CS3236 AY22/23 SEM 2 github/jovyntls

00. INTRODUCTION

data compression

- · types of compression
 - · lossless compression can recover the contents
 - · lossy compression lose some quality cannot convert back to the higher-quality version
- · examples
 - sparse binary string storing positions of 1s
 - equal number of 0/1s $L \ge \log_2 \binom{64}{22} \approx 60.7$
 - · english text using relative frequency
 - morse code is NOT binary (contains spaces)
- · info theory uses probabilistic models (letter frequency, sequence probabilities)
- · 2 distinct approaches to compression:
 - · variable length map more probable sequences to shorter binary strings
 - · fixed length map most probable sequences to strings of a given length
 - insufficient strings for low-probability sequences
 - tradeoff between length/failure probability

information theory concepts

- speed: $\frac{k}{n}$ (mapping k bits to n bits)
- reliability: $\mathbb{P}[error] = \mathbb{P}[estimated \, msg \neq true \, msg]$
- source coding theorem → the fundamental compression limit is given by a source-dependent quantity known as the (Shannon) entropy H. The (average) storage length can be arbitrarily close to H, but can never be any lower than H.
- H is a property of the probability distribution
- channel coding theorem → there exists a channel-dependent quantity called the (Shannon) capacity C such that arbitrarily small error probability can be achieved only for rates < C
 - can achieve $\mathbb{P}[error] < \epsilon \iff \text{rate} < C$

data communication example

- · a "transmitter" sends a sequence of 0s and 1s
- a "receiver" sends a sequence with some corruptions

channel transition diagram

• each bit is flipped independently with probability $\delta\in(0,\frac{1}{2})$

- uncoded communication $\mathbb{P}[correct] = (1 \delta)^N$
- repetition code transmit "000" for "0", "111" for "1"
 - $\mathbb{P}[correct] = [(1-\delta)^3 + 3\delta(1-\delta)^2]^N$
 - · more reliable but 3x slower!

Hamming code

· able to correct one bit flip

• maps binary string of length 4 to binary string of length 7

• fill in $b_1b_2b_3b_4$ and assign $c_1c_2c_3$ such that the sum of bits in each circle is even

- $\mathbb{P}[correct] > \mathbb{P}[< 1 \text{bit flips}] = (1 \delta)^7 + 7\delta(1 \delta)^6$
- with $\delta=1$: Shannon capacity $C\approx 0.531$

01. INFORMATION MEASURES

information of an event

- entropy → measure of "uncertainty" or "information" in a random variable
- given event A with some $\mathbb{P}[A] = p$, how much "information" learned by being told A occurred?
 - only $\mathbb{P}[A]$ matters
- if A occurs with probability p, then $Information(A) = \psi(p)$ for some function $\psi(\cdot)$

axioms for $\psi(\cdot)$

$$\psi(p) = \log_b \frac{1}{p}$$
 (for some base $b > 0$)

we gain $\log_2 \frac{1}{n}$ "bits" of info if a probability-p event occurs.

- only $\psi(p) = \log_b \frac{1}{p}$ satisfies all axioms we focus on b=2

 - · information measured in bits
- all choices of b are equivalent up to scaling by a universal constant
 - e.g. # of nats = $\log_e 2 \times$ # of bits
- 1. $\psi(p) > 0$ (non-negativity)
- 2. $\psi(1) = 0$ (zero for definite events)
- 3. if p < p', then $\psi(p) > \psi(p')$ (monotonicity)
 - the less likely an event is, the more information was learnt by the fact that it occurred
- 4. $\psi(p)$ in continuous in p (continuity)
- · small change in probability: no drastic change in info
- 5. $\psi(p_1p_2) = \psi(p_1) + \psi(p_2)$
 - (additivity under independence) if A and B are independent events with probabilities p_1 and p_2 , then $\mathbb{P}[A \cap B] = p_1 p_2$, and the information learnt from both A and B occurring is the sum of the two individual amounts of information (because they are independent)
- $\psi(\mathbb{P}[A_1 \cap A_2]) = \psi(\mathbb{P}[A_1]) + \psi(\mathbb{P}[A_2])$

information of a random variable - entropy

- let X be a discrete r.v. with pmf P_X
- if we observe X=x then we have learnt $\log_2 \frac{1}{P_Y(x)}$ bits

(Shannon) entropy

is the average *information/uncertainty* in X wrt P_X :

$$H(X) = \mathbb{E}_{X \sim P_X} \left[\log_2 \frac{1}{P_X(X)} \right]$$
$$= \sum_x P_X(x) \log_2 \frac{1}{P_X(x)}$$

binary entropy function →

$$H_2(p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$$

- binary source: $X \sim Bernoulli(p), p \in (0,1)$ $\Rightarrow H(X) = H_2(p)$
- uniform source: X is uniform on a finite set \mathcal{X}

•
$$P_X(x) = \frac{1}{|\mathcal{X}|}$$

 $\Rightarrow H(X) = \mathbb{E}\left[\log_2 \frac{1}{1/|\mathcal{X}|}\right] = \log_2 |\mathcal{X}|$

- · entropy depends only on the probability values

axiomatic view (Shannon)

X is a d.r.v. taking N values with $\mathbf{p} = (p_1, \dots, p_N)$. We consider a general information measure of the form

$$\Phi(\mathbf{p}) = \Phi(p_1, \dots, p_N)$$

only $\Phi(X) = constant \times H(X)$ satisfies all axioms.

- 1. $\Psi(\mathbf{p})$ is continuous on p (continuity)
- 2. if $p_i = \frac{1}{N}$, then $\Psi(\mathbf{p})$ is increasing in N (uniform case)
 - uniformity over a larger set of outcomes always means more uncertainty
- 3. (successive decisions) $\Psi(p_1,\ldots,p_N)=$ $\Psi(p_1+p_2,p_3,\ldots,p_N)+(p_1+p_2)\Psi(\frac{p_1}{p_1+p_2},\frac{p_2}{p_1+p_2})$

variations

• **joint entropy** of two random variables $(X,Y) \rightarrow$

$$H(X,Y) = \mathbb{E}_{(X,Y) \sim P_{XY}} \left[\log_2 \frac{1}{P_{XY}(X,Y)} \right]$$
$$= \sum_{x,y} P_{XY}(x,y) \log_2 \frac{1}{P_{XY}(x,y)}$$

• conditional entropy of Y given $X \rightarrow$

$$\begin{split} H(Y|X) &= \mathbb{E}_{(X,Y) \sim P_{XY}} \left[\log_2 \frac{1}{P_{Y|X}(Y|X)} \right] \\ &= \sum_{x,y} P_{XY}(x,y) \log_2 \frac{1}{P_{Y|X}(y|x)} \\ &= \sum_{x,y} P_{X}(x) H(Y|X=x) \end{split}$$

 on average, knowing X reduces uncertainty about Y $(H(Y|X) \le H(Y))$, but seeing a *specific* outcome of X may increase uncertainty about Y(H(Y|X=i) > H(Y)) for some values of i)

properties of entropy

- 1. H(X) > 0 (non-negativity)
 - $H(X) = 0 \iff X$ if deterministic
 - *Proof.* information $\log_2 \frac{1}{p} \ge 0$ for $p \in [0,1]$, so entropy is the average of a non-negative quantity, and itself is non-negative
- 2. $H(X) \leq \log_2 |\mathcal{X}|$ (upper bound) if X takes values on a finite alphabet \mathcal{X}
 - $H(X) = \log_2 |\mathcal{X}| \iff X \sim Uniform(\mathcal{X})$
- implies $H(X|Y) < \log_2 |\mathcal{X}|$ 3. H(X,Y) = H(X) + H(Y|X) (chain rule)
- or H(X,Y) = H(Y) + H(X|Y)

· with conditioning:

$$H(X,Y|Z) = H(X|Z) + H(Y|X,Z)$$

· general chain rule:

$$H(X_1,...,X_n) = \sum_{i=1}^n H(X_i|X_1,...,X_{i-1})$$

- 4. H(X|Y) < H(X) (conditioning reduces entropy)

 - $H(X|Y) = H(X) \iff X$ and Y are independent additional information Y can't increase uncertainty on average but can have H(X|Y=y) > H(X)
- 5. $H(X_1,\ldots,X_n) \leq \sum_{i=1}^n H(X_i)$ (sub-additivity)
- equality $\iff X$ and Y are independent

KL Divergence

for two pmfs P and Q on a finite alphabet \mathcal{X} , the Kullback-Leibler (KL) divergence or relative entropy is given by

$$D(P||Q) = \sum_{x} P(x) \log_2 \frac{P(x)}{Q(x)}$$
$$= \mathbb{E}_{X \sim P} \left[\log_2 \frac{P(X)}{Q(X)} \right]$$

- $D(P||Q) \neq D(Q||P)$
- D(P||Q) > 0
 - Proof. $-D(P||Q) = -\sum_{x} P(x) \log_2 \frac{P(x)}{Q(x)}$

 $\textstyle \leq \sum_x P(x)(\frac{Q(x)}{P(x)}-1) = \sum_x Q(x) - \sum_x P(x) = 0$ (using property that $\log \alpha \leq \alpha - 1$, equality iff $\alpha = 1$)

- $D(P||Q) = 0 \iff P = Q$
- *Proof.* same as above, with $\ln \alpha = \alpha 1 \iff \alpha = 1$ (then $\frac{P(x)}{Q(x)} = 1$)

Mutual Information

$$I(X;Y) = H(Y) - H(Y|X)$$

$$= H(X) - H(X|Y)$$

$$= H(X) + H(Y) - H(X,Y)$$

$$= D(P_{XY}||P_X \times P_Y)$$

- **mutual information**, $I(X;Y) \rightarrow$ the amount of information we learn about Y by observing X (on avg)
 - H(Y) = uncertainty in Y
 - H(Y|X) = (avg) uncertainty in Y after observing X
 - $D(P_{XY}||P_XP_Y)$ = how far X,Y are from being independent
- $I(X_1; X_2, X_3) \neq I(X_1, X_2; X_3)$
- joint mutual information \rightarrow

$$I(X_1, X_2; Y_1, Y_2) = H(Y_1, Y_2) - H(Y_1, Y_2|X_1, X_2)$$

conditional mutual information →

$$I(X;Y|Z) = H(Y|Z) - H(Y|X,Z)$$

- if $X \perp Y$, then I(X;Y) = 0
 - Proof. $X \perp Y \Rightarrow P_{XY} = P_X \times P_Y \Rightarrow$ $D(P_{XY}||P_X \times P_Y) = 0$
 - · independent variables do not reveal any information about each other
- if X = Y, then I(X; Y) = H(X) = H(Y)
- · amt of information a r.v. reveals about itself is the entropy

properties of mutual information

- 1. I(X;Y) = I(Y;X) (symmetry)
- ullet X and Y reveal an equal amount of information about each other
- 2. $I(X;Y) \ge 0$ (non-negativity)
 - equality $\iff X \perp Y$
- 3. $I(X;Y) \leq H(X) \leq \log_2 |\mathcal{X}|$ (upper bounds) $I(X;Y) \leq H(Y) \leq \log_2 |\mathcal{Y}|$
- the information X reveals about Y is at most the prior information in X (entropy)
- 4. I(X,Y;Z) = I(X;Z) + I(Y;Z|X) (chain rule)

$$I(X_1, \dots, X_n; Y) = \sum_{i=1}^n I(X_i; Y | X_1, \dots, X_{i-1})$$

= $I(X_1; Y) + I(X_2; Y | X_1) + \dots$

5. (data-processing inequality)

$$\begin{split} I(X;Z) &\leq I(X;Y) \text{ if } X \to Y \to Z \\ \text{variation: } I(X;Z) &\leq I(Y;Z) \text{ if } X \to Y \to Z \\ I(W;Z) &\leq I(X;Y) \text{ if } W \to X \to Y \to Z \end{split}$$

- holds if Z depends on (X,Y) only through Y (i.e. $X \to Y \to Z$ forms a **Markov chain**)
- processing Y (to produce Z) cannot increase the information available regarding X
 - cannot do data processing to increase information
- 6. (partial sub-additivity)

$$I(X_1, \dots, X_n; Y_1, \dots, Y_n) \le \sum_{i=1}^n I(X_i; Y_i)$$

if (Y_1,\ldots,Y_n) are conditionally independent given (X_1,\ldots,X_n) , and Y_i depends on (X_1,\ldots,X_n) only through X_i

02. SYMBOL-WISE SOURCE CODING

X is a d.r.v. with pmf P_X over an alphabet \mathcal{X} (set of symbols).

symbol-wise source coding maps each $x \in \mathcal{X}$ to some

ymbol-wise source coding maps each $x \in \mathcal{X}$ to som binary sequence C(x) of length $\ell(x)$.

average length of a code $C(\cdot)$,

$$L(C) = \sum_{x \in \mathcal{X}} P_X(x)\ell(x)$$

decodability conditions

- nonsingular property $\to C(x) \neq C(x') \iff x \neq x'$
- C(·) is uniquely decodable
 on 2 sequences (of equal
 or differing lengths) of symbols in X are coded to the same
 concatenated binary sequence.
- x_1, \ldots, x_n can be always uniquely identified from the string $C(x_1) \ldots C(x_n)$
- C(·) is prefix-free → no codeword is a prefix of another
 aka instantaneous code

Kraft's Inequality and Entropy Bound

Kraft's inequality

$$\text{if } C(\cdot) \text{ is prefix-free, then } \sum_{x \in \mathcal{X}} 2^{-\ell(x)} \leq 1$$

- *Proof.* represent the codewords by a binary tree. If there is a codeword at some point in the tree, there are no codewords further down the tree. probability of branching to a codeword $= 2^{-\ell(x)} \text{ and sum of probabilities cannot exceed 1}$
- existence property \to if a given set of integers $\{\ell(x)\}_{x\in\mathcal{X}}$ satisfies $\sum_{x\in\mathcal{X}}2^{-\ell(x)}\leq 1$, then it is possible

to construct a *prefix-free* code that maps each $x \in \mathcal{X}$ to a codeword of length $\ell(x)$.

entropy bound

entropy bound

expected length,
$$L(C) \ge H(X)$$
 with equality $\iff P_X(x) = 2^{-\ell(x)} \quad \forall x \in \mathcal{X}$

- entropy gives a fundamental compression limit
 - · average length is at least equal to entropy
 - if all probabilities are negative powers of 2, we can match the entropy bound (optimal code)
- Proof. manipulate to get $L(C)-H(X)\geq D(P_X||Q)\geq 0$

Shannon-Fano Code

$$\ell(x) = \left\lceil \log_2 \frac{1}{P_X(x)} \right\rceil$$

• average length, L(C) satisfies

$$H(X) \le L(C) < H(X) + 1$$

· Kraft's inequality holds

$$\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le \sum_{x \in \mathcal{X}} 2^{-\log_2 \frac{1}{P_X(x)}} = \sum_{x \in \mathcal{X}} P_X(x) = 1$$

- Existence property holds we can construct a prefix-free code with these lengths
- 1 bit may be significant e.g. if H(X) = 0.5
- · mismatched case -

if the true distribution is P_X but the lengths are chosen according to Q_X , then the Shannon-Fano code satisfies $H(X)+D(P_X||Q_X) \leq L(C) \leq H(X)+D(P_X||Q_X)+1$

Huffman Code

- no uniquely decodable symbol code can achieve a smaller length ${\cal L}(C)$ than the Huffman code.
 - · always prefix-free
 - satisfies average length bound (because it is at least as good as Shannon-Fano): $H(X) \leq L(C) < H(X) + 1$

• extension: using blocks of n letters; Huffman coding with \mathcal{X}^n $nH(X) \leq L(C) < nH(X) + 1$

 $\Rightarrow H(X) \leq \text{avg. length per symbol} \leq H(X) + \frac{1}{n}$

- ✓ exploits memory, better guarantee (even independent)
- \times but it's harder to accurately know $P_{X_1...X_n}$
- \times alphabet size increases to $|\mathcal{X}|^n \Rightarrow$ expensive to sort

other codes

- arithmetic codes encodes a sequence (x_1,\ldots,x_n) to at most $\ell(x_1,\ldots,x_n) \leq \log_2 \frac{1}{P_{X_1,\ldots,X_n}(x_1,\ldots,x_n)} + 2$
 - avg. length per letter $\leq H(X) + \frac{2}{3}$
- Lempel-Ziv code does not require knowledge of the source distribution
- near-optimal: $O(\frac{\log n}{n})$ instead of $O(\frac{1}{n})$

03. BLOCK-WISE SOURCE CODING

- · aka fixed-to-fixed length source coding
- $\mathbb{P}[error] > 0$ (but small)
 - map likely source strings, fail on unlikely source strings
- instead of symbol-by-symbol, apply some encoding function to a length- n block X_1,\dots,X_n
 - map a string to some integer $m \in \{1, \dots, M\}$
- discrete memoryless source (X_1, \ldots, X_n)
 - discrete the alphabet ${\mathcal X}$ is finite
 - memoryless $P_X(x) = \prod_{i=1}^n P_X(x_i)$
 - every letter is independent (unrealistic)

- decoder maps m to an estimate $\overset{\hat{X}}{\underset{\sim}{\sim}}=g(m)$ (in \mathcal{X}^n)
- **error** \rightarrow occurs if $\hat{X} \neq X$
- $P_e = \mathbb{P}[\hat{X} \neq X] = \sum_{x: \mathsf{DEC}(\mathsf{ENC}(x)) \neq x} P_X(x)$
- rate $\to R = \frac{1}{n} \log_2 M$
- ullet ratio of compressed length ($\log_2 M$) to source length (n
 - $\,$ represents the number of bits per source symbol used to represent encoded value m
- number of strings we can compress to, $M=2^{nR}$
- lower rate = more compression
- $R \le H(X) + \epsilon$ • Proof. $R = \frac{1}{2} \log_2 M = \frac{1}{2} \log_2 (|\mathcal{T}_n(\epsilon)| + 1)$

 $\frac{1}{n}\log_2|M-\frac{1}{n}\log_2(|T_n(\epsilon)|+1)$ $\simeq \frac{1}{n}\log_2|\mathcal{T}_n(\epsilon)| \leq H(X) + \epsilon \text{ (using property 3)}$

- fixed length source coding theorem → for any discrete memoryless source with per-symbol distribution P_X,
 - (achievability) if R>H(X), then for any $\epsilon>0$, we can get $P_e\leq \epsilon$ for large enough n
 - (converse) if R < H(X), then there exists $\epsilon > 0$ such that $P_e > \epsilon$ for all n

Typical Sequences

for i.i.d. sequence $\mathbf{X}=(X-1,\ldots,X_n)$, let $P_X(x)=\Pi_{i=1}^nP_X(x_i)$ be the pmf of X.

$$\begin{array}{c} \text{typical set, } \mathcal{T}_n(\epsilon) = \\ \left\{ x \in \mathcal{X}^n : 2^{-n(H(X) + \epsilon)} \leq P_X(x) \leq 2^{-n(H(X) - \epsilon} \right\} \\ \text{where } \epsilon > 0 \text{ is a (small) fixed constant} \\ \text{i.e. } P_X(x) \simeq 2^{-nH(X)} \end{array}$$

- we only assign a (unique) $m \in \{1,\ldots,M\}$ to some x
 - choose x such that $\mathbb{P}[x \in \mathcal{T}_n(\epsilon)] \simeq 1$

properties of a typical set

for any fixed $\epsilon > 0$,

1. (equivalent definition) $x \in \mathcal{T}_n(\epsilon) \iff$

$$H(X) - \epsilon \le \frac{1}{n} \sum_{i=1}^{n} \log_2 \frac{1}{P_X(x_i)} \le H(X) + \epsilon$$

where x_i is the *i*-th entry of x• $\mathbb{E}[\log P_X(x_i)] = H(X_i) = H(X)$

- 2. $\mathbb{P}[X \in \mathcal{T}_n(\epsilon)] \to 1$ as $n \to \infty$ (high probability)
- 3. $|\mathcal{T}_n(\epsilon)| \leq 2^{n(H(X)+\epsilon)}$ (cardinality upper bound)

4. $|\mathcal{T}_n(\epsilon)| \ge (1 - o(1))2^{n(H(X) + \epsilon)}$

where $o(1) \to 0$ as $n \to \infty$ (cardinality lower bound) \Rightarrow we can't improve much on property (3)

asymptotic equipartition property

asymptotic equipartition property

as $n o \infty$, the distribution is roughly uniform over $\mathcal{T}_n(\epsilon)$

• with high probability (property 2), a randomly drawn i.i.d. sequence X will be one of roughly $2^{n(H(X))}$ sequences (property 3 + 4), each of which has probability of roughly $2^{-nH(X)}$ (definition of typical set)

Fano's Inequality

let X denote a *generic* r.v., and \hat{X} is any estimate of X.

Fano's Inequality

$$H(X|\hat{X}) \le H_2(P_e) + P_e \log_2(|\mathcal{X}| - 1)$$

$$\le 1 + P_2 \log_2 |\mathcal{X}|$$

- intuition: if $H(X|\hat{X})$ is large, then $P_2 = \mathbb{P}[\hat{X} \neq X]$ should be large too
- uncertainty in X after observing $\hat{X} \leq$ uncertainty in "is $X = \hat{X}$?" + (\mathbb{P} [no]= P_e)(max uncertainty in the no case)
- implications for source coding: proves the **converse** clause of **fixed length source coding theorem**
 - if R < H(X), then $P_e = \mathbb{P}[\hat{X} \neq X]$ cannot be made arbitrarily small as $n \to \infty$