pyCSAMT Documentation

Release v1.0.01

Kouadio K. Laurent

CONTENTS:

1	Package CSAMT	1
	1.1 Module AVG	1
	1.2 Module CS	9
	1.3 Module EDI	17
	1.4 Module J	30
	1.5 Module z	33
2	Package Processing	43
	2.1 Module Dispatcher	43
	2.2 Module Shifting	45
	2.3 Module ZCalculator	47
3	Package Modeling	55
	3.1 Module Occam2D	55
4	Package GeoCore	63
	4.1 Module Geodrill	63
	4.2 Module Structural	75
	4.3 Module Strata	79
5	Package GeoDataBase	81
	5.1 Module Recorder	81
	5.2 Module Interface	85
	5.3 Module Request	87
	5.4 Module DictApp	87
6	Package Utils	89
	6.1 Module Agso	89
	6.2 Module Decorator	89
	6.3 Module Func-utils	90
	6.4 Module Gis-tools	
	6.5 Module Infos	
	6.6 Module Plot-utils	102
7	Package Visualization	111
	7.1 Module Plot1D2D	111
8	Indices and tables	123
Ру	thon Module Index	125

Index 127

PACKAGE CSAMT

1.1 Module AVG

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Wed Nov 18 16:45:35 2020

@author: KLaurent K. alias @Daniel03

Square-Wave current (amps)

amps array [np.ndarray (ndarray, 1)] evolution of current data on the site

number_of_stations [int] number of survey_stations .

number_of_frequencies: int number of frequencies during the survey for each station location

At-	Type	Explanation
tributes		
value	nd.arra	y data of Amp column on avgfile
max	float	maximum current enforce a that point
min	float	minimun current unit :amp (A)
loc	dict	main attribute location of station with the current enforce a that point .eg loc ['S07'] show
		the current Amps-data at that point

More attributes can be added by inputing a key word dictionary

Example

```
>>> from csamtpy.ff.core.avg import Avg
>>> path=os.path.join(os.environ["pyCSAMT"],
... "csamtpy", "data", "K1.AVG")
>>> avg_obj=Avg(path)
>>> amps_obj =avg_obj.Data_section.Amps.loc['S00']
>>> print(amp_obj)
```

class csamtpy.ff.core.avg.Avg(data_fn=None, **kwargs)

A super class of all content of AVG Zonge file

Deal with Zonge Engeering Avg file.

Methods

<pre>avg_to_edifile([data_fn, profile_fn,])</pre>	Method to write avg file to SEG-EDIfile.Convert
	both files. A static or plainty avg file.
<pre>avg_to_jfile([avg_data_fn, station_fn,])</pre>	Method to write avg file to Jfile, convert both files,
	Astatic or plainty
<pre>avg_write_2_to_1([data_fn, savepath])</pre>	Method to rewrite avg Astatic file (F2) to main file
	F1.

```
avg_to_edifile (data_fn=None, profile_fn=None, savepath=None, utm_zone=None, ap-
ply_filter=None)
```

Method to write avg file to SEG-EDIfile.Convert both files.Astatic or plainty avg file . if ASTATIC file is provided , will add the filter and filter values . if avg file is not astatic file , user an apply filter by setting filter to "tma, ama, or flma".Once apply , edifiles will exported by computing resistivities filtered

Parameters

```
* data_fn [str]
```

full path to avgfile

- savepath [str] outdir to store edifiles if None, is your current work directory
- profile_fn: str full path to station _profile file
- apply_filter: str add the name of filter to process the avg file exported in edifiles. can be; [TMA | AMA| FLMA] TMA Trimming Moving Average AMA Adaptative Moving avarage, FLMA Fixed dipoleLength moving average (number of point=7) Dipolelength willbe computed automatically

:Example:

avg_to_jfile (avg_data_fn=None, station_fn=None, j_extension='dat', utm_zone='49N', **kws)

Method to write avg file to Jfile, convert both files, Astatic or plainty avg file to A.G. Jones format.

Parameters

* avg_data_fn:str

pathLike, path to your avg file

- station_fn: str pathLike, path to your profile/station file.
- **j_extension: str** Extension type you want to export file . *Default* is ".dat"
- utm_zone: str add if station_profile are not referenced yet. later, it would be removed.
- savepath: str pathLike, path to save your outpufile
- write_info: bool write the informations of your input file, export informations into Jfile,*Default* is False.
- survey_name: bool, survey_area

```
avg_write_2_to_1 (data_fn=None, savepath=None)

Method to rewrite avg Astatic file (F2) to main file F1.
```

Parameters

- data_fn (str) ASTATIC FILE
- **savepath** (str) path to save your rewritten file .

```
class csamtpy.ff.core.avg.Comp(comp_name=None, **kwargs)
    Components measured
```

Holds the following information:

```
class csamtpy.ff.core.avg.Data (data_array=None, **kwargs)
    AVG Data informations , Container of all data infos .
```

E-field phase (milliRadians)

Frequency informations - Frequency at which data was measured (Hertz). Frequency on Hz

Methods

normalize_frequency([normalize_freq_betw]) method to interpolate frequencies.

```
normalize_frequency (normalize_freq_betw=None)
```

method to interpolate frequencies.

Deprecated since version waist_method: will replaced on cs module.

Returns

array_like frequency normalized.

Raises

1.1. Module AVG 3

CSex raise Error if input arguments for frequency interpolating is wrong.

```
class csamtpy.ff.core.avg.Header(header_infos=None, **kwargs)

Read the info Header of AVG file and rewrite Avgfile (main type, Type1).
```

Methods

```
write header log([data fn, savepath])
```

Method to write your head log.

```
write_header_log(data_fn=None, savepath=None)
```

Method to write your head log. In fact just to see whether your Zonge Infos was set correctly.

Parameters

```
* data_fn [str]
```

path to Avgfile

• savepath [str] path to your destination file . if None , path is your current work directory .

:Example:

```
>>> from csamtpy.ff.core.avg.Avg import Header
>>> Header().write_header_log(data_fn=path,
... )
>>> he=Header()
... he.write_header_log(data_fn=path,
... savepath=r'C:/Users\Administrator\
->Desktop')
... avg_obj.Header.write_header_log(data_fn=path,
... savepath=r'C:/Users/Administrator/Desktop')
```

H-field magnitude (picoTesla/Amp) (milliGammas/Amp)

```
class csamtpy.ff.core.avg.Hphz(h_phz_array=None, number_of_frequencies=None, number_of_stations=None, **kwargs)
```

H-field phase (milliRadians)

```
class csamtpy.ff.core.avg.Phase(phase_array=None, number_of_frequencies=None, num-
ber_of_stations=None, **kwargs)
```

Impedance phase on milliRadians can be calculate using Ephz object and Hphz object

• **Phase** = E-phase - H-phase

```
class csamtpy.ff.core.avg.ReceiverProperties (Rx_data=None, **kwargs) Class for receiver properties.
```

set_receiver_properties([Rx_data])	Methods to set Receivers - properties infos from
	AVG files.

set_receiver_properties (Rx_data=None)

Methods to set Receivers - properties infos from AVG files.

Parameters

* Rx_data [list, optional] container infos of receivers. The default is None.

class csamtpy.ff.core.avg.Skip_flag(skip_flag=None, **kwargs)
 skip flag values

- 0. drop data
- 1. skip data
- 2. good quality of data

Methods

setandget_ski	o_flag([skip_flag])	simple method to set and get skip_flag.

setandget_skip_flag (skip_flag=None)

simple method to set and get skip_flag.

Parameters

* skip_flag: str

class csamtpy.ff.core.avg.Station(station_data_array=None, **kwargs)
 Stations informations

class csamtpy.ff.core.avg.**SurveyAnnotation**(survey_annotations_data=None, **kwargs)
Class for survey annotations.

Methods

 $set_survey_annotations_infos([...])$ Method to set $_survey$ annotations informations .

set_survey_annotations_infos (survey_annotations_data=None)

Method to set _survey annotations informations .

Parameters

* survey_annotation [list] container of survey annotations infos.

class csamtpy.ff.core.avg.SurveyConfiguration(survey_config_data=None, **kwargs)
 Class for survey Survey configuration.

1.1. Module AVG 5

```
set_survey_configuration_infos([...])
Method to set _survey configurations informations .
```

```
set_survey_configuration_infos(survey_config_data=None)
```

Method to set _survey configurations informations .

Parameters

* survey_config_data [list or pathLike str] container of survey configurations infos.

```
class csamtpy.ff.core.avg.TransmitterProperties (**kwargs)
    Class for transmitter properties.
```

Methods

set_transmitter_properties([Tx_data])
Method to set_Tx_properties.

```
set_transmitter_properties(Tx_data=None)
```

Method to set_Tx_properties.

Parameters tx data – list of Tx-infos from AVG filename

:type tx_data:list

Impedance Tensor Z Calculation: class can recompute the apparent resistity rho base on impedance Tensor Z.

See also:

Zonge, K.L. and Hughes, L.J., 1991, Controlled source audio-frequency magnetotellurics,in Electromagnetic Methods in Applied Geophysics, ed. Nabighian, M.N., Vol. 2,Society of Exploration Geophysicists, pp. 713-809.

Attributes

freq

phase

rho

 \mathbf{Z}

z_error

rhophi2rhoph_errors([res_array,])	compute the phase and resistivities error via
	res_array , phase_array and _z error.
z_and_zerr_2rhophi([z_array, freq])	Method to compute resistivity and phase phase using
	Z_values and Zerror _values

rhophi2rhoph_errors (*res_array=None*, *phase_array=None*, *z_error=None*, *freq=None*) compute the phase and resistivities error via res_array , phase_array and _z error.

Parameters

* res_array [ndarray,]

resistivity value in ohm.m

- phase_array [ndarray,] phase angle value in mradians
- **z_error** [ndarray ,] impedance Tensor error
- freq [ndarray ,] frequency numbers in Hz

Returns

ndarrays resistivities error and phase errors values .

z_and_zerr_2rhophi (z_array=None, freq=None)

Method to compute resistivity and phase phase using Z_values and Zerror _values

Parameters

* **z_array** [complex]

Impedance tensor complex_number The *default* is None.

• freq [ndarray,] frequency value. The default is None.

Returns

ndarray(ndarray,1)

resistivity value computed in ohm.m

ndarray (ndarray, 1), phase angle value in degree.

class csamtpy.ff.core.avg.ZongeHardware(zonge_hardw_infos=None, **kwargs)
 Some features of zonge AMTAVG software.

1.1. Module AVG 7

```
set_harware_infos([zonge_hardw_infos]) Method to set Harwares infos.
```

```
set_harware_infos(zonge_hardw_infos=None)
```

Method to set Harwares infos.

Parameters

* zonge_hardw_infos [list] Hardware informations collected

Statistical variation of magnitude values from averaged data blocks.

Standard Deviation/Average Emag (percent)

Statistical variation of magnitude values from averaged data blocks.

Standard Deviation / Average Hmag (percent)

pcHmag [ndarray] data array of statistical variataion of Hmag value on the field.

More attributes can be added by inputing a key word dictionary

Example

```
>>> from csamtpy.ff.core.avg import Avg
>>> path=os.path.join(os.environ["pyCSAMT"],
... "csamtpy", "data", "K1.AVG")
>>> avg_obj=Avg(path)
>>> pchmag_obj =avg_obj.Data_section.pcHmag.loc['S05']
>>> print(pchmag_obj)
```

```
class csamtpy.ff.core.avg.pcRho(pcRes_array=None, number_of_frequencies=None, num-
ber of stations=None, **kwargs)
```

Statistical variation of magnitude values from averaged data blocks. Standard Deviation / Average Rho (percent)

```
class csamtpy.ff.core.avg.sEphz(sEphz_array=None, number_of_frequencies=None, num-
ber_of_stations=None, **kwargs)
```

Statistical variation of the data blocks averaged for this data point. 100 * Standard Deviation of Ephz values (milliradians)

```
class csamtpy.ff.core.avg.sHphz(shphz_array=None, number_of_frequencies=None, num-
ber_of_stations=None, **kwargs)
```

Statistical variation of the data blocks averaged for this data point. 100 * Standard Deviation of Hphz values (milliradians)

```
class csamtpy.ff.core.avg.sPhz(sPhase_array=None, number_of_frequencies=None, num-
ber of stations=None, **kwargs)
```

Statistical variation of the data blocks averaged for this data point. 100 * Standard Deviation of Phase values (milliradians)

1.2 Module CS

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Wed Dec 2 11:29:32 2020 @author: KouaoLaurent alias @Daniel03 **class** csamtpy.ff.core.cs.**CSAMT**(data fn=None, profile fn=None, **kwargs)

CSAMT class is super class container of all the information of the other classes,

J, Avg and Edi. In fact, the CS object collect all the information of the other classes, once questioned for specific uses. The purpose of the construction of this object to avoid the repetition of scripts throughout the project. Objet CSAMT can recognize the typycal input obj of file and set attributes for use.

Attributes

z_err

```
dipolelength
doi
east
elev
fpath assert path and redirect to file either single file, edifiles or Jfiles.
freq
lat
lon
north
phase
phase_err
resistivity
resistivity_err
skindepth
station
station distance
station_separation
```

1.2. Module CS 9 zxy

zyx

Methods

find_path([path, ptol])

Check path and return filepath, edipath or jpath.

static find_path (path=None, ptol=0.7)

Check path and return filepath, edipath or jpath.

Parameters

- path (str or pathlike) full path to file or directory
- **ptol** (float) tolerance given by the program, less or egal to 1

Returns specific path

Return type str

Note: tolerence param inspects the number of EDI or J file located on the path and determine the typical path of files either edipath or jpath.

property fpath

assert path and redirect to file either single file ,edifiles or Jfiles. find the specific path [EDIJ] path.

class csamtpy.ff.core.cs.Location(**kwargs)

Details of sation location . Classe used to convert cordinaates and check values for lat/lon , east/north

Attributes	Туре	Description
latitude	float/ndarray,1	sation latitude
longitude	float/ndarray,1	station longitude
elevation	float/ndarray	station elevantion in m or ft
easting	float/ndarray.1	station easting coordinate (m)
northing	float/ndarray,1	station northing coordinate (m)
azimuth	float/ndarray,1	station azimuth in meter
stn_pos	ndarray,1	sation dipoleposition
utm_zone	str	UTM location zone

Methods	Description
convert_location_2_utm	convert position location lon/lat in utm easting northing
convert_location_2_latlon	convert location postion from east/north to latitude/longitude

Attributes

azimuth

easting

elevation

latitude

longitude

northing

stn_pos

utm_zone

Methods

<pre>convert_location_2_latlon([utm_zone])</pre>	Project coodinate on longitude latitude once data are utm at given reference ellispoid constrained to WGS-84.
<pre>convert_location_2_utm([latitude, longi- tude])</pre>	Project coordinates to utm if coordinates are in degrees at given reference ellipsoid constrained to WGS84.
·	, Method to quicly convert array of latitude and nor-
arr_lon)	thing into easting northing

convert_location_2_latlon(utm_zone=None)

Project coodinate on longitude latitude once data are utm at given reference ellispoid constrained to WGS-84.

convert_location_2_utm (latitude=None, longitude=None)

Project coordinates to utm if coordinates are in degrees at given reference ellipsoid constrained to WGS84.

Parameters

- latitude (float) latitude number
- longitude (float) longitude number

get_eastnorth_array_from_latlon(arr_lat, arr_lon)

Method to quicly convert array of latitude and northing into easting northing

Parameters

- arr_lat (array_like) array of latitude value
- array_lon (array_like) array of longitude value.

Returns easting array

:rtype : array_like

Returns northing array

Return type array_like

```
class csamtpy.ff.core.cs.Profile(profile_fn=None, **kwargs)
```

Profile class deal with AVG Zonge station file and statation locations coordinates could be find in .stn file or SEG-EDI file.

Parameters profile_fn (str) - Path to Zonge *STN file of SEG-EDI locations or Zonge station file

Note: When EDI file is called , EDI-collecton auto populated profile attributes and coordinates are automatically rescalled.

1.2. Module CS

At-	Type	Explanation
tributes		
Location	class	Location class for Easting Northing azimuth details.
pro-	float	If user doesnt Know the angle profile . He can use the method "get_profile_angle"
file_angle		to get the value of profile angle.
stn_interval	(ndar-	Array of station separation.
	ray,1)	
dipole_leng	thfloat	Dipole length value computed automatically.
lat/lon	(ndar-	latitude/longitude of stations points .
	ray,1)	
east/north	(ndar-	Easting and northing of stations points.
	ray,1)	
azimuth	(ndar-	Azimuth array stations .
	ray,1)	
ele	(ndar-	Elevation array at each station points.
	ray,1)	
stn_position	(ndar-	Station position occupied at each stations.
	ray,1)	

More attributes can be added by inputing a key word dictionary

Example

```
>>> from csamtpy.ff.core.cs import Profile
>>> file_stn = 'K1.stn'
>>> path = os.path.join(os.environ["pyCSAMT"],
                         'csamtpy','data', file_stn)
>>> profile =Profile (profile_fn=path)
>>> profile.straighten_profileline(
   X=profile.east, Y=profile.north,straight_type='n')
>>> profile.rewrite_station_profile(
             easting=profile.east,
. . .
              northing=profile.north,
. . .
              elevation =profile.elev,
. . .
               add_azimuth=True)
. . .
>>> separation = profile.stn_separation(
... easting = profile.east,
      northing =profile.north)
. . .
```

Attributes

east

elev

lat

lon

north

stn_position

compute_dipolelength_from_coords([east	in Exponetion to compute dipole length from coordinates
])	easting and northing values.
<pre>get_profile_angle([easting, northing])</pre>	Method to compute profile angle .
read_stnprofile([profile_fn, easting,])	Method to read profile station file.
reajust_coordinates_values([x, y, stn_fn,	Simple staticmethod to readjut coordinates values
])	and write new station file.
rewrite_station_profile([easting, nor-	Mthod to rewrite station_profile or output new pro-
thing, \ldots])	file by straightening profile throught reajusting loca-
	tion coordinates values. User can use this method to
	create zonge stn file if coordinates are known.
<pre>stn_separation([easting, northing, interpo-</pre>	Compute the station separation Distance between ev-
late])	ery two stations
$straighten_profileline([X, Y,])$	Method to straighten profile line and/or rescaled co-
	ordinates.

static compute_dipolelength_from_coords (*easting=None*, *northing=None*, **kwargs) Fonction to compute dipole length from coordinates easting and northing values.

Parameters

- easting (array_like) array of easting coordinate in meters
- northing (array_like) array of northing coordinate in meters
- lat (array_like (ndarray, 1)) latitude coordinate in degree
- lon (array_like (ndarray, 1)) longitude coordinate in degree
- reference_ellipsoid (int) id, Ellipsoid name, Equatorial Radius, square of eccentricity, default is 23

Returns length of dipole during survey approximated.

Return type float

Returns position of dipole from reference station

Return type array_like(ndarray,1)

Note: the first electrode is located at 0 and second electrode to dipole length i.e [0, 50, ..., nn*50] where nn number of point -1. Data are relocated in center position of dipole.

get_profile_angle (easting=None, northing=None)

Method to compute profile angle.

Parameters

- easting (array_like) easting corrdinate of the station point
- **northing** northing coordinate of station point.

:type northing:array-like

Returns profile angle in degrees.

Return type float

1.2. Module CS 13

Method to read profile station file. user can use its special file .user can specify a head of its file. method will read and will parse easting , northing , elevation , or lon, lat, elev or station . User can also provided easting , northing and elevation value .

Parameters

* profile_fn :str

path to station profile file

- split_type :str How data is separed . Default is "".
- easting [array_like] easting coordinate (m),
- northing [array_like] northing coordinate value (m)
- lat [array_like] latitude coordinate in degree
- lon [array_like] longitude coordinate in degree
- azim [array_like,] azimuth in degree If not provided can computed automatically
- utm_zone :str survey utm zone if not porvided and lat and lon is set , can compute automatically

Simple staticmethod to readjut coordinates values and write new station file. by default, the reajustment substract value. to add value to you old coordinates, use negative X and Y method offer possibility of output new file by setting write to True. By convention we use X as EASTING correction and Y for NORTHING correction.

Parameters

* x: float

value for ajusting X coordinates _EASTING

- y: float value for a justig Y coordinates ._NORTHING
- stn_file: str station profile file . it may be a STN file .
- rewrite: bool rewrite a new station file after reajust coordinates.
- savepath [str] outdir pathLike to save your new profile file.

Returns

· array like

stations_pk, station profile pka value(m). Electrode fixed point value.

- array_like easting coordinate value (m)
- array_like northing coordinate value (m)
- elevation [array_like] evelation point at each station (m)

:Example:

Mthod to rewrite station_profile or output new profile by straightening profile throught reajusting location coordinates values.

User can use this method to create zonge *stn* file if coordinates are known.

Parameters

- easting (array_like) easting coordinates (m)
- northing (array_like) northing coordinates (m)
- **elevation** (array_like) elevation values (m)
- username (str) name of user
- add azimuth (bool) compute azimuth positive down(clockwise)

stn_separation (easting=None, northing=None, interpolate=False)

Compute the station separation Distance between every two stations

Parameters

```
* easting [array_like (ndarray, 1)] easting coordinates
```

- **northing** [array like (ndarray,1)] northing coordinates
- interpolate [bool] if interpolate is True will extend to N+1 number to much excatly the number of electrode. If false, it match the number of dipole N. *Default* is False.

Returns

array_like

separation value array

float separation mean or average separation value

Method to straighten profile line and/or rescaled coordinates. User can readjust coordinateq of profile by adding coordinate of readjustation Method provides 3 type of straighten profile. Default is "classic", it could be "natural or distorded', equidistant". "natural or distorded Type" is not to straight a profile like a straight line but , it keeps the equidistant point of the station at normal place that the survey must be. sometimes on the field , crew may get around some obstacle and despite the line is not straight , the distance between station is distorded. Using 'distord or natural type ' , it will show the right place station must be.

1.2. Module CS

Note: for easier approach we use X as easting and Y as northing.

Parameters

- **X**(array_like (ndarry, array, 1)) easting coordinates array.
- Y (array_like (ndarray, 1)) northing coordinates array
- **straight_type** (*str*) type of straighten ,it could be "equistant or egal, natural or distord". *default* is "classic"
- reajust (tuple) coordinates for reajustment (index 0:x index 1:y)

```
class csamtpy.ff.core.cs.Site(data_fn=None, **kwargs)
```

Specific site object Easy pack data :lat, lon, elev, azim, east, north, into dictionnary for easy access .

Attributes

azim

east

elev

lat

lon

north

stn_name

Methods

set_site_info([data_fn, easting, northing, ...]) Set-info from site file, can read zonge *stn* profile fine or set easting and northing coordinates.

set_site_info (*data_fn=None*, *easting=None*, *northing=None*, *utm_zone='49N'*)

Set-info from site file, can read zonge *stn* profile fine or set easting and northing coordinates.

Parameters

- data_fn (str) path to site data file . may Use Stn or other file of coordinates infos
- utm_zone (str) Utm zone WGS84

```
csamtpy.ff.core.cs.round_dipole_length(value)
```

small function to graduate dipole length 5 to 5. Goes to be reality and simple computation

1.3 Module EDI

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Mon Jan 11 11:37:51 2021

@author: KouaoLaurent alias @Daniel03

```
class csamtpy.ff.core.edi.Copyright(**kwargs)
```

Information of copyright, mainly about how someone else can use these data. Be sure to read over the conditions_of_use.

Holds the following informations:

Attributes	Туре	Explanation
references	References	citation of published work using these data
conditions_of_use	string	conditions of use of data used for testing program
release_status	string	release status [open public proprietary]

More attributes can be added by inputing a key word dictionary

Example

```
>>> from csamtpy.ff.core.edi import Copyright
>>> Copyright(**{'owner':'University of CSAMT',
... 'contact':'Cagniard'})
```

class csamtpy.ff.core.edi.DefineMeasurement (defineMeas_list=None, **kwargs)

Begins Measurement definition data section . Defines Location of sensors and parameters pertainning to runs for each measurements .

Attributes

refelev

reflat

reflong

<pre>get_DefineMeasurement_info([edi_fn])</pre>	Class method to get definemeasurement list.
read_define_measurement([])	readmeasurement inedilist and populate attributes.
write_define_measurement([])	Write definemeasurement method ,intend to write
	and rewrite measurements infos into list. infor-
	mations must be on list as possible if not may
	set attribute manually i.e [key01=value02,,
	keynn=valuenn + dictXX]dictXX ={meas_e},
	${meas_hx}, {meas_ey}{meas_hx}, {meas_hy}$
	{meas_hz}.

classmethod get_DefineMeasurement_info(edi_fn=None)

Class method to get definemeasurement list.

Parameters edi_fn (str) – full path to edifiles.

Returns new class with infos list

Return type list

read_define_measurement (define_measurement_list=None)

readmeasurement inedilist and populate attributes.

Parameters define_measurement_list (list) – list of measurement data can be [key_01=value_01,..., key_xx = value_xx] Emeas and Hmeas will be set on dictionnary and call the class to populate attribute *default* is None

Example

Note: to get measurement_hx or measurement_ex for instance get attribute <id> of Emeasurement , do the following script

Example

write_define_measurement (define_measurement_list=None)

Write definemeasurement method, intend to write and rewrite measurements infos into list. informations must be on list as possible if not may set attribute manually

```
i.e [key01=value02 , ..., keynn=valuenn + dictXX ]dictXX ={meas_e}, {meas_hx}, {meas_hy} {meas_hz}
```

Parameters define_measurement_list (list) - list of define measuremenent

Returns new list of define_measurement

Return type list

. .notes :: If no edifiles is provided , can write definemeasurement by creating dict of Eand H measurment.

Example

```
>>> ex_dict ={'id':1002, 'chtype':'Ex', 'x':0, 'y':0, 'z':0, 'x2
\rightarrow ':-50, 'y2':0, 'z2':0,
                       'acqchan':0,'filter':'hanning', 'sensor':
→'ex', 'gain':None}
>>> ey_dict ={'id':1003.1, 'chtype':'Ey', 'x':0, 'y':50, 'z':0,
\rightarrow 'x2':0, 'y2':0, 'z2':0,
                   'acqchan':0}
>>> hy_dict ={'id':1003, 'chtype':'Hy', 'x':0, 'y':50, 'z':90,
→'azm':0.0,'dip':35,
                       'acqchan': 'hy', 'filter': 'Hanning', 'sensor
→':None, 'gain':0, 'measdate':''}
>>> definemeas =DefineMeasurement()
>>> ex =Emeasurement(**ex_dict)
>>> ey =Emeasurement(**ey_dict)
>>> hy=Hmeasurement(**hy_dict)
... definemeas.__setattr__('meas_ex', ex)
... definemeas.__setattr__('meas_ey', ey)
... definemeas.__setattr__('meas_hy', hy)
>>> print(definemeas.write_define_measurement())
```

class csamtpy.ff.core.edi.Edi(edi_filename=None, **kwargs)

Ediclass is for especialy dedicated to .edi files, mainly reading and writing which are meant to follow the archaic EDI format put forward by SEG Can read impedance, Tipper but not spectra. To read spectra format please consult MTpy documentation https://mtpy2.readthedocs.io/en/develop/ The Edi class contains a class for each major section of the .edi file.

Note: Frequency and components are ordered from highest to lowest frequency.

Attributes

elev

lat

lon

processingsoftware

station

read_edi([edifile])	Read edifile and populate attribute to each data sec-
	tion of edi.
write_edifile([edi_fn, new_edifilename,])	Method to write edifiles from data setting oin at-
	tribute of Edi or from existing file.

read_edi (edifile=None)

Read edifile and populate attribute to each data section of edi.

Parameters edifile (str) – full path to edifile

Method to write edifiles from data setting oin attribute of Edi or from existing file. can write also EMAP data are filled attribute of EDI.

Parameters

- edifile (str) new edifile name .If None , will write edi using station_name plus type of survey (MT of EMAP) plus year of writing as < S00_emap.2021.edi> or <S00_mt.2021.edi>
- datatype (str) type of file, "mt" or "emap" if None, program will detect which file is provided. If datatype is set, program will be force to rewrite edi into given format.
- savepath (str) path to save edifile. if None save to your current work directory
- add_filter_array ndarray(nfreq, 2, 2), EDI edifile is EMAP section data, if add filter is provided, will recompute rho.

Returns new_edifile, full path to edifile

Return type str

Super class to deal with Edifiles . Collect edifiles and set important properties form Controled Source audiofrequency magnetotelluRic t,two(2) components t,ttto(2) components t,tto(2) compon

and YX will be set and calculated .

Attributes

elevation

latitude

longitude

phs_err_xy

phs_err_yx

phs_xy

phs_yx

res_err_xy

res_err_yx

res_xy

res_yx stnames z_err_xy z_err_yx z_xy

 z_yx

class csamtpy.ff.core.edi.Emeasurement(**kws)

Define the electrode location , and run parameters for electric field measurement. EMeasurement contains metadata for an electric field measurement.

Attributes	Description (Restriction)
id	Measurement ID, channel number ('required')
chtype	Type of Hmeasurement[Ex Ey](required)
X	x (m) north offset from first electrode (reauired)
У	y (m) offest from ref for first electrode(reauired)
Z	z offset from the ref for first electrode(reauired)
x2	x offset from the 2nd electrode ('required')
y2	y offset from the 2nd electrode (required)
z2	z offset from the 2nd electrode ("")
acqchan	name of the channel acquired usually same as chtype
filter	description of sensor to run ("")
gain	gain used for run ("")
measdate	date of run ("")

To Fill Metadata, let take this example

Example

class csamtpy.ff.core.edi.Head(edi_header_list=None, **kwargs)

The edi head block contains a series of options which (1) identity the data set, (2) describe whn, where and by whoom was acquired, and (3) describe when, how and by whom it was written.

Attributes

elev

lat

long

<pre>get_header_list_from_edi([edi_fn])</pre>	Class method to return edi_head_list .
read_head([edi_header_list])	read_header_list and set attributes values
<pre>write_head_info([head_list_infos])</pre>	Write list info.

classmethod get_header_list_from_edi(edi_fn=None)

Class method to return edi_head_list .

Paramedi_fn full path to edifile

read_head (edi_header_list=None)

read_header_list and set attributes values

Parameters edi_header_list (list) - list of edifile header infos

Example

```
>>> from csamtpy.ff.core.edi import Head
>>>> file_edi= 'S00_ss.edi'
>>>> path = os.path.join(os.environ["pyCSAMT"],
... 'csamtpy','data', file_edi)
>>> edihead= Head.get_header_list_from_edi(edi_fn=path)
>>> print(edihead.lat)
>>> print(edihead.long)
>>> print(edihead.elev)
>>> print(edihead.acqby)
```

write_head_info(head_list_infos=None)

Write list info . Can read edi and rewrite list or to provide input as ['key_01=value_01', 'key_02=value_02', ..., 'key_nn=value_nn']

Note: If value is None, don't need to write the key.

Parameters head_list_infos (list) - list, list of head info

Returns write_info list, list ready to write to let EDI file more visible.

Return type list

Example

class csamtpy.ff.core.edi.Hmeasurement(**kws)

Define the sensor location and orientation, and run parameters for a magnetic field measurement. HMeasurement contains metadata for a magnetic field measurement.

Attributes	Description
id	Measurement ID, channel number
chtype	Type of Hmeasurment[HX HY HZ RHX RHY]
X	x (m) north offset from reference sensor
у	y (m) offest from ref sensor
azm	angle of sensor relative to north $= 0$
acqchan	name of the channel acquired usually same as chtype
dip	dip angle for sensor ("")
filter	description of sensor to run ("")
gain	gain used for run ("")
measdate	date of run ("")

To fill Metadata, let get a look of this example

Example

class csamtpy.ff.core.edi.Info(edi_info_list=None, **kwargs)
 Class EDI info class, collect information of the survey.

> INFO

- MAXINFO=999
- PROJECT=SAMTEX
- SURVEY=Kaapvaal 2003
- YEAR=2003
- PROCESSEDBY=SAMTEX team
- PROCESSINGSOFTWARE=JONES 2.3
- PROCESSINGTAG=
- SITENAME=South Africa
- RUNLIST=
- REMOTEREF=
- REMOTESITE=
- SIGNCONVENTION=exp(+ iomega t)

Attributes	Туре	Explanation	
maxrun	int>=1	maximum number of text lines in info text(maybe less)	
Source	class obj	Porvenace of data to rewrite	
Processing	Processing obj	How data where processed	
Notes	Note class	info additions	

<pre>get_info_list_from_edi([edi_fn])</pre>	Class to get edinfo from edifiles
read_info([edi_info_list])	readinformation and populate attaribute info can set
	other attributes once read and not present on the file.
write_edi_info([edi_info_list])	Write edi information info .

classmethod get_info_list_from_edi(edi_fn=None)

Class to get edinfo from edifiles

Parameters edi_fn (str) – full path to edifile

Returns edi_info_list

Return type list

read_info(edi_info_list=None)

readinformation and populate attaribute info can set other attributes once read and not present on the file.

Parameters edi_info_list (list) - list of infos files

write_edi_info(edi_info_list=None)

Write edi information info . Can read edi and rewrite list or to provide input as ['key_01=value_01', 'key_02=value_02', ...,'key_nn=value_nn'] Note : If value is absent i.e None , don't write the key . Info write method add some field notes informations from other softwares if exists.

Parameters edi_info_list (list) – list of infos contain in info sections

Returns list of info

Return type list

Example

class csamtpy.ff.core.edi.MTEMAP (mt_or_emap_section_list=None, **kwargs)

Begins an MT and EMAP data section .Defines the default measurement for MT sounding and Defines the measurements which makeup an EMAP lines.

>=EMAPSECT	>=EMAPSECT
• SECTID=''''	• SECTID=S00
• NFREQ=**	• NCHAN=4
• HX= 1001.001	• MAXBLKS=999
• HY= 1002.001	• NDIPOLE =47
• HZ= 1003.001	• NFREQ=17
• EX= 1004.001	• HX= 0.
• EY= 1005.001	 HY= .0 HZ= NONE CHKSUM =None

Parameters mt_or_emap_section_list (list) - mt and emap section can read ediffies by calling class method <'get_mtemap_section_list'>

Attributes	Description	Default	Restriction
sectid	Name of this section	None	str or""
nfreq	Number of frequencies	required	int >=1
maxblks	maximum number of blocks of this section	None	int>=1
ndipole	Number of dipoles in the EMAP line	required	
type	Descrip. of spatial filter type used	None	str or ""
hx	Meas ID for Hx measurement	None	Def Meas Id or "
hy	Meas ID for Hy measurement	None	Def Meas Id or "
hz	Meas ID for Hz measurement	None	Def Meas Id or "
ex	Meas ID for Ex measurement	None	Def Meas Id or "
ey	Meas ID for Ey measurement	None	Def Meas Id or "
rx	Meas ID for Rx measurement	None	Def Meas Id or "
ry	Meas ID for Ry measurement	None	Def Meas Id or "
chksum	checksum total for dvalues	None	Num of ""

Note: MTEMAP can recognize function to value provided with type of data acquired either MT or EMAP. More attributes can be added by inputing a key word dictionary. . . .

Example

(continued from previous page)

```
... 'ndipole':47, 'type':'hann'})
```

Attributes

start_data_lines_num

temp_sectid

Methods

<pre>get_mtemap_section_list([edi_fn])</pre>	MT or EMAP section_classmethod to get special
	MT info or EMAP info in edifile
$read_mtemap_section$ ([mt_or_emap_section_list])ead mtsection and set attribute . values can	
	as key
write_mtemap_section([])	Method to write MT or EMAP section into
	list by providing list as ['key01= value01',,
	keyxx=valuexx]. Method can recognize whether ed-
	ifile provided is MT or EMAP then can read file ac-
	cording to.

classmethod get_mtemap_section_list(edi_fn=None)

MT or EMAP section_classmethod to get special MT info or EMAP info in edifile

Parameters edi_fn (str) – full path to edifile

Returns newclass contained a list of mtemap infos

Return type list

read_mtemap_section (mt_or_emap_section_list=None)

Read mtsection and set attribute. values can be set as key [key01=value01, ..., keynn=valuenn]

Parameters mt_or_emap_section_list (list) - mt or emap section list

Example

```
>>> import csamtpy.ff.core.edi as csedi
>>> mtsection_obj= csedi.MTEMAP.get_mtemap_section_list(edi_fn_
--path)
>>> info = mtsection_obj.read_mtemap_section()
>>> print(mtsection_obj.sectid)
```

write_mtemap_section (mt_or_emap_section_list=None, nfreq=None)

Method to write MT or EMAP section into list by providing list as ['key01= value01', ..., keyxx=valuexx]. Method can recognize whether edifile

provided is MT or EMAP then can read file according to.

Parameters mt_or_emap_section_list (list) - list of mt or eamp sectionvalidate by egal ('=')

Example

```
class csamtpy.ff.core.edi.Person(**kwargs)
```

Information for a person

Holds the following information:

Attributes	Type	Explanation
email	string	email of person
name	string	name of person
organization	string	name of person's organization
organization_url	string	organizations web address

More attributes can be added by inputing a key word dictionary

Example

class csamtpy.ff.core.edi.Processing(**kwargs)

Information for a Edi processing

Holds the following information:

Attributes	Type	Explanation
ProcessingSoftware	class	Software obj : Input software info.
processedby	str	name handler of dataprocessing
processingtag	str	specifictag
runlist	list	_
remoteref	str	reference point for remoting
remotesite	str	reference site name
signconvention	str	convention sign provide default

More attributes can be added by inputing a key word dictionary

class csamtpy.ff.core.edi.References(**kwargs)

References information for a citation.

Holds the following information:

Attributes	Туре	Explanation
author	string	Author names
title	string	Title of article, or publication
journal	string	Name of journal
doi	string	DOI number
year	int	year published

More attributes can be added by inputing a key word dictionary

Example

```
class csamtpy.ff.core.edi.Software(**kwargs)
    software info
```

Holds the following information:

Attributes	Type	Explanation
name	string	name of software
version	string	version of sotware
Author	string	Author of software
release	string	latest version release

More attributes can be added by inputing a key word dictionary

Example

```
>>> from csamtpy.ff.core.edi import Software
>>> Software(**{'release':'0.11.23'})
```

```
class csamtpy.ff.core.edi.Source(**kwargs)
```

Information of the file history, how it was made

Holds the following information:

Attributes	Туре	Explanation
project	string	where the project have been done
sitename	string	where the survey have been taken place
creationdate	string	creation time of file YYYY-MM-DD,hh:mm:ss
creatingsoftware	string	name of program creating the file
author	Person	person whom created the file
submitter	Person	person whom is submitting file for archiving

More attributes can be added by inputing a key word dictionary

Example

```
>>> from csamtpy.ff.core.edi import Source
>>> Source(**{'archive':'IRIS',
... 'reprocessed_by':'grad_student'})
```

fonction to rebuild xmeasurement list, to solder list with egal. In the case where no value is found at the last item, we will add "None".

Parameters

- old_measurement_list (list) measurement list to solder
- parser (str) can be egal or all you want, *Default* is None mean parser '='.

Returns list solded with egal like <key=value>

Return type list

Example

```
>>> from csamtpy.ff.core.edi import gather_measurement_key_value_
→with_str_parser
>>> measm = [ ['>HMEAS', 'ID=1001.001', 'CHTYPE=HX', 'X=', '0.0',
. . .
                  '0.0', 'Z=', '0.0', 'AZM=', '0.0', 'TS='],
                    ['>HMEAS', 'ID=1002.001', 'CHTYPE=HY', 'X=', '0.
. . .
→ 0 ' .
                         'Y=', '0.0', 'Z=', '0.0', 'AZM=', '90.0'],
. . .
                    ['>HMEAS', 'ID=1003.001', 'CHTYPE=HZ', 'X=', '0.
\hookrightarrow 0', 'Y=',
                         '0.0', 'Z=', '0.0', 'AZM=', '0.0', 'TS=', '
. . .
>>> for item in measm:
       print(gather_measurement_key_value_with_str_parser(old_
→measurement_list=item) )
... ['ID=1001.001', 'CHTYPE=HX', 'X=0.0', 'Y=0.0', 'Z=0.0', 'AZM=0.0
→', 'TS=None']
... ['ID=1002.001', 'CHTYPE=HY', 'X=0.0', 'Y=0.0', 'Z=0.0', 'AZM=90.
... ['ID=1003.001', 'CHTYPE=HZ', 'X=0.0', 'Y=0.0', 'Z=0.0', 'AZM=0.0
→', 'TS=None']
```

csamtpy.ff.core.edi.minimum_parser_to_write_edi(edilines, parser=None)

This fonction validate edifile for writing , string with egal. We assume that dictionnary in list will be for definemeasurment E and H fieds.

Parameters

- edilines (list) list of items to parse
- **parser** (*str*) parser edifile section DefineMeasurement, can be change. *default* is egal (=)

Example

```
>>> from csamtpy.ff.core.edi import DefineMeasurement
>>> file_edi= 'S00_ss.edi'
>>> path = os.path.join(os.environ["pyCSAMT"],
... 'csamtpy','data', file_edi_2)
>>> definemeas =DefineMeasurement.get_measurement_info(edi_fn=path)

(continues on next page)
```

(continued from previous page)

```
>>> minimparser = minimum_parser_to_write_edi(edilines =definemeas.

define_measurement)
>>> print(minimparser)
```

1.4 Module J

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

```
Created on Thu Dec 3 22:31:16 2020
@author: @Daniel03
class csamtpy.ff.core.j.J(j_fn=None, **kws)
     Class deal with A.G. Jones j-file. see: http://mtnet.info/docs/jformat.txt
           Attributes
                japp rho
                jerror
                jimag
                jmode
                jperiod
                jpha
                jphamax
                jphamin
                jreal
                jrhomax
                jrhomin
                jweight
                jwpha
                jwrho
```

jMode([polarization_type])	Jmode is conformited a different set of H-
	Polarization ans E-Polarization.
<pre>jname(number_of_sites[, survey_name])</pre>	Staticmethod for generate alphanumeric <i>station name</i> (case sensitive when reading A.G Jones files)
	survey XXX, station 001.
read_j([j_fn])	Method to read Jformat file.

jMode (polarization_type='RXY')

Jmode is conformited a different set of H-Polarization ans E-Polarization. for more detail:

See also:

http://mtnet.info/docs/jformat.txt

:Convention:The convention used is for RXY to represent the E-polarization (TE) mode, and for RYX to represent the B-polarization mode.

```
static jname (number_of_sites, survey_name=None)
```

Staticmethod for generate alphanumeric *station name* (case sensitive when reading A.G Jones files) survey XXX, station 001.

Parameters

- number_of_sites (int) number of stations.
- **survey_name** (str) place location name.

Returns list of alphanumeric station names

Return type list

read_j(*j_fn=None*)

Method to read Jformat file.

Parameters $j_fn(str)$ – path to jfile

class csamtpy.ff.core.j.J_collection(list_of_jfiles=None, survey_name=None, **kwargs)
 J collection Class. Collect jfiles

Attributes

azimuth

elevation

latitude

longitude

stnames

1.4. Module J 31

<pre>collect_jfiles([list_of_jfiles, jpath])</pre>	Collect the Jfile from jlist from jpath.Read and pop-
	ulate attributes.
<pre>plot_Topo_Stn_Azim([list_of_jfiles, plot,])</pre>	plot Topography , Stn _Azim from Jfiles
rewrite_jfiles([list_of_jfiles, savepath,])	Method to rewrite A.G.

collect_jfiles (list_of_jfiles=None, jpath=None)

Collect the Jfile from jlist from jpath.Read and populate attributes .

Parameters list_of_jfiles (list) - list of jfiles

$$\label{local_policy} \begin{split} \textbf{plot_Topo_Stn_Azim} & (\textit{list_of_jfiles}=None, \textit{plot='*'}, \textit{show_stations}=False, \textit{compute_azimuth}=True, \\ & \textit{savefig}=None) \\ & \text{plot Topography} & , \text{Stn_Azim from Jfiles} \end{split}$$

Parameters

- list of jfiles (list) list of ifiles
- plot (str or int) -

type of plot '*' means all the 03 plots or use *topo*, *stn*, *azim* to plot individually. *default* is '*'

- **show_stations** (bool) see the stations names as xlabel.
- compute_azimuth (bool) if add azimuth, set azimuth to False Default is True
- savefig (str) PathLike path to save your figure

Note: Work but not stable ...

rewrite_jfiles (*list_of_jfiles=None*, *savepath=None*, *survey_name=None*, *j_extension='.dat'*) Method to rewrite A.G. johnson file (J-Format file).

See also:

http://mtnet.info/docs/jformat.txt

Parameters

- list of files (list) collection of Jfiles
- **survey_name** (str) name of exploration area
- j_extension (str) output format, Default is '.dat'
- savepath(str) output directory .If None , file will be store in current work directory

```
class csamtpy.ff.core.j.J_infos (**kwargs)
    J_infos class - set the information of J_file
```

1.5 Module z

This file is part of pyCSAMT.

res_yy

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

```
exception csamtpy.ff.core.z.MT_Z_Error
class csamtpy.ff.core.z.ResPhase(z_array=None, z_err_array=None, freq=None, **kwargs)
     resistivity and phase container .. module:: Z .. moduleauthor:: Jared Peacock < jpeacock@usgs.gov> .. mod-
     uleauthor:: Lars Krieger
          Attributes
                phase
                phase_det
                phase_det_err
                phase_err
                phase_err_xx
                phase_err_xy
                phase_err_yx
                phase_err_yy
                phase_xx
                phase_xy
                phase_yx
                phase_yy
                res_det
                res_det_err
                res_err_xx
                res_err_xy
                res_err_yx
                res_err_yy
                res_xx
                res_xy
                res_yx
```

1.5. Module z 33

resistivity resistivity_err

Methods

<pre>compute_resistivity_phase([z_array,])</pre>	compute resistivity and phase from z and z_err
set_res_phase(res_array, phase_array, freq)	Set values for resistivity (res - in Ohm m) and phase
	(phase - in degrees), including error propagation.

compute_resistivity_phase (*z_array=None*, *z_err_array=None*, *freq=None*) compute resistivity and phase from z and z_err

set_res_phase (*res_array*, *phase_array*, *freq*, *res_err_array=None*, *phase_err_array=None*)

Set values for resistivity (res - in Ohm m) and phase (phase - in degrees), including error propagation.

Parameters

- res_array (np.ndarray (num_freq, 2, 2)) resistivity array in Ohmm
- phase_array (np.ndarray (num_freq, 2, 2)) phase array in degrees
- freq(np.ndarray(num_freq)) frequency array in Hz
- res_err_array (np.ndarray (num_freq, 2, 2)) resistivity error array in Ohm-m
- phase_err_array (np.ndarray (num_freq, 2, 2)) phase error array in degrees

class csamtpy.ff.core.z.Tipper(tipper_array=None, tipper_err_array=None, freq=None)
 Tipper class -> generates a Tipper-object.

Errors are given as standard deviations (sqrt(VAR))

Parameters

- **tipper_array** (np.ndarray((nf, 1, 2), dtype='complex')) tipper array in the shape of [Tx, Ty] default is None
- **tipper_err_array** (np.ndarray ((nf, 1, 2))) array of estimated tipper errors in the shape of [Tx, Ty]. Must be the same shape as tipper_array. *default* is None
- **freq** (np.ndarray (nf)) array of frequencies corresponding to the tipper elements. Must be same length as tipper_array. default is None

Attributes	Description
freq	array of frequencies corresponding to elements of z
rotation_angle	angle of which data is rotated by
tipper	tipper array
tipper_err	tipper error array

Methods	Description
mag_direction	computes magnitude and direction of real and imaginary induction arrows.
amp_phase	computes amplitude and phase of Tx and Ty.
rotate	rotates the data by the given angle

Attributes

amplitude
amplitude_err
angle_err
angle_imag
angle_real
freq
mag_err
mag_imag
mag_real
phase
phase_err
tipper
tipper_err

Methods

compute_amp_phase()	Sets attributes:
compute_mag_direction()	computes the magnitude and direction of the real and
	imaginary induction vectors.
rotate(alpha)	Rotate Tipper array.
set_amp_phase(r_array, phi_array)	Set values for amplitude(r) and argument (phi - in
	degrees).
set_mag_direction(mag_real, ang_real,)	computes the tipper from the magnitude and direc-
	tion of the real and imaginary components.

compute_amp_phase()

Sets attributes:

- amplitude
- phase
- amplitude_err
- phase_err

values for resistivity are in in Ohm m and phase in degrees.

compute_mag_direction()

computes the magnitude and direction of the real and imaginary induction vectors.

rotate (alpha)

Rotate Tipper array.

Rotation angle must be given in degrees. All angles are referenced to geographic North=0, positive in clockwise direction. (Mathematically negative!)

In non-rotated state, 'X' refs to North and 'Y' to East direction.

Updates the attributes:

1.5. Module z 35

- tipper
- tipper_err
- rotation_angle

set_amp_phase (r_array, phi_array)

Set values for amplitude(r) and argument (phi - in degrees).

Updates the attributes:

- tipper
- tipper_err

set_mag_direction (mag_real, ang_real, mag_imag, ang_imag)

computes the tipper from the magnitude and direction of the real and imaginary components.

Updates tipper

No error propagation yet

class csamtpy.ff.core.z.Z(z_array=None, z_err_array=None, freq=None)

Z class - generates an impedance tensor (Z) object.

Z is a complex array of the form (n_freq, 2, 2), with indices in the following order:

- Zxx: (0,0)
- Zxy: (0,1)
- Zyx: (1,0)
- Zyy: (1,1)

All errors are given as standard deviations (sqrt(VAR))

Parameters

- **z_array** (numpy.ndarray(n_freq, 2, 2)) array containing complex impedance values
- **z_err_array** (numpy.ndarray(n_freq, 2, 2)) array containing error values (standard deviation) of impedance tensor elements
- **freq** (np.ndarray (n_freq)) array of frequency values corresponding to impedance tensor elements.

Attributes	Description
freq	array of frequencies corresponding to elements of z
rotation_angle	angle of which data is rotated by
Z	impedance tensor
z_err	estimated errors of impedance tensor
resistivity	apparent resisitivity estimated from z in Ohm-m
resistivity_err	apparent resisitivity error
phase	impedance phase (deg)
phase_err	error in impedance phase

Methods	Description
det	calculates determinant of z with errors
invariants	calculates the invariants of z
inverse	calculates the inverse of z
re-	removes distortion given a distortion matrix
move_distortion	
remove_ss	removes static shift by assumin $Z = S * Z_0$
norm	calculates the norm of Z
only1d	zeros diagonal components and computes the absolute valued mean of the off-diagonal
	components.
only2d	zeros diagonal components
res_phase	computes resistivity and phase
rotate	rotates z positive clockwise, angle assumes North is 0.
set_res_phase	recalculates z and z_err, needs attribute freq
skew	calculates the invariant skew (off diagonal trace)
trace	calculates the trace of z

Example

```
>>> import mtpy.core.z as mtz
>>> import numpy as np
>>> z_test = np.array([[0+0j, 1+1j], [-1-1j, 0+0j]])
>>> z_object = mtz.Z(z_array=z_test, freq=[1])
>>> z_object.rotate(45)
>>> z_object.resistivity
```

Attributes

```
det Return the determinant of Z
det_err Return the determinant of Z error
freq Frequencies for each impedance tensor element
invariants Return a dictionary of Z-invariants.
inverse Return the inverse of Z.
norm Return the 2-/Frobenius-norm of Z
norm_err Return the 2-/Frobenius-norm of Z error
only_1d Return Z in 1D form.
only_2d Return Z in 2D form.
phase
phase_det
phase_det_err
phase_err
phase_err_xx
phase_err_xy
phase_err_yx
phase_err_yy
phase_xx
```

1.5. Module z 37

```
phase_xy
phase_yx
phase_yy
res_det
res\_det\_err
res_err_xx
res_err_xy
res_err_yx
res_err_yy
res_xx
res_xy
res_yx
res_yy
resistivity
resistivity_err
skew Returns the skew of Z as defined by Z[0, 1] + Z[1, 0]
skew_err Returns the skew error of Z as defined by Z_{err}[0, 1] + Z_{err}[1, 0]
trace Return the trace of Z
trace_err Return the trace of Z
z Impedance tensor
z_err
```

Methods

compute_resistivity_phase([z_array,])	compute resistivity and phase from z and z_err
remove_distortion(distortion_tensor[,])	Remove distortion D form an observed impedance
	tensor Z to obtain the uperturbed "correct" Z0: Z =
	D * Z0
remove_ss([reduce_res_factor_x,])	Remove the static shift by providing the respective
	correction factors for the resistivity in the x and y
	components.
rotate(alpha)	Rotate Z array by angle alpha.
set_res_phase(res_array, phase_array, freq)	Set values for resistivity (res - in Ohm m) and phase
	(phase - in degrees), including error propagation.

property det

Return the determinant of Z

 $\textbf{Returns} \ \det_Z$

Return type np.ndarray(nfreq)

property det_err

Return the determinant of Z error

Returns det_Z_err

Return type np.ndarray(nfreq)

property freq

Frequencies for each impedance tensor element

Units are Hz.

property invariants

Return a dictionary of Z-invariants.

property inverse

Return the inverse of Z.

(no error propagation included yet)

property norm

Return the 2-/Frobenius-norm of Z

Returns norm

Return type np.ndarray(nfreq)

property norm_err

Return the 2-/Frobenius-norm of Z error

Returns norm_err

Return type np.ndarray(nfreq)

property only_1d

Return Z in 1D form.

If Z is not 1D per se, the diagonal elements are set to zero, the off-diagonal elements keep their signs, but their absolute is set to the mean of the original Z off-diagonal absolutes.

property only_2d

Return Z in 2D form.

If Z is not 2D per se, the diagonal elements are set to zero.

remove_distortion (distortion_tensor, distortion_err_tensor=None)

Remove distortion D form an observed impedance tensor Z to obtain the uperturbed "correct" Z0: Z = D * Z0

Propagation of errors/uncertainties included

Parameters

- distortion_tensor (np.ndarray(2, 2, dtype=real)) real distortion tensor as a 2x2
- distortion_err_tensor default is None

Return type

```
np.ndarray(2, 2, dtype='real')
```

returns impedance tensor with distorion removed

Return type

```
np.ndarray(num_freq, 2, 2, dtype='complex')
```

returns impedance tensor error after distortion is removed

1.5. Module z 39

Return type

np.ndarray(num_freq, 2, 2, dtype='complex')

Example

```
remove_ss (reduce_res_factor_x=1.0, reduce_res_factor_y=1.0)
```

Remove the static shift by providing the respective correction factors for the resistivity in the x and y components. (Factors can be determined by using the "Analysis" module for the impedance tensor)

Assume the original observed tensor Z is built by a static shift S and an unperturbated "correct" Z0:

```
• Z = S * Z0
```

therefore the correct Z will be:

```
• Z0 = S^{(-1)} * Z
```

Parameters

- reduce_res_factor_x (float or iterable list or array) static shift factor to be applied to x components (ie z[:, 0, :]). This is assumed to be in resistivity scale
- reduce_res_factor_y (float or iterable list or array) static shift factor to be applied to y components (ie z[:, 1, :]). This is assumed to be in resistivity scale

Returns static shift matrix,

Return type np.ndarray ((2, 2))

Returns corrected Z

Return type mtpy.core.z.Z

Note: The factors are in resistivity scale, so the entries of the matrix "S" need to be given by their square-roots!

rotate (alpha)

Rotate Z array by angle alpha.

Rotation angle must be given in degrees. All angles are referenced to geographic North, positive in clockwise direction. (Mathematically negative!)

In non-rotated state, X refs to North and Y to East direction.

Updates the attributes

- z
- z_err
- zrot
- resistivity

- phase
- resistivity_err
- phase_err

property skew

Returns the skew of Z as defined by Z[0, 1] + Z[1, 0]

Note: This is not the MT skew, but simply the linear algebra skew

Returns skew

Return type np.ndarray(nfreq, 2, 2)

property skew_err

Returns the skew error of Z as defined by $Z_{err}[0, 1] + Z_{err}[1, 0]$

Note: This is not the MT skew, but simply the linear algebra skew

Returns skew err

Return type np.ndarray(nfreq, 2, 2)

property trace

Return the trace of Z

Returns Trace(z)

Return type np.ndarray(nfreq, 2, 2)

property trace_err

Return the trace of Z

Returns Trace(z)

Return type np.ndarray(nfreq, 2, 2)

property z

Impedance tensor

np.ndarray(nfreq, 2, 2)

```
csamtpy.ff.core.z.correct4sensor_orientation(Z_prime, Bx=0, By=90, Ex=0, Ey=90, Z_prime\_error=None)
```

Correct a Z-array for wrong orientation of the sensors.

Assume, E' is measured by sensors orientated with the angles E'x: a E'y: b

Assume, B' is measured by sensors orientated with the angles B'x: c B'y: d

With those data, one obtained the impedance tensor Z': E' = Z' * B'

Now we define change-of-basis matrices T,U so that E = T * E' B = U * B'

=> T contains the expression of the E'-basis in terms of E (the standard basis) and U contains the expression of the B'-basis in terms of B (the standard basis) The respective expressions for E'x-basis vector and E'y-basis vector are the columns of T. The respective expressions for B'x-basis vector and B'y-basis vector are the columns of U.

We obtain the impedance tensor in default coordinates as:

```
E' = Z' * B' => T^{(-1)} * E = Z' * U^{(-1)} * B => E = T * Z' * U^{(-1)} * B => Z = T * Z' * U^{(-1)}
```

Parameters

1.5. Module z 41

- **Z_prime** impedance tensor to be adjusted
- Bx (float (angle in degrees)) orientation of Bx relative to geographic north (0) default is 0
- By -
- Ex (float (angle in degrees)) orientation of Ex relative to geographic north (0) default is 0
- **Ey** (float (angle in degrees)) orientation of Ey relative to geographic north (0) default is 90
- **Z_prime_error** (np.ndarray (Z_prime.shape)) impedance tensor error (std) default is None

Dtype Z_prime np.ndarray(num_freq, 2, 2, dtype='complex')

Returns adjusted impedance tensor

Return type np.ndarray(Z_prime.shape, dtype='complex')

Returns impedance tensor standard deviation in default orientation

Return type np.ndarray(Z_prime.shape, dtype='real')

CHAPTER

TWO

PACKAGE PROCESSING

2.1 Module Dispatcher

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/.

Created on Thu Nov 26 20:55:39 2020

@author: @Daniel03

```
csamtpy.ff.processing.callffunc.agso_data()
    Geological data codes processing
```

Deprecated since version function: will later deprecated

```
csamtpy.ff.processing.callffunc.dipole_center_position(dipole_position=None)
```

Generaly positions are taken at each electrode of dipole to that to easy correct data for ploting and for noise correction, we adjust coordinate by taking the center position that means, the number of points will be substract

Parameters dipole_position (array_like) – postion array at each electrodes.

Returns centered position value array

Return type array_like

```
csamtpy.ff.processing.callffunc.get_array_from_reffreq(array_loc,
                                                                            freq_array,
                                                               reffreq_value,
```

stnNames=None)

Get array value at special frequency :param * array_loc: dictionnary of stations , array_value e.g: S00:(ndarray,1) rho values :type * array loc: dict , :param * freq array: frequency array for CSAMT survey :type * freq array: (ndarray,1) :param * reffreq value: the value of frequency user want to get the value :type * reffreq value: int or float :param * stnNames: list of stations names . :type * stnNames: list

array_like an array of all station with reffreq_value . e.g reffreq_value = 1024. it return all value of the array at 1024Hz frequency.

```
csamtpy.ff.processing.callffunc.relocate_on_dict_arrays(data_array, num-ber_of_frequency, tion names=None) num-
```

Put data arrays on dictionnary where keys is each station and value the array of that station. if station_names is None, program will create name of station. if station_names is given, function will sorted stations names. please make sure to provide correctly station according the disposal you want.

Parameters

- number_of_frequency (array_like) array of frequency during survey
- station_names (list of array_like) list of station

Returns infos at data stations

Return type dict

```
csamtpy.ff.processing.callffunc.set_stratum_on_dict()
```

Process to put geocodes_strata and geocodes_structures into dictionnaries better way to go on metaclasses merely. Thus each keys of dictionary will be its own object.

Returns

strata_dict [dict]

Disctionnary of geostrata

structures_dict [dict] Dictionnary of geostructures.

```
csamtpy.ff.processing.callffunc.straighten_cac2CSfile(data_array, compo
```

nent_column_section=None)
Sometimes head_sections of file _F2(CAC2CSAMT) provided is little different columns section name according to different version . it 's better to filter and to check before returning the correct informations we need.

Parameters

* data_array [ndarray]

data from AVG astatic file

• component_column_section [list] a stactic file column comps provided

Returns

```
array_we_need :ndarray
```

same infos present in the plainty /1 Avg file

array_other_comp [pd.Core.DataFrame] infos include through Astatic softwares very
usefull therefore we keep it .

Function to truncate all data according to number of frequency.

Parameters

* data [list, or nd.array]

data must be truncate.

• number_of_freq [int] number of frequency imaged.

Returns

list loc_list , data truncated on list.

Parameters

```
* zstar_array [ndarray]
```

array contain unfloat converter value. the unconverter value can be a '*'

- nan_value [float or np.nan type] the nan_value could be any value either int, float or str. The *default* is np.nan.
- **keep_str** [bool, optional] keep the str item on your array. f keep_str is set to false and the type nan_value is str , the program will force 'keep_str_' to True to allow converter . The *default* is False.

Returns

ndarray zstrar_array converted.

2.2 Module Shifting

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

```
Created on Sat Dec 12 13:55:47 2020
```

```
@author: @Daniel03
```

```
csamtpy.ff.processing.corr.interp_to_reference_freq(freq_array, rho_array, refer-
ence_freq, plot=False)
```

Interpolate frequencies to the reference frequencies.

Parameters

- freq_array (array_like) frequency array
- reference_freq (float) frequency at clean data

processing class [shifting processing workflow] coorection class deal with AVG Zonge station file "*.stn" or SEG-EDI file.

Attributes

```
app_rho
```

frequency

phase

2.2. Module Shifting 45

referencefreq

Methods

AMA()	** future plan ****
FLMA()	*Future plan **
TMA([data_fn, freq_array, res_array,])	Trimmed-moving-average filter to estimate average
	apparent resistivities at a single static-correction-
	reference frequency.

TMA (data_fn=None, freq_array=None, res_array=None, phase_array=None, stnVSrho_loc=None, ref-erence_freq=None, number_of_TMA_points=5)

Trimmed-moving-average filter to estimate average apparent resistivities at a single static-correction-reference frequency. User can compute TMA by inputing only the data file . the program vill find automaticall other parameters . If not may provide all the parameters except the data file .

Parameters

* data_fn [str]

path to avg file or edi file.

- **freq_array** [array_like (ndarray,1)] frequency array of at normalization frequency (reference value) of all stations. station j to n .(units = Hz)
- res_array [dict of array_like (ndarra,1)] dict of array of app.resistivity at reffreq. from station j to n.
- **phase_array** [dict of array_lie(ndarray,1), dict of array of phase at reffreq.] from station j to n. (unit=rad)value of frequency with clean data . (unit=Hz)
- **stnVSrho_loc** [dict] set of dictionnary of all app.resistivity data from station j to n . (optional)
- num_of_TMA_point :int window to apply filter .

Returns

dict rho_corrected, value corrected with TMA filter from station j to n.

1. corrected data from [AVG] ..

Example

2. corrected from edifiles [EDI]

Example

2.3 Module ZCalculator

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Thu Dec 3 16:44:29 2020

@author: @Daniel03

```
csamtpy.ff.processing.zcalculator.comp_phz(comphz_array, units='deg')
```

PHZc are from each data block, units in rad

Parameters comphz_array (float) – average parameters phase for data blocs.

Returns component phase averaged.

Return type component phase averaged.

Example

csamtpy.ff.processing.zcalculator.comp_rho(mag_E_field, mag_H_field, freq_array, A spacing, Txcurr)

Function to compute component average unit in in ohm.m

Parameters

- mag_E_field (np.ndarray (ndarray, 1)) magnitude of E-filed, averaged
- mag_H_field (np.ndarray (ndarray, 1)) magnitude of H-Field, averaged
- freq_array (np.ndarray (ndarray, 1)) frequency of station field
- A_spacing (np.float) step_between station
- Txcurr (np.float,) distance of coil in meter

Returns comp_rho, component averaged rho.

Return type np.ndarray

Note: We will add this filter later!

*future plan *

```
csamtpy.ff.processing.zcalculator.compute_TMA(data_array=None, num-ber_of_TMApoints=None)
```

function to compute a trimmed-moving-average filter to estimate average apparent resistivities.

Parameters

- data_array (array_like (ndarray, 1)) content of value to be trimmed
- points (number of TMA) number of filter points.

Returns value corrected with TMA

Return type array_like (ndarray, 1)

```
csamtpy.ff.processing.zcalculator.compute_components_Z_Phz (magn_E_field, magn_H_field, phz_E_field, phz_H_field, freq_value, **kwargs)
```

Function to compute all components derived from Impedance Z. user can enter specifik units in kwargs arguments . program will compute and converts value automatically.

Parameters

```
* magn_E_field [np.ndarray]
```

E .field magnitude (ndarray,1) in microV/KM*A

- magn_H_field [np.ndarray] H_.field magnitude (ndarray,1)in mGammas/A or pi-coTesla/A
- phz_E_field [np.ndarray] E_field phase (ndarray, 1) in mrad
- phz_H_field [np.ndarray] H_field phase (ndarray,1) in mrad.
- freq_value [np.ndarray] Frequency at which data was measured(ndarray,1)in Hz
- kwargs [str] units conversion.

Returns

rho: ndarray

Cagnard resistivity calculation. ohm.m

phz: ndarray Impedance phase value.

Zij: ndarray Impedance Tensor value.

Zreal: ndarray Value of Real part of impedance Tensor.

Zimag: float Value of Imaginary part of impedance Tensor.

Zreal_imag: ndarray, complex Complex value of impedance Tensor.

Example

```
>>> from csamtpy.core import avg
>>> path = os.path.join(os.environ["pyCSAMT"],
                data', 'avg', 'K1.AVG')
>>> emag_ob = avg.Emag(path)
>>> hmag_obj = avg.Hmag(path)
>>> ephz_obj = avg.Ephz(path)
>>> hphz_obj = avg.Hphz(path)
>>> freq_obj =avg.Frequency(path)
>>> station_name ='S00'
>>> rho, phz, Z, real, imag, comp =compute_components_Z_
⇔Phz(
      magn_E_field=emag_ob.loc[station_name],
                               magn_H_field =hmag_obj.
→loc[station_name],
                               phz_E_field =ephz_obj.
→loc[station_name],
                               phz_H_field=hphz_obj.
→loc[station_name],
                               freq_value=freq_obj.
→loc[station_name])
... rho
```

Raises

CSex:pyCSAMT exception, Exceptions if units entered by the user doesnt match or are messy.

```
csamtpy.ff.processing.zcalculator.compute_sigmas_e_h_and_sigma_rho (pc\_emag, pc\_hmag, pc\_app\_rho, app\_rho, emag, hmag)
```

function to compute Standard Deviation for E-field (sigma_e), Standard Deviation for H-Field (sigma_h), & Standard Deviation for Component RHO (sigma_rho)

Parameters

```
* pc_emag [float]
```

Statistical variation of magnitude values from averaged data blocks. Standard Deviation/Average Emag (%)

- pc_hmag :float Statistical variation of magnitude values from averaged data blocks. Standard Deviation / Average Hmag (%)
- pc_app_rho: float Statistical variation of magnitude values from averaged data blocks. Standard Deviation / Average Rho (%)
- app_rho :float resistivity calculated from averaged component (ohm.m)
- **Emag** [float] average E field magnitude(microVolt/Km *amp)
- **Hmag** [float] average H field magnitude(pTesta/amp) or (milliGammas/Amp)

Returns

sigma_rho [float]

srhoC (Standard Deviation for Component RHO)

c_var_Rho [float] C-varrhoC(Coefficient of Variation for Component RHO)

```
csamtpy.ff.processing.zcalculator.find_reference_frequency (freq_array=None, reffreq_value=None, sharp=False, etch-ing=True)
```

Method to find and interpolate reference value if it is not present on the frequency range.

Parameters

- **freq_array** (array_like) array_like frequency range
- reffreq_value (float or int) reference frequency value
- **sharp** (bool) if set to True, it forces the program to find mainly a value closest inside the frequency range.
- etching (bool) bool, if set to True, it will print in your stdout.

Returns reference frequency

Return type float

Function to get reference frequency without call especially stations array. The function is profitable but . It's less expensive However if something wrong happened by using the first step to get a reference array , it will try the traditionnally function to get it. If none value is found , an Error will occurs.

Parameters

- **array_loc** (*dict*) assume to be a dictionnary of stations_data_values.
- freq_array (array_like) frequency array
- reffreq_value (float or int) float or int, reffrence value If the reference value is not in frequency array, function will force to interpolate value amd find the correlative array.

Returns an array of reference value at specific index .

Return type array_like

Example

csamtpy.ff.processing.zcalculator.get_reffreq_index(freq_array, reffreq_value)

Get the index of reference index. From this index ,All array will filter data at this reffreq value . :param freq_array: array of frequency values :type freq_array: array_like

Parameters reffreq_value (float, int) - value of frequency at clean data

csamtpy.ff.processing.zcalculator.hanning(dipole_length=50.0, number_of_points=7, large_band=False)

Function to compute hanning window.

Parameters

- dipole_length (float) the length of dipole, xk is centered between dipole
- number_of_points (int) number of filter points

Returns windowed hanning

Return type array_like

```
csamtpy.ff.processing.zcalculator.hanning_x(x_point_value, dipole_length=50.0, num-
ber_of_points=7, bandwidth_values=False,
on half=True)
```

Function to compute point on window width . Use discrete computing . Function show the value at center point of window assume that the point is center locate on the window width . It intergrates value between dipole length. User can use see_extraband to see the values on the total bandwith. If half is False the value of greater than center point will be computed and not be 0 as the normal definition of Hanning window filter.

Parameters

- **x_point_value** (*float*) value to intergrate.
- dipole_length (float) length of dipole on survey
- **number_of_point** (*int*) survey point or number point to apply.
- bandwidth_values see all value on the bandwith , value greater than x_center point will be computed .

:type bandwidth values:bool

Parameters on half $(b \circ o 1)$ – value on the bandwith; value greater that x center point = 0.

Returns hannx integrated X_point_value or array of window bandwidth.

Return type array_like

```
csamtpy.ff.processing.zcalculator.hanning_xk (dipole_length=50.0, number_of_points=7)

compute _hanning window on a wtdth of number of point: integrate value on all the window_bandwidth discrete and continue. if value is greater than Hald of the width value == 0.
```

Parameters

- dipole_length (float) length of dipole
- number_of_points (int) value of points or survey stations.

Returns han xk, continue value on half bandwidth x0-xk (center point)

Return type array_like

Returns windowed hanning, discrete _value ,SUM(han(x0, xk))

Return type array_like

```
csamtpy.ff.processing.zcalculator.interpolate_sets(array_to, fill_value=None, ar-
                                                         rav size=None)
```

Function to interpolate data contain of multiple nan values.

```
csamtpy.ff.processing.zcalculator.mag avg(mag array, A spacing, Txcur)
```

RAW, E-, or H-field magnitude values) for each frequency units: mV/Km*

Parameters

- mag array (np.array (ndarray, 1),) magnnitude value for each data
- a_spacing (float) dipole length
- txcur curv coil, transmitter length

Returns averaged data of magnitude data Block

Rtype mag_avg np.ndarray

csamtpy.ff.processing.zcalculator.param_phz(pphz_array, to_degree=False)

PHZn are from each data block, units in mrad

Parameters

- **pphz_array** (array_like) average parameters phase for data blocs.
- to degree (bool) ascertain convertion to degree

csamtpy.ff.processing.zcalculator.param_rho(rho_array)

Parameter Average RHO (RHOp), RHO are from each data block, unit (ohm.m)

Parameters rho array (array like) – array of resistivity values

csamtpy.ff.processing.zcalculator.perforce reference freq(dataset, fre-

quency array=None)

Function to get automatically the reference frequency. If user doesnt provide the value, function will find automatically value.

Parameters

- data (array_like) array of avg DATA, ndim>1
- **frequency_array** (array_like) array of frequency

Returns reffreq_value float, reference frequency value

Return type float

Returns uncover_index, index of reference value on frequency array

Return type int

Returns nan_ratio, the ratio or the prevalence of nan in the data_set

Return type float

csamtpy.ff.processing.zcalculator.phz_avg(phz_array, to_degree)

E-, H-field, or Impedance Phase values unit in mrad

Parameters

- phz_array (array_like) array of phase values in mrad
- to_degree (bool) ascertain convertion to degree

csamtpy.ff.processing.zcalculator.rhophi2z (phase, freq, resistivity=None, z_array=None) Function to compute z, real part and imag part.

Parameters

• phase (ndarray) – phase angles array in radians

- **freq** (array_like) frequencies array in Hz
- resistivity (array_like) rho array in ohm.m
- z_array (array_like) impedance z array in V/m

Returns z_abs , absolute value of zz

Return type float

Returns z_real, real part of complex number

Return type float

Returns z_imag, imaginary part of zz

Return type complex

Returns ndarray

Return type zz, array of z_abs, z_imag, z_real

csamtpy.ff.processing.zcalculator.wbetaX(Xpos, dipole_length=50.0, number of points=7)

weight Beta is computed following the paper of Torres-verdfn, C., and F. X. Bostick, 1992, Principles of spatial surface electric field filtering in magnetotellurics- Electromagnetic array profiling (EMAP)- Geophysics, 57(4), 25–34.

Parameters

- **Xpos** (str) reference position on the field
- **dipole_length** (float) length of dipole measurement
- number_of_points (int) point to stand filters, window width

```
csamtpy.ff.processing.zcalculator.weight_beta(dipole_length=50.0, num-ber_of_points=7, window width=None)
```

WeightBeta function is weight Hanning window . if window width is not provide , function will compute the width of window.

See also:

Torres-Verdin and Bostick, 1992, Principles of spatial surface electric field filtering in magnetotellurics: electromagnetic array profiling (EMAP), Geophysics, v57, p603-622. . . .

Parameters

- dipole_length (float) length of dipole in meter (m)
- number_of_points (int) number of station points to filter
- window width (float) the width of window filter

Returns beta_array at each station

Return type array_like

```
csamtpy.ff.processing.zcalculator.z error2r phi error(z real, z imag, error)
```

Error estimation from rectangular to polar coordinates. By standard error propagation, relative error in resistivity is 2*relative error in z amplitude. Uncertainty in phase (in degrees) is computed by defining a circle around the z vector in the complex plane. The uncertainty is the absolute angle between the vector to (x,y) and the vector between the origin and the tangent to the circle.

Parameters

- **z_real** (float) real component of z (real number or array)
- **z_imag** (complex) imaginary component of z (real number or array)

• **error** (float) – absolute error in z (real number or array)

Returns containers of relative error in resistivity, absolute error in phase **Rtupe** tuple

CHAPTER

THREE

PACKAGE MODELING

3.1 Module Occam2D

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

See also:

- http://marineemlab.ucsd.edu/Projects/Occam/sharp/index.html
- https://marineemlab.ucsd.edu/~kkey/Software.php ...

Note: Actually this module is not able to write Occam2D meshes file or build OccamInputfiles. You can import MTpy and use it to build Occam2Dinputfiles. for next realease, we will call mtpy directly.

@author: KouaoLaurent alias @Daniel03 Created on Fri Jan 22 20:31:14 2021

class csamtpy.modeling.occam2d.Data(data_fn=None, **kwargs)
 Read and write Occam data

Methods

read_occam2d_datafile([data_fn]) read_occam_data file.

write_occam2d_data()

read_occam2d_datafile (data_fn=None)

read_occam_data file. and populates attributes

Parameters fn(str) – full path to occam data file.

Example

write_occam2d_data()

class csamtpy.modeling.occam2d.DataBlock(**kwargs)

Read OccamDataBlock aand set corresponding attributes

At-	Description (Restriction)	
tribut	tributes	
site	number of the site from the site list that this data belongs to.	
freq	number of the frequency from the frequency list.	
type	type of data	
da-	data value	
tum		
er-	size of the error for this measurement For log10 resistivity this value can look a little strange. It	
ror	is derived from the calculation $d(\log_{10}(x))/dx = 1/[x \ln(10)]$. So for 10% error, $dx = 0.10x$ thus	
	$d(\log_{-10}(x)) = 0.10x / x \ln(10) = .1/\ln(10) = 0.0434$	

Example

```
>>> form csamtpy.ff.modeling import DataBlock
>>> np.random.seed(1983)
>>> dblocks_dict = {'site' : ['S{0:02}'.format(ii) for ii in range_
\hookrightarrow (10)],
                    'freq': np.linspace(1, 8912, 10),
. . .
                    'type' : (5,6),
. . .
                    'data': np.power(10, np.random.randn(20*2)),
. . .
                    'error' : np.random.randn(20)
. . .
>>> dblock_obj = DataBlock(**dblocks_dict)
>>> print(dblock_obj.freq)
>>> print(dblock_obj.error)
>>> print(dblock_obj.site)
```

Methods

decode_each_site_data(data_blocks,)	Decode each site data and get differents values array
	:param datablocks: datafrom differents blocks :type
	datablocks: ndarray

static decode_each_site_data(data_blocks, data_type_index)

Decode each site data and get differents values array :param datablocks: datafrom differents blocks :type datablocks: ndarray

Parameters data_type_index (int) – specify the data type index

```
class csamtpy.modeling.occam2d.Iter(iter_fn=None, **kwargs)
```

Occam iteration file, inherets from startup obj , in fact two object a similar the same

Methods

read_occam2d_iterfile([iter_fn])	read_occam iteration file and populate attributes
<pre>read_occam2d_startupfile([startup_fn])</pre>	read occam2d_startupfile

read_occam2d_iterfile (iter_fn=None)

read_occam iteration file and populate attributes

Parameters iter_fn (str) – full path to iteration file

Example

```
>>> from csamtpy.ff.modeling.occam2d import Iter
>>> path =os.path.join(os.environ ['pyCSAMT'], 'csamtpy',
... 'data', 'occam2D', 'ITER17.iter')
>>> iter_obj=Iter(iter_fn= path)
... print(iter_obj.occam_iter_param_count)
... iterDATA= iter_obj.occam_iter_data
```

Iter2Dat is a format converter which convert *.iter file and related mesh files to so called 'x,y,z' *.data file for post-processing. The class was inpired from the Bo Yang matlab script . reading functions come from 'plotOccam2DMT.m' routine

See also:

Occam routine http://marineemlab.ucsd.edu/Projects/Occam/sharp/index.html of SIO, UCSD.

Bo Yang matlab-script is on *add.info* sub-packages of pyCSAMT. If your are familiar with matlab and you want to rewrite the script please contact author at:

3.1. Module Occam2D 57

Methods

read_iter2dat([iter2dat_fn, bln_fn, scale,])	Read YangBo iter2data file or provided Occam 2D
	specific files.
read_occamfiles([path_to_occamfiles])	getffiles and readfiles to populates speciales at-
	tributes
write_iter2dat_file([filename, model_fn,	write 'x,y,z' *.data file for post-processing can read
])	and rewrite iter2dat file

Parameters

- iter2dat_fn (str) full path to iter2dat file
- bln_file (str) full path to bln file
- scale str, scale of output data. Most of time, Bo yang iter2Dat file is converted in kilometer. If not turn

the scale to m.

Example

```
>>> from csamtpy.modeling.occam2d import Iter2Dat
>>> i2d='iter17.2412.dat'
>>> i2d_2='K1.iter.dat'
>>> bln='iter17.2412.bln'
>>> bln_2 = 'K1.bln'
>>> pathiter = os.path.join(os.path.dirname(os.environ ['pyCSAMT

→ ' ] ) ,
                                '_iter2dat_', i2d_2)
>>> pathbln = os.path.join(os.path.dirname(os.environ ['pyCSAMT
→ ' ] ) ,
                               '_iter2dat_', bln_2)
. . .
>>> occam_iter2dat_obj = Iter2Dat(iter2dat_fn=pathiter,
                                     bln_fn =pathbln )
>>> i2d_data = occam_iter2dat_obj.read_iter2datfile()
>>> i2d_sta, i2d_depth = occam_iter2dat_obj.model_x_nodes,
>>> occam_iter2dat_obj.model_z_nodes
>>> i2d_model_res = occam_iter2dat_obj.model_res
```

read_occamfiles (path_to_occamfiles=None, **kws) getffiles and readfiles to populates speciales attributes

Parameters path_to_occamfiles (str) - full path to occamfiles [ITERIDATA|RESP] files.

Example

(continues on next page)

(continued from previous page)

```
>>> forward_data = iter2_obj.OccamResponse.forward_data
>>> residual_data = iter2_obj.OccamResponse.residual
```

write 'x,y,z' *.data file for post-processing can read and rewrite iter2dat file

Parameters

- x (array_like) offset
- y (array_like) depth
- **z** (array_like) log10 resistivities

params	Туре	Description
model_fn	str	full path to occam model file
iter_fn	str	full path to iteration file
mesh_fn	str	full path to occam mesh file
data_fn	str	fll path to occam data file
filename	str	output of iter2dat file
doi	str of	depth of investigation. default is 1km if your povide value on float, default
	float	unit is "meter" eg : 2000=2000m
nega-	bool	if True, will provide file with negative depth value
tive_depth		
scale	str	scaled the offset value and elevation . might be [mlkm]
elevation	ndar-	can be provided if usefull
	rayllist	

1. Write with Occam 2D files

Examples

```
>>> from csamtpy.modeling.occam2d import Iter2Dat as i2d
>>> data='OccamDataFile.dat'
>>> mesh = 'Occam2DMesh'
>>> model = 'Occam2DModel'
>>> path =os.path.join(os.environ ['pyCSAMT'], 'csamtpy',
                          'data', 'occam2D')
                      #,'OccamDataFile.dat')
>>> pathi2d =os.path.join(os.environ ['pyCSAMT'], 'csamtpy',
>>> occam_iter2dat_obj =i2d(mesh_fn=os.path.join(path, mesh),
                      iter_fn = os.path.join(path, iter_),
. . .
                      model_fn =os.path.join(path, model),
. . .
                      data_fn =os.path.join(path, data))
>>> occam_iter2dat_obj.write_iter2dat_file()
```

2. Rewrite the with iter2dat file

Example

3.1. Module Occam2D 59

class csamtpy.modeling.occam2d.Mesh (mesh_fn=None, **kwargs)
 Read Occam read mesh file

Methods

read_occam2d_mesh([mesh_fn])	Read mesh and get mesh values data and populates
	attributes

read_occam2d_mesh (mesh_fn=None)

Read mesh and get mesh values data and populates attributes

Parameters mesh_fn (str) – full path to mesh file

Occam Model, Actually read model file

Methods

```
read_occam2d_modelfile([model_fn, read and ascertain modelfile.
mesh_fn,...])
```

read_occam2d_modelfile (model_fn=None, mesh_fn=None, iter_fn=None)
read and ascertain modelfile.

Parameters

- model fn (str) full path to OCCAM2D model file
- $mesh_fn(str)$ full path to MESH model file
- $iter_fn(str)$ full path to ITER model file

Example

```
>>> path =os.path.join(os.environ ['pyCSAMT'], 'csamtpy',
... 'data', 'occam2D', 'Occam2DModel')
>>> occammodel_obj =Model(model_fn = path)
... print(occammodel_obj.model_name)
... print(occammodel_obj.model_mesh_file)
... print(occammodel_obj.model_num_layers)
```

class csamtpy.modeling.occam2d.Response (response_fn=None, data_fn=None, **kwargs)

Occam response file. Response is paired with the iteration file above. One is output at the end of each successful iteration. Inherets from Occam 2D data file.

Methods

read_occam2d_datafile([data_fn])	read_occam_data file.
<pre>read_occam2d_responsefile([response_fn])</pre>	Read Occam2D response file.
write_occam2d_data()	

read_occam2d_responsefile (response_fn=None)

Read Occam2D response file.

Parameters response_fn – full path to response file

:type response_fn:str

Example

```
>>> from csamtpy.modeling.occam2d import Response
>>> pathresp =os.path.join(os.environ ['pyCSAMT'], 'csamtpy',
                              'data', 'occam2D', RESP17.resp )
>>> path_data =os.path.join(os.environ ['pyCSAMT'], 'csamtpy',
                               'data', 'occam2D', OccamDataFile.
⇔dat )
>>> resp_obj = Response(response_fn=pathresp, data_fn = path_

data )
>>> respDATA= resp_obj.resp_data_value
>>> resp_obj.occam_mode
>>> resp_obj.occam_dtype
>>> forward_data = resp_obj.resp_forward_value
>>> residual_data = resp_obj.resp_residual_value
>>> tm_log10= resp_obj.resp_tm_log10
>>> tm_phase=resp_obj.resp_tm_phase
>>> tm_forward = resp_obj.resp_tm_log10_forward
>>> tm_residual = resp_obj.resp_tm_log10_forward
>>> tm_forward = resp_obj.resp_tm_log10_residual
>>> tm_phase_error = resp_obj.resp_tm_phase_err
>>> tm_phase_err = occam_resp_obj.resp_tm_log10_forward_phase
>>> tm_residual_phase_err = occam_resp_obj.resp_tm_log10_
→residual_phase_err
```

class csamtpy.modeling.occam2d.**Startup**(*startup_fn=None*, **kwargs)

Occam startup file Actually read startup file. for more detail:

See also:

http://marineemlab.ucsd.edu/Projects/Occam/sharp/index.html

Methods

```
read_occam2d_startupfile([startup_fn]) read occam2d_startupfile
```

```
read_occam2d_startupfile (startup_fn=None)
    read occam2d_startupfile

Parameters startup_fn (str) - full path to startup_file
Example
```

3.1. Module Occam2D 61

class csamtpy.modeling.occam2d.occamLog(fn=None, **kwargs)

Class to deal with occcam 2d logfile. File output after inverted data.

Attributes

fn

Methods

read_occam2d_logfile([fn])

Read occam file and populate attributes.

read_occam2d_logfile (fn=None)

Read occam file and populate attributes.

Parameters fn(str) – full path to occam2d log file

Example

CHAPTER

FOUR

PACKAGE GEOCORE

4.1 Module Geodrill

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Sat Sep 19 12:37:42 2020 @author: Daniel03

This class is focus on well logs. How to generate well Log for Oasis:

Methods

dh Coology ([dh. gaomask])	Method to build geology drillhole log.
dhGeology([dh_geomask])	
dhSample([path_to_agso_codefile,	Method to build Sample log.
dh_sampmask])	
<pre>dhSurveyElevAz([add_elevation, add_azimuth])</pre>	Method to build Elevation & Azimuth DH logs. if
	add_elevation and . add_azimuth are set . The pro-
	gramm will ignore the computated azimuth, and it
	will replace to the new azimuth provided . all ele-
	vation will be ignore and set by the new elevation.
	*kwargs arguments {add_elevation, add-azimuth}
	must match the same size like the number of Drill-
	holes. Each one must be on ndarray(num_of_holes,
	1).
	continues on port page

continues on next page

Table	1 - continue	d from pro	evious page

	Table 1	continued non	i previous page
writeDHData([data2write])		Met	thod to write allDH logs. It depends to the users
		to s	ort which data want to export and which format.
		the	program support only two format (.xlsx and .csv)
		if or	ne is set, it will ouptput the convenience format.
		Use	rs can give a list of the name of log he want to
		exp	ort. Program is dynamic and flexible. It tolerates
		quit	e symbols number to extract data logs.

dhGeology (dh_geomask=None)

Method to build geology drillhole log. The name of input rock must feell exaction accordinag to a convention AGSO file . If not sure for the name of rock and Description and label . you may consult the geocode folder before building the well_filename. If the entirely rock name is given , program will search on the AGSO file the corresponding Label and code . If the rock name is founc then it will take its CODE else it will generate exception.

Parameters

* dh_geomask [np.ndarray, optional] geology mask. send mask value can take exactly the np.ndarray(num_of_geology set ,). The better way to set geology maskis to fill on the wellfilename. if not , programm will take the general mask value. The default is None.

Returns

pd.DataFrame geology drillhole log.

dhSample (path_to_agso_codefile=None, dh_sampmask=None)

Method to build Sample log. This method focuses on the sample obtained during the DH trip.it may georeferenced as the well_filename needed. A main thing is to set the AGSO_STCODES file. AGSO_STCODES is the conventional code of structurals sample. If you have an own AGSO_STCODES , you may provide the path * kwargs=path_to_ags_codefile * . the program will read and generate logs according to the DESCRIPTION and STCODES figured. if None, the program will take it STCODES and set the samplelogs. When you set the Sample code aor sample name , make sur that the name match the same name on STCODES. If not , program will raises an error.

Parameters

* path_to_agso_codefile [str, optional]

path to conventional AGSO_STRUCTURAL CODES. The *default* is None.

• **dh_sampmask** [np.ndarray, optional] Structural mask. The default is None.

Returns

pd.DataFrame Sample DH log.

dhSurveyElevAz (add_elevation=None, add_azimuth=None, **kwargs)

Method to build Elevation & Azimuth DH logs. if add_elevation and . add_azimuth are set . The programm will ignore the computated azimuth, and it will replace to the new azimuth provided . all elevation will be ignore and set by the new elevation . *kwargs arguments {add_elevation , add-azimuth } must match the same size like the number of Drillholes . Each one must be on ndarray(num_of_holes, 1).

Parameters

* add_elevation [np.nadarray , optional]

elevation data (num_of_holes, 1) The *default* is None.

- add_azimuth [np.ndarray , optional] azimuth data (num_of_holes,1). The
 default is None.
- **DH_RL**:**np.float** or **np.ndarray**(**num_of_hole,1**), if not provided, it's set to 0. means No topography is added'.

Returns

pd.Dataframe

Elevation DH log.

pd.DataFrame Azimuth DH log.

```
writeDHData(data2write=None, **kwargs)
```

Method to write allDH logs. It depends to the users to sort which data want to export and which format. the program support only two format (.xlsx and .csv) if one is set, it will ouptput the convenience format. Users can give a list of the name of log he want to export. Program is dynamic and flexible. It tolerates quite symbols number to

extract data logs.

Parameters

* data2write [str or list, optional]

the search key. The default is None.

- datafn:str savepath to exported file *Default* is current work directory.
- write_index_on_sheet [bool,] choice to write the sheet with pandas.Dataframe index.
- writeType [str,] file type . its may .csv or *.xlsx . *Default is *.xlsx
- add_header [bool,] add head on exported sheet. set False to mask heads. Default is True.
- **csv_separateType** [str ,] Indicated for csv exported files , the type of comma delimited . defaut is ','.

Class to manage data from Occam2D and Model so to create section of each sites and it depth.

Each station constitues an attribute framed by two closest point of station offsets from model resistivities. Deal with True resistivities get on the survey or with others firms. In fact, input truth resistivities values into our model, produce an accuracy underground map. The challenge to build pseudolog allow to know how layers are disposal in underground so to emphasize the large conductive zone especially in the case of groundwater exploration. Program works in combinaison with geophysic data especially Occam 2D inversion data, and geological data. Actually the program deal only with Occam 2D inversion files or Bo Yang (x,y,z) files. We intend to extend later with other external softares but can generate output directly see use with Golder sofware ('surfer'). If user

has a golder software installed on its computer , It can use output files generated here to produce 2D map so to compare both maps to see how far

4.1. Module Geodrill 65

is the difference between Model map and detail-sequences map) "pseudosequences model" could match better the reality of underground). Details sequences map is most closest to the reality When {step descent} parameter is not too small at all. Indeed True geological data allow to harmonize the value of resistivity produced by Occam2D model so to force the pogramm to make a correlation between data fromtruth layers and the model values.

Methods

<pre>geo_build_strata_logs([input_resistivities,])</pre>	,,
<pre>geo_replace_rho([input_resistivity_range,])</pre>	Allow ro replace the calculated resistivities from model to real resistivites obtained on survey area with other companies.
<pre>get_average_rho(data_array[, transpose])</pre>	Function to average rho to one point to onother . It show the lowest point and the maximum point averaged . Function averaged rho value between local maximum and local minima values . if data values of station are located on columnlines , set transpose to True then rotate the matrix to find minima and maxima locals value then calculated averaged rho after will return matrix transpose as the same shape as inputtedDefaut is False .
<pre>get_geo_formation_properties([,])</pre>	Get the list of stuctures and their names of after replaced, flexible tools.
get_structure(resistivities_range)	function to get according the range of resistivities values, the corresponding associated geological rocks The list of electrical properties of rocks is not exhaustive, can be fill by others
set_geodata([iter2dat_fn, model_fn,])	Readmodel data and collected from each site its value from surface to depth
to_golden_software([input_resistivities,])	Output average files, rehoreplaced files, spseudose- quennces files and station locations files will gener- ate 3 outputs for Golden software plots
to_oasis_montaj([model_fn, iter_fn,])	write output to oasis montaj when station loocation and profile coordinates are provided. We assune before using this method, you are already the coordinates files at disposal(*stn), if not use the method <i>to_golden_software</i> . Coordinated files are Easting Northing value not in degree decimals. It uses occam 2D outputfiles or Bo Yang iter2Dat file also add profile XY coordinates (utm_zone).

See also:

https://www.eoas.ubc.ca/ubcgif/iag/foundations/properties/resistivity.htm list is not exhaustive and depend of the geological formations of survey area.

[&]quot;Read resistivits data got on survey area and build geological strata block. If constrained_electrical_properties_of_rocks is False, will build a log by considering the conventional electrical property of rocks can be find through this link:

Parameters

* input_resistivity :array_like

an array of resistivity on the site

- **step_descent** [float] depth value to averaged rho. Must be smaller as possible if None, it take the 2% times the investigation depth
- input_layers [list or array] layers_names , eg granite, fault, river

A Sample of electrical_properties_of_rocks:

Rocks Max Rho Min Rho (ohm-m)

igneous rocks 10⁶ 10³

duricrust 5.10³ 5.10²

gravel and sand 10⁴ 10².90(800)

conglomerate 10^4 10^1.95(90)

dolomite/limestone 10^5 10^3

permafrost 10⁵ 10².62(750)

metamorphic rocks 5.10² 10.¹

tills 8.10^2 10^1.93(85)

standstone conglomerate 10^4 10^1.92 (80)

lignite/coal 10^2.89(790) 10^1

shales 10^1.7(50) 10^1.48(30)

clays 10^2 10^1.7(50)

saprolite 10^2.08(120) 10^1.48(30)

sedimentary rocks 10⁴ 10⁰

fresh water 3.10² 10⁰

salt water 10^0 10^-0.15

massive sulfide 10^0 10^-2

sea water 10^-0.09(0.8) 10^-1

ore minerals 10^0 10^-4

Graphite 10^-2.5 10^-3.5

.. note:: list is not Exhaustive, use the data base script to populate most of goeological electrical properties.

4.1. Module Geodrill 67

geo_replace_rho (input_resistivity_range=None, input_layers=None, **kwargs)

Allow ro replace the calculated resistivities from model to real resistivites obtained on survey area with other companies. The accuracy depend How many number of resistivites are. More resitivities ,more accuracy in the designed of underground model geostratigrapyly model.

Parameters

- input_resistivity_range (array_like) an array of resistivity on the site
- input_layers layers_names , eg .`granite`, fault, `river`
- input_layers list or arrays
- **depth_range** array _of depth of specific layer

static get_average_rho(data_array, transpose=False)

Function to average rho to one point to onother . It show the lowest point and the maximum point averaged . Function averaged rho value between local maximum and local minima values . if data values of station are located on columnlines , set transpose to True then rotate the matrix to find minima and maxima locals value then calculated averaged rho after will return matrix transpose

as the same shape as inputted . . Defaut is False .

Parameters data_array (ndarray) - data of resistivities collected at the site point

Get the list of stuctures and their names of after replaced , flexible tools. wherever structures provided, the name, color , as well as the pattern . if constrained electrical properties if True , will keep the resistivities with their corresponding layers as reference. If the layer names if found on the data Base then , will return its pattern and color else defaultcolor is black and patter is "+.-". if constrained_electrical_properties_of_rocks is False , will check under data base to find the resistivities that match better the layers

Parameters

* structures resistivities [array_like,]

resistivities of structures

- real_layer_names [array_like llist] names of layer of survey area if not provided, will use resistivities to find the closet layer that match the best the resistivities
- constrained_electrical_properties_of_rocks: bool set to True mean the realy_layer is provided. if not program will enforce to False, will use default conventional layers Default is False, assume to povided layer names for accuracy

Returns

f_name: array_like

names of formations find with their corresponding rho

 $\begin{tabular}{ll} \textbf{f_pattern: array_like} & patter of differents geological formations \\ \end{tabular}$

f_color: array_like color of differents geological formations

```
static get structure(resistivities range)
```

function to get according the range of resistivities values, the corresponding associated geological rocks. The list of electrical properties of rocks is not exhaustive, can be fill by others

Parameters resistivities_range (array_like,) - array of input_resistivities

Returns the list of geological structures form go_electrical _rocks properties

Return type list

Readmodel data and collected from each site its value from surface to depth

1. Read with Occam 2D outputs files

Example

2. Read with only iter2dat file and bln file

Example

```
>>> form csamtpy.geodrill import Geodrill
>>> geo_obj =Geodrill(iter2dat_fn = os.path.join(path_i2d, 'K1.

--iter.dat'),
... bln_fn = os.path.join(path_i2d, 'K1.bln'),)
>>> geo_model_off = geo_obj.model_x_nodes
>>> geo_model_res= geo_obj.model_res
>>> geoS01 = geo_obj.geo_name_S01
>>> geoS00= geo_obj.geo_name_S00
>>> geoS46=geo_obj.geo_name_S46
```

to_golden_software(input_resistivities=None, input_layers=None, step_descent=None, filename=None, savepath=None, **kwargs)

Output average files, rehoreplaced files, spseudosequennces files and station locations files will generate 3 outputs for Golden software plots

- 1. One model for rho averaged (*_aver), transitory data betwen the calculated rho and true rho.
- 2. second for rho value replaced . Replaced calcualted model structures resistivities

to their closest resistivities as resistivities reference from input resistivities.

 the most important files: the cut out resistivities value with step descent (._sd) show most dominant stratigraphy sequences.

4.1. Module Geodrill 69

4. the station location file (.bln)

Plot the 3 files in Golden software to see transition from model calculation to truthsequence detail models which is most closest to reality.

Parameters

* input_resistivities [array_like]

Truth values of resistivities

- filename:str name of output file
- step_descent [float,]

Step to cut out data and to force resistivites calcualted to match the reference data as input resistivities if not provided the step will be 20% of D0I.

• input_layers [array_like]

True input_layers names (geological informations of encountered layers)

• **savepath** [str,] full path to the savepath , if None , will create folder name to savepath

Other params Type Explanation

elevation array_like elevation of survey area

to_negative_depth bool export deth in negative value or positive default is "negative"

scale str scale to export data .Must be m or km. default is m

to_oasis_montaj (model_fn=None, iter_fn=None, profile_fn=None, mesh_fn=None, data_fn=None, filename=None, savepath=None, **kwargs)

write output to oasis montaj when station loocation and profile coordinates are provided. We assune before using this method, you are already the coordinates files at disposal(*stn), if not use the method to_golden_software. Coordinated files are Easting Northing value not in degree decimals. It uses occam 2D outputfiles or Bo Yang iter2Dat file also add profile XY coordinates (utm zone).

Parameters

* model fn [str]

full path to Occam2D model file

- mesh_fn [str] full path to Occam2D mesh file
- data_fn [str] full path to Occam2D data file
- iter_fn [str] full path to Occam2D iteration file OR Bo Yang (x, y, z) files

• iter2dat_fn [str] full path to iter2dat file (see _occam2d module to see which file is it, or call

```
occam2d.Iter2Dat.__doc__)
```

- **bln** [str] full path to satation location file profile files (Easting , Northing Coordinates) , "see :ref:module-cs"
- **profile_fn: str** full path to station profile file . You can useProfile module to rewrite coordinate files
- write_negative_depth: bool output negative depth. Default is True
- scalled_east_north: tuple scalled the easting and northing. Substract or add value to easting or northing values. first *index1* equal easting and *index2* equal Nothing.*Default* is (0,0).

Other params Type Explanation

filename str New name of output file. Default is None

normalize_depth bool Set the depth ega spacing depth. In fact for oasis montaj ,depth must be equidistant the same spacing when image in deeper. *default* is True. if false , will generate depth as Occam2D mesh z nodes.

easting array_like Easting UTM coordinates .Profile Stn file is provided, no need to input. default is None

northing array_like Northing coordinates . If station coordinates is provided from *stn file .It will detect automatically. *default* is None.

elevation array_like Elevation area . *Default* is None.

output_s_XY bool Scalled coordinates output files. Default is True

input_rho array_like input resistivities of True geological formations (optional) if input resistivities is provided will generated output step descent files (_sd), roughness_rho (_rr), rho_averaged (_aver). *Default* is output the main resistivty model.

input_layers array_like list of true names of layers(opt.)

step_descent float Step to cut out data and to force resistivites calcualted to match the reference data as input resistivities if not provided the step will be 20% of D0I.(opt)

writeType str Writer format *.csv or *.xlsx . Default is *.xlsx

add_header bool Add head on exported sheet. set False to mask heads. Default is True.

csv_separateType str Indicated for csv exported files. The type of comma delimited. *Defaut* is ','

to_log10 bool if True [will ouput all] resistivities data to log10 values

4.1. Module Geodrill 71

class geodrill.geoCore.geodrill.Geosurface(path=None, **kwargs)

Read Multidata from oasis montaj output files generated by *geodrill* module. Class to Build a depth surface map for imaging.

Attributes

extension_file

Methods

<pre>get_depth_surfaces([path, depth_values])</pre>	get the depth surfaces for multi-lines and build the numpy corresponding array at that depth.
read_oasis_files([path])	Method to get depth spacing , station info
	data infos, Each line becomes it own at-
	tributes components of info values are Stations,
	Easting_X_m, `Northing_Y_m`, v_H_m, `x_m`
	Norm_h_m,`sets_m` DOI_max_m.
write_file([path, depth_values, fileformat])	Write output files.

get_depth_surfaces (path=None, depth_values=None)

get the depth surfaces for multi-lines and build the numpy corresponding array at that depth .

Parameters

- depth_values (float or array_like) array of depth
- path (str) full path to oasis outputfiles.

read_oasis_files(path=None)

Method to get depth spacing, station info data infos, Each line becomes it own attributes components of info values are *Stations*, *Easting_X_m*, Northing_Y_m`, *v_H_m*,`x_m` *Norm_h_m*,`sets_m` *DOI_max_m*.

Parameters path (str) – full path to the oasis files.

Example

```
>>> from geodrill.geoCore.geodrill import Geosurface
>>> path = r'F:/__main__csamt__\oasis data\OASISWORKSll_data'
>>> geo_surface_obj = Geosurface( path =path )
>>> geo_surface_obj.read_oasis_files()
>>> geofilenames = geo_surface_obj.filenames
```

... note::To get the values of line K1_cor_oas "K1_cor_oas.csv do geo_surface_obj.K1_cor_oas

 $k1_obj =$

write_file (path=None, depth_values=None, fileformat='.csv', **kwargs)
Write output files. Output files are .xlsx or .csv .

Parameters

- path (str) full path to geodrill ouput files
- depth_value (float or array_like) depth values for imaging

:param fileformat:xlsx or csv are actually the acceptable formats. :type fileformat: str

Assert the length of of real resistivites with their corresponding layers. If length of resistivities of larger that the layer's names, then will add layer that match the best the remained resistivities. If the length of layer is larger than resistivities , to avoid miscomputation , will cut out this more layer and work only the length of resistivities provided.

Parameters

* real layer names: array like, list

list of input layer names as real layers names encountered in area

• real_layer_resistivities :array_like , list list of resistivities get on survey area

Returns

list real_layer_names, new list of input layers

Geo checker is a function to check differents length of different params.

the length of optional params depend of the length of main params . if the length of optional params is larger than the length of main params, the length of optional params will be reduce to the length of main params . if the optional params length is shorther than the length of main params, will filled it either with "None" if dtype param is string of 0.if dtype params is float or 0 if integer.if Force is set True , it will absolutely check if the main params and the optional params have the same length. if not the case , will generate an error occurs.

Parameters

* main param [array like, list]

main parameter that must took its length as reference length

- optional params [array_like, list] optional params, whom length depend to the length of main params
- param_names [tuple or str] names of main params and optional params so to generate error if exits.
- fill_value: str, float, optional Default value to fill thearray in the case where the length of optional param is less than the length of the main param .If None , will fill according to array dtype

Returns

array like optional param truncated according to the man params

```
class geodrill.geoCore.geodrill.geostrike
```

Class to deal with computation with profile angle and geo_electrical strike. Compute Profile angle and strike angle

Need to import scipy.stats as one module . Sometimes import scipy differently with stats may not work . either *import scipy.stats* rather than *import scipy as sp* to use : *sp.stats.linregress* .

4.1. Module Geodrill 73

Methods

```
\begin{tabular}{ll} \textbf{static compute\_geoelectric\_strike} (profile\_angle=None,\ easting=None,\ northing=None, \\ **kws) \end{tabular}
```

Compute geoelectric strike

Parameters

* profile_angle [float]

If not provided, will comput with easting and northing coordinates

- easting [array_like] Easting coordinates values
- northing [array_like] Northing coordinates values
- geo_strike [float] strike value, if provided, will recomputed geo_electric strike.

Returns

```
float profile_angle in degree E of N
float geo_electric_strike in degrees E of N
str message of return
```

static compute_profile_angle (easting=None, northing=None)

Essentially dedicated to compute geoprofile angle.

Parameters

```
* easting [array_like]
easting coordinates values
```

• northing [array_like] northing coordinates values

Returns

float

```
profile_angle
```

float geo_electric_strike

str message of return

```
geodrill.geoCore.geodrill.get_closest_value(values_range, input_value)
```

Fonction to get closest values when input values is not in the values range we assume that values are single on array. if the same value is repeated will take the first index and the value at that index

Parameters

- values_range (array_like) values to get
- input_value (float,) specific value

Returns the closest value and its index

Rtye float

4.2 Module Structural

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

:synopsis:class for geological structural analysis contains some conventional structure can populate the data

Created on Sat Nov 28 21:19:13 2020

@author: @Daniel03

```
class geodrill.geoCore.structural.Geo_formation(agso_file=None, **kwargs)
```

This class is an axilliary class to supplement geodatabase , if the GeodataBase doesnt reply to SQL request , then use this class to secah information about structures . If SQL is done as well , program won't call this class as rescure . Containers of more than 150 geological strutures.

Note: replace in attributes param "**" by the name of struture

Attributes	Туре	Explanation
names	array_like	names of all geological strutures
codes	array_like	names of all geological codes
**code	str	code of specific geological structure
**label	str	label of specific structure
**name	str	label of specific structure
**pattern	str	pattern of specific structure
**pat_size	str	pattern size of specific structure
**pat_density	str	pattern density l of specific structure
**pat_thickness	str	pttern thickess of specific structure
**color	str	color of specific structure

1. To see the names of strutures, write the script below

Example

```
>>> from geodrill.geoCore.strutural import Geo_formation as gf
>>> geo_structure = gf()
>>> geo_structure.names
```

2. To extract color and to get the code of structure like amphibolite

Example

4.2. Module Structural 75

```
>>> from geodrill.geoCore.strutural import Geo_formation as gf
>>> geo_structure = gf()
>>> geo_structure.amphibolite['color']
>>> geo_structure.amphibolite['code']
>>> geoformation_obj.AMP['color']
... 'R128G128'
```

Attributes

agso fn

```
class geodrill.geoCore.structural.Structure(**kwargs)
```

Class for typical geological strutural conventions for AGSO_STCODES . All geological structural informations are geostructral object.

Holds the following information:

More attributes can be added by inputing a key word dictionary

Example

```
>>> from geodrill.geoCore.structural import Structure
>>> structural=Structure()
>>> boudin=boudin_axis()
>>> print(boudin.code)
>>> print(structural.boudin_axis.name)
>>> print(structural.boudin_axis.color)
```

class geodrill.geoCore.structural.banding_gneissosity(**kwargs)

Special class for banding_gneissosity

Holds the following information:

Attributes	Type	Explanation
code	str	conventional code
label	str	named label
size	str	drawing size
pattern	str	drawing pattern
density	str	elmts density
thickness	str	drawing thickness
color	str	color set

More attributes can be added by inputing a key word dictionary

```
class geodrill.geoCore.structural.boudin_axis(**kwargs)
    Special class for boudins_axis
```

Holds the following information:

Attributes	Туре	Explanation
code	str	conventional code
label	str	named label
size	str	drawing size
pattern	str	drawing pattern
density	str	elmts density
thickness	str	drawing thickness
color	str	color set

More attributes can be added by inputing a key word dictionary

class geodrill.geoCore.structural.fault_plane(**kwargs)
 Special class for fault_plane

Holds the following information:

Attributes	Type	Explanation
code	str	conventional code
label	str	named label
size	str	drawing size
pattern	str	drawing pattern
density	str	elmts density
thickness	str	drawing thickness
color	str	color set

More attributes can be added by inputing a key word dictionary

class geodrill.geoCore.structural.fold_axial_plane (**kwargs)
 Special class for fold_axial_plane

Holds the following information:

Attributes	Type	Explanation
code	str	conventional code
label	str	named label
size	str	drawing size
pattern	str	drawing pattern
density	str	elmts density
thickness	str	drawing thickness
color	str	color set

More attributes can be added by inputing a key word dictionary

class geodrill.geoCore.structural.fracture_joint_set (**kwargs)
 Special class for fracture joint set

Holds the following information:

Attributes	Type	Explanation
code	str	conventional code
label	str	named label
size	str	drawing size
pattern	str	drawing pattern
density	str	elmts density
thickness	str	drawing thickness
color	str	color set

More attributes can be added by inputing a key word dictionary

class geodrill.geoCore.structural.geo pattern

Singleton class to deal with geopattern with other modules. It is and exhaustive pattern dict, can be add and change. This pattern will be depreacted later, to create for pyCSAMT, its owwn geological pattern in coformity with the conventional geological swatches.

deal with USGS(US Geological Survey) swatches- references and FGDC (Digital cartographic

4.2. Module Structural 77

Standard for Geological Map Symbolisation -FGDCgeostdTM11A2_A-37-01cs2.eps)

make _pattern:{'/', '', '|', '-', '+', 'x', 'o', 'O', '.', '*'} / - diagonal hatching - back diagonal | - vertical - - horizontal + - crossed x - crossed diagonal o - small circle O - large circle . - dots * - stars

```
geodrill.geoCore.structural.get_color_palette(RGB_color_palette)
```

Convert RGB color into matplotlib color palette. In the RGB color system two bits of data are used for each color, red, green, and blue. That means that each color runs on a scale from 0 to 255. Black would be 00,00,00, while white would be 255,255,255. Matplotlib has lots of pre-defined colormaps for us. They are all normalized to 255, so they run from 0 to 1. So you need only normalize data, then we can manually select colors from a color map

Parameters RGB_color_palette (str) – str value of RGB value

Returns rgba, tuple of (R, G, B)

Return type tuple

Example

```
>>> from geodrill.geoCore.structural import get_color_palette
>>> get_color_palette (RGB_color_palette = 'R128B128')
```

```
class geodrill.geoCore.structural.s_fabric(**kwargs)
    Special class for s_fabric
```

Holds the following information:

Attributes	Type	Explanation
code	str	conventional code
label	str	named label
size	str	drawing size
pattern	str	drawing pattern
density	str	elmts density
thickness	str	drawing thickness
color	str	color set

More attributes can be added by inputing a key word dictionary

```
class geodrill.geoCore.structural.sharp_contact (**kwargs)
    Special class for sharp_contact
```

Holds the following information:

More attributes can be added by inputing a key word dictionary

```
class geodrill.geoCore.structural.undifferentiated_plane(**kwargs)
    Special class for undifferentiated_plane
```

Holds the following information:

Attributes	Type	Explanation
code	str	conventional code
label	str	named label
size	str	drawing size
pattern	str	drawing pattern
density	str	elmts density
thickness	str	drawing thickness
color	str	color set

More attributes can be added by inputing a key word dictionary

4.3 Module Strata

4.3. Module Strata 79

CHAPTER

FIVE

PACKAGE GEODATABASE

5.1 Module Recorder

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Wed Oct 14 13:38:13 2020

@author:kkouaoLaurent alias @Daniel03

```
class geodrill.geoDB.sql_recorder.GeoDataBase(geo_structure_name=None)
```

Geodatabase class . Currently we do not create the specific pattern for each geostructures. DataBase is built is built following the

codef code, label,`__description`, pattern`, pat_size,`pat_density`, pat_thickness,`RGBA`, electrical_props, hatch, colorMPL, FGDC.

Attributes

```
colorMPL return geocolorMPL
```

electrical_props return electrical property

hatch

pattern return geopattern

rgb return georgb

static _add_geo_structure(new_geological_rock_name=None, **kws)

Add new _geological information into geodatabase .

```
_avoid_injection()
```

For secure , we do not firstly introduce directly the request. We will check whether the object *request* exists effectively in our GeoDatabase . if not , request will be redirect to structural and strata class issue from module *structural*

```
_get_geo_structure (structure_name=None)
```

After checking wether the name of structures exists, let find the geoformation properties from geodatabase

Parameters struture_name (str) - name of geological rock or layer

```
_reminder_geo_recorder(geo_structure_name)
```

To have reminder of geological formation into the geodatabase, this method allow to output information if the structure doesnt not exist, An error will occurs.

Parameters geo_structure_name (str) - name of geological formation

```
property _setGeoDatabase
```

Note: property of GeoDataBase -create the GeoDataBase Setting geoDataBase table No Need to reset the DataBase at least you dropped the table, avoid to do that if you are not sure of what you are doing.

```
_update_geo_structure(geo_formation_name=None, **kws)
```

Update _indormation into geoDataBase .

Remember that the geodatabase is build following this table codef 'code', 'label', '__description', 'pattern', 'pat_size', 'pat_density', 'pat_thickness', 'rgb', 'electrical_props', 'hatch', 'colorMPL', 'FGDC'.

Parameters geo_formation_name (str) – name of formation be sure the formation already exists in the geoDataBase if not an error occurs

• Update the electrical property of basement rocks = [1e99, 1e6]

Example

property colorMPL

return geocolorMPL

property electrical_props

return electrical property

property pattern

return geopattern

property rgb

return georgb

class geodrill.geoDB.sql_recorder.**Recorder_sql** (*database*, *table=None*, **kwargs)

Class to record data from file or pd.core.DataFrame and to tranfer into SQL database.

Methods

arrangeData_for_dictapp(datalist,	Function overwritten from "set_on_dictapp func".
**kwargs)	
keepDataInfos(data[, new_tablename])	Function to KeepData from file infos.
recordData(data[, new_tablename])	Function to KeepData from file infos.
set_on_dict_app(datalist, **kwargs)	Function overwritten from "set_on_dictapp func".
transferdata_to_sqlDB([record_list,])	Function to transfer Data from Dict_app to SQL
	DataBase.

static arrangeData_for_dictapp(datalist, **kwargs)

Function overwritten from "set_on_dictapp func". Reorganise data to dict_app model.

Parameters

* datalist [list, dict] list of value providen for fill the dict app.

Returns

dict datalist, Data arranged according to dict_app arrangement.

Raises

pyCSAMTError_SQL_manager None dataname detected

static keepDataInfos(data, new_tablename=None, **kwargs)

Function to KeepData from file infos . the function is otherwritten fo RecordData. The difference between two function is that function organise data from each row of columns

Parameters

* data [str, np.array, list, or pd.core.DataFrame object]

Data ca, be on the format above or filename of data if the argument "data" is a filename, we must be convert on ".csv" format.

• **new_tablename** [str, optional] Name of database. if name is not given, the function return only list. The default is None.

Returns

list list of value in the case of no name is providen for tablename. else return dict if name of datatable is providen.

Raises

IndexError.

if lengh of number of columns like heads of data

does not match the data.shape[0], then errors will occurs.

static recordData(data, new_tablename=None, **kwargs)

Function to KeepData from file infos . the function is otherwritten fo RecordData. The difference between two function is that function organise data from each row of columns

Parameters

* data [str, np.array, list, or pd.core.DataFrame object]

Data ca, be on the format above or filename of data if the argument "data" is a filename, we must be convert on ".csv" format.

5.1. Module Recorder 83

• **new_tablename** [str, optional] Name of database. if name is not given , the function return only list . The default is None.

Returns

list list of value in the case of no name is providen for tablename. else return dict if name of datatable is providen.

Raises

IndexError.

if lengh of number of columns like heads of data

does not match the data.shape[0], then errors will occurs.

static set_on_dict_app (datalist, **kwargs)

Function overwritten from "set_on_dictapp func". Reorganise data to dict_app model.

Parameters

* datalist [list, dict] list of value providen for fill the dict_app.

Returns

dict datalist, Data arranged according to dict_app arrangement.

Raises

pyCSAMTError_SQL_manager None dataname detected

transferdata to sqlDB(record list=None, filename=None, table name=None, **kwargs)

Function to transfer Data from Dict_app to SQL DataBase. Users can use this function by including several arguments. The function will build the data , arrange it and put it in the dataBase by commit the dataBase. Use only this func is benefit. It is better to revise arguments of that function.

Parameters

* record_list [dict, optional]

Dictionnay build according the dict_app model. The *default* is None.

- filename [str, optional] file must be on ".csv" format. The default is None.
- **table_name** [str, optional] Name of DataBase Table. The default is None.
- comments [str] little comment to identify your database table.
- path_to_sqlDataBase [str] path where the SQL dataBase is located .
- visualize_table_creating_query [bool] If the connexion to server is unlikable set to True to see whether query entered is right or wrong.
- Drop_DB_Tables [str,]

way to drop table in SQL Database . set litteral arguments like

the name of database user want to drop or [no "*" or all to drop all tables.

- **Ready_to_transfer** [str] process to commit Database, the curso transfered the dataBase to SQL connexion. set litteral 'no' or 'yes' to do.
- **close_connexion** [bool ,] set True when transfer is done . it seems connexion.close()

Raises

Exception occurs when Table Name is not set on dict_app.

Note: The process of organization is full request of PostgreSQL ..

5.2 Module Interface

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

synopsis Specially dedicate to Manage SQL

Created on Tue Oct 13 15:28:57 2020

@author: @Daniel03

class geodrill.geoDB.interfaceDB.ManageDB(db_name=None, db_host=None)

build a datable postgre Sql from dict_app.py simple way to make a transit between two objects One object dict_app to populate DataBase

Methods

closeDB()	simple method to close Database.
commit()	special commit method for the database when cursor
	and connexion are still open.
connect_DB([db_host, db_name])	Create sqqlite Database
dicT_sqlDB(dicTables, **kwargs)	Method to create Table for sqlDataBase .
drop_TableDB(dicTables[, drop_table_name,	Drop the name of table on dataBase or all databases.
])	
executeReq(query[, param])	Execute request of dataBase with detection of error.
<pre>export_req([query, export_type])</pre>	method to export data from DataBase
<pre>print_query([column_name])</pre>	return the result of the previous query.

closeDB()

simple method to close Database.

commit()

special commit method for the database when cursor and connexion are still open.

 $\verb"connect_DB" (db_host=None, db_name=None)$

Create sqqlite Database

Parameters

• **db_host** (str) – DataBase location path

5.2. Module Interface 85

• db name (str) - str, DataBase name

```
dicT sqlDB (dicTables, **kwargs)
```

Method to create Table for sqlDataBase . Enter Data to DataBase from dictionnary. Interface objet : Database _Dictionnary to see how dicTable is arranged , may consult dict_app module

Parameters

* dictTables [dict] Rely on dict_app.py module. it populates the datababse from dictionnay app

Returns

str execute queries from dict_app

:Example:

drop_TableDB (dicTables, drop_table_name=None, drop_all=False)

Drop the name of table on dataBase or all databases.

Parameters

- * dicTables [dict] application dictionnary. Normally provide from dict_app.py module
- * drop_table_name [str, optional] field name of dictionnay (Table Name). The default is None.
- * drop_all [Bool, optional] Must select if you need to drop all table. The default is False.

Raises

Exception [Errors occurs!.]

executeReq (query, param=None)

Execute request of dataBase with detection of error.

Parameters

- * query [str] sql_query
- * param [str] Default is None.

export_req (query=None, export_type='.csv', **kwargs)

method to export data from DataBase

Parameters

- * query [str, optional] Sql requests. You may consult sql_request files. The default is None.
- * export_type [Str, optional] file extension. if None, it will export on simple file. The default is '.csv'.
- * kwargs [str] Others parameters.

Raises

Exception Print wrong sqlrequests.

Example

print_query (column_name=None)
 return the result of the previous query.

5.3 Module Request

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

synopsis Deal with Boreholes and well data, requests to DataBase

Created on Tue Oct 13 17:36:35 2020

@author: @Daniel03

```
class geodrill.geoDB.sqlrequests.SqlQ
```

Build sql_requests - Not use for others you may populate request for your purpose. the request in not general, the user must change the request according its will.

5.4 Module DictApp

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Tue Oct 13 14:52:08 2020

@author: Daniel03

use: for sql dataBase works dico to sql_database.

```
class geodrill.geoDB.dict_app.Glob
```

Spaces of variables and fonctions pseudo-globales . dictionnary can be set outside the container class Glob, following the dicoT datastructuration .

Example

```
>>> value_DB =[('id_new', 'i', 'new_vision'),
... ('infoTab','k','no comment'),
... ('collar','d','collarDH')]
>>> Glob.dicoT.__setitem__('TableDB_set',value_DB )
```

CHAPTER

SIX

PACKAGE UTILS

6.1 Module Agso

Created on Sat Sep 26 20:30:41 2020

@author: KouaoLaurent alias @Daniel03

Class:

**Agso ** . Data of Geological Welllogs

class csamtpy.utils.agso.Agso

Read Agso as pandas Series Geological conventional rocks and structurals handling.

6.2 Module Decorator

class csamtpy.utils.decorator.deprecated(reason)

Description: used to mark functions, methods and classes deprecated, and prints warning message when it called decorators based on https://stackoverflow.com/a/40301488

Usage: todo: write usage

Author: YingzhiGou Date: 20/06/2017

Methods

__call__(cls_or_func) Call self as a function.

class csamtpy.utils.decorator.redirect_cls_or_func(*args, **kwargs)

Description: used to redirected functions or classes. Deprecated functions or class can call others use functions or classes.

Usage:

Author: @Daniel03 Date: 18/10/2020

Methods

call(cls_or_func) Call self as a function.	
--	--

6.3 Module Func-utils

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

. . .

Created on Sun Sep 13 09:24:00 2020 @author: @Daniel03

utils

- · averageData
- concat_array_from_list
- sort_array_data
- transfer_array_ (deprecated)
- interpol_scipy
- _set_depth_to_coeff
- broke_array_to_
- _OIDFUNCNOUSEsearch_fill_data (deprecated)
- _search_ToFill_Data
- straighten_out_list
- take_firstValue_offDepth
- dump_comma
- build_wellData
- · compute_azimuth
- build_geochemistry_sample
- · _nonelist_checker
- _order_well
- intell_index
- _nonevalue_checker
- _clean_space

Parameters

* np_array [numpy array]

must be an array data

- filter order [int] must be the index of the column you want to sort
- axis average [int] axis you want to see data averaged, also, it is the concatenate axis default is axis=0
- astype*: str, is the ndarray dtype array. change to have an outup arry dtype, you want.

Returns

numpy array Data averaged array

:Example:

csamtpy.utils.func_utils.broke_array_to_(arrayData, keyIndex=0, broken_type='dict') broke data array into different value with their same key

Parameters

* arrayData :np.array

data array.

• keyIndex [int] index of column to create dict key

Returns

dict dico brok ,dictionnary of array.

```
csamtpy.utils.func_utils.build_geochemistry_sample()
    Build geochemistry_sample_data
```

Returns

np.ndarray Sample ,Geochemistry sample Data.

Example

6.3. Module Func-utils 91

```
>>> geoch=build_geochemistry_sample()
>>> print(geoch)
... sampleData
... [['S0X4' '0' '254.0' 'PUP']
... ['S0X4' '254' '521.0' 'mg']
... ['S0X4' '521' '625.0' 'tut']
... ['S0X4' '625' '984.0' 'suj']
... ['S0X2' '0' '19.0' 'pup']
... ['S0X2' '19' '425.0' 'hut']
... ['S0X2' '425' '510.0' 'mgt']
... ['S0X2' '510' '923.2' 'pyt']]
```

Raises

Process to build geochemistry sample data manually .

```
csamtpy.utils.func_utils.build_wellData (add\_azimuth=False, utm\_zone='49N', report\_path=None, add\_geochemistry\_sample=False)
```

Parameters

* add_azimuth [Bool, optional]

compute azimuth if add_azimut is set to True. The default is False.

- utm_zone [Str, optional] WGS84 utm_projection. set your zone if add_azimuth is turn to True. The default is "49N".
- **report_path** [str, optional] path to save your _well_report. The default is None. its match the current work directory
- add_geochemistry_sample: bool add_sample_data.Set to True if you want to add_mannually Geochimistry data. default is False.

Returns

str

name of location of well.

np.ndarray WellData , data of build Wells .np.ndarray GeolData , data of build geology.

Example

:",well[0])

```
>>> print("CollarData
```

:",well[1])

```
>>> print("GeolData
```

:", well[2]) ... nameof locations ... Shimen ... CollarData ... [['S01' '477205.6935' '2830978.218' '987.25' '-90' '0.0' 'Shi01' ... 'Wdanxl0'] ... ['S18' '477915.4355' '2830555.927' '974.4' '-90' '2.111' 'Shi18' ... 'Wdanxl0']] ... GeolData ... [['S01' '0.0' '240.2' 'granite'] ... ['S01' '240.2' '256.4' 'basalte'] ... ['S01' '256.4' '580.0' 'granite'] ... ['S01' '580.0' '987.25' 'rock'] ... ['S18' '0.0' '110.3' 'sand'] ... ['S18' '110.3' '520.2' 'agrilite'] ... ['S18' '520.2' '631.3' 'granite'] ... ['S18' '631.3' '974.4' 'rock']] ... Shimen_wellReports_

Raises

Exception

manage the dimentionaly of ndarrays.

OSError when report_path is not found in your O.S.

csamtpy.utils.func_utils.compute_azimuth(easting, northing, utm_zone='49N', extrapolate=False)

Parameters

* easting [np.ndarray]

Easting value of coordinates _UTM_WGS84

- northing [np.ndarray] Northing value of coordinates._UTM_WGS84
- utm_zone [str, optional] the utm_zone . if None try to get is through gis.get_utm_zone(latitude, longitude). latitude and longitude must be on degree decimals. The default is "49N".
- extrapolate [bool,] for other purpose, user can extrapolate azimuth value, in order to get the sizesize as the easting and northing size. The the value will repositionate at each point data were collected.

Default is False as originally azimuth computation.

Returns

np.ndarray azimuth.

Example

csamtpy.utils.func_utils.concat_array_from_list (list_of_array, concat_axis=0) Small function to concatenate a list with array contents

6.3. Module Func-utils 93

Parameters

* list_of_array [list] contains a list for array data. the concatenation is possible if an index array have the same size

Returns

array_like numpy concatenated data

Example

```
>>> import numpy as np
>>> np.random.seed(0)
>>> ass=np.random.randn(10)
>>> ass2=np.linspace(0,15,12)
>>> ass=ass.reshape((ass.shape[0],1))
>>> ass2=ass2.reshape((ass2.shape[0],1))
>>> or_list=[ass,ass2]
>>> ss_check_error=concat_array_from_list(list_of_
→array=or_list,
. . .
                                            concat_
\rightarrowaxis=0)
>>> secont test :
>>> ass=np.linspace(0,15,14)
>>> ass2=np.random.randn(14)
>>> ass=ass.reshape((ass.shape[0],1))
>>> ass2=ass2.reshape((ass2.shape[0],1))
>>> or_list=[ass,ass2]
>>> ss=concat_array_from_list(list_of_array=or_list,...
>>> ss=concat_array_from_list(list_of_array=or_list,__
>>> ss
>>> ss.shape
```

csamtpy.utils.func_utils.dump_comma(input_car, max_value=2, carType='mixed')
Parameters

* input_car [str,]

Input character.

- max_value [int, optional] The default is 2.
- carType: str Type of character, you want to entry

Returns

Tuple of input character must be return tuple of float value, or string value

```
Note: carType may be as arguments parameters like ['value','val',"numeric", "num", "num","float","int"] or for pure character like

["car","character","ch","char","str", "mix", "mixed","merge","mer", "both","num&val","val&num&"] if not , can not possible to convert to float or integer. the defaut is mixed
```

Example

```
>>> import numpy as np
>>> ss=dump_comma(input_car=",car,box", max_value=3,
... carType="str")
>>> print(ss)
... ('0', 'car', 'box')
```

csamtpy.utils.func_utils.intell_index(datalist, assembly_dials=False)

function to search index to differency value to string element like geological rocks and geologicals samples. It check that value are sorted in ascending order.

Parameters

* datalist [list]

list of element: may contain value and rocks or sample.

• assembly_dials [list, optional] separate on two list: values and rocks or samples. The default is False.

Returns

index: int

index of breaking up.

first_dial: list, first sclice of value part

secund_dial: list, second slice of rocks or sample part.

assembly [list] list of first_dial and second_dial

Example

",op [0])

```
>>> print('firstDials :
```

',op [1])

```
>>> print('secondDials:
```

',op [2])

6.3. Module Func-utils 95

csamtpy.utils.func_utils.interpol_scipy(x_value, y_value, x_new, kind='linear', plot=False, fill='extrapolate')

function to interpolate data

Parameters

* x_value [np.ndarray]

value on array data: original absciss

- y_value [np.ndarray] value on array data : original coordinates (slope)
- x_new [np.ndarray] new value of absciss you want to interpolate data
- kind [str]

```
projection kind: maybe: "linear", "cubic"
```

- fill [str] kind of extraolation, if None, *spi will use constraint interpolation can be "extrapolate" to fill_value.
- plot [Boolean] Set to True to see a wiewer graph

Returns

np.ndarray y_new ,new function interplolate values .

Example

csamtpy.utils.func_utils.minimum_parser_to_write_edi(edilines, parser='=')

This fonction validates edifile for writing , string with egal.we assume that dictionnary in list will be for define-measurment E and H fied.

Parameters

- edilines (list) list of item to parse
- parser (str) the egal is use to parser edifile . can be changed, default is =

 $utm_zone='49N'$)

csamtpy.utils.func_utils.parse_wellData(filename=None,

include_azimuth=False,

Function to parse well information in*csv file

Parameters

* filename [str, optional]

full path to parser file, The default is None.

- include_azimuth: bool, Way to compute azimuth automatically
- utm_zone [str,] set coordinate _utm_WGS84. Defaut is 49N

Returns

location: str

Name of location.

WellData [np.ndarray]

Specificy the collar Data.

GeoData [np.ndarray] specify the geology data.

SampleData [TYPE] geochemistry sample Data.

Example

",parse_[0])

```
>>> print("WellData:
```

",parse_[1])

```
>>> print("GeoData:
```

",parse_[2])

```
>>> print("Sample:
```

",parse_[3])

Raises

FileNotFoundError if typical file deoesnt match the *csv file.

```
csamtpy.utils.func_utils.round_dipole_length(value)
```

small function to graduate dipole length 5 to 5. Goes to be reality and simple computation .

Parameters value (float) – value of dipole length

Returns value of dipole length rounded 5 to 5

Return type float

```
csamtpy.utils.func_utils.sort_array_data(data, sort_order=0, concatenate=False, concat axis order=0)
```

Function to sort array data and concatenate numpy.ndarray

Parameters

* data [numpy.ndarray]

must be in simple array , list of array and dictionary whom the value is $\operatorname{numpy.ndarray}$

- sort_order [int, optional] index of colum to sort data. The default is 0.
- **concatenate** [Boolean , optional] concatenate all array in the object. Must be the same dimentional if concatenate is set to True. The *default* is False.

6.3. Module Func-utils 97

 concat_axis_order [int, optional] must the axis of concatenation. The default is axis=0.

Returns

numpy.ndarray data, Either the simple sort data or array sorted and concatenated.

```
csamtpy.utils.func_utils.stn_check_split_type(data_lines)
```

Read data_line and check for data line the presence of split_type < ',' or ' ', or any other marks.> Threshold is assume to be third of total data length.

Params data_lines list of data to parse.

Returns The split _type

Return type str

Example

csamtpy.utils.func_utils.straighten_out_list (main_list, list_to_straigh)

Parameters

* main list [list]

list of which the data must absolutely appear into the straighen list. in our case , it is the station list : a list of offset

• list_to_straigh [list] list contain the data (offset calculated , the depth and the resistivity (log10)),

Returns

• list

the straighen list. some offset have been replaced by the offsets which are not in the main_list whithout change the length of the straighen list.

Example

```
>>> import numpy as np
>>> np.random.seed(14)
>>> s=np.random.randn(10)*12
>>> ss=ss.tolist()
>>> ss=[round(float(jj),4) for jj in ss]
>>> ss.sort()
>>> red=np.random.randn(7) *12
>>> red=red.tolist()
    test=[19, 15.012, 5.5821, 0.7234,3.1,
>>>
         0.7919, 3.445, 4.7398, 5.1, 10.8, 15.51,21]
. . .
>>>
    main=[20., 0.7234, 5, 3.445, 15.51,10.7, 3,5.1]
>>>
    test.sort()
>>>
    main.sort()
    red=[round(float(ss),1) for ss in red]
>>>
>>>
    print(test)
```

(continues on next page)

(continued from previous page)

```
>>> print (main)
>>> sos=straighten_out_list (main_list=main ,
... list_to_straigh=test)
>>> print ("sos:
```

"sos)

csamtpy.utils.func_utils.take_firstValue_offDepth(data_array, filter_order=1)
 Parameters

* data_array [np.array]

array of the data.

• filter order [int, optional] the column you want to filter. The default is 1.

Returns

array like return array of the data filtered.

Example

```
>>>
     import numpy as np
     list8=[[4,2,0.1],[8,2,0.7],[10,1,0.18],[4,3,0.1],
           [7,2,1.2], [10,3,0.5], [10,1,0.5], [8.2,0,1.9],
. . .
           [10,7,0.5], [10,1,0.5], [2,0,1.4], [5,4,0.5],
. . .
           [10,2,0.7],[7,2,1.078],[10,2,3.5],[10,8,1.9]]
. . .
    test=np.array(list8)
>>>
      print(np_test)
>>>
     ss=take_firstValue_offDepth(data_array =np_test,_
→filter_order=1)
      ss=averageData(np_array=np_test,filter_order=1,
                     axis_average=0, astype="int")
>>>
>>> print(ss)
```

csamtpy.utils.func_utils.transfer_array_(data, $index_key$, $start_value_depth$, end_value_depth , $column_order_selection=0$, axis=0)

Parameters

* data [dict]

Dictionnary of numpy ndarray.

- index_key [float] key of the dictionnary . Must be a number of the first column of offset .
- **start_value_depth** [float] If the depth is not reach must add depth of the closest point. give the start value which match to the maxi depth of the data: The *default* is -214.
- end_value_depth [float] Maximum depth of the survey. The default is -904.
- column_order_selection [int,] the index of depth column. The default is 0.
- axis [int, optional] numpy.ndarray axis. The default is 0.

Returns

6.3. Module Func-utils 99

numpy.ndarray return the array data we want to top to .

Example

```
>>> import numpy as np
\rightarrow > > sos=abs(np.random.randn(4,3) \star4)
\rightarrow >  sos2=abs(np.random.randn(4,3) \times10.8)
>>> print(sos2)
>>> sis1=sort_array_data(data=sos, sort_order =1,
                       concatenate=False, concat_axis_
→order=0)
>>> sis2=sort_array_data(data=sos2, sort_order =1,
                        concatenate=False, concat_axis_
→order=0)
>>> dico={"18.4":sis1,
         "21.4":sis2}
>>> test=transfer_array_(data=dico, index_key=11.4,
                          start_value_depth=-14, end_
⇒value_depth=23,
                          column_order_selection=1)
>>> print("sis1:", sis1)
>>> print("sis2:", sis2)
>>> print("Finaltest", test)
```

6.4 Module Gis-tools

6.5 Module Infos

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

synopsis Module contains various parameters of files handling and glossary of some technical words.

Created on Sat Dec 12 16:21:10 2020

@author:KouaoLaurent alias @Daniel03

class csamtpy.etc.infos._sensitive

Note: *sensitive class*. Please keep carefully the indices like it's ranged. Better Ways to avoid redundancy in code during the program design. Core of parser of each files except files from module-geodrill. Aims are: 1. to check file . it is was the right file provided or not 2. to write file . to Zonge Avg_format or J-Format or EDI -format and else. 3. to compute value . Indice are used for computation , set and get specific value.

Methods

validate_avg(avg_data_lines)	Core function to validate avg file.
which_file([filename, deep])	Which file is class method.

static validate_avg(avg_data_lines)

Core function to validate avg file.

Parameters avg_data_lines (list) - list of avgfile

Returns 'yesAST' or 'yes' where 'yesAST' is Astatic file and 'yes' is plainty avg file (the main file)

Return type str

Returns item, spliting the headAvg components strutured by file.

Return type list

Example

```
>>> from csamtpy.etc.infos.Infos inmport _sensistive as SB
>>> path = os.path.join(os.environ["pyCSAMT"],
... 'csamtpy','data', LCS01_2_
->to_1.avg)
... with open (path, 'r', encoding ='utf8') as f:
... datalines = f.readlines()
... ss =SB._sensitive.validate_avg(avg_data_lines=datalines)
```

classmethod which_file (filename=None, deep=True)

Which file is class method. List of files are the typical files able to read by pyCSAMT softwares. Sensitive class method.

Parameters

```
**filename:str**
```

corresponding file to read, pathLike

deep [bool,] control reading: False for just control the extension file, not opening file. True control in deeper file and

find which file were inputted.

Returns

str

FileType could be [avg | j | edi | resp | mesh | occamdat | stn | model | iter | logfile | startup]

List of files read by pyCSAMT:

Example

6.5. Module Infos

```
>>> files = ['K1_exp.bln','LCS01.avg','LCS01_2_to_1.
→avg', 'K1.stn',
               'csi000.dat', 'csa250.edi', 'LogFile.
→logfile',
                    'Occam2DMesh', 'Occam2DModel',
→'OccamDataFile.dat',
              'S00_ss.edi', 'Startup', 'RESP13.resp',
. . .
                    'ITER02.iter']
>>> for ii in files :
>>>
        path = os.path.join(os.environ["pyCSAMT"],
                                      'csamtpy', 'data',

→ ii)

          try:
. . .
           print(_sensitive.which_file(path,
. . .
→deep=True))
          except :pass
. . .
```

class csamtpy.etc.infos.notion

Singular class to explain CSAMT technical word in details. Also usefull for user to have info about any scientific context is does Know. Just call the word directly in warnings to give an overview of why error occurs. It like a short documentation using pyCSAMT software. Used everywhere in the script .

```
class csamtpy.etc.infos.suit
```

Singular class to easy manipulate word. used everywhere in the script to avoid redondancy.

6.6 Module Plot-utils

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Tue Dec 29 19:18:44 2020

@author: @Daniel03

```
csamtpy.utils.plot_utils.annotate_tip(layer_thickness, layer_names)
```

A tip to group text with the same resistivities one layer when the layer are successively the same.

Parameters

- layer_thickness (array_like list) thickness of layer
- layer_names (list or array_like) names of layers, geological structures names

Returns v, layer thickness in depth

Return type array_like

Returns ni, list: name of layer

Return type array_like

Example

```
>>> from csamtpy.utils import plot_utils as punc
>>> rocks = ['Massive sulfide', 'Igneous rocks', 'Igneous rocks',
→'Igneous rocks'.
     'Igneous rocks', 'Igneous rocks', 'Igneous rocks', 'Igneous,
⇔rocks',
     'Massive sulfide', 'Igneous rocks', 'Igneous rocks', 'Igneous,
→rocks']
>>> resprops = [0.0, 49.0,69.0,89.0,109.0,129.0,
               149.0,179.0,249.0,699.0,799.0,899.01
>>> thickness, lnames = punc.annotate_tip(layer_thickness=resprops,__
→layer_names=rocks)
>>>print(thickness)
>>> print(lnames)
>>> v, ni
... [24.5, 149.0, 474.0, 799.0]
... ['Massive sulfide', 'Igneous rocks', 'Massive sulfide',
→'Igneous rocks']
```

csamtpy.utils.plot_utils.average_rho_in_deep(dep_array, rho_array, step_descent)

function to average rho in deep according to the value provided . In fact averaged rho in shorter depth distance allow us to understand the conductive zone. in approximately. The most conductive zone is detected as the zone with lower resistivities values . But fixing values as averaged rho , can build a specific strata that could match this zone .

Parameters

```
* dep_array [array_like]
the imaged depth (doi)
```

- rho_array: array_like resistivity array
- step_descent [float] value to step descent

Returns

array_like rho average for each station # dep_averaged for each station

Example

```
>>> import numpy as np
>>> from csamtpy.utils import plot_utils as punc
>>> pseudo_depth=np.array([ 0., 6., 13., 20., 29.,
→, 39., 49.,
                         59., 69., 89., 109., 129.,
→149. ,179.,
                     209.,249.,289.,339.,399.,459...
→,529.,609.,
                     699., 799., 899., 999.])
>>> pseudo_depth = np.arange(0, 1220, 20)
>>> rho = np.random.randn(len(pseudo_depth))
>>> rho_aver, dep_aver= average_rho_in_deep(dep_
→array=pseudo_depth,
                                           rho_
⇒array=rho,
                                          (continues on next page)
```

6.6. Module Plot-utils 103

(continued from previous page)

```
step_
descent=20.)
>>> rho_2,dep_2 = average_rho_in_deeper (dep_array=_
pseudo_depth,

rho_
array=rho,

descent=1000)
>>> print (pseudo_depth)
```

csamtpy.utils.plot_utils.average_rho_in_deeper(dep_array, rho_array, step_descent)

function to average rho in deep according to the value provided . In fact averaged rho in shorter depth distance allow us to understand the conductive zone. in approximately. The most conductive zone is detected as the zone with lower resistivities values . But fixing values as averaged rho , can build a specific strata that could match this zone .

Parameters

```
* dep_array [array_like]
the imaged depth (doi)
```

- rho_array: array_like resistivity array
- step_descent [float] value to step descent

Returns

array_like rho average for each station # dep_averaged for each station

Example

```
>>> import numpy as np
>>> from csamtpy.utils import plot_utils as punc
>>> pseudo_depth=np.array([ 0., 6., 13., 20., 29.
→, 39., 49.,
                          59. , 69. , 89., 109. ,129.,...
→149. ,179.,
                     209.,249.,289.,339.,399.,459...

→,529.,609.,

                     699., 799., 899., 999.])
>>> pseudo_depth = np.arange(0, 1220, 20)
>>> rho = np.random.randn(len(pseudo_depth))
>>> rho_aver, dep_aver= average_rho_in_deep(dep_
⇒array=pseudo_depth,
                                           rho_
⇒array=rho,
                                           step_

descent=20.)
>>> rho_2, dep_2 =
                   average_rho_in_deeper (dep_array=_
⇒pseudo_depth,
                                            rho_
. . .
⇒array=rho,
                                            step_

    descent=1000)
>>> print(pseudo_depth)
```

csamtpy.utils.plot_utils.average_rho_with_locals_minmax(array)

How to compute mean value between local maxima and local minima and keep locals minima and maxima value

on the final data

Parameters array (array_like) - data to compute the local minima and local maxima

Returns array mean with data local value averaged

Return type array_like

Example

```
>>> from csamtpy.utils import plot_utils as punc
>>> mean1= punc.average_rho_with_locals_minmax(tth[0])
>>> mean2= punc.average_rho_with_locals_minmax(tth[1])
>>> print(mean1)
>>> print(mean2)
```

csamtpy.utils.plot_utils.build_new_station_id(station_id, new_station_name)

Fonction to build new station id including station name provided, if the length provided doesnt match the length of station id

Parameters

- id (station) new sites names
- mess (str) message for debugging, Default is None

Example

csamtpy.utils.plot_utils.build_resistivity_barplot (depth_values, res_values)
Allow to build bar plot resistivity function of investigation depth.

Parameters

* depth_values [aray_like]

model investigation depth

• res_values [array_like] model_resistivities at each depth values

Returns

d [array_like]

resistivity barplot depth.

r [array_like] specific structure resistivities

sumd [float] checker number that cover in fact the total depth. this numbe must absolutely match the total depth .

csamtpy.utils.plot_utils.controle_delineate_curve(res_deline=None,

phase_deline=None)

fonction to controle delineate value given and return value ceilling.

Parameters

6.6. Module Plot-utils 105

- res_deline (float/int/list) resistivity value to delineate. unit of Res in ohm.m
- **phase_deline** (*float | int | list*) phase value to delineate, unit of phase in degree

Returns delineate resistivity or phase values

Return type array_like

csamtpy.utils.plot_utils.delineate_curve(dict_loc, value, atol=0.2, replace_value=nan) function to delineate value of rho and phase.

Parameters

- **dict_loc** (*dict*) dictionnary composed of keys = stations id and values
- **value** (float list) value to delineate curve . for single value.
- atol (float) tolerance parameter <=1 . Most the param is closest to 0 , most the selected data become severe.default is 0.2
- replace_value (float or else) could be None or np.nan, Default is np.nan

Returns dict of delineate data

Return type dict

Example

```
csamtpy.utils.plot_utils.delineate_sparseMatrix(dict_loc, delineate_dict, re-
place_value=nan)
```

Build from delineate dict a matrix according to frequency length. value doesnt exist in the delineate dict will be repalce by replacevalue. Default is *nan*.

Parameters

- **delineate_dict** (dict) delineation value
- dict_loc (dict) dictionnary composed of keys = stations id and values
- replace_value (float) value to replece other value like build a sparse matrix

Returns dit of sparse matrix

Return type dict

```
csamtpy.utils.plot_utils.depth_of_investigation(doi)

Depth of investigation converter
```

Parameters doi (str/float) – depth of investigation if value float is provided, it will considered as default units in meter

:returns doi:value in meter :rtype: float

```
csamtpy.utils.plot_utils.find_closest_station(offset_indice, model_offsets, site_offsets)

Get the indice of the closest offset
```

Parameters

* offset_indice: int

if the indix of the offset at the selected resistivity point.

- model_offset: array_like is a large band of x_nodes resistivities gnerated by mesh files
- sites_offsets: array_like the data set offset from Occam Data file

Returns

```
indexoff [int]
```

index of data offset

get_offs [float] value of the offset at that index

```
csamtpy.utils.plot_utils.find_local_maxima_minima(array)
```

function to find minimum local and maximum local on array

Parameters data (array_like) - value of array to find minima, maxima

Returns tuple of index of minima and maxima local index and array of minima maxima value

Return type array_like

Example

csamtpy.utils.plot_utils.find_path(path=None, ptol=0.7)

check path and return filepath, edipath or jpath.

Parameters

- path (str) full path to edi, avag or j file or directory
- **ptol** (float) tolerance that given by the program to judge if the number of typical file [EDIIJ] to declare as path found is either "edipath" or "jpath" if none ,return None . less or equal to 1.

Returns specific path

Return type str

```
csamtpy.utils.plot_utils.fmt_text (data_text, fmt='~', leftspace=3, return_to_line=77)
Allow to format report with data text, fm and leftspace
```

Parameters

- data_text (str) a long text
- **fmt** (str) type of underline text
- leftspae (int) How many space do you want before starting wrinting report.
- return_to_line (int) number of character to return to line

6.6. Module Plot-utils 107

```
csamtpy.utils.plot_utils.get_conductive_and_resistive_zone (data, site_names, pur-
pose='groundwater', **kws)
```

function to get the probability of conductive and resistive zone. It is not absolutely True but give an overview of decision. It is not sufficient to declare that the zone is favorable for any drill, but just work with probability

Parameters

- data (ndarray) resistivity datata of survey area
- site_name (list) list of sites names
- **purpose** (str) type of exploration, default is groundwater

Returns report of exploration area

Return type str

```
csamtpy.utils.plot_utils.get_frequency_id (freq_array, frequency_id)
function to get id of frequency . Frequency to plot
```

Parameters

- freq_array (nd.array, 1) array of frequency
- **frequency_id**(list or float) frequency to plot.

Returns new close frequency id

Return type floatllist

```
csamtpy.utils.plot_utils.get_station_id_input_resistivities(station_rho_value, num-
ber of layer=None)
```

Get a special station input resistivities is much benefit and more close to reality of plot. Indeeed, it take only the maximum value of resistivities below the site and the minimum, then cut out 7 Considering all the model data and choose the max resistivities and the minim resistivities to build automatic resistivities whom COULD match the deth is less sure. Geeting a input resitivities to aplom the site, give a merly and better interpretation.

Parameters

- **station_rho_value** (array_like) value of resistivities under the site thin the maximum depth
- number of layer (int) number of layer to top to bottom.

```
csamtpy.utils.plot_utils.get_stationid(stations, station_id)
```

Tip to get station id from user by input either integer of station name.

Parameters

- stations(list) list of stations known
- ${\tt station_id}$ (list, str, or int) staion expect to plot.

Returns constructed list for plotting

Return type array_like

Example

csamtpy.utils.plot_utils.resetting_colorbar_bound(cbmax, cbmin, number_of_ticks=5, logscale=False)

Function to reset colorbar ticks more easy to read

Parameters

- cbmax (float) value maximum of colorbar
- cbmin (float minimum data value) minimum data value
- number_of_ticks (int) number of ticks should be located on the color bar.
 Default is 5.
- logscale (bool) set to True if your data are lograith data .

Returns array of color bar ticks value.

Return type array_like

csamtpy.utils.plot_utils.resetting_ticks (get_xyticks, number_of_ticks=None) resetting xyticks modulo, 100

Parameters

- get_xyticks (list) xyticks list, use to ax.get_xlyticks()
- number_of_ticks (int) maybe the number of ticks on x or y axis

Returns a new_list or ndarray

Return type list or array_like

```
csamtpy.utils.plot_utils.share_props_for_each_plot(number_of_plot=3, **kwargs)
```

Function to set properties for each plot. Easy to customize line and markers. Function can add other properties which are not in kwargs.keys(). It will set according the number of subplotsplots we assume subplot are define on one columns

Parameters number_of_plot (int) – number of subsplot you want show.

Returns dictionarry of labels and properties.

Return type dict

```
csamtpy.utils.plot_utils.slice_csamt_matrix(block_matrix, station_offsets, depth_offsets, offset MinMax=(0.1000).doi='2000m')
```

Using Wannamaker FE elements mesh to define rho matrix blocks, need after inversion to slice the model resistivity according the offset and depth we need. This function is easy tool to slice matrix and to keep the part we need. station offset, depth and model resistivity

Parameters

* block_matrix [ndarray(station_offsets.shape[0],]

matrix of station depth Resistivity model depth offsets.shape[0])

- **depth_offset** [array_like] depth of investigation after generating by mesh file :>z nodes.
- **station_offsets** [array_like] station _offsets : offset generate by mesh_file :>x_nodes .
- offset_MinMax [tuple]
 - the interval of data to keep. eg if station location start by 0: off[0] = min and off[-1]=max (min, max):-> index 0: minimum value of station location ->index 1: maximum value of station location default is (0,1000)
- **doi** [str, float] investigation depth, migth be [mlkm]. If value is provided is float number, it might take value as a default unit 'meter'. i.e: 1000="1000m"

6.6. Module Plot-utils 109

Returns

tuple new sliced station offset, new sliced depth offset, new_matrix block,

csamtpy.utils.plot_utils.slice_matrix(base_matrix, freq_array, doi=2000)

Function get a matrix and give new matrice slice from limit value

Parameters

- base_matrix (ndarray) arrays (yaxis lenghth, station_length)
- freq_array (ndarray, 1) frequency array range
- doi expect to be the depth of investigation from which data muts be selected in m or km

:type doi:float

Returns matrix sliced according to doi

Return type ndarray

PACKAGE VISUALIZATION

7.1 Module Plot1D2D

This file is part of pyCSAMT.

pyCSAMT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

pyCSAMT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with pyCSAMT. If not, see https://www.gnu.org/licenses/>.

Created on Mon Dec 28 14:28:06 2020

@author: KLaurent alias @Daniel03

class viewer.plot.Plot1d(**kwargs)
 plot 1d class Deal with all 1D plots.

Key Words	Description		
fig_dpi	dots-per-inch resolution of the figure default is 300		
fig_num	number of the figure instance default is 'Mesh'		
fig_size	size of figure in inches (width, height) <i>default</i> is [5, 5]		
fs	size of font of axis tick labels, axis labels are fs+2. default is 6		
ls	['-' '.' ':'] line style of mesh lines default is '-'		
marker	marker of stations default is r"\$lacktriangledown\$"		
ms	size of marker in points. default is 5		

Methods	Description		
plot_topo_sep_azim	plot_topography , station separation and azimuth profile can plot individually or		
	grouped by.		
penetrated1D	skindepth plot. penetration depth at different frequencies		
plot_static_correction	plot rho and rho corrected by different filter defalut filter is TMA.		
plot_freqVSRhoPhase	Resistivity and phase plot.		
plot_curves	plot data curves: specific for Zonge Engineering AVG file.		
plot_RhoPhase	plot errors bar of resistivities in ohm.m and phase in degree.		
errors			

Methods

	_
$penetrated1D([fn, profile_fn,])$	Pentration 1D depth: Show skin depth at selected fre-
	quencies.
plotRMS([fn, target, savefig])	Plot RMS.
<pre>plot_curves([fn, savefig, selected_stations])</pre>	Plot Zonge Engineering AVG file with different com-
	ponents E and H at differents frequencies.
<pre>plot_freqVSRhoPhase([fn, profile_fn,])</pre>	Method to plot apparent resistivity phase vs fre-
	quency.
plot_multiStations([X, Y, path, pro-	Plot multisations of site sof survey area
file_lines])	
plot_static_correction(data_fn[,])	plot coorected apparent resistivities at different sta-
	tions by reducing the problem of static shift.
<pre>plot_station_profile([fn, straighten_type,</pre>	Method to plot original station profile and coordinate
])	reajustment profiles.
<pre>plot_topo_sep_azim([fn, profile_fn, savefig])</pre>	Method to plot topographic, stations separation and
	azimuth profiles .

penetrated1D (fn=None, profile_fn=None, selected_frequency=None, **kwargs)

Pentration1D depth: Show skin depth at selected frequencies. for multiples frequencies, put argument *selected_frequency* on list. If frequency provided is not on the frequency range, it will be interpolated.

Parameters

- **fn** (str) full path to [AVG|EDI|J] file
- **profile_fn** (*str*) full path to *stn* station file . If user used EDI or J files , Dont need to add profile_file
- **selected_frequency** (*list*) list , list of freauency want to see the penetration depth. must be on a list . i.e [8, 511,1024]

Note: browse to see others plot config.

Params	De-	Description	
	fault		
re-	list	Bring the station name . Be sure the length of station name you provided match	
name_statio	n	the size of the data station name.	
ro-	int	rotation station name . <i>Default</i> is 90 degree.	
tate_station			
fs	float	can change the size of marker. <i>Default</i> is .7 : eg ms =9*fs	
lw	float	change the linewdth	
plot_grid	bool	add grid on your plot . Default is False	

Example

```
>>> from viewer.plot import Plot1d
>>> path = os.path.join(os.environ["pyCSAMT"],
... 'csamtpy','data', file_1)
>>> plot_1d_obj =Plot1d()
... plot1d_depth = plot_1d_obj.penetrated1D(fn =path ,
... profile_fn= os.path.join(
```

(continues on next page)

(continued from previous page)

```
os.path.dirname(path), 'K1.stn'),
selected_frequency =511)
```

plotRMS (fn=None, target=1.0, savefig=None, **kwargs)

Plot RMS. If occamlogfile is not available, set rms value, iteration value at each rms andlor roughness.

Parameters

* fn [str]

full path to occam2D logfile

- savefig [str] full directory to save fig
- target [float] target supposed RMS to reach. Default is 1.

.. note:: If occam2d logfile is availbale, dont need other parameters, except the path "fn" and as possible the "target".

Params Type Description

rms array_like RootMeanSquare array.

iteration int number of interation reached. iteration starts from "0". so we will add the number provided plus 1.

roughness array_like deGootHeldlin roughness parameters. number of params =Num(RMS)-1 . so we excluded the starting R.M.S

target float RMS target weexpected to reach. Default is 1.0

plot_curves (fn=None, savefig=None, selected_stations=1, **kws)

Plot Zonge Engineering AVG file with different components E and H at differents frequencies.

Parameters

- fn (str) full path to Zonge Engineering file
- **profile_fn** (str) full path to profile file .
- **savefig** (str) path to figure plot

Params	Default	Description
fs	float	can change the size of marker. *Default is .7 : eg ms =9*fs
lw	float	change the linewdth
error_bar	bool	set to false to let invisible. Default is True

:Example:

7.1. Module Plot1D2D 113

 $\label{eq:continuous_plot_freq_VSRhoPhase} \begin{array}{ll} \textit{fn=None}, & \textit{profile_fn=None}, & \textit{station_id=1}, & \textit{rename_stations=None}, \\ & **kwargs) \end{array}$

Method to plot apparent resistivity phase vs frequency.

Parameters

- **fn** (str) full path to [AVG|EDI|J] file
- **profile_fn** (*str*) full path to station profile.

Note: if user use drectly AVG data must provide station profile '.stn'

Oth-	De-	Description
ers	fault	
params		
sta-	str	plot the name of station if string is povided make be sure that the station name is
tion_id	or	on the station list eg: station_id = 1 means plot S00 station =[1,13] means plot
	int	>S00,S12station [S05, 7, 8] – [S05, S06, S07]
re-	list	bring the station name . Be sure the length of station name you provided match the
name_stations data station name		data station name
show_errdrool if True, see errobar plot. <i>Default</i> is False.		if True, see errobar plot. Default is False.

plot_multiStations (*X*=*None*, *Y*=*None*, *path*=*None*, *profile_lines*=*None*, ***kwargs*)

Plot multisations of site sof survey area

Parameters

* path [str]

full path to station profile path . In the case where Zonge avg file is provided , use *stn* profile files. Group all *stn* file on a folder will call automatically

- **profile_lines** [list] name of profile lines . if profile lines is NOne will tale all *stn* profiles in the path directory
- **X** [list]

list of arrays array of X coordinates values for each survey line. Can be easting or Northing

• Y: list

list of arrays of Y coordinates values [can be easting] or northing

.. note:: `X` and `Y` MUST be the same length

plot_static_correction (data_fn, profile_fn=None, frequency_id=1, ADD_FILTER='tma', **kwargs)

plot coorected apparent resistivities at different stations by reducing the problem of static shift.

Parameters

- data_fn (str) full path to file, can be [AVG|EDIIJ] files
- **profile_fn** (str) pathLike full path to Zonge Engeneering *.station file.

Note: If user provide raw Zonge AVG file, may also add profile file (*.stn)

params	De-	Description
	fault	
fre-	fre- str plot the filtered frequency, eg frequency_id = 1023 means plot uncorrected r	
quency_id or static rho at that frequency . set on list to plot multiple frequency.		static rho at that frequency . set on list to plot multiple frequency [8,1101].
int		
ADD_FILTER name of filter to apply . TMA Trimming moving average AMA Adaptative		name of filter to apply . TMA Trimming moving average AMA Adaptative moving
		average FLMA Fixed Length moving average

Example

plot_station_profile (fn=None, $straighten_type='classic'$, $reajust_coordinates=(0, 0)$, save-fig=None, **kwargs)

Method to plot original station profile and coordinate reajustment profiles. Deal with Zonge AVG file.

Parameters

* **fn** [str]

full path to profile station file of Zonge Engineering station profile file . format egal to *.stn

- **straighten_type** [str] type of straingther profile it may be *classic*, *equisistant* or *distord Default* is 'classic'
- reajust_coordinates [list] list of float x, y values

:Example:

```
>>> path = os.path.join(os.environ["pyCSAMT"],
... 'csamtpy','data', 'avg', 'K1.stn')
>>> plot_ld_obj= Plot1d()
>>> plot_ld_obj.plot_station_profile(fn = path)
```

plot_topo_sep_azim (fn=None, profile_fn=None, savefig=None, **kwargs)

Method to plot topographic, stations separation and azimuth profiles. User can add station_names and and set _it to let the program to plot on the corresponding figure. He can alse force the program to plot its dipole length otherwise the program will compute it automatically. If "set_station_name" is False, No Name of station will be visible. User has the possibility to plot one by one figure or all by using a

7.1. Module Plot1D2D 115

"*" symbol or 123. To polt one figure, it may use keyword argument "plot" following the king ['topo', azimuth', 'sep'] or integer 1|2|3.Method is flexible. User can customize the plot, marker and line as he wants by putting on list the matplotlib labels properties. The program uses the label properties on order to set configuration lines and other properties. Topography plot correspond to index 0, stations-separation to index 1 and azimuth to index 2.To plot individually, User doesnt need to put properties on list. Programm will recognize and set the poperties provided according the figure He wants.

Parameters

* **fn** [str]

full path to [EDIIJIAVG] file.

- **profile_fn** [str] path to file may Zonge Engineering *.stn file
- plot [str] type of plot, default is '*' mean of three profile.
- **Station_Names: list** list of station names , User could provide. Default is None compute automatically
- set_station_names [bool] display the station name on figure axis. Default is False.
- elevation [(ndarray,1)] Array_like of elevation
- station_pk [array_like,] array_like station dipole center value.
- savefig [str] path to save figure.

Key Words Description

```
lw line width . *default* is 1.5

ls ['-'|':'|':'] line style of lines default is "['-', ':', '--']" for 3 profiles.

marker marker of stations *default* is 'o'

ms size of marker in points. *default* is 6

color color of line .*Default* is 'k'

alpha Marker transparence .*Defaut* is .2

markerfacecolor facecolor or markers .*Default* is 'k'

markeredgecolor eadgecolor of markers . default is "['w','r"gray']"

xtick_label_rotation xtick rotation angle . default* is 45.

ytick_labelsize xtick label size .defalut* is 12.

vtick_labelsize vtick label size .defalut* is 12.
```

:Example:

class viewer.plot.Plot2d(**kws) class to plot 2D map Deal with all 2D plots

keywords	Description		
cb_pad	padding between axes edge and color bar		
cb_shrink	percentage to shrink the color bar		
climits	limits of the color scale for resistivity in log scale (min, max)		
cmap	name of color map for resistivity values		
fig_aspect	aspect ratio between width and height of resistivity image. 1 for equal axes		
fig_dpi	resolution of figure in dots-per-inch		
fig_num	number of figure instance		
fig_size	size of figure in inches (width, height)		
font_size	size of axes tick labels, axes labels is +2		
grid	['both' 'major' 'minor' None] string to tell the program to make a grid on the specified axes.		
ms	size of station marker		
plot_yn	['y' 'n'] 'y' -> to plot on instantiation 'n' -> to not plot on instantiation		
station_color	color of station marker		
sta-	color station label		
tion_font_color			
sta-	padding between station label and marker		
tion_font_pad	1		
sta- angle of station label in degrees 0 is horizontal			
tion_font_rotation			
sta-	font size of station label		
tion_font_size			
sta-	font weight of station label		
tion_font_weight			
station_id	index to take station label from station name		
station_marker	station marker. if inputing a LaTex marker be sure to input as r"LaTexMarker" otherwise		
	might not plot properly		
title	title of plot. If None then the name of the iteration file and containing folder will be the		
	title with RMS and Roughness.		
xlimits	limits of plot in x-direction in (km)		
xminorticks	increment of minor ticks in x direction		
xpad	padding in x-direction in km		
ylimits	depth limits of plot positive down (km)		
yminorticks	increment of minor ticks in y-direction		
ypad	padding in negative y-direction (km)		
yscale	['km' 'm'] scale of plot, if 'm' everything will be scaled accordingly.		

7.1. Module Plot1D2D 117

Methods

<pre>penetration2D([fn, profile_fn, savefig, doi])</pre>	Plot penetration 2D.
plot_Pseudolog([station_id, iter_fn,])	Build pseudodrill from the model resistivity.
<pre>plot_Response([data_fn, response_fn, mode])</pre>	Function to plot forward value, and residual value
	from Occam 2D
<pre>plot_occam2dModel([model_fn, iter_fn,])</pre>	Plotoccam Model form Occam Model class
pseudocrossResPhase(fn[, profile_fn,])	Plot Pseudocrossection of resistivity and phase.

penetration2D (fn=None, profile_fn=None, savefig=None, doi='2km', **kwargs)
Plot penetration 2D.

Parameters

* **fn** [str]

full path to [EDIIAVGIJ] files.

- **doi** [float] depth assumed to be imaged , default is 2000m For CSAMT , 2km is enought to have more info about near surface.
 - Default* unit is "m".
- **profile_fn** [str] full path to profile *stn file
- savefig [str] outdir

Params Type Description

plot_style str pcolormesh or imshow Default is pcolormesh ms int markersize: *Default is .7 ,ie.9*fs cm str mpl.colormap .Default is "Purples". rename_station list can set new_stationname.

:Example:

plot_Pseudolog (station_id='S00', iter_fn=None, mesh_fn=None, data_fn=None, iter2dat_fn=None, bln_fn=None, model_fn=None, **kwargs')

Build pseudodrill from the model resistivity .

Deal with true value of ressitivity obtained during survey .In fact , How to input these values into our model to produce an accuracy underground map is the chalenge.Building pseudolog allow to know how layers are disposal in underground so to emphasize the large conductive zone in the case of groundwater exploration. It is combinaison with geophysic data especially inversion data with geological data. Actually the program deal with Occam 2D inverison file or Bo Yang (x,y,z) file. We will extend this program later with other external softares files extension. If user have a golder software installed on its computer , can use the files generated by the software and to produce 2D map so to compare both . Model map and detail-sequences map to see the difference Details sequences map is most closest to the reality . When step descent parameter is small ,the detail sequences trend to model map . So More geological values are, more the accuracy of detail sequences logs becomes. Geological data allow to harmonize the value of resistivity produced by our model so to force the pogramm to make a correlation between data from true layers and the model values.

Parameters station_id(str, int) - Number or the site id of the survey area number starts from 1 to the end.

Note: User caneither use Occam 2D inversions files to plot or BoYang (x, y, file)+ station location file (*bln) to plot if the two types of files are provided, program with give priority to Occam 2D inversion files.

Params	Туре	•		
model_fn	str	full path to Occam model file.		
iter_fn	str	full path to occam iteration file		
data_fn	str	full path to occam_data file		
doi	str	depth of investigation might be float or str like "1km" =1000		
depth_scale	str	scale of imaging depth can be "km" or "m". Default is"m"		
step_descen	t float	step to enforce the model resistivities to keep truth layers values as reference data		
. if step descentis egal to doi max, data looks like model at 99.99%. Step de		. if step descentis egal to doi max, data looks like model at 99.99%. Step decent is		
		function of depth and rho.		
lc_AD_curv	etu-	customize line color of average curve and details sequneces logs eg: ((0.5, 0.8,		
ple 0.),'blue')		0.),'blue')		
de-	str	In the case the name of layer is notin our data base, customize the layer color.		
fault_unknow_lcolorlefault is "(1.0, 1.0, 1.0)".		orlefault is "(1.0, 1.0, 1.0)".		
de-	str	In the case the name of layer is not in our data base, customize the layer pattern		
fault_unkno	fault_unknow_lpatedefault is "+.+.+."			

Note: constrained_electrical _properties_of_rocks param keeps the Truth layers resistivities as reference resistivities. If value is false will check in our data base to find the resistivities that match better the given resistivities of

the layers. Default is True.

Customize your plot using matplotlib properties.

Example

```
>>> from viewer.plot import Plot2d
>>> path =os.path.join(os.environ ['pyCSAMT'],
... 'csamtpy', 'data', 'occam2D')
>>> plot2d_obj = Plot2d(station_label_rotation=None,
... show_grid=True,
... font_size =8,
(continues on next page)
```

7.1. Module Plot1D2D 119

(continued from previous page)

```
lc='r',
                          fig_size=[5,8],
. . .
                         markerfacecolor='k',
. . .
                         markeredgecolor='k')
>>> plot2d_obj.plot_Pseudolog( station_id=[43],
                                input_resistivities=[300, 500,
. . .
                                                      1000, 2000,
. . .
                                                      4000, 6000],
. . .
                                input_layers =['alluvium',
                                                  'amphibolite',
                                                  'altered rock',
                                                   'augen gneiss',
                                                   'granite'],
                                   mesh_fn=os.path.join(path,
. . .
                                                           'Occam2DMesh
→ ' )
                                   iter_fn = os.path.join(path,
                                                             'ITER17.
. . .
\hookrightarrowiter'),
                                   model_fn =os.path.join(path,
. . .
. . .
→'Occam2DModel') ,
                                   data_fn =os.path.join(path,
→'OccamDataFile.dat'),
                                   doi='1km',
. . .
                                   step_descent=200.,
                                   plot_style= 'pcolormesh')
. . .
```

plot_Response (data_fn=None, response_fn=None, mode=None, **kws)
Function to plot forward value, and residual value from Occam 2D

list of params are below:

Params	Type	Description
response_fn	str	full path to occam iteration file
data_fn	str	full path to occam_data file
doi	str	depth of investigation might be float or str like "1km" =1000
show_station_id	str	show station names

Example

plot_occam2dModel (model_fn=None, iter_fn=None, mesh_fn=None, data_fn=None, doi=1000, **kwargs)

Plotoccam Model form Occam Model class

Parameters $model_fn(str)$ – full path to Occam 2Dmodel file

Params	Type	Description
iter_fn	str	full path to occam iteration file
mesh_fn	str	full path to mesh_fn file
data_fn	str	full path to occam_data file
doi	str	depth of investigation might be float or str like "1km" =1000
depth_scale	str	scale of imaging depth can be "km" or "m". Default is"m"

Example

```
>>> data='OccamDataFile.dat'
>>> mesh = 'Occam2DMesh'
>>> model = 'Occam2DModel'
>>> iter_='ITER17.iter'
>>> path =os.path.join(os.environ ['pyCSAMT'],
                             'data', 'occam2D', mesh)
>>> plot2d_obj = plot2d()
>>> plot2d_obj.plot_occam2dModel(mesh_fn=path,
                                  iter_fn = os.path.join(
. . .
                                      os.path.dirname(path), iter_
\hookrightarrow),
                                  model_fn =os.path.join(
. . .
                                      os.path.dirname(path),_
→model) ,
                                  data_fn =os.path.join(
                                      os.path.dirname(path), data_
. . .
\hookrightarrow), doi='1km')
```

pseudocrossResPhase (fn, profile_fn=None, savefig=None, plot_style=None, **kws) Plot Pseudocrossection of resistivity and phase.

Parameters

- ${\tt fn}\,({\it str})\,{-}\,{\rm full}$ path to ['AVG', 'EDI', 'J'] file .
- **profile_fn** (str) full path to profile station file in the case fn is *AVG.
- **savefig** (str) path to save figure

7.1. Module Plot1D2D 121

CHAPTER

EIGHT

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
С
csamtpy.etc.infos, 100
csamtpy.ff.core.avg, 1
csamtpy.ff.core.cs,9
csamtpy.ff.core.edi, 17
csamtpy.ff.core.j,30
csamtpy.ff.core.z,33
csamtpy.ff.processing.callffunc,43
csamtpy.ff.processing.corr,45
csamtpy.ff.processing.zcalculator,47
csamtpy.modeling.occam2d, 55
csamtpy.utils.agso, 89
csamtpy.utils.decorator, 89
csamtpy.utils.func_utils,90
csamtpy.utils.plot_utils, 102
geodrill.geoCore.geodrill,63
geodrill.geoCore.structural,75
geodrill.geoDB.dict_app, 87
geodrill.geoDB.interfaceDB, 85
geodrill.geoDB.sql_recorder,81
geodrill.geoDB.sqlrequests,87
viewer.plot, 111
z, 33
```

126 Python Module Index

INDEX

Symbols		Avg (class in csamtpy.ff.core.avg), 2
_add_geo_structure()	(geo-	avg_to_edifile() (csamtpy.ff.core.avg.Avg
drill.geoDB.sql_recorder.GeoDataBase	static	<pre>method), 2 avg_to_jfile() (csamtpy.ff.core.avg.Avg method), 2</pre>
<pre>method), 81 _avoid_injection()</pre>	(geo-	avg_write_2_to_1() (csamtpy.ff.core.avg.Avg
drill.geoDB.sql_recorder.GeoDataBase	(860-	method), 3
method), 81		D
_get_geo_structure()	(geo-	В
drill.geoDB.sql_recorder.GeoDataBase method), 81		banding_gneissosity (class in geo- drill.geoCore.structural), 76
_reminder_geo_recorder()	(geo-	boudin_axis (class in geodrill.geoCore.structural),
drill.geoDB.sql_recorder.GeoDataBase		76
method), 82		broke_array_to_() (in module csamtpy.utils.func_utils), 91
_sensitive(class in csamtpy.etc.infos), 100 _setGeoDatabase()	(geo-	build_geochemistry_sample() (in module
drill.geoDB.sql_recorder.GeoDataBase	(800	csamtpy.utils.func_utils), 91
property), 82		build_new_station_id() (in module
_update_geo_structure()	(geo-	csamtpy.utils.plot_utils), 105
$drill.geoDB.sql_recorder.GeoDataBase$		<pre>build_resistivity_barplot() (in module</pre>
method), 82		csamtpy.utils.plot_utils), 105
		build wellData() (in module
Α		_ `` `
		csamtpy.utils.func_utils), 92
Agso (class in csamtpy.utils.agso), 89	nodule	
Agso (class in csamtpy.utils.agso), 89	nodule	csamtpy.utils.func_utils), 92
Agso (class in csamtpy.utils.agso), 89 agso_data() (in resamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method		csamtpy.utils.func_utils), 92 C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85
Agso (class in csamtpy.utils.agso), 89 agso_data() (in resamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1	<i>I</i>), 46	<pre>csamtpy.utils.func_utils), 92 C closeDB() (geodrill.geoDB.interfaceDB.ManageDB</pre>
Agso (class in csamtpy.utils.agso), 89 agso_data() (in resamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot	<i>I</i>), 46	<pre>csamtpy.utils.func_utils), 92 C closeDB() (geodrill.geoDB.interfaceDB.ManageDB</pre>
Agso (class in csamtpy.utils.agso), 89 agso_data() (in resamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot	l), 46 _utils),	<pre>csamtpy.utils.func_utils), 92 C closeDB() (geodrill.geoDB.interfaceDB.ManageDB</pre>
Agso (class in csamtpy.utils.agso), 89 agso_data() (in resamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot 102 arrangeData_for_dictapp()	l), 46 _utils), (geo-	CloseDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82
Agso (class in csamtpy.utils.agso), 89 agso_data() (in resamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot 102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql	l), 46 _utils),	CloseDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB
Agso (class in csamtpy.utils.agso), 89 agso_data() (in resamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot 102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql method), 83	l), 46 _utils), (geo- static	C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB method), 85
Agso (class in csamtpy.utils.agso), 89 agso_data() (in resamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot 102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql	l), 46 _utils), (geo- static	C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB method), 85
Agso (class in csamtpy.utils.agso), 89 agso_data() (in csamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot 102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql method), 83 ascertain_layers_with_its_resistiv (in module geodrill.geoCore.geodrill), 72 average_rho_in_deep() (in	l), 46 _utils), (geo- static	C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB method), 85 (Comp (class in csamtpy.ff.core.avg), 3 comp_phz() (in module csamtpy.ff.processing.zcalculator), 47
Agso (class in csamtpy.utils.agso), 89 agso_data() (in csamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot 102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql method), 83 ascertain_layers_with_its_resistiv (in module geodrill.geoCore.geodrill), 72 average_rho_in_deep() (in resamtpy.utils.plot_utils), 103	d), 46 _utils), (geo- static vities 2 module	C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB method), 85 (Comp (class in csamtpy.ff.core.avg), 3 comp_phz() (in module csamtpy.ff.processing.zcalculator), 47 comp_rho() (in module
Agso (class in csamtpy.utils.agso), 89 agso_data() (in csamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot 102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql method), 83 ascertain_layers_with_its_resistiv (in module geodrill.geoCore.geodrill), 72 average_rho_in_deep() (in resamtpy.utils.plot_utils), 103 average_rho_in_deeper() (in resamtpy.utils.plot_utils), 103	I), 46 _utils), (geo-static vities 2	C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB method), 85 (Comp (class in csamtpy.ff.core.avg), 3 comp_phz() (in module csamtpy.ff.processing.zcalculator), 47 comp_rho() (in module csamtpy.ff.processing.zcalculator), 47
Agso (class in csamtpy.utils.agso), 89 agso_data() (in csamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method: Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot.102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql.method), 83 ascertain_layers_with_its_resistiv (in module geodrill.geoCore.geodrill), 72 average_rho_in_deep() (in resamtpy.utils.plot_utils), 103 average_rho_in_deeper() (in resamtpy.utils.plot_utils), 104	l), 46 _utils), (geo- static vities 2 module	C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB method), 85 (Comp (class in csamtpy.ff.core.avg), 3 comp_phz() (in module csamtpy.ff.processing.zcalculator), 47 comp_rho() (in module csamtpy.ff.processing.zcalculator), 47 compute_amp_phase() (csamtpy.ff.core.z.Tipper
Agso (class in csamtpy.utils.agso), 89 agso_data() (in csamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot_102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql_method), 83 ascertain_layers_with_its_resistiv (in module geodrill.geoCore.geodrill), 72 average_rho_in_deep() (in csamtpy.utils.plot_utils), 103 average_rho_in_deeper() (in csamtpy.utils.plot_utils), 104 average_rho_with_locals_minmax() (in	l), 46 _utils), (geo- static vities 2 module	C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB method), 85 (Comp (class in csamtpy.ff.core.avg), 3 comp_phz() (in module csamtpy.ff.processing.zcalculator), 47 comp_rho() (in module csamtpy.ff.processing.zcalculator), 47 comp_ute_amp_phase() (csamtpy.ff.core.z.Tipper method), 35
Agso (class in csamtpy.utils.agso), 89 agso_data() (in csamtpy.ff.processing.callffunc), 43 AMA() (csamtpy.ff.processing.corr.shifting method: Amps (class in csamtpy.ff.core.avg), 1 annotate_tip() (in module csamtpy.utils.plot.102 arrangeData_for_dictapp() drill.geoDB.sql_recorder.Recorder_sql.method), 83 ascertain_layers_with_its_resistiv (in module geodrill.geoCore.geodrill), 72 average_rho_in_deep() (in resamtpy.utils.plot_utils), 103 average_rho_in_deeper() (in resamtpy.utils.plot_utils), 104	l), 46 _utils), (geo- static rities 2 module module n mod-	C closeDB() (geodrill.geoDB.interfaceDB.ManageDB method), 85 collect_jfiles() (csamtpy.ff.core.j.J_collection method), 32 colorMPL() (geodrill.geoDB.sql_recorder.GeoDataBase property), 82 commit() (geodrill.geoDB.interfaceDB.ManageDB method), 85 (Comp (class in csamtpy.ff.core.avg), 3 comp_phz() (in module csamtpy.ff.processing.zcalculator), 47 comp_rho() (in module csamtpy.ff.processing.zcalculator), 47 compute_amp_phase() (csamtpy.ff.core.z.Tipper

<pre>compute_components_Z_Phz() (in module</pre>	module, 55
csamtpy.ff.processing.zcalculator), 48	csamtpy.utils.agso
<pre>compute_dipolelength_from_coords()</pre>	module, 89
(csamtpy.ff.core.cs.Profile static method), 13	csamtpy.utils.decorator
compute_FLMA() (in module	module, 89
csamtpy.ff.processing.zcalculator), 48	csamtpy.utils.func_utils
compute_geoelectric_strike() (geo-	module, 90
drill.geoCore.geodrill.geostrike static method), 74	csamtpy.utils.plot_utils module, 102
<pre>compute_mag_direction()</pre>	D
(csamtpy.ff.core.z.Tipper method), 35	D
compute_profile_angle() (geo-	Data (class in csamtpy.ff.core.avg), 3
drill.geoCore.geodrill.geostrike static method),	Data (class in csamtpy.modeling.occam2d), 55
74	DataBlock (class in csamtpy.modeling.occam2d), 56
<pre>compute_resistivity_phase() (csamtpy.ff.core.z.ResPhase method), 34</pre>	decode_each_site_data()
compute_sigmas_e_h_and_sigma_rho() (in	(csamtpy.modeling.occam2d.DataBlock static method), 57
module csamtpy.ff.processing.zcalculator), 49	DefineMeasurement (class in csamtpy.ff.core.edi),
compute_TMA() (in module	17
csamtpy.ff.processing.zcalculator), 48	delineate_curve() (in module
concat_array_from_list() (in module	csamtpy.utils.plot_utils), 106
csamtpy.utils.func_utils), 93	delineate_sparseMatrix() (in module
connect_DB() (geo-	csamtpy.utils.plot_utils), 106
drill.geoDB.interfaceDB.ManageDB method),	deprecated (class in csamtpy.utils.decorator), 89
85	depth_of_investigation() (in module
controle_delineate_curve() (in module	csamtpy.utils.plot_utils), 106
csamtpy.utils.plot_utils), 105	det () (csamtpy.ff.core.z.Z property), 38
convert_location_2_latlon()	det_err() (csamtpy.ff.core.z.Z property), 38
(csamtpy.ff.core.cs.Location method), 11	dhGeology() (geodrill.geoCore.geodrill.Drill
<pre>convert_location_2_utm() (csamtpy.ff.core.cs.Location method), 11</pre>	method), 64
Copyright (class in csamtpy.ff.core.edi), 17	dhSample() (geodrill.geoCore.geodrill.Drill method), 64
correct4sensor_orientation() (in module	dhSurveyElevAz() (geodrill.geoCore.geodrill.Drill
csamtpy.ff.core.z), 41	method), 64
CSAMT (class in csamtpy.ff.core.cs), 9	dicT_sqlDB() (geo-
csamtpy.etc.infos	drill.geoDB.interfaceDB.ManageDB method),
module, 100	86
csamtpy.ff.core.avg	dipole_center_position() (in module
module, 1	csamtpy.ff.processing.callffunc), 43
csamtpy.ff.core.cs	Drill (class in geodrill.geoCore.geodrill), 63
module, 9	drop_TableDB() (geo-
csamtpy.ff.core.edi	drill.geoDB.interfaceDB.ManageDB method),
module, 17	86
csamtpy.ff.core.j module, 30	dump_comma() (in module csamtpy.utils.func_utils),
csamtpy.ff.core.z	94
module, 33	E
csamtpy.ff.processing.callffunc	Edi (class in csamtpy.ff.core.edi), 19
module, 43	Edi_collection (class in csamtpy.ff.core.edi), 20
csamtpy.ff.processing.corr	electrical_props() (geo-
module, 45	drill.geoDB.sql_recorder.GeoDataBase
csamtpy.ff.processing.zcalculator	property), 82
module, 47	Emag (class in csamtpy.ff.core.avg), 3
csamtpy.modeling.occam2d	Emeasurement (class in csamtpy.ff.core.edi), 21

Ephz (class in csamtpy.ff.core.avg), 3 executeReq() (geo-	<pre>geodrill.geoDB.interfaceDB module, 85</pre>
drill.geoDB.interfaceDB.ManageDB method), 86	geodrill.geoDB.sql_recorder module, 81
export_req() (geo-	geodrill.geoDB.sqlrequests
drill.geoDB.interfaceDB.ManageDB method),	module, 87
86	geostrike (class in geodrill.geoCore.geodrill), 73
_	Geosurface (class in geodrill.geoCore.geodrill), 71
F	<pre>get_array_from_reffreq() (in module</pre>
<pre>fault_plane (class in geodrill.geoCore.structural),</pre>	csamtpy.ff.processing.callffunc), 43
77	<pre>get_average_rho() (geo-</pre>
find_closest_station() (in module csamtpy.utils.plot_utils), 106	drill.geoCore.geodrill.Geodrill static method), 68
find_local_maxima_minima() (in module	<pre>get_closest_value() (in module geo-</pre>
csamtpy.utils.plot_utils), 107	drill. geo Core. geo drill), 74
find_path() (csamtpy.ff.core.cs.CSAMT static	<pre>get_color_palette() (in module geo-</pre>
method), 10	drill.geoCore.structural), 78
find_path() (in module csamtpy.utils.plot_utils), 107	<pre>get_conductive_and_resistive_zone() (in</pre>
find_reference_frequency() (in module	module csamtpy.utils.plot_utils), 107
csamtpy.ff.processing.zcalculator), 50	get_data_from_reference_frequency() (in
FLMA() (csamtpy.ff.processing.corr.shifting method), 46	<pre>module csamtpy.ff.processing.zcalculator), 50 get_DefineMeasurement_info()</pre>
<pre>fmt_text() (in module csamtpy.utils.plot_utils), 107 fold_axial_plane (class in geo-</pre>	(csamtpy.ff.core.edi.DefineMeasurement class
drill.geoCore.structural), 77	method), 18
fpath() (csamtpy.ff.core.cs.CSAMT property), 10	get_depth_surfaces() (geo-
fracture_joint_set (class in geo-	drill.geoCore.geodrill.Geosurface method),
drill.geoCore.structural), 77	72
freq() (csamtpy.ff.core.z.Z property), 39	<pre>get_eastnorth_array_from_latlon()</pre>
Frequency (class in csamtpy.ff.core.avg), 3	(csamtpy.ff.core.cs.Location method), 11
G	get_frequency_id() (in module csamtpy.utils.plot_utils), 108
gather_measurement_key_value_with_str_p	aget qeo_formation_properties() (geo-
(in module csamtpy,ff.core.edi), 29	drill.geoCore.geodrill.Geodrill static method),
geo_build_strata_logs() (geo-	68
drill.geoCore.geodrill.Geodrill $method),$	<pre>get_header_list_from_edi()</pre>
66	(csamtpy.ff.core.edi.Head class method),
Geo_formation (class in geo-	<pre>22 get_info_list_from_edi()</pre>
drill.geoCore.structural), 75	(csamtpy.ff.core.edi.Info class method), 24
geo_length_checker() (in module geo-	get_mtemap_section_list()
<pre>drill.geoCore.geodrill), 73 geo_pattern (class in geodrill.geoCore.structural),</pre>	(csamtpy.ff.core.edi.MTEMAP class method), 26
77	<pre>get_profile_angle() (csamtpy.ff.core.cs.Profile</pre>
$geo_replace_rho()$ (geo- drill.geoCore.geodrill.Geodrill method),	method), 13
67	<pre>get_reffreq_index() (in module</pre>
GeoDataBase (class in geodrill.geoDB.sql_recorder),	csamtpy.ff.processing.zcalculator), 51
81	<pre>get_station_id_input_resistivities() (in</pre>
Geodrill (class in geodrill.geoCore.geodrill), 65	module csamtpy.utils.plot_utils), 108
geodrill.geoCore.geodrill	get_stationid() (in module csamtpy.utils.plot_utils), 108
module, 63	get_structure() (geo-
geodrill.geoCore.structural module,75	drill.geoCore.geodrill.Geodrill static method),
geodrill.geoDB.dict_app	68
	Glob (class in geodrill.geoDB.dict_app), 88
module, 87	0 0 = 11 //

H	module
hanning() (in modi	de csamtpy.etc.infos, 100
csamtpy.ff.processing.zcalculator), 51	csamtpy.ff.core.avg,1
hanning_x() (in modu	
csamtpy.ff.processing.zcalculator), 51	csamtpy.ff.core.edi,17
hanning_xk() (in modi	
csamtpy.ff.processing.zcalculator), 51	csamtpy.ff.core.z,33 csamtpy.ff.processing.callffunc,43
Head (class in csamtpy.ff.core.edi), 21	csamtpy.ff.processing.carrrate, 45
Header (class in country ff.core.avg), 4	csamtpy.ff.processing.zcalculator,
Hmag (class in csamtpy.ff.core.avg), 4 Hmeasurement (class in csamtpy.ff.core.edi), 22	47
Hphz (class in csamtpy.ff.core.avg), 4	csamtpy.modeling.occam2d, 55
iipii2 (ciass in esampyijj.coreiarg),	csamtpy.utils.agso,89
	csamtpy.utils.decorator,89
Info (class in csamtpy.ff.core.edi), 23	${\tt csamtpy.utils.func_utils,90}$
intell_index() (in mode	ule csamtpy.utils.plot_utils, 102
csamtpy.utils.func_utils), 95	geodrill.geoCore.geodrill,63
<pre>interp_to_reference_freq() (in mode</pre>	de geodrill geoCore.structural,75
csamtpy.ff.processing.corr), 45	geodrill.geoDB.dict_app, 87 geodrill.geoDB.interfaceDB, 85
<pre>interpol_scipy()</pre>	geodrill.geoDB.sql_recorder,81
csamtpy.utils.func_utils), 95	geodrill geoDB salrequests 87
interpolate_sets() (in modu	viewer.plot, 111
csamtpy.ff.processing.zcalculator), 51	z, 33
<pre>invariants() (csamtpy.ff.core.z.Z property), 39 inverse() (csamtpy.ff.core.z.Z property), 39</pre>	MT_Z_Error, 33
Iter (class in csamtpy.modeling.occam2d), 57	MTEMAP (class in csamtpy.ff.core.edi), 24
Iter2Dat (class in csamtpy.modeling.occam2d), 57 Iter2Dat (class in csamtpy.modeling.occam2d), 57	NI
	N
J	norm() (csamtpy.ff.core.z.Z property), 39
J (class in csamtpy.ff.core.j), 30	norm_err() (csamtpy.ff.core.z.Z property), 39
J_collection (class in csamtpy.ff.core.j), 31	normalize_frequency() (csamtpy.ff.core.avg.Frequency method),
J_infos (class in csamtpy.ff.core.j), 32	(csamipy.jj.core.avg.rrequency memoa),
jMode() (csamtpy.ff.core.j.J method), 31	notion (class in csamtpy.etc.infos), 102
<pre>jname() (csamtpy.ff.core.j.J static method), 31</pre>	110 0 2 0 11 (class in commpyreteringes), 10 2
K	O
	occamLog (class in csamtpy.modeling.occam2d), 62
keepDataInfos() (ge	only 1d() (csamtpy.ff.core.z.Z property), 39
drill.geoDB.sql_recorder.Recorder_sql sta method), 83	only_2d() (csamtpy.ff.core.z.Z property), 39
memou), 65	Р
L	•
Location (class in csamtpy.ff.core.cs), 10	param_phz() (in module
	csamtpy.ff.processing.zcalculator), 52
M	param_rho() (in module csamtpy.ff.processing.zcalculator), 52
mag_avg() (in modi	
csamtpy.ff.processing.zcalculator), 52	csamtpy.utils.func_utils), 96
ManageDB (class in geodrill.geoDB.interfaceDB), 85	pattern() (geodrill.geoDB.sql_recorder.GeoDataBase
Mesh (class in csamtpy.modeling.occam2d), 60	property), 82
minimum_parser_to_write_edi() (in modi	ule pcEmag (class in csamtpy.ff.core.avg), 8
csamtpy.ff.core.edi), 29	pcHmag (class in csamtpy.ff.core.avg), 8
minimum_parser_to_write_edi() (in modu	perme (etass in esamp), y.core.av8), e
csamtpy.utils.func_utils), 96 Model (class in csamtpy.modeling.occam2d), 60	penetrated1D() (viewer.plot.Plot1d method), 112
1100E1 (class in esamipy.modeling.occum2a), 00	penetration2D()(viewer.plot.Plot2d method), 118

	e read_occam2d_logfile()
csamtpy.ff.processing.zcalculator), 52	(csamtpy.modeling.occam2d.occamLog
Person (class in csamtpy.ff.core.edi), 27	method), 62
Phase (class in csamtpy.ff.core.avg), 4	read_occam2d_mesh()
phz_avg() (in modul	
csamtpy.ff.processing.zcalculator), 52	read_occam2d_modelfile()
Plot1d (class in viewer.plot), 111	(csamtpy.modeling.occam2d.Model method),
Plot2d (class in viewer.plot), 117	60
plot_curves() (viewer.plot.Plot1d method), 113	<pre>read_occam2d_responsefile()</pre>
plot_freqVSRhoPhase() (viewer.plot.Plot1 method), 114	d (csamtpy.modeling.occam2d.Response method), 61
plot_multiStations() (viewer.plot.Plot1 method), 114	<pre>d read_occam2d_startupfile()</pre>
plot_occam2dModel()(<i>viewer.plot.Plot2d method</i>	, 61
120	read_occamfiles()
plot_Pseudolog() (viewer.plot.Plot2d method), 11	
plot_Response() (viewer.plot.Plot2d method), 120	58
plot_static_correction() (viewer.plot.Plot1	d read_stnprofile() (csamtpy.ff.core.cs.Profile
method), 114	method), 13
<pre>plot_station_profile() (viewer.plot.Plot1</pre>	d reajust_coordinates_values()
method), 115	(csamtpy.ff.core.cs.Profile static method),
<pre>plot_topo_sep_azim() (viewer.plot.Plot1</pre>	d 14
method), 115	ReceiverProperties (class in csamtpy.ff.core.avg),
plot_Topo_Stn_Azim()	4
(csamtpy.ff.core.j.J_collection method), 32	recordData() (geo-
plotRMS() (viewer.plot.Plot1d method), 113	drill.geoDB.sql_recorder.Recorder_sql static
print_query() (geo	- <i>method</i>), 83
drill.geoDB.interfaceDB.ManageDB method	, Recorder_sql (class in geo-
87	drill.geoDB.sql_recorder), 82
Processing (class in csamtpy.ff.core.edi), 27	redirect_cls_or_func (class in
Profile (class in csamtpy.ff.core.cs), 11	csamtpy.utils.decorator), 89
pseudocrossResPhase() (viewer.plot.Plot2	
method), 121	relocate_on_dict_arrays() (in module
	csamtpy.ff.processing.callffunc), 44
R	remove_distortion() (csamtpy.ff.core.z.Z
read_define_measurement()	method), 39
(csamtpy.ff.core.edi.DefineMeasurement	remove_ss() (csamtpy.ff.core.z.Z method), 40
method), 18	resetting_colorbar_bound() (in module
read_edi() (csamtpy.ff.core.edi.Edi method), 20	csamtpy.utils.plot_utils), 108
read_head() (csamtpy.ff.core.edi.Head method), 22	resetting_ticks() (in module
read_info() (csamtpy.ff.core.edi.Info method), 24	csamtpy.utils.plot_utils), 109
read_iter2dat()(csamtpy.modeling.occam2d.Iter2	DaResistivity (class in csamtpy.ff.core.avg), 5
method), 58	ResPhase (class in csamtpy.ff.core.z), 33
read_j() (csamtpy.ff.core.j.J method), 31	Response (class in csamtpy.modeling.occam2d), 60
read_mtemap_section()	rewrite_jfiles() (csamtpy.ff.core.j.J_collection
(csamtpy.ff.core.edi.MTEMAP method), 26	method), 32
read_oasis_files() (geo	<pre>rewrite_station_profile()</pre>
drill.geoCore.geodrill.Geosurface method	/ 00 TO 01 T T 1 #
72	rgb() (geodrill.geoDB.sql_recorder.GeoDataBase
read_occam2d_datafile()	property), 82
(csamtpy.modeling.occam2d.Data method), 55	
read_occam2d_iterfile()	(csamtpy.ff.core.avg.Z_Tensor method), 7
(csamtpy.modeling.occam2d.Iter method)	
57	csamtpy.ff.processing.zcalculator), 52

cotate() (csamtpy.ff.core.z.Tipper method), 35 cotate() (csamtpy.ff.core.z.Z method), 40	<pre>slice_matrix() (in module csamtpy.utils.plot_utils), 110</pre>
round_dipole_length() (in module	Software (class in csamtpy.ff.core.edi), 28

csamtpy.ff.core.cs), 16	,
round_dipole_length() (in module	csamtpy.utils.func_utils), 97
csamtpy.utils.func_utils), 97	Source (class in csamtpy.ff.core.edi), 28
S	Spectra (class in csamtpy.ff.core.edi), 28
3	sPhz (class in csamtpy.ff.core.avg), 8
s_fabric (class in geodrill.geoCore.structural), 78	SqlQ (class in geodrill.geoDB.sqlrequests), 87
sEphz (class in csamtpy.ff.core.avg), 8	Startup (class in csamtpy.modeling.occam2d), 61
<pre>set_amp_phase() (csamtpy.ff.core.z.Tipper method),</pre>	Station (class in csamtpy.ff.core.avg), 5
36	stn_check_split_type() (in module
set_geodata() (geodrill.geoCore.geodrill.Geodrill	csamtpy.utils.func_utils), 98
method), 69	<pre>stn_separation() (csamtpy.ff.core.cs.Profile</pre>
set_harware_infos()	method), 15
(csamtpy.ff.core.avg.ZongeHardware method),	<pre>straighten_cac2CSfile() (in module</pre>
8	csamtpy.ff.processing.callffunc), 44
set_mag_direction() (csamtpy.ff.core.z.Tipper	straighten_out_list() (in module
method), 36	csamtpy.utils.func_utils), 98
set_on_dict_app() (geo-	straighten_profileline()
drill.geoDB.sql_recorder.Recorder_sql static	(csamtpy.ff.core.cs.Profile method), 15
	Structure (class in geodrill.geoCore.structural), 76
method), 84	suit (class in csamtpy.etc.infos), 102
set_receiver_properties()	SurveyAnnotation (class in csamtpy.ff.core.avg), 5
(csamtpy.ff.core.avg.ReceiverProperties	SurveyConfiguration (class in class in
method), 5	
set_res_phase() (csamtpy.ff.core.z.ResPhase method), 34	csamtpy.ff.core.avg), 5
<pre>set_site_info() (csamtpy.ff.core.cs.Site method),</pre>	Т
16	<pre>take_firstValue_offDepth() (in module</pre>
set_stratum_on_dict() (in module	csamtpy.utils.func_utils), 99
csamtpy.ff.processing.callffunc), 44	Tipper (class in csamtpy.ff.core.z), 34
set_survey_annotations_infos()	TMA() (csamtpy.ff.processing.corr.shifting method), 46
(csamtpy.ff.core.avg.SurveyAnnotation	to_golden_software() (geo-
method), 5	drill.geoCore.geodrill.Geodrill method),
set_survey_configuration_infos()	69
(csamtpy.ff.core.avg.SurveyConfiguration	to_oasis_montaj() (geo-
method), 6	drill.geoCore.geodrill.Geodrill method),
set_transmitter_properties()	70
(csamtpy.ff.core.avg.TransmitterProperties	trace() (csamtpy.ff.core.z.Z property), 41
method), 6	trace_err() (csamtpy.ff.core.z.Z property), 41
setandget_skip_flag()	transfer_array_() (in module
(csamtpy.ff.core.avg.Skip_flag method), 5	csamtpy.utils.func_utils), 99
share_props_for_each_plot() (in module	transferdata_to_sqlDB() (geo-
csamtpy.utils.plot_utils), 109	drill.geoDB.sql_recorder.Recorder_sql
sharp_contact (class in geo-	method), 84
drill.geoCore.structural), 78	TransmitterProperties (class in
shifting (class in csamtpy.ff.processing.corr), 45	csamtpy.ff.core.avg), 6
sHphz (class in csamtpy.ff.core.avg), 8	truncated_data() (in module
Site (class in csamtpy.ff.core.cs), 16	csamtpy.ff.processing.callffunc), 44
skew() (csamtpy.ff.core.z.Z property), 41	TSeries (class in csamtpy.ff.core.edi), 29
skew_err() (csamtpy.ff.core.z.Z property), 41	
Skip_flag (class in csamtpy.ff.core.avg), 5	U
slice_csamt_matrix() (in module	
	undifferentiated_plane (class in geo-

```
V
validate_avg() (csamtpy.etc.infos._sensitive static
        method), 101
viewer.plot
    module, 111
W
wbetaX()
                                           module
                          (in
        csamtpy.ff.processing.zcalculator), 53
weight_beta()
                             (in
                                           module
        csamtpy.ff.processing.zcalculator), 53
which_file()
                 (csamtpy.etc.infos._sensitive
                                             class
        method), 101
write_define_measurement()
        (csamtpy.ff.core.edi.DefineMeasurement
        method), 18
write_edi_info()
                             (csamtpy.ff.core.edi.Info
        method), 24
write_edifile() (csamtpy.ff.core.edi.Edi method),
write_file() (geodrill.geoCore.geodrill.Geosurface
        method), 72
write_head_info()
                           (csamtpy.ff.core.edi.Head
        method), 22
write_header_log() (csamtpy.ff.core.avg.Header
        method), 4
write_iter2dat_file()
        (csamtpy.modeling.occam2d.Iter2Dat method),
write_mtemap_section()
        (csamtpy.ff.core.edi.MTEMAP method), 26
write_occam2d_data()
        (csamtpy.modeling.occam2d.Data method), 56
                      (geodrill.geoCore.geodrill.Drill
writeDHData()
        method), 65
Ζ
Ζ
    module, 33
Z (class in csamtpy.ff.core.z), 36
z () (csamtpy.ff.core.z.Z property), 41
z_and_zerr_2rhophi()
        (csamtpy.ff.core.avg.Z_Tensor method), 7
z_error2r_phi_error()
                                           module
        csamtpy.ff.processing.zcalculator), 53
Z_Tensor (class in csamtpy.ff.core.avg), 6
ZongeHardware (class in csamtpy.ff.core.avg), 7
zstar_array_to_nan()
                                           module
        csamtpy.ff.processing.callffunc), 44
```