TERMODINÁMICA

Ejercicio del Tema 5

Nombre		Grupos E	3, C	Ì, I	C
--------	--	----------	------	------	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Una central nuclear de IV generación opera mediante un ciclo Brayton con helio (gas ideal; $R = 2.08 \, kJ/kg-K$) como el representado en la figura. El reactor se refrigera mediante una corriente de helio que llega (eg) al intercambiador SHX a 850° C y la abandona (sg) a 730° C, sin perder presión. El ciclo cede calor al ambiente, modelado como un foco a 25° C (estado muerto).

La turbina (T) es adiabática y tiene un rendimiento isentrópico del 90%. El helio entra en ella (1) a 830 °C y 90 bar. El intercambiador REC opera de forma que T[3] – T[5] = 15 °C. El helio llega (4) al compresor (C) a 35 °C y 70 bar. Éste es adiabático y tiene un rendimiento isentrópico del 85%. Se desprecian las pérdidas de presión en intercambiadores y conductos.

La potencia neta de la planta es de 300 MW.

Se pide:

- a) Eficiencia exergética de la planta.
- b) Diagrama de Sankey cualitativo mostrando todos los componentes.

-		s ⁰	1
T	h		p_r
[°C]	[kJ/kg]	[kJ/kg-K]	[-]
0	0,00	0,00000	1,00000
5	25,96	0,09419	1,04639
			· · · · · · · · · · · · · · · · · · ·
10	51,93	0,18670	1,09406
15	77,89	0,27760	1,14300
20	103,85	0,36693	1,19323
25	129,82	0,45475	1,24477
30	155,78	0,54110	1,29762
		· · · · · · · · · · · · · · · · · · ·	
35	181,74	0,62605	1,35179
40	207,70	0,70963	1,40730
45	233,67	0,79188	1,46415
50	259,63	0,87285	1,52236
		0,95258	
55	285,59	,	1,58193
60	311,56	1,03111	1,64289
65	337,52	1,10846	1,70523
70	363,48	1,18468	1,76897
75	389,45	1,25979	1,83411
80	415,41	1,33384	1,90068
85	441,37	1,40684	1,96867
90	467,34	1,47883	2,03811
95	493,30	1,54984	2.10899
		· · · · · · · · · · · · · · · · · · ·	,
100	519,26	1,61988	2,18134
105	545,22	1,68900	2,25515
110	571,19	1,75721	2,33044
115	597,15	1,82453	2,40721
120		1,89099	2,48549
	623,11	,	
125	649,08	1,95662	2,56528
130	675,04	2,02142	2,64658
135	701,00	2,08542	2,72941
140	726,97	2,14865	2,81377
		•	
145	752,93	2,21111	2,89968
150	778,89	2,27284	2,98715
155	804,86	2,33383	3,07618
160	830,82	2,39412	3,16678
165	856,78	2,45372	3,25896
		•	
170	882,74	2,51264	3,35274
175	908,71	2,57090	3,44812
180	934,67	2,62851	3,54511
185	960,63	2,68549	3,64371
190	986,60	2,74185	3,74395
195	1012,56	2,79761	3,84582
200	1038,52	2,85278	3,94933
205	1064,49	2,90736	4,05450
	1090.45	· · · · · · · · · · · · · · · · · · ·	
210	, -	2,96138	4,16133
215	1116,41	3,01484	4,26984
220	1142,37	3,06776	4,38002
225	1168,34	3,12014	4,49190
230	1194,30	3,17200	4,60547
			· · · · · · · · · · · · · · · · · · ·
235	1220,26	3,22334	4,72074
240	1246,23	3,27419	4,83773
245	1272,19	3,32454	4,95644
250	1298,15	3,37440	5,07689
255	1324,12	3,42380	5,19907
260	1350,08	3,47272	5,32300
265	1376,04	3,52120	5,44869
270	1402,01	3,56922	5,57614
275	1427,97	3,61680	5,70536
	,	· · · · · · · · · · · · · · · · · · ·	
280	1453,93	3,66395	5,83636
285	1479,89	3,71068	5,96915
290	1505,86	3,75698	6,10374
295	1531,82	3,80288	6,24013
300	1557,78	3,84838	6,37834
		•	
305	1583,75	3,89348	6,51836
310	1609,71	3,93820	6,66022
315	1635,67	3,98253	6,80391
320	1661,64	4,02649	6,94944
325	1687,60	4,07008	7,09683
330	1713,56	4,11330	7,24608
		4,15617	7,39719
335	1739,53	1,100	.,
	1739,53 1765,49	4,19869	7,55018
335 340	1765,49	4,19869	7,55018
335 340 345	1765,49 1791,45	4,19869 4,24086	7,55018 7,70505
335 340	1765,49	4,19869	7,55018

			1
T	h	s ⁰	p _r
[°C]	[kJ/kg]	[kJ/kg-K]	[-]
360	1869,34	4,36536	8,18104
365	1895,30	4,40620	8,34353
370	1921,27	4,44673	8,50793
375	1947,23	4,48694	8,67426
380	1973,19	4,52685	8,84252
385	1999,16	4,56645	9,01273
390	2025,12	4,60574	9,18489
395	2051,08	4,64475	9,35901
400	2077,05	4,68346	9,53510
405	2103,01	4,72189	9,71316
410	2128,97	4,76003	9,89319
415	2154,93	4,79790	10,07522
420	2180,90	4,83549	10,25924
425	2206,86	4,87281	10,44526
430	2232,82	4,90987	10,63329
435	2258,79	4,94666	10,82334
440	2284,75	4,98320	11,01541
445	2310,71	5,01948	11,20952
450	2336,68	5,05551	11,40566
455	2362,64	5,09128	11,60384
460	2388,60	5,12682	11,80408
465	2414,57	5,16211	12,00638
470	2440,53	5,19717	12,21074
475	2466,49	5,23199	12,41718
480	2492,45	5,26657	12,62569
485	2518,42	5,30093	12,83630
490	2544,38	5,33506	13,04899
495	2570,34	5,36897	13,26379
500	2596,31	5,40266	13,48070
700	3634,83	6,59730	23,96154
705	3660,79	6,62391	24,27053
710	3686,76	6,65039	24,58189
715	3712,72	6,67673	24,89564
720	3738,68	6,70294	25,21178
725	3764,64	6,72902	25,53032
730	3790,61	6,75496	25,85126
735	3816,57	6,78078	26,17460
740	3842,53	6,80647	26,50037
745	3868,50	6,83203	26,82855
750	3894,46	6,85747	27,15916
755	3920,42	6,88278	27,49220
760	3946,39	6,90797	27,82768
765	3972,35	6,93304	28,16561
770	3998,31	6,95799	28,50598
775	4024,28	6,98282	28,84881
780	4050,24	7,00753	29,19411
785	4076,20	7,03213	29,54187
790	4102,16	7,05661	29,89210
795	4128,13	7,08097	30,24482
800	4154,09	7,10522	30,60002
805	4180,05	7,12936	30,95771
810	4206,02	7,15338	31,31790
815	4231,98	7,17730	31,68059
820	4257,94	7,20110	32,04579
825	4283,91	7,22480	32,41351
830	4309,87	7,24839	32,78374
835	4335,83	7,27187	33,15650
840	4361,79	7,29525	33,53180
845	4387,76	7,31852	33,90963
850	4413,72	7,34169	34,29000
855	4439,68	7,36475	34,67292
860	4465,65	7,38772	35,05840
865	4491,61	7,41058	35,44643
870	4517,57	7,43334	35,83703
875	4543,54	7,45600	36,23021
880	4569,50	7,47856	36,62596
885	4595,46	7,50103	37,02429
890	4621,43	7,52340	37,42521
895	4647,39	7,54567	37,82873
900	4673,35	7,56785	38,23484
905	4699,31	7,58994	38,64356
910	4725,28	7,61193	39,05489

Turbius

$$h_1 = 4309,87 \text{ kJ/kg} \qquad \frac{Pres}{32,78375} = \frac{70}{90}$$

$$Pres = 32,78374$$

$$h_2s = 3762,05 \text{ kJ/kg}$$

$$0,9 = \frac{4309.87 - h2}{4309.87 - 3762.05} - hz = 3816,83 \text{ KJ/ky}$$

Compressor

Compress'
$$h_4 = 181.74 \text{ KJ/ky} \qquad \frac{PrTS}{1.35179} = \frac{90}{70}$$

$$Pr_4 = 1.35179 \qquad \text{L.s.} Prs = 1.7380$$

$$h_{7S} = 350.87 \text{ KJ/ky}$$

$$350.87 - 181.74$$

$$0.85 = \frac{350,87 - 181,74}{h_{7} - 181,74} = \frac{380,71 \times 11 \times 11 \times 11}{h_{7} = 380,71 \times 11 \times 11}$$

$$T_{5} = 10,73,32°C$$

T3 = T5 + 15°C = 88,32°C - h3 = 458,61 KJ/ky
$$h_6 - 380,71 = 3816,83 - 458,61$$

$$h_6 = 3738,93 KJ/ky$$

Al teres solo des tous planteur: el ambiente se puede planteur:

Wineta = in (hi-hz) - vi(hr-hn)

$$\eta = \frac{(4309,87 - 3816,83) - (380,71 - 181,74)}{4309,87 - 3738,93}$$

$$\overline{T}_{y} = \frac{4413,72 - 3790,61}{7,34169 - 6,75496} = 1062,00K$$

De me former mes general tombrien le puoche columbre como:

$$\dot{I}_{rer} = T_0 \left[-\frac{\dot{\alpha}_{SHx}}{T_g} + \frac{\dot{\alpha}_{PC}}{T_0} \right]$$

$$300-10^{3} = \dot{w} \left[(4309, 87-3816,83) - (380,71-181,74) \right]$$

$$\dot{w} = 1020,17 \text{ kg/A}$$

Por tent.

$$\frac{1}{1001} = 298 \left[\frac{1062}{-185423'16} + \frac{58572'14'3}{5857'12'} \right] = 119016'28 \text{ kM}$$

$$\varphi = \frac{300 \cdot 10^3}{300 \cdot 10^3 + 119016.58} = 71.60\%$$

TERMODINÁMICA

Ejercicio del Tema 5

Nombre		Grupos A,	Ε,	G
--------	--	-----------	----	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

El esquema de la figura representa un ciclo de potencia Rankine recorrido por un fluido orgánico (R245fa), cuyas tablas se adjuntan. Se emplea para obtener electricidad a partir de una corriente de agua (líquido incompresible; c = 4,18 kJ/kg-K; $\rho = 1000 \text{ kg/m}^3$) que entra (ea) al intercambiador SHX a 210 °C y sale (sa) a 120 °C. El ciclo disipa calor al ambiente, considerado como un foco a 25°C (estado muerto).

La turbina (T) es adiabática, con un rendimiento isentrópico del 80%. El R245fa llega (1) a ella a 40 bar y 200 °C. En el intercambiador de calor REG se verifica que T[3] – T[5] = 5 °C. El R245fa a la salida (4) del condensador COND se encuentra como líquido saturado a 35 °C. La bomba (B) opera de forma adiabática, considerándose el proceso internamente reversible y recorrido por un líquido incompresible ($\Delta h \approx v \cdot \Delta p$).

La potencia neta del ciclo es de 2 MW.

Se desprecian las pérdidas de presión en intercambiadores y conductos. La entalpía en el líquido comprimido se supondrá dependiente sólo de la temperatura.

Se pide:

- a) Eficiencia exergética en el intercambiador SHX.
- b) Diagrama de Sankey cualitativo, detallando todos los componentes.

Tabla de saturación (líquido-vapor)

			Tubia ac s	atul acioi	i (iiquiuo	vaporj			
Т	p	Vf	Vg	Uf	ug	h_{f}	h_{g}	Sf	Sg
[°C]	[bar]	[m ³ /kg]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
30	1,772	0,0007548	0,0987	239	409	239,1	426,5	1,1355	1,7537
35	2,11	0,0007628	0,08353	245,6	412,5	245,8	430,1	1,1573	1,7556
40	2,496	0,0007712	0,07107	252,4	416	252,6	433,7	1,1790	1,7577
45	2,935	0,0007799	0,06078	259,2	419,5	259,4	437,4	1,2005	1,7601
50	3,432	0,000789	0,05221	266	423	266,3	441	1,2219	1,7625
55	3,992	0,0007985	0,04504	272,9	426,5	273,3	444,5	1,2431	1,7652
60	4,619	0,0008086	0,03901	279,9	430	280,3	448,1	1,2642	1,7679
65	5,319	0,0008191	0,0339	287	433,5	287,4	451,5	1,2853	1,7707
70	6,097	0,0008303	0,02956	294,1	437	294,6	455	1,3062	1,7736
75	6,958	0,0008421	0,02585	301,3	440,4	301,9	458,4	1,3270	1,7765
80	7,908	0,0008546	0,02267	308,6	443,8	309,2	461,7	1,3478	1,7795
85	8,95	0,000868	0,01992	315,9	447,1	316,7	465	1,3686	1,7824
90	10,09	0,0008824	0,01754	323,4	450,4	а	468,1	1,3893	1,7852
95	11,34	0,0008979	0,01548	330,9	453,6	332	471,2	1,4100	1,7880
100	12,69	0,0009146	0,01367	338,6	456,8	339,8	474,1	1,4308	1,7907
130	23,39	0,001064	0,006471	387,9	472,7	390,4	487,9	1,5584	1,8003
135	25,68	0,001105	0,00565	397	474,4	399,8	489	1,5811	1,7995
140	28,15	0,001157	0,004882	406,6	475,5	409,9	489,3	1,6048	1,7971
145	30,84	0,001229	0,004137	417,1	475,6	420,9	488,3	1,6305	1,7919
150	33,81	0,001352	0,003344	429,4	473,2	434	484,5	1,6607	1,7802

Tablas de vapor sobrecalentado

p = 2,11 bar (T _{sat} = 35 °C)						p = 4	40 bar	
Т	v	h	S		Т	v	h	S
[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg-K]		[°C]	[m³/kg]	[kJ/kg]	[kJ/kg-K]
sat	0,083530	430,1	1,7556		30	0,0007479	240,2	1,1296
38	0,08467	433,1	1,7652		35	0,0007554	246,8	1,1513
40	0,08543	435	1,7715		40	0,0007631	253,5	1,1728
42	0,08618	437	1,7778		45	0,0007712	260,2	1,1941
44	0,08693	439	1,7840		80	0,0008392	309,1	1,3398
46	0,08767	441	1,7902		85	0,0008511	316,4	1,3603
50	0,08913	444,9	1,8024		90	0,0008638	323,8	1,3807
70	0,09614	464,6	1,8616		95	0,0008774	331,2	1,4011
90	0,1028	484,6	1,9183		100	0,0008921	338,8	1,4216
100	0,1061	494,8	1,9459		120	0,0009653	370,4	1,5040
110	0,1093	505,1	1,9731		150	0,00121	426,5	1,6412
115	0,1109	510,2	1,9865		170	0,003624	515,6	1,8470
120	0,1125	515,5	1,9999		180	0,00426	535,8	1,8921
125	0,1141	520,7	2,0132		200	0,005146	568,4	1,9627
130	0,1157	526	2,0264		210	0,005504	583,3	1,9938

Turbino

$$0.8 = \frac{568, 4 - h2}{568, 4 - h2}$$

$$L_{D} h_{2} = 5.4, 61 \text{ KJ/Ky}$$

Bomba

$$h_4 = 245, 8 \text{ KJ/ky}$$
 $U_4 = 0.0007628 \text{ m}^3/\text{ky}$
 $h_7 = 245, 8 + 0.0007628 (40 - 2.11)100 = 248,69 \text{ kJ}$
 $T_5 = 37,13^{\circ}C$

Regenerador

m 46 + ma 4ea = m 4, + ma 4sa + Ishx

ma (4ea - 4sa) = m (4, -46) + Ishx

P = m (4, -46)

ma (4ea - 4sa)

 $\Lambda_6 = 1.3872$ KJ/Ky-K (mirando en VSC) $\Lambda_6^* = 1.3943$ " (", liquido faturale) El valor Λ_6 & exact, per Λ_6^* re prodo admitir.

 $\Psi_{1} - \Psi_{6} = 568, \Psi - 326,17 - 298(1,9627 - 1,3872) =$ $= 70,731 \times 1/1/49$

$$\Psi_{0a} - \Psi_{Sa} = 4.18(210 - 170) - 298 \times 4.18 L\left(\frac{210 + 273}{120 + 273}\right) = 119,34 kJ/K$$

$$2000 = \vec{w} \left[(568, 4 - 514, 61) - (248, 69 - 245, 8) \right]$$

$$\vec{w} = 39, 2927 \text{ Ky/A}$$

 $0_{SHx} = 39,7927 \times (568, 4 - 326,17) = 9517,88kW$ $0_{SHx} = wa \times 4,18 \times (210 - 120) \rightarrow wa = 25,3 ky/3$

$$\varphi = \frac{39,29 \times 70,731}{25.3 \times 119,34} = \frac{92,04\%}{25.3 \times 119,34}$$

Tambiels se puede coluber como four:

$$\overline{T}_{61} = \frac{568, 4 - 326, 17}{1,9627 - 1,3872} = 420, 9 K$$

$$T_{a} = \frac{210 - 120}{L\left(\frac{210 + 273}{120 + 273}\right)} - 436,45 \text{ K}$$

TERMODINÁMICA

Ejercicio del Tema 5

Nombre	Grupo F
11011101 C	di ubo i

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Una central nuclear de fusión emplea un ciclo de potencia como el indicado en la figura inferior, recorrido por agua (tablas adjuntas). El reactor produce calor a dos niveles de temperatura, entrando el fluido de refrigeración (eaAT) al intercambiador HX-AT a 500 °C y saliendo (saAT) a 300 °C. La refrigeración de media temperatura llega (eaMT) al intercambiador HX-MT a 200 °C y sale (saMT) a 180 °C. En ambos casos el fluido refrigerante se considera líquido incompresible (c = 4,18 kJ/kg-K; $\rho = 1000 \text{ kg/m}^3$).

La turbina (T) opera de forma adiabática, con un rendimiento isentrópico del 90%, llegando (1) el vapor a 80 bar y 490 °C. El agua sale (3) del condensador (COND) como líquido saturado a 35 °C. la bomba (B) opera de forma adiabática, considerándose el proceso internamente reversible y recorrido por un líquido incompresible ($\Delta h \approx v \cdot \Delta p$).

La potencia neta producida por la planta es de 500 MW, siendo el calor intercambiado en HX-AT 1150 MW. Se desprecian las pérdidas de presión en intercambiadores y conductos.

El ambiente se considera un foco a 25 °C (estado muerto). Se considera que la entalpía del líquido comprimido depende sólo de la temperatura.

Se pide:

- a) Irreversibilidad (exergía destruida) total del intercambiador HX-AT.
- b) Diagrama de Sankey cualitativo, detallando todos los componentes.

Tabla de saturación (líquido-vapor)

		10.010	• 544441 44 • 10 11	(iiquiuo vup	<u> </u>		
T	p	\mathbf{v}_{f}	V_{g}	\mathbf{h}_{f}	h_{g}	S_{f}	$S_{ m g}$
[°C]	[bar]	[m ³ /kg]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
15	0,01706	0,001001	77,89	62,98	2528	0,2245	8,7803
20	0,02339	0,001002	57,76	83,91	2537	0,2965	8,6660
25	0,0317	0,001003	43,34	104,8	2547	0,3672	8,5567
30	0,04247	0,001004	32,88	125,7	2556	0,4368	8,4520
35	0,05629	0,001006	25,2	146,6	2565	0,5051	8,3517
40	0,07385	0,001008	19,51	167,5	2574	0,5724	8,2555
45	0,09595	0,00101	15,25	188,4	2582	0,6386	8,1633
50	0,1235	0,001012	12,03	209,3	2591	0,7038	8,0748
55	0,1576	0,001015	9,564	230,3	2600	0,7680	7,9898
60	0,1995	0,001017	7,667	251,2	2609	0,8313	7,9081
135	3,132	0,001075	0,5818	567,7	2727	1,6872	6,9773
140	3,615	0,00108	0,5085	589,2	2733	1,7392	6,9293
145	4,157	0,001085	0,446	610,6	2740	1,7907	6,8827
150	4,762	0,001091	0,3925	632,2	2746	1,8418	6,8371
155	5,435	0,001096	0,3465	653,8	2752	1,8924	6,7926
160	6,182	0,001102	0,3068	675,5	2757	1,9426	6,7492
165	7,009	0,001108	0,2724	697,2	2763	1,9923	6,7066
170	7,922	0,001114	0,2426	719,1	2768	2,0417	6,6650
175	8,926	0,001121	0,2166	741	2773	2,0906	6,6241
180	10,03	0,001127	0,1938	763,1	2777	2,1392	6,5841
295	80,0	0,001384	0,02352	1317	2759	3,2077	5,7450

Tablas de vapor sobrecalentado

_								
$p = 0.056 \text{ bar } (T_{sat} = 35 \text{ °C})$ $p = 80 \text{ bar } (T_{sat} = 295 \text{ °C})$								
Т	v	h	S		Т	v	h	S
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg-K]		[°C]	[m³/kg]	[kJ/kg]	[kJ/kg-K]
sat	25,2	2565	8,3517		sat	0,02352	2759	5,7450
40	25,62	2574	8,3825		305	0,02498	2812	5,8378
45	26,03	2584	8,4127		310	0,02563	2835	5,8783
50	26,45	2593	8,4424		315	0,02625	2857	5,9160
55	26,86	2603	8,4716		320	0,02684	2878	5,9515
60	27,27	2612	8,5002		325	0,02741	2898	5,9851
65	27,69	2622	8,5285		470	0,03965	3324	6,6276
70	28,1	2631	8,5563		475	0,04001	3337	6,6445
75	28,51	2641	8,5837		480	0,04036	3350	6,6613
80	28,92	2650	8,6107		485	0,04072	3362	6,6778
85	29,33	2660	8,6374		490	0,04107	3375	6,6942
90	29,75	2669	8,6637		495	0,04142	3387	6,7105
95	30,16	2679	8,6896		500	0,04177	3399	6,7266
100	30,57	2688	8,7152		505	0,04211	3412	6,7425
105	30,98	2697	8,7405		510	0,04246	3424	6,7583

Turbina

$$h_{1} = 3375 \text{ kJ/ky} - K = 0,5051 + x_{25} (8,3517 - 0.5051)$$

$$h_{1} = 6.6942 \text{ kJ/ky} - K = 0,5051 + x_{25} (8,3517 - 0.5051)$$

$$h_{75} = 146.6 + x_{25} = 0.7888$$

$$h_{75} = 2054,14 + x_{25} = 2186,23 \text{ kJ/ky}$$

$$0.9 = \frac{3375 - 2054,14}{3375 - 2054,14} - x_{25} = 2186,23 \text{ kJ/ky}$$

Bowhe

$$h_3 = 146.6 \text{ K} \frac{3}{\text{Ky}}$$
 $\theta_3 = 0.001006 \text{ m}^3/\text{Ky}$
 $h_4 = 146.6 + 0.001006 (80 - 0.01629) 100 = 154.64$
 k_7/Ky
 $500.10^3 = \text{vi} \left[3375 - 2186.23 - (154.64 - -146.6) \right] - \text{vi} = 423,47 \text{ Ky/3}$

1+x-AT

Irreversibilided total en HX-AT

$$\dot{w}_0 = \frac{4'18(200-300)}{1120\cdot10_3} = 13 \pm 2', 248 \text{ KA/V}$$

At no hober pérdide de presson en amber consente, tombiés le palice hober obtenido consente, tombiés le palice hober obtenido

$$\hat{J}_{H \times PT} = To \left[\frac{\hat{O}_{H \times PT}}{T_{IT}} - \frac{\hat{O}_{H \times PT}}{T_{QPT}} \right]$$

dande:

$$T_{IJ} = \frac{3375 - 659,33}{6.6942 - 1.9052} = 567,06 \text{ K}$$

$$T_{OAT} = \frac{500 - 300}{L\left(\frac{500 + 273}{300 + 273}\right)} = 668,02 \text{ K}$$

$$J_{HXAT} = 298 \times 1150 \times 10^{3} \left(\frac{1}{567,06} - \frac{1}{668,02}\right) = 91330,37 \text{ kW}$$

