

KÌ THI THPT QUỐC GIA 2020 Bài thi Môn: TOÁN HOC

(Thời gian làm bài: 90 phút/ 50 câu)

THẦY HỔ THỨC THUÂN

ĐỀ ÔN TRÚNG TỬ LẦN 2 - 2020

Tìm hai số thực x và y thỏa mãn (x+2yi)+(2-i)-1-3i=0 với i là đơn vị ảo. Câu 1:

A. x = 3; y = 2.

B. x = 1; y = 3.

C. x = -1; y = 2.

D. x = -1; y = 1.

Cho hình chóp SABC có SA vuông góc với mặt phẳng (ABC), SA = 2a, tam giác ABC vuông cân tại Câu 2: B và AC = 2a. Góc giữa SC và (SAB) bằng

A. 90°

 $C. 45^{\circ}$

Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 2y - 4z - 2 = 0$. Diện tích mặt cầu (S)Câu 3: bằng

A. 8π .

B. 64π .

C. 16π .

Bất phương trình $4^{x+1} + 10.2^x - 6 > 0$ có bao nhiều nghiệm nguyên thuộc [-2020; 2020]? Câu 4:

A. 2018.

B. 2020.

C. 2021.

D. 2019.

Họ nguyên hàm của hàm số $y = 2x^2 - 5x + \frac{1}{x}$ là Câu 5:

A. $\frac{2x^3}{3} - \frac{5x^2}{2} + \ln x + C$.

B. $\frac{2x^3}{3} - \frac{5x^2}{2} + \ln|x| + C$.

C. $\frac{2x^3}{3} - \frac{5x^2}{2} - \ln|x| + C$.

D. $\frac{2x^3}{3} - \frac{5x^2}{2} - \frac{1}{x^2} + C$.

Tập hợp tất cả các giá trị của tham số m để hàm số $y = \frac{mx-4}{x-m}$ đồng biến trên khoảng $(-1; +\infty)$ là Câu 6:

B. (-2;1].

C. (2;4).

Có bao nhiều cách chọn hai học sinh từ một nhóm gồm 20 học sinh? Câu 7:

A. 2^{20} .

C. A_{20}^2 .

Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y = \frac{x-1}{x+1}$ (H) và các trục tọa độ. Khi đó giá Câu 8: trị của S bằng

A. $S = 2 \ln 2 - 1$.

B. $S = \ln 2 + 1$.

C. $S = \ln 2 - 1$.

D. $S = 1 - 2 \ln 2$.

Câu 9: Cho hình nón có bán kính đường tròn đáy là R, chiều cao h và đường sinh l. Tính diện tích xung quanh của hình nón đã cho

A. $S_{xa} = 4\pi R^2$.

B. $S_{xq} = 2\pi Rh$. **C.** $S_{xq} = \pi Rl$. **D.** $S_{xq} = \frac{1}{2}\pi R^2 h$.

Câu 10: Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 0 và $\int x^{2019} f(x) dx = 2$. Tính giá trị của $\int_{0}^{1} x^{2020} \cdot f'(x) dx$.

- A. 4040.
- **B.** -4040.
- **C.** -4038.
- **D.** $\frac{1}{1010}$.

Câu 11: Cho $\log_2 m = a$ và $A = \log_m (8m)$ với $0 < m \ne 1$. Đẳng thức nào sau đây là **đúng**?

- **A.** A = (3-a)a. **B.** A = (3+a)a. **C.** $A = \frac{3-a}{a}$. **D.** $A = \frac{3+a}{a}$.

Câu 12: Xét $\int_{0}^{\frac{\pi}{4}} \sin 2x \cdot e^{\cos 2x} dx$, nếu đặt $u = \cos 2x$ thì $\int_{0}^{\frac{\pi}{4}} \sin 2x \cdot e^{\cos 2x} dx$ bằng

- **A.** $\int_{0}^{1} u \cdot e^{u} du$. **B.** $2\int_{0}^{1} e^{u} du$. **C.** $\frac{1}{2}\int_{0}^{1} e^{u} du$. **D.** $\frac{1}{2}\int_{1}^{0} e^{u} du$.

Câu 13: Trong không gian Oxyz cho điểm M(2; 1; 0) và đường thẳng $\Delta : \frac{x-3}{1} = \frac{y-1}{4} = \frac{z+1}{-2}$. Viết phương trình mặt phẳng (α) đi qua điểm M và chứa đường thẳng Δ

A. 4x - y - 4z - 7 = 0. **B.** 4x + y + 4z - 9 = 0. **C.** 4x - y + 4z - 7 = 0. **D.** 4x + y + 4z + 9 = 0. Câu 14: Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

- **A.** $y = -x^4 4x^2$. **B.** $y = -x^4 + 4x^2$.
- C. $y = -x^3 + 2x$.
- **Câu 15:** Cho hàm số y = f(x) xác định và liên tục trên $(-\infty; 0)$ và $(0; +\infty)$ có bảng biến thiên như sau:

x	$-\infty$	0	1	$+\infty$
<i>y</i> '	_	-	+	
у	2 -1	+∞	2	+∞

Mệnh đề nào sau đây sai?

- A. Hàm số có giá trị cực tiểu bằng 2.
- C. Hàm số đồng biến trên khoảng $(2; +\infty)$.
- **B.** Hàm số đạt cực tiểu tại x = 1.
- **D.** Hàm số đạt cực tiểu tại x = 0.

Câu 16: Trong không gian Oxyz, cho đường thẳng $d: \frac{x-2}{3} = \frac{y}{4} = \frac{z+1}{-1}$. Điểm nào dưới đây thuộc d?

A. Q(8;8;-1).

B. M(-1;;-4;2). **C.** N(5;4;-2).

D. P(2;4;-1).

Câu 17: Cho hình chóp S.ABC, đáy là tam giác ABC có diện tích bằng $2a^2$. Đường cao SA = 3a. Thể tích khối chóp S.ABC là

A. $V = 2a^3$.

Câu 18: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu đạo hàm như hình vẽ

x	$-\infty$		-1		0		2		4		$+\infty$
f'(x)		+	0	_		+	0	_	0	+	

Số điểm cực trị của hàm số đã cho là

A. 3

D. 1.

Câu 19: Tìm tập xác định của hàm số $y = \frac{1}{\sqrt{\log_2(x-1)}}$.

C. $(1;+\infty)\setminus\{2\}$.

D. $(1; +\infty)$.

Câu 20: Gọi M và m lần lượt là các giá trị lớn nhất, nhỏ nhất của hàm số $y = x \ln x$ trên đoạn $\left| \frac{1}{c^2}; e \right|$. Khi

đó M + m bằng bao nhiêu?

D. $\frac{e^2+1}{e^2+1}$.

Câu 21: Tiệm cận ngang của đồ thị hàm số $y = \frac{x+2}{1-x}$ là **A.** y = 2. **B.** x = -1. **Câu 22:** Trong không cia

Câu 22: Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;1;-1) trên mặt phẳng Oxyz có tọa độ là

A. (0;1;-1).

B. (2;1;0).

C. (2;0;0).

D. (2;0;-1).

Câu 23: Cho khối cầu có thể tích $V = 288\pi$. Tính bán kính của khối cầu.

B. $2.\sqrt[3]{9}$.

C. $6\sqrt{2}$.

D. 3.

Câu 24: Trên tập hợp số phức, phương trình $z^2 + 2z + 5 = 0$ có 2 nghiệm z_1, z_2 trong đó z_2 là số phức có phần ảo dương. Tính mô đun của số phức $w = z_1 + iz_2 + z_1z_2$.

B. 5.

D. 22.

Câu 25: Nghiệm của phương trình $5^{2x+1} = 125 \, la$

A. x = 4.

B. x = 3.

C. x = 2.

D. x = 1.

Câu 26: Thể tích của khối lập phương cạnh 2a bằng

B. $6a^3$.

C. $2a^3$.

Câu 27: Cho cấp số cộng (u_n) có $u_1 = -3$ và $u_3 = 1$. Số hạng tổng quát u_n của cấp số cộng là

A. $u_n = -2n + 3$.

B. $u_n = 2n - 5$. **C.** $u_n = -3n + 2$. **D.** $u_n = 3n - 5$.

Câu 28: Cho hai số phức $z_1 = 2 + i$ và $z_2 = 1 + 3i$. Phần ảo của số phức $z_1 - \overline{z_2}$ bằng

Câu 29: Trong không gian Oxyz, đường thẳng đi qua điểm M(1;-2;3) và vuông góc với mặt phẳng (P): x-3y-5=0 có phương trình tham số là

A.
$$\begin{cases} x = 1 + t \\ y = -2 - 3t \\ z = 3 \end{cases}$$

B.
$$\begin{cases} x = 1 + t \\ y = -3 - 2t \\ z = 3t \end{cases}$$

C.
$$\begin{cases} x = 1 + t \\ y = -2 - 3t \\ z = 3 - 5t \end{cases}$$

A.
$$\begin{cases} x = 1 + t \\ y = -2 - 3t \\ z = 3 \end{cases}$$
B.
$$\begin{cases} x = 1 + t \\ y = -3 - 2t \\ z = 3t \end{cases}$$
C.
$$\begin{cases} x = 1 + t \\ y = -2 - 3t \\ z = 3 - 5t \end{cases}$$
D.
$$\begin{cases} x = 1 + t \\ y = -3 - 2t \\ z = -5 + 3t \end{cases}$$

Câu 30: Cho hàm số y = f(x) có bảng biến thiên như sau

x	$-\infty$		-1		0		2		$+\infty$
<i>y'</i>		_	0	+	0	_	0	+	
у	+∞ \		× _ /		1		-1		+∞

Hỏi hàm số đã cho đồng biến trên khoảng nào dưới đây?

- **A.** (-1;1).
- C. $(-\infty; -1)$. D. (-1; 0).

Câu 31: Nếu $\int_{2}^{3} f(x) dx = 5$ và $\int_{2}^{3} g(x) dx = -1$ thì $\int_{2}^{3} \left[f(x) - g(x) + 2x \right] dx$ bằng kết quả nào sau đây?

Câu 32: Cho hình nón có chiều cao $h = \sqrt{3}$. Cắt hình nón đã cho bằng một mặt phẳng đi qua đỉnh và cách tâm của đáy một khoảng bằng 1, ta được thiết diện có diện tích bằng $\frac{3}{2}$. Tính thể tích của hình nón?

A.
$$\frac{2\pi}{\sqrt{3}}$$
.

- B. $\frac{\pi}{2}$.
- **C.** $2\pi\sqrt{3}$.

Câu 33: Cho hàm số f(x) có bảng biến thiên như sau:

x	$-\infty$		-1		0		1		$+\infty$
f'(x)		+	0	_	0	+	0	_	
f(x)			2		1		2		-∞

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

- **A.** $(1;+\infty)$.
- **B.** (-1;0). **C.** (-1;1).
 - **D.** (0;1).

Câu 34: Với a là một số thực khác 0 tuỳ ý, $\log_3(a^2)$ bằng

- A. $2\log_3 a$.
- **B.** $\frac{1}{2}\log_3 a$. **C.** $2\log_3|a|$.
- **D.** $2 + \log_3 a$.

Câu 35: Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông tại A, AB=a, $AC=a\sqrt{3}$. Góc giữa mặt phẳng (A'BC) và (ABC) bằng 60° . Tính thể tích hình trụ có hai đáy là hai hình tròn ngoại tiếp hai đáy hình lăng trụ ABC.A'B'C'.

- **A.** $\frac{\pi}{2}a^3$. **B.** $\frac{3\pi}{2}a^3$. **C.** $65\pi a^3$. **D.** $\frac{\pi}{3}a^3$.

Câu 36: Trong không gian Oxyz, cho mặt phẳng (P) vuông góc với đường thẳng $d: \frac{x+2}{1} = \frac{-y-1}{2} = \frac{z}{2}$. Vector nào dưới đây là một vecto pháp tuyến của (P).

A.
$$\overrightarrow{n_1} = (-2; 1; 0)$$
.

B.
$$\overrightarrow{n_3} = (1;3;-2)$$
.

C.
$$\overrightarrow{n_2} = (-1;3;2)$$

B.
$$\overrightarrow{n_3} = (1;3;-2)$$
. **C.** $\overrightarrow{n_2} = (-1;3;2)$. **D.** $\overrightarrow{n_4} = (-2;-1;0)$.

Câu 37: Tập nghiệm của bất phương trình $-\log_{\frac{1}{2}}^{2}(x-1)+3\log_{\frac{1}{2}}(x-1)-2 \ge 0$ là

$$\mathbf{A.}\left(\frac{1}{9};\frac{1}{3}\right).$$

B.
$$\left(1; \frac{10}{9}\right] \cup \left[\frac{4}{3}; +\infty\right)$$
. **C.** $\left[\frac{10}{9}; \frac{4}{3}\right]$.

Câu 38: Với a là số thực khác 0 tùy ý, $\log_3(a^2)$ bằng

A.
$$2\log_3 a$$
.

B.
$$\frac{1}{2}\log_3|a|$$
.

C.
$$2 \log_3 |a|$$
.

D.
$$2 + \log_3 a$$
.

Câu 39: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2a. Gọi M là trung điểm của BB', P thuộc cạnh DD' sao cho $DP = \frac{1}{4}DD'$. Mặt phẳng (AMP) cắt C'C tại N. Tính thể tích khối đa diện AMNPBCD.

A.
$$3a^{3}$$

B.
$$2a^3$$

C.
$$\frac{9a^3}{4}$$

D.
$$\frac{11a^3}{4}$$

Câu 40: Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình vẽ dưới đây. Biết rằng diện tích hình phẳng giới hạn bởi trục Ox và đồ thị hàm số y = f'(x) trên đoạn [-2;1] và [1;4] lần lượt bằng 9 và 12. Cho biết f(1) = 3. Tính giá trị biểu thức P = f(-2) + f(4).

Câu 41: Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ và f(-2) = 0. Hàm số $g(x) = [f(-x-x^2)]^2$ nghịch biến trên các khoảng nào?

A.
$$(-4;-1), (\frac{1}{2};+\infty).$$

$$\mathbf{C} \cdot \left(-3; -\frac{1}{2}\right), \left(0; +\infty\right).$$

B.
$$\left(-\infty;-2\right), \left(-\frac{1}{2};1\right).$$

D.
$$\left(-\frac{1}{2}; +\infty\right)$$
.

Câu 42: Biết (a;b) là khoảng chứa tất cả các giá trị của tham số thực m để phương trình $(7-3\sqrt{5})^{x^2}+m(7+3\sqrt{5})^{x^2}=2^{x^2-1}$ có đúng 4 nghiệm thực phân biệt. Tính M=a+b.

A.
$$M = \frac{3}{5}$$
. **B.** $M = \frac{1}{8}$.

B.
$$M = \frac{1}{8}$$
.

C.
$$M = \frac{-7}{16}$$
. **D.** $M = \frac{1}{16}$.

D.
$$M = \frac{1}{16}$$
.

Câu 43: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

Tập hợp tất cả các giá trị thực của tham số m để phương trình $f(\cos x) = m$ có 4 nghiệm thuộc nửa khoảng $\left| 0; \frac{7\pi}{2} \right|$ là

B.
$$(-1;1)$$
.

$$C. (-1;3).$$

Câu 44: Cho x, y là hai số thực dương thỏa mãn $2\log_2 x - \log_2 y \ge \log_2 (x + 6y)$. Tìm giá trị lớn nhất của biểu thức $P = \frac{xy - y^2}{x^2 - 2xy + 2y^2}$

A.
$$\frac{2}{5}$$
.

B.
$$\frac{1}{2}$$
.

C.
$$\frac{5}{2}$$
.

Cho hình chóp S.ABCD có đáy là hình chữ nhật AB = a, AD = 2a, SA vuông góc với mặt phẳng đáy và SA = a. Gọi M là trung điểm của AD. Tính khoảng cách giữa hai đường thẳng BM và SD.

A.
$$\frac{2a\sqrt{5}}{5}$$
.

B.
$$\frac{a\sqrt{6}}{6}$$
.

C.
$$\frac{a\sqrt{6}}{3}$$
.

D.
$$\frac{a\sqrt{2}}{2}$$
.

Câu 46: Cho hình chóp S.ABC, đáy ABC là tam giác đều cạnh a, $SA \perp (ABC)$ và SA = a. Gọi M, N lần lượt là trung điểm của BC và CA. Tính khoảng cách giữa hai đường thẳng AM và SN.

A.
$$\frac{a}{\sqrt{17}}$$
.

B.
$$\frac{a}{4}$$
.

C.
$$\frac{a}{17}$$
.

D.
$$\frac{a}{3}$$
.

Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số đôi một khác nhau lập từ các chữ số 0;1;2;3;4;5;6;7 . Lấy ngẫu nhiên một số từ S, tính xác suất để lấy được số có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ.

A.
$$\frac{30}{49}$$
.

B.
$$\frac{83}{210}$$
.

C.
$$\frac{102}{245}$$
.

D.
$$\frac{108}{245}$$

Câu 48: Cho hàm số $f(x) = x^4 - 4x^3 + 4x^2 + m$ (m là tham số thực). Gọi S là tập các giá trị của m sao cho $\max_{[0;2]} |f(x)| + \min_{[0;2]} |f(x)| = 5$. Số phần tử của S là

Câu 49: Cho hàm số $y = \frac{a \cdot x + 1}{bx + c}$ có bảng biến thiên sau

x	-∞	+∞
<i>y</i> ′	+	+
у	2	2

Mệnh đề nào dưới đây đúng?

- **B.** a > 0, b > 0, c > 0. **C.** a < 0, b < 0, c > 0. **D.** a < 0, b < 0, c < 0. **A.** a > 0, b > 0, c < 0.
- f(x) có đạo hàm liên tục trên khoảng $(0;+\infty)$, $f(1)=\frac{1}{6}$ Câu 50: Cho hàm số $f'\left(x\right)+\left(2x+3\right).f^{2}\left(x\right)=0,\,f\left(x\right)>0,\,\forall x>0\;.\;\text{Tính giá trị của }P=1+f\left(1\right)+f\left(2\right)+...+f\left(2020\right)$
 - A. $\frac{3029}{2020}$.
- **B.** $\frac{1518}{1011}$.
- C. $\frac{1516}{1011}$.
- **D.** $\frac{1517}{1011}$.