Exercice 1.

1. Écrire la matrice A carrée d'ordre 2 telle que pour tous entiers naturels $1\leqslant i\leqslant 2$ et $1\leqslant j\leqslant 2$:

$$a_{ij} = \begin{cases} i & \text{si } i = j, \\ 0 & \text{si } i < j, \\ 2 & \text{si } i > j \end{cases}$$

2. Calculer les sommes suivantes :

(a)
$$\sum_{i=1}^{2} a_{i2}$$

(b)
$$\prod_{i=1}^{2} a_{ii}$$

/4

Exercice 2 /4

On considère les matrices $A = \begin{pmatrix} 2 & -3 & 1 \\ 5 & z & 3 \end{pmatrix}$ et $B = \begin{pmatrix} x & -1 \\ -3 & y \\ -14 & -1 \end{pmatrix}$

- 1. Déterminer les réels x, y et z pour que le produit des deux matrices $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- 2. Peut-on dire, dans ce cas, que B est l'inverse de A? Justifiez la réponse.

Exercice 3. /6

- 1. Soient les matrices $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 2 & -1 \end{pmatrix}$ et $B = \frac{1}{6} \begin{pmatrix} 1 & -3 & -2 \\ 2 & 0 & 2 \\ 3 & 3 & 0 \end{pmatrix}$.
 - (a) Calculer $A \times B$.
 - (b) On admettra que $A \times B = B \times A$. Qu'en déduire pour les matrices A et B?
- 2. Résoudre dans \mathbb{R}^3 le système : $\begin{cases} x+y+z &= 3\\ -x-y+z &= -9\\ -x+2y-z &= 12 \end{cases}$

Exercice 4 /6

Soient les matrices $A = \begin{pmatrix} -3 & 2 \\ 0 & -3 \end{pmatrix}$ et $T = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

- 1. Vérifier que $A = -3I_2 + T$.
- 2. Calculer \mathbb{T}^2 et en déduire l'expression de \mathbb{A}^2 en fonction de \mathbb{I}_2 et \mathbb{T} .
- 3. Démontrer que, pour tout $n \in \mathbb{N}^*$, $A^n = (-3)^n I_2 + n(-3)^{n-1} T$.