# Degradation of Solar Cells

By Pargorn Puttapirat ID 3117999011 May 17th, 2018

Physics of Semiconductor 2018 Xi'an Jiaotong University



## Outline

- Introduction
- Three ways solar panels degrade
- Future directions on solar panels studies
- Outlook

#### Global Annual Energy Production from Solar Energy





### Global Market Share by PV Technology from 1990 to 2013



Majority of solar panels are crystalline silicon cells

7 Thin film 4.9 Multi-Si 57.5 Mono-Si 20.2







- Solar energy is becoming major world's energy source
- Most solar panels are crystalline silicon cells
- Efficiency: ~23-25%
- There are limited number of solar panel degradation studies
  - There are some initial studies
  - Better maintenance of solar panels
  - Prediction method

# Three ways solar panels degrade

## Three ways solar panels degrade Overview

#### Soiling

- Snow
- Dirt
- Dust
- Leaves
- Pollen

(cc)

Bird droppings



Current drop Voltage drop Hot spot

#### Heating

- Open and close circuit during operation
- Heat dissipation



Cell stress that cause defects in the material

## Mechanical failure

- Physical damages
- Solar cell encapsulation



Broken frame that cause cell degradation

## Three ways solar panels degrade Soiling



Cloud

Air pollution

Fog

Dust

~ 20% loss in efficiency



Partial shadow

Bird droppings





## Three ways solar panels degrade Soiling



#### Soft-shade on the module





#### Partially hard-shade on the module





(Maghami et al., 2016)

## Three ways solar panels degrade Soiling

-> The shaded cell could become a hot spot









biased these cells.

## Three ways solar panels degrade Overview

#### Soiling

- Snow
- Dirt
- Dust
- Leaves
- Pollen

<u>@</u>

Bird droppings



Current drop Voltage drop Hot spot

#### Heating

- Open and close circuit during operation
- Heat dissipation



Cell stress that cause defects in the material

## Mechanical failure

- Physical damages
- Solar cell encapsulation



Broken frame that cause cell degradation

This work is licensed under a Creative Commons Attribution 4.0 International License.

#### Question!



**Closed-circuit PV module** 

**Open-circuit PV module** 

Which one will degrade faster?



- Open and close circuit during operation
- Heat dissipation



Cell stress that cause defects in the material

I-V and P-V curve of solar panel that experience lower and higher heat in 330 days



(Boussaid, Belghachi, Agroui, Abdelaoui, & Otmani, 2016)



Changes in the temperature of modules for a day example (Nov 20th, 2015)



(Boussaid, Belghachi, Agroui, Abdelaoui, & Otmani, 2016)



Inter-band transition of electrons in a semiconductor



(Boussaid, Belghachi, Agroui, Abdelaoui, & Otmani, 2016)



## Three ways solar panels degrade Overview

#### Soiling

- Snow
- Dirt
- Dust
- Leaves
- Pollen

<u>@</u>

Bird droppings



Current drop Voltage drop Hot spot

#### Heating

- Open and close circuit during operation
- Heat dissipation



Cell stress that cause defects in the material

## Mechanical failure

- Physical damages
- Solar cell encapsulation



Broken frame that cause cell degradation

This work is licensed under a Creative

Commons Attribution 4.0 International License.

### Three ways solar panels degrade Mechanical failure

- Climatic stress:
  - salt -> metal corrosion
  - sand -> glass abrasion
  - hail -> impact
  - snow -> high load (weight)
- Polymers within the panel could be easily damaged by UV irradiation.

## Future directions on solar panels studies

## Future directions

- Develop reliable solar panel lifetime prediction methods
- Study on the cause and prevention of PV degradation
  - For newly manufactured panels
  - For existing panels
- Follow up and long-term studies in different region are needed.

## Outlook



## Outlook

#### Reducing the heat

Solar spectrum and Silicon absorption wavelength



(Han et al., 2018)

Use the wasted solar energy in daytime to cool down the system or produce warm water.



## Outlook

#### Cleaning the panel

#### **Manual Cleaning**

#### **Mobile Cleaning**

- Need workers
- May scratch the modules
- Moving machine with water tank
- Sprinkler system (use daily - weekly)

## Conclusion

#### **Best Research-Cell Efficiencies**





Commons Attribution 4.0 International License.

# Supplementary Resources



Figure 2: The duck curve shows steep ramping needs and overgeneration risk



