TD 1

A.U. 2022-2023

Nadia HMIDA

Exercice 1 -

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + y, x + z, y + z)

- 1. Montrer que f est linéaire
- 2. Déterminer Kerf et Imf
- 3. Donner $A = Mat(f, \mathcal{B})$ où \mathcal{B} désigne la base canonique de \mathbb{R}^3
- 4. Soient

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 $u_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ $u_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$

- (a) Montrer que $\mathcal{B}_1 = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3
- (b) Donner $A_1 = Mat(f, \mathcal{B}_1)$
- 5. Exprimer A_1 en fonction de A
- 6. diagonaliser A et A_1

- Exercice 2 -

On se propose de résoudre le système différentiel suivant:

$$\begin{cases} x'(t) = 2x(t) + 4z(t) \\ y'(t) = 3x(t) - 4y(t) + 12z(t) \\ z'(t) = x(t) - 2y(t) + 5z(t) \end{cases}$$

1. On pose
$$U(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

Ecrire le système différentiel sous la forme

$$U'(t) = MU(t)$$

Avec $M \in \mathcal{M}_3(\mathbb{R})$ à préciser.

- 2. Diagonaliser $M = PDP^{-1}$ (Préciser P et D)
- 3. On pose $V(t) = P^{-1}U(t) = \begin{pmatrix} \alpha(t) \\ \beta(t) \\ \gamma(t) \end{pmatrix}$
 - (a) Montrer que V'(t) = DV(t)

- (b) En déduire $\alpha(t)$, $\beta(t)$ et $\gamma(t)$
- 4. en déduire x(t), y(t) et z(t) sachant que x(0) = 1, y(0) = 0 et z(0) = -1

- Exercice 3 -

Soit α un réel donné et A_{α} la matrice carré suivante:

$$A_{\alpha} = \begin{pmatrix} 3 - \alpha & -5 + \alpha & \alpha \\ -\alpha & \alpha - 2 & \alpha \\ 5 & -5 & -2 \end{pmatrix}$$

- 1. (a) Montrer que pour tout $\alpha \in \mathbb{R}$ la matrice A_{α} admet deux valeurs propres 3 et -2
 - (b) En déduire qu'il existe une unique valeur de α pour laquelle A_{α} est diagonalisable
 - (c) Déterminer, dans ce cas, les puissances successives $(A_\alpha)^n$ pour tout $n\geq 1$ On suppose que A_α est non diagonalisable.
 - (a) Montrer qu'il existe une matrice Q_{α} inversible tel que

$$Q_{\alpha}^{-1} A_{\alpha} Q_{\alpha} = T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

(b) On note $J=T+2I_3$. Calculer J^n et en déduire $(A_\alpha)^n$ pour tout $n\geq 1$

— Exercice 4 —

Soit f l'endomorphisme de \mathbb{R}^3 défini par sa matrice dans la base canonique

$$A = \left(\begin{array}{ccc} 5 & 1 & 1 \\ -1 & 3 & 1 \\ 0 & 0 & 4 \end{array}\right)$$

- 1. Vérifier que $(A-4{\rm I}_3)^3=0$ et que $(A-4{\rm I}_3)^2\neq 0$
- 2. En déduire $\mathfrak{m}_A(X)$ le polynome minimal de A
- 3. En déduire que 4 est l'unique valeur propre de A et que A n'est pas diagonalisable
- 4. Montrer que $Ker(f-4id) \subset Ker(f-4id)^2 \subset Ker(f-4id)^3$ et que $Ker(f-4id)^n = Ker(f-4id)^3 \text{ pour tout } n \geq 3$
- 5. Soient $u=(0,0,1), \quad v=(A-4I_3)u$ et $w=(A-4I_3)v$. Montrer, sans calculer v et w, que :
 - (a) $w \in Ker(f 4id)$
 - (b) $\nu \in \text{Ker}(f-4\text{id})^2 \text{ et } \nu \notin \text{Ker}(f-4\text{id})$
 - (c) $u \in Ker(f-4id)^3$ et $u \notin Ker(f-4id)^2$
- 6. En déduire que
 - (a) dimKer(f-4id) = 1 et $dimKer(f-4id)^2 = 2$
 - (b) $\mathcal{B} = (\mathfrak{u}, \mathfrak{v}, w)$ est une base de \mathbb{R}^3

– Exercice 5 —

Soit f
 l'endomorphisme de \mathbb{R}^3 défini par sa matrice dans la base canonique

$$A = \left(\begin{array}{ccc} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{array}\right)$$

- 1. Déterminer la matrice $\boldsymbol{B} = \boldsymbol{A}^2 + 2\boldsymbol{I}_3$
- $2.\ \, {\rm Montrer\ que}\ \, B^2=B+2I_3$
- 3. Déterminer $m_B(X)$ le polynome minimal de B
- 4. En déduire que B est diagonalisable
- 5. (a) Déterminer les valeurs propres et les espaces propres de B
 - (b) en déduire son polynome caractéristique $P_B(X)$
- 6. (a) Vérifier que si λ est une valeur propre de A alors $\lambda^2 + 2$ est une valeur propre de B
 - (b) En déduire que A n'est pas diagonalisable dans $\mathbb R$
- 7. En effectuant la division eclidienne de X^n par $\mathfrak{m}_B(X)$, Calculer B^n