

SCHOOL OF ADVANCED SCIENCES DEPARTMENT OF MATHEMATICS

Continuous Assessment Test -I, August 2016

Course Code: MAT3003 Slot: A1+TA1+TAA1

Course Name: Complex Variables and Partial Differential Equations Date of Exam: 21.8.2016

Max. Marks : 50 Answer ALL the Questions Duration: 90 Minutes.

- 1. (a) Show that an analytic function with constant modulus is constant. (4)
 - (b) Show that the families of curves $r^n = \alpha secn\theta \& r^n = \beta cosecn\theta$, intersect orthogonally, where $\alpha \& \beta$ are arbitrary constants. (3)
 - (c) Is the function $f(z) = \cosh z$ is analytic or not? Justify your answer. (3)
- 2. (a) In a two dimensional fluid flow, find if $x^2 y^2 3x 2y + 2xy$ can represent The Stream function. If so, find the corresponding velocity potential and also the Complex potential. (7)
 - (b) Find the equation of the orthogonal trajectories of the family of curves given by

$$2x - x^3 + 3xy^2 = a. (3)$$

- 3. Find the bilinear transformation that maps the points $z_1=1$, $z_2=i$, $z_3=-1$ into the points $w_1=i$, $w_2=0$, and $w_3=-i$. Hence find
 - (i) The image of |z| < 1. (ii) Find the invariant points of this transformation. (10)
- 4. (a) Find the Laurent's series expansion of $f(z) = \frac{z+4}{(z+3)(z-1)^2}$ in the region

(i)
$$0 < |z-1| < 4$$
 (ii) $|z-1| > 4$. (7)

(b) Expand
$$f(z) = \sin^3 z$$
 in a Taylor's series about $z = 0$. (3)

5. (a). Discuss the transformation
$$w = e^z$$
. (7)

(b) Find the residues at each pole of the function
$$f(z) = \frac{z^2}{(z-1)^2 (z+2)}$$
 (3)