

Figure 1: Illustration of the species coupling in case of a coinciding interface. In the figure, the dashed interface lies on top of the edge between two cells. It is assumed that K_i in Equation ?? is the cell with the lower index and owns the coinciding interface. The affected

empty cell and combines the cell and species coupling, establishing the connection between $K_{i,\mathfrak{A}}$ and $K_{i,\mathfrak{B}}$. The lower part of the figure shows an exploded view of the situation to clarify

edge $\partial K_i \cap \partial K_j$ belongs to the species \mathfrak{A} and takes care of the coupling between cells $K_{i,\mathfrak{A}}$ and $K_{j,\mathfrak{A}}$. The species are then coupled inside K_{j} via the interface, from the empty cell $K_{j,\mathfrak{A}} = \emptyset$ to the full cell $K_{i,\mathfrak{B}} = K_i$. Finally, by performing the agglomeration, the discrete system is algebraically modified. This modification eliminates the (edge) contributions on $\partial K_{i,\mathfrak{A}}$ of the

the connectivity.