It suffices to begin with some definitions and notations we see in Quantum Mechanics. First we will denote a quantum state like $|\psi\rangle$. A quantum state is an element of our (possibly infinite) dimensional Hilbert space V. Similarly we have $\langle\psi|$ which is member of the dual space V*. We can define an inner product on V called (\cdot,\cdot) . An important property of this inner product is its anti-symmetry, that is $(\varphi,\psi)=(\psi^*,\varphi)$. Now for some operator H, we will say it is Hermitian in the case that $(\varphi,H\psi)=(H\varphi,\psi)$.

Statement. The eigenvalues of H are real

Let χ be a normalized vector such that $H\chi = \lambda \chi$. Then $(\chi, H\chi) = (\chi, \lambda \chi) = (\lambda \chi, \chi)$ it becomes clear that

$$\lambda^*(\chi,\chi) = \lambda(\chi,\chi)$$

and thus $\lambda^* = \lambda$.

Statement. The eigenstates corresponding to different eigenvalues of Hermitian operator H are orthogonal.

Let $|\phi\rangle$ and $|\psi\rangle$ be eigenstates corresponding to different eigenvalues of H. Knowing $\langle \phi | H | \psi \rangle = \langle \phi | H^* | \psi \rangle$ this tells us that $\lambda \langle \phi | \psi \rangle = \chi \langle \phi | \psi \rangle$ since $\lambda \neq \chi$ this tell us that $\langle \phi | \psi \rangle = 0$.

We should note that this Hilbert space is complete, this is given some $|\psi\rangle$ we have $|\psi\rangle = \sum_n c_n |\psi_n\rangle$. It turns out we can explicitly calculate c_n using this condition. $\langle \psi_n | \psi \rangle = \sum_n c_m \langle \psi_n | \psi_m \rangle$ using the orthonormality of the $|\phi_n\rangle$'s we have that $\langle \psi_n | \psi_m \rangle = \delta_{mn}$ so finally $\langle \psi_n | \psi \rangle = c_n$.

Statement. $\sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = 1$

 $\left|\psi\right\rangle = \sum_{n} \left\langle \psi_{n} | \psi \right\rangle \left| \psi_{n} \right\rangle = \sum_{n} \left| \psi_{n} \right\rangle \left\langle \psi_{n} | \psi \right\rangle \text{ which of course implies that } \sum_{n} \left| \psi_{n} \right\rangle \left\langle \psi_{n} | = 1.$