Examen final de Matemática DiscretaII-29 de julio de 2020.

Escriba su nombre EN CADA HOJA y numere cada hoja de la forma n/N donde n es el número de la hoja y N el número total de hojas que entrega (sin contar esta). Para aprobar se deben aprobar por separado las partes practicas, teóricas y el proyecto. (este requerimiento NO se redondea). En esta primera parte del examen sólo está incluida la parte práctica. Todos los ejercicios valen 2,5 puntos.

Parte Práctica (10 puntos)

- 1): El complemento de un grafo H es el grafo con los mismos vertices y tal que xy es un lado en el complemento si y solo si xy NO es un lado en H. Sea G el complemento de C_{34} Pruebe que $\chi(G) = 17$.
- 2): Hallar un flujo maximal en términos de x (x es positivo) en el siguiente network usando Edmonds-Karp por 2 caminos y luego Dinic. Dar tambien un corte minimal (el cual puede también depender de x) y mostrar que el valor del flujo maximal es igual a la capacidad del corte minimal en todos los casos.

sA:x	DB:3x	$JK: x^2$
sC:3x	$DL: x^2$	$KE: x^2$
$sG: x^2$	EF:3x	$LM:x^2$
AB:x	Ft:3x	$MN: x^2$
AE:3x	$GH: x^2$	$NP: x^2$
Bt:x	$HI: x^2$	$PQ: x^2$
CD:3x	$IJ:x^2$	$Qt:x^2$

3): La matriz de la izquierda representa el tiempo que se demorará al asignar los trabajadores A, B, \ldots a los trabajos I, II, \ldots , etc. mientras que la matriz de la derecha representa el costo. Se desea asignar cada trabajo a un trabajador distinto de forma tal de minimizar el tiempo total (es decir, la suma de los tiempos, habrá mas de un matching posible) y DE ENTRE ESTOS matchings que minimizan el tiempo, encontrar uno que minimize el costo total. Hallar un matching que haga esto. (ojo: minimize la suma de los costos de entre aquellos matchings que minimizan el tiempo, no minimizar el costo sin ninguna restricción).

	I	II	III	IV		I	II	III	IV
A	9	3	1	5	A	1	9	7	8
B	5	4	2	9	B	2	5	4	1
C	8	7	7	9	C	1	8	1	9
D	4	9	1	5	D	2	1	9	9

4):

Sea C el código con matriz de chequeo:

Escribir dos palabras no nulas que esten en C, decir cuantas palabras tiene en total C, calcular $\delta(C)$, JUSTIFICANDO y, si se recibe la palabra 100000000000111. y se asume que se produjo a lo sumo un error de transmisión, determinar la palabra enviada, todo en terminos de $a, b, c, d \in \{0, 1\}$.