

Type977 fitting for heat pump SI-242 Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@spf.ch

2019/03/12 at: 16:07:21 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
	T. I.	[kW]
P_{Q_1}	1 st condenser polynomial coefficient	8.6790e+01
P_{Q_2}	2^{st} condenser polynomial coefficient	9.3917e + 02
P_{Q_3}	3^{st} condenser polynomial coefficient	-4.6678e + 02
P_{Q_4}	4^{st} condenser polynomial coefficient	-4.4486e+03
P_{Q_5}	5^{st} condenser polynomial coefficient	3.3440e + 03
P_{Q_6}	6^{st} condenser polynomial coefficient	1.2445e + 03
P_{COP_1}	1 st COP polynomial coefficient	2.3058e+00
P_{COP_2}	2^{st} COP polynomial coefficient	1.3236e + 02
P_{COP_3}	3 st COP polynomial coefficient	5.9440e + 01
P_{COP_4}	4 st COP polynomial coefficient	-6.7673e + 02
P_{COP_5}	5 st COP polynomial coefficient	2.7135e+02
P_{COP_6}	6 st COP polynomial coefficient	-3.2856e + 02
\dot{m}_{cond}	5400.00 [kg/h]	
\dot{m}_{evap}	5400.00 [kg/h]	
COP_{nom} (A0W35)	4.27	
$Q_{cond,nom}$ (A0W35)	45.40 [kW]	
$Q_{evap,nom}$ (A0W35)	$34.78 \ [kW]$	
$W_{comp,nom}$ (A0W35)	10.62 [kW]	
RMS_{COP}	7.57e - 02	
$RMS_{Q_{cond}}$	7.00e - 01	
$RMS_{W_{comp}}$	1.51e - 01	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	°Ĉ	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	3.50	3.56	1.6	40.27	40.60	0.8	11.49	11.40	0.81
35.00	0.00	4.22	4.07	3.6	45.17	44.00	2.7	10.70	10.80	0.93
35.00	5.00	5.11	5.20	1.6	52.25	53.00	1.4	10.21	10.20	0.14
50.00	-5.00	2.59	2.51	3.2	41.03	40.20	2.1	15.83	16.00	1.07
50.00	0.00	2.76	2.86	3.3	42.08	42.60	1.2	15.23	14.90	2.19
50.00	5.00	3.10	3.07	0.9	45.22	45.40	0.4	14.61	14.80	1.28
45.00	-5.00	3.13	3.16	0.8	39.96	40.40	1.1	12.76	12.80	0.32
45.00	0.00	3.49	3.52	1.0	42.36	43.00	1.5	12.14	12.20	0.47
45.00	5.00	3.99	3.95	1.0	46.68	45.80	1.9	11.70	11.60	0.88
Sum				17.0			13.1			8.10
RMS_{COP}	7.57e - 02									
$RMS_{Q_{cond}}$	7.00e - 01									
$RMS_{W_{comp}}$	1.51e - 01									

$\rm Meier/SI\text{-}242/SI\text{-}242\text{-}Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

$\rm Meier/SI\text{-}242/SI\text{-}242\text{-}Qcomp.pdf$

Figure 2: W_{comp} differences between experiments and fitted data

$\rm Meier/SI\text{-}242/SI\text{-}242\text{-}COP.pdf$

Figure 3: COP differences between experiments and fitted data