Эффективная реализация сопрограмм в управляемой среде исполнения

Евгений Пантелеев

Новосибирский государственный университет

Научный руководитель: Бульонков Михаил Алексеевич, канд. физ-мат наук ИСИ СО РАН

Новосибирск 2021г.

Сопрограммы

- Сопрограмма (англ. coroutine) программный модуль, организованный для обеспечения взаимодействия с другими модулями по принципу кооперативной многозадачности.
- Сопрограммы способны приостанавливать свое выполнение, сохраняя контекст (программный стек и регистры), и передавать управление другой.

Ключевые отличия от потоков ОС

- Переключение контекста сопрограммы требует меньше накладных расходов, чем переключение потока.
- Как правило меньший размер стека, а значит, потребление памяти так же меньше.

Применение сопрограмм.

- Обработка множества независимых событий.
- Организация параллельной обработки данных.

Поддержка в языках программирования

В языке Java сопрограммы не реализованы.

Project Loom

Fibers and Continuations

- ► Project Loom проект на базе OpenJDK, целью которого является разработка сопрограмм для языка Java.
- На данный момент уже доступна ранняя версия проекта.

Цели и задачи

Цель: реализация прототипа сопрограмм в Java. Поставленные задачи:

- Разработать тесты для сравнения производительности потоков и сопрограмм.
- Реализовать переключение сопрограмм.
- Реализовать трассировку ссылок объектов на стеках сопрограмм для сборки мусора.
- Сравнить производительность сопрограмм и потоков.

Работа проводится на базе Huawei JDK.

Тесты производительности

Был создан набор тестов производительности сопрограмм для языков Go, Java (с "Loom Project").

Тесты создавались для измерения 2 параметров.

- Скорость переключения контекста.
- Потребление памяти.

Репозиторий с тестами:

https://github.com/minium2/coroutines-benchmark

Переключение сопрограмм

- Функция yeild() переключает управление от одной сопрограммы другой.
- Завершение выполнения сопрограммы приводит к переключению на другую.

Подходы к реализации переключения сопрограмм

- OpenJDK/"Loom": копирование стека сопрограммы при переключении.
- Go: изменение указателя стека.

В HuaweiJDK выбран подход языка Go, поскольку он более эффективен.

Трассировка стеков

- Для работы сборщика мусора необходимо хранить адрес начала и конца стека каждой сопрограммы.
- При сборке мусора сканируются все стеки сопрограмм для поиска корневого множества живых объектов.

Измерение скорости переключения сопрограмм

Ubuntu, kernel 4.15, Intel Core i7-8700, 4.6 ГГц, 32 Гб ОЗУ Каждое значение усреднено по 100 измерениям.

Шт.	Число переключений, тыс./сек.		
ши.	HuaweiJDK	OpenJDK/"Loom"	Go
100	1956 \pm 38	1900 \pm 20	$\textit{18187} \pm \textit{219}$
1 000	$\textit{1829} \pm \textit{12}$	1775 \pm 20	$\textit{17934} \pm \textit{332}$
5 000	1578 \pm 39	1703 \pm 30	$\textit{12892} \pm \textit{339}$
10 000	1316 ± 20	1924 \pm 235	8 307 ± 80
20 000	1226 ± 8	$\textit{1863} \pm \textit{217}$	7 045 ± 72
30 000	1068 ± 7	$\textit{1772} \pm \textit{182}$	6391 ± 94
40 000	928 ± 7	1 606 \pm 194	5790 ± 67
50 000	881 ± 5	1 503 ± 157	$\textbf{5292} \pm \textbf{122}$

Функции для переключения контекста

► Первый прототип использовал функции для переключения контекста getcontext/setcontext из glibc.

Функции для переключения	Число переключений, дол. ед.
Из библиотеки Си tbox	7.8
Boost.Context	2.2
getcontext/setcontext us glibc	1

К сожалению, эти функции нельзя использовать, поскольку они не учитывают внутренние особенности JVM.

Измерение скорости переключения сопрограмм в HuaweiJDK с новыми функциями переключения контекста

Ubuntu, kernel 4.15, Intel Core i7-8700, 4.6 ГГц, 32 Гб ОЗУ Каждое значение усреднено по 100 измерениям. Для измерения используется только одно ядро ЦП.

Шт.	Число переключений, тыс./сек.		
шП.	getcontext/setcontext	Новые функции	
100	1956 \pm 38	$\textit{12980} \pm \textit{540}$	
1 000	1829 \pm 12	11 420 \pm 694	
5 000	1 578 \pm 39	$\textit{5875} \pm \textit{183}$	
10 000	1316 \pm 20	4 459 ± 162	
20 000	1226 ± 8	3604 ± 93	
30 000	1068 ± 7	3031 ± 94	
40 000	928 ± 7	$\textbf{2653} \pm \textbf{87}$	
50 000	881 ± 5	2 315 ± 60	

Измерение скорости переключения сопрограмм в управляемых средах

Ubuntu, kernel 4.15, Intel Core i7-8700, 4.6 ГГц, 32 Гб ОЗУ Каждое значение усреднено по 100 измерениям.

Шт.	Число переключений, тыс./сек.		
ши.	HuaweiJDK	OpenJDK/"Loom"	Go
100	$\textit{12980} \pm \textit{540}$	1900 \pm 20	$\textit{18187} \pm \textit{219}$
1 000	11 420 \pm 694	1 775 ± 20	$\textbf{17934} \pm \textbf{332}$
5 000	$\textit{5875} \pm \textit{183}$	1703 \pm 30	$\textbf{12892} \pm \textbf{339}$
10 000	4 459 ± 162	1924 \pm 235	8 307 ± 80
20 000	3604 ± 93	1 863 ± 217	7 045 ± 72
30 000	3031 ± 94	$\textit{1772} \pm \textit{182}$	6 391 ± 94
40 000	$\textit{2653} \pm \textit{87}$	1606 ± 194	5790 ± 67
50 000	2315 ± 60	1 503 ± 157	5 292 ± 122

Измерение скорости переключения потоков и сопрограмм

Ubuntu, kernel 4.15, Intel Core i7-8700, 4.6 $\Gamma\Gamma$ ц, 32 Γ б O3У, HuaweiJDK

Каждое значение усреднено по 100 измерениям.

Для измерения используется только одно ядро ЦП.

Шт.	Число переключений, тыс./сек.		
шп.	Сопрограммы	Потоки	
100	$\textit{12980} \pm \textit{540}$	$\textbf{2306} \pm \textbf{50}$	
1 000	11 420 \pm 694	$\textit{2300} \pm \textit{27}$	
5 000	$\textit{5875} \pm \textit{183}$	1 554 \pm 37	
10 000	$\textit{4459} \pm \textit{162}$	1016 \pm 29	
20 000	3604 ± 93	$\textbf{753} \pm \textbf{28}$	
30 000	3031 ± 94	556 ± 16	
40 000	$\textbf{2653} \pm \textbf{87}$	436 ± 12	
50 000	2315 ± 60	361 ± 8	

Измерение потребление памяти сопрограмм в управляемых средах

Ubuntu, kernel 4.15, Intel Core i7-8700, 4.6 ГГц, 32 Гб ОЗУ

Шт.	Резидентная память		
ши.	HuaweiJDK	OpenJDK/"Loom"	Go
100	18 Mб	130 Мб	3,040 Мб
1000	22 Мб	161 Mб	3,105 Мб
5000	32 Mб	187 Mб	3,156 Мб
10000	37 Mб	193 Мб	3,308 Мб
20000	45 Mб	196 Mб	3,320 Мб
30000	49 Mб	197 Мб	3,350 Mб
40000	51 M6	200 Мб	3,390 Mб
50000	57 Mб	202 Мб	3,407 Мб

Измерение потребление памяти потоков

Ubuntu, kernel 4.15, Intel Core i7-8700, 4.6 ГГц, 32 Гб ОЗУ, HuaweiJDK

Шт.	Размер физической памяти		
ши.	Сопрограммы	Потоки	
100	18 Мб	34 Мб	
1000	22 Мб	35 Мб	
5000	32 Мб	37 Мб	
10000	37 Мб	40 Мб	
20000	45 Мб	49 Мб	
30000	49 Мб	56 Мб	
40000	51 Мб	63 Мб	
50000	57 Мб	72 Мб	

План дальнейших работ

- ► Поддержка synchronized блоков.
- Переключение сопрограммы при вызове ввода-вывода.

Результаты

- Создан набор тестов для сравнения производительности потоков и сопрограмм.
- Реализовано переключение контекста сопрограмм.
- Разработана трассировка ссылок объектов на стеках сопрограмм.
- Оптимизировано переключение контекста сопрограмм более чем в 3 раза.
- Проведен анализ результатов тестов производительности.