

LES TIMERS

PIERRE-YVES ROCHAT, EPFL ET YVES TIECOURA, INP-HB

RÉV 2016/02/02

GESTION EXACTE DU TEMPS

Les enseignes et afficheurs à LED, comme beaucoup d'applications des microcontrôleurs, nécessitent souvent une gestion exacte du temps. Les animations doivent être correctement cadencées et, plus difficile encore, la gestion des afficheurs matriciels multiplexés exige une gestion du temps (*timing*) exacte.

Il est souvent difficile d'assurer correctement cette gestion du temps en utilisant uniquement les instructions du processeur. C'est la raison pour laquelle les microcontrôleurs offrent presque toujours des circuits spécialisés dans le comptage et la gestion du temps, appelés les *timers*.

Dans le chapitre sur la modulation de largeur d'impulsion (PWM), nous avions proposé le montage suivant, pour faciliter la génération de signaux PWM:

Compteur générant du PWM

Ce montage est basé sur un compteur binaire, qu'on appelle aussi un diviseur de fréquence. Rappelons qu'à chaque flanc montant de l'horloge, le compteur passe à la valeur binaire suivante. On peut observer que lorsqu'un signal de fréquence fixe F_0 est placé sur l'entrée, les sorties successives prennent des fréquences sous-multiples : la fréquence est divisée par 2, par 4, par 8, etc.

Chronogramme d'un compteur binaire

Le terme anglais *timer* désigne non seulement le compteur binaire, mais aussi souvent l'ensemble du montage. Les traductions françaises, *minuterie* ou *temporisateur*, ne sont que rarement utilisées. C'est la raison pour laquelle nous utiliserons ici plutôt l'anglicisme *timer*, que nous considérerons comme un néologisme.

Le PWM n'est pas la seule application des timers. Beaucoup de tâches — liées le plus souvent à la gestion du temps ou au comptage d'événements — peuvent lui être confiées.

LES TIMERS

La figure ci-dessous généralise ce concept :

DRAFT

On y trouve:

- Un compteur binaire. Il peut être de 8 bits, 16 bits, parfois même de 32 bits. C'est le timer proprement dit.
- Une horloge, c'est-à-dire un oscillateur (OSC). Il s'agit généralement de l'horloge également utilisée pour le processeur.
- Un système de choix de l'horloge et du prédiviseur, qui permet de choisir une fréquence d'horloge bien adaptée au problème à résoudre.
- Une logique de **comparaison**, par exemple pour tester l'égalité.
- Un registre de comparaison, associé à la logique de comparaison. Plusieurs registres de comparaison sont souvent présents.
- Une logique de gestion, permettant de faire interagir des entrées et des sorties avec le timer, ainsi qu'à générer des interruptions dans certaines conditions.

PRÉDIVISION

Voici comment peut se présenter le choix de l'horloge et du prédiviseur :

Exemple de système de choix de l'horloge

Un premier multiplexeur permet de choisir entre une horloge interne ou externe. Un compteur binaire, utilisé en diviseur de fréquence, fournit des signaux à des fréquences sous-multiples de celle de l'horloge. Un second multiplexeur permet de choisir la fréquence qui commande le timer.

Les deux multiplexeurs sont commandés par des bits d'un registre de contrôle, dont le rôle est de fixer le mode de fonctionnement du timer.

DRAFT -3-

LOGIQUE DE GESTION

Une logique permet de mettre en œuvre le timer. Elle diffère beaucoup d'un microcontrôleur à l'autre. En voici un exemple très simple :

Exemple de logique de gestion d'un timer

On y trouve une bascule qui détecte le dépassement de capacité du timer. C'est le moment où le compteur binaire repasse à la valeur 0. La bascule est mise à 1 à cet instant. Elle fait généralement partie d'un registre de contrôle et peut donc être lue en tout temps.

Il faut pouvoir remettre ce fanion à zéro lors qu'il a été pris en compte. Parfois, il faut écrire un θ dans le bit correspondant du registre. Mais sur certains microcontrôleurs, c'est l'écriture de la valeur 1 qui met ce fanion à θ . C'est le cas des timers des AVR.

La génération d'interruptions est très importante dans l'utilisation des timers. Ici, on voit un fanion IE (*Interrupt Enable*) qui permet de générer une interruption. En effet, la porte logique *ET* nécessite qu'IE soit à 1 pour que l'interruption soit transmise. Elle ne sera effective que si l'autorisation générale des interruptions est activée (GIE ou *General Interrupt Enable*), comme toutes les autres interruptions.

REGISTRES DE COMPARAISON

La présence d'un ou de plusieurs registres de comparaison associés à un timer le rend beaucoup plus intéressant. En voici un exemple simple :

DRAFT

Exemple de registre de comparaison

Un comparateur d'égalité est placé entre le timer et un registre dont il est possible à tout moment de modifier la valeur. Chaque fois que le timer a la même valeur que le registre de comparaison, le fanion passe à 1. À nouveau, il est possible de générer une interruption, avec un mécanisme similaire à celui du dépassement de capacité.

LES TIMERS DES MICROCONTRÔLEURS

Quelques années après l'apparition des premiers microprocesseurs, des circuits spécialisés incorporants des timers sont apparus sur le marché. C'est le cas du très célèbre 8253 d'Intel, datant de 1981, dont on trouve encore des descendants dans les PC modernes.

Les microcontrôleurs ont eux aussi très vite été complétés par des timers, comme le célèbre PIC16x84, qui incluait déjà un unique compteur 8 bits très simple, mais très utile.

Les microcontrôleurs ARM ont tous plusieurs timers. L'ATmega328, connu pour équiper les Arduino, a trois timers, le TIMER 0 de 8 bits, le TIMER 1 de 16 bits et le TIMER 2 de 8 bits, mais différent du TIMER 0. Ces timers sont riches en fonctionnalités permettant de nombreuses applications.

Les microcontrôleurs plus modernes ont souvent des timers très complexes. Dans les familles de microcontrôleurs ARM, les timers diffèrent d'un fabricant à l'autre : cette partie du microcontrôleur est propriétaire, elle n'est pas développée par la société ARM.

Nous étudierons ici les timers utilisés dans les microcontrôleurs MSP430G de Texas Instruments, qui se trouvent sur la carte Launchpad.

TIMER A DU MSP430

Les MPS430 de la série G disposent de timers de 16 bits, en nombre et en configurations variables selon les modèles. Le MSP430G2231 avec un boîtier de 14 pattes en a un seul, disposant de deux registres de comparaison. Le MSP430G2553 en a deux, disposant chacun de trois registres de comparaison.

Le fonctionnement de ces registres est très bien documenté : 20 pages, bien évidemment en anglais. Voici les références du document : *MSP430x2xx Family User's Guide, literature Number: SLAU144H.* On le trouve facilement sur internet.

Afin de nous familiariser avec la lecture de la documentation, nous allons nous baser sur les documents fournis par Texas Instruments pour comprendre le minimum nécessaire à la mise en œuvre d'un de ces timers. Nous allons aussi respecter la syntaxe proposée pour l'accès aux registres.

La figure ci-dessous donne la vue d'ensemble du TIMER A :

Figure 12-1. Timer_A Block Diagram

TIMER A du MSP430

DRAFT

Ce schéma n'est pas simple, mais il est clair et complet. On y trouve un compteur 16 bits appelé TAR. Il est possible à tout moment de lire sa valeur. Il est aussi possible d'écrire une nouvelle valeur, mais nous n'utiliserons pas cette possibilité ici.

Ce compteur reçoit un signal d'horloge qu'il est possible de sélectionner parmi plusieurs sources. Un prédiviseur peut être utilisé, qui donne le choix entre la fréquence d'origine et des divisions par 2, 4 ou 8. Le compteur peut compter selon plusieurs modes.

Un registre de contrôle de 16 bits appelé TACTL est associé à chaque timer. Il peut aussi apparaître sous le nom TAOCTL, pour les microcontrôleurs qui ont plusieurs TIMER A (le deuxième s'appelant alors TA1CTL). Il n'apparaît pas explicitement dans le schéma, mais c'est de lui que proviennent plusieurs signaux (TASSETx, IDx, TACLR, etc.) Ce sont les différents bits de ce registre qui vont permettre de choisir l'horloge, les prédiviseurs, le mode de comptage, etc.

Voici comment la documentation le décrit ce registre TACTL :

12.3.1 TACTL, Timer_A Control Register

15	14		13	12	11	10	9	8		
		Unused					TASSELx			
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
7	6		5	4	3	2	1	0		
IDx		N		/ICx	Unused	TACLR	TAIE	TAIFG		
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
Jnused	Bits 15-10	Unuse								
ΓASSELx	Bits 9-8	Timer_A clock source select								
		00	TACLK							
		01	ACLK							
		10	SMCLK							
		11 INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the device-specific data sheet)								
IDx	Bits 7-6	Input divider. These bits select the divider for the input clock.								
		00	/1							
		01	/2							
		10	/4							
		11	/8							
MCx	Bits 5-4	Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.								
		OO Stop mode: the timer is halted.								
		01 Up mode: the timer counts up to TACCR0.								
		10	Continuous	mode: the timer co	ounts up to 0FFFF	h.				
		11		ode: the timer cour	nts up to TACCR0	then down to 000	0h.			
Jnused	Bit 3	Unused								
TACLR	Bit 2	Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is automatically reset and is always read as zero.								
TAIE	Bit 1	Timer_A interrupt enable. This bit enables the TAIFG interrupt request.								
		0	Interrupt dis	abled						
		1 Interrupt enabled								
ΓAIFG	Bit 0	Timer_A interrupt flag								
		0 No interrupt pending								
		1	Interrupt pe	nding						

Registre TACLT

Parcourons quelques bits de ce registre de contrôle pour choisir les valeurs pour notre premier exemple :

- TASSELx permet de choisir l'horloge. Utilisons l'horloge du processeur : SMCLK. Les deux bits correspondants doivent prendre la valeur binaire 10. Texas Instruments utilise la syntaxe suivante : TASSEL_2 (valeur 2 pour les bits TASSEL).
- IDx permet de choisit la prédivision. Choisissons une division par 8. La valeur est
 ID 3.
- MCx permet de choisir le mode de comptage. Choisissons le mode continu. La valeur est MC_2.

L'instruction d'initialisation de notre timer sera donc: TACTL = TASSEL 2 + ID 3 + MC 2;

PREMIER PROGRAMME AVEC LE TIMER A

Voilà un premier programme... qui va faire clignoter une LED!

Il commence comme toujours par l'instruction de mise hors service du compteur *watch-dog*, mais aussi par deux instructions permettant de choisir une des fréquences calibrées d'usine, ici 1 MHz:

```
int main() {
  WDTCTL = WDTPW + WDTHOLD; // Watchdog hors service
  BCSCTL1 = CALBC1_1MHZ;
  DCOCTL = CALDC0_1MHZ; // Fréquence CPU
  P1DIR |= (1<<0); // P1.0 en sortie pour la LED
  TACTL0 = TASSEL_2 + ID_3 + MC_2;
  while (1) { // Boucle infinie
    if (TACTL0 & TAIFG) {
        TACTL0 &=~TAIFG;
        P1OUT ^= (1<<0); // Inversion LED
    }
  }
}</pre>
```

Comment fonctionne la boucle principale? Chaque fois que le fanion TAIFG passe à 1, l'alimentation de la LED est inversée. Le fanion TAIF (qui se trouve aussi dans le registre TACTL) signale un dépassement de capacité, c'est-à-dire le retour à zéro du compteur. Il doit être remis à zéro en vue du prochain cycle. Calculons la période de clignotement : l'horloge de 1 MHz est divisée par 8 par le prédiviseur. Le timer est donc commandé à une fréquence de 125 kHz ce qui correspond à une période de 8 µs. Le timer a 16 bits, il va donc faire un cycle complet en 65'536 coups d'horloge, soit environ 524 ms.

- 8 -

LES REGISTRES DE COMPARAISON

L'intérêt principal des timers réside dans les registres de comparaison qui leur sont associés. Dans le schéma de la page 1, on voit qu'il y a trois registres de comparaison, notés θ , 1 et 2. Le détail est donné pour le groupe 2.

Ces trois registres de comparaison se nomment CCR0, CCR1 et CCR2. Ces registres permettent de mémoriser une valeur qui va être en permanence comparée avec la valeur du timer TAR.

À chacun de ces registres de comparaison est associé un registre de contrôle, appelé respectivement TACCLT0, TACCLT1 et TACCTL2.

La figure suivante donne la description de ce registre. Elle n'est pas simple :

15	14		13	12	11	10	9	8	
CMx			cc	CISx	SCS	SCCI	Unused	CAP	
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	r	r0	rw-(0)	
7	6		5	4	3	2	1	0	
	OUTMO	Οx		CCIE	CCI	OUT	cov	CCIFG	
rw-(0)	rw-(0)		rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)	
СМх	Bit 15-14	Captu	re mode						
		00	No capture						
		01	Capture on	rising edge					
		10	Capture on	falling edge					
		11	Capture on	both rising and fal	ling edges				
CCISX	Bit 13-12 Capture/compare input select. These bits select the TACCRx input signal. See the device-							ecific data	
				nal connections.					
		00	CCIxA						
		01	CCIxB						
		10	GND						
	5:	11	V _{CC}						
SCS	Bit 11 Synchronize capture source. This bit is used to synchronize the capture input O Asynchronous capture						nput signal with the	timer clock.	
		-							
SCCI	Bit 10	 Synchronous capture Synchronized capture/compare input. The selected CCI input signal is latched with the EQ 							
CCI	BIL TU		ad via this bit	e/compare input.	The selected CCT	input signal is late	thed with the EQU	k signai and	
Inused	Bit 9	Unuse	ed. Read only.	Always read as 0.					
CAP	Bit 8	Captu	re mode						
		0	Compare m	ode					
		1	Capture mo	de					
OUTMODX	Bits 7-5	Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0, because EQUx = EQU0.							
		000	OUT bit valu	ie					
		001	Set						
		010	Toggle/rese	t					
		011	Set/reset						
		100	Toggle						
		101	Reset						
		110	Toggle/set						
	Dis. 4	111	Reset/set		a la la constitue de la la		£ 41	00150 (1	
CCIE	Bit 4				s bit enables the ii	nterrupt request o	f the corresponding	g CCIFG flag	
		0	Interrupt dis						
CI	Bit 3	1	Interrupt en			and the state of t			
	Bit 2				input signal can be				
OUT	Bit 2	0		lode u, this bit dire	ectly controls the s	tate of the output			
		1	Output low						
COV	Bit 1		Output high	in his indiansa.					
'OV	DILI			ns bit indicates a overflow occurred		ccurred. COV ML	ist be reset with so	ilwdfe.	
cov									
cov		0							
COV	Rit 0	1	Capture ove	erflow occurred					
COV	Bit 0	1		erflow occurred errupt flag					

Registre TACCRx

Modifions notre programme de la manière suivante :

```
int main() {
    ...
    TACCR0 = 62500; // 62500 * 8 us = 500 ms
    while (1) { // Boucle infinie
        if (TACCTL0 & CCIFG) {
            TACCTL0 &=~CCIFG;
            TACCR0 += 62500;
            P10UT ^? (1<<0); // Inversion LED
        }
    }
}</pre>
```

Au début du programme, le registre de comparaison a été initialisé à 62'500, une valeur qui correspond à une demi-seconde dans notre cas : $62'500 \times 8 \ \mu s = 500 \ ms$. Une fois cette valeur atteinte, il faut ajouter 62'500 à la valeur courant du registre de comparaison. On va dépasser la capacité du registre, qui a 16 bits. On obtiendra : (62'500 + 62'500) % 65'536 = 59'464 où le signe % représente l'opération de modulo, c'est-à-dire le reste de la division entière. Mais comme le timer augmente toujours et qu'il a lui aussi 16 bits, cette valeur est effectivement la bonne pour la prochaine comparaison.

Si vous avez des doutes, imaginez qu'il est 9 h 50 et que vous voulez faire sonner votre réveil dans 30 minutes. Vous devez le régler sur 10 h 20. En ne tenant compte que des minutes, on a bien : (50 + 30) % 60 = 20.

LES INTERRUPTIONS ASSOCIÉES AUX TIMERS

L'intérêt principal des timers est de les associer à des interruptions. Modifions le programme de la manière suivante :

```
int main() {
    ...
    TACTL |= TAIE; // Interruption de l'overflow
    _BIS_SR (GIE); // Autorisation générale des interruptions
    while (1) { // Boucle infinie vide
    }
}

// Timer_A1 Interrupt Vector (TAIV) handler
#pragma vector=TIMER0_A1_VECTOR
    __interrupt void Timer_A1 (void) {
    switch (TAIV) {
```

```
case 2: // CCR1 : not used
    break;
case 4: // CCR2 : not used
    break;
case 10: // Overflow
    Led1Toggle;
    break;
}
```

Notez le nom de la routine d'interruption. Elle ne concerne pas le TIMER 1 ! Elle est la seconde routine d'interruption du TIMER 0, la première étant présentée dans le prochain exemple.

L'interruption associée au timer lui-même correspond à un *overflow* (dépassement de capacité, c'est le passage de la plus grande valeur à θ). La syntaxe de la routine d'interruption est un peu compliquée. Il faut la copier et non pas chercher à la comprendre! Notez qu'elle varie selon les compilateurs : il ne s'agit pas d'une norme du C. Dans ce cas, trois sources différentes d'interruption (OVERFLOW, COMPARAISON 1 et COMPARAISON 2) sont regroupées dans une même routine d'interruption. Un registre appelé TAIV permet de connaître dans chaque cas la cause de l'interruption. Les valeurs 2, 4 et 10 sont le choix arbitraire du fabricant : il faut respecter scrupuleusement la syntaxe des instructions *switch TAIV... case...* Il n'a pas été nécessaire de remettre à zéro le fanion TAIFG, car c'est la gestion matérielle des interruptions qui le fait automatiquement au moment de l'appel de la routine d'interruption.

INTERRUPTION DE COMPARAISON

De même, une interruption peut être associée à chaque registre de comparaison. Cette fois, c'est dans le registre TACCTLx (x valant θ , 1 ou 2) qu'il faut activer le fanion d'interruption.

```
int main() {
    ...
    TACCTL0 |= CCIE; // Interruption de la comparaison
    _BIS_SR (GIE); // Autorisation générale des interruptions
    while (1) { // Boucle infinie vide
    }
}
#pragma vector=TIMERO_AO_VECTOR
    __interrupt void Timer_AO (void) {
    CCRO += 62500;
```

EPFL — MOOC AFFICHAGES À LED

```
P10UT ^= (1<<0); // Inversion LED }
```

Les timers offrent de très nombreuses possibilités. L'étude détaillée de la documentation peut prendre du temps. De nombreux exemples sont fournis par les fabricants pour en illustrer les divers usages.