Data Preprocessing

IT 326: Data Mining

First semester 2021

Outline

- Data Preprocessing
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Transformation
- Data Reduction
- Summary

Data Preprocessing: Why Preprocess the Data?

Data Quality

- □ Elements defining data quality:
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...

 - Timeliness: timely updated?
 - Believability: how much the data are trusted by users?
 - Interpretability: how easy the data are understood?
 #

Major Tasks in Data Preprocessing

Data cleaning

- Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies.
- Data integration
 - Integration of multiple databases or files.
- Data reduction
 - Dimensionality reduction. Jattrbute
 - Numerosity reduction.— 🗸 🕠
- Data transformation
 - Normalization. NAM
 - □ Concept hierarchy generation. No W
 - \blacksquare Discretization $\gamma \omega M \rightarrow \gamma \sim M$

Data Cleaning

- Data in the Real World is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error.
 - Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data. $\Rightarrow Ex$ without Detining
 - e.g., Occupation=" " (missing data) >
 - Noisy: containing noise, errors, or outliers.
 - e.g., Salary="-10" (an error) 💃
 - Inconsistent: containing contradictories in codes or names, e.g., = مِنْ مَنْ وَعِدْ اللهِ عَلَى اللهِ عَلَى اللهِ عَلَى اللهُ عَلَى اللّهُ عَلَى اللّهُ
 - Age="42", Birthday="03/07/2010".
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

John 31/12/1990 Mery 15/10/1978 Alice 19/04/2000	M F	0	0	Ireland Iceland	Dublin	\mathcal{D}
, , , , , , ,	F	1	15	Iceland		
Alice 10/04/2000				loolalla		Missing values
Alice 19/04/2000	F	0	0	Spain	Madrid	, masing voices
Mark 01/11/1997	М	0	0	France	Paris	Invalid values (2
Alex 15/03/2000	A	1	23	Germany	Berlin	1110110 101000
Peter 1983-12-01	М	1	10	Italy	Rome	
alvin 05/05/1995	М	0	0	Italy	Italy	Misfielded values
oxane 03/08/1948	F	0	0	Portugal	Lisbon	
Anne 05/09/1992	F	0	5	Switzerland	Geneva	must cir
Paul 14/11/1992	М	1	26	Ytali	Rome	
	Alex 15/03/2000 Peter 1983-12-01 Calvin 05/05/1995 oxane 03/08/1948 Anne 05/09/1992	Alex 15/03/2000 A Peter 1983-12-01 M Calvin 05/05/1995 M oxane 03/08/1948 F Anne 05/09/1992 F	Alex 15/03/2000 A 1 Peter 1983-12-01 M 1 Calvin 05/05/1995 M 0 oxane 03/08/1948 F 0 Anne 05/09/1992 F 0	Alex 15/03/2000 A 1 23 Peter 1983-12-01 M 1 10 Calvin 05/05/1995 M 0 0 oxane 03/08/1948 F 0 0 Anne 05/09/1992 F 0 5	Alex 15/03/2000 A 1 23 Germany Peter 1983-12-01 M 1 10 Italy Calvin 05/05/1995 M 0 0 Italy oxane 03/08/1948 F 0 0 Portugal Anne 05/09/1992 F 0 5 Switzerland	Alex 15/03/2000 A 1 23 Germany Berlin Peter 1983-12-01 M 1 10 Italy Rome Calvin 05/05/1995 M 0 0 Italy Italy oxane 03/08/1948 F 0 0 Portugal Lisbon Anne 05/09/1992 F 0 5 Switzerland Geneva

Incomplete (Missing) Values

- Data is not always available.
 - e.g., many tuples have no recorded value for several attributes, such as customer income in sales data.
- Missing data may be due to:
 - equipment malfunction.
 - inconsistent with other recorded data and thus deleted.
 - data not entered due to misunderstanding.
 - certain data may not be considered important at the time of entry.
- □ Missing data may need to be inferred. ← 🍑 🗡

How to Handle Missing Values?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the percentage of missing values per attribute varies considerably. Doth
- Fill in the missing value :
 - Manually: time consuming+infeasible (large data and many missing values)
 - Use a global constant (such as a label like "Unknown" or -∞ or "NA") ※
 - Use the central tendency for the attribute (e.g., the mean or median)
 - Use the attribute mean/median for all samples belonging to the same class.

Use the most probable value.

The prediction => other attr

Sie of prediction => other attr

Sie of classification help me to know the missing value

is, is is is is

missing I set of each point in its ing I set of ea

Noisy Data => Error or rarain (e

- Noise: random error or variance in a measured variable.
- Incorrect attribute values may be due to:
- □ faulty data collection instruments.
- data entry problems.
- (3) data transmission problems.

Smooth out the data to remove noise.

to Solve it?

Make value

y tap

How to Handle Noisy Data?

Binning

- □ First, sort data and partition into (equal-frequency) bins.
- □ Then smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

□ Regression

Smooth by fitting the data into regression functions.

Outlier Analysis

- Detect and remove outliers using clustering.
 - Values that fall outside of the set of clusters may be considered outliers.
- Combined computer and human inspection.

Example: Binning To Handle Noise

Data Integration

□ Data integration:

□ The merging of data from multiple sources into a coherent store.

CID	Name	Street	City		Sex	
11	Kristen Smith	2 Hurley P	l South	South Fork, MN 48503		
24	Christian Smith	Hurley St	2 S For	S Fork MN		
Client	(source 2)					
		FirstName	Gender	Address		Phone/Fax
Cno 24	LastName	Christoph	Gender M	Address 23 Harley St, Ch IL, 60633-2394	icago	Phone/Fax 333-222-6542 / 333-222-6599

No	LName	FName	Gender	Street	City	State	ZIP	Phone	Fax	CID	Cno
1	Smith	Kristen L.	F	2 Hurley Place	South Fork	MN	48503- 5998	444-555- 6666		11	493
2	Smith	Christian	M	2 Hurley Place	South Fork	MN	48503- 5998			24	
3	Smith	Christoph	M	23 Harley Street	Chicago	IL	60633- 2394	333-222- 6542	333-222- 6599		24

Challenges:

- Entity identification problem: How to match schemas and objects from different sources?
- Redundancy and Correlation Analysis: Are any attributes correlated?

Entity Identification Problem

- How can equivalent real-world entities from multiple data sources be matched up?
- Same attribute or object may have different names in different databases.
 - □ Attribute name : e.g., A.cust-id \equiv B.cust-#.
 - Attribute values : e.g., Bill Clinton ≡ William Clinton
 - \square If both kept \rightarrow redundancy
- Schema integration and object matching are tricky:
 - Integrate metadata from different sources.
 - Match equivalent real-world entities from multiple sources.
 - Detecting and resolving data value conflicts.
 - Possible reasons: different representations, different scales.
 - Metadata can be used to avoid errors in schema integration.
 - Examples of metadata for attributes : name, meaning, data type, and range of values permitted.

Attribute Redundancy and Correlation Analysis

- □ Redundant data occur often when integration of multiple databases.
- Causes of redundancy:
 - An attribute may be <u>redundant</u> if it can be "derived" from another attribute or set of attributes.
 - Inconsistencies in attribute naming can also cause redundancies in the resulting dataset.
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality.

Handling Redundancy with Correlation Analysis

- Some redundancies can be detected by correlation analysis.
- Given two attributes, correlation analysis can measure how strongly one attribute implies the other, based on the available data.
- Each type of data has special type of correlation measure.

Correlation Analysis (Nominal Data): Chi-Square

- □ X² (chi-square) test:
 - Observed value is the actual count & Expected value is the expected frequency.

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected} \qquad \qquad \chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}},$$

$$\chi^2 = \sum_{i=1}^c \sum_{j=1}^r \frac{(o_{ij} - e_{ij})^2}{e_{ij}},$$

Expected values are calculated using:

$$e_{ij} = \frac{count (A = a_i) \times count (B = b_j)}{n}$$

- The larger the X^2 value, the highest the correlation.
- The cells that contribute the most to the X^2 value are those whose actual count is very different from the expected count.

Example: Chi-Square

Contingency table

	male	Female	Sum (row)
fiction	250 (90)	200 (360)	450
Not fiction	50 (210)	1000 (840)	1050
Sum(col.)	300	1200	1500

The expected frequencies(numbers in parentheses):

$$e_{11} = \frac{count \, (male) \times count (fiction)}{1500} = \frac{300 \times 450}{1500} = 90$$

X2 (chi-square) calculation to test correlation between "preferred reading" and "gender":

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

Gender **Preferred** reading Male **Fiction** Female Not fiction Female **Fiction**

Fiction

n=1500

Female

Example: Chi-Square cont.

Degree of freedom (df) = df = (r-1)(c-1) where r is the number of rows and c is the number of columns.

$$df = (2-1)(2-1) = 1$$

□ From the below table, the X² rejected value for 0.001 significant level is 10.828, then the results show that "preferred reading" and "gender" are strongly correlated in the given group of people.

Null hypothesis:

 H_0 : the two attributes are independent

$$\alpha$$
= 0.001

Critical value = 10.827

X² : chi-square test statistic

If $X^2 >$ the critical value $\rightarrow H_0$ is rejected.

Probability level (alpha)

0.01	0.001
6.635	10.827
9.210	13.815
11.345	16.268
13.277	18.465
15.086	20.517
	9.210 11.345 13.277

Correlation Analysis (Numeric Data): Correlation Coefficient

Correlation coefficient:

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\bar{A}\bar{B}}{n\sigma_A \sigma_B},$$

where n is the number of tuples, \bar{A} and \bar{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

Correlation Analysis (Numeric Data): Covariance

Covariance:

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

where n is the number of tuples, and \bar{A} and \bar{B} are the respective mean or expected values of A and B

Covariance is similar to correlation:

Correlation
$$r_{A,B} = \frac{Cov(A,B)}{\sigma_A \sigma_B}$$
 Coefficient

Covariance can be simplified as:

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}.$$

$$E(A) = \bar{A} = \frac{\sum_{i=1}^{n} a_i}{n}$$

$$E(B) = \bar{B} = \frac{\sum_{i=1}^{n} b_i}{n}.$$

Correlation Analysis (Numeric Data): Covariance

- Positive covariance: If A and B both tend to be larger than their expected values THEN $Cov(A,B) > 0 \rightarrow$ they rise together
- Negative covariance: If A is larger than its expected value, while B is smaller than its expected value THEN Cov(A,B) < 0.</p>
- \square Independence: If A and B are independent then Cov(A,B) = 0.
- But the converse is not true.
 - \square Cov(A,B) = 0 does NOT imply that A and B are independent.
 - Some pairs of random variables may have a covariance of 0 but are not independent.
 - Only under some additional assumptions does a covariance of 0 imply independence.

Example: Covariance

$$Cov(A, B) = E(A \cdot B) - AB$$

Stock prices observed at five time points for AllElectronics and HighTech company.

Time point	AllElectronics	HighTech
Т1	6	20
T2	5	10
Т3	4	14
T4	3	5
T5	2	5

1
$$E(AllElectronics) = \frac{(6) + (5) + (4) + (3) + (2)}{5} = 4$$

2
$$E(HighTech) = \frac{(20) + (10) + (14) + (5) + (5)}{5} = 10.80$$

3 cov(AllElectronics, HighTech) =

$$\frac{(6\times20) + (5\times10) + (4\times14) + (3\times5) + (2\times5)}{5} - (4\times10.80) = 5$$

$$50.2 - 43.2 = 7$$

Data Transformation

- Data are transformed or consolidated into forms appropriate for mining.
 - the resulting mining process may be more efficient, and the patterns found may be easier to understand.
- Attribute Transformation: A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values.

Data Transformation

Original data		Transformed data by label encoding				
Α		0				
В		1				
D		3				
С	7	2				
В		1				
С		2				
: Encoding						

Name	Birthday		Birthday
John	31/12/1990	>	90's
Mery	15/10/1978	>	70's
Alice	19/04/2000	>	00's
Mark	01/11/1997	>	90's
Alex	15/03/2000	>	00's
Peter	01/12/1983	>	80's
Calvin	05/05/1995	>	90's
Roxane	03/08/1948	>	40's
Anne	05/09/1992	>	90's
Paul	14/11/1992	>	90's

Discretization

Name	Salary		Centered Salary	Centered & Scaled Salary
John	1,500 €	>	14.30	0.0199
Mery	1,234 €	>	-251.70	-0.3504
Alice	2,211 €	>	725.30	1.0098
Mark	2,159 €	>	673.30	0.9374
Alex	2,689 €	>	1203.30	1.6753
Peter	958 €	>	-527.70	-0.7347
Calvin	823 €	>	-662.70	-0.9226
Roxane	1,897 €	>	411.30	0.5726
Anne	627€	>	-858.70	-1.1955
Paul	759 €	>	-726.70	-1.0117
Mean	1,485.70 €			
Std Dev	718 27 €			

InvoiceNo	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
536365	WHITE HANGING HEART T-LIGHT HOLDER	 6	12/1/18	2.55	17850
536366	WHITE METAL LANTERN	 6	23/1/18	3.39	17850
536367	CREAM CUPID HEARTS COAT HANGER	 8	18/2/18	2.75	17850
536368	KNITTED UNION FLAG HOT WATER BOTTLE	 6	15/1/18	3.39	12583
536369	RED WOOLLY HOTTIE WHITE HEART.	 6	10/3/18	3.39	12583
739411	JAM MAKING SET WITH JARS	 4	25/2/18	4.29	13047

Aggregate instances by customer ID

CustomerID	Count_CustomerID	Sum_Quantity	Min_Date	Avg_UnitPrice
17850	3	 20	12/1/18	2.90
12583	2	12	15/1/18	3.39

13047	1	 4	25/2/18	4.29

Aggregation

Data Transformation: Strategies

- Smoothing: Remove noise from data.
- Attribute construction: New attributes constructed from the given ones. New attributes are added to help the mining process.
- Aggregation: Summary or aggregation operations are applied to the data.
 - e.g., daily sales data may be aggregated so as to compute monthly and annual total amounts.
- □ Normalization: where the attribute data are scaled so as to fall within a smaller, specified range. such as [-1.0 to 1.0], or [0.0 to 1.0].

Data Transformation: Strategies

- □ Discretization: Raw values of a numeric attribute (e.g., age) are replaced by interval labels (e.g., 0–10, 11–20, etc.) or conceptual labels (e.g., youth, adult, senior).
 - The labels can be recursively organized into higher-level concepts, resulting in a concept hierarchy for the numeric attribute.

A concept hierarchy for the attribute *price*, where an interval (\$X ... \$Y] denotes the range from \$X (exclusive) to \$Y (inclusive).

More than one concept hierarchy can be defined for the same attribute to accommodate the needs of various users.

- Concept hierarchy generation for nominal data: replacing low level concepts by higher level concepts
 - i.e. attributes such as street can be generalized to higher-level concepts, like city or country.

Data Transformation by Normalization

- The measurement unit used can affect the data analysis.
 - For example, changing measurement units from meters to inches for height (2.5 cm = 1 inches), or from kilograms to pounds for weight (1 kg = 2.2 pounds), may lead to very different results.
- In general, expressing an attribute in smaller units will lead to a larger range for that attribute, and thus tend to give such an attribute greater effect or "weight."
 - To help avoid dependence on the choice of measurement units, the data should be normalized or standardized.
 - This involves transforming the data to fall within a smaller or common range such as [-1, 1] or [0.0, 1.0].
- Normalizing the data attempts to give all attributes an equal weight.
 - □ For distance-based methods, normalization helps prevent attributes with initially large ranges (e.g., income) from outweighing attributes with initially smaller ranges (e.g., binary attributes).

Data Transformation by Normalization

Min-max normalization: to [new_minA, new_maxA]

$$v_i' = \frac{v_i - min_A}{max_A - min_A}(new_max_A - new_min_A) + new_min_A.$$

Example: Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0].

Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$

Z-score normalization: (μ : mean, σ : standard deviation)

$$v' = \frac{v - \mu_A}{\sigma_A}$$

 $v' = \frac{v - \mu_{\text{A}}}{\sigma_{\text{A}}}$ Example: Let μ = 54,000, σ = 16,000. Then $\frac{73,600 - 54,000}{16.000} = 1.225$

Normalization by decimal scaling:

$$v_i' = \frac{v_i}{10^j}$$
 Where *j* is the smallest integer such that $max(|v_i'|) < 1$

Example: Let A = -986 to 917.

Then the maximum absolute value is 986 and j=3 which normalize A to [-0.986 to 0.917].

Data Reduction

- Data reduction techniques can be applied to obtain a reduced representation of the data set that is much smaller in volume, yet closely maintains the integrity of the original data.
- Mining on the reduced data set should be more efficient yet produce the same (or almost the same) analytical results.
- Data reduction strategies include dimensionality reduction, numerosity reduction, and data compression.

Data Reduction: Dimensionality Reduction

- Dimensionality reduction is the process of reducing the number of attributes under consideration. Including:
- Data compression techniques such as Wavelet transforms and principal components analysis (PCA), which transform or project the original data onto a smaller space.
- Attribute subset selection which removes irrelevant, weakly relevant, or redundant attributes or dimensions.
 - Irrelevant attributes: contain no information that is useful for the data mining task at hand.
 - Redundant attributes: duplicate much or all of the information contained in one or more other attributes.
 - Why ? to improve quality and efficiency of the mining process. Mining on a reduced set of attributes reduces the number of attributes appearing in the discovered patterns, helping to make the patterns easier to understand.

Data Reduction: Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation.
- Parametric methods:
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers).
 - Methods: Regression and Log-Linear Models.

Data Reduction: Numerosity Reduction

- Non-parametric methods: Do not assume models.
 - □ Histogram: Divide data into buckets and store average (sum) for each bucket
 - Clustering: Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only.
 - Sampling: obtaining a small sample S to represent the whole data set N.
 - Key: Choose a representative subset of the data.
 - Data cube aggregation: Data can be aggregated so that the resulting data summarize the data (smaller in volume), without loss of information necessary for the analysis task.

Data Reduction: Data Compression

- Obtain a reduced or "compressed" representation of the original data.
- □ Two types:
 - Lossless: if the original data can be reconstructed from the compressed data without any information loss.
 - Lossy: if we can reconstruct only an approximation of the original data.
- Dimensionality and numerosity reduction may also be considered as forms of data compression.

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability.
- Data cleaning: e.g. missing/noisy values, outliers.
- Data integration from multiple sources: Entity identification problem, correlation analysis.
- Data transformation:
 - Normalization
 - Concept hierarchy generation
- Data reduction:
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression