	Intervalos de Confiar	nza para la Media d	con Varianza Conoc	ida			
▶ 1.	Se desea un intervalo de	-			-		
	de inducción(en watts), rpm. Suponga que la pé				relocidad de 1500		
	a) Calcular un intervalo			*			
	 b) Calcular un intervalo este intervalo con la del 			$100 \text{ y } \bar{x} = 58,3. \text{ Compa}$	are la longitud de		
	c) Calcular un intervalo este intervalo con la del			100 y $\bar{x} = 58,3$. Compa	are la longitud de		
	d) ¿Qué tan grande del		\ /	o de confianza del 99	% para μ sea a lo		
	sumo 1?	+ + + + + + + +			+ + + + + + +		
\ \							
9)	atos:						
	Vivel de conficer	va 95%					
	Tamaro de v	nuestra: 1:	= 25				
<u> </u>	Tamaño de v Medra muest Des Viactor es	ivel: X = 58	1 3				
	Des victor es	faular: 0=	3				
Cuano	Io conocemos σ (la desviacio	ón estándar de la poblac	ción), usamos la siguiente	fórmula para el			
	alo de confianza de la media						
		$ar{x}\pm z_{lpha/2}rac{\sigma}{\sqrt{n}}$					
		v					
Pa	a un nive	el de com	erança del	25%, X=	005, 7 9	l valor	10
20/2	es el Revoer	til 27,5	de la drot.	normed, of	ue corres	pon de	arros
	a 30/2 =	1,96					
	cular of ma						
Car							
	nargen	de error =	Ex/2. 5	1,26,3	= 1, 176		
			Vic	Vzs			
Cor	rstrum el inte	ervalo1					
		Limite in	Acoror - 5	8,3-1,176=	57,12		
		1 - mste. <	upervor = 5	23, (/2/5	5958		
		2, 4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,) + (, (/ 6			
, , ,	stinter valo	de confram	esa del 9.	54. para le	cuendo n.	225 eJ	
		E Z 10 E 8	(8)				
		81,18 37	, V 8				
₽) Re	emplazano	donde h	ace Palta,	enes solo c	embran.		
	margen de e	wor = Ex/z	, 0 = 1,	26, 3 = 0	782 C		
		ý	Vi	Vloo			
, , ,	(57,712,5	8,888)					
Com	Paraetón:	Longitud del intervalo	en (a): $59.48 - 57.12 =$	2.36			
			en (b): $58.89 - 57.71 =$				
	Con	nclusión: El intervalo en (b) es más corto que el del	inciso (a) porque el tamai	ño de muestra es		
	may	vor. Esto refleja que, al au	ımentar el tamaño de la m	nuestra, obtenemos una e			
	рге	cisa de la media, lo cual r	educe la longitud del inte	rvalo de confianza.			

- 2. La frecuencia de resonancia (en Hz) de las raquetas de tenis de cierto tipo tienen distribución normal con media μ y varianza σ^2 conocida. Se toma una muestra aleatoria de tamaño n.
 - a) ¿Cuál es el nivel de confianza del intervalo $\bar{x} \pm 2.81 \sigma / \sqrt{n}$?
 - b) ¿Cuál es el valor de $z_{\alpha/2}$ que corresponde a un intervalo de confianza para μ del 99.7 %?
 - c) Con la muestra dada se obtuvieron los siguientes intervalos de confianza para μ : (114,4,115,6) y (114,1,115,9).
 - i) ¿Cuál es el valor de la media muestral?
 - ii) ¿Cuál de estos intervalos tiene mayor nivel de confianza?

$$= P\left(-2, 815 \leq \mu - \overline{x} \notin 2, 815\right)$$

Dado un conjunto de intervalos de confianza, nos piden responder dos preguntas:

• Intervalos dados:

(i) Calcular la media muestral $ar{x}$

La media muestral es el **punto medio de cada intervalo**, que podemos calcular sumando los extremos y dividiéndolos por 2.

Dado que estos son **intervalos de confianza simétricos** alrededor de la media muestral \bar{x} , podemos encontrar la media tomando el **punto medio** de cada intervalo. Esto se obtiene sumando los extremos del intervalo y dividiendo por 2.

1. Para el intervalo (114.4,115.6):

$$ar{x} = rac{114.4 + 115.6}{2} = 115.0$$

2. Para el intervalo (114.1, 115.9):

$$ar{x} = rac{114.1 + 115.9}{2} = 115.0$$

En ambos casos, la **media muestral** es $ar{x}=115.0.$

(ii) Determinar cuál intervalo tiene mayor nivel de confianza

Para comparar los niveles de confianza de los intervalos, podemos observar su longitud:

- La longitud del intervalo (114.4,115.6) es

$$115.6 - 114.4 = 1.2$$

- La longitud del intervalo $\left(114.1,115.9\right)$ es:

$$115.9 - 114.1 = 1.8$$

Conclusión:

Un intervalo más amplio corresponde a un mayor nivel de confianza, dado que al ampliar el intervalo aumentamos la probabilidad de que contenga el valor verdadero de la media.

Por lo tanto, el **intervalo** (114.1, 115.9) **tiene un mayor nivel de confianza** que el intervalo (114.4, 115.6)

Se seleccionó una muestra aleatoria de 539 sujetos pertenecientes a cierta ciudad. Se determinó que 133 de ellos poseían por lo menos un arma de fuego. a) Determinar un intervalo de confianza de nivel aproximado 0.98 para la verdadera proporción de propietarios de armas en esa ciudad. b) ¿Qué tamaño de muestra sería necesario para obtener un intervalo de longitud a lo sumo 0.10 y con un nivel de confianza aproximado de 0.98, independiente del \hat{p} ? N= 539 X=133 NC= 98% Proponaios muestrali P = x = 133 = 10,2867 Valor 01/100 Edic Para 98% &= 0,02 = 2/2-0,01 => => = 2/2 = 2,37 Férmula del intervalo de conflances para la proporción P# & Z / P (1-P) $\hat{P} = 2,33 \sqrt{9,2467} = 2,33 \sqrt{0,00038} = 2,000038$ Intervalo - (P-00829, P+0,0829) = (0,2038,0,2896) Longitud del intervalo: Dado que queremos una longitud máxima de 0.10, el margen de $\mathrm{margen}\;\mathrm{de}\;\mathrm{error} = \frac{0.10}{2} = 0.05$ 2. **Fórmula del margen de error para proporciones**: La fórmula del margen de error para $ext{margen de error} = z_{lpha/2} \cdot \sqrt{rac{p(1-p)}{n}}$ 3. **Caso conservador** (independiente de \hat{p}): Para obtener el tamaño de muestra sin depender de \hat{p} , usamos el caso más conservador, que ocurre cuando p=0.5 (ya que maximiza p(1-p)). 4. **Despejamos** n: Sustituimos el margen de error, $z_{lpha/2}=2.33$, y p=0.5 en la fórmula y $0.05 = 2.33 \cdot \sqrt{\frac{0.5 \times 0.5}{2}}$ 0,0\$ = 2,33 /0,5.0,5 = , 0,0\$ = /0,25 / n = 2,33 $= > 0.0218 - 0.5 = > \sqrt{n} = 0.5 = > \sqrt{n} = 23,36$ $= > 0.0218 - 0.5 = > \sqrt{n} = 23,36$ $= > 0.0218 - 0.5 = > \sqrt{n} = 23,36$

	- 5	·.	${\rm Se}$	quie	ere a	anal	izar	si l	as d	leter	rmin	acio	ones	del	con	iten	ido	de 1	un a	ácido	qu	e re	ealiza	un l	labor	ator	rio s	on a	сер	ta-								
																			,	$_{ m de}$	este	áci	do y	se aı	naliz	aron	las	sign	uien	tes								
			det	erm	inac	cione	es ir	idep	end	ient	es o	bter	nida	s po	r el	lab	ora	torio	э:																			
										80) 8	81	77	8	80	77	7	74	77	7	9	81	79															
		Sur	oone	ra d	11e e	el co	nte	nide	del	Láci	ido 1	tien	e dis	strib	nici	ón 1	nor	mal.																				
				-																lo m	edio	de	l ácid	lo se	gún	el la	bor	ator	io y	a	Ī							
		par	tir o	del 1	misı	no o	conc	luy	a si	las	med	licio	nes	del	lab	orat	tori	o so	n a	cept	able	s.									Ī							
					ería	su	con	clus	ión (en e	el in	ciso	a) :	si el	cor	nten	ido	rea	l de	l ác	ido e	en l	a mu	estra	ı de	alim	ente	o fu	era	de	İ							
	<u> </u>	82n	ng/	kg?																											İ							
												15		of	4	_ <	4.	10	/																			
	·, `) (n.	L	a 0	,		_	S &		د	J. , Z					14		,							1	1	11	/)							
		<i>a</i> (v	9 4	20	0		_	2	ے ہے۔															X		, , t		- ,	1 -								
						V	\cup		ι	01	76																											
							5						_	_								-		٠.				, 0	_			حرب	-					
							× _		80	+	81	L 7	7 1	-80) /-	77	-4-	74	+	77	-7	9 7	-81	+ 1	79	2		<u>-</u> ∂.	2		- /	0,						
																W)								Τ-			U	5									
																		$\overline{}$																				
											J		7	,		_	٧ ک	. 1		0.05		۳.	0.05 1	0.05	1.0.6)F .	20.05	0	or i	0.0		05	. 0.0	_	7	2.	7 -	
						2,	n~l	, -	+	+i		2	_(Z2	- }	λ	\mathcal{L}	_		Z.Z5	+ 0.2	ข +	2.25 +	- 2.25	+ 2.2	40 +	20.20	+ 2	.Z0 -	- U.Z	o + 0	.Z0 -	r U.2	U	-{}	7	<u>`}</u>	
										IJ			И	l J	t							19	\sim												V	+	9	
				_						V											- '	' '																
	-	2.		2	1_		1	_																											_			
2	- 1	٧,	2	Υ	1	٥	Z	, 2	2																													
										_					-														_				_	_	_			
					-6	× X	12.	Ξ	. (2,	2	6	Z	Z		J	'(=	- 0	?	7	_ <	Z (50	5 =	- (), (3 C	- /	ے									
															1	V																						
			u	ar	~g.	en	ر ٥	le v	ev	0	Λ,	-	G	-d/	/2/		5		Ξ		2,	26	627	2	رح	27	> -	=	1.	5	88	•						
					V									7			По	3							V	0			1									
																	V IIS																					
			7	(٠ .	L		7	Z 8,	5	_	1, 2	28	P		7	ر د	5 t	1,	28	~	١	5		Z	6	e	112		2	0	,0	8	8)				
														,			- , .					'			\	′												
		1/	e	ه د	8	9	in	o ,	el	l.	i -	+	+ N	1/6	: Le	8	1		CA	Lu.	7 /	٠,	e	d		al	01	_	eı	Pe	vei	1	a	Z8	>ve	q/	U,	2
Q.	gr		<u> </u>		ρ,	0	1	2	2	V مرہ	A	\ \ \	20	, 0	.e	5	م	_	a	e,	C A	- I	s/e	00		1			,	, ,				1	0	FI	-0/	ン
V	91		7) -				_0			- 40				9						, ,	~ 0	3/~	es .														
	6)	1	, _			71	~/.	, 0	No.	-			C CA		8	>	v	91	121	ے			هـ. ـ	2		0 /	ص	(ر پر	~ , ,	ر ب	הקס	1	ردی	(a)	7.	el	
- 2			56				~ ~		L	11	~ (F	o V	Λ.		0		2 2				>	е Д	V 1 - 2 2 2	4	6			6	200							-	Ť	
	1	0	€ د	m		v	ے د	1- 1	w.	91	رے		VOZ	ve	+	_ ð			n	0	es	/ ₹	صہ بد	~	es	+	-	, -	- V	ν· G	- ((J_						
	6.																					,	ciclisn								+							
	_						_														_		n las															
	_																						os. Ei e. Se s															
	-								roxii							1	ľ	,-, *	P						-10						+							
	-	a) Si						letas								~~				,.		, .					1/				-						
	-	10			,	eter nata			un in	iter	valo	de	conf	nanz	za d	el 9	8%	par	a la	me	dia j	oob	lacior	nal d	el ri	tmo	car	1iac	o en	ı	+			-				
	_	18	, pri						un i	inte	rvalo	o de	con	ıfian	za o	del 9	98 %	o pa	ra l	a va	rian	za 1	pobla	ciona	al de	l riti	mo e	card	íaco)								
	_	eı	n la		,	de 1											1	Po				1				- 101	,											
	_	b) Si						etas:		_						<u>.</u>				1.							1.			-							-
	_	1.	ייני			eter nata			un in	nter	valo	de	conf	tianz	za d	el 9	5%	par	a la	me	dia 1	oob	lacior	nal d	el ri	tmo	car	líac	o en	l				_				
	_	19	, pri						un i	inte	rvalo	o de	con	ıfian	za o	del 9	95 %	o pa	ra l	a va	rian	za 1	pobla	ciona	al de	l riti	mo o	card	íaco)								
	_	eı	n la		,	de 1										'	- "	£				1					- '											

