35. Дайте характеристику та обгрунтуйте вимоги до ключової пари для RSA перетворення?

Генерування асиметричної ключової пари. Система RSA відноситься до криптосистем з відкритими ключами. В цій системі ключі $E_k \neq D_k$, причому один з них має бути особистим, а другий — відкритим. Наприклад, E_k — особистий, а D_k — відкритий, якщо вони використовуються для ЕЦП і навпаки, якщо використовуються для направленого шифрування.

Усі параметри (N,P,Q) також поділяються на 2 класи: N — відкритий, P,Q — конфіденційні (секретні).

Сутність забезпечення моделі взаємної недовіри — кожен користувач генерує ключі сам собі. Особистий ключ залишає в себе і забезпечує його строгу конфіденційність. Відкритий ключ розсилає всім користувачам, з якими він зв'язаний. Користувач також забезпечує цілісність і дійсність відкритих ключів.

 E_k , D_k — мають вибиратися з повної множини випадково, порівняно ймовірно і незалежно, мають забезпечувати однозначну оборотність прямого та зворотного перетворення. Відповідним чином засвідчений відкритий ключ є сертифікатом.

Значення E_k , D_k для практичних використань мають задовольняти умову

$$1 \le E_K, D_K < \varphi(N),$$

де

$$\varphi(N) = \varphi(P * Q) = \varphi(P) * \varphi(Q) = (P-1)(Q-1).$$

Порівняння (1.54) можна звести до Діафантового рівняння:

Це діафантове рівняння — нормоване, тому що справа коефіцієнт дорівнює 1; a, b — цілочисельні коефіцієнти, x, y — невідомі. Порівняння (10.7 1.54) можна подати у вигляді:

$$E_K D_K = k * \varphi(N) + 1,$$
 (10.10 1.57)

k — деяке невідоме число.

Діафантове рівняння (10.9 1.56) має цілочисельне розв'язання, якщо a і b цілочисленні, і $a \ge b$, a і b взаємно прості. Подавши (10.10 1.57) у вигляді

$$\varphi(N) * (-k) + E_K D_K = 1$$
, (10.11 1.58)

отримаємо $\alpha = \varphi(N)$, x = (-k), $b = E_k$, $y = D_k$.

Якщо E_k сформувати випадково, то a та b — відомі числа, а x та y — невідомі, що підлягають визначенню.

Найбільш швидке розв'язання (10.11 1.58) дає застосування ланцюгових дробів, які дозволяють визначити x та y як

$$\begin{cases} y = (-1)^{\mu} a_{\mu-1} \\ x = (-1)^{\mu+1} b_{\mu-1} \end{cases}$$
 (10.12 1.59)

де μ – порядок ланцюгового дробу, α і b – параметри ланцюгового дробу.

Знаходимо параметри:

а/в подається у вигляді ланцюгового дробу

$$\frac{a}{b} = r_0 + \frac{1}{r_1 + \frac{1}{r_2 + \frac{1}{r_3 + \dots}}},$$
(10.13 1.60)
$$\frac{1}{r_1 + 0}$$

 μ - порядок ланцюгового дробу, перший коефіцієнт, у якого залишок дорівнює 0.

Значення (a_0,b_0) та (a_1,b_1) визначаються як

$$\frac{a_0}{b_0} = r_0 = \frac{r_0}{1} \qquad a_0 = r_0 \\ b_0 = 1 \end{cases},$$

$$\frac{a_1}{b_1} = r_0 + \frac{1}{r_1} = \frac{r_0 r_1 + 1}{r_1} \qquad a_1 = r_0 r_1 + 1 \\ b_1 = r_1 \end{cases}.$$

Значення (a_2,b_2) , (a_3,b_3) і т.д. визначаються рекурентно відповідно до правил

$$\begin{cases}
a_{\mu} = r_{\mu} * a_{\mu-1} + a_{\mu-2} \\
b_{\mu} = r_{\mu} * b_{\mu-1} + b_{\mu-2}
\end{cases}$$
(10.14 1.61)

Середнє число ітерацій в (1.60), тобто $\stackrel{-}{\mu}$, можна визначити як [16]

$$\overline{\mu} = \frac{12 \ln 2}{\pi^2} \ln E_k.$$