Can we investigate pre-stimulus activity just prior to t=0?

Steffen Buergers, Giulio Degano

The problem of post-stim artifacts

Information bleeds into pre-stimulus period when analysing oscillatory activity!

Avoiding post-stimulus artifacts

Frequency sliding

Hilbert transform (or fft or wavelet)

Take temporal **derivative of phase** angle time series

Apply 10 **median filters** with different orders

Take the **median** of the median filter values

Average over trials

Frequency sliding (pink noise simulations, N=20, n=125)

Continued

Time (-0.5 to 0s)

Frequency

Frequency sliding

Significant difference at roughly 0.03 Hz

Samaha et al., 2015

Frequency sliding: Mirror padding

Different frequencies

Different phase angles

Frequency sliding: Zero padding

Different frequencies

Different phase angles

Frequency sliding: Zero padding

Simulation summary:

Mirror-padding distorts data more than zero-padding

In both cases it is hard to interpret a difference between conditions, especially for small sample sizes

So should we ignore pre-stimulus activity?

Maybe we can forecast the signal

EEG is very noisy, and we want to predict data on single trials

Even a poor prediction should be better than zero-padding (if unbiased)

Autoregressive moving average modeling (ARMA)

AR(1)
$$y_t = a1^* y_{t-1}$$

AR(2) $y_t = a1^* y_{t-1} + a2^* y_{t-2}$
AR(3) $y_t = a1^* y_{t-1} + a2^* y_{t-2} + a3^* y_{t-2}$

Autoregressive moving average modeling (ARMA)

$$\begin{aligned} &\text{MA(1)}\ \epsilon_{t} = \text{b1*}\epsilon_{t\text{-}1} \\ &\text{MA(2)}\ \epsilon_{t} = \text{b1*}\epsilon_{t\text{-}1} + \text{b2*}\epsilon_{t\text{-}2} \\ &\text{MA(3)}\ \epsilon_{t} = \text{b1*}\epsilon_{t\text{-}1} + \text{b2*}\epsilon_{t\text{-}2} + \text{b3*}\epsilon_{t\text{-}3} \end{aligned}$$

Simulations with ft_dipolefitting

Simulate sine wave at frequency F with phase P and certain SNR using BEM volume conduction model.

AR order = 7
ARMA: na = 25, nc = 10
(modeling by Giulio Degano)

COLLEGE OF LIFE AND ENVIRONMENTAL SCIENCES

COLLEGE OF LIFE AND ENVIRONMENTAL SCIENCES

Simulation summary:

For the given simulation and model specifications we observe significant distortions, similar to zero- or mirror-padding

ARMA and AR perform well for power, mediocre for frequency sliding and poorly for ITC

Real EEG data (no stimulus)

Sleep dataset of single participant

Number of trials: 79

Real EEG data (N = 1; n = 79)

COLLEGE OF LIFE
AND ENVIRONMENTAL
SCIENCES

Real EEG data (N = 1; n = 79)

AND ENVIRONMENTAL

SCIENCES

BIRMINGHAM

Final summary:

All padding or forecasting methods introduce artifacts.

A quick test of AR and ARMA models gives complex results (no obvious advantage to zero-padding)

If this is a viable method, how do we choose parameters?

Forecasting methods - open discussion

Is it worth pursuing this idea further? What should we pay attention to?

Other possible forecasting methods: Support vector regression, neural networks, others?

Fin

Thank you!

References

Samaha, J., & Postle, B. R. (2015). The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception. *Current Biology*, *25*(22), 2985–2990. https://doi.org/10.1016/j.cub.2015.10.007