Sigital Image Processing ASSIGNMENT: 1

Aux 1) The equation of the surface for siquadratic interpolation using 9 points (neighbours) is given as:- $V(x,y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} x^{i} y^{j}$

 $V(x,y) = a_{00} + a_{01}y + a_{10}x + a_{02}y^2 + a_{20}x^2 + a_{21}x^2y + a_{12}x^2y^2 + a_{22}x^2y^2$

for getting the equation of the surface, we need 9 equations since there are 9 unknowns.

So, me take 9 neighbours of the current point from imput. The equation there can be written as:

 $V_{1}(x_{1},y_{1}) = a_{00} + a_{01}y_{1} + ... + a_{22}x_{1}^{2}y_{1}^{2}$ $V_{2}(x_{2}y_{1}) = a_{00} + a_{01}y_{2} + ... + a_{22}x_{2}^{2}y_{2}^{2}$

Vq(xq,yq) = a00 + a01 yq + ... + a12 xq yq

V, , V2 ... Vq are the pixel values at (x, y,) ... : (xq yq).

80, the above 9 equations can be ne-written as:-

V = XA SO A = X'V using this expression, we can find A, that is the matrix of coefficients.

Fins?) Given
$$2\times2$$
 unger as $\begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix}$

Sutrepolation factor $c=1.5$

... Dimensions of supput image $=3\times3$

Mappings of the supput coordinate to Imput coordinate:

Only Door Door

1,1 $\longrightarrow 2/3$, $2/3$ (0.666,0.64)

 $2,2 \longrightarrow 4/3$, $4/3$ (1.333, 1.333)

For bilinear interpolation on (1,1):—

We first find what point doest (1,1) map to interinput.

 \times in, y in $=\frac{1}{1.5}$, $\frac{1}{1.5} = 0.666$, 0.666

Now we find 4 neighbours of \times in, y in in input image.

They come out to be: $(0,0)$ $(0,1)$ $(1,0)$ and $(1,1)$

Using $V = XA$ [V : purel value δ \times : coordinate]

where $V(X,Y) = a \times by + c \times y + d$

We can write:

$$\begin{bmatrix} 5 \\ 10 \\ 20 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$$

:
$$a=b=c=d=S$$

: Pixel value at output [1][1] = $5(0.666) + 5(0.666) + 5(0.666)^2 + 5$

= 13.88 = 13.9