$$\begin{array}{c}
M_{L} \\
M_{d} \\
M_{R_{I}} = \begin{pmatrix} RAY \\
0 \text{ out} \end{pmatrix} = M_{R_{2}} M_{d} \cdot M_{R} \\
M_{d} M_{R_{I}} = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & d \\ -1 & d \\ -1 & 1 \end{pmatrix}$$

Lesson XII: Neural Network

Advantages and Disadvantages of Neural **Networks**

Universal Approximator

Given enough neurons and time, a neural network can model any input/output relationship, to any degree of precision.

Neural Network Prediction Formula

Neural Network Diagram

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = \hat{w}_{00} + \hat{w}_{01} H_1 + \hat{w}_{02} H_2 + \hat{w}_{03} H_3$$

$$H_1 = \tanh(\hat{w}_{10} + \hat{w}_{11} x_1 + \hat{w}_{12} x_2)$$

$$H_2 = \tanh(\hat{w}_{20} + \hat{w}_{21} x_1 + \hat{w}_{22} x_2)$$

$$H_3 = \tanh(\hat{w}_{30} + \hat{w}_{31} x_1 + \hat{w}_{32} x_2)$$

1. Standardize (scale) the input variables.

logit

logit(
$$\hat{p}$$
) = $\hat{w}_{00} + \hat{w}_{01} \cdot H_1 + \hat{w}_{02} \cdot H_2 + \hat{w}_{03} \cdot H_3$
 $H_1 = \tanh(\hat{w}_{10} + \hat{w}_{11} \cdot x_1 + \hat{w}_{12} \cdot x_2)$
 $H_2 = \tanh(\hat{w}_{20} + \hat{w}_{21} \cdot x_1 + \hat{w}_{22} \cdot x_2)$
 $H_3 = \tanh(\hat{w}_{30} + \hat{w}_{31} \cdot x_1 + \hat{w}_{32} \cdot x_2)$

Standardization Methods

Midrange

- $midrange = \frac{(Max + Min)}{2}$
- $x_{midrange} = \frac{(x-midrange)}{range/2}$
- Midrange is 0. Half range is 1.

Z-Score

•
$$\mu = 0$$
 and $\sigma = 1$

•
$$x_{std} = z = \frac{x - \mu}{\sigma}$$

Standardization can be defined for hidden and target layers.

2. Find the weight

estimates.

logit(
$$\hat{p}$$
) = \hat{w}_{00} + \hat{w}_{01} H_1 + \hat{w}_{02} H_2 + \hat{w}_{03} H_3
 H_1 = tanh(\hat{w}_{10} + \hat{w}_{11} x_1 + \hat{w}_{12} x_2)
 H_2 = tanh(\hat{w}_{20} + \hat{w}_{21} x_1 + \hat{w}_{22} x_2)
 H_3 = tanh(\hat{w}_{30} + \hat{w}_{31} x_1 + \hat{w}_{32} x_2)

2. Find the weight

estimates.

$$logit(\hat{p}) = \hat{w}_{00} + \hat{w}_{01} H_1 + \hat{w}_{02} H_2 + \hat{w}_{03} H_3$$

$$H_1 = tanh(\hat{w}_{10} + \hat{w}_{11} x_1 + \hat{w}_{12} x_2)$$

$$H_2 = tanh(\hat{w}_{20} + \hat{w}_{21} x_1 + \hat{w}_{22} x_2)$$

$$H_3 = tanh(\hat{w}_{30} + \hat{w}_{31} x_1 + \hat{w}_{32} x_2)$$

Binary Target

 $\begin{array}{c|c} & log-likelihood function \\ \hline & -2 \cdot \left[\begin{array}{c} \sum log(\hat{p_i}) + \sum log(1-\hat{p_i}) \end{array} \right] \\ e & primary & secondary \\ outcome & outcome training \\ training cases & cases \\ \end{array}$

3. Obtain a prediction.

$$logit(\hat{p}) = -0.5 + -2.6 H_1 + -1.9 H_2 + -0.63 H_3$$

$$H_1 = \tanh(-1.8 + 0.25 x_1 + -1.8 x_2)$$

$$H_2 = \tanh(2.7 + 2.7 x_1 + -5.3 x_2)$$

Logistic Function

$$\hat{p} = \frac{1}{1 + e^{-\log it(\hat{p})}}$$

Network Architecture

different connection types

number of layers

activation functions

number of neurons in each layer

Initial hidden unit weights

logit(
$$\hat{p}$$
) $0 + 0 \cdot H_1 + 0 \cdot H_2 + 0 \cdot H_3$

Initial hidden unit weights

logit(
$$\hat{p}$$
) 0 + 0· H_1 + 0· H_2 +
= 0· H_3
 H_1 = tanh(-1.5 - .03 x_1 - .07 x_2)
 H_2 = tanh(.79 - .17 x_1 - .16 x_2)
 H_3 = tanh(.57 + .05 x_1 + .35 x_2)
Random initial input weights and biases

Parameter Estimation: Example

logit(
$$\hat{p}$$
) = \hat{w}_{00} + \hat{w}_{01} H_1 + \hat{w}_{02} H_2 + \hat{w}_{03} H_3

$$H_1 = \tanh(\hat{w}_{10} + \hat{w}_{11} x_1 + \hat{w}_{12} x_2)$$

$$H_2 = \tanh(\hat{w}_{20} + \hat{w}_{21} x_1 + \hat{w}_{22} x_2)$$

$$H_3 = \tanh(\hat{w}_{30} + \hat{w}_{31} x_1 + \hat{w}_{32} x_2)$$

Binary Target

The error function is always a deviance function.

Model Studio

Bernoulli function

Construct a NN using SKlearn

ADSUP Lesson 11 SVM

1- Construct a NN model for Organics Dataset

Practice

This practice reinforces the concepts in relation to neural network modeling. You use Model Studio to build a neural network model based on hyperparameter autotune.

Science for real life

IDS Analytics is a firm of experts specialized in applying quantitative methods to growth and optimization issues of enterprises, particularly in risk, revenue management and marketing domains.

We help enterprises both substantially improve commercial success and build capacity to repeat this performance continuously. In true "scientific" spirit, IDS analytics provides a comprehensive and complementing range of services across management advisory, capability building and managed services disciplines.

www.ids-analytics.com

OFIS

Telefon +90 (216) 343 6623 Tophanelioğlu Cad. Korukent Köşk No:6/5 Koşuyolu İstanbul TÜRKİYE