An introduction to (s)imputation

Mark van der Loo and Edwin de Jonge

CBS, Department of Methodology

uRos2019

Missing data

Missing data

Reasons

- nonresponse, data loss
- · Value is observed but deemed wrong and erased

Solutions

- Measure/observe again
- Ignore
- Take into account when estimating
- Impute

Imputation methodology

Model based

Estimate a value based on observed variables.

Donor imputation

Copy a value from a record that you did observe.

Proxy imputation

Copy or derive a value form other variables.

The simputation package

Provide

- a uniform interface,
- · with consistent behaviour,
- across commonly used methodologies

To facilitate

- experimentation
- configuration for production

Assignment 1: Try the following code

Installation

```
install.packages("simputation", dependencies = TRUE)
```

Code to try

```
library(simputation)
data(retailers,package="validate")
ret <- retailers[3:6]
ret %>% impute_lm(other.rev ~ turnover) %>% head()
```


Assignment 1: Try the following code

```
library(simputation)
data(retailers,package="validate")
ret <- retailers[3:6]
ret %>% impute_lm(other.rev ~ turnover) %>% head()
```

```
##
     staff turnover other rev total rev
        75
                 NΑ
                            NΑ
                                     1130
## 1
## 2
               1607
                      5427.113
                                    1607
## 3
        NA
               6886 -33,000
                                    6919
        NA
               3861
                       13,000
                                    3874
## 4
        NA
                 NA
## 5
                        37.000
                                    5602
                                      25
## 6
                 25
                      6341.683
```


Assignment 2: Try the following code

```
# note the 'rlm'!
ret %>% impute_rlm(other.rev ~ turnover) %>% head()
```


Assignment 2: Try the following code

```
# note the 'rlm'!
ret %>% impute rlm(other.rev ~ turnover) %>% head()
##
     staff turnover other rev total rev
## 1
        75
                 NA
                            NA
                                     1130
                     17,25247
                                     1607
## 2
                1607
## 3
        NA
               6886 -33.00000
                                     6919
## 4
        NΑ
               3861
                      13.00000
                                     3874
## 5
        NA
                 NA
                      37.00000
                                     5602
## 6
         1
                 25
                     11.05605
                                       25
```


The simputation package

An imputation prodedure is specified by

- 1. The variable to impute
- 2. An imputation model
- 3. Predictor variables

The simputation interface

```
impute_<model>(data
```

- , <imputed vars> ~ <predictor vars>
- , [options])

Chaining methods

```
ret %>%
impute_rlm(other.rev ~ turnover) %>%
impute_rlm(other.rev ~ staff) %>% head()
```

```
##
     staff turnover other.rev total.rev
## 1
        75
                  NA
                      64.88174
                                      1130
## 2
                1607
                      17.25247
                                      1607
        NA
## 3
                6886 -33,00000
                                      6919
        NA
                      13,00000
                                      3874
##
                3861
## 5
        NA
                  NΑ
                      37,00000
                                      5602
                  25
                      11.05605
                                        25
## 6
```


Assignment 3

Adapt this code so turnover is imputed, based on turnover and staff.

```
ret %>%
impute_rlm(other.rev ~ turnover) %>%
impute_rlm(other.rev ~ staff) %>% head()
```


(One) solution

```
ret %>%
  impute_rlm(other.rev ~ turnover) %>%
  impute_rlm(other.rev ~ staff) %>%
  impute_rlm(turnover ~ staff + other.rev) %>% head()
```


Example: Multiple variables, same predictors

```
ret %>%
  impute_rlm(other.rev + total.rev ~ turnover)

ret %>%
  impute_rlm( . - turnover ~ turnover)
```


Example: grouping

```
retailers %>% impute_rlm(total.rev ~ turnover | size)

# or, using dplyr::group_by
retailers %>%
  group_by(size) %>%
  impute_rlm(total.rev ~ turnover)
```


Imputation and univariate distribution

Imputation and bivariate distribution

Adding a random residual

$$\hat{y}_i = \hat{f}(X_i) + \varepsilon_i$$

- \hat{y}_i estimated value for record i
- $\hat{f}(X_i)$ model value
- ε_i random perturbation
 - Either a residual from the model training
 - OR sampled from $N(0,\hat{\sigma})$
- + Better (multivariate) distribution
- Less reproducible

Adding a random residual

Adding a residual with simputation

Try the following code

```
ret %>%
  impute_rlm(other.rev ~ turnover
  , add_residual = "normal") %>% head(3)
```

Options

- add_residual = "none": (default)
- add_residual = "normal": from $N(0, \hat{\sigma})$
- add_residual = "observed": from observed residuals

Compute the variance of other.rev after each option.

Five minutes for ten models.

1. Impute a proxy

$$\hat{\mathbf{y}} = \mathbf{x} \text{ or } \mathbf{y} = f(\mathbf{x}),$$

where x is another (proxy) variable (e.g. VAT value for turnover), and f a user-defined (optional) transformation.

```
# simputation
impute_proxy()
```


2. Linear model

$$\hat{\pmb{y}} = \pmb{X}\hat{\pmb{\beta}},$$

where

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{i} \epsilon_{i}^{2}$$

simputation:

impute_lm()

3. Regularized linear model (elasticnet)

$$\hat{\pmb{y}} = \pmb{X}\hat{\pmb{\beta}},$$

where

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \frac{1}{2} \sum_{i} \epsilon_{i}^{2} + \lambda \left[\frac{1-\alpha}{2} \|\boldsymbol{\beta}^{*}\|^{2} + \alpha \|\boldsymbol{\beta}^{*}\|_{1} \right]$$

- $\alpha = 0$ (Lasso) · · · $\alpha = 1$ (Ridge)
- β^* : β w/o intercept.

```
# simputation:
```

impute_en()

4. *M*-estimator

$$\hat{\pmb{y}} = \pmb{X}\hat{\pmb{\beta}},$$

where

 $\hat{eta} = rg \min_{eta} \sum_{i} \widehat{
ho}(\epsilon_i)$

simputation:

impute_rlm()

5. Classification and regression tree (CART)

$$\hat{\boldsymbol{y}} = T(\boldsymbol{X}),$$

where T represents a set of binary questions on variables in X. There are spare questions for when one of the predictors is missing.

```
# simputation:
impute_cart()
```


6. Random forest

$$\hat{m{y}} = rac{1}{| ext{Forest}|} \sum_{i \in ext{Forest}} T_i(m{X}),$$

where each T_i is a simple decision tree without spare questions. For categorical \mathbf{y} , the majority vote is chosen.

```
# simputation
impute_rf()
```


7. Expectation-Maximization

```
Dataset \boldsymbol{X} = \boldsymbol{X}_{obs} \cup \boldsymbol{X}_{mis}. Assume \boldsymbol{X} \sim P(\boldsymbol{\theta}).
```

- 1. Choose a $\hat{\boldsymbol{\theta}}$.
- 2. Repeat until convergence:
 - a. $Q(\theta|\hat{\theta}) = \ell(\theta|\boldsymbol{X}_{obs}) + E_{mis}[\ell(\boldsymbol{X}_{mis}|\theta,\boldsymbol{X}_{obs})|\hat{\theta}]$ b. $\hat{\theta} = \arg\max_{\theta} Q(\theta|\hat{\theta})$
- 3. $\hat{\boldsymbol{X}}_{mis} = \arg\max_{\boldsymbol{X}_{mis}} P(\boldsymbol{X}_{mis}|\hat{\boldsymbol{\theta}})$

```
# simputation (multivariate normal):
impute_em()
```


8. missForest

Dataset $\boldsymbol{X} = \boldsymbol{X}_{obs} \cup \boldsymbol{X}_{mis}$.

- 1. Trivial imputation of X_{mis} (median for numeric variables, mode for categorical variables)
- 2. Repeat until convergence:
 - a. Train random forest models on the completed data
 - b. Re-impute based on these models.

```
# simputation:
impute mf()
```


9.a Random hot deck

- 1. Split the data records into groups (optional)
- 2. Impute missing values by copying a value from a random record in the same group

```
# simputation
impute_rhd(data, imputed_variables ~ grouping_variables)
```


9.b Sequential hot-deck

- 1. Sort the dataset
- 2. For each row in the sorted dataset, impute missing values from the last observed.

```
# simputation
impute_shd(data, imputed_variables ~ sorting_variables)
```


9.c *k*-nearest neighbours

For each record with one or more missings:

- 1. Find the k nearest neighbours (Gower's distance) with observed values
- 2. Sample value(s) from the k records.

```
# simputation
impute_knn(data, imputed_variables ~ distance_variables)
```


10. Predictive mean matching

- 1. For each variable X_i with missing values, estimate a model \hat{f}_i .
- 2. Estimate all values, observed or not.
- 3. For each missing value, impute the observed value, of which the prediction is closest to the prediction of the missing value.

```
# simputation: (currently buggy!)
impute_pmm()
```


Assignment 4

Read in the irisNA.csv dataset.

- 1. Use impute_knn to impute Sepal.Length and Sepal.Width. Use Petal.Length, Petal.Width and Species as predictor.
- 2. Use a CART model to impute Sepal.Length with all other variables as predictors (see ?impute_cart)
- Use impute_lm to impute the mean for Sepal.Length (the rhs of the model is ~ 1).

