Képlékeny alakítás

BSc

Dr. Vehovszky Balázs

Az előadás tartalma

- A képlékeny alakítás anyagszerkezeti háttere
 - mérnöki és valódi alakváltozás
 - alakítási szilárdság
- A képlékeny alakítási technológia előnyei-hátrányai
- Hideg-melegalakítás összehasonlítása
- Hideg képlékeny alakítási technológiák:
 - Zömítés
 - Folyatás
 - Redukálás
 - Extrudálás
 - Huzal-, rúd- és csőhúzás
- Csőgyártás
- Csavargyártás
- Videók

Jellegzetes alkatrészek

Hajtómű tengelyek

Tubusok

Kisebb fogazatok

A képlékeny alakítás fizikai alapjai

Rugalmas és képlékeny alakváltozás, mérnöki és valódi feszültség:

- II. Folyás (R_{eH}, R_{eL}, R_{p0,2})
- III. Szívós szakasz képlékeny alakváltozás (R_m) <u>alakítás</u>

A képlékeny alakítás fizikai alapjai

Mérnöki és valódi alakváltozási mérőszámok:

Mérnöki alakváltozás: 2 (rugalmas tartományban)

 $d\varepsilon_x = \frac{dI}{I_0} \implies \varepsilon_x = \int_{I_0}^{I_1} \frac{dI}{I_0} = \frac{I_1 - I_0}{I_0} = \frac{\Delta I}{I_0}$

Valódi alakváltozás: (képlékeny tartományban)

 $\Phi \qquad d\varphi = \frac{dI}{I} \implies \varphi_{x} = \int_{1}^{I_{1}} \frac{dI}{I} = \ln \frac{I_{1}}{I}$

$$\varphi_x = \ln \frac{I_1}{I_0}; \quad \varphi_y = \ln \frac{b_1}{b_0}; \quad \varphi_z = \ln \frac{h_1}{h_0}$$

Térfogatállandóság:

$$I_0 \cdot h_0 \cdot b_0 = I_1 \cdot h_1 \cdot b_1 = \text{const.} \longrightarrow \varphi_x + \varphi_y + \varphi_z = 0$$

A két alakváltozás kapcsolata:

$$\varphi_{x} = \ln\left(\frac{I_{1}}{I_{0}}\right) = \ln\left(\frac{I_{0} + u_{x}}{I_{0}}\right) = \ln\left(\frac{I_{0} + \Delta I}{I_{0}}\right) = \ln\left(\frac{\Delta I}{I_{0}} + \frac{I_{0}}{I_{0}}\right) = \ln(\varepsilon_{x} + 1)$$

Mérnöki :
$$\varepsilon = \frac{\Delta \ell}{\ell_0}$$

Valódi: $\varphi = \ln \frac{\ell_1}{\ell}$ Keresztmetszet-alakításnál: $\varphi = \ln \frac{A_0}{A}$

Alakítási szilárdság – felkeményedés

- k_f: alakítási szilárdság: az anyag képlékeny alakváltozásának megindulásához szükséges feszültség egytengelyű húzás esetén.
- k_f függ:
 - az anyag szilárdsági jellemzőitől
 - a megelőző alakítás mértékétől
 - az alakítási sebességtől
- A képlékeny alakíthatóság nem anyagjellemző, hanem állapot (függ: T, φ, φ, feszültségi áll.)

Kármán Tódor (1911)

Alakítási szilárdság

• Egytengelyű feszültségi állapot esetén $k_f = f(T, \phi, \dot{\phi})$

 Az alakítási szilárdság függése az alakítás mértékétől:

$$k_f = k_{f0} + K \cdot \varphi^n$$

[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	
MŰFGVFTFM 1782	

Fém	Állapot	n (-)	K (MPa)
0,05% C acél	Lágyítva	0,26	531
34CrNiMo6	Lágyítva	0,15	641
C60 szénacél	Edzve, megeresztve 538℃-on	0,1	1572
C60 szénacél	Edzve, megeresztve 704℃-on	0,19	1227
Vörösréz	Lágyítva	0,54	320
70/30 bronz (CuZn30)	Lágyítva	0,49	896

Alakítási szilárdság

 A képlékeny alakváltozás megindulásának feltétele általános esetben:

Az anyagban ébredő redukált feszültség eléri az alakítási szilárdságot: **σ**_{red} ≥ **k**_f

- Huber Mises Hencky: $\sigma_{red} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 \sigma_2)^2 + (\sigma_2 \sigma_3)^2 + (\sigma_3 \sigma_1)^2}$
- Tresca: $\sigma_{red} = \sigma_1 \sigma_3$ ahol σ_1 a legnagyobb, σ_3 a legkisebb főfeszültség

Képlékeny alakítás (vs. forgácsolás)

- Kevesebb alapanyag, hulladék
- Kedvezőbb mechanikai tulajdonságok
- Kisebb fajlagos energiaigény
- Általában gyorsabb

- Drága szerszámköltség (nagy darabszám esetén gazdaságos)
- Nagy gépek (nagy alakítóerő)
- Utómegmunkálás szükséges (főleg melegalakításnál)

Hideg-meleg alakítás

Hideg-meleg alakítás

	Hidegalakítás	Félmeleg alakítás	Melegalakítás /kovácsolás
Alaítás mértéke (φ)	<1,6	<4	<6
Alakítóerő	nagyon nagy	nagy	közepes
Munkadarab mérete (kg)	< 30 kg	< 50 kg	50 g - 1500 kg
Energiaigény	kicsi	közepes	nagy
Szerszámköltség	közepes	nagy	nagy - nagyon nagy
Utómunkálás (felületminőség és méretpontosság)	nem szükséges vagy kevés	közepes	teljes felületet szükséges megmunkálni
Gyártási veszteség	nincs	kevés	sok
Késztermék szilárdsága	nagy	közepes	kicsi

Félmeleg alakítás: az újrakristályosodási hőmérséklet alatt, de a kisebb alakítóerő és a nagyobb alakváltozóképesség miatt emelt hőmérsékleten.

Képlékeny alakítással elérhető tűrés, érdesség

Hidegalakítással akár utómunkálás nélkül

Zömítés

- Cél: keresztmetszet növelése
- Szabad, vagy zárt szerszámban
- Zömítőerőt befolyásolja: k_f, A, φ, μ

- 2 lépésben, ha l₀/D₀<4,5
- 3 lépésben, ha l₀/D₀<8

Redukálás

- Cél: keresztmetszet csökkentése
 + szilárdság növelése
- Huzal, tengely, cső, köracél stb.
- Redukáló erő függ: k_f, A, φ, μ, 2α
- Kúpszög optimális értéke függ: φ, μ
- Cső redukálása:

Folyatással előállított alkatrészek:

Folyatás különböző fajtái:

	tömör	üreges	csésze
előrefolyatás	előtte utána a b	a b c c	a b e c d
hátrafolyatás	a c b d,e	a c b f d, e	a c b d,e
radiális folyatás	a b s e D ₁	a b b e e	a b e f

a: folyatóbélyeg b: folytógyűrű c: munkadarab d: kilökő

e: ellenbélyeg f: folyató mag

Előre folyatás:

Hátrafolyatás:

Keresztirányú (radiális) folyatás:

- Folyatáshoz szükséges erő függ: k_f, μ, φ, η_{al} (0,4..0,7)
- Zömítéssel és folyatással alakított alkatrész:

Újrakristályosító (lágyító) hőkezeléssel a képlékenyen alakváltozó képesség jelentősen növelhető

Extrudálás

- Állandó keresztmetszetű (prizmatikus) profilok folyamatos gyártása
- Általában félmeleg- vagy meleg állapotban
- Könnyűfém-ötvözeteknél elterjedt

Csavargyártás

- Kereskedelmi csavarok gyártásának lépései:
 - 1. Alapanyag huzal darabolás
 - 2. Szár redukálás (szilárdságnövelés)
 - 3. Fej előzömítés
 - 4. Fej készrezömítés
 - 5. Fej geometria kialakítása (hatlapfej vágással vagy belső nyílás folyatással)
 - 6. Menetmángorlás

Csavargyártás

Fej áthúzás Fej zömítés Fej előzömítés Szár redukálás Alapanyag darabolás

Menetmángorlás

Csőgyártás

- Hegesztett csövek:
 - Hajlított, hosszhegesztett
 - Görgős hajlítással készült, hosszhegesztett (folyamatos)
 - Hengerített, hegesztett (nagyméretű)
 - Spirálhengerlés és -hegesztés (folyamatos)

Csőgyártás

- Varrat nélküli csövek:
 - Mannesmann: felrepesztés kitérő tengelyű, kúpos hengerekkel
 - + furat simítása tüskével:

A cső előgyártmány hengerlése Pilger-hengersoron:

Csőgyártás

Varrat nélküli csövek gyártása

Ehrhardt-féle lyukasztás + falvékonyítás húzással és/vagy

nyújtóhengerléssel

Extrudálás:

Csövek alakítása

Csőhúzás:

Képlékeny alakítás - videók

- Dróthúzás
- Dróthajlítás
- Csőgyártás
- Csavargyártás

Az előadásban felhasznált források:

http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&NM=279

http://www.wzl.rwth-aachen.de/en/f786439a4c53fb78c125709f0055702f/l01_bulk_metal_forming_1.pdf

http://www.bgk.uni-obuda.hu/~aat/oktatas/gepesz/ATSZT_LGC-III/zomites_redukalas_technologiaja.pdf

http://www.sze.hu/~czinege/GYF2002/Gyf08_hideg_terf_al.ppt

www.tankonyvtar.hu

http://www.test-nc.jp/fujita-rashi/en/process.html

https://www.forging.org/cold-forging

http://www.substech.com/dokuwiki/lib/exe/fetch.php?cache=cache&media=extrusion.png

http://www.youtube.com/watch?v=4dHddQNMi-c

http://www.smrw.de/files/steel_tube_and_pipe.pdf

http://www.youtube.com/watch?v=OsdZ6cj3y_g

