

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE COMPUTAÇÃO COMPUTAÇÃO GRÁFICA CMP 1170 – 2019/2 PROF. MSC. GUSTAVO VINHAL

Aula 05 Curvas e Superfícies com OpenGL


```
nurbSurface = gluNewNurbsRenderer( );
```

```
gluNurbsProperty( GLUnurbsObj *nurb, GLenum property, GLfloat value );
```


GLU_SAMPLING_TOLERANCE: especifica o comprimento máximo em pixel dos polígonos que compõem a malha. Quanto menor, mais suave parecerá a malha, porém demandará mais tempo para o render. O valor padrão é de 50 pixels.

GLU_DISPLAY_MODE: define como um NURBS deve ser renderizado entre as seguintes opções: GLU_FILL, GLU_OUTLINE_POLYGON, ou GLU_OUTLINE_ PATCH

GLU_CULLING: este é um valor booleano. GL_TRUE significa que uma superfície NURBS deve ser descartada se os seus pontos de controle estiverem fora da janela de visualização. O padrão é GL_FALSE.

GLU_AUTO_LOAD_MATRIX: este também é um valor booleano. GL_TRUE significa que um NURBS utiliza as matrizes de projeção corrente, modelview e viewport. GL_FALSE requer a especificação de matrizes através da função gluLoadSamplingMatrices().

- *nurb* é o ponteiro do objeto NURBS
- uKnotCount especifica o número de nós na direção paramétrica u
- uKnot especifica um array de nós crescente na direção u
- vKnotCount especifica o número de nós na direção paramétrica v
- vKnot especifica um array de nós crescente na direção v
- uStride especifica o equilíbrio entre pontos de controles sucessivos na direção paramétrica u em ctrlArray

- vStride especifica o equilíbrio entre pontos de controles sucessivos na direção paramétrica v em ctrlArray
- uOrder especifica a ordem da superfície NURBS na direção u
- vOrder especifica a ordem da superfície NURBS na direção v
- type especifica o tipo de superfície, que poderá ser GL_MAP2_VERTEX_3 or GL_MAP2_COLOR_4

Exercício

• Utilizando a função NURBs do OpenGL criar uma superfície semelhante a da figura abaixo.

REFERÊNCIAS BIBLIOGRÁFICAS:

AZEVEDO, Eduardo; CONCI, Aura. **Computação gráfica:** teoria e prática. Rio de Janeiro: Campus, 2003.