Упражнение"

Компонентное моделирование. Scilab, подсистема xcos

Астраханцева А. А.

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение упражнения	7
5	Выводы	18

Список иллюстраций

4.1	Запуск хсов	7
4.2	Параметры для первого генератора синусоидального источника .	8
4.3	Параметры для второго генератора синусоидального источника .	8
4.4	Параметры для регистрирующего устройства	9
4.5	Итоговая схема	9
4.6	Фигура Лиссажу с параметрами $A=B=1, \alpha=3, \beta=2, \delta=\pi/2$	10
4.7	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=0$.	10
4.8	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=\pi/4$	11
4.9	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=\pi/2$	11
4.10	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=3\pi/4$	11
4.11	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=\pi$.	12
4.12	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=0$.	12
4.13	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=\pi/4$	12
	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=\pi/2$	13
4.15	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=3\pi/4$	13
	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=\pi$.	13
4.17	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=0$.	14
4.18	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=\pi/4$	14
4.19	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=\pi/2$	14
4.20	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=3\pi/4$	15
4.21	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=\pi$.	15
4.22	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=0$.	15
4.23	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=\pi/4$	16
4.24	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=\pi/2$	16
	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=3\pi/4$	16
4.26	Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=\pi$.	17

1 Цель работы

Приобретение навыков моделирования математических моделей с помощью средства имитационного моделирования Scilab, xcos.

2 Задание

1. Построить фигуру Лиссажу с различными параметрами.

3 Теоретическое введение

Математическое выражение для кривой Лиссажу:

$$\begin{cases} x(t) = A \sin(\alpha t + \delta) \\ y(t) = B \sin(\beta t), \end{cases}$$

где A,B — амплитуды колебаний, α,β — частоты, δ — сдвиг фаз.

4 Выполнение упражнения

Первым делом откроем Scilab, далее во вкладке "Инструменты" найдем хсоз (рис. 4.1).

Рис. 4.1: Запуск хсоѕ

Начнем заполнять схему необходимыми блоками, для начала нам понадобятся два (потому что в системе уравнений, описывающей фигуру Лиссажу, 2 уравнения) генератора синусоидального источника. Нам нужно установить параметры для каждого из источников: (рис. 4.2 - 4.3).

Рис. 4.2: Параметры для первого генератора синусоидального источника

Рис. 4.3: Параметры для второго генератора синусоидального источника

Далее нужно установить параметры для регистрирующего устройства: я выбрала блок CSPOXY. Уставновила границы по осям Ох и Оу (рис. 4.4).

Рис. 4.4: Параметры для регистрирующего устройства

Такая схема получилась: (рис. 4.5).

Рис. 4.5: Итоговая схема

Фигура Лиссажу со следующими параметрами: $A=B=1, \alpha=3, \beta=2, \delta=\pi/2$. Получим такой график (рис. 4.6).

Рис. 4.6: Фигура Лиссажу с параметрами $A=B=1, \alpha=3, \beta=2, \delta=\pi/2$

Изменим параметры на первом генераторе: $A=B=1, \alpha=2, \beta=2, \delta=0$. Далее, меняя значение сдвига фаз на $\pi/4; \pi/2; 3\pi/4; \pi$ получим следующие графики: (рис. 4.7 - 4.11).

Рис. 4.7: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=0$

Рис. 4.8: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=\pi/4$

Рис. 4.9: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=\pi/2$

Рис. 4.10: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=3\pi/4$

Рис. 4.11: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=2, \delta=\pi$

Изменим параметры на первом генераторе: $A=B=1, \alpha=2, \beta=4, \delta=0$. Далее, меняя значение сдвига фаз на $\pi/4; \pi/2; 3\pi/4; \pi$ получим следующие графики: (рис. 4.12 - 4.16).

Рис. 4.12: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=0$

Рис. 4.13: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=\pi/4$

Рис. 4.14: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=\pi/2$

Рис. 4.15: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=3\pi/4$

Рис. 4.16: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=4, \delta=\pi$

Изменим параметры на первом генераторе: $A=B=1, \alpha=2, \beta=6, \delta=0$. Далее, меняя значение сдвига фаз на $\pi/4; \pi/2; 3\pi/4; \pi$ получим следующие графики: (рис. 4.17 - 4.21).

Рис. 4.17: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=0$

Рис. 4.18: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=\pi/4$

Рис. 4.19: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=\pi/2$

Рис. 4.20: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=3\pi/4$

Рис. 4.21: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=6, \delta=\pi$

Изменим параметры на первом генераторе: $A=B=1, \alpha=2, \beta=3, \delta=0$. Далее, меняя значение сдвига фаз на $\pi/4; \pi/2; 3\pi/4; \pi$ получим следующие графики: (рис. 4.22 - 4.26).

Рис. 4.22: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=0$

Рис. 4.23: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=\pi/4$

Рис. 4.24: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=\pi/2$

Рис. 4.25: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=3\pi/4$

Рис. 4.26: Фигура Лиссажу с параметрами $A=B=1, \alpha=2, \beta=3, \delta=\pi$

5 Выводы

В ходе выполнения лабораторной работы я приобрела навыки моделирования математических моделей с помощью средства имитационного моделирования Scilab, xcos.