Implementation and Validation of Inverse Dynamics Actuation Control with Learned Kinematics for Exoskeletons - Supplementary Material

Table S 1: Body Names Exoskeleton Model

Number	Name
1	HIP_BELT
2	BACK_RAIL
3	RIGHT_SWIVEL_JOINT
4	RIGHT_LEG_RAIL
5	LEFT_SWIVEL_JOINT
6	LEFT_LEG_RAIL

Table S 2: Body Numbering Test Bench Model

Number	Name in OpenSim	Name in Paper
1	Huefte2	Trunk
2	Anbau	
3	Bein_L	Left Upper Leg
4	Gelenk_unten_L	Left Knee
5	Bein_R	Right Upper Leg
6	Gelenk_unten_R	Right Knee

Table S 3: Test Bench Parallel Kinematic Coupling Constraints

Number m	b(m)			Т	\mathcal{C},m bench, $b(m)$		W_m
1	1	1	0	0	. , ,	0.2	{1,4,5,6}
		0	$\cos\left(-\frac{\pi}{4} + \theta_t\right)$		$-\sin\left(-\frac{\pi}{4}+\theta_t\right)$	0.52	
		0	$\sin\left(-\frac{\pi}{4}+\theta_t\right)$		$\cos\left(-\frac{\pi}{4} + \theta_t\right)$	-0.48	
		0	0	0		1	
2	2	1	0	0		0	{4}
		0	$\cos(\theta_t)$		$-\sin(\theta_t)$	0	
		0	$\sin(\theta_t)$		$\cos(\theta_t)$	0	
		0	0	0		1	
3	3	1	0	0		0	{4}
		0	$\cos(\theta_t - \theta_h)$		$-\sin(\theta_t - \theta_h)$	0	
		0	$\sin(\theta_t - \theta_h)$		$\cos(\theta_t - \theta_h)$	0	
		0	0	0		1	
4	4	1	0	0		0.335	{1,2,3,4,6}
		0	cos(13.8°)		$-\sin(13.8^{\circ})$	0.0886	
		0	sin(13.8°)		cos(13.8°)	-0.1636	
		0	0	0		1	
5	6	1	0	0		0.065	{1,2,4,6}
		0	cos(13.8°)		$-\sin(13.8^{\circ})$	0.0456	
		0	sin(13.8°)		cos(13.8°)	0.0112	
		0	0	0		1	

Table S 4: Exoskeleton Test Bench Coupling Coupling based on [16]

Number m	$b_{C,\mathrm{bench}}(m)$	$b_{C,\text{exo}}(m)$		$T_{C,bench,m}^{bench,b_{C,bench}(m)}$					o,b _{C,exo} (m) exo,m)	W_m
1	2	1	-1	0	0	0	1	0	0	0	{1,2,3,4,5,6}
			0	1	0	0.0361	0	1	0	0	
			0	0	-1	-0.0655	0	0	1	0	
			0	0	0	1	0	0	0	1	
2	2	2	-1	0	0	0	1	0	0	0	{1,3}
			0	1	0	0.093	0	1	0	0.26	
			0	0	-1	-0.188	0	0	1	0	
			0	0	0	1	0	0	0	1	
3	5	4	-1	0	0	0	1	0	0	-0.1	{1,3}
			0	1	0	-0.209	0	1	0	-0.25	
			0	0	-1	-0.1	0	0	1	0.08	
			0	0	0	1	0	0	0	1	
4	3	6	-1	0	0	0	1	0	0	0.1	{1,3}
			0	1	0	-0.209	0	1	0	-0.25	
			0	0	-1	-0.1	0	0	1	0.08	
			0	0	0	1	0	0	0	1	

Table S 5: Cable-based Routing Model Properties

Number j	Number n	$b_{sec}(j,n)$	$\exp_{bsec}(j,n)oldsymbol{p}_{j,n}$	Cable Length
1	1	2	$[0.1378 0.07 -0.0326]^{\mathrm{T}}$	0.7420
1	2	1	$[0.134 0.085 0.0889]^{\mathrm{T}}$	
1	3	1	$[0 \ 0 \ 0.111]^{\mathrm{T}}$	
1	4	1	$[-0.1334 -0.004 0.0889]^{\mathrm{T}}$	
1	5	1	$[-0.1336 -0.0925 0.091]^{\mathrm{T}}$	
1	6	6	$[0.11 -0.215 0.09]^{\mathrm{T}}$	
2	1	2	$[-0.108 0.07 -0.078]^{\mathrm{T}}$	0.504
2	2	1	$[0.109 0.03 0.109]^{\mathrm{T}}$	
2	3	1	$[0.109 0.03 0.109]^{\mathrm{T}}$	
2	4	1	$[0.122 -0.0405 0.106]^T$	
2	5	1	$[0.12 -0.095 0.107]^{\mathrm{T}}$	
2	6	4	$[-0.11 -0.215 0.09]^{\mathrm{T}}$	
3	1	2	$[0.0335 0.07 0.0206]^{\mathrm{T}}$	0.5812
3	2	1	$[0.0312 -0.0095 0.139]^{\mathrm{T}}$	
3	3	1	$[0.078 -0.0118 0.1187]^{\mathrm{T}}$	
3	4	1	$[0.1042 -0.013 0.1112]^{\mathrm{T}}$	
3	5	1	$[0.107 -0.095 0.11159]^{\mathrm{T}}$	
3	6	4	$[0.107 -0.095 0.11159]^{\mathrm{T}}$	
46	mirrored on	y-z-planes		

Table S 6: Exoskeleton Actuator Coupling

Number j	$b_{\rm act}(j)$	$oldsymbol{T}^{ ext{exo},b_{ ext{act}}(j)}_{ ext{C,act},j}$						
1	2	-0.050826			0.1378			
		0.997101	0.05074491	0.056688	0.07			
		0.0566147	0.00288126	-0.9983919	-0.0326			
		0	0	0	1			
2	2	-0.05444	0.99851	0	0.10763			
		0.997190	0.0543725	0.0551838	0.07			
		0.051447	0.0028052	-0.99867	-0.00778			
		0	0	0	1			
3	2	0.0541	0.998535	0	0.03349			
		0.998361	-0.054099	0.0186576	0.07			
		0.01863	-0.00100	-0.99976	0.020618			
		0	0	0	1			
46	mirrored o	on y-z-plane						

Table S 7: Assistive Torque Indices in Nm according to [14]

Actual Support Torque	ATI_{1000}^{Lower}	$\mathrm{ATI}^{\mathrm{Lower}}_{200}$	${ m ATI}^{ m Hold}_{ m 1000}$	ATI ^{Raise}	${ m ATI}_{200}^{ m Raise}$
$\sum au_{ m sup,hum,actu}$	10.74	10.94	10.28	9.10	9.84
$\sum au_{ m sup,hum,actu2}$	9.23	8.70	8.09	7.41	7.64
$\sum au_{ ext{sup2,hum,actu}}$	14.09	14.15	13.19	11.91	12.79
$\sum au_{ ext{sup2,hum,actu2}}$	11.57	10.89	10.18	9.32	9.73