Máxima Verosimilitud Fundamentos de Econometría

Juan Palomino¹

¹Magister en Economía Aplicada con Mención Estudios Regionales juan.palominoh@pucp.pe

Departamento de Economía

- Introducción
- Estimadores de Máxima Verosimilitud
 - Función de Densidad Conjunta
 - Función de Verosimilitud
 - Función Score
 - Propiedades Asintóticas de los Estimadores MV
 - Estimador Restringido de Máxima Verosimilitud
- Stimación por Máxima Verosimilitud
 - Estimación del Modelo Bivariado por Máxima Verosimilitud
 - Estimación con K variables por Máxima Verosimilitud

MCO

- Las estimaciones de MCO se derivan de ajustar un modelo lineal que representa el promedio de los datos.
- El modelo se obtiene al minimizar la suma de las desviaciones o errores al cuadrado.

Máxima Verosimilitud

- La función de verosimilitud indica qué tan probable es reproducir la muestra observada en función de los posibles valores de los parámetros.
- El fin es maximizar la función de verosimilitud con base en los parámetros que tienen más probabilidades de producir los datos observados.

- Supongamos que contamos con una muestra de 7 observaciones de una variable aleatoria Y, siendo estas $Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7$.
- No sabemos que distribución generó estos datos, pero supongamos que fue una variable aleatoria normalmente distribuida.
- Una distribución normal queda plenamente definida con los valores de su media μ_V y su varianza σ_V^2 .
- ¿Qué valores de estos parámetros μ_Y y σ_Y^2 generaron a los datos observados con mayor probabilidad?

Figura: Datos observados y distribuciones alternativas

Las ventajas de Máxima Verosimilitud sobre MCO son:

- Mejores estimaciones de los parámetros de distribución.
- Menor varianza de los parámetros (eficiencia)
- Confiabilidad en la medición de los intervalos de confianza y en las pruebas de hipótesis de los parámetros.

Máxima Verosimilitud es bastante utilizado para las regresiones no lineales y muestras grandes, por ejemplo, modelos de elección discreta (Probit, Logit), heterocedasticidad condicional como GARCH y EGARCH, modelos censurados y truncados, entre otros.

- Introducción
- Estimadores de Máxima Verosimilitud
 - Función de Densidad Conjunta
 - Función de Verosimilitud
 - Función Score
 - Propiedades Asintóticas de los Estimadores MV
 - Estimador Restringido de Máxima Verosimilitud
- 3 Estimación por Máxima Verosimilitud
 - Estimación del Modelo Bivariado por Máxima Verosimilitud
 - Estimación con K variables por Máxima Verosimilitud

Función de Densidad Conjunta

• Sea $\{y_i\}$ una muestra aleatoria simple de $y_1, y_2, ..., y_n$, con lo cual las y_i son variables aleatorias iid con función de densidad $f(y_i \mid x_i; \theta)$, donde $\theta' = [\theta_1, \theta_2, ..., \theta_k]$ es un vector de parámetros desconocidos. Bajo el supuesto de independencia, la función de densidad conjunta es:

$$f(y_1, y_2, ..., y_n \mid x_i; \theta) = f(y_1 \mid x_i; \theta) \cdot f(y_2 \mid x_i; \theta) \cdot ... \cdot f(y_n \mid x_i; \theta)$$
$$= \prod_{i=1}^n f(y_i \mid x_i; \theta)$$

• Esta densidad conjunta indica la probabilidad de obtener la muestra $y_1, y_2, ..., y_n$ dado el vector de parámetros θ .

- Introducción
- Estimadores de Máxima Verosimilitud
 - Función de Densidad Conjunta
 - Función de Verosimilitud
 - Función Score
 - Propiedades Asintóticas de los Estimadores MV
 - Estimador Restringido de Máxima Verosimilitud
- 3 Estimación por Máxima Verosimilitud
 - Estimación del Modelo Bivariado por Máxima Verosimilitud
 - Estimación con K variables por Máxima Verosimilitud

Función de Verosimilitud

• La funcion de verosimilitud denotada por L es:

$$L(\theta, y \mid X) = \prod_{i=1}^{n} L(\theta; y_i \mid x_i) = \prod_{i=1}^{n} f(y_i \mid x_i; \theta)$$

- donde $y = (y_1, ..., y_n)$.
 - ▶ $L(\theta; y_i | x_i)$ es la contribución de verosimilitud de la observación i
 - $L(\theta, y \mid X)$ es la función de verosimilitud de toda la muestra
- La función de verosimilitud señala que para cualquier muestra dada $y \mid X$, la estimación de verosimilitud es encontrar un set de parámetros estimados, es decir $\hat{\theta}$, tal que esta verosimilitud es maximizada.

Función Log-Verosimilitud

• La función de log-verosimilitud es:

$$lnL(\theta, y \mid X) = lnL(\theta) = ln\underbrace{\left(\prod_{i=1}^{n} f(y_i \mid x_i; \theta)\right)}_{f(y \mid X; \theta)} = \sum_{i=1}^{n} lnf(y_i \mid x_i; \theta)$$

- La función log-verosimilitud es una función creciente monotónica de $L(\theta,y\,|\,X)$:
 - ► Cualquier valor de maximización $\hat{\theta}$ de $lnL(\theta, y \mid X)$ también debe maximizar $L(\theta, y \mid X)$.
- Tomando logaritmos que convierte productos en suma.
 - Permite simplicar en la determinación numérica del EMV.
 - Valores de verosimilitud son extremadamente pequeños.
 - Problemas de optimización numérica

- Introducción
- Estimadores de Máxima Verosimilitud
 - Función de Densidad Conjunta
 - Función de Verosimilitud
 - Función Score
 - Propiedades Asintóticas de los Estimadores MV
 - Estimador Restringido de Máxima Verosimilitud
- 3 Estimación por Máxima Verosimilitud
 - Estimación del Modelo Bivariado por Máxima Verosimilitud
 - Estimación con K variables por Máxima Verosimilitud

Función Score

• Derivando la función log-verosimilitud respecto a θ e igualando a cero, se tiene:

$$\frac{\partial lnL(\theta; y_1, ..., y_n \mid x_i)}{\partial \theta} = 0$$

• Los estimadores de MV son aquellos $\hat{\theta}_{MV}$ que resuelven estas k ecuaciones.

- Introducción
- 2 Estimadores de Máxima Verosimilitud
 - Función de Densidad Conjunta
 - Función de Verosimilitud
 - Función Score
 - Propiedades Asintóticas de los Estimadores MV
 - Estimador Restringido de Máxima Verosimilitud
- 3 Estimación por Máxima Verosimilitud
 - Estimación del Modelo Bivariado por Máxima Verosimilitud
 - Estimación con K variables por Máxima Verosimilitud

Propiedades asintóticas

Consistencia

Todos los estimadores máximo-verosímiles son consistentes.

$$plim\hat{ heta}_{MV}= heta$$

Propiedades asintóticas

Normalidad Asintótica

Cuando la muestra es muy grande, la distribución de $\hat{\theta}_{MV}$ es asintóticamente normal, para cualquier función de densidad $f(y_i | x_i; \theta)$:

$$\sqrt{n}(\hat{\theta}_{MV} - \theta) \xrightarrow{d} N(0, nI^{-1}(\theta))$$

Alcanzando la cota mínima de Cramér-Rao $nI^{-1}(\theta)$, donde $I^{-1}(\theta)$ es la inversa de la "matriz de información" definida como:

$$I(\theta) = -E\left[\frac{\partial^2 lnL}{\partial \theta \partial \theta'}\right]$$

Para n grande, se cumple que la distribución asintótica de $\hat{ heta}_{MV}$ es:

$$\hat{\theta}_{MV} \stackrel{a}{\sim} N(\theta, I^{-1}(\theta))$$

Propiedades asintóticas

Eficiencia Asintótica

Los estimadores de máxima verosimilitud son los estimadores más eficiente, dentro de la clase de estimadores consistentes, asintóticamente insesgados y asintóticamente normales.

Invarianza

Si $\hat{\theta}_{MV}$ es un estimador de máxima verosimilitud y $w=g(\theta)$ es una función continua de θ ; entonces, $\hat{w}=g(\hat{\theta}_{MV})$ es el estimador máximo verosímil de w.

- Introducción
- Estimadores de Máxima Verosimilitud
 - Función de Densidad Conjunta
 - Función de Verosimilitud
 - Función Score
 - Propiedades Asintóticas de los Estimadores MV
 - Estimador Restringido de Máxima Verosimilitud
- 3 Estimación por Máxima Verosimilitud
 - Estimación del Modelo Bivariado por Máxima Verosimilitud
 - Estimación con K variables por Máxima Verosimilitud

Estimador Restringido

- Se pueden imponer restricciones lineales o no lineales en la estimación por máxima verosimilitud.
- Si queremos estimar un parámetro θ por este método, pero sujeto a que se cumpla la restricción $C(\theta) = r$, el problema de optimización a resolver es:

$$max \ lnL(\theta) \ s.a. \ C(\theta) = r$$

• El Lagrangiano de este problema es:

$$\mathscr{L} = lnL(\theta) + \lambda(r - C(\theta))$$

Estimador Restringido

• Las condiciones de primer orden son:

$$\frac{\partial \mathcal{L}}{\partial \theta} = \frac{\partial lnL(\theta)}{\partial \theta} - \lambda \frac{\partial C(\theta)}{\partial \theta} = 0$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = r - C(\theta) = 0$$

ullet La solución a estas ecuaciones es el estimador de máxima verosimilitud restringido $ilde{ heta}_{MV}.$

- Introducción
- 2 Estimadores de Máxima Verosimilitud
 - Función de Densidad Conjunta
 - Función de Verosimilitud
 - Función Score
 - Propiedades Asintóticas de los Estimadores MV
 - Estimador Restringido de Máxima Verosimilitud
- Stimación por Máxima Verosimilitud
 - Estimación del Modelo Bivariado por Máxima Verosimilitud
 - Estimación con K variables por Máxima Verosimilitud

- Tenemos n observaciones de dos variables aleatorias $(X_i \in Y_i)$, que se relacionan entre sí mediante el modelo $Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$.
- Dado que:

$$Y_i|X_i \sim N(\beta_1 + \beta_2 X_i, \sigma^2)$$

• La función de densidad de probabilidad condicional (pdf) es:

$$f(Y_i \mid X_i) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{\left[-\frac{(Y_i - \beta_1 - \beta_2 X_i)^2}{2\sigma_0^2}\right]}$$

La función de verosimilitud es:

$$L(\beta_1, \beta_2, \sigma^2) = \prod_{i=1}^n f(Y_i \mid X_i) = (\frac{1}{2\pi\sigma_0^2})^{n/2} \prod_{i=1}^n e^{\left[-\frac{(Y_i - \beta_1 - \beta_2 X_i)^2}{2\sigma_0^2}\right]}$$
$$= (\frac{1}{2\pi\sigma_0^2})^{n/2} e^{\left[-\frac{\sum (Y_i - \beta_1 - \beta_2 X_i)^2}{2\sigma_0^2}\right]}$$

Tomando el logaritmo natural:

$$lnL(\beta_1, \beta_2, \sigma^2) = -\frac{n}{2}ln(2\pi) - \frac{n}{2}ln(\sigma_0^2) - \frac{1}{2\sigma_0^2}\sum_{i=1}^{n}(Y_i - \beta_1 - \beta_2 X_i)^2$$

Derivando respecto a los parámetros:

$$\begin{split} \frac{\partial lnL(\beta_1,\beta_2,\sigma^2)}{\partial \beta_1} &= \frac{1}{\sigma^2} \sum (Y_i - \beta_1 - \beta_2 X_i) = 0 \\ \frac{\partial lnL(\beta_1,\beta_2,\sigma^2)}{\partial \beta_2} &= \frac{1}{\sigma^2} \sum (Y_i - \beta_1 - \beta_2 X_i) X_i = 0 \\ \frac{\partial lnL(\beta_1,\beta_2,\sigma^2)}{\partial \sigma^2} &= -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum (Y_i - \beta_1 - \beta_2 X_i) = 0 \end{split}$$

• La solución para β_1 y β_2 son las mismas que las de mínimas cuadrados ordinarios:

$$\hat{\beta}_{1} = \bar{Y} - \hat{\beta}_{2}\bar{X}$$

$$\hat{\beta}_{2} = \frac{\sum X_{i}Y_{i} - n\bar{X}\bar{Y}}{\sum X_{i}^{2} - n\bar{X}^{2}} = \frac{\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum (X_{i} - \bar{X})^{2}}$$

• Luego reemplazamos $\hat{\beta}_1$ y $\hat{\beta}_2$ en $\frac{\partial lnL(\beta_1,\beta_2,\sigma^2)}{\partial \sigma^2}$ y obtenemos:

$$\hat{\sigma}^2 = \frac{\sum (Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i)^2}{n} = \frac{\sum (\hat{\varepsilon}^2)}{n} = \frac{SCR}{n}$$

• El estimador de $\hat{\sigma}^2$ hallado por MV no varía a pesar del cambiante número de variables independientes que tenga el modelo, haciendolo sesgado.

- Introducción
- 2 Estimadores de Máxima Verosimilitud
 - Función de Densidad Conjunta
 - Función de Verosimilitud
 - Función Score
 - Propiedades Asintóticas de los Estimadores MV
 - Estimador Restringido de Máxima Verosimilitud
- Stimación por Máxima Verosimilitud
 - Estimación del Modelo Bivariado por Máxima Verosimilitud
 - Estimación con K variables por Máxima Verosimilitud

• Consideremos que $\{y_i, x_i\}$ es iid, entonces el modelo de regresión lineal:

$$y_i = x_i' \beta + \varepsilon_i \quad \varepsilon_i \mid x_i \sim N(0, \sigma_0^2)$$

 Por lo tanto la función de densidad de probabilidad condicional (pdf) es:

$$f(y_i \mid x_i; \theta_0) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{\left[-\frac{(y_i - x_i'\beta_0)^2}{2\sigma_0^2}\right]}$$

• La pdf conjunta de la muestra es:

$$\prod_{i=1}^{n} f(y_i \mid x_i; \theta_0) = \left(\frac{1}{2\pi\sigma_0^2}\right)^{n/2} \prod_{i=1}^{n} e^{\left[-\frac{(y_i - x_i'\beta_0)^2}{2\sigma_0^2}\right]}$$

• La función log-verosimilitud condicional de $y_i \mid x_i \sim N(x_i'\beta_0, \sigma_0^2)$ es:

$$log(\prod_{i=1}^{n} f(y_i \mid x_i; \theta_0)) = \frac{n}{2} log(\frac{1}{2\pi\sigma_0^2}) + \sum_{i=1}^{n} \frac{-(y_i - x_i'\beta_0)^2}{2\sigma_0^2}$$

$$= \frac{n}{2} log(1) - \frac{n}{2} log(2\pi\sigma_0^2) - \sum_{i=1}^{n} \frac{(y_i - x_i'\beta_0)^2}{2\sigma_0^2}$$

$$= -\frac{n}{2} log(2\pi) - \frac{n}{2} log(\sigma_0^2) - \sum_{i=1}^{n} \frac{(y_i - x_i'\beta_0)^2}{2\sigma_0^2}$$

• El objetivo es buscar los valores de β y σ^2 que maximicen esta función. Entonces, las condiciones de primer orden son

$$\begin{split} \frac{\partial lnL}{\partial \beta} &= -\frac{1}{2\sigma^2} \sum_{i=1}^n 2(y_i - x_i' \beta_0)(-x_i') = 0 \\ &= \sum_{i=1}^n (y_i x_i' - x_i' \beta_0 x_i') = 0 \\ &= \sum_{i=1}^n y_i x_i' - \beta_0 \sum_{i=1}^n x_i x_i' = 0 \\ \hat{\beta}_{MV} &= (\sum_{i=1}^n x_i x_i')^{-1} \sum_{i=1}^n x_i y_i = \hat{\beta}_{MCO} \end{split}$$

• Con respecto a σ^2 :

$$\frac{\partial lnL}{\partial \sigma^{2}} = -\frac{n}{2\sigma^{2}} + \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (y_{i} - x_{i}'\beta_{0})^{2} = 0$$

$$\hat{\sigma}_{MV}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - x_{i}'\beta_{0})^{2}}{n} = \frac{\sum_{i=1}^{n} \varepsilon_{i}^{2}}{n}$$

• El estimador $\hat{\sigma}_{MV}^2$ no es igual al de MCO, de hecho es un estimador sesgado, pero asintóticamente insesgado. Veamos:

$$E[\hat{\sigma}_{MV}^2] = E[\frac{\hat{\varepsilon}'\hat{\varepsilon}}{n}] = \frac{1}{n}E[\hat{\varepsilon}'\hat{\varepsilon}] = \frac{(n-k)\sigma^2}{n} \neq \sigma_{MCO}^2$$

Podemos decir que es asintóticamente insesgado, pues:

$$\lim_{n\to\infty} E[\hat{\sigma}_{MV}^2] = \lim_{n\to\infty} (\frac{n-k}{n})\sigma^2 = \sigma^2$$

- Estos dos estimadores cumplen las propiedades de los estimadores máximo verosímiles.
- En concreto, nos interesa resaltar que se cumplirá que son consistentes y también son asintóticamente normales:

$$\begin{aligned} plim(\hat{\beta}_{MV}) &= \beta \quad plim(\hat{\sigma}_{MV}^2) = \sigma^2 \\ \left[\begin{array}{c} \hat{\beta}_{MV} \\ \hat{\sigma}_{MV}^2 \end{array} \right] &\stackrel{a}{\sim} N \left(\begin{array}{c} \beta \\ \sigma^2 \end{array} \right], \quad I^{-1}(\beta, \sigma^2) \right) \end{aligned}$$

Matriz de varianza y covarianzas

• Para calcular la matriz de varianzas y covarianzas asintótica de $\hat{\beta}_{MV}$ y $\hat{\sigma}_{MV}^2$, debemos hacer el cálculo de la matriz de información a través de las segundas derivadas:

$$\frac{\partial^2 lnL}{\partial \beta \partial \beta'} = -\frac{1}{\sigma^2} \sum_{i=1}^n x_i x_i'$$
$$\frac{\partial^2 lnL}{\partial \beta \partial \sigma^2} = \frac{1}{\sigma^4} (\sum_{i=1}^n x_i' \varepsilon_i)$$
$$\frac{\partial^2 lnL}{\partial (\sigma^2)} = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n \varepsilon_i^2$$

Matriz de varianza y covarianzas

• Multiplicando por (-1) y tomando el valor esperado, se obtiene:

$$-E\left[\frac{\partial^{2} lnL}{\partial \beta \partial \beta'}\right] = \frac{X'X}{\sigma^{2}}$$
$$-E\left[\frac{\partial^{2} lnL}{\partial \beta \partial \sigma^{2}}\right] = 0$$

$$-E\left[\frac{\partial^2 lnL}{\partial(\sigma^2)}\right] = -\frac{n}{2\sigma^4} + \frac{1}{\sigma^6}E\left[\sum_{i=1}^n \varepsilon_i^2\right]$$
$$= -\frac{n}{2\sigma^4} + \frac{1}{\sigma^6}\sigma^2$$
$$= -\frac{n}{2\sigma^4} + \frac{n}{\sigma^4} = \frac{n}{2\sigma^4}$$

Matriz de Información

La matriz de información es:

$$\begin{split} I(\beta,\sigma^2) &= \left[\begin{array}{cc} -E[\frac{\partial^2 lnL}{\partial\beta\partial\beta'}] & -E[\frac{\partial^2 lnL}{\partial\beta\partial\sigma^2}] \\ -E[\frac{\partial^2 lnL}{\partial\sigma^2\partial\beta}] & -E[\frac{\partial^2 lnL}{\partial(\sigma^2)^2}] \end{array} \right] \\ &= \left[\begin{array}{cc} \frac{1}{\sigma^2}X'X & 0 \\ 0 & \frac{n}{2\sigma^4} \end{array} \right] \end{split}$$

Matriz de Información

• La matriz de varianzas y covarianzas asintótica:

$$I^{-1}(\beta, \sigma^2) = \begin{bmatrix} \sigma^2(X'X)^{-1} & 0\\ 0 & \frac{2\sigma^4}{n} \end{bmatrix}$$

Referencias

- Capítulo 4.4; Apéndice 4A y 7A.4 Gujarati, D., & Porter, D. (2010). Econometría (Quinta edición ed.). & P. Carril Villareal, Trad.)
 México: Mc Graw Hill educación.
- Chapter 2.6 Maximum Likelihood Estimation Scott Long, J. (1997). Regression models for categorical and limited dependent variables. Advanced quantitative techniques in the social sciences, 7.
- Capítulo 14.1-14.10 Maximum Likelihood Estimation Greene,
 W. H. (2018). Econometric analysis. Pearson Education India.