1. (15 pts) Una partición de un conjunto X es una colección de subconjuntos disjuntos (dos a dos) cuya unión es X. En particular, cada partición de X es una sub-base para una topología sobre X. Pruebe que si S es una partición de X que contiene exactamente 4 subconjuntos, entonces la topología generada por S tiene exactamente 12 abiertos.

@Uniones de tamaso 3:
7. } P2, P3 3 8. 2 P1, P3, P4 3 Q & P1, P2, P43 10. } 12, P4, P
@ 11, 2 P13 12, 2 P2 3 13, 2 P3 3 14, 2 P43
16. ×
Note que entores hay 16 abiertos.
2. (15 pts) Sea (X, \mathcal{T}) un espacio topológico. Pruebe que si $\{x_0\} \in \mathcal{T}$ para algún $x_0 \in X$, entonces $\{x_0\} \in \mathcal{B}$ para cada base \mathcal{B} que genera la topología \mathcal{T} .
Si {Xo} E7 pura algús Xo 6X,
Suporganos que {Xo} & B genera la topologia
7 como la colección de uniones arbitraricas
de elevertes de B (lene 13.1), pero note
que dado {x,} & B, es inposible que
[xo] e ? (=) (=). [vego {xo} e D.
3. (20 pts) Denote por \mathcal{T}_{orden} la topología del orden en \mathbb{Z} con respecto al orden usual. Pruebe que \mathcal{T}_{orden} es la topología discreta. Ayuda: Es suficiente probar que los subsconjuntos $\{n\}$ son abiertos en la topología del orden. ¿Por qué?
Emperendo por señalar que la buse pura
Emperense por Señalar que la brese preva ona topologia de order es el conjunto de intervalos de la forma (a,b) para
intervolos de (a forma (a,b) para
$a_{1}b \in \mathcal{U}$.
Note que como a, b 62/ poderos
feferirles de la Signiate menera:

9 = V - 1, b = V + 1 pura walquier $V \in \mathbb{Z}_n$ esto as: $(V - 1, V + 1) = \{V\}$

Ahora como hemos probado, £ NZ E B. TVER.

Apliando el lena 13.1, Jea que es claro
que la topología generada a partir de B

haundo una coleción de uniones arbitrarias

de elenados de la base una a ser la

topología discreta. (esto por que a parir de

los elevatos de la forma 202, VEZ y

Uniones arbitrarias quedo generarlo todo).