GROUP TEST S.-T YAU COLLEGE MATH CONTESTS 2012

Geometry and Topology

Please solve 5 out of the following 6 problems.

- **1.** Prove that the real projective space \mathbb{RP}^n is a differentiable manifold of dimension n.
- **2.** Let M, N be n-dimensional smooth, compact, connected manifolds, and $f: M \to N$ a smooth map with rank equals to n everywhere. Show that f is a covering map.
- **3.** Given any Riemannian manifold (M^n, g) , show that there exists a unique Riemannian connection on M^n .
- **4.** Let S^n be the unit sphere in \mathbb{R}^{n+1} and $f: S^n \to S^n$ a continuous map. Assume that the degree of f is an odd integer. Show that there exists $x_0 \in S^n$ such that $f(-x_0) = -f(x_0)$.
- 5. State and prove the Stokes theorem for oriented compact manifolds.
- **6.** Let M be a surface in \mathbb{R}^3 . Let D be a simply-connected domain in M such that the boundary ∂D is compact and consists of a finite number of smooth curves. Prove the Gauss-Bonnet Formula:

$$\int_{\partial D} k_g \ ds + \sum_j (\pi - \alpha_j) + \iint_D K \ dA = 2\pi,$$

where k_g is the geodesic curvature of the boundary curve. Each α_j is the interior angle at a vertex of the boundary, K is the Gaussian curvature of M, and the 2-form dA is the area element of M.