

AI on IBM Z

Health insurance claims solution template

This solution template provides an example on how to deploy AI using an IBM Z environment, while making use of open source frameworks, Machine Learning for IBM z/OS (MLz), and more.

Within this solution template, there are various phases of the AI lifecycle included. Work through each of the following steps to deploy your own health insurance claims solution on IBM Z.

Table of contents

<u>AI model training</u>	3
AI model deployment	'
AI model integration	1′

AI model training

We will build a health insurance claims AI model by training with the provided Rapid AI on IBM Z Development Jupyter notebook. Simply point the Jupyter notebook to your dataset and run it to generate your AI model. This trained AI model can then be deployed with MLz.

All sample code for this section is within

ai-st-health-insurance-claims/zST-model-training-jupyter

Prerequisites

1. Must have Python (3.9 or 3.10) installed

Dataset guidance

Sample health insurance claims dataset can be found on Kaggle -

https://www.kaggle.com/datasets/grvmishra7/health-insurance-prediction?select=train_Df64byy.csv

Required features

- applicant_id
- years_of_insurance_with_us
- regular_checkup_last_year
- adventure_sports
- occupation
- visited_doctor_last_1_year
- cholesterol_level
- daily_avg_steps
- age
- heart_decs_history
- any_other_major_decs_history
- gender
- avg_glucose_level
- bmi
- smoking_status
- year_last_admitted
- location
- weight
- covered_by_any_other_company
- alcohol
- exercise
- weight_change_in_last_one_year
- fat_percentage
- insurance_cost

Access rapid AI on IBM Z development environment

Provide data

Model training

Access trained AI model

Access rapid AI on IBM Z development environment

1. Create and activate Python virtual environment

python -m venv env source env/bin/activate

2. Install required Python packages

pip install -r requirements.txt

3. Run Jupyter

jupyter notebook

- 4. View Jupyter interface
 Go to localhost:8888 in a web browser
- 5. Click on ai_on_z_model_dev.ipynb in web browser

Provide data

- 1. Add your input dataset (csv) into datasets/ directory
- 2. Add input data to Jupyter notebook
 - Set DATASET_FILENAME to the path to your dataset
 - Set DATASET_LABEL_NAME to the name of the column you're predicting from the dataset

Access rapid AI on IBM Z development environment

Provide data

Model training

Access trained AI model

Model training

Step through and run Jupyter notebook from web browser

Access trained AI model

1. Once training is complete, you can find your AI models within the models/directory (choose one for the following AI model deployment step)

AI model training complete

AI model deployment

We will deploy our health insurance AI model using MLz. We can utilize the model import functionality on the MLz UI. This deployed AI model can then be integrated into applications within the IBM Z environment.

Prerequisites

1. Must have MLz installed

Go to MLz UI

Import AI model

Deploy AI model

View deployed AI model

Go to MLz UI

1. Sign in with username/password

Import AI model

- 1. Go to models tab
- 2. Click import model
- 3. Enter model name
- 4. Choose model type
 Choose PMML if using your previously trained model
- 5. Drag and drop model file
 Use your previously trained model
- 6. Click import

Go to MLz UI

Import AI model

Deploy AI model

View deployed AI model

Deploy AI model

- 1. Go to models tab
- 2. Click action button for your model (on right side)
- 3. Click deploy
- 4. Enter deployment name
- 5. Choose deployment type
- 6. Choose model version
- 7. Choose scoring service
 Note: you should choose the correct scoring service
 based on your application (e.g. CICS or REST)
- 8. Click create

View deployed AI model

- 1. Go to deployments tab
- 2. Click on action button for your deployed model (on right side)
- 3. Click view details

AI model deployment complete

AI model integration

We can use our deployed MLz health insurance claims AI model and integrate it into different types of applications. Guidance on integrating the AI model into a sample health insurance claims application is below.

All sample code for this section is within

ai-st-health-insurance-claims/zST-model-integration-HIC

Prerequisites

- 1. Must have node.js v16 or newer installed
- 2. Must have Docker installed
- 3. Must have Git installed

Get model details for inferencing

Configure sample application

Build sample application

Deploy sample application

Access sample application

Get model details for inferencing

- 1. Go to MLz UI
- 2. Go to deployments tab
- 3. Click on action button for your deployed model (on right side)
- 4. Click view details
- 5. Copy scoring endpoint

Configure sample application

Set the enrionment variables within env.list file

- WML_URL (MLz UI URL)
- WML_USER (username for MLz)
- WML_PASS (password for MLz user)
- SCORING_URL (scoring endpoint for deployed AI model)

Build sample application

1. Run command in terminal

docker build -t health-insurance .

Get model details for inferencing

Configure sample application

Build sample application

Deploy sample application

Access sample application

Deploy sample application

1. Run command in terminal (e.g. port 9000)

```
docker run -p 9000:80 --env-file env.list
--name health-insurance-app -d health-in-
surance
```

Access sample application

View the following URL in a web browser: http://{ip address}:{port}/ui

- ip address: IP of server you deployed application in
- port: port you used with docker run

✓ AI model integration complete