IMPORTANT NOTE: This was run with ax, ay = 9.0, 9.0

(see https://github.com/mithi/Fusion-EKF-CPP/blob/master/headers/fusionekf.h)

The following RMSE requirements should be met (less than the value given):

DATASET	1	0.08	0.08	0.60	0.60
DATA SET	2	0.20	0.20	0.50	0.85

When the following measurement covariance matrices are used as provided by udacity:

R_LIDAR		R_RADAR		
0.0225 (x)	0	0.09 (rho)	0	0
0	0.0255 (y)	Ø	0.0009 (phi)	0
		Ø		0.09 (drho)

We get the following RMSE values:

DATASET 1	0.0661482	0.0603583	0.53316	0.544413
DATASET 2	0.185926	0.190263	0.477258	0.805505

We can compute for the measurement variances comparing the measurement values and the ground truth values as written in this python code:

- https://github.com/mithi/Fusion-EKF-Python/blob/master/variances.py
- https://github.com/mithi/Fusion-EKF-Python/blob/master/Fusion-EKF-Variances.ipynb

We get the following values:

900 0 1011011 19 1011001						
Covariances of	Using data1 only	Using data2 only	Both data1 and data2			
x	0.0030318456883	0.0432845677688	0.00872031903422			
у	0.00232796032072	0.0478147050908	0.00871732038878			
vx	1.75231650122	0.0225024900134	1.51063829744			
vy	2.81928216089	0.290537073523	2.46571865544			
rho	0.0103696181683	0.0391404813605	0.0144125890908			
phi	1.0680397691e-06	3.15121868185e-06	1.36108366223e-06			
drho	0.011294795278	0.00970452550137	0.0110733569443			

Let's use the rounded values from these covariances instead to form our measurement covariance matrices

R_LIDAR		R_RADAR			
0.01 (x)	0		0.01 (rho)	0	0
0	0.01 (y)		0	1.0e-6 *(phi)	0
			0	0	0.01 (drho)
		-			

Which produces the following results that meet the required RMSE

DATASET 1	0.0240485	0.0222132	0.318218	0.350317
DATASET 2	0.174746	0.165281	0.404066	0.811121

Here are some visualizations (with Jupyter Notebook and Bokeh)

 $\textbf{See -} \underline{\texttt{https://github.com/mithi/Fusion-EKF-Python/blob/master/Fusion-EKF-Sample-Visualization-3-B.ipynb}$

 $\textbf{See -} \underline{\texttt{https://github.com/mithi/Fusion-EKF-Python/blob/master/Fusion-EKF-Sample-Visualization-3.ipynb}$

