E9 205 Machine Learning for Sensory Signals

Support Vector Machines

30-03-2017

SVM Formulation

Goal - 1) Correctly classify all training data

al - 1) Correctly classify all training data
$$\mathbf{w}_{T}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) + b \geq 1 \quad \text{if} \quad t_{n} = +1 \\ \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) + b \leq 1 \quad \text{if} \quad t_{n} = -1$$
$$t_{n}(\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) + b) \geq 1$$

2) Define the Margin

$$\frac{1}{||\mathbf{w}||} min_n \left[t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \right]$$

3) Maximize the Margin

$$argmax_{\mathbf{w},b} \left\{ \frac{1}{||\mathbf{w}||} min_n \left[t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \right] \right\}$$

Equivalently written as

$$argmin_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$$
 such that $t_n(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) + b) \ge 1$

Solving the Optimization Problem

- Need to optimize a *quadratic* function subject to *linear* constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a *dual problem* where a *Lagrange* $multiplier a_n$ is associated with every constraint in the primary problem:
- The dual problem in this case is maximized

Find
$$\{a_1,..,a_N\}$$
 such that
$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^N a_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N t_n t_m a_n a_m k(\mathbf{x}_n,\mathbf{x}_m) \text{ maximized}$$
 and $\sum_n a_n t_n = 0$, $a_n \geq 0$

Solving the Optimization Problem

• The solution has the form:

$$\mathbf{w} = \sum_{n=1}^{N} a_n \boldsymbol{\phi}(\mathbf{x}_n)$$

• Each non-zero a_n indicates that corresponding x_n is a support vector. Let S denote the set of support vectors.

$$b = y(\mathbf{x}_n) - \sum_{m \in S} a_m k(\mathbf{x}_m, \mathbf{x}_n)$$

• And the classifying function will have the form:

$$y(\mathbf{x}) = \sum_{n \in S} a_n k(\mathbf{x}_n, \mathbf{x}) + b$$

Solving the Optimization Problem

Visualizing Gaussian Kernel SVM

Overlapping class boundaries

- The classes are not linearly separable Introducing slack variables ζ_n
- Slack variables are non-negative $\zeta_n \geq 0$
- They are defined using

$$t_n y(\mathbf{x}_n) \ge 1 - \zeta_n$$

The upper bound on mis-classification

$$\sum_n \zeta_n$$

The cost function to be optimized in this case

$$C\sum_{n}\zeta_{n}+\frac{1}{2}\mathbf{w}^{T}\mathbf{w}$$

SVM Formulation - overlapping classes

 Formulation very similar to previous case except for additional constraints

$$0 \le a_n \le C$$

- Solved using the dual formulation sequential minimal optimization algorithm
- Final classifier is based on the sign of

$$y(\mathbf{x}) = \sum_{n \in S} a_n k(\mathbf{x}_n, \mathbf{x}) + b$$

Overlapping class boundaries

Properties of SVM

- Flexibility in choosing a similarity function
- Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
- Feature Selection

SVM Applications

- SVM has been used successfully in many realworld problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (Protein classification, Cancer classification)
 - hand-written character recognition

Application 1: Cancer Classification

 E.g., find the most compact panel of breast cancer biomarkers from microarray gene expression data for 20,000 genes:

Application 1: Cancer Classification

Linear Versus Non-linear SVMs

Application 1: Cancer Classification

Weakness of SVM

- It is sensitive to noise
 - A relatively small number of mislabeled examples can dramatically decrease the performance
- It only considers two classes
 - how to do multi-class classification with SVM?
 - Answer:
- 1) with output m, learn m SVM's
 - SVM 1 learns "Output==1" vs "Output != 1"
 - □ SVM 2 learns "Output==2" vs "Output != 2"

 - SVM m learns "Output==m" vs "Output != m"
- 2)To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

- Task: The classification of natural text (or hypertext) documents into a fixed number of predefined categories based on their content.
 - email filtering, web searching, sorting documents by topic, etc..
- A document can be assigned to more than one category, so this can be viewed as a series of binary classification problems, one for each category.

IR's vector space model (aka bag-of-words representation)

- A doc is represented by a vector indexed by a pre-fixed set or dictionary of terms
- Values of an entry can be binary or weights

$$\phi_i(x) = \frac{\mathrm{tf}_i \log\left(\mathrm{idf}_i\right)}{\kappa},$$

• Doc $x => \phi(x)$

- The distance between two documents is $\langle \phi(x) \phi(z) \rangle$
- $K(x,z) = \langle \phi(x) | \phi(z) \rangle$ is a valid kernel, SVM can be used with K(x,z) for discrimination.
- Why SVM?
 - High dimensional input space
 - Few irrelevant features (dense concept)
 - Sparse document vectors (sparse instances)
 - Text categorization problems are linearly separable

					SVM (poly)					SVM (rbf)			
					degree $d =$					width $\gamma =$			
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	70.4	82.3	84.2	85.1	85.9	86.2	85.9	86.4	86.5	86.3	86.2
microavg.	12.0	19.9	13.4	02.3		com	bined:	86.0		COL	mbine	ed: 86	.4

Application 3: Handwriting Recognition

For example MNIST hand-writing recognition. 60,000 training examples, 10000 test examples, 28x28.

Linear SVM has around 8.5% test error. Polynomial SVM has around 1% test error.

SVMs: full MNIST results

Classifier	Test Error
linear	8.4%
3-nearest-neighbor	2.4%
RBF-SVM	1.4 %

5041921314
3536172869
HO9/1124327
3869056076
187939853
3074780941
46045600
1716302117
8026783904
6746807831

Some Considerations

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Software

30 SVMs : software

Lots of SVM software:

- LibSVM (C++)
- SVMLight (C)

As well as complete machine learning toolboxes that include SVMs:

- Torch (C++)
- Spider (Matlab)
- Weka (Java)

All available through www.kernel-machines.org.