Forensic Age Estimation Model Using Left Hand Bones Based On GA-ANN Hybrid Approach For Hispanic Population

WONG YEE MAY

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Computer Science in Software Engineering

Faculty of Computing
UNIVERSITI MALAYSIA PAHANG

JANUARY 2020

ACKNOWLEDGEMENTS

Here, I must give my most sincere thanks to my project supervisors, Dr. Mohd. Faaizie Bin Darmawan and Dr. Mohd Izham Bin Mohd Jaya for their unending guidance and thoughtful insights. Their passionate personalities and willingness to help me at all times pushed me towards my completion of this project. My friends and best friends are my best supporters in giving me the strength to persevere through all the challenges till now. And my deepest love and gratitude to my dearest family, who always gave me words of encouragement to empower me.

ABSTRAK

Model anggaran umur ialah bantuan berfungsi untuk membezakan identiti si mati atau individu hidup dari segi antropologi forensik. Model anggaran umur konservatif hanya terhad untuk penduduk spesifik serta variabiliti tinggi. Kajian ini memberi tumpuan dalam membina model anggaran umur menggunakan pendekatan hybrid GA-ANN (Genetic Algorithm-Artificial Neural Network) bergantung pada 19 panjang tulang tangan kiri individu yang berumur dari 0 hingga 18 tahun. Gambar X-ray tangan kiri dikumpul dari dataset penduduk Hispanik. 19 panjang tulang diukur menggunakan Photo Pos Pro dan pendekatan hybrid dilaksanakan mengguna Python skrip Python dan Matlab. GA adalah untuk memilih tulang paling sesuai manakala ANN menganggarkan usia. Kajian ini dikira berjaya sekira keputusan pendekatan hybrid dicadang dapat mengatasi penanda aras.

ABSTRACT

Age estimation model serves as an aid to distinguish the identities of deceased or alive individuals in term of forensic anthropology. The existing age estimation models are population specific and high variability. This research focuses on using Genetic Algorithm-Artificial Neural Network (GA-ANN) hybrid approach on age estimation models depend on the lengths of 19 left hand bones of alive individuals who ages from 0 to 18 years old. X-ray images of left hands are collected from Image Processing and Informatics Lab of University of Southern California. The lengths of the 19 bones are assessed using Photo Pos Pro while the hybrid approach is implemented using Python scripts and Matlab. GA approach is applied to select the appropriate bones while ANN approach is used to estimate age. It is believed that the research is successful as the results of GA-ANN hybrid approach outperform the ANN approach.

TABLE OF CONTENTS

AC	KNOWI	LEDGEMENTS	i
AB	STRAK		ii
AB	STRAC'	Γ	iii
TA	BLE OF	CONTENTS	iv
		ABLES	
		[GURES	
LIS	ST OF E	QUATIONS	xiii
СН	APTER	1	14
1.1	INTR	ODUCTION	14
1.2	PROI	BLEM STATEMENT	15
1.3	OBJE	ECTIVES	15
1.4	SCOI	PE	16
1.5	REPO	ORT ORGANISATION	16
СН	APTER	2	17
2.1	INTR	ODUCTION	17
2.2	THE	IMPORTANCE OF AGE ESTIMATION	18
	2.2.1	CRIMINAL RESPONSIBILITY	18
	2.2.2	CHILD PORNOGRAPHY	19
	2.2.3	FALSIFICATION OF AGE	19
	2.2.4	HUMAN TRAFFICKING	20
	2.2.5	REFUGEE AND ASYLUM SEEKERS	20
	2.2.6	UNKNOWN DECEASED CHILDREN AND MISSING CH 21	ILDREN
2.3	THE	HUMAN PARTS USED FOR AGE ESTIMATION	22
	2.3.1	HAND BONES	22

	2.3.2	DENTAL	23
	2.3.3	FACIAL	25
	2.3.4	KNEE	25
	2.3.5	CHARACTERISTICS OF SECONDARY SEXUAL	26
	2.3.6	THE SELECTED HUMAN PART TO DETERMINE AGE IN THE	
2.4		RCHERAL APPROACHES IN AGE ESTIMATION USING HAND BO	
2.4	28	ERAL APPROACHES IN AGE ESTIMATION USING HAND BO	MES
		CDELLICITAND DATE (CD)	20
	2.4.1 2.4.2	GREULICH AND PYLE (GP) TANNER AND WHITEHOUSE (TW)	
	2.4.2	MULTIPLE LINEAR REGRESSIONS	
	2.4.3	GENETIC ALGORITHM (GA)	
	2.4.4	ARTIFICIAL NEURAL NETWORKS (ANN)	
	2.4.5	•	
	2.4.3.		
	2.4.5.2	2 RATIO OF TRAINING AND TESTING DATA	39
	2.4.5.3	B DATA NORMALIZATION	39
	2.4.5.4	4 NETWORK ALGORITHM	40
	2.4.5.5	5 TRANSFER FUNCTION	40
	2.4.5.6	5 PERFORMANCE FUNCTION	42
	2.4.5.7	7 TRAINING FUNCTION	43
	2.4.5.8	B LEARNING FUNCTIONS	43
	2.4.6 NETWO	HYBRID GENETIC ALGORITHM-ARTIFICIAL NEURAL ORKS (GA-ANN)	44
2.5	COMI	PARISON AND JUSTIFICATION	44
2.6	SUMN	MARY	46
СН	APTER :	3	48
3.1	INTRO	ODUCTION	48
3.2	RESE	ARCH FLOW	48
3.3	PROI	BLEM DEFINITION	48
3.4	DATA	A COLLECTION	49

3.5	DATA NORMALIZATION	51
3.6	AGE ESTIMATION MODELS USING ANN APPROACH	51
3.7	AGE ESTIMATION MODELS USING GA-ANN APPROACH	52
3.8	DATA DENORMALIZATION	54
3.9	VALIDATION AND EVALUATION OF RESULTS	54
3.10	HARDWARE AND SOFTWARE	56
3.11	GANTT CHART	57
3.12	SUMMARY	57
CHA	APTER 4	58
4.1	INTRODUCTION	58
4.2	IMPLEMENTATION	58
	4.2.1 ARTIFICIAL NEURAL NETWORK	60
	4.2.2 HYBRID GENETIC ALGORITHM-ARTIFICIAL NEURAL NETWORK	69
4.3	RESULTS	
4.4	DISCUSSION AND JUSTIFICATION	78
	4.4.1 ADAPTION LEARNING FUNCTION	78
	4.4.2 TRANSFER FUNCTION	79
	4.4.3 CROSS-VALIDATION	79
	4.4.4 TEST SET MEAN SQUARED ERROR (MSE)	80
4.5	SUMMARY	80
CHA	APTER 5	81
5.1	INTRODUCTION	81
5.2	PROJECT CONSTRAINT	81
5.3	RECOMMENDATION AND FUTURE WORK	82
5.4	CLOSING NOTE	83
REF	TERENCES	84
APF	PENDIX A	92

ORIGINAL DATASET OF FEMALE HISPANIC POPULATION	92
APPENDIX B	98
ORIGINAL DATASET OF MALE HISPANIC POPULATION	98
APPENDIX C	104
NORMALIZED TRAINING DATASET OF INPUT FEATURES AND TA	ARGET
FEATURES FOR FEMALE HISPANIC POPULATION USING ANN AP	PROACH
	104
APPENDIX D	112
NORMALIZED TEST DATASET OF INPUT FEATURES AND TARGE	T
FEATURES FOR FEMALE HISPANIC POPULATION USING ANN AP	PROACH
	112
APPENDIX E	116
NORMALIZED TRAINING DATASET OF INPUT FEATURES AND TA	ARGET
FEATURES FOR MALE HISPANIC POPULATION USING ANN APPR	OACH
	116
APPENDIX F	124
NORMALIZED TEST DATASET OF INPUT FEATURES AND TARGE	T
FEATURES FOR MALE HISPANIC POPULATION USING ANN APPR	OACH
	124
APPENDIX G	128
NORMALIZED DATASET OF INPUT FEATURES AND TARGET FEA	TURES
FOR FEMALE HISPANIC POPULATION FOR FEATURE SELECTION	USING
GA APPROACH	128
APPENDIX H	139
NORMALIZED DATASET OF INPUT FEATURES AND TARGET FEA	TURES
FOR MALE HISPANIC POPULATION FOR FEATURE SELECTION U	SING GA
APPROACH	139
APPENDIX I	150

GENERATED CSV FILE OF DATASET OF LATEST POPULATION FOR	
FEMALE HISPANIC POPULATION AFTER FEATURE SELECTION USING GA	4
APPROACH	0
APPENDIX J	7
GENERATED CSV FILE OF DATASET OF LATEST POPULATION FOR MALI	Ε
HISPANIC POPULATION AFTER FEATURE SELECTION USING GA	
APPROACH	7
APPENDIX K 16	4
NORMALIZED TRAINING DATASET OF SELECTED INPUT FEATURES ANI)
SELECTED TARGET FEATURES FOR FEMALE HISPANIC POPULATION	
USING GA-ANN APPROACH	4
APPENDIX L 16	8
NORMALIZED TEST DATASET OF SELECTED INPUT FEATURES AND	
SELECTED TARGET FEATURES FOR FEMALE HISPANIC POPULATION	
USING GA-ANN APPROACH	8
APPENDIX M 17	0
NORMALIZED TRAINING DATASET OF SELECTED INPUT FEATURES ANI)
SELECTED TARGET FEATURES FOR MALE HISPANIC POPULATION	
USING GA-ANN APPROACH	0
APPENDIX N	4
NORMALIZED TEST DATASET OF SELECTED INPUT FEATURES AND	
SELECTED TARGET FEATURES FOR MALE HISPANIC POPULATION	
USING GA-ANN APPROACH	4
APPENDIX O17	6
NORMALIZED AND DENORMALIZED TRAINING DATASET OF TARGET	
FEATURE, OUTPUTS AND ERRORS FOR FEMALE HISPANIC POPULATION	[
USING ANN APPROACH AND GA-ANN APPROACH17	6
APPENDIX P	1

NORMALIZED AND DENORMALIZED TEST DATASET OF TARGET	
FEATURE, OUTPUTS AND ERRORS FOR FEMALE HISPANIC POPULATI	ON
USING ANN APPROACH AND GA-ANN APPROACH AND THEIR	
DENORMALIZED TEST SET SQUARE ERRORS	. 181
APPENDIX Q	. 183
NORMALIZED AND DENORMALIZED TRAINING DATASET OF TARGET	Т
FEATURE, OUTPUTS AND ERRORS FOR MALE HISPANIC POPULATION	1
USING ANN APPROACH AND GA-ANN APPROACH	. 183
APPENDIX R	. 188
NORMALIZED AND DENORMALIZED TEST DATASET OF TARGET	
FEATURE, OUTPUTS AND ERRORS FOR MALE HISPANIC POPULATION	1
USING ANN APPROACH AND GA-ANN APPROACH AND THEIR	
DENORMALIZED TEST SET SQUARE ERRORS	. 188
APPENDIX S	. 190
GA PYTHON SCRIPT FOR FEMALE FEATURE SELECTION	. 190
APPENDIX T	. 196
GA PYTHON SCRIPT FOR MALE FEATURE SELECTION	. 196

LIST OF TABLES

Table 2.1: Significant elements of the construction of ANN taken from an earlier
study on age estimation
Table 2.2: Sources, advantages and disadvantages of approaches in age estimation
using hand bones
Table 3.1: The six key phases during childhood and adolescence for both gender 50
Table 4.1: The features and its represented integer number and feature name in ANN
approach and part of the GA approach of GA-ANN hybrid approach respectively 59
Table 4.2: The settings of each neural network in this paper
Table 4.3: The CV MSE results of female and male Hispanic population before and
after feature selection for 200 generations
Table 4.4: The sum of 1 (s) for each bone across 200 individuals for female and male
Hispanic population
Table 4.5: The testing target data, testing output data and the test set MSE for all four
ANNs
Table 4.6: The results of age estimation models using ANN approach and GA-ANN
hybrid approach for both female and male Hispanic population77
Table 4.7: The comparison results of using different learning functions for neural
networks
Table 4.8: The comparison results of different combinations of transfer functions for
Layer 1 and Layer 2 for several tests of neural networks

LIST OF FIGURES

Figure 2.1: Gene, chromosome, and population of initial population phase 32
Figure 2.2: Three steps in crossover phase
Figure 2.3: A conceptual design of a multiplayer neural network. Each layer are
interlinked and the weights (c) indicates the links between the perceptron nodes. $\dots 35$
Figure 2.4: The ANN with $(i - j - k \dots - l - 1)$ structure is visualized
Figure 3.1: Left hand bone with labels
Figure 3.2: The flow of the implementation of the GA-ANN approach53
Figure 3.3: Flowchart of this research flow
Figure 3.4 Gantt chart of project
Figure 4.1: The imported input data and target data for all models in the workspace
of Matlab60
Figure 4.2: The command to open Network/Data Manager window in Matlab 61
Figure 4.3: Example of the Network/Data Manager window to create one of the
neural networks
Figure 4.4: Example of customizing the transfer function for Layer 2 of one of the
neural networks
Figure 4.5: The Network/Data Manager which creates neural network, imports,
exports, and uses the neural networks and data
Figure 4.6: Example of exporting the neural networks to workspace of Matlab 65
Figure 4.7: The command to randomly generate column indices for the division of
the data into 70% training data and 30% testing data respectively
Figure 4.8: The command to change the divide function in order to enable dividing
data with indices
Figure 4.9: The commands to set the generated indices to a particular neural network
66
Figure 4.10: The neural network design for HISFnet and HISMnet
Figure 4.11: The neural network design for SelectFnet
Figure 4.12: The neural network design for SelectMnet

Figure 4.13: Example of exporting the outputs and errors of one of the neural	
networks6	58
Figure 4.14: The command to initialize the variable of a for-loop in order to extract	
the data based on generated indices6	59
Figure 4.15: The for-loop command and also command to extract the data based on	
generated indices from a specific data	59
Figure 4.16: Example of command to activate Miniconda environment	0
Figure 4.17: Example of command to run Python script	0
Figure 4.18: A generated graph of the best scores and the average scores throughout	
200 generations	1
Figure 4.19: The generated cross-validation MSE values before and after the feature	;
selection throughout 200 generations	12
Figure 4.20: A generated CSV file of the data of latest population	12

LIST OF EQUATIONS

Equation 2.1 Formula to compute the net input in hidden layer
Equation 2.2 Formula to compute the net output in output layer
Equation 2.3 Formula to compute result of all hidden nodes
Equation 2.4 Formula to compute result of all output nodes
Equation 2.5 Normalization equation for the input and output data40
Equation 2.6 Formula to compute the sigmoid transfer function41
Equation 2.7 Formula to compute the tansig transfer function
Equation 2.8 The hidden nodes' output with sigmoid transfer function is computed
with the formula42
Equation 2.9 The hidden nodes' output with hyperbolic tangent transfer function
with the formula 42
Equation 2.10 Formula to compute the output nodes' output with sigmoid transfer
function42
Equation 2.11 Formula to compute the output nodes' output with hyperbolic tangent
transfer function
Equation 2.12 Formula to compute the MSE value

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

There are many unidentified decedent cases in world and we may need some models or approaches to predict features or physical characteristics of unknown corpses. Lynnerup & Villa (2014) stated that evaluation of age at death is involved in the identification of human remains.

Age estimation is essential since it is possible that the examiner or investigator is requested to make an educated guess and hypothesize the age of an individual as a part of the investigation. Stavrianos, Mastagas, Stavrianou, & Karaiskou (2008) stated that age is the significant component in clinical practice, research, and court of law.

Age estimation serves in minimizing the scope of the probe feasibility for unknown deceased or living individuals for constitutional reasons. For people who thought to be guilty of crime with unrevealed chronological age, who are committed to a grave crime, the precisions of age estimation models are required for absolute justice (Duangto, Janhom, Prasitwattanaseree, Mahakkanukrauh, & Iamaroon, 2017). An entry of large number of asylum seekers, unlawful immigrants, and also more young perpetrators being subjected to trials in court have caused the grow desire for age estimation (Sykes, Bhayat, & Bernitz, 2017).

Age estimation in forensic medicine has progressively obtained significance since there are inevitable situations like individuals do not have or having falsified identification documents (Auf der Mauer et al., 2019). There is some current published literature with a particular attention allocate to age estimation to be used for refugees

and individuals involved in human trafficking (Franklin, Flavel, Noble, Swift, & Karkhanis, 2015).

There is a lack of studies on age estimation model for Hispanic population. It is believed the field of forensic science prefers more age estimation models for different ethnic groups. Therefore, this research focuses on Hispanic population.

1.2 PROBLEM STATEMENT

The problems that this paper aims to tackle are as follows:

- i. There are only few age estimation models for Hispanic population.
- ii. There are difficulties in getting research studies that applying GA-ANN hybrid approach on age estimation model.
- iii. The field of forensic science demands more age estimation models for different ethnic groups.

1.3 OBJECTIVES

The goal of this project is to apply GA-ANN hybrid approach on age estimation model using left hand bones for Hispanic population with the following objectives:

- i. To investigate the adoption of GA approach for bone selection
- ii. To hybridize the GA approach with ANN approach for age estimation
- iii. To evaluate the GA-ANN hybrid approach with ANN approach

1.4 SCOPE

This research focuses on using GA-ANN hybrid approach on age estimation models depend on the lengths of 19 left hand bones of Hispanic population who ages from 0 to 18 years old. The lengths of the 19 bones are assessed using Photo Pos Pro while the hybrid approach is implemented using Python scripts and Matlab.

1.5 REPORT ORGANISATION

This thesis consists of five chapters. Chapter 1 will discuss on introduction of this thesis while chapter 2 will discuss on the literature review for this research paper. Chapter 3 is about methodology while chapter 4 is the implementation and discussion. Chapter 5 is the conclusion of this research.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Age estimation is pivotal in law enforcement and legal justice systems all over the world (Asif et al., 2019). Other than that, to be able to precisely determine the age of children and young adults has always been a problem in forensics since there are cases where youths without proper identification documents are requested to be assessed for their criminal responsibility, commonly regarding the range of their possible age, and also to determine if a residency permit can be given, and refugees that may look too old for their claimed age. (Bartolini et al., 2018).

Stern & Ursekter (2016) stated that it is critical to the fields of clinics and forensics that the evaluation of the age of individuals is accurate and precise, as medicine released from clinics places emphasis on the predicting the age to determine endocrinological diseases in children or in pediatric surgery while medicine in forensics emphasizes on age estimation under the condition where no distinct clues can be found to help in estimating the age, such as the age of minor refugees that has lost their identification documents.

In forensics, the search for victims can be simplified by creating a range for age through age prediction. The search for possible contributors of crime scene traces can also be made simpler by predicting the age range for possible suspects. Prediction intervals are always preferred when approximating age in a police investigation. (Smeers, Decorte, Van de Voorde, & Bekaert, 2018).

Other than that, it is essential to have age estimation of unspecified human bodies at the crime scene since the mortality age, birth date and other details allow investigators to get the true identity of a human body by providing potential counterparts. The determination of human bodies is always a difficulty to investigators when there is no sign about the identity from particular data (Alkass et al., 2009). The age of an individual is always an elemental piece of data relating to forensic identification of unknown human bodies (Lynnerup & Villa, 2014).

2.2 THE IMPORTANCE OF AGE ESTIMATION

There are several factors that make age estimation an important technique.

2.2.1 CRIMINAL RESPONSIBILITY

In much of the first-world nations, in example New Zealand and Australia, 10 years old is the standard age of criminal responsibility. Meanwhile it is 7 to 8 years old in India, Indonesia and Jordan. A formal statement made by the United Nations (UN) that children under the legal age of criminal responsibility must not be subjected to criminal accusations and nations should start to revise themselves if they have set criminal responsibilities for children under the age of 12 years and below. Doli incapax assumes that a child could not hope to commit a crime under common law. This is a presumption that is employed to children between the age of 13 or 14 years, depending on jurisdiction, and is a more controversial concept (Franklin et al., 2015).

17 to 21 years would be the standard range of age for young people which age between doli incapax and adulthood, depending on jurisdiction are ideally subjected to rehabilitation than punishment, as the full criminal liability of an adult is not carried by them. However, they must still face the consequence of their actions, albeit the consequences are lighter. (Franklin et al., 2015).

2.2.2 CHILD PORNOGRAPHY

Any activities relating to child pornographic files, especially having ownership to such files is a crime in several countries. Therefore, there are frequent requests for forensics analysis in computer storage devices to verify the presence of child pornography (Polastro & Eleuterio, 2012).

Macedo, Costa, & A. dos Santos (2019) proposed a combined method to detect child pornography using a child face detection module and a pornography detector. The results showed the viability of the strategy of combining different detectors and classifiers to perform detection of child pornography, but it requires much more improvement, especially in age estimation and pornography classification.

2.2.3 FALSIFICATION OF AGE

Falsification of age or also known as age cheating is a common practice in domain of sports and public service, and some members of society may have a different moral perspective and find this completely acceptable as they view it a vital underhandedness, or a means of survival in a situation of destitution (Jerome Tosam, 2015). It is important to have age estimation in the sports academics and military services at the entry and also retirement (Bakthula & Agarwal, 2014).

It is possible for some children in certain countries, while being born to this world, do not have their births registered and therefore a birth record is not made. There happened the alterations of births on official documents of players in hopes to obtain the right to compete with other countries in sports industry. International Olympic Committee has come out with a consensus statement since the matter of age verification in youth sports is a great concern (Malina, 2011).

To prevent issues of falsification of age and to protect children from recruitment in hostilities, General Assembly launched the Optional Protocol to the Convention on the Right of the Child on the involvement of children in armed conflict (OPAC). Office of the Special Representative of the Secretary-General for Children and Armed Conflict adopted the campaign Zero under 18 in order to support OPAC (UN, n.d.).

2.2.4 HUMAN TRAFFICKING

Kiss, Yun, Pocock, & Zimmerman (2015) stated that every year, many children fall victim to the grave crime of human trafficking. 5.7 million boys and girls have been estimated to work without their, 1.2 million are sold illegally, and about 1.8 million have been forced to sexual slavery.

Child labour robs children away from their childhood, potential and dignity, and can also cause harm to mental and physical development. Worst forms of child labour are trafficking, forced labour, sexual exploitation and use of underage children for security and military purposes (UNICEF, The Global Compact, & Save the Children, 2012).

Children with low socioeconomic contexts are unprotected to human trafficking and once trafficked, these children are frequently involved in criminal acts and therefore being inspected by local legal system with no or falsified identity documents (Franklin et al., 2015).

2.2.5 REFUGEE AND ASYLUM SEEKERS

According to United Nations High Commissioner for Refugees (UNHCR), almost half of victims of natural disasters, internal conflict, and war are vulnerable children and are now seeking international protection. The majority of UN members

supports and signed The Convention on the Rights of the Child, which declares without discrimination, the rights of every child, defined as individuals under 18 years old, within any States Parties' jurisdiction will be respected and ensured (OHCHR, n.d.).

Sykes, Bhayat, & Bernitz (2017) states the asylum seeker crisis has contributed to the necessity of having age prediction, causing an increase in such cases, which is most likely caused by a sudden increase in trials involving refugees, illegal immigrants and juvenile offenders. This makes the legal authorities the main users who need age estimation tests in support of their investigation.

2.2.6 UNKNOWN DECEASED CHILDREN AND MISSING CHILDREN

Age estimation is the most precise biological identifier that a forensic anthropologist can give in the case of an unknown deceased child (Lewis & Flavel, n.d.). Lacking of documents, clothing or other personal belongings are often main issues of identification in historical grave findings. Thus, the focus will be on age estimation, so as sex and stature determination. Generally, the principal criteria to estimate age of deceased children and teenagers are the appearance of ossification centre, epiphyseal union, the development of teeth, and also bones lengths. Age estimation is more reliable to children and teenagers than adults as children and teenagers are based on skeletal and dental maturation while adults focus on degenerative changes (Huumonen et al., 2016).

Nowadays, missing children becomes a common phenomenon in world. Society today has becoming progressively worse for citizens especially children. Missing children is complicated occurrence and having many dimensions for it to deal with. There is two possible ways that a child can go missing, which are either the child has been kidnapped by someone against the assent of the child and also law, or, the child leaves the domination and protection of guardians without acknowledgment (Vij, 2016).

A crucial process that can bring closure in a tragic case is the cross-matching reports of missing people with unknown bodies. A successful matching helps criminal investigations and completes the civil procedures, and thus those who left behind can mourn their beloved one (People & Paper, 2011). Alkass et al. (2009) stated that age estimation is offering significant potentiality to police authorities and forensics pathologist in determining the time of death as well as the identity of unknown bodies or individuals.

2.3 THE HUMAN PARTS USED FOR AGE ESTIMATION

Hand bone, dental, knee, facial, and pelvis are several parts of human body that have mostly been used for age estimation. Details of each part will be explained in following sections.

2.3.1 HAND BONES

Radiography analysis of the staging of skeletal development has been a common method to estimate the timing of pubertal growth, so as to know the growth velocity and the proportion of growth remaining. In most cases, ossification of bones of the hand and wrist has been used in determining skeletal development since each type of bones can have a varying availability in the areas. The pattern of skeletal growth is almost the same in every individual, just the initiation, duration, and also amount of growth varies greatly due to the sudden, mandatory growth in puberty, and therefore, it becomes a significant consideration. Genetic and environment factors has impacted the skeletal development in every individual while the timing and ossification sequence of skeletal maturity within the hand-wrist area have shown polymorphism and sexual dimorphism that restricts clinical predictive use. Generally, there are two common methods to assess hand-wrist radiograph. The first method are the comparison approaches of Greulich and Pyle and Tanner et al. Geulich and Pyle adopt an atlas as the standard of comparison while Tanner et al. approach compares individual to the radiographic standards of skeletal development of common children in the same group

of gender and age. The second approach to access hand-wrist radiograph is using particular indicators to associate skeletal development to growth curve of puberty. This method is focused on the skeletal development evaluation of an individual than the mean values (Flores-mir, Orth, Nebbe, & Ortho, n.d.).

Many researchers have proposed divergent approaches to estimate age using various parts of bones like knees, spinal cord, femur, foot bones, skull, rib, pelvis, Carpals and Epiphyses of the Ulna and Radius, and left hand bones. Normally, measurements of bone lengths, angles and shape variations are the main focuses of many forensic studies. All measurements are vary from observation to observation and scientist to scientist. Forensic research has driven into various domain of interests such as studies of dead skeleton bones, half decomposed corpses in crime investigation or skeleton development and medical diagnosis (Bakthula & Agarwal, 2014).

An accepted sequence of ossification for the carpal, metacarpal, and phalangeal bones that is extraordinarily constant and similar for both sexes of healthy children. Capitate is the first ossification center that comes in hand and wrist radiographs while sesamoid of adductor pollicis of thumb is usually the last one. The epiphyseal center of the distal radius is the first comes into existence, then following by those of the proximal phalanges, the metacarpals, the middle phalanges, the distal phalanges, and the ulna. Despite that, two main bones are to be exempted from the sequence, which are the epiphysis of the distal phalanx of thumb and of the metacarpals usually come into existence at the same time, and the epiphysis of middle phalanx of fifth finger is often the last to ossify (Gilsanz & Raitb, 2005).

2.3.2 DENTAL

The tooth, another part which can be used for age estimation is also the most rigid tissue that can be found in the physiology of humans. Physical and chemical stresses along with nutritional deficiencies can be resisted by teeth for a long time. Other than DNA profiling and fingerprint comparison, dental evaluation is vital in

forensic identification of an unknown deceased individual. Therefore, it is important to have a valid and reliable approach of dental age estimation (Asif et al., 2019).

Asif et al. (2019) investigated the relationship between chronological age and pulp/tooth volume ratio in maxillary right central incisors and maxillary canines in order to derive a regression equation for dental age estimation for Malaysian population. The study sample of 300 cone-beam computed tomography (CBCT) scanned data belonging to 179 Malays and 121 Chinese, which stored in the Oral and Maxillofacial Imaging Division, Faculty of Dentistry, which were selected based on the image acquiring parameters, age of patients and the quality. The subjects were divided into 5 age groups, ranging from 16 to 65 years old, where each age group of 10 years range in order to ensure balanced sample distribution across the 5 groups. 300 intact teeth, which are 100 maxillary left canines, 100 maxillary right canines and 100 maxillary right central incisors, all with no caries and fully developed roots were eventually identified from database. Only one tooth per subject was selected in order to avoid bias in data acquired from the same patient.

By using i-CAT Cone Beam 3D Dental Imaging System, CBCT data was acquired and were then imported to the Mimics software for the analysis of pulp-tooth volume ratio. Images were first oriented in axial, coronal and sagittal planes. After setting different grayscale threshold values for each of the investigated teeth, new masks were created for the pulp cavity and tooth. Masks were cropped in 3 planes in order to separate the tooth from surrounding structures. There were slice by slice of manual checking of masks for segmentation and separation from surrounding structures. The pulp cavity and tooth were grown in the 'Region growing phase' of the software after editing mask in multiple slice editing phase. Three dimensional models of pulp tissue and tooth were created and the software calculated the volume of the pulp cavity and tooth. A strong inverse relationship between chronological age and pulp/tooth volume ratio has been indicated by the results and showed that this method of dental age estimation is indeed gender independent (Asif et al., 2019).

2.3.3 FACIAL

Important information related to identity, gender, age and ethnicity can be conveyed by human face. These attributes are used in facial image analysis applications and age estimation from facial image has become the active research area in computer vision community. It is because of its real world applications in multimedia communication, Human Computer Interaction (HCI), security and law enforcement (Sawant & Bhurchandi, 2019). Existing facial age estimation systems are roughly divided into two key components, which are face representation and age estimator learning (Liu, Lu, Feng, & Zhou, 2017).

Ouloul, Moutakki, Afdel, & Amghar (2019) proposed a new descriptor called Local Matched Filter Binary Pattern (LMFBP) which is designed specifically for the detection and extraction of skin wrinkles and is based on exploiting both the Matched Filter and the texture operator Local Binary Pattern (LBP). The Matched Filter will handle the detection of wrinkles using template matching between approximate shape of wrinkles using template matching between the approximate shape of wrinkles and the face image patches while LBP will encode the response of the Matched Filter into pattern codes to build the histogram of skin aging feature. Hierarchical approach has adopted in the learning phase in order to consider varying aging process from one age stage to another. It has been tested on both FGnetAD, HQfaces and PAL datasets, and the results proved the efficiency of the proposed approach when compared to the state-of-the-art age estimation methods.

2.3.4 KNEE

The distal end of femur, the proximal ends of tibia and fibula, and the patella are the four bony structures of human knee. All of those bones are present from birth, excluded patella. Patella is develop with the tendons and ligaments of knee from a cartilage precursor that only begins to ossify into bone around 3 years old while other bones are developed by epiphyses where the ends of bones from cartilage growth plates

during skeletal development. Many studies have examined the age estimation of knee and or elements that make up the knee joint such as radiography (X-ray) studies and magnetic resonance imaging (MRI) studies (Maggio, 2017).

Maggio (2017) had conducted studies that showed the varying age estimation potential of the knee joint, and the elements that contained therein. Since there is no overlapping bony structures, it is easier to image the knee. The knee can be imaged at low doses of radiation for MRI, X-ray and ultrasonography. The potential of MRI for determining of legal majority has been demonstrated by many studies while there is still lack of information about the potential of ultrasonography of the knee for age determination.

Age and sex of a person might be estimated by the shape of knee in forensic medicine. Huang et al. (2018) had using geometric morphometric analysis of ten osteometric landmarks on three-dimensional reconstructions of 259 knees in Chinese population to study the differences of distal femur in term of sexual dimorphic and age. In order to identify the differences, General Procrustes analysis, principal component analysis (PCA), and other discriminant analysis had been conducted. PCA distinguished a significant difference of the distal femur between male and female while osteometric analysis showed the differences between the three age-related subgroup which are below 40 years, in between 40 to 60 years, and above 60 years.

2.3.5 CHARACTERISTICS OF SECONDARY SEXUAL

There are issues of secondary sexual characteristics associated with assessment such as privacy and cultural matters even though self-assessments have been implemented. The secondary sexual characteristics are pubic hair and genitalia in males while pubic hair and menarche in females (Malina, 2011).

Normal (2007) studied the yearly assessments of breast, genital, and pubic hair growth and those assessments had aided in analyzing the ages of individuals in each sexual maturity stage and the time it needed to go from one stage to the next. The findings from this study are essential in helping researchers to know the normative variation in the timing and also change in secondary sexual characteristics during puberty.

The timing of sexual maturity of a large group of healthy Danish children had been studied by TEILMANN et al. (2005) in order to assess the dissimilarities between USA and Denmark, and also to study the possible secular trends in sexual maturity development. The study showed that prepubescent child is easily affected by surrounding elements that may affect the endogenous hormonal milieu, and eventually impact the pubertal maturation.

2.3.6 THE SELECTED HUMAN PART TO DETERMINE AGE IN THIS RESEARCH

The most frequently traits that forensic anthropologists are going to assess in the identification of deceased bodies will be the age and the gender. This study focuses on the hand bones since other parts of the body have larger possibility to be missing before the criminal investigation is conducted. There are 19 bones in left hand and therefore it is harder to have no any hand bone remains at all. The widely used models to estimate age is based on the conservative method of observation of hand bones morphology which are Greulich and Pyle (GP) model and Tanner and Whitehouse (TW) model. The restrictions of these models are the estimated age generated is rely on the specialists or anthropologists and also the adopted subjects from certain population cannot ensure for other populations to implement these models in estimating age. (Cantekin, Celikoglu, Miloglu, Dane, & Erdem, 2012; Gungor, Sari, Gungor, Kale, & Celikoglu, 2015; Koc, Karaoglanoglu, Erdogan, Kosecik, & Cesur, 2001) have conducted studies of age estimation using these models for other populations and deduced that some factors like different surroundings circumstances and various ethnic

background have made these models not sufficiently great. Furthermore, genetic, growth, health and lifestyle, nutrient, and so on are factors that may impact the performance of the models to other populations (Malina, 1994).

There are few studies (Cameriere & Ferrante, 2008; Cameriere, Ferrante, Mirtella, & Cingolani, 2006) conducted the multiple linear regressions model for age estimation using the bone measurement. A new age indicator which is based on quantitative dataset of bone measurement that is going to be a substitution input in order to reduce the dependency of the specialists in estimating age.

2.4 GENERAL APPROACHES IN AGE ESTIMATION USING HAND BONES

There are several general approaches in age estimation using hand bones discussed in the following sections.

2.4.1 GREULICH AND PYLE (GP)

GP method, also known as the atlas method, is an improvement of the protocol chronicled by Todd in 1930s. GP method had thriven on the American White Children from the area of Cleveland, OH, USA, who were born between 1917 and 1942. This method used plates as standards, which represents the birth to maturity of 31 boys and 29 girls. It allocated the skeletal age (SA) to each bone of the hand-wrist, which in total is 29 bones. Pragmatically, GP SAs are in general, while unseemly, it excluding variation among bones since it constructed from the SA of the standard plate to the youth closest matches. There is no allocation of SA to each of the 29 bones once a person has attained skeletal maturity. This method has been adopted in the survey of players in Asian Youth under 16 championships (Malina, 2011).

2.4.2 TANNER AND WHITEHOUSE (TW)

The output shown by earlier researches about the adoption of TW in forensic field and Pinchi et al. (2014) analysed and demonstrated that the TW2 method is the worst among the methods of GP, TW2, and TW3 as it has a tendency to be biased, causing it to evaluate the age with a dissatisfactory precision. The study stated the TW2 method is not fitting to forensic age estimation since there is very high risk caused by large overestimation. The higher overestimations and lower accuracy value of TW2 implicit higher risks than GP and TW3 methods of false positives.

Pinchi et al. (2014) took 266 out of the sample of 307 X-rays of left wrist-hand bones in order to analyse the bone maturation of children for orthodontic initiatives while 41 taken for auxological initiatives, which collected from private dental practices and paediatric hospital respectively. There were 145 females and 162 males in the sample. The birthdates and radiological examinations were all accessible. The chronological age of subjects fluctuated from 6 to 20 years. There are three methods using in the study to estimate bone age and found out TW2 is not valid for age estimation as it given the highest overestimation in both genders while GP and TW3 are fit to estimate age with similar values of accuracy. GP and TW3 are more reliable for males than females and TW3 is a way more dependable than GP particularly in criminal cases because of the extraordinary overestimation trend of GP.

2.4.3 MULTIPLE LINEAR REGRESSIONS

Darmawan et al.(2015) had carried out a study that involved 333 X-ray images of left hand bones from 166 males and 167 females of Asian population. These X-ray images were gathered from Children's Hospital Los Angeles where been grouped in nineteen age groups for female and male.

The left hand bones are split into four groups which are distal phalax, middle phalax, proximal phalax and metacarpal. The middle phalanx group consists of four bones while another three groups consist of five bones respectively. The total left hand bones is 19. The data set ranged from newborn to 18 years old with no records of any bone illnesses.

Analysis of variance of intra-observer and inter-observer for repeated measures had performed to prove the measured data are reproducible and no significant statistical difference between those measurements. Each measurement in each image was repeated thrice and regression models are designed using the mean of that three measurements. There were two observers for inter-observer trial and 50 X-ray images were randomly chosen and measured by these observers ten times. It shows that no significant difference between two observers by generating another analysis of variance for measures.

SPSS statistical tool version 16.0 had been utilized for age estimation based on the analysis of bone lengths. The single bone method is age estimation using 11 regression models on each left hand bone, which are Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S-curve, Growth, Exponential, and Logistic. Multiple linear regressions had been applied on the 19 left hand bones for all bone method to develop the regression model. MSE value, R-square value and parameter will be generated by each regression model. MSE value is the average of the squares of the difference between the actual age and estimated age. The correlation between age and all bone lengths are represented by R-square value which will generate an equation for age estimation. There were 11 equations for each bone since the total number of bones for both genders is 19. For all bone method, there are only two generated equations while 209 equations for single bone method. Regression model with highest R-square value of female and male was selected as the best correlation with age while the equation with lowest MSE value was chosen for age estimation.

The best regression model based on highest R-square value of 0.960 for male and 0.900 for female is the S-curve regression while the best regression model based on MSE value is multiple linear regressions applied to all bones, which its MSE values are 1.654 years for male and 3.006 years for female. The best method shown in the study is the equation from multiple linear regression, where the left hand bones are complete. Single bone method will be implemented using the equation from regression models with the lowest MSE value based on the availability of left hand bones.

2.4.4 GENETIC ALGORITHM (GA)

GA is a tool for optimizing purposes that developed by Holland and was influenced significantly by the mechanism of natural selection and also the continual growth of all life forms across eons. GA method is not using any specific data to do searching since it is a probabilistic approach while objective function evaluation is needed in every decision in order to do proceeding. In accordance with what is generally done in GA, individual in populations, namely candidate solutions, steadily meet the most favorable solutions over time. 0 and 1 s are chromosomes which forms one linear string that proposes solution of each candidate. Every iteration has its optimizing procedure that initiated generations, which are population sizes. In GA, reproduction, crossover, and mutation are three basic genetic operators that generate following generation. A reproduction operator is the method or selecting the ideal chromosomes following their scaled values taking into account of the given standard of fitness. The selected chromosomes will be sent immediately to the next generation. Crossover operator is particular parts of parents or individuals merging each other and produce new individuals while mutation operator is having an uncertain substitution in elements of chromosomes (Khandelwal et al., 2018).

There are mainly six phases in genetic algorithm, which are initial population, fitness function, selection, crossover, mutation, and termination (Jain, 2019). The process of initial population phase starts with all the dataset as population, where each

record is characterized by a set of features known as genes. Genes will join to form chromosomes.

Figure 2.1: Gene, chromosome, and population of initial population phase

The fitness function phase is to measure the fitness of an individual where each of the individual is made up of some genes but not all of them. Features which having a major impact will be determined by finding the fitness of individual. In the selection phase, the two fittest individuals will be chosen for reproduction. The individuals chosen in selection phase will be used to form new individuals by changing some genes in individuals in crossover phase.

Step 1:

Step 2:

Step 3:

Figure 2.2: Three steps in crossover phase

In mutation phase, some genes are changed by adding some randomness. In termination phase, the genetic algorithm will terminated when population no longer generate any individuals.

2.4.5 ARTIFICIAL NEURAL NETWORKS (ANN)

ANN is functions of estimation that simulated from the way of sending information of the human brain. ANN is capable to be adopted even in extremely complex and non-linear contact circumstances (Khandelwal et al., 2018). Feed-

Forward Neural Network (FF-NN) is the extensively applied network to date. It is because of its simplicity and intelligibility compared to other networks and so as its potentiality to learn the implied governing relationship among the inputs and outputs when there is sufficient training data. A network structure like FF-NN will only propagate the signal or information in single direction (Sciences, 2015).

Typically, input, hidden and output layers are the three layers in FF-NN. It can possess hidden layers that make up more than one, yet a single layer is plenty to approach any function to a desired degree of accuracy. The number of neurons of input and output layers depend on the specific problem. In most cases, systemic trial and error is the finest procedure to find out the optimal number of neurons in hidden layer. Inputs will be fed through the input layer, then being multiplied by synaptic weights and are sent to the hidden layer. Normally, the selected logistic or the hyperbolic tangent is the nonlinear activation function that transforms the weighted sum of inputs in the hidden neurons. The same way goes through each hidden layers until the result attain the output neuron. On the other hand, the linear activation function is regularly implemented to the output layer. The most well received training algorithms that are extensively implemented for training FF-NN are back-propagation (BP) algorithms since it is easy to understand and applicable (Sciences, 2015).

The ANN compose a group of processing elements known as perceptrons which can be used to build a network structure via distinct arrangements. The network's layers are the location where these perceptrons reside. The releasing output, the managing input, and the input itself are obtained by every of the perceptron. They assimilate the releasing output, the managing input and the input itself, which makes these perceptrons the core components. There are two forms of input obtained by a perceptron, either an original input data is fed into the network, or the output data computed by another perceptron. Similarly, the output of a perceptron can be the final output of the network layer or to serve as an input into another perceptron. A single layer network must consists of at least one input layer and one output layer to establish a working network structure.

To construct the ANN, weights are utilized to link visible and hidden units with at least one other perceptron to the perceptrons in other layers. A hidden layer in a neural network is visualized with Figure 2.3 below.

Figure 2.3: A conceptual design of a multiplayer neural network. Each layer are interlinked and the weights (c) indicates the links between the perceptron nodes.

The net input to unit k in the hidden layer is computed by implementing Equation 2.1 under the condition that a hidden layer network is utilized as in Figure 2.3.

$$net_hidden = \sum_{j=1}^{J} C_{j,k} i_j + \theta_k$$

Where J is nodes number of the input layer, θ_k is the biases of the hidden nodes, i_j is the input variables (the nineteen bones) and $C_{j,k}$ is the weights between the input nodes and hidden nodes.

Equation 2.1 Formula to compute the net input in hidden layer

Therefore, the net output from unit z in the output layer can be computed with Equation 2.2.

$$net_output = \sum_{k=1}^{K} D_{k,z} h_k + \emptyset_z$$

Where K is number of node in hidden layer, \emptyset_z is the biases on the outputs nodes, h_k is the value of the output for hidden nodes and $D_{k,z}$ is the weight between hidden and output nodes.

Equation 2.2 Formula to compute the net output in output layer

Consequently, Equation 2.3 represents the result of hidden nodes and Equation 2.4 represents the result of output nodes which can be done with Equations 2.1 and 2.2. *f* is the transfer function to estimate the age.

$$h_k = f(net_hidden)$$

Equation 2.3 Formula to compute result of all hidden nodes

$$o_z = f(net_output) = age$$

Equation 2.4 Formula to compute result of all output nodes

To successfully construct an ANN, some variables are taken into consideration (Mohd, Haron, & Sharif, 2010) and the process trial and error is undergone. Researchers commonly implement the ANN in diverse, distinct areas, including forensics. However, an absence of detailed, recognized practices and procedures that could act as a standard guideline to establish the ideal approach. As a result, the effectiveness is ultimately reliant upon the operation of attempting different combinations for each variables and obtaining the best result. As a consequence, the procedure of trial and error will determine the effectiveness and capability of ANN. Therefore, the capability of the ANN could be impacted and affected by eight elements. These elements are the structure of the network, ratio of training and testing data, normalization of data, network algorithm, transfer function, performance function,

training function, and learning function. With trial and error, the eight elements can decide the perfect and faultless ANN.

2.4.5.1 STRUCTURE OF THE NETWORK

Nodes (neurons) and layers are the basic components of the ANN. The input layer, hidden layer and the output layer is comprised of the underlying structure of the ANN. On a small note, the hidden layer is an optional layer while the input layer and output layer are mandatory in the ANN structure. Figure 2.4 visualizes an ANN with (i-j-k...-l-1) structure. In the figure, the i nodes represent the nodes in the input layer, the j nodes in the first hidden layer, the k nodes in the second hidden layer, the k nodes in the output layer.

Figure 2.4: The ANN with $(i - j - k \dots - l - 1)$ structure is visualized

Author	(Kohail, 2012)	(Kumar, P, Sriram, & Vijay, 2013)	(Sharma & Venugopalan, 2014)
Network	95-50-50-50-1,	68-29-4-4	136-68-36-4,
Structure	50-25-25-25-1		136-68-36-2

Normalization	-	-	-	
Data				
Performance	Accuracy, R value	MSE, Accuracy	MSE	
Function				
Training	-	trainscg	Various	
Function			training	
			function	
Network	Feed-forward BP	Feed-forward BP	Feed-forward BP	
Algorithm				
Learning	-	-	-	
Function				
Transfer	Sigmoid	-	Sigmoid	
Function				
Ratio of Training,	-	60:20:20	-	
Validation, and				
Testing Data				

Table 2.1: Significant elements of the construction of ANN taken from an earlier study on age estimation

The network structure are dissimilar according to earlier research in Table 2.1. This is a result of the randomness of the trial and error process while constructing the ANN for the prime results where the layer's number and node's number of all hidden layers are modified. With this, it is established that any value to the number of hidden layers and the number of nodes in every hidden layer can be attempted. Be that as it may, the possibility that the number of hidden layer and the number of nodes in every hidden layer is affected by the desired data control effect, the computation time, computer memory and the complexity of the mapping cannot be denied. It is stated by Al-Ahmari (2007) that the expected data control effect may not be obtained with a small number of nodes, while an excess of computation time and computer memory can be a result of excess nodes. The number of nodes in the hidden layer which is "2n + 1", "2n", "1n", and "n/2", where the n is the number of input nodes can be computed with a formula suggested by (Zhang, Patuwo, & Hu, 1998) and (Mohd et al., 2010).

2.4.5.2 RATIO OF TRAINING AND TESTING DATA

Another factor to be attended to when constructing the ANN is the ratio of training and testing data. A fundamental principle of the ANN is that the accuracy of the ANN is linear to the amount of the training data, where the accuracy of the ANN increases when the amount of the training data increases. A portion from a normalized set of data of the nineteen bones and age of each subject is selected as training data for estimating age.

No rules are needed in selecting the ratio of training and testing data. From Table 2.1, the ratio of training and testing dataset differs from each other while some of the ratios are not mentioned, and thus the researchers have full authority over the selection of ratio for training and testing dataset, under the condition where the training data must be more than the testing data, based on statement by Mohd et al. (2010). On the other hand, a solution to this problem proposed by Zhang, Patuwo, & Hu (1998) suggests that the ratio of training and testing data is replaced with percentages that equals to 100%, such as 80%:20%, 85%:15%, or 90%:10%.

2.4.5.3 DATA NORMALIZATION

Before training and testing ANN, data normalization is generally carried out. A standard range, such as 0 to 1 or -1 to 1, is generally used when normalizing the data. It is a mandatory rule that if the output nodes employs nonlinear transfer functions such as the logistic sigmoid, the format of the expected output values must be converted to the same format of the range of the expected outputs of the network structure. Although a linear output is implemented, normalizing the outputs and the inputs to avoid problems from the computational process can be advantageous. When the issue regarding the data input/output normalization is taken into consideration, another issue that deserves attention is the method of deciding the normalization of the input/output data with the acquired size data. Suggested by (C. Sanjay; & C. Jyothi, 2006) and

(Mohd et al., 2010), a normalization equation for the input and output data is shown in Equation 2.5.

$$x_i = \frac{0.8}{d_{max} - d_{min}} (d_i - d_{min}) + 0.1$$

Where d_i is the input and output data at ith, d_{min} is the minimum value of input and output data, and d_{max} is the maximum value of the input and output data.

Equation 2.5 Normalization equation for the input and output data

2.4.5.4 NETWORK ALGORITHM

Different algorithms aimed at modelling the ANN such as Self-Organizing Map, Radial Basis, Perceptron, Time-delay BP, Elman BP, Cascadeforward BP and so on, have been developed by previous researches. The most common algorithm would be the feed-forward backpropagation algorithm, where it is implemented by earlier studies in age approximation according to Table 2.1. However, the questions remains as to which algorithm is best suited to construct the ANN to produce the finest estimation results. With several choices considered, however, the feed-forward backpropagation is still the most generally used for countless problems compared to other network algorithms, according to a statement made by Mohd et al. (2010).

2.4.5.5 TRANSFER FUNCTION

Different transfer functions for age approximation are implemented, which can be hypothesized by observing Table 2.1. Applicable transfer functions are the linear transfer function (purelin), log-sigmoid transfer function (logsig), hard limit transfer function (hardlim), hyperbolic tangent transfer function (tansig) and so on. Given the many choices of transfer functions, one of them must be selected to produce the finest

approximation result. Several options can be adopted, but no precise statements have been made that any notable effects are observed when different transfer functions are implemented.

According to the User's Guide of Neural Network Toolbox 6 written by (Demuth & Hagan, 2009), there are three transfer functions generally implemented together with the feed-forward backpropagation algorithm which are the tansig, logsig, and linear transfer function. The essence of the issue must align with the aim of the transfer function (Nalbant, Gökkaya, Toktaş, & Sur, 2009). As such, the nonlinear transfer function such as sigmoid and tansig is a fitting option when a non-linear relationship between input and output is applied for training the approximation model. The two key components, the simple derivative and self-limiting are the reason the sigmoid function has gained popularity. The end result is not able to develop infinitely large or small. The logsig and tansig are two transfer functions that have been applied by (Kohli & Dixit, 2005), and it is found that both results produced by the transfer functions are almost the same with each other. The sigmoid transfer function is widely implemented by researchers for age estimation, in which can be deduced from Table 2.1. Equation 2.6 is applied to compute the sigmoid transfer function while Equation 2.7 is employed to compute the tansig transfer function.

$$f = \frac{1}{(1 + e^{-net})}$$

Equation 2.6 Formula to compute the sigmoid transfer function

$$f = \frac{2}{(1 + e^{-2(net)})} - 1$$

Equation 2.7 Formula to compute the tansig transfer function

Using Equation 2.8, the hidden node's output is computed with the sigmoid function. Additionally the output for hidden nodes with the hyperbolic tangent transfer function is computed by implementing Equation 2.9. Equation 2.10 calculates the

output nodes employing the sigmoid function and the output nodes using the hyperbolic tangent function can be computed as clarified in Equation 2.11.

$$h_k(sigmoid) = f(net_input) = \frac{1}{1 + e^{-\sum_{j=1}^{J} c_{j,k} i_j + \theta_k}}$$

Equation 2.8 The hidden nodes' output with sigmoid transfer function is computed with the formula

$$h_k(hyperbolic\ tangent) = f(net_input) = \frac{2}{1 + e^{-2(\sum_{j=1}^{J} c_{j,k} i_j + \theta_k}} - 1$$

Equation 2.9 The hidden nodes' output with hyperbolic tangent transfer function with the formula

$$o_z(sigmoid) = f(net_output) = \frac{1}{1 + e^{-\sum_{k=i}^{K} D_{k,z} h_k + \emptyset_z}}$$

Equation 2.10 Formula to compute the output nodes' output with sigmoid transfer function

$$o_z(hyperbolic\ tangent) = f(net_{output}) = \frac{2}{1 + e^{-2\sum_{k=1}^K D_{k,z}h_k + \emptyset_z}} - 1$$

Equation 2.11 Formula to compute the output nodes' output with hyperbolic tangent transfer function

2.4.5.6 PERFORMANCE FUNCTION

According to Table 2.1, there is a widespread use of MSE value performance function among researchers for age estimation. To determine the MSE value, the basic equation is shown in Equation 2.12.

$$\mathit{MSE} = \frac{1}{n} \sum_{n=1}^{n} (actual\ output_n - predicted\ output_n)^2$$

Equation 2.12 Formula to compute the MSE value

A suitable performance function can be the performance measurement for the ANN, in which several options can be considered such as MSE value for age estimation in Table 2.1.

2.4.5.7 TRAINING FUNCTION

The error value must be minimized in the backpropagation approach. To do so, two main components should be assessed, the learning function and training function. To construct the greatest model, the mathematical specification software known as Matlab contains a toolbox of the ANN model that can facilitate the computation of the momentum (α) and learning rate (η) value, where the range of 0 to 1 will be used as a benchmark for the values of these parameters. Some training functions such as trainscg (Scaled Conjugate Gradient algorithm), traingd (gradient descent backpropagation), trainlm (LevenbergMarquardt backpropagation), trainbr (Bayesian regularization backpropagation) and others have been applied by earlier researchers, and among these training functions, one must be selected as the top. Unfortunately, the absence of a precise statement where different training functions could bring forth different performances of the model implies that no guidelines are available to select the best training function, based on the earlier case study.

2.4.5.8 LEARNING FUNCTIONS

Once again, same as the selection of training functions, a definite statement is not given if different network performance are yielded from different learning functions, and various learning functions that are commonly seen would be learned (gradient descent weight/bias), and learngdm (gradient descent with momentum weight/bias). Researchers have not stated the learning function they have chosen in Table 2.1.

2.4.6 HYBRID GENETIC ALGORITHM-ARTIFICIAL NEURAL NETWORKS (GA-ANN)

Although ANN has a lot of favorable features, there are problems like slow convergence and fail to progress at local minimum. In order to solve these issues, researchers proposed a hybrid approach of GA-ANN to improve the performance of ANN to attain the global minimum. GA-ANN contemplating a suitable fitness function and therefore, significant parameters of ANN will be deduced and modified. The intention of adopting hybrid GA-ANN model is to alter a set of weights and biases to lessen objective function (Armaghani, Mohamad, Monjezi, Faradonbeh, & Majid, 2016).

GA is implemented to enhance the accomplishment of artificial intelligence (AI) techniques. GA is extensively applied to choose neural network topology like improving relevant feature subset, deducing the most favorable number of hidden layers and elements in process. Architectural factors of ANN such as feature subset, number of hidden layers, number of elements in process of hidden layers, activation functions, and so as the connection weights among layers are going to be deduced in advance. Nearly all of existing studies were emphasized on the enhancement of the learning algorithms itself (Kim & Han, 2000).

2.5 COMPARISON AND JUSTIFICATION

Source	Approach	Advantages	Disadvantages		
(Pinchi et	GP	Simple and effective	Tend to overestimate		
al., 2014)					
		Contains reliable	Require professional		
(Cantekin et		references for different	anthropologists to execute		
al., 2012)		ages	-		

(Koc et al., 2001)			Accuracy is dependent on proficiency of the anthropologist
(Spampinat o, Palazzo, Giordano, Aldinucci, & Leonardi, 2017) (Benjavong kulchai & Pittayapat, 2018) (Pinchi et al., 2014)	TW	More effective than GP for some ages Contains reliable references for different ages	Require professional anthropologists to execute More complex and time-consuming Accuracy is dependent on proficiency of the anthropologist
(Susan L. King, 1999) (Darmawan et al., 2015)	MLR	Understands the relationship between the variables	Dependent on the dataset as some data can be irrelevant to the prediction Require a predefined relationship between the variables Works only if the relationship between variables are linear
(Susan L. King, 1999) (Rucci, Coppini, Nicoletti, Cheli, & Valli, 1995) (Bocchi, Ferrara, Nicoletti, & Valli, 2003)	ANN	Require no relationships between the data to predict Find both linear and non-linear relationships between variables	Highly dependent on the dataset to make an estimation Require the data to be completely numerical Does not filter the input features as some input features may be irrelevant and negligible to the estimation

Table 2.2: Sources, advantages and disadvantages of approaches in age estimation using hand bones

The source column in Table 2.2 records the documents used as references in reaching these comparisons. The approach column states the names of the approaches. The advantage and disadvantage columns states the strong and weak points for each approach. As a conclusion, the ANN approach is the best approach in terms of estimating the age of the Hispanic population. One of the disadvantage of ANN approach is that input features are not filtered, which may cause waste of data and inaccurate estimations. The problem can be overcome by introducing a GA approach to select the best features among the input features to reduce the load and increase the accuracy of the estimation of the ANN approach. As such, a GA-ANN hybrid approach has been proposed, where the GA approach will be implemented first to select the best features and the ANN approach will estimate the age of the Hispanic population based on the best features.

2.6 SUMMARY

The conservative model for age estimation is reliant upon the examination results of bone morphology from the X-ray images of the left hand bones by forensic anthropologists. The main problem is that this model requires the professionalism of forensic anthropologists in estimating the age, and the variability may vary from one to another. In other words, different levels of experiences of forensic anthropologists in age estimation will result the high variable between the actual age and the estimated age. The next problem is the models of this study are population specific. This means that the models used for age estimation is not applicable for various populations. The third issue is only a few studies using soft computing model for age estimation. The target of the current research is to construct an age estimation model for Hispanic population.

There are advantages and disadvantages of different approaches on age estimation using hand bones. Through the comparison and justification, a conclusion is made and ANN approach has been known as the best approach to estimation the age. In the meantime, there is a biggest disadvantage of ANN approach, where there is no

filter applied on input features, which may lead to waste of data and inaccurate estimation. Therefore, a GA-ANN hybrid approach is proposed, where GA approach is implemented to select features before the ANN approach.

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter reviews the methodology that will be applied during data collection, data normalization, age estimation model using ANN approach, age estimation using GA-ANN approach, data denormalization, and validation and evaluation of results.

3.2 RESEARCH FLOW

The research flow of this study involves seven phases which are the problem definition, data collection, data normalization, age estimation model using ANN approach, age estimation using GA-ANN approach, data denormalization, and validation and evaluation of results.

3.3 PROBLEM DEFINITION

Problem definition is the first phase in this study as stated in Section 3.2. Problem definition requires a direct, specific, and incisive statement of issues to be explored and probed with the objective of getting a solution. In this study, problem definition has been stated in Section 1.2.

3.4 DATA COLLECTION

The original dataset is constructed from an online dataset taken from http://ipilabmysql.usc.edu/newindex.php. There are subjects of Caucasian, African American, Hispanic, and Asian in the online dataset. Only Hispanic subjects are adopted in this study as described in the Section 1.2.

There are 365 X-ray images of left hand bones of Hispanics, in which out of total, 182 are males while 183 are females. This dataset varied from age of 0 to 18 years without any problem or disease of bone like fractures, genetic bone problems and so on. Bones with those issues will be excluded since they are regarded as likely to be weak and easy to break which may influence the assessments or measurements. All the X-ray images were collected from Children's Hospital Los Angeles together with demographic data of patients as well as the reading of radiologists, dispersed into nineteen groups which are 0 to 18 years old, for both genders. The details of each subjects are the respective image name, race, gender, chronological age, date of birth, exam date, tanner, height (cm), weight (kg), trunk HT (cm), reading 1, and reading 2. Reading 1 and reading 2 are the estimated age evaluated by experienced radiologist using GP model (Gertych, Zhang, Sayre, Pospiech-Kurkowska, & Huang, 2007). In the end of this study, these estimated age generated using GP model will be adopted as the first benchmark for this study in order to validate and evaluate the proposed model.

The National Institute of Health has funded this X-ray images collection that gathered from the Image Processing and Informatics Lab of University of Southern California and is confined to only purposes of open research and education. Institutional review board has agreed with inspecting candidates for clinical investigations to be inspected for studies. The radiographs were digitalized to 2k x 2k images by applying a laser film scanner (Array, Tokyo, Japan) while patients' demographic data had manually inserted using the scanner GUI (graphical user interface) and saved as DICOM file (Gertych et al., 2007).

The 19 left hand bones are grouped into four main groups which are distal phalanx, middle phalanx, proximal phalanx, and metacarpal. There are four bones in the middle phalanx while five bones respectively in the other three groups. There are 19 bones in hand and Figure 3.1 shows the label of each bone in left hand. Epiphyses and diaphysis are two major parts of long bone during childhood. The former is at the tail of a long bone that has started to disengage from the main bone by a layer of cartilage and is joint to main bone through ossification during adulthood while the central shaft that having mostly of compact bones neighbouring a cavity. Table 3.1 shows the six key phases during childhood and adolescence (Gilsanz & Raitb, 2005).

Phase	Male (age)	Female (age)
Infancy	Newborn to 14 months	Newborn to 10 months
Toddlers	14 months to 3 years	10 months to 2 years
Pre-puberty	3 years to 9 years	2 years to 7 years
Early and Mid-puberty	9 years to 14 years	7 years to 13 years
Late Puberty	14 years to 16 years	13 years to 15 years
Post-puberty	16 years to 19 years	15 years to 17 years

Table 3.1: The six key phases during childhood and adolescence for both gender

Left hand bones lengths in normalization form is the input that adopted in this study. A free photo editor, Photo Pos Pro, Power of Software Company Ltd. is utilized in order to assess the nineteen bones lengths in each X-ray image by constructing a line on each bone, starting from base-middle point to end-middle point of the bone on each X-ray image. These lines are constructed by disregarding the epiphyseal in bone even if it exists for infant phage while lines will be constructed by involving the epiphyseal for other phases even if it is only a small epiphyseal occurred in the X-ray image.

Figure 3.1: Left hand bone with labels

3.5 DATA NORMALIZATION

The proposed approach will adopt the normalized dataset in order to estimate the age. The dataset will normalized based on Equation 2.5, which contains the dataset in the range of 0.1 to 0.9. The normalization aims to remove any computing errors during the training of the ANN, since the ANN uses mathematical equations to estimate the age. Dataset which are not normalized may produce errors in estimating.

3.6 AGE ESTIMATION MODELS USING ANN APPROACH

The dataset will be distributed into two groups: training dataset and testing dataset. In order to train the age estimation models using ANN approach, we need to have training dataset while in order to validate and evaluate the models, we require

testing dataset. Samui & Dixon (2012) have adopted different data division between training dataset and testing dataset and stated that there is no a strictly accurate principle. In this study, 70% of total dataset will be used as training dataset while another 30% will be adopted as testing dataset. The selected subjects for the training dataset and testing dataset are going to be determined chaotically by implementing the function *dividerand* in Matlab.

An estimated age in the conservative way of age estimation is determined based on qualitative data such as observation of bone morphology which requiring the inspection of forensic anthropologists. Bone length will be used as the quantitative age indicator in this study in order to reduce the dependency towards forensic anthropologists in estimating age while ANN approach has been proven in many research studies since it showing strong pattern classification, pattern recognition and estimation capabilities when quantitative data being used. Therefore, the adoption of bone length as quantitative age indicator to ANN approach is able to be trusted.

There are eight factors that discussed in Section 2.6.2 in creating age estimation models using ANN approach in order to let the models produce the finest result on the estimation. Test regression value and test set MSE value will be compared in order to choose the finest network structure for age estimation in ANN model for both genders.

3.7 AGE ESTIMATION MODELS USING GA-ANN APPROACH

GA approach is an algorithm to solve restricted and unconstrained optimization problems that rely on natural selection or biological evolution. A population of individual solutions will be altered time after time in this algorithm. The GA approach will generate a population at the beginning, which is completely randomized and then the next generation will be produced. The approach will use the individuals in the current generation in order to generate next population at each step. In order to generate the new population, GA approach will achieve each member of the current population by calculating its fitness value and these values are known as the raw fitness scores. A

more utilizable range of values called expectation values is transformed by scaling the raw fitness scores and parents or the members are selected based on the expectation values. Individuals that having lower fitness in current population will be selected as elite and will be inherited to next generation. Two methods are used to generate children from parents: mutation which randomly modifies one parent and crossover which combines vector entries between two parents. The next generation is then comprised of all children of the parents in the earlier generation. The model will terminate when one of the stopping criteria is fulfilled. The approach will ultimately generate the best input features to be inserted into an ANN for training.

The age estimation model using GA-ANN hybrid approach is the combination of GA approach and ANN approach, where the purpose of GA approach is to select the most appropriate bones of left hand to be used as input in ANN approach while ANN approach is to estimate the age. This is because ANN approach is a black box learning approach that cannot perform the correlation between input and output. Figure 3.2 illustrates the flow of the implementation of the GA-ANN approach.

Figure 3.2: The flow of the implementation of the GA-ANN approach

The dataset is first normalized to avoid computation errors and fed into the GA approach. Through crossover and mutation, a new population containing the best input features will be generated. The best input features and target features will then be fed into the ANN for training and testing. The outputs will be denormalized to obtain the real estimated age and the errors will then be calculated. The process of denormalization and evaluation of results will be discussed later.

3.8 DATA DENORMALIZATION

The test set data consists of the input data, targeted output data, the estimated output data and the errors. The input data will not be taken as it is part of the normalized dataset and does not contribute in evaluating the results. The errors are generated from the ANN, in which the errors are generated based on the normalized inputs. These errors will not be used as a metric to evaluate the results, but instead it is used to validate the targeted output data and the estimated output data. This is done by subtracting the targeted output data with the estimated output data and the difference is matched with the errors.

The targeted output data and the estimated output data will be denormalized to obtain the actual age. The denormalization formula will be the inverse of the formula mentioned in the previous section, Section 3.5. The denormalization will convert the data into the range of 0 to 18. Once the data is denormalized, the targeted output data and the estimated output data will be used for the evaluation of results.

3.9 VALIDATION AND EVALUATION OF RESULTS

The test regression value, r and the test set MSE value will be used as the evaluation metric for the results for both approaches. These two evaluation metric are used for the majority of neural networks. The test regression value is a coefficient of correlation, where the closer the value of r is to 1, the better the correlation (Creative

Research Systems, 2016). The higher the test regression value, the better the performance for that approach. The test regression value is the accuracy of the approach, which reflects how well the test data was able to map to the ANN. On the other hand, the lower the test set MSE value, the better the performance for that approach. The test set MSE value is the average of all the test errors by subtracting the denormalized targeted output data with the denormalized estimated output data. The less errors predicted by the ANN, the lesser the test set MSE value, which increases the accuracy of the ANN. Below is a figure of the research flow.

Figure 3.3: Flowchart of this research flow

In the flowchart above, the input is normalized first. For the ANN approach, the ANN will directly receive the normalized input, create and train the ANN based on the normalized input. The test regression and the test set MSE value is calculated to

validate the performance of the ANN approach. For the GA-ANN hybrid approach, the normalized inputs will be reduced to the best input features through feature selection in the GA approach. The same steps with the ANN approach are repeated, where the difference is that the input will be the best inputs. The test regression value and the test set MSE value will be calculated for the GA-ANN hybrid approach. The test regression values and the test set MSE value will be compared from both approaches.

3.10 HARDWARE AND SOFTWARE

Tools in the configuration of hardware and software are compulsory to have in order to aid this research carry out in a smooth way. The hardware tool that adopted to perform the implementation is particularly efficacious and well-organized. The computer that operated for implementation of this research performs on Microsoft Windows 10 Pro with the specifications of Intel Core i5-6200U, 2.6GHz, 64-bit operating system, x64-based processor, and 8GB of random-access memory (RAM).

The software tools that are going to be utilized are a free photo editor, Photo Pos Pro, Power of Software Company Ltd. in order to assess the bones lengths, Microsoft Excel 2013 for data collection, Microsoft Word 2013 for documentation, and Matlab R2012a for constructing the approaches. Python scripts and the Miniconda tool are used to develop the GA approach.

3.11 GANTT CHART

Figure 3.4 Gantt chart of project

3.12 SUMMARY

This chapter explored about the methodology used in age estimation models using GA approach, ANN approach, and hybrid GA-ANN approach. The flows and steps to implement approaches are discussed and the methods to validate and evaluate results have also been indicated.

CHAPTER 4

ARTIFICIAL NEURAL NETWORK MODELS AND HYBRID GENETIC ALGORITHM-ARTIFICIAL NEURAL NETWORK MODELS

4.1 INTRODUCTION

This chapter discusses the implementation of applying ANN approach and GA-ANN hybrid approach on age estimation models for both female and male population of Hispanic population, the results of the models, the discussion, and the justification of the mentioned results.

4.2 IMPLEMENTATION

The original data is constructed from an online dataset taken from http://ipilabmysql.usc.edu/newindex.php and only Hispanic subjects are adopted in this study. Photo Pos Pro, a free photo editor, Power of Software Company Ltd. is used in order to assess the nineteen bones lengths in each radiograph, by constructing a line on each bone, starting from base-middle point to end-middle point of the bone of each radiograph. The lines are constructed by disregarding the epiphyseal in bone even if it exists for infant phage while for other phases, lines are constructed by involving the epiphyseal even if it is only a small epiphyseal occurred in the radiograph. Below are the nineteen bones and its particular ages used as input features and target feature respectively during the implementation of ANN approach and the part of GA approach of the GA-ANN hybrid approach. For the input features, which are bones, each of them will be represented by an integer number, starting from 1 to 19, or feature name, starting from Bone 1 to Bone 19, while target feature, age, will labelled as 1 or Age.

	ANN	GA	
Features	Integer	Feature	
	number	name	
First Metacarpal	1	Bone 1	
Second Metacarpal	2	Bone 2	
Third Metacarpal	3	Bone 3	
Fourth Metacarpal	4	Bone 4	
Fifth Metacarpal	5	Bone 5	
First Proximal Phalanx	6	Bone 6	
Second Proximal Phalanx	7	Bone 7	
Third Proximal Phalanx	8	Bone 8	
Fourth Proximal Phalanx	9	Bone 9	
Fifth Proximal Phalanx	10	Bone 10	
Second Middle Phalanx	11	Bone 11	
Third Middle Phalanx	12	Bone 12	
Fourth Middle Phalanx	13	Bone 13	
Fifth Middle Phalanx	14	Bone 14	
First Distal Phalanx	15	Bone 15	
Second Distal Phalanx	16	Bone 16	
Third Distal Phalanx	17	Bone 17	
Fourth Distal Phalanx	18	Bone 18	
Fifth Distal Phalanx	19	Bone 19	
Age	1	Age	

Table 4.1: The features and its represented integer number and feature name in ANN approach and part of the GA approach of GA-ANN hybrid approach respectively

In the implementation of ANN approach, the nineteen bones are used as input features and each of the bones is represented by an integer number, starting from 1 to 19. During the implementation of the part of GA approach of GA-ANN hybrid approach, the nineteen bones are used as input features and each of them is represented by its respective feature name. For example, first metacarpal is represented by integer number 1 in the implementation of ANN approach, and Bone 1 in the implementation of the part of GA approach of GA-ANN hybrid approach. The feature, age has been represented by integer number 1 in the implementation of ANN approach while it remains the same in the implementation of the part of GA approach of GA-ANN hybrid approach. First metacarpal and age, both features can be represented by the same integer number 1 since the feature of age is imported as another variable in the workspace in Matlab.

Before all the models are trained, the data is normalised to prevent any technical errors during the training of the models. The normalization formula is Equation 2.9 in Chapter 2.6.2. The normalised data can be found in the appendix.

4.2.1 ARTIFICIAL NEURAL NETWORK

The input data and target data for all models are imported to the workspace in Matlab.

Workspace	
Name 📤	Value
HISF	19x183 double
HISFtarget	1x183 double
HISM	19x182 double
HISMtarget	1x182 double
H SelectF	8x183 double
→ SelectFtarget	1x183 double
→ SelectM	7x182 double
→ SelectMtarget	1x182 double

Figure 4.1: The imported input data and target data for all models in the workspace of Matlab

HISF and HISFtarget are the input features and target feature of age estimation model using ANN approach for female Hispanic population while HISM and HISMtarget are for the male Hispanic population. SelectF and SelectFtarget are the input features and target feature of age estimation model using the GA-ANN approach for female Hispanic population while SelectM and SelectMtarget are for the male Hispanic population. All of these input features and target features are imported as variables in the workspace in Matlab. The data or the input features, and the target feature of SelectF, SelectM, SelectFtarget and SelectMtarget have gone through the process of feature selection using GA approach.

Below is the command in Matlab to open the Network/Data Manager window which can import, create, use, and export neural networks and data.

>> nntool

Figure 4.2: The command to open Network/Data Manager window in Matlab

The command in Figure 4.2 is entered in the command window in Matlab in order to open the Network/Data Manager window which has been shown in Figure 4.5.

A network can be created by giving a name to the network, select the network type, input data, target data, training function, adaption learning function and performance function, customize the number of layers and also the number of neurons for Layer 1, and transfer function for Layer 1 and Layer 2. Below is the table of the settings for each neural network to be created.

		Female		Male	
Name		HISFnet	SelectFnet	HISMnet	SelectMnet
Network type	Network type		Feed-forward	Feed-forward	Feed-forward
		backprop	backprop	backprop	backprop
Input data		HISF	SelectF	HISM	SelectM
Target data		HISFtarget	SelectFtarget	HISMtarget	SelectMtarget
Training funct	ion	TRAINLM	TRAINLM	TRAINLM	TRAINLM
Adaption	learning	LEARNGDM	LEARNGDM	LEARNGDM	LEARNGDM
function					
Performance f	Performance function		MSE	MSE	MSE
Number of lay	rers	2	2	2	2
Properties	Number	13	6	13	6
for Layer 1	of				
	neurons				
	Transfer	PURELIN	PURELIN	PURELIN	PURELIN
	function				
Properties	Transfer	TANSIG	TANSIG	TANSIG	TANSIG
for Layer 2	function				

Table 4.2: The settings of each neural network in this paper

HISFnet and HISMnet are the neural networks where only ANN approach has been applied while SelectFnet and SelectMnet are the neural networks where their respective input data and target data have gone through the process of feature selection using GA approach.

HISFnet is the feed-forward backpropagation neural network with the input data, HISF and target data, HISFtarget. The training function, adaption learning function, and performance function of HISFnet are TRAINLM, LEARNGDM and MSE respectively. The number of layers of HISFnet is two while the number of neurons in Layer 1 is 13. The transfer function for Layer 1 and Layer 2 are PURELIN and TANSIG respectively.

SelectFnet is the feed-forward backpropagation neural network with the input data, SelectF and target data, SelectFtarget. The training function, adaption learning function, and performance function of SelectFnet are TRAINLM, LEARNGDM and MSE respectively. The number of layers of SelectFnet is two while the number of neurons in Layer 1 is 6. The transfer function for Layer 1 and Layer 2 are PURELIN and TANSIG respectively.

HISMnet is the feed-forward backpropagation neural network with the input data, HISM and target data, HISMtarget. The training function, adaption learning function, and performance function of HISMnet are TRAINLM, LEARNGDM and MSE respectively. The number of layers of HISMnet is two while the number of neurons in Layer 1 is 13. The transfer function for Layer 1 and Layer 2 are PURELIN and TANSIG respectively.

SelectMnet is the feed-forward backpropagation neural network with the input data, SelectM and target data, SelectMtarget. The training function, adaption learning function, and performance function of SelectMnet are TRAINLM, LEARNGDM and MSE respectively. The number of layers of SelectMnet is two while the number of neurons in Layer 1 is 6. The transfer function for Layer 1 and Layer 2 are PURELIN and TANSIG respectively.

Below are the Network/Data Manager windows to create neural network, and also to import, export, and use the neural networks and data.

Figure 4.3: Example of the Network/Data Manager window to create one of the neural networks

Figure 4.3 is the example of Network/Data Manager window where a neural network can be created by selecting its network type, input data, target data, training function, adaption learning function and performance function, and customizing the number of layers, the number of neurons of Layer 1 and also the transfer function for Layer 1 and Layer 2. All networks, which are HISFnet, HISMnet, SelectFnet and

SelectMnet will be created with this window. Figure 4.4 has shown the example of customizing the transfer function for Layer 2 of one of the neural networks.

Figure 4.4: Example of customizing the transfer function for Layer 2 of one of the neural networks

Figure 4.5: The Network/Data Manager which creates neural network, imports, exports, and uses the neural networks and data

All the created networks are exported to the workspace in Matlab.

Figure 4.6: Example of exporting the neural networks to workspace of Matlab

Figure 4.6 shows that HISFnet, HISMnet, SelectFnet and SelectMnet are going to be exported to workspace in Matlab.

Below is the command to randomly generate column indices to be used to divide the data into 70% training data and 30% testing data respectively.

```
>> [trainInd, testInd, valInd] = dividerand(183, 0.7, 0.3, 0);
```

Figure 4.7: The command to randomly generate column indices for the division of the data into 70% training data and 30% testing data respectively

The command in Figure 4.7 is entered in the command window in Matlab to randomly generate column indices for the division of the data into 70% training data and 30% testing data respectively. The number of data, which is the number of individuals will be specified first before the percentages of the divided data. For the female and male networks, the number will be 183 and 182 respectively. The generated column indices will be applied on those variables which are formed by the data of input features and target features. Since one column represents one individual in the variable, column indices are used in the division of the data.

Below is the command to change the divide function in order to enable dividing data with indices.

```
>> HISFnet.dividefcn = 'divideind';
```

Figure 4.8: The command to change the divide function in order to enable dividing data with indices

The command in Figure 4.8 is entered in the command window in Matlab to change the divide function in order to enable dividing data with indices.

Below are the commands to set the generated indices to a particular neural network.

```
>> HISFnet.divideParam.trainInd = trainInd;
>> HISFnet.divideParam.testInd = testInd;
>> HISFnet.divideParam.valInd = valInd;
```

Figure 4.9: The commands to set the generated indices to a particular neural network

The command in Figure 4.9 is entered in the command window in Matlab to set the generated indices to a particular neural network. All networks will have their respective input data divided in this method.

Below is the neural network design for HISFnet and HISMnet.

Figure 4.10: The neural network design for HISFnet and HISMnet

Figure 4.10 shows the neural network design for HISFnet and HISMnet. There are 19 input features, which are the 19 bones while the hidden layer consists of the weights and biases and also 13 neurons. There are weights and biases and also one neuron for the output layer and one output feature will be produced.

Below is the neural network design for SelectFnet.

Figure 4.11: The neural network design for SelectFnet

Figure 4.11 shows the neural network design for SelectFnet. There are eight input features, which are the eight selected bones using GA approach while the hidden layer consists of the weights and biases and also six neurons. There are weights and biases and also one neuron for the output layer and one output feature will be produced.

Below is the neural network design for SelectMnet.

Figure 4.12: The neural network design for SelectMnet

Figure 4.12 shows the neural network design for SelectMnet. There are seven input features, which are the seven selected bones using GA approach while the hidden layer consists of the weights and biases and also six neurons. There are weights and biases and also one neuron for the output layer and one output feature will be produced.

After training all of the networks, the outputs and errors for each network are exported to the workspace in Matlab.

Figure 4.13: Example of exporting the outputs and errors of one of the neural networks

Figure 4.13 shows that HISFnet_outputs, SelectFnet_outputs, HISFnet_errors and SelectFnet_errors are going to be exported to workspace in Matlab. The errors and

outputs of the training for all networks will be exported to the workspace in Matlab as it contains the results of the training.

Below are the commands to extract the data based on the generated indices.

```
>> i = 1
```

Figure 4.14: The command to initialize the variable of a for-loop in order to extract the data based on generated indices

The command in Figure 4.14 is entered in the command window in Matlab to initialize the variable of a for-loop in order to extract the data based on generated indices.

```
>> for i = 1:19
HISFtrain(i,:) = HISF(i, [trainInd]);
end
```

Figure 4.15: The for-loop command and also command to extract the data based on generated indices from a specific data

The commands in Figure 4.15 are entered in the command window in Matlab to execute the for-loop and to extract the data based on generated indices from a specific data.

4.2.2 HYBRID GENETIC ALGORITHM-ARTIFICIAL NEURAL NETWORK

Below is the command to activate the Miniconda environment to enable the use of Python.

conda activate yeemayfypenv

Figure 4.16: Example of command to activate Miniconda environment

The command in Figure 4.16 is entered in the Command Prompt to activate Miniconda environment named 'yeemayfypenv'.

Below is the command to run the Python script to select features for female Hispanic population.

>python GAfemale.py

Figure 4.17: Example of command to run Python script

The command in Figure 4.17 is entered in the Command Prompt to run the Python script named 'GAfemale.py' in order to carry out the process of feature selection on the data of input features and target feature of female Hispanic population using GA approach. Another Python script named 'GAmale.py' is run to select features for male Hispanic population.

The script will generate a graph showing the best scores and the average scores throughout 200 generations.

Below is the graph for the results of GA approach for 200 generations.

Figure 4.18: A generated graph of the best scores and the average scores throughout 200 generations

The x-axis represents the generation during the training of the GA approach while the y-axis represents the cross-validation MSE score. The blue line represents the best cross-validation MSE score that was obtained in that particular generation while the orange line represents the mean cross-validation MSE score among 200 chromosomes in that generation. As observed, the cross-validation MSE scores are decreasing with each generation, with implies an increase in performance for the GA. The 200th generation, which is the last generation, has displayed similar scores between the best and mean scores. This means that the majority of the chromosomes in the 200th generation have high fitness scores.

The script will generate the cross-validation MSE values before feature selection and after feature selection.

(yeemayfypenv) C:\Users\MS\Documents\FYP_YM\GA dataset>python GAfemale.py CV MSE before feature selection: 0.01111391 CV MSE after feature selection: 0.01015822

Figure 4.19: The generated cross-validation MSE values before and after the feature selection throughout 200 generations

Figure 4.19 shows that the generated cross-validation MSE values before and after the feature selection throughout 200 generations for female Hispanic population.

A CSV file of the data of latest population will be generated by running the script.

GApopulationFemale.csv 20/11/2019 3:25 PM Microsoft Excel C... 8 KB

Figure 4.20: A generated CSV file of the data of latest population

The CSV file contains 200 chromosomes in the last generation, which are the fittest individuals in the GA approach. Each chromosome will have value of 0 or 1 for each bone, where 1 represents the bone has been selected after the process of feature selection while 0 represents the bone is not being selected. This CSV file is used to analyse which features are selected during the execution of the GA approach.

The implementation of part of the ANN approach of GA-ANN hybrid approach is the same as the ANN approach discussed in Section 4.2.1.

4.3 RESULTS

Below are the cross-validation (CV) MSE results of female and male Hispanic population before feature selection and after feature selection for 200 generations.

		Fen	nale			M	ale			
	Before	feature	After	feature	Before	feature	After	feature		
	selection	n	selectio	n	selection	n	selection			
CV MSE	0.01111	391	0.01015	5822	0.00896	640	0.00836916			

Table 4.3: The CV MSE results of female and male Hispanic population before and after feature selection for 200 generations

Before the feature selection, the CV MSE value of female Hispanic population is 0.01111391 and after using the GA approach for feature selection, the CV MSE value has dropped to 0.01015822. For male Hispanic population, the CV MSE value before feature selection is 0.00896640 while after the feature selection using GA approach, the CV MSE value is dropped to 0.00836916. The smaller the MSE, the more preferable or desirable selection it is as it shows the data values are dispersed closely to its central moment. Therefore, GA approach has improved the performance of the CV MSE of both genders of Hispanic population.

There are 200 individuals for both female and male Hispanic population after feature selection. Each individual will have a chromosome consisting of 0 and 1. The 0 implies the feature is not selected while the 1 implies the feature is selected. Below is the total number of 1 (s) for each bone across 200 individuals for female and male Hispanic population.

Female)	Mal	e
Bone1	0	Bone1	200
Bone2	0	Bone2	0
Bone3	0	Bone3	0
Bone4	190	Bone4	0
Bone5	200	Bone5	0
Bone6	200	Bone6	0
Bone7	0	Bone7	190
Bone8	0	Bone8	0
Bone9	0	Bone9	0
Bone10	0	Bone10	0
Bone11	200	Bone11	0
Bone12	0	Bone12	0
Bone13	0	Bone13	200
Bone14	0	Bone14	200
Bone15	180	Bone15	200
Bone16	200	Bone16	200
Bone17	0	Bone17	0

Bone18	200	Bone18	0
Bone19	195	Bone19	175

Table 4.4: The sum of 1 (s) for each bone across 200 individuals for female and male Hispanic population

The features which consists more than 85% of the sum of 1 (s) after will be selected. Therefore, Bone 4, Bone 5, Bone 6, Bone 11, Bone 15, Bone 16, Bone 18, and Bone 19 are the selected features across 200 individuals for female Hispanic population. Bone 1, Bone 7, Bone 13, Bone 14, Bone 15, Bone 16, and Bone 19 are the selected features across 200 individuals for male Hispanic population.

After exporting the outputs of the all networks, the errors are used to confirm the validity of the testing target data and the testing output data. When both data are correct, the testing target data and the testing output data are denormalized using the age range of zero to 18. The denormalization formula is the inverse of the normalization formula. The test errors are calculated for each individual by subtracting the testing target data with the testing output data. Table 4.5 records the testing target data, testing output data and the test set MSE for all four networks.

Female						Male					
ANN			GA-ANN			ANN			GA-ANN		
Target	Output	Error									
1	1.35528	-0.35528	1	1.602258	-0.60226	0	2.279791	-2.27979	0	1.880664	-1.88066
1	1.93271	-0.93271	1	2.00224	-1.00224	2	2.187777	-0.18778	2	2.587926	-0.58793
2	2.651318	-0.65132	2	3.131187	-1.13119	2	3.003875	-1.00387	2	2.576813	-0.57681
2	2.450083	-0.45008	2	2.376769	-0.37677	3	4.046295	-1.04629	3	4.491861	-1.49186
2	2.032009	-0.03201	2	1.650577	0.349423	3	2.507708	0.492292	3	2.696342	0.303658
5	4.825922	0.174078	5	4.905369	0.094631	4	5.990798	-1.9908	4	4.981924	-0.98192
6	5.177644	0.822356	6	5.339039	0.660961	4	2.276225	1.723775	4	2.432137	1.567863
6	4.960624	1.039376	6	4.966668	1.033332	5	5.596441	-0.59644	5	6.465045	-1.46505
6	5.264418	0.735582	6	5.669032	0.330968	5	7.464246	-2.46425	5	5.459937	-0.45994
6	5.869192	0.130808	6	5.740944	0.259056	5	5.223394	-0.22339	5	6.074604	-1.0746
7	5.891033	1.108967	7	5.283911	1.716089	5	5.56253	-0.56253	5	6.148144	-1.14814
7	8.978694	-1.97869	7	7.027829	-0.02783	6	5.728094	0.271906	6	6.050651	-0.05065
7	6.808137	0.191862	7	7.618726	-0.61873	6	5.842269	0.157731	6	6.625014	-0.62501
7	5.812521	1.187479	7	6.843336	0.156664	7	8.583953	-1.58395	7	7.879906	-0.87991
7	8.446568	-1.44657	7	8.578115	-1.57811	7	7.168705	-0.16871	7	6.36083	0.63917
8	7.162575	0.837425	8	6.572998	1.427002	7	8.315154	-1.31515	7	7.965232	-0.96523
8	7.815088	0.184912	8	8.388447	-0.38845	7	7.174108	-0.17411	7	7.029521	-0.02952
9	9.86298	-0.86298	9	9.440739	-0.44074	8	8.313136	-0.31314	8	9.095267	-1.09527
9	12.58331	-3.58331	9	11.50172	-2.50172	8	6.807768	1.192232	8	8.806426	-0.80643
9	11.63552	-2.63552	9	11.55004	-2.55004	8	5.420717	2.579283	8	7.087681	0.912319
9	12.23898	-3.23898	9	12.28615	-3.28615	8	9.409963	-1.40996	8	8.851337	-0.85134
9	7.797965	1.202035	9	9.090821	-0.09082	9	9.895757	-0.89576	9	9.615734	-0.61573
10	10.26316	-0.26316	10	10.80231	-0.80231	9	12.21161	-3.21161	9	10.72366	-1.72366
10	12.17328	-2.17328	10	13.02223	-3.02223	9	11.80746	-2.80746	9	11.43072	-2.43072
10	9.582207	0.417793	10	9.864999	0.135001	10	8.486977	1.513023	10	8.458489	1.541511
11	9.241172	1.758828	11	9.40432	1.59568	10	10.39876	-0.39876	10	10.69318	-0.69318
11	12.98901	-1.98901	11	12.20051	-1.20051	10	11.58187	-1.58187	10	11.03624	-1.03624
11	12.97893	-1.97893	11	13.41669	-2.41669	11	9.799663	1.200337	11	10.67472	0.325278
11	13.73625	-2.73625	11	13.32999	-2.32999	11	11.36402	-0.36402	11	11.90709	-0.90709
11	12.65805	-1.65805	11	12.87533	-1.87533	12	14.71938	-2.71938	12	14.66741	-2.66741
11	11.94189	-0.94189	11	12.37348	-1.37348	12	12.37906	-0.37906	12	11.87477	0.12523

11	12.25132	-1.25132	11	12.49909	-1.49909	12	13.07592	-1.07592	12	12.85053	-0.85053
12	14.92424	-2.92424	12	15.19039	-3.19039	12	12.56777	-0.56777	12	13.00823	-1.00823
12	11.99764	0.002363	12	10.99238	1.007624	12	11.74689	0.253114	12	11.80488	0.195123
13	13.74639	-0.74639	13	12.98272	0.017276	12	13.51462	-1.51462	12	13.68316	-1.68316
13	13.99543	-0.99543	13	13.50413	-0.50413	13	12.88582	0.114182	13	12.79072	0.209278
13	13.33478	-0.33478	13	13.19567	-0.19567	13	14.9704	-1.9704	13	15.13407	-2.13407
13	14.15341	-1.15341	13	14.43896	-1.43896	13	12.01156	0.988439	13	13.97713	-0.97713
13	14.30844	-1.30844	13	14.5066	-1.5066	13	14.08809	-1.08809	13	14.01194	-1.01194
14	14.56199	-0.56199	14	14.57401	-0.57401	13	13.42562	-0.42562	13	12.08177	0.918231
14	15.04137	-1.04137	14	14.66595	-0.66595	13	15.50421	-2.50421	13	14.16714	-1.16714
15	12.80126	2.198745	15	12.34801	2.651988	13	14.07654	-1.07654	13	13.41905	-0.41905
15	15.24468	-0.24468	15	15.21399	-0.21399	14	15.93439	-1.93439	14	15.26242	-1.26242
15	14.48925	0.51075	15	13.73032	1.269677	14	14.01759	-0.01759	14	14.37134	-0.37134
16	14.72155	1.278452	16	14.18035	1.819646	14	13.30549	0.694506	14	13.44556	0.554436
17	13.68745	3.312554	17	13.41085	3.589153	15	15.21143	-0.21143	15	14.95085	0.049152
17	14.49464	2.505358	17	14.78106	2.218936	15	15.54973	-0.54973	15	15.39551	-0.39551
17	12.86728	4.132715	17	12.58131	4.418687	16	14.93511	1.064889	16	14.93419	1.065813
17	14.60787	2.392127	17	14.31431	2.685692	16	14.5612	1.4388	16	14.40863	1.591374
18	14.61873	3.381266	18	14.70434	3.295661	17	16.32826	0.671738	17	15.4769	1.523102
18	15.29742	2.70258	18	15.24403	2.755965	17	15.10961	1.89039	17	15.07638	1.923624
18	13.63488	4.365124	18	14.26258	3.737422	17	14.92314	2.076855	17	15.29023	1.709767
18	15.1634	2.836596	18	15.45068	2.549322	17	15.26041	1.739593	17	15.30366	1.696342
18	13.89982	4.100182	18	14.28753	3.712467	18	14.75171	3.248289	18	14.36874	3.631262
18	12.83249	5.16751	18	12.67444	5.325557	18	13.81731	4.182687	18	15.30516	2.694836

Table 4.5: The testing target data, testing output data and the test set MSE for all four ANNs

The test set MSE value, which is the mean of the test errors for that particular network, is then calculated for all four networks. The formula for the calculation of the test set MSE can be found in Equation 2.12 in chapter 2.

Below are the results of age estimation models using ANN approach and GA-ANN hybrid approach for both female and male Hispanic population.

	Fe	male	M	lale
	ANN	GA-ANN	ANN	GA-ANN
Test Regression (r value)	0.90686	0.9086	0.9426	0.96226
Test set MSE	4.096813	4.060201	2.429385	1.702814

Table 4.6: The results of age estimation models using ANN approach and GA-ANN hybrid approach for both female and male Hispanic population

The test regression value and the test set MSE are used as metrics for evaluation. The training regression value will always improve as the number of the data used for training increases, which makes the training regression value not a reliable metric. The overall regression value is also not selected as it is calculated to be the mean between the training and test regression values. The test set MSE is the MSE calculated on the test data only, without regard to the training data.

In the results shown in Table 4.6, the performance of the hybrid GA-ANN approach is better than the ANN approach. For the female networks, the test regression value for hybrid GA-ANN approach, 0.9086 is slightly higher than the test regression value for ANN approach, 0.90686. For the male networks, the test regression value for hybrid GA-ANN approach, 0.96226 is higher than the test regression value for ANN approach, 0.9426. The lower the test set MSE value, the less errors, which implies a better performance of the network. For the female networks, the test set MSE for hybrid GA-ANN approach, 4.060201 years is slightly lower than the ANN approach, 4.096813 years. For the male networks, the test set MSE for hybrid GA-ANN approach, 1.702814 years is significantly lower than the ANN approach,

2.429385 years. Overall, there is a better performance in the hybrid GA-ANN approach compared to the ANN approach for networks of both gender, which produces a higher test regression value and a lower test set MSE.

4.4 DISCUSSION AND JUSTIFICATION

Adaption learning function, transfer function, cross-validation, and test set MSE are discussed in the following sections.

4.4.1 ADAPTION LEARNING FUNCTION

			Fem	ale	Ma	le
Learning	Layer 1	Layer 2	Test	MSE	Test	MSE
function			regression		regression	
			(R)		(R)	
learnGD	purelin	tansig	0.94419	0.00595	0.91708	0.00514
learnGDM	learnGDM purelin tansig		0.94419	0.00595	0.91708	0.00514

Table 4.7: The comparison results of using different learning functions for neural networks

The learning function will compute the learning rate for different parameters, calculate the weight change during training, ultimately improving the ANN. The comparison above is done after dividing the dataset into 70% training data and 30% testing data, in which the female neural networks use the same training and testing data and the male neural networks use the same training and testing data. The performance of the female neural networks are the same whereas the performance of the male neural networks are the same too, despite the differences of the adaption learning function. Since most researches uses learnGDM, the learnGDM learning function is chosen for this paper.

4.4.2 TRANSFER FUNCTION

		Fema	ale	Male	2
Layer 1	Layer 2	Test regression	MSE	Test regression	MSE
		(R)		(R)	
tansig	logsig	0.5005	0.0143	0.64528	0.0146
tansig	tansig	0.38641	1.21e-10	0.69575	1.61e-10
tansig	purelin	0.56364	1.11e-23	0.78547	2.49e-22
logsig	logsig	0.42071	0.0143	0.58935	0.0146
logsig	tansig	0.16697	2.87e-11	0.476	6.05e-11
logsig	purelin	0.67053	7.79e-17	0.81512	9.96e-16
purelin	logsig	0.72728	0.0183	0.75804	0.0162
purelin	tansig	0.9152	0.00549	0.91076	0.00490
purelin	purelin	0.91394	0.00534	0.90863	0.00431

Table 4.8: The comparison results of different combinations of transfer functions for Layer 1 and Layer 2 for several tests of neural networks

Transfer function, also known as activation functions help neural networks to learn non-linear relationships by applying the transfer function to produce the final output. In Table 4.8, the combination of purelin and tansig of transfer functions has the highest performance with the highest test regression values, which are 0.9152 for female and 0.91076 for male. Since any MSE value is considered to be valid when it is less than 2, the MSE value of 0.00549 years for female and 0.00490 years for male are acceptable. Even though there are MSE values that are even lower than the purelin and tansig combination, the difference between the test regression values can be quite large, which becomes the reason for elimination.

4.4.3 CROSS-VALIDATION

Cross-validation aims to test the ability of the result to generalize to an independent dataset. With cross-validation, a validation data set can be used to test the model during training. Problems such as underfitting and overfitting can be limited through cross-validation (scikit-learn developers, 2014). In the GA approach, cross-validation is used when selecting the input features to generate the best features. Five-fold cross validation has been used in the GA approach, where the training dataset is

divided into groups of five chromosomes. The first four chromosomes are used for training, while the fifth chromosome will be used for validation. This process repeats for all chromosome groups of five.

4.4.4 TEST SET MEAN SQUARED ERROR (MSE)

Errors are the difference between the expected output and the actual output, which have been one of the metrics to evaluate the accuracy of the data. The theory is that the less errors are generated, the more accurate the model is. The test set MSE is the average of the test errors for that particular network (Rowe, 2015). It is calculated after denormalization of the test target data and test output data, where the actual age predicted by the ANN can be obtained. The test set errors is then calculated by using the denormalized test target data and denormalized test output data. The average of the sum of test errors will then be calculated, obtaining the test set MSE. Microsoft Excel has been used for the denormalization until the calculation of the test set MSE.

4.5 SUMMARY

In this Chapter 4, the overall performance of the GA-ANN hybrid approach is better comparative to the ANN approach, with the GA-ANN hybrid approach producing a higher test regression value and a lower test set MSE value. The feature selection introduced in the GA-ANN hybrid approach will have two main advantages, which are a better performance and the results is obtained and less data is required. An increase in performance will enable the neural network to produce more accurate results. The feature selection for this GA-ANN hybrid approach has reduced the input features required from 19 bones to seven or eight, which is more than 50% of the data, resulting in an optimization of the effort in procuring training data.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 INTRODUCTION

This chapter concludes the paper, where the project constraints and the future work of this research is discussed.

5.2 PROJECT CONSTRAINT

Below are the project constraints faced during this research:

• Lack of readily available data

The training dataset used for the training of both ANN approach and GA-ANN hybrid approach originated from X-ray images that does not have any measurements of the 19 bones. The measurements were obtained manually by using Photo Pos Pro, which is a tiring process. Too much time was used to acquire the measurements.

Lack of good hardware

The research was carried out on a laptop with 8 GB of RAM. However, the laptop does not have the suitable technical specifications to support Photo Pos Pro, and the application would have latency during use. There are times when the laptop has shut down on its own, causing loss of measurement data during the procurement of measurements of the 19 bones.

5.3 RECOMMENDATION AND FUTURE WORK

For this research, more training data can be used to produce more accurate results, as the data will not too biased since there are more variety of data. The increase in the amount of training data can also evaluate the performance of the feature selection.

Other bones, such as dental and right hand bones can be used as a combination with the left hand bones for the Hispanic population to produce even more accurate age estimations. This can also increase the robustness of the GA-ANN hybrid approach as it receives more bones to estimate the age.

Other ethnicity should also be used, such as Caucasian or Native Americans. The results of the feature selection for the 19 bones should be different due to biological factors, which means that it is possible that the weightage for the 19 bones may be different compared to another ethnic group during age estimation.

More neural networks can be integrated with the approach. For example, two GA approaches can be integrated with the ANN approach to possibly improve the feature selection. The possibility of an approach with a comparatively more robust feature selection should be tested.

Another approach for the feature selection other than the GA approach can be tested to see if it performs well. There is a possibility where another approach can produce better results during feature selection.

5.4 CLOSING NOTE

In this paper, the measurements of the 19 bones for the Hispanic population have been made to form the general dataset. The dataset is then normalized to avoid computing errors when fed into the ANN.

The ANN approach involves using all 19 bones as input features to estimate the age of the Hispanic population. Since the age estimation will be different based on the gender of the individual, two ANN approaches are created for male and female.

The GA-ANN hybrid approach will use the GA approach to perform feature selection, which reduces the number of input features. The selected input features will then be fed into the ANN approach to produce the expected output data and actual output data.

The expected output data and the actual output data are denormalized to obtain the estimated age and the actual age. The difference between the two ages, which are known as errors are then computed to evaluate the performances of both approaches.

The future work and recommendations are then proposed at the end of this paper.

REFERENCES

- Al-Ahmari, A. M. A. (2007). Predictive machinability models for a selected hard material in turning operations. *Journal of Materials Processing Technology*, 190(1–3), 305–311. https://doi.org/10.1016/j.jmatprotec.2007.02.031
- Alkass, K., Buchholz, B. A., Ohtani, S., Yamamoto, T., Druid, H., & Spalding, K. L. (2009). Age Estimation in Forensic Sciences. *Molecular & Cellular Proteomics*, 9(5), 1022–1030. https://doi.org/10.1074/mcp.m900525-mcp200
- Armaghani, D. J., Mohamad, E. T., Monjezi, M., Faradonbeh, R. S., & Majid, M. Z. A. (2016). An optimized ANN model based on genetic algorithm for predicting ripping production. *Neural Computing and Applications*, 28(S1), 393–406. https://doi.org/10.1007/s00521-016-2359-8
- Asif, M. K., Nambiar, P., Mani, S. A., Ibrahim, N. B., Khan, I. M., & Lokman, N. B. (2019). Dental age estimation in Malaysian adults based on volumetric analysis of pulp/tooth ratio using CBCT data. *Legal Medicine*, *36*(October 2018), 50–58. https://doi.org/10.1016/j.legalmed.2018.10.005
- Auf der Mauer, M., Säring, D., Stanczus, B., Herrmann, J., Groth, M., & Jopp-van Well, E. (2019). A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. *International Journal of Legal Medicine*, 133(1), 205–215. https://doi.org/10.1007/s00414-018-1826-4
- Bakthula, R., & Agarwal, S. (2014). Automated Human Bone Age Assessment using Image Processing Methods Survey. *International Journal of Computer Applications*, 104(13), 33–42. https://doi.org/10.5120/18265-9259
- Bartolini, V., Pinchi, V., Gualco, B., Vanin, S., Chiaracane, G., D'Elia, G., ... Focardi, M. (2018). The iliac crest in forensic age estimation: evaluation of three methods in pelvis X-rays. *International Journal of Legal Medicine*, 132(1), 279–288. https://doi.org/10.1007/s00414-017-1629-z
- Benjavongkulchai, S., & Pittayapat, P. (2018). Age estimation methods using hand

- and wrist radiographs in a group of contemporary Thais. *Forensic Science International*, 287, 218.e1-218.e8. https://doi.org/10.1016/j.forsciint.2018.03.045
- Bocchi, L., Ferrara, F., Nicoletti, I., & Valli, G. (2003). An artificial neural network architecture for skeletal age assessment. *IEEE International Conference on Image Processing*, *1*, 1077–1080. https://doi.org/10.1109/icip.2003.1247153
- C. Sanjay;, & C. Jyothi. (2006). A study of surface roughness in drilling using mathematical analysis and neural, 846–852. https://doi.org/10.1007/s00170-005-2538-8
- Cameriere, R., & Ferrante, L. (2008). Age estimation in children by measurement of carpals and epiphyses of radius and ulna and open apices in teeth: A pilot study. *Forensic Science International*, *174*(1), 60–63. https://doi.org/10.1016/j.forsciint.2007.03.013
- Cameriere, R., Ferrante, L., Mirtella, D., & Cingolani, M. (2006). Carpals and epiphyses of radius and ulna as age indicators. *International Journal of Legal Medicine*, 120(3), 143–146. https://doi.org/10.1007/s00414-005-0040-3
- Cantekin, K., Celikoglu, M., Miloglu, O., Dane, A., & Erdem, A. (2012). Bone Age Assessment: The Applicability of the Greulich-Pyle Method in Eastern Turkish Children. *Journal of Forensic Sciences*, *57*(3), 679–682. https://doi.org/10.1111/j.1556-4029.2011.02035.x
- Creative Research Systems. (2016). Correlation. Retrieved from https://www.surveysystem.com/correlation.htm
- Darmawan, M. F., Yusuf, S. M., Abdul Kadir, M. R., & Haron, H. (2015). Age estimation based on bone length using 12 regression models of left hand X-ray images for Asian children below 19 years old. *Legal Medicine*, *17*(2), 71–78. https://doi.org/10.1016/j.legalmed.2014.09.006
- Demuth, H., & Hagan, M. B. M. (2009). *Neural Network Toolbox* TM 6 User's Guide.
- du Jardin, P., Ponsaillé, J., Alunni-Perret, V., & Quatrehomme, G. (2009). A comparison between neural network and other metric methods to determine sex

- from the upper femur in a modern French population. *Forensic Science International*, 192(1–3), 127.e1-127.e6. https://doi.org/10.1016/j.forsciint.2009.07.014
- Duangto, P., Janhom, A., Prasitwattanaseree, S., Mahakkanukrauh, P., & Iamaroon, A. (2017). Age Estimation Methods in Forensic Odontology. *Journal of Dentistry Indonesia*, 23(3), 74–80. https://doi.org/10.14693/jdi.v23i3.1023
- Flores-mir, C., Orth, C., Nebbe, B., & Ortho, F. F. D. S. A. (n.d.). Flores-Mir C, Nebbe B, Major PW. Use of skeletal maturation based on hand-wrist radiographic analysis as a predictor of facial growth- a systematic review. Angle Orthod. 2004;74-118–124..pdf, (c), 15–20.
- Franklin, D., Flavel, A., Noble, J., Swift, L., & Karkhanis, S. (2015). Forensic age estimation in living individuals: methodological considerations in the context of medico-legal practice. *Research and Reports in Forensic Medical Science*, 53. https://doi.org/10.2147/rrfms.s75140
- Gertych, A., Zhang, A., Sayre, J., Pospiech-Kurkowska, S., & Huang, H. K. (2007).

 Bone age assessment of children using a digital hand atlas. *Computerized Medical Imaging and Graphics*, 31(4–5), 322–331.

 https://doi.org/10.1016/j.compmedimag.2007.02.012
- Gilsanz, V., & Raitb, O. (2005). *Had Bone Age. Springer*. Retrieved from http://www.chospab.es/biblioteca/DOCUMENTOS/Atlas_of_Hand_Bone_Age. pdf
- Gungor, A., Sari, Z., Gungor, Oe., Kale, B., & Celikoglu, M. (2015). Validity of the Demirjian method for dental age estimation for Southern Turkish children. *Nigerian Journal of Clinical Practice*, 18(5), 616. https://doi.org/10.4103/1119-3077.154216
- Huang, W., Xu, W., Telmon, N., Cheng, Q., Li, K., & Cavaignac, E. (2018).
 Morphometric evaluation of the knee in Chinese population reveals sexual dimorphism and age-related differences. *International Orthopaedics*, 42(10), 2349–2356. https://doi.org/10.1007/s00264-018-3826-x
- Huumonen, S., Särkioja, T., Salo, S., Niskanen, M., Maijanen, H., & Hirvonen, J.

- (2016). Twelve unidentified skeletons as remains of an epidemic or famine in Northern Finland. *Scandinavian Journal of Forensic Science*, 22(2), 33–40. https://doi.org/10.1515/sjfs-2016-0006
- Jain, V. (2019). Beginners guide to Feature selection techniques using python: Retrieved May 2, 1BC, from https://medium.com/@vijain2010/beginners-guide-to-feature-selection-techniques-using-python-4d23fcb8951a
- Jerome Tosam, M. (2015). The Ethical and Social Implications of Age-Cheating in Africa. *International Journal of Philosophy*, *3*(1), 1. https://doi.org/10.11648/j.ijp.20150301.11
- Khandelwal, M., Marto, A., Fatemi, S. A., Ghoroqi, M., Armaghani, D. J., Singh, T. N., & Tabrizi, O. (2018). Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. *Engineering with Computers*, *34*(2), 307–317. https://doi.org/10.1007/s00366-017-0541-y
- Kim, K., & Han, I. (2000). <1-s2.0-S0957417400000270-main_2.pdf>, 19, 125–132. Retrieved from www.elsevier.com/locate/eswa
- Kiss, L., Yun, K., Pocock, N., & Zimmerman, C. (2015). Exploitation, violence, and suicide risk among child and adolescent survivors of human trafficking in the greater mekong subregion. *JAMA Pediatrics*, *169*(9), 15–17. https://doi.org/10.1001/jamapediatrics.2015.2278
- Koc, A., Karaoglanoglu, M., Erdogan, M., Kosecik, M., & Cesur, Y. (2001).
 Assessment of bone ages: Is the Greulich-Pyle method sufficient for Turkish boys? *Pediatrics International*, 43(6), 662–665. https://doi.org/10.1046/j.1442-200X.2001.01470.x
- Kohail, S. N. (2012). Using artificial neural network for human age estimation based on facial images. 2012 International Conference on Innovations in Information Technology, IIT 2012, 215–219. https://doi.org/10.1109/INNOVATIONS.2012.6207735
- Kohli, A., & Dixit, U. S. (2005). A neural-network-based methodology for the prediction of surface roughness in a turning process. *International Journal of Advanced Manufacturing Technology*, 25(1–2), 118–129.

- https://doi.org/10.1007/s00170-003-1810-z
- Kumar, H. S., P, S. P., Sriram, N. S., & Vijay, G. S. (2013). International Conference On DESIGN AND MANUFACTURING, IConDM 2013 ANN based evaluation of performance of wavelet transform for condition monitoring of rolling element bearing. *Procedia Engineering*, 64, 805–814. https://doi.org/10.1016/j.proeng.2013.09.156
- Lewis, M. E., & Flavel, A. (n.d.). CAPITULO_age assessment of child skeletal remains in forensic contexts_Lewis, Flavel.pdf, 243–257.
- Liu, H., Lu, J., Feng, J., & Zhou, J. (2017). Ordinal Deep Learning for Facial Age Estimation. *IEEE Transactions on Circuits and Systems for Video Technology*, 29(2), 486–501. https://doi.org/10.1109/TCSVT.2017.2782709
- Lynnerup, N., & Villa, C. (2014). Age estimation of skeletal remains: principal methods. *Research and Reports in Forensic Medical Science*, 3. https://doi.org/10.2147/rrfms.s35660
- Macedo, J., Costa, F., & A. dos Santos, J. (2019). A Benchmark Methodology for Child Pornography Detection, (1), 455–462. https://doi.org/10.1109/sibgrapi.2018.00065
- Maggio, A. (2017). The skeletal age estimation potential of the knee: Current scholarship and future directions for research. *Journal of Forensic Radiology and Imaging*, 9(May), 13–15. https://doi.org/10.1016/j.jofri.2017.05.002
- Mahfouz, M., Badawi, A., Merkl, B., Abdel, E. E., Pritchard, E., Kesler, K., ... Jantz, L. (2007). Patella sex determination by 3D statistical shape models and nonlinear classifiers, 173, 161–170. https://doi.org/10.1016/j.forsciint.2007.02.024
- Malina, R. M. (1994). Physical Growth and Biological Maturation of Young Athletes.

- Mohd, A., Haron, H., & Sharif, S. (2010). Expert Systems with Applications Prediction of surface roughness in the end milling machining using Artificial Neural Network. *Expert Systems With Applications*, *37*(2), 1755–1768. https://doi.org/10.1016/j.eswa.2009.07.033
- Nalbant, M., Gökkaya, H., Toktaş, I., & Sur, G. (2009). The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks. *Robotics and Computer-Integrated Manufacturing*, 25(1), 211–223. https://doi.org/10.1016/j.rcim.2007.11.004
- Nogueira, L. (2015). Comparing discriminant analysis and neural network for the determination of sex using femur head measurements, *253*, 81–87. https://doi.org/10.1016/j.forsciint.2015.05.023
- Normal, S. (2007). X 2 (1), 2007(2), 2012.
- OHCHR. (n.d.). Convention on the Rights of the Child. Retrieved from https://www.ohchr.org/en/professionalinterest/pages/crc.aspx
- Ouloul, I. M., Moutakki, Z., Afdel, K., & Amghar, A. (2019). Improvement of age estimation using an efficient wrinkles descriptor. *Multimedia Tools and Applications*, 78(2), 1913–1947. https://doi.org/10.1007/s11042-018-6275-z
- People, M., & Paper, B. (2011). Cross-matching unidentified bodies and missing person reports, 1–7.
- Pinchi, V., De Luca, F., Ricciardi, F., Focardi, M., Piredda, V., Mazzeo, E., & Norelli, G. A. (2014). Skeletal age estimation for forensic purposes: A comparison of GP, TW2 and TW3 methods on an Italian sample. *Forensic Science International*, 238, 83–90. https://doi.org/10.1016/j.forsciint.2014.02.030
- Polastro, M. D. C., & Eleuterio, P. M. D. S. (2012). A statistical approach for identifying videos of child pornography at crime scenes. *Proceedings - 2012 7th International Conference on Availability, Reliability and Security, ARES 2012*, 604–612. https://doi.org/10.1109/ARES.2012.71

- Rowe, W. (2015). Mean Squared Error, R2, and Variance in Regression Analysis.

 Retrieved from https://www.bmc.com/blogs/mean-squared-error-r2-and-variance-in-regression-analysis/
- Rucci, M., Coppini, G., Nicoletti, I., Cheli, D., & Valli, G. (1995). Automatic analysis of hand radiographs for the assessment of skeletal age: A subsymbolic approach. *Computers and Biomedical Research*. https://doi.org/10.1006/cbmr.1995.1016
- Samui, P., & Dixon, B. (2012). Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. *Hydrological Processes*, 26(9), 1361–1369. https://doi.org/10.1002/hyp.8278
- Sawant, M. M., & Bhurchandi, K. (2019). Hierarchical facial age estimation using Gaussian process regression. *IEEE Access*, 7, 9142–9152. https://doi.org/10.1109/ACCESS.2018.2889873
- Sciences, N. (2015). Estimation of groundwater level using a hybrid genetic algorithm- neural network. *Pollution*, *1*(1), 9–21. Retrieved from http://journals.ut.ac.ir/article_52176_1.html
- scikit-learn developers. (2014). sklearn.cross_validation.cross_val_score. Retrieved from https://scikit-learn.org/0.16/modules/generated/sklearn.cross_validation.cross_val_score.html
- Sharma, B., & Venugopalan, P. K. (2014). Comparison of Neural Network Training Functions for Hematoma Classification in Brain CT Images, *16*(1), 31–35.
- Smeers, I., Decorte, R., Van de Voorde, W., & Bekaert, B. (2018). Evaluation of three statistical prediction models for forensic age prediction based on DNA methylation. *Forensic Science International: Genetics*, 34(December 2017), 128–133. https://doi.org/10.1016/j.fsigen.2018.02.008
- Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., & Leonardi, R. (2017).

 Deep learning for automated skeletal bone age assessment in X-ray images. *Medical Image Analysis*, 36(February), 41–51.

 https://doi.org/10.1016/j.media.2016.10.010
- Stavrianos, C., Mastagas, D., Stavrianou, I., & Karaiskou, O. (2008). Dental age

- estimation of adults: A review. *Research Journal of Medical Sciences*, 2(5), 258–268. https://doi.org/10.1016/B978-0-12-275950-5.50016-X
- Stern, D., & Ursekter, M. (2016). From individual hand bone age estimates to fully automated age estimation via learning-based information fusion. *Proceedings International Symposium on Biomedical Imaging*, 2016-June, 150–154. https://doi.org/10.1109/ISBI.2016.7493232
- Susan L. King. (1999). Neural Networks Vs. Multiple Linear Regression For Estimating Previous Diameter.
- Sykes, L., Bhayat, A., & Bernitz, H. (2017). The effects of the refugee crisis on age estimation analysis over the past 10 years: A 16-country survey. *International Journal of Environmental Research and Public Health*, *14*(6). https://doi.org/10.3390/ijerph14060630
- TEILMANN, G., LAURSEN, E. M., HOLM, K., MAIN, K. M., SCHEIKE, T., JUUL, A., ... SKAKKEBAEK, N. E. (2005). Pubertal development in Danish children: comparison of recent European and US data. *International Journal of Andrology*, 29(1), 247–255. https://doi.org/10.1111/j.1365-2605.2005.00556.x
- UN. (n.d.). Optional Protocol on the Involvement of Children in Armed Conflict United Nations Office of the Special Representative of the Secretary-General for Children and Armed Conflict | To promote and protect the rights of all children affected by armed conflic. Retrieved from https://childrenandarmedconflict.un.org/tools-for-action/opac/
- UNICEF, The Global Compact, & Save the Children. (2012). Children's Rights and Business Principles. Retrieved from https://www.unglobalcompact.org/docs/issues_doc/human_rights/CRBP/Childrens_Rights_and_Business_Principles.pdf
- Vij, N. (2016). Dentistry to the rescue of missing children: A review, 8(1). https://doi.org/10.4103/0975-1475.176947
- Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art, *14*, 35–62.

APPENDIX A

ORIGINAL DATASET OF FEMALE HISPANIC POPULATION

Image																				
ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Age
5584	1.46	2.48	2.33	1.98	1.83	1.13	1.56	1.73	1.61	1.29	0.81	1.15	1.03	0.64	0.76	0.5	0.59	0.67	0.57	0
5068	1.69	3.16	2.93	2.49	2.13	1.3	1.75	1.96	1.88	1.49	1.07	1.23	1.2	0.92	1.05	0.62	0.7	0.77	0.57	1
5070	1.48	2.35	2.28	2	1.74	1.11	1.51	1.82	1.76	1.29	0.87	1.18	1.23	0.76	0.81	0.64	0.68	0.73	0.57	1
5102	1.67	2.59	2.35	2.47	2.08	1.09	1.75	1.9	1.76	1.5	0.78	1.19	1.01	0.67	0.87	0.52	0.67	0.68	0.55	1
5111	1.39	2.2	2.1	1.86	1.62	1.09	1.51	1.68	1.65	1.23	0.85	1.07	1.03	0.63	0.81	0.63	0.67	0.67	0.57	1
5585	1.65	2.97	2.78	2.48	2.2	1.21	1.88	1.99	1.98	1.58	0.84	1.12	1.17	0.65	1.01	0.58	0.65	0.74	0.49	1
5017	1.93	3.45	3.3	2.92	2.72	1.44	2.04	2.28	2.38	1.6	1.29	1.55	1.48	0.89	1.2	0.9	1.01	0.99	0.72	2
5036	1.68	3.08	2.84	2.59	2.27	1.22	1.68	1.94	1.83	1.35	0.99	1.11	1.13	0.6	0.86	0.66	0.7	0.74	0.57	2
5107	1.56	2.99	2.88	2.35	2.11	1.18	1.83	2.09	2	1.29	0.89	1.19	1.23	0.65	1	0.57	0.61	0.57	0.56	2
5117	1.88	3.08	3	2.74	2.29	1.29	1.81	2.07	1.96	1.48	1.15	1.42	1.41	0.79	0.93	0.73	0.77	0.87	0.7	2
5588	1.68	3.14	3.02	2.61	2.34	1.32	2	2.26	1.96	1.51	1.18	1.49	1.37	0.85	0.97	0.65	0.94	0.8	0.63	2
5061	2.19	3.65	3.47	3.04	2.68	1.6	1.94	2.26	2.33	1.63	1.3	1.6	1.53	0.97	1.15	0.62	0.89	0.72	0.64	3
5065	2.67	3.81	3.64	3.36	3.07	1.55	2.19	2.5	2.34	1.69	1.24	1.52	1.49	0.85	1.29	0.78	0.83	0.87	0.8	3
5067	2.59	3.9	3.67	3.3	3.05	1.73	2.18	2.47	2.57	1.74	1.3	1.64	1.55	0.86	1.46	0.98	1.13	1.14	0.78	3
5090	2.06	3.96	3.82	3.38	3	1.41	2.01	2.31	2.18	1.56	1.36	1.65	1.53	1.04	1.28	0.66	0.84	0.84	0.66	3
6137	2.15	3.84	3.74	3.39	3.21	1.59	2.27	2.55	2.39	1.84	1.23	1.68	1.55	0.91	1.22	0.59	0.77	0.8	0.71	3
5109	2.33	4.04	3.92	3.56	3.09	1.66	2.27	2.88	2.72	2.11	1.33	1.71	1.56	1.25	1.3	0.76	0.79	1.07	0.69	4
5120	2.35	3.91	3.92	3.45	3.2	1.63	2.24	2.58	2.36	1.75	1.22	1.57	1.49	0.82	1.43	0.91	0.98	1.04	0.85	4
5140	2.54	3.83	3.6	3.09	2.96	1.44	2.02	2.34	2.21	1.63	1.3	1.46	1.57	0.99	1.21	0.79	0.78	1.02	0.71	4
5269	2.14	3.84	3.7	3.33	3.02	1.6	2.16	2.46	2.56	1.95	1.42	1.66	1.44	1.01	1.32	1.01	1.13	1.16	0.81	4
6130	2.32	4.06	3.88	3.51	3.16	1.66	2.28	2.61	2.78	2.16	1.33	1.71	1.68	1.18	1.32	0.72	0.85	0.88	0.73	4
5050	2.59	4.21	4.16	3.8	3.45	1.68	2.4	2.87	2.61	1.94	1.3	1.74	1.61	0.98	1.23	0.96	1.06	1.12	0.96	5
5133	3.08	4.43	4.43	3.87	3.59	2.05	2.57	2.88	2.74	2.15	1.37	1.72	1.68	1.25	1.51	0.85	0.97	1.01	0.85	5
5141	2.48	4.49	4.24	3.81	3.57	1.64	2.42	2.71	2.56	1.86	1.18	1.57	1.45	0.84	1.08	0.81	0.87	0.94	0.81	5
5143	2.94	4.41	4.36	3.95	3.54	1.64	2.29	2.97	2.81	2.17	1.47	1.82	1.75	1.11	1.18	0.88	1	0.99	0.81	5
5156	2.2	3.92	3.86	3.38	3	1.93	2.18	2.45	2.59	1.78	1.47	1.56	1.46	1.15	1.45	0.84	0.89	0.9	0.8	5

7020	216	4 17	1.00	2.54	2.15	1.26	2.46	2.7	2.5	1 75	1.20	1.57	1 57	1.01	1 42	0.0	0.05	0.0	0.76	-
7038	2.16	4.17	4.08	3.54	3.15	1.36	2.46	2.7	2.5	1.75	1.38	1.57	1.57	1.01	1.43	0.8	0.85	0.9	0.76	5
7039	2.87	4.32	4.38	3.88	3.5	1.79	2.59	3.05	2.9	2.13	1.29	1.76	1.89	1.28	1.59	0.87	0.94	0.96	0.88	5
7040	2.76	4.29	4.23	3.71	3.19	1.57	2.53	2.87	2.71	2.01	1.41	1.74	1.64	1.02	1.4	0.88	1.08	0.97	0.77	5
7121	2.66	4.01	3.93	3.51	3.17	1.54	2.26	2.58	2.44	1.82	1.25	1.53	1.54	1.03	1.22	0.78	1	1.06	0.81	5
7244	2.2	4.08	4.01	3.51	3.23	1.56	2.23	2.63	2.72	2.1	1.4	1.71	1.64	1.03	1.3	0.79	0.8	1.01	0.69	5
5056	2.51	4.39	4.33	3.82	3.41	1.77	2.59	2.9	2.8	1.92	1.61	1.94	1.81	1.15	1.49	1.07	1.11	1.16	0.85	6
5057	3.21	4.84	4.75	4.15	3.75	1.93	2.79	3.57	3.29	2.49	1.66	1.94	2.07	1.32	1.57	0.87	1.01	1.23	0.72	6
5079	3.04	4.54	4.5	3.85	3.55	1.87	2.71	3.09	2.86	1.95	1.47	1.67	1.56	1.14	1.47	0.87	1.16	1.05	0.86	6
5142	3.05	4.37	4.24	3.85	3.56	1.89	2.54	2.84	2.74	2.07	1.55	1.71	1.75	1.18	1.2	0.93	1.2	1.23	1.06	6
5343	3.13	4.44	4.26	3.81	3.47	1.83	2.51	3.11	2.94	2.19	1.47	1.9	1.81	1.16	1.56	0.9	1.05	1.06	0.89	6
7041	2.97	4.42	4.13	3.8	3.55	1.64	2.56	2.94	2.79	1.95	1.46	1.77	1.67	1.15	1.41	0.92	0.98	1.23	0.9	6
7042	2.54	4.5	4.3	4.01	3.65	1.75	2.62	3.24	2.97	2.31	1.55	1.97	1.84	1.11	1.57	0.94	1.05	1.09	0.91	6
7043	2.97	4.15	3.93	3.57	3.25	1.99	2.65	2.98	2.86	2.17	1.31	1.69	1.65	1.25	1.48	0.91	1.05	1.06	0.92	6
7254	3.03	4.4	4.26	3.81	3.6	1.82	2.5	3.16	3.02	2.25	1.53	1.93	1.87	1.16	1.48	0.98	1.1	1.11	1.07	6
7278	2.97	4.5	4.34	3.83	3.56	1.99	2.76	3.15	2.98	2.1	1.46	1.86	1.91	1.29	1.64	0.96	1.09	1.2	0.91	6
5136	3.49	5.06	5.04	4.41	3.93	1.87	2.67	3.5	3.15	2.31	1.63	2.02	1.59	0.98	1.28	0.91	0.99	1.27	0.87	7
5137	3.37	5.33	5.22	4.69	4.18	2.2	2.92	3.24	3	2.35	1.86	1.99	2.18	1.47	1.76	1.03	1.11	1.19	0.87	7
5145	3.48	4.91	4.76	4.33	3.92	1.92	2.97	3.4	3.13	2.38	1.79	2.08	1.93	1.32	1.66	0.93	1.02	1	1.07	7
5153	3.51	4.79	4.6	4.06	3.81	2.44	2.98	3.45	3.31	2.35	1.94	2.2	2.2	1.54	1.82	1.35	1.19	1.5	1.31	7
5926	2.89	5	4.89	4.03	3.96	2.21	2.9	3.28	2.81	2.12	1.69	2.06	1.91	1.29	1.62	0.99	1.31	1.33	1.16	7
7044	3.37	5.05	4.83	4.3	3.94	2.22	3.04	3.22	3.14	2.12	1.79	2.22	1.98	1.32	1.74	1.15	1.31	1.33	0.94	7
7082	3.26	4.98	4.79	4.34	4.02	2.19	3.02	3.39	3.16	2.41	1.78	2.14	2.02	1.41	1.63	0.91	1.02	1.03	0.87	7
7139	3.01	4.63	4.52	4.04	3.66	2.14	2.58	3.09	2.96	2.09	1.62	2.01	1.89	1.42	1.61	1.03	1.2	1.25	0.87	7
7207	3.14	4.85	4.7	4.11	3.84	1.81	2.96	3.29	3.09	2.05	1.76	2.1	1.93	1.25	1.66	1.24	1.23	1.28	0.88	7
7285	3.47	4.95	4.86	4.25	3.8	2.14	2.85	3.19	2.99	2.33	1.43	2.02	1.95	1.23	1.63	1.04	1.27	1.29	1.17	7
5054	3.77	5.59	5.28	4.64	4.08	2.32	3.23	3.51	3.23	2.34	1.79	2.18	2.12	1.45	1.75	1.2	1.3	1.13	1.01	8
5062	3.53	5.02	4.92	4.44	4.08	2.09	3.19	3.47	3.35	2.62	1.87	2.31	2.26	1.44	1.82	1.34	1.24	1.52	1.32	8
5761	3.3	4.96	4.92	4.31	3.82	2.24	2.98	3.41	3.19	2.41	1.77	2.09	2.09	1.38	1.77	1.09	1.17	1.43	1.25	8
5762	3.5	5.08	4.97	4.39	3.87	2.28	3.06	3.45	3.28	2.46	1.89	2.23	2.12	1.44	1.74	1.18	1.24	1.5	1.05	8
5776	2.82	4.83	4.56	4.08	3.8	2.14	3.03	3.29	3.15	2.49	1.79	2.12	1.98	1.35	1.63	0.95	1.26	1.32	1.18	8
7112	3.31	4.59	4.56	4.07	3.81	2.19	2.77	3.14	2.95	2.3	1.59	1.9	1.8	1.27	1.66	1.2	1.27	1.29	1.22	8
7115	3.39	5.1	5.04	4.53	4.2	2.46	3.26	3.52	3.36	2.65	1.93	2.34	2.19	1.56	1.76	1.13	1.2	1.46	1.1	8
7226	3.48	5.36	5.34	4.66	4.19	2.24	3.07	3.51	3.3	2.41	1.85	2.29	2.17	1.39	1.76	1.04	1.16	1.17	0.98	8
7249	3.6	5.5	5.36	4.82	4.38	2.34	3.09	3.32	3.25	2.59	1.76	2.14	2.1	1.6	1.78	1.07	1.39	1.45	1.2	8

5045	3.69	5.43	5.2	4.54	4.13	2.41	3.28	3.7	3.53	2.77	1.88	2.35	2.26	1.62	1.77	1.07	1.42	1.5	1.11	9
6022	3.93	5.83	5.66	5.05	4.67	2.53	3.4	3.89	3.7	2.77	2.07	2.64	2.48	1.78	1.87	1.37	1.61	1.64	1.41	9
6023	3.7	5.28	5.36	4.9	4.34	2.34	3.15	3.67	3.42	2.69	1.83	2.21	2.12	1.4	1.89	1.42	1.49	1.26	1.36	9
6024	3.4	5.21	5.3	4.69	4.35	2.12	3.37	3.81	3.53	2.77	1.97	2.41	2.23	1.56	1.83	1.4	1.51	1.49	1.34	9
6025	3.95	6	5.82	5	4.59	2.68	3.59	4.13	3.78	2.87	2	2.48	2.38	1.65	1.71	1.3	1.42	1.2	1.27	9
7075	3.35	5	4.74	4.05	3.74	2.1	2.88	3.18	2.92	2.26	1.63	1.98	1.86	1.16	1.54	1.19	1.24	1.23	1.14	9
7081	3.66	5.24	5.32	4.58	4.3	2.37	3.13	3.6	3.31	2.43	1.82	2.27	2.13	1.33	1.82	1.5	1.57	1.61	1.41	9
7100	3.82	5.46	5.56	4.94	4.48	2.01	3.2	3.71	3.64	2.73	1.72	2.34	2.25	1.57	1.97	1.41	1.28	1.4	1.42	9
7224	3.9	5.92	5.7	5.01	4.69	2.65	3.54	3.93	3.74	2.72	2.01	2.47	2.32	1.7	1.94	1.49	1.59	1.53	1.35	9
7284	3.33	4.92	4.95	4.58	4.28	2.22	3.01	3.42	3.26	2.52	1.77	2.2	2.1	1.37	1.73	1.23	1.3	1.36	1.15	9
5702	3.61	5.52	5.61	4.89	4.54	2.48	3.49	3.95	3.67	2.92	2.12	2.51	2.35	1.62	1.99	1.5	1.53	1.51	1.38	10
5707	3.79	5.47	5.36	4.72	4.33	2.48	3.32	3.77	3.55	2.74	1.92	2.34	2.21	1.39	1.94	1.28	1.12	1.51	1.3	10
5717	3.54	5.51	5.4	4.87	4.49	2.37	3.26	3.71	3.52	2.78	1.82	2.15	2.08	1.59	1.78	1.19	0.97	1.37	1.23	10
5725	4.12	5.83	5.55	4.88	4.47	2.79	3.62	4.05	3.83	2.98	2.15	2.68	2.57	1.74	2.08	1.47	1.56	1.62	1.42	10
5726	3.75	5.38	5.35	4.73	4.42	2.47	3.06	3.51	3.23	2.53	1.86	2.27	2.14	1.43	1.82	1.33	1.44	1.43	1.3	10
5728	3.82	5.65	5.5	4.95	4.66	2.58	3.43	3.91	3.72	2.88	1.92	2.43	2.3	1.55	1.84	1.44	1.56	1.56	1.38	10
5754	3.66	5.32	5.12	4.59	4.18	2.21	3.17	3.61	3.45	2.7	1.86	2.37	2.2	1.53	1.83	1.08	1.48	1.5	1.14	10
5763	3.39	5.06	4.95	4.38	3.89	2.14	2.86	3.39	3.19	2.37	1.64	2.09	2.01	1.37	1.77	1.06	1.44	1.45	1.04	10
5773	4.1	5.75	5.63	5.03	4.58	2.65	3.44	3.94	3.78	2.89	2.03	2.53	2.51	1.8	2.01	1.58	1.6	1.66	1.48	10
5777	3.66	5.27	5.04	4.54	4.15	2.36	3.28	3.71	3.48	2.71	1.97	2.39	2.3	1.57	1.77	1.32	1.44	1.5	1.24	10
7134	3.94	5.66	5.71	5.02	4.72	2.58	3.52	3.77	3.66	2.78	2.03	2.45	2.39	1.58	2.13	1.41	1.51	1.62	1.53	10
7189	3.88	5.6	5.45	4.72	4.33	2.59	3.58	3.96	3.66	2.94	2.15	2.55	2.3	1.71	2.07	1.4	1.51	1.53	1.34	10
7237	3.71	5.47	5.33	4.73	4.24	2.48	3.29	3.81	3.44	2.64	1.79	2.3	2.08	1.47	1.88	1.34	1.5	1.55	1.37	10
7283	3.69	5.77	5.61	4.93	4.5	2.49	3.31	3.82	3.56	2.66	1.85	2.36	2.29	1.48	1.9	1.41	1.47	1.43	1.27	10
5703	3.6	5.13	5.04	4.44	4.02	2.36	3.41	3.75	3.56	2.61	1.99	2.43	2.3	1.63	1.89	1.35	1.45	1.53	1.23	11
5708	3.88	5.75	5.38	4.91	4.52	2.57	3.49	3.96	3.75	2.87	1.95	2.43	2.3	1.51	1.7	1.39	1.49	1.59	1.35	11
5709	4	5.9	5.72	4.96	4.61	2.72	3.63	4.15	3.91	2.93	1.94	2.46	2.36	1.48	2.05	1.36	1.49	1.63	1.45	11
5718	4.41	6.08	6	5.45	5.02	3.01	3.94	4.26	4.01	3.15	2.27	2.73	2.73	1.77	1.99	1.4	1.59	1.54	1.43	11
5719	4.22	6.07	5.85	4.94	4.63	2.73	3.59	4.06	3.87	3.1	1.99	2.43	2.39	1.58	1.76	1.46	1.55	1.73	1.37	11
5729	3.97	5.9	5.71	5.11	4.86	2.67	3.55	4.07	3.83	3.01	2.05	2.53	2.38	1.63	1.87	1.49	1.57	1.6	1.45	11
5733	3.94	5.61	5.46	4.75	4.46	2.55	3.52	4	3.79	2.94	1.94	2.49	2.25	1.22	1.99	1.47	1.58	1.71	1.38	11
5741	3.88	5.97	5.77	5.33	4.84	2.54	3.45	3.9	3.76	2.96	1.98	2.39	2.28	1.66	1.94	1.4	1.54	1.51	1.37	11
5745	4.13	5.86	5.62	4.77	4.64	2.84	3.58	3.95	3.69	3.06	1.99	2.49	2.44	1.68	1.88	1.45	1.46	1.55	1.26	11
5747	4.26	6.02	6.05	5.26	4.92	2.87	3.7	4.2	3.88	3.04	2.1	2.57	2.45	1.69	2.11	1.49	1.61	1.64	1.57	11

5908	3.98	5.76	5.62	5.05	4.78	2.61	3.5	4.01	3.8	2.96	2	2.52	2.39	1.61	1.82	1.47	1.54	1.61	1.4	11
7068	4.09	5.87	5.71	5.07	4.63	2.89	3.71	4.14	3.88	3.02	2.14	2.65	2.45	1.81	1.92	1.33	1.49	1.51	1.41	11
7072	3.95	6.18	5.99	5.31	5.01	2.92	3.95	4.4	4.14	3.35	2.21	2.8	2.76	1.87	2.02	1.62	1.74	1.68	1.55	11
7072	4.2	5.81	5.7	5.15	4.76	2.55	3.46	3.86	3.66	2.9	2.15	2.61	2.42	1.73	2.08	1.52	1.68	1.69	1.47	11
7227	3.87	5.62	5.43	4.89	4.44	2.61	3.32	3.74	3.49	2.81	1.97	2.31	2.18	1.63	1.82	1.36	1.52	1.53	1.37	11
5710	4.18	6.05	5.84	5	4.71	2.76	3.7	4.15	3.98	3.02	2.01	2.55	2.38	1.54	1.85	1.42	1.51	1.66	1.39	12
5716	4.09	5.97	5.65	4.94	4.5	2.88	3.73	4.29	3.97	3.09	2.04	2.68	2.47	1.67	1.83	1.4	1.47	1.39	1.38	12
5723	4.21	6.31	6.13	5.61	5.1	2.99	3.98	4.43	4.16	3.21	2.33	2.85	2.68	1.76	2.21	1.6	1.77	1.82	1.28	12
5727	3.77	5.83	5.89	5.11	4.56	2.75	3.59	4.1	3.89	2.98	2.15	2.63	2.59	1.68	1.97	1.43	1.63	1.72	1.45	12
5734	4.02	5.7	5.62	4.65	4.51	2.62	3.54	4.02	3.8	2.96	1.94	2.48	2.35	1.27	2.07	1.45	1.6	1.65	1.38	12
5744	4.15	6.06	5.91	5.37	4.86	2.89	3.71	4.1	3.75	3	2.09	2.64	2.46	1.76	2.11	1.58	1.74	1.74	1.57	12
5746	4.27	6.04	5.78	4.99	4.71	2.86	3.67	4.06	3.78	3.21	2.11	2.6	2.51	1.74	2.09	1.52	1.61	1.62	1.35	12
5758	4.24	6.26	6.16	5.57	4.93	2.98	3.76	4.23	4.09	3.23	2.16	2.76	2.71	1.94	1.99	1.52	1.64	1.62	1.54	12
5765	4.01	6.07	5.83	5.2	4.56	2.76	3.61	4.08	3.82	2.99	1.93	2.48	2.32	1.5	1.77	1.4	1.64	1.53	1.45	12
5769	4.13	6.36	6.24	5.45	5	2.83	3.87	4.35	4.13	3.16	2.12	2.57	2.38	1.75	1.89	1.45	1.57	1.71	1.39	12
5774	4.32	6.56	6.21	5.75	5.24	3.03	3.82	4.25	4.09	3.17	2.1	2.56	2.48	1.69	2.07	1.57	1.74	1.79	1.53	12
7107	4.65	7.15	6.85	6.28	5.77	3.38	4.29	4.68	4.47	3.53	2.59	3.01	2.93	1.95	2.36	1.63	1.83	1.89	1.49	12
7200	3.8	5.56	5.3	4.44	4.08	2.54	3.32	3.94	3.64	2.82	1.92	2.44	2.27	1.35	1.89	1.44	1.5	1.52	1.4	12
7210	3.91	5.98	5.84	5.29	4.66	2.8	3.65	4.17	3.91	3.05	1.96	2.53	2.28	1.6	2.11	1.47	1.61	1.6	1.42	12
7218	4.17	5.87	5.81	5.07	4.8	2.82	3.56	3.96	3.73	2.93	2.09	2.44	2.34	1.69	2.1	1.47	1.6	1.54	1.52	12
5701	3.88	6.05	5.92	5.13	4.58	2.82	3.76	4.24	3.92	3.05	2.33	2.68	2.53	1.78	1.88	1.49	1.63	1.63	1.43	13
5705	4.18	5.94	5.64	5.05	4.36	2.68	3.59	3.94	3.72	2.83	2.09	2.44	2.33	1.47	2.07	1.62	1.71	1.72	1.61	13
5706	4.28	6.13	5.96	5.18	4.91	2.97	3.96	4.45	4.14	3.26	2.36	2.78	2.67	1.97	2.12	1.63	1.79	1.77	1.61	13
5714	3.99	5.85	5.74	5.1	4.7	2.82	3.55	4.14	3.76	2.88	1.89	2.46	2.32	1.51	1.74	1.35	1.44	1.43	1.31	13
5721	4.2	6.01	5.7	4.99	4.65	2.85	3.76	4.11	3.88	3	2.14	2.55	2.42	1.62	2.03	1.7	1.87	1.78	1.6	13
5735	4.02	5.55	5.58	4.77	4.49	2.73	3.56	4.07	3.79	3.05	2.01	2.48	2.33	1.24	2.02	1.52	1.65	1.71	1.42	13
5748	4.28	6.17	6.04	5.19	5.04	2.91	3.84	4.29	3.95	3.08	2.23	2.7	2.52	1.76	2.06	1.61	1.68	1.72	1.51	13
5756	4.24	6.37	5.99	5.35	4.85	2.78	3.81	4.3	4.05	3.2	2.06	2.43	2.4	1.67	2.12	1.63	1.69	1.75	1.51	13
5759	4.2	6.34	6.13	5.43	4.86	3.02	3.81	4.29	4.08	3.25	2.17	2.76	2.71	1.88	1.91	1.49	1.64	1.63	1.46	13
5770	4.16	6.46	6.26	5.51	5.06	2.94	3.81	4.36	4.14	3.17	2.13	2.65	2.49	1.71	1.97	1.49	1.62	1.7	1.39	13
5902	4.11	6.36	6.22	5.66	5.1	2.9	3.8	4.18	3.99	3.07	2.22	2.62	2.51	1.71	2.06	1.6	1.66	1.7	1.51	13
7071	4.23	6.11	5.97	5.25	4.62	2.71	3.58	4.12	3.66	2.82	2.2	2.62	2.39	1.72	2.04	1.48	1.58	1.59	1.39	13
7077	4.05	5.84	5.5	4.81	4.51	2.67	3.72	4.14	3.84	2.9	2	2.46	2.3	1.02	1.85	1.49	1.54	1.6	1.42	13
7247	4.42	6.28	6.08	5.39	4.9	2.86	3.74	4.17	3.89	2.95	2.16	2.55	2.5	1.67	2.06	1.56	1.67	1.67	1.52	13

50.50	4.0.5		- o -	7 00	4.0	2.02	2.01	100	201	2.1.1	2.17	2	2.40	1.50	2.11	4.50	1.00	1.07	1	10
7252	4.06	6.24	5.95	5.09	4.8	2.93	3.81	4.26	3.96	3.14	2.15	2.66	2.48	1.73	2.11	1.73	1.82	1.85	1.55	13
5715	4	5.84	5.66	5.14	4.69	2.87	3.55	4.17	3.8	2.89	1.95	2.47	2.38	1.51	1.73	1.36	1.4	1.47	1.3	14
5737	4.71	6.59	6.27	5.51	5.22	3.02	3.93	4.28	4.01	3.24	2.3	2.77	2.68	1.78	2.17	1.68	1.77	1.77	1.69	14
5743	4.2	6.18	6.16	5.71	5.14	2.82	3.68	4.13	3.95	3.17	2.15	2.57	2.34	1.8	1.98	1.53	1.62	1.63	1.53	14
5755	3.94	5.92	5.88	5.28	4.78	2.82	3.53	3.96	3.72	2.95	2.04	2.47	2.37	1.75	1.4	1.53	1.7	1.73	1.52	14
5760	4.31	6.37	6.24	5.63	5.09	3.05	3.72	4.2	4.07	3.28	2.2	2.82	2.72	1.86	1.96	1.49	1.61	1.62	1.5	14
5900	4.18	6.08	5.94	5.2	4.77	2.72	3.78	4.25	4.04	3.11	2.08	2.57	2.44	1.65	2.02	1.44	1.58	1.67	1.44	14
5901	4.01	5.76	5.6	5.07	4.54	2.69	3.49	3.91	3.68	2.95	1.89	2.44	2.47	1.7	1.78	1.38	1.37	1.51	1.38	14
5910	4.36	6.4	6.2	5.57	5.13	3	3.92	4.39	4.05	3.17	2.31	2.81	2.63	1.87	2.06	1.68	1.84	1.84	1.62	14
5914	4.58	6.42	6.13	5.36	5.08	3.19	4.11	4.55	4.2	3.31	2.32	2.68	2.56	1.79	2.09	1.66	1.73	1.76	1.51	14
5917	4.44	6.17	6.14	5.45	5.08	2.94	3.87	4.27	3.97	3.12	2.23	2.7	2.51	1.71	2.09	1.61	1.68	1.74	1.52	14
5925	4.74	6.65	6.16	5.32	5.12	3.25	4.24	4.75	4.39	3.37	2.51	3.05	2.9	1.98	1.86	1.56	1.72	1.75	1.43	14
7209	4.22	6.38	6.36	5.66	5.29	2.87	3.71	4.14	3.89	3.04	2.1	2.64	2.45	1.66	2.17	1.55	1.76	1.71	1.57	14
7216	3.86	5.99	5.92	5.41	5	2.8	3.75	4.13	3.8	3.02	2.19	2.61	2.48	1.66	2.01	1.49	1.72	1.62	1.52	14
7264	4.39	6.65	6.44	5.79	5.42	3.15	4.03	4.54	4.29	3.23	2.31	2.78	2.51	1.68	2.24	1.68	1.85	1.93	1.66	14
5039	4.6	6.42	6.49	5.66	5.15	3.01	3.84	4.32	4.06	3.19	2.3	2.66	2.56	1.95	2.07	1.77	1.79	1.82	1.64	15
5905	4.5	6.44	6.47	5.78	5.32	2.92	3.95	4.49	4.09	3.26	2.2	2.67	2.5	1.85	2.04	1.62	1.69	1.75	1.58	15
5909	4.14	6.1	5.89	5.22	5.03	2.74	3.67	4.18	3.94	3.09	2.06	2.59	2.46	1.67	1.83	1.58	1.61	1.66	1.45	15
5911	4.03	5.75	5.54	4.85	4.5	2.67	3.56	4.1	3.85	3.04	2.01	2.5	2.36	1.28	2.04	1.5	1.65	1.72	1.41	15
5913	4.74	6.65	6.41	5.65	5.28	3.06	4.01	4.31	4.02	3.28	2.16	2.7	2.64	1.77	2.14	1.68	1.81	1.76	1.7	15
5915	4.3	6.39	6.2	5.71	5.19	2.82	3.7	4.16	3.98	3.21	2.09	2.57	2.37	1.78	1.95	1.59	1.7	1.69	1.54	15
5919	4.08	5.81	5.27	4.49	4.23	2.73	3.49	3.94	3.59	2.7	2.01	2.39	2.13	1.18	1.76	1.45	1.49	1.57	1.4	15
5922	4.54	6.47	6.33	5.7	5.29	2.99	3.98	4.45	4.18	3.24	2.34	2.83	2.66	1.68	2.02	1.69	1.79	1.86	1.57	15
5923	4.2	6.52	6.35	5.54	5.07	2.85	3.84	4.42	4.17	3.25	2.2	2.58	2.48	1.7	2.04	1.5	1.62	1.68	1.41	15
6026	3.92	5.87	5.63	5.12	4.72	2.98	3.59	4.18	3.96	3.15	2.08	2.58	2.47	1.74	1.97	1.57	1.69	1.69	1.54	15
5030	3.79	5.72	5.57	4.93	4.56	2.84	3.65	4.1	3.8	2.9	2.1	2.59	2.39	1.61	2.05	1.57	1.6	1.57	1.5	16
5058	4.71	6.82	6.68	5.9	5.46	3.15	4.07	4.52	4.19	3.25	2.32	2.78	2.59	1.67	2.23	1.69	1.84	1.78	1.62	16
5103	4.27	6.12	5.98	5.38	4.9	2.81	3.84	4.19	3.93	3.05	2.21	2.62	2.4	1.59	2.07	1.54	1.73	1.73	1.42	16
5139	4.31	6.48	6.42	5.82	5.42	3.02	3.88	4.31	4.12	3.21	2.05	2.62	2.49	1.74	2.06	1.63	1.8	1.84	1.55	16
5906	4.55	6.48	6.5	5.77	5.39	2.92	4.01	4.54	4.1	3.24	2.2	2.73	2.52	1.9	2.08	1.63	1.66	1.81	1.59	16
5916	4.01	6.11	6.07	5.39	4.95	2.59	3.57	4.08	3.86	2.91	1.92	2.33	2.24	1.34	1.9	1.43	1.6	1.66	1.51	16
5918	4.18	6	6.05	5.29	4.95	2.84	3.71	4.3	3.96	2.98	2.07	2.5	2.42	1.51	2.05	1.67	1.73	1.72	1.63	16
5924	4.36	6.47	6.46	5.67	5.15	2.83	4.03	4.62	4.26	3.33	2.22	2.86	2.69	1.75	1.73	1.33	1.74	1.81	1.32	16
6027	4.26	6.17	5.87	5.28	4.73	2.87	3.79	4.19	3.92	3.05	2.15	2.58	2.46	1.66	2.02	1.71	1.84	1.82	1.69	16

6028	4.43	6.34	6.2	5.58	5.11	2.98	3.92	4.42	4.12	3.16	2.34	2.84	2.67	1.86	2.07	1.77	1.85	1.88	1.59	16
5055	4.09	5.68	5.58	4.77	4.67	2.79	3.67	4.2	3.84	3.14	2.02	2.44	2.38	1.84	1.91	1.45	1.65	1.71	1.57	17
5071	3.97	6.24	6.28	5.54	5.03	2.77	3.72	4.17	4	3.1	2.09	2.58	2.52	1.68	1.85	1.52	1.59	1.67	1.46	17
5081	4.23	6.15	6.01	5.38	4.85	2.85	3.72	4.07	3.84	2.99	2.21	2.59	2.54	1.73	1.89	1.49	1.58	1.59	1.46	17
5099	3.98	5.97	5.82	5.23	4.87	2.75	3.64	4.07	3.76	2.89	2.15	2.48	2.46	1.76	2.01	1.57	1.71	1.68	1.54	17
5100	4.27	6.3	5.95	5.39	5.01	3.08	3.89	4.34	3.99	3.25	2.2	2.75	2.59	1.89	1.95	1.58	1.7	1.73	1.55	17
5116	4.21	6.3	6.13	5.69	5.26	3.07	3.84	4.29	4.08	3.16	2.34	2.77	2.65	1.94	2.27	1.59	1.82	1.9	1.61	17
5118	4.08	6	5.66	4.91	4.44	2.7	3.47	4.02	3.63	2.8	1.87	2.43	2.25	1.4	1.87	1.49	1.61	1.62	1.45	17
5126	4.63	6.64	6.56	5.56	5.19	3.27	4.14	4.68	4.29	3.46	2.29	2.95	2.76	2.06	2.42	1.73	1.87	1.92	1.7	17
5268	3.84	5.69	5.61	4.91	4.55	2.76	3.59	4.1	3.82	2.97	2.14	2.54	2.4	1.6	2.04	1.58	1.62	1.56	1.53	17
5920	4.13	6.38	6.17	5.59	4.88	2.8	3.68	4.25	3.98	3.04	2.02	2.56	2.46	1.6	2.14	1.55	1.71	1.69	1.51	17
5086	4.28	6.34	6.31	5.72	5.13	2.82	3.81	4.4	4.11	3.25	2.3	2.69	2.63	1.95	2.31	1.78	1.84	1.91	1.63	18
5092	4.59	6.75	6.47	5.71	5.39	3.27	4.21	4.72	4.34	3.57	2.58	3.07	2.86	2.11	2.38	1.81	1.96	1.94	1.8	18
5104	4.01	5.88	5.83	5.19	4.66	2.78	3.79	4.11	3.88	2.98	2.09	2.62	2.57	1.73	1.98	1.51	1.51	1.61	1.44	18
5110	3.98	5.98	5.77	5.11	4.52	2.52	3.47	4.03	3.73	2.7	1.97	2.46	2.31	1.44	1.92	1.39	1.5	1.53	1.36	18
5112	4.09	5.87	5.86	5.32	4.79	2.93	3.65	4.14	3.85	3.04	2.12	2.63	2.49	1.79	2.26	1.63	1.8	1.86	1.56	18
5271	4.09	6.2	6.01	5.41	4.91	2.85	3.72	4.13	3.83	3.02	2.17	2.73	2.45	1.74	2.19	1.62	1.78	1.73	1.59	18
5273	4.32	6.04	5.79	4.98	4.78	2.92	3.72	4.11	3.86	3.19	2.09	2.59	2.51	1.76	1.81	1.55	1.61	1.65	1.35	18
5274	4.68	6.54	6.43	5.7	5.18	3.29	4.1	4.68	4.34	3.42	2.34	3	2.78	2.04	2.41	1.75	1.87	1.87	1.75	18
5294	4.14	6.18	6.02	5.36	5.08	2.8	3.7	4.22	3.99	3.06	2.02	2.62	2.42	1.74	1.88	1.58	1.63	1.68	1.49	18
5304	3.83	5.77	5.66	4.99	4.6	2.75	3.65	4.12	3.83	2.97	2.14	2.6	2.41	1.58	2.02	1.56	1.58	1.58	1.48	18

APPENDIX B

ORIGINAL DATASET OF MALE HISPANIC POPULATION

Image																				
ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Age
5589	1	1.59	1.52	1.33	1.22	0.79	1.1	1.24	1.19	0.9	0.63	0.82	0.81	0.48	0.57	0.42	0.51	0.47	0.39	0
5590	1.25	1.87	1.87	1.63	1.59	1.04	1.35	1.53	1.47	1.19	0.8	1.04	0.96	0.6	0.75	0.55	0.66	0.67	0.51	0
5591	1.26	2.13	2.01	1.86	1.57	1.01	1.4	1.59	1.5	1.13	0.81	1.01	0.97	0.65	0.77	0.56	0.6	0.68	0.55	0
5592	1.37	2.3	2.13	1.84	1.69	1.02	1.51	1.72	1.67	1.28	0.81	1.02	0.99	0.65	0.7	0.46	0.56	0.51	0.41	0
5272	2.05	3.49	3.27	2.89	2.74	1.51	2.15	2.6	2.44	1.97	1.29	1.62	1.57	1.07	1.04	0.72	0.85	0.85	0.72	1
5538	0.87	1.4	1.34	1.2	1.05	0.68	0.96	1.12	1.02	0.81	0.53	0.67	0.64	0.42	0.46	0.34	0.4	0.41	0.37	1
5540	1.58	2.78	2.47	2.25	1.98	1.2	1.81	2.05	1.81	1.43	0.9	1.12	1.09	0.8	1.06	0.63	0.7	0.72	0.63	1
5593	1.53	2.66	2.45	2.14	1.95	1.18	1.86	2.07	1.99	1.54	0.98	1.26	1.16	0.61	1.07	0.64	0.75	0.78	0.57	1
5594	1.57	2.55	2.45	2.26	1.96	1.28	1.78	1.95	1.86	1.49	0.95	1.19	1.18	0.78	0.91	0.68	0.73	0.76	0.56	1
5542	1.87	2.99	2.73	2.33	2.16	1.4	2.07	2.32	2.21	1.73	1.19	1.46	1.41	0.95	1.12	0.69	0.85	0.87	0.67	2
5543	1.89	3.18	3.04	2.72	2.51	1.49	2.17	2.47	2.36	1.77	1.3	1.61	1.57	1.02	1.16	0.82	0.9	0.96	0.76	2
5544	1.84	3.13	2.98	2.64	2.39	1.34	2.06	2.35	2.21	1.71	1.11	1.37	1.33	0.85	1.2	0.75	0.96	0.93	0.73	2
5596	2.07	3.4	3.31	2.87	2.69	1.41	2.16	2.43	2.33	1.8	1.26	1.54	1.51	0.95	1.12	0.73	0.91	0.93	0.69	2
5598	1.94	3.25	2.94	2.62	2.37	1.42	2.09	2.29	2.19	1.67	1.11	1.37	1.35	0.77	1.21	0.74	0.93	0.94	0.72	2
5270	2.21	3.48	3.24	2.97	2.63	1.49	2.09	2.4	2.29	1.71	1.26	1.47	1.43	0.89	1.17	0.9	0.78	0.94	0.68	3
5545	2.03	3.61	3.49	3.08	2.77	1.48	2.37	2.74	2.65	1.99	1.27	1.72	1.63	1.07	1.24	0.82	0.8	0.89	0.72	3
5546	0.97	1.76	1.68	1.47	1.31	0.83	1.15	1.28	1.21	0.91	0.61	0.81	0.78	0.5	0.62	0.41	0.49	0.5	0.41	3
6118	2.35	3.65	3.38	3.06	2.62	1.76	2.44	2.73	2.56	2	1.29	1.64	1.58	0.97	1.29	0.82	1	1.04	0.92	3
6148	1.99	3.62	3.44	3	2.58	1.79	2.41	2.62	2.43	1.87	1.42	1.66	1.59	0.91	1.33	0.91	1.02	1.03	0.87	3
5038	2.32	3.85	3.8	3.35	3.01	1.65	2.49	2.8	2.59	1.99	1.4	1.69	1.63	1.12	1.37	0.99	1.04	1.03	0.96	4
5105	2.1	3.71	3.55	3.23	2.85	1.58	2.43	2.81	2.66	2.01	1.48	1.86	1.75	1.1	1.35	1.08	1.11	1.19	1	4
5177	2.24	3.84	3.63	3.26	2.98	1.6	2.34	2.62	2.46	1.91	1.34	1.52	1.43	0.94	1.4	1.06	1.14	1.14	1.01	4
5316	2.73	4.63	4.61	4.13	3.73	2.12	2.71	3.17	3.03	2.26	1.48	1.86	1.8	1.17	1.53	1.01	1.21	1.2	0.93	4
6047	1.85	3.42	3.22	2.85	2.44	1.3	1.99	2.23	2.07	1.55	1.18	1.43	1.3	0.69	1.13	0.73	0.82	1	0.66	4
5053	2.77	4.43	4.17	3.73	3.29	1.76	2.54	2.82	2.62	2.03	1.48	1.76	1.7	1.14	1.43	1.06	1.14	1.21	1	5
5085	2.44	3.85	3.66	3.15	2.95	1.58	2.38	2.8	2.62	1.77	1.46	1.8	1.74	1.22	1.39	0.88	0.93	1.19	1.05	5
5106	2.8	4.3	4.08	3.66	3.24	1.83	2.79	3.14	3.01	2.25	1.69	2.09	1.97	1.32	1.63	1.22	1.25	1.3	1.1	5

5165	2.65	3.9	3.6	3.2	2.71	1.78	2.37	2.62	2.46	1.81	1.34	1.61	1.48	0.88	1.37	1.03	1.08	1.1	0.94	5
5166	2.91	4.36	4.27	3.73	3.45	1.83	2.74	3	2.8	2.15	1.58	1.94	1.88	1.34	1.53	1.07	1.21	1.25	1.03	5
7045	2.62	4.49	4.28	4	3.63	2.06	2.94	3.2	3.01	2.36	1.69	2.06	1.98	1.49	1.47	1.04	1.14	1.2	0.98	5
7104	2.82	4.37	4.17	3.67	3.46	1.94	2.71	2.98	2.8	2.24	1.49	1.76	1.73	1.15	1.43	1.07	1.14	1.16	0.96	5
7208	2.52	3.95	3.71	3.2	3.03	1.77	2.3	2.71	2.53	1.89	1.25	1.66	1.61	1.07	1.33	0.93	1.02	1.09	0.91	5
7215	2.38	4.21	3.96	3.47	3.12	1.66	2.58	2.84	2.71	1.99	1.35	1.68	1.61	0.9	1.37	0.94	1.11	1.13	0.95	5
5060	2.66	4.86	4.61	4.12	3.71	2.2	2.87	3.19	3.02	2.34	1.69	2.06	2.07	1.42	1.69	1.22	1.3	1.35	1.19	6
5063	3.31	4.86	4.66	4.12	3.85	2.14	3	3.34	3.19	2.5	1.69	2.04	1.96	1.37	1.7	1.26	1.35	1.37	1.12	6
5098	3.01	4.62	4.67	4.08	3.68	1.87	2.95	3.3	3.1	2.31	1.72	2.09	2	1.43	1.7	1.26	1.36	1.34	1.17	6
5134	2.79	4.52	4.5	3.99	3.54	1.86	2.75	3.09	3.03	2.25	1.56	1.9	1.89	1.29	1.46	1.07	1.16	1.14	1.12	6
5144	2.71	4.02	4	3.53	3.16	1.8	2.38	2.69	2.56	1.97	1.31	1.7	1.68	1.03	1.31	1	1.09	1.11	0.94	6
7046	2.92	4.43	4.35	3.84	3.45	2.03	2.75	3	2.82	2.14	1.5	1.78	1.71	1.16	1.49	1.06	1.22	1.28	1.07	6
7047	2.6	3.93	3.92	3.46	3.08	1.73	2.57	2.91	2.65	2.02	1.48	1.73	1.66	1.08	1.33	0.97	1.08	1.14	1.01	6
7048	2.92	4.63	4.38	3.82	3.46	1.97	2.6	2.93	2.76	2.17	1.54	1.97	1.86	1.29	1.51	1.07	1.18	1.23	1	6
7049	2.97	4.72	4.58	4.09	3.77	2.07	2.78	3.15	2.92	2.41	1.61	1.94	1.86	1.25	1.7	1.17	1.2	1.29	1.12	6
5029	3.31	5.15	5.02	4.44	4.11	2.32	3.04	3.42	3.19	2.48	1.9	2.28	2.08	1.4	1.71	1.23	1.36	1.38	1.1	7
5069	2.86	4.45	4.29	3.81	3.42	2.01	2.75	3.03	2.86	2.17	1.71	2.05	1.89	1.2	1.57	1.05	1.15	1.23	0.99	7
5091	3.1	4.68	4.45	4.05	3.65	2.06	2.75	3.16	2.96	2.2	1.54	1.88	1.85	1.2	1.5	1.04	1.16	1.17	1.07	7
5093	3.01	4.64	4.5	4.06	3.77	2.05	2.83	3.32	3.11	2.33	1.77	2.24	2.12	1.25	1.79	1.27	1.44	1.46	1.22	7
5108	3.03	4.65	4.5	3.89	3.59	2.16	2.84	3.07	2.83	2.29	1.76	2.15	1.96	1.36	1.65	1.18	1.26	1.36	1.19	7
7050	3.2	4.96	4.76	4.26	3.81	2.33	2.95	3.24	3.05	2.38	1.81	2.17	2.04	1.5	1.7	1.34	1.36	1.4	1.22	7
7051	3.21	4.63	4.41	3.92	3.56	2.21	2.66	3	2.89	2.23	1.63	1.94	1.91	1.39	1.64	1.21	1.26	1.3	1.15	7
7099	3.43	4.98	4.95	4.54	4	2.15	2.83	3.29	3.13	2.37	1.64	1.99	1.97	1.31	1.74	1.29	1.4	1.48	1.27	7
7133	3.16	4.75	4.61	3.94	3.66	2.26	3.02	3.32	3.12	2.33	1.74	2.14	2.04	1.46	1.73	1.22	1.35	1.41	1.2	7
7211	2.9	4.39	4.33	3.86	3.32	1.92	2.61	2.96	2.73	2.02	1.49	1.76	1.67	1.03	1.53	1.1	1.17	1.19	1.05	7
5035	3.05	4.73	4.5	4.03	3.68	2.02	2.7	2.99	2.88	2.16	1.59	1.87	1.73	1.18	1.59	1.11	1.24	1.27	1.02	8
5041	3.09	4.84	4.8	4.45	4.13	2.12	2.85	3.16	3.03	2.35	1.62	1.91	1.8	1.13	1.69	1.29	1.32	1.39	1.23	8
5064	3.46	4.9	4.88	4.43	4	2.16	3.12	3.47	3.37	2.53	1.72	2.23	2.1	1.41	1.78	1.23	1.35	1.39	1.23	8
5500	3.45	4.95	4.85	4.27	3.82	2.29	3.16	3.51	3.3	2.52	1.75	2.16	2.1	1.38	1.79	1.31	1.43	1.44	1.24	8
5547	3.15	4.63	4.67	4.17	3.9	2.04	2.99	3.3	3.21	2.5	1.74	2.08	1.99	1.41	1.63	1.25	1.3	1.32	1.16	8
5548	3.42	5.13	4.88	4.09	3.95	2.31	3.09	3.39	3.24	2.58	1.83	2.27	2.11	1.28	1.9	1.32	1.4	1.47	1.3	8
7052	3.09	4.52	4.52	4.04	3.65	2.18	2.88	3.21	3.04	2.35	1.69	2.2	2.06	1.39	1.66	1.23	1.31	1.34	1.17	8
7053	3.42	5.13	5.14	4.48	4.01	2.31	2.97	3.34	3.15	2.39	1.76	2.04	1.84	1.2	1.7	1.31	1.46	1.45	1.23	8
7097	3.12	4.72	4.6	3.96	3.57	2.27	2.89	3.14	3.09	2.39	1.81	2.09	2.02	1.4	1.83	1.26	1.37	1.37	1.15	8

7119	3.39	5	4.89	4.38	4.07	2.12	2.97	3.48	3.27	2.45	1.62	2.02	1.93	1.24	1.78	1.36	1.35	1.41	1.17	8
5023	3.39	5.01	4.99	4.42	3.93	2.21	2.99	3.34	3.17	2.4	1.83	2.1	1.95	1.49	1.77	1.3	1.33	1.38	1.19	9
5119	4.09	5.95	5.66	5.11	4.82	2.68	3.5	3.95	3.68	2.81	2.04	2.51	2.32	1.49	1.94	1.49	1.66	1.63	1.3	9
5135	3.27	4.67	4.54	3.96	3.74	2.06	2.83	3.24	3	2.26	1.55	1.94	1.82	1.07	1.64	1.2	1.3	1.35	1.17	9
5147	3.47	5	5.02	4.56	4.09	2.26	3.05	3.45	3.3	2.48	1.74	2.15	2.06	1.41	2.04	1.32	1.57	1.62	1.34	9
5549	3.84	5.71	5.61	5.06	4.49	2.4	3.08	3.73	3.41	2.42	1.5	2.04	1.89	0.9	1.78	1.27	1.48	1.57	1.18	9
7054	3.55	5.19	5.34	4.65	4.11	2.35	3.3	3.59	3.53	2.66	1.87	2.36	2.43	1.63	1.79	1.34	1.55	1.6	1.36	9
7055	3.25	4.98	4.88	4.2	3.8	2.27	3.05	3.42	3.15	2.42	1.63	2.11	1.92	1.24	1.75	1.2	1.34	1.3	1.16	9
7056	3.61	5.41	5.16	4.54	4.32	2.54	3.31	3.64	3.4	2.67	2.05	2.29	2.17	1.45	2.08	1.53	1.64	1.68	1.49	9
7070	3.66	5.28	5.19	4.48	4.04	2.57	3.18	3.6	3.3	2.63	1.82	2.25	2.16	1.68	1.86	1.34	1.44	1.49	1.35	9
7111	3.34	5.03	5.12	4.47	4.02	2.36	3.03	3.46	3.23	2.58	1.79	2.19	2.1	1.54	1.83	1.34	1.46	1.48	1.29	9
5043	3.15	4.75	4.68	4.19	3.77	2.2	2.86	3.26	3.07	2.38	1.59	1.92	1.87	1.25	1.83	1.38	1.37	1.43	1.26	10
5044	3.74	5.47	5.3	4.73	4.29	2.21	3.27	3.72	3.54	2.72	1.83	2.32	2.27	1.56	1.88	1.38	1.54	1.56	1.37	10
5089	3.7	5.5	5.44	4.78	4.27	2.36	3.29	3.64	3.39	2.59	1.89	2.35	2.21	1.44	1.75	1.21	1.38	1.46	0.98	10
5161	4.11	5.51	5.32	4.61	4.24	2.59	3.34	3.66	3.51	2.79	1.95	2.34	2.25	1.66	1.82	1.36	1.46	1.45	1.35	10
5164	3.43	4.9	4.84	4.41	3.75	2.22	3.09	3.46	3.26	2.32	1.77	2.15	2.09	1.35	1.78	1.36	1.53	1.57	1.3	10
5501	3.65	5.41	5.37	4.78	4.19	2.4	3.33	3.73	3.48	2.62	1.84	2.21	2.09	1.35	2.03	1.39	1.5	1.56	1.42	10
5502	3.14	4.93	4.78	4.26	3.8	2.14	3.04	3.49	3.25	2.48	1.6	2.05	1.92	1.23	1.77	1.21	1.36	1.39	1.17	10
5503	3.5	5.22	4.93	4.34	4	2.34	3.09	3.48	3.22	2.45	1.74	2.18	2.07	1.43	1.76	1.3	1.34	1.48	1.21	10
5504	3.72	5.11	4.87	4.28	4.09	2.62	3.16	3.37	3.22	2.48	1.95	2.27	2.19	1.42	1.71	1.38	1.48	1.57	1.39	10
5505	3.56	5.7	5.65	5	4.53	2.5	3.28	3.84	3.65	2.7	2.04	2.5	2.37	1.66	1.98	1.55	1.64	1.65	1.43	10
7057	3.53	5.44	5.33	4.71	4.37	2.53	3.06	3.56	3.36	2.7	1.81	2.28	2.19	1.64	1.83	1.39	1.5	1.58	1.46	10
7241	3.69	5.54	5.42	4.89	4.28	2.39	3.38	3.96	3.65	2.78	1.89	2.47	2.28	1.63	1.89	1.47	1.57	1.59	1.41	10
5082	3.58	5.07	4.96	4.41	3.97	2.32	3.03	3.42	3.16	2.35	1.82	2.26	2.08	1.4	1.88	1.41	1.55	1.62	1.35	11
5101	3.47	5.28	5.26	4.56	4.27	2.26	3.05	3.5	3.3	2.66	1.81	2.23	2.15	1.59	1.94	1.43	1.57	1.54	1.43	11
5211	3.59	5.47	5.45	4.8	4.46	2.56	3.33	3.78	3.58	2.78	1.96	2.47	2.38	1.66	2.06	1.6	1.59	1.63	1.53	11
5318	4.06	5.85	5.65	5.06	4.54	2.8	3.72	4.14	3.85	2.9	1.98	2.44	2.24	1.36	1.99	1.42	1.67	1.65	1.32	11
5320	3.89	5.6	5.46	4.84	4.4	2.42	3.29	3.6	3.46	2.82	2	2.46	2.3	1.72	1.96	1.5	1.61	1.6	1.36	11
5340	4.62	6.69	6.47	5.78	5.41	3.1	3.98	4.46	4.22	3.22	2.3	2.81	2.69	1.66	2.21	1.7	1.9	1.82	1.57	11
5506	3.54	5.34	5.26	4.72	4.15	2.42	3.2	3.61	3.37	2.63	1.91	2.24	2.17	1.58	1.85	1.47	1.64	1.67	1.52	11
5507	2.02	2.89	2.79	2.48	2.33	1.35	1.75	1.94	1.86	1.42	0.99	1.16	1.1	0.77	0.98	0.7	0.73	0.72	0.65	11
5508	2.09	3	2.87	2.47	2.32	1.41	1.81	2.06	1.93	1.5	1.1	1.37	1.35	0.88	1.11	0.81	0.9	0.96	0.8	11
5550	4.69	6.42	6.41	5.62	5.08	2.89	3.74	4.24	3.99	3.1	2.2	2.61	2.55	1.82	2.22	1.58	1.6	1.79	1.54	11
7058	3.71	5.59	5.28	4.65	4.43	2.33	3.2	3.68	3.48	2.63	1.8	2.2	2.12	1.5	1.93	1.44	1.5	1.52	1.43	11

7059	3.37	4.8	4.89	4.32	3.88	2.17	2.86	3.29	3.1	2.35	1.67	2.08	2.03	1.32	1.66	1.27	1.32	1.39	1.17	11
7106	3.89	5.63	5.45	4.79	4.35	2.34	3.09	3.47	3.29	2.53	1.83	2.28	2.24	1.61	1.88	1.4	1.55	1.57	1.44	11
7135	3.91	5.64	5.46	4.8	4.58	2.48	3.35	3.64	3.53	2.63	1.97	2.35	2.27	1.57	1.99	1.54	1.58	1.59	1.42	11
5509	3.79	6.03	5.91	5.35	4.77	2.75	3.4	3.94	3.78	2.9	2.13	2.65	2.51	1.84	2.12	1.63	1.72	1.78	1.59	12
5510	3.98	5.86	5.86	5.2	4.62	2.64	3.53	4.02	3.71	2.87	2.19	2.67	2.55	1.8	2.11	1.6	1.73	1.76	1.57	12
5511	4.53	6.59	6.12	5.51	5.04	3.18	3.88	4.26	4.1	3.19	2.29	2.78	2.53	1.59	2.05	1.66	1.75	1.73	1.6	12
5512	4.81	6.93	6.86	6.03	5.46	3.25	4.1	4.63	4.37	3.35	2.31	2.76	2.72	1.94	2.46	1.61	1.83	1.97	1.66	12
5513	3.85	6.16	6.06	5.44	4.78	2.86	3.47	4.04	3.8	2.96	2.2	2.65	2.6	1.87	2.15	1.64	1.76	1.82	1.64	12
5514	4.2	6.07	6.16	5.41	4.88	2.83	3.68	4.15	3.9	3	2.33	2.76	2.67	1.88	2.26	1.66	1.78	1.81	1.64	12
5516	4.5	6.69	6.22	5.37	5.15	3.23	3.92	4.32	4.15	3.19	2.28	2.78	2.62	1.64	2.08	1.71	1.81	1.78	1.59	12
5551	4.22	6.06	6.08	5.47	5	2.64	3.78	4.17	3.92	3.02	2.2	2.78	2.61	1.79	2.24	1.68	1.81	1.64	1.65	12
5552	4.39	6.68	6.53	5.83	5.43	3.05	4.05	4.6	4.22	3.4	1.97	2.71	2.52	1.63	2.27	1.46	1.47	1.63	1.45	12
6116	4.34	6.26	6.07	5.26	4.93	3.2	3.88	4.11	3.93	3.18	2.11	2.7	2.59	1.89	2.21	1.63	1.76	1.84	1.62	12
7060	3.77	5.72	5.47	4.72	4.34	2.5	3.24	3.73	3.4	2.65	1.82	2.23	2.14	1.31	1.95	1.54	1.72	1.75	1.47	12
7061	4.3	6.2	6.13	5.33	4.93	2.95	3.87	4.32	4.01	3.31	2.19	2.7	2.62	2.02	2.24	1.72	1.79	1.8	1.72	12
7223	3.67	5.34	5.2	4.65	4.3	2.45	3.29	3.63	3.38	2.72	1.85	2.26	2.02	1.44	1.98	1.56	1.6	1.66	1.46	12
7236	4.36	6.17	6.15	5.32	5.11	2.99	3.84	4.39	4.21	3.26	2.2	2.7	2.58	1.86	2.13	1.71	1.78	1.84	1.67	12
7277	4.29	6.07	5.99	5.27	4.78	2.9	3.72	4.13	3.89	3.07	2.11	2.5	2.38	1.76	2.15	1.53	1.61	1.69	1.53	12
5517	4.09	6.22	6.04	5.39	4.76	2.83	3.72	4.19	3.93	3.06	2.1	2.56	2.45	1.86	2.2	1.72	1.83	1.87	1.72	13
5518	4.19	6.24	6.09	5.34	4.92	2.81	3.54	3.98	3.69	2.86	2.07	2.47	2.43	1.72	2.15	1.53	1.64	1.68	1.48	13
5519	3.98	5.73	5.58	4.89	4.62	2.56	3.39	3.75	3.55	2.75	2.04	2.35	2.19	1.5	2.28	1.54	1.52	1.64	1.46	13
5520	4.36	5.92	5.56	4.93	4.7	2.86	3.65	4.15	3.93	3.02	2.16	2.62	2.49	1.67	2.04	1.46	1.67	1.69	1.54	13
5521	4.98	7.14	7.02	6.23	5.66	3.29	4.17	4.71	4.45	3.49	2.43	2.84	2.84	2.04	2.49	1.65	1.87	2.05	1.7	13
5522	4.11	5.77	5.74	5.06	4.57	2.76	3.57	4.07	3.74	2.89	2.13	2.61	2.38	1.59	2	1.45	1.49	1.54	1.43	13
5553	4.44	6.5	6.26	5.46	4.99	3.1	4.03	4.43	4.02	3.2	2.25	2.85	2.61	1.8	2.38	1.72	1.94	1.93	1.64	13
5554	4.39	6.6	6.53	5.81	5.15	3.09	3.88	4.18	4.14	3.3	2.37	2.72	2.65	1.95	2.31	1.72	1.8	1.84	1.7	13
5555	4.54	6.54	6.22	5.46	5.07	3.27	3.92	4.34	4.14	3.23	2.35	2.84	2.63	1.66	2.09	1.68	1.61	1.77	1.6	13
5556	4.16	6.64	6.45	5.7	5.25	2.88	3.72	4.26	4.03	3.13	1.88	2.47	2.47	1.55	1.98	1.63	1.94	1.9	1.71	13
7062	4.7	6.86	6.67	5.72	5.34	3.18	4.02	4.45	4.18	3.3	2.27	2.88	2.68	1.79	2.4	1.71	1.81	1.83	1.7	13
7063	3.92	5.54	5.53	4.94	4.7	2.81	3.54	4.08	3.83	3.04	2.04	2.53	2.46	1.8	2.21	1.61	1.69	1.72	1.59	13
7064	4.59	6.66	6.36	5.65	5.34	3.16	3.88	4.33	4.05	3.28	2.27	2.73	2.7	1.82	2.16	1.69	1.87	1.85	1.76	13
7201	4.4	6.6	6.26	5.6	5.32	3.27	4.08	4.59	4.24	3.31	2.22	2.78	2.56	1.92	2.26	1.71	1.84	1.93	1.69	13
7219	4.17	5.76	5.75	5.13	4.89	2.78	3.55	3.95	3.75	2.94	2.06	2.52	2.4	1.68	2.19	1.69	1.71	1.78	1.61	13
5523	4.58	6.6	6.37	5.54	5.14	3.16	4.04	4.5	4.12	3.28	2.12	2.8	2.69	1.82	2.39	1.67	1.95	1.94	1.7	14

5524	4.51	6.55	6.37	5.62	5.25	3.24	4.01	4.53	4.28	3.34	2.26	2.66	2.63	1.93	2.39	1.68	1.94	2	1.63	14
5525	4.91	7.25	6.89	6.13	5.66	3.57	4.38	4.86	4.62	3.49	2.66	3.24	2.78	1.96	2.39	1.92	2	2.08	1.77	14
5526	4.26	6.52	6.34	5.68	5.07	3	3.94	4.36	4.11	3.25	2.3	2.73	2.59	1.95	2.26	1.79	1.91	1.97	1.82	14
5527	4.24	6.46	6.3	5.58	5.11	3.15	3.96	4.3	4.04	3.24	2.32	2.62	2.46	1.85	2.2	1.6	1.82	1.77	1.6	14
5557	4.7	6.96	6.88	6.13	5.63	3.24	4.09	4.68	4.38	3.37	2.48	2.9	2.78	1.98	2.25	1.8	1.91	1.92	1.79	14
5558	2.14	3.2	3.13	2.84	2.63	1.46	1.92	2.2	2.17	1.6	1.19	1.41	1.32	0.96	1.06	0.79	0.86	0.87	0.8	14
5559	4.81	6.96	6.92	6.22	5.71	3.21	4.24	4.75	4.5	3.52	2.48	3.11	2.9	1.84	2.44	1.84	1.99	1.96	1.85	14
5560	4.23	6.62	6.42	5.68	5.21	2.94	3.72	4.3	4.04	3.17	1.82	2.47	2.43	1.55	2.21	1.64	1.91	1.91	1.76	14
5561	4.63	6.33	5.92	5.33	4.98	3.04	3.85	4.34	4.08	3.18	2.27	2.75	2.6	1.75	2.07	1.57	1.75	1.77	1.56	14
7065	4.8	6.73	6.51	5.88	5.51	3.35	4.2	4.68	4.42	3.6	2.38	2.86	2.86	2	2.2	1.6	1.7	1.83	1.59	14
7066	5.15	7.44	7.47	6.63	6.25	3.7	4.37	4.81	4.62	3.73	2.46	2.99	2.89	2.02	2.36	1.79	1.91	1.9	1.78	14
7067	4.76	6.55	6.36	5.7	5.4	3.4	4.09	4.56	4.31	3.35	2.44	3.11	2.79	1.99	2.45	1.77	1.91	1.92	1.68	14
7212	4.79	6.75	6.54	5.63	5.24	3.23	4.03	4.52	4.29	3.38	2.34	2.87	2.63	1.9	2.07	1.63	1.84	1.81	1.77	14
5528	4.62	6.65	6.4	5.53	5.13	3.2	4.15	4.48	4.14	3.28	2.18	2.74	2.61	1.82	2.37	1.73	1.98	2	1.61	15
5529	4.63	6.86	6.81	6.08	5.57	3.36	4.47	5.02	4.71	3.82	2.51	2.95	2.9	2	2.42	1.84	1.97	1.91	1.89	15
5530	4.82	6.31	6.14	5.6	5.06	3.12	3.89	4.26	4.07	3.23	2.36	2.83	2.62	1.88	1.99	1.43	1.69	1.84	1.45	15
5531	4.66	6.32	5.97	5.31	5.03	3.08	3.87	4.43	4.1	3.21	2.29	2.77	2.62	1.75	2.14	1.55	1.79	1.75	1.58	15
5532	4.57	6.74	6.5	5.7	5.5	3.17	4.24	4.67	4.54	3.61	2.6	3.09	2.97	2.25	2.19	1.75	1.91	1.92	1.74	15
5533	4.82	6.43	6.17	5.65	5.1	3.2	3.94	4.29	4.13	3.3	2.38	2.84	2.65	1.87	1.96	1.4	1.7	1.83	1.49	15
5534	4.19	6.45	6.31	5.61	5.19	3.18	3.95	4.34	4.08	3.28	2.37	2.64	2.52	1.88	2.21	1.67	1.83	1.84	1.64	15
5562	4.9	7.55	7.35	6.66	6.12	3.09	4.28	4.88	4.44	3.37	2.17	2.83	2.59	1.52	2.58	1.98	2.06	2.09	1.87	15
5563	4.73	6.98	6.59	6.05	5.47	3.2	4.12	4.66	4.22	3.35	2.37	2.72	2.58	1.82	2.49	1.87	2.04	1.98	1.86	15
6110	4.42	6.46	6.31	5.61	5.19	3.16	4.06	4.64	4.39	3.39	2.37	2.99	2.94	1.78	2.45	1.9	2.09	2.12	1.92	15
5013	4.99	7.13	6.81	6.13	5.81	3.42	4.23	4.62	4.39	3.52	2.6	3.06	2.97	2.06	2.25	1.76	1.94	1.97	1.65	16
5332	4.71	7.13	7.27	6.44	5.61	3.32	4.25	4.83	4.55	3.48	2.41	2.98	2.95	1.99	2.14	1.82	1.98	2.06	1.87	16
5351	4.42	6.59	6.38	5.67	5.19	3	3.74	4.52	4.28	3.31	2.25	2.63	2.43	1.81	2.24	1.59	1.68	1.67	1.66	16
5352	4.87	7.03	6.87	5.97	5.66	3.24	4.15	4.73	4.4	3.45	2.38	2.96	2.84	2.07	2.52	1.89	2.09	2.11	1.94	16
5535	4.35	6.35	6.16	5.44	5.24	2.98	3.75	4.16	3.97	3.1	2.29	2.69	2.52	1.72	2.39	1.69	1.71	1.79	1.67	16
5536	4.67	6.86	6.8	6.15	5.54	3.41	4.51	5.06	4.71	3.82	2.49	2.93	2.89	2.02	2.42	1.84	1.97	1.97	1.94	16
5564	4.78	6.93	6.96	6.22	5.7	3.22	4.28	4.82	4.52	3.54	2.58	3.16	2.96	1.9	2.18	1.84	1.97	1.97	1.84	16
5565	4.98	7.6	7.36	6.69	6.17	3.21	4.16	4.87	4.47	3.35	2.31	2.84	2.56	1.49	2.49	2.05	2.13	2.12	1.96	16
5566	4.19	6.04	6.02	5.25	4.75	2.8	3.66	4.16	3.81	2.97	2.16	2.67	2.44	1.64	1.99	1.57	1.56	1.59	1.46	16
6132	4.74	7.32	7.23	6.4	5.8	3.47	4.3	4.89	4.57	3.68	2.56	3.08	2.89	2.13	2.54	1.95	1.99	2.06	1.77	16
5083	4.61	6.51	6.53	5.86	5.25	3.17	3.94	4.44	4.22	3.22	2.31	2.83	2.62	1.73	2.26	1.63	1.87	1.86	1.69	17

5148	5.1	7.04	7.04	6.31	5.59	3.34	4.38	4.9	4.62	3.54	2.53	3.01	2.87	2.09	2.51	1.69	2	2.05	1.83	17
5292	4.68	6.42	6.35	5.68	5.28	3.18	4	4.58	4.24	3.27	2.26	2.74	2.6	1.95	2.25	1.79	1.92	1.92	1.77	17
5306	4.72	7.16	7.1	6.32	5.77	3.25	4.16	4.77	4.52	3.5	2.51	3.07	2.93	2.05	2.53	1.96	2.15	2.15	1.95	17
5315	4.82	6.8	6.81	6.02	5.55	3.26	4.17	4.61	4.28	3.42	2.41	2.87	2.84	2.03	2.44	1.92	1.99	2.15	1.79	17
5341	4.79	6.83	6.7	5.95	5.65	3.16	4.02	4.59	4.33	3.4	2.35	2.84	2.66	1.87	2.31	1.68	1.79	1.81	1.68	17
5344	4.73	6.62	6.64	5.84	5.33	3.12	3.83	4.45	4.14	3.3	2.13	2.71	2.64	1.96	2.12	1.56	1.61	1.73	1.53	17
5360	4.68	6.75	6.49	5.75	5.28	2.97	3.82	4.33	4.03	3.12	2.19	2.66	2.57	1.69	2.18	1.78	1.93	1.96	1.74	17
5390	4.61	6.54	6.49	5.75	5.31	3.01	3.66	4.23	4.04	3.16	2.12	2.58	2.45	1.76	2.14	1.77	1.94	1.92	1.66	17
5567	4.73	7.09	6.64	6.16	5.55	3.24	4.08	4.68	4.2	3.35	2.35	2.8	2.62	1.85	2.47	1.83	1.99	1.97	1.83	17
5014	4.82	7	6.76	5.97	5.53	3.18	4.03	4.48	4.13	3.35	2.39	2.85	2.72	1.94	2.22	1.68	1.77	1.78	1.61	18
5059	5.01	7.08	6.73	6.06	5.67	3.78	4.35	4.9	4.58	3.62	2.46	3.19	3.04	2.07	2.34	1.86	1.96	2.05	1.83	18
5066	4.44	6.48	6.3	5.67	5.18	2.97	3.79	4.39	4.01	3.21	2.23	2.82	2.57	1.75	2.39	1.88	2.01	2.06	1.78	18
5084	4.58	6.77	6.38	5.69	5.48	3.13	3.92	4.54	4.33	3.4	2.24	2.68	2.72	2.1	2.19	1.75	1.87	1.94	1.81	18
5300	4.97	7.09	6.78	6.15	5.81	3.48	4.24	4.68	4.45	3.55	2.6	3.01	2.95	2.06	2.26	1.8	1.86	1.93	1.66	18
5342	4.64	6.76	6.52	5.81	5.23	3.17	3.85	4.28	3.99	3.21	2.18	2.77	2.51	1.83	2.16	1.69	1.71	1.78	1.67	18
5345	4.62	6.66	6.51	5.65	5.06	3.17	3.86	4.34	4.13	3.34	2.25	2.62	2.58	1.89	2.35	1.81	1.89	1.86	1.8	18
5346	4.62	6.89	6.58	6.08	5.5	3.1	4.1	4.55	4.4	3.38	2.39	2.82	2.73	1.84	2.3	1.93	2.07	2.13	1.81	18
5359	4.86	7.49	6.99	6.11	5.93	3.23	4.15	4.78	4.37	3.42	2.48	3.11	2.82	1.84	2.39	1.79	1.91	1.99	1.8	18
5537	4.73	7.06	6.67	5.98	5.52	3.41	4.34	4.89	4.42	3.56	2.64	3.06	2.84	2.03	2.39	1.89	1.99	1.97	1.86	18

APPENDIX C

NORMALIZED TRAINING DATASET OF INPUT FEATURES AND TARGET FEATURES FOR FEMALE HISPANIC POPULATION USING ANN APPROACH

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Age
0.116	0.145	0.138	0.121	0.140	0.113	0.114	0.113		0.120	0.113	0.1	0.108	0.121				0.158	0.148	
716	253	737	719	482	974	388	029	0.1	513	26	32	333	192	0.1	0.1	0.1	394	855	0.1
0.171	0.255	0.239	0.214	0.198	0.173	0.169	0.172	0.175	0.188	0.228	0.1	0.179	0.269	0.239	0.173	0.164	0.216	0.148	0.144
642	152	789	027	313	362	065	964	524	889	177	64	167	536	759	2824	234	788	855	444
0.121	0.124	0.130	0.125	0.123	0.106		0.136	0.141	0.120	0.139	0.1	0.191	0.184	0.124	0.185	0.152	0.193	0.148	0.144
493	242	316	339	133	987	0.1	482	958	513	779	44	667	768	096	4962	555	431	855	444
0.166	0.163	0.142	0.210	0.188		0.169	0.157	0.141	0.192		0.1		0.137	0.153	0.112	0.146	0.164	0.136	0.144
866	03	105	407	675	0.1	065	329	958	308	0.1	48	0.1	086	012	2137	715	234	641	444
0.217	0.242	0.251	0.259	0.229	0.169	0.186	0.201	0.197	0.185	0.263	0.2	0.266	0.200	0.181	0.240	0.205	0.275	0.228	0.188
015	222	579	276	157	869	331	629	902	47	536	4	667	662	928	458	109	182	244	889
0.169	0.251	0.254	0.235	0.238	0.180	0.241	0.251	0.197	0.195	0.276	0.2		0.232	0.201	0.191	0.304	0.234	0.185	0.188
254	919	947	747	795	349	007	14	902	726	796	68	0.25	45	205	6031	38	307	496	889
0.291	0.334	0.330	0.313	0.304	0.278	0.223	0.251	0.301	0.236	0.329	0.3	0.316	0.296	0.287	0.173	0.275	0.187	0.191	0.233
045	343	737	575	337	166	741	14	399	752	834	12	667	026	952	2824	182	591	603	333
0.405	0.360	0.359	0.371	0.379	0.260	0.295	0.313	0.304	0.257	0.303	0.2		0.232	0.355	0.270	0.240	0.275	0.289	0.233
672	202	368	493	518	699	683	681	196	265	315	8	0.3	45	422	9924	146	182	313	333
0.386	0.374	0.364	0.360	0.375	0.323	0.292	0.305	0.368	0.274	0.329	0.3		0.237	0.437	0.393	0.415	0.432	0.277	0.233
567	747	421	633	663	581	806	863	531	359	834	28	0.325	748	349	1298	328	847	099	333
	0.384	0.389	0.375	0.366	0.211	0.243	0.264	0.259	0.212	0.356	0.3	0.316	0.333	0.350	0.197	0.245	0.257	0.203	0.233
0.26	444	684	113	024	79	885	169	441	821	354	32	667	113	602	7099	985	664	817	333
0.281	0.365	0.376	0.376	0.406	0.274	0.318	0.326	0.318	0.308	0.298	0.3		0.264	0.321	0.154	0.205	0.234	0.234	0.233
493	051	211	923	506	672	705	71	182	547	895	44	0.325	238	687	9618	109	307	351	333
0.324	0.397	0.406	0.407	0.383	0.299	0.318	0.412	0.410	0.400	0.343	0.3	0.329	0.444	0.360	0.258	0.216	0.391	0.222	0.277
478	374	526	692	373	127	705	704	49	855	094	56	167	371	241	7786	788	971	137	778
0.329	0.376	0.406	0.387	0.404	0.288	0.310	0.334	0.309	0.277	0.294			0.216	0.422	0.350	0.327	0.374	0.319	0.277
254	364	526	783	578	646	072	528	79	778	475	0.3	0.3	556	892	3817	737	453	847	778

								•					•						
0.374	0.363	0.352	0.322	0.358	0.222	0.246	0.271	0.267	0.236	0.329	0.2	0.333	0.306	0.316	0.277	0.210	0.362	0.234	0.277
627	434	632	624	313	271	763	987	832	752	834	56	333	623	867	0992	949	774	351	778
0.279	0.365	0.369	0.366	0.369	0.278	0.287	0.303	0.365	0.346	0.382	0.3	0.279	0.317	0.369	0.411	0.415	0.444	0.295	0.277
104	051	474	063	88	166	05	257	734	154	873	36	167	219	88	4504	328	526	42	778
0.322	0.400	0.399	0.398	0.396	0.299	0.321	0.342	0.427	0.417	0.343	0.3	0.379	0.407	0.369	0.234	0.251	0.281	0.246	0.277
09	606	789	643	867	127	583	345	273	949	094	56	167	285	88	3511	825	022	565	778
0.386	0.424	0.446	0.451	0.452	0.306	0.356	0.410	0.379	0.342	0.329	0.3		0.301	0.326	0.380	0.374	0.421	0.387	0.322
567	848	947	131	771	114	115	098	72	735	834	68	0.35	325	506	916	453	168	023	222
0.503	0.460	0.492	0.463	0.479	0.435	0.405	0.412	0.416	0.414	0.360	0.3	0.379	0.444	0.461	0.313	0.321	0.356	0.319	0.322
582	404	421	801	759	371	036	704	084	53	773	6	167	371	446	7405	898	934	847	222
0.360	0.470	0.460	0.452	0.475	0.292	0.361	0.368	0.365	0.315	0.276		0.283	0.227	0.254	0.289	0.263	0.316	0.295	0.322
299	101	421	941	904	14	871	404	734	385	796	0.3	333	152	217	313	504	058	42	222
0.470	0.457	0.480	0.478	0.470	0.292	0.324	0.436	0.435	0.421	0.404		0.408	0.370	0.302	0.332	0.339	0.345	0.295	0.322
149	172	632	281	12	14	46	156	664	368	972	0.4	333	199	41	0611	416	255	42	222
0.293	0.377	0.396	0.375	0.366	0.393	0.292	0.300	0.374	0.288	0.404	0.2	0.287	0.391	0.432	0.307	0.275	0.292	0.289	0.322
433	98	421	113	024	45	806	651	126	034	972	96	5	391	53	6336	182	701	313	222
0.283	0.418	0.433	0.404	0.394	0.194	0.373	0.365	0.348	0.277	0.365		0.333	0.317	0.422	0.283	0.251	0.292	0.264	0.322
881	384	474	072	94	323	381	798	951	778	193	0.3	333	219	892	2061	825	701	885	222
0.427	0.437	0.458	0.434	0.402	0.267	0.393	0.410	0.407	0.366	0.378	0.3	0.362	0.322	0.408	0.332	0.386	0.333	0.270	0.322
164	778	737	842	651	686	525	098	692	667	453	68	5	517	434	0611	131	577	992	222
0.403	0.392	0.408	0.398	0.398	0.257	0.315	0.334	0.332	0.301	0.307	0.2	0.320	0.327	0.321	0.270	0.339	0.386	0.295	0.322
284	525	211	643	795	205	827	528	168	709	735	84	833	815	687	9924	416	131	42	222
0.293	0.403	0.421	0.398	0.410	0.264	0.307	0.347	0.410	0.397	0.374	0.3	0.362	0.327	0.360	0.277	0.222	0.356	0.222	0.322
433	838	684	643	361	192	194	557	49	436	033	56	5	815	241	0992	628	934	137	222
0.534	0.526	0.546	0.514	0.510	0.393	0.468	0.592	0.569	0.530	0.488	0.4	0.541	0.481	0.490	0.325	0.345	0.485	0.240	0.366
627	667	316	48	602	45	345	508	93	769	95	48	667	457	361	9542	255	401	458	667
0.494	0.478	0.504	0.460	0.472	0.372	0.445	0.467	0.449	0.346	0.404	0.3	0.329	0.386	0.442	0.325	0.432	0.380	0.325	0.366
03	182	211	181	048	489	324	427	65	154	972	4	167	093	169	9542	847	292	954	667
0.496	0.450	0.460	0.460	0.473	0.379	0.396	0.402	0.416	0.387	0.440	0.3	0.408	0.407	0.312	0.362	0.456	0.485	0.448	0.366
418	707	421	181	976	476	403	28	084	179	331	56	333	285	048	5954	204	401	092	667
0.515	0.462	0.463	0.452	0.456	0.358	0.387	0.472	0.472	0.428	0.404	0.4	0.433	0.396	0.485	0.344	0.368	0.386	0.344	0.366
522	02	789	941	627	515	77	638	028	205	972	32	333	689	542	2748	613	131	275	667
0.374	0.471	0.470	0.489	0.491	0.330	0.419	0.506	0.480	0.469	0.440	0.4	0.445	0.370	0.490	0.368	0.368	0.403	0.356	0.366
627	717	526	14	325	568	424	515	42	231	331	6	833	199	361	7023	613	65	489	667

0.491	0.455	0.463	0.452	0.481	0.355	0.384	0.485	0.494	0.448	0.431	0.4	0.458	0.396	0.446	0.393	0.397	0.415	0.454	0.366
642	556	789	941	687	022	892	668	406	718	492	44	333	689	988	1298	81	328	198	667
0.601	0.562	0.595	0.561	0.545	0.372	0.433	0.574	0.530	0.469	0.475	0.4	0.341	0.301	0.350	0.350	0.333	0.508	0.332	0.411
493	222	158	538	301	489	813	267	769	231	691	8	667	325	602	3817	577	759	061	111
0.572	0.605	0.625	0.612	0.593	0.487	0.505	0.506	0.488	0.482	0.577	0.4	0.587	0.560	0.581	0.423	0.403	0.462	0.332	0.411
836	859	474	217	494	773	755	515	811	906	348	68	5	927	928	6641	65	044	061	111
0.606	0.518	0.521	0.498	0.522	0.571	0.523	0.561	0.575	0.482	0.612	0.5	0.595	0.598	0.610	0.619	0.450	0.643	0.600	0.411
269	586	053	19	169	616	022	238	524	906	707	52	833	013	843	084	365	066	763	111
0.546	0.549	0.553	0.548	0.562	0.484	0.534	0.545	0.533	0.503	0.541	0.5	0.520	0.529	0.519	0.350	0.351	0.368	0.332	0.411
567	293	053	869	651	279	532	603	566	419	989	28	833	139	277	3817	095	613	061	111
0.517	0.528	0.537	0.507	0.527	0.351	0.517	0.519	0.513	0.380	0.533	0.5	0.483	0.444	0.533	0.551	0.473	0.514	0.338	0.411
91	283	895	24	952	528	266	544	986	342	149	12	333	371	735	9084	723	599	168	111
0.668	0.647	0.635	0.603	0.574	0.529	0.594	0.576	0.553	0.479	0.546	0.5	0.562	0.550	0.577	0.527	0.514	0.427	0.417	0.455
358	879	579	167	217	694	964	873	147	487	409	44	5	331	108	4809	599	007	557	556
0.611	0.555	0.574	0.566	0.574	0.449	0.583	0.566	0.586	0.575	0.581	0.5	0.620	0.545	0.610	0.612	0.479	0.654	0.606	0.455
045	758	947	968	217	345	453	45	713	214	768	96	833	033	843	9771	562	745	87	556
0.556	0.546	0.574	0.543	0.524	0.501	0.523	0.550	0.541	0.503	0.537	0.5		0.513	0.586	0.460	0.438	0.602	0.564	0.455
119	061	947	439	096	747	022	814	958	419	569	08	0.55	245	747	3053	686	19	122	556
0.603	0.565	0.583	0.557	0.533	0.515	0.546	0.561	0.567	0.520	0.590	0.5	0.562	0.545	0.572	0.515	0.479	0.643	0.441	0.455
881	455	368	919	735	721	043	238	133	513	608	64	5	033	289	2672	562	066	985	556
0.577	0.568	0.595	0.583	0.597	0.578	0.603	0.579	0.589	0.585	0.608	0.6	0.591	0.608	0.581	0.484	0.456	0.619	0.472	0.455
612	687	158	258	349	603	597	479	51	47	287	08	667	609	928	7328	204	708	519	556
0.599	0.610	0.645	0.606	0.595	0.501	0.548	0.576	0.572	0.503	0.572	0.5	0.583	0.518	0.581	0.429	0.432	0.450	0.399	0.455
104	707	684	787	422	747	921	873	727	419	928	88	333	543	928	771	847	365	237	556
0.627	0.633	0.649	0.635	0.632	0.536	0.554	0.527	0.558	0.564	0.533	0.5	0.554	0.629	0.591	0.448	0.567	0.613	0.533	0.455
761	333	053	747	048	681	676	362	741	957	149	28	167	801	566	0916	153	869	588	556
0.649	0.622	0.622	0.585	0.583	0.561	0.609	0.626	0.637	0.626	0.586	0.6	0.620	0.640	0.586	0.448	0.584	0.643	0.478	
254	02	105	068	855	135	353	384	063	496	188	12	833	397	747	0916	672	066	626	0.5
0.706	0.686	0.699	0.677	0.687	0.603	0.643	0.675	0.684	0.626	0.670	0.7	0.712	0.725	0.634	0.631	0.695	0.724	0.661	
567	667	579	376	952	057	885	896	615	496	166	28	5	166	94	2977	62	818	832	0.5
0.651	0.597	0.649	0.650	0.624	0.536	0.571	0.618	0.606	0.599	0.564	0.5	0.562	0.523	0.644	0.661	0.625	0.502	0.631	
642	778	053	226	337	681	942	567	294	145	088	56	5	841	578	8321	547	92	298	0.5
0.568	0.552	0.544	0.496	0.508	0.452	0.494	0.490	0.466	0.452	0.475	0.4	0.454	0.396	0.475	0.521	0.479	0.485	0.496	
06	525	632	38	675	838	245	879	434	137	691	64	167	689	904	374	562	401	947	0.5

299 869 7.37 466 3.25 397 331 99 832 821 47 08 667 907 133 7252 92 672 939 0.5 0.630 0.631 0.631 0.662 0.585 0.669 0.676 0.677 0.692 0.6 0.688 0.640 0.648 0.648 0.643 0.541 444 0.673 0.628 0.649 0.617 0.622 0.885 0.620 0.644 0.616 0.603 0.6 0.518 0.68 0.576 0.409 0.644 0.64 0.649 0.617 0.622 0.885 0.625 6.677 2.9 867 0.8 0.621 0.637 0.649 0.649 0.641 0.649 0.639 0.623 0.622 0.633 0.630 0.644 0.649 0.649 0.649 0.633 0.603 0.603 0.623 0.670 0.771 0.673 0.530 0.660 0.613 0.603			1	1	1	1	1		1					1	1	1	1	1		
0.636 0.691 0.648 0.662 0.589 0.699 0.679 0.672 0.69 0.640 0.692 0.710 0.648 0.648 0.648 0.648 0.649 0.649 566 158 416 892 59 784 531 224 778 265 76 333 397 771 687 905 905 511 444 167 0.628 0.649 0.649 0.664 0.653 0.644 0.653 0.644 0.633 0.625 657 239 867 0.8 0.6 543 675 3359 489 905 656 444 0.613 0.646 0.653 0.547 0.603 0.628 0.684 0.629 0.559 0.5 0.545 0.691 0.661 0.681 0.640 0.643 0.629 0.559 0.5 0.545 0.642 0.691 0.643 0.629 0.559 0.53 0.643 0.629 0.559 0.534 <td>0.680</td> <td>0.626</td> <td>0.682</td> <td>0.657</td> <td>0.651</td> <td>0.421</td> <td>0.586</td> <td>0.628</td> <td>0.667</td> <td>0.612</td> <td>0.515</td> <td>0.6</td> <td>0.616</td> <td>0.613</td> <td>0.683</td> <td>0.655</td> <td>0.502</td> <td>0.584</td> <td>0.667</td> <td></td>	0.680	0.626	0.682	0.657	0.651	0.421	0.586	0.628	0.667	0.612	0.515	0.6	0.616	0.613	0.683	0.655	0.502	0.584	0.667	
144 145 146 147 148 148 148 148 149	299	869	737	466	325		331				47	08	667	907				672	939	
0.673 0.628 0.649 0.617 0.622 0.585 0.620 0.644 0.642 0.616 0.603 0.6 0.518 0.668 0.576 0.409 0.648 0.594 0.544 134 485 0.53 647 41 59 863 625 657 239 887 08 0.61 543 675 3359 489 905 656 444 0.613 0.634 0.653 0.547 0.634 0.653 0.547 0.634 0.653 0.547 0.659 0.654 0.659 0.666 0.651 0.666 0.649 0.693 0.707 0.707 0.707 0.666 0.633 0.666 0.633 0.666 0.633 0.666 0.633 0.660 0.633 0.681 0.640 0.668 0.620 0.652 0.681 0.699 0.662 0.668 0.620 0.652 0.681 0.699 0.622 0.683 0.692 0.613 0.623 0.491 <td< td=""><td>0.630</td><td>0.636</td><td>0.691</td><td>0.648</td><td></td><td></td><td>0.669</td><td>0.691</td><td>0.676</td><td>0.677</td><td>0.692</td><td>0.6</td><td>0.658</td><td>0.640</td><td>0.692</td><td>0.710</td><td>0.648</td><td>0.648</td><td>0.643</td><td>0.544</td></td<>	0.630	0.636	0.691	0.648			0.669	0.691	0.676	0.677	0.692	0.6	0.658	0.640	0.692	0.710	0.648	0.648	0.643	0.544
134 485 0.53 647 41 59 863 625 657 239 867 08 0.64 543 675 339 489 905 656 444 0.613 0.634 0.655 0.644 0.653 0.521 0.571 0.636 0.628 0.628 0.659 0.59 0.559 0.59 0.559 0.59 0.525 0.629 0.666 374 808 153 908 444 0.751 0.686 0.681 0.661 0.693 0.707 0.772 0.698 0.705 0.7 0.703 0.736 0.666 0.713 0.667 0.554 0.680 0.657 0.667 0.681 0.690 0.664 0.603 0.6 0.637 0.602 0.674 0.666 0.673 0.663 0.686 0.620 0.657 0.681 0.690 0.663 0.637 0.660 0.674 0.663 0.624 0.629 0.672 0.661	149	566	158	416	892	59	784	531	224	778	265	76	333	397	771	687	905	905	511	444
0.613 0.634 0.655 0.644 0.653 0.547 0.603 0.628 0.634 0.629 0.559 0.5 0.545 0.624 0.591 0.521 0.321 0.567 0.551 0.544 433 949 789 796 255 162 597 99 266 915 669 32 833 503 566 374 888 153 998 444 0.751 0.688 0.681 0.681 0.692 0.682 0.690 0.688 0.785 0.77 0.703 0.736 0.666 0.6713 0.667 0.544 4667 0.533 606 398 886 194 59 979 291 525 44 0.757 0.603 0.620 0.674 0.666 0.678 0.623 0.678 0.604 0.608 0.692 0.652 0.684 0.692 0.644 0.603 0.603 0.644 0.533 0.61 0.652 0.615 0.53	0.673	0.628	0.649	0.617	0.622	0.585	0.620	0.644	0.642	0.616	0.603	0.6		0.518	0.668	0.576	0.409	0.648	0.594	0.544
433 949 789 796 253 162 597 99 266 915 669 32 833 503 566 374 898 153 908 444 0.751 0.686 0.681 0.681 0.649 0.693 0.707 0.720 0.698 0.705 0.7 0.703 0.736 0.692 0.666 0.534 0.680 0.657 0.672 0.659 0.686 0.620 0.652 0.681 0.690 0.664 0.603 0.63 0.620 0.674 0.666 0.678 0.642 0.642 0.604 0.608 0.594 0.593 0.491 0.577 0.602 0.671 0.602 0.576 0.602 0.577 0.602 0.671 0.602 0.575 0.692 0.677 0.602 0.677 0.602 0.677 0.602 0.677 0.602 0.677 0.602 0.677 0.602 0.677 0.602 0.677 0.60 0.595	134	485	053	647	41	59	863	625	657	239	867	08	0.6	543	675	3359	489	905	656	444
0.751 0.686 0.681 0.646 0.649 0.693 0.707 0.717 0.720 0.698 0.705 0.7 0.703 0.735 0.692 0.666 0.713 0.667 0.544 94 667 0.657 0.6572 0.659 0.686 0.620 0.652 0.681 0.690 0.664 0.637 0.603 0.603 0.604 0.663 0.669 0.664 0.630 0.652 0.681 0.690 0.604 0.603 0.604 0.663 0.694 0.694 0.694 0.698 0.691 0.690 0.603 0.69 0.604 0.608 0.594 0.933 0.491 0.577 0.602 0.614 0.602 0.577 0.6 0.595 0.515 0.454 0.619 0.643 0.494 2.666 698 932 685 564 484 2 833 715 663 1988 708 0.694 0.693 0.674 0.619 0.643 0.649 0.649	0.613	0.634	0.655	0.644	0.653	0.547	0.603	0.628	0.634	0.629	0.559	0.5	0.545	0.624	0.591	0.521	0.321	0.567	0.551	0.544
94 667 053 606 398 886 194 59 979 291 525 44 0.75 974 145 3664 423 139 939 444 0.680 0.657 0.672 0.689 0.680 0.690 0.664 0.603 0.600 0.674 0.604 0.603 0.674 0.666 0.678 0.643 0.544 0.642 0.604 0.608 0.594 0.593 0.491 0.577 0.602 0.614 0.602 0.577 0.6 0.595 0.592 0.615 0.454 0.619 0.643 0.484 0.577 0.562 0.556 0.537 0.466 0.488 0.545 0.541 0.899 0.480 0.5 0.516 0.507 0.586 0.441 0.596 0.613 0.644 0.671 0.697 0.620 0.678 0.644 0.673 0.680 0.595 0.619 0.659 0.613 0.633 0.684 0.541	433	949	789	796	253	162	597	99	266	915	669	32	833	503	566	374	898	153	908	444
0.680 0.657 0.672 0.659 0.686 0.620 0.652 0.681 0.690 0.664 0.603 0.6 0.637 0.603 0.620 0.674 0.666 0.678 0.643 0.544 299 576 632 276 024 524 518 107 21 103 867 44 5 311 482 0458 423 102 511 444 0.642 0.604 0.608 0.594 0.593 0.491 0.577 0.602 0.614 0.602 0.577 0.60 0.595 0.592 0.615 0.444 0.60 0.544 0.577 0.562 0.586 0.537 0.466 0.488 0.545 0.541 0.489 0.480 0.5 0.516 0.507 0.586 0.441 0.596 0.613 0.433 0.544 0.577 0.562 0.58 10.9 59 812 489 603 958 744 11	0.751	0.686	0.681	0.646	0.649	0.693	0.707	0.717	0.720	0.698	0.705	0.7		0.703	0.736	0.692	0.666	0.713	0.667	0.544
299 576 632 276 024 524 518 107 21 103 867 44 5 311 482 0458 423 102 511 444 0.642 0.604 0.608 0.594 0.593 0.491 0.577 0.602 0.614 0.602 0.579 0.6 0.595 0.615 0.648 0.694 444 0.577 0.562 0.556 0.537 0.466 0.488 0.545 0.541 0.489 0.80 0.5 0.510 0.556 0.441 0.596 0.613 0.435 0.544 612 222 0.58 109 59 812 489 603 958 744 11 0.8667 947 747 9847 35 869 878 444 0.702 0.581 0.678 0.644 0.673 0.629 0.62 0.62 0.678 0.644 0.673 0.68 0.73 0.68 0.414	94	667	053	606	398	886	194	59	979	291	525	44	0.75	974	145	3664	423	139	939	444
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.680	0.657	0.672	0.659	0.686	0.620	0.652	0.681	0.690	0.664	0.603	0.6	0.637	0.603	0.620	0.674	0.666	0.678	0.643	0.544
09 242 632 118 494 266 698 932 685 564 348 2 833 715 663 1985 708 066 947 444 0.577 0.562 0.556 0.537 0.466 0.488 0.545 0.541 0.489 0.480 0.5 0.516 0.507 0.586 0.441 0.596 0.613 0.435 0.544 0.708 0.659 0.671 0.679 0.620 0.678 0.6673 0.6629 0.652 0.61 0.619 0.650 0.678 0.6678 0.6673 0.6629 0.652 0.675 0.652 0.66 0.619 0.663 0.713 0.735 0.544 0.694 0.649 0.664 0.617 0.622 0.624 0.695 0.694 0.673 0.684 0.705 0.6 0.637 0.688 0.731 0.649 0.637 0.660 0.637 0.688 0.731 0.649 0.637 0.661 <td>299</td> <td>576</td> <td>632</td> <td>276</td> <td>024</td> <td>524</td> <td>518</td> <td>107</td> <td>21</td> <td>103</td> <td>867</td> <td>44</td> <td>5</td> <td>311</td> <td>482</td> <td>0458</td> <td>423</td> <td>102</td> <td>511</td> <td>444</td>	299	576	632	276	024	524	518	107	21	103	867	44	5	311	482	0458	423	102	511	444
0.577 0.562 0.556 0.537 0.466 0.488 0.545 0.541 0.489 0.480 0.5 0.516 0.507 0.586 0.441 0.596 0.613 0.435 0.544 612 222 0.58 109 59 812 489 603 958 744 11 08 667 947 747 9847 35 869 878 444 0.708 0.659 0.671 0.667 0.662 0.673 0.622 0.652 0.6 0.619 0.760 0.653 0.713 0.735 0.544 955 192 0.708 946 59 524 417 625 427 915 486 52 0.675 205 241 7252 226 139 115 444 0.694 0.649 0.664 0.617 0.622 0.624 0.655 0.653 0.637 0.684 0.613 0.633 0.613 0.434	0.642	0.604	0.608	0.594	0.593	0.491	0.577	0.602	0.614	0.602	0.577	0.6	0.595	0.592	0.615	0.454	0.619	0.643	0.496	0.544
612 222 0.58 109 59 812 489 603 958 744 11 08 667 947 747 9847 35 869 878 444 0.708 0.659 0.671 0.697 0.620 0.678 0.644 0.673 0.629 0.652 0.6 0.619 0.760 0.655 0.637 0.713 0.735 0.544 955 192 0.708 946 59 524 417 625 427 915 486 52 0.675 205 241 7252 226 139 115 444 0.694 0.649 0.664 0.617 0.622 0.694 0.695 0.622 0.694 0.673 0.688 0.731 0.649 0.649 0.617 41 017 683 137 427 615 525 92 5 079 325 6183 263 0.624 0.634 0.624 0.637 0.645<	09	242	632	118	494	266	698	932	685	564	348	2	833	715	663	1985	708	066	947	444
0.708 0.659 0.659 0.671 0.697 0.620 0.644 0.673 0.629 0.652 0.6 0.619 0.760 0.655 0.637 0.713 0.735 0.544 955 192 0.708 946 59 524 417 625 427 915 486 52 0.675 205 241 7252 226 139 115 444 0.694 0.664 0.664 0.617 0.622 0.624 0.695 0.694 0.664 0.637 0.688 0.731 0.660 0.614 0.654 0.628	0.577	0.562		0.556	0.537	0.466	0.488	0.545	0.541	0.489	0.480	0.5	0.516	0.507	0.586	0.441	0.596	0.613	0.435	0.544
955 192 0.708 946 59 524 417 625 427 915 486 52 0.675 205 241 7252 226 139 115 444 0.694 0.649 0.649 0.664 0.617 0.622 0.624 0.695 0.694 0.684 0.705 0.6 0.637 0.688 0.731 0.649 0.637 0.660 0.619 0.544 627 495 211 647 41 017 683 137 427 615 525 92 5 079 325 6183 226 584 084 444 0.63 0.628 0.619 0.605 0.585 0.612 0.655 0.611 0.582 0.546 0.5 0.560 0.631 0.621 0.637 0.544 403 485 0.644 457 0.6 0.559 0.617 0.657 0.645 0.588 0.572 0.6 0.633	612	222	0.58	109	59	812	489	603	958	744	11	08	667	947	747	9847	35	869	878	444
0.694 0.649 0.664 0.617 0.622 0.624 0.695 0.694 0.673 0.684 0.705 0.6 0.637 0.688 0.731 0.649 0.637 0.660 0.619 0.544 627 495 211 647 41 017 683 137 427 615 525 92 5 079 325 6183 226 584 084 444 0.654 0.628 0.619 0.605 0.585 0.612 0.655 0.611 0.582 0.546 0.5 0.545 0.500 0.633 0.661 0.637 0.544 0.649 0.6676 0.691 0.655 0.655 0.589 0.617 0.657 0.645 0.588 0.572 0.6 0.633 0.566 0.649 0.655 0.613 0.602 0.576 0.544 254 97 158 656 181 083 986 655 455 889 928	0.708	0.659		0.671	0.697	0.620	0.678	0.644	0.673	0.629	0.652	0.6		0.619	0.760	0.655	0.637	0.713	0.735	0.544
627 495 211 647 41 017 683 137 427 615 525 92 5 079 325 6183 226 584 084 444 0.654 0.628 0.619 0.605 0.585 0.612 0.655 0.611 0.582 0.546 0.5 0.545 0.560 0.639 0.612 0.631 0.672 0.637 0.544 03 485 0.644 457 06 59 23 049 888 051 409 92 833 927 759 9771 387 263 405 444 0.649 0.676 0.691 0.655 0.659 0.617 0.657 0.645 0.588 0.572 0.6 0.633 0.566 0.649 0.655 0.613 0.602 0.574 0.444 254 97 158 656 181 083 986 655 455 889 928 16	955	192	0.708	946	59	524	417	625	427	915	486	52	0.675	205	241	7252	226	139	115	444
0.654 0.628 0.619 0.605 0.585 0.612 0.655 0.611 0.582 0.546 0.5 0.545 0.560 0.639 0.612 0.631 0.672 0.637 0.544 03 485 0.644 457 06 59 23 049 888 051 409 92 833 927 759 9771 387 263 405 444 0.649 0.676 0.691 0.655 0.655 0.589 0.617 0.657 0.645 0.588 0.572 0.6 0.633 0.566 0.649 0.602 0.574 0.544 254 97 158 656 181 083 986 655 455 889 928 16 333 225 398 7252 869 19 336 444 0.694 0.673 0.651 0.652 0.652 0.669 0.617 0.698 0.660 0.617 0.6 0.637	0.694	0.649	0.664	0.617	0.622	0.624	0.695	0.694	0.673	0.684	0.705	0.6	0.637	0.688	0.731	0.649	0.637	0.660	0.619	0.544
03 485 0.644 457 06 59 23 049 888 051 409 92 833 927 759 9771 387 263 405 444 0.649 0.676 0.691 0.655 0.655 0.589 0.617 0.657 0.645 0.588 0.572 0.6 0.633 0.566 0.649 0.655 0.613 0.602 0.576 0.544 254 97 158 656 181 083 986 655 455 889 928 16 333 225 398 7252 869 19 336 444 0.694 0.673 0.652 0.652 0.659 0.617 0.669 0.691 0.698 0.660 0.617 0.6 0.637 0.582 0.553 0.643 0.625 0.695 0.629 0.694 0.698 0.660 0.617 0.6 0.637 0.582 0.553 0.643 0.625 0.625 <td>627</td> <td>495</td> <td>211</td> <td>647</td> <td>41</td> <td>017</td> <td>683</td> <td>137</td> <td>427</td> <td>615</td> <td>525</td> <td>92</td> <td>5</td> <td>079</td> <td>325</td> <td>6183</td> <td>226</td> <td>584</td> <td>084</td> <td>444</td>	627	495	211	647	41	017	683	137	427	615	525	92	5	079	325	6183	226	584	084	444
0.649 0.676 0.691 0.655 0.655 0.589 0.617 0.657 0.645 0.588 0.572 0.6 0.633 0.566 0.649 0.655 0.613 0.602 0.576 0.544 254 97 158 656 181 083 986 655 455 889 928 16 333 225 398 7252 869 19 336 444 0.694 0.673 0.652 0.652 0.659 0.617 0.669 0.694 0.698 0.660 0.617 0.6 0.637 0.582 0.553 0.643 0.625 0.695 0.625 0.588 627 737 421 036 036 031 784 137 601 684 127 44 5 119 012 5115 547 62 191 889 0.708 0.651 0.665 0.623 0.647 0.610 0.678 0.704 0.709	0.654	0.628		0.619	0.605	0.585	0.612	0.655	0.611	0.582	0.546	0.5	0.545	0.560	0.639	0.612	0.631	0.672	0.637	0.544
254 97 158 656 181 083 986 655 455 889 928 16 333 225 398 7252 869 19 336 444 0.694 0.673 0.652 0.652 0.659 0.617 0.669 0.698 0.660 0.617 0.6 0.637 0.582 0.553 0.643 0.625 0.695 0.625 0.588 627 737 421 0.36 036 031 784 137 601 684 127 44 5 119 012 5115 547 62 191 889 0.708 0.651 0.665 0.623 0.647 0.610 0.678 0.704 0.709 0.684 0.612 0.6 0.616 0.428 0.692 0.692 0.678 0.765 0.638 9.511 889 0.754 0.691 0.692 0.626 0.682 0.711 0.695 0.691 0.681	03	485	0.644	457	06	59	23	049	888	051	409	92	833	927	759	9771	387	263	405	444
0.694 0.673 0.652 0.652 0.659 0.617 0.669 0.694 0.698 0.660 0.617 0.6 0.637 0.582 0.553 0.643 0.625 0.695 0.625 0.588 627 737 421 036 036 031 784 137 601 684 127 44 5 119 012 5115 547 62 191 889 0.708 0.651 0.665 0.623 0.647 0.610 0.678 0.704 0.709 0.684 0.612 0.6 0.616 0.428 0.692 0.692 0.678 0.765 0.638 9.511 889 0.754 0.691 0.692 0.626 0.682 0.711 0.695 0.691 0.681 0.725 0.634 0.6 0.672 0.639 0.680 0.672 0.570 0.588 328 515 842 697 169 354 683 531 818	0.649	0.676	0.691	0.655	0.655	0.589	0.617	0.657	0.645	0.588	0.572	0.6	0.633	0.566	0.649	0.655	0.613	0.602	0.576	0.544
627 737 421 036 036 031 784 137 601 684 127 44 5 119 012 5115 547 62 191 889 0.708 0.651 0.665 0.623 0.647 0.610 0.678 0.704 0.709 0.684 0.612 0.6 0.616 0.428 0.692 0.692 0.678 0.765 0.588 955 111 895 0.77 47 044 417 56 79 615 707 68 667 477 771 3664 102 693 511 889 0.754 0.691 0.692 0.626 0.682 0.711 0.695 0.691 0.681 0.725 0.634 0.6 0.672 0.639 0.680 0.672 0.570 0.588 328 515 842 697 169 354 683 531 818 641 807 68 833	254	97	158	656	181	083	986	655	455	889	928	16	333	225	398	7252	869	19	336	444
0.708 0.651 0.665 0.623 0.647 0.610 0.678 0.704 0.709 0.684 0.612 0.6 0.616 0.428 0.692 0.692 0.678 0.765 0.643 0.588 955 111 895 077 47 044 417 56 79 615 707 68 667 477 771 3664 102 693 511 889 0.754 0.691 0.692 0.626 0.682 0.711 0.695 0.691 0.681 0.725 0.634 0.6 0.672 0.639 0.680 0.608 0.672 0.570 0.588 328 515 842 697 169 354 683 531 818 641 807 68 833 185 759 1527 029 263 229 889 0.785 0.717 0.765 0.715 0.736 0.721 0.730 0.756 0.734 0.718	0.694	0.673	0.652	0.652	0.659	0.617	0.669	0.694	0.698	0.660	0.617	0.6	0.637	0.582	0.553	0.643	0.625	0.695	0.625	0.588
955 111 895 077 47 044 417 56 79 615 707 68 667 477 771 3664 102 693 511 889 0.754 0.691 0.692 0.626 0.682 0.711 0.695 0.691 0.681 0.725 0.634 0.6 0.695 0.672 0.639 0.680 0.608 0.672 0.570 0.588 328 515 842 697 169 354 683 531 818 641 807 68 833 185 759 1527 029 263 229 889 0.785 0.717 0.765 0.715 0.736 0.721 0.730 0.756 0.734 0.718 0.683 0.677 0.750 0.704 0.695 0.724 0.759 0.588 373 374 263 385 145 834 216 678 965 803 425 0.7 <td>627</td> <td>737</td> <td>421</td> <td>036</td> <td>036</td> <td>031</td> <td>784</td> <td>137</td> <td>601</td> <td>684</td> <td>127</td> <td>44</td> <td>5</td> <td>119</td> <td>012</td> <td>5115</td> <td>547</td> <td>62</td> <td>191</td> <td>889</td>	627	737	421	036	036	031	784	137	601	684	127	44	5	119	012	5115	547	62	191	889
0.754 0.691 0.692 0.626 0.682 0.711 0.695 0.691 0.681 0.725 0.634 0.6 0.695 0.672 0.639 0.680 0.680 0.608 0.672 0.570 0.588 328 515 842 697 169 354 683 531 818 641 807 68 833 185 759 1527 029 263 229 889 0.785 0.717 0.765 0.715 0.736 0.721 0.730 0.756 0.734 0.718 0.683 0.677 0.750 0.704 0.695 0.724 0.759 0.588 373 374 263 385 145 834 216 678 965 803 425 0.7 0.7 483 602 5802 62 818 542 889 0.718 0.675 0.692 0.677 0.709 0.631 0.672 0.707 0.712 0.691	0.708	0.651	0.665	0.623	0.647	0.610	0.678	0.704	0.709	0.684	0.612	0.6	0.616	0.428	0.692	0.692	0.678	0.765	0.643	0.588
328 515 842 697 169 354 683 531 818 641 807 68 833 185 759 1527 029 263 229 889 0.785 0.717 0.765 0.715 0.736 0.721 0.730 0.756 0.734 0.718 0.683 0.677 0.750 0.704 0.695 0.724 0.759 0.588 373 374 263 385 145 834 216 678 965 803 425 0.7 0.7 483 602 5802 62 818 542 889 0.718 0.675 0.692 0.677 0.709 0.631 0.672 0.707 0.712 0.639 0.6 0.635 0.610 0.692 0.654 0.707 0.655 0.588	955	111	895	077	47	044	417	56	79	615	707	68	667	477	771	3664	102	693	511	889
0.785 0.717 0.765 0.715 0.736 0.721 0.730 0.756 0.734 0.718 0.683 0.677 0.677 0.750 0.704 0.695 0.724 0.759 0.588 373 374 263 385 145 834 216 678 965 803 425 0.7 0.7 483 602 5802 62 818 542 889 0.718 0.675 0.692 0.677 0.709 0.631 0.672 0.707 0.712 0.639 0.6 0.635 0.610 0.692 0.654 0.707 0.655 0.588	0.754	0.691	0.692	0.626	0.682	0.711	0.695	0.691	0.681	0.725	0.634	0.6	0.695	0.672	0.639	0.680	0.608	0.672	0.570	0.588
373 374 263 385 145 834 216 678 965 803 425 0.7 0.7 483 602 5802 62 818 542 889 0.718 0.675 0.692 0.677 0.709 0.631 0.672 0.707 0.712 0.691 0.639 0.6 0.635 0.610 0.692 0.654 0.707 0.655 0.588	328	515	842	697	169	354	683	531	818	641	807	68	833	185	759	1527	029	263	229	889
0.718 0.675 0.692 0.677 0.709 0.631 0.672 0.707 0.712 0.691 0.639 0.6 0.635 0.610 0.692 0.654 0.707 0.655 0.588	0.785	0.717	0.765	0.715	0.736	0.721	0.730	0.756	0.734	0.718	0.683			0.677	0.750	0.704	0.695	0.724	0.759	0.588
	373	374	263	385	145	834	216	678	965	803	425	0.7	0.7	483	602	5802	62	818	542	889
507 354 842 376 157 004 662 166 587 453 227 8 0.675 099 843 3664 745 299 725 889	0.718	0.675	0.692	0.677	0.709	0.631	0.672	0.707	0.712	0.691	0.639	0.6		0.635	0.610	0.692	0.654	0.707	0.655	0.588
$\frac{1}{2}$	507	354	842	376	157	004	662	166	587	453	227	8	0.675	099	843	3664	745	299	725	889

								•	•	•		•	•		1				
0.711	0.743	0.755	0.724	0.753	0.739	0.802	0.808	0.807	0.824	0.732	0.7	0.829	0.772	0.707	0.783	0.771	0.748	0.747	0.588
343	232	158	434	494	301	158	795	692	786	044	92	167	848	229	9695	533	175	328	889
0.771	0.683	0.706	0.695	0.705	0.610	0.661	0.668	0.673	0.670	0.705	0.7	0.687	0.698	0.736	0.722	0.736	0.754	0.698	0.588
045	434	316	475	301	044	151	078	427	94	525	16	5	675	145	9008	496	015	473	889
0.692	0.652	0.660	0.648	0.643	0.631	0.620	0.636	0.625	0.640	0.625	0.5	0.587	0.645	0.610	0.625	0.643	0.660	0.637	0.588
239	727	842	416	614	004	863	808	874	171	967	96	5	695	843	1908	066	584	405	889
0.766	0.722	0.729	0.668	0.695	0.683	0.730	0.743	0.762	0.711	0.643	0.6	0.670	0.598	0.625	0.661	0.637	0.736	0.649	0.633
269	222	895	326	663	406	216	648	937	966	646	92	833	013	301	8321	226	496	618	333
0.744	0.709	0.697	0.657	0.655	0.725	0.738	0.780	0.760	0.735	0.656	0.7	0.708	0.666	0.615	0.649	0.613	0.578	0.643	0.633
776	293	895	466	181	328	849	13	14	897	906	44	333	887	663	6183	869	832	511	333
0.773	0.764	0.778	0.778	0.770	0.763	0.810	0.816	0.813	0.776	0.785	0.8	0.795	0.714	0.798	0.771	0.789	0.829	0.582	0.633
433	242	737	733	843	755	791	612	287	923	083	12	833	57	795	7557	051	927	443	333
0.668	0.686	0.738	0.688	0.666	0.679	0.698	0.730	0.737	0.698	0.705	0.7	0.758	0.672	0.683	0.667	0.707	0.771	0.686	0.633
358	667	316	235	747	913	561	619	762	291	525	24	333	185	133	9389	299	533	26	333
0.728	0.665	0.692	0.604	0.657	0.634	0.684	0.709	0.712	0.691	0.612	0.6	0.658	0.454	0.731	0.680	0.689	0.730	0.643	0.633
06	657	842	977	108	498	173	772	587	453	707	64	333	967	325	1527	781	657	511	333
0.759	0.723	0.741	0.735	0.724	0.728	0.733	0.730	0.698	0.705	0.679	0.7	0.704	0.714	0.750	0.759	0.771	0.783	0.759	0.633
104	838	684	294	578	821	094	619	601	128	006	28	167	57	602	542	533	212	542	333
0.787	0.720	0.719	0.666	0.695	0.718	0.721	0.720	0.706	0.776	0.687	0.7		0.703	0.740	0.722	0.695	0.713	0.625	0.633
761	606	789	516	663	341	583	195	993	923	845	12	0.725	974	964	9008	62	139	191	333
0.780	0.756	0.783	0.771	0.738	0.760	0.747	0.764	0.793	0.783	0.709	0.7	0.808	0.809	0.692	0.722	0.713	0.713	0.741	0.633
597	162	789	493	072	262	482	495	706	761	945	76	333	934	771	9008	139	139	221	333
0.725	0.725	0.728	0.704	0.666	0.683	0.704	0.725	0.718	0.701	0.608	0.6	0.645	0.576	0.586	0.649	0.713	0.660	0.686	0.633
672	455	211	525	747	406	317	407	182	709	287	64	833	821	747	6183	139	584	26	333
0.754	0.772	0.797	0.749	0.751	0.707	0.779	0.795	0.804	0.759	0.692		0.670	0.709	0.644	0.680	0.672	0.765	0.649	0.633
328	323	263	774	566	86	137	765	895	829	265	0.7	833	272	578	1527	263	693	618	333
0.878							0.881		0.886		0.8		0.815	0.871	0.790	0.824	0.870	0.710	0.633
507	0.9	0.9	0.9	0.9	0.9	0.9	759	0.9	325	0.9	76	0.9	232	084	0763	088	803	687	333
0.701	0.710	0.729	0.720	0.686	0.697	0.715	0.748	0.743	0.722	0.621	0.6	0.629	0.629	0.750	0.692	0.695	0.701	0.667	0.633
791	909	895	814	024	38	827	86	357	222	547	84	167	801	602	3664	62	46	939	333
0.763	0.693	0.724	0.680	0.713	0.704	0.689	0.694	0.693	0.681	0.679	0.6	0.654	0.677	0.745	0.692	0.689	0.666	0.729	0.633
881	131	842	995	012	367	928	137	007	197	006	48	167	483	783	3664	781	423	008	333
0.790	0.735	0.750	0.700	0.734	0.756	0.805	0.821	0.807	0.794	0.798	0.7	0.791	0.825	0.755	0.790	0.800	0.800	0.783	0.677
149	152	105	905	217	769	036	824	692	017	343	84	667	828	422	0763	73	73	969	778

								•	•	•			•	•	1				
0.771	0.715	0.706	0.666	0.684	0.714	0.747	0.733	0.734	0.705	0.701	0.6	0.687	0.640	0.712	0.832	0.847	0.806	0.777	0.677
045	758	316	516	096	847	482	225	965	128	105	92	5	397	048	8244	445	569	863	778
0.728	0.641	0.686	0.626	0.653	0.672	0.689	0.722	0.709	0.722	0.643	0.6		0.439	0.707	0.722	0.718	0.765	0.667	0.677
06	414	105	697	253	926	928	801	79	222	646	64	0.65	073	229	9008	978	693	939	778
0.790	0.741	0.763	0.702	0.759	0.735	0.770	0.780	0.754	0.732	0.740	0.7	0.729	0.714	0.726	0.777	0.736	0.771	0.722	0.677
149	616	579	715	277	808	504	13	545	479	884	52	167	57	506	8626	496	533	901	778
0.780	0.773	0.755	0.731	0.722	0.690	0.761	0.782	0.782	0.773	0.665	0.6	0.679	0.666	0.755	0.790	0.742	0.789	0.722	0.677
597	939	158	674	651	393	871	736	517	504	746	44	167	887	422	0763	336	051	901	778
0.761	0.788	0.800	0.760	0.763	0.746	0.761	0.798	0.807	0.763	0.696	0.7	0.716	0.688	0.683	0.704	0.701	0.759	0.649	0.677
493	485	632	633	133	288	871	371	692	248	685	32	667	079	133	5802	46	854	618	778
0.778	0.731	0.751	0.713	0.678	0.665	0.695	0.735	0.673	0.643	0.727	0.7		0.693	0.716	0.698	0.678	0.695	0.649	0.677
209	919	789	575	313	939	683	831	427	59	624	2	0.675	377	867	4733	102	62	618	778
0.735	0.688	0.672	0.633	0.657	0.651	0.735	0.741	0.723	0.670	0.639	0.6	0.637	0.322	0.625	0.704	0.654	0.701	0.667	0.677
224	283	632	937	108	965	971	042	776	94	227	56	5	517	301	5802	745	46	939	778
0.823	0.759	0.770	0.738	0.732	0.718	0.741	0.748	0.737	0.688	0.709	0.6	0.720	0.666	0.726	0.747	0.730	0.742	0.729	0.677
582	394	316	914	289	341	727	86	762	034	945	92	833	887	506	3282	657	336	008	778
0.737	0.752	0.748	0.684	0.713	0.742	0.761	0.772	0.757	0.752	0.705	0.7	0.712	0.698	0.750	0.851	0.818	0.847	0.747	0.677
612	929	421	615	012	795	871	313	343	991	525	36	5	675	602	145	248	445	328	778
0.723	0.688	0.699	0.693	0.691	0.721	0.687	0.748	0.712	0.667	0.617	0.6	0.670	0.582	0.567	0.625	0.572	0.625	0.594	0.722
284	283	579	665	807	834	05	86	587	521	127	6	833	119	47	1908	993	547	656	222
0.771	0.743	0.783	0.796	0.778	0.704	0.724	0.738	0.754	0.763	0.705		0.654	0.735	0.687	0.729	0.701	0.718	0.735	0.722
045	232	789	833	554	367	46	436	545	248	525	0.7	167	762	952	0076	46	978	115	222
0.708	0.701	0.736	0.719	0.709	0.704	0.681	0.694	0.690	0.688	0.656	0.6	0.666	0.709	0.408	0.729	0.748	0.777	0.729	0.722
955	212	632	005	157	367	295	137	21	034	906	6	667	272	434	0076	175	372	008	222
0.797	0.773	0.797	0.782	0.768	0.784	0.735	0.756	0.788	0.800	0.727		0.812	0.767	0.678	0.704	0.695	0.713	0.716	0.722
313	939	263	353	916	716	971	678	112	855	624	0.8	5	55	313	5802	62	139	794	222
0.766	0.727	0.746	0.704	0.707	0.669	0.753	0.769	0.779	0.742	0.674		0.695	0.656	0.707	0.674	0.678	0.742	0.680	0.722
269	071	737	525	229	432	237	707	72	735	586	0.7	833	291	229	0458	102	336	153	222
0.725	0.675	0.689	0.680	0.662	0.658	0.669	0.681	0.679	0.688	0.590	0.6	0.708	0.682	0.591	0.637	0.555	0.648	0.643	0.722
672	354	474	995	892	952	784	107	021	034	608	48	333	781	566	4046	474	905	511	222
0.809	0.778	0.790	0.771	0.776	0.767	0.793	0.806	0.782	0.763	0.776	0.7		0.772	0.726	0.820	0.829	0.841	0.790	0.722
254	788	526	493	627	249	525	189	517	248	243	96	0.775	848	506	6107	927	606	076	222
0.828	0.741	0.780	0.749	0.766	0.746	0.779	0.774	0.760	0.746	0.740	0.7		0.688	0.740	0.777	0.736	0.783	0.729	0.722
358	616	421	774	988	288	137	919	14	154	884	52	0.725	079	964	8626	496	212	008	222

0.819 0.783 0.726 0.774 0.854 0.885 0.877 0.831 0.864 0.8 0.887 0.831 0.630 0.747 0.759 0.789 0.674 0.722						ı	ı		ı	ı	ı			ı		1			ı	
0.775																				
Regin Sefe	0.7							0.7					5						0.0	
0.689 0.712 0.743 0.742 0.751 0.697 0.744 0.738 0.712 0.711 0.723 0.7 0.712 0.661 0.702 0.704 0.759 0.713 0.729 0.722												0.,								
851 525 368 534 566 38 604 436 587 966 204 16 5 589 41 5802 834 139 008 222 0.816 0.819 0.830 0.811 0.832 0.819 0.825 0.843 0.849 0.783 0.776 0.77 0.770 0.776 0.766 576 0.2 3.83 482 742 504 948 315 0.85 8.23 3.68 8.33 2.32 525 5.880 0.829 0.820 0.862 0.832 0.793 0.771 0.770 0.770 0.704 0.660 0.615 0.735 0.650 0.735 0	821	556	474		47	834	094	042	762	803	425	28	0.7	589	518	2214	212	693	542	
0.816	0.689	0.712	0.743	0.742	0.751	0.697	0.744	0.738		0.711	0.723	0.7	0.712	0.661	0.702	0.704	0.759	0.713	0.729	
418 192 947 312 53 651 18 277 65 761 243 84 0.725 185 253 6107 766 161 504 222 0.866 0.782 0.839 0.787 0.780 0.770 0.770 0.787 0.785 0.770 0.771 0.77 0.771 0.77 0.731 0.857 0.800 0.802 0.766 0.842 0.785 0.809 0.813 0.739 0.802 0.832 0.793 0.794 0.727 0.72 0.762 0.716 0.783 0.742 0.789 0.665 0.730 0.738 0.742 0.786 0.666 0.730 0.738 0.738 0.739 0.802 0.832 0.793 0.794 0.727 0.760 0.762 0.716 0.786 0.749 0.766 0.719 0.746 0.666 0.618 0.619 0.666 0.661 0.749 0.666 0.618 0.619 0.666 0.673	851	525	368	534	566	38	604	436	587	966	204	16	5	589	41	5802	854	139	008	222
0.866 0.782 0.839 0.787 0.780 0.770 0.770 0.787 0.785 0.770 0.771 0.7 0.745 0.815 0.731 0.875 0.800 0.829 0.802 0.766 0.842 0.785 0.889 0.813 0.739 0.802 0.832 0.793 0.727 0.70 0.727 0.70 0.720 0.766 0.716 0.783 0.742 0.789 0.765 0.666 0.675 0.666 0.842 0.733 0.836 0.832 0.793 0.794 0.727 0.7 0.720 0.766 0.716 0.783 0.742 0.789 0.765 0.766 0.730 0.738 0.708 0.757 0.676 0.721 0.751 0.751 0.735 0.665 0.76 0.761 0.785 0.895 0.833 0.734 0.895 0.834 0.757 0.676 0.721 0.751 0.735 0.665 0.76 0.761 0.875 0.666 0.615 0.759 0.695 0.736 0.686 0.766 0.794 0.777 0.790 0.796 0.788 0.704 0.730 0.746 0.762 0.776 0.679 0.666 0.725 0.673 0.765 0.748 0.741 0.766 0.742 0.683 0.633 0.576 0.633 0.576 0.683 0.655 0.756 0.736 0.683 0.655 0.756 0.736 0.683 0.655 0.756 0.736 0.888 0.623 0.894 0.89	0.816	0.819	0.830	0.811	0.832	0.819	0.825		0.849	0.783	0.776	0.7		0.672	0.813	0.820	0.835	0.894	0.814	
567 02 368 783 482 742 504 948 315 085 823 36 833 232 325 5725 73 927 29 667 0.842 0.785 0.809 0.813 0.739 0.794 0.727 0.7 0.702 0.716 0.783 0.742 0.789 0.766 0.766 0.716 0.783 0.742 0.789 0.765 0.766 0.716 0.783 0.708 0.757 0.676 0.721 0.751 0.751 0.735 0.665 0.7 0.704 0.666 0.615 0.759 0.695 0.736 0.686 0.766 11 0.771 0.770 0.790 0.766 0.741 0.751 0.751 0.773 0.746 0.82 0.774 0.666 0.625 0.673 0.765 0.748 0.949 0.666 0.725 0.673 0.765 0.748 0.741 0.742 0.683 0.633 0.576 0.633 0.869 0.	418	192	947	312	53	651	18	277	65	761	243	84	0.725	185	253	6107	766	161	504	222
0.842 0.785 0.809 0.813 0.739 0.802 0.793 0.794 0.727 0.7 0.720 0.762 0.716 0.783 0.742 0.789 0.765 0.766 687 253 0.836 502 253 301 158 248 706 017 624 4 833 252 867 9695 336 051 649 667 0.756 0.730 0.738 0.757 0.676 0.721 0.751 0.735 0.665 0.7 0.704 0.666 0.615 0.759 0.695 0.736 0.666 0.794 0.777 0.790 0.796 0.788 0.704 0.730 0.746 0.762 0.776 0.679 0.666 0.725 0.673 0.765 0.748 0.774 0.707 0.707 0.707 0.708 0.765 0.742 0.666 0.725 0.673 0.765 0.742 0.666 0.725 0.673 0.602 0.679 <td>0.866</td> <td>0.782</td> <td>0.839</td> <td>0.787</td> <td>0.780</td> <td>0.770</td> <td>0.770</td> <td>0.787</td> <td>0.785</td> <td>0.770</td> <td>0.771</td> <td>0.7</td> <td>0.745</td> <td>0.815</td> <td>0.731</td> <td>0.875</td> <td>0.800</td> <td>0.829</td> <td>0.802</td> <td>0.766</td>	0.866	0.782	0.839	0.787	0.780	0.770	0.770	0.787	0.785	0.770	0.771	0.7	0.745	0.815	0.731	0.875	0.800	0.829	0.802	0.766
687 253 0.836 502 253 301 158 248 706 017 624 4 833 252 867 9695 336 051 649 667 0.756 0.730 0.738 0.708 0.757 0.676 0.721 0.751 0.755 0.665 0.7 0.704 0.666 0.615 0.759 0.695 0.736 0.686 0.766 0.794 0.777 0.790 0.788 0.704 0.730 0.746 0.762 0.776 0.679 0.666 0.725 0.673 0.765 0.748 0.741 0.766 9.25 0.725 0.673 0.765 0.748 0.741 0.679 0.666 0.725 0.673 0.765 0.748 0.754 0.766 9.25 0.725 0.673 0.765 0.603 0.621 0.680 0.625 0.681 0.620 0.683 0.680 0.625 0.683 0.666 0.481 0.882 0.881 133<	567	02	368	783	482	742	504	948	315	085	823	36	833	232	325	5725	73	927	29	667
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.842	0.785		0.809	0.813	0.739	0.802	0.832	0.793	0.794	0.727	0.7	0.720	0.762	0.716	0.783	0.742	0.789	0.765	0.766
716 303 316 145 349 419 583 466 748 897 746 08 167 887 663 542 62 496 26 667 0.794 0.777 0.790 0.796 0.788 0.704 0.730 0.746 0.762 0.776 0.679 0.666 0.725 0.673 0.745 0.741 0.742 0.668 0.633 193 367 216 254 937 923 006 0.7 667 166 494 6489 175 015 221 667 0.742 0.683 0.633 0.576 0.603 0.672 0.668 0.653 0.602 0.643 0.6 0.566 0.407 0.581 0.625 0.683 0.655 0.760 0.852 0.790 0.812 0.795 0.807 0.763 0.810 0.821 0.818 0.787 0.789 0.8 0.787 0.672 0.707 0.828 <	687	253	0.836	502	253	301	158	248	706	017	624	4	833	252	867	9695	336	051	649	667
0.794 0.777 0.790 0.796 0.788 0.704 0.730 0.746 0.762 0.776 0.679 0.666 0.725 0.673 0.765 0.748 0.754 0.741 0.766 925 172 526 833 193 367 216 254 937 923 006 0.7 667 166 494 6489 175 0.15 221 667 0.742 0.683 0.633 0.576 0.603 0.672 0.669 0.688 0.653 0.602 0.643 0.6 0.566 0.407 0.581 0.680 0.625 0.683 0.655 0.666 388 434 895 0.18 133 926 784 925 846 564 646 28 667 285 928 1527 547 942 725 667 0.852 0.790 0.812 0.795 0.807 0.763 0.810 0.821 0.818 0.787 0.789 0.8 0.787 0.672 0.707 0.826 0.800 0.853 0.759 0.766 239 101 421 023 47 755 791 824 881 179 503 04 5 185 229 7176 73 285 542 667 0.704 0.693 0.694 0.690 0.697 0.760 0.698 0.751 0.757 0.756 0.674 0.7 0.708 0.703 0.683 0.753 0.742 0.754 0.741 0.766 0.673 0.668 0.684 0.655 0.666 0.711 0.715 0.730 0.712 0.670 0.683 0.75 0.635 0.721 0.753 0.689 0.683 0.715 0.754 0.811 0.892 0.846 0.871 0.831 0.840 0.819 0.836 0.840 0.821 0.790 0.780 0.7 0.758 0.666 0.808 0.826 0.829 0.806 0.790 0.811 0.787 0.733 0.753 0.737 0.732 0.700 0.770 0.754 0.748 0.722 0.732 0.700 0.760 0.681 0.707 0.765 0.777 0.666 0.707 0.765 0.797 0.791 0.827 0.816 0.832 0.774 0.782 0.785 0.802 0.776 0.661 0.7 0.716 0.703 0.726 0.790 0.806 0.841 0.747 0.811 0.854 0.791 0.827 0.816 0.832 0.774 0.782 0.785 0.802 0.776 0.661 0.7 0.716 0.703 0.726 0.790 0.806 0.841 0.747 0.811 0.854 0.791 0.841 0.807 0.826 0.739 0.819 0.845 0.796 0.787 0.727 0.799 0.788 0.736 0.790 0.724 0.824 0.771 0.811 0.854 0.791 0.841 0.807 0.826 0.739 0.819 0.845 0.796 0.787 0.727 0.	0.756	0.730	0.738	0.708	0.757	0.676	0.721	0.751	0.751	0.735	0.665	0.7	0.704	0.666	0.615	0.759	0.695	0.736	0.686	0.766
925 172 526 833 193 367 216 254 937 923 006 0.7 667 166 494 6489 175 015 221 667 0.742 0.683 0.633 0.576 0.603 0.672 0.669 0.688 0.653 0.602 0.643 0.6 0.566 0.407 0.581 0.680 0.625 0.683 0.655 0.766 388 434 895 018 133 926 784 925 846 564 646 28 667 285 928 1527 547 942 725 667 0.852 0.790 0.812 0.787 0.787 0.787 0.787 0.787 0.672 0.770 0.826 0.800 0.853 0.759 0.766 239 101 421 023 47 755 791 824 881 179 503 0.4 5 0.826 0.831	716	303	316	145	349	419	583	466	748	897	746	08	167	887	663	542	62	496	26	667
0.742 0.683 0.633 0.576 0.603 0.672 0.669 0.688 0.653 0.602 0.643 0.6 0.566 0.407 0.581 0.680 0.625 0.683 0.655 0.766 388 434 895 018 133 926 784 925 846 564 646 28 667 285 928 1527 547 942 725 667 0.852 0.790 0.812 0.795 0.807 0.763 0.810 0.821 0.818 0.787 0.789 0.8 0.787 0.672 0.707 0.826 0.800 0.853 0.759 0.766 0.704 0.693 0.694 0.699 0.697 0.760 0.698 0.751 0.757 0.756 0.674 0.7 0.708 0.703 0.683 0.753 0.742 0.754 0.741 0.766 179 131 526 045 59 262 561 466 <td>0.794</td> <td>0.777</td> <td>0.790</td> <td>0.796</td> <td>0.788</td> <td>0.704</td> <td>0.730</td> <td>0.746</td> <td>0.762</td> <td>0.776</td> <td>0.679</td> <td></td> <td>0.666</td> <td>0.725</td> <td>0.673</td> <td>0.765</td> <td>0.748</td> <td>0.754</td> <td>0.741</td> <td>0.766</td>	0.794	0.777	0.790	0.796	0.788	0.704	0.730	0.746	0.762	0.776	0.679		0.666	0.725	0.673	0.765	0.748	0.754	0.741	0.766
388 434 895 018 133 926 784 925 846 564 646 28 667 285 928 1527 547 942 725 667 0.852 0.790 0.812 0.795 0.807 0.763 0.810 0.821 0.818 0.787 0.789 0.8 0.787 0.672 0.707 0.826 0.800 0.853 0.759 0.766 239 101 421 023 47 755 791 824 881 179 503 04 5 185 229 7176 73 285 542 667 0.704 0.693 0.694 0.690 0.697 0.760 0.698 0.751 0.757 0.756 0.674 0.7 0.708 0.703 0.683 0.753 0.742 0.754 0.741 0.766 0.673 0.686 0.684 0.655 0.666 0.711 0.715 0.730 0.712	925	172	526	833	193	367	216	254	937	923	006	0.7	667	166	494	6489	175	015	221	667
0.852 0.790 0.812 0.795 0.807 0.763 0.810 0.821 0.818 0.787 0.789 0.8 0.787 0.672 0.707 0.826 0.800 0.853 0.759 0.766 239 101 421 023 47 755 791 824 881 179 503 04 5 185 229 7176 73 285 542 667 0.704 0.693 0.694 0.690 0.697 0.760 0.698 0.751 0.757 0.756 0.674 0.7 0.708 0.703 0.683 0.742 0.754 0.741 0.766 179 131 526 045 59 262 561 466 343 41 586 04 333 974 133 4351 336 015 221 667 0.673 0.668 0.684 0.655 0.666 0.711 0.715 0.730 0.712 0.670	0.742	0.683	0.633	0.576	0.603	0.672	0.669	0.688	0.653	0.602	0.643	0.6	0.566	0.407	0.581	0.680	0.625	0.683	0.655	0.766
239 101 421 023 47 755 791 824 881 179 503 04 5 185 229 7176 73 285 542 667 0.704 0.693 0.694 0.690 0.697 0.760 0.698 0.751 0.757 0.756 0.674 0.7 0.708 0.703 0.683 0.753 0.742 0.754 0.741 0.766 179 131 526 045 59 262 561 466 343 41 586 04 333 974 133 4351 336 015 221 667 0.673 0.668 0.684 0.655 0.666 0.711 0.715 0.730 0.712 0.670 0.683 0.7 0.635 0.689 0.683 0.716 0.811 134 889 421 656 747 354 827 619 587 94 425 08 0.675	388	434	895	018	133	926	784	925	846	564	646	28	667	285	928	1527	547	942	725	667
0.704 0.693 0.694 0.690 0.697 0.760 0.698 0.751 0.757 0.756 0.674 0.7 0.708 0.703 0.683 0.753 0.742 0.754 0.741 0.766 179 131 526 045 59 262 561 466 343 41 586 04 333 974 133 4351 336 015 221 667 0.673 0.668 0.684 0.655 0.666 0.711 0.715 0.730 0.712 0.670 0.683 0.7 0.635 0.689 0.683 0.716 0.811 134 889 421 656 747 354 827 619 587 94 425 08 0.675 099 687 4351 781 942 794 111 0.892 0.846 0.871 0.831 0.840 0.821 0.790 0.758 0.666 0.808 0.826 0.829 <td>0.852</td> <td>0.790</td> <td>0.812</td> <td>0.795</td> <td>0.807</td> <td>0.763</td> <td>0.810</td> <td>0.821</td> <td>0.818</td> <td>0.787</td> <td>0.789</td> <td>0.8</td> <td>0.787</td> <td>0.672</td> <td>0.707</td> <td>0.826</td> <td>0.800</td> <td>0.853</td> <td>0.759</td> <td>0.766</td>	0.852	0.790	0.812	0.795	0.807	0.763	0.810	0.821	0.818	0.787	0.789	0.8	0.787	0.672	0.707	0.826	0.800	0.853	0.759	0.766
179 131 526 045 59 262 561 466 343 41 586 04 333 974 133 4351 336 015 221 667 0.673 0.668 0.684 0.655 0.666 0.711 0.715 0.730 0.712 0.670 0.683 0.7 0.635 0.721 0.753 0.689 0.683 0.716 0.811 134 889 421 656 747 354 827 619 587 94 425 08 0.675 099 687 4351 781 942 794 111 0.892 0.846 0.871 0.831 0.840 0.836 0.821 0.790 0.780 0.7 0.758 0.666 0.808 0.826 0.829 0.806 0.790 0.811 0.892 0.846 0.871 0.832 0.700 0.754 0.748 0.722 0.732 0.7 0.667 0.811	239	101	421	023	47	755	791	824	881	179	503	04	5	185	229	7176	73	285	542	667
0.673 0.668 0.684 0.655 0.6666 0.711 0.715 0.730 0.712 0.670 0.683 0.7 0.635 0.721 0.753 0.689 0.683 0.716 0.811 134 889 421 656 747 354 827 619 587 94 425 08 0.675 099 687 4351 781 942 794 111 0.892 0.846 0.871 0.831 0.840 0.819 0.836 0.840 0.821 0.790 0.780 0.7 0.758 0.666 0.808 0.826 0.829 0.806 0.790 0.811 836 667 368 222 241 651 691 065 678 598 663 84 333 887 434 7176 927 569 076 111 0.787 0.733 0.753 0.737 0.732 0.700 0.774 0.748 0.722 0.732	0.704	0.693	0.694	0.690	0.697	0.760	0.698	0.751	0.757	0.756	0.674	0.7	0.708	0.703	0.683	0.753	0.742	0.754	0.741	0.766
134 889 421 656 747 354 827 619 587 94 425 08 0.675 099 687 4351 781 942 794 111 0.892 0.846 0.871 0.831 0.840 0.819 0.836 0.840 0.821 0.790 0.780 0.7 0.758 0.666 0.808 0.826 0.829 0.806 0.790 0.811 836 667 368 222 241 651 691 065 678 598 663 84 333 887 434 7176 927 569 076 111 0.787 0.733 0.753 0.737 0.732 0.700 0.774 0.748 0.722 0.732 0.7 0.667 0.624 0.731 0.735 0.765 0.777 0.667 0.811 0.797 0.791 0.827 0.816 0.832 0.774 0.782 0.785 0.802 0.776<	179	131	526	045	59	262	561	466	343	41	586	04	333	974	133	4351	336	015	221	667
0.892 0.846 0.871 0.831 0.840 0.819 0.836 0.840 0.821 0.790 0.780 0.7 0.758 0.666 0.808 0.826 0.829 0.806 0.790 0.811 836 667 368 222 241 651 691 065 678 598 663 84 333 887 434 7176 927 569 076 111 0.787 0.733 0.753 0.737 0.732 0.700 0.774 0.748 0.722 0.732 0.7 0.667 0.811 761 535 474 104 289 873 504 072 951 222 044 2 167 503 325 1145 693 372 939 111 0.797 0.791 0.827 0.816 0.832 0.774 0.785 0.802 0.776 0.661 0.7 0.716 0.703 0.726 0.790 0.806	0.673	0.668	0.684	0.655	0.666	0.711	0.715	0.730	0.712	0.670	0.683	0.7		0.635	0.721	0.753	0.689	0.683	0.716	0.811
836 667 368 222 241 651 691 065 678 598 663 84 333 887 434 7176 927 569 076 111 0.787 0.733 0.753 0.737 0.732 0.700 0.770 0.748 0.722 0.732 0.7 0.667 0.624 0.731 0.735 0.765 0.777 0.667 0.811 761 535 474 104 289 873 504 072 951 222 044 2 167 503 325 1145 693 372 939 111 0.797 0.791 0.827 0.816 0.832 0.774 0.782 0.785 0.802 0.776 0.661 0.7 0.716 0.703 0.726 0.790 0.806 0.841 0.747 0.811 313 717 579 742 53 236 014 342 098 923 326 <td>134</td> <td>889</td> <td>421</td> <td>656</td> <td>747</td> <td>354</td> <td>827</td> <td>619</td> <td>587</td> <td>94</td> <td>425</td> <td>08</td> <td>0.675</td> <td>099</td> <td>687</td> <td>4351</td> <td>781</td> <td>942</td> <td>794</td> <td>111</td>	134	889	421	656	747	354	827	619	587	94	425	08	0.675	099	687	4351	781	942	794	111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.892	0.846	0.871	0.831	0.840	0.819	0.836	0.840	0.821	0.790	0.780	0.7	0.758	0.666	0.808	0.826	0.829	0.806	0.790	0.811
761 535 474 104 289 873 504 072 951 222 044 2 167 503 325 1145 693 372 939 111 0.797 0.791 0.827 0.816 0.832 0.774 0.785 0.802 0.776 0.661 0.7 0.716 0.703 0.726 0.790 0.806 0.841 0.747 0.811 313 717 579 742 53 236 014 342 098 923 326 2 667 974 506 0763 569 606 328 111 0.854 0.791 0.841 0.807 0.826 0.739 0.845 0.796 0.787 0.727 0.7 0.729 0.788 0.736 0.790 0.724 0.824 0.771 0.811 627 717 053 692 747 301 424 277 503 179 624 64	836	667	368	222	241	651	691	065	678	598	663	84	333	887	434	7176	927	569	076	111
761 535 474 104 289 873 504 072 951 222 044 2 167 503 325 1145 693 372 939 111 0.797 0.791 0.827 0.816 0.832 0.774 0.785 0.802 0.776 0.661 0.7 0.716 0.703 0.726 0.790 0.806 0.841 0.747 0.811 313 717 579 742 53 236 014 342 098 923 326 2 667 974 506 0763 569 606 328 111 0.854 0.791 0.841 0.807 0.826 0.739 0.845 0.796 0.787 0.727 0.7 0.729 0.788 0.736 0.790 0.724 0.824 0.771 0.811 627 717 053 692 747 301 424 277 503 179 624 64	0.787	0.733	0.753	0.737	0.732	0.700	0.770	0.754	0.748	0.722	0.732	0.7	0.679	0.624	0.731	0.735	0.765	0.777	0.667	0.811
313 717 579 742 53 236 014 342 098 923 326 2 667 974 506 0763 569 606 328 111 0.854 0.791 0.841 0.807 0.826 0.739 0.819 0.845 0.796 0.787 0.727 0.7 0.729 0.788 0.736 0.790 0.724 0.824 0.771 0.811 627 717 053 692 747 301 424 277 503 179 624 64 167 742 145 0763 818 088 756 111 0.725 0.731 0.768 0.738 0.741 0.692 0.725 0.729 0.674 0.603 0.6 0.612 0.492 0.649 0.667 0.689 0.736 0.722 0.811	761	535	474	104	289	873	504	072	951		044	2	167	503		1145	693	372	939	111
313 717 579 742 53 236 014 342 098 923 326 2 667 974 506 0763 569 606 328 111 0.854 0.791 0.841 0.807 0.826 0.739 0.819 0.845 0.796 0.787 0.727 0.7 0.729 0.788 0.736 0.790 0.724 0.824 0.771 0.811 627 717 053 692 747 301 424 277 503 179 624 64 167 742 145 0763 818 088 756 111 0.725 0.731 0.768 0.738 0.741 0.692 0.725 0.729 0.674 0.603 0.6 0.612 0.492 0.649 0.667 0.689 0.736 0.722 0.811	0.797		0.827	0.816	0.832	0.774	0.782	0.785	0.802		0.661		0.716	0.703		0.790	0.806	0.841	0.747	0.811
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	313					236					326	2							328	
627 717 053 692 747 301 424 277 503 179 624 64 167 742 145 0763 818 088 756 111 0.725 0.731 0.768 0.738 0.741 0.692 0.725 0.729 0.674 0.603 0.6 0.612 0.492 0.649 0.667 0.689 0.736 0.722 0.811											0.727	0.7	0.729	0.788			0.724	0.824		
0.725 0.731 0.768 0.738 0.741 0.624 0.692 0.725 0.729 0.674 0.603 0.6 0.612 0.492 0.649 0.667 0.689 0.736 0.722 0.811																			756	
				0.738	0.741	0.624	0.692			0.674	0.603						0.689	0.736		
													5	053						

0.766	0.714	0.765	0.720	0.741	0.711	0.733	0.782	0.757	0.698	0.670	0.6	0.687	0.582	0.721	0.814	0.765	0.771	0.796	0.811
269	141	263	814	928	354	094	736	343	291	166	72	5	119	687	5038	693	533	183	111
0.785	0.741	0.734	0.719	0.699	0.721	0.756	0.754	0.746	0.722	0.705	0.7	0.704	0.661	0.707	0.838	0.829	0.829	0.832	0.811
373	616	947	005	518	834	115	072	154	222	525	04	167	589	229	9313	927	927	824	111
0.825	0.769	0.790	0.773	0.772	0.760	0.793	0.814	0.802	0.759	0.789	0.8	0.791	0.767	0.731	0.875	0.835	0.864	0.771	0.811
97	091	526	303	771	262	525	007	098	829	503	08	667	55	325	5725	766	964	756	111
0.744	0.662	0.686	0.626	0.687	0.693	0.721	0.756	0.723	0.752	0.648	0.6	0.670	0.756	0.654	0.680	0.718	0.765	0.759	0.855
776	424	105	697	952	886	583	678	776	991	066	48	833	954	217	1527	978	693	542	556
0.716	0.752		0.766	0.757	0.686	0.735	0.748	0.768	0.739	0.679	0.7	0.729	0.672	0.625	0.722	0.683	0.742	0.692	0.855
119	929	0.804	063	349	9	971	86	531	316	006	04	167	185	301	9008	942	336	366	556
0.778	0.738	0.758	0.737	0.722	0.714	0.735	0.722	0.723	0.701	0.732	0.7	0.737	0.698	0.644	0.704	0.678	0.695	0.692	0.855
209	384	526	104	651	847	971	801	776	709	044	08	5	675	578	5802	102	62	366	556
0.773	0.762	0.778	0.793	0.801	0.791	0.770	0.780	0.790	0.759	0.789	0.7	0.783	0.809	0.827	0.765	0.818	0.876	0.783	0.855
433	626	737	213	687	703	504	13	909	829	503	8	333	934	711	6489	248	642	969	556
0.742	0.714	0.699	0.652	0.643	0.662	0.664	0.709	0.665	0.636	0.581	0.6	0.616	0.523	0.634	0.704	0.695	0.713	0.686	0.855
388	141	579	036	614	445	029	772	035	752	768	44	667	841	94	5802	62	139	26	556
0.873	0.817	0.851	0.769	0.788	0.861	0.856	0.881	0.849	0.862	0.767	0.8	0.829	0.873		0.851	0.847	0.888	0.838	0.855
731	576	158	683	193	572	835	759	65	393	403	52	167	51	0.9	145	445	321	931	556
0.725	0.694	0.728	0.702	0.686	0.690	0.756	0.733	0.734	0.698	0.679	0.7		0.698	0.687	0.716	0.637	0.707	0.680	
672	747	211	715	024	393	115	225	965	291	006	2	0.75	675	952	7939	226	299	153	0.9
0.718	0.710	0.718	0.688	0.659	0.599	0.664	0.712	0.693	0.602	0.625	0.6	0.641	0.545	0.659	0.643	0.631	0.660	0.631	
507	909	105	235	036	563	029	378	007	564	967	56	667	033	036	5115	387	584	298	0.9
0.744	0.746	0.758	0.742	0.734	0.714	0.735	0.738	0.720	0.711	0.714	0.7		0.703	0.789	0.783	0.794	0.777	0.771	
776	465	526	534	217	847	971	436	979	966	365	64	0.7	974	157	9695	891	372	756	0.9
0.799	0.720	0.721	0.664	0.709	0.739	0.735	0.733	0.729	0.770	0.679	0.7		0.714	0.606	0.741	0.695	0.730	0.625	
701	606	474	706	157	301	971	225	371	085	006	08	0.725	57	024	2214	62	657	191	0.9

APPENDIX D

NORMALIZED TEST DATASET OF INPUT FEATURES AND TARGET FEATURES FOR FEMALE HISPANIC POPULATION

USING ANN APPROACH

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Age
								0.111		0.130		0.108	0.115	0.124	0.179	0.146	0.158	0.148	0.144
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	189	0.1	939	0.1	333	894	096	3893	715	394	855	444
0.162	0.224	0.214	0.212	0.211	0.141	0.206	0.180	0.203	0.219	0.126	0.1	0.166	0.126	0.220	0.148	0.135	0.199		0.144
09	444	526	217	807	921	475	782	497	658	519	2	667	49	482	855	036	27	0.1	444
0.228	0.302	0.302	0.291	0.312	0.222	0.252	0.256	0.315	0.226	0.325	0.2	0.295	0.253	0.312	0.344	0.345	0.345	0.240	0.188
955	02	105	855	048	271	518	352	385	496	414	92	833	642	048	2748	255	255	458	889
0.169	0.242	0.224	0.232	0.225	0.145	0.148	0.167	0.161	0.141	0.192	0.1			0.148	0.197	0.164	0.199	0.148	0.188
254	222	632	127	301	415	921	752	538	026	818	16	0.15	0.1	193	7099	234	27	855	889
0.140	0.227	0.231	0.188	0.194	0.131	0.192	0.206	0.209	0.120	0.148	0.1	0.191	0.126	0.215	0.142	0.111		0.142	0.188
597	677	368	688	458	441	086	84	091	513	619	48	667	49	663	7481	679	0.1	748	889
0.453	0.442		0.465	0.462	0.344	0.410	0.457	0.460	0.407	0.325	0.3	0.466	0.460		0.325	0.304	0.327	0.338	0.322
433	626	0.484	611	41	541	791	003	839	692	414	76	667	265	0.5	9542	38	737	168	222
0.367	0.453	0.475	0.454	0.445	0.337	0.410	0.417	0.432	0.335	0.466	0.4	0.433	0.391	0.451	0.448	0.403	0.444	0.319	0.366
463	939	579	751	06	555	791	915	867	897	851	48	333	391	807	0916	65	526	847	667
0.477	0.458	0.441	0.451	0.472	0.292	0.402	0.428	0.430	0.346	0.400	0.3		0.391	0.413	0.356	0.327	0.485	0.350	0.366
313	788	895	131	048	14	158	339	07	154	552	8	0.375	391	253	4886	737	401	382	667
0.477	0.415	0.408	0.409	0.414	0.414	0.428	0.438	0.449	0.421	0.334	0.3	0.366	0.444	0.446	0.350	0.368	0.386	0.362	0.366
313	152	211	502	217	41	058	762	65	368	254	48	667	371	988	3817	613	131	595	667
0.477	0.471	0.477	0.456	0.473	0.414	0.459	0.483	0.483	0.397	0.400	0.4		0.465	0.524	0.380	0.391	0.467	0.356	0.366
313	717	263	561	976	41	712	062	217	436	552	16	0.475	563	096	916	971	883	489	667
0.599	0.537		0.547	0.543	0.389	0.520	0.548	0.525	0.493	0.546	0.5	0.483	0.481	0.533	0.362	0.351	0.351	0.454	0.411
104	98	0.548	059	373	956	144	208	175	162	409	04	333	457	735	5954	095	095	198	111
0.458	0.552	0.569	0.492	0.551	0.491		0.516	0.435	0.404	0.502	0.4		0.465	0.514	0.399	0.520	0.543	0.509	0.411
209	525	895	76	084	266	0.5	938	664	274	21	96	0.475	563	458	2366	438	796	16	111
0.572	0.560	0.559	0.541	0.547	0.494	0.540	0.501	0.527	0.404	0.546	0.5	0.504	0.481	0.572	0.496	0.520	0.543	0.374	0.411
836	606	789	629	229	76	288	303	972	274	409	6	167	457	289	9466	438	796	809	111

0.486	0.492	0.507	0.494	0.493	0.466	0.407	0.467	0.477	0.394	0.471	0.4	0.466	0.534	0.509	0.423	0.456	0.497	0.332	0.411
866	727	579	57	253	812	914	427	622	017	271	76	667	437	639	6641	204	08	061	111
0.596	0.544	0.564	0.532	0.520	0.466	0.485	0.493	0.486	0.476	0.387	0.4	0.491	0.433	0.519	0.429	0.497	0.520	0.515	0.411
716	444	842	579	241	812	612	485	014	068	293	8	667	775	277	771	08	438	267	111
0.441	0.525	0.514	0.501	0.520	0.466	0.537	0.519	0.530	0.530	0.546	0.5	0.504	0.497	0.519	0.374	0.491	0.537	0.521	0.455
493	051	316	81	241	812	41	544	769	769	409	2	167	351	277	8092	241	956	374	556
0.558	0.486	0.514		0.522	0.484	0.462	0.480	0.474	0.465	0.458	0.4	0.429	0.454	0.533	0.527	0.497	0.520	0.545	0.455
507	263	316	0.5	169	279	59	456	825	812	011	32	167	967	735	4809	08	438	802	556
	0.586	0.638	0.612	0.626	0.459	0.635	0.655	0.637	0.626	0.625	0.6	0.608	0.608	0.615	0.649	0.637	0.637	0.619	
0.58	465	947	217	265	825	252	049	063	496	967	36	333	609	663	6183	226	226	084	0.5
0.711	0.714	0.726	0.668	0.672	0.655	0.698	0.738	0.706	0.660	0.639	0.6	0.670	0.656	0.557	0.588	0.584	0.467	0.576	
343	141	526	326	53	459	561	436	993	684	227	64	833	291	831	5496	672	883	336	0.5
0.642	0.591	0.642	0.592	0.616	0.547	0.566	0.600	0.575	0.510	0.559	0.5	0.566	0.486	0.610	0.710	0.672	0.707	0.661	
09	313	316	308	627	162	187	326	524	256	669	8	667	755	843	687	263	299	832	0.5
0.699	0.701	0.706	0.670	0.691	0.644	0.684	0.686	0.695	0.609	0.643	0.6	0.645	0.682	0.668	0.704	0.683	0.660	0.625	
403	212	316	136	807	978	173	319	804	402	646	6	833	781	675	5802	942	584	191	0.5
0.563	0.539		0.592	0.612	0.494	0.531	0.553	0.561	0.541	0.537	0.5	0.554	0.507	0.567	0.545	0.514	0.561	0.503	
284	596	0.58	308	771	76	655	42	538	026	569	52	167	947	47	8015	599	314	053	0.5
0.663	0.613	0.647	0.619	0.639	0.582	0.546	0.576	0.553	0.544	0.577	0.5	0.570	0.539	0.610	0.606	0.596	0.602	0.594	0.544
582	939	368	457	759	096	043	873	147	444	348	8	833	735	843	8702	35	19	656	444
0.747	0.673	0.694	0.673	0.670	0.644	0.655	0.688	0.706	0.667	0.652	0.6		0.735	0.702	0.759	0.689	0.736	0.704	0.544
164	737	526	756	602	978	396	925	993	521	486	84	0.725	762	41	542	781	496	58	444
0.642	0.596	0.595	0.585	0.587	0.543	0.609	0.628	0.623	0.605	0.625	0.6	0.637	0.613	0.586	0.600	0.596	0.643	0.558	0.544
09	162	158	068	711	668	353	99	077	983	967	28	5	907	747	7634	35	066	015	444
0.627	0.573	0.595	0.566	0.562	0.543	0.646	0.639	0.645	0.571	0.634	0.6	0.637	0.645	0.644	0.619	0.602	0.660	0.551	0.588
761	535	158	968	651	668	763	414	455	795	807	44	5	695	578	084	19	584	908	889
0.723	0.697	0.709	0.661	0.676	0.669	0.710	0.743	0.743	0.681	0.612	0.6	0.662	0.566	0.721	0.625	0.625	0.718	0.686	0.588
284	98	684	086	386	432	072	648	357	197	707	56	5	225	687	1908	547	978	26	889
0.821	0.727	0.756	0.749	0.755	0.770	0.799	0.772	0.771	0.756	0.758	0.7	0.816	0.719	0.692	0.649	0.683	0.666	0.674	0.588
194	071	842	774	422	742	281	313	329	41	564	64	667	868	771	6183	942	423	046	889
0.775	0.725	0.731	0.657	0.680	0.672	0.698	0.720	0.732	0.739	0.634	0.6		0.619	0.581	0.686	0.660	0.777	0.637	0.588
821	455	579	466	241	926	561	195	168	316	807	44	0.675	205	928	2595	584	372	405	889
0.716	0.697		0.688	0.724	0.651	0.687	0.722	0.720	0.708	0.661	0.6	0.670	0.645	0.634	0.704	0.672	0.701	0.686	0.588
119	98	0.708	235	578	965	05	801	979	547	326	84	833	695	94	5802	263	46	26	889

0.694	0.709	0.718	0.728	0.720	0.606	0.658	0.678	0.701	0.691	0.630	0.6	0.629	0.661	0.668	0.649	0.654	0.648	0.637	0.588
627	293	105	054	723	55	273	502	399	453	387	28	167	589	675	6183	745	905	405	889
0.744	0.693		0.680	0.680	0.728	0.733	0.741	0.734	0.711	0.701	0.7		0.741	0.659	0.606	0.625	0.648	0.661	0.588
776	131	0.708	995	241	821	094	042	965	966	105	32	0.7	06	036	8702	547	905	832	889
0.799	0.804	0.792	0.804	0.797	0.777	0.764	0.769	0.793	0.763	0.683	0.6	0.712	0.677	0.731	0.753	0.771	0.812	0.735	0.633
701	646	211	072	831	729	748	707	706	248	425	96	5	483	325	4351	533	409	115	333
0.675	0.643	0.638	0.566	0.574	0.606	0.620	0.688	0.667	0.643	0.603	0.6		0.497	0.644	0.674	0.631	0.654	0.655	0.633
522	03	947	968	217	55	863	925	832	59	867	48	0.625	351	578	0458	387	745	725	333
0.694	0.722	0.743	0.691	0.670	0.704	0.747	0.767	0.746	0.722	0.785	0.7	0.733	0.725	0.639	0.704	0.707	0.718	0.674	0.677
627	222	368	855	602	367	482	101	154	222	083	44	333	166	759	5802	299	978	046	778
0.766	0.704	0.696	0.677	0.628	0.655	0.698	0.688	0.690	0.647	0.679	0.6		0.560	0.731	0.783	0.754	0.771	0.783	0.677
269	444	211	376	193	459	561	925	21	009	006	48	0.65	927	325	9695	015	533	969	778
0.720	0.689	0.713	0.686	0.693	0.704	0.687	0.741	0.701	0.664	0.590	0.6	0.645	0.582	0.572	0.619	0.596	0.602	0.600	0.677
896	899	053	425	735	367	05	042	399	103	608	56	833	119	289	084	35	19	763	778
0.771	0.769	0.778	0.746	0.724	0.774	0.761	0.780	0.790	0.790	0.714	0.7	0.808	0.778	0.654	0.704	0.713	0.718	0.692	0.677
045	091	737	154	578	236	871	13	909	598	365	76	333	146	217	5802	139	978	366	778
0.749	0.772	0.793	0.787	0.770	0.732	0.758	0.751	0.765	0.729	0.736	0.7		0.688	0.726	0.771	0.724	0.759	0.722	0.677
552	323	895	783	843	314	993	466	734	06	464	2	0.725	079	506	7557	818	854	901	778
0.892	0.809	0.802	0.760	0.793	0.774	0.796	0.777	0.771	0.787	0.771	0.7	0.795	0.725	0.779	0.820	0.789	0.800	0.832	0.722
836	495	316	633	976	236	403	524	329	179	823	8	833	166	518	6107	051	73	824	222
0.861	0.782	0.778	0.733	0.766	0.833	0.848	0.847	0.824	0.811	0.780	0.7	0.745	0.730	0.740	0.808	0.765	0.794	0.722	0.722
791	02	737	484	988	624	201	883	476	111	663	44	833	464	964	3969	693	891	901	222
0.730	0.673	0.679	0.641	0.655	0.651	0.689	0.730	0.726	0.718	0.643	0.6	0.662	0.460	0.716	0.710	0.718	0.771	0.661	0.766
448	737	368	176	181	965	928	619	573	803	646	72	5	265	867	687	978	533	832	667
	0.819	0.825	0.785	0.805	0.788	0.819	0.785	0.774	0.800	0.709	0.7	0.779	0.719	0.765	0.820	0.812	0.794	0.838	0.766
0.9	192	895	973	542	21	424	342	126	855	945	52	167	868	06	6107	409	891	931	667
0.771	0.798	0.815	0.766	0.765	0.714	0.770	0.814	0.816	0.790	0.727	0.7	0.712	0.682	0.716	0.710	0.701	0.748	0.661	0.766
045	182	789	063	06	847	504	007	084	598	624	04	5	781	867	687	46	175	832	667
0.809	0.790	0.834	0.789	0.780	0.707	0.825	0.866	0.841	0.817	0.736	0.8		0.709	0.567	0.606	0.771	0.824	0.606	0.811
254	101	316	593	482	86	18	124	259	949	464	16	0.8	272	47	8702	533	088	87	111
0.718	0.709	0.726	0.709	0.726	0.679	0.712	0.722	0.701	0.667	0.705	0.6	0.704	0.714	0.702	0.753	0.754	0.748	0.741	0.855
507	293	526	955	506	913	95	801	399	521	525	64	167	57	41	4351	015	175	221	556
0.787	0.762	0.748	0.738	0.753	0.795	0.784	0.793	0.765	0.790	0.727	0.7	0.758	0.783	0.673	0.759	0.748	0.777	0.747	0.855
761	626	421	914	494	197	892	16	734	598	624	72	333	444	494	542	175	372	328	556

0.685	0.664	0.691	0.652	0.664	0.683	0.698	0.730	0.718	0.694	0.701	0.6	0.679	0.629	0.716	0.759	0.701	0.678	0.735	0.855
075	04	158	036	819	406	561	619	182	872	105	88	167	801	867	542	46	102	115	556
0.754	0.775	0.785	0.775	0.728	0.697	0.724	0.769	0.762	0.718	0.648	0.6	0.704	0.629	0.765	0.741	0.754	0.754	0.722	0.855
328	556	474	113	434	38	46	707	937	803	066	96	167	801	06	2214	015	015	901	556
0.790	0.769	0.809	0.798	0.776	0.704	0.761	0.808	0.799	0.790	0.771	0.7		0.815	0.846	0.881	0.829	0.882	0.796	
149	091	053	643	627	367	871	795	301	598	823	48	0.775	232	988	6794	927	482	183	0.9
0.864	0.835		0.796	0.826	0.861	0.876	0.892	0.863		0.895		0.870		0.880					
179	354	0.836	833	747	572	978	182	636	0.9	58	0.9	833	0.9	723	0.9	0.9	0.9	0.9	0.9
0.744	0.693	0.733	0.726	0.711	0.742	0.715	0.741	0.726	0.718	0.692	0.7	0.716	0.730	0.822	0.790	0.806	0.853	0.753	
776	131	263	244	084	795	827	042	573	803	265	24	667	464	892	0763	569	285	435	0.9
0.885	0.801	0.829	0.795	0.786	0.868	0.845	0.881	0.863	0.848	0.789	0.8	0.837	0.862	0.895	0.863	0.847	0.859	0.869	
672	414	263	023	265	559	324	759	636	718	503	72	5	914	181	3588	445	124	466	0.9
0.756	0.743	0.760	0.733	0.766	0.697	0.730	0.761	0.765	0.725	0.648	0.7	0.687	0.703	0.639	0.759	0.707	0.748	0.710	
716	232	211	484	988	38	216	889	734	641	066	2	5	974	759	542	299	175	687	0.9
0.682	0.676	0.699	0.666	0.674	0.679	0.715	0.735	0.720	0.694	0.701	0.7	0.683	0.619	0.707	0.747	0.678	0.689	0.704	
687	97	579	516	458	913	827	831	979	872	105	12	333	205	229	3282	102	781	58	0.9

APPENDIX E

NORMALIZED TRAINING DATASET OF INPUT FEATURES AND TARGET FEATURES FOR MALE HISPANIC
POPULATION USING ANN APPROACH

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Age
0.124	0.124	0.123	0.118	0.126	0.128	0.131	0.124	0.136	0.123	0.137	0.146	0.156	0.126	0.141	0.137	0.150	0.127	0.110	
299	516	491	944	154	387	549	365	856	92	559	693	667	23	5094	427	286	586	063	0.1
0.172	0.194	0.187	0.196		0.185	0.199	0.195	0.204	0.185	0.205	0.205		0.200	0.216	0.202	0.191	0.224	0.190	
897	194	439	175	0.18	161	155	431	065	05	164	837	0.21	546	9811	924	429	138	566	0.1
0.193	0.216	0.203	0.193	0.198	0.187	0.223	0.221	0.240	0.224	0.205	0.208	0.216	0.200	0.190	0.156	0.173	0.145	0.120	
458	129	1	26	462	742	944	827	921	917	164	949	667	546	566	14	143	977	126	0.1
0.320	0.369	0.351	0.346		0.314	0.368	0.400	0.407	0.408	0.385	0.395		0.384	0.318	0.277	0.305	0.302	0.276	0.144
561	677	876	266	0.36	194	169	508	859	306	446	72	0.41	153	8679	778	714	299	101	444
																			0.144
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	444
0.232	0.278	0.247	0.253	0.243	0.234	0.291	0.288	0.271	0.264	0.238	0.240		0.266	0.326	0.235	0.237	0.242	0.230	0.144
71	065	471	005	077	194	549	832	274	784	967	078	0.25	12	4151	673	143	529	818	444
0.223	0.262	0.244	0.236	0.238	0.229	0.302	0.292	0.310	0.294	0.269	0.283	0.273	0.183	0.330	0.240		0.270	0.200	0.144
364	581	861	976	462	032	817	893	298	02	014	658	333	06	1887	351	0.26	115	629	444
0.230	0.248	0.244	0.254		0.254	0.284	0.268	0.282	0.280	0.257	0.261		0.257	0.269	0.259	0.250	0.260	0.195	0.144
841	387	861	463	0.24	839	789	528	114	731	746	868	0.28	377	8113	064	857	92	597	444
0.281	0.323	0.314	0.309	0.306	0.270	0.347	0.349	0.357	0.339	0.317	0.317		0.287	0.379	0.291		0.339	0.281	0.188
308	226	029	836	154	323	887	746	995	203	84	899	0.33	978	2453	813	0.356	08	132	889
0.324	0.358	0.357	0.343	0.352	0.288	0.370	0.365	0.384	0.363	0.374	0.370		0.331	0.349	0.282	0.333	0.339	0.261	0.188
299	065	096	352	308	387	423	99	011	123	178	817	0.39	694	0566	456	143	08	006	889
	0.338	0.308	0.306	0.303	0.290	0.354	0.337	0.353	0.328	0.317	0.317	0.336	0.253	0.383	0.287	0.342	0.343	0.276	0.188
0.3	71	809	922	077	968	648	563	659	571	84	899	667	005	0189	135	286	678	101	889
0.350	0.368	0.347	0.357	0.343	0.309	0.354	0.359	0.375	0.339	0.374	0.349	0.363	0.305	0.367	0.361	0.273	0.343	0.255	0.233
467	387	961	923	077	032	648	898	339	203	178	027	333	464	9245	988	714	678	975	333
0.316	0.385	0.380	0.373	0.364	0.306	0.417	0.428	0.453	0.413	0.377	0.426		0.384	0.394	0.324	0.282	0.320	0.276	0.233
822	161	587	953	615	452	746	934	388	621	934	848	0.43	153	3396	561	857	69	101	333

				•	•			•	•		•				•			•	
	0.146	0.144	0.139		0.138	0.142	0.132	0.141	0.126	0.130	0.143	0.146	0.134	0.160	0.132	0.141	0.141	0.120	0.233
692	452	372	344	0.14	71	817	487	192	578	047	58	667	973	3774	749	143	379	126	333
0.371	0.416	0.421	0.413	0.401	0.350	0.444	0.441	0.440	0.413	0.426	0.417		0.406	0.443	0.404	0.392	0.385	0.396	0.277
028	129	044	297	538	323	789	117	379	621	761	51	0.43	011	3962	094	571	057	855	778
0.329	0.398	0.388	0.395	0.376	0.332	0.431	0.443	0.455	0.418	0.456	0.470		0.397	0.435	0.446	0.424	0.458	0.416	0.277
907	065	418	811	923	258	268	147	556	937	808	428	0.47	268	8491	199	571	621	981	778
0.356	0.414	0.398	0.400	0.396	0.337	0.410	0.404	0.412	0.392	0.404	0.364	0.363	0.327	0.454	0.436	0.438	0.435	0.422	0.277
075	839	858	182	923	419	986	569	195	359	225	591	333	322	717	842	286	632	013	778
0.460	0.474	0.457	0.458	0.436	0.396	0.512	0.510	0.531	0.482	0.535	0.542	0.543	0.493	0.541	0.511	0.488	0.509	0.467	0.322
748	194	586	47	923	774	394	152	436	724	681	023	333	443	5094	696	571	195	296	222
0.481	0.481	0.482	0.468	0.469	0.396	0.501	0.481	0.485	0.456	0.494	0.495	0.513	0.502	0.503	0.441	0.470	0.486	0.432	0.322
308	935	382	67	231	774	127	726	908	146	366	331	333	186	7736	52	286	207	075	222
0.427	0.498	0.483	0.508	0.496	0.456	0.546	0.522	0.531	0.511	0.535	0.532	0.546	0.567	0.481	0.427	0.438	0.463	0.406	0.322
103	71	687	015	923	129	197	335	436	96	681	685	667	76	1321	485	286	218	918	222
0.408	0.429	0.409	0.391	0.404	0.381	0.401	0.422	0.427	0.387	0.370	0.408	0.423	0.384	0.428	0.376	0.383	0.412	0.371	0.322
411	032	299	439	615	29	972	843	371	043	423	171	333	153	3019	023	429	644	698	222
0.382	0.462	0.441	0.430	0.418	0.352	0.465	0.449	0.466	0.413	0.407	0.414	0.423	0.309	0.443	0.380	0.424	0.431	0.391	0.322
243	581	925	783	462	903	07	239	396	621	981	397	333	836	3962	702	571	034	824	222
0.434	0.546	0.526	0.525	0.509	0.492	0.530	0.520	0.533	0.506	0.535	0.532	0.576	0.537	0.564	0.511	0.511	0.532	0.512	0.366
579	452	754	501	231	258	423	305	604	645	681	685	667	158	1509	696	429	184	579	667
0.556	0.546	0.533	0.525	0.530	0.476	0.559	0.550	0.570	0.549	0.535	0.526		0.515	0.567	0.530	0.534	0.541	0.477	0.366
075	452	279	501	769	774	718	761	461	169	681	459	0.54	301	9245	409	286	379	358	667
	0.515	0.534	0.519	0.504	0.407	0.548	0.542	0.550	0.498	0.546	0.542	0.553	0.541	0.567	0.530	0.538	0.527	0.502	0.366
0.5	484	584	672	615	097	451	64	949	671	948	023	333	53	9245	409	857	586	516	667
0.458	0.502	0.512	0.506	0.483	0.404	0.503		0.535	0.482	0.486	0.482	0.516	0.480	0.477	0.441	0.447	0.435	0.477	0.366
879	581	398	557	077	516	38	0.5	772	724	854	879	667	328	3585	52	429	632	358	667
0.483	0.490	0.492	0.484	0.469	0.448	0.503	0.481	0.490	0.453	0.464	0.445	0.456	0.423	0.488	0.436	0.474		0.452	0.366
178	968	822	699	231	387	38	726	244	488	319	525	667	497	6792	842	857	0.5	201	667
0.423	0.426	0.436	0.429	0.412	0.370	0.462	0.463	0.453	0.421	0.456	0.429		0.388	0.428	0.394	0.410	0.435	0.422	0.366
364	452	705	326	308	968	817	452	388	595	808	961	0.44	525	3019	737	857	632	013	667
0.492	0.528	0.522	0.521	0.518	0.458	0.510	0.512	0.511	0.525	0.505	0.495	0.506	0.462	0.567	0.488	0.465	0.504	0.477	0.366
523	387	838	129	462	71	141	183	924	249	634	331	667	842	9245	304	714	598	358	667
	0.583	0.580	0.572	0.570	0.523	0.568	0.567	0.570	0.543	0.614	0.601		0.528	0.571	0.516	0.538	0.545	0.467	0.411
075	871	261	131	769	226	732	005	461	854	554	167	0.58	415	6981	374	857	977	296	111

0.471 0.493 0.484 0.480 0.464 0.443 0.503 0.487 0.498 0.461 0.543 0.529 0.516 0.440 0.518 0.432 0.442 0.477 0.411 0.411 0.503 0.519 0.512 0.491 0.409 0.481 0.523 0.493 0.492 0.493 0.561 0.560 0.572 0.567 0.588 0.592 0.493 0.533 0.511 0.533 0.551 0.559 0.556 0.559 0.566 0.572 0.567 0.568 0.572 0.573 0.575 0.559 0.566 0.575 0.566 0.572 0.567 0.566 0.572 0.567 0.567 0.568 0.575 0.567 0.573 0.575	0.451	0.400	0.404	0.400	0.454	0.440	0.500	0.405	0.400	0.464	0.7.10	0.700	0.715	0.440	0.710	0.400	0.440	0.455	0.444	0.444
738 355 0.584 0.584 0.769 9.35 662 9.39 412 355 972 7 0.566 0.566 0.566 0.566 0.566 0.566 0.567 0.538 0.555 0.573 0.516 1514 355 33 902 615 806 451 457 108 276 751 926 667 131 924 836 857 172 673 111 0.537 0.516 0.500 0.496 0.486 0.494 0.483 0.481 0.505 0.477 0.513 0.523 0.524 0.524 0.524 0.524 0.523 0.524 0.525 0.524 0.524 0.524 0.524													667							
0.535 0.559 0.546 0.545 0.524 0.525 0.548 0.530 0.540 0.517 0.580 0.566 0.566 0.572 0.567 0.537 0.518 0.500 0.411 457 108 276 751 926 667 131 9245 836 857 172 673 111 0.537 0.516 0.500 0.496 0.488 0.481 0.881 0.505 0.477 0.513 0.495 0.523 0.524 0.545 0.507 0.493 0.509 0.492 0.411 0.578 0.561 0.571 0.586 0.553 0.479 0.524 0.516 0.510 0.583 0.481 0.557 0.591 0.512 0.512 0.512 0.512 0.504 0.445 0.492 0.479 0.503 0.488 0.493 0.481 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 <td></td> <td>l l</td>																				l l
514 355 33 902 615 806 451 457 108 276 751 926 667 131 9245 836 857 172 673 111 0.537 0.516 0.500 0.486 0.484 0.489 0.99 726 42 409 146 331 333 304 223 0.18 143 195 453 111 0.578 0.561 0.571 0.586 0.553 0.749 0.521 0.540 0.548 0.699 453 618 901 895 333 0.71 0.189 444 143 954 83 111 0.509 0.519 0.512 0.504 0.445 0.492 0.479 0.503 0.488 0.480 0.433 0.433 0.432 0.526 0.460 0.444 0.535 0.481 0.485 0.486 0.485 0.486 0.485 0.486 0.485 0.486 0.481 0.584 <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>, , , , ,</td> <td></td> <td></td> <td></td> <td></td>												,				, , , , ,				
0.537 0.516 0.500 0.496 0.484 0.483 0.481 0.505 0.477 0.513 0.495 0.523 0.524 0.545 0.507 0.493 0.509 0.492 0.411 383 774 653 357 154 839 099 726 42 409 1.46 331 333 0.44 283 0.18 143 195 453 111 505 9.551 0.510 0.552 0.514 0.516 0.557 0.514 0.510 0.510 0.559 0.511 0.510 0.557 0.511 0.510 0.583 0.548 0.583 0.544 0.557 0.511 0.510 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.512 0.513 0.445 0.492 0.479 0.503 0.488 0.483 0.512 0.512 0.512 0.513 0.445 0.492 0.441 5.50 0.	0.535					0.525			0.540			0.566	0.566					0.555	0.527	0.411
383 774 653 357 154 839 099 726 42 409 146 331 333 044 283 018 143 195 453 111 0.578 0.561 0.571 0.586 0.553 0.579 0.570 0.557 0.514 0.516 0.510 0.583 0.544 0.557 0.591 0.552 0.411 0.507 0.529 0.512 0.512 0.504 0.445 0.492 0.479 0.503 0.458 0.498 0.433 0.643 0.482 0.498 1.11 0.507 0.512 0.512 0.512 0.504 0.444 0.525 0.514 0.533 0.573 0.471 0.525 0.514 0.532 0.510 0.533 0.573 0.471 0.525 0.514 0.532 0.516 0.533 0.533 0.481 0.525 0.514 0.532 0.548 0.480 0.480 0.460 0.410 0.520 0.552 </td <td>514</td> <td>355</td> <td>33</td> <td>902</td> <td>615</td> <td>806</td> <td>451</td> <td>457</td> <td>108</td> <td>276</td> <td>751</td> <td>926</td> <td>667</td> <td>131</td> <td>9245</td> <td>836</td> <td>857</td> <td>172</td> <td>673</td> <td>111</td>	514	355	33	902	615	806	451	457	108	276	751	926	667	131	9245	836	857	172	673	111
0.578 0.561 0.571 0.586 0.553 0.479 0.521 0.540 0.557 0.514 0.516 0.510 0.543 0.489 0.583 0.544 0.557 0.511 0.505 0.520 0.512 0.512 0.571 0.529 0.512 0.512 0.512 0.504 0.484 0.499 0.479 0.503 0.588 0.381 0.730 0.522 0.512 0.504 0.444 0.499 0.472 0.458 0.498 0.473 0.468 0.486 0.498 0.473 0.463 0.352 0.573 0.573 0.573 0.573 0.573 0.573 0.573 0.573 0.573 0.573 0.571 0.525 0.514 0.535 0.509 0.488 0.486 0.410 0.564 0.524 0.520 0.553 0.481 0.525 0.514 0.525 0.514 0.535 0.581 0.525 0.514 0.535 0.590 0.488 0.486 0.410 0.520 0.525 <th< td=""><td>0.537</td><td>0.516</td><td>0.500</td><td>0.496</td><td>0.486</td><td>0.494</td><td>0.483</td><td>0.481</td><td>0.505</td><td></td><td>0.513</td><td>0.495</td><td></td><td>0.524</td><td>0.545</td><td>0.507</td><td>0.493</td><td>0.509</td><td>0.492</td><td>0.411</td></th<>	0.537	0.516	0.500	0.496	0.486	0.494	0.483	0.481	0.505		0.513	0.495		0.524	0.545	0.507	0.493	0.509	0.492	0.411
505 935 126 703 846 355 408 609 453 618 901 895 333 071 0189 444 143 954 83 111 0.507 0.529 0.512 0.512 0.504 0.445 0.479 0.479 0.503 0.488 0.473 0.433 0.426 0.484 402 0.479 0.551 0.514 0.533 0.551 0.573 0.573 0.471 0.525 0.514 0.535 0.509 0.584 0.486 0.444 571 575 704 556 0.584 0.551 0.561 0.570 0.533 0.481 0.586 0.577 0.609 0.557 0.546 0.586 0.532 0.584 0.557 0.540 0.554 0.586 0.532 0.584 0.557 0.546 0.584 0.586 0.532 0.581 0.560 0.534 0.534 0.534 0.534 0.534 0.534 0.534	383	774	653	357	154	839	099	726		409	146	331	333	044	283	018	143	195	453	111
0.507 0.529 0.512 0.512 0.512 0.504 0.445 0.492 0.479 0.503 0.458 0.498 0.473 0.463 0.432 0.526 0.460 — 0.495 0.475 477 677 398 386 615 806 113 695 252 804 122 541 333 24 4151 234 0.484 402 0.44 556 0.514 0.551 0.573 0.573 0.471 0.525 0.514 0.535 0.509 0.589 0.486 0.410 0.564 0.544 0.520 0.553 0.481 9.566 0.532 0.455 0.551 0.561 0.577 0.540 0.585 0.586 0.577 0.609 0.557 0.546 0.585 0.580 0.532 0.532 0.485 143 98 667 787 1113 2374 260 0.532 0.532 0.545 0.532 0.524 0.532 0.541	0.578	0.561	0.571	0.586	0.553	0.479	0.521	0.540	0.557	0.514	0.516	0.510	0.543	0.489	0.583	0.544	0.557	0.591	0.552	0.411
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	505	935	126	703	846	355	408	609	453	618	901	895	333	071	0189	444	143	954	83	111
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.507	0.529	0.512	0.512	0.504	0.445	0.492	0.479	0.503	0.458	0.498	0.473	0.463	0.432	0.526	0.460		0.495	0.427	0.455
953 871 55 588 846 613 915 213 772 302 39 992 667 383 1509 444 571 575 704 555 0.584 0.551 0.561 0.570 0.553 0.481 0.586 0.577 0.609 0.557 0.546 0.585 0.586 0.532 0.558 0.534 0.532 0.538 0.538 0.534 0.533 0.538 0.557 0.542 0.544 0.544 0.541 0.525 0.511 0.518 0.534 0.533 0.538 0.465 64 797 169 46 911 0.55 787 5094 731 429 391 484 556 0.514 0.502 0.515 0.513 0.487 0.522 0.524 0.537 0.599 0.533 0.544 0.522 0.516 0.573 0.516 0.521 0.522 0.534 0.524 0.527 0.534 0.524 0.537	477	677	398	386	615	806	113	695	252	804	122	541	333	24	4151	234	0.484	402	044	556
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.514	0.543	0.551	0.573	0.573	0.471	0.525	0.514	0.535	0.509	0.509	0.485	0.486	0.410	0.564	0.544	0.520	0.550	0.532	0.455
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	953	871	55	588	846	613	915	213	772	302	39	992	667	383	1509	444	571	575	704	556
0.526 0.516 0.534 0.532 0.538 0.450 0.557 0.542 0.574 0.549 0.554 0.538 0.532 0.511 0.525 0.511 0.518 0.497 0.455 0.514 0.502 0.515 0.513 0.487 0.532 0.524 0.537 0.509 0.535 0.576 0.525 0.514 0.502 0.515 0.513 0.487 0.532 0.524 0.537 0.509 0.535 0.576 0.573 0.524 0.552 0.516 0.576 0.581 0.581 0.581 0.581 0.555 0.520 0.552 0.550 0.561 0.519 0.561 0.516 0.573 0.524 0.552 0.561 0.516 0.573 0.524 0.552 0.565 0.561 0.519 0.571 0.563 0.577 0.555 0.520 0.552 0.550 0.561 0.519 0.526 0.526 0.440 0.567 0.553 0.545 0.532 0.544 0.5	0.584	0.551	0.561	0.570	0.553	0.481	0.586	0.577	0.609	0.557	0.546	0.585	0.586	0.532	0.598	0.516	0.534	0.550	0.532	0.455
168 774 584 787 462 968 465 64 797 169 46 911 0.55 787 5094 731 429 391 484 556 0.514 0.502 0.515 0.513 0.487 0.532 0.524 0.537 0.573 0.576 0.573 0.524 0.552 0.516 586 516 556 0.576 0.581 0.08 843 0.5 0.97 676 365 94 302 681 265 333 044 8302 374 0.516 586 516 556 0.571 0.581 0.595 0.577 0.552 0.550 0.561 0.599 0.54 0.571 0.565 0.565 0.565 0.569 0.543 0.494 0.557 0.550 0.566 0.522 0.588 0.545 0.530 0.546 0.522 0.588 0.545 0.530 0.565 0.567 0.569 0.548 <t< td=""><td>112</td><td>613</td><td>99</td><td>674</td><td>846</td><td>935</td><td>761</td><td>157</td><td>485</td><td>143</td><td>948</td><td>603</td><td>667</td><td>787</td><td>1132</td><td>374</td><td>286</td><td>575</td><td>704</td><td>556</td></t<>	112	613	99	674	846	935	761	157	485	143	948	603	667	787	1132	374	286	575	704	556
0.514 0.502 0.515 0.513 0.487 0.532 0.524 0.537 0.509 0.535 0.576 0.573 0.524 0.552 0.516 586 516 556 953 581 008 843 0.5 097 676 365 94 302 681 265 333 044 8302 374 0.516 586 516 556 0.576 0.581 0.595 0.577 0.555 0.520 0.552 0.561 0.526 0.526 0.440 0.567 0.553 0.532 0.455 0.571 0.565 0.576 0.569 0.543 0.494 0.557 0.550 0.566 0.522 0.588 0.545 0.566 0.567 0.554 0.512 0.550 0.566 0.522 0.588 0.545 0.532 0.546 0.526 0.567 0.594 0.549 0.525 0.545 0.512 0.571 0.568 346 217	0.526	0.516	0.534	0.532	0.538	0.450	0.557	0.542	0.574	0.549	0.554	0.538		0.532	0.541	0.525	0.511	0.518	0.497	0.455
953 581 008 843 0.5 097 676 365 94 302 681 265 333 044 8302 374 0.516 586 516 556 0.576 0.581 0.595 0.577 0.555 0.520 0.552 0.550 0.519 0.516 0.526 0.440 0.567 0.553 0.584 0.578 0.532 0.455 636 29 922 96 385 645 958 761 789 934 972 459 0.5 984 9245 801 571 161 704 556 0.571 0.565 0.576 0.569 0.543 0.494 0.557 0.550 0.566 0.522 0.588 0.545 0.536 0.569 0.545 0.512 0.588 0.545 0.536 0.567 0.549 0.525 0.545 0.512 0.28 806 346 217 0.77 839 465	168	774	584	787	462	968	465	64	797	169	46	911	0.55	787	5094	731	429	391	484	556
0.576 0.581 0.595 0.577 0.555 0.520 0.552 0.561 0.519 0.526 0.526 0.440 0.567 0.553 0.578 0.532 0.455 636 29 922 96 385 645 958 761 789 934 972 459 0.5 984 9245 801 571 161 704 556 0.571 0.565 0.576 0.569 0.543 0.494 0.557 0.550 0.566 0.522 0.588 0.545 0.567 0.545 0.545 0.512 0.28 806 346 217 077 839 465 761 125 591 263 136 667 76 3396 123 143 977 579 0.5 0.701 0.687 0.663 0.669 0.616 0.672 0.674 0.661 0.631 0.667 0.672 0.568 0.632 0.660 0.527 0.5	0.514	0.502	0.515	0.513		0.487	0.532	0.524	0.537	0.509	0.535	0.576	0.573	0.524	0.552	0.516		0.527	0.502	0.455
636 29 922 96 385 645 958 761 789 934 972 459 0.5 984 9245 801 571 161 704 556 0.571 0.565 0.576 0.569 0.543 0.494 0.557 0.550 0.566 0.522 0.588 0.545 0.567 0.549 0.525 0.545 0.512 028 806 346 217 077 839 465 761 125 591 263 136 667 76 3396 123 143 977 579 0.5 0.701 0.687 0.663 0.669 0.616 0.672 0.674 0.676 0.631 0.667 0.672 0.567 0.567 0.638 0.638 0.660 0.567 92 925 0.5 0.502 0.517 0.502 0.513 0.456 0.521 0.530 0.529 0.485 0.483 0.493 0.384	953	581	008	843	0.5	097	676	365	94	302	681	265	333	044	8302	374	0.516	586	516	556
0.571 0.565 0.576 0.569 0.543 0.494 0.557 0.566 0.522 0.588 0.545 0.566 0.567 0.580 0.566 0.522 0.588 0.545 0.536 0.567 0.594 0.549 0.525 0.545 0.512 0.28 806 346 217 0.77 839 465 761 125 591 263 136 667 76 3396 123 143 977 579 0.5 0.701 0.687 0.663 0.669 0.616 0.672 0.674 0.667 0.631 0.667 0.672 0.567 0.568 0.638 0.660 0.567 869 0.97 785 763 0.68 129 394 619 694 561 136 763 0.66 76 4906 012 0.676 92 925 0.5 0.548 0.521 0.513 0.483 0.483 0.493 0.483 <	0.576	0.581	0.595	0.577	0.555	0.520	0.552	0.550	0.561	0.519	0.561	0.526		0.440	0.567	0.553	0.584	0.578	0.532	0.455
028 806 346 217 077 839 465 761 125 591 263 136 667 76 3396 123 143 977 579 0.5 0.701 0.687 0.663 0.669 0.616 0.672 0.674 0.667 0.631 0.667 0.672 0.567 0.658 0.638 0.660 0.567 0.589 869 097 785 763 0.68 129 394 619 694 561 136 763 0.66 76 4906 012 0.676 92 925 0.5 0.548 0.521 0.517 0.502 0.513 0.456 0.521 0.530 0.529 0.485 0.483 0.495 0.493 0.384 0.545 0.502 0.511 0.532 0.502 598 935 618 186 846 129 408 457 268 382 099 331 333 153	636	29	922	96	385	645	958	761	789	934	972	459	0.5	984	9245	801	571	161	704	556
0.701 0.687 0.663 0.669 0.616 0.672 0.674 0.676 0.631 0.667 0.672 0.658 0.631 0.660 0.672 0.660 0.567 0.658 0.638 0.660 0.567 0.589 0.548 0.521 0.517 0.502 0.513 0.456 0.521 0.530 0.529 0.485 0.483 0.495 0.493 0.384 0.545 0.502 0.511 0.532 0.502 598 935 618 186 846 129 408 457 268 382 099 331 333 153 283 339 429 184 516 0.5 0.600 0.589 0.622 0.602 0.570 0.530 0.627 0.601 0.644 0.591 0.603 0.626 0.696 0.628 0.601 0.567 0.647 0.598 935 032 023 732 769 968 324 523 17	0.571	0.565	0.576	0.569	0.543	0.494	0.557	0.550	0.566	0.522	0.588	0.545	0.536	0.567	0.594	0.549	0.525	0.545	0.512	
869 097 785 763 0.68 129 394 619 694 561 136 763 0.66 76 4906 012 0.676 92 925 0.5 0.548 0.521 0.517 0.502 0.513 0.456 0.521 0.530 0.529 0.485 0.483 0.495 0.493 0.384 0.545 0.502 0.511 0.532 0.502 598 935 618 186 846 129 408 457 268 382 099 331 333 153 283 339 429 184 516 0.5 0.600 0.589 0.622 0.602 0.570 0.530 0.627 0.601 0.644 0.591 0.603 0.626 0.696 0.628 0.601 0.567 0.6598 0.594 0.502 0.628 0.601 0.567 0.647 0.598 935 032 023 732 769 968	028	806	346	217	077	839	465	761	125	591	263	136	667	76	3396	123	143	977	579	0.5
0.548 0.521 0.517 0.502 0.513 0.456 0.521 0.530 0.529 0.485 0.483 0.495 0.493 0.384 0.545 0.502 0.511 0.532 0.502 598 935 618 186 846 129 408 457 268 382 099 331 333 153 283 339 429 184 516 0.5 0.600 0.589 0.622 0.602 0.570 0.530 0.627 0.601 0.644 0.591 0.603 0.626 0.696 0.628 0.601 0.567 0.598 935 032 023 732 769 968 324 523 173 694 286 07 667 962 8868 836 714 126 113 0.5 0.544 0.561 0.561 0.537 0.523 0.510 0.570 0.567 0.561 0.527 0.513 0.548 0.5	0.701	0.687	0.663	0.669		0.616	0.672	0.674	0.676	0.631	0.667	0.672		0.567	0.658	0.638		0.660	0.567	
598 935 618 186 846 129 408 457 268 382 099 331 333 153 283 339 429 184 516 0.5 0.600 0.589 0.622 0.602 0.602 0.570 0.530 0.627 0.601 0.644 0.591 0.603 0.626 0.696 0.628 0.601 0.567 0.625 0.647 0.598 935 032 023 732 769 968 324 523 173 694 286 07 667 962 8868 836 714 126 113 0.5 0.544 0.561 0.561 0.537 0.523 0.510 0.567 0.561 0.527 0.513 0.548 0.526 0.458 0.586 0.502 0.599 0.497 86 935 99 158 077 323 986 005 789 907 146 249 667 <td>869</td> <td>097</td> <td>785</td> <td>763</td> <td>0.68</td> <td>129</td> <td>394</td> <td>619</td> <td>694</td> <td>561</td> <td>136</td> <td>763</td> <td>0.66</td> <td>76</td> <td>4906</td> <td>012</td> <td>0.676</td> <td>92</td> <td>925</td> <td>0.5</td>	869	097	785	763	0.68	129	394	619	694	561	136	763	0.66	76	4906	012	0.676	92	925	0.5
0.600 0.589 0.622 0.602 0.570 0.530 0.627 0.601 0.644 0.591 0.603 0.626 0.696 0.628 0.601 0.567 0.628 0.647 0.567 0.598 935 032 023 732 769 968 324 523 173 694 286 07 667 962 8868 836 714 126 113 0.5 0.544 0.561 0.561 0.537 0.523 0.510 0.570 0.567 0.561 0.527 0.513 0.548 0.526 0.458 0.586 0.502 0.509 0.497 86 935 99 158 077 323 986 005 789 907 146 249 667 47 7925 339 714 195 484 0.5 0.612 0.617 0.598 0.586 0.603 0.629 0.611 0.615 0.594 0.670 0.604	0.548	0.521	0.517	0.502	0.513	0.456	0.521	0.530	0.529	0.485	0.483	0.495	0.493	0.384	0.545	0.502	0.511	0.532	0.502	
935 032 023 732 769 968 324 523 173 694 286 07 667 962 8868 836 714 126 113 0.5 0.544 0.561 0.561 0.537 0.523 0.510 0.567 0.561 0.527 0.513 0.548 0.526 0.458 0.586 0.502 0.529 0.509 0.497 86 935 99 158 077 323 986 005 789 907 146 249 667 47 7925 339 714 195 484 0.5 0.612 0.617 0.598 0.586 0.603 0.629 0.611 0.615 0.594 0.670 0.604 0.550 0.711 0.656 0.666 0.683 0.663	598	935	618	186	846	129	408	457	268	382	099	331	333	153	283	339	429	184	516	0.5
0.544 0.561 0.561 0.537 0.523 0.510 0.567 0.561 0.527 0.513 0.548 0.526 0.458 0.586 0.502 0.529 0.509 0.497 86 935 99 158 0.77 323 986 005 789 907 146 249 667 47 7925 339 714 195 484 0.5 0.612 0.617 0.598 0.586 0.603 0.629 0.611 0.615 0.594 0.670 0.604 0.550 0.711 0.656 0.668 0.663 0.663	0.600	0.589	0.622	0.602	0.570	0.530	0.627	0.601	0.644	0.591	0.603	0.626	0.696	0.628	0.601	0.567	0.625	0.647	0.598	
86 935 99 158 077 323 986 005 789 907 146 249 667 47 7925 339 714 195 484 0.5 0.612 0.617 0.598 0.586 0.603 0.629 0.611 0.615 0.594 0.670 0.604 0.550 0.711 0.656 0.663 0.663 0.663	935	032	023	732	769	968	324	523	173	694	286	07	667	962	8868	836	714	126	113	0.5
0.612 0.617 0.598 0.586 0.603 0.629 0.611 0.615 0.594 0.670 0.604 0.550 0.711 0.656 0.666 0.683 0.663	0.544	0.561	0.561	0.537	0.523	0.510	0.570	0.567	0.561	0.527	0.513	0.548	0.526	0.458	0.586	0.502	0.529	0.509	0.497	
	86	935	99	158	077	323	986	005	789	907	146	249	667	47	7925	339	714	195	484	0.5
15 419 532 703 077 0.58 577 675 989 352 892 28 0.61 273 3208 725 857 908 522 0.5	0.612	0.617	0.598	0.586	0.603		0.629	0.611	0.615	0.594	0.670	0.604		0.550	0.711	0.656	0.666	0.683	0.663	
	15	419	532	703	077	0.58	577	675	989	352	892	28	0.61	273	3208	725	857	908	522	0.5

0.561	0.568	0.593	0.576	0.556	0.533	0.566	0.575	0.579	0.570	0.573	0.573	0.586	0.589	0.616	0.567	0.584	0.591	0.562	i l
682	387	312	503	923	548	479	127	133	432	239	152	667	617	9811	836	571	954	893	0.5
0.636	0.625	0.616	0.614	0.598	0.494	0.620	0.627	0.646	0.607	0.588	0.613	0.643	0.598	0.635	0.586	0.621	0.628	0.603	0.544
449	161	803	39	462	839	563	919	341	641	263	619	333	361	8491	55	143	736	145	444
0.628	0.629	0.635	0.621	0.595	0.533	0.625	0.611	0.613	0.573	0.610	0.622	0.623	0.545	0.586	0.507		0.582	0.406	0.544
972	032	073	676	385	548	07	675	821	09	798	957	333	902	7925	018	0.548	759	918	444
0.705	0.630	0.619	0.596	0.590	0.592	0.636	0.615	0.639	0.626	0.633	0.619	0.636	0.642	0.613	0.577	0.584	0.578	0.593	0.544
607	323	413	903	769	903	338	736	837	246	333	844	667	077	2075	193	571	161	082	444
0.578	0.551	0.556	0.567	0.515	0.497		0.575	0.585	0.501	0.565	0.560	0.583	0.506	0.598	0.577	0.616	0.633	0.567	0.544
505	613	77	76	385	419	0.58	127	637	329	728	7	333	557	1132	193	571	333	925	444
0.524	0.555	0.548	0.545	0.523	0.476	0.568	0.581	0.583	0.543	0.501	0.529	0.526	0.454	0.594	0.507	0.538	0.550	0.502	0.544
299	484	94	902	077	774	732	218	469	854	878	572	667	098	3396	018	857	575	516	444
0.591	0.592	0.568	0.557	0.553	0.528		0.579	0.576	0.535	0.554	0.570	0.576	0.541	0.590	0.549	0.529	0.591	0.522	0.544
589	903	515	559	846	387	0.58	188	965	88	46	039	667	53	566	123	714	954	642	444
0.632	0.578	0.560	0.548	0.567	0.600	0.595	0.556	0.576	0.543	0.633	0.598	0.616	0.537	0.571	0.586	0.593	0.633	0.613	0.544
71	71	685	816	692	645	775	853	965	854	333	054	667	158	6981	55	714	333	208	444
0.602	0.654	0.662	0.653	0.635	0.569	0.622	0.652	0.670	0.602	0.667	0.669	0.676	0.642	0.673	0.666	0.666	0.670	0.633	0.544
804	839	48	734	385	677	817	284	19	326	136	65	667	077	5849	082	857	115	333	444
0.597	0.621	0.620	0.611	0.610	0.577	0.573	0.595	0.607	0.602	0.580	0.601	0.616	0.633	0.616	0.591	0.602	0.637	0.648	0.544
196	29	718	475	769	419	239	431	317	326	751	167	667	333	9811	228	857	931	428	444
0.606	0.573	0.572	0.567	0.549	0.523	0.566	0.567	0.563	0.509	0.584	0.594		0.528	0.635	0.600	0.625	0.656	0.593	0.588
542	548	431	76	231	226	479	005	957	302	507	942	0.58	415	8491	585	714	322	082	889
0.608	0.625	0.636	0.624	0.624	0.585	0.634	0.640	0.655	0.623	0.637	0.660		0.642	0.703	0.689		0.660	0.683	0.588
411	161	378	59	615	161	085	102	014	588	089	311	0.68	077	7736	474	0.644	92	648	889
0.696	0.674	0.662	0.662	0.636	0.647	0.721	0.713	0.713	0.655	0.644	0.650	0.633	0.510	0.677	0.605	0.680	0.670	0.577	0.588
262	194	48	477	923	097	972	198	55	482	601	973	333	929	3585	263	571	115	987	889
0.664	0.641	0.637	0.630	0.615	0.549	0.625	0.603	0.628	0.634	0.652	0.657	0.653	0.668	0.666	0.642	0.653	0.647	0.598	0.588
486	935	684	419	385	032	07	553	997	219	113	198	333	306	0377	69	143	126	113	889
0.800	0.782	0.769	0.767	0.770	0.724	0.780	0.778	0.793	0.740	0.764	0.766	0.783	0.642	0.760	0.736	0.785	0.748	0.703	0.588
935	581	494	395	769	516	563	173	767	532	789	148	333	077	3774	257	714	276	774	889
0.599	0.608	0.611	0.612	0.576	0.549	0.604	0.605	0.609	0.583	0.618	0.588		0.607	0.624	0.628	0.666	0.679	0.678	0.588
065	387	582	933	923	032	789	584	485	721	31	716	0.61	104	5283	655	857	31	616	889
0.314	0.292	0.289	0.286	0.296	0.272	0.278	0.266	0.282	0.262	0.272	0.252	0.253	0.253	0.296	0.268	0.250	0.242	0.240	0.588
953	258	233	521	923	903	028	497	114	126	77	529	333	005	2264	421	857	529	881	889

				ı	1	ı	ı	ı	ı			ı				ı			
0.328	0.306	0.299	0.285	0.295	0.288	0.291	0.290	0.297	0.283	0.314	0.317	0.336	0.301	0.345	0.319	0.328	0.352	0.316	0.588
037	452	674	064	385	387	549	863	29	389	085	899	667	093	283	883	571	874	352	889
0.814	0.747	0.761	0.744		0.670	0.726	0.733	0.743	0.708	0.727	0.703	0.736	0.712	0.764	0.680	0.648	0.734	0.688	0.588
019	742	664	08	0.72	323	479	503	902	638	23	891	667	022	1509	117	571	483	679	889
0.630	0.640	0.614	0.602		0.525	0.604	0.619	0.633	0.583	0.576	0.576	0.593	0.572	0.654	0.614	0.602	0.610	0.633	0.588
841	645	192	732	0.62	806	789	797	333	721	995	265	333	131	717	62	857	345	333	889
0.567	0.538	0.563	0.554	0.535	0.484	0.528	0.540	0.550	0.509	0.528	0.538	0.563	0.493	0.552	0.535	0.520	0.550	0.502	0.588
29	71	295	645	385	516	169	609	949	302	169	911	333	443	8302	088	571	575	516	889
0.664	0.645	0.636	0.623	0.607	0.528		0.577	0.592	0.557	0.588	0.601	0.633	0.620	0.635	0.595	0.625	0.633	0.638	0.588
486	806	378	133	692	387	0.58	157	141	143	263	167	333	219	8491	906	714	333	365	889
0.645	0.697	0.696	0.704	0.672	0.634	0.649	0.672	0.698	0.655	0.700	0.716	0.723	0.720	0.726	0.703	0.703	0.729	0.713	0.633
794	419	411	736	308	194	859	589	374	482	939	342	333	765	4151	509	429	885	836	333
0.681	0.675	0.689	0.682	0.649	0.605	0.679	0.688	0.683	0.647	0.723	0.722	0.736	0.703	0.722	0.689		0.720	0.703	0.633
308	484	886	878	231	806	155	832	198	508	474	568	667	279	6415	474	0.708	69	774	333
0.784	0.769	0.723	0.728	0.713	0.745	0.758	0.737	0.767	0.732	0.761	0.756		0.611		0.717	0.717	0.706	0.718	0.633
112	677	817	051	846	161	028	563	751	558	033	809	0.73	475	0.7	544	143	897	868	333
0.778	0.782	0.736	0.707	0.730	0.758	0.767	0.749	0.778	0.732	0.757	0.756		0.633	0.711	0.740	0.744	0.729	0.713	0.633
505	581	868	65	769	065	042	746	591	558	277	809	0.76	333	3208	936	571	885	836	333
0.757	0.781	0.777	0.774	0.773	0.711	0.796	0.806	0.793	0.788	0.640	0.735	0.726	0.628	0.783	0.623	0.589	0.660	0.643	0.633
944	29	325	681	846	613	338	599	767	372	845	019	667	962	0189	977	143	92	396	333
0.748	0.727	0.717	0.691	0.696	0.750	0.758	0.707	0.730	0.729	0.693	0.731		0.742	0.760	0.703	0.721	0.757	0.728	0.633
598	097	292	621	923	323	028	107	894	9	427	907	0.75	623	3774	509	714	471	931	333
0.642	0.657	0.638	0.612	0.606	0.569	0.613	0.629	0.615	0.589	0.584	0.585		0.489	0.662	0.661	0.703	0.716	0.653	0.633
056	419	989	933	154	677	803	949	989	037	507	603	0.6	071	2642	404	429	092	459	333
0.741	0.719	0.725	0.701	0.696	0.685	0.755	0.749	0.748	0.764	0.723	0.731		0.799	0.771	0.745	0.735	0.739	0.779	0.633
121	355	122	821	923	806	775	746	238	452	474	907	0.76	454	6981	614	429	08	245	333
0.752	0.715	0.727	0.700	0.724	0.696	0.749	0.763	0.791	0.751	0.727	0.731	0.746	0.729	0.730	0.740	0.730	0.757	0.754	0.633
336	484	732	364	615	129	014	959	599	163	23	907	667	508	1887	936	857	471	088	333
0.701	0.721	0.713	0.710	0.670	0.654	0.721	0.723	0.730	0.698	0.689	0.688	0.703	0.729	0.756	0.745	0.753	0.771	0.779	0.677
869	935	377	565	769	839	972	35	894	007	671	327	333	508	6038	614	714	264	245	778
0.681	0.658	0.653	0.637	0.649	0.585	0.647	0.634	0.648	0.615	0.667	0.622	0.616	0.572	0.786	0.661		0.665	0.648	0.677
308	71	344	705	231	161	606	01	509	615	136	957	667	131	7925	404	0.612	517	428	778
0.752	0.683	0.650	0.643	0.661	0.662	0.706	0.715	0.730	0.687	0.712	0.707	0.716	0.646	0.696	0.623	0.680	0.688	0.688	0.677
336	226	734	534	538	581	197	228	894	375	207	004	667	448	2264	977	571	506	679	778

	1	1		1	1	1		1	1		1				1	1	1		1
0.705	0.663	0.674	0.662	0.641	0.636	0.688	0.698	0.689	0.652	0.700	0.703		0.611	0.681	0.619	0.598	0.619	0.633	0.677
607	871	225	477	538	774	169	985	702	824	939	891	0.68	475	1321	298	286	54	333	778
0.767	0.758	0.742	0.720	0.706	0.724	0.791	0.772	0.750	0.735	0.746	0.778	0.756	0.703	0.824	0.745		0.798	0.738	0.677
29	065	088	765	154	516	831	081	407	216	009	599	667	279	5283	614	0.804	851	994	778
0.714	0.776	0.766	0.755	0.746	0.667	0.721	0.737	0.752	0.716	0.607	0.660		0.593	0.673	0.703		0.785	0.774	0.677
953	129	884	738	154	742	972	563	575	611	042	311	0.71	989	5849	509	0.804	057	214	778
0.815	0.804	0.795	0.758		0.745	0.789	0.776	0.785	0.761	0.753	0.787		0.698	0.832	0.740	0.744	0.752	0.769	0.677
888	516	595	652	0.76	161	577	142	095	794	521	938	0.78	907	0755	936	571	874	182	778
0.795	0.778	0.755	0.748			0.758	0.751	0.756	0.756	0.753	0.741	0.786	0.712	0.741	0.731		0.762	0.799	0.677
327	71	139	452	0.76	0.74	028	777	911	478	521	245	667	022	5094	579	0.772	069	371	778
0.793	0.770	0.756	0.732	0.729		0.794	0.786	0.772	0.756	0.697	0.763	0.783	0.712	0.828	0.722	0.808	0.803	0.769	0.722
458	968	444	423	231	0.74	085	294	087	478	183	035	333	022	3019	222	571	448	182	222
0.780	0.764	0.756	0.744	0.746	0.760	0.787	0.792	0.806	0.772	0.749	0.719	0.763	0.760	0.828	0.726		0.831	0.733	0.722
374	516	444	08	154	645	324	386	775	425	765	455	333	109	3019	901	0.804	034	962	222
0.815	0.817	0.823	0.818	0.804	0.760	0.805	0.822	0.828	0.780	0.832	0.794	0.813	0.781	0.775	0.783	0.790	0.794	0.814	0.722
888	419	002	397	615	645	352	843	455	399	394	163	333	967	4717	041	286	253	465	222
0.337	0.332	0.333	0.338	0.343	0.301	0.316	0.319	0.349	0.309	0.347	0.330	0.326	0.336	0.326	0.310	0.310	0.311	0.316	0.722
383	258	605	98	077	29	338	289	322	967	887	35	667	066	4151	526	286	494	352	222
0.836	0.817	0.828	0.831	0.816	0.752	0.839	0.837	0.854	0.820	0.832	0.859	0.853	0.720	0.847	0.801	0.826	0.812	0.844	0.722
449	419	222	512	923	903	155	056	472	266	394	533	333	765	1698	754	857	644	654	222
0.728	0.773	0.762	0.752		0.683	0.721	0.745	0.754	0.727	0.584	0.660	0.696	0.593	0.760	0.708	0.790	0.789	0.799	0.722
037	548	969	823	0.74	226	972	685	743	243	507	311	667	989	3774	187	286	655	371	222
0.802	0.736	0.697	0.701	0.704	0.709	0.751	0.753	0.763	0.729	0.753	0.747	0.753	0.681	0.707	0.675	0.717	0.725	0.698	0.722
804	129	716	821	615	032	268	807	415	9	521	471	333	421	5472	439	143	287	742	222
0.834	0.787	0.774	0.781	0.786	0.789	0.830	0.822	0.837	0.841	0.794	0.781		0.790	0.756	0.689	0.694	0.752	0.713	0.722
579	742	715	967	154	032	141	843	127	528	836	712	0.84	71	6038	474	286	874	836	222
	0.879		0.891		0.879	0.868	0.849	0.880	0.876	0.824	0.822		0.799	0.816	0.778	0.790	0.785	0.809	0.722
0.9	355	0.9	257	0.9	355	451	239	488	08	883	179	0.85	454	9811	363	286	057	434	222
0.827	0.764	0.755	0.755	0.769	0.801	0.805	0.798	0.813	0.775	0.817	0.859	0.816	0.786	0.850	0.769	0.790	0.794	0.759	0.722
103	516	139	738	231	935	352	477	279	083	371	533	667	339	9434	006	286	253	119	222
0.832	0.790	0.778	0.745	0.744	0.758	0.791	0.790	0.808	0.783	0.779	0.784	0.763	0.746	0.707	0.703	0.758	0.743	0.804	0.722
71	323	63	537	615	065	831	355	943	056	812	825	333	995	5472	509	286	678	403	222
0.800	0.777	0.760	0.730	0.727	0.750	0.818	0.782	0.776	0.756	0.719	0.744	0.756	0.712	0.820	0.750	0.822	0.831	0.723	0.766
935	419	359	965	692	323	873	234	423	478	718	358	667	022	7547	292	286	034	899	667

0.000	0.004	0.010	0.011	0.505	0.501	0.000	0.004			0.042	0.000	0.070	0.500	0.000	0.004	0.015	0.500	0.054	0.56
0.802	0.804	0.813	0.811	0.795	0.791	0.890	0.891	0.0	0.0	0.843	0.809	0.853	0.790	0.839	0.801	0.817	0.789	0.864	0.766
804	516	866	111	385	613	986	878	0.9	0.9	662	728	333	71	6226	754	714	655	78	667
0.808	0.734	0.704	0.698	0.712	0.719	0.755	0.772	0.767	0.737	0.761	0.753		0.681	0.733	0.666	0.735	0.716	0.708	0.766
411	839	241	907	308	355	775	081	751	874	033	696	0.76	421	9623	082	429	092	805	667
0.791	0.789	0.773	0.755	0.784	0.742	0.839	0.820	0.863	0.844	0.877	0.853	0.876		0.752	0.759	0.790	0.794	0.789	0.766
589	032	409	738	615	581	155	812	144	186	465	307	667	0.9	8302	649	286	253	308	667
0.838	0.749	0.730	0.748	0.723	0.750	0.771	0.743	0.774	0.761	0.794	0.775		0.733	0.666	0.595	0.694	0.752	0.663	0.766
318	032	343	452	077	323	549	655	255	794	836	486	0.77	88	0377	906	286	874	522	667
0.720	0.751	0.748	0.742	0.736	0.745	0.773	0.753	0.763	0.756	0.791	0.713	0.726	0.738	0.760	0.722	0.753	0.757	0.738	0.766
561	613	613	623	923	161	803	807	415	478	08	23	667	251	3774	222	714	471	994	667
0.853	0.893	0.884	0.895		0.721	0.848	0.863	0.841	0.780	0.715	0.772		0.580		0.867	0.858	0.872	0.854	0.766
271	548	339	628	0.88	935	169	452	463	399	962	374	0.75	874	0.9	251	857	414	717	667
0.763	0.752	0.748	0.742	0.736		0.798	0.814	0.830	0.785	0.791	0.822	0.866	0.694	0.850	0.829	0.872	0.886	0.879	0.766
551	903	613	623	923	0.74	592	721	623	714	08	179	667	536	9434	825	571	207	874	667
0.870	0.839	0.813	0.818	0.832	0.807	0.836	0.810	0.830	0.820	0.877	0.843	0.876	0.816	0.775	0.764		0.817	0.744	0.811
093	355	866	397	308	097	901	66	623	266	465	969	667	94	4717	327	0.804	241	025	111
0.817	0.839	0.873	0.863	0.801	0.781	0.841	0.853	0.865	0.809	0.806	0.819		0.786	0.733	0.792	0.822	0.858	0.854	0.811
757	355	899	57	538	29	408	299	312	635	103	066	0.87	339	9623	398	286	621	717	111
0.763	0.769	0.757	0.751	0.736	0.698	0.726	0.790	0.806	0.764	0.746	0.710	0.696	0.707	0.771	0.684	0.685	0.679	0.749	0.811
551	677	749	366	923	71	479	355	775	452	009	117	667	65	6981	795	143	31	057	111
0.847	0.826	0.821	0.795	0.809	0.760	0.818	0.832	0.832	0.801	0.794	0.812	0.833	0.821	0.877	0.825	0.872	0.881	0.889	0.811
664	452	697	082	231	645	873	995	791	661	836	84	333	311	3585	146	571	609	937	111
0.750	0.738	0.729	0.717	0.744	0.693	0.728	0.717	0.739	0.708	0.761	0.728	0.726	0.668	0.828	0.731	0.698	0.734	0.754	0.811
467	71	038	851	615	548	732	259	566	638	033	794	667	306	3019	579	857	483	088	111
0.830	0.813	0.833	0.831	0.815	0.755	0.848	0.851	0.858	0.825	0.869	0.875	0.873	0.746	0.749	0.801	0.817	0.817	0.839	0.811
841	548	442	512	385	484	169	269	808	581	953	097	333	995	0566	754	714	241	623	111
0.868		0.885		0.887	0.752	0.821	0.861	0.847	0.775	0.768	0.775		0.567	0.866		0.890	0.886		0.811
224	0.9	644	0.9	692	903	127	421	967	083	545	486	0.74	76	0377	0.9	857	207	0.9	111
0.720	0.698	0.710	0.690	0.669	0.647	0.708	0.717	0.704	0.674	0.712	0.722		0.633	0.677	0.675	0.630	0.642	0.648	0.811
561	71	767	164	231	097	451	259	878	086	207	568	0.7	333	3585	439	286	529	428	111
0.799	0.759	0.777	0.779	0.746	0.742	0.771	0.774	0.793	0.740	0.768	0.772		0.672	0.779	0.703		0.766	0.764	0.855
065	355	325	053	154	581	549	112	767	532	545	374	0.76	678	2453	509	0.772	667	151	556
0.890	0.827	0.843	0.844	0.798	0.786	0.870	0.867	0.880	0.825	0.851	0.828	0.843	0.830	0.873	0.731	0.831	0.854	0.834	0.855
654	742	883	627	462	452	704	513	488	581	174	405	333	055	5849	579	429	023	591	556

0.838	0.796	0.012	0.802	0.702	0.765	0.823	0.808	0.906	0.793	0.806	0.794	0.833	0.803	0.847	0.839	0.826		0.014	0.855
318	774	0.813 866	0.802 368	0.792 308	806	38	629	0.806 775	688	103	0.784 825	333	825	1698	181	857	0.9	0.814 465	556
					800														
0.832	0.800	0.799	0.792	0.807	0.74	0.789	0.804	0.817	0.788	0.783	0.775	0.773	0.733	0.798	0.726	0.735	0.743	0.759	0.855
71	645	511	168	692	0.74	577	569	615	372	568	486	333	88	1132	901	429	678	119	556
0.821	0.773	0.791	0.776	0.758	0.729	0.746	0.776	0.776	0.761	0.700	0.735	0.766	0.773	0.726	0.670	0.653	0.706	0.683	0.855
495	548	68	138	462	677	761	142	423	794	939	019	667	224	4151	76	143	897	648	556
0.821	0.834	0.791	0.822	0.792	0.760	0.803	0.822	0.789	0.775	0.783	0.763		0.725	0.858	0.797	0.826	0.817	0.834	0.855
495	194	68	769	308	645	099	843	431	083	568	035	0.76	137	4906	076	857	241	591	556
0.838	0.822	0.807	0.795	0.789	0.745	0.791	0.782	0.774	0.775	0.798	0.778	0.793	0.764	0.764	0.726	0.726	0.729	0.723	
318	581	341	082	231	161	831	234	255	083	592	599	333	481	1509	901	286	885	899	0.9
0.873	0.832	0.803	0.808	0.810		0.863	0.867	0.871	0.846	0.824	0.884		0.821	0.809	0.811	0.813	0.854	0.834	
832	903	426	197	769	0.9	944	513	816	844	883	436	0.9	311	434	111	143	023	591	0.9
0.793	0.792	0.757	0.754	0.781	0.732	0.767	0.794	0.817	0.788	0.742	0.725	0.793	0.834	0.752	0.759		0.803	0.824	
458	903	749	281	538	258	042	416	615	372	254	681	333	426	8302	649	0.772	448	528	0.9
0.866	0.834	0.809	0.821	0.832	0.822	0.839	0.822	0.843	0.828	0.877	0.828		0.816	0.779	0.783	0.767	0.798	0.749	
355	194	951	311	308	581	155	843	631	239	465	405	0.87	94	2453	041	429	851	057	0.9
0.804	0.791	0.776	0.771	0.743	0.742	0.751	0.741	0.743	0.737	0.719	0.753	0.723	0.716	0.741	0.731	0.698	0.729	0.754	
673	613	02	767	077	581	268	624	902	874	718	696	333	393	5094	579	857	885	088	0.9
0.800	0.808	0.783	0.811	0.784	0.724	0.807	0.796	0.832	0.783	0.798	0.769	0.796	0.720	0.794	0.843	0.863	0.890	0.824	
935	387	85	111	615	516	606	447	791	056	592	261	667	765	3396	86	429	805	528	0.9
0.845	0.885	0.837	0.815	0.850	0.758	0.818	0.843	0.826	0.793	0.832	0.859	0.826	0.720	0.828	0.778	0.790	0.826	0.819	
794	806	357	483	769	065	873	147	287	688	394	533	667	765	3019	363	286	437	497	0.9
0.821	0.830	0.795	0.796	0.787	0.804	0.861	0.865	0.837	0.830	0.892	0.843	0.833	0.803	0.828	0.825	0.826	0.817	0.849	0.5
495	323	595	539	692	516	69	482	127	897	488	969	333	825	3019	146	857	241	686	0.9
473	343	333	337	092	510	U)	402	14/	091	+00	202	333	623	3013	140	657	∠+1	000	0.9

APPENDIX F

NORMALIZED TEST DATASET OF INPUT FEATURES AND TARGET FEATURES FOR MALE HISPANIC POPULATION USING ANN APPROACH

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Age
0.171	0.160	0.169	0.162	0.183	0.192	0.187	0.183	0.197	0.200	0.201	0.215	0.206	0.178	0.209	0.198	0.218	0.219	0.170	
028	645	168	659	077	903	887	249	561	997	408	175	667	689	434	246	857	54	44	0.1
0.286	0.305	0.281	0.264	0.270	0.285	0.350	0.343	0.357	0.344	0.347	0.345	0.356	0.331	0.349	0.263	0.305	0.311	0.250	0.188
916	161	403	663	769	806	141	655	995	518	887	914	667	694	0566	743	714	494	943	889
0.290	0.329	0.321	0.321	0.324	0.309	0.372	0.374	0.390	0.355	0.389	0.392		0.362	0.364	0.324	0.328	0.352	0.296	0.188
654	677	86	494	615	032	676	112	515	15	202	607	0.41	295	1509	561	571	874	226	889
0.376	0.390	0.366	0.371	0.341	0.378	0.433	0.426	0.433	0.416	0.385	0.401	0.413	0.340	0.413	0.324	0.374	0.389	0.376	0.233
636	323	232	038	538	71	521	904	875	279	446	946	333	437	2075	561	286	655	73	333
0.309	0.386	0.374	0.362	0.335	0.386	0.426	0.404	0.405	0.381	0.434	0.408	0.416	0.314	0.428	0.366	0.383	0.385	0.351	0.233
346	452	062	295	385	452	761	569	691	728	272	171	667	208	3019	667	429	057	572	333
0.447	0.516	0.526	0.526	0.512	0.471	0.494	0.516	0.535	0.485	0.456	0.470	0.486	0.427	0.503	0.413	0.470	0.463	0.381	0.277
664	774	754	958	308	613	366	244	772	382	808	428	667	869	7736	45	286	218	761	778
0.283	0.360	0.345	0.340	0.313		0.332	0.325	0.327	0.296	0.344	0.336		0.218	0.352	0.282		0.371	0.245	0.277
178	645	351	437	846	0.26	113	381	642	678	131	576	0.32	033	8302	456	0.292	264	912	778
0.455	0.490	0.469	0.468	0.444	0.378	0.456	0.445	0.446	0.424	0.456	0.439	0.453	0.414	0.466	0.436	0.438	0.467	0.416	0.322
14	968	331	67	615	71	056	178	883	252	808	3	333	754	0377	842	286	816	981	222
0.393	0.416	0.402	0.384	0.392	0.332		0.441	0.446	0.355	0.449	0.451	0.466	0.449	0.450	0.352	0.342	0.458	0.442	0.322
458	129	773	153	308	258	0.42	117	883	15	296	751	667	727	9434	632	286	621	138	222
0.432	0.422	0.394	0.391	0.355	0.383	0.417	0.404	0.412	0.365	0.404	0.392		0.301	0.443	0.422	0.410	0.417	0.386	0.322
71	581	943	439	385	871	746	569	195	781	225	607	0.38	093	3962	807	857	241	792	222
0.464	0.483	0.469	0.459	0.470	0.425	0.494	0.477	0.485	0.480	0.460	0.439	0.463	0.419	0.466	0.441	0.438	0.444	0.396	0.322
486	226	331	927	769	161	366	665	908	066	563	3	333	126	0377	52	286	828	855	222
0.443	0.438	0.447	0.439	0.424	0.389		0.418	0.433	0.408	0.392	0.420	0.446	0.366	0.420	0.408	0.415	0.421	0.386	0.366
925	065	145	526	615	032	0.42	782	875	306	958	623	667	667	7547	772	429	839	792	667
0.483	0.516	0.496	0.481	0.470	0.432	0.469	0.467	0.477	0.461	0.479	0.504	0.506	0.480	0.496	0.441	0.456	0.477	0.416	0.366
178	774	737	785	769	903	577	513	236	462	343	669	667	328	2264	52	571	011	981	667

0.516 0.523 0.505 0.515 0.456 0.503 0.514 0.520 0.469 0.479 0.476 0.503 0.440 0.492 0.427 0.447 0.449 0.452 0.411																				
	0.516		0.505	0.515		0.456	0.503	0.514	0.520		0.479	0.476		0.440	0.492		0.447	0.449	0.452	0.411
0.528 0.552 0.549 0.570 0.501 0.507 0.564 0.555 0.503 0.554 0.557 0.566 0.554 0.579 0.511 0.534 0.559 0.517 0.411 0.37 2.58 7.	822	226	873		0.5	129	38	213		435	343	654	333	984	4528	485		425	201	111
0.528		0.518	0.512	0.516	0.518	0.453	0.521	0.546	0.553	0.503	0.565	0.588	0.593	0.462	0.601	0.535	0.575	0.582	0.527	0.411
0.479 0.485 0.490 0.487 0.449 0.471 0.473 0.470 0.421 0.460 0.439 0.443 0.366 0.503 0.455 0.458 0.442 0.411 0.479 0.485 0.485 0.442 0.411 0.485 0.485 0.442 0.411 0.485 0.485 0.442 0.411 0.485 0.485 0.442 0.411 0.485 0.485 0.442 0.411 0.485 0.485 0.442 0.411 0.485 0.485 0.485 0.442 0.411 0.485 0.485 0.485 0.442 0.411 0.485 0.485 0.485 0.485 0.485 0.442 0.411 0.485 0.48	0.5	065	398	758	462	548	408	701	117	987	728	716	333	842	8868	088	429	759	673	111
0.479	0.528	0.532	0.526	0.499	0.501	0.507	0.564	0.546	0.555	0.503	0.554	0.557	0.566	0.554	0.579	0.511	0.534	0.559	0.517	0.411
1439	037	258	754	271	538	742	225	701	285	987	46	588	667	645	2453	696	286	77	61	111
Number N	0.479	0.485	0.490	0.487	0.449		0.471	0.473	0.470	0.421	0.460	0.439	0.443	0.366	0.503	0.455		0.458	0.442	0.411
243 065 075 359 154 484 775 279 309 485 216 813 667 672 8868 801 857 563 736 556 0.576 0.581 0.561 0.521 0.560 0.580 0.570 0.588 0.598 0.475 0.643 0.558 0.557 0.587 0.567 0.455 636 29 9129 1.54 645 0.589 0.510 0.588 0.510 0.588 0.520 0.589 0.644 0.589 0.565 3962 48 1413 356 925 556 0.561 0.588 0.520 0.588 0.542 0.528 0.616 0.530 0.541 0.492 0.455 556 0.561 0.563 0.564 0.471 0.552 0.579 0.587 0.587 0.520 0.488 0.589 0.577 0.534 0.551 0.585 0.565 0.657 0.653 0.569 0.657 <td< td=""><td>439</td><td>806</td><td>212</td><td>614</td><td>231</td><td>0.42</td><td>831</td><td>604</td><td>732</td><td>595</td><td>563</td><td>3</td><td>333</td><td>667</td><td>7736</td><td>556</td><td>0.452</td><td>621</td><td>138</td><td>111</td></td<>	439	806	212	614	231	0.42	831	604	732	595	563	3	333	667	7736	556	0.452	621	138	111
0.576 0.581 0.561 0.521 0.546 0.520 0.585 0.585 0.585 0.585 0.585 0.585 0.585 0.557 0.587 0.567 0.585 0.557 0.587 0.564 0.520 0.520 0.520 0.528 0.525 0.502 0.487 0.510 0.534 0.510 0.548 0.519 0.580 0.542 0.528 0.561 0.530 0.543 0.541 0.492 0.455 0.561 0.587 0.564 0.563 0.563 0.563 0.564 0.563 0.564 0.563 0.564 0.563 0.564 0.571 0.584 0.510 0.588 0.599 0.520 0.588 0.588 0.598 0.577 0.534 0.541 0.492 0.455 0.571 0.564 0.563 0.563 0.564 0.471 0.552 0.579 0.587 0.535 0.509 0.520 0.520 0.458 0.598 0.577 0.534 0.559 0.502 0.455 0.588 0.588 0.589 0.577 0.534 0.559 0.588 0.588 0.588 0.588 0.588 0.588 0.588 0.589 0.567 0.570 0.573 0.573 0.594 0.543 0.554 0.560 0.573 0.573 0.573 0.594 0.548 0.560 0.573 0.573 0.573 0.594 0.548 0.560 0.573 0.573 0.594 0.548 0.560 0.573 0.573 0.573 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.548 0.594 0.568 0.567 0.575 0.595 0.593 0.594 0.548 0.594 0.564 0.566 0.565 0.628 0.567 0.575 0.596 0.594 0.588 0.594 0.588 0.594 0.566 0.558 0.634 0.656 0.628 0.628 0.628 0.628 0.628 0.628 0.628 0.628 0.624 0.660 0.664 0.628 0.639 0.628 0.628 0.544 0.624 0.625 0.621 0.588 0.597 0.583 0.594 0.583 0.594 0.594 0.583 0.596 0.660 0.66	0.582	0.558	0.558	0.547	0.526	0.515	0.595	0.585	0.594	0.554	0.558	0.563	0.586	0.519	0.601	0.553	0.570	0.573	0.537	0.455
Columb C	243	065	075	359	154	484	775	279	309	485	216	813	667	672	8868	801	857	563	736	556
0.520 0.528 0.525 0.502 0.487 0.510 0.534 0.510 0.534 0.510 0.548 0.519 0.580 0.542 0.528 0.616 0.530 0.543 0.541 0.492 0.455 0.571 0.561 0.563 0.564 0.563 0.564 0.561 0.552 0.579 0.587 0.587 0.587 0.585 0.509 0.520 0.458 0.598 0.577 0.534 0.553 0.552 0.575 0.585 0.564 0.580 0.588 0.564 0.580 0.589 0.577 0.570 0.570 0.573 0.594 0.543 0.554 0.560 0.573 0.532 0.696 0.558 0.634 0.656 0.588 0.58	0.576	0.581	0.561	0.521	0.546	0.520		0.560	0.581	0.570	0.588	0.598		0.475	0.643	0.558	0.557	0.587	0.567	0.455
561 387 449 186 692 323 93 152 78 934 751 023 0.56 415 9811 409 429 379 453 556 0.571 0.564 0.563 0.564 0.471 0.552 0.579 0.587 0.535 0.509 0.520 0.458 0.598 0.577 0.534 0.559 0.502 0.458 0.585 0.564 0.580 0.567 0.507 0.570 0.573 0.594 0.543 0.554 0.560 0.573 0.594 0.564 0.580 0.568 0.656 0.587 0.507 0.573 0.594 0.543 0.554 0.560 0.573 0.592 0.661 0.573 0.594 0.544 0.546 0.573 0.594 0.544 0.554 0.600 0.602 0.662 0.629 0.573 0.594 0.524 0.544 0.526 0.516 0.309 0.598 0.535 0.533 0.584	636	29	99	129	154	645	0.58	914	301	432	263	054	0.59	956	3962	48	143	356	925	556
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.520	0.528	0.525	0.502	0.487	0.510	0.534	0.510	0.548	0.519	0.580	0.542		0.528	0.616	0.530	0.543	0.541	0.492	0.455
028 516 295 388 615 613 958 188 805 88 39 233 0.53 47 1132 193 286 77 516 556 0.585 0.564 0.580 0.589 0.567 0.507 0.570 0.573 0.594 0.543 0.554 0.560 0.573 0.532 0.660 0.558 0.634 0.656 0.588 981 516 261 617 692 742 986 096 309 854 46 7 333 787 2264 48 857 322 05 0.5 0.655 0.656 0.657 0.662 0.629 0.543 0.577 0.629 0.618 0.527 0.464 0.526 0.516 0.309 0.598 0.535 0.633 0.591 0.618 0.526 0.521 0.600 0.602 0.577 0.587 0.600 0.603 0.594 0.583 0.584 0.591	561	387	449	186	692	323	93	152	78	934	751	023	0.56	415	9811	409	429	379	453	556
0.585 0.564 0.580 0.589 0.567 0.570 0.573 0.594 0.543 0.554 0.560 0.573 0.532 0.660 0.558 0.634 0.656 0.588 981 516 261 617 692 742 986 096 309 854 46 7 333 787 2264 48 857 322 05 0.5 0.655 0.656 0.657 0.662 0.629 0.543 0.577 0.629 0.618 0.527 0.464 0.526 0.516 0.309 0.583 0.533 0.507 0.621 0.600 0.602 0.577 0.587 0.600 0.603 0.594 0.583 0.584 0.591 0.586 742 282 553 309 721 507 829 667 82 3019 836 429 552 082 0.5 0.526 0.532 0.535 0.535 0.518 0.492 <	0.571	0.564	0.563	0.563	0.564	0.471	0.552	0.579	0.587	0.535	0.509	0.520		0.458	0.598	0.577	0.534	0.559	0.502	0.455
981 516 261 617 692 742 986 096 309 854 46 7 333 787 2264 48 857 322 05 0.5 0.655 0.656 0.657 0.662 0.629 0.543 0.577 0.629 0.618 0.527 0.464 0.526 0.516 0.309 0.535 0.535 0.533 0.507 14 129 259 477 231 871 746 949 157 907 319 459 667 836 1132 088 714 333 547 0.5 0.621 0.600 0.602 0.577 0.587 0.600 0.603 0.594 0.583 0.584 0.591 0.606 0.650 0.628 0.567 0.556 0.529 0.532 0.532 0.535 0.535 0.518 0.492 0.528 0.534 0.517 0.498 0.462 0.616 0.586 0.543 0.5	028	516	295	388	615	613	958	188	805	88	39	233	0.53	47	1132	193	286	77	516	556
0.655 0.656 0.657 0.662 0.629 0.543 0.577 0.629 0.618 0.527 0.464 0.526 0.516 0.309 0.598 0.535 0.593 0.633 0.507 14 129 259 477 231 871 746 949 157 907 319 459 667 836 1132 088 714 333 547 0.5 0.621 0.600 0.602 0.577 0.587 0.600 0.603 0.594 0.583 0.584 0.591 0.606 0.650 0.628 0.567 0.575 0.596 0.522 553 309 721 507 829 667 82 3019 836 429 552 082 0.5 0.526 0.532 0.535 0.535 0.518 0.492 0.528 0.534 0.544 0.517 0.498 0.489 0.462 0.616 0.586 0.543 0.568 0.547 0.544 <td>0.585</td> <td>0.564</td> <td>0.580</td> <td>0.589</td> <td>0.567</td> <td>0.507</td> <td>0.570</td> <td>0.573</td> <td>0.594</td> <td>0.543</td> <td>0.554</td> <td>0.560</td> <td>0.573</td> <td>0.532</td> <td>0.696</td> <td>0.558</td> <td>0.634</td> <td>0.656</td> <td>0.588</td> <td></td>	0.585	0.564	0.580	0.589	0.567	0.507	0.570	0.573	0.594	0.543	0.554	0.560	0.573	0.532	0.696	0.558	0.634	0.656	0.588	
14 129 259 477 231 871 746 949 157 907 319 459 667 836 1132 088 714 333 547 0.5 0.621 0.600 0.602 0.577 0.587 0.600 0.603 0.594 0.583 0.584 0.591 0.606 0.650 0.628 0.575 0.596 0.593 495 645 447 96 0.56 742 282 553 309 721 507 829 667 82 3019 836 429 552 082 0.5 0.526 0.532 0.535 0.535 0.518 0.492 0.528 0.534 0.544 0.517 0.498 0.489 0.462 0.616 0.586 0.543 0.568 0.547 0.544 168 258 889 701 462 258 169 518 444 276 122 105 0.51 842 </td <td>981</td> <td>516</td> <td>261</td> <td>617</td> <td>692</td> <td>742</td> <td>986</td> <td>096</td> <td>309</td> <td>854</td> <td>46</td> <td>7</td> <td>333</td> <td>787</td> <td>2264</td> <td>48</td> <td>857</td> <td>322</td> <td>05</td> <td>0.5</td>	981	516	261	617	692	742	986	096	309	854	46	7	333	787	2264	48	857	322	05	0.5
0.621 0.600 0.602 0.577 0.587 0.600 0.603 0.594 0.583 0.584 0.591 0.606 0.650 0.628 0.567 0.575 0.596 0.593 495 645 447 96 0.56 742 282 553 309 721 507 829 667 82 3019 836 429 552 082 0.5 0.526 0.532 0.535 0.535 0.518 0.492 0.528 0.534 0.544 0.517 0.498 0.489 0.462 0.616 0.586 0.543 0.548 0.544 168 258 889 701 462 258 169 518 444 276 122 105 0.51 842 9811 55 429 966 799 444 0.619 0.617 0.625 0.621 0.583 0.634 0.629 0.633 0.581 0.592 0.579 0.583 0.	0.655	0.656	0.657	0.662	0.629	0.543	0.577	0.629	0.618	0.527	0.464	0.526	0.516	0.309	0.598	0.535	0.593	0.633	0.507	
495 645 447 96 0.56 742 282 553 309 721 507 829 667 82 3019 836 429 552 082 0.5 0.526 0.532 0.535 0.535 0.518 0.492 0.528 0.534 0.544 0.517 0.498 0.489 0.462 0.616 0.586 0.543 0.544 0.514 168 258 889 701 462 258 169 518 444 276 122 105 0.51 842 9811 55 429 966 799 444 0.619 0.617 0.625 0.621 0.583 0.543 0.634 0.629 0.633 0.581 0.592 0.579 0.583 0.506 0.628 0.591 0.602 0.628 0.544 0.624 419 938 676 077 871 0.85 949 333 063 019 377	14	129	259	477	231	871	746	949	157	907	319	459	667	836	1132	088	714	333	547	0.5
0.526 0.532 0.535 0.535 0.518 0.492 0.528 0.534 0.544 0.517 0.498 0.489 0.462 0.616 0.586 0.543 0.568 0.547 0.544 168 258 889 701 462 258 169 518 444 276 122 105 0.51 842 9811 55 429 966 799 444 0.619 0.617 0.625 0.621 0.583 0.543 0.634 0.629 0.633 0.581 0.592 0.579 0.583 0.506 0.628 0.628 0.628 0.628 0.628 0.642 626 419 938 676 0.77 871 0.85 949 333 063 019 377 333 557 4528 228 857 736 302 444 0.627 0.634 0.632 0.676 0.670 0.623 0.610 0.660 0.646 <td< td=""><td>0.621</td><td>0.600</td><td>0.602</td><td>0.577</td><td></td><td>0.587</td><td>0.600</td><td>0.603</td><td>0.594</td><td>0.583</td><td>0.584</td><td>0.591</td><td>0.606</td><td>0.650</td><td>0.628</td><td>0.567</td><td>0.575</td><td>0.596</td><td>0.593</td><td></td></td<>	0.621	0.600	0.602	0.577		0.587	0.600	0.603	0.594	0.583	0.584	0.591	0.606	0.650	0.628	0.567	0.575	0.596	0.593	
168 258 889 701 462 258 169 518 444 276 122 105 0.51 842 9811 55 429 966 799 444 0.619 0.617 0.625 0.621 0.583 0.543 0.634 0.629 0.633 0.579 0.579 0.583 0.506 0.692 0.591 0.602 0.628 0.628 0.544 626 419 938 676 0.77 871 085 949 333 063 019 377 333 557 4528 228 857 736 302 444 0.627 0.634 0.632 0.637 0.596 0.541 0.645 0.676 0.670 0.623 0.610 0.660 0.646 0.628 0.639 0.628 0.634 0.642 0.623 0.541 103 194 463 705 923 29 352 65 19 588	495	645	447	96	0.56	742	282	553	309	721	507	829	667	82	3019	836	429	552	082	0.5
0.619 0.617 0.625 0.621 0.583 0.543 0.629 0.633 0.581 0.592 0.579 0.583 0.506 0.692 0.591 0.602 0.628 0.628 0.544 626 419 938 676 077 871 085 949 333 063 019 377 333 557 4528 228 857 736 302 444 0.627 0.634 0.632 0.637 0.596 0.541 0.645 0.676 0.670 0.623 0.610 0.660 0.646 0.628 0.639 0.628 0.634 0.642 0.642 0.642 0.642 0.623 0.544 103 194 463 705 923 29 352 65 19 588 798 311 667 962 6226 655 857 529 27 444 0.585 0.600 0.611 0.589 0.595 0.507 0.583	0.526	0.532	0.535	0.535	0.518	0.492	0.528	0.534	0.544	0.517	0.498	0.489		0.462	0.616	0.586	0.543	0.568	0.547	0.544
626 419 938 676 077 871 085 949 333 063 019 377 333 557 4528 228 857 736 302 444 0.627 0.634 0.632 0.637 0.596 0.541 0.645 0.676 0.670 0.623 0.610 0.660 0.646 0.628 0.639 0.628 0.634 0.642 0.623 0.544 103 194 463 705 923 29 352 65 19 588 798 311 667 962 6226 655 857 529 27 444 0.585 0.600 0.611 0.589 0.595 0.507 0.570 0.583 0.594 0.591 0.580 0.585 0.603 0.611 0.658 0.609 0.634 0.619 0.633 0.588 981 645 582 617 385 742 986 249 309	168	258	889	701	462	258	169	518	444	276	122	105	0.51	842	9811	55	429	966	799	444
0.627 0.634 0.632 0.637 0.596 0.541 0.645 0.676 0.670 0.623 0.610 0.660 0.646 0.628 0.639 0.628 0.634 0.642 0.623 0.544 103 194 463 705 923 29 352 65 19 588 798 311 667 962 6226 655 857 529 27 444 0.585 0.600 0.611 0.589 0.595 0.507 0.570 0.583 0.594 0.591 0.580 0.585 0.603 0.611 0.658 0.609 0.634 0.619 0.633 0.588 981 645 582 617 385 742 986 249 309 694 751 603 333 475 4906 942 857 54 333 889 0.668 0.647 0.637 0.643 0.564 0.638 0.611 0.644 0.583<	0.619	0.617	0.625	0.621	0.583	0.543	0.634	0.629	0.633	0.581	0.592	0.579	0.583	0.506	0.692	0.591	0.602	0.628	0.628	0.544
103 194 463 705 923 29 352 65 19 588 798 311 667 962 6226 655 857 529 27 444 0.585 0.600 0.611 0.589 0.595 0.507 0.570 0.583 0.594 0.591 0.580 0.585 0.603 0.611 0.658 0.609 0.634 0.619 0.633 0.588 981 645 582 617 385 742 986 249 309 694 751 603 333 475 4906 942 857 54 333 889 0.668 0.647 0.637 0.624 0.643 0.564 0.638 0.611 0.644 0.583 0.640 0.622 0.643 0.602 0.672 0.661 0.639 0.642 0.628 0.588 224 097 684 59 077 516 592 675 173 72	626	419	938	676	077	871	085	949	333	063	019	377	333	557	4528	228	857	736	302	444
0.585 0.600 0.611 0.589 0.595 0.507 0.570 0.583 0.594 0.591 0.580 0.585 0.603 0.611 0.658 0.609 0.634 0.619 0.633 0.588 981 645 582 617 385 742 986 249 309 694 751 603 333 475 4906 942 857 54 333 889 0.668 0.647 0.637 0.624 0.643 0.564 0.638 0.611 0.644 0.583 0.640 0.622 0.643 0.602 0.642 0.639 0.642 0.628 0.588 224 097 684 59 077 516 592 675 173 721 845 957 333 732 3585 404 429 529 302 889 0.836 0.813 0.820 0.803 0.778 0.763 0.812 0.826 0.775 0.7	0.627	0.634	0.632	0.637	0.596	0.541	0.645	0.676	0.670	0.623	0.610	0.660	0.646	0.628	0.639	0.628	0.634	0.642	0.623	0.544
981 645 582 617 385 742 986 249 309 694 751 603 333 475 4906 942 857 54 333 889 0.668 0.647 0.637 0.624 0.643 0.564 0.638 0.611 0.644 0.583 0.640 0.622 0.643 0.602 0.677 0.661 0.639 0.642 0.588 224 097 684 59 077 516 592 675 173 721 845 957 333 732 3585 404 429 529 302 889 0.836 0.813 0.820 0.803 0.778 0.763 0.812 0.826 0.775 0.768 0.750 0.793 0.764 0.854 0.694 0.753 0.817 0.749 0.633	103	194	463		923	29			19	588	798	311	667	962	6226	655	857	529	27	
0.668 0.647 0.637 0.624 0.643 0.564 0.638 0.611 0.644 0.583 0.640 0.622 0.643 0.602 0.642 0.661 0.639 0.642 0.628 0.588 224 097 684 59 077 516 592 675 173 721 845 957 333 732 3585 404 429 529 302 889 0.836 0.813 0.820 0.803 0.778 0.763 0.812 0.826 0.775 0.768 0.750 0.793 0.764 0.854 0.694 0.753 0.817 0.749 0.633	0.585	0.600	0.611	0.589		0.507	0.570	0.583	0.594	0.591	0.580	0.585		0.611	0.658	0.609	0.634	0.619		0.588
224 097 684 59 077 516 592 675 173 721 845 957 333 732 3585 404 429 529 302 889 0.836 0.813 0.820 0.803 0.778 0.763 0.807 0.812 0.826 0.775 0.768 0.750 0.793 0.764 0.854 0.694 0.753 0.817 0.749 0.633	981	645	582		385	742	986	249	309		751	603	333	475	4906	942	857	54	333	
0.836 0.813 0.820 0.803 0.778 0.763 0.807 0.812 0.826 0.775 0.768 0.750 0.793 0.764 0.854 0.694 0.753 0.817 0.749 0.633	0.668		0.637	0.624	0.643	0.564	0.638	0.611	0.644		0.640	0.622			0.677	0.661	0.639	0.642	0.628	
	224	097	684	59	077	516	592	675	173	721	845	957	333	732	3585	404	429	529	302	889
449 548 392 825 462 226 606 69 287 083 545 584 333 481 717 152 714 241 057 333	0.836		0.820		0.778	0.763	0.807	0.812		0.775	0.768	0.750				0.694	0.753	0.817	0.749	
	449	548	392	825	462	226	606	69	287	083	545	584	333	481	717	152	714	241	057	333

	1			1	1	1	1	1	1	1	1	1			1	1	1	1	
0.657	0.714	0.715	0.717	0.673	0.662	0.665	0.692	0.702	0.671	0.727	0.716	0.753	0.733	0.737	0.708	0.721	0.748	0.738	0.633
009	194	987	851	846	581	634	893	71	429	23	342	333	88	7358	187	714	276	994	333
0.722	0.702	0.729	0.713	0.689	0.654	0.712	0.715	0.724	0.682	0.776	0.750	0.776	0.738	0.779	0.717	0.730	0.743	0.738	0.633
43	581	038	479	231	839	958	228	39	06	056	584	667	251	2453	544	857	678	994	333
0.726	0.701	0.718	0.722	0.707	0.605	0.735	0.719	0.728	0.687	0.727	0.756	0.756	0.698	0.771	0.726	0.744	0.665	0.744	0.633
168	29	597	222	692	806	493	289	726	375	23	809	667	907	6981	901	571	517	025	333
0.623	0.608	0.603	0.602		0.556	0.625	0.609	0.611	0.607	0.595	0.594		0.545	0.673	0.670	0.648	0.674	0.648	0.633
364	387	752	732	0.6	774	07	645	653	641	775	942	0.56	902	5849	76	571	713	428	333
0.739	0.702	0.706	0.693	0.673	0.672	0.721	0.711	0.722	0.700	0.693	0.669		0.685	0.737	0.656	0.653	0.688	0.683	0.633
252	581	852	078	846	903	972	168	222	664	427	65	0.68	792	7358	725	143	506	648	333
0.720	0.724	0.719	0.703	0.695	0.649	0.681	0.680	0.678	0.644	0.678	0.660	0.696	0.668	0.737	0.656	0.666	0.683	0.658	0.677
561	516	902	279	385	677	408	711	862	85	404	311	667	306	7358	725	857	908	491	778
0.868	0.840	0.841	0.832	0.809	0.773	0.823	0.828	0.843	0.812	0.813	0.775	0.833	0.808	0.866	0.712		0.854	0.769	0.677
224	645	272	969	231	548	38	934	631	292	615	486	333	197	0377	865	0.772	023	182	778
0.757	0.770	0.777	0.771	0.730	0.721	0.758	0.721	0.776	0.761	0.791	0.738		0.768	0.798	0.745		0.757	0.769	0.677
944	968	325	767	769	935	028	32	423	794	08	132	0.77	852	1132	614	0.74	471	182	778
0.785	0.763	0.736	0.720	0.718	0.768	0.767	0.753	0.776	0.743	0.783	0.775	0.763	0.642	0.715	0.726	0.653	0.725	0.718	0.677
981	226	868	765	462	387	042	807	423	189	568	486	333	077	0943	901	143	287	868	778
0.670	0.634	0.646	0.644	0.661	0.649	0.681	0.701	0.709	0.692	0.667	0.678	0.706	0.703	0.760	0.694	0.689	0.702	0.713	0.677
093	194	819	991	538	677	408	015	214	691	136	988	667	279	3774	152	714	299	836	778
0.759	0.770	0.742	0.741	0.756	0.768	0.803	0.804	0.798	0.764	0.734	0.756		0.755	0.779	0.740	0.758	0.798	0.764	0.677
813	968	088	166	923	387	099	569	103	452	742	809	0.74	738	2453	936	286	851	151	778
0.716	0.662	0.675	0.672	0.690	0.641	0.683	0.674	0.691	0.666	0.674	0.675	0.686	0.650	0.752	0.731	0.698	0.729	0.723	0.677
822	581	53	678	769	935	662	619	87	113	648	875	667	82	8302	579	857	885	899	778
0.855	0.854	0.824	0.818	0.809	0.845	0.870	0.859	0.880	0.812			0.813	0.773	0.828	0.839	0.831	0.867	0.804	0.722
14	839	307	397	231	806	704	391	488	292	0.9	0.9	333	224	3019	181	429	816	403	222
0.733	0.760	0.752	0.752	0.718	0.698	0.771	0.757	0.769	0.748	0.764	0.741		0.768	0.779	0.778	0.790	0.817	0.829	0.722
645	645	529	823	462	71	549	868	919	505	789	245	0.75	852	2453	363	286	241	56	222
0.729	0.752	0.747	0.738	0.724	0.737	0.776	0.745	0.754	0.745	0.772	0.707	0.706	0.725	0.756	0.689	0.749	0.725	0.718	0.722
907	903	308	251	615	419	056	685	743	847	3	004	667	137	6038	474	143	287	868	222
0.838	0.733	0.726	0.741	0.716	0.729	0.760	0.737	0.761	0.743	0.787	0.772		0.738	0.677	0.609	0.689	0.757	0.643	0.766
318	548	427	166	923	677	282	563	247	189	324	374	0.76	251	3585	942	714	471	396	667
0.821		0.785	0.806		0.750	0.812	0.818	0.793	0.775	0.791	0.738	0.746	0.712	0.866	0.815	0.849	0.821	0.849	0.766
495	0.82	155	74	0.78	323	113	782	767	083	08	132	667	022	0377	789	714	839	686	667

0.810	0.804	0.812	0.821	0.790	0.804					0.836	0.803		0.799	0.839	0.801	0.817	0.817	0.889	0.811
28	516	561	311	769	516	0.9	0.9	0.9	0.9	15	502	0.85	454	6226	754	714	241	937	111
0.823	0.863	0.868	0.857	0.830		0.852	0.865	0.869	0.862	0.862	0.850		0.847	0.884	0.853	0.826	0.858	0.804	0.811
364	871	679	741	769	0.82	676	482	648	791	441	195	0.85	541	9057	216	857	621	403	111
0.812	0.747	0.753	0.752	0.750	0.745	0.785	0.802	0.798	0.753	0.749	0.744	0.753	0.768	0.775	0.778	0.794	0.794	0.804	0.855
15	742	834	823	769	161	07	538	103	821	765	358	333	852	4717	363	857	253	403	556
0.819	0.843	0.851	0.846	0.826	0.763	0.821	0.841	0.858	0.814	0.843	0.847	0.863	0.812	0.881	0.857			0.894	0.855
626	226	713	084	154	226	127	117	808	95	662	082	333	568	1321	895	0.9	0.9	969	556
0.812	0.790	0.772	0.763	0.750	0.690	0.744	0.751	0.752	0.713	0.723	0.719	0.743	0.655	0.749	0.773	0.799	0.812	0.789	0.855
15	323	104	024	769	968	507	777	575	953	474	455	333	191	0566	684	429	644	308	556
0.799	0.763	0.772	0.763	0.755	0.701	0.708	0.731	0.754	0.724	0.697	0.694	0.703	0.685	0.733	0.769		0.794	0.749	0.855
065	226	104	024	385	29	451	472	743	585	183	553	333	792	9623	006	0.804	253	057	556
0.767	0.755	0.747	0.751	0.735	0.690	0.737	0.763	0.748	0.737	0.738	0.769	0.743	0.681	0.828	0.820		0.858	0.809	
29	484	308	366	385	968	746	959	238	874	498	261	333	421	3019	468	0.836	621	434	0.9
0.800	0.778	0.774	0.748	0.716	0.742	0.753	0.753	0.774	0.772	0.746	0.707	0.746	0.742	0.813	0.787	0.781	0.766	0.819	
935	71	715	452	923	581	521	807	255	425	009	004	667	623	2075	719	143	667	497	0.9

APPENDIX G

NORMALIZED DATASET OF INPUT FEATURES AND TARGET FEATURES FOR FEMALE HISPANIC POPULATION FOR FEATURE SELECTION USING GA APPROACH

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Age
0.116	0.145	0.138	0.121	0.140	0.113	0.114	0.113		0.120	0.113	0.1	0.108	0.121				0.158	0.148	
716	253	737	719	482	974	388	029	0.1	513	26	32	333	192	0.1	0.1	0.1	394	855	0.1
0.171	0.255	0.239	0.214	0.198	0.173	0.169	0.172	0.175	0.188	0.228	0.1	0.179	0.269	0.239	0.173	0.164	0.216	0.148	0.144
642	152	789	027	313	362	065	964	524	889	177	64	167	536	759	282	234	788	855	444
0.121	0.124	0.130	0.125	0.123	0.106		0.136	0.141	0.120	0.139	0.1	0.191	0.184	0.124	0.185	0.152	0.193	0.148	0.144
493	242	316	339	133	987	0.1	482	958	513	779	44	667	768	096	496	555	431	855	444
0.166	0.163	0.142	0.210	0.188		0.169	0.157	0.141	0.192		0.1		0.137	0.153	0.112	0.146	0.164	0.136	0.144
866	03	105	407	675	0.1	065	329	958	308	0.1	48	0.1	086	012	214	715	234	641	444
								0.111		0.130		0.108	0.115	0.124	0.179	0.146	0.158	0.148	0.144
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	189	0.1	939	0.1	333	894	096	389	715	394	855	444
0.162	0.224	0.214	0.212	0.211	0.141	0.206	0.180	0.203	0.219	0.126	0.1	0.166	0.126	0.220	0.148	0.135	0.199		0.144
09	444	526	217	807	921	475	782	497	658	519	2	667	49	482	855	036	27	0.1	444
0.228	0.302	0.302	0.291	0.312	0.222	0.252	0.256	0.315	0.226	0.325	0.2	0.295	0.253	0.312	0.344	0.345	0.345	0.240	0.188
955	02	105	855	048	271	518	352	385	496	414	92	833	642	048	275	255	255	458	889
0.169	0.242	0.224	0.232	0.225	0.145	0.148	0.167	0.161	0.141	0.192	0.1			0.148	0.197	0.164	0.199	0.148	0.188
254	222	632	127	301	415	921	752	538	026	818	16	0.15	0.1	193	71	234	27	855	889
0.140	0.227	0.231	0.188	0.194	0.131	0.192	0.206	0.209	0.120	0.148	0.1	0.191	0.126	0.215	0.142	0.111		0.142	0.188
597	677	368	688	458	441	086	84	091	513	619	48	667	49	663	748	679	0.1	748	889
0.217	0.242	0.251	0.259	0.229	0.169	0.186	0.201	0.197	0.185	0.263	0.2	0.266	0.200	0.181	0.240	0.205	0.275	0.228	0.188
015	222	579	276	157	869	331	629	902	47	536	4	667	662	928	458	109	182	244	889
0.169	0.251	0.254	0.235	0.238	0.180	0.241	0.251	0.197	0.195	0.276	0.2		0.232	0.201	0.191	0.304	0.234	0.185	0.188
254	919	947	747	795	349	007	14	902	726	796	68	0.25	45	205	603	38	307	496	889
0.291	0.334	0.330	0.313	0.304	0.278	0.223	0.251	0.301	0.236	0.329	0.3	0.316	0.296	0.287	0.173	0.275	0.187	0.191	0.233
045	343	737	575	337	166	741	14	399	752	834	12	667	026	952	282	182	591	603	333
0.405	0.360	0.359	0.371	0.379	0.260	0.295	0.313	0.304	0.257	0.303	0.2		0.232	0.355	0.270	0.240	0.275	0.289	0.233
672	202	368	493	518	699	683	681	196	265	315	8	0.3	45	422	992	146	182	313	333

0.386	0.374	0.364	0.360	0.375	0.323	0.292	0.305	0.368	0.274	0.329	0.3		0.237	0.437	0.393	0.415	0.432	0.277	0.233
567	747	421	633	663	581	806	863	531	359	834	28	0.325	748	349	13	328	847	099	333
	0.384	0.389	0.375	0.366	0.211	0.243	0.264	0.259	0.212	0.356	0.3	0.316	0.333	0.350	0.197	0.245	0.257	0.203	0.233
0.26	444	684	113	024	79	885	169	441	821	354	32	667	113	602	71	985	664	817	333
0.281	0.365	0.376	0.376	0.406	0.274	0.318	0.326	0.318	0.308	0.298	0.3		0.264	0.321	0.154	0.205	0.234	0.234	0.233
493	051	211	923	506	672	705	71	182	547	895	44	0.325	238	687	962	109	307	351	333
0.324	0.397	0.406	0.407	0.383	0.299	0.318	0.412	0.410	0.400	0.343	0.3	0.329	0.444	0.360	0.258	0.216	0.391	0.222	0.277
478	374	526	692	373	127	705	704	49	855	094	56	167	371	241	779	788	971	137	778
0.329	0.376	0.406	0.387	0.404	0.288	0.310	0.334	0.309	0.277	0.294			0.216	0.422	0.350	0.327	0.374	0.319	0.277
254	364	526	783	578	646	072	528	79	778	475	0.3	0.3	556	892	382	737	453	847	778
0.374	0.363	0.352	0.322	0.358	0.222	0.246	0.271	0.267	0.236	0.329	0.2	0.333	0.306	0.316	0.277	0.210	0.362	0.234	0.277
627	434	632	624	313	271	763	987	832	752	834	56	333	623	867	099	949	774	351	778
0.279	0.365	0.369	0.366	0.369	0.278	0.287	0.303	0.365	0.346	0.382	0.3	0.279	0.317	0.369	0.411	0.415	0.444	0.295	0.277
104	051	474	063	88	166	05	257	734	154	873	36	167	219	88	45	328	526	42	778
0.322	0.400	0.399	0.398	0.396	0.299	0.321	0.342	0.427	0.417	0.343	0.3	0.379	0.407	0.369	0.234	0.251	0.281	0.246	0.277
09	606	789	643	867	127	583	345	273	949	094	56	167	285	88	351	825	022	565	778
0.386	0.424	0.446	0.451	0.452	0.306	0.356	0.410	0.379	0.342	0.329	0.3		0.301	0.326	0.380	0.374	0.421	0.387	0.322
567	848	947	131	771	114	115	098	72	735	834	68	0.35	325	506	916	453	168	023	222
0.503	0.460	0.492	0.463	0.479	0.435	0.405	0.412	0.416	0.414	0.360	0.3	0.379	0.444	0.461	0.313	0.321	0.356	0.319	0.322
582	404	421	801	759	371	036	704	084	53	773	6	167	371	446	74	898	934	847	222
0.360	0.470	0.460	0.452	0.475	0.292	0.361	0.368	0.365	0.315	0.276		0.283	0.227	0.254	0.289	0.263	0.316	0.295	0.322
299	101	421	941	904	14	871	404	734	385	796	0.3	333	152	217	313	504	058	42	222
0.470	0.457	0.480	0.478	0.470	0.292	0.324	0.436	0.435	0.421	0.404		0.408	0.370	0.302	0.332	0.339	0.345	0.295	0.322
149	172	632	281	12	14	46	156	664	368	972	0.4	333	199	41	061	416	255	42	222
0.293	0.377	0.396	0.375	0.366	0.393	0.292	0.300	0.374	0.288	0.404	0.2	0.287	0.391	0.432	0.307	0.275	0.292	0.289	0.322
433	98	421	113	024	45	806	651	126	034	972	96	5	391	53	634	182	701	313	222
0.283	0.418	0.433	0.404	0.394	0.194	0.373	0.365	0.348	0.277	0.365		0.333	0.317	0.422	0.283	0.251	0.292	0.264	0.322
881	384	474	072	94	323	381	798	951	778	193	0.3	333	219	892	206	825	701	885	222
0.453	0.442		0.465	0.462	0.344	0.410	0.457	0.460	0.407	0.325	0.3	0.466	0.460		0.325	0.304	0.327	0.338	0.322
433	626	0.484	611	41	541	791	003	839	692	414	76	667	265	0.5	954	38	737	168	222
0.427	0.437	0.458	0.434	0.402	0.267	0.393	0.410	0.407	0.366	0.378	0.3	0.362	0.322	0.408	0.332	0.386	0.333	0.270	0.322
164	778	737	842	651	686	525	098	692	667	453	68	5	517	434	061	131	577	992	222
0.403	0.392	0.408	0.398	0.398	0.257	0.315	0.334	0.332	0.301	0.307	0.2	0.320	0.327	0.321	0.270	0.339	0.386	0.295	0.322
284	525	211	643	795	205	827	528	168	709	735	84	833	815	687	992	416	131	42	222

0.293	0.403	0.421	0.398	0.410	0.264	0.307	0.347	0.410	0.397	0.374	0.3	0.362	0.327	0.360	0.277	0.222	0.356	0.222	0.322
433	838	684	643	361	192	194	557	49	436	033	56	5	815	241	099	628	934	137	222
0.367	0.453	0.475	0.454	0.445	0.337	0.410	0.417	0.432	0.335	0.466	0.4	0.433	0.391	0.451	0.448	0.403	0.444	0.319	0.366
463	939	579	751	06	555	791	915	867	897	851	48	333	391	807	092	65	526	847	667
0.534	0.526	0.546	0.514	0.510	0.393	0.468	0.592	0.569	0.530	0.488	0.4	0.541	0.481	0.490	0.325	0.345	0.485	0.240	0.366
627	667	316	48	602	45	345	508	93	769	95	48	667	457	361	954	255	401	458	667
0.494	0.478	0.504	0.460	0.472	0.372	0.445	0.467	0.449	0.346	0.404	0.3	0.329	0.386	0.442	0.325	0.432	0.380	0.325	0.366
03	182	211	181	048	489	324	427	65	154	972	4	167	093	169	954	847	292	954	667
0.496	0.450	0.460	0.460	0.473	0.379	0.396	0.402	0.416	0.387	0.440	0.3	0.408	0.407	0.312	0.362	0.456	0.485	0.448	0.366
418	707	421	181	976	476	403	28	084	179	331	56	333	285	048	595	204	401	092	667
0.515	0.462	0.463	0.452	0.456	0.358	0.387	0.472	0.472	0.428	0.404	0.4	0.433	0.396	0.485	0.344	0.368	0.386	0.344	0.366
522	02	789	941	627	515	77	638	028	205	972	32	333	689	542	275	613	131	275	667
0.477	0.458	0.441	0.451	0.472	0.292	0.402	0.428	0.430	0.346	0.400	0.3		0.391	0.413	0.356	0.327	0.485	0.350	0.366
313	788	895	131	048	14	158	339	07	154	552	8	0.375	391	253	489	737	401	382	667
0.374	0.471	0.470	0.489	0.491	0.330	0.419	0.506	0.480	0.469	0.440	0.4	0.445	0.370	0.490	0.368	0.368	0.403	0.356	0.366
627	717	526	14	325	568	424	515	42	231	331	6	833	199	361	702	613	65	489	667
0.477	0.415	0.408	0.409	0.414	0.414	0.428	0.438	0.449	0.421	0.334	0.3	0.366	0.444	0.446	0.350	0.368	0.386	0.362	0.366
313	152	211	502	217	41	058	762	65	368	254	48	667	371	988	382	613	131	595	667
0.491	0.455	0.463	0.452	0.481	0.355	0.384	0.485	0.494	0.448	0.431	0.4	0.458	0.396	0.446	0.393	0.397	0.415	0.454	0.366
642	556	789	941	687	022	892	668	406	718	492	44	333	689	988	13	81	328	198	667
0.477	0.471	0.477	0.456	0.473	0.414	0.459	0.483	0.483	0.397	0.400	0.4		0.465	0.524	0.380	0.391	0.467	0.356	0.366
313	717	263	561	976	41	712	062	217	436	552	16	0.475	563	096	916	971	883	489	667
0.601	0.562	0.595	0.561	0.545	0.372	0.433	0.574	0.530	0.469	0.475	0.4	0.341	0.301	0.350	0.350	0.333	0.508	0.332	0.411
493	222	158	538	301	489	813	267	769	231	691	8	667	325	602	382	577	759	061	111
0.572	0.605	0.625	0.612	0.593	0.487	0.505	0.506	0.488	0.482	0.577	0.4	0.587	0.560	0.581	0.423	0.403	0.462	0.332	0.411
836	859	474	217	494	773	755	515	811	906	348	68	5	927	928	664	65	044	061	111
0.599	0.537		0.547	0.543	0.389	0.520	0.548	0.525	0.493	0.546	0.5	0.483	0.481	0.533	0.362	0.351	0.351	0.454	0.411
104	98	0.548	059	373	956	144	208	175	162	409	04	333	457	735	595	095	095	198	111
0.606	0.518	0.521	0.498	0.522	0.571	0.523	0.561	0.575	0.482	0.612	0.5	0.595	0.598	0.610	0.619	0.450	0.643	0.600	0.411
269	586	053	19	169	616	022	238	524	906	707	52	833	013	843	084	365	066	763	111
0.458	0.552	0.569	0.492	0.551	0.491		0.516	0.435	0.404	0.502	0.4		0.465	0.514	0.399	0.520	0.543	0.509	0.411
209	525	895	76	084	266	0.5	938	664	274	21	96	0.475	563	458	237	438	796	16	111
0.572	0.560	0.559	0.541	0.547	0.494	0.540	0.501	0.527	0.404	0.546	0.5	0.504	0.481	0.572	0.496	0.520	0.543	0.374	0.411
836	606	789	629	229	76	288	303	972	274	409	6	167	457	289	947	438	796	809	111

0.546	0.549	0.553	0.548	0.562	0.484	0.534	0.545	0.533	0.503	0.541	0.5	0.520	0.529	0.519	0.350	0.351	0.368	0.332	0.411
567	293	053	869	651	279	532	603	566	419	989	28	833	139	277	382	095	613	061	111
0.486	0.492	0.507	0.494	0.493	0.466	0.407	0.467	0.477	0.394	0.471	0.4	0.466	0.534	0.509	0.423	0.456	0.497	0.332	0.411
866	727	579	57	253	812	914	427	622	017	271	76	667	437	639	664	204	08	061	111
0.517	0.528	0.537	0.507	0.527	0.351	0.517	0.519	0.513	0.380	0.533	0.5	0.483	0.444	0.533	0.551	0.473	0.514	0.338	0.411
91	283	895	24	952	528	266	544	986	342	149	12	333	371	735	908	723	599	168	111
0.596	0.544	0.564	0.532	0.520	0.466	0.485	0.493	0.486	0.476	0.387	0.4	0.491	0.433	0.519	0.429	0.497	0.520	0.515	0.411
716	444	842	579	241	812	612	485	014	068	293	8	667	775	277	771	08	438	267	111
0.668	0.647	0.635	0.603	0.574	0.529	0.594	0.576	0.553	0.479	0.546	0.5	0.562	0.550	0.577	0.527	0.514	0.427	0.417	0.455
358	879	579	167	217	694	964	873	147	487	409	44	5	331	108	481	599	007	557	556
0.611	0.555	0.574	0.566	0.574	0.449	0.583	0.566	0.586	0.575	0.581	0.5	0.620	0.545	0.610	0.612	0.479	0.654	0.606	0.455
045	758	947	968	217	345	453	45	713	214	768	96	833	033	843	977	562	745	87	556
0.556	0.546	0.574	0.543	0.524	0.501	0.523	0.550	0.541	0.503	0.537	0.5		0.513	0.586	0.460	0.438	0.602	0.564	0.455
119	061	947	439	096	747	022	814	958	419	569	08	0.55	245	747	305	686	19	122	556
0.603	0.565	0.583	0.557	0.533	0.515	0.546	0.561	0.567	0.520	0.590	0.5	0.562	0.545	0.572	0.515	0.479	0.643	0.441	0.455
881	455	368	919	735	721	043	238	133	513	608	64	5	033	289	267	562	066	985	556
0.441	0.525	0.514	0.501	0.520	0.466	0.537	0.519	0.530	0.530	0.546	0.5	0.504	0.497	0.519	0.374	0.491	0.537	0.521	0.455
493	051	316	81	241	812	41	544	769	769	409	2	167	351	277	809	241	956	374	556
0.558	0.486	0.514		0.522	0.484	0.462	0.480	0.474	0.465	0.458	0.4	0.429	0.454	0.533	0.527	0.497	0.520	0.545	0.455
507	263	316	0.5	169	279	59	456	825	812	011	32	167	967	735	481	08	438	802	556
0.577	0.568	0.595	0.583	0.597	0.578	0.603	0.579	0.589	0.585	0.608	0.6	0.591	0.608	0.581	0.484	0.456	0.619	0.472	0.455
612	687	158	258	349	603	597	479	51	47	287	08	667	609	928	733	204	708	519	556
0.599	0.610	0.645	0.606	0.595	0.501	0.548	0.576	0.572	0.503	0.572	0.5	0.583	0.518	0.581	0.429	0.432	0.450	0.399	0.455
104	707	684	787	422	747	921	873	727	419	928	88	333	543	928	771	847	365	237	556
0.627	0.633	0.649	0.635	0.632	0.536	0.554	0.527	0.558	0.564	0.533	0.5	0.554	0.629	0.591	0.448	0.567	0.613	0.533	0.455
761	333	053	747	048	681	676	362	741	957	149	28	167	801	566	092	153	869	588	556
0.649	0.622	0.622	0.585	0.583	0.561	0.609	0.626	0.637	0.626	0.586	0.6	0.620	0.640	0.586	0.448	0.584	0.643	0.478	
254	02	105	068	855	135	353	384	063	496	188	12	833	397	747	092	672	066	626	0.5
0.706	0.686	0.699	0.677	0.687	0.603	0.643	0.675	0.684	0.626	0.670	0.7	0.712	0.725	0.634	0.631	0.695	0.724	0.661	
567	667	579	376	952	057	885	896	615	496	166	28	5	166	94	298	62	818	832	0.5
0.651	0.597	0.649	0.650	0.624	0.536	0.571	0.618	0.606	0.599	0.564	0.5	0.562	0.523	0.644	0.661	0.625	0.502	0.631	
642	778	053	226	337	681	942	567	294	145	088	56	5	841	578	832	547	92	298	0.5
	0.586	0.638	0.612	0.626	0.459	0.635	0.655	0.637	0.626	0.625	0.6	0.608	0.608	0.615	0.649	0.637	0.637	0.619	
0.58	465	947	217	265	825	252	049	063	496	967	36	333	609	663	618	226	226	084	0.5

0.711 0.714 0.726 0.668 0.672 0.655 0.698 0.738 0.706 0.660 0.639 0.6 0.670 0.656 0.557 0.588 0.584 0.467 0.576 343 141 526 326 53 459 561 436 993 684 227 64 833 291 831 55 672 883 336 0.568 0.552 0.544 0.496 0.508 0.494 0.490 0.466 0.452 0.475 0.4 0.454 0.396 0.475 0.521 0.479 0.485 0.496 0.6 525 632 38 675 838 245 879 434 137 691 64 167 689 904 374 562 401 947 0.642 0.591 0.642 0.592 0.616 0.547 0.566 0.600 0.575 0.510 0.559 0.5 0.566 0.486
0.568 0.552 0.544 0.496 0.508 0.452 0.494 0.490 0.466 0.452 0.475 0.4 0.454 0.396 0.475 0.521 0.479 0.485 0.496 06 525 632 38 675 838 245 879 434 137 691 64 167 689 904 374 562 401 947 0.642 0.591 0.642 0.592 0.616 0.547 0.566 0.600 0.575 0.510 0.559 0.5 0.566 0.486 0.610 0.710 0.672 0.707 0.661 0.9 313 316 308 627 162 187 326 524 256 669 8 667 755 843 687 263 299 832 0.680 0.626 0.682 0.657 0.651 0.421 0.586 0.628 0.667 0.612 0.515 0.6 0.616
06 525 632 38 675 838 245 879 434 137 691 64 167 689 904 374 562 401 947 0.642 0.591 0.642 0.592 0.616 0.547 0.566 0.600 0.575 0.510 0.559 0.5 0.566 0.486 0.610 0.710 0.672 0.707 0.661 09 313 316 308 627 162 187 326 524 256 669 8 667 755 843 687 263 299 832 0.680 0.626 0.682 0.657 0.651 0.421 0.586 0.668 0.667 0.612 0.515 0.6 0.616 0.613 0.683 0.655 0.502 0.584 0.667 299 869 737 466 325 397 331 99 832 821 47 08 667 907
0.642 0.591 0.642 0.592 0.616 0.547 0.566 0.600 0.575 0.510 0.559 0.5 0.566 0.486 0.610 0.710 0.672 0.707 0.661 09 313 316 308 627 162 187 326 524 256 669 8 667 755 843 687 263 299 832 0.680 0.626 0.682 0.657 0.651 0.421 0.586 0.628 0.667 0.612 0.515 0.6 0.616 0.613 0.683 0.655 0.502 0.584 0.667 299 869 737 466 325 397 331 99 832 821 47 08 667 907 133 725 92 672 939 0.699 0.701 0.706 0.670 0.691 0.644 0.686 0.695 0.609 0.643 0.6 0.682 0.688
09 313 316 308 627 162 187 326 524 256 669 8 667 755 843 687 263 299 832 0.680 0.626 0.682 0.657 0.651 0.421 0.586 0.628 0.667 0.612 0.515 0.6 0.616 0.613 0.683 0.655 0.502 0.584 0.667 299 869 737 466 325 397 331 99 832 821 47 08 667 907 133 725 92 672 939 0.699 0.701 0.706 0.670 0.691 0.644 0.686 0.695 0.609 0.643 0.6 0.682 0.668 0.704 0.632 403 212 316 136 807 978 173 319 804 402 646 6 833 781 675 58 942 584 191
0.680 0.626 0.682 0.657 0.651 0.421 0.586 0.628 0.667 0.612 0.515 0.6 0.613 0.683 0.655 0.502 0.584 0.667 299 869 737 466 325 397 331 99 832 821 47 08 667 907 133 725 92 672 939 0.699 0.701 0.706 0.670 0.691 0.644 0.684 0.686 0.695 0.609 0.643 0.6 0.645 0.682 0.668 0.704 0.683 0.660 0.625 403 212 316 136 807 978 173 319 804 402 646 6 833 781 675 58 942 584 191 0.563 0.539 0.592 0.612 0.494 0.531 0.553 0.561 0.537 0.5 0.554 0.507 0.567 0.545
299 869 737 466 325 397 331 99 832 821 47 08 667 907 133 725 92 672 939 0.699 0.701 0.706 0.670 0.691 0.644 0.684 0.686 0.695 0.609 0.643 0.6 0.645 0.682 0.668 0.704 0.683 0.660 0.625 403 212 316 136 807 978 173 319 804 402 646 6 833 781 675 58 942 584 191 0.563 0.539 0.592 0.612 0.494 0.531 0.553 0.561 0.537 0.5 0.554 0.507 0.567 0.545 0.514 0.501 284 596 0.58 308 771 76 655 42 538 026 569 52 167 947 47 802 599 3
0.699 0.701 0.706 0.670 0.691 0.644 0.684 0.686 0.695 0.609 0.643 0.6 0.645 0.682 0.668 0.704 0.683 0.660 0.625 403 212 316 136 807 978 173 319 804 402 646 6 833 781 675 58 942 584 191 0.563 0.539 0.592 0.612 0.494 0.531 0.553 0.561 0.537 0.5 0.554 0.507 0.567 0.545 0.514 0.503 284 596 0.58 308 771 76 655 42 538 026 569 52 167 947 47 802 599 314 053 0.630 0.630 0.636 0.691 0.648 0.669 0.691 0.676 0.677 0.692 0.6 0.658 0.640 0.692 0.710 0.648
403 212 316 136 807 978 173 319 804 402 646 6 833 781 675 58 942 584 191 0.563 0.539 0.592 0.612 0.494 0.531 0.553 0.561 0.541 0.537 0.5 0.554 0.507 0.567 0.545 0.514 0.503 284 596 0.58 308 771 76 655 42 538 026 569 52 167 947 47 802 599 314 053 0.630 0.636 0.691 0.648 0.662 0.585 0.669 0.676 0.677 0.692 0.6 0.692 0.710 0.648 0.648 0.643 149 566 158 416 892 59 784 531 224 778 265 76 333 397 771 687 905 905 511
0.563 0.539 0.592 0.612 0.494 0.531 0.553 0.561 0.537 0.5 0.554 0.507 0.567 0.545 0.514 0.503 284 596 0.58 308 771 76 655 42 538 026 569 52 167 947 47 802 599 314 053 0.630 0.636 0.691 0.648 0.662 0.585 0.669 0.676 0.677 0.692 0.6 0.640 0.692 0.710 0.648 0.643 149 566 158 416 892 59 784 531 224 778 265 76 333 397 771 687 905 905 511
284 596 0.58 308 771 76 655 42 538 026 569 52 167 947 47 802 599 314 053 0.630 0.636 0.691 0.648 0.662 0.585 0.669 0.691 0.676 0.677 0.692 0.6 0.640 0.692 0.710 0.648 0.648 0.643 149 566 158 416 892 59 784 531 224 778 265 76 333 397 771 687 905 905 511
0.630 0.636 0.691 0.648 0.662 0.585 0.669 0.691 0.676 0.677 0.692 0.6 0.640 0.692 0.710 0.648 0.648 0.643 149 566 158 416 892 59 784 531 224 778 265 76 333 397 771 687 905 905 511
149 566 158 416 892 59 784 531 224 778 265 76 333 397 771 687 905 905 511
0.672 0.639 0.640 0.617 0.632 0.595 0.630 0.644 0.642 0.645 0.632 0.6
0.673 0.628 0.649 0.617 0.622 0.585 0.620 0.644 0.642 0.616 0.603 0.6 0.518 0.668 0.576 0.409 0.648 0.594
134 485 053 647 41 59 863 625 657 239 867 08 0.6 543 675 336 489 905 656
0.613
433 949 789 796 253 162 597 99 266 915 669 32 833 503 566 374 898 153 908
0.751
94 667 053 606 398 886 194 59 979 291 525 44 0.75 974 145 366 423 139 939
0.663
582 939 368 457 759 096 043 873 147 444 348 8 833 735 843 87 35 19 656
0.680 0.657 0.672 0.659 0.686 0.620 0.652 0.681 0.690 0.664 0.603 0.6 0.637 0.603 0.620 0.674 0.666 0.678 0.643
299 576 632 276 024 524 518 107 21 103 867 44 5 311 482 046 423 102 511
0.642
09 242 632 118 494 266 698 932 685 564 348 2 833 715 663 198 708 066 947
0.577 0.562 0.556 0.537 0.466 0.488 0.545 0.541 0.489 0.480 0.5 0.516 0.507 0.586 0.441 0.596 0.613 0.435
612 222 0.58 109 59 812 489 603 958 744 11 08 667 947 747 985 35 869 878
0.747 0.673 0.694 0.673 0.670 0.644 0.655 0.688 0.706 0.667 0.652 0.6 0.735 0.702 0.759 0.689 0.736 0.704
164 737 526 756 602 978 396 925 993 521 486 84 0.725 762 41 542 781 496 58
0.642 0.596 0.595 0.585 0.587 0.543 0.609 0.628 0.623 0.605 0.625 0.6 0.637 0.613 0.586 0.600 0.596 0.643 0.558
09 162 158 068 711 668 353 99 077 983 967 28 5 907 747 763 35 066 015
0.708 0.659 0.671 0.697 0.620 0.678 0.644 0.673 0.629 0.652 0.6 0.619 0.760 0.655 0.637 0.713 0.735
955 192 0.708 946 59 524 417 625 427 915 486 52 0.675 205 241 725 226 139 115

0.694	0.649	0.664	0.617	0.622	0.624	0.695	0.694	0.673	0.684	0.705	0.6	0.637	0.688	0.731	0.649	0.637	0.660	0.619	0.544
627	495	211	647	41	017	683	137	427	615	525	92	5	079	325	618	226	584	084	444
0.654	0.628		0.619	0.605	0.585	0.612	0.655	0.611	0.582	0.546	0.5	0.545	0.560	0.639	0.612	0.631	0.672	0.637	0.544
03	485	0.644	457	06	59	23	049	888	051	409	92	833	927	759	977	387	263	405	444
0.649	0.676	0.691	0.655	0.655	0.589	0.617	0.657	0.645	0.588	0.572	0.6	0.633	0.566	0.649	0.655	0.613	0.602	0.576	0.544
254	97	158	656	181	083	986	655	455	889	928	16	333	225	398	725	869	19	336	444
0.627	0.573	0.595	0.566	0.562	0.543	0.646	0.639	0.645	0.571	0.634	0.6	0.637	0.645	0.644	0.619	0.602	0.660	0.551	0.588
761	535	158	968	651	668	763	414	455	795	807	44	5	695	578	084	19	584	908	889
0.694	0.673	0.652	0.652	0.659	0.617	0.669	0.694	0.698	0.660	0.617	0.6	0.637	0.582	0.553	0.643	0.625	0.695	0.625	0.588
627	737	421	036	036	031	784	137	601	684	127	44	5	119	012	511	547	62	191	889
0.723	0.697	0.709	0.661	0.676	0.669	0.710	0.743	0.743	0.681	0.612	0.6	0.662	0.566	0.721	0.625	0.625	0.718	0.686	0.588
284	98	684	086	386	432	072	648	357	197	707	56	5	225	687	191	547	978	26	889
0.821	0.727	0.756	0.749	0.755	0.770	0.799	0.772	0.771	0.756	0.758	0.7	0.816	0.719	0.692	0.649	0.683	0.666	0.674	0.588
194	071	842	774	422	742	281	313	329	41	564	64	667	868	771	618	942	423	046	889
0.775	0.725	0.731	0.657	0.680	0.672	0.698	0.720	0.732	0.739	0.634	0.6		0.619	0.581	0.686	0.660	0.777	0.637	0.588
821	455	579	466	241	926	561	195	168	316	807	44	0.675	205	928	26	584	372	405	889
0.716	0.697		0.688	0.724	0.651	0.687	0.722	0.720	0.708	0.661	0.6	0.670	0.645	0.634	0.704	0.672	0.701	0.686	0.588
119	98	0.708	235	578	965	05	801	979	547	326	84	833	695	94	58	263	46	26	889
0.708	0.651	0.665	0.623	0.647	0.610	0.678	0.704	0.709	0.684	0.612	0.6	0.616	0.428	0.692	0.692	0.678	0.765	0.643	0.588
955	111	895	077	47	044	417	56	79	615	707	68	667	477	771	366	102	693	511	889
0.694	0.709	0.718	0.728	0.720	0.606	0.658	0.678	0.701	0.691	0.630	0.6	0.629	0.661	0.668	0.649	0.654	0.648	0.637	0.588
627	293	105	054	723	55	273	502	399	453	387	28	167	589	675	618	745	905	405	889
0.754	0.691	0.692	0.626	0.682	0.711	0.695	0.691	0.681	0.725	0.634	0.6	0.695	0.672	0.639	0.680	0.608	0.672	0.570	0.588
328	515	842	697	169	354	683	531	818	641	807	68	833	185	759	153	029	263	229	889
0.785	0.717	0.765	0.715	0.736	0.721	0.730	0.756	0.734	0.718	0.683			0.677	0.750	0.704	0.695	0.724	0.759	0.588
373	374	263	385	145	834	216	678	965	803	425	0.7	0.7	483	602	58	62	818	542	889
0.718	0.675	0.692	0.677	0.709	0.631	0.672	0.707	0.712	0.691	0.639	0.6		0.635	0.610	0.692	0.654	0.707	0.655	0.588
507	354	842	376	157	004	662	166	587	453	227	8	0.675	099	843	366	745	299	725	889
0.744	0.693		0.680	0.680	0.728	0.733	0.741	0.734	0.711	0.701	0.7		0.741	0.659	0.606	0.625	0.648	0.661	0.588
776	131	0.708	995	241	821	094	042	965	966	105	32	0.7	06	036	87	547	905	832	889
0.711	0.743	0.755	0.724	0.753	0.739	0.802	0.808	0.807	0.824	0.732	0.7	0.829	0.772	0.707	0.783	0.771	0.748	0.747	0.588
343	232	158	434	494	301	158	795	692	786	044	92	167	848	229	969	533	175	328	889
0.771	0.683	0.706	0.695	0.705	0.610	0.661	0.668	0.673	0.670	0.705	0.7	0.687	0.698	0.736	0.722	0.736	0.754	0.698	0.588
045	434	316	475	301	044	151	078	427	94	525	16	5	675	145	901	496	015	473	889

	1							1	i	i			i	1					
0.692	0.652	0.660	0.648	0.643	0.631	0.620	0.636	0.625	0.640	0.625	0.5	0.587	0.645	0.610	0.625	0.643	0.660	0.637	0.588
239	727	842	416	614	004	863	808	874	171	967	96	5	695	843	191	066	584	405	889
0.766	0.722	0.729	0.668	0.695	0.683	0.730	0.743	0.762	0.711	0.643	0.6	0.670	0.598	0.625	0.661	0.637	0.736	0.649	0.633
269	222	895	326	663	406	216	648	937	966	646	92	833	013	301	832	226	496	618	333
0.744	0.709	0.697	0.657	0.655	0.725	0.738	0.780	0.760	0.735	0.656	0.7	0.708	0.666	0.615	0.649	0.613	0.578	0.643	0.633
776	293	895	466	181	328	849	13	14	897	906	44	333	887	663	618	869	832	511	333
0.773	0.764	0.778	0.778	0.770	0.763	0.810	0.816	0.813	0.776	0.785	0.8	0.795	0.714	0.798	0.771	0.789	0.829	0.582	0.633
433	242	737	733	843	755	791	612	287	923	083	12	833	57	795	756	051	927	443	333
0.668	0.686	0.738	0.688	0.666	0.679	0.698	0.730	0.737	0.698	0.705	0.7	0.758	0.672	0.683	0.667	0.707	0.771	0.686	0.633
358	667	316	235	747	913	561	619	762	291	525	24	333	185	133	939	299	533	26	333
0.728	0.665	0.692	0.604	0.657	0.634	0.684	0.709	0.712	0.691	0.612	0.6	0.658	0.454	0.731	0.680	0.689	0.730	0.643	0.633
06	657	842	977	108	498	173	772	587	453	707	64	333	967	325	153	781	657	511	333
0.759	0.723	0.741	0.735	0.724	0.728	0.733	0.730	0.698	0.705	0.679	0.7	0.704	0.714	0.750	0.759	0.771	0.783	0.759	0.633
104	838	684	294	578	821	094	619	601	128	006	28	167	57	602	542	533	212	542	333
0.787	0.720	0.719	0.666	0.695	0.718	0.721	0.720	0.706	0.776	0.687	0.7		0.703	0.740	0.722	0.695	0.713	0.625	0.633
761	606	789	516	663	341	583	195	993	923	845	12	0.725	974	964	901	62	139	191	333
0.780	0.756	0.783	0.771	0.738	0.760	0.747	0.764	0.793	0.783	0.709	0.7	0.808	0.809	0.692	0.722	0.713	0.713	0.741	0.633
597	162	789	493	072	262	482	495	706	761	945	76	333	934	771	901	139	139	221	333
0.725	0.725	0.728	0.704	0.666	0.683	0.704	0.725	0.718	0.701	0.608	0.6	0.645	0.576	0.586	0.649	0.713	0.660	0.686	0.633
672	455	211	525	747	406	317	407	182	709	287	64	833	821	747	618	139	584	26	333
0.754	0.772	0.797	0.749	0.751	0.707	0.779	0.795	0.804	0.759	0.692		0.670	0.709	0.644	0.680	0.672	0.765	0.649	0.633
328	323	263	774	566	86	137	765	895	829	265	0.7	833	272	578	153	263	693	618	333
0.799	0.804	0.792	0.804	0.797	0.777	0.764	0.769	0.793	0.763	0.683	0.6	0.712	0.677	0.731	0.753	0.771	0.812	0.735	0.633
701	646	211	072	831	729	748	707	706	248	425	96	5	483	325	435	533	409	115	333
0.878							0.881		0.886		0.8		0.815	0.871	0.790	0.824	0.870	0.710	0.633
507	0.9	0.9	0.9	0.9	0.9	0.9	759	0.9	325	0.9	76	0.9	232	084	076	088	803	687	333
0.675	0.643	0.638	0.566	0.574	0.606	0.620	0.688	0.667	0.643	0.603	0.6		0.497	0.644	0.674	0.631	0.654	0.655	0.633
522	03	947	968	217	55	863	925	832	59	867	48	0.625	351	578	046	387	745	725	333
0.701	0.710	0.729	0.720	0.686	0.697	0.715	0.748	0.743	0.722	0.621	0.6	0.629	0.629	0.750	0.692	0.695	0.701	0.667	0.633
791	909	895	814	024	38	827	86	357	222	547	84	167	801	602	366	62	46	939	333
0.763	0.693	0.724	0.680	0.713	0.704	0.689	0.694	0.693	0.681	0.679	0.6	0.654	0.677	0.745	0.692	0.689	0.666	0.729	0.633
881	131	842	995	012	367	928	137	007	197	006	48	167	483	783	366	781	423	008	333
0.694	0.722	0.743	0.691	0.670	0.704	0.747	0.767	0.746	0.722	0.785	0.7	0.733	0.725	0.639	0.704	0.707	0.718	0.674	0.677
627	222	368	855	602	367	482	101	154	222	083	44	333	166	759	58	299	978	046	778

0.766	0.704	0.000	0.677	0.620	0.655	0.600	0.600	0.600	0.647	0.670	0.6		0.5.00	0.721	0.702	0.754	0.771	0.702	0.677
0.766 269	0.704 444	0.696 211	0.677 376	0.628 193	0.655 459	0.698 561	0.688 925	0.690 21	0.647 009	0.679 006	0.6 48	0.65	0.560 927	0.731 325	0.783 969	0.754 015	0.771 533	0.783 969	0.677 778
															, .,				
0.790	0.735	0.750	0.700	0.734	0.756	0.805	0.821	0.807	0.794	0.798	0.7	0.791	0.825	0.755	0.790	0.800	0.800	0.783	0.677
149	152	105	905	217	769	036	824	692	017	343	84	667	828	422	076	73	73	969	778
0.720	0.689	0.713	0.686	0.693	0.704	0.687	0.741	0.701	0.664	0.590	0.6	0.645	0.582	0.572	0.619	0.596	0.602	0.600	0.677
896	899	053	425	735	367	05	042	399	103	608	56	833	119	289	084	35	19	763	778
0.771	0.715	0.706	0.666	0.684	0.714	0.747	0.733	0.734	0.705	0.701	0.6	0.687	0.640	0.712	0.832	0.847	0.806	0.777	0.677
045	758	316	516	096	847	482	225	965	128	105	92	5	397	048	824	445	569	863	778
0.728	0.641	0.686	0.626	0.653	0.672	0.689	0.722	0.709	0.722	0.643	0.6		0.439	0.707	0.722	0.718	0.765	0.667	0.677
06	414	105	697	253	926	928	801	79	222	646	64	0.65	073	229	901	978	693	939	778
0.790	0.741	0.763	0.702	0.759	0.735	0.770	0.780	0.754	0.732	0.740	0.7	0.729	0.714	0.726	0.777	0.736	0.771	0.722	0.677
149	616	579	715	277	808	504	13	545	479	884	52	167	57	506	863	496	533	901	778
0.780	0.773	0.755	0.731	0.722	0.690	0.761	0.782	0.782	0.773	0.665	0.6	0.679	0.666	0.755	0.790	0.742	0.789	0.722	0.677
597	939	158	674	651	393	871	736	517	504	746	44	167	887	422	076	336	051	901	778
0.771	0.769	0.778	0.746	0.724	0.774	0.761	0.780	0.790	0.790	0.714	0.7	0.808	0.778	0.654	0.704	0.713	0.718	0.692	0.677
045	091	737	154	578	236	871	13	909	598	365	76	333	146	217	58	139	978	366	778
0.761	0.788	0.800	0.760	0.763	0.746	0.761	0.798	0.807	0.763	0.696	0.7	0.716	0.688	0.683	0.704	0.701	0.759	0.649	0.677
493	485	632	633	133	288	871	371	692	248	685	32	667	079	133	58	46	854	618	778
0.749	0.772	0.793	0.787	0.770	0.732	0.758	0.751	0.765	0.729	0.736	0.7		0.688	0.726	0.771	0.724	0.759	0.722	0.677
552	323	895	783	843	314	993	466	734	06	464	2	0.725	079	506	756	818	854	901	778
0.778	0.731	0.751	0.713	0.678	0.665	0.695	0.735	0.673	0.643	0.727	0.7		0.693	0.716	0.698	0.678	0.695	0.649	0.677
209	919	789	575	313	939	683	831	427	59	624	2	0.675	377	867	473	102	62	618	778
0.735	0.688	0.672	0.633	0.657	0.651	0.735	0.741	0.723	0.670	0.639	0.6	0.637	0.322	0.625	0.704	0.654	0.701	0.667	0.677
224	283	632	937	108	965	971	042	776	94	227	56	5	517	301	58	745	46	939	778
0.823	0.759	0.770	0.738	0.732	0.718	0.741	0.748	0.737	0.688	0.709	0.6	0.720	0.666	0.726	0.747	0.730	0.742	0.729	0.677
582	394	316	914	289	341	727	86	762	034	945	92	833	887	506	328	657	336	008	778
0.737	0.752	0.748	0.684	0.713	0.742	0.761	0.772	0.757	0.752	0.705	0.7	0.712	0.698	0.750	0.851	0.818	0.847	0.747	0.677
612	929	421	615	012	795	871	313	343	991	525	36	5	675	602	145	248	445	328	778
0.723	0.688	0.699	0.693	0.691	0.721	0.687	0.748	0.712	0.667	0.617	0.6	0.670	0.582	0.567	0.625	0.572	0.625	0.594	0.722
284	283	579	665	807	834	05	86	587	521	127	6	833	119	47	191	993	547	656	222
0.892	0.809	0.802	0.760	0.793	0.774	0.796	0.777	0.771	0.787	0.771	0.7	0.795	0.725	0.779	0.820	0.789	0.800	0.832	0.722
836	495	316	633	976	236	403	524	329	179	823	8	833	166	518	611	051	73	824	222
0.771	0.743	0.783	0.796	0.778	0.704	0.724	0.738	0.754	0.763	0.705		0.654	0.735	0.687	0.729	0.701	0.718	0.735	0.722
045	232	789	833	554	367	46	436	545	248	525	0.7	167	762	952	008	46	978	115	222
		/										,					,		

_																			
0.708	0.701	0.736	0.719	0.709	0.704	0.681	0.694	0.690	0.688	0.656	0.6	0.666	0.709	0.408	0.729	0.748	0.777	0.729	0.722
955	212	632	005	157	367	295	137	21	034	906	6	667	272	434	008	175	372	008	222
0.797	0.773	0.797	0.782	0.768	0.784	0.735	0.756	0.788	0.800	0.727		0.812	0.767	0.678	0.704	0.695	0.713	0.716	0.722
313	939	263	353	916	716	971	678	112	855	624	0.8	5	55	313	58	62	139	794	222
0.766	0.727	0.746	0.704	0.707	0.669	0.753	0.769	0.779	0.742	0.674		0.695	0.656	0.707	0.674	0.678	0.742	0.680	0.722
269	071	737	525	229	432	237	707	72	735	586	0.7	833	291	229	046	102	336	153	222
0.725	0.675	0.689	0.680	0.662	0.658	0.669	0.681	0.679	0.688	0.590	0.6	0.708	0.682	0.591	0.637	0.555	0.648	0.643	0.722
672	354	474	995	892	952	784	107	021	034	608	48	333	781	566	405	474	905	511	222
0.809	0.778	0.790	0.771	0.776	0.767	0.793	0.806	0.782	0.763	0.776	0.7		0.772	0.726	0.820	0.829	0.841	0.790	0.722
254	788	526	493	627	249	525	189	517	248	243	96	0.775	848	506	611	927	606	076	222
0.861	0.782	0.778	0.733	0.766	0.833	0.848	0.847	0.824	0.811	0.780	0.7	0.745	0.730	0.740	0.808	0.765	0.794	0.722	0.722
791	02	737	484	988	624	201	883	476	111	663	44	833	464	964	397	693	891	901	222
0.828	0.741	0.780	0.749	0.766	0.746	0.779	0.774	0.760	0.746	0.740	0.7		0.688	0.740	0.777	0.736	0.783	0.729	0.722
358	616	421	774	988	288	137	919	14	154	884	52	0.725	079	964	863	496	212	008	222
	0.819	0.783	0.726	0.774	0.854	0.885		0.877	0.831	0.864	0.8	0.887	0.831	0.630	0.747	0.759	0.789	0.674	0.722
0.9	192	789	244	699	585	612	0.9	622	624	641	92	5	126	12	328	854	051	046	222
0.775	0.775	0.817	0.787	0.807	0.721	0.733	0.741	0.737	0.718	0.683	0.7		0.661	0.779	0.741	0.783	0.765	0.759	0.722
821	556	474	783	47	834	094	042	762	803	425	28	0.7	589	518	221	212	693	542	222
0.689	0.712	0.743	0.742	0.751	0.697	0.744	0.738	0.712	0.711	0.723	0.7	0.712	0.661	0.702	0.704	0.759	0.713	0.729	0.722
851	525	368	534	566	38	604	436	587	966	204	16	5	589	41	58	854	139	008	222
0.816	0.819	0.830	0.811	0.832	0.819	0.825	0.845	0.849	0.783	0.776	0.7		0.672	0.813	0.820	0.835	0.894	0.814	0.722
418	192	947	312	53	651	18	277	65	761	243	84	0.725	185	253	611	766	161	504	222
0.866	0.782	0.839	0.787	0.780	0.770	0.770	0.787	0.785	0.770	0.771	0.7	0.745	0.815	0.731	0.875	0.800	0.829	0.802	0.766
567	02	368	783	482	742	504	948	315	085	823	36	833	232	325	573	73	927	29	667
0.842	0.785		0.809	0.813	0.739	0.802	0.832	0.793	0.794	0.727	0.7	0.720	0.762	0.716	0.783	0.742	0.789	0.765	0.766
687	253	0.836	502	253	301	158	248	706	017	624	4	833	252	867	969	336	051	649	667
0.756	0.730	0.738	0.708	0.757	0.676	0.721	0.751	0.751	0.735	0.665	0.7	0.704	0.666	0.615	0.759	0.695	0.736	0.686	0.766
716	303	316	145	349	419	583	466	748	897	746	08	167	887	663	542	62	496	26	667
0.730	0.673	0.679	0.641	0.655	0.651	0.689	0.730	0.726	0.718	0.643	0.6	0.662	0.460	0.716	0.710	0.718	0.771	0.661	0.766
448	737	368	176	181	965	928	619	573	803	646	72	5	265	867	687	978	533	832	667
	0.819	0.825	0.785	0.805	0.788	0.819	0.785	0.774	0.800	0.709	0.7	0.779	0.719	0.765	0.820	0.812	0.794	0.838	0.766
0.9	192	895	973	542	21	424	342	126	855	945	52	167	868	06	611	409	891	931	667
0.794	0.777	0.790	0.796	0.788	0.704	0.730	0.746	0.762	0.776	0.679		0.666	0.725	0.673	0.765	0.748	0.754	0.741	0.766
925	172	526	833	193	367	216	254	937	923	006	0.7	667	166	494	649	175	015	221	667

														•					
0.742	0.683	0.633	0.576	0.603	0.672	0.669	0.688	0.653	0.602	0.643	0.6	0.566	0.407	0.581	0.680	0.625	0.683	0.655	0.766
388	434	895	018	133	926	784	925	846	564	646	28	667	285	928	153	547	942	725	667
0.852	0.790	0.812	0.795	0.807	0.763	0.810	0.821	0.818	0.787	0.789	0.8	0.787	0.672	0.707	0.826	0.800	0.853	0.759	0.766
239	101	421	023	47	755	791	824	881	179	503	04	5	185	229	718	73	285	542	667
0.771	0.798	0.815	0.766	0.765	0.714	0.770	0.814	0.816	0.790	0.727	0.7	0.712	0.682	0.716	0.710	0.701	0.748	0.661	0.766
045	182	789	063	06	847	504	007	084	598	624	04	5	781	867	687	46	175	832	667
0.704	0.693	0.694	0.690	0.697	0.760	0.698	0.751	0.757	0.756	0.674	0.7	0.708	0.703	0.683	0.753	0.742	0.754	0.741	0.766
179	131	526	045	59	262	561	466	343	41	586	04	333	974	133	435	336	015	221	667
0.673	0.668	0.684	0.655	0.666	0.711	0.715	0.730	0.712	0.670	0.683	0.7		0.635	0.721	0.753	0.689	0.683	0.716	0.811
134	889	421	656	747	354	827	619	587	94	425	08	0.675	099	687	435	781	942	794	111
0.892	0.846	0.871	0.831	0.840	0.819	0.836	0.840	0.821	0.790	0.780	0.7	0.758	0.666	0.808	0.826	0.829	0.806	0.790	0.811
836	667	368	222	241	651	691	065	678	598	663	84	333	887	434	718	927	569	076	111
0.787	0.733	0.753	0.737	0.732	0.700	0.770	0.754	0.748	0.722	0.732	0.7	0.679	0.624	0.731	0.735	0.765	0.777	0.667	0.811
761	535	474	104	289	873	504	072	951	222	044	2	167	503	325	115	693	372	939	111
0.797	0.791	0.827	0.816	0.832	0.774	0.782	0.785	0.802	0.776	0.661	0.7	0.716	0.703	0.726	0.790	0.806	0.841	0.747	0.811
313	717	579	742	53	236	014	342	098	923	326	2	667	974	506	076	569	606	328	111
0.854	0.791	0.841	0.807	0.826	0.739	0.819	0.845	0.796	0.787	0.727	0.7	0.729	0.788	0.736	0.790	0.724	0.824	0.771	0.811
627	717	053	692	747	301	424	277	503	179	624	64	167	742	145	076	818	088	756	111
0.725	0.731	0.768	0.738	0.741	0.624	0.692	0.725	0.729	0.674	0.603	0.6	0.612	0.492	0.649	0.667	0.689	0.736	0.722	0.811
672	919	632	914	928	017	806	407	371	359	867	04	5	053	398	939	781	496	901	111
0.766	0.714	0.765	0.720	0.741	0.711	0.733	0.782	0.757	0.698	0.670	0.6	0.687	0.582	0.721	0.814	0.765	0.771	0.796	0.811
269	141	263	814	928	354	094	736	343	291	166	72	5	119	687	504	693	533	183	111
0.809	0.790	0.834	0.789	0.780	0.707	0.825	0.866	0.841	0.817	0.736	0.8		0.709	0.567	0.606	0.771	0.824	0.606	0.811
254	101	316	593	482	86	18	124	259	949	464	16	0.8	272	47	87	533	088	87	111
0.785	0.741	0.734	0.719	0.699	0.721	0.756	0.754	0.746	0.722	0.705	0.7	0.704	0.661	0.707	0.838	0.829	0.829	0.832	0.811
373	616	947	005	518	834	115	072	154	222	525	04	167	589	229	931	927	927	824	111
0.825	0.769	0.790	0.773	0.772	0.760	0.793	0.814	0.802	0.759	0.789	0.8	0.791	0.767	0.731	0.875	0.835	0.864	0.771	0.811
97	091	526	303	771	262	525	007	098	829	503	08	667	55	325	573	766	964	756	111
0.744	0.662	0.686	0.626	0.687	0.693	0.721	0.756	0.723	0.752	0.648	0.6	0.670	0.756	0.654	0.680	0.718	0.765	0.759	0.855
776	424	105	697	952	886	583	678	776	991	066	48	833	954	217	153	978	693	542	556
0.716	0.752		0.766	0.757	0.686	0.735	0.748	0.768	0.739	0.679	0.7	0.729	0.672	0.625	0.722	0.683	0.742	0.692	0.855
119	929	0.804	063	349	9	971	86	531	316	006	04	167	185	301	901	942	336	366	556
0.778	0.738	0.758	0.737	0.722	0.714	0.735	0.722	0.723	0.701	0.732	0.7	0.737	0.698	0.644	0.704	0.678	0.695	0.692	0.855
209	384	526	104	651	847	971	801	776	709	044	08	5	675	578	58	102	62	366	556

	1																		
0.718	0.709	0.726	0.709	0.726	0.679	0.712	0.722	0.701	0.667	0.705	0.6	0.704	0.714	0.702	0.753	0.754	0.748	0.741	0.855
507	293	526	955	506	913	95	801	399	521	525	64	167	57	41	435	015	175	221	556
0.787	0.762	0.748	0.738	0.753	0.795	0.784	0.793	0.765	0.790	0.727	0.7	0.758	0.783	0.673	0.759	0.748	0.777	0.747	0.855
761	626	421	914	494	197	892	16	734	598	624	72	333	444	494	542	175	372	328	556
0.773	0.762	0.778	0.793	0.801	0.791	0.770	0.780	0.790	0.759	0.789	0.7	0.783	0.809	0.827	0.765	0.818	0.876	0.783	0.855
433	626	737	213	687	703	504	13	909	829	503	8	333	934	711	649	248	642	969	556
0.742	0.714	0.699	0.652	0.643	0.662	0.664	0.709	0.665	0.636	0.581	0.6	0.616	0.523	0.634	0.704	0.695	0.713	0.686	0.855
388	141	579	036	614	445	029	772	035	752	768	44	667	841	94	58	62	139	26	556
0.873	0.817	0.851	0.769	0.788	0.861	0.856	0.881	0.849	0.862	0.767	0.8	0.829	0.873		0.851	0.847	0.888	0.838	0.855
731	576	158	683	193	572	835	759	65	393	403	52	167	51	0.9	145	445	321	931	556
0.685	0.664	0.691	0.652	0.664	0.683	0.698	0.730	0.718	0.694	0.701	0.6	0.679	0.629	0.716	0.759	0.701	0.678	0.735	0.855
075	04	158	036	819	406	561	619	182	872	105	88	167	801	867	542	46	102	115	556
0.754	0.775	0.785	0.775	0.728	0.697	0.724	0.769	0.762	0.718	0.648	0.6	0.704	0.629	0.765	0.741	0.754	0.754	0.722	0.855
328	556	474	113	434	38	46	707	937	803	066	96	167	801	06	221	015	015	901	556
0.790	0.769	0.809	0.798	0.776	0.704	0.761	0.808	0.799	0.790	0.771	0.7		0.815	0.846	0.881	0.829	0.882	0.796	
149	091	053	643	627	367	871	795	301	598	823	48	0.775	232	988	679	927	482	183	0.9
0.864	0.835		0.796	0.826	0.861	0.876	0.892	0.863		0.895		0.870		0.880					
179	354	0.836	833	747	572	978	182	636	0.9	58	0.9	833	0.9	723	0.9	0.9	0.9	0.9	0.9
0.725	0.694	0.728	0.702	0.686	0.690	0.756	0.733	0.734	0.698	0.679	0.7		0.698	0.687	0.716	0.637	0.707	0.680	
672	747	211	715	024	393	115	225	965	291	006	2	0.75	675	952	794	226	299	153	0.9
0.718	0.710	0.718	0.688	0.659	0.599	0.664	0.712	0.693	0.602	0.625	0.6	0.641	0.545	0.659	0.643	0.631	0.660	0.631	
507	909	105	235	036	563	029	378	007	564	967	56	667	033	036	511	387	584	298	0.9
0.744	0.693	0.733	0.726	0.711	0.742	0.715	0.741	0.726	0.718	0.692	0.7	0.716	0.730	0.822	0.790	0.806	0.853	0.753	
776	131	263	244	084	795	827	042	573	803	265	24	667	464	892	076	569	285	435	0.9
0.744	0.746	0.758	0.742	0.734	0.714	0.735	0.738	0.720	0.711	0.714	0.7		0.703	0.789	0.783	0.794	0.777	0.771	
776	465	526	534	217	847	971	436	979	966	365	64	0.7	974	157	969	891	372	756	0.9
0.799	0.720	0.721	0.664	0.709	0.739	0.735	0.733	0.729	0.770	0.679	0.7		0.714	0.606	0.741	0.695	0.730	0.625	
701	606	474	706	157	301	971	225	371	085	006	08	0.725	57	024	221	62	657	191	0.9
0.885	0.801	0.829	0.795	0.786	0.868	0.845	0.881	0.863	0.848	0.789	0.8	0.837	0.862	0.895	0.863	0.847	0.859	0.869	
672	414	263	023	265	559	324	759	636	718	503	72	5	914	181	359	445	124	466	0.9
0.756	0.743	0.760	0.733	0.766	0.697	0.730	0.761	0.765	0.725	0.648	0.7	0.687	0.703	0.639	0.759	0.707	0.748	0.710	
716	232	211	484	988	38	216	889	734	641	066	2	5	974	759	542	299	175	687	0.9
0.682	0.676	0.699	0.666	0.674	0.679	0.715	0.735	0.720	0.694	0.701	0.7	0.683	0.619	0.707	0.747	0.678	0.689	0.704	
687	97	579	516	458	913	827	831	979	872	105	12	333	205	229	328	102	781	58	0.9

APPENDIX H

NORMALIZED DATASET OF INPUT FEATURES AND TARGET FEATURES FOR MALE HISPANIC POPULATION FOR
FEATURE SELECTION USING GA APPROACH

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Age
0.124	0.124	0.123	0.118	0.126	0.128	0.131	0.124	0.136	0.123	0.137	0.146	0.156	0.126	0.141	0.137	0.150	0.127	0.110	
299	516	491	944	154	387	549	365	856	92	559	693	667	23	509	427	286	586	063	0.1
0.171	0.160	0.169	0.162	0.183	0.192	0.187	0.183	0.197	0.200	0.201	0.215	0.206	0.178	0.209	0.198	0.218	0.219	0.170	
028	645	168	659	077	903	887	249	561	997	408	175	667	689	434	246	857	54	44	0.1
0.172	0.194	0.187	0.196		0.185	0.199	0.195	0.204	0.185	0.205	0.205		0.200	0.216	0.202	0.191	0.224	0.190	
897	194	439	175	0.18	161	155	431	065	05	164	837	0.21	546	981	924	429	138	566	0.1
0.193	0.216	0.203	0.193	0.198	0.187	0.223	0.221	0.240	0.224	0.205	0.208	0.216	0.200	0.190	0.156	0.173	0.145	0.120	
458	129	1	26	462	742	944	827	921	917	164	949	667	546	566	14	143	977	126	0.1
0.320	0.369	0.351	0.346		0.314	0.368	0.400	0.407	0.408	0.385	0.395		0.384	0.318	0.277	0.305	0.302	0.276	0.144
561	677	876	266	0.36	194	169	508	859	306	446	72	0.41	153	868	778	714	299	101	444
																			0.144
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	444
0.232	0.278	0.247	0.253	0.243	0.234	0.291	0.288	0.271	0.264	0.238	0.240		0.266	0.326	0.235	0.237	0.242	0.230	0.144
71	065	471	005	077	194	549	832	274	784	967	078	0.25	12	415	673	143	529	818	444
0.223	0.262	0.244	0.236	0.238	0.229	0.302	0.292	0.310	0.294	0.269	0.283	0.273	0.183	0.330	0.240		0.270	0.200	0.144
364	581	861	976	462	032	817	893	298	02	014	658	333	06	189	351	0.26	115	629	444
0.230	0.248	0.244	0.254		0.254	0.284	0.268	0.282	0.280	0.257	0.261		0.257	0.269	0.259	0.250	0.260	0.195	0.144
841	387	861	463	0.24	839	789	528	114	731	746	868	0.28	377	811	064	857	92	597	444
0.286	0.305	0.281	0.264	0.270	0.285	0.350	0.343	0.357	0.344	0.347	0.345	0.356	0.331	0.349	0.263	0.305	0.311	0.250	0.188
916	161	403	663	769	806	141	655	995	518	887	914	667	694	057	743	714	494	943	889
0.290	0.329	0.321	0.321	0.324	0.309	0.372	0.374	0.390	0.355	0.389	0.392		0.362	0.364	0.324	0.328	0.352	0.296	0.188
654	677	86	494	615	032	676	112	515	15	202	607	0.41	295	151	561	571	874	226	889
0.281	0.323	0.314	0.309	0.306	0.270	0.347	0.349	0.357	0.339	0.317	0.317		0.287	0.379	0.291		0.339	0.281	0.188
308	226	029	836	154	323	887	746	995	203	84	899	0.33	978	245	813	0.356	08	132	889
0.324	0.358	0.357	0.343	0.352	0.288	0.370	0.365	0.384	0.363	0.374	0.370		0.331	0.349	0.282	0.333	0.339	0.261	0.188
299	065	096	352	308	387	423	99	011	123	178	817	0.39	694	057	456	143	08	006	889

		1		1									1			1			
	0.338	0.308	0.306	0.303	0.290	0.354	0.337	0.353	0.328	0.317	0.317	0.336	0.253	0.383	0.287	0.342	0.343	0.276	0.188
0.3	71	809	922	077	968	648	563	659	571	84	899	667	005	019	135	286	678	101	889
0.350	0.368	0.347	0.357	0.343	0.309	0.354	0.359	0.375	0.339	0.374	0.349	0.363	0.305	0.367	0.361	0.273	0.343	0.255	0.233
467	387	961	923	077	032	648	898	339	203	178	027	333	464	925	988	714	678	975	333
0.316	0.385	0.380	0.373	0.364	0.306	0.417	0.428	0.453	0.413	0.377	0.426		0.384	0.394	0.324	0.282	0.320	0.276	0.233
822	161	587	953	615	452	746	934	388	621	934	848	0.43	153	34	561	857	69	101	333
0.118	0.146	0.144	0.139		0.138	0.142	0.132	0.141	0.126	0.130	0.143	0.146	0.134	0.160	0.132	0.141	0.141	0.120	0.233
692	452	372	344	0.14	71	817	487	192	578	047	58	667	973	377	749	143	379	126	333
0.376	0.390	0.366	0.371	0.341	0.378	0.433	0.426	0.433	0.416	0.385	0.401	0.413	0.340	0.413	0.324	0.374	0.389	0.376	0.233
636	323	232	038	538	71	521	904	875	279	446	946	333	437	208	561	286	655	73	333
0.309	0.386	0.374	0.362	0.335	0.386	0.426	0.404	0.405	0.381	0.434	0.408	0.416	0.314	0.428	0.366	0.383	0.385	0.351	0.233
346	452	062	295	385	452	761	569	691	728	272	171	667	208	302	667	429	057	572	333
0.371	0.416	0.421	0.413	0.401	0.350	0.444	0.441	0.440	0.413	0.426	0.417		0.406	0.443	0.404	0.392	0.385	0.396	0.277
028	129	044	297	538	323	789	117	379	621	761	51	0.43	011	396	094	571	057	855	778
0.329	0.398	0.388	0.395	0.376	0.332	0.431	0.443	0.455	0.418	0.456	0.470		0.397	0.435	0.446	0.424	0.458	0.416	0.277
907	065	418	811	923	258	268	147	556	937	808	428	0.47	268	849	199	571	621	981	778
0.356	0.414	0.398	0.400	0.396	0.337	0.410	0.404	0.412	0.392	0.404	0.364	0.363	0.327	0.454	0.436	0.438	0.435	0.422	0.277
075	839	858	182	923	419	986	569	195	359	225	591	333	322	717	842	286	632	013	778
0.447	0.516	0.526	0.526	0.512	0.471	0.494	0.516	0.535	0.485	0.456	0.470	0.486	0.427	0.503	0.413	0.470	0.463	0.381	0.277
664	774	754	958	308	613	366	244	772	382	808	428	667	869	774	45	286	218	761	778
0.283	0.360	0.345	0.340	0.313		0.332	0.325	0.327	0.296	0.344	0.336		0.218	0.352	0.282		0.371	0.245	0.277
178	645	351	437	846	0.26	113	381	642	678	131	576	0.32	033	83	456	0.292	264	912	778
0.455	0.490	0.469	0.468	0.444	0.378	0.456	0.445	0.446	0.424	0.456	0.439	0.453	0.414	0.466	0.436	0.438	0.467	0.416	0.322
14	968	331	67	615	71	056	178	883	252	808	3	333	754	038	842	286	816	981	222
0.393	0.416	0.402	0.384	0.392	0.332		0.441	0.446	0.355	0.449	0.451	0.466	0.449	0.450	0.352	0.342	0.458	0.442	0.322
458	129	773	153	308	258	0.42	117	883	15	296	751	667	727	943	632	286	621	138	222
0.460	0.474	0.457	0.458	0.436	0.396	0.512	0.510	0.531	0.482	0.535	0.542	0.543	0.493	0.541	0.511	0.488	0.509	0.467	0.322
748	194	586	47	923	774	394	152	436	724	681	023	333	443	509	696	571	195	296	222
0.432	0.422	0.394	0.391	0.355	0.383	0.417	0.404	0.412	0.365	0.404	0.392		0.301	0.443	0.422	0.410	0.417	0.386	0.322
71	581	943	439	385	871	746	569	195	781	225	607	0.38	093	396	807	857	241	792	222
0.481	0.481	0.482	0.468	0.469	0.396	0.501	0.481	0.485	0.456	0.494	0.495	0.513	0.502	0.503	0.441	0.470	0.486	0.432	0.322
308	935	382	67	231	774	127	726	908	146	366	331	333	186	774	52	286	207	075	222
0.427	0.498	0.483	0.508	0.496	0.456	0.546	0.522	0.531	0.511	0.535	0.532	0.546	0.567	0.481	0.427	0.438	0.463	0.406	0.322
103	71	687	015	923	129	197	335	436	96	681	685	667	76	132	485	286	218	918	222

0.464	0.483	0.469	0.459	0.470	0.425	0.494	0.477	0.485	0.480	0.460	0.439	0.463	0.419	0.466	0.441	0.438	0.444	0.396	0.322
486	226	331	927	769	161	366	665	908	066	563	3	333	126	038	52	286	828	855	222
0.408	0.429	0.409	0.391	0.404	0.381	0.401	0.422	0.427	0.387	0.370	0.408	0.423	0.384	0.428	0.376	0.383	0.412	0.371	0.322
411	032	299	439	615	29	972	843	371	043	423	171	333	153	302	023	429	644	698	222
0.382	0.462	0.441	0.430	0.418	0.352	0.465	0.449	0.466	0.413	0.407	0.414	0.423	0.309	0.443	0.380	0.424	0.431	0.391	0.322
243	581	925	783	462	903	07	239	396	621	981	397	333	836	396	702	571	034	824	222
0.434	0.546	0.526	0.525	0.509	0.492	0.530	0.520	0.533	0.506	0.535	0.532	0.576	0.537	0.564	0.511	0.511	0.532	0.512	0.366
579	452	754	501	231	258	423	305	604	645	681	685	667	158	151	696	429	184	579	667
0.556	0.546	0.533	0.525	0.530	0.476	0.559	0.550	0.570	0.549	0.535	0.526		0.515	0.567	0.530	0.534	0.541	0.477	0.366
075	452	279	501	769	774	718	761	461	169	681	459	0.54	301	925	409	286	379	358	667
	0.515	0.534	0.519	0.504	0.407	0.548	0.542	0.550	0.498	0.546	0.542	0.553	0.541	0.567	0.530	0.538	0.527	0.502	0.366
0.5	484	584	672	615	097	451	64	949	671	948	023	333	53	925	409	857	586	516	667
0.458	0.502	0.512	0.506	0.483	0.404	0.503		0.535	0.482	0.486	0.482	0.516	0.480	0.477	0.441	0.447	0.435	0.477	0.366
879	581	398	557	077	516	38	0.5	772	724	854	879	667	328	358	52	429	632	358	667
0.443	0.438	0.447	0.439	0.424	0.389		0.418	0.433	0.408	0.392	0.420	0.446	0.366	0.420	0.408	0.415	0.421	0.386	0.366
925	065	145	526	615	032	0.42	782	875	306	958	623	667	667	755	772	429	839	792	667
0.483	0.490	0.492	0.484	0.469	0.448	0.503	0.481	0.490	0.453	0.464	0.445	0.456	0.423	0.488	0.436	0.474		0.452	0.366
178	968	822	699	231	387	38	726	244	488	319	525	667	497	679	842	857	0.5	201	667
0.423	0.426	0.436	0.429	0.412	0.370	0.462	0.463	0.453	0.421	0.456	0.429		0.388	0.428	0.394	0.410	0.435	0.422	0.366
364	452	705	326	308	968	817	452	388	595	808	961	0.44	525	302	737	857	632	013	667
0.483	0.516	0.496	0.481	0.470	0.432	0.469	0.467	0.477	0.461	0.479	0.504	0.506	0.480	0.496	0.441	0.456	0.477	0.416	0.366
178	774	737	785	769	903	577	513	236	462	343	669	667	328	226	52	571	011	981	667
0.492	0.528	0.522	0.521	0.518	0.458	0.510	0.512	0.511	0.525	0.505	0.495	0.506	0.462	0.567	0.488	0.465	0.504	0.477	0.366
523	387	838	129	462	71	141	183	924	249	634	331	667	842	925	304	714	598	358	667
0.556	0.583	0.580	0.572	0.570	0.523	0.568	0.567	0.570	0.543	0.614	0.601		0.528	0.571	0.516	0.538	0.545	0.467	0.411
075	871	261	131	769	226	732	005	461	854	554	167	0.58	415	698	374	857	977	296	111
0.471	0.493	0.484	0.480	0.464	0.443	0.503	0.487	0.498	0.461	0.543	0.529	0.516	0.440	0.518	0.432	0.442	0.477	0.411	0.411
963	548	992	328	615	226	38	817	916	462	192	572	667	984	868	164	857	011	95	111
0.516	0.523	0.505	0.515		0.456	0.503	0.514	0.520	0.469	0.479	0.476	0.503	0.440	0.492	0.427	0.447	0.449	0.452	0.411
822	226	873	301	0.5	129	38	213	596	435	343	654	333	984	453	485	429	425	201	111
	0.518	0.512	0.516	0.518	0.453	0.521	0.546	0.553	0.503	0.565	0.588	0.593	0.462	0.601	0.535	0.575	0.582	0.527	0.411
0.5	065	398	758	462	548	408	701	117	987	728	716	333	842	887	088	429	759	673	111
0.503	0.519	0.512	0.491	0.490	0.481	0.523	0.495	0.492	0.493	0.561	0.560		0.510	0.549	0.492	0.493	0.536	0.512	0.411
738	355	398	985	769	935	662	939	412	355	972	7	0.54	929	057	982	143	782	579	111

				•	•			•			1			1	1	•	1		
0.535	0.559	0.546	0.545	0.524	0.525	0.548	0.530	0.540	0.517	0.580	0.566	0.566	0.572	0.567	0.567	0.538	0.555	0.527	0.411
514	355	33	902	615	806	451	457	108	276	751	926	667	131	925	836	857	172	673	111
0.537	0.516	0.500	0.496	0.486	0.494	0.483	0.481	0.505	0.477	0.513	0.495	0.523	0.524	0.545	0.507	0.493	0.509	0.492	0.411
383	774	653	357	154	839	099	726	42	409	146	331	333	044	283	018	143	195	453	111
0.578	0.561	0.571	0.586	0.553	0.479	0.521	0.540	0.557	0.514	0.516	0.510	0.543	0.489	0.583	0.544	0.557	0.591	0.552	0.411
505	935	126	703	846	355	408	609	453	618	901	895	333	071	019	444	143	954	83	111
0.528	0.532	0.526	0.499	0.501	0.507	0.564	0.546	0.555	0.503	0.554	0.557	0.566	0.554	0.579	0.511	0.534	0.559	0.517	0.411
037	258	754	271	538	742	225	701	285	987	46	588	667	645	245	696	286	77	61	111
0.479	0.485	0.490	0.487	0.449		0.471	0.473	0.470	0.421	0.460	0.439	0.443	0.366	0.503	0.455		0.458	0.442	0.411
439	806	212	614	231	0.42	831	604	732	595	563	3	333	667	774	556	0.452	621	138	111
0.507	0.529	0.512	0.512	0.504	0.445	0.492	0.479	0.503	0.458	0.498	0.473	0.463	0.432	0.526	0.460		0.495	0.427	0.455
477	677	398	386	615	806	113	695	252	804	122	541	333	24	415	234	0.484	402	044	556
0.514	0.543	0.551	0.573	0.573	0.471	0.525	0.514	0.535	0.509	0.509	0.485	0.486	0.410	0.564	0.544	0.520	0.550	0.532	0.455
953	871	55	588	846	613	915	213	772	302	39	992	667	383	151	444	571	575	704	556
0.584	0.551	0.561	0.570	0.553	0.481	0.586	0.577	0.609	0.557	0.546	0.585	0.586	0.532	0.598	0.516	0.534	0.550	0.532	0.455
112	613	99	674	846	935	761	157	485	143	948	603	667	787	113	374	286	575	704	556
0.582	0.558	0.558	0.547	0.526	0.515	0.595	0.585	0.594	0.554	0.558	0.563	0.586	0.519	0.601	0.553	0.570	0.573	0.537	0.455
243	065	075	359	154	484	775	279	309	485	216	813	667	672	887	801	857	563	736	556
0.526	0.516	0.534	0.532	0.538	0.450	0.557	0.542	0.574	0.549	0.554	0.538		0.532	0.541	0.525	0.511	0.518	0.497	0.455
168	774	584	787	462	968	465	64	797	169	46	911	0.55	787	509	731	429	391	484	556
0.576	0.581	0.561	0.521	0.546	0.520		0.560	0.581	0.570	0.588	0.598		0.475	0.643	0.558	0.557	0.587	0.567	0.455
636	29	99	129	154	645	0.58	914	301	432	263	054	0.59	956	396	48	143	356	925	556
0.514	0.502	0.515	0.513		0.487	0.532	0.524	0.537	0.509	0.535	0.576	0.573	0.524	0.552	0.516		0.527	0.502	0.455
953	581	008	843	0.5	097	676	365	94	302	681	265	333	044	83	374	0.516	586	516	556
0.576	0.581	0.595	0.577	0.555	0.520	0.552	0.550	0.561	0.519	0.561	0.526		0.440	0.567	0.553	0.584	0.578	0.532	0.455
636	29	922	96	385	645	958	761	789	934	972	459	0.5	984	925	801	571	161	704	556
0.520	0.528	0.525	0.502	0.487	0.510	0.534	0.510	0.548	0.519	0.580	0.542		0.528	0.616	0.530	0.543	0.541	0.492	0.455
561	387	449	186	692	323	93	152	78	934	751	023	0.56	415	981	409	429	379	453	556
0.571	0.564	0.563	0.563	0.564	0.471	0.552	0.579	0.587	0.535	0.509	0.520		0.458	0.598	0.577	0.534	0.559	0.502	0.455
028	516	295	388	615	613	958	188	805	88	39	233	0.53	47	113	193	286	77	516	556
0.571	0.565	0.576	0.569	0.543	0.494	0.557	0.550	0.566	0.522	0.588	0.545	0.536	0.567	0.594	0.549	0.525	0.545	0.512	
028	806	346	217	077	839	465	761	125	591	263	136	667	76	34	123	143	977	579	0.5
0.701	0.687	0.663	0.669		0.616	0.672	0.674	0.676	0.631	0.667	0.672		0.567	0.658	0.638		0.660	0.567	
869	097	785	763	0.68	129	394	619	694	561	136	763	0.66	76	491	012	0.676	92	925	0.5

0.548	0.521	0.517	0.502	0.513	0.456	0.521	0.530	0.529	0.485	0.483	0.495	0.493	0.384	0.545	0.502	0.511	0.532	0.502	
598	935	618	186	846	129	408	457	268	382	099	331	333	153	283	339	429	184	516	0.5
0.585	0.564	0.580	0.589	0.567	0.507	0.570	0.573	0.594	0.543	0.554	0.560	0.573	0.532	0.696	0.558	0.634	0.656	0.588	
981	516	261	617	692	742	986	096	309	854	46	7	333	787	226	48	857	322	05	0.5
0.655	0.656	0.657	0.662	0.629	0.543	0.577	0.629	0.618	0.527	0.464	0.526	0.516	0.309	0.598	0.535	0.593	0.633	0.507	
14	129	259	477	231	871	746	949	157	907	319	459	667	836	113	088	714	333	547	0.5
0.600	0.589	0.622	0.602	0.570	0.530	0.627	0.601	0.644	0.591	0.603	0.626	0.696	0.628	0.601	0.567	0.625	0.647	0.598	
935	032	023	732	769	968	324	523	173	694	286	07	667	962	887	836	714	126	113	0.5
0.544	0.561	0.561	0.537	0.523	0.510	0.570	0.567	0.561	0.527	0.513	0.548	0.526	0.458	0.586	0.502	0.529	0.509	0.497	
86	935	99	158	077	323	986	005	789	907	146	249	667	47	792	339	714	195	484	0.5
0.612	0.617	0.598	0.586	0.603		0.629	0.611	0.615	0.594	0.670	0.604		0.550	0.711	0.656	0.666	0.683	0.663	
15	419	532	703	077	0.58	577	675	989	352	892	28	0.61	273	321	725	857	908	522	0.5
0.621	0.600	0.602	0.577		0.587	0.600	0.603	0.594	0.583	0.584	0.591	0.606	0.650	0.628	0.567	0.575	0.596	0.593	
495	645	447	96	0.56	742	282	553	309	721	507	829	667	82	302	836	429	552	082	0.5
0.561	0.568	0.593	0.576	0.556	0.533	0.566	0.575	0.579	0.570	0.573	0.573	0.586	0.589	0.616	0.567	0.584	0.591	0.562	
682	387	312	503	923	548	479	127	133	432	239	152	667	617	981	836	571	954	893	0.5
0.526	0.532	0.535	0.535	0.518	0.492	0.528	0.534	0.544	0.517	0.498	0.489		0.462	0.616	0.586	0.543	0.568	0.547	0.544
168	258	889	701	462	258	169	518	444	276	122	105	0.51	842	981	55	429	966	799	444
0.636	0.625	0.616	0.614	0.598	0.494	0.620	0.627	0.646	0.607	0.588	0.613	0.643	0.598	0.635	0.586	0.621	0.628	0.603	0.544
449	161	803	39	462	839	563	919	341	641	263	619	333	361	849	55	143	736	145	444
0.628	0.629	0.635	0.621	0.595	0.533	0.625	0.611	0.613	0.573	0.610	0.622	0.623	0.545	0.586	0.507		0.582	0.406	0.544
972	032	073	676	385	548	07	675	821	09	798	957	333	902	792	018	0.548	759	918	444
0.705	0.630	0.619	0.596	0.590	0.592	0.636	0.615	0.639	0.626	0.633	0.619	0.636	0.642	0.613	0.577	0.584	0.578	0.593	0.544
607	323	413	903	769	903	338	736	837	246	333	844	667	077	208	193	571	161	082	444
0.578	0.551	0.556	0.567	0.515	0.497		0.575	0.585	0.501	0.565	0.560	0.583	0.506	0.598	0.577	0.616	0.633	0.567	0.544
505	613	77	76	385	419	0.58	127	637	329	728	7	333	557	113	193	571	333	925	444
0.619	0.617	0.625	0.621	0.583	0.543	0.634	0.629	0.633	0.581	0.592	0.579	0.583	0.506	0.692	0.591	0.602	0.628	0.628	0.544
626	419	938	676	077	871	085	949	333	063	019	377	333	557	453	228	857	736	302	444
0.524	0.555	0.548	0.545	0.523	0.476	0.568	0.581	0.583	0.543	0.501	0.529	0.526	0.454	0.594	0.507	0.538	0.550	0.502	0.544
299	484	94	902	077	774	732	218	469	854	878	572	667	098	34	018	857	575	516	444
0.591	0.592	0.568	0.557	0.553	0.528		0.579	0.576	0.535	0.554	0.570	0.576	0.541	0.590	0.549	0.529	0.591	0.522	0.544
589	903	515	559	846	387	0.58	188	965	88	46	039	667	53	566	123	714	954	642	444
0.632	0.578	0.560	0.548	0.567	0.600	0.595	0.556	0.576	0.543	0.633	0.598	0.616	0.537	0.571	0.586	0.593	0.633	0.613	0.544
71	71	685	816	692	645	775	853	965	854	333	054	667	158	698	55	714	333	208	444

0.602	0.654	0.662	0.653	0.635	0.569	0.622	0.652	0.670	0.602	0.667	0.669	0.676	0.642	0.673	0.666	0.666	0.670	0.633	0.544
804	839	48	734	385	677	817	284	19	326	136	65	667	077	585	082	857	115	333	444
0.597	0.621	0.620	0.611	0.610	0.577	0.573	0.595	0.607	0.602	0.580	0.601	0.616	0.633	0.616	0.591	0.602	0.637	0.648	0.544
196	29	718	475	769	419	239	431	317	326	751	167	667	333	981	228	857	931	428	444
0.627	0.634	0.632	0.637	0.596	0.541	0.645	0.676	0.670	0.623	0.610	0.660	0.646	0.628	0.639	0.628	0.634	0.642	0.623	0.544
103	194	463	705	923	29	352	65	19	588	798	311	667	962	623	655	857	529	27	444
0.606	0.573	0.572	0.567	0.549	0.523	0.566	0.567	0.563	0.509	0.584	0.594		0.528	0.635	0.600	0.625	0.656	0.593	0.588
542	548	431	76	231	226	479	005	957	302	507	942	0.58	415	849	585	714	322	082	889
0.585	0.600	0.611	0.589	0.595	0.507	0.570	0.583	0.594	0.591	0.580	0.585	0.603	0.611	0.658	0.609	0.634	0.619	0.633	0.588
981	645	582	617	385	742	986	249	309	694	751	603	333	475	491	942	857	54	333	889
0.608	0.625	0.636	0.624	0.624	0.585	0.634	0.640	0.655	0.623	0.637	0.660		0.642	0.703	0.689		0.660	0.683	0.588
411	161	378	59	615	161	085	102	014	588	089	311	0.68	077	774	474	0.644	92	648	889
0.696	0.674	0.662	0.662	0.636	0.647	0.721	0.713	0.713	0.655	0.644	0.650	0.633	0.510	0.677	0.605	0.680	0.670	0.577	0.588
262	194	48	477	923	097	972	198	55	482	601	973	333	929	358	263	571	115	987	889
0.664	0.641	0.637	0.630	0.615	0.549	0.625	0.603	0.628	0.634	0.652	0.657	0.653	0.668	0.666	0.642	0.653	0.647	0.598	0.588
486	935	684	419	385	032	07	553	997	219	113	198	333	306	038	69	143	126	113	889
0.800	0.782	0.769	0.767	0.770	0.724	0.780	0.778	0.793	0.740	0.764	0.766	0.783	0.642	0.760	0.736	0.785	0.748	0.703	0.588
935	581	494	395	769	516	563	173	767	532	789	148	333	077	377	257	714	276	774	889
0.599	0.608	0.611	0.612	0.576	0.549	0.604	0.605	0.609	0.583	0.618	0.588		0.607	0.624	0.628	0.666	0.679	0.678	0.588
065	387	582	933	923	032	789	584	485	721	31	716	0.61	104	528	655	857	31	616	889
0.314	0.292	0.289	0.286	0.296	0.272	0.278	0.266	0.282	0.262	0.272	0.252	0.253	0.253	0.296	0.268	0.250	0.242	0.240	0.588
953	258	233	521	923	903	028	497	114	126	77	529	333	005	226	421	857	529	881	889
0.328	0.306	0.299	0.285	0.295	0.288	0.291	0.290	0.297	0.283	0.314	0.317	0.336	0.301	0.345	0.319	0.328	0.352	0.316	0.588
037	452	674	064	385	387	549	863	29	389	085	899	667	093	283	883	571	874	352	889
0.814	0.747	0.761	0.744		0.670	0.726	0.733	0.743	0.708	0.727	0.703	0.736	0.712	0.764	0.680	0.648	0.734	0.688	0.588
019	742	664	08	0.72	323	479	503	902	638	23	891	667	022	151	117	571	483	679	889
0.630	0.640	0.614	0.602		0.525	0.604	0.619	0.633	0.583	0.576	0.576	0.593	0.572	0.654	0.614	0.602	0.610	0.633	0.588
841	645	192	732	0.62	806	789	797	333	721	995	265	333	131	717	62	857	345	333	889
0.567	0.538	0.563	0.554	0.535	0.484	0.528	0.540	0.550	0.509	0.528	0.538	0.563	0.493	0.552	0.535	0.520	0.550	0.502	0.588
29	71	295	645	385	516	169	609	949	302	169	911	333	443	83	088	571	575	516	889
0.664	0.645	0.636	0.623	0.607	0.528		0.577	0.592	0.557	0.588	0.601	0.633	0.620	0.635	0.595	0.625	0.633	0.638	0.588
486	806	378	133	692	387	0.58	157	141	143	263	167	333	219	849	906	714	333	365	889
0.668	0.647	0.637	0.624	0.643	0.564	0.638	0.611	0.644	0.583	0.640	0.622	0.643	0.602	0.677	0.661	0.639	0.642	0.628	0.588
224	097	684	59	077	516	592	675	173	721	845	957	333	732	358	404	429	529	302	889

No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		1	T		1					1			T	1			1		1	
New York New York	0.645	0.697	0.696	0.704	0.672	0.634	0.649	0.672	0.698	0.655	0.700	0.716	0.723	0.720	0.726	0.703	0.703	0.729	0.713	0.633
308		_				-, .					, ,						429			
No.							0.0			0.647			0.736			0.689		0.720	0.703	
112 677 817 051 846 161 028 563 751 558 033 809 0.73 475 0.7 544 143 897 868 333 0.836 0.813 0.820 0.803 0.778 0.763 0.807 0.812 0.826 0.775 0.768 0.750 0.793 0.764 0.854 0.694 0.753 0.817 0.749 0.633 0.657 0.714 0.715 0.717 0.673 0.662 0.665 0.692 0.702 0.671 0.727 0.716 0.753 0.733 0.737 0.708 0.721 0.744 0.753 0.657 0.714 0.715 0.717 0.673 0.662 0.665 0.692 0.702 0.671 0.727 0.716 0.753 0.733 0.737 0.708 0.721 0.748 0.738 0.633 0.657 0.714 0.715 0.717 0.673 0.662 0.665 0.692 0.702 0.671 0.727 0.716 0.753 0.733 0.737 0.708 0.721 0.748 0.738 0.633 0.722 0.702 0.729 0.713 0.689 0.654 0.712 0.715 0.724 0.682 0.776 0.750 0.776 0.738 0.779 0.717 0.730 0.743 0.738 0.633 0.723 0.734 0.735 0.735 0.735 0.735 0.735 0.735 0.744 0.744 0.729 0.713 0.633 0.726 0.701 0.718 0.722 0.707 0.605 0.735 0.719 0.728 0.658 0.727 0.756 0.736 0.735 0.735 0.744 0.665 0.744 0.633 0.726 0.701 0.718 0.722 0.707 0.605 0.735 0.719 0.728 0.687 0.727 0.756 0.756 0.756 0.758 0.759 0.756 0.7	308	484	886	878	231	806	155	832	198	508	474	568	667	279	642	474	0.708	69	774	333
0.836 0.813 0.820 0.803 0.778 0.763 0.807 0.812 0.826 0.775 0.768 0.750 0.793 0.764 0.854 0.694 0.753 0.817 0.749 0.633 0.657 0.714 0.715 0.717 0.673 0.662 0.665 0.692 0.702 0.671 0.727 0.716 0.753 0.733 0.737 0.708 0.721 0.748 0.738 0.633 0.009 194 987 851 846 581 634 893 71 429 23 342 333 88 736 187 714 276 994 333 0.722 0.702 0.729 0.713 0.689 0.654 0.712 0.715 0.724 0.682 0.776 0.750 0.750 0.768 0.738 0.779 0.717 0.730 0.743 0.738 0.633 0.788 0.782 0.778 0.782 0.782 0.782 0.794 0.788 0.782 0.794 0.782 0.794 0.784 0.794 0.784 0.794 0.784 0.794	0.784	0.769	0.723	0.728	0.713	0.745	0.758	0.737	0.767	0.732	0.761	0.756		0.611		0.717	0.717	0.706	0.718	0.633
449 548 392 825 462 226 606 69 287 083 545 584 333 481 717 152 714 241 057 333 0.657 0.714 0.715 0.717 0.673 0.662 0.665 0.692 0.702 0.671 0.727 0.716 0.753 0.733 0.733 0.738 0.708 0.721 0.748 0.738 0.633 0.722 0.702 0.729 0.713 0.689 0.654 0.712 0.715 0.724 0.682 0.776 0.750 0.756 0.738 0.779 0.717 0.730 0.743 0.733 0.633 43 581 0.38 479 231 839 958 228 39 0.66 0.565 584 667 2.51 245 544 857 678 994 333 0.722 0.736 0.736 0.770 0.730 0.758 0.767 0.749 0.778 0.732 0.755 0.756 0.633 0.711 0.740 0.744 0.729 0.713 0.633 0.784 0.701 0.718 0.722 0.707 0.605 0.42 746 591 558 277 809 0.76 0.756 0.698 0.771 0.726 0.744 0.665 0.744 0.633 0.757 0.781 0.777 0.773 0.773 0.771 0.776 0.806 0.793 0.788 0.640 0.735 0.726 0.628 0.783 0.623 0.589 0.660 0.643 0.642 0.657 0.638 0.612 0.696 0.569 0.613 3.88 599 767 372 845 0.19 667 962 0.19 977 143 92 396 333 0.748 0.727 0.717 0.691 0.696 0.596 0.613 0.629 0.615 0.633 0.731 0.749 0.745 0.745 0.735 0.739 0.748 0.742 0.744	112	677	817	051	846	161	028	563	751	558	033	809	0.73	475	0.7	544	143	897	868	333
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.836	0.813	0.820	0.803	0.778	0.763	0.807	0.812	0.826	0.775	0.768	0.750	0.793	0.764	0.854	0.694	0.753	0.817	0.749	0.633
009 194 987 851 846 581 634 893 71 429 23 342 333 88 736 187 714 276 994 333 0.722 0.702 0.729 0.713 0.689 0.654 0.712 0.715 0.724 0.682 0.776 0.750 0.776 0.738 0.779 0.717 0.730 0.743 0.738 0.633 43 581 0.38 479 2.31 839 958 228 39 0.6 0.56 584 667 2.51 2.45 544 857 678 994 333 0.778 0.782 0.736 0.707 0.730 0.758 0.767 0.749 0.778 0.732 0.757 0.756 0.633 0.711 0.740 0.744 0.729 0.713 0.633 505 581 868 65 769 0.65 0.42 746 591 558 277 809 0.76 333 321 936 571 885 836 333 0.726 0.701 0.718 0.722 0.707 0.605 0.735 0.719 0.728 0.687 0.727 0.756 0.756 0.698 0.771 0.726 0.744 0.665 0.744 0.633 168 29 597 222 692 806 493 2.89 726 375 2.3 809 667 907 698 901 571 517 0.25 333 0.757 0.781 0.777 0.774 0.773 0.711 0.796 0.806 0.793 0.788 0.640 0.735 0.726 0.628 0.783 0.623 0.589 0.660 0.643 0.633 0.748 0.727 0.717 0.691 0.696 0.750 0.758 0.707 0.730 0.729 0.693 0.731 0.742 0.760 0.703 0.721 0.757 0.758 0.735 0.724 0.755 0.744 0.755 0.744 0.755 0.744 0	449	548	392	825	462	226	606	69	287	083	545	584	333	481	717	152	714	241	057	333
0.722 0.702 0.729 0.713 0.689 0.654 0.712 0.715 0.724 0.682 0.776 0.750 0.776 0.738 0.779 0.717 0.730 0.743 0.738 0.633 0.778 0.782 0.736 0.707 0.730 0.758 0.767 0.749 0.778 0.732 0.757 0.756 0.633 0.711 0.740 0.744 0.723 505 581 868 65 769 065 042 746 591 558 277 809 0.76 333 321 936 571 885 836 333 0.726 0.701 0.718 0.722 0.707 0.605 0.735 0.719 0.728 0.687 0.727 0.756 0.569 0.771 0.722 0.744 0.665 0.744 0.633 168 29 597 222 692 806 493 289 726 375 23 809	0.657	0.714	0.715	0.717	0.673	0.662	0.665	0.692	0.702	0.671	0.727	0.716	0.753	0.733	0.737	0.708	0.721	0.748	0.738	0.633
43 581 038 479 231 839 958 228 39 06 056 584 667 251 245 544 857 678 994 333 0.778 0.782 0.736 0.707 0.730 0.758 0.767 0.749 0.778 0.757 0.756 0.633 0.711 0.740 0.744 0.729 0.713 0.633 505 581 868 65 769 065 042 746 591 558 277 809 0.76 333 321 936 571 888 836 333 0.726 0.701 0.718 0.722 0.707 0.605 0.735 0.719 0.728 0.687 0.727 0.756 0.698 0.771 0.744 0.665 0.744 0.633 168 29 325 806 0.735 0.719 0.786 0.793 0.788 0.640 0.735 0.726 0.698	009	194	987	851	846	581	634	893	71	429	23	342	333	88	736	187	714	276	994	333
0.778 0.782 0.736 0.707 0.730 0.758 0.767 0.749 0.778 0.732 0.756 0.633 0.711 0.740 0.744 0.729 0.713 0.633 505 581 868 65 769 065 042 746 591 558 277 809 0.76 333 321 936 571 885 836 333 0.726 0.701 0.718 0.722 0.707 0.605 0.735 0.719 0.728 0.687 0.727 0.756 0.698 0.711 0.724 0.665 0.744 0.665 0.744 0.633 168 29 597 222 692 806 493 289 726 375 23 809 667 907 698 901 571 517 0.623 333 0.757 0.781 0.777 0.774 0.773 0.711 0.796 0.808 0.793 0.788 0.6	0.722	0.702	0.729	0.713	0.689	0.654	0.712	0.715	0.724	0.682	0.776	0.750	0.776	0.738	0.779	0.717	0.730	0.743	0.738	0.633
505 581 868 65 769 065 042 746 591 558 277 809 0.76 333 321 936 571 885 836 333 0.726 0.701 0.718 0.722 0.707 0.605 0.735 0.719 0.728 0.687 0.727 0.756 0.698 0.771 0.726 0.744 0.665 0.744 0.633 168 29 597 222 692 806 493 289 726 375 23 809 667 907 698 901 571 517 025 333 0.757 0.781 0.777 0.774 0.773 0.711 0.796 0.806 0.793 0.788 0.640 0.735 0.726 0.628 0.783 0.623 0.589 0.660 0.633 0.742 0.760 0.771 0.696 0.750 0.758 0.707 0.730 0.729 0.693 0.731	43	581	038	479	231	839	958	228	39	06	056	584	667	251	245	544	857	678	994	333
0.726 0.701 0.718 0.722 0.707 0.605 0.735 0.719 0.728 0.687 0.727 0.756 0.756 0.698 0.771 0.726 0.744 0.665 0.744 0.633 168 29 597 222 692 806 493 289 726 375 23 809 667 907 698 901 571 517 025 333 0.757 0.781 0.777 0.774 0.773 0.711 0.796 0.806 0.793 0.788 0.640 0.735 0.726 0.628 0.783 0.623 0.589 0.660 0.643 0.633 944 29 325 681 846 613 338 599 767 372 845 019 667 962 019 977 143 92 396 333 0.748 0.727 0.717 0.691 0.696 0.750 0.758 0.707 0.730 </td <td>0.778</td> <td>0.782</td> <td>0.736</td> <td>0.707</td> <td>0.730</td> <td>0.758</td> <td>0.767</td> <td>0.749</td> <td>0.778</td> <td>0.732</td> <td>0.757</td> <td>0.756</td> <td></td> <td>0.633</td> <td>0.711</td> <td>0.740</td> <td>0.744</td> <td>0.729</td> <td>0.713</td> <td>0.633</td>	0.778	0.782	0.736	0.707	0.730	0.758	0.767	0.749	0.778	0.732	0.757	0.756		0.633	0.711	0.740	0.744	0.729	0.713	0.633
168 29 597 222 692 806 493 289 726 375 23 809 667 907 698 901 571 517 025 333 0.757 0.781 0.777 0.774 0.773 0.711 0.796 0.806 0.793 0.788 0.640 0.735 0.726 0.628 0.783 0.623 0.589 0.660 0.643 0.633 944 29 325 681 846 613 338 599 767 372 845 019 667 962 019 977 143 92 396 333 0.748 0.727 0.717 0.691 0.696 0.750 0.758 0.707 0.730 0.729 0.693 0.731 0.742 0.760 0.703 0.727 0.728 0.633 598 097 292 621 923 323 028 107 894 9 427 907	505	581	868	65	769	065	042	746	591	558	277	809	0.76	333	321	936	571	885	836	333
0.757 0.781 0.777 0.774 0.773 0.711 0.796 0.806 0.793 0.788 0.640 0.735 0.726 0.623 0.589 0.660 0.643 0.633 944 29 325 681 846 613 338 599 767 372 845 019 667 962 019 977 143 92 396 333 0.748 0.727 0.717 0.691 0.696 0.750 0.758 0.707 0.730 0.729 0.693 0.731 0.742 0.760 0.703 0.721 0.758 0.729 0.693 0.731 0.742 0.760 0.703 0.721 0.728 0.633 598 097 292 621 923 323 028 107 894 9 427 907 0.75 623 377 509 714 471 931 333 0.642 0.657 0.638 0.612 0.660<	0.726	0.701	0.718	0.722	0.707	0.605	0.735	0.719	0.728	0.687	0.727	0.756	0.756	0.698	0.771	0.726	0.744	0.665	0.744	0.633
944 29 325 681 846 613 338 599 767 372 845 019 667 962 019 977 143 92 396 333 0.748 0.727 0.717 0.691 0.696 0.750 0.758 0.707 0.730 0.729 0.693 0.731 0.742 0.760 0.703 0.721 0.752 0.728 0.633 598 097 292 621 923 323 028 107 894 9 427 907 0.75 623 377 509 714 471 931 333 0.642 0.657 0.638 0.612 0.606 0.569 0.613 0.629 0.615 0.589 0.584 0.585 0.489 0.662 0.661 0.703 0.716 0.653 0.633 0.642 0.657 0.638 0.613 0.629 0.615 0.589 0.584 0.585 0.489 0.662<	168	29	597	222	692	806	493	289	726	375	23	809	667	907	698	901	571	517	025	333
0.748 0.727 0.717 0.691 0.696 0.750 0.758 0.707 0.730 0.729 0.693 0.731 0.742 0.760 0.703 0.721 0.757 0.728 0.633 598 0.97 292 621 923 323 028 107 894 9 427 907 0.75 623 377 509 714 471 931 333 0.642 0.657 0.638 0.612 0.606 0.569 0.613 0.629 0.615 0.589 0.584 0.585 0.489 0.662 0.661 0.703 0.716 0.653 0.633 0.56 419 989 933 154 677 803 949 989 0.37 507 603 0.6 071 264 404 429 092 459 333 0.741 0.719 0.725 0.701 0.696 0.685 0.755 0.749 0.748 0.764 0	0.757	0.781	0.777	0.774	0.773	0.711	0.796	0.806	0.793	0.788	0.640	0.735	0.726	0.628	0.783	0.623	0.589	0.660	0.643	0.633
598 097 292 621 923 323 028 107 894 9 427 907 0.75 623 377 509 714 471 931 333 0.642 0.657 0.638 0.612 0.606 0.569 0.613 0.629 0.615 0.589 0.584 0.585 0.489 0.662 0.661 0.703 0.716 0.653 0.633 0.56 419 989 933 154 677 803 949 989 037 507 603 0.6 071 264 404 429 092 459 333 0.741 0.719 0.725 0.701 0.696 0.685 0.755 0.749 0.748 0.764 0.723 0.731 0.799 0.771 0.745 0.735 0.739 0.779 0.633 121 355 122 821 923 806 775 746 238 452 474 90	944	29	325	681	846	613	338	599	767	372	845	019	667	962	019	977	143	92	396	333
0.642 0.657 0.638 0.612 0.606 0.569 0.613 0.629 0.615 0.589 0.584 0.585 0.489 0.662 0.661 0.703 0.716 0.653 0.633 0.56 419 989 933 154 677 803 949 989 037 507 603 0.6 071 264 404 429 092 459 333 0.741 0.719 0.725 0.701 0.696 0.685 0.755 0.749 0.748 0.764 0.723 0.731 0.799 0.771 0.745 0.735 0.739 0.779 0.633 121 355 122 821 923 806 775 746 238 452 474 907 0.76 454 698 614 429 08 245 333 0.623 0.608 0.603 0.602 0.556 0.625 0.609 0.611 0.607 0.595 0.	0.748	0.727	0.717	0.691	0.696	0.750	0.758	0.707	0.730	0.729	0.693	0.731		0.742	0.760	0.703	0.721	0.757	0.728	0.633
056 419 989 933 154 677 803 949 989 037 507 603 0.6 071 264 404 429 092 459 333 0.741 0.719 0.725 0.701 0.696 0.685 0.755 0.749 0.748 0.764 0.723 0.731 0.799 0.771 0.745 0.735 0.739 0.779 0.633 121 355 122 821 923 806 775 746 238 452 474 907 0.76 454 698 614 429 08 245 333 0.623 0.608 0.603 0.602 0.625 0.609 0.611 0.607 0.595 0.594 0.545 0.673 0.648 0.674 0.648 0.633 364 387 752 732 0.6 774 07 645 653 641 775 942 0.56 902 585	598	097	292	621	923	323	028	107	894	9	427	907	0.75	623	377	509	714	471	931	333
0.741 0.719 0.725 0.701 0.696 0.685 0.755 0.749 0.748 0.764 0.723 0.731 0.799 0.771 0.745 0.735 0.739 0.779 0.633 121 355 122 821 923 806 775 746 238 452 474 907 0.76 454 698 614 429 08 245 333 0.623 0.608 0.603 0.602 0.556 0.625 0.609 0.611 0.607 0.595 0.594 0.545 0.673 0.670 0.648 0.674 0.648 0.633 364 387 752 732 0.6 774 07 645 653 641 775 942 0.56 902 585 76 571 713 428 333 0.752 0.715 0.727 0.700 0.724 0.696 0.749 0.763 0.791 0.727 0.731 0.74	0.642	0.657	0.638	0.612	0.606	0.569	0.613	0.629	0.615	0.589	0.584	0.585		0.489	0.662	0.661	0.703	0.716	0.653	0.633
121 355 122 821 923 806 775 746 238 452 474 907 0.76 454 698 614 429 08 245 333 0.623 0.608 0.603 0.602 0.556 0.625 0.609 0.611 0.607 0.595 0.594 0.545 0.673 0.670 0.648 0.674 0.648 0.633 364 387 752 732 0.6 774 07 645 653 641 775 942 0.56 902 585 76 571 713 428 333 0.752 0.715 0.727 0.700 0.724 0.696 0.749 0.763 0.791 0.751 0.727 0.731 0.746 0.729 0.730 0.740 0.730 0.757 0.754 0.633 336 484 732 364 615 129 014 959 599 163 23 907<	056	419	989	933	154	677	803	949	989	037	507	603	0.6	071	264	404	429	092	459	333
0.623 0.608 0.603 0.602 0.556 0.625 0.609 0.611 0.607 0.595 0.594 0.545 0.673 0.670 0.648 0.674 0.648 0.633 364 387 752 732 0.6 774 07 645 653 641 775 942 0.56 902 585 76 571 713 428 333 0.752 0.715 0.727 0.700 0.724 0.696 0.749 0.763 0.791 0.751 0.727 0.731 0.746 0.729 0.730 0.740 0.730 0.757 0.754 0.633 336 484 732 364 615 129 014 959 599 163 23 907 667 508 189 936 857 471 088 333 0.739 0.702 0.706 0.693 0.673 0.672 0.721 0.711 0.722 0.700 0.693	0.741	0.719	0.725	0.701	0.696	0.685	0.755	0.749	0.748	0.764	0.723	0.731		0.799	0.771	0.745	0.735	0.739	0.779	0.633
364 387 752 732 0.6 774 07 645 653 641 775 942 0.56 902 585 76 571 713 428 333 0.752 0.715 0.727 0.700 0.724 0.696 0.749 0.763 0.791 0.751 0.727 0.731 0.740 0.729 0.730 0.740 0.730 0.757 0.754 0.633 336 484 732 364 615 129 014 959 599 163 23 907 667 508 189 936 857 471 088 333 0.739 0.702 0.706 0.693 0.672 0.721 0.711 0.722 0.700 0.693 0.669 0.653 0.688 0.683 0.633	121	355	122	821	923	806	775	746	238	452	474	907	0.76	454	698	614	429	08	245	333
0.752 0.715 0.727 0.700 0.724 0.696 0.749 0.763 0.791 0.751 0.727 0.731 0.740 0.729 0.730 0.740 0.730 0.757 0.754 0.633 336 484 732 364 615 129 014 959 599 163 23 907 667 508 189 936 857 471 088 333 0.739 0.702 0.706 0.693 0.673 0.672 0.721 0.711 0.722 0.700 0.693 0.669 0.655 0.653 0.688 0.683 0.633	0.623	0.608	0.603	0.602		0.556	0.625	0.609	0.611	0.607	0.595	0.594		0.545	0.673	0.670	0.648	0.674	0.648	0.633
336 484 732 364 615 129 014 959 599 163 23 907 667 508 189 936 857 471 088 333 0.739 0.702 0.706 0.693 0.673 0.672 0.721 0.711 0.722 0.700 0.693 0.669 0.685 0.737 0.656 0.653 0.688 0.683 0.633	364	387	752	732	0.6	774	07	645	653	641	775	942	0.56	902	585	76	571	713	428	333
0.739 0.702 0.706 0.693 0.673 0.672 0.721 0.711 0.722 0.700 0.693 0.669 0.685 0.737 0.656 0.653 0.688 0.683 0.633	0.752	0.715	0.727	0.700	0.724	0.696	0.749	0.763	0.791	0.751	0.727	0.731	0.746	0.729	0.730	0.740	0.730	0.757	0.754	0.633
	336	484	732	364	615	129	014	959	599	163	23	907	667	508	189	936	857	471	088	333
	0.739	0.702	0.706	0.693	0.673	0.672	0.721	0.711	0.722	0.700	0.693	0.669		0.685	0.737	0.656	0.653	0.688	0.683	0.633
252 581 852 078 846 903 972 168 222 664 427 65 0.68 792 736 725 143 506 648 333	252	581	852	078	846	903	972	168	222	664	427	65	0.68	792	736	725	143	506	648	333
0.701 0.721 0.713 0.710 0.670 0.654 0.721 0.723 0.730 0.698 0.689 0.688 0.703 0.729 0.756 0.745 0.753 0.771 0.779 0.677	0.701	0.721	0.713	0.710	0.670	0.654	0.721	0.723	0.730	0.698	0.689	0.688	0.703	0.729	0.756	0.745	0.753	0.771	0.779	0.677
869 935 377 565 769 839 972 35 894 007 671 327 333 508 604 614 714 264 245 778	869	935	377	565	769	839	972	35	894	007	671	327	333	508	604	614	714	264	245	778
0.720 0.724 0.719 0.703 0.695 0.649 0.681 0.680 0.678 0.644 0.678 0.660 0.696 0.668 0.737 0.656 0.666 0.683 0.658 0.677	0.720	0.724	0.719	0.703	0.695	0.649	0.681	0.680	0.678	0.644	0.678	0.660	0.696	0.668	0.737	0.656	0.666	0.683	0.658	0.677
561 516 902 279 385 677 408 711 862 85 404 311 667 306 736 725 857 908 491 778	561	516	902	279	385	677	408	711	862	85	404	311	667	306	736	725	857	908	491	778

					1			1	1	1	1	1	1	1	1	1	1	1	
0.681	0.658	0.653	0.637	0.649	0.585	0.647	0.634	0.648	0.615	0.667	0.622	0.616	0.572	0.786	0.661		0.665	0.648	0.677
308	71	344	705	231	161	606	01	509	615	136	957	667	131	792	404	0.612	517	428	778
0.752	0.683	0.650	0.643	0.661	0.662	0.706	0.715	0.730	0.687	0.712	0.707	0.716	0.646	0.696	0.623	0.680	0.688	0.688	0.677
336	226	734	534	538	581	197	228	894	375	207	004	667	448	226	977	571	506	679	778
0.868	0.840	0.841	0.832	0.809	0.773	0.823	0.828	0.843	0.812	0.813	0.775	0.833	0.808	0.866	0.712		0.854	0.769	0.677
224	645	272	969	231	548	38	934	631	292	615	486	333	197	038	865	0.772	023	182	778
0.705	0.663	0.674	0.662	0.641	0.636	0.688	0.698	0.689	0.652	0.700	0.703		0.611	0.681	0.619	0.598	0.619	0.633	0.677
607	871	225	477	538	774	169	985	702	824	939	891	0.68	475	132	298	286	54	333	778
0.767	0.758	0.742	0.720	0.706	0.724	0.791	0.772	0.750	0.735	0.746	0.778	0.756	0.703	0.824	0.745		0.798	0.738	0.677
29	065	088	765	154	516	831	081	407	216	009	599	667	279	528	614	0.804	851	994	778
0.757	0.770	0.777	0.771	0.730	0.721	0.758	0.721	0.776	0.761	0.791	0.738		0.768	0.798	0.745		0.757	0.769	0.677
944	968	325	767	769	935	028	32	423	794	08	132	0.77	852	113	614	0.74	471	182	778
0.785	0.763	0.736	0.720	0.718	0.768	0.767	0.753	0.776	0.743	0.783	0.775	0.763	0.642	0.715	0.726	0.653	0.725	0.718	0.677
981	226	868	765	462	387	042	807	423	189	568	486	333	077	094	901	143	287	868	778
0.714	0.776	0.766	0.755	0.746	0.667	0.721	0.737	0.752	0.716	0.607	0.660		0.593	0.673	0.703		0.785	0.774	0.677
953	129	884	738	154	742	972	563	575	611	042	311	0.71	989	585	509	0.804	057	214	778
0.815	0.804	0.795	0.758		0.745	0.789	0.776	0.785	0.761	0.753	0.787		0.698	0.832	0.740	0.744	0.752	0.769	0.677
888	516	595	652	0.76	161	577	142	095	794	521	938	0.78	907	075	936	571	874	182	778
0.670	0.634	0.646	0.644	0.661	0.649	0.681	0.701	0.709	0.692	0.667	0.678	0.706	0.703	0.760	0.694	0.689	0.702	0.713	0.677
093	194	819	991	538	677	408	015	214	691	136	988	667	279	377	152	714	299	836	778
0.795	0.778	0.755	0.748			0.758	0.751	0.756	0.756	0.753	0.741	0.786	0.712	0.741	0.731		0.762	0.799	0.677
327	71	139	452	0.76	0.74	028	777	911	478	521	245	667	022	509	579	0.772	069	371	778
0.759	0.770	0.742	0.741	0.756	0.768	0.803	0.804	0.798	0.764	0.734	0.756		0.755	0.779	0.740	0.758	0.798	0.764	0.677
813	968	088	166	923	387	099	569	103	452	742	809	0.74	738	245	936	286	851	151	778
0.716	0.662	0.675	0.672	0.690	0.641	0.683	0.674	0.691	0.666	0.674	0.675	0.686	0.650	0.752	0.731	0.698	0.729	0.723	0.677
822	581	53	678	769	935	662	619	87	113	648	875	667	82	83	579	857	885	899	778
0.793	0.770	0.756	0.732	0.729		0.794	0.786	0.772	0.756	0.697	0.763	0.783	0.712	0.828	0.722	0.808	0.803	0.769	0.722
458	968	444	423	231	0.74	085	294	087	478	183	035	333	022	302	222	571	448	182	222
0.780	0.764	0.756	0.744	0.746	0.760	0.787	0.792	0.806	0.772	0.749	0.719	0.763	0.760	0.828	0.726		0.831	0.733	0.722
374	516	444	08	154	645	324	386	775	425	765	455	333	109	302	901	0.804	034	962	222
0.855	0.854	0.824	0.818	0.809	0.845	0.870	0.859	0.880	0.812			0.813	0.773	0.828	0.839	0.831	0.867	0.804	0.722
14	839	307	397	231	806	704	391	488	292	0.9	0.9	333	224	302	181	429	816	403	222
0.733	0.760	0.752	0.752	0.718	0.698	0.771	0.757	0.769	0.748	0.764	0.741		0.768	0.779	0.778	0.790	0.817	0.829	0.722
645	645	529	823	462	71	549	868	919	505	789	245	0.75	852	245	363	286	241	56	222

0.729	0.752	0.747	0.738	0.724	0.737	0.776	0.745	0.754	0.745	0.772	0.707	0.706	0.725	0.756	0.689	0.749	0.725	0.718	0.722
907	903	308	251	615	419	056	685	743	847	3	004	667	137	604	474	143	287	868	222
0.815	0.817	0.823	0.818	0.804	0.760	0.805	0.822	0.828	0.780	0.832	0.794	0.813	0.781	0.775	0.783	0.790	0.794	0.814	0.722
888	419	002	397	615	645	352	843	455	399	394	163	333	967	472	041	286	253	465	222
0.337	0.332	0.333	0.338	0.343	0.301	0.316	0.319	0.349	0.309	0.347	0.330	0.326	0.336	0.326	0.310	0.310	0.311	0.316	0.722
383	258	605	98	077	29	338	289	322	967	887	35	667	066	415	526	286	494	352	222
0.836	0.817	0.828	0.831	0.816	0.752	0.839	0.837	0.854	0.820	0.832	0.859	0.853	0.720	0.847	0.801	0.826	0.812	0.844	0.722
449	419	222	512	923	903	155	056	472	266	394	533	333	765	17	754	857	644	654	222
0.728	0.773	0.762	0.752		0.683	0.721	0.745	0.754	0.727	0.584	0.660	0.696	0.593	0.760	0.708	0.790	0.789	0.799	0.722
037	548	969	823	0.74	226	972	685	743	243	507	311	667	989	377	187	286	655	371	222
0.802	0.736	0.697	0.701	0.704	0.709	0.751	0.753	0.763	0.729	0.753	0.747	0.753	0.681	0.707	0.675	0.717	0.725	0.698	0.722
804	129	716	821	615	032	268	807	415	9	521	471	333	421	547	439	143	287	742	222
0.834	0.787	0.774	0.781	0.786	0.789	0.830	0.822	0.837	0.841	0.794	0.781		0.790	0.756	0.689	0.694	0.752	0.713	0.722
579	742	715	967	154	032	141	843	127	528	836	712	0.84	71	604	474	286	874	836	222
	0.879		0.891		0.879	0.868	0.849	0.880	0.876	0.824	0.822		0.799	0.816	0.778	0.790	0.785	0.809	0.722
0.9	355	0.9	257	0.9	355	451	239	488	08	883	179	0.85	454	981	363	286	057	434	222
0.827	0.764	0.755	0.755	0.769	0.801	0.805	0.798	0.813	0.775	0.817	0.859	0.816	0.786	0.850	0.769	0.790	0.794	0.759	0.722
103	516	139	738	231	935	352	477	279	083	371	533	667	339	943	006	286	253	119	222
0.832	0.790	0.778	0.745	0.744	0.758	0.791	0.790	0.808	0.783	0.779	0.784	0.763	0.746	0.707	0.703	0.758	0.743	0.804	0.722
71	323	63	537	615	065	831	355	943	056	812	825	333	995	547	509	286	678	403	222
0.800	0.777	0.760	0.730	0.727	0.750	0.818	0.782	0.776	0.756	0.719	0.744	0.756	0.712	0.820	0.750	0.822	0.831	0.723	0.766
935	419	359	965	692	323	873	234	423	478	718	358	667	022	755	292	286	034	899	667
0.802	0.804	0.813	0.811	0.795	0.791	0.890	0.891	0.0	0.0	0.843	0.809	0.853	0.790	0.839	0.801	0.817	0.789	0.864	0.766
804	516	866	111	385	613	986	878	0.9	0.9	662	728	333	71	623	754	714	655	78	667
0.838	0.733	0.726	0.741	0.716	0.729	0.760	0.737	0.761	0.743	0.787	0.772	0.76	0.738	0.677	0.609	0.689	0.757	0.643	0.766
318	548	427	166	923	677	282	563	247	189	324	374	0.76	251	358	942	714	471	396	667
0.808	0.734	0.704	0.698	0.712	0.719	0.755	0.772	0.767	0.737	0.761	0.753	0.76	0.681	0.733	0.666	0.735	0.716	0.708	0.766
411	839 0.789	241 0.773	907 0.755	308 0.784	355 0.742	775 0.839	081	751 0.863	874 0.844	033	696	0.76	421	962 0.752	082	429 0.790	092 0.794	805 0.789	0.766
0.791	0.789	409	738		581		0.820		186		0.853 307	0.876 667	0.9	83	0.759 649	286	253	011.02	
589				615		155	812	0.774		0.704		007	0.9					308	667
0.838	0.749 032	0.730 343	0.748	0.723	0.750 323	0.771	0.743		0.761 794	0.794 836	0.775 486	0.77	0.733	0.666 038	0.595 906	0.694 286	0.752 874	0.663 522	0.766
			452			549	0.752	255					0.738			0.753			667
0.720 561	0.751 613	0.748 613	0.742 623	0.736 923	0.745 161	0.773 803	0.753 807	0.763 415	0.756 478	0.791 08	0.713	0.726 667	251	0.760 377	0.722 222	714	0.757 471	0.738 994	0.766 667
301	013	013	023	923	101	803	807	413	4/8	08	23	00/	231	3//	222	/14	4/1	994	007

0.853	0.893	0.884	0.895		0.721	0.848	0.863	0.841	0.780	0.715	0.772		0.580		0.867	0.858	0.872	0.854	0.766
271	548	339	628	0.88	935	169	452	463	399	962	374	0.75	874	0.9	251	857	414	717	667
0.821		0.785	0.806		0.750	0.812	0.818	0.793	0.775	0.791	0.738	0.746	0.712	0.866	0.815	0.849	0.821	0.849	0.766
495	0.82	155	74	0.78	323	113	782	767	083	08	132	667	022	038	789	714	839	686	667
0.763	0.752	0.748	0.742	0.736		0.798	0.814	0.830	0.785	0.791	0.822	0.866	0.694	0.850	0.829	0.872	0.886	0.879	0.766
551	903	613	623	923	0.74	592	721	623	714	08	179	667	536	943	825	571	207	874	667
0.870	0.839	0.813	0.818	0.832	0.807	0.836	0.810	0.830	0.820	0.877	0.843	0.876	0.816	0.775	0.764		0.817	0.744	0.811
093	355	866	397	308	097	901	66	623	266	465	969	667	94	472	327	0.804	241	025	111
0.817	0.839	0.873	0.863	0.801	0.781	0.841	0.853	0.865	0.809	0.806	0.819		0.786	0.733	0.792	0.822	0.858	0.854	0.811
757	355	899	57	538	29	408	299	312	635	103	066	0.87	339	962	398	286	621	717	111
0.763	0.769	0.757	0.751	0.736	0.698	0.726	0.790	0.806	0.764	0.746	0.710	0.696	0.707	0.771	0.684	0.685	0.679	0.749	0.811
551	677	749	366	923	71	479	355	775	452	009	117	667	65	698	795	143	31	057	111
0.847	0.826	0.821	0.795	0.809	0.760	0.818	0.832	0.832	0.801	0.794	0.812	0.833	0.821	0.877	0.825	0.872	0.881	0.889	0.811
664	452	697	082	231	645	873	995	791	661	836	84	333	311	358	146	571	609	937	111
0.750	0.738	0.729	0.717	0.744	0.693	0.728	0.717	0.739	0.708	0.761	0.728	0.726	0.668	0.828	0.731	0.698	0.734	0.754	0.811
467	71	038	851	615	548	732	259	566	638	033	794	667	306	302	579	857	483	088	111
0.810	0.804	0.812	0.821	0.790	0.804					0.836	0.803		0.799	0.839	0.801	0.817	0.817	0.889	0.811
28	516	561	311	769	516	0.9	0.9	0.9	0.9	15	502	0.85	454	623	754	714	241	937	111
0.830	0.813	0.833	0.831	0.815	0.755	0.848	0.851	0.858	0.825	0.869	0.875	0.873	0.746	0.749	0.801	0.817	0.817	0.839	0.811
841	548	442	512	385	484	169	269	808	581	953	097	333	995	057	754	714	241	623	111
0.868		0.885		0.887	0.752	0.821	0.861	0.847	0.775	0.768	0.775		0.567	0.866		0.890	0.886		0.811
224	0.9	644	0.9	692	903	127	421	967	083	545	486	0.74	76	038	0.9	857	207	0.9	111
0.720	0.698	0.710	0.690	0.669	0.647	0.708	0.717	0.704	0.674	0.712	0.722		0.633	0.677	0.675	0.630	0.642	0.648	0.811
561	71	767	164	231	097	451	259	878	086	207	568	0.7	333	358	439	286	529	428	111
0.823	0.863	0.868	0.857	0.830		0.852	0.865	0.869	0.862	0.862	0.850		0.847	0.884	0.853	0.826	0.858	0.804	0.811
364	871	679	741	769	0.82	676	482	648	791	441	195	0.85	541	906	216	857	621	403	111
0.799	0.759	0.777	0.779	0.746	0.742	0.771	0.774	0.793	0.740	0.768	0.772		0.672	0.779	0.703		0.766	0.764	0.855
065	355	325	053	154	581	549	112	767	532	545	374	0.76	678	245	509	0.772	667	151	556
0.890	0.827	0.843	0.844	0.798	0.786	0.870	0.867	0.880	0.825	0.851	0.828	0.843	0.830	0.873	0.731	0.831	0.854	0.834	0.855
654	742	883	627	462	452	704	513	488	581	174	405	333	055	585	579	429	023	591	556
0.812	0.747	0.753	0.752	0.750	0.745	0.785	0.802	0.798	0.753	0.749	0.744	0.753	0.768	0.775	0.778	0.794	0.794	0.804	0.855
15	742	834	823	769	161	07	538	103	821	765	358	333	852	472	363	857	253	403	556
0.819	0.843	0.851	0.846	0.826	0.763	0.821	0.841	0.858	0.814	0.843	0.847	0.863	0.812	0.881	0.857			0.894	0.855
626	226	713	084	154	226	127	117	808	95	662	082	333	568	132	895	0.9	0.9	969	556

0.838	0.796	0.813	0.802	0.792	0.765	0.823	0.808	0.806	0.793	0.806	0.784	0.833	0.803	0.847	0.839	0.826		0.814	0.855
318	774	866	368	308	806	38	629	775	688	103	825	333	825	17	181	857	0.9	465	556
0.832	0.800	0.799	0.792	0.807		0.789	0.804	0.817	0.788	0.783	0.775	0.773	0.733	0.798	0.726	0.735	0.743	0.759	0.855
71	645	511	168	692	0.74	577	569	615	372	568	486	333	88	113	901	429	678	119	556
0.821	0.773	0.791	0.776	0.758	0.729	0.746	0.776	0.776	0.761	0.700	0.735	0.766	0.773	0.726	0.670	0.653	0.706	0.683	0.855
495	548	68	138	462	677	761	142	423	794	939	019	667	224	415	76	143	897	648	556
0.812	0.790	0.772	0.763	0.750	0.690	0.744	0.751	0.752	0.713	0.723	0.719	0.743	0.655	0.749	0.773	0.799	0.812	0.789	0.855
15	323	104	024	769	968	507	777	575	953	474	455	333	191	057	684	429	644	308	556
0.799	0.763	0.772	0.763	0.755	0.701	0.708	0.731	0.754	0.724	0.697	0.694	0.703	0.685	0.733	0.769		0.794	0.749	0.855
065	226	104	024	385	29	451	472	743	585	183	553	333	792	962	006	0.804	253	057	556
0.821	0.834	0.791	0.822	0.792	0.760	0.803	0.822	0.789	0.775	0.783	0.763		0.725	0.858	0.797	0.826	0.817	0.834	0.855
495	194	68	769	308	645	099	843	431	083	568	035	0.76	137	491	076	857	241	591	556
0.838	0.822	0.807	0.795	0.789	0.745	0.791	0.782	0.774	0.775	0.798	0.778	0.793	0.764	0.764	0.726	0.726	0.729	0.723	
318	581	341	082	231	161	831	234	255	083	592	599	333	481	151	901	286	885	899	0.9
0.873	0.832	0.803	0.808	0.810		0.863	0.867	0.871	0.846	0.824	0.884		0.821	0.809	0.811	0.813	0.854	0.834	
832	903	426	197	769	0.9	944	513	816	844	883	436	0.9	311	434	111	143	023	591	0.9
0.767	0.755	0.747	0.751	0.735	0.690	0.737	0.763	0.748	0.737	0.738	0.769	0.743	0.681	0.828	0.820		0.858	0.809	
29	484	308	366	385	968	746	959	238	874	498	261	333	421	302	468	0.836	621	434	0.9
0.793	0.792	0.757	0.754	0.781	0.732	0.767	0.794	0.817	0.788	0.742	0.725	0.793	0.834	0.752	0.759		0.803	0.824	
458	903	749	281	538	258	042	416	615	372	254	681	333	426	83	649	0.772	448	528	0.9
0.866	0.834	0.809	0.821	0.832	0.822	0.839	0.822	0.843	0.828	0.877	0.828		0.816	0.779	0.783	0.767	0.798	0.749	
355	194	951	311	308	581	155	843	631	239	465	405	0.87	94	245	041	429	851	057	0.9
0.804	0.791	0.776	0.771	0.743	0.742	0.751	0.741	0.743	0.737	0.719	0.753	0.723	0.716	0.741	0.731	0.698	0.729	0.754	
673	613	02	767	077	581	268	624	902	874	718	696	333	393	509	579	857	885	088	0.9
0.800	0.778	0.774	0.748	0.716	0.742	0.753	0.753	0.774	0.772	0.746	0.707	0.746	0.742	0.813	0.787	0.781	0.766	0.819	
935	71	715	452	923	581	521	807	255	425	009	004	667	623	208	719	143	667	497	0.9
0.800	0.808	0.783	0.811	0.784	0.724	0.807	0.796	0.832	0.783	0.798	0.769	0.796	0.720	0.794	0.843	0.863	0.890	0.824	
935	387	85	111	615	516	606	447	791	056	592	261	667	765	34	86	429	805	528	0.9
0.845	0.885	0.837	0.815	0.850	0.758	0.818	0.843	0.826	0.793	0.832	0.859	0.826	0.720	0.828	0.778	0.790	0.826	0.819	
794	806	357	483	769	065	873	147	287	688	394	533	667	765	302	363	286	437	497	0.9
0.821	0.830	0.795	0.796	0.787	0.804	0.861	0.865	0.837	0.830	0.892	0.843	0.833	0.803	0.828	0.825	0.826	0.817	0.849	
495	323	595	539	692	516	69	482	127	897	488	969	333	825	302	146	857	241	686	0.9

APPENDIX I

GENERATED CSV FILE OF DATASET OF LATEST POPULATION FOR FEMALE HISPANIC POPULATION AFTER
FEATURE SELECTION USING GA APPROACH

#	D	D	D	Ъ	D	n	D	D	D 1	D 1	D 1	D 1	D 1	D 1	D 1	D 1	D 1	D 1
Bone	Bone1																	
1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1

0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1

0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1

0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1

0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1

0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	0
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	0
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	0
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	0
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	0
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1

0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1	0	1	1

APPENDIX J

GENERATED CSV FILE OF DATASET OF LATEST POPULATION FOR MALE HISPANIC POPULATION AFTER FEATURE SELECTION USING GA APPROACH

#	_	_	_	_	_	-	-	-	D 1	- I	- I	- ·	- I	5 1	- I	D 1	D 1	D 1
Bone	Bone1	Bone1	Bone1	Bone1	Bone1	Bone1	Bone1	Bone1	Bone1	Bone1								
1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1

1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1

1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1

1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0

1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1

1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1

1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1
1	0	0	0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	1

APPENDIX K

NORMALIZED TRAINING DATASET OF SELECTED INPUT FEATURES AND SELECTED TARGET FEATURES FOR FEMALE HISPANIC POPULATION USING GA-ANN APPROACH

4	5	6	11	15	16	18	19	Age
0.121719	0.140482	0.113974	0.11326	0.1	0.1	0.158394	0.148855	0.1
0.214027	0.198313	0.173362	0.228177	0.239759	0.173282	0.216788	0.148855	0.144444
0.125339	0.123133	0.106987	0.139779	0.124096	0.185496	0.193431	0.148855	0.144444
0.210407	0.188675	0.1	0.1	0.153012	0.112214	0.164234	0.136641	0.144444
0.259276	0.229157	0.169869	0.263536	0.181928	0.240458	0.275182	0.228244	0.188889
0.235747	0.238795	0.180349	0.276796	0.201205	0.191603	0.234307	0.185496	0.188889
0.313575	0.304337	0.278166	0.329834	0.287952	0.173282	0.187591	0.191603	0.233333
0.371493	0.379518	0.260699	0.303315	0.355422	0.270992	0.275182	0.289313	0.233333
0.360633	0.375663	0.323581	0.329834	0.437349	0.39313	0.432847	0.277099	0.233333
0.375113	0.366024	0.21179	0.356354	0.350602	0.19771	0.257664	0.203817	0.233333
0.376923	0.406506	0.274672	0.298895	0.321687	0.154962	0.234307	0.234351	0.233333
0.407692	0.383373	0.299127	0.343094	0.360241	0.258779	0.391971	0.222137	0.277778
0.387783	0.404578	0.288646	0.294475	0.422892	0.350382	0.374453	0.319847	0.277778
0.322624	0.358313	0.222271	0.329834	0.316867	0.277099	0.362774	0.234351	0.277778
0.366063	0.36988	0.278166	0.382873	0.36988	0.41145	0.444526	0.29542	0.277778
0.398643	0.396867	0.299127	0.343094	0.36988	0.234351	0.281022	0.246565	0.277778
0.451131	0.452771	0.306114	0.329834	0.326506	0.380916	0.421168	0.387023	0.322222
0.463801	0.479759	0.435371	0.360773	0.461446	0.31374	0.356934	0.319847	0.322222
0.452941	0.475904	0.29214	0.276796	0.254217	0.289313	0.316058	0.29542	0.322222
0.478281	0.47012	0.29214	0.404972	0.30241	0.332061	0.345255	0.29542	0.322222
0.375113	0.366024	0.39345	0.404972	0.43253	0.307634	0.292701	0.289313	0.322222
0.404072	0.39494	0.194323	0.365193	0.422892	0.283206	0.292701	0.264885	0.322222
0.434842	0.402651	0.267686	0.378453	0.408434	0.332061	0.333577	0.270992	0.322222
0.398643	0.398795	0.257205	0.307735	0.321687	0.270992	0.386131	0.29542	0.322222
0.398643	0.410361	0.264192	0.374033	0.360241	0.277099	0.356934	0.222137	0.322222
0.51448	0.510602	0.39345	0.48895	0.490361	0.325954	0.485401	0.240458	0.366667

0.460181 0.472048 0.379476 0.440972 0.442169 0.325954 0.380292 0.325954 0.366667 0.460181 0.473976 0.379476 0.440331 0.31048 0.352595 0.485401 0.448092 0.366667 0.452941 0.456627 0.358515 0.40972 0.485542 0.344275 0.386131 0.344275 0.366667 0.48914 0.491325 0.330568 0.440331 0.490361 0.366702 0.40365 0.356489 0.366667 0.452941 0.481687 0.355022 0.431492 0.446988 0.39313 0.415328 0.454198 0.366667 0.561538 0.543301 0.372489 0.475691 0.350602 0.350382 0.508759 0.332061 0.411111 0.49119 0.522169 0.571616 0.612707 0.610843 0.619084 0.64044 0.332061 0.411111 0.49819 0.522169 0.571616 0.612707 0.610843 0.619084 0.64046 0.332061 0.411111 0.548869 0.562651 0.484279 0.541989 0.519277 0.350382 0.368613 0.332061 0.411111 0.50724 0.527952 0.351528 0.533149 0.533735 0.51908 0.514599 0.333168 0.411111 0.603167 0.574217 0.529694 0.546409 0.577108 0.527481 0.427007 0.417557 0.455556 0.543439 0.524096 0.501747 0.537569 0.586747 0.460305 0.60219 0.54412 0.455556 0.533335 0.515721 0.590608 0.5772928 0.586747 0.460305 0.60219 0.544192 0.455556 0.58258 0.597349 0.578603 0.608287 0.581928 0.429771 0.450656 0.449345 0.530681 0.587556 0.585258 0.597349 0.53681 0.536818 0.586747 0.448092 0.613669 0.472519 0.455556 0.6507376 0.687952 0.501747 0.537669 0.581688 0.586747 0.448092 0.613669 0.472519 0.455556 0.657470 0.606787 0.595422 0.501747 0.537669 0.581688 0.58747 0.448092 0.613669 0.472519 0.455556 0.653747 0.632048 0.536818 0.536188 0.586747 0.448092 0.613669 0.472519 0.455556 0.650226 0.662377 0.63066 0.588559 0.59255 0.56135 0.58688 0.588559 0.59255 0.59255 0.59257 0.54060 0.667939 0.544444 0.66606 0.649398 0.593868 0.585559 0.59266 0.591741 0.653255 0.693914 0									
0.452941 0.456627 0.358515 0.404972 0.48542 0.344275 0.386131 0.344275 0.366667 0.48941 0.491325 0.330568 0.440331 0.490361 0.368702 0.40365 0.3550489 0.366667 0.452941 0.481687 0.355022 0.431492 0.446988 0.39313 0.415328 0.454918 0.366667 0.561538 0.545301 0.372489 0.475691 0.350022 0.330382 0.508759 0.332061 0.411111 0.612217 0.593494 0.487773 0.577348 0.581928 0.423664 0.462044 0.332061 0.411111 0.49819 0.522169 0.571616 0.612707 0.610843 0.619084 0.643066 0.600763 0.411111 0.548869 0.562651 0.484279 0.541989 0.519277 0.350382 0.368613 0.332061 0.411111 0.50724 0.527952 0.351528 0.533149 0.533735 0.551908 0.514599 0.333168 0.411111 0.60	0.460181	0.472048	0.372489	0.404972	0.442169	0.325954	0.380292	0.325954	0.366667
0.48914 0.49135 0.330568 0.440331 0.490361 0.368702 0.40365 0.356489 0.366667 0.452941 0.481687 0.355022 0.431492 0.446988 0.39313 0.415328 0.451498 0.366667 0.561538 0.545301 0.372489 0.475691 0.350602 0.35082 0.508759 0.332061 0.411111 0.612217 0.593494 0.487733 0.577348 0.581928 0.423664 0.462044 0.332061 0.411111 0.548869 0.552651 0.571616 0.612707 0.610843 0.619084 0.643066 0.600763 0.411111 0.548869 0.56251 0.484279 0.541989 0.519277 0.350382 0.368613 0.322061 0.411111 0.50734 0.572592 0.351528 0.533735 0.551908 0.514599 0.338168 0.411111 0.50744 0.527952 0.351528 0.533735 0.551908 0.514599 0.338168 0.411111 0.50754 0.527496 0.544090	0.460181	0.473976	0.379476	0.440331	0.312048	0.362595	0.485401	0.448092	0.366667
0.452941 0.481687 0.355022 0.431492 0.446988 0.39313 0.415328 0.454198 0.366667 0.561538 0.543301 0.372489 0.475691 0.350602 0.350382 0.508759 0.332061 0.411111 0.612217 0.593494 0.487773 0.577348 0.581928 0.423664 0.462044 0.332061 0.411111 0.49819 0.522169 0.571616 0.612707 0.610843 0.619084 0.643066 0.600763 0.411111 0.54869 0.562651 0.484279 0.541989 0.519277 0.350382 0.368613 0.332061 0.411111 0.50724 0.527952 0.351528 0.533149 0.537355 0.551908 0.514599 0.338168 0.411111 0.603167 0.574217 0.529694 0.546409 0.577108 0.527481 0.427007 0.417557 0.455556 0.543439 0.524096 0.501747 0.537569 0.586747 0.460305 0.60219 0.564122 0.455556 0.55	0.452941	0.456627	0.358515	0.404972	0.485542	0.344275	0.386131	0.344275	0.366667
0.561538	0.48914	0.491325	0.330568	0.440331	0.490361	0.368702	0.40365	0.356489	0.366667
0.612217	0.452941	0.481687	0.355022	0.431492	0.446988	0.39313	0.415328	0.454198	0.366667
0.49819 0.522169 0.571616 0.612707 0.610843 0.619084 0.643066 0.600763 0.411111 0.548869 0.562651 0.484279 0.541989 0.519277 0.350382 0.368613 0.332061 0.411111 0.50724 0.527952 0.351528 0.533149 0.533355 0.551908 0.514599 0.338168 0.411111 0.603167 0.574217 0.529694 0.546409 0.577108 0.527481 0.427007 0.417557 0.455556 0.566968 0.574217 0.449345 0.581768 0.610843 0.612977 0.654745 0.60687 0.455556 0.557919 0.533735 0.515721 0.590608 0.572289 0.515267 0.643066 0.441985 0.455556 0.583258 0.597349 0.578603 0.608287 0.581928 0.484733 0.619708 0.472519 0.455556 0.635747 0.632048 0.536681 0.53149 0.591566 0.448092 0.613869 0.533588 0.455556 0.6	0.561538	0.545301	0.372489	0.475691	0.350602	0.350382	0.508759	0.332061	0.411111
0.548869 0.562651 0.484279 0.541989 0.519277 0.350382 0.368613 0.332061 0.411111 0.50724 0.527952 0.351528 0.533149 0.533735 0.551908 0.514599 0.338168 0.411111 0.603167 0.574217 0.499345 0.546409 0.577108 0.527481 0.427007 0.417557 0.455556 0.566968 0.574217 0.449345 0.581768 0.610843 0.612977 0.654745 0.60687 0.455556 0.543439 0.524096 0.501747 0.537569 0.586747 0.460305 0.60219 0.564122 0.455556 0.557919 0.533735 0.515721 0.590608 0.572289 0.515267 0.643066 0.441985 0.455556 0.583258 0.597349 0.578603 0.608287 0.58128 0.484733 0.619708 0.472519 0.455556 0.635747 0.632048 0.536681 0.533149 0.591566 0.448073 0.613665 0.399237 0.455556 0.5	0.612217	0.593494	0.487773	0.577348	0.581928	0.423664	0.462044	0.332061	0.411111
0.50724 0.527952 0.351528 0.533149 0.533735 0.551908 0.514599 0.338168 0.411111 0.603167 0.574217 0.529694 0.546409 0.577108 0.527481 0.427007 0.417557 0.455556 0.5656968 0.574217 0.449345 0.581768 0.610843 0.612977 0.654745 0.60087 0.455556 0.543439 0.524096 0.501747 0.537569 0.586747 0.460305 0.60219 0.564122 0.455556 0.557919 0.533735 0.515721 0.590608 0.572289 0.515267 0.643066 0.441985 0.455556 0.583258 0.597349 0.578603 0.608287 0.581928 0.442733 0.619708 0.472519 0.455556 0.660787 0.595422 0.501747 0.572928 0.581928 0.429771 0.450365 0.399237 0.455556 0.635747 0.630248 0.536681 0.533149 0.591566 0.448092 0.613869 0.533888 0.455556 0	0.49819	0.522169	0.571616	0.612707	0.610843	0.619084	0.643066	0.600763	0.411111
0.603167 0.574217 0.529694 0.546409 0.577108 0.527481 0.427007 0.417557 0.455556 0.566968 0.574217 0.449345 0.581768 0.610843 0.612977 0.654745 0.60687 0.455556 0.543439 0.524096 0.501747 0.537569 0.586747 0.460305 0.60219 0.564122 0.455556 0.557919 0.533735 0.515721 0.590608 0.572289 0.515267 0.643066 0.441985 0.455556 0.583258 0.597349 0.578603 0.608287 0.581928 0.484733 0.619708 0.472519 0.455556 0.606787 0.595422 0.501747 0.572928 0.581928 0.429771 0.450365 0.39237 0.455556 0.635747 0.632048 0.536681 0.533149 0.591566 0.448092 0.643066 0.478626 0.5 0.585068 0.583855 0.561135 0.586188 0.586747 0.448092 0.643066 0.478626 0.5 0.677376 <td>0.548869</td> <td>0.562651</td> <td>0.484279</td> <td>0.541989</td> <td>0.519277</td> <td>0.350382</td> <td>0.368613</td> <td>0.332061</td> <td>0.411111</td>	0.548869	0.562651	0.484279	0.541989	0.519277	0.350382	0.368613	0.332061	0.411111
0.566968 0.574217 0.449345 0.581768 0.610843 0.612977 0.654745 0.60687 0.455556 0.543439 0.524096 0.501747 0.537569 0.586747 0.460305 0.60219 0.564122 0.455556 0.557919 0.533735 0.515721 0.590608 0.572289 0.515267 0.643066 0.441985 0.455556 0.583258 0.597349 0.578603 0.608287 0.581928 0.484733 0.619708 0.472519 0.455556 0.606787 0.595422 0.501747 0.57228 0.581928 0.429771 0.450365 0.399237 0.455556 0.635747 0.632048 0.536681 0.533149 0.591566 0.448092 0.613869 0.533588 0.455556 0.585068 0.588355 0.561135 0.586188 0.586747 0.448092 0.613869 0.533588 0.455556 0.677376 0.687952 0.603057 0.670166 0.63494 0.631298 0.724818 0.661832 0.5 0.650226	0.50724	0.527952	0.351528	0.533149	0.533735	0.551908	0.514599	0.338168	0.411111
0.543439 0.524096 0.501747 0.537569 0.586747 0.460305 0.60219 0.564122 0.455556 0.557919 0.533735 0.515721 0.590608 0.572289 0.515267 0.643066 0.441985 0.455556 0.583258 0.597349 0.578603 0.608287 0.581928 0.484733 0.619708 0.472519 0.455556 0.606787 0.595422 0.501747 0.572928 0.581928 0.429771 0.450365 0.399237 0.455556 0.635747 0.632048 0.536681 0.533149 0.591566 0.448092 0.613869 0.533588 0.455556 0.585068 0.583855 0.561135 0.586188 0.586747 0.448092 0.643066 0.478626 0.5 0.650226 0.624337 0.536681 0.536188 0.586747 0.448092 0.643066 0.478626 0.5 0.650226 0.624337 0.536681 0.540488 0.644578 0.661832 0.50229 0.631298 0.5 0.657466	0.603167	0.574217	0.529694	0.546409	0.577108	0.527481	0.427007	0.417557	0.455556
0.557919 0.533735 0.515721 0.590608 0.572289 0.515267 0.643066 0.441985 0.455556 0.583258 0.597349 0.578603 0.608287 0.581928 0.484733 0.619708 0.472519 0.455556 0.606787 0.595422 0.501747 0.572928 0.581928 0.429771 0.450365 0.399237 0.455556 0.635747 0.632048 0.53681 0.533149 0.591566 0.448092 0.613869 0.533588 0.455556 0.585068 0.583855 0.551135 0.586188 0.586747 0.448092 0.643066 0.478626 0.5 0.677376 0.687952 0.603057 0.670166 0.63494 0.631298 0.724818 0.661832 0.5 0.650226 0.624337 0.536681 0.564088 0.644578 0.661832 0.50292 0.631298 0.5 0.657466 0.651325 0.421397 0.51547 0.683133 0.655725 0.584672 0.667939 0.5 0.648716 <	0.566968	0.574217	0.449345	0.581768	0.610843	0.612977	0.654745	0.60687	0.455556
0.583258 0.597349 0.578603 0.608287 0.581928 0.484733 0.619708 0.472519 0.455556 0.606787 0.595422 0.501747 0.572928 0.581928 0.429771 0.450365 0.399237 0.455556 0.635747 0.632048 0.536681 0.533149 0.591566 0.448092 0.613869 0.533588 0.455556 0.585068 0.583855 0.561135 0.586188 0.586747 0.448092 0.643066 0.478626 0.5 0.677376 0.687952 0.603057 0.670166 0.63494 0.631298 0.724818 0.661832 0.5 0.650226 0.624337 0.536681 0.564088 0.644578 0.661832 0.50292 0.631298 0.5 0.49638 0.508675 0.452838 0.475904 0.521374 0.488401 0.496947 0.5 0.648416 0.662892 0.58559 0.692265 0.692771 0.710687 0.648905 0.643511 0.544444 0.617647 0.62241 <t< td=""><td>0.543439</td><td>0.524096</td><td>0.501747</td><td>0.537569</td><td>0.586747</td><td>0.460305</td><td>0.60219</td><td>0.564122</td><td>0.455556</td></t<>	0.543439	0.524096	0.501747	0.537569	0.586747	0.460305	0.60219	0.564122	0.455556
0.606787 0.595422 0.501747 0.572928 0.581928 0.429771 0.450365 0.399237 0.455556 0.635747 0.632048 0.536681 0.533149 0.591566 0.448092 0.613869 0.533588 0.455556 0.585068 0.583855 0.561135 0.586188 0.586747 0.448092 0.643066 0.478626 0.5 0.677376 0.687952 0.603057 0.670166 0.63494 0.631298 0.724818 0.661832 0.5 0.650226 0.624337 0.536681 0.564088 0.644878 0.661832 0.50292 0.631298 0.5 0.49638 0.508675 0.452838 0.475691 0.475904 0.521374 0.485401 0.496947 0.5 0.657466 0.651325 0.421397 0.51547 0.683133 0.655725 0.584672 0.667939 0.5 0.648416 0.662892 0.58559 0.692265 0.692771 0.710687 0.648905 0.643511 0.544444 0.617647 0.6	0.557919	0.533735	0.515721	0.590608	0.572289	0.515267	0.643066	0.441985	0.455556
0.635747 0.632048 0.536681 0.533149 0.591566 0.448092 0.613869 0.533588 0.455556 0.585068 0.583855 0.561135 0.586188 0.586747 0.448092 0.643066 0.478626 0.5 0.677376 0.687952 0.603057 0.670166 0.63494 0.631298 0.724818 0.661832 0.5 0.650226 0.624337 0.536681 0.564088 0.644578 0.661832 0.50292 0.631298 0.5 0.49638 0.508675 0.45238 0.475691 0.475904 0.521374 0.485401 0.496947 0.5 0.657466 0.651325 0.421397 0.51547 0.683133 0.655725 0.584672 0.667939 0.5 0.648416 0.662892 0.58859 0.692265 0.692771 0.710687 0.648905 0.643511 0.544444 0.617647 0.62241 0.58559 0.603867 0.668675 0.576336 0.648905 0.594656 0.544444 0.6440606 0.649	0.583258	0.597349	0.578603	0.608287	0.581928	0.484733	0.619708	0.472519	0.455556
0.585068 0.583855 0.561135 0.586188 0.586747 0.448092 0.643066 0.478626 0.5 0.677376 0.687952 0.603057 0.670166 0.63494 0.631298 0.724818 0.661832 0.5 0.650226 0.624337 0.536681 0.564088 0.644578 0.661832 0.50292 0.631298 0.5 0.49638 0.508675 0.452838 0.475691 0.475904 0.521374 0.485401 0.496947 0.5 0.657466 0.651325 0.421397 0.51547 0.683133 0.655725 0.584672 0.667939 0.5 0.648416 0.662892 0.58559 0.69265 0.692771 0.710687 0.648905 0.643511 0.544444 0.617647 0.62241 0.58559 0.603867 0.668675 0.576336 0.648905 0.594566 0.544444 0.644796 0.653253 0.547162 0.559669 0.591566 0.521374 0.567153 0.551908 0.544444 0.659276 0.6860	0.606787	0.595422	0.501747	0.572928	0.581928	0.429771	0.450365	0.399237	0.455556
0.677376 0.687952 0.603057 0.670166 0.63494 0.631298 0.724818 0.661832 0.5 0.650226 0.624337 0.536681 0.564088 0.644578 0.661832 0.50292 0.631298 0.5 0.49638 0.508675 0.452838 0.475691 0.475904 0.521374 0.485401 0.496947 0.5 0.657466 0.651325 0.421397 0.51547 0.683133 0.655725 0.584672 0.667939 0.5 0.648416 0.662892 0.58559 0.692265 0.692771 0.710687 0.648905 0.643511 0.544444 0.617647 0.62241 0.58559 0.603867 0.668675 0.576336 0.648905 0.594656 0.544444 0.644796 0.653253 0.547162 0.559669 0.591566 0.521374 0.567153 0.551908 0.544444 0.646606 0.649398 0.693886 0.705525 0.736145 0.692366 0.731339 0.667939 0.544444 0.594118	0.635747	0.632048	0.536681	0.533149	0.591566	0.448092	0.613869	0.533588	0.455556
0.650226 0.624337 0.536681 0.564088 0.644578 0.661832 0.50292 0.631298 0.5 0.49638 0.508675 0.452838 0.475691 0.475904 0.521374 0.485401 0.496947 0.5 0.657466 0.651325 0.421397 0.51547 0.683133 0.655725 0.584672 0.667939 0.5 0.648416 0.662892 0.58559 0.692265 0.692771 0.710687 0.648905 0.643511 0.544444 0.617647 0.62241 0.58559 0.603867 0.668675 0.576336 0.648905 0.594656 0.544444 0.644796 0.653253 0.547162 0.559669 0.591566 0.521374 0.567153 0.551908 0.544444 0.646060 0.649398 0.693886 0.705525 0.736145 0.692366 0.713139 0.667939 0.544444 0.659276 0.686024 0.620524 0.603867 0.620482 0.674046 0.678102 0.643511 0.544444 0.594118	0.585068	0.583855	0.561135	0.586188	0.586747	0.448092	0.643066	0.478626	0.5
0.49638 0.508675 0.452838 0.475691 0.475904 0.521374 0.485401 0.496947 0.5 0.657466 0.651325 0.421397 0.51547 0.683133 0.655725 0.584672 0.667939 0.5 0.648416 0.662892 0.58559 0.692265 0.692771 0.710687 0.648905 0.643511 0.544444 0.617647 0.62241 0.58559 0.603867 0.668675 0.576336 0.648905 0.594656 0.544444 0.644796 0.653253 0.547162 0.559669 0.591566 0.521374 0.567153 0.551908 0.544444 0.646606 0.649398 0.693886 0.705525 0.736145 0.692366 0.713139 0.667939 0.544444 0.659276 0.686024 0.620524 0.603867 0.620482 0.674046 0.678102 0.643511 0.544444 0.594118 0.593494 0.491266 0.577348 0.615663 0.454198 0.643066 0.496947 0.544444 0.671946	0.677376	0.687952	0.603057	0.670166	0.63494	0.631298	0.724818	0.661832	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.650226	0.624337	0.536681	0.564088	0.644578	0.661832	0.50292	0.631298	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.49638	0.508675	0.452838	0.475691	0.475904	0.521374	0.485401	0.496947	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.657466	0.651325	0.421397	0.51547	0.683133	0.655725	0.584672	0.667939	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.648416	0.662892	0.58559	0.692265	0.692771	0.710687	0.648905	0.643511	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.617647	0.62241	0.58559	0.603867	0.668675	0.576336	0.648905	0.594656	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.644796	0.653253	0.547162	0.559669	0.591566	0.521374	0.567153	0.551908	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.646606	0.649398	0.693886	0.705525	0.736145	0.692366	0.713139	0.667939	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.659276	0.686024	0.620524	0.603867	0.620482	0.674046	0.678102	0.643511	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.594118	0.593494	0.491266	0.577348	0.615663	0.454198	0.643066	0.496947	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.556109	0.53759	0.466812	0.48011	0.586747	0.441985	0.613869	0.435878	0.544444
0.619457 0.60506 0.58559 0.546409 0.639759 0.612977 0.672263 0.637405 0.544444 0.655656 0.655181 0.589083 0.572928 0.649398 0.655725 0.60219 0.576336 0.544444	0.671946	0.69759	0.620524	0.652486		0.655725	0.713139	0.735115	0.544444
0.655656	0.617647	0.62241	0.624017	0.705525	0.731325	0.649618	0.660584	0.619084	0.544444
	0.619457	0.60506	0.58559	0.546409	0.639759	0.612977	0.672263	0.637405	0.544444
0.652036 0.659036 0.617031 0.617127 0.553012 0.643511 0.69562 0.625191 0.588889	0.655656	0.655181	0.589083	0.572928	0.649398	0.655725	0.60219	0.576336	0.544444
	0.652036	0.659036	0.617031	0.617127	0.553012	0.643511	0.69562	0.625191	0.588889

0.623077 0.64747 0.610044 0.612707 0.692771 0.692366 0.765693 0.643511 0.588889 0.626697 0.682169 0.711354 0.634807 0.639759 0.680153 0.672263 0.570229 0.588889 0.715385 0.736145 0.721834 0.683425 0.750602 0.70458 0.724818 0.759542 0.588889 0.67376 0.709157 0.611004 0.639227 0.610843 0.692366 0.707299 0.655725 0.588889 0.695475 0.705301 0.610044 0.705525 0.736145 0.722901 0.734015 0.698473 0.588889 0.68416 0.643614 0.631004 0.625967 0.610843 0.625191 0.660584 0.637405 0.588889 0.668326 0.695663 0.683406 0.643646 0.625301 0.661832 0.735494 0.634381 0.633333 0.657466 0.655181 0.725328 0.656906 0.615663 0.649618 0.578832 0.643511 0.633333 0.7									
0.715385 0.736145 0.721834 0.683425 0.750602 0.70458 0.724818 0.759542 0.588889 0.677376 0.709157 0.631004 0.693227 0.610843 0.692366 0.707299 0.655725 0.588889 0.724434 0.753494 0.739301 0.732044 0.707229 0.783969 0.748175 0.743728 0.588889 0.698475 0.703301 0.610044 0.705525 0.736145 0.722901 0.754015 0.698473 0.588889 0.698416 0.643614 0.631004 0.625967 0.610843 0.625191 0.660584 0.637405 0.588889 0.668226 0.695663 0.683406 0.643646 0.625301 0.661832 0.736496 0.649618 0.633333 0.657466 0.655181 0.725328 0.656906 0.615663 0.649618 0.578832 0.643511 0.633333 0.68225 0.666747 0.67913 0.705525 0.683133 0.667939 0.771533 0.68626 0.633333 0.7	0.623077	0.64747	0.610044	0.612707	0.692771	0.692366	0.765693	0.643511	0.588889
0.677376 0.709157 0.631004 0.639227 0.610843 0.692366 0.707299 0.655725 0.588889 0.724434 0.753494 0.73901 0.732044 0.707229 0.783669 0.748175 0.74328 0.588889 0.695475 0.705301 0.610044 0.705525 0.736145 0.722901 0.754015 0.698473 0.588889 0.648416 0.643614 0.631004 0.625967 0.610843 0.625191 0.660584 0.637405 0.588889 0.668326 0.695633 0.689466 0.643614 0.625967 0.610843 0.625191 0.660584 0.637405 0.584618 0.633333 0.687466 0.655181 0.725328 0.656906 0.615633 0.649618 0.578832 0.643511 0.633333 0.688235 0.666747 0.679739 0.771533 0.68626 0.633333 0.604977 0.657108 0.634498 0.612707 0.731325 0.680153 0.730657 0.643511 0.633333 0.735294 0.	0.626697	0.682169	0.711354	0.634807	0.639759	0.680153	0.672263	0.570229	0.588889
0.724434 0.753494 0.739301 0.732044 0.707229 0.783969 0.748175 0.747328 0.588889 0.695475 0.705301 0.610044 0.705525 0.736145 0.722901 0.754015 0.698473 0.588889 0.648416 0.643614 0.631004 0.625967 0.610843 0.625191 0.660858 0.637405 0.588889 0.668326 0.695663 0.683406 0.643646 0.625301 0.661832 0.736496 0.649618 0.633333 0.657466 0.655181 0.725328 0.656906 0.615663 0.649618 0.57832 0.643511 0.633333 0.657466 0.655181 0.753555 0.785083 0.798795 0.771756 0.829927 0.582443 0.633333 0.680535 0.666747 0.679913 0.705525 0.683133 0.667939 0.771533 0.68026 0.633333 0.604977 0.657108 0.634498 0.612707 0.731325 0.680153 0.730657 0.643511 0.633333 0	0.715385	0.736145	0.721834	0.683425	0.750602	0.70458	0.724818	0.759542	0.588889
0.695475	0.677376	0.709157	0.631004	0.639227	0.610843	0.692366	0.707299	0.655725	0.588889
0.648416 0.643614 0.631004 0.625967 0.610843 0.625191 0.660584 0.637405 0.588899 0.668326 0.695663 0.683406 0.643646 0.625301 0.661832 0.736496 0.649018 0.633333 0.657466 0.655181 0.752528 0.656906 0.616563 0.649618 0.578832 0.643511 0.633333 0.778733 0.770843 0.763755 0.785083 0.798795 0.7711756 0.829927 0.582443 0.633333 0.684511 0.63474 0.679913 0.705525 0.683133 0.6667939 0.771533 0.68626 0.633333 0.735294 0.724578 0.728821 0.679006 0.750602 0.759542 0.783212 0.759542 0.633333 0.665516 0.695663 0.718341 0.687845 0.740964 0.722901 0.713139 0.625191 0.633333 0.764525 0.666747 0.683406 0.608287 0.586747 0.649618 0.660584 0.68626 0.633333	0.724434	0.753494	0.739301	0.732044	0.707229	0.783969	0.748175	0.747328	0.588889
0.668326 0.695663 0.683406 0.643646 0.625301 0.661832 0.736496 0.649618 0.633333 0.657466 0.655181 0.725328 0.65900 0.615663 0.649618 0.578832 0.643511 0.633333 0.778733 0.770843 0.763755 0.785083 0.789775 0.771776 0.829927 0.582443 0.633333 0.68235 0.666747 0.679913 0.705525 0.683133 0.667939 0.771533 0.68626 0.633333 0.604977 0.657108 0.634498 0.612707 0.731325 0.680153 0.730657 0.643511 0.633333 0.604977 0.657108 0.634498 0.612707 0.731325 0.680153 0.730657 0.643511 0.633333 0.606516 0.695663 0.718341 0.687445 0.740964 0.722901 0.713139 0.625191 0.633333 0.771493 0.738072 0.760262 0.709945 0.69271 0.722901 0.713139 0.741221 0.633333 0.7	0.695475	0.705301	0.610044	0.705525	0.736145	0.722901	0.754015	0.698473	0.588889
0.657466 0.655181 0.725328 0.656906 0.615663 0.649618 0.578832 0.643511 0.633333 0.778733 0.770843 0.763755 0.785083 0.798795 0.771756 0.829927 0.582443 0.633333 0.688235 0.666747 0.679913 0.705525 0.683133 0.667939 0.771533 0.68626 0.633333 0.604977 0.657108 0.634498 0.612707 0.731325 0.680153 0.730657 0.643511 0.633333 0.735294 0.724578 0.728821 0.679006 0.750602 0.759542 0.783212 0.759542 0.633333 0.666516 0.695663 0.718341 0.687455 0.740964 0.722901 0.713139 0.625191 0.633333 0.771493 0.738072 0.760262 0.709945 0.692771 0.722901 0.713139 0.741221 0.633333 0.704525 0.666747 0.683406 0.692265 0.644578 0.680153 0.765693 0.649618 0.633333	0.648416	0.643614	0.631004	0.625967	0.610843	0.625191	0.660584	0.637405	0.588889
0.778733 0.770843 0.763755 0.785083 0.798795 0.771756 0.829927 0.582443 0.633333 0.688235 0.666747 0.679913 0.705525 0.683133 0.667939 0.771533 0.68626 0.633333 0.604977 0.657108 0.634498 0.612707 0.731325 0.680133 0.730567 0.643511 0.633333 0.735294 0.724578 0.728821 0.679006 0.750602 0.759542 0.783212 0.759542 0.633333 0.666516 0.695663 0.718341 0.687845 0.740964 0.722901 0.713139 0.625191 0.633333 0.7704525 0.666747 0.683406 0.608287 0.586747 0.649618 0.660584 0.68626 0.633333 0.749774 0.751566 0.70786 0.692265 0.644578 0.680133 0.756693 0.649618 0.633333 0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.701466 0.667939 0.633333 0.	0.668326	0.695663	0.683406	0.643646	0.625301	0.661832	0.736496	0.649618	0.633333
0.688235 0.666747 0.679913 0.705525 0.683133 0.667939 0.771533 0.68626 0.633333 0.604977 0.657108 0.634498 0.612707 0.731325 0.680153 0.730657 0.643511 0.633333 0.735294 0.724578 0.728821 0.679006 0.750602 0.759542 0.783212 0.759542 0.633333 0.666516 0.695663 0.718341 0.687845 0.740964 0.722901 0.713139 0.625191 0.633333 0.771493 0.738072 0.760262 0.709945 0.692771 0.722901 0.713139 0.625191 0.633333 0.704525 0.666747 0.683406 0.688287 0.586747 0.649618 0.660584 0.68026 0.633333 0.749774 0.751566 0.70786 0.692265 0.644578 0.680153 0.765693 0.649618 0.630584 0.68026 0.633333 0.720814 0.680624 0.69738 0.621547 0.750602 0.692366 0.66423 0.72908 <td< td=""><td>0.657466</td><td>0.655181</td><td>0.725328</td><td>0.656906</td><td>0.615663</td><td>0.649618</td><td>0.578832</td><td>0.643511</td><td>0.633333</td></td<>	0.657466	0.655181	0.725328	0.656906	0.615663	0.649618	0.578832	0.643511	0.633333
0.604977 0.657108 0.634498 0.612707 0.731325 0.680153 0.730657 0.643511 0.633333 0.735294 0.724578 0.728821 0.679006 0.750602 0.759542 0.783212 0.759542 0.633333 0.666516 0.695663 0.718341 0.687845 0.740964 0.722901 0.713139 0.625191 0.633333 0.771493 0.738072 0.760262 0.709945 0.692771 0.722901 0.713139 0.741221 0.633333 0.704525 0.666747 0.683406 0.608287 0.586747 0.649618 0.660584 0.68626 0.633333 0.749774 0.751566 0.70786 0.692265 0.644578 0.680153 0.765693 0.649618 0.633333 0.9 0.9 0.9 0.871084 0.790076 0.870803 0.710867 0.633333 0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.70146 0.667939 0.6333333 0.720905 0.734217	0.778733	0.770843	0.763755	0.785083	0.798795	0.771756	0.829927	0.582443	0.633333
0.735294 0.724578 0.728821 0.679006 0.750602 0.759542 0.783212 0.759542 0.633333 0.666516 0.695663 0.718341 0.687845 0.740964 0.722901 0.713139 0.625191 0.633333 0.771493 0.738072 0.760262 0.709945 0.692771 0.722901 0.713139 0.741221 0.633333 0.704525 0.666747 0.683406 0.608287 0.586747 0.649618 0.660584 0.68626 0.633333 0.749774 0.751566 0.70786 0.692265 0.644578 0.680153 0.765693 0.649618 0.633333 0.9 0.9 0.9 0.9 0.9 0.9 0.871084 0.790076 0.870803 0.710687 0.633333 0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.70146 0.667939 0.633333 0.7020814 0.686095 0.713012 0.704367 0.679006 0.745783 0.692366 0.766433 0.729008 <th< td=""><td>0.688235</td><td>0.666747</td><td>0.679913</td><td>0.705525</td><td>0.683133</td><td>0.667939</td><td>0.771533</td><td>0.68626</td><td>0.633333</td></th<>	0.688235	0.666747	0.679913	0.705525	0.683133	0.667939	0.771533	0.68626	0.633333
0.666516 0.695663 0.718341 0.687845 0.740964 0.722901 0.713139 0.625191 0.633333 0.771493 0.738072 0.760262 0.709945 0.692771 0.722901 0.713139 0.741221 0.633333 0.704525 0.666747 0.683406 0.608287 0.586747 0.649618 0.660584 0.68626 0.633333 0.749774 0.751566 0.70786 0.692265 0.644578 0.680153 0.765693 0.649618 0.633333 0.9 0.9 0.9 0.9 0.9 0.871084 0.790076 0.870803 0.710687 0.633333 0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.70146 0.667939 0.633333 0.780905 0.713012 0.704367 0.679006 0.745783 0.692366 0.70146 0.667939 0.633333 0.700905 0.734217 0.756769 0.798343 0.755422 0.790076 0.80073 0.787869 0.677778 0.66	0.604977	0.657108	0.634498	0.612707	0.731325	0.680153	0.730657	0.643511	0.633333
0.771493 0.738072 0.760262 0.709945 0.692771 0.722901 0.713139 0.741221 0.633333 0.704525 0.666747 0.683406 0.608287 0.586747 0.649618 0.660584 0.68266 0.633333 0.749774 0.751566 0.70786 0.692265 0.644578 0.680153 0.765693 0.649618 0.633333 0.9 0.9 0.9 0.9 0.9 0.871084 0.790076 0.870803 0.710687 0.633333 0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.70146 0.667939 0.633333 0.680995 0.713012 0.704367 0.679006 0.745783 0.692366 0.666423 0.729008 0.633333 0.700905 0.734217 0.756769 0.798343 0.755422 0.790076 0.80073 0.733969 0.677778 0.626697 0.653253 0.672926 0.643646 0.707229 0.722901 0.765693 0.667939 0.677778 0.7	0.735294	0.724578	0.728821	0.679006	0.750602	0.759542	0.783212	0.759542	0.633333
0.704525 0.666747 0.683406 0.608287 0.586747 0.649618 0.660584 0.68626 0.633333 0.749774 0.751566 0.70786 0.69265 0.644578 0.680153 0.765693 0.649618 0.633333 0.9 0.9 0.9 0.9 0.871084 0.790076 0.870803 0.710687 0.633333 0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.70146 0.667939 0.633333 0.680995 0.713012 0.704367 0.679006 0.745783 0.692366 0.666423 0.729008 0.633333 0.700905 0.734217 0.756769 0.798343 0.755422 0.790076 0.80073 0.783969 0.677778 0.666516 0.684096 0.714847 0.701105 0.712048 0.832824 0.806569 0.777863 0.677778 0.626697 0.653253 0.672926 0.643646 0.707229 0.722901 0.765693 0.667939 0.677778 0.731674 <td< td=""><td>0.666516</td><td>0.695663</td><td>0.718341</td><td>0.687845</td><td>0.740964</td><td>0.722901</td><td>0.713139</td><td>0.625191</td><td>0.633333</td></td<>	0.666516	0.695663	0.718341	0.687845	0.740964	0.722901	0.713139	0.625191	0.633333
0.749774 0.751566 0.70786 0.692265 0.644578 0.680153 0.765693 0.649618 0.633333 0.9 0.9 0.9 0.9 0.871084 0.790076 0.870803 0.710687 0.633333 0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.70146 0.667939 0.633333 0.680995 0.713012 0.704367 0.679006 0.745783 0.692366 0.666423 0.729008 0.633333 0.700905 0.734217 0.756769 0.798343 0.755422 0.790076 0.80073 0.783969 0.677778 0.666516 0.684096 0.714847 0.701105 0.712048 0.832824 0.806569 0.777863 0.6677978 0.626697 0.653253 0.672926 0.643646 0.707229 0.722901 0.765693 0.667939 0.677778 0.731674 0.722651 0.690393 0.665746 0.755422 0.790076 0.789051 0.722901 0.677778 0.733673	0.771493	0.738072	0.760262	0.709945	0.692771	0.722901	0.713139	0.741221	0.633333
0.9 0.9 0.9 0.9 0.871084 0.790076 0.870803 0.710687 0.633333 0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.70146 0.667939 0.633333 0.680995 0.713012 0.704367 0.679006 0.745783 0.692366 0.666423 0.729008 0.633333 0.700905 0.734217 0.756769 0.798343 0.755422 0.790076 0.80073 0.783969 0.677778 0.666516 0.684096 0.714847 0.701105 0.712048 0.832824 0.806569 0.777863 0.677778 0.626697 0.653253 0.672926 0.643646 0.707229 0.722901 0.765693 0.667939 0.677778 0.702715 0.759277 0.735808 0.740884 0.726506 0.777863 0.771533 0.722901 0.677778 0.731674 0.722651 0.690393 0.665746 0.755422 0.790076 0.789051 0.722901 0.677778 0.713575	0.704525	0.666747	0.683406	0.608287	0.586747	0.649618	0.660584	0.68626	0.633333
0.720814 0.686024 0.69738 0.621547 0.750602 0.692366 0.70146 0.667939 0.633333 0.680995 0.713012 0.704367 0.679006 0.745783 0.692366 0.66423 0.729008 0.633333 0.700905 0.734217 0.756769 0.798343 0.755422 0.790076 0.80073 0.783969 0.677778 0.666516 0.684096 0.714847 0.701105 0.712048 0.832824 0.806569 0.777863 0.677778 0.626697 0.653253 0.672926 0.643646 0.707229 0.722901 0.765693 0.667939 0.677778 0.702715 0.759277 0.735808 0.740884 0.726506 0.777863 0.771533 0.722901 0.677778 0.731674 0.722651 0.690393 0.665746 0.755422 0.790076 0.789051 0.722901 0.677778 0.760633 0.763133 0.746288 0.69685 0.683133 0.70458 0.759951 0.722901 0.677778 0.633	0.749774	0.751566	0.70786	0.692265	0.644578	0.680153	0.765693	0.649618	0.633333
0.680995 0.713012 0.704367 0.679006 0.745783 0.692366 0.666423 0.729008 0.633333 0.700905 0.734217 0.756769 0.798343 0.755422 0.790076 0.80073 0.783969 0.677778 0.666516 0.684096 0.714847 0.701105 0.712048 0.832824 0.806569 0.777863 0.677778 0.626697 0.653253 0.672926 0.643646 0.707229 0.722901 0.765693 0.667939 0.677778 0.702715 0.759277 0.735808 0.740884 0.726506 0.777863 0.771533 0.722901 0.677778 0.731674 0.722651 0.690393 0.665746 0.755422 0.790076 0.789051 0.722901 0.677778 0.760633 0.763133 0.746288 0.696685 0.683133 0.70458 0.759854 0.649618 0.677778 0.633937 0.657108 0.651965 0.639227 0.625301 0.70458 0.70146 0.667939 0.677778 0.7	0.9	0.9	0.9	0.9	0.871084	0.790076	0.870803	0.710687	0.633333
0.700905 0.734217 0.756769 0.798343 0.755422 0.790076 0.80073 0.783969 0.677778 0.666516 0.684096 0.714847 0.701105 0.712048 0.832824 0.806569 0.777863 0.677778 0.626697 0.653253 0.672926 0.643646 0.707229 0.722901 0.765693 0.667939 0.677778 0.702715 0.759277 0.735808 0.740884 0.726506 0.7777863 0.771533 0.722901 0.677778 0.731674 0.722651 0.690393 0.665746 0.755422 0.790076 0.789051 0.722901 0.677778 0.760633 0.763133 0.746288 0.696685 0.683133 0.70458 0.759854 0.649618 0.677778 0.633937 0.657108 0.651965 0.639227 0.625301 0.70458 0.70146 0.667939 0.677778 0.738914 0.732289 0.718341 0.709945 0.726506 0.747328 0.742336 0.729008 0.677778 0.	0.720814	0.686024	0.69738	0.621547	0.750602	0.692366	0.70146	0.667939	0.633333
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.680995	0.713012	0.704367	0.679006	0.745783	0.692366	0.666423	0.729008	0.633333
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.700905	0.734217	0.756769	0.798343	0.755422	0.790076	0.80073	0.783969	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.666516	0.684096	0.714847	0.701105	0.712048	0.832824	0.806569	0.777863	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.626697	0.653253	0.672926	0.643646	0.707229	0.722901	0.765693	0.667939	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.702715	0.759277	0.735808		0.726506	0.777863	0.771533	0.722901	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.731674	0.722651	0.690393	0.665746	0.755422	0.790076	0.789051	0.722901	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.760633	0.763133	0.746288	0.696685	0.683133	0.70458	0.759854	0.649618	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.713575	0.678313	0.665939	0.727624	0.716867	0.698473	0.69562	0.649618	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.633937	0.657108	0.651965	0.639227	0.625301	0.70458	0.70146	0.667939	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.738914	0.732289	0.718341	0.709945	0.726506	0.747328	0.742336	0.729008	0.677778
0.796833 0.778554 0.704367 0.705525 0.687952 0.729008 0.718978 0.735115 0.722222 0.719005 0.709157 0.704367 0.656906 0.408434 0.729008 0.777372 0.729008 0.722222	0.684615	0.713012	0.742795	0.705525	0.750602	0.851145	0.847445	0.747328	0.677778
0.719005 0.709157 0.704367 0.656906 0.408434 0.729008 0.777372 0.729008 0.722222	0.693665	0.691807	0.721834	0.617127	0.56747	0.625191	0.625547	0.594656	0.722222
	0.796833	0.778554	0.704367	0.705525	0.687952	0.729008	0.718978	0.735115	0.722222
0.782353 0.768916 0.784716 0.727624 0.678313 0.70458 0.713139 0.716794 0.722222	0.719005	0.709157	0.704367	0.656906	0.408434	0.729008	0.777372	0.729008	0.722222
	0.782353	0.768916	$0.784\overline{7}16$	0.727624	0.678313	$0.70\overline{458}$	0.713139	0.716794	0.722222

0.704525 0.707229 0.669432 0.674386 0.707229 0.674046 0.742336 0.6880153 0.722222 0.680995 0.662892 0.658952 0.599608 0.591666 0.637405 0.648905 0.643511 0.722222 0.771493 0.776627 0.767249 0.776243 0.726506 0.820611 0.841606 0.79076 0.722222 0.749774 0.766988 0.746288 0.740884 0.740684 0.7407328 0.789051 0.674046 0.722222 0.787783 0.80747 0.721834 0.683425 0.779518 0.741221 0.756593 0.759542 0.722222 0.787783 0.80747 0.721834 0.683425 0.779518 0.741221 0.765693 0.759542 0.722222 0.781334 0.751566 0.69738 0.723240 0.70241 0.70488 0.713139 0.729008 0.722222 0.811312 0.83233 0.819651 0.776243 0.813253 0.820611 0.84161 0.814504 0.722222 0.811									
0.771493 0.776627 0.767249 0.776243 0.726506 0.820611 0.841606 0.790076 0.722222 0.749774 0.766988 0.740288 0.740884 0.740964 0.777863 0.783212 0.729008 0.722222 0.76244 0.774699 0.854585 0.864641 0.63012 0.747328 0.789051 0.674046 0.722222 0.787783 0.80747 0.721834 0.683425 0.779518 0.741221 0.765693 0.759542 0.722222 0.742534 0.751566 0.69738 0.723204 0.70241 0.70458 0.713139 0.790008 0.722222 0.811512 0.83253 0.819651 0.776243 0.813253 0.820611 0.894161 0.814504 0.722222 0.787783 0.780482 0.77042 0.771823 0.731325 0.875573 0.829927 0.80229 0.766667 0.80502 0.813253 0.739013 0.727624 0.716867 0.785959 0.736969 0.785069 0.786667 0.7908145	0.704525	0.707229	0.669432	0.674586	0.707229	0.674046	0.742336	0.680153	0.722222
0.749774 0.766988 0.746288 0.740884 0.740964 0.777863 0.783212 0.729008 0.722222 0.726244 0.774699 0.854585 0.864641 0.63012 0.747328 0.780951 0.674046 0.722222 0.787783 0.80747 0.721834 0.683425 0.779518 0.741221 0.755593 0.759542 0.722222 0.742534 0.751566 0.69738 0.723204 0.70241 0.70458 0.713139 0.729008 0.722222 0.811312 0.83253 0.819651 0.775243 0.813253 0.820611 0.894161 0.814504 0.722222 0.787783 0.780482 0.770742 0.771823 0.731325 0.875573 0.829927 0.80229 0.766667 0.780415 0.757349 0.676419 0.665746 0.615663 0.738969 0.789051 0.765649 0.766667 0.796833 0.781933 0.704367 0.67906 0.673494 0.765649 0.754015 0.741221 0.766667 0.75023	0.680995	0.662892	0.658952	0.590608	0.591566	0.637405	0.648905	0.643511	0.722222
0.726244 0.774699 0.854585 0.864641 0.63012 0.747328 0.789051 0.674046 0.722222 0.787783 0.80747 0.721834 0.683425 0.779518 0.741221 0.765693 0.725222 0.742534 0.751566 0.69738 0.723204 0.70241 0.70458 0.713139 0.729008 0.722222 0.811312 0.83253 0.819651 0.776243 0.813233 0.820611 0.894161 0.814504 0.722222 0.787783 0.780482 0.770742 0.771823 0.731325 0.875573 0.829927 0.80229 0.766667 0.809502 0.813253 0.739301 0.727624 0.716867 0.783969 0.789051 0.765649 0.766667 0.708145 0.757349 0.676419 0.665746 0.615663 0.759542 0.736496 0.68026 0.766667 0.79603 0.788193 0.704367 0.67906 0.673494 0.765499 0.759415 0.741221 0.766667 0.576018 0.603133<	0.771493	0.776627	0.767249	0.776243	0.726506	0.820611	0.841606	0.790076	0.722222
0.787783	0.749774	0.766988	0.746288	0.740884	0.740964	0.777863	0.783212	0.729008	0.722222
0.742534 0.751566 0.69738 0.723204 0.70241 0.70458 0.713139 0.729008 0.722222 0.811312 0.83253 0.819651 0.776243 0.813253 0.820611 0.894161 0.814504 0.722222 0.787783 0.780382 0.770742 0.771823 0.731325 0.875573 0.829927 0.802902 0.766667 0.809502 0.813253 0.739301 0.727624 0.716867 0.783969 0.789051 0.765649 0.766667 0.708145 0.757349 0.676419 0.6665746 0.615663 0.7575942 0.736496 0.68626 0.766667 0.796833 0.788193 0.704367 0.679006 0.631494 0.765649 0.754015 0.741221 0.766667 0.576018 0.63133 0.672926 0.643646 0.581928 0.680153 0.683942 0.655725 0.766667 0.795023 0.80747 0.763755 0.789503 0.707229 0.826718 0.85358 0.759542 0.766667 0.655	0.726244	0.774699	0.854585	0.864641	0.63012	0.747328	0.789051	0.674046	0.722222
0.811312 0.83253 0.819651 0.776243 0.813253 0.820611 0.894161 0.814504 0.722222 0.787783 0.780482 0.770742 0.771823 0.733125 0.875573 0.829927 0.80229 0.766667 0.809502 0.813253 0.733901 0.727624 0.716867 0.783969 0.789051 0.765649 0.766667 0.708145 0.757349 0.676419 0.665746 0.615663 0.759542 0.736496 0.68626 0.766667 0.796833 0.788193 0.704367 0.679006 0.673494 0.765649 0.754015 0.741221 0.766667 0.576018 0.603133 0.672226 0.643644 0.581928 0.680153 0.683942 0.655725 0.766667 0.795023 0.80747 0.763755 0.789503 0.707229 0.826718 0.853285 0.759422 0.766667 0.690045 0.69759 0.760262 0.674586 0.683133 0.753435 0.683942 0.716794 0.81111 0.831	0.787783	0.80747	0.721834	0.683425	0.779518	0.741221	0.765693	0.759542	0.722222
0.787783 0.780482 0.770742 0.771823 0.731325 0.875573 0.829927 0.80229 0.766667 0.809502 0.813253 0.739301 0.727624 0.716867 0.783969 0.789051 0.765649 0.766667 0.796833 0.788193 0.704367 0.679006 0.673494 0.765649 0.754015 0.741221 0.766667 0.576018 0.603133 0.672926 0.643646 0.581928 0.680153 0.683942 0.655725 0.766667 0.795023 0.80747 0.763755 0.789503 0.707229 0.826718 0.853942 0.655725 0.766667 0.795023 0.80747 0.763755 0.789503 0.707229 0.826718 0.853285 0.755942 0.766667 0.655656 0.666747 0.711354 0.683425 0.721687 0.753435 0.683942 0.716794 0.81111 0.831222 0.840241 0.819651 0.780663 0.808434 0.826718 0.806599 0.790076 0.811111 0.7	0.742534	0.751566	0.69738	0.723204	0.70241	0.70458	0.713139	0.729008	0.722222
0.809502 0.813253 0.739301 0.727624 0.716867 0.783969 0.789051 0.765649 0.766667 0.708145 0.757349 0.676419 0.665746 0.615663 0.759542 0.736496 0.68626 0.766667 0.976833 0.788193 0.704367 0.679006 0.673494 0.765649 0.754015 0.741221 0.766667 0.576018 0.603133 0.672926 0.643646 0.581928 0.680153 0.683942 0.655725 0.766667 0.795023 0.80747 0.763755 0.78903 0.707229 0.826718 0.853285 0.759542 0.766667 0.690045 0.69759 0.760262 0.674586 0.683133 0.753435 0.754015 0.741221 0.766667 0.655656 0.666747 0.711354 0.683425 0.721687 0.753435 0.683942 0.716794 0.81111 0.83122 0.840241 0.819611 0.780663 0.808434 0.826718 0.866569 0.790076 0.811111 0.737	0.811312	0.83253	0.819651	0.776243	0.813253	0.820611	0.894161	0.814504	0.722222
0.708145 0.757349 0.676419 0.665746 0.615663 0.759542 0.736496 0.68626 0.766667 0.796833 0.788193 0.704367 0.679006 0.673494 0.765649 0.754015 0.741221 0.766667 0.576018 0.603133 0.672926 0.643646 0.581928 0.680153 0.683942 0.655725 0.766667 0.795023 0.80747 0.763755 0.789503 0.707229 0.826718 0.853285 0.759542 0.766667 0.690045 0.69759 0.760262 0.674586 0.683133 0.753435 0.754015 0.741221 0.766667 0.6555656 0.666747 0.711354 0.683425 0.721687 0.753435 0.683942 0.716794 0.811111 0.831222 0.840241 0.819651 0.780663 0.808434 0.826718 0.805699 0.790076 0.811111 0.73104 0.732289 0.700873 0.732044 0.731325 0.735115 0.777372 0.667939 0.811111 0.	0.787783	0.780482	0.770742	0.771823	0.731325	0.875573	0.829927	0.80229	0.766667
0.796833 0.788193 0.704367 0.679006 0.673494 0.756649 0.754015 0.741221 0.766667 0.576018 0.603133 0.672926 0.643646 0.581928 0.680153 0.683942 0.655725 0.766667 0.795023 0.80747 0.763755 0.789503 0.707229 0.826718 0.853285 0.759542 0.766667 0.690045 0.69759 0.760262 0.674586 0.683133 0.753435 0.754015 0.741221 0.766667 0.655656 0.666747 0.711354 0.683425 0.721687 0.753435 0.683942 0.716794 0.811111 0.831222 0.840241 0.819651 0.780663 0.808434 0.826718 0.806569 0.790076 0.811111 0.737104 0.732289 0.700873 0.732044 0.731325 0.735115 0.777732 0.667939 0.811111 0.807692 0.826747 0.7339301 0.727624 0.736145 0.790076 0.824088 0.771756 0.811111	0.809502	0.813253	0.739301	0.727624	0.716867	0.783969	0.789051	0.765649	0.766667
0.576018 0.603133 0.672926 0.643646 0.581928 0.680153 0.683942 0.655725 0.766667 0.795023 0.80747 0.763755 0.789503 0.707229 0.826718 0.853285 0.759542 0.766667 0.690045 0.69759 0.760262 0.674586 0.683133 0.753435 0.754015 0.741221 0.766667 0.655656 0.666747 0.711354 0.683425 0.721687 0.753435 0.683942 0.716794 0.81111 0.831222 0.840241 0.819651 0.780663 0.808434 0.826718 0.806569 0.790076 0.811111 0.737104 0.732289 0.700873 0.732044 0.731325 0.735115 0.777372 0.667939 0.811111 0.816742 0.83253 0.774236 0.661326 0.726506 0.790076 0.841606 0.747328 0.811111 0.807692 0.826747 0.739301 0.727624 0.736145 0.790076 0.824088 0.771756 0.81111 0.72	0.708145	0.757349	0.676419	0.665746	0.615663	0.759542	0.736496	0.68626	0.766667
0.795023 0.80747 0.763755 0.789503 0.707229 0.826718 0.853285 0.759542 0.766667 0.690045 0.69759 0.760262 0.674586 0.683133 0.753435 0.754015 0.741221 0.766667 0.655656 0.666747 0.711354 0.683425 0.721687 0.753435 0.683942 0.716794 0.811111 0.831222 0.840241 0.819651 0.780663 0.808434 0.826718 0.806569 0.790076 0.811111 0.816742 0.83253 0.700873 0.732044 0.731325 0.735115 0.777372 0.667939 0.811111 0.807692 0.826747 0.739301 0.727624 0.736145 0.790076 0.824088 0.771756 0.811111 0.73814 0.741928 0.624017 0.603867 0.649398 0.667939 0.736496 0.722201 0.811111 0.720814 0.741928 0.711354 0.670166 0.721687 0.814504 0.771533 0.796183 0.811111 0.7	0.796833	0.788193	0.704367	0.679006	0.673494	0.765649	0.754015	0.741221	0.766667
0.690045 0.69759 0.760262 0.674586 0.683133 0.753435 0.754015 0.741221 0.766667 0.6555656 0.666747 0.711354 0.683425 0.721687 0.753435 0.683942 0.716794 0.811111 0.831222 0.840241 0.819651 0.780663 0.808434 0.826718 0.806569 0.790076 0.811111 0.737104 0.732289 0.700873 0.732044 0.731325 0.735115 0.777372 0.667939 0.811111 0.816742 0.83253 0.774236 0.661326 0.726506 0.790076 0.841606 0.747328 0.811111 0.807692 0.826747 0.739301 0.727624 0.736145 0.790076 0.824088 0.771756 0.811111 0.738914 0.741928 0.624017 0.603867 0.649398 0.667939 0.736496 0.722901 0.811111 0.719005 0.699518 0.711354 0.670166 0.721687 0.814504 0.771533 0.796183 0.811111	0.576018	0.603133	0.672926	0.643646	0.581928	0.680153	0.683942	0.655725	0.766667
0.655656 0.666747 0.711354 0.683425 0.721687 0.753435 0.683942 0.716794 0.811111 0.831222 0.840241 0.819651 0.780663 0.808434 0.826718 0.806569 0.790076 0.811111 0.737104 0.732289 0.700873 0.732044 0.731325 0.735115 0.777372 0.667939 0.811111 0.816742 0.83253 0.774236 0.661326 0.726506 0.790076 0.841606 0.747328 0.811111 0.807692 0.826747 0.733010 0.727624 0.736145 0.790076 0.824088 0.771756 0.811111 0.738914 0.741928 0.624017 0.603867 0.649398 0.667939 0.736496 0.722901 0.811111 0.720814 0.741928 0.711354 0.670166 0.721687 0.814504 0.771533 0.796183 0.811111 0.719005 0.699518 0.721834 0.705525 0.707229 0.838931 0.829927 0.832824 0.811111	0.795023	0.80747	0.763755	0.789503	0.707229	0.826718	0.853285	0.759542	0.766667
0.831222 0.840241 0.819651 0.780663 0.808434 0.826718 0.806569 0.790076 0.811111 0.737104 0.732289 0.700873 0.732044 0.731325 0.735115 0.777372 0.667939 0.811111 0.816742 0.83253 0.774236 0.661326 0.726506 0.790076 0.841606 0.747328 0.811111 0.807692 0.826747 0.739301 0.727624 0.736145 0.790076 0.824088 0.771756 0.811111 0.738914 0.741928 0.624017 0.603867 0.649398 0.667939 0.736496 0.722901 0.811111 0.720814 0.741928 0.711354 0.670166 0.721687 0.814504 0.771533 0.796183 0.811111 0.719005 0.699518 0.721834 0.705252 0.707229 0.838931 0.82927 0.832824 0.811111 0.773703 0.772771 0.760262 0.789503 0.731325 0.875573 0.864964 0.771756 0.811111 0	0.690045	0.69759	0.760262	0.674586	0.683133	0.753435	0.754015	0.741221	0.766667
0.737104 0.732289 0.700873 0.732044 0.731325 0.735115 0.777372 0.667939 0.811111 0.816742 0.83253 0.774236 0.661326 0.726506 0.790076 0.841606 0.747328 0.811111 0.807692 0.826747 0.739301 0.727624 0.736145 0.790076 0.824088 0.771756 0.811111 0.738914 0.741928 0.624017 0.603867 0.649398 0.667939 0.736496 0.722901 0.811111 0.720814 0.741928 0.711354 0.670166 0.721687 0.814504 0.771533 0.796183 0.811111 0.719005 0.699518 0.721834 0.705525 0.707229 0.838931 0.829927 0.832824 0.811111 0.626697 0.687952 0.693886 0.648066 0.654217 0.680153 0.765693 0.759542 0.855556 0.737104 0.722651 0.714847 0.732044 0.644578 0.70458 0.692366 0.855556 0.793213 0	0.655656	0.666747	0.711354	0.683425	0.721687	0.753435	0.683942	0.716794	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.831222	0.840241	0.819651	0.780663	0.808434	0.826718	0.806569	0.790076	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.737104	0.732289	0.700873	0.732044	0.731325	0.735115	0.777372	0.667939	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.816742	0.83253	0.774236	0.661326	0.726506	0.790076	0.841606	0.747328	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.807692	0.826747	0.739301	0.727624	0.736145	0.790076	0.824088	0.771756	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.738914	0.741928	0.624017	0.603867	0.649398	0.667939	0.736496	0.722901	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.720814	0.741928	0.711354	0.670166	0.721687	0.814504	0.771533	0.796183	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.719005	0.699518	0.721834	0.705525	0.707229	0.838931	0.829927	0.832824	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.773303	0.772771	0.760262	0.789503	0.731325	0.875573	0.864964	0.771756	0.811111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.626697	0.687952	0.693886	0.648066	0.654217	0.680153	0.765693	0.759542	0.855556
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.766063	0.757349	0.6869	0.679006	0.625301	0.722901	0.742336	0.692366	0.855556
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.737104	0.722651	0.714847	0.732044	0.644578	0.70458	0.69562	0.692366	0.855556
0.769683 0.788193 0.861572 0.767403 0.9 0.851145 0.888321 0.838931 0.855556 0.702715 0.686024 0.690393 0.679006 0.687952 0.716794 0.707299 0.680153 0.9 0.688235 0.659036 0.599563 0.625967 0.659036 0.643511 0.660584 0.631298 0.9 0.742534 0.734217 0.714847 0.714365 0.789157 0.783969 0.777372 0.771756 0.9	0.793213	0.801687	0.791703	0.789503	0.827711	0.765649	0.876642	0.783969	0.855556
0.702715 0.686024 0.690393 0.679006 0.687952 0.716794 0.707299 0.680153 0.9 0.688235 0.659036 0.599563 0.625967 0.659036 0.643511 0.660584 0.631298 0.9 0.742534 0.734217 0.714847 0.714365 0.789157 0.783969 0.777372 0.771756 0.9	0.652036	0.643614	0.662445	0.581768	0.63494	$0.70\overline{458}$	0.713139	0.68626	0.855556
0.688235 0.659036 0.599563 0.625967 0.659036 0.643511 0.660584 0.631298 0.9 0.742534 0.734217 0.714847 0.714365 0.789157 0.783969 0.777372 0.771756 0.9		0.788193	0.861572	0.767403		0.851145	0.888321	0.838931	0.855556
0.742534	0.702715	0.686024	0.690393	0.679006	0.687952	0.716794	0.707299	0.680153	0.9
	0.688235	0.659036	0.599563	0.625967	0.659036	0.643511	0.660584	0.631298	
0.664706 0.709157 0.739301 0.679006 0.606024 0.741221 0.730657 0.625191 0.9	0.742534	0.734217	$0.714\overline{847}$	0.714365	0.789157	0.783969	0.777372	0.771756	
	0.664706	0.709157	0.739301	0.679006	0.606024	$0.741\overline{221}$	0.730657	0.625191	0.9

APPENDIX L

NORMALIZED TEST DATASET OF SELECTED INPUT FEATURES AND SELECTED TARGET FEATURES FOR FEMALE
HISPANIC POPULATION USING GA-ANN APPROACH

4	5	6	11	15	16	18	19	Age
0.1	0.1	0.1	0.130939	0.124096	0.179389	0.158394	0.148855	0.144444
0.212217	0.211807	0.141921	0.126519	0.220482	0.148855	0.19927	0.1	0.144444
0.291855	0.312048	0.222271	0.325414	0.312048	0.344275	0.345255	0.240458	0.188889
0.232127	0.225301	0.145415	0.192818	0.148193	0.19771	0.19927	0.148855	0.188889
0.188688	0.194458	0.131441	0.148619	0.215663	0.142748	0.1	0.142748	0.188889
0.465611	0.46241	0.344541	0.325414	0.5	0.325954	0.327737	0.338168	0.322222
0.454751	0.44506	0.337555	0.466851	0.451807	0.448092	0.444526	0.319847	0.366667
0.451131	0.472048	0.29214	0.400552	0.413253	0.356489	0.485401	0.350382	0.366667
0.409502	0.414217	0.41441	0.334254	0.446988	0.350382	0.386131	0.362595	0.366667
0.456561	0.473976	0.41441	0.400552	0.524096	0.380916	0.467883	0.356489	0.366667
0.547059	0.543373	0.389956	0.546409	0.533735	0.362595	0.351095	0.454198	0.411111
0.49276	0.551084	0.491266	0.50221	0.514458	0.399237	0.543796	0.50916	0.411111
0.541629	0.547229	0.49476	0.546409	0.572289	0.496947	0.543796	0.374809	0.411111
0.49457	0.493253	0.466812	0.471271	0.509639	0.423664	0.49708	0.332061	0.411111
0.532579	0.520241	0.466812	0.387293	0.519277	0.429771	0.520438	0.515267	0.411111
0.50181	0.520241	0.466812	0.546409	0.519277	0.374809	0.537956	0.521374	0.455556
0.5	0.522169	0.484279	0.458011	0.533735	0.527481	0.520438	0.545802	0.455556
0.612217	0.626265	0.459825	0.625967	0.615663	0.649618	0.637226	0.619084	0.5
0.668326	0.67253	0.655459	0.639227	0.557831	0.58855	0.467883	0.576336	0.5
0.592308	0.616627	0.547162	0.559669	0.610843	0.710687	0.707299	0.661832	0.5
0.670136	0.691807	0.644978	0.643646	0.668675	0.70458	0.660584	0.625191	0.5
0.592308	0.612771	0.49476	0.537569	0.56747	0.545802	0.561314	0.503053	0.5
0.619457	0.639759	0.582096	0.577348	0.610843	0.60687	0.60219	0.594656	0.544444
0.673756	0.670602	0.644978	0.652486	0.70241	0.759542	0.736496	0.70458	0.544444
0.585068	0.587711	0.543668	0.625967	0.586747	0.600763	0.643066	0.558015	0.544444
0.566968	0.562651	0.543668	0.634807	0.644578	0.619084	0.660584	0.551908	0.588889

0.661086	0.676386	0.669432	0.612707	0.721687	0.625191	0.718978	0.68626	0.588889
0.749774	0.755422	0.770742	0.758564	0.692771	0.649618	0.666423	0.674046	0.588889
0.657466	0.680241	0.672926	0.634807	0.581928	0.68626	0.777372	0.637405	0.588889
0.688235	0.724578	0.651965	0.661326	0.63494	0.70458	0.70146	0.68626	0.588889
0.728054	0.720723	0.60655	0.630387	0.668675	0.649618	0.648905	0.637405	0.588889
0.680995	0.680241	0.728821	0.701105	0.659036	0.60687	0.648905	0.661832	0.588889
0.804072	0.797831	0.777729	0.683425	0.731325	0.753435	0.812409	0.735115	0.633333
0.566968	0.574217	0.60655	0.603867	0.644578	0.674046	0.654745	0.655725	0.633333
0.691855	0.670602	0.704367	0.785083	0.639759	0.70458	0.718978	0.674046	0.677778
0.677376	0.628193	0.655459	0.679006	0.731325	0.783969	0.771533	0.783969	0.677778
0.686425	0.693735	0.704367	0.590608	0.572289	0.619084	0.60219	0.600763	0.677778
0.746154	0.724578	0.774236	0.714365	0.654217	0.70458	0.718978	0.692366	0.677778
0.787783	0.770843	0.732314	0.736464	0.726506	0.771756	0.759854	0.722901	0.677778
0.760633	0.793976	0.774236	0.771823	0.779518	0.820611	0.80073	0.832824	0.722222
0.733484	0.766988	0.833624	0.780663	0.740964	0.808397	0.794891	0.722901	0.722222
0.641176	0.655181	0.651965	0.643646	0.716867	0.710687	0.771533	0.661832	0.766667
0.785973	0.805542	0.78821	0.709945	0.76506	0.820611	0.794891	0.838931	0.766667
0.766063	0.76506	0.714847	0.727624	0.716867	0.710687	0.748175	0.661832	0.766667
0.789593	0.780482	0.70786	0.736464	0.56747	0.60687	0.824088	0.60687	0.811111
0.709955	0.726506	0.679913	0.705525	0.70241	0.753435	0.748175	0.741221	0.855556
0.738914	0.753494	0.795197	0.727624	0.673494	0.759542	0.777372	0.747328	0.855556
0.652036	0.664819	0.683406	0.701105	0.716867	0.759542	0.678102	0.735115	0.855556
0.775113	0.728434	0.69738	0.648066	0.76506	0.741221	0.754015	0.722901	0.855556
0.798643	0.776627	0.704367	0.771823	0.846988	0.881679	0.882482	0.796183	0.9
0.796833	0.826747	0.861572	0.89558	0.880723	0.9	0.9	0.9	0.9
0.726244	0.711084	0.742795	0.692265	0.822892	0.790076	0.853285	0.753435	0.9
0.795023	0.786265	0.868559	0.789503	0.895181	0.863359	0.859124	0.869466	0.9
0.733484	0.766988	0.69738	0.648066	0.639759	0.759542	0.748175	0.710687	0.9
0.666516	0.674458	0.679913	0.701105	0.707229	0.747328	0.689781	0.70458	0.9

APPENDIX M

NORMALIZED TRAINING DATASET OF SELECTED INPUT FEATURES AND SELECTED TARGET FEATURES FOR MALE
HISPANIC POPULATION USING GA-ANN APPROACH

1	7	13	14	15	16	19	Age
0.124299	0.131549	0.156667	0.12623	0.141509	0.137427	0.110063	0.1
0.172897	0.199155	0.21	0.200546	0.216981	0.202924	0.190566	0.1
0.193458	0.223944	0.216667	0.200546	0.190566	0.15614	0.120126	0.1
0.320561	0.368169	0.41	0.384153	0.318868	0.277778	0.276101	0.144444
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.144444
0.23271	0.291549	0.25	0.26612	0.326415	0.235673	0.230818	0.144444
0.223364	0.302817	0.273333	0.18306	0.330189	0.240351	0.200629	0.144444
0.230841	0.284789	0.28	0.257377	0.269811	0.259064	0.195597	0.144444
0.281308	0.347887	0.33	0.287978	0.379245	0.291813	0.281132	0.188889
0.324299	0.370423	0.39	0.331694	0.349057	0.282456	0.261006	0.188889
0.3	0.354648	0.336667	0.253005	0.383019	0.287135	0.276101	0.188889
0.350467	0.354648	0.363333	0.305464	0.367925	0.361988	0.255975	0.233333
0.316822	0.417746	0.43	0.384153	0.39434	0.324561	0.276101	0.233333
0.118692	0.142817	0.146667	0.134973	0.160377	0.132749	0.120126	0.233333
0.371028	0.444789	0.43	0.406011	0.443396	0.404094	0.396855	0.277778
0.329907	0.431268	0.47	0.397268	0.435849	0.446199	0.416981	0.277778
0.356075	0.410986	0.363333	0.327322	0.454717	0.436842	0.422013	0.277778
0.460748	0.512394	0.543333	0.493443	0.541509	0.511696	0.467296	0.322222
0.481308	0.501127	0.513333	0.502186	0.503774	0.44152	0.432075	0.322222
0.427103	0.546197	0.546667	0.56776	0.481132	0.427485	0.406918	0.322222
0.408411	0.401972	0.423333	0.384153	0.428302	0.376023	0.371698	0.322222
0.382243	0.46507	0.423333	0.309836	0.443396	0.380702	0.391824	0.322222
0.434579	0.530423	0.576667	0.537158	0.564151	0.511696	0.512579	0.366667
0.556075	0.559718	0.54	0.515301	0.567925	0.530409	0.477358	0.366667
0.5	0.548451	0.553333	0.54153	0.567925	0.530409	0.502516	0.366667
0.458879	0.50338	0.516667	0.480328	0.477358	0.44152	0.477358	0.366667

0.483178 0.50338 0.456667 0.423497 0.438679 0.436842 0.452201 0.3666667 0.423346 0.462817 0.44 0.388525 0.428302 0.394737 0.422013 0.366667 0.492523 0.510141 0.506667 0.462842 0.567925 0.488304 0.477358 0.366667 0.556075 0.568732 0.58 0.528415 0.571698 0.516374 0.467296 0.411111 0.471963 0.50338 0.516667 0.440984 0.518868 0.432164 0.41111 0.50378 0.523662 0.54 0.510929 0.549057 0.492982 0.512579 0.411111 0.503788 0.523662 0.54 0.510929 0.549057 0.492982 0.5125797 0.411111 0.537383 0.438099 0.523333 0.524044 0.545283 0.507018 0.492453 0.411111 0.578787 0.449133 0.480671 0.588019 0.5544444 0.55283 0.514140 0.55283 0.411111 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>								
0.492523 0.510141 0.506667 0.462842 0.567925 0.488304 0.477358 0.366667 0.556075 0.568732 0.58 0.528415 0.571698 0.516374 0.467296 0.411111 0.471963 0.50338 0.516667 0.440984 0.518868 0.432164 0.41195 0.411111 0.503738 0.523662 0.54 0.510929 0.549057 0.492982 0.512579 0.411111 0.535514 0.548451 0.566667 0.572131 0.567925 0.56786 0.527673 0.411111 0.537383 0.483099 0.523333 0.524044 0.545283 0.507018 0.492453 0.411111 0.5778505 0.521408 0.543333 0.480971 0.583019 0.544444 0.55283 0.411111 0.507477 0.492113 0.463333 0.43224 0.526415 0.460234 0.427044 0.455556 0.514953 0.525915 0.486667 0.410383 0.554151 0.544444 0.532774 0.455556	0.483178	0.50338	0.456667	0.423497	0.488679	0.436842	0.452201	0.366667
0.556075 0.568732 0.58 0.528415 0.571698 0.516374 0.467296 0.41111 0.471963 0.50338 0.516667 0.440984 0.51868 0.432164 0.41195 0.41111 0.503738 0.523662 0.54 0.510929 0.549057 0.492982 0.512579 0.411111 0.533514 0.548451 0.566667 0.572131 0.567925 0.567836 0.527673 0.411111 0.537383 0.483099 0.523333 0.520444 0.545283 0.507018 0.492453 0.411111 0.578505 0.521408 0.543333 0.489071 0.583019 0.544444 0.552283 0.411111 0.507477 0.492113 0.463333 0.43224 0.526415 0.460234 0.42704 0.455556 0.514953 0.525915 0.486667 0.410383 0.564151 0.544444 0.532704 0.455556 0.584112 0.586761 0.586667 0.532787 0.598113 0.516374 0.502744 0.455556								
0.471963								0.366667
0.503738 0.523662 0.54 0.510929 0.549057 0.492982 0.512579 0.411111 0.535514 0.548451 0.566667 0.572131 0.567925 0.567836 0.527673 0.411111 0.537383 0.483099 0.523333 0.520404 0.545283 0.507018 0.492453 0.411111 0.578505 0.521408 0.543333 0.489071 0.583019 0.544444 0.55283 0.411111 0.507477 0.492113 0.463333 0.43224 0.526415 0.460234 0.427044 0.455556 0.514933 0.525915 0.486667 0.410383 0.564151 0.540444 0.532704 0.455556 0.584112 0.58661 0.586667 0.532787 0.598113 0.516374 0.532704 0.455556 0.526168 0.557465 0.55 0.532787 0.59113 0.516374 0.502516 0.455556 0.514933 0.532676 0.573333 0.524044 0.55673 0.516374 0.502516 0.455556	0.556075		0.58					0.411111
0.535514				0.440984				0.411111
0.537383 0.483099 0.523333 0.524044 0.545283 0.507018 0.492453 0.411111 0.578505 0.521408 0.543333 0.489071 0.58019 0.544444 0.55283 0.411111 0.507477 0.492113 0.463333 0.43224 0.526115 0.460234 0.427044 0.455556 0.514953 0.525915 0.486667 0.410383 0.564151 0.544444 0.532704 0.455556 0.584112 0.586761 0.586667 0.532787 0.598113 0.516374 0.532704 0.455556 0.526168 0.557465 0.55 0.532787 0.598113 0.516374 0.532704 0.455556 0.514953 0.532676 0.573333 0.524044 0.557283 0.516374 0.502516 0.455556 0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0	0.503738	0.523662	0.54	0.510929	0.549057	0.492982	0.512579	0.411111
0.578505 0.521408 0.543333 0.489071 0.583019 0.544444 0.55283 0.411111 0.507477 0.492113 0.463333 0.43224 0.526415 0.460234 0.427044 0.455556 0.514953 0.525915 0.486667 0.410383 0.564151 0.544444 0.532704 0.455556 0.584112 0.586761 0.586667 0.532787 0.598113 0.516374 0.532704 0.455556 0.526168 0.557465 0.55 0.532787 0.541509 0.525731 0.497484 0.455556 0.576636 0.5532787 0.541509 0.525731 0.497484 0.455556 0.576636 0.5532958 0.5 0.440984 0.567925 0.553801 0.532704 0.455556 0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0.701869 0.672394 0.66 0.56776 0.58491 0.638012 0.567925 0.5 0.548598 0.521408 0.49333	0.535514	0.548451	0.566667	0.572131	0.567925	0.567836	0.527673	0.411111
0.507477 0.492113 0.463333 0.43224 0.526415 0.460234 0.427044 0.455556 0.514953 0.525915 0.486667 0.410383 0.564151 0.544444 0.532704 0.455556 0.584112 0.586671 0.586667 0.532787 0.598113 0.516374 0.532704 0.455556 0.526168 0.557465 0.55 0.532787 0.541509 0.525731 0.497484 0.455556 0.514953 0.532676 0.573333 0.524044 0.55283 0.516374 0.50216 0.455556 0.571028 0.557465 0.536667 0.56776 0.59344 0.567925 0.553801 0.532704 0.455556 0.571028 0.557465 0.336667 0.56776 0.59434 0.549123 0.512579 0.5 0.701869 0.672394 0.66 0.56776 0.658491 0.638012 0.567925 0.5 0.50935 0.62334 0.493333 0.384153 0.545283 0.502339 0.502516 0.5	0.537383	0.483099	0.523333	0.524044	0.545283	0.507018	0.492453	0.411111
0.514953 0.525915 0.486667 0.410383 0.564151 0.544444 0.532704 0.455556 0.584112 0.586761 0.586667 0.532787 0.598113 0.516374 0.532704 0.455556 0.526168 0.557465 0.55 0.532787 0.541509 0.525731 0.497484 0.455556 0.514953 0.532676 0.573333 0.524044 0.55283 0.516374 0.502516 0.455556 0.576636 0.552958 0.5 0.440984 0.567925 0.553801 0.532704 0.455556 0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0.701869 0.673394 0.66 0.56776 0.584491 0.638012 0.567925 0.5 0.548598 0.521408 0.493333 0.384153 0.545283 0.502339 0.502516 0.5 0.600935 0.627324 0.696667 0.628962 0.601887 0.567836 0.598113 0.5 0.5125	0.578505	0.521408	0.543333	0.489071	0.583019	0.544444	0.55283	0.411111
0.584112 0.586761 0.586667 0.532787 0.598113 0.516374 0.532704 0.455556 0.526168 0.557465 0.55 0.532787 0.541509 0.525731 0.497484 0.455556 0.514953 0.532676 0.573333 0.524044 0.55283 0.516374 0.502516 0.455556 0.576636 0.552958 0.5 0.440984 0.567925 0.553801 0.532704 0.455556 0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0.701869 0.672394 0.66 0.56776 0.68491 0.638012 0.567925 0.5 0.548598 0.521408 0.493333 0.384153 0.545283 0.502339 0.502516 0.5 0.600935 0.627324 0.69667 0.628962 0.601887 0.567836 0.598113 0.5 0.54486 0.570986 0.526667 0.45847 0.586792 0.502339 0.497484 0.5 0.51682 0	0.507477	0.492113	0.463333	0.43224	0.526415	0.460234	0.427044	0.455556
0.526168 0.557465 0.55 0.532787 0.541509 0.525731 0.497484 0.455556 0.514953 0.532676 0.573333 0.524044 0.55283 0.516374 0.502516 0.455556 0.576636 0.552958 0.5 0.440984 0.567925 0.553801 0.532704 0.455556 0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0.701869 0.672394 0.66 0.56776 0.658491 0.638012 0.567925 0.5 0.548598 0.521408 0.493333 0.384153 0.545283 0.502339 0.502516 0.5 0.600935 0.627324 0.696667 0.628962 0.601887 0.567836 0.598113 0.5 0.61215 0.629577 0.61 0.550273 0.711321 0.656725 0.663522 0.5 0.540486 0.5966479 0.586667 0.589617 0.616981 0.567836 0.562893 0.5 0.61215 0.6250	0.514953	0.525915	0.486667	0.410383	0.564151	0.544444	0.532704	0.455556
0.514953 0.532676 0.573333 0.524044 0.55283 0.516374 0.502516 0.455556 0.576636 0.552958 0.5 0.440984 0.567925 0.533801 0.532704 0.455556 0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0.701869 0.672394 0.66 0.56776 0.658491 0.638012 0.567925 0.5 0.5488598 0.521408 0.493333 0.384153 0.545283 0.502339 0.502516 0.5 0.600935 0.627324 0.696667 0.628962 0.601887 0.567836 0.598113 0.5 0.54486 0.570986 0.526667 0.45847 0.586792 0.502339 0.497484 0.5 0.61125 0.629577 0.61 0.550273 0.711321 0.656725 0.663522 0.5 0.636449 0.620563 0.643333 0.598361 0.638849 0.58655 0.603145 0.544444 0.628972 0.62	0.584112		0.586667	0.532787	0.598113	0.516374	0.532704	0.455556
0.576636 0.552958 0.5 0.440984 0.567925 0.553801 0.532704 0.455556 0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0.701869 0.672394 0.66 0.56776 0.658491 0.638012 0.567925 0.5 0.548598 0.521408 0.493333 0.384153 0.545283 0.502339 0.502516 0.5 0.600935 0.627324 0.696667 0.628962 0.601887 0.567836 0.598113 0.5 0.54486 0.570986 0.526667 0.45847 0.586792 0.502339 0.497484 0.5 0.61215 0.629577 0.61 0.550273 0.711321 0.656725 0.663522 0.5 0.536449 0.620563 0.643333 0.598617 0.616981 0.567836 0.562893 0.5 0.628972 0.62507 0.623333 0.59861 0.635849 0.58655 0.603145 0.544444 0.705607 0.636338 <td>0.526168</td> <td>0.557465</td> <td>0.55</td> <td>0.532787</td> <td>0.541509</td> <td>0.525731</td> <td>0.497484</td> <td>0.455556</td>	0.526168	0.557465	0.55	0.532787	0.541509	0.525731	0.497484	0.455556
0.571028 0.557465 0.536667 0.56776 0.59434 0.549123 0.512579 0.5 0.701869 0.672394 0.66 0.56776 0.658491 0.638012 0.567925 0.5 0.548598 0.521408 0.493333 0.384153 0.545283 0.502339 0.502516 0.5 0.600935 0.627324 0.696667 0.628962 0.601887 0.567836 0.598113 0.5 0.54486 0.570986 0.526667 0.45847 0.586792 0.502339 0.497484 0.5 0.61215 0.629577 0.61 0.550273 0.711321 0.656725 0.663522 0.5 0.561682 0.566479 0.586667 0.589617 0.616981 0.567836 0.562893 0.5 0.636449 0.620563 0.643333 0.598361 0.635849 0.58655 0.603145 0.544444 0.628972 0.62507 0.623333 0.545902 0.586792 0.507018 0.406918 0.5444444 0.7578505 0.5	0.514953	0.532676	0.573333	0.524044	0.55283	0.516374	0.502516	0.455556
0.701869 0.672394 0.66 0.56776 0.658491 0.638012 0.567925 0.5 0.548598 0.521408 0.493333 0.384153 0.545283 0.502339 0.502516 0.5 0.600935 0.627324 0.696667 0.628962 0.601887 0.567836 0.598113 0.5 0.54486 0.570986 0.526667 0.45847 0.586792 0.502339 0.497484 0.5 0.61215 0.629577 0.61 0.550273 0.711321 0.656725 0.663522 0.5 0.561682 0.566479 0.586667 0.589617 0.616981 0.567836 0.562893 0.5 0.636449 0.620563 0.643333 0.598361 0.635849 0.58655 0.603145 0.544444 0.628972 0.62507 0.623333 0.545902 0.586792 0.507018 0.406918 0.544444 0.705607 0.636338 0.636667 0.642077 0.613208 0.577193 0.593082 0.544444 0.578505 <t< td=""><td>0.576636</td><td>0.552958</td><td>0.5</td><td>0.440984</td><td>0.567925</td><td>0.553801</td><td>0.532704</td><td>0.455556</td></t<>	0.576636	0.552958	0.5	0.440984	0.567925	0.553801	0.532704	0.455556
0.548598 0.521408 0.493333 0.384153 0.545283 0.502339 0.502516 0.5 0.600935 0.627324 0.696667 0.628962 0.601887 0.567836 0.598113 0.5 0.54486 0.570986 0.526667 0.45847 0.586792 0.502339 0.497484 0.5 0.61215 0.629577 0.61 0.550273 0.711321 0.656725 0.663522 0.5 0.561682 0.566479 0.586667 0.589617 0.616981 0.567836 0.562893 0.5 0.636449 0.620563 0.643333 0.598361 0.635849 0.58655 0.603145 0.544444 0.628972 0.62507 0.623333 0.545902 0.586792 0.507018 0.406918 0.544444 0.705607 0.636338 0.636667 0.642077 0.613208 0.577193 0.593082 0.544444 0.578505 0.58 0.583333 0.506557 0.598113 0.577193 0.567925 0.544444 0.591589	0.571028	0.557465	0.536667	0.56776	0.59434	0.549123	0.512579	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.701869	0.672394	0.66	0.56776	0.658491	0.638012	0.567925	0.5
0.54486 0.570986 0.526667 0.45847 0.586792 0.502339 0.497484 0.5 0.61215 0.629577 0.61 0.550273 0.711321 0.656725 0.663522 0.5 0.561682 0.566479 0.586667 0.589617 0.616981 0.567836 0.562893 0.5 0.636449 0.620563 0.643333 0.598361 0.635849 0.58655 0.603145 0.544444 0.628972 0.62507 0.623333 0.545902 0.586792 0.507018 0.406918 0.544444 0.705607 0.636338 0.636667 0.642077 0.613208 0.577193 0.590302 0.544444 0.578505 0.58 0.583333 0.506557 0.598113 0.577193 0.567925 0.544444 0.524299 0.568732 0.526667 0.454098 0.59434 0.507018 0.502516 0.544444 0.63271 0.595775 0.616667 0.54153 0.590566 0.549123 0.522642 0.544444 0.602804 <td>0.548598</td> <td>0.521408</td> <td>0.493333</td> <td>0.384153</td> <td>0.545283</td> <td>0.502339</td> <td>0.502516</td> <td>0.5</td>	0.548598	0.521408	0.493333	0.384153	0.545283	0.502339	0.502516	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.600935	0.627324	0.696667	0.628962	0.601887	0.567836	0.598113	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.54486	0.570986	0.526667	0.45847	0.586792	0.502339	0.497484	0.5
0.636449 0.620563 0.643333 0.598361 0.635849 0.58655 0.603145 0.544444 0.628972 0.62507 0.623333 0.545902 0.586792 0.507018 0.406918 0.544444 0.705607 0.636338 0.636667 0.642077 0.613208 0.577193 0.593082 0.544444 0.578505 0.58 0.583333 0.506557 0.598113 0.577193 0.567925 0.544444 0.524299 0.568732 0.526667 0.454098 0.59434 0.507018 0.502516 0.544444 0.591589 0.58 0.576667 0.54153 0.590566 0.549123 0.522642 0.544444 0.63271 0.595775 0.616667 0.537158 0.571698 0.58655 0.613208 0.544444 0.602804 0.622817 0.676667 0.642077 0.673585 0.666082 0.633333 0.544444 0.597196 0.573239 0.616667 0.633333 0.616981 0.591228 0.648428 0.544444	0.61215	0.629577	0.61	0.550273	0.711321	0.656725	0.663522	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.561682	0.566479	0.586667	0.589617	0.616981	0.567836	0.562893	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.636449	0.620563	0.643333	0.598361	0.635849	0.58655	0.603145	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.628972	0.62507	0.623333	0.545902	0.586792	0.507018	0.406918	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.705607	0.636338	0.636667	0.642077	0.613208	0.577193	0.593082	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.578505	0.58	0.583333	0.506557	0.598113	0.577193	0.567925	0.544444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.524299	0.568732	0.526667	0.454098	0.59434	0.507018	0.502516	0.544444
0.602804 0.622817 0.676667 0.642077 0.673585 0.666082 0.633333 0.544444 0.597196 0.573239 0.616667 0.633333 0.616981 0.591228 0.648428 0.544444 0.606542 0.566479 0.58 0.528415 0.635849 0.600585 0.593082 0.588889 0.608411 0.634085 0.68 0.642077 0.703774 0.689474 0.683648 0.588889	0.591589	0.58	0.576667	0.54153	0.590566	0.549123	0.522642	0.544444
0.597196 0.573239 0.616667 0.633333 0.616981 0.591228 0.648428 0.544444 0.606542 0.566479 0.58 0.528415 0.635849 0.600585 0.593082 0.588889 0.608411 0.634085 0.68 0.642077 0.703774 0.689474 0.683648 0.588889	0.63271	0.595775	0.616667	0.537158	0.571698	0.58655	0.613208	0.544444
0.606542 0.566479 0.58 0.528415 0.635849 0.600585 0.593082 0.588889 0.608411 0.634085 0.68 0.642077 0.703774 0.689474 0.683648 0.588889	0.602804	0.622817	0.676667	0.642077	0.673585	0.666082	0.633333	0.544444
0.608411	0.597196	0.573239	0.616667	0.633333	0.616981	0.591228	0.648428	0.544444
	0.606542	0.566479	0.58	0.528415	0.635849	0.600585	0.593082	0.588889
0.696262 0.721972 0.633333 0.510929 0.677358 0.605263 0.577987 0.588889	0.608411	0.634085	0.68	0.642077	0.703774	0.689474	0.683648	0.588889
	0.696262	0.721972	0.633333	0.510929	0.677358	0.605263	0.577987	0.588889

0.664486								
0.599065 0.604788 0.61 0.607104 0.624528 0.628655 0.67816 0.588889 0.314953 0.278028 0.253033 0.253035 0.296226 0.268421 0.240881 0.588889 0.328037 0.291549 0.336667 0.31093 0.345283 0.319883 0.316352 0.588889 0.814019 0.726479 0.736667 0.712022 0.764151 0.680117 0.688679 0.588889 0.630841 0.604789 0.593333 0.572131 0.654717 0.61462 0.633333 0.588889 0.66486 0.58 0.633333 0.620219 0.635849 0.595906 0.638365 0.588889 0.644794 0.649859 0.723333 0.720765 0.726415 0.703509 0.733865 0.588889 0.643794 0.649859 0.723333 0.720765 0.72642 0.689474 0.703774 0.633333 0.784112 0.758028 0.73 0.611475 0.7 0.717544 0.718868 0.633333 0.	0.664486	0.62507	0.653333	0.668306	0.666038	0.64269	0.598113	0.588889
0.314953 0.278028 0.253333 0.253005 0.296226 0.268421 0.240881 0.588889 0.328037 0.291549 0.336667 0.301093 0.345283 0.319883 0.316352 0.588889 0.814019 0.726479 0.736667 0.712022 0.764151 0.680117 0.688679 0.588889 0.630841 0.604789 0.593333 0.572131 0.654717 0.61462 0.633333 0.588889 0.654486 0.58 0.653333 0.493443 0.55283 0.535088 0.502516 0.588889 0.64486 0.58 0.653333 0.620219 0.653849 0.555906 0.638365 0.588889 0.64486 0.58 0.633333 0.720765 0.726415 0.70509 0.713836 0.588889 0.643794 0.649859 0.723333 0.720765 0.726421 0.689474 0.703774 0.633333 0.681308 0.679155 0.736667 0.703279 0.722642 0.689474 0.7071740 0.633333	0.800935	0.780563	0.783333	0.642077	0.760377	0.736257	0.703774	0.588889
0.328037 0.291549 0.336667 0.301093 0.345283 0.319883 0.316352 0.588889 0.814019 0.726479 0.736667 0.712022 0.764151 0.680117 0.688679 0.588889 0.630841 0.604789 0.593333 0.572131 0.654717 0.61462 0.633333 0.588889 0.56729 0.528169 0.563333 0.493443 0.55283 0.535088 0.502516 0.588889 0.64486 0.58 0.633333 0.620219 0.635849 0.59506 0.638365 0.588889 0.645794 0.649859 0.723333 0.720765 0.726415 0.703509 0.713836 0.633333 0.681308 0.679155 0.736667 0.703279 0.722642 0.689474 0.703774 0.633333 0.778505 0.767042 0.76 0.633333 0.71321 0.74594 0.74868 0.633333 0.778505 0.7670329 0.72642 0.76807 0.73310 0.74379 0.733297 0.743294 0.74366	0.599065	0.604789	0.61	0.607104	0.624528	0.628655	0.678616	0.588889
0.814019 0.726479 0.736667 0.712022 0.764151 0.680117 0.688679 0.588889 0.630841 0.604789 0.593333 0.572131 0.654717 0.61462 0.633333 0.588889 0.56729 0.528169 0.553333 0.493443 0.55283 0.535088 0.502516 0.588889 0.64486 0.58 0.633333 0.620219 0.635849 0.595906 0.638365 0.588889 0.644794 0.649859 0.723333 0.720765 0.726415 0.703509 0.718836 0.633333 0.681308 0.679155 0.736667 0.703279 0.722642 0.689474 0.703774 0.633333 0.784112 0.758028 0.73 0.611475 0.7 0.717544 0.718868 0.633333 0.778505 0.767042 0.76 0.633333 0.711321 0.740936 0.71886 0.633333 0.757944 0.796338 0.726667 0.628962 0.783019 0.623977 0.643396 0.633333 0.	0.314953	0.278028	0.253333	0.253005	0.296226	0.268421	0.240881	0.588889
0.630841 0.604789 0.593333 0.572131 0.654717 0.61462 0.633333 0.588889 0.56729 0.528169 0.563333 0.493443 0.55283 0.535088 0.502516 0.588889 0.664486 0.58 0.633333 0.620219 0.635849 0.595906 0.638365 0.588889 0.645794 0.649859 0.723333 0.720765 0.726415 0.703509 0.713836 0.633333 0.681308 0.679155 0.736667 0.70279 0.722642 0.689474 0.703774 0.633333 0.784112 0.758028 0.73 0.611475 0.7 0.717544 0.718868 0.633333 0.778505 0.756042 0.76 0.633333 0.711321 0.740936 0.713836 0.633333 0.757944 0.796338 0.756667 0.628962 0.783019 0.623977 0.643396 0.633333 0.7458598 0.758028 0.75 0.742623 0.756037 0.703509 0.728931 0.633333 0.64	0.328037	0.291549	0.336667	0.301093	0.345283	0.319883	0.316352	0.588889
0.56729 0.528169 0.563333 0.493443 0.55283 0.535088 0.502516 0.588889 0.664486 0.58 0.633333 0.620219 0.635849 0.595906 0.638365 0.588889 0.645794 0.649859 0.723333 0.720765 0.726415 0.703599 0.713836 0.633333 0.681308 0.679155 0.736667 0.703279 0.722642 0.689474 0.703774 0.633333 0.784112 0.758028 0.73 0.611475 0.7 0.717544 0.718866 0.633333 0.778904 0.760742 0.76 0.633333 0.711321 0.740936 0.713836 0.633333 0.757944 0.796338 0.726667 0.628962 0.783019 0.623977 0.643396 0.633333 0.748598 0.758028 0.75 0.742623 0.760377 0.703509 0.728931 0.633333 0.741121 0.755775 0.76 0.799454 0.771698 0.745614 0.779245 0.633333 0.75233	0.814019	0.726479	0.736667	0.712022	0.764151	0.680117	0.688679	0.588889
0.664486 0.58 0.633333 0.620219 0.635849 0.595906 0.638365 0.588889 0.645794 0.649859 0.723333 0.720765 0.726415 0.703509 0.713836 0.633333 0.681308 0.679155 0.73667 0.703279 0.722642 0.689474 0.703774 0.633333 0.784112 0.758028 0.73 0.611475 0.7 0.717544 0.718868 0.633333 0.778505 0.767042 0.76 0.633333 0.711321 0.740936 0.71886 0.633333 0.757944 0.796338 0.726667 0.628962 0.783019 0.623977 0.64396 0.73839 0.633333 0.748598 0.758028 0.75 0.742623 0.760377 0.703509 0.728931 0.633333 0.642056 0.613803 0.6 0.489071 0.662264 0.661404 0.653459 0.633333 0.752336 0.749014 0.745667 0.729984 0.771698 0.745614 0.779245 0.633333 <	0.630841	0.604789	0.593333	0.572131	0.654717	0.61462	0.633333	0.588889
0.645794 0.649859 0.723333 0.720765 0.726415 0.703509 0.713836 0.633333 0.681308 0.679155 0.736667 0.703279 0.722642 0.689474 0.703774 0.633333 0.784112 0.758028 0.73 0.611475 0.7 0.7117544 0.718868 0.633333 0.757944 0.796338 0.726667 0.628962 0.783019 0.623977 0.643396 0.633333 0.748598 0.758028 0.75 0.742623 0.760377 0.703509 0.728931 0.633333 0.642056 0.613803 0.6 0.489071 0.662264 0.661404 0.653459 0.633333 0.741121 0.755775 0.76 0.799454 0.771698 0.745614 0.779245 0.633333 0.7213236 0.614044 0.653459 0.633333 0.7512336 0.749014 0.746667 0.729508 0.730189 0.745614 0.779245 0.633333 0.701869 0.721972 0.703333 0.722508 0.730189	0.56729	0.528169	0.563333	0.493443	0.55283	0.535088	0.502516	0.588889
0.681308 0.679155 0.736667 0.703279 0.722642 0.689474 0.703774 0.633333 0.784112 0.758028 0.73 0.611475 0.7 0.717544 0.718868 0.633333 0.778505 0.767042 0.76 0.633333 0.711321 0.740936 0.713836 0.633333 0.757944 0.796338 0.726667 0.628962 0.783019 0.623977 0.643396 0.633333 0.748598 0.758028 0.75 0.742623 0.760377 0.703509 0.728931 0.633333 0.642056 0.613803 0.6 0.489071 0.662264 0.661404 0.653459 0.633333 0.752336 0.749014 0.746667 0.799454 0.771698 0.745046 0.759454 0.771698 0.745046 0.653333 0.752336 0.749014 0.746667 0.729508 0.730189 0.740936 0.754088 0.633333 0.701869 0.721972 0.703333 0.729508 0.756604 0.745614 0.779245	0.664486	0.58	0.633333	0.620219	0.635849	0.595906	0.638365	0.588889
0.784112 0.758028 0.73 0.611475 0.7 0.717544 0.718868 0.633333 0.778505 0.767042 0.76 0.633333 0.711321 0.740936 0.713836 0.633333 0.757944 0.796338 0.726667 0.628962 0.783019 0.623977 0.643396 0.633333 0.748598 0.75 0.742623 0.760377 0.703509 0.728931 0.633333 0.642056 0.613803 0.6 0.489071 0.662264 0.661404 0.653459 0.633333 0.741121 0.755775 0.76 0.799454 0.771698 0.745614 0.779245 0.633333 0.751336 0.749014 0.746667 0.729508 0.730189 0.740936 0.754088 0.633333 0.701869 0.721972 0.703333 0.729508 0.756604 0.745614 0.779245 0.633333 0.701869 0.721972 0.703333 0.729508 0.756604 0.745614 0.779245 0.677778 0.681308 0.6476	0.645794	0.649859	0.723333	0.720765	0.726415	0.703509	0.713836	0.633333
0.778505 0.767042 0.76 0.633333 0.711321 0.740936 0.713836 0.633333 0.757944 0.796338 0.726667 0.628962 0.783019 0.623977 0.643396 0.633333 0.748598 0.758028 0.75 0.742623 0.760377 0.703509 0.728931 0.633333 0.642056 0.613803 0.6 0.489071 0.662264 0.661404 0.653459 0.633333 0.741121 0.755775 0.76 0.799454 0.771698 0.745614 0.779245 0.633333 0.752336 0.749014 0.746667 0.729508 0.730189 0.740936 0.754088 0.633333 0.701869 0.721972 0.703333 0.729508 0.730189 0.740936 0.754088 0.633333 0.752336 0.746060 0.616667 0.572131 0.786792 0.661404 0.648428 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.623977 0.688679 0.677778 <	0.681308	0.679155	0.736667	0.703279	0.722642	0.689474	0.703774	0.633333
0.757944 0.796338 0.726667 0.628962 0.783019 0.623977 0.643396 0.633333 0.748598 0.758028 0.75 0.742623 0.760377 0.703509 0.728931 0.633333 0.642056 0.613803 0.6 0.489071 0.662264 0.661404 0.653459 0.633333 0.74121 0.755775 0.76 0.799454 0.771698 0.745614 0.779245 0.633333 0.752336 0.749014 0.746667 0.729508 0.730189 0.749036 0.754088 0.633333 0.701869 0.721972 0.703333 0.729508 0.756604 0.745614 0.779245 0.677778 0.681308 0.647606 0.616667 0.572131 0.786792 0.661404 0.648428 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.623977 0.688679 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.733899 0.677778	0.784112	0.758028	0.73	0.611475	0.7	0.717544	0.718868	0.633333
0.748598 0.758028 0.75 0.742623 0.760377 0.703509 0.728931 0.633333 0.642056 0.613803 0.6 0.489071 0.662264 0.661404 0.653459 0.633333 0.741121 0.755775 0.76 0.799454 0.771698 0.745614 0.779245 0.633333 0.752336 0.749014 0.746667 0.729508 0.730189 0.740936 0.754088 0.633333 0.701869 0.721972 0.703333 0.729508 0.756004 0.745614 0.779245 0.633333 0.701869 0.721972 0.703333 0.729508 0.756004 0.745614 0.779245 0.633333 0.681308 0.647606 0.616667 0.572131 0.786792 0.661404 0.648428 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.623977 0.688679 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778	0.778505	0.767042	0.76	0.633333	0.711321	0.740936	0.713836	0.633333
0.642056 0.613803 0.6 0.489071 0.662264 0.661404 0.653459 0.633333 0.741121 0.755775 0.76 0.799454 0.771698 0.745614 0.779245 0.633333 0.752336 0.749014 0.746667 0.729508 0.730189 0.740936 0.754088 0.633333 0.701869 0.721972 0.703333 0.729508 0.756604 0.745614 0.779245 0.677778 0.681308 0.647606 0.616667 0.572131 0.786792 0.661404 0.64828 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.623977 0.688679 0.677778 0.705607 0.688169 0.68 0.611475 0.681132 0.619298 0.633333 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778 0.714953 0.721972 0.71 0.593989 0.673585 0.703509 0.774214 0.677778 <td< td=""><td>0.757944</td><td>0.796338</td><td>0.726667</td><td>0.628962</td><td>0.783019</td><td>0.623977</td><td>0.643396</td><td>0.633333</td></td<>	0.757944	0.796338	0.726667	0.628962	0.783019	0.623977	0.643396	0.633333
0.741121 0.755775 0.76 0.799454 0.771698 0.745614 0.779245 0.633333 0.752336 0.749014 0.746667 0.729508 0.730189 0.740936 0.754088 0.633333 0.701869 0.721972 0.703333 0.729508 0.756604 0.745614 0.779245 0.677778 0.681308 0.647606 0.616667 0.572131 0.786792 0.661404 0.648428 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.62377 0.688679 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.62377 0.688679 0.677778 0.752360 0.688169 0.68 0.611475 0.681132 0.619298 0.633333 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778 0.815888 0.789577 0.78 0.698907 0.832075 0.740936 0.769182 0.677778	0.748598	0.758028	0.75	0.742623	0.760377	0.703509	0.728931	0.633333
0.752336 0.749014 0.746667 0.729508 0.730189 0.740936 0.754088 0.633333 0.701869 0.721972 0.703333 0.729508 0.756604 0.745614 0.779245 0.677778 0.681308 0.647606 0.616667 0.572131 0.786792 0.661404 0.648428 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.623977 0.688679 0.677778 0.705607 0.688169 0.68 0.611475 0.681132 0.619298 0.633333 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778 0.714953 0.721972 0.71 0.593989 0.673585 0.703509 0.774214 0.677778 0.815888 0.789577 0.78 0.698907 0.832075 0.740936 0.769182 0.677778 0.793458 0.794085 0.783333 0.712022 0.741509 0.731579 0.799371 0.677778	0.642056	0.613803	0.6	0.489071	0.662264	0.661404	0.653459	0.633333
0.701869 0.721972 0.703333 0.729508 0.756604 0.745614 0.779245 0.677778 0.681308 0.647606 0.616667 0.572131 0.786792 0.661404 0.648428 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.623977 0.688679 0.677778 0.705607 0.688169 0.68 0.611475 0.681132 0.619298 0.633333 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778 0.714953 0.721972 0.71 0.593989 0.673585 0.703509 0.774214 0.677778 0.815888 0.789577 0.78 0.698907 0.832075 0.740936 0.769182 0.677778 0.79327 0.758028 0.786667 0.712022 0.741509 0.731579 0.799371 0.677778 0.793458 0.794085 0.783333 0.712022 0.828302 0.722222 0.769182 0.722222	0.741121	0.755775	0.76	0.799454	0.771698	0.745614	0.779245	0.633333
0.681308 0.647606 0.616667 0.572131 0.786792 0.661404 0.648428 0.677778 0.752336 0.706197 0.716667 0.646448 0.696226 0.623977 0.688679 0.677778 0.705607 0.688169 0.68 0.611475 0.681132 0.619298 0.633333 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778 0.714953 0.721972 0.71 0.593989 0.673585 0.703509 0.774214 0.677778 0.815888 0.789577 0.78 0.698907 0.832075 0.740936 0.769182 0.677778 0.795327 0.758028 0.786667 0.712022 0.741509 0.731579 0.799371 0.677778 0.793458 0.794085 0.783333 0.712022 0.828302 0.722222 0.769182 0.722222 0.780374 0.787324 0.763333 0.760109 0.828302 0.726901 0.733962 0.722222	0.752336	0.749014	0.746667	0.729508	0.730189	0.740936	0.754088	0.633333
0.752336 0.706197 0.716667 0.646448 0.696226 0.623977 0.688679 0.677778 0.705607 0.688169 0.68 0.611475 0.681132 0.619298 0.633333 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778 0.714953 0.721972 0.71 0.593989 0.673585 0.703509 0.774214 0.677778 0.815888 0.789577 0.78 0.698907 0.832075 0.740936 0.769182 0.677778 0.795327 0.758028 0.786667 0.712022 0.741509 0.731579 0.799371 0.677778 0.793458 0.794085 0.783333 0.712022 0.828302 0.722222 0.769182 0.722222 0.780374 0.787324 0.763333 0.760109 0.828302 0.726901 0.733962 0.722222 0.815888 0.805352 0.813333 0.781967 0.775472 0.783041 0.814465 0.722222	0.701869	0.721972	0.703333	0.729508	0.756604	0.745614	0.779245	0.677778
0.705607 0.688169 0.68 0.611475 0.681132 0.619298 0.633333 0.677778 0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778 0.714953 0.721972 0.71 0.593989 0.673585 0.703509 0.774214 0.677778 0.815888 0.789577 0.78 0.698907 0.832075 0.740936 0.769182 0.677778 0.795327 0.758028 0.786667 0.712022 0.741509 0.731579 0.799371 0.677778 0.793458 0.794085 0.783333 0.712022 0.828302 0.722222 0.769182 0.722222 0.780374 0.787324 0.763333 0.760109 0.828302 0.726901 0.733962 0.722222 0.815888 0.805352 0.813333 0.781967 0.775472 0.783041 0.814465 0.722222 0.836449 0.839155 0.853333 0.720765 0.84717 0.801754 0.844654 0.722222	0.681308	0.647606	0.616667	0.572131	0.786792	0.661404	0.648428	0.677778
0.76729 0.791831 0.756667 0.703279 0.824528 0.745614 0.738994 0.677778 0.714953 0.721972 0.71 0.593989 0.673585 0.703509 0.774214 0.677778 0.815888 0.789577 0.78 0.698907 0.832075 0.740936 0.769182 0.677778 0.795327 0.758028 0.786667 0.712022 0.741509 0.731579 0.799371 0.677778 0.793458 0.794085 0.783333 0.712022 0.828302 0.722222 0.769182 0.722222 0.780374 0.787324 0.763333 0.760109 0.828302 0.726901 0.733962 0.722222 0.815888 0.805352 0.813333 0.781967 0.775472 0.783041 0.814465 0.722222 0.337383 0.316338 0.326667 0.336066 0.326415 0.310526 0.316352 0.722222 0.728037 0.721972 0.696667 0.593989 0.760377 0.708187 0.799371 0.722222	0.752336	0.706197	0.716667	0.646448	0.696226	0.623977	0.688679	0.677778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.705607	0.688169	0.68	0.611475	0.681132	0.619298	0.633333	0.677778
0.815888 0.789577 0.78 0.698907 0.832075 0.740936 0.769182 0.677778 0.795327 0.758028 0.786667 0.712022 0.741509 0.731579 0.799371 0.677778 0.793458 0.794085 0.783333 0.712022 0.828302 0.722222 0.769182 0.722222 0.780374 0.787324 0.763333 0.760109 0.828302 0.726901 0.733962 0.722222 0.815888 0.805352 0.813333 0.781967 0.775472 0.783041 0.814465 0.722222 0.337383 0.316338 0.326667 0.336066 0.326415 0.310526 0.316352 0.722222 0.836449 0.839155 0.853333 0.720765 0.84717 0.801754 0.844654 0.722222 0.728037 0.721972 0.696667 0.593989 0.760377 0.708187 0.799371 0.722222 0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.7222222 <td>0.76729</td> <td></td> <td>0.756667</td> <td>0.703279</td> <td>0.824528</td> <td>0.745614</td> <td></td> <td>0.677778</td>	0.76729		0.756667	0.703279	0.824528	0.745614		0.677778
0.795327 0.758028 0.786667 0.712022 0.741509 0.731579 0.799371 0.677778 0.793458 0.794085 0.783333 0.712022 0.828302 0.722222 0.769182 0.722222 0.780374 0.787324 0.763333 0.760109 0.828302 0.726901 0.733962 0.722222 0.815888 0.805352 0.813333 0.781967 0.775472 0.783041 0.814465 0.722222 0.337383 0.316338 0.326667 0.336066 0.326415 0.310526 0.316352 0.722222 0.836449 0.839155 0.853333 0.720765 0.84717 0.801754 0.844654 0.722222 0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.722222	0.714953		0.71	0.593989	0.673585	0.703509		0.677778
0.793458 0.794085 0.783333 0.712022 0.828302 0.722222 0.769182 0.722222 0.780374 0.787324 0.763333 0.760109 0.828302 0.726901 0.733962 0.722222 0.815888 0.805352 0.813333 0.781967 0.775472 0.783041 0.814465 0.722222 0.337383 0.316338 0.326667 0.336066 0.326415 0.310526 0.316352 0.722222 0.836449 0.839155 0.853333 0.720765 0.84717 0.801754 0.844654 0.722222 0.728037 0.721972 0.696667 0.593989 0.760377 0.708187 0.799371 0.722222 0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.722222	0.815888	0.789577	0.78	0.698907	0.832075	0.740936	0.769182	0.677778
0.780374 0.787324 0.763333 0.760109 0.828302 0.726901 0.733962 0.722222 0.815888 0.805352 0.813333 0.781967 0.775472 0.783041 0.814465 0.722222 0.337383 0.316338 0.326667 0.336066 0.326415 0.310526 0.316352 0.722222 0.836449 0.839155 0.853333 0.720765 0.84717 0.801754 0.844654 0.722222 0.728037 0.721972 0.696667 0.593989 0.760377 0.708187 0.799371 0.722222 0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.7222222	0.795327	0.758028	0.786667	0.712022	0.741509	0.731579	0.799371	0.677778
0.815888 0.805352 0.813333 0.781967 0.775472 0.783041 0.814465 0.722222 0.337383 0.316338 0.326667 0.336066 0.326415 0.310526 0.316352 0.722222 0.836449 0.839155 0.853333 0.720765 0.84717 0.801754 0.844654 0.722222 0.728037 0.721972 0.696667 0.593989 0.760377 0.708187 0.799371 0.722222 0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.7222222	0.793458	0.794085	0.783333	0.712022	0.828302	0.722222	0.769182	0.722222
0.337383 0.316338 0.326667 0.336066 0.326415 0.310526 0.316352 0.722222 0.836449 0.839155 0.853333 0.720765 0.84717 0.801754 0.844654 0.722222 0.728037 0.721972 0.696667 0.593989 0.760377 0.708187 0.799371 0.722222 0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.722222	0.780374	0.787324	0.763333	0.760109	0.828302	0.726901	0.733962	0.722222
0.836449 0.839155 0.853333 0.720765 0.84717 0.801754 0.844654 0.722222 0.728037 0.721972 0.696667 0.593989 0.760377 0.708187 0.799371 0.722222 0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.722222	0.815888	0.805352	0.813333	0.781967	0.775472	0.783041	0.814465	0.722222
0.728037 0.721972 0.696667 0.593989 0.760377 0.708187 0.799371 0.722222 0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.722222								****
0.802804 0.751268 0.753333 0.681421 0.707547 0.675439 0.698742 0.722222	0.836449	0.839155	0.853333	0.720765	$0.84\overline{717}$	0.801754	0.844654	$0.722\overline{222}$
	0.728037	0.721972	0.696667	0.593989	0.760377	0.708187	0.799371	$0.722\overline{222}$
0.834579 0.830141 0.84 0.79071 0.756604 0.689474 0.713836 0.722222	0.802804	0.751268	0.753333	0.681421	0.707547	0.675439	0.698742	0.722222
	0.834579	0.830141	0.84	0.79071	0.756604	0.689474	0.713836	$0.722\overline{222}$

0.9 0.868451 0.85 0.799454 0.816981 0.778363 0.809434 0.722222 0.82710 0.805352 0.816667 0.786339 0.850943 0.769006 0.759119 0.722222 0.80271 0.791831 0.763333 0.746995 0.707547 0.703509 0.804403 0.722222 0.802804 0.889373 0.756667 0.712022 0.820755 0.750292 0.723899 0.766667 0.802804 0.893986 0.853333 0.79071 0.839155 0.86478 0.766667 0.808411 0.755775 0.76 0.681421 0.733962 0.666082 0.798308 0.766667 0.838318 0.771549 0.77 0.73388 0.660638 0.595906 0.663322 0.766667 0.853271 0.848169 0.75 0.580874 0.9 0.86721 0.854717 0.762222 0.738994 0.766667 0.763551 0.798592 0.866667 0.694536 0.850943 0.829825 0.879374 0.766667 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>								
0.83271 0.791831 0.763333 0.746995 0.707547 0.703509 0.804403 0.722222 0.809035 0.818873 0.756667 0.712022 0.820755 0.750292 0.723899 0.766667 0.802804 0.890986 0.853333 0.79071 0.839623 0.801754 0.86478 0.766667 0.808411 0.755775 0.76 0.681421 0.733962 0.66082 0.708805 0.766667 0.791589 0.839155 0.876667 0.9 0.75283 0.759649 0.789308 0.766667 0.838318 0.771549 0.77 0.73388 0.666038 0.595906 0.663522 0.766667 0.720561 0.773803 0.726667 0.738251 0.760377 0.722222 0.73894 0.766667 0.853271 0.841489 0.75 0.580874 0.9 0.867251 0.854717 0.7366667 0.87093 0.836901 0.876667 0.694536 0.850943 0.82925 0.879874 0.766667 0.87093 <td>0.9</td> <td>0.868451</td> <td>0.85</td> <td>0.799454</td> <td>0.816981</td> <td>0.778363</td> <td>0.809434</td> <td>0.722222</td>	0.9	0.868451	0.85	0.799454	0.816981	0.778363	0.809434	0.722222
0.800935 0.818873 0.756667 0.712022 0.820755 0.750292 0.723899 0.766667 0.802804 0.890986 0.853333 0.79071 0.839623 0.801754 0.80478 0.766667 0.808411 0.755775 0.76 0.681421 0.733962 0.666082 0.708805 0.766667 0.791589 0.839155 0.876667 0.9 0.75283 0.759649 0.789308 0.766667 0.838318 0.771549 0.77 0.73388 0.666082 0.766667 0.789521 0.760377 0.722222 0.738994 0.766667 0.720561 0.73803 0.726667 0.738251 0.760377 0.722222 0.738994 0.766667 0.835271 0.848169 0.75 0.580874 0.9 0.867251 0.854717 0.766667 0.763551 0.798592 0.866667 0.694536 0.850943 0.829825 0.879874 0.766667 0.870093 0.836901 0.876667 0.694536 0.850943 0.829825	0.827103	0.805352	0.816667	0.786339	0.850943	0.769006	0.759119	0.722222
0.802804 0.890986 0.853333 0.79071 0.839623 0.801754 0.86478 0.766667 0.808411 0.755775 0.76 0.681421 0.733962 0.666082 0.708055 0.766667 0.791589 0.839155 0.876667 0.9 0.75283 0.759649 0.789308 0.766667 0.838318 0.771549 0.77 0.73388 0.666038 0.595906 0.663522 0.766667 0.720561 0.773803 0.726667 0.738251 0.760377 0.722222 0.738994 0.766667 0.853271 0.848169 0.75 0.580874 0.9 0.867251 0.884717 0.766667 0.763551 0.798592 0.866667 0.69436 0.850943 0.829825 0.879874 0.766667 0.870093 0.836901 0.876667 0.81694 0.775472 0.764327 0.74025 0.81111 0.76475 0.841408 0.87 0.78533 0.733962 0.792398 0.884717 0.811111 0.76351	0.83271	0.791831	0.763333	0.746995	0.707547	0.703509	0.804403	0.722222
0.808411 0.755775 0.76 0.681421 0.733962 0.666082 0.708805 0.766667 0.791589 0.839155 0.876667 0.9 0.75283 0.759649 0.789308 0.766667 0.838318 0.771549 0.77 0.73388 0.666038 0.595906 0.663522 0.766667 0.720561 0.773803 0.726667 0.738251 0.760377 0.722222 0.738994 0.766667 0.853271 0.848169 0.75 0.580874 0.9 0.867251 0.854717 0.766667 0.763551 0.798952 0.866667 0.694536 0.850943 0.829825 0.879874 0.766667 0.870093 0.836901 0.876667 0.81694 0.775472 0.764327 0.744025 0.811111 0.817575 0.841408 0.87 0.78639 0.733962 0.792398 0.854717 0.811111 0.817575 0.841408 0.87 0.786393 0.733962 0.792398 0.854717 0.811111 0.827570	0.800935	0.818873	0.756667	0.712022	0.820755	0.750292	0.723899	0.766667
0.791589 0.839155 0.876667 0.9 0.75283 0.759649 0.789308 0.766667 0.838318 0.771549 0.77 0.73388 0.666038 0.595906 0.663522 0.766667 0.720561 0.773803 0.726667 0.738251 0.760667 0.760667 0.853271 0.848169 0.75 0.580874 0.9 0.867251 0.854717 0.766667 0.763551 0.798592 0.866667 0.694336 0.859043 0.829825 0.879874 0.766667 0.870093 0.836901 0.876667 0.81694 0.775472 0.764327 0.744025 0.811111 0.817757 0.841408 0.87 0.786339 0.733962 0.792398 0.854717 0.811111 0.763551 0.726479 0.696667 0.70765 0.771698 0.684795 0.749057 0.811111 0.847664 0.818873 0.833333 0.82131 0.877358 0.825146 0.889937 0.811111 0.750467 0.722732 0.72666	0.802804	0.890986	0.853333	0.79071	0.839623	0.801754	0.86478	0.766667
0.838318 0.771549 0.77 0.73388 0.666038 0.595906 0.663522 0.766667 0.720561 0.773803 0.726667 0.738251 0.760377 0.72222 0.738994 0.766667 0.853271 0.848169 0.75 0.580874 0.9 0.867251 0.854717 0.766667 0.763551 0.798592 0.866667 0.694536 0.850943 0.829825 0.879874 0.766667 0.870093 0.836901 0.876667 0.81694 0.775472 0.764327 0.744025 0.811111 0.817757 0.841408 0.87 0.786339 0.733962 0.792398 0.854717 0.811111 0.86251 0.726479 0.696667 0.70765 0.771698 0.684795 0.749057 0.811111 0.847664 0.818873 0.833333 0.821311 0.877358 0.825146 0.889937 0.811111 0.750467 0.728732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.	0.808411	0.755775	0.76	0.681421	0.733962	0.666082	0.708805	0.766667
0.720561 0.773803 0.726667 0.738251 0.760377 0.722222 0.738994 0.766667 0.853271 0.848169 0.75 0.580874 0.9 0.867251 0.854717 0.766667 0.763551 0.798992 0.866667 0.694536 0.850943 0.829825 0.87874 0.766667 0.870093 0.836901 0.876667 0.81694 0.775472 0.764327 0.744025 0.811111 0.81757 0.841408 0.87 0.786339 0.733962 0.792398 0.854717 0.811111 0.763551 0.726479 0.696667 0.70765 0.771698 0.684795 0.749057 0.811111 0.847664 0.818873 0.833333 0.821311 0.877358 0.825146 0.889937 0.811111 0.750467 0.728732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.850841 0.848169 0.873333 0.749057 0.801754 0.839623 0.811111 0.850854 <	0.791589	0.839155	0.876667	0.9	0.75283	0.759649	0.789308	0.766667
0.853271 0.848169 0.75 0.580874 0.9 0.867251 0.854717 0.766667 0.763551 0.798592 0.866667 0.694336 0.850943 0.829825 0.879874 0.766667 0.870093 0.836901 0.876667 0.81694 0.775472 0.764327 0.744025 0.811111 0.817757 0.841408 0.87 0.786339 0.733962 0.792398 0.854717 0.811111 0.763551 0.726479 0.696667 0.70765 0.771698 0.684795 0.749057 0.811111 0.847664 0.818873 0.833333 0.821311 0.877358 0.825146 0.889937 0.811111 0.750467 0.728732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.830841 0.848169 0.873333 0.749057 0.801754 0.839623 0.811111 0.868224 0.821127 0.74 0.56776 0.866038 0.9 0.9 0.811111 0.720561 0.708451 </td <td>0.838318</td> <td>0.771549</td> <td>0.77</td> <td>0.73388</td> <td>0.666038</td> <td>0.595906</td> <td>0.663522</td> <td>0.766667</td>	0.838318	0.771549	0.77	0.73388	0.666038	0.595906	0.663522	0.766667
0.763551 0.798592 0.866667 0.694536 0.850943 0.829825 0.879874 0.766667 0.870903 0.836901 0.876667 0.81694 0.775472 0.764327 0.744025 0.811111 0.817757 0.841408 0.87 0.786339 0.733962 0.792398 0.854717 0.811111 0.763551 0.726479 0.696667 0.70765 0.771698 0.684795 0.749057 0.811111 0.847664 0.818873 0.833333 0.821311 0.877358 0.825146 0.889937 0.811111 0.750467 0.728732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.830841 0.848169 0.873333 0.746995 0.749057 0.801754 0.839623 0.811111 0.720561 0.708451 0.7 0.533333 0.677358 0.675439 0.648428 0.811111 0.799065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556	0.720561	0.773803	0.726667	0.738251	0.760377	0.722222	0.738994	0.766667
0.870093 0.836901 0.876667 0.81694 0.775472 0.764327 0.744025 0.811111 0.817575 0.841408 0.87 0.786339 0.733962 0.792398 0.854717 0.811111 0.763551 0.726479 0.696667 0.70765 0.771698 0.684795 0.749057 0.811111 0.847664 0.818873 0.833333 0.821311 0.877358 0.825146 0.8899937 0.811111 0.750467 0.728732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.830841 0.848169 0.873333 0.746995 0.749057 0.801754 0.839623 0.81111 0.868224 0.821127 0.74 0.56776 0.866038 0.9 0.9 0.811111 0.790561 0.708451 0.7 0.633333 0.677358 0.675499 0.648428 0.811111 0.799065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556 0.890654 </td <td>0.853271</td> <td>0.848169</td> <td>0.75</td> <td>0.580874</td> <td>0.9</td> <td>0.867251</td> <td>0.854717</td> <td>0.766667</td>	0.853271	0.848169	0.75	0.580874	0.9	0.867251	0.854717	0.766667
0.817757 0.841408 0.87 0.786339 0.733962 0.792398 0.854717 0.811111 0.763551 0.726479 0.696667 0.70765 0.771698 0.684795 0.749057 0.811111 0.847664 0.818873 0.833333 0.821311 0.877358 0.825146 0.889937 0.811111 0.750467 0.7228732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.830841 0.848169 0.873333 0.746995 0.749057 0.801754 0.839623 0.811111 0.868224 0.821127 0.74 0.56776 0.866038 0.9 0.9 0.811111 0.720561 0.708451 0.7 0.633333 0.677358 0.675439 0.648428 0.811111 0.79065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556 0.890654 0.870704 0.843333 0.83055 0.873585 0.731579 0.834591 0.855556 0.893318 </td <td>0.763551</td> <td>0.798592</td> <td>0.866667</td> <td>0.694536</td> <td>0.850943</td> <td>0.829825</td> <td>0.879874</td> <td>0.766667</td>	0.763551	0.798592	0.866667	0.694536	0.850943	0.829825	0.879874	0.766667
0.763551 0.726479 0.696667 0.70765 0.771698 0.684795 0.749057 0.811111 0.847664 0.818873 0.833333 0.821311 0.877358 0.825146 0.889937 0.811111 0.750467 0.728732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.830841 0.848169 0.873333 0.746995 0.749057 0.801754 0.839623 0.811111 0.868224 0.821127 0.74 0.56776 0.866038 0.9 0.9 0.811111 0.720561 0.708451 0.7 0.633333 0.677358 0.675439 0.648428 0.811111 0.799065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556 0.838318 0.82338 0.833333 0.83055 0.873585 0.731579 0.834591 0.855556 0.83271 0.789577 0.773333 0.73388 0.798113 0.726901 0.759119 0.855556 0.821495<	0.870093	0.836901	0.876667	0.81694	0.775472	0.764327	0.744025	0.811111
0.847664 0.818873 0.833333 0.821311 0.877358 0.825146 0.889937 0.811111 0.750467 0.728732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.830841 0.848169 0.873333 0.746995 0.749057 0.801754 0.839623 0.811111 0.868224 0.821127 0.74 0.56776 0.866038 0.9 0.9 0.811111 0.720561 0.708451 0.7 0.633333 0.677358 0.675439 0.648428 0.811111 0.799065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556 0.890654 0.870704 0.843333 0.830055 0.873585 0.731579 0.834591 0.855556 0.83318 0.82338 0.833333 0.803825 0.84717 0.839181 0.814465 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.833318	0.817757	0.841408	0.87	0.786339	0.733962	0.792398	0.854717	0.811111
0.750467 0.728732 0.726667 0.668306 0.828302 0.731579 0.754088 0.811111 0.830841 0.848169 0.873333 0.746995 0.749057 0.801754 0.839623 0.811111 0.868224 0.821127 0.74 0.56776 0.866038 0.9 0.9 0.811111 0.720561 0.708451 0.7 0.633333 0.677358 0.675439 0.648428 0.811111 0.79065 0.771549 0.76 0.672678 0.779245 0.703509 0.76151 0.855556 0.890654 0.870704 0.843333 0.830055 0.873585 0.731579 0.834591 0.855556 0.83318 0.82338 0.833333 0.803825 0.84717 0.839181 0.814465 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.821495 0.803099 0.76 0.725137 0.858491 0.797076 0.834591 0.855556 0.833818	0.763551	0.726479	0.696667	0.70765	0.771698	0.684795	0.749057	0.811111
0.830841 0.848169 0.873333 0.746995 0.749057 0.801754 0.839623 0.811111 0.868224 0.821127 0.74 0.56776 0.866038 0.9 0.9 0.9 0.811111 0.720561 0.708451 0.7 0.633333 0.677358 0.675439 0.648428 0.811111 0.799065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556 0.890654 0.870704 0.843333 0.83055 0.873585 0.731579 0.834591 0.855556 0.832818 0.82338 0.833333 0.803825 0.84717 0.839181 0.814465 0.855556 0.83271 0.789577 0.773333 0.73388 0.798113 0.726901 0.759119 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.833818 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9	0.847664	0.818873	0.833333	0.821311	0.877358	0.825146	0.889937	0.811111
0.868224 0.821127 0.74 0.56776 0.866038 0.9 0.9 0.811111 0.720561 0.708451 0.7 0.633333 0.677358 0.675439 0.648428 0.811111 0.799065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556 0.890654 0.870704 0.843333 0.830055 0.873585 0.731579 0.834591 0.855556 0.838318 0.82338 0.833333 0.803825 0.84717 0.839181 0.814465 0.855556 0.83271 0.789577 0.773333 0.73388 0.798113 0.726901 0.759119 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.838318 0.791831 0.793333 0.764481 0.764151 0.797076 0.834591 0.855556 0.838318 0.791831 0.793333 0.746481 0.764151 0.79601 0.723899 0.9 0.873832	0.750467	0.728732	0.726667	0.668306	0.828302	0.731579	0.754088	0.811111
0.720561 0.708451 0.7 0.633333 0.677358 0.675439 0.648428 0.811111 0.799065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556 0.890654 0.870704 0.843333 0.830055 0.873585 0.731579 0.834591 0.855556 0.838318 0.82338 0.833333 0.803825 0.84717 0.839181 0.814465 0.855556 0.83271 0.789577 0.773333 0.73388 0.798113 0.726901 0.759119 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.838318 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9 0.873832 0.863944 0.9 0.821311 0.809434 0.811111 0.834591 0.834591 0.934595 0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9	0.830841	0.848169	0.873333	0.746995	0.749057	0.801754	0.839623	0.811111
0.799065 0.771549 0.76 0.672678 0.779245 0.703509 0.764151 0.855556 0.890654 0.870704 0.843333 0.830055 0.873585 0.731579 0.834591 0.855556 0.838318 0.82338 0.833333 0.803825 0.84717 0.839181 0.814465 0.855556 0.83271 0.789577 0.773333 0.73388 0.798113 0.726901 0.759119 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.821495 0.803099 0.76 0.725137 0.858491 0.797076 0.834591 0.855556 0.838318 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9 0.873832 0.863944 0.9 0.821311 0.809434 0.81111 0.834591 0.9 0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.804673	0.868224	0.821127	0.74	0.56776	0.866038	0.9	0.9	0.811111
0.890654 0.870704 0.843333 0.830055 0.873585 0.731579 0.834591 0.855556 0.838318 0.82338 0.833333 0.803825 0.84717 0.839181 0.814465 0.855556 0.83271 0.789577 0.773333 0.73388 0.798113 0.726901 0.759119 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.821495 0.803099 0.76 0.725137 0.858491 0.797076 0.834591 0.855556 0.838318 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9 0.873832 0.863944 0.9 0.821311 0.809434 0.811111 0.834591 0.834591 0.9 0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.806355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9	0.720561	0.708451	0.7	0.633333	0.677358	0.675439	0.648428	0.811111
0.838318 0.82338 0.833333 0.803825 0.84717 0.839181 0.814465 0.855556 0.83271 0.789577 0.773333 0.73388 0.798113 0.726901 0.759119 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.821495 0.803099 0.76 0.725137 0.858491 0.797076 0.834591 0.855556 0.838318 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9 0.873832 0.863944 0.9 0.821311 0.809434 0.811111 0.834591 0.9 0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9 0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.80935	0.799065	0.771549	0.76	0.672678	0.779245	0.703509	0.764151	0.855556
0.83271 0.789577 0.773333 0.73388 0.798113 0.726901 0.759119 0.855556 0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.821495 0.803099 0.76 0.725137 0.858491 0.797076 0.834591 0.855556 0.838318 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9 0.873832 0.863944 0.9 0.821311 0.809434 0.811111 0.834591 0.9 0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9 0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.80935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818	0.890654	0.870704	0.843333	0.830055	0.873585	0.731579	0.834591	0.855556
0.821495 0.746761 0.766667 0.773224 0.726415 0.67076 0.683648 0.855556 0.821495 0.803099 0.76 0.725137 0.858491 0.797076 0.834591 0.855556 0.838318 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9 0.873832 0.863944 0.9 0.821311 0.809434 0.811111 0.834591 0.9 0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9 0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.80935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818873 0.826667 0.720765 0.828302 0.778363 0.819497 0.9	0.838318	0.82338	0.833333	0.803825	0.84717	0.839181	0.814465	0.855556
0.821495 0.803099 0.76 0.725137 0.858491 0.797076 0.834591 0.85556 0.838318 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9 0.873832 0.863944 0.9 0.821311 0.809434 0.811111 0.834591 0.9 0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9 0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.800935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818873 0.826667 0.720765 0.828302 0.778363 0.819497 0.9	0.83271	0.789577	0.773333	0.73388	0.798113	0.726901	0.759119	0.855556
0.838318 0.791831 0.793333 0.764481 0.764151 0.726901 0.723899 0.9 0.873832 0.863944 0.9 0.821311 0.809434 0.811111 0.834591 0.9 0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9 0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.800935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818873 0.826667 0.720765 0.828302 0.778363 0.819497 0.9	0.821495	0.746761	0.766667	0.773224	0.726415	0.67076	0.683648	0.855556
0.873832 0.863944 0.9 0.821311 0.809434 0.811111 0.834591 0.9 0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9 0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.800935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818873 0.826667 0.720765 0.828302 0.778363 0.819497 0.9	0.821495	0.803099	0.76	0.725137	0.858491	0.797076	0.834591	0.855556
0.793458 0.767042 0.793333 0.834426 0.75283 0.759649 0.824528 0.9 0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9 0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.800935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818873 0.826667 0.720765 0.828302 0.778363 0.819497 0.9	0.838318	0.791831	0.793333	0.764481	0.764151	0.726901	0.723899	0.9
0.866355 0.839155 0.87 0.81694 0.779245 0.783041 0.749057 0.9 0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.800935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818873 0.826667 0.720765 0.828302 0.778363 0.819497 0.9	0.873832	0.863944	0.9	0.821311	0.809434	0.811111	0.834591	0.9
0.804673 0.751268 0.723333 0.716393 0.741509 0.731579 0.754088 0.9 0.800935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818873 0.826667 0.720765 0.828302 0.778363 0.819497 0.9	0.793458	0.767042	0.793333	0.834426	0.75283	0.759649	0.824528	0.9
0.800935 0.807606 0.796667 0.720765 0.79434 0.84386 0.824528 0.9 0.845794 0.818873 0.826667 0.720765 0.828302 0.778363 0.819497 0.9	0.866355	0.839155	0.87	0.81694	0.779245	0.783041	0.749057	0.9
0.845794	0.804673	0.751268	0.723333	0.716393	0.741509	0.731579	0.754088	
	0.800935	0.807606	0.796667	0.720765	0.79434	0.84386	0.824528	
0.821495 0.86169 0.833333 0.803825 0.828302 0.825146 0.849686 0.9	0.845794	0.818873	0.826667	0.720765	0.828302	0.778363	0.819497	
	0.821495	0.86169	0.833333	0.803825	0.828302	0.825146	0.849686	0.9

APPENDIX N

NORMALIZED TEST DATASET OF SELECTED INPUT FEATURES AND SELECTED TARGET FEATURES FOR MALE
HISPANIC POPULATION USING GA-ANN APPROACH

1	7	13	14	15	16	19	Age
0.171028	0.187887	0.206667	0.178689	0.209434	0.198246	0.17044	0.1
0.286916	0.350141	0.356667	0.331694	0.349057	0.263743	0.250943	0.188889
0.290654	0.372676	0.41	0.362295	0.364151	0.324561	0.296226	0.188889
0.376636	0.433521	0.413333	0.340437	0.413208	0.324561	0.37673	0.233333
0.309346	0.426761	0.416667	0.314208	0.428302	0.366667	0.351572	0.233333
0.447664	0.494366	0.486667	0.427869	0.503774	0.41345	0.381761	0.277778
0.283178	0.332113	0.32	0.218033	0.35283	0.282456	0.245912	0.277778
0.45514	0.456056	0.453333	0.414754	0.466038	0.436842	0.416981	0.322222
0.393458	0.42	0.466667	0.449727	0.450943	0.352632	0.442138	0.322222
0.43271	0.417746	0.38	0.301093	0.443396	0.422807	0.386792	0.322222
0.464486	0.494366	0.463333	0.419126	0.466038	0.44152	0.396855	0.322222
0.443925	0.42	0.446667	0.366667	0.420755	0.408772	0.386792	0.366667
0.483178	0.469577	0.506667	0.480328	0.496226	0.44152	0.416981	0.366667
0.516822	0.50338	0.503333	0.440984	0.492453	0.427485	0.452201	0.411111
0.5	0.521408	0.593333	0.462842	0.601887	0.535088	0.527673	0.411111
0.528037	0.564225	0.566667	0.554645	0.579245	0.511696	0.51761	0.411111
0.479439	0.471831	0.443333	0.366667	0.503774	0.455556	0.442138	0.411111
0.582243	0.595775	0.586667	0.519672	0.601887	0.553801	0.537736	0.455556
0.576636	0.58	0.59	0.475956	0.643396	0.55848	0.567925	0.455556
0.520561	0.53493	0.56	0.528415	0.616981	0.530409	0.492453	0.455556
0.571028	0.552958	0.53	0.45847	0.598113	0.577193	0.502516	0.455556
0.585981	0.570986	0.573333	0.532787	0.696226	0.55848	0.58805	0.5
0.65514	0.577746	0.516667	0.309836	0.598113	0.535088	0.507547	0.5
0.621495	0.600282	0.606667	0.65082	0.628302	0.567836	0.593082	0.5
0.526168	0.528169	0.51	0.462842	0.616981	0.58655	0.547799	0.544444
0.619626	0.634085	0.583333	0.506557	0.692453	0.591228	0.628302	0.544444

0.627103	0.645352	0.646667	0.628962	0.639623	0.628655	0.62327	0.544444
0.585981	0.570986	0.603333	0.611475	0.658491	0.609942	0.633333	0.588889
0.668224	0.638592	0.643333	0.602732	0.677358	0.661404	0.628302	0.588889
0.836449	0.807606	0.793333	0.764481	0.854717	0.694152	0.749057	0.633333
0.657009	0.665634	0.753333	0.73388	0.737736	0.708187	0.738994	0.633333
0.72243	0.712958	0.776667	0.738251	0.779245	0.717544	0.738994	0.633333
0.726168	0.735493	0.756667	0.698907	0.771698	0.726901	0.744025	0.633333
0.623364	0.62507	0.56	0.545902	0.673585	0.67076	0.648428	0.633333
0.739252	0.721972	0.68	0.685792	0.737736	0.656725	0.683648	0.633333
0.720561	0.681408	0.696667	0.668306	0.737736	0.656725	0.658491	0.677778
0.868224	0.82338	0.833333	0.808197	0.866038	0.712865	0.769182	0.677778
0.757944	0.758028	0.77	0.768852	0.798113	0.745614	0.769182	0.677778
0.785981	0.767042	0.763333	0.642077	0.715094	0.726901	0.718868	0.677778
0.670093	0.681408	0.706667	0.703279	0.760377	0.694152	0.713836	0.677778
0.759813	0.803099	0.74	0.755738	0.779245	0.740936	0.764151	0.677778
0.716822	0.683662	0.686667	0.65082	0.75283	0.731579	0.723899	0.677778
0.85514	0.870704	0.813333	0.773224	0.828302	0.839181	0.804403	0.722222
0.733645	0.771549	0.75	0.768852	0.779245	0.778363	0.82956	0.722222
0.729907	0.776056	0.706667	0.725137	0.756604	0.689474	0.718868	0.722222
0.838318	0.760282	0.76	0.738251	0.677358	0.609942	0.643396	0.766667
0.821495	0.812113	0.746667	0.712022	0.866038	0.815789	0.849686	0.766667
0.81028	0.9	0.85	0.799454	0.839623	0.801754	0.889937	0.811111
0.823364	0.852676	0.85	0.847541	0.884906	0.853216	0.804403	0.811111
0.81215	0.78507	0.753333	0.768852	0.775472	0.778363	0.804403	0.855556
0.819626	0.821127	0.863333	0.812568	0.881132	0.857895	0.894969	0.855556
0.81215	0.744507	0.743333	0.655191	0.749057	0.773684	0.789308	0.855556
0.799065	0.708451	0.703333	0.685792	0.733962	0.769006	0.749057	0.855556
0.76729	0.737746	0.743333	0.681421	0.828302	0.820468	0.809434	0.9
0.800935	0.753521	0.746667	0.742623	0.813208	0.787719	0.819497	0.9

APPENDIX O

NORMALIZED AND DENORMALIZED TRAINING DATASET OF TARGET FEATURE, OUTPUTS AND ERRORS FOR FEMALE HISPANIC POPULATION USING ANN APPROACH AND GA-ANN APPROACH

		AN	IN			GA-ANN						
	Normalized		J	Denormalized			Normalized		I	Denormalized		
Target	Output	Error	Target	Output	Error	Target	Output	Error	Target	Output	Error	
0.1	0.165005	-0.065	0	1.462611	-1.46261	0.1	0.171634	-0.07163	0	1.611771	-1.61177	
0.144444	0.190916	-0.04647	1	2.045608	-1.04561	0.144444	0.189427	-0.04498	1	2.012104	-1.0121	
0.144444	0.165951	-0.02151	1	1.483898	-0.4839	0.144444	0.179772	-0.03533	1	1.794876	-0.79488	
0.144444	0.166355	-0.02191	1	1.49299	-0.49299	0.144444	0.187721	-0.04328	1	1.973727	-0.97373	
0.188889	0.210397	-0.02151	2	2.483925	-0.48393	0.188889	0.22601	-0.03712	2	2.835234	-0.83523	
0.188889	0.213796	-0.02491	2	2.560415	-0.56042	0.188889	0.198552	-0.00966	2	2.21741	-0.21741	
0.233333	0.199852	0.033482	3	2.246662	0.753338	0.233333	0.217863	0.015471	3	2.651913	0.348087	
0.233333	0.249125	-0.01579	3	3.355302	-0.3553	0.233333	0.257367	-0.02403	3	3.54076	-0.54076	
0.233333	0.258167	-0.02483	3	3.558764	-0.55876	0.233333	0.3014	-0.06807	3	4.531506	-1.53151	
0.233333	0.21353	0.019804	3	2.554417	0.445583	0.233333	0.215141	0.018192	3	2.59068	0.40932	
0.233333	0.226293	0.007041	3	2.841582	0.158418	0.233333	0.234879	-0.00155	3	3.034768	-0.03477	
0.277778	0.272924	0.004854	4	3.890786	0.109214	0.277778	0.288693	-0.01091	4	4.245586	-0.24559	
0.277778	0.298052	-0.02027	4	4.456169	-0.45617	0.277778	0.294839	-0.01706	4	4.38387	-0.38387	
0.277778	0.233847	0.043931	4	3.011561	0.988439	0.277778	0.233691	0.044087	4	3.008042	0.991958	
0.277778	0.259419	0.018359	4	3.586929	0.413071	0.277778	0.298597	-0.02082	4	4.468434	-0.46843	
0.277778	0.225638	0.05214	4	2.826858	1.173142	0.277778	0.260345	0.017432	4	3.607773	0.392227	
0.322222	0.372989	-0.05077	5	6.142257	-1.14226	0.322222	0.374523	-0.0523	5	6.176775	-1.17678	
0.322222	0.328678	-0.00646	5	5.145265	-0.14526	0.322222	0.354026	-0.0318	5	5.715575	-0.71557	
0.322222	0.360633	-0.03841	5	5.864244	-0.86424	0.322222	0.34286	-0.02064	5	5.464356	-0.46436	
0.322222	0.316239	0.005983	5	4.865374	0.134626	0.322222	0.33135	-0.00913	5	5.205382	-0.20538	
0.322222	0.254069	0.068153	5	3.466552	1.533448	0.322222	0.282388	0.039835	5	4.103723	0.896277	
0.322222	0.277989	0.044233	5	4.004751	0.995249	0.322222	0.228218	0.094004	5	2.884915	2.115085	
0.322222	0.308152	0.01407	5	4.683414	0.316586	0.322222	0.283879	0.038343	5	4.137286	0.862714	
0.322222	0.293569	0.028653	5	4.35531	0.64469	0.322222	0.289841	0.032381	5	4.271426	0.728574	

0.322222 0.237513 0.084709 \$ 3.094052 1.905948 0.322222 0.258517 0.063705 \$ 3.566638 1.433362 0.366667 0.385985 + 0.01632 6 6.367157 -0.36716 0.366667 0.325615 0.041052 6 5.3706329 0.923671 0.366667 0.385912 -0.01895 6 6.426271 -0.42627 0.366667 0.325615 0.041052 6 5.076329 0.923671 0.366667 0.38596 0.058371 6 4.686659 1.313341 0.366667 0.318036 6 6.521673 6 6.521673 0.366667 0.332302 0.034365 6 5.226793 0.773207 0.366667 0.319778 0.04889 6 4.944994 1.055006 0.366667 0.332610 0.030561 6 5.312377 0.687623 0.341566 0.02201 6 5.412744 0.58726 0.411111 0.461114 -0.05 7 8.125059 -1.12506 0.411111 0.421975 -0.00888 7 7.20212 -0.20212 0.411111 0.4313339 -0.02223 7 7.44512												
0.366667 0.385612 -0.01895 6 6.426271 0.42627 0.366667 0.325615 0.041052 6 5.076329 0.923671 0.366667 0.399494 -0.02832 6 6.637145 -0.63714 0.366667 0.339714 -0.03075 6 6.691818 -0.69182 0.366667 0.332302 0.034365 6 5.226793 0.773207 0.366667 0.314863 0.051804 6 4.944994 1.055096 0.366667 0.336106 0.030561 6 5.226793 0.773207 0.366667 0.340566 0.0261 6 5.412744 0.587256 0.411111 0.461114 -0.05 7 8.125059 -1.12506 0.411111 0.420994 -0.00888 7 7.20212 -0.20212 0.411111 0.470855 -0.05974 7 8.34426 -1.34426 0.411111 0.421975 -0.0088 7 7.20212 -0.20212 0.411111 0.470855 0.059333 1.167603 0.41111 0.	0.322222	0.237513	0.084709	5	3.094052	1.905948	0.322222	0.258517	0.063705	5	3.566638	1.433362
0.366667 0.394984 -0.02832 6 6.637145 -0.63714 0.366667 0.397414 -0.03075 6 6.691818 -0.69182 0.366667 0.308296 0.058371 6 4.686659 1.313341 0.366667 0.314863 0.051804 6 4.84407 1.165593 0.366667 0.332302 0.034365 6 5.226793 0.773207 0.366667 0.31978 0.046889 6 4.944994 1.055006 0.366667 0.332302 0.034865 6 5.212777 0.687623 0.366667 0.340566 0.0261 6 5.412744 0.587256 0.411111 0.461114 -0.05 7 8.125059 1.12506 0.411111 0.42094 -0.00888 7 7.20212 -0.20212 0.411111 0.470856 -0.05974 7 8.34426 -1.34426 0.411111 0.42094 -0.043995 7 9.159269 -2.15927 0.411111 0.359218 0.05833 7 6.349699 0.650331 </td <td>0.366667</td> <td>0.382985</td> <td>-0.01632</td> <td>6</td> <td>6.367157</td> <td>-0.36716</td> <td>0.366667</td> <td>0.33729</td> <td>0.029377</td> <td>6</td> <td>5.339021</td> <td>0.660979</td>	0.366667	0.382985	-0.01632	6	6.367157	-0.36716	0.366667	0.33729	0.029377	6	5.339021	0.660979
0.366667 0.38296 0.058371 6 4.686659 1.313341 0.366667 0.314863 0.051804 6 4.84407 1.165593 0.366667 0.332002 0.034365 6 5.226793 0.7773207 0.366667 0.340566 0.0261 6 5.412744 0.587256 0.411111 0.461114 -0.05 7 8.125059 -1.12506 0.411111 0.400988 7 7.20212 -0.20212 0.411111 0.431339 -0.02023 7 7.45512 -0.45512 0.411111 0.421975 -0.01086 7 7.244428 -0.24443 0.411111 0.437856 -0.05974 7 8.34426 -1.34426 0.411111 0.57079 -0.09597 7 9.159269 -2.15927 0.411111 0.382208 0.028904 7 6.349669 0.65031 0.41111 0.36599 0.04512 7 5.998486 1.001514 0.455556 0.523232 -0.06768 8 9.522714 -1.52271 0.455556 <td>0.366667</td> <td>0.385612</td> <td>-0.01895</td> <td>6</td> <td>6.426271</td> <td>-0.42627</td> <td>0.366667</td> <td>0.325615</td> <td>0.041052</td> <td>6</td> <td>5.076329</td> <td>0.923671</td>	0.366667	0.385612	-0.01895	6	6.426271	-0.42627	0.366667	0.325615	0.041052	6	5.076329	0.923671
0.366667 0.332302 0.034365 6 5.226793 0.773207 0.366667 0.319778 0.046889 6 4.944994 1.055006 0.366667 0.336106 0.030561 6 5.312377 0.687623 0.366667 0.340566 0.0261 6 5.412744 0.887256 0.411111 0.431339 -0.02023 7 7.45512 -0.45512 0.411111 0.421975 -0.01086 7 7.244428 -0.24443 0.411111 0.470856 -0.05974 7 8.34426 -1.34426 0.411111 0.470879 -0.09597 7 9.159269 2.15927 0.411111 0.359218 0.051893 7 5.832397 1.167603 0.411111 0.367079 -0.09597 7 9.159269 2.15927 0.41111 0.359218 0.051893 7 5.832397 1.167603 0.41111 0.366599 0.044512 7 5.998486 1.001514 0.455556 0.42322 -0.06768 8 9.522714 -1.5227	0.366667	0.394984	-0.02832	6	6.637145	-0.63714	0.366667	0.397414	-0.03075	6	6.691818	-0.69182
0.366667 0.336106 0.030561 6 5.312377 0.687623 0.366667 0.340566 0.0261 6 5.412744 0.587256 0.411111 0.461114 -0.05 7 8.125059 -1.12506 0.411111 0.420094 -0.00898 7 7.20212 -0.20212 0.411111 0.431339 -0.02023 7 7.45512 -0.411111 0.42094 -0.00898 7 7.20212 -0.20212 0.411111 0.430350 -0.05974 7 8.34426 -1.34426 0.411111 0.507079 -0.09597 7 9.159269 -2.15927 0.411111 0.382208 0.028904 7 6.349669 0.650331 0.411111 0.36659 0.044512 7 5.998486 1.001514 0.455556 0.523232 -0.06768 8 9.522714 -1.52271 0.455556 0.492174 -0.03662 8 8.823917 -0.82392 0.455556 0.404715 -0.0616 8 8.138577 -0.13858 0.455556<	0.366667	0.308296	0.058371	6	4.686659	1.313341	0.366667	0.314863	0.051804	6	4.834407	1.165593
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.366667	0.332302	0.034365	6	5.226793	0.773207	0.366667	0.319778	0.046889	6	4.944994	1.055006
0.411111 0.431339 -0.02023 7 7.45512 -0.45512 0.411111 0.421975 -0.01086 7 7.244428 -0.24443 0.411111 0.470856 -0.05974 7 8.34426 -1.34426 0.411111 0.507079 -0.09597 7 9.159269 -2.15927 0.411111 0.359218 0.051893 7 5.832397 1.167603 0.411111 0.367116 0.043995 7 6.010118 0.989882 0.411111 0.382208 0.028904 7 6.349669 0.650331 0.411111 0.366599 0.044512 7 5.98486 1.001514 0.455556 0.523232 -0.06768 8 9.522714 -1.52271 0.455556 0.492174 -0.03662 8 8.823917 -0.82392 0.455556 0.461715 -0.00163 8 8.138577 -0.13858 0.455556 0.492174 -0.03662 8 8.833304 -0.8234 0.455556 0.470471 -0.01492 8 8.335596 -0	0.366667	0.336106	0.030561	6	5.312377	0.687623	0.366667	0.340566	0.0261	6	5.412744	0.587256
0.411111 0.470856 -0.05974 7 8.34426 -1.34426 0.411111 0.507079 -0.09597 7 9.159269 -2.15927 0.411111 0.339218 0.051893 7 5.832397 1.167603 0.411111 0.366599 0.044512 7 5.998486 1.001514 0.455556 0.523232 -0.06768 8 9.522714 -1.52271 0.455556 0.492174 -0.03662 8 8.823917 -0.82392 0.455556 0.497084 -0.00616 8 8.138577 -0.13858 0.455556 0.490274 -0.03662 8 8.893304 -0.82392 0.455556 0.497084 -0.04153 8 8.335596 -0.3346 0.455556 0.497027 8 8.833399 -0.3534 0.455556 0.470471 -0.01492 8 8.335596 -0.3356 0.455556 0.487025 -0.03147 8 8.708065 -0.70807 0.455556 0.450702 -0.00115 8 8.025785 -0.02579 0.	0.411111	0.461114	-0.05	7	8.125059	-1.12506	0.411111	0.420094	-0.00898	7	7.20212	-0.20212
0.411111 0.359218 0.051893 7 5.832397 1.167603 0.411111 0.367116 0.043995 7 6.010118 0.98982 0.411111 0.382208 0.028904 7 6.349669 0.650331 0.411111 0.366599 0.044512 7 5.998486 1.001514 0.455556 0.523232 -0.06768 8 9.522714 -1.52271 0.455556 0.49174 -0.03662 8 8.823917 -0.82392 0.455556 0.461715 -0.00616 8 8.138877 -0.13858 0.455556 0.495258 -0.0397 8 8.893304 -0.8933 0.455556 0.470471 -0.01492 8 8.335596 -0.3356 0.455556 0.471262 -0.01571 8 8.353396 -0.3354 0.455556 0.4576702 -0.00115 8 8.025785 -0.02579 0.455556 0.43313 0.016243 8 7.634543 0.365457 0.455556 0.433893 0.021663 8 7.512591 0.487409	0.411111	0.431339	-0.02023	7	7.45512	-0.45512	0.411111	0.421975	-0.01086	7	7.244428	-0.24443
0.411111 0.382208 0.028904 7 6.349669 0.650331 0.411111 0.366599 0.044512 7 5.998486 1.001514 0.455556 0.523232 -0.06768 8 9.522714 -1.52271 0.455556 0.492174 -0.03662 8 8.823917 -0.82392 0.455556 0.497084 -0.04153 8 8.138577 -0.13858 0.455556 0.497258 -0.0397 8 8.893304 -0.8933 0.455556 0.497084 -0.04153 8 8.934396 -0.9344 0.455556 0.471262 -0.01571 8 8.353396 -0.3334 0.455556 0.470471 -0.01492 8 8.335596 -0.3356 0.455556 0.487025 -0.03147 8 8.708065 -0.70807 0.455556 0.439313 0.016243 8 7.634543 0.36547 0.455556 0.433893 0.021663 8 7.512591 0.487409 0.455556 0.50834 -0.05028 8 9.131257 -1.13	0.411111	0.470856	-0.05974	7	8.34426	-1.34426	0.411111	0.507079	-0.09597	7	9.159269	-2.15927
0.455556 0.523232 -0.06768 8 9.522714 -1.52271 0.455556 0.492174 -0.03662 8 8.823917 -0.82392 0.455556 0.461715 -0.00616 8 8.138577 -0.13858 0.455556 0.490258 -0.0397 8 8.893304 -0.82392 0.455556 0.470471 -0.01492 8 8.335596 -0.3356 0.455556 0.487025 -0.03147 8 8.708065 -0.70807 0.455556 0.470471 -0.01492 8 8.335596 -0.3356 0.455556 0.487025 -0.03147 8 8.708065 -0.70807 0.455556 0.456702 -0.00115 8 8.025785 -0.02579 0.455556 0.50509 -0.05005 8 9.126196 -1.1262 0.455556 0.439313 0.016243 8 7.634543 0.365457 0.455556 0.433893 0.021663 8 7.512591 0.487409 0.455556 0.505834 -0.05028 8 9.131257 -1.	0.411111	0.359218	0.051893	7	5.832397	1.167603	0.411111	0.367116	0.043995	7	6.010118	0.989882
0.455556 0.461715 -0.00616 8 8.138577 -0.13858 0.455556 0.495258 -0.0397 8 8.89304 -0.8933 0.455556 0.497084 -0.04153 8 8.934396 -0.9344 0.455556 0.471262 -0.01571 8 8.553396 -0.3534 0.455556 0.470471 -0.01492 8 8.335596 -0.3556 0.487025 -0.03147 8 8.708065 -0.70807 0.455556 0.456702 -0.00115 8 8.025785 -0.02579 0.455556 0.505609 -0.05005 8 9.126196 -1.1262 0.455556 0.439313 0.016243 8 7.634543 0.365457 0.455556 0.433893 0.021663 8 7.512591 0.487409 0.455556 0.506475 -0.00647 9 9.145679 -0.14568 0.5 0.499801 0.000199 9 8.9738887 -1.73889 0.5 0.506475 -0.00647 9 9.145679 -0.14568 0.5	0.411111	0.382208	0.028904	7	6.349669	0.650331	0.411111	0.366599	0.044512	7	5.998486	1.001514
0.455556 0.497084 -0.04153 8 8.934396 -0.9344 0.455556 0.471262 -0.01571 8 8.353396 -0.3534 0.455556 0.470471 -0.01492 8 8.335596 -0.3356 0.455556 0.487025 -0.03147 8 8.708065 -0.70807 0.455556 0.456702 -0.00115 8 8.025785 -0.02579 0.455556 0.505609 -0.05005 8 9.126196 -1.1262 0.455556 0.439313 0.016243 8 7.634543 0.365457 0.455556 0.433893 0.021663 8 7.512591 0.487409 0.455556 0.53934 -0.05028 8 9.1315679 -0.14568 0.5 0.499801 0.00199 9 8.9738887 -1.73889 0.5 0.506475 -0.00647 9 9.145679 -0.14568 0.5 0.499801 0.00199 9 8.995521 0.004479 0.5 0.600891 -0.10089 9 11.27005 -2.27005 <	0.455556	0.523232	-0.06768	8	9.522714	-1.52271	0.455556	0.492174	-0.03662	8	8.823917	-0.82392
0.455556 0.470471 -0.01492 8 8.335596 -0.3356 0.455556 0.487025 -0.03147 8 8.708065 -0.70807 0.455556 0.456702 -0.00115 8 8.025785 -0.02579 0.455556 0.505609 -0.05005 8 9.126196 -1.1262 0.455556 0.439313 0.016243 8 7.634543 0.365457 0.455556 0.43893 0.021663 8 7.512591 0.487409 0.455556 0.505834 -0.05028 8 9.131257 -1.13126 0.455556 0.532839 -0.07728 8 9.738887 -1.73889 0.5 0.506475 -0.00647 9 9.145679 -0.14568 0.5 0.499801 0.000199 9 8.995521 0.004479 0.5 0.600891 -0.10089 9 11.27005 -2.27005 0.5 0.627338 -0.12734 9 11.86511 -2.86511 0.5 0.571437 -0.07144 9 10.60734 -1.60734	0.455556	0.461715	-0.00616	8	8.138577	-0.13858	0.455556	0.495258	-0.0397	8	8.893304	-0.8933
0.455556 0.456702 -0.00115 8 8.025785 -0.02579 0.455556 0.505609 -0.05005 8 9.126196 -1.1262 0.455556 0.439313 0.016243 8 7.634543 0.365457 0.455556 0.433893 0.021663 8 7.512591 0.487409 0.455556 0.505834 -0.05028 8 9.131257 -1.13126 0.455556 0.532839 -0.07728 8 9.738887 -1.73889 0.5 0.506475 -0.00647 9 9.145679 -0.14568 0.5 0.499801 0.000199 9 8.995521 0.004479 0.5 0.600891 -0.10089 9 11.27005 -2.27005 0.5 0.627338 -0.12734 9 11.86511 -2.86511 0.5 0.571437 -0.07144 9 10.60734 -1.60734 0.5 0.58216 -0.08216 9 10.8486 -1.8486 0.5 0.512127 -0.01213 9 9.272865 0.27286 0.5	0.455556	0.497084	-0.04153	8	8.934396	-0.9344	0.455556	0.471262	-0.01571	8	8.353396	-0.3534
0.455556 0.439313 0.016243 8 7.634543 0.365457 0.455556 0.433893 0.021663 8 7.512591 0.487409 0.455556 0.505834 -0.05028 8 9.131257 -1.13126 0.455556 0.532839 -0.07728 8 9.738887 -1.73889 0.5 0.506475 -0.00647 9 9.145679 -0.14568 0.5 0.499801 0.000199 9 8.995521 0.004479 0.5 0.600891 -0.10089 9 11.27005 -2.27005 0.5 0.627338 -0.12734 9 11.86511 -2.86511 0.5 0.571437 -0.07144 9 10.60734 -1.60734 0.5 0.58216 -0.08216 9 10.8486 -1.8465 0.5 0.487631 0.012369 9 8.721686 0.278314 0.5 0.453523 0.046477 9 7.954264 1.045736 0.5 0.512127 -0.01213 9 9.272865 0.5 0.542091 <td< td=""><td>0.455556</td><td>0.470471</td><td>-0.01492</td><td>8</td><td>8.335596</td><td>-0.3356</td><td>0.455556</td><td>0.487025</td><td>-0.03147</td><td>8</td><td>8.708065</td><td>-0.70807</td></td<>	0.455556	0.470471	-0.01492	8	8.335596	-0.3356	0.455556	0.487025	-0.03147	8	8.708065	-0.70807
0.455556 0.505834 -0.05028 8 9.131257 -1.13126 0.455556 0.532839 -0.07728 8 9.738887 -1.73889 0.5 0.506475 -0.00647 9 9.145679 -0.14568 0.5 0.499801 0.000199 9 8.995521 0.004479 0.5 0.600891 -0.10089 9 11.27005 -2.27005 0.5 0.627338 -0.12734 9 11.86511 -2.86511 0.5 0.571437 -0.07144 9 10.60734 -1.60734 0.5 0.58216 -0.08216 9 10.8486 -1.8486 0.5 0.487631 0.012369 9 8.721686 0.278314 0.5 0.453523 0.046477 9 7.954264 1.045736 0.5 0.512127 -0.01213 9 9.272865 -0.27286 0.5 0.542091 -0.04209 9 9.947051 -0.94705 0.544444 0.5595767 -0.05132 10 11.15476 -1.15476 0.544444 <	0.455556	0.456702	-0.00115	8	8.025785	-0.02579	0.455556	0.505609	-0.05005	8	9.126196	-1.1262
0.5 0.506475 -0.00647 9 9.145679 -0.14568 0.5 0.499801 0.000199 9 8.995521 0.004479 0.5 0.600891 -0.10089 9 11.27005 -2.27005 0.5 0.627338 -0.12734 9 11.86511 -2.86511 0.5 0.571437 -0.07144 9 10.60734 -1.60734 0.5 0.58216 -0.08216 9 10.8486 -1.8486 0.5 0.487631 0.012369 9 8.721686 0.278314 0.5 0.453523 0.046477 9 7.954264 1.045736 0.5 0.512127 -0.01213 9 9.272865 -0.27286 0.5 0.542091 -0.04209 9 9.947051 -0.94705 0.544444 0.5595767 -0.05132 10 11.15476 -1.15476 0.544444 0.587552 -0.04311 10 10.96991 -0.96991 0.544444 0.541957 0.009487 10 9.944042 0.055958 0.544444	0.455556	0.439313	0.016243	8	7.634543	0.365457	0.455556	0.433893	0.021663	8	7.512591	0.487409
0.5 0.600891 -0.10089 9 11.27005 -2.27005 0.5 0.627338 -0.12734 9 11.86511 -2.86511 0.5 0.571437 -0.07144 9 10.60734 -1.60734 0.5 0.58216 -0.08216 9 10.8486 -1.8486 0.5 0.487631 0.012369 9 8.721686 0.278314 0.5 0.453523 0.046477 9 7.954264 1.045736 0.5 0.512127 -0.01213 9 9.272865 -0.27286 0.5 0.542091 -0.04209 9 9.947051 -0.94705 0.544444 0.595767 -0.05132 10 11.15476 -1.15476 0.544444 0.58752 -0.04311 10 10.96991 -0.96991 0.544444 0.553968 -0.00952 10 10.21427 -0.21427 0.544444 0.557872 -0.01343 10 10.11713 -0.11713 0.544444 0.618901 -0.07446 10 11.67526 -1.67526 0.544444 <td>0.455556</td> <td>0.505834</td> <td>-0.05028</td> <td>8</td> <td>9.131257</td> <td>-1.13126</td> <td>0.455556</td> <td>0.532839</td> <td>-0.07728</td> <td>8</td> <td>9.738887</td> <td>-1.73889</td>	0.455556	0.505834	-0.05028	8	9.131257	-1.13126	0.455556	0.532839	-0.07728	8	9.738887	-1.73889
0.5 0.571437 -0.07144 9 10.60734 -1.60734 0.5 0.58216 -0.08216 9 10.8486 -1.8486 0.5 0.487631 0.012369 9 8.721686 0.278314 0.5 0.453523 0.046477 9 7.954264 1.045736 0.5 0.512127 -0.01213 9 9.272865 -0.27286 0.5 0.542091 -0.04209 9 9.947051 -0.94705 0.544444 0.595767 -0.05132 10 11.15476 -1.15476 0.544444 0.587552 -0.04311 10 10.96991 -0.96991 0.544444 0.553968 -0.00952 10 10.21427 -0.21427 0.544444 0.557872 -0.01343 10 10.30212 -0.30212 0.544444 0.541957 0.002487 10 9.944042 0.055958 0.544444 0.54965 -0.00521 10 10.11713 -0.11713 0.544444 0.618901 -0.07446 10 11.67526 -1.67526 <td< td=""><td>0.5</td><td>0.506475</td><td>-0.00647</td><td>9</td><td>9.145679</td><td>-0.14568</td><td>0.5</td><td>0.499801</td><td>0.000199</td><td>9</td><td>8.995521</td><td>0.004479</td></td<>	0.5	0.506475	-0.00647	9	9.145679	-0.14568	0.5	0.499801	0.000199	9	8.995521	0.004479
0.5 0.487631 0.012369 9 8.721686 0.278314 0.5 0.453523 0.046477 9 7.954264 1.045736 0.5 0.512127 -0.01213 9 9.272865 -0.27286 0.5 0.542091 -0.04209 9 9.947051 -0.94705 0.544444 0.595767 -0.05132 10 11.15476 -1.15476 0.544444 0.587552 -0.04311 10 10.96991 -0.96991 0.544444 0.553968 -0.00952 10 10.21427 -0.21427 0.544444 0.557872 -0.01343 10 10.30212 -0.30212 0.544444 0.541957 0.002487 10 9.944042 0.055958 0.544444 0.54965 -0.00521 10 10.11713 -0.11713 0.544444 0.618901 -0.07446 10 11.67526 -1.67526 0.544444 0.636096 -0.09165 10 12.06216 -2.06216 0.544444 0.627328 -0.08288 10 11.86488 -1.86488 </td <td>0.5</td> <td>0.600891</td> <td>-0.10089</td> <td>9</td> <td>11.27005</td> <td>-2.27005</td> <td>0.5</td> <td>0.627338</td> <td>-0.12734</td> <td>9</td> <td>11.86511</td> <td>-2.86511</td>	0.5	0.600891	-0.10089	9	11.27005	-2.27005	0.5	0.627338	-0.12734	9	11.86511	-2.86511
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	0.571437	-0.07144	9	10.60734	-1.60734	0.5	0.58216	-0.08216	9	10.8486	-1.8486
0.544444 0.595767 -0.05132 10 11.15476 -1.15476 0.544444 0.587552 -0.04311 10 10.96991 -0.96991 0.544444 0.553968 -0.00952 10 10.21427 -0.21427 0.544444 0.557872 -0.01343 10 10.30212 -0.30212 0.544444 0.541957 0.002487 10 9.944042 0.055958 0.544444 0.54965 -0.00521 10 10.11713 -0.11713 0.544444 0.618901 -0.07446 10 11.67526 -1.67526 0.544444 0.636096 -0.09165 10 12.06216 -2.06216 0.544444 0.627328 -0.08288 10 11.86488 -1.86488 0.544444 0.648409 -0.10396 10 12.3392 -2.3392 0.544444 0.456461 0.087984 10 8.02037 1.97963 0.544444 0.465071 0.079373 10 8.214105 1.785895 0.544444 0.598431 -0.05399 10 11.2147	0.5	0.487631	0.012369	9	8.721686	0.278314	0.5	0.453523	0.046477	9	7.954264	1.045736
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	0.512127	-0.01213	9	9.272865	-0.27286	0.5	0.542091	-0.04209	9	9.947051	-0.94705
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.544444	0.595767	-0.05132	10	11.15476	-1.15476	0.544444	0.587552	-0.04311	10	10.96991	-0.96991
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.544444	0.553968	-0.00952	10	10.21427	-0.21427	0.544444	0.557872	-0.01343	10	10.30212	-0.30212
0.544444 0.627328 -0.08288 10 11.86488 -1.86488 0.544444 0.648409 -0.10396 10 12.3392 -2.3392 0.544444 0.456461 0.087984 10 8.02037 1.97963 0.544444 0.465071 0.079373 10 8.214105 1.785895 0.544444 0.466552 0.077892 10 8.247431 1.752569 0.544444 0.457793 0.086651 10 8.050347 1.949653 0.544444 0.598431 -0.05399 10 11.2147 -1.2147 0.544444 0.612853 -0.06841 10 11.53919 -1.53919 0.544444 0.571471 -0.02703 10 10.60809 -0.60809 0.544444 0.556475 -0.01203 10 10.27069 -0.27069	0.544444	0.541957	0.002487	10	9.944042	0.055958	0.544444	0.54965	-0.00521	10	10.11713	-0.11713
0.544444 0.456461 0.087984 10 8.02037 1.97963 0.544444 0.465071 0.079373 10 8.214105 1.785895 0.544444 0.466552 0.077892 10 8.247431 1.752569 0.544444 0.457793 0.086651 10 8.050347 1.949653 0.544444 0.598431 -0.05399 10 11.2147 -1.2147 0.544444 0.612853 -0.06841 10 11.53919 -1.53919 0.544444 0.571471 -0.02703 10 10.60809 -0.60809 0.544444 0.556475 -0.01203 10 10.27069 -0.27069	0.544444	0.618901	-0.07446	10	11.67526	-1.67526	0.544444	0.636096	-0.09165	10	12.06216	-2.06216
0.544444 0.466552 0.077892 10 8.247431 1.752569 0.544444 0.457793 0.086651 10 8.050347 1.949653 0.544444 0.598431 -0.05399 10 11.2147 -1.2147 0.544444 0.612853 -0.06841 10 11.53919 -1.53919 0.544444 0.571471 -0.02703 10 10.60809 -0.60809 0.544444 0.556475 -0.01203 10 10.27069 -0.27069	0.544444	0.627328	-0.08288	10	11.86488	-1.86488	0.544444	0.648409	-0.10396	10	12.3392	-2.3392
0.544444 0.598431 -0.05399 10 11.2147 -1.2147 0.544444 0.612853 -0.06841 10 11.53919 -1.53919 0.544444 0.571471 -0.02703 10 10.60809 -0.60809 0.544444 0.556475 -0.01203 10 10.27069 -0.27069	0.544444	0.456461	0.087984	10	8.02037	1.97963	0.544444	0.465071	0.079373	10	8.214105	1.785895
0.544444	$0.5444\overline{44}$	$0.4665\overline{52}$	0.077892	10	8.247431	1.752569	0.544444	0.457793	$0.0866\overline{51}$	10	8.050347	1.949653
	0.544444	0.598431	-0.05399	10	$11.21\overline{47}$	-1.2147	0.544444	0.612853	-0.06841	10	11.53919	-1.53919
0.544444 0.633798 -0.08935 10 12.01045 -2.01045 0.544444 0.611742 -0.0673 10 11.5142 -1.5142	0.544444	0.571471	-0.02703	10	10.60809	-0.60809	0.544444	0.556475	-0.01203	10	10.27069	-0.27069
	0.544444	0.633798	-0.08935	10	$12.010\overline{45}$	-2.01045	0.544444	$0.6117\overline{42}$	-0.0673	10	11.5142	-1.5142

0.544444	0.623278	-0.07883	10	11.77376	-1.77376	0.544444	0.611675	-0.06723	10	11.51269	-1.51269
0.588889	0.650968	-0.06208	11	12.39678	-1.39678	0.588889	0.654289	-0.0654	11	12.47149	-1.47149
0.588889	0.634459	-0.04557	11	12.02533	-1.02533	0.588889	0.624107	-0.03522	11	11.79241	-0.79241
0.588889	0.629638	-0.04075	11	11.91686	-0.91686	0.588889	0.647308	-0.05842	11	12.31444	-1.31444
0.588889	0.705017	-0.11613	11	13.61289	-2.61289	0.588889	0.694349	-0.10546	11	13.37285	-2.37285
0.588889	0.639809	-0.05092	11	12.1457	-1.1457	0.588889	0.665245	-0.07636	11	12.71802	-1.71802
0.588889	0.721033	-0.13214	11	13.97323	-2.97323	0.588889	0.723771	-0.13488	11	14.03485	-3.03485
0.588889	0.595922	-0.00703	11	11.15826	-0.15826	0.588889	0.638663	-0.04977	11	12.11991	-1.11991
0.588889	0.624415	-0.03553	11	11.79933	-0.79933	0.588889	0.633244	-0.04436	11	11.998	-0.998
0.633333	0.688122	-0.05479	12	13.23276	-1.23276	0.633333	0.676039	-0.04271	12	12.96087	-0.96087
0.633333	0.675302	-0.04197	12	12.9443	-0.9443	0.633333	0.665002	-0.03167	12	12.71255	-0.71255
0.633333	0.699173	-0.06584	12	13.48139	-1.48139	0.633333	0.723146	-0.08981	12	14.02078	-2.02078
0.633333	0.684366	-0.05103	12	13.14825	-1.14825	0.633333	0.674208	-0.04087	12	12.91968	-0.91968
0.633333	0.633679	-0.00035	12	12.00777	-0.00777	0.633333	0.598614	0.034719	12	11.21882	0.781179
0.633333	0.71815	-0.08482	12	13.90837	-1.90837	0.633333	0.733728	-0.10039	12	14.25888	-2.25888
0.633333	0.645973	-0.01264	12	12.2844	-0.2844	0.633333	0.659332	-0.026	12	12.58498	-0.58498
0.633333	0.713715	-0.08038	12	13.80859	-1.80859	0.633333	0.748327	-0.11499	12	14.58737	-2.58737
0.633333	0.730492	-0.09716	12	14.18607	-2.18607	0.633333	0.711662	-0.07833	12	13.76239	-1.76239
0.633333	0.738803	-0.10547	12	14.37308	-2.37308	0.633333	0.718778	-0.08544	12	13.9225	-1.9225
0.633333	0.775643	-0.14231	12	15.20197	-3.20197	0.633333	0.78832	-0.15499	12	15.48719	-3.48719
0.633333	0.694537	-0.0612	12	13.37707	-1.37707	0.633333	0.697372	-0.06404	12	13.44087	-1.44087
0.633333	0.654974	-0.02164	12	12.48692	-0.48692	0.633333	0.654846	-0.02151	12	12.48403	-0.48403
0.677778	0.720806	-0.04303	13	13.96813	-0.96813	0.677778	0.706399	-0.02862	13	13.64398	-0.64398
0.677778	0.734824	-0.05705	13	14.28355	-1.28355	0.677778	0.722081	-0.0443	13	13.99682	-0.99682
0.677778	0.670179	0.007598	13	12.82903	0.170966	0.677778	0.654504	0.023274	13	12.47634	0.523661
0.677778	0.710441	-0.03266	13	13.73492	-0.73492	0.677778	0.701583	-0.0238	13	13.53561	-0.53561
0.677778	0.753488	-0.07571	13	14.70348	-1.70348	0.677778	0.724524	-0.04675	13	14.05178	-1.05178
0.677778	0.73946	-0.06168	13	14.38786	-1.38786	0.677778	0.732736	-0.05496	13	14.23656	-1.23656
0.677778	0.68625	-0.00847	13	13.19063	-0.19063	0.677778	0.6603	0.017478	13	12.60674	0.393256
0.677778	0.708137	-0.03036	13	13.68307	-0.68307	0.677778	0.655945	0.021833	13	12.50876	0.491242
0.677778	0.731759	-0.05398	13	14.21457	-1.21457	0.677778	0.717746	-0.03997	13	13.89928	-0.89928
0.677778	0.749635	-0.07186	13	14.6168	-1.6168	0.677778	0.735311	-0.05753	13	14.2945	-1.2945
0.722222	0.695498	0.026725	14	13.3987	0.601302	0.722222	0.697951	0.024271	14	13.4539	0.546097
0.722222	0.705544	0.016679	14	13.62473	0.375271	0.722222	0.739204	-0.01698	14	14.38209	-0.38209

0.722222	0.764601	-0.04238	14	14.95352	-0.95352	0.722222	0.778627	-0.0564	14	15.2691	-1.2691
0.722222	0.703282	0.01894	14	13.57385	0.426153	0.722222	0.750573	-0.02835	14	14.63789	-0.63789
0.722222	0.690281	0.031941	14	13.28133	0.718675	0.722222	0.670247	0.051975	14	12.83056	1.169437
0.722222	0.652539	0.069683	14	12.43213	1.567866	0.722222	0.681663	0.040559	14	13.08741	0.912587
0.722222	0.760857	-0.03863	14	14.86928	-0.86928	0.722222	0.764147	-0.04193	14	14.94332	-0.94332
0.722222	0.718841	0.003382	14	13.92391	0.076085	0.722222	0.730861	-0.00864	14	14.19438	-0.19438
0.722222	0.753209	-0.03099	14	14.6972	-0.6972	0.722222	0.741087	-0.01887	14	14.42446	-0.42446
0.722222	0.724093	-0.00187	14	14.04209	-0.04209	0.722222	0.732278	-0.01006	14	14.22625	-0.22625
0.722222	0.699648	0.022574	14	13.49209	0.507914	0.722222	0.695299	0.026923	14	13.39423	0.605767
0.722222	0.785771	-0.06355	14	15.42985	-1.42985	0.722222	0.781922	-0.0597	14	15.34325	-1.34325
0.766667	0.775306	-0.00864	15	15.19438	-0.19438	0.766667	0.781423	-0.01476	15	15.33202	-0.33202
0.766667	0.770097	-0.00343	15	15.07719	-0.07719	0.766667	0.763863	0.002804	15	14.93691	0.063094
0.766667	0.699794	0.066872	15	13.49537	1.504625	0.766667	0.711916	0.05475	15	13.76812	1.231879
0.766667	0.733795	0.032872	15	14.26038	0.73962	0.766667	0.758179	0.008488	15	14.80903	0.190971
0.766667	0.690702	0.075965	15	13.2908	1.709204	0.766667	0.635281	0.131385	15	12.04383	2.956167
0.766667	0.762453	0.004214	15	14.90519	0.094814	0.766667	0.770714	-0.00405	15	15.09107	-0.09107
0.766667	0.709332	0.057335	15	13.70997	1.290029	0.766667	0.733014	0.033653	15	14.24282	0.757182
0.811111	0.675023	0.136088	16	12.93802	3.061976	0.811111	0.674608	0.136503	16	12.92869	3.071312
0.811111	0.791055	0.020056	16	15.54873	0.45127	0.811111	0.779898	0.031213	16	15.2977	0.702301
0.811111	0.702278	0.108834	16	13.55125	2.448754	0.811111	0.699832	0.11128	16	13.49621	2.503791
0.811111	0.771042	0.040069	16	15.09844	0.901563	0.811111	0.789259	0.021852	16	15.50832	0.491679
0.811111	0.768822	0.042289	16	15.04849	0.951513	0.811111	0.763169	0.047942	16	14.92131	1.078687
0.811111	0.73492	0.076191	16	14.28571	1.714291	0.811111	0.700234	0.110877	16	13.50528	2.494724
0.811111	0.759866	0.051245	16	14.84699	1.153014	0.811111	0.738253	0.072858	16	14.36069	1.639311
0.811111	0.768394	0.042717	16	15.03887	0.96113	0.811111	0.758581	0.05253	16	14.81808	1.181924
0.811111	0.758427	0.052684	16	14.81462	1.185382	0.811111	0.771859	0.039253	16	15.11682	0.883182
0.855556	0.693997	0.161559	17	13.36493	3.635071	0.855556	0.66678	0.188775	17	12.75256	4.247441
0.855556	0.735337	0.120219	17	14.29507	2.704926	0.855556	0.736593	0.118963	17	14.32334	2.676665
0.855556	0.704995	0.15056	17	13.6124	3.387603	0.855556	0.709957	0.145598	17	13.72404	3.275957
0.855556	0.719926	0.135629	17	13.94834	3.051658	0.855556	0.750149	0.105407	17	14.62835	2.371648
0.855556	0.725594	0.129962	17	14.07586	2.924139	0.855556	0.692093	0.163462	17	13.3221	3.677897
0.855556	0.781936	0.07362	17	15.34355	1.656449	0.855556	0.775605	0.079951	17	15.20111	1.798887
0.9	0.6807	0.2193	18	13.06576	4.93424	0.9	0.692208	0.207792	18	13.32468	4.67532
0.9	0.672943	0.227057	18	12.89121	5.108787	0.9	0.635281	0.264719	18	12.04382	5.956181

_												
	0.9	0.709247	0.190753	18	13.70805	4.291952	0.9	0.720846	0.179154	18	13.96904	4.03096
	0.9	0.689351	0.210649	18	13.2604	4.739598	0.9	0.707722	0.192278	18	13.67374	4.326263

APPENDIX P

NORMALIZED AND DENORMALIZED TEST DATASET OF TARGET FEATURE, OUTPUTS AND ERRORS FOR FEMALE
HISPANIC POPULATION USING ANN APPROACH AND GA-ANN APPROACH AND THEIR DENORMALIZED TEST SET
SQUARE ERRORS

			ANN				GA-ANN								
	Normalized			Denoi	rmalized			Normalized			Denoi	rmalized			
Target	Output	Error	Target	Output	Error	Error^2	Target	Output	Error	Target	Output	Error	Error^2		
0.144444	0.160235	-0.01579	1	1.35528	-0.35528	0.1262236	0.144444	0.171211	-0.02677	1	1.602258	-0.60226	0.3627149		
0.144444	0.185898	-0.04145	1	1.93271	-0.93271	0.8699482	0.144444	0.188988	-0.04454	1	2.00224	-1.00224	1.0044851		
0.188889	0.217836	-0.02895	2	2.651318	-0.65132	0.4242148	0.188889	0.239164	-0.05027	2	3.131187	-1.13119	1.2795851		
0.188889	0.208893	-0.02	2	2.450083	-0.45008	0.202575	0.188889	0.205634	-0.01675	2	2.376769	-0.37677	0.1419548		
0.188889	0.190312	-0.00142	2	2.032009	-0.03201	0.0010246	0.188889	0.173359	0.01553	2	1.650577	0.349423	0.1220967		
0.322222	0.314485	0.007737	5	4.825922	0.174078	0.0303032	0.322222	0.318016	0.004206	5	4.905369	0.094631	0.008955		
0.366667	0.330118	0.036549	6	5.177644	0.822356	0.6762698	0.366667	0.337291	0.029376	6	5.339039	0.660961	0.4368701		
0.366667	0.320472	0.046195	6	4.960624	1.039376	1.0803034	0.366667	0.320741	0.045926	6	4.966668	1.033332	1.0677757		
0.366667	0.333974	0.032693	6	5.264418	0.735582	0.5410809	0.366667	0.351957	0.01471	6	5.669032	0.330968	0.1095401		
0.366667	0.360853	0.005814	6	5.869192	0.130808	0.0171107	0.366667	0.355153	0.011514	6	5.740944	0.259056	0.0671099		
0.411111	0.361824	0.049287	7	5.891033	1.108967	1.2298072	0.411111	0.334841	0.076271	7	5.283911	1.716089	2.9449606		
0.411111	0.499053	-0.08794	7	8.978694	-1.97869	3.9152298	0.411111	0.412348	-0.00124	7	7.027829	-0.02783	0.0007745		
0.411111	0.402584	0.008527	7	6.808137	0.191862	0.0368112	0.411111	0.43861	-0.0275	7	7.618726	-0.61873	0.3828213		
0.411111	0.358334	0.052777	7	5.812521	1.187479	1.4101061	0.411111	0.404148	0.006963	7	6.843336	0.156664	0.0245435		
0.411111	0.475403	-0.06429	7	8.446568	-1.44657	2.0925581	0.411111	0.48125	-0.07014	7	8.578115	-1.57811	2.4904463		
0.455556	0.418337	0.037219	8	7.162575	0.837425	0.7012808	0.455556	0.392133	0.063422	8	6.572998	1.427002	2.0363357		
0.455556	0.447337	0.008218	8	7.815088	0.184912	0.0341925	0.455556	0.47282	-0.01726	8	8.388447	-0.38845	0.1508907		
0.5	0.538355	-0.03835	9	9.86298	-0.86298	0.7447344	0.5	0.519588	-0.01959	9	9.440739	-0.44074	0.194251		
0.5	0.659258	-0.15926	9	12.58331	-3.58331	12.840116	0.5	0.611188	-0.11119	9	11.50172	-2.50172	6.2586081		
0.5	0.617134	-0.11713	9	11.63552	-2.63552	6.9459483	0.5	0.613335	-0.11334	9	11.55004	-2.55004	6.5026916		
0.5	0.643955	-0.14395	9	12.23898	-3.23898	10.491005	0.5	0.646051	-0.14605	9	12.28615	-3.28615	10.798797		
0.5	0.446576	0.053424	9	7.797965	1.202035	1.4448877	0.5	0.504036	-0.00404	9	9.090821	-0.09082	0.0082484		
0.544444	0.55614	-0.0117	10	10.26316	-0.26316	0.0692529	0.544444	0.580103	-0.03566	10	10.80231	-0.80231	0.6437025		

0.544444 0.525876 0.018659 10 9.582207 0.417793 0.174513 0.74513 0.544444 0.525876 0.018659 10 9.582207 0.417793 0.174513 0.544444 0.525874 0.007019 11 9.40432 1.59568 2.5461933 0.588889 0.677289 0.00884 11 12.98901 3.9561596 0.588889 0.61979 0.007019 11 9.40432 1.59568 2.5461933 0.588889 0.677289 0.00884 11 12.98901 3.9561596 0.588889 0.64245 0.05336 11 12.0051 0.12051 1.4412173 0.588889 0.6766841 0.08795 11 12.98903 1.19789 3.9161718 0.588889 0.64245 0.05336 11 12.0051 0.12061 1.4412173 0.588889 0.666279 0.10741 11 13.41669 2.41669 5.8403941 0.588889 0.66258 0.0705 0.12161 11 13.73625 2.73625 7.4870672 0.588889 0.69244 0.10355 11 13.32999 2.32999 5.428403 0.588889 0.66258 0.07369 11 12.65805 1.65805 2.7491175 0.588889 0.69244 0.10355 11 13.32999 2.32999 5.428405 0.588889 0.66258 0.07369 11 12.65805 1.65805 2.7491175 0.588889 0.69247 0.00181 11 12.27348 1.37348 1.8864476 0.588889 0.644503 0.05561 11 12.25132 1.25132 1.5658051 0.588889 0.65932 0.06104 11 12.37348 1.37348 1.8864476 0.588889 0.643503 0.05561 11 12.25132 1.25132 1.5658051 0.588889 0.655515 0.06663 11 12.49909 1.49909 2.2472766 0.633333 0.7633 0.12997 12 14.9244 2.29244 8.5511858 0.633333 0.755129 0.01418 12 1519039 3.19039 10.178607 0.633333 0.7633 0.12997 12 14.9244 2.29242 8.5511858 0.633333 0.755129 0.01418 12 1519039 3.19039 10.178607 0.677778 0.710951 0.03315 13 13.34639 0.74639 0.5570933 0.677778 0.700183 0.02241 13 13.50413 0.050413 0.254145 0.677778 0.722019 0.04424 13 13.393548 0.09543 0.99543 0.99543 0.997809 0.677778 0.700183 0.02241 13 13.50413 0.050413 0.254145 0.677778 0.722019 0.04424 13 13.393548 0.09543 0.99543 0.997809 0.677778 0.70413 0.00565 13 14.4569 0.05665 0.04868 14 14.56199 0.05199 0.3158322 0.72222 0.74773 0.00565 13 14.4569 0.05665 0.04869 13 14.5066 1.15065 0.038389 0.766667 0.77541 0.00586 13 14.15341 1.15341 1.15341 0.15341 0.70222 0.74773 0.00565 13 14.45695 0.05655 0.03869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869 0.09869	0.544444	0.641034	-0.09659	10	12 17220	2 17229	4 7021065	0.544444	0.678766	-0.13432	10	13.02223	-3.02223	0.1220440
0.58889 0.510719 0.07817 11 9.241172 1.758828 3.0934744 0.588889 0.51797 0.070919 11 9.40432 1.59568 2.5461933 0.588889 0.677289 -0.0884 11 12.98901 -1.98901 3.9561596 0.588889 0.60204 -0.0336 11 12.20051 1.412173 0.588889 0.670841 -0.08795 11 12.97893 3.9561780 0.588889 0.69027 -0.01041 11 13.41669 -2.41669 2.41669					12.17328	-2.17328	4.7231265	0.544444						9.1338448
0.588889 0.677289 -0.0884 11 12.98901 -1.98901 3.9561596 0.588889 0.642245 -0.05336 11 12.20051 -1.20051 1.412173 0.588889 0.676841 -0.08795 11 12.97893 -1.97893 0.16178 0.588889 0.69279 -0.10141 11 13.33629 2.21609 5.8403941 0.588889 0.7105 -0.12161 11 11.265805 -1.65805 7.4870672 0.588889 0.692244 -0.01355 11 13.33999 2.41609 5.248405 0.588889 0.66258 -0.07369 11 12.65805 -1.65805 2.7491175 0.588889 0.672237 -0.08335 11 12.237348 1.37348 1.8864476 0.588889 0.64503 -0.07561 11 12.25123 -12.5132 1.25132 1.25183 0.587839 0.64932 -0.06104 11 12.237348 1.8864476 0.633333 0.63328 0.000105 12 14.92424 -2.92424 8.551836 <														
0.588889 0.676841 -0.08795 11 12.97893 -1.97893 3.9161718 0.588889 0.69297 -0.10741 11 13.41669 -2.41669 5.8403941 0.588889 0.7105 -0.12161 11 13.73625 2-2.73625 7.4870672 0.588889 0.69297 -0.018555 11 13.32999 -2.32999 2.32999 2.32999 2.32999 2.32999 2.32999 2.32995 2.32896 5.4288055 1.65805 2.7491175 0.588889 0.67237 -0.08335 11 12.87533 1.878533 3.518655 0.588889 0.633733 0.07036 11 12.23732 1.125132 1.5658051 0.588889 0.659551 -0.06603 11 12.49999 -1.49909 2.44727660 0.633333 0.76332 0.7000551 12 11.99764 0.002363 5.586E-06 0.633333 0.58855 0.044783 12 10.99238 1.007624 1.0153071 0.677778 0.710951 -0.03317 13 13.74629 0.5579933														
0.588889 0.7105 -0.12161 11 13.73625 -2.73625 7.4870672 0.588889 0.692444 -0.10355 11 13.32999 -2.32999 5.4288405 0.588889 0.66258 -0.07369 11 12.65805 -1.65805 2.7491175 0.588889 0.64932 -0.0186 11 11.87333 3.18353 3.16855 0.588889 0.63075 -0.05561 11 11.225132 -1.25132 1.5658051 0.588889 0.64932 -0.06633 11 12.49909 -1.49099 2.2472766 0.633333 0.7633 -0.19797 12 14.92424 -2.92424 8.5511858 0.633333 0.75719 -0.1418 12 15.19039 -3.19039 10.178607 0.677778 0.710951 -0.03317 13 13.74639 -0.74639 0.5570933 0.677778 0.67701 0.000768 13 12.98272 0.01726 0.010506 0.677778 0.722019 -0.04424 13 13.34439 -0.93809 0.677778 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
0.588889 0.66258 -0.07369 11 12.65805 -1.65805 2.7491175 0.588889 0.672237 -0.08335 11 12.87533 -1.87533 3.516855 0.588889 0.63075 -0.04186 11 11.94189 -0.94189 0.8871492 0.588889 0.66903 -1.11 12.37348 1.37348 1.8864476 0.633333 0.7633 -0.12997 12 14.92424 -2.92424 8.5511858 0.633333 0.75129 -0.1418 12 15.19039 -3.19039 10.178607 0.633333 0.632328 0.000105 12 11.99764 0.002363 5.586E-06 0.633333 0.75778 12 10.99238 1.07024 1.0153071 0.677778 0.710951 -0.0317 13 13.74639 -0.74639 0.5570933 0.677778 0.7001068 12 11.99244 1.0153071 0.677778 0.722019 -0.04244 13 13.99543 -0.9994890 0.677778 0.70017 0.00677 13 13.15657														
0.588889 0.63075 -0.04186 11 11.94189 -0.94189 0.8871492 0.588889 0.644932 -0.06104 11 12.37348 -1.37348 1.8864476 0.588889 0.644503 -0.05561 11 12.25132 -1.25132 1.5558051 0.588889 0.60453333 0.76332 11 12.49909 -1.49909 -2.2472766 0.633333 0.76332 0.000105 12 11.99764 0.002363 5.586E-06 0.633333 0.58555 0.044783 12 10.99238 1.007624 1.0153071 0.677778 0.710951 -0.03317 13 13.74639 -0.74639 0.5570933 0.677778 0.67011 0.000768 13 12.98272 0.017276 0.0002985 0.677778 0.72019 -0.04424 13 13.99543 0.9908890 0.677778 0.666474 -0.0087 13 13.50413 0.254145 0.677778 0.72904 -0.01488 13 13.33478 -0.33441 1.15341 1.3303506 0.677778														
0.588889 0.644503 -0.05561 11 12.25132 -1.25132 1.5658051 0.588889 0.665515 -0.06663 11 12.49909 -1.49909 2.2472766 0.6333333 0.76333 -0.12997 12 14.92424 -2.92424 8.5511858 0.6333333 0.775129 -0.1418 12 15.19039 3.19039 10.178607 0.6333333 0.633228 0.000105 12 11.99764 0.002363 5.586E-06 0.633333 0.588555 0.044783 12 19.29238 1.007624 1.0153071 0.677778 0.710951 -0.03317 13 13.74639 -0.9543 0.9908809 0.677778 0.67010 0.000768 13 12.98272 0.012776 0.0002985 0.677778 0.722019 -0.04424 13 13.33478 -0.33478 0.1120801 0.677778 0.670183 -0.02411 13 13.53413 -0.5413 0.24145 0.677778 0.722040 -0.02468 13 14.15341 -1.15341 1.3330506 <td></td>														
0.633333 0.7633 -0.12997 12 14.92424 2.92424 8.5511858 0.633333 0.775129 -0.1418 12 15.19039 -3.19039 10.178607 0.633333 0.633228 0.000105 12 11.99764 0.002363 5.586E-06 0.633333 0.58855 0.044783 12 10.99238 1.007624 1.0153071 0.677778 0.72019 -0.03437 13 13.74639 -0.74639 0.5570933 0.677778 0.7000768 13 12.98272 0.017276 0.002948 0.677778 0.722019 -0.04424 13 13.99543 -0.99543 0.9997809 0.677778 0.700071 13 13.50413 -0.50413 0.677778 0.72904 -0.05126 13 14.15341 -1.15341 1.3303506 0.677778 0.744731 -0.069657 -0.01488 13 14.33844 -1.15341 1.3303506 0.677778 0.744731 -0.06966 13 14.43896 -1.43896 2.0766008 0.677778 0.744734 -0.025414 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
0.633333 0.633228 0.000105 12 11.99764 0.002363 5.586E-06 0.633333 0.58855 0.044783 12 10.99238 1.007624 1.0153071 0.677778 0.710951 -0.03317 13 13.74639 -0.74639 0.5570933 0.677778 0.670701 0.000768 13 12.98272 0.017276 0.0002985 0.677778 0.722019 -0.04424 13 13.99543 -0.99543 0.9908809 0.677778 0.700183 -0.02241 13 13.59413 -0.50413 0.254145 0.677778 0.692657 -0.01488 13 13.33478 0.1120801 0.677778 0.668474 -0.0087 13 13.19567 -0.19567 0.032849 0.677778 0.735931 -0.05115 13 14.15341 -1.15341 1.3303506 0.677778 0.744731 -0.06395 13 14.43896 -1.43896 2.0766008 0.722222 0.74722 0.05815 13 14.30844 1.120282 0.677778 0.741731														
0.677778 0.710951 -0.03317 13 13.74639 -0.74639 0.5570933 0.677778 0.67071 0.000768 13 12.98272 0.017276 0.0002985 0.677778 0.722019 -0.04424 13 13.99543 -0.99943 0.9908809 0.677778 0.700183 -0.02241 13 13.50413 -0.50413 0.254145 0.677778 0.692657 -0.01488 13 13.33478 -0.33478 0.1120801 0.677778 0.686474 -0.0087 13 13.19567 -0.19567 0.0382849 0.677778 0.735931 -0.05126 13 14.15341 -1.13303506 0.677778 0.741731 -0.06995 13 14.43896 -1.43896 2.0706008 0.677778 0.735931 -0.02498 14 14.56199 -0.56199 0.3158322 0.722222 0.747734 -0.02551 14 14.57401 -0.57401 0.3294915 0.722222 0.768505 -0.04628 14 15.04137 1.04137 1.044461 0.7222222<					14.92424			0.633333					-3.19039	10.178607
0.677778 0.722019 -0.04424 13 13.99543 -0.99543 0.9908809 0.677778 0.700183 -0.02241 13 13.50413 -0.50413 0.254145 0.677778 0.692657 -0.01488 13 13.33478 -0.33478 0.1120801 0.677778 0.686474 -0.0087 13 13.19567 -0.19567 0.0382849 0.677778 0.72904 -0.05126 13 14.15341 -1.15341 1.3303506 0.677778 0.744731 -0.06395 13 14.43896 -1.43896 2.0706008 0.677778 0.735931 -0.05815 13 14.30844 -1.15241 13.303506 0.677778 0.744738 -0.06696 13 14.5066 -1.5066 2.698366 0.722222 0.74872 -0.02498 14 14.50413 -1.04137 1.0844461 0.722222 0.75182 -0.0296 14 14.66595 -0.66595 0.4434849 0.766667 0.668945 0.097722 15 12.80126 2.198745 4.8344794	0.633333	0.633228		12	11.99764	0.002363	5.586E-06	0.633333	0.58855	0.044783	12	10.99238	1.007624	1.0153071
0.677778 0.692657 -0.01488 13 13.33478 -0.33478 0.1120801 0.677778 0.686474 -0.0087 13 13.19567 -0.19567 0.0382849 0.677778 0.72904 -0.05126 13 14.15341 -1.15341 1.3303506 0.677778 0.741731 -0.06395 13 14.43896 -1.43896 2.0706008 0.677778 0.735931 -0.05815 13 14.30844 -1.30844 1.7120282 0.677778 0.744738 -0.06696 13 14.5066 -1.5066 2.2698366 0.722222 0.7472 -0.02498 14 14.56199 -0.56199 0.3158322 0.722222 0.744738 -0.02551 14 14.5066 -1.5066 2.2698366 0.722222 0.768505 -0.04628 14 15.04137 -1.04137 1.0844461 0.722222 0.75182 -0.0296 14 14.66595 -0.66595 0.434849 0.766667 0.668945 0.097722 15 12.80126 2.198745 4.8344794	0.677778	0.710951	-0.03317	13	13.74639	-0.74639	0.5570933	0.677778	0.67701	0.000768	13	12.98272	0.017276	0.0002985
0.677778 0.72904 -0.05126 13 14.15341 -1.15341 1.3303506 0.677778 0.741731 -0.06395 13 14.43896 -1.43896 2.0706008 0.677778 0.735931 -0.05815 13 14.30844 -1.30844 1.7120282 0.677778 0.744738 -0.06696 13 14.5066 -1.5066 2.2698366 0.722222 0.7472 -0.02498 14 14.56199 -0.56199 0.3158322 0.722222 0.747734 -0.02551 14 14.57401 -0.57401 0.3294915 0.722222 0.768505 -0.04628 14 15.04137 -1.04137 1.0844461 0.722222 0.75182 -0.0296 14 14.66595 -0.66595 0.4434849 0.766667 0.668945 0.097722 15 12.80126 2.198745 4.8344794 0.766667 0.648801 0.117866 15 12.34801 2.651988 7.0330389 0.766667 0.7743967 0.0227 15 14.48925 0.51075 0.2608654	0.677778	0.722019	-0.04424	13	13.99543	-0.99543	0.9908809	0.677778	0.700183	-0.02241	13	13.50413	-0.50413	0.254145
0.677778 0.735931 -0.05815 13 14.30844 -1.30844 1.7120282 0.677778 0.744738 -0.06696 13 14.5066 -1.5066 2.2698366 0.722222 0.7472 -0.02498 14 14.56199 -0.56199 0.3158322 0.722222 0.747734 -0.02551 14 14.57401 -0.57401 0.3294915 0.722222 0.768505 -0.04628 14 15.04137 -1.04137 1.0844461 0.722222 0.75182 -0.0296 14 14.66595 -0.66595 0.4434849 0.766667 0.668945 0.097722 15 12.80126 2.198745 4.8344794 0.766667 0.6748801 0.117866 15 12.34801 2.651988 7.0330389 0.766667 0.773967 -0.01087 15 15.24468 -0.24468 0.0598674 0.766667 0.776177 -0.00951 15 15.21399 -0.21399 0.0457933 0.766667 0.743967 0.0227 15 14.48925 0.51075 0.2608654	0.677778	0.692657	-0.01488	13	13.33478	-0.33478	0.1120801	0.677778	0.686474	-0.0087	13	13.19567	-0.19567	0.0382849
0.722222 0.7472 -0.02498 14 14.56199 -0.56199 0.3158322 0.722222 0.747734 -0.02551 14 14.57401 -0.57401 0.3294915 0.722222 0.768505 -0.04628 14 15.04137 -1.04137 1.0844461 0.722222 0.75182 -0.0296 14 14.66595 -0.66595 0.4434849 0.766667 0.668945 0.097722 15 12.80126 2.198745 4.8344794 0.766667 0.648801 0.117866 15 12.34801 2.651988 7.0330389 0.766667 0.777541 -0.01087 15 15.24468 -0.24468 0.0598674 0.766667 0.776177 -0.00951 15 15.21399 -0.21399 0.0457933 0.766667 0.743967 0.0227 15 14.48925 0.51075 0.2608654 0.766667 0.710237 0.05643 15 13.73032 1.269677 1.6120799 0.811111 0.754291 0.05682 16 14.72155 1.278452 1.6344391	0.677778	0.72904	-0.05126	13	14.15341	-1.15341	1.3303506	0.677778	0.741731	-0.06395	13	14.43896	-1.43896	2.0706008
0.722222 0.768505 -0.04628 14 15.04137 -1.04137 1.0844461 0.722222 0.75182 -0.0296 14 14.66595 -0.66595 0.4434849 0.766667 0.668945 0.097722 15 12.80126 2.198745 4.8344794 0.766667 0.648801 0.117866 15 12.34801 2.651988 7.0330389 0.766667 0.777541 -0.01087 15 15.24468 -0.24468 0.0598674 0.766667 0.776177 -0.00951 15 15.21399 -0.21399 0.0457933 0.766667 0.743967 0.0227 15 14.48925 0.51075 0.2608654 0.766667 0.710237 0.05643 15 13.73032 1.269677 1.6120799 0.811111 0.754291 0.05682 16 14.72155 1.278452 1.6344391 0.811111 0.730238 0.080873 16 14.18035 1.819646 3.3111118 0.855556 0.708331 0.147225 17 13.68745 3.312554 10.973016	0.677778	0.735931	-0.05815	13	14.30844	-1.30844	1.7120282	0.677778	0.744738	-0.06696	13	14.5066	-1.5066	2.2698366
0.766667 0.668945 0.097722 15 12.80126 2.198745 4.8344794 0.766667 0.648801 0.117866 15 12.34801 2.651988 7.0330389 0.766667 0.777541 -0.01087 15 15.24468 -0.24468 0.0598674 0.766667 0.776177 -0.00951 15 15.21399 -0.21399 0.0457933 0.766667 0.743967 0.0227 15 14.48925 0.51075 0.2608654 0.766667 0.710237 0.05643 15 13.73032 1.269677 1.6120799 0.811111 0.754291 0.05682 16 14.72155 1.278452 1.6344391 0.811111 0.730238 0.080873 16 14.18035 1.819646 3.3111118 0.855556 0.708331 0.147225 17 13.68745 3.312554 10.973016 0.855556 0.696038 0.159518 17 13.41085 3.589153 12.882022 0.855556 0.671879 0.183676 17 12.86728 4.132715 17.079336 <td>0.722222</td> <td>0.7472</td> <td>-0.02498</td> <td>14</td> <td>14.56199</td> <td>-0.56199</td> <td>0.3158322</td> <td>0.722222</td> <td>0.747734</td> <td>-0.02551</td> <td>14</td> <td>14.57401</td> <td>-0.57401</td> <td>0.3294915</td>	0.722222	0.7472	-0.02498	14	14.56199	-0.56199	0.3158322	0.722222	0.747734	-0.02551	14	14.57401	-0.57401	0.3294915
0.766667 0.777541 -0.01087 15 15.24468 -0.24468 0.0598674 0.766667 0.776177 -0.00951 15 15.21399 -0.21399 0.0457933 0.766667 0.743967 0.0227 15 14.48925 0.51075 0.2608654 0.766667 0.710237 0.05643 15 13.73032 1.269677 1.6120799 0.811111 0.754291 0.05682 16 14.72155 1.278452 1.6344391 0.811111 0.730238 0.080873 16 14.18035 1.819646 3.3111118 0.855556 0.708331 0.147225 17 13.68745 3.312554 10.973016 0.855556 0.696038 0.159518 17 13.41085 3.589153 12.882022 0.855556 0.744206 0.111349 17 14.49464 2.505358 6.2768201 0.855556 0.756936 0.098619 17 14.78106 2.218936 4.923677 0.855556 0.671879 0.183676 17 12.86728 4.132715 17.079336	0.722222	0.768505	-0.04628	14	15.04137	-1.04137	1.0844461	0.722222	0.75182	-0.0296	14	14.66595	-0.66595	0.4434849
0.766667 0.743967 0.0227 15 14.48925 0.51075 0.2608654 0.766667 0.710237 0.05643 15 13.73032 1.269677 1.6120799 0.811111 0.754291 0.05682 16 14.72155 1.278452 1.6344391 0.811111 0.730238 0.080873 16 14.18035 1.819646 3.3111118 0.855556 0.708331 0.147225 17 13.68745 3.312554 10.973016 0.855556 0.696038 0.159518 17 13.41085 3.589153 12.882022 0.855556 0.744206 0.111349 17 14.49464 2.505358 6.2768201 0.855556 0.756936 0.098619 17 14.78106 2.218936 4.923677 0.855556 0.671879 0.183676 17 12.86728 4.132715 17.079336 0.855556 0.659169 0.196386 17 12.58131 4.418687 19.524793 0.855556 0.749239 0.106317 17 14.60787 2.392127 5.7222714	0.766667	0.668945	0.097722	15	12.80126	2.198745	4.8344794	0.766667	0.648801	0.117866	15	12.34801	2.651988	7.0330389
0.811111 0.754291 0.05682 16 14.72155 1.278452 1.6344391 0.811111 0.730238 0.080873 16 14.18035 1.819646 3.3111118 0.855556 0.708331 0.147225 17 13.68745 3.312554 10.973016 0.855556 0.696038 0.159518 17 13.41085 3.589153 12.882022 0.855556 0.744206 0.111349 17 14.49464 2.505358 6.2768201 0.855556 0.756936 0.098619 17 14.78106 2.218936 4.923677 0.855556 0.671879 0.183676 17 12.86728 4.132715 17.079336 0.855556 0.659169 0.196386 17 12.58131 4.418687 19.524793 0.855556 0.749239 0.106317 17 14.60787 2.392127 5.7222714 0.855556 0.736191 0.119364 17 14.31431 2.685692 7.2129436 0.9 0.749722 0.150278 18 14.61873 3.381266 11.432958	0.766667	0.777541	-0.01087	15	15.24468	-0.24468	0.0598674	0.766667	0.776177	-0.00951	15	15.21399	-0.21399	0.0457933
0.855556 0.708331 0.147225 17 13.68745 3.312554 10.973016 0.855556 0.696038 0.159518 17 13.41085 3.589153 12.882022 0.855556 0.744206 0.111349 17 14.49464 2.505358 6.2768201 0.855556 0.756936 0.098619 17 14.78106 2.218936 4.923677 0.855556 0.671879 0.183676 17 12.86728 4.132715 17.079336 0.855556 0.659169 0.196386 17 12.58131 4.418687 19.524793 0.855556 0.749239 0.106317 17 14.60787 2.392127 5.7222714 0.855556 0.736191 0.119364 17 14.31431 2.685692 7.2129436 0.9 0.749722 0.150278 18 14.61873 3.381266 11.432958 0.9 0.773526 0.146474 18 14.70434 3.295661 10.86138 0.9 0.705995 0.194005 18 13.63488 4.365124 19.054303 <t< td=""><td>0.766667</td><td>0.743967</td><td>0.0227</td><td>15</td><td>14.48925</td><td>0.51075</td><td>0.2608654</td><td>0.766667</td><td>0.710237</td><td>0.05643</td><td>15</td><td>13.73032</td><td>1.269677</td><td>1.6120799</td></t<>	0.766667	0.743967	0.0227	15	14.48925	0.51075	0.2608654	0.766667	0.710237	0.05643	15	13.73032	1.269677	1.6120799
0.855556 0.744206 0.111349 17 14.49464 2.505358 6.2768201 0.855556 0.756936 0.098619 17 14.78106 2.218936 4.923677 0.855556 0.671879 0.183676 17 12.86728 4.132715 17.079336 0.855556 0.659169 0.196386 17 12.58131 4.418687 19.524793 0.855556 0.749239 0.106317 17 14.60787 2.392127 5.7222714 0.855556 0.736191 0.119364 17 14.31431 2.685692 7.2129436 0.9 0.749722 0.150278 18 14.61873 3.381266 11.432958 0.9 0.753526 0.146474 18 14.70434 3.295661 10.86138 0.9 0.779885 0.120115 18 15.29742 2.70258 7.3039394 0.9 0.777513 0.12487 18 15.24403 2.755965 7.5953434 0.9 0.705995 0.194005 18 13.63488 4.365124 19.054303 0.9	0.811111	0.754291	0.05682	16	14.72155	1.278452	1.6344391	0.811111	0.730238	0.080873	16	14.18035	1.819646	3.3111118
0.855556 0.671879 0.183676 17 12.86728 4.132715 17.079336 0.855556 0.659169 0.196386 17 12.58131 4.418687 19.524793 0.855556 0.749239 0.106317 17 14.60787 2.392127 5.7222714 0.855556 0.736191 0.119364 17 14.31431 2.685692 7.2129436 0.9 0.749722 0.150278 18 14.61873 3.381266 11.432958 0.9 0.753526 0.146474 18 14.70434 3.295661 10.86138 0.9 0.779885 0.120115 18 15.29742 2.70258 7.3039394 0.9 0.777513 0.122487 18 15.24403 2.755965 7.5953434 0.9 0.705995 0.194005 18 13.63488 4.365124 19.054303 0.9 0.733892 0.166108 18 14.26258 3.737422 13.968326 0.9 0.773929 0.126071 18 15.1634 2.836596 8.0462773 0.9 <t< td=""><td>0.855556</td><td>0.708331</td><td>0.147225</td><td>17</td><td>13.68745</td><td>3.312554</td><td>10.973016</td><td>0.855556</td><td>0.696038</td><td>0.159518</td><td>17</td><td>13.41085</td><td>3.589153</td><td>12.882022</td></t<>	0.855556	0.708331	0.147225	17	13.68745	3.312554	10.973016	0.855556	0.696038	0.159518	17	13.41085	3.589153	12.882022
0.855556 0.749239 0.106317 17 14.60787 2.392127 5.7222714 0.855556 0.736191 0.119364 17 14.31431 2.685692 7.2129436 0.9 0.749722 0.150278 18 14.61873 3.381266 11.432958 0.9 0.753526 0.146474 18 14.70434 3.295661 10.86138 0.9 0.779885 0.120115 18 15.29742 2.70258 7.3039394 0.9 0.777513 0.122487 18 15.24403 2.755965 7.5953434 0.9 0.705995 0.194005 18 13.63488 4.365124 19.054303 0.9 0.733892 0.166108 18 14.26258 3.737422 13.968326 0.9 0.773929 0.126071 18 15.1634 2.836596 8.0462773 0.9 0.786697 0.113303 18 15.45068 2.549322 6.4990433 0.9 0.71777 0.18223 18 13.89982 4.100182 16.811488 0.9 0.735001 </td <td>0.855556</td> <td>0.744206</td> <td>0.111349</td> <td>17</td> <td>14.49464</td> <td>2.505358</td> <td>6.2768201</td> <td>0.855556</td> <td>0.756936</td> <td>0.098619</td> <td>17</td> <td>14.78106</td> <td>2.218936</td> <td>4.923677</td>	0.855556	0.744206	0.111349	17	14.49464	2.505358	6.2768201	0.855556	0.756936	0.098619	17	14.78106	2.218936	4.923677
0.855556 0.749239 0.106317 17 14.60787 2.392127 5.7222714 0.855556 0.736191 0.119364 17 14.31431 2.685692 7.2129436 0.9 0.749722 0.150278 18 14.61873 3.381266 11.432958 0.9 0.753526 0.146474 18 14.70434 3.295661 10.86138 0.9 0.779885 0.120115 18 15.29742 2.70258 7.3039394 0.9 0.777513 0.122487 18 15.24403 2.755965 7.5953434 0.9 0.705995 0.194005 18 13.63488 4.365124 19.054303 0.9 0.733892 0.166108 18 14.26258 3.737422 13.968326 0.9 0.773929 0.126071 18 15.1634 2.836596 8.0462773 0.9 0.786697 0.113303 18 15.45068 2.549322 6.4990433 0.9 0.71777 0.18223 18 13.89982 4.100182 16.811488 0.9 0.735001 </td <td>0.855556</td> <td>0.671879</td> <td>0.183676</td> <td>17</td> <td>12.86728</td> <td>4.132715</td> <td>17.079336</td> <td>0.855556</td> <td>0.659169</td> <td>0.196386</td> <td>17</td> <td>12.58131</td> <td>4.418687</td> <td>19.524793</td>	0.855556	0.671879	0.183676	17	12.86728	4.132715	17.079336	0.855556	0.659169	0.196386	17	12.58131	4.418687	19.524793
0.9 0.779885 0.120115 18 15.29742 2.70258 7.3039394 0.9 0.777513 0.122487 18 15.24403 2.755965 7.5953434 0.9 0.705995 0.194005 18 13.63488 4.365124 19.054303 0.9 0.733892 0.166108 18 14.26258 3.737422 13.968326 0.9 0.773929 0.126071 18 15.1634 2.836596 8.0462773 0.9 0.786697 0.113303 18 15.45068 2.549322 6.4990433 0.9 0.71777 0.18223 18 13.89982 4.100182 16.811488 0.9 0.735001 0.164999 18 14.28753 3.712467 13.782411	0.855556	0.749239	0.106317	17	14.60787	2.392127	5.7222714	0.855556	0.736191	0.119364	17	14.31431	2.685692	7.2129436
0.9 0.705995 0.194005 18 13.63488 4.365124 19.054303 0.9 0.733892 0.166108 18 14.26258 3.737422 13.968326 0.9 0.773929 0.126071 18 15.1634 2.836596 8.0462773 0.9 0.786697 0.113303 18 15.45068 2.549322 6.4990433 0.9 0.71777 0.18223 18 13.89982 4.100182 16.811488 0.9 0.735001 0.164999 18 14.28753 3.712467 13.782411	0.9	0.749722	0.150278	18	14.61873	3.381266	11.432958	0.9	0.753526	0.146474	18	14.70434	3.295661	10.86138
0.9 0.705995 0.194005 18 13.63488 4.365124 19.054303 0.9 0.733892 0.166108 18 14.26258 3.737422 13.968326 0.9 0.773929 0.126071 18 15.1634 2.836596 8.0462773 0.9 0.786697 0.113303 18 15.45068 2.549322 6.4990433 0.9 0.71777 0.18223 18 13.89982 4.100182 16.811488 0.9 0.735001 0.164999 18 14.28753 3.712467 13.782411	0.9	0.779885	0.120115	18	15.29742	2.70258	7.3039394	0.9	0.777513	0.122487	18	15.24403	2.755965	
0.9 0.773929 0.126071 18 15.1634 2.836596 8.0462773 0.9 0.786697 0.113303 18 15.45068 2.549322 6.4990433 0.9 0.71777 0.18223 18 13.89982 4.100182 16.811488 0.9 0.735001 0.164999 18 14.28753 3.712467 13.782411				18							18			
0.9 0.71777 0.18223 18 13.89982 4.100182 16.811488 0.9 0.735001 0.164999 18 14.28753 3.712467 13.782411	0.9	0.773929		18				0.9						
	0.9	0.670333		18		5.16751			0.663309	0.236691	18		5.325557	

APPENDIX Q

NORMALIZED AND DENORMALIZED TRAINING DATASET OF TARGET FEATURE, OUTPUTS AND ERRORS FOR MALE HISPANIC POPULATION USING ANN APPROACH AND GA-ANN APPROACH

		AN	IN			GA-ANN							
I	Normalized		D	enormalize	d]	Normalized	,	D	enormalize	d		
Target	Output	Error	Target	Output	Error	Target	Output	Error	Target	Output	Error		
0.1	0.172571	-0.07257	0	1.632857	-1.63286	0.1	0.166519	-0.06652	0	1.496672	-1.49667		
0.1	0.207328	-0.10733	0	2.414884	-2.41488	0.1	0.189582	-0.08958	0	2.015598	-2.0156		
0.1	0.175667	-0.07567	0	1.702509	-1.70251	0.1	0.181696	-0.0817	0	1.838155	-1.83815		
0.144444	0.254243	-0.1098	1	3.470469	-2.47047	0.144444	0.243028	-0.09858	1	3.218131	-2.21813		
0.144444	0.186174	-0.04173	1	1.938922	-0.93892	0.144444	0.170479	-0.02603	1	1.585769	-0.58577		
0.144444	0.215885	-0.07144	1	2.607419	-1.60742	0.144444	0.20733	-0.06289	1	2.414928	-1.41493		
0.144444	0.162137	-0.01769	1	1.398087	-0.39809	0.144444	0.17621	-0.03177	1	1.714721	-0.71472		
0.144444	0.196641	-0.0522	1	2.174425	-1.17443	0.144444	0.195107	-0.05066	1	2.139917	-1.13992		
0.188889	0.207155	-0.01827	2	2.410987	-0.41099	0.188889	0.218731	-0.02984	2	2.671457	-0.67146		
0.188889	0.21969	-0.0308	2	2.693025	-0.69303	0.188889	0.23199	-0.0431	2	2.969769	-0.96977		
0.188889	0.195742	-0.00685	2	2.1542	-0.1542	0.188889	0.221564	-0.03268	2	2.73519	-0.73519		
0.233333	0.262522	-0.02919	3	3.656738	-0.65674	0.233333	0.253572	-0.02024	3	3.455374	-0.45537		
0.233333	0.208481	0.024852	3	2.440825	0.559175	0.233333	0.211307	0.022026	3	2.504407	0.495593		
0.233333	0.175958	0.057376	3	1.709046	1.290954	0.233333	0.166172	0.067161	3	1.488871	1.511129		
0.277778	0.303618	-0.02584	4	4.581398	-0.5814	0.277778	0.297836	-0.02006	4	4.451309	-0.45131		
0.277778	0.260344	0.017434	4	3.607738	0.392262	0.277778	0.252396	0.025382	4	3.428909	0.571091		
0.277778	0.300283	-0.02251	4	4.506367	-0.50637	0.277778	0.314114	-0.03634	4	4.817573	-0.81757		
0.322222	0.320653	0.001569	5	4.964702	0.035298	0.322222	0.354719	-0.0325	5	5.73117	-0.73117		
0.322222	0.381886	-0.05966	5	6.342426	-1.34243	0.322222	0.394602	-0.07238	5	6.628536	-1.62854		
0.322222	0.360614	-0.03839	5	5.863814	-0.86381	0.322222	0.310325	0.011897	5	4.73231	0.26769		

0.322222 0.366338 -0.04412 5 5.992612 -0.99261 0.322222 0.33592 -0.0137 5 5.036191 -0.30819 0.322222 0.248139 0.074084 5 3.333119 1.6666881 0.322222 0.287523 0.03479 5 4.219259 0.780741 0.366667 0.330499 0.036168 6 5.186226 0.813774 0.366667 0.403993 6 5.235156 0.76484 0.366667 0.400609 -0.03394 6 6.763714 -0.76371 0.366667 0.407508 6 6.849399 -0.66667 0.36931 -0.003396 6 5.856984 0.143016 0.366667 0.40060 6 6.689399 -0.443016 0.366667 0.430617 -0.06395 6 7.438873 -1.43887 0.366667 0.436837 -0.07017 6 7.578844 -1.57884 0.366667 0.430617 -0.06395 6 7.438873 -1.43887 0.366667 0.399040 -0.03214 6 6												
0.366667 0.330499 0.036168 6 5.186226 0.813774 0.366667 0.033993 6 5.235156 0.764844 0.366667 0.430909 -0.06424 6 7.445459 -1.44546 0.366667 0.47508 -0.10841 6 8.439307 -2.43931 0.366667 0.400609 -0.03394 6 6.763714 -0.76371 0.366667 0.477345 -0.05068 6 7.40267 -1.14027 0.366667 0.360667 0.360637 -0.07017 6 7.578844 -1.57884 0.366667 0.430617 -0.06395 6 7.438873 -1.43887 0.366667 0.3995519 -0.02885 6 6.649169 -0.64917 0.366667 0.407628 -0.04096 6 6.92162 -0.92162 0.411111 0.475807 -0.0647 7 8.455651 -1.45565 0.411111 0.442613 -0.0315 7 7.708794 -0.70879 0.411111 0.45254 -0.0318 7 7.708794 -0.7	0.322222	0.366338	-0.04412	5	5.992612	-0.99261	0.322222	0.33592	-0.0137	5	5.308191	-0.30819
0.366667 0.430909 -0.06424 6 7.445459 -1.44546 0.366667 0.47508 -0.10841 6 8.439307 -2.43931 0.366667 0.400609 -0.03394 6 6.763714 -0.76371 0.366667 0.417345 -0.05068 6 7.140267 -1.14027 0.366667 0.366667 0.436837 -0.07017 6 7.578844 -1.57884 0.366667 0.430617 -0.06395 6 7.438873 -1.43887 0.366667 0.395519 -0.02885 6 6.649169 -0.64917 0.366667 0.407628 -0.04096 6 6.92162 -0.92162 0.411111 0.475807 -0.0647 7 8.455651 -1.45565 0.411111 0.442613 -0.0315 7 7.078794 -0.07879 0.411111 0.44254 -0.03114 7 7.700722 -0.70072 0.411111 0.44309 -0.0315 7 7.719521 -0.71952 0.411111 0.449254 -0.03114 7 7.700	0.322222	0.248139	0.074084	5	3.333119	1.666881	0.322222	0.287523	0.0347	5	4.219259	0.780741
0.366667 0.400609 -0.03394 6 6.763714 -0.76371 0.366667 0.417345 -0.05068 6 7.140267 -1.14027 0.366667 0.36031 0.006356 6 5.856984 0.143016 0.366667 0.397307 -0.03064 6 6.689397 -0.6894 0.366667 0.436837 -0.07017 6 7.578844 -1.57884 0.366667 0.40017 -0.06395 6 7.43887 -1.43887 0.366667 0.399004 -0.03234 6 6.727586 -0.72759 0.366667 0.407628 -0.04096 6 6.92162 -0.92162 0.411111 0.475807 -0.0647 7 8.455651 -1.45565 0.411111 0.442613 -0.0315 7 7.708794 -0.70879 0.411111 0.4525385 0.058726 7 5.67867 1.32133 0.411111 0.442613 -0.0315 7 7.708794 -0.70879 0.411111 0.45254 -0.03198 7 7.719521 -0.71952	0.366667	0.330499	0.036168	6	5.186226	0.813774	0.366667	0.332674	0.033993	6	5.235156	0.764844
0.366667 0.36031 0.006356 6 5.856984 0.143016 0.366667 0.397307 -0.03064 6 6.689397 -0.6894 0.366667 0.436837 -0.07017 6 7.578844 -1.57884 0.366667 0.430617 -0.06395 6 7.438873 -1.43887 0.366667 0.399004 -0.023234 6 6.6727586 -0.72759 0.366667 0.404096 6 6.92162 -0.92162 0.411111 0.475807 -0.0647 7 8.455651 -1.45565 0.411111 0.442613 -0.0315 7 7.078794 -0.70879 0.411111 0.475807 -0.0647 7 5.67867 1.32133 0.411111 0.44203 -0.0315 7 7.078794 -0.70879 0.411111 0.442254 -0.03114 7 7.700722 -0.70072 0.411111 0.44309 -0.03198 7 7.55668 1.43314 0.411111 0.491892 -0.08078 7 8.767806 -1.76781 0.411111<	0.366667	0.430909	-0.06424	6	7.445459	-1.44546	0.366667	0.47508	-0.10841	6	8.439307	-2.43931
0.366667 0.436837 -0.07017 6 7.578844 -1.57884 0.366667 0.430617 -0.06395 6 7.438873 -1.43887 0.366667 0.399519 -0.02885 6 6.649169 -0.64917 0.366667 0.364779 0.001888 6 5.957523 0.042477 0.366667 0.399004 -0.03234 6 6.727586 -0.72759 0.366667 0.407628 -0.04096 6 6.92162 -0.92162 0.411111 0.475807 -0.0647 7 8.455651 -1.45565 0.411111 0.4042613 -0.0315 7 7.708794 -0.70879 0.411111 0.452838 0.058726 7 5.67867 1.32133 0.411111 0.442054 -0.03114 7 7.700722 -0.70072 0.411111 0.44254 -0.03114 7 7.700722 -0.70072 0.411111 0.44209 -0.03198 7 7.719521 -0.71952 0.411111 0.491892 -0.08078 7 8.767806 -1.76781 <	0.366667	0.400609	-0.03394	6	6.763714	-0.76371	0.366667	0.417345	-0.05068	6	7.140267	-1.14027
0.366667 0.395519 -0.02885 6 6.649169 -0.64917 0.366667 0.364779 0.001888 6 5.957523 0.042477 0.366667 0.399004 -0.03234 6 6.727586 -0.72759 0.366667 0.407628 -0.04096 6 6.92162 -0.92162 0.411111 0.475807 -0.0647 7 8.455651 -1.45565 0.411111 0.442613 -0.0315 7 7.708794 -0.70879 0.411111 0.4352385 0.058726 7 5.67867 1.32133 0.411111 0.347416 0.063695 7 5.56686 1.43314 0.411111 0.442254 -0.03114 7 7.700722 -0.70072 0.411111 0.44309 -0.03198 7 7.719521 -0.71952 0.411111 0.498982 -0.08078 7 8.767806 -1.76781 0.411111 0.48205 -0.07139 7 8.66369 -1.60873 0.411111 0.48968 -0.015497 7 10.4868 -3.4868<	0.366667	0.36031	0.006356	6	5.856984	0.143016	0.366667	0.397307	-0.03064	6	6.689397	-0.6894
0.366667 0.399004 -0.03234 6 6.727586 -0.72759 0.366667 0.407628 -0.04096 6 6.92162 -0.92162 0.411111 0.475807 -0.0647 7 8.455651 -1.45565 0.411111 0.442613 -0.0315 7 7.708794 -0.70879 0.411111 0.432235 0.058726 7 5.67867 1.32133 0.411111 0.343695 7 5.56686 1.43314 0.411111 0.442254 -0.08078 7 7.700722 -0.7072 0.411111 0.44309 -0.03198 7 7.719521 -0.71952 0.411111 0.491892 -0.08078 7 8.817571 -1.81757 0.411111 0.443505 -0.07139 7 8.606369 -1.60637 0.411111 0.48968 -0.07857 7 8.767806 -1.76781 0.411111 0.495551 -0.08844 7 8.989892 -1.98989 0.411111 0.56008 -0.15497 7 10.4868 -3.4868 0.411111 <td>0.366667</td> <td>0.436837</td> <td>-0.07017</td> <td>6</td> <td>7.578844</td> <td>-1.57884</td> <td>0.366667</td> <td>0.430617</td> <td>-0.06395</td> <td>6</td> <td>7.438873</td> <td>-1.43887</td>	0.366667	0.436837	-0.07017	6	7.578844	-1.57884	0.366667	0.430617	-0.06395	6	7.438873	-1.43887
0.411111 0.475807 -0.0647 7 8.455651 -1.45565 0.411111 0.442613 -0.0315 7 7.708794 -0.70879 0.411111 0.352385 0.058726 7 5.67867 1.32133 0.411111 0.347416 0.063695 7 5.56686 1.43141 0.411111 0.442254 -0.03114 7 7.700722 -0.70072 0.411111 0.44309 -0.03198 7 7.719521 -0.71952 0.411111 0.4491892 -0.08078 7 8.767806 -1.76781 0.411111 0.492551 -0.07139 7 8.606369 -1.60637 0.411111 0.48968 -0.07857 7 8.767806 -1.76781 0.411111 0.499551 -0.08844 7 8.989892 -1.98989 0.411111 0.54968 -0.14317 7 10.20207 -3.20207 0.455556 0.418726 0.036829 8 7.171346 0.828654 0.455556 0.431625 0.02331 8 7.461555 0.53445	0.366667	0.395519	-0.02885	6	6.649169	-0.64917	0.366667	0.364779	0.001888	6	5.957523	0.042477
0.411111 0.352385 0.058726 7 5.67867 1.32133 0.411111 0.347416 0.063695 7 5.56686 1.43314 0.411111 0.442254 -0.03114 7 7.700722 -0.70072 0.411111 0.44309 -0.03198 7 7.719521 -0.71952 0.411111 0.491892 -0.08078 7 8.817571 -1.81757 0.411111 0.482505 -0.07139 7 8.606369 -1.60637 0.411111 0.48968 -0.07857 7 8.767806 -1.76781 0.411111 0.499551 -0.08844 7 8.989892 -1.98989 0.411111 0.56608 -0.15497 7 10.4868 -3.4868 0.411111 0.558425 -0.14231 7 10.20207 -3.20207 0.455556 0.418726 0.05817 8 9.308789 -1.30879 0.455556 0.431625 0.02331 8 7.461555 0.53445 0.455556 0.513724 -0.05817 8 9.308789 -1.30879 </td <td>0.366667</td> <td>0.399004</td> <td>-0.03234</td> <td>6</td> <td>6.727586</td> <td>-0.72759</td> <td>0.366667</td> <td>0.407628</td> <td>-0.04096</td> <td>6</td> <td>6.92162</td> <td>-0.92162</td>	0.366667	0.399004	-0.03234	6	6.727586	-0.72759	0.366667	0.407628	-0.04096	6	6.92162	-0.92162
0.411111 0.442254 -0.03114 7 7.700722 -0.70072 0.411111 0.44309 -0.03198 7 7.719521 -0.71952 0.411111 0.491892 -0.08078 7 8.817571 -1.81757 0.411111 0.482505 -0.07139 7 8.606369 -1.60637 0.411111 0.48968 -0.07857 7 8.767806 -1.76781 0.411111 0.499551 -0.08844 7 8.989892 -1.98989 0.411111 0.56608 -0.15497 7 10.4868 -3.4868 0.411111 0.553425 -0.14231 7 10.20207 -3.20207 0.455556 0.418726 0.036829 8 7.171346 0.828654 0.455556 0.431625 0.023931 8 7.461555 0.538445 0.455556 0.513724 -0.05817 8 9.088929 -1.06893 0.455556 0.472117 -0.01656 8 8.372623 -0.37262 0.455556 0.503063 -0.04751 8 9.068929 -1.	0.411111	0.475807	-0.0647	7	8.455651	-1.45565	0.411111	0.442613	-0.0315	7	7.708794	-0.70879
0.411111 0.491892 -0.08078 7 8.817571 -1.81757 0.411111 0.482505 -0.07139 7 8.606369 -1.60637 0.411111 0.48968 -0.07857 7 8.767806 -1.76781 0.411111 0.499551 -0.08844 7 8.989892 -1.98989 0.411111 0.56608 -0.15497 7 10.4868 -3.4868 0.411111 0.553425 -0.14231 7 10.20207 -3.20207 0.455556 0.418726 0.036829 8 7.171346 0.828654 0.455556 0.431625 0.023931 8 7.461555 0.538445 0.455556 0.513724 -0.05817 8 9.308789 -1.30879 0.455556 0.472117 -0.01656 8 8.372623 -0.37262 0.455556 0.53063 -0.04751 8 9.068929 -1.06893 0.455556 0.511397 -0.05584 8 9.256443 -1.25644 0.455556 0.445336 0.01022 8 7.770052 0.22	0.411111	0.352385	0.058726	7	5.67867	1.32133	0.411111	0.347416	0.063695	7	5.56686	1.43314
0.411111 0.48968 -0.07857 7 8.767806 -1.76781 0.411111 0.499551 -0.08844 7 8.989892 -1.98989 0.411111 0.56608 -0.15497 7 10.4868 -3.4868 0.411111 0.553425 -0.14231 7 10.20207 -3.20207 0.455556 0.418726 0.036829 8 7.171346 0.828654 0.455556 0.431625 0.023931 8 7.461555 0.538445 0.455556 0.513724 -0.05817 8 9.308789 -1.30879 0.455556 0.472117 -0.01656 8 8.372623 -0.37262 0.455556 0.503063 -0.04751 8 9.068929 -1.06893 0.455556 0.511397 -0.05584 8 9.256443 -1.25644 0.455556 0.545336 0.01022 8 7.770052 0.229948 0.455556 0.457168 -0.00161 8 8.036278 -0.03628 0.455556 0.457638 -0.02008 8 8.046853 -0.	0.411111	0.442254	-0.03114	7	7.700722	-0.70072	0.411111	0.44309	-0.03198	7	7.719521	-0.71952
0.411111 0.56608 -0.15497 7 10.4868 -3.4868 0.411111 0.553425 -0.14231 7 10.20207 -3.20207 0.455556 0.418726 0.036829 8 7.171346 0.828654 0.455556 0.431625 0.023931 8 7.461555 0.538445 0.455556 0.513724 -0.05817 8 9.308789 -1.30879 0.455556 0.472117 -0.01656 8 8.372623 -0.37262 0.455556 0.503063 -0.04751 8 9.068929 -1.06893 0.455556 0.511397 -0.05584 8 9.256443 -1.25644 0.455556 0.445336 0.01022 8 7.770052 0.229948 0.455556 0.457168 -0.00161 8 8.036278 -0.03628 0.455556 0.457638 -0.00208 8 8.046853 -0.04685 0.455556 0.54986 -0.0943 8 10.12185 -2.12185 0.5 0.536275 -0.03627 9 9.816181 -0.81618<	0.411111	0.491892	-0.08078	7	8.817571	-1.81757	0.411111	0.482505	-0.07139	7	8.606369	-1.60637
0.455556 0.418726 0.036829 8 7.171346 0.828654 0.455556 0.431625 0.023931 8 7.461555 0.538445 0.455556 0.513724 -0.05817 8 9.308789 -1.30879 0.455556 0.472117 -0.01656 8 8.372623 -0.37262 0.455556 0.503063 -0.04751 8 9.068929 -1.06893 0.455556 0.511397 -0.05584 8 9.256443 -1.25644 0.455556 0.445336 0.01022 8 7.770052 0.229948 0.455556 0.457168 -0.00161 8 8.036278 -0.03628 0.455556 0.457638 -0.00208 8 8.046853 -0.04685 0.455556 0.429479 0.026077 8 7.413273 0.586727 0.455556 0.546596 -0.09104 8 10.0484 -2.0484 0.455556 0.54986 -0.0943 8 10.12185 -2.12185 0.5 0.536275 -0.03627 9 9.816181 -0.81618	0.411111	0.48968	-0.07857	7	8.767806	-1.76781	0.411111	0.499551	-0.08844	7	8.989892	-1.98989
0.455556 0.513724 -0.05817 8 9.308789 -1.30879 0.455556 0.472117 -0.01656 8 8.372623 -0.37262 0.455556 0.503063 -0.04751 8 9.068929 -1.06893 0.455556 0.511397 -0.05584 8 9.256443 -1.25644 0.455556 0.445336 0.01022 8 7.770052 0.229948 0.455556 0.457168 -0.00161 8 8.036278 -0.03628 0.455556 0.457638 -0.00208 8 8.046853 -0.04685 0.455556 0.429479 0.026077 8 7.413273 0.586727 0.455556 0.546596 -0.09104 8 10.0484 -2.0484 0.455556 0.54986 -0.0943 8 10.12185 -2.12185 0.5 0.536275 -0.03627 9 9.816181 -0.81618 0.5 0.527892 -0.02789 9 9.627564 -0.62756 0.5 0.645299 -0.1453 9 12.26923 -3.26923	0.411111	0.56608	-0.15497	7	10.4868	-3.4868	0.411111	0.553425	-0.14231	7	10.20207	-3.20207
0.455556 0.503063 -0.04751 8 9.068929 -1.06893 0.455556 0.511397 -0.05584 8 9.256443 -1.25644 0.455556 0.445336 0.01022 8 7.770052 0.229948 0.455556 0.457168 -0.00161 8 8.036278 -0.03628 0.455556 0.457638 -0.00208 8 8.046853 -0.04685 0.455556 0.429479 0.026077 8 7.413273 0.586727 0.455556 0.546596 -0.09104 8 10.0484 -2.0484 0.455556 0.54986 -0.0943 8 10.12185 -2.12185 0.5 0.536275 -0.03627 9 9.816181 -0.81618 0.5 0.527892 -0.02789 9 9.627564 -0.62756 0.5 0.645299 -0.1453 9 12.26923 -3.26923 0.5 0.613822 -0.11382 9 11.56098 -2.56098 0.5 0.512461 -0.01246 9 9.280372 -0.28037 0.5	0.455556	0.418726	0.036829	8	7.171346	0.828654	0.455556	0.431625	0.023931	8	7.461555	0.538445
0.455556 0.445336 0.01022 8 7.770052 0.229948 0.455556 0.457168 -0.00161 8 8.036278 -0.03628 0.455556 0.457638 -0.00208 8 8.046853 -0.04685 0.455556 0.429479 0.026077 8 7.413273 0.586727 0.455556 0.546596 -0.09104 8 10.0484 -2.0484 0.455556 0.54986 -0.0943 8 10.12185 -2.12185 0.5 0.536275 -0.03627 9 9.816181 -0.81618 0.5 0.527892 -0.02789 9 9.627564 -0.62756 0.5 0.645299 -0.1453 9 12.26923 -3.26923 0.5 0.613822 -0.11382 9 11.56098 -2.56098 0.5 0.512461 -0.01246 9 9.280372 -0.28037 0.5 0.49497 0.00503 9 8.886825 0.113175 0.5 0.446992 0.053008 9 7.807316 1.192684 0.5	0.455556	0.513724	-0.05817	8	9.308789	-1.30879	0.455556	0.472117	-0.01656	8	8.372623	-0.37262
0.455556 0.457638 -0.00208 8 8.046853 -0.04685 0.455556 0.429479 0.026077 8 7.413273 0.586727 0.455556 0.546596 -0.09104 8 10.0484 -2.0484 0.455556 0.54986 -0.0943 8 10.12185 -2.12185 0.5 0.536275 -0.03627 9 9.816181 -0.81618 0.5 0.527892 -0.02789 9 9.627564 -0.62756 0.5 0.645299 -0.1453 9 12.26923 -3.26923 0.5 0.613822 -0.11382 9 11.56098 -2.56098 0.5 0.512461 -0.01246 9 9.280372 -0.28037 0.5 0.49497 0.00503 9 8.886825 0.113175 0.5 0.449227 0.050773 9 7.857611 1.142389 0.5 0.52493 -0.02493 9 9.560919 -0.56092 0.5 0.446992 0.053008 9 7.807316 1.192684 0.5 0.45	0.455556	0.503063	-0.04751	8	9.068929	-1.06893	0.455556	0.511397	-0.05584	8	9.256443	-1.25644
0.455556 0.546596 -0.09104 8 10.0484 -2.0484 0.455556 0.54986 -0.0943 8 10.12185 -2.12185 0.5 0.536275 -0.03627 9 9.816181 -0.81618 0.5 0.527892 -0.02789 9 9.627564 -0.62756 0.5 0.645299 -0.1453 9 12.26923 -3.26923 0.5 0.613822 -0.11382 9 11.56098 -2.56098 0.5 0.512461 -0.01246 9 9.280372 -0.28037 0.5 0.49497 0.00503 9 8.886825 0.113175 0.5 0.449227 0.050773 9 7.857611 1.142389 0.5 0.52493 -0.02493 9 9.560919 -0.56092 0.5 0.446992 0.053008 9 7.807316 1.192684 0.5 0.458223 0.041777 9 8.060014 0.939986 0.5 0.571867 -0.07187 9 10.61701 -1.61701 0.5 0.576743	0.455556	0.445336	0.01022	8	7.770052	0.229948	0.455556	0.457168	-0.00161	8	8.036278	-0.03628
0.5 0.536275 -0.03627 9 9.816181 -0.81618 0.5 0.527892 -0.02789 9 9.627564 -0.62756 0.5 0.645299 -0.1453 9 12.26923 -3.26923 0.5 0.613822 -0.11382 9 11.56098 -2.56098 0.5 0.512461 -0.01246 9 9.280372 -0.28037 0.5 0.49497 0.00503 9 8.886825 0.113175 0.5 0.449227 0.050773 9 7.857611 1.142389 0.5 0.52493 -0.02493 9 9.560919 -0.56092 0.5 0.446992 0.053008 9 7.807316 1.192684 0.5 0.458223 0.041777 9 8.060014 0.939986 0.5 0.571867 -0.07187 9 10.61701 -1.61701 0.5 0.576743 -0.07674 9 10.72672 -1.72672 0.5 0.522621 -0.02262 9 9.508971 -0.50897 0.5 0.513448	0.455556	0.457638	-0.00208	8	8.046853	-0.04685	0.455556	0.429479	0.026077	8	7.413273	0.586727
0.5 0.645299 -0.1453 9 12.26923 -3.26923 0.5 0.613822 -0.11382 9 11.56098 -2.56098 0.5 0.512461 -0.01246 9 9.280372 -0.28037 0.5 0.49497 0.00503 9 8.886825 0.113175 0.5 0.449227 0.050773 9 7.857611 1.142389 0.5 0.52493 -0.02493 9 9.560919 -0.56092 0.5 0.446992 0.053008 9 7.807316 1.192684 0.5 0.458223 0.041777 9 8.060014 0.939986 0.5 0.571867 -0.07187 9 10.61701 -1.61701 0.5 0.576743 -0.07674 9 10.72672 -1.72672 0.5 0.522621 -0.02262 9 9.508971 -0.50897 0.5 0.513448 -0.01345 9 9.302589 -0.30259	0.455556	0.546596	-0.09104	8	10.0484	-2.0484	0.455556	0.54986	-0.0943	8	10.12185	-2.12185
0.5 0.512461 -0.01246 9 9.280372 -0.28037 0.5 0.49497 0.00503 9 8.886825 0.113175 0.5 0.449227 0.050773 9 7.857611 1.142389 0.5 0.52493 -0.02493 9 9.560919 -0.56092 0.5 0.446992 0.053008 9 7.807316 1.192684 0.5 0.458223 0.041777 9 8.060014 0.939986 0.5 0.571867 -0.07187 9 10.61701 -1.61701 0.5 0.576743 -0.07674 9 10.72672 -1.72672 0.5 0.522621 -0.02262 9 9.508971 -0.50897 0.5 0.513448 -0.01345 9 9.302589 -0.30259	0.5	0.536275	-0.03627	9	9.816181	-0.81618	0.5	0.527892	-0.02789	9	9.627564	-0.62756
0.5 0.449227 0.050773 9 7.857611 1.142389 0.5 0.52493 -0.02493 9 9.560919 -0.56092 0.5 0.446992 0.053008 9 7.807316 1.192684 0.5 0.458223 0.041777 9 8.060014 0.939986 0.5 0.571867 -0.07187 9 10.61701 -1.61701 0.5 0.576743 -0.07674 9 10.72672 -1.72672 0.5 0.522621 -0.02262 9 9.508971 -0.50897 0.5 0.513448 -0.01345 9 9.302589 -0.30259	0.5	0.645299	-0.1453	9	12.26923	-3.26923	0.5	0.613822	-0.11382	9	11.56098	-2.56098
0.5 0.446992 0.053008 9 7.807316 1.192684 0.5 0.458223 0.041777 9 8.060014 0.939986 0.5 0.571867 -0.07187 9 10.61701 -1.61701 0.5 0.576743 -0.07674 9 10.72672 -1.72672 0.5 0.522621 -0.02262 9 9.508971 -0.50897 0.5 0.513448 -0.01345 9 9.302589 -0.30259	0.5	0.512461	-0.01246	9	9.280372	-0.28037	0.5	0.49497	0.00503	9	8.886825	0.113175
0.5 0.571867 -0.07187 9 10.61701 -1.61701 0.5 0.576743 -0.07674 9 10.72672 -1.72672 0.5 0.522621 -0.02262 9 9.508971 -0.50897 0.5 0.513448 -0.01345 9 9.302589 -0.30259	0.5	0.449227	0.050773	9	7.857611	1.142389	0.5	0.52493	-0.02493	9	9.560919	-0.56092
0.5 0.522621 -0.02262 9 9.508971 -0.50897 0.5 0.513448 -0.01345 9 9.302589 -0.30259	0.5	0.446992	0.053008	9	7.807316	1.192684	0.5	0.458223	0.041777	9	8.060014	0.939986
	0.5	0.571867	-0.07187	9	10.61701	-1.61701	0.5	0.576743	-0.07674	9	10.72672	-1.72672
0.544444 0.525515 0.018929 10 9.574098 0.425902 0.544444 0.590817 -0.04637 10 11.04339 -1.04339	0.5	0.522621	-0.02262	9	9.508971	-0.50897	0.5	0.513448	-0.01345	9	9.302589	-0.30259
	0.54444	0.525515	0.018929	10	9.574098	0.425902	0.544444	0.590817	-0.04637	10	11.04339	-1.04339

0.544444	0.440878	0.103567	10	7.669754	2.330246	0.544444	0.458818	0.085627	10	8.073402	1.926598
0.544444	0.621997	-0.07755	10	11.74492	-1.74492	0.544444	0.6876	-0.14316	10	13.22101	-3.22101
0.544444	0.534561	0.009883	10	9.777628	0.222372	0.544444	0.523619	0.020826	10	9.531418	0.468582
0.544444	0.420641	0.123804	10	7.214419	2.785581	0.544444	0.43003	0.114414	10	7.425675	2.574325
0.544444	0.548797	-0.00435	10	10.09794	-0.09794	0.544444	0.526863	0.017581	10	9.604424	0.395576
0.544444	0.63918	-0.09474	10	12.13156	-2.13156	0.544444	0.621112	-0.07667	10	11.72502	-1.72502
0.544444	0.578651	-0.03421	10	10.76965	-0.76965	0.544444	0.540208	0.004236	10	9.904683	0.095317
0.544444	0.643991	-0.09955	10	12.23979	-2.23979	0.544444	0.612106	-0.06766	10	11.5224	-1.5224
0.588889	0.614023	-0.02513	11	11.56553	-0.56553	0.588889	0.576067	0.012822	11	10.71151	0.288491
0.588889	0.587804	0.001085	11	10.97558	0.024418	0.588889	0.567007	0.021882	11	10.50766	0.492339
0.588889	0.605487	-0.0166	11	11.37346	-0.37346	0.588889	0.598919	-0.01003	11	11.22569	-0.22569
0.588889	0.528569	0.06032	11	9.642799	1.357201	0.588889	0.62242	-0.03353	11	11.75444	-0.75444
0.588889	0.700331	-0.11144	11	13.50744	-2.50744	0.588889	0.705795	-0.11691	11	13.63039	-2.63039
0.588889	0.618777	-0.02989	11	11.67248	-0.67248	0.588889	0.621765	-0.03288	11	11.7397	-0.7397
0.588889	0.302177	0.286712	11	4.548985	6.451015	0.588889	0.282876	0.306013	11	4.114708	6.885292
0.588889	0.295575	0.293314	11	4.40043	6.59957	0.588889	0.288837	0.300052	11	4.248823	6.751177
0.588889	0.74576	-0.15687	11	14.52959	-3.52959	0.588889	0.75224	-0.16335	11	14.6754	-3.6754
0.588889	0.613522	-0.02463	11	11.55424	-0.55424	0.588889	0.62318	-0.03429	11	11.77155	-0.77155
0.588889	0.523219	0.06567	11	9.522428	1.477572	0.588889	0.500172	0.088717	11	9.003865	1.996135
0.588889	0.618473	-0.02958	11	11.66563	-0.66563	0.588889	0.667352	-0.07846	11	12.76542	-1.76542
0.633333	0.648467	-0.01513	12	12.3405	-0.3405	0.633333	0.618815	0.014519	12	11.67333	0.326672
0.633333	0.654932	-0.0216	12	12.48596	-0.48596	0.633333	0.640328	-0.00699	12	12.15738	-0.15738
0.633333	0.703547	-0.07021	12	13.57981	-1.57981	0.633333	0.735365	-0.10203	12	14.29571	-2.29571
0.633333	0.674681	-0.04135	12	12.93033	-0.93033	0.633333	0.713418	-0.08008	12	13.80189	-1.80189
0.633333	0.67994	-0.04661	12	13.04864	-1.04864	0.633333	0.642078	-0.00874	12	12.19675	-0.19675
0.633333	0.673461	-0.04013	12	12.90286	-0.90286	0.633333	0.706479	-0.07315	12	13.64579	-1.64579
0.633333	0.582738	0.050596	12	10.8616	1.1384	0.633333	0.620006	0.013327	12	11.70014	0.299859
0.633333	0.701061	-0.06773	12	13.52387	-1.52387	0.633333	0.727709	-0.09438	12	14.12344	-2.12344
0.633333	0.749477	-0.11614	12	14.61324	-2.61324	0.633333	0.730584	-0.09725	12	14.18814	-2.18814

0.677778 0.693752 -0.01597 13 13.35943 -0.35943 0.677778 0.711081 -0.0333 13 13.74932 -0.74932 0.677778 0.613899 0.063878 13 11.56274 1.437264 0.677778 0.62726 0.050518 13 11.86335 1.136652 0.677778 0.720978 -0.0432 13 13.972 -0.972 0.677778 0.713451 -0.03567 13 13.80264 -0.80264 0.677778 0.694748 -0.01697 13 13.38183 -0.38183 0.677778 0.695068 -0.01729 13 13.38020 -0.38902 0.677778 0.680444 -0.00267 13 13.04323 -0.05999 0.677778 0.75178 -0.0374 13 13.84151 -0.84151 0.677778 0.760112 -0.02833 13 13.63752 -0.63752 0.677778 0.74311 -0.06653 13 14.497 -1.497 0.677778 0.752776 -0.075 13 14.68746 -
0.677778 0.720978 -0.0432 13 13.972 -0.972 0.677778 0.713451 -0.03567 13 13.80264 -0.80264 0.677778 0.694748 -0.01697 13 13.38183 -0.38183 0.677778 0.649463 0.028315 13 12.36291 0.637086 0.677778 0.676999 -0.00192 13 13.04323 -0.04323 0.677778 0.695068 -0.01729 13 13.38902 -0.38902 0.677778 0.680444 -0.00267 13 13.05999 -0.05999 0.677778 0.744311 -0.0374 13 13.84151 -0.84151 0.677778 0.76112 -0.02833 13 14.68746 -1.68746 0.677778 0.744311 -0.06653 13 14.4977 -1.497 0.677778 0.752776 -0.075 13 14.68746 -1.68746 0.677778 0.764731 -0.06653 13 14.95739 -1.95739 0.722222 0.705072 0.017151 14 13.61411 <
0.677778 0.694748 -0.01697 13 13.38183 -0.38183 0.677778 0.649463 0.028315 13 12.36291 0.637086 0.677778 0.679699 -0.00192 13 13.04323 -0.04323 0.677778 0.695068 -0.01729 13 13.38902 -0.38902 0.677778 0.680444 -0.00267 13 13.05999 -0.05999 0.677778 0.715178 -0.0374 13 13.84151 -0.84151 0.677778 0.706112 -0.02833 13 13.63752 -0.63752 0.677778 0.744311 -0.06653 13 14.497 -1.497 0.677778 0.752776 -0.075 13 14.68746 -1.68746 0.677778 0.764773 -0.08699 13 14.95739 -1.95739 0.722222 0.705072 0.017151 14 13.61411 0.385888 0.722222 0.725463 -0.00324 14 14.07293 -0.07293 0.722222 0.72569 -0.00347 14 14.07803
0.677778 0.679699 -0.00192 13 13.04323 -0.04323 0.677778 0.695068 -0.01729 13 13.38902 -0.38902 0.677778 0.680444 -0.00267 13 13.05999 -0.05999 0.677778 0.715178 -0.0374 13 13.84151 -0.84151 0.677778 0.706112 -0.02833 13 13.63752 -0.63752 0.677778 0.744311 -0.06653 13 14.497 -1.497 0.677778 0.752776 -0.075 13 14.68746 -1.68746 0.677778 0.764773 -0.08699 13 14.95739 -1.95739 0.722222 0.705072 0.017151 14 13.61411 0.385888 0.722222 0.725463 -0.00324 14 14.07293 -0.07293 0.722222 0.72569 -0.00347 14 14.07803 -0.07803 0.722222 0.714331 0.007891 14 15.16069 -1.16069 0.722222 0.801988 -0.07977 14 15.79473
0.677778 0.680444 -0.00267 13 13.05999 -0.05999 0.677778 0.715178 -0.0374 13 13.84151 -0.84151 0.677778 0.706112 -0.02833 13 13.63752 -0.63752 0.677778 0.744311 -0.06653 13 14.497 -1.497 0.677778 0.752776 -0.075 13 14.68746 -1.68746 0.677778 0.764773 -0.08699 13 14.95739 -1.95739 0.722222 0.705072 0.017151 14 13.61411 0.385888 0.722222 0.725463 -0.00324 14 14.07293 -0.07293 0.722222 0.72569 -0.00347 14 14.07803 -0.07803 0.722222 0.714331 0.007891 14 13.82245 0.177553 0.722222 0.801988 -0.07977 14 15.79473 0.722222 0.773808 -0.05159 14 15.16069 -1.16069 0.722222 0.752835 -0.03061 14 14.68878 -0.68878
0.677778 0.706112 -0.02833 13 13.63752 -0.63752 0.677778 0.744311 -0.06653 13 14.497 -1.497 0.677778 0.752776 -0.075 13 14.68746 -1.68746 0.677778 0.764773 -0.08699 13 14.95739 -1.95739 0.722222 0.705072 0.017151 14 13.61411 0.385888 0.722222 0.725463 -0.00324 14 14.07293 -0.07293 0.722222 0.72569 -0.00347 14 14.07803 -0.07803 0.722222 0.714331 0.007891 14 13.82245 0.177553 0.722222 0.801988 -0.07977 14 15.79473 -1.79473 0.722222 0.73808 -0.05159 14 15.16069 -1.16069 0.722222 0.752835 -0.03061 14 14.68878 -0.68878 0.722222 0.758122 -0.0359 14 14.80774 -0.80774 0.722222 0.748063 -0.02584 14 14.58141
0.677778 0.752776 -0.075 13 14.68746 -1.68746 0.677778 0.764773 -0.08699 13 14.95739 -1.95739 0.722222 0.705072 0.017151 14 13.61411 0.385888 0.722222 0.725463 -0.00324 14 14.07293 -0.07293 0.722222 0.72569 -0.00347 14 14.07803 -0.07803 0.722222 0.714331 0.007891 14 13.82245 0.177553 0.722222 0.801988 -0.07977 14 15.79473 -1.79473 0.722222 0.773808 -0.05159 14 15.16069 -1.16069 0.722222 0.354683 0.367539 14 5.730364 8.269636 0.722222 0.758122 -0.0359 14 14.80774 -0.80774 0.722222 0.752835 -0.03061 14 14.68878 -0.68878 0.722222 0.758122 -0.0359 14 14.80774 -0.80774 0.722222 0.748063 -0.02711 14 13.39903
0.722222 0.705072 0.017151 14 13.61411 0.385888 0.722222 0.725463 -0.00324 14 14.07293 -0.07293 0.722222 0.72569 -0.00347 14 14.07803 -0.07803 0.722222 0.714331 0.007891 14 13.82245 0.177553 0.722222 0.801988 -0.07977 14 15.79473 -1.79473 0.722222 0.73808 -0.05159 14 15.16069 -1.16069 0.722222 0.354683 0.367539 14 5.730364 8.269636 0.722222 0.738122 -0.0359 14 4.777859 9.222141 0.722222 0.752835 -0.03061 14 14.68878 -0.68878 0.722222 0.758122 -0.0359 14 14.80774 -0.80774 0.722222 0.695112 0.02711 14 13.39003 0.609974 0.722222 0.723409 -0.00119 14 14.02671 -0.02671 0.722222 0.748063 -0.02584 14 14.64002
0.722222 0.72569 -0.00347 14 14.07803 -0.07803 0.722222 0.714331 0.007891 14 13.82245 0.177553 0.722222 0.801988 -0.07977 14 15.79473 -1.79473 0.722222 0.773808 -0.05159 14 15.16069 -1.16069 0.722222 0.354683 0.367539 14 5.730364 8.269636 0.722222 0.312349 0.409873 14 4.777859 9.222141 0.722222 0.752835 -0.03661 14 14.68878 -0.68878 0.722222 0.758122 -0.0359 14 14.80774 -0.80774 0.722222 0.695112 0.02711 14 13.39003 0.609974 0.722222 0.723409 -0.00119 14 14.02671 -0.02671 0.722222 0.748063 -0.02584 14 14.64002 -0.64002 0.722222 0.740336 -0.01811 14 14.40756 -0.40756 0.722222 0.789849 -0.06763 14 16.0494
0.722222 0.801988 -0.07977 14 15.79473 -1.79473 0.722222 0.773808 -0.05159 14 15.16069 -1.16069 0.722222 0.354683 0.367539 14 5.730364 8.269636 0.722222 0.312349 0.409873 14 4.777859 9.222141 0.722222 0.752835 -0.03061 14 14.68878 -0.68878 0.722222 0.758122 -0.0359 14 14.80774 -0.80774 0.722222 0.695112 0.02711 14 13.39003 0.609974 0.722222 0.723409 -0.00119 14 14.02671 -0.02671 0.722222 0.748063 -0.02584 14 14.58141 -0.58141 0.722222 0.745263 -0.02304 14 14.51841 -0.51841 0.722222 0.750667 -0.02845 14 14.64002 -0.64002 0.722222 0.740336 -0.01811 14 14.40756 -0.40756 0.722222 0.789849 -0.06763 14 15.5216
0.722222 0.354683 0.367539 14 5.730364 8.269636 0.722222 0.312349 0.409873 14 4.777859 9.222141 0.722222 0.752835 -0.03061 14 14.68878 -0.68878 0.722222 0.758122 -0.0359 14 14.80774 -0.80774 0.722222 0.695112 0.02711 14 13.39003 0.609974 0.722222 0.723409 -0.00119 14 14.02671 -0.02671 0.722222 0.748063 -0.02584 14 14.58141 -0.58141 0.722222 0.745263 -0.02304 14 14.51841 -0.51841 0.722222 0.750667 -0.02845 14 14.64002 -0.64002 0.722222 0.740336 -0.01811 14 14.40756 -0.40756 0.722222 0.813307 -0.09108 14 16.0494 -2.0494 0.722222 0.804551 -0.08233 14 15.8524 -1.8524 0.722222 0.789849 -0.06763 14 15.62388
0.722222 0.752835 -0.03061 14 14.68878 -0.68878 0.722222 0.758122 -0.0359 14 14.80774 -0.80774 0.722222 0.695112 0.02711 14 13.39003 0.609974 0.722222 0.723409 -0.00119 14 14.02671 -0.02671 0.722222 0.748063 -0.02584 14 14.58141 -0.58141 0.722222 0.745263 -0.02304 14 14.51841 -0.51841 0.722222 0.750667 -0.02845 14 14.64002 -0.64002 0.722222 0.740336 -0.01811 14 14.40756 -0.40756 0.722222 0.813307 -0.09108 14 16.0494 -2.0494 0.722222 0.804551 -0.08233 14 15.8524 -1.8524 0.722222 0.789849 -0.06763 14 15.5216 -1.5216 0.722222 0.742455 -0.02023 14 14.45524 -0.45524 0.722222 0.794395 -0.07217 14 15.62388
0.722222 0.695112 0.02711 14 13.39003 0.609974 0.722222 0.723409 -0.00119 14 14.02671 -0.02671 0.722222 0.748063 -0.02584 14 14.58141 -0.58141 0.722222 0.745263 -0.02304 14 14.51841 -0.51841 0.722222 0.750667 -0.02845 14 14.64002 -0.64002 0.722222 0.740336 -0.01811 14 14.40756 -0.40756 0.722222 0.813307 -0.09108 14 16.0494 -2.0494 0.722222 0.804551 -0.08233 14 15.8524 -1.8524 0.722222 0.789849 -0.06763 14 15.5216 -1.5216 0.722222 0.742455 -0.02023 14 14.45524 -0.45524 0.722222 0.794395 -0.07217 14 15.62388 -1.62388 0.722222 0.806974 -0.08475 14 15.90692 -1.90692 0.766667 0.676968 0.089699 15 12.98177
0.722222 0.748063 -0.02584 14 14.58141 -0.58141 0.722222 0.745263 -0.02304 14 14.51841 -0.51841 0.722222 0.750667 -0.02845 14 14.64002 -0.64002 0.722222 0.740336 -0.01811 14 14.40756 -0.40756 0.722222 0.813307 -0.09108 14 16.0494 -2.0494 0.722222 0.804551 -0.08233 14 15.8524 -1.8524 0.722222 0.789849 -0.06763 14 15.5216 -1.5216 0.722222 0.742455 -0.02023 14 14.45524 -0.45524 0.722222 0.794395 -0.07217 14 15.62388 -1.62388 0.722222 0.806974 -0.08475 14 15.90692 -1.90692 0.766667 0.676968 0.089699 15 12.98177 2.01823 0.766667 0.719706 0.046961 15 13.94338 1.056616
0.722222 0.750667 -0.02845 14 14.64002 -0.64002 0.722222 0.740336 -0.01811 14 14.40756 -0.40756 0.722222 0.813307 -0.09108 14 16.0494 -2.0494 0.722222 0.804551 -0.08233 14 15.8524 -1.8524 0.722222 0.789849 -0.06763 14 15.5216 -1.5216 0.722222 0.742455 -0.02023 14 14.45524 -0.45524 0.722222 0.794395 -0.07217 14 15.62388 -1.62388 0.722222 0.806974 -0.08475 14 15.90692 -1.90692 0.766667 0.676968 0.089699 15 12.98177 2.01823 0.766667 0.719706 0.046961 15 13.94338 1.056616
0.722222 0.813307 -0.09108 14 16.0494 -2.0494 0.722222 0.804551 -0.08233 14 15.8524 -1.8524 0.722222 0.789849 -0.06763 14 15.5216 -1.5216 0.722222 0.742455 -0.02023 14 14.45524 -0.45524 0.722222 0.794395 -0.07217 14 15.62388 -1.62388 0.722222 0.806974 -0.08475 14 15.90692 -1.90692 0.766667 0.676968 0.089699 15 12.98177 2.01823 0.766667 0.719706 0.046961 15 13.94338 1.056616
0.722222 0.789849 -0.06763 14 15.5216 -1.5216 0.722222 0.742455 -0.02023 14 14.45524 -0.45524 0.722222 0.794395 -0.07217 14 15.62388 -1.62388 0.722222 0.806974 -0.08475 14 15.90692 -1.90692 0.766667 0.676968 0.089699 15 12.98177 2.01823 0.766667 0.719706 0.046961 15 13.94338 1.056616
0.722222 0.794395 -0.07217 14 15.62388 -1.62388 0.722222 0.806974 -0.08475 14 15.90692 -1.90692 0.766667 0.676968 0.089699 15 12.98177 2.01823 0.766667 0.719706 0.046961 15 13.94338 1.056616
0.766667
0.766667 0.727742 0.038925 15 14.12419 0.875813 0.766667 0.745156 0.021511 15 14.51601 0.483994
0.700007 0.727742 0.030325 13 14.12415 0.073013 0.700007 0.743130 0.021311 13 14.51001 0.403334
0.766667 0.761329 0.005338 15 14.8799 0.120103 0.766667 0.745202 0.021465 15 14.51704 0.482959
0.766667 0.716616 0.05005 15 13.87387 1.126133 0.766667 0.739303 0.027363 15 14.38433 0.615672
0.766667 0.769363 -0.0027 15 15.06066 -0.06066 0.766667 0.769522 -0.00285 15 15.06424 -0.06424
0.766667
0.766667 0.791042 -0.02438
0.766667
0.811111 0.764902 0.046209 16 14.96029 1.039708 0.811111 0.766423 0.044688 16 14.99452 1.005477
0.811111 0.783664 0.027447 16 15.38245 0.617552 0.811111 0.775684 0.035427 16 15.20289 0.797114

0.811111	0.769367	0.041744	16	15.06076	0.939238	0.811111	0.749383	0.061728	16	14.61113	1.388872
0.811111	0.802824	0.008287	16	15.81355	0.186453	0.811111	0.799696	0.011415	16	15.74316	0.256839
0.811111	0.715967	0.095144	16	13.85925	2.140746	0.811111	0.702828	0.108283	16	13.56363	2.436373
0.811111	0.783583	0.027528	16	15.38063	0.619374	0.811111	0.768514	0.042597	16	15.04157	0.958432
0.811111	0.834138	-0.02303	16	16.51811	-0.51811	0.811111	0.811447	-0.00034	16	16.00756	-0.00756
0.811111	0.691439	0.119672	16	13.30738	2.692619	0.811111	0.666363	0.144748	16	12.74317	3.256827
0.855556	0.766086	0.08947	17	14.98693	2.013068	0.855556	0.74685	0.108706	17	14.55412	2.44588
0.855556	0.807282	0.048274	17	15.91384	1.086161	0.855556	0.803392	0.052163	17	15.82633	1.173669
0.855556	0.776523	0.079033	17	15.22177	1.778233	0.855556	0.769001	0.086555	17	15.05252	1.947484
0.855556	0.789478	0.066078	17	15.51325	1.486753	0.855556	0.769883	0.085672	17	15.07238	1.927621
0.855556	0.784492	0.071064	17	15.40106	1.59894	0.855556	0.760717	0.094839	17	14.86613	2.133869
0.855556	0.803659	0.051897	17	15.83232	1.167681	0.855556	0.778915	0.076641	17	15.27558	1.724415
0.9	0.75355	0.14645	18	14.70487	3.295134	0.9	0.764479	0.135521	18	14.95077	3.049228
0.9	0.823126	0.076874	18	16.27033	1.729673	0.9	0.785434	0.114566	18	15.42226	2.577741
0.9	0.795589	0.104411	18	15.65076	2.349243	0.9	0.78482	0.11518	18	15.40844	2.591559
0.9	0.782202	0.117798	18	15.34956	2.650444	0.9	0.766582	0.133418	18	14.9981	3.001898
0.9	0.777406	0.122594	18	15.24162	2.758375	0.9	0.777928	0.122072	18	15.25338	2.746617
0.9	0.73439	0.16561	18	14.27378	3.726219	0.9	0.757506	0.142494	18	14.79389	3.206105
0.9	0.791646	0.108354	18	15.56204	2.437956	0.9	0.771954	0.128046	18	15.11897	2.881027
0.9	0.792467	0.107533	18	15.58052	2.419484	0.9	0.769683	0.130317	18	15.06787	2.932126

NORMALIZED AND DENORMALIZED TEST DATASET OF TARGET FEATURE, OUTPUTS AND ERRORS FOR MALE HISPANIC POPULATION USING ANN APPROACH AND GA-ANN APPROACH AND THEIR DENORMALIZED TEST SET SQUARE ERRORS

APPENDIX R

			ANN							GA-ANN	-		
	Normalized			Denoi	rmalized			Normalized			Denoi	rmalized	
Target	Output	Error	Target	Output	Error	Error^2	Target	Output	Error	Target	Output	Error	Error^2
0.1	0.201324	-0.10132	0	2.279791	-2.27979	5.1974449	0.1	0.183585	-0.08359	0	1.880664	-1.88066	3.5368987
0.188889	0.197235	-0.00835	2	2.187777	-0.18778	0.03526	0.188889	0.215019	-0.02613	2	2.587926	-0.58793	0.3456575
0.188889	0.233506	-0.04462	2	3.003875	-1.00387	1.0077643	0.188889	0.214525	-0.02564	2	2.576813	-0.57681	0.3327132
0.233333	0.279835	-0.0465	3	4.046295	-1.04629	1.0947323	0.233333	0.299638	-0.0663	3	4.491861	-1.49186	2.2256486
0.233333	0.211454	0.02188	3	2.507708	0.492292	0.242351	0.233333	0.219837	0.013496	3	2.696342	0.303658	0.0922084
0.277778	0.366258	-0.08848	4	5.990798	-1.9908	3.9632762	0.277778	0.321419	-0.04364	4	4.981924	-0.98192	0.9641748
0.277778	0.201166	0.076612	4	2.276225	1.723775	2.9714014	0.277778	0.208095	0.069683	4	2.432137	1.567863	2.4581941
0.322222	0.348731	-0.02651	5	5.596441	-0.59644	0.355742	0.322222	0.387335	-0.06511	5	6.465045	-1.46505	2.1463582
0.322222	0.431744	-0.10952	5	7.464246	-2.46425	6.0725074	0.322222	0.342664	-0.02044	5	5.459937	-0.45994	0.2115419
0.322222	0.332151	-0.00993	5	5.223394	-0.22339	0.049905	0.322222	0.369982	-0.04776	5	6.074604	-1.0746	1.154774
0.322222	0.347224	-0.025	5	5.56253	-0.56253	0.3164396	0.322222	0.373251	-0.05103	5	6.148144	-1.14814	1.3182336
0.366667	0.354582	0.012085	6	5.728094	0.271906	0.073933	0.366667	0.368918	-0.00225	6	6.050651	-0.05065	0.0025656
0.366667	0.359656	0.00701	6	5.842269	0.157731	0.024879	0.366667	0.394445	-0.02778	6	6.625014	-0.62501	0.3906426
0.411111	0.481509	-0.0704	7	8.583953	-1.58395	2.5089077	0.411111	0.450218	-0.03911	7	7.879906	-0.87991	0.7742341
0.411111	0.418609	-0.0075	7	7.168705	-0.16871	0.0284614	0.411111	0.382704	0.028408	7	6.36083	0.63917	0.4085383
0.411111	0.469562	-0.05845	7	8.315154	-1.31515	1.7296295	0.411111	0.45401	-0.0429	7	7.965232	-0.96523	0.9316724
0.411111	0.418849	-0.00774	7	7.174108	-0.17411	0.0303137	0.411111	0.412423	-0.00131	7	7.029521	-0.02952	0.0008715
0.455556	0.469473	-0.01392	8	8.313136	-0.31314	0.0980541	0.455556	0.504234	-0.04868	8	9.095267	-1.09527	1.1996099
0.455556	0.402567	0.052988	8	6.807768	1.192232	1.4214163	0.455556	0.491397	-0.03584	8	8.806426	-0.80643	0.6503225
0.455556	0.340921	0.114635	8	5.420717	2.579283	6.6527001	0.455556	0.415008	0.040548	8	7.087681	0.912319	0.8323259
0.455556	0.518221	-0.06267	8	9.409963	-1.40996	1.9879956	0.455556	0.493393	-0.03784	8	8.851337	-0.85134	0.724774
0.5	0.539811	-0.03981	9	9.895757	-0.89576	0.8023803	0.5	0.527366	-0.02737	9	9.615734	-0.61573	0.3791286
0.5	0.642738	-0.14274	9	12.21161	-3.21161	10.314416	0.5	0.576607	-0.07661	9	10.72366	-1.72366	2.9709889

										1			
0.5	0.624776	-0.12478	9	11.80746	-2.80746	7.8818342	0.5	0.608032	-0.10803	9	11.43072	-2.43072	5.9084008
0.544444	0.477199	0.067245	10	8.486977	1.513023	2.2892396	0.544444	0.475933	0.068512	10	8.458489	1.541511	2.3762555
0.544444	0.562167	-0.01772	10	10.39876	-0.39876	0.1590132	0.544444	0.575252	-0.03081	10	10.69318	-0.69318	0.480497
0.544444	0.61475	-0.07031	10	11.58187	-1.58187	2.5023213	0.544444	0.5905	-0.04606	10	11.03624	-1.03624	1.0737941
0.588889	0.535541	0.053348	11	9.799663	1.200337	1.4408096	0.588889	0.574432	0.014457	11	10.67472	0.325278	0.105806
0.588889	0.605067	-0.01618	11	11.36402	-0.36402	0.1325071	0.588889	0.629204	-0.04031	11	11.90709	-0.90709	0.8228051
0.633333	0.754195	-0.12086	12	14.71938	-2.71938	7.3950179	0.633333	0.751885	-0.11855	12	14.66741	-2.66741	7.1150809
0.633333	0.650181	-0.01685	12	12.37906	-0.37906	0.1436895	0.633333	0.627768	0.005566	12	11.87477	0.12523	0.0156827
0.633333	0.681152	-0.04782	12	13.07592	-1.07592	1.1576138	0.633333	0.671135	-0.0378	12	12.85053	-0.85053	0.7234027
0.633333	0.658568	-0.02523	12	12.56777	-0.56777	0.3223628	0.633333	0.678144	-0.04481	12	13.00823	-1.00823	1.0165321
0.633333	0.622084	0.01125	12	11.74689	0.253114	0.0640667	0.633333	0.624661	0.008672	12	11.80488	0.195123	0.0380731
0.633333	0.70065	-0.06732	12	13.51462	-1.51462	2.2940737	0.633333	0.70814	-0.07481	12	13.68316	-1.68316	2.8330133
0.677778	0.672703	0.005075	13	12.88582	0.114182	0.0130375	0.677778	0.668477	0.009301	13	12.79072	0.209278	0.0437974
0.677778	0.765351	-0.08757	13	14.9704	-1.9704	3.8824699	0.677778	0.772625	-0.09485	13	15.13407	-2.13407	4.5542406
0.677778	0.633847	0.043931	13	12.01156	0.988439	0.977012	0.677778	0.721206	-0.04343	13	13.97713	-0.97713	0.9547794
0.677778	0.726137	-0.04836	13	14.08809	-1.08809	1.1839369	0.677778	0.722753	-0.04498	13	14.01194	-1.01194	1.024021
0.677778	0.696694	-0.01892	13	13.42562	-0.42562	0.1811511	0.677778	0.636967	0.04081	13	12.08177	0.918231	0.8431488
0.677778	0.789076	-0.1113	13	15.50421	-2.50421	6.2710567	0.677778	0.729651	-0.05187	13	14.16714	-1.16714	1.3622203
0.677778	0.725624	-0.04785	13	14.07654	-1.07654	1.1589414	0.677778	0.696402	-0.01862	13	13.41905	-0.41905	0.1755997
0.722222	0.808195	-0.08597	14	15.93439	-1.93439	3.7418586	0.722222	0.77833	-0.05611	14	15.26242	-1.26242	1.5937016
0.722222	0.723004	-0.00078	14	14.01759	-0.01759	0.0003094	0.722222	0.738726	-0.0165	14	14.37134	-0.37134	0.1378948
0.722222	0.691355	0.030867	14	13.30549	0.694506	0.4823393	0.722222	0.697581	0.024642	14	13.44556	0.554436	0.3073996
0.766667	0.776064	-0.0094	15	15.21143	-0.21143	0.0447025	0.766667	0.764482	0.002185	15	14.95085	0.049152	0.0024159
0.766667	0.791099	-0.02443	15	15.54973	-0.54973	0.3022033	0.766667	0.784245	-0.01758	15	15.39551	-0.39551	0.1564279
0.811111	0.763783	0.047328	16	14.93511	1.064889	1.1339896	0.811111	0.763742	0.047369	16	14.93419	1.065813	1.1359574
0.811111	0.747164	0.063947	16	14.5612	1.4388	2.0701466	0.811111	0.740383	0.070728	16	14.40863	1.591374	2.5324713
0.855556	0.825701	0.029855	17	16.32826	0.671738	0.4512326	0.855556	0.787862	0.067693	17	15.4769	1.523102	2.3198399
0.855556	0.771538	0.084017	17	15.10961	1.89039	3.573573	0.855556	0.770061	0.085494	17	15.07638	1.923624	3.700331
0.855556	0.763251	0.092305	17	14.92314	2.076855	4.3133276	0.855556	0.779566	0.07599	17	15.29023	1.709767	2.9233016
0.855556	0.77824	0.077315	17	15.26041	1.739593	3.0261827	0.855556	0.780163	0.075393	17	15.30366	1.696342	2.8775757
0.9	0.755632	0.144368	18	14.75171	3.248289	10.551383	0.9	0.738611	0.161389	18	14.36874	3.631262	13.186061
0.9	0.714103	0.185897	18	13.81731	4.182687	17.494871	0.9	0.78023	0.11977	18	15.30516	2.694836	7.2621388

APPENDIX S

GA PYTHON SCRIPT FOR FEMALE FEATURE SELECTION

```
× GAfemale.py
import random
import numpy as np
import matplotlib.pyplot as plt
4 import pandas as pd
5 import csv
    from os.path import join, dirname
8 from sklearn.utils import Bunch
9 from sklearn.model_selection import cross_val_score
10 from sklearn.linear_model import LinearRegression
12 SEED = 2018
13 random.seed(SEED)
14 np.random.seed(SEED)
19 module_path = dirname(__file__)
     data_file_name = join(module_path, 'HISF.csv')
21 with open(data_file_name) as f:
         data_file = csv.reader(f)
         temp = next(data file)
         n_samples = int(temp[0])
         n features = int(temp[1])
         data = np.empty((n_samples, n_features))
         target = np.empty((n_samples,))
         temp = next(data_file) # names of features
         feature_names = np.array(temp)
         for i, d in enumerate(data_file):
              data[i] = np.asarray(d[:-1], dtype=np.float64)
              target[i] = np.asarray(d[-1], dtype=np.float64)
35 dataset = Bunch(data=data,
```

```
target=target,
                   feature_names=feature_names[:-1],
                  filename=data_file_name)
41 X, y = dataset.data, dataset.target
42 features = dataset.feature names
43 #features = ["Bone1" "Bone2" "Bone3" "Bone4" "Bone5" "Bone6" "Bone7" "Bone8" "Bone9" "Bone10" "Bone11" "Bone12" "Bone13" "Bone14" "Bone15" "Bone16" "Bone17" "Bone18" "Bone18" "Bone19"]
50 est = LinearRegression()
51 score = -1.0 * cross_val_score(est, X, y , cv=5, scoring="neg_mean_squared_error")
     print("CV MSE before feature selection: {:.8f}".format(np.mean(score)))
57 class GeneticSelector():
         def __init__(self, estimator, n_gen, size, n_best, n_rand,
                      n_children, mutation_rate):
             self.estimator = estimator
             self.n_gen = n_gen
             self.size = size
```

```
self.n_best = n_best
    self.n_rand = n_rand
    self.n children = n children
    self.mutation_rate = mutation_rate
    if int((self.n_best + self.n_rand) / 2) * self.n_children != self.size:
        raise ValueError("The population size is not stable.")
    population = []
    for i in range(self.size):
        chromosome = np.ones(self.n_features, dtype=np.bool)
mask = np.random.rand(len(chromosome)) < 0.3
        chromosome[mask] = False
        population.append(chromosome)
    return population
def fitness(self, population):
    X, y = self.dataset
    scores = []
    for chromosome in population:
        score = -1.0 * np.mean(cross_val_score(self.estimator, X[:,chromosome], y,
                                                     scoring="neg_mean_squared_error"))
        scores.append(score)
    scores, population = np.array(scores), np.array(population)
    inds = np.argsort(scores)
    return list(scores[inds]), list(population[inds,:])
def select(self, population sorted):
```

```
population_next = []
   for i in range(self.n_best):
       population_next.append(population_sorted[i])
   for i in range(self.n rand):
       population_next.append(random.choice(population_sorted))
   random.shuffle(population next)
   return population_next
def crossover(self, population):
   population next = []
   for i in range(int(len(population)/2)):
       for j in range(self.n_children):
           chromosome1, chromosome2 = population[i], population[len(population)-1-i]
           child = chromosome1
           mask = np.random.rand(len(child)) > 0.5
           child[mask] = chromosome2[mask]
           population next.append(child)
   return population_next
def mutate(self, population):
   population next = []
   for i in range(len(population)):
        chromosome = population[i]
        if random.random() < self.mutation_rate:</pre>
           mask = np.random.rand(len(chromosome)) < 0.05
           chromosome[mask] = False
       population_next.append(chromosome)
   return population_next
def generate(self, population):
   scores_sorted, population_sorted = self.fitness(population)
   population = self.select(population sorted)
```

```
population = self.crossover(population)
    population = self.mutate(population)
    self.chromosomes_best.append(population_sorted[0])
    self.scores_best.append(scores_sorted[0])
    self.scores_avg.append(np.mean(scores_sorted))
   return population
def fit(self, X, y):
   self.chromosomes_best = []
   self.scores_best, self.scores_avg = [], []
   self.dataset = X, y
   self.n_features = X.shape[1]
    self.population = []
   population = self.initilize()
    for i in range(self.n_gen):
       population = self.generate(population)
    self.population = population
@property
def support_(self):
    return self.chromosomes_best[-1]
def plot_scores(self):
   plt.plot(self.scores_best, label='Best')
    plt.plot(self.scores_avg, label='Average')
    plt.legend()
   plt.ylabel('Scores')
```

```
plt.xlabel('Generation')
plt.show()

sel = GeneticSelector(estimator=LinearRegression(),

n_gen=200, size=200, n_best=40, n_rand=40,
n_children=5, mutation_rate=0.05)

sel.fit(X, y)
sel.plot_scores()
score = -1.0 * cross_val_score(est, X[:,sel.support_], y, cv=5, scoring="neg_mean_squared_error")
print("CV MSE after feature selection: {:.8f}".format(np.mean(score)))

#print(sel.population)
np.savetxt('GApopulationFemale.csv', sel.population, fmt='%.2f', delimiter=',', header=" Bone1, Bone2, Bone3, Bone4, Bone5, Bone6, Bone7, Bone8, Bone9, Bone10, Bone11, Bone12, Bone13, Bone14, Bone15, Bone16, Bone17, Bone18, Bone19")
```

APPENDIX T

GA PYTHON SCRIPT FOR MALE FEATURE SELECTION

```
x GAfemale.py
     GAmale.py
 import random
import numpy as np
import matplotlib.pyplot as plt
4 import pandas as pd
5 import csv
 7 from os.path import join, dirname
8 from sklearn.utils import Bunch
9 from sklearn.model_selection import cross_val_score
10 from sklearn.linear_model import LinearRegression
12 SEED = 2018
13 random.seed(SEED)
14 np.random.seed(SEED)
19 module_path = dirname(__file__)
20 data_file_name = join(module_path, 'HISM.csv')
21 with open(data_file_name) as f:
          data_file = csv.reader(f)
          temp = next(data_file)
          n_samples = int(temp[0])
          n_features = int(temp[1])
          data = np.empty((n_samples, n_features))
          target = np.empty((n_samples,))
          temp = next(data file) # names of features
           feature names = np.array(temp)
          for i, d in enumerate(data file):
               data[i] = np.asarray(d[:-1], dtype=np.float64)
target[i] = np.asarray(d[-1], dtype=np.float64)
35 dataset = Bunch(data=data,
```

```
target=target,
                 feature names=feature names[:-1],
                 filename=data file name)
41 X, y = dataset.data, dataset.target
42 features = dataset.feature_names
50 est = LinearRegression()
    score = -1.0 * cross_val_score(est, X, y , cv=5, scoring="neg_mean_squared_error")
    print("CV MSE before feature selection: {:.8f}".format(np.mean(score)))
57 class GeneticSelector():
        def __init__(self, estimator, n_gen, size, n_best, n_rand,
                     n_children, mutation_rate):
            self.estimator = estimator
            self.n_gen = n_gen
            self.size = size
```

```
self.n_best = n_best
    self.n_rand = n_rand
   self.n children = n children
   self.mutation_rate = mutation_rate
   if int((self.n_best + self.n_rand) / 2) * self.n_children != self.size:
       raise ValueError("The population size is not stable.")
   population = []
    for i in range(self.size):
       chromosome = np.ones(self.n_features, dtype=np.bool)
        mask = np.random.rand(len(chromosome)) < 0.3</pre>
        chromosome[mask] = False
        population.append(chromosome)
   return population
def fitness(self, population):
   X, y = self.dataset
   scores = []
    for chromosome in population:
        score = -1.0 * np.mean(cross_val_score(self.estimator, X[:,chromosome], y,
                                                  scoring="neg_mean_squared_error"))
        scores.append(score)
    scores, population = np.array(scores), np.array(population)
    inds = np.argsort(scores)
   return list(scores[inds]), list(population[inds,:])
def select(self, population sorted):
```

```
population_next = []
    for i in range(self.n_best):
        population_next.append(population_sorted[i])
    for i in range(self.n rand):
        population_next.append(random.choice(population_sorted))
    random.shuffle(population next)
    return population_next
def crossover(self, population):
    population next = []
    for i in range(int(len(population)/2)):
        for j in range(self.n_children):
            chromosome1, chromosome2 = population[i], population[len(population)-1-i]
            child = chromosome1
            mask = np.random.rand(len(child)) > 0.5
            child[mask] = chromosome2[mask]
            population_next.append(child)
    return population_next
def mutate(self, population):
    population next = []
    for i in range(len(population)):
        chromosome = population[i]
        if random.random() < self.mutation_rate:</pre>
            mask = np.random.rand(len(chromosome)) < 0.05</pre>
            chromosome[mask] = False
        population_next.append(chromosome)
    return population next
def generate(self, population):
    scores_sorted, population_sorted = self.fitness(population)
    population = self.select(population_sorted)
```

```
133
             population = self.crossover(population)
             population = self.mutate(population)
             self.chromosomes_best.append(population_sorted[0])
             self.scores_best.append(scores_sorted[0])
             self.scores_avg.append(np.mean(scores_sorted))
             return population
         def fit(self, X, y):
             self.chromosomes_best = []
             self.scores_best, self.scores_avg = [], []
             self.dataset = X, y
self.n_features = X.shape[1]
             self.population = []
             population = self.initilize()
             for i in range(self.n_gen):
                 population = self.generate(population)
             self.population = population
         @property
         def support_(self):
             return self.chromosomes_best[-1]
         def plot_scores(self):
             plt.plot(self.scores_best, label='Best')
             plt.plot(self.scores_avg, label='Average')
             plt.legend()
             plt.ylabel('Scores')
```

```
plt.xlabel('Generation')
plt.show()

sel = GeneticSelector(estimator=LinearRegression(),

n_gen=200, size=200, n_best=40, n_rand=40,

n_children=5, mutation_rate=0.05)

sel.fit(X, y)
sel.plot_scores()

score = -1.0 * cross_val_score(est, X[:,sel.support_], y, cv=5, scoring="neg_mean_squared_error")

print("CV MSE after feature selection: {:.8f}".format(np.mean(score)))

#print(sel.population)

np.savetxt('GApopulationMale.csv', sel.population, fmt='%.2f', delimiter=',', header=" Bone1, Bone2, Bone3, Bone4, Bone5, Bone6, Bone7, Bone8, Bone9, Bone10, Bone11, Bone12, Bone13, Bone14, Bone15, Bone16, Bone17, Bone18, Bone19")
```