```
In [33]: import math
         import pandas as pd
         import numpy as np
         import random
         from statistics import mean, stdev, median, mode
         from sklearn.model_selection import train_test_split,cross_val_score, cross_va
         from sklearn.decomposition import KernelPCA
         import matplotlib.pyplot as plt
         import matplotlib.pyplot as mp
         from sklearn.linear model import LogisticRegression
         from sklearn.svm import SVC
In [34]: | data1 = np.loadtxt('data.csv')
         #data1
In [35]: def minimum(x,y):
             min = np.argmin(y)
             return x[min]
         \# x=[1,2,3,4]
         # y=[5,6,7,8]
         \# z = minimum(x,y)
         # Z
In [36]: def minimum3(x,y,z):
             min = np.argmin(z)
             return x[min], y[min], z[min]
```

```
In [37]: def decisionRegion(clf, X, Y):
         # Lists to hold inpoints, predictions and assigned colors
             xPred = []
             yPred = []
             cPred = []
         # Use input points to get predictions here
             for xP in range(-100,100):
                 xP = xP/100.0
                 for yP in range(-100,100):
                      yP = yP/100.0
                     xPred.append(xP)
                      yPred.append(yP)
                      if(clf.predict([[xP,yP]])=="1.0"):
                          cPred.append("b")
                      else:
                          cPred.append("r")
         ## Visualize Results
         #plot the points
             mp.scatter(X,Y,s=3,c=colors)
         #plot the regions
             mp.scatter(xPred,yPred,s=3,c=cPred,alpha=.1)
         #setup the axes
             mp.xlim(-1,1)
             mp.xlabel("Average Intensity")
             mp.ylim(-1,1)
             mp.ylabel("Intensity Variance")
```

```
In [38]: #shuffle the data and select training and test data
         np.random.seed(100)
         np.random.shuffle(data1)
         features = []
         digits = []
         for row in data1:
              #import the data and select only the 1's and 5's
              if(row[0] == 1 or row[0] == 5):
                  features.append(row[1:])
                  digits.append(str(row[0]))
         #Select the proportion of data to use for training.
         #Notice that we have set aside 80% of the data for testing
         numTrain = int(len(features)*.2)
         trainFeatures = features[:numTrain]
         testFeatures = features[numTrain:]
         trainDigits = digits[:numTrain]
         testDigits = digits[numTrain:]
In [39]: # Q)1)
In [40]: KPCA = KernelPCA(n_components = 2, kernel = 'poly', degree = 1)
         data = KPCA.fit transform(trainFeatures)
In [41]: train = pd.DataFrame(data = data)
         train.head()
Out[41]:
                   0
                            1
            0.662562 -0.078380
          1 -0.249190 -0.186351
            0.387871
                     0.056345
            0.636381 -0.098758
          4 -0.171666 0.280755
```

```
In [42]: #Colors will be passed to the graphing library to color the points.
#1's are blue: "b" and 5's are red: "r"
colors = []
for index in range(len(trainFeatures)):
    if(trainDigits[index]=="1.0"):
        colors.append("b")
    else:
        colors.append("r")

#plot the data points

plt.scatter(train[[0]],train[[1]], s=10,c=colors)
plt.xlabel('First Component')
plt.ylabel('Second Component')
plt.title("Figure 2.1")
```

Out[42]: Text(0.5, 1.0, 'Figure 2.1')


```
In [43]: #Convert the 256D data (trainFeatures) to 2D data
         #We need X and Y for plotting and simpleTrain for building the model.
         #They contain the same points in a different arrangement
         X = []
         Y = []
         simpleTrain = []
         #Colors will be passed to the graphing library to color the points.
         #1's are blue: "b" and 5's are red: "r"
         colors = []
         for index in range(len(trainFeatures)):
             #produce the 2D dataset for graphing/training and scale the data so it is
          in the [-1,1] square
             xNew = 2*np.average(trainFeatures[index])+.75
             yNew = 3*np.var(trainFeatures[index])-1.5
             X.append(xNew)
             Y.append(yNew)
             simpleTrain.append([xNew,yNew])
             #trainDigits will still be the value we try to classify. Here it is the st
         ring "1.0" or "5.0"
             if(trainDigits[index]=="1.0"):
                  colors.append("b")
             else:
                  colors.append("r")
         #plot the data points
         ### https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html
         mp.scatter(X,Y,s=3,c=colors)
         #specify the axes
         mp.xlim(-1,1)
         mp.xlabel("Average Intensity")
         mp.ylim(-1,1)
         mp.ylabel("Intensity Variance")
         mp.title("Figure 1.1")
         #display the current graph
         mp.show()
```


In [45]: KPCA = KernelPCA(n_components = 2, kernel = 'poly', degree = 3)
 data3 = KPCA.fit_transform(trainFeatures)

In [46]: train3 = pd.DataFrame(data = data3)
 train3.head()

Out[46]:

	0	1
0	1.704466	-0.165921
1	-0.762189	-0.610113
2	1.149909	0.109357
3	1.653838	-0.186883
4	-0.400848	0.914819

```
In [47]: #Colors will be passed to the graphing library to color the points.
#1's are blue: "b" and 5's are red: "r"
colors = []
for index in range(len(trainFeatures)):
    if(trainDigits[index]=="1.0"):
        colors.append("b")
    else:
        colors.append("r")

#plot the data points

plt.scatter(train3[[0]],train3[[1]], s=10,c=colors)
plt.xlabel('First Component')
plt.ylabel('Second Component')
plt.title("Figure 2.2")
```

Out[47]: Text(0.5, 1.0, 'Figure 2.2')

In [48]: # 1)b) Yes. This kpca (degree 3) seperates the data better than the above one (degree 1) because there are less data points near the # decision boundary when compared to the no of data points near the decision b oundary for kpca of degree 1

In [49]: # Q)2)

```
In [50]: LR = LogisticRegression(penalty = '12',C = 0.01)
    clf = LR.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.3")
    mp.show()
```

C:\Users\kalya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)


```
In [51]: LR = LogisticRegression(penalty = 'l2',C = 2.0)
    clf = LR.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.4")
    mp.show()
```

C:\Users\kalya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)


```
In [52]: LR = LogisticRegression(penalty = '11',C = 0.01)
    clf = LR.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.3b")
    mp.show()
```

C:\Users\kalya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)


```
In [53]: LR = LogisticRegression(penalty = 'l1',C = 2.0)
    clf = LR.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.4b")
    mp.show()
```

C:\Users\kalya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)

In [54]: #Q) 2) Graduate student question:
 # From the figures 2.3 and 2.3b, for C = 0.01, both l1 and l2 underfit the da
 ta but l1 completely underfit the data
 # For C = 2.0, the regularization techniques behaved conversely, l1 has less
 number of training errors compared to l2
 # It looks like the regularization parameter C has more role to play than regu
 larization techniques in making a model overfit or underfit.

In [55]: # Q) 3)

```
In [56]: # USING 2D dimensional data
         X = []
         y = []
         z = []
         p = []
         for i in range(1,25):
             c = np.random.uniform(0.01,100)
             model2 = SVC(C= c, gamma= 'scale')
             #model2.predict(testFeatures)
             cvs = cross_val_score(model2, simpleTrain, trainDigits, cv = 10, scoring=
          'accuracy')
             err = 1-cvs
             evsm = 1-(cvs.mean())
             p.append(err)
             x.append(c)
             y.append(evsm)
             z.append([x,evsm])
         # print(len(x))
         # print(len(y))
         # print(count)
         mp.scatter(x,y, s=10)
         mp.xlabel("C")
         mp.xscale('log')
         mp.ylabel("Error Ecv")
         mp.title("Figure 2.5")
         mp.show()
         m = []
         std =[]
         #print(y)
         for i in range(len(p)):
             m.append(mean(p[i]))
             std.append(2*stdev(p[i]))
         mp.errorbar(x, m, yerr=std, fmt='.k');
         mp.xlabel("C")
         mp.xscale('log')
         mp.ylabel("Error Ecv")
         mp.title("Figure 2.5b")
         mp.show()
```



```
In [57]: # from Figure 2.5, the error is low for x = 3
c_opt = minimum(x,y)
c_opt
```

Out[57]: 27.404470110232598

```
In [58]: # USING 256D dimensional data
         x256 = []
         y256 = []
         p256 =[]
         for i in range(1,25):
             c256 = np.random.uniform(0.01,100)
             model2 = SVC(C= c256, gamma= 'scale')
             #model2.predict(testFeatures)
             cvs256 = cross_val_score(model2, trainFeatures, trainDigits, cv = 10, scor
         ing='accuracy')
             err256 = 1-cvs256
             evsm256 = 1-(cvs256.mean())
             p256.append(err256)
             x256.append(c256)
             y256.append(evsm256)
         # print(len(x))
         # print(len(y))
         # print(count)
         mp.scatter(x256,y256, s=10)
         mp.xlabel("C")
         mp.xscale('log')
         mp.ylabel("Error Ecv")
         mp.title("Figure 2.6")
         mp.show()
         m256=[]
         std256 =[]
         #print(y)
         for i in range(len(p256)):
             m256.append(mean(p256[i]))
             std256.append(2*stdev(p256[i]))
         mp.errorbar(x256, m256, yerr=std256, fmt='.k');
         mp.xlabel("C")
         mp.xscale('log')
         mp.ylabel("Error Ecv")
         mp.title("Figure 2.6b")
         mp.show()
         print(np.sort(x256))
```



```
In [60]: svm = SVC(C = c_opt, gamma= 'auto')
    clf = svm.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.7")
    mp.show()
```



```
In [74]: # Gamma vs Degree
         # It is taking a lot of time for the following cell to run for degree of 10 an
         d 20 with Gamma = 'scale'.
         # So, I used Gamma = 1 for those two degree
         x = []
         y = []
         z = []
         p = []
         c_opt4_1 = []
         degree1 = [2,5]
         degree2 = [10,20]
         r1= []
         for i in degree1:
             x1 = []
             y1 = []
              z1 = []
             p1 =[]
              for j in range(1,25):
                  c1 = np.random.uniform(0.01,100)
                  svm = SVC(kernel = 'poly', C = c1, degree = i, gamma= 'scale')
                  cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring=
          'accuracy', n_jobs = -1)
                  err = 1-cvs
                  evsm = 1-(cvs.mean())
                  p.append(err)
                  x.append(c1)
                  y.append(evsm)
                  z.append(i)
                  p1.append(err)
                  x1.append(c1)
                  y1.append(evsm)
                  z1.append(i)
              coptimal = minimum(x1,y1)
              c_opt4_1.append(coptimal)
              r1.append(y[np.argmin(y1)])
              mp.scatter(x1,y1, s=10)
              mp.xlabel("C")
              mp.xscale('log')
              mp.ylabel("Error Ecv")
              mp.title("Degree: " + str(i))
             mp.show()
                svm = SVC(kernel = 'poly', C = coptimal, degree = i, gamma= 'scale')
                svm.fit(simpleTrain, trainDigits)
                decisionRegion(svm, X, Y)
               mp.title("Degree: " + str(i))
               mp.show()
         c_{opt4_2} = []
         r2 = []
         for i in degree2:
             x2 = []
             y2 = []
             z2 = []
              p2 = []
              for j in range(1,25):
```

```
c2 = np.random.uniform(0.01,100)
        svm = SVC(kernel = 'poly', C = c2, degree = i, gamma= 1)
        cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring=
'accuracy', n_jobs = -1)
        err = 1-cvs
        evsm = 1-(cvs.mean())
        p2.append(err)
        x2.append(c2)
        y2.append(evsm)
        z2.append(i)
        p1.append(err)
        x1.append(c2)
        y1.append(evsm)
        z1.append(i)
    coptimal = minimum(x2,y2)
    c opt4 2.append(coptimal)
    r2.append(y[np.argmin(y2)])
    mp.scatter(x2,y2, s=10)
    mp.xlabel("C")
   mp.xscale('log')
    mp.ylabel("Error Ecv")
    mp.title("Degree: " + str(i))
   mp.show()
     svm = SVC(kernel = 'poly', C = coptimal, degree = i, gamma= 1)
     svm.fit(simpleTrain, trainDigits)
#
     decisionRegion(svm, X, Y)
     mp.title("Degree: " + str(i))
     mp.show()
c_{opt} = c_{opt4}1 + c_{opt4}2
r = r1 + r2
degree = degree1 + degree2
print('\n')
print("Optimal C Values for Degrees " + str(degree) +" are: " + str(c opt))
d_opt, c_optf, Min_Ecv = minimum3(z,x,y)
print('\n')
print("Min Ecv Value is: " + str(Min_Ecv))
print("Optimal degree is: " + str(d_opt))
print("Optimal C Value is: " + str(c optf))
plt.scatter(degree,r)
plt.xlabel('Degree')
plt.ylabel('Min Ecv')
plt.title('Gamma vs Ecv')
plt.show()
plt.scatter(degree,c_opt)
plt.xlabel('Degree')
plt.ylabel('C value of Min Ecv')
plt.title('Degree vs C')
plt.show()
```


Optimal C Values for Degrees [2, 5, 10, 20] are: [87.83078117113321, 12.60714 9031715023, 73.48612969804714, 3.3801631824841496]

Min Ecv Value is: 0.006350806451612789

Optimal degree is: 2

Optimal C Value is: 87.83078117113321

In [75]: # Q) 3)
With smaller degree, there is higher chance of underfitting so, to compensat
e that we need a greater C value which gave me lesser Ecv.
And in case of higher degree which causes overfitting, we need smaller C v
alue to get less cross validation error Ecv
It is evident in the above observations.

```
In [76]: svm = SVC(C = c_optf, kernel = 'poly', degree = d_opt, gamma= 'scale')
    clf = svm.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.8")
    mp.show()
```


In [77]: # Q)3) From the above plot, it is evident that this SVM model is best in terms of seperating the training data.

In [78]: # Graduate Student Question

```
In [79]: svm = SVC(C = 0.000001, gamma = 'scale')
clf = svm.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
mp.title("Figure 2.9a")
mp.show()
```



```
In [80]: svm = SVC(C = 10000, gamma = 'scale')
    clf = svm.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.9b")
    mp.show()
```


In [81]: # Q)3) Graduate Student Question
 # When C is Low, the hinge loss would be high and svm model produces high marg
 in and the model underfits. It is evident in the figure 2.9a
 # When C is high, the hinge loss would be low and SVM model tries to overfit t
 he data. Check the figure 2.9b

In [82]:	# Extra Credit
In []:	

```
In [83]: # Varying only C. Keeping C and Gamma constant
         X = []
         y = []
         z = []
         p = []
         degree = [2,5,10,20]
         for i in range(1,10):
             gamma = np.random.randint(1,1500)
             svm = SVC(kernel = 'rbf', gamma= gamma)
             cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring='acc
         uracy')
             err = 1-cvs
             evsm = 1-(cvs.mean())
             p.append(err)
             x.append(gamma)
             y.append(evsm)
             z.append([x,evsm])
             svm.fit(simpleTrain, trainDigits)
             decisionRegion(svm,X, Y)
             mp.title("Gamma: " + str(gamma))
             mp.show()
         z = minimum(x,y)
         print("Optimal Value of Gamma = " + str(z))
         mp.scatter(x,y)
         mp.xlabel('Gamma')
         mp.ylabel('Ecv')
         mp.title("Gamma vs Ecv")
         mp.show()
```


-0.75

-0.50

-0.25

0.00

Average Intensity

0.25

0.50

0.75

1.00

Optimal Value of Gamma = 617

In [84]: # From the above plots, we could say that the models with smaller values of ga
mma underfit the data.
And the models with greater values of gamma formed smaller islands i.e. over
fit the data.

```
In [92]: # Varying both C and Gamma
         x1 = []
         y1 = []
         z1 = []
         p1 =[]
         c_{opt4} = []
         g =[]
         r = []
         for i in range(1,5):
             X = []
             y = []
             z = []
             p = []
             gamma = np.random.randint(1,1500)
             g.append(gamma)
             for j in range(1,25):
                  c = np.random.uniform(0.01,100)
                  svm = SVC(kernel = 'rbf', C = c, gamma= gamma)
                  cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring=
          'accuracy', n_jobs = -1)
                  err = 1-cvs
                  evsm = 1-(cvs.mean())
                  p.append(err)
                  x.append(c)
                  y.append(evsm)
                  z.append(gamma)
                  p1.append(err)
                  x1.append(c)
                  y1.append(evsm)
                  z1.append(gamma)
             coptimal = minimum(x,y)
             c_opt4.append(coptimal)
             r.append(y[np.argmin(y)])
             mp.scatter(x,y, s=10)
             mp.xlabel("C")
             mp.ylabel("Error Ecv")
             mp.title("Gamma: " + str(gamma))
             mp.show()
             svm = SVC(kernel = 'rbf', C = coptimal, gamma= gamma)
             svm.fit(simpleTrain, trainDigits)
             decisionRegion(svm, X, Y)
             mp.title("Gamma: " + str(gamma))
             mp.show()
         print('\n')
         print("Optimal C Values for Gamma " + str(g) +" are: " + str(c_opt4))
         g_opt, c_optf, Min_Ecv = minimum3(z1,x1,y1)
         print('\n')
         print("Min Ecv Value is: " + str(Min Ecv))
         print("Optimal Gamma is: " + str(g_opt))
         print("Optimal C Value is: " + str(c_optf))
         plt.scatter(g,r)
         plt.xlabel('Gamma')
```

```
plt.ylabel('Min Ecv')
plt.title('Gamma vs Ecv')
plt.show()

plt.scatter(g,c_opt4)
plt.xlabel('Gamma')
plt.ylabel('C value of Min Ecv')
plt.title('Gamma vs C')
plt.show()
```


Optimal C Values for Gamma [694, 565, 294, 865] are: [39.87402383420889, 96.7 9593140378634, 71.77385236560717, 22.442276346482515]

Min Ecv Value is: 0.0031250000000000444

Optimal Gamma is: 694

Optimal C Value is: 39.87402383420889

In [93]: # As models with higher values of Gamma tend to overfit the data, we need smaller value of C to get minimum cross validation error.
Similarly, we need higher value of C for models with smaller value of Gamma as these models tend to underfit the data
It makes sense from the above Gamma vs C plot

```
In [90]: # Varying only degree. Keeping C and Gamma constant
         x = []
         y = []
         z = []
         p = []
         degree = [2,5,10,20]
         for i in range(1,10):
             degree = np.random.randint(1,1500)
             svm = SVC(kernel = 'rbf', gamma= 'scale', degree = degree)
             cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring='acc
         uracy')
             err = 1-cvs
             evsm = 1-(cvs.mean())
             p.append(err)
             x.append(gamma)
             y.append(evsm)
             z.append([x,evsm])
             svm.fit(simpleTrain, trainDigits)
             decisionRegion(svm,X, Y)
             mp.title("degree: " + str(degree))
             mp.show()
```


In [91]: # As you can see in above plots, the parameter degree has no effect on the mod
el performance.
This makes sense as degree parameter is only valid for the poly kernel

In []:	
In []:	