13. Approximation 1/22

13. Approximation CPSC 535 ~ Fall 2019

Kevin A. Wortman

December 9, 2019

13. Approximation 2 / 22

Big Idea: Renegotiating Problems

Sometimes we want to solve a problem, but there is an obstacle

- ▶ computational complexity: problem is *NP*-hard or undecidable
- ill-posed: don't know how to phrase problem as precise input/output statement

These are insurmountable; progress not possible.

Sometimes we can *negotiate* on the definition of the problem

- adjust input/output def'n to correspond to an easier problem
- more specific input; or more general output
- ideally, computational problem still helps with the business problem
- combines CS hard skills with business soft skills

13. Approximation 3/22

Approximation

Approximation: output is *nearly-optimal* but not necessarily truly optimal.

- quality is quantified, proven
- "approximation", "approximate" are technical terms; use other words like "decent" for informal ideas about quality
- suitable for use cases where approximate solutions are adequate
- need to rewrite problem definition
- every optimization problem has corresponding approximation problems; but these are distinct problems

13. Approximation 4/22

Example: optimal vs. approximate graph coloring

graph coloring

input: connected graph G = (V, E)

output: coloring c using k colors, where each vertex $v \in V$ is assigned color $c(v) \in \{1, \dots k\}$, no pair of adjacent vertices are assigned the same color, and the number of colors k is minimal

3-approximate graph coloring

input: connected graph G = (V, E)

output: coloring c using k colors, where each vertex $v \in V$ is assigned color $c(v) \in \{1, \dots k\}$, no pair of adjacent vertices are assigned the same color, and the number of colors k satisfied $k \le 3k^*$, where k^* is the fewest colors possible for G

13. Approximation 5 / 22

Approximation vs. Other Approaches

Other ways of dealing with hard problems:

- say "no"
- ▶ when *n* is small enough, just use exponential-time algorithm
- no proof of solution quality, but nonetheless sometimes good enough:
 - machine learning algorithms (also, in M.L. humans don't need to precisely define what counts as "correct")
 - fast heuristic algorithms
 - Monte Carlo algorithms

Approximation

- pros: provable solution quality, often fast
- con: human needs to design and analyze algorithm for each specific problem

13. Approximation 6 / 22

Performance Ratios

Approximation ratio $\rho(n)$: ratio between quality of algorithm's output and optimal output; smaller is better

• for maximization problem: if optimal quality is C^* and alg. produces quality C, by definition $C^* \ge C$, and define

$$\rho(n) = \frac{C^*}{C}$$

• for **minimization** problem: if optimal quality is C^* and alg. produces quality C, by definition $C^* \leq C$ and define

$$\rho(n) = \frac{C}{C^*}$$

Recall 3-approx. vertex cover: output # colors $\le 3k^*$

13. Approximation 7 / 22

Fixed Approximation Ratios

Some approximation algorithms have a fixed approximation ratio that is "baked in" to the design of the algorithm.

Ex.: algorithm that solves 3-approx. vertex cover would have fixed $\rho(n) = 3$

In general, better (smaller) ratios require slower algorithms. (note 1-approximation algorithms produce optimal solutions.)

Deriving a different quality-vs.-time trade-off requires designing an entirely different algorithm.

13. Approximation 8/22

Approximation Schemes

approximation scheme: family of related algorithms, such that, for any parameter $\epsilon > 0$, scheme defines a $(1+\epsilon)$ -approximate algorithm

- ▶ think of \(\epsilon\) as being a const variable
- time-performance trade-off is fully tuneable at compile time

Polynomial Time Approximation Scheme (PTAS): approx. scheme where runtime is polynomial in n; nothing said of relationship to ϵ e.g. $O(2^{1/\epsilon} n \log n)$

Fully PTAS: runtime is polynomial in n and $1/\epsilon$ e.g. $O((1/\epsilon)^2 n^3)$

13. Approximation 9 / 22

Vertex Cover Problem

vertex cover problem

input: undirected graph G = (V, E)

output: set of vertices $C \subseteq V$, of minimal size |C|, such that every edge in E is incident on at least one vertex in C

2-approximate vertex cover problem

input: undirected graph G = (V, E)

output: set of vertices $C \subseteq V$, such that every edge in E is incident on at least one vertex in C, and $|C| \le 2|C^*|$ where C^* is a minimal vertex cover for G

See Wiki page:

https://en.wikipedia.org/wiki/Vertex_cover

13. Approximation 10/22

Vertex Cover Hardness

- vertex cover is NP-complete
- baseline algorithm:
 - exhaustive search
 - for each subset C of vertices, check whether every edge has an endpoint in C
 - return the smallest C that is a valid cover
 - \triangleright $\Theta(2^n m)$ time, exponential, slow
- goal of a 2-approximate vertex cover algorithm:
 - get a decent (though imperfect) cover much faster

13. Approximation 11/22

A Greedy Approximation Algorithm

Idea:

- every edge e = (u, v) needs both $u \in C$ and $v \in C$
- ▶ so grab an edge e = (u, v) and include u and v in C
- every other edge touching u or v is now covered, so eliminate them
- continue until every edge is either grabbed or eliminated
- good: definitely finds a correct cover C
- bad: depending on the order of the "grabs", heuristic can get tricked into picking sub-optimal vertices

13. Approximation 12 / 22

2-Approximate Vertex Cover Pseudocode

```
1: function APPROX-VERTEX-COVER(G = (V, E))
       C = \emptyset
 2:
3:
   T = F
                                    \triangleright T = edges that may be taken
 4: while T \neq \emptyset do
           Let e = (u, v) be an arbitrary edge in T
 5:
           C = C \cup \{u, v\}
 6:
 7:
           Remove from T any edge f that is incident on u or v
8:
       end while
       return C
 g.
10: end function
```

Efficiency Analysis: O(m+n) time (assuming efficient data structures for G, T, and C)

13. Approximation 13/22

Vertex Cover Performance Ratio

Lemma: APPROX-VERTEX-COVER is a 2-approximation algorithm.

Need: for any $G, |C| \le 2|C^*|$

Proof sketch:

- ▶ Let A be the set of edges chosen inside the **while** loop
- will bound $|C|, |C^*|$ both in terms of |A|
- ▶ **(1)** |*C**| vs. |*A*|
- ▶ C^* is a vertex cover, so for every edge $(u, v) \in A$, we must have $u \in C^*$ and/or $v \in C^*$
- the "Remove from T" step guarantees that, after (u, v) is chosen, no other edge incident on u or v will be chosen and added to A
- ightharpoonup \Rightarrow each $x \in C^*$ covers exactly one edge in A
- $\rightarrow |C^{\star}| \ge |A|$

13. Approximation 14/22

Vertex Cover Performance Ratio (cont'd)

- ▶ (2) |C| vs. |A|
- ▶ the $C = C \cup \{u, v\}$ step inserts 2 vertices into C
- due to the same "Remove from T" logic, neither u nor v was already in C
- $ightharpoonup \Rightarrow |C| = 2|A|$ (note exact equality)
- combining (1) and (2)

$$|C| = 2|A| \le 2|C^*|$$

QED

13. Approximation 15 / 22

Commentary on this Proof

- note that us analysts do not know concretely which vertices are in C*
- the algorithm certainly doesn't know what C^* is, either
- all we do know is that, due to the definition of vertex cover, and the logic of our algorithm,
 - # vertices in optimal cover $\geq \#$ iterations **while** loop
- and, due to algorithm logic,
 - # iterations while loop = # vertices chosen for approx. cover
- in general, to prove an approx. ratio, need
 - 1. to bound quality of arbitrary, opaque optimal solution; and
 - 2. bound quality of approx. solution the same way

13. Approximation 16 / 22

TSP

traveling salesperson problem (TSP)

input: a complete undirected graph G = (V, E) where each edge has weight $w(e) \ge 0$

output: a sequence of vertices H forming a Hamiltonian cycle, minimizing total edge weight

Recall:

- Cycle: path that starts and ends at same vertex
- Hamiltonian: visits each vertex exactly once
- every complete graph contains some Hamiltonian cycle

Bad news:

- ► TSP is NP-complete; if P ≠ NP, no polynomial-time optimization algorithm
- ► TSP is also APX-complete; if $P \neq NP$, no PTAS

13. Approximation 17/22

Triangle Inequality

Triangle inequality in general: for distance function d and sites a, b, c,

$$d(a,c) \le d(a,b) + d(b,c)$$

 \Rightarrow direct path $a \rightarrow c$ always cheaper than two-step path $a \rightarrow b \rightarrow c$ (or tied)

Triangle inequality in a complete graph: for vertices x, y, z and edge weights w,

$$w(x,z) \le w(x,y) + w(y,z)$$

⇒ same intuition; adding an intermediate step is never a shortcut

⇒ automatically holds for Euclidean graphs

13. Approximation 18/22

TSP with Triangle Inequality (TSPTI)

input: a complete undirected graph G = (V, E) where each edge has weight $w(e) \ge 0$; and for any $x, y, z \in V$, $w(x, z) \le w(x, y) + w(y, z)$ **output**: (same as conventional TSP)

- renegotiating TSP
- different problem; NP-completeness and APX-completeness proofs may not apply
- less-general problem
- probably still relevant to practical applications of TSP

13. Approximation 19/22

TSPTI Approximation Algorithm Idea

- need a structure that can lower-bound an optimal cycle H* and upper-bound our approximate cycle H
- minimum spanning tree features
 - minimizes weight of chosen edges
 - connects all vertices
 - can be computed fast
- but an MST is not a Hamiltonian cycle; MST is acyclic, for one thing
- Euler tour: cycle around a tree; preorder, inorder, postorder
- build an MST; perform preorder traversal; treat that vertex order as Hamiltonian cycle

13. Approximation 20 / 22

Approximate TSPTI Pseudocode

```
    function APPROX-TSPTI(G = (V, E), w)
    T = PRIM - MST(G, w)
    H = empty sequence of vertices
    for vertex v in preorder traversal of tree T do
    H.ADDBACK(v)
    end for
    return H
    end function
```

Analysis: Prim's algorithm takes $O(m + n \log n)$ (w/ Fibonacci heap), traversal takes O(m + n), total $O(m + n \log n)$ time

13. Approximation 21 / 22

TSPTI Performance

Lemma: APPROX-TSPTI is a 2-approximation algorithm **Proof Sketch**:

- ▶ let H^* be an optimal Hamiltonian cycle for G
- (1) every spanning tree is one edge short of a cycle; and weights are nonnegative; so the weight of our tree T obeys $w(T) \le w(H^*)$
- (2) a full tour W is the sequence of vertices in both a preorder and postorder tour, and has weight w(W) = 2w(T)
- ▶ (3) combining (1) and (2), $w(W) \le 2w(H^*)$
- (4) our H is like W with some vertices removed, so w(H) ≤ w(W)
- combining (3) and (4),

$$w(H) \le w(W) \le 2w(H^*)$$

13. Approximation **22** / 22

Summary

There is a 2-approximation algorithm for vertex cover that takes O(m+n) time.

There is a 2-approximation algorithm for TSP with the triangle inequality that takes $O(m + n \log n)$ time.