"Forecasting: Principles and Practice" Notes

Francis Tan 2016-08-31

Contents

Chapter 1: Getting Started	
Types of Quantitative Forecasts	
Basic Steps of Forecasting	
Chapter 2: Forecaster's Toolbox	
Graphs	
Time Plots	
Seasonal Plots	
Scatterplots	
Summary Statistics	
Univariate statistics	
Bivariate statistics	
Autocorrelation	
Simple forecasting methods	
Transformations	
Evaluating forecast accuracy	
Scale-dependent errors	
Percentage errors	
Scaled errors	
Example	
Residual diagnostics	
Example: Dow Jones	
Portmanteau tests for autocorrelation	
Simple regression	
Example: Car emission	
Evaluating regression models	
Outliers	
Example: Predicting weight from height	
Goodness of fit	
Standard error of regression	
Non-linear regression	

Chapter 1: Getting Started

Types of Quantitative Forecasts

- Cross-sectional Data
 - Given a set of parameters, try to *predict* an outcome based on data. For example, predict the house price based on number of bedrooms, bathrooms, etc.
- Time series Data
 - Forecast future outcome based on historical data

Basic Steps of Forecasting

- 1. Problem Definition
- 2. Gathering Information
- 3. Exploratory Analysis
- 4. Choosing and Fitting Models
- 5. Using and Evaluating Model

Chapter 2: Forecaster's Toolbox

Graphs

First thing to do for any forecasting exercise is to plot the data to look for patterns or any abnormalities.

Time Plots

aka Line graphs.

Example 1

```
data(melsyd)
plot(melsyd[,"Economy.Class"],
   main="Economy class passengers: Melbourne-Sydney",
   xlab="Year",ylab="Thousands")
```

Economy class passengers: Melbourne-Sydney

Notes:

- Missing data in 1989 industrial dispute
- Dip in 1992 trial which replaced some economy class seats with business class
- Large increase in 1991
- \bullet etc

Example 2

```
data(a10)
plot(a10, ylab="$ million", xlab="Year", main="Antidiabetic drug sales")
```

Antidiabetic drug sales

Notes:

- Seasonality
- Upward trend

Common Time Series Patterns

- Trend
- Seasonality
- \bullet $\,$ Cycles rises and falls that are not of a fixed period

Seasonal Plots

Line plots comparing each season.

Seasonal plot: antidiabetic drug sales

Seasonal deviation plot: antidiabetic drug sales

Scatterplots

Useful for analyzing cross-sectional data

Summary Statistics

Univariate statistics

Can simply use *summary* function on the data.

Bivariate statistics

Correlation coefficient: r

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}}$$

Autocorrelation

Used to test correlation on lag r_1 tests correlation on lag r_2 tests correlation on lag r_2 , etc.

```
data(ausbeer)
beer <- window(ausbeer, start=1992, end=2006-0.1)
lag.plot(beer, lags=9, do.lines=FALSE)</pre>
```


Each lag has a corresponding correlation value r. These correlation values are plotted to form an *autocorrelation* function or ACF. The plot is known as a correlogram.

acf(beer)

Series beer

Notes:

- r_4 at lag 4 has the highest correlation because seasonal patterns happen every four quarters
- Negative correlations happen two quarters after peaks

Time series that show no autocorrelation are called *white noise*. Acf plot will show no significant correlations for any lag periods.

Simple forecasting methods

- Mean just the mean of historical values for all forecasted values.
- Naive just the last actual value for all forecasted values.
- Seasonal Naive variation of naive. Uses the last value of some period last season.
- **Drift** variation of naive. Allows forecast to increase or decrease over time (the *drift*) based on average change.

Transformations

Log and power transformations are common. Box-Cox Transformations is a useful family of log and power transformations. If the coefficient λ is 0, it does a natural log, otherwise it does a power transformation. λ can be between 0 and 1. A good lambda will transform the data such that each seasonal swing is roughly equal. Running the function BoxCox.lambda(data) will choose a λ for you. In this case, it will choose 0.27.

```
data(elec)
par(mfrow=c(2, 2))
plot(elec, main='Original plot of electricity demand')
plot(BoxCox(elec, 0), main=expression(paste(lambda, ' = 0')))
plot(BoxCox(elec, 0.25), main=expression(paste(lambda, ' = 0.25')))
plot(BoxCox(elec, 0.5), main=expression(paste(lambda, ' = 0.5')))
```


After transforming, we need to make a forecast on the transformed data. Then we need to *back transform* to obtain the forecast in the original scale.

Evaluating forecast accuracy

Scale-dependent errors

Forecast error is simply $e_i = y_i - \hat{y}_i$ where y_i is actual and \hat{y}_i is forecast. Two common measures are:

Mean absolute error: MAE =
$$mean(|e_i|)$$

Root mean squared error: RMSE = $\sqrt{mean(e_i^2)}$

MAE is most common, however can only be compared to values on the same scale, or on the same data set.

Percentage errors

Scale independent so can compare errors from different data sets. This can be calculated as $p_i = 100e_i/y_i$. The most commonly used measure is:

Mean absolute percentage error: MAPE = $mean(|p_i|)$

This can present the problem is any value y_i is 0 or close to 0.

Scaled errors

Scaled errors are used as an alternative to percentage errors. The mean absolute scaled error or MASE is a commonly used one (alternatively mean squared scaled error or MSSE is used).

Example

```
beer2 <- window(ausbeer,start=1992,end=2006-.1)

beerfit1 <- meanf(beer2,h=11)
beerfit2 <- rwf(beer2,h=11)

plot(beerfit1, plot.conf=FALSE,
    main="Forecasts for quarterly beer production")
lines(beerfit2$mean,col=2)
lines(beerfit3$mean,col=3)
lines(ausbeer)
legend("topright", lty=1, col=c(4,2,3),
    legend=c("Mean method","Naive method","Seasonal naive method"))</pre>
```

Forecasts for quarterly beer production

The following shows the various error tests:

```
beer3 <- window(ausbeer, start=2006)
accuracy(beerfit1, beer3)
                           ME
                                  RMSE
                                            MAE
                                                        MPE
                                                                MAPE
                                                                         MASE
## Training set 8.121418e-15 44.17630 35.91135 -0.9510944 7.995509 2.444228
                -1.718344e+01 38.01454 33.77760 -4.7345524 8.169955 2.298999
## Test set
                       ACF1 Theil's U
## Training set -0.12566970
                                   NA
## Test set
                -0.08286364 0.7901651
```

```
accuracy(beerfit2, beer3)
                         ME
                                 RMSE
                                           MAE
                                                       MPE
                                                                MAPE
                                                                         MASE
                  0.7090909 66.60207 55.43636
## Training set
                                               -0.8987351 12.26632 3.773156
                -62.2727273 70.90647 63.90909 -15.5431822 15.87645 4.349833
## Test set
##
                       ACF1 Theil's U
## Training set -0.25475212
                -0.08286364
## Test set
                             1.428524
accuracy(beerfit3, beer3)
##
                               RMSE
                                         MAE
                                                    MPE
                                                             MAPE
                                                                       MASE
                       ME
## Training set -1.846154 17.24261 14.69231 -0.4803931 3.401224 1.0000000
                -2.545455 12.96849 11.27273 -0.7530978 2.729847 0.7672537
## Test set
                      ACF1 Theil's U
## Training set -0.3408329
                                   NA
                -0.1786912
                              0.22573
## Test set
```

Here we see that the seasonal naive method is best.

Residual diagnostics

Residuals are simply the difference between the forecast and actual value $e_i = y_i - \hat{y}_i$. A good forecast will yield residuals with the following properties:

- Residuals are uncorrelated. If you find correlations then there was something not included in the forecasting model.
- Residuals have zero mean. A non-zero mean means forecast is biased.

If the above properties are not satisfied, then forecast can be improved. If residuals have a mean m, then simply adding m to all forecasts will solve the problem. Fixing the correlation problem will be explained in **Chapter 8**.

The following two properties are not required, but useful:

- Residuals have constant variance.
- Residuals are normally distributed.

Example: Dow Jones

Naive method is usually best for stocks. Therefore, residuals are simply the difference between consecutive observations.

Dow Jones Index (daily ending 1994-07-15)


```
res <- residuals(naive(dj2))
plot(res,
    main='Residuals from naive method',
    xlab='Day')</pre>
```

Residuals from naive method


```
Acf(res,
    main='ACF of residuals')
```

ACF of residuals


```
hist(res,
    nclass='FD',
    main='Histogram of residuals')
```

Histogram of residuals

Notes:

- [x] Residuals are not correlated.
- [x] Residuals are close to zero.
- [x] Residuals have constant variance.
- [] Not quite normally distributed so prediction intervals may be inaccurate.

Portmanteau tests for autocorrelation

Test if autocorrelation is the result of white noise. Portmanteau test

Simple regression

Fit a line over observations where it minimizes the sum of square errors:

$$\sum_{i=1}^{N} \epsilon_i^2$$

The correlation coefficient r shows how much x predicts y.

Example: Car emission

```
fit <- lm(Carbon ~ City, data=fuel)
abline(fit)</pre>
```


summary(fit)

```
##
## Call:
## lm(formula = Carbon ~ City, data = fuel)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -0.7014 -0.3643 -0.1062 0.1938 2.0809
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.525647
                          0.199232
                                     62.87
                                             <2e-16 ***
## City
              -0.220970
                          0.008878
                                    -24.89
                                             <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4703 on 132 degrees of freedom
## Multiple R-squared: 0.8244, Adjusted R-squared: 0.823
## F-statistic: 619.5 on 1 and 132 DF, p-value: < 2.2e-16
```

Evaluating regression models

```
res <- residuals(fit)
plot(jitter(res) ~ jitter(City),
    ylab='Residuals',
    xlab='City',
    data=fuel)</pre>
```


We see that there is a U-shaped pattern and therefore a simple linear model may not be appropriate.

Outliers

An outlier is considered an influential observation if it has a large impact on the regression model

Example: Predicting weight from height

Red line is a fit if the outlier is included while the black line is the fit if outlier is excluded.

Goodness of fit

 R^2 or the square of the correlation coefficient r measures how well the model fits the data. This can be found in the section called *Multiple R-squared* in the output of the *summary* function. The car example shows the R^2 value to be 0.8244. This means that 82% of the variation is captured by the model. Be careful as this is often used incorrectly. As in the example above, we see that the residuals have a U-shaped pattern.

Standard error of regression

Another measure of how well a model fits is the *Standard error of regression* which is the same as the standard deviation of residuals. This can be found in the section called *Residual standard error* in the output of the *summary* function. This is also used in calculating the prediction interval.

Non-linear regression

Figure 1: Weight vs height

Linear

Log-log

Linear-log

Log-linear

Model	Functional Form
linear	$y = \beta_0 + \beta_1 x$
\log - \log	$\log y = \beta_0 + \beta_1 \log x$
linear-log	$y = \beta_0 + \beta_1 \log x$
\log -linear	$\log y = \beta_0 + \beta_1 x$