

Lab 8: I²C (Inter-Integrated Circuit Bus)

Lecturer: 陳英佐

Outline

- Introduction
- Hardware Description
 - ◆ I/O Information
 - **♦** System Information
- Simulation Result
- **■** Criteria
 - **♦**Grading Policy
 - ◆ Requirement & File Format
 - **♦** Deadline
 - ◆ Commands in Makefile
- Reference

- Inter-integrated Circuit:
 - ◆ 讓嵌入式系統與周邊低速裝置溝通所發展的傳輸介面
 - ◆ 傳輸時由一個Master端與一個或多個Slave端完成

■ SCL:

Serial Clock Line, holds Clock signal (單向, Master to Slave)

■ SDA:

Serial Data Line, holds Data or address signal (雙向)

- I²C Operation
 - ◆ Start/Stop Condition
 - ➤ Start Condition: SCL=High時, SDA為negedge
 - ➤ Stop Condition: SCL=High時, SDA為posedge

◆SCL和SDA關係

- ▶在SCL為0時,SDA可以改變資料
- ▶在SCL為1時,SDA不能改變資料

總結來說,在SCL拉起來前,SDA (Data)要提前準備好

■ ACK/NACK

- ◆ transmitter在傳輸byte時(這次的lab都是byte傳輸),會主控SDA通道, 在每個posedge SCL時傳送一個bit的資料;在第九個posedge SCL時, receiver主控SDA通道,進行ACK/NACK,ACK=1'b0,NACK=1'b1。
- ◆ 承上, 在write device, address, data 時, master是transmitter, 而slave是receiver; read data 時, slave是transmitter, 而master是receiver。
- ◆ 以下為NACK的情況:
 - 1. No receiver is present on the bus with the transmitted address so there is no device to respond with an acknowledge.
 - 2. The receiver is unable to receive or transmit because it is performing some real-time function and is not ready to start communication with the controller.
 - 3. During the transfer, the receiver gets data or commands that it does not understand.
 - 4. During the transfer, the receiver cannot receive any more data bytes.
 - 5. A controller-receiver must signal the end of the transfer to the target transmitter. (在這次lab,你會在波形上觀察到master會NACK給slave,中斷read data。)

■ Write Mode

- Master Controls SDA Line
- Slave Controls SDA Line

Write to One Register in a Device

■ Read Mode

- Master Controls SDA Line
- Slave Controls SDA Line

Read From One Register in a Device

Hardware Description

■ I/O Information (i2c_slave.v)

Signal	I/O	Width	Description
clk	I	1	Clock signal
rst_n	I	1	系統重置訊號,為 active low
scl	I	1	i2c serial clock line
sda_i	I	1	i2c serial data line input (from master)
i2c_din	I	8	從 reg_bank 讀取的資料
sda_o	O	1	i2c serial data line output (from slave)
sda_o_en	O	1	i2c serial data line output enable (from slave)
wr	O	1	write enable = 1 , 寫資料進reg_bank
rd	O	1	read enable = 1, 從reg_bank讀資料
i2c_addr	O	8	從reg_bank讀寫資料的address
i2c_dout	O	8	寫入 reg_bank 的資料

Hardware Description

■ I/O Information (host_reg_bank.v)

Signal	I/O	Width	Description
clk	I	1	Clock signal
rst_n	I	1	系統重置訊號,為 active low
wr	I	1	write enable = 1 , 寫資料進reg_bank
rd	I	1	read enable = 1 , 從reg_bank讀資料
i2c_addr	I	8	從reg_bank讀寫資料的address
i2c_dout	I	8	寫入 reg_bank 的資料
i2c_din	O	8	從 reg_bank 讀取的資料

Hardware Description

■ System Information

slave分別有其對應的address,相對應的slave必須負責ack給master。 address分別為7'b111_1101和7'b111_1010,請自行分配。

Simulation Result

■ Write Mode

```
....Set value:1c to address:0......

device ID=f4 ack
sub addr =00 ack
write =1c ack
```


Simulation Result

■ Read Mode

```
....Read data from address 0......

device ID=f4 ack
sub addr =00 ack
device ID=f5 ack

read BYTE=3a
Master get data = 3a
Master not ack
....i2c read ok!!..... 必須為read ok才算成功
```


■ Grading Policy (100%)

◆ terminal結果和波形均正確

(100%)

- Requirement & File Format
 - ◆請打開nWave,點選SDA和i2c_scl兩個訊號,並擷取 Read/Write Mode下的波形,請如Simulation Result那邊的 方式表示出來,終端機的結果只要擷取波形對應的片段 即可,並且放到word裡。

■ Requirement & File Format

■ Deadline: 2025/05/20 (Tue) 14:00

◆ Late submissions will receive a partial score as follow:

➤ 1 day late

-> 80 %

➤ 2 day late

-> 50 %

➤ 3 day late

-> 20 %

 \triangleright Over 3 days late -> 0 %

■ Commands in Makefile

Situation	Command
RTL simulation	make vcs
Dump Waveform (no array)	make vcs WV=1
Dump Waveform (with array)	make vcs WV=2
Launch nWave	make wave
Delete waveform files	make clean
Compress homework to tar format	make tar

Reference

- https://www.ti.com/lit/an/slva704/slva704.pdf
- https://www.nxp.com/docs/en/user-guide/UM10204.pdf

