Cloud Computing Service Models and Challenges

Minchen Yu SDS@CUHK-SZ Fall 2024

Outline

部署

- Cloud deployment models
- Service models
- Issues of Cloud
- Challenges

Cloud deployment models

Public Cloud

- Providers let clients access the cloud via Internet
- Made available to the general public

Public Cloud

多租户 虚拟化

基础建设

- Functions and pricing vary

Private Cloud

唯一的

- The cloud is used solely by an organization (e.g., Facebook)
- May reside in-house or off-premise

Private Cloud

- Secure, dedicated infrastructure with the benefits of ondemand provisioning 安全、专用的基础设施,具有按需配置的优势
- Greater control, security, and resilience.

更好的控制、安全性和弹性。

Hybrid Cloud Rest

由多个云(私有云、公有云等)组成,这些云仍然是独立实体,但使用标准或专有协议进行互操作

- Composed of multiple clouds (private, public, etc.) that remain independent entities, but interoperate using standard or proprietary protocols
- Banks, hospitals, government

Hybrid Cloud

跨云流动

Internet

Allows applications and data to flow across clouds

iWeb Cloud Dedicated infrastructure VM 1 VM 2 VM 3 Private Rack

Secured LAN

Copyright: iWeb

Cloud Service Models

Cloud computing stack

By Nick Barcet, "What is Ubuntu Cloud", Nov 2009

Cloud service models

- Infrastructure-as-a-Service (laaS)
- Platform-as-a-Service (PaaS)
- Software-as-a-Service (SaaS)
- Other X-as-a-Service
 - Function-as-a-Service (FaaS)

Machine-Learning-as-a-Service (MLaaS)

基础设施即服务 (laaS)

功能即服务 (FaaS)

机器学习即服务 (MLaaS)

Infrastructure-as-a-Service Bendehblish

- Providers give you the computing infrastructure made available as
 a service. You get "bare-metal" machines. 提供商以服务形式为您提供计算基础设施。您将获得"裸机"机器
- Providers manage a large pool of resources, and use virtualization to dynamically allocate ^{提供商管理大量资源,并使用虚拟化来动态分配}
- Full control of OS, storage, applications, and some networking components (e.g., firewalls)

 完全控制操作系统、存储、应用程序和一些网络组件(例如防火墙)

Infrastructure-as-a-Service

laaS use case

- Netflix rents thousands of servers, terabytes of storage from Amazon Web Services (AWS)
- Develop and deploy specialized software for transcoding, storage, streaming, analytics, etc. on top of it
- Is able to support tens of millions of connected devices, used by 40+ million users from 40+ countries

Platform-as-a-Service (PaaS) 平白即服务 (PaaS)

- Providers give you a software platform, or middleware, where applications run
 提供商为您提供软件平台或中间件,应用程序可在此运行
- You develop and maintain and deploy your own software on top of the platform

 您可以在平台上开发、维护和部署自己的软件
- The hardware needed for running the software is automatically managed by the platform. You can't explicitly ask for resources. 运行软件所需的硬件由平台自动管理。您无法明确请求资源。

PaaS

 You have automatic scalability, without having to respond to request load increase/decrease
 _{具有自动可扩展性}, 无需响应请求负载的增加/减少

 No control of OS, storage, or network, but can control the deployed applications and host environment

> 无法控制操作系统、存储或网络,但可以控制部署的应用程序和 主机环境

PaaS use case

- Best for web apps
- Language and API support: Python, Java, PHP, and Go

Software-as-a-Service (SaaS) 软件即服务 (SaaS)

- Providers give you a piece of software/application. They take care
 of updating, and maintaining it.

 提供商为您提供软件/应用程序。他们负责更新和维护。
- You simply use the software through the Internet. 您只需通过互联网使用该软件即可。

SaaS use case

- The university uses Office 365 for student and staff email, calendar, etc.
- Services provided by Google, e.g., Gmail

Separation of Responsibilities

A comparison

Flexibility/Customization

Convenience/Ease of management

Tradeoff between flexibility and "built-in" functionality

Other X-as-a-Service (XaaS)

Function-as-a-Service (FaaS) 函数即服务 (FaaS)

- Users write applications in the form of "cloud functions" 用户以"云函数"的形式编写应用程序
- Users define the events that trigger the execution of those functions (e.g., HTTP requests, webhooks) 用户定义触发这些函数执行的事件(例如
- Users only pay for the CPU time used to run functions

用户只需为运行函数所用的 CPU 时间付费

Users manage no servers, hence termed "serverless computing"

用户无需管理任何服务器,因此称为"无服务器计算"

Benefits of FaaS

- No server management 无需服务器管理,所有工作均由云提供商处理,而非用户
 - all handled by the cloud provider, not users
- Cost-effective 经济高效,用户只需在执行函数时支付 CPU 时间费用(代码未运行时无需付费)
 - users only pay for the CPU time when functions are executed (no charge when code is not running)
- Flexible scaling 灵活扩展,无需设置自动扩展:这是云提供商的问题
 - no need to set up autoscaling: it's cloud provider's problem
- Automated high availability and fault tolerance

自动化高可用性和容错能力

laaS vs. FaaS

- Configure an instance
- Update OS
- Install App platform
- Build and deploy App
- Configure autoscaling/load balancing
- Continuously secure and monitor instances
- Monitor and maintain apps

- Configure an instance
- Update OS
- Install App platform
- Build and deploy App
- Configure autoscaling/load balancing
- Continuously secure and monitor instances
- Monitor and maintain apps

Popular FaaS Platforms

- Lets you run code without provisioning or managing servers
- Triggers on your behalf in response to events
- Scales automatically
- Provides built-in code monitoring and logging via WebUI or CLI

Example FaaS application

ML-as-a-Service

机器学习即服务

一组基于云的机器学习 (ML) 工具的总称,涵盖大多数 ML 管道,例如数据预处理、模型训练、模型评估和 预测服务

- An umbrella term for a set of cloud-based machine learning (ML) tools that cover most ML pipelines
 - e.g., data pre-processing, model training, model evaluation, and prediction serving
- Four key players in the MLaaS market
 - Amazon, Microsoft Azure, Google Cloud, IBM

CLOUD MACHINE LEARNING SERVICES COMPARISON

	Amazon ML and SageMaker	Microsoft Azure Al Platform	Google AI Platform (Unified)	IBM Watson Machine Learning
Classification	✓	✓	✓	✓
Regression	✓	✓	✓	✓
Clustering	✓	✓	✓	
Anomaly detection	✓	✓		
Recommendation	✓	✓	✓	
Ranking	✓	✓		
Data Labeling	✓	✓	✓	✓
MLOps pipeline support	✓	✓	✓	✓
Built-in algorithms	✓	✓	✓	
Supported frameworks	TensorFlow, MXNet, Keras, Gluon. Pytorch, Caffe2, Chainer, Torch	TensorFlow, scikit- learn, PyTorch, Microsoft Cognitive Toolkit, Spark ML	TensorFlow, scikit- learn, XGBoost, Keras	TensorFlow, Keras, Spark MLlib, scikit- learn, XGBoost, PyTorch, IBM SPSS, PMML

FaaS & MLaaS are closer to PaaS than laaS

We mainly focus on laaS in this course, with some coverage of FaaS

Issues of Cloud

Issues of Cloud ships

可用性:始终在线的服务有时可能会被取消

- Availability: always-on services can sometimes be taken off...
 - On Dec 18, 2022, Alibaba Cloud's HK datacenter lost its cool
 - affecting the Monetary Authority of Macao, takeaway platform mFood, and cryptocurrency exchange OKX
 - AWS outage in August 2013, about an hour, takes down Vine, Instagram,
 Flipboard, etc.
 - Loss of sales: \$1,100 USD per second
- Data loss 数据丢失

Issues of Cloud

- Vendor lock-in 供应商限制
 - Each cloud provides different services to differentiate itself
 每个云提供不同的服务,使自己与众不同
 - proprietary services & APIs
 - proprietary hardware: Google TPUs, AWS Inferentia
 - Data gravity pricing: Free to move data into the cloud but expensive to move data out
 数据重力定价:将数据转移到云端是免费的,但将数据转移出云端是昂贵的 云用户经常发现自己被锁定在当前的提供商中

Cloud users often found themselves locked into the current provider!

Issues of Cloud

- Security: 安全问题
 - Can an intruder/attacker get my data in the cloud?
 - Twitter had a data breach due to an attack that exposed the usernames, email addresses, and encrypted passwords of 250,000 users in Feb. 2013.

Issues of Cloud

- Privacy: 隐私问题
 - Will the provider look at my data in the cloud?
 - Will the provider give my data to the government or other parties?

Table 2. Top 10 obstacles to and opportunities for growth of cloud computing.

Obstacle	Sky Computing Opportunity
1 Availability/Business Continuity	Use Multiple Cloud Providers
2 Data Lock-In	Standardize APIs; Compatible SW to enable Surge or Hybird Cloud Computing
3 Data Confidentiality and Auditability	Deploy Encryption, VLANs, Firewalls
4 Data Transfer Bottlenecks	FedExing Disks; Higher BW Switches
5 Performance Unpredictability	Improved VM Support; Flash Memory; Gang Schedule VMs
6 Scalable Storage	Invent Scalable Store
7 Bugs in Large Distributed Systems	Invent Debugger that relies on Distributed VMs
8 Scaling Quickly	Invent Auto-Scaler that relies on ML; Snapshots for Conservation
9 Reputation Fate Sharing	Offer reputation-guarding services like those for email
10 Software Licensing	Pay-for-use licenses

Challenges facing cloud providers

Storage

- Large dataset cannot fit into a local storage 大型数据集无法放入本地存储
- Persistent storage must be distributed 持久存储必须是分布式的
 - GFS, BigTable, HDFS, Cassandra, S3, etc.
- Local storage goes volatile
 - Cache for data being served

本地存储不稳定 缓存正在提供的数据 本地日志记录和异步复制到持久存储

local logging and async copy to persistent storage

Scale

规模 大型集群:能够承载 PB 级数据

- Large cluster: able to host petabytes of data
- Extremely large cluster: at Google, the storage system pages a user if there is only a few petabytes of spaces left available!

超大型集群:在 Google,如果只剩下几 PB 级可用空间,存储系统就会向用户发送消息

A 10k-node cluster is considered small- to medium-sized

10k 节点集群被视为小型到中型集群

Faults and failures

故障

>1%	DRAM errors per year			
2-10%	Annual failure rate of disk drive			
2	# crashes per machine-year			
2-6	# OS upgrades per machine-year			
>1	Power utility events per year			

Failure is a norm, not an exception!

故障是一种常态,而不是例外

"A 2000-node cluster will have >10 machines crashing per day"

Luiz Barroso

Networking

网络 云如何为来自全球的数亿客户提供快速连接来访问他们的服务? 在一个有成千上万的租户、他们的应用程序和服务器的云中,如何确保网络足够快速和

健壮,可以将比特从任何地方移动到任何地方? 那么带宽资源的公平性呢?

- How can a cloud provide fast connections for hundreds of millions of clients coming from the entire globe to access their services?
- Inside a cloud, with hundreds of thousands of tenants, their apps, and servers, how to make sure the network is fast and robust enough to move bits from anywhere to anywhere?
- What about fairness of the bandwidth resources?

Machine heterogeneity

机器异构性

Machines span multiple generations representing different points in the configuration space 机器跨越多个代,代表配置空间中的不同点

System	#CPUs	Mem (GiB)	#GPUs	GPU type	#Nodes
PAI 64 96 96 96 96 96	64	512	2	P100	798
	96	512	2	T4	497
	96	512	8	Misc.	280
	384	8	$V100M32^{\dagger}$	135	
	96	512/384	8	$ m V100^{\dagger}$	104
	96	512	0	N/A	83

Machine specs. of a GPU cluster in Alibaba Platform for AI (PAI)

Workload heterogeneity

工作负载异构性

Challenges due to heterogeneity

由于异构性而造成的挑战:

- Hard to provide predictable and consistent services
 难以提供可预测的和一致的服务
- Hard to achieve fair sharing among users

 _{难以实现用户之间的公平共享}

Nevertheless, we still want to achieve...

Objectives

目标

Able to run everything at scale

容错

Fault tolerance

可预测的服务

- Predictable services
- High utilization 高利用率

具有高二分带宽的网络

Network with high bisection bandwidth

With the minimum human intervention!

最少的人为干预

Credits

Some slides are adapted from course slides of COMP 4651 in HKUST