## **PYL100: Semester II (2016-17)**

## Exercise Sheet # 2

## Magnetostatics and Faraday's Law

- 1. A thick long wire of radius R and length along  $\hat{z}$  carries current of uniform current density  $\vec{J} \parallel \hat{z}$ . Using Ampere's law deduce the magnetic field  $\vec{B}$ , hence, vector potential  $\vec{A}$  for (i) r < R and (ii) r > R. [Ans: (i) r < R:  $B_{\phi} = \frac{\mu J r}{2}$ ,  $A_z = \frac{-\mu J r^2}{4}$  (ii) r > R:  $B_{\phi} = \frac{\mu J R^2}{2r}$ ,  $A_z = \frac{-\mu J R^2}{4}$  (1 + 2ln(r/R))]
- 2. An ion beam of charge q, density  $n_o$ , velocity  $v_o\hat{z}$  and radius R propagates in free space. Obtain the electric and magnetic fields of the beam for r < R. [Ans:  $E_r = \frac{n_o q r}{2\epsilon_o}$ ,  $B_\phi = \frac{\mu_o n_o q v_o r}{2}$ ]
- 3. A mirror machine comprises two coaxial current carrying coils separated by a long distance. On the axis, magnetic force is  $\vec{B} = \hat{z} B_0 (1 + z^2/L^2)$ . Using  $\nabla \cdot \vec{B} = 0$ , deduce  $B_r$  at points slightly off axis  $(r \neq 0)$ . [Ans:  $B_r = \frac{-r}{2} \frac{\partial B_z}{\partial z}$ ]
- 4. A magnetically insulated diode has parallel plates at x = 0, x = d maintained at a potential difference of  $V_o$ . It also has a static magnetic field  $B_s \hat{z}$ . An electron originates at z=0 with zero velocity. Estimate the minimum value of  $B_s$  that stops the electron from reaching the other plate. [Ans:  $B_s = (\frac{mV_o}{ed^2})^{1/2}$ ]
- 5. The vector potential due to a dipole antenna of length  $dl\hat{z}$  and current  $I=I_0e^{-i\omega t}$  is  $\vec{A}(r)=\hat{z}\frac{\mu_0}{4\pi}\frac{I_0dl}{r}e^{-i(\omega t-\frac{\omega}{c}r)}$ . Obtain the magnetic field. Here r refers to spherical polar coordinate system. At what value of r does the induction field (that goes as  $1/r^2$ ) equal the radiation field (that goes as 1/r)? [Ans:  $\hat{\varphi}\left(i\frac{\omega}{c}-\frac{1}{r}\right)A(\vec{r})$ ]
- 6. In a region of space electric field is

i) 
$$\vec{E} = A(\hat{x} + \hat{y})e^{-i(\omega t - \frac{\omega}{2c}(x+y))}$$

ii) 
$$\vec{E} = A(\hat{x} - \hat{y})e^{-i(\omega t - \frac{\omega}{2c}(x+y))}$$

iii) 
$$\vec{E} = A(\hat{x} + i\hat{y})e^{-i(\omega t - \frac{\omega}{c}z)}$$

Deduce the corresponding magnetic field.

[Ans: i) 0, ii) 
$$-\frac{A}{c}(\hat{z})e^{-i(\omega t - \frac{\omega}{2c}(x+y))}$$
, iii)  $(-i/c)\vec{E}$ 

- 7. A long cylinder of radius R is uniformly magnetized with magnetization  $M \hat{z}$ . Obtain the magnetic field for r<R and r>R. [Ans:  $\mu_0 M \hat{z}$  for r > r and 0 for r < R
- A magnetic circuit made of rods of cross section S and permeability μ is shown in the figure. In one arm it has a coil of N turns carrying current I. extimate the magnetic field B in the air gap of length d<<l. [Ans: μNI / (231+6μd/μΩ)]</li>



- 9. A em wave propagates in a dielectric with  $\vec{E} = A\hat{y}e^{-i(\omega t \frac{\omega}{c}(2x+z))}$ . Obtain i)  $\vec{k}$  ii)  $\vec{B}$  iii)  $\epsilon_r$  iv)  $\vec{D}$  v)  $\vec{S}_{avg}$ . [ Ans: i)  $\frac{\omega}{c}(2\hat{x} + \hat{z})$  ii)  $\vec{k}X\vec{E}/\omega$  iii) 5 iv)  $5\epsilon_0\vec{E}$  v)  $\vec{S}_{avg} = \frac{A^2}{2\mu_0\omega}\vec{k}$
- 10. An em wave propagating through a dielectric of relative permittivity  $\epsilon_r$  has  $\vec{E} = A\hat{y}e^{-i(\omega t \vec{k}.\vec{r})}$ . However,  $\vec{k}$  can be complex,  $\vec{k} = \vec{k}_r + i\vec{k}_i$ . Show that the plane of constant amplitude is perpendicular to the plane of constant phase. Such a wave is called inhomogeneous wave.
- 11. A wave has  $\vec{E} = A(\hat{z} + \frac{ik_z}{\alpha}\hat{x})e^{-\alpha x}e^{-i(\omega t k_z z)}$ . Obtain  $i)\vec{B}$   $ii)\vec{S}_{avg}$ . [Ans: i)  $-iA(\alpha + \frac{k_z^2}{\alpha})e^{-\alpha x}e^{-i(\omega t k_z z)}$
- 12. A em wave in a plasma has  $\vec{E} = A\hat{x}e^{-i(\omega t \frac{\omega}{2c}z)}$ . Obtain: i)  $\omega_p$  ii)  $v_{ph}$  iii) E/H [Ans: i)  $\frac{\sqrt{3}\omega}{2}$  ii) 2c iii)  $2c/\mu_0$