第一讲 基本概念

浙江大学 陈 越

1.2 什么是算法

定义

- 算法 (Algorithm)
 - □一个有限指令集
 - □ 接受一些输入(有些情况下不需要输入)
 - □产生输出

至少有一个输出

- □ 一定在有限步骤之后终止 像操作系统就可以无限执行下去
- □ 每一条指令必须
 - 有充分明确的目标,不可以有歧义
 - 计算机能处理的范围之内
 - 描述应不依赖于任何一种计算机语言以及具体的实现 手段

例1: 选择排序算法的伪码描述

```
void SelectionSort ( int List[], int N )
{    /* 将N个整数List[0]...List[N-1]进行非递减排序 */
    for ( i = 0; i < N; i ++ ) {
        MinPosition = ScanForMin( List, i, N-1 );
        /* 从List[i]到List[N-1]中找最小元,并将其位置赋给MinPosition */
        Swap( List[i], List[MinPosition] );
        /* 将未排序部分的最小元换到有序部分的最后位置 */
    }
}</pre>
```

抽象 —

List到底是数组还是链表(虽然看上去很像数组)? list可以是数组也可以是链表,这个和具体的实现有关,与算法无关 Swap用函数还是用宏去实现?

什么是好的算法?

空间复杂度S(n) ——根据算法写成的程序在执行时占用存储单元的长度。这个长度往往与输入数据的规模有关。空间复杂度过高的算法可能导致使用的内存超限,造成程序非正常中断。

■ 时间复杂度 T(n) —— 根据算法写成的程序在执行时 耗费时间的长度。这个长度往往也与输入数据的规模有关。时间复杂度过高的低效算法可能导致我们 在有生之年都等不到运行结果。

1.1 例2

```
void PrintN ( int N )
{ if ( N ){
    PrintN( N - 1 );
    printf("%d\n", N );
    }
    return;
}
```

```
..... 100000 99999 99998 ..... 1 .....
```

```
PrintN(100000)
PrintN(99999)
PrintN(99998)
PrintN(99997)
PrintN(99997)
```


PrintN(0)

1.1 9 3 第一个函数的时间复杂度比第二个大

```
double f( int n, double a[], double x )
{ int i;
  double p = a[n];
  for ( i=n; i>0; i-- )
    p = a[i-1] + x*p;
  return p;
}
```


什么是好的算法?

- 在分析一般算法的效率时,我们经常关注下面 两种复杂度
 - \square 最坏情况复杂度 $T_{worst}(n)$ 平均复杂度不好衡量,一般关心最坏情况复杂度
 - \Box 平均复杂度 $T_{avg}(n)$

$$T_{avg}(n) \leq T_{worst}(n)$$

复杂度的渐进表示法

- T(n) = O(f(n)) 表示存在常数C > 0, $n_0 > 0$ 使得当 $n \ge n_0$ 时有 $T(n) \le C \cdot f(n)$ O(f(n))相当于T(n)的上界
- $T(n) = \Omega(g(n))$ 表示存在常数C > 0, $n_0 > 0$ 使得当 $n \ge n_0$ 时有 $T(n) \ge C \cdot g(n)$ 欧米茄(g(n))相当于T(n)的下界
- $T(n) = \Theta(h(n)) 表示同时有T(n) = O(h(n)) 和$ $T(n) = \Omega(h(n))$

输入规模 n

函数	1	2	4	8	16	32
1	1	1	1	1	1	1
$\log n$	0	1	2	3	4	5
n	1	2	4	8	16	32
$n \log n$	0	2	8	24	64	160
$n \log n$ n^2	1	4	16	64	256	1024
n^3	1	8	64	512	4096	32768
2^n	2	4	16	256	65536	4294967296
n !	1	2	24	40326	2092278988000	26313×10^{33}

【tips】编程时如果出现n平方或者阶乘时,考虑优化时间复杂度,提高效率

	每秒10亿指令计算机的运行时间表									
n	f(n)=n	$n\log_2 n$	n^2	n^3	n^4	n^{10}	2 ⁿ			
10	.01µs	.03µs	.1μs	1μs	10µs	10sec	1μs			
20	.02µs	.09µs	.4µs	8µs	160µs	2.84hr	1ms			
30	.03µs	.15µs	.9µs	27μs	810µs	6.83d	1sec			
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3min			
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d			
100	.10µs	.66µs	10 μs	1ms	100ms	3171yr	4*10 ¹³ yr			
1,000	1.00µs	9.96µs	1ms	1sec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr			
10,000	10 μs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr				
100,000	100μs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr				
1,000,000	1.0ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr				

μs = 微秒 = 10-6秒

sec = 秒

hr = 小时

yr = 年

ms = 毫秒 = 10-3秒

min = 分钟

 $\mathbf{d} = \boldsymbol{\exists}$

复杂度分析小窍门

- 若两段算法分别有复杂度 $T_1(n) = O(f_1(n))$ 和 $T_2(n) = O(f_2(n))$,则
 - □ $T_1(n) + T_2(n) = \max(O(f_1(n)), O(f_2(n)))$ 两端算法求和,取复杂度的最大值
 - $\ \square \ T_1(n) \times T_2(n) = \mathrm{O}(f_1(n) \times f_2(n))$ 两端算法求积,取复杂度的乘积
- 若T(n)是关于n的k阶多项式,那么T(n)= $\Theta(n^k)$
- 一个for循环的时间复杂度等于循环次数乘以<u>循环体</u> 代码的复杂度 要考虑循环体内代码执行的复杂度,不只是简单考虑循环次数
- if-else 结构的复杂度取决于if的条件判断复杂度和两个分枝部分的复杂度,总体复杂度取三者中最大

