Вопросы с доказательством для подготовки к коллоквиуму

2018-2019-й учебный год

1-й модуль

1) Что происходит с произведением матриц при транспонировании? Ответ обосновать.

$$(A \cdot B)^{T} = B^{T} \cdot A^{T}$$

$$\Box$$

$$[(A \cdot B)^{T}]_{ij} = [A \cdot B]_{ji} = \sum_{r=1}^{n} [A]_{jr} \cdot [B]_{ri} = \sum_{r=1}^{n} [A^{T}]_{rj} \cdot [B^{T}]_{ir} = [B^{T} \cdot A^{T}]_{ij}$$

2) Какие три условия достаточно наложить на функцию от столбцов матрицы, чтобы она обязательно была детерминантом? Ответ обоснуйте для матриц второго порядка.

Произвольная линейная по столбцам кососимметрическая функция от матрицы с условием $f(E_n) = 1$, является определителем

$$\begin{aligned}
&(n=2) \\
f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = f\begin{pmatrix} a_{11} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{21} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}, a_{12} \\ a_{22} \end{pmatrix} = \\
&= a_{11} \cdot f\begin{pmatrix} 1 & a_{12} \\ 0 & a_{22} \end{pmatrix} + a_{21} \cdot f\begin{pmatrix} 0 & a_{12} \\ 1 & a_{22} \end{pmatrix} = \\
&= a_{11} \cdot f\begin{pmatrix} 1 \\ 0 \end{pmatrix}, a_{12} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + a_{21} \cdot f\begin{pmatrix} 0 \\ 1 \end{pmatrix}, a_{12} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} + a_{22} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{21} \cdot a_{12} \cdot f\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12} \cdot f\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12} = \det A
\end{aligned}$$

3) Чему равен определитель произведения двух квадратных матриц? Ответ обоснуйте.

$$\forall A, B \in M_n(\mathbb{R}) \det(A \cdot B) = \det A \cdot \det B \square$$

Рассмотрим функцию $f(B) = \det(A \cdot B)$. Покажем, что для f(B) выполнены свойства 2 и 46

- 1) Если столбцы матрицы B i и j одинаковы, то и в матрице $A \cdot B$ столбцы i и j тоже одинаковы \Rightarrow выполняется свойство 46
- 2) Если в матрице B i-тый столбец имеет вид $\alpha \cdot a + \mu \cdot b \Rightarrow$ в $A \cdot B$ он будет иметь вид $\alpha \cdot a \cdot A + \mu \cdot A \cdot b \Rightarrow$ выполнено свойство 2.

Следовательно, $f(B) = \det B \cdot f(En)$. Возьмем и вычислим $f(E_n) = \det (A \cdot E_n) = \det E_n \cdot f(E_n) = 1 \cdot f(E_n)$

$$\det(A \cdot E_n) = \det A$$

$$\Rightarrow f(E_n) = \det A \Rightarrow f(B) = \det A \cdot \det B = \det A \cdot B$$

4) Выпишите формулы Крамера для квадратной матрицы произвольного порядка и докажите их.

Правило Крамера

Пусть $A \cdot x = b$ – совместная СЛАУ.

Тогда
$$x_j \cdot \det(A_1, \ldots, A_n) = \det(A_1, \ldots, A_{j-1}, b, A_{j+1}, \ldots, A_n) = \triangle_j$$

Если $\triangle \equiv \det A \neq 0$, то

$$x_j = \frac{\triangle_j}{\wedge}, j = \overline{1,n}$$
 – формула Крамера

$$\det(A_1, \dots, A_{j-1}, b, A_{j+1}, \dots, A_n) = \det(A_1, \dots, A_{j-1}, \sum_{k=1}^n x_k \cdot A_k, A_{j+1}, \dots, A_n) = \sum_{k=1}^n x_k \cdot \det(A_1, \dots, A_k, \dots, A_n) + \sum_{k=1}^n x_k \cdot \det(A_1, \dots, A_n) + \sum_{k=1}^n x_k \cdot \det(A_1,$$

 $+\ldots+x_j\cdot\det(A_1,\ldots,A_j,\ldots,A_n)+\ldots=x_j\cdot\det A$

5) Сформулируйте и докажите критерий линейной зависимости.

Строки a_1, \ldots, a_k линейно зависимы \Leftrightarrow хотя бы одна из них является линейной комбинацией остальных

Дано: a_1, \ldots, a_k – л.з.

Доказать: хотя бы одна из них – л.к. остальных

По определению линейной зависимости:

 $\exists \lambda_1, \ldots, \lambda_k$, не все равные нулю, такие, что $\lambda_1 \cdot a_1 + \ldots + \lambda_k \cdot a_k = 0$

Пусть $\lambda_1 \neq 0$, тогда $a_1 = -\frac{\lambda_2}{\lambda_1} \cdot a_2 - \ldots - \frac{\lambda_k}{\lambda_1} \cdot a_k$ – это л.к. остальных

Дано: Пусть $a_1 = \beta_2 \cdot a_2 + \ldots + \beta_k \cdot a_k$

Доказать: a_1, \ldots, a_k – л.з.

 $0 \neq 1 \cdot a_1 - \beta_1 \cdot a_2 - \ldots - \beta_k \cdot a_k = 0$

не все коэффициенты этой л.к. равны $0 \Rightarrow$ по определению a_1, \ldots, a_k – л.з.

6) Как связан ранг транспонированной матрицы с рангом исходной матрицы? Ответ обоснуйте.

 $RgA^T = RgA$

Докажем, что $RgA^T \ge RgA$

Докамскі, По $RgA = r \Rightarrow \exists$ минор $M^{j_1...j_r}_{i_1...i_r} \neq 0$ В матрице A^T есть минор $N^{i_1...i_r}_{j_1...j_r}$, получающийся из $M^{j_1...j_r}_{i_1...i_r}$ транспонированием $\Rightarrow N^{i_1...i_r}_{j_1...j_r} \neq 0$ (это свойство 1 определителя) $\Rightarrow RgA^T \geq r = RgA$ Таким образом, $RgA \leq RgA^T \leq Rg(A^T)^T = RgA \Rightarrow RgA = RgA^T$

7) Сформулируйте и докажите теорему о базисном миноре.

- 1) Базисные строки (столбцы), соответсвующие любому базисному минору M матрицы A л.н.з.
- 2) Строки матрицы A, не входящие в M, являются линейными комбинациями базисных строк
- 1) (от противного)

Предположим, что одна из них является линейной комбинацией остальных $\Rightarrow M=0$ (по свойству определителя). А это противоречит определению базисного минора.

2) Будем считать (без ограничения общности), что базисный минор M расположен в левом верхнем углу матрицы

Пусть RgA = r

$$\begin{pmatrix}
M & \vdots & \ddots & \vdots \\
 & a_{rr+1} & \dots & a_{1n} \\
 & \vdots & \ddots & \vdots \\
 & a_{rr+1} & \dots & a_{rn} \\
 & \vdots & \ddots & \vdots \\
 & a_{m1} & \dots & \dots & a_{mn}
\end{pmatrix}$$

Возьмем строку $a_k, k > r$

Покажем, что $\exists \lambda_1, \ldots, \lambda_r$:

 $a_k = \lambda_1 \cdot a_1 + \ldots + \lambda_r \cdot a_r$, где a_1, \ldots, a_r – базисные строки

Составим определитель:

$$\triangle = \begin{vmatrix} a_{11} & \dots & a_{1r} & a_{1j} \\ \vdots & \ddots & \vdots & \vdots \\ a_{r1} & \dots & a_{rr} & a_{rj} \\ a_{k1} & \dots & a_{kr} & a_{kj} \end{vmatrix}$$

, получающийся добавлением к M k-той строки и j-того столбца, $j=\overline{1,n}$

Покажем, что $\triangle = 0$

Если $j \leq r$, то в $\triangle \exists$ два одинаковых столбца \Rightarrow по свойству определителя $\triangle = 0$

Если j>r, то \triangle – минор матрицы A порядка $r+1\Rightarrow$ по определению ранга матрицы $\triangle=0$

Разложим \triangle по последнему столбцу $a_{1j}\cdot A_1+\ldots+a_{rj}\cdot A_r+a_{kj}\cdot A_k=0$, где A_1,\ldots,A_k

– алгебраическое дополнение соответствующих элементов, причем
$$A_k=\pm M\neq 0\Rightarrow a_{kj}-\frac{A_1}{A_k}\cdot$$

$$a_{1j} - \ldots - \frac{A_r}{A_k} \cdot a_{rj}, j = \overline{1, n}, k > r$$
 то есть $a_{kj} = \lambda_1 \cdot a_{1j} + \ldots + \lambda_r \cdot a_{rj} \Rightarrow (a_{k1}, \ldots, a_{kn}) = \lambda_1 \cdot (a_{11}, \ldots, a_{1n}) + \ldots + \lambda_r \cdot (a_{r1}, \ldots, a_{rn})$ ч.т.д

8) Сформулируйте и докажите следствие теоремы о базисном миноре для квадратных матриц (критерий невырожденности).

Рассмотрим матрицу $A \in M_n(\mathbb{R})$. Следующие условия эквивалентны:

- 1) $\det A \neq 0$
- 2) RgA = n
- 3) все строки A л.н.з. \square

 $1\Rightarrow 2$: Пусть $\det A\neq 0\Rightarrow$ в A сеть минор n-го порядка $\neq 0\Rightarrow$ по определению RgA=n

 $2\Rightarrow 3$: Пусть $RgA=n\Rightarrow$ Все строки базисны \Rightarrow по теореме они все л.н.з. (по теореме о базисном миноре)

 $3\Rightarrow 1$: Пусть все строки A л.н.з. Предположим, что $\det A=0\Rightarrow RgA< n\Rightarrow$ по крайней мере одна из строк является линейной комбинацией остальных \Rightarrow по критерию линейной зависимости строки являются л.з. – противоречие

9) Сформулируйте и докажите критерий существования обратной матрицы (свойства определителя предполагаются известными). Единственна ли обратная матрица? Ответ обоснуйте.

Матрица $A \in M_n(\mathbb{R})$ имеет обратную (обратима) $\Leftrightarrow \det A \neq 0$ (она невырождена)

Необходимость

Дано: $\exists A^{-1}$

Доказать: $\det A \neq 0$

По определению обратной: $A \cdot A^{-1} = E \Rightarrow \det A \cdot \det A^{-1} = \det (A \cdot A^{-1}) = \det E = 1 \Rightarrow \det A \neq 0$

Достаточность Дано: $\det A \neq 0$ Доказать: $\exists A^{-1}$

Рассмотрим матрицу $B = \frac{1}{\det A} \cdot \tilde{A}$

 \tilde{A} – союзная матрица

$$\tilde{A} = \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & & \vdots \\ A_{n1} & \dots & A_{nn} \end{pmatrix}$$

– транспонированная матрица из алгебраических дополнений к элементам матрицы A Покажем, что $B=A^{-1}$

Рассмотрим $A \cdot B$: $[A \cdot B]_{ij} = \sum_{r=1}^{n} [A]_{ir} \cdot [B]_{rj} = \frac{1}{\det A} \cdot \sum_{r=1}^{n} a_{ir} \cdot [\tilde{A}]_{rj} = \frac{1}{\det A} \cdot \sum_{r=1}^{n} a_{ir} \cdot A_{jr} = \frac{1}{\det A} \cdot \left\{ \det A, i = j \atop 0, i \neq j \right\} = \left\{ 1, i = j \atop 0, i \neq j \right\} = [E]_{ij}$

Если обратная матрица существует, то она единственная.

П

Предположим противоположное: $\exists B_1$ и B_2 – обратные к A.

По определению $B_i \cdot A = A \cdot B_i = E, i = 1,2.$

 $B_1 = B_1 \cdot E = B_1 \cdot (A \cdot B_2) = (B_1 \cdot A) \cdot B_2 = E \cdot B_2 = B_2$

10) Сформулируйте и докажите теорему о ранге матрицы (теорема о базисном миноре предполагается известной)

Ранг матрицы=максимальному числу ее л.н.з. строк (столбцов)

Пусть RgA = r, максимальное число л.н.з. строк= k

Покажем, что k=r

1) Так как в A есть r л.н.з. строк (так как RgA = r, это базисные строки)

 $k \geq r$ 2) Вычеркнем в A все строки, кроме k л.н.з. \Rightarrow получим матрицу A_1 . В ней k строк.

При этом $RgA_1 = k$ (так как если бы RgA_1 был бы < k, то среди этих k строк только часть была бы базисными и какая-то одна строка была бы л.к. остальных \Rightarrow строки были бы л.з.)

Базисный минор A_1 имеет порядок k и является не равным 0 минором порядка k исходной матрицы $\Rightarrow k \leq r$

Следовательно, k=r

_

2-й модуль

1) Сформулируйте теорему Кронекера-Капелли и докажите ее.

СЛАУ $A \cdot x = b$ совместна $\Leftrightarrow RqA = Rq(A|b)$

Дано: СЛАУ совместна

Доказать: RgA = Rg(A|b)

Слау совместна
$$\Rightarrow \exists x^0 \cdot \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix} : A \cdot x^0 = b \Leftrightarrow x_1^0 \cdot A_1 + \ldots + x_n^0 \cdot A_n = b$$

 $A_i - j$ -тый столбец матрицы A

 \Rightarrow столбцы A_1, \ldots, A_r – базисные

столбцы A_{r+1}, \ldots, A_n – их линейные комбинации

$$A_{r+1} = \lambda_{1r+1} \cdot A_1 + \ldots + \lambda_{rr+1} \cdot A_r$$

 $A_n = \lambda_{1n} \cdot A_1 + \ldots + \lambda_{rn} \cdot A_r$

$$\Rightarrow b = x_1^0 \cdot A_1 + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot (\lambda_{1r+1} \cdot A_r + \ldots + \lambda_{rr+1} \cdot A_r) + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot A_r + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot A_r + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot A_r + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot A_r + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot A_r + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot A_r + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot A_r + \ldots + x_r^0 \cdot A_r + x_r^0$$

 $\Rightarrow b = x_1^0 \cdot A_1 + \ldots + x_r^0 \cdot A_r + x_{r+1} \cdot (\lambda_{1r+1} \cdot A_r + \ldots + \lambda_{rr+1} \cdot A_r) + \ldots + x_n^0 \cdot (\lambda_{1n} \cdot A_1) + \ldots + \lambda_{rn} \cdot A_r = (x_1^0 + x_{r+1}^0 \cdot \lambda_{1r+1} + \ldots + x_n^0 \cdot \lambda_{1n}) \cdot A_1 + \ldots + (x_r^0 + x_{r+1}^0 \cdot \lambda_{rr+1} + \ldots + x_n^0 \lambda_{rn}) \cdot A_r$ то есть b является линейной комбинацией столбцов $A_1,\ldots,A_r\Rightarrow M$ (базисный минор в матрице

A) является базисным минором и в $(A|b) \Rightarrow RgA = Rg(A|b)$ так как

1. он не является нулевым

2. все окаймляющие его миноры = 0, так как из них один из столбцов является линейной комбинацией A_1, \ldots, A_r (для A_{r+1,\ldots,A_n} по определению базисного минора, а для b показали)

Дано: RgA = Rg(A|b)

Доказать: СЛАУ совместна

Пусть RqA = r. Пусть M – базисный минор, расположенный в левом верхнем углу матрицы. По теореме о базисном миноре столбец b является линейной комбинацией столбцов A_1, \ldots, A_r . То есть \exists числа $y_1^0, \dots, y_r^0 : b = y_1^0 \cdot A_1 + \dots + y_r^0 \cdot A_r$.

Тогда
$$y^0 = \begin{pmatrix} y_1^0 \\ \vdots \\ y_r^0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 — решение СЛАУ $A \cdot x = b$

2) Дайте определение фундаментальной системы решений (ФСР) однородной системы линейных уравнений. Докажите теорему о существовании ФСР.

Любые n-r линейно независимых столбцов, являющихся решениями однородной СЛАУ $A \cdot x =$ 0, где n – число неизвестных, а r=RgA, называют фундаментальной системой решений (ФСР) однородной СЛАУ $A \cdot x = 0$

Теорема о существовании ФСР

Рассмотрим СЛАУ $A \cdot x = 0$

У нее существует n-r линейно независимых решений, где n – число неизвестных, а r=RgA

Предположим, что базисный минор матрицы A расположен в левом верхнем углу. Тогда строки A_1, \ldots, A_r – базисные, а A_{r+1}, \ldots, A_m – их линейные комбинации

$$\begin{cases} A_{r+1} = \lambda_1 \cdot A_1 + \dots + \lambda_r \cdot A_r \\ \vdots \\ A_m = \mu_1 \cdot A_1 + \dots + \mu_r \cdot A_r \end{cases}$$

Сделаем элементарные преобразования

$$\begin{cases} A_{r+1} - (\lambda_1 \cdot A_1 + \dots + \lambda_r \cdot A_r) \to \\ \vdots \\ A_m - (\mu_1 \cdot A_1 + \dots + \mu_r \cdot A_r) \to \end{cases}$$

Получим матрицу, у которой последние m-r строк нулевые.

Элементарным преобразованиям строк соответствуют элементарные преобразования уравнений \Rightarrow CЛАУ эквивалентна.

$$\begin{cases} a_{11} \cdot x_1 + \ldots + a_{1r} \cdot x_r = -a_{1r+1} \cdot x_{r+1} - \ldots - a_{1n} \cdot x_n \\ \vdots \\ a_{r1} \cdot x_1 + \ldots + a_{rr} \cdot x_r = -a_{rr+1} \cdot x_{r+1} - \ldots - a_{rn} \cdot x_n \end{cases}$$

Переменные x_1, \ldots, x_r , отвечающие базисным строкам, называют главными (базисными), а

 x_{r+1}, \ldots, x_n – свободными. (Система уравнений выше – это выражение главных переменных через свободные)

Придадим свободным переменным следующий набор значений:

Первый набор Второй набор
$$(n-r)$$
-й набор $x_{r+1}=1$ $x_{r+1}=0$ $x_{r+2}=0$ $x_{r+2}=1$ $x_{r+2}=0$ $x_{r+2}=1$ $x_{r+2}=0$ $x_{r+2}=1$ $x_{r+2}=0$ $x_{r+2}=1$ $x_{r+2}=0$

Для каждого набора решим СЛАУ относительно x_1, \ldots, x_r

Она всегда имеет единственное решение, так как ее определитель $=M\neq 0$ (базисный минор матрицы A)

Получим следующие решения:

Для первого набора:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{1r} \end{pmatrix}$$

Для второго набора:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{21} \\ \vdots \\ \phi_{2r} \end{pmatrix}$$

Для (n-r)-го набора набора(n-r=k):

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{k1} \\ \vdots \\ \phi_{kr} \end{pmatrix}$$

Тогда столбцы:

$$\Phi_1 = \begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{1r} \\ 1 \\ \vdots \\ 0 \end{pmatrix} \dots \Phi_k = \begin{pmatrix} \phi_{k1} \\ \vdots \\ \phi_{kr} \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

являются решениями исходной СЛАУ

Покажем, что они л.н.з.

Рассмотрим равенство: $\alpha_1 \cdot \Phi_1 + \ldots + \alpha_k \cdot \Phi_k = 0$

$$\alpha_{1} \cdot \begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{1r} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \alpha_{2} \cdot \begin{pmatrix} \phi_{21} \\ \vdots \\ \phi_{2r} \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \alpha_{k} \cdot \begin{pmatrix} \phi_{k1} \\ \vdots \\ \phi_{kr} \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} * \\ \vdots \\ * \\ \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{k} \end{pmatrix}$$
 и это должно быть =
$$\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_k = 0$$

По определению Φ_1, \dots, Φ_k – л.н.з. \Rightarrow они образуют Φ CP ОСЛАУ $A \cdot x = 0$

3) Сформулируйте критерий существования ненулевого решения однородной системы линейных уравнений с квадратной матрицей и докажите его.

Однородная СЛАУ $A\cdot x=0$ имеет ненулевое решение \Leftrightarrow Матрица A вырождена, то есть $\det A=0$

Дано: $A \cdot x = 0$ имеет решение $x \neq 0$

Доказать: $\det A = 0$

Предположим противное \Rightarrow по формуле Крамера СЛАУ имеет единственное решение = 0 \rightarrow противоречие

Дано: $\det A = 0$

Доказать: \exists ненулевое решение СЛАУ $A \cdot x = 0$

Пусть $\det A = 0 \Rightarrow RgA < n \Rightarrow n - r = k > 0$

По теореме о существовании ФСР $\exists k$ л.н.з. решений СЛАУ $A \cdot x = 0$. Это и есть ненулевое решение.

4) Докажите теорему о структуре общего решения однородной системы линейных алгебраических уравнений, то есть о том, что произвольное решение однородной СЛАУ может быть представлено в виде линейной комбинации элементов ФСР.

Пусть Φ_1, \dots, Φ_k – Φ СР однородной СЛАУ $A \cdot x = 0$. Тогда любое решение этой СЛАУ можно представить в виде

$$x=c_1\cdot\Phi_1+\ldots+c_k\cdot\Phi_k$$
, где c_1,\ldots,c_k – некоторые постоянные

Пусть $x^0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix}$ — произвольное решение ОСЛАУ $A \cdot x = 0$

Предположим, что базисный минор матрицы A расположен в левом верхнем углу матрицы A. Тогда, повторяя рассуждения, приведенные в доказательстве теоремы о существовании Φ CP,

$$\begin{cases} a_{11} \cdot x_1 + \ldots + a_{1r} \cdot x_r = -a_{1r+1} \cdot x_{r+1} - \ldots - a_{1n} \cdot x_n \\ \vdots \\ a_{r1} \cdot x_1 + \ldots + a_{rr} \cdot x_r = -a_{rr+1} \cdot x_{r+1} - \ldots - a_{rn} \cdot x_n \end{cases}$$

Решим ее относительно главных (базисных) неизвестных x_1, \dots, x_r (по формулам Крамера)

$$\begin{cases} x_1 = \alpha_{1r+1} \cdot x_{r+1} + \ldots + \alpha_{1n} \cdot x_n \\ \vdots \\ x_r = \alpha_{rr+1} \cdot x_{r+1} + \ldots + \alpha_{rn} \cdot x_n \end{cases}$$

$$(9.1)$$

 α_{ij} – некоторые числа

Составим матрицу

$$D = \begin{pmatrix} x_1^0 & \phi_{11} & \dots & \phi_{k1} \\ \vdots & \vdots & \ddots & \vdots \\ x_r^0 & \phi_{1r} & \dots & \phi_{kr} \\ x_{r+1}^0 & \phi_{1r+1} & \dots & \phi_{kr+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_n^0 & \phi_{1n} & \dots & \phi_{kn} \end{pmatrix}$$

Покажем, что RqD = k

- 1. $RgD \ge k$, так как Φ_1, \dots, Φ_k л.н.з. (это Φ CP), а RgD = максимальному числу л.н.з. столбцов (по теореме о ранге матрицы)
- 2. Покажем, что $RgD \leq k$

Столбцы $x^0, \Phi_1, \dots, \Phi_k$ – решения СЛАУ $A \cdot x = 0 \Rightarrow$ из (9.1) получаем, что

$$x_1^0 = \alpha_{1r+1} \cdot x_{r+1}^0 + \dots + \alpha_{1n} \cdot x_n^0$$

$$\phi_{11} = \alpha_{1r+1} \cdot \phi_{1r+1} + \dots + \alpha_{1n} \cdot \phi_{1n}$$

$$\vdots$$

$$\phi_{k1} = \alpha_{1r+1} \cdot \phi_{kr+1} + \dots + \alpha_{1n} \cdot \phi_{kn}$$

то есть первая строка d_1 матрицы D – линейная комбинация строк d_{r+1}, \ldots, d_n :

$$d_1 = \alpha_{1r+1} \cdot d_{r+1} + \ldots + \alpha_{1n} \cdot d_n$$

Аналогично с остальными строками вплоть до r-той:

$$d_r = \alpha_{rr+1} \cdot d_{r+1} + \ldots + \alpha_{rn} \cdot d_n$$

Сделаем элементарные преобразования:

$$\begin{cases} d_1 - (\lambda_{1r+1} \cdot d_{r+1} + \dots + \lambda_{1n} \cdot d_n) \to d_1 \\ \vdots \\ d_r - (\lambda_{rr+1} \cdot d_{r+1} + \dots + \lambda_{rn} \cdot d_n) \to d_r \end{cases}$$

Получим матрицу D_1 , у которой первые r строк нулевые.

$$D \backsim D_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \\ x_{r+1}^0 \cdot \phi_{1r+1} & \dots & \phi_{kr+1} \\ \vdots & \ddots & \vdots \\ x_n^0 \cdot \phi_{1n} & \dots & \phi_{kn} \end{pmatrix}$$

$$\Rightarrow RgD_1 \leq n - r = k$$

При элементарных преобразованиях ранг не меняется $\Rightarrow RgD \leq k$

Мы доказали, что $RgD = k \Rightarrow$ столбцы Φ_1, \dots, Φ_k – базисные (они л.н.з.) \Rightarrow по теореме о базисном миноре столбец x^0 – их линейная комбинация, то есть существуют числа c_1, \ldots, c_k : $x^0 = c_1 \cdot \Phi_1 + \ldots + c_k \cdot \Phi_k$

5) Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений и докажите ее (теорема о структуре общего решения однородной системы линейных алгебраических уравнений предполагается известной).

Пусть известно частное решение \tilde{x} СЛАУ $A \cdot x = b$. Тогда любое решение этой СЛАУ можно представить в виде $x = \tilde{x} + c_1 \cdot \Phi_1 + \ldots + c_k \cdot \Phi_k$, где Φ_1, \ldots, Φ_k – Φ CP соответствующей однородной СЛАУ, а c_1, \ldots, c_k – некоторые постоянные

Пусть x^0 – произвольное решение СЛАУ $A \cdot x = b \Rightarrow (x^0 - \tilde{x})$ – по свойствам решений решение однородной СЛАУ $A \cdot x = 0 \Rightarrow$ по теореме о структуре общего решения однородной СЛАУ \exists постоянные c_1, \ldots, c_n ,

$$x^0 - \tilde{x} = c_1 \cdot \Phi_1 + \ldots + c_k \cdot \Phi_k \Rightarrow x^0 = \tilde{x} + c_1 \cdot \Phi_1 + c_k \cdot \Phi_k$$

6) Выпишите формулу для вычисления скалярного произведения векторов, заданных своими координатами в произвольном базисе трехмерного пространства, и приведите ее вывод.

Пусть $\overrightarrow{a} = a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2} + a_3 \overrightarrow{e_3}$, $\overrightarrow{b} = b_1 \overrightarrow{e_1} + b_2 \overrightarrow{e_2} + b_3 \overrightarrow{e_3}$ – разложение векторов \overrightarrow{a} и \overrightarrow{b} по базису. Тогда их скалярное произведение может быть вычислено по формуле:

$$(\overrightarrow{a}, \overrightarrow{b}) = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} \cdot \begin{pmatrix} (\overrightarrow{e_1}, \overrightarrow{e_1}) & (\overrightarrow{e_1}, \overrightarrow{e_2}) & (\overrightarrow{e_1}, \overrightarrow{e_3}) \\ (\overrightarrow{e_2}, \overrightarrow{e_1}) & (\overrightarrow{e_2}, \overrightarrow{e_2}) & (\overrightarrow{e_2}, \overrightarrow{e_3}) \\ (\overrightarrow{e_3}, \overrightarrow{e_1}) & (\overrightarrow{e_3}, \overrightarrow{e_2}) & (\overrightarrow{e_3}, \overrightarrow{e_3}) \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$(\overrightarrow{a}, \overrightarrow{b}) = (a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2} + a_3 \overrightarrow{e_3}, b_1 \overrightarrow{e_1} + b_2 \overrightarrow{e_2} + b_3 \overrightarrow{e_3}) =$$

$$= (a_1 \overrightarrow{e_1}, b_1 \overrightarrow{e_1} + b_2 \overrightarrow{e_2} + b_3 \overrightarrow{e_3}) + (a_2 \overrightarrow{e_2}, b_1 \overrightarrow{e_1} + b_2 \overrightarrow{e_2} + b_3 \overrightarrow{e_3}) + (a_3 \overrightarrow{e_3}, b_1 \overrightarrow{e_1} + b_2 \overrightarrow{e_2} + b_3 \overrightarrow{e_3}) =$$

$$= (a_1 \overrightarrow{e_1}, b_1 \overrightarrow{e_1}) + (a_1 \overrightarrow{e_1}, b_2 \overrightarrow{e_2}) + (a_1 \overrightarrow{e_1}, b_3 \overrightarrow{e_3}) + (a_2 \overrightarrow{e_2}, b_1 \overrightarrow{e_1}) + (a_2 \overrightarrow{e_2}, b_2 \overrightarrow{e_2}) + (a_2 \overrightarrow{e_2}, b_3 \overrightarrow{e_3}) + (a_3 \overrightarrow{e_3}, b_1 \overrightarrow{e_1}) +$$

$$+ (a_3 \overrightarrow{e_3}, b_2 \overrightarrow{e_2}) + (a_3 \overrightarrow{e_3}, b_3 \overrightarrow{e_3}) =$$

$$= a_1, b_1(\overrightarrow{e_1}, \overrightarrow{e_1}) + a_1, b_2(\overrightarrow{e_1}, \overrightarrow{e_2}) + a_1, b_3(\overrightarrow{e_1}, \overrightarrow{e_3}) + a_2, b_1(\overrightarrow{e_2}, \overrightarrow{e_1}) + a_2, b_2(\overrightarrow{e_2}, \overrightarrow{e_2}) + a_2, b_3(\overrightarrow{e_2}, \overrightarrow{e_3}) + a_3, b_1(\overrightarrow{e_3}, \overrightarrow{e_1}) +$$

$$+ a_3, b_2(\overrightarrow{e_3}, \overrightarrow{e_2}) + a_3, b_3(\overrightarrow{e_3}, \overrightarrow{e_3}) =$$

$$= (a_1 \ a_2 \ a_3) \cdot \begin{pmatrix} (\overrightarrow{e_1}, \overrightarrow{e_1}) & (\overrightarrow{e_1}, \overrightarrow{e_2}) & (\overrightarrow{e_1}, \overrightarrow{e_3}) \\ (\overrightarrow{e_2}, \overrightarrow{e_1}) & (\overrightarrow{e_2}, \overrightarrow{e_2}) & (\overrightarrow{e_2}, \overrightarrow{e_3}) \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

7) Выпишите формулу для вычисления векторного произведения в правом ортонормированном базисе трехмерного пространства и приведите ее вывод.

Пусть
$$\overrightarrow{i}$$
, \overrightarrow{j} , \overrightarrow{k} – правый ортонормированный базис, $\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$.

Тогда $\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \overrightarrow{i} (a_y b_z - b_y a_z) + \overrightarrow{j} (a_z b_x - a_x b_z) + \overrightarrow{k} (a_x b_y - a_y b_x)$

Так как \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} – правый ортонормированный базис, то

$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = \overrightarrow{0},$$

$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, \overrightarrow{j} \times \overrightarrow{i} = -\overrightarrow{k}, \overrightarrow{i} \times \overrightarrow{k} = -\overrightarrow{j}, \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}, \overrightarrow{k} \times \overrightarrow{j} = -\overrightarrow{i}$$

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) \times (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}) =$$

$$= a_x b_y \overrightarrow{i} \times \overrightarrow{j} + a_x b_z \overrightarrow{i} \times \overrightarrow{k} + a_y b_x \overrightarrow{j} \times \overrightarrow{k} + a_y b_z \overrightarrow{j} \times \overrightarrow{k} + a_z b_x \overrightarrow{k} \times \overrightarrow{i} + a_z b_y \overrightarrow{k} \times \overrightarrow{j} =$$

$$= \overrightarrow{i} (a_y b_z - b_y a_z) + \overrightarrow{j} (a_z b_x - a_x b_z) + \overrightarrow{k} (a_x b_y - a_y b_x) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

- 8) Докажите теорему о том, что любое линейное уравнение на координаты точки в трехмерном пространстве задает плоскость и что любая плоскость определяется линейным уравнением.
- 1. Любая плоскость в пространстве определяется уравнением Ax + By + Cz + d = 0, где A, B, C, D– некоторые числа
- 2. Любое уравнение Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$, определяет в пространстве плоскость
- 1. Рассмотрим плоскость π . Пусть точка $M_0(x_0, y_0, z_0)$ ей принадлежит. Рассмотрим вектор $\overrightarrow{n} \perp \pi$. Пусть $\overrightarrow{n} = (A, B, C)$.

 $M(x,y,z) \in \pi \Leftrightarrow (\overrightarrow{n}, \overrightarrow{M_0M}) = 0 \Leftrightarrow A(x-x_0) + B(y-y_0) + C(z-z_0)$, to есть Ax + By + Cz + D = 0, где $D = -Ax_0 - By_0 - Cz_0$. Таким образом, координаты точки M удовлетворяют уравнению Ax + By + Cz + D = 0

2. Рассмотрим уравнение Ax+By+Cz+D=0, где $A^2+B^2+C^2>0$. Оно имеет хотя бы одно решение (например, если $A \neq 0$, то $x_0 = -\frac{D}{A}, y_0 = z_0 = 0$). Обозначим за M_0 точку (x_0, y_0, z_0) . Пусть точка M(x, y, z) удовлетворяет уравнению Ax + By + Cz + D = 0. Вычтем из него равенство $Ax_0 + By_0 + Cz_0 + D = 0$: $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0 \Leftrightarrow (\overrightarrow{n}, \overrightarrow{M_0M}) = 0$, где $\overrightarrow{n}=(A,B,C)\Leftrightarrow\overrightarrow{n}\perp\overrightarrow{M_0M}\Leftrightarrow$ точка M лежит в плоскости, проходящей через M_0 и перпендикулярной вектору $\overrightarrow{n} \Rightarrow$ уравнение Ax + By + Cz + D = 0 определяет плоскость

9) Выпишите формулу для вычисления расстояния от точки до плоскости и приведите ее вывод.

Рассмотрим плоскость P: Ax + By + Cz + D = 0 и точку $M(x_0, y_0, z_0)$. Найдем $\rho(M, L)$ – рас-

стояние от точки
$$M$$
 до плоскости P . Пусть $M_1(x_1,y_1,z_1)$ – произвольная точка плоскости. Тогда $\rho(M,P)=|\text{пр}_{\overrightarrow{n}}\overrightarrow{M_1M}|=\frac{|(\overrightarrow{M_1M},\overrightarrow{n})|}{|\overrightarrow{n}|}=(\text{в OHB})=\frac{|A(x_0-x_1)+B(y_0-y_1)+C(z_0-z_1)|}{\sqrt{A^2+B^2+C^2}}=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}},$ так как $M_1\in P\Leftrightarrow Ax_1+By_1+Cz_1=-D$

10) Выпишите формулу Муавра и докажите ее.

$$z^n = r^n \cdot (\cos n\phi + i \cdot \sin n\phi), n \in \mathbb{N}$$

n=2 – база индукции

$$z^2 = z \cdot z = r \cdot r \cdot (\cos(\phi + \phi) + i \cdot \sin(\phi + \phi)) = r^2 \cdot (\cos 2\phi + i \cdot \sin 2\phi)$$

Пусть для n = k это верно, тогда:

$$z^{k+1} = z^k \cdot z = r^k \cdot r \cdot (\cos k\phi + i \cdot \sin k\phi) \cdot (\cos \phi + i \cdot \sin \phi) = r^{k+1} \cdot (\cos k\phi \cdot \cos \phi - \sin k\phi \cdot \sin \phi + i \cdot \cos k\phi \cdot \sin \phi + i \cdot \sin k\phi \cdot \cos \phi) = r^{k+1} \cdot (\cos (k+1)\phi + i \cdot \sin (k+1)\phi)$$

 \Rightarrow по принципу математической индукции формуала Муавра верна $\forall n \in \mathbb{N}$

3-й модуль

1) Сформулируйте и докажите утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

 \forall подгруппа в ($\mathbb{Z},+$) имеет вид $k\mathbb{Z}$ для некоторых $k\in\mathbb{N}\cup\{0\}$

Если $H = \{0\}$, то положим k = 0. Иначе: $k = \min(H \cap \mathbb{N}) \to$ и очевидно, что $k\mathbb{Z} \subseteq H$. Если возьмем $a \in H$ и разделим a на k с остатком: a = qk + r, где $0 \le r < k \Rightarrow r = a - q \cdot k \in H \Rightarrow r = 0 \Rightarrow a = q \cdot k$, то есть всегда $H = k\mathbb{Z}$

2) Сформулируйте и докажите теорему Лагранжа (включая доказательство лемм). Сформулируйте три следствия из теоремы Лагранжа.

Лемма 1: $\forall g_1, g_2 \in G$ либо $g_1H = g_2H$, либо $g_1H \cap g_2H = \emptyset$

Если $g_1H \cap g_2H \neq \emptyset$, то $g_1H = g_2h_2h_1^{-1}H \subseteq g_2H$ и аналогично в обратную сторону $\exists h_1, h_2 : g_1h_1 = g_2h_2$, так как пересечение не пусто $\Rightarrow g_1 = g_2h_2h_1^{-1}$

Лемма 2: $|gH| = |H| \ \forall g \in G \ , \forall$ конечной подгруппы H

 $|gH| \le |H|$, так как $gH = \{gh|h \in H\}$ Если $gh_1 = gh_2 \Rightarrow g^{-1}gh_1 = g^{-1}gh_2 \Rightarrow h_1 = h_2 \Rightarrow$ нет совпадений и |gH| = |H|

Теорема Лагранжа:

Пусть G – конечная группа и $H\subseteq G$ – подгруппа. Тогда $|G|=|H|\cdot [G:H]$ \square

 \forall элемент группы G лежит в своем левом смежном классе по H и смежные классы не пересекаются (по лемме 1) и \forall из них содержит |H| элементов (по лемме 2)

Следствие 1: Пусть G – конечная группа и $g \in G$. Тогда ord(g) делит |G|

Следствие 2: Пусть G – конечная группа. Тогда $g^{|G|}=e$

Следствие 3 (малая теорема Ферма): Пусть \overline{a} – ненулевой вычет по простому модулю p.

Тогда $\overline{a}^{p-1} \equiv 1 \mod p$

3) Сформулируйте и докажите критерий нормальности подгруппы, использующий сопряжение.

Пусть $H \subseteq G$ — подгруппа в группе G. Тогда 3 условия эквивалентны:

1. Н нормальна

2.
$$\forall g \in G \ gHg^{-1} \subseteq H \ (gHg^{-1} = \{ghg^{-1} | h \in H\})$$

3. $\forall g \in G \ gHg^{-1} = H$

CXEMA: $\begin{array}{c} 1 \\ \nearrow \\ 3 \leftarrow 2 \end{array}$

 $\boxed{1 \to 2}$ Пусть $h \in H$ и $g \in G$. Из определения $\Rightarrow \exists h, h' \in H : gh = h'g$ $ghg^{-1} = h' \in H$, то есть $gHg^{-1} \subset H$

 $\boxed{2 \to 3}$ Остается показать, что $H \subseteq gHg^{-1}$. Для $h \in H$ имеем $h = gg^{-1}hgg^{-1} = g(g^{-1}hg)g^{-1} \in gHg^{-1}$, так как $g^{-1}hg \in H$ (вместо g взяли g^{-1})

 $\boxed{3 \to 1} \ \forall g \in G$ по пункту 3 $gH = gHg^{-1}g \subseteq Hg$. Аналогично $Hg \subseteq gH \Rightarrow Hg = gH$ – по определению это нормальность.

4) Сформулируйте и докажите критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

H — нормальная подгруппа $\Leftrightarrow H=Kerf,$ где f — некоторый гомоморфизм

Необходимость

Дано: H – нормальная подгруппа

Нужно доказать: $\exists f$ – гомоморфизм: H = Kerf

Это естественный гомоморфизм, сопоставляющий \forall элементу $a \in G$ его смежный класс aH

 $\varepsilon: G \to G/H$

Тогда $Ker \varepsilon = eH = H$

Достаточность

H = Kerf

Ранее показали, что Kerf – подгруппа.

Покажем, что Kerf – нормальная подгруппа. Пусть $f: G \to F$ – гомоморфизм и $z \in Kerf$. Тогда $f(g^{-1}zg) = f(g^{-1})f(z)f(g) = f(g^{-1})ef(g) = f(g^{-1}g) = f(e_G) = e_F$. То есть $\forall g \in G: g^{-1}Hg \subseteq H$, где $H = Kerf \Rightarrow$ по критерию H = Kerf – нормальна

5) Сформулируйте и докажите теорему о гомоморфизме групп.

Пусть $f:G\to F$ — гомоморфизм групп. Тогда группа $Imf=\{a\in F|\exists g\in G, f(g)=a\}$ изоморфна фактор-группе G/Kerf

 $Kerf = \{g \in G | f(g) = e_F\}$ (Kerf – ядро гомоморфизма)

$$G/Kerf \simeq Imf$$

Рассмотрим $\tau: G/Kerf \to F$, заданное формулой $\tau(gKer(f)) = f(g) \in F$

(gKer(f)=gH, где H=Kerf)

Проверим корректность:

 $\forall h_1, h_2 \in Kerf$

 $f(gh_1) = f(g)f(h_1) = f(g)e_F = f(g) = f(g)f(h_2) = f(gh_2)$, то есть значения τ не зависят от выбора представителя смежного класса.

Отображение au сюрьективно по построению и инъективно в силу того, что

 $f(g) = e_F \Leftrightarrow g \in Kerf$ (то есть gKerf = Kerf)

Остается проверить, что au – гомоморфизм

 $\tau((gKerf) \cdot (g'Kerf)) = \tau(gg'Kerf) = f(gg') = f(g) \cdot f(g') = \tau(gKerf) \cdot \tau(g'Kerf)$

6) Докажите, что центр группы является ее нормальной подгруппой.

Z(G) является нормальной подгруппой G

1. Покажем, что Z(G) – подгруппа, то есть $\forall a,b \in Z(G)a \cdot b^{-1} \in Z(G)$

 $ab^{-1}g = ab^{-1}(g^{-1})^{-1} = a(g^{-1}b)^{-1} = a(bg^{-1})^{-1} = a(g^{-1})^{-1}b^{-1} = agb^{-1} = gab^{-1} \Rightarrow ab^{-1} \in Z(G)$

2. Если $a \in Z(G)$ и $g, b \in G$

 $g^{-1}agb = g^{-1}gab = ab = ba = bag^{-1}g = bg^{-1}ag$, то есть если элемент $a \in Z(G)$, то $g^{-1}ag$ тоже $\in Z(G)$.

А это по критерию означает нормальность.

7) Сформулируйте и докажите утверждение о том	, чему	изоморфна	факторгрупп	па
группы по ее центру.				

$$G/Z(G) \simeq Inn(G)$$

Рассмотрим отбражение $f: G \to Aut(G)$, которое задается формулой $\phi_g(h) = ghg^{-1}$. Тогда Imf = Inn(G) по определению. Kerf = Z(G), так как $ghg^{-1} = ehe^{-1} = h \Leftrightarrow gh = hg$ \Rightarrow по теореме о гомоморфизме $G/Kerf \simeq Imf$, то есть $G/Z(G) \simeq Inn(G)$

8) Сформулируйте и докажите теорему Кэли.

 \forall конечная группа порядка n изоморфна некоторой подгруппе группы S_n

Пусть |G|=n. $\forall a\in G$ рассмотрим отображение $L_a:G\to G$ по формуле: $L_a(g)=a\cdot g$

Пусть $e, g_1, g_2, \ldots, g_{n-1}$ – элементы группы. Тогда $a, ag_1, ag_2, \ldots, ag_{n-1}$ – те же элементы, но в другом порядке (если $ag_i = ag_j \Rightarrow g_i = g_j$, так как $\exists a^{-1} \forall a \in G$)

 $\Rightarrow L_a$ – биективное отображение G в себя (то есть перестановка элементов g)

Эти отображения можно умножать (взяв композицию)

Есть единичный элемент: L_e

Обратным элементом к L_a является $L_{a^{-1}}$

Из ассоциативности в $G \Rightarrow L_{ab}(g) = (a \cdot b)g = a(b \cdot g) = L_a(L_b(g)) \Rightarrow$ множество $L_e, L_{g_1}, L_{g_2}, \dots, L_{g_{n-1}}$ образует подгруппу H в множестве всех биективных отображений G в себя, то есть S(G)

А изоморфизм устроен так: $a \mapsto L_a \in H$ это биекция и гомоморфизм

9) Сформулируйте и докажите лемму о том, чем является ядро гомоморфизма колец.

 $Ker\phi$ – идеал в K_1

 ϕ – гомоморфизм групп (по сложению) $(K_1,+)$ и $(K_2,+)\Rightarrow (Ker\phi,+)$ – нормальная подгруппа Покажем, что $ra\in Ker\phi, ar\in Ker\phi$

 $\forall a \in ker\phi, \forall r \in K_1$

$$\phi(ra) = \phi(r)\phi(a) = \phi(r) \cdot 0 = 0 \Rightarrow ra \in Ker\phi$$

Аналогично с *ar*

10) Сформулируйте и докажите критерий того, что кольцо вычетов по модулю p является полем.

 \mathbb{Z}_k – поле $\Leftrightarrow k$ – простое

 \mathbb{Z}_k – коммутативное кольцо с 1.

Если k = p – простое, то в \mathbb{Z}_p^* (то есть $\mathbb{Z}_p \setminus \{0\}$ с операцией умножения) все элементы обратимы. Рассмотрим $\overline{1}, \dots, \overline{p-1}$

Возьмем остаток \bar{s} и докажем, что $\exists \bar{s}^{-1}$

Рассмотрим $\{\overline{s},\overline{s}\cdot\overline{2},\overline{s}\cdot\overline{3},\ldots,\overline{s}\cdot\overline{p-1}\}=A$. Если $\overline{s}\neq0\Rightarrow\overline{k}\cdot\overline{s}\neq0\mod p\Rightarrow$ в A нет нуля. Более того, это те же элементы, но в другом порядке. Если $\overline{k}\cdot\overline{s}=\overline{q}\cdot\overline{s}\Rightarrow(\overline{k}-\overline{q})\cdot\overline{s}=\overline{0}\Rightarrow\overline{k}-\overline{q}=\overline{0}\Rightarrow$ в наборе $\overline{s},\overline{s}\cdot\overline{2},\overline{s}\cdot\overline{3},\ldots,\overline{s}\cdot\overline{p-1}$ найдется $1\Rightarrow\overline{s}\cdot\overline{s}'=1$, то есть \overline{s} обратим

11) Сформулируйте и докажите утверждение о том, каким будет простое подполе в зависимости от характеристики.

Пусть F – поле. F_0 – его простое подполе. Тогда:

- 1. Если char F = p > 0, то $F_0 \simeq \mathbb{Z}_p$
- 2. Если char F = 0, то $F_0 \simeq \mathbb{Q}$

 $<1>\subseteq (F,+)$, где <1> – циклическая подгруппа по сложению, порожденная 1 (то есть нейтральным элементом по умножению)

$$|<1>|=charF$$

- <1> подкольцо в F. Так как \forall подполе F содержит $1\Rightarrow$ оно содержит и $<1>\subseteq F_0$
- 1. Если char F = p > 0, то $< 1 > \simeq \mathbb{Z}_p$ поле $\Rightarrow F_0 = < 1 > \simeq \mathbb{Z}_p$
- 2. Если charF=0, то $<1>\simeq\mathbb{Z}$ не поле. Но F_0 содержит и все дроби вида $\frac{a}{b}$, где $a,b\in<1>$ $b \neq 0$ и они образуют поле, изоморфное $\mathbb{Q} \ (\mathbb{Q} - \text{поле частных для кольца} \ \mathbb{Z})$

12) Выпишите и докажите формулу для описания изменения координат вектора при изменении базиса.

Пусть $x\in V,A$ и B – базисы в V. $x^a=\begin{pmatrix}x_1^a\\\vdots\\x_n^a\end{pmatrix}$ – столбец координат вектора x в базисе A, $x^b=\begin{pmatrix}x_1^b\\\vdots\\x_n^b\end{pmatrix}$ – столбец координат вектора x в базисе B. Тогда $x^b=T_{A\to B}^{-1}\cdot x^a$

$$x^b = \begin{pmatrix} x_1^b \\ \vdots \\ x_n^b \end{pmatrix}$$
 – столбец координат вектора x в базисе B . Тогда $x^b = T_{A o B}^{-1} \cdot x^a$

Докажем, что $x^a = T_{A \to B} \cdot x^b$

$$x = \mathbb{A} \cdot x^a = (a_1, \dots, a_n) \cdot \begin{pmatrix} x_1^a \\ \vdots \\ x_n^a \end{pmatrix} = \mathbb{B} \cdot x^b$$

 $\mathbb{B} = \mathbb{A} \cdot T_{A \to B}$ – определение матрицы перехода в матричной форме

 $\mathbb{A}\cdot x^a=\mathbb{A}\cdot T_{A o B}\cdot x^b\Rightarrow$ так как разложение по базису единственно, то $x^a=T_{A o B}x^b$

13) Что такое сумма и прямая сумма подпространств? Сформулируйте и докажите критерий того, что сумма подпространств является прямой.

 $H_1 + H_2 = \{x_1 + x_2 | x_1 \in H_1, x_2 \in H_2\}$ называется суммой подпространств H_1 и H_2

 $H_1 + H_2$ называется прямой суммой (и обзначается $H_1 \oplus H_2$), если $H_1 \cap H_2 = \{0\}$, то есть тривиально

 H_1+H_2 является прямой $\Leftrightarrow \forall x \in H_1+H_2$ его представление в виде $x=x_1+x_2$, где $x_1 \in H_1, x_2 \in H_2$ H_2 , единственно

 \implies Пусть сумма прямая, то есть $H_1 \cap H_2 = \{0\}$. Предположим, что $x = x_1 + x_2 = y_1 + y_2$ – 2 разных разложения. Тогда $x_1-y_1=x_2-y_2=0 \Rightarrow x_1=y_1, x_2=y_2$ (так как пересечение

 \sqsubseteq Пусть представление единственно: $x = x_1 + x_2$. Если мы предположим, что $\exists x \neq 0 : x \in$

 $H_1 \cap H_2$, то $\forall \lambda \in F \ \lambda x \in H_1$ и $\lambda x \in H_2$. $\forall \beta \in F \ x = \underbrace{(1-\beta)}_{CH_2} x + \underbrace{\beta}_{CH_2} x \Rightarrow$ представление не

единственно

14) Сформулируйте и докажите утверждение о связи размерности суммы и пересечения подпространств.

Пусть H_1 и H_2 – подпространства. Тогда $\dim(H_1+H_2)=\dim H_1+\dim H_2-\dim(H_1\cap H_2)$

Базис $H_1\cap H_2$ можно дополнить как до базиса H_1 , так и до базиса H_2 . Пусть $\dim H_1=n, \dim H_2=m, \dim H_1\cap H_2=r.$ Тогда

$$\underbrace{e_1,\ldots,e_2}$$
, $\underbrace{\nu_1,\ldots,\nu_{n-r}}$, $\underbrace{w_1,\ldots,w_{m-r}}$ — базис в H_1+H_2

базис $H_1\cap H_2$ дополнение до базиса в H_1 дополнение до базиса в H_2

$$\Rightarrow \dim(H_1 + H_2) = r + (n - r) + (m - r) = n + m - r = \dim H_1 + \dim H_2 - \dim(H_1 \cap H_2)$$

15) Как меняется матрица билинейной формы при замене базиса? Как меняется матрица квадратичной формы при замене базиса? Ответ обоснуйте.

Пусть U — матрица перехода от базиса e к базису f. Пусть B_e — матрица билинейной формы в базисе e, B_f — матрица билинейной формы в базисе f. Тогда: $B_f = U^T B_e U$

$$b(x,y) = (x^e)^T B_e y_e = (Ux^f)^T B_e (Uy^f) = (x^f)^T \underbrace{U^T B_e U}_{B_f} y^f = (x^f)^T B_f y^f$$
 (где x^e – столбец координат

x в базисе e)

 $\Rightarrow B_f = U^T B_e U$ (подставляем все базисные векторы)

При переходе от базиса e к базису e' линейного пространства V матрица квадратичной формы меняется следующим образом: $A' = S^T A S$, где S – матрица перехода от e к e'

x = Sx' (так как $x' = S^{-1}x$) $Q(x) = x^T A x = (Sx')^T A(Sx') = (x')^T (S^T A S) x' = (x')^T A' x \Rightarrow A' = S^T A S$ (так как вместо x можно брать все элементы базиса)

16) Сформулируйте и докажите (включая лемму) теорему об инвариантности ранга матрицы квадратичной формы.

Лемма: Пусть $A, S \in M_n(\mathbb{R}), \det S \neq 0$. Тогда RgAS = RgA = RgSA

 $RgAS \leq RgA$, так как столбцы матрицы AS – это линейная композиции столбцов матрицы A, ранг=максимальному количеству л.н.з. столбцов

$$RgA = RgA \cdot S \cdot S^{-1} \leq RgAS \Rightarrow RgA = RgAS$$

Теорема об инвариантности ранга:

Пусть Q – квадратичная форма на линейном пространстве $V; a = \{a_1, \ldots, a_n\}, b = \{b_1, \ldots, b_n\}.$ Пусть A – матрица Q в базисе a, B – матрица Q в базисе b. Тогда RgA = RgB

 $B=S^TAS,\,S$ –матрица перехода от a к b

S — невырождена \Rightarrow по лемме при умножении на невырожденные матрицы S и S^T ранг не меняется $\Rightarrow RgA = RgB$

17) Выпишите формулу для преобразования матрицы линейного отображения при замене базиса и докажите ее.

Пусть φ – линейное отображение из линейного пространства V_1 в линейное пространство V_2 . Пусть $A_{E_1E_2}$ – матрица линейного отображения в паре базисов: E_1 в пространстве V_1 и E_2 в пространстве V_2 и пусть T_1 – матрица перехода от E_1 к E_1' , T_2 – матрица перехода от E_2 к E_2' . Тогда $A_{E_1'E_2'} = T_2^{-1} A_{E_1E_2} T_1$

18) Сформулируйте и докажите теорему о том, что действие линейного оператора в конечномерном пространстве полностью определяется матрицей линейного оператора.

Пусть φ – линейный оператор в просранстве $V,e=\{e_1,\ldots,e_n\}$ – базис в $V,x\in V$ и $x^e=(x_1,\ldots,x_n)^T$ – столбец координат вектора x в базисе e. Пусть A_e – матрица оператора φ в базисе e. $(\varphi(x))^e=A_e\cdot x^e$

 $\varphi(x) = \varphi(x_1e_1 + \ldots + x_ne_n) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n) = x_1(a_{11}e_1 + a_{21}e_2 + \ldots + a_{n1}e_n) + \ldots + x_n(a_{1n}e_1 + a_{2n}e_2 + \ldots + a_{nn}e_n) = (a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n)e_1 + \ldots + (a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n)e_n$

$$\Rightarrow (\varphi(x))^e = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n \end{pmatrix} = (\text{по матричному умножению}) = A_e x^e$$

19) Сформулируйте и докажите утверждение о связи размерностей ядра и образа линейного отображения.

Пусть $\varphi:V_1\to V_2$ – линейное отображение. Тогда $\dim Ker\varphi+\dim Im\varphi=\dim V_2=n$ \square

Выберем базис в $V_1: e = \{e_1, \dots, e_m\}$. $\forall x \in V_1$ представляется в виде $x = x_1e_1 + \dots + x_me_m$ $\varphi(x) = x_1\varphi(e_1) + \dots + x_m\varphi(e_m)$. $\varphi(e_1), \dots, \varphi(e_m)$ – столбцы матрицы A линейного отображения. То есть $Im\varphi = L(\varphi(e_1), \dots, \varphi(e_m))$

 $\Rightarrow \dim Im\varphi = RqA$

Ядро φ описывается системой Ax=0. Это однородная СЛАУ и размерность пространства ее решений (число элементов ФСР) равна $n-RgA=n-\dim Im\varphi=\dim Ker\varphi$

4-й модуль

1) Сформулируйте и докажите утверждение о связи характеристического уравнения и спектра линейного оператора.

 λ — собственное значение линейного оператора $\Leftrightarrow \lambda$ — корень характеристического уравнения (над алгебраически замкнутым полем)

Необходимость

Дано: $\lambda \in \text{спектру}$

Доказать: λ – корень $\chi_A(\lambda) = 0$

 $\exists x \neq 0: Ax = \lambda x$, то есть $Ax = \lambda Ix$, где I – тождественный оператор

 $(A - \lambda I)x = 0 \tag{1}$

Запишем равенство (1) в некотором базисе: $(A_e - \lambda E)x^e = 0$

Эта однородная СЛАУ имеет ненулевое решение $\Rightarrow \det(A_e - \lambda E) = 0$

А это и есть $\chi_A(\lambda) = 0$, то есть λ – корень характеристического уравнения

Достаточность

Дано: λ – корень $\chi_A(\lambda) = 0$

Доказать: λ – собственное значение A

Если λ – корень, то в заданном базисе выписывается равенство $\det(A_e - \lambda E) = 0$

 \Rightarrow соответствующая СЛАУ с матрицей $A_e - \lambda E$ имеет ненулевое решение x^e . Это решение – набор координат некоторого вектора, для которого выполняется (1) и, соответственно,

 $Ax = \lambda x, x \neq 0$, то есть x – собственный вектор, а λ – собственное значение

2) Сформулируйте и докажите утверждение о том, каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям.

Пусть $\lambda_1, \ldots, \lambda_k$ – собственные значения линейного оператора $A, \lambda_i \neq \lambda_j$, а v_1, \ldots, v_k – соответствующие собственные векторы. Тогда v_1, \ldots, v_k – л.н.з., то есть собственные вектора, отвечающие различным собственным значениям, л.н.з.

Применим принцип математической индукции. При k=1 – верно, так как собственный вектор по определению $\neq 0$ и, соответственно, л.н.з.

Пусть утверждение верно для k=m

Добавим еще один собственный вектор e_{m+1} , отвечающий λ_{m+1} . Докажем, что система $e_1, \ldots, e_m, e_{m+1}$ осталась л.н.з. Рассмотрим равенство: (2) $\alpha_1 e_1 + \ldots + \alpha_m e_m + \alpha_{m+1} e_{m+1} = 0$. К (2) применим оператор $A: \alpha_1 A e_1 + \ldots + \alpha_m A e_m + \alpha_{m+1} A e_{m+1} = 0$

 $\Rightarrow \alpha_1 \lambda_1 e_1 + \ldots + \alpha_m \lambda_m e_m + \alpha_{m+1} \lambda_{m+1} e_{m+1}$ (3)

Умножим (2) на λ_{m+1} и вычтем из (3):

 $\alpha_1(\lambda_1 - \lambda_{m+1})e_1 + \ldots + \alpha_m(\lambda_m - \lambda_{m+1})e_m = 0$

так как λ_i все различны, а e_1, \ldots, e_m – л.н.з.

 $\begin{cases} \alpha_1(\lambda_1 - \lambda_{m+1}) = 0 \\ \dots \\ \alpha_m(\lambda_m - \lambda_{m+1}) = 0 \end{cases} \Rightarrow \begin{cases} \alpha_1 = 0 \\ \dots \\ \alpha_m = 0 \end{cases}$ жожно записать в виде $\alpha_{m+1}e_{m+1} = 0$, а так как $\alpha_m = 0$

 e_{m+1} – собственный вектор, то $e_{m+1} \neq 0 \Rightarrow \alpha_{m+1} = 0 \Rightarrow$ по определению линейной независимости e_1, \ldots, e_{m+1} – л.н.з.

3) Сформулируйте и докажите критерий диагональности матрицы оператора.

Матрица линейного оператора A является диагональной в данном базисе \Leftrightarrow все векторы этого базиса являются собственными векторами для A

□ Необходимость

Дано: A_e – диагональная

Доказать: e состоит из собственных векторов A

Пусть A_e — матрица A. По определению в j-м столбце A_e стоят координаты вектора $A(e_j)$. Если матрица диагональна, то j-й столбец имеет вид $(0,\ldots,\lambda_j,0,\ldots,0)^T$, то есть

 $A_{e_j} = 0 + \ldots + 0 + \lambda_j e_j + 0 + \ldots + 0$, то есть по определению e_j – собственный вектор с собственным значением $= \lambda_j$. $e_j \neq 0$, так ак он в базисе

 \Rightarrow все e_i – базисные, а на диагонали – собственные значения

Достаточность

Дано: $\{e_1, \ldots, e_n\}$ – состоит из собственных векторов

Доказать: A_e – диагональна

 $A_{e_j} = \lambda_j e_j \Rightarrow$ в матрице линейного оператора по определению все элементы матрицы линейного оператора равны 0, кроме диагональных

4) Каким свойством обладает оператор в n-мерном вещественном пространстве, у которого есть n различных действительных корней? Ответ обоснуйте.

Если характеристическое уравнение линейного оператора, действующего в V,

 $\dim V=n,$ имеет n попарно различных корней, лежащих в поле, над которым рассматривается V, то оператор диагонализируем \Box

Если $\lambda_i \in \mathbb{F}$, то ему можно сопоставить хотя бы один собственный вектор v_i . Система векторов v_1, \ldots, v_n будет л.н.з., а их число= $\dim V \Rightarrow$ они образуют базис в V из собственных векторов \Rightarrow по критерию оператор диагонализируем

5) Выпишите и докажите формулу для преобразования координат ковектора при переходе к другому базису.

Пусть е и g – два базиса в V. Тогда $[f]_g = [f]_e T_{e o g}$

 $[f]_g x_g = [f]_e x_e$. Но $x_g = T_{e \to g}^{-1} x_e$, то есть $x_e = T_{e \to g} x_g \Rightarrow [f]_g x_g = [f]_e T_{e \to g} x_g$. Разложение по базису единственно $\Rightarrow [f]_g = [f]_e T_{e \to g}$

6) Выпишите и докажите неравенство Коши-Буняковского. Выпишите и докажите неравенство треугольника.

Теорема Коши-Буняковского

 $\forall x,y \in E$ справедливо неравенство $|(x,y)| \leq ||x|| \cdot ||y||$

 $\forall \lambda \in \mathbb{R}$

$$0 \le (\lambda x - y, \lambda x - y) = \lambda(x, \lambda x - y) - (y, \lambda x - y) = \lambda^2(x, x) - \lambda(x, y) - \lambda(y, x) + (y, y) = \lambda^2 ||x||^2 - 2(x, y)\lambda + ||y||^2$$

 $\forall \lambda \Rightarrow D \leq 0$

$$D = 4(x, y)^{2} - 4||x||^{2} \cdot ||y||^{2} \le 0$$

$$(x,y)^2 \le ||x||^2 \cdot ||y||^2 \Rightarrow |(x,y)| \le ||x|| \cdot ||y||$$

Неравенство треугольника

$$\forall x, y \in E \ ||x + y|| \le ||x|| + ||y||$$

$$||x+y||^2 = (x+y,x+y) = (x,x) + (x,y) + (y,x) + (y,y) = ||x||^2 + 2(x,y) + ||y||^2 \le ||x+y||^2 + ||x$$

$$\leq ||y||^2 + 2||x|| \cdot ||y|| + ||x||^2 = (||x|| + ||y||)^2$$
 и норма всегда ≥ 0

7) Докажите теорему о том, что евклидово пространство можно представить в виде прямой суммы подпространства и его ортогонального дополнения

 H^{\perp} является линейным подпространством в V и $V=H\oplus H^{\perp}$

$$(\Rightarrow \dim V = \dim H + \dim H^{\perp})$$

$$\forall x,y \in H^{\perp} \ \forall \alpha \in \mathbb{F} \quad h \in H$$

$$(x+y,h)=(x,h)+(y,h)=0+0\Rightarrow x+y\in H^\perp$$

$$(\alpha x, h) = \alpha(x, h) = \alpha \cdot 0 = 0 \Rightarrow \alpha x \in H^{\perp}$$

 $\Rightarrow H^{\perp}$ является подпространством \Rightarrow можно рассматривать $H+H^{\perp}$

Сумма прямая, так как если $x \in H \cap H^{\perp} \Rightarrow (x,x) = 0 \Leftrightarrow x = 0$, то есть $H \cap H^{\perp} = \{0\} \Rightarrow$ сумма прямая

Пусть f_1, \ldots, f_m – ОНБ в H, дополним его до ОНБ в V векторами f_{m+1}, \ldots, f_n . Применим ортогонализацию Грама-Шмидта:

 $f_1,\ldots,f_m,e_{m+1},\ldots,e_n$ (e_{m+1},\ldots,e_n ортогональны каждому вектору f_1,\ldots,f_m)

$$\Rightarrow e_{m+1}, \dots, e_n$$
 ортогональны всему H

 $\forall x \in V$ можно представить в виде:

$$x = \underbrace{x_1 f_1 + \ldots + x_m f_m}_{y \in H} + \underbrace{x_{m+1} e_{m+1} + \ldots + x_n e_n}_{z \in H^{\perp}}$$

то есть $\forall x \in V : x = y + z, y \in H, z \in H^{\perp}$, то есть $V = H \oplus H^{\perp}$

8) Выпишите формулу для преобразования матрицы Грама при переходе к новому базису и докажите ее. Что происходит с определителем матрицы Грама при применении процесса ортогонализации Грама-Шмидта? Что можно сказать про знак определителя матрицы Грама? Ответ обоснуйте.

Матрицы Грама двух базисов e и e' связаны следующим соотношением: $\Gamma' = U^T \Gamma U$, где U – матрица перехода от e к e'. Верно, так как Γ – матрица билинейной формы

Определитель матрицы Грама (грамиан) не изменяется при применении процесса ортогонализации Грама-Шмидта, то есть $Gr(a_1,\ldots,a_n)=\det\Gamma=(b_1,b_1)\ldots(b_n,b_n)=||b_1||^2\ldots||b_n||^2$

$$a_1 = b_1$$

$$b_{k+1} = a_{k+1} - \sum_{i=1}^{k} \frac{(a_{k+1}, b_i)}{(b_i, b_i)} b_i$$

$$\Rightarrow$$
 матрица $V_{a \to b} = \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix}$

$$\Rightarrow \det V_{a \to b} = 1 \Rightarrow \det \Gamma_b' = \det (U^T \Gamma U) = \det U^T \det \Gamma \det U = \det \Gamma$$

 $\det\Gamma > 0$ $\det\Gamma' = \det\Gamma(\overline{\det U})^2$. Перейдем в ОНБ. В нем $\Gamma' = E$. Тогда $\det E = 1 = \det\Gamma \cdot \underbrace{(\det U)^2}$ \Rightarrow

9) Сформулируйте и докажите критерий линейной зависимости набора векторов с помощью матрицы Грама.

Векторы $a_1, \ldots, a_k \in E$ – л.н.з. $\Leftrightarrow \det \Gamma_{k \times k} \neq 0$

Пусть $\alpha_1 a_1 + \ldots + \alpha_k a_k = 0$. Умножим скалярно на векторы a_1, \ldots, a_k $(\alpha_1(a_1, a_1) + \alpha_2(a_1, a_2) + \ldots + \alpha_k(a_1, a_k) = 0)$ $\begin{cases} \alpha_1(a_1,a_1) + \alpha_2(a_1,a_2) & \dots \\ \alpha_1(a_k,a_1) + \alpha_2(a_k,a_2) + \dots + \alpha_k(a_k,a_k) = 0 \end{cases}$ то есть $\Gamma_{k\times k}\cdot \alpha = 0$, где $\alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix}$

Это однородная СЛАУ с квадратной матрицей. У нее не существует нетривиального решения (тогда векторы л.н.з.) $\Leftrightarrow \det \Gamma_{k \times k} \neq 0$

10) Выпишите формулу для ортогональной проекции вектора на подпространство, заданное как линейная оболочка данного линейно независимого набора векторов, и докажите ее.

Пусть $H = \underbrace{\langle a_1, \dots, a_k \rangle}_{\text{л.н.з.}}$. Тогда пр $_H x = A(A^TA)^{-1}A^Tx$, где A – матрица, составленная из столбцов

 a_1,\ldots,a_k

 $\Rightarrow \det \Gamma > 0$

 $n = \operatorname{пр}_H x = \alpha_1 a_1 + \ldots + \alpha_k a_k \in H$ (то есть $x = \underbrace{\alpha_1 a_1 + \ldots + \alpha_k a_k}_{h} + h^{\perp}$)

Последовательно умножим скалярно на a_1,\dots,a_k . Заметим, что $(a_i,h^\perp)=0\Rightarrow$ получаем СЛАУ относительно $\alpha_1, \ldots, \alpha_k$:

 $\begin{cases} \alpha_1(a_1, a_1) + \ldots + \alpha_k(a_1, a_k) = (a_1, x) \\ \ldots \\ \alpha_1(a_k, a_1) + \ldots + \alpha_k(a_k, a_k) = (a_k, x) \end{cases}$

В матричной форме: $\underbrace{A^T A}_{\Gamma_{k \times k}} \cdot \alpha = A^T x, \alpha = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix}$ Так как a_1, \dots, a_k л.н.з. $\Rightarrow \det \underbrace{A^T A}_{\Gamma_{k \times k}} \neq 0 \Rightarrow \exists (A^T A)^{-1} \Rightarrow \alpha = (A^T A)^{-1} A^T x$

11) Докажите что для любого оператора в конечномерном евклидовом пространстве существует единственный сопряженный оператор.

 \forall линейного оператора $A:E\to E$ $\exists !$ сопряженный оператор $A^*:E\to E$, причем его матрицей будет матрица $(A^*)_b = \Gamma^{-1}(A)_b^T \Gamma$, где Γ – матрица Γ рама базиса b.

Покажем, что линейный оператор с матрицей $B = \Gamma^{-1}A^T\Gamma$ (= A^T для ОНБ) является сопряженным к данному линейному оператору А. Для этого проверим выполнение равенства:

$$(Ax, y) = (x, By) \ \forall x, y \in E$$

Пусть x^b, y^b – столбцы координат векторов x и y в базисе b. Тогда по теореме $(A_x)^b = A_b \cdot x^b \Rightarrow$ $((Ax)^b)^T \cdot \Gamma \cdot y^b = (x^b)^T \cdot \Gamma \cdot (By)^b$ \leftarrow матричная форма скалярного произведения $(x^b)^T A_b^T \Gamma y^b = (x^b)^T \Gamma B_b y^b$

По лемме
$$\Gamma B_b = A_b^T \Gamma$$

Так как базис состоит из л.н.з. векторов, то $\exists \Gamma^{-1}$ и $\Rightarrow B = \Gamma^{-1} A^T \Gamma$

12) Сформулируйте и докажите свойство собственных векторов самосопряженного оператора, отвечающих p разным собственным значениям.

Собственные векторы самосопряженного линейного оператора, отвечающие различным собственным значениям, ортогональны

Пусть:

$$Ax_1 = \lambda_1 x_1 \quad x_1 \neq 0$$

$$Ax_2 = \lambda_2 x_2 \quad x_2 \neq 0$$

$$(Ax_1, x_2) = (\lambda_1 x_1, x_2) = \lambda$$

$$(Ax_1, x_2) = (\lambda_1 x_1, x_2) = \lambda_1(x_1, x_2)$$

$$(x_1, Ax_2) = (x_1, \lambda_2 x_2) = \lambda_2(x_1, x_2)$$

 $(Ax_1, x_2) = (x_1, Ax_2)$, так как A самосопряжен

$$\Rightarrow (\overbrace{\lambda_1 - \lambda_2}^{\neq 0})(x_1, x_2) = 0 \Rightarrow (x_1, x_2) = 0 \Rightarrow$$
они ортогональны

13) Каким свойством обладают собственные значения самосопряженного оператора? Ответ обоснуйте.

Все собственные значения самосопряженного оператора являются действительными числами

Пусть $\lambda \in \mathbb{C}$ – корень $\chi_A(\lambda) = 0$, то есть $\det(a - \lambda E) = 0$. Тогда СЛАУ $(A - \lambda E)x = 0$ (1) имеет ненулевое решение $x=(x_1,\ldots,x_n)^T$, состоящее из $x_k\in\mathbb{C}, k=\overline{1,n}$. Рассмотрим \overline{x} – столбец, состоящий из $\overline{x_k}$. Умножим (1) на $\overline{x}^T = x^*$ слева:

$$\overline{x}^T (A - \lambda_i E) x = 0$$

$$\overline{x}^T A x = \lambda_i \overline{x}^T x$$

$$\overline{x}^Tx=\overline{x_1}x_1+\ldots+\overline{x_n}x_n=\underbrace{|x_1|^2+\ldots+|x_n|^2}_{\in\mathbb{R}}>0$$
, так как решение ненулевое

$$\Rightarrow \lambda_i = \frac{\overline{x}^T A x}{\overline{x}^T x}$$
. Возьмем $w = \overline{x}^T A x$

$$w = \underline{w^T} = (\overline{x}^T A x)^T = x^T A^T (\overline{x}^T)^T = x^T A \overline{x}$$

 $\overline{w} = \overline{\overline{x}^T A x} = \overline{\overline{x}}^T \overline{A x} = x^T A \overline{x} \Rightarrow w = \overline{w}$, то есть $w \in \mathbb{R} \Rightarrow \lambda_i$ тоже является вещественным числом

14) Что можно сказать про ортогональное дополнение к образу сопряженного оператора? Ответ обоснуйте. Сформулируйте и докажите теорему Фредгольма.

Пусть линейный оператор $A: E \to E$. Тогда $E = KerA \oplus ImA^*$

Докажем, что $KerA=(ImA^*)^\perp$ (Тогда из $E=H\oplus H^\perp=(ImA^*)^\perp\oplus ImA^*$ будет следовать утверждение)

Рассмотрим ОНБ в E. Пусть $x \in KerA$, тогда $\forall y \in E$ в матричной записи:

$$0 = y^T A x = (A^T y)^T x = (A^* y, x) \Rightarrow x \perp I m A^* \Rightarrow Ker A \subseteq (I m A^*)^{\perp}$$

Пусть теперь $x \in (ImA^*)^{\perp}$. Тогда $(x, A^*y) = (y, Ax) = o \ \forall y \in E$. Положив y = Ax, получаем $(y, Ax) = (Ax, Ax) = ||Ax||^2 = 0 \Rightarrow Ax = 0$, то есть $x \in KerA$, то есть $(ImA^*)^{\perp} \subseteq KerA$

Теорема Фредгольма

Ax=b совместна фвектор b _всем решениям однородной СЛАУ $A^Ty=0$ – это $KerA^*$

Ax = b совместна $\Leftrightarrow b \in ImA$. А по теореме $E = ImA \oplus KerA^*$

15) Сформулируйте и докажите теорему о том, что ортогональный оператор переводит ортонормированный базис в ортонормированный. Верно ли обратно? Ответ обоснуйте.

Пусть $A:E\to E$. Тогда A – ортогональный линейный оператор \Leftrightarrow ОНБ e_1,\ldots,e_n переводит в ОНБ Ae_1,\ldots,Ae_n

Необходимость

Дано: e_1, \ldots, e_n – ОНБ, A – ортогональный линейный оператор

Доказать: Ae_1, \ldots, Ae_n — ОНБ

$$(Ae_i, Ae_j) = (e_i, e_j) = \delta_j^i = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

То есть система $\{Ae_j\}$ состоит из ненулевых векторов и ориентирована \Rightarrow он л.н.з. и так как $\dim E=n,$ то это ОНБ

Достаточность

Дано:
$$e_1, \ldots, e_n \setminus OHB$$

Доказать: А – ортогогональный линейный оператор

 $x \mapsto (x_1, \dots, x_n)^T$ в базисе e_1, \dots, e_n

Тогда $Ax \mapsto (x_1, \dots, x_n)^T$ в Ae_1, \dots, Ae_n , так как $Ax = A(x_1e_1 + \dots + x_ne_n) = x_1Ae_1 + \dots + x_nAe_n \Rightarrow \forall x, y \in E \ (x,y) = x_1y_1 + \dots + x_ny_n \ (\text{мы в OHE})$. Так же выражается (Ax, Ay) в базисе $\{Ae_i\}$ \Rightarrow соотношение (Ax, Ay) = (x, y) верно $\forall x, y \in E$

16) Сформулируйте и докажите критерий ортогональности оператора, использующий его матрицу.

Матрица линейного оператора A в ОНБ ортогональна $\Leftrightarrow A$ – ортогональный оператор

Необходимость

 A_e – ортогональная матрица. доказать, что A – ортогональный линейный оператор

 $A_e^T A_e = E \Rightarrow \forall x,y \in E \ x^T (A_e^T) y = x^T E y \Leftrightarrow (A_e x)^T A_e y = x^T y \leftarrow$ матричная запись скалярного произведения в ОНБ

 $(Ax, Ay) = (x, y) \Rightarrow A$ – ортогональный линейный оператор по определению

Достаточность

A – ортогональный линейный оператор. Доказать, что $A_e^T A_e = E$

$$\forall x, y \in E \ (Ax, Ay) = (x, y)$$

$$(A_e x)^T (A_e y) = x^T y$$

$$x^TA_e^TA_e y = x^TEy$$
 \Rightarrow по лемме $A_e^TA_e = E$

17) Сформулируйте теорему о существовании для самосопряженного оператора базиса из собственных векторов. Приведите доказательство в случае различных вещественных собственных значений.

Для \forall самосопряженного линейного оператора $A:E\to E, \dim E=n,\ \exists\ \mathrm{OHE},\ \mathrm{coстоящий}$ из собственных векторов A.

По утверждению об ортогональности собственных векторов самосопряженного линейного оператора система из собственных векторов будет ортогональной \Rightarrow по теореме она л.н.з. и в ней nвекторов⇒она является базисом. Этот базис является ортогональным. ОНБ получим, разделив e_i на $||e_i||$. Итак, \exists ОНБ из собственных векторов.

18) Сформулируйте и докажите утверждение о QR-разложении.

Пусть $A\in M_m(\mathbb{R})$ и столбцы A_1,\dots,A_m л.н.з. Тогда $\exists \ Q$ и R:A=QR, причем Q – ортогональная матрица, R – верхнетреугольная матрица

Применим к A_1, \ldots, A_m процесс ортогонализации Грама-Шмидта. Получим столбцы Q_1, \ldots, Q_m – ОНБ в $ImA.\ A_k\in L(Q_1,\dots,Q_k), k=\overline{1,m}$ (по формулам Грама-Шмидта) $\Rightarrow A_k=\sum\limits_{i=1}^\kappa r_{ik}Q_i, k=\overline{1,m}$

 $\overline{1,m}$ или в матричной форме $A=Q\cdot R$, где $Q=(Q_1|\dots|Q_m), R=\begin{pmatrix} r_{11}&\dots&r_{1m}\\0&\ddots&\vdots\\0&0&r_{mm} \end{pmatrix}$. Q является

ортогональной, так как Q_i образуют ОНБ

19) Сформулируйте и докажите теорему о сингулярном разложении.

 \forall матрицы $A \in M_{m \times n}(\mathbb{R})$ справедливо сингулярное: $A = V \cdot \Sigma \cdot U^T, U \in O_n(\mathbb{R}), V \in O_m(\mathbb{R}), \Sigma \in \mathcal{C}$ $M_{mn}(\mathbb{R})$ и Σ является диагональной с числами $\sigma_i \geq 0$ на диагонали $(\sigma_i$ – сингулярные числа).

 A^TA – матрица Грама столбцов матрицы A. Она симметрична и соответствующая квадратичная форма неотрицательно определена.

$$(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A$$

 $Q(x) = x^T A^T A x = (Ax)^T A x = (Ax, Ax) = |Ax^2| \ge 0 \ \forall x \in \mathbb{R}^n \Rightarrow$ все собственные значения $A^T A$ вещественны (так как линейный оператор с A^TA является самосопряженным) и они все ≥ 0 Вещественны (так как линеиный оператор с A д выдетел самосоприменным, и от B — Запишем собственные значения A^TA в виде σ_i^2 (то есть $\sigma_i = \sqrt{\lambda_i(A^TA)}$) Их нумеруем по невозрастанию: $\sigma_1 \geq \sigma_2 \geq \dots \sigma_r > \sigma_{r+1} = \dots = \sigma_n = 0$. Так как A^TA — самосопряжен, то для него \exists ОНБ из собственных векторов (собственных векторов A^TA). $A^TAu_i = \begin{cases} \sigma_i^2 u_i, 1 \leq i \leq r \\ 0, r+1 \leq i \leq n \end{cases}$

Положим $v_i = \frac{Au_i}{\sigma_i}$ для $1 \le i \le r$. Тогда $(v_i, v_j) = \delta^i_j = \begin{cases} 1, i = j \\ 0, i \ne j \end{cases}$. Дополним v_1, \dots, v_r векто-

рами
$$v_{r+1}, \dots, v_m$$
 до ОНБ в \mathbb{R}^m . В итоге: $A\underbrace{[u_1, \dots, u_n]}_{U} = \underbrace{[v_1, \dots, v_n]}_{V} \begin{pmatrix} \sigma_1 & \sigma & \sigma & \sigma & \sigma & \sigma \\ 0 & \ddots & 0 & 0 & 0 & 0 \\ 0 & \sigma_r & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_r & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$,

где $[u_1,\ldots,u_n]$ и $[v_1,\ldots,v_n]$ соответственно правые сингулярные векторы и левые сингулярные векторы

 $A\cdot U=V\cdot \Sigma\Rightarrow$ так как U и V ортогональны $\Rightarrow A=V\Sigma U^T$

24