6.3 聚合来自树的值

对保存于叶节点的值做聚合

表UNITS

ID NAME	COMMANDER
1 III Corps	Général de Division Dominique Vandamme
28th Infantry Division	Général de Division Baron Etienne-Nicolas Lefol
3 1st Brigade	Général de Brigade Billard
4 2nd Brigade	Général de Brigade Baron Corsin
5 10th Infantry Division	Général de Division Baron Pierre-Joseph Habert
6 1st Brigade	Général de Brigade Baron Gengoult
7 2nd Brigade	Général de Brigade Baron Dupeyroux
8 11th Infantry Division	Général de Division Baron Pierre Berthézène
9 1st Brigade	Général de Brigade Baron Dufour
10 2nd Brigade	Général de Brigade Baron Logarde
11 3rd Light Cavalry Division	Général de Division Baron Jean-Simon Domont
12 1st Brigade	Général de Brigade Baron Dommanget
13 2nd Brigade	Général de Brigade Baron Vinot
14 Reserve Artillery	Général de Division Baron Jérôme Doguereau

UNIT_LINKS_ADJACENCY

UNIT_LINKS_PATH

ID	PARENT_ID	ID	PATH
2	1	1	1
3	2	2	1.1

4	3
1	4
5	5
5	6
1	7

8	
8	
1	
11	
11	
1	

12	
1	1
2	1.1
3	1.1.1
4	1.1.2
5	1.2
6	1.2.1
7	1.2.2
8	1.3
9	1.3.1
10	1.3.2
11	1.4
12	1.4.1
13	1.4.2
14	1.5

UNIT_STRENGTH

ID	MEN
3	2952
4	2107
6	2761
7	2823
9	2488
10	2050
12	699
13	318
14	152

计算每一层的人数 (邻接模型)

计算第三军的总人数:

计算每一层的人数

```
select u.name,
    u.commander,
    (select sum(men)
    from unit_strength
    where id in (select id
        from unit_links_adjacency
        connect by parent_id = prior id
        start with parent_id = u.id)
    or id = u.id) men
from units u
```

Connect by 的过程化本质带来巨大的障碍

计算每一层的人数 (物化路径)

•				,	elect u.name, u.commander, sum(s.men) men		
I	D A	NCEST	'OR	DEPTH	from units u,		
1	 L4	1	1		exploded_links_path el,		
1	13	1	2		unit_strength s		
1	12	1	2		where u.id = el.ancestor		
1	l1	1	1		and el.id = s.id		
1	10	1	2				
(9	1	2		group by u.name, u.commander		
;	8	1	1				
•	7	1	2				
(6	1	2	NAME	COMMANDER	MEN	
!	5	1	1				
4	4	1	2	III Corps	Général de Division Dominique Vandamme	16350	
	3	1	2	•	•		
•	2	1	1	8th Infantry Division	Général de Division Baron Etienne-	5059	
4	4	2	1		Nicolas Lefol		
	3	2	1	10th Infantry Division	Général de Division Baron Pierre	5584	
•	7	5	1		Joseph Habert		
(6	5	1	11th Infantry Division	Général de Division Baron Pierre	4538	
1	L 0	8	1	, ,	Berthézène		
•	9	8	1	3rd Light Cavalry Divisi		1017	
1	L3	11	1	Sia Light Gavairy Divisi	,	1017	
1	12	11	1		Domont		

计算每一层的人数

• 执行查询5000次, 比较单位时间返回的记录数

散布在各层的百分比

• 假设我们经营魔药。每种魔药由多种成分(ingredient)组成,处方(recipe)列出成分及百分比。处方可以共享某种"基础魔药",以复合成分(compound ingredient)的形式表示。

散布在各层的百分比

- 某一种可以选择的建模方法
- Components表为通用类型
- 它有recipes和basic_ingredients两种子类型
- Composition表保存处方成分(可以是处方或基本成分及其数量)

散布在各层的百分比

```
SQL> select connect_by_root recipe_id root_recipe,
                                                       ROOT_RECIPE
                                                                        RECIPE_ID PRIORPCT PCT
                                                                                                   COMPONENT_ID
        recipe_id,
                                                            14
                                                                        14
                                                                                          5
                                                                                                   3
        prior pct,
                                                                        14
                                                                                          20
                                                            14
        pct
  5
        component_id
                                                            14
                                                                        14
                                                                                          15
                                                                                                   8
  6 from composition
                                                                        14
                                                                                          30
                                                                                                   9
                                                            14
  7 connect by recipe_id = prior component_id
                                                                        14
                                                                                          20
                                                                                                   10
                                                            14
  8 /
                                                                        14
                                                                                          10
                                                            14
                                                            15
                                                                        15
                                                                                          30
                                                                                                   14
                                                                                                   3
                                                            15
                                                                        14
                                                                                 30
                                                                        14
                                                                                 30
                                                                                          20
                                                            15
                                                                                                   8
                                                            15
                                                                        14
                                                                                 30
                                                                                          15
```

...


```
with recursive_composition(actual_pct, component_id)
 as (select a.pct,
       a.component_id
   from composition a,
      components b
   where b.component_id = a.recipe_id
    and b.component_name = 'Philter #5'
   union all
   select parent.pct * child.pct,
       child.component_id
   from recursive_composition parent,
      composition child
   where child.recipe_id = parent.component_id)
select x.component_name, sum(y.actual_pct)
 from recursive_composition y,
     components x
 where x.component_id = y.component_id
   and x.component_type = 'I'
 group by x.component_name
```


树状结构的问题

- 本章的方法, 在数据量很少的情况下效果令人满意
- 对大数据量的处理 "像老爷车一样慢"
- 同样可以采用非规范化模型、或基于触发器的扁平化数据模型。
- 不建议对关系模型"屡遭诟病的缓慢本性"反规范化,这很容易遮掩程序设计中的问题。
- 不过, SQL确实缺乏处理树结构的强大的、可伸缩的手段。

End

下一讲,进入非规范化模型

