Preuves assistées par ordinateur de non-atteignabilité pour des problèmes linéaires de contrôle sous contraintes

Ivan Hasenohr

Doctorat sous la direction de Camille Pouchol, Yannick Privat et Christophe Zhang

Université Paris Cité

CANUM 2024

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
- 4 Résultats numériques
- Conclusion

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
- 4 Résultats numériques
- Conclusion

Système contrôlé

Définition

On appelle système contrôlé le système :

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, T] \\ y(0) = y_0 \in \mathbb{R}^n \\ u(t) \in \mathcal{U}_0 \subset \mathbb{R}^m & \forall t \in [0, T]. \end{cases}$$
 (S)

On note:

- $y(\cdot; y_0, u) : [0, T] \to \mathbb{R}^n$ la solution de (S)
- *U* l'ensemble des contraintes sur le contrôle
- L_T l'application entrée-sortie :

$$L_T: u \mapsto \int_0^T e^{(T-t)A} Bu(t) dt,$$

on a:

$$y(T; y_0, u) = e^{TA}y_0 + L_T u.$$

Atteignabilité

Soit $y_f \in \mathbb{R}^n$ une cible, soit \mathcal{U} un ensemble de contraintes sur le contrôle.

Définition

 y_f est dit U-atteignable pour (S) de y_0 en temps T si:

$$\exists u \in \mathcal{U}, \quad y(T; y_0, u) = y_f.$$

On appelle ensemble atteignable l'ensemble des points U-atteignables.

Contraintes sur le contrôle

On considère des contraintes sous la forme

$$\mathcal{U} = \left\{ u \in L^2(0, T; \mathbb{R}^m), \forall t \in [0, T], u(t) \in \mathcal{U}_0 \right\},\,$$

où \mathcal{U}_0 est supposé convexe et compact.

Dans le reste de l'exposé, on prend $y_0 = 0$, et on note $L_T \mathcal{U}$ l'ensemble atteignable.

État de l'art

Approximation de l'ensemble atteignable :

- R.Baier, C. Büskens, I. A. Chahma, M. Gerdts (2007)
- M. Chen, C. J. Tomlin (2018)
- H. Kong, E. Bartocci, T. A. Henzinger (2018)
- M. Althoff, G. Frehse, A. Girard (2021)

État de l'art

Approximation de l'ensemble atteignable :

- R.Baier, C. Büskens, I. A. Chahma, M. Gerdts (2007)
- M. Chen, C. J. Tomlin (2018)
- H. Kong, E. Bartocci, T. A. Henzinger (2018)
- M. Althoff, G. Frehse, A. Girard (2021)

But : à y_0 et y_f fixés, développer une méthode assistée par ordinateur pour déterminer l'atteignabilité (ou non-atteignabilité) de y_f en temps T fixé.

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
- 4 Résultats numériques
- Conclusion

Pour A convexe, fermé et non-vide dans un espace de Hilbert H, on appelle fonction support :

$$\sigma_A: \begin{cases} H & \to \mathbb{R} \cup \{+\infty\} \\ y & \mapsto \sup_{x \in A} \langle x, y \rangle. \end{cases}$$

Pour A convexe, fermé et non-vide dans un espace de Hilbert H, on appelle fonction support :

$$\sigma_A: \begin{cases} H & \to \mathbb{R} \cup \{+\infty\} \\ y & \mapsto \sup_{x \in A} \langle x, y \rangle. \end{cases}$$

En particulier:

$$\forall p_f \in \mathbb{R}^n, \quad \sigma_{L_T U}(p_f) = \sigma_U(L_T^* p_f).$$

Pour A convexe, fermé et non-vide dans un espace de Hilbert H, on appelle fonction support :

$$\sigma_A: \begin{cases} H & \to \mathbb{R} \cup \{+\infty\} \\ y & \mapsto \sup_{x \in A} \langle x, y \rangle. \end{cases}$$

En particulier:

$$\forall p_f \in \mathbb{R}^n, \quad \sigma_{L_T \mathcal{U}}(p_f) = \sigma_{\mathcal{U}}(L_T^* p_f).$$

On note:

$$J: \begin{cases} \mathbb{R}^n & \to \mathbb{R} \\ p_f & \mapsto \sigma_{\mathcal{U}}(L_T^* p_f) - \langle p_f, y_f \rangle. \end{cases}$$

Pour A convexe, fermé et non-vide dans un espace de Hilbert H, on appelle fonction support :

$$\sigma_A: \begin{cases} H & \to \mathbb{R} \cup \{+\infty\} \\ y & \mapsto \sup_{x \in A} \langle x, y \rangle. \end{cases}$$

En particulier:

$$\forall p_f \in \mathbb{R}^n, \quad \sigma_{L_T \mathcal{U}}(p_f) = \sigma_{\mathcal{U}}(L_T^* p_f).$$

On note:

$$J: \begin{cases} \mathbb{R}^n & \to \mathbb{R} \\ p_f & \mapsto \sigma_{\mathcal{U}}(L_T^* p_f) - \langle p_f, y_f \rangle. \end{cases}$$

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
- Résultats numériques
- Conclusion

Théorème

Pour
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, pour le système contrôlé

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, 1] \\ y(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u(t) \in [-1, 1] & \forall t \in [0, 1], \end{cases}$$

le point
$$y_f = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$
 n'est pas atteignable. En effet, pour $p_f = \begin{pmatrix} -0.8 \\ 0.6 \end{pmatrix}$, on a

$$J(p_f; y_f) \in [-0.0513, -0.0483] < 0.$$

Non-atteignabilité d'une cible

Exemple jouet

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Pour vérifier numériquement l'hypothèse $J(p_f) < 0$, il faut :

- créer $J_d \simeq J$ évaluable
 - ② trouver p_f tel que $J_d(p_f) < 0$
 - vérifier que $J(p_f) < 0$

Théorème

S'il existe $p_f \in \mathbb{R}^n$ tel que $J(p_f) < 0$, alors y_f n'est pas U-atteignable pour (S) en temps T.

Pour vérifier numériquement l'hypothèse $J(p_f) < 0$, il faut :

- créer $J_d \simeq J$ évaluable
 - 2 trouver p_f tel que $J_d(p_f) < 0$
 - vérifier que $J(p_f) < 0$:
 - borner les erreurs de discrétisation $e_d(p_f)$
 - borner les erreurs d'arrondis $e_a(p_f)$.
 - vérifier que $J_d(p_f) + e_d(p_f) + e_a(p_f) < 0$.

Comme on suppose \mathcal{U} de la forme :

$$\mathcal{U} = \left\{ u \in L^2(0, T; \mathbb{R}^m), \forall t \in [0, T], u(t) \in \mathcal{U}_0 \right\},\,$$

et on suppose connaître explicitement $\sigma_{\mathcal{U}_0}$. Dans ce cas, il faut évaluer :

$$J: egin{cases} \mathbb{R}^n & o \mathbb{R} \ p_f & \mapsto \int_0^T \sigma_{\mathcal{U}_0}(B^*e^{(T-t)A^*}p_f)\,\mathrm{d}t - \langle p_f, y_f
angle. \end{cases}$$

• Évaluation de l'intégrale : méthode des rectangles,

$$\left|J(p_f) - \left(\Delta t \sum_{n=0}^{N_t-1} \sigma_{\mathcal{U}_0}(B^* e^{(T-n\Delta t)A^*} p_f) - \langle p_f, y_f \rangle\right)\right| \leq \frac{1}{2} C_1 \Delta t.$$

Évaluation de l'intégrale : méthode des rectangles,

$$\left|J(p_f) - \left(\Delta t \sum_{n=0}^{N_t-1} \sigma_{\mathcal{U}_0}(B^* e^{(T-n\Delta t)A^*} p_f) - \langle p_f, y_f \rangle\right)\right| \leq \frac{1}{2} C_1 \Delta t.$$

• Évaluation de $t \mapsto e^{tA^*} p_f$:

Évaluation de l'intégrale : méthode des rectangles,

$$\left|J(p_f) - \left(\Delta t \sum_{n=0}^{N_t-1} \sigma_{\mathcal{U}_0}(B^* e^{(T-n\Delta t)A^*} p_f) - \langle p_f, y_f \rangle\right)\right| \leq \frac{1}{2} C_1 \Delta t.$$

- Évaluation de $t \mapsto e^{tA^*} p_f$:
 - Si on connaît la décomposition de Dunford de $A, t \mapsto e^{tA^*} p_f$ est explicite.

Évaluation de l'intégrale : méthode des rectangles,

$$\left|J(p_f) - \left(\Delta t \sum_{n=0}^{N_t-1} \sigma_{\mathcal{U}_0}(B^* e^{(T-n\Delta t)A^*} p_f) - \langle p_f, y_f \rangle\right)\right| \leq \frac{1}{2} C_1 \Delta t.$$

- Évaluation de $t \mapsto e^{tA^*} p_f$:
 - Si on connaît la décomposition de Dunford de $A, t \mapsto e^{tA^*} p_f$ est explicite.
 - Si A est réelle, définie négative, on utilise le schéma d'Euler implicite :

$$\left| e^{n\Delta t A^*} p_f - (\operatorname{Id} - \Delta t A^*)^{-(Nt-n)} \right| \leq \frac{1}{2} \Delta t \|A^* p_f\|.$$

• Évaluation de l'intégrale : méthode des rectangles,

$$\left|J(p_f) - \left(\Delta t \sum_{n=0}^{N_t-1} \sigma_{\mathcal{U}_0}(B^* e^{(T-n\Delta t)A^*} p_f) - \langle p_f, y_f \rangle\right)\right| \leq \frac{1}{2} C_1 \Delta t.$$

- Évaluation de $t \mapsto e^{tA^*} p_f$:
 - Si on connaît la décomposition de Dunford de $A, t \mapsto e^{tA^*}p_f$ est explicite.
 - Si A est réelle, définie négative, on utilise le schéma d'Euler implicite :

$$\left| e^{n\Delta t A^*} p_f - (\operatorname{Id} - \Delta t A^*)^{-(Nt-n)} \right| \leq \frac{1}{2} \Delta t \|A^* p_f\|.$$

Au final, on obtient une erreur de discrétisation sous la forme :

$$|J(p_f) - J_d(p_f)| \le C_2 \Delta t ||A^*p_f|| =: e_d(p_f),$$

où C_2 est une constante connue explicitement, pouvant dépendre des paramètres $A, B, T, \mathcal{U}, y_0$.

Erreurs d'arrondis

Arithmétique d'intervalles

Pour gérer les erreurs d'arrondis effectuées par l'ordinateur, il faut prendre en compte l'erreur potentielle à chaque calcul et la propager :

En pratique, le package Intlab (sur Matlab) de Siegfried M. Rump s'en charge parfaitement.

Théorème assisté par ordinateur

Théorème

Soient:

$$\bullet \ J_d: \begin{cases} \mathbb{R}^n & \to \mathbb{R} \\ p_f & \mapsto \Delta t \sum_{n=0}^{N_t-1} \sigma_{\mathcal{U}_0} \big((\operatorname{Id} - \Delta t A^*)^{-(Nt-n)} p_f \big) - \langle p_f, y_f \rangle \end{cases}$$

$$\bullet \ e_d: \begin{cases} \mathbb{R}^n & \to \mathbb{R} \\ p_f & \mapsto C_2 \Delta t || A^* p_f || \end{cases}$$

• $e_a : \mathbb{R}^n \to \mathbb{R}_+^*$ une majoration des erreurs d'arrondis commises lors du calcul de J_d .

S'il existe $p_f \in \mathbb{R}^n$ *tel que*

$$J_d(p_f) + e_d(p_f) + e_a(p_f) < 0,$$

alors y_f n'est pas U-atteignable pour (S) en temps T.

Pour montrer numériquement la non-atteignabilité de y_f , on doit donc :

- créer $J_d \simeq J$ évaluable \Longrightarrow discrétisation
- ② trouver p_f tel que $J_d(p_f) < 0 \implies$ minimisation de J_d
- vérifier que $J(p_f) < 0$ \Longrightarrow $\begin{cases} \text{contrôle d'erreurs de discrétisation} \\ \text{arithmétique d'intervalles} \end{cases}$

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
- 4 Résultats numériques
- Conclusion

Temps minimal d'atteignabilité

Théorème

Pour le système contrôlé (S), si $y_0 = 0$ ou $y_f = 0$, il existe un temps minimal d'atteignabilité $t^* \in \mathbb{R}_+ \cup \{+\infty\}$ tel que :

 $\forall t < t^*$, y_f est non- \mathcal{U} -atteignable, $\forall t > t^*$, y_f est \mathcal{U} -atteignable.

En particulier, si l'on prouve que y_f est non- \mathcal{U} -atteignable en temps T > 0, alors $T < t^*$.

Rendez-vous spatial

Considérons le système :

$$\begin{cases} \dot{y}(t) = Ay(t) + Bu(t) & \forall t \in [0, T] \\ y(0) = y_0 \in \mathbb{R}^4 \\ u(t) \in \mathbb{R}^2 \\ \|u(t)\|_2 \le 1.15 \\ \|u(t)\|_{\infty} \le 1 \end{cases} \quad \forall t \in [0, T],$$

avec

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 0 & 0 & 2 \\ 0 & 0 & -2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Rendez-vous spatial

Approximation garantie de temps minimal

Borne inférieure certifiée des temps minimaux

Approximation non certifiée des temps minimaux

Sommaire

- Théorie du contrôle
- 2 Non-atteignabilité : approche géométrique
- 3 Preuve assistée par ordinateur
- 4 Résultats numériques
- Conclusion

Conclusion

• Contributions :

- Méthode générale assistée par ordinateur pour la preuve de non-atteignabilité de systèmes de contrôle linéaires
- Estimées fines d'erreurs de discrétisation avec constantes explicites

• Perspectives:

- Extension à la dimension infinie (en cours pour l'équation de la chaleur avec conditions Dirichlet nulles au bord)
- Approximations externes et internes certifiées de l'ensemble atteignable

Merci pour votre attention!

Bibliographie

- R.Baier, C. Büskens, I. A. Chahma, M. Gerdts, 2007: Approximation of reachable sets by direct solution methods for optimal control problems
- M. Chen and C. J. Tomlin, 2018: Hamilton–jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management.
- H. Kong, E. Bartocci, and T. A. Henzinger, 2018: Reachable set over-approximation for nonlinear systems using piecewise barrier tubes.
- M. Althoff, G. Frehse, A. Girard, 2021: Set Propagation Techniques for Reachability Analysis
- I. Hasenohr, C. Pouchol, Y. Privat, C. Zhang, 2024 (preprint): Computer-assisted proofs of non-reachability for linear finite-dimensional control systems