Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik

Wintersemester 2020/21

Übungsblatt 3

Hausaufgaben (Abgabe bis 23.11.2020, 14:00 Uhr)

Hausaufgabe 3.1: Tropischer Semiring Es sei $T := \mathbb{R} \cup \{-\infty\}$. Für alle $a, b \in T$ definieren wir:

- $a \oplus b := \max\{a, b\}$ (d.h. $a \oplus b$ ist das größere der beiden, wobei $-\infty$ kleiner als jede reelle Zahl ist) und
- $a \odot b := a + b$ (dabei ist a + b die gewöhnliche Addition reeller Zahlen, und $\forall x \in T : x + (-\infty) = -\infty + x = -\infty$).

(4 P.) Welche Körperaxiome erfüllt T mit der Addition \oplus und der Multiplikation \odot , welche Körperaxiome sind verletzt? Das Null- und das Einselement müssen Sie selbst finden.

Anmerkungen: Man bezeichnet T als Max-Plus-Algebra oder als einen tropischen Semiring (es gibt auch die Min-Plus-Algebra). Methoden der linearen Algebra ("Eigenwertprobleme") angewandt auf T werden z.B. in der Fahrplanoptimierung verwendet. Es gibt auch Anwendungen in der Bioinformatik.

Hausaufgabe 3.2: \mathbb{C}

Wir definieren auf $\mathbb{R} \times \mathbb{R} := \{(a,b) \mid a,b \in \mathbb{R}\}$ innere Verknüpfungen + und · wie folgt: Für alle $(a,b),(c,d) \in \mathbb{R} \times \mathbb{R}$ sei (a,b)+(c,d):=(a+c,b+d) und $(a,b)\cdot (c,d):=(a\cdot c-b\cdot d,\ a\cdot d+b\cdot c)$.

(4 P.) Verifizieren Sie, dass $\mathbb{R} \times \mathbb{R}$ mit diesen Verknüpfungen ein Körper ist. Geben Sie dabei die neutralen und inversen Elemente explizit an.

Anmerkungen: Zur Lösung der Aufgabe ist zu prüfen, dass alle Axiome aus Definition 1.2 für $R = \mathbb{R} \times \mathbb{R}$ zutreffen. Tipp für die Inversion: Was ist das Inverse von (a,0) mit $a \in \mathbb{R}^*$? Was ist $(a,b) \cdot (a,-b)$ für $a,b \in \mathbb{R}$? In einer der nächsten Vorlesungen werden wir die komplexen Zahlen untersu-

In einer der nachsten Vorlesungen werden wir die komplexen Zahlen untersuchen, wobei (a,b)=a+bi. Aber das braucht man für die Lösung der Aufgabe nicht wissen.

Bitte wenden

Hausaufgabe 3.3: Besondere Ringelemente

Es sei R ein Ring. Man nennt $x \in R$ idempotent gdw. $x \cdot x = x$ (Beispiel: 1 und 0 sind immer idempotent, aber in manchen Ringen gibt es weitere Idempotente).

(2 P.) Zeigen Sie: Wenn $x \in R$ idempotent ist, dann ist auch y := 1 - x idempotent und es gilt $x \cdot y = y \cdot x = 0$.

Hausaufgabe 3.4: Nullteilerfreie Ringe

Ein Ring R heißt *nullteilerfrei* gdw. für alle $a, b \in R$ mit $a \cdot b = 0$ folgt a = 0 oder b = 0.

(3 P.) Zeigen Sie: Ist R ein nullteilerfreier Ring, dann gilt die multiplikative Kürzungsregel

$$\forall x, y, z \in R, z \neq 0: (x \cdot z = y \cdot z \Rightarrow x = y) \land (z \cdot x = z \cdot y \Rightarrow x = y)$$
.

Hinweis: Umformen, ausklammern, Nullteilerfreiheit und $z \neq 0$ nutzen. **Anmerkung:** In der Vorlesung wurde die multiplikative Kürzungsregel nur für Körper bewiesen; hier wird dies unter einer schwächeren Voraussetzung bewiesen. Zum Beispiel sind \mathbb{Z} und $\mathbb{R}[X]$ nullteilerfreie kommutative Ringe, sind jedoch keine Körper. Die bald definierte Matrixmultiplikation wird sich hingegen nicht als nullteilerfrei herausstellen und auch die multiplikative Kürzungsregel ist für Matrixmultiplikation verletzt.

Erreichbare Punktzahl: 13