第二章 插值法

- ▶引言
- 线性插值
- ▶ 二次插值
- ▶ n次插值
- 分段线性插值
- ▶ Hermite插值
- ▶ 分段三次Hermite插值
- ▶ 三次样条函数
- 三次样条函数插值
- 数值微分

引言

▶问题

- 。已知函数表 $y_i = f(x_i)$ 即n个点 $(x_i, y_i), i = 0,1,2, \cdots, n$,找近似函数 $\phi(x)$ 满足 $\phi(x_i) = y_i, i = 0,1,2, \cdots, n$
- 插值节点(互异): $x_i, i = 0,1,2,\dots,n$
- 插值函数: $\phi(x)$

背景

- 。函数表达式太繁不便使用
- 。函数由表给出
- ▶多项式插值、三角函数插值

线性插值

▶线性插值问题

已知
$$y_i = f(x_i), i = 0,1,\dots,n$$

求 $\phi(x) = a_0 + a_1 x$
满足 $\phi(x_i) = y_i, i = 0,1$
。二元一次方程组 $a_0 + a_1 x_0 = y_0$
 $a_0 + a_1 x_1 = y_1$

。过两点作一直线

线性插值惟一性

- ▶解的存在惟一性
 - 。根据Cramer法则解存在而且惟一

$$D = \begin{vmatrix} 1 & x_0 \\ 1 & x_1 \end{vmatrix} = x_1 - x_0 \neq 0$$

几何上过两点有一条且 仅有一条直线

线性插值: Newton公式

▶ 点斜式: Newton公式

$$\phi(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) = f(x_0) + f[x_0, x_1](x - x_0)$$

。一阶均差(差商)

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

- 均差是对称的: $f[x_1, x_0] = f[x_0, x_1]$
 - 定义可见
 - 都是线性插值函数首项系数(惟一)

线性插值: Lagrange公式

▶ 两点式:Lagrange公式

$$\phi(x) = y_0 l_0(x) + y_1 l_1(x)$$

。线性插值基函数

$$l_0(x) = \frac{x - x_1}{x_0 - x_1}, l_1(x) = \frac{x - x_0}{x_1 - x_0}$$

。特解

x_i	x_0	x_1
$l_0(x)$	1	0
$l_1(x)$	0	1

线性插值: Aitken公式

▶ Aitken公式

$$\phi(x) = \frac{1}{x_0 - x_1} \begin{vmatrix} y_0 & x - x_0 \\ y_1 & x - x_1 \end{vmatrix}$$

- ▶ 余项定理
 - 。 设 $\phi(x)$ 是f(x)过 x_0, x_1 的线性插值函数, f(x) ∈ $C^2[a,b], x_0, x_1, x$ ∈ [a,b], 则有 ξ ∈ (a,b), 使

$$R(x) = f(x) - \phi(x) = \frac{1}{2!}f''(\xi)(x - x_0)(x - x_1)$$

$$|R(x)| \le \frac{1}{8}(x_1 - x_0)^2 \max |f''(x)|$$

二次插值

二次插值问题

。求
$$\phi(x) = a_0 + a_1 x + a_2 x^2$$
 満足 $\phi(x_i) = y_i, i = 0,1,2$

。三元一次方程组

$$a_0 + a_1 x_0 + a_2 x_0^2 = y_0$$

 $a_0 + a_1 x_1 + a_2 x_1^2 = y_1$
 $a_0 + a_1 x_2 + a_2 x_2^2 = y_2$

二次插值惟一性

- ▶解的惟一性
 - 。根据Cramer法则解存在而且惟一

$$D = \begin{vmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{vmatrix} = (x_1 - x_0)(x_2 - x_0)(x_2 - x_1) \neq 0$$

• 由代数基本定理: 设 $\psi(x)$ 也是插值函数,则差 $h(x) = \phi(x) - \psi(x)$ 是二次多项式,並有三个零点 x_0, x_1, x_2 . 由代数基本定理可知 $h(x) \equiv 0, \phi(x) \equiv \psi(x)$

二次插值:Newton公式

▶ Newton公式

$$\phi(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

。二阶均差(差商)

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_2] - f[x_0, x_1]}{x_2 - x_1}$$

•对称性:二阶均差自变量任意排列时不变.因为二阶均差都等于 a_2 ,二次插值函数首项系数惟一.

Newton公式推导

推导

二次插值函数可由一次插值函数加一个二次项:

$$\varphi(x) = f(x_0) + f[x_0,x_1](x-x_0) + C(x-x_0)(x-x_1)$$

只要选择 C 使得 $\varphi(x_2)=y_2$,即

$$f(x_2)=f(x_0)+f[x_0,x_1](x_2-x_0)+C(x_2-x_0)(x_2-x_1)$$

可得

$$C = (f[x_0,x_2]-f[x_0,x_1])/(x_2-x_1)$$

引入函数在 x₀,x₁,x₂ 的二阶均差(差商)的定义:

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_2] - f[x_0, x_1]}{x_2 - x_1}$$

 $\varphi(x)=f(x_0)+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1)$

二次插值:Lagrange公式

- ▶ Lagrange公式
 - $\phi(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x)$
 - 。二次插值基函数

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)},$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)},$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

x_i	x_0	x_1	x_2
$l_0(x)$	1	0	0
$l_1(x)$	0	1	0
$l_2(x)$	0	0	1

二次插值:Aitken公式

▶ Aitken公式

$$\phi_{012}(x) = \frac{1}{x_1 - x_2} \begin{vmatrix} \phi_{01}(x) & x - x_1 \\ \phi_{02}(x) & x - x_2 \end{vmatrix}$$

- ▶余项定理
 - ∘ 设 $\phi(x)$ 是f(x)过 x_0, x_1, x_2 的二次插值函数 $f(x) \in C^3[a,b], x_0, x_1, x_2, x \in [a,b],$ 则有 $\xi \in (a,b),$ 使

$$R(x) = f(x) - \phi(x)$$

$$= \frac{1}{3!} f^{(3)}(\xi)(x - x_0)(x - x_1)(x - x_2)$$

插值举例

- ▶ 例: 取节点 $x_0 = 0, x_1 = 1$, 对函数 e^{-x} 作一次插值.
 - ∘ Newton型

$$f[x_0, x_1] = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = e^{-1} - 1$$

$$\varphi_1(x) = f(x_0) + (x - x_0)f[x_0, x_1] = 1 + x(e^{-1} - 1)$$

∘ Lagrange型

$$l_0(x) = \frac{x - x_1}{x_0 - x_1} = -(x - 1)$$

$$l_1(x) = \frac{x - x_1}{x_1 - x_0} = x$$

$$\varphi_1(x) = y_0 l_0(x) + y_1 l_1(x) = -(x - 1) + xe^{-1}$$

。逐次线性插值

$$\varphi_{01}(x) = \frac{1}{x_0 - x_1} \begin{vmatrix} f(x_0) & x - x_0 \\ f(x_1) & x - x_1 \end{vmatrix} = -(x - 1) + xe^{-1}$$

二次插值例

- 》例: 取节点 $x_0 = 0$, $x_1 = 1$ 和 $x_2 = \frac{1}{2}$,对 e^{-x} 作二次插值多项式
 - ∘ Newton型

$$f[x_0, x_1] = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = e^{-1} - 1$$

$$f[x_1, x_2] = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = 2(e^{-1} - e^{-\frac{1}{2}})$$

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_1] - f[x_1, x_2]}{x_0 - x_2} = 2 + 2e^{-1} - 4e^{-\frac{1}{2}}$$

$$\varphi_2(x) = 1 + x(e^{-1} - 1) + x(x - 1)(2 + 2e^{-1} - 4e^{-\frac{1}{2}})$$

二次插值例

- ▶ 例: 取节点 $x_0 = 0$, $x_1 = 1$ 和 $x_2 = \frac{1}{2}$, 对 e^{-x} 作二次插值多项式
 - Lagrange型

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = 2(x - 1)\left(x - \frac{1}{2}\right)$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = 2x\left(x - \frac{1}{2}\right)$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = -4x(x - 1)$$

$$\varphi_2(x) = 2(x - 1)\left(x - \frac{1}{2}\right) + 2x\left(x - \frac{1}{2}\right)e^{-1} - 4x(x - 1)e^{-1/2}$$

二次插值例

> 逐次线性插值

$$\varphi_{01}(x) = \frac{1}{x_0 - x_1} \begin{vmatrix} f(x_0) & x - x_0 \\ f(x_1) & x - x_1 \end{vmatrix} = -(x-1) + xe^{-1}$$

$$\varphi_{02}(x) = \frac{1}{x_0 - x_2} \begin{vmatrix} f(x_0) & x - x_0 \\ f(x_2) & x - x_2 \end{vmatrix} = -2\left(x - \frac{1}{2}\right) + 2xe^{-\frac{1}{2}}$$

$$\varphi_{012}(x) = \frac{1}{x_1 - x_2} \begin{vmatrix} \varphi_{01}(x) & x - x_1 \\ \varphi_{02}(x) & x - x_2 \end{vmatrix} =$$

$$=2(x-1)\left(x-\frac{1}{2}\right)+2x\left(x-\frac{1}{2}\right)e^{-1}-4x(x-1)e^{-\frac{1}{2}}$$