Simulazione di una Farmacia

Università degli Studi di Perugia Dipartimento di Matematica e Informatica

Michele Ceccarelli N° Matricola 338359 Federico Vagnarelli N° Matricola 337963

Anno accademico 2021/2022

Studio teorico e Analisi del modello

Il sistema che andremo ad analizzare può essere rappresentato tramite un modello ad eventi discreti di tipo aperto, con spazio degli stati discreto.

In particolare una persona che si reca nella farmacia analizzata può farlo per una o più delle seguenti ragioni:

- 1. Acquisto di medicinali presso una delle casse
- 2. Effettuare un tampone rapido per il Covid-19
- 3. Effettuare una prenotazione presso lo sportello dedicato al Cup

Il sistema per effettuare un tampone avviene all'esterno della farmacia: si arriva, si compila la modulistica, si effettua un tampone, si attendono i 15 minuti per l'esito e si paga. Naturalmente solo se risulta negativo può entrare nella farmacia per usufruire degli altri servizi qualora ne avesse bisogno.

Disegno della simulazione

Il seguente diagramma mostra l'organizzazione di erogazione dei tre servizi da parte della farmacia con le relative percentuali di ingresso e uscita dei clienti per ogni nodo.

Stima e Campionamento del sistema reale

Per poter effettuare un'analisi corretta dei vari parametri abbiamo monitorato l'afflusso di persone dalle 8:30 alle 13 e dalle 14:00 alle 20, constatando che la mattina arrivano più persone rispetto al pomeriggio nonostante l'arco temporale sia minore. Alla luce di ciò abbiamo deciso di concentrarci sulla prima parte di giornata perchè quella che mette più a dura prova l'intero sistema. I seguenti grafici mostrano gli arrivi alla farmacia suddivisi in intervalli di tempo di 30 minuti.

Parametri generali del sistema reale

Il numero medio di persone che arrivano alla farmacia per effettuare un tampone è di circa 47 persone ogni mattina mentre 131 è il numero di persone che usufruiscono del CUP o acquistano medicinali. Inoltre sono stati registrati i vari tempi medi di servizio che sono riportati nella seguente tabella in minuti. È stato scelto di riportare il modello della porta di ingresso in quanto i clienti all'entrata dell'attività sono obbligati ad igienizzarsi le mani e misurarsi la febbre:

Nodo	Tempo di Servizio Medio	Serventi
Tamponi	5	1
Attesa Tamponi	15	∞
Cassa Tamponi	1	1
Porta Ingresso	0,333	1
CUP	7	1
Casse	4	3

Scelta delle distribuzioni teoriche

Analizzando i vari dati raccolti durante le osservazioni, in particolare soffermandosi sulla media e la varianza che non si discostano molto l'una dall'altra, abbiamo deciso di provare a convalidare i nostri arrivi ai tamponi e alla porta d'ingresso entrambi con una Poisson attraverso il metodo del Goodness of Fit, in quanto abbiamo più di 30 osservazioni.

Test Goodness of Fit

	Test Goodness of Fit: arrivi Poissoniani ai tamponi							
Categoria	Inte	rvalli	Frequenze Osservate (fi)	Frequenze teoriche attese (Fi)	Raggruppo fi	Raggruppo Fi	[(fi-Fi)^2]/Fi	
0	08:30	09:00	1	0,652521834	9	9,41176094	0,01801438	
1	09:00	09:30	3	2,790873914				
2	09:30	10:00	5	5,968365191				
3	10:00	10:30	8	8,509015251	8	8,509015251	0,03044965	
4	10:30	11:00	8	9,098388533	8	9,098388533	0,13260121	
5	11:00	11:30	7	7,7828676	7	7,7828676	0,07874754	
6	11:30	12:00	7	5,547963051	7	5,547963051	0,38003341	
7	12:00	12:30	5	3,389851615	8	5,202175729	1,50472054	
8	12:30	13:00	3	1,812324114				

n:	47
media:	4,362
varianza:	4,192
deviazione:	2,048
v:	0,469
lambda	4,277
X^2	2,145
df = 6-1-1 =	4

Il valore 2,14 è contenuto nell'intervallo tra 0.90 e 0.10 quindi la distribuzione Poissoniana è convalidata

	Test Goodness of Fit: arrivi Poissoniani alla porta						
Categoria	Inte	rvalli	Frequenze Osservate (fi)	Frequenze teoriche attese (Fi)	Raggruppo fi	Raggruppo Fi	[(fi-Fi)^2]/Fi
0	08:30	09:00	5	2,247157104	13	11,38304491	0,22968756
1	09:00	09:30	8	9,135887802			
2	09:30	10:00	14	18,57111943	14	18,57111943	1,12514127
3	10:00	10:30	20	25,16715649	20	25,16715649	1,06088688
4	10:30	11:00	25	25,57946633	25	25,57946633	0,01312698
5	11:00	11:30	23	20,79882479	23	20,79882479	0,23295414
6	11:30	12:00	20	14,09304593	20	14,09304593	2,47583855
7	12:00	12:30	10	8,185102996	16	12,34470217	1,08234302
8	12:30	13:00	6	4.159599171			

n:	131
media:	4,191
varianza:	3,94
deviazione:	1,985
v:	0,474
lambda	4,066
X^2	5,095
df = 7-1-1 =	5

Il valore 5,09 è contenuto nell'intervallo tra 0.90 e 0.10 quindi la distribuzione Poissoniana è convalidata

Analisi matematica del modello

Calcolato il tasso di arrivo procediamo a calcolare i parametri dei vari modelli matematici.

Tamponi M/M/1	Indice	Valore
Tempo medio di Arrivi	λ	0,1741
Tempo medio di Servizio	Ts	5
Tempo medio di Interarrivo	μ	0,2
Intensità traffico del sistema	ρ	0,8705
Numero medio di utenti presenti nel sistema	N	6,722
Numero medio di utenti in coda	W	5,8515
Tempo medio atteso in coda	Tw	33,61
Tempo medio di risposta	Tr	38,61

Attesa Tamponi M/D/∞	Indice	Valore
Tempo medio di Arrivi	λ	0,1741
Tempo medio di Servizio	Ts	15
Tempo medio di Interarrivo	μ	0,0667
Intensità traffico del sistema	ρ	15
Numero medio di utenti presenti nel sistema	N	15
Numero medio di utenti in coda	W	0
Tempo medio atteso in coda	Tw	0
Tempo medio di risposta	Tr	15

Cassa Tamponi M/M/1	Indice	Valore
Tempo medio di Arrivi	λ	0,1741
Tempo medio di Servizio	Ts	1
Tempo medio di Interarrivo	μ	1
Intensità traffico del sistema	ρ	0,1741
Numero medio di utenti presenti nel sistema	N	0,2108
Numero medio di utenti in coda	W	0,0367
Tempo medio atteso in coda	Tw	0,2108
Tempo medio di risposta	Tr	1,2108

Porta Ingresso M/M/1	Indice	Valore
Tempo medio di Arrivi	λ	0,5113
Tempo medio di Servizio	Ts	0,3333
Tempo medio di Interarrivo	μ	3
Intensità traffico del sistema	ρ	0,1704
Numero medio di utenti presenti nel sistema	N	0,2055
Numero medio di utenti in coda	W	0,035
Tempo medio atteso in coda	Tw	0,06849
Tempo medio di risposta	Tr	0,4018

CUP M/M/1	Indice	Valore
Tempo medio di Arrivi	λ	0,1023
Tempo medio di Servizio	Ts	7
Tempo medio di Interarrivo	μ	0,1429
Intensità traffico del sistema	ρ	0,7158
Numero medio di utenti presenti nel sistema	N	2,5191
Numero medio di utenti in coda	W	1,8033
Tempo medio atteso in coda	Tw	17,6341
Tempo medio di risposta	Tr	24,6341

Casse M/M/3	Indice	Valore
Tempo medio di Arrivi	λ	0,45
Tempo medio di Servizio	Ts	4
Tempo medio di Interarrivo	μ	0,25
Intensità traffico del sistema	ρ	0,6
Numero medio di utenti presenti nel sistema	N	2,3317
Numero medio di utenti in coda	W	0,5319
Tempo medio atteso in coda	Tw	1,1821
Tempo medio di risposta	Tr	5,1821
Probabilità di fare coda	Prob(coda)	0,3547

Metodo delle prove ripetute

L'obiettivo è raggiungere il 95% della confidenzialità del sistema. Per fare ciò si utilizza il metodo delle prove ripetute, il quale consiste nel ripetere la simulazione p volte, ottenendo sempre dei dati indipendenti da quelli precedenti. Nel programma di simulazione abbiamo impostato il valore su 100 prove, dove ogni prova è composta da 6 giorni, cioè le 6 mattine da lunedì al sabato, e ogni giorno dalle 4,5 ore della mattina.

Replication Paramete	rs	
Number of Replications:	100	
Start Date and Time:	mercoledì 12 gennaio 2022	17:51:01
Warm-up Period:	0.0	Hours ~
Replication Length:	6	Days V
Hours Per Day:	4.5	
Terminating Condition:		
Base Time Units:	Minutes ∨	

Simulazione (Arena)

Per effettuare la simulazione abbiamo utilizzato il software Arena Simulation. Questo programma permette di modellare qualsiasi tipo di sistema e procedere con simulazioni caratterizzate da diversi parametri. Per costruire il nostro modello abbiamo utilizzato i sequenti tipi di nodi:

- Create, generano gli arrivi al sistema:
 - "Arrivi Tamponi": Tempo di interarrivo = EXPO(5.745)
 - "Arrivi Farmacia": Tempo di interarrivo = EXPO(2.06)
- Process, modella sistemi:
 - "Tamponi": Ts = EXPO(5), Serventi = 1
 - "Attesa Tamponi": Ts = CONSTANT(15), Serventi = ∞
 - "Cassa Tamponi": Ts = EXPO(1), Serventi = 1
 - "Porta Ingresso": Ts = EXPO(0.33), Serventi = 1
 - "CUP": Ts = EXPO(7), Serventi = 1
 - "Casse": Ts = EXPO(4), Serventi = 2
- **Decide**, dividono il traffico in più vie d'uscite:
 - o "P. Uscita": 85%
 - o "P. CUP": 20%
 - o "P. Uscita Farmacia": 60%
- **Dispose**, rappresentano l'uscita dal sistema degli utenti:
 - o "Uscita Tamponi"
 - o "Uscita Farmacia"

Convalida del simulatore

Il software Arena mostra nei suoi report una colonna per il valore medio e una, denominata "Half Width", per il valore che ne determina l'intervallo di confidenzialità al 95%. In questa ultima colonna possiamo avere 3 tipi di valore:

- **Insufficient**: la formula utilizzata per calcolare l'half width richiede che i campioni ricadano in una distribuzione di tipo normale, ma questa condizione non viene verificata se il numero di campioni è minore di 320, perciò il sistema ci notifica l'insufficienza di dati per il calcolo accurato dell'half width.
- Correlated: la formula utilizzata per calcolare l'half width richiede inoltre che i
 campioni siano distribuiti indipendentemente. Se risulta esserci una correlazione tra
 un'osservazione e l'altra che comporta un calcolo errato dell'intervallo di confidenza,
 Arena ce lo notificherà attraverso "Correlated".
- **Un valore numerico**: Se invece all'interno della colonna comprare un valore numerico, significa che nel 95% delle prove ripetute la media del campione viene riportata come all'interno dell'intervallo ±[halfwidth] della media del campione.

Poiché nel nostro caso questo parametro assume valori numerici, abbiamo la certezza del fatto che il nostro modello convalida al 95% di confidenza.

Di seguito abbiamo riportato una parte del report fornito da Arena al termine della simulazione riguardante i tempi medi di attesa registrati e il numero medio di persone in coda. Successivamente nella tabella li abbiamo confrontati con i valori teorici attesi derivanti dai modelli matematici, osservando che sono tutti molto simili tra loro, infatti quelli teorici ricadono in pieno nell'intervallo di confidenzialità.

Time

Waiting Time	Average	Half Width
- <u>-</u>		
Cassa Tamponi.Queue	0.1960	0,01
Casse.Queue	1.1844	0,07
CUP.Queue	15.2783	1,43
Porta Ingresso.Queue	0.06777784	0,00
Tamponi.Queue	27.6691	4,12
Other		
Number Waiting	Average	Half Width
Cassa Tamponi.Queue	0.03343372	0,00
Casse.Queue	0.5330	0,03
CUP.Queue	1.5769	0,16
Porta Ingresso.Queue	0.03462089	0,00
Tamponi.Queue	5.0255	0,79

Confronto tra valori attesi e simulati			
Parametro	Valore Teorico	Valore Simulato	
Tamponi			
E[Tw]	33,61	27,6691	
W	5,8515	5,0255	
Cassa Tamponi			
E[Tw]	0,2108	0,196	
W	0,0367	0,0334	
Porta Ingresso			
E[Tw]	0,0685	0,0678	
W	0,035	0,0346	
CUP			
E[Tw]	17,6341	15,2783	
W	1,8033	1,5769	
Casse			
E[Tw]	1,1821	1,1844	
W	0,5319	0,533	

Analisi del report della simulazione

Tutti i tempi contenuti nei grafici sono espressi in minuti e abbiamo riportato i tempi medi di attesa, di servizio e di risposta dei vari nodi. In media durante la simulazione sono arrivate 178 persone con un tempo medio di attesa pari a 21 minuti, 9 minuti di servizio e 31 minuti di permanenza nel sistema.

Possibile configurazione da adottare

Analizzando i risultati ottenuti abbiamo constatato che nell'attuale configurazione le maggiori criticità si presentano nell'effettuare un tampone rapido all'esterno della farmacia e al CUP. Siccome nell'organizzazione del CUP non è possibile effettuare miglioramenti in quanto il tecnico che se ne occupa non appartiene al personale della farmacia, il nostro miglioramento si concentra sulla riconfigurazione del sistema per effettuare il tampone rapido. Attualmente un cliente arriva in farmacia, compila la modulistica, effettua il tampone, attende 15 minuti il responso, poi paga.

Siccome il ρ della cassa dei tamponi è molto basso, sarebbe opportuno trovare il modo di sfruttare l'addetto alla cassa per i tamponi. Alla luce di ciò abbiamo quindi pensato che, se anche il secondo fosse in grado di fare i tamponi ed entrambi potessero far effettuare il pagamento, potremmo riorganizzare il sistema all'esterno in un unico sistema M/M/2 dopo il quale i clienti dovranno solo aspettare il risultato del test (M/M/ ∞). Organizzare in questo modo l'attività non comporta un'assunzione di nuovo personale, né tanto meno fornire corsi di specializzazione al farmacista già in servizio. Con questa organizzazione un cliente che arriva, compila la modulistica, effettua il tampone, paga e poi attende il risultato. Il seguente diagramma mostra l'organizzazione con la proposta della nuova configurazione.

Analisi matematica

Per quanto riguarda la nuova configurazione, analizzeremo soltanto la parte soggetta a cambiamenti, ossia quella relativa allo svolgimento dei tamponi all'esterno della farmacia. Il tasso degli arrivi è invariato, cioè segue sempre una distribuzione Poissoniana di parametro 0,1741, mentre il tempo di servizio è la somma dei due servizi precedenti:

- 5 minuti per la modulistica e il tampone;
- 1 minuto per il pagamento.

Tamponi e Cassa M/M/2	Indice	Valore
Tempo medio di Arrivi	λ	0,1741
Tempo medio di Servizio	Ts	6
Tempo medio di Interarrivo	μ	0,1667
Intensità traffico del sistema	ρ	0,5223
Numero medio di utenti presenti nel sistema	N	1,4365
Numero medio di utenti in coda	W	0,3919
Tempo medio atteso in coda	Tw	2,2508
Tempo medio di risposta	Tr	8,2508

Simulazione del modello proposto

Abbiamo proceduto con la simulazione della configurazione proposta utilizzando come detto un modello M/M/2 per il sistema relativo ai tamponi.

Di seguito i valori ottenuti dalla nuova simulazione e in particolare il confronto dei valori del modello teorico M/M/2 con quelli ottenuti dalla simulazione, in quanto gli altri sono rimasti essenzialmente uguali e quindi convalidati dalla simulazione con la configurazione precedente.

Time

Waiting Time		
Walting Time	Average	Half Width
Casse.Queue	1.2067	0,09
CUP.Queue	16.7257	1,55
Porta Ingresso.Queue	0.06748327	0,00
Tamponi e Cassa Tamponi Queue	2.4029	0,21
Other		

Number Waiting

<u> </u>	Average	Half Width
Casse.Queue	0.5450	0,04
CUP.Queue	1.7694	0,18
Porta Ingresso.Queue	0.03453193	0,00
Tamponi e Cassa Tamponi Queue	0.4258	0,04

Confronto tra valori attesi e simulati		
Parametro	Valore Teorico	Valore Simulato
Tamponi e Cassa tamponi		
E[Tw]	2,2508	2,4029
W	0,3919	0,4258

Conclusioni

Attraverso le simulazioni abbiamo raccolto una grande quantità di dati che hanno fornito un'analisi accurata di ogni dettaglio dei nostri modelli. In particolare la nostra attenzione si è concentrata sul confronto dei tempi di attesa per effettuare un tampone tra la configurazione attuale e quella proposta, perché era proprio quello il punto di maggior criticità. Unendo i due modelli M/M/1 in un unico modello M/M/2 con le funzionalità di entrambi possiamo raggiungere un netto miglioramento dei tempi di attesa. Di seguito un grafico che mette a confronto i valori di tempi medi di attesa, servizio e risposta nelle due configurazioni.

