Integrability and complex structures adapted to smooth vector fields on the plane

Gaspar León-Gil and Jesús Muciño-Raymundo

Abstract. We describe the relations between two integrability notions for C^{∞} vector fields X on the plane. The first integrability notion is the existence of non trivial first integrals. The second is related to Cauchy–Riemann equations under suitable complex structures; it means that a vector field X is integrable when is J-complex analytic, under a suitable complex structure J (a priori not from complex multiplication by $\sqrt{-1}$). Geometrically, this last condition means that X admits a global flow box map outside of their singularities. Topological obstructions to both integrability notions are given.

1. Introduction

Any paracompact, Hausdorff, orientable, C^1 , two-dimensional manifold \mathcal{M} admits a complex structure J, *i.e.* (\mathcal{M}, J) is a Riemann surface. We study the analogous problem for C^{∞} vector fields X on the $\mathcal{M} = \mathbb{R}^2$, requiring that X becomes the real part, $\Re \mathbb{X}$, of a complex analytic vector field on a Riemann surface (\mathcal{M}, J) .

Let $X \in \mathfrak{X}^{\infty}(\mathbb{R}^2)$ be a vector field on \mathbb{R}^2 . We consider two notions of integrability. X is *integrable* if there exists an integrating factor μ such that

$$\mu X = X_f, \tag{I}$$

here X_f is the Hamiltonian vector field of a suitable C^{∞} function f. The second notion seems more recent, X admits a global flow box if there exists a scaling factor ρ and a local diffeomorphism map (both of C^{∞} class) (g,f): $\mathbb{R}^2 \setminus \mathcal{Z}(X) \to \mathbb{R}^2$ such that

$$(g,f)_*(\rho X) = \frac{\partial}{\partial t}$$
 (GFB).

Geometrically it means that outside of the zeros $\mathcal{Z}(X)$, the associated foliation $\mathcal{F}(X)$ is a lift of the trivial foliation on \mathbb{R}^2 . Liftable vector fields appear in many problems, in singularity theory Arnol'd [1] pp. 561 or du Plessis and