Name of Student: Aniket Patil	Class: TE MECH 2
Semester/ Year: 6 th / 3 rd	Roll No: 29
Date of performance:	Date of Submission
Examined by: Prof. B.R Pujari	Expt No: 1

Experiment 1: 1D Bar Element – Structural Linear Analysis

Aim: To do the Structural Linear Analysis of a 1D Bar Element

Objective: Run the simulation Using Ansys 2022 R1 and compare the analysisand

analytical results to compute the error.

Package: Ansys 2022 R1

Problem:

Step 1: Run Ansys Mechanical APDL 2022 R1

Step 2: Selecting Preference, Preferences → Structural

Step 3: Defining the Element Type

Pre-processor \rightarrow Element Type \rightarrow Add/Delete Element \rightarrow Add \rightarrow Beam \rightarrow 2Node 188 \rightarrow OK

Step 4: Defining Material Properties

Material Props → Material Models → Material Models Available → Structural → Linear → Elastic → Isotropic

The Material Model is successfully defined. As in our problem the material Properties are same throughout, we will not define another Material Model.

Step 5: Defining Section Of our Beam

Section → Beam → Common Sections → Beam Tool → Sub type → R

As we have a stepped beam, repeat step 2 times while entering the respectiveRadius Values

Step 6: Modelling the problem

Modeling \rightarrow Create \rightarrow Nodes \rightarrow In Active CS \rightarrow Create the nodes using the Xvalues as (0,100,200,350)

Step 7: Creating Element | Modeling \rightarrow Create \rightarrow Element \rightarrow Element Attributes \rightarrow Section 1 \rightarrow OK \rightarrow Auto Numbered \rightarrow Thru Nodes \rightarrow OK \rightarrow Select Node 1,2. \rightarrow OK \rightarrow Repeat and select Node 2 and 3 \rightarrow OK | As the problem involves a stepped beam and we have defined 2 sections, in the element attr. Select Section Number 2 and repeat the procedure for Nodes 3and 4 to give you the Following result.

Step 8: Defining Constraints and Forces on the beam | Loads → Analysis type → New Analysis → Static → OK | Define Loads → Apply → Structural → Displacement → On Node → Select node 1 and give ALL DOF.

Force/moment \rightarrow On Nodes \rightarrow Select node 2 \rightarrow 20000N | Similarly for node 4 Repeat this step and add 10000N.

Result would be somewhat like this after you Right Click → Fit

Step 9: Solution of our Problem | Solution → Solve → Current LS → OK

Step 10: Displaying the results with the post processor | General PostPro
→Plot Results →Contour plot → Nodal Solution → DOF Solution →
Displacement Vector Sum

Step 11: For Stress Intensity go to General PostPro → Plot Results
→ Contour plot → Nodal Solution → Stress → Von Mises Stress → Apply → OK

