MAT0206 - Lista 5 (complemento)

Matheus T. de Laurentys, 9793714

November 23, 2020

Q.1:

b)

[Por contradição] Tome $(a_n)_{n\in\mathbb{N}}$, subsequência de $(x_n)_{n\in\mathbb{N}}$, que coverge pra β . Tome $\epsilon = \beta - A$. Como $\exists k \in \mathbb{N} | \forall i \geq k, |a_i - \beta| < \epsilon$, então

$$\forall i \geq k, \ \beta - \epsilon < a_i < \beta + \epsilon \Rightarrow \beta - \beta + A < a_i \Rightarrow A < a_i$$

Sendo assim, tem-se que $\forall k \in N, \exists i \geq k \mid x_i > A \text{ com } x_i \in (x_n)_{n \in \mathbb{N}}$. Se esse fosse o caso, $\forall j \in \mathbb{N}$, se $X_j = (x_j, x_{j+1}, \ldots)$, então $\sup X_j > A$. Isso contradiz o fato de $A = \inf\{\sup X_j, j \in \mathbb{N}\}$. Logo, β não é valor de aderência.

Q.2:

b) $\limsup(-x_n)_{n\in\mathbb{N}}=-a$

Como visto em aula, limsup x_n é o maior limite de qualquer subsequência convergente de $(x_n)_{n\in\mathbb{N}}$ e liminf x_n é o menor desses limites.

Considere a sequência (a, ..., A), de pontos que são limites de subsequências de $(x_n)_{n\in\mathbb{N}}$, ordenada de maneira não crescente.

Se $x \in \mathbb{R}$ é limite de subsequência de (x_n) , então -x é limite de sequência de $(-x_n)$. Se $x \in \mathbb{R}$ é limite de subsequência de $(-x_n)$, então -x é limite de sequência de (x_n)

[Prova] Tome $(z_n)_{n\in\mathbb{N}}$ subsequência de $(x_n)_{n\in\mathbb{N}}$ tal que $\lim_{n\to+\infty}(z_n)=x$. Então $(a_n)_{n\in\mathbb{N}}$, dada por $\forall i\in\mathbb{N}, a_i=-z_i$, é subsequência de $(-x_n)_{n\in\mathbb{N}}$ tal que $\lim_{n\to+\infty}(a_n)=-x$, pois $\forall \epsilon>0, \exists a_i\in(a_n)_{n\in\mathbb{N}}$ tal que $|a_i-(-x)|<\epsilon$. Isso é verdadeiro pois $\forall \epsilon>0, \exists z_i\in(z_n)_{n\in\mathbb{N}}$ tal que $|z_i-x|<\epsilon$. Essa mesma prova também mostra que se $x\in\mathbb{R}$ é limite de subsequência de $(-x_n)$, então -x é limite de sequência de (x_n)

Sendo assim, $(-a, \ldots, -A)$ é a sequência de pontos que são limites de subsequências de $(-x_n)_{n\in\mathbb{N}}$. Toma-se então a sequência ordenada $(-A, \ldots, -a)$ de tais limites. Como limsup é o menor desses limites, então limsup $(-x_n) = -A$.