INTÉGRATION

Exercice 1 (Inégalité de Markov). Soit f une fonction mesurable positive sur un espace (E, \mathcal{A}, μ) .

a) Montrer que pour tout a > 0, on a

$$\mu(f \ge a) \le \frac{1}{a} \int_{E} f \, \mathrm{d}\mu.$$

- b) En déduire que $\int_E f \, d\mu = 0$ si et seulement si f est nulle μ -presque partout.
- c) En déduire que si X est une variable aléatoire réelle, telle que $\mathbb{E}(X^2) < +\infty$, alors, pour tout t > 0,

$$\mathbb{P}\left(|X - \mathbb{E}(X)| \ge t\right) \le \frac{Var(X)}{t^2}.$$

Exercice 2 (Mesures à densité). Soit (E, A, μ) un espace mesuré et f une fonction mesurable positive sur E. Pour tout $A \in A$, on pose

$$\nu(A) := \int_E \mathbf{1}_A f \, \mathrm{d}\mu.$$

- a) Vérifier que ν est une mesure sur (E, A).
- b) Montrer que pour toute fonction $h \colon E \to \mathbb{R}$ mesurable positive, on a

$$\int_{E} h \, \mathrm{d}\nu = \int_{E} h f \, \mathrm{d}\mu. \tag{1}$$

c) Soit à présent $h: E \to \mathbb{R}$ mesurable de signe quelconque. Montrer que $h \in L^1(E, \mathcal{A}, \nu)$ si et seulement si $hf \in L^1(E, \mathcal{A}, \mu)$ et que dans ce cas, (1) est encore vérifiée.

Exercice 3 (Équivalences). Soient μ, ν deux mesures de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que l'égalité $\mu = \nu$ est équivalente à chacune des conditions suivantes :

- a) $\mu((a,b)) = \nu((a,b))$ pour tout $-\infty < a < b < +\infty$
- b) $\int_E f \, d\mu = \int_E f \, d\nu$ pour toute function f mesurable positive.
- c) $\int_E f d\mu = \int_E f d\nu$ pour toute fonction f continue bornée.
- d) $\int_E f \, d\mu = \int_E f \, d\nu$ pour toute function f continue à support compact.

Exercice 4 (Équivalence, suite) Soient μ , ν deux mesures de probabilité sur $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2)$, montrer que $\mu = \nu$ si et seulement si

$$\int_{\mathbb{R}^2} f(x)g(y)\mu(dx,dy) = \int_{\mathbb{R}^2} f(x)g(y)\nu(dx,dy),$$

pour toutes fonctions f et g continues à support compact.

Solution de l'exercice 0. Même raisonnement qu'à l'exercice précédent, en tenant compte du fait que $\mu = \nu$ ssi elles coïncident sur les pavés d'intervalles ouverts (cf TD1).

Exercice 5 (Fonction Gamma). Soit $\theta \in (0, \infty)$. On rappelle que $\Gamma(\theta) = \int_0^\infty x^{\theta-1} e^{-x} dx$.

a) Vérifier que pour tout $\theta \in (0, \infty)$ et tout entier $n \ge 1$, on a

$$\int_0^n \left(1 - \frac{x}{n}\right)^n x^{\theta - 1} dx = \frac{(n!)n^{\theta}}{\theta(\theta + 1)\cdots(\theta + n)}.$$

b) En déduire la formule d'Euler :

$$\Gamma(\theta) = \lim_{n \to \infty} \frac{(n!)n^{\theta}}{\theta(\theta+1)\cdots(\theta+n)}.$$

c) Utiliser cette formule pour calculer $\Gamma\left(\frac{1}{2}\right)$, puis retrouver l'identité $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$.

Exercice 6 (Interversion). Soit $(f_n)_{n\geq 1}$ une suite de fonctions dans $L^1\left(E,\mathcal{A},\mu\right)$ telle que :

$$\sum_{n=1}^{\infty} \int_{E} |f_n| \, \mathrm{d}\mu < \infty.$$

a) Montrer que l'on peut alors intervertir l'ordre de la somme et de l'intégrale :

$$\sum_{n=1}^{\infty} \int_{E} f_n \, \mathrm{d}\mu = \int_{E} \left(\sum_{n=1}^{\infty} f_n \right) \, \mathrm{d}\mu.$$

b) En déduire les égalités suivantes :

$$\int_0^1 \frac{\ln x}{1-x} \, \mathrm{d}x = -\frac{\pi^2}{6} \qquad \text{et} \qquad \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \cos(tx) e^{-\frac{x^2}{2}} \, \mathrm{d}x = e^{-\frac{t^2}{2}}.$$

Exercice 7 (Lemme de Riemann-Lebesgue). Montrer que pour tout $f \in L^1(\mathbb{R})$, on a

$$\int_{\mathbb{R}} f(x) \cos(nx) dx \xrightarrow[n \to \infty]{} 0.$$

Exercice 8 (Dérivation sous l'intégrale). Soit (E, \mathcal{A}, μ) un espace mesuré et $I \subseteq \mathbb{R}$ un intervalle ouvert. On considère une fonction $F \colon I \to \mathbb{R}$ de la forme

$$F(t) := \int_{E} f(t, x) \,\mu(\mathrm{d}x),$$

où $f \colon I \times E \to \mathbb{R}$ est une fonction qui vérifie les conditions suivantes :

- (i) Pour tout $t \in I$, la fonction $x \mapsto f(t, x)$ est dans $L^1(E, A, \mu)$;
- (ii) Pour μ -presque tout $x \in E$, la fonction $t \mapsto f(t, x)$ est de classe C^1 sur I;
- (iii) Il existe $g \in L^1(E, \mathcal{A}, \mu)$ telle que pour tout $t \in I$ et μ -presque tout $x \in E$,

$$\left| \frac{\partial f}{\partial t}(t, x) \right| \le g(x).$$

Montrer que F est de classe C^1 sur $\mathbb R$ et que pour tout $t \in I$,

$$F'(t) = \int_E \frac{\partial f}{\partial t}(t, x) \,\mu(\mathrm{d}x).$$

Exercice 9 (Équation différentielle). On chercher à évaluer, pour tout $t \in \mathbb{R}$, l'intégrale

$$F(t) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \cos(tx) \exp\left\{-\frac{x^2}{2}\right\} dx.$$

Montrer que F vérifie l'équation différentielle F'(t) = -tF(t) pour $t \in \mathbb{R}$, puis conclure.

Exercice 10 (Autre application). On chercher à évaluer, pour tout $t \in \mathbb{R}_+$, l'intégrale

$$F(t) := \int_0^\infty \frac{1 - e^{-tx^2}}{x^2} \, \mathrm{d}x.$$

Montrer que F est dérivable sur $(0, \infty)$ et calculer sa dérivée, puis conclure.