Topic Note: 線形写像と行列

tomixy

2025年5月24日

目次

行列の導入	1
線形写像の定義	3
線形写像の表現行列	5
\mathbb{R}^2 の線形変換の例	8
行列の積	8
行列の和とスカラー倍	10

* * *

行列の導入

長方形に並んだ数の集まりを

$$A = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

などと書き、行列と呼ぶ

なこと目に、ロゾロの

ref: 行列と行列式の基 礎 1.4

横の数字の並びを行、縦の数字の並びを列と呼ぶ

A は m 個の行と n 個の列をもつ行列である

第i行、第j列にある数字を a_{ij} と表し、これを(i,j)成分と呼ぶ

行がm個、列がn個の行列は、m行n列の行列、あるいは $m \times n$ 型の行列であるという

 $n \times n$ 型の場合、行列は正方形なので n 次正方行列と呼ぶ

* * *

A の成分から第 j 列だけを取り出して \mathbb{R}^m のベクトルとしたものが

$$oldsymbol{a}_j = egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix} \quad (1 \leq i \leq n)$$

であり、これを A の j 番目のMベクトルという

A は、これらを横に並べたものという意味で

$$A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n)$$

と書くことができる

* * *

lacktriangleright 行列とベクトルの積 $m \times n$ 型の行列 $A = (oldsymbol{a}_1, oldsymbol{a}_2, \ldots, oldsymbol{a}_n)$ と $oldsymbol{v} \in \mathbb{R}^n$ との積を

$$A\boldsymbol{v} = v_1\boldsymbol{a}_1 + v_2\boldsymbol{a}_2 + \cdots + v_n\boldsymbol{a}_n$$

により定める

ここで、 v_i は \boldsymbol{v} の第 i 成分である

Av を考えるとき、ほとんどの場合は、A が 1 つ与えられていて mv が いろいろ動くという意識が強い

それは、行列 A のことを、ベクトルを与えて別なベクトルを作る 入力ベクトル $oldsymbol{v}$ → 出力ベクトル $Aoldsymbol{v}$

という装置、すなわち写像だとみなすことである

* * *

 $oldsymbol{\cdot}$ 行列とベクトルの積の性質 A, B を $m \times n$ 型行列、 $oldsymbol{u}$, $oldsymbol{v} \in \mathbb{R}^n$ 、 $c \in \mathbb{R}$ とするとき、次が成り立つ

- i. $A(\boldsymbol{u}+\boldsymbol{v})=A\boldsymbol{u}+A\boldsymbol{v}$
- ii. $A(c\boldsymbol{v}) = cA\boldsymbol{v}$

¶ 証明

[Todo 1: ref: 行列と行列式の基礎 p24 (命題 1.4.3)]

* * *

線形写像の定義

- 線形写像と線形性 写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ が線形写像であるとは、次の 2 つの条件が成立することである
 - i. $f(c\boldsymbol{v}) = cf(\boldsymbol{v})$ がすべての $c \in \mathbb{R}$, $\boldsymbol{v} \in \mathbb{R}^n$ に対して成り立つ

ref: 行列と行列式の 基礎 2 ii. $f(\boldsymbol{u}+\boldsymbol{v})=f(\boldsymbol{u})+f(\boldsymbol{v})$ がすべての $\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^n$ に対して成り立つ

これらの性質を写像 f の線形性という

また、m=n のとき、線形写像 $f:\mathbb{R}^n \to \mathbb{R}^n$ を \mathbb{R}^n の線形変換と呼ぶ

線形変換は空間 \mathbb{R}^n からそれ自身への写像なので、 \mathbb{R}^n 内において「ベクトルが変化している」(あるいは f が空間 \mathbb{R}^n に作用している)ニュアンスとみることができる

* * *

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とするとき、i より、

$$f(0 \cdot \boldsymbol{v}) = 0 \cdot f(\boldsymbol{v})$$

なので、

$$f(0) = 0$$

が成り立つ

♣ 零ベクトルの像 零ベクトルは線形写像によって零ベクトル に写される

* * *

m=n=1 のときは、線形写像 $f\colon \mathbb{R}^1 \to \mathbb{R}^1$ は、通常の意味の関数である

このとき、iの性質から、

$$f(c) = f(c \cdot 1) = c \cdot f(1) \quad (c \in \mathbb{R} = \mathbb{R}^1)$$

が成り立つので、 $a = f(1) \in \mathbb{R}$ とおくと、

$$f(x) = ax$$

と書ける

・ 比例関数 線形写像 $f: \mathbb{R}^1 \to \mathbb{R}^1$ は、a を比例定数とする比例関数である

* * *

線形写像の表現行列

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とするとき、各基本ベクトル $m{e}_j$ の f による像を

$$f(oldsymbol{e}_j) = oldsymbol{a}_j = egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix}$$

と書くとする

これらを横に並べることによって、 *m* 行 *n* 列の行列を作る

$$A = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (m{a}_1, m{a}_2, \dots, m{a}_n)$$

この行列 A を f の表現行列という

特に、 \mathbb{R}^n の線形変換の表現行列は n 次正方行列である

* * *

 \mathbb{R}^n の一般のベクトル \boldsymbol{v} を、基本ベクトルの線型結合として

$$oldsymbol{v} = \sum_{j=1}^n v_j oldsymbol{e}_j$$

と書く

このとき、f の線形性より、

$$f(oldsymbol{v}) = \sum_{j=1}^n v_j f(oldsymbol{e}_j) = \sum_{j=1}^n v_j oldsymbol{a}_j$$

となる

このベクトルの第 i 成分は

$$a_{i1}v_1 + a_{i2}v_2 + \cdots + a_{in}v_n$$

と書ける

これは $A oldsymbol{v}$ の第 i 成分である

したがって、この記法を踏まえて、次のような表記ができる

♣ 線形写像とその表現行列の関係

$$f(\boldsymbol{v}) = A\boldsymbol{v}$$

比例関数が比例定数 a だけで決まるのと同じように、線形写像は表現行列 A が与えられれば決まる

* * *

零写像と零行列 $f: \mathbb{R}^n \to \mathbb{R}^m$ を、すべての $\mathbf{v} \in \mathbb{R}^n$ に対して $f(\mathbf{v}) = \mathbf{0}$ と定めたものは明らかに線形写像であり、これを零写像と呼ぶ

その表現行列はすべての成分が0である行列であるこの行列を零行列と呼び、Oで表す

 $m \times n$ 型であることを明示するために $O_{m,n}$ と書くこともある

* * *

恒等写像と単位行列 $f: \mathbb{R}^n \to \mathbb{R}^n$ を、すべての $\boldsymbol{v} \in \mathbb{R}^n$ に対して $f(\boldsymbol{v}) = \boldsymbol{v}$ と定めたものは明らかに線形写像であるこれを恒等写像と呼び、 $f = \mathrm{id}_{\mathbb{R}^n}$ と書く

恒等写像の表現行列は、 $f(\boldsymbol{e}_j) = \boldsymbol{e}_j$ $(1 \leq j \leq n)$ より

$$E = (\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

であり、これを単位行列と呼ぶ

単位行列は正方行列であり、n 次であることを明示したいときは E_n と書く

* * *

線形写像 f から行列 A を作ったのとは逆に、任意の行列から線形写像を作ることができる

 $oldsymbol{\$}$ 行列から線形写像を作る $m \times n$ 型行列 A に対して、

$$f(\boldsymbol{v}) = A\boldsymbol{v} \quad (\boldsymbol{v} \in \mathbb{R}^n)$$

によって写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ を定めれば、f は線形写像である

¶ 証明

行列とベクトルの積の性質より、f は線形写像であるまた、f の定義から明らかに A は f の表現行列である

№2 の線形変換の例

[Todo 2: ref: 行列と行列式の基礎 p51 - p56]

* * *

行列の積

 \Re 線形写像の合成 \mathbb{R}^n から \mathbb{R}^m への線形写像 g と、 \mathbb{R}^m から \mathbb{R}^l への線形写像 f が与えられているとき、これらを合成して得られる写像

$$f \circ g \colon \mathbb{R}^n \xrightarrow{g} \mathbb{R}^m \xrightarrow{f} \mathbb{R}^l$$

は、 \mathbb{R}^n から \mathbb{R}^l への線形写像である

¶ 証明

「Todo 3: ref: 行列と行列式の基礎 p56 (問 2.2)]

f と g の表現行列をそれぞれ $A=(a_{ij}),\ B=(b_{ij})$ とするA は $l\times m$ 型、B は $m\times n$ 型の行列である

このとき、 $f \circ g$ は $l \times n$ 型行列で表現される それを C と書くことにして、その成分を計算しよう そのためには、基本ベクトルの写り先を見ればよい

B を列ベクトルに分解して $B = (\boldsymbol{b}_1, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n)$ と書くとき、

$$(f \circ g)(\boldsymbol{e}_j) = f(g(\boldsymbol{e}_j)) = f(\boldsymbol{b}_j) = A\boldsymbol{b}_j \quad (1 \le j \le n)$$

なので、

$$C = (A\boldsymbol{b}_1, A\boldsymbol{b}_2, \dots, A\boldsymbol{b}_n)$$

となる

 $C \circ (i,j)$ 成分は Ab_j の第 i 成分なので、

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{im}b_{mj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

により与えられる

つまり、C の (i,j) 成分を計算するときは、A の第 i 行、B の第 j 列だけを見ればよい

$$\begin{pmatrix} a_{i1} & a_{i2} & \dots & a_{im} \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{mj} \end{pmatrix} = \begin{pmatrix} \vdots \\ \vdots \\ k=1 \\ \vdots \end{pmatrix}$$

このようにして得られた $l \times n$ 型行列 C を AB と書き、A と B の積と呼ぶ

* * *

 \oplus 単位行列との積 A を $m \times n$ 型とするとき、次が成り立つ

$$E_m A = A$$

 $AE_n = A$

 \clubsuit 零行列との積 $A \in m \times n$ 型とするとき、次が成り立つ

$$O_m A = A O_n = O_{m,n}$$

* * *

2 つの行列の積が順番に依らない場合、2 つの行列は可換であるという

一般には、2 つの行列は可換であるとは限らない つまり、AB と BA は一般には異なる

[Todo 4: ref: 行列と行列式の基礎 p58 (例 2.2.3, 2.2.4)]

* * *

行列の和とスカラー倍

......

Zebra Notes

Туре	Number
todo	4