Outras Classes de Complexidade

Prof^a Jerusa Marchi

Departamento de Informática e Estatística Universidade Federal de Santa Catarina e-mail: jerusa.marchi@ufsc.br

Assumindo que $\mathcal{P} \neq \mathcal{NP}$, as classes \mathcal{P} e \mathcal{NP} -Completo são disjuntas

■ Também $P \cup \mathcal{NP}$ -Completo $\neq \mathcal{NP}$ (NPI (intermediário))

- **•** Entre \mathcal{P} e \mathcal{NP} (NPI) (Theorema de Ladner)
 - Linguagens recursivas são as linguagens que podem ser reconhecidas por uma Máquina de Turing determinística (não necessariamente em tempo polinomial) que para para todas as entradas
 - Seja B uma linguagem recursiva tal que $B \notin \mathcal{P}$.
 - $m{ ilde{P}}$ Seja $D\in\mathcal{P}$ uma linguagem reconhecida em tempo polinomial
 - Seja $A = D \cap B$, tal que $A \notin \mathcal{P}$, então $A \propto B$ e $B \not \propto A$

- **•** Entre \mathcal{P} e \mathcal{NP} (NPI)
 - Se B é uma linguagem em \mathcal{NP} -Completo, se $\mathcal{P} \neq \mathcal{NP}$ então B ∉ P
 - Se $B \not\propto A$, então $A \not\in \mathcal{NP}$ -Completo
 - Se a linguagem $A \notin \mathcal{P}$, então $A \in \mathsf{NPI}$
- Exemplo $L = \{ \phi \mid \phi \in \mathsf{SAT} \; \mathsf{e} \; f(|\phi|) \; \mathsf{\acute{e}} \; \mathsf{par} \}$
- Ver mais em Leituras Complementares (moodle)

Exemplos:

- Isomorfismo em Grafos: Dados dois grafos G=(V,E) e G'=(V,E'), G e G' são isomórficos? Ou seja, Há uma função $f:V\times V$ tal que $\{u,v\}\in E$ sse $\{f(u),f(v)\}\in E'$?
- Fatoração de números inteiros: Dados dois inteiros positivos m e n, determinar se m tem um fator menor que n e maior do que 1.
- Partição de Grafos: Dado um grafo G = (V, E), é possível particionar G em componentes menores com propriedades específicas?

mais em:

https://cstheory.stackexchange.com/questions/79/problems-between-p-and-npc

• Classe co- \mathcal{NP}

• A classe de linguagens ou problemas co- \mathcal{NP} é formada pelas linguagens ou problemas de decisão cujo complemento pertence a \mathcal{NP}

$$\operatorname{co-}\mathcal{NP} = \{\Pi^c | \Pi \in \mathcal{NP} \}$$

ou em termos de linguagem:

 $\text{co-}\mathcal{NP} = \{\Sigma^* - L | L \text{ \'e uma linguagem sobre o alfabeto } \Sigma \text{ e } L \in \mathcal{NP} \}$

• Como citado anteriormente a classe \mathcal{NP} parece não ser fechada com relação a complementação

Classe co- \mathcal{NP}

- Se $\mathcal{NP} \neq \text{co-}\mathcal{NP}$
 - esta é uma conjectura forte de que $P \neq NP$
 - A classe \mathcal{P} é fechada com relação a complementação ($\mathcal{P} = \text{co-}\mathcal{P}$)
 - Não é sabido se a classe \mathcal{NP} o é (aparentemente $\mathcal{NP} \neq$ co- \mathcal{NP}), o que poderia implicar $\mathcal{P} \neq \mathcal{NP}$
 - Porém $\mathcal{P} \neq \mathcal{NP}$ pode ser verdade mesmo que $\mathcal{NP} = \text{co-}\mathcal{NP}$

Classe co- \mathcal{NP}

Pode ou não ser o caso que $\mathcal{P} = \mathcal{NP} \cap$ co- \mathcal{NP}

Classe co- \mathcal{NP}

- Exemplo:
 - Casamento Bipartido (complemento de Conjuntos Independentes)
 - UNSAT (complemento de SAT)
 - Fluxo Máximo e Números Compostos identificados como $\mathcal{NP} \cap$ co- \mathcal{NP} estão em \mathcal{P}
- Saber se $\mathcal{NP} = \text{co-}\mathcal{NP}$ é um problema em aberto.