Теоретический минимум 2

Двухсеместровый курс

1. Продолжите равенства $(\lambda + \mu)a = ...$ и $\lambda(a+b) = ...$, где $\lambda, \mu \in \mathbb{F}$ — элементы из поля, а $a,b \in L$ — элементы линейного пространства.

$$(\lambda + \mu)a = \lambda a + \mu a$$
$$\lambda(a+b) = \lambda a + \lambda b$$

- 2. Используя аксиомы линейного пространства и следствия из него, покажите, что $(-\lambda)a = \lambda \cdot (-a)$ и $\lambda(a-b) = (-\lambda)(b-a)$, где $\lambda \in \mathbb{F}$ элемент из поля, а $a,b \in L$ элементы линейного пространства.
- 1) $(-\lambda)a=|$ следствие в поле $\mathbb{F}|=(-1\lambda)a=|$ аксиома $|=-1\lambda a=|$ аксиома $|=\lambda(-1a)=|$ следствие в ЛП $L|=\lambda(-a)$
- 2) $\lambda(a-b) = |\text{по определению разности}| = \lambda(a+(-b)) = |\text{дистр.}| = \lambda a + \lambda(-b) = |\text{коммут.}| = \lambda(-b) + \lambda a = |\text{по предыдущему}| = -\lambda b + -\lambda(-a) = |\text{дистр.}| = -\lambda(b+(-a)) = -\lambda(b-a)$
- 3. Какие линейные пространства называются вещественными? Комплексными?

Линейные (векторные) пространства над полем $\mathbb R$ называются **вещественными**, над $\mathbb C$ — **ком**-плексными.

4. Какое пространство называется арифметическим (координатным) над полем \mathbb{F} ?

Арифметическое (координатное) пространство — множество \mathbb{F}^n столбцов высоты n с элементами из \mathbb{F} относительно операций поэлементного сложения и умножения на числа.

5. Почему вещественные многочлены $\mathbb{R}[x]$ фиксированной степени n с естественными операциями сложения и умножения на скаляр не являются линейным пространством? Какая аксиома линейного пространства нарушается?

Многочлены $\mathbb{R}^{=n}_{[x]}$ не являются ЛП, т.к. не замкнуто относительно сложения.

Пусть
$$p(x) = x^2 - 1$$
, $q(x) = -x^2 \Rightarrow p(x) + q(x) = -1$ $deg(p(x)) = deg(q(x)) = 2 \neq 1 = deg(-1) = deg(p(x) + q(x))$

6. Сформулируйте определение линейной комбинации векторов.

Выражение вида $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n (\lambda_i \in \mathbb{F})$ называется **линейной комбинацией векторов** $a_1, ..., a_n \in L$. Скаляры λ_i называются коэффициентами линейной комбинации.

1

7. Сформулируйте определение линейной оболочки. Как обозначается линейная оболочка векторов из множества S?

Линейной оболочкой подмножества $S \subseteq L$ называется множество всех векторов из L, представимых в виде конечных *линейных* комбинаций элементов из S. Она обозначается $\langle S \rangle$ или span(S).

8. В каком случае пространство L порождается множеством векторов S?

Пространство L порождается множеством S, если $\langle S \rangle = L$, т.е. L является линейной оболочкой множества S.

9. Какая линейная комбинация векторов называется тривиальной? Нетривиальной?

Линейная комбинация векторов тривиальна, если все коэффициенты равны 0. Линейная комбинация $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n$ векторов $a_1, ..., a_n \in L$, где $\lambda_i \in \mathbb{F}$ называется тривиальной, если $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$, и нетривиальной в противном случае.

10. В каком случае векторы называются линейно зависимыми? Независимыми?

Векторы линейно зависимы $\Leftrightarrow \exists$ их нетривиальная линейная комбинация.

Векторы $a_1, ..., a_n \in L$ называются **линейно зависимыми**, если существует их нетривиальная линейная комбинация, равная нулю, и **линейно независимыми** в противном случае.

11. Дайте определение понятия системы векторов? Чем система отличается от множества?

Система векторов — множество векторов, у которого

- 1. Векторы системы занумерованы (если не менять сами векторы, но поменять лишь их нумерацию, получим уже другую систему);
- 2. Среди них могут быть равные.

12. В каком случае система векторов называется линейно зависимой?

Система векторов линейно зависима ⇔ ∃ нетривиальная линейная комбинация векторов.

Система векторов $a_1, ..., a_n \in L$ называется **линейно зависимой**, если существует нетривиальная линейная комбинация векторов, равная нулю, и **линейно независимой** в противном случае.

13. Может ли система, состоящая из одного вектора, быть линейно зависимой? Почему?

Система, состоящая из нулевого вектора $0_L \in L$ линейно зависима, потому что можно представить нулевой вектор, как тривиальную линейную комбинацию из нулевого вектора: $0_L = \lambda 0_L$, $\forall \lambda \in \mathbb{F}$. L - линейное пространство над полем \mathbb{F} .

14. Сформулируйте определение базиса линейного пространства.

Система векторов $e_1, e_2, ..., e_n \subseteq L$ называется **базисом** векторного пространства L, если каждый вектор $a \in L$ единственным образом выражается через $e_1, e_2, ..., e_n$. Коэффициенты этого выражения называются координатами вектора a в данном базисе.

Базис векторного пространства V — всякая линейно независимая система, порождающая пространство L.

15. Может ли в линейно независимой системе векторов быть линейно зависимая подсистема? Почему?

Нет, если в системе существует ЛЗ подсистема, то система ЛЗ.

Если бы было верно обратное, то мы могли бы принять $\lambda_i = 0$ для всех векторов системы кроме векторов из линейно зависимой подсистемы и получить, что вся система линейно зависима, т.к существует некоторая $\lambda_n \neq 0$.

16. Укажите возможный базис пространства \mathbb{F}^n .

Векторы $(a_1,0,0,...,0), (0,a_2,0,...,0)$... $(0,0,0,...,a_n)$, где $a_i\neq 0$.

17. Приведите пример базиса в пространстве матриц размерности 2×3 .

Матричные единицы — матрицы в каждой из которых ровно 1 элемент равен 1, а остальные 0.

$$\left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

18. Что называется размерностью векторного пространства? Как обозначается размерность пространства L?

Размерность линейного пространства — количество векторов в произвольном базисе линейного пространства. Обозначается как dimL.

19. Чему равна размерность пространства $\{0\}$?

 $dim\{0\} = 0$, потому что базисом пространства $\{0\}$ по определению является пустая система.

20. Какое линейное пространство называется конечномерным? Бесконечномерным?

Если $dimL < \infty$, то пространство называется конечномерным, иначе бесконечномерным.

21. В каком случае подмножество $U \subset L$ будет являться подпространством L?

 $U \leq L$, если

- 1. $\langle U, + \rangle$ аддитивная абелева группа;
- 2. $a \in U \Rightarrow \lambda a \in U, \forall \lambda \in F$ замкнуто относительно умножения на скаляр.

22. Какие подпространства L называются тривиальными?

В любом пространстве L есть **тривиальные** подпространства $\{0\} \le L, L \le L.$

23. Как связаны размерности подпространства и пространства, если они конечномерны?

Размерность подпространства меньше либо равна размерности пространства.

Пусть $V \leq L$, тогда $dimV \leq dimL$

24. Какое множество называется линейным многообразием? Как определяется его размерность?

Пусть $U \leq L, a \in L$. Множество векторов вида $M = a + U = a + u | u \in U$ называется **линейным многообразием** параллельным подпространству $U.\ dim M = dim U$

25. При каком условии линейное многообразие называют гиперплоскостью в линейном пространстве? Как иначе называют гиперплоскость в пространстве dimV = 2.

Линейное многообразие называют **гиперплоскостью**, если размерность линейного многообразия равна dimV-1, где V – линейное пространство, над которым было построено линейное многообразие. В пространстве с размерностью 2 гиперплоскость называется **прямой**.

26. При каком условии линейное многообразие является подпространством?

Линейное многообразие является подпространством только при условии $a \in U$. При этом оно совпадает с U - линейным подпространством L.

27. В каком случае размерность подпространства $U \le V$ совпадает с размерностью пространства V?

Если их базисы совпадают.

28. Напишите размерности пространства диагональных матриц $Mat_n^D(\mathbb{R})$, пространства полиномов $\mathbb{R}[x]_{\leq n}$ степени не выше n, комплексного арифметического пространства $\mathbb{C}n$.

$$n, n + 1, 2$$

29. Какие линейные пространства называются изоморфными?

Векторные пространства U и V над полем $\mathbb F$ называются **изоморфными**, если существует такое биективное отображение $\varphi: V \to U$, что

1)
$$\varphi(a+b) = \varphi(a) + \varphi(b) \ \forall a, b \in V;$$

2)
$$\varphi(\lambda a) = \lambda \varphi(a) \ \forall \lambda \in F, a \in V.$$

30. Благодаря чему существует возможность построить изоморфизм между линейным пространством и координатным пространством той же размерности?

Пусть $e_1, e_2, ..., e_n$ — базис V . Рассмотрим отображение $\varphi: V \to F^n$, которое ставит в соответствие каждому вектору из V его координатную строку в базисе.

$$\forall a \in V\varphi : a \mapsto (a_1, a_2, ..., a_n).$$

 $a = a_1e_1 + a_2e_2 + ... a_ne_n$ В силу определения базиса оно биективно.

Рассмотрим $a = \sum_{i=1}^{n} a_i e_i$ и $b = \sum_{i=1}^{n} b_i e_i$.

$$a+b=\sum_{i=1}^{n}(a_i+b_i)e_i$$

$$\lambda a = \sum_{i=1}^{n} \lambda_i e_i$$

Из этого следует, что φ — изоморфизм.

31. Почему изоморфность линейных пространств является отношением эквивалентности?

Изоморфность линейных пространств — это отношение эквивалентности, т.к. оно рефлексивно, симметрично и транзитивно.

32. Назовите достаточное условие того, чтобы линейные пространства были изоморфными.

Любые два векторных конечномерных пространства одной размерности над одним полем изоморфны.

33. Сформулируйте определение ранга матрицы.

Рангом системы векторов называется размерность её линейной оболочки.

$$rg\{a_i\}_{i=1}^n = dim(span\{a_i\}_{i=1}^n)$$

Строчным (столбцовым) рангом матрицы называется ранг системы её строк (столбцов).

Минорным рангом матрицы называется наибольший порядок отличного от нуля минора матрицы. Сам этот минор называется базисным.

Минорный, столбцовый и строчный ранги матрицы совпадают, поэтому можно говорить просто о ранге матрицы.

34. Дайте определение базисного минора.

В матрице A размеров $m \times n$ минор r-го порядка называется базисным, если он отличен от нуля, а все миноры (r+1)-го порядка равны нулю или их вообще не существует.

35. Сформулируйте теорему о базисном миноре.

Столбцы (строки), пересекающие базисный минор матрицы, линейно независимы. Любой столбец (строка) матрицы является линейной комбинацией базисных.

36. Как найти ранг ступенчатой матрицы?

Посчитать количество ее ненулевых строк.

37. Сформулируйте теорему о ранге суммы и произведения матриц.

- 1) $rank(A + B) \le rankA + rankB$;
- 2) $rank(AB) \leq minrankA, rankB$.

38. О чём говорит характеристика совместности СЛАУ? Несовместности?

Совместная СЛАУ имеет решения, а несовместная их не имеет.

39. Напишите теорему Кронекера-Капелли.

Теорема Кронекера-Капелли. СЛАУ совместна тогда и только тогда, когда ранг её матрицы коэффициентов равен рангу расширенной матрицы.

$$Ax = b$$
 - совместна $\Leftrightarrow rk(A) = rk(A|b)$

40. Что можно сказать о решениях СЛАУ, если rk(A|b) = rk(A) = n, где n – количество неизвестных, rk(A|b), rk(A) - ранги расширенной матрицы и матрицы коэффициентов соответственно?

Существует единственное решение (определённая СЛАУ).

41. Что можно сказать о решениях СЛАУ, если rk(A|b) = rk(A) + 1, где rk(A|b), rk(A) – ранги расширенной матрицы и матрицы коэффициентов соответственно?

Решений нет.

42. Что можно сказать о решениях СЛАУ, если rk(A|b) = rk(A) < n, где n – количество неизвестных, rk(A|b), rk(A) – ранги расширенной матрицы и матрицы коэффициентов соответственно?

Существует больше одного решения (неопределённая СЛАУ).

43. В каком случае СЛАУ называется однородной? Неоднородной?

СЛАУ называется **однородной**, если столбец свободных членов является нулевым вектором. Ax = b **однородная**, если b = 0, **неоднородная**, если $b \neq 0$.

44. Какой алгебраической структурой обладает множество решений однородной СЛАУ?

Множество $X=\{x\in\mathbb{F}^n|Ax=0\}$ решений однородной СЛАУ образует линейное подпространство $X\leq F^k$

45. Когда однородная СЛАУ имеет ненулевое решение?

Если число уравнений в однородной СЛАУ меньше числа неизвестных, то она всегда имеет ненулевое решение.

46. Чему равна размерность пространства X решений однородной СЛАУ с n неизвестными и матрицей коэффициентов A?

$$dim X = n - rkA$$

47. Сформулируйте определение ФСР (фундаментальной системы решений).

Базис пространства решений однородной СЛАУ называется **фундаментальной системой решений** (**ФСР**).

48. Что называется общим решением однородной СЛАУ?

Общим решением однородной СЛАУ называется линейная комбинация векторов ФСР:

$$x_0 = \sum_{i=1}^{n-r} \lambda_i e_i \ \forall \lambda_i \in \mathbb{F}$$

49. Опишите способ задания подпространства как решения однородной СЛАУ?

- 1) Определите размерность подпространства k, которое вы хотите задать.
- 2) Выберите матрицу коэффициентов A размерности $m \times n$ так, чтобы rank(A) = n k.
- 3) Решите однородную систему Ax = 0.

Решения системы образуют линейное пространство размерности k.

50. Запишите теорему о структуре решений неоднородной СЛАУ.

Общее решение неоднородной СЛАУ вида Ax = b является суммой общего решения однородной x_0 и произвольного частного решения \tilde{x} неоднородной:

$$x= ilde{x}+x_0= ilde{x}+\sum_{i=1}^{n-r}\lambda_ie_i,\, orall \lambda i\in F,$$
 где $Ax_0=0$ и $A ilde{x}=b.$

51. Запишите альтернативу Фредгольма.

Если в СЛАУ Ax = b число уравнений равно числу неизвестных, то

- либо она имеет единственное решение при любых значениях правой части,
- \bullet либо однородная СЛАУ Ax = 0 обладает ненулевым решение.

52. Пусть $U, W \leq L$. Как определяется сумма U и W?

Пусть U и W — подпространства векторного пространства V . Минимальное подпространство, содержащее оба подпространства U и W, называется **суммой подпространств** U и W и обозначается U+W.

To есть, если $U, W \leq U$, то $U + W = u + w | v \in U, w \in W \leq V$.

53. Из каких элементов состоит пересечение подпространств U и W? Как обозначается пересечение пространств?

Пусть U и W — подпространства векторного пространства V . Пересечение $U \cap W$ множеств U и W замкнуто относительно операций из V и является подпространством V. Оно называется **пересечением подпространств** U и W. То есть $U \cap W = v | v \in U \lor v \in W \le V$.

54. Какой из операций с подпространствами U и V определяется наименьшее подпространство, содержащее оба эти подпространства?

U+V, т.е. сумма.

55. Какой из операций с подпространствами U и V определяется наибольшее подпространство, которое содержится в обоих подпространствах?

 $U \cap W$, т.е. пересечение.

56. В каком случае базис называется согласованным с подпространством?

Базис пространства V называется согласованным с подпространством U, если U является линейной оболочкой какой-то части базисных векторов пространства V

57. Напишите формулу Грассмана.

Для любых двух конечномерных подпространств U и W произвольного векторного пространства V верно равенство $dim(U+W)=dimU+dimW-dim(U\cap W)$.

58. В каком случае сумма подпространств U и W называется прямой? Как обозначается прямая сумма этих пространств?

Сумма U+W называется **прямой**, если для любого вектора $v \in U+W$ представление v=u+w, где $u \in U, w \in W$ единственно. Прямая сумма обозначается $U \oplus W$ или $U \dot{+} W$.

59. Сформулируйте необходимое и достаточное условие, при котором сумма двух подпространств является прямой.

Для того, чтобы сумма двух подпространств U и W была прямой, необходимо и достаточно, чтоб их пересечение было нулевым.

60. Пусть $U \leq V$. Какое пространство называется прямым дополнением U в V ?

Пусть $U \leq V$. Подпространство $W \leq V$ называется **прямым дополнением** к U в V , если $V = U \oplus W$.

61. Пусть $\bigoplus_{i=1}^n U_i = V$. Что называется проекцией вектора $v \in V$ на подпространство U_i ?

Проекцией вектора v на подпространство U_i называется вектор u_i из разложения вектора v на сумму векторов подпространств U_i .

62. Что позволяет представить конечномерное пространство в виде прямой суммы одномерных пространств?

Разложение векторов пространства по базису.

63. Дайте определение матрице перехода. Как она обозначается?

Матрица перехода — это матрица, которая содержит координаты векторов нового базиса, записанные в координатах старого базиса.

Невырожденная матрица T перехода от базиса $\{e_i\}_{i=1}^n$ к базису $\{\tilde{e}_i\}_{i=1}^n$.

Обозначается $T = (e \leadsto \tilde{e})$

64. Как связать с помощью матрицы перехода две строки, элементы которых являются базисными векторами?

Пусть $e = e_1, e_2, ..., e_n$ — некоторый базис в V и $\tilde{e} = \tilde{e}_1, \tilde{e}_2, ..., \tilde{e}_n$ — другая, в общем случае отличная от первой, система векторов из V. Выразим векторы системы $\{\tilde{e}_i\}_{i=1}^n$ через базисные векторы.

$$\begin{cases} \tilde{e}_1 = c_{11}e_1 + c_{21}e_2 + \dots + c_{n1}e_n \\ \tilde{e}_2 = c_{12}e_1 + c_{22}e_2 + \dots + c_{n2}e_n \\ \dots \\ \tilde{e}_n = c_{1n}e_1 + c_{2n}e_2 + \dots + c_{nn}e_n \end{cases}$$

 $m \dot{M}$ атрица $T=(au_{ij})$ получается выписыванием координат векторов системы относительно базиса в столбцы.

Можно записать: $(\tilde{e}_1, ..., \tilde{e}_n) = (e_1, ..., e_n)T$

65. Запишите свойства матрицы перехода.

- 1. $(e \leadsto e) = E$
- 2. $(e \leadsto f) = (e \leadsto g)(g \leadsto f)$
- 3. $(e \leadsto f)$ обратима и $(e \leadsto f)^{-1} = (f \leadsto e)$

66. Пусть $C = (e \leadsto \tilde{e})$ — матрица перехода, \tilde{X}, X — координатные столбцы вектора $x \in V$ в базисе e и \tilde{e} соответственно. Запишите связь между перечисленными объектами.

Пусть V — конечномерное векторное пространство, e и \tilde{e} — базисы. Тогда для любого вектора $x \in V$ выполнено $\tilde{X} = (\tilde{e} \leadsto e) X$.

67. Какое преобразование называется контравариантным?

Преобразование столбца координат из одного базиса в другой.

Обратим внимание: чтобы получить столбец координат в новом базисе, нужно слева умножить столбец его координат в старом базисе на матрицу, обратную к матрице перехода от старого базиса к новому.

68. Что такое полная линейная группа и как она обозначается?

Множество невырожденных квадратных матриц n-го порядка с операцией умножения называется полной линейной группой и обозначается GL(n).

69. Что такое специальная линейная группа и как она обозначается?

Специальной линейной группой SL(n) называется группа, которая образована подмножеством GL(n) квадратных матриц, определитель которых равен 1.

70. Какие матрицы содержатся в унитреугольной группе?

Верхнетреугольные матрицы, все диагональные элементы которых равны 1.

71. Каким свойством обладают ортогональные матрицы по определению?

Вещественная квадратная матрица C называется ортогональной, если $C^T = C^{-1}$, то есть $C^T C = CC^T = E$.

72. Запишите общий вид матрицы поворота в двумерном пространстве.

$$\begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}$$

73. Какие объекты необходимо задать, чтобы определить элемент евклидовой группы?

Необходимо задать ортогональную матрицу A и вектор сдвига $b \in \mathbb{R}$ для $x \mapsto Ax + b$.