# Object Category Detection: Parts-based Models

Slides borrowed from Derek Hoiem

## Goal: Detect all instances of objects

Cars



**Faces** 





Cats

## Last class: sliding window detection





#### Object model: last class

- Statistical Template in Bounding Box
  - Object is some (x,y,w,h) in image
  - Features defined wrt bounding box coordinates



**Image** 



Template Visualization

#### When do statistical templates make sense?



Caltech 101 Average Object Images

#### Object models: this class

- Articulated parts model
  - Object is configuration of parts
  - Each part is detectable





## Deformable objects



Images from Caltech-256

## Deformable objects



Images from D. Ramanan's dataset

## Compositional objects



#### Parts-based Models

#### Define object by collection of parts modeled by

- 1. Appearance
- 2. Spatial configuration



Slide credit: Rob Fergus

One extreme: fixed template



Another extreme: bag of words



Star-shaped model



Star-shaped model



Tree-shaped model



#### Many others...



a) Constellation

Fergus et al. '03 Fei-Fei et al. '03



e) Bag of features

Csurka '04 Vasconcelos '00



b) Star shape

Leibe et al. '04, '08 Crandall et al. '05 Fergus et al. '05



c) k-fan (k = 2)

Crandall et al. '05



Felzenszwalb & Huttenlocher '05



f) Hierarchy

Bouchard & Triggs '05



g) Sparse flexible model

Carneiro & Lowe '06

from [Carneiro & Lowe, ECCV'06]

## Today's class

- 1. Star-shaped model
  - Example: Deformable Parts Model
    - Felzenswalb et al. 2010



- 2. Tree-shaped model
  - Example: Pictorial structures
    - Felzenszwalb Huttenlocher 2005
- 3. Sequential prediction models



### Deformable Latent Parts Model (DPM)

**Detections** 

















root filters coarse resolution



part filters finer resolution



deformation models

Felzenszwalb et al. 2008, 2010

#### Review: Dalal-Triggs detector



- Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

#### Deformable parts model

- Root filter models coarse whole-object appearance
- Part filters model finerscale appearance of smaller patches
- For each root window, part positions that maximize appearance score minus spatial cost are found
- Total score is sum of scores of each filter and spatial costs







Part filters



Spatial costs

#### DPM: mixture model

- Each positive example is modeled by one of M detectors
- In testing, all detectors are applied with nonmax suppression



#### Results



# Improvement over time for HOG-based detectors

#### AP on PASCAL VOC 2007



## Tree-shaped model



#### Pictorial Structures Model





Part = oriented rectangle



Spatial model = relative size/orientation



Felzenszwalb and Huttenlocher 2005

#### Pictorial Structures Model



$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

#### Modeling the Appearance

- Any appearance model could be used
  - HOG Templates, etc.
  - Here: rectangles fit to background subtracted binary map
- Can train appearance models independently (easy, not as good) or jointly (more complicated but better)

$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

### Part representation

Background subtraction







## Results for person matching



## Results for person matching



#### Enhanced pictorial structures

- Learn spatial prior
- Color models from soft segmentation (initialized by location priors of each part)



#### 2 minute break

Which patch corresponds to a body part?







#### Example from Ramakrishna

#### Sequential structured prediction

- Can consider pose estimation as predicting a set of related variables (called structured prediction)
  - Some parts easy to find (head), some are hard (wrists)

 One solution: jointly solve for most likely variables (DPM, pictorial structures)

 Another solution: iteratively predict each variable based in part on previous predictions

#### Pose machines





Local image evidence is weak Certain parts are easier to detect than others







#### Stage I Confidence





#### Stage II Confidence





# Example results



#### Graphical models vs. structured prediction

- Advantages of sequential prediction
  - Simple procedures for training and inference
  - Learns how much to rely on each prediction
  - Can model very complex relations

- Advantages of BP/graphcut/etc
  - Elegant
  - Relations are explicitly modeled
  - Exact inference in some cases