Indução Electromagnética

- 1. Uma espira circular está localizada numa região em que existe um campo magnético constante. De que forma se pode induzir uma corrente eléctrica na espira?
- Os dois circuitos, ilustrados na figura, são formados por uma barra condutora que desliza com velocidade constante, sobre um fio condutor em forma de U. O campo magnético a que os dois circuitos estão sujeitos é uniforme. A corrente induzida no circuito 1 é no sentido anti-horário.

- a) Qual o sentido do campo magnético a que os circuitos estão sujeitos? (Direcção perpendicular ao plano e sentido "para dentro")
- b) Qual o sentido da corrente induzida no circuito 2? (anti-horário)
- c) A fem induzida no circuito 1 é maior, menor ou igual que a fem induzida no circuito 2? (\$\epsilon_1 > \epsilon_2\end{a})
- 3. Na figura o fluxo do campo magnético na espira aumenta de acordo com a equação $\phi_B=6.0t^2+7.0t~(\phi_B~{\rm em}~mWb,t~{\rm em}~s)$.

- a) Calcule a força electromotriz induzida na espira no instante t=2.0s. ($|\varepsilon|=31 \text{ mV}$)
- b) Indique o sentido da corrente na resistência. (horário)
- c) Calcule a corrente que percorre a espira nesse instante sabendo que R=60 Ω . (I=0.5 mA)
- 4. Uma espira com $12\mathrm{cm}$ de raio e uma resistência de 85Ω é submetida a um campo magnético uniforme B cujo módulo varia de acordo com a figura. O plano da espira é perpendicular a B. Determine a força electromotriz induzida na espira durante os intervalos de tempo:

- a) 0 < t < 2.0s; b) 2.0s < t < 4.0s; c) 4.0s < t < 6.0s. [a) $|\epsilon| = 11.3 \text{ mV}$; b) $|\epsilon| = 0$; c) $|\epsilon| = 11.3 \text{ mV}$]
- 5. Faz-se um enrolamento com 200 voltas de fio em torno de uma moldura de secção quadrada com $18~{\rm cm}$ de lado (ver figura). A resistência total do enrolamento é 2Ω . Um campo magnético uniforme é aplicado perpendicularmente à secção da espira.

- a) Calcule a força electromotriz induzida quando o campo magnético varia linearmente deste θ até $0.50 {
 m Wb/m^2}$ em $0.80 {
 m s.}$ ($|\epsilon|=4 {
 m V}$)
- b) Qual é a intensidade da corrente eléctrica induzida no enrolamento quando o campo varia? (I= 2
 A)

DFUM 2010/2011 1

6. As bobines da figura são co-axiais. A bobine 1 tem 220 espiras/cm e 1.6 cm de raio; a bobine 2, com 120 espiras e 1.8 cm de raio tem uma resistência de 5.3Ω . A intensidade de corrente eléctrica na bobine interior diminui desde um valor inicial de 1.5A até se

anular ao fim de 25ms. Calcule a corrente eléctrica induzida na bobine exterior durante esse intervalo de tempo. (**I=0.03 A**)

7. Na figura, uma barra condutora é forçada a mover-se com velocidade constante sobre dois carris metálicos. O campo magnético, de magnitude igual a 0.350 T, está dirigido numa direcção perpendicular ao plano da folha e com o sentido "para fora".

- a) Se os carris estiverem separados por uma distância L=25.0 cm e a barra deslizar com uma velocidade de 55.0 cm/s, qual a *fem* induzida no circuito? (|ɛ|=0.048 v)
- b) Se a barra tiver uma resistência de 18.0 Ω e os carris tiverem uma resistência desprezável, qual a corrente na barra? (I=2.67 mA)
- c) Qual a taxa de transferência de energia do circuito? (P=128.5×10-6 W)
- 8. Uma espira plana de área $8.0~\rm cm^2$ é perpendicular ao campo magnético que aumenta gradualmente desde $0.50~\rm T$ até $2.50~\rm T$ em $1.0~\rm s$. Calcule a intensidade decorrente na espira, sabendo que a sua resistência é de 2.0Ω . (I=8x10⁻⁴A)
- 9. A espira de 10Ω de resistência mostrada na figura está colocada num campo magnético uniforme de $0.10\mathrm{T}$ que actua perpendicularmente a plano da espira. A espira, que é articulada em cada vértice é puxada, como se mostra na figura, até que a separação entre os pontos A e B seja de $3.0\mathrm{m}$. Se o processo demorar $0.10\mathrm{s}$, qual é a intensidade média da corrente induzida na espira? (I= $0.12\,\mathrm{A}$)

DFUM 2010/2011 2