LAB 9: DIGITAL-TO-ANALOG CONVERTER

1. Goals

- Understand the working principle of basic digital-to-analog converters (DAC).
- Know to build up and analyze basic digital-to-analog converters.

2. Exercises

Exercise 1. Build up and analyze the working principle of a 3-bit binary weighted resistor DAC shown in Figure 1.

Figure 1. Circuit diagram of a 3-bit binary weighted resistor DAC.

Requirements:

- Implement the circuit in Figure 1 on a breadboard.
- Set $V_{ref} = 5 \text{ V}$ and bias the op-amp with $V^+ = 15 \text{ V}$ and $V^- = -15 \text{ V}$.
- Use a multimeter to measure the output voltage for each combination of the inputs $(S_1S_2S_3 = 000 \sim 111)$.
- Record the measurements and compare them with the theory.

Exercise 2. Build up and analyze the working principle of a 4-bit R-2R ladder DAC shown in Figure 2. Note: $R_F = R = 10k\Omega$.

Figure 2. Circuit diagram of a 4-bit R-2R ladder DAC.

Requirements:

- Implement the circuit in Figure 2 on a breadboard.
- Set $V_{ref} = 5 \text{ V}$ and bias the op-amp with $V^+ = 15 \text{ V}$ and $V^- = -15 \text{ V}$.
- Use a multimeter to measure the output voltage corresponding to the different combinations of the input $(S_1S_2S_3S_4 = 0000 \sim 1111)$.
- Record the measurements and compare them with the theory.

Components and devices needed for the lab:

Components and Devices	Description	Amount
Op-amp	IC 741	2
Resistor	10 kΩ	Few
Switch	3-pin	4
DC power supply	Aditeg PS-3030DD	1
Breadboard		1
Wire		Few
Multimeter		1

→ The datasheet of LM741 can be found here.

LM741 PINOUT