Hypergraph Product Codes

Aswanth T

► Toric code is based on a two-dimensional torus.

Figure: A tiling of a 2-D torus

Toric code is based on a two-dimensional torus.

Figure: A tiling of a 2-D torus

lackbox Consider a graph ${\mathcal G}$ which is a tiling of the torus as shown in figure

► Toric code is based on a two-dimensional torus.

Figure: A tiling of a 2-D torus

- lackbox Consider a graph ${\cal G}$ which is a tiling of the torus as shown in figure
- ▶ The vertex set $V = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$

Toric code is based on a two-dimensional torus.

Figure: A tiling of a 2-D torus

- lacktriangle Consider a graph ${\cal G}$ which is a tiling of the torus as shown in figure
- ▶ The vertex set $V = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$
- Every vertex (x, y) has edges connecting to the four neighbouring vertices $(x \pm 1, y), (x, y \pm 1)$ (additions and subtractions are modulo m).

▶ Index the edges from 1 to $n = 2m^2$.

- ▶ Index the edges from 1 to $n = 2m^2$.
- ▶ Define a parity check matrix $\mathbf{H}_X = (h_{ij})$ as the vertex-edge incidence matrix.

$$h_{ij} = egin{cases} 1, & ext{if vertex } i ext{ is incident to edge } j, \ 0, & ext{otherwise}. \end{cases}$$

- ▶ Index the edges from 1 to $n = 2m^2$.
- ▶ Define a parity check matrix $\mathbf{H}_X = (h_{ij})$ as the vertex-edge incidence matrix.

$$h_{ij} = \begin{cases} 1, & \text{if vertex } i \text{ is incident to edge } j, \\ 0, & \text{otherwise.} \end{cases}$$

▶ The associated code \mathscr{C}_X is the cycle code of \mathscr{G} .

- ▶ Index the edges from 1 to $n = 2m^2$.
- ▶ Define a parity check matrix $\mathbf{H}_X = (h_{ij})$ as the vertex-edge incidence matrix.

$$h_{ij} = \begin{cases} 1, & \text{if vertex } i \text{ is incident to edge } j, \\ 0, & \text{otherwise.} \end{cases}$$

- ▶ The associated code \mathscr{C}_X is the cycle code of \mathscr{G} .
- Define another parity check matrix \mathbf{H}_Z as the face-edge incidence matrix. The faces are defined as the 4-cycles (x,y),(x+1,y),(x+1,y+1),(x,y+1).

- ▶ Index the edges from 1 to $n = 2m^2$.
- ▶ Define a parity check matrix $\mathbf{H}_X = (h_{ij})$ as the vertex-edge incidence matrix.

$$h_{ij} = \begin{cases} 1, & \text{if vertex } i \text{ is incident to edge } j, \\ 0, & \text{otherwise.} \end{cases}$$

- ▶ The associated code \mathscr{C}_X is the cycle code of \mathscr{G} .
- Define another parity check matrix \mathbf{H}_Z as the face-edge incidence matrix. The faces are defined as the 4-cycles (x,y),(x+1,y),(x+1,y+1),(x,y+1).
- ▶ The dual code of the code associated with \mathbf{H}_Z , \mathscr{C}_Z^{\perp} is therefore a subspace of the cycle code \mathscr{C}_X . $\Rightarrow \mathbf{H}_Z$ and \mathbf{H}_X can be used for CSS construction.

▶ The number of qubits that the quantum code can encode,

$$\begin{aligned} k_Q &= dim(\mathscr{C}_X/\mathscr{C}_Z^{\perp}) \\ &= dim(\mathscr{C}_X) - dim(\mathscr{C}_Z^{\perp}) \\ &= (m^2 + 1) - (m^2 - 1) = 2 \end{aligned}$$

The number of qubits that the quantum code can encode,

$$k_{Q} = dim(\mathscr{C}_{X}/\mathscr{C}_{Z}^{\perp})$$

$$= dim(\mathscr{C}_{X}) - dim(\mathscr{C}_{Z}^{\perp})$$

$$= (m^{2} + 1) - (m^{2} - 1) = 2$$

▶ The minimum distance of the quantum code,

$$\begin{aligned} d_Q &\stackrel{\text{def}}{=} \min \left\{ d_X, d_Z \right\}, \text{ where} \\ d_X &\stackrel{\text{def}}{=} \min \left\{ |x|, x \in \mathscr{C}_X \backslash \mathscr{C}_Z^{\perp} \right\}, \\ d_Z &\stackrel{\text{def}}{=} \min \left\{ |x|, x \in \mathscr{C}_Z \backslash \mathscr{C}_X^{\perp} \right\}. \end{aligned}$$

▶ The coset leaders in $\mathscr{C}_X/\mathscr{C}_Z^\perp$ are horizontal and vertical loops of the form $(a,0),(a,1),\ldots,(a,m-1)$ and $(0,a),(1,a),\ldots,(m-1,a)$ for any a.

- ▶ The coset leaders in $\mathscr{C}_X/\mathscr{C}_Z^\perp$ are horizontal and vertical loops of the form $(a,0),(a,1),\ldots,(a,m-1)$ and $(0,a),(1,a),\ldots,(m-1,a)$ for any a.
- ▶ The minimum weight of a vector in $\mathscr{C}_X \setminus \mathscr{C}_Z^{\perp}$, d_X , is therefore equal to m.

- ▶ The coset leaders in $\mathscr{C}_X/\mathscr{C}_Z^\perp$ are horizontal and vertical loops of the form $(a,0),(a,1),\ldots,(a,m-1)$ and $(0,a),(1,a),\ldots,(m-1,a)$ for any a.
- ▶ The minimum weight of a vector in $\mathscr{C}_X \setminus \mathscr{C}_Z^{\perp}$, d_X , is therefore equal to m.
- ▶ Define the dual graph \mathcal{G}' : vertex set equal to the faces of \mathcal{G} , and there is an edge between two vertices of \mathcal{G}' if the corresponding faces of \mathcal{G} have a common edge in \mathcal{G} .

- ▶ The coset leaders in $\mathscr{C}_X/\mathscr{C}_Z^\perp$ are horizontal and vertical loops of the form $(a,0),(a,1),\ldots,(a,m-1)$ and $(0,a),(1,a),\ldots,(m-1,a)$ for any a.
- ▶ The minimum weight of a vector in $\mathscr{C}_X \setminus \mathscr{C}_Z^{\perp}$, d_X , is therefore equal to m.
- ▶ Define the dual graph \mathcal{G}' : vertex set equal to the faces of \mathcal{G} , and there is an edge between two vertices of \mathcal{G}' if the corresponding faces of \mathcal{G} have a common edge in \mathcal{G} .
- Now, \mathscr{C}_Z can be seen as the cycle code of \mathcal{G}' and \mathscr{C}_X as the code generated by 4-cycles of \mathcal{G}' .

- ▶ The coset leaders in $\mathscr{C}_X/\mathscr{C}_Z^\perp$ are horizontal and vertical loops of the form $(a,0),(a,1),\ldots,(a,m-1)$ and $(0,a),(1,a),\ldots,(m-1,a)$ for any a.
- ▶ The minimum weight of a vector in $\mathscr{C}_X \setminus \mathscr{C}_Z^{\perp}$, d_X , is therefore equal to m.
- ▶ Define the dual graph \mathcal{G}' : vertex set equal to the faces of \mathcal{G} , and there is an edge between two vertices of \mathcal{G}' if the corresponding faces of \mathcal{G} have a common edge in \mathcal{G} .
- Now, \mathscr{C}_Z can be seen as the cycle code of \mathscr{G}' and \mathscr{C}_X as the code generated by 4-cycles of \mathscr{G}' .
- ▶ Hence, d_Z is also m.
 - \Rightarrow The minimum distance of the quantum code is m.

QLDPC Codes

Definition

A family of [[n, k, d]] qubit stabilizer codes is QLDPC if, as n tends to ∞ ,

1. the Pauli weight of each stabilizer generator is bounded by a constant.

QLDPC Codes

Definition

A family of [[n, k, d]] qubit stabilizer codes is QLDPC if, as n tends to ∞ ,

- 1. the Pauli weight of each stabilizer generator is bounded by a constant,
- 2. for each physical qubit, the number of stabilizer generators having a non-trivial operator on it is bounded by a constant.

Advantage: The syndrome extraction of the constant-weight check operators can be done using a constant-depth circuit.

Definition

Graph product: The product $\mathcal{G}_1 \times \mathcal{G}_2$ of two graphs \mathcal{G}_1 and \mathcal{G}_2 has vertex set made up of (x,y), where x and y are vertices of \mathcal{G}_1 and \mathcal{G}_2 respectively. The edges of the product graph connect two vertices (x,y) and (x',y') if either x=x' and $\{y,y'\}$ is an edge of \mathcal{G}_2 or y=y' and $\{x,x'\}$ is an edge of \mathcal{G}_1 .

▶ The product graph is the union of the Tanner graphs of \mathscr{C}_X and \mathscr{C}_Z in toric code.

Figure: Union of Tanner graphs for m = 3

▶ The product graph is the union of the Tanner graphs of \mathscr{C}_X and \mathscr{C}_Z in toric code.

Figure: Union of Tanner graphs for m = 3

► This motivates us to generalize the construction using graph product.

Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.

- Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.
- $ightharpoonup \mathcal{G}_1 imes \mathcal{G}_2$ has vertex set

$$(V_1 \times V_2) \cup (V_1 \times C_2) \cup (C_1 \times V_2) \cup (C_1 \times C_2)$$

- Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.
- $ightharpoonup \mathcal{G}_1 imes \mathcal{G}_2$ has vertex set

$$(V_1 \times V_2) \cup (V_1 \times C_2) \cup (C_1 \times V_2) \cup (C_1 \times C_2)$$

- Observe:
 - 1. There are no edges within $V = V_1 \times V_2 \cup C_1 \times C_2$
 - 2. No edges within $C:=C_1\times V_2\cup V_1\times C_2$

- Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.
- $ightharpoonup \mathcal{G}_1 imes \mathcal{G}_2$ has vertex set

$$(V_1 \times V_2) \cup (V_1 \times C_2) \cup (C_1 \times V_2) \cup (C_1 \times C_2)$$

- Observe:
 - 1. There are no edges within $V = V_1 \times V_2 \cup C_1 \times C_2$
 - 2. No edges within $C := C_1 \times V_2 \cup V_1 \times C_2$
- ▶ The product graph $\mathcal{G}_1 \times \mathcal{G}_2$ is a bipartite graph with vertex set $V \cup C$.

- Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.
- $ightharpoonup \mathcal{G}_1 imes \mathcal{G}_2$ has vertex set

$$(V_1 \times V_2) \cup (V_1 \times C_2) \cup (C_1 \times V_2) \cup (C_1 \times C_2)$$

- Observe:
 - 1. There are no edges within $V = V_1 \times V_2 \cup C_1 \times C_2$
 - 2. No edges within $C := C_1 \times V_2 \cup V_1 \times C_2$
- ▶ The product graph $\mathcal{G}_1 \times \mathcal{G}_2$ is a bipartite graph with vertex set $V \cup C$.
- Let $\mathcal{G}_1 \times_X \mathcal{G}_2$ be the Tanner graph defined as the subgraph of $\mathcal{G}_1 \times \mathcal{G}_2$ with variable nodes V and check nodes $C_1 \times V_2$.

- Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.
- $ightharpoonup \mathcal{G}_1 imes \mathcal{G}_2$ has vertex set

$$(V_1 \times V_2) \cup (V_1 \times C_2) \cup (C_1 \times V_2) \cup (C_1 \times C_2)$$

- Observe:
 - 1. There are no edges within $V = V_1 \times V_2 \cup C_1 \times C_2$
 - 2. No edges within $C := C_1 \times V_2 \cup V_1 \times C_2$
- ▶ The product graph $\mathcal{G}_1 \times \mathcal{G}_2$ is a bipartite graph with vertex set $V \cup C$.
- ▶ Let $\mathcal{G}_1 \times_X \mathcal{G}_2$ be the Tanner graph defined as the subgraph of $\mathcal{G}_1 \times \mathcal{G}_2$ with variable nodes V and check nodes $C_1 \times V_2$.
- ▶ Let $\mathcal{G}_1 \times_Z \mathcal{G}_2$ be the subgraph of $\mathcal{G}_1 \times \mathcal{G}_2$ with set of variable nodes V and set of check nodes $V_1 \times \mathcal{C}_2$.

- Let $G_1 = T(V_1, C_1, E_1)$ and $G_2 = T(V_2, C_2, E_2)$ be two Tanner graphs.
- $ightharpoonup \mathcal{G}_1 imes \mathcal{G}_2$ has vertex set

$$(V_1 \times V_2) \cup (V_1 \times C_2) \cup (C_1 \times V_2) \cup (C_1 \times C_2)$$

- Observe:
 - 1. There are no edges within $V = V_1 \times V_2 \cup C_1 \times C_2$
 - 2. No edges within $C := C_1 \times V_2 \cup V_1 \times C_2$
- ▶ The product graph $\mathcal{G}_1 \times \mathcal{G}_2$ is a bipartite graph with vertex set $V \cup C$.
- Let $\mathcal{G}_1 \times_X \mathcal{G}_2$ be the Tanner graph defined as the subgraph of $\mathcal{G}_1 \times \mathcal{G}_2$ with variable nodes V and check nodes $C_1 \times V_2$.
- Let $\mathcal{G}_1 \times_Z \mathcal{G}_2$ be the subgraph of $\mathcal{G}_1 \times \mathcal{G}_2$ with set of variable nodes V and set of check nodes $V_1 \times \mathcal{C}_2$.
- ▶ The union of $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$ equals $\mathcal{G}_1 \times \mathcal{G}_2$.

Figure: $\mathcal{G}_1 \times \mathcal{G}_2$ as the union of $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$

▶ Define \mathscr{C}_X and \mathscr{C}_Z as the codes associated to the Tanner graphs $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$ respectively.

Figure: $\mathcal{G}_1 \times \mathcal{G}_2$ as the union of $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$

- ▶ Define \mathscr{C}_X and \mathscr{C}_Z as the codes associated to the Tanner graphs $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$ respectively.
- ▶ Construct a CSS code using \mathscr{C}_X and \mathscr{C}_Z .

Figure: $G_1 \times G_2$ as the union of $G_1 \times {}_XG_2$ and $G_1 \times {}_ZG_2$

- ▶ Define \mathscr{C}_X and \mathscr{C}_Z as the codes associated to the Tanner graphs $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$ respectively.
- ▶ Construct a CSS code using \mathscr{C}_X and \mathscr{C}_Z .
- ▶ It is still unclear whether $\mathscr{C}_Z^\perp \subseteq \mathscr{C}_X$.

Validity of the Construction

Proposition

$$\mathscr{C}_X^\perp \subseteq \mathscr{C}_Z$$

Proof:

▶ Let \mathbf{H}_X and \mathbf{H}_Z be the parity-check matrices associated to the Tanner graphs $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$ respectively.

Validity of the Construction

Proposition

$$\mathscr{C}_X^\perp \subseteq \mathscr{C}_Z$$

Proof:

- ▶ Let \mathbf{H}_X and \mathbf{H}_Z be the parity-check matrices associated to the Tanner graphs $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$ respectively.
- ▶ Let $\mathbf{h}_X(c_1, v_2)$ denote the row of \mathbf{H}_X corresponding to the check node (c_1, v_2) of $\mathcal{G}_1 \times_X \mathcal{G}_2$, for $c_1 \in C_1$ and $v_2 \in V_2$.

Validity of the Construction

Proposition

$$\mathscr{C}_X^{\perp} \subseteq \mathscr{C}_Z$$

Proof:

- ▶ Let \mathbf{H}_X and \mathbf{H}_Z be the parity-check matrices associated to the Tanner graphs $\mathcal{G}_1 \times_X \mathcal{G}_2$ and $\mathcal{G}_1 \times_Z \mathcal{G}_2$ respectively.
- ▶ Let $\mathbf{h}_X(c_1, v_2)$ denote the row of \mathbf{H}_X corresponding to the check node (c_1, v_2) of $\mathcal{G}_1 \times_X \mathcal{G}_2$, for $c_1 \in C_1$ and $v_2 \in V_2$.
- ldentify $\mathbf{h}_X(c_1, v_2)$ with the set of neighbors of (c_1, v_2) in $\mathcal{G}_1 \times \mathcal{G}_2$. (Similarly, for \mathbf{H}_Z as well)

▶ It is sufficient to prove that for any $v_1 \in V_i, c_i \in C_i, i \in \{1, 2\}$, $\mathbf{h}_X(c_1, v_2)$ of \mathbf{H}_X is orthogonal to $\mathbf{h}_Z(v_1, c_2)$ of \mathbf{H}_Z .

- ▶ It is sufficient to prove that for any $v_1 \in V_i, c_i \in C_i, i \in \{1, 2\}$, $\mathbf{h}_X(c_1, v_2)$ of \mathbf{H}_X is orthogonal to $\mathbf{h}_Z(v_1, c_2)$ of \mathbf{H}_Z .
- ► Their inner product,

$$\langle \mathbf{h}_X(c_1, v_2), \mathbf{h}_Z(v_1, c_2) \rangle = |S| \pmod{2},$$

where S is the set of vertices adjacent to both (c_1, v_2) and (v_1, c_2) in $\mathcal{G}_1 \times \mathcal{G}_2$.

- It is sufficient to prove that for any $v_1 \in V_i, c_i \in C_i, i \in \{1, 2\}$, $\mathbf{h}_X(c_1, v_2)$ of \mathbf{H}_X is orthogonal to $\mathbf{h}_Z(v_1, c_2)$ of \mathbf{H}_Z .
- ▶ Their inner product,

$$\langle \mathbf{h}_X(c_1, v_2), \mathbf{h}_Z(v_1, c_2) \rangle = |S| \pmod{2},$$

where S is the set of vertices adjacent to both (c_1, v_2) and (v_1, c_2) in $\mathcal{G}_1 \times \mathcal{G}_2$.

▶ The neighbours of (c_1, v_2) are of the form (c_1, c_2') or (v_1', v_2) for some $c_2' \in C_2$ connected to v_2 and $v_1' \in V_1$ connected to c_1 .

- It is sufficient to prove that for any $v_1 \in V_i, c_i \in C_i, i \in \{1, 2\}$, $\mathbf{h}_X(c_1, v_2)$ of \mathbf{H}_X is orthogonal to $\mathbf{h}_Z(v_1, c_2)$ of \mathbf{H}_Z .
- ▶ Their inner product,

$$\langle \mathbf{h}_X(c_1, v_2), \mathbf{h}_Z(v_1, c_2) \rangle = |S| \pmod{2},$$

where S is the set of vertices adjacent to both (c_1, v_2) and (v_1, c_2) in $\mathcal{G}_1 \times \mathcal{G}_2$.

- ▶ The neighbours of (c_1, v_2) are of the form (c_1, c_2') or (v_1', v_2) for some $c_2' \in C_2$ connected to v_2 and $v_1' \in V_1$ connected to c_1 .
- For (c_1, c_2') to be adjacent to (v_1, c_2) , we must have v_1 and c_1 connected and $c_2 = c_2'$, which is connected to v_2 .

- It is sufficient to prove that for any $v_1 \in V_i, c_i \in C_i, i \in \{1, 2\}$, $\mathbf{h}_X(c_1, v_2)$ of \mathbf{H}_X is orthogonal to $\mathbf{h}_Z(v_1, c_2)$ of \mathbf{H}_Z .
- ► Their inner product,

$$\langle \mathbf{h}_X(c_1, v_2), \mathbf{h}_Z(v_1, c_2) \rangle = |S| \pmod{2},$$

where S is the set of vertices adjacent to both (c_1, v_2) and (v_1, c_2) in $\mathcal{G}_1 \times \mathcal{G}_2$.

- ▶ The neighbours of (c_1, v_2) are of the form (c_1, c_2') or (v_1', v_2) for some $c_2' \in C_2$ connected to v_2 and $v_1' \in V_1$ connected to c_1 .
- For (c_1, c_2') to be adjacent to (v_1, c_2) , we must have v_1 and c_1 connected and $c_2 = c_2'$, which is connected to v_2 .
- ▶ Similarly, for (v'_1, v_2) to be adjacent to (v_1, c_2) , we must have v_2 and c_2 connected and $v_1 = v'_1$, which is connected to c_1 .

For S to be nonempty, we need v_1 connected to c_1 and v_2 connected to c_2 .

- For S to be nonempty, we need v_1 connected to c_1 and v_2 connected to c_2 .
- ▶ In such case, $S = \{(v_1, v_2), (c_1, c_2)\}$ and the inner product,

$$\langle \mathbf{h}_{X}\left(c_{1},v_{2}
ight), \mathbf{h}_{Z}\left(v_{1},c_{2}
ight)
angle = |S| (\mathsf{mod}\,2) = 0$$

- For S to be nonempty, we need v_1 connected to c_1 and v_2 connected to c_2 .
- ▶ In such case, $S = \{(v_1, v_2), (c_1, c_2)\}$ and the inner product,

$$\langle \mathbf{h}_X\left(c_1,v_2
ight), \mathbf{h}_Z\left(v_1,c_2
ight)
angle = |S| (\mathsf{mod} 2) = 0$$

▶ If n_1 and r_1 (n_2 and r_2) are the number of variable nodes and check nodes in \mathcal{G}_1 (\mathcal{G}_2),

$$\begin{aligned} \dim(\mathscr{C}_Z) &= n_1 n_2 + r_1 r_2 - rank(\mathbf{H}_Z) \\ &\geq n_1 n_2 + r_1 r_2 - n_1 r_2 \\ \dim(\mathscr{C}_X^{\perp}) &= rank(\mathbf{H}_X) \\ &\leq n_2 r_1 \end{aligned}$$

- For S to be nonempty, we need v_1 connected to c_1 and v_2 connected to c_2 .
- ▶ In such case, $S = \{(v_1, v_2), (c_1, c_2)\}$ and the inner product,

$$\langle \mathbf{h}_X(c_1, v_2), \mathbf{h}_Z(v_1, c_2) \rangle = |S| \pmod{2} = 0$$

▶ If n_1 and r_1 (n_2 and r_2) are the number of variable nodes and check nodes in \mathcal{G}_1 (\mathcal{G}_2),

$$dim(\mathscr{C}_Z) = n_1 n_2 + r_1 r_2 - rank(\mathbf{H}_Z)$$

$$\geq n_1 n_2 + r_1 r_2 - n_1 r_2$$

$$dim(\mathscr{C}_X^{\perp}) = rank(\mathbf{H}_X)$$

$$\leq n_2 r_1$$

▶ If we choose \mathcal{G}_1 and \mathcal{G}_2 properly, we can have $\mathscr{C}_X^{\perp} \subset \mathscr{C}_Z$ and get a non-trivial quantum code by CSS construction.

A hypergraph $\mathcal{H} = (V, \mathcal{E})$ is a set V together with a collection \mathcal{E} of subsets called hyperedges.

Figure: A hypergraph of vertex set $\{v_1, v_2, \dots, v_6\}$ and hyperedges $\{e_1, e_2, e_3, e_4\}$

A hypergraph $\mathcal{H} = (V, \mathcal{E})$ is a set V together with a collection \mathcal{E} of subsets called hyperedges.

Figure: A hypergraph of vertex set $\{v_1, v_2, \dots, v_6\}$ and hyperedges $\{e_1, e_2, e_3, e_4\}$

A hypergraph is a graph when every edge has cardinality 2.

- Let $\mathcal{H}_1 = (V_1, \mathcal{E}_1)$ and $\mathcal{H}_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs. The product hypergraph $\mathcal{H}_1 \times \mathcal{H}_2$ is defined as $\mathcal{H} = (V, \mathcal{E})$ such that $V = V_1 \times V_2$ and \mathcal{E} is the collection of subsets of V
 - either of the form $\{v_1\} \times e_2$ with $v_1 \in V_1$ and $e_2 \in \mathcal{E}_2$,
 - or of the form $e_1 \times \{v_2\}$ with $e_1 \in \mathcal{E}_1$ and $v_2 \in V_2$.

▶ A hypergraph can be identified with a Tanner graph: for a hypergraph $\mathcal{H} = (V, \mathcal{E})$, the associated Tanner graph has vertex set $V \cup \mathcal{E}$ and $v \in V$ and $e \in \mathcal{E}$ are connected whenever $v \in e$ in \mathcal{H} .

- ▶ A hypergraph can be identified with a Tanner graph: for a hypergraph $\mathcal{H} = (V, \mathcal{E})$, the associated Tanner graph has vertex set $V \cup \mathcal{E}$ and $v \in V$ and $e \in \mathcal{E}$ are connected whenever $v \in e$ in \mathcal{H} .
- Conversely, any Tanner graph $\mathcal{T}(V,C,E)$, generates a hypergraph on vertex set V with the hyperedges as the neighborhoods of the check vertices c, for all $c \in C$.

Hypergraph Product of Tanner Graphs

Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.

Hypergraph Product of Tanner Graphs

- Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.
- ▶ The hypergraph product $\mathcal{G}_1 \otimes \mathcal{G}_2$ is defined as the induced subgraph of $\mathcal{G}_1 \times \mathcal{G}_2$ with variable node set $V_1 \times V_2$ and check node set $C_1 \times V_2 \cup V_1 \times C_2$.

Hypergraph Product of Tanner Graphs

- Let $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ be two Tanner graphs.
- ▶ The hypergraph product $\mathcal{G}_1 \otimes \mathcal{G}_2$ is defined as the induced subgraph of $\mathcal{G}_1 \times \mathcal{G}_2$ with variable node set $V_1 \times V_2$ and check node set $C_1 \times V_2 \cup V_1 \times C_2$.

▶ $G_1 \otimes G_2$ can be connected to the notion of product codes.

Hypergraph Products and Product Codes

▶ Let \mathscr{C}_1 and \mathscr{C}_2 be two binary codes of length n_1 and n_2 respectively. The product code $\mathscr{C}_1 \otimes \mathscr{C}_2$ is the binary code of length $n_1 n_2$ whose codewords may be viewed as binary matrices of size $n_1 \times n_2$ such that all of its columns belong to \mathscr{C}_1 and all its rows to \mathscr{C}_2 .

Hypergraph Products and Product Codes

- ▶ Let \mathscr{C}_1 and \mathscr{C}_2 be two binary codes of length n_1 and n_2 respectively. The product code $\mathscr{C}_1 \otimes \mathscr{C}_2$ is the binary code of length $n_1 n_2$ whose codewords may be viewed as binary matrices of size $n_1 \times n_2$ such that all of its columns belong to \mathscr{C}_1 and all its rows to \mathscr{C}_2 .
- ▶ If $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ are the Tanner graphs of \mathscr{C}_1 and \mathscr{C}_2 respectively, then $\mathcal{G}_1 \otimes \mathcal{G}_2$ is a Tanner graph of $\mathscr{C}_1 \otimes \mathscr{C}_2$.

Hypergraph Products and Product Codes

- ▶ Let \mathscr{C}_1 and \mathscr{C}_2 be two binary codes of length n_1 and n_2 respectively. The product code $\mathscr{C}_1 \otimes \mathscr{C}_2$ is the binary code of length $n_1 n_2$ whose codewords may be viewed as binary matrices of size $n_1 \times n_2$ such that all of its columns belong to \mathscr{C}_1 and all its rows to \mathscr{C}_2 .
- ▶ If $\mathcal{G}_1 = \mathcal{T}(V_1, C_1, E_1)$ and $\mathcal{G}_2 = \mathcal{T}(V_2, C_2, E_2)$ are the Tanner graphs of \mathscr{C}_1 and \mathscr{C}_2 respectively, then $\mathcal{G}_1 \otimes \mathcal{G}_2$ is a Tanner graph of $\mathscr{C}_1 \otimes \mathscr{C}_2$.
- ▶ The dimension of the product code,

$$dim\left(\mathscr{C}_{1}\otimes\mathscr{C}_{2}\right)=dim\left(\mathscr{C}_{1}\right) imes dim\left(\mathscr{C}_{2}\right)$$

► The transpose of a Tanner graph $\mathcal{G} = \mathcal{T}(V, C, E)$ is the Tanner graph $\mathcal{G}^T := \mathcal{T}(C, V, E)$.

- ► The transpose of a Tanner graph $\mathcal{G} = \mathcal{T}(V, C, E)$ is the Tanner graph $\mathcal{G}^T := \mathcal{T}(C, V, E)$.
- ▶ Let $\mathscr{C}^T = \mathscr{C}_{\mathcal{G}}^T$ be the binary code specified by \mathcal{G}^T where \mathcal{G} is a Tanner graph for \mathscr{C} .

- ► The transpose of a Tanner graph $\mathcal{G} = \mathcal{T}(V, C, E)$ is the Tanner graph $\mathcal{G}^T := \mathcal{T}(C, V, E)$.
- Let $\mathscr{C}^T = \mathscr{C}_{\mathcal{G}}^T$ be the binary code specified by \mathcal{G}^T where \mathcal{G} is a Tanner graph for \mathscr{C} .
- ▶ The transpose of the parity check matrix of \mathscr{C} is the parity check matrix of \mathscr{C}^T .

- ► The transpose of a Tanner graph $\mathcal{G} = \mathcal{T}(V, C, E)$ is the Tanner graph $\mathcal{G}^T := \mathcal{T}(C, V, E)$.
- Let $\mathscr{C}^T = \mathscr{C}_{\mathcal{G}}^T$ be the binary code specified by \mathcal{G}^T where \mathcal{G} is a Tanner graph for \mathscr{C} .
- ▶ The transpose of the parity check matrix of \mathscr{C} is the parity check matrix of \mathscr{C}^T .
- ▶ Let **H** be the parity check matrix of 𝒞. Then

$$dim(\mathscr{C}) = |V| - rank(\mathbf{H})$$

$$= |V| - rank(\mathbf{H}^T)$$

$$= |V| - (|C| - dim(\mathscr{C}^T))$$

$$= |V| - |C| + dim(\mathscr{C}^T)$$

Connecting the Construction to Hypergraph Product

Proposition

As defined eariler, let \mathcal{G}_1 and \mathcal{G}_2 be the Tanner graphs of \mathcal{C}_1 and \mathcal{C}_2 respectively. Then,

$$\mathscr{C}_{X} = \mathcal{G}_{1} \times_{X} \mathcal{G}_{2} = \left(\mathcal{G}_{1}^{T} \otimes \mathcal{G}_{2}\right)^{T}$$
$$\mathscr{C}_{Z} = \mathcal{G}_{1} \times_{Z} \mathcal{G}_{2} = \left(\mathcal{G}_{1} \otimes \mathcal{G}_{2}^{T}\right)^{T}.$$

Connecting the Construction to Hypergraph Product

Proposition

As defined eariler, let G_1 and G_2 be the Tanner graphs of C_1 and C_2 respectively. Then,

$$\mathscr{C}_{X} = \mathcal{G}_{1} \times_{X} \mathcal{G}_{2} = \left(\mathcal{G}_{1}^{T} \otimes \mathcal{G}_{2}\right)^{T}$$
$$\mathscr{C}_{Z} = \mathcal{G}_{1} \times_{Z} \mathcal{G}_{2} = \left(\mathcal{G}_{1} \otimes \mathcal{G}_{2}^{T}\right)^{T}.$$

► Equivalently,

$$\begin{aligned} \mathscr{C}_X^T &= \mathscr{C}_1^T \otimes \mathscr{C}_2 \\ \mathscr{C}_Z^T &= \mathscr{C}_1 \otimes \mathscr{C}_2^T. \end{aligned}$$

Connecting the Construction to Hypergraph Product

Proof.

▶ From the definition of hypergraph product,

$$\begin{split} \left(\mathcal{G}_{1}^{T}\otimes\mathcal{G}_{2}\right)^{T} &= \left(\mathcal{T}_{1}\left(V_{1},C_{1}\right)^{T}\otimes\mathcal{T}_{2}\left(V_{2},C_{2}\right)\right)^{T} \\ &= \left(\mathcal{T}_{1}\left(C_{1},V_{1}\right)\otimes\mathcal{T}_{2}\left(V_{2},C_{2}\right)\right)^{T} \\ &= \left(\mathcal{T}_{3}\left(C_{1}\times V_{2},V_{1}\times V_{2}\cup C_{1}\times C_{2}\right)\right)^{T} \\ &= \mathcal{T}_{3}\left(V_{1}\times V_{2}\cup C_{1}\times C_{2},C_{1}\times V_{2}\right) \\ &= \mathcal{G}_{1}\times_{X}\mathcal{G}_{2}. \end{split}$$

▶ Similarly, for $\mathcal{G}_1 \times_Z \mathcal{G}_2$ as well.

Dimension of the Quantum Code

Assume \mathcal{C}_i has block length n_i , dimension k_i and r_i rows in its parity check matrix. Then,

$$\dim (\mathscr{C}_{X}) = n_{1}n_{2} + r_{1}r_{2} - r_{1}n_{2} + \dim (\mathscr{C}_{X}^{T})$$

$$= n_{1}n_{2} + r_{1}r_{2} - r_{1}n_{2} + \dim (\mathscr{C}_{1}^{T} \otimes \mathscr{C}_{2})$$

$$= n_{1}n_{2} + r_{1}r_{2} - r_{1}n_{2} + \dim (\mathscr{C}_{1}^{T}) \dim (\mathscr{C}_{2})$$

$$= n_{1}n_{2} + r_{1}r_{2} - r_{1}n_{2} + k_{1}^{T} k_{2},$$

and

$$\dim (\mathscr{C}_Z) = n_1 n_2 + r_1 r_2 - r_2 n_1 + k_2^T k_1,$$

where k_1^T and k_2^T are the dimensions of the transpose codes \mathcal{C}_1^T and \mathcal{C}_2^T .

Dimension of the Quantum Code

➤ This gives the quantum dimension of the hypergraph product code,

$$k_{Q} = dim(\mathscr{C}_{X}) - (n_{1}n_{2} + r_{1}r_{2} - dim(\mathscr{C}_{Z}))$$

$$= n_{1}n_{2} + r_{1}r_{2} - r_{1}n_{2} - n_{1}r_{2} + k_{1}k_{2}^{T} + k_{1}^{T}k_{2}$$

$$= (n_{1} - r_{1}) \cdot (n_{2} - r_{2}) + k_{1}k_{2}^{T} + k_{1}^{T}k_{2}$$

$$= (k_{1} - k_{1}^{T}) \cdot (k_{2} - k_{2}^{T}) + k_{1}k_{2}^{T} + k_{1}^{T}k_{2}$$

$$= k_{1}k_{2} + k_{1}^{T}k_{2}^{T}$$

(The minimum distance of a trivial code is defined to be ∞ .)

Proposition

For $i \in \{1,2\}$, let d_i be the minimum distance of a code with Tanner graph \mathcal{G}_i and let d_i^T denote the minimum distance of the code specified by the transpose Tanner graph \mathcal{G}_i^T . The minimum distance d_Q of the quantum code $\mathcal{Q}\left(\mathcal{G}_1 \times \mathcal{G}_2\right)$ satisfies

$$d_Q \geq \min\left(d_1, d_2, d_1^T, d_2^T\right)$$
.

- $\blacktriangleright \ d_X := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_X \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_Z \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^\perp \right)$
- $\blacktriangleright \ d_Z := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_Z \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_X \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^\perp \right)$
- ▶ Let $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$.

- $\blacktriangleright \ d_X := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_X \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_Z \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^\perp \right)$
- $\blacktriangleright \ d_{\mathcal{Z}} := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_{\mathcal{Z}} \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_{\mathcal{X}} \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^{\perp} \right)$
- ▶ Let $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$.
- ▶ $\sup(\mathbf{x})$ denotes the support of \mathbf{x} which is a subset of $V_1 \times V_2 \cup C_1 \times C_2$.

- $\blacktriangleright \ d_X := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_X \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_Z \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^\perp \right)$
- $\blacktriangleright \ d_{\mathcal{Z}} := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_{\mathcal{Z}} \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_{\mathcal{X}} \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^{\perp} \right)$
- ▶ Let $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$.
- ▶ $\sup(\mathbf{x})$ denotes the support of \mathbf{x} which is a subset of $V_1 \times V_2 \cup C_1 \times C_2$.
- ▶ Let $V'_1 := \{v' \in V_1 : \exists v \in V_2, (v', v) \in \text{supp}(\mathbf{x})\}$ and $C'_2 := \{c' \in C_2 : \exists c \in C_1, (c, c') \in \text{supp}(\mathbf{x})\}.$

- $\blacktriangleright \ d_X := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_X \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_Z \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^\perp \right)$
- $\blacktriangleright \ d_{\mathcal{Z}} := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_{\mathcal{Z}} \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_{\mathcal{X}} \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^{\perp} \right)$
- ▶ Let $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$.
- ▶ $\sup(\mathbf{x})$ denotes the support of \mathbf{x} which is a subset of $V_1 \times V_2 \cup C_1 \times C_2$.
- ▶ Let $V'_1 := \{v' \in V_1 : \exists v \in V_2, (v', v) \in \text{supp}(\mathbf{x})\}$ and $C'_2 := \{c' \in C_2 : \exists c \in C_1, (c, c') \in \text{supp}(\mathbf{x})\}.$
- ▶ Let \mathcal{G}_1' be the subgraph of \mathcal{G}_1 induced by $V_1' \cup C_1$ and \mathcal{G}_2' be the subgraph of \mathcal{G}_2 induced by $V_2 \cup C_2'$.

- $\blacktriangleright \ d_X := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_X \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_Z \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^\perp \right)$
- $\blacktriangleright \ d_{\mathcal{Z}} := \min \left(|\mathbf{y}| : \mathbf{y} \in \mathscr{C}_{\mathcal{Z}} \left(\mathcal{G}_1 \times \mathcal{G}_2 \right) \setminus \mathscr{C}_{\mathcal{X}} \left(\mathcal{G}_1 \times \mathcal{G}_2 \right)^{\perp} \right)$
- ▶ Let $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$.
- ▶ $\sup(\mathbf{x})$ denotes the support of \mathbf{x} which is a subset of $V_1 \times V_2 \cup C_1 \times C_2$.
- ▶ Let $V'_1 := \{v' \in V_1 : \exists v \in V_2, (v', v) \in \text{supp}(\mathbf{x})\}$ and $C'_2 := \{c' \in C_2 : \exists c \in C_1, (c, c') \in \text{supp}(\mathbf{x})\}.$
- ▶ Let \mathcal{G}_1' be the subgraph of \mathcal{G}_1 induced by $V_1' \cup C_1$ and \mathcal{G}_2' be the subgraph of \mathcal{G}_2 induced by $V_2 \cup C_2'$.
- ▶ Let \mathscr{C}_i , \mathscr{C}'_i be the binary code defined by the Tanner graph \mathcal{G}_i and \mathcal{G}'_i .

If
$$w_H(\mathbf{x}) < \min(d_1, d_2^T)$$
:
 $|V_1'| < d_1 \Rightarrow |V_1 \setminus V_1'| > n_1 - d_1$ $(|V_1| =: n_1)$

If $w_H(\mathbf{x}) < \min(d_1, d_2^T)$:

- $|V_1'| < d_1 \Rightarrow |V_1 \setminus V_1'| > n_1 d_1 \qquad (|V_1| =: n_1)$
- A codeword of \mathscr{C}_1' can be viewed as a codeword of \mathscr{C}_1 by extending it with zeros on the positions of $V_1 \setminus V_1'$.

If $w_H(\mathbf{x}) < \min(d_1, d_2^T)$:

- $|V_1'| < d_1 \Rightarrow |V_1 \setminus V_1'| > n_1 d_1 \qquad (|V_1| =: n_1)$
- ▶ A codeword of \mathscr{C}_1' can be viewed as a codeword of \mathscr{C}_1 by extending it with zeros on the positions of $V_1 \setminus V_1'$.
- A non-zero codeword in \mathscr{C}_1' would give a non-zero codeword in \mathscr{C}_1 with weight less than $d_1 \Rightarrow \dim (\mathscr{C}_1') = 0$.

If $w_H(\mathbf{x}) < \min(d_1, d_2^T)$:

- $|V_1'| < d_1 \Rightarrow |V_1 \setminus V_1'| > n_1 d_1 \qquad (|V_1| =: n_1)$
- A codeword of \mathscr{C}_1' can be viewed as a codeword of \mathscr{C}_1 by extending it with zeros on the positions of $V_1 \setminus V_1'$.
- ▶ A non-zero codeword in \mathscr{C}_1' would give a non-zero codeword in \mathscr{C}_1 with weight less than $d_1 \Rightarrow \dim(\mathscr{C}_1') = 0$.

$$|C_2'| < d_2^T \Rightarrow |C_2 \setminus C_2'| > r_2 - d_2^T \qquad (|C_2| =: r_2)$$

If $w_H(\mathbf{x}) < \min(d_1, d_2^T)$:

- $|V_1'| < d_1 \Rightarrow |V_1 \setminus V_1'| > n_1 d_1 \qquad (|V_1| =: n_1)$
- A codeword of \mathscr{C}_1' can be viewed as a codeword of \mathscr{C}_1 by extending it with zeros on the positions of $V_1 \setminus V_1'$.
- ▶ A non-zero codeword in \mathscr{C}_1' would give a non-zero codeword in \mathscr{C}_1 with weight less than $d_1 \Rightarrow \dim(\mathscr{C}_1') = 0$.

- $|C_2'| < d_2^T \Rightarrow |C_2 \setminus C_2'| > r_2 d_2^T \qquad (|C_2| =: r_2)$
- A codeword of $\mathscr{C}_2'^T$ can be viewed as a codeword of \mathscr{C}_2^T by extending it with zeros on the positions of $C_2 \setminus C_2'$.

If $w_H(\mathbf{x}) < \min(d_1, d_2^T)$:

- $|V_1'| < d_1 \Rightarrow |V_1 \setminus V_1'| > n_1 d_1 \qquad (|V_1| =: n_1)$
- A codeword of \mathscr{C}_1' can be viewed as a codeword of \mathscr{C}_1 by extending it with zeros on the positions of $V_1 \setminus V_1'$.
- ▶ A non-zero codeword in \mathscr{C}_1' would give a non-zero codeword in \mathscr{C}_1 with weight less than $d_1 \Rightarrow \dim(\mathscr{C}_1') = 0$.

- $|C_2'| < d_2^T \Rightarrow |C_2 \setminus C_2'| > r_2 d_2^T \qquad (|C_2| =: r_2)$
- ▶ A codeword of $\mathscr{C}_2'^T$ can be viewed as a codeword of \mathscr{C}_2^T by extending it with zeros on the positions of $C_2 \setminus C_2'$.
- ▶ A non-zero codeword in $\mathscr{C}_2^{\prime T}$ would give a non-zero codeword in \mathscr{C}_2^{T} with weight less than $d_2^{T} \Rightarrow \dim \left(\mathscr{C}_2^{\prime T}\right) = 0$.

$$\Rightarrow \dim \left(Q \left(\mathcal{G}_1' \times \mathcal{G}_2' \right) \right) = 0$$

- ightharpoonup \Rightarrow dim $(Q(\mathcal{G}'_1 \times \mathcal{G}'_2)) = 0$
- $\blacktriangleright \Rightarrow \mathscr{C}_{X}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right) = \mathscr{C}_{Z}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right)^{\perp}$

- $\blacktriangleright \Rightarrow \dim \left(Q \left(\mathcal{G}_1' \times \mathcal{G}_2' \right) \right) = 0$
- $\blacktriangleright \Rightarrow \mathscr{C}_{X}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right) = \mathscr{C}_{Z}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right)^{\perp}$
- $\mathscr{C}_X(\mathcal{G}_1' \times \mathcal{G}_2')$ has variable nodes $V_1' \times V_2 \cup C_1 \times C_2'$ and check nodes $C_1 \times V_2$.

- $\blacktriangleright \Rightarrow \dim \left(Q \left(\mathcal{G}_1' \times \mathcal{G}_2' \right) \right) = 0$
- $\blacktriangleright \Rightarrow \mathscr{C}_{X}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right) = \mathscr{C}_{Z}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right)^{\perp}$
- $\mathscr{C}_X(\mathcal{G}_1' \times \mathcal{G}_2')$ has variable nodes $V_1' \times V_2 \cup C_1 \times C_2'$ and check nodes $C_1 \times V_2$.
- ▶ ⇒ The restriction \mathbf{x}' of \mathbf{x} to the positions in $V_1' \times V_2 \cup C_1 \times C_2'$ belongs to $\mathscr{C}_X (\mathcal{G}_1' \times \mathcal{G}_2')$.

$$\Rightarrow \textbf{x}' \in \mathscr{C}_{\textit{Z}} \left(\mathcal{G}_1' \times \mathcal{G}_2' \right)^{\perp}$$

- $\blacktriangleright \Rightarrow \dim \left(Q \left(\mathcal{G}_1' \times \mathcal{G}_2' \right) \right) = 0$
- $\blacktriangleright \Rightarrow \mathscr{C}_{X}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right) = \mathscr{C}_{Z}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right)^{\perp}$
- $\mathscr{C}_X(\mathcal{G}_1' \times \mathcal{G}_2')$ has variable nodes $V_1' \times V_2 \cup C_1 \times C_2'$ and check nodes $C_1 \times V_2$.
- ▶ ⇒ The restriction \mathbf{x}' of \mathbf{x} to the positions in $V_1' \times V_2 \cup C_1 \times C_2'$ belongs to $\mathscr{C}_X (\mathcal{G}_1' \times \mathcal{G}_2')$.

$$\Rightarrow \mathbf{x}' \in \mathscr{C}_{Z} \left(\mathcal{G}_{1}' imes \mathcal{G}_{2}'
ight)^{\perp}$$

▶ Let \mathbf{H}_Z and \mathbf{H}_Z' respectively be the parity-check matrices associated to the Tanner graphs $\mathcal{G}_1 \times_Z \mathcal{G}_2$ and $\mathcal{G}_1' \times_Z \mathcal{G}_2'$.

- $\blacktriangleright \Rightarrow \dim \left(Q \left(\mathcal{G}_1' \times \mathcal{G}_2' \right) \right) = 0$
- $\blacktriangleright \Rightarrow \mathscr{C}_{X}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right) = \mathscr{C}_{Z}\left(\mathcal{G}_{1}'\times\mathcal{G}_{2}'\right)^{\perp}$
- $\mathscr{C}_X(\mathcal{G}_1' \times \mathcal{G}_2')$ has variable nodes $V_1' \times V_2 \cup C_1 \times C_2'$ and check nodes $C_1 \times V_2$.
- ▶ ⇒ The restriction \mathbf{x}' of \mathbf{x} to the positions in $V_1' \times V_2 \cup C_1 \times C_2'$ belongs to $\mathscr{C}_X (\mathcal{G}_1' \times \mathcal{G}_2')$.

$$\Rightarrow \mathbf{x}' \in \mathscr{C}_{Z} \left(\mathcal{G}_{1}' imes \mathcal{G}_{2}'
ight)^{\perp}$$

- ▶ Let \mathbf{H}_Z and \mathbf{H}_Z' respectively be the parity-check matrices associated to the Tanner graphs $\mathcal{G}_1 \times_Z \mathcal{G}_2$ and $\mathcal{G}_1' \times_Z \mathcal{G}_2'$.
- ▶ Denote by $\mathbf{h}_{Z}(v_1, c_2)$ the row of \mathbf{H}_{Z} and by $\mathbf{h}_{Z}'(v_1', c_2')$ the row of \mathbf{H}_{Z}' .

We may write x' as a (not necessarily unique) linear combination of rows of H'_Z,

$$\mathbf{x}' = \sum_{\left(v_1', c_2'\right) \in I} \mathbf{h}_Z' \left(v_1', c_2'\right),$$

where I is some subset of $V_1' \times C_2'$.

We may write x' as a (not necessarily unique) linear combination of rows of H'_Z,

$$\mathbf{x}' = \sum_{\left(v_1', c_2'\right) \in I} \mathbf{h}_Z' \left(v_1', c_2'\right),$$

where *I* is some subset of $V_1' \times C_2'$.

▶ The set of neighbors of any (v_1', c_2') in the Tanner graph of $\mathscr{C}_Z(\mathcal{G}_1' \times \mathcal{G}_2')$ is the same as the set of neighbors of (v_1', c_2') in the Tanner graph of $\mathscr{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)$.

We may write x' as a (not necessarily unique) linear combination of rows of H'_Z,

$$\mathbf{x}' = \sum_{\left(v_1', c_2'\right) \in I} \mathbf{h}_Z' \left(v_1', c_2'\right),$$

where *I* is some subset of $V_1' \times C_2'$.

- ▶ The set of neighbors of any (v'_1, c'_2) in the Tanner graph of $\mathscr{C}_Z(\mathcal{G}'_1 \times \mathcal{G}'_2)$ is the same as the set of neighbors of (v'_1, c'_2) in the Tanner graph of $\mathscr{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)$.
- ightharpoonup \Rightarrow The extension of \mathbf{x}'

$$\mathbf{x} = \bigoplus_{\left(v_1', c_2'\right) \in I} \mathbf{h}_Z\left(v_1', c_2'\right)$$

which implies that \mathbf{x} belongs to $\mathscr{C}_{Z}\left(\mathcal{G}_{1}\times\mathcal{G}_{2}\right)^{\perp}$

▶ We have proved that any $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$ having weight less than $\min(d_1, d_2^T)$ also belongs to $\mathscr{C}_Z (\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$.

- ▶ We have proved that any $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$ having weight less than $\min(d_1, d_2^T)$ also belongs to $\mathscr{C}_Z (\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$.
- ▶ ⇒ Anything in $\mathscr{C}_X(\mathcal{G}_1 \times \mathcal{G}_2) \setminus \mathscr{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$ should have weight greater than or equal to $\min(d_1, d_2^T)$.

- ▶ We have proved that any $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$ having weight less than $\min(d_1, d_2^T)$ also belongs to $\mathscr{C}_Z (\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$.
- ▶ ⇒ Anything in $\mathscr{C}_X(\mathcal{G}_1 \times \mathcal{G}_2) \setminus \mathscr{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$ should have weight greater than or equal to $\min(d_1, d_2^T)$.
- ▶ A similar analysis gives anything in $\mathscr{C}_X(\mathcal{G}_1 \times \mathcal{G}_2) \setminus \mathscr{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$ should have weight also greater than or equal to $\min(d_2, d_1^T)$.

- ▶ We have proved that any $\mathbf{x} \in \mathscr{C}_X (\mathcal{G}_1 \times \mathcal{G}_2)$ having weight less than $\min(d_1, d_2^T)$ also belongs to $\mathscr{C}_Z (\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$.
- ▶ ⇒ Anything in $\mathscr{C}_X(\mathcal{G}_1 \times \mathcal{G}_2) \setminus \mathscr{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$ should have weight greater than or equal to $\min(d_1, d_2^T)$.
- A similar analysis gives anything in $\mathscr{C}_X(\mathcal{G}_1 \times \mathcal{G}_2) \setminus \mathscr{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2)^{\perp}$ should have weight also greater than or equal to $\min(d_2, d_1^T)$.

$$d_X \ge \min(d_1, d_2, d_1^T, d_2^T).$$

Similarly, one can prove

$$d_Z \geq \min(d_1, d_2, d_1^T, d_2^T)$$

► Hence,

$$d_Q = \min\left(d_X, d_Z\right) \geq \min\left(d_1, d_2, d_1^T, d_2^T\right)$$

Summary of Properties

- ▶ If the starting codes \mathcal{C}_1 and \mathcal{C}_2 have dimensions linear on blocklength, the resulting quantum code also have **dimension** linear on blocklength.
- ▶ If the starting codes have minimum distance linear on blocklength, the resulting quantum code has minimum distance proportional to the square root of blocklength.

Overview of Currently Known QLDPC Codes

k	d	Code
2	\sqrt{n}	Kitaev toric
2	$\sqrt{n\sqrt{\log n}}$	Freedman-Meyer-Luo
$\Theta(n)$	\sqrt{n}	hypergraph product
$\sqrt{n}/\log n$	$\sqrt{n}\log n$	high-dimensional expander (HDX)
\sqrt{n}	$\sqrt{n}\log^c n$	tensor-product HDX
$n^{3/5}/\mathrm{polylog}(n)$	$n^{3/5}/\mathrm{polylog}(n)$	fiber-bundle
$\log n$	$n/\log n$	lifted-product (LP)
$\Theta(n)$	$\Theta(n)$	expander LP
$\Theta(n)$	$\Theta(n)$	quantum Tanner
$\Theta(n)$	$\Theta(n)$	Dinur-Hsieh-Lin-Vidick

Figure: https://errorcorrectionzoo.org/c/qldpc

References

Jean-Pierre Tillich and Gilles Zémor.

Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength.

IEEE Transactions on Information Theory, 60(2):1193–1202, 2014.