The Central Dogma of Molecular Biology

The Central Dogma of Molecular Biology

Importance of Proteins

- There are three main kinds:
 - structural make up most body parts
 - hormone chemical that controls the body
 - enzyme catalyst speeds up chemical reactions

Insulin, a protein

Importance of Proteins

- Without proteins there would be no life
- All cells make proteins
- Proteins in your body make up your:
 - Hair
 - Nails
 - Muscles
 - Skin
 - Cartilage

Discovery of DNA (deoxyribonucleic acid)

- 1953 Watson,
 Crick and Wilkins determined the structure of DNA to be a double helix
- They won a Nobel Prize for their work

DNA and RNA Compared

DNA

- Found only in nucleus*
- Double helix
- Bases = ATGC
- Sugar =Deoxyribose

RNA

- Found in ribosomes, nucleolus
- Single helix
- Bases = AUGC (URACIL)
- Sugar = Ribose

^{*} DNA is also found in a select number of other organelles

Introns and Exons

- Introns sequences in the DNA that are NOT used to make mRNA or to make a protein
- Exons sequences in the DNA that are expressed or used to make mRNA and ultimately are used to make a protein

Introns and Exons

- Three types of RNA:
 - rRNA = ribosomal RNA makes up the ribosome
 - mRNA = messenger RNA is the message from DNA for the construction of the new protein molecule
 - tRNA = transfer RNA carries amino acids to ribosomes

- Ribosomal RNA is used to make a ribosome
- The ribosome "reads" the mRNA plan for the new protein

Messenger RNA

Sense

Antisense

Transfer RNA

- Each tRNA holds one amino acid
- Every tRNA has a special region called the anti-codon (3 bases)
- A tRNA anti-codon "mates" with codon on the mRNA molecule
- There are 61 different tRNA molecules, yet only about 20 amino acids

Transfer RNA

- Transcription is the special copying of one side of the DNA molecule (the sense strand) that results in a single strand of RNA
- The original DNA is not changed
- This process can be repeated
- The amount of DNA that is transcribed is usually one gene

- Process of Transcription
 - DNA is unzipped by an enzyme
 - Only one side fills with RNA nucleotides by the action of another enzyme RNA polymerase A-U, G-C (NO THYMINE = T)
 - As the RNA strand separates the DNA strands reattach as before the process started
 - The result is the original DNA plus a new RNA strand

■ Uracil — a base only found in RNA

Overview: the roles of transcription and translation in the flow of genetic information (layer 1)

Prokaryotic cell. In a cell lacking a nucleus, mRNA produced by transcription is immediately translated without additional processing.

Overview: the roles of transcription and translation in the flow of genetic information (layer 2)

Prokaryotic cell. In a cell lacking a nucleus, mRNA produced by transcription is immediately translated without additional processing.

Overview: the roles of transcription and translation in the flow of genetic information (layer 3)

Prokaryotic cell. In a cell lacking a nucleus, mRNA produced by transcription is immediately translated without additional processing.

Overview: the roles of transcription and translation in the flow of genetic information (layer 4)

Prokaryotic cell. In a cell lacking a nucleus, mRNA produced by transcription is immediately translated without additional processing.

Overview: the roles of transcription and translation in the flow of genetic information (layer 5)

Prokaryotic cell. In a cell lacking a nucleus, mRNA produced by transcription is immediately translated without additional processing.

- Translation is the reading of the RNA code to make proteins or polypeptides
- Translation is often called protein synthesis

The triplet code

Triplet codons groups of three bases on mRNA that code for specific amino acids

The dictionary of the genetic code

hird mRNA base (3' end)

- mRNA is the message (the plan for the protein)
- rRNA "reads" the mRNA (the ribosome)
- tRNA molecules carry amino acids to the ribosome for assembly into proteins
- The ribosome allows only the correct tRNA to add its amino acid – others are rejected

