

Appendix for the Report

Dosimetric Assessment of the Twig TGP81 (FCC ID: YBKTGP81EU)

According to the FCC Requirements SAR Distribution Plots

April 12, 2010

IMST GmbH

Carl-Friedrich-Gauß-Str. 2

D-47475 Kamp-Lintfort

Customer
7layers AG
Borsigstrasse 11
D-40880 Ratingen

The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Table of Contents

1	SAR DISTRIBUTION PLOTS, GSM 850 HEAD	3
2	SAR DISTRIBUTION PLOTS, PCS 1900 HEAD	7
3	SAR DISTRIBUTION PLOTS, GSM 850 BODY IN GSM MODE	11
4	SAR DISTRIBUTION PLOTS, PCS 1900 BODY IN GSM MODE	13
5	SAR Z-AXIS SCANS (VALIDATION)	15
6	SAR 7-AYIS SCANS (MEASUREMENTS)	17

1 SAR Distribution Plots, GSM 850 Head

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: MC55i_569_yalm_1.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: GSM 850

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(6.34, 6.34, 6.34); Calibrated: 20.01.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Sugar 1341; Type: QD 000 P40 CB; Serial: TP-1341
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Left/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.024 mW/g

Cheek Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.94 V/m; Power Drift = 0.125 dB

Peak SAR (extrapolated) = 0.064 W/kg

SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.014 mW/g

Maximum value of SAR (measured) = 0.030 mW/g

Cheek Left/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.94 V/m; Power Drift = 0.125 dB

Peak SAR (extrapolated) = 0.024 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00851 mW/g Maximum value of SAR (measured) = 0.015 mW/g

Fig. 1: SAR distribution for GSM 850, channel 190, cheek position, left side of head (April 08, 2010; Ambient Temperature: 21.6° C; Liquid Temperature: 20.7° C).

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: MC55i_569_yalm_2.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: GSM 850

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(6.34, 6.34, 6.34); Calibrated: 20.01.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Sugar 1341; Type: QD 000 P40 CB; Serial: TP-1341
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilted Left/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.019 mW/g

Tilted Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.69 V/m: Power Drift = -0.177 dB

Peak SAR (extrapolated) = 0.030 W/kg

SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.012 mW/g

Maximum value of SAR (measured) = 0.021 mW/g

Tilted Left/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.69 V/m; Power Drift = -0.177 dB

Peak SAR (extrapolated) = 0.026 W/kg

SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.013 mW/g Maximum value of SAR (measured) = 0.020 mW/g

Fig. 2: SAR distribution for GSM 850, channel 190, tilted position, left side of head (April 08, 2010; Ambient Temperature: 21.6° C; Liquid Temperature: 20.7° C).

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: MC55i 569 yarm 1.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: GSM 850

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(6.34, 6.34, 6.34); Calibrated: 20.01.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Sugar 1341; Type: QD 000 P40 CB; Serial: TP-1341
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Right/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.026 mW/g

Cheek Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.69 V/m; Power Drift = 0.043 dB

Peak SAR (extrapolated) = 0.065 W/kg

SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.013 mW/g

Maximum value of SAR (measured) = 0.031 mW/g

Fig. 3: SAR distribution for GSM 850, channel 190, cheek position, right side of head (April 08, 2010; Ambient Temperature: 21.6° C; Liquid Temperature: 20.7° C).

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: MC55i 569 yarm 2.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: GSM 850

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(6.34, 6.34, 6.34); Calibrated: 20.01.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Sugar 1341; Type: QD 000 P40 CB; Serial: TP-1341
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilted Right/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.015 mW/g

Tilted Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.18 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 0.019 W/kg

SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00988 mW/g

Fig. 4: SAR distribution for GSM 850, channel 190, tilted position, right side of head (April 08, 2010; Ambient Temperature: 21.6° C; Liquid Temperature: 20.7° C).

2 SAR Distribution Plots, PCS 1900 Head

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: MC55i_569_bplm_1.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: PCS 1900

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.38 mho/m; ϵ_r = 39; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.95, 7.95, 7.95); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 10.02.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Left/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.233 mW/g

Cheek Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.21 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.364 W/kg

SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.108 mW/g

Maximum value of SAR (measured) = 0.239 mW/g

Cheek Left/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.21 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.179 W/kg

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.069 mW/g

Maximum value of SAR (measured) = 0.122 mW/g

Fig. 5: SAR distribution for PCS 1900, channel 661, cheek position, left side of head (April 06, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.7° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: MC55i_569_bplm_2.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: PCS 1900

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.95, 7.95, 7.95); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 10.02.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilted Left/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.084 mW/g

Tilted Left/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.63 V/m: Power Drift = 0.004 dB

Peak SAR (extrapolated) = 0.131 W/kg

SAR(1 g) = 0.083 mW/g; SAR(10 g) = 0.048 mW/g

Maximum value of SAR (measured) = 0.091 mW/g

Tilted Left/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.63 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 0.073 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.027 mW/gMaximum value of SAR (measured) = 0.051 mW/g

Fig. 6: SAR distribution for PCS 1900, channel 661, tilted position, left side of head (April 06, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.7° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: MC55i_569_bprm_1.da4

DUT: twig: Type: Protector MC55i; Serial: 357749032866569

Program Name: PCS 1900

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.38 mho/m; ϵ_r = 39; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.95, 7.95, 7.95); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 10.02.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Right/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.183 mW/g

Cheek Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.69 V/m: Power Drift = -0.124 dB

Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.212 mW/g; SAR(10 g) = 0.110 mW/g

Maximum value of SAR (measured) = 0.244 mW/g

Cheek Right/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.69 V/m; Power Drift = -0.124 dB

Peak SAR (extrapolated) = 0.140 W/kg

SAR(1 g) = 0.091 mW/g; SAR(10 g) = 0.052 mW/g Maximum value of SAR (measured) = 0.102 mW/g

Fig. 7: SAR distribution for PCS 1900, channel 661, cheek position, right side of head (April 06, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.7° C).

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: PCS 1900

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.95, 7.95, 7.95); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 10.02.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilted Right/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.075 mW/g

Tilted Right/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.64 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 0.130 W/kg

SAR(1 g) = 0.082 mW/g; SAR(10 g) = 0.048 mW/g

Maximum value of SAR (measured) = 0.090 mW/g

Tilted Right/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.64 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 0.089 W/kg

SAR(1 g) = 0.056 mW/g; SAR(10 g) = 0.033 mW/g Maximum value of SAR (measured) = 0.062 mW/g

Fig. 8: SAR distribution for PCS 1900, channel 661, tilted position, right side of head (April 06, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.7° C)

3 SAR Distribution Plots, GSM 850 Body in GSM mode

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: MC55i_569_bahm_1_dspl_up_15mm.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: GSM 850

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 55.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R - SN1579; ConvF(6.21, 6.21, 6.21); Calibrated: 20.01.2010

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Sugar 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.010 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.24 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 0.014 W/kg

SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.00727 mW/g

Maximum value of SAR (measured) = 0.011 mW/g

Fig. 9: SAR distribution for GSM 850, channel 190, body worn configuration, display towards the phantom, 15 mm distance (April 09, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.8° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: MC55i_569_bahm_2_dspl_down_15mm.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: GSM 850

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; σ = 1 mho/m; ε_r = 55.4; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(6.21, 6.21, 6.21); Calibrated: 20.01.2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Sugar 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.039 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.15 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.056 W/kg

SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.027 mW/gMaximum value of SAR (measured) = 0.041 mW/g

Fig. 10: SAR distribution for GSM 850, channel 190, body worn configuration, display towards the ground, 15 mm distance (April 09, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.8° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: MC55i_569_bphm_1_dspl_up_15mm.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: PCS 1900

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3536; ConvF(8.11, 8.11, 8.11); Calibrated: 18.09.2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 10.02.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.056 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.59 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.085 W/kg

SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.033 mW/g

Maximum value of SAR (measured) = 0.058 mW/g

Fig. 11: SAR distribution for PCS 1900, channel 661, body worn configuration, display towards the phantom, 15 mm distance (April 09, 2010; Ambient Temperature: 21.2° C; Liquid Temperature: 20.9° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: MC55i_569_bphm_2_dspl_down_15mm.da4

DUT: twig; Type: Protector MC55i; Serial: 357749032866569

Program Name: PCS 1900

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 52.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(8.11, 8.11, 8.11); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 10.02.2010
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.170 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.20 V/m; Power Drift = -0.157 dB

Peak SAR (extrapolated) = 0.241 W/kg

SAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.168 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.20 V/m; Power Drift = -0.157 dB

Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.163 mW/g; SAR(10 g) = 0.086 mW/g Maximum value of SAR (measured) = 0.181 mW/g

Fig. 12: SAR distribution for PCS 1900, channel 661, body worn configuration, display towards the ground, 15 mm distance (April 09, 2010; Ambient Temperature: 21.2° C; Liquid Temperature: 20.9° C).

5 SAR z-axis scans (Validation)

Fig. 13: SAR versus liquid depth, 835 MHz, head (April 08, 2010; Ambient Temperature: 21.5° C; Liquid Temperature: 20.7° C).

Fig. 14: SAR versus liquid depth, 835 MHz, body (April 09, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.8° C).

Fig. 15: SAR versus liquid depth, 1900 MHz, head (April 06, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.7° C).

Fig. 16: SAR versus liquid depth, 1900 MHz, body (April 09, 2010; Ambient Temperature: 21.2° C; Liquid Temperature: 20.9° C).

6 SAR z-axis scans (Measurements)

The following pictures show the plots of SAR versus liquid depth for the worst case values.

Fig. 17: SAR versus liquid depth, head: GSM 850, channel 190, cheek position, left side of head (April 08, 2010; Ambient Temperature: 21.6° C; Liquid Temperature: 20.7° C).

Fig. 18: SAR versus liquid depth, body: GSM 850, channel 190, display towards the ground (April 09, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.8° C).

Fig. 19: SAR versus liquid depth, head: PCS 1900, channel 661, cheek position, right side of head (April 06, 2010; Ambient Temperature: 21.3° C; Liquid Temperature: 20.7° C).

Fig. 20: SAR versus liquid depth, body: PCS 1900, channel 661, display towards the ground (April 09, 2010; Ambient Temperature: 21.2° C; Liquid Temperature: 20.9° C).