

Core Hypothesis

• Shots under pressure are less likely to be successful

About Our Data

- 2014-15 NBA Season
- 281 Unique Shooters
- 474 Unique Defenders
- 128069 Shots Taken
- We have 1 pair of players with the same name.

Splitting the Clock

```
to_clean= cleaned_df["GAME_CLOCK"].str.split(":",expand=True).astype(int)
  cleaned_df["GAME_CLOCK_SECONDS"]=to_clean[0]*60 + to_clean[1]

to_clean.rename(columns={0: "MINUTES", 1: "SECONDS"}, inplace=True)
# print(to_clean)
#merge into cleaned_df
cleaned_df=pd.concat([cleaned_df, to_clean], axis=1)
```

Data Wrangling

- Shot clock is not started if there is <24 seconds in the quarter.
 - As a result, I had to fill NaN with how many seconds were left on the game clock.
 - There were also NaN values for other game clock values, those had to be dropped.

cleaned_df["SHOT_CLOCK"].fillna(cleaned_df["SECONDS"], inplace=True)

- Dropped some columns we weren't using.
- Game clock column is object due to "minutes: seconds". Must convert.

Adding Game Time in Seconds

```
cleaned_df["TOTAL_TIME_SECONDS"] = ""
for index,rows in cleaned_df.iterrows():
    multiplier= 0
    if rows["PERIOD"] == 1:
        multiplier= 36*60
    elif rows["PERIOD"] == 2:
        multiplier= 24*60
    elif rows["PERIOD"] == 3:
        multiplier= 12*60
    cleaned_df.loc[index,["TOTAL_TIME_SECONDS"]]=multiplier+cleaned_df["GAME_CLOCK_SECONDS"][index]
cleaned_df
```

Buzzer Beaters

- Everyone remembers buzzer beaters, but how accurate are they?
- Who is the best in the clutch?
- When is the best time to shoot the ball?

Who is the most clutch?

- Clutch is < 24 seconds left in game
 - 1 score game (+/- 3 pts)
- Ranking regardless of Win or Loss

	Shot Count	Made Shots	Success Rate	Weighted Rank
PLAYER_NAME				
brandon knight	17	10	0.588235	2.647059
james harden	11	8	0.727273	2.181818
jarrett jack	12	8	0.666667	2.166667
tyreke evans	18	8	0.444444	2.111111
manu ginobili	17	7	0.411765	1.852941
lou williams	10	6	0.600000	1.650000
tim duncan	13	6	0.461538	1.615385
john wall	17	6	0.352941	1.588235
nikola vucevic	6	5	0.833333	1.458333
anthony davis	8	5	0.625000	1.406250

2 Pointers v 3 Pointers

	2s Count	Made 2s	Missed 2s	Success Rate	Weighted Rank		3s Count	Made 3s	Missed 3s	Success Rate	Weighted Rank
PLAYER_NAME						PLAYER_NAME					
brandon knight	11	8	3	0.727273	2.181818	james harden	4	3	1	0.750000	0.937500
jarrett jack	9	7	2	0.777778	1.944444	danny green	4	3	1	0.750000	0.937500
lou williams	6	6	0	1.000000	1.750000	nick young	6	3	3	0.500000	0.875000
manu ginobili	11	6	5	0.545455	1.636364	tyreke evans	7	3	4	0.428571	0.857143
tim duncan	11	6	5	0.545455	1.636364	trey burke	8	3	5	0.375000	0.843750
nikola vucevic	6	5	1	0.833333	1.458333	kyrie irving	2	2	0	1.000000	0.750000
james harden	7	5	2	0.714286	1.428571	kyle korver	2	2	0	1.000000	0.750000
john wall	9	5	4	0.555556	1.388889	stephen curry	3	2	1	0.666667	0.666667
chris paul	10	5	5	0.500000	1.375000	evan turner	3	2	1	0.666667	0.666667
tyreke evans	11	5	6	0.454545	1.363636	avery bradley	3	2	1	0.666667	0.666667

3 pointers v 2 pointers

Winners v Losers

	Shot Count	Made Shots	Success Rate	Weighted Rank		Shot Count	Made Shots	Success Rate	Weighted Rank
PLAYER_NAME					PLAYER_NAME				
jarrett jack	12	8	0.666667	2.166667	brandon knight	11	6	0.545455	1.636364
tyreke evans	13	8	0.615385	2.153846	chase budinger	5	4	0.800000	1.200000
kemba walker	12	5	0.416667	1.354167	zaza pachulia	6	4	0.666667	1.166667
james harden	4	4	1.000000	1.250000	lou williams	7	4	0.571429	1.142857
marc gasol	4	4	1.000000	1.250000	james harden	7	4	0.571429	1.142857
brandon knight	6	4	0.666667	1.166667	goran dragic	9	4	0.444444	1.111111
anthony davis	6	4	0.666667	1.166667	tim duncan	10	4	0.400000	1.100000
russell westbrook	7	4	0.571429	1.142857	manu ginobili	13	4	0.307692	1.076923
brandon jennings	7	4	0.571429	1.142857	danny green	3	3	1.000000	1.000000
mike conley	8	4	0.500000	1.125000	luis scola	3	3	1.000000	1.000000

Winners 3 and 2 pointers

Losers 3 and 2 pointers

Are Open Shots Made More Often Than Contested Shots?

- What distance from the defender is considered open?
 - We used 6ft as the cut off.

• Our hypothesis: Open shots will be made at a higher frequency than contested shots.

Finding Defender Distance

Open

12]: #open shots made percentage, finding shots 6ft or greater from closest defender
 open_shots = cleaned_df.loc[cleaned_df["CLOSE_DEF_DIST"] >=6]
 open_shots

12]:

OSEST_DEFENDER_PLAYER_ID	CLOSE_DEF_DIST	FGM	PTS	player_name	player_id	GAME_CLO
202711	6.1	0	0	brian roberts	203148	
101127	6.1	0	0	brian roberts	203148	
202721	7.3	0	0	brian roberts	203148	
201961	19.8	0	0	brian roberts	203148	
202738	11.1	1	3	brian roberts	203148	
7	52			92.5		
201596	8.3	1	2	jarrett jack	101127	
203095	6.9	1	2	jarrett jack	101127	
201147	11.1	1	2	jarrett jack	101127	
201593	6.0	1	2	jarrett jack	101127	
2590	7.7	1	2	jarrett jack	101127	

Contested]: #finding defenders less than 6ft

in_your_face = cleaned_df.loc[cleaned_df["CLOSE_DEF_DIST"] <6]
in_your_face</pre>

*		CLOSEST_DEFENDER_PLAYER_ID	CLOSE_DEF_DIST	FGM	PTS	player_name	p
	555	101187	1.3	1	2	brian roberts	
I	-27	202711	0.9	0	0	brian roberts	
1	22.	203900	3.4	0	0	brian roberts	
1	69	201152	1.1	0	0	brian roberts	
1	555	101114	2.6	0	0	brian roberts	
100		W.		0555			
1	22	203935	0.8	0	0	jarrett jack	
•	(6)	202323	0.6	1	2	jarrett jack	
	555	201977	4.2	1	2	jarrett jack	
1		202340	3.0	0	0	jarrett jack	
1	2.	202340	2.3	1	2	jarrett jack	

Finding Goals Made

Open

[13]: #find shots that were made from these open shots
 open_made = open_shots.loc[open_shots["FGM"] == 1]
 open_made

13]:

F	CLOSE DEF DIST	CLOSEST DEFENDER PLAYER ID		SHOT RESULT	PTS TYPE	SHOT DIST	SHOT CLOCK	E CLOCK
	11.1			made	3	24.2	20.8	10:29
	6.0	201149		made	3	24.6	17.1	10:13
	11.3	101139	775	made	3	24.7	19.7	5:58
100	7.2	201588	11.5	made	3	22.5	12.8	5:21
!8]:	9.1	201228		made	3	23.1	9.4	5:19
	899	200		595	300	***	***	1448)
!8]:	8.3	201596		made	2	17.6	2.9	10:42
277.00	6.9	203095	1.2	made	2	17.0	21.8	0:55
	11.1	201147		made	2	20.2	9	11:01
	6.0	201593		made	2	9.4	11	7:27
	7.7	2590	375	made	2	2.3	22.7	6:41

Total Open Shots Attempted: 10,226

Total
Contested Shots
Attempted:
47,679

Contested

#shots made with defenders less than 6ft
contested_made = in_your_face.loc[in_your_face["FGM"] == 1]
contested_made

LOCK	SHOT_CLOCK	SHOT_DIST	PTS_TYPE	SHOT_RESULT		CLOSEST_DEFENDER_PLAYER_ID	CLOSE_DEF_DIST
1:09	10.8	7.7	2	made		101187	1.3
8:00	3.4	3.5	2	made		203486	2.1
11:32	12.1	14.6	2	made		202391	1.8
8:55	4.3	5.9	2	made	2.11	201941	5.4
10:38	6.4	24.7	3	made		203923	5.6
36	(64)		100	344	•••	· ·	***
7:46	7	14.5	2	made		203935	3.1
5:05	15.3	8.9	2	made		203096	5.7
11:28	19.8	0.6	2	made		202323	0.6
11:10	23	16.9	2	made		201977	4.2
0:12	0:12	5.1	2	made		202340	2.3

Percent Open Made

```
il]: #percentage made
    percentage_open_made = len(open_made)/ len(open_shots) *100
    open_made["Percent Open Made"] = percentage_open_made
    open_missed = 100 - percentage_open_made
    open_made["Percent Open Missed"] = open_missed
    open_made
    #pie chart for open shots
    pie, ax = plt.subplots(figsize=[10,6])
    labels = 'Percent Open Made', 'Percent Open Missed'
    size = [44.66, 55.34]
    ax.pie(size, labels=labels, autopct='%1.2f%%')
    pie.savefig("Open.png")
```


Contested Made

```
#percentage made with close defender
percentage_close_made = len(closeness_made) / len(in_your_face) *100
contested_made["Percent Contested Made"] = percentage_close_made
contested_missed = 100 - percentage_close_made
contested_missed
contested_made["Percent Contested Missed"] = contested_missed
contested_made

#total_shots_made = len(closeness_made) + len(open_made)
#creating pie chart
pie, ax = plt.subplots(figsize=[10,6])
labels = 'Percent Contested Made', 'Percent Contested Missed'
size = [45.34, 54.66]
ax.pie(size, labels=labels, autopct='%1.2f%%')
pie.savefig("Contested.png")
```


Conclusion

• Contested shots were made more often than open by only 0.68%.

Who are the NBA's best defensive players based on FG block %?

- How will this be determined/What are our parameters?

- Hypothesis: Whoever they are, their block percentages should roughly add up to 100% when combined with FG success rates.

First Thought

2 3		play the top ten defen defender_df.sort_valu			closest dei
Out[14]:		No. of Times Closest Defender	No. of FG made against	No. of successful defenses	Success Rate
CLO	OSEST_DEFENDER				
	Dragic, Zoran	2	0	2	1.00
	Ledo, Ricky	1	0	1	1.00
	Lucas, Kalin	1	0	1	1.00
	James, Bernard	32	7	25	0.78
	Udoh, Ekpe	13	3	10	0.77
	Green, JaMychal	13	3	10	0.77
	Datome, Gigi	4	1	3	0.75
	Robinson, Nate	99	27	72	0.73
	Mekel, Gal	10	3	7	0.70
	Jenkins, John	16	5	11	0.69

Re-evaluate...

```
1 # Top frequent defenders
            2 #Sort and display the top ten defensive players by frequency as closest defender.
            3 top_defense = defender_df.sort_values("No. of Times Closest Defender", ascending=False)
            4 top_defense.head(10)
Out[15]:
                              No. of Times Closest Defender No. of FG made against No. of successful defenses Success Rate
            CLOSEST_DEFENDER
                                                    814
                                                                        334
                                                                                               480
                                                                                                           0.59
                   Ibaka, Serge
                                                    795
                                                                        381
                                                                                               414
                                                                                                           0.52
                Jordan, DeAndre
                                                    754
                                                                        354
                                                                                               400
                     Gasol, Pau
                                                                                                           0.53
               Green, Draymond
                                                    751
                                                                        301
                                                                                               450
                                                                                                           0.60
                   Millsap, Paul
                                                    750
                                                                        357
                                                                                               393
                                                                                                           0.52
                                                    698
                                                                        329
                                                                                               369
                                                                                                           0.53
                Chandler, Tyson
                                                    697
                                                                        335
                                                                                               362
                                                                                                           0.52
                 Vucevic, Nikola
                 Frye, Channing
                                                    693
                                                                        355
                                                                                               338
                                                                                                           0.49
                    Love, Kevin
                                                                        315
                                                                                               376
                                                                                                           0.54
                                                    688
                                                                        302
                                                                                               386
                                                                                                           0.56
                  Gortat, Marcin
```


Is FG success rate affected by quarter or total time left on GAME clock?

• Hypothesis: Yes, the further along in the game, the more tired the players will be and thus, we will be likely to see a decrease in success rate as game progresses.

What calculations and functions did we use to determine this?

- FG success rate does decrease by quarter except, it appears, right after half-time when they've all had time to rest.
- NBA's best defenders compared to FG success rates:

	Shot Success Rate (%)
Time Remaining on Game Clock (Seconds)	
720-0 (4th QTR)	43.90%
1439-720 (3rd QTR)	45.72%
2159-1440 (2nd QTR)	45.11%
2880-2160 (1st QTR)	46.05%

	No. of Times Closest Defender	No. of FG made against	No. of successful defenses	Success Rate
CLOSEST_DEFENDER				
Green, Draymond	751	301	450	0.600000
Davis, Anthony	609	247	362	0.590000
Ibaka, Serge	814	334	480	0.590000
Noah, Joakim	632	267	365	0.580000
Bledsoe, Eric	650	280	370	0.570000
Smith, Josh	651	278	373	0.570000
Harden, James	607	264	343	0.570000
Gasol, Marc	629	274	355	0.560000
Gortat, Marcin	688	302	386	0.560000
Duncan, Tim	637	286	351	0.550000

Is the FG success rate correlated to the remaining game clock?

- Hypothesis: As the game goes on and players get tired, the success rate % will decrease slightly.

4th Quarter slump: Fact or Fiction?

- No strong correlation between FG success rate and game progression. (Very slightly negative as expected but not statistically significant.)

Does field goal percentage (FG%) decrease in the final 5 seconds of the shot clock?

• Is there a correlation between FG% and the time remaining on the 24 second shot clock?

• Hypothesis – Yes, there is a correlation. We think the FG% will be lower in the last 5 seconds of the shot clock.

How will we test our hypothesis?

```
shot clock timepoints = cleaned df.groupby(["SHOT CLOCK"])
shot clock remaining = shot clock timepoints["SHOT CLOCK"].unique()
shot_clock_shots = shot_clock_timepoints["SHOT_CLOCK"].count()
shots made = shot clock timepoints["FGM"].sum()
fg percent = shots made / shot clock shots * 100
# make a new dataframe for graphing
graph df = pd.DataFrame({
    "FG Attempts": shot clock shots,
    "FGs Made": shots made,
    "FG%": fg percent
graph_df = graph_df.reset_index()
graph_df = graph_df.rename(columns={"SHOT CLOCK": "Shot Clock"})
graph_df
```

FG % vs Time Remaining on Shot Clock % 94 y = 0.9x + 34.03Seconds Remaining on Shot Clock

Correlation between FGs and time left on shot clock

•The r-value is: 0.806

•There is a strong correlation between these data points Is there a difference between 2-point shots and 3-point shots?

two_pointer = cleaned_df.loc[cleaned_df["PTS_TYPE"] <= 2]
three_pointer = cleaned_df.loc[cleaned_df["PTS_TYPE"] > 2]

two_po	inter								
	GAME_ID	w	FINAL_MARGIN	SHOT_NUMBER	PERIOD	GAME_CLOCK	SHOT_CLOCK	SHOT_DIST	PTS_TYPE
0	21400899	W	24	1	1	1:09	10.8	7.7	2
2	21400899	W	24	3	1	0:00	NaN	10.1	2
3	21400899	W	24	4	2	11:47	10.3	17.2	2
4	21400899	W	24	5	2	10:34	10.9	3.7	2
5	21400899	W	24	6	2	8:15	9.1	18.4	2
128064	21400006	L	-16	5	3	1:52	18.3	8.7	2
128065	21400006	L	-16	6	4	11:28	19.8	0.6	2
128066	21400006	L	-16	7	4	11:10	23.0	16.9	2
128067	21400006	L	-16	8	4	2:37	9.1	18.3	2
128068	21400006	L	-16	9	4	0:12	NaN	5.1	2

94173 rows × 17 columns

c cc_	pointer								
	CAME ID	107	FINAL MARCIN	ALIOT MUMPER	PERIOR	CAME OF COL	ALIOT OLOGIC	ALIOT DIST	DTO TVDE
	GAME_ID	vv	FINAL_MARGIN	SHOT_NUMBER	PERIOD	GAME_CLOCK	SHOT_CLOCK	SHOT_DIST	PIS_ITPE
1	21400899	W	24	2	1	0:14	3.4	28.2	3
8	21400899	W	24	9	4	5:14	12.4	24.6	3
9	21400890	W	1	1	2	11:32	17.4	22.4	3
10	21400890	W	1	2	2	6:30	16.0	24.5	3
13	21400882	W	15	1	4	9:10	4.4	26.4	3
128009	21400138	L	-10	4	3	0:40	16.0	25.9	3
128016	21400138	L	-10	11	4	0:34	21.1	23.0	3
128031	21400116	L	-8	4	4	4:19	14.0	23.8	3
128057	21400033	W	12	2	2	10:02	7.3	22.1	3
128059	21400033	W	12	4	4	8:34	19.8	22.7	3

33896 rows x 17 columns

three pointer

Correlation between 2point shots and time left on shot clock

•The r-value is: 0.800

•There is a strong correlation between these data points.

3 pt FG % vs Time Remaining on Shot Clock y = 0.36x + 30.97FG % Seconds Remaining on Shot Clock

Correlation between 3point shots and time left on shot clock

•The r-value is: 0.349

•There is a weak correlation between these data points.

Conclusion

• The FG% is the lowest in the final 5 seconds of the shot clock.

What is the FG% at other timepoints on the shot clock?

```
bin size = [0, 5, 10, 15, 20, 24]
bin_label_size = ["0-5", "6-10", "11-15", "16-20", "21-24"]
graph_df["Shot Clock"] = pd.cut(graph_df["Shot Clock"], bin_size, labels=bin_label_size)
shot_clock_binning = graph_df.groupby(["Shot Clock"])
fg percentage = shot clock binning["FG%"].mean()
bin df = pd.DataFrame({"Overall FG %": fg percentage})
bin df["Overall FG %"] = bin df["Overall FG %"].map("{:.2f}".format)
bin df
```

FG Attempts FGs Made FG% Shot Clock 5904 36.58 16140 0-5.0 13380 43.59 30698 5.1-10.0 38555 17234 44.70 10.1-15.0 27391 12958 47.31 15.1-20.0 7799 57.79 13496 20.1-24

FG% at other shot clock timepoints

- FG% decreases as shot clock decreases
- Lowest in final 5 seconds
- Highest in first 4 seconds