CuCNN

CuML

CSN-221: Computer Architecture and Microprocessor

Jitesh Jain

Enr. No.-19114039

(Batch - O2)

Contents

- Project Statement
- Setting
- Observations

Project Statement

Implement a 3 layer CNN for Image Classification on MNIST using CUDA and observe the effect of different kernel settings on the performance of the model.

Convolution Operation [Source]

CNN Architecture

Setting

Show results on different settings of the kernel dimensions

- \bullet Host = CPU
- Device = GPU
- CNN has many operations like convolution (sliding-window multiplications and additions), activation functions,
 backpropagation (gradient calculations), etc.
- These all are executed using kernels which are composed of blocks (composed of threads).
- kernel <<<NumBlocks, NumThreads>>>

High-level Overview of CUDA [Source]

Observations

- Performance of the model depends on Grid Size (numBlocks) and Block Size (numThreads).
- Higher order (product) gives inaccurate results as compared to those of lower order *of 2*.
- As the order of the product becomes smaller, even if accuracy remains the same, training time increases (2⁸ order v/s 2¹² order).
- Products of the same order give almost the same
 results (in terms of time and accuracy).

Best Setting: kernel << 64,64>

Grid Size	Block Size	Order (2)	Epochs	Test Accuracy	Training Time (Minutes)
64	64	12	50	97.12	4.54
64	64	12	100	97.41	9.10
128	512	16	50	87.92	4.86
256	256	16	50	87.92	4.93
16	16	8	50	97.12	10.02

Epochs = 50 Order = 2¹² kernel<<<64,64>> Training Time = 4.54 minutes Test Accuracy = 97.12% Epochs = 50 Order = 2⁸ kernel <<< 16,16>> Training Time = 10.02 minutes Test Accuracy = 97.12%

Epochs = 50 Order = 2¹⁶ kernel<<<128,512>> Training Time = 4.86 minutes Test Accuracy = 87.92%

Epochs = 50 Order = 2¹⁶ kernel<<<256,256>> Training Time = 4.93 minutes Test Accuracy = 87.92%

Epochs = 50 Order = 2¹² kernel <<< 64,64>> Training Time = 4.54 minutes Test Accuracy = 97.12% Epochs = 100Order = 2^{12} kernel <<< 64,64 >> Training Time = 9.10 minutes Test Accuracy = 97.41%

References

- https://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
- https://classroom.udacity.com/courses/cs344 (Course on Udacity)
- https://towardsdatascience.com/an-introduction-to-convolutional-neural-networks-eb0b60b58fd7
- https://www.researchgate.net/publication/221053545 Solving Classification Problems Using Genetic Programming Algorithms on GPUs
- ImageNet Classification with Deep Convolutional Neural Networks

Thank You