Лекции по алгебре 4 модуль.

Андрей Тищенко

2023/2024 гг.

Лекция 3 апреля

Квадратичные формы

Определение: Многочлен второй степени от n переменных, то есть выражение вида

$$q(x_1, \dots, x_n) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Где $a_{ij} \in \mathbb{R}$, называют квадратичной формой.

Замечание: Многочлен q(x) называется однородным степени k, если

$$\forall \alpha \quad q(\alpha x) = \alpha^k q(x)$$

Замечание: Квадратичная форма - это отображение $q:V\longrightarrow \mathbb{R}$ (вектор в число)

Рассмотрим n-мерное вектороное пространство V над \mathbb{R} . Зафиксируем в нём базис e_1, \ldots, e_n :

Тогда у любого $x \in V$ есть набор координат в этом базисе x_1, \ldots, x_n .

To есть $\forall x \in V : x = x_1 e_1 + \dots + x_n e_n$

Пусть
$$x^e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow q(x)$$
 можно представить в виде $q(x) = (x^e)^T A x^e$, где

 $A = (a_{ij})$ матрица квадратичной формы q(x) в базисе e_1, \ldots, e_n, a_{ij} - коэффициенты квадратичной формы.

Пример: В \mathbb{R}^3

$$q(x) = x_1^2 + 8x_1x_3 = x_1^2 + 4x_1x_3 + 4x_3x_1 = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 4 \\ 0 & 0 & 0 \\ 4 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Замечание: Матрица квадратичной формы всегда симметрическая. То есть

$$A^T = A$$

Замечание: По любой билинейной форме можно построить квадратичную форму, взяв $q(x)=b(x,\ x)$. Тогда $a_{ij}=\frac{b_{ij}+b_{ji}}{2}$

Пример: $b(x, y) = x_1y_1 + ex_1y_3 + 5x_3y_1 \Rightarrow q(x) = b(x, x) = x_1^2 + 8x_1x_3$

Определение: Билинейная форма называется симметрической, если

b(x, y) = b(y, x), например, скалярное произведение

Называется кососиметрической, если

$$b(x, y) = -b(y, x)$$

Пример: Кососиметрическая билинейная форма с матрицей $B=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow$ $\Rightarrow B^T=-B$

Замечание: По любой квадратичной форме можно построить симметрическую билинейную форму. Это называется <u>поляризацией</u> квадратичной формы.

$$b(x, y) = \frac{1}{2} [q(x+y) - q(x) - q(y)]$$

Полярная билинейная форма к q(x) (имеет ту же матрицу, что и $q(x),\,b(x,\,x)=q(x)$)

Утверждение: При переходе от базиса e к базису e' в линейном пространстве V матрица квадратичной формы меняется так:

 $A' = C^T \cdot A \cdot C$, "Стас" без рофлов, реально Стасямба конкретная

A' - матрица квадартичной формы в новом базисе e'

 ${\cal C}$ - матрица перехода от базиса e к базису e'

Доказательство: Свзять координат вектора:

x = Cx', так как $x' = C^{-1}x$ - формула изменения координат вектора при замене базиса.

Тогда $\forall x \quad q(x) = x^T A x = (Cx')^T A (Cx') = (x')^T C^T A C x' = (x')^T A' x',$ значит $A' = C^T A C$ (Можно в качестве x брать все векторы канонического базиса $(0,\dots 0,\ 1,\ 0,\dots,\ 0)$ и показать совпадение матричных элементов)

Определение: Если квадратичная форма в некотором базисе записана в виде $q(x) = x^T A x$, то есть если A - матрица квадратичной формы в некотором базисе, то $\operatorname{Rg} A$ называется рангом квадратичной формы q(x).

Почему это определение корректно? То есть почему $\operatorname{Rg} A$ не зависит от базиса.

Лемма: Пусть $A, U \in M_n(\mathbb{R}), \det U \neq 0$. Тогда $\operatorname{Rg} A \cdot U = \operatorname{Rg} A = \operatorname{Rg} U \cdot A$, то есть при умножении на невырожденную матрицу ранг не меняется.

Доказательство: $\operatorname{Rg} A \cdot U \leqslant \operatorname{Rg} A$, так как столбцы матрицы AU есть линейные комбинации столбцов матрицы A.

Ранг матрицы по теореме о ранге матрицы равен максимальному числу линейно независимых столбцов не могло вырасти, так как все столбцы AU линейно выражаются через столбцы исходной матрицы. Покажем $\operatorname{Rg} A \cdot U \geqslant \operatorname{Rg} A$.

$$\operatorname{Rg} A = \operatorname{Rg} A(U \cdot U^{-1}) = \operatorname{Rg}(AU)U^{-1} \leqslant \operatorname{Rg}(AU)$$

$$\operatorname{Rg} U \cdot A = \operatorname{Rg}(UA)^T = \operatorname{Rg} A^T U^T = \operatorname{Rg} A^T = \operatorname{Rg} A = \operatorname{Rg} A U$$

Утверждение: (об инвариантности ранга квадратичной формы)

Пусть q(x) - квадратичная форам на линейном пространстве V.

Пусть $a = (a_1, \ldots, a_n)$ и $b = (b_1, \ldots, b_n)$ - базисы в V.

Пусть A - матрица квадратичной формы в базисе a

Пусть B - матрицы квадратичной формы в базисе b

Тогда $\operatorname{Rg} A = \operatorname{Rg} B$ и ранг квадратичной формы корректно определен.

Доказательство: Было доказано, что $B=C^TAC\Rightarrow$ по лемме, так как мы умножаем матрицу A на матрицы C^T слева и на C справа, то ${\rm Rg}\,B={\rm Rg}\,A,$ ч.т.д.

Определение: квадратичную форму q(x) будем назвать положительно определённой, если

$$\forall x \neq 0 \quad q(x) > 0$$

отрицательно определённой, если

$$\forall x \neq 0 \quad q(x) < 0$$

знакопеременной, если

$$\exists x, \ y \in V : q(x) < 0 < q(y)$$

Пример: $q_1(x) = x_1^2 + 2x_2^2 + 5x_3^2$ на \mathbb{R}^3 - положительно определена $q_2(x) = x_1^2 - x_3^2$ - знакопеременна $\left(y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}, \ x = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \Rightarrow q(x) < 0 < q(y) \right)$. $q_3(x) = -x_1^2 - 2x_2^2 - 3x_3^2$ - отрицательно определена на \mathbb{R}^3 , но $q_3'(x) = -x_1^2 - 3x_3^2$ - не является отрицательно определённой, так как $q_3'\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$ - это неположительно определённая квадратная форма.

Теорема: (Критерий Сильвестра положительной определённости) Пусть A - матрица квадратичной формы q(x) в некотором базисе. Тогда

q(x) положительно определена $\Leftrightarrow \frac{\text{последовательность главных угловых}}{\text{миноров в A строго положительна}}$

То есть
$$\begin{cases} \Delta_1 = a_{11} > 0 \\ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0 \\ \dots \\ \Delta_n = \det A > 0 \end{cases}$$

Следствие:

Квадратичная форма отрицательно определена
$$\Leftrightarrow$$

$$\begin{cases} \Delta_1 < 0 \\ \Delta_2 > 0 \\ \dots \\ (-1)^n \Delta_n > 0 \end{cases}$$

To есть знаки главных угловых миноров чередуются, начиная с минуса.

Доказательство: Так как A - отрицательно определена $\Leftrightarrow -A$ положительно определена $\det(-A) = (-1)^n \det A$, ч.т.д.

Пример:
$$q(x) = -x_1^2 - x_2^2 - \cdots - x_n^2$$
 - отрицательно определённая
$$A = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 \end{pmatrix}$$

Определение: Квадратичную форму $q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2$, где $\alpha_i \in \mathbb{R}, \ i = \overline{1, \ n}$, то есть в квадратичной форме нет попарных произведений вида Cx_ix_j , называют квадратичной формой каноничесмкого вида. Если $\alpha_i \in \{-1, \ 0, \ 1\}$, то канонический вид называют нормальным.

Замечание: Матрица квадратичной формы в каноническом виде является диагональной.

Лекция 10 апреля

 $x \in V$ $q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2 \ (\alpha_i \in \mathbb{R}, \ i = \overline{1, \ n})$ - канонический вид. Если все коэффициенты α_i являются элементами множества $\{-1, \ 0, \ 1\}$, то это называется нормальным видом.

Утверждение. Любую квадратичную форму можно привести к каноническому и к нормальному виду.

Методы приведения

1. Метод Лагранжа.

Главная идея состоит в последовательном выделении полных квадратов. При этом на каждом шаге под квадрат полностью уходит одна переменная (невыполнение этого условия является частой ошибкой при решении задач). Получается, что не более чем за n шагов алгоритм даст канонический вид.

Если на некотором этапе переменных в квадрате не осталось, но есть выражение вида $c \cdot x_i \cdot x_i$ ($i \neq j$), то делают замену переменных:

$$\begin{cases} x_i = x'_i - x'_j \\ x_j = x'_i + x'_j \end{cases} \Rightarrow cx_i x_j = c \left((x'_i)^2 - (x'_j)^2 \right)$$

Получили новые квадраты, продолжаем выполнение метода (то есть выделяем полный квадрат при необходимости).

$$\alpha_i x_i^2 + 2x_i \underbrace{\left(\beta_1 x_1 + \dots + \beta_n x_n\right)}_{\text{HET } x_i} = \alpha_i \left(x_i^2 + 2x_i \frac{\beta_i x_1 + \dots + \beta_n x_n}{\alpha_i} + \left(\frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i} \right)^2 \right)$$

$$-\frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i} = \alpha_i \underbrace{\left(x_i + \frac{\beta_1 x_1 + \dots + \beta_n x_n}{\alpha_i}\right)}_{\text{заменяем на } y_i} - \underbrace{\frac{(\beta_1 x_1 + \dots + \beta_n x_n)^2}{\alpha_i}}_{\text{уже без } x_i}$$

То есть x_i полностью ушла под квадрат.

- 2. Метод Якоби. (может быть пройдём на семинаре)
- 3. Симметичный Гаусс. (может быть пройдём на семинаре)
- 4. Метод приведения к главным осям (только для канонического). (может быть пройдём на семинаре)

Теорема. Закон инерции квадратичной формы

Для любых двух канонических видов одной квадратичной формы. $q(x)=\lambda_1x_1^2+\cdots+\lambda_kx_k^2,\ \lambda_i\neq 0,\ i=\overline{1,\ k}$ $q(y)=\mu_1y_1^2+\cdots+\mu_my_m^2,\ \mu_j\neq 0,\ j=\overline{1,\ m}$ где $x,\ y\in V$

То есть это запись одной и той же квадратичной формы в разных базисах.

- 1. $k=m=\operatorname{Rg} A \leftarrow$ равно рангу квадратичной формы. При этом k=m может быть меньше размерности V, то есть $k=m\leqslant n=\dim V$
- 2. Количество положительных λ_i совпадает с количество положительных μ_j . Это называется положительный индекс инерции квадратичной формы.

Обозначение: i_+

3. Количество отрицательных λ_i совпадает с количеством отрицательрных μ_i и называется отрицательным индексом инерции.

Обозначение: i_{-}

Определение: Сигнатурой квадратичной формы называют два числа (i_+, i_-) .

Замечание: Если у двух квадратичных форм совпадают сигнатуры, то существует невырожденная линейное преобразование (=замена координат, =замена базиса), которое одну квадратичную форму переводит в другую. Сначала обе в нормальный вид, он совпадает, так как одинаковое количество +1 и -1, и для одной преобразование в обратную сторону.

Замечание: Если у двух квадратичных форм разные сигнатуры (i_+, i_-) , то одну нельзя перевести в другую невырожденным линейным преобразованием. То есть квадратичные формы разные.

Замечание: $\operatorname{Rg} A = i_+ + i_-$. Иногда вводят величину $S = i_+ - i_-$. Знание $\operatorname{Rg} A$ и S эквивалентно знанию i_+ и i_- , и поэтому число S иногда называют сигнатурой.

Линейные отображения и линейные операторы

Пусть V_1 и V_2 - два линейных пространства над полем F

Определение: Отображение $\varphi: V_1 \longrightarrow V_2$ называется <u>линейным</u>, если

1.
$$\forall x, y \in V_1, \varphi(x+y) = \varphi(x) + \varphi(y)$$

2.
$$\forall x \in V_1, \ \forall \alpha \in F \ \varphi(\alpha x) = \alpha \varphi(x)$$

Замечание: эти два условия равносильны $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$

Замечание: Линейное отображение это гомоморфизм линейных пространств, и есть обозначение $\varphi \in \text{Hom}(V_1, V_2)$

Определение: Если $V_1 = V_2 = V$ (пространства совпадают), то линейное отображение φ называется линейным оператором (л. о.)

Пусть e_1, \ldots, e_n - базис в V_1 , $\dim V_1 = n$ f_1, \ldots, f_m - базис в V_2 , $\dim V_2 = m$

Рассмотрим векторы $\varphi(e_1), \ldots, \varphi(e_n) \in V_2$ (образы базисных векторов первого пространства под действием φ), и разложим их по базису второго пространства f_1, \ldots, f_m :

$$\begin{cases} \varphi(e_1) = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m \\ \vdots \\ \varphi(e_n) = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m \end{cases}$$

Определение: Матрица линейного отображения в паре базисов (e_1, \ldots, e_n) и (f_1, \ldots, f_m) это матрица:

$$[\varphi]_{ef} = A_{ef} = \underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}_{m \times n}}_{\text{dim } V_1}$$
 dim V_2

По столбцам стоят координаты образов векторов первого базиса при разложении по второму базису.

Определение: Пусть
$$\varphi: V_1 \longrightarrow V$$
 - линейный оператор и e_1, \dots, e_n - базис. Пусть
$$\begin{cases} \varphi(e_1) = a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n \\ \vdots \\ \varphi(e_n) = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n \end{cases}$$

То есть образы базисных векторов под дейсвтием φ разложим по тому же базису.

Тогда:

$$A_e = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Называется матрицей линейного оператора

Пример: $\varphi(x) = \Pi p_L x$, где $L = \mathcal{L}(\bar{i})$ в V_3 , где \bar{i} - ось абсцисс. Рассмотрим стандартный базис $\{\bar{i}, \bar{j}, \bar{k}\}$ в V_3 .

$$\begin{cases} \varphi(i) = i = 1 \cdot i + 0 \cdot j + 0 \cdot k \\ \varphi(j) = 0 \\ \varphi(k) = 0 \end{cases} \Rightarrow A_{\{i, j, k\}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Teopeма: (о том, что действие линейного оператора полностью определяется его матрицей)

Пусть φ - линейный оператор в пространстве V

$$e=(e_1,\dots,\ e_n)$$
 - базис в $V,\ x\in V$ - вектор.
$$x^e=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}$$
 - столбец координат вектора x в базисе e , то есть $x=x_1e_1+\dots+x_ne_n$

Пусть A_e - матрица линейного оператора φ в базисе e, тогда:

$$(\varphi(x))^e = A_e \cdot x^e$$
, (матричное произведение)

Доказательство: $\varphi(x) = \varphi(x_1e_1 + \dots + x_1e_1)$ по линейности $x_1\varphi(e_1) + \dots + x_n\varphi(e_n)$ определение $x_1\varphi(e_1) + \dots + x_n\varphi(e_n)$ $x_1\varphi(e_1) + \dots + x_n\varphi(e_n)$ $\cdots + a_{n} e_{n} = (a_{1} x_{1} + a_{1} x_{2} + \cdots + a_{1} x_{n}) e_{1} + \cdots + (a_{n} x_{1} + a_{n} x_{2} x_{2} + \cdots + a_{n} x_{n}) e_{n} + \cdots + a_{n} x_{n} e_{n} = (a_{1} x_{1} + a_{1} x_{2} x_{2} + \cdots + a_{n} x_{n}) e_{1} + \cdots + a_{n} x_{n} e_{n} +$ $\cdots + a_{n\,n}x_n)e_n$ - получили разложение $\varphi(x)$ по базису e $\cdots + a_{n\,n}x_n)e_n$ - получили разложение $\varphi(w)$ не z=1 $\Rightarrow (\varphi(x))^e = \begin{pmatrix} a_{1\,1}x_1 + a_{1\,2}x_2 + \dots a_{1\,n}x_n \\ \vdots & \vdots & \vdots \\ a_{n\,1}x_1 + a_{n\,2}x_2 + \dots + a_{n\,n}x_n \end{pmatrix}$ Но это результат умножения A_e на $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x^e$, то есть $(\varphi(x))^e = (x_1)^e$

Замечание: Для линейных отображений аналогично

$$\left(\varphi(x)\right)^f = A_{ef}x^e$$

Замечание: При фиксированном базисе есть биекция между линейными операторами (линейными отображениями) и матрицами $n \times n$, $(m \times n)$.

Лекция 17 апреля.

Линейные операторы

(Напоминание) Пусть $\varphi: V \longrightarrow V$ - линейный оператор в пространстве V, фиксируем базис $e = \{e_1, \ldots, e_n\}$ в V.

Тогда \exists ! матрица линейного оператора A_e в базисе e, что

$$\forall x \in V \left(\varphi(x)\right)_{n \times 1}^{e} = \underset{n \times n}{A_{e}} \cdot x_{n \times 1}^{e}$$

Для линейного отображения $\phi: V_1 \longrightarrow V_2$ в фиксированной паре базисов e, f

$$\left(\phi(x)\right)_{m\times 1}^f = A_{ef} \cdot x_{n\times 1}^e$$

Утверждение: Пусть A - матрица линейного оператора φ в базисе e.

A' - матрица линейного оператора φ в базисе e'

Пусть T - матрица перехода в V от базисе e к базису e'.

Тогда $A' = T^{-1} \cdot A \cdot T$

Доказательство: По доказанному:

$$y = A \cdot x, \ y = (\varphi(x))^e$$
 (1)

$$y' = A' \cdot x', \ y' = \left(\varphi(x)\right)^{e'} \tag{2}$$

 $y = T \cdot y'$ (так как $y' = T^{-1}y$) и x = Tx' - формула зименения координат вектора при замене базиса.

Подставляем в (1): $T \cdot y' = A \cdot T \cdot x'$, но T - невырожденная матрица (так как она является матрицей перехода), домножим слева на

$$\Rightarrow y' = \underbrace{T^{-1} \cdot A \cdot T}_{A'} \cdot x'$$
, сравним с (2) $\Rightarrow A' = T^{-1} \cdot A \cdot T$, так как

матрица линейного оператора в заданном базисе единственная.

Утверждение: Пусть φ - линейное отображение линейного пространства V_1 (dim V_1 = n) в линейное пространство V_2 , $(\dim V_2 = m)$.

> Пусть $A_{\varepsilon_1 \varepsilon_2}$ - матрица линейного отображения в паре базисов ε_1 в пространстве V_1 и ε_2 в пространстве V_2 .

> Тогда, если T_1 - Это матрица перехода в V_1 от базиса ε_1 к базису

 T_2 - матрица перехода в V_2 от ε_2 к ε_2' .

Тогда имеет место следующее равенство:

$$A_{\varepsilon_{1}' \varepsilon_{2}'} = T_{2}^{-1} \cdot A_{\varepsilon_{1} \varepsilon_{2}} \cdot T_{1}$$

$$m \times n \quad m \times n \quad n \times n$$

Доказательство: Пусть y - образ x под действием φ (то есть $y = \varphi(x)$), тогда:

- (1) $y^{\varepsilon_2} = A_{\varepsilon_1 \, \varepsilon_2} \cdot x^{\varepsilon_1} \leftarrow$ в старом базисе

$$(1) \quad y = A_{\varepsilon_1 \varepsilon_2} \cdot x \leftarrow \text{в старом базисе}$$

$$(2) \quad y_{\varepsilon_2'} = A_{\varepsilon_1' \varepsilon_2'} \cdot x^{\varepsilon_1'} \leftarrow \text{в новом базисе}$$

$$x^{\varepsilon_1} = T_1 \cdot x^{\varepsilon_1'}$$

$$y^{\varepsilon_2} = T_2 \cdot y^{\varepsilon_2'} \leftarrow \text{формула изменения координат вектора}$$

Подставим в (1), получим:

 $T_2 y^{arepsilon'_2} = A_{arepsilon_1 \, arepsilon_2} T_1 x^{arepsilon'_1}$. Домножим на T_2^{-1} слева, так как T_2 - невырожденная \Rightarrow

$$\Rightarrow y^{\varepsilon_2'} = \underbrace{T_2^{-1} A_{\varepsilon_1 \, \varepsilon_2} T_1}_{A_{\varepsilon_1' \, A_{\varepsilon_2'}}} x^{\varepsilon_1'}, \text{ сравнивая с } (2) \Rightarrow$$

$$\Rightarrow A_{\varepsilon_1' \, \varepsilon_2'} = T_2^{-1} \cdot A_{\varepsilon_1 \, \varepsilon_2} T_1$$

Определение: Квадратные матрицы A и B называются <u>подобными</u>, если существует невырожденная матрица C:

$$B = C^{-1}AC \quad (\det C \neq 0)$$

Замечание: Матрицы линейных операторов в разных базисах подобнымежду собой.

Утверждение: Определители подобных матриц равны.

Доказательство: Пусть A и B подобны, то есть $B = C^{-1}AC \Rightarrow$

$$\det B = \det \left(C^{-1}AC \right) = \det C^{-1} \det A \det C = \frac{\det C}{\det C} \det A = \det A$$

Замечание: Это означает, что det A - определитель матрицы линейного оператора не зависит от выбора базиса, то есть является инвариантом замены координат (и $\operatorname{Rg} A$ - тоже инвариант)

Определение: <u>Ядром</u> линейного отображения $\varphi: V_1 \longrightarrow V_2$ назыается множество:

$$\ker \varphi = \left\{ x \in V_1 \middle| \varphi(x) = 0 \right\} = \varphi^{-1}(0) \subseteq V_1$$

 $\underline{\text{Образом}} \text{ линейного отображения } \varphi \text{ называется множество}$

$$\operatorname{Im} \varphi = \left\{ x \in V_2 \mid \exists y \in V_1 : \ \varphi(y) = x \right\} = \varphi(V_1) \subseteq V_2$$

Замечание: $\ker \varphi$ и $\operatorname{Im} \varphi$ являются линейными подпространствами в V_1 и V_2 соответственно (проверить замкнутость по оперицаям).

Утверждение: Пусть $\varphi:V_1\longrightarrow V_2$ - линейное отображение. Тогда $\dim\ker\varphi+\dim\operatorname{Im}\varphi=n=\dim V_1$

Доказательство: Зафиксируем базис $e = \{e_1, \ldots, e_n\}$ в V_1

 $\forall x \in V_1$ можно представить в виде $x = x_1 e_1 + \cdots + x_n e_n$

 $\varphi(x) = x_1 \varphi(e_1) + \cdots + x_n \varphi(e_n)$, но $\varphi(e_1), \ldots, \varphi(e_n)$ - столбцы матрицы

линейного отображения (если фиксировать базис и в V_2).

 $\operatorname{Im} \varphi = \mathcal{L}(\varphi(e_1), \ldots, \varphi(e_2))$ (линейная оболочка). \Rightarrow

 $\Rightarrow \dim \operatorname{Im} \varphi = \operatorname{Rg} A$ - ранг матрицы линейного отображения.

Ядро φ описывается однородной СЛАУ Ax=0, размерность пространства её решений (то есть число векторов Φ CP) равна $k = n - \operatorname{Rg} A$, где

k - размерность ядра,

n - размерность образа.

Итак, $\dim \ker \varphi + \dim \operatorname{Im} \varphi = n$, где $n = \dim V_1$.

Замечание: Если $\varphi: V \longrightarrow V$ - линейный оператор (то есть $\ker \varphi, \operatorname{Im} \varphi \subseteq V$), то вообще говоря,

 $V \neq \ker \varphi + \operatorname{Im} \varphi$, хотя и $\dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim V$

Пример: Рассмотрим линейное пространство $\mathbb{R}_n[x]$ - пространство многочленов от x, $\deg f \leqslant n$ с вещественными коэффициентами и оператор

 $\mathcal{D}: f \mapsto f' \leftarrow$ производная, $\mathcal{D}: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$

 $\dim \mathbb{R}_n[x] = n+1$, так как $\mathbb{R}_n[x] = \mathcal{L}\{1, x, x^2, \dots, x^n\}$

 $\operatorname{Im} \mathcal{D} = \mathbb{R}_{n-1}[x], \operatorname{dim} \operatorname{Im} \mathcal{D} = n$

 $\ker \mathcal{D} = \mathcal{L}(1)$ - константы, $\dim \ker \mathcal{D} = 1$,

но $\ker \mathcal{D} \subseteq \operatorname{Im} \mathcal{D}$, но

 $\dim \ker \mathcal{D} + \dim \operatorname{Im} \mathcal{D} = n + 1 = \dim \mathbb{R}_n[x]$

Действия с линейными операторами и их матрицами

Пусть A и B - линейные операторы на линейном пространстве V над полем F, тогда

Определение: (A + B)(x) = A(x) + B(x)

 $(\lambda A)(x) = \lambda A(x)$ - умножение на число $\lambda \in F$

 $(A \cdot B)(x) = A(B(x))$ - умножение линейного оператора (композиция)

Замечание: A+B, $\lambda \cdot A$, $A \cdot B$ - снова линейные операторы (провека по определению)

Утверждение: Пусть фиксирован базис $e = \{e_1, \ldots, e_n\}$. Тогда:

$$\begin{cases} (1) (A+B)_e = A_e + B_e \\ (2) (\lambda A)_e = \lambda A_e \\ (3) (A \cdot B)_e = A_e \cdot B_e \end{cases}$$

$$(2) \left(\lambda A\right)_e = \lambda A_e$$

$$(3) (A \cdot B)_e = A_e \cdot B_e$$

Доказательство (3): $\left((A \cdot B)(x) \right)^e = A_e \cdot \left(B(x) \right)^e = A_e \cdot B_e x^e = (AB)_e x^e \Rightarrow$ $\Rightarrow (AB)_e = A_e B_e$, так как матрица линейных операторов в фиксированном базисе единственна.

Собственные векторы и собственные числа

- Определение: Число λ называется собственным числом (или собственным значением, то есть <u>с. з.</u>) линейного оператора $\varphi: V \longrightarrow V$, где V линейное простраснтво, если \exists вектор $x \in V$, $x \neq 0$, такой что $\varphi(x) = \lambda \cdot x$. При этом x называется собственным вектором (<u>с. в.</u>), отвечающим собственному значению λ .
 - Замечание: Если x собственный вектор, отвечающих собственному значению λ , то $\forall \alpha \in F, \ \alpha \neq 0, \ \alpha x$ тоже собственный вектор, отвечающий собственному значению $\lambda \ \varphi(\alpha x) = \alpha \varphi(x) = \alpha \lambda x = \lambda(\alpha x) \Rightarrow \alpha x$ собственный вектор.
 - Замечание: Дригими словами, собственный вектор ненулевой вектор, остающийся коллинеарным (либо равным 0) самому себе под действием линейного оператора φ
 - Пример 1: Пусть $\Pi p_{Ox}: V_2 \longrightarrow V_1 \ (V_2 \cong \mathbb{R}^2)$ линейный оператор проекции на Ox в плоскости V_2 . Все векторы $\in Ox$, отличные от 0 собственные векторы.

Hапример, $\vec{i} = (1, 0)$

 $\varphi(\vec{i})=i$ - собтсвенный вектор, отвечающий собственному значению $\lambda_1=1$

 $arphi(ec{j})=0\Rightarrow j$ - собственный вектор, отвечающий собственному значению $\lambda_2=0$

В базисе $\{i,\ j\}$ - базис из собственных векторов. Матрица линейного оператора $A=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ - диагональная матрица. $V_2=Ox\oplus Oy$

Бывает, что нет собственных значений и собственных векторов для линейного оператора

Лекция 24 апреля

Задача:

Есть 10000 человек.

Каждый день 15% здоровых заболевают и 10% больных выздоравливают (можно болеть повторно).

В первый день заболело 100 человек.

А - линейный оператор ежедневной динамики.

$$\lim_{n \to \infty} = A^n(x_0), \ x_0 = \begin{pmatrix} 9900 \\ 100 \end{pmatrix}$$

$$A^n - ?$$

Определение:

Для произвольной квадратной матрицы A определитель

$$\chi_A(\lambda) = \det(A - \lambda E)$$

Называется характеристическим многочленом матрицы A, а уравнение $\chi_A(\lambda)$ - многочлен степени n

Пример:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ \chi_A(\lambda) = \det \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \end{pmatrix} = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda = \lambda(\lambda - 2)$$

Утверждение:

Характеристические уравнения подобных матриц совпадают.

Доказательство:

$$A$$
 и A' подобны, если существует T , $\det T \neq 0$: $A' = A' = T^{-1}AT$

$$\chi_{A'}(\lambda) = \det(A' - \lambda' E) = \det(T^{-1}AT - \lambda T^{-1}ET) = \det\left(T^{-1}(A - \lambda E)T\right) = \det T^{-1} \det(A - \lambda E) \det T = \det(A - \lambda E) = \chi_A$$

Следствие:

Характеристические многочлены для матриц линейных операторов в разных базисах совпадают (сами матрицы могут различаться).

То есть корректно говорить о характеристическом многочлене для линейного оператора (то есть он инвариантен при замене базиса).

Определение:

Множество всех собственных значений линейного оператора называют спектром линейного оператора.

Теорема:

 λ - собственное значение линейного оператора $\Leftrightarrow \lambda$ - корень характеристического уравнения линейного оператора (над алгебраически замкнутым полем (например \mathbb{C}) или в случае, когда корни характеристического уравнения лежат в том же поле, над которым рассматривается линейный оператор).

Доказательство:

Необходимость:

Дано: λ - собственное значение линейного оператора A

Доказать: λ - корень $\chi_A(\lambda) = 0$

По определению $\exists x \neq 0 \ A(x) = \lambda \cdot x$, то есть $A(x) = \lambda \cdot I(x)$, где I(x) - тождественный линейный оператор.

$$(A - \lambda I)(x) = 0 \quad (*)$$

Запишем равенство (*) в некотором базисе e:

$$(A_e - \lambda E) \cdot x^e = 0$$

Это однородное СЛАУ с ненулевым решением, то есть по критерию существования ненулевых решений $\det(A_e - \lambda E) = 0$, а это и есть $\chi_A(\lambda) = 0$

Достаточность :

Дано: λ - корень $\chi_A(\lambda) = 0$

Доказать: λ - собственное значение линейного оператора A

Если λ - корень, то в заданном базисе e выполнено равенство

$$\det(A_e - \lambda E) = 0$$

То есть однородное СЛАУ $(A_e - \lambda E)x^e = 0$ имеет ненулевое решение (по тому же критерию) и соответственно выполняется (*)

$$(A - \lambda I)(x) = 0 \Leftrightarrow A(x) = \lambda x \quad (x \neq 0)$$

То есть x - собственный вектор, отвечающий собственному значению λ , ч.т.д.

Пример:

$$\chi_A=(\lambda)=\lambda(\lambda-2)\Rightarrow egin{bmatrix} \lambda_1=0 \ \lambda_2=2 \end{bmatrix}$$
 - спектр линейного оператора A

Определение:

Алгебраической кратностью собственного значения λ называется его кратность как корня характеристического уравнения.

Обозначение:

 m_i - алгебраическая кратность собственного значения λ_i

Пример:

$$\chi_A(\lambda) = (\lambda - 5)^3 (\lambda - 2)^2$$

Тогда будет верно:

$$\begin{cases} \lambda_1 = 5 \leftarrow m_1 = 3 \\ \lambda_2 = 2 \leftarrow m_2 = 2 \end{cases}$$

Определение:

Пусть $A:V \to V$ - линейный оператор λ - собственное значение линейного оператора A. Тогда множество

$$V_{\lambda} = \{ x \in V \mid Ax = \lambda x \}$$

называется собственным подпространством отвечающим собственному значению λ .

Замечание:

 V_{λ} является линейным подпространством в V (состоящим из собственных векторов, отвечающих собственным значениям λ , и нулевого вектора).

Доказательство:

$$Ax = \lambda x \Leftrightarrow (A - \lambda E) \cdot x = 0$$

То есть $V_{\lambda} = \ker(A - \lambda I)$ линейный оператор с матрицей $(A - \lambda E)$ $\ker B$ любого линейного оператора B является подпространством в V (проверить замкнутость).

Определение:

Размерность собственного подпространства V_{λ} называется <u>геометрической кратностью</u> собственного значения λ

Обозначение:

 s_i - геометрическая кратность собственного значения λ

Замечание:

Геометрическая кратность собственного значения λ всегда $\geqslant 1$ $(s_i \geqslant 1)$.

Теорема: без доказательства

Геометрическая кратность собственного значения λ всегда \leqslant его алгебраической кратности $(s_i \leqslant m_i)$

Определение:

Следом матрицы $A \in M_n(F)$ называется сумма е диагональных элементов

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{i\,i}$$

Утверждение:

$$\forall A, B \in M_n(F) \quad \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

Утверждение:

Пусть A - линейный оператор в базисе e. Тогда $\operatorname{tr} A_e$ не зависит от выбора базиса.

Доказательство:

 $A_{e'} = T^{-1}A_eT$, где $A_{e'}$ - матрица линейного оператора A в базисе e'. Тогда $\operatorname{tr} A_{e'} = \operatorname{tr} \left((T^{-1}A_e)T \right) = \operatorname{tr} \left(T(T^{-1}A_e) \right) = \operatorname{tr} A_e$.

Итого:

 $\operatorname{Rg} A$, $\det A$, $\operatorname{tr} A$, $\chi_A(\lambda)$ - инварианты линейного оператора при замене базиса.

Замечание:

$$A \in M_n(\mathbb{R}), \ \chi_A(\lambda) = \det(A - \lambda E) = (-1)^n \lambda^n \neq (-1)^{n-1} \operatorname{tr} A \lambda^{n-1} + \dots + \det A$$

Критерий диагональности линейного оператора

Утверждение:

Пусть $\lambda_1, \ldots, \lambda_k$ - собственные значения линейного оператора и пусть $\lambda_i \neq \lambda_j$ при $i \neq j$.

Пусть v_1, \ldots, v_k - соответствующие собственные векторы

Тогда v_1, \ldots, v_k - линейно независимы.

То есть собственные векторы, отвечающие различным собственным значениям являются линейно независимыми.

Доказательство:

Применим принцип математической индукции.

При k=1 - утверждение верно, так как собственный вектор по определению $\neq 0$ и соответсвенно образует линейно независимую систему.

Пусть утверждение верно при k=m.

Добавим ещё 1 собтвенный вектор v_{m+1} , отвечающий собственному значению λ_{m+1} . Докажем, что система собственных векторов v_1, \ldots, v_{m+1} останется линейно независимой.

Рассмотрим равенство:

1.
$$\alpha_1 v_1 + \dots + \alpha_m v_m + \alpha_{m+1} v_{m+1} = 0$$

Применим к 1. линейный оператор A, тогда по линейности:

$$\alpha_1 A(v_1) + \dots + \alpha_m A(v_m) + \alpha_{m+1} A(v_{m+1}) = 0$$

Вспомним, что v_i - собственный вектор для собственного значения λ_i

2.
$$\alpha_1 \lambda_1 v_1 + \cdots + \alpha_m \lambda_m v_m + \alpha_{m+1} \lambda_{m+1} v_{m+1}$$

Умножим 1. на λ_{m+1} и вычтем из 2.

$$\alpha_1(\lambda_1 - \lambda_{m+1})v_1 + \dots + \alpha_m(\lambda_m - \lambda_{m+1})v_m = 0$$

По предположению индукции v_1, \ldots, v_m - линейно независимы:

$$\begin{cases} \alpha_1(\lambda_1 - \lambda_{m+1}) = 0 \\ \dots \\ \alpha_m(\lambda_m - \lambda_{m+1}) = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = 0 \\ \dots \\ \alpha_m = 0 \end{cases}$$

Теперь 1. можно записать в виде:

$$0 + \alpha_{m+1} v_{m+1} = 0$$

Но $v_{m+1} \neq 0$ (собственный вектор), значит $\alpha_{m+1} = 0 \Rightarrow$ по определению система v_1, \ldots, v_{m+1} является линейно независимой.

 $\mathbf{Утверждение}$: Критерий диагональности матрицы линейного оператора A

Матрица линейного оператора A является диагональной в данном базисе \Leftrightarrow все векторы этого базиса являются собственными векторами для линейного оператора A.

Доказательство:

Необходимость:

Дано: A_e - диагональная матрица

Доказать: e состоит из собственных векторов по A

По определению матрицы линейного оператора в j-м столбце стоят координаты вектора $A(e_i)$ в базисе e_1, \ldots, e_n

Если A_e - диагональна, то j-й столбей имеет вид $(0,\ldots,\ 0,\ \lambda_j,\ 0,\ldots,\ 0)\Rightarrow$

 $\Rightarrow A(e_j) = 0 + \dots + 0 + \lambda_j e_j + 0 + \dots + 0$, то есть $A(e_j) = \lambda_j e_j$, $e_j \neq 0 \Rightarrow$ по определению e_j - собственный вектор, отвечающий собственному значению λ_j (на диагонали матрицы A_e - собственное значение).

Достаточность :

Дано: e состоит из собственных векторов по A

Доказать: A_e - диагональная матрица

$$A(e_j) = \lambda_j e_j,$$

 $\forall j=\overline{1,\ n}\Rightarrow$ по определению матрицы линейного оператора, все элементы кроме диагональных равны нулю в каждом столбце (на диагонали собственные значения λ_i), ч.т.д.

Определение:

Линейный оператор, для которого в линейном пространстве V существует базис из собственных векторов, называется диагонализируемым.

Теорема: Критерий диагонализируемости линейного оператора.

(Без доказательства) Линейный оператор диагонализируем \Leftrightarrow для любых его собственных значений λ_i алгебраическая кратность равна геометрической кратности $(m_i = s_i)$

Теорема:

Если характеристическое уравнение линейного оператора, действующего в пространстве V, где $\dim V = n$ имеет ровно n попарно различных корней, то оператор диагонилизируеем (корни лежат в поле, над которым рассматривается линейное пространство V)

Доказательство:

Если собственное значение $\lambda_i \in F$, то ему можно сопоставить хотя бы один собственный вектор v_i . Система $v_1,\ldots,\ v_n$ - линейно независимы, так как по условию $\lambda_i \neq \lambda_j$, при $i \neq j$ (доказали ранее), их число равно $\dim V \Rightarrow$ они образуют базис в V из собственных векторов \Rightarrow линейный оператор диагонализируем