BEYOND CLASSICAL SEARCH¹

LECTURE 5

¹The slides have been prepared using the textbook material available on the web, and the slides of the previous editions of the course by Prof. Luigia Carlucci Aiello

Summary

- \diamondsuit Russell &Norvig Chapter 4 Sec. 1
- ♦ Hill-climbing
- ♦ Simulated annealing
- ♦ Local beam search
- ♦ Genetic Algorithms

Iterative improvement algorithms

In many optimization problems, *path* is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find *optimal* configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

In such cases, can use *iterative improvement* algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: *n*-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves n-queens problems almost instantaneously for very large n, e.g., n=1million

Hill-climbing (or gradient ascent/descent)

```
function HILL-CLIMBING(problem) returns a state
that is a local maximum
   inputs: problem, a problem
   local variables: current, a node
                      neighbor, a node
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   loop do
        neighbor \leftarrow a highest-valued successor of current
       if Value[neighbor] < Value[current]
               then return State[current]
        current \leftarrow neighbor
   end
```

Problems

Possible Solutions

- ♦ side moves
- ♦ random moves (choosing among the uphill successors)
- first choice (random generation of successors taking the first one uphill)
- ♦ random restart

Success is strongly related to the "shape" of the state space

Some remarks about performance

8-queens problem (8^8 states)

- hill-climbing 14% with 4 (3) steps
- 100 side moves 94% with 22(64) steps
- ullet random restart 7 iterations $\frac{1}{p}$
- random restart HC (1-p)/p * 3 + 4 = 22 moves
- HC with side moves (1-p)/p * 64 + 21 = 25

Simulated annealing

Idea: avoid local maxima allowing some "bad" moves gradually decreasing their effect and frequency

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
              schedule, a mapping from time to temp
   local variables: current, a node
                         next, a node
                         T, a temp (prob downward steps)
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
         T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Longrightarrow always reach best state

Is this necessarily an interesting guarantee?

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

"Local beam" search

- \diamondsuit Keeps k states.
- \diamondsuit At each step the successors of the k states are generated and the best k are selected among them, unless goal is reached.
- ♦ Non just a parallel execution: at each step the best nodes are chosen among all the successors (come here the grass is greener)
- \Diamond Problem: too quick convergence in the same region of the search space; the **stochastic beam search** randomly cooses k successors weighting more the most promising ones.

Genetic Algorithms 1

Idea: organisms evolve; those adaptable to the environment survive and reproduce, others die (Darwin)

initial population: individuals or cromosomes

selection: by fitness function

reproduction: crossover

reproduction: mutation

Search in the space of individuals

Steepest ascent hill-climbing, since little genetic alterations are performed on selected individuals.

Genetic Algorithms 2

To deploy Genetic Algorithms we must define:

- 1. individual representation?
- 2. fitness function?
- 3. selection?
- 4. reproduction?
- 1. string of characters (genes) (often 0/1)
- 2. function mapping individuals into real numbers
- 3. generally selection is stochastic
- 4. Crossover + mutation

Genetic Algorithms: implementation

```
function Genetic-Algorithm(population, Fitn)
returns individual
inputs: population, set of individuals
   Fitn, measuring fitness of individuals
repeat
   parents \leftarrow Selection(population,Fitn)
   population \leftarrow Reproduce(parents)
   until some individual is fit enough
return best individual in population, for Fitn
```

Genetic Algorithms 3

Summary

- ♦ Local Search:
- solves large problem
- statistically optimal
- Hill Climbing, Local Beam Search, Simulated Annealing, Genetic Algorithms