MATH 340 - Discrete Structures 2

$McGill\ University\ -\ Winter\ 2013$

Last Updated: February 24, 2013

Contents

In	formation	1
1	Summary of Graph Theory Terms 1.1 Special Graphs	1 2
	Stable Marriages	2
	2.1 Example	2
	2.2 Gale-Shapley	3
	2.3 Matching	5
	2.4 Matching in Bipartite Graph	7

Information

• Instructor: Bruce Shepherd

• LaTeX: Ehsan Kia

• Notes: Catherine Hilgers

1 Summary of Graph Theory Terms

A (simple) graph G is an ordered pair (V(G), E(G)), sometimes written (V, E), where V(G) is a finite set of vertices (aka nodes), and E(G) is a finite set of edges.

Each edge is of the form $\{u, v\}$ sometimes written uv, where $u \neq v$ are two vertices that are the end points of the edge.

Note: simple, undirected graph mean that we have no:

1.1 Special Graphs

Figure 1: Examples of simple graphs

A graph is *connected* if $\forall i, j \in V, \exists$ a path between them.

A tree is a connected graph with no cycles (Figure 2).

A component of G is a maximal connected subgraph.

The degree of a vertex v is the number of edges of which it is an endpoint, denoted by $deg_G(v)$ or $d_G(v)$.

Figure 2: A tree

2 Stable Marriages

We have n boys and n girls. Each boy has an ordered list of girls and vice versa.

A set M of marriages is stable if there is no boy-girl pair who prefer each other to their current pairings in M. We call this situation an unstable (unblocking) pair [Figure 3].

2.1 Example

In the following example [Figure 4], we have 3 boys and 3 girls, each with their own preference list, but the given matching isn't a stable marriage.

But when trying again, we can easily find two stable configuations [Figure 5]

Figure 3: Unstable pair B_j prefers G_i to G_j and G_i prefers B_j to B_i

Figure 4: Unstable because Amalia and Bob prefer each other over their current partner

2.2 Gale-Shapley

Do stable matchings exist in general?

Theorem (Gale & Shapley): A stable matching always exists

Proof (by algorithm): While there is some "single" boy B, B proposes to the next girl on his list, call her G. Girl G accepts if she is single or prefers B to her current fiancé. Claim is that the algorithm terminates for any set of lists with a stable matching.

NOTE: as the algorithm proceeds, girls' choices only get better and mens' only get worse. Each time a girl changes fiancè, she trades up. A boy only changes if he gets dumped by G and he then proposes to the next girl on his list.

Figure 6: Preference list

Corollary: The algorithm terminates. Say boy B has his list. The pointer aims at his current match. There are n boys and n possible pointers into their lists [Figure 6]. each dumping moves the pointer down the list by one. We have $\leq n^2$ total dumpings. The algorithm terminates after $\mathcal{O}(n^2)$.

The matching returned by the algorithm is stable. Suppose M is the output matching, and has unstable pair (B_i, G_j) , for a contradiction:

- B_i prefers G_j to current match G_i
- G_j prefers B_i to current match B_j

Figure 5: These work because each boy prefers a different girl, and each girl prefers a different boy.

Since B_i prefers G_j to G_i , he proposed to her earlier and she either rejected him, or accepted and dumped him later. In either case, she was at some point matched to some B_k she preferred to B_i . By observation, her partners only improved from that point on. Thus, she prefers B_j to B_k and B_k to $B_i \Rightarrow \text{prefers } B_j$ to B_i and (B_i, G_j) is not unstable. $\Rightarrow \Leftarrow$ (contradiction)

There can be many stable matchings. Let:

$$S = \{M_1, M_2, ..., M_k\}$$

be the set of all stable matchings. Call G_j a valid partner for B_i if (B_i, G_j) are matched in some $M_i \in \mathcal{S}$. For each B, let $G^+(B)$ be his most preferred valid partner.

Remarkably, the boy-proposal algorithm matches each boy B to $G^+(B)$. To show this, we require a lemma:

Lemma: a girl never rejects a valid partner

Proof (by contradiction): Suppose not. Consider the first time G_j rejects a valid partner B_i . Say (B_i, G_j) were matched in $M_t \in \mathcal{S}$. Say G_j dumps B_i for B_j at that time. Say (B_j, G_k) is a match in M_t [Figure 7].

Figure 7: A valid partner being dumped by a girl in boy-proposal

Since B_i is the first valid partner to be dumped, we claim B_j prefers G_j to G_k . Why? Supposed

 B_j prefers G_k to G_j . Thus he proposes first to G_k . But $(G_k, B_j) \in M_t$, and therefore G_k is valid for B_j . But B_j was as we supposed in the beginning the first valid person to be dumped, which means B_j did not get dumped and B-j is not free to propose to G_j . $\Rightarrow \Leftarrow$

So B_j prefers G_j to G_k and G_j prefers B_j to B_i , therefore (B_i, G_j) is unstable in M_t . But $M_t \in \mathcal{S}$ and in thus stable. $\Rightarrow \Leftarrow$. Hence a girl never rejects a valid partner.

Now we will show that the boy-proposal algorithm matches each boy B with $G^+(B)$.

Proof: If B_i is matched by algorithm to G_j , who he doesn't like as much as $G^+(B_i)$, then he proposed to $G^+(B_i)$ first. But $G^+(B_i)$ and B_i are valid, hence $G^+(B_i)$ couldn't have rejected him. $\Rightarrow \Leftarrow$

Let $B^-(G_j)$ be the worst partner for G_j amongst all stable matchings.

Lemma: The boy-proposal algorithm matches each G_i to $B^-(G_i)$.

Proof: Supposed B_j and G_j are matched, whom she prefers to $B^-(G_j)$. Say $(G_j, B^-(G_j)) \in M_r$ and $(G_i, B_j) \in M_r$ [Figure 8].

Figure 8: By the previous, B_i gets $G^+(B_i)$, so $G_i = G^+(B_i)$

Thus, B_j prefers G_j to G_i and G_j prefers B_j to $B^-(G_j)$, therefore the valid pair (B_i, G_j) is unstable in M_r . $\Rightarrow \Leftarrow$. It follows that G_j gets $B^-(G_j)$ with boy proposal.

2.3 Matching

A matching in a graph G(V, E) is a set $M \subseteq E$ of vertex-disjoint edges, i.e., each vertex of G is the endpoint of at most one edge in M.

we say $v \in V$ is matched (or saturated) by M if it is the endpoint of some edges in M. Otherwise, it is unmatched. A path P is M-alternating if its edges are alternatively in M and not in M.

An alternating path is *M-augmenting* if its endpoints are unmatched.

Theorem: A matching in G is of maximum cardinality \iff there is no M-augmenting path.

Proof:(\Rightarrow) Suppose P is an M-augmenting path, then switching the edges in P produces a larger matching. Let $M' = M \oplus E(P)$ (Symmetric difference of M and the edges in the path P).

Figure 9: Symmetric difference of M and E(P)

$$M \oplus E(P) = (M \cup E(P)) - (M \cap E(P))$$
$$= (M - E(P)) \cup (E(P) - M)$$

(\Leftarrow) Suppose M has no augmenting path. Claim that it is a maximum matching. Suppose not, and that M^* is a maximum matching where $|M^*| > |M|$. Consider $M \oplus M^*$. Let H be the subgraph induced by the edges.

Claim:

$$|M| = \# \text{ of } M \text{ -edges } \in H + |M \cap M^*|$$

= # of M*-edges \in H + |M \cap M^*|

What is the degre of any vertex in H? It's at most two, since each vertex is incident to at most one edge in M and at most one edge in M^* . $deg_H(v) \in \{0, 1, 2\}$.

What does H look like?

Say blue is M and green is M^* . They alternate:

This means that a cycle must be even:

Each component is either

- an even cycle
- a path

Since alternating an even cycle doesn't change the size of M nor M^* , we will focus on paths.

Consider the 3 following types of paths:

- 1. M^* -augmenting
- 2. M-augmenting
- 3. augments nothing

There are no type 1 paths since they are M^* -augmenting and we assumed M^* was maximum! (See \Rightarrow path of the proof). Each type 3 path, similarly to the cycle components, have the same number M and M^* edges. But, by the claim, H must have more M^* edges than M-edges. Therefore there is a type 2 component, and thus is an M-augmenting path. $\Rightarrow \Leftarrow$

Note: This theorem holds for all graphs.

2.4 Matching in Bipartite Graph

G is bipartite if there is a partition $V(G) = X \cup Y$, such that each edge has one endpoint in Z and the other in Y (figure 10).

7

Figure 10: Bipartite graph partitioned into vertex set X and Y

N(A)

Theorem: G is bipartite \iff it has no odd cycles.

Definition: A matching is perfect if it matches each vertex of G (we can only have degree 1 matching here).

Fundamental question: "When does a graph have a perfect matching?"

Definition: For $A \in V$, denote by N(A) the set of neighbors of A, i.e., $N(A) = \{v \notin A : \exists \ uv \in E, u \in A\}$

Hall's Theorem: A bipartite graph G with |X| = |Y| has a perfect matching $\iff |N(A) \ge |A| \ \forall \ A \subseteq X$. (Known as Hall's condition)

Proof: (\Rightarrow) Trivially holds since we can't have this:

Figure 11: The two vertices in A have only one possible vertex they can match with, therefore there is no perfect matching that would match both.

(\Leftarrow) Supposed G is satisfying Hall's condition. If M is some matching with an unmatched vertex $u \in X$, we show how to make it bigger.