HW 3

Nathan Hawkins

2/5/2021

```
twogroups <- read.table("C:/Users/nateh/Downloads/twogroups.dat")
names(twogroups) <- c("tmt", "y")</pre>
```

1 Jags Model

```
library(R2jags)
hw3md1 <- "
  model {
    for(i in 1:33){
      y[i] ~ dnorm(mu[tmt[i]], 1/s2[tmt[i]])
    #Priors
    for(i in 1:2){
      mu[i] \sim dnorm(125, .01)
      s2[i] \sim dunif(0, 2000)
 }
writeLines(hw3mdl, 'hw3.txt')
y <- twogroups$y
tmt <- twogroups$tmt</pre>
data.jags <- c('y','tmt')</pre>
parms <- c("mu", "s2")</pre>
hw3.sim <- jags(data = data.jags, inits = NULL,
                parameters.to.save = parms,
                model.file = 'hw3.txt',
                n.iter = 16000,
                n.burnin = 1000,
                n.chains = 4,
                n.thin = 3)
## module glm loaded
```

```
## Compiling model graph
      Resolving undeclared variables
##
      Allocating nodes
##
## Graph information:
     Observed stochastic nodes: 33
##
##
      Unobserved stochastic nodes: 4
##
     Total graph size: 77
##
## Initializing model
hw3.sim
## Inference for Bugs model at "hw3.txt", fit using jags,
## 4 chains, each with 16000 iterations (first 1000 discarded), n.thin = 3
## n.sims = 20000 iterations saved
##
           mu.vect sd.vect
                                        25%
                                                50%
                                                        75%
                                                              97.5% Rhat
n.eff
                     5.331 121.204 128.435 131.996 135.527 142.073 1.001
## mu[1]
           131.907
7900
                     2.070 117.451 120.253 121.549 122.881 125.720 1.001
## mu[2]
           121.566
8100
## s2[1]
           767.008 282.990 380.449 564.957 708.323 905.081 1497.371 1.001
20000
            62.822 33.185 26.178 41.380 54.701 74.542 147.215 1.001
## s2[2]
5200
## deviance 271.225 3.371 266.938 268.702 270.506 272.918 279.641 1.001
5600
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 5.7 and DIC = 276.9
## DIC is an estimate of expected predictive error (lower deviance is
better).
```

Convergence checks

The plots look like they converge. Dependence is close to 1. Effective size is plenty high, and there's low autocorrelation.

```
sims <- as.mcmc(hw3.sim)
chains <- as.matrix(sims)
sims <- as.mcmc(chains)
head(sims)

## Markov Chain Monte Carlo (MCMC) output:
## Start = 1
## End = 7
## Thinning interval = 1</pre>
```

```
## deviance mu[1] mu[2] s2[1] s2[2]
## [1,] 271.3735 138.2258 118.2706 784.4035 73.26400
## [2,] 266.6953 134.0042 120.5847 623.1723 37.02006
## [3,] 271.1994 133.3082 118.2709 905.4388 57.70077
## [4,] 266.8827 134.9346 121.6499 466.0605 44.63889
## [5,] 268.3093 131.8496 121.2842 561.6071 69.36466
## [6,] 271.3003 138.7068 124.4653 512.9549 79.65210
## [7,] 268.5313 136.1771 121.1794 602.4863 74.01456

plot(sims, type = 'l')
```

Trace of deviance

0 5000 10000 20000

Iterations

Density of deviance

Trace of mu[1]

Density of mu[1]

Trace of mu[2]

Density of mu[2]

Trace of s2[1]

Density of s2[1]

Trace of s2[2]

Density of s2[2]


```
effectiveSize(sims)
## deviance
              mu[1]
                       mu[2]
                               s2[1]
                                        s2[2]
## 12530.547 19031.507 20333.903 15756.649 9711.661
autocorr.diag(sims)
##
            deviance
                           mu[1]
                                      mu[2]
                                                 s2[1]
                                                             s2[2]
## Lag 0
         ## Lag 1
## Lag 5
         0.0009060010 0.0037843733 -0.005122316 -0.002792146 0.0009557271
## Lag 10 -0.0019990740 -0.0003755464 0.012272583 -0.009289859 -0.0011706081
## Lag 50 0.0007688069 0.0012880644 -0.003235746 -0.003075261 0.0057581114
raftery.diag(sims)
##
## Quantile (q) = 0.025
## Accuracy (r) = +/- 0.005
## Probability (s) = 0.95
##
##
           Burn-in Total Lower bound Dependence
##
           (M)
                  (N)
                        (Nmin)
                                   factor (I)
##
   deviance 2
                  3897
                       3746
                                   1.040
           2
##
   mu[1]
                  3740 3746
                                   0.998
   mu[2]
                                   1.020
##
           2
                  3834
                       3746
           2
##
   s2[1]
                  3665
                       3746
                                   0.978
## s2[2]
           2
                  3695 3746
                                   0.986
```

Next Model

```
library(R2jags)
a2mdl <- "
  model {

  for(i in 1:33){
    y[i] ~ dnorm(mu[tmt[i]], 1/s2[tmt[i]])
  }

  #Priors
  for(i in 1:2){
    mu[i] ~ dnorm(125, .01)
  }

  s2[1] ~ dgamma(2, .002)
  s2[2] ~ dgamma(2, .04)</pre>
```

```
writeLines(a2mdl, 'a1.txt')
y <- twogroups$y
tmt <- twogroups$tmt
data.jags <- c('y','tmt')</pre>
parms <- c("mu", "s2")
a1.sim <- jags(data = data.jags, inits = NULL,
               parameters.to.save = parms,
               model.file = 'a1.txt',
               n.iter = 16000,
               n.burnin = 1000,
               n.chains = 4,
               n.thin = 3)
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 33
##
      Unobserved stochastic nodes: 4
##
      Total graph size: 78
##
## Initializing model
a1.sim
## Inference for Bugs model at "a1.txt", fit using jags,
## 4 chains, each with 16000 iterations (first 1000 discarded), n.thin = 3
## n.sims = 20000 iterations saved
##
            mu.vect sd.vect
                               2.5%
                                        25%
                                                 50%
                                                         75%
                                                                97.5% Rhat
n.eff
            132.040
                      5.269 121.423 128.571 132.142 135.580
                                                             142.255 1.001
## mu[1]
20000
            121.542
                      1.827 117.927 120.353 121.526 122.718 125.149 1.001
## mu[2]
18000
## s2[1]
            718.277 245.852 377.738 545.816 672.488 841.174 1319.428 1.001
20000
             49.344 18.329 24.151 36.246 45.867 58.505
## s2[2]
                                                              94.436 1.001
20000
## deviance 270.138
                      2.616 266.779 268.214 269.575 271.465 276.823 1.001
9800
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 3.4 and DIC = 273.6
```

DIC is an estimate of expected predictive error (lower deviance is better).

Convergence checks

The plots look like they converge. Dependence is close to 1. Effective size is plenty high, and there's low autocorrelation.

```
a1 sims <- as.mcmc(a1.sim)</pre>
a1_chains <- as.matrix(a1_sims)</pre>
a1_sims <- as.mcmc(a1_chains)</pre>
head(a1_sims)
## Markov Chain Monte Carlo (MCMC) output:
## Start = 1
## End = 7
## Thinning interval = 1
        deviance
                    mu[1]
                              mu[2]
                                        s2[1]
                                                 s2[2]
## [1,] 270.6537 138.4488 124.0462 929.4059 44.30426
## [2,] 274.7284 119.9144 120.5744 845.6950 24.89042
## [3,] 269.9547 133.6447 121.0906 553.4022 90.84452
## [4,] 267.6281 133.8651 120.5717 731.4693 31.29615
## [5,] 269.8401 127.6098 119.4809 837.4337 45.98096
## [6,] 272.7338 132.1013 120.6334 1146.1108 23.73583
## [7,] 276.7017 131.9503 126.8763 742.0794 43.08941
plot(sims, type = '1')
```

Trace of deviance

0 5000 10000 20000

Iterations

Density of deviance

Trace of mu[1]

Density of mu[1]

Trace of mu[2]

Density of mu[2]

Trace of s2[1]

Trace of s2[2]

Density of s2[2]


```
#Effective Size
effectiveSize(a1 sims)
## deviance
             mu[1]
                     mu[2]
                              s2[1]
                                      s2[2]
## 16336.95 20000.00 20000.00 15806.15 14766.63
#Autocorrelation
autocorr.diag(a1_sims)
##
            deviance
                           mu[1]
                                        mu[2]
                                                   s2[1]
                                                               s2[2]
## Lag 1 7.987511e-02 -0.003975177 -0.0038395571 0.117101959 0.137804593
## Lag 5 8.045588e-04 0.001839992 0.0074255444 -0.005034121 -0.004102734
## Lag 10 6.194174e-05 0.001936787 0.0004039943 -0.004916510 0.008478139
## Lag 50 2.322618e-03 -0.003780772 0.0042630126 0.001396114 -0.013552910
#Diagnositcs
raftery.diag(a1_sims)
##
## Quantile (q) = 0.025
## Accuracy (r) = +/- 0.005
## Probability (s) = 0.95
##
##
           Burn-in Total Lower bound Dependence
                                     factor (I)
##
           (M)
                    (N)
                         (Nmin)
## deviance 2
                    3680 3746
                                     0.982
## mu[1]
           2
                   3710 3746
                                     0.990
## mu[2]
           1
                    3755 3746
                                     1.000
           2
## s2[1]
                    3771 3746
                                     1.010
## s2[2]
           2
                    3787 3746
                                     1.010
```

Comparing Models

DIC is lower for the model with the gamma variances. Here are density plots of the differences

```
diff1 <- mu1-mu2
diff2 <- a1_mu1 - a1_mu2
plot(density(diff1), col = 'blue', lwd = 4, main = "Comparison of the
distribution of the difference of mu's")
lines(density(diff2), col = 'orchid', lwd = 4)
legend(-10, .03, c("Uniform Prior variance", "Gamma Prior Varaince"), col =
c("blue", "orchid"), lty = 1, lwd = 4)</pre>
```

Comparison of the distribution of the difference of n

2 Same thing but

in sas Sas Code

library(SASmarkdown)

saspath <- "C:/Program Files/SASHome/SASFoundation/9.4/sas.exe" sasopts <- "-nosplash -ls 75" knitr::opts_chunk\$set(engine="sas", engine.path=saspath, engine.opts=sasopts, comment=NA)

knitr::opts_chunk*get*()engine knitr::opts_chunk*get*()engine.path knitr::opts_chunk*get*()engine.opts

Sas Code. Works in R just not when I knit it.

data twogroups; infile 'C:/Users/nateh/Downloads/twogroups.dat'; input tmt y; run; proc means data=twogroups; run;

proc mcmc data = twogroups nbi = 30000 nmc = 300000 thin = 30 outpost = 'C:/Users/nateh/Documents/Stat 451/anovamodel_1.sas7bdat' dic propcov=quanew monitor=(parms) stats = all diagnostics = all;

array mu[2] mu1-mu2;

array vv[2] vv1-vv2;

parms mu1: 0;

```
parms mu2: 0;
parms vv1: 10;
parms vv2: 10;
prior mu1: \sim normal(125, var = 100);
prior mu2: \sim normal(125, var = 100);
prior vv1: \sim uniform(0, 2000);
prior vv2: \sim uniform(0, 2000);
model y \sim normal(mu[tmt], var = vv[tmt]);
run;
2<sup>nd</sup> model
data twogroups; infile 'C:/Users/nateh/Downloads/twogroups.dat'; input tmt y; run;
proc means data=twogroups; run;
proc mcmc data = twogroups nbi = 30000 nmc = 300000 thin = 30 outpost =
'C:/Users/nateh/Documents/Stat 451/anovamodel_2.sas7bdat' dic propcov=quanew
monitor=(parms) stats = all diagnostics = all; array mu[2] mu1-mu2; array vv[2] vv1-vv2;
parms mu1: 0; parms mu2: 0; parms vv1: 10; parms vv2: 10; prior mu1: ~ normal(125, var
= 100); prior mu2: \sim normal(125, var = 100); prior vv1: \sim gamma(2, scale = 500); prior
vv2: \sim gamma(2, scale = 25); model y \sim normal(mu[tmt], var = vv[tmt]); run; endsas;
```

Now back to R, Convergence Checks


```
## Markov Chain Monte Carlo (MCMC) output:
## Start = 1
## End = 7
## Thinning interval = 1
```

```
Iteration mu1 mu2 vv1 vv2 LogPrior LogLike
## [1,]
           30001 143.8716 121.6742 912.9847 33.46886 -23.48085 -135.0361
           30031 135.6311 118.0768 552.6784 81.41652 -22.44960 -135.5289
## [2,]
## [3,]
           30061 136.2304 124.0955 827.1403 50.95454 -22.27956 -134.8728
## [4,]
           30091 129.9768 120.9021 741.7832 51.25270 -21.85266 -133.9214
           30121 125.7824 115.3936 652.9950 89.26981 -22.10933 -138.9344
## [5,]
## [6,]
           30151 121.1100 120.1923 666.5678 101.96143 -21.83608 -138.2100
           30181 129.3298 128.4547 1028.0689 214.86834 -21.79826 -142.3405
## [7,]
##
         LogPost
## [1,] -158.5170
## [2,] -157.9785
## [3,] -157.1524
## [4,] -155.7741
## [5,] -161.0437
## [6,] -160.0460
## [7,] -164.1387
## Iteration
                                              vv2 LogPrior
                 mu1
                           mu2
                                    vv1
                                                             LogLike
LogPost
##
       0.00 10287.70 10000.00 10000.00 10000.00 11436.64 10000.00
10002.44
         Iteration
                           mu1
                                       mu2
                                                   vv1
                                                               vv2
1.000000000
## Lag 1 0.9997000 -0.014231214 -0.007914044 0.008984984 0.008529609
## Lag 5 0.9985000 -0.003150813 0.007266876 0.001238803 -0.003675349
## Lag 10 0.9970000 -0.007077288 0.005002860 0.002367592 0.005092706
## Lag 50 0.9850002 0.015948987 0.007268022 0.002873098 0.013671493
                           LogLike
              LogPrior
                                       LogPost
## Lag 0
          1.0000000000 1.000000000 1.000000000
        -0.0057868945 0.007821569 0.012344691
## Lag 1
## Lag 5 -0.0027864119 0.001129514 -0.002953650
## Lag 10 -0.0007150263 -0.006340446 -0.005898775
## Lag 50 0.0069705491 0.017121506 0.011912975
##
## Quantile (q) = 0.025
## Accuracy (r) = +/- 0.005
## Probability (s) = 0.95
##
##
             Burn-in
                     Total Lower bound
                                       Dependence
             (M)
##
                     (N)
                           (Nmin)
                                       factor (I)
## Iteration 1724
                     1724 3746
                                       0.460
## mu1
             2
                     3620 3746
                                       0.966
## mu2
             2
                     3710 3746
                                       0.990
             2
##
   vv1
                     3771
                           3746
                                       1.010
             2
## vv2
                     3620 3746
                                       0.966
## LogPrior 2
                     3851
                           3746
                                       1.030
## LogLike
             2
                     3650 3746
                                       0.974
## LogPost
             2
                     3680 3746
                                       0.982
```

```
## Markov Chain Monte Carlo (MCMC) output:
## Start = 1
## End = 7
## Thinning interval = 1
                       mu1
##
        Iteration
                                mu2
                                         vv1
                                                   vv2
                                                        LogPrior
                                                                   LogLike
## [1,]
            30001 137.8225 123.3394 529.7137 61.00361 -19.26219 -134.3175
## [2,]
            30031 125.5393 120.1189 939.4121 30.87766 -18.26924 -135.6062
## [3,]
            30061 124.1222 119.9756 537.2801 52.50988 -18.36752 -135.6387
## [4,]
            30091 132.2810 121.5039 551.4720 36.11525 -18.28444 -133.3087
## [5,]
            30121 128.2311 118.5680 508.9173 61.01181 -18.68402 -135.4639
## [6,]
            30151 137.2801 122.9064 462.5257 61.95552 -19.22608 -134.3651
            30181 118.8149 116.2278 973.5619 62.81285 -19.32456 -140.2862
## [7,]
##
          LogPost
## [1,] -153.5797
## [2,] -153.8754
## [3,] -154.0062
## [4,] -151.5932
## [5,] -154.1480
## [6,] -153.5911
## [7,] -159.6108
## Iteration
                   mu1
                             mu2
                                                 vv2 LogPrior
                                                                  LogLike
                                       vv1
LogPost
       0.000 10000.000 10000.000 10000.000 9602.729 9712.946 10000.000
10000.000
##
          Iteration
                              mu1
                                           mu2
                                                         vv1
                                                                       vv2
                     1.0000000000
                                   1.000000000
## Lag 0
         1.0000000
                                                1.000000000
                                                              1.0000000000
## Lag 1 0.9997000
                     0.0085170394 -0.010621960
                                                0.002426704
                                                             0.0202161217
                                   0.008536314
                                                0.010974915 -0.0004993105
## Lag 5
          0.9985000
                     0.0053861727
## Lag 10 0.9970000 -0.0012004054 0.007418443 -0.007817121 -0.0055098663
## Lag 50 0.9850002 -0.0004445261 0.003926898 0.002753726 -0.0013077705
##
                                         LogPost
              LogPrior
                            LogLike
## Lag 0
           1.000000000
                       1.000000000
                                     1.000000000
## Lag 1
           0.014511710 -0.007026406
                                     0.001362629
## Lag 5
           0.017602756
                        0.009944434
                                     0.015964661
## Lag 10 -0.012383189
                        0.002910615 -0.001959919
## Lag 50 0.009533903 0.001255593 0.004555453
##
## Quantile (q) = 0.025
## Accuracy (r) = +/- 0.005
## Probability (s) = 0.95
##
##
              Burn-in
                       Total Lower bound
                                          Dependence
##
              (M)
                       (N)
                             (Nmin)
                                          factor (I)
##
   Iteration 1724
                       1724
                             3746
                                          0.460
##
   mu1
              2
                       3741
                             3746
                                          0.999
              2
##
                                          0.999
   mu2
                       3741
                             3746
## vv1
              2
                       3710
                            3746
                                          0.990
```

```
## vv2
                       3680
                             3746
                                          0.982
## LogPrior 2
                       3802
                                          1.010
                             3746
  LogLike
              2
                                          0.999
##
                       3741
                             3746
    LogPost
              2
                       3802
                            3746
                                          1.010
##
plot(density(anovamodel2$mu1 - anovamodel2$mu2), col = 'blue', lwd = 2, main
= "Mu1-Mu2 for both models compared")
lines(density(anovamodel1$mu1 - anovamodel2$mu2), col = 'red', lwd = 2)
legend(-10, .03, c("Prior Variance follows gamma", "Prior Variance follows
uniform"), col = c('blue', 'red'), lty = 1, lwd = 2)
```

Mu1-Mu2 for both models compared

3 Prior Predictive for uniform

Prior Predictive Distributions

```
# Generate prior distribution
prpred_1 <- NULL
for(i in 1:1000){
   prpred_1[i] <- rnorm(1, 125, sqrt(100)) + rnorm(1,0,sqrt(runif(1,0,2000)))
}
#Plot Prior
plot(density(prpred_1), type = 'l', main = "Prior Distribution")</pre>
```

Prior Distribution


```
#Plot Prior with treatments
hist(twogroups[twogroups$tmt == 1,]$y, freq = FALSE, main = "Treatment 1
histogram with prior distribution", xlim = c(30, 250), ylim = c(0, 0.06))
lines(density(prpred_1), type = 'l', col = 'blue', lwd = 2)
```

Treatment 1 histogram with prior distribution


```
hist(twogroups[twogroups$tmt == 2,]$y, freq = FALSE, main = "Treatment 2
histogram with prior distribution", xlim = c(30, 250))
lines(density(prpred_1), type = 'l', col = 'blue', lwd = 2)
```

Treatment 2 histogram with prior distribution

4 Prior Predictive for gamma model

Prior Predictive Distributions

```
# Generate prior distribution
prpred_2 <- NULL
for(i in 1:1000){
    prpred_2[i] <- rnorm(1, 125, sqrt(100)) + rnorm(1,0,sqrt(rgamma(1, 2, 0.002)))
}

prpred_3 <- NULL
for(i in 1:1000){
    prpred_3[i] <- rnorm(1, 125, sqrt(100)) + rnorm(1,0,sqrt(rgamma(1, 2, 0.04)))
}

#Plot Prior
plot(density(prpred_2), type = '1', main = "Prior Distribution")</pre>
```

Prior Distribution


```
plot(density(prpred_3), type = 'l', main = "Prior Distribution")
```

Prior Distribution


```
#Plot Prior with treatments
hist(twogroups[twogroups$tmt == 1,]$y, freq = FALSE, main = "Treatment 1
histogram with gamma prior distribution", xlim = c(30, 250), ylim = c(0,
0.06))
lines(density(prpred_2), type = 'l', col = 'blue', lwd = 2)
```

Treatment 1 histogram with gamma prior distributi-

hist(twogroups[twogroups\$tmt == 2,]\$y, freq = FALSE, main = "Treatment 2
histogram with gamma prior distribution", xlim = c(90, 150))
lines(density(prpred_3), type = 'l', col = 'blue', lwd = 2)

Treatment 2 histogram with gamma prior distributi-

5 Posterior Predictive from Jags model

Posterior Predictive Distributions

Histogram of Treatment 1 with Posterior Predictive


```
hist(twogroups$y[tmt == 2], breaks = 5, freq = FALSE, xlim = c(70, 200), main
= "Histogram of Treatment 2 with Posterior Predictive line")
lines(density(popdat1))
```

Histogram of Treatment 2 with Posterior Predictive

6 Posterior Predictive for SAS model

Posterior Predictive Distributions for the 2nd model. These posterior predictive lines closely follow the histogram

```
= "Histogram of Treatment 1 with Posterior Predictive line", ylim = c(0,
0.06))
lines(density(popdat2_sas))
```

Histogram of Treatment 1 with Posterior Predictive


```
hist(twogroups$y[tmt == 2], breaks = 5, freq = FALSE, xlim = c(70, 200), main
= "Histogram of Treatment 2 with Posterior Predictive line")
lines(density(popdat3_sas))
```

Histogram of Treatment 2 with Posterior Predictive

