MASTERTECH

Deployment

Mikel Cañizo

Abril 2022

WHERE TECHNOLOGY IS AN ATTITUDE

Sobre mi

Mikel Cañizo Zubizarreta

Investigador del equipo de **Data Analytics e Inteligencia Artificial** en

Mantenimiento
Predictivo
Analítica
Avanzada

Monitorización en Tiempo Real

Deep Learning

Plataformas Digitales

Híbrido entre científico de datos e ingeniero de datos

Lo aprendido durante el curso

Plataformas digitales:

- Herramientas y servicios para el envío, procesamiento y almacenamiento de los datos
- Big Data

Preprocesado:

- Procesado de los datos crudos
- Preparación de los datos para generar modelos IA

Visualización:

- Visualización de los datos
- ¿Qué forma tienen los datos?

Análisis y validación:

- Tipos de modelos de IA
- Generación de modelos (detección de anomalías)

¿Despliegue??

WHERE TECHNOLOGY IS AN ATTITUDE

Qué es el despliegue?

Despliegue de modelos

• ¿Es la **realidad** así de simple?

¿Qué versión del modelo desplegamos?

- Preprocesamientos diferentes
- Feature engineering

¿ Dónde despliego el modelo?

La realidad

• ¿ Dónde despliego el modelo?

• ¿ Dónde despliego el modelo?

WHERE TECHNOLOGY IS AN ATTITUDE

• ¿ Dónde despliego el modelo?

La realidad

¿En qué formato desplegamos el modelo?

- No todas las herramientas usan los mismos formatos
- Diferentes herramientas de entrenamiento y producción
- Limitaciones de memoria (embebidos, móviles...)

¿Cuándo despliego el nuevo modelo?

- Evolución de los sistemas monitorizados
- Monitorización de los modelos
- Concept drift
- ¿Cúando re-entrenar el modelo?

La realidad

¿Cómo llevo la trazabilidad del modelo?

- Múltiples versiones de los modelos (hiperparámetros, datos...)
- ¿Cómo saber qué pruebas he realizado?
- ¿Cómo volver a atrás en caso de fallos?
- Versiones de los datos

18 Trained Models

WHERE TECHNOLOGY IS AN ATTITUDE

La realidad

¿Cómo llevar a producción todo esto?

- ¿Cómo puedo registrar un histórico de modelos, configuraciones y pruebas?
- ¿Cómo pongo en producción los modelos?

La solución

MLOps = ML + DEV + OPS

Experiment:

Data acquisition
Business understanding
Initial modeling

Develop:

Modeling + Testing

Continuous integration

Continuous deployment

Operate:

Continuous delivery
Data Feedback Loop
System + Model monitoring

La solución

Automatización del ciclo de vida de los modelos

- Seleccionar las herramientas para todo el ciclo de vida
- Generar pipelines
- Automatización de toda la fase de desarrollo + validación + despliegue

Trazabilidad de los modelos

Reproducibilidad

Control del versiones

Conexión entre Data Scientist y Data Engineer

Ciclo de vida automatizado (menos errores humanos)

Vale pero...

• ¿Cómo aplico el **MLOps** al mundo real?

En la actualidad existen varias plataformas

Microsoft Machine Learning for Apache Spark

Es una plataforma end-to-end para la gestión del ciclo de vida de los modelos IA

Integración con cualquier librería (scikit-learn, TF, keras, Pytorch, Spark, Flink...)

Esta herramienta facilita la gestión del ciclo de vida de los modelos

- Se almacena cada paso durante la fase de desarrollo (metadata store)
- Se registran todos los modelos (model registry)
- Mapeo prueba -> modelo
- Facilita el despliegue

Mlflow dispone de un servidor para hacer el tracking

- Los usuarios se pueden conectar de forma remota al servidor
- Es necesario tener instalado Mlflow en el lado cliente
- Los metadatos y modelos se guardan en el servidor

MLflow tiene integración con múltiples BBDD y repositorios

- Fichero local
- SQLite
- MySQL
- MSSQL
- PostgreSQL

- Google Cloud Storage
- Servidor FTP o SFTP
- NFS
- HDFS

Estructura:

• **Experimento**: se refiere a un **proyecto común** que engloba las pruebas realizadas para generar un modelo para un caso de uso específico

```
mlflow.create_experiment(name, artifact_location=None) [source]
```

- **RUN**: se refiere a una prueba o ejecución de entrenamiento que se realizan dentro de un experimento.
 - <u>Parámetros</u>: hiperparámetros del modelo. Cada RUN tiene uno o varios parámetros asociados, pero para una ejecución en concreto cada parámetro solo puede tener un valor.
 - <u>Métricas</u>: métricas de evaluación del modelo. Cada RUN tiene una o varias métricas asociadas,
 pero para (with mlflow.start run(): tener un valor.

```
mlflow.log_param("x", 1)
mlflow.log_metric("y", 2)
...
```

metadata

model

Registra todos los metadatos de la prueba

Cada prueba se organiza bajo el concepto RUN:

- Code version: versión del código (si está en un repositorio Git se registra el hash del commit).
- Start & end time: cuándo se ha iniciado y finalizado el run.
- Source: nombre del fichero donde se encuentra el código fuente o el nombre del proyecto.
- Parameters: registra en formato clave/valor los parámetros utilizados para entrenar el modelo.
- Metrics: registra en formato clave/valor las métricas definidas para evaluar el rendimiento.
- Artifacts: registra el modelo entrenado en el formato especificado (artifact = modelo)

Interfaz gráfica (<a href="http://<ip-servidor>:5000">http://<ip-servidor>:5000)

				Parameters		Metrics		
Date ▼	User	Source	Version	alpha	lambda	mae	r2	rmse
2018-08-30 15:42:55	mlflow	R:train.R	da3f0a	1	1	0.638	0.03	0.857
2018-08-30 15:42:50	mlflow	R:train.R	da3f0a	1	0.5	0.639	0.039	0.853
2018-08-30 15:42:45	mlflow	R:train.R	da3f0a	1	0.2	0.617	0.153	0.804
2018-08-30 15:42:40	mlflow	R:train.R	da3f0a	1	0	0.597	0.224	0.77
2018-08-30 15:42:35	mlflow	R:train.R	da3f0a	0.5	1	0.639	0.039	0.853
2018-08-30 15:42:30	mlflow	R:train.R	da3f0a	0.5	0.5	0.621	0.125	0.818
2018-08-30 15:42:26	mlflow	R:train.R	da3f0a	0.5	0.2	0.616	0.169	0.794
2018-08-30 15:42:21	mlflow	R:train.R	da3f0a	0.5	0	0.597	0.224	0.77
2018-08-30 15:42:15	mlflow	R:train.R	da3f0a	0	1	0.617	0.158	0.801
2018-08-30 15:42:09	mlflow	R:train.R	da3f0a	0	0.5	0.617	0.171	0.793
2018-08-30 15:42:04	mlflow	R:train.R	da3f0a	0	0.2	0.618	0.178	0.788
2018-08-30 15:41:50	mlflow	R:train.R	da3f0a	0	0	0.597	0.224	0.77

Registra los modelos de cada prueba

Cada prueba se organiza bajo el concepto RUN:

- Model: modelo generado a partir de un experimento o run
- Registered modelo: modelo registrado con un identificador único que tiene asociado la versión, el estado, la trazabilidad y otros metadatos
- Model version: versión del modelo. Versión incremental automática
- Model Stage: el estado del modelo (staging, production, archived, etc.)
- Annotation & description: notas opcionales en formato Markdown

Empaqueta el proyecto en un formato reproducible en cualquier plataforma

- Incluye dependencias de librerías
- Incluye el código
- Define los parámetros de entrada (opcional)

Un **proyecto MLflow** contiene lo siguiente (MLproject file):

- Name: nombre del proyecto
- Environment: entorno de ejecución
 - Conda: entorno de ejecución generado con Conda (conda.yaml)
 - Docker: entorno de ejecución generado mediante Docker (Dokerfile)
- Entry point: punto de entrada del proyecto o comandos para ejecutar el proyecto
 - Puede tener varios puntos de entrada
 - Puede ser un .py o un .sh

MIFlow Projects

Ejemplo

```
name: My Project
conda_env: my_env.yaml
# Can have a docker_env instead of a conda_env, e.g.
# docker env:
     image: mlflow-docker-example
entry points:
 main:
    parameters:
      data_file: path
      regularization: {type: float, default: 0.1}
    command: "python train.py -r {regularization} {data file}"
  validate:
    parameters:
      data_file: path
   command: "python validate.py {data file}"
```


Guarda el modelo en un formato estándar y es capaz de servirlo

Cada MLflow Model es un directorio que contiene ficheros arbitrarios junto con un fichero llamado *MLmodel*

El fichero MLmodel contiene los flavors (formatos) en los que se puede ejecutar el modelo (soporte)

```
flavors:
    sklearn:
    sklearn_version: 0.19.1
    pickled_model: model.pkl
    python_function:
    loader_module: mlflow.sklearn
```


¿Qué es un flavor?

• Es una convención para que las herramientas de despliegue entiendan cómo pueden usar el modelo

Model Signature

- Define el **esquema** de los **parámetros** de **entrada** y de **salida** del modelo
 - Nombre
 - Tipos de datos
- Fuerza que el modelo se ejecute con el esquema definido
 - Genera excepciones si las variables de entrada no son las correctas
 - O el orden de las variables no es el correcto

```
signature:
  inputs: '[{"name": "sepal length (cm)", "type": "double"}, {"name": "sepal width
      (cm)", "type": "double"}, {"name": "petal length (cm)", "type": "double"}, {"name":
      "petal width (cm)", "type": "double"}]'
  outputs: '[{"type": "integer"}]'
```

¿Demasiada información?

Resumen

¿Cómo automatizar esto?

Pipelines automatizados

