Bases y Componentes de Vectores:

L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

9 de octubre de 2020

Bases y componentes de vectores

Bases y componentes

Sistemas coordenados

Algebra vectorial en componentes

Productos de vectores en componentes

Recapitulando

▶ Con los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ podemos construir un sistema (oblicuo en general): $\mathbf{a} = a^1 \mathbf{w}_1 + a^2 \mathbf{w}_2 + a^3 \mathbf{w}_3$, donde las cantidades $\{a^1, a^2, a^3\}$ son números (no son escalares) que representan las componentes del vector \mathbf{a} a lo largo de cada uno de los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

- ▶ Con los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ podemos construir un sistema (oblicuo en general): $\mathbf{a} = a^1\mathbf{w}_1 + a^2\mathbf{w}_2 + a^3\mathbf{w}_3$, donde las cantidades $\{a^1, a^2, a^3\}$ son números (no son escalares) que representan las componentes del vector \mathbf{a} a lo largo de cada uno de los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.
- ► Existe sistemas de vectores base ortogonales (o mejor ortonormales), es decir los vectores base {e₁, e₂, e₃} son perpendiculares entre si.

- ▶ Con los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ podemos construir un sistema (oblicuo en general): $\mathbf{a} = a^1\mathbf{w}_1 + a^2\mathbf{w}_2 + a^3\mathbf{w}_3$, donde las cantidades $\{a^1, a^2, a^3\}$ son números (no son escalares) que representan las componentes del vector \mathbf{a} a lo largo de cada uno de los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.
- Existe sistemas de vectores base ortogonales (o mejor ortonormales), es decir los vectores base {e₁, e₂, e₃} son perpendiculares entre si.
- ▶ Utilizamos la convención dextrógira : $(\mathbf{e}_1 \times \mathbf{e}_2) \cdot \mathbf{e}_3 > 0$, y construimos el conjunto de vectores unitarios $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$: $\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$.

- ▶ Con los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ podemos construir un sistema (oblicuo en general): $\mathbf{a} = a^1\mathbf{w}_1 + a^2\mathbf{w}_2 + a^3\mathbf{w}_3$, donde las cantidades $\{a^1, a^2, a^3\}$ son números (no son escalares) que representan las componentes del vector \mathbf{a} a lo largo de cada uno de los vectores base $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.
- Existe sistemas de vectores base ortogonales (o mejor ortonormales), es decir los vectores base {e₁, e₂, e₃} son perpendiculares entre si.
- ▶ Utilizamos la convención dextrógira : $(\mathbf{e}_1 \times \mathbf{e}_2) \cdot \mathbf{e}_3 > 0$, y construimos el conjunto de vectores unitarios $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$: $\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$.
- Si a cada punto P del espacio asociamos un radio vector $\mathbf{r}(P) \equiv \overrightarrow{OP}$ que une el origen de coordenadas con el punto P entonces los números $\{x^1, x^2, x^3\}$ son las componentes de $\mathbf{r}(P)$. Es decir $\mathbf{r}(P) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$.

Figura: Sistemas coordenados

Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1,2,3 para indicar las componentes del vector:

$$\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$$
 y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.

Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1, 2, 3 para indicar las componentes del vector: $\mathbf{e}_1 = \mathbf{e}_1^2 \mathbf{e}_1 + \mathbf{e}_2^2 \mathbf{e}_2 + \mathbf{e}_3^3 \mathbf{e}_3$ y $\mathbf{r}_1^{(p)} = \mathbf{r}_1^{(p)} \mathbf{e}_1 + \mathbf{r}_2^{(p)} \mathbf{e}_2 + \mathbf{r}_3^{(p)} \mathbf{e}_3$

$$\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$$
 y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.

► El módulo del vector: $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, es decir $|\mathbf{r}(P)| = \sqrt{(x^1)^2 + (x^2)^+ (x^3)^2}$ y la multiplicación por un número será: $\alpha \mathbf{a} = (\alpha a^1) \mathbf{e}_1 + (\alpha a^2) \mathbf{e}_2 + (\alpha a^3) \mathbf{e}_3 \Rightarrow |\alpha \mathbf{a}| = \alpha \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$.

- Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1,2,3 para indicar las componentes del vector:
 - $\dot{\mathbf{a}} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$ y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.
- ► El módulo del vector: $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, es decir $|\mathbf{r}(P)| = \sqrt{(x^1)^2 + (x^2)^+ (x^3)^2}$ y la multiplicación por un número será: $\alpha \mathbf{a} = (\alpha a^1) \mathbf{e}_1 + (\alpha a^2) \mathbf{e}_2 + (\alpha a^3) \mathbf{e}_3 \Rightarrow |\alpha \mathbf{a}| = \alpha \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$.
- ▶ Un vector unitario: $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}$,

- Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1,2,3 para indicar las componentes del vector:
 - $\dot{\mathbf{a}} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$ y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.
- ► El módulo del vector: $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, es decir $|\mathbf{r}(P)| = \sqrt{(x^1)^2 + (x^2)^+ (x^3)^2}$ y la multiplicación por un número será: $\alpha \mathbf{a} = (\alpha a^1) \mathbf{e}_1 + (\alpha a^2) \mathbf{e}_2 + (\alpha a^3) \mathbf{e}_3 \Rightarrow |\alpha \mathbf{a}| = \alpha \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$.
- ▶ Un vector unitario: $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}$,

- Representan el sistema de coordenadas ortonormal como: $\mathbf{i} \equiv \mathbf{e}_1, \mathbf{j} \equiv \mathbf{e}_2$ y $\mathbf{k} \equiv \mathbf{e}_3$ y utilizaremos los superíndices 1, 2, 3 para indicar las componentes del vector: $\mathbf{e}_1 = \mathbf{e}_1^2 \mathbf{e}_1 + \mathbf{e}_2^2 \mathbf{e}_2 + \mathbf{e}_3^3 \mathbf{e}_3$ y $\mathbf{r}_1^{(p)} = \mathbf{r}_1^{(p)} \mathbf{e}_1 + \mathbf{r}_2^{(p)} \mathbf{e}_2 + \mathbf{r}_3^{(p)} \mathbf{e}_3$
 - $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$ y $\mathbf{r}(P) = x^1 \mathbf{e}_1 + x^2 \mathbf{e}_2 + x^3 \mathbf{e}_3$.
- ► El módulo del vector: $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, es decir $|\mathbf{r}(P)| = \sqrt{(x^1)^2 + (x^2)^+ (x^3)^2}$ y la multiplicación por un número será: $\alpha \mathbf{a} = (\alpha a^1) \mathbf{e}_1 + (\alpha a^2) \mathbf{e}_2 + (\alpha a^3) \mathbf{e}_3 \Rightarrow |\alpha \mathbf{a}| = \alpha \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$.
- ▶ Un vector unitario: $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}$,
- ► Cosenos directores $\hat{\mathbf{u}}_{a} = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$.

Algebra vectorial en componentes

- ▶ Sumas y restas de vectores $\mathbf{a} + \mathbf{b} = (a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3) + (b^1\mathbf{e}_1 + b^2\mathbf{e}_2 + b^3\mathbf{e}_3) = (a^1 + b^1)\mathbf{e}_1 + (a^2 + b^2)\mathbf{e}_2 + (a^3 + b^3)\mathbf{e}_3,$
- tres vectores: $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$. $\mathbf{b} = b^1 \mathbf{e}_1 + b^2 \mathbf{e}_2 + b^3 \mathbf{e}_3$ y $\mathbf{c} = c^1 \mathbf{e}_1 + c^2 \mathbf{e}_2 + c^3 \mathbf{e}_3$, serán linealmente independientes si se cumple que: α **a** + β **b** + γ **c** = **0** $\Rightarrow \alpha = \beta = \gamma = 0$. para la base canónica: $\mathbf{e}_1 \equiv (1,0,0), \mathbf{e}_2 \equiv (0,1,0), \mathbf{e}_3 \equiv (0,0,1)$ $\mathbf{0} = \alpha \left(a^{1} \mathbf{e}_{1} + a^{2} \mathbf{e}_{2} + a^{3} \mathbf{e}_{3} \right) + \beta \left(b^{1} \mathbf{e}_{1} + b^{2} \mathbf{e}_{2} + b^{3} \mathbf{e}_{3} \right) +$ $\gamma \left(c^1\mathbf{e}_1 + c^2\mathbf{e}_2 + c^3\mathbf{e}_3\right) \Rightarrow$ $a^{1}(b^{2}c^{3}-b^{3}c^{2})+a^{2}(b^{3}c^{1}-b^{1}c^{3})+a^{3}(b^{1}c^{2}-b^{2}c^{1})\neq 0$

Productos de vectores en componentes

► El producto escalar de dos vectores en una base cartesiana $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, que es una base ortonormal: $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$,

Productos de vectores en componentes

▶ El producto escalar de dos vectores en una base cartesiana $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, que es una base ortonormal: $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$.

Expresamos las operaciones vectoriales en componentes.

1. Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- 2. Componentes coordenadas $\mathbf{a}=a^1\mathbf{e}_1+a^2\mathbf{e}_2+a^3\mathbf{e}_3$, módulo $|\mathbf{a}|=\sqrt{(a^1)^2+(a^2)^2+(a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a=\frac{\mathbf{a}}{|\mathbf{a}|}=\cos(\alpha)\ \mathbf{i}+\cos(\beta)\ \mathbf{j}+\cos(\gamma)\ \mathbf{k}$

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- 2. Componentes coordenadas $\mathbf{a} = a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$
- 3. Algebra de vectores y componentes: Suma $(a^1+b^1) \mathbf{e}_1 + (a^2+b^2) \mathbf{e}_2 + (a^3+b^3) \mathbf{e}_3$, Independencia lineal $a^1 (b^2c^3 b^3c^2) + a^2 (b^3c^1 b^1c^3) + a^3 (b^1c^2 b^2c^1) \neq 0$

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- 2. Componentes coordenadas $\mathbf{a} = a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$
- 3. Algebra de vectores y componentes: Suma $(a^1+b^1) \, {\bf e}_1 + \left(a^2+b^2\right) \, {\bf e}_2 + \left(a^3+b^3\right) \, {\bf e}_3$, Independencia lineal $a^1 \left(b^2 c^3 b^3 c^2\right) + a^2 \left(b^3 c^1 b^1 c^3\right) + a^3 \left(b^1 c^2 b^2 c^1\right) \neq 0$
- 4. Producto escalar $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$,

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- 2. Componentes coordenadas $\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$
- 3. Algebra de vectores y componentes: Suma $(a^1+b^1) \mathbf{e}_1 + (a^2+b^2) \mathbf{e}_2 + (a^3+b^3) \mathbf{e}_3$, Independencia lineal $a^1 (b^2c^3 b^3c^2) + a^2 (b^3c^1 b^1c^3) + a^3 (b^1c^2 b^2c^1) \neq 0$
- 4. Producto escalar $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$,
- 5. Producto vectorial $\mathbf{c} = \mathbf{a} \times \mathbf{b} = (a^2b^3 a^3b^2) \mathbf{e}_1 + (a^3b^1 a^1b^3) \mathbf{e}_2 + (a^1b^2 a^2b^1) \mathbf{e}_3$,

- Sistemas coordenados: oblicuos, ortogonales, dextrógiros y levógira
- 2. Componentes coordenadas $\mathbf{a} = a^1\mathbf{e}_1 + a^2\mathbf{e}_2 + a^3\mathbf{e}_3$, módulo $|\mathbf{a}| = \sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}$, cosenos directores $\hat{\mathbf{u}}_a = \frac{\mathbf{a}}{|\mathbf{a}|} = \cos(\alpha) \mathbf{i} + \cos(\beta) \mathbf{j} + \cos(\gamma) \mathbf{k}$
- 3. Algebra de vectores y componentes: Suma $(a^1+b^1) \mathbf{e}_1 + (a^2+b^2) \mathbf{e}_2 + (a^3+b^3) \mathbf{e}_3$, Independencia lineal $a^1 (b^2c^3 b^3c^2) + a^2 (b^3c^1 b^1c^3) + a^3 (b^1c^2 b^2c^1) \neq 0$
- 4. Producto escalar $\mathbf{a} \cdot \mathbf{b} = a^1 b^1 + a^2 b^2 + a^3 b^3$,
- 5. Producto vectorial $\mathbf{c} = \mathbf{a} \times \mathbf{b} = (a^2b^3 a^3b^2) \mathbf{e}_1 + (a^3b^1 a^1b^3) \mathbf{e}_2 + (a^1b^2 a^2b^1) \mathbf{e}_3$,
- 6. Triple producto mixto $V = \mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ $a^{1} \left(b^{2}c^{3} - b^{3}c^{2} \right) + a^{2} \left(b^{3}c^{1} - b^{1}c^{3} \right) + a^{3} \left(b^{1}c^{2} - b^{2}c^{1} \right) \neq 0$

