sind an sich bekannt und beispielsweise in der Veröffentlichung von Dey et al., A dye/polymer based solid state thin film photoelectrochemical cell used for light detection, Synthetic Metals 118 (2001), S. 19 - 23, deren Inhalt hier einbezogen wird, beschrieben.

5

25

Anstelle einer einzigen Photodiode 22 können auch eine Vielzahl von Photodioden als ein- oder zweidimensionales Array bzw. Diodenfeld auf dem Trägersubstrat 18 angeordnet sein. Denkbar ist es auch, einen herkömmlichen photometrischen Empfänger mit einer vorstehend beschriebenen OLED-Lichtquelle zu kombinieren.

Durch die Verbundstruktur aus OLED 14, Abbildungsoptik
20 und Photodiode 22 lässt sich eine sehr kompakte und
optisch präzise Photometeranordnung realisieren, welche in einem kompakten Gehäuse 46 dem Anwender zur
Verfügung gestellt werden kann, um die Auswertung von
insbesondere als Einwegartikel ausgebildeten Teststreifen 10 selbst vorzunehmen. Zu diesem Zweck ist
eine in das Gehäuse 46 einschiebbare Aufnahme 48 als
Positioniereinheit für den Teststreifen 10 vorgesehen.

Der Strahlengang verläuft in der Anordnung nach Fig. 1 von der Lichtquelle 16 durch das Substrat 18 und die Abbildungsoptik 20 auf die Testfläche 34 und von dort reflektiv bzw. remittiert über die Abbildungsoptik 20 durch das Substrat 18 hindurch in den Detektor 24. Grundsätzlich ist aber auch eine transmissive Anord-

nung möglich, in welcher der Teststreifen 10 im Durchlicht zwischen Lichtquelle und Detektor untersucht wird.

Gemäß Fig. 1 wird jede OLED 14 durch eine Gruppe von Linseneinheiten 36 auf eine Zielfläche auf dem Teststreifen 10 abgebildet. Die in Fig. 2 und 3 gezeigten Ausführungsformen unterscheiden sich hiervon im wesentlichen dadurch, dass jeder OLED 14 eine Einzellinse 36 mit größerem Linsendurchmesser zugeordnet ist. Entsprechend Fig. 2 ist diese als Fresnel-Linse 36 ausgebildet und dabei in ihrer Bauform für die Mikrostrukturierung und Abformtechnik optimiert. Fig. 3 zeigt eine asphärische Sammellinse 36'' zur bündelung des emittierten Lichts.

Bei den Ausführungsformen gemäß Fig. 2 und 3 sind gesonderte Anodenschichten 28 der OLEDs 14 als einzeln steuerbare Frontelektroden vorgesehen, während eine durchgehende Kathodenschicht 30 eine gemeinsame Rückelektrode bildet.

20

25

Bei dem in Fig. 4 dargestellten Ausführungsbeispiel ist ein Gehäuse 50 zur hermetischen Abschirmung der freien Oberfläche der OLED 14 gegenüber der Umgebung vorgesehen, um sowohl die organische Leuchtschicht 26 wie auch die Transport/Injektionsschichten 52 und - Metallelektroden 30 gegen Oxidation durch Sauerstoff und Feuchtigkeitseinfluss zu schützen. Das Gehäuse 50

kann randseitig über eine Klebeschicht 54 auf der Elektrodenschicht 28 bzw. dem Trägersubstrat 18 fixiert sein und ein Trockenmittel 56 als zusätzlichen Feuchtigkeitsschutz enthalten. Es versteht sich, dass anstelle eines gesonderten Gehäuses auch eine Beschichtung oder dergleichen zusammen mit dem Trägersubstrat 18 als stoffdichte Barriere vorgesehen sein kann.

In Fig. 5 ist eine weitere Ausführungsform mit einer Vielzahl von auf der Oberfläche des Trägersubstrats matrixartig angeordneten Elementarphotometern 58 dargestellt. Die Elementarphotometer 58 werden jeweils auf einer quadratischen Pixelfläche durch eine kreuzförmige Polymerphotodiode 22 und vier in den Eckberei-15 chen angeordneten und mit unterschiedlichen Wellenlängen arbeitenden OLEDs 14 gebildet, wobei selbstverständlich auch andere lokale Kombinationen denkbar sind. Damit kann eine Zielfläche auf dem Testelement 10, wie sie in Fig. 5 durch den Kreis 60 veranschaulicht ist, ortsaufgelöst optisch abgetastet werden. Dies erlaubt es, kleine Probenmengen auch bei ungenauer Positionierung photometrisch zu untersuchen. Zugleich ist es damit möglich, die optische Messstrecke zu verringern und gegebenenfalls sogar auf eine Abbildungsoptik zu verzichten.

20

Patentansprüche

- 1. Messeinrichtung zur optischen Untersuchung eines insbesondere diagnostischen Testelements (10) mit einer Lichtquelle (16), einem Photodetektor (24) und einer Vorrichtung (12) zum Positionieren des Testelements (10) in einem Strahlengang zwischen Lichtquelle (16) und Photodetektor (24), wobei die Lichtquelle (16) eine oder mehrere organische Leuchtdioden (OLEDs) aufweist und die OLEDs (14) über ein Trägersubstrat (18) mit einer Abbildungsptik (20) und/oder dem Photodetektor (24) eine Verbundstruktur bilden.
- 2. Messeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine Vielzahl von OLEDs (14) als ein- oder zweidimensionales Leuchtpixelarray auf dem Trägersubstrat (18) angeordnet sind.
- 3. Messeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die OLEDs (14) voneinander unterschiedliche Emissionswellenlängenbereiche aufweisen.
- 4. Messeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die OLEDs (14) vorzugsweise rasterförmig auf unterschiedliche Beleuchtungszielflächen ausgerichtet sind.

5. Messeinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die OLEDs (14) aus zwei Elektrodenschichten (28,30) und einer sandwichartig dazwischenliegenden, vorzugsweise aus einem Polymermaterial gebildeten elektrolumineszierenden Leuchtschicht (26) aufgebaut sind.

5

15

20

- 6. Messeinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die OLEDs (14) eine Pixelgröße von weniger als 500 μ m, vorzugsweise weniger als 200 μ m besitzen.
- 7. Messeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die OLEDs (14) eine an das Trägersubstrat (18) angrenzende transparente Frontelektrodenschicht (28) und eine davon abgewandte Rückelektrodenschicht (30) aufweisen.
- 8. Messeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Abbildungsoptik (20) mindestens eine optische Linse (36;36',36'') zur Abbildung der Lichtquelle (16) auf eine Zielfläche (34) des Testelements (10) und/oder einer Zielfläche (34) des Testelements (10) auf den Photodetektor (24) aufweist.
- Messeinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Abbildungsoptik
 (20) eine Vielzahl von in flächiger Anordnung mik-

rostrukturierten, vorzugsweise asphärischen Linseneinheiten (36) aufweist.

 Messeinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Abbildungsoptik (20) durch eine auf dem Trägersubstrat (18) insbesondere durch Prägen eingeformte Linsenstruktur (38) gebildet ist.

5

- 10 11. Messeinrichtung nach einem der Ansprüche 1 bis 9,
 dadurch gekennzeichnet, dass die Abbildungsoptik
 (20) durch ein insbesondere durch Prägen, Spritzgießen oder Reaktionsgießen als Linsenstruktur (38)
 vorgeformtes und mit dem Trägersubstrat (18) flächig verbundenes Folienmaterial vorzugsweise auf
 Polymerbasis gebildet ist.
 - 12. Messeinrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die OLEDs (14) auf der einen Seite und die Abbildungsoptik (20) auf der gegenüberliegenden Seite des Trägersubstrats (18) angeordnet sind.
- 13. Messeinrichtung nach einem der Ansprüche 1 bis 12,
 25 dadurch gekennzeichnet, dass das Trägersubstrat

 (18) aus einem transparenten Flachmaterial, insbesondere aus einem Dünnglas oder einem gegebenenfalls mehrschichtigen Polymerfilm besteht.

14. Messeinrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Photodetektor (24) durch mindestens eine schichtförmige organische Photodiode (22) gebildet ist.

5

15. Messeinrichtung nach Anspruch 14, dadurch gekennzeichnet, dass eine Vielzahl von organischen Photodioden (22) als lineares oder planares Sensorpixelarray auf dem Trägersubstrat (18) angeordnet sind.

10

16. Messeinrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die OLEDs (14) und gegebenenfalls die Photodioden (22) durch ein Beschichtungsverfahren auf das Trägersubstrat (18) aufgebracht sind.

15

17. Messeinrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass eine Vielzahl von auf einer Oberfläche des Trägersubstrats (18) matrixartig angeordneten und als Elementarphotometer (58) lokal kombinierten OLEDs (14) und Photodioden (22) ein Vielfachphotometer bilden.

20

25

18. Messeinrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Vorrichtung (12) zur Positionierung eine Halterung, eine Führung oder einen Anschlag für das Testelement umfasst.

19. Messeinrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die OLEDs (14) an ihrer Oberfläche insbesondere durch eine Beschichtung oder ein Gehäuse (50) gegenüber der Umgebung stoffdicht abgeschirmt sind.

5

20. Messeinrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass das Testelement (10) durch einen mit optisch abtastbaren Indikatorfeldern (34) für nachzuweisende biologische Substanzen versehenen, insbesondere als Einmalartikel bestimmten Teststreifen, beispielsweise einen Glucoseteststreifen gebildet ist.