形式化方法导引

第 4 章 逻辑问题求解 4.2 理论 - (1) SAT 求解

黄文超

http://staff.ustc.edu.cn/~huangwc/fm.html

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

- 4.1 应用
 - 将 $\mathcal{M} \models \phi$ 验证问题转化为 validity 问题
 - 将 validity 问题转化为 satifiability 问题
 - 使用 SAT/SMT 工具 Z3 直接求解 satifiability 问题
 - 衍生应用: 软件测试与 Symbolic Execution
- 4.2 本章内容 (理论)
 - 求解 SAT 问题的经典方法?
 - 求解 SMT 问题的经典方法?
 - 其它 SAT 问题的经典方法?

2.1 Solve SAT | 问题分析

回顾: 定义: Validity

We call ϕ *valid*, if $\models \phi$ holds.

回顾: 定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

总结: Validity 问题可以转化为 SAT 问题

2.1 Solve SAT | 问题分析

回顾: 定义: Validity

We call ϕ *valid*, if $\models \phi$ holds.

回顾: 定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

定理

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

总结: Validity 问题可以转化为 SAT 问题

2.1 Solve SAT | 问题分析

回顾: 定义: Validity

We call ϕ *valid*, if $\models \phi$ holds.

回顾: 定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

总结: Validity 问题可以转化为 SAT 问题

2.1 Solve SAT | 问题分析

回顾: 定义: Validity

We call ϕ *valid*, if $\models \phi$ holds.

回顾: 定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

总结: Validity 问题可以转化为 SAT 问题

2.1 Solve SAT | 问题分析

回顾: 定义: Validity

We call ϕ *valid*, if $\models \phi$ holds.

回顾: 定义: SAT 问题

SAT is the *decision* problem: given a propositional formula, is it *satisfiable*?

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

总结: Validity 问题可以转化为 SAT 问题

2.1 Solve SAT | 问题分析

问题: 如何求解 SAT 问题?

回顾: 定义: Propositional Logic in BNF

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$

where p stands for any atomic proposition and each occurrence of ϕ to the right of ::= stands for any already constructed formula.

Provable equivalence:

回顾: rules 太多: 推演过于复杂, 符号也有冗余

• 减少冗余的符号,设计自动推演算法

2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号,设计自动推演算法?

先给部分结果

- CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - $\bullet \ \{\land,\lor,\lnot\}$
- Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\bullet \ \{\land, \rightarrow\}$

- 使用 CNF
- 如何设计 CNF 的 rules?
- 如何使用 rule 设计算法?

2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号,设计自动推演算法? 先给部分结果:

- CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - $\bullet \ \{\land,\lor,\lnot\}$
- Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\{\wedge, \rightarrow\}$

- 使用 CNF
- 如何设计 CNF 的 rules?
- 如何使用 rule 设计算法?

2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号,设计自动推演算法? 先给部分结果:

- CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - $\{\land,\lor,\lnot\}$
- Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\bullet \ \{\land, \rightarrow\}$

- 使用 CNF
- 如何设计 CNF 的 rules?
- 如何使用 rule 设计算法?

2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号,设计自动推演算法? 先给部分结果:

- CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - $\{\land,\lor,\lnot\}$
- Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\{\land, \rightarrow\}$

- 使用 CNF
- 如何设计 CNF 的 rules?
- 如何使用 rule 设计算法?

2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号,设计自动推演算法? 先给部分结果:

- CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - $\{\land,\lor,\lnot\}$
- Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\{\land, \rightarrow\}$

- 使用 CNF
- 如何设计 CNF 的 rules?
- 如何使用 rule 设计算法?

2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号,设计自动推演算法? 先给部分结果:

- CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - $\{\land,\lor,\lnot\}$
- Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\{\land, \rightarrow\}$

- 使用 CNF
- 如何设计 CNF 的 rules?
- 如何使用 rule 设计算法?

2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号,设计自动推演算法? 先给部分结果:

- CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - $\{\land,\lor,\lnot\}$
- Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\{\land, \rightarrow\}$

- 使用 CNF
- 如何设计 CNF 的 rules?
- 如何使用 rule 设计算法?

2.1 Solve SAT | 问题分析

问题: 如何减少冗余的符号,设计自动推演算法? 先给部分结果:

- CNF (conjunctive normal form) 合取范式
 - 取如下 (一元、二元) 符号
 - $\{\land,\lor,\lnot\}$
- Horn clauses 霍恩子句
 - 取如下 (一元、二元) 符号
 - $\{\land, \rightarrow\}$

- 使用 CNF
- 如何设计 CNF 的 rules?
- 如何使用 rule 设计算法?

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式

定义: Literal

A *literal* L is either an atom p or the negation of an atom $\neg p$.

定义: Conjunctive normal form (CNF

A formula C is in *conjunctive normal form* (*CNF*) if it is a conjunction of *clauses*, where each clause D is a disjunction of literals:

$$L ::= p \mid \neg p$$
$$D ::= L \mid L \lor D$$
$$C ::= D \mid D \land C$$

例: Formulas in CNF

- $(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$ • clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q
- $(p \lor r) \land (\neg p \lor r) \land (p \lor \neg r)$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式

定义: Literal

A *literal* L is either an atom p or the negation of an atom $\neg p$.

定义: Conjunctive normal form (CNF)

A formula C is in *conjunctive normal form* (*CNF*) if it is a conjunction of *clauses*, where each clause D is a disjunction of literals:

$$\begin{split} L &::= p \mid \neg p \\ D &::= L \mid L \lor D \\ C &::= D \mid D \land C \end{split}$$

例: Formulas in CNF

- $\bullet \ (\neg q \lor p \lor r) \land (\neg p \lor r) \land q$
- clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q• $(p \lor r) \land (\neg p \lor r) \land (p \lor \neg r)$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式

定义: Literal

A *literal* L is either an atom p or the negation of an atom $\neg p$.

定义: Conjunctive normal form (CNF)

A formula C is in *conjunctive normal form* (*CNF*) if it is a conjunction of *clauses*, where each clause D is a disjunction of literals:

$$L ::= p \mid \neg p$$
$$D ::= L \mid L \lor D$$
$$C ::= D \mid D \land C$$

例: Formulas in CNF

- $\bullet \ (\neg q \lor p \lor r) \land (\neg p \lor r) \land q$
 - clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q
- $(p \lor r) \land (\neg p \lor r) \land (p \lor \neg r)$

Two Problems:

- Problem 1: Checking SAT of a propositional formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- $\bullet \neg, \lor, \land$: Do nothing
- $\bullet \to : p \to q \equiv \neg p \lor q$
- $\bullet \leftrightarrow: p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
- Step 1 (another clever way): Tseitin transformation (见后).
- Step 2: 见下页

Two Problems:

- Problem 1: Checking SAT of a propositional formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- $\bullet \neg, \lor, \land$: Do nothing
- $\bullet \to: p \to q \equiv \neg p \lor q$
- $\bullet \leftrightarrow: p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
- Step 1 (another clever way): Tseitin transformation (见后).
- Step 2: 见下页

Two Problems:

- Problem 1: Checking SAT of a propositional formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- $\bullet \neg, \lor, \land$: Do nothing
- $\bullet \to: p \to q \equiv \neg p \lor q$
- $\bullet \leftrightarrow: p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Step 1 (another clever way): Tseitin transformation (见后). Stop 2: 瓜玉萬

Step 2: 见下页

Two Problems:

- Problem 1: Checking SAT of a propositional formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- \neg , \vee , \wedge : Do nothing
- $\bullet \rightarrow : p \rightarrow q \equiv \neg p \lor q$
- $\bullet \leftrightarrow: p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Step 1 (another clever way): Tseitin transformation (见后). Step 2: 见下页

Two Problems:

- Problem 1: Checking SAT of a propositional formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- \neg , \vee , \wedge : Do nothing
- $\bullet \to: p \to q \equiv \neg p \lor q$
- $\bullet \leftrightarrow: p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Step 1 (another clever way): Tseitin transformation (见后) Step 2: 见下页

Two Problems:

- Problem 1: Checking SAT of a propositional formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- \neg , \vee , \wedge : Do nothing
- $\bullet \to : p \to q \equiv \neg p \lor q$
- $\bullet \leftrightarrow: p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Step 1 (another clever way): Tseitin transformation (见后) Step 2: 见下页

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Two Problems:

- Problem 1: Checking SAT of a propositional formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- \neg , \vee , \wedge : Do nothing
- $\bullet \to: p \to q \equiv \neg p \lor q$
- $\bullet \leftrightarrow: p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Step 1 (another clever way): Tseitin transformation (见后).

Step 2: 见下页

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Two Problems:

- Problem 1: Checking SAT of a propositional formula
- Problem 2: Checking SAT of a CNF formula

How to solve problem 1?

- Step 1: Transform Problem 1 to Problem 2
- Step 2: Solve Problem 2.

Step 1 (one way by applying the following rules):

- $\bullet \neg, \lor, \land$: Do nothing
- $\bullet \to: p \to q \equiv \neg p \lor q$
- $\bullet \leftrightarrow: p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Step 1 (another clever way): Tseitin transformation (见后).

Step 2: 见下页

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula

• Design *only one* rule: *resolution rule*

例: Formulas in CNF

• $(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$ • clauses: $(\neg q \lor p \lor r), (\neg p \lor r), q$

Is the above formula satisfiable?

- ullet Derive a new clause from the old clauses: $p \lor r$
- ullet Derive another new clause: r
- Answer: sat, $r = \mathbf{T}, p \in \{\mathbf{T}, \mathbf{F}\}, q = \mathbf{T}$

So, how to design the resolution rule? 见下页

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula

• Design *only one* rule: *resolution rule*

例: Formulas in CNF

- $(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$ • clauses: $(\neg q \lor p \lor r), (\neg p \lor r), q$
- Is the above formula satisfiable?
 - ullet Derive a new clause from the old clauses: $p \lor r$
 - ullet Derive another new clause: r
 - Answer: sat, $r = \mathbf{T}, p \in \{\mathbf{T}, \mathbf{F}\}, q = \mathbf{T}$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula

• Design *only one* rule: *resolution rule*

例: Formulas in CNF

- $\bullet \ (\neg q \lor p \lor r) \land (\neg p \lor r) \land q$
 - clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q

Is the above formula satisfiable?

- ullet Derive a new clause from the old clauses: $p \lor r$
- ullet Derive another new clause: r
- Answer: sat, $r = \mathbf{T}, p \in \{\mathbf{T}, \mathbf{F}\}, q = \mathbf{T}$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula

• Design *only one* rule: *resolution rule*

例: Formulas in CNF

- $\bullet \ (\neg q \lor p \lor r) \land (\neg p \lor r) \land q$
 - clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q

Is the above formula satisfiable?

- ullet Derive a new clause from the old clauses: $p \lor r$
- ullet Derive another new clause: r
- Answer: sat, $r = \mathbf{T}, p \in \{\mathbf{T}, \mathbf{F}\}, q = \mathbf{T}$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula

• Design *only one* rule: *resolution rule*

例: Formulas in CNF

- $\bullet \ (\neg q \lor p \lor r) \land (\neg p \lor r) \land q$
 - clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q

Is the above formula satisfiable?

- ullet Derive a new clause from the old clauses: $p \lor r$
- ullet Derive another new clause: r
- Answer: sat, $r = \mathbf{T}, p \in \{\mathbf{T}, \mathbf{F}\}, q = \mathbf{T}$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula

• Design *only one* rule: *resolution rule*

例: Formulas in CNF

- $\bullet \ (\neg q \lor p \lor r) \land (\neg p \lor r) \land q$
 - clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q

Is the above formula satisfiable?

- Derive a new clause from the old clauses: $p \lor r$
- ullet Derive another new clause: r
- Answer: sat, $r = \mathbf{T}, p \in \{\mathbf{T}, \mathbf{F}\}, q = \mathbf{T}$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula

• Design *only one* rule: *resolution rule*

例: Formulas in CNF

- $\bullet \ (\neg q \lor p \lor r) \land (\neg p \lor r) \land q$
 - clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q

Is the above formula satisfiable?

- ullet Derive a new clause from the old clauses: $p \lor r$
- Derive another new clause: r
- Answer: sat, $r = \mathbf{T}, p \in \{\mathbf{T}, \mathbf{F}\}, q = \mathbf{T}$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | 求解思路

Idea: Step 2: Checking SAT of a CNF formula

• Design *only one* rule: *resolution rule*

例: Formulas in CNF

- $\bullet \ (\neg q \lor p \lor r) \land (\neg p \lor r) \land q$
 - clauses: $(\neg q \lor p \lor r)$, $(\neg p \lor r)$, q

Is the above formula satisfiable?

- Derive a new clause from the old clauses: $p \lor r$
- Derive another new clause: r
- Answer: sat, $r = \mathbf{T}, p \in \{\mathbf{T}, \mathbf{F}\}, q = \mathbf{T}$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | Resolution rule

定义: Resolution Rule

If there are clauses of the shape $p\vee V$ and $\neg p\vee W,$ then the new clause $V\vee W$ may be added.

$$\frac{p \vee V, \ \neg p \vee W}{V \vee W}$$

- \bullet Order of literals in a clause does not play a role since $p \vee q \equiv q \vee p$
- \bullet Double occurrences of literals may be removed since $p \vee p \equiv p$
- If an empty clause, i.e., ⊥ is derived from a CNF, the CNF is not satisfiable.

$$\frac{p, \neg p}{\perp}$$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | Resolution rule

定义: Resolution Rule

If there are clauses of the shape $p \vee V$ and $\neg p \vee W$, then the new clause $V \vee W$ may be added.

$$\frac{p \vee V, \ \neg p \vee W}{V \vee W}$$

- \bullet Order of literals in a clause does not play a role since $p \vee q \equiv q \vee p$
- \bullet Double occurrences of literals may be removed since $p \vee p \equiv p$
- If an *empty clause*, i.e., \bot is derived from a CNF, the CNF is *not satisfiable*.

$$\frac{p, \neg p}{\perp}$$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | Resolution rule

定义: Resolution Rule

If there are clauses of the shape $p \vee V$ and $\neg p \vee W$, then the new clause $V \vee W$ may be added.

$$\frac{p \vee V, \ \neg p \vee W}{V \vee W}$$

- \bullet Order of literals in a clause does not play a role since $p \vee q \equiv q \vee p$
- \bullet Double occurrences of literals may be removed since $p \vee p \equiv p$
- If an *empty clause*, i.e., \bot is derived from a CNF, the CNF is *not satisfiable*.

$$\frac{p, \neg p}{\perp}$$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | Resolution rule

定义: Resolution Rule

If there are clauses of the shape $p \vee V$ and $\neg p \vee W$, then the new clause $V \vee W$ may be added.

$$\frac{p \vee V, \ \neg p \vee W}{V \vee W}$$

- Order of literals in a clause does not play a role since $p \lor q \equiv q \lor p$
- \bullet Double occurrences of literals may be removed since $p\vee p\equiv p$
- If an empty clause, i.e., ⊥ is derived from a CNF, the CNF is not satisfiable.

$$\frac{p, \neg p}{\bot}$$

2.1 Solve SAT | CNF (conjunctive normal form) 合取范式 | Resolution rule

定义: Resolution Rule

If there are clauses of the shape $p \lor V$ and $\neg p \lor W$, then the new clause $V \lor W$ may be added.

$$\frac{p \vee V, \ \neg p \vee W}{V \vee W}$$

- \bullet Order of literals in a clause does not play a role since $p \vee q \equiv q \vee p$
- Double occurrences of literals may be removed since $p \lor p \equiv p$
- If an *empty clause*, i.e., \perp is derived from a CNF, the CNF is *not satisfiable*.

$$\frac{p, \neg p}{\perp}$$

2.1 Solve SAT | Resolution Rule | Example

Example:

We prove that the CNF consisting of the following clauses 1 to 5 is unsatisfiable

$$\begin{array}{lll} 1 & p \lor q \\ 2 & \neg r \lor s \\ 3 & \neg q \lor r \\ 4 & \neg r \lor \neg s \\ 5 & \neg p \lor r \end{array}$$

2.1 Solve SAT | Resolution Rule | Example

Example:

We prove that the CNF consisting of the following clauses 1 to 5 is unsatisfiable

Example:

We prove that the CNF consisting of the following clauses 1 to 5 is unsatisfiable

Example:

We prove that the CNF consisting of the following clauses ${\bf 1}$ to ${\bf 5}$ is unsatisfiable

1	$p \lor q$	
2	$\neg r \vee s$	
3	$\neg q \vee r$	
4	$\neg r \vee \neg s$	
5	$\neg p \lor r$	
J	$p \vee r$	
6	$\frac{p \vee r}{p \vee r}$	(1, 3, q)
		(1, 3, q) (5, 6, p)

Example:

We prove that the CNF consisting of the following clauses $1\ \mathrm{to}\ 5$ is unsatisfiable

1	$p \lor q$	
2	$\neg r \vee s$	
3	$\neg q \vee r$	
4	$\neg r \vee \neg s$	
5	$\neg p \vee r$	
6	$p \lor r$	(1, 3, q)
7	r	(5, 6, p)
8	s	(2, 7, r)
9	$\neg r$	(4, 8, s)

Example:

We prove that the CNF consisting of the following clauses ${\bf 1}$ to ${\bf 5}$ is unsatisfiable

1	$p \lor q$	
2	$\neg r \vee s$	
3	$\neg q \vee r$	
4	$\neg r \vee \neg s$	
5	$\neg p \vee r$	
6	$p \vee r$	(1, 3, q)
7	r	(5 6 m)
	1	(5, 6, p)
8	s	(3, 6, p) $(2, 7, r)$
8	•	(, , _ ,

- ullet A lot of freedom in choice: several other sequences of resolution steps will lead to $oldsymbol{\perp}$ too.
- Resolution steps on p in which V contains q and W contains $\neg q$ for some q (or conversely) are allowed but useless.
 - In that case the new clause $V \vee W$ is of the shape $q \vee \neg q \vee \cdots$ and hence equivalent to \mathbf{T} , not containing fruitful information.
- If a clause consists of a single *literal* l (a unit clause), then the resolution rule allows to remove the literal $\neg l$ from a clause containing $\neg l$.

- \bullet A lot of freedom in choice: several other sequences of resolution steps will lead to \bot too.
- Resolution steps on p in which V contains q and W contains $\neg q$ for some q (or conversely) are allowed but useless.
 - In that case the new clause $V \vee W$ is of the shape $q \vee \neg q \vee \cdots$ and hence equivalent to \mathbf{T} , not containing fruitful information.
- If a clause consists of a single *literal* l (a unit clause), then the resolution rule allows to remove the literal $\neg l$ from a clause containing $\neg l$.

- \bullet A lot of freedom in choice: several other sequences of resolution steps will lead to \bot too.
- Resolution steps on p in which V contains q and W contains $\neg q$ for some q (or conversely) are allowed but useless.
 - In that case the new clause $V \vee W$ is of the shape $q \vee \neg q \vee \cdots$ and hence equivalent to \mathbf{T} , not containing fruitful information.
- If a clause consists of a single *literal* l (a unit clause), then the resolution rule allows to remove the literal $\neg l$ from a clause containing $\neg l$.

- ullet A lot of freedom in choice: several other sequences of resolution steps will lead to $oldsymbol{\perp}$ too.
- Resolution steps on p in which V contains q and W contains $\neg q$ for some q (or conversely) are allowed but useless.
 - In that case the new clause $V \vee W$ is of the shape $q \vee \neg q \vee \cdots$ and hence equivalent to \mathbf{T} , not containing fruitful information.
- If a clause consists of a single *literal* l (a unit clause), then the resolution rule allows to remove the literal $\neg l$ from a clause containing $\neg l$.

- \bullet A lot of freedom in choice: several other sequences of resolution steps will lead to \bot too.
- Resolution steps on p in which V contains q and W contains $\neg q$ for some q (or conversely) are allowed but useless.
 - In that case the new clause $V \vee W$ is of the shape $q \vee \neg q \vee \cdots$ and hence equivalent to \mathbf{T} , not containing fruitful information.
- If a clause consists of a single *literal* l (a unit clause), then the resolution rule allows to remove the literal $\neg l$ from a clause containing $\neg l$.

2.1 Solve SAT | Resolution Rule | Designing Algorithms

- Soundness: Correctness of the resolution rule
- Completeness: If a CNF is unsatisfiable, then this can be derived by only applying the resolution rule
- Soundness and Completeness: A CNF is unsatisfiable iff \bot can be derived by only using the resolution rule.

2.1 Solve SAT | Resolution Rule | Designing Algorithms

- Soundness: Correctness of the resolution rule
- Completeness: If a CNF is unsatisfiable, then this can be derived by only applying the resolution rule
- Soundness and Completeness: A CNF is unsatisfiable iff \bot can be derived by only using the resolution rule.

2.1 Solve SAT | Resolution Rule | Designing Algorithms

- Soundness: Correctness of the resolution rule
- Completeness: If a CNF is unsatisfiable, then this can be derived by only applying the resolution rule
- Soundness and Completeness: A CNF is unsatisfiable iff \bot can be derived by only using the resolution rule.

2.1 Solve SAT | Resolution Rule | Designing Algorithms

- Soundness: Correctness of the resolution rule
- Completeness: If a CNF is unsatisfiable, then this can be derived by only applying the resolution rule
- Soundness and Completeness: A CNF is unsatisfiable iff \bot can be derived by only using the resolution rule.

2.1 Solve SAT | Designing Algorithms | Prove validity using CNF and resolution

Prove using CNF and resolution rules.

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

推论 1: How to prove $\psi \vDash \phi$?

Prove $\psi \wedge \neg \phi$ is unsatisfiable.

$$\neg (\neg \psi \lor \phi) \equiv \psi \land \neg \phi$$

推论 2: How to prove $\vDash (\phi \leftrightarrow \psi)$

Prove $(\phi \lor \psi) \land (\neg \phi \lor \psi)$ is unsatisfiable

$$\neg (\phi \leftrightarrow \psi) \equiv (\phi \lor \psi) \land (\neg \phi \lor \neg \psi)$$

2.1 Solve SAT | Designing Algorithms | Prove validity using CNF and resolution

Prove using CNF and resolution rules.

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

推论 1: How to prove $\psi \vDash \phi$?

Prove $\psi \wedge \neg \phi$ is unsatisfiable.

 $\neg (\neg \psi \lor \phi) \equiv \psi \land \neg \phi$

推论 2: How to prove $\vDash (\phi \leftrightarrow \psi)$

Prove $(\phi \lor \psi) \land (\neg \phi \lor \psi)$ is unsatisfiable

2.1 Solve SAT \mid Designing Algorithms \mid Prove validity using CNF and resolution

Prove using CNF and resolution rules.

定理:

Let ϕ be a formula of propositional logic. Then ϕ is *satisfiable* iff $\neg \phi$ is *not valid*.

In other words, ϕ is valid iff $\neg \phi$ is not satisfiable.

推论 1: How to prove $\psi \models \phi$?

Prove $\psi \wedge \neg \phi$ is unsatisfiable.

$$\neg (\neg \psi \lor \phi) \equiv \psi \land \neg \phi$$

推论 2: How to prove $\vDash (\phi \leftrightarrow \psi)$

Prove $(\phi \lor \psi) \land (\neg \phi \lor \psi)$ is unsatisfiable.

$$\bullet \neg (\phi \leftrightarrow \psi) \equiv (\phi \lor \psi) \land (\neg \phi \lor \neg \psi)$$

2. 埋论

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Example: A Lewis Carroll Puzzle

- Good-natured tenured professors are dynamic
- @ Grumpy student advisors play slot machines
- Smokers wearing a cap are phlegmatic
- Comical student advisors are professors
- Smoking untenured members are nervous
- Open Phlegmatic tenured members wearing caps are comical
- Student advisors who are not stock market players are scholars
- Relaxed student advisors are creative
- Oreative scholars who do not play slot machines wear caps
- Nervous smokers play slot machines
- Student advisors who play slot machines do not smoke
- Creative good-natured stock market players wear caps

Then we have to prove that no student advisor is smoking

2. 埋论

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

Example: A Lewis Carroll Puzzle

- Good-natured tenured professors are dynamic
- @ Grumpy student advisors play slot machines
- Smokers wearing a cap are phlegmatic
- Comical student advisors are professors
- Smoking untenured members are nervous
- Open Phlegmatic tenured members wearing caps are comical
- Student advisors who are not stock market players are scholars
- Relaxed student advisors are creative
- Oreative scholars who do not play slot machines wear caps
- Nervous smokers play slot machines
- Student advisors who play slot machines do not smoke
- Creative good-natured stock market players wear caps

Then we have to prove that no student advisor is smoking

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

The first step is giving names to every notion to be formalized

name	meaning	opposite
A	good-natured	grumpy
B	tenured	
C	professor	
D	dynamic	phlegmatic
E	wearing a cap	
F	smoke	
G	comical	
H	relaxed	nervous
I	play stock market	
J	scholar	
K	creative	
L	plays slot machine	
M	student advisor	

Example:

1. Good-natured tenured professors are dynamic

$$(A \land B \land C) \to D \equiv$$

$$\neg A \lor \neg B \lor \neg C \lor D$$

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

The first step is giving names to every notion to be formalized

name	meaning	opposite
\overline{A}	good-natured	grumpy
B	tenured	
C	professor	
D	dynamic	phlegmatic
$\mid E \mid$	wearing a cap	
F	smoke	
G	comical	
H	relaxed	nervous
I	play stock market	
J	scholar	
K	creative	
L	plays slot machine	
M	student advisor	

Example:

1. Good-natured tenured professors are dynamic

$$(A \wedge B \wedge C) \to D \equiv$$

$$\neg A \lor \neg B \lor \neg C \lor D$$

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

The first step is giving names to every notion to be formalized

name	meaning	opposite
A	good-natured	grumpy
B	tenured	
C	professor	
D	dynamic	phlegmatic
E	wearing a cap	
F	smoke	
G	comical	
H	relaxed	nervous
I	play stock market	
J	scholar	
K	creative	
L	plays slot machine	
M	student advisor	

Example:

1. Good-natured tenured professors are dynamic

$$(A \land B \land C) \to D \equiv$$

$$\neg A \vee \neg B \vee \neg C \vee D$$

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

The first step is giving names to every notion to be formalized

	-	
name	meaning	opposite
A	good-natured	grumpy
B	tenured	
C	professor	
D	dynamic	phlegmatic
E	wearing a cap	
F	smoke	
G	comical	
H	relaxed	nervous
I	play stock market	
J	scholar	
K	creative	
L	plays slot machine	
M	student advisor	

	1	١,	D	١,	$\neg C$	١,	\mathcal{D}
•	\neg_A	V	$\neg D$	V	$\neg \cup$	V	ν

$$0$$
 $I \vee \neg M \vee J$

$$\bullet$$
 $H \vee \neg F \vee L$

$$\bullet \quad \neg L \vee \neg M \vee \neg F$$

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

So we have to prove that assuming properties 1 to 12, we can conclude $\neg(M \land F)$ stating that no student advisor is smoking. So we have to prove that

$$1 \land 2 \land 3 \land 4 \land 5 \land 6 \land 7 \land 8 \land 9 \land 10 \land 11 \land 12 \land M \land F$$

is unsatisfiable.

回顾: 定义: Literal (e.g., unit clause)

A *literal* L is either an atom p or the negation of an atom $\neg p$.

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

So we have to prove that assuming properties 1 to 12, we can conclude $\neg(M \land F)$ stating that no student advisor is smoking. So we have to prove that

$$1 \land 2 \land 3 \land 4 \land 5 \land 6 \land 7 \land 8 \land 9 \land 10 \land 11 \land 12 \land M \land F$$

is unsatisfiable.

回顾: 定义: Literal (e.g., unit clause)

A *literal* L is either an atom p or the negation of an atom $\neg p$.

2.1 Solve SAT | Designing Algorithms | Example: Lewis Carroll Puzzles

So we have to prove that assuming properties 1 to 12, we can conclude $\neg(M \land F)$ stating that no student advisor is smoking. So we have to prove that

$$1 \land 2 \land 3 \land 4 \land 5 \land 6 \land 7 \land 8 \land 9 \land 10 \land 11 \land 12 \land M \land F$$

is unsatisfiable.

回顾: 定义: Literal (e.g., unit clause)

A *literal* L is either an atom p or the negation of an atom $\neg p$.

2.1 Solve SAT \mid Designing Algorithms \mid Example: Lewis Carroll Puzzles

$$\bullet$$
 $A \lor \neg M \lor L$

$$\bullet$$
 $\neg G \lor \neg M \lor C$

$$\bullet D \vee \neg B \vee \neg E \vee G$$

$$I \vee \neg M \vee J$$

$$\bullet H \vee \neg F \vee L$$

$$\bigcirc \neg K \lor \neg A \lor \neg I \lor E$$

$$\bullet$$
 $\neg E \lor \neg D$

$$\bullet$$
 $\neg G \lor C$

$$0 I \lor J$$

$$\bullet$$
 $\neg H \lor K$

$$\bullet$$
 $H \vee L$

$$\bullet$$
 $\neg L$

$$\bigcirc \neg K \lor \neg A \lor \neg I \lor E$$

2.1 Solve SAT \mid Designing Algorithms \mid Example: Lewis Carroll Puzzles

Method: *Unit resolution* on $\neg L$: remove L everywhere

$$\bullet$$
 $\neg E \lor \neg D$

$$\bullet$$
 $B \vee \neg H$

$$0 I \lor J$$

$$\bullet$$
 $\neg H \lor K$

$$\odot$$
 H

$$\bullet \neg K \lor \neg A \lor \neg I \lor E$$

$$\mathbf{Q} A \vee L$$

$$\bullet$$
 $\neg E \lor \neg D$

$$\bullet$$
 $\neg G \lor C$

$$0 I \vee J$$

$$\bullet$$
 $\neg H \lor K$

$$\bullet$$
 $H \vee L$

$$\bullet$$
 $\neg L$

$$\bigcirc \neg K \lor \neg A \lor \neg I \lor E$$

 \Leftarrow

2.1 Solve SAT \mid Designing Algorithms \mid Example: Lewis Carroll Puzzles

- \mathbf{Q} \mathbf{A}
- \bullet $\neg E \lor \neg D$
- \bullet $\neg G \lor C$
- \bullet $B \vee \neg H$
- $\bullet D \vee \neg B \vee \neg E \vee G$
- $0 I \vee J$
- \bullet $\neg H \lor K$
- \bullet H
- \bigcirc $\neg K \lor \neg A \lor \neg I \lor E$

$$\bullet$$
 $\neg B \lor \neg C \lor D$

- \bullet $\neg E \lor \neg D$
- \circ $\neg G \lor C$
- \bullet B
- \bullet $I \vee J$
- $\mathbf{0} K$
- \bullet $\neg K \lor \neg J \lor E$

- \bigcirc $\neg C \lor D$
- \bigcirc $\neg E \lor \neg D$
- $G \lor C$
- $\bullet D \vee \neg E \vee G$
- \bullet $I \vee J$
- \bullet $\neg J \lor E$
- \bullet $\neg I \lor E$

- $\bullet \quad \neg B \vee \neg C \vee D$
- \circ $\neg G \lor C$
- **4** B
- \bullet $I \vee J$
- $\mathbf{0} K$

- \bigcirc $\neg C \lor D$
- \bigcirc $\neg E \lor \neg D$
- $G \lor C$
- $D \vee \neg E \vee G$
- \bullet $I \vee J$
- \bullet $\neg J \lor E$
- \bigcirc $\neg I \lor E$

Normal Resolution

- **8** $J \vee E$ (5, 7, I)

- ② ¬D
- $G \lor C$
- \bullet $D \vee G$

- \bigcirc $\neg C \lor D$
- \bigcirc $\neg E \lor \neg D$
- $G \lor C$
- \bullet $D \vee \neg E \vee G$
- \bullet $I \vee J$
- \bullet $\neg J \lor E$
- \bigcirc $\neg I \lor E$

Normal Resolution

- **3** $J \vee E$ (5, 7, I)
- \bullet E (6,8,J)

- \bigcirc $\neg D$
- \bullet $D \vee G$

- \bullet $\neg C \lor D$
- \bigcirc $\neg E \lor \neg D$
- $G \lor C$
- \bullet $D \vee \neg E \vee G$
- \bullet $I \vee J$
- \bullet $\neg J \lor E$
- $oldsymbol{o}$ $\neg I \lor E$

Normal Resolution

- **3** $J \vee E$ (5,7,I)
- \bullet E (6,8,J)

- **②** ¬*D*
- \bullet $D \vee G$

- \bigcirc $\neg C \lor D$
- \bigcirc $\neg E \lor \neg D$
- $G \lor C$
- \bullet $D \vee \neg E \vee G$
- \bullet $I \vee J$
- \bullet $\neg J \lor E$
- $oldsymbol{o}$ $\neg I \lor E$

Normal Resolution

- **3** $J \vee E$ (5,7,I)
- \bullet E (6,8,J)

- **②** ¬*D*
- $\bigcirc D \lor G$

- \bullet $\neg C \lor D$
- $\neg E \lor \neg D$
- $\neg G \lor C$
- \bullet $D \vee \neg E \vee G$
- \bullet $I \vee J$
- \bullet $\neg J \lor E$
- $oldsymbol{o}$ $\neg I \lor E$

Normal Resolution

- **3** $J \vee E$ (5,7,I)
- \bullet E (6,8,J)

- \bigcirc $\neg D$
- \bullet $D \vee G$

Unit resolution on $\neg D$:

- \bullet $\neg C$
- \bigcirc $\neg G \lor C$
- \odot G

 \Leftarrow

- \bullet $\neg C \lor D$

Unit resolution on $\neg C$ and G:

- \bullet $\neg C$
- \bigcirc $\neg G \lor C$
- \odot G

Result: *unsatisfiable*, i.e., it is proved that no student advisor is smoking Conclusion: apply *unit resolution* as long as possible.

下一个问题: 如果不能使用 unit resolution, 如何设计算法?

Unit resolution on $\neg C$ and G:

- \bullet $\neg C$
- \bigcirc $\neg G \lor C$
- **3 G**

Result: unsatisfiable, i.e., it is proved that no student advisor is smoking.

Conclusion: apply *unit resolution* as long as possible.

卜一个问题: 如果不能使用 unit resolution, 如何设计算法?

Unit resolution on $\neg C$ and G:

- \bullet $\neg C$
- \bigcirc $\neg G \lor C$
- \odot G

Result: *unsatisfiable*, i.e., it is proved that no student advisor is smoking. Conclusion: apply *unit resolution* as long as possible.

下一个问题: 如果不能使用 unit resolution, 如何设计算法?

Unit resolution on $\neg C$ and G:

- \bullet $\neg C$
- \bigcirc $\neg G \lor C$
- \odot G

Result: *unsatisfiable*, i.e., it is proved that no student advisor is smoking. Conclusion: apply *unit resolution* as long as possible.

下一个问题: 如果不能使用 unit resolution, 如何设计算法?

2. 埋论

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

A classical algorithm: DPLL

 After more than 50 years the DPLL procedure still forms the basis for most efficient complete SAT solvers.

- First apply unit resolution as long as possible
- If you cannot proceed by unit resolution or trivial observations
 - ullet choose a variable p
 - ullet introduce the cases p and $\neg p$
 - and for both cases go on recursively.

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

A classical algorithm: DPLL

 After more than 50 years the DPLL procedure still forms the basis for most efficient complete SAT solvers.

- First apply unit resolution as long as possible
- If you cannot proceed by unit resolution or trivial observations
 - ullet choose a variable p
 - introduce the cases p and $\neg p$
 - and for both cases go on recursively.

A classical algorithm: DPLL

 After more than 50 years the DPLL procedure still forms the basis for most efficient complete SAT solvers.

- First apply unit resolution as long as possible
- If you cannot proceed by unit resolution or trivial observations
 - choose a variable p
 - introduce the cases p and $\neg p$
 - and for both cases go on recursively.

2. 埋论

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

A classical algorithm: DPLL

 After more than 50 years the DPLL procedure still forms the basis for most efficient complete SAT solvers.

- First apply unit resolution as long as possible
- If you cannot proceed by unit resolution or trivial observations
 - ullet choose a variable p
 - \bullet introduce the cases p and $\neg p$
 - and for both cases go on recursively.

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

A classical algorithm: DPLL

 After more than 50 years the DPLL procedure still forms the basis for most efficient complete SAT solvers.

- First apply unit resolution as long as possible
- If you cannot proceed by unit resolution or trivial observations
 - ullet choose a variable p
 - introduce the cases p and $\neg p$
 - and for both cases go on recursively.

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

A classical algorithm: DPLL

 After more than 50 years the DPLL procedure still forms the basis for most efficient complete SAT solvers.

- First apply unit resolution as long as possible
- If you cannot proceed by unit resolution or trivial observations
 - ullet choose a variable p
 - \bullet introduce the cases p and $\neg p$
 - and for both cases go on recursively.

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm

算法: Unit Resolution unit-resol(X)

Input X: a set of clauses.

- ullet remove $\neg l$ from all clauses in X containing $\neg l$
 - i.e., unit resolution
- ullet remove all clauses containing l
 - i.e., remove redundant clauses

算法: Unit Resolution unit-resol(X)

Input X: a set of clauses.

- \bullet remove $\neg l$ from all clauses in X containing $\neg l$
 - i.e., unit resolution
- ullet remove all clauses containing l
 - i.e., remove redundant clauses

算法: Unit Resolution unit-resol(X)

Input X: a set of clauses.

- ullet remove $\neg l$ from all clauses in X containing $\neg l$
 - i.e., unit resolution
- ullet remove all clauses containing l
 - i.e., remove redundant clauses

算法: Unit Resolution unit-resol(X)

Input X: a set of clauses.

- \bullet remove $\neg l$ from all clauses in X containing $\neg l$
 - i.e., unit resolution
- remove all clauses containing l
 - i.e., remove redundant clauses

算法思路: DPLL(X)

```
X:=unit-resol(X) if \bot \in X then return(unsatisfiable) if X=\emptyset then return(satisfiable) if \bot \not\in X then choose variable p in X DPLL(X \cup \{p\}) DPLL(X \cup \{\neg p\}) return P(P,T)
```

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- Otherwise, it is a big case analysis yielding ⊥ for all cases, so unsat

算法思路: DPLL(X)

X:=unit-resol(X)

if $\bot \in X$ then return(unsatisfiable)

 $X = \emptyset$ then return(satisfiable)

if $\bot \not\in X$ then choose variable p in X $\mathsf{DPLL}(X \cup \{p\})$ $\mathsf{DPLL}(X \cup \{\neg p\})$

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- Otherwise, it is a big case analysis yielding ⊥ for all cases, so unsat

算法思路: DPLL(X)

X:=unit-resol(X) if $\bot \in X$ then return(unsatisfiable) if $X=\emptyset$ then return(satisfiable) if $\bot \not\in X$ then choose variable p in DPLL($X \cup \{p\}$) DPLL($X \cup \{p\}$)

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- Otherwise, it is a big case analysis yielding ⊥ for all cases, so unsat

算法思路: DPLL(X)

 $X{:=}$ unit-resol(X) if $\bot \in X$ then return(unsatisfiable)

if $X = \emptyset$ then return(satisfiable) if $\bot \not\in X$ then choose variable p in X DPLL $(X \cup \{p\})$ DPLL $(X \cup \{\neg p\})$ return ?(见右)

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- Otherwise, it is a big case analysis yielding ⊥ for all cases, so unsat

算法思路: DPLL(X)

X:=unit-resol(X)

if $\bot \in X$ then
 return(unsatisfiable)

if $X=\emptyset$ then
 return(satisfiable)

if $\bot \not\in X$ then
 choose variable p in X DPLL $(X \cup \{p\})$ DPLL $(X \cup \{r\})$

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- Otherwise, it is a big case analysis yielding ⊥ for all cases, so unsat

算法思路: DPLL(X)

$$\begin{split} X := & \mathsf{unit\text{-}resol}(\mathsf{X}) \\ & \mathsf{if} \ \bot \in X \ \mathsf{then} \\ & \mathsf{return}(\mathsf{unsatisfiable}) \\ & \mathsf{if} \ X = \emptyset \ \mathsf{then} \\ & \mathsf{return}(\mathsf{satisfiable}) \end{split}$$

if $\bot \not\in X$ then choose variable p in X DPLL $(X \cup \{p\})$ DPLL $(X \cup \{\neg p\})$ return ?(见右)

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- Otherwise, it is a big case analysis yielding ⊥ for all cases, so unsat

算法思路: DPLL(X)

X:=unit-resol(X)

if $\bot \in X$ then
 return(unsatisfiable)

if $X=\emptyset$ then
 return(satisfiable)

if $\bot \not\in X$ then
 choose variable p in X DPLL $(X \cup \{p\})$ DPLL $(X \cup \{p\})$

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- Otherwise, it is a big case analysis yielding ⊥ for all cases, so unsat

算法思路: DPLL(X)

X:=unit-resol(X) if $\bot \in X$ then return(unsatisfiable) if $X = \emptyset$ then return(satisfiable) if $\bot \not\in X$ then choose variable p in X $DPLL(X \cup \{p\})$ $DPLL(X \cup \{\neg p\})$

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- \bullet Otherwise, it is a big case analysis yielding \bot for all cases, so unsat

算法思路: DPLL(X)

```
X:=unit-resol(X) if \bot \in X then return(unsatisfiable) if X=\emptyset then return(satisfiable) if \bot \not\in X then choose variable p in X DPLL(X \cup \{p\}) DPLL(X \cup \{\neg p\})
```

 Terminates since every recursive call decreases number of variables

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- \bullet Otherwise, it is a big case analysis yielding \bot for all cases, so unsat

算法思路: DPLL(X)

```
X:=unit-resol(X) if \bot \in X then return(unsatisfiable) if X = \emptyset then return(satisfiable) if \bot \not\in X then choose variable p in X DPLL(X \cup \{p\}) DPLL(X \cup \{\neg p\}) return ?(见右)
```

 Terminates since every recursive call decreases number of variables

$\mathsf{DPLL}(X \cup \{p\})$ and $\mathsf{DPLL}(X \cup \{\neg p\})$

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- \bullet Otherwise, it is a big case analysis yielding \bot for all cases, so unsat

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
return(unsatisfiable)
if X = \emptyset then
return(satisfiable)
if \bot \not\in X then
choose variable p in X
DPLL(X \cup \{p\})
DPLL(X \cup \{\neg p\})
return ?(见右)
```

 Terminates since every recursive call decreases number of variables

$\mathsf{DPLL}(X \cup \{p\})$ and $\mathsf{DPLL}(X \cup \{\neg p\})$

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- \bullet Otherwise, it is a big case analysis yielding \bot for all cases, so unsat

算法思路: DPLL(X)

```
X:=unit-resol(X) if \bot \in X then return(unsatisfiable) if X = \emptyset then return(satisfiable) if \bot \not\in X then choose variable p in X DPLL(X \cup \{p\}) DPLL(X \cup \{\neg p\}) return ?(见右)
```

 Terminates since every recursive call decreases number of variables

$\mathsf{DPLL}(X \cup \{p\}) \text{ and } \mathsf{DPLL}(X \cup \{\neg p\})$

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- \bullet Otherwise, it is a big case analysis yielding \bot for all cases, so unsat

算法思路: DPLL(X)

```
X:=unit-resol(X) if \bot \in X then return(unsatisfiable) if X = \emptyset then return(satisfiable) if \bot \not\in X then choose variable p in X DPLL(X \cup \{p\}) DPLL(X \cup \{\neg p\}) return ?(见右)
```

 Terminates since every recursive call decreases number of variables

 $\mathsf{DPLL}(X \cup \{p\}) \text{ and } \mathsf{DPLL}(X \cup \{\neg p\})$

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- \bullet Otherwise, it is a big case analysis yielding \bot for all cases, so unsat

算法思路: DPLL(X)

```
X:=unit-resol(X) if \bot \in X then return(unsatisfiable) if X = \emptyset then return(satisfiable) if \bot \not\in X then choose variable p in X DPLL(X \cup \{p\}) DPLL(X \cup \{\neg p\}) return ?(见右)
```

 Terminates since every recursive call decreases number of variables

 $\mathsf{DPLL}(X \cup \{p\}) \text{ and } \mathsf{DPLL}(X \cup \{\neg p\})$

- If 'satisfiable' is returned from either one, then all involved unit clauses yield a satisfying assignment
- ullet Otherwise, it is a big case analysis yielding $oldsymbol{\perp}$ for all cases, so unsat

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit resolution: r, s
 q (use $\neg s$), t (use $\neg r$) q (use r), t (use s)
 $\neg t$ (use q)
 \bot

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit resolution: r, s
 q (use $\neg s$), t (use $\neg r$) q (use r), t (use s)
 $\neg t$ (use q)
 \bot

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add p, unit resolution:

$$\neg s, \neg r$$
 $q \text{ (use } \neg s), t \text{ (use } \neg r)$
 $\neg t \text{ (use } q)$
 \bot

 $\neg dd \neg p$, unit resolution:

$$r, s$$
 $q \text{ (use } r), t \text{ (use } s)$
 $\neg t \text{ (use } q)$

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add p, unit resolution:

$$\neg s, \neg r$$

 q (use $\neg s$), t (use $\neg r$)
 $\neg t$ (use q)

Add $\neg p$, unit resolution:

$$r, s$$
 $q \text{ (use } r), t \text{ (use } s)$
 $\neg t \text{ (use } q)$

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add p, unit resolution: Add $\neg p$, unit resolution: $\neg s, \neg r$ r, s q (use $\neg s$), t (use $\neg r$) q (use r), t (use s) $\neg t$ (use q)

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit resolution: $\neg s, \neg r$ r, s q (use $\neg s$), t (use $\neg r$) q (use r), t (use q)

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit res $\neg s$, $\neg r$ r , s q (use $\neg s$), t (use $\neg r$) q (use r), t (use q)

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add p, unit resolution:

$$\neg s, \neg r$$
 $q \text{ (use } \neg s), t \text{ (use } \neg r)$
 $\neg t \text{ (use } q)$

Add $\neg p$, unit resolution:

$$\begin{array}{l} r,s \\ q \text{ (use } r)\text{, } t \text{ (use } s) \\ \neg t \text{ (use } q) \\ \bot \end{array}$$

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: $\neg s$, $\neg r$ q (use $\neg s$), t (use $\neg r$) $\neg t$ (use q)

Add $\neg p$, unit resolution:

$$r, s$$
 $q \text{ (use } r), t \text{ (use } s)$
 $\neg t \text{ (use } q)$

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit resolution: r, s q (use $\neg s$), t (use $\neg r$) q (use q) q (use q) q (use q)

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit resolution: r, s q (use $\neg s$), t (use q)
$$\neg t$$
 (use q)
$$\bot$$

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add p, unit resolution: Add $\neg p$, unit resolution: r, s q (use $\neg s$), t (use $\neg r$) q (use r), t (use s) $\neg t$ (use q) \bot

例 1

Consider the CNF consisting of the following nine clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit resolution: $\neg s, \neg r$ r, s q (use $\neg s$), t (use $\neg r$) q (use r), t (use s) $\neg t$ (use q)

例 2

Consider the CNF consisting of the following eight clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution:
$$\neg s, \neg r$$

$$q \text{ (use } \neg s), t \text{ (use } \neg r)$$

$$\neg t \text{ (use } q)$$

$$Add \neg p, \text{ unit resolut}$$

$$r, s$$

$$t \text{ (use } s)$$

$$\neg q \text{ (use } t)$$

例 2

Consider the CNF consisting of the following eight clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit resolution: $\neg s, \neg r$ q (use $\neg s$), t (use $\neg r$)
$$\neg t$$
 (use q)
$$\neg q$$
 (use t)

例 2

Consider the CNF consisting of the following eight clauses

No unit resolution possible: choose variable p

例 2

Consider the CNF consisting of the following eight clauses

No unit resolution possible: choose variable p

$$\begin{array}{lll} \mathsf{Add} \ p, \ \mathsf{unit} \ \mathsf{resolution} \colon & \mathsf{Add} \ \neg p, \ \mathsf{unit} \ \mathsf{resolution} \colon \\ \neg s, \neg r & & r, s \\ q \ (\mathsf{use} \ \neg s), \ t \ (\mathsf{use} \ \neg r) & & t \ (\mathsf{use} \ s) \\ \neg t \ (\mathsf{use} \ q) & & \neg q \ (\mathsf{use} \ t) \\ \end{array}$$

例 2

Consider the CNF consisting of the following eight clauses

No unit resolution possible: choose variable p

Add p, unit resolution: Add $\neg p$, unit resolution: r, s q (use $\neg s$), t (use $\neg r$) t (use s) t (use t)

例 2

Consider the CNF consisting of the following eight clauses

No unit resolution possible: choose variable p

Add
$$p$$
, unit resolution: Add $\neg p$, unit resolution: r, s q (use $\neg s$), t (use $\neg r$) t (use s) r (use t)

2. 理论

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Conclusion

- DPLL is a complete method (证明略) for satisfiability, based on unit resolution and case analysis
 - Completeness: If a CNF is unsatisfiable, then this can be derived by only applying the resolution rule
- Efficiency strongly depends on the choice of the variable
- Current SAT solvers follow this scheme, combined with good heuristics for variable choice and several optimizations

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Conclusion

- DPLL is a complete method (证明略) for satisfiability, based on unit resolution and case analysis
 - Completeness: If a CNF is unsatisfiable, then this can be derived by only applying the resolution rule
- Efficiency strongly depends on the choice of the variable
- Current SAT solvers follow this scheme, combined with good heuristics for variable choice and several optimizations

2.1 Solve SAT | Designing Algorithms | DPLL Algorithm | Conclusion

- DPLL is a complete method (证明略) for satisfiability, based on unit resolution and case analysis
 - Completeness: If a CNF is unsatisfiable, then this can be derived by only applying the resolution rule
- Efficiency strongly depends on the choice of the variable
- Current SAT solvers follow this scheme, combined with good heuristics for variable choice and several optimizations

- DPLL is a complete method (证明略) for satisfiability, based on unit resolution and case analysis
 - Completeness: If a CNF is unsatisfiable, then this can be derived by only applying the resolution rule
- Efficiency strongly depends on the choice of the variable
- Current SAT solvers follow this scheme, combined with good heuristics for variable choice and several optimizations

CDCL: conflict driven clause learning

• An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)

if \bot \in X then
	return(unsatisfiable)

if X=\emptyset then
	return(satisfiable)

if \bot \not\in X then
	choose variable p in X
	DPLL(X \cup \{p\})
```

问题 1: How to choose variable p? (稍等

|可题 2: How is the computation cost

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

```
问题 1: How to choose variable p? (稍等
```

问题 2: How is the computation cost

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

问题 1: How to choose variable p? (稍等)

|问题 2: How is the computation cost

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

问题 1: How to choose variable p? (稍等)

问题 2: How is the computation cost?

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

CDCL: conflict driven clause learning

• An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

问题 1: How to choose variable p? (稍等)

问题 2: How is the computation cost?

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

CDCL: conflict driven clause learning

• An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

问题 1: How to choose variable p? (稍等)

问题 2: How is the computation cost?

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

CDCL: conflict driven clause learning

• An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

问题 1: How to choose variable p? (稍等)

问题 2: How is the computation cost?

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

• An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

问题 1: How to choose variable p? (稍等)

问题 2: How is the computation cost?

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

CDCL: conflict driven clause learning

An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

问题 1: How to choose variable p? (稍等)

问题 2: How is the computation cost?

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

A better solution

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

CDCL: conflict driven clause learning

An efficient way to implement DPLL, extended by optimizations

算法思路: DPLL(X)

```
X:=unit-resol(X)
if \bot \in X then
      return(unsatisfiable)
if X = \emptyset then
      return(satisfiable)
if \bot \not\in X then
      choose variable p in X
            \mathsf{DPLL}(X \cup \{p\})
            \mathsf{DPLL}(X \cup \{\neg p\})
      return ?(略)
```

问题 1: How to choose variable p? (稍等)

问题 2: How is the computation cost?

A *naive* implementation

 cost: make copies of the full CNF X at every recursive call

A better solution

- backtracking instead of recursive call
 - Keep track of a list M of literals that has been chosen and derived during the execution of DPLL
- mimic: unit-resol and case analysis

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be *removed* if

• case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: **UnitPropagate**

Part of M will be *removed* if

• case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be *removed* if

• case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be *removed* if

• case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be *removed* if

• case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be removed if

case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be *removed* if

case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be *removed* if

case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be removed if

• case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

思路:How to keep track of M?

M will be extended if

- a case analysis starts: Decide or
- a literal is derived by unit resolution: UnitPropagate

Part of M will be removed if

• case analysis is continued after finding a contradiction: Backtrack

定义: list M 的相关定义

- $M \vDash l$, if l occurs in M
- $M \vDash \neg C$ if $\neg l$ occurs in M for every literal l in C
- l is undefined in M if neither l nor $\neg l$ occurs in M

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 1: UnitPropagate

If all literals in M occur as a unit clause, and there is a clause $C \vee l$ satisfying $M \vDash \neg C$, then by unit resolution all literals in C can be removed

Then the single literal l remains, so the new unit clause l can be derived

This justifies the first rule

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 1: UnitPropagate

If all literals in M occur as a unit clause, and there is a clause $C \vee l$ satisfying $M \vDash \neg C$, then by unit resolution all literals in C can be removed

Then the single literal l remains, so the new unit clause l can be derived

This justifies the first rule

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 1: UnitPropagate

If all literals in M occur as a unit clause, and there is a clause $C \vee l$ satisfying $M \vDash \neg C$, then by unit resolution all literals in C can be removed

Then the single literal l remains, so the new unit clause l can be derived

This justifies the first rule

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

$2.1 \; \mathsf{Solve} \; \mathsf{SAT} \; | \; \mathsf{Designing} \; \mathsf{Algorithms} \; | \; \mathsf{CDCL} \; \mathsf{Algorithm} \; | \; \mathsf{Rule} \; 1 \colon \; \mathsf{UnitPropagate}$

If all literals in M occur as a unit clause, and there is a clause $C \vee l$ satisfying $M \vDash \neg C$, then by unit resolution all literals in C can be removed

Then the single literal l remains, so the new unit clause l can be derived

This justifies the first rule

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

If no *UnitPropagate* is possible, we have to start a case analysis by **Decide**

Rule 2: Decide

$$M \Longrightarrow Ml^d$$

if l is undefined in M

Here the added literal l is marked by 'd' (decision literal) in order to be able to do backtracking = go back to last start of case analysis

If no *UnitPropagate* is possible, we have to start a case analysis by **Decide**

Rule 2: Decide

$$M \Longrightarrow Ml^d$$

if l is undefined in M

Here the added literal l is marked by 'd' (decision literal) in order to be able to do backtracking = go back to last start of case analysis

If no *UnitPropagate* is possible, we have to start a case analysis by **Decide**

Rule 2: Decide

$$M \Longrightarrow Ml^d$$

if l is undefined in M

Here the added literal l is marked by 'd' (decision literal) in order to be able to do backtracking = go back to last start of case analysis

Rule 3: Backtrack

$$Ml^dN \Longrightarrow M \neg l$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and N contains no decision literals

So ${\bf Backtrack}$ applies if a contradiction is found, and everything in M behind the last decision literal is removed, and this decision literal is replaced by its negation

Note that this negation is not decision literal anymore: now it has been derived

Rule 3: Backtrack

$$Ml^dN \Longrightarrow M \neg l$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and N contains no decision literals

So **Backtrack** applies if a contradiction is found, and everything in M behind the last decision literal is removed, and this decision literal is replaced by its negation

Note that this negation is not decision literal anymore: now it has been derived

Rule 3: Backtrack

$$Ml^dN \Longrightarrow M \neg l$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and N contains no decision literals

So **Backtrack** applies if a contradiction is found, and everything in M behind the last decision literal is removed, and this decision literal is replaced by its negation

Note that this negation is not decision literal anymore: now it has been derived

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 4: Fail

In case a contradiction is found, while M does not contain any decision literal, then we have a contradiction for the full formula, so we have derived that the formula is unsatisfiable.

This is expressed by the last rule Fail

Rule 4: Fail

 $M \Longrightarrow \text{fail}$

if $M \vDash \neg C$ for a clause C in the CNF and M contains no decision literals

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Rule 4: Fail

In case a contradiction is found, while M does not contain any decision literal, then we have a contradiction for the full formula, so we have derived that the formula is ${\it unsatisfiable}.$

This is expressed by the last rule Fail

Rule 4: Fail

 $M \Longrightarrow \text{fail}$

if $M \vDash \neg C$ for a clause C in the CNF and M contains no decision literals

2.1 Solve SAT \mid Designing Algorithms \mid CDCL Algorithm \mid Rule 4: Fail

In case a contradiction is found, while M does not contain any decision literal, then we have a contradiction for the full formula, so we have derived that the formula is unsatisfiable.

This is expressed by the last rule Fail

Rule 4: Fail

$$M \Longrightarrow \text{fail}$$

if $M \vDash \neg C$ for a clause C in the CNF and M contains no decision literals

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

算法思路: How to use M instead of recursive call

Start with ${\cal M}$ being empty and apply the rules as long as possible always ends in either

- fail, proving that the CNF is unsatisfiable, or
- a list M containing p or $\neg p$ for every variable p, yielding a satisfying assignment

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算: 例 1

Consider the CNF consisting of the following nine clauses

List M:

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算:例1

Consider the CNF consisting of the following nine clauses

Rule 2: Decide

$$M \Longrightarrow Ml^d$$

if l is undefined in M

List $M: p^d$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算:例1

Consider the CNF consisting of the following nine clauses

List $M: p^d \neg s$

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算: 例 1

Consider the CNF consisting of the following nine clauses

List $M: p^d \neg s \neg r$

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算: 例 1

Consider the CNF consisting of the following nine clauses

List $M: p^d \neg s \neg r t$

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算:例1

Consider the CNF consisting of the following nine clauses

List $M: p^d \neg s \neg r \ t \ q$

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算: 例 1

Consider the CNF consisting of the following nine clauses

List M: $p^d \neg s \neg r t q$ Backtrack:

Rule 3: Backtrack

$$Ml^dN \Longrightarrow M \neg l$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and N contains no decision literals

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算:例1

Consider the CNF consisting of the following nine clauses

Rule 3: Backtrack

$$Ml^dN \Longrightarrow M \neg l$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and N contains no decision literals

List
$$M: p^d \neg s \neg r \ t \ q$$

Backtrack: $\neg p$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算:例1

Consider the CNF consisting of the following nine clauses

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

List
$$M: p^d \neg s \neg r \ t \ q$$

Backtrack: $\neg p \ r$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算:例1

Consider the CNF consisting of the following nine clauses

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

List
$$M: p^d \neg s \neg r \ t \ q$$

Backtrack: $\neg p \ r \ s$

重新计算:例1

Consider the CNF consisting of the following nine clauses

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

if l is undefined in M and the CNF contains a clause $C \vee l$ satisfying $M \vDash \neg C$

List
$$M: p^d \neg s \neg r \ t \ q$$

Backtrack: $\neg p \ r \ s \ q$

重新计算:例1

Consider the CNF consisting of the following nine clauses

Rule 1: UnitPropagate

$$M \Longrightarrow Ml$$

if l is undefined in M and the CNF contains a clause $C \vee l$ satisfying $M \vDash \neg C$

List
$$M: p^d \neg s \neg r \ t \ q$$

Backtrack: $\neg p \ r \ s \ q \ t$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算: 例 1

Consider the CNF consisting of the following nine clauses

Rule 4: Fail

$$M \Longrightarrow fail$$

if $M \vDash \neg C$ for a clause C in the CNF and M contains no decision literals

List
$$M: p^d \neg s \neg r \ t \ q$$

Backtrack: $\neg p \ r \ s \ q \ t$
Fail

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

重新计算:例1

Consider the CNF consisting of the following nine clauses

$$\mathsf{List}\ M\colon p^d\ \neg s\ \neg r\ t\ q$$

Backtrack:

$$\neg p \ r \ s \ q \ t$$

Fail

So we have proved that the CNF is unsatisfiable

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

Concluding,

- We saw a way to implement DPLL while only working on the original CNF
- Combined with the optimizations of the next section, this is Conflict Driven Clause Learning, CDCL, as is used in all current powerful SAT solvers.

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

Concluding,

- We saw a way to implement DPLL while only working on the original CNF
- Combined with the optimizations of the next section, this is Conflict Driven Clause Learning, CDCL, as is used in all current powerful SAT solvers.

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm

Concluding,

- We saw a way to implement DPLL while only working on the original CNF
- Combined with the optimizations of the next section, this is Conflict
 Driven Clause Learning, CDCL, as is used in all current powerful SAT solvers.

算法思路: DPLL(X)

X:=unit-resol(X) if $\bot \in X$ then return(unsatisfiable) if $X = \emptyset$ then return(satisfiable) if $\bot \not\in X$ then choose variable p in X $\mathsf{DPLL}(X \cup \{p\})$ $\mathsf{DPLL}(X \cup \{\neg p\})$ return ?(略)

CDCL Rule 1: UnitPropagate

 $M \Longrightarrow Ml$

CDCL Rule 2: Decide

 $M \Longrightarrow Ml^d$

CDCL Rule 3: Backtrack

 $Ml^dN \Longrightarrow M \neg l$

CDCL Rule 4: Fail

 $M \Longrightarrow \text{fail}$

回顾: 问题 1: How to choose variable p?

● 换为另一个问题: How to choose *l* for case analysis in **Decide**?

还有一个新问题: Backtrack always goes back to the last decision literal

2.1 Solve SAT \mid Designing Algorithms \mid CDCL Algorithm \mid Optimizations

算法思路: DPLL(X)

X:=unit-resol(X) if $\bot \in X$ then return(unsatisfiable) if $X = \emptyset$ then return(satisfiable) if $\bot \not\in X$ then choose variable p in X $\mathsf{DPLL}(X \cup \{p\})$ $\mathsf{DPLL}(X \cup \{\neg p\})$ return ?(略)

CDCL Rule 1: UnitPropagate

 $M \Longrightarrow Ml$

CDCL Rule 2: Decide

 $M \Longrightarrow Ml^d$

CDCL Rule 3: Backtrack

 $Ml^dN \Longrightarrow M \neg l$

CDCL Rule 4: Fail

 $M \Longrightarrow \text{fail}$

回顾: 问题 1: How to choose variable p?

• 换为另一个问题: How to choose *l* for case analysis in **Decide**?

还有一个新问题: Backtrack always goes back to the last decision literal

2.1 Solve SAT \mid Designing Algorithms \mid CDCL Algorithm \mid Optimizations

算法思路: DPLL(X)

X:=unit-resol(X) if $\bot \in X$ then return(unsatisfiable) if $X = \emptyset$ then return(satisfiable) if $\bot \not\in X$ then choose variable p in X $\mathsf{DPLL}(X \cup \{p\})$ $\mathsf{DPLL}(X \cup \{\neg p\})$ return ?(略)

CDCL Rule 1: UnitPropagate

 $M \Longrightarrow Ml$

CDCL Rule 2: Decide

 $M \Longrightarrow Ml^d$

CDCL Rule 3: Backtrack

 $Ml^dN \Longrightarrow M \neg l$

CDCL Rule 4: Fail

 $M \Longrightarrow \text{fail}$

回顾: 问题 1: How to choose variable p?

• 换为另一个问题: How to choose l for case analysis in **Decide**?

还有一个新问题: Backtrack always goes back to the last decision literal

2.1 Solve SAT \mid Designing Algorithms \mid CDCL Algorithm \mid Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $Mp^dq^d \dots //$ explore SubTree 1
- $Mp^d \neg q \dots // \text{ explore SubTree 2}$
- \bullet $M \neg p \dots //$ explore SubTree 3

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots //$ explore SubTree 3

If p does not play a role in contradiction in SubTree 1, e.g.,

- $\bullet \ M \vDash \neg q \lor t \ \text{and} \ M \vDash \neg q \lor \neg t$
- \bullet Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

So *jumping back* to an earlier decision literal than the last one (as in *backtrack*) is correct and *increases efficiency*

4 D > 4 D > 4 B > 4 B > B 990

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots //$ explore SubTree 3

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- \bullet Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

So *jumping back* to an earlier decision literal than the last one (as in *backtrack*) is correct and *increases efficiency*

4□▶ 4□▶ 4□▶ 4□▶ □ 900

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots //$ explore SubTree 3

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- \bullet Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

So *jumping back* to an earlier decision literal than the last one (as in *backtrack*) is correct and *increases efficiency*

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q @

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots //$ explore SubTree 3

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- \bullet Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

So *jumping back* to an earlier decision literal than the last one (as in *backtrack*) is correct and *increases efficiency*

4□▶ 4□▶ 4□▶ 4□▶ □ 900

2.1 Solve SAT \mid Designing Algorithms \mid CDCL Algorithm \mid Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- ullet $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots // \text{ explore SubTree 3}$

If p does not play a role in contradiction in SubTree 1, e.g.,

- $\bullet \ M \vDash \neg q \lor t \ \text{and} \ M \vDash \neg q \lor \neg t$
- \bullet Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

So *jumping back* to an earlier decision literal than the last one (as in *backtrack*) is correct and *increases efficiency*

4□ ▶ 4□ ▶ 4□ ▶ 4□ ▶ □ 900

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- ullet $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots // \text{ explore SubTree } 3$

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

2.1 Solve SAT \mid Designing Algorithms \mid CDCL Algorithm \mid Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $\bullet \ Mp^dq^d\dots \ // \ {\sf explore \ SubTree \ 1}$
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots // \text{ explore SubTree 3}$

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- ullet Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots //$ explore SubTree 3

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- ullet Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots // \text{ explore SubTree 3}$

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- ullet Then $\neg q$ can be derived
- A better way: $Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

还有一个新问题: Backtrack always goes back to the last decision literal

Consider the following example:

- $Mp^dq^d\dots$ // explore SubTree 1
- $Mp^d \neg q \dots //$ explore SubTree 2
- $M \neg p \dots //$ explore SubTree 3

If p does not play a role in contradiction in SubTree 1, e.g.,

- $M \vDash \neg q \lor t$ and $M \vDash \neg q \lor \neg t$
- ullet Then $\neg q$ can be derived
- $\bullet \ \ \mathsf{A} \ \ \mathsf{better} \ \ \mathsf{way} \colon \ Mp^dq^d \cdots \Longrightarrow M \neg q$
- Instead of $Mp^dq^d \cdots \Longrightarrow Mp^d \neg q$

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Correct by definition: if $C' \vee l'$ would have been in the CNF, then going from M to Ml' is just **UnitPropagate**

问题: How to find the new clause $C' \vee l'$?

• by investigating the literals that play a role in the found contradiction, and mimic this by resolution.

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Correct by definition: if $C' \vee l'$ would have been in the CNF, then going from M to Ml' is just **UnitPropagate**

问题: How to find the new clause $C' \vee l'$?

• by investigating the literals that play a role in the found contradiction, and mimic this by resolution.

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Correct by definition: if $C' \vee l'$ would have been in the CNF, then going from M to Ml' is just **UnitPropagate**

问题: How to find the new clause $C' \vee l'$?

 by investigating the literals that play a role in the found contradiction, and mimic this by resolution.

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Correct by definition: if $C' \vee l'$ would have been in the CNF, then going from M to Ml' is just **UnitPropagate**

问题: How to find the new clause $C' \vee l'$?

 by investigating the literals that play a role in the found contradiction, and mimic this by resolution.

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

Rule: Backjump

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Apart from doing this **Backjump** step, this new clause $C' \lor l'$ will be added to the CNF:

• Learn: CNF=CNF $\cup \{C' \lor l'\}$

Variants of this idea may also cause **Learn** of new clauses, as long as they can be derived from the original clauses

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Apart from doing this **Backjump** step, this new clause $C' \vee l'$ will be added to the *CNF*:

• Learn: CNF=CNF $\cup \{C' \lor l'\}$

Variants of this idea may also cause **Learn** of new clauses, as long as they can be derived from the original clauses

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Apart from doing this **Backjump** step, this new clause $C' \vee l'$ will be added to the *CNF*:

• Learn: CNF=CNF $\cup \{C' \lor l'\}$

Variants of this idea may also cause **Learn** of new clauses, as long as they can be derived from the original clauses

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Apart from doing this **Backjump** step, this new clause $C' \vee l'$ will be added to the *CNF*:

• Learn: CNF=CNF $\cup \{C' \lor l'\}$

Variants of this idea may also cause **Learn** of new clauses, as long as they can be derived from the original clauses

$$Ml^dN \Longrightarrow Ml'$$

if $Ml^dN \vDash \neg C$ for a clause C in the CNF and there is a clause $C' \lor l'$ derivable from the CNF such that $M \vDash \neg C'$ and l' is undefined in M

Apart from doing this **Backjump** step, this new clause $C' \vee l'$ will be added to the *CNF*:

• Learn: CNF=CNF $\cup \{C' \lor l'\}$

Variants of this idea may also cause **Learn** of new clauses, as long as they can be derived from the original clauses

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

It often occurs that the process does not make progress, while several new clauses have been learned

 \bullet Then it helps to ${\bf Restart}:$ start with empty M using the adjusted CNF

The *new clauses* may influence the *heuristics* of choosing variables and cause better progress

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

It often occurs that the process does not make progress, while several new clauses have been learned

 \bullet Then it helps to ${\bf Restart}:$ start with empty M using the adjusted CNF

The *new clauses* may influence the *heuristics* of choosing variables and cause better progress

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

It often occurs that the process does not make progress, while several new clauses have been learned

ullet Then it helps to **Restart**: start with empty M using the adjusted CNF

The *new clauses* may influence the *heuristics* of choosing variables and cause better progress

例 3

Consider the CNF consisting of the following eight clauses

```
 \begin{array}{c} \neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_2^d \ x_{11} \ x_7^d \\ \text{Contradiction} \ (x_9, \neg x_9) \\ \text{CNF=CNF} \cup \{ \neg x_3 \lor \neg x_7 \lor x_8 \} \\ \neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_7 \ \neg x_{10} \\ \text{Contradiction} \ (x_{12}, \neg x_{12}) \\ \text{CNF=CNF} \cup \{ x_1 \lor x_7 \lor x_8 \lor x_{10} \} \\ \neg x_1^d \ x_4 \ \neg x_3 \ x_8^d \ x_2^d \ x_7 \\ \text{Set} \end{array}
```

例 3

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Decide

$$\begin{array}{c} \neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_2^d \ x_{11} \ x_7^d \\ \text{Contradiction} \ (x_9, \neg x_9) \\ \text{CNF=CNF} \cup \{ \neg x_3 \lor \neg x_7 \lor x_8 \} \\ \neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_7 \ \neg x_{10} \\ \text{Contradiction} \ (x_{12}, \neg x_{12}) \\ \text{CNF=CNF} \cup \{ x_1 \lor x_7 \lor x_8 \lor x_{10} \} \\ \neg x_1^d \ x_4 \ \neg x_3 \ x_8^d \ x_2^d \ x_7 \\ \text{Sat} \end{array}$$

例 3

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

UnitPropagate

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Decide

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Decide

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Decide

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$ $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$

Contradiction $(x_0, \neg x_0)$

CNF=CNFU
$$\{\neg x_3 \lor \neg x_7 \lor x_8\}$$

 $\neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_7 \ \neg x_{10}$
Contradiction $(x_{12}, \neg x_{12})$
CNF=CNFU $\{x_1 \lor x_7 \lor x_8 \lor x_{10}\}$
 $\neg x_1^d \ x_4 \ \neg x_3 \ x_8^d \ x_2^d \ x_7$

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Learn

Consider the CNF consisting of the following eight clauses

Backjump

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

 $\neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_2^d \ x_{11} \ x_7^d$

Contradiction $(x_9, \neg x_9)$

 $\mathsf{CNF} {=} \mathsf{CNF} {\cup} \{ \neg x_3 \vee \neg x_7 \vee x_8 \}$

 $\neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_7 \ \neg x_{10}$

Contradiction $(x_{12}, \neg x_{12})$

CNF=CNF
$$\cup \{x_1 \lor x_7 \lor x_8 \lor x_{10}\}\ \neg x_1^d \ x_4 \ \neg x_3 \ x_8^d \ x_2^d \ x_7$$

Consider the CNF consisting of the following eight clauses

Learn

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Backtrack

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

Consider the CNF consisting of the following eight clauses

$$x_1 \lor x_4$$
 $x_1 \lor \neg x_3 \lor \neg x_8$ $x_1 \lor x_8 \lor x_{12}$
 $x_2 \lor x_{11}$ $\neg x_7 \lor \neg x_3 \lor x_9$ $\neg x_7 \lor x_8 \lor \neg x_9$
 $x_7 \lor x_8 \lor \neg x_{10}$ $x_7 \lor x_{10} \lor \neg x_{12}$

2.1 Solve SAT | Designing Algorithms | CDCL Algorithm | Optimizations

例 3

Consider the CNF consisting of the following eight clauses

$$\begin{array}{l} \neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_2^d \ x_{11} \ x_7^d \\ \text{Contradiction} \ (x_9, \neg x_9) \\ \text{CNF=CNF} \cup \{ \neg x_3 \lor \neg x_7 \lor x_8 \} \\ \neg x_1^d \ x_4 \ x_3^d \ \neg x_8 \ x_{12} \ \neg x_7 \ \neg x_{10} \\ \text{Contradiction} \ (x_{12}, \neg x_{12}) \\ \text{CNF=CNF} \cup \{ x_1 \lor x_7 \lor x_8 \lor x_{10} \} \\ \neg x_1^d \ x_4 \ \neg x_3 \ x_8^d \ x_2^d \ x_7 \\ \text{Sat} \end{array}$$

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

- the basic format of UnitPropagate, Decide, Backtrack and Fail
- the Backjump optimization and variants
- Learn new clauses by these optimizations
- Forget redundant clauses
- clever heuristics for choosing Decide variables
- clever heuristics for when to do Restart

作业

实验大作业 (可选): 自行设计 CNF 的 SAT 求解算法, 要求:

- 可以使用现有算法 (如 DPLL, CDCL), 也可以自行设计其他算法
- 可以独立设计可执行程序,也可以修改现有开源程序的核心算法 (选取后者分数更高)
- 自己构建测试集(可网上查找测试集)
- 附上详细的文档:包括实现过程,算法解释,与现有工具(如 Z3) 等的性能对比