ASSIGNMENT 3

Due: 3 October, 11:59pm

- (1) Let $A, B \subset \mathbb{R}^1$ be two bounded sets such that $x \leq y$ for any $x \in A$ and $y \in B$. Prove that $\sup A \leq \inf B$.
- (2) Prove the following inequality (called Triangle Inequality) by induction: for any positive integer $n \in \mathbb{Z}_+$ and any real number s a_1, a_2, \ldots, a_n ,

$$\left| \sum_{i=1}^{m} a_i \right| \leqslant \sum_{i=1}^{m} |a_i|.$$

(3) Let $f:[0,1] \to \mathbb{R}$ be a real-valued function. Assume that there exists some number Q > 0 such that for any choice of a finite number of points p_1, \ldots, p_n in [0,1],

$$\left| \sum_{i=1}^{n} f(x_i) \right| \leqslant Q.$$

Prove the following:

(a) We define $\Sigma \equiv \{x \in [0,1] | f(x) \neq 0\}$. Show that

$$\Sigma = \bigcup_{m=1}^{\infty} \Sigma_m$$
, where $\Sigma_m \equiv \left\{ x \in [0,1] \middle| |f(x)| \geqslant \frac{1}{m} \right\}$.

- (b) Σ is countable.
- (4) Determine all the limit points of the following sets and decide whether the sets are open or closed or neither (justify your answers):
 - (a) $A_1 = (a, b];$
 - (b) $A_2 = \{1/n^2 | n \in \mathbb{Z}_+\};$
 - (c) $A_3 = \{2^{-n} + 3^{-m} | m, n \in \mathbb{Z}_+\}.$
- (5) Let $A, B \subseteq \mathbb{R}^n$ be two subsets. Show that

$$\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$$
.

1