總共有16種可能的組合,這邊列舉三種實際上算出來的機率分佈如下

From sampling: y^A would be the results of inference.

在iteration越大的時候越能表示真實的機率分佈

不同initial對結果沒有差

How about starting from different initialization?

Not really change the final results.

No. of sample	s A	В	С
10	3	1	0
100	40	11	1
1000	331	237	2
10000	3251	2176	31
100000	32911	21845	385

Starting from ... B

No. of samples	А	В	С
10	0	3	0
100	28	31	0
1000	318	226	2
10000	3277	2169	46
100000	32319	21751	Created with EverCam.

All rivers run into the sea.

Practical Suggestion

- "burn-in" 假設擔心初始值有影響的話就丟掉前幾個sample
 - "burn-in" period: The first few of samples would be influenced by the initialization
 - · Discard the samples in the "burn-in" period

另一個問題是如果今天機率分佈非常平均,space又很大,很重負sample到相同的點因此我們乘上一個scale放大他們之間的差異(修改distribution)

Evaluation Function

We want to find an evaluation function F(x)

Input: object x, output: scalar F(x) (how "good" the object is)

object

- E.g. x are images
 - Real x has high F(x)
- F(x) can be a network

• We can generate good x by F(x):

Find x with large F(x)

• How to find F(x)?

In practice, you cannot decrease all the x other than real data.

Evaluation

Function F

scalar

F(x)

Evaluation Function

- Structured Perceptron
- **Input**: training data set $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$
- Output: weight vector w
- Algorithm: Initialize w = 0

 $F(x,y) = w \cdot \phi(x,y)$

- do
 - For each pair of training example (x^r, \hat{y}^r)
 - Find the label \tilde{y}^r maximizing $F(x^r, y)$

Can be an issue
$$\widetilde{y}^r = \arg \max_{y \in Y} F(x^r, y)$$

• If $\widetilde{y}^r \neq \hat{y}^r$, update w

Increase
$$F(x^r, \hat{y}^r)$$
, decrease $F(x^r, \tilde{y}^r)$

Increase
$$F(x^r, \hat{y}^r)$$
, $w \to w + \phi(x^r, \hat{y}^r) - \phi(x^r, \hat{y}^r)$

until w is not updated
We are done!

How about GAN?

 Generator is an intelligent way to find the negative examples.

"Experience replay", parameters from last iteration

In the end

Where are we?

