Crash Course of Separation Logic

崩溃课程的分离逻辑(浅入浅出版)

Jiaqi Wu

SIGMATH, SAST, NJUPT

March 22, 2025

First-order logic

 $\begin{array}{c} \text{proposition } P \\ \text{conjunction } P \wedge Q \\ \text{disjunction } P \vee Q \\ \text{universal quantification } \forall x \, F \, x \\ \text{existential quantification } \exists x \, F \, x \end{array}$

Example 1

Let R be a binary relation, we can define its transitivity as the following proposition:

$$\forall x \, \forall y \, \forall z \, (R \, x \, y \wedge R \, y \, z \to R \, x \, z)$$

Second-order logic

universal quantification over properties $\forall F \ F \ x$ existential quantification over properties $\exists F \ F \ x$

Example 2

Some random proposition:

$$\forall R \, \forall a \, \forall b \, (R \, a \, b \rightarrow R \, b \, a) \rightarrow (T \, a \, b \rightarrow T \, b \, a)$$

Ex. Is there any even higher order logic?

Expressive power

Example 3

Let R be a binary relation. We define the ancestral of R, R^* , such that for every two elements x and y, $R^* x y$ holds iff any of the following holds:

- $\bullet Rxy$,
- $\exists a \ (R x a \land R a y),$
- $\bullet \ \exists a \ \exists b \ (R x \ a \land R \ a \ b \land R \ b \ y),$
- ...

We can write out the definition of $R^{\star} a b$ with second-order logic:

$$\forall F ((\forall x (R a x \to F x) \land \forall x \forall y ((F x \land R x y) \to F y)) \to F b)$$

But there's no way to express R^* in first-order logic! (w/o set theory) (Ex. Define R^* using first-order logic and the symbol \in from set theory.)

Classical logic and constructive logic

Proposition 1 (Law of excluded middle)

$$\forall P \ (P \lor (\neg P))$$

Example 4

There exists irrational numbers a and b such that a^b is rational.

Proof.

It is not difficult to prove that $\sqrt{2}$ is irrational.

If
$$\sqrt{2}^{\sqrt{2}}$$
 is rational, then let $a=b=\sqrt{2}$ therefore $a^b=\sqrt{2}^{\sqrt{2}}$ is rational. Otherwise let $a=\sqrt{2}^{\sqrt{2}}$ and $b=\sqrt{2}$, then $a^b=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=2$ is rational. \square

Review: Simply typed λ -calculus (λ_{\rightarrow})

term t abstraction $\lambda x:T.t$ application t_1 t_2 type of functions $T_1 \to T_2$ typing context Γ

Example 5

$$\frac{\Gamma, x: T_1 \vdash t_1: T_2}{\Gamma \vdash \lambda x: T_1.t_1: T_1 \rightarrow T_2} \qquad \Gamma \vdash t_2: T_1}{\Gamma \vdash (\lambda x: T_1.t_1) \ \ t_2: T_2}$$

Curry-Howard correspondence (simpl.)

Logic	Computation
Proposition	Туре
Proof	Term
Conjunction ∧	Product Type $ imes$
Disjunction ∨	Sum Type +
$Implication \to$	Function Type $ ightarrow$
True ⊤	Unit (Single element type)
False ⊥	Never (Zero element type)

7 / 14

Dependent type

or intuitionistic type theory, or constructive type theory, or Per Matin-Löf type theory, or intuitionistic logic, or constructive logic, or what ever

We treat types and terms equally and types can now be defined dependently on terms!

```
\begin{array}{l} \text{pi type } \Pi x: \mathcal{U}.t \\ \text{sigma type } \Sigma x: \mathcal{U}.t \\ \text{identity type } t_1 = t_2 \end{array}
```

Example 6

```
\mathsf{head}: \Pi T: \mathcal{U}.\Pi n: \mathsf{nat.Vec}\, T\ (n+1) \to T \mathsf{concat}: \Pi T: \mathcal{U}.\Pi n, m: \mathsf{nat.Vec}\, T\ n \to \mathsf{Vec}\, T\ m \to \mathsf{Vec}\, T\ (n+m)
```

Ex. A common library function in the C programming language is merely dependently typed, what is it?

Universe

Russell's paradox

 $\{x \in \mathsf{set} \; \mathsf{of} \; \mathsf{all} \; \mathsf{sets} \; | \; x \notin x\}$

Universe hierarchy: $x \in \mathcal{U}_0 \in \mathcal{U}_1 \in \mathcal{U}_2 \in \cdots$ \mathcal{U}_i is *small* in \mathcal{U}_{i+1} .

Not Russell's paradox

$$\{x \in \mathcal{U}_i \mid x \notin x\} \notin \mathcal{U}_i \text{ but } \in \mathcal{U}_{i+1}$$

Curry-Howard correspondence

Logic	Computation
Proposition	Туре
Proof	Term
Conjunction ∧	Product Type $ imes$
Disjunction ∨	$Sum \; Type \; + \;$
$Implication \to$	Function Type $ ightarrow$
True ⊤	Unit (Single element type)
False ⊥	Never (Zero element type)
Universal Quantification \forall	Pi Type Π
Existential Quantification \exists	Sigma Type Σ

Function type is a specialized form of pi type, therefore implication is actually universal quantification where elements range over proofs!

Hoare logic

```
command t precondition P postcondition Q hoare triple \{P\}\,t\,\{Q\}
```

Example 7

Rules of Hoare logic

$$\frac{\{P\}\,t_1\,\{Q\}-\{Q\}\,t_2\,\{R\}}{\{P\}\,t_1;t_2\,\{R\}} \quad \text{hoare-sequence}$$

$$\frac{P\vdash P'-\{P'\}\,t\,\{Q'\}-Q'\vdash Q}{\{P\}\,t\,\{Q\}} \quad \text{hoare-consequence}$$

$$\frac{\{P\land c\}\,t_1\,\{Q\}-\{P\land \neg c\}\,t_2\,\{Q\}}{\{P\}\,\text{if c then t_1 else t_2 end $\{Q\}$}} \quad \text{hoare-if}$$

$$\frac{\{P\land c\}\,t\,\{P\}}{\{P\}\,\text{while c do t end $\{P\land \neg c\}$}} \quad \text{hoare-while}$$

Separation logic

Questions?

Thanks!