Multi-strategies Boosted Mutative Crow Search Algorithm for Global

Tasks: Cases of Continuous and Discrete Optimization

Weifeng Shan^{a,b}, Hanyu Hu^a, Ali Asghar Heidari^c, Zhennao Cai^d, Huiling Chen^{d*}, Haijun Liu^a, Maofa Wang^{e*}, Yuntian Teng^{b*}

^a School of Emergency Management, Institute of Disaster Prevention, Langfang 065201, China (william.shan@gmail.com, huhanyu.98@gmail.com, liuhaijun6741@163.com)

^b Institute of Geophysics, China Earthquake Administration, Beijing 100081, China (william.shan@gmail.com, tengyt@cea-igp.ac.cn)

^c School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

(aliasghar68@gmaill.com, as heidari@ut.ac.ir)

^d Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China

(aliasghar68@gmaill.com, chenhuiling.jlu@gmail.com)

^e Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China

(wangmaofa2008@guet.edu.cn)

*Corresponding Author: Huiling Chen, Maofa Wang and Yuntian Teng

E-mail: chenhuiling.jlu@gmail.com (Huiling Chen), wangmaofa2008@guet.edu.cn (Maofa Wang) and

tengyt@cea-igp.ac.cn (Yuntian Teng)

Feature Selection Experimental Results and Analysis

Table 1 Comparison results of CCMSCSA with other binary metaheuristic algorithms on fitness values

Function	Metri	CCMSCS	BGWO	BGSA	BALO	BBA	BSSA
Breast cancer	Avg	9.259E-02	9.767E-02	9.916E-02	9.160E-02	1.577E-01	9.359E-02
	Std	7.963E-03	9.635E-03	1.078E-02	1.309E-02	1.423E-02	1.555E-02
**	Avg	6.370E-02	8.097E-02	7.662E-02	5.909E-02	1.349E-01	7.470E-02
Heart	Std	3.536E-02	4.177E-02	3.466E-02	2.245E-02	4.414E-02	3.590E-02
II 4 EW	Avg	7.662E-02	8.801E-02	8.795E-02	8.366E-02	1.743E-01	8.328E-02
Heart EW	Std	2.238E-02	3.480E-02	1.766E-02	3.646E-02	4.783E-02	3.242E-02
Tl	Avg	1.806E-02	2.411E-02	2.382E-02	1.927E-02	6.903E-02	1.967E-02
Lymphography	Std	5.114E-03	2.607E-02	2.712E-02	1.945E-02	6.005E-02	2.279E-02
37.4	Avg	2.279E-02	2.298E-02	2.237E-02	1.742E-02	4.840E-02	1.977E-02
Vote	Std	1.621E-02	2.735E-02	2.496E-02	1.755E-02	3.973E-02	1.643E-02
A 1"	Avg	9.259E-02	9.767E-02	9.916E-02	9.160E-02	1.577E-01	9.359E-02
Australian	Std	1.718E-02	2.580E-02	1.976E-02	1.883E-02	3.545E-02	1.686E-02
D 4.1	Avg	1.897E-02	9.706E-03	9.265E-03	9.559E-03	3.138E-02	1.603E-02
Dermatology	Std	2.812E-03	2.703E-03	1.211E-03	1.867E-03	1.390E-02	4.069E-03
Glass	Avg	1.225E-01	1.292E-01	1.351E-01	1.209E-01	1.696E-01	1.262E-01
	Std	6.097E-02	5.247E-02	4.965E-02	3.794E-02	7.179E-02	5.034E-02
JPN data	Avg	3.754E-02	4.319E-02	3.944E-02	3.804E-02	7.321E-02	3.765E-02
	Std	3.149E-02	4.903E-02	3.194E-02	3.901E-02	5.559E-02	4.057E-02
Segment	Avg	2.938E-02	2.464E-02	2.505E-02	2.423E-02	4.219E-02	2.880E-02
	Std	3.752E-03	4.763E-03	7.624E-03	6.751E-03	9.606E-03	5.232E-03

Table 2 Comparison results of CCMSCSA with other binary metaheuristic algorithms on the number of features selected

Function	Metri	CCMSCS	BGWO	BGSA	BALO	BBA	BSSA
Breast cancer	Avg	5.9	3.8	5.8	4.8	5.3	5.8
	Std	0.4714	1.2517	1.075	0.56765	0.99443	1.2517
Heart	Avg	6.5	5.5	6.2	5.3	4.4	5.7
	Std	0.84984	1.4337	1.4757	1.8288	1.1738	1.6364
Heart EW	Avg	6.2	5.5	6.4	6.2	6	6.1
	Std	1.4757	1.354	2.0656	0.91894	1.2472	1.1005
Lymphograph	Avg	6.5	4.1	4.3	4.8	8.4	4.8
у	Std	1.8409	1.1972	1.6364	1.5492	2.0656	2.044
Vote	Avg	5.3	3.3	3	2.6	6.7	4.3
	Std	1.9465	1.3375	1.8856	1.2649	1.3375	2.4967
Australian	Avg	5.9	3.8	5.8	4.8	5.3	5.8
	Std	1.6633	1.9889	1.6865	1.5492	1.6364	2.1499

Journal of Bionic Engineering

Dermatology	Avg	12.9	6.6	6.3	6.5	15.2	10.9
	Std	1.912	1.8379	0.82327	1.2693	1.6865	2.7669
Glass	Avg	4.3	4.2	4.3	4	4.1	4.4
	Std	1.1595	1.2293	0.82327	0.66667	0.99443	0.96609
JPN data	Avg	2.6	2.7	2.9	2.7	4.8	2.7
	Std	0.84327	0.94868	0.99443	1.4944	1.6193	0.67495
Segment	Avg	7.1	5.3	5.3	5.3	7.3	6.1
	Std	1.5951	1.0593	1.1595	1.4944	1.767	1.6633

Table 3 Comparison results of CCMSCSA with other binary metaheuristic algorithms on KNN error rate

Function	Metric	CCMSCS	BGWO	BGSA	BALO	BBA	BSSA
Breast cancer	Avg	7.528E-02	8.852E-02	8.257E-02	7.838E-02	2.423E-01	7.671E-02
	Std	9.990E-03	1.313E-02	9.990E-03	1.513E-02	4.675E-02	1.842E-02
Heart	Avg	4.074E-02	6.296E-02	5.556E-02	4.074E-02	2.741E-01	5.556E-02
	Std	3.683E-02	4.636E-02	3.599E-02	2.733E-02	1.554E-01	4.001E-02
Ht EW	Avg	5.556E-02	7.037E-02	6.667E-02	6.296E-02	2.963E-01	6.296E-02
Heart EW	Std	2.619E-02	4.076E-02	2.342E-02	3.924E-02	1.145E-01	3.514E-02
T11	Avg	0.000E+00	1.339E-02	1.250E-02	6.250E-03	2.418E-01	6.667E-03
Lymphography	Std	0.000E+00	2.831E-02	2.635E-02	1.976E-02	2.159E-01	2.108E-02
	Avg	6.559E-03	1.333E-02	1.368E-02	9.785E-03	1.054E-01	6.667E-03
Vote	Std	1.383E-02	2.811E-02	2.400E-02	1.576E-02	1.038E-01	1.406E-02
	Avg	7.528E-02	8.852E-02	8.257E-02	7.838E-02	2.423E-01	7.671E-02
Australian	Std	2.217E-02	3.119E-02	2.241E-02	2.117E-02	8.542E-02	2.318E-02
D 1	Avg	0.000E+00	0.000E+00	0.000E+00	0.000E+00	4.715E-02	0.000E+00
Dermatology	Std	0.000E+00	0.000E+00	0.000E+00	0.000E+00	5.718E-02	0.000E+00
	Avg	1.038E-01	1.115E-01	1.171E-01	1.038E-01	2.653E-01	1.071E-01
Glass	Std	6.467E-02	5.303E-02	5.450E-02	3.785E-02	1.475E-01	5.182E-02
JPN data	Avg	2.583E-02	3.125E-02	2.625E-02	2.583E-02	2.461E-01	2.542E-02
	Std	3.338E-02	5.312E-02	3.391E-02	4.452E-02	1.647E-01	4.412E-02
Segment	Avg	1.126E-02	1.126E-02	1.169E-02	1.082E-02	5.584E-02	1.342E-02
	Std	4.654E-03	3.651E-03	7.372E-03	6.534E-03	4.288E-02	4.764E-03