El triangulo de Sierpinsky Rectangular

Construcción:

- 1.Se parte de un triangulo rectángulo.
- 2. Se divide cada lado en dos obteniéndose 3 puntos.
- 3. Al unir los 3 puntos, el triangulo queda dividido en 4 triángulos.
- 4.Se descarta el del medio.
- 5. Se repite esto sucesivamente con cada triangulo.

Figuras de los distintos niveles:

Calculo de distintas medidas del fractal:

Cantidad de triángulos: cada triángulo se divide en 4 pero se descarta uno.

$$CT(n)=3^n$$

Longitud de un cateto: cada cateto tiene un medio del cateto de n-1.

$$c1(n) = \frac{c1_0}{2^n}$$

$$c2(n) = \frac{c2_0}{2^n}$$

Longitud de la hipotenusa: cada hipotenusa tiene un medio de la hipotenusa de

$$h(n) = \sqrt{\left(\frac{c1_0}{2^n}\right)^2 + \left(\frac{c2_0}{2^n}\right)^2}$$

Perímetro de un triángulo:

$$PT(n) = \frac{c1_0}{2^n} + \frac{c2_0}{2^n} + \sqrt{\left(\frac{c1_0}{2^n}\right)^2 + \left(\frac{c2_0}{2^n}\right)^2}$$

Perímetro total: es el perímetro de un triangulo multiplicado por la cantidad de triángulos.

$$PT(n) = 3^{n} \cdot \left(\frac{c1_{0}}{2^{n}} + \frac{c2_{0}}{2^{n}} + \sqrt{\left(\frac{c1_{0}}{2^{n}}\right)^{2} + \left(\frac{c2_{0}}{2^{n}}\right)^{2}}\right)$$

Área de un triangulo:

$$AT(n) = \frac{\frac{c1_0}{2^n} \cdot \frac{c2_0}{2^n}}{2} = \frac{\frac{c1_0 \cdot c2_0}{2^{2n}}}{2} = \frac{c1_0 \cdot c2_0}{2^{2n} \cdot 2} = \frac{c1_0 \cdot c2_0}{2^{2n+1}}$$

Área total: es el área de un triangulo por la cantidad de triángulos.

$$AT(n) = \frac{3^{n} \cdot c1_{0} \cdot c2_{0}}{2^{2n+1}}$$

Límites:

Cantidad de triángulos

$$li3^n = \infty$$

Longitud del cateto

$$\lim \frac{c_0}{2^n} = 0$$

Longitud de la hipotenusa:

$$\lim \sqrt{\left(\frac{c1_0}{2^n}\right)^2 + \left(\frac{c2_0}{2^n}\right)^2} = 0$$

Perímetro de un triángulo

$$\lim \frac{c1_0}{2^n} + \frac{c2_0}{2^n} + \sqrt{\left(\frac{c1_0}{2^n}\right)^2 + \left(\frac{c2_0}{2^n}\right)^2} = 0$$

Perímetro total

$$\lim 3^{n} \cdot \left(\frac{c1_{0}}{2^{n}} + \frac{c2_{0}}{2^{n}} + \sqrt{\left(\frac{c1_{0}}{2^{n}}\right)^{2} + \left(\frac{c2_{0}}{2^{n}}\right)^{2}}\right) = \infty$$

Área de un triángulo

$$\lim \frac{c1_0 \cdot c2_0}{2^{2n+1}} = 0$$

Área total

$$\lim \frac{3^n \cdot c1_0 \cdot c2_0}{2^{2n+1}} = 0$$

n	Cantidad Triángulos (2^n)	área total / L^2 = (3^n/2^(n+ 1))	Perímetro total/L	Área de un triágulo/L	Perímetro de un triángulo/L
0	1	1/2	3	1/2	3
1	3	3/8	4 1/2	1/4	1 1/2
2	9	9/32	6 3/4	1/8	3/4
3	27	27/128	10 1/8	1/16	3/8
4	81	81/512	15 3/16	1/32	3/16
5	243	7/59	22 25/32	1/64	3/32
6	729	59/663	34 11/64	1/128	3/64

n	cantidad de triángulo s = (2^n)	área total / L^2 = (3^n/2^(n +1))	perímetro total/L = (3^(n+1))/ (2^n)	área de un triágulo/L = 1/(2^(n+1)	perímetro de un triángulo/L =3/(2^n)
0	1	1/2	3	1/2	3
1	3	3/8	4 1/2	1/4	1 1/2
2	9	9/32	6 3/4	1/8	3/4
3	27	27/128	10 1/8	1/16	3/8
4	81	81/512	15 3/16	1/32	3/16
5	243	7/59	22 25/32	1/64	3/32
6	729	59/663	34 11/64	1/128	3/64