A meandering introduction into the world of light microscopy

Josh Lawrimore, PhD 8/12/2025

The trilemma: The challenges of using light

Magnification: Refraction of light using lenses

- We, particularly Japan and Germany, have gotten really good at making lenses
 - Chromatic aberration corrections
 - Spherical aberration corrections
 - Anti-reflective coatings
- Objectives typically go up to magnification of 100x
- Not much point in going past 100x when using light due to the diffraction limit

Diffraction Limit

🛕 Equations on this page! 🛕

 $NA = n \sin \theta$

- n= refractive index of media (air 1.0, water 1.33, oil 1.515)
- θ = half-angle of the maximum cone of light that the lens can capture
- $\lambda = \text{Wavelength of the}$ light
- NA = Numerical Aperture of objective

https://www.microscopyu.com/micr oscopy-basics/numerical-aperture

Sample

https://www.microscopyu.com/microscopybasics/refractive-index-index-of-refraction

https://www.microscopyu.com/microscopy -basics/resolution

The trilemma: The challenges of using light

A brief introduction to contrast

- Classic
 microscopy
 techniques
 typically use stains
 to provide contrast
- For example: Hematoxylin and Eosin (H&E)

By Mikael Häggström, M.D. Author info- Reusing images- Conflicts of interest:NoneMikael Häggström, M.D. - Source images:Mikael Häggström. Public DomainBy Faiek S, Tariq H, Upparapalli D, Bansal A, Sompalli S. Creative Commons Attribution 3.0 Unported license., CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=121316974

Fluorescence: A New Kind of Contrast

Transmitted Light

Fluorescent Protein

Wachter, R. M., King, B. A., Heim, R., Kallio, K., Tsien, R. Y., Boxer, S. G., & Remington, S. J. (1997). Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry, 36(32), 9759–9765. https://doi.org/10.1021/bi970563w

NIAID Visual & Medical Arts. (10/7/2024). Vero Cell. NIAID NIH BIOART Source. bioart.niaid.nih.gov/bioart/540

Diffraction Pattern

This center peak looks like a Guassian distribution

Breaking the diffraction limit: 2014 Nobel Prize in Chemistry

 Fluorophores are point sources of light that will create a a diffraction pattern

• If you could **isolate single fluorophores in time**, you could fit the diffraction pattern with a 2D Gaussian

Stimulated Emission Depletion Microscopy

- Creates a sub-diffraction-limited excitation zone
- Repress the surrounding emission by creating a depletion zone
- Scan the region to reconstruct a super resolution image

PALM: Photoactivated Localization Microscopy

- Use a special PA-GFP that uses UV light to convert inert fluorophores to an active one
- Only use small amount of UV light to convert a small sample
- Intentionally bleach active PA-GFPs
- Then start new activation cycle

Cost-Benefit of Enhanced Resolution

