POWER MOSFET 驱动技术

- 1 POWER MOSFET 直接驱动
- 2 > POWER MOSFET自举驱动
- 3 POWER MOSFET隔离驱动
- 4 POWER MOSFET 并联驱动

POWER MOSFET 的结构

N-MOSFET 结构示意图

POWER MOSFET 等效模型

动态模型: 描述了dV/dt的影响

开关模型: 描述了MOSFET的重要寄生参数

POWER MOSFET 寄生参数

$$C_{RSS,ave} = 2 \bullet C_{RSS,spec} \bullet \sqrt{\frac{V_{DS,spec}}{V_{DS,off}}}$$
 $C_{OSS,ave} = 2 \bullet C_{OSS,spec} \bullet \sqrt{\frac{V_{DS,spec}}{V_{DS,off}}}$
 $C_{GD} = C_{RSS,ave}$
 $C_{GS} = C_{ISS} - C_{RSS}$
 $C_{DS} = C_{OSS,ave} - C_{RSS,ave}$

Input capacitance	C iss		ı	4500	-	рF
Output capacitance	C oss	$V_{\rm GS}$ =0 V, $V_{\rm DS}$ =25 V, f =1 MHz	1	1500	-	
Reverse transfer capacitance	C _{rss}		-	100	-	

to-t1: 驱动通过Rgate 对Cgs充电, Vgs 电压以指数形式上升

t1-t2: Vgs 达到MOSFET开启门槛电压, MOSFET 进入线性区, Id缓慢上升

t2-t3: Id达到稳定值, Vgs固定不变, Vds 电压开始下降, VDD给Cgd提供放电电流。(米勒效应)

t3-t4: Vds下降到OV, MOSFET完全导通, VDD继续给Cgs充电, 直至Vgs=Vdd, MOSFET完成开通过程。

POWER MOSFET 关断过程

MOSFET的关断过程是开通过程的反过程。

POWER MOSFET 驱动电流

$$Q_{g} = Q_{gs} + Q_{gd} + Q_{od}$$

$$Q_{g} = \int_{0}^{t_{s}} i_{g} dt \Rightarrow Q_{g} = I_{g} \bullet t_{s} \Rightarrow I_{g} = \frac{Q_{g}}{t_{s}}$$

$$i_{g} = \frac{V_{dr}}{R_{g}} \bullet e^{-\frac{t}{R_{g}C_{eff}}}$$

$$i_{gpk} = \frac{V_{dr}}{R_{g}}$$

等效电路中的 C_{eff} 为等效输入电容,并不等于 C_{iss}

ZVS 电路中POWER MOSFET 开通过程

在ZVS电路或同步整流电路中,MOSFET驱动没有米勒平台。

POWER MOSFET 驱动电阻的影响

增大驱动电阻的影响

驱动上升变慢, 开关过程延长, 开关损耗增大。

POWER MOSFET 驱动电阻的影响

减小驱动电阻的影响

驱动上升变快,驱动电压过冲增加,EMI变差

POWER MOSFET 驱动保护

为防止误导通,G-S间应 并一个电阻。通常为10K

为防止关断时误导通,关断时G-S 之间应提供一个低阻抗回路

POWER MOSFET 驱动保护

常用的加速关断电路

- 电路简单
- 关断电流将流过芯片

- 关断电流通过Q3构成回路,关断电流环路小
- 开关G极电位不能到0

加速关断电路可以加快关断速度,减小关断损耗,同时在关断时给开关管提供低阻抗回路,防止误动作。

自举电路工作原理

自举电路元件参数计算

1)由于上管所需的驱动能量来自于自举电容,因此自举电容的容量应足够大。

$$C_{BOOT} \ge \frac{Q_{TOTAL}}{\Delta V_{BOOT}} = \frac{Q_G + (I_{LK,D} + I_{Q,LS} + I_{Q,DRV} + I_{GS}) \bullet t_{off \text{ max}}}{\Delta V_{BOOT}}$$

2) 由于自举二极管工作在高频开关状态,因此需选用高压快恢复二极管

占空比对自举电压的影响

$$D < \frac{4 \cdot R_{boot} \cdot C_{boot}}{T_{S}}$$

$$V_{drop} = V_{Rboot} + \Delta V_{BS} / 2^3$$

$$D >> \frac{4 \cdot R_{boot} \cdot C_{boot}}{T_S}$$

$$V_{drop} = \Delta V_{BS}$$

源极负压对于电路的影响

能一定程度缓解源极负压对电路 的影响,但是会使得自举电容充电时 间常数变长

能有效减小源极负压的影响, 但是同样使得自举电容充电时间变 长

减小寄生电感的方法

- 开关之间的走线不形成回路
- 减小开关管的走线长度
- 自举二极管应尽可能靠近自举电容
- 去耦电容和栅极驱动电阻应尽可能靠近栅极驱动集成电

路。

$$V_C = D \cdot V_{DRV}$$

$$R_{_{\rm C}} \ge 2 \cdot \sqrt{\frac{L_{_{\rm M}}}{C_{_{\rm C}}}}$$

$$V_{GS} = \frac{V_{DRV} - V_C}{n} = \frac{V_{DRV} - D \bullet V_{DRV}}{n} = V_{DRV} \bullet \frac{1 - D}{n}$$

MOSFET的驱动电压与占空比有关, 应确保在最大占空比时有足够的驱 动电压。

$$\boldsymbol{C}_{\text{C1}} = \frac{\boldsymbol{Q}_{\text{G}}}{\Delta \boldsymbol{V}_{\text{C1}}} + \frac{\left(\boldsymbol{V}_{\text{DRV}} - \boldsymbol{V}_{\text{DC2,FW}}\right) \cdot \boldsymbol{D}}{\Delta \boldsymbol{V}_{\text{C1}} \cdot \boldsymbol{R}_{\text{GS}} \cdot \boldsymbol{f}_{\text{DRV}}} + \frac{\boldsymbol{V}_{\text{DRV}} \cdot \left(\boldsymbol{D}^2 - \boldsymbol{D}^3\right)}{\Delta \boldsymbol{V}_{\text{C1}} \cdot \boldsymbol{4} \cdot \boldsymbol{L}_{\text{M}} \cdot \boldsymbol{f}_{\text{DRV}}^2}$$

$$C_{C2} = \frac{Q_G}{\Delta V_{C2}} + \frac{\left(V_{DRV} - V_{DC2,FW}\right) \cdot D_{MAX}}{\Delta V_{C2} \cdot R_{GS} \cdot f_{DRV}}$$

 $C_{C2} = \frac{Q_G}{\Delta V_{C2}} + \frac{(V_{DRV} - V_{DC2,FW}) \cdot D_{MAX}}{\Delta V_{C2} \cdot R_{GS} \cdot f_{DRV}}$ 变压器匝比为1,MOSFET的G-S间电压与占空比无关。

$$V_{GS} = \frac{V_{DRV} - V_C}{n} + V_C - V_D \xrightarrow{n=1} V_{GS} = V_{DRV} - V_D$$

对于上下管占空比相等的隔离驱动,可以不需要隔直电容,但必须保证在任何情况下,驱动变压器不饱和。

Vg/V

由于R1,C1,驱动 变压器励磁电感构 成RLC串联电路,因 此在起机或大动态 时容易产生震荡。

由于Q=L R,因此减小驱动变压器的励磁电感, 增大隔直电容和驱动电阻可以抑制此震荡

隔离驱动变压器的要求

- 信号延迟小,寄生电容小
- 漏感小,波形失真小
- 高低压侧可靠绝缘

隔离驱动变压器的设计

- 1. 选择合适的磁芯
- 2. 计算原边匝数

$$N_{P} = \frac{V_{TR} \cdot t}{\Delta B \cdot A_{e}}$$

3. 选择线径,通常情况下,最好是能一层绕完一个绕组。

$$d_{W} = \frac{W_{W}}{N_{P} + 1}$$

4. 确定绕组排布

寄生参数对并联驱动的影响

>

寄生参数对并联驱动的影响

并联MOSFET使用单独的驱动 电阻可以改善并联均流问题

Time/uSecs 50nSecs/div

寄生参数对并联驱动的影响

在MOSFET的栅极串联一个磁 珠并增大驱动电阻可以很好 的改善MOSFET的并联效果。

Vth对并联驱动的影响

如果Vth1<Vth2

MOSFET并联驱动时,应尽可能保证MOSFET的Vth一致:

- MOSFET 特性完全一致
- MOSFET的温度一致

Time/uSecs 5uSecs/div

MOSFET 并联驱动的注意事项

- 并联MOSFET的特性应完全一致。
- 并联MOSFET的驱动布线应尽量对称。
- 并联MOSFET应有独立的驱动电阻或图腾柱,并尽量靠近

MOSFET栅极

• 如果并联MOSFET驱动发生震荡,可在MOSFET的栅极套磁

珠,并适当增大驱动电阻。

