# TP 1.3 - Identifier des solides et des liquides

Contexte : Pour pouvoir identifier des espèces chimiques, on peut utiliser trois méthodes :

- Mesurer des propriétés physiques et les comparer à des valeurs de références.
- Réaliser des tests chimiques.
- Réaliser une chromatographie sur couche mince (CCM).

Aujourd'hui on va s'intéresser aux deux premières méthodes d'identification.

On cherche à déterminer expérimentalement, avec la plus grande précision possible, la masse volumique d'échantillons métalliques mis à votre disposition.

→ S'agit-il d'aluminium, de cuivre, de zinc ou de fer?

## Document 1 - Propriétés physiques de quelques métaux

| Métal     | Aspect à $T = 20 ^{\circ}\text{C}$ | Masse volumique $(g/cm^3)$ |
|-----------|------------------------------------|----------------------------|
| Aluminium | Solide gris brillant               | 2,700                      |
| Cuivre    | Solide orange brillant             | 8,960                      |
| Zinc      | Solide gris sombre                 | 7,150                      |
| Fer       | Solide gris brillant               | 7,860                      |

### Document 2 - Volume d'un parallélépipède rectangle

Pour calculer le volume d'un cylindre de hauteur h et de rayon r, on utilise la relation suivante :

$$V = \pi \times r^2 \times h$$

Si h et r sont mesurées en cm, le résultat s'exprimera en cm<sup>3</sup>.



#### Document 3 – Mesure de la masse volumique d'un cylindre

Pour mesurer la masse volumique d'un cylindre on a :

- $\blacktriangleright$  mesurer la masse m du cylindre sur une balance;
- mettre 10 mL l'eau dans une éprouvette graduée;
- mettre le cylindre dans l'éprouvette graduée;
- mesurer le volume eau + cylindre;
- $\triangleright$  calculer le volume V du cylindre, puis la masse volumique.

L b Mesurer la masse volumique d'un échantillon à l'aide du matériel disponible.

$$\rho = \dots \dots \dots$$

1 — En utilisant les données du document 1, déterminer la nature de l'échantillon.

.....

 $Mg^{2+}$ 

< 1

6,9

Les eaux minérales sont des mélanges homogène contenant plusieurs ions de nature et de masses différentes. Les eaux minérales sont en général impropre à une consommation régulière, mais elles peuvent servir dans des régimes spécifiques.

→ Comment déterminer les ions présents dans des eaux minérales?

| Document 4 – Composition de trois eaux minérales |                    |                             |                     |                  |                     |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------|--------------------|-----------------------------|---------------------|------------------|---------------------|--|--|--|--|--|--|--|--|--|
| Vi                                               | ichy St Yorre      | Mo                          | ont Roucous         | Cristalline      |                     |  |  |  |  |  |  |  |  |  |
| Minérali                                         | sation: mg pour 1L | Minérali                    | sation: mg pour 1 L | Minérali         | sation: mg pour 1 L |  |  |  |  |  |  |  |  |  |
| $HCO_3^-$                                        | 4 368              | $HCO_3^-$                   | 1                   | $HCO_3^-$        | 228                 |  |  |  |  |  |  |  |  |  |
| Cl-                                              | 322                | Cl-                         | 2                   | Cl-              | 15                  |  |  |  |  |  |  |  |  |  |
| Na <sup>+</sup>                                  | 1708               | Na <sup>+</sup>             | 3,2                 | Na <sup>+</sup>  | 8,4                 |  |  |  |  |  |  |  |  |  |
| $SO_4^{2-}$                                      | 174                | $SO_4^{2-}$                 | 6,9                 | $SO_4^{2-}$      | 11                  |  |  |  |  |  |  |  |  |  |
| $K^+$                                            | 110                | $\overline{\mathrm{F}^{-}}$ | < 0,1               | $K^+$            | 2,3                 |  |  |  |  |  |  |  |  |  |
| $Ca^{2+}$                                        | 90                 | $Ca^{2+}$                   | 2,7                 | Ca <sup>2+</sup> | 549                 |  |  |  |  |  |  |  |  |  |
|                                                  |                    |                             |                     |                  |                     |  |  |  |  |  |  |  |  |  |

1,8

0,3

 $NO_3^-$ 

 $Mg^{2+}$ 

#### Document 5 - Tests caractéristiques de certains ions

11

 $NO_3^-$ 

 $Mg^{2+}$ 

| Ion à tester       | Réactif utilisé                | Résultat du test positif |
|--------------------|--------------------------------|--------------------------|
| Cl-                | Solution de nitrate d'argent   | Précipité blanc          |
| $SO_4^{2-}$        | Solution de chlorure de baryum | Précipité blanc          |
| Ca <sup>2+</sup>   | Solution d'oxalate d'ammonium  | Précipité blanc          |
| $\mathrm{Mg}^{2+}$ | Solution d'hydroxyde de sodium | Précipité blanc          |

On a trois béchers (A, B, C) contenant des eaux minérales, que vous voulez identifier.

- Verser dans 4 tubes à essais quelques mL d'eau d'un bécher.
- Réaliser un test différent dans chaque tube à essais à l'aide des 4 réactifs.
- Noter si un précipité se forme et son abondance dans le tableau suivant (-, +, ++, +++).
- Répéter pour les deux autres bécher.

| Test réalisé        | Bécher A | Bécher B | Bécher C |
|---------------------|----------|----------|----------|
| Nitrate d'argent    |          |          |          |
| Chlorure de baryum  |          |          |          |
| Oxalate d'ammonium  |          |          |          |
| Hydroxyde de sodium |          |          |          |

| 1 | - | En | uti | lisa | nt l | les | do | cu | me | ent | S 4 | 4 € | et | 5, | do | on | ne | r l | 'ea | au | mi | né | ral | le ( | COI | nte | nu | ıe | da | ns | cl | na | qu | e l | oéo | che | r. |      |
|---|---|----|-----|------|------|-----|----|----|----|-----|-----|-----|----|----|----|----|----|-----|-----|----|----|----|-----|------|-----|-----|----|----|----|----|----|----|----|-----|-----|-----|----|------|
|   |   |    |     |      |      |     |    |    |    |     |     |     |    |    |    |    |    |     |     |    |    |    |     |      |     |     |    |    |    |    |    |    |    |     |     |     |    | <br> |
|   |   |    |     |      |      |     |    |    |    |     |     |     |    |    |    |    |    |     |     |    |    |    |     |      |     |     | ٠. | ٠. |    |    |    |    |    |     |     |     |    | <br> |