度的師究大學

2020年硕士研究生招生考试试题

科目名称: 数据结构(含C程序设计) 科目代码: 826 总分: 150

适用专业代码及名称: 083500 软件工程、085400 电子信息

(答案必须写在考试专用答题纸上,否则造成错批、漏批等后果自负)

(基地等加米百页)
、选择题: (共10小题,每小题3分,共30分)
1. 下面程序段的时间复杂度是 ()。
count=0;
for(k=1; k<=n; k*=2)
for $(j=1; j \le n; j++)$
count++;
A. $O(\log_2 n)$ B. $O(n)$ C. $C(n\log_2 n)$ D. $O(n^2)$
2. 已知两个长度分别m和n的升序链表,若将它们合并为一个长度为m+n的降
序链表,则最坏情况下的时间复杂度是()。
A. $O(n)$ B. $O(m*n)$ C. $O(min(m, n))$ D. $O(max(m, n))$
3. 若p所指结点不是双向链表中的首尾结点,则要将p所指节点删除,其语
句应为()。
A. p->prior=p->next->prior; p->next=p->prior->next; delete p;
B. p->prior=p->prior->next; p->next=p->next->prior; delete p; C. p->prior=>next=p->prior: p->next->prior=p->next; delete p;
C. p-prior mext p - p-
4. 对含有6个叶子结点的哈夫曼树采用二叉链表作为存储结构,则共有多少
个空的指针域 ()。 C. 12 D. 14
4 10 R H
A. 13 5. 设有一个递归算法如下,则X(X(7))的计算结果是 ()。 5. 设有一个递归算法如下,则X(X(7))的计算结果是 ()。 int X(int n) { if (n<=2) return 1; else return X(n-2)+x(n-4)+1;}
int X(int n) { if (n<=2) return 1, else letter D. 26
A. 9 B. 15 C. 18 D. 26 6. 已知一棵完全二叉树的第6层有8个叶子结点,则该完全三叉树的总结点
个数最少是 ()。 C. 37 D. 99
A. 46 B. 103 ()。
A. 46 B. 103 7. 下面哪种算法适合构造一个稠密图G的最小生成树 ()。 7. 下面哪种算法适合构造一个稠密图G的最小生成树 ()。 D. Dijkstra算法
7. 下面哪种算法适合构造一个稠密图6的取引工规模 A. Prim算法 B. Kruskal算法 C. Floyd算法 D. Dijkstra算法 A. Prim算法 B. Kruskal算法 C. Floyd算法 D. Dijkstra算法
8. 对含有19个记录的有序表进行初半量以
关键字的次数是 ()。

A. 3 B. 4 C. 5 D. 6)。	
A. 3 D. 1 21	
A. 3 B. 4	
)
11 11 11 11 11 11 11 11 11 11 11 11 11	速排
拉立法 NU # 12 20 为其准得到的一次划分纪末/9 ()。	
的方法,以排产均20万至1170 B. 10, 15, 14, 18, 20, 40, 36, 36, 10, 15, 14, 18, 20, 40, 36, 36	21
A. 10, 15, 14, 18, 20, 36, 40, 21 C. 10, 15, 14, 20, 18, 40, 36, 21 D. 15, 10, 14, 18, 20, 36, 40, 2	21
C. 10, 15, 14, 20, 18, 40, 30, 21	-1
二、填空题: (共20空, 每空2分, 共40分)	
1. 衡量算法性能的两个主要指标是和和	0
2. 最大容量为n的循环队列,队尾指针是rear,对头指针是front,	则队列
中元素个数为,队满的条件是。	236.35
3. 用邻接矩阵存储有向图,则扫描矩阵第i行元素可得顶点vi的	
4. 设计判别表达式中左、右括号是否配对出现的算法时,采用	
数据结构最佳。	_IF/J
5. 常见的插入排序算法有、、、。	
6. 线性表的三种杏籽管注息	
6. 线性表的三种查找算法是、、、。 7. C语言程序中局部变量是定义在,其有效范围是。	
8. 结构化程序设计中的三种基本结构是、和	
9. 假设a=3、b=2、c=5、d=4、x=0、y=0,则求解表达式(x=a>b) (y=c	_ 0
后, x、y的值分别为和	((b<:
10. 已知一棵完全二叉树有566个结点,则其叶子结点个数是。	
一一次的1900年纪点,则共叶于结点个数是。	
三、解答题: (共5小题,每小题10分,共50分)	
1. 对图1所示的有向图进行以下操作:	
(1) 请画出该图的邻接表。(5分)	
(2) 以该邻接表为基础,写出从顶点C出发的深度优先遍历结果。(5分	.)
(D)	
0 0	
B	
2. 假设其效口4	
2. 假设某符号集X中包含7个符号: (ABCDEFG), 它们各自出现的发	一洲
分别为 (31, 22, 18, 14, 10, 4, 1), 试为这7个符号设计哈夫曼编码。(如
定:在合成新结点时权值小的为左分支,大的为右分支)	23
要求:(1)画出其哈夫曼树,并计算该树的带权路径长度。(5分)	1
(2) 写出各字母的哈夫曼编码。(5分)	

2017 县按生字遍历字列创建。 3月17
3. 以下是按先序遍历序列创建二叉树的程序,以#号代表结点为空. 请将代码
填写完整 typedef struct BiNode{
TElemType data:
*lchild, *rchild; }BiNode, *BiTree;
void CreateBiTree (BiTree &T) {
cin>>ch;
if (ch=='#')
else{
T=new BiTNode;
T->data=ch;
(3)
(4)
4. 已知一组关键字为 (5,32,23,33,19,55,26,25,60), 设Hash 函数
H(key)=key%7, 其中%是求余运算,用链地址法处理冲突。
要求, (1) 试构造这组关键字的Hash表(5分)。
(0) 社會查找成功时的平均查找长度(5分)。
5. 对关键字序列 {28, 10, 20, 18, 12, 16, 30} 进行升序排列, 写出每一趟排序
的结果。
要求: (1) 用折半插入排序法 (5分);
(2) 用2-路归并排序法 (5分)。
(共0.4 题 每小题15分, 共30分)
四、程序设计题:用C语言写出算法(共2小题,每小题15分,共30分) 四、程序设计题:用C语言写出算法(共2小题,每小题15分,共30分) 1.写一个算法:删除单链表L中第一个值为x的结点。(例如,链表的值原来
1. 写一个算法: 删除单链表L中第一位73444年为 5 9 3 7)
1. 与一个算法: 加纳尔平之际 为5 3 9 3 7,删除第一个3之后的结果为 5 9 3 7)
单链表的存储结构定义如下:
typedef struct LNode {
int data;
struct LNode *next;
} LNode ,*LinkList;
2. 写一个算法: 判断两棵二叉树是否相等。
2. 与一个算法: 判断内怀一个