Khôlles : Révisions d'Algèbre Linéaire

- **Septembre 2023 -**

Sommaire

1	1 Questions de cours - Tout groupe		1
	1.1 Projection et décomposition de l'espace associée.(démo)		1
	1.2 Caractérisation de l'injectivité par le noyau.(démo)		2
	1.3 Théorème du rang. (démo)		2
	1.4 Si une application linéaire est bijective, sa réciproque est linéaire. (dém		3
	1.5 Si une somme de n sous-espaces est directe, la décomposition d'un vec	cteur est unique (démo)	3
2	2 Questions de cours - Groupe B et C		4
	2.1 Une application linéaire est uniquement déterminée par l'image d'une		4
	2.2 Le noyau d'une forme linéaire non nulle est un hyperplan. (démo, dim		6
	2.3 L'image directe et l'image réciproque de sev par une application linéaire spé)		c
	2.4 Déterminant d'une matrice triangulaire par blocs. (démo)		7
	2.4 Determinant d'une matrice triangulaire par blocs. (deno)		8
	2.6 Majoration de la dimension d'une somme de sous-espaces vectoriels (C
	des dimensions. (démo)		9
3	3 Questions de cours - Groupe C	1	
	3.1 Deux matrices sont équivalentes si et seulement si elles ont le même ra		
	3.2 Formule de changement de base pour les matrices (démo, pas refait en	spé) 1	1
4 Exercices - Tout groupe		1	2
	4.1 Exercice 1		2
	4.2 Exercice 2		3
	4.3 Exercice 3		
	4.4 Exercice 4		
	4.5 Exercice 5		6
5	5 Exercices - Groupe B et C	1	
	5.1 Exercice 6		
	5.2 Exercice 7		
	5.3 Exercice 8		
	5.4 Exercice 9		
	5.5 Exercice 10		
	5.6 Exercise 11		
	5.7 Exercice 12		
6 Exercices - Groupe C		2	
	6.1 Exercice 13		
	6.2 Exercice 14		4
	6.3 Exercice 15		
	6.4 Exercice 17		
	6.5 Exercice 18		
	6.6 Exercice 19		
	6.7 Exercice 20		9

1 Questions de cours - Tout groupe

1.1 Projection et décomposition de l'espace associée.(démo)

Définition: Projection

Soit E, \mathbb{K} -EV, soit $\mathfrak{p} \in \mathcal{L}(\mathsf{E})$.

On dit que p est une projection si $p^2 = p$.

Proposition Décomposition de l'espace associé à une projection

Soit E, K-EV, soit p une projection de E.

Alors $E = Im(p) \oplus Ker(p)$

Preuve:

Montrons tout d'abord que $Ker(p) \cap Im(p) = \{0\}$: Soit $x \in Ker(p) \cap Im(p)$.

Alors $\exists z \in E$, p(z) = x. D'autre part, p(x) = 0, donc $p(x) = p^2(z) = 0$. Or, par définition d'un projecteur, $p^2(z) = p(z) \Rightarrow x = p(z) = 0$. D'où $Ker(p) \cap Im(p) = \{0\}$ (car 0 est bien dans l'intersection).

Par Analyse-Synthèse, montrons que $E = Im(p) \oplus Ker(p)$:

Analyse:

Soit $x \in E$, soient $x_K \in Ker(p)$ et $x_I \in Im(p)$ qui conviennent (i.e $x = x_K + x_I$).

Alors, $p(x) = p(x_K + x_I) = p(x_K) + p(x_I)$ par linéarité de p. Or, par définition de $x_K : p(x_K) = 0$. Donc $p(x) = p(x_I)$. Or, $x_I \in Im(p) \Rightarrow \exists z \in E$, $x_I = p^2(z)$. Donc $p(x) = p(x_I) = p^2(z) = p(z) = x_I$. Donc $x_I = p(x)$.

Nous avons alors $x_K = x - x_I = x - p(x)$.

Synthèse:

Posons alors pour tout $x \in E$: $x_I = p(x)$ et $x_K = x - p(x)$:

- $x_I \in Im(p)$: Car par définition, $x_I = p(x)$.
- $x_K \in Ker(p) : p(x_K) = p(x p(x)) = p(x) p^2(x) = 0$
- $x = x_I + x_K$ par construction.

D'où $E = Im(p) \oplus Ker(p)$

 \mathbf{MPI}^{\star} 1

1.2 Caractérisation de l'injectivité par le noyau.(démo)

Proposition

Soient E, F, deux \mathbb{K} -EV, soit $\varphi \in \mathcal{L}(E, F)$.

Alors $[\varphi \text{ est Injective}] \iff [Ker(\varphi) = \{0\}]$

Preuve:

Supposons premièrement φ Injective.

Alors, 0 ne possède qu'un unique antécédent, Or $\varphi(0) = 0$. Donc Ker $(\varphi) = \{0\}$.

Réciproquement, si $\text{Ker}(\phi) = \{0\}$, alors soient $x_1, x_2 \in E$ tels que $\phi(x_1) = \phi(x_2)$. Donc $\phi(x_1) - \phi(x_2) = \phi(x_1 - x_2) = 0$ par linéarité de ϕ .

Or, $Ker(\varphi) = \{0\}$, $donc x_1 - x_2 = 0 \Rightarrow x_1 = x_2 \Rightarrow \varphi$ est Injective.

1.3 Théorème du rang. (démo)

Théorème du Rang

Soient E, F, deux \mathbb{K} -EV, dont E de dimension FINIE. Soit $\mathfrak{u} \in \mathcal{L}(E,F)$.

$$dim(E) = dim(Ker(u)) + rg(u)$$

Preuve :

Soit S, supplémentaire de Ker(u) (Qui existe car nous sommes en dimension finie). Posons alors l'application :

$$\tilde{\mathbf{u}} = \mathbf{u}_{|S} : \begin{cases} S \to Im(\mathbf{u}) \\ x \mapsto \mathbf{u}(x) \end{cases}$$

Montrons que cette application \tilde{u} est une Bijection : \tilde{u} reste linéaire par linéarité de u.

Soit $x \in \text{Ker}(\tilde{\mathfrak{u}})$. Alors, d'une part, $x \in S$ et d'autre part, $\mathfrak{u}(x) = 0 \Rightarrow x \in \text{Ker}(\mathfrak{u})$. Donc $x \in S \cap \text{Ker}(\mathfrak{u}) = \{0\}$ par définition. Donc x = 0: $\tilde{\mathfrak{u}}$ est Injective.

Montrons que \tilde{u} est surjective : (Le but étant de montrer que dim(S) = rg(u), nous ne pouvons pas affirmer que Injective \iff Surjective en dimension finie).

Soit $y \in Im(u)$. Alors, $\exists x \in E$, u(x) = y. Or, S est un supplémentaire de Ker(u), donc $E = Ker(u) \oplus S : x = x_S + x_K$ pour $x_S \in S$ et $x_K \in Ker(u)$.

Ainsi, $y = u(x) = u(x_S + x_K) = u(x_S) + u(x_K) = u(x_S) = \tilde{u}(x_S)$: Pour tout $y \in Im(u)$, $\exists x_S \in S$, $\tilde{u}(x_S) = y : \tilde{u}$ est Surjective.

D'où la bijectivité de \tilde{u} . Nous avons alors que $\dim(S) = \operatorname{rg}(u)$. Or, S est un supplémentaire de $\operatorname{Ker}(u)$:

$$\dim(E) = \dim(\operatorname{Ker}(\mathfrak{u})) + \dim(S) = \dim(\operatorname{Ker}(\mathfrak{u})) + \operatorname{rg}(\mathfrak{u})$$

1.4 Si une application linéaire est bijective, sa réciproque est linéaire. (démo, pas refait en spé)

Preuve :

Soient E, F, deux \mathbb{K} -EV. Soit $\mathfrak{u} \in GL(E,F)$.

Montrons que $\forall x, y \in F, \forall \lambda, \mu \in \mathbb{K}, \ u^{-1}(\lambda x + \mu y) = \lambda u^{-1}(x) + \mu u^{-1}(y).$

Soient donc $x, y \in F$ et $\lambda, \mu \in K$ Par bijectivité de μ , $\exists a, b \in E$, $x = \mu(a)$ et $y = \mu(b)$. Donc :

$$\begin{split} u^{-1}(\lambda x + \mu y) &= u^{-1}(\lambda u(a) + \mu u(b)) \\ &= u^{-1}(u(\lambda a + \mu b)) \\ &= \lambda a + \mu b \\ &= \lambda u^{-1}(x) + \mu u^{-1}(y) \end{split}$$

par définition de la réciproque Par définition de α et b

Par linéarité de u

D'où la linéarité de la réciproque.

1.5 Si une somme de n sous-espaces est directe, la décomposition d'un vecteur est unique (démo)

Définition: Somme Directe de n sous-espaces vectoriels

Soient $E_1, ..., E_n$, $n \mathbb{K}$ -EV.

On dit que la somme de ces espaces est directe (et on note alors $\bigoplus_{i=1}^{n} E_i$) si :

$$\forall (x_1, \dots, x_n) \in E_1 \times \dots \times E_n, \ x_1 + \dots + x_n = 0 \Rightarrow x_1 = \dots = x_n = 0$$

Proposition

Soient $E_1, ..., E_n$, $n \mathbb{K}$ -EV.

Si la somme de ces espaces est directe, alors $\forall x \in E = \bigoplus_{i=1}^n E_i, \ \exists ! (x_1, \dots, x_n) \in E_1 \times \dots \times E_n, \ x = x_1 + \dots + x_n$

Preuve:

Soit
$$x \in E = \bigoplus_{i=1}^n E_i$$
. Soient (x_1, \dots, x_n) et $(y_1, \dots, y_n) \in E_1 \times \dots \times E_n$ tels que $x = x_1 + \dots + x_n = y_1 + \dots + y_n$.

Nous avons x - x = 0, donc $x_1 - y_1 + \cdots + x_n - y_n = 0$.

Or, les vecteurs $x_i - y_i \in E_i$ car E_i est un espace vectoriel pour tout $i \in [1;n]$.

Ainsi, par définition de la somme directe, $x_1 - y_1 = \cdots = x_n - y_n = 0$, d'où $x_1 = y_1, \dots, x_n = y_n$: La décomposition est unique.

Questions de cours - Groupe B et C 2

Une application linéaire est uniquement déterminée par l'image d'une base. (démo, pas refait en spé)

Preuve:

Soient E, F, deux \mathbb{K} -EV. Soit $\mathbb{B}=(e_1,\ldots,e_n)$ base de E et $\mathbb{F}=(f_1,\ldots,f_n)$ famille d'éléments de F (non forcément distincts).

Montrons qu'il existe une unique application linéaire u telle que $\forall i \in [1;n]$, $u(e_i) = f_i$.

Soient u et v, deux application envoyant \mathcal{B} sur \mathcal{F} . Soit $x \in E$.

Posons $x = \sum_{i=1}^{n} x_i e_i$ la décomposition de x dans \mathcal{B} . Alors :

$$u(x) = u\left(\sum_{i=1}^{n} x_i e_i\right)$$

$$= \sum_{i=1}^{n} x_i u(e_i)$$

$$= \sum_{i=1}^{n} x_i f_i$$

$$= \sum_{i=1}^{n} x_i v(e_i)$$

$$= v\left(\sum_{i=1}^{n} x_i e_i\right)$$

$$= v(x)$$

Donc u = v, d'où l'unicité.

Donc u = v, d'ou i uniche. L'existence est immédiate en posant u: $\begin{cases} E \to F \\ x = \sum_{i=1}^{n} x_i e_i \mapsto \sum_{i=1}^{n} x_i f_i \end{cases}$

Montrons que u est Linéaire et convient :

 $\forall i \in [1, n], \ e_i = 1 \cdot e_i$ et cette décomposition est unique. Ainsi : $u(e_i) = f_i : u$ Convient.

Soient
$$x = \sum_{i=1}^{n} x_i, y = \sum_{i=1}^{n} y_i \in E, \ \lambda, \mu \in \mathbb{K}$$
:

$$u(\lambda x + \mu y) = u \left(\sum_{i=1}^{n} (\lambda x_i + \mu y_i) e_i \right)$$
$$= \sum_{i=1}^{n} (\lambda x_i + \mu y_i) f_i$$
$$= \lambda \sum_{i=1}^{n} x_i f_i + \mu \sum_{i=1}^{n} y_i f_i$$
$$= \lambda u(x) + \mu u(y)$$

MPI* 4 u est alors Linéaire et Convient : Une application linéaire est uniquement déterminée par l'image d'une base.

2.2 Le noyau d'une forme linéaire non nulle est un hyperplan. (démo, dim finie puis quelconque)

Preuve :

Soit $\varphi \in \mathcal{L}(E, \mathbb{K})$, forme Linéaire non-nulle avec E de dimension finie.

 φ étant non-nulle : $\exists x_0 \in E, \ \varphi(x_0) = \lambda \neq 0$. Posons de plus $H = \text{Ker}(\varphi)$, ainsi que $\Delta = \text{Vect}(x_0)$.

Soit
$$x \in H \cap \Delta$$
. Alors $\varphi(x) = 0$ et $x = \mu x_0$, donc $\varphi(x) = \mu \varphi(x_0) \mu \lambda = 0 \Rightarrow \mu = 0 \Rightarrow x = 0$.

Par Analyse-Synthèse : Soit $x \in E$ tel que $x = x_H + \mu x_0$ avec $x_H \in H$.

Alors $\phi(x) = \mu \phi(x_0)$. Nous avons alors $\mu = \frac{\phi(x)}{\phi(x_0)}$ (le dénominateur est non-nul).

Ainsi,
$$x_H = x - \frac{\varphi(x)}{\varphi(x_0)} x_0$$
.

Synthèse : Posons alors pour tout $x \in E$, $\mu = \frac{\varphi(x)}{\varphi(x_0)}$ et $x_H = x - \frac{\varphi(x)}{\varphi(x_0)}x_0$:

•
$$x_H \in H : \varphi(x_H) = \varphi(x) - \frac{\varphi(x)}{\varphi(x_0)} \varphi(x_0) = 0$$

- $\mu x_0 \in \Delta$ de manière immédiate
- $x = x_H + \mu x_0$ par construction.

D'où $E = H \oplus \Delta : H = Ker(\varphi)$ est bien un Hyperplan.

2.3 L'image directe et l'image réciproque de sev par une application linéaire sont des sev. (démo, pas refait en spé)

Preuve:

Soient E, F, deux \mathbb{K} -EV. Soient $E' \subset E$ et $F' \subset F$, deux Sous-espaces vectoriels. Soit $\mathfrak{u} \in \mathcal{L}(E,F)$. Posons $D = \mathfrak{u}(E')$ et $R = \mathfrak{u}^{-1}(F')$.

Nous avons bien $D \subset F$ et $R \subset E$, avec D et R non-vides.

Soient donc $x, y \in D$, $\lambda, \mu \in \mathbb{K}$. Alors $\exists a, b \in E'$, x = u(a) et y = u(b):

 $\lambda u(a) + \mu u(b) = u(\lambda a + \mu b) \in D$ car E' est un Espace vectoriel : ce dernier est stable par combinaison linéaire.

De même, Soient $x, y \in R$, $\lambda, \mu \in \mathbb{K}$:

$$\mathfrak{u}(\lambda x + \mu y) = \lambda \mathfrak{u}(x) + \mu \mathfrak{u}(y) \in F' \text{ car } F' \text{ est un SEV. Ainsi, } \lambda x + \mu y \in \mathfrak{u}^{-1}(F').$$

Ainsi, D et R sont stables par Combinaison Linéaire et sont non-vides : Ce sont des SEV.

2.4 Déterminant d'une matrice triangulaire par blocs. (démo)

Proposition

Soit $M = \begin{pmatrix} A & B \\ \hline \mathbb{O} & \mathbb{C} \end{pmatrix}$, matrice par blocs triangulaire.

Alors, $det(M) = det(A) \times det(C)$

Preuve:

• Si A est Inversible :

Alors, nous pouvons décomposer M comme le produit de matrices :

$$M = \left(\begin{array}{c|c} A & B \\ \hline O & C \end{array}\right) = \left(\begin{array}{c|c} A & O \\ \hline O & I_p \end{array}\right) \times \left(\begin{array}{c|c} I_q & A^{-1}B \\ \hline O & C \end{array}\right) = \left(\begin{array}{c|c} A & O \\ \hline & 1 \\ \hline O & \ddots \\ \hline & 1 \end{array}\right) \times \left(\begin{array}{c|c} 1 & & A^{-1}B \\ \hline & O & C \end{array}\right)$$

Le déterminant de M correspond alors au produit des déterminants des deux matrices précédentes (que l'on note M_1 et M_2 respectivement : $M = M_1 \times M_2$).

Or, $det(M_1) = det(A)$ et $det(M_2) = det(C)$:

En développant M_1 par rapport à la dernière colonne (ou ligne), nous avons le résultat par récurrence sur p. Pour M_2 , il suffit de développer la première colonne afin d'avoir de même le résultat par récurrence sur q.

Ainsi, si \mathbb{A} est inversible : $det(M) = det(\mathbb{A}) \times det(\mathbb{C})$.

Si A n'est pas inversible, nous avons det(A) = 0 et le fait que ses colonnes forment une famille liée.
 Or, si les colonnes de A forment une famille liée, alors les colonnes de M sont liées, donc M est non-inversible : det(M) = 0.

Dans tous les cas : $det(M) = det(A) \times det(C)$

2.5 Existence et expression du polynôme interpolateur (avec les bonnes hypothèses). (démo)

Proposition Polynômes Interpolateurs de Lagrange

Soient $(a_0, \dots a_n)$ et $(b_0, \dots, b_n) \in \mathbb{R}^{n+1}$.

Alors il existe un unique polynôme de $\mathbb{R}_n[X]$, tel que $\forall i \in [0, n]$, $P(a_i) = b_i$

Preuve:

Exhibons un tel polynôme : L'idée est de fabriquer un polynôme s'annulant sur tous les a_i sauf un.

Posons donc pour tout $i \in [0;n]$, $L_i = \prod_{\substack{k=0 \ k \neq i}}^n \frac{X - a_k}{a_i - a_k}$.

Alors ce polynôme s'annule en chaque a_k avec $k \neq i$ (car un terme du produit est nul). De plus, $L_i(a_i) = 1$.

En multipliant L_i par b_i , nous obtenons donc un polynôme valant 0 sur chaque a_k avec $k \neq i$, et avec $L_i(a_i) = b_i$.

En sommant ces polynômes, nous posons $P: X \mapsto \sum_{k=0}^n b_k \cdot L_k(X)$. Alors ce polynôme convient, car $\forall k \in [0;n]$, $P(a_k) = \sum_{p=0}^n b_p \cdot L_p(a_k) = b_k$.

L'unicité de ce polynôme est garanti en posant ϕ : $\begin{cases} \mathbb{R}_n[X] \to \mathbb{R}^{n+1} \\ P \mapsto (P(\alpha_0), \dots, P(\alpha_n)) \end{cases}$

Alors ϕ est une application linéaire. De plus, si $P \in Ker(\phi)$, alors $P(\alpha_0) = \cdots = P(\alpha_n) = 0$. Or ce polynôme possède n+1 racines alors qu'il est de degré n, P est alors le polynôme nul.

 φ est alors une application linéaire injective entre deux espaces de même dimension : $\dim(\mathbb{R}_n[X]) = n+1=$ $\dim(\mathbb{R}^{n+1})$. φ est alors une bijection, d'où l'unicité d'un tel polynôme.

MPI* 8

2.6 Majoration de la dimension d'une somme de sous-espaces vectoriels (en dimension finie) par la somme des dimensions. (démo)

Proposition

Soit E, \mathbb{K} – E.V. Soient E_1, \dots, E_k , k-S.E.V de E de dimensions finies.

$$\text{Alors dim}\left(\sum_{p=1}^k E_p\right) \leqslant \sum_{p=1}^k \text{dim}(E_p)$$

Preuve :

Par récurrence sur le nombre de sous-espaces considérés :

Ceci est naturel pour une somme de deux SEV : D'après la formule de Graßmann, $\dim(E_1 + E_2) = \dim(E_1) + \dim(E_2) - \dim(E_1 \cap E_2)$. Or, $\dim(E_1 \cap E_2) \geqslant 0$, donc $\dim(E_1 + E_2) \leqslant \dim(E_1) + \dim(E_2)$.

Supposons alors le résultat vrai pour une somme de k Sous-espaces :

$$Alors\,dim\left(\sum_{p=1}^k E_p + E_{k+1}\right) = dim\left(\sum_{p=1}^k E_p\right) + dim(E_{k+1}) - dim\left(\sum_{p=1}^k E_p \cap E_{k+1}\right) \leqslant dim\left(\sum_{p=1}^k E_p\right) + dim(E_{k+1}).$$

Par hypothèse de récurrence, nous obtenons finalement dim $\left(\sum_{p=1}^{k+1} E_p\right) \leqslant \sum_{p=1}^{k+1} dim(E_p)$

3 Questions de cours - Groupe C

3.1 Deux matrices sont équivalentes si et seulement si elles ont le même rang. (démo)

Preuve:

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$, deux matrices. Si A et B sont équivalentes, alors $\exists P, Q \in GL_n(\mathbb{K}), \ A = PBQ^{-1}$.

Or, la multiplication par une matrice inversible n'affecte pas le rang :

Soit $M \in GL_n(\mathbb{K})$. Alors rg(AM) = dim(Im(AM)) = dim(Im(A)) = rg(A). De même, $Ker(MA) = Ker(A) \Rightarrow rg(A) = rg(MA)$ par théorème du rang. Dans tous les cas, rg(A) = rg(AM) = rg(MA).

Donc $\operatorname{rg}(A) = \operatorname{rg}(\operatorname{PBQ}^{-1}) = \operatorname{rg}(B)$.

Réciproquement, si $\operatorname{rg}(A) = \operatorname{rg}(B) = r$, montrons que toute matrice de rang r est équivalente à $J_r = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ \hline & \mathbb{O} & & \mathbb{O} \end{pmatrix}$

Soit S, supplémentaire de Ker(A). Alors $E = S \oplus Ker(A)$, et rg(A) = dim(S) = r. Soit u, l'application linéaire sous-jacente à A.

Soit $\mathcal{B}_S = (e_1, ..., e_r)$, base de S et $\mathcal{B}_K = (e_{r+1}, ..., e_n)$, base de Ker(A). Alors $\mathcal{B} = \mathcal{B}_S \cup \mathcal{B}_K$ est une base de E.

Posons donc $\mathcal{F} = (\mathfrak{u}(e_1), \ldots, \mathfrak{u}(e_r))$. Montrons que \mathcal{F} est une famille libre : Soient $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$ tels que $\lambda_1 \mathfrak{u}(e_1) + \cdots + \lambda_r \mathfrak{u}(e_r) = 0$. Alors $\mathfrak{u}(\lambda_1 e_1 + \cdots + \lambda_r e_r) = 0$ par linéarité de \mathfrak{u} . Donc $\lambda_1 e_1 + \cdots + \lambda_r e_r \in S \cap \mathrm{Ker}(A) = \{0\}$.

Or, les e_i sont libres (forment une base de S), donc $\lambda_1 = \cdots = \lambda_r = 0$, d'où la liberté de la famille \mathcal{F} .

Nous pouvons alors compléter \mathcal{F} en base de F (avec $\mathfrak{u}\in\mathcal{L}(E,F)$) avec des vecteurs $f_{r+1},\ldots,f_{\mathfrak{p}}$. Dès lors :

$$Mat_{\mathcal{B},\overline{\mathcal{F}}}(u) = \begin{pmatrix} u(e_1) & u(e_2) & \cdots & u(e_r) & u(e_{r+1}) & \cdots & u(e_p) \\ 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & & \vdots & \cdots & \vdots \\ \vdots & \vdots & & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} f_1 = u(e_1) \\ f_2 = u(e_2) \\ \vdots \\ f_r = u(e_r) \\ f_{r+1} \\ \vdots \\ f_n \end{pmatrix}$$

Donc A est équivalente à J_r : De même, B est équivalente à J_r , donc A est équivalente à B par transitivité.

 \mathbf{MPI}^{\star} 10

3.2 Formule de changement de base pour les matrices (démo, pas refait en spé)

Proposition Formule de Changement de Base (Version Matricielle)

Soient E, F, deux \mathbb{K} -EV. Soient \mathcal{B}_1 et \mathcal{B}_2 , deux bases de E, soient \mathcal{C}_1 et \mathcal{C}_2 , deux bases de F. Soit $\mathfrak{u} \in \mathcal{L}(\mathsf{E},\mathsf{F})$.

$$Mat_{\mathfrak{C}_2,\mathfrak{B}_2}(\mathfrak{u}) = P_{\mathfrak{C}_2,\mathfrak{C}_1} \times Mat_{\mathfrak{C}_1,\mathfrak{B}_1}(\mathfrak{u}) \times P_{\mathfrak{B}_1,\mathfrak{B}_2}$$

(Avec $P_{A,B}$, matrice de Passage)

Preuve:

Par définition d'une matrice de passage : $P_{\mathcal{B}_1,\mathcal{B}_2} = Mat_{\mathcal{B}_2,\mathcal{B}_1}(Id_E)$ et $P_{\mathcal{C}_2,\mathcal{C}_1} = Mat_{\mathcal{C}_2,\mathcal{C}_1}^{-1}(Id_F)$.

$$Donc\ P_{\mathfrak{C}_2,\mathfrak{C}_1}\times Mat_{\mathfrak{C}_1,\mathfrak{B}_1}(\mathfrak{u})\times P_{\mathfrak{B}_1,\mathfrak{B}_2}=P_{\mathfrak{C}_2,\mathfrak{C}_1}\times Mat_{\mathfrak{C}_1,\mathfrak{B}_2}(\mathfrak{u})=Mat_{\mathfrak{C}_2,\mathfrak{B}_2}(\mathfrak{u})$$

MPI[⋆] 11

4 Exercices - Tout groupe

4.1 Exercice 1

Question 1. Soit $u \in \mathcal{L}(E)$ Nilpotente. Posons p l'indice de nilpotence de u. Il suffit alors de montrer que $p \le n$:

Par définition de l'indice de nilpotence : $u^{p-1} \neq 0$ mais $u^p = 0$. Ainsi, posons $x_0 \in E$, tel que $u^{p-1}(x_0) \neq 0$.

Montrons que la famille $(x_0, u(x_0), u^2(x_0), \dots, u^{p-1}(x_0))$ est libre : Soit $\lambda_0, \dots, \lambda_{p-1} \in \mathbb{K}$ tels que

$$\lambda_0 x_0 + \lambda_1 u(x_0) + \dots + \lambda_{p-1} u^{p-1}(x_0) = 0$$

Alors en composant par \mathfrak{u}^{p-1} , il vient que $\lambda_0\mathfrak{u}^{p-1}(x_0)+\mathfrak{u}^p(x_0)+\cdots+\mathfrak{u}^{2p-2}(x_0)=0$. Or, nous avons $\mathfrak{u}^p(x_0)=0$. Nous obtenons donc $\lambda_0\mathfrak{u}^{p-1}(x_0)=0$, et par définition de x_0 , nous obtenons $\lambda_0=0$.

Il suffit d'itérer le processus sur l'égalité de départ en baissant la puissance de $\mathfrak u$ (Composer par $\mathfrak u^{\mathfrak p-2},\mathfrak u^{\mathfrak p-3},\ldots$).

Ceci donne finalement $\lambda_0 = \dots = \lambda_{p-1} = 0$, d'où la liberté de la famille. Or, si cette famille est libre, son cardinal est inférieur ou égal à n, donc $p \le n$, $u^n = 0$.

Question 2.a Si $\mathfrak{u}^{n-1} \neq 0$, posons $x_0 \in E$ tel que $\mathfrak{u}^{n-1}(x_0) \neq 0$. D'après ce qui précède, la famille $\mathfrak{B} = (x_0, \mathfrak{u}(x_0), \mathfrak{u}^2(x_0), \ldots, \mathfrak{u}^{n-1}(x_0) \neq 0$. Et libre, et est donc une base de E car est de cardinal n.

Or, la matrice de u dans cette base donne :

$$Mat_{\mathcal{B}}(\mathfrak{u}) = \begin{pmatrix} u(\mathfrak{u}(x_0)) & \cdots & \cdots & u(e_{\mathfrak{p}}) \\ 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & & 0 & \vdots \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} u^{n-1}(x_0)$$

Question 2.b Si l'équation $X^2 = A$ admettait des solutions, alors $X^{2n} = A^n = 0$, mais $X^{2n-2} = A^{n-1} \neq 0$. Ainsi, l'indice de nilpotence de X serait compris entre 2n-1 et 2n, ce qui n'est pas possible car $2n-2 \geqslant n$ avec $n \geqslant 2$. Or, d'après la première question, si X est nilpotente, alors son indice de nilpotence est inférieur ou égal à n.

L'équation $X^2 = A$ n'admet pas de solutions dans $\mathcal{M}_n(\mathbb{K})$

 \mathbf{MPI}^{\star} 12

4.2 Exercice 2

Nous avons directement (i) \Rightarrow (iv), (v).

Supposons que $E = Ker(f) \oplus Im(f)$:

Nous avons les inclusions $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$ ainsi que $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$ car si f(x) = 0, alors f(f(x)) = 0 (f est linéaire). De plus, si $y = f^2(x)$, en particulier, y = f(z) avec z = f(x).

Or, si $x \in \text{Ker}(f^2)$, alors $f^2(x) = 0$. Il y a deux possibilités :

- Si f(x) = 0, $x \in Ker(f)$
- Si f(f(x)) = 0 mais que $f(x) \neq 0$. Alors $f(x) \in Ker(f) \cap Im(f) = \{0\}$: Ceci est absurde, donc f(x) = 0

Ainsi, $Ker(f^2) = Ker(f)$ par double inclusion.

Soit $y \in \text{Im}(f)$. Alors $\exists x \in E$, y = f(x). Or, $E = \text{Ker}(f) \oplus \text{Im}(f)$. Donc $\exists ! (x_k, x_i) \in \text{Ker}(f) \times \text{Im}(f)$, $x = x_k + x_i$.

Nous avons donc $y = f(x) = f(x_k + x_i) = f(x_i)$ et $x_i \in Im(f) \Rightarrow \exists z \in E, \ y = f(x) = f^2(z) \in Im(f^2)$.

Ainsi, $Im(f) = Im(f^2)$.

Remarquons au passage que (ii) et (iii) sont équivalentes :

• Si $Ker(f) = Ker(f^2)$, Montrons que $rg(f^2) = rg(f)$, ce qui permet d'affirmer l'égalité entre ces espaces car $Im(f^2) \subset Im(f)$:

D'après le théorème du rang, $\dim(E) = \dim(\operatorname{Ker}(f^2)) + \operatorname{rg}(f^2)$ (f^2 est une application de E dans $\operatorname{Im}(f^2)$).

 $Donc \ rg(f^2) = dim(E) - dim(Ker(f^2)) = dim(E) - dim(Ker(f)) = rg(f). \ D'où \ l'égalité \ entre \ les \ espaces.$

• Idem, si $\operatorname{Im}(f^2) = \operatorname{Im}(f)$, nous avons $\operatorname{dim}(\operatorname{Ker}(f)) = \operatorname{dim}(E) - \operatorname{rg}(f) = \operatorname{dim}(E) - \operatorname{rg}(f^2) = \operatorname{dim}(\operatorname{Ker}(f^2))$.

Montrons que (v) \Rightarrow (iv) \Rightarrow (i) : Si E = Ker(f) + Im(f)

Nous avons par la formule de Graßmann : $\dim(E) = \dim(Ker(f)) + \dim(Im(f)) - \dim(Ker(f) \cap Im(f))$. Or, le théorème du rang donne $\dim(Ker(f) \cap Im(f)) = \emptyset$, donc $Ker(f) \cap Im(f) = \{\emptyset\}$.

Ainsi, (v) \Rightarrow (iv) et (v) + (iv) \Rightarrow (i).

Montrons finalement que (ii) \Rightarrow (iv), Supposons que $\text{Ker}(f^2) = \text{Ker}(f)$ et $\text{Im}(f^2) = \text{Im}(f)$.

Soit $x \in \text{Ker}(f) \cap \text{Im}(f)$, alors f(x) = 0 et $\exists z \in E$, $f(z) = x \Rightarrow f^2(z) = 0$. Or, $\text{Ker}(f^2) = \text{Ker}(f) \Rightarrow f(z) = 0 \Rightarrow x = 0$.

Finalement, (i) \Rightarrow (ii) \Rightarrow (iii), (iv). (i) \Rightarrow (v) et (v) \Rightarrow (iv). Avec (v) et (iv) \Rightarrow (i).

Nous avons donc (i) \iff (iv) \iff (v). De plus, (i) \Rightarrow (ii), avec (ii) \iff (iii), et (ii) \Rightarrow (iv) \iff (i)

D'où (i) \iff (ii) \iff (iv) \iff (v)

4.3 Exercice 3

Soient F et G deux sous esapces vectoriels.

Montrons que l'union de deux sous-espaces vectoriels est un sous-espace si et seulement si l'un des deux sous-espaces est inclus dans l'autre.

 $(F \cup G \text{ est un sev} \Leftrightarrow F \subset G \text{ ou } G \subset F)$

 (\Leftarrow) Trivial.

 (\Rightarrow) Hypothèse : F∪G est un sev et F $\not\subset$ G.

Montrons donc que $G \subset F$.

Si F $\not\subset$ G, alors $\exists x_0 \in F, x_0 \not\in G$.

Prenons $x_1 \in G$. Alors, $x_0 + x_1 \in F \cup G$. Dans ce cas, $x_0 + x_1 \in F$ ou $x_0 + x_1 \in G$.

Supposons $x_0 + x_1 \in G$. Nous avons donc $x_1 \in G$, auquel cas $x_0 + x_1 - x_1 \in G$, car G est un SEV, donc $x_0 \in G$. Or, par définition, $x_0 \notin G$. On aboutit donc à une absurdité.

Donc, $x_1 \in F$. Ainsi, $G \subset F$.

 \mathbf{MPI}^{\star} 14

4.4 Exercice 4

Question 1. Soit $u \in \mathcal{L}(E)$. Montrons que si, pour tout $x \in E$, x et u(x) sont colinéaires, alors u est une Homothétie. Par hypothèse, pour tout $x \in E$, il existe λ_x tel que $u(x) = \lambda_x u(x)$. Montrons que u est une homothétie, i.e : il existe $\lambda \in \mathbb{K}$ tel que, pour tout x, $u(x) = \lambda x$:

Soient x et $y \in E$. Montrons que $\lambda_x = \lambda_y$:

Cas 1: x et y sont libres:

u étant linéaire : $u(x+y) = u(x) + u(y) = \lambda_x x + \lambda_y y$. De plus, $u(x+y) = \lambda_{x+y} (x+y) = \lambda_{x+y} x + \lambda_{x+y} y$. Par unicité des coordonées sur une famille libre, $\lambda_x = \lambda_{x+y} = \lambda_y$. En particulier : $\lambda_x = \lambda_y$.

Cas 2 : x et y sont liés, non-nuls :

Il existe alors $\alpha \neq 0$ tel que $y = \alpha x$.

D'une part : $u(y) = \lambda_y y$, d'autre part, u étant linéaire, $u(y) = u(\alpha x) = \alpha \lambda_x x = \lambda_x y$. Donc $\lambda_x = \lambda_y$ car $y \neq 0$.

Par conséquent, il existe λ tel que pour tout $x \neq 0$, $u(x) = \lambda x$. Ceci est aussi valable pour x = 0, car u(0) = 0. Finalement, pour tout x, $u(x) = \lambda x$: u est une Homothétie.

Question 2. Soit f, endomorphisme commutant avec tout endomorphisme. Montrons que pour tout $x \in E$, x et f(x) sont colinéaires :

Soit $x \in E$, posons p_x , une projection sur Vect(x). Alors par hypothèse, $f \circ p_x = p_x \circ f$. Donc $f(p_x(x)) = f(x)$ et $f(p_x(x)) = p_x(f(x))$.

Ainsi, $f(x) = p_x(f(x)) \Rightarrow f(x) \in Im(p_x) = Vect(x) : x \text{ et } f(x) \text{ sont colinéaires, ainsi } f \text{ est une Homothétie.}$

Question 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$, matrice permutant avec toute autre matrice.

Étudions le produit de A par les matrices élémentaires $E_{i_j} = (\delta_{i,j})_{i,j \in [\![1;n]\!]^2}$.

Nous avons $A \times E_{i,j} = E_{i,j} \times A$.

Nous obtenons par l'égalité des coefficients (i,i) que $a_{i,j} = 0$ si $i \neq j$. Avec l'égalité des coefficients (i,j), nous obtenons que $a_{i,i} = a_{j,j}$.

Donc A est une homothétie. Le fait que les homothéties commutent avec toutes les matrices est immédiat.

4.5 Exercice 5

Question 1. Si ces réels ne sont pas distincts, il existe $i \neq j$ tels que $x_i = x_j$. Auquel cas, nous avons deux lignes identiques dans la matrice de Vandermonde, ce qui donne un déterminant nul.

Question 2. Nous avons
$$V(x_1,...,x_{n-1},X) = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \\ 1 & X & X^2 & \cdots & X^{n-1} \end{bmatrix}$$

En développant par rapport à la dernière ligne, nous avons bien que $V(x_1,\ldots,x_{n-1},X)$ est un polynôme en X de degré $n-1: P(X) = \sum_{i=1}^n (-1)^{j+1} X^{j-1} \times \Delta_{n,j}$ avec Δ_{n_i} , le mineur obtenu en barrant la n-ième ligne et i-ème colonne.

Question 3. Le coefficient dominant de P s'obtient par le développement selon la dernière ligne : Ce coefficient est obtenu en barrant la dernière ligne et la dernière colonne. Auquel cas, nous obtenons le mineur $\Delta_{n,n}$:

$$\Delta_{n,n} = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-2} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-2} \end{vmatrix} = V(x_1, \dots, x_{n-1})$$

Question 4. Les racines de P s'obtiennent en remarquant que lorsque $X = x_i$ pour un certain x_i , nous avons deux lignes identiques, donc un déterminant nul (non inversibilité de la matrice dûe à ces deux lignes liées). Ainsi, nous obtenons bien n-1 racines pour P, polynôme de degré n-1.

$$\text{P s'exprime alors comme}: \text{P} = V(x_1, \dots, x_{n-1}, X) = \Delta_{n,n} \times \prod_{i=1}^{n-1} (X - x_i) \\ = V(x_1, \dots, x_{n-1}) \prod_{i=1}^{n-1} (X - x_i)$$

Question 5. Ainsi,
$$V(x_1,...,x_n) = P(x_n) = V(x_1,...,x_{n-1}) \times \prod_{i=1}^{n} (x_n - x_i)$$
.

On démontre aisément par récurrence que l'expression générale de $V(x_1, \ldots, x_n)$ est $\prod_{1 \leqslant i < j \leqslant n} (x_j - x_i)$

Question 6. Une expression de $V(x_1,...,x_n)$ par des opérations élémentaires sur les colonnes est possible :

Commençons par itérer l'opération $C_i \leftarrow C_i - x_1 C_{i-1}$ en débutant à la \mathfrak{n} -ième colonne et en terminant à la colonne 2:

$$V(x_1,...,x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & x_2 - x_1 & x_2^2 - x_2 x_1 & \cdots & x_2^{n-1} - x_2^{n-2} x_1 \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_n - x_1 & x_n^2 - x_n x_1 & \cdots & x_n^{n-1} - x_n^{n-2} x_1 \end{vmatrix}$$

En développant par rapport à la première ligne :

$$V(x_{1},...,x_{n}) = \begin{vmatrix} x_{2}-x_{1} & x_{2}(x_{2}-x_{1}) & \cdots & x_{2}^{n-2}(x_{2}-x_{1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n}-x_{1} & x_{n}(x_{n}-x_{1}) & \cdots & x_{n}^{n-2}(x_{n}-x_{1}) \end{vmatrix}$$

$$= (x_{2}-x_{1})(x_{3}-x_{1})\cdots(x_{n}-x_{1}) \begin{vmatrix} 1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-2} \\ 1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-2} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-2} \end{vmatrix}$$

D'où la relation de récurrence précédente.

Question 7. Soient $A = (a_1, ..., a_n) \in \mathbb{K}^n$ et $B = (b_1, ..., b_n) \in \mathbb{K}^n$.

Posons
$$\Phi: egin{cases} \mathbb{K}_{n-1}[X] \to \mathbb{K}^n \\ P \mapsto (P(\alpha_1), \dots, P(\alpha_n)) \end{cases}$$
 , Φ est une application linéaire.

L'existence d'un polynôme interpolateur entre A et B revient à montrer que $Im(\Phi) = \mathbb{K}^n$, donc que Φ est inversible (de déterminant non nul).

Remarquons que la matrice de Φ dans les bases canoniques $\mathcal{A} = (1, X, X^2, ..., X^{n-1}), \ \mathcal{B} = (e_1, ..., e_n)$ est :

$$\text{Mat}_{\mathcal{B},\mathcal{A}}(\Phi) = \begin{pmatrix} \Phi(1) & \Phi(X) & \Phi(X^2) & \cdots & \Phi(X^n) \\ 1 & a_1 & {a_1}^2 & \cdots & {a_1}^{n-1} \\ 1 & a_2 & {a_2}^2 & \cdots & {a_2}^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_n & {a_n}^2 & \cdots & {a_n}^{n-1} \end{pmatrix} \begin{array}{l} e_1 \\ e_2 \\ \vdots \\ e_n \end{array}$$

Nous retombons sur la matrice de Vandermonde, d'où le résultat sur l'existence d'un polynôme interpolateur.

MPI* 17

5 Exercices - Groupe B et C

5.1 Exercice 6

Nous avons l'inégalité $rg(f+g) \le rg(f) + rg(g)$.

Supposons que rg(f+g) = rg(f) + rg(g).

Nous avons de plus $rg(f) + rg(g) \ge dim(Im(f) + Im(g))$ par la formule de Graßmann.

Or, $\dim(\operatorname{Im}(f) + \operatorname{Im}(g)) \geqslant \dim(\operatorname{Im}(f+g)) = \operatorname{rg}(f+g)$ par inclusion d'espace : Si $\exists x \in E$, y = (f+g)(x), alors $\exists x_f, x_g \in E$, $y = f(x_f) + g(x_g)$ (avec $x_f = x_g = x$), donc $y \in \operatorname{Im}(f+g) \Rightarrow y \in \operatorname{Im}(f) + \operatorname{Im}(g)$.

Finalement, $rg(f+g) = rg(f) + rg(g) \ge dim(Im(f) + Im(g)) \ge rg(f+g)$. Donc toutes ces quantités sont égales.

En particulier, dim(Im(f) + Im(g)) = dim(Im(f)) + dim(Im(g)), par la formule de Graßmann, $dim(Im(f) \cap Im(g)) = 0 \Rightarrow Im(f) \cap Im(g) = \{0\}$

Pour l'égalité Ker(f) + Ker(g) = E, nous avons l'inclusion $Ker(f) + ker(g) \subset E$, montrons l'égalité des dimensions :

 $Posons\ dim(E) = n.\ Par\ la\ formule\ de\ Graßmann\ (oui,\ encore),\ dim(Ker(f) + Ker(g)) = dim(Ker(f)) + dim(Ker(g)) - dim(Ker(g)).$

Appliquons le théorème du rang à f, g et f + g:

$$n = \dim(\text{Ker}(f+g)) + \text{rg}(f+g)$$
$$= \dim(\text{Ker}(f)) + \text{rg}(f)$$
$$= \dim(\text{Ker}(g)) + \text{rg}(g)$$

$$\operatorname{Donc} \, \operatorname{n} - 2\operatorname{n} = -\operatorname{n} = \dim(\operatorname{Ker}(\operatorname{f} + g) - \dim(\operatorname{Ker}(\operatorname{f})) - \dim(\operatorname{Ker}(g)) + \underbrace{(\operatorname{rg}(\operatorname{f} + g) - \operatorname{rg}(\operatorname{f}) - \operatorname{rg}(g))}_{=0}$$

Ceci se réécrit comme $n = \dim(E) = \dim(Ker(f)) + \dim(Ker(g)) - \dim(Ker(f+g))$

Or, remarquons que $Ker(f) \cap Ker(g) \subset Ker(f+g)$, donc

$$\dim(\operatorname{Ker}(f)\cap\operatorname{Ker}(g))\leqslant\dim(\operatorname{Ker}(f+g)$$

$$\dim(\operatorname{Ker}(f))+\dim(\operatorname{Ker}(g))-\dim(\operatorname{Ker}(f)\cap\operatorname{Ker}(g))\geqslant\dim(\operatorname{Ker}(f))+\dim(\operatorname{Ker}(g))-\dim(\operatorname{Ker}(f+g))$$

$$\dim(\operatorname{Ker}(f)+\operatorname{Ker}(g))\geqslant n$$

D'où E = Ker(f) + Ker(g).

Réciproquement, si
$$\begin{cases} Im(f)\cap Im(g) = \{0\} \\ Ker(f) + Ker(g) = E \end{cases} \text{, montrons que } rg(f+g) = rg(f) + rg(g):$$

Il suffit de remarquer que $\operatorname{Im}(f)\subset\operatorname{Im}(f)+\operatorname{Im}(g)$ car si $y\in\operatorname{Im}(f),\ \exists x\in E,\ y=f(x).$ Or, $E=\operatorname{Ker}(f)+\operatorname{Ker}(g),\ donc\ x=x_f+x_g\ pour\ x_f\in\operatorname{Ker}(f)$ et $x_g\in\operatorname{Ker}(g):\ y=f(x)=f(x_g)=f(x_g)+g(x_g)\in\operatorname{Im}(f)+\operatorname{Im}(g)$

Ceci reste vrai pour g par symétrie des rôles, donc la somme $\text{Im}(f) \oplus \text{Im}(g) \subset \text{Im}(f+g) \Rightarrow \text{rg}(f) + \text{rg}(g) = \text{rg}(f+g)$

5.2 Exercice 7

Note:-

Erreur d'énoncé! Il s'agit de montrer l'existence de $g \in \mathcal{L}(E)$ tel que $g \circ f = 0$ et $f + g \in GL(E)$ ssi $E = Ker(f) \oplus Im(f)$

Supposons qu'il existe $g \in \mathcal{L}(E)$ tel que $g \circ f = 0$ et $f + g \in GL(E)$. Montrons que $Ker(f) \cap Im(f) = \{0\}$: Soit $x \in ker(f) \cap Im(f)$

Il existe alors $z \in E$, f(z) = x, et f(x) = 0.

Nous avons par hypothèse $g \circ f = 0$, donc g(f(z)) = g(x) = 0: $x \in \text{Ker}(g)$.

Or, f + g est inversible, donc $(f + g)(x) = f(x) + g(x) = 0 \Rightarrow x = 0$.

Nous avons alors $Ker(f) \oplus Im(f)$. De plus, dim(Ker(f) + Im(f)) = dim(Ker(f)) + rg(f) - dim(Ker(f)) - dim(Ker(f)) = dim(Ker(f)) + rg(f) = dim(E) d'après le théorème du rang.

Ainsi, nous avons l'inclusion $Ker(f) \oplus Im(f) \subset E$ et l'égalité des dimensions donne alors $E = Ker(f) \oplus Im(f)$.

 $\text{R\'{e}ciproquement, si E} = \text{Ker}(f) \oplus \text{Im}(f) \text{, posons } g = \begin{cases} \tilde{0} \text{ sur Im}(f) \\ I_d \text{ sur Ker}(f) \end{cases} \text{ (la projection sur Ker}(f) \text{ parall\`element \`a Im}(f))$

Alors, nous avons bien $g \circ f = 0$ et f + g inversible : Soit $y \in E$, alors $y = y_k + y_i$ avec $y_k \in Ker(f)$ et $y_i \in Im(f)$.

Remarquons que $f_{|Im(f)}$ est une bijection, car si $x \in Ker(f) \cap Im(f)$, alors $x = 0 \Rightarrow f_{|Im(f)}$ bijective car linéaire en dimension finie.

Posons $x = f^{-1}(y_i) + y_k$ (Notons que $f^{-1}(y_i) \in Im(f)$).

Alors
$$(f+g)(x) = f(x) + g(x) = f(f^{-1}(y_i) + y_k) + g(f^{-1}(y_i) + y_k) = y_i + y_k = y$$
.

Nous avons alors un unique antécédent de tout $y \in E$ par l'application f + g : f + g est inversible.

 \mathbf{MPI}^{\star} 19

5.3 Exercice 8

Posons $\varphi: \begin{cases} \mathscr{M}_n(\mathbb{K}) \to \mathscr{M}_n(\mathbb{K}) \\ M \mapsto M^t \end{cases}$ l'endomorphisme de transposition.

Rappelons nous que toute matrice s'exprime de manière unique comme la somme d'une matrice symétrique et antisymétrique : Ce résultat se réécrit comme $\mathcal{M}_n(\mathbb{K}) = S_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K})$.

Posons alors \mathcal{B} , une base de $\mathcal{M}_n(\mathbb{K})$ adaptée à cette décomposition (donc une union de bases de $\mathcal{S}_n(\mathbb{K})$ et $\mathcal{A}_n(\mathbb{K})$). La matrice de φ s'exprime aisément dans cette base :

$$\mbox{Mat}_{\mbox{\mathcal{B}}}(\phi) = \begin{pmatrix} \phi(S_1) & \cdots & \phi(S_p) & \phi(A_1) & \cdots & \phi(A_q) \\ 1 & & \ddots & & & & \\ & & \ddots & & & & \\ & & & 1 & & & & \\ & & & & -1 & & & \\ & & & & & -1 & & \\ & & & & & -1 & & \\ & & & & & -1 & & \\ & & & & & A_q \end{pmatrix} \begin{array}{c} S_1 \\ S_p \\ A_1 \\ A_2 \end{array}$$

Il suffit alors d'estimer $p = \dim(S_n(\mathbb{K}))$ et $q = \dim(\mathcal{A}_n(\mathbb{K}))$:

Nous avons pour $\mathcal{S}_n(\mathbb{K})$ le choix de $\frac{n(n+1)}{2}$ coefficients : Les coefficients diagonaux et au-dessus de la diagonale (les coefficients sous la diagonale étant fixés par symétrie de la matrice). Nous avons alors une base comportant $\frac{n(n+1)}{2}=p$ éléments.

Idem, pour $\mathcal{A}_n(\mathbb{K})$, nous avons le choix des coefficients sur-diagonaux, mais plus des coefficients diagonaux (ceux-ci valent toujours 0 pour une matrice antisymétrique). Soit $q=\frac{n(n-1)}{2}$.

Or, la Trace et le déterminant sont des invariants de similitude (car $Tr(PAP^{-1}) = Tr(P^{-1}PA) = Tr(A)$ et $det(PAP^{-1}) = det(P) det(P)^{-1} det(A) = det(A)$).

Ainsi,
$$\operatorname{Tr}(\phi) = \frac{\mathfrak{n}(\mathfrak{n}+1)}{2} - \frac{\mathfrak{n}(\mathfrak{n}-1)}{2} = \mathfrak{n}$$
, et $\det(\phi) = (-1)^{\frac{\mathfrak{n}(\mathfrak{n}-1)}{2}}$

5.4 Exercice 9

Si $A^2 = \mathbb{O}_n$, alors $Im(A) \subset Ker(A)$. Soit donc S, supplémentaire de Ker(A). Alors $E = S \oplus Ker(A)$.

Posons $(e_1, ..., e_s)$, base de S.

Remarquons que si
$$A^2 = \mathbb{O}_n$$
, alors $\operatorname{rg}(A) \leqslant \frac{n}{2}$. En particulier, $\dim(\operatorname{Ker}(A)) \geqslant \frac{n}{2} \Rightarrow \dim(S) \leqslant \frac{n}{2}$.

Une formulation alternative du théorème du rang consiste à remarquer que $A_{|S}$ est une bijection de S dans Im(A), Ainsi, $(A(e_1), \ldots, A(e_s))$ est une famille libre de Ker(A) (car est une base de Im(A) et $Im(A) \subset Ker(A)$).

Complétons alors cette famille libre en base de Ker(A) (par le théorème de la base incomplète). Appelons \mathcal{F} cette base de ker(A).

Alors, $\mathcal{B} = \mathcal{F} \cup (e_1, \dots, e_s)$ est une base de E (concaténation de bases). Dès lors, A est semblable à la matrice :

Réciproquement, si A est semblable à une matrice de cette forme, calculons explicitement A^2 :

$$(A^2)_{i,j} = \sum_{k=1}^n A_{i,k} A_{k,j}. \text{ Les seuls coefficients non nuls de } A \text{ sont les coefficients } A_{1,n-r}, A_{2,n-r+1}, \ldots$$

Ainsi, les seuls coefficients pouvant potentiellement être non-nuls sont les coefficients avec $i \in [1;r]$ et $j \in [n-r;n]$.

Soit donc
$$i \in [1,r]$$
 et $j \in [n-r,n]$. $(A^2)_{i,j} = \sum_{k=1}^n A_{i,k} A_{k,j}$.

Or, avec $r \le \frac{n}{2}$, si $k \in [n-r;r]$, $k \notin [1;r]$. Ainsi, tous les termes de cette somme sont nuls, $A^2 = \mathbb{O}_n$

5.5 Exercice 10

Question 1. Cette inégalité est naturelle, posons u, v, endomorphismes associés à A et B respectivement. Nous avons $\text{Im}(u+v) \subset \text{Im}(u) + \text{Im}(v)$: Si $y \in \text{Im}(u+v)$, alors il existe $x \in E$, y = f(x) + g(x) et donc $y \in \text{Im}(u) + \text{Im}(v)$.

Dès lors, $rg(u+v) \leq dim(Im(u)+Im(v)) \leq rg(u)+rg(v)$ d'après la formule de Graßmann.

Question 2. Tout comme pour la deuxième inégalité triangulaire, il suffit de s'intéresser à rg(u+v-v):

$$\begin{split} rg(u) = rg(u+\nu-\nu) \leqslant rg(u+\nu) + rg(\nu) &\quad \text{D'après Q.1 + } rg(-\nu) = rg(\nu) \\ rg(u) - rg(\nu) \leqslant rg(u+\nu) \end{split}$$

Et par symétrie des rôles (il suffit de refaire ce même calcul avec $rg(\nu+u-u)$), nous obtenons que $rg(u)-rg(v)\leqslant rg(u+v)$ et $rg(\nu)-rg(u)\leqslant rg(u+v)$.

Donc nous avons bien $|rg(u) - rg(v)| \le rg(u+v)$

5.6 Exercice 11

Intéressons nous à $\tilde{\mathfrak{u}} = \mathfrak{u}_{|Ker(\mathfrak{u}+\mathfrak{v})}$

Nous avons d'après le théorème du rang appliqué à \tilde{u} que $\dim(\text{Ker}(u+v)) = \dim(\text{Ker}(\tilde{u})) + \text{rg}(\tilde{u})$

Évaluons $\text{Ker}(\tilde{\mathfrak{u}})$: Soit $x \in \text{Ker}(\tilde{\mathfrak{u}})$, alors $x \in \text{Ker}(\mathfrak{u})$ et $x \in \text{Ker}(\mathfrak{u} + \mathfrak{v})$, donc $\mathfrak{u}(x) + \mathfrak{v}(x) = 0$ et $\mathfrak{u}(x) = 0 \Rightarrow \mathfrak{v}(x) = 0$.

Ainsi, $x \in \text{Ker}(\tilde{\mathfrak{u}}) \Rightarrow x \in \text{Ker}(\mathfrak{u}) \cap \text{Ker}(\nu)$ et si $x \in \text{Ker}(\mathfrak{u}) \cap \text{Ker}(\nu)$, nous avons directement $\tilde{\mathfrak{u}}(x) = 0$, donc $\text{Ker}(\tilde{\mathfrak{u}}) = \text{Ker}(\mathfrak{u}) \cap \text{Ker}(\nu)$.

Montrons enfin que $\operatorname{Im}(\tilde{\mathfrak{u}}) \subset \operatorname{Im}(\mathfrak{u}) \cap \operatorname{Im}(\mathfrak{v})$: Soit $y \in \operatorname{Im}(\tilde{\mathfrak{u}})$, alors $\exists x \in \operatorname{Ker}(\mathfrak{u} + \mathfrak{v}), \ y = \tilde{\mathfrak{u}}(x) = \mathfrak{u}(x)$.

Ainsi, x est tel que $u(x) + v(x) = 0 \Rightarrow u(x) = y = -v(x)$, nous avons alors $y \in Im(u)$ et $\in Im(v)$, donc $Im(\tilde{u}) \subset Im(u) \cap Im(v)$.

Ainsi, $\operatorname{rg}(\tilde{\mathfrak{u}}) \leqslant \dim(\operatorname{Im}(\mathfrak{u}) \cap \operatorname{Im}(\mathfrak{v})) \Rightarrow \dim(\operatorname{Ker}(\mathfrak{u}+\mathfrak{v})) \leqslant \dim(\operatorname{Ker}(\tilde{\mathfrak{u}})) + \dim(\operatorname{Im}(\mathfrak{u}) \cap \operatorname{Im}(\mathfrak{v}))$

5.7 Exercice 12

Question 1. Soit $k \in \mathbb{N}$, Soient $P, Q \in \mathbb{R}[X]$, soient $\lambda, \mu \in \mathbb{R}$.

$$L_k(\lambda P + \mu Q) = (\lambda P + \mu Q)(\alpha_k) = \lambda P(\alpha_k) + \mu Q(\alpha_k) = \lambda L_k(P) + \mu L_k(Q)$$

Question 2. Donnons le rang de cette famille d'endomorphismes (i.e la dimension de l'espace engendré par cette famille) :

Montrons que cette famille engendre l'ensemble des formes linéaires sur $\mathbb{R}_n[X]$:

Soit $\phi \in \mathcal{L}(\mathbb{R}_n[X],\mathbb{R})$. Alors ϕ est déterminée de manière unique par l'image de la base $(1,X,X^2...,X^n)$.

Notons $(b_0,...,b_n) = (\varphi(1),...,\varphi(X^n)).$

Or, pour les familles (a_0, \ldots, a_n) et (b_0, \ldots, b_n) , il existe un unique polynôme de $\mathbb{R}_n[X]$ tel que $\forall i \in [0;n]$, $P(a_i) = b_i$ (résultat classique!). Or, les $P(a_i)$ sont les images du vecteur P par les applications $(L_k)_{0 \leqslant k \leqslant n}$.

Ainsi, pour toute forme linéaire ϕ , l'image d'un vecteur Q s'écrit sous la forme $\lambda_0 b_0 + \dots + \lambda_n b_n = \lambda_0 P(\alpha_0) + \dots + \lambda_n P(\alpha_n) = \sum_{i=0}^n \lambda_i L_k(P)$.

 $D'où: \forall \phi \in \mathcal{L}(\mathbb{R}_n[X],\mathbb{R}), \ \exists (\lambda_i)_{0\leqslant i\leqslant n} \in \mathbb{R}^{n+1}, \ \phi = \sum_{i=0}^n \lambda_i L_k: \ \text{La famille } (L_k)_{0\leqslant k\leqslant n} \ \text{engendre } \mathcal{L}(\mathbb{R}_n[X],\mathbb{R}) \ \text{(et le résultat sur l'existence d'un polynôme annulateur affirme également que l'espace engendré est inclus dans } \mathcal{L}(\mathbb{R}_n[X],\mathbb{R}).$

Donc $rg((L_k)_{0 \leqslant k \leqslant n})$

6 Exercices - Groupe C

6.1 Exercice 13

Procédons par récurrence. Montrons premièrement le résultat pour n = 2:

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 de trace nulle.

Remarquons que A n'est pas la matrice d'une homothétie (ou alors est l'endomorphisme nul, auquel cas la propriété est vraie).

Dès lors, $\exists X \in E$, X et AX ne soient pas liés (c.f Exercice 4). Alors, X et AX forment une base (= \mathcal{B}) de E car E est de dimension n = 2.

A est alors semblable à, $A_{\mathcal{B}} = \begin{pmatrix} 0 & e \\ 1 & g \end{pmatrix}$, et $\text{Tr}(A) = 0 \Rightarrow g = 0 \Rightarrow A_{\mathcal{B}}$ possède une diagonale nulle. A est alors semblable à une matrice de diagonale nulle.

Supposons alors cette propriété vérifiée pour $n \in \mathbb{N}^*$. Montrons que cette propriété reste vraie pour n+1: Soit $A \in \mathcal{M}_n(\mathbb{K})$ de trace nulle.

Procédons de la même manière. Si A est une homothétie, alors A est l'endomorphisme nul, car sa trace est nulle, donc la propriété est vraie.

Sinon, A n'est pas une homothétie, et il existe $X \in E$, X et AX ne soient pas liés. Nous pouvons donc compléter cette famille libre en base $\mathcal{B} = (e_1, A(e_1), e_3, \ldots, e_{n+1})$ de E ($e_1 = X$).

A est alors semblable à
$$\begin{pmatrix} 0 & \mathbb{L} \\ \hline 1 & \\ 0 & \\ \vdots & \mathbb{A} \\ 0 & \end{pmatrix}.$$

Il suffit alors d'appliquer l'hypothèse de récurrence sur \mathbb{A} et de trouver une base de $Vect(A(e_1), e_3, ..., e_{n+1})$ dans laquelle \mathbb{A} possède une diagonale nulle.

Auquel cas, par concaténation des bases (on concatène e1 avec cette nouvelle base), nous obtenons une base de E dans

laquelle A est de la forme
$$\begin{pmatrix} 0 & \mathbb{L} \\ \hline & 0 \\ \mathbb{C} & \ddots \\ & 0 \end{pmatrix}$$

6.2 Exercice 14

Montrons premièrement que A^2 est de rang n :

 $\text{Appliquons le th\'eor\`eme du rang \`a } A_{|\operatorname{Im}(A)} : \operatorname{rg}(A) = 2n = \dim(\operatorname{Ker}(A_{|\operatorname{Im}(A)})) + \operatorname{rg}(A_{\operatorname{Im}(A)}).$

Or, $\operatorname{Ker}(A_{|\operatorname{Im}(A)}) \subset \operatorname{Ker}(A)$ et $\operatorname{dim}(\operatorname{Ker}(A)) = n$ par théorème du rang appliqué à A. Ainsi, $\operatorname{dim}(\operatorname{Ker}(A_{|\operatorname{Im}(A)})) \leqslant n$.

Donc $2n \leqslant n + rg(A_{|Im(A)}) \Rightarrow n \leqslant rg(A_{|Im(A)})$.

Or, $\operatorname{Im}(A_{|\operatorname{Im}(A)}) = \operatorname{Im}(A^2)$: Si $y \in \operatorname{Im}(A_{\operatorname{Im}(A)})$, alors $\exists X \in \operatorname{Im}(A)$, y = AX et $\exists Z \in E$, $X = AZ \Rightarrow Y = A^2Z \Rightarrow A \in \operatorname{Im}(A^2)$ et idem pour la réciproque.

 $\begin{aligned} & \text{Donc } \operatorname{rg}(A^2) \geqslant n. \text{ Nous avons de plus } \operatorname{Im}(A^2) \subset \operatorname{Ker}(A), \text{ or } \operatorname{Ker}(A) \text{ est de dimension } n, \text{ donc } \operatorname{rg}(A^2) \leqslant n \Rightarrow \operatorname{rg}(A^2) = n \\ & \text{Posons alors } S_1 \text{ et } S_2, \text{ deux S.E.V tels que } E = S_1 \oplus \operatorname{Ker}(A) = S_2 \oplus \operatorname{Ker}(A^2). \end{aligned}$

 $\text{Posons } \mathcal{S} = (e_1, \dots, e_{2n}) \text{ base de } S_1. \text{ Complétons cette famille libre avec } \mathcal{F} = (f_1, \dots, f_n) \text{ : base de } \text{Ker}(A).$

Or, A^2 est de rang n, donc nous pouvons supposer que les (e_i) sont arrangés tels que $\mathfrak{u}(e_1),\ldots,\mathfrak{u}(e_n)$ forment une base de S_2 . Auquel cas, dans cette base, la matrice A est bien semblable à :

$$\begin{pmatrix}
0 & 0 & 0 \\
\hline
I_n & 0 & 0 \\
\hline
0 & I_n & 0
\end{pmatrix}$$

6.3 Exercice 15

Remarquons que $\Phi: P \mapsto \int_0^1 \frac{P(t)}{\sqrt{1+t^2}} dt$ est une forme linéaire.

Pour tout $i \in [0;n]$, posons $\phi_i : P \mapsto P(x_i)$.

 $\text{(c.f exercice 12), cette famille forme une base de } (\mathbb{R}_n[X])^*. \text{ Ainsi, } \exists \lambda_0, \ldots, \lambda_n \in \mathbb{R}^n, \ \Phi = \sum_{k=0}^n \lambda_k \phi_k.$

$$\text{D'où l'existence de } n+1 \text{ réels } \lambda_0, \dots, \lambda_n, \ \int_0^1 \frac{P(t)}{\sqrt{1+t^2}} dt = \sum_{k=0}^n \lambda_k P(x_k).$$

Proposons néanmoins une manière alternative de montrer que les ϕ_i forment une base du dual : Montrons qu'il s'agit d'une famille libre :

Soient
$$\mu_0, \dots, \mu_n \in \mathbb{R}^{n+1}$$
 tels que $\sum_{k=0}^n \mu_k \phi_k = 0$.

Posons alors $P_k = \prod_{i \neq k} (X - x_i)$. Nous avons alors $\phi_i(P_k) = 0$ si $i \neq k$. Ainsi, en appliquant la relation de liaison entre les

$$\phi \text{ à un } P_k \text{, nous obtenons } \mu_k \prod_{\substack{i=0\\i\neq k}}^n (x_k - x_i) = 0 \Rightarrow \ \mu_k = 0.$$

Il suffit de répéter cette opération pour avoir la liberté de la famille des (ϕ_i) , et cette famille comporte (n+1) éléments, ce qui est la dimension du dual de $\mathbb{R}_n[X]$. Les ϕ forment donc une base de $(\mathbb{R}_n[X])^*$

6.4 Exercice 17

A est bien un SEV de $\mathcal{L}(E)$

De plus $x \in A \iff Im(x \circ u) \subset Ker(v)$

Or $\operatorname{Im}(x \circ u) = x(\operatorname{Im}(u))$

Soit $(e_1, ..., e_r)$ une base de Im(u)

D'après le théorème de la base incomplète, il existe (e_{r+1},\ldots,e_n) tel que $B_1=(e_1,\ldots,e_n)$ forme une base de E

De même, soit (f_1,\ldots,f_p) une base de $\text{Ker}(\nu)$

Que l'on peut également compléter en une base de E. On a alors $B_2 = (f_1, ..., f_n)$ une autre base de E.

On en déduit alors que $x \in A \iff \forall k \in [\![1;n]\!], \ x(e_k) \in \text{Vect}(f_1,\ldots,f_p)$

On a alors:

$$\mathsf{Mat}_{B_1,B_2}(x) = \begin{pmatrix} x(e_1) & \cdots & x(e_r) & x(e_{r+1}) & \cdots & x(e_n) \\ & \mathbb{X} & & & \mathbb{X} & \\ & & & & \mathbb{X} & \\ & & \mathbb{X} & \\ & & \mathbb{X} & \\ & \mathbb{X} &$$

26

D'où dim
$$(A) = n^2 - r(n-p) = n^2 - rg(u) rg(v)$$

6.5 Exercice 18

Question 1. Non, si n = 2, nous avons
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^2 = I_2$

On généralise ce contre-exemple à n'importe-quel ordre avec les matrices ne possédant qu'un seul coefficient non-nul en bas à gauche et en haut à droite. Leur somme donne une matrice non nilpotente.

Question 2. La trace étant linéaire, il suffit de montrer le résultat pour les matrices nilpotentes (car si $A \in \mathbb{N}$, A est alors combinaison linéaire de matrices nilpotentes).

Montrons alors qu'une matrice nilpotente est de trace nulle (montrons que toute matrice nilpotente est semblable à une matrice triangulaire supérieure stricte) : Procédons par récurrence.

Le résultat est évident pout n = 1.

Supposons que toute matrice nilpotente en dimension $\mathfrak n$ est semblable à une matrice triangulaire supérieure stricte.

Soit $x \neq 0 \in \text{Ker}(A)$ (existe car A nilpotente). Alors nous pouvons compléter la famille (x) en base de E.

Dès lors, A est semblable à $\left(\begin{array}{c|c} 0 & \mathbb{L} \\ \hline \mathbb{O}_{n-1,1} & \mathbb{C} \end{array}\right)$. Or, $A^k = 0 \Rightarrow \mathbb{C}^k = 0$ (par un calcul explicite du bloc inférieur droit) avec k l'indice de nilpotence de A.

Nous pouvons appliquer l'hypothèse de récurrence à $\mathbb C$ pour obtenir une base de $\mathbb E$ telle que $\mathbb A$ soit semblable à une matrice triangulaire supérieure stricte. D'où le résultat.

Dès lors, toute matrice nilpotente est de trace nulle, donc $\mathbb{N} \subset \mathbb{H}$ par linéarité de la trace.

Question 3. (c.f Exercice 13), toute matrice de trace nulle est semblable à une matrice dont la diagonale est nulle. Il suffit alors de noter T^+ la matrice composée des coefficients sur-diagonaux et T^- la matrice des coefficients sous-diagonaux.

Soit donc $A \in \mathcal{H}$. Alors posons Δ de diagonale nulle telle qu'il existe $P \in GL_n(\mathbb{K})$, $A = P\Delta P^{-1}$. Auquel cas, $\Delta = T^+ + T^-$ et ces matrices sont nilpotentes (car triangulaires strictes). Ainsi, $A = P(T^+ + T^-)P^{-1} = PT^+P^{-1} + PT^-P^{-1}$, et les matrices PT^+P^{-1} , PT^-P^{-1} sont toujours nilpotentes car si $M^k = 0$ avec $N = QMQ^{-1}$, alors $N^k = QM^kQ^{-1} = 0$.

Finalement, nous avons bien $\mathcal{N} = \mathcal{H}$

6.6 Exercice 19

Montrons le résultat par récurrence sur n :

Initliation: c'est évident

Hérédité:

Supposons le résultat vrai au rang n-1 et montrons le au rang n. Soient $0 < t_1 < ... < t_n$ des réels.

$$\text{On considère la fonction } f\colon T \mapsto \left| \begin{array}{cccc} t_1^{\alpha_1} & t_1^{\alpha_2} & \cdots & t_1^{\alpha_n} \\ t_2^{\alpha_1} & t_2^{\alpha_2} & \cdots & t_2^{\alpha_n} \\ \vdots & & & \vdots \\ t_{n-1}^{\alpha_1} & t_{n-1}^{\alpha_2} & \cdots & t_{n-1}^{\alpha_n} \\ T^{\alpha_1} & T^{\alpha_2} & \cdots & T^{\alpha_n} \end{array} \right|$$

En développant par rapport à la dernière ligne, on obtient alors l'existence de n réels a_1, \ldots, a_n qui représentent les mineurs tel que : $f(t) = a_1 T^{\alpha_1} + \ldots + a_n T^{\alpha_n}$.

D'après H.R, $a_n>0$. De plus d'après le résultat (admis pour l'instant), f admet au plus n-1 zéros. Or $f(t_1)=\cdots=f(t_{n-1})=0$ (deux lignes égales dans le déterminant). De plus $f\to +\infty$ quand t tend vers $+\infty$. On en déduit alors que f est strictement positive sur $]t_{n-1};+\infty[$ car f est continue.

D'où le résultat par récurrence.

6.7 Exercice 20

Erreur d'énoncé! On suppose AB – BA inversible.

On pose M = (A + iB)

$$M\overline{M} = (A + iB)(A - iB)$$
$$= A^{2} - iAB + iBA + B^{2}$$
$$= (\sqrt{3} - i)(AB - BA)$$

$$Or \sqrt{3} - i = 2e^{\frac{-i\pi}{6}}$$

Donc
$$M\overline{M} = 2e^{\frac{-i\pi}{6}}(AB - BA)$$

On en déduit alors en calculant le déterminant de $M\overline{M}$ de deux manière différente :

D'une part : $\det M\overline{M} = |\det(M)|^2$

D'autre part : $\det M\overline{M} = 2^n e^{\frac{-in\pi}{6}} \det(AB - BA)$

Comme AB - BA est inversible alors $det(AB - BA) \neq 0$

Et $\det M\overline{M}$ est un réel donc on en déduit que $2^n e^{\frac{-i n \pi}{6}}$ doit l'être aussi et donc que n est un multiple de 6

