Бестиповое лямбда-исчисление

N.

А.Н. Непейвода $2022 \ \epsilon$.

Лямбда-исчисление

Перегруженность равенства

$$f(\alpha)=g(\alpha+1)$$

Это:

• равенство заранее заданных f, g в точке а?

Перегруженность равенства

$$f(\alpha)=g(\alpha+1)$$

Это:

- равенство заранее заданных f, g в точке a?
- равенство заранее заданных f, g для всех а?

Перегруженность равенства

$$f(\alpha) = g(\alpha + 1)$$

Это:

- равенство заранее заданных f, g в точке a?
- равенство заранее заданных f, g для всех а?
- способ описания **новой** функции f с помощью заранее заданной функции g?

$$f(\alpha) = g(\alpha + 1)$$

Происхождение знака λ (согласно Россеру)

$$g(\boldsymbol{\hat{\alpha}}+1) \rightarrow \boldsymbol{\hat{\alpha}}.g(\alpha+1) \rightarrow / \backslash \alpha.g(\alpha+1)$$

$$f(a) = g(a+1)$$

То, что мы знаем теперь

$$f = \lambda \alpha . g(\alpha + 1)$$

Алонзо Чёрч: порождение функций (абстракция) + применение + логические связки = надежда на формализацию математики.

- $\forall x P(x) \equiv \forall (\lambda x. P(x));$
- $\bullet \ \sum_{i=1}^{\infty} \frac{1}{i^2} \equiv \mathsf{sum}(1, \infty, \lambda x. \frac{1}{x^2}).$

Происходит зарождение синтаксиса функций высшего порядка.

$$f(\alpha) = g(\alpha + 1)$$

То, что мы знаем теперь

$$f = \lambda \alpha. g(\alpha + 1)$$

Алонзо Чёрч: порождение функций (абстракция) + применение + логические связки = надежда на формализацию математики.

Парадокс Карри

Пусть $D = \lambda x.(x \ x) \Rightarrow A$, тогда $(D \ D) \Leftrightarrow ((D \ D) \Rightarrow A)$, что влечёт A.

$$f(\alpha) = g(\alpha + 1)$$

То, что мы знаем теперь

$$f = \lambda \alpha. g(\alpha + 1)$$

Алонзо Чёрч: порождение функций (абстракция) + применение + логические связки = надежда на формализацию математики.

Высказывание Карри

Высказывание C, являющееся собственной посылкой: $C = C \Rightarrow A$.

- Формальная модель вычислений, позволяет компактно описывать семантику ЯП.
- Бестиповая версия А. Черч, 1935 (и много типизированных).
- Базисные операции применение (функция \to данные) и абстракция (данные \to функция).

Пусть F, X — термы. F X — операция применения терма F (функции) к терму X (данным). Различения по типам нет, возможно самоприменение: F F.

Пусть $M \equiv M[x]$ — терм, возможно содержащий x. Тогда абстракция $\lambda x. M$ обозначает анонимную (неименованную) функцию от $x: x \to M[x]$.

Пусть F, X — термы. F X — операция применения терма F (функции) к терму X (данным). Различения по типам нет, возможно самоприменение: F F.

Haskell

```
-- Первый элемент пары -- функция, применяемая -- ко второму элементу.
```

Fun1 Fun2

Пусть $M \equiv M[x]$ — терм, возможно содержащий x. Тогда абстракция $\lambda x.M$ обозначает анонимную (неименованную) функцию от $x: x \to M[x]$.

Haskell

\x -> M

Применение и абстракция согласованы:

$$(\lambda x.x \ x) \ (\lambda y.y) = (\lambda y.y) \ (\lambda y.y) = \lambda y.y$$

β-эквивалентность:

$$(\lambda x.M) N =_{\beta} M[x := N].$$

Чистое λ-исчисление

- Применение
- Абстракция
- β-эквивалентность.

Термы λ-исчисления

- $x \in V \Rightarrow x \in \Lambda$;
- $M, N \in \Lambda \Rightarrow (M, N) \in \Lambda;$
- $M \in \Lambda$, $x \in V \Rightarrow (\lambda x.M) \in \Lambda$.

Пример

 $((\lambda x.(x x)) (((\lambda x.(\lambda y.x)) ((\lambda y.y) y)) x))$

Термы λ-исчисления

- $x \in V \Rightarrow x \in \Lambda$;
- M, N $\in \Lambda \Rightarrow$ (M N) $\in \Lambda$;
- $M \in \Lambda$, $x \in V \Rightarrow (\lambda x.M) \in \Lambda$.

Пример

$$((\lambda x.(x x)) (((\lambda x.(\lambda y.x)) ((\lambda y.y) y)) x))$$

Haskell

```
ghci> ((\y -> y) (\y -> y)) 1
1
ghci> (\x y -> y x) (\z1 z2 -> z1 z2) (\y z -> z +1) 3
```

Функция $\lambda x.x$ х в базовом Haskell не допустима из-за строгой статической типизации (см. следующая лекция).

Соглашения о скобках

- Внешние скобки опускаются.
- Применение ассоциативно влево:

$$M$$
 N P Q — то же, что $(((M\ N)\ P)\ Q)$.

• Абстракция ассоциативна вправо:

$$\lambda x \ y.F$$
 — то же, что $(\lambda x.(\lambda y.F))$.

• Тело абстракции простирается максимально вправо.

 $\lambda x.M \ N \ P$ — то же, что $\lambda x.(M \ N \ P)$.

Соглашения о скобках (Haskell)

Абстракции:

```
\x -> \y -> x (\z -> z)
-- То же, что и \lambda x.(\lambda y.x (\lambda z.z))
-- Но можно короче: \x y -> x (\z -> z)
```

Применения:

```
\x -> \y -> x y y y
-- To же, что и \lambda x.(\lambda y.(((x y) y) y)))
-- Но не это: \lambda xy.x (y y y)
-- И не это: \lambda xy.(x y) (y y)
```


Пример

Внешние скобки опускаются.

$$((\lambda x.(x x)) (((\lambda x.(\lambda y.x)) ((\lambda y.y) y)) x))$$

Пример

Применение ассоциативно влево.

$$(\lambda x.(x x)) (((\lambda x.(\lambda y.x)) ((\lambda y.y) y)) x)$$

Пример

Абстракция ассоциативна вправо.

$$(\lambda x.x \ x) \ ((\lambda x.(\lambda y.x)) \ ((\lambda y.y) \ y) \ x)$$

Пример

Итоговый терм (остальные скобки снять нельзя):

$$(\lambda x.x \ x) \ ((\lambda x \ y.x) \ ((\lambda y.y) \ y) \ x)$$

Свободные и связанные переменные

Абстракция $\lambda x. M$ **связывает** переменную x в терме M.

Пример

$$(\lambda x. x x) ((\lambda x y. x) ((\lambda y. y) z) w)$$

Связанные вхождения переменных выделены красным; свободные — синим.

Свободные переменные: формально

Множество свободных переменных FV(M) в терме M определяется индуктивно:

- $FV(x) = \{x\};$
- $FV(M N) = FV(M) \cup FV(N)$;
- $FV(\lambda x.M) = FV(M) \setminus \{x\}.$

Множество связанных переменных BV(M):

- $BV(x) = \emptyset$;
- $BV(M N) = BV(M) \cup BV(N)$;
- $BV(\lambda x.M) = BV(M) \cup \{x\}.$

Верно ли, что BV(M) — множество всех переменных, входящих в M, минус FV(M)?

Свободные переменные: формально

Множество свободных переменных FV(M) в терме M определяется индуктивно:

- $FV(x) = \{x\};$
- $FV(M N) = FV(M) \cup FV(N)$;
- $FV(\lambda x.M) = FV(M) \setminus \{x\}.$

Множество связанных переменных BV(M):

- $BV(x) = \emptyset$;
- $BV(M N) = BV(M) \cup BV(N)$;
- $BV(\lambda x.M) = BV(M) \cup \{x\}.$

Верно ли, что BV(M) — множество всех переменных, входящих в M, минус FV(M)? Heт! Пример: $(\lambda x.x)$ x.

Свободные переменные: формально

Множество свободных переменных FV(M) в терме M определяется индуктивно:

- $FV(x) = \{x\};$
- $FV(M N) = FV(M) \cup FV(N)$;
- $FV(\lambda x.M) = FV(M) \setminus \{x\}.$
- Разные вхождения переменной х могут иметь разный статус!
- Каждая связанная переменная x в λx.М относится к самой внутренней абстракции, связывающей ее!

$$\lambda x.(\lambda x y.y (x x)) (\lambda y.x (\lambda x.(x y)))$$

Комбинаторы

Определение

Терм M называется комбинатором, если $FV(M) = \emptyset$.

Часто используемые комбинаторы

$$I = \lambda x.x;$$
 $\Omega = (\lambda x.x \ x) \ (\lambda x.x \ x);$

$$K = \lambda x y.x;$$
 $C = \lambda f x y.f y x;$

$$\mathbf{K}_* = \lambda x y.y;$$
 $\mathbf{B} = \lambda f g x.f (g x);$

$$\omega = \lambda x. x x;$$
 $S = \lambda f g x. f x (g x).$

Haskell

$$k = \xy -> x$$
 -- id -- имя I , const - имя K , flip -- имя C .

α-эквивалентность

Связанные переменные можно переименовывать.

α-эквивалентные λ-термы

$$I = \lambda x.x = \lambda y.y = \lambda f.f$$

 α -эквивалентные термы дают один и тот же результат при β -преобразовании.

- $(\lambda x.x)$ M = M;
- $(\lambda y.y) M = M;$
- $(\lambda f.f)$ M = M.

14/35

Частичные функции

Пусть x, y свободны в $\phi[x, y]$. Построим абстракции:

$$\bullet \ \Phi_x = \lambda y. \phi[x,y];$$

•
$$\Phi = \lambda x. \Phi_x = \lambda x. (\lambda y. \varphi[x, y]) = \lambda x y. \varphi[x, y].$$

Применим эти абстракции к двум аргументам (каррирование, карринг):

$$\Phi X Y = (\Phi X) Y = \Phi_X Y = (\lambda y. \phi[X, y]) Y = \phi[X, Y].$$

Например, (+3) в λ -исчислении можно понимать как операцию прибавления 3.

Частичные функции

Пусть x, y свободны в $\phi[x, y]$. Построим абстракции:

$$\bullet \ \Phi_x = \lambda y. \phi[x,y];$$

•
$$\Phi = \lambda x. \Phi_x = \lambda x. (\lambda y. \varphi[x, y]) = \lambda x y. \varphi[x, y].$$

Применим эти абстракции к двум аргументам (каррирование, карринг):

$$\Phi X Y = (\Phi X) Y = \Phi_X Y = (\lambda y. \phi[X, y]) Y = \phi[X, Y].$$

Частичного применения ко второму аргументу (без первого) нет!

Комбинаторная логика

Комбинаторы можно определить через их поведение на аргументах:

- I x = x
- $\mathbf{K} \times \mathbf{y} = \mathbf{x}$
- $\omega x = x x$
- $\mathbf{S} \times \mathbf{y} z = \mathbf{x} z (\mathbf{y} z)$

Базис $\{K, S, I\}$ + применение — система, эквивалентная λ -исчислению.

Упражнение

λ-исчисление

$$S K I K =_{\beta} ?$$

Упражнение

λ-исчисление

$$\underline{S} \ K \ I \ K =_{\beta} \underline{K} \ K \ (I \ K) =_{\beta} K$$

$$\underline{S} K K K =_{\beta} \underline{K} K (K K) =_{\beta} K$$

Подстановка

Определение

```
x[x := N] = N

y[x := N] = y

(P Q)[x := N] = (P[x := N]) (Q[x := N])

(\lambda y.P)[x := N] = \lambda y.(P[x := N]), y \notin FV(N)

(\lambda x.P)[x := N] = \lambda x.P
```

18 / 35

Подстановка

Определение

```
x[x := N] = N

y[x := N] = y

(P Q)[x := N] = (P[x := N]) (Q[x := N])

(\lambda y.P)[x := N] = \lambda y.(P[x := N]), y \notin FV(N)

(\lambda x.P)[x := N] = \lambda x.P
```

Что делать, если $y \in FV(N)$ (4 правило)? Пример: $\lambda y.x \ y[x := y]$

Вопрос

Подойдет ли следующее правило, если $y \in FV(N)$?

$$(\lambda y.P)[x := N] = \lambda z.((P[y := z])[x := N]), z \notin FV(N) \cup FV(P)$$

Коллизия (захвата) имен

Соглашение Барендрегта

Имена связанных переменных всегда выбираются так, чтобы они отличались от имен свободных переменных.

Пример

Редукция $((\lambda x \ y.x \ y) \ y)$ приводит к коллизии: $(\lambda y.x \ y)[x := y]$. В редукции $((\lambda x \ z.x \ z) \ y)$ коллизии нет.

19/35

Аксиомы λ-исчисления

Основная аксиома β-конверсии

Для любых M, N \in Λ ($\lambda x.M$) N = M[x:=N].

Аксиомы равенства

M = M

 $M = N \Rightarrow N = M$

 $M = N \& N = L \Rightarrow M = L$

 $M = M' \Rightarrow M Z = M' Z$

 $M = M' \Rightarrow Z M = Z M'$

 $M = M' \Rightarrow \lambda x. M = \lambda x. M'$

M = N доказуемо — $\lambda \vdash M = N$.

20 / 35

Основная аксиома а-конверсии

Для любых M, у таких, что у \notin FV(M), $\lambda x.M =_{\alpha} \lambda y.M[x := y].$

Основная аксиома а-конверсии

Для любых M, у таких, что у \notin FV(M), $\lambda x.M =_{\alpha} \lambda y.M[x := y].$

...но есть нюанс

Рассмотрим $\lambda x.(\lambda y.x\ y)$. Формально у не свободна в $\lambda y.x\ y$. После подстановки [x:=y] получаем: $\lambda y.(\lambda y.y\ y)$. В чем ошибка?

Основная аксиома α-конверсии

Для любых M, у таких, что у \notin FV(M), $\lambda x.M =_{\alpha} \lambda y.M[x := y].$

Вопрос

Подойдет ли следующее правило, если $y \in FV(N)$?

$$(\lambda y.P)[x := N] = \lambda z.((P[y := z])[x := N]), \ z \notin FV(N) \cup FV(P)$$

21/35

Основная аксиома α-конверсии

Для любых M, у таких, что у \notin FV(M), $\lambda x.M =_{\alpha} \lambda y.M[x := y].$

Подстановка не определена полностью, пока не будет пройден весь терм. Имея $(\lambda y.(\lambda z.(y\ z\ x)))[x:=y],$ формально строим последовательность:

$$\lambda z.((\lambda z.(y z x))[y := z])[x := y])$$

 $\lambda z.((\lambda w.((y z x)[z := w])[y := z]))[x := y])$
 $\lambda z.((\lambda w.(y w x)[y := z]))[x := y])$
 $\lambda z.((\lambda w.(z w x))[x := y])$
 $\lambda z.((\lambda w.(z w y))$

Применение α-конверсии

Пусть $\boldsymbol{\omega} = \lambda x.x \ x, \mathbf{1} =_{\alpha} \lambda y z.y \ z.$

$$\mathbf{w} \ \mathbf{1} = (\lambda \underline{x} \cdot \underline{x} \ \underline{x}) (\lambda y z \cdot y z)$$

$$=_{\beta} (\lambda \underline{y} z \cdot \underline{y} z) (\lambda y z \cdot y z)$$

$$=_{\beta} \lambda z \cdot (\lambda y z \cdot y z) z$$

$$=_{\alpha} \lambda z \cdot (\lambda \underline{y} z' \cdot \underline{y} z') z$$

$$=_{\beta} \lambda z \cdot (\lambda z' \cdot z z')$$

$$= \lambda z z' \cdot z z'$$

22 / 35

Схема аксиом η-конверсии

Пусть $x \notin FV(M)$. Тогда $\lambda x.M \ x =_{\eta} M$.

Поскольку $\forall N((\lambda x.M\ x)\ N) =_{\beta} (M\ N)$, термы $\lambda x.M\ x$ и M неразличимы по свойствам (экстенсиональность равенства).

Схема аксиом η-конверсии

Пусть $x \notin FV(M)$. Тогда $\lambda x.M \ x =_{\eta} M$.

Поскольку $\forall N((\lambda x.M\ x)\ N) =_{\beta} (M\ N)$, термы $\lambda x.M\ x$ и M неразличимы по свойствам (экстенсиональность равенства).

Примеры

$$\lambda x y.x y =_{\eta} ?$$

$$\lambda x y.y x =_{n} ?$$

Схема аксиом η-конверсии

Пусть $x \notin FV(M)$. Тогда $\lambda x.M \ x =_{\eta} M$.

Поскольку $\forall N((\lambda x.M \ x) \ N) =_{\beta} (M \ N)$, термы $\lambda x.M \ x$ и M неразличимы по свойствам (экстенсиональность равенства).

Примеры

конверсия

$$\lambda x y.x y = \lambda x. (\lambda y.x y) =_{\eta} \lambda x.x$$

$$\lambda x y.y x =_{\eta} ?$$

23 / 35

Схема аксиом η-конверсии

Пусть $x \notin FV(M)$. Тогда $\lambda x.M \ x =_{\eta} M$.

Поскольку $\forall N((\lambda x.M \ x) \ N) =_{\beta} (M \ N)$, термы $\lambda x.M \ x$ и M неразличимы по свойствам (экстенсиональность равенства).

Примеры

$$\lambda x y.x y = \lambda x. (\lambda y.x y) =_{\eta} \lambda x.x$$

х во внутренней абстракции

 $\lambda x y.y x = \lambda x. (\overline{\lambda y.(y x)})$ редукция невозможна.

23 / 35

Пусть x не свободна в M. Тогда $\lambda x. M$ $x =_{\eta} M$.

Пример редукции:

 $(\lambda x.x \ x) \ (\lambda y \ z.y \ z)$

$$(\lambda x.x \ x) \ (\lambda y \ z.y \ z)$$

$$\downarrow x \mapsto \lambda y \ z.y \ z$$

$$(\lambda y \ z.y \ z) \ (\lambda y \ z.y \ z)$$

$$(\lambda x.x \ x) \ (\lambda y \ z.y \ z)$$

$$\downarrow x \mapsto \lambda y \ z.y \ z$$

$$(\lambda y. \ (\lambda z.y \ z)) \ (\lambda y \ z.y \ z)$$

$$\downarrow y \mapsto \lambda y \ z.y \ z$$

$$\downarrow x \mapsto \lambda y \ z.y \ z$$

$$\downarrow x \mapsto \lambda y \ z.y \ z$$

$$\downarrow x \mapsto \lambda y \ z.y \ z$$

$$(\lambda x. x \ x) \ (\lambda y \ z. y \ z)$$

$$x \mapsto \lambda y \ z. y \ z$$

$$(\lambda y. (\lambda z. y \ z)) \ (\lambda y \ z. y \ z)$$

$$y \mapsto \lambda y \ z. y \ z$$

$$\lambda z. (\lambda y \ z. y \ z) \ z$$

$$\alpha - \text{преобразование}$$

$$\lambda z. (\lambda y \ z'. y \ z') \ z$$

$$(\lambda x.x \ x) \ (\lambda y \ z.y \ z) \xrightarrow{\eta - peq.} (\lambda x.x \ x) \ (\lambda y.y)$$

$$(\lambda y.y) \qquad \eta - \underset{(\lambda y.y.y.z)}{ peqykция} \qquad (\lambda y. (\lambda z.y.z)) \qquad \underset{(\lambda y.y.z.y.z)}{ \eta - peq.} \qquad (\lambda y. (\lambda z.y.z))$$

$$(\lambda y.y.y.z) \qquad (\lambda y.y.y.z) \qquad (\lambda y.y.y.z)$$

$$\lambda z.(\lambda y.y) \qquad z \xrightarrow{\eta - peqykция} \lambda z.(\lambda y.y.y.z) \qquad z \xrightarrow{\eta - peqykция} \lambda y.y.y.z$$

$$\lambda z.(\lambda y.y) \qquad z \xrightarrow{\eta - peqykция} \lambda z.(\lambda y.y.y.z') \qquad z \xrightarrow{\eta - peqykция} \lambda y.z'.y.z'$$

$$\lambda z.z'.z.z'$$

Применение η-конверсии

- I x = x
- $\mathbf{K} \times \mathbf{y} = \mathbf{x}$
- $\mathbf{S} \times \mathbf{y} z = \mathbf{x} z (\mathbf{y} z)$

Базис $\{K, S, I\}$ + применение + <u> η </u>-конверсия — система, эквивалентная λ -исчислению.

Применение η-конверсии

- I x = x
- $\mathbf{K} \times \mathbf{y} = \mathbf{x}$
- $\bullet S x y z = x z (y z)$

Базис $\{K, S\}$ + применение + <u>η-конверсия</u> — система, эквивалентная λ -исчислению.

Задачи

- lacktriangle Выразить I в базисе $\{K, S\}$.
- **2** Верно ли, что если $\forall x (X \ x = Y \ x)$, то X и Y можно свести к одному терму без η -конверсии, используя только правила применения I, K, S, данные выше?

Интерпретатор S + K = минимальный интерпретатор Тьюринг-полного ЯП. Чтобы перевести λ -терм в комбинаторный «байт-код», используется функция скобочной абстракции $\mu(\bullet)$.

- $oldsymbol{0}$ $\mu(\lambda x.x) \longrightarrow SKK$ (для краткости обозначается I);
- \bullet $\mu(\lambda x.M) \longrightarrow K\mu(M)$, если x не свободна в M;

Таким образом удаётся перейти к бесточечному представлению λ -функции. В частности, это то, чего мы добиваемся, когда переносим зависимости!

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

• По алгоритму: $\lambda x.S$ ($\lambda y.y$) ($\lambda y.x$) $\rightarrow \lambda x.S$ I (Kx) \rightarrow S ($\lambda x.SI$) ($\lambda x.Kx$) \rightarrow S (K(SI))(S ($\lambda x.K$) ($\lambda x.x$)) \rightarrow S (K(SI))(S (KK) I).

- По алгоритму: $\lambda x.S$ ($\lambda y.y$) ($\lambda y.x$) $\rightarrow \lambda x.S$ I (Kx) \rightarrow S ($\lambda x.SI$) ($\lambda x.Kx$) \rightarrow S (K(SI))(S ($\lambda x.K$) ($\lambda x.x$)) \rightarrow S (K(SI))(S (KK) I).
- А если подумать?

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

• λx у. у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .

- λx у.у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .
- Тестируем: $S M_1 x y = M_1 y (x y)$. Это плохо: из (x y) нельзя извлечь x. Нужен ещё один аргумент-комбинатор для S.

- λx у.у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .
- Тестируем: $S M_1 x y = M_1 y (x y)$. Это плохо: из (x y) нельзя извлечь x. Нужен ещё один аргумент-комбинатор для S.
- $\mathbf{S} \ M_1 \ M_2 \ x = M_1 \ x \ (M_2 \ x)$. Переменная x раздвоилась, причём её первое вхождение явно лишнее. Избавимся от него, положив $M_1 = \mathbf{K} \ M_3$.

- λx у.у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .
- Тестируем: $S M_1 x y = M_1 y (x y)$. Это плохо: из (x y) нельзя извлечь x. Нужен ещё один аргумент-комбинатор для S.
- $\mathbf{S}\ M_1\ M_2\ x = M_1\ x\ (M_2\ x)$. Переменная x раздвоилась, причём её первое вхождение явно лишнее. Избавимся от него, положив $M_1 = \mathbf{K}\ M_3$.
- Получаем M_3 (M_2 x). Из переменных остался только y, значит, M_3 должен иметь вид M_4 M_5 , причём $M_4 = S$, иначе до y добраться не удастся.

- λx у.у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .
- Тестируем: $S M_1 x y = M_1 y (x y)$. Это плохо: из (x y) нельзя извлечь x. Нужен ещё один аргумент-комбинатор для S.
- $\mathbf{S}\ M_1\ M_2\ x = M_1\ x\ (M_2\ x)$. Переменная x раздвоилась, причём её первое вхождение явно лишнее. Избавимся от него, положив $M_1 = \mathbf{K}\ M_3$.
- Получаем M_3 (M_2 x). Из переменных остался только y, значит, M_3 должен иметь вид M_4 M_5 , причём $M_4 = S$, иначе до y добраться не удастся.
- $S M_5 (M_2 x) y = M_5 y (M_2 x y)$. Теперь очевидно, что $M_5 = \lambda x. x = I, M_2 = K$. Значит, flip id = S(K(SI))K.

Подытожим

- α-преобразование переименование связанных переменных;
- β-редукция применение функции к терму;
- η-преобразование переход к бесточечным версиям функций и обратно.

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс.

Замена редекса на M[x := N] — сокращение редекса.

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс. Замена редекса на M[x := N] — сокращение редекса.

- Сколько редексов может быть в терме (один или...)?
- Всегда ли сокращение редекса приводит к сокращению терма?

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс.

Замена редекса на M[x := N] — сокращение редекса.

Одношаговая β-редукция

 $M \to_{\beta} N$ определяется следующим образом:

- $(\lambda x.M) N \rightarrow_{\beta} M[x := N]$
- $\bullet \ M \to_{\beta} N \Rightarrow M \ Z \to_{\beta} N \ Z$
- $\bullet \ M \to_{\beta} N \Rightarrow Z \ M \to_{\beta} Z \ N$
- $M \rightarrow_{\beta} N \Rightarrow \lambda x. M \rightarrow_{\beta} \lambda x. N$

β-редукция

Определение

- β -редукция транзитивное рефлексивное замыкание \rightarrow_{β} .
- β -эквивалентность $=_{\beta}$ симметричное транзитивное замыкание β -редукции.
- Терм находится в β-нормальной форме (NF), если он не содержит редексов.
- Терм M имеет β -нормальную форму, если существует N: $M =_{\beta} N$ и N находится в β -NF.

Все ли λ-термы имеют нормальную форму?

Теорема Чёрча-Россера

Теорема (конфлюэнтность)

Если терм M β -редуцируется к термам N и N', то существует терм L такой, что N и N' оба β -редуцируются к L.

Единственность β-NF

 λ -терм имеет не больше одной β -NF.

Стратегии редукции

- **Нормальная** сокращается самый левый внешний редекс.
- **Аппликативная** сокращается самый левый внутренний редекс.

Теорема о нормализации

Если терм имеет β -NF, то к ней гарантированно приводит нормальная стратегия редукции.

Термы без нормальной формы

Термы вида $\lambda x_1, \dots x_n.x_i$ Q, где Q произвольно (в том числе может содержать редексы), называются термами в головной нормальной форме.

- Если для терма T выполняется условие: $\exists N_1 \dots N_k (T \ N_1 \dots N_k = I)$, он называется разрешимым.

Неразрешимые термы (вроде Ω) понимаются как всегда зацикливающиеся и условно отождествляются друг с другом. Разрешимые термы без нормальной формы — частично определенные функции.

Противоречивость λ -исчисления

Чистое (без логических операторов) λ -исчисление непротиворечиво.

Пример

 $\mathbf{K}=\lambda x$ у.х, $\mathbf{K}_*=\lambda x$ у.у. Если $\mathbf{K}=\mathbf{K}_*$, то $\forall x$, у(x=y), поэтому $\mathbf{K}\neq\mathbf{K}_*$ в чистом λ -исчислении.

A как насчет K = I?

Практика

Альтернативные нумералы

Положим $\underline{\mathbf{0}} = \lambda x.x$, $\underline{\mathbf{1}} = \lambda x.\lambda x.x$, $\underline{\mathbf{N}} = \lambda x.(\underline{\mathbf{N}-\mathbf{1}})$. Как они выглядят в комбинаторной логике? Как выразить $\operatorname{Pred}(\mathbf{N})$?