Лабораторная работа №7

Artur A. Davtyan¹
RUDN University, 22 March, 2021 Moscow, Russia

¹RUDN University, Moscow, Russian Federation

Прагматика выполнения

лабораторной работы (Зачем)

Прагматика выполнения лабораторной работы (Зачем)

- рекламодатели, рекламные агентства и каналы распространения рекламы давно и активно интересуются механизмами воздействия рекламы на потребителей;
- Это необходимо для того, чтобы:
 - сформулировать более эффективные рекламные стратегии;
 - показать результаты отдачи от рекламы;
 - доказать соответствие выбора рекламных площадок для размещения.

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы

Рассмотреть модель распространения рекламы.

Задачи выполнения лабораторной работы

Задачи выполнения лабораторной работы

- 1. Рассмотреть модель рапространения рекламы в разных случаях.
- 2. Построить график распространения рекламы о салоне красоты.
- 3. Сравнить решения, учитывающее вклад только платной рекламы и учитывающее вклад только сарафанного радио.

лабораторной работы

Результаты выполнения

Модель распространения рекламы

Математическая модель распространения рекламы описывается уравнением:

$$\frac{\partial n}{\partial t} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

 $rac{\partial n}{\partial t}$ — скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить;

t- время, прошедшее с начала рекламной кампании;

n(t) — число уже информированных клиентов.

N- общее число потенциальных платежеспособных покупателей

 $lpha_1(t)>0$ — характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Уравнения

$$\begin{array}{l} \cdot \ \frac{\partial n}{\partial t} = (0.771 + 0.000007n(t))(N-n(t)) \\ \cdot \ \frac{\partial n}{\partial t} = (0.0000075 + 0.32n(t))(N-n(t)) \\ \cdot \ \frac{\partial n}{\partial t} = (0.52sin(t) + 0.32tn(t))(N-n(t)) \end{array}$$

Figure 1: Первый случай: $\alpha_1(t) = 0.771$, $\alpha_2(t) = 0.000007$

$$\alpha_1(t) < \alpha_2(t)$$

Figure 2: Второй случай: $\alpha_1(t) = 0.0000075$, $\alpha_2(t) = 0.32$

Наибольшая скорость достигается в момент времени 0.02.

Figure 3: Третий случай: $\alpha_1(t) = 0.52*np.sin(t)$, $\alpha_2(t) = 0.32t$

Figure 4: Все случаи вместе

Figure 5: Сравнение эффективности, $\alpha_1(t)=\alpha_2(t)=0.009$

Рассмотрел модель распространения рекламы в

разных случаях и проанализировал отличия.