UltraPixel

状态: arxiv 文章 (24.7.4)

单位:港科大(广州)/华为诺亚方舟实验室

文章链接: https://arxiv.org/abs/2407.02158

Github 链接: <u>UltraPixel Gallery (jingjingrenabc.github.io)</u>

目录

摘要	
背景	2
贡献	2
实现	3
实验	4
不足	5

摘要

大尺寸图像的生成一直以来都面临着较大的挑战。而本文推出的 UltraPixel 方案可以进行任意尺度的高质量图像生成(从 1K 到 6K)。主要实现方式为先生成低分辨率的图像用以作为约束,然后生成高分辨率且富有细节的图像。此外,本文的方案由于是外加了小模块进行训练,所以对于原有模型的参数增加只有 3%,因此也不会带来更大的存储和计算开销。最后,本文通过实验证明了本文方案与当前最佳方案之间的对比情况。

文中几次提到了传统的:生成 LR 图像+对该图像进行超分=生成 HR 图像的流程。实际上,本文的思想也大致如此,只不过 LR 图像不再被作为超分的输入,而是另一个生成过程的控制条件。

因此表现出的结果便是,相较于常规的超分方案,其得到的图像会更为合理且富含细节,如上图所示。当然,这实际上是通过放弃了与原图的相似性才得到的,上图中可以看出,本文方案得到的结果与 LR 差距实际上较大。但考虑到图像生成的语境,这种不相似并不会有什么问题。

背景

各种不同的文生图模型都有令人惊艳的表现。但这些模型大都只能处理 1024x1024 尺寸的图像。随着显示技术的发展,人们对于超高清图像的需求越 发旺盛,即便有部分模型针对高分辨率图像进行训练,其生成效果仍然不足以 令人满意。

简单来说,就是现有的生成模型在生成不同尺寸图像时,尝试使用同一套 先验知识,这就会导致内容的出错,如上图中,图像尺寸翻倍后,车辆的上部 就出现了两个顶棚。

将图像分布可视化,则是不同分辨率的生成输出,分布差异较大(如上图左)。而理想中的分布应当不会因为生成尺寸而出现过大区别(如上图右)

贡献

- 1:本文推出了UltraPixel,一个可以进行高质量任意尺度图像生成的模型。其能直接适应不同尺度的超分图像,且不会额外加入过多的参数。
- 2: 通过和现有的文生图方案进行对比,得出了本文模型在多尺度下都能有更佳效果的结论。

实现

本文整体流程图如上图所示,输入的语义信息先被注入到一个标准的 1024x1024 文生图模型中,得到一张 LR 图像(在隐空间中,所以大小为 24x24)。然后这张 LR 图像被训练的神经网络缩放至目标大小,再和语义信息一起注入到 HR 生成模型中进行高清图像的生成。得到结果后进入到 Decoder中,得到最后的图像输出。

Figure 4: Illustration of continuous upscaling by implicit neural representation.

其中, LR 图像并非直接作为条件输入, 而是经过神经网络放大后再作为条件。这里的神经网络可以理解为隐空间上的简单超分网络, 保持图像的内容整体不变, 但大小变化。

Figure 5: Architecture details of generative diffusion model.

而本文的 HR 超分模块,则同样也是使用预训练的扩散模型微调而来。可训练部分为额外加入的两个控制层,一个层注入 LR 信息,一个层注入尺寸信息(不同尺寸图像自然需要不同的引导)。也正因如此,实质上 HR 生成模块和基础的 LR 生成模块公用大部分参数,文章才会提出只增加了额外 3%的参数。

实验

上图很好的展现了本文的特点: LR 图像是直接用预训练模型生成的,质量优秀,构图合理,就是分辨率不够高。而本文的模型以这一图像为指导,生成了一个结构一致,但细节更佳丰富的图像。而如果缺乏 LR 图像的指导,那么得到的图像即便细节尚可(字母都清晰可见)但整体结构会十分错乱。

也就是说,目前大尺寸图像的生成缺乏结构信息,而 LR 作为条件,提供了结构信息,从而解决了这一问题。

Table 1: Quantitative comparison with other methods. Our UltraPixel achieves state-of-the-art performance on all metrics across different resolutions.

$Resolution(H\times W)$	Method	$\mathbf{FID}_P\downarrow$	FID↓	$\mathbf{IS}_{P}\uparrow$	IS↑	CLIP↑	$\mathbf{Latency}(sec.) \downarrow$
$\boldsymbol{1024 \times 1792}$	DALL·E 3	88.44	86.16	16.43	18.30	29.66	-
	Ours	60.5	63.53	17.84	26.89	35.34	8
2048×2048	ScaleCrafter [14]	64.75	73.79	15.41	22.53	31.79	45
	ElasticDiffusion [13]	77.19	65.37	11.12	21.97	32.95	295
	DemoFusion [11]	54.86	63.97	13.38	28.07	32.98	97
	FouriScale [20]	68.79	86.71	7.70	18.08	30.70	74
	Base + BSRGAN [45]	48.52	64.00	13.67	29.87	33.53	11+6
	Pixart- Σ [3]	54.35	63.96	14.87	27.13	31.18	57
	Ours	44.74	62.50	14.95	30.52	35.43	15
2160×3840	Pixart- Σ 3	49.86	63.87	10.89	25.35	30.86	111
	Ours	46.06	62.41	11.91	25.65	34.98	31
4096×2048	ScaleCrafter [14]	101.58	120.71	9.04	12.15	23.71	190
	DemoFusion [11]	51.16	75.28	10.81	21.83	29.95	325
	FouriScale [20]	128.03	137.16	3.82	10.41	21.98	197
	Ours	42.60	64.69	11.76	25.36	34.59	33
4096×4096	ScaleCrafter [14]	74.02	98.11	9.07	14.53	31.79	580
	DemoFusion [11]	<u>47.40</u>	61.11	9.99	26.40	33.14	728
	FouriScale [20]	72.23	105.12	8.12	14.81	27.73	<u>573</u>
	Ours	44.59	62.12	10.27	27.69	35.18	78

定量实验方面,以五种尺寸和多种不同的方案进行对比,得出了本文各项 指标都较优秀的结果。

定性实验方面则可以看出,本文方案大多数时候都显著胜于对照方案。

不足

本文自行提出的不足在于,训练集中的数据质量和数量不足,导致的效果 不佳,尤其是在面对复杂场景时。

个人认为,实际上目前超分的方案也同样是在一个扩散模型中加入 LR 作为控制条件,所以本文的方案实质上与之前并没有很大的区别,或许是基模型的优化(今年二月的 Stable Cascade,超过 SD-XL,而超分方案许多还停留在SD2.1)导致的效果提升。