MATH 212 Assignment 1

Colton Broughton Oliver Tonnesen Ashley Van Spankeren Selma Yazganoglu

January 22, 2019

1

1.a

No. Suppose $a=b\neq 0$. Then a-b=0. But $0\not\in X$, so * is not a binary operation on X.

1.b

Yes. Let $A \subseteq B \subseteq \mathcal{P}(\{1,2,3\})$. $A \cap B$ is defined for all values of A and B, and $A \cap B \in \mathcal{P}(\{1,2,3\})$ for all A,B.

1.c

No. Let $A = \{1\}, B = \{1\}$. $A \times B = \{(1,1)\}$. $\{(1,1)\} \notin \mathcal{P}(\{1,2,3\})$, so \times is not a binary operation.

In general, one must check that the range of * is contained in X, that * is defined on all $x \in X \times X$, and that no input $x \in X \times X$ exists such that it corresponds to two outputs.

2

Associativity:

Let $a = b = c = 2 \in \mathbb{Z}$. We show that $(a * b) * c \neq a * (b * c)$:

$$(2*2)*2 = (2 \cdot 2^2) \cdot 2^2 = 32$$

 $2*(2*2) = 2 \cdot (2 \cdot 2^2)^2 = 128$

So * is not associative.

Commutativity:

Let $a = 2, b = 3, a, b \in \mathbb{Z}$. We show that $a * b \neq b * a$.

$$a * b = 2 \cdot 3^2 = 18$$

$$b * a = 3 \cdot 2^2 = 12$$

So * is not commutative.

Identity:

Suppose e is an identity for * on \mathbb{Z} . Then e*a=a=a*e. Then $e \cdot a^2=a=a \cdot e^2$. Consider the equation $e \cdot a^2=a$ where $a \neq 0$:

$$e \cdot a^2 = a$$

$$\iff e \cdot a = 1$$

This clearly cannot hold for all $0 \neq a \in \mathbb{Z}$, so e cannot exist.

3

Symmetric:

All of $a, b, c, d \in \mathbb{Z}$, so then both of $ad, bc \in \mathbb{Z}$. By the properties of = on \mathbb{Z} , we know that $ad = bc \implies bc = ad$, so $((a, b), (c, d)) \in \sim \iff ((c, d), (a, b)) \in \sim$.

Reflexive:

Similarly, we know that = on \mathbb{Z} is reflexive, so ab = ab for all $(a, b) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\}$.

Transitive:

For all $(a, b), (c, d), (e, f) \in B$, suppose ad = bc and ef = de. Suppose $c \neq 0$.

$$ad = bc$$

 $adcf = bcde$ $(cf = de)$
 $adef = bede$ $(c, d \neq 0)$
 $af = be$

Now suppose c=0. Then bc=cf=0, and consequently, ad=de=0. $d\neq 0$, so a=e=0, so af=be=0. Thus, transitivity holds both when c=0 and when $c\neq 0$.

4

4.a

For +, x is the identity, since x+x=x, and x+y=y=y+x, so x:=0. For \cdot , y is the identity, since $y\cdot y=y$ and $y\cdot x=x=x\cdot y$, so y:=1.

4.b

For every $a \in \mathbb{Z}$, exactly one of the following holds: $a \in \mathbb{Z}^+$, $-a \in \mathbb{Z}^+$, a = 0. x is defined to be in the set of positive integers, but is also the additive identity. This contradicts the definition of \mathbb{Z} , and so $X \neq \mathbb{Z}$.

5

5.a

No. $b * a = a \neq b = a * b$.

5.b

Yes.

#	a	b	\mathbf{c}
a	a	b	b
b	b	\mathbf{c}	b
$^{\mathrm{c}}$	b	b	\mathbf{c}

5.c

Yes.

*	a	b	\mathbf{c}
a	a	b	a
b	a	\mathbf{c}	b
$^{\mathrm{c}}$	a	b	\mathbf{c}

5.d

No. None of a, b, c can be an identity for #:

- $a{:}\ a\#c=b\neq c$
- *b*: $b#b = c \neq b$
- c: $a\#c = b \neq a$

5.e

 \heartsuit is commutative on Y if and only if the table representing \heartsuit is symmetric about the main diagonal. In other words, if the entry at row x and column y is the same as that at row y and column x, $\forall x, y \in Y$.

 $c \in Y$ is \heartsuit 's identity if and only if its row and column exactly match the order of the elements along the top and left of the table, respectively. In other words,

\Diamond	a	b	\mathbf{c}	d . d	e
a	•		a		•
b		•	b	•	
\mathbf{c}	a	b	\mathbf{c}	d	e
d		•	d	•	
e			e		•