Etude sur le choix des nouvelles stations de Vélib

Abire, Changwei et Caroline

Question métier

Déterminer si le choix des nouvelles stations de vélib dans Paris est judicieux avec les 4 différentes bases de données:

- ☐ Station vélib
- ☐ Comptage vélo
- ☐ Réseaux cyclables
- ☐ Population et superficie

- 1. Présentation des bases de données
 - a. Comptage vélo
 - b. Réseaux cyclables
 - c. Station vélib

- 1. Présentation des bases de données
 - a. Comptage vélo
 - b. Réseaux cyclables
 - c. Station vélib
- 2. Analyse des stations à Paris
 - a. Capacité des stations
 - b. Les 11 nouvelles stations créés
 - c. État critique et pourcentage des instants critiques

- 1. Présentation des bases de données
 - a. Comptage vélo
 - b. Réseaux cyclables
 - c. Station vélib
- 2. Analyse des stations à Paris
 - a. Capacité des stations
 - b. Les 11 nouvelles stations créés
 - c. État critique et pourcentage des instants critiques
- 3. Machine Learning pour prédire le pourcentage des instants critiques des stations

- 1. Présentation des bases de données
 - a. Comptage vélo
 - b. Réseaux cyclables
 - c. Station vélib
- 2. Analyse des stations à Paris
 - a. Capacité des stations
 - b. Les 11 nouvelles stations créés
 - c. État critique et pourcentage des instants critiques
- 3. Machine Learning pour prédire le pourcentage des instants critiques des stations
- 4. Conclusion et épilogue

- 1. Présentation des bases de données
 - a. Comptage vélo
 - b. Réseaux cyclables
 - c. Station vélib
- 2. Analyse des stations à Paris
 - a. Capacité des stations
 - b. Les 11 nouvelles stations créés
 - c. État critique et pourcentage des instants critiques
- 3. Machine Learning pour prédire le pourcentage des instants critiques des stations
- 4. Conclusion et épilogue

1- Dataset - Comptage dans Paris

Nombre de compteurs entre 2018 et 2020

Bornes de comptage dans Paris

Comptage dans les différents arrondissements

2 - Dataset piste cyclable dans Paris

3 - Dataset de vélib

- 1. Présentation des bases de données
 - a. Comptage vélo
 - b. Réseaux cyclables
 - c. Station vélib
- 2. Analyse des stations à Paris
 - a. Capacité des stations
 - b. Les 11 nouvelles stations créés
 - c. État critique et pourcentage des instants critiques
- 3. Machine Learning pour prédire le pourcentage des instants critiques des stations
- 4. Conclusion et épilogue

Capacité dans les 20 arrondissements de Paris

Une station dans Paris

la colonne 'nom_arrondissement_communes' = Paris

Asnières-sur
Asnière

Création des 11 nouvelles stations (dans 9 arrondissements)

Une nouvelle station

la colonne capacity = 0 ou NaN

ou

la colonne is_installed = Non

Définition de l'état critique et pourcentage des instants critiques

Nombre de vélos disponibles Nombre de bornes disponibles OU Etat critique d'une station inférieur à 3 inférieur à 3 count des instants en etat critique Pourcentage des instants critiques = count total des instants count 982,000000 mean 2095.458248 376.963848 comprise entre 0 et 1. plus c'est grand plus la station est utilisée 25% 50% 75% Name: count all, dtype:

Pourcentage des instants critiques moyenné par arrondissement

The data on 20 arrondissements in Paris

- --- Capacity of all the stations normalized to the max (3290.0)
- Percentage of critical moments normalized to the max (0.431)
- --- Length of bicycle path normalized to the max (112.67272976999)
- population of the arrondissement normalized to the max (235178)
- Capacity of new stations normalized to the max (92.0)

- 1. Présentation des bases de données
 - a. Comptage vélo
 - b. Réseaux cyclables
 - c. Station vélib
- 2. Analyse des stations à Paris
 - a. Capacité des stations
 - b. Les 11 nouvelles stations créés
 - c. État critique et pourcentage des instants critiques
- 3. Machine Learning pour prédire le pourcentage des instants critiques des stations
- 4. Conclusion et épilogue

Machine Learning pour prédire le "pourcentage des instants critiques" des stations

- Data : capacité, longitude/latitude, code postal, les caractéristiques de son arrond (pop, area, comptage velo, piste cyclable)
- "Target encoding" pour la colonne catégorique code postal
- Exclure les 11 nouvelles stations dans le dataset de Août, ce dataset est ensuite découpé en Train set

790 2 X train enco	stations) +	test set (195 static	nns)
2 X train enco	oded			

	capacity	longitude	latitude	Population	area (ha)	Comptage horaire	Compteur	Longueur du tronçon en km	code postal encoded
0	15.0	48.849704	2.364461	28370	160	3.914346e+05	6.055556	33.884346	0.258035
1	51.0	48.835445	2.431421	141287	637	3.022408e+05	10.000000	112.672730	0.138216
2	62.0	48.851356	2.369220	141287	637	3.022408e+05	10.000000	112.672730	0.138216
3	29.0	48.870791	2.343101	21042	99	1.335674e+06	2.000000	24.721218	0.203909
4	21.0	48.871956	2.384981	196739	598	2.950025e+05	4.000000	80.170654	0.425631
775	21.0	48.886556	2.288640	168737	567	2.424206e+05	5.000000	49.378932	0.297191
776	38.0	48.863875	2.281890	168554	791	3.805720e+05	5.000000	72.097440	0.261736
777	19.0	48.886675	2.361361	196131	601	8.381150e+04	4.000000	67.685356	0.302184
778	23.0	48.858445	2.390398	196739	598	2.950025e+05	4.000000	80.170654	0.425631
779	28.0	48.883104	2.323835	168737	567	2.424206e+05	5.000000	49.378932	0.297191

1)	_train
969	0.443139
678	0.119588
894	0.135102
33	0.258203
31	0.451631
106	0.631985
270	0.392931
860	0.339075
435	0.223077
102	0.598430
Name:	percentage_critical, Length: 780,

Machine Learning pour prédire le "pourcentage des instants critiques" des stations

 Data : capacité, longitude/latitude, code postal, les caractéristiques de son arrond (pop, area, comptage velo, piste cyclable)

"Target encoding" pour la colonne catégorique code postal

Exclure les 11 nouvelles stations da

/780 stations) + test set (195 station

	capacity	longitude	latitude	Population	area (ha)	Comptage horaire	Compteur	Longueur du tronçon en km	code postal encoded
0	15.0	48.849704	2.364461	28370	160	3.914346e+05	6.055556	33.884346	0.258035
1	51.0	48.835445	2.431421	141287	637	3.022408e+05	10.000000	112.672730	0.138216
2	62.0	48.851356	2.369220	141287	637	3.022408e+05	10.000000	112.672730	0.138216
3	29.0	48.870791	2.343101	21042	99	1.335674e+06	2.000000	24.721218	0.203909
4	21.0	48.871956	2.384981	196739	598	2.950025e+05	4.000000	80.170654	0.425631
775	21.0	48.886556	2.288640	168737	567	2.424206e+05	5.000000	49.378932	0.297191
776	38.0	48.863875	2.281890	168554	791	3.805720e+05	5.000000	72.097440	0.261736
777	19.0	48.886675	2.361361	196131	601	8.381150e+04	4.000000	67.685356	0.302184
778	23.0	48.858445	2.390398	196739	598	2.950025e+05	4.000000	80.170654	0.425631
779	28.0	48.883104	2.323835	168737	567	2.424206e+05	5.000000	49.378932	0.297191

1	y_train
969	0.443139
678	0.119588
894	0.135102
33	0.258203
31	0.451631
106	0.631985
270	0.392931
860	0.339075
435	0.223077
102	0.598430
Name	e: percentage_critical, Length: 780,

Explicabilité du modèle (impact des différents features avec package **shap**)

Performance du modèle

The real and predicted values of the pourcentage_critique

Prédiction sur les 11 nouvelles stations (final test set)

	stationcode	code postal	Real in August	Predicted ML	mean of the arrondissement
0	15104_relais	75015	NaN	0.328292	0.301671
1	18202	75018	0.071946	0.084293	0.302773
2	12166	75012	0.135431	0.140592	0.140628
3	13128	75013	0.218279	0.161539	0.156640
4	5122	75006	0.374670	0.253547	0.236397
5	16140	75016	NaN	0.218402	0.261084
6	17106	75017	0.056312	0.238040	0.283541
7	7007	75007	0.047002	0.092429	0.159210
8	17126	75017	NaN	0.220009	0.283541
9	17127	75017	NaN	0.232350	0.283541
10	10202	75010	NaN	0.147833	0.236422

Prédiction sur les 11 nouvelles stations (final test set)

4 5122 75006 0.374670 0.253547 0.236397 5 16140 75016 NaN 0.218402 0.261084 6 17106 75017 0.056312 0.238040 0.283541 Mauvaise estimated 7 7007 75007 0.047002 0.092429 0.159210 8 17126 75017 NaN 0.220009 0.283541 9 17127 75017 NaN 0.232350 0.283541		stationcode	code postal	Real in August	Predicted ML	mean of the arrondissement	
2 12166 75012 0.135431 0.140592 0.140628 3 13128 75013 0.218279 0.161539 0.156640 Bonne estimation 4 5122 75006 0.374670 0.253547 0.236397 5 16140 75016 NaN 0.218402 0.261084 6 17106 75017 0.056312 0.238040 0.283541 7 7007 75007 0.047002 0.092429 0.159210 8 17126 75017 NaN 0.232350 0.283541 9 17127 75017 NaN 0.232350 0.283541	0	15104_relais	75015	NaN	0.328292	0.301671	
3 13128 75013 0.218279 0.161539 0.156640 Bonne estimation 4 5122 75006 0.374670 0.253547 0.236397 5 16140 75016 NaN 0.218402 0.261084 6 17106 75017 0.056312 0.238040 0.283541 Mauvaise estimation 7 7007 75007 0.047002 0.092429 0.159210 8 17126 75017 NaN 0.220009 0.283541 9 17127 75017 NaN 0.232350 0.283541	1	18202	75018	0.071946	0.084293	0.302773	
4 5122 75006 0.374670 0.253547 0.236397 5 16140 75016 NaN 0.218402 0.261084 6 17106 75017 0.056312 0.238040 0.283541 Mauvaise estimate 7 7007 75007 0.047002 0.092429 0.159210 8 17126 75017 NaN 0.220009 0.283541 9 17127 75017 NaN 0.232350 0.283541	2	12166	75012	0.135431	0.140592	0.140628	
4 5122 75006 0.374670 0.253547 0.236397 5 16140 75016 NaN 0.218402 0.261084 6 17106 75017 0.056312 0.238040 0.283541 Mauvaise estimated 7 7007 75007 0.047002 0.092429 0.159210 8 17126 75017 NaN 0.220009 0.283541 9 17127 75017 NaN 0.232350 0.283541	3	13128	75013	0.218279	0.161539	0.156640	Bonne estimation
6 17106 75017 0.056312 0.238040 0.283541 Mauvaise estimate 7 7007 75007 0.047002 0.092429 0.159210 8 17126 75017 NaN 0.220009 0.283541 9 17127 75017 NaN 0.232350 0.283541	4	5122	75006	0.374670	0.253547	0.236397	
7 7007 75007 0.047002 0.092429 0.159210 8 17126 75017 NaN 0.220009 0.283541 9 17127 75017 NaN 0.232350 0.283541	5	16140	75016	NaN	0.218402	0.261084	
8 17126 75017 NaN 0.220009 0.283541 9 17127 75017 NaN 0.232350 0.283541	6	17106	75017	0.056312	0.238040	0.283541	Mauvaise estimat
9 17127 75017 NaN 0.232350 0.283541	7	7007	75007	0.047002	0.092429	0.159210	
	8	17126	75017	NaN	0.220009	0.283541	
	9	17127	75017	NaN	0.232350	0.283541	
10 10202 75010 NaN 0.147833 0.236422	10	10202	75010	NaN	0.147833	0.236422	

Prédiction sur les 11 nouvelles stations (final test set)

	stationcode	code postal	Real in August	Predicted ML	mean of the arrondissement	
0	15104_relais	75015	NaN	0.328292	0.301671	
1	18202	75018	0.071946	0.084293	0.302773	
2	12166	75012	0.135431	0.140592	0.140628	Bon choix
3	13128	75013	0.218279	0.161539	9,156640	
4	5122	75006	0.374670	0.253547	0.236397	<
5	16140	75016	NaN	0.218402	0.261084	Mauvais choix
6	17106	75017	0.056312	0.238040	0.283541	
7	7007	75007	0.047002	0.092429	0.159210	
8	17126	75017	NaN	0.220009	0.283541	
9	17127	75017	NaN	0.232350	0.283541	
10	10202	75010	NaN	0.147833	0.236422	

- 1. Présentation des bases de données
 - a. Comptage vélo
 - b. Réseaux cyclables
 - c. Station vélib
- 2. Analyse des stations à Paris
 - a. Capacité des stations
 - b. Les 11 nouvelles stations créés
 - c. État critique et pourcentage des instants critiques
- 3. Machine Learning pour prédire le pourcentage des instants critiques des stations
- 4. Conclusion et épilogue

Conclusion

- 11 nouvelles stations sont créés entre 05/2021 et 08/2021 dans Paris
- Un modèle de Machine learning est proposé pour prédire le "pourcentage des instants critiques" des stations
- Grâce au modèle de ML, on peut évaluer si le choix d'une future nouvelle station est bon ou mauvais
- Le modèle le plus performant est XGBoost, le RMSE et 0.104, avec le target (pourcentage des instants critiques) varie entre 0 et 1 et la moyenne est à 0.26

Epilogue

Limite de notre méthode

- Le choix des emplacements des nouvelles stations se pose sur d'autres éléments (place dispo, réseau électrique, etc)
- La colonne 'duedate' est mal renseignée, ce qui peut biaiser le pourcentage instant critique
- La colonne 'nom_arrondissement_commune's est mal renseignée, 3 nouvelles stations se trouvent hors Paris
- Comptage de vélo n'est pas représentatif, 96 compteurs seulement sur Paris et absence de compteur dans 4 arrondissements

Perspective

- Enrichir encore le modèle avec les données externes comme les âges/revenues/niveau de bruits, etc
- Étendre l'étude sur tout l'ile de France, car le plus grand nombre de nouvelle stations sont créés en banlieues (pb: trouver des data sur île de France)
- Faire des nouvelles études quand les données plus récents sont disponibles (+ de compteurs)
- Corriger les erreurs dans la colonne 'nom_arrondissement_communes' avec les coordonnées longitude/latitude
- Traiter le dataset comptage/piste cyclable selon chaque station et non par arrondissement
- Prédiction en tenant en compte le temps (dayofweek, jours congés ou non, etc)

Avez vous des questions?

Annexe 1 : Répartition des tâches

		Abire	Caroline	Changwei
	dataset vélib			x
Data próparation	dataset comptage vélo		X	
Data préparation	dataset piste cyclable	x		
	package geopy	x		
Data visualisation	Affichage sur carte avec package folium	x	x	
	Divers (bar/pie chart/scatter) plotly	x	x	x
Machine Learning				х

Annexe 2 : processus de la data prép/analyse

Annexe 3: les 11 stations nouvelles créé (3 sont pas à paris)

<u>T&C</u>

- · 15 min de présentation orale distribuée également parmi les membres de chaque équipe (tous dépassement sera pénalisé)
- · Utilisation dau minimum un dataset.

Le Slide Deck Final doit contenir la présentation orale & des annexes :

- · 1 Page expliquant la répartition du travail effectué par participant
- 2 Pages <u>au maximum</u> résumant clairement le processus et les stratégies mis en place lors de la préparation des données, le choix des visualisations, le choix des dataset et informations externes (sil y en a) pour répondre à votre question avec cohérence

Veuillez noter que nous attendons par mail votre support de présentation <u>avant</u> loral final : 9-9-2021 / 13h