Time-to-Event Analysis of Heart Failure via Electronic Health Records

Presenters:

Austin Falco

Aidan Kearns

Miranda Riggs

Tahmeed Tureen

STATS 404, 12/5/2017

Agenda

- Background Information
- Purpose
- Conclusions
- Methods
- Assumptions
- Data
- Limitations

- Cohort Definition
- Results
- Significant Results
- Future Steps
- Acknowledgements
- Questions/Comments?

Background Information

- Heart failure:
 - Occurs when the heart cannot pump blood to support the body's organs¹
 - Doesn't mean the heart has stopped beating¹
- According to Centers for Disease Control and Prevention (CDC)¹:
 - Half of people diagnosed with heart failure die within 5 years
 - One in nine deaths in 2009 were at least partially attributed to heart failure

Purpose

- Estimate and compare time until a heart failure diagnosis occurs
- Evaluate how certain risk factors affect time until heart failure diagnosis

Conclusions

- Significant risk factors differed between males and females
 - Males:
 - Cardiomyopathy
 - Severe Chronic Kidney Disease
 - Females:
 - Type 2 Diabetes
 - Sleep Disorder
- Some factors were common in both genders
 - Age
 - Hypertension

Conclusions

The conclusions drawn from the project are consistent with readings from:

- National Institute of Health (NIH)
- Centers for Disease Control and Prevention (CDC)

Questions? Comments?

Methods

- Survival Analysis
 - Analyze the expected duration before an event occurs
 - Find proportion of the population that will survive past a given time
 - Observe characteristics that increase or decrease probability of survival
- Cox Proportional Hazard Model
 - Type of survival analysis
 - Works well for quantitative predictor variables (ex: Age)
 - Uses additional covariates (ex: Age, Arrhythmia, Cardiomyopathy, Type 2
 Diabetes)
 - Estimates a hazards ratio

Cox Proportional Hazard Model Example

Baseline Survival Distribution

Assumptions

- Risk factors for heart failure chosen based on readings from Center for Disease Control and Prevention (CDC) and American Heart Association (AHA)
- University of Michigan health data representative of United States general population
- All diagnosis given by the University of Michigan Health System are accurate
- Cox Proportional Hazard predictor variables' effects on survival are constant over time

Questions? Comments?

Data - Electronic Health Records (EHR)

- Electronically-stored health information of patients
- A single EHR is a diagnosis of a patient on a given date that is stored in a hospital/medical system
- For this study, the EHR dataset was provided by the University of Michigan Health System

How EHR behaves ...1

How EHR behaves ...2

Time 1

Time 3

How EHR behaves ...3

Important because

- EHR
 - Incomplete
 - Non-continuous
- Influence
 - Estimates from survival analysis

Limitations

- Textual data differences in diagnosis
- Disease diagnosis codes changed after 2014
- Large quantities of missing data

Cohort Definition (Analysis dataset)

Outcome: Heart Failure as defined by ICD 9 (428) and ICD 10 (I50)

Questions? Comments?

Results

TABLE 1. Hazard ratios for male cohort

Risk Factor	Hazard Ratio
Age	1.052*
Cardiomyopathy	10.203*
Hypertension	1.337*
Severe Chronic Kidney Disease	3.08*
Type 2 Diabetes Mellitus	3.526
Emphysema	1.684
Moderate Chronic Kidney Disease	1.725
Hepatitis C	1.945
Arrhythmia	1.259
Type 2 Diabetes Mellitus*Age	0.987
Mild Chronic Kidney Disease	0.569
Hypercholesterol	0.911
Failure Chronic Kidney Disease	1.191
Sleep Disorder	1.036
Morbid Obesity	1.064

Source: Michigan Genomics Initiative, University of Michigan

Note: n = 4204

p < .05

Results

TABLE 2. Hazard ratios for female cohort

Risk Factor	Hazard Ratio
Age	1.052*
Type 2 Diabetes Mellitus	9.350*
Hypertension	1.442*
Sleep Disorder	1.764*
Failure Chronic Kidney Disease	4.179
Type 2 Diabetes Mellitus*Age	0.973
Arrhythmia	1.563
Morbid Obesity	1.635
Hepatitis C	3.474
Moderate Chronic Kidney Disease	2.169
Severe Chronic Kidney Disease	2.070
Hypercholesterol	0.776
Mild Chronic Kidney Disease	1.675
Emphysema	1.333
Cardiomyopathy	0.967

Source: Michigan Genomics Initiative, University of Michigan

Note: n = 4929

p < .05

TABLE 3. Significant hazard ratios for male cohort

Risk Factor	Hazard Ratio
Age	1.052
Cardiomyopathy	10.203
Hypertension	1.337
Severe Chronic Kidney Disease	3.080

Source: Michigan Genomics Initiative, University of Michigan

Note: n = 4204

Survival Distribution with Varying Covariates (Male)*

^{*} Baseline patient is 60 years old and has been diagnosed with Arrhythmia, Mild CKD, and Hypercholesterol

TABLE 4. Significant hazard ratios for female cohort

Risk Factor	Hazard Ratio
Age	1.052
Type 2 Diabetes Mellitus	9.350
Hypertension	1.442
Sleep Disorder	1.764

Source: Michigan Genomics Initiative, University of Michigan

Note: n = 4929

Note: Type 2 Diabetes Mellitus had a 95% confidence

interval of (1.433, 61.024)

Survival Distribution with Varying Covariates (Female)*

* Baseline patient is 60 years old and has been diagnosed with Arrhythmia, Mild CKD, and Hypercholesterol

Future Steps

- Explore shrinkage methods
- Analyze significant risk factors
- Discuss research potential of EHR

https://upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Steps.svg/2000px-Steps.svg.png

Research Acknowledgements

Deesha Bhaumik

Undergraduate Student, Public Health, Johns Hopkins University

Christian Erickson

Undergraduate Student, Mathematics, Hope College

Tahmeed Tureen

Undergraduate Student, Statistics, University of Michigan

Faculty Acknowledgements

Dr. Philip Boonstra

Assistant Professor

Dr. Zhenke Wu

Assistant Professor

Dr. Matthew Zawistowski

Research Specialist

Department of Biostatistics, University of Michigan

Questions? Comments?

Thank you!

Austin Falco

Undergraduate Student Department of Statistics University of Michigan

aufalco@umich.edu

Miranda Riggs

Undergraduate Student Department of Statistics University of Michigan

riggsmir@umich.edu

Aidan Kearns

Undergraduate Student Department of Statistics University of Michigan

aidank@umich.edu

Tahmeed Tureen

Undergraduate Student Department of Statistics University of Michigan

tureen@umich.edu

Big Data Summer Institute, University of Michigan

- https://sph.umich.edu/bdsi/
- Supervised by Dr. Bhramar Mukherjee, Dept. of Biostatistics
- Students interested in statistical research in health

Students interested in graduate studies in mathematics, statistics,

computer science and biostatistics

For more info,
Contact Tahmeed Tureen

