Since cryptocurrencies carry monetary value, they naturally become a valuable target of attacks. Intuitively, for a secure-by-design cryptocurrency, an attacker controlling α fraction of the network's computational resource should be able to obtain only α fraction of the mining reward. However, a malicious attacker can employ various types of attacks to gain an unfair share of the mining reward. We refer to such attacks generically as mining attacks. Among the most well-known are "selfish-mining"-style attacks that exploit weaknesses in the distributed consensus protocol.

Selfish mining is not optimal for a large parameter space. We introduce a new family of alternative "stubborn mining" strategies that generalize and outperform the selfish mining attack. For a large fraction of the interesting parameter space, our new strategies significantly increase the attacker's revenue. Depending on the environment parameters, stubborn mining strategies can beat selfish mining by up to 25% (even without leveraging any network-level attacks). Depending on the parameters, and at the price during the time of writing, this can translates to \$73K additional gains per day in comparison with the selfish miner.

In one of our mining strategies, called trail-stubbornness, the attacker keeps mining on her private fork even if the public fork is ahead, thus violating the longest-chain rule. This surprisingly benefits the attacker since if she happens to overtake the public later, she will have wasted more of the public's mining power. We show that in some cases, a trail-stubborn strategy can result in 13% gains in comparison with a non-trail-stubborn counterpart.