

Index

Numbers

0MQ, 909
2.4 GHz band, 516
5 GHz band, 516
6 GHz band, 516
802.1p, 957
802.1q, 957
802.1x, 595, 758, 957
authentication process flow, 759–760
components, 758
EAP methods, 760–762
roles, 758–760
802.11, 533–535. See also wireless

networks and theory

A

AAA (authentication, authorization, and accounting), 796, 803, 958 configuring for network device access control, 805–809 RADIUS, 804–805 TACACS+, 803–804 use cases, 803 verification, 809 AAR (Application-Aware Routing), 665–666 ABR (area border router), 205–206, 957

absolute timeout command, 802–803

access layer, 625-627, 957 access ports, 11–12, 957 access-list command, 782–784 ACL (access control list), 295, 781–782, 957 AS Path filtering, 309–311 conditional debugging, 692–693 configuring for CoPP, 817–818 controlling access to vty line, 796-797 downloadable, 788 extended, 296 named, 784–785 numbered, 782–783 numbered extended, 783-784 port, 785–786 standard, 295-296 VLAN, 786-788 wildcard mask, 782 Active state, BGP, 254 AD (administrative distance), 132, 133–135, 957 address family, 248, 957 adjacency table, 29 advertisements BGP. 260-261 OSPF, default route, 187-188 VTP (VLAN Trunking Protocol), 97 AF (Assured Forwarding) PHB, 388-390

agent-based automation tools. See

automation tools

agentless automation tools. See automation tools	radiation pattern, 560–562 RSSI (received signal strength indica-
aggregate-address command, 267-274	tor), 530–531
as set keyword, 276–277	spatial multiplexing, 535-536
summary-only keyword, 272	wave propagation, 513–514
AIGP (Accumulated Interior Gateway	Yagi, 565–569
Protocol), 323-324	anycast gateway, 656
algorithm	API (application programming
distance vector, 128-129	interface), 850-855, 857, 957. See
enhanced distance vector, 129-130	also Postman
link-state, 130-131	Cisco DNA Center
path vector, 131-132	Network Device, 864–867
queuing, 406–408	Token, 862–864
transform sets, 478–480	Cisco vManage, 867-868
allowed VLAN, 14-15	Authentication, 868
AMP (Advanced Malware Protection),	Fabric Device, 869–870
742–744, 957, 959	HTTP status codes, 862
amplitude, 520, 957	JSON (JavaScript Object Notation),
anchor controller, 957	861–862
Ansible, 912–913	northbound, 855–856
CLI commands, 916	REST (Representational State Transfer), 856
inventory file, 917	southbound, 856
playbooks, 913-914, 917-930	
workflow, 913	XML (Extensible Markup Language), 860–861
YAML files, 915–916	applets, EEM, 895
antenna/s, 309-311	debugging, 896–898
beamwidth, 563	manually executing, 899–901
directional, 567-570	syslog, 896
EIRP (effective isotropic radiated power), 526, 538	WR MEM, 898
free space path loss, 527–529	AP (access point). See also antenna/s;
gain, 525–526, 562	Cisco lightweight APs; roaming
isotropic, 526	autonomous, 545–546
link budget, 526–527	Cisco lightweight, 547
omnidirectional, 564–566	customization, 558–559
parabolic dish, 569–570	discovering a WLC, 554–555
patch, 567–568	integrated antennas, 565–566
polarization, 563–564	maintaining WLC availability, 556–557

pairing with a WLC, 552 policy tag, 558	ASICs (application-specific integrated circuits), 4, 30
RF tag, 558	ASNs (autonomous system numbers), 246
segmenting wireless configura- tions, 557–559	AS_Path, 957
selecting a WLC, 555-556	as_set keyword. See also keywords
site tag, 558	atomic aggregate attribute, 274–276,
special-purpose modes, 547–548	958
split-MAC architecture, 547	authentication, 603
state machine, 552–554	Enhanced FlexAuth, 766
client density, 559-560	password, 790–793
Probe Requests, 587	WebAuth, 764
troubleshooting connectivity issues,	Central, 765
617–620	<i>Local</i> , 764–765
architecture. See also hierarchical LAN	wireless, 593
design	EAP, 597–602
AMP (Advanced Malware Protection),	Open Authentication, 593–594
743–744	pre-shared key, 595–597
Chef, 905	WebAuth, 603–606
Cisco ENFV (Enterprise Network Functions Virtualization), 843	Authentication API, 868
, ,	auto-cost reference bandwidth
Cisco SD-WAN, 661–662	command, 189
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation	command, 189 automation tools
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497	command, 189 automation tools Ansible, 912–913
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498	command, 189 automation tools Ansible, 912–913 CLI commands, 916
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647 underlay network, 648–649	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916 Chef, 904
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647 underlay network, 648–649 area range command, 223	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916 Chef, 904 architecture, 905
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647 underlay network, 648–649 area range command, 223 area/s, 173–174, 204–207, 217	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916 Chef, 904 architecture, 905 comparison with Puppet, 906
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647 underlay network, 648–649 area range command, 223 area/s, 173–174, 204–207, 217 filtering, 225–227	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916 Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647 underlay network, 648–649 area range command, 223 area/s, 173–174, 204–207, 217 filtering, 225–227 ID, 207	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916 Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647 underlay network, 648–649 area range command, 223 area/s, 173–174, 204–207, 217 filtering, 225–227	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916 Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647 underlay network, 648–649 area range command, 223 area/s, 173–174, 204–207, 217 filtering, 225–227 ID, 207 ARP (Address Resolution Protocol), 19–20, 957	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916 Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906
Cisco SD-WAN, 661–662 LISP (Cisco Locator/ID Separation Protocol), 497 control plane, 497–498 data plane, 498–499 SD-Access, 646–647 network layer, 647–648 physical layer, 647 underlay network, 648–649 area range command, 223 area/s, 173–174, 204–207, 217 filtering, 225–227 ID, 207 ARP (Address Resolution Protocol),	command, 189 automation tools Ansible, 912–913 CLI commands, 916 inventory file, 917 playbooks, 913–914, 917–930 workflow, 913 YAML files, 915–916 Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906

comparing, 924–925	Accumulated Interior Gateway
Puppet, 902	Protocol metric, 323–324
agent/server communication,	eBGP over iBGP, 327
902	local preference attribute, 322–323
components, 902 installation modes, 903	locally originated via network or aggregate advertisment, 323
manifests, 903–904	lowest IGP metric, 327–328
modules, 903	lowest neighbor address, 329
Puppet Bolt, 922	minimum cluster list length, 329
command line, 922–923	multi-exit discriminator,
tasks, 922, 923	326–327
Salt SSH, 923–924	origin type, 325–326
autonomous APs, 545–546, 574–576, 958	overview, 320–321
Auto-RP, 364	prefer path from the oldest eBGP session, 328
auxiliary port, 802	router ID, 328–329
AVG (active virtual gateway), 441	shortest AS path, 324–325
В	using longest match, 319–320
	weight attribute, 321–322
backbone area, 958	community, 313, 958
bare-metal server, 828	conditionally matching, 315–317
Bc (committed burst size), 395	enabling support, 314–315
BDR (backup designated router),	extended, 314
177–178, 958	private, 314, 317–318
election, 190–192	well-known, 314
placement, 192–194	conditional matching, 295
beacon, 909	ACL, 295–296
beamwidth, 563, 958	IPv6 prefix list, 299–300
BGP (Border Gateway Protocol), 244,	prefix list, 299
290–291	prefix matching, 297–299
address family, 248	regex, 300–301
Adj-RIB-In table, 262	configuration, 256–257
Adj-RIB-Out table, 262, 265	network advertisement, 261
ASNs (autonomous system numbers),	requirements, 255
246	deterministic routing, 293–294
best path selection, 318–319	inter-router communication, 248–249 IPv6

configuring, 277–282	prefix lists, 308
route summarization, 282–285	route maps, 311–313
Loc-RIB table, 262, 263-264	route maps, 301–302
loop prevention, 247–248	command syntax, 301
messages, 252	complex matching, 304
multihoming, 291, 958	components, 301
branch transit routing, 293-295	conditional match options,
Internet transit routing, 292–293	302–303
resiliency in service providers, 291–292	continue keyword, 305–306 multiple conditional match con-
multiprotocol, 277	ditions, 303–304
neighbor state, 253	optional actions, 304–305
Active, 254	sessions, 249–250
Connect, 254	clearing, 313
Established, 255	eBGP, 251
<i>Idle</i> , 254	iBGP, 250–251
OpenConfirm, 255	verification, 257–260
OpenSent, 254–255	bootstrap router, 366–367
neighbors, 249	border nodes, SD-Access, 654
network statements, 260-261	BPDU (bridge protocol data unit), 40,
NLRI (Network Layer Reachability	958
Information), 248	BPDU guard 70, 72, 958
PA (path attribute), 247	BPDU guard, 70–72, 958
packets, 252	broadcast notworks, OSPE 194, 195
peering, 279	broadcast traffic 220
receiving and viewing routes, 262–265	broadcast traffic, 339
redistributing routes into an IGP, 267	BSS (basic service set), 592
route advertisement/s, 260–261	BSS (business support system), 836
from indirect sources, 265–268	C
route aggregation, 267–268	<u>C</u>
with AS_SET, 276–277	CAM (content addressable memory),
aggregate-address command, 267–274	17, 960
atomic aggregate attribute,	campus network
274–276	Layer 2 access layer, 634–636
route filtering, 306–307	Layer 3 access layer, 636–637
AS_Path ACL filtering, 309–311	SD-Access design, 640
distribute lists, 307	simplified campus design, 637-639

\cap	0	0
Э	Ö	J

three-tier design, 634	management, 657
two-tier design, 632	Network Time Travel, 728–729
candidate RP (rendezvous point),	Path Trace, 731
364–365, 366–367	search capabilities, 730–731
capabilities, NETCONF, 874	Token API, 862–864
CAPWAP (Control and Provisioning of	workflow, 660
Wireless Access Points), 552, 959	design workflow, 658
carrier signal, 531, 959	management layer, 657
CBWFQ (class-based weighted fair queuing), 407–408	policy workflow, 658-659
commands, 410–411	provision workflow, 659-660
	Cisco ENFV (Enterprise Network
configuring, 410–414	Functions Virtualization), 842-843
CEF (Cisco Express Forwarding), 27, 959	architecture, 843
hardware, 30	management and orchestration, 843-844
software, 29–30	NFVIS (network function virtual-
Central Web Authentication, 765	ization infrastructure software),
centralized forwarding, 28	846–847
centralized wireless deployment, 548–550	virtual network functions and applications, 845
channel, 517, 959	Cisco FlexVPN, 486
channel, 517, 959 Chef, 904	Cisco FMC (Firewall Management
	Cisco FMC (Firewall Management Center), 753
Chef, 904 architecture, 905 comparison with Puppet, 906	Cisco FMC (Firewall Management
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine),
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906 server deployments, 906	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See also antenna/s; roaming
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906 server deployments, 906 CIR (committed information rate), 395	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See also antenna/s; roaming customization, 558–559
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906 server deployments, 906 CIR (committed information rate), 395 Cisco Advanced Malware Protection,	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See also antenna/s; roaming customization, 558–559 discovering a WLC, 554–555
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906 server deployments, 906 CIR (committed information rate), 395 Cisco Advanced Malware Protection, 742–744	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See also antenna/s; roaming customization, 558–559 discovering a WLC, 554–555 integrated antennas, 565–566
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906 server deployments, 906 CIR (committed information rate), 395 Cisco Advanced Malware Protection, 742–744 Cisco DevNet. See DevNet	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See also antenna/s; roaming customization, 558–559 discovering a WLC, 554–555 integrated antennas, 565–566 intercontroller roaming, 579
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906 server deployments, 906 CIR (committed information rate), 395 Cisco Advanced Malware Protection, 742–744 Cisco DevNet. See DevNet Cisco DNA Center, 642	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See also antenna/s; roaming customization, 558–559 discovering a WLC, 554–555 integrated antennas, 565–566 intercontroller roaming, 579 intracontroller roaming, 577–579
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906 server deployments, 906 CIR (committed information rate), 395 Cisco Advanced Malware Protection, 742–744 Cisco DevNet. See DevNet Cisco DNA Center, 642 assurance, 728, 733–734	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See also antenna/s; roaming customization, 558–559 discovering a WLC, 554–555 integrated antennas, 565–566 intercontroller roaming, 579 intracontroller roaming, 577–579 maintaining WLC availability, 556–557
Chef, 904 architecture, 905 comparison with Puppet, 906 cookbooks, 906 demo_install.rb, 906–908 kitchen, 906 recipe, 906 server, 906 server deployments, 906 CIR (committed information rate), 395 Cisco Advanced Malware Protection, 742–744 Cisco DevNet. See DevNet Cisco DNA Center, 642	Cisco FMC (Firewall Management Center), 753 Cisco IBNS (Identity-Based Networking Services) 2.0, 766 Cisco ISE (Identity Services Engine), 657, 756–758, 959 Cisco lightweight AP, 547, 966. See also antenna/s; roaming customization, 558–559 discovering a WLC, 554–555 integrated antennas, 565–566 intercontroller roaming, 579 intracontroller roaming, 577–579 maintaining WLC availability, 556–557 Network Device API, 864–867

architecture, 661–662 segmenting wireless configurations, 557-559 Cloud OnRamp, 664–665 selecting a WLC, 555-556 for IaaS, 668–669 site tag, 558 for SaaS, 666-668 special-purpose modes, 547–548 edge devices, 663–664 split-MAC architecture, 547 SD-WAN policy, 665 state machine, 552-554 vAnalytics, 664 Cisco NCP (Network Control vBond orchestrator, 662–663 Platform), 656 vManage NMS, 663 Cisco SAFE (Secure Architectural vSmart controllers, 663 Framework), 959 Cisco Secure Client, 744 advanced threat defense protection, Cisco Secure Cloud Analytics, 755 740-741 Network Analytics SaaS, 755–756 AMP (Advanced Malware Protection), 742-744 Public Cloud Monitoring, 755 Cisco FMC (Firewall Management Cisco Secure Email, 748–749 Center), 753 Cisco Secure Firewall, 751–752, 959 Cisco ISE (Identity Services Engine), Cisco Secure Malware Analytics, 742, 756-758 959 Cisco Secure Client, 744 Cisco Secure Network Analytics, Cisco Secure Cloud Analytics, 753-755 755-756 Cisco Secure Web Appliance, 746–748 Cisco Secure Email, 748–749 Cisco Talos, 741–742, 960 Cisco Secure Firewall, 751–752 Cisco TrustSec, 766–767, 960 Cisco Secure IPS, 749–751 egress enforcement, 770-771 Cisco Secure Network Analytics, ingress classification, 767–768 753-755 propagation, 768–770 Cisco Secure Web Appliance, 746–748 Cisco Umbrella, 744–745, 960 key, 740 Cisco vManage APIs, 867–868 Malware Analytics, 742 Authentication, 868 next-generation endpoint security, Fabric Device, 869-870 737-741 Cisco wireless deployments, 548 PINs (places in the network), 738–739 centralized, 548–550 security concepts, 739–740 cloud-based, 550 Talos, 741–742 controller-less, 551 Umbrella, 744–745 distributed, 551 Cisco SD-WAN class-based policing, 398 AAR (Application-Aware Routing), classification, 381–382 665-666

ingress, 767–768 Layer 7, 382	debug event manager action cli, 896–898
clear ip bgp command, 313	debug ip ospf adj, 687, 690-691
clear ip ospf process command, 193–194	debug ip ospf hello, 687–689, 690–691
clear mac address-table dynamic	default-information originate, 187
command, 17	device hardening, 822-823
clear ospf process command, 181	do show ip ospf neighbor, 691-692
clearing BGP sessions, 313	do show logging, 702-703
CLI (command-line interface), 960. See also IOS XE	encapsulation dot1q, 22 errdisable recovery cause bpduguard,
pros and cons, 854-855	71–72
terminal lines, 788–789	event manager run, 899
client density, 559-560	fhrp version vrrp v3, 440–441
Cloud OnRamp, 664-665	file prompt quiet, 899
for IaaS, 668–669	interface vlan, 23
for SaaS, 666–668	ip access-list, 784-785
cloud-based wireless deployment, 550	ip address, 21
code. See also Python	ip address secondary, 21
editing, 881–882	ip flow monitor, 715
functions, 888	ip ospf area, 180
manifest, 903-904	ip ospf network broadcast, 689-690
recipe, 906	ip route, 138
collections, Postman, 858-859	ip sla, 725–727
collision domains, 5-6, 960	ipv6 address, 21
command/s. See also keywords	lacp max-bundle, 116-117
absolute timeout, 802-803	lacp rate fast, 115
access-list, 782-784	logging buffered ?, 702
aggregate-address, 267-274	logout-warning, 802-803
Ansible, 916	mac address-table static vlan, 16
area range, 223	match, 382-384
auto-cost reference bandwidth, 189 CBWFQ, 410-411	monitor session destination interface, 718
clear ip bgp, 313	name, 8
clear ip ospf process, 193–194	neighbor distribute-list, 307
clear mac address-table dynamic, 17	network area, 178
clear ospf process, 181	no switchport, 23
cical ospi process, 101	passive-interface, 237–238
	. ,

ping, 675–676	show ip route bgp, 265
extended, 677–680	show ip route ospf, 187
repeat option, 676–677	show ipv6 interface brief, 24–25
port-channel min-links, 115	show ipv6 route, 146
privilege levels, 793–796	show ipv6 route ospf, 237, 238, 239
Puppet Bolt, 922–923	show lacp counters, 113–114
remote-span, 721	show lacp neighbor, 112–113
route-map, 301	show lacp sys-id, 117–118
router ospf, 178	show logging, 703–704
SaltStack, 910–911	show mac address-table dynamic,
sdm prefer, 30	15–16
service-policy, 380 show bgp ipv4 unicast, 263–265,	show monitor session erspan-source session, 723–724
267–268	show ntp associations, 423-424
show bgp ipv4 unicast neighbors,	show ntp status, 422-423
258–260	show ospfv3 interface, 236, 240
show bgp ipv4 unicast summary, 257	show ospfv3 ipv6 neighbor, 236
show bgp ipv6 unicast neighbors, 281	show pagp counters, 114
show bgp ipv6 unicast summary,	show pagp neighbor, 113
281–282	show running-config, 270-271
show bgp summary, 257	show sdm prefer, 31–32
show etherchannel load-balance, 120	show spanning-tree, 85–86
show etherchannel port, 110-112	show spanning-tree inconsistentports,
show etherchannel summary, 108-109	74
show flow record, 710–711	show spanning-tree interface, 48-49,
show glbp, 443-444	70–71, 73
show interface port-channel, 110	show spanning-tree mst, 86–87, 88
show interfaces status, 18-19, 71	show spanning-tree mst configuration,
show interfaces switchport, 17-18	84–85
show interfaces trunk, 13-14, 103	show spanning-tree mst interface, 87
show ip arp, 20	show spanning-tree root, 42–45
show ip flow export, 707-708	show spanning-tree vlan, 45–47, 61–62, 64–66
show ip interface brief, 23–24	show spanning-tree vlan detail, 49–50
show ip nat translations, 450–452	show standby, 435–438
show ip ospf database summary, 215	show track, 431–432
show ip ospf interface, 184–185, 689	show udld neighbors, 75–76
show ip ospf neighbor, 186, 686	show vlan, 9–10
show ip route, 137, 139, 266-267	

show vrrp, 439	extended, 314
show vrrp brief, 441	private, 314, 317–318
show vtp status, 99-101	well-known, 314
spanning-tree bpdufilter enable, 72	Community page, DevNet, 879
spanning-tree guard root, 68	conditional debugging
spanning-tree mode mst, 84	on a specific interface, 693-695
spanning-tree pathcost method long,	using ACLs, 692-693
41	conditional matching, 295. See also
spanning-tree portfast, 68–70	route maps
spanning-tree portfast bpduguard	ACL, 295
default, 70	extended, 296
spanning-tree vlan forward-time, 40	standard, 295–296
spanning-tree vlan hello-time, 40	BGP communities, 315–317
spanning-tree vlan max-age, 40	prefix matching, 297–299
spanning-tree vlan priority, 60	IPv6 prefix lists, 299–300
spanning-tree vlan root, 60	prefix lists, 299
switchport access vlan, 12	regex, 300-301
switchport mode access, 12	configuration
switchport mode trunk, 12	BGP (Border Gateway Protocol),
switchport trunk allowed vlan, 14–15	255–257, 261
switchport trunk native vlan, 14	DTP (Dynamic Trunking Protocol),
traceroute, 448, 680–683	102
extended, 684–685	EtherChannel, 107–108
options, 683	HSRP (Hot Standby Router Protocol), 434–435
transport input, 797–800	MQC classification, 382–385
tunnel mode ipsec, 493	
udld enable, 75	MST (Multiple Spanning Tree Proto- col), 84
undebug interface loopback0, 695	NTP (Network Time Protocol),
vlan, 8	421–422
vtp domain, 98–99	OSPF (Open Shortest Path First),
vtp mode, 98–99	181–183
vtp password, 98-99	for all interfaces, 178–180
vtp version, 98–99	with explicit IP addresses, 179
communication, OSPFv3, 232-233	with explicit subnet, 179
community, BGP, 313	interface-specific, 180–181
conditionally matching, 315-317	network statement, 178
enabling support, 314-315	OSPFv3, 233–235

PTP (Precision Time Protocol), 427–429	CoPP (Control Plane Policing), 817, 960
QoS (quality of service)	ACL configuration, 817-818
CBWFQ, 410-414	applying the policy map, 819-820
class-based policing, 398	class map configuration, 818
SNMP (Simple Network Management	policy map configuration, 819
Protocol), 699–700	verification, 820-822
trunk port, 13	core layer, 628-629, 960
VRRP (Virtual Router Redundancy Protocol), 438–441	CQ (custom queuing), 407 creating
VTP (VLAN Trunking Protocol),	username, 790
98–99	VLANs, 8
ZBFW (Zone-Based Firewall), 811–815	VRF instance, 150
configuration BPDU, 40	CRUD functions, 856
congestion avoidance, 408–410	CS (Class Selector) PHB, 388
congestion avoidance, 406–410	CSMA/CD (Carrier Sense Multiple
Connect state, BGP, 254	Access/Collision Detect), 5
containers, 830–831, 960	CST (Common Spanning Tree), 81–82,
control plane	960
	D
control plane LISP (Cisco Locator/ID Separation	D
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498	dACL (downloadable ACL), 788
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654	dACL (downloadable ACL), 788 data link layer, 4
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551 convergence	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651 datastore, NETCONF, 875
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651 datastore, NETCONF, 875 dB (decibel), 522, 523–524, 961
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551 convergence EIGRP (Enhanced Interior Gateway	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651 datastore, NETCONF, 875 dB (decibel), 522, 523–524, 961 Law of 3s, 522–523
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551 convergence EIGRP (Enhanced Interior Gateway Routing Protocol), 164–166 RSTP (Rapid Spanning Tree Protocol), 55	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651 datastore, NETCONF, 875 dB (decibel), 522, 523–524, 961 Law of 3s, 522–523 Law of 10s, 523
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551 convergence EIGRP (Enhanced Interior Gateway Routing Protocol), 164–166 RSTP (Rapid Spanning Tree Protocol), 55 STP (Spanning Tree Protocol)	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651 datastore, NETCONF, 875 dB (decibel), 522, 523–524, 961 Law of 3s, 522–523 Law of 10s, 523 Law of Zero, 522
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551 convergence EIGRP (Enhanced Interior Gateway Routing Protocol), 164–166 RSTP (Rapid Spanning Tree Protocol), 55 STP (Spanning Tree Protocol) with direct link failures, 50–52	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651 datastore, NETCONF, 875 dB (decibel), 522, 523–524, 961 Law of 3s, 522–523 Law of 10s, 523 Law of Zero, 522 dBm (dB-milliwatt), 525, 961
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551 convergence EIGRP (Enhanced Interior Gateway Routing Protocol), 164–166 RSTP (Rapid Spanning Tree Protocol), 55 STP (Spanning Tree Protocol) with direct link failures, 50–52 with indirect failures, 52–53	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651 datastore, NETCONF, 875 dB (decibel), 522, 523–524, 961 Law of 3s, 522–523 Law of 10s, 523 Law of Zero, 522 dBm (dB-milliwatt), 525, 961 dead interval timer, 961
control plane LISP (Cisco Locator/ID Separation Protocol), 497–498 nodes, SD-Access, 653–654 SD-Access, 649–650 VXLAN (Virtual eXtensible Local Area Network), 506 controller layer, SD-Access, 656–657 controller-less wireless deployment, 551 convergence EIGRP (Enhanced Interior Gateway Routing Protocol), 164–166 RSTP (Rapid Spanning Tree Protocol), 55 STP (Spanning Tree Protocol) with direct link failures, 50–52	dACL (downloadable ACL), 788 data link layer, 4 data model, YANG, 870–872 data plane LISP (Cisco Locator/ID Separation Protocol), 498–499 SD-Access, 650–651 datastore, NETCONF, 875 dB (decibel), 522, 523–524, 961 Law of 3s, 522–523 Law of 10s, 523 Law of Zero, 522 dBm (dB-milliwatt), 525, 961

debug event manager action cli	IP SLA, 724
command, 898	HTTP GET operation, 726–728
debug ip ospf adj command, 687, 690–691	ICMP echo operation, 724–726
debug ip ospf hello command,	ping command, 675–676
687–689, 690–691	extended, 677–680
debugging, 685–686. See also	repeat option, 676–677
diagnostic tools; troubleshooting	traceroute command, 680–683
conditional	extended, 684–685
on a specific interface, 693–695	options, 683
using ACLs, 692–693	dictionary
EEM actions, 896-898	Python, 885
OSPF (Open Shortest Path First)	YAML, 915–916
debug ip ospf adj command, 687,	DiffServ, 379, 961
690-691	dipole antenna, 564–565, 961
debug ip ospf hello command,	directional antenna, 567-570, 961
687–689, 690–691	directly attached static routes,
ip ospf network broadcast com- mand, 689–690	138–139, 961
show ip ospf interface command,	discontiguous networks, OSPF, 217–218
689	displaying, trunk port information, 13
show ip ospf neighbor command,	distance vector algorithms, 128–129,
686	962
default-information originate	distribute lists, 307, 962
command, 187	distributed forwarding, 28
delay variation, 376	distributed wireless deployment, 551
demodulation, 961	distribution layer, 627-628, 962
deterministic routing, 293–294	distribution tree, 349
device driver, 837	shared tree, 350-352
device hardening, 822–823	source tree, 349–350
DevNet, 877–878, 961	DMA (direct memory access), 837
Community page, 879	DMVPN (Cisco Dynamic Multipoint
Documentation page, 878	VPN), 486
Events page, 879	do show ip ospf neighbor command,
Learn page, 878	691–692
Technologies page, 878	do show logging command, 702-703
DF (Default Forwarding) PHB, 388	Docker, 831, 832-833
diagnostic tools. See also Cisco DNA	Documentation page, DevNet, 878
Center Assurance	downlink MACsec, 774

downstream interface, 962	applets, 895
DP (designated port), 961	debugging, 896–898
DR (designated router), 176-178, 961	syslog, 896
election, 190-192	WR MEM, 898
placement, 192-194	email variables, 899
drop precedence, 390	event detectors, 894-895
DRS (dynamic rate shifting), 538–540, 962	Tcl scripts, 899–901 EF (Expedited Forwarding) PHB, 390
DSCP per-hop behaviors. See PHB (per-hop behavior), 387	EGP (Exterior Gateway Protocol), 127–128. <i>See also</i> BGP (Border
DSSS (direct sequence spread spectrum), 533, 961	Gateway Protocol)
DTLS (Datagram Transport Layer	EIGRP (Enhanced Interior Gateway Routing Protocol), 129–130
Security), 961	AS (autonomous system), 157
DTP (Dynamic Trunking Protocol), 101, 962	convergence, 164–166
configuring, 102	failure detection and timers, 164
disabling trunk port negotiation, 103	FD (feasible distance), 158
matrix for establishing a dynamic	feasibility condition, 158
trunk link, 102	feasible successor, 158
modes, 102	k value, 160–161
DUAL (diffusing update algorithm),	load balancing, 163
129	metric backward compatibility, 163
dynamic routing protocol, 126-128	neighbors, 160
_	packets, 160
E	path metric calculation, 160–162
·	RD (reported distance), 158
E plane, 962	route summarization, 166–167
EAP (Extensible Authentication Protocol), 597–599, 760–762, 963	successor/successor route, 158
configuring with external RADIUS	topology table, 159–160
servers, 600–602	variance value, 163
verification, 602	wide metric, 162
eBGP, 962	EIRP (effective isotropic radiated power), 526, 538, 962
eBGP (external BGP) sessions, 251	email variables, EEM (Embedded Event
edge node, SD-Access, 652-653	Manager), 899
editing, code in GitHub, 881–882	EMs (element managers), 835
EEM (Embedded Event Manager), 901,	encapsulation dot1q command, 22
962	ENCOR 350-401 exam

getting ready, 926-927	configuring, 107–108
suggested plan for final review/study, 930	link-state propagation and detection, 105–106
tools for final preparation, 927-930	load balancing traffic, 119-120
updates, 932-934	logical interface status fields, 109
encryption	member interface status fields, 109
MACsec, 772–773	multiple links with STP, 104
downlink, 774	troubleshooting, 118–119
frame format, 773–774	verifying the status, 108–110
uplink, 774	viewing show etherchannel port com-
password, 789–790	mand output, 110-112
endpoint, 962	Ethernet, collision domains, 5-6
enhanced distance vector algorithms, 129–130, 962. <i>See also</i> EIGRP (Enhanced Interior Gateway Routing Protocol)	ETR (egress tunnel router), 962 event manager run command, 899 Events page, DevNet, 879 EXEC timeout, 802
Enhanced FlexAuth, 766	extended ACLs, 296
enterprise network architecture, 632	extended communities, BGP, 314
Layer 2 access layer, 634–636	extended ping command, 677-680
Layer 3 access layer, 636–637	extended traceroute command,
SD-Access design, 640	684–685
simplified campus design, 637–639	
three-tier design, 634	F
two-tier design, 632	<u>-</u>
Env_Lab.py script, 882–885	fabric
equal-cost multipathing, 135–136, 163, 220, 962	SD-Access, 649 border nodes, 654
errdisable recovery cause bpduguard command, 71–72	control plane, 649-650
ERSPAN (Encapsulated Remote SPAN), 722, 963	control plane nodes, 653–654 data plane, 650–651
specifying the destination port, 723–724	device roles, 652 edge nodes, 652–653
specifying the source port, 722–723	policy plane, 651–652
ESP (Encapsulating Security Payload), 477–478	WLC (wireless LAN controller), 654 Fabric Device API, 869–870
Established state, BGP, 255	fabric network, 642. See also
EtherChannel bundle, 104, 105, 963	SD-Access
components, 104–105	failure detection, EIGRP, 164

FD (feasible distance), 158	zone-based. See ZBFW (Zone-Based
feasibility condition, 158	Firewall)
feasible successor, 158	Flexible NetFlow, 709
FHRP (first-hop redundancy protocol), 429–430, 963	applying the flow monitor to the interfaces, 715–716
configuration, 442–443	creating a custom flow record, 709–711
GLBP (Gateway Load Balancing Protocol), 441	creating a flow exporter, 711-712
AVF (active virtual forwarder),	creating a flow monitor, 713–714
442 AVG (active virtual gateway),	mapping the flow exporter to the flow monitor, 714
441	floating static route, 141–143, 963
changing the load-balancing	flows, 706
method, 444–446	forward delay, 40, 963
viewing the status, 443–444	forwarding architecture, 25-26
HSRP (Hot Standby Router Protocol), 432–433	CEF (Cisco Express Forwarding), 27
configuration, 434–435	hardware, 30
object tracking, 436–438	software, 29–30
versions, 433	centralized forwarding, 28
viewing the status, 435–436	distributed forwarding, 28 process switching, 26–27
VIP (virtual IP) instance, 433–434	SDM (Switching Database Manager) templates, 30–32
object tracking, 430	TCAM (ternary content addressable
VRRP (Virtual Router Redundancy	memory), 27–28
Protocol), 438	free space path loss, 527-529
legacy configuration, 439	frequency, 514-515, 963
version 2 configuration, 438	2.4 GHz band, 516
version 3 configuration, 440–441	5 GHz band, 516
viewing the status, 439	6 GHz band, 516
fhrp version vrrp v3 command, 440-441	channels, 517 non-overlapping channel spacing,
FIB (Forwarding Information Base), 29,	518–519
132, 963	radio, 516
FIFO (first-in, first-out), 406	signal bandwidth, 517–518
file prompt quiet command, 899	FTD (Firepower Threat Defense)
firewall	software image, 963
next-generation, 751	fully specified static route, 141

functions. See also VNF (virtual network function) CRUD, 856 HTTP, 856 Python, 888	header, VLAN, 8 hello packet, OSPF, 175 hello time, 40, 190, 689, 964 hierarchical LAN design, 624–625 access layer, 625–627 core layer, 628–629 distribution layer, 627–628
gain, 525–526, 562, 964 general-purpose CPU, 27 GET (Cisco Group Encrypted Transport) VPN, 486 get_dnac_devices.py script, 885–889 GitHub, 880, 964 code editing, 881–882 projects, 880–881 GLBP (Gateway Load Balancing Protocol), 441	high availability network design, 629 technologies, 630 SSO and NSF, 623–630 SSO/NSF with GR, 631 SSO/NSF with NSR, 631 SSO/NSF with NSR and GR, 631 host pool, 655, 964 HSRP (Hot Standby Router Protocol), 432–433
AVF (active virtual forwarder), 442 AVG (active virtual gateway), 441 changing the load-balancing method, 444–446 configuration, 442–443 viewing the status, 443–444 grain, 909–910, 964 GRE (Generic Routing Encapsulation), 469	configuration, 434–435 object tracking, 436–438 versions, 433 viewing the status, 435–436 VIP (virtual IP) instance, 433–434 HTTP functions, 856 status codes, 862
encapsulation, 469 encrypting traffic using IPsec profiles, 487–493 tunnel configuration, 470–474 verification, 474	hubs, collision domain, 5–6 hypervisor, 828–829, 964
H plane, 964 hard reset, BGP, 313 hardware, CEE (Cisco Express	IaaS (infrastructure as a service), Cloud OnRamp, 668–669 IANA (Internet Assigned Numbers Authority), 247 iBGP (internal BGP) sessions, 250–251, 964

Idle state, BGP, 254

hardware, CEF (Cisco Express Forwarding), 30

IDS (intrusion detection system), 749	creating a username, 790
IEEE (Institute of Electrical and	EXEC timeout, 802
Electronic Engineers) standards, 5	hash options, 119-120
802.1D STP. See STP (Spanning Tree	<i>ip_input</i> process, 26
Protocol)	passwords
802.1p, 386	encryption, 789–790
802.1Q, 7, 385	types of, 789
802.11, 533–535. <i>See also</i> wireless networks and theory	privilege levels, 793–796
IGMP (Internet Group Management	ip access-list command, 784–785
Protocol), 337, 343–344, 965	ip address command, 21
message format, 344–345	ip address secondary command, 21
snooping, 346-348, 964	IP addressing, 21–22. See also MAC
version 2, 344	(Media Access Control) address;
version 3, 346	NAT (Network Address Translation); PAT (Port Address Translation)
IGP (Interior Gateway Protocol), 127, 249	ESP (Encapsulating Security Payload), 477–478
IKE (Internet Key Exchange), 480, 965	multicast, 340
version 1, 480–482	GLOP block, 342
version 2, 482–484	IANA-assigned addresses,
ingress classification, 767-768	340–341
inside static NAT, 449-452	internetwork control block, 341
installation modes, Puppet, 903	local network control block, 341
integrated antennas, 565-566, 964	organization-local scope
inter-area routes, 207, 219, 222,	addresses, 342
223–224, 965	Source Specific Multicast block,
intercontroller roaming, 579, 965	342
interface cost, OSPF, 189	well-known reserved address, 341
interface priority, LACP (Link	v · =
Aggregation Control Protocol), 118	routed subinterface, 22
interface vlan command, 23	routed switch port, 23
Internet, transit routing, 292–293	SVI (switched virtual interface), 23
intra-area routes, 207, 218–219, 965	verification, 23–25
intracontroller roaming, 577–579, 965	ip flow monitor command, 715
IntServ, 377–378	ip flow-top-talkers command, 708–709
inventory file, Ansible, 917	ip ospf area command, 180
I/O (input/output), 836	ip ospf network broadcast command,
IOS XE, 796–797	689–690

ip route command, 138
IP SLA, 724, 965
HTTP GET operation, 726-728
ICMP echo operation, 724-726
ip sla command, 725-727
ip_input process, 26
IPS (intrusion prevention system), 749
IPsec, 475–476, 965
authentication header, 476
DMVPN (Cisco Dynamic Multipoint VPN), 486
encryption, hashing, and keying meth ods, 478
IKE (Internet Key Exchange), 480
version 1, 480–482
version 2, 482–484
site-to-site configuration, 486-487
site-to-site GRE over, 487-493
site-to-site VTI over, 493-495
transform set, 478-480
VPN, 484–486
Cisco Dynamic Multipoint, 486
Cisco FlexVPN, 486
GET, 486
remote access, 486
site-to-site, 486
IPv6, 21
BGP configuration, 277–285
OSPFv3 configuration, 234–235
static routes, 145–146
ipv6 address command, 21
IRQ (interrupt request), 836
ISAKMP (Internet Security
Association and Key Management Protocol), 480, 965
isotropic antenna, 526, 560–561, 965
IST (internal spanning tree), 83, 965
131 (micrial spanning tree), 63, 703

jitter, 374, 376 jobs, SaltStack, 909 JSON (JavaScript Object Notation), 861-862, 965

K

k value, 160–161, 965 kernel, 837 keyword/s access-list command, 782, 783 aggregate-address command, 272, 276-277 continue, 305-306 show mac address-table dynamic command, 15 show vlan command, 10–11 switchport trunk allowed vlan command, 15 kitchen, 906 knife, 906

Protocol), 106-107 fast, 115 interface priority, 118 maximum number of EtherChannel member interfaces, 116-117 minimum number of EtherChannel member interfaces, 115 system priority, 117-118, 966 viewing neighbor information, 112 - 113viewing packet counters, 113–114 lacp max-bundle command, 116–117

LACP (Link Aggregation Control

lacp rate fast command, 115	maximum number of Ether- Channel member interfaces,
latency, 162, 374	116–117
jitter, 376	minimum number of EtherChan-
processing delay, 376	nel member interfaces, 115
propagation delay, 375	system priority, 117–118
satellite communication, 375 serialization delay, 375	viewing neighbor information, 112–113
Law of 3s, 522-523	viewing packet counters,
Law of 10s, 523	113–114
Law of Zero, 522	PAgP (Port Aggregation Protocol),
Layer 2 forwarding, 4–5, 966. See also	106, 113
switches	link budget, 526–527
MAC address table, 15–17	link-state algorithm, 130–131, 966.
troubleshooting, 16	See also OSPF (Open Shortest Path First)
Layer 2 roaming, 579–580	LISP (Cisco Locator/ID Separation
Layer 3 forwarding, 19, 966	Protocol), 495–496, 649, 966
ARP (Address Resolution Protocol), 19–20	architecture
IP address assignment, 21–22	control plane, 497–498
routed subinterfaces, 22	data plane, 498–499
routed switch ports, 23	components, 496-497
SVI (switched virtual interface),	data path, 501-502
23	map registration and notification, 499–500
verification, 23–25	map request and reply, 500–501
packet routing, 20–21	proxy ETR, 502–503
on the same subnet, 19–20	proxy ITR, 503–504
Layer 3 roaming, 581–583, 966	routing architecture, 497
Layer 7 classification, 382	LLQ (low-latency queuing), 407–408
Learn page, DevNet, 878	load balancing, 966
LHR (last-hop router), 966	EIGRP, 163
link aggregation protocols, 106. <i>See also</i> EtherChannel bundle	EtherChannel, 119–120
EtherChannel configuration, 107-108	unequal-cost, 136-137
LACP (Link Aggregation Control Pro-	local bridge identifier, 40, 966
tocol), 106–107	Local SPAN (Switched Port Analyzer),
fast, 115	717
interface priority, 118	configuration examples, 719-720

manifest, Puppet, 903-904 specifying the destination port, 718-719 MANO (management and specifying the source port, 717–718 orchestration), 836 Local Web Authentication, 764–765 marking, 385 locating devices in a wireless network, class-based, 392–393 584-587 Layer 2, 385–386 logarithm, 521-522 Layer 3, 386–387 logging buffered? command, 702 PCP (Priority Code Point), 386 logout-warning command, 802–803 match command, 382-384 looking glasses, 301 max age, 40, 967 loop guard, 74 MED (multi-exit discriminator), loop prevention, BGP, 247–248 326-327 loopback networks, OSPF, 196–198 member links, 967 LSA/s (link-state advertisement/s), 172, message/s 209-210 BGP, 252 age and flooding, 210 PIM, 354 OSPFv3, 232 PTP (Precision Time Protocol), 426 sequence, 210 RPC, 875–876 type 1, 210–212 syslog, 701 type 2, 213–214 logging buffer, 701–704 type 3, 213–217 sending to a bost, 704–706 LSDB (link-state database), 172 severity levels, 701 method list, 806 M metric/s, 132 EIGRP. 160-162 MAB (MAC Authentication Bypass), backward compatibility, 163 762-764, 967 wide, 162 MAC (Media Access Control) address, equal-cost multipathing, 135–136 4-5, 967 OSPF, inter-area summarization, multicast, 342-343 222-223 table, 15–17 unequal-cost load balancing, 136–137 mac address-table static vlan command. MFIB (Multicast Forwarding 16 Information Base), 968 MACsec, 772–773, 967 MIB (Management Information Base), downlink, 774 695, 697–699 frame format, 773–774 migration, VM (virtual machine), uplink, 774 829-830 Malware Analytics, 742

MIMO (multiple-input, multiple-output) system, 535	MST region as the root bridge, 91
minions, 909	MST region not a root bridge for
misconfiguration, MST (Multiple	any VLAN, 91
Spanning Tree Protocol)	topologies, 82-83
trunk link pruning, 90–91	tuning, 87
VLAN assignment to the IST, 89-90	changing the interface cost, 88
MLS (multilayer switch), 4	changing the interface priority,
mobility domain, 967	88–89
mobility group, 583-584, 967	verification, 84–87
modulation, 532-533, 967	multi-area topology, OSPF, 206-207
DRS (dynamic rate shifting), 538-540	multicast, 337, 342-343
spread spectrum, 532–533	addressing, 340
module, 967	GLOP block, 342
Puppet, 903	IANA-assigned addresses,
Python, 886–887	340–341
monitor session destination interface	internetwork control block, 341
command, 718	local network control block, 341
MP-BGP (multiprotocol BGP), 277	organization-local scope addresses, 342
MQC (Modular QoS CLI), 379–381	
class-based marking, 392-393	Source Specific Multicast block, 342
classification configuration, 382-385	well-known reserved addressses
MR (map resolver), 967	341
MRC (maximal-ratio combining), 538,	architecture, 338
967	group address, 339
MRIB (Multicast Routing Information	IGMP, 343–344
Base), 968	message format, 344–345
MST (Multiple Spanning Tree Protect)	snooping, 346–348
MST (Multiple Spanning Tree Protocol), 80, 967	version 2, 344
configuring, 84	version 3, 346
instance, 82	Layer 2 addresses, 342-343
IST (internal spanning tree), 83	PIM, 349
misconfigurations	bootstrap router, 366–367
trunk link pruning, 90–91	dense mode, 354–356
VLAN assignment to the IST,	designated routers, 359–360
89–90	distribution trees, 349
region boundary, 90–91	forwarder, 361–363

messages, 354	NAT (Network Address Translation),
RP, 350–351, 363–365	446–447, 968
RPF, 360–361	pooled, 447–455
shared and source path trees,	static
357–358	inside, 449–452
shared tree join, 358	outside, 452–455
shared trees, 350–352	topology, 447–449
source registration, 358	types of, 447
source trees, 349–350	native VLANs, 14, 968
sparse mode, 357	NBAR2 (Next-Generation Network-
SPT switchover, 358–359	Based Application Recognition), 382
terminology, 352–354	NDP (Cisco Network Data Platform),
state, 968	657
stream, 339	neighbor distribute-list command, 307
	neighbor state, BGP, 253
N	Active, 254
	Connect, 254
NAC (network access control), 758	Established, 255
802.1x, 758	Idle, 254
authentication process flow,	OpenConfirm, 255
759–760	OpenSent, 254–255
components, 758	neighbors
EAP methods, 760–762	BGP, 249
roles, 758–760	EIGRP, 160
Cisco IBNS 2.0, 766	OSPF, 175–185
Cisco TrustSec, 766–767	adjacency requirements, 181
egress enforcement, 770–771	state fields, 186
ingress classification, 767–768	verifying, 185–186
propagation, 768–770	NETCONF, 872, 968
Enhanced FlexAuth, 766	capabilities, 874
MAB (MAC Authentication Bypass),	comparison with SNMP, 873
762–764	datastores, 875
Web Authentication, 764	element, 873
Central, 765	operations, 874
<i>Local</i> , 764–765	RPC message, 875–876
name command, 8	save configuration, 876
named ACL, 784-785	shopping list analogy, 873–874
narrowband transmission, 532, 968	transactions, 873

NetFlow, 706, 968	processing delay, 376
collected traffic types, 706	propagation delay, 375
configuring and verifying talkers,	serialization delay, 375
708–709	layer, SD-Access, 647-648
enabling on a device, 706–707	OSPF, 194
Flexible, 709	broadcast, 194–195
applying the flow monitor to the interfaces, 715–716	discontiguous, 217–218
creating a custom flow record, 709–711	loopback, 196–198 point-to-point, 195–196
creating a flow exporter, 711–712	OSPFv3, 239–240 outages, 854
creating a flow monitor, 713–714	overlay, 466. See also overlay tunnels
mapping the flow exporter to the flow monitor, 714	virtual private. <i>See</i> VPN (virtual private network)
flows, 706	next-generation firewall, 751
verification, 707–708	NFV (network functions virtualization).
network area command, 178	833–834, 968. See also Cisco ENFV
Network Device API, 864–867	(Enterprise Network Functions Virtualization)
network/s. <i>See also</i> enterprise network architecture; QoS (quality of service); routing and routing	NFVIS (network function virtualization infrastructure software), 846–847
protocols; VLANs (virtual LANs)	NLRI (Network Layer Reachability Information), 248
campus	no switchport command, 23
Layer 2 access layer, 634–636	noise/noise floor, 530, 968
Layer 3 access layer, 636–637	nonce, 968
SD-Access design, 640 simplified campus design,	non-overlapping channel spacing, 518–519
637–639	northbound API, 855-856
three-tier design, 634	NSSA (Not-So-Stubby Area), 217
two-tier design, 632	NTP (Network Time Protocol),
fabric, 642. See also SD-Access	420–421, 968–969
hierarchical LAN design, 624-625	configuration, 421–422
access layer, 625–627	peers, 424–425
core layer, 628–629	stratum preference, 424
distribution layer, 627–628	verification, 422–423
high availability, 629	viewing associations, 423–424
latency, 374	numbered ACL, 782–783
jitter, 376	numbered extended ACL, 783-784

0	show ip ospf interface command, 689
object tracking, 430, 436–438	show ip ospf neighbor command, 686
OFDM (orthogonal frequency division multiplexing), 533, 969	default route advertisement, 187-188
OHAI, 906	DR (designated router), 176-178
OIF (outgoing interface), 969	election, 190–192
omnidirectional antennas, 564–566,	placement, 192–194
969	equal-cost multipathing, 220
Open Authentication, 593–594, 969	hello packets, 175
OpenConfirm state, BGP, 255	hello time, 190, 689
OpenSent state, BGP, 254–255	inter-area routes, 207, 219
optimization, OSPF, link-cost, 189	inter-router communication, 174
orchestrator, NFV, 836	intra-area routes, 207, 218-219
OSI (Open Systems Interconnection) model, 3–4	LSA/s (link-state advertisement/s), 172, 209–210
OSPF (Open Shortest Path First)	age and flooding, 210
ABR (area border router), 205-206	sequences, 210
area, 173-174, 204-207	type 1, 210–212
area ID, 207	type 2, 213–214
BDR (backup designated router),	type 3, 213–217
177–178	LSDB (link-state database), 172,
election, 190–192	204–205
placement, 192–194	multi-area topology, 206–207
configuration	neighbors, 175–185
for all interfaces, 178–180	adjacency requirements, 181
with explicit IP addresses, 179	state fields, 186
with explicit subnet, 179	network, 194
interface-specific, 180–181	broadcast, 194–195
OSPF network statement, 178	discontiguous, 217–218
dead interval timer, 190, 689	loopback, 196–198
debugging	point-to-point, 195–196
debug ip ospf adj command, 687,	optimization, link-cost, 189
690-691	packet types, 174
debug ip ospf hello command,	passive interfaces, 181
687–689, 690–691	RID (router ID), 175, 180–181
ip ospf network broadcast com-	route filtering, 224–225
mand, 689–690	area, 225–227

with summarization, 225	Cisco FlexVPN, 486
routing table, 208-209	DMVPN, 486
sample topology and configuration, 181–183	encryption, hashing, and keying methods, 478
SPT (shortest path tree), 172–173 summarization, 220–222 inter-area, 222, 223–224 metrics, 222–223 timers, 190 verification interface, 184–185	ESP (Encapsulating Security Payload), 477–478 GET VPN, 486 IKE (Internet Key Exchange), 480 IKEv1, 480–482 IKEv2, 482–484
neighbor adjacency, 185–186 routes installed on the RIB, 186–187 versions, 170	remote access VPN, 486 site-to-site GRE over, 487–493 site-to-site VPN, 486 site-to-site VTI over, 493–495
OSPFv3, 230 communication, 232–233 configuration, 233–235 differences with OSPFv2, 231–232 IPv4 support, 240–242 IPv6 summarization, 238–239 LSAs (link-state advertisements), 232 network types, 239–240 passive interface, 237–238 verification, 235–237 OSS (operations support system), 836 OUL (organizationally unique)	transform set, 478–480 VPN solutions, 484–486 LISP (Cisco Locator/ID Separation Protocol), 495–496 components, 496–497 control plane, 497–498 data path, 501–502 data plane, 498–499 map registration and notification, 499–500 map request and reply, 500–502
OUI (organizationally unique identifier), 5 outside static NAT, 452–455	proxy ETR, 502–503 proxy ITR, 503–504 routing architecture, 497
overlay network/tunnels, 466, 969 GRE (Generic Routing Encapsulation), 469 encapsulation, 469 tunnel configuration, 470–474 verification, 474 IPsec, 475–476	recursive routing, 474–475 VXLAN (Virtual eXtensible Local Area Network), 504–505, 507 control plane, 506 VTEP, 505–506 OVS (Open vSwitch), 837 OVS-DPDK, 839–840
authentication header, 476	

P	path vector algorithm, 131-132, 970
<u> </u>	PBR (policy-based routing), 146-149
PA (path attribute), 247	PCI passthrough, 840–841
packet/s	Pearson Test Prep practice test, 927
BGP, 252	accessing, 927–928
EIGRP, 160	customizing your exams, 928-929
flow for virtualized systems, 837-839	updating your exams, 929
loss, 376–377	peers, NTP (Network Time Protocol),
OSPF, 174	424–425
OSPFv3, 232–233	performance, VNF (virtual network function), 836
routing, 20–21	PFS (Perfect Forward Secrecy), 482
VXLAN-GPO, 651	phase, 519, 970
PACL (port ACL), 785–786	PHB (per-hop behavior), 387, 390–391
PAgP (Port Aggregation Protocol), 106	970
viewing neighbor information, 113	Assured Forwarding, 388–390
viewing packet counters, 114	Class Selector, 388
parabolic dish antenna, 569–570, 969	Default Forwarding, 388
passive interface, 969	Expedited Forwarding, 390
OSPF, 181	physical layer, SD-Access, 647
OSPFv3, 237–238	pillar, SaltStack, 909-910, 970
passive-interface command, 237–238 password/s	PIM (Protocol Independent Multicast) 337, 349
encryption, 789–790	
* -	bootstrap router, 366–367
terminal line, 788–789, 790–793	dense mode, 354–356
types of, 789	designated routers, 359–360
PAT (Port Address Translation), 458–461, 970	distribution tree, 349
patch antennas, 567–568, 970	shared tree, 350–352
path, 127	source tree, 349–350
metrics	forwarder, 361–363
EIGRP (Enhanced Interior	messages, 354
Gateway Routing Protocol), 160–163	RP (rendezvous point), 350–351, 363–364
equal-cost multipathing, 135–136	Auto-, 364
unequal-cost load balancing,	candidate, 364–365,
136–137	366–367
selection, 132	mapping agent, 365
·	static, 364

Path Trace, 970

RPF (Reverse Path Forwarding),	port/s
360–361	access, 11–12
shared and source path trees, 357–358	auxiliary, 802
shared tree join, 358	switch, viewing the status, 17–19
source registration, 358	trunk, 12
sparse mode, 357	displaying information about, 13
SPT switchover, 358–359	verifying status, 13–14
terminology, 352–354	Postman, 857, 858
ping command, 675–676	collections, 858-859
extended, 677–680	dashboard, 857
repeat option, 676–677	History tab, 858
playbooks, 913-914, 917-930, 970	URL bar, 859–860
point-to-point networks, OSPF, 195–196	power
polar plot, 970	comparing against a reference, 524–525
polarization, 563-564, 970	dB (decibel), 522, 523-524
policer	Law of 3s, 522-523
class-based, 398	Law of 10s, 523
markdown, 395	Law of Zero, 522
placing in the network, 395	dBm (dB-milliwatt), 525
single-rate three-color, 399-400	effective isotropic radiated, 526
single-rate two-color, 399-400	measuring changes along a signal path,
token bucket algorithm, 395-397	525–527
two-rate three-color, 403-405	RF signal, 521
policy/ies	RSSI (received signal strength indica-
-based routing, 147, 970	tor), 530–531
CoPP. See CoPP (Control Plane	PPDIOO (Prepare, Plan, Design,
Policing)	Implement, Operate, Optimize) lifecycle, 913
maps, 379–381	PQ (priority queuing), 407
MQC (Modular QoS CLI), 379–381	prefix length, 132, 133, 970
plane, SD-Access, 651-652	prefix length, 132, 133, 970 prefix list, 299, 308, 970
SD-WAN, 665	-
service, 379	prefix matching, 297–299
tag, 558	IPv6 prefix list, 299–300
workflow, Cisco DNA, 658-659	prefix list, 299
pooled NAT, 447-455, 970	pre-shared key authentication, 595–597
port-channel min-links command, 115	private community, BGP, 314, 317–318
portfast, 68–70	<u>.</u>

privilege level, IOS XE, 793–796, 971 Probe Request, 587	Q
process switching, 26–27	OAM (dustries and to de
processing delay, 376	QAM (quadrature amplitude modulation), 533, 971
propagation delay, 375	QoS (quality of service)
protocol, network, 3	CBWFQ (class-based weighted fair
proxy ETR, 971	queuing), configuring, 410–414
proxy ITR, 971	classification, 381-382
PTK (Pairwise Transient Key), 598	configuring, 382–385
PTP (Precision Time Protocol), 425–	Layer 7, 382
426, 970	congestion avoidance, 408-410
configuration, 427–429	congestion management, 406-408
Event message types, 426	CoPP (Control Plane Policing),
General message types, 426	817–818
Puppet, 902	DiffServ, 379
agent/server communication, 902	IntServ, 377–378
comparison with Chef, 906	marking, 385
components, 902	class-based, 392–393
Forge, 904	Layer 2, 385–386
installation modes, 903	Layer 3, 386–387
manifest, 903–904	PCP (Priority Code Point), 386
module, 903	MQC framework, 379-381
Puppet Bolt, 922	need for, 374
command line, 922–923	jitter, 376
tasks, 922, 923	lack of bandwidth, 374
push model, 904	latency, 374–375
PVST (Per-VLAN Spanning Tree),	packet loss, 376–377
81–82, 971	processing delay, 376
Python, 911, 971	propagation delay, 375
functions, 888	serialization delay, 375
module, 886-887	PHB (per-hop behavior), 387
scripts	Assured Forwarding, 388–390
conditions, 885	Class Selector, 388
dictionary, 885	Default Forwarding, 388
Env_Lab.py script, 882-885	Expedited Forwarding, 390
get_dnac_devices.py, 885–889	policers and shapers
quotation marks, 884	class-based, 398
strings, 884	

,	
markdown, 395	5 GHz band, 516
placing in the network, 395	6 GHz band, 516
single-rate three-color, 399–400	amplitude, 520
single-rate two-color, 399–400	carrier signal, 531
token bucket algorithm, 395–397	channels, 517
two-rate three-color, 403–405	fingerprinting, 586, 972
scavenger class, 391	modulation, 532-533
trust boundary, 391–392	DRS (dynamic rate shifting),
wireless, 393–394	538-540
queuing algorithm, 406-408	spread spectrum, 532–533
	MRC (maximal-ratio combining), 538
R	narrowband transmissions, 532
	noise/noise floor, 530
radiation pattern, 560–562, 971 radio chain, 535	non-overlapping channel spacing, 518–519
Radioactive Trace, 615–616	phase, 519
RADIUS, 971	power, 521
RD (reported distance), 158	signal bandwidth, 517-518
reactor, 909	SNR (signal-to-noise ratio), 530-531
receiver. See also antenna/s	spatial multiplexing, 535-536
power level, 530–531	tag, 558
sensitivity level, 530	TBF (transmit beamforming), 536-538
recipe, 906, 971	W (watts), 521
recursive static route, 139–140,	wavelength, 519-520
474–475, 971	RFID tag, 587
regex (regular expressions), 300–301, 972	RIB (Routing Information Base), 132, 134–135, 972
Remote SPAN (Switched Port	BGP, 262
Analyzer), 720–722	verifying installed routes, 186-187
remote VPN access, 486	RID (router ID), 175, 180-181, 972
remote-span command, 721	roaming
reported distance, 972	between autonomous APs, 574-576
REST (Representational State Transfer)	intercontroller, 579
API, 856	intracontroller, 577-579
RESTCONF, 876–877, 972	Layer 2, 579–580
RF (radio frequency), 516, 971. See also antenna/s	Layer 3, 581–583
2.4 GHz band, 516	rogue device, locating, 587
2.7 GHZ Danu, 310	root bridge, 39, 60-63, 972

root bridge identifier, 40, 972	AD (administrative distance), 132,
root guard, 68, 972	133–135
root path cost, 40, 972	deterministic, 293–294
root port, 972	distance vector algorithm, 128-129
round robin, 406	dynamic, 126-128
route aggregation, BGP	enhanced distance vector algorithm, 129–130
with AS_SET, 276–277 aggregate-address command, 267–274	FIB (Forwarding Information Base), 132
route filtering, 306–307	hybrid, 129
AS_Path ACL filtering, 309–311	link-state algorithm, 130–131
distribute lists, 307	metric, 132
OSPF, 224–225	path selection, 132
area, 225–227	path vector algorithm, 131–132
with summarization, 225	policy-based, 146–149
prefix lists, 308	prefix length, 132, 133
route maps, 311-313	recursive, 474–475
route map, 301-302, 972	RIB (Routing Information Base), 132,
command syntax, 301	134–135
complex matching, 304	static, 137
components, 301	directly attached, 138–139
conditional match options, 302-303	floating, 141–143
continue keyword, 305-306	fully specified, 141
multiple conditional match conditions, 303–304	IPv6, 145–146
optional actions, 304-305	to null interfaces, 143–145
route filtering, 311–313	recursive, 139–140
route summarization	table, 133, 208–209
BGP, 274–276, 282–285	RP (rendezvous point), 350–351, 363–364, 972
EIGRP, 166–167	Auto-, 364
OSPF, 220–222	candidate, 364–365, 366–367
inter-area, 222, 223–224	mapping agents, 365
metrics, 222–223	static, 364
router ospf command, 178	RP (route processor) engine, 28
routing and routing protocols. See also	RPF (Reverse Path Forwarding),
distance vector algorithm; enhanced	360–361
distance vector algorithm; link-state algorithm; VRF (virtual routing and forwarding)	RSSI (received signal strength indicator), 530–531, 585, 971

RSTP (Rapid Spanning Tree Protocol), 36, 53–54	conditions, 885
building the topology, 55	dictionary, 885
convergence, 55	Env_Lab.py, 882-885
port roles, 54	get_dnac_devices.py, 885–889
port states, 54	quotation marks, 884
port types, 54–55	strings, 884
RSVP (Resource Reservation Protocol),	Tcl, 899–901
377–378	SD-Access, 506–507, 643–646
RTLS (real-time location services),	anycast gateway, 656
585–587	architecture, 646–647
Ruby, 906. See also Chef	network layer, 647–648
	physical layer, 647
S	underlay network, 648–649
	campus fabric, 646
SaaS (software as a service), Cloud	components, 646
OnRamp, 666-668	controller layer, 656-657
SAE (Simultaneous Authentication of	fabric, 649
Equals), 595	control plane, 649-650
Salt SSH, 923-924	control plane nodes, 653-654
SaltStack, 909	data plane, 650-651
0MQ, 909	device roles, 652
beacon, 909	edge nodes, 652–653
commands, 910–911	policy plane, 651–652
grain, 909–910	WLC (wireless LAN controller),
jobs, 909	654
minion, 909	host pool, 655
pillar, 909–910	scalable group, 655-656
reactor, 909	VN (virtual network), 655
remote execution system, 909	SDM (Switching Database Manager)
scaling, 910	templates, 30-32
satellite communication, latency, 375	sdm prefer command, 30
save configuration, NETCONF, 876	SD-WAN, 661. See also Cisco SD-WAN
scalable group, 655-656	segmentation, 973
scaling, SaltStack, 910	sensitivity level, 530, 973
scavenger class, 391	serialization delay, 375
script	server/s
Python	bare-metal, 828

Chef. 906 show interfaces switchport command, 17-18 looking glass, 301 show interfaces trunk command, virtualization, 826, 828 13–14, 103 VTP, 97 show ip arp command, 20 service chaining, 973 show ip flow export command, service policy, 379 707-708 service-policy command, 380 show ip interface brief command, session, BGP, 249–250 23 - 24eBGP, 251 show ip nat translations command, 450-452 iBGP. 250-251 show ip ospf database summary SGTs (Scalable Group Tags), 650, 973 command, 215 shapers. See policers; QoS (quality of service), policers and shapers show ip ospf interface command, 184–185, 689 shared trees, 350-352 show ip ospf neighbor command, 186, show bgp ipv4 unicast command, 263-686 265, 267-268 show ip route bgp command, 265 show bgp ipv4 unicast neighbors command, 258-260 show ip route command, 137, 139, 266-267, 448 show bgp ipv4 unicast summary command, 257 show ip route ospf command, 187 show bgp ipv6 unicast neighbors show ipv6 interface brief command, 24 - 25command, 281 show bgp ipv6 unicast summary show ipv6 route command, 146 command, 281-282 show ipv6 route ospf command, 237, 238, 239 show bgp summary command, 257 show etherchannel load-balance show lacp counters command, command, 120 113-114 show etherchannel port command, show lacp neighbor command, 110-112 112-113 show etherchannel summary command, show lacp sys-id command, 117–118 108-109 show logging command, 703–704 show flow monitor command, 714 show mac address-table dynamic show flow record command, 710–711 command, 15-16 show glbp command, 443–444 show monitor session erspan-source session command, 723–724 show interface port-channel command, 110 show ntp associations command, 423-424 show interfaces status command. 18-19, 71 show ntp status command, 422–423

show ospfv3 interface command, 236,	site-to-site VPN, 486
240	GRE over IPsec, 487–493
show ospfv3 ipv6 neighbor command,	VTI over IPsec, 493–495
show pagp counters command, 114	SLA (service-level agreement), 375. See also IP SLA
show pagp neighbor command, 113 show running-config command,	SNMP (Simple Network Management Protocol), 695, 973
270–271	comparison with NETCONF, 873
show sdm prefer command, 31–32	configuration, 699–700
show spanning-tree command, 85–86	MIB (Management Information Base),
show spanning-tree inconsistentports	695, 697–699
command, 74	operations, 696
show spanning-tree interface command,	trap, 695
48–49, 70–71, 73	version comparison, 695-696
show spanning-tree mst command, 86–87, 88	snmp-server enable traps command, 700
show spanning-tree mst configuration command, 84–85	SNR (signal-to-noise ratio), 530–531, 973
show spanning-tree mst interface command, 87	soft reset, BGP, 313
show spanning-tree root command,	software, CEF (Cisco Express Forwarding), 29–30
show spanning-tree vlan command,	source tree, 349–350
45-47, 61-62, 64-66	southbound API, 856
show spanning-tree vlan detail command, 49-50	SP (service provider), BGP multihoming, 291–292
show standby command, 435–438	SPAN (Switched Port Analyzer), 716–717, 973
show track command, 431–432	Encapsulated Remote, 722
show udld neighbors command, 75–76 show vlan command, 9–11	specifying the destination ports,
show vrrp brief command, 441	723–724
show vrrp command, 439	specifying the source ports, 722–723
show vtp status command, 99–101	Local, 717
signal bandwidth, 517-518	configuration examples,
single-rate three-color policer,	719–720
399–400 single-rate two-color policer, 399–400	specifying the destination ports, 718–719
SISO (single-in, single-out) system, 535	specifying the source ports,
site tag, 558	717–718
<u>.</u>	Remote, 720-722, 973

spanning-tree bpdufilter enable	static RP (rendezvous point), 364
command, 72	STP (Spanning Tree Protocol), 36,
spanning-tree guard root command, 68	67–68. <i>See also</i> MST (Multiple Spanning Tree Protocol); RSTP
spanning-tree mode mst command, 84	(Rapid Spanning Tree Protocol)
spanning-tree pathcost method long command, 41	802.1D, 38
spanning-tree portfast bpduguard default command, 70	BPDU (bridge protocol data unit), 40
spanning-tree portfast command,	configuration BPDU, 40
68–70	forward delay, 40
spanning-tree vlan forward-time	hello time, 40
command, 40	local bridge identifier, 40
spanning-tree vlan hello-time	max age, 40
command, 40	path cost, 41
spanning-tree vlan max-age command, 40	port states, 39
• •	port types, 39
spanning-tree vlan priority command, 60	root bridge, 39
spanning-tree vlan root command, 60	root bridge identifier, 40
spatial multiplexing, 535–536, 973	root path cost, 40
split-MAC architecture, 547, 974	system ID extension, 40
spread spectrum, 532–533, 974	system priority, 40
SPT (shortest path tree), 973	TCN (topology change notifica-
SR-IOV, 841–842	tion) BPDU, 40
SSH (Secure Shell), 800–802, 973	BPDU filter, 72–73
standard ACL, 295–296	BPDU guard, 70–72
state machine, Cisco lightweight AP,	building the topology, 41
552–554	locating blocked designated
static NAT, 974	switch ports, 45–47
inside, 449–452	locating root ports, 44–45
outside, 452-455	root bridge election, 41–44
static null route, 974	verification of VLANs on trunk
static route, 137	links, 48–49
directly attached, 138-139	Error Recovery Service, 71–72
floating, 141–143	loop guard, 74
fully specified, 141	modifying port priority, 66–67
IPv6, 145–146	modifying root port and blocked switch port locations, 63–66
to null interfaces, 143–145	placing the root bridge, 60–63
recursive, 139–140	portfast, 68–70
	p 51 t140t, 00 7 0

problems with unidirectional links, 73	applet, 896
root guard, 68	logging buffer, 701–704
topology changes, 49-50	message severity levels, 701
converging with direct link fail- ures, 50–52	sending messages to a host or collector, 704–706
indirect failures, 52–53	system ID extension, 40
UDLD (Unidirectional Link Detection),	system priority, 974
75–76	LACP, 117–118
stratum, 421, 974	STP, 40
streaming, 339	
string, 884	Т
Stubby area, OSPF, 217	·
subnet, 127	TACACS+, 803-804, 805, 974
successor/successor route, 158	Talos, 741–742
summarization, 974. See also route	tasks, Puppet Bolt, 922, 923
summarization	TBF (transmit beamforming), 536-538,
IPv6, 238–239	975
OSPF, 220–222	Tc (committed time interval), 395
inter-area, 222, 223–224 metrics, 222–223	TCAM (ternary content addressable memory), 27–28, 975
supplicant, 974	Tcl, 899–901, 974
SVI (switched virtual interface), IP addressing, 23	TCN (topology change notification) BPDU, 40, 975
switch, 5. See also VLANs (virtual LANs)	TCP (Transmission Control Protocol), 249
collision domain, 5–6	TCP/IP (Transmission Control
multilayer, 4	Protocol/Internet Protocol), 3
port, viewing the status, 17–19	Technologies page, DevNet, 878
TCAM (ternary content addressable	Telnet, 974
memory), 27–28	template, SDM (Switching Database
virtual, 831–833	Manager), 30–32
switchport access vlan command, 12	terminal line
switchport mode access command, 12	controlling access
switchport mode trunk command, 12	using ACLs, 796–797
switchport trunk allowed vlan command, 14–15	using transport input command, 797–800
switchport trunk native vlan command,	line local username and password authentication, 790–793
syslog, 701, 974	password protection, 788–789

time synchronization, 420	agent/server communication,
NTP (Network Time Protocol),	902
420–421	components, 902
configuration, 421–422	installation modes, 903
peers, 424–425	manifest, 903–904
stratum preference, 424	module, 903
verification, 422–423	SaltStack, 909
viewing associations, 423-424	0MQ, 909
PTP (Precision Time Protocol), 425–426	beacon, 909 commands, 910–911
configuration, 427–429	grain, 909–910
Event message types, 426	jobs, 909–910
General message types, 426	minion, 909
timer	
EIGRP, 164	pillar, 909–910 reactor, 909
OSPF, 190	remote execution system, 909
Token API, 862-864	scaling, 910
token bucket algorithm, 395-397	topology/ies. See also convergence
tools. See also automation tools; commands	MST (Multiple Spanning Tree Proto col), 82–83
diagnostic	NAT (Network Address Translation)
IP SLA, 724–726	447–449
ping command, 675–680 traceroute command, 680–685	OSPF (Open Shortest Path First), 181–183
EEM (Embedded Event Manager), 901	area, 204–207
applets, 895	multi-area, 206–207
debugging, 896–898	OSPFv3, 233
email variables, 899	table, 159-160, 975
event detector, 894–895	ToS (Type of Service), 975
syslog applet, 896	Totally Stubby area, 217
WR MEM applet, 898	traceroute command, 448, 680-683
Postman, 857, 858	extended, 684-685
collections, 858–859	options, 683
dashboard, 857	transform sets, IPsec, 478-480
History tab, 850–858	transit routing, 975
URL bar, 859–860	branch, 293–295
Puppet, 902	Internet, 292–293
11 / 1	transport input command, 797–800

troubleshooting. See also Cisco DNA Center Assurance; diagnostic tools EtherChannel bundle, 118–119 Layer 2 forwarding, 16 tools. See diagnostic tools wireless, 610-611 wireless connectivity, 610–611 at the AP, 617-620 from the WLC, 611-616 trunk port, 12, 975 configuring, 13 displaying information about, 13 verifying status, 13-14 trust boundary, 391-392 tuning, MST (Multiple Spanning Tree Protocol), 87 changing the interface cost, 88 changing the interface priority, 88-89 tunnel mode ipsec command, 493 tunnels. See overlay tunnels two-rate three-color policers, 403–405 type 1 LSA, 210-212 type 2 LSA, 213-214 type 3 LSA, 213-217

U

UDLD (Unidirectional Link Detection), 75–76, 975
udld enable command, 75
Umbrella, 744–745
undebug interface loopback0
command, 695
underlay network, 648–649, 975
unequal-cost load balancing, 136–137, 975
unicast, 338
unknown unicast flooding, 6

uplink MACsec, 774 upstream, 975 user space, 837 username, creating, 790

VACL (VLAN ACL), 786-788

vAnalytics, 664 variables, EEM email, 899 variance value, 163, 976 vBond orchestrator, 662-663 verifying AAA (authentication, authorization, and accounting), 809 BGP session, 257–260 CoPP (Control Plane Policing), 820 - 822EAP-based authentication, 602 EtherChannel status, 108–110 GLBP (Gateway Load Balancing Protocol), 443-444 GRE tunnels, 474 IP address, 23-25 line local username and password authentication, 792-793 MST (Multiple Spanning Tree Protocol), 84–87 NetFlow, 707-708 NTP (Network Time Protocol), 422 - 423OSPF (Open Shortest Path First) interfaces, 184-185 neighbor adjacencies, 185-186 routes installed on the RIB, 186-187 OSPFv3, 235-237 trunk port status, 13–14

VLAN on trunk links, 48–49

VRRP (Virtual Router Redundancy Protocol), 439	VPN (virtual private network), 466, 976. <i>See also</i> overlay tunnels
VTP (VLAN Trunking Protocol),	Cisco Dynamic Multipoint, 486
99–100 creating VLANs on the VTP	Cisco Group Encrypted Transport,
domain server, 100	IPsec, 484
with a transparent switch, 101	remote access, 486
ZBFW (Zone-Based Firewall),	site-to-site, 486
816–817	VRF (virtual routing and forwarding),
viewing	149–151
NTP associations, 423–424	VRRP (Virtual Router Redundancy
VLAN port assignments, 9–10	Protocol), 438
VIM (Virtualized Infrastructure	configuration
Manager), 834–835	legacy, 439
virtualization, 826, 828. See also NFV	version 2, 438
(network functions virtualization)	version 3, 440–441
vlan command, 8	viewing the status, 439
VLAN (virtual LAN), 7, 976	vSmart controllers, 663
access port, 11–12	vSwitch, 831-833, 976
allowed, 14–15 creating, 8	VTEP (virtual tunnel endpoint), 505–506, 976
loop prevention, 634–636 native, 14	VTP (VLAN Trunking Protocol), 96–97
packet structure, 8	communication, 97
viewing port assignments, 9–10	configuring, 98–99
vManage NMS, 663	servers, 97
VM (virtual machine), 828, 976	verification, 99–100
comparison with containers, 830–831	creating VLANs on the VTP
guest OS, 830	domain server, 100
hypervisor, 828–829	with a transparent switch, 101
migration, 829–830	versions, 97
packet flow, 837–839	vtp domain command, 98-99
VN (virtual network), 655, 976	vtp mode command, 98-99
VNFs (virtual network functions),	vtp password command, 98-99
834–836, 840–847	vtp version command, 98-99
EM (element manager), 835	vty line. See also terminal line
performance, 836	controlling access
VIM (Virtualized Infrastructure Manager), 834–835	using ACLs, 796–797

using transport input command, polarization, 563-564 797-800 RSSI (received signal strength SSH (Secure Shell), 800-802 indicator), 530-531 VXLAN (Virtual eXtensible Local Area wave propagation, 513-514 Network), 504-505, 507, 650, 976 Yagi, 565-569 control plane, 506 AP VTEP, 505-506 autonomous, 545-546 Cisco, 547-548 client density, 559-560 authentication, 593 W (watt), 521 EAP, 597-602 WAN, 642 Open Authentication, 593–594 wave propagation, 513-514 pre-shared key, 595-597 wavelength, 519-520, 977 WebAuth, 603-606 Web Authentication, 603, 764, 976 BSS (basic service set), 592 Central, 765 device location, 584-587 Local, 764-765 frequency, 514–515 wireless authentication, 603-606 power well-known communities, BGP, 314 comparing against a reference, WFQ (weighted fair queuing), 407 524-525 wide metric, 162, 977 dB (decibel), 522-524 Wi-Fi, 533, 534 dBm (dB-milliwatt), 525 wildcard mask, 782 measuring changes along a sigwireless networks and theory. See nal path, 525-527 also Cisco lightweight APs; Cisco RF signal, 521 wireless deployments; power QoS (quality of service), 393-394 antenna/s, 309-311 radio chain, 535 beamwidth, 563 RF (radio frequency), 516 directional, 567-570 2.4 GHz band, 516 EIRP (effective isotropic radiated 5 GHz band, 516 power), 526 6 GHz band, 516 free space path loss, 527-529 amplitude, 520 gain, 525-526, 562 carrier signal, 531-532 isotropic, 526 channels, 517 link budget, 526-527 modulation, 532-533 omnidirectional, 564-566 MRC (maximal-ratio combining), parabolic dish, 569-570 538 patch, 567-568

narrowband transmissions, 532 noise/noise floor, 530 non-overlapping channel spacing, 518-519 phase, 519 power, 521 signal bandwidth, 517-518 SNR (signal-to-noise ratio), 530-531 spread spectrum, 532-533 TBF (transmit beamforming), 536-538 W (watts), 521 roaming between autonomous APs, 574-576 intercontroller, 579 intracontroller, 577-579 Layer 2, 579-580 Layer 3, 581-583 rope analogy, 512–513 spatial multiplexing, 535-536 troubleshooting connectivity issues, 610 - 611at the AP, 617-620 from the WLC, 611-616 wavelength, 519-520 WLC (wireless LAN controller), 276-277, 545, 977. See also Cisco lightweight APs fabric, 654 mobility groups, 583–584 pairing with a lightweight AP, 552 split-MAC architecture, 547 troubleshooting client connectivity issues, 611-613

checking the AP properties, 614 - 615checking the client's association and signal status, 613 checking the client's properties, 614 Radioactive Trace, 615-616 WPA (Wi-Fi Protected Access), 595-597, 977 WR MEM applet, 898 WRED (weighed random early detection), 390 WRR (weighted round robin), 406

X-Y

XML (Extensible Markup Language), 860-861, 963 Yagi antenna, 568–569, 977 YAML (Yet Another Markup Language), 915 dictionary, 915-916 Lint, 916 lists, 915 YANG model, 870–871, 977. See also **NETCONF**; **RESTCONF** in NETCONF, 873-874 tree structure, 871–872

ZBFW (Zone-Based Firewall), 809-810, 977 configuration, 811–815 default zone, 810 self zone, 810 verification, 816–817

Register your product at **ciscopress.com/register** to unlock additional benefits:

- Save 35%* on your next purchase with an exclusive discount code
- Find companion files, errata, and product updates if available
- Sign up to receive special offers on new editions and related titles

Get more when you shop at **ciscopress.com**:

- Everyday discounts on books, eBooks, video courses, and more
- Free U.S. shipping on all orders
- Multi-format eBooks to read on your preferred device
- Print and eBook Best Value Packs

Memory Tables

 Table 7-2
 EIGRP Terminology

Term	Definition
	The route with the lowest path metric to reach a destination.
	The successor route for R1 to reach 10.4.4.0/24 on R4 is R1 \rightarrow R3 \rightarrow R4.
Successor	
	The metric value for the lowest-metric path to reach a destination. The feasible distance is calculated locally using the formula shown in the "Path Metric Calculation" section, later in this chapter.
	The FD calculated by R1 for the 10.4.4.0/24 network is 3328 (that is, 256+256+2816).
	The distance reported by a router to reach a prefix. The reported distance value is the feasible distance for the advertising router.
	R3 advertises the 10.4.4.0/24 prefix with an RD of 3072.
	R4 advertises the 10.4.4.0/24 to R1 and R2 with an RD of 2816.
Feasibility condition	
Feasible successor	A route that satisfies the feasibility condition and is maintained as a backup route. The feasibility condition ensures that the backup route is loop free.
	The route R1 \rightarrow R4 is the feasible successor because the RD 2816 is lower than the FD 3328 for the R1 \rightarrow R3 \rightarrow R4 path.

Table 7-3 EIGRP Packet Types

Opcode Value	Packet Type	Function
1		Used to transmit routing and reachability information with other EIGRP neighbors
2	Request	
3	Query	
4	Reply	
5		Used for discovery of EIGRP neighbors and for detecting when a neighbor is no longer available

Table 8-2 OSPF Packet Types

Туре	Packet Name	Functional Overview
1		These packets are for discovering and maintaining neighbors. Packets are sent out periodically on all OSPF interfaces to discover new neighbors while ensuring that other adjacent neighbors are still online.
2		These packets are for summarizing database contents. Packets are exchanged when an OSPF adjacency is first being formed. These packets are used to describe the contents of the LSDB.
3		These packets are for database downloads. When a router thinks that part of its LSDB is stale, it may request a portion of a neighbor's database by using this packet type.
4		These packets are for database updates. This is an explicit LSA for a specific network link and normally is sent in direct response to an LSR.
5		These packets are for flooding acknowledgment. These packets are sent in response to the flooding of LSAs, thus making flooding a reliable transport feature.

Table 8-9 OSPF Network Types

Туре	Description	DR/BDR Field in OSPF Hellos	Timers
	Default setting on OSPF-enabled Ethernet links.	Yes	
	Default setting on OSPF-enabled Frame Relay main interface or Frame Relay multipoint subinterfaces.		Hello: 30 Wait: 120 Dead: 120
Point-to-point	Default setting on OSPF-enabled Frame Relay point-to-point subinterfaces.		
	Not enabled by default on any interface type. Interface is advertised as a host route (/32) and sets the next-hop address to the outbound interface. Primarily used for hub-and-spoke topologies.	No	Hello: 30 Wait: 120 Dead: 120
Loopback		N/A	N/A

Table 13-2 IP Multicast Addresses Assigned by IANA

Designation	Multicast Address Range
Local network control block	
Internetwork control block	
Ad hoc block I	224.0.2.0 to 224.0.255.255
Reserved	224.1.0.0 to 224.1.255.255
SDP/SAP block	224.2.0.0 to 224.2.255.255
Ad hoc block II	224.3.0.0 to 224.4.255.255
Reserved	224.5.0.0 to 224.255.255.255
Reserved	225.0.0.0 to 231.255.255.255
	232.0.0.0 to 232.255.255.255
GLOP block	233.0.0.0 to 233.251.255.255
Ad hoc block III	233.252.0.0 to 233.255.255.255
Reserved	234.0.0.0 to 238.255.255.
Administratively scoped block	

Table 13-3 Well-Known Reserved Multicast Addresses

IP Multicast Address	Description
224.0.0.0	Base address (reserved)
224.0.0.1	All hosts in this subnet (all-hosts group)
224.0.0.2	All routers in this subnet
224.0.0.5	All OSPF routers (AllSPFRouters)
224.0.0.6	All OSPF DRs (AllDRouters)
224.0.0.9	All RIPv2 routers
224.0.0.10	All EIGRP routers
	All PIM routers
224.0.0.18	VRRP
	IGMPv3
224.0.0.102	HSRPv2 and GLBP
224.0.1.1	NTP
	Cisco-RP-Announce (Auto-RP)
	Cisco-RP-Discovery (Auto-RP)

The IGMP message format fields are defined as follows:

respond to a local router's membership query message.

Type: This field describes five different types of IGMP messages used by routers and	
receivers:	
■ (type value 0x16) is a message type also commonly	У

referred to as an IGMP join; it is used by receivers to join a multicast group or to

Version 1 membership report (type value 0x12) is used by receivers for backward compatibility with IGMPv1.	I
■ Version 2 leave group (type value 0x17) is used by receivers to indicate they want to stop receiving multicast traffic for a group they joined.	
(type value 0x11) is sent periodically to the all-hosts group address 224.0.0.1 to see whether there are any receivers in the attached subnet. It sets the group address field to 0.0.0.0.	l
■ Group specific query (type value 0x11) is sent in response to a leave group message to the group address the receiver requested to leave. The group address is the destination IP address of the IP packet and the group address field.	
: This field is set only in general and group-specific membership query messages (type value 0x11); it specifies the maximum allowed tim before sending a responding report in units of one-tenth of a second. In all other messages, it is set to 0x00 by the sender and ignored by receivers.	
: This field is the 16-bit 1s complement of the 1s complement sum of the IGMP message. This is the standard checksum algorithm used by TCP/IP.	ŀ
: This field is set to 0.0.0.0 in general query messages and is set to the group address in group-specific messages. Membership report messages carry the address of the group being reported in this field; group leave message carry the address of the group being left in this field.	
The following list defines the common PIM terminology illustrated in Figure 13-14:	
■ Reverse Path Forwarding (RPF) interface:	-
	_
RPF neighbor:	- -
: Toward the source of the tree, which could be	_
the actual source in source-based trees or the RP in shared trees. A PIM join travels upstream toward the source.	
: The interface toward the source of the tree. It is also known as the RPF interface or the incoming interface (IIF). An example of an upstream interface is R5's Te0/1/2 interface, which can send PIM joins upstream to its RPF neighbor.	

Table 13-4 PIM Control Message Types

Туре	Message Type	Destination	PIM Protocol
0		224.0.0.13 (all PIM routers)	PIM-SM, PIM-DM, Bidir-PIM, and SSM
1	Register	RP address (unicast)	PIM-SM
2	Register stop	First-hop router (unicast)	PIM SM
3		224.0.0.13 (all PIM routers)	PIM-SM, Bidir-PIM, and SSM
4	Bootstrap	224.0.0.13 (all PIM routers)	PIM-SM and Bidir-PIM
5	Assert	224.0.0.13 (all PIM routers)	PIM-SM, PIM-DM, and Bidir-PIM
8		Bootstrap router (BSR) address (unicast to BSR)	PIM-SM and Bidir-PIM
9	State refresh	224.0.0.13 (all PIM routers)	PIM-DM
10	DF election	224.0.0.13 (all PIM routers)	Bidir-PIM

There are three different QoS implementation models:

QoS is not enabled for this model. It is used f	or traffic
that does not require any special treatment.	
 Applications signal the network to make a bareservation and to indicate that they require special QoS treatment. 	ndwidth
■: The network identifies classes that require sp	ecial QoS
treatment.	
The following traffic descriptors are typically used for classification:	
■ Internal: QoS groups (locally significant to a router)	
■ Layer 1: Physical interface, subinterface, or port	
■ Layer 2:	
■ Layer 2.5: MPLS experimental (EXP) bits	
■ Layer 3:	
■ Layer 4:	
- I asser 7	

The following traffic descriptors are used for marking traffic:

■ Internal: QoS groups ■ _____: 802.1Q/p Class of Service (CoS) bits

	Layer 2.5: MPLS Experimental (EXP) bits
	: Differentiated Services Code Points (DSCP) and IP Precedence (IPF
The 7	TCI field is a 16-bit field composed of the following three fields:
	(PCP) field (3 bits)
	(DEI) field (1 bit)
	(VLAN ID) field (12 bits)
Four	PHBs have been defined and characterized for general use:
•	: The first 3 bits of the DSCP field are used as CS bits. The CS bits make DSCP backward compatible with IP Precedence because IP Precedence uses the same 3 bits to determine class.
	: Used for best-effort service.
	: Used for guaranteed bandwidth service.
	Expedited Forwarding (EF) PHB:
i	: The time interval, in milliseconds (ms), over which the
•	Committed Information Rate (CIR):
_	committed burst (Bc) is sent. To can be calculated with the formula $Tc = (Bc [bits] / CIR [bps]) \times 1000$.
•	: The maximum size of the CIR token bucket, measured in bytes, and the maximum amount of traffic that can be sent within a Tc. Bc can be calculated with the formula $Bc = CIR \times (Tc / 1000)$.
	Token:
•	Token bucket: A bucket that accumulates tokens until a maximum predefined number of tokens is reached (such as the Bc when using a single token bucket); these tokens are added into the bucket at a fixed rate (the CIR). Each packet is checked for conformance to the defined rate and takes tokens from the bucket equal to its packet size; for example, if the packet size is 1500 bytes, it takes 12,000 bits (1500 \times 8) from the bucket. If there are not enough tokens in the token bucket to send the packet, the traffic conditioning mechanism can take one of the following actions:
	•
	<u> </u>

There are different policing algorithms, including the following: Many queuing algorithms are available, but most of them are not adequate for modern richmedia networks carrying voice and high-definition video traffic because they were designed before these traffic types came to be. The legacy queuing algorithms that predate the MQC architecture include the following: involves a single queue where the first packet to be placed on the output interface queue is the first packet to leave the interface (first come, first served). In FIFO queuing, all traffic belongs to the same class. : With ______, queues are serviced in sequence one after the other, and each queue processes one packet only. No queues starve with round robin because every queue gets an opportunity to send one packet every round. No queue has priority over others, and if the packet sizes from all queues are about the same, the interface bandwidth is shared equally across the round robin queues. A limitation of round robin is it does not include a mechanism to prioritize traffic. : _____ was developed to provide prioritization capabilities for round robin. It allows a weight to be assigned to each queue, and based on that weight, each queue effectively receives a portion of the interface bandwidth that is not necessarily equal to the other queues' portions. is a Cisco implementation of WRR that involves a set of 16 queues with a round-robin scheduler and FIFO queuing within each queue. Each queue can be customized with a portion of the link bandwidth for each selected traffic type. If a particular type of traffic is not using the bandwidth reserved for it, other traffic types may use the unused bandwidth. CQ causes long delays and also suffers from all the same problems as FIFO within each of the 16 queues that it uses for traffic classification. _____: _____, four queues in a set (high, medium, normal, and low) are served in strict-priority order, with FIFO queuing within each queue. The high-priority queue is always serviced first, and lower-priority queues are serviced only when all higher-priority queues are empty. For example, the medium queue is serviced only when the high-priority queue is empty. The normal queue is serviced

only when the high and medium queues are empty; finally, the low queue is serviced only when all the other queues are empty. At any point in time, if a packet arrives for a higher queue, the packet from the higher queue is processed before any packets in lower-level queues. For this reason, if the higher-priority queues are continuously

being serviced, the lower-priority queues are starved.

: The	algorithm automatically divides
the interface bandwidth by the number of flows (we	eighted by IP Precedence) to allocate
bandwidth fairly among all flows. This method prov	ides better service for high-priority
real-time flows but can't provide a fixed-bandwidth	guarantee for any particular flow.

The current queuing algorithms recommended for rich-media networks (and supported by MQC) combine the best features of the legacy algorithms. These algorithms provide realtime, delay-sensitive traffic bandwidth and delay guarantees while not starving other types of traffic. The recommended queuing algorithms include the following:

:	enables the creation of up to
256 queues, serving up to 256 traffic classes.	Each queue is serviced based on the
bandwidth assigned to that class. It extends V	WFQ functionality to provide support
for user-defined traffic classes. With	, packet classification is
done based on traffic descriptors such as Qo	S markings, protocols, ACLs, and input
interfaces. After a packet is classified as belor	nging to a specific class, it is possible to
assign bandwidth, weight, queue limit, and m	aximum packet limit to it. The bandwidth
assigned to a class is the minimum bandwidth	delivered to the class during congestion
The queue limit for that class is the maximum	number of packets allowed to be buff-
ered in the class queue. After a queue has read	ched the configured queue limit, excess
packets are dropped by	itself does not provide a latency guaran-
tee and is only suitable for non-real-time data	traffic.

is CBWFQ combined with priority queuing (PQ) and it was developed to meet the requirements of real-time traffic, such as voice. Traffic assigned to the strict-priority queue is serviced up to its assigned bandwidth before other CBWFQ queues are serviced. All real-time traffic should be configured to be serviced by the priority queue. Multiple classes of real-time traffic can be defined, and separate bandwidth guarantees can be given to each, but a single priority queue schedules all the combined traffic. If a traffic class is not using the bandwidth assigned to it, it is shared among the other classes. This algorithm is suitable for combinations of real-time and non-real-time traffic. It provides both latency and bandwidth guarantees to high-priority real-time traffic. In the event of congestion, real-time traffic that goes beyond the assigned bandwidth guarantee is policed by a congestion-aware policer to ensure that the non-priority traffic is not starved.

Table 16-3 IPsec Security Services

Security Service	Description	Methods Used	
	Verifies the identity of the VPN	Pre-Shared Key (PSK)	
	peer through authentication.	Digital certificates	
	Protects data from eavesdropping attacks through encryption	Data Encryption Standard (DES)Triple DES (3DES)	
	algorithms. Changes plaintext into encrypted ciphertext.	Advanced Encryption Standard (AES)	
		The use of DES and 3DES is not recommended.	

Security Service	Description	Methods Used
	Prevents <i>man-in-the-middle</i> (<i>MitM</i>) attacks by ensuring that data has not been tampered with during its transit across an unsecure network.	Hash Message Authentication Code (HMAC) functions: Message Digest 5 (MD5) algorithm Secure Hash Algorithm (SHA-1) The use of MD5 is not recommended.
	Prevents MitM attacks where an attacker captures VPN traffic and replays it back to a VPN peer with the intention of building an illegitimate VPN tunnel.	Every packet is marked with a unique sequence number. A VPN device keeps track of the sequence number and does not accept a packet with a sequence number it has already processed.

IPsec supports the following encryption, hashing, and keying methods to provide security services:

: A 56-bit symmetric data encryption algorithm that can encrypt the data sent over a VPN. This algorithm is very weak and should be avoided. : A data encryption algorithm that runs the DES algorithm three times with three different 56-bit keys. Using this algorithm is no longer recommended. The more advanced and more efficient AES should be used instead. : A symmetric encryption algorithm used for data encryption that was developed to replace DES and 3DES. AES supports key lengths of 128 bits, 192 bits, or 256 bits and is based on the Rijndael algorithm. : A one-way, 128-bit hash algorithm used for data authentication. Cisco devices use MD5 HMAC, which provides an additional level of protection against MitM attacks. Using this algorithm is no longer recommended, and SHA should be used instead. : A one-way, 160-bit hash algorithm used for data authentication. Cisco devices use the SHA-1 HMAC, which provides additional protection against MitM attacks. : An asymmetric key exchange protocol that enables two peers to establish a shared secret key used by encryption algorithms such as AES over an unsecure communications channel. A DH group refers to the length of the key (modulus size) to use for a DH key exchange. For example, group 1 uses 768 bits, group 2 uses 1024, and group 5 uses 1536, where the larger the modulus, the more secure it is. The purpose of DH is to generate shared secret symmetric keys that are used by the two VPN peers for symmetrical algorithms, such as AES. The DH exchange itself is asymmetrical and CPU intensive, and the resulting shared secret keys that are generated are symmetrical. Cisco recommends avoiding DH groups 1, 2, and 5 and instead using DH groups 14 and higher.

- : A public-key (digital certificates) cryptographic system used to mutually authenticate the peers.
- : A security mechanism in which a locally configured key is used as a credential to mutually authenticate the peers.

Table 16-4 Allowed Transform Set Combinations

Transform Type	Transform	Description
Authentication header	ah-md5-hmac	Authentication header with the MD5 authentication algorithm (not recommended)
	ah-sha-hmac	Authentication header with the SHA authentication algorithm
	ah-sha256-hmac	Authentication header with the 256-bit SHA authentication algorithm
	ah-sha384-hmac	Authentication header with the 384-bit SHA authentication algorithm
	ah-sha512-hmac	Authentication header with the 512-bit SHA authentication algorithm
	esp-aes	ESP with the 128-bit AES encryption algorithm
	esp-gcm esp-gmac	ESP-GCM—ESP with either a 128-bit (default) or a 256-bit authenticated
		encryption algorithm ESP-GMAC—ESP with either 128-bit (default) or a 256-bit authentication algorithm without encryption
	esp-aes 192	ESP with the 192-bit AES encryption algorithm
	esp-aes 256	ESP with the 256-bit AES encryption algorithm
	esp-des esp-3des	ESPs with 56-bit and 168-bit DES encryption (no longer recommended)
	esp-null	Null encryption algorithm
	esp-seal	ESP with the 160-bit SEAL encryption algorithm
	esp-md5-hmac	ESP with the MD5 (HMAC variant) authentication algorithm (no longer recommended)
	esp-sha-hmac	ESP with the SHA (HMAC variant) authentication algorithm
	comp-lzs	IP compression with the Lempel-Ziv-Stac (LZS) algorithm

Table 16-5 Major Differences Between IKEv1 and IKEv2

IKEv1	IKEv2
Exchange Modes	
Minimum Number of Messages Needed	to Establish IPsec SAs
	Four
Supported Authentication Methods	
Pre-Shared Key (PSK)	Pre-Shared Key
Digital RSA Certificate (RSA-SIG)	Digital RSA Certificate (RSA-SIG)
Public key	
Both peers must use the same authentication method.	
	Asymmetric authentication is supported. Authentication method can be specified during the IKE_AUTH exchange.
Next Generation Encryption (NGE)	
	AES-GCM (Galois/Counter Mode) mode
	SHA-256
	SHA-384
	SHA-512
	HMAC-SHA-256
	Elliptic Curve Diffie-Hellman (ECDH) ECDH-384
	ECDSA-384
Attack Protection	
MitM protection	
Eavesdropping protection	

Table 16-6 Cisco IPsec VPN Solutions

Features and Benefits	Site-to-Site IPsec VPN	Cisco DMVPN	Cisco GET-VPN	FlexVPN	Remote Access VPN
Product interoperability	Multivendor	Cisco only	Cisco only	Cisco only	Cisco only

Features and Benefits	Site-to-Site IPsec VPN	Cisco DMVPN	Cisco GET-VPN	FlexVPN	Remote Access VPN
Key exchange	IKEv1 and IKEv2	IKEv1 and IKEv2 (both optional)	IKEv1 and IKEv2	IKEv2 only	TLS/DTLS and IKEv2
Scale	Low	Thousands for hub- and-spoke; hundreds for partially meshed spoke- to-spoke connections	Thousands	Thousands	Thousands
Topology	Hub-and- spoke; small-scale meshing as manageability allows	Hub-and- spoke; on-demand spoke- to-spoke partial mesh; spoke- to-spoke connections automatically terminated when no traffic present	Hub-and- spoke; any-to-any	Hub-and- spoke; any- to-any and remote access	Remote
Routing	Not supported	Supported	Supported	Supported	Not supported
QoS	Supported	Supported	Supported	Native support	Supported
Multicast	Not supported	Tunneled	Natively supported across MPLS and private IP networks	Tunneled	Not supported
Non-IP protocols	Not supported	Not supported	Not supported	Not supported	Not supported

Features and Benefits	Site-to-Site IPsec VPN	Cisco DMVPN	Cisco GET-VPN	FlexVPN	Remote Access VPN
Private IP addressing	Supported	Supported	Requires use of GRE or DMVPN with Cisco GET-VPN to support private addresses across the Internet	Supported	Supported
High availability	Stateless failover	Routing	Routing	Routing IKEv2-based dynamic route distribution and server clustering	Not supported
Encapsulation	Tunneled IPsec	Tunneled IPsec	Tunnel-less IPsec	Tunneled IPsec	Tunneled IPsec/TLS
Transport network	Any	Any	Private WAN/ MPLS	Any	Any

Following are the definitions for the LISP architecture components illustrated in Figure 16-5. ■ : An is the IP address of an endpoint within a LISP site. EIDs are the same IP addresses in use today on endpoints (IPv4 or IPv6), and they operate in the same way. : This is the name of a site where LISP routers and EIDs reside. ■ _____ are LISP routers that LISP-encapsulate IP packets coming from EIDs that are destined outside the LISP site. are LISP routers that de-encapsulate LISPencapsulated IP packets coming from sites outside the LISP site and destined to EIDs within the LISP site. : _____ refers to routers that perform ITR and ETR functions (which are most routers).

There are two different ways to encrypt traffic over a GRE tunnel:

Table 17-4 A Summary of Common 802.11 Standard Amendments

Standard	2.4 GHz?	5 GHz?	Data Rates Supported	Channel Widths Supported
			1, 2, 5.5, and 11 Mbps	22 MHz
			6, 9, 12, 18, 24, 36, 48, and 54 Mbps	22 MHz
			6, 9, 12, 18, 24, 36, 48, and 54 Mbps	20 MHz
			Up to 150 Mbps* per spatial stream, up to 4 spatial streams	20 or 40 MHz
			Up to 866 Mbps per spatial stream, up to 4 spatial streams	20, 40, 80, or 160 MHz
			Up to 1.2 Gbps per spatial stream, up to 8 spatial streams	20, 40, 80, or 160 MHz

^{* 802.11}ax is designed to work on any band from 1 to 7 GHz, provided that the band is approved for use.

Chapter 22

The hierarchical LAN design divides networks or their modular blocks into the following three layers:

Access layer:		
Distribution layer:		
Core layer (also referred to as):	

Chapter 23

With SD-Access, an evolved campus network can be built that addresses the needs of existing campus networks by leveraging the following capabilities, features, and functionalities:

: SD-Access replaces manual network device configura-
tions with network device management through a single point of automation, orches-
tration, and management of network functions through the use of Cisco DNA Center.
This simplifies network design and provisioning and allows for very fast, lower-risk
deployment of network devices and services using best-practice configurations.

: SD-Access enables proactive prediction of networkrelated and security-related risks by using telemetry to improve the performance of the network, endpoints, and applications, including encrypted traffic.

	: SD-Access provides host mobility for both wired and
	wireless clients.
•	: Cisco Identity Services Engine (ISE) identifies users and devices connecting to the network and provides the contextual information required for users and devices to implement security policies for network access control and network segmentation.
•	: Traditional access control lists (ACLs) can be difficult to deploy, maintain, and scale because they rely on IP addresses and subnets. Creating access and application policies based on group-based policies using Security Group Access Control Lists (SGACLs) provides a much simpler and more scalable form of policy enforcement based on identity instead of an IP address.
•	: With SD-Access it is easier to segment the network to support guest, corporate, facilities, and IoT-enabled infrastructure.
•	: SD-Access makes it possible to leverage a single physical infrastructure to support multiple virtual routing and forwarding (VRF) instances, referred to as <i>virtual networks (VNs)</i> , each with a distinct set of access policies.
There	e are three basic planes of operation in the SD-Access fabric:
There	e are five basic device roles in the fabric overlay: : This node contains the settings, protocols, and mapping tables to provide the endpoint-to-location (EID-to-RLOC) mapping system for the fabric overlay.
•	: This fabric device (for example, core layer device) connects external Layer 3 networks to the SDA fabric.
•	: This fabric device (for example, access or distribution layer device) connects wired endpoints to the SDA fabric.
•	: This fabric device connects APs and wireless endpoints to the SDA fabric.
•	: These are intermediate routers or extended switches that do not provide any sort of SD-Access fabric role other than underlay services.
There	e are three types of border nodes:
•	: Connects only to the known areas of the organization (for example, WLC, firewall, data center).
•	: Connects only to unknown areas outside the organization. This border node is configured with a default route to reach external unknown

Ю

	plane nodes.
	: Connects transit areas as well as known areas of the company. This is basically a border that combines internal and default border functiality into a single node.
e Ci	sco SD-WAN solution has four main components and an optional analytics service:
- t	: These physical or virtual devices forward traffic across transports (i.e., WAN circuits/media) between locations.
-	: This SD-WAN controller persona provides a single pa of glass (GUI) for managing and monitoring the SD-WAN solution.
-	: This SD-WAN controller persona is responsible for advertising routes and data policies to edge devices.
-	: This SD-WAN controller persona authenticates and orchestrates connectivity between edge devices, vManage, and vSmart controllers.
	: This is an optional analytics and assurance service.
Inc	c.'s definition, a NGFW firewall must include:
, Inc	c.'s definition, a NGFW firewall must include:
Ind	c.'s definition, a NGFW firewall must include:
Ind	core of Cisco Secure Network Analytics are the following components:
, Ind	c.'s definition, a NGFW firewall must include:

be analyzed by Global Threat Analytics, formerly Cognitive Threat Analytics. It can also pinpoint malicious patterns in encrypted traffic using Encrypted Traffic Analytics (ETA), without having to decrypt it, to identify threats and accelerate response. Flow Collectors are available as hardware appliances and as virtual machines.
■: The is required for the collection,
management, and analysis of flow telemetry data and aggregates flows at the Network Analytics Manager as well as to define the volume of flows that can be collected.
Cisco Secure Cloud Analytics supports two deployment models:
•
802.1x comprises the following components:
■: This message format and framework defined by RFC 4187 provides an encapsulated transport for authentication parameters.
■: Different authentication methods can be used with EAP.
: This Layer 2 encapsulation protocol is defined by 802.1x for the transport of EAP messages over IEEE 802 wired and wireless networks.
This is the AAA protocol used by EAP.
802.1x network devices have the following roles:
: Software on the endpoint communicates and provides identity credentials through EAPoL with the authenticator. Common 802.1x supplicants include Windows and macOS native supplicants as well as Cisco AnyConnect. All these supplicants support 802.1x machine and user authentication.
: A network access device (NAD) such as a switch or wireless LAN controller (WLC) controls access to the network based on the authentication status of the user or endpoint. The authenticator acts as the liaison, taking Layer 2 EAP-encapsulated packets from the supplicant and encapsulating them into RADIUS packets for delivery to the authentication server.
• A RADIUS server performs authentication of the client. The authentication server validates the identity of the endpoint and provides the authenticator with an authorization result, such as accept or deny.
There are two methods available for propagating an SGT tag: inline tagging (also referred to as <i>native tagging</i>) and the Cisco-created protocol SGT Exchange Protocol (SXP):
•
SGT tag inside a frame to allow upstream devices to read and apply policy. is completely independent of any Layer 3 protocol (IPv4 or
IPv6), so the frame or packet can preserve the SGT tag throughout the network infra- structure (routers, switches, firewalls, and so on) until it reaches the egress point. The

Figure 25-10 Single-Hop and Multi-Hop SXP Connections

While many different kinds of ACLs can be used for packet filtering, only the following types are covered in this chapter:

■ Numbered standard ACLs: These ACLs define packets based solely on the source net-

	work, and they use the numbered entries and
•	Numbered extended ACLs: These ACLs define packets based on source, destination, protocol, port, or a combination of other packet attributes, and they use the numbered entries and
•	: These ACLs allow standard and extended ACLs to be given names instead of numbers and are generally preferred because they can provide more relevance to the functionality of the ACL.
•	: These ACLs can use standard, extended, named, and named extended MAC ACLs to filter traffic on Layer 2 switch ports.
•	: These ACLs can use standard, extended, named, and named extended MAC ACLs to filter traffic on VLANs.
	Cisco IOS CLI by default includes three privilege levels, each of which defines what nands are available to a user:
•	: Includes the disable , enable , exit , help , and logout commands.
•	: Also known as mode. The command prompt in this mode includes a greater-than sign (R1>). From this mode it is not possible to make configuration changes; in other words, the command configure terminal is not available.
•	: Also known as mode. This is the highest privilege level, where all CLI commands are available. The command prompt in this mode includes a hash sign (R1#).
AAA funct	is an architectural framework for enabling a set of three independent security ions:
•	: Enables a user to be identified and verified prior to being granted access to a network device and/or network services.
•	$\underline{\hspace{1cm}\text{ Endings the access privileges and restrictions to be enforced for an authenticated user.}$
٠	: Provides the ability to track and log user access, including user identities, start and stop times, executed commands (that is, CLI commands), and so on. In other words, it maintains a security log of events.

There are two types of hypervisors, as illustrated in Figure 27-2:

Type 1:	
Type 2:	

Cisco ENFV delivers a virtualized solution for network and application services for branch offices. It consists of four main components that are based on the ETSI NFV architectural framework:

- : Cisco DNA Center provides the VNF management and NFV orchestration capabilities. It allows for easy automation of the deployment of virtualized network services, consisting of multiple VNFs.
- : VNFs provide the desired virtual networking functions.
- : An operating system that provides virtualization capabilities and facilitates the deployment and operation of VNFs and hardware components.
- : x86-based compute resources that provide the CPU, memory, and storage required to deploy and operate VNFs and run applications.

Table 28-3 HTTP Functions and Use Cases

HTTP Function Action Use Case		Use Case
	Requests data from a destination	Viewing a website
	Submits data to a specific destination	Submitting login credentials
	Replaces data in a specific destination	Updating an NTP server
	Appends data to a specific destination	Adding an NTP server
	Removes data from a specific destination	Removing an NTP server

Table 28-4 CRUD Functions and Use Cases

CRUD Function	Action	Use Case
	Inserts data in a database or application	Updating a customer's home address in a database
	Retrieves data from a database or application	Pulling up a customer's home address from a database
	Modifies or replaces data in a database or application	Changing a street address stored in a database
	Removes data from a database or application	Removing a customer from a database

Table 28-5 HTTP Status Codes

HTTP Status Code	Result	Common Reason for Response Code
	OK	Using GET or POST to exchange data with an API
	Created	Creating resources by using a REST API call
	Bad Request	Request failed due to client-side issue
	Unauthorized	Client not authenticated to access site or API call
	Forbidden	Access not granted based on supplied credentials
	Not Found	Page at HTTP URL location does not exist or is hidden

Memory Tables Answer Key

Table 7-2 EIGRP Terminology

Term	Definition	
Successor route	The route with the lowest path metric to reach a destination.	
	The successor route for R1 to reach 10.4.4.0/24 on R4 is R1 \rightarrow R3 \rightarrow R4.	
Successor	The first next-hop router for the successor route.	
	The successor for 10.4.4.0/24 is R3.	
Feasible distance (FD) The metric value for the lowest-metric path to reach a destination. feasible distance is calculated locally using the formula shown in to Metric Calculation" section, later in this chapter.		
	The FD calculated by R1 for the 10.4.4.0/24 network is 3328 (that is, 256+256+2816).	
Reported distance (RD)	The distance reported by a router to reach a prefix. The reported distance value is the feasible distance for the advertising router.	
	R3 advertises the 10.4.4.0/24 prefix with an RD of 3072.	
	R4 advertises the 10.4.4.0/24 to R1 and R2 with an RD of 2816.	
Feasibility condition	A condition under which, for a route to be considered a backup route, the reported distance received for that route must be less than the feasible distance calculated locally. This logic guarantees a loop-free path.	
Feasible successor	A route that satisfies the feasibility condition and is maintained as a backup route. The feasibility condition ensures that the backup route is loop free.	
	The route R1 \rightarrow R4 is the feasible successor because the RD 2816 is lower than the FD 3328 for the R1 \rightarrow R3 \rightarrow R4 path.	

Table 7-3 EIGRP Packet Types

Opcode Value	Packet Type	Function
1	Update	Used to transmit routing and reachability information with other EIGRP neighbors
2	Request	Used to get specific information from one or more neighbors
3	Query	Sent out to search for another path during convergence
4	Reply	Sent in response to a query packet
5	Hello	Used for discovery of EIGRP neighbors and for detecting when a neighbor is no longer available

Table 8-2 OSPF Packet Types

Туре	Packet Name	Functional Overview
1	Hello	These packets are for discovering and maintaining neighbors. Packets are sent out periodically on all OSPF interfaces to discover new neighbors while ensuring that other adjacent neighbors are still online.
2	Database description (DBD) or (DDP)	These packets are for summarizing database contents. Packets are exchanged when an OSPF adjacency is first being formed. These packets are used to describe the contents of the LSDB.
3	Link-state request (LSR)	These packets are for database downloads. When a router thinks that part of its LSDB is stale, it may request a portion of a neighbor's database by using this packet type.
4	Link-state update (LSU)	These packets are for database updates. This is an explicit LSA for a specific network link and normally is sent in direct response to an LSR.
5	Link-state ack	These packets are for flooding acknowledgment. These packets are sent in response to the flooding of LSAs, thus making flooding a reliable transport feature.

Table 8-9 OSPF Network Types

Туре	Description	DR/BDR Field in OSPF Hellos	Timers
Broadcast	Default setting on OSPF-enabled Ethernet links.	Yes	Hello: 10 Wait: 40 Dead: 40
Non-broadcast	Default setting on OSPF-enabled Frame Relay main interface or Frame Relay multipoint subinterfaces.	Yes	Hello: 30 Wait: 120 Dead: 120
Point-to-point	Default setting on OSPF-enabled Frame Relay point-to-point subinterfaces.	Yes	Hello: 10 Wait: 40 Dead: 40
Point-to-multipoint	Not enabled by default on any interface type. Interface is advertised as a host route (/32) and sets the next-hop address to the outbound interface. Primarily used for hub-and-spoke topologies.	No	Hello: 30 Wait: 120 Dead: 120
Loopback	Default setting on OSPF-enabled loopback interfaces. Interface is advertised as a host route (/32).	N/A	N/A

Table 13-2 IP Multicast Addresses Assigned by IANA

Designation	Multicast Address Range	
Local network control block	224.0.0.0 to 224.0.0.255	
Internetwork control block	224.0.1.0 to 224.0.1.255	
Ad hoc block I	224.0.2.0 to 224.0.255.255	
Reserved	224.1.0.0 to 224.1.255.255	
SDP/SAP block	224.2.0.0 to 224.2.255.255	
Ad hoc block II	224.3.0.0 to 224.4.255.255	
Reserved	224.5.0.0 to 224.255.255.255	
Reserved	225.0.0.0 to 231.255.255.255	
Source Specific Multicast (SSM) block	232.0.0.0 to 232.255.255.255	
GLOP block	233.0.0.0 to 233.251.255.255	
Ad hoc block III	233.252.0.0 to 233.255.255.255	
Reserved	234.0.0.0 to 238.255.255.255	
Administratively scoped block	239.0.0.0 to 239.255.255.255	

Table 13-3 Well-Known Reserved Multicast Addresses

IP Multicast Address	Description
224.0.0.0	Base address (reserved)
224.0.0.1	All hosts in this subnet (all-hosts group)
224.0.0.2	All routers in this subnet
224.0.0.5	All OSPF routers (AllSPFRouters)
224.0.0.6	All OSPF DRs (AllDRouters)
224.0.0.9	All RIPv2 routers
224.0.0.10	All EIGRP routers
224.0.0.13	All PIM routers
224.0.0.18	VRRP
224.0.0.22	IGMPv3
224.0.0.102	HSRPv2 and GLBP
224.0.1.1	NTP
224.0.1.39	Cisco-RP-Announce (Auto-RP)
224.0.1.40	Cisco-RP-Discovery (Auto-RP)

The IGMP message format fields are defined as follows:

- Type: This field describes five different types of IGMP messages used by routers and receivers:
 - Version 2 membership report (type value 0x16) is a message type also commonly referred to as an IGMP join; it is used by receivers to join a multicast group or to respond to a local router's membership query message.

- Version 1 membership report (type value 0x12) is used by receivers for backward compatibility with IGMPv1.
- Version 2 leave group (type value 0x17) is used by receivers to indicate they want to stop receiving multicast traffic for a group they joined.
- General membership query (type value 0x11) is sent periodically to the all-hosts group address 224.0.0.1 to see whether there are any receivers in the attached subnet. It sets the group address field to 0.0.0.0.
- Group specific query (type value 0x11) is sent in response to a leave group message to the group address the receiver requested to leave. The group address is the destination IP address of the IP packet and the group address field.
- Max response time: This field is set only in general and group-specific membership query messages (type value 0x11); it specifies the maximum allowed time before sending a responding report in units of one-tenth of a second. In all other messages, it is set to 0x00 by the sender and ignored by receivers.
- Checksum: This field is the 16-bit 1s complement of the 1s complement sum of the IGMP message. This is the standard checksum algorithm used by TCP/IP.
- Group address: This field is set to 0.0.0.0 in general query messages and is set to the group address in group-specific messages. Membership report messages carry the address of the group being reported in this field; group leave messages carry the address of the group being left in this field.

The following list defines the common PIM terminology illustrated in Figure 13-14:

- Reverse Path Forwarding (RPF) interface: The interface with the lowest-cost path (based on administrative distance [AD] and metric) to the IP address of the source (SPT) or the RP, in the case of shared trees. If multiple interfaces have the same cost, the interface with the highest IP address is chosen as the tiebreaker. An example of this type of interface is Te0/1/2 on R5 because it is the shortest path to the source. Another example is Te1/1/1 on R7 because the shortest path to the source was determined to be through R4.
- RPF neighbor: The PIM neighbor on the RPF interface. For example, if R7 is using the RPT shared tree, the RPF neighbor would be R3, which is the lowest-cost path to the RP. If it is using the SPT, R4 would be its RPF neighbor because it offers the lowest cost to the source.
- Upstream: Toward the source of the tree, which could be the actual source in sourcebased trees or the RP in shared trees. A PIM join travels upstream toward the source.
- Upstream interface: The interface toward the source of the tree. It is also known as the RPF interface or the incoming interface (IIF). An example of an upstream interface is R5's Te0/1/2 interface, which can send PIM joins upstream to its RPF neighbor.

- **Downstream:** Away from the source of the tree and toward the receivers.
- Downstream interface: Any interface that is used to forward multicast traffic down the tree, also known as an outgoing interface (OIF). An example of a downstream interface is R1's Te0/0/0 interface, which forwards multicast traffic to R3's Te0/0/1 interface.
- Incoming interface (IIF): The only type of interface that can accept multicast traffic coming from the source, which is the same as the RPF interface. An example of this type of interface is Te0/0/1 on R3 because the shortest path to the source is known through this interface.
- Outgoing interface (OIF): Any interface that is used to forward multicast traffic down the tree, also known as the downstream interface.
- Outgoing interface list (OIL): A group of OIFs that are forwarding multicast traffic to the same group. An example of this is R1's Te0/0/0 and Te0/0/1 interfaces sending multicast traffic downstream to R3 and R4 for the same multicast group.
- Last-hop router (LHR): A router that is directly attached to the receivers, also known as a leaf router. It is responsible for sending PIM joins upstream toward the RP or to the source.
- First-hop router (FHR): A router that is directly attached to the source, also known as a root router. It is responsible for sending register messages to the RP.
- Multicast Routing Information Base (MRIB): A topology table that is also known as the multicast route table (mroute), which derives from the unicast routing table and PIM. MRIB contains the source S, group G, incoming interfaces (IIF), outgoing interfaces (OIFs), and RPF neighbor information for each multicast route as well as other multicast-related information.
- Multicast Forwarding Information Base (MFIB): A forwarding table that uses the MRIB to program multicast forwarding information in hardware for faster forwarding.
- Multicast state: The multicast traffic forwarding state that is used by a router to forward multicast traffic. The multicast state is composed of the entries found in the mroute table (S, G, IIF, OIF, and so on).

There are currently five PIM operating modes:

- PIM Dense Mode (PIM-DM)
- PIM Sparse Mode (PIM-SM)
- PIM Sparse Dense Mode
- PIM Source Specific Multicast (PIM-SSM)
- PIM Bidirectional Mode (Bidir-PIM)

Table 13-4 PIM Control Message Types

Туре	Message Type	Destination	PIM Protocol
0	Hello	224.0.0.13 (all PIM routers)	PIM-SM, PIM-DM, Bidir-PIM, and SSM
1	Register	RP address (unicast)	PIM-SM
2	Register stop	First-hop router (unicast)	PIM SM
3	Join/prune	224.0.0.13 (all PIM routers)	PIM-SM, Bidir-PIM, and SSM
4	Bootstrap	224.0.0.13 (all PIM routers)	PIM-SM and Bidir-PIM
5	Assert	224.0.0.13 (all PIM routers)	PIM-SM, PIM-DM, and Bidir-PIM
8	Candidate RP advertisement	Bootstrap router (BSR) address (unicast to BSR)	PIM-SM and Bidir-PIM
9	State refresh	224.0.0.13 (all PIM routers)	PIM-DM
10	DF election	224.0.0.13 (all PIM routers)	Bidir-PIM

There are three different QoS implementation models:

- Best effort: QoS is not enabled for this model. It is used for traffic that does not require any special treatment.
- Integrated Services (IntServ): Applications signal the network to make a bandwidth reservation and to indicate that they require special QoS treatment.
- Differentiated Services (DiffServ): The network identifies classes that require special QoS treatment.

The following traffic descriptors are typically used for classification:

- Internal: QoS groups (locally significant to a router)
- Layer 1: Physical interface, subinterface, or port
- Layer 2: MAC address and 802.1Q/p class of service (CoS) bits
- Layer 2.5: MPLS experimental (EXP) bits
- Layer 3: Differentiated Services Code Points (DSCP), IP Precedence (IPP), and source/ destination IP address
- Layer 4: TCP or UDP ports
- Layer 7: Next-Generation Network-Based Application Recognition (NBAR2)

The following traffic descriptors are used for marking traffic:

- Internal: QoS groups
- Layer 2: 802.1Q/p class of service (CoS) bits

- Layer 2.5: MPLS experimental (EXP) bits
- Layer 3: Differentiated Services Code Points (DSCP) and IP Precedence (IPP)

The TCI field is a 16-bit field composed of the following three fields:

- Priority Code Point (PCP) field (3 bits)
- Drop Eligible Indicator (DEI) field (1 bit)
- VLAN Identifier (VLAN ID) field (12 bits)

Four PHBs have been defined and characterized for general use:

- Class Selector (CS) PHB: The first 3 bits of the DSCP field are used as CS bits. The CS bits make DSCP backward compatible with IP Precedence because IP Precedence uses the same 3 bits to determine class.
- Default Forwarding (DF) PHB: Used for best-effort service.
- Assured Forwarding (AF) PHB: Used for guaranteed bandwidth service.
- Expedited Forwarding (EF) PHB: Used for low-delay service.

Cisco IOS policers and shapers are based on token bucket algorithms. The following list includes definitions that are used to explain how token bucket algorithms operate:

- Committed Information Rate (CIR): The policed traffic rate, in bits per second (bps), defined in the traffic contract.
- Committed Time Interval (Tc): The time interval, in milliseconds (ms), over which the committed burst (Bc) is sent. To can be calculated with the formula Tc = (Bc [bits] / CIR [bps]) \times 1000.
- Committed Burst Size (Bc): The maximum size of the CIR token bucket, measured in bytes, and the maximum amount of traffic that can be sent within a Tc. Bc can be calculated with the formula Bc = CIR (Tc / 1000).
- Token: A single token represents 1 byte or 8 bits.
- Token bucket: A bucket that accumulates tokens until a maximum predefined number of tokens is reached (such as the Bc when using a single token bucket); these tokens are added into the bucket at a fixed rate (the CIR). Each packet is checked for conformance to the defined rate and takes tokens from the bucket equal to its packet size; for example, if the packet size is 1500 bytes, it takes 12,000 bits (1500 \times 8) from the bucket. If there are not enough tokens in the token bucket to send the packet, the traffic conditioning mechanism can take one of the following actions:
 - Buffer the packets while waiting for enough tokens to accumulate in the token bucket (traffic shaping)
 - Drop the packets (traffic policing)
 - Mark down the packets (traffic markdown)

There are different policing algorithms, including the following:

- Single-rate two-color marker/policer
- Single-rate three-color marker/policer (srTCM)
- Two-rate three-color marker/policer (trTCM)

Many queuing algorithms are available, but most of them are not adequate for modern richmedia networks carrying voice and high-definition video traffic because they were designed before these traffic types came to be. The legacy queuing algorithms that predate the MQC architecture include the following:

- First-in, first-out queuing (FIFO): FIFO involves a single queue where the first packet to be placed on the output interface queue is the first packet to leave the interface (first come, first served). In FIFO queuing, all traffic belongs to the same class.
- Round robin: With round robin, queues are serviced in sequence one after the other, and each queue processes one packet only. No queues starve with round robin because every queue gets an opportunity to send one packet every round. No queue has priority over others, and if the packet sizes from all queues are about the same, the interface bandwidth is shared equally across the round robin queues. A limitation of round robin is that it does not include a mechanism to prioritize traffic.
- Weighted round robin (WRR): WRR was developed to provide prioritization capabilities for round robin. It allows a weight to be assigned to each queue, and based on that weight, each queue effectively receives a portion of the interface bandwidth that is not necessarily equal to the other queues' portions.
- Custom queuing (CQ): CQ is a Cisco implementation of WRR that involves a set of 16 queues with a round-robin scheduler and FIFO queuing within each queue. Each queue can be customized with a portion of the link bandwidth for each selected traffic type. If a particular type of traffic is not using the bandwidth reserved for it, other traffic types may use the unused bandwidth. CO causes long delays and also suffers from all the same problems as FIFO within each of the 16 queues that it uses for traffic classification.
- Priority queuing (PQ): With PQ, four queues in a set (high, medium, normal, and low) are served in strict-priority order, with FIFO queuing within each queue. The highpriority queue is always serviced first, and lower-priority queues are serviced only when all higher-priority queues are empty. For example, the medium queue is serviced only when the high-priority queue is empty. The normal queue is serviced only when the high and medium queues are empty; finally, the low queue is serviced only when all the other queues are empty. At any point in time, if a packet arrives for a higher queue, the packet from the higher queue is processed before any packets in lower-level queues. For this reason, if the higher-priority queues are continuously being serviced, the lower-priority queues are starved.
- Weighted fair queuing (WFQ): The WFQ algorithm automatically divides the interface bandwidth by the number of flows (weighted by IP Precedence) to allocate band-

width fairly among all flows. This method provides better service for high-priority real-time flows but can't provide a fixed-bandwidth guarantee for any particular flow.

The current queuing algorithms recommended for rich-media networks (and supported by MQC) combine the best features of the legacy algorithms. These algorithms provide real-time, delay-sensitive traffic bandwidth and delay guarantees while not starving other types of traffic. The recommended queuing algorithms include the following:

- Class-based weighted fair queuing (CBWFQ): CBWFQ enables the creation of up to 256 queues, serving up to 256 traffic classes. Each queue is serviced based on the bandwidth assigned to that class. It extends WFQ functionality to provide support for user-defined traffic classes. With CBWFQ, packet classification is done based on traffic descriptors such as QoS markings, protocols, ACLs, and input interfaces. After a packet is classified as belonging to a specific class, it is possible to assign bandwidth, weight, queue limit, and maximum packet limit to it. The bandwidth assigned to a class is the minimum bandwidth delivered to the class during congestion. The queue limit for that class is the maximum number of packets allowed to be buffered in the class queue. After a queue has reached the configured queue limit, excess packets are dropped. CBWFQ by itself does not provide a latency guarantee and is only suitable for non-real-time data traffic.
- Low-latency queuing (LLQ): LLQ is CBWFQ combined with priority queuing (PQ), and it was developed to meet the requirements of real-time traffic, such as voice. Traffic assigned to the strict-priority queue is serviced up to its assigned bandwidth before other CBWFQ queues are serviced. All real-time traffic should be configured to be serviced by the priority queue. Multiple classes of real-time traffic can be defined, and separate bandwidth guarantees can be given to each, but a single priority queue schedules all the combined traffic. If a traffic class is not using the bandwidth assigned to it, it is shared among the other classes. This algorithm is suitable for combinations of real-time and non-real-time traffic. It provides both latency and bandwidth guarantees to high-priority real-time traffic. In the event of congestion, real-time traffic that goes beyond the assigned bandwidth guarantee is policed by a congestion-aware policer to ensure that the non-priority traffic is not starved.

Chapter 16

Table 16-3 IPsec Security Services

Security Service	Description	Methods Used
Peer authentication	Verifies the identity of the VPN peer through authentication.	Pre-Shared Key (PSK)Digital certificates
Data confidentiality	Protects data from eavesdropping attacks through encryption algorithms. Changes plaintext into encrypted ciphertext.	 Data Encryption Standard (DES) Triple DES (3DES) Advanced Encryption Standard (AES) The use of DES and 3DES is not recommended.

Security Service	Description	Methods Used
Data integrity	Prevents <i>man-in-the-middle</i> (<i>MitM</i>) attacks by ensuring that data has not been tampered with during its transit across an unsecure network.	Hash Message Authentication Code (HMAC) functions: Message Digest 5 (MD5) algorithm Secure Hash Algorithm (SHA-1) The use of MD5 is not recommended.
Replay detection	Prevents MitM attacks where an attacker captures VPN traffic and replays it back to a VPN peer with the intention of building an illegitimate VPN tunnel.	Every packet is marked with a unique sequence number. A VPN device keeps track of the sequence number and does not accept a packet with a sequence number it has already processed.

IPsec supports the following encryption, hashing, and keying methods to provide security services:

- Data Encryption Standard (DES): A 56-bit symmetric data encryption algorithm that can encrypt the data sent over a VPN. This algorithm is very weak and should be avoided.
- Triple DES (3DES): A data encryption algorithm that runs the DES algorithm three times with three different 56-bit keys. Using this algorithm is no longer recommended. The more advanced and more efficient AES should be used instead.
- Advanced Encryption Standard (AES): A symmetric encryption algorithm used for data encryption that was developed to replace DES and 3DES. AES supports key lengths of 128 bits, 192 bits, or 256 bits and is based on the Rijndael algorithm.
- Message Digest 5 (MD5): A one-way, 128-bit hash algorithm used for data authentication. Cisco devices use MD5 HMAC, which provides an additional level of protection against MitM attacks. Using this algorithm is no longer recommended, and SHA should be used instead.
- Secure Hash Algorithm (SHA): A one-way, 160-bit hash algorithm used for data authentication. Cisco devices use the SHA-1 HMAC, which provides additional protection against MitM attacks.
- Diffie-Hellman (DH): An asymmetric key exchange protocol that enables two peers to establish a shared secret key used by encryption algorithms such as AES over an unsecure communications channel. A DH group refers to the length of the key (modulus size) to use for a DH key exchange. For example, group 1 uses 768 bits, group 2 uses 1024, and group 5 uses 1536, where the larger the modulus, the more secure it is. The purpose of DH is to generate shared secret symmetric keys that are used by the two VPN peers for symmetrical algorithms, such as AES. The DH exchange itself is asymmetrical and CPU intensive, and the resulting shared secret keys that are generated are symmetrical. Cisco recommends avoiding DH groups 1, 2, and 5 and instead using DH groups 14 and higher.

- RSA signatures: A public-key (digital certificates) cryptographic system used to mutually authenticate the peers.
- Pre-Shared Key: A security mechanism in which a locally configured key is used as a credential to mutually authenticate the peers.

Table 16-4 Allowed Transform Set Combinations

Transform Type	Transform	Description
Authentication header transform (only one allowed)	ah-md5-hmac	Authentication header with the MD5 authentication algorithm (not recommended)
	ah-sha-hmac	Authentication header with the SHA authentication algorithm
	ah-sha256-hmac	Authentication header with the 256-bit SHA authentication algorithm
	ah-sha384-hmac	Authentication header with the 384-bit SHA authentication algorithm
	ah-sha512-hmac	Authentication header with the 512-bit SHA authentication algorithm
ESP encryption transform (only one allowed)	esp-aes	ESP with the 128-bit AES encryption algorithm
	esp-gcm esp-gmac	ESP-GCM—ESP with either a 128- bit (default) or a 256-bit authenticated
		encryption algorithm
		ESP-GMAC—ESP with either 128-bit (default) or a 256-bit authentication algorithm without encryption
	esp-aes 192	ESP with the 192-bit AES encryption algorithm
	esp-aes 256	ESP with the 256-bit AES encryption algorithm
	esp-des esp-3des	ESPs with 56-bit and 168-bit DES encryption (no longer recommended)
	esp-null	Null encryption algorithm
	esp-seal	ESP with the 160-bit SEAL encryption algorithm
ESP authentication transform (only one allowed)	esp-md5-hmac	ESP with the MD5 (HMAC variant) authentication algorithm (no longer recommended)
	esp-sha-hmac	ESP with the SHA (HMAC variant) authentication algorithm
IP compression transform	comp-lzs	IP compression with the Lempel-Ziv-Stac (LZS) algorithm

Table 16-5 Major Differences Between IKEv1 and IKEv2

IKEv1	IKEv2
Exchange Modes	
Main mode Aggressive mode Quick mode	IKE Security Association Initialization (SA_INIT) IKE_Auth CREATE_CHILD_SA
Minimum Number of Messages Needed	to Establish IPsec SAs
Nine with main mode Six with aggressive mode	Four
Supported Authentication Methods	
Pre-Shared Key (PSK) Digital RSA Certificate (RSA-SIG) Public key Both peers must use the same authentication method.	Pre-Shared Key Digital RSA Certificate (RSA-SIG) Elliptic Curve Digital Signature Certificate (ECDSA-SIG) Extensible Authentication Protocol (EAP) Asymmetric authentication is supported. Authentication method can be specified during the IKE_AUTH exchange.
Next Generation Encryption (NGE)	
Pre-Shared Key (PSK) Digital RSA Certificate (RSA-SIG) Public key Both peers must use the same authentication method.	AES-GCM (Galois/Counter Mode) mode SHA-256 SHA-384 SHA-512 HMAC-SHA-256 Elliptic Curve Diffie-Hellman (ECDH) ECDH-384 ECDSA-384
Attack Protection	
MitM protection Eavesdropping protection	MitM protection Eavesdropping protection Anti-DoS protection

Table 16-6 Cisco IPsec VPN Solutions

Features and Benefits	Site-to-Site IPsec VPN	Cisco DMVPN	Cisco GET-VPN	FlexVPN	Remote Access VPN
Product interoperability	Multivendor	Cisco only	Cisco only	Cisco only	Cisco only

Features and Benefits	Site-to-Site IPsec VPN	Cisco DMVPN	Cisco GET-VPN	FlexVPN	Remote Access VPN
Key exchange	IKEv1 and IKEv2	IKEv1 and IKEv2 (both optional)	IKEv1 and IKEv2	IKEv2 only	TLS/DTLS and IKEv2
Scale	Low	Thousands for hub- and-spoke; hundreds for partially meshed spoke- to-spoke connections	Thousands	Thousands	Thousands
Topology	Hub-and- spoke; small-scale meshing as manageability allows	Hub-and- spoke; on-demand spoke- to-spoke partial mesh; spoke- to-spoke connections automatically terminated when no traffic present	Hub-and- spoke; any-to-any	Hub-and- spoke; any- to-any and remote access	Remote
Routing	Not supported	Supported	Supported	Supported	Not supported
QoS	Supported	Supported	Supported	Native support	Supported
Multicast	Not supported	Tunneled	Natively supported across MPLS and private IP networks	Tunneled	Not supported
Non-IP protocols	Not supported	Not supported	Not supported	Not supported	Not supported

Features and Benefits	Site-to-Site IPsec VPN	Cisco DMVPN	Cisco GET-VPN	FlexVPN	Remote Access VPN
Private IP addressing	Supported	Supported	Requires use of GRE or DMVPN with Cisco GET-VPN to support private addresses across the Internet	Supported	Supported
High availability	Stateless failover	Routing	Routing	Routing IKEv2-based dynamic route distribution and server clustering	Not supported
Encapsulation	Tunneled IPsec	Tunneled IPsec	Tunnel-less IPsec	Tunneled IPsec	Tunneled IPsec/TLS
Transport network	Any	Any	Private WAN/ MPLS	Any	Any

There are two different ways to encrypt traffic over a GRE tunnel:

- Using crypto maps
- Using tunnel IPsec profiles

Following are the definitions for the LISP architecture components illustrated in Figure 16-5.

- Endpoint identifier (EID): An EID is the IP address of an endpoint within a LISP site. EIDs are the same IP addresses in use today on endpoints (IPv4 or IPv6), and they operate in the same way.
- LISP site: This is the name of a site where LISP routers and EIDs reside.
- Ingress tunnel router (ITR): ITRs are LISP routers that LISP-encapsulate IP packets coming from EIDs that are destined outside the LISP site.
- Egress tunnel router (ETR): ETRs are LISP routers that de-encapsulate LISPencapsulated IP packets coming from sites outside the LISP site and destined to EIDs within the LISP site.
- Tunnel router (xTR): xTR refers to routers that perform ITR and ETR functions (which are most routers).

- Proxy ITR (PITR): PITRs are just like ITRs but for non-LISP sites that send traffic to EID destinations.
- Proxy ETR (PETR): PETRs act just like ETRs but for EIDs that send traffic to destinations at non-LISP sites.
- Proxy xTR (PxTR): PxTR refers to a router that performs PITR and PETR functions.
- LISP router: A LISP router is a router that performs the functions of any or all of the following: ITR, ETR, PITR, and/or PETR.
- Routing locator (RLOC): An RLOC is an IPv4 or IPv6 address of an ETR that is Internet facing or network core facing.
- Map server (MS): This network device (typically a router) learns EID-to-prefix mapping entries from an ETR and stores them in a local EID-to-RLOC mapping database.
- Map resolver (MR): This network device (typically a router) receives LISPencapsulated map requests from an ITR and finds the appropriate ETR to answer those requests by consulting the map server.
- Map server/map resolver (MS/MR): When MS and the MR functions are implemented on the same device, the device is referred to as an MS/MR.

To facilitate the discovery of VNIs over the underlay Layer 3 network, virtual tunnel endpoints (VTEPs) are used. VTEPs are entities that originate or terminate VXLAN tunnels. They map Layer 2 and Layer 3 packets to the VNI to be used in the overlay network. Each VTEP has two interfaces:

- Local LAN interfaces: These interfaces on the local LAN segment provide bridging between local hosts.
- IP interface: This is a core-facing network interface for VXLAN. The IP interface's IP address helps identify the VTEP in the network. It is also used for VXLAN traffic encapsulation and de-encapsulation.

The VXLAN standard defines VXLAN as a data plane protocol, but it does not define a VXLAN control plane; it was left open to be used with any control plane. Currently, four different VXLAN control and data planes are supported by Cisco devices:

- VXLAN with Multicast underlay
- VXLAN with static unicast VXLAN tunnels
- VXLAN with MP-BGP EVPN control plane
- VXLAN with LISP control plane

Chapter 17

Table 17-4 A Summary of Common 802.11 Standard Amendments

Standard	2.4 GHz?	5 GHz?	Data Rates Supported	Channel Widths Supported
802.11b	Yes	No	1, 2, 5.5, and 11 Mbps	22 MHz
802.11g	Yes	No	6, 9, 12, 18, 24, 36, 48, and 54 Mbps	22 MHz
802.11a	No	Yes	6, 9, 12, 18, 24, 36, 48, and 54 Mbps	20 MHz
802.11n	Yes	Yes	Up to 150 Mbps* per spatial stream, up to 4 spatial streams	20 or 40 MHz
802.11ac	No	Yes	Up to 866 Mbps per spatial stream, up to 4 spatial streams	20, 40, 80, or 160 MHz
802.11ax	Yes*	Yes*	Up to 1.2 Gbps per spatial stream, up to 8 spatial streams	20, 40, 80, or 160 MHz

^{* 802.11}ax is designed to work on any band from 1 to 7 GHz, provided that the band is approved for use.

Chapter 22

The hierarchical LAN design divides networks or their modular blocks into the following three layers:

- Access layer: Gives endpoints and users direct access to the network
- Distribution layer: Provides an aggregation point for the access layer and acts as a services and control boundary between the access layer and the core layer
- Core layer (also referred to as the backbone): Provides connections between distribution layers for large environments

Chapter 23

With SD-Access, an evolved campus network can be built that addresses the needs of existing campus networks by leveraging the following capabilities, features, and functionalities:

- Network automation: SD-Access replaces manual network device configurations with network device management through a single point of automation, orchestration, and management of network functions through the use of Cisco DNA Center. This simplifies network design and provisioning and allows for very fast, lower-risk deployment of network devices and services using best-practice configurations.
- Network assurance and analytics: SD-Access enables proactive prediction of network-related and security-related risks by using telemetry to improve the performance of the network, endpoints, and applications, including encrypted traffic.

- Host mobility: SD-Access provides host mobility for both wired and wireless clients.
- Identity services: Cisco Identity Services Engine (ISE) identifies users and devices connecting to the network and provides the contextual information required for users and devices to implement security policies for network access control and network segmentation.
- Policy enforcement: Traditional access control lists (ACLs) can be difficult to deploy, maintain, and scale because they rely on IP addresses and subnets. Creating access and application policies based on group-based policies using Security Group Access Control Lists (SGACLs) provides a much simpler and more scalable form of policy enforcement based on identity instead of an IP address.
- Secure segmentation: With SD-Access, it is easier to segment the network to support guest, corporate, facilities, and IoT-enabled infrastructure.
- Network virtualization: SD-Access makes it possible to leverage a single physical infrastructure to support multiple virtual routing and forwarding (VRF) instances, referred to as virtual networks (VNs), each with a distinct set of access policies.

There are three basic planes of operation in the SD-Access fabric:

- Control plane, based on Locator/ID Separation Protocol (LISP)
- Data plane, based on Virtual Extensible LAN (VXLAN)
- Policy plane, based on Cisco TrustSec

There are five basic device roles in the fabric overlay:

- Control plane node: This node contains the settings, protocols, and mapping tables to provide the endpoint-to-location (EID-to-RLOC) mapping system for the fabric overlay.
- Fabric border node: This fabric device (for example, core layer device) connects external Layer 3 networks to the SDA fabric.
- Fabric edge node: This fabric device (for example, access or distribution layer device) connects wired endpoints to the SDA fabric.
- Fabric WLAN controller (WLC): This fabric device connects APs and wireless endpoints to the SDA fabric.
- Intermediate nodes: These intermediate routers or extended switches do not provide any sort of SD-Access fabric role other than underlay services.

There are three types of border nodes:

- Internal border (rest of company): Connects only to the known areas of the organization (for example, WLC, firewall, data center).
- **Default border (outside):** Connects only to unknown areas outside the organization. This border node is configured with a default route to reach external unknown net-

works such as the Internet or the public cloud that are not known to the control plane nodes.

■ Internal + default border (anywhere): Connects transit areas as well as known areas of the company. This is basically a border that combines internal and default border functionality into a single node.

The Cisco SD-WAN solution has four main components and an optional analytics service:

- SD-WAN edge devices: These physical or virtual devices forward traffic across transports (i.e., WAN circuits/media) between locations.
- vManage Network Management System (NMS): This SD-WAN controller persona provides a single pane of glass (GUI) for managing and monitoring the SD-WAN solution.
- vSmart controller: This SD-WAN controller persona is responsible for advertising routes and data policies to edge devices.
- vBond orchestrator: This SD-WAN controller persona authenticates and orchestrates connectivity between edge devices, vManage, and vSmart controllers.
- vAnalytics: This is an optional analytics and assurance service.

Chapter 25

In addition to providing standard firewall functionality, a next-generation firewall (NGFW) can block threats such as advanced malware and application-layer attacks. According to Gartner, Inc.'s definition, an NGFW firewall must include

- Standard firewall capabilities such as stateful inspection
- An integrated IPS
- Application-level inspection (to block malicious or risky apps)
- The ability to leverage external security intelligence to address evolving security threats

At the core of Cisco Secure Network Analytics are the following components:

- Cisco Secure Network Analytics Manager, formerly Stealthwatch Management Console (SMC): The Network Analytics Manager is the control center for Cisco Secure Network Analytics. It aggregates, organizes, and presents analysis from up to 25 Flow Collectors, Cisco ISE, and other sources. It offers a powerful yet simple-touse web console that provides graphical representations of network traffic, identity information, customized summary reports, and integrated security and network intelligence for comprehensive analysis. The Network Analytics Manager is available as a hardware appliance or a virtual machine.
- Cisco Secure Network Analytics Flow Collectors: The Flow Collectors collect and analyze enterprise telemetry data such as NetFlow, IP Flow Information Export (IPFIX), and other types of flow data from routers, switches, firewalls, endpoints, and other network devices. The Flow Collectors can also collect telemetry from proxy data

sources, which can be analyzed by Global Threat Analytics, formerly Cognitive Threat Analytics. It can also pinpoint malicious patterns in encrypted traffic using Encrypted Traffic Analytics (ETA), without having to decrypt it, to identify threats and accelerate response. Flow Collectors are available as hardware appliances and as virtual machines.

■ Cisco Secure Network Analytics Flow Rate License: The Flow Rate License is required for the collection, management, and analysis of flow telemetry data and aggregates flows at the Network Analytics Manager as well as to define the volume of flows that can be collected.

Cisco Secure Cloud Analytics supports two deployment models:

- Cisco Secure Cloud Analytics Public Cloud Monitoring, formerly Stealthwatch Cloud **Public Cloud Monitoring**
- Cisco Secure Network Analytics SaaS, formerly Stealthwatch Cloud Private Network Monitoring

802.1x comprises the following components:

- Extensible Authentication Protocol (EAP): This message format and framework defined by RFC 4187 provides an encapsulated transport for authentication parameters.
- EAP method (also referred to as EAP type): Different authentication methods can be used with EAP.
- EAP over LAN (EAPoL): This Layer 2 encapsulation protocol is defined by 802.1x for the transport of EAP messages over IEEE 802 wired and wireless networks.
- **RADIUS protocol:** This is the AAA protocol used by EAP.

802.1x network devices have the following roles:

- Supplicant: Software on the endpoint communicates and provides identity credentials through EAPoL with the authenticator. Common 802.1x supplicants include Windows and macOS native supplicants as well as Cisco Secure Client. All these supplicants support 802.1x machine and user authentication.
- Authenticator: A network access device (NAD) such as a switch or wireless LAN controller (WLC) controls access to the network based on the authentication status of the user or endpoint. The authenticator acts as the liaison, taking Layer 2 EAPencapsulated packets from the supplicant and encapsulating them into RADIUS packets for delivery to the authentication server.
- Authentication server: A RADIUS server performs authentication of the client. The authentication server validates the identity of the endpoint and provides the authenticator with an authorization result, such as accept or deny.

There are two methods available for propagating an SGT tag: inline tagging (also referred to as *native tagging*) and the Cisco-created protocol SGT Exchange Protocol (SXP):

■ Inline tagging: With inline tagging, a switch inserts the SGT tag inside a frame to allow upstream devices to read and apply policy. Native tagging is completely independent of any Layer 3 protocol (IPv4 or IPv6), so the frame or packet can preserve the

SGT tag throughout the network infrastructure (routers, switches, firewalls, and so on) until it reaches the egress point. The downside to native tagging is that it is supported only by Cisco network devices with ASIC support for TrustSec. If a tagged frame is received by a device that does not support native tagging in hardware, the frame is dropped. Figure 25-9 illustrates a Layer 2 frame with a 16-bit SGT value.

Figure 25-9 Layer 2 Ethernet Frame with an SGT Tag

■ SXP propagation: SXP is a TCP-based peer-to-peer protocol used for network devices that do not support SGT inline tagging in hardware. Using SXP, IP-to-SGT mappings can be communicated between non-inline tagging switches and other network devices. Non-inline tagging switches also have an SGT mapping database to check packets against and enforce policy. The SXP peer that sends IP-to-SGT bindings is called a speaker. The IP-to-SGT binding receiver is called a listener. SXP connections can be single-hop or multi-hop, as shown in Figure 25-10.

Figure 25-10 Single-Hop and Multi-Hop SXP Connections

Chapter 26

While many different kinds of ACLs can be used for packet filtering, only the following types are covered in this chapter:

- Numbered standard ACLs: These ACLs define packets based solely on the source network, and they use the numbered entries 1-99 and 1300-1999.
- Numbered extended ACLs: These ACLs define packets based on source, destination, protocol, port, or a combination of other packet attributes, and they use the numbered entries 100-199 and 2000-2699.
- Named ACLs: These ACLs allow standard and extended ACLs to be given names instead of numbers and are generally preferred because the name can be correlated to the functionality of the ACL.
- Port ACLs (PACLs): These ACLs can use standard, extended, named, and named extended MAC ACLs to filter traffic on Layer 2 switch ports.
- VLAN ACLs (VACLs): These ACLs can use standard, extended, named, and named extended MAC ACLs to filter traffic on VLANs.

The Cisco IOS XE CLI by default includes three privilege levels, each of which defines what commands are available to a user:

- Privilege level 0: Includes the disable, enable, exit, help, and logout commands.
- Privilege level 1: Also known as User EXEC mode. The command prompt in this mode includes a greater-than sign (R1>). From this mode it is not possible to make configuration changes; in other words, the command configure terminal is not available.
- Privilege level 15: Also known as Privileged EXEC mode. This is the highest privilege level, where all CLI commands are available. The command prompt in this mode includes a hash sign (R1#).

AAA is an architectural framework for enabling a set of three independent security functions:

- Authentication: Enables a user to be identified and verified prior to being granted access to a network device and/or network services.
- **Authorization:** Defines the access privileges and restrictions to be enforced for an authenticated user.
- Accounting: Provides the ability to track and log user access, including user identities, start and stop times, executed commands (that is, CLI commands), and so on. In other words, it maintains a security log of events.

Chapter 27

There are two types of hypervisors, as illustrated in Figure 27-2:

- Type 1: This type of hypervisor runs directly on the system hardware. It is commonly referred to as "bare metal" or "native."
- Type 2: This type of hypervisor (for example, VMware Fusion) requires a host OS to run. This is the type of hypervisor that is typically used by client devices.

Cisco ENFV delivers a virtualized solution for network and application services for branch offices. It consists of four main components that are based on the ETSI NFV architectural framework:

- Management and Orchestration (MANO): Cisco DNA Center provides the VNF management and NFV orchestration capabilities. It allows for easy automation of the deployment of virtualized network services, consisting of multiple VNFs.
- VNFs: VNFs provide the desired virtual networking functions.
- Network Functions Virtualization Infrastructure Software (NFVIS): An operating system that provides virtualization capabilities and facilitates the deployment and operation of VNFs and hardware components.
- Hardware resources: x86-based compute resources that provide the CPU, memory, and storage required to deploy and operate VNFs and run applications.

Chapter 28

Table 28-3 HTTP Functions and Use Cases

HTTP Function	Action	Use Case
GET	Requests data from a destination	Viewing a website
POST	Submits data to a specific destination	Submitting login credentials
PUT	Replaces data in a specific destination	Updating an NTP server
PATCH	Appends data to a specific destination	Adding an NTP server
DELETE	Removes data from a specific destination	Removing an NTP server

Table 28-4 CRUD Functions and Use Cases

CRUD Function	Action	Use Case
CREATE	Inserts data in a database or application	Updating a customer's home address in a database
READ	Retrieves data from a database or application	Pulling up a customer's home address from a database
UPDATE	Modifies or replaces data in a database or application	Changing a street address stored in a database
DELETE	Removes data from a database or application	Removing a customer from a database

Table 28-5 HTTP Status Codes

HTTP Status Code	Result	Common Reason for Response Code
200	OK	Using GET or POST to exchange data with an API
201	Created	Creating resources by using a REST API call
400	Bad Request	Request failed due to client-side issue
401	Unauthorized	Client not authenticated to access site or API call
403	Forbidden	Access not granted based on supplied credentials
404	Not Found	Page at HTTP URL location does not exist or is hidden

Appendix D

Study Planner

Practice Test	Reading	Task

Element	Task	Goal Date	First Date Completed	Second Date Completed (Optional)	Notes
Introduction	Read Introduction				
1. Packet Forwarding	Read Foundation Topics				
1. Packet Forwarding	Review Key Topics				
1. Packet Forwarding	Define Key Terms				
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 1 in practice test software				
2. Spanning Tree Protocol	Read Foundation Topics				
2. Spanning Tree Protocol	Review Key Topics				
2. Spanning Tree Protocol	Define Key Terms				
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 2 in practice test software				
3. Advanced STP Tuning	Read Foundation Topics				
3. Advanced STP Tuning	Review Key Topics				
3. Advanced STP Tuning	Define Key Terms				
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 3 in practice test software				
4. Multiple Spanning Tree Protocol	Read Foundation Topics				
4. Multiple Spanning Tree Protocol	Review Key Topics				
4. Multiple Spanning Tree Protocol	Define Key Terms				
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 4 in practice test software				
5. VLAN Trunks and EtherChannel Bundles	Read Foundation Topics				
5. VLAN Trunks and EtherChannel Bundles	Review Key Topics				
5. VLAN Trunks and EtherChannel Bundles	Define Key Terms				

Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 5 in practice test software		
6. IP Routing Essentials	Read Foundation Topics		
6. IP Routing Essentials	Review Key Topics		
6. IP Routing Essentials	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 6 in practice test software		
7. EIGRP	Read Foundation Topics		
7. EIGRP	Review Key Topics		
7. EIGRP	Define Key Terms		
7. EIGRP	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 7 in practice test software		
8. OSPF	Read Foundation Topics		
8. OSPF	Review Key Topics		
8. OSPF	Define Key Terms		
8. OSPF	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 8 in practice test software		
9. Advanced OSPF	Read Foundation Topics		
9. Advanced OSPF	Review Key Topics		
9. Advanced OSPF	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 9 in practice test software		
10. OSPFv3	Read Foundation Topics		
10. OSPFv3	Review Key Topics		
10. OSPFv3	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 10 in practice test software		
11. BGP	Read Foundation Topics		
11. BGP	Review Key Topics	 _	
11. BGP	Define Key Terms		

	1		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 11 in practice test software		
12. Advanced BGP	Read Foundation Topics		
12. Advanced BGP	Review Key Topics		
12. Advanced BGP	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 12 in practice test software		
13. Multicast	Read Foundation Topics		
13. Multicast	Review Key Topics		
13. Multicast	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 13 in practice test software		
14. Quality of Service (QoS)	Read Foundation Topics		
14. Quality of Service (QoS)	Review Key Topics		
14. Quality of Service (QoS)	Define Key Terms		
14. Quality of Service (QoS)	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 14 in practice test software		
15. IP Services	Read Foundation Topics		
15. IP Services	Review Key Topics		
15. IP Services	Define Key Terms		
15. IP Services	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 15 in practice test software		
16. Overlay Tunnels	Read Foundation Topics		
16. Overlay Tunnels	Review Key Topics		
16. Overlay Tunnels	Define Key Terms		
16. Overlay Tunnels	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 16 in practice test software		
17. Wireless Signals and Modulation	Read Foundation Topics		
17. Wireless Signals and Modulation	Review Key Topics		
17. Wireless Signals and Modulation	Define Key Terms		
	•		

	ı		
17. Wireless Signals and Modulation	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 17 in practice test software		
18. Wireless Infrastructure	Read Foundation Topics		
18. Wireless Infrastructure	Review Key Topics		
18. Wireless Infrastructure	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 18 in practice test software		
19. Understanding Wireless Roaming and Location Services	Read Foundation Topics		
19. Understanding Wireless Roaming and Location Services	Review Key Topics		
19. Understanding Wireless Roaming and Location Services	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 19 in practice test software		
20. Authenticating Wireless Clients	Read Foundation Topics		
20. Authenticating Wireless Clients	Review Key Topics		
20. Authenticating Wireless Clients	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 20 in practice test software		
21. Troubleshooting Wireless Connectivity	Read Foundation Topics		
21. Troubleshooting Wireless Connectivity	Review Key Topics		
21. Troubleshooting Wireless Connectivity	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 21 in practice test software		
22. Enterprise Network Architecture	Read Foundation Topics		
22. Enterprise Network Architecture	Review Key Topics		
22. Enterprise Network Architecture	Define Key Terms		
22. Enterprise Network Architecture	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 22 in practice test software		
23. Fabric Technologies	Read Foundation Topics		
23. Fabric Technologies	Review Key Topics		
23. Fabric Technologies	Define Key Terms		
23. Fabric Technologies	Review Memory Tables		

Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 23 in practice test software		
24. Network Assurance	Read Foundation Topics		
24. Network Assurance	Review Key Topics		
24. Network Assurance	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 24 in practice test software		
25. Secure Network Access Control	Read Foundation Topics		
25. Secure Network Access Control	Review Key Topics		
25. Secure Network Access Control	Define Key Terms		
25. Secure Network Access Control	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 25 in practice test software		
26. Network Device Access Control and Infrastructure Security	Read Foundation Topics		
26. Network Device Access Control and Infrastructure Security	Review Key Topics		
26. Network Device Access Control and Infrastructure Security	Define Key Terms		
26. Network Device Access Control and Infrastructure Security	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 26 in practice test software		
27. Virtualization	Read Foundation Topics		
27. Virtualization	Review Key Topics		
27. Virtualization	Define Key Terms		
27. Virtualization	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 27 in practice test software		
28. Foundational Network Programmability Concepts	Read Foundation Topics		
28. Foundational Network Programmability Concepts	Review Key Topics		
28. Foundational Network Programmability Concepts	Define Key Terms		
28. Foundational Network Programmability Concepts	Review Memory Tables		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 28 in practice test software		

29. Introduction to Automation Tools	Read Foundation Topics		
29. Introduction to Automation Tools	Review Key Topics		
29. Introduction to Automation Tools	Define Key Terms		
Practice Test	Take practice test in study mode using Exam Bank 1 questions for Chapter 29 in practice test software		
30. Final Preparation	Read Chapter		
30. Final Preparation	Take practice test in study mode for all book questions in practice test software		
30. Final Preparation	Review Exam Essentials for each chapter on the PDF from book page		
30. Final Preparation	Review all Key Topics in all chapters		
30. Final Preparation	Complete all memory tables from the book page		
30. Final Preparation	Take practice test in practice exam mode using Exam Bank #1 questions for all chapters		
30. Final Preparation	Review Exam Essentials for each chapter on the PDF from the book page		
30. Final Preparation	Take practice test in practice exam mode using Exam Bank #2 questions for all chapters		

