[1]

Question	Scheme	Marks	AOs	
1(a)	z = -1 - 2i or $z = 3 + i$	M1	1.2	
	z = -1 - 2i and $z = 3 + i$	A1	1.1b	
	(-1, 2) Im (3, 1)	B1	1.1b	
	(-1, -2) Re	B1	1.1b	
(b) Way 1	$(z-(-1+2i))(z-(-1-2i)) = \dots f(z) = (z-(-1+2i))(z-(-1-2i)) or (z-(3+i))(z-(3-i)) = \dots (z-(3+i))(z-(3-i)) = \dots$	M1	3.1a	
	$z^2 + 2z + 5$ or $z^2 - 6z + 10$ e.g. $f(z) = (z^2 + 2z + 5)()$	A1	1.1b	
	$z^2 + 2z + 5$ and $z^2 - 6z + 10$ $f(z) = (z^3 + z^2(-1 - i) + z(-1 + 2i) - 15 - 5i)()$	A 1	1.1b	
	$f(z) = (z^2 + 2z + 5)(z^2 - 6z + 10)$ Expands the brackets to forms a quartic	M1	3.1a	
	$f(z) = z^4 - 4z^3 + 3z^2 - 10z + 50$ or States $a = -4$, $b = 3$, $c = -10$, $d = 50$	A1	1.1b	
		(5)		

EDEXCEL FURTHER MATHS - COMPLEX NUMBERS 1

Question	Scheme	Marks	AOs	
Way 2	sum roots = $\alpha + \beta + \gamma + \delta = (-1 + 2i) + (-1 - 2i) + (3 + i) + (3 - i) =$			
	$pair sum = \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta$			
	= (-1+2i)(-1-2i)+(-1+2i)(3-i)+(-1+2i)(3+i)+(-1-2i)(3-i)			
	+(-1-2i)(3+i)+(3+i)(3-i)=	M1	3.1a	
	triple sum = $\alpha\beta\gamma + \alpha\beta\delta + \beta\gamma\delta + \alpha\gamma\delta$	IVII	3.1a	
	= (-1+2i)(-1-2i)(3-i)+(-1+2i)(-1-2i)(3+i)+(-1+2i)(3+i)(3-i)			
	+(-1-2i)(3+i)(3-i)=			
	Product = $\alpha \beta \gamma \delta = (-1 + 2i)(-1 - 2i)(3 - i)(3 + i) =$			
	sum = 4, pair sum = 3, triple sum = 10 and product = 50			
	a = -(their sum roots) = -4			
	b = +(their pair sum) = 3	M1	3.1a	
	c = -(triple sum) = -10		1.1b	
	d = +(product) = 50			
Way 3	$f z = -1 + 2i^{4} + a^{-1} + 2i^{3} + b^{-1} + 2i^{2} + c^{-1} + 2i^{+} + d = 0$	3.61	2.	
	$f z = 3+i^4+a^3+i^3+b^3+i^2+c^3+i+d=0$	M1	3.1a	
	Leading to			
	-7+11a-3b-c+d=0 $24-2a-4b+2c=0$	A1	1.1b	
	28+18a+8b+3c+d=0 $96+26a+6b+c=0$	A1	1.1b	
	Solves their simultaneous equation to find a value for one of the constants	M1	3.1a	
	a = -4, b = 3, c = -10, d = 50	A1	1.1b	
		(5)		

[2]

Question	Scheme	Marks	AOs
6(a)	Examples: $ \begin{pmatrix} \cos 120 & -\sin 120 \\ \sin 120 & \cos 120 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \dots \text{or } (6+2i) \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right) $ $ \text{or } \sqrt{40} \left(\cos \arctan\left(\frac{2}{6}\right) + i \sin \arctan\left(\frac{2}{6}\right) \right) \left(\cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right) \right) $ $ \text{or } \sqrt{40} \left(\cos\left(\arctan\left(\frac{2}{6}\right) + \frac{2\pi}{3}\right) + i \sin\left(\arctan\left(\frac{2}{6}\right) + \frac{2\pi}{3}\right) \right) $ $ \text{or } \sqrt{40} e^{i \arctan\left(\frac{\pi}{6}\right)} e^{i \left(\frac{\pi\pi}{3}\right)} $	M1	3.1a
	$(-3-\sqrt{3})$ or $(3\sqrt{3}-1)i$	A1	1.1b
	$(-3-\sqrt{3})+(3\sqrt{3}-1)i$	A1	1.1b
	Examples:	M1	3.1a
	$(-3+\sqrt{3})$ or $(-3\sqrt{3}-1)i$	A1	1.1b
	$\left(-3+\sqrt{3}\right)+\left(-3\sqrt{3}-1\right)i$		1.1b
(b) Way 1	Area $ABC = 3 \times \frac{1}{2} \sqrt{6^2 + 2^2} \sqrt{6^2 + 2^2} \sin 120^\circ$ or Area $AOB = \frac{1}{2} \sqrt{6^2 + 2^2} \sqrt{6^2 + 2^2} \sin 120^\circ$	(6) M1	2.1
	Area $DEF = \frac{1}{4}ABC$ or $\frac{3}{4}AOB$	dM1	3.1a
	$= \frac{3}{8} \times 40 \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2}$	A1	1.1b
		(3)	

EDEXCEL FURTHER MATHS - COMPLEX NUMBERS 1

(b) Way 2	$D\left(\frac{3-\sqrt{3}}{2},\frac{3\sqrt{3}+1}{2}\right)$		
	$OD = \sqrt{\left(\frac{3 - \sqrt{3}}{2}\right)^2 + \left(\frac{3\sqrt{3} + 1}{2}\right)^2} = \sqrt{10}$	M1	2.1
	Area $DOF = \frac{1}{2}\sqrt{10}\sqrt{10}\sin 120^\circ$		
	Area $DEF = 3DOF$	dM1	3.1a
	$=3 \times \frac{1}{2} \times \sqrt{10} \sqrt{10} \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2}$	A1	1.1b
(b) Way 3	$AB = \sqrt{\left(9 + \sqrt{3}\right)^2 + \left(3 - 3\sqrt{3}\right)^2} = \sqrt{120}$	M1	2.1
	Area $ABC = \frac{1}{2}\sqrt{120}\sqrt{120}\sin 60^{\circ} (=30\sqrt{3})$		
	$Area DEF = \frac{1}{4} ABC$	dM1	3.1a
	$=\frac{1}{4}\times30\sqrt{3}=\frac{15\sqrt{3}}{2}$	A1	1.1b
(b) Way 4	$D\left(\frac{3-\sqrt{3}}{2}, \frac{3\sqrt{3}+1}{2}\right), E\left(-3,-1\right), F\left(\frac{3+\sqrt{3}}{2}, \frac{-3\sqrt{3}+1}{2}\right)$		
	$DE = \sqrt{\left(\frac{3-\sqrt{3}}{2}+3\right)^2 + \left(\frac{3\sqrt{3}+1}{2}+1\right)^2} \left(=\sqrt{30}\right)$	M1 dM1	2.1 3.1a
	Area $DEF = \frac{1}{2}\sqrt{30}\sqrt{30}\sin 60^\circ$	ulvii	J.1a
İ	$=\frac{15\sqrt{3}}{2}$	A1	1.1b
(b) Way 5	Area $ABC = \frac{1}{2} \begin{vmatrix} 6 & -3 - \sqrt{3} & \sqrt{3} - 3 & 6 \\ 2 & 3\sqrt{3} - 1 & -3\sqrt{3} - 1 & 2 \end{vmatrix} = 30\sqrt{3}$		2.1
	Area $DEF = \frac{1}{4}ABC$	dM1	3.1a
	$= \frac{1}{4} \times 30\sqrt{3} = \frac{15\sqrt{3}}{2}$	A1	1.1b

EDEXCEL FURTHER MATHS - COMPLEX NUMBERS 1

[3]

	Question	Answer	Marks	Guidance
5	(i)		B1	Circle centre (-2, 0) or circle centre (2, 0)
			B1	Touching y-axis at origin
			B1	Half line with negative slope upwards
			B1	Completely correct diagram
			[4]	
5	(ii)	$-2 - \sqrt{3} + i$	B1ft	Correct real part and correct imaginary part of a
			B1ft	complex number, ft for their half line from centre of
				their circle, allow decimals (-3.73 or better) or trig
				expressions
			[2]	
5	(iii)		B1ft	Shade inside their circle
			B1	Completely correct diagram and shading
			[2]	S.C. allow last B1 for radius or complete line

[4]

Question	Scheme	Marks	AOs
1(a) (i)	$ z_1 z_2 = 3\sqrt{2}$	B1	1.1b
(ii)	$\arg(z_1 z_2) = \frac{\pi}{3} + \left(-\frac{\pi}{12}\right) = \frac{\pi}{4}$ o.e.	B1	1.1b
		(2)	
(b) (i)	n = 8	B1ft	2.2a
(ii)	$ w^n = (\text{'their} z_1 z_2 ')^{\text{their }n}$ $ w^n = 104976$	M1	1.1b
	$ w^n = 104976$	A1	1.1b
		(3)	
		(5 r	narks)

[5]

Circle centre (0, 2) and radius 2 or with the point on the origin	B1	1.1b
Fully correct	B1	1.1b
	(2)	

Scheme	Marks	AO:
2 + 3i	B1	1.11
	(1)	
$z *= 2 + 3i \text{so} z + z *= 4, \ zz *= 13$ $z + z * + \alpha = 0 \Rightarrow \alpha = \dots \text{ or } \alpha zz *= -52 \Rightarrow \alpha = -\frac{52}{"13"} = \dots \text{ or }$ $z^{2} - (\text{sum roots})z + (\text{product roots}) = 0 \text{ or } (z - (2 + 3i))(z - (2 - 3i)) = \dots$ $\Rightarrow (z^{2} - 4z + 13)(z + 4) \Rightarrow z = \dots$	Ml	3.1
$z=2\pm 3\mathrm{i},\ -4$	A1	1.1
$(z^2 - 4z + 13)(z + 4)$ expands the brackets to find value for a Or $a = \text{pair sum} = -4(2 + 3i + 2 - 3i) + 13 =$ Or $f(-4)/f(2 \pm 3i) = 0 \Rightarrow \Rightarrow a =$		1.1
a = -3	A1	2.2
	(4)	
3 - 1 - 3 - 4 e	B1ft	1.1
	(1)	
	$z *= 2 + 3i \text{so} z + z *= 4, \ zz *= 13$ $z + z *+ \alpha = 0 \Rightarrow \alpha = \dots \text{ or } \alpha zz *= -52 \Rightarrow \alpha = -\frac{52}{"13"} = \dots \text{ or } $ $z^{2} - (\text{sum roots})z + (\text{product roots}) = 0 \text{ or } (z - (2 + 3i))(z - (2 - 3i)) = \dots$ $\Rightarrow (z^{2} - 4z + 13)(\underline{z + 4}) \Rightarrow z = \dots$ $z = 2 \pm 3i, -4$ $(z^{2} - 4z + 13)(z + 4) \text{ expands the brackets to find value for } a$ Or $a = \text{pair sum} = -4(2 + 3i + 2 - 3i) + 13 = \dots$ Or $f(-4)/f(2 \pm 3i) = 0 \Rightarrow \dots \Rightarrow a = \dots$ $a = -3$	$z *= 2 + 3i \text{so} z + z *= 4, \ zz *= 13$ $z + z * + \alpha = 0 \Rightarrow \alpha = \dots \text{ or } \alpha zz *= -52 \Rightarrow \alpha = -\frac{52}{"13"} = \dots \text{ or } z^2 - (\text{sum roots})z + (\text{product roots}) = 0 \text{ or } (z - (2 + 3i))(z - (2 - 3i)) = \dots$ $\Rightarrow (z^2 - 4z + 13)\underline{(z + 4)} \Rightarrow z = \dots$ $z = 2 \pm 3i, -4$ A1 $(z^2 - 4z + 13)(z + 4) \text{ expands the brackets to find value for } \alpha$ Or $\alpha = \text{pair sum} = -4(2 + 3i + 2 - 3i) + 13 = \dots$ $\alpha = -3$ A1 (4)

[7]

Question	Scheme	Marks	AOs
7(a)	$z *= a - bi \text{then } zz *= (a + bi)(a - bi) = \dots$	M1	1.1b
	$zz *= a^2 + b^2$ therefore, a real number	A1	2.4
		(2)	
(b)	$\frac{z}{z^*} = \frac{a+bi}{a-bi} = \frac{(a+bi)(a+bi)}{(a-bi)(a+bi)} = \frac{(a^2-b^2)+2abi}{a^2+b^2} = \frac{7}{9} + \frac{4\sqrt{2}i}{9} \text{ or } \frac{z}{z^*} = \frac{z^2}{zz^*} = \frac{z^2}{18} \Rightarrow$ $z^2 = 14 + 8\sqrt{2}i \text{ or } a + bi = \left(\frac{7}{9} + \frac{4\sqrt{2}i}{9}\right)(a-bi) = \dots + \dots i$	Ml	1.1b
	Forms two equations from $a^2 + b^2 = 18$ or	M1	3.1a
	$\frac{a^2 - b^2}{18} = \frac{7}{9} \text{ or } \frac{a^2 - b^2}{a^2 + b^2} = \frac{7}{9} \text{ or } \frac{2ab}{18} = \frac{4\sqrt{2}}{9} \text{ or } \frac{2ab}{a^2 + b^2} = \frac{4\sqrt{2}}{9} \text{ or } a = \frac{7}{9}a + \frac{4\sqrt{2}}{9}b \text{ oe}$	A1	1.1b
	Solves the equations simultaneously e.g. $a^2 + b^2 = 18$ and $a^2 - b^2 = 14$ leading to a value for a or b	dM1	1.1b
	$z = \pm \left(4 + \sqrt{2}i\right)$	A1	2.2a
		(5)	
		(7 n	narks)

[8]

Question	Scheme	Marks	AOs
3	z = 3 - 2i is also a root	В1	1.2
	$(z - (3 + 2i))(z - (3 - 2i)) = \dots$ or Sum of roots = 6, Product of roots = 13 \Rightarrow	M1	3.1a
	$=z^2-6z+13$	A1	1.1b
	$(z^4 + az^3 + 6z^2 + bz + 65) = (z^2 - 6z + 13)(z^2 + cz + 5) \Rightarrow c =$	M1	3.1a
	$z^2 + 2z + 5 = 0$	A1	1.1b
	$z^2 + 2z + 5 = 0 \Rightarrow z = \dots$	M1	1.1a
	$z = -1 \pm 2i$	A1	1.1b
	(-1, 2) (3, 2)	B1 3 ± 2i Plotted correctly	1.1b
	(-1, -2) (3, -2)	B1ft -1 ± 2i Plotted correctly	1.1b