

PROBABILISTIC DATA-GENERATION MODELS

Why

We want to discuss an inductor's performance on (possibly) incomplete, but still consistent datasets.

Definition

We define a probability measure over the inputs. Let (X, \mathcal{X}, μ) be a probability space and (Y, \mathcal{Y}) a measurable space. Let $f: X \to Y$ measurable. We call the pair $((X, \mathcal{X}, \mu), f)$ a probabilistic data-generation model.

The idea is that to each instance $x \in X$, we associate a label $f(x) \in Y$. We call the law μ the data-generating distribution or underlying distribution and call f the correct labeling function. Many authors refer to a probabilistic data-generation model as the statistical learning (theory) framework.

Representative datasets

Let (X, \mathcal{X}, μ) and $f: X \to Y$ be a probabilistic data-generation model. We put a measure on the set of datasets X^n so that such "nonrepresentative" datasets have low measure. We use the product measure μ^n . We interpret this as a model of the inductor as acting on a training set of correctly labeled, independent and identically distributed inputs.

Let $0 < \delta < 1$. A set of datasets $\mathcal{S} \subset X^n$ is $1 - \delta$ representative if $\mu^n(\mathcal{S}) \geq 1 - \delta$. We interpret this as follows:
"the dataset we see is in \mathcal{S} with high probability." Roughly

speaking, if $\delta \ll 1$ then the set \mathcal{S} is "fairly likely."

We think of S as the set of datasets for which our learning algorithm "succeeds," those datasets which are reasonable. In other words, the probability of a reasonable training set is $1-\delta$. We call δ the *confidence parameter*.

Predictor errors

The error of a predictor $h: X \to Y$ with respect to the probabilistic data-generation model is

$$\mu(\{x \in \mathcal{X} \mid h(x) \neq f(x)\}).$$

In other words, the error is the probability (w.r.t. the underlying distribution) that the predictor h mislabels a point. The error is measured with respect to the underlying distribution μ and correct labeling function f.

The accuracy of a predictor is

$$\mu(\{x \in X \mid h(x) = f(x)\}).$$

It is the measure of the set of points for which the predictor matches the correct labeling function: In other words, it is one minus the error of the predictor.

Inductor errors

Let $S = (x_1, y_1), \ldots, (x_n, y_n)$ a dataset of n paired records in $X \times Y$. Let $\mathcal{M}_{X \to Y}$ be the set of measurable functions from X to Y. The dataset error of an inductor $A : (X \times Y)^n \to \mathcal{M}_{X \to Y}$ on S is the error of the predictor A(S).

Notice that if we have a probability measure on X^n , we can discuss the measure of a set of training sets. We may be interested in statements like: the measure of the set of training sets for which the error of the inductor is nonzero is small.

Other terminology

A hypothesis class is a subset of the measurable functions from $X \to Y$. Other names for the error of a classifier include the generalization error, the risk or the true error or loss.

