三、天氣圖純量分析原理與應用

習題三:

下圖為一純量場(如壓力)之二維分布,請以 20 之等間隔畫出各等值線來。 注意:圖左下角之 017 代表 1017 之值。

三、A、第闽章純量分析的原理與應用

3 § 4 - 1 前言

大氣的觀測量中,氣壓、氣溫,濕度、等壓面上之高度等都是無向量(Scalar),分析它們在(x,y)面上的分布特形,以瞭解天氣系統的結構,因此,對純量分析在天氣分析作業上就佔很重要的地位,本章將討論在一平面上做純量分析的方法,以及分析場的幾何意義。

§ 4-2 平面上的粧量分析

圖4-1

int C.I. = 20

圖 4 - 2

圖 4-1是一張觀測的 Q(x,y)資料, 分析沒的等值線圖如圖 4-2 所示, 等值線※然有下列幾項特性:

- (1) 等值線是不會中斷鹽; (除非在沒有资料的地区)
- (2) 等值線可直跨封閉或終止於圖的邊緣;
- (3) 不同值的等值線是不會相交的);
- (4) 同值的等值線是不會分支的。 例*唯一的例外,兩條例作於實施或可服务主報某上。 若等值線密集處,也就是梯度大的地方,其物理量變化限 促:相反地、若等值線閱的距離實閱處。則該處物理量變化

意促;相反地,若等值線間的距離寬闊處,則該處物理量變化較緩和,在數學上,Q在S方向的變率就是 $\frac{\partial Q}{\partial S}$ 。

如果某物理量場在某一點 (A點) 具有該物理量的某一數值, 而其附近並沒有同值的物理量存在, 則過 A 點就無法分析

出這數值的等值線,這點稱為單點(奇異點, singular point),這種單點是極大或極小的中心(沒有任何等值線會通過)。另一種單點是鞍點(col)。自極大中心向外移動,Q值逐漸減小,自極小中心向外移動,Q值遞增。而鞍點是兩同值線的交點,但分析時選擇的等值線未必可以在鞍點上相交。

等壓線與等高線一樣,坡度越平緩的地區越疏,越陡峭的地區越密。 兩條不同值的等高線永遠不會相交。

- 1. 線要平滑,避免畫出比測站平均距離還小的系統來---無意義
- 2. 兩條線之間隔(梯度),即風速之大小。
- 3. 要有美感。

1.平滑

FIGURE 3-1. Improbable (a) and probable (b) forms of isobars. From Godske et al. (1957), p. 670, by permission of the American Meteorological Society.

2. 間隔與風速

$$\begin{cases} U_g = \frac{-1}{f f} \frac{\partial P}{\partial y} \\ V_g = \frac{1}{f f} \frac{\partial P}{\partial x} \end{cases} \quad \text{or} \quad \begin{cases} U_g = \frac{-1}{f} \frac{\partial \Phi}{\partial y} \\ V_g = \frac{1}{f} \frac{\partial \Phi}{\partial x} \end{cases}$$

3. 藝術

>没有化何等传线会面过。

出這數值的等值線,這點稱為單點 (Singular Points) ,這種單 點是極大或極小的中心,另一種單點是鞍點 (Col)的中心,自 極大中心向外移動, () 值逐渐遞減; 自極小中心向外移動, () **值逐渐逃增;而鞍點是兩同值等值線的交點。但分析時未必恰** 好選擇的等值線可以在鞍點上相交。

§ 4 - 3 梯度 (Gradient)

一种量()梯度的大小,是指它的水平變率,也就是()的客 集)程度,它的方向是指向Q增加的方向(如圆4-3 所示),數 學上以下式表之:

$$\nabla_{h}Q = \hat{n} \frac{\partial Q}{\partial n} = \hat{i} \frac{\partial Q}{\partial x} + \hat{j} \frac{\partial Q}{\partial y}, \qquad (4-1)$$

※梯度:分析方式與氣流線(stream line,大動 §3.3)類似。先在每條等值線上 輕輕畫出小垂線,再由極值點畫出處處與小垂線相切的線條。像蜘蛛 網。

(由高流句化)

(由暖的湖面冷的)(北海的战车发

在動力學上,注注要以負擔度向量 (-VQ) 來表示空氣流動的方向,或熱量平流的方向。負梯度向量總是與等線垂直的 (如圖4-4 所示),極大中心就是負梯度向量場輻散狀的無點;極小中心就是負梯度向量場輻合狀的無點;而鞍點是輻散與輻合軸線的交點。

圖4-4

る § ¥ - 4 特性面的地勢圖(Topography)

如圖4-5所示,ABCD 面是某一物理量變數的特性面(如氣壓面、位溫面等),此特性面與 $Z=Z_{11}$ 的等高面之交線為 Z_{11} ,與 $Z=Z_{10}$ 的等高面之交線為 Z_{10} ,由此類推,可得 Z_{9} 、 Z_{8} 、 Z_{7} 等高線。如此可按平面圖分析結果,來表示空間的結構。

- ※500Pa面上,熱帶地區之高度(厚度)比極區處大;因為溫度較高,密度較小,厚度較大。
- ※在地面圖上,極區為高壓,熱帶地區為低壓。但大洋上之副高及其北方之 「氣旋路徑」上之低壓區,則為例外。

等压面为一曲面.

設各等高線 z_{11} 、 z_{10} 、 z_{9} 、 z_{8} 、 z_{7} 在基準面 A'B'C'D面 (即 z $=z_{0}$ 的海平面) 的投影為 z_{11} 、 z_{10} 、 z_{9} 、 z_{8} 、 z_{7} 。等壓面高空圖就是 這樣設計下的地勢圖。

此特性面與基準面的夾角為β,則特性面在方向的斜率 (m)可寫成

$$m = \tan \beta = (\frac{\partial z}{\partial x})_Q$$
, (4-2)

此特性面與XZ 剖面之交線的曲率為 Kxz可寫成

$$K_{xz} = \frac{\left(\frac{\partial^2 z}{\partial x^2}\right)_Q}{\left[1 + \left(\frac{\partial z}{\partial x}\right)_Q^2\right]^{-3/2}} \approx \left(\frac{\partial^2 z}{\partial x^2}\right)_Q,$$
(4-3)

1 2 2 1 100 3 2 2 2 3 4 5 5

34 - 6

(權) 如圖 4-6所示,特性面上實線為等高線;虛線為最高與最低值的連線,即rr'為最高線稱為脊 (Ridge) ,tt'為最低線稱為槽 (Trough) 。若y 触與脊或槽平行,則在脊處 $(\frac{\partial z}{\partial x})_Q=0$ 且 $(\frac{\partial^2 z}{\partial x^2})_Q<0$ (4-4)

※槽或脊,為一次微分等於零(極值)的地方;但不一定是偏離緯度線最遠的地方,雖然很多的情況下可能會一致!

在構成
$$\left(\frac{\partial z}{\partial x}\right)_Q = 0$$
 且 $\left(\frac{\partial^2 z}{\partial x^2}\right)_Q > 0$ (4-5)

故脊線與槽線都處於特性面的垂直斜率為零的地方,脊線是在某一方向曲率為向下彎曲的位置;而槽線是在某一方向曲率為向上彎曲的位置。

(二) 反曲線 (Line of Inflection)

在圖4-6中,槽脊之間垂直斜率最大位置的連線叫反曲線 ,在此線的一側等值線呈向上彎曲;另一側等值線呈向下 彎曲 。(如圖4-7所示)

B 4 --7

(e.g. close high center) (e.g. close low center)

(三) 峰頂 (Dome) 與谷底 (Depression)

如圖4-8所示,在特性面上極高處為峰頂;極低處為谷底

。即
在峰頂
$$(\frac{\partial z}{\partial x})_Q = (\frac{\partial z}{\partial y})_Q = 0$$

且 $(\frac{\partial^2 z}{\partial x^2})_Q < 0$
且 $(\frac{\partial^2 z}{\partial y^2})_Q < 0$ (4-6)

※反曲點:一次微分為極值的地方,為氣旋/反氣旋的交界處。所以其前後兩側的特性有明顯差異。

故峰頂與谷底都處於特性面的垂直斜率為零的地方,條頂是在四面八方都是向下彎曲的位置;而谷底是在四面八方都是 向上彎曲的位置。

圖 4 - 8

(三) 鞍點 (Saddle or Col)

如圖4-9所示,在特性面上槽線與脊線相交點就是鞍點。

ξp

在鞍點
$$\left(\frac{\partial z}{\partial x}\right)_Q = \left(\frac{\partial z}{\partial y}\right)_Q = 0$$

※鞍形場:為兩高壓及兩低壓交會的地方。會有明顯「風切線」,是天氣系 統發展的地方。

且
$$(\frac{\partial^2 z}{\partial s_1^2})_Q > 0$$
 且 $(\frac{\partial^2 z}{\partial s_2^2})_Q < 0$ (4-8)

故鞍點處於特性面的垂直斜率為零的地方,而在某一方向它是 向下彎曲的位置;而在另一方向它是向上彎曲的位置。

34 - 9

分析時要有一顆平靜的心。

* 純量分析的考慮

資料解析度是決定純量分析結果的主要因素,由於資料解析度不足,在分析時需做多次修 正並考慮:

- (1) 資料的內插 (interpolation)
- (2) 資料的外插 (extrapolation)
- (3) 資料的聯想 (association):如參考平均狀況、過去狀況等。
- (4) 資料的調和 (coordination):考慮不同資料間的診斷關係,如流體靜力平衡、準地轉平衡等。壓力-風場,壓力-溫度場,…及雲、能見度等之互相配合。

* 天氣圖純量分析準確度的極限,取決於

- (1) 資料準確度(如儀器誤差、觀測誤差、資料傳送誤差、譯碼填圖的誤差等)
- (2) 資料分佈的密度
- (3) 物理變數的特性 (如P smooth, but humidity small and complicate shapes)
- (4) 局部地理環境的影響(山等)
- (5) 天氣現象的尺度 (避免畫出比測站平均距離還小的系統來---無意義)
- (6) 選用圖表種類,及
- (7) 分析人員的技術。

An outline for procedure in scale analysis:

- 1. fix in mind the history of the situation
- 2. bring continuity chart up to date
- 3. examine the plotted data in terms of (1) and (2)
- 4. sketch the patterns in a preliminary manner
- 5. shape the pattern into final form
- 6. enter the final lines
- 7. enter appropriate labels

^{*} A continuity chart may consist of locations, intensities and trajectories of centers, cols, discontinuity lines (fronts, shear lines), zones of maximum gradient, etc.

	14-
(老斯中还有许多方法可使用1)	
* Missing data and interpolation:	
The most common way of supply an isolated missing value	
is to use an interpolation formula based on the assumption that	
The data locally is polynomial of some odd degree. (to	
主笔差徵等传). This is equivalent to she assumption shat she next	
higher-order difference is zero. For instance, assume that the	
fourth difference is zero,	
$\frac{1}{1200} \cdot \Delta^4 U_n = U_{n-2} - 4 U_{n-1} + 6 U_n - 4 U_{n+1} + U_{n+2} = 0$	
⇒得Un=6[-Un-2+4Un-1+4Un+1-Un+2].	
(zet y 6 z 11 51 / 15 / 17	
636 \$ 56 Un => Un = >0 [1,-6,15,15,-6,1]	
*最簡單為线性內插 千个 500	
假没两共fcx)在(a,b)問达一包後(线性重读) fair	
515 CE (() OIN to the MAN IS (1) It's	
划其C属之信f(c)可以由相似形公式求得:	
$ \frac{\partial f(c) - f(a)}{f(b) - f(a)} = \frac{c - a}{b - a} $	
$\Rightarrow f(e) = \frac{(e-a)}{b-a} (f(b)-f(a)) + f(a)$	
*其他更高階之內插如 Stirling formula 及 Bessel formula 剧新用 Taylor expansion来表示。只取智志还两项,即为线性内描。取引 事三项为二次曲线,一般取到第三项已经足到。	
Taylor expansion来表示。只要等表过两项,即总线性内插。较到	
为三次为二次曲线,一般取到为三项已经足到。	
Ref: Saucier (1965)	
O The Stirling formula (对方文微分及做多的, 她式在桌子附近数学课!)	
$Q(S+\delta) = Q(S) + \frac{5}{2} (\Delta Q_{\frac{1}{2}} + \Delta Q_{-\frac{1}{2}}) + \frac{\delta^{2}}{2!} \Delta Q_{\frac{1}{2}} + \frac{5(\delta^{2}-1)}{3!} (\Delta Q_{\frac{1}{2}} + \Delta Q_{-\frac{1}{2}})$	
$+\frac{\delta^{2}(\delta^{3}-1)}{4!}\Delta^{4}Q+$	
3 The Bessel formula (双 協文微分吸做多的; Lex 在中东附近整準)	
$Q(S+\delta) = \frac{1}{2} \left[Q(S) + Q(S+\lambda) \right] + \left(\delta - \frac{1}{2} \right) \Delta Q_{\frac{1}{2}} + \frac{1}{2} \frac{\delta(\delta-1)}{2!} \left(\Delta^2 Q + \Delta^2 Q_{1} \right)$ $+ \frac{\delta(\delta-1)(\delta-\frac{1}{2})}{3!} \Delta^3 Q_{\frac{1}{2}} + \frac{1}{2} \frac{\delta(\delta^2-1)(\delta-2)}{4!} \left(\Delta^4 Q + \Delta^4 Q_{1} \right) + \cdots$	
	•
TA DER	

所以,線性內插公式中,若a,b,c為等間距,則 $f(c)=1/2 \, (\, f(a)+f(b)\,)$

三.B * 第五章地面天氣圖的分析 * * 擔白:江火明老師之天氣燈講義. ** § 5-1-前言

地面天氣圖是每日分析的主要天氣圖,依據的資料很雜,包括(1)地面的氣溫、風、濕度、氣壓變化趨勢、過去與現在天氣現象、紅見度、降水量;(2)海平面的氣壓;(3)天空中的雲狀與雲量。它只能表示大尺度的系統。

§ 5-2 地面天氣圖的分析項目

地面天氣圖要分析下列項目:

- (一) 氣團 (Air Masses) 分析主要依據為溫度、濕度、穩定度等。
- (二)海平面氣壓場-依純量分析原理分析,以判定高壓與低 壓的分布情況。
- (三)鋒(Front) -分析主要依據是天氣狀況、視障、雲、風 、氣壓場分析的輻合軸。
- (四)變壓場一瞭解過去三小時的氣壓變化,以判斷未來的系 絞演變與移動。
- (五) 温度場

B-2

§ 5 - 1 氣團與氣團的分析

假如空氣長時期停留在地表上某個地區,它的特性將逐漸 具有這地區的典型性質,例如:廣大暖洋面上的大氣則潮濕而 溫暖。這種數千公里範圍,且平面上幾乎具有一致性質的空氣 塊,稱做氣團 (Air Masses)。 一般而言,因為反氣旋 (高壓)的廣大涵蓋範圍內風速小,故氣團主要是為靜止或緩慢移動的反氣旋所籠罩。氣團形成的 炎要條件是廣大地區風速小且地表性質一致,風速小才能使空氣 在長時期內與地表達到近乎平衡的狀況。因不同緯度帶地理環 境之溫度特性不同以及大陸與海洋的水汽供應 (濕度) 不同, 氣團可分為:

A : 極地 (Arctic) 氣團

mP :海洋性極區 (Maritime Polar) 氣團

mT :海洋性熱帶 (Maritime Tropical) 氣图

cP:大陸性極區 (Continental Polar) 氣團

c T : 大陸性熱帶 (Continental Polar) 氣图

E : 赤道 (Equatorial) 氣團 Tropical

極地氣團主要是在冬季才出現的,它形成了北極的反氣旋, 它的溫度非常低,絕對濕度也限小;但由於低溫的關係,相對 濕度並不低,又由於近地面的特別低溫,在地表上1-2公里處存 在著很强的逆溫層,空氣十分穩定。

大陸性極區氣團雖然沒有極地氣團那麼冷,但具有相近的特性,冬天北半球的阿拉斯加、加拿大與西伯利亞等地總是被大陸性極區氣團所涵蓋著; 而夏天時它就沒有那麼低溫,且濕度也大些,穩定度也沒那麼大。

海洋性極區 氣團主要是在高緯度的海洋上,在冬天比起大陸 性極區 氣團暖和多了;夏天時它反而顯浔冷些。但它總是相當潮 濕,且穩定度不那麼大。

大陸性熱帶氣團主要存在副熱帶陸地上,如:北非、西南美、亞洲沙漠地區等,雖然穩定度很低,但由於它是熱且乾的,很 少有雲存在。

海洋性熱帶氣團主要存在低緯度海洋上,如:太平洋高壓、 大西洋高壓等,在低層它溫暖、潮濕且不穩定。在海洋的西岸, 氣團向極區移動,潮濕且不穩定層加深。

在副熱帶輻合區附近,存在著赤道氣團,它溫暖、潮濕且不 穩定層很深厚。

當極地氣團與大陸性極區氣團向赤道移動,通常從下層加熱 而變得較不穩定,又由於水面或潮濕土地的蒸發,增加空氣中 的水汽含量,有較多的對流雲發展。當它們進入廣大的大西洋 或太平洋洋面時,將迅速變性為海洋性極區氣團。

海洋性熱帶氣團在冬天移向極區時,將越來越穩定,故有霧或層雲伴隨;而在夏天移向大陸時,由於陸地比海洋溫暖,故 越來越不穩定,常有積雲、陣雨發生。

Figure 5.3 Principal air masses and source regions of the world. (Data after Strahler, courtesy John Wiley & Sons, Inc.)

Figure 5.10 Common paths of cyclones. (After Petterssen.)

7-4 鋒面與鋒面的分析

兩種不同性質的氣團發生相對運動時,在其交界面上發生相互作用就構成鋒面(Frontal Surface),所以鋒面可以視為性質不同的兩氣團間的狭窄過渡帶,鋒面與水平面相交的一條線稱為鋒(Front)。通過鋒面氣象要素和天氣現象變化浪劇烈,在氣團內部氣溫的水平梯度一般小於1°C/100公里,而在鋒區裡氣溫的水平梯度可加大10倍。

無團的水平範圍大致由數百公里到數千公里,垂直範圍大致 由數公里到對浓層項,鋒的長度即為數百公里到數千公里;而寬 度很小,狭窄者只數公里,寬廣者也只有百公里,垂直範圍大致 與氣團相當○它的活動時間尺度約為一星期左右○

鋒面的一般特徵

- (1) 鋒區附近的熱力特徵
 - (a) 鋒區內垂直溫度梯度與其兩側氣團內的垂直溫度梯度小混多;
 - (b) 鋒區内水平溫度梯度與其兩側氣圈內的水平溫度梯度大浪多。
 - (2) 鋒區附近風的特徴
 - (a) 鋒兩側風有氣旋式切變;
 - (b) 通過鋒面風的垂直切變很大。

依據鋒面兩側冷暖氣團的移動方向,可把鋒面分為:

- (1)冷鋒面: 向暖氣團方向移動的鋒面,即冷氣團逐漸取代暖氣團的位置。當冷鋒面過境後,氣溫降低。
- (2) 暖鋒面: 向冷氣團方向移動的鋒面,即暖氣團逐漸取代冷
- (4) 囚錮鋒面:由於冷鋒面移速遠快於暖 鋒面,當冷鋒面趕上 暖鋒面沒,把暖空氣 抬離地面,近地面屬冷暖鋒 面合併亦形成囚錮鋒面。囚錮鋒面可分為暖性囚 錮鋒面、冷性囚錮鋒面與中性囚錮鋒面。若暖鋒前 的冷氣團此冷鋒沒的冷氣團更冷些,囚錮鋒面又有 暖鋒面性質,稱為暖性 囚錮鋒面。若暖鋒前的冷 氣團比冷鋒沒的冷氣團更暖些,囚錮鋒面又有冷 鋒面性質,稱為冷性 囚錮鋒面。若暖鋒前的冷 類性質,稱為冷性 囚錮鋒面。若暖鋒前的冷氣 團與冷鋒沒的冷氣團溫度相同時,便是中性 囚錮 鋒面。
- 註:由鋒面的定義:鋒面是兩氣團的交界面。因為氣團是高壓,其邊緣則是低壓,所以其交界處必為低壓,也就是「槽」的位置。所以鋒面不會平行低壓區的等壓線,也不會指向高壓。但是在鞍形場附近,則有可能平行等壓線,此情況大多為滯留鋒,
- 2. 滯留鋒的定義:移動速度小於 5 mile/hr (8 km/hr) 的鋒面,稱為滯留鋒。

決定鋒面上雲雨現象的基本因素,是空氣中的水汽含量、垂直運動與穩定度。大氣中水汽達到飽和的有效方式是絕熱冷卻,鋒面附近上升運動强,有利於絕熱冷卻。雲的形態與降水量大小決定於暖氣團的水汽含量和大氣穩定度,如果暖氣團浪潮濕,伴隨鋒會有大降水;如果暖氣團浪乾燥,不但沒有降水甚至只有薄薄的雲層。如果暖氣團不穩定,鋒上會出現對流性雲和陣性降水;如果暖氣團穩定,鋒面上只有層雲和連續性降水。

(1) 暖鋒面天氣

(2)冷鋒面天氣

上爬冷鋒面天氣示意圖

下滑冷鋒面天氣示意圖

圖 2.4 暖鋒雲系

圖 2.6 冷鋒雲系 (and front)

圖 2.7 有積狀雲的冷鋒雲系 (Kata front)

圖 2.8 暖式錮囚鋒雲系

圖 2.9 有積狀雲的冷式錮囚鋒雲系

圖 3.2 東亞氣旋發生頻數分布

圖 3.4 東亞鋒面氣旋路旋徑

(3) 滯留鋒面天氣

華南滯留鋒面天氣示意圖

地形滯留鋒面天氣示意圖

(4) 囚錮鋒面天氣

暖式囚錮鋒面天氣示意圖

冷式囚錮 鋒面天氣示意圖

§ 5-5 氣壓場的分析

海平面氣壓場的分析,依第四章所述分析,由於在海上的氣壓觀測誤差大,且運動近乎準地轉近似,多参考風向;在陸上不要太注意地轉風的考慮。

海平面氣壓場的分析,要找出高壓中心與低壓中心的位置 ,並注意輻合鄰的低壓槽與輻散帶的高壓脊。

§ 5 - 6 變壓場的分析

在觀測資料中,填繪了三小時氣壓變化超勢,變壓場的型式比氣壓場小限多,圖 5-3 為 1950 年 3 月 1 日 1230 GCT至 3 月 2 日 0630 GCT 的地面天氣圖,冷鋒向東南前進,圖 5-4 為 1 日 1230 GCT 與 1830 GCT的三小時氣壓變差圖,圖 5-5 為 1 日 1830 GCT的十二小時氣壓變差圖。

在移動的槽前是明顯的降壓區;而槽沒是明顯的升壓區。 值浔注意的是圖5-4,在1230GCT升壓區中升值高達+5 mb,但 1830GCT升壓區中升值僅有+2 mb,而降壓區中降值卻達-4 mb ,這明顯地表示了半日潮的氣壓變化。

一般而言,在低緯度地區半日潮比高緯度地區顯著;夏季要比冬季明顯,振幅約有2 mb,氣壓半日潮的最高值發生在上午10時與晚上10時;最低值在上午4時與下午4時左右,在做三小時變壓場的分析時,務必要注意半日潮的影響。

圖 5-4

圖 5-3

圖 5-5

§ 5-7地面天氣圖分析的步驟

- (1) 了解過去的天氣泵软形勢;
- (2) 分析氣團的位置;
- (3) 分析天氣現象、天空狀況、視障,初步了解高壓、低壓及 鋒面位置;
- (4) 分析等壓線;
- (5) 参考高空圖的形勢,決定鋒面的位置;
- (6) 分析等變壓線;
- (7) 完成圖;
- (8) 標示等值線數值與高壓、低壓的中心值;

天灵報告:一周之位置、弱度、軟跻及(pattern); 沟立在之观测 冬季:地面の压力: H,L, fronts, shear lines

- ②温度: W, C, large gradient (全段音)
- ③天気現象(降水,雲区等) 湮发.
- 田蒙古高压主强度(1030mb)处置。分裂高压等。

高冬: 850,700,500mb之

①高度、温度、建度之槽脊位置、变化惨形、及相顺度位置

3500mb 之土Voiticity 区及其多化

夏季:加太平洋副局,殿凤,西南桌的,东风槽,…等

以下使用一些簡單的數學,來解釋一個系統的移動速度與強度的關係、摩擦 力的作用、及系統強度隨高度變化的情形。

<u>=</u> ,	A .	(6)	弦	De la	る	级	2	位	43	及	其	38	及	变化

(i) The moving speed and accoleration of a system or a contour line.

若多绕革推论又方向位移,而里有一灰白人

別在ス軸之分量为 Cx = lin Ax Cook (多线之位的建设).

另外, 設一生朽屑线以亡主建度相对抡固定需生朽易统形动. 最固定系统 I local change 为 文, 评级办务结上 I local change 为 新. 例此二生哲多线之国语为 超动和固定系统

$$\frac{\delta}{\delta t} = \frac{\partial}{\partial t} + \vec{c} \cdot \nabla$$

公在循对座标上,一支塊以以(相对於循对当标)之速度形动,其压力变化为 $\frac{dP}{dx} = \frac{P}{P} + U \frac{P}{P}$

帝对於相对你有言者: 础=部+(U-Cx)部、 若要统中心了压力不宽(即形动等统治一等压线),则其 st = 0.

$$0 = \frac{3P}{3x} + e \cdot \nabla P$$

以 等压低 2 维动 建放为
$$C_X = -\left(\frac{1}{2}\right)/\left(\frac{1}{2}\right)$$

ii) Moving speeds of systems. (即等依備主語动建度) a) Nobar (P=const.) 等无线

$$C = -\frac{8P}{2t} / \frac{8P}{2X}$$

b) Isallobar (ot = const. 学委压体)

$$\zeta = -\frac{\partial^2 P}{\partial t^2} / \frac{\partial^2 P}{\partial x \partial t}$$

c) Front,
$$\Delta P = 0$$
 or const., $\Delta P = P - P'$

$$C = -\frac{\partial(\Delta P)}{\partial x} / \frac{\partial}{\partial x} (\Delta P) = -\left(\frac{\partial P}{\partial x} - \frac{\partial P'}{\partial x}\right) / \left(\frac{\partial P}{\partial x} - \frac{\partial P'}{\partial x}\right)$$

$$\xi = -\frac{\partial}{\partial x} \left(\frac{\partial x}{\partial y} \right) / \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right) = -\frac{\partial^2 y}{\partial x \partial x} / \frac{\partial^2 y}{\partial x^2}$$

e) Cyclone (anticyclone, or col):
$$\frac{\partial P}{\partial x} = 0$$
, $\frac{\partial P}{\partial y} = 0$.

$$C_{x} = -\frac{\partial^{2} P}{\partial x \partial t} / \frac{\partial^{2} P}{\partial x^{2}} \qquad C = \sqrt{C_{x}^{2} + C_{y}^{2}}$$

$$C_{y} = -\frac{\partial^{2} P}{\partial y \partial t} / \frac{\partial^{2} P}{\partial y^{2}} \qquad Q = tan \frac{C_{y}}{C_{x}}$$

$$Cy = -\frac{3^2P}{3y^{32}} / \frac{3^3P}{2y^2} \qquad \qquad \varphi = tan \frac{C}{C}$$

因為鋒位於槽上,所 以槽越淺($\partial P/\partial x$ 小), 則分母越小,移動速 度越大。反之,若槽 越深,則移動速度越 慢。

$$\vec{C} = C_X \hat{i} + C_Y \hat{j} = -\frac{3^2 P}{9 \times 9 \times} / \frac{3^3 P}{9 \times^2} \hat{i} - \frac{3^3 P}{9 \times 9 \times} / \frac{3^3 P}{9 \times^2} \hat{j}$$
假設其 gradient 在 又 $Z Y$ 方向上 相差 $I \times I$ (心因 形 多线), $I \times I$ $I \times I$

$$|\hat{x}| = -\left(\frac{\partial^2 P}{\partial x^2}\right)^{-1} \left[\frac{\partial^2 P}{\partial x \partial t} \hat{\lambda} + \frac{\partial^2 P}{\partial t} \hat{j}\right] = -\left(\frac{\partial^2 P}{\partial x^2}\right)^{-1} \left[\frac{\partial}{\partial x} \hat{\lambda} + \frac{\partial}{\partial t} \hat{j}\right] = \frac{\partial^2 P}{\partial x^2}$$

$$=-\left(\frac{\partial^{2}P}{\partial x^{2}}\right)^{-1} \nabla \frac{\partial P}{\partial x}$$
校 $\hat{C}=-\left(\frac{\partial^{2}P}{\partial x^{2}}\right)^{-1} \nabla b$, $\hat{C}=\frac{\partial P}{\partial x}=b=p$ ressure tendency (五压搜索).

for cyclone,
$$\frac{3^{2}p}{3x^{2}} > 0$$
, $\frac{1}{2} \stackrel{?}{\sim} \sqrt{2} \stackrel{?}{\sim} \sqrt{2} \sqrt{2}$ anticyclone, $\frac{3^{2}p}{3x^{2}} < 0$, $\stackrel{?}{\sim} \stackrel{?}{\sim} \sqrt{2} \sqrt{2}$

小又才负旋而言,其会整向员压变量(app)之枢小佐的位置;反负旋向枢大佐. (例如:可用来预報配周的动向)

所以,移動速度C,與分子(app之梯度大小)成正比, 而與分母(系統之強度or 深淺)成反比。 方向則指向極值中心。

创题:在天氛图上,一多统之移动建度可由下到公式表示:

 $C_{X} = -\left(\frac{\partial}{\partial x}\right)/\left(\frac{\partial}{\partial x}\right)$, $A_{X} = -\left(\frac{\partial}{\partial x}\right)/\left(\frac{\partial}{\partial y}\right)$

武争出一条旋(反系旋)主程动建放平方向,並讨论其移动平式反超势 之関係。

?. For symmetric about axis (or center)
$$\frac{\partial^{3} P}{\partial x^{2}} = \frac{\partial^{3} P}{\partial x^{2}y^{2}} = \frac{\partial^{3} P}{\partial x^{2}y^{3}} = 0$$

i intensification/weakness depends on Lapalacian of preasure tendency

* intensity of a trough/ridge 13 ox2 $\frac{1}{2} \cdot \frac{5I}{5t} = \frac{3b}{3X^2}$

所謂等壓面上冊、L、脊、槽之加深 (Deepening) 或填塞 (Filling) ,乃是指某一位置的高度變動 ,只表示單位時間的高度變化 , 而不論系統是否移動 ,或梯度是否增減 ,例:L的中心 值從1440 gpm變成1410 gpm ,或 H 的中心值從1560gpm變成1530 gpm都是加深 (Deepening) ; L 的中心值從1440 gpm變成1470 gpm,或用的中心值從1560 gpm變成1580 gpm都是填塞 (Filling)。

所謂等壓面上用、L、肾、槽之加强(Intensifying)或減弱(Weakening),乃是指某一系統的梯度增大或減小,加深與加强並不相同,某低壓系統加深,其强度可能增强也可能減弱,如圖 6-4 所示。

图 6-4

=. A-6 Wind field in relation to pressure field	7
$\begin{cases} \frac{dy}{dt} = -\frac{1}{P} \frac{\partial P}{\partial x} + f v + F_{x} \Rightarrow 由 運动方程式, 導出在摩擦力作用下 \frac{dv}{dt} = -\frac{1}{P} \frac{\partial P}{\partial y} - f u + F_{y} \Rightarrow 氯 $	_
assumptions: v) no acceleration, $\frac{dy}{dt} = \frac{dv}{dt} = 0$, (2) Isobar along x -direction, $\frac{\partial P}{\partial x} = 0$,	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{cases} 0 = fv - ku \\ 0 = -\frac{f}{g} \frac{\partial P}{\partial y} - fu - kv \end{cases}$ $\begin{cases} 0 = fv - ku \\ 0 = -\frac{f}{g} \frac{\partial P}{\partial y} - fu - kv \end{cases}$ $\Rightarrow \begin{cases} u = -\frac{f}{k^2 + f^2} \left(\frac{f}{g} \frac{\partial P}{\partial y} \right) \end{cases}$ 1000	
$v = -\frac{k}{R^2 + f^2} \left(\frac{f}{g} \frac{\partial f}{\partial g} \right)$ H	_
(i) If $k=0 \Rightarrow v=0$ Low in north and high in south, $\frac{SP}{SY} < 0 \Rightarrow U > 0$, 何東 反之 high Low , > 0 \Rightarrow U < 0 , 何西.	_
(ii) If 長>0,且到 <0 ⇒ U >0 ⇒ V >0 :偏向低压	_
 二角摩擦力存在,则图向偏向低压。 空义 tan ×= 于 ⇒ ×= tan 于 = tan 于 二偏離主角後年摩擦力成飞地;摩擦越大,角度越大.	
In general: at flat tensin: $\angle \approx 40 \sim 60^{\circ}$ deviated at sea $1 \times \approx 10 \sim 20^{\circ}$	
(在岸丑及山区,:她袁相糙度变化大,:对其local circulations,及密约园之影响更複雜。)	

所以偏離的角度與摩擦系數(k)的大小成正北,而與科氏力(f)(緯度)的大小成反比。即當風速相等,且地表摩擦系數相同時,在低縫度之偏向比高緯度大。(有助於颱風之形成)

- ※ 討論:一高壓或低壓系統接近台灣之北或南端時,台灣東西兩岸之動力 特性。高低壓中心,在台灣之東西邊海上及南北方海上之情況。
- ※ (i and ii) 低(高)壓中心在東西邊海上,海岸附近均為輻合(散)。

2、海岸地区之务统型能,差为

间, 試計论下列各售次;

- ※ 熱力風 (大動 §3.4) $\frac{\partial V_g}{\partial \ln P} = -\frac{R}{f} \hat{k} \times \nabla_P T$. In a barotropic atmosphere, $\rho = \rho$ (P), thus, $\nabla_P T = 0$. Hence, $\partial V_g / \partial \ln P = 0$. 所以無冷/暖平流。
- ※ 但 baroclinic atmosphere熱力風≠ 0。

由地轉風方程: $u_g = \frac{1}{f} \frac{\partial \Phi}{\partial r}$;静力平衡方程式: $dP = -\rho g dz$

及熱力風方程: $P \frac{\partial u_g}{\partial P} = -\frac{R}{f} \frac{\partial T_p}{\partial x} = \frac{P}{-\rho g} \frac{\partial}{\partial z} (\frac{1}{f} \frac{\partial \Phi}{\partial x})_p => \dots$

可得系統隨高度變化之公式, $\frac{\partial}{\partial z}(\frac{\partial z}{\partial x})_P = \frac{1}{T_p}\frac{\partial T_P}{\partial x}$

(thermal wind eq.)

若上下雨層系統之分佈如下圖,

由公式是(禁)=卡苏

晉(號)(田

L: FD

残废陪高度增加

、锋面附近之気旋其水平梯度(風速) 危高度之增加而力12强,心喷流/ 约在对流層顶(少50mb)

286 低压: 300 田 薩高於河滅、是(景) ⊖ → 無日 → 、暖心

→1氏压目随高度而减小者 考腊心。

八届公园之强度(風速)随高度之 增加而减弱,最强至80加附近。

H: # 0

随高度和加强

≫祭⊖

い瞎心

八高灰隆高度和增强者 為暖心。

H: 25 0 随高度而减弱 2 (景) ①

多江田多い珍の 八高灰隨高度命滅弱者

彦冷心。

→ 小空的之家古高压随高度之增加而说路; 其高压在500mb处已确失(一般在900mb处 即已不易看到)其上层虚低压。

: intensity change = $\frac{\partial}{\partial z} \left(\frac{\partial Z}{\partial x} \right)_p = - \beta g \frac{\partial}{\partial p} \left(\frac{\partial Z}{\partial x} \right) = - \beta g \frac{\partial}{\partial x} \left(\frac{\partial Z}{\partial p} \right)$ $=-fg\frac{\partial}{\partial x}(\frac{-1}{fg})=-\frac{1}{F}\frac{\partial f_{F}}{\partial x}$

但是本墨潮爆影 前三阵寒高压脊 我入的情况公园、

I : P=PRT

$$\ln P = \ln f + \ln R + \ln T$$

$$\frac{\partial}{\partial z} \left(\frac{\partial z}{\partial x} \right)_{p} = \frac{1}{T_{p}} \frac{\partial T_{p}}{\partial x}$$

 $lnP = lnP + lnR + lnT \Rightarrow \frac{\partial P}{P} = 0 = \frac{\partial F}{f_P} + \frac{\partial T_P}{T_P} \Rightarrow -\frac{\partial F}{f_P} = \frac{\partial T_P}{T_P}$ $\therefore \frac{\partial}{\partial z} (\frac{\partial z}{\partial x})_P = \frac{1}{T_P} \frac{\partial T_P}{\partial x}$ $\frac{\partial}{\partial z} (\frac{\partial z}{\partial x})_P = \frac{1}{T_P} \frac{\partial T_P}{\partial x}$ $\frac{\partial}{\partial z} (\frac{\partial z}{\partial x})_P = \frac{1}{T_P} \frac{\partial T_P}{\partial x}$

李清照 聲聲慢 (作者以春天愁雨,反映丈夫死後之悲傷愁苦心情)

尋尋覓覓 冷冷清清 淒淒慘慘戚戚 乍暖還寒時候 最難將息 三杯兩盞淡酒 怎敵他 晚來風急 雁過也 正傷心 卻是舊時相識 滿地黃花堆積 憔悴損 如今有誰堪摘 守著窗兒 獨自怎生得黑 梧桐更兼細兩 到黃昏點點滴滴 這次第 怎一個愁字了得.