Curs 1 Analiză Matematică

Radu MICULESCU

Transilvania University of Braşov

octomber 2023

SISTEMUL DE NOTARE

- 20% temele din decursul semestrului; acestea se vor încărca săptamânal pe platforma e-learning
- 20% activitatea, la seminar, din decursul semestrului
- 60% examenul final de tip grilă

SISTEMUL PRIVIND MODALITATEA DE A ADRESA ÎNTREBĂRI

- la finalul fiecărei ore de curs voi aloca 10 minute pentru întrebări
- întrebările suplimentare (ivite după studiul individual al cursului) se vor adresa la seminar

SFATURI ACADEMICE

- este extrem de important să studiați cursul și seminarul în fiecare săptămână
- cea mai nefericită strategie este aceea de a vă apuca de învățat în sesiune
- învățatul la materia Analiză Matematică se face, însoțit de întrebarea "de ce?", cu creionul/pixul în mână; în mod cert, lecturarea materialului/slide-urilor nu este suficientă, fiind nevoie ca ea să fie însoțită de conspecte, notițe și discuții (în cadrul seminarului și între dumneavoastră)
- vom studia Analiza Matematică la un cu totul alt nivel de rigoare, comparativ cu ceea ce ați făcut în liceu, i.e. vom pune un accent puternic pe înțelegerea noțiunilor; prin urmare, nu vă bazați pe ideea că materia vă este cunoscută din anii de liceu, deși o bună cunoaștere a ei vă este de folos

CE TEME VOM STUDIA?

- \mathbb{R} și $\overline{\mathbb{R}}$
- şiruri
- serii
- continuitate
- limite de funcții
- derivabilitate
- derivate parțiale
- diferențiabilitate
- integrabilitate
- integrala improprie
- integrala curbilini- integrala multiplă
- șiruri de funcții
- serii de funcții
- serii de puteri

LA CE FOLOSEȘTE ANALIZA MATEMATICĂ?

Noțiunile fundamentale de **derivată**, **integrală** și serie de puteri constituie un instrument esențial în orice problemă de modelare matematică ce apare în:

- fizică
- chimie
- biologie
- informatică
- inginerie
- economie
- medicină
- sport
- etc

BIBLIOGRAFIE

Cursuri

Radu Miculescu, Analiză Matematică, Note de Curs, Editura Pro Universitaria, București, 2017.

- M. Nicolescu, N. Dinculeanu, S. Marcus, Analiză Matematică, Editura Didactică și Pedagogică, București.
- E. Păltănea, R. Păltănea, Elemente de analiză matematică și teoria aproximării, Editura Universității Transilvania din Brașov, 2009.
- O. Stănășilă, Analiză Matematică, Editura Didactică și Pedagogică, București, 1981.
- M. Țena, M. Andronache, D. Şerbănescu, Matematică, manual pentru clasa a XI-a, M1, Art Grup Editorial, București, 2010.
- M. Țena, M. Andronache, D. Şerbănescu, Matematică, manual pentru clasa a XII-a, M1, Art Grup Editorial, București, 2010.

BIBLIOGRAFIE

Culegeri de probleme

- L. Aramă, T. Morozan, Culegere de probleme de analiză matematică, Universal Pan, 1996.
- C. Chiteș, R. Miculescu, Analiză Matematică, Culegere de Exerciții și Probleme, Editura Pro Universitaria, București, 2017.
- S. Chiriță, Probleme de Matematici Superioare, Editura Didactică și Pedagogică, București, 1989.

Mulțimea numerelor reale ${\mathbb R}$

Vom semnala proprietățile definitorii ale +, \cdot și \leq pe \mathbb{R} .

Adunarea și înmulțirea pe ${\mathbb R}$

Propoziție. $(\mathbb{R}, +, \cdot)$ este corp comutativ.

Mulţimi majorate/ mulţimi minorate

Definiție. Un element $M \in \mathbb{R}$ se numește majorant al submulțimii A a lui \mathbb{R} dacă

$$a \leq M$$
,

pentru orice $a \in A$.

Definiție. O submulțime A a lui \mathbb{R} se numește majorată (sau mărginită superior) dacă există un majorant al său.

Remarcă. Similar se definesc noțiunile de minorant și de mulțime minorată.

Definiție. O submulțime a lui $\mathbb R$ se numește mărginită dacă este majorată și minorată.

Maximul/minimul unei mulțimi

Definiție. Dacă pentru submulțimea A a lui \mathbb{R} există un majorant al său care aparține lui A, atunci acesta este unic și se numește maximul (sau cel mai mare element al lui A sau ultimul element al lui A) și se notează cu $\max A$.

Remarcă. Similar se definește noțiune de minim.

Supremumul/infimumul unei mulțimi

Definiție. Pentru o submulțime A a lui \mathbb{R} majorată și nevidă, mulțimea majoranților săi are un cel mai mic element care poartă numele de marginea superioară a lui A și care se notează cu sup A.

Aşadar sup A este cel mai mic majorant al lui A.

Remarcă. Definiția de mai sus implică așa numita axiomă a lui Cantor care afirmă că orice submulțime nevidă și majorată a lui $\mathbb R$ admite supremum.

Remarcă. Similar se definește noțiunea de margine inferioară a unei submulțimi a lui \mathbb{R} minorată și nevidă, care se notează cu inf A.

Așadar inf A este cel mai mare minorant al lui A.

Proprietățile relației de ordine pe \mathbb{R}

Propoziție. Relația de ordine \leq pe $\mathbb R$ are următoarele proprietăți:

i) este compatibilă cu structura algebrică, i.e.

a)

$$x \le y \Rightarrow x + z \le y + z$$
,

pentru orice $x, y, z \in \mathbb{R}$;

b)

$$x \le y \& z \ge 0 \Rightarrow xz \le yz$$
,

pentru orice $x, y, z \in \mathbb{R}$;

ii) este total ordonată, i.e. pentru orice $x,y\in\mathbb{R}$ avem $x\leq y$ sau $y\leq x$ iii) este complet ordonată, i.e. orice submulțime nevidă și majorată a lui \mathbb{R} admite supremum.

Exemple

Să se determine $\inf\{\frac{m}{1+m+n}\mid m,n\in\mathbb{N}\}$ și $\sup\{\frac{m}{1+m+n}\mid m,n\in\mathbb{N}\}$

Deoarece

$$0\leq \frac{m}{1+m+n},$$

pentru orice $m,n\in\mathbb{N}$, concluzionăm că 0 este minorant pentru mulțimea $\{\frac{m}{1+m+n}\mid m,n\in\mathbb{N}\}$.

Dacă, prin reducere la absurd, există x>0 minorant al mulțimii $\{\frac{m}{1+m+n}\mid m,n\in\mathbb{N}\}$, deducem că

$$x\leq \frac{1}{n+2},$$

pentru orice $n \in \mathbb{N}$, i.e.

$$n\leq \frac{1}{x}-2,$$

pentru orice $n \in \mathbb{N}$.

Prin urmare, mulțimea $\mathbb N$ este mărginită, ceea ce constituie o contradicție.

Aşadar

$$\inf\{\frac{m}{1+m+n}\mid m,n\in\mathbb{N}\}=0.$$

Deoarece

$$\frac{m}{1+m+n}\leq 1,$$

pentru orice $m, n \in \mathbb{N}$, tragem concluzia că 1 este majorant pentru mulțimea $\{\frac{m}{1+m+n} \mid m, n \in \mathbb{N}\}$.

Dacă, prin reducere la absurd, există x<1 majorant al mulțimii $\{\frac{m}{1+m+n}\mid m,n\in\mathbb{N}\}$, deducem că

$$\frac{n}{n+2} \le x,$$

pentru orice $n \in \mathbb{N}$, i.e.

$$n \le \frac{2x}{1-x},$$

pentru orice $n \in \mathbb{N}$.

Prin urmare, mulțimea $\mathbb N$ este mărginită, ceea ce constituie o contradicție. Asadar

$$\sup\{\frac{m}{1+m+n}\mid m,n\in\mathbb{N}\}=1.$$

Să se arate că inegalitatea

$$\inf A \leq \inf B \leq \sup B \leq \sup A$$

este valabilă pentru orice $\emptyset \neq B \subseteq A \subseteq \mathbb{R}$, A mărginită.

Deoarece $x \leq \sup A$ pentru orice $x \in A$ și $B \subseteq A$, deducem că sup A este majorant pentru B, deci, cum sup B este cel mai mic majorant al lui B, obținem că

$$\sup B \leq \sup A$$
.

Similar se arată că inf $A \leq \inf B$.

Intervale pe \mathbb{R}

Pentru $a, b \in \mathbb{R}$ considerăm următoarele mulțimi, numite intervale:

$$(-\infty, \infty) = \mathbb{R}$$

$$(-\infty, a) = \{x \in \mathbb{R} \mid x < a\}$$

$$(-\infty, a] = \{x \in \mathbb{R} \mid x \le a\}$$

$$(a, \infty) = \{x \in \mathbb{R} \mid a < x\}$$

$$[a, \infty) = \{x \in \mathbb{R} \mid a \le x\}$$

$$(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

$$[a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

$$[a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

$$[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

Dreapta reală încheiată $\overline{\mathbb{R}}$

Mulțimea $\mathbb{R} \cup \{-\infty, \infty\}$, unde elementele $-\infty$ și ∞ sunt exterioare lui \mathbb{R} și convenim că

$$-\infty < x < \infty$$

pentru orice $x \in \mathbb{R}$, se notează cu $\overline{\mathbb{R}}$ și poartă numele de dreapta reală încheiată.

Remarcă. Dacă submulțimea nevidă A a lui $\mathbb R$ nu este mărginită superior, atunci convenim să spunem că marginea superioară a lui A este ∞ și să scriem sup $A=\infty$. Similar, dacă submulțimea nevidă A a lui $\mathbb R$ nu este mărginită inferior, atunci convenim să spunem că marginea inferioară a lui A este $-\infty$ și să scriem inf $A=-\infty$.

Remarcă. Intervalele pe $\overline{\mathbb{R}}$ se definesc similar celor pe \mathbb{R} .

Exemplu

$$\sup\{\frac{n^2}{n+1}\mid n\in\mathbb{N}\}=\infty$$

deoarece mulțimea $\{\frac{n^2}{n+1}\mid n\in\mathbb{N}\}$ nu este mărginită superior căci $n-1<\frac{n^2}{n+1}$ pentru orice $n\in\mathbb{N}$.

Noțiunea de vecinătate a unui punct din $\overline{\mathbb{R}}$

Definiție. Mulțimea $V\subseteq \overline{\mathbb{R}}$ se numește vecinătate a lui $x_0\in \overline{\mathbb{R}}$ dacă:

i) cazul $x_0 \in \mathbb{R}$: există $\varepsilon > 0$ astfel încât

$$(x_0 - \varepsilon, x_0 + \varepsilon) \subseteq V$$
;

ii) cazul $x_0 = -\infty$: există $\varepsilon > 0$ astfel încât

$$[-\infty, -\varepsilon) \subseteq V$$
;

iii) cazul $x_0 = \infty$: există $\varepsilon > 0$ astfel încât

$$(\varepsilon, \infty] \subseteq V$$
.

Notație. Vom nota mulțimea vecinătăților lui x_0 cu \mathcal{V}_{x_0} .

Exemple

1. Deoarece $(-1,1) \subseteq (-2,\infty)$, deducem că

$$(-2, \infty) \in \mathcal{V}_0$$
.

2. Deoarece nu există $\varepsilon>0$ astfel încât $(-2-\varepsilon,-2+\varepsilon)\subseteq (-2,\infty)$, deducem că

$$(-2,\infty)\notin\mathcal{V}_{-2}$$
.

3. Deoarece $[-\infty, -1) \subseteq \overline{\mathbb{R}}$, deducem că

$$\overline{\mathbb{R}} \in \mathcal{V}_{-\infty}$$
.

Şiruri de numere reale

Definiție. O funcție $x : \mathbb{N} \to M$ se numește șir de elemente din mulțimea M.

Notații. Funcția $x : \mathbb{N} \to M$ se notează cu

$$(x_n)_{n\in\mathbb{N}}$$

având în vedere faptul că

$$x(n) \stackrel{not}{=} x_n$$
.

Dacă dorim să subliniem faptul că funcția x are codomeniul M, atunci vom scrie

$$(x_n)_{n\in\mathbb{N}}\subseteq M.$$

Domeniul $\mathbb N$ al funcției x se poate înlocui cu o mulțime de forma $\{k,k+1,...\}$, unde $k\in\mathbb N$, caz în care vom scrie

$$(x_n)_{n\geq k}$$
.

Şiruri monotone de numere reale

Definiție. *Un șir* $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ *se numește:*

- crescător dacă

$$x_n \leq x_{n+1}$$
,

pentru orice $n \in \mathbb{N}$;

- strict crescător dacă

$$x_n < x_{n+1}$$
,

pentru orice $n \in \mathbb{N}$;

- descrescător dacă

$$x_{n+1} \leq x_n$$
,

pentru orice $n \in \mathbb{N}$;

- strict descrescător dacă

$$x_{n+1} < x_n$$
,

pentru orice $n \in \mathbb{N}$;

- monoton dacă este crescător sau descrescător;
- strict monoton dacă este strict crescător sau strict descrescător.

Exemple

1. Şirul $(x_n)_{n\in\mathbb{N}}$, unde $x_n=n^2-3n+1$, este crescător deoarece

$$x_{n+1}-x_n=2(n-1)\geq 0$$
,

pentru orice $n \in \mathbb{N}$.

2. Şirul $(x_n)_{n\in\mathbb{N}}$, unde $x_n=\frac{2^n}{n!}$, este descrescător deoarece

$$\frac{x_{n+1}}{x_n}=\frac{2}{n+1}\leq 1,$$

pentru orice $n \in \mathbb{N}$.

3. Şirul $(x_n)_{n\in\mathbb{N}}$, unde $x_n=\frac{(-1)^n}{n}$, nu este monoton deoarece

$$x_1 < x_2 > x_3$$
.

Şiruri mărginite de numere reale

Definiție. Un șir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se numește:

- mărginit superior dacă $\{x_n \mid n \in \mathbb{N}\}$ este majorată, i.e. dacă există $M \in \mathbb{R}$ astfel încât

$$x_n \leq M$$
,

pentru orice $n \in \mathbb{N}$;

- mărginit inferior dacă $\{x_n \mid n \in \mathbb{N}\}$ este minorată, i.e. dacă există $m \in \mathbb{R}$ astfel încât

$$m \leq x_n$$
,

pentru orice $n \in \mathbb{N}$;

- mărginit dacă $\{x_n \mid n \in \mathbb{N}\}$ este mărginită, i.e. există m, $M \in \mathbb{R}$ astfel încât

$$m \leq x_n \leq M$$
,

pentru orice $n \in \mathbb{N}$.

Exemple

1. Şirul $(x_n)_{n\in\mathbb{N}}$, unde $x_n=\frac{n^2+n+1}{3n^2}$, este mărginit deoarece

$$0 \leq x_n \leq 3$$
,

pentru orice $n \in \mathbb{N}$.

2. Şirul $(x_n)_{n\in\mathbb{N}}$, unde $x_n=\frac{n^2}{n+1}$, nu este mărginit superior deoarece

$$n-1\leq x_n$$
,

pentru orice $n \in \mathbb{N}$, dar este mărginit inferior deoarece $0 \le x_n$ pentru orice $n \in \mathbb{N}$.