8.4 The Normal Distribution - Overview

Normal Distribution Properties

It's a symmetric, unimodal, bell-shaped distribution
 which implies mean = median = mode.

• Total area under curve (probability) is equal to 1 = 100%.

• Completely described by its mean μ (location) and standard deviation σ (spread).

• The normal distribution allows us to find any probability, not just for points that lie exactly 1, 2, or 3 standard deviations ("steps") away from the mean like with the empirical rule!

Z-scores ("Standard" scores in Hawkes Certify)

 Definition: A z-score <u>standardizes</u> observations based on the <u>mean</u> (center) and <u>standard deviation</u> (spread) of the distribution.

o Allows for comparisons on different scales.

Formula:
$$z = \frac{x - \mu}{\sigma} = \frac{x - \bar{x}}{s} = \frac{obs - mean}{st \, dev}$$

• Interpretation:

A z-score tells us how many standard deviations an observation is away from the mean.

The unit of a z-score is standard deviations.

Example 1) For each data set with the stated μ and σ , find the standard score (z score) corresponding to the given observation, x.

he given observation, x.

a)
$$\mu = 8$$
, $\sigma = 3$, $x = 17$ $\longrightarrow = \frac{(17 - 8)}{3} = \frac{3}{3}$

b)
$$\mu = 100$$
, $\sigma = 16$, $x = 80 \implies 2 = \frac{80 - 100}{16} = -1.75$, before mean

Finding probabilities based on the Normal Distribution

- Handout: Normal Distribution Table
 - Use the handout to convert z-scores to percentiles ("left probabilities").
 - ALWAYS gives probability LESS THAN Z: P(Z < z).
- Table entry
- .

Different types of probabilities

- o Left probability = Table (directly)
- A Draw, label
 + shade curve
- Example: Find the total area under the standard normal curve (probability or percentage) to the left of z = 0.34.

- Right probability = 1 Left (table)
 - Examples: Find the probability to the right of z = 0.34.

0.3669

$$R:ght = 1 - left$$

 $\int_{-1}^{1} = 0.6331$
 $= 0.3669$

Find the probability to the right of z = -1.2.

- o Between probability = Left Z2 Left Z1
 - Example: Find the probability between $z_1 = -0.12$ and $z_2 = 2.27$.

• Example: Find the probability to the left of $z_1 = -0.12$ and to the right of $z_2 = 2.27$. ϵ .

0.0023

0.0025

0.0024

0.0026

7,

A Standard Normal Distribution

Numerical entries represent the probability that a standard normal

random variable is between $-\infty$ and z.

0.0019

0.0020

0.0021

0.0021

K	-		/					z J o		
z	0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00
-3.4	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
-3.3	0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005
-3.2	0.0005	0.0005	0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0007	0.0007
-3.1	0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0009	0.0009	0.0009	0.0010
-3.0	0.0010	0.0010	0.0011	0.0011	0.0011	0.0012	0.0012	0.0013	0.0013	0.0013
-2.9	0.0014	0.0014	0.0015	0.0015	0.0016	0.0016	0.0017	0.0018	0.0018	0.0019

0.0022

0.0023