DIFERENCIABILIDADE (CONTINUAÇÃO)

PROPRIEDADES DO VETOR GRADIENTE

Vimos já anteriormente que chamamos **Gradiente** de f ao vetor ∇f com:

$$\nabla f = (f_{x_1}', \dots, f_{x_n}')$$

Nota: em \mathbb{R}^2 temos $\nabla f = (f_x', f_y')$ e em \mathbb{R}^3 temos $\nabla f = (f_x', f_y', f_z')$

Vimos ainda que as derivadas direcionais podem também ser calculadas via gradiente, na forma:

$$D_{\vec{u}} f = f'_{\vec{u}} = \nabla f(P) \diamond \frac{\vec{u}}{\|\vec{u}\|}$$

PROPRIEDADE 1: GRADIENTE E A TAXA DE VARIAÇÃO DE F

Se considerarmos $f: D \subset \mathbb{R}^n \to \mathbb{R}$, $e \ P_0 \in int(D)$, a derivada direcional $D_{\vec{u}} \ f(p_0)$, que em termos práticos se traduz na **taxa de variação**, de uma função diferenciável atinge o seu valor máximo quando $\vec{u} = \nabla f(p_0)$, sendo esse valor máximo igual a $\|\nabla f(p_0)\|$, e atinge o valor mínimo quando $\vec{u} = -\nabla f(p_0)$, sendo esse valor mínimo igual $-\|\nabla f(p_0)\|$.

PROPRIEDADE 2: GRADIENTE E O VETOR ORTOGONAL A N_k

Sejam D aberto e $f: D \subset \mathbb{R}^n \to \mathbb{R}$ diferenciável em D. Então para todo $e P_0 \in N_k$ (f) = $\{X \in D: f(X) = k\}$, o gradiente = $\nabla f(p_0)$, se não é um vetor nulo é um vetor ortogonal ao Conjunto de nível N_k (f) em p_0 .

 $\underline{\operatorname{Em}\,}\mathbb{R}^2$, o gradiente = $\nabla f(p_0)$, ou é um vetor nulo é um vetor ortogonal à Curva de nível N_k (f) em p_0

 $\underline{\operatorname{Em}} \ \mathbb{R}^3$, o gradiente = $\nabla f(p_0)$, ou é um vetor nulo é um vetor ortogonal à Superfície de nível N_k (f) em p_0

PROPRIEDADE 3: GRADIENTE E O VETOR ORTOGONAL A G_{f}

Caso particular: Seja $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ diferenciável em D (aberto). O gráfico de $f, G(f) = \{(x,y,f(x,y)) \mid (x,y) \in D\}$ é em particular um conjunto de nível $G(f) = N_0(g) = \{(x,y,z) \in \mathbb{R}^3 \mid f(x,y)-z=0\}$, pelo que o gradiente de $g, \nabla g(x_0,y_0,z_0) = (\frac{\partial f}{\partial x}(x_0,y_0),\frac{\partial f}{\partial y}(x_0,y_0),-1) \neq \vec{0}$, é um vector ortogonal à superfície de nível $N_0(g) = G(f)$, isto é, ao gráfico de f, no ponto $(x_0,y_0,z_0)=f(x_0,y_0)$.

PROPRIEDADE 4: GRADIENTE E O PLANO TANGENTE

Se a superfície é dada pelo G_f , gráfico de f, isto é, por uma equação do tipo $\mathbf{z}=f(x,y)$, onde f é diferenciável num ponto $p_0=(x_0,y_0)$ (interior ao domínio de f), então o plano tangente a G_f no ponto $(p_0,f(p_0))$ é dado por z=A(x,y), em que A(x,y) é a linearização de f, isto é, $A(x,y)=f(x_0,y_0)+\nabla f(x_0,y_0)\cdot (x-x_0,y-y_0)$.

Podemos também encontrar o plano tangente a G_f calculando um vetor ortogonal ao mesmo no ponto $(p_0\ ,f(p_0\))$. Vimos atrás que $\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},-1\right)$ é um vetor ortogonal ao gráfico de f no ponto $(p_0\ ,f(p_0\))$, então o plano tangente ao gráfico de f em $(p_0\ ,f(p_0\))$ pode ser descrito como o conjunto dos vetores com base em p_0 que são perpendiculares a $\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},-1\right)$, ou seja:

$$\{(x,y,z): (x-x_0,y-y_0,z-f(p_0)) \circ (\frac{\partial f}{\partial x}(p_0),\frac{\partial f}{\partial y}(p_0),-1) = 0\}$$

Se a superfície é dada pelo conjunto de nível N_k (f) , isto é, por uma equação do tipo f(x,y,z)=k, então calcular o plano tangente a N_k (f) no ponto $p_0=(x_0,y_0,z_0)$ é facilitado calculando primeiro o vetor gradiente $\nabla f(x_0,y_0,z_0)$, que se este for não nulo então é um vetor ortogonal ao plano tangente. Então o plano é dado por:

$$\{(x,y,z): (x-x_0,y-y_0,z-z_0) \circ (\frac{\partial f}{\partial x}(p_0),\frac{\partial f}{\partial y}(p_0),\frac{\partial f}{\partial z}(p_0)) = 0\}$$

EXERCICIOS PROPOSTOS (SLIDES DE ESTUDO AUTONOMO)

- 1. Determine a direcção e o sentido em que se atinge o valor máximo e o valor mínimo da derivada
 - direccional das seguintes funções nos pontos indicados:
 - (a) $f(x,y) = x^2y^3$ no ponto (1,1).
 - **(b)** f(x, y, z) = sen(xy) sen(yz) no ponto (0, 1, 0).
 - (c) $f(x, y, z) = xyz + x^2$ no ponto (1, 1, 0).
- 2. Determine as equações do plano tangente e da reta normal aos graficos das seguintes funções nos pontos indicados:
 - (a) f(x,y) = xy no ponto (1,2,2).
 - **(b)** $f(x,y) = x^2 y^2$ no ponto (1,0,1).
 - (c) $f(x,y) = \ln(x+y)$ no ponto $(1, 1, \ln 2)$.
- 3. Determine as equações do plano tangente e da reta normal às seguintes superfíes de nível nos pontos indicados:
 - (a) $x^2 + xy + 2z = 1$ em (-2, 4, 3).
 - **(b)** $y \operatorname{sen}(x) z^2 = 2 \operatorname{em}(\frac{\pi}{4}, \sqrt{2}, 1).$
 - (c) (elipsóide) $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$ em (-2, 1, -3).
 - (d) $\cosh(xy) + xy + yz = 5 \text{ em } (0, 1, 4).$