

Thursday' talks

Who cares about DBpedia properties?
Use infoboxes' properties to create better SPARQL queries

General motivation

- You learn something
- I get feedback
- Implicit agreement
 - I do my best trying to teach you something valuable
 - You give me valuable feedback
 - Please, be as polite as possible ©

My motivation

- Long tail work on DBpedia properties
- Submitted as short paper at iSEMANTICS

Who cares about DBpedia properties? Use infoboxes' properties to create better SPARQL queries

Mariano Rico *
Ontology Engineering Group
UPM
Spain
mariano.rico@fi.upm.es

Nandana Mihindukulasooriya[†] Ontology Engineering Group UPM Spain nmihindu@fi.upm.es Asunción Gomez-Perez Ontology Engineering Group UPM Spain asun@fi.upm.es

ABSTRACT

DBpedia extracts most of its data from Wikipedia's infoboxes.

Manually-created "mappings" link infobox attributes to DBpedia ontology properties (dbo properties) producing most
used DBpedia triples. However, infoxbox attributes without a mapping produce triples with properties in a differ-

created mappings ¹. The analysis of the Spanish DBpedia (esDBpedia) found [4] that, despite the high number of mappings (100+ classes), for each 4 triples containing a dbo property there is 1 triple containing a dbp property. In this work, we extend this analysis to English and German DB-pedias, with similar results. For instance, in the English

DBpedia

- Kernel of the LOD
- Several DBpedias
 - English
 - Spanish
 - ... up to 16

DBpedia

- How to explore these huge datasets?
 - By means of SPARQL queries
 - Explore them using LOUPE
 - O loupe.linkeddata.es

Claims

- C1: DBpedia has more dbp properties than expected
 - you know dbo properties
- C2: SPARQL queries barely use dbp properties
 - We need logs
- C3: The method proposed can enhance DBpedia SPARQL queries
 - Enhance? (more results)

- DBpedia has more dbp properties than expected
 - At least for the 3 DBpedias Analyzed (Eng, Spa, Ger)
- We get this from LOUPE (Eng)
 - Number of properties for the namespaces
 - But, what about triples using that properties?
 - LOUPE does not know (yet)

List of distinct namespaces and the number of properties per each (483 name	spaces)
Show 10 • entries	
Namespace	Property Count
http://dbpedia.org/property/	58239
http://dbpedia.org/ontology/	1338
http://www.openlinksw.com/schemas/virtrdf#	86
http://dbpedia.org/ontology/Planet/	13
http://ymlps.com/foaf/0.1/	12

We need a "strong" SPARQL query

- Any EP Work & 1:0160 lb poet of the Elilish, Spanish and German DBpedias (2015-04 version).

We have

English DBpedia		Spanish DBpedia		German DBpedia		
SUDETOOWERS dbp: http://dbpedia.org/property/						
URIPOIPOI	Triples	URI	Triples	URI	Triples	
dbp:hasPhotoCollection	4,041,585	dbp:wikiPageUsesTemplate	3,402,499	dbp:name	494,852	
dbp:name	4,021,368	dbp:nombre	558,837	dbp:geburtsort	305,063	
dbp:title	1,452,504	dbp:título	327,498	dbp:kurzbeschreibung	283,695	
dbp:subdivisionType	1,257,766	dbp:name	230,763	dbp:geburtsdatum	283,405	
dbp:shortDescription	1,194,274	dbp:tipoSuperior	225,868	dbp:typ	232,702	
dbp:dateOfBirth	1,023,951	dbp:horario	203,890	dbp:viaf	169,145	
dbp:subdivisionName	1,004,294	dbp:imagen	183,887	dbp:gnd	165,362	
dbp:goals	969,216	dbp:familia	152,430	dbp:jahre	156,498	
dbp:placeOfBirth	908,819	dbp:title	144,724	dbp:sterbedatum	144,209	
dbp:birthPlace	903,529	dbp:ordo	142,196	dbp:alternativnamen	143,893	
#props dbp	58,239	#props dbp	17,111	#props dbp	12,167	
#props dbo	1,338	#props dbo	559	#props dbo	534	
#triples dbp	78,125,087	#triples dbp	28,234,292	#triples dbp	10,483,987	
#triples dbo	82,369,408	#triples dbo	90,389,560	#triples dbo	50,750,486	

- SPARQL queries barely use dbp properties
 - We need to analyze SPARQL repositories (logs)
 - Fortunately
 - We have logs for the Spanish DBpedia
 - There is a public repository at aksw.github.io/LSQ
 - DBpedia (logs from 30/04/2010–20/07/2010). 1.7M queries
 - Linked Geo Data (24/11/2010–06/07/2011). 1.6 M queries
 - Semantic Web Dog Food (16/05/2014–12/11/2014). 1.4M queries
 - British Museum (08/11/2014-01/12/2014) 0.8M queries

- SPARQL queries barely use dbp properties
 - In the English DBpedia

We looked for SPARQL queries cointaining both dbp and

dbo properties

Results

- Out of 1,208,762 distinct queries
 - Only 2,328 queries
- Out of 3,041 distinct agents (IPs)
 - Only 473 IPs

- The method proposed can enhance DBpedia
 - SPARQL queries
 - More results
- How? See an example

```
PREFIX dbo: <http://dbpedia.org/ontology/>
select ?s ?bp {
    ?s dbo:birthPlace ?bp .
4 }
```

Listing 1: Original SPARQL query

```
PREFIX dbo: <a href="http://dbpedia.org/ontology/">PREFIX dbp: <a href="http://dbpedia.org/property/">http://dbpedia.org/property/</a>

select ?s ?bp where {
    ?s ?p ?bp .
    VALUES ?p {
        dbo:birthPlace #typical dbo property
        #Alternative dbp properties
        dbp:birthPlace dbp:birthplace
        dbp:birthPlace dbp:birthPlace
        dbp:birtPlace dbp:biRthPlace
    }
}
```

- The method
- Step 1: aggregate properties into groups according to their domain and range
- Step 2: Multilingual NL preprocessing
- Step 3: aggregate properties by similarity (syntactic and semantic)

 Results. dbp→dbo mapping. Example for dbo:birthPlace for Eng, Spa, Ger.

DBpedia	dbo prop	dbp prop		
	11	Syntactic Sem	Δ_1	
English	birthPlace	1 1	rofbirth cityofbirthPlace 350% of Birth birthLocation	
Spanish	birthPlace	lugarNacimiento lugarnacimiento ciud lugardenacimiento lugarNacimento pais	daddenacimiento 221% dadDenacimiento sdenacimiento paisNacimiento chPlace birthplace placeOfBirth	
German	birthPlace	geburtsort birthplace birthPlace geburtsort placeOfBirth placeofbirth	urtsland countryofbirth 134%	

Future work

- Ideal objective: a stable mapping for a given language
 - Drawbacks
 - Fine tuning of algorithms and parameters
 - This requires users validation
 - Detailed study of precision and recall
 - For many common classes
 - For many common SPARQL queries

And another thing...

- Visualizing large datasets
 - E.g. The JavaCompile-TimeDependency graph
 - Nodes are Java classes and directed edges are compile-time dependencies between two classes.
 - The data provided contains the dependencies for all classes under the java.* packages for JDK 1.4.2

And another thing...

- Visualizing (very) large datasets
 - E.g. a Lemon dataset

Thanks for your attention

Mariano.Rico@upm.es

