# A crash course on Urban accessibility with R

Rafael H. M. Pereira





# Core teaching material:

### Aim:

To equip its readers with the fundamental concepts, the data analysis skills needed to perform urban accessibility analyses and and project evaluations

### Hands-on approach:

- Methodology and data analysis guide-book
- Reproducible examples in R
- Open software and data



https://ipeagit.github.io/intro\_access\_book/



### Overview of the book

#### Section 1:

Introduction to urban accessibility (concepts)

#### Section 2:

Calculating accessibility

#### Section 3:

Public transport data in GTFS

### Section 4:

Impact assessment of transportation projects

#### Section 5:

Data from the Access to Opportunity Project (AOP)



https://ipeagit.github.io/intro\_access\_book/



### What we will cover:

Data and computational requirements

- How to calculate:
  - Travel time matrices
  - Accessibility estimates
  - Accessibility poverty
  - Accessibility inequality



### What we will \*not\* cover:



Intro-level content we assume you're already familiar with



Advanced topics we will not cover and which are not required to follow the workshop



Image: isochrone map of Melbourne by rail, 1910-1922



# Why does accessibility matter?

the role of access in inclusive and sustainable cities

### Sufficientarian:

It is essential for the satisfaction of basic needs



It reveals the spatial dimension of inequality of opportunities

### Human development:

It provides the **freedom** necessary to **participate in activities and develop other human capabilities** 

### **Environmental**:

It shapes travel choices towards more (or less) sustainable mobility patterns





# Types of accessibility measures



Place-based metrics





Person-based metrics



### Cumulative accessibility metric



### Cumulative opportunity measures:

The number of opportunities that can be reached within a given travel cost limit

### Advantages:

- Easy to calculate and communicate
- Litter data requirements

#### Disadvantages:

- Does not consider the competition for opportunities
- Requires choosing a single (arbitrary) travel time threshold
- Ignores cost gradients within time threshold

$$A_i = \sum_{j=1}^n O_j imes f(c_{ij})$$

$$f(c_{ij}) = egin{cases} 1 & ext{if } c_{ij} \leq C \ 0 & ext{otherwise} \end{cases}$$

in which  $A_i$  is accessibility at origin  $i, O_i$  is the number of opportunities at destination j, n is the total number of destinations in the study area,  $f(c_{ij})$  is a binary function that assumes the values 0 or 1, depending on the travel cost  $c_{ij}$ between origin i and destination j and C is the travel cost threshold.



Johs

Access metrics and decay functions





### Advanced topics in accessibility

These will be covered in a new book (in progress)

Under contract with Routledge

- Spatial biases MAUP
- Temporal biases MTUP
- Access metrics with competition
- Calibration of impedance functions
- Monetary costs
- Single Vs Multiple Cost Measures
- Big (larger-than-memory) data





