Pabna University of Science and Technology

Faculty of Engineering and Technology

Department of Information and Communication Engineering

Assignment on: Exact Test for 2×2 Tables and Test for r×c Tables.

Course Code: STAT-2201

Course title: Engineering Statistics

Submitted By:

Name: Mst. Khaleda Khatun

Roll: 220640

Session:2021-2022 2nd Year 2ndsemester

Department of Information and Communication Engineering,

PUST.

Submitted To:

Name: Dr.Md.Sarwar Hosain

Associate Professor

Department of Information and

Communication Engineerng

Pabna University of Science and

Technoloy,PUST Pabna,Bangladesh

Date of Submission: 23/04/2025

Name of Assignment: Exact Test for 2×2 Tables and Test for rxc Tables.

(i) For Exact Test for 2×2 Tables (Fisher's Exact Test):

To determine if there is a significant association between two categorical variables arranged in a 2×2 format. Fisher's Exact Test is used when we have a **2×2 contingency table** with small sample sizes. It is especially useful when the expected frequencies in the cells are very small (usually less than 5), where the chi-square test may not be valid.

For example:

	Outcome 1	Outcome 2		Total
Group A	a	b	a + b	
Group B	С	d	c + d	
Total	a + c	b + d	Ν	

Fisher's Exact Test calculates the exact probability of getting the observed arrangement of data, or one more extreme, assuming the null hypothesis (no association) is true. It uses the hypergeometric distribution to compute the p-value.

- If the p-value is less than the significance level (e.g., 0.05), we reject the null hypothesis and conclude that there is a significant association.
- If the p-value is greater, we fail to reject the null hypothesis.

(ii) Test for rxc Tables (Chi-square Test of Independence)

To test whether two categorical variables are independent . The Chi-square Test of Independence is used for larger tables (r×c) where $r \ge 2$ and $c \ge 2$. It is applicable when sample sizes are sufficiently large and expected frequencies are generally 5 or more in each cell.

Procedure

1. Calculate expected frequencies for each cell:

Eij =(Row Total)i *(Column Total)j/Grand Total

2. Compute the Chi-square statistic:

$$\chi 2=\sum (Oij-Eij)^2/Eij$$

3. Degrees of freedom:

$$(r-1)(c-1)$$

4. Compare the calculated Chi-square value with the critical value or compute the p-value.

Comparison Table:

Feature	Fisher's Exact Test (2×2)	Chi-square Test (r×c)
Table Type	2×2 only	Any size (r×c)
Sample Size	Small	Large
Statistical Basis	Exact (Hypergeometric)	Approximation
Output	Exact p-value	Approximate p-value
Use Case	Low expected frequencies	High expected frequencies