Плотность. $\rho = \frac{m}{V}$. $[\rho] = \frac{\mathrm{KP}}{\mathrm{M}^3}$. Bec. P = mg. $[P] = \mathrm{H}$.

Давление. $p = \frac{F}{S}$. $[p] = \Pi a$.

Давление столба жидкости. $p = \rho g h$.

Сила Архимеда. $F_{\mathrm{apx}} = \rho g V$. Скорость. $V = \frac{S}{t}$. $[V] = \frac{\mathrm{M}}{\mathrm{c}}$. Ускорение. $a = \frac{\Delta V}{\Delta t}$. $[a] = \frac{\mathrm{M}}{\mathrm{c}^2}$.

Формулы с ускорением:

- $V_x = V_{0x} + a_x t$.
- $\bullet S_x = V_{0x}t \pm \frac{a_x t^2}{2}.$
- $x = x_0 + V_{0x}t + \frac{a_x t^2}{2}$.

Сила трения. $F_{\text{тр}} = N\mu$.

Закон Гука. $F_{\text{ynp}} = -k\Delta x$.

Параллельное соединение пружин. $k_{06}=k_1+k_2+\ldots$ Последовательное соединение пружин. $\frac{1}{k_{06}}=\frac{1}{k_1}+\frac{1}{k_2}+\ldots$ Коэффиицент полезного действия. $\eta=\frac{A_{\text{пол}}}{A_{\text{зат}}}$.

Момент. Fl.

Кинетическая энергия. $E_{\kappa} = \frac{mV^2}{2}$.

Потенциальная энергия. $E_{\pi}=mgh$.

Потенциальная энергия пружины. $E_{\rm n} = -\frac{k\Delta x^2}{2}$.

Внутренняя энергия. $\sum E_{\text{к. мол.}} + E_{\text{п. взаим.}}$

Количество теплоты через теплоемкость. $Q = C\Delta t$.

Количество теплоты через удельную теплоемкость. $Q=cm\Delta t$.

Закон Ньютона-Рихмана. $P=\alpha(t_{\text{тела}}-t_{\text{окр}}).$ Абсолютная влажность воздуха. $\rho_{\text{абс}}=\frac{m_{H_2O}}{V}.$ Относительная влажность воздуха. $\varphi=\frac{\rho_{\text{абс}}}{\rho_{\text{нп}(t)}}\cdot 100\%.$

Закон Фурье. $P = \frac{\alpha(t_1 - t_2)}{l}$.

Закон Кулона. $F = \frac{k \cdot |q_1 \cdot q_2|}{\varepsilon \cdot R^2}$. $k = 9 \cdot 10^9 \frac{\text{H·м}^2}{\text{K}\pi^2}$, ε - диэлектрическая проницаемость(в вакууме 1). Напряженность. $E = \frac{F}{q} = \frac{k \cdot q}{r^2}$. $[E] = \frac{\text{B}}{\text{M}} = \frac{\text{H}}{\text{K}\pi}$.

Потенциальная энергия в электрическом поле, действующий на точку. $W = q \varphi$. $[\varphi] = B$.

Напряжение. $U = \varphi_1 - \varphi_2 = I \cdot R = \frac{A}{a}$. [U] = B.

Сила тока. $I=\frac{q}{t}=\frac{U}{R}.\ [I]=A=\frac{\mathrm{K}\pi}{\mathrm{c}}.$ Сопротивление. $R=\frac{U}{I}=\frac{\rho\cdot l}{S}.\ [R]=\frac{\mathrm{B}}{\mathrm{A}}=\mathrm{Om}.$

Закон Ома. $I \sim U$; $I = \frac{U}{R}$.

Последовательное соединение резисторов. $I_{o6} = I_1 = I_2 = \dots; \ U_{o6} = U_1 + U_2 + \dots; \ R_{o6} = R_1 + R_2 + \dots$. Параллельное соединение резисторов. $I_{o6} = I_1 + I_2 + \dots; \ U_{o6} = U_1 = U_2 = \dots; \ \frac{1}{R_{o6}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

Закон Джоуля-Ленца. $Q = I^2 R t = \frac{U^2 t}{R} = I U t$.

Мощность электрического тока. $P=I^2R=\frac{U^2}{R}=IU.$

ЭДС(Электро-движущая сила). $\varepsilon = \frac{A_{cr}}{q}$. $[\varepsilon] = \mathrm{B}$.

Закон Ома для участка цепи с источником. $\Phi_A - \Phi_B + \varepsilon = I \cdot (R+r)$.

Законы Кирхгофа:

$$1. \sum_{i} \pm I_i = 0.$$

2.
$$\sum_{i} \pm \varepsilon_{i} = \sum_{i} \pm I_{i} \cdot R_{i} + \sum_{i} \pm I_{i} \cdot r_{i}.$$

Шунты:

- Амперметр. $R = \frac{R_A}{n-1}$.
- Вольтметр. $R = (n-1) \cdot R_V$.

Емкость конденсатора. $c=\frac{q}{U}=\frac{\varepsilon_0\cdot\varepsilon\cdot S}{d}$. $[c]=\frac{K\pi}{B}=\Phi;\ \varepsilon_0$ - электрическая постоянная; ε - диэлектрическая проницаемость, величина, которая показывает во сколько раз диэлектрик ослабевает электрическое поле. $\varepsilon_0=\frac{1}{4\cdot\pi\cdot k}=$ $8.85 \cdot 10^{-12} \frac{\Phi}{M}$

Сила Ампера. $F_A = B \cdot I \cdot l \cdot \sin \alpha$. α - угол между линиями индукции магнитного поля и направлением тока.

Сила Лоренца. $F_{\Pi} = B \cdot q \cdot v \cdot \sin \alpha$. α - угол между линиями индукции магнитного поля и направлением скорости заряда.

Поток вектора магнитной индукции. $\Phi_{\scriptscriptstyle \mathrm{B}} = BS\cos\alpha.$ $[\Phi_{\scriptscriptstyle \mathrm{B}}] = \mathrm{B6}.$

Индукция магнитного поля. $B = \frac{F_{max}}{I \cdot l}$. [B] = Тл.

Закон радиоактивного распада. $N=\frac{N_0}{2\frac{t}{T}}$. T - время полураспада, N_0 - изначальное число атомов, t - прошедшее

Дефект масс. $\Delta m = M_{\rm H} + M_{\rm H} - M_{\rm H}$.

Формула фокусного расстояния линз. $\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$;

F — фокусное расстояние, d — расстояние от объекта до линзы, f — расстояние от изображения до линзы.

 \pm перед $\frac{1}{F}$ — собирающая/рассеивающая линза, \pm перед $\frac{1}{d}$ — действительный/мнимый предмет, \pm перед $\frac{1}{f}$ — действительное/ мнимое изображение.

Диоптрия. $D = \frac{1}{F}$. $[D] = Дптр. D_{06} = D_1 + D_2 + \dots$

Нормальное ускорение. $a_{\scriptscriptstyle \rm H}=\frac{V^2}{R}$

Углова скорость. $\omega = \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t}$. $[\omega] = \frac{\text{рад}}{\text{c}}$.

Период. $T = \frac{2\pi R}{V} = \frac{2\pi}{\omega}$. [T] = c.

Формула связи линейной скорости с угловой. $V=\omega R$.

Частота. $\nu = \frac{1}{T}$. $[\nu] = \Gamma$ ц.

Преобразование Галилея. $\vec{V_{\mathrm{afc}}} = \vec{V_{\mathrm{othoc}}} + \vec{V_{\mathrm{nep}}}$.

Закон Снелиуса. $n_1 \sin \alpha = n_2 \sin \beta$.

Второй закон Ньютона. $\sum \vec{F} = m\vec{a}$. Механическое напряжение. $\sigma = \frac{F}{S} = \varepsilon \cdot \frac{kl_0}{S} = E \cdot |\varepsilon|$. $[\sigma] = \frac{H}{M^2} = \Pi a$.

Модуль Юнга. $E = \frac{kl_0}{S}$. $[E] = \Pi a$.

Закон всемирного тяготения. $F_{\text{грав}} = \frac{GM_1M_2}{R^2}$.

Ускорение свободного падения. $F = G \frac{Mm}{R^2} \rightarrow G \frac{M}{R^2} = g = 9.8$. $G = 6.67 \cdot 10^{-11} \frac{\text{H} \cdot \text{M}^2}{\text{K} \cdot \text{F}^2}$

Сила инерции. $\vec{F}_{\text{H}} = -m \cdot \vec{a}_{\text{пер}}$. Импульс. $p = m \cdot V$; $[p] = \frac{\text{K}\Gamma \cdot M}{c}$.

Второй закон Ньютона в импульсной форме. $\vec{F}\Delta t = \Delta \vec{p} \rightarrow \vec{F} = \frac{\Delta \vec{p}}{\Delta t}$.

Закон изменения импульса системы. $\Delta \vec{p}_{\text{сис}} = \vec{F}_{\text{внеш}} \cdot \Delta t.$

Уравнение Мещерского. $\vec{F}_p = -\mu \vec{u}$.

Механическая работа. $A = Fl \cdot \cos \alpha = \vec{F} \cdot \vec{l}$. α — угол между силой и вектором перемещения. [A] = Дж.

Мощность. $P = \frac{A}{t} = FV \cdot \cos \alpha = \vec{F} \cdot \vec{V}$. [P] = Bt.

Работа силы упругости. $A = -\Delta E_{\pi} = \frac{k(\Delta x)^2}{2}$.

Потенциальная энергия силы тяготения. $E_{\Pi} = \frac{GM_1M_2}{R}$. Формула координаты центра масс. $x_c = \frac{\sum\limits_i m_i x_i}{m} = \frac{\sum\limits_i m_i x_i}{\sum\limits_i m_i}$. $y_c = \frac{\sum\limits_i m_i y_i}{m} = \frac{\sum\limits_i m_i y_i}{\sum\limits_i m_i}$. $z_c = \frac{\sum\limits_i m_i z_i}{m} = \frac{\sum\limits_i m_i z_i}{\sum\limits_i m_i}$.

$$\vec{r_c} = rac{\sum\limits_i m_i \vec{r_i}}{m} = rac{\sum\limits_i m_i \vec{r_i}}{\sum\limits_i m_i}.$$

КПД. $\eta = \frac{A_{\text{пол}}}{A_{\text{зат}}} \cdot 100\%$.

Теорема о движении центра масс. $m\vec{a}_c = \vec{F}_{\text{внеш}}$.

Основное уравнение динамики вращательного движения. $I(\kappa_{\Gamma} \cdot M^2) \cdot \beta(\frac{pag}{c^2}) = \sum M(H \cdot M)$.

Энергия вращательного движения тела. $E = \frac{I\omega^2}{2}$.