K. J. Somaiya College of Engineering, Mumbai-77

(Autonomous College Affiliated to University of Mumbai)

LAPLACE TRANSFORM

I.FIND THE LAPLACE TRANSFORM OF FOLLOWING FUNCTIONS:

1.
$$f(t) = (t-1)^4$$
, $t > 4$; $f(t) = 0$, $0 < t < 4$

2.
$$f(t) = t$$
, $0 < t < 1/2$; $f(t) = t - 1$, $1/2 < t < 1$; $f(t) = 0$, $t > 1$ [Ans: $\frac{1}{s^2} - \frac{e^{-s}}{s^2} - \frac{e^{-s/2}}{s}$]

3.
$$f(t) = 0, 0 < t < \pi; \ f(t) = \sin^2(t - \pi), t > \pi$$
 [Ans: $\frac{e^{-\pi s}}{2s} - \frac{s \cdot e^{-\pi s}}{s^2 + 4}$]

4.
$$\cos t \cdot \cos 2t \cdot \cos 3t$$
 [Ans: $\frac{1}{4} \left(\frac{1}{s} + \frac{s}{s^2 + 2^2} + \frac{s}{s^2 + 4^2} + \frac{s}{s^2 + 6^2} \right)$]

5.
$$(\sqrt{t}-1)^2$$
 [Ans: $\frac{1}{s^2} - \frac{\sqrt{\pi}}{s^{3/2}} + \frac{1}{s}$]

6.
$$\frac{\cos\sqrt{t}}{\sqrt{t}}$$
 [Ans: $\sqrt{\frac{\pi}{s}} \cdot e^{-1/4s}$]

7. If
$$L[\sin \sqrt{t}] = \frac{\sqrt{\pi}}{2s\sqrt{s}} \cdot e^{-1/4s}$$
, find $L[\sin 2\sqrt{t}]$ [Ans: $\frac{\sqrt{\pi}}{s\sqrt{s}} \cdot e^{-1/s}$]

8.
$$\sinh(t/2) \cdot \sin(\sqrt{3}t/2)$$
 [Ans: $\frac{\sqrt{3}}{2} \cdot \frac{s}{(s^4 + s^2 + 1)}$]

9.
$$e^{4t} \sin^3 t$$
 [Ans: $\frac{6}{(s^2 - 8s + 17)(s^2 - 8s + 25)}$]

10.
$$\frac{\cos 2t \cdot \sin t}{e^t}$$
 [Ans: $\frac{s^2 + 2s - 2}{(s^2 + 2s + 10)(s^2 + 2s + 2)}$]

11.
$$e^{-4t} \sinh t \cdot \sin t$$
 [Ans: $\frac{2(s+4)}{(s^2+6s+10)(s^2+10s+26)}$]

12.
$$e^{2t}(1+t)^2$$
 [Ans: $\frac{1}{(s-2)} + \frac{2}{(s-2)^2} + \frac{2}{(s-2)^3}$]

13. If
$$L[f(t)] = \frac{s}{s^2 + s + 4}$$
, find $L[e^{-3t} f(2t)]$ [Ans: $\frac{s+3}{s^2 + 8s + 10}$]

14.
$$(1+te^{-t})^3$$
 [Ans: $\frac{1}{s} - \frac{3}{(s+1)^2} + \frac{6}{(s+2)^3} + \frac{6}{(s+3)^3}$]

15.
$$t \sin^3 t$$

[Ans:
$$24 \cdot \frac{s(s+5)}{(s^2+1)^2(s^2+9)^2}$$
]

16.
$$t^5 \cosh t$$

[Ans:
$$60\left(\frac{1}{(s-1)^6} + \frac{1}{(s+1)^6}\right)$$
]

$$17. \quad t \sqrt{1 + \sin t}$$

[Ans:
$$4\frac{(4s^2+4s-1)}{(4s^2+1)^2}$$
]

18.
$$t\left(\frac{\sin t}{e^t}\right)^2$$

[Ans:
$$\frac{1}{2} \left(-\frac{1}{(s+2)^2} + \frac{s^2 + 4s}{(s^2 + 4s + 8)} \right)$$
]

19. If
$$L[f(t)] = \frac{s+3}{s^2+s+1}$$
, find $L[t f(2t)]$ [Ans: $\frac{s^2+12s+8}{(s^2+2s+4)^2}$]

[Ans:
$$\frac{s^2 + 12s + 8}{(s^2 + 2s + 4)^2}$$
]

$$20. \quad t e^{-2t} \sinh 4t$$

[Ans:
$$\frac{8(s+2)}{(s^2+4s-12)^2}$$
]

21.
$$t\cos(\omega t - \alpha)$$

[Ans:
$$\frac{(s^2 - \omega^2)\cos\alpha - 2\omega s\sin\alpha}{(\omega^2 + s^2)^2}$$
]

22.
$$(t \sinh 2t)^2$$
 Wrong answer

[Ans:
$$\frac{1}{2} \left(\frac{1}{(s-4)^3} + \frac{1}{(s+4)^3} \right)$$
]

$$23. \quad \left(t + \sin 2t\right)^2$$

[Ans:
$$\frac{2}{s^3} + \frac{8s}{(s^2+4)^2} + \frac{1}{2s} - \frac{s}{2(s^2+4^2)}$$
]

$$24. \quad \frac{1}{t} \left(1 - \cos t \right)$$

[Ans:
$$\frac{1}{2} \log \left(\frac{s^2 + 1}{s^2} \right)$$
]

$$25. \quad \frac{1}{t}e^{-t}\sin t$$

[Ans:
$$\cot^{-1}(s+1)$$
]

$$26. \quad \frac{\sin^2 2t}{t}$$

[Ans:
$$\frac{1}{4}\log\left(\frac{s^2+16}{s^2}\right)$$
]

$$27. \quad \frac{1-\cos t}{t^2}$$

[Ans:
$$\frac{\pi}{2} - \frac{s}{2} \log \left(\frac{s^2 + 1}{s^2} \right) - \tan^{-1} s$$
]

28. Find the Laplace transform of $\frac{\sin at}{t}$. Does Laplace transform of $\frac{\cos at}{t}$ exist? [Ans: $\cot^{-1} \frac{s}{a}$, does not exist]

$$29. \quad \frac{\cosh 2t \sin 2t}{t}$$

[Ans:
$$\pi + \tan^{-1} \left(\frac{s-2}{2} \right) + \tan^{-1} \left(\frac{s+2}{2} \right)$$
]

$$30. \quad \frac{e^{-at} - \cos at}{t}$$

[Ans:
$$\log \left(\frac{\sqrt{s^2 + a^2}}{s + a} \right)$$
]

31.
$$\int_0^t u e^{-3u} \cos^2 u \, du$$

32. $(i)t^3\delta(t-3)$ (ii) $t^3H(t-3)$

32.
$$(i)t^3\delta(t-3)$$

(ii)
$$t^3H(t-3)$$

33. Given that f(t) = t + 1, $0 \le t \le 2$, & f(t) = 3, t > 2 find L[f(t)], L[f'(t)] & L[f''(t)]

[Ans:
$$\frac{1}{s} + \frac{1}{s^2} (1 - e^{-2s})$$
, $\frac{1}{s} (1 - e^{-2s})$, $s^2 \left[\frac{1}{s} + \frac{1}{s^2} (1 - e^{-2s}) \right] - s - 1$]

34. Find the Laplace transform of $\frac{d}{dt} \left(\frac{\sin 3t}{t} \right)$ [Ans: $s \cot^{-1} (s/3) - 3$]

35.
$$erf \sqrt{t}$$
 [Ans: $\frac{1}{s\sqrt{s+1}}$]

36.
$$erf 2\sqrt{t}$$
 [Ans: $\frac{2}{s\sqrt{s+4}}$]

37.
$$e^{3t} t \operatorname{erf} \sqrt{t}$$
 [Ans: $\frac{3s-7}{2(s-3)^2(s-2)^{3/2}}$]

38.
$$\iint_{0}^{t} \iint_{0}^{t} t \sin t \, (dt)^{3}$$
 [Ans: $\frac{2}{s^{2}(s^{2}+1)^{2}}$]

39.
$$\int_{0}^{t} ue^{-3u} \cos^{2} 2u \ du \qquad \qquad [\text{Ans: } \frac{1}{2s(s+3)^{2}} + \frac{s^{2} + 6s - 7}{2s(s^{2} + 6s + 25)^{2}}]$$

40.
$$\int_{0}^{t} \frac{1 - e^{-au}}{u} du$$
 [Ans: $\frac{1}{s} \log \left(\frac{s - a}{s} \right)$]

41.
$$t^{-1} \int_{0}^{t} e^{-u} \sin u \ du$$
 [Ans: $\frac{1}{4} \log \left(\frac{s^2 + 2s + 2}{s^2} \right) - \frac{1}{2} \cot^{-1}(s+1)$]

42.
$$e^{-4t} \int_{0}^{t} u \sin 3u \ du$$
 [Ans: $\frac{6}{(s^2 + 8s + 25)^2}$]

43.
$$\cosh t \int_{0}^{t} e^{u} \cosh u \, du$$
 [Ans: $\frac{1}{2} \left[\frac{s-2}{(s-1)^{2}(s-3)} + \frac{s}{(s+1)^{2}(s-1)} \right]$]

44.
$$\int_{0}^{t} ue^{-3u} \sin^{2} u \ du$$
 [Ans: $\frac{1}{2s} \left[\frac{1}{(s+3)^{2}} + \frac{s^{2} + 6s + 5}{(s^{2} + 6s + 13)^{2}} \right]$]

45.
$$\frac{1}{t} (\cos at - \cos bt)$$
 [Ans: $\frac{1}{2} \log \left(\frac{s^2 + b^2}{s^2 + a^2} \right)$]

46. Find
$$L\{\cosh 2t \cdot erf \ 3\sqrt{t}\}\$$
if $L\{erf \ \sqrt{t}\} = \frac{1}{s\sqrt{s+1}}$ [Ans:
$$\frac{1}{2} \left[\frac{3}{(s+2)\sqrt{s+7}} + \frac{3}{(s-2)\sqrt{s+11}} \right]$$

47. If
$$L\left(2\sqrt{\frac{t}{\pi}}\right) = \frac{1}{s^{3/2}}$$
, show that $L\left(\frac{1}{\sqrt{\pi t}}\right) = \frac{1}{\sqrt{s}}$

48. A function f(t) obeys the equation $f(t) + 2 \int_{0}^{t} f(t) dt = \cosh 2t$ find the Laplace transform of f(t) [Ans: $\frac{s^2}{(s^2 - 4)(s + 2)}$]

II. EVALUATE THE FOLLOWING INTEGRALS USING LAPLACE TRANSFORM:

49.
$$\int_{0}^{\infty} e^{-2t} \sin^3 t \ dt$$
 [Ans: 6/65]

50. If
$$\int_{0}^{\infty} e^{-2t} \sin(t + \alpha) \cos(t - \alpha) dt = 3/8$$
 then find α . [Ans: $\pi/4$]

51.
$$\int_{0}^{\infty} e^{-3t} t \sin t \, dt$$
 [Ans: 3/50]

52. If
$$L[J_0(t)] = \frac{1}{\sqrt{s^2 + 1}}$$
, prove that $\int_0^\infty e^{-3t} t \ J_0(4t) dt = 3/125$

53.
$$\int_{0}^{\infty} \frac{t^2 \sin 3t}{e^{2t}} dt$$
 [Ans: 18/2197]

54.
$$\int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt$$
 [Ans: $\log \frac{b}{a}$]

55.
$$\int_{0}^{\infty} e^{-st} \frac{\sin^{2}(at/2)}{t} dt$$
 [Ans: $\frac{1}{2} \log \left(\frac{s^{2} + a^{2}}{s^{2}} \right)$]

56. Prove that
$$\int_{0}^{\infty} e^{-st} \frac{\sin t \sinh t}{t} dt = \frac{1}{2} \tan^{-1} \left(\frac{2a}{1 + s^2 - a^2} \right)$$

57.
$$\int_{0}^{\infty} \frac{e^{-t} - \cos t}{t e^{4t}} dt$$
 [Ans: $\log \frac{\sqrt{17}}{5}$]

58. Prove that
$$\int_{0}^{\infty} \frac{\sin 2t + \sin 3t}{t e^{t}} dt = \frac{3\pi}{4}$$

59.
$$\int_{0}^{\infty} e^{-2t} \sinh t \, \frac{\sin t}{t} \, dt$$
 [Ans: $\frac{1}{2} \tan^{-1} \frac{1}{2}$]

60.
$$\int_{0}^{\infty} e^{-t} \left(\int_{0}^{t} u^{2} \sinh u \cosh u \, du \right) dt \qquad [Ans: -\frac{2}{125}]$$

61.
$$\int_{0}^{\infty} e^{-4t} \left(\cosh t \int_{0}^{t} e^{u} \cosh u \ du \right) dt \qquad \text{[Ans: 31/225]}$$

62. Prove that
$$\int_{0}^{\infty} e^{-st} \frac{\sin bt + \sin at}{t} dt = \pi - \tan^{-1} \left(\frac{s(a+b)}{ab - s^2} \right)$$

63.
$$\int_{0}^{\infty} e^{-t} \sin^{5} t \, dt$$
 [Ans: $\frac{3}{8}$]

$$64. \int_{0}^{\infty} \frac{\cos 4t - \cos 3t}{t} dt \qquad [Ans: \log \frac{3}{4}]$$

65.
$$\int_{0}^{\infty} e^{-t}t^{3} \sin t \ dt$$
 [Ans: 0]

66.
$$\int_{t=0}^{\infty} \int_{t=0}^{t} \frac{e^{-t} \sin u}{u} du dt$$
 [Ans: $\frac{\pi}{4s}$]

INVERSE LAPLACE TRANSFORM

Find the inverse laplace transform of following functions:

$$\frac{4s+12}{s^2+8s+12}$$
 [Ans: $e^{-4t}(4\cosh 2t-\sinh 2t)$]

67.
$$\frac{s}{s^2 + 2s + 2}$$
 [Ans: $e^{-t}(\cos t - \sin t)$]

68.
$$\frac{s}{(2s+1)^2}$$
 [Ans: $e^{-1/2}(t-4)/16$]
$$\frac{s+1}{s^2-4}$$
 [Ans: $\frac{1}{4}\left(3e^{2t}+e^{-2t}\right)$]

69.
$$\frac{s^2 + 2s - 4}{(s^2 + 2s + 5)(s^2 + 2s + 2)}$$
 [Ans: $\frac{3}{2}e^{-t}\sin 2t - 2e^t\sin t$]

70.
$$\frac{s^2}{(s^2 + a^2)(s^2 + b^2)}$$
 [Ans: $\frac{1}{a^2 - b^2}(a\sin at - b\sin bt)$]

71.
$$\frac{s}{(s^2+a^2)(s^2+b^2)}$$
 [Ans: $\frac{1}{b^2-a^2}(\cos at - \cos bt)$]

72.
$$\frac{5s^2 + 8s - 1}{(s+3)(s^2+1)}$$
 [Ans: $2e^{-3t} + 3\cos t - \sin t$]

73.
$$\frac{2s}{s^4 + 4}$$
 [Ans: $\sin t \sinh t$]

74.
$$\frac{1}{s^3 + 1}$$
 [Ans: $\frac{1}{3}e^{-t} - \frac{e^{t/2}}{3}\cos\left(\frac{\sqrt{3}}{2}t\right) + \frac{e^{t/2}}{\sqrt{3}}\sin\left(\frac{\sqrt{3}}{2}t\right)$]

75.
$$\frac{1}{s^3(s-1)}$$
 [Ans: $1-t+\frac{t^2}{2}-e^{-t}$]

76.
$$\frac{s}{(s+1)^2(s^2+1)}$$
 [Ans: $\frac{1}{2} \left[\sin t - te^{-t} \right]$]

77.
$$\frac{5s^2 - 15s - 11}{(s+1)(s-2)^2}$$
 [Ans: $e^{-t} + 4e^{2t} - 7te^{2t}$]

78.
$$\frac{s+2}{s^2+6s+25}$$

79.
$$\frac{s}{(s^2+1)(s^2+4)(s^2+9)}$$

[Ans:
$$\frac{1}{24}\cos t - \frac{1}{15}\cos 2t + \frac{1}{40}\cos 3t$$
]

80.
$$\frac{s^2}{(s+1)^3}$$

[Ans:
$$e^{-t}(1-2t+t^2)$$
]

$$81. \ \frac{3s-2}{s^{5/2}} - \frac{7}{3s+2}$$

82.
$$\log\left(\frac{s+a}{s+b}\right)$$

[Ans:
$$-\frac{1}{t}(e^{-at}-e^{-bt})$$
]

83.
$$2 \tanh^{-1} s$$

[Ans:
$$\frac{2}{t} \sinh t$$
]

84.
$$\tan^{-1}\left(\frac{2}{s^2}\right)$$

[Ans:
$$2 \sin t \sinh t$$
]

85.
$$\tan^{-1} \left(\frac{s+a}{b} \right)$$

[Ans:
$$-\frac{1}{t} e^{-at} \sin bt$$
]

86.
$$\log \sqrt{\frac{s^2 + 1}{s^2}}$$

[Ans:
$$\frac{1}{t}(1-\cos t)$$
]

87.
$$\cot^{-1}(s+1)$$

[Ans:
$$\frac{1}{t} e^{-t} \sin t$$
]

88.
$$\log[s^2 + 4]$$

[Ans:
$$-\frac{2}{t}\cos 2t$$
]

89.
$$\frac{s^2}{(s^2+a^2)^2}$$

[Ans:
$$\frac{1}{2a} [\sin at + at \cos at]$$
]

90.
$$\frac{s^2 + 2s + 3}{(s^2 + 2s + 5)(s^2 + 2s + 2)}$$

[Ans:
$$\frac{e^{-t}}{3}(\sin 2t + \sin t)$$
]

91.
$$\frac{(s+2)^2}{(s^2+4s+8)^2}$$

[Ans:
$$\frac{e^{-2t}}{4} (2t \cos 2t + \sin 2t)$$
]

92.
$$\frac{1}{(s+3)(s^2+2s+2)}$$

[Ans:
$$\frac{1}{5} \left[e^{-t} \left(2 \sin t - \cos t \right) + e^{-3t} \right]$$

93.
$$\frac{1}{(s-2)^4(s+3)}$$

[Ans:
$$\frac{e^{-3t}}{625} - e^{2t} \left[\frac{1}{625} - \frac{t}{125} + \frac{t^2}{50} - \frac{t^3}{30} \right]$$
]

94.
$$\frac{1}{s} \log \left(1 + \frac{1}{s^2} \right)$$

[Ans:
$$\int_{0}^{t} -\frac{2}{u}(\cos u - 1) \ du$$

95.
$$\frac{s^2 + s}{(s^2 + 1)(s^2 + 2s + 2)}$$

95.
$$\frac{s^2 + s}{(s^2 + 1)(s^2 + 2s + 2)}$$
 [Ans: $\frac{1}{10} \left[e^{-t} (2\sin t - 6\cos t) + (2\sin t + 6\cos t) \right]$]

96.
$$\frac{s}{s^4 + 8s^2 + 16}$$

[Ans:
$$\frac{1}{4}t\sin 2t$$
]

97. Find
$$\int_{0}^{\infty} \sin(tx^2) dx$$
 and hence find $\int_{0}^{\infty} \sin x^2 dx$ [Ans: $\frac{1}{2} \sqrt{\frac{\pi}{2}}$]

98. Find
$$\int_{0}^{\infty} \cos(tx^2) dx$$
 and hence find $\int_{0}^{\infty} \cos x^2 dx$

99. Find
$$\int_{0}^{\infty} \cos(tx^2) dx$$
 and hence find $\int_{0}^{\infty} \cos x^2 dx$

100.Find
$$\int_0^\infty e^{-tx^2} dx$$

101. Using Convolution theorem prove that
$$L^{-1} \left[\frac{1}{s} \log \left(\frac{s+1}{s+2} \right) \right] = \int_{0}^{t} \frac{e^{-2u} - e^{-u}}{u} du$$

102. Using Convolution theorem prove that

$$L^{-1}\left[\frac{1}{s}\log\left(a+\frac{b}{s^2}\right)\right] = \int_0^t \frac{2}{u}\left[1-\cos\left(\frac{b}{a}\right)u\right]du$$

Find the laplace transform of periodic function:

103.
$$f(t) = K \frac{t}{T}$$
 for $0 < t < T$ and $f(t) = f(t+T)$ [Ans: $K \left[\frac{1}{Ts^2} - \frac{e^{-st}}{s(1-e^{-st)}} \right]$]

104. $f(t) = 1$, for $0 \le t < a$ and $f(t) = -1$, $a < t < 2a$ and $f(t)$ is periodic with period 2a. [Ans: $\frac{1}{s} \tanh \left(\frac{as}{2} \right)$]

105. $f(t) = |\sin pt|, \ t \ge 0$ [Ans: $\frac{p}{s^2 + p^2} \cdot \coth \left(\frac{\pi s}{2p} \right)$]

106. $f(t) = t$, for $0 < t < 1$ and $f(t) = 0$, $1 < t < 2$ and $f(t+2) = f(t)$ for $t > 0$ [Ans: $\frac{1}{s^2(1-e^{-2s})} (1-e^{-s}-se^{-s})$]

107. $f(t) = \frac{t}{a}$, $0 < t \le a$; $f(t) = \frac{1}{a}(2a-t)$, $a < t < 2a$ and $f(t) = f(t+2a)$

HEAVISIDE'S UNIT-STEP FUNCTION FIND THE LAPLACE TRANSFORM OF FOLLOWING FUNCTIONS:

108.
$$t^{2} H(t-3)$$
 [Ans: $e^{-3s} \left[\frac{9}{s} + \frac{6}{s^{2}} + \frac{2}{s^{3}} \right]$]
109. $\sin t \cdot H\left(t - \frac{\pi}{2}\right) - H\left(t - \frac{3\pi}{2}\right)$ [Ans: $e^{-\pi s/2} \cdot \frac{s}{s^{2} + 1} - e^{-3\pi s/2} \cdot \frac{1}{s}$]
110. $\left(1 + 2t - 3t^{2} + 4t^{3}\right) H(t-2)$ [Ans: $e^{-2s} \left[\frac{25}{s} + \frac{38}{s^{2}} + \frac{42}{s^{3}} + \frac{24}{s^{4}} \right]$]

111.Express following function as Heaviside Unit Step function and find its Laplace transform $f(t) = \begin{cases} \cos t, 0 < t < \frac{\pi}{2} \\ \sin t, \ t > \frac{\pi}{2} \end{cases}$ 112. Express following function as Heaviside Unit Step function and find its Laplace

$$f(t) = \begin{cases} \cos t, 0 < t < \frac{\pi}{2} \\ \sin t, t > \frac{\pi}{2} \end{cases}$$

[Ans: $\frac{1}{as^2} \tanh \left(\frac{as}{2} \right)$]

transform
$$f(t) = \begin{cases} t^2, 0 < t < 4 \\ 4t, t \ge 4 \end{cases}$$

113. Using Laplace transform evaluate

$$\int_{0}^{\infty} e^{-t} \left(1 + 2t - 3t^{2} + 4t^{3} \right) H(t - 2) dt \qquad [Ans: \frac{e^{-2}}{129}]$$

FIND THE INVERSE LAPLACE TRANSFORM OF THE FOLLOWING:

114.
$$\frac{e^{-as}}{(s+b)^{5/2}}$$
 [Ans: $\frac{4}{3\sqrt{\pi}} \cdot e^{b(t-a)} \cdot (t-a)^{3/2} \cdot H(t-a)$]

115.
$$\frac{(s+1)e^{-s}}{s^2 + s + 1}$$
 [Ans: $e^{-t/2} \left[\cos(\sqrt{3}(t-1)/2) + \frac{1}{\sqrt{3}}\sin(\sqrt{3}(t-1)/2) \right] \cdot H(t-1)$]

116.
$$\frac{e^{-\pi s}}{s^2 - 2s + 2}$$
 [Ans: $e^{(t-\pi)} \cdot \sin(t-\pi) \cdot H(t-\pi)$]

117. $e^{-s} \left(\frac{1-\sqrt{s}}{s^2} \right)^2$ [Ans: $\left[\frac{(t-1)^3}{6} - \frac{16}{15\sqrt{\pi}} (t-1)^{5/2} + \frac{(t-1)^2}{2} \right] \cdot H(t-1)$]

USING LAPLACE TRANSFORM SOLVE THE FOLLOWING DIFFERENTIAL EQUATIONS WITH THE GIVEN CONDITION:

118.
$$(D^2 - 4) y = 3e^t$$
, $y(0) = 0$, $y'(0) = 3$ [Ans: $y = -e^t + \frac{3}{2}e^{2t} - \frac{1}{2}e^{-2t}$]

119. $(D^2 + D) y = t^2 + 2t$, $y(0) = 4$, $y'(0) = -2$ [Ans: $y = 2 + 2e^{-t} + \frac{t^3}{3}$]

120. $(D^2 + 2D + 1) y = 3te^{-t}$, $y(0) = 4$, $y'(0) = -2$ [Ans: $y = e^{-t} \left(4 + 6t + \frac{t^3}{2} \right)$]

121. $(D^2 - 2D - 8) y = 4$, $y(0) = 0$, $y'(0) = 1$ [Ans: $y = -\frac{1}{2} + \frac{1}{6}e^{-2t} + \frac{1}{3}e^{4t}$

122. $\frac{d^2y}{dt^2} + 4y = H(t - 2)$ with conditions $y(0) = 0$, $y'(0) = 1$

[Ans: $y = \frac{1}{2}\sin 2t + \frac{1}{4}H(t - 2) - \frac{1}{4}\cos 2(t - 2)H(t - 2)$]

123. $\frac{dy}{dt} + 2y + \int_0^t y \, dt = \sin t$, given that $y(0) = 1$ [Ans: $y = e^{-t} - \frac{3}{2}t e^{-t} + \frac{1}{2}\sin t$]

124. $\frac{d^2y}{dt^2} + 9y = 18t$ with conditions $y(0) = 0$, $y'(0) = 4$ [Ans: $y = 2t + \pi \sin 3t$]

125. $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = 0$, where $y(0) = 0$, $y'(0) = 4$ [Ans: $e^x - e^{-3x}$]

126. $\frac{d^2y}{dt^2} + 4y = f(t)$ with conditions $y(0) = 0$, $y'(0) = 1$ and $y(0) = 1$, when $y(0) = 1$ [Ans: $y(0) = 1$] and $y(0) = 1$ [Ans: $y(0) = 1$] [Ans: