Resolución computacional de problemas de programación lineal

ILI-292, Investigación de Operaciones I

Segundo período académico 2009

Carlos Castro
Departamento de Informática
UTFSM

Agosto de 2009

LINDO

Linear, INteractive, and Discrete Optimizer

- Desarrollado por Linus E. Schrage, Universidad de Chicago, 1986
- Resuelve problemas de
 - Programación lineal
 - Programación lineal entera
 - Programación cuadrática
- Disponible en versiones
 - Máquinas grandes
 - MS Windows
 - Linux

LINDO

Considerando el modelo de programación lineal:

$$Max z = 10 \times x_1 + 9 \times x_2$$

Sujeto a

$$\frac{7}{10} \times x_1 + 1 \times x_2 \leq 630$$

$$\frac{1}{2} \times x_1 + \frac{5}{6} \times x_2 \leq 600$$

$$1 \times x_1 + \frac{2}{3} \times x_2 \leq 708$$

$$\frac{1}{10} \times x_1 + \frac{1}{4} \times x_2 \leq 135$$

$$x_1, x_2 \geq 0$$

Ingreso del modelo

En un archivo de texto o interactivamente:

- La función objetivo encabeza el modelo con Max o Min
- LINDO sólo trabaja con valores reales
- LINDO asume todas las variables como no negativas

Visualización del modelo

Formulación almacenada por LINDO:

MAX
$$10 X1 + 9 X2$$

SUBJECT TO

2)
$$0.7 \times 1 + \times 2 < 630$$

3)
$$0.5 \times 1 + 0.8333333 \times 2 \le 600$$

4)
$$X1 + 0.6666667 X2 <= 708$$

5)
$$0.1 X1 + 0.25 X2 \le 135$$

END

- LINDO transforma constantes reales a constantes enteras cuando es posible
- Coeficientes unitarios son eliminados
- Identificadores trabajados en mayúsculas
- Fila 1: función objetivo
- Restricciones numeradas desde la fila 2

Tableau inicial

THE TABLEAU

ROW	(BASIS)	X1	X2	SLK 2	SLK 3	SLK 4	SLK 5	
1	ART	-10.000	-9.000	0.000	0.000	0.000	0.000	0.000
2	SLK 2	0.700	1.000	1.000	0.000	0.000	0.000	630.000
3	SLK 3	0.500	0.833	0.000	1.000	0.000	0.000	600.000
4	SLK 4	1.000	0.667	0.000	0.000	1.000	0.000	708.000
5	SLK 5	0.100	0.250	0.000	0.000	0.000	1.000	135.000
ART	ART	-10.000	-9.000	0.000	0.000	0.000	0.000	0.000

Resolución e interpretación de resultados

LP OPTIMUM FOUND AT STEP 2
OBJECTIVE FUNCTION VALUE

1) 7668.000

VARIABLE	VALUE	REDUCED COST
X1	540.000000	0.000000
X2	252.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.000000	4.375000
3)	120.000008	0.000000
4)	0.000000	6.937500
5)	18.00000	0.00000

NO. ITERATIONS=

- _____
- Solución óptima obtenida en dos iteraciones
- Valor de la función objetivo: 7668
- VALUE: valor de x_1 (540) y x_2 (252)
- SLACK OR SURPLUS: holgura en filas 2 (0), 3 (120), 4 (0) y 5 (18)
- REDUCED COST: $c_j z_j$ para x_1 (0) y x_2 (0)
- DUAL PRICES: $c_j z_j$ para holgura en filas 2 (4.3750), 3 (0), 4 (6.9375) y 5 (0)

6

Tableau final

THE TABLEAU

ROW	(BASIS)	X1	X2	SLK 2	SLK 3	SLK 4	SLK 5	
1	ART	0.000	0.000	4.375	0.000	6.938	0.000	7668.000
2	X2	0.000	1.000	1.875	0.000	-1.312	0.000	252.000
3	SLK 3	0.000	0.000	-0.937	1.000	0.156	0.000	120.000
4	X1	1.000	0.000	-1.250	0.000	1.875	0.000	540.000
5	SIK 5	0 000	0 000	-0 344	0 000	0 141	1 000	18 000