Chimie: (5 points)

Q	Corrigé				
l-a					
1b	Cu²+ + 2 Ag → Cu + 2Ag*	0,25			
1-c	Il y a transfert d'électrons, donc il s'agit bien d'une réaction d'oxydo-réduction				
2-					
3-a	$n_{Cu} = m(Cu) / M(Cu) = 4.10^{-5} \text{ mol.}$ D'après l'équation bilan, on a : $n(Cu) = n(Ag) / 2$. $n(Ag ionisé) = 8.10^{-5} \text{ mol.}$	0,25 + 0.5			
3-b	$n_0(Cu^{2*}) = C.V = 50.10^{-5} \text{ mol},$ $n(Cu^{2*} \text{ restant}) = n_0 - n_{dep} = 46.10^{-5} \text{ mol}.$ Par la suite $\left[Cu^{2*}\right] = n / V = 9,2.10^{-3} \text{ mol}.L^{-1}.$	0,5x2			
3-с	$\Delta m = n(Ag \text{ ionisé}) \times M(Ag) = 8,64 \text{ mg}.$	0,25x2			
4	Au bout d'un temps suffisamment long la solution tend vers une solution de sulfate d'argent.	0,5			

Physique (13 points)

Exercice 1(7 points)

A-I	A l'entrée du quadripôle on applique une tension sinusoïdale, on reçoit à la sortie une tension sinusoïdale de même fréquence que u _E (t). Ainsi, le quadripôle est linéaire.	0, 25
2-a	$u_E(t) = R_1 \cdot i_1$ par la suite $i_1 = u_E(t) / R_1$;	0,25
2-b	$i_1 = i_2 + i_C + i_C$, avec $i_1 = 0$, d'autre part on a : $u_s(t) + u_{R_2} = 0 \implies i_2 = -\frac{u_s(t)}{R_2}$.	
	$u_s(t) + u_c = 0 \Rightarrow i_c = -C \frac{du_s(t)}{dt}$	0,25x3
	$i_1 = i_2 + i_C = -\frac{u_s(t)}{R_2} - C\frac{du_s(t)}{dt}$	

Corrigé du sujet de physique chimie de la section sciences de l'informatique (Examen du baccalauréat 2014-session de contrôle)

3	$i_1 = i_2 + i_C$	
	$\frac{u_s(t)}{R_s} = -\frac{u_s(t)}{R_s} - C\frac{du_s(t)}{dt}.$	
	R ₁ R ₂ dt	0,25
	Par la suite: $R_1C \frac{du_s(t)}{dt} + \frac{R_1}{R_2}u_s(t) = -u_g(t)$.	
4-a	Par exploitation de la construction de Fresnel on aurait :	
	U_{Em} $Q=0$ $R_1 C\omega U_{Sm}$ $(U_{Em})^2 = \left(\frac{R_1}{R_2}\right)^2 U_{Sm}^2 + \left(2\pi NR_1C\right)^2 U_{Sm}^2.$ Par la suite on a :	0,25x3
4-b	$T = \frac{1}{\sqrt{\left(\frac{R_1}{R_2}\right)^2 + \left(2\pi N R_1 C\right)^2}} = \left(\frac{R_2}{R_1}\right) \cdot \frac{1}{\sqrt{1 + \left(2\pi N R_2 C\right)^2}}.$	
***	Lorsque N tend vers zéro, T tend vers $\left(\frac{R_2}{R_1}\right)$. Lorsque N tend vers l'infini, T tend vers zéro.	0,25x2
4-с	La valeur de la transmittance T du quadripôle dépend de la fréquence du signal d'entrée.	0,25
4-d	Il s'agit d'un filtre passe-bas	0,25
		-
4-е	$T = \frac{T_e}{\sqrt{2}} \Rightarrow 2\pi R_2 C N_c = 1$, par la suite $N_c = \frac{1}{2\pi R_2 C}$.	0,25x2
	$T = \frac{T_0}{\sqrt{2}} \Rightarrow 2\pi R_2 C N_C = 1$, par la suite $N_C = \frac{1}{2\pi R_2 C}$. $G_0 = 2 \text{ dB}$	0,25x2
		0,25
4-e B-1-a 1-b	G _e = 2 dB	

Corrigé du sujet de physique chimie de la section sciences de l'informatique (Examen du baccalauréat 2014-session de contrôle)

	$G_0 = 20.\log(\frac{R_2}{R_1})$, par la suite $\frac{R_2}{R_1} = 10^{(G_0/20)}$.	0,25x2
3-a	$R_1 = 174,6 \Omega$. Le filtre est passant pour S_1 car N_1 appartient à la bande passante.	0,25x2
2.1		
3-b	Il faut augmenter la valeur de N _C et cela par diminution de la valeur de la capacité C.	0,5
4	Les deux courbes ont la même valeur de G ₀ des fréquences de coupure différentes.	0,5

Exercice 2: (5 points)

l-a	$N_1 = N_e = 20 \text{ Hz.}$	0,5
1-b	Les points A et C ont la même élongation (situés sur les lieux des points dont l'élongation est maximale), ainsi ils vibrent en phase. Le point B est caractérisé par son élongation minimale, ainsi il vibre en opposition de phase par rapport à A.	0,25x2
2-a	$d_0 = 3\lambda$, par la suite $\lambda = 1,2$ cm.	0,25x2
2-b	$\lambda = v.T$, par conséquent $v = 0.24 \text{ m.s}^{-1}$.	0,25x2
3	B vibre en opposition de phase par rapport au point A car il est situé à une distance de (2k+1)λ/2 par rapport à A. Par contre C est situé à un multiple de λ par rapport à A, ainsi il vibre en phase par rapport au point A.	0.5x2
4-a	$y_M(t) = 2.10^{-3} \sin(40\pi t - 2\pi d/\lambda) \text{ pour } t \ge d/v.$	0,5
4-b	$y_M(t) = 2.10^{-3} \sin(40\pi t - \pi/2)$, car d = (9/4) λ . Le point M vibre en quadrature retard de phase par rapport au point A.	0,5
5-a	A l'instant t ₁ le front d'onde est à la distance de 4,25λ de la source O, car le lieu des points d'élongation maximale observé est à 4λ de O.	0,5
5-b	d= vt ₁ , par la suite t ₁ = 0,21 s.	0,25x2

Exercice 3: (3 points) « Document scientifique »

1	Absence de support matériel, possibilité de transmission à longue portée sans trop d'amortissement.	0.5x2
2	Transformer le son de la voix en une tension électrique de basse fréquence.	0,5
3	N _(ponteuse) très grande par rapport à la fréquence N de la tension modulante ;	0,5
4	La fréquence est celle de la porteuse. l'enveloppe est celle du signal modulant Ainsi, l'amplitude varie avec la fréquence du signal modulant	0.5x2

Corrigé du sujet de physique chimie de la section sciences de l'informatique (Examen du baccalauréat 2014-session de contrôle)

Section	n :	N° d'inscrip	etion :	Série :	Signatures de surveillants
Nom e	t prénom :				
Date e	t lieu de naissa	nce ;			
				··-·-·-·-	
	Epreuve	: Sciences physiques	(section sciences	de l'informatique)	

FEUILLE ANNEXE A RENDRE AVEC LA COPIE

