- 1. (a)
 Matlab stands for "matrix" and "laboratory"
 - (b) Matlab is created by "Cleve Moler"
 - (c) C language is used to implement the original Matlab.
 - (d)
 LAPACK is a numerical linear algrbra package used by Matlab currently.
 - (e) Yes, Matlab support symbolic computing, such as "x = 10; y = x + 100"
- 2. (a)

 A Bezier curve is a mathematically defined curve used in two-dimensional graphic applications. The curve is defined by four points: the initial position and the terminating position (which are called "anchors") and two separate middle points (which are called "handles"). The shape of a Bezier curve can be altered by moving the handles.
- (b)
 3. (a)
- x = linspace(-pi, pi);
 - y = linspace(-pi, pi);
 f = sin(x) ./ x
 - stem3(x, y, f)

(b)

```
x = linspace(-4 * pi, 4 * pi);
y = linspace(-4 * pi, 4 * pi);
z = abs(sin(x) ./ x);
stem3(x, y, z)
```



```
4. (a)

img = imread('58.jpg');
[h, w, color] = size(img)
B(1:color, w*h + 1) = 0;
for i = 1:color,
    for j = 1:w,
        for k = 1:h,
            B(i, (j-1) * h + k) = img(k, j, i);
        end
        end
```

${\bf Run\ result}:$

249	245	251	245	251	255	240	248	251	245
255	253	255	250	254	255	237	241	240	231
255	255	255	246	247	246	222	223	218	205

```
(b)

YUV(1, :) = 0.299 * B(1,:) + 0.587 * B(2,:) + 0.114 * B(3,:);
YUV(2, :) = -0.147 * B(1,:) - 0.289 * B(2,:) + 0.436 * B(3,:);
YUV(3, :) = 0.615 * B(1,:) - 0.515 * B(2,:) - 0.1 * B(3,:);

for j = 1:w,
    for k = 1:h,
        Y(k, j) = B(1, (j-1) * h + k);
        U(k, j) = B(2, (j-1) * h + k);
        V(k, j) = B(3, (j-1) * h + k);
    end
end
imshow([Y, U, V]);
```

${\bf Origin\ picture:}$

Output picture :

6. (a)

we knows that
$$:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$

$$Y=y^2=\alpha X+\beta=-\frac{b^2}{a^2}x^2+b^2$$

$$a^2=-\frac{\beta}{\alpha},\ b^2=\beta$$

Original equation is $(x-a)^2 + (y-b)^2 = c^2$ is also equal to $\frac{(x-a)^2}{c^2} + \frac{(y-b)^2}{c^2} = 1$:We don't care about the offset of x and y corrdinate

 \therefore The linear equation is $y^2 = -\frac{c^2}{c^2}x^2 + c^2$, $Y = -X + c^2$

(b)

We know the linear equation of
$$y=\frac{ax}{x^2+b^2}$$
 is
$$\frac{1}{y}=\frac{1}{a}x+\frac{b^2}{a}\frac{1}{x}$$

$$Let\ Y=\frac{1}{y},\ \alpha=\frac{1}{a},\ \beta=\frac{b^2}{a}$$

$$\therefore Y=\alpha x+\beta\frac{1}{x}$$

(c)

We know the linear equation of
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
 is
$$y^2=-\frac{b^2}{a^2}x^2+b^2$$

$$Let\ Y=y^2,\ \alpha=-\frac{b^2}{a^2},\ \beta=b^2$$

$$\therefore Y=\alpha x^2+\beta$$

7. (a)

```
Fs=16000;
Ts=1/Fs;
t=[0:Ts:4];
[~, length] = size(t);

music = t;
step = length / 800;
for i = 1:length,
    hz = i / step;
    music(i) = sin(2 * pi * hz * t(i));
end

plot(t, music)
```

plot(t(1:10000), music(1:10000));

(c) I think this is the same because we just up-side-down the value of y, and y is a \sin function.