Introducing the data

EXPLORATORY DATA ANALYSIS IN R

Andrew Bray

Assistant Professor, Reed College

Email data set

email

```
# A tibble: 3,921 × 21
       spam to_multiple from
                                cc sent_email
                                                             time image
     <fctr>
                  <dbl> <dbl> <int>
                                         <dbl>
                                                            <dttm> <dbl>
                                            0 2012-01-01 01:16:41
1 not-spam
                                            0 2012-01-01 02:03:59
  not-spam
                                                                       0
                                            0 2012-01-01 11:00:32
   not-spam
                                                                       0
                                            0 2012-01-01 04:09:49
   not-spam
                                                                       0
  not-spam
                                            0 2012-01-01 05:00:01
                                                                       0
                                            0 2012-01-01 05:04:46
  not-spam
                                            1 2012-01-01 12:55:06
   not-spam
                                            1 2012-01-01 13:45:21
8 not-spam
  not-spam
                                            0 2012-01-01 16:08:59
                                            0 2012-01-01 13:12:00
10 not-spam
# ... with 3,911 more rows, and 14 more variables: attach <dbl>,
    dollar <dbl>, winner <fctr>, inherit <dbl>, viagra <dbl>,
    password <dbl>, num_char <dbl>, line_breaks <int>, format <dbl>,
    re_subj <dbl>, exclaim_subj <dbl>, urgent_subj <dbl>,
    exclaim_mess <dbl>, number <fctr>
```

Histograms

```
ggplot(data, aes(x = var1)) +
  geom_histogram()
```


Histograms

```
ggplot(data, aes(x = var1)) +
  geom_histogram() +
  facet_wrap(~var2)
```


Boxplots

```
ggplot(data, aes(x = var2, y = var1)) +
  geom_boxplot()
```


Boxplots

```
ggplot(data, aes(x = 1, y = var1)) +
  geom_boxplot()
```


Density plots

```
ggplot(data, aes(x = var1)) +
  geom_density()
```


Density plots

```
ggplot(data, aes(x = var1, fill = var2)) +
  geom_density(alpha = .3)
```


Let's practice!

EXPLORATORY DATA ANALYSIS IN R

Check-in 1

EXPLORATORY DATA ANALYSIS IN R

Andrew Bray

Assistant Professor, Reed College

Review

Review

Zero inflation strategies

- Analyze the two components separately
- Collapse into two-level categorical variable

Zero inflation strategies

- Analyze the two components separately
- Collapse into two-level categorical variable

Zero inflation strategies

```
email %>%
  mutate(zero = exclaim_mess == 0) %>%
  ggplot(aes(x = zero)) +
  geom_bar() +
  facet_wrap(~spam)
```


Barchart options

```
email %>%
  mutate(zero = exclaim_mess == 0) %>%
  ggplot(aes(x = zero, fill = spam)) +
  geom_bar()
```


Barchart options

```
email %>%
  mutate(zero = exclaim_mess == 0) %>%
  ggplot(aes(x = zero, fill = spam)) +
  geom_bar(position = "fill")
```


Let's practice!

EXPLORATORY DATA ANALYSIS IN R

Check-in 2 EXPLORATORY DATA ANALYSIS IN R

Andrew Bray
Assistant Professor, Reed College

Spam and images

```
email %>%
  mutate(has_image = image 0) %>%
  ggplot(aes(x = as.factor(has_image), fill = spam)) +
  geom_bar(position = "fill")
```


Spam and images

```
email %>%
  mutate(has_image = image 0) %>%
  ggplot(aes(x = spam, fill = has_image)) +
  geom_bar(position = "fill")
```



```
email <- email %>%
  mutate(zero = exclaim_mess == 0)
levels(email$zero)
```

NULL

```
email$zero <- factor(email$zero,
  levels = c("TRUE", "FALSE"))</pre>
```

```
email %>%
  ggplot(aes(x = zero)) +
  geom_bar() +
  facet_wrap(~spam)
```



```
email %>%
  ggplot(aes(x = zero)) +
  geom_bar() +
  facet_wrap(~spam)
```


Let's practice!

EXPLORATORY DATA ANALYSIS IN R

Conclusion

EXPLORATORY DATA ANALYSIS IN R

Andrew Bray

Assistant Professor, Reed College

Pie chart vs. bar chart

Faceting vs. stacking

Histogram

```
ggplot(data, aes(x = var1)) +
  geom_histogram()
```


Density plot

```
cars %>%
  filter(eng_size < 2.0) %>%
  ggplot(aes(x = hwy_mpg)) +
  geom_density()
```


Side-by-side box plots

```
ggplot(common_cyl, aes(x = as.factor(ncyl), y = city_mpg)) +
  geom_boxplot()
```

Warning message:

Removed 11 rows containing non-finite values (stat_boxplot).

Center: mean, median, mode

Χ

76 78 75 74 76 72 74 73 73 75 74

table(x)

72 73 74 75 76 78 1 2 3 2 2 1

Shape of income

```
ggplot(life, aes(x = income, fill = west_coast)) +
  geom_density(alpha = .3)

ggplot(life, aes(x = log(income), fill = west_coast)) +
  geom_density(alpha = .3)
```


With group_by()

```
life %>%
  slice(240:247) %>%
  group_by(west_coast) %>%
  summarize(mean(expectancy))
```

state	county	expectancy	income	west_coast
California	Tuolumne	79.6	41770	TRUE
California	Ventura	81.1	54155	TRUE
California	Yolo	80.0	49063	TRUE
California	Yuba	76.3	37535	TRUE
Colorado	Adams	80.1	36962	FALSE
Colorado	Alamosa	77.4	34088	FALSE
Colorado	Arapahoe	80.3	52545	FALSE
Colorado	Archuleta	79.1	40307	FALSE

Spam and exclamation points

```
email %>%
  mutate(zero = exclaim_mess == 0) %>%
  ggplot(aes(x = zero, fill = spam)) +
  geom_bar()
```


Spam and images

```
email %>%
  mutate(has_image = image 0) %>%
  ggplot(aes(x = as.factor(has_image), fill = spam)) +
  geom_bar(position = "fill")
```


Let's practice!

EXPLORATORY DATA ANALYSIS IN R

