

The Reflection Method for the Numerical Solution of Linear Systems

Numerical Methods (MA2003)

Under the Guidance of Prof(Dr). Nachiketa Mishra

Group 11:

ME22B1043 T VENUMADHAVA REDDY

ME22B1044 K SUSMITH

Table of Contents

- **▶** Introduction
- **▶** Problem Definition of the paper
- **▶** Motivation Of The Paper
- **▶** Brief Overview Of The Mathematical Methods
- **▶** Objectives Of This Research

- This paper discusses Cimmino's iterative method for the solution of the system $A\mathbf{x} = \mathbf{b}$, of n linear equations on \mathbb{R}^n , where A is a real $n \times n$ sparse matrix that is initially supposed to be invertible and \mathbf{x} , \mathbf{b} belong to \mathbb{R}^n are column vectors.
- Cimmino's observation states that 'Given two lines on a plane intersecting at Z and a
 point P ≠ Z, the mirror points of P with respect to the lines lie on the circle of center Z
 and radius dist(P, Z).'

The Problem Definition of the Paper

The problem definition presented in the paper focuses on Cimmino's Reflection Method for solving linear systems numerically.

- Initial Point and Reflections: The method begins with an arbitrary point in \mathbb{R}^n and reflects it across the hyperplanes defined by the linear system.
- **Geometrical Approach:** It uses geometric reflections to converge to the solution, which is the centroid of points on a spherical surface centered at the solution point. The centroid of the reflected points is used as the starting point for the next iteration.
- Convergence and Error Estimates: The paper provides error estimates for convergence at each iteration and shows that the distance to the solution decreases with each iteration.
- Applications and Extensions: The reflection method applies to large linear systems and has been adapted for parallel computing and image reconstruction in tomography.

Motivation of the Paper

- The main motivation of the paper is to solve a system of linear equations using various approaches such as the geometrical approach, numerical approach, and iterative method.
- The paper demonstrates the interaction of linear algebra in mathematical fields and how it is widely used in the geometric field as well.
- The study aims to offer a theoretical framework for understanding and analyzing error bounds associated with Cimmino's method.

Brief Overview Of The Mathematical Methods Cimmino's Method for \mathbb{R}^2 (n = 2)

Consider, in the plane \mathbb{R}^2 , the straight line r of equation

$$\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle = b_i, \quad i = 1, 2,$$
 (1)

Let's fix $P^{(0)} = P^{(0)}(\mathbf{x}^{(0)}) = P^{(0)}(\mathbf{x}_1^{(0)}, \mathbf{x}_2^{(0)})$ such that $P^{(0)} \notin r$.

Orthogonal projection of
$$P^{(0)}$$
 onto r , $R = \mathbf{x}^{(0)} + \frac{b - \langle \mathbf{a}, \mathbf{x}^{(0)} \rangle}{\|\mathbf{a}\|^2} \mathbf{a}$,

Symmetric point of $P^{(0)}$ w.r.to R , $Q = \mathbf{x}^{(0)} + 2\frac{b - \langle \mathbf{a}, \mathbf{x}^{(0)} \rangle}{\|\mathbf{a}\|^2} \mathbf{a}$.

Brief Overview Of The Mathematical Methods Cimmino's Method for \mathbb{R}^2 (n =2)

Given the initial approximation $P^{(0)} = P^{(0)}(\mathbf{x}^{(0)})$, then $P^{(1)} = P^{(1)}(\mathbf{x}^{(1)})$ is the centroid of unit masses placed at $Q^{(i)}$, i = 1, 2, of $P^{(0)}$ with respect to the straight line $\langle a_i, \mathbf{x} \rangle = b_i$:

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \sum_{i=1}^{2} \frac{b_i - \langle \mathbf{a}_i, \mathbf{x}^{(0)} \rangle}{\|\mathbf{a}_i\|^2} \mathbf{a}_i.$$
(3)

This will be taken as the starting point of the next iteration, and so on. At step $\nu+1$,

$$\mathbf{x}^{(\nu+1)} = \mathbf{x}^{(\nu)} + \sum_{i=1}^{2} \frac{b_i - \langle \mathbf{a}_i, \mathbf{x}^{(\nu)} \rangle}{\|\mathbf{a}_i\|^2} \mathbf{a}_i. \tag{4}$$

Brief Overview Of The Mathematical Methods Cimmino's Method for \mathbb{R}^2 (n =2)

• This is where we can find Cimmino's geometrical observation, which is

$$\operatorname{dist}(Q^{(i)}, Z) = \operatorname{dist}(P^{(0)}, Z). \tag{5}$$

- Considering the triangles $\triangle ZP^{(0)}R^{(1)}$ and $\triangle ZR^{(0)}Q^{(1)}$ which follow ASA congruency rule, which gives $ZP^{(0)}=ZQ^{(1)}$. This can also be applied to the other reflective point $Q^{(2)}$.
- Therefore we get, $ZP^{(0)} = ZQ^{(1)} = ZQ^{(2)}$, which means the points $P^{(0)}$, $Q^{(1)}$, and $Q^{(2)}$ lie on a circle with the center as Z and a radius of dist $(Z, P^{(0)})$.

Brief Overview Of The Mathematical Methods Cimmino's Method for \mathbb{R}^2 (n =2)

图: Reflection method for n = 2.

• And that was the proof of Cimmino's Observation.

Brief Overview Of The Mathematical MethodsError bounds

Let's indicate $Z=Z(\xi_1,\xi_2)$ the point which solve our system Ax=b. And fix a point $P^{(0)} \neq Z.Using\langle a_i,\xi\rangle = b_i, i=1,2$, we define,

$$\eta_i = \langle a_i, x^{(0)} \rangle - b_i = \langle a_i, x^{(0)} - \xi \rangle \tag{6}$$

Now,

$$x^{(1)} = x^{(0)} - \sum_{i=1}^{2} \frac{\langle a_i, x^{(0)} - \xi \rangle}{||a_i||^2} a_i.$$
 (7)

observe,

$$\|\mathbf{x}^{(1)} - \xi\|^2 = \|\mathbf{x}^{(0)} - \xi\|^2 - 2\sum_{i=1}^2 \frac{\eta_i^2}{|a_i|^2} + \left\|\sum_{i=1}^2 \frac{1}{\|a_i\|^2} \cdot \eta_i \cdot a_i\right\|^2$$
 (8)

Brief Overview Of The Mathematical MethodsError Bounds

$$\left\| \sum_{i=1}^{2} p_{i} \eta_{i} a_{i} \right\|^{2} \leq \left(\sum_{i=1}^{2} p_{i} \eta_{i}^{2} \right) \cdot \left(\sum_{i=1}^{2} p_{i} \|a_{i}\|^{2} \right), \tag{9}$$

where, $p_i = rac{1}{\|a_i\|^2}$ Our Eq (8) follows as,

$$\|x^{(1)} - \xi\| \le \|x^{(0)} - \xi\| \tag{10}$$

Now, iterating, we obtain a sequence $P^{(\nu)}$ and corresponding estimates

$$\|x^{(\nu+1)} - \xi\| \le \|x^{(\nu)} - \xi\| \tag{11}$$

there is equality in Eq (11) iff $x^{(\nu)}$ solves the given system, and hence $x^{(\nu)}=\xi$ and also $x^{(\nu+1)}=x^{(\nu)}$ for any $\nu\in\mathbb{N}$.

Objectives of This Project

- Here we use linear algebra in a well-versed manner for getting the reflections and orthogonal projections.
- Reflection Algorithm: Introduces Cimmino's reflection algorithm for solving linear systems using geometric reflections.
- In this paper, Cimmino's reflection method is used for solving the system of linear equations for N=2.
- We also discuss how linear algebra can interact fruitfully not only with algebra, geometry, and numerical analysis but also with probability theory.

The Reflection Method for the Numerical Solution of Linear Systems Thank You