A Note on Linear Independence and Bases

William DeMeo

March 7, 2016

Lemma 1: If $A \in \mathbb{R}^{m \times n}$ and $N(A) = \{0\}$, then $m \ge n$.

Proof. If $N(A) = \{0\}$, then by definition the only solution to $A\mathbf{x} = \mathbf{0}$ is the trivial solution $\mathbf{0}$. Equivalently, the system $A\mathbf{x} = \mathbf{0}$ has no free variables, so any echelon form of A has a pivot in each of its n columns. Since there are m rows, there can be at most m pivots, so $m \ge n$.

Lemma 2: If V is a subspace of \mathbb{R}^n with basis $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$, then any linearly independent subset of V has at most k vectors.

Proof. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ be a linearly independent subset of V. We will prove $m \leq k$. Each \mathbf{x}_i is a linear combination of the basis vectors in V. That is, there exist scalars $a_{ij} \in \mathbb{R}$ such that

$$\mathbf{x}_{1} = a_{11}\mathbf{v}_{1} + a_{21}\mathbf{v}_{2} + \dots + a_{k1}\mathbf{v}_{k}$$

$$\mathbf{x}_{2} = a_{12}\mathbf{v}_{1} + a_{22}\mathbf{v}_{2} + \dots + a_{k2}\mathbf{v}_{k}$$

$$\vdots$$

$$\mathbf{x}_{m} = a_{1m}\mathbf{v}_{1} + a_{2m}\mathbf{v}_{2} + \dots + a_{km}\mathbf{v}_{k}$$

$$(1)$$

Note that, in the first equation above, the right-hand side is a matrix-vector product, so we can write this equation as follows:

$$\mathbf{x}_1 = \begin{bmatrix} | & | & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_k \\ | & | & & | \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{k1} \end{bmatrix}.$$

Of course, the same is true of the other equations in (1), so we can write them all simultaneously as a the following system of equations:

$$\begin{bmatrix} | & | & & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_m \\ | & | & & | \end{bmatrix} = \begin{bmatrix} | & | & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_k \\ | & | & & | \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{km} \end{bmatrix}$$
(2)

Let X denote the matrix on the left-hand side of (2), and let A denote the second matrix on the right-hand side of (2). Since $\{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$ is linearly independent, we have $N(X) = \{\mathbf{0}\}$, and this implies $N(A) = \{\mathbf{0}\}$. (Reason: if $A\mathbf{y} = \mathbf{0}$, then $X\mathbf{y} = \mathbf{0}$ by (2).) Finally, if $N(A) = \{\mathbf{0}\}$, we know that A must have at least as many rows as columns, by Lemma 1. Therefore $m \leq k$, as desired.

Proposition: Let $W \subseteq V$ be subspaces of \mathbb{R}^n . Suppose $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis for V and $\mathcal{W} = \{\mathbf{w}_1, \dots, \mathbf{w}_\ell\}$ is a basis for W. Then W = V if and only if $\ell = k$.

Proof.

- (\Rightarrow) If W = V, then \mathcal{W} is a basis for V so $\ell = k$, since (as we proved earlier) all bases for a given subspace have the same number of vectors.
- (\Leftarrow) We want to prove $\ell = k$ implies W = V. We will prove the (equivalent) contrapositive statement, which is $W \neq V$ implies $\ell \neq k$. If $W \neq V$, then there is a vector $\mathbf{v} \in V$ that does not belong to W. Therefore, $\mathbf{v} \notin \mathrm{Span}\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_\ell\}$, so $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_\ell, \mathbf{v}\}$ is a set of $\ell + 1$ linearly independent vectors in V. By Lemma 2 then, $\ell + 1 \leq k$, so $\ell < k$, as desired.

Corollary: If $W \subseteq V$ are subspaces of \mathbb{R}^n and dim $W = \dim V$, then W = V.

Proof. This follows directly from the Proposition above and the definition of dimension. \Box