TD - Fermat : solution

Exercice 6 (Proximal operator of the 1-norm)

We say that a function $\phi: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is separable if there exists n functions $\phi_i: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ such that for all $x \in \mathbb{R}^n$,

$$\phi(x) = \sum_{i=1}^{n} \phi_i(x_i) .$$

1. Let ϕ be a separable function. Show that

$$\partial \phi(x) = \partial \phi_1(x_1) \times \ldots \times \partial \phi_n(x_n)$$

where \times denotes the cartesian product.

$$q \in \partial \phi(x) \Rightarrow \forall y \in \mathbb{R}^n, \phi(y) \ge \phi(x) + \langle q, y - x \rangle$$

$$\Rightarrow \forall i \in \{1, \dots, n\}, \forall z \in \mathbb{R}, \phi_i(z) \ge \phi_i(x_i) + q_i(z - x_i) \Rightarrow \forall i, q_i \in \partial \phi_i(x_i)$$

where the second implication comes by choosing $y = (x_1, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_n)$ and using the separability of ϕ .

For the converse

$$\forall i, q_i \in \partial \phi_i(x_i) \Rightarrow \forall i \in \{1, \dots, n\}, \forall y_i \in \mathbb{R}, \phi_i(y_i) \ge \phi_i(x_i) + q_i(y_i - x_i)$$
$$\Rightarrow \forall y \in \mathbb{R}^n, \phi(y) \ge \phi(x) + \langle q, y - x \rangle \Rightarrow q \in \partial \phi(x)$$

Where the second implication comes by summing the inequalities.

2. Show that

$$\inf_{x \in \mathbb{R}^n} \sum_{i=1}^n \phi_i(x_i) = \sum_{i=1}^n \inf_{x \in \mathbb{R}} \phi_i(x)$$

and

$$\arg\min_{x\in\mathbb{R}^n}\sum_{i=1}^n\phi_i(x_i)=\arg\min_{x\in\mathbb{R}}\phi_1(x)\times\ldots\times\arg\min_{x\in\mathbb{R}}\phi_n(x).$$

► For all $i \in \{1, ..., n\}$ and for all $y_i \in \mathbb{R}$, $\phi_i(y_i) \ge \inf_{x \in \mathbb{R}} \phi_i(x)$. Hence, $\phi(y) = \sum_{i=1}^n \phi_i(y_i) \ge \sum_{i=1}^n \inf_{x \in \mathbb{R}} \phi_i(x)$. This implies the inequality $\inf_{y \in \mathbb{R}^n} \phi(y) \ge \sum_{i=1}^n \inf_{x \in \mathbb{R}} \phi_i(x)$.

For the other inequality, we have for all $y \in \mathbb{R}^n$, $\inf_{x \in \mathbb{R}^n} \phi(x) \leq \sum_{i=1}^n \phi_i(y_i)$. Hence, taking the infimum with respect to y_1 , $\inf_{x \in \mathbb{R}^n} \phi(x) \leq \inf_{x \in \mathbb{R}} \overline{\phi_1(x)} + \sum_{i=2}^n \phi_i(y_i)$. Taking the infimum with respect to y_2, \ldots, y_n one after the other, we obtain the first result.

Fermat's rules and Question 1 lead to

$$x^* \in \arg\min \phi \Leftrightarrow 0 \in \partial \phi(x^*) \Leftrightarrow \forall i, 0 \in \partial \phi_i(x_i^*) \Leftrightarrow \forall i, x_i^* \in \arg\min \phi_i$$

This shows the second point.

3. Let ϕ be a separable function. Show that

$$\operatorname{prox}_{\phi}(x) = (\operatorname{prox}_{\phi_1}(x_1), \dots, \operatorname{prox}_{\phi_n}(x_n))$$

 $ightharpoonup \operatorname{prox}_{\phi}(x) = \operatorname{arg\,min}_{y \in \mathbb{R}^n} \sum_{i=1}^n \phi_i(y_i) + \frac{1}{2} (x_i - y_i)^2$

Hence, $\operatorname{prox}_{\phi}(x)$ is the argmin of a separable function. It is the concatenation of the argmin of each summand.

- 4. Let F be the 1-norm, that is $F(x) = \sum_{i=1}^{n} |x_i|$. Show that F is convex and separable.
 - ▶ It is clear that F is separable. To show that F is convex, we compute for $t \in [0, 1]$,

$$F(tx + (1-t)y) < F(tx) + F((1-t)y) < tF(x) + (1-t)F(y)$$

where the second inequality is the triangle inequality.

- 5. Recall the proximal operator of the absolute value and give the formula for the proximal operator of the 1-norm.
 - ▶ The proximal operator of the absolute value is the soft thresholding

$$\operatorname{prox}_{|.|}(x) = S_1(x) = \begin{cases} x - 1 & \text{if } x > 1\\ 0 & \text{if } x \in [-1, 1]\\ x + 1 & \text{if } x < -1 \end{cases}$$

The proximal operator of the 1-norm is thus

$$\operatorname{prox}_{\|.\|}(x) = (\operatorname{prox}_{|.|}(x_1), \dots, \operatorname{prox}_{|.|}(x_2),).$$

Exercise 7(LASSO)

We consider the problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1.$$

- 1. Prove that the solution is $\{0\}$ for large λ .
 - ▶ Denote $f(x) = \frac{1}{2} ||Ax b||_2^2 + \lambda ||x||_1$. By Fermat's rule 0 is solution if and only if

$$0 \in \partial f(0)$$
.

 $(x \mapsto \frac{1}{2} ||Ax - b||_2^2)$ is differentiable and $\lambda > 0$, so $\partial f(x) = \{A^\top (Ax - b)\} + \lambda \partial ||\cdot||_1(x)$. Moreover, $\partial ||\cdot||_1(0) = [-1, 1] \times \ldots \times [-1, 1] = B_\infty$ so

$$0 \in \partial f(0) \Leftrightarrow 0 \in \{-A^{\top}b\} + \lambda \partial \|\cdot\|_1(0) \Leftrightarrow A^{\top}b \in \lambda B_{\infty} \Leftrightarrow \|A^{\top}b\|_{\infty} \leq \lambda$$

- 2. For an arbitrary λ , provide the expression of the proximal gradient algorithm, using the step size suggested in Exercise 4.
 - ▶ We will take as stepsize $\gamma = 1/L$ where L is the Lipschitz constant of the gradient of $(x \mapsto \frac{1}{2} ||Ax b||_2^2)$, that is $L = ||A||^2$.

The proximal gradient algorithm starts at $x_0 \in \mathbb{R}^n$ and consists in the recurrence

$$x_{k+1} = \text{prox}_{\gamma \lambda \|.\|_1} (x_k - \gamma \nabla f(x_k)) = S_{\lambda/\|A\|^2} \Big(x_k - \frac{1}{\|A\|^2} A^\top (Ax_k - b) \Big)$$

where S_{λ} is the soft thresholding operator.

- 3. Assume that the initial point is at distance D from a minimizer. How many iterations are needed (at most) to achieve an ε -minimizer?
 - ▶ The iterates of the proximal gradient algorithm are guaranteed to satisfy

$$f(x_k) - f(x^*) \le \frac{\|A\|^2}{2k} \|x_0 - x^*\|^2 = \frac{\|A\|^2 D^2}{2k}$$

Hence, if $k \ge \frac{\|A\|^2 D^2}{2\epsilon}$, $f(x_k) - f(x^*) \le \epsilon$.

Exercice 9 (Proximal stochastic gradient for logistic regression)

We consider a classification problem defined by observations $(x_i, y_i)_{1 \le i \le n}$ where for all i, $x_i \in \mathbb{R}^p$ and $y_i \in \{-1, 1\}$. We propose the following linear model for the generation of the data. Each observation is supposed to be independent and there exists a vector $w \in \mathbb{R}^p$ and $w_0 \in \mathbb{R}$ such that for all i, (y_i, x_i) is a realization of the random variable (Y, X) whose law satisfies

$$\mathbb{P}_{w,w_0}(Y=1|X) = \frac{\exp(X^\top w + w_0)}{1 + \exp(X^\top w + w_0)}.$$

1. Show that $\forall i \in \{1, ..., n\}, \ \mathbb{P}(Y_i = y_i | x_i) = \frac{1}{1 + \exp(-y_i(x_i^\top w + w_0))}$.

$$\mathbb{P}(Y_i = 1 | x_i) = \frac{\exp(x_i^\top w + w_0)}{1 + \exp(x_i^\top w + w_0)} = \frac{1}{1 + \exp(-(x_i^\top w + w_0))} = \frac{1}{1 + \exp(-y_i(x_i^\top w + w_0))}$$

$$\mathbb{P}(Y_i = -1 | x_i) = 1 - \mathbb{P}(Y_i = 1 | x_i) = \frac{\exp(-(x_i^\top w + w_0))}{1 + \exp(-(x_i^\top w + w_0))} = \frac{1}{1 + \exp(x_i^\top w + w_0)} = \frac{1}{1 + \exp(-y_i(x_i^\top w + w_0))}$$

2. Show that the maximum likelihood estimator is

$$\hat{w} = \arg\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^{\top} w))$$

▶ As the observations are independent, the likelihood is

$$p(x, y; w) = \prod_{i=1}^{n} \frac{1}{1 + \exp(-y_i x_i^{\mathsf{T}} w)}.$$

The log-likelihood is thus

$$\log(p(x, y; w)) = \sum_{i=1}^{n} -\log(1 + \exp(-y_i x_i^{\top} w))$$

and the maximum likelihood estimator is

$$\hat{w} = \arg\max_{w} p(x, y; w) = \arg\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^{\top} w))$$

- 3. Denote $f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^{\top} w))$. Compute $\nabla f(w)$. We denote $f_i(w) = \log(1 + \exp(-y_i (x_i^{\top} w + w_0)))$. $\nabla f(w, w_0) = \sum_{i=1}^{n} \nabla f_i(w, w_0)$, where

$$\nabla_{w_0} f_i(w, w_0) = \frac{-y_i \exp(-y_i (x_i^\top w + w_0))}{1 + \exp(-y_i (x_i^\top w + w_0))}$$

$$\nabla_w f_i(w, w_0) = \frac{-y_i \exp(-y_i (x_i^\top w + w_0))}{1 + \exp(-y_i (x_i^\top w + w_0))} x_i$$

- 4. Compute the proximal operator of $(x \mapsto \frac{\lambda}{2} ||x||^2)$.
 - ▶ $p = \text{prox}_{\frac{\lambda}{2}\|\cdot\|_2^2}(y) = \arg\min_{x \to \frac{\lambda}{2}} \|x\|_2^2 + \frac{1}{2} \|y x\|_2^2 \text{ so } p \text{ is solution to } \lambda p + p y = 0$ which gives $p = \frac{1}{1+\lambda}y$.
- 5. Write the proximal stochastic gradient method for the logistic regression problem with ridge regularizer

$$(\hat{w}^{(\lambda)}, \hat{w}_0^{(\lambda)}) = \arg\min_{w, w_0} \sum_{i=1}^n \log(1 + \exp(-y_i(x_i^\top w + w_0))) + \frac{\lambda}{2} \|w\|^2.$$

▶ Note that $\nabla f(w, w_0) = \frac{1}{n} \sum_{i=1}^n n \nabla f_i(w, w_0)$ so if $i_{k+1} \sim U(\{1, ..., n\})$, then $\mathbb{E}(n \nabla f_{i_{k+1}}(w, w_0)) = \nabla f(w, w_0)$.

At iteration k:

Generate i_{k+1} uniformly at random

Set
$$\gamma_k = \frac{\gamma_0}{k+1}$$
. $w_{k+1} = \text{prox}_{\frac{\gamma_k \lambda}{2} \|\cdot\|_2^2} (w_k - \gamma_k n \nabla f_{i_{k+1}}(w_k)) = \frac{1}{1+\lambda \gamma_k} (w_k - \gamma_k n \nabla f_{i_{k+1}}(w_k))$

Exercice 10 (Optimisation with explicit constraints)

We consider the following optimization problem

$$\min_{x \in C} f(x) \tag{1}$$

where $C \subset \mathbb{R}^d$ is a convex set and $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable.

1. We define the convex indicator function of the set C as

$$\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{if } x \notin C \end{cases}$$

Show that (1) is equivalent to

$$\min_{x \in \mathbb{R}^d} f(x) + \iota_C(x) \tag{2}$$

- ▶ Clearly, the solution of (8) is in C (elsewhere $\iota_C(x) = +\infty$), and $\forall x \in C$, $\iota_C(x) = 0$, therefore (8) is equivalent to (7).
- 2. Show that for all $x \in C$, $\partial \iota_C(x) = \{q \in \mathbb{R}^d : \forall y \in C, \langle q, y x \rangle \leq 0\}$ and that $\partial \iota_C(x)$ is a cone (it is called the normal cone to C at x). Show that for all $x \notin C$, $\partial \iota_C(x) = \emptyset$.
 - ▶ By definition, $\partial \iota_C(x) = \{q \in \mathbb{R}^d : \forall y \in R^d, \iota_C(y) \geq \iota_C(x) + \langle q, y x \rangle\}$. If $x \in C$, then $\iota_C(x) = 0$, thus $\partial \iota_C(x) = \{q \in \mathbb{R}^d : \forall y \in C, \langle q, y x \rangle \leq 0\}$. Clearly, $\partial \iota_C(x)$ is a cone because if $q' = \lambda q$ with $q \in \partial \iota_C(x)$ and $\lambda \geq 0$, then $q' \in \partial \iota_C(x)$. If $x \notin C$, then $\iota_C(x) = +\infty$, and no vector q can fulfill the condition, therefore $\partial \iota_C(x) = \emptyset$.
- 3. Show that x^* is a solution to (2) if and only if

$$-\nabla f(x^*) \in \partial \iota_c(x^*)$$
.

- ▶ We have $\partial(f + \iota_c)(x^*) = \nabla f(x^*) + \partial \iota_c(x^*)$ because ι_c is convex, f is differentiable, and $0 \in \text{relint}(\text{dom}(\iota_c) \text{dom}(f)) = \text{relint}(C R^d) = R^d$. Therefore x^* is a solution to (2) if and only if $0 \in \nabla f(x^*) + \partial \iota_c(x^*)$, i.e. $-\nabla f(x^*) \in \partial \iota_c(x^*)$.
- 4. Denote

$$\mathcal{H}_{w,b} = \{ x \in \mathcal{X} : \langle w, x \rangle + b = 0 \}$$

Compute $\partial \iota_{\mathcal{H}_{w,b}}(x)$ for all $x \in \mathbb{R}^d$.

- ▶ Since $\mathcal{H}_{w,b}$ is an hyperplane, it is convex. Therefore we can use the result of question 2: if $x \notin \mathcal{H}_{w,b}$, $\partial \iota_{\mathcal{H}_{w,b}}(x) = \emptyset$. Otherwise, if $x \in \mathcal{H}_{w,b}$, $\langle w, x \rangle + b = 0$ and $\partial \iota_{\mathcal{H}_{w,b}}(x) = \{q \in \mathbb{R}^d : \forall y \in \mathbb{R}^d : \langle w, y \rangle + b = 0, \langle q, y x \rangle \leq 0\}$. If there is a y such that $\langle q, y x \rangle < 0$, then y' = 2x y is such that $\langle w, y' \rangle + b = 0$ and $\langle q, y' x \rangle > 0$, which makes a contradiction. Therefore $\partial \iota_{\mathcal{H}_{w,b}}(x) = \{q \in \mathbb{R}^d : \forall y \in \mathbb{R}^d : \langle w, y \rangle + b = 0, \langle q, y x \rangle = 0\}$. Therefore $\partial \iota_{\mathcal{H}_{w,b}}(x)$ is a 1-dimensional vector space, and we note that $w \in \iota_{\mathcal{H}_{w,b}}(x)$. We conclude that $\partial \iota_{\mathcal{H}_{w,b}}(x) = \operatorname{span}(w)$.
- 5. Prove that the distance of a point z to \mathcal{H} is equal to

$$d(z, \mathcal{H}_{w,b}) = \min_{x \in \mathcal{H}_{w,b}} \|x - z\|_2 = \frac{|\langle w, z \rangle + b|}{\|w\|_2}.$$

▶ Let $f(x) = \frac{1}{2} \|x - z\|^2$ and $C = \mathcal{H}_{w,b}$, and let us use the result of questions 3 and $4: -\nabla f(x^*) \in \partial \iota_c(x^*) \Leftrightarrow \exists \nu \in \mathbb{R}: -(x^* - z) = \nu w$, i.e. $x^* = z - \nu w$. However, we have $\langle w, x^* \rangle + b = 0$, thus $\nu = \frac{\langle w, z \rangle + b}{\|w\|^2}$. Finally, we get $\|x^* - z\|_2 = \|\nu w\|_2 = \frac{\langle w, z \rangle + b}{\|w\|}$.