API rNOMADS para recuperar dados de modelos climáticos NOAA

Previsão da precipitação acumulada (mm) para os próximos 15 dias

Vinicio Coelho Lima

Novembro, 2024

Contents

rNOMADS
Modelos
Global Forecast System
gfs_0p50
Região de interesse
Configurando a grade
Modelo mais recente
Variáveis disponíveis
Precipitação
Previsão
Mapa para o modelo
Base Cartográfica IBGE
Plot

rNOMADS

NOMADS (NOAA Operational Model Archive and Distribution System) é um sistema de distribuição e arquivamento de dados operacionais gerenciado pela NOAA (National Oceanic and Atmospheric Administration). Ele fornece acesso a uma ampla gama de dados meteorológicos, climáticos e oceanográficos gerados por modelos numéricos de previsão e reanálises. Fonte: https://nomads.ncep.noaa.gov/.

O rNOMADS é uma interface para o sistema NOMADS que pode recuperar dados binários em formato grib, bem como importar dados ascii diretamente para o R por meio da interface com o sistema GrADS-DODS. Fonte: https://r-forge.r-project.org/projects/rnomads/.

```
library(rNOMADS)
# update.packages(oldPkgs = "rNOMADS")
library(raster)
```

Modelos

	name	url
1	CMC Ensemble	https://nomads.ncep.noaa.gov:443/dods/cmcens/
2	FNMOC Ensemble and Bias Corrected	https://nomads.ncep.noaa.gov:443/dods/fens/
3	GDAS	https://nomads.ncep.noaa.gov:443/dods/fnl/
4	GDAS 0.25	https://nomads.ncep.noaa.gov:443/dods/gdas_0p25/
5	GFS 0.25 Degree	https://nomads.ncep.noaa.gov:443/dods/gfs_0p25/
6	GFS 0.25 Degree Hourly	https://nomads.ncep.noaa.gov: 443/dods/gfs_0p25_1hr/
7	GFS 0.50 Degree	https://nomads.ncep.noaa.gov:443/dods/gfs_0p50/
8	GFS 1.00 Degree	https://nomads.ncep.noaa.gov:443/dods/gfs_1p00/
9	GFS Ensemble 0.5 Degree	https://nomads.ncep.noaa.gov:443/dods/gefs/
10	GFS Ensemble 0.5 Degree (Secondary Params)	https://nomads.ncep.noaa.gov:443/dods/gefs/
11	GFS Ensemble 0.5 Degree Bias-Corrected	https://nomads.ncep.noaa.gov:443/dods/gens_bc/
12	GFS Ensemble NDGD resolution	https://nomads.ncep.noaa.gov:443/dods/gens_ndgd/
	Bias-Corrected	
13	GFS Wave	https://nomads.ncep.noaa.gov:443/dods/gfswave/
14	Great Lakes Wave Unstructured (GLWU)	https://nomads.ncep.noaa.gov:443/dods/glwu/
15	HIRESW Alaska	https://nomads.ncep.noaa.gov:443/dods/hiresw/
16	HIRESW CONUS	https://nomads.ncep.noaa.gov:443/dods/hiresw/
17	HIRESW Guam	https://nomads.ncep.noaa.gov:443/dods/hiresw/
18	HIRESW Hawaii	https://nomads.ncep.noaa.gov:443/dods/hiresw/
19	HIRESW Puerto Rico	https://nomads.ncep.noaa.gov:443/dods/hiresw/
20	HRRR	https://nomads.ncep.noaa.gov:443/dods/hrrr/
$\frac{20}{21}$	HRRR AK	https://nomads.ncep.noaa.gov:443/dods/hrrr/
22	NAEFS NDGD resolution Bias-Corrected	https://nomads.ncep.noaa.gov:
	THE STAR OF TOPOLATION PLAN CONTOUR	443/dods/naefs_ndgd/
23	NAEFS high resolution Bias-Corrected	https://nomads.ncep.noaa.gov:443/dods/naefs_bc/
24	NAM Alaska Pressure Level Vars (11.25km)	https://nomads.ncep.noaa.gov:443/dods/nam/
25	NAM CONUS (12km)	https://nomads.ncep.noaa.gov:443/dods/nam/
26	NAM Caribbean/Central America	https://nomads.ncep.noaa.gov:443/dods/nam/
$\frac{1}{27}$	NAM NEST Alaska	https://nomads.ncep.noaa.gov:443/dods/nam/
28	NAM NEST CONUS	https://nomads.ncep.noaa.gov:443/dods/nam/
29	NAM NEST HAWAII	https://nomads.ncep.noaa.gov:443/dods/nam/
30	NAM NEST Puerto Rico	https://nomads.ncep.noaa.gov:443/dods/nam/
31	NAM North America (32km)	https://nomads.ncep.noaa.gov:443/dods/nam/
32	NAM Pacific	https://nomads.ncep.noaa.gov:443/dods/nam/
33	NARRE	https://nomads.ncep.noaa.gov:443/dods/narre/
34	NCEP and FNMOC Combined Ensemble	https://nomads.ncep.noaa.gov:443/dods/nfcens/
-	Wave	
35	National Blend of Models	https://nomads.ncep.noaa.gov:443/dods/blend/
36	RAP	https://nomads.ncep.noaa.gov:443/dods/rap/
37	RAP 32km North America	https://nomads.ncep.noaa.gov:443/dods/rap/
38	RAP Eastern North Pacific	https://nomads.ncep.noaa.gov:443/dods/rap/
39	RTMA ALASKA	https://nomads.ncep.noaa.gov:443/dods/akrtma/
40	RTMA Guam	https://nomads.ncep.noaa.gov:443/dods/gurtma/
41	RTMA Hawaii	https://nomads.ncep.noaa.gov:443/dods/hirtma/
42	RTMA Puerto Rico	https://nomads.ncep.noaa.gov:443/dods/prrtma/
43	RTMA2.5 CONUS	https://nomads.ncep.noaa.gov:443/dods/rtma2p5/
44	RTOFS Global	https://nomads.ncep.noaa.gov:443/dods/rtofs/
45	SREF CONUS (40km)	https://nomads.ncep.noaa.gov:443/dods/sref/
46	SREF CONUS (40km) Bias-Corrected	https://nomads.ncep.noaa.gov:443/dods/sref_bc/
47	SREF North America (16km)	https://nomads.ncep.noaa.gov:443/dods/sref/
	1.01011 111101100 (1011111)	

	name	url
48	SREF North America (32km)	https://nomads.ncep.noaa.gov:443/dods/sref/
49	STOFS 2D Global	https://nomads.ncep.noaa.gov:
		$443/dods/stofs_2d_glo/$
50	STOFS 3D Atlantic	https://nomads.ncep.noaa.gov:
		$443/dods/stofs_3d_atl/$
51	Sea Ice Analysis	https://nomads.ncep.noaa.gov:443/dods/ice/

Global Forecast System

O Global Forecast System (GFS) é um modelo de previsão do tempo produzido pelo National Centers for Environmental Prediction (NCEP). Dezenas de variáveis atmosféricas e de solo estão disponíveis através deste conjunto de dados, desde temperaturas, ventos e precipitação até umidade do solo e concentração de ozônio na atmosfera.

Mudanças são feitas regularmente no modelo GFS para melhorar seu desempenho e precisão de previsão. Este conjunto de dados é executado quatro vezes ao dia às 00z, 06z, 12z e 18z até 192 horas com uma resolução horizontal de 0,5 graus e uma resolução temporal de 3 horas.

gfs_0p50

O modelo "0p50" refere-se a uma grade global com intervalos de 0,50 graus (~55 km entre os pontos de grade na linha do Equador). Oferece um nível intermediário de detalhamento espacial em comparação a versões mais finas (0,25 graus) ou mais grossas (1,00 grau).

Fornece previsões de curto a médio prazo (até 384 horas, ou 16 dias). As saídas podem ser em intervalos de 3 ou 6 horas, dependendo da configuração.

```
model.urls <- GetDODSDates("gfs_0p50")</pre>
```

Região de interesse

```
lat <- -19.78753
lon <- -51.98899
```

Configurando a grade

```
# Subset
lons <- seq(0, 359.5, by = 0.5)
lats <- seq(-90, 90, by = 0.5)

lon.diff <- abs(lon + 360 - lons)
lat.diff <- abs(lat - lats)

model.lon.ind <- which(lon.diff == min(lon.diff)) - 1 # Indexado no 0
model.lat.ind <- which(lat.diff == min(lat.diff)) - 1

lon.inds <- c(model.lon.ind - 12, model.lon.ind + 12) # região
lat.inds <- c(model.lat.ind - 14, model.lat.ind + 14)</pre>
```

Modelo mais recente

```
latest.model <- tail(model.urls$url, 1)</pre>
model.runs <- GetDODSModelRuns(latest.model)</pre>
model.runs
## $model.run
## [1] "gfs_0p50_00z" "gfs_0p50_06z" "gfs_0p50_12z"
##
## $model.run.info
## [1] "gfs_Op50_OOz: GFS 0.5 deg starting from OOZ17nov2O24, downloaded Nov 17 05:15 UTC"
## [2] "gfs Op50 06z: GFS 0.5 deg starting from 06Z17nov2024, downloaded Nov 17 11:11 UTC"
## [3] "gfs_Op50_12z: GFS 0.5 deg starting from 12Z17nov2024, downloaded Nov 17 17:13 UTC"
latest.model.run <- tail(model.runs$model.run, 1)</pre>
latest.model.run
## [1] "gfs_0p50_12z"
Variáveis disponíveis
model.info <- GetDODSModelRunInfo(latest.model, tail(model.runs$model.run, 1))</pre>
model.info.var <- model.info[c(10,11,28,43,141:148,170,180,201:204,216,220,239)]
knitr::kable(as.data.frame(model.info.var), row.names = TRUE)
     model.info.var
     acpcpsfc ** surface convective precipitation [kg/m^2]
1
     albdosfc ** surface albedo [%]
2
     cnwatsfc ** surface plant canopy surface water [kg/m^2]
3
4
     fldcpsfc ** surface field capacity [fraction]
     soill0 10cm ** 0-0.1 m below ground liquid volumetric soil moisture (non frozen) [proportion]
5
6
     soill 0 40cm ** 0.1-0.4 m below ground liquid volumetric soil moisture (non frozen) [proportion]
     soill40 100cm ** 0.4-1 m below ground liquid volumetric soil moisture (non frozen) [proportion]
7
     soill 100 200cm ** 1-2 m below ground liquid volumetric soil moisture (non frozen) [proportion]
8
     soilw0 10cm ** 0-0.1 m below ground volumetric soil moisture content [fraction]
9
10
     soilw10_40cm ** 0.1-0.4 m below ground volumetric soil moisture content [fraction]
11
     soilw40_100cm ** 0.4-1 m below ground volumetric soil moisture content [fraction]
     soilw100 200cm ** 1-2 m below ground volumetric soil moisture content [fraction]
12
     tmpsfc ** surface temperature [k]
13
     tmp2m ** 2 m above ground temperature [k]
14
```

Precipitação

15

16

17

18

19

20 21

```
variables <- "acpcpsfc" # Accumulated precipitation surface (mm)
```

tsoil0_10cm ** 0-0.1 m below ground soil temperature validation to deprecate [k]

tsoil10_40cm ** 0.1-0.4 m below ground soil temperature validation to deprecate [k]

tsoil40_100cm ** 0.4-1 m below ground soil temperature validation to deprecate [k]

tsoil100 200cm ** 1-2 m below ground soil temperature validation to deprecate [k]

ugrd
10m ** 10 m above ground u-component of wind [m/s]

ugrd50m ** 50 m above ground u-component of wind [m/s]

ugrdmwl ** max wind u-component of wind [m/s]

Previsão

A variável time no DODSGrab() é um vetor de dois componentes, como c(start, end), que define os índices do intervalo de tempo. O modelo GFS fornece previsões a cada 3 horas:

- time = c(0, 0) Previsão para o tempo mais atual.
- time = c(8, 8) 24 horas à frente $(8 \times 3 \text{ horas} = 24 \text{ horas})$.
- time = $c(116, 116) 116 \times 3 \text{ horas} = 348 \text{ horas}$, ou cerca de 14,5 dias.

```
## [1] "https://nomads.ncep.noaa.gov:443/dods/gfs_0p50/gfs20241117/gfs_0p50_12z.ascii?acpcpsfc[116:116]
hoje <- Sys.time()
hoje</pre>
```

```
## [1] "2024-11-17 15:34:44 -03"

forecast <- ModelGrid(model.data, c(0.5, 0.5))

forecast$fcst.date
```

```
## [1] "2024-12-02 GMT"
```

Mapa para o modelo

```
prec <- list()
prec$x <- forecast$x
prec$y <- forecast$y
prec$z <- forecast$z[1,1,,]
r <- raster::raster(prec)
r2 <- raster::rotate(r)
crs_target <- CRS("+proj=longlat +datum=WGS84 +no_defs")
r3 <- projectRaster(r2, crs = crs_target)
# Converter raster para data.frame para ggplot
r_df <- as.data.frame(r3, xy = TRUE, na.rm = TRUE)
colnames(r_df) <- c("lon", "lat", "precip")</pre>
```

Base Cartográfica IBGE

```
subset_reg <- st_as_text(st_geometry(pol))</pre>
bc_ibge <- "/IBGE/BC_250/bc250_ibge.gpkg"</pre>
st_layers(bc_ibge)
# Sys.setlocale("LC_ALL", "pt_BR.UTF-8")
cidade <- st_read(bc_ibge, layer = "lml_cidade_p",</pre>
                   wkt_filter = subset_reg) %>% # Evita carregar todos o municipios
  dplyr::filter(nome %in% c("Bataguassu",#MS
                              "Inocência", #MS
                              "Dourados", # MS
                              "Ortigueira", #PR
                              "Cascavel", # PR
                              "Uberlândia", # MG
                              "Bauru", # SP
                              "Ribeirão Preto", # SP
                              "Rio Verde", # GO
                              "Alto Araguaia", # GO
                              "Passo Fundo")) # RS
capital <- st_read(bc_ibge, layer = "lml_capital_p") %>% dplyr::select( - tipocapital)
mun_label <- rbind(cidade, capital)</pre>
uf <- st_read(bc_ibge, layer = "lml_unidade_federacao_a")</pre>
mun_label_coords <- cbind(mun_label, st_coordinates(mun_label))</pre>
```

Plot

```
library(ggplot2)
ext.mapa \leftarrow c(xmin = -58.0, xmax = -46.25, ymin = -28, ymax = -13)
# Definir a codificação de caracteres para UTF-8
# Sys.setlocale("LC ALL", "pt BR.UTF-8")
p <- ggplot() +</pre>
   geom_raster(data = r_df, aes(x = lon, y = lat, fill = precip)) +
   scale_fill_gradientn(
     colors = c("#FFFFCC", "#41B6C4", "#0C2C84"),
    name = "",
    na.value = "transparent"
   geom_sf(
    data = uf,
    fill = "lightblue",
    color = "black",
    alpha = .10
   ) +
   geom_sf(data = mun_label,
           color = "red",
           size = .15) +
   geom_text(
```

```
data = mun_label_coords,
    aes(x = X, y = Y, label = nome),
    size = 2.25,
    nudge_y = .25,
    color = "red",
    fontface = "bold",
    check_overlap = TRUE
  coord_sf(xlim = c(ext.mapa["xmin"], ext.mapa["xmax"]),
           ylim = c(ext.mapa["ymin"], ext.mapa["ymax"])) +
  theme_minimal() +
  labs(
    title = "Modelo GFS 0.5 deg NCEP",
    subtitle = "Precipitação acumulada (mm) em 348 horas
             <2024-12-02 00:00:00 GMT>",
   caption = "gfs_0p50_12z: GFS 0.5 deg starting from 12Z17nov2024, 17:13 UTC"
  ) +
  theme(
    plot.title = element_text(
     size = 22,
     face = "bold",
     family = "serif"
    ),
    plot.subtitle = element_text(
     size = 12,
     face = "plain",
     family = "mono"
    ),
    plot.caption = element_text(
     size = 10,
     face = "plain",
     family = "mono"
    ),
    axis.text = element_text(family = "mono"),
    axis.text.x = element_text(family = "mono"),
    axis.text.y = element_text(family = "mono"),
    legend.key.height = unit(0.10, 'npc'),
    legend.key.width = unit(0.04, 'npc')
ggsave(
  plot = p,
 filename = "./mapa_modelo_gfs.png",
  width = 9.5,
 height = 12.5,
  units = "cm",
  device = "png",
  dpi = 200,
  bg = "white"
)
```

Modelo GFS 0.5 deg NCEP

Precipitação acumulada (mm) em 348 horas

<2024-12-02 00:00:00 GMT>

gfs_0p50_12z: GFS 0.5 deg starting from 12Z17nov2024, 17:13 UTC