Selected Solutions to Assignment #6

Exercise 2 (page 78 of B&C). Suppose v and V are both harmonic conjugates of u. Then v = V + const.

Proof. Using Cauchy-Riemann equation $u_x = v_y = V_y$ we get that

$$v(x,y) = V(x,y) + c(x) + c_1.$$

Using the second Cauchy-Riemann equation $u_y = -v_x = -V_x$ we get that

$$v(x,y) = V(x,y) + d(y) + d_1.$$

Thus
$$c(x) = 0$$
, $d(y) = 0$, $c_1 = d_1$ and $v(x, y) = V(x, y) + C$

Exercise 5 (page 78 of B&C). Let $f(z) = u(r,\theta) + iv(r,\theta)$ be analytic in a domain D that does not contain the origin. Show that in D the function $u(r,\theta)$ satisfies the partial differential equation

$$r^{2}u_{rr}(r,\theta) + ru_{r}(r,\theta) + u_{\theta\theta}(r,\theta) = 0$$

Proof. Differentiating the Cauchy-Riemann equation $ru_r = v_\theta$ (in polar coordinates) with respect to r we get

$$(1) u_r + ru_{rr} = v_{\theta r}$$

Differentiating the second Cauchy-Riemann equation in the polar coordinates $u_{\theta} = -rv_r$ with respect to θ we get

$$(2) u_{\theta\theta} = -rv_{\theta r}$$

Equating expressions for $v_{\theta r}$ from (1), (2) we obtain

$$u_r + ru_{rr} = -\frac{u_{\theta\theta}}{r},$$

as desired.

Note that v also satisfies the same equation, which is to say it is also harmonic. \Box

Exercise 3 (page 89 of B&C). Show that the function $f(z) = e^{\bar{z}}$ is not analytic anywhere.

Proof. Rewrite $f(z) = e^{\bar{z}} = e^x \cos y - ie^x \sin y$. Therefore $u(x,y) = e^x \cos y$ and $v(x,y) = -e^x \sin y$. The Cauchy-Riemann equation $u_x = v_y$ is $e^x \cos y = -e^x \cos y$. This is true only when $\cos y = 0$, or $y = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. On the other hand, $u_y = -v_x \cos y - e^x \sin y = e^x \sin y$. This equations holds if and only if $\sin y = 0$, or $y = k\pi$, $k \in \mathbb{Z}$. The coordinate y cannot have both these properties.

Therefore the Cauchy-Riemann equations are satisfied nowhere. By the theorem on page 62, or more precisely by its contrapositive, the function is differentiable nowhere. It is analytic in no open set.

Exercise 10 (page 89 of B&C). (a) Show that if e^z is real, then $\text{Im } z = n\pi, n \in \mathbb{Z}$

Proof. The representation

$$e^z = e^x \cos y + ie^x \sin y,$$

implies that e^z is real if and only if $\sin y = 0$, so $\text{Im } z = y = n\pi$, $n \in \mathbb{Z}$.

(b) Identify restrictions on z such that e^z is pure imaginary.

Proof. The representation

$$e^z = e^x \cos y + ie^x \sin y$$
,

implies that e^z is pure imaginary if and only if $\cos y = 0$. This holds if and only if $\text{Im } z = y = \frac{\pi}{2} + n\pi, \ n \in \mathbb{Z}$.

Exercise 3 (page 94 of B&C). (a) Show that $Log(1+i)^2 = 2Log(1+i)$

Proof. We rewrite in polar coordinates:

$$1+i=\sqrt{2}e^{i\frac{\pi}{4}}, \quad (1+i)^2=2e^{i\frac{\pi}{2}}$$

By the definition of Log:

$$\operatorname{Log}(1+i)^2 = \operatorname{Log}(2e^{i\frac{\pi}{2}}) = \ln 2 + i\frac{\pi}{2},$$
$$2\operatorname{Log}(1+i) = 2\operatorname{Log}(\sqrt{2}e^{i\frac{\pi}{4}}) = 2\ln\sqrt{2} + 2i\frac{\pi}{4} = \ln 2 + i\frac{\pi}{2}.$$

(b) Show that $Log(-1+i)^2 \neq 2Log(-1+i)$

Proof. Polar coordinates:

$$-1 + i = \sqrt{2}e^{i\frac{3\pi}{4}}, \quad (-1+i)^2 = -2i = 2e^{-i\frac{\pi}{2}}$$

By the definition of Log:

$$Log(-1+i)^2 = Log(2e^{-i\frac{\pi}{2}}) = \ln 2 - i\frac{\pi}{2},$$
$$2Log(-1+i) = 2Log(\sqrt{2}e^{i\frac{3\pi}{4}}) = 2\ln\sqrt{2} + 2i\frac{3\pi}{4} = \ln 2 + i\frac{3\pi}{2}.$$

Exercise 8 (page 94 of B&C). Suppose that the point z = x + iy lies in the strip $\alpha < y < \alpha + 2\pi$. Show that when the branch $\log z = \ln r + i\theta$, r > 0, $\alpha < \theta < \alpha + 2\pi$ is used, $\log(e^z) = z$.

Proof. For the point z in the strip we have

$$\log e^z = \log e^{x+iy} = \ln e^x + i(\operatorname{Arg} e^{iy} + n\pi)$$

where n is such that $\alpha < \operatorname{Arg} e^{iy} + n\pi < \alpha + 2\pi$. But if it is so, $\operatorname{Arg} e^{iy} + n\pi = y$, and

$$\log e^z = x + iy = z.$$