CONDENSADORES E BOBINES

DISPOSITIVOS PASSIVOS DE ARMAZENAMENTO DE ENERGIA

CONDENSADOR

CONVENÇÃO PASSIVA PARA A CORRENTE

E Constante dielectrica do material

$$55F = \frac{8.85 \times 10^{-12} A}{1.016 \times 10^{-4}} \Rightarrow A = 6.3141 \times 10^8 m^2$$

Valores de capacidade são baixos.Microfarads é típico Circuitos integrados é ainda mais baixo ... pico farads é típico Condensadores obedecem À Lei de Coulomb :

$$Q = CV_C$$

C é a capacidade do condensador

carga tensão el.

Um Farad(F) é a capacidade de um dispositivo Que armazena um coulomb de carga a um volt.

$$Farad = \frac{Coulomb}{Volt}$$

Representação do elem. circuito

EXAMPLE Queda de tensão de um cond. De 2 micro Farads que armazene 10mC de carga

$$V_C = \frac{1}{C}Q = \frac{1}{2*10^{-6}}10*10^{-3} = 5000$$
 v

Capacitance in Farads, charge in Coulombs result in voltage in Volts

CONDENSADORES PODEM SER PERI GOSOS!!!!!!!!!

Condensadores apenas armazenam e libertam carga. NÃO "CRI AM" CARGA.

$$Q_C = CV_C$$
 LEI DA CAPACIDADE!

Se a tensão varia a carga varia e portanto há uma corrente Que flui......

Podemos exprimir a tensão em função Da corrente.

$$V_C(t) = \frac{1}{C}Q = \frac{1}{C} \int_{-\infty}^t i_C(x) dx$$

Forma integral.

Uma consequência é que ...

$$V_C(t-) = V_C(t+); \forall t$$

Tensão aos terminais do condensador TEM QUE SER CONTÍNUA.

... Ou a corrente em função da tensão Aos seus terminais

$$i_C = \frac{dQ}{dt} = C\frac{dV_C}{dt}$$

Forma diferencial da lei da capacitância

E daí ??

$$V_C = Const \Rightarrow i_C = 0$$

Comportamento estacionário ou DC

Se a tensão é constante o condensador COMPORTA-SE COMO UM CIRCUITO ABERTO.

Condensador como elemento de circuito

$$i_C(t) = C \frac{dv_c}{dt}(t)$$

$$v_C(t) = \frac{1}{C} \int_C^t i_C(x) dx$$

$$i_R = \frac{1}{R}v_R$$

$$v_R = Ri_R$$
Ohm's Law

$$\int_{-\infty}^{t} = \int_{-\infty}^{t_0} + \int_{t_1}^{t}$$

$$v_{C}(t) = \frac{1}{C} \int_{-\infty}^{t_{0}} i_{C}(x) dx + \frac{1}{C} \int_{t_{0}}^{t} i_{C}(x) dx$$

$$v_C(t) = v_C(t_0) + \frac{1}{C} \int_{t_0}^{t} i_C(x) dx$$

Condensador como armazenador de energia

$$i_C$$
 + v_C

Potência instantânea

$$p_C(t) = v_C(t)i_C(t)$$

$$i_C(t) = C \frac{dv_c}{dt}(t)$$

$$p_C(t) = Cv_C(t) \frac{dv_c}{dt}$$

$$p_C(t) = C \frac{d}{dt} \left(\frac{1}{2} v_C^2(t) \right)$$
 Energia é integral da potência
$$w_C(t_2, t_1) = \int_{t}^{t_2} p_C(x) dx$$

$$\boldsymbol{p}_{\boldsymbol{C}}(t) = \frac{1}{\boldsymbol{C}} \frac{\boldsymbol{d}}{\boldsymbol{d}t} \left(\frac{1}{2} \boldsymbol{q}_{\boldsymbol{c}}^{2}(t) \right)$$

Se t1 é menos infinito temos "energia armazenada em t2."

Se ambos os limites são infinitos temos A energia total armazenada.

$$\mathbf{w}_{C}(t_{2},t_{1}) = \frac{1}{2}\mathbf{C}v_{C}^{2}(t_{2}) - \frac{1}{2}\mathbf{C}v_{C}^{2}(t_{1})$$

$$w_{C}(t_{2},t_{1}) = \frac{1}{C}q_{C}^{2}(t_{2}) - \frac{1}{C}q_{C}^{2}(t_{1})$$

Energia armazenada de 0 - 6 msec

$$|\mathbf{w}_{C}(0,6)| = \frac{1}{2}\mathbf{C}v_{C}^{2}(6) - \frac{1}{2}\mathbf{C}v_{C}^{2}(0)$$

$$w_C(0,6) = \frac{1}{2}5*10^{-6}[F]*(24)^2[V^2]$$

Carga armazenada aos 3msec

$$q_C(3) = Cv_C(3)$$

 $q_C(3) = 5*10^{-6}[F]*12[V] = 60\mu C$

Exemplo

"energia total armazenada?"

"carga total armazenada?" ...

BOBINES

ATENÇÃO À CONVENÇÃO PARA TENSÃO E CORRENTE

Um fluxo variável no tempo I nduz um campo electro--magnético, surgindo uma Tensão (induzida) aos Terminais da bobine.

FLUXO MAGNÉTICO VARIÁVEL NO TEMPO INDUZ UMA TENSÃO NA BOBINE

$$v_L = \frac{d\phi}{dt}$$
 Lei da indução

Para uma bobine "normal" (linear), o fluxo é Proporcional à corrente.

$$\phi = Li_L \Rightarrow v_L = L\frac{di_L}{dt}$$

A CONSTANTE DE PROPORCIONALIDADE L CHAMA-SE INDUTÂNCIA

A INDUTÂNCIA MEDE-SE EM HENRY

$$HENRY = \frac{Volt}{Amp/sec}$$

$$v_L = L \frac{di_L}{dt}$$
 Differential form of induction law

$$i_L(t) = \frac{1}{L} \int_{-\infty}^{t} v_L(x) dx$$

Integral form of induction law

$$i_L(t) = i_L(t_0) + \frac{1}{L} \int_{t_0}^t v_L(x) dx; \ t \ge t_0$$

Conseq. Directa da forma integral...

 $i_L(t-)=i_L(t+); \quad \forall t$ A corrente tem que ser contínua...

Outra consequência

$$i_L = Const. \Rightarrow v_L = 0$$
 Comportamento DC

Potência e energia armazenada

$$p_L(t) = v_L(t)i_L(t) \quad \mathbf{w} \quad p_L(t) = L\frac{di_L}{dt}(t)i_L(t) = \frac{d}{dt} \left(\frac{1}{2}Li_L^2(t)\right)$$

$$w_L(t_2,t_1) = \int_{t_1}^{t_2} \frac{d}{dt} \left(\frac{1}{2} L i_L^2(x) \right) dx$$
Current in Amps, Inductance in Henrys yield energy in Joules

$$w(t_2,t_1) = \frac{1}{2}Li_L^2(t_2) - \frac{1}{2}Li_L^2(t_1)$$
 Energy stored on the interval Can be positive or negative

$$w_L(t) = \frac{1}{2}Li_L^2(t)$$
 "Energy stored at time t" Must be non-negative. Passive element!!!

LEARNING EXAMPLE

L=10mH. FIND THE VOLTAGE

ENERGY STORED BETWEEN 2 AND 4 ms

$$w(4,2) = \frac{1}{2}Li_L^2(4) - \frac{1}{2}Li_L^2(2)$$

$$w(4,2) = 0 - 0.5*10*10^{-3}(20*10^{-3})^2$$
 J

THE DERIVATIVE OF A STRAIGHT LINE IS ITS SLOPE

$$\frac{di}{dt} = \begin{cases} 10(A/s) & 0 \le t \le 2ms \\ -10(A/s) & 2 < t \le 4ms \\ 0 & elsewhere \end{cases}$$

THE VALUE IS NEGATIVE BECAUSE THE INDUCTOR IS SUPPLYING ENERGY PREVIOUSLY STORED

$$\frac{di}{dt}(t) = 10(A/s)
L = 10 \times 10^{-3} H$$

$$\Rightarrow v(t) = 100 \times 10^{-3} V = 100 mV$$

T. Circuitos LEIC - J.P.Costeira 2002

The Dual Relationship for Capacitors and Inductors

Capacitor	Inductor
$i(t) = C \frac{dv(t)}{dt}$	$v(t) = L \frac{di(t)}{dt}$
$v(t) = \frac{1}{C} \int_{t_0}^t i(x) dx + v(t_0)$	$i(t) = \frac{1}{L} \int_{t_0}^{t} v(x) dx + i(t_0)$
$p(t) = Cv(t) \frac{dv(t)}{dt}$ $C \to L$ $v \to i$	$p(t) = Li(t) \frac{di(t)}{dt}$
$w(t) = \frac{1}{2}Cv(t)^2 \qquad i \to v$	$w(t) = \frac{1}{2}Li^2(t)$

Condensadores em série

$$v(t) = v_1(t) + v_2(t) + v_3(t) + \cdots + v_N(t)$$

$$v_i(t) = \frac{1}{C_i} \int_{t_0}^t i(t) dt + v_i(t_0)$$

$$C_s = \frac{C_1 C_2}{C_1 + C_2}$$

Combinação serie de 2 condensadores

$$v(t) = \left(\sum_{i=1}^{N} \frac{1}{C_i}\right) \int_{t_0}^{t} i(t) dt + \sum_{i=1}^{N} v_i(t_0)$$

$$\frac{1}{C_S} = \sum_{i=1}^N \frac{1}{C_i} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

$$G\mu F \qquad 3\mu F \qquad C_S = 2\mu F$$

$$v(t_0) = \sum_{i=1}^N v_i(t_0)$$
 Semelhante a resist. Em paralelo

Condensadores em paralelo

$$i(t) = i_1(t) + i_2(t) + i_3(t) + \cdots + i_N(t)$$

$$i_k(t) = C_k \frac{dv}{dt}(t)$$

$$i(t) = C_1 \frac{dv(t)}{dt} + C_2 \frac{dv(t)}{dt} + C_3 \frac{dv(t)}{dt} + \dots + C_N \frac{dv(t)}{dt}$$

$$= \bigg(\sum_{i=1}^N C_i\bigg) \frac{dv(t)}{dt}$$

$$C_p = C_1 + C_2 + C_3 + \cdots + C_N$$

EXEMPLO

T. Circuitos LEIC - J.P.Costeira 2002

EXEMPLO

SERIES INDUCTORS

 $= v_N(t) +$

$$v(t)$$
 t_{N} t_{N}

$$v(t) = v_1(t) + v_2(t) + v_3(t) + \cdots + v_N(t)$$

$$v_k(t) = L_k \frac{di}{dt}(t)$$

$$v(t) = L_1 \frac{di(t)}{dt} + L_2 \frac{di(t)}{dt} + L_3 \frac{di(t)}{dt} + \dots + L_N \frac{di(t)}{dt}$$
$$= \left(\sum_{i=1}^N L_i\right) \frac{di(t)}{dt}$$

$$L_{S} = \sum_{i=1}^{N} L_{i}$$

$$v(t) = L_S \frac{di}{dt}(t)$$

PARALLEL INDUCTORS

$$i(t) = i_1(t) + i_2(t) + i_3(t) + \dots + i_N(t)$$
$$i_j(t) = \frac{1}{L_j} \int_{t_0}^t v(x) \, dx + i_j(t_0)$$

$$i(t) = \left(\sum_{j=1}^{N} \frac{1}{L_{j}}\right) \int_{t_{0}}^{t} v(x) dx + \sum_{j=1}^{N} i_{j}(t_{0})$$

$$\frac{1}{L_p} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_N}$$

$$i(t_0) = \sum_{j=1}^{N} i_j(t_0)$$

INDUCTORS COMBINE LIKE RESISTORS
CAPACITORS COMBINE LIKE CONDUCTANCES

osteira 2002

SUMMARY

The important (dual) relationships for capacitors and inductors are as follows:

$$q = Cv$$

$$i(t) = C \frac{dv(t)}{dt} \qquad v(t) = L \frac{di(t)}{dt}$$

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(x) dx \qquad i(t) = \frac{1}{L} \int_{-\infty}^{t} v(x) dx$$

$$p(t) = Cv(t) \frac{dv(t)}{dt} \qquad p(t) = Li(t) \frac{di(t)}{dt}$$

$$W_C(t) = 1/2Cv^2(t) \qquad W_L(t) = 1/2Li^2(t)$$

- The passive sign convention is used with capacitors and inductors.
- In dc steady state a capacitor looks like an open circuit and an inductor looks like a short circuit.
- Leakage resistance is present in practical capacitors and inductors.
- When capacitors are interconnected, their equivalent capacitance is determined as follows: Capacitors in series combine like resistors in parallel and capacitors in parallel combine like resistors in series.
- When inductors are interconnected, their equivalent inductance is determined as follows: Inductors in series combine like resistors in series and inductors in parallel combine like resistors in parallel.
- RC operational amplifier circuits can be used to differentiate or integrate an electrical signal.

RC OPERATIONAL AMPLIFIER CIRCUITS

INTRODUCES TWO VERY IMPORTANT PRACTICAL CIRCUITS BASED ON OPERATIONAL AMPLIFIERS

RC OPERATIONAL AMPLIFIER CIRCUITS -THE INTEGRATOR

$$\frac{v_1 - v_-}{R_1} + C_2 \frac{d}{dt} (v_o - v_-) = i_-$$

IDEAL OP-AMP ASSUMPTIONS

$$\begin{array}{ccc} v_{-} = v_{+} & (A = \infty) \\ i_{-} = 0 & (R_{i} = \infty) \end{array} \qquad \begin{array}{c} v_{1} \\ \hline R_{1} \end{array} = -C_{2} \frac{dv_{o}}{dt}$$

$$v_o(t) = \frac{-1}{R_1 C_2} \int_{-\infty}^{t} v_1(x) dx$$
$$= \frac{-1}{R_1 C_2} \int_{0}^{t} v_1(x) dx + v_o(0)$$

RC OPERATIONAL AMPLIFIER CIRCUITS - THE DIFFERENTIATOR

$$\mathbf{v}_{+} = 0$$

$$KCL@v_{-}: i_{1}+i_{2}=i_{-}$$

IDEAL OP-AMP ASSUMPTIONS

$$\begin{aligned}
\mathbf{v}_{-} &= \mathbf{v}_{+} & (\mathbf{A} &= \infty) \\
\mathbf{i}_{-} &= 0 & (\mathbf{R}_{i} &= \infty)
\end{aligned}
\mathbf{i}_{1} + \frac{\mathbf{v}_{0}}{\mathbf{R}_{2}} = 0$$

$$v_1(t) = R_1 i_1 + \frac{1}{C_1} \int_{-\infty}^{t} i_1(x) dx$$
 DIFFERENTIATE

$$\mathbf{R}_{1}\mathbf{C}_{1}\frac{d\mathbf{i}_{1}}{dt} + \mathbf{i}_{1} = \mathbf{C}_{1}\frac{d\mathbf{v}_{1}}{dt}(t)$$

replace
$$i_1$$
 in terms of v_0 $(i_1 = -\frac{v_0}{R_2})$

$$R_1C_1\frac{dv_o}{dt} + v_o = -R_2C_1\frac{dv_1}{dt}(t)$$

IF R1 COULD BE SET TO ZERO WE WOULD HAVE AN IDEAL DIFFERENTIATOR.

IN PRACTICE AN IDEAL DIFFERENTIATOR AMPLIFIES ELECTRIC NOISE AND DOES NOT OPERATE.

THE RESISTOR INTRODUCES A FILTERING ACTION. ITS VALUE IS KEPT AS SMALL AS POSSIBLE TO APPROXIMATE A DIFFERENTIATOR

