

高等数学笔记

奇峰

之前

目录

第一章	重 函数	极限 连续	1
I.	函数的	的性态	1
	i.	有界性的判定	1
	ii.	导函数、原函数的奇偶性与周期性	1
II.	极限的	的概念	1
III	. 重点 -	- 函数极限的计算	2
	i.	0/0 形	2
	ii.	∞/∞ 形	3
附录	补充结论		4

第一章

函数 极限 连续

I. 函数的性态

i. 有界性的判定

- $\ddot{\pi} \lim_{x \to x_0} f(x) = A$, 则存在 $\delta > 0$, $\ddot{\pi} 0 < |x x_0| < \delta$ 时, f(x) 有界;
- 若 f(x) 在 [a,b] 连续,则其在 [a,b] 有界;
- 若 f(x) 在 (a,b) 连续,且 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 均存在,则其在 (a,b) 有界;
- f'(x) 在有限区间 有界 \Rightarrow f(x) 在该区间有界。

ii. 导函数、原函数的奇偶性与周期性

导函数的奇偶性与周期性

- 可导奇函数的导函数为偶函数;
- 可导偶函数的导函数为奇函数;
- 可导周期函数的导函数为周期函数;

原函数的奇偶性与周期性

- 连续奇函数的原函数均为偶函数;
- 连续偶函数的原函数仅有一个为奇函数,即 C=0 时;
- 周期函数的原函数为周期函数 $\Rightarrow \int_0^T f(t) dt = 0.$

II. 极限的概念

讨论数列最值,将其拆分为前 N 个与后无穷个,前者求最值,后者利用极限定义可知其接近极限值。

讨论同时包含 $\sin(x_n),\cos(x_n)$ 的抽象数列时,可以考虑令 $x_n=\begin{cases}\pi/2,&2i+1\\-\pi/2,&2i\end{cases}$,利用 \sin,\cos 奇偶性的不同。

III. 重点 - 函数极限的计算

i. 0/0 形

洛必达法则

若 f(x), g(x)

- $\lim f(x) = \lim g(x) = 0/\infty;$ 可以推广为 $\frac{\blacksquare}{\infty};$
- f(x), g(x) 在 x_0 某去心邻域内可导,且 $g'(x) \neq 0$; 此处注意, $\begin{cases} n \text{阶可导} & \Rightarrow \text{导} n - 1 \text{次} + \text{导数定义} \\ n \text{阶连续导数} & \Rightarrow \text{导} n \text{次} \end{cases}$
- $\frac{\lim f'(x)}{\lim g'(x)} = A(\vec{\mathbb{X}}\infty),$

则
$$\frac{\lim f(x)}{\lim g(x)} = A($$
或 $\infty)$.

等价代换

当 $x \to 0$ 时,有

- $\sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x 1 \sim \ln(1+x) \sim x$;
- $e^x 1 x \sim x \ln(1+x) \sim 1 \cos x \sim \frac{x^2}{2}$;
- $(1+x)^{\alpha}-1\sim \alpha x$;
- $x \sin x \sim \arcsin x x \sim \frac{x^3}{6}$;
- $\tan x x \sim x \arctan x \sim \frac{x^3}{3}$;
- $\tan x \sin x \sim \arcsin x \arctan x \sim \frac{x^3}{2}$; 对于以上等价无穷小,有
- i. 可变量代换,如 sin□~□, tan□~□,···
- ii. $x \to 0$ 时, $a^x 1 = e^{x \ln a} 1 \sim x \ln a$, $\log_a(1+x) = \frac{\ln(x+1)}{\ln a} \sim \frac{x}{\ln a}$;

iii. 若 $x \rightarrow a$,可以令 $t = x - a \rightarrow 0$.

泰勒公式

•
$$e^x = \sum_{i=0}^n \frac{x^n}{n!} + o(x^n);$$

•
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$
;

•
$$\sin x = x - \frac{x^3}{6} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$
;

•
$$\arcsin x = x + \frac{x^3}{6} + o(x^3)$$
;

•
$$\tan x = x + \frac{x^3}{3} + o(x^3)$$
;

•
$$\arctan x = x - \frac{x^3}{3} + o(x^3)$$
;

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n);$$

•
$$\ln(1-x) = -(x + \frac{x^2}{2} + \frac{x^3}{3}) + o(x^3);$$

•
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} C_{\alpha}^{k} x^{k} + o(x^{n})$$
, 其中 $C_{\alpha}^{k} = \frac{\prod_{i=0}^{k-1} (\alpha - i)}{k!}$
如, $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + o(x^{2})$;

•
$$\frac{1}{1-x} = \sum_{i=0}^{n} x^i + o(x^n)$$
;

•
$$\frac{1}{1+x} = \sum_{i=0}^{n} (-1)^{i} x^{i} + o(x^{n});$$

泰勒公式求极限时,

- 分子阶数不小于分母阶数;
- 加减不抵消,"齐头并进";
- 可推广为 $\square \rightarrow 0$.

ii. ∞/∞ 形

主要方法有

- 洛必达;
- 抓大头,即每个因式保留高阶无穷大; $x\to 0 \Rightarrow \ln^{\alpha}(x) \ll x^{\beta} \ll a^{x} \ll x^{x}, \ \mbox{其中} \ \alpha,\beta>0, a>1.$

iii. $\infty-\infty$ 形

主要方法有

- 通分(有分式时);
- 有理化 (有根号时);
- 倒代换,即令 $t = \frac{1}{x}$.

附录 补充结论

一类无穷阶可导的抽象函数

若 f(x) 满足

- $f(x) = \int_0^x f(x) dx + \Delta;$
- $f'(x) = f(x) + \Delta;$
- $f''(x) = f'(x) + \Delta$,

其中 Δ 无穷阶可导,则 f(x) 无穷阶可导。