Studentpad

Set theory, relations and functions 2022-23

Time: 90 Min Maths: Set Theory, Relations and Functions Marks: 120

Hints and Solutions

01) Ans: **C)**
$$\geq$$
 0, for all real θ

Sol: Given,
$$f(\theta) = \sin \theta (\sin \theta + \sin 3\theta)$$

$$= (\sin \theta + 3\sin \theta - 4\sin^3 \theta)\sin \theta$$

$$=(4 \sin\theta - 4 \sin^2\theta)$$
 $\sin = \sin^2\theta(4 - 4\sin^2\theta)$

$$=4\sin^2\theta\cos^2\theta=\left(2\sin\theta\cos\theta\right)^2=\left(\sin 2\theta\right)^2\geq 0$$
 which is true for all θ .

02) Ans: **A)** [0, 1]

Sol:
$$f(x) = \sqrt{x - x^2} + \sqrt{4 + x} + \sqrt{4 - x}$$

Clearly f(x) is defined, if $4+x \ge 0 \Rightarrow x \ge -4$

$$4-x \ge 0 \Rightarrow x \le 4$$

$$x(1-x) \ge 0 \Rightarrow x \ge 0$$
 and $x \le 1$

:. Domain of
$$f = (-\infty, 4] \cap [-4, \infty) \cap [0, 1] = [0, 1]$$

03) Ans: **A)** odd function.

Sol:
$$f(x) = \sin(\log(x + \sqrt{1 + x^2}))$$

$$\Rightarrow$$
 f(-x) = sin [log (-x + $\sqrt{1+x^2}$)]

$$\Rightarrow f(-x) = \sin \log \left((\sqrt{1+x^2} - x) \frac{(\sqrt{1+x^2} + x)}{(\sqrt{1+x^2} + x)} \right)$$

$$\Rightarrow$$
 f(-x) = sin log $\left[\frac{1}{(x+\sqrt{1+x^2})}\right]$

$$\Rightarrow f(-x) = \sin \left[\log(x + \sqrt{1 + x^2})^{-1} \right]$$

$$\Rightarrow f(-x) = \sin \left[-\log(x + \sqrt{1 + x^2}) \right]$$

$$\Rightarrow f(-x) = -\sin\left[\log(x + \sqrt{1 + x^2})\right] \Rightarrow f(-x) = -f(x)$$

 \therefore f(x) is odd function.

04) Ans: **B)** $39 \le x \le 63$

Sol: Suppose A represents the set of Indians who like mangoes while B represents the set of Indians who like apples.

Consider population of India be 100.

Then,
$$n(A) = 63$$
, $n(B) = 76$

Now,
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$= 63 + 76 - n(A \cap B)$$

$$\therefore n(A \cup B) + n(A \cap B) = 139$$

$$\Rightarrow$$
 n (A \cap B) = 139 - n(A \cup B)

But $n(A \cup B) \le 100$

$$\therefore$$
 -n (A \cup B) \geq -100

$$\therefore 139 - n (A \cup B) \ge 139 - 100 = 39$$

$$\therefore$$
 n(A \cap B) \geq 39 \Rightarrow 39 \leq n(A \cap B)(i)

Again,
$$A \cap B \subseteq A$$
, $A \cap B \subseteq B$

$$\therefore$$
 n (A \cap B) \leq n (A) = 63 and n (A \cap B) \leq n (B) = 76

$$\therefore$$
 n(A \cap B) \leq 63

$$\therefore 39 \le n (A \cap B) \le 63 \Rightarrow 39 \le x \le 63$$

05) Ans: **B)** Onto but not one-one

Sol: PLAN: To check nature of function.

(i) One-one To check one-one, we must check whether f'(x) > 0 or f'(x) < 0 in given domain.

(ii) Onto To check onto, we must check

Range=Codomain

Description of situation To find range in given domain [a,b], put f'(x) = 0 and find

$$\mathbf{x} = \alpha_1, \alpha_2, \dots, \alpha_n \in [a, b]$$

Now, find
$$\left\{f(a),f(\alpha_1),f(\alpha_2),...,f(\alpha_n),f(b)\right\}$$
 its

greatest and least values gives you range.

Now,
$$f:[0,3] \rightarrow [1,29]$$
 $f(x) = 2x^3 - 15x^2 + 36x + 1$

$$\therefore f'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6)$$

$$= 6(x-2)(x-3)$$

For given domain
$$[0,3]$$
, $f(x)$ is increasing as well as decreasing \Rightarrow many-one

Now, put
$$f'(x) = 0 \implies x = 2, 3$$

So, for range
$$f(0) = 1, f(2) = 29, f(3) = 28$$

$$\Rightarrow$$
 Range \in [1,29]

Hence, onto but not one-one.

06) Ans: **B)**
$$\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

Sol: By definition of composition of function,

 $g(f(x)) = (\sin x + \cos x)^2 - 1$, is invertible (i.e. bijective)

 \Rightarrow g $\{f(x)\}$ = sin 2x is bijective.

We know, sinx is bijective, only when

$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Therefore,
$$g\{f(x)\}$$
 is bijective, if $-\frac{\pi}{2} \le 2x \le \frac{\pi}{2}$

$$\Rightarrow -\frac{\pi}{4} \le x \le \frac{\pi}{4}$$

Sol:
$$: R = \{(x, y) \mid x, y \in Z, x^2 + y^2 \le 4\}$$

$$\therefore$$
 R = {(-2, 0), (-1, 0), (-1, 1), (0, -1)(0, 1),

$$(0, 2), (0, -2), (1, 0), (1, 1), (2, 0)$$

Thus Domain of $R = \{-2, -1, 0, 1, 2\}$

08) Ans: **B)**
$$\pm \sqrt{n \pi}, n \in \{1, 2, ...\}$$

Sol:
$$f(x) = x^2, g(x) = \sin x (gof)(x) = \sin x^2$$

$$go(gof)(x) = sin(sin x^2)$$

$$(fogogof)(x) = (sin(sin x^2))^2$$
 ...(i)

Again,
$$(gof)(x) = sin x^2$$

$$(gogof)(x) = sin(sin x^2)$$
 ...(ii)

Here,
$$(fogogof)(x) = (gogof)(x)$$

$$\Rightarrow \left(\sin\left(\sin x^2\right)\right)^2 = \sin\left(\sin x^2\right)$$

$$\Rightarrow \sin(\sin x^2) \left\{ \sin(\sin x^2) - 1 \right\} = 0$$

$$\Rightarrow \sin(\sin x^2) = 0 \text{ or } \sin(\sin x^2) = 1$$

$$\Rightarrow \sin x^2 = 0$$
 or $\sin x^2 = \frac{\pi}{2}$

$$\Rightarrow x^2 = n\pi \left[\sin x^2 = \frac{\pi}{2} \text{ is not possible as } -1 \le \sin \theta \le 1 \right]$$

$$\therefore \mathbf{x} = \pm \sqrt{n\pi}$$

09) Ans: **A)**
$$f(x) = x \left(\frac{a^x - 1}{a^x + 1} \right)$$

Sol: In
$$f(x) = \frac{a^x + 1}{a^x - 1}$$
,

$$f(-x) = \frac{a^{-x} + 1}{a^{-x} - 1} = \frac{1 + a^{x}}{1 - a^{x}} = -\frac{a^{x} + 1}{a^{x} - 1} = -f(x)$$

. It is an odd function

In
$$f(x) = x \left(\frac{a^x - 1}{a^x + 1} \right)$$
,

$$f(-x) = (-x)\frac{a^{-x}-1}{a^{-x}+1} = -x\frac{1-a^{x}}{1+a^{x}} = x\frac{a^{x}-1}{a^{x}+1} = f(x)$$

∴ It is an even function.

In
$$f(x) = \frac{a^x - a^{-x}}{a^x + a^{-x}}$$
, $f(x) = \frac{a^{-x} - a^x}{a^{-x} + a^x} = -f(x)$

∴ It is an odd function.

In $f(x) = \sin x$, $f(-x) = \sin(-x) = -\sin x = -f(x)$

∴ It is an odd function.

10) Ans: **C)** 3

Sol: As
$$A \subset B$$
, $A \cap B = A$

$$\therefore$$
 n (A \cap B) = n(A) = 3

11) Ans: **C)** 6, 4

Sol: As
$$2^m - 2^n = 48 = 16 \times 3 = 2^4 \times 3$$

$$\Rightarrow 2^n \left(\, 2^{m-n} - \, 1 \!\! \right) \, = \, 2^4 \times \zeta \quad \Rightarrow n = 4 \quad and \quad$$

$$2^{m-n} = 4 = 2^2$$

$$\Rightarrow$$
 m-n=2 \Rightarrow m-4=2 \Rightarrow m=6

$$\Rightarrow$$
 m = 6, n= '

12) Ans: **C)** 0

Sol: Given that, $f(x) = \cos(\log x)$

Now, let
$$y = f(x).f(4) - \frac{1}{2} \left[f\left(\frac{x}{4}\right) + f(4x) \right]$$

 \Rightarrow y = cos (logx).cos (log 4)

$$-\frac{1}{2} \left[\cos \log \left(\frac{x}{4} \right) + \cos \left(\log 4x \right) \right]$$

 \Rightarrow y = cos (log x) cos (log 4)

$$-\frac{1}{2}[\cos(\log x \log 4) \cos(\log x]$$

 $\Rightarrow y = \cos(\log x)\cos(\log 4) - \frac{1}{2}\left[2\cos(\log x)\cos(\log 4)\right]$

$$\Rightarrow$$
 y = 0

13) Ans: **C)** $R \cap S$ is an equivalence relation on A Sol: Given, R and S are relations on set A.

$$\therefore R \subseteq A \times A \text{ and } S \subseteq A \times A \Rightarrow R \cap C \subseteq A \times A$$

 $\Rightarrow R \cap S$ is also a relation on A.

Reflexivity: Suppose a be an arbitrary element of A.

Then, $a \in A \Rightarrow (a, a) \in R$ and $(a, a) \in S$

[∵R and S are reflexive]

 \Rightarrow (a, a) \in R \cap S

 $(a,a) \in R \cap S$ for all $a \in A$.

So, $R \cap S$ is a reflexive relation on A.

Symmetry: Suppose $a, b \in A$ such as

 $(a,b) \in R \cap S$.

Then, $(a,b) \in R \cap S \Rightarrow (a,b) \in R$ and $(a,b) \in S$

 \Rightarrow (b,a) \in R and (b,a) \in S, [\because R and S are symmetric]

 \Rightarrow (b,a) \in R \cap S \therefore (a, b\dark R)

 \Rightarrow (b,a) \in R \cap S for all (a,b) \in R \cap S.

So, $R \cap S$ is symmetric on A.

Transitivity: Suppose $a,b,c \in A$ such as

 $(a,b) \in R \cap S$ and $(b,c) \in R \cap S$.

Then, $(a,b) \in R \cap S$ and $(b,c) \in R \cap S$

 $\Rightarrow \{((a,b) \in R \text{ and } (a,b) \in S)\}$ and

 $\{((b,c) \in R \text{ and } (b,c) \in S\}$

 \Rightarrow { $(a,b) \in R, (b,c) \in R$ } and { $(a,b) \in S, (b,c) \in S$ }

 \Rightarrow (a,c) \in R and (a,c) \in S

As R and S are transitive,

 \therefore (a, b) \in R and (b, c) \in R \Rightarrow (a,c) \in R

 $|(a,b) \in S$ and $(b,c) \in S \Rightarrow (a,c) \in S$

 \Rightarrow (a,c) \in R \cap S

Thus, $(a,b) \in R \cap S$ and

 $(b,c) \in R \cap S \Rightarrow (a,c) \in R \cap S$.

 $\therefore R \cap S$ is transitive on A.

Hence, R is an equivalence relation on A.

14) Ans: **C)**
$$f(x) = \tan^{-1} x - \frac{x}{\sqrt{1+x^2}}$$

Sol: Both $tan^{-1}x$ and $\frac{x}{\sqrt{1+x^2}}$ are bounded

functions.

Thus, $\tan^{-1} x - \frac{x}{\sqrt{1+x^2}}$ is also bounded.

15) Ans: **D)** $\sqrt{x} - 1, x \ge 0$

Sol: It is only to find the inverse.

Consider $y = f(x) = (x+1)^2$, for $x \ge -1$

$$\pm \sqrt{y} = x+1, \quad x \ge -1$$

$$\Rightarrow \sqrt{y} = x + 1 \Rightarrow y \ge 0, x + 1 \ge x = \sqrt{y} - 1$$

$$\Rightarrow f^{-1}(y) = \sqrt{y} - 1 \quad \Rightarrow f^{-1}(x) = \sqrt{x} - 1 \quad \Rightarrow x \ge 1$$

16) Ans: **B)**
$$\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

Sol:
$$f(x) = \sin x + \cos x, g(x) = x^2 - 1$$

or
$$g(f(x)) = (\sin x + \cos x)^2 - 1 = \sin 2x$$

Clearly,
$$g(f(x))$$
 is invertible in $-\frac{\pi}{2} \le 2x \le \frac{\pi}{2}$

 $(:: \sin \theta \text{ is invertible when } -\pi/2 \le \theta \le \pi/2)$

or
$$-\frac{\pi}{4} \le x \le \frac{\pi}{4}$$

- 17) Ans: C) Symmetric and transitive Sol: The void relation R on A is not reflexive because $(a,a) \notin R$ for any $a \in A$. The void relation is symmetric and transitive.
- **18)** Ans: **D)** all of above
- **19)** Ans: **A)** $(A B) \cap (A C)$

Sol: According to De' Morgans law.

20) Ans: **B)**
$$f[F(x)]$$

Sol:
$$F[f(x)] = F(\log_a x) = a^{\log_a x} = x$$

$$f[F(x)] = f(a^x) = log_a a^x = x log_a a = x$$

21) Ans: **A)** {(1, 2), (5, 1), (3, 1)}

Sol:
$$(A, B) \in R \Leftrightarrow (B, A) \in R^{-1}$$

$$\therefore R^{-1} = \{(3, 1), (5, 1), (1, 2)\}$$

22) Ans: **D)** 2^9

Sol:
$$A = \{2, 4, 6\}$$
; $B = \{2, 3, 5\}$

 $\therefore A \times B$ contains $3 \times 3 = 9$ elements

 \therefore No. of relations from A to B = 2^9

23) Ans: A) N₁₂

Sol: $N_3 \cap N_4 = \{3, 6, 9, 12, 15, ...\} \cap \{4, 8, 12, 16, 20, ...\}$ = $\{12, 24, 36,\} = N_{12}$

24) Ans: **B)** {a, b, c}

Sol: $B \cup C = \{a, b, c, d, e\}$

 $A \cap (B \cup C) = \{a, b, c\} \cap \{a, b, c, d, e\} = \{a, b, c\}$

25) Ans: C) Y

Sol: As
$$4^n - 3n - 1 = (3+1)^n - 3n - 1$$

$$=3^{n}+^{n}C_{1}3^{n-1}+^{n}C_{2}3^{n-2}+.....+^{n}C_{n-1}3+^{n}C_{n}-3n-1$$

$$=$$
ⁿ $C_2 3^2 +$ ⁿ $C_3 .3^3 + ... +$ ⁿ $C_n 3^n$,

$$\binom{n}{C_0} = \binom{n}{C_n}, \quad \binom{n}{C_1} = \binom{n}{C_{n-1}} \text{ etc}$$

$$=9[^{n}C_{2}+^{n}C_{3}(3)+....+^{n}C_{n}3^{n-1}]$$

 $\therefore 4^n - 3n - 1$ is a multiple of 9 for $n \ge 2$.

For
$$n=1$$
, $4^n-3n-1 = 4-3-1=0$,

For
$$n = 2$$
, $4^n - 3n - 1 = 16 - 6 - 1 = 9$

 $\therefore 4^n - 3n - 1$ is a multiple of 9 for all $n \in N$ Here X contains elements which are not multiples of 9 and clearly Y contains all multiples of 9.

$$\therefore X \subseteq Y$$
 i.e. $X \cup Y = Y$

26) Ans: **250** Sol:

$$n(H \cup B) = 1000, n(H) = 750, n(B) = 400$$

$$n(H \cup B) = n(H) + n(B) - n(H \cap B)$$

$$\therefore 1000 - 750 + 400 - n(H \cap B) \implies n(H \cap B) = 15$$

i.e. 15 person can speack both Hindi and Bengali.

Only Hindi: $n(H) - n(H \cap B) = 750 - 150 = 600$ Only Bengali: $n(B) - n(H \cap B) = 400 - 150 = 250$.

OZN. Anna C. Onla Thomas and the propriet illinians the

27) Ans: **6** Sol: There are two possibilities that either $A \subset B$ or A an B are disjoint.

If $A \subset B$ then $A \cup B = B$ $\therefore n(A \cup B) = n(B)$ If A and B are disjoint i.e. $A \cap B = \emptyset$

then $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 3 + 6 - 0 = 9$.

Thus the minimum number of elements will be when $A \subset B$ and in that case the number of elements is 6.

28) Ans: **7** Sol: For R add (1,1),(2,2),(3,3)3

For S add (2,1),(3,2)2

For T add (1,3),(3,1)2

So the minimum number of ordered pairs to be added is 7.

29) Ans: **41** Sol: $S = \{1, 2, 3, 4\}$, clearly each

element can be put in 3 ways either in subsets or we dont put in any subset

Therefore, total number of ordered

pairs =
$$\frac{3 \times 3 \times 3 \times 3 - 1}{2} + 1 = 41$$

30) Ans: **20** Sol:

$$n(U) = 200, n(M) = 120, n(P) = 90, n(C) = 70$$

$$n(M \cap P) = 40, n(P \cap C) = 30, n(C \cap M) = 50$$

$$n(M \cup P \cup C)' = 20$$

 $x \in A \cup B \Rightarrow x \in A \text{ or } x \in B \text{ or } x \in both$

 $x \notin A \cup B \Rightarrow x \notin A \text{ and } x \notin B$

i.e. $x \in (A \cup B)' \Rightarrow x \notin A$ and $x \notin B$.

Here we have to find the number od students who study the three subjects i.e. $n(M \cap P \cap C)$.

we are given $n(M \cup P \cup C)' = 20$

$$\therefore n(U) - n(M \cup P \cup C) = 20$$

$$\therefore$$
n(M \cup P \cup C) = 200 - 20 = 180

or
$$n(M) + n(P) + n(C) - [n(M \cap P) + n(P \cap C) + n(C \cap M)]$$

$$+ n(M \cap P \cap C) = 180$$

or
$$(120 + 90 + 70) - [40 + 30 + 50] + n(M \cap P \cap C) = 180$$

$$280-120+n(M \cap P \cap C)=180$$

$$\therefore$$
 n(M \cap P \cap C) = 180 – 160 = 20.

Thus 20 studies all the three subjects.