

Rendering Pipeline: Image Processing

Teacher: Dr. Zhuo SU (苏卓)

E-mail: <u>suzhuo3@mail.sysu.edu.cn</u>

School of Data and Computer Science

视网膜成像:上亿个感光细胞

颜色三原色与RGB颜色空间

Color = aR + bG + cB

数字图像 (Digital Image)

Digital Image

- Binary images (0 or 1)
- Gray images (0~255)
- Color images
 - indexed color images
 - full color images (24 bits per pixel, 8-red, 8-green, 8-blue))

Grey **Image**

Color

Color Components

Image Format

- BMP: bitmap
 - Raw data, 无压缩, 文件大
- GIF
 - 文件小,能存储动画
- JPEG
 - 压缩率高
- JPEG 2000
 - 更高压缩率,支持渐近传输
- PSD, SWF...

Image Quality

- Image format and its compressive ratio.
- BMP , PNG , JPG

BMP 263 KB

PNG 112 KB

100% JPG 52 KB

10% JPG 6.38 KB

Video: Image Sequence

图像的连续数学模型:平面区域上的向量值函数

- 区域内每个点有个颜色值
 - 每种颜色值是红、绿、蓝三个成分的线性组合
 - 颜色空间是三维线性空间

0.6 R + 0.3 G + 0.1 B

图像的离散数学模型:矩阵

• 分辨率

Image Programming

- 图像的抽象
- 我们需要哪些信息可以决定一幅图像?
 - 宽、高
 - 每个元素的颜色

• 像素的矩阵!

```
class CImage
{
   public:
     int GetWidth();
     int Get Height();
     CColor GetPixelAt(int x, int y);
     void SetPixelAt(int x, int y, CColor c);
};
```

Image Processing (Image Transformation)

$$\mathbf{B}[x,y] = T[\mathbf{A}[x,y]]$$

- Examples : Reverse color
- R, G, B channels
- Color2Gray
 - Gray = a R + b G + c B
 - Gray = R*0.299 + G*0.587 + B*0.114
- Add noise
- ...

• Image Deformation

• Image Deformation

• How to do?

Scattered Point Interpolation

- Image Matting
 - Cut out the object from a given image

• How to do

Photoshop Magic Wand Tool

Original Image

Add additional areas

Interactive sketch

图论:最大流最小割算法

$$\sum_{s \in V} \bar{\theta}_s(x_s) + \sum_{(s,t) \in E} \bar{\theta}_{st}(x_s, x_t)$$

各种图像处理软件

- Photoshop (PS)
- CorelDraw
- Picasa

- 美图秀秀
- 光影魔术手

•

1、图像是线性空间的数据点集

• Example 1: Color Transfer

• 使点云位置、形状相似(均值和方差变换)

$$l' = l - \langle l \rangle$$

$$\alpha^* = \alpha - \langle \alpha \rangle$$

$$\beta^* = \beta - \langle \beta \rangle$$

$$l' = \frac{\sigma_t^l}{\sigma_s^l} l^*$$

$$\alpha' = \frac{\sigma_t^\alpha}{\sigma_s^\alpha} \alpha^*$$

$$\beta' = \frac{\sigma_t^\beta}{\sigma_s^\beta} \beta^*$$

- Color Spaces: Different Basis
 - RGB
 - CMY
 - HSV
 - $l\alpha\beta$

• Example 2: Color2Gray

- Problem: Dimension reduction
 - 3D (Color) -> 1D (Gray)

• 2、图像是一个矩阵

This image is 600×465 pixels

Matrix Decomposition

- LU Decomposition
- QR Decomposition
- Cholesky Decomposition
- Jordan Decomposition
- Spectral Decomposition
- Singular Value Decomposition (SVD)
- Low-Rank Decomposition

$$A = L U$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} & l_{13} \\ 0 & l_{12} & l_{23} \\ 0 & 0 & l_{33} \end{bmatrix}$$

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^{\mathrm{T}}$$

where
$$k \ll \min\{m, n\}$$

Singular values of flowers image

Rank-5

Rank-20

Rank-80 Rank-150

True Image

- Low Rank Matrix
 - 高维数据往往具有低维结构

 Visual data exhibit low-dimensional structures due to rich local regularities, global symmetries, repetitive patterns, or redundant sampling.

• Example 1: Image Completion

Example 1: Image Completion

3、图像是一个函数

• 2D区域上的向量值函数

$$I = I(x, y)$$

Discrete sampling

$$I = f(i, j)$$

• Example 1: Vectorization

• Example 1: Vectorization

4、图像是一个图 (Graph)

Acknowledgement

- USTC Computer Graphics (Spring 2018), Prof. Ligang Liu
 - http://staff.ustc.edu.cn/~lgliu/Courses/ComputerGraphics_2018_spring
 -summer/default.htm
- ZJU CAD Computer Graphics 2017, Dr. Hongxin Zhang
 - http://www.cad.zju.edu.cn/home/zhx/CG/2017/doku.php
- XMU Digital Geometry Processing, Dr. Zhonggui Chen
 - http://graphics.xmu.edu.cn/courses/dgp/index.html
- Tsinghua Computer Graphics, Prof. Shimin Hu
 - http://cg.cs.tsinghua.edu.cn/course/