

AFWAL-TR-80-3081

 ∞

%

AD A 092

SUPERPLASTIC FORMED AND DIFFUSION BONDED TITANIUM LANDING GEAR COMPONENT FEASIBILITY STUDY

Rockwell International North American Aircraft Division P. O. Box 92098 Los Angeles, California 90009

July 1980

Technical Report AFWAL-TR-80-3081 Final Report for Period March 1979 - July 1980

Approved for Public Release; Distribution Unlimited

IDC FILE COPY

Flight Dynamics Laboratory Air Force Wright Aeronautical Laboratories Air Force Systems Command Wright-Patterson Air Force Base, Ohio 45433

80 12 10 002

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Project Engineer

Chief, Mechanical Branch Vehicle Equipment Division

FOR THE COMMANDER

AMBROSE B. NUTT

Director

Vehicle Equipment Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFNAL/FIE! , W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/4 November 1980 — 280

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

11		BEFORE COMPLETING FORM
ı	AFWAL-TR-80-3081 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
1.		5. TYPE OF REPORT & PERIOD COVERED
╁	Superplastic Formed & Diffusion Bonded Titanium	9 Final Reports
1	Landing Gear Component Feasibility Study,	March 1979 - 4 1989
L		14) NA-80-333
7	- AUTHOR(s)	B CONTRACT OR GRANT NUMBER
	Vernon E./Wilson	13) F33615-79-C-3401
9	PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
l	Rockwell International	P.E. 62201F
1	North American Aircraft Division	Proj./2402
Ŀ	P. U. BOX 92096. Los Angeles CA. 90009	Task 240201. W.U.24020110
1"	I. CONTROLLING OFFICE NAME AND ADDRESS Flight Dynamics Laboratory (FIEM)	JULY 1980
	Air Force Wright Aeronautical Laboratories/AFSC	13. NUMBER OF PAGES
1		71
	Wright-Patterson Air Force Base, Ohio 45433	
Γ	Wright-Patterson Air Force Base, Chio 45433 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
ľ	Wright-Patterson Air Force Base, Chio 45433 MONITORING AGENCY NAME & ADDRESS(It different from Controlling Office)	Unclassified
	Wright-Patterson Air Force Base, Chio 45433 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	Unclassified
	Wright-Patterson Air Force Base, Chio 45433 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlim	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16	4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 6. DISTRIBUTION STATEMENT (of this Report)	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
10	4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlim	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
11	4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlim 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE nited
11	4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlim 7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, II different from the supplementary notes	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE nited
11	4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlim 7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, II different from 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Landing Gear Superplastic Forming Shock Strut SPF/DB	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE nited
11	4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlim 7. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, II different from the supplementary notes 8. Supplementary notes 9. KEY WORDS (Continue on reverse side II necessary and Identify by block number) Landing Gear Superplastic Forming	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE nited mr. Report)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

This final report represents the results of the Superplastic Formed Diffusion Bonded Titanium Landing Gear Feasibility program accomplished by North American Aircraft Division (NAAD) of Rockwell International Corporation, on Contract F33615-79-C-3401, for the Flight Dynamics Laboratory of the Air Force Wright Aeronautical Laboratories. The work was accomplished under Air Force Program Element 62201F, Project 2402, Task 240201, Work Unit 24020110. It is published for information only and does not necessarily represent recommendations, conclusions, or approval of the Air Force.

This work was performed by the Advanced Metallic Group and the Material and Processes Laboratory, of NAAD. The Air Force Project Engineers for this effort were Mr James R. Hampton, Mr Wallace C. Buzzard, and Mr George J. Sperry of AFWAL/FIEM.

Key Rockwell personnel associated with the program and their respective areas of responsibilities were:

L. Ascani	Manager, Advanced Structures
F. McQuilkin	Supervisor, Advanced Metallic Design
V. Wilson	Program Manager
V. Darby	Materials & Processes Engineer
D. Munger	Project Engineer & Designer
D. Park	Stress Analyst
T. Matoi	Supervisor, Structural Methods
E. Minick	Weight Engineer

The program was initiated on 19 March 1979 and completed on 07 July 1980.

Accession For				
NT13	C GI	X		
DDC 1A	-3			
Unosa	तः, ११७व			
Justic	de tim			
Ву				
Distri	hut fon/			
_fvai'	11ty Co	des		
	Avail and/	OI'		
Dist	special			
1				
M				
7				

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	
	1. BACKGROUND	1
	2. OBJECTIVE	2
	3. SUMMARY	2
II	PHASE I - DESIGN AND DEVELOPMENT	
	1. BASELINE AIRCRAFT SELECTION	5
	 MAIN LANDING GEAR OUTER CYLINDER DESIGN 	5
	3. LONGITUDINAL SPLICE DEVELOPMENT TASK	10
	4. STOP-OFF APPLICATION	17
	5. TOOLING DEVELOPMENT CIRCUMFERENTIAL SEAL	17
	STRESS ANALYSIS AND WEIGHT STUDY	17
	7. TOOL DESIGN	17
	8. AIR FORCE APPROVAL	17
III	PHASE II - FABRICATION AND INSPECTION	
	1. TOOL FABRICATION	20
	a. Hot Forming Die	20
	b. Cylinder Tool	20
	2. OUTER CYLINDER FABRICATION	22
	a. Producibility Development	22
	b. Fabrication of First Cylinder	38
	3. CYLINDER INSPECTION	38
IV	PHASE III - TEST	
	1. TEST PLAN AND AIR FORCE APPROVAL	41
	2. TEST	41
	3. TEST RESULTS	41

TABEL OF CONTENTS - Continued

ECTION		PAGE
V	CONCLUSIONS AND RECOMMENDATIONS	47
	1. CONCLUSIONS 2. RECOMMENDATIONS	47 48
	APPENDIX A - LANDING GEAR TRUSS CORE OUTER CYLINDER STRESS ANALYSIS AND WEIGHT STUDY	50
	APPENDIX B - LANDING GEAR TRUSS CORE OUTER CYLINDER STRUCTURAL TEST PLAN	56
	APPENDIX C - LANDING GEAR TRUSS CORE OUTER CYLINDER STRUCTURAL TEST ANALYSIS REPORT	59

ILLUSTRATIONS

Figure No.	Title	Page
1	Life Cycle Comparison Chart	1
2	SPF/DB Outer Cylinder Section	3
3	SPF/DB Titanium Outer Cylinder	4
4	F-100 Fighter Aircraft	6
5	F-100 Main Landing Gear	6
6	F-100 Landing Gear Strut Section Selected for this Program	7
7	SPF/DB Titanium Landing Gear Truss Core Outer	
0	Cylinder Study Engin-ering Drawing	9
8	Outer Cylinder Comparisons	11
9	Cross Section of Cylinder Showing the Splices of the	
10	Sleeves and Expansion of Outer Sleeves	12
10	Core Sleeve with Stop-Off Pattern Applied	13
11	9 x 9 Inch Panel with SPF Welded Butt Joint	14
12	9 x 9 Inch Panel Core Sheet Butt Splice	15
13	Evaluation of Outside Cylinder Butt Welded and Diffusion Bonded Splice	16
14	MLG SPF/DB Titanium Outer Cylinder Segment Assembly	10
14	with a Diaphram Seal for DB Cycle.	18
15	MLG SPF/DB Titanium Outer Cylinder Segment DB Cycle	10
1,5	· · · · · · · · · · · · · · · · · · ·	10
16	Using a Diaphram Seal Hot Sizing Tool	19
17	-	20 21
18	Semi Circular Laminate Hot Forming Die	21
10	Main Landing Gear SPF/DB Titanium Outer Cylinder	
10	Segment Fabrication	23
19	Landing Gear Cylinder SPF/DB Outer Die Half	24
20	Landing Gear Cylinder SPF/DB Tool with Semi-	25
0.1	Circular Laminae	25
21	Main Landing Gear SPF/DB Titanium Outer Cylinder	٠.
20	Segment Fabrication	26
22	Detail of Modified Wire Seal	27
23	MLG SPF/DB Titanium Outer Cylinder Segment Tool	28
24	<pre>MLG SPF/DB Titanium Outer Cylinder Segment Assembly with a Diaphram Seal for DB Cycle</pre>	29
25	MLG SPF/DB Titanium Outer Cylinder Segment DB Cycle	-/
	Using a Diaphram Seal	30
26	Cylinder Segment with Expanded Diaphram	31
27	Cylinder Segment with Ends Welded Closed before	
	Installation of New Injection Tubes	32
28	Partially Formed MLG SPF/DB Outer Cylinder Segment	
	Assembly with Ruptured Outer Face Sheet	33

ILLUSTRATIONS (CONTINUED)

Figure No.	Title	Page
29	Butt Joints of the Inner Sleeve of Outer Face Sheets	
	Insufficiently Bonded	34
30	End View of Cylinder Segment Showing Bond of Core Bevel Splice	35
31	Magnified View of Successful Bond of Core Sleeve Bevel Splice	36
32	SPF/DB Landing Gear Cylinder Outer Face Sheet Butt Joints Revised to Lap Joints	37
33	SPF/DB Ti Landing Gear Cylinder Segments, number 5	٥/
J J	shown at left, number 6 shown at right	39
34	Dimensions of Test Specimen - Inspection Record	40
35	SPF/DB Titanium Truss Core Cylinder in 1,000,000	70
77	Pound Capacity Press	42
36	Load/Stress ~ Strain Plot of the Eighth Axial Strain	76
,,,	Gage Average Readings	43
37	Cylinder Test Specimen Inner Sleeve Longitudinal Split	45
38	Cylinder Test Specimen Buckled Truss Members	46
A-1	Main Landing Outer Cylinder & Trunnion	51
A-2	Main Gear Outer Cylinder Ultimate Section Loads	52
B-1	SPF/DB Ti MLG Outer Cylinde: Segment Test - Side View	58
B-2	SPF/DB Ti MLG Outer Cylinder Segment Test - End View	58
C-1	SPF/DB Ti MLG Outer Cylinder Segment Test - Side View	61
C-2	SPF/DB Ti MLG Outer Cylinder Segment Test - End View	61
C-3	SPF/DB Cylinder Test Results - Strain Gages	62
C-4	SPF/DB Cylinder Test Results - Radial Defl. (Inch)	63
C-5	Load/Stress-Strain - Average Strain Gage Data	64
c-6	Load/Stress-Strain, Gages No. 1 and 2	65
C-7	Test Load versus Radial Deflection	66
· ,	TOTAL BOOM TOLISUS HUUTUI DOLITOGETOIL	

SECTION I

INTRODUCTION AND SUMMARY

1. BACKGROUND

The increasing cost and weight of aircraft systems procured by the Air Force has become a major concern of the U. S. Government. As a result, military planners are taking positive steps to reverse this trend. One of the leading candidates for cost and weight reduction is aircraft landing gears, which historically account for around 12 percent of the structural weight and 4 percent of the cost of the airframe. In addition, these components experience high operational costs and life cycle costs because of premature failure due to fatigue and stress corrosion cracking.

The Air Force, recognizing that it is imperative that these problems be addressed, has funded through AFWAL/FIEM a number of studies to improve landing gear systems. Among the most recent of these is a study (Contract F33615-76-C-3021) by Rockwell which compared advanced composites, metal matrix composites, and advanced metallic (SPF/DB titanium) designs to the baseline steel design. This study showed a 33 percent reduction in life cycle costs could be attained by using SPF/DB titanium in lieu of conventional MLG materials, see figure 1.

Figure 1. Life Cycle Comparison Chart (Millions of 1977 Dollars)/Landing Gear System - ATS Airplane

Titanium has recognized advantages in strength, efficiency, corrosion resistance, and elevated-temperature properties. These advantages have formerly been offset by the limitations and high costs of conventional fabrication. However, titanium fabrication technology is a new area where significant gains have been made in elevating the competitive rank of titanium in the list of candidate aircraft materials. One of the most promising advancements in structures technology is the development of superplastic forming with concurrent diffusion bonding of titanium.

The SPF/DB process is possible because titanium exhibits superplastic properties, and large tensile elongations may be achieved without necking under optimum conditions of temperature and strain rate. Under these same conditions, titanium can be joined by diffusion bonding. This fact allows concurrent SPF/DB to take place in a tool during a single temperature/ pressure cycle. This is important in the fabrication of a landing gear outer cylinder since it means that a more structurally efficient truss core sandwich can be made and, in a full strut design, the end fittings, lugs for the torque links and for the side brace can be bonded to the cylinder during the same fabrication cycle.

OBJECTIVE

The objective of this program was to demonstrate the feasibility of using titanium and SPF/DB fabrication process to design and build a main landing gear outer cylinder and to verify by test that it will satisfy the strength and stability requirements.

SUMMARY

The objective of this program has been met by the successful fabrication and testing of a representative section of an existing aircraft landing gear. Using the F-100 fighter aircraft main landing gear as a baseline, a SPF/DB truss core sandwich cylinder, shown in figure 2, was designed to replace the main strut. Critical loads from the original aircraft were used to size the 6 inch representative section of the strut. After an extensive development program which produced a series of breakthroughs in both tooling and fabrication approachs, a successful cylinder shown in figure 3, was fabricated. Compression testing to 158 percent of design ultimate load confirmed the structural integrity of the cylinder.

This program has demonstrated a concept which is projected to produce a weight reduction of 8.4 percent, and reduce the stress-corrosion problem by the use of titanium truss core sandwich struts.

Figure 2. SPF/DB Outer Cylinder Section.

Figure 3. SPF/DB Titanium Outer Cylinder.

SECTION II

PHASE I DESIGN AND DEVELOPMENT

1. BASELINE AIRCRAFT SELECTION

The F-100 aircraft has been selected as the baseline aircraft for this study. This aircraft is an existing fighter with a tricycle landing gear with dual nosewheels and single main gear wheels. The main gear retracts inboard into the fuselage, and the nose gear retracts aft into the nose section. The two main landing gears consist primarily of air-oil-type shock struts with single wheels, see figures 4 and 5.

Each gear pivots on two bearings in the trunnion support fitting on the wing rear spar and is actuated by a hydraulic cylinder attached to the strut below the trunnion and to a wing inboard trailing edge rib. A side brace extends from a lug on the outer cylinder of the strut to a downlock fitting on the wing rear spar and is held in the down position by means of a spring loaded lockpin.

The shock strut is designed with internal metering provisions to control the rate of compression and extension of the piston. The shock struts support the weight of the airplane on a nitrogen and hydraulic fluid cushion which absorbs the landing shock.

The preceding description of the F-100 landing gear could well describe the landing gear on most current first-line fighter aircraft. The structural configuration for landing gears has remained remarkably similar for the 28 years since the F-100 gear was designed.

All design criteria for the landing gear outer cylinder was available for use on the program, since the F-100 was designed and built by NAAD.

The rationale for this selection was presented to the Air Force and approval was given 2 April 1979.

2. MAIN LANDING GEAR OUTER CYLINDER DESIGN

The production drawings and the stress analysis of the F-100 main landing gear were reviewed as a basis for the selection of the part to be fabricated using titanium and the SPF/DB process. The center section of the strut outer cylinder, shown in figure 6, was selected as the part to be fabricated in this program. This section extends from the torque link lug up to the side brace lug, a distance of approximately 12 inches. There are no bosses, lugs, or other fittings in this area of the cylinder. A 6-inch section of this area was redesigned using titanium and the SPF/DB fabrication method, see figure 7.

This section of the F-100 outer cylinder is 4.75-inch inside diameter and has a wall thickness of 0.255-inch. The critical loading condition on this section is due to a two-point braked roll, resulting in no vertical load,

Figure 4. F-100 Fighter Aircraft

Figure 5. F-100 Main Landing Gear

Figure 6. F-100 Landing Gear Strut Section Selected for this Program

FIOO MAIN LANDING GEAR OUTER CYLINDER NO SCALE

MATERIAL: GAL-4V TITANIUM: MIL-T-3046 CONDA

TOLERANCES EXCEPT AS SHOWN .X = ± .1 .XX= ± .03 .XXX= ± .010

	F	i	g	u	re	7
GER	_	_	~	_		

STED	DATE 6-19-79	ADVANCED DESIGN	
STUL	DY-TRUSS	CORE CUTER CYL, R, SPF/DB TITANIUM	D694-1-400

22.617 pound size Toad, 212.167 inchapound torque Toad, and a 1.086.571 inchapound moment Toad. The outer oxi index of the struct is fabricated from SAE4130 steel which is heat treated to 260 to 280 ks .

A dylinaridal truss core sandwich was selected as a most efficient configuration to use for the new design of the outer dylinder. This arrangement improves structural efficiency in that the moment of inertial is increased and the core trusses support the outer dylinder sleeve, see figure 3. These features provide an increased behaving modulus and dolumn stability.

utilis designed to facilitate SPP DB fabrication and to accommodate expanding the outer sieeve radially outward from the inner sieeve outling the trusses of the core sleeve into their respective positions. The wider truss core nodes are located where the core sleeve is soliced. The actuassembly of the cylinder back that is placed in the tool for the SPF DB iced. The actual process requires that both the inside ovillager and the outside ovillager consist of two sleeves each. The inside cylinder consists of an inner seam welded sleeve and an outer two piece sleeve. The outside cylinder consists of a seam we'ced outer sleeve and a two plece inner sleeve, see figure 9. The two piece sleeves are made so that they can be placed on the inside and outside of the core sleeve without sliding on its surfaces. This prevents scraping or smudging the pattern of stop-off material that is applied to the Inner and outer surfaces of the come sleeve, see figure 10. This storoff material prevents conding of the core sleave to the inside and outside cylinder except at the nodes during the bonding dvole. Subsequently, the core is formed into trusses during the forming oxcie. All of these halves require diffusion bonding at their longitudinal joints that warranted a special task that follows.

3. LONGITUDINAL SPLICE DEVELOPMENT TASK

A longituainal splice development task was required to assure that the splice joint of the outside dylinder would contain the sandwich expansion pressure after the initial diffusion bonding dycle. The joint must also be capable of superplastic deformation in order to form the sandwich confiduration. In addition, a method of splicing the core sheet was needed.

The first step to accomplish this was to fabricate a 9 inch x 9 inch sandvich pane' with a full scale truss core cross section incorporating a we'ded butt joint to represent the outside cylinder splice and a diffusion conced butt joint to represent the core sheet splice. Fabrication of this part proved that a diffusion bonded bevel appoint was needed for the core sheet splice, see figures in and it. In order to prove that the butt we'der and diffusion bonded outside by inder splice would work, a second part was fabricated. Two sheets were formed into a deep drawn pan that resulted in over 40 percent elongation transverse to the joint, see figure 3. Since this joint required only 24 hercent transverse elongation in the actual cylinder this 40 percent elongation proved that the joint strength was more than adequate.

Figure 8. Outer Cylinder Comparisons

Figure 9. Cross Section of Cylinder Showing the Splices of the Sleeves and Expansion of Outer Sleeves

Figure 10. Core Sleeve with Stop-Off Pattern Applied.

Figure 11. 9 x 9 Inch Panel with SPF Welded Butt Joint.

Figure 12. 9 x 9 Inch Panel Core Sheet Butt Splice.

BEFORE FORMING

AFTER FORMING

Figure 13. Evaluation of Outside Cylinder Butt Welded and Diffusion Bonded Splice

4. STOP-OFF APPLICATION

A stop-off development study revealed that, in order to spray the stop-off material on the inside surface of the core sleeve, the sleeve must be made in two halves. For future parts it was decided that chem-milling a recess into the surface where it is desired to have the stop-off remain, would permit sliding the inner and outer sleeves over the core sleeve without disturbing the stop-off. This feature would eliminate the necessity of having the additional two piece sleeves for both the inboard and outboard cylinders.

5. TOOLING DEVELOPMENT CIRCUMFERENTIAL SEAL

A circumferential seal was required for each end of the cylinder to hold pressure for both diffusion bonding and forming. Tapered plugs were designed to press inside the ends of the cylinder and obtain a seal by squeezing the ends of the cylinder pack against the inside of the tool. In practice this did not prove adequate. So a diaphragm (titanium sleeve), was incorporated to provide sealing, see figures 14 and 15.

6. STRESS ANALYSIS AND WEIGHT STUDY

A structural analysis was made to size the SPF/DB cylinder. Thickness requirements for the inner and outer sleeve, and the truss core were calculated. The core height and the node spacing was optimized. The most critical load on the selected section of the F-100 landing gear outer cylinder was used. A conservative $F_{\rm cy}$ allowable of 117,000 psi was used resulting in a margin of safety of $+^{\rm cy}$.002. A detail analysis is given in Appendix A.

A weight calculation was then made which showed that the SPF/DB cylinder weighed 1.0388 lbs/in compared to 1.1347 lbs/in. for the existing steel cylinder. These figures show a weight saving of 8.45 percent.

7. TOOL DESIGN

A tool design drawing was prepared for making the tools. Tools were required for hot sizing the sleeve halves and for SPF/DB the cylinder.

8. AIR FORCE APPROVAL

Air Force approval was given for go-ahead with phase II after all requirements of phase I were met. Air Force approval of test plan and the the final test was also given.

MLG SPF/DB Titanium Outer Cylinder Segment Assy with a Diaphragm Seal for DB Cycle. Figure 14.

MLG SPF/DB Titanium Outer Cylinder Segment DB Cycle Using a Diaphragm Seal. Figure 15.

SECTION III

PHASE II - FABRICATION AND INSPECTION

1. TOOL FABRICATION

a. HCT FORMING DIE

A hot sizing tool was required for preforming the inner and core sleeve halves, see figure 16.

Figure 16. Hot Sizing Too!

Figure 17 shows a sleeve half partly removed from male die.

b. CYLINDER TOOL

The cylinder tool consists of a two piece female die, inner mandrel (inner die), two tapered end plugs and a long mandrel having a head on one end with threads at the other end similar to a large bolt. At the head of this mandrel the dies, the "pack", (which will be formed into the cylinder), the inner die and the tapered plugs are held in place with a large special

Figure 17. Semi Circular Laminate Hot Forming Die.

nut on the threaded end of the long mandrel with the spacer tube between the nut and one of the tapered plugs. See figure 18. This arrangement permits torquing the nut to apply pressure on the tapered plugs when the pack is in the press with the heat turned on. Figures 19 and 20 show these tools with some of the sleeve halves.

2. OUTER CYLINDER FABRICATION

a. PRODUCIBILITY DEVELOPMENT

The first attempts to fabricate a cylinder failed due to leakage of the seal cavity which prevented diffusion bonding of the pack. See figure 21. Several changes were made such as modifying the parting surface wire seals that fit in a groove on the lower die and the bevels for these wires at each end of the dies. See figures 22 and 23. Reducing the length of the inner cylindrical die to allow more travel for the tapered plugs and adding shims to the surface of the tapered plugs was tried, but even though as much as 200 psi pressure was obtained, it was not enough for a good seal. Forming was attempted in spite of an inadequate bonding cycle, but at 100 psi a leak around the gas inlet tubes developed. Within two hours the outlet pressure deteriorated to 60 psi while inlet pressure was maintained at 300 psi. Partial forming of the cylinder was the result.

A diaphragm was then added to enclose the pack to insure a positive seal. See figures 24 and 25. The diaphragm seal was successful and diffusion bonding was accomplished, but when forming was tried there was a lag in the forming inlet and outlet pressures indicating a leak which was found to be at the core gas injection tubes. The pack was removed and its ends were welded closed, including the area around new gas injection tubes. See figures 26 and 27. The pack was again placed in the dies and fabrication resumed, but at 100 psi forming pressure a leak was detected between the diaphragm and the outer face sheets indicating a rupture in the part.

After the part was sectioned and the diaphragm removed, the rupture became visible. See figure 28. The butt joints of the outside cylinder inner sleeve face sheets did not sufficiently bond to resist the expansion stress across the joint during forming and the gas pressure subsequently ruptured the outer sleeve of the cylinder. See figure 29. However, the core bevel splices appeared to be bonded. See figures 30 and 31. Therefore, the bevel splice configuration was applied to all butt joints. Inserts to accomplish this were required because the outside inner sleeve halves were already fabricated to size. See figure 32.

The fifth attempt to fabricate a cylinder was successful except that one truss member of the 26 members ruptured. Close inspection and evaluation

Main Landing Gear SPF/DB Titanium Outer Cylinder Segment Fabrication. Figure 18.

Figure 19. Landing Gear Cylinder SPF/DB Outer Die Half.

igure 20. Landing Gear Cylinder SPF/DB Tool wit' Semi-Circular Laminae.

Main Landing Gear SPF/DB Titanium Outer Cylinder Segment Fabrication. Figure 21.

Figure 23, MLG SPF/DB Titanium Outer Cylinder Segment Tool. VIEW LOOKING DOWN ON PARTING SURFACE OF LOWER DIE

MLG SPF/DB Titanium Outer Cylinder Segment Assy with a Diaphragm Seal for DB Cycle. Figure 24.

MLG SPF/DB Titanium Outer Cylinder Segment DB Cycle Using a Diaphragm Seal. Figure 25.

Cylinder Segment with Expanded Diaphram.

Figure 27. Cylinder Segment with Ends Welded Closed Before Installation of New Injection Tubes

Figure 29. Butt Joints of the Inner Sleeve of Outer Face Sheets Insufficiently Bonded.

_**ဂ** $-\infty$

Figure 30. End View of Cylinder Segment Showing Bond of Core Bevel Splice.

- CORE SLEEVE BEVEL SPLICE

Figure 31. Magnified View of Successful Bond of Core Sleeve Bevel, Splice.

SPF/DB Landing Gear Cylinder Outer Face Sheet Butt Joints Revised to Lap Joints. Figure 32.

indicated that one of the core sheet bevel joints was misaligned causing the rupture. This was corrected on the next attempt by modifying the stop-off pattern to widen the nodes located at these bevel joints and to make the joint less critical to misalignment. More emphasis was placed on checking core sheet bevel joint alignment in the pack inspection procedures.

b. SUCCESSFUL FABRICATION OF CYLINDER

The sixth attempt to fabricate a cylinder was successful. No problems were encountered throughout the SPF/DB process cycles. The outer cylinder fully formed and when the ends were cut off the internal core structure was found to be fully formed and bonded. The core trusses were even and straight with no ruptures. See figure 33.

The inside diameter was cut to size leaving the inner wall thickness as specified by the engineering drawing. The outer cylinder and truss core were left as formed because they were to drawing specifications. The ends of the cylinder were ground flat and normal to the cylinder axis.

3. CYLINDER INSPECTION

The cylinder passed ultrasonic and die penetrant inspections. Visual and dimensional inspections confirmed that the part was acceptable and ready for testing. Figure 34 shows the finished dimensions of the specimen.

Figure 33. SPF/DB Titanium Landing Gear Cylinder Segments, No. 5 Shown at Left, No. 6 Shown at Right.

Dimensions on end of Cylinder
Dimensions in Parenthesis () are on opposite end of Cylinder

Figure 34. Dimensions of Test Specimen - Inspection (ecord

SECTION IV

PHASE III - TEST

1. TEST PLAN AND AIR FORCE APPROVAL

A test plan (Appendix B) to verify that the SPF/DB titanium outer cylinder segment satisfies the strength and stability requirements for the F-100 main landing gear was written, submitted and approved by the Air Force on 26 September 1979.

Since compression stress is the critical condition, a straight axial compression test was planned in lieu of a more expensive bending test. The design axial compression load of the cylinder 6.0 inch segment is 600,000 lbs. The load was to be continually increased until the specimen failed.

2. TEST

The test was conducted at the Rockwell Structures Lab on 9 April 1980. Axial strain gages and radial deflection instrumentation were installed on the specimen and the test was performed in a 1,000,000 lb. capacity press. Eight axial strain gages were installed. Four were mounted on the middle of the cylinder outer surface spaced 90° apart with four mounted directly opposite on the cylinder inner surface. See figure 35.

The load was continually increased in increments of 50,000 lbs. with readings recorded at each step. The highest recorded axial strain was at 850,000 lbs. where instrumentation failed. The maximum recorded radial deflection readings at the four locations were at 900,000 lbs. The cylinder failed at 948,000 lbs. and the applied load was immediately released.

3. TEST RESULTS

The test was successful in that the results proved the cylinder design configuration is capable of carrying compressive loads up to the compressive yield values of the material without buckling. An average of the eight axial strain gages at a load of 850,000 lbs. was 11,313 micro inches (.011313 inches). See figure 36. The load divided by an average of the areas of both ends of the cylinder was: 850 KIPS/6.113 in² + 6.083 in²/₂ = 139,390 psi compressive stress. The radial deflections at 850 KIPS were at location: A = .1506 in; B = .0937 in; C = .0802 in; D = .1360 in. The maximum radial deflections obtained were at 900 KIPS. They were A = 2392 in; B = .1494 in; C= .11? in; D = .2099 in.

Figure 35. SPF/DB Titanium Truss Core Cylinder in 1,000,000 lb. Capacity Press.

Figure 36. Load/Stress - Strain Plot of the Eighth Axial Strain Gage Average Readings.

The final failure of the cylinder at 948 KIPS was 185 percent of the design load.

The test results analysis is presented in more detail in the "Landing Gear Truss Core Outer Cylinder Structural Test Analysis Report," (Appendix C).

The cylinder specimen failure was a near uniform mushrooming of the top end. The outer sleeve locally buckled outwardly and cracked radially, while the inner sleeve buckled outwardly in the same area as the outer sleeve, cracking radially and partially splitting longitudinally in the buckled area at the corner of the truss node bands in several places. The longest split was approximately 2.4 inches from the end. All the truss members appear to have buckled equally in their total length of six inches. See figures 37 and 38.

SECTION V

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

This program demonstrated that a titanium truss core cylinder can be fabricated using SPF/DB technology. Five producibility development specimens were required to perfect the process before the test specimen was fabricated. Each producibility specimen solved problems preculiar to cylindrical truss core sandwich. The joints of the sleeve halves were a problem until a bevel lap joint was developed. It was discovered that a butt joint does not adequately bond, even when sandwiched between a node and a sleeve. When this joint was modified into a bevel lap joint, it successfully bonded.

Significant developments were made in the application of stop-off. One was using a maskant material applied to the cleaned surfaces of the core for the pattern in lieu of rolling the stop-off compound through a stencil. After spraying the stop-off compound over the entire surfaces, the maskant pattern was peeled off, exposing the bare metal surfaces to be bonded. This application not only solved the problem of applying a pattern of stop-off to preformed parts, but a sharper and more precise edge is obtained where the stop-off ends and the bare metal is exposed.

In addition, several improvements to the process, which will be incorporated into future panels, were identified. These include improvements to the forming dies wherein larger interlocking die halves will be used to resist opening up at the parting line under heat and pressure from the tapered plugs.

Another improvement is that by chemical milling the stop-off area below the surface of the bare metal area it is possible to use only three sleeves instead of five. The stop-off compound being below the surface would not be smudged or scraped off when the inner and outer sleeves are slid on.

The structural analysis and subsequent structural test has proved that this design is capable of meeting the landing gear loads that a cylinder of this type would be subjected to in most current, first-line fighter aircraft.

The weight and cost comparisons show a weight savings of 8.45 percent and a 33 percent reduction in life cycle costs.

2. RECOMMENDATIONS

This program has established a base for applying SPF/DB titanium truss core sandwich technology to the fabrication of cylindrical truss core structure. For this program a section of a landing gear outer cylinder was fabricated. The fabrication process is, of course, applicable to any tubular shaped structural members. In order to reap maximum benefits from the knowledge gained in expanding the state-of-the-art of the SPF/DB titanium fabrication process, further development work should continue so that the momentum of progress is not lost. This development effort should include fabrication of larger, longer and more complex tubular structural members, including full sized landing gear cylinders and other structural parts.

It is felt that the immediate need is for additional cylinders, designed for this program, which should be fabricated and tested to establish a broader data base. A logical next step is to fabricate longer cylinders to solve any problems associated with scale-up prior to fabrication of a full sized landing gear cylinder. These longer cylinders should be subjected to more complete, combined loads testing to futher expand the data base.

After completion of this long cylinder program, the SPF/DB technology should be extended by the design, fabrication and testing of a complete landing gear outer cylinder, including all bosses, lugs and fittings associated with the mechanical requirements for landing gear operation. The testing of the SPF/DB outer cylinder should be followed by complete system testing in the Air Force Landing Gear Test Laboratories at AFWAL.

Following completion of successful system testing in the laboratory, a complete landing gear system should be flight tested to supply the confidence necessary for the application of the SPF/DB landing gear to a production contract.

This cylindrical sandwich technology is applicable to many other structural members and should have broad application to a wide variety of circular airframe structural components. A partial list of possible structural applications would include:

Landing gear braces
Large beam truss members
Torque shafts
Cylindrical fuel tanks, external and internal
Rotary missile launcher
Missile structure

The application of the SPF/DB titanium technology, demonstrated in this program, should be expanded by the design, fabrication and test of a number of the structural members listed.

APPENDIX A

LANDING GEAR TRUSS CORE OUTER CYLINDER STRESS ANALYSIS AND WEIGHT STUDY

STRESS ANALYSIS AND WEIGHT STUDY

The loads were taken from NA-62-190 App. VI Page 2-2-23 which is the F-100 F-20 Main Gear Outer Cylinder Analysis, figure A-1. The material used was AMS 6427, H. T. 220 ksi. The critical section was taken as Section D-D with and I. D. of 4.750 in. The loads on the cylinder at this section are tabulated in figure A-2, table I.

The SPF/DB titanium cylinder has an I.D. of 4.750 in. and several trials were made varying the inner shell thickness, the outer shell thickness, the basic core thickness (T_N) , the core height, and the number of nodes. It was found that the total area varies from 6.32 in. 2 to 6.75 in. 2 , or 6.4 percent. This change in area times the density (.160 lb/in. 3) amounts to .069 lb/in. weight difference.

A configuration of:

13 nodes $(B = 27.692^{\circ})$

T. = .090 Inner Shell

 $T_{NI} = .080$ Core Thickness, BASIC

 $T_{\alpha} = .186$ Outer Shell

C = .750 Core Height

 $b_{M} = .25 \text{ Node Width}$

gives a total area of 6.4928 in. 2 with a margin of safety = + .002 in. combined compression and shear and no buckling occurs.

Weight of Ti Cylinder - $6.4928 \times .160 = 1.0388 \text{ lb/in.}$

Weight of Steel Cylinder = $\frac{\tau}{\mu}$ (5.260² - 4.750²) x .283 = 1.1347 lb/in.

Weight Savings of 8.45 percent

Figure A-1. Main Gear Outer Cylinder & Trunnion

					Re	Ref. Pages 2-	1-22, 2-1-2	5, 2-1-17, 2	2-1-22, 2-1-25, 2-1-17, 2-1-18, 2-1-20 App VI.
Section	Cond.	>	Q	S	S + 0	> ₩	M _D	MS	M _D → M _S
A-A	7000a	0	29615	66565	79073	240419	-110707	213221	240248
A-A	7002c	0	-64858	-2111	64892	-263298	- 140708	-269793	304281
8-8	7000a	0	29615	59599	79073	241850	-242063	327756	407454
8-8	7002c	0	-64858	-2111	64892	-264326	-136056	-414717	436465
J-J	7005b	0	55914	43986	711142	211122	-572819	824564	1004006
ე-ე	7000a	0	26132	8239	27400	245911	-617667	940402	936586
0-0	7005b	0	21570	6801	22617	212167	800009-	905885	1086571
0-0	7000a	0	26132	8239	27400	247618	-651505	803113	1034142
3-3	::7002c	-42451	-29167	-6734	29934	-286017	-19248	-1160411	1160571
E-E	7005b	-3819	21570	-36715	42582	496392	645194-	866300	984417
- - 	::7002c	-42451	-29167	-6734	29934	286869	9442	-1279122	1279144
¥-¥	7000a	-10825	26132	-40077	47844	896495	-352602	880825	16/846
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	7005b	-3819	21570	-36715	42582	496624	-324709	958572	1012075
	1.100 Act.		Door to	1000	10.01	opul sui	Scondary of f	cocondary affacts and are	bue lemnon

(All loads include secondary effects and are normal and parallel to the trunnion axis.) Includes Actuating Cylinder Reactions • Indicates Tension

Figure A-2, Table 1. Main Gear Outer Cylinder Ultimate Section Loads

SPF/DB LANDING GEAR

CYLINDER

Cond. 700	5b Sect. [)-D	Materia	1: Ti 6A1-	4V SPF/DB	
Side Torque	P _v	7 LB 57 IN-LB	F _s	76000 76000 117000 16.4 x	psi psi	
$f_{bX} = I$	MC _{x/I} 0	uter	Middle		Inner	
	fb <u>1</u>	15500	<u>99100</u>	{	84430	
Core	$\frac{\Im cr}{n}$ =	K ^τ E 12(1-μ	$(\frac{1}{b/t})^2$	Κ =	4 Simple S	upt.
	= 4	× 15.13686	$\times 10^{6} / (18.03)$	3) ² = 186	6190 psi	
	or =	115200 psi	Ref. Curve	C R _{be}	end = <u>.860</u>	
Skins (Curved Panel	t/R	ocr n	σ cr	R	
or n A	$.3E \frac{t}{R} \times Inne$ = $\frac{13}{R} (A_0)$	r $\frac{.05623}{0.03719}$ + A;) = -	276650 182970 5.2351 in ²	117000 115100	.987 .734	
	fs = 2P _s	/ _A shr	8641 psi		R _s = .11	4
J/r = 2	CYL /R×		J/r	fst	R st	
f	st = T/(J/r)	x Outer Inner				
А	Assume F =	F su				
0	uter	MS =	R _{bend} + 1	-1 =	+.002	

SPF/DB LANDING GEAR

CYLINDER

$$\beta = 27.692^{\circ}$$
 $N = 13 \text{ No. of Segments}$
 $t_{i} = .09 \text{ in}$
 $t_{o} = .186 \text{ in}$
 $t_{n} = .08 \text{ in}$
 $C = .75 \text{ in}$
 $b_{N} = .25 \text{ in}$
 $R_{id} = 2.375 \text{ in}$
 $\overline{t} = t_{i} + t_{o} + t_{N} = .356 \text{ in}$
 $R_{a} = R_{id} + t_{i} = 2.465 \text{ in}$
 $R_{b} = R_{a} + C/2 = 2.840 \text{ in}$
 $R_{b} = R_{a} + C = 3.215 \text{ in}$
 $R_{od} = R_{b} + t_{o} = 3.401 \text{ in}$
 $R_{i} = R_{id} + t_{i}/2 = 2.420 \text{ in}$
 $R_{i} = R_{id} + t_{i}/2 = 2.420 \text{ in}$
 $R_{o} = R_{od} - t_{o}/2 = 3.308 \text{ in}$
 $R_{nc} = R_{a} + t_{N}/2 = 2.505 \text{ in}$
 $h_{c} = C - t_{N} = .670 \text{ in}$
 $S_{x} = R_{x} S_{RAD}; S_{o} = 1.5988 \text{ in}$
 $S_{m} = 1.3726 \text{ in}$
 $S_{m} = 1.3726 \text{ in}$
 $S_{i} = 1.1696 \text{ in}$
 $S_{NC} = 1.2107 \text{ in}$
 $S_{NC} = 1.2107 \text{ in}$
 $S_{NC} = 1.2107 \text{ in}$
 $S_{NC} = 1.5988 \text{ in}$
 $S_{m} = 1.3726 \text{ in}$
 $S_{$

 $t_c = t_N \cos\theta = .0449 in$

$$A_{N} = b_{n}t_{n} = .0200 \text{ in}^{2}$$

$$A_{C} = b_{C}t_{C} = .0363 \text{ in}^{2}$$

$$A_{NC} = S_{NC}t_{N} = .0969 \text{ in}^{2}$$

$$A_{i} = S_{i}t_{i} = .1053 \text{ in}$$

$$A_{o} = S_{o}t_{o} = .2974 \text{ in}$$

$$A_{seg} = A_{NC} + A_{i} + A_{o} = .4996 \text{ in}^{2}$$

$$I_{CORE} = A_{N}(R_{a} + \frac{t_{N}}{2})^{2} + A_{N}(R_{b} - \frac{t_{N}}{2})^{2}$$

$$Pro + 2A_{C}(R_{m})^{2} + A_{C} \frac{(hc)^{2}}{b}$$

$$= .9159 \text{ in}^{4}$$

$$t_{m} = I_{CORE}/(R_{m})^{2}S_{m} = .0827 \text{ in}.$$

SPF/DB LANDING GEAR

CYLINDER

$$R_c = R_m + t_m/2 = \frac{2.8814}{100}$$
 in

$$R_d = R_m - t_m/2 = \frac{2.7986}{}$$
 in

$$I_{CYL} = \frac{\pi}{4} (R_{od}^{4} - R_{b}^{4} + R_{c}^{4} - R_{d}^{4} + R_{a}^{4} - R_{id}^{4}) = \underline{31.1323} in^{4}$$

$$C_{o}/I_{CYL} = R_{o}/I_{CYL} = .1063 \text{ in}^{-3}$$

$$C_{m}/I_{CYL} = R_{m}/I_{CYL} = .0912 in^{-3}$$

$$C_{i}/I_{CYL} = R_{i}/I_{CYL} = .0777 \text{ in}^{-3}$$

$$b_i = S_i - b_n = .9196$$
 in

$$b_0 = S_0 - b_n = 1.3488$$
 in

$$b_0/t_0 = \frac{7.2517}{}$$

$$b_i/t_i = 10.2181$$

$$b_{c}/t_{c} = 18.0326$$

$$t_0/R_0 = .4987$$

$$t_{i}/R_{i} = .2413$$

$$A_{TOTAL} = (No. of Segments) \times A_{SEG} = \frac{6.4948}{100} in^2$$

APPENDIX B

LANDING GEAR TRUSS CORE OUTER CYLINDER STRUCTURAL TEST PLAN

1.0 INTRODUCTION

A main landing gear outer cylinder part made from titanium and using the superplastic formed/diffusion bonded (SPF/DB) process is to be tested.

2.0 OBJECTIVE

To verify that the strength and stability requirements for the F-100 main landing gear outer cylinder are met by the SPF/DB titanium design.

The testing will be done on the basis that the worst-case or critical load condition on the outer cylinder from a strength and stability standpoint is expected to be the axial compression stresses due to bending loads. The three best specimens are to be tested to failure in static axial compression at room temperature.

Since the compression stress due to the bending load is the critical condition, the ability of the truss core cylinder to withstand this stress can be determined using a straight axial compression test rather than a more expensive bending test.

3.0 SPECIMEN DESCRIPTION

The specimens will be a 6-inch section of the outer cylinder, which is titanium in a truss core sandwich configuration made using the SPF/DB fabrication method. The cylinder ends will be ground flat, normal to the cylinder axis and parallel within 0.005-inch per foot to insure uniform load introduction.

Tests will be conducted on the best three specimens which have been NDI inspected and found satisfactory.

4.0 TEST SET-UP

All tests will be conducted using existing equipment currently available at the NAAD Structures Test Laboratory. A schematic of the test setup is shown in figure B-1.

5.0 INSTRUMENTATION

A total of eight axial strain gages will be installed back-to-back on each specimen, with four on the inner face sheet surface and four on the outer face sheet on the midlength centerline at the 90° location around the cylinder perimeter and deflection transducer gages will be used to measure radial deflection of the cylinder wall at points in line with the strain gages and midway between them around the perimeter, figures 8-1 and 8-2.

6.0 PROCEDURE

The loads will be applied in 10 percent increments of predicted ultimate load so that instrumentation readings may be made and recorded. Curves of test machine load versus head deflection will also be recorded. Continuous loading in 10 percent increments will be made to failure, with reading and recording at each increment.

7.0 RESULTS

A complete test report will be made, and the results will be included in the final report.

Figure B-1. SPF/DB Ti MLG Outer Cylinder Segment Test - Side View

Figure B-2. SPF/DB Ti MLG Outer Cylinder Segment Test - End View

APPENDIX C

LANDING GEAR TRUSS CORE OUTER CYLINDER STRUCTURAL TEST ANALYSIS REPORT

1.0 INTRODUCTION

A main landing gear outer cylinder part made from titanium and using the superplastic formed/diffusion bonded (SPF/DB) process was successfully tested to 158 percent of design load. Evaluation of the data in terms of nonlinear behavior indicates that yield (.2 percent offset) occurred at the expected 135 to 139 Ksi test yield value range.

2.0 OBJECTIVE

To verify that the strength and stability requirements for the F-100 main landing gear outer cylinder are met by the SPF/DB titanium design.

The testing was done on the basis that the worst-case or critical load condition on the outer cylinder, from a strength and stability standpoint, is expected to be the axial compression stresses due to bending loads. The cylindrical specimen was tested to failure in static axial compression at room temperature.

Since the compression stress due to the bending load is the critical condition, the ability of the truss core cylinder to withstand this stress was determined using a straight axial compression test rather than a more expensive bending test.

3.0 SPECIMEN DESCRIPTION

The specimen was a 6-inch section of the outer cylinder, which is titanium in a truss core sandwich configuration made using the SPF/DB fabrication method. The cylinder ends were ground flat, normal to the cylinder axis and parallel within 0.005-inch per foot to insure uniform load introduction. The pertinent sandwich face and core thickness dimensions are provided in Section III (figure 34) of the main report. The cross-sectioned area was calculated to be 6.098 square inches based on weighted average thicknesses.

4.0 TEST SET-UP

The test was conducted using a 1500 K test machine at the NAAD Structures Test Laboratory. A schematic of the test setup is shown in figure C-1. A photograph of the test setup is provided in figure 35. the main report.

5.0 INSTRUMENTATION

A total of eight axial strain gages were installed back-to-back on the specimen, with four on the inner face sheet surface and four on the outer face sheet on the mid-length centerline at the 90° location around the cylinder perimeter, and four deflection transducer gages were used to measure radial deflection of the cylinder wall at points in line with the strain

gages and midway between them around the perimeter, figures C-1 and C-2.

6.0 PROCEDURE

The load was applied in 100 kip increments up to 200 kip load. Thereafter the load was applied in 50 kip load increments to failure. This deviates from the test plan that stated the load would be applied in 10 percent increments. Deflection and strain gage readings were measured and recorded at each increment of load level.

7.0 RESULTS

7.1 STRAIN GAGE - DEFLECTION DATA

Axial strain gage readings and radial deflection values are shown in figures C-3 and C-4 respectively. Figure C-5 summarizes the average strain versus test load or stress in graphical form to demonstrate that the test specimen attained its ultimate capability, in that stresses exceeded the conventional 0.2 percent offset yield stress. Based on figure C-5 in average compressive yield stress of 136 ksi was attained. Figure C-6 presents a typical back-to-back strain gage versus load/stress plot which show no buckling instability behavior. The test compressive yield strength of 139 ksi agrees well with the average data of 136 ksi. The 136 - 139 ksi yield strengths correlates very well with expected basic compression coupon test data (135 ksi) from prior programs. Load versus radial deflection data are plotted in figure C-7 and show that there was no general or local instability failures evident below 750 kips. Strain gage data in figures C-5 and C-6 also indicate linear behavior up to about 750 kips.

7.2 TEST VERSUS PREDICTED CORRELATION

Ultimate failure load occurred at 948 kips or a calculated stress of 155 ksi. Due to the excessive lateral deformation, figure C-7 and axial strain, figure C-5, at this load level it should be emphasized that this is not the load to use for structural design. The conventional structural design limits the useable stress level to compressive yield strength as the upper limit and uses a minimum guaranteed or design allowable value lower than that exhibited by actual test data. The predicted design load of 600 kips was based on a material system which had a compressive yield strength of 117 ksi. The estimated yield strength of the test specimen is 136 ksi from figure C-5. The predicted critical load ($P_{\rm CT}$) is therefore assumed proportional to yield strengths and test area which yields a predicted test load of 735 kips.

The comparable test load ($P_{\rm cr}$) is selected from figure C-5 and C-7, at 750 kips where the strain and deflection readings exhibit nonlinearity. Test versus predicted of 750/735 = 1.02 shows excellent correlation.

7.3 BENDING

The test results provided the ultimate capability of the truss core sandwich cylinder under uniaxial compression load. To extend this data for bending moment behavior, the following procedure can be used. For bending in the elastic range, the maximum stress acting on a cross-section normal

Figure C-1. SPF/DB Ti MLG Outer Cylinder Segment Test - Side View

Figure C-2. SPF/DB Ti MLG Outer Cylinder Segment Test - End View

	END 2	1	16,439	32,877	41,097	49,316	57,536	65,755	73,974	82,194	90,413	98,633	106,852	115,071	123,291	131,510	139,729	147,949	155,839	AREA	6.083				
STRESS PS	END 1	_	16,359	32,717	968,04	9/0,64	57,255	65,434	73,614	81,793	89,972	151,86	106,331	114,510	122,689	130,869	139,048	147,227	155,079	AREA	6.113				
	AVERAGE	1	790	1,678	2,119	2,568	3,014	3,464	3,915	4,370	4,824	5,282	5,752	6,241	6,832	7,918	11,313	•							
	8	0	929	1,567	2,031	2,499	2,966,	3,437	3,910	4,384	4,860	5,342	5,838	6,369	690'1	8,644	12,160	∗NR		6 008 :22	111 06				
VE)	7	0	1,157	190,2	2,500	2,939	3,373	3,810	4,248	4,687	5,126	5,563	5,992	804,9	6,857	7,778	946,01	*NR		7 - 20.	נס ו				
RE NEGAT	9	0	995	1,451	1,907	2,368	2,826	3,289	3,756	4,222	4,690	5,164	5,658	6,190	6,867	8,227	12,434	*NR		V	Avelage Alea -	-•	 7	5	-
READINGS ARE NEGATIVE	5	0	1,017	1,880	2,307	2,734	3,159	3,585	4,017	4,443	4,873	5,310	5,759	6,219	6,700	7,374	10,041	*NR		٧	<		- -	3 -	
(ALL	4	0	572	1,501	1,977	2,457	2,936	3,420	3,906	4,394	4,882	5,377	5,890	6,435	7,158	8,678	13,170	∗NR						<u> </u>	
NI/NI = +	3	0	1,014	1,936	2,383	2,832	3,277	3,723	4,172	4,620	5,068	5,519	5,976	6,433	6,954	7,874	11,060	*NR	LED						
STRAIN	2	0	495	1,377	1,785	2,241	2,695	3,154	3,616	4,078	4,542	5,011	5,496	6,009	6,629	7,580	11,230	*NR	FAIL					71	·
	-	0	843	1,656	2,059	2,471	2,881	3,295	3,712	4,129	845,4	4,972	5,408	5,864	6,422	7,090	9,511	⊹NR		_		5	٦		<
LOAD	KIPS	0	100	200	250		350	400	450	200	550	009	650	700	750	800	850	900	846				 _	1	_

Figure C-3, Table 1 SPF/DB Cylinder Test Results - Strain Gages.

*NR DENOTES "NO RECORD"

LOAD KIPS	Α	В	С	D
0	0	0	0	0
100	.0118	.0088	.0029	+.0118
200	.0207	.0146	.0143	+.0266
250	.0266	.0176	.0201	.0295
300	.0295	.0234	.0258	.0384
350	.0354	.0293	.0287	. 0443
400	.0413	.0322	.0344	.0502
450	.0472	.0381	.0401	.0561
500	. 0532	.0410	.0430	.0591
550	.0591	.0469	.0487	.0680
600	. 0650	.0527	.0544	.0739
650	.0709	.0557	.0573	.0769
700	.0760	.0615	.0602	.0827
750	.0856	.0644	.0630	.0887
800	.1063	.0703	.0659	.1035
850	.1506	.0937	.0802	.1360
900	.2392	.1434	.1117	. 2099
948	*NR	*NR	*NR	*NR

ALL READINGS NEGATIVE EXCEPT
AS SHOWN

*NR DENOTES "NO RECORD"

Figure C-4, Table 2. SPF/DB Cylinder Test Results - Radial Defl. (Inch)

Figure C-5. Load/Stress-Strain - Average Strain Gage Data

Figure C-6. Load/Stress-Strain, Gages No. 1 & 2

	P ₁	P ₂	P=P2-P1	ΔL1	ΔL ₂	ΔL
Α	18	700	682	0	.076	.076
В	50	700	650	0	.060	.060
С	0	700	700	0	.057	.057
D	0	700	700	0	.083	.083

Figure C-7. Test Load versus Radial Deflection

to the longitudinal axis is given by the conventional flexure formula:

$$f_b = \frac{My}{l}$$
 where: M = Bending Moment
y = Outer radius distance
l = Moment of inertia of cross-section

For inelastic or plastic bending and to use the nonlinear portion of the stress-strain curve, the concept of "bending modulus of rupture, F_b " can be used. This "effective" (fictitious) maximum bending stress, F_b , based on trapezoidal theory is

$$F_b = \frac{M y}{1} = f_1 + f_2 \left(\frac{20}{1/y} - 1 \right)$$

where: f_1 = stress at the outer face sheet

f₂ = intercept stress = stress required for a trapezoidal stress distribtuion to produce the same moment about the neutral axis as the actual stress distribution on the area between the neutral axis and the outer face sheet.

Q = Statical Moment

The term $\frac{2 \text{ Q}}{1/\text{y}}$ is defined as the section factor K and for the truss core sandwich cylinder configuration described in this section is 1.36. (For single thickness tube sections, this valve ranges from 1.27 to 1.70 depending on wall thickness.) The estimated:

$$F_b = f_1 + f_2 (K - 1)$$

where:
$$f_1$$
 = Maximum allowable stress in extreme fiber = F_{cy} = 136 ksi (test)

 f_2 = Intercept stress = 41 ksi

 K = 1.36

 f_b = 136 x 41 (.36) = 151 ksi

The predicted test moment is:

$$M = [f_1 + f_2 (K-1)] \frac{1}{R_0} = F_b \frac{1}{R_0}$$

where: R_0 = Radius of outer shell = [151] 27.29/3.31 = 1245. in-Kips

Test verification is recommended for bending behavior.

8.0 CONCULSIONS

The significant finding is that the nonlinear behavior above 750 kips load indicates material yielding and that the outer surface of the cylinder symmetrically deformed radially outward at the four deflection monitoring locations. The final failure load of 948 kips or 158 percent of the design load of 600 kips is the ultimate capability of this test configuration. However, for uniaxial compression load it is recommended that a structure of this type be designed up to a maximum of the conventional compressive yield cutoff or less to account for material nonlinearity behavior.

However, for bending moment loads, the material nonlinearity can be used such as in the case for conventional unstiffened tubing to obtain an effective bending modulus of rupture F_b . For preliminary structural design an effective F_b equivalent to 151/136 or 1.11 F_b can be used for this specific configuration. Generally for tube sections bending allowables are determined empirically and additional experimental verification is recommended.

```
(PREDICTED DESIGN LOAD)
   Inner t = .175 (before machining)
      Reduce to .090 Note: (After machining:
                                   Actual Average t = .096 inch
                                   Min. Meas. t = .082 inch)
      Dia. = 4.500 + (2 \times .0858) = 4.6716
                                   2.3358
  Outer t = .1598
     R_{od} = 6.780/_2 = 3.390
  Assuming: t_N = .072 spaced equally with N = 13
  \beta = 27.692^{\circ} = .483317 \text{ RAD}.
  t = .090
  t_0 = .1598
  t_N = .072 b_N = .25
  C = 1.140 - .0858 - .090 - .1598 = .8044
  R_{id} = 2.3358
  \frac{-}{t} = .3218
  R_a = 2.3358 + .090 = 2.4258
  R_{M} = 2.4258 + .4022 = 2.8280
  R_{h} = 2.4258 + .8044 = 3.2302
                                        R_{i} = 2.3350 + .0450 = 2.3808
  R_{OD} = 3.2302 + .1598 = 3.390
                                        R_0 = 3.3900 - .0799 = 3.3101
  R_{nc} = 2.4258 + .0360 = 2.4618
  h_c = .8044 - .072 = .7324
  S_x = R_x \beta_{RAD}
                S = 1.5998
                   S_{M} = 1.3668
```

 $S_{i} = 1.1507$

 $S_{nc} = 1.1898$

$$\begin{split} L_1 &= 2 \, R_1 \, \text{SIN} \, \frac{8}{2} \, = 2 \, \times 2.3808 \, \times .239313 \, = 1.1395 \\ \text{TANO} &= 2 \, \times .7324/1.1395 \, - .25 \, = 1.64677 \, \qquad \theta \, = 58.73^{\circ} \\ b_c &= .7324/S1N0 \, = .8569 \\ t_c &= .072 \, \times \, \text{COSO} \, = .0374 \\ A_N &= .25 \, \times .072 \, = .0180 \\ A_c &= .8569 \, \times .0374 \, = .0320 \\ A_{NC} &= 1.1898 \, \times .072 \, = .0857 \\ A_1 &= 1.1507 \, \times .090 \, = .1036 \\ A_0 &= 1.5998 \, \times .1598 \, = .2556 \\ A_{SEG} &= .0857 \, + .0136 \, + .2556 \, = .4449 \, \ln^2 \\ A_{TOTAL} &= 13 \, \times .4449 \, = 5.7837 \, \ln^2 \\ I_{CORE} &= .0180 \, (2.4258 \, + .036)^2 \, + .0180 \, (3.2302 \, - .036)^2 \\ &+ 2 \, \times .0320 \, (2.8280)^2 \, + .032 \, (.7324)^2/_6 \, = .80745 \, \ln^4 \\ t_M &= I_{CORE}/R_M^2 \, S_M \, = .80745/2.8280^2 \, \times 1.3668 \, = .0739 \\ R_c &= 2.8200 \, + .0370 \, = 2.8650 \\ R_d &= 2.8280 \, - .0370 \, = 2.7910 \\ I_{CYL} &= \frac{\pi}{4} \, (3.3900^4 \, - \, 3.2302^4 \, + 2.8650^4 \, - \, 2.7910^4 \, + 2.4258^4 \, - \, 2.3358^4) \\ &= 27.29400 \, \ln^4 \\ C_{O/I_{CYL}} &= .12128 \, C_{m/} \, = .10361 \, C_{1/} \, = .08723 \\ b_1 &= .9007 \\ b_0 &= 1.3498 \\ b_0/t_0 &= 8.447 \\ c_0 \\ b_1/t_1 &= 10.008 \\ b_1/t_1 &= 10.008 \\ b_2/t_0 &= 22.912 \\ c_0 \end{aligned}$$

$$t_{o/R_{o}} = .0483$$

$$t_{i/R_{i}} = .0378$$

Allow Load (Local Instability)

Core A =
$$.0857 \text{ in}^2/\text{SEO}$$

$$\frac{\sigma_{cr}}{\eta} = K \frac{\pi^2 E}{12(1-\mu^2)} \left(\frac{1}{b/t}\right)^2 = 4 \times 15.1368 \times 10^6 \left(\frac{1}{22.912}\right)^2$$

= 115300 psi

$$\sigma_{cr} = 105200 \text{ psi}$$

$$P_{cr} = 105200 \times .0857 \times 13 = 117203 LBS$$

SKINS - Curved Panel (Assume Core - Stabilizes faces)

$$\frac{\sigma_{cr}}{\eta} = .3E t_x/R_x$$

** Let revised
$$P_{cr} = \frac{F_{cy} \text{ (Test)}}{F_{cy} \text{ (Design)}} \times F_{cr} \times A_{Test}$$

$$(A_{test} = 6.098 \text{ in}^2) = \frac{136.}{117.} \times 103.7 \times 6.098 = 735 \text{ KIPS Predicted}$$

* Based on material with $F_{cy} = 117 \text{ KSI}$

** Adjusted for material with F = 136 KSI

DAT FILM

DT