26. Сингулярное представление линейного отображения.

Рассмотрим два подпространства со скалярным произведением U,V и линейный оператор $\mathcal{A}:U\to V$ Теорема Фредгольма Если $\mathcal{A}:U\to V$ - линейный оператор пространств со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\},mo$ $(\mathrm{Im}\mathcal{A})^\perp=KerA^\star$

Доказательство

Пусть $y\in Ker\mathcal{A}^*$, т.е. $\mathcal{A}^*y=0$. Чтобы доказать, что $y\in (\mathrm{Im}\mathcal{A})^\perp$, возьмем любой вектор $x\in \mathrm{Im}\mathcal{A}$ и проверим, что $y\perp x$. Поскольку $x=\mathcal{A}u$ для некоторого вектора $u\in U$ имеем

$$xy = \mathcal{A}uy = uA^*y = 0$$

Обратно, пусть $y\in (\mathrm{Im}\mathcal{A})^\perp$ тогда xy=0 ля любого вектора $x\in \mathrm{Im}\mathcal{A}$ поэтому для произвольного вектора $u\in U$ имеем

$$0 = \mathcal{A}uy = u\mathcal{A}^*y$$

Вектор A^*y ортогонален произвольному вектору $u\in U$ и поэтому он нулевой. Отсюда $y\in KerA^*$ Доказали

Теорема Фредгольма даёт ортогональное разложение пространства V:

 $V = Ker \mathcal{A}^* \oplus Im \mathcal{A}$

Применяя ту же теорему к сопряженному оператору $\mathcal{A}^*:V o U$ получим ортогональное разложение пространства U:

 $U = Ker \mathcal{A} \oplus Im \mathcal{A}^* *$

Положим $U_0:=\mathrm{Im}\mathcal{A}^*,V_0:=\mathrm{Im}\mathcal{A}$ и обозначим через A_0 ограничение оператора \mathcal{A} на U_0 . Это обозначает что вектор A_0x определен, только если $x\in U_0$ в этом случае $A_0x:=\mathcal{A}x$

Предложение \mathcal{A}_0 - изоморфизм пространства U_0 на V_0

Конфигурация из предложения

Доказательств не будет, потому что там много..

Теорема сингулярное представление линейного оператора

Для любого линейного оператора $\mathcal{A}:U\to V$ пространств со скалярным произведением в U и V можно выбрать ортонормированные базисы, в которых его матрица имеет вид

$$A = egin{pmatrix} \mu_1 & 0 & \dots & 0 & 0 & \dots \ 0 & \mu_2 & \dots & 0 & 0 & \dots \ dots & dots & \ddots & dots & dots & dots \ 0 & 0 & \dots & \mu_r & 0 & \dots \ 0 & 0 & \dots & 0 & 0 & \dots \ dots & dots & \ddots & dots & dots & \ddots \end{pmatrix}$$

, где r - ранг \mathcal{A} , а $\mu_1, \mu_2, \dots, \mu_r$ - положительные действительные числа определяемые однозначно с точностью до порядка.

Доказательство

Осталось доказать только то, что если матрица оператора $\mathcal A$ в каких-то ортонормированных матрицах имеет вид из теоремы, то диагональные элементы этой матрицы определен однозначно с точностью до порядка.

Действительно, если B_U и B_V - какие-то ортонормированные базисы U и V, а A - матрица оператора \mathcal{A} в этих базисах, то матрица сопряженного оператора \mathcal{A}^* в тех же базисах есть A^* .

Если A имеет вид из теоремы, то $A^*=A^T$. Поэтому матрица оператора \mathcal{AA}^* в базисе B_U - квадратная диагональная матрица с ненулевыми элементами диагонали равными $\mu_1^2,\mu_2^2,\dots,\mu_r^2$ Если матрица оператор в некотором базисе диагональна, то на диагонали стоят его собственные значения. Значит $\mu_1^2,\mu_2^2,\dots\mu_r^2$ - собственные значения оператора \mathcal{AA}^* , а следовательно μ_1,μ_2,\dots,μ_r есть в точности сингулярные числа оператора \mathcal{A} и не зависят от базисов B_U и B_V