

Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

Наглядный вероятностно-статистический анализ данных

Практическое задание 3

«Нахождение статистических числовых характеристик средствами Python»

Пройдакова Екатерина Вадимовна, доцент кафедры ТВиАД ИИТММ

Содержание

- □ Библиотечные функции Python
- □ Пример: данные о стоимости турпакетов
 - Формат данных
 - Характеристики центрального положения и разброса
 - Обследование распределения данных
- □ Практическое задание

1. БИБЛИОТЕЧНЫЕ ФУНКЦИИ PYTHON

1. Библиотечные функции Python

Характеристика	statistics	numpy	scipy
Среднее	mean()	mean()	mean()
Усеченное среднее	-	-	stats.trim_mean()
Медиана	median()	median()	median()
Мода	mode(), multimode() — с версии 3.8	-	stats.mode()
Дисперсия	variance()	var()	var()
Среднее квадратическое отклонение	stdev()	std()	std()
Квантиль	quantiles() – с версии 3.8	quantile()	stats.mstats.mquantiles()
Начальный момент	-	-	stats.moment()
Коэффициент эксцесса	-	-	stats.kurtosis()
Коэффициент асимметрии	-	-	stats.skew()

2. ПРИМЕР: ДАННЫЕ О СТОИМОСТИ ТУРПАКЕТОВ

2. Пример: данные о стоимости турпакетов 2.1 Формат данных

	_4	Α	В	С	D	E	F	G	Н	
	1			2262200020	0030200001 Стои	мость турпакето	в, реализованны	к населению		
	2		2012 г.	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	
	3	Bcero								
	4	Российская Федерация	208117897,60	249898028,99	243452560,99	239554221,80	192624377,20	281229353,60	303737621,49	
	5	Центральный федеральный округ	82702939,20	94748360,99	98110495,99	110924272,40	69591390,70	120973363,69	130995716,29	
	6	Белгородская область	727960,50	822657	916406	902520	732558,90	923334	1147512,89	
	7	Брянская область	47 <u>6732,</u> 50	506285	487966	561214,50	500517,10	591302,30	703124,80	
	101	Гражданам России по территории России								
	102	Российская Федерация	22745676,70	23875845,99	25443923	50517087,29	49165518,09	52289929,99	59555636,89	
	103	Центральный федеральный округ	6184777,09	6115515	5380795	24967610	10446617,10	13196236,20	18261917,69	
	104	Белгородская область	41192,90	24773	73118	209382,50	175206,10	112518	123604,90	
_	105	Брянская область	126868,70	123837,99	136701	81190,80	255295,90	252913,60	199745,20	
•	199	Гражданам России по другим странам								
	200	Российская Федерация	183309232,69	222002330,99	214308274	183970132,09	138119905,10	222171007,99	234054471,49	
	201	Центральный федеральный округ	75920625,50	87963392	92316925,99	82920954,99	56294708,70	104035744,49	108550368,49	
	202	Белгородская область	686757,60	797755	843288	693137,50	557352,80	810816	1023908	
_	203	Брянская область	349863,80	382447	351265	480023,70	245221,20	332367,30	503333,60	
	297	Гражданам других стран по территории России								
	298	Российская Федерация	2062988,20	4019851,99	3700364	5067002,40	5338954	6768415,60	10127513,10	
	299	Центральный федеральный округ	597536,60	669454	412775	3035707,40	2850064,90	3741382,99	4183430,10	
	300	Белгородская область	10	129	0	0	0	0	0	

□ Выборочные значения разделены на 4 категории

□ Имеются наблюдения за 7 лет (2012-2018 гг.)

2. Пример: данные о стоимости турпакетов 2.1 Формат данных

- □ Переводим данные в словарь expenses
- □ Формат записи:

```
In [81]: expenses['Белгородская область']
Out[81]:
[[727960.5, 822657.0, 916406.0, 902520.0, 732558.9, 923334.0, 1147512.89],
[41192.9, 24773.0, 73118.0, 209382.5, 175206.1, 112518.0, 123604.9],
[686757.6, 797755.0, 843288.0, 693137.5, 557352.8, 810816.0, 1023908.0],
[10.0, 129.0, 0.0, 0.0, 0.0, 0.0]]

In [82]: expenses['Белгородская область'][0][2016-2012] # всего по Белгородской области в 2016 году
Out[82]: 732558.9
```

□ Подключаем библиотеки для нахождения числовых характеристик

```
31 import statistics
32 import numpy as np
33 from scipy import stats
```


2. Пример: данные о стоимости турпакетов 2.1 Формат данных

□ Формируем срезы данных

```
35 # Массивы данных: года, категории
36 \text{ years} = \text{np.arange}(2012,2019,\text{step=1})
37 categories = range(4)
38
39 # Функция, возвращающая массив стоимостей в млн. руб. по всем областям
40 # для фиксированного года и категории
41 def exp(category, year):
42
      res = []
      for region data in expenses.values():
           res.append(region data[category][year-2012]/1000000)
      return res
47 # Функция, переводящая индекс категории в строку
48 def catToString(category):
      if category == 0:
49
           return "Bcero"
50
51
      elif category == 1:
52
           return "Γp.PΦ πο τep.PΦ"
53
      elif category == 2:
54
           return "Гр.РФ по др.странам"
55
      elif category == 3:
56
           return "Гр.др.стран по тер.РФ"
```


Находим основные числовые характеристики центрального положения и разброса на примере суммарных данным (Категория 0 - Всего) в 2018 году:

```
59 print("Выборочное среднее = " + str(round(statistics.mean(exp(0,2018)), 4)))
60 print("Усеченное среднее = " + str(round(stats.trim_mean(exp(0,2018), 0.1), 4)))
61 print("Выборочная медиана = " + str(round(statistics.median(exp(0,2018)), 4)))
62 print("Выборочная мода для группированных данных = " +
63 str(statistics.mode(round(x) for x in exp(0,2018))))
64 from collections import Counter
65 print("Мультимодальность для группированных данных: " +
66 str(Counter(round(2*x)/2 for x in exp(0,2018)).most_common(2)))
67 print("Выборочная дисперсия = " + str(round(statistics.variance(exp(0,2018)), 4)))
68 print("Среднее квадратическое отклонение = " + str(round(statistics.stdev(exp(0,2018)), 4))
```

```
Выборочное среднее = 3.6112
Усеченное среднее = 1.8698
Выборочная медиана = 1.3891
Выборочная мода для группированных данных = 1
Мультимодальность для группированных данных: [(0.5, 14), (1.5, 14)]
Выборочная дисперсия = 134.341
Среднее квадратическое отклонение = 11.5906
```


- □ Усеченное среднее: меньше влияния выбросов данных
- □ Наблюдается очевидный «тяжелый» хвост распределения:

	А	В	С	D	E	F	G	Н	
1		22622000200030200001 Стоимость турпакетов, реализованных населению							
2		2012 г.	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	
3	Всего								
19	Тамбовская область	320309,90	403161	383710	356506	221577,70	367238,50	499430,80	
20	Тверская область	1136579,10	1410133	1414155	1275488,80	813064	1526506,40	1775544,30	
21	Тульская область	695274	925618	845769	546345,40	696121,20	992542,80	1281573,20	
22	Ярославская область	590278,90	751669	545510	1354708,50	1259140,80	1605202,30	2459874,40	
	Город Москва столица Российской Федерации город федерального значения	68500672,20	76778255,99	78283229	95963296,49	52399873,89	101057289,49	106831586,40	
	a n v								

□ Динамика числовых характеристик по годам и категориям

```
70 from matplotlib import pyplot as plt
72 # Графики динамики изменения числовых характеристик по годам
73 fig, axes = plt.subplots(nrows=2, ncols=2, figsize = (18, 10))
74 for category in categories:
      meanDynamics = [] #среднее
      trimMeanDynamics = [] #усеченное среднее
76
      medianDynamics = [] #медиана
77
      varDynamics = [] #∂ucnepcuя
78
79
      for year in years:
80
          meanDynamics.append(np.mean(exp(category,year)))
          trimMeanDynamics.append(stats.trim_mean(exp(category,year), 0.1))
81
          medianDynamics.append(np.median(exp(category,year)))
83
          varDynamics.append(np.var(exp(category,year)))
84
      # Отрисовка графиков по точкам
      axes[0][0].plot(years, meanDynamics, label = catToString(category))
      axes[0][1].plot(years, trimMeanDynamics, label = catToString(category))
      axes[1][0].plot(years, medianDynamics, label = catToString(category))
      axes[1][1].plot(years, varDynamics, label = catToString(category))
89 # Заголовки для легенд
90 axes[0][0].legend(title='Среднее:', loc = 2)
91 axes[0][1].legend(title='Усеч. среднее:', loc = 2)
92 axes[1][0].legend(title='Медиана:', loc = 2)
93 axes[1][1].legend(title='Дисперсия:', loc = 2)
94 plt.show() # отображение рисунка на экране
```


□ Динамика изменения числовых характеристик по годам и по категориям

2. Пример: данные о стоимости турпакетов

2.3 Обследование распределения данных

□ Оценка функции распределения

```
96 # Массив уровней квантилей
                                                                                   Оценка функции распределения суммарной
                                                                                 стоимости турпакетов, реализованных населению
 97 glevels = [0.05, .1, .25, .5, .75, .9, .95]
 98 # Функция, возвращающая массив квантилей для данных
                                                                       Год:
                                                                         2012
 99 # по фиксированной категории фиксированного года
                                                                         2015
100 def quantiles(category, year):
                                                                0.8
                                                                         2016
101
       res = []
                                                                         2018
       for a in alevels:
102
            res.append(np.quantile(exp(category,year), q))
103
                                                                0.6
104
       return res
                                                                0.4
106 plt.figure(figsize = (9, 5))
107 plt.plot(quantiles(0, 2012), qlevels, label='2012')
108 plt.plot(quantiles(0, 2015), glevels, label='2015')
                                                                0.2
109 plt.plot(quantiles(0, 2016), qlevels, label='2016')
110 plt.plot(quantiles(0, 2018), qlevels, label='2018')
111 plt.legend(title='Год:')
                                                                                           Стоимость турпакетов в млн.руб.
112 plt.xticks(np.arange(0, quantiles(0, 2018)[-1], step = 1.),
113
              rotation = 90) # Метки по горизонатльной оси
114 plt.xlabel("Стоимость турпакетов в млн.руб.") # название горизонтальной оси
115 plt.title("Оценка функции распределения суммарной \n стоимости турпакетов, " +
              "реализованных населению") # название графика
117 plt.show() # отображение рисунка на экране
```

2. Пример: данные о стоимости турпакетов 2.3 Обследование распределения данных

□ Качественная оценка функции распределения строится по набору квантилей

2. Пример: данные о стоимости турпакетов

2.3 Обследование распределения данных

□ Коробчатая диаграмма (boxplot): стандарт для визуализации распределения данных

```
134 plt.figure(figsize = (9, 5))
135 plt.boxplot([trimTails(0,2012), trimTails(0,2015), trimTails(0,2016), trimTails(0,2018)],
136 showmeans = True)
137 plt.xticks(np.arange(1, 5, step = 1), labels = [2012, 2015, 2016, 2018])
138 plt.title("Коробчатая диаграмма для распределения \n" +
139 "суммарной стоимости турпакетов по годам \n(Категория 0 - Всего)")
140 plt.ylabel("Стоимость в млн.руб.")
141 plt.show()

Коробчатая диаграмма для распределения
```


2. Пример: данные о стоимости турпакетов

2.3 Обследование распределения данных

3. CPEДCTBA MS EXCEL

3. Средства MS Excel

Простейший анализ данных при помощи числовых характеристик можно провести также и в MS Excel.

Ниже представлены формулы для подсчета основных характеристик в предположении, что выборочные данные находятся в ячейках I4:I90 (суммарные стоимости турпакетов за 2018 г.).

1		2018 г.				
2	Bcero	в руб.	в млн.руб.	Характеристика		Формула
3	Белгородская область	1147512,89	1,14751289	Среднее	3,61	ОКРУГЛ(СРЗНАЧ(14:190); 4)
4	Брянская область	703124,80	0,7031248	Медиана	1,39	ОКРУГЛ(МЕДИАНА(14:190); 4)
5	Владимирская область	1545161,40	1,5451614	Дисперсия	134,341	ОКРУГЛ(ДИСП.В(14:190); 4)
6	Воронежская область	977750,50	0,9777505	Ср.кв.откл.	11,5906	ОКРУГЛ(КОРЕНЬ(К6); 4)
7	Ивановская область	1101764,89	1,10176489			

3. Средства MS Excel

3. ПРАКТИЧЕСКОЕ ЗАДАНИЕ

3. Практическое задание

- □ Данные **из практического задания 2**: 02_Автоаварии.xls
 - **1.** Написать функции для подсчета следующих выборочных числовых характеристик: а) математическое ожидание, b) медиана, c) усеченное среднее (доля усеченных данных аргумент функции), d) дисперсия, e) квантиль заданного порядка (уровень квантиля аргумент функции), f) центральный и начальный момент заданного порядка (порядок аргумент функции).

Для подсчета каждой характеристики необходима **отдельная функция**. При написании не использовать библиотечные функции вычисления числовых характеристик.

Проверить правильность работы функций, сравнив их выходы с выходами функций библиотек statistics/ numpy/ scipy на примере выборочных данных, полученных по результатам наблюдений за величиной ξ – видимость дороги в момент совершения аварии (Visibility).

3. Практическое задание

2. Построить график, отражающий зависимость среднего значения видимости дороги от степени серьезности аварии. График будет представлять из себя ломанную, построенную по 4 точкам вида (x, y), где x — степень серьезности аварии, y — среднее значение видимости дороги.

Аналогичный график построить для выборочной медианы и усеченного среднего. Сделать первичные выводы о взаимном влиянии двух указанных величин и наличии выбросов в наблюдениях.

3. Построить оценки функций распределения величин ζ_1 , ζ_2 , ζ_3 , ζ_4 — скорость ветра в момент совершения аварии степени серьезности 1, 2, 3, 4 по квантилям порядков {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.

Также **построить коробчатые диаграммы** для указанных величин. Определить моду (моды) распределений указанных величин.

