#### Лабораторная работа № 2

# ИССЛЕДОВАНИЕ ЧАСТОТНЫХ ЗАВИСИМОСТЕЙ МАЛОСИГНАЛЬНЫХ У-ПАРАМЕТРОВ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ

**Цель** *пабораторной работы*. Освоение техники моделирования электронных схем в режиме анализа по переменному току. Изучение методики измерения комплексных малосигнальных Y-параметров биполярного транзистора.

#### 3.1. Методические указания

При малой амплитуде гармонического сигнала транзистор можно рассматривать как линейный четырёхполюсник, который описывается следующей системой уравнений:

$$\begin{cases} \dot{I}_{1} = \dot{Y}_{11}\dot{U}_{1} + \dot{Y}_{12}\dot{U}_{2}; \\ \dot{I}_{2} = \dot{Y}_{21}\dot{U}_{1} + \dot{Y}_{22}\dot{U}_{2}. \end{cases}$$

Здесь  $\dot{U}_1$ ,  $\dot{U}_2$  — комплексные амплитуды напряжений на входе и выходе четырёх полюсника;  $\dot{I}_1$ ,  $\dot{I}_2$  — комплексные амплитуды токов, втекающих в четырёх полюсник;  $\dot{Y}_{11}$ ,  $\dot{Y}_{12}$ ,  $\dot{Y}_{21}$ ,  $\dot{Y}_{22}$  — комплексные малосигнальные *Y*-параметры. Из этих уравнений следуют выражения для *Y*-параметров, которые и определяют методику их измерения:

$$\dot{Y}_{11} = \dot{I}_1 / \dot{U}_1$$
 при  $\dot{U}_2 = 0$ ,  $\dot{Y}_{12} = \dot{I}_1 / \dot{U}_2$  при  $\dot{U}_1 = 0$ ,  $\dot{Y}_{21} = \dot{I}_2 / \dot{U}_1$  при  $\dot{U}_2 = 0$ ,  $\dot{Y}_{22} = \dot{I}_2 / \dot{U}_2$  при  $\dot{U}_1 = 0$ .

Таким образом, для измерения параметров  $\dot{Y}_{11}$  и  $\dot{Y}_{21}$  необходимо создать режим короткого замыкания по выходу транзистора, а для измерения параметров  $\dot{Y}_{12}$  и  $\dot{Y}_{22}$  — по входу. Для того чтобы при измерении обеспечить необходимый рабочий режим транзистора по постоянному току, короткое замыкание создаётся только для высокочастотного напряжения. Схемы моделей таких измерительных установок приведены на рис. 3.1-3.4. Здесь короткое замыкание на частоте сигнала создаётся с помощью блокировочных конденсаторов большой ёмкости, включённых между соответствующим электродом транзистора и «землёй». Испытательный сигнал подаётся от источника (генератора) через разделительный конденсатор. Питающие постоянные напряжения подаются через дроссели — катушки индуктивности, имеющие большое индуктивное сопротивление на частоте сигнала. Это предотвращает попадание высокочастотного сигнала в цепи питания.

Измерение параметров  $\dot{Y}_{11}$  и  $\dot{Y}_{21}$  биполярного транзистора, включённого по схеме с общим эмиттером (ОЭ), производится с помощью схемы, изображён-

ной на рис. 3.1. Два источника напряжения V1 и V2 обеспечивают заданный режим по постоянному току, источник синусоидального напряжения Signal создаёт испытательный сигнал, конденсатор C1 является разделительным, а конденсатор C2 — блокировочным. При выборе полярности источников V1 и V2 необходимо учитывать, что для транзистора типа n-p-n на базу и коллектор должно подаваться положительное напряжение (как показано на рис. 3.1), а для транзистора типа p-n-p — отрицательное. Для измерения параметров  $\dot{Y}_{12}$  и  $\dot{Y}_{22}$  используется схема, показанная на рис. 3.2, которая отличается от схемы на рис. 3.1 тем, что источник испытательного сигнала через разделительный конденсатор C2 подключён к коллектору транзистора, а база транзистора через блокировочный конденсатор C1 соединена с «землёй».





Рис. 3.1. Схема измерения параметров  $Y_{11}$  и  $Y_{21}$  транзистора, включённого с ОЭ

Рис. 3.2. Схема измерения параметров  $Y_{12}$  и  $Y_{22}$  транзистора, включённого с ОЭ

Измерение *Y*-параметров в интервале частот производится в режиме анализа по переменному току (**Analysis>AC**). Значения *Y*-параметров вычисляются как отношения комплексных амплитуд токов и напряжений соответствующих электродов транзистора. Например, входная проводимость  $\dot{Y}_{11}$  транзистора, включённого по схеме с ОЭ, определяется как отношение комплексной амплитуды тока базы к комплексной амплитуде напряжения база-эмиттер. В системе Місго-Сар это выражение записывается в следующем виде:

Аналогично параметр  $\dot{Y}_{21}$  (проводимость прямой передачи или крутизна транзистора), равный отношению комплексной амплитуды тока коллектора к комплексной амплитуде напряжения база-эмиттер, определяется как

Определённые таким образом Y-параметры можно использовать двумя способами:

- непосредственно указать в строке Y Expression окна задания параметров;

- присвоить их значения вспомогательным переменным, которые удобно обозначить как Y11, Y21 и т.д., и в строке **Y Expression** указать соответствующую переменную.

Определение вспомогательных переменных производится с помощью оператора .define (onpedenumb), который записывается в текстовом окне<sup>1)</sup>. Измеряемые в работе Y-параметры задаются следующим образом:

.define Y11 lb(VT1)/Vbe(VT1)
.define Y21 lc(VT1)/Vbe(VT1)
.define Y22 lc(VT1)/Vce(VT1)

Последний способ задания Y-параметров удобнее и его рекомендуется использовать в работе.

Поскольку *Y*-параметры являются комплексными величинами, то их изменение в интервале частот характеризуется графиками зависимости от частоты их вещественной и мнимой частей, т.е. активной и реактивной составляющих проводимости. Часто используется также зависимость от частоты абсолютной величины (модуля) *Y*-параметра.

В системе Micro-Cap для модуля, действительной и мнимой частей комплексных величин используются следующие обозначения:

Mag(z) — модуль z (при построении графиков можно просто указать z);

Re(z) — действительная часть z;

Im(z) — мнимая часть z.

Таким образом, для построения графика зависимости модуля крутизны транзистора от частоты в графе **Y Expression** следует записать

Mag (Ic(VT1)/Vbe(VT1))

либо

Mag (Y11)

(если предварительно была определена переменная Y11).

Наглядное представление об изменении комплексного Y-параметра в интервале частот даёт его  $zodozpa\phi$  — геометрическое место точек комплексной плоскости, соответствующих значениям Y-параметра на различных частотах. Для построения годографа по горизонтальной оси графика нужно отложить значение вещественной части Y-параметра, а по вертикальной оси — его мнимой части. Например, для построения годографа крутизны транзистора (параметра  $\dot{Y}_{21}$ ) в графе  $\mathbf{X}$  Expression следует указать

Re (Y21),

а в графе Y Expression -

Im (Y21).

<sup>&</sup>lt;sup>1)</sup> Текстовое окно можно разместить на экране под окном схемы, выполнив команду **Windows>Split Horizontal** 

Для схемы с ОЭ зависимость Y-параметров от частоты с достаточной для инженерных расчётов точностью описывается следующими выражениями:

$$\begin{split} \dot{Y}_{11} &\approx \frac{g_{11\text{HY}} + j\omega C_{11\text{HY}}}{1 + j\omega\tau}, \qquad \dot{Y}_{12} \approx -\frac{g_{12\text{HY}} + j\omega C_{\text{K}}}{1 + j\omega\tau}, \\ \dot{Y}_{21} &\approx \frac{S}{1 + j\omega\tau}, \qquad \qquad \dot{Y}_{22} \approx g_{22\text{HY}} + \frac{j\omega C_{22\text{HY}}}{1 + j\omega\tau}, \end{split}$$

где  $g_{11\text{HY}}$ ,  $g_{12\text{HY}}$ ,  $S=g_{21\text{HY}}$ ,  $g_{22\text{HY}}$  – низкочастотные значения (значения на частоте  $f << f_S$ ) соответствующих Y-параметров транзистора;  $C_{11\text{HY}} = \tau/r_{\text{Б}}$  — низкочастотное значение входной ёмкости;  $C_{22\text{HY}} = C_{\text{K}} r_{\text{Б}} S$  — низкочастотное значение выходной ёмкости;  $r_{\text{Б}}$  — объёмное сопротивление области базы;  $C_{\text{K}}$  — ёмкость коллекторного перехода;  $\tau = \frac{1}{2\pi f_S}$  — постоянная времени транзистора;  $f_S$  — гра-

ничная частота транзистора по крутизне.

Для измерения частотной зависимости *Y*-параметров транзистора, включённого по схеме с общей базой (ОБ), используются схемы, приведённые на рис. 3.3 и 3.4. В этом случае значения *Y*-параметров определяются следующими выражениями:

- входная проводимость  $\dot{Y}_{11}$ : .define Y11 le(VT1)/Veb(VT1)
- крутизна  $\dot{Y}_{21}$ : .define Y21 Ic(VT1)/Veb(VT1)
- выходная проводимость  $\dot{Y}_{22}$ : .define Y22 Ic(VT1)/Vcb(VT1)
- проводимость обратной передачи  $\dot{Y}_{12}$ : .define Y12 le(VT1)/Vcb(VT1)

Y-параметры транзистора, включённого по схеме с ОБ, выражаются через параметры при включении с ОЭ:

$$\begin{split} \dot{Y}_{110\mathrm{b}} &= \dot{Y}_{1109} + \dot{Y}_{1209} + \dot{Y}_{2109} + \dot{Y}_{2209} \approx \dot{Y}_{1109} + \dot{Y}_{2109} \,, \\ \dot{Y}_{120\mathrm{b}} &= - \Big( \dot{Y}_{1209} + \dot{Y}_{2209} \Big) \,, \\ \dot{Y}_{210\mathrm{b}} &= - \Big( \dot{Y}_{2109} + \dot{Y}_{2209} \Big) \approx - \dot{Y}_{2109} \,, \\ \dot{Y}_{220\mathrm{b}} &= \dot{Y}_{2209} \,. \end{split}$$



Рис. 3.3. Схема измерения параметров  $\dot{Y}_{11}$  и  $\dot{Y}_{21}$  транзистора, включённого с ОБ



Рис. 3.4. Схема измерения параметров  $\dot{Y}_{12}$  и  $\dot{Y}_{22}$  транзистора, включённого с

Поскольку мнимые части входной и выходной проводимостей транзистора, включённого по схеме с ОЭ, положительны, то реактивные составляющие этих проводимостей имеют емкостной характер. Значения соответствующих эквивалентных ёмкостей определяются формулами

$$C_{11} = \frac{\text{Im}(\dot{Y}_{11})}{2\pi f}, \quad C_{22} = \frac{\text{Im}(\dot{Y}_{22})}{2\pi f}$$

и зависят от частоты сигнала. Для расчёта частотной зависимости эквивалентной входной ёмкости  $C_{11}$  транзистора, включённого по схеме с ОЭ, в текстовом окне следует определить эту ёмкость:

и в строке **Y** Expression записать переменную C11. Аналогичным образом определяется и эквивалентная выходная ёмкость  $C_{22}$ .

## 3.2. Домашняя подготовка

- 1. Изучите методику измерения на модели малосигнальных высокочастотных параметров транзисторов.
- 2. Запишите выражения, определяющие измеряемые параметры транзистора.
- 3. Изобразите ожидаемый вид измеряемых зависимостей параметров от частоты
  - модуля входной проводимости;
  - модуля крутизны.
- 4. Подготовьтесь к ответу на контрольные вопросы.

### 3.3. Лабораторное задание

1. В соответствии с номером бригады по табл. 3.1 выберите тип транзистора, параметры режима по постоянному току (ток коллектора  $I_{0K}$ , напряжение коллектор-эмиттер  $U_{0K}$ ) и частоту сигнала.

Таблина 3.1

Тип транзистора Іо

| <u>№</u><br>бригады | Тип транзистора | $I_{0\mathrm{K}}$ , м $\mathrm{A}$ | $U_{0 m K},{ m B}$ | $f_0$ , М $\Gamma$ ц |
|---------------------|-----------------|------------------------------------|--------------------|----------------------|
| 1                   | KT3102A         | 1                                  | 4                  | 0,5                  |
| 2                   | KT3102B         | 2                                  | 6                  | 1,2                  |
| 3                   | KT3102V         | 3                                  | 6                  | 0,7                  |
| 4                   | KT3101A         | 4                                  | 5                  | 1,3                  |
| 5                   | KT315A          | 5                                  | 5                  | 0,8                  |
| 6                   | KT315B          | 1                                  | 4                  | 1,4                  |

| 7  | KT315V | 2 | 6   | 0,9 |
|----|--------|---|-----|-----|
| 8  | KT315G | 3 | 6   | 1,5 |
| 9  | KT315D | 2 | 5   | 0,6 |
| 10 | KT342A | 1 | 5,5 | 1,0 |

- 2. Составьте схемы для измерения У-параметров транзистора.
- 3. Проведите измерение *Y*-параметров транзистора, включённого по схеме с ОЭ.
  - а) Используя результаты лабораторной работы № 2 «Измерение статических характеристик и низкочастотных параметров транзисторов», установите напряжение смещения на базе транзистора, обеспечивающее заданный ток коллектора  $I_{0K}$  при заданном напряжении коллекторэмиттер  $U_{0K}$ .
  - б) В интервале частот 100 кГц-300 МГц измерьте зависимость от частоты модулей следующих *У*-параметров:
    - входной проводимости  $\dot{Y}_{11}$ ;
    - крутизны  $\dot{Y}_{21}$ ;
    - выходной проводимости  $\dot{Y}_{22}$ .

По результатам измерений определите граничную частоту транзистора  $f_S$ , при которой модуль крутизны уменьшается в  $\sqrt{2}$  раз по сравнению с его низкочастотным значением.

- в) Измерьте зависимость от частоты эквивалентных ёмкостей  $C_{11}$  и  $C_{22}$  при вариации тока коллектора. Для этого в режиме **Stepping** задайте изменение напряжения смещения на базе транзистора таким образом, чтобы ток коллектора изменялся приблизительно в пределах 1-10 мА. Сделайте вывод о характере зависимости эквивалентных ёмкостей транзистора от частоты и тока коллектора.
- г) Постройте семейство годографов параметра  $Y_{21}$  при вариации тока коллектора в пределах 1-10 мА. Сделайте вывод о влиянии тока коллектора на крутизну транзистора.
- д) При токе коллектора  $I_{0K}$  измерьте низкочастотные значения (значения на частоте  $f << f_S$ ) следующих параметров (эти результаты будут использованы в лабораторной работе № 4 «Исследование модели резистивного усилителя»):
  - крутизны  $S = g_{21HY}$ ;
  - активной составляющей входной проводимости  $g_{11\mathrm{HY}}$ ;
  - активной составляющей выходной проводимости  $g_{22\mathrm{HY}}$ ;
  - выходной ёмкости  $C_{22H4}$ .
- е) На заданной частоте  $f_0$  при токе коллектора  $I_{0K}$  измерьте значения следующих параметров (эти результаты будут использованы в лабораторной работе № 5 «Исследование модели резонансного усилителя»):

- модуля крутизны  $|\dot{Y}_{21}|$ ;
- выходной ёмкости  $C_{22}$ ;
- активной составляющей выходной проводимости  $g_{22}$ .
- 4. Проведите измерение *Y*-параметров транзистора, включённого по схеме с ОБ.
  - а) В интервале частот 100 кГц-300 МГц измерьте зависимость от частоты модулей параметров  $\dot{Y}_{11}$ ,  $\dot{Y}_{21}$ ,  $\dot{Y}_{22}$ . Проведите сопоставление с аналогичными зависимостями, полученными при выполнении п. 3. По результатам измерений проверьте выполнение в области низких частот соотношений для *Y*-параметров транзистора при включении по схеме с ОЭ и с ОБ. Сопоставьте значения входной проводимости транзистора при включении его по схеме с ОЭ и с ОБ. Обратите внимание на характер реактивной составляющей входной проводимости для этих двух случаев.
  - б) Измерьте зависимость от частоты эквивалентных ёмкостей  $C_{11}$  и  $C_{22}$ . Проведите сопоставление с аналогичными зависимостями для схемы с ОЭ. Обратите внимание на характер ёмкости  $C_{11}$ . Сделайте выводы.

## 3.4. Контрольные вопросы

- 1. Каково назначение конденсаторов С1 и С2 в схеме на рис. 3.1?
- 2. Каково назначение катушек индуктивности (дросселей) L1 и L2 в схеме на рис. 3.2?
- 3. Какие переменные нужно указать в полях **X Expression** и **Y Expression** для построения графика зависимости модуля входной проводимости от частоты?
- 4. Какие переменные нужно указать в полях **X Expression** и **Y Expression** для построения графика зависимости модуля крутизны от частоты?
- 5. Как определяется эквивалентная входная ёмкость транзистора?
- 6. Как определяется эквивалентная выходная ёмкость транзистора?
- 7. Какое значение частоты называется граничной частотой транзистора по крутизне  $f_S$ ?
- 8. Как влияет ток коллектора на входную проводимость и крутизну транзистора?
- 9. Чем отличается схема включения транзистора с общей базой от схемы включения с общим эмиттером?
- 10. Какой график называется годографом комплексного У-параметра?