МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Основы метода конечных элементов

Лабораторная работа 1 «Дискретные одномерные элементы» Группа ФН11-71Б

Вариант 7

Студент: Долотова А.А.

Преподаватель: Захарова Ю.В.

Оценка:

Задание

Дана исследуемая область с граничными условиям ($T_{\text{среды}}$ или $T_{\text{ср}}$ равносильно теплообмену со средой). Геометрические параметры области A,B,L,a,b [см] задаются самостоятельно. Воздействие теплового потока принять равным $q=150~[\text{Bt/cm}^2]$, коэффициент теплоотдачи от стенки к среде $\alpha_g=10[\text{Bt/(cm)}^2\cdot\,^{\circ}\text{C}]$; T – заданная температура стенки, $150~[^{\circ}\text{C}]$; $T_{\text{среды}}=25~[^{\circ}\text{C}]$ – температура окружающей среды, $\lambda=75[\text{Bt/(cm)}\cdot\,^{\circ}\text{C}]$ - коэффициент теплопроводности материала.

Требуется:

- 1. Провести дискретизацию области дискретными одномерными элементами.
- 2. Выписать уравнения равновесия для нескольких элементов.
- 3. Записать несколько локальных матриц: для внутренних элементов, граничных элементов и локальных векторов правых частей.
- 4. Описать процедуру формирования глобальной матрицы теплопроводности и правых частей.
- 5. Получить СЛАУ для решения методом Гаусса и Холецкого.
- 6. Найти распределение температуры в исследуемой области, решив полученное СЛАУ.

Решение

Пусть
$$L = 1, A = 6, B = 4, a = 2, b = 2.$$

Разделим исходную область на две симметричные части и будем рассматривать одну из них. Грань поверхности разреза будем считать абсолютно теплоизолированной.

1. Проведем дискретизацию области дискретными одномерными элементами:

2-3. Выпишем уравнения равновесия для нескольких элементов. Запишем локальные матрицы для внутренних элементов, граничных элементов и локальных векторов правых частей:

Рассмотрим элемент 30:

Составим уравнения равновесия:

$$\begin{cases}
Q_{26}^{(2)} + Q_{30}^{(1)} = Q_1 \\
Q_{30}^{(2)} + Q_{27}^{(2)} + Q_{31}^{(1)} = 0
\end{cases}$$
(1)

Значения потоков можно рассчитать по формулам:

$$\begin{cases}
Q_{30}^{(1)} = k_{30}(T_{15} - T_{16}) \\
Q_{30}^{(2)} = k_{30}(T_{16} - T_{15})
\end{cases}$$
(2)

Подставляя (2) в (1), получаем:

$$\begin{cases}
k_{30}(T_{15} - T_{16}) = Q_1 - Q_{26}^{(2)} \\
k_{30}(T_{16} - T_{15}) = -Q_{27}^{(2)} - Q_{31}^{(1)}
\end{cases}$$
(3)

В матричной форме:

$$\begin{pmatrix} k_{30} & -k_{30} \\ -k_{30} & k_{30} \end{pmatrix} \begin{pmatrix} T_{15} \\ T_{16} \end{pmatrix} = \begin{pmatrix} Q_1 - Q_{26}^{(2)} \\ -Q_{27}^{(2)} - Q_{31}^{(1)} \end{pmatrix}$$
(4)

– локальная матрица и локальный вектор правой части для узлов 15 и 16.
 Рассмотрим элементы под номерами 2 и 3:

Составим уравнения равновесия:

$$\begin{cases}
Q_1^{(2)} + Q_2^{(1)} + Q_5^{(1)} = Q_7 \\
Q_2^{(2)} + Q_6^{(1)} + Q_3^{(1)} = Q_8
\end{cases}$$
(5)

Значения потоков можно рассчитать по формулам:

$$\begin{cases}
Q_2^{(1)} = k_2(T_2 - T_3) \\
Q_2^{(2)} = k_2(T_3 - T_2) \\
Q_3^{(1)} = h_3(T_3 - T_g)
\end{cases}$$
(6)

Подставляя (6) в (5), получаем:

$$\begin{cases}
k_2(T_2 - T_3) = Q_7 - Q_1^{(2)} - Q_5^{(1)} \\
k_2(T_3 - T_2) + h_3(T_3 - T_g) = Q_8 - Q_6^{(1)}
\end{cases}$$
(7)

В матричной форме:

$$\begin{pmatrix} k_2 & -k_2 \\ -k_2 & k_2 + h_3 \end{pmatrix} \begin{pmatrix} T_2 \\ T_3 \end{pmatrix} = \begin{pmatrix} Q_7 - Q_1^{(2)} - Q_5^{(1)} \\ Q_8 - Q_6^{(1)} + h_3 T_g \end{pmatrix}$$
(8)

- локальная матрица и локальный вектор правой части для узлов 2 и 3.
- 4. Опишем процедуру формирования глобальной матрицы теплопроводности и правых частей.

Рассмотрим метод подсчета k_i . Согласно закону теплопроводности $k = \lambda S$, где λ – коэффициент теплопроводности, S – площадь теплопроводящей стенки, h – ее толщина. Рассматривая каждый одномерный элемент необходимо определить его длину, а также площадь боковой поверхности, «приходящуюся» на него в модели.

Остановимся на подобласти между узлами 1254. Длина элемента 1 равна 1, однако, поскольку он является граничным, на него приходится лишь половина площади подобласти:

$$k_1 = \frac{\lambda \cdot S}{h} = \lambda \cdot \frac{L \cdot b}{2 \cdot 2} \cdot \frac{2}{a} = \frac{\lambda}{2}$$

Для внутреннего элемента 4:

$$k_4 = \frac{\lambda \cdot S}{h} = \lambda \cdot \frac{L \cdot b}{2} \cdot \frac{2}{a} = \lambda$$

Для вычисления теплового потока, например, к узлу 2 нужно так же учитывать эту половину:

$$Q_2 = q \cdot S = \frac{q \cdot L \cdot b}{2 \cdot 2} = \frac{q}{2}$$

Составим таблицу о теплопередающей системе и глобальную матрицу теплопроводности К:

Номер элемента	Характеристика элемента	Температура в первом узле	Температура во втором узле
1	$k_1 = \lambda/2$	T_1	T_2
2	$k_2 = \lambda/2$	T_2	$ T_3 $
3	$h_3 = \alpha_g/2$	T_3	T_g
4	$k_4 = \lambda/2$	$ T_1 $	$ T_4$
5	$k_5 = \lambda$	T_2	$ T_5 $
6	$k_6 = \lambda/2$	T_3	$ T_6 $
7	$k_7 = \lambda$	T_4	T_5
8	$k_8 = \lambda$	T_5	$ T_6 $
9	$h_9 = \alpha_g$	T_6	T_g
10	$k_{10} = \lambda/2$	T_4	T_7
11	$k_{11} = \lambda$	T_5	T_8
12	$k_{12} = \lambda/2$	T_6	T_9
13	$h_{13} = \alpha_g/2$	T_9	T_g
14	$h_{14} = \alpha_g/2$	T_9	T_g
15	$h_{15} = \alpha_g/2$	T_{10}	T_g
16	$k_{16} = \lambda$	T_7	T_8
17	$k_{17} = \lambda$	T_8	T_9
18	$k_{18} = \lambda/2$	T_9	T_{10}
19	$k_{19} = \lambda/2$	T_7	$ T_{11} $
20	$k_{20} = \lambda$	T_8	T_{12}
21	$k_{21} = \lambda$	T_9	T_{13}
22	$k_{22} = \lambda/2$	T_{10}	T_{14}
23	$k_{23} = \lambda$	T_{11}	T_{12}
24	$k_{24} = \lambda$	T_{12}	T_{13}
25	$k_{25} = \lambda$	T_{13}	T_{14}
26	$k_{26} = \lambda/2$	T_{11}	$ T_{15}$
27	$k_{27} = \lambda$	T_{12}	T_{16}
28	$k_{28} = \lambda$	T_{13}	$ T_{17}$
29	$k_{29} = \lambda/2$	T_{14}	T_{18}
30	$k_{30} = \lambda/2$	T_{15}	$ T_{16} $
31	$k_{31} = \lambda/2$	T_{16}	$ T_{17}$
32	$k_{32} = \lambda/2$	T_{17}	T_{18}

	1	2	8	4	ಌ	9			6	10	11	12
	$ k_1 + k_4 $	$ -k_1 $	0	$ -k_4 $	0	0	0	0	0	0	0	0
2	$ -k_1$	$\left \begin{array}{c}k_1+k_2+\\+k_5\end{array}\right $	$\begin{vmatrix} -k_2 \end{vmatrix}$	0	$-k_5$	0	0	0	0	0	0	0
ಣ	0	$\begin{vmatrix} -k_2 \end{vmatrix}$	$ \begin{vmatrix} k_2 + k_6 + \\ +k_3 \end{vmatrix} $	0	0	$-k_6$	0	0	0	0	0	0
4	$-k_4$	0	0	$ \begin{vmatrix} k_4 + k_7 + \\ +k_{10} \end{vmatrix} $		0	$-k_{10}$	0	0	0	0	0
<u>.</u>	0	$ -k_5 $	0	$\begin{vmatrix} -k_7 \end{vmatrix}$	$ k_5 + k_7 + +k_8 + k_{11} $	$-k_8$	0	$ -k_{11} $	0	0	0	0
9	0	0	$ -k_6$	0	$-k_8$	$ \begin{vmatrix} k_6 + k_8 + \\ +k_{12} + k_9 \end{vmatrix} $	0	0	$-k_{12}$	0	0	0
2	0	0	0	$\left \begin{array}{cc} -k_{10} \end{array} \right $	0	0	$\begin{vmatrix} k_{10} + k_{16} + k_{19} \\ + k_{19} \end{vmatrix}$	$ -k_{16} $	0	0	$ -k_{19}$	0
	0	0	0	0	$ -k_{11} $	0	$ -k_{16} $	$\begin{vmatrix} k_{11} + k_{16} + \\ +k_{17} + k_{20} \end{vmatrix}$	$-k_{17}$	0	0	$-k_{20}$
6	0	0	0	0	0	$-k_{12}$	0	$-k_{17}$	$\begin{vmatrix} k_{12} + k_{17} + k_{18} + \\ +k_{21} + h_{13} + h_{14} \end{vmatrix}$	$-k_{18}$	0	0
10	0	0	0	0	0	0	0	0	$-k_{18}$	$k_{18} + k_{22} + h_{15}$	0	0
11	0	0	0	0	0	0	$ -k_{19}$	0	0	0	$\begin{vmatrix} k_{19} + k_{23} + \\ +k_{26} \end{vmatrix}$	$-k_{23}$
12	0	0	0	0	0	0	0	$ -k_{20} $	0	0	$-k_{23}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
13	0	0	0	0	0	0	0	0	$-k_{21}$	0	0	$-k_{24}$
14	0	0	0	0	0	0	0	0	0	$-k_{22}$	0	0
15	0	0	0	0	0	0	0	0	0	0	$-k_{26}$	0
16	0	0	0	0	0	0	0	0	0	0	0	$-k_{27}$

Правые части:

1	2	3	4	5	6	7	8	9	10	11	12	13
$Q_5 + Q_6$	Q_7	$Q_8 + h_3 T_g$	Q_4	0	h_9T_g	Q_3	0	$h_{13}T_g + h_{14}T_g$	$h_{15}T_g$	Q_2	0	0

$$Q_1 = \frac{q}{2}, \ Q_2 = q, \ Q_3 = q, \ Q_4 = q, \ Q_5 = \frac{q}{2}, \ Q_6 = \frac{q}{2}, \ Q_7 = q, \ Q_8 = \frac{q}{2}$$

$$\begin{bmatrix} 150.0 \\ 150.0 \\ 275.0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 150.0 \\ 275.0 \\ 150.0 \\ 0.0 \\ 125.0 \\ 150.0 \\ 0.0 \\ 250.0 \\ 125.0 \\ 150.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-37.5	0.0	0.0	-37.5	75.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-75.0	0.0	0.0	-37.5	150.0	-37.5
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-75.0	0.0	0.0	-37.5	150.0	-37.5	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-37.5	0.0	0.0	0.0	75.0	-37.5	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-37.5	0.0	0.0	-75.0	150.0	0.0	0.0	0.0	-37.5
0.0	0.0	0.0	0.0	0.0	0.0	0.0	-37.5	0.0	0.0	-75.0	300.0	-75.0	0.0	0.0	-75.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	-75.0	0.0	0.0	-75.0	300.0	-75.0	0.0	0.0	-75.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	-37.5	0.0	0.0	0.0	150.0	-75.0	0.0	0.0	-37.5	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	-37.5	80.0	0.0	0.0	0.0	-37.5	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	-37.5	0.0	-75.0	235.0	-37.5	0.0	0.0	-37.5	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	-75.0	0.0	-75.0	300.0	-75.0	0.0	0.0	-75.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	-37.5	0.0	0.0	150.0	-75.0	0.0	0.0	-37.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	-37.5	0.0	-75.0	160.0	0.0	0.0	-37.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 - 750	0.0	-75.0	300.0	-75.0	0.0	-75.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-37.5	0.0	150.0	-75.0	0.0	-37.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 -375	80.0	0.0	0.0	-37.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-37.5	-37.5	0.0	-75.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
75.0	0.0	-37.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

K =

4-5. СЛАУ и ее решение

СЛАУ соответствующая постановке задачи имеет вид:

$$K\overline{t} = \overline{f},$$

где \bar{t} – вектор температур в узлах области.

Данную СЛАУ можно решить с помощью разложения Холецкого с последующим применением метода Гаусса. Разложение Холецкого позволяет представить матрицу $K=(k_{ij})$ в виде $K=LL^T$, где $L=(l_{ij})$ – нижнетреугольная матрица. Разложение Холецкого имеет следующие рабочие формулы:

$$\begin{cases} l_{11} = \sqrt{k_{11}}, \\ l_{j1} = \frac{k_{j1}}{l_{11}}, j = 2, \dots, n, \\ l_{ii} = \sqrt{k_{ii} - \sum_{p=1}^{i-1} l_{ip}^2}, i = 2, \dots, n, \\ l_{ji} = \frac{1}{l_{ii}} \left(k_{ji} - \sum_{p=1}^{i-1} l_{ip} l_{jp} \right), i = 2, \dots, n-1, j = i+1, \dots, n \end{cases}$$

Если же имеется СЛАУ вида $K\overline{t}=\overline{f}$, то решение данной СЛАУ, применив разложение Холецкого $K=LL^T$, можно получить следующие СЛАУ:

$$L\overline{y} = \overline{f}, \ L^T\overline{t} = \overline{y}.$$

Поскольку матрицы L и L^T являются нижне- и верхнетреугольной соответственно, для решения СЛАУ применим метод Гаусса.

Решая СЛАУ данным методом, получим следующее распределение температур в узлах системы дискретных одномерных элементов:

$T_1 \mid T_2$	$\mid T_3 \mid$	$\mid T_4$	T_5	T_6	T_7	T_8	T_9	T_{10}
27.98 26.44	26.42	25.52	23.68	22.59	22.73	20.18	15.92	15.99

$\mid T_{11}$	$\mid T_{12}$	T_{13}	$\mid T_{14}$	$\mid T_{15}$	T_{16}	$\mid T_{17}$	T_{18}
21.03	18.39	14.16	14.86	20.62	18.21	15.41	15.14

