5. Paměti – rozdělení pamětí dle: přístupu, schopnosti zápisu, určení, provedení, závislosti na napětí, organizace paměťových buněk, realizace paměti.

HARDWARE A APLIKAČNÍ SOFTWARE

Druhy pamětí

RAM (Random Access Memory)

Přístup

• Přímý

Schopnost zápisu

Ano

Určení

Operační paměť

Provedení

• Elektronická polovodičová paměť. Tranzistory MOS.

Závislosti na napětí

• Volatilní – napěťově závislá

Organizace paměťových buněk

- DRAM Dvojice nespojených vodičů a vodičů propojených přes tranzistor technologií TTL.
- SRAM Organizace jako bistabilní klopný obvod (může se nacházet v jednom ze dvou stavů).

Realizace pamětí

ROM (Read Only Memory)

Přístup

• Čtení

Schopnost zápisu

• Ne

Určení

• Uložení firmware v elektronických přístrojích.

Provedení

• Polovodičová dioda, Tranzistory TTL nebo MOS

Závislosti na napětí

• Non-volatile – napěťově nezávislé

Organizace paměťových buněk

• Dvojice nespojených vodičů a vodičů propojených přes polovodičovou diodu.

Realizace pamětí

Hodnota "0" Hodnota "1"

PROM (Programmable Read-Only Memory)

Přístup:

• Jeden zápis, Čtení

Schopnost zápisu

Umožňuje pouze jeden zápis do každé paměťové buňky

Určení

• Záznam sériového čísla, servisní záznamy, ...

Provedení

• Polovodičová dioda. Tavná pojistka z niklu a chromu (NiCr).

Závislosti na napětí

• Non-volatile – napěťově nezávislé

Organizace paměťových buněk

• Dvojice nespojených vodičů a vodičů propojených přes polovodičovou diodu.

Realizace paměti

EPROM (Erasable Programmable Read-Only Memory)

Přístup

Zápis, čtení

Schopnost zápisu

• Ano, možné vymazat působením ultrafialového záření (celý obsah).

Určení

Uložení dat (firmware), malosériové výroby.

Provedení

• Tranzistor MNOS (Metal Nitrid Oxide Semiconductor).

Závislosti na napětí

• Non-volatile – napěťově nezávislé

Organizace paměťových buněk

• Dvojice nespojených vodičů a vodičů propojených přes tranzistory MOS.

Realizace paměti

• Podobné, jak u EEPROM

EEPROM (Electrically Erasable Programmable Read-Only Memory)

Přístup

• Zápis, čtení

Schopnost zápisu

Ano, možné vymazat elektricky (celý obsah).

Určení

• Hodiny v reálném čase, digitální potenciometry, digitální snímače tepla, ...

Provedení

• Unipolární tranzistor

Závislosti na napětí

• Non-volatile – napěťově nezávislé

Organizace paměťových buněk

• Dvojice nespojených vodičů a vodičů propojených přes tranzistory MNOS.

Realizace paměti

Flash paměť

Přístup

Libovolný přístup

Schopnost zápisu

• Ano, zápis po blocích.

Určení

• Jako ROM, uložení firmware, USB flash disk, ...

Provedení

• Unipolární tranzistor

Závislosti na napětí

• Non-volatile – napěťově nezávislé

Organizace paměťových buněk

• Organizace po blocích.

Realizace paměti

Čtení z paměti

- Vystavení adresy na adresovou sběrnici (s časovým předstihem access time – tac, doba od změny adresy do platnosti dat na datové sběrnici).
- Aktivace čtecího impulsu (připojení výstupních budičů na datovou sběrnici).
- Na datové sběrnici se objeví data.
- Ukončení čtecího impulsu (odpojení od datové sběrnice, předtím se musí zajistit přečtení dat ze sběrnice).

 $t_{\rm rc}\!-\!{\rm read}$ cycle time, celková přístupová doba do paměti

t_{ac} – přístupová doba od změny adresy

Zápis do paměti

- Vystavení adresy na adresovou sběrnici.
- Vystavení dat na datovou sběrnici.
- Aktivace zápisového impulsu.
- Ukončení zápisového Impulsu rozhodná hrana pro zápis, je dán předstih platnosti dat před touto hranou.

t_{wc} – write cycle time (celková přístupová doba do paměti)

Paměti Double data rate – DDR

DDR – operační RAM v PC (číslo udává generaci rychlosti, např. DDR4) QR – InfiniBand a PCI Express

Čtení z paměti – synchronní

Prokládání paměťových cyklů

- Prokládaná paměť má svoji kapacitu rozdělenu do stejně velkých částí (bank), které
 pracují nezávisle (paralelně).
- Všechny banky sdílejí jedno rozhraní (adresa, data, řízení), takže jednotlivé cykly se musí startovat postupně. Protože přístupová doba do paměti je podstatně větší, než odpovídá přenosu dat, lze díky nezávislosti startovat jednotlivé přenosy s překryvem, a tak zvýšit množství dat přenesených za jednotku času a vytížit tak datovou sběrnici, která dostatečnou přenosovou rychlost (dnes 3.2G datových přenosů/s).