2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA

Pagrindinė sesija

1-7 uždavinių atsakymai

I variantas

Užd. Nr.	1	2	3	4	5	6	7
Ats.	C	E	D	D	C	C	В
II variantas							
Užd. Nr.	1	2	3	4	5	6	7
Ats.	В	В	C	A	C	D	В

Kity uždavinių sprendimo nurodymai ir atsakymai

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
8		3	
	8.1. 2340000 : 3,12 = 750000	• 1	Už gautą teisingą atsakymą.
	Ats.: 750 000 akcijų.		
	8.2. 3,12 Lt - 96 %, x Lt - 100 %, $x = \frac{3,12 \cdot 100}{96} = 3,25$.	• 1	Už teisingo sprendimo būdo pasirinkimą (pvz., teisingos proporcijos sudarymą; lygties $0.96x = 3.12$ sudarymą).
	Ats.: 3,25 Lt.	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
9		4	
	9.1. $2(x-1) > 0.4$		
	x-1 > 0,2		
	Ats.: $x > 1,2$	• 1	Už gautą teisingą atsakymą.
	$9.2. \ \frac{5x - x^2 - 7}{x} \le 0$	• 1	Už teisingo sprendimo būdo pasirinkimą (teisingai atlikti
	(arba $\frac{x^2 - 5x + 7}{x} \ge 0$),		nelygybės pertvarkiai).
	$5x - x^2 - 7 = 0$, $D < 0 \Rightarrow 5x - x^2 - 7 < 0$ su visomis realiomis x reikšmėmis (arba $x^2 - 5x + 7 > 0$ su visomis realiomis x reikšmėmis).	• 1	Už skaitiklio reikšmių ženklo nustatymą.
	Ats.: $x \in (0; +\infty)$.	• 1	Už gautą teisingą atsakymą.

Pastabos:

- 1. Jeigu mokinys sprendžia nelygybę 9.2. kitu būdu (pvz.: braižo parabolės eskizą ženklui nustatyti; intervalų metodu ir pan.) ir gauna teisingą atsakymą, skiriami visi taškai.
- 2. Jeigu mokinys nelygybę 9.2. sprendžia taip:

$$5 - x - \frac{7}{x} \le 0 \quad \middle| \cdot x$$

$$5x - x^2 - 7 \le 0$$

$$x^2 - 5x + 7 \ge 0$$

 $D < 0 \Rightarrow x \in \mathbb{R}$ (arba $x \in (-\infty, 0) \cup (0, +\infty)$), tai jo sprendimas vertinamas 1 tašku.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
10		3	
	10.1. $3^{2x-1} = 3^2$ $3^{2x-1} = 3^2$ $x = 1,5$ Ats.: $x = 1,5$ 10.2. $3^{x+1}(1-3+9) = 7$ (arba $3 \cdot 3^x - 9 \cdot 3^x + 27 \cdot 3^x = 7$), $3^{x+1} \cdot 7 = 7$, $3^{x+1} = 1$, $x + 1 = 0$,	• 1 • 1	Už gautą teisingą atsakymą. Už teisingo sprendimo būdo pasirinkimą.
	x = -1. $Ats.: x = -1.$	• 1	Už gautą teisingą atsakymą.

Pastabos: 1. Jeigu mokinys spręsdamas 10.1. atspėja, kad x = 1,5 ir patikrina raštu, kad ši reikšmė yra lygties sprendinys, jam skiriamas l taškas.

2. Jeigu mokinys spręsdamas 10.2. atspėja, kad x = -1 ir patikrina raštu, kad ši reikšmė yra lygties sprendinys, jam skiriamas l taškas.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
11		2	
	11.1. Ats.: $f'(x) = 2\cos x + 1$.	• 1	Už teisingai apskaičiuotą išvestinę.
	11.2. Ats.: $k = f'(\pi) = -1$.	• 1	Už teisingai apskaičiuotą liestinės krypties koeficientą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
12		3	
	$\sin x \cdot \operatorname{ctg} x = 1$ $\sin x \cdot \frac{\cos x}{\cos x} = 1$		
	$\sin x \cdot \frac{1}{\sin x} = 1$		
	$\cos x = 1$	• 1	Už teisingą ctg <i>x</i> išreiškimą santykiu ir suprastinimą.
	$x = 2 \pi k, \ k \in \mathbb{Z}$	• 1	Už teisingą lygties $\cos x = 1$
	Kadangi $\sin x \neq 0 \Rightarrow x \neq \pi k$, tai lygtis	• 1	bendrąjį sprendinį. Už argumentuotai gautą
	neturi sprendinių. Ats.: Sprendinių nėra.	1	teisingą atsakymą.

Pastaba. Sąlygą $k \in \mathbb{Z}$ uždavinio sprendime užtenka nurodyti bent vieną kartą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
13	•	3	
	1 būdas. $\sin(\alpha + \beta)\sin(\alpha - \beta) =$	• 1	Už teisingo sprendimo būdo pasirinkimą (teisingai gauta išraiška
	$= \sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta =$		$\sin^2 \alpha \cos^2 \beta - \cos^2 \alpha \sin^2 \beta.)$
	$= (1 - \cos^2 \alpha) \cos^2 \beta - \cos^2 \alpha (1 - \cos^2 \beta) =$	• 1	Už <i>bent vieną</i> $\sin^2 \alpha$ (arba $\sin^2 \beta$) išreiškimą $1 - \cos^2 \alpha$
	$= \cos^2 \beta - \cos^2 \alpha \cos^2 \beta - \cos^2 \alpha +$		(arba $1-\cos^2\beta$).
	$+\cos^2\alpha\cos^2\beta = \cos^2\beta - \cos^2\alpha$.	• 1	Už gautą teisingą išraišką.
	2 būdas.		
	$\cos^2 \beta - \cos^2 \alpha =$		
	$(\cos\beta - \cos\alpha)(\cos\beta + \cos\alpha) =$	• 1	Už teisingą kosinusų skirtumo
	$= -2\sin\frac{\beta + \alpha}{2}\sin\frac{\beta - \alpha}{2} \cdot 2\cos\frac{\beta + \alpha}{2}\cos\frac{\beta - \alpha}{2} =$		ir sumos keitimą sandauga.
	$=2\sin\frac{\beta+\alpha}{2}\sin\frac{\alpha-\beta}{2}\cdot2\cos\frac{\beta+\alpha}{2}\cos\frac{\alpha-\beta}{2}=$	• 1	Už trigonometrinių funkcijų
	$=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha+\beta}{2}\cdot2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha-\beta}{2}=$	• 1	lyginumo savybių taikymą. Už sinuso dvigubo kampo
	$= \sin(\alpha + \beta)\sin(\alpha - \beta)$		formulės pastebėjimą ir teisingą pritaikymą.

Pastaba. Mokinys gali teisingai įrodyti tapatybę ir kitais būdais. Už tai jam skiriami visi taškai.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
14		4	
	14.1. $0.2 + a + b + 0.25 = 1 \Rightarrow a + b = 0.55$,	• 2	Po 1 tašką už kiekvieną
	$\mathbf{E} X = 0 \cdot 0.2 + 1 \cdot a + 2 \cdot b + 3 \cdot 0.25 =$		teisingai sudarytą lygtį.
	$= a + 2b + 0.75 \Rightarrow a + 2b + 0.75 = 1.55 \Rightarrow$		
	a+2b=0.8.		
	14.2. $\begin{cases} a+b = 0.55, \\ a+2b = 0.8 \end{cases} \Rightarrow \begin{cases} a+b = 0.55, \\ b = 0.25 \end{cases} \Rightarrow$	• 1	Už teisingai apskaičiuotas <i>a</i> ir <i>b</i> reikšmes.
	$\Rightarrow \begin{cases} a = 0,3, \\ b = 0,25. \end{cases}$		
	Ats.: $a = 0.3$, $b = 0.25$.		
	14.3. $P(X \ge 2) = P(X = 2) + P(X = 3) = 0.5.$	• 1	Už gautą teisingą atsakymą.
	Ats.: 0,5.		

Pastaba. Jeigu mokinys spręsdamas 14.2. apskaičiuoja neteisingai a ir b reikšmes ir su jomis teisingai sprendžia 14.3., jam skiriamas 1 taškas.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
15		5	
	15.1. $S_{pav.} = \frac{\pi \cdot 0.7^2}{2} = 0.7693 \text{ m}^2,$ 0.9 m ² - 100 %,	• 1	Už teisingai apskaičiuotą gaubto paviršiaus plotą.
	0.9 m - 100 %, $0.1307 \text{ m}^2 - x \%,$	• 1	Už teisingo sprendimo būdo
	$x = \frac{100 \cdot 0,1307}{0,9},$		pasirinkimą (pvz., sudaroma proporcija, santykis ir pan.)
	$x \approx 14.5 \%$.		
	Ats.: 14,5 %.	- 1	
	15.2.	• 1	Už gautą teisingą atsakymą.
	$A \stackrel{l}{\underbrace{\hspace{1cm}}^{l}} C$		
	R=l $R=l$		
	1 būdas.		
	$2\pi r = \frac{2\pi R}{2} \Rightarrow 2\pi r = \pi l \Rightarrow 2r = l$.	1	
	ΔABC lygiakraštis, nes	• 1	Už teisingo sprendimo būdo pasirinkimą.
	AB = BC = AC = 2r. 2 būdas.	• 1	Už teisingą išvadą.
	$S_{puskr.} = \frac{\pi R^2}{2} \Rightarrow S_{\check{s}on} = \pi r l,$	• 1	Už teisingo sprendimo būdo
	$\frac{\pi R^2}{2} = \pi r l \Rightarrow \frac{\pi l^2}{2} = \pi r l,$		pasirinkimą.
	$\frac{1}{2}l=r,$		
	l = 2r.		
	$\triangle ABC$ lygiakraštis, nes $AB = BC = AC = 2r$.	• 1	Už teisingą išvadą.

Pastabos: 1. Jeigu mokinys teiginį 15.2 teisingai įrodys su konkrečia kūgio sudaromosios reikšme $l=0,7\,$ m, jam skiriami 2 taškai.

2. Jeigu mokinys įrodys atvirkščią 15.2 teiginį jam skiriamas *1 taškas*.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
16		5	
	16.1. $2-x=0 \Rightarrow x=2$,		
	B(2; 0).		
	$x^2 = 2 - x,$		
	$x^2 + x - 2 = 0,$	• 2	Po vieną tašką už teisingai
	x = -2 arba $x = 1$,		surastas taškų A ir B
	A(1; 1).		koordinates.
	Ats.: B(2;0), A(1;1).		
	16.2. $S = S_1 + S_2$,		
	$S_1 = \int_0^1 x^2 dx = \frac{1}{3},$	• 2	Po vieną tašką už kiekvieną teisingai apskaičiuotą ploto
	$S_2 = \frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2},$		dalį.
	$S = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}.$		
	Ats.: $\frac{5}{6}$.	• 1	Už gautą teisingą atsakymą.

Pastaba. Jei mokinys spręsdamas 16.1 uždavinį teisingai apskaičiavo tik taškų A ir B abscises, jam skiriamas I taškas.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
17		3	
	A_{1} B_{1} C_{1} A_{1} D_{1} C A M D		
	1 būdas. Kadangi $\overrightarrow{MN} = \overrightarrow{OC}$, tai ieškomasis kampas yra C_1OC .	• 1	Už teisingo sprendimo būdo pasirinkimą.
	ΔOCC_1 kraštinės yra: $OC = \sqrt{2}$ ir $CC_1 = 2$, $tg \angle C_1 OC = \frac{2}{\sqrt{2}} = \sqrt{2}$,	• 1	Už teisingai apskaičiuotus ΔOCC_1 kraštinių ilgius.
	$\angle C_1OC = arctg\sqrt{2}$ Ats.: $\angle C_1OC = arctg\sqrt{2}$ 2 būdas. Kadangi $\overrightarrow{MN} = \overrightarrow{OC}$, tai ieškomasis kampas yra C_1OC . Sakykime, koordinačių sistemos pradžios	11	Už gautą teisingą atsakymą. Už teisingo sprendimo būdo pasirinkimą.
	taškas yra B . Tada: $\overrightarrow{MN}(-1;1;0)$ ir $\overrightarrow{OC_1}(-1;1;2)$.	• 1	Už teisingai užrašytas vektorių \overrightarrow{MN} ir $\overrightarrow{OC_1}$ koordinates.

$\cos \angle COC_1 = \frac{\overrightarrow{MN} \cdot \overrightarrow{OC_1}}{\left \overrightarrow{MN} \right \cdot \left \overrightarrow{OC_1} \right } = \frac{2}{\sqrt{2} \cdot \sqrt{6}} = \frac{1}{\sqrt{3}}$		
$= \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3},$ $\angle COC_1 = \arccos\frac{\sqrt{3}}{3}.$	• 1	Už gautą teisingą atsakymą.
Ats.: $\angle COC_1 = \arccos \frac{\sqrt{3}}{3}$		
3 būdas.		
$\cos(\overrightarrow{MN}; \overrightarrow{OC_1}) = \frac{\overrightarrow{MN} \cdot \overrightarrow{OC_1}}{\left \overrightarrow{MN} \right \left \overrightarrow{OC_1} \right }$ $\overrightarrow{OC_1} = \overrightarrow{OC} + \overrightarrow{CC_1} = \overrightarrow{MN} + \overrightarrow{CC_1}$	• 1	Už teisingo sprendimo būdo pasirinkimą.
$\overrightarrow{MN} \cdot \overrightarrow{OC_1} = \overrightarrow{MN}(\overrightarrow{MN} + \overrightarrow{CC_1}) =$ $= \overrightarrow{MN}^2 + \overrightarrow{MN} \cdot \overrightarrow{CC_1} =$		
$= \overrightarrow{MN}^2 + O = \left \overrightarrow{MN} \right ^2 \text{ (arba } \left \overrightarrow{MN} \right ^2 = 2 \text{)}$		

$$\cos(\overrightarrow{MN}; \overrightarrow{OC_1}) = \frac{\left| \overrightarrow{MN} \right|^2}{\left| \overrightarrow{MN} \right| \cdot \left| \overrightarrow{OC_1} \right|} =$$

$$= \frac{\left| \overrightarrow{MN} \right|}{\left| \overrightarrow{OC_1} \right|} = \frac{\sqrt{2}}{\sqrt{6}} = \frac{\sqrt{3}}{3},$$
Ats.: $\angle(\overrightarrow{MN}; \overrightarrow{OC_1}) = \arccos\frac{\sqrt{3}}{3}$

• 1 Už teisingą vektorių skaliarinės sandaugos išreiškimą (arba apskaičiavimą).

• 1 Už gautą teisingą atsakymą.

Pastaba. Jeigu mokinys kampo didumą pateikia teisingai suapvalintą (pvz.: 55° ; $54,74^{\circ}$ ar kitą), bet savo sprendime užrašo, kad $\angle C_1OC = arctg\sqrt{2}$ arba $\angle C_1OC = arccos\frac{\sqrt{3}}{3}$, tai jam skiriami visi taškai.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
18		3	
	18.1. [vykiai nepriklausomi, todėl P (atvirto trys karaliai) = $\frac{1}{2} \cdot \frac{1}{2} \cdot 1 = \frac{1}{4}$.	• 1	Už gautą teisingą atsakymą.
	Ats.: $\frac{1}{4}$. 18.2. SK KS KS SK KK SS SK ₁ KK ₂ SK ₂ SK ₁ II ,III KK ₁ KK ₂ SK ₂ SK ₂ SK ₁ II viso įvykių $n = 3 \cdot 4 = 12$. Palankių įvykių (abu karaliai) $m = 5$. P (abu karaliai) = $\frac{5}{12}$.	• 1	Už teisingo sprendimo būdo pasirinkimą (pvz.: variantų perrinkimas, galimybių medis ir pan.).
	$Ats.: \frac{5}{12}.$	• 1	Už gautą teisingą atsakymą.

 $Pastaba. \hspace{0.2cm} \text{Jeigu} \hspace{0.2cm} \text{mokinys} \hspace{0.2cm} \text{spręsdamas} \hspace{0.2cm} 18.2 \hspace{0.2cm} \text{uždavinį} \hspace{0.2cm} \text{naudoja} \hspace{0.2cm} \text{sąlygines} \hspace{0.2cm} \text{tikimybes} \\ \hspace{0.2cm} (\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} \cdot 1 + \frac{1}{3} \cdot \frac{1}{2} \cdot 1 = \frac{5}{12}) \hspace{0.2cm} \text{ir gauna teisingą atsakymą, jam skiriami visi taškai.} \\$

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
19		3	
	$A \stackrel{N}{\overbrace{O}} B$		
	$\angle ANB = \angle BMA$, nes remiasi į tą patį lanką (arba $\angle ANB = \angle BMA = 90^{\circ}$, nes remiasi į skersmenį, arba $\angle MBN = \angle NAM$, nes	• 1	Už pastebėjimą ir pagrindimą, kad atitinkami įbrėžtiniai kampai lygūs.
	remiasi į tą patį lanką). $\triangle ANP \sim \triangle BMP$ pagal du kampus (pvz.: $\angle ANP = \angle BMP$ (anksčiau įrodyta), $\angle APN = \angle BPM$ kaip kryžminiai).	• 1	Už pastebėjimą ir pagrindimą, kad trikampiai yra panašūs.
	Jei trikampiai panašūs, tai $\frac{AN}{BM} = \frac{AP}{BP} \Rightarrow AN \cdot BP = BM \cdot AP.$	• 1	Už teisingą proporciją ir teisingą išvadą.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
20		5	
	20.1. Pagal Pitagoro teoremą $AD = \sqrt{10000 + x^2} \text{ m},$ $DB = 400 - x \text{ m}.$ Tada dujotiekio tiesimo kaina:	• 1	Už teisingai išreikštus atstumus AD ir DB.
	$K(x) = 120 \cdot 1,25\sqrt{10000 + x^2} + 120(400 - x) = 150\sqrt{10000 + x^2} + (400 - x)120 = 150\sqrt{10000 + x^2} + (400 - x)120 = 120(5\sqrt{10000 + x^2} - 4x + 1600),$	• 1	Už gautą teisingą dujotiekio tiesimo kainos išraišką.
	kai $0 \le x \le 400$. 20.2. $K'(x) = 30 \left(\frac{5x}{\sqrt{10000 + x^2}} - 4 \right)$, $K'(x) = 0 \Rightarrow \frac{5x}{\sqrt{10000 + x^2}} = 4$,	• 1	Už teisingai surastą funkcijos $K(x)$ išvestinę.
	$5x = 4\sqrt{10000 + x^2}$ $25x^2 = 16(10000 + x^2)$ $9x^2 = 160000$ $x^2 = \frac{160000}{9}$		
	$x = \frac{400}{3} \text{ arba } x = -\frac{400}{3} \text{ (netinka)}$	• 1	Už teisingai surastą <i>x</i> reikšmę, su kuria išvestinė lygi 0.
	$0 \underbrace{\frac{400}{3}} $	• 1	Už teisingą pagrindimą, kad su reikšme $x = \frac{400}{3}$
	$K'(200) > 0$. Ats.: Dujotiekio mažiausia tiesimo kaina bus, kai $x = \frac{400}{3}$ m.		dujotiekio tiesimo kaina bus mažiausia (pvz., mokinys parodo, kad $K'(100) < 0$, o $K'(200) > 0$).

Pastabos: 1. Jeigu mokinys spręsdamas 20.1 uždavinį užrašė tik dujotiekio atstumo nuo taško A iki gyvenvietės B išraišką (t. y. $d=\sqrt{10000+x^2}+400-x$), jam skiriamas I taškas.

- 2. Jeigu mokinys spręsdamas 20.2 uždavinį neteisingai apskaičiuoja funkcijos K(x) išvestinę ir pagal jo tolimesnius teisingus skaičiavimus kritinis taškas neegzistuoja arba nepriklauso intervalui $0 \le x \le 400$, tačiau teisingai pagrindžia, kad mažiausia dujotiekio nutiesimo kaina yra kai $x = 400\,$ m, jam skiriami 2 taškai.
- 3. Jeigu mokinys spręsdamas 20.2 uždavinį teisingai apskaičiuoja funkcijos K(x) išvestinę, bet neteisingai sprendžia lygtį K'(x)=0 ir gauna, kad kritinis taškas neegzistuoja arba nepriklauso intervalui $0 \le x \le 400$, tačiau teisingai pagrindžia, kad mažiausia dujotiekio nutiesimo kaina yra kai x=400 m, jam skiriami 2 taškai.

Užd.	Sprendimas/atsakymas	Taškai	Vertinimas
21		4	
	1 būdas. Tarkime, kad salėje iš viso buvo N kėdžių sustatytų po n kėdžių kiekvienoje eilėje, kai kėdės buvo sustatytos į 13 eilių. Tada: $N = 27(n-7) - 3$, $N = 27n - 192$. Taip pat $12n < N < 13n$, nes trylikta eilė nepilna, arba $\begin{cases} 12n < N, \\ N < 13n. \end{cases}$ $12n < 27n - 192 < 13n \Rightarrow$ $\begin{cases} 27n - 192 > 12n, \\ 27n - 192 < 13n \end{cases} \Rightarrow$ $\begin{cases} 15n > 192, \\ 14n < 192 \end{cases}$	• 1 • 1	Už teisingai užrašytą kėdžių skaičiaus <i>N</i> išraišką. Už teisingą kėdžių skaičiaus įvertinimą (dviguba nelygybė arba nelygybių sistema).
	12,8 < n < 13 $\frac{5}{7}$ \Rightarrow n = 13, nes n - natūralusis skaičius. $N = 27 \cdot 13 - 192 = 159$ (kėdės). Ats.: 159 kėdės. 2 būdas. Tarkime, kad salėje iš viso buvo N kėdžių sustatytų po n kėdžių kiekvienoje eilėje, kai kėdės buvo sustatytos į 13 eilių. Tada: $N = 27(n-7) - 3$, $N = 27n - 192$. Kadangi trylikta eilė nepilna, tai $N < 13n \Rightarrow 27n - 192 < 13n$, $n < 13\frac{5}{7}$.	111	Už gautą teisingą dvigubos nelygybės arba nelygybių sistemos sprendinį. Už gautą teisingą atsakymą. Už teisingai užrašytą kėdžių skaičiaus <i>N</i> išraišką.
	Kadangi n yra natūralusis skaičius, tai $n \in \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13\}$. Suskaičiuokime N reikšmes su gautomis n reikšmėmis. Kai $n \in [1; 7] \Rightarrow N < 0$, todėl netinka. Kai $n = 8$, $N = 24$. Kai $n = 9$, $N = 51$. Kai $n = 10$, $N = 78$. Kai $n = 11$, $N = 105$. Kai $n = 12$, $N = 132$. Kai $n = 13$, $N = 159$. $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes netenkina sąlygos, kad pastačius eilėje $n \in \{8; 9; 10\}$ netinka, nes	11	Už gautas N reikšmes, kai $n \in [1;13]$, $n \in \mathbb{N}$, ir neigiamų N reikšmių atmetimą. Už argumentuotą N reikšmių, kai $n \in [8;12]$ atmetimą.

2008 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

N = 105 negali būti.		
Kai $n = 12$, tai $N = 132$, bet 12 ankstesnių		
eilių buvo pilnos: $12 \times 12 = 144$,		
144 > 132.		
N = 132 negali būti.		
Kai $n = 13$, tai $N = 159$.		
159:13 ≈ 12,2.		
Taigi 12 eilių pilnų, o trylikta nepilna.	- 1	Liž gauta taiginga atgalgyma
Ats.: 159 kėdės.	• 1	Už gautą teisingą atsakymą.