Simon Kurgan April 22, 2024 1

Theorem 21 For all integers a and b with b > 0, there exist unique integers q and r such that a = bq + r, and $0 \le r < b$.

Proof: Let a = -5 and b = 2. Then,

$$-5 = 2 \times (-3) + 1$$

So, for a = -5 and b = 2, there exists a unique q and r belonging to the set of integers such that a = 2q + r with $0 \le r < 2$ (i.e., r = 0 or 1).

By, theorem 16, every integer is either odd or even.

Corollary 1 For any integer a, b with b > 1, there exists a unique $r \in \mathbb{Z}$ Such that $a = r \pmod{b}$ and $0 \le r < be$

When b=3, for any $z\in\mathbb{Z}$, there exists a unique integer r such that $a\equiv r\pmod 3$ and $r\in\{0,1,2\}$.

Theorem 21 For every integer n, $n^3 = n \pmod{3}$ **Proof:** By corollary 1, we only have one of the three cases Case 1: $n = 0 \pmod{3}$

$$n^3 \equiv n \pmod{3} \longrightarrow 3 \mid (n^3 - n)$$

$$3 \mid (n^3 - n) \longrightarrow (n)(n - 1)(n - 1)$$
By theorem 20, we will have $n^3 = 0^3 \pmod{3}$

Remark:

By reflexivity, $a \equiv b \pmod{n} \longrightarrow b \equiv a \pmod{n}$. Case 2: $n = 1 \pmod{3}$ $n = 1 \pmod{3}$, By theorem 20, $n^3 = 1^3 \pmod{3}$ Similarly, $n = n^3 \pmod{3}$ Case 3: $n = 2 \pmod{3}$ **Theorem 19** Let n belong to Z, Then n is even if and only if n^2 is even. Similarly, n is odd if and only if n^2 is odd.

Proof:

 \longrightarrow

Suppose, n is even. Goal: n^2 is even.

Then n = 2k for some k in Z.

So, $n^2 = (2k) * n = 2(kn)$, where kn is in Z by the closure of Z Hence n^2 is even.

 \leftarrow

Need to prove: if n^2 is even, then n is even.

$$(P \implies Q) \equiv (\neg Q \implies \neg P)$$

Contrapositive:

If n is not even, then n^2 is not even.

By theorem 16. If an integer is not even, then it is odd.

Suppose n is odd. Then n = 2k + 1 for some k in Z.

So
$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$
.

Since $2k^2 + 2k \in \mathbb{Z}$, n^2 is odd.

April 22, 2024 Simon Kurgan 4

Revisit Let $x \in \mathbb{R}$. We say x is rational if there exist integers p and q with $q \neq 0$ such that $x = \frac{p}{q}$. We say x is irrational if it is not rational.

Theorem 17: $\sqrt{2}$ is not rational. **Proof:**

There exist
$$p,q\in\mathbb{Z}$$
 such that $\sqrt{2}=\frac{p}{q},\ q\neq 0$.
$$2=\frac{p^2}{q^2}\Rightarrow 2q^2=p^2 \Rightarrow p^2 \text{ is even}$$
 $\Rightarrow p$ is even $(p=2k, \text{ where } k\in\mathbb{Z})$ $\Rightarrow 2q^2=(2k)^2=4k^2.$ $q^2=2k^2$ $\Rightarrow q^2 \text{ is even}$ $\Rightarrow q$ is even $(q=2L, \text{ where } L\in\mathbb{Z})$ $\sqrt{2}=\frac{p}{q}$ p is negative and -p is positive.

Rewriting:

Assume p is positive (if -p negative, we have $\sqrt{2} = \frac{-p}{-q}$ so we choose -p)

Consider $S = \{ p \in \mathbb{Z}^+ | \sqrt{2} = \frac{p}{q} \text{ for } q \in \mathbb{Z}, q \neq 0 \}.$

Note $S = \emptyset$. Then by the well-ordering property.

S has a smallest element p_0 such that $\sqrt{2} = \frac{p_0}{q_0}$ for some $q_0 \in \mathbb{Z}$, $q_0 \neq 0$, where p_0 is p not p subscript 0.

Then $2 = \frac{p_0^2}{q_0^2}$ so $2q_0^2 = p_0^2$, which implies p_0^2 is even.

By Theorem 19, p_0 is even, so $p_0 = 2k$ for some $k \in \mathbb{Z}$.

$$\Rightarrow 0 < k < p_0$$

Plug it into our original equation to have:

$$2q_0^2 = (2k)^2 = 4k^2 \Rightarrow q_0^2 = 2k^2$$

So, q_0^2 is even. By Theorem 19, q_0 is even.

This implies
$$q_0 = 2L$$
 for some $L \in \mathbb{Z}$
Then $\sqrt{2} = \frac{p_0}{q_0} = \frac{2k}{2l} = \frac{k}{l} \Rightarrow k \in S$.
Since $k < p_0$, we have a contradiction.

Hence, $\sqrt{2}$ is not rational.

Remark: We use proof by contradiction, then we prove that the well ordering property is contradicted