Assignment Project Exam Help

https://eduassistpro.github.

Add Wechatedu_assist_pr

Programming Paradigms

Assignment Project Exam Help

- mai
- * "https://eduassistpro.github.

Imperative. (C, Java, Algol, (Visual) Basic, ...)

- main paradigm: operations that do m
 main ingletic to be constructed to the construction of t

Example: From Recursion to Loops In Haskell.

```
fact_tr :: Int -> Int

fact_tr 0 acc = acc

SSISHMENT-Project*Exam Help

fact F = fact_tr n 1
```

```
https://eduassistpro.github.int acc = 1;
while {n > 0} {acc = n acc * n; n = n-1; }
rectrolog; WeChat edu_assist_pr
```

Main Difference.

- programs are not simple equations any more
- need to keep track of *changing* values of variables

Verification for Imperative Languages

Main Ingredients.

Assinganting states of program states of program states of Exam Help

Descrip

- pro https://eduassistpro.github.
- formal rules that tell us how to manipulate bot

Hoare Land Dograe Cathatrondu_assist_pr

```
{P} program {Q}
```

"Running program in a state that satisfies P gives a state that satisfies Q"

C. A. R. (Tony) Hoare

The inventor of this week's logic is also famous for inventing the Quicksort algorithm in 1960 - when he was just 26! A quote: Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Computer programming is an **exact sc** erties of a program and all the consequences of executing it in any given environment can, in principle, be found out from the text of the program itself by means of purely **deductive reasoning**.

Logic = Syntax + Semantics + Calculus

Example. Propositional Logic

Assignmentici Project Exam Help

calc

ноаге Lhttps://eduassistpro.github.

- ullet syntax: triples $\{P\}$ program $\{Q\}$
- semantics: Pin Tra-state implies of i edu_assist_pr
- **Q.** What are pre/post conditions *precisely*? what are the programs? What about termination?

Hoare Logic: A Simple Imperative Programming Language

Q. In a Hoare triple $\{P\}$ program $\{S\}$, what are the programs?

Assignment - x := e

https://eduassistpro.github.

```
  Sequencing - S_1; S_2
```

Conditiona— of them Stress Stress Conditional of them Stress Stress Conditional of them Stress Conditional of the Stress Conditional of them Stress Conditional of them Stress Conditional of the Stress Conditional of

 $x \neq y \land z = 0...$

While - while b do S

A Note on (the lack of) Aliasing

Assignments x := y copy values

gament Project Exam Help https://eduassistpro.github.

No Aliasing, i.e. x and y-point to the same region Add WeChat edu_assist_pr

Syntax of Hoare Logic: Assertions

Q. How do we describe *properties* of states?

As states will store numbers only.

Properti

numbers https://eduassistpro.github.

- •×= Add WeChat edu_assist_pr
- x > 0:
- $x \leq (y^2 + 1\frac{3}{4});$
- etc...

Syntax of Preconditions and Postconditions ctd.

Arssition Help Projection Exam Help

- x <
- ** https://eduassistpro.github.
- False.

The last two local constructions have local constructions have been seen assist and last useful, as we have seen been assist and local constructions have been assist.

Alternative. Could use *first order logic* – more expressive power.

Anatomy of a Hoare Triple

Assignment Project Exam Help

- pro • pre https://eduassistpro.github.
 - relations

• whenever we run program in a state that s

- and the program terminates, then the post-state satisfies Q

A Rough Guide to Hoare Logic Semantics

$\underbrace{ \text{Assignment Project Exam Help} }_{\{x > 0\}} \underbrace{ \text{Project Exam Help} }_{y := 0 - x} \underbrace{ \{y < 0 \land x \neq y\} }_{y := 0 - x}$

the https://eduassistpro.github.

Here:

- (x > 0) is the precondition;
 y : Adda (Nev emple) hastraged tu_assist_pr
- $(y < 0 \land x \neq y)$ is the postcondition.

Hoare logic will provide the rules to prove this.

Hoare's Notation – the Definition

```
Assignment Project Exam Help
```

the https://eduassistpro.github.

Examples:

```
1. {x = A} d d a w b e c b h at edu_assist_prediction
```

3. $\{x > 0\}$ y := 0-x $\{y < 0 \land x \neq y\}$

(Hoare Triples can be true or false)

Some Hoare Triples

- Q. Under what conditions are the following Hoare Triples valid?

 Assignmente Project Exam Help
 - 2. {True program False
 - 3. {Fa
 - 4. Fahttps://eduassistpro.github.

Add WeChat edu_assist_pr

Some Hoare Triples

Q. Under what conditions are the following Hoare Triples valid? Assignment Project Exam Help

- 2. {True program False
- 3. {*Fa*
- 4. {Fahttps://eduassistpro.github.
- **A.** Consider (precondition) ∧ (termination
 - 1. is always the (at the of the true)
 2. true if program never certain at edu_assist_program never cer

 - 3. always true (as RHS of \rightarrow is true)
 - 4. always true (as LHS of \rightarrow is false)

A Larger Hoare Triple

```
Assignment Project Exam Help

k:= n;

https://eduassistpro.github.
```

```
(fact A dd WeChat edu_assist_properties of false?
```

A Larger Hoare Triple

Assignment Project Exam Help k := n; https://eduassistpro.github.

{fact A=dd WeChat edu_assist_properties of false?

```
Q2. what if n < 0 initially?
```

Partial Correctness

Partial Correctness.

Assignmented Projects Enwayne Fielp

Total Control To

A program is totally correct if it always termin

answer. Add WeChat edu_assist_pressure.

 $\{x=1\} \quad \text{while x=1 do y:=2} \quad \{x=3\}$

is true in Hoare logic semantics (just because the loop never terminates).

Assignment Project Exam Help Why not wisist on termination?

We

https://eduassistpro.github.

- Not accounting for termination makes things s
- · We carder wire continued to assist_pr

Specification vs Verification

Hoare triples allow us to say something about the *intended effect* of the code

A. Strigen The Projection of Program Q:

```
\underset{asser}{\text{pro}} \text{https://eduassisting.github.}
```

- does this catch *all* possible errors?
- How A schedure West etes? In attes et druble assist_pr

A2. Proving. Show that $\{P\}$ program $\{Q\}$ is true for all states **Hoare Calculus.**

• a collection of **rules and procedures** for (formally) manipulating the (language of) triples.

(Just like ND for classical propositional logic ...)

The Assignment Axiom (Rule 1/6)

Rules for proving correctness of programs:

one rule per construct (assignment, sequencing, if, while)

Assignments Perfect Exam Help

Assign

- * assi https://eduassistpro.github.
- Terminology
 - Suppled is Weetle hat geow_assist_pr
 - Then Q(e) indicates the same formula with all o replaced by the expression e.

The Rule.

$${Q(e)} x := e {Q(x)}$$

The Assignment Axiom - Intuition

Assignment Project Exam Help

• want x to have property Q after assignment

• the Q. Why https://eduassistpro.github.

Add WeChat edu_assist_pr

Counterexample. precondition x = 0, assig

$${x = 0} x := 1 {1 = 0}$$

which says "if x = 0 initially and x := 1 terminates then 1 = 0 finally"

Work from the Goal, 'Backwards'

Forward Reasoning. Not usually helpful

• start at the precondition, work your way down to the postcondition

Assignment Project description Help

- star
- worhttps://eduassistpro.github.

Example.

Add Wethatedu_assist_pr

- start with postcondition, copy it over to precondition
- replace all occurrences of x with e.
- postcondition may have no, one, or many occurrences of x in it; all get replaced

```
Example 1 of \{Q(e)\}\ x := e\ \{Q(x)\}\
```

Assignment Project Exam Help

- сор
- https://eduassistpro.github.

Formall

| {y = 2} x:=2 {
| is an instance of the absence table tedu_assist_pr

Example 2 of $\{Q(e)\}\ x := e\ \{Q(x)\}\$

Assignment Project Exam Help Code Fragment. x := x + 1, postcondition y = x.

As before https://eduassistpro.github.

is an instance of the assignment axiom. $Add \ \ WeChat \ edu_assist_pr$

```
Example 3 of \{Q(e)\}\ x := e\ \{Q(x)\}\
```

Q. How do we prove

Assignment-Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Example 3 of
$$\{Q(e)\}\ x := e\ \{Q(x)\}\$$

Q. How do we prove

Assignment-Project 3Exam Help

1. Starhttps://eduassistpro.github. $\{y+3>3\}$ x:=

2. use tAfdtdatWeChatledu_assist_pr

Equivalent Predicates.

Can always replace predicates by equivalent predicates, label with precondition equivalence, or postcondition equivalence.

Proving the Assignment Axiom sound w.r.t. semantics

Assignment Project Exam Help $Q(e) \quad x := e \quad Q(x)$

Justific https://eduassistpro.github.

- If Q(e) is true initially, then so is
- Since the Caribble whe aluntarier edu_assist_ng plese is changed in the state), Q(x) mu assignment.

The Assignment Axiom is Optimal

Proof Strength. The assignment axiom is as strong as possible.

Assignment Project Exam Help

Meanin

If Q(x) https://eduassistpro.github.

- Suppose Q(x) is true after the assignment.
- If v is the value assigned, Q(v) is true of Since A and C the value assisting C and C assisting Cdoes not involve x, Q(v) must also be true b
- Since v was the value of e before the assignment, Q(e) is true initially.

A non-example

What if we wanted to prove

Assignment Project, Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

A non-example

What if we wanted to prove

Assignment Project, Exam Help

This is clea

https://eduassistpro.github.

Problem.

cannot just repact y Wee Chaitheedu_assist_production.

Need a new Hoare logic rule that allows for manipulation of pre (and post) conditions.

Weak and Strong Predicates

Stronger.

A predicate P is stronger than Q if P implies Q.

Averignment Project Exam Help Q is weaker than P if P is stronger that Q.

Intuitio

- P ishttps://eduassistpro.github.
- stronger predicates convey *more* infor

Q. Can you give de average hat edu_assist_presented.

- I will keep unemployment below 3% is stronger than
- I will keep unemployment below 15%.
- The *strongest* possible statement is *False* (unemployment below 0%)
- The *weakest* possible statement is *True* (unemployment at or below 100%)

Strong Postconditions

Example.

• $(x = 6) \Rightarrow (x > 0)$, so (x = 6) is stronger than (x > 0)Assignment Project Exam Help

```
x = 5  x := x + 1  x = 6
```

** https://eduassistpro.github.

```
{x = 5} x := x + 1 x > 0
```

strong Post Charles Cahat edu_assist_pr

- if postcondition Q_1 is stronger than Q_2 , then $\{P\}$ S $\{Q_1\}$ is a stronger statement than $\{P\}$ S $\{Q_2\}$.
- if postcondition x=6 is *stronger* than postcondition x>0, then $\{P\}$ S $\{x=6\}$ is a *stronger* statement than $\{P\}$ S $\{x>0\}$

Weak Preconditions

Formula Example.

Assignment on ditter than x = 5. Help

Hoare Tr

- the https://eduassistpro.github.
- this is because it says something about

• If precondition P_1 is weaker than P_2 , t

- If precondition P_1 is weaker than P_2 , t than $\{P_2\}$ S $\{Q\}$.
- if precondition x > 0 is weaker than precondition x = 5, then $\{x > 0\}$ S $\{Q\}$ is stronger than $\{x = 5\}$ S $\{Q\}$.

Weak/Strong Pre/Postconditions

Precondition Strengthening. If P_2 is *stronger* than P_1 , then $\{P_2\}$ S $\{Q\}$ is true whenever $\{P_1\}$ S $\{Q\}$ is true.

Arssime that we run S in a state that satisfies P₂

- but si
- Postcon https://eduassistpro.github.

then $\{P\}$ S $\{Q_2\}$ is true whenever $\{P\}$ S

Proof. Assumes that we run S in a state that satis

- terminates
 this will lead to a post-state that satisfies Q_1
- but because Q_1 is stronger than Q_2 , we have $Q_1 \rightarrow Q_2$
- hence the post-state will also satisfy Q_2 .

4 D > 4 A > 4 B > 4 B > B

Proof rule for Strengthening Preconditions (Rule 2/6)

Q. How do we reflect this in the Hoare calculus?

Assignment of Project wexam Help Precondition Strengthening.

Interpret

https://eduassistpro.github.

Add WeChat edu_assist_pr

Proof rule for Strengthening Preconditions (Rule 2/6)

Q. How do we reflect this in the Hoare calculus?

Assignment of Project Exam Help Precondition Strengthening.

Interpret

Example Apart White Chat edu_assist_pr

$$y = 2 \to y > 0 \{y \{y = 2\} \ x := y \ \{x > 0\}$$

Precondition Equivalence. If $P_1 \leftrightarrow P_2$ then both $P_1 \to P_2$ and $P_2 \to P_1$.

Proof rule for Weakening Postconditions (Rule 3/6)

Postcondition Weakening.

Anterpretation in the prefixed project the Extra machine project the P S Qs Qs Qw

https://eduassistpro.github.

Postcondition Equivalence. If $Q_1 \leftrightarrow Q_2$ then $Q_1 \to Q_2$ and $Q_2 \to Q_1$. i.e. $Q_s \to Q_w \land Q_w \to Q_s$

Sequencing (Rule 4/6)

Sequencing.

seed to think about the overall effect of state change

Sequen

https://eduassistpro.github. $\{P\}$ $S_1; \overline{S_2}$

```
Example Add We Chat edu_assist_pr
```

```
\{x > 2\} \ x := x + 1 \ \{x > 3\}  \{x > 3\} \ x := x + 2 \ \{x > 5\}
             \{x > 2\} x := x + 1; x := x + 2 \{x > 5\}
```

Interlude: Laying out a proof

Assignments Project "Example 1p Linear Layout.

- 1. $\{x \}$ 2. $\{x \}$ https://eduassistpro.giteleb. 3. $\{x+1>3\}$ x:=x+1 $\{x>3\}$ (Assignment)
- 4. $\{x > 2\}$ did \mathbb{Z} that edu_assist (x + 1) for (x > 2) that (x > 2) and (x > 2) the second (x > 2) that (x > 2) the second (x > 2) that (x > 2) the second (x > 2) that (x > 2) the second (x > 2) that (x > 2) that (x > 2) the second (x > 2) that (x > 2) the second (x > 2) that (x > 2) the second (x > 2) that (x > 2) that

Note the *numbered proof steps* and *justifications*.

$\underset{\{\mathcal{P}\}}{\textbf{Assignment}} \overset{\text{(condition in the middle" from?}}{\textbf{Exam}} \overset{\text{(condition in the middle" from in the middle"$

- ove https://eduassistpro.github.
- A. Start with the roat \mathbb{R} and \mathbb{C} hackwar edu_assist_property \mathbb{R} and \mathbb{R}

```
\{x > 2\} x := x + 1; x := x + 2 \{x > 5\}
```

An example with precondition strengthening

First Stenttps://eduassistpro.github. $5. \{x\}$

Add the Alloving WeChat edu_assist production of the state of the stat

6. $x = 3 \rightarrow x > 2$ (Basic arithmetit) 7. $\{x = 3\}$ $x := x + 1; x := x + 2 \{x > 5\}$ (Prec. Strength. 5, 6)

Soundness of Rule for Sequences

Assistant Project Exam Help

Proof. e and let

o be an attention of the street of the stre

- if we run S_2 in state σ_1 we get a state
- but executing S1 S2 just means execute du_assist_predu_hard edu_assist_predu_assist_predu_assist_predu_assist_preduction and the second of t

Q. What about termination?

Proof Rule for Conditionals (Rule 5/6)

Conditionals.

if b then S_1 else S_2

Assignment Project Exam Help • the value of b may depend on the program state

- Informa https://eduassistpro.github.
 - if b evaluates to false, then run S_2 .

Additional Proceedings of the Later of the L

- in the then-branch, additionally know that b is false
- **Q.** What is / are the "right" premise(s) for the if-rule

```
?  \overline{\{P\} \text{ if b then } S_1 \text{ else } S_2 \underbrace{\{Q\}}_{\text{production}} }
```

Proof Rule for Conditionals

Assignment Ptojecs Sam Help

Justific

- : Wh https://eduassistpro.github.
 - establish Q.
- Similarly, if the precondition for the collaboration of the woll assist_precion of the woll assist_precion of the collaboration of th
- The choice between S_1 and S_2 depends on evaluating b in the initial state, so we can also assume b to be a precondition for S_1 and $\neg b$ to be a precondition for S_2 .

Example of Conditional Rule

$$\begin{array}{c|c} & \underbrace{\{P \wedge b\} \ \mathtt{S}_1 \ \{Q\}} & \underbrace{\{P \wedge \neg b\} \ \mathtt{S}_2 \ \{Q\}} \\ \textbf{Assignment Project Exam Help} \\ \textbf{Example.} \ \text{We want to show that the following is true} \end{array}$$

https://eduassistpro.github.

Using the conditional rule (pattern matching)

$$\frac{\{x>2 \text{ Addy: WeO} \text{ hat edu assist > properties of the prope$$

Precondition Equivalence means that we need to show:

- (1) $\{x > 2\}$ y:=1 $\{y > 0\}$
- (2) {False} $y := -1 \{y > 0\}$

Example In Full

```
Show. \{x > 2\} if x > 2 then y := 1 else y := -1 \{y > 0\}
```

```
Proof in linear layout:
Assignment Project Exam Help
   2. (1 > 0)
                                   (Prop. Logic)
```

4. (https://eduassistpro.github. 5. $\{x > 2\}$ y := 1 $\{y > 0\}$ (premise (1)) (Prec. Stre., 3, 4)

6. Add:-We@hat edu_assist_pr

7. False \leftrightarrow (-1 > 0)8. {False} $y := -1 \{y > 0\}$ (premise(2)) (Prec. Eq)

9. $\{x > 2\}$ if x > 2 then y := 1 else y := -1 $\{y > 0\}$ (Conditional, 5, 8) 4 D > 4 A > 4 B > 4 B > B Interlude: Conditionals Without 'Else'

Conditionals are complete in the sense that they include an else-branch:

Assignment Project Exam Help

what wohttps://eduassistpro.github.

Add WeChat edu_assist_pr

Interlude: Conditionals Without 'Else'

Conditionals are complete in the sense that they include an else-branch:

Assignment Project Exam Help

What wohttps://eduassistpro.github.

A. Conditionals without else are equivalent to

Addif We Chat cedule assist_pr

Conditional Rule.

```
\frac{\{P \wedge b\} \; \mathtt{S} \; \{Q\} \qquad \qquad \{P \wedge \neg b\} \; \mathtt{do} \, \mathtt{nothing} \; \{Q\}}{\{P\} \; \mathtt{if} \; \; \mathtt{b} \; \; \mathtt{then} \; \; \mathtt{S} \; \{Q\}}
```

Conditionals Without 'Else' ctd.

Q. How do we establish the following? Conditional Rule.

Assignment Project Exam Help

q1. но https://eduassistpro.github.

A. Easy: $\{P\}$ do nothing $\{P\}$ is always tru

Preconditard regression in the true du_assist_pr

```
\frac{\{P \land b\} \ S \ \{Q\} \qquad (P \land \neg b) \to Q}{\{P\} \ \text{if} \ b \ \text{then} \ S \ \text{else} \ x := x \ \{Q\}}
```

Assignment $\underset{\{x=3\}}{\text{How do we prove that}} \text{Project } \underset{\{x>5\}}{\text{Exam Help}}$

A. Use shttps://eduassistpro.github.

```
Concrete Tastance. V CCTTAL CCG __CGSTST__
\frac{\{x=3\} \ \ x:=x+1 \ \ \{Q\} \ \ \ \{Q\} \ \ x:=x+2 \ \ \{x>5\}}{\{x=3\} \ \ x:=x+1; x:=x+2 \ \ \{x>5\}} \text{Seq}
```

Assignment Project Exam Help $\{x = 3\}$ x := x + 1; x := x + 2 $\{x > 5\}$

https://eduassistpro.github.

```
Add WeChat edu_assist_properties \{x=3\} x:=x+1 \{Q\} \{Q\}
         {x = 3}  x := x + 1; x := x + 2  {x > 5}
```


A. Putti https://eduassistpro.github.

$$\frac{\text{Add WeChat edu_assisteq properties of the edu_assisteq properties of the edu_assisteq properties of the edu_assisteq p$$

Assignment Project Exam Help $\{x = 3\}$ x := x + 1; x := x + 2 $\{x > 5\}$

https://eduassistpro.github.

```
\frac{\{x+1>\text{Add}+\text{WxeChat edu}_{\text{assist}}, \text{peach of } \{x=3\}, \ x:=x+1, \ \{x>3\}, \ x:=x+2, \ \{x>5\}, \ \text{Seq}}{\{x=3\}, \ x:=x+1, \ x:=x+2, \ \{x>5\}}
```

Assignment Project Exam Help

 $\frac{\{x+1 \text{ https://eduassistpro.github.}}{\{x>3\} \ x:=x+1 \ \{x>3\}}?$

Add WeChat edu_assist_property of the still something missing. What is (?) now?

A. x = 3 implies x > 2 so "?" can be precondition strengthening. Project Exam Help

https://eduassistpro.github.

Complete Proof as a tree

$$\frac{\{x+1>3\} \triangle : x+1}{\{x>2\}} \underbrace{x:=x+1}_{\{x>3\}} \underbrace{\{x>3\}}_{\text{PreStr}} \underbrace{\{x>3\}}_{\{x>3\}} \underbrace{x:=x+2}_{\{x>5\}} \underbrace{\{x>5\}}_{\text{PreExtr}} \underbrace{\{x>3\}}_{\{x=3\}} \underbrace{x:=x+1}_{\{x>5\}} \underbrace{\{x>5\}}_{\text{Seq}}$$

The Same Proof in Linear Form

1.
$$\{x+1>3\}$$
 $x:=x+1$ $\{x>3\}$ (Assignment)
2. $x>2 \leftrightarrow x+1>3$ $x>3$ (Basic Frihmetic)
3. $x>2 \leftrightarrow x+1>3$ (Basic Frihmetic)

4. x = 3 x > 2

(Basic arithmetic)

(Seq. 5, 8)

- 5. $\{x \text{ https://eduassistpro.github.}$ 6. $\{x+2>5\}$ x:=x+2 $\{x>5\}$ (Assignment)
- 7. x > 3 \(\times x + 2 \) > 5
 8. {x > Add x WeCshat edu_assist_, properties of the content of t
- 9. $\{x = 3\}$ $x := x + 1; x := x + 2 \{x > 5\}$
- (sections separated by horizontal lines are both premises of the sequencing rule)