Informe Técnico - Categoría Future Engineers

Equipo: Hefestobots

1. Historia del Equipo.

Hefestobots fue fundado en septiembre de 2024 por un grupo de estudiantes apasionados por la tecnología, la ingeniería y la innovación. Inspirados por Hefesto, el dios griego de la forja y la invención, tomamos su nombre como emblema de nuestra visión: construir soluciones reales mediante el conocimiento, la creatividad y el trabajo en equipo.

Desde nuestra formación, hemos trabajado intensamente en fortalecer nuestras habilidades en programación, electrónica, diseño CAD y robótica aplicada. Aunque somos un equipo joven, nos caracteriza el compromiso y la disciplina con la que enfrentamos los desafíos. Este 2025 decidimos dar un paso importante al participar en la **categoría Future Engineers de la WRO**, buscando llevar nuestras capacidades al siguiente nivel con el diseño de un vehículo autónomo avanzado.

2. Avances Técnicos

Hasta la fecha, Hefestobots ha logrado importantes hitos en el desarrollo de su prototipo:

- **Diseño mecánico completo** del vehículo en Fusion 360, optimizado para bajo peso, equilibrio y acceso a componentes.
- Tracción y dirección mecánica: 1 servomotor SG90/ 1.8kgf y 1 motor DC convencional.
- Alimentación: 2 baterías de litio 18650 3000MAH 3.7V
- Arquitectura distribuida: control de alto nivel con una tarjeta Arduino UNO R3 (visión, lógica de decisiones) y bajo nivel con y usando un puente H L298N (sensores, motores).
- Programación de un sistema de navegación autónoma usando 2 sensores ultrasónico de distancia Arduino HC-SR04, 2 sensores infrarrojos KY-033, 1 sensor de color TCS3200.

Ejecución de pruebas funcionales en entornos controlados, completando con éxito trayectos simples con obstáculos estáticos.

3. Visión a Futuro del Prototipo

El objetivo de Hefestobots es construir un prototipo que no solo cumpla con los

requisitos del reto, sino que represente una plataforma robusta y escalable para proyectos futuros. Nuestra visión incluye:

- Desarrollar un modelo de conducción autónoma más inteligente con algoritmos de Machine Learning que permitan adaptación dinámica a nuevas pistas y condiciones.
- Integrar **mejoras en eficiencia energética** a través de optimización electrónica y motores más eficientes.
- Diseñar una interfaz de monitoreo en tiempo real, accesible desde dispositivos móviles, para visualizar parámetros clave del vehículo durante las pruebas.
- Usar este proyecto como base para **futuros desarrollos en transporte autónomo**, logística educativa o aplicaciones de ciudades inteligentes.

4. Estado Actual del Proyecto

Actualmente, el prototipo se encuentra en una fase de **integración avanzada**, con los siguientes elementos ya implementados:

- Estructura física y mecánica finalizada.
- Montaje e integración de sensores principales.
- Programación básica de navegación y seguimiento de rutas.
- Ejecución de pruebas con un 70% de efectividad en trayectorias planificadas.

Próximos pasos:

- Optimización de algoritmos de navegación.
- Integración de evasión dinámica de obstáculos.
- Pruebas de campo en escenarios más complejos y realistas.