Concours commun Mines-Ponts

DEUXIÈME ÉPREUVE. FILIÈRE MP

A. Préliminaires

1) Soit $f \in \mathcal{L}$. Soit $\xi \in \mathbb{R}$. La fonction $x \mapsto f(x)e^{-2i\pi x\xi}$ est continue par morceaux sur \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$, $|f(x)e^{-2i\pi x\xi}| = |f(x)|$. Puisque f est intégrable sur \mathbb{R} , il en est de même de la fonction $x \mapsto f(x)e^{-2i\pi x\xi}$. En particulier, $\widehat{f}(\xi)$ existe dans \mathbb{R} . On a montré que

$$\forall f \in \mathcal{L}, \hat{f}$$
 est définie sur \mathbb{R} .

- Pour chaque $\xi \in \mathbb{R}$, la fonction $x \mapsto \Phi(\xi, x)$ est continue par morceaux sur \mathbb{R} .
- Pour chaque $x \in \mathbb{R}$, la fonction $\xi \mapsto \Phi(\xi, x)$ est continue sur \mathbb{R} .
- Pour chaque $(\xi, x) \in \mathbb{R}^2$, $|\Phi(\xi, x)| = |f(x)| = \varphi(x)$ où φ est une fonction continue par morceaux et intégrable sur \mathbb{R} .

D'après le théorème de continuité des intégrales à paramètres, \hat{f} est continue sur \mathbb{R} .

$$\forall f \in \mathcal{L}, \hat{f} \text{ est continue sur } \mathbb{R}.$$

2) Montrons que \mathcal{W} (resp. \mathcal{W}^*) est un sous-espace vectoriel de l'espace vectoriel \mathcal{L} (resp. \mathcal{L}^*). On a déjà $\mathcal{W} \subset \mathcal{L}$ (resp. $\mathcal{W}^* \subset \mathcal{L}^*$).

La fonction nulle est dans \mathscr{L} (resp. \mathscr{L}^*) et $\widehat{0} = 0$ est dans \mathscr{L} (resp. \mathscr{L}^*). Donc la fonction nulle est dans \mathscr{W} (resp. \mathscr{W}^*). Soient f et g deux éléments de \mathscr{W} (resp. \mathscr{W}^*) et λ et μ deux nombres complexes. Alors, f et g sont dans \mathscr{L} (resp. \mathscr{L}^*) et de plus \widehat{f} et \widehat{g} sont dans \mathscr{L} (resp. \mathscr{L}^*). La fonction $\lambda f + \mu g$ est encore dans \mathscr{L} (resp. \mathscr{L}^*) puis par linéarité de l'intégrale

$$\widehat{\lambda f + \mu g} = \widehat{\lambda f} + \widehat{\mu g}.$$

Mais alors, puisque \mathcal{L} (resp. \mathcal{L}^*) est un espace vectoriel, $\widehat{\lambda f + \mu g}$ est dans \mathcal{L} (resp. \mathcal{L}^*) et finalement $\lambda f + \mu g$ est dans \mathcal{W} (resp. \mathcal{W}^*).

$$\mathscr{W}$$
 (resp. \mathscr{W}^*) est un sous-espace vectoriel de \mathscr{L} (resp. \mathscr{L}^*).

Soit $f \in \mathcal{W}^*$. Alors f et \hat{f} sont dans \mathcal{L}^* ou encore f et \hat{f} sont continues sur \mathbb{R} et sont dominées en $+\infty$ ou $-\infty$ par une fonction du type $x \mapsto |x|^{-\alpha}$, $\alpha > 1$. On en déduit que f et \hat{f} sont continues par morceaux sur \mathbb{R} et intégrables sur \mathbb{R} et donc que f est dans \mathcal{W} . On a montré que

$$\mathscr{W}^*\subset\mathscr{W}$$
.

3) Soient $f \in \mathcal{L}$ et $\alpha > 0$. Soit $\xi \in \mathbb{R}$. La fonction $x \mapsto f(\alpha x)e^{-2i\pi x\xi}$ est continue par morceaux sur \mathbb{R} et en posant $u = \alpha x$ (l'application $x \mapsto \alpha x$ est un C^1 -difféomorphisme de \mathbb{R} sur lui-même), on obtient l'intégrabilité sur \mathbb{R} de la fonction $x \mapsto f(\alpha x)e^{-2i\pi x\xi}$ et de plus

$$\widehat{f_\alpha}(\xi) = \int_{-\infty}^{+\infty} f(\alpha x) e^{-2i\pi x \xi} \ dx = \frac{1}{\alpha} \int_{-\infty}^{+\infty} f(u) e^{-2i\pi u \frac{\xi}{\alpha}} \ du = \frac{1}{\alpha} \widehat{f} \bigg(\frac{\xi}{\alpha} \bigg).$$

$$\forall f \in \mathscr{L}, \, \forall \alpha > 0, \, \forall \xi \in \mathbb{R}, \, \widehat{f_{\alpha}}(\xi) = \frac{1}{\alpha} \widehat{f}\left(\frac{\xi}{\alpha}\right).$$

De même, pour $(y, v) \in \mathbb{R}^2$, en posant u = x + y, on obtient

$$\begin{split} \widehat{f_{y,\nu}}(\xi) = & \int_{-\infty}^{+\infty} f(x+y) e^{-2i\pi(\nu+\xi)x} \ dx = \int_{-\infty}^{+\infty} f(u) e^{-2i\pi(\nu+\xi)(u-y)} \ du = e^{2i\pi y(\nu+\xi)} \widehat{f}(\xi+\nu) \,. \\ \\ \boxed{ \forall f \in \mathscr{L}, \, \forall (y,\nu) \in \mathbb{R}^2, \, \forall \xi \in \mathbb{R}, \, \widehat{f_{y,\nu}}(\xi) = e^{2i\pi y(\nu+\xi)} \widehat{f}(\xi+\nu). } \end{split}$$

On note en particulier que la transformée de Fourier de la fonction $x\mapsto f(x+y)$ est la fonction $\xi\mapsto e^{2i\pi y}\xi\widehat{f}(\xi)$. Maintenant, si f est dans \mathscr{W} (resp. \mathscr{W}^*), il est clair que les fonctions f_α , $\alpha>0$, et $f_{y,\nu}$, $(y,\nu)\in\mathbb{R}^2$, sont encore dans \mathscr{W} (resp. \mathscr{W}^*).

4) La fonction s est dans \mathcal{L} et donc \hat{s} est définie et continue sur \mathbb{R} .

Soit
$$\xi \in \mathbb{R}$$
. $\widehat{\mathfrak{s}}(0) = \int_{-1/2}^{1/2} \mathrm{d}x = 1$ et si $\xi \neq 0$,

$$\widehat{s}(\xi) = \int_{-1/2}^{1/2} e^{-2i\pi x \xi} \ dx = \left[\frac{e^{-2i\pi x \xi}}{-2i\pi \xi}\right]_{x=-1/2}^{x=1/2} = \frac{e^{i\pi \xi} - e^{-i\pi \xi}}{2i\pi \xi} = \frac{\sin(\pi \xi)}{\pi \xi}.$$

$$\forall \xi \in \mathbb{R}, \, \widehat{s}(\xi) = \left\{ \begin{array}{l} 1 \, \mathrm{si} \, \, \xi = 0 \\ \frac{\sin(\pi \xi)}{\pi \xi} \, \mathrm{si} \, \, \xi \neq 0 \end{array} \right. .$$

La fonction s est dans \mathscr{L} et même dans \mathscr{L}^* . Donc \widehat{t} est définie et continue sur \mathbb{R} . Soit $\xi \in \mathbb{R}$. $\widehat{t}(0) = \int_{-1}^{1} (1-|x|) \ dx = 1$ et si $\xi \neq 0$, une intégration par parties fournit

$$\begin{split} \widehat{t}(\xi) &= \int_{-1}^{1} (1-|x|) \cos(2\pi x \xi) \ dx - i \int_{-1}^{1} (1-|x|) \sin(2\pi x \xi) \ dx = 2 \int_{0}^{1} (1-x) \cos(2\pi x \xi) \ dx \ (\text{par parit\'e}) \\ &= 2 \left(\left[(1-x) \frac{\sin(2\pi x \xi)}{2\pi \xi} \right]_{x=0}^{x=1} + \frac{1}{2\pi \xi} \int_{0}^{1} \sin(2\pi x \xi) \ dx \right) = \frac{1}{\pi \xi} \left[-\frac{\cos(2\pi x \xi)}{2\pi \xi} \right]_{x=0}^{x=1} \\ &= \frac{1-\cos(2\pi \xi)}{2\pi 2^{\frac{2}{3}} 2}. \end{split}$$

$$\forall \xi \in \mathbb{R}, \, \widehat{t}(\xi) = \left\{ \begin{array}{l} 1 \, \mathrm{si} \, \, \xi = 0 \\ \frac{1 - \cos(2\pi \xi)}{2\pi^2 \xi^2} \, \, \mathrm{si} \, \, \xi \neq 0 \end{array} \right. .$$

On note que la fonction $\xi \mapsto \xi^2 \hat{t}(\xi)$ est bornée sur \mathbb{R} et donc la fonction t est dans \mathcal{W}^* .

5) La fonction s est dans \mathscr{L} . Donc la fonction \hat{s} est continue sur \mathbb{R} d'après la question 1). Vérifions que la fonction \hat{s} n'est pas intégrable sur \mathbb{R} .

$$\begin{split} \int_{-\infty}^{+\infty} |\widehat{s}(\xi)| \; d\xi \geqslant \int_{1}^{+\infty} \frac{|\sin(\pi\xi)|}{\pi\xi} \; d\xi &= \sum_{n=1}^{+\infty} \int_{n}^{n+1} \frac{|\sin(\pi\xi)|}{\pi\xi} \; d\xi \\ \geqslant \sum_{n=1}^{+\infty} \frac{1}{(n+1)\pi} \int_{n}^{n+1} |\sin(\pi\xi)| \; d\xi &= \frac{2}{\pi^2} \sum_{n=1}^{+\infty} \frac{1}{n+1} = +\infty. \end{split}$$

Donc, $\int_{-\infty}^{+\infty} |\widehat{s}(\xi)| d\xi = +\infty$ ou encore la fonction \widehat{s} n'est pas intégrable sur \mathbb{R} . Ainsi, la fonction s est un élément de \mathscr{L} tel que \widehat{s} n'est pas un élément de \mathscr{L} ou encore s n'est pas dans \mathscr{W} . Ceci montre que

$$\mathcal{W}^* \subset \mathcal{W} \subset \mathcal{L}.$$

6) Pour tout entier naturel n et tout $\xi \in \mathbb{R}$,

$$\left|\widehat{f}(\xi) - \widehat{f_n}(\xi)\right| = \left|\int_{-\infty}^{+\infty} (f(x) - f_n(x))e^{-2i\pi x\xi} dx\right| \leqslant \int_{-\infty}^{+\infty} |f(x) - f_n(x)| dx = \|f - f_n\|_1$$

puis, pour tout entier naturel n, $\left\|\widehat{f}-\widehat{f_n}\right\|_{\infty} \leqslant \|f-f_n\|_1$. Par hypothèse, $\lim_{n \to +\infty} \|f-f_n\|_1 = 0$ et donc

 $\lim_{n\to +\infty} \left\| \widehat{f} - \widehat{f_n} \right\|_{\infty} = 0. \text{ Ceci montre que la suite de fonctions } \left(\widehat{f_n} \right)_{n\in\mathbb{N}} \text{ converge uniformément vers la fonction } \widehat{f} \text{ sur } \mathbb{R}. \text{ On note que le résultat persiste si on suppose simplement } f \text{ et les } f_n, n \in \mathbb{N}, \text{ dans } \mathcal{L}.$

B. Formule sommatoire de Poisson

7) Soit $f \in \mathcal{L}^*$. Il existe $\alpha > 1$ et M > 0 tel que pour tout t réel, $|t|^{\alpha}|f(t)| \leq M$. Soit $x \in \mathbb{R}$. Pour $n \in \mathbb{Z}$ tel que $n \neq -x$,

$$f(x+n)| \leqslant \frac{M}{|x+n|^{\alpha}}.$$

Puisque $\alpha > 1$, les séries numériques de terme généraux respectifs $\frac{M}{|x+n|^{\alpha}}$, $n \in \mathbb{N}$, $n \neq -x$, et $\frac{M}{|x-n|^{\alpha}}$, $n \in \mathbb{N}$, $n \neq x$, sont convergentes. On en déduit que chacune des deux séries $\sum_{n \geqslant 0} f(x+n)$ et $\sum_{n \geqslant 0} f(x-n)$ sont absolument convergentes et donc convergentes. On en déduit encore que $\widetilde{f}(x)$ existe.

Soit $x \in \mathbb{R}$. En posant m = n + 1, on obtient

$$\widetilde{f}(x+1) = \sum_{n \in \mathbb{Z}} f(x+1+n) = \sum_{m \in \mathbb{Z}} f(x+m) = \widetilde{f}(x).$$

$$\forall f \in \mathscr{L}^*, \ \widetilde{f} \ \mathrm{est} \ \mathrm{d\acute{e}finie} \ \mathrm{sur} \ \mathbb{R} \ \mathrm{et} \ 1\text{-p\acute{e}riodique}.$$

Montrons que \widetilde{f} est continue sur [0,1]. Pour $n \in \mathbb{Z}$ et $x \in [0,1]$, posons $f_n(x) = f(x+n)$ puis $||f_n||_{\infty} = \sup\{|f_n(x)|, x \in [0,1]\}$. Soit $n \in \mathbb{N}^*$. Avec les notations de la question 7), pour tout $x \in [0,1]$,

$$|f_n(x)| = |f(x+n)| \leqslant \frac{M}{(x+n)^{\alpha}} \leqslant \frac{M}{n^{\alpha}},$$

et donc $\|f_n\|_{\infty} \leqslant \frac{M}{n^{\alpha}}$. Puisque la série numérique de terme général $\frac{M}{n^{\alpha}}$, $n \in \mathbb{N}^*$, converge, la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge normalement et en particulier uniformément sur [0,1]. Puisque chaque fonction f_n est continue sur [0,1], il en est de même de la fonction $\sum_{n=1}^{+\infty} f_n$.

On montre de même que la fonction $\sum_{n=1}^{+\infty} f_{-n}$ est continue sur [0,1] et finalement $\widetilde{f} = \sum_{n=1}^{+\infty} f_{-n} + f + \sum_{n=1}^{+\infty} f_n$ est continue sur [0,1] puis sur \mathbb{R} par 1-périodicité.

$$\forall f \in \mathcal{L}^*, \, \widetilde{f} \text{ est continue sur } \mathbb{R}.$$

8) Soit $n \in \mathbb{Z}$. Avec les notations de la question précédente, pour tout réel x de [0,1],

$$\widetilde{f}(x)e^{-2i\pi nx} = \sum_{k \in \mathbb{Z}} f_k(x)e^{-2in\pi x} = \sum_{k=1}^{+\infty} f_{-k}(x)e^{-2in\pi x} + f(x)e^{-2in\pi x} + \sum_{k=1}^{+\infty} f_k(x)e^{-2in\pi x}.$$

Pour tout $k \in \mathbb{Z}$ et tout $x \in [0,1]$, $|f_k(x)e^{-2in\pi x}| = |f_k(x)|$. La question précédente montre alors que les séries de fonctions de termes généraux respectifs $x \mapsto f_k(x)e^{-2in\pi x}$, $k \in \mathbb{N}^*$, et $x \mapsto f_{-k}(x)e^{-2in\pi x}$, $k \in \mathbb{N}^*$, convergent uniformément sur le segment [0,1]. On peut donc intégrer terme à terme et on obtient

$$\begin{split} c_n\left(\widehat{f}\right) &= \sum_{k \in \mathbb{Z}} \int_0^1 f(x+k) e^{-2i\pi nx} \ dx = \sum_{k \in \mathbb{Z}} \int_k^{k+1} f(y) e^{-2i\pi n(y-k)} \ dy \\ &= \sum_{k \in \mathbb{Z}} e^{2ink\pi} \int_k^{k+1} f(y) e^{-2in\pi y} \ dy = \sum_{k \in \mathbb{Z}} \int_k^{k+1} f(y) e^{-2in\pi y} \ dy \\ &= \int_{-\infty}^{+\infty} f(y) e^{-2in\pi y} = \widehat{f}(n). \end{split}$$

$$\forall n \in \mathbb{Z}, c_n(\widehat{f}) = \widehat{f}(n).$$

$$\textbf{9)} \ \mathrm{Soit} \ f \in \mathscr{W}^*. \ \mathrm{Pour} \ x \in \mathbb{R}, \ \mathrm{posons} \ S(x) = \sum_{n \in \mathbb{Z}} c_n \left(\widehat{f}\right) e^{2\mathrm{i} n \pi x} = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2\mathrm{i} n \pi x}.$$

Puisque $\hat{f} \in \mathcal{L}^*$, il existe M > 0 et $\alpha > 1$ tel que $\forall x \in \mathbb{R}$, $|x|^{\alpha}|f(x)| \leq M$. Pour tout $n \in \mathbb{Z}^*$ et tout $x \in \mathbb{R}$, on a en particulier

$$\left|c_n\left(\widetilde{f}\right)e^{2in\pi x}\right|=\left|\widehat{f}(n)\right|\leqslant \frac{M}{|n|^\alpha}.$$

Ceci montre que les séries de fonctions de termes généraux respectifs $x\mapsto c_n\left(\widetilde{f}\right)e^{2in\pi x}$, $n\in\mathbb{N}^*$, et $x\mapsto c_{-n}\left(\widetilde{f}\right)e^{-2in\pi x}$, $n\in\mathbb{N}^*$, convergent normalement sur \mathbb{R} et en particulier uniformément et simplement sur \mathbb{R} . La fonction S est donc définie sur \mathbb{R} . De plus, S est continue sur \mathbb{R} en tant que limite uniforme sur \mathbb{R} d'une suite de fonctions continues sur \mathbb{R} et aussi S est 1-périodique.

On peut calculer les coefficients de Fourier de S. Soit $n \in \mathbb{Z}$. Encore une fois, les séries de fonctions de termes généraux respectifs $x \mapsto c_k\left(\widetilde{f}\right)e^{2i(k-n)\pi x}$, $k \in \mathbb{N}^*$, et $x \mapsto c_{-k}\left(\widetilde{f}\right)e^{2i(-k-n)\pi x}$, $k \in \mathbb{N}^*$, convergent uniformément sur le segment [0,1]. On peut de nouveau intégrer terme à terme et on obtient

$$\begin{split} c_n(S) &= \int_0^1 \left(\sum_{k \in \mathbb{Z}} c_k \left(\widetilde{f} \right) e^{2 \mathrm{i} k \pi x} \right) e^{-2 \mathrm{i} n \pi x} \; dx \\ &= \sum_{k \in \mathbb{Z}} c_k \left(\widetilde{f} \right) \int_0^1 e^{2 \mathrm{i} (k - n) \pi x} \; dx = \sum_{k \in \mathbb{Z}} c_k \left(\widetilde{f} \right) \delta_{k,n} \\ &= c_n \left(\widetilde{f} \right). \end{split}$$

Ainsi, les fonctions \widetilde{f} et S sont continues sur \mathbb{R} , 1-périodiques et ont les mêmes coefficients de Fourier. On en déduit que ces deux fonctions sont égales d'après le rappel de l'énoncé ou encore \widetilde{f} est égale à la somme de sa série de Fourier.

Par suite, pour tout réel x,

$$\sum_{n\in\mathbb{Z}}f(x+n)=\widetilde{f}(x)=\sum_{n\in\mathbb{Z}}c_n\left(\widetilde{f}\right)e^{2in\pi x}=\sum_{n\in\mathbb{Z}}\widehat{f}(n)e^{2in\pi x}.$$

Pour x = 0, on obtient

$$\sum_{n\in\mathbb{Z}}f(n)=\widetilde{f}(0)=\sum_{n\in\mathbb{Z}}\widehat{f}(n).$$

$$\forall f \in \mathscr{W}^*, \sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \widehat{f}(n).$$

C. Application à la formule d'inversion de Fourier

 $\textbf{10)} \text{ Soit } f \in \mathscr{W}^*. \text{ Soit } (x,\xi) \in \mathbb{R}^2. \text{ Pour tout } n \in \mathbb{Z}, \ f_{x,\xi}(n) = f(x+n)e^{-2i\pi n\xi} \text{ puis, d'après la question 3)},$

$$\widehat{f_{x,\xi}}(n)=e^{2i\pi x(\xi+n)}\widehat{f}(n+\xi).$$

La formule de Poisson appliquée à la fonction $f_{x,\xi}$ (qui est encore dans \mathcal{W}^*) fournit alors pour tout $(x,\xi) \in \mathbb{R}^2$,

$$\sum_{n\in\mathbb{Z}}f(x+n)e^{-2i\pi n\xi}=\sum_{n\in\mathbb{Z}}f_{x,\xi}(n)=\sum_{n\in\mathbb{Z}}\widehat{f_{x,\xi}}(n)=\sum_{n\in\mathbb{Z}}\widehat{f}(n+\xi)e^{2i\pi x(\xi+n)}.$$

Soit $x \in \mathbb{R}$. Pour $\xi \in \mathbb{R}$, posons $F_x(\xi) = \widehat{f}(\xi)e^{2i\pi x\xi}$. Puisque f est dans \mathscr{W}^* , \widehat{f} est continue sur \mathbb{R} et dans \mathscr{L}^* . Puisque $|F_x| = \left|\widehat{f}\right|$, F_x est également dans \mathscr{L}^* et d'après la partie B, on peut définir sa périodisée : pour tout $\xi \in \mathbb{R}$,

$$\widetilde{F_x}(\xi) = \sum_{n \in \mathbb{Z}} F_x(\xi + n) = \sum_{n \in \mathbb{Z}} \widehat{f}(n + \xi) e^{2i\pi x(n + \xi)}.$$

D'autre part, une nouvelle fois on peut intégrer terme à terme, la série de fonctions considérée convergeant uniformément sur le segment [0, 1],

$$\begin{split} c_n\left(\widetilde{F_x}\right) &= \int_0^1 \widetilde{F_x}(\xi) e^{-2i\pi\pi\xi} \ d\xi = \int_0^1 \left(\sum_{p \in \mathbb{Z}} f(x+p) e^{-2i\pi p\xi}\right) e^{-2i\pi\pi\xi} \ d\xi \ (\text{d'après la formule de Poisson généralisée}) \\ &= \sum_{p \in \mathbb{Z}} f(x+p) \int_0^1 e^{-2i\pi(p+n)\xi} \ d\xi = \sum_{p \in \mathbb{Z}} f(x+p) \delta_{p,-n} \\ &= f(x-n). \end{split}$$

Le développement de $\widetilde{F_x}$ en série de Fourier est donc $\sum_{n\in\mathbb{Z}}f(x-n)e^{2i\pi n\xi}=\sum_{n\in\mathbb{Z}}f(x+n)e^{-2i\pi n\xi}$ et $\widetilde{F_x}$ est égale à la somme de sa série de Fourier.

11) Soit $x \in \mathbb{R}$. D'après la question 8), pour tout $n \in \mathbb{Z}$,

$$c_n\left(\widetilde{F_x}\right) = \widehat{F_x}(n) = \int_{-\infty}^{+\infty} F_x(\xi) e^{-2i\pi n\xi} d\xi = \int_{-\infty}^{+\infty} \widehat{f}(\xi) e^{2i\pi x\xi} e^{-2in\pi\xi} d\xi = \int_{-\infty}^{+\infty} \widehat{f}(\xi) e^{2i\pi(x-n)\xi} d\xi$$

En particulier, d'après la question précédente,

$$f(x) = c_0\left(\widetilde{F_x}\right) = \int_{-\infty}^{+\infty} \widehat{f}(\xi) e^{2i\pi x \xi} d\xi.$$

12) D'après la formule d'inversion de FOURIER, pour tout $f \in \mathcal{W}^*$ et $x \in \mathbb{R}$,

$$\widehat{\widehat{(f)}}(x) = \int_{-\infty}^{+\infty} \widehat{f}(\xi) e^{-2i\pi x \xi} dx = f(-x).$$

Soit alors $\lambda \in \mathbb{C}$ une valeur propre de la transformation de FOURIER dans \mathcal{W}^* . Donc il existe un élément non nul f_0 de \mathcal{W}^* tel que $\widehat{f_0} = \lambda f_0$. La transformation de FOURIER étant linéaire, pour tout réel x,

$$f_0(-x) = \widehat{\widehat{f_0}}(x) = \lambda \widehat{f_0}(x) = \lambda^2 f_0(x),$$

puis $f_0(x) = f_0(-(-x)) = \lambda^2 f_0(-x) = \lambda^4 f_0(x)$. Finalement, $f_0 = \lambda^4 f_0$ puis $\lambda^4 = 1$ car $f_0 \neq 0$. On a ainsi montré qu'une valeur propre de la transformation de Fourier est élément de $\{1, i, -1, -i\}$.

Les seules valeurs propres réelles possibles de la transformation de FOURIER sont 1 et -1. Maintenant, la fonction t est dans \mathcal{W}^* d'après la remarque de la fin de la question 4).

Puisque pour tout réel x, $\hat{t}(x) = t(-x)$, \hat{t} est également dans \mathcal{W}^* . Puisque t et \hat{t} sont dans \mathcal{W}^* , il en est de même de $f_1 = t + \hat{t}$ et $f_2 = t - \hat{t}$ d'après la question 2).

ullet Pour tout réel x, puisque t est paire

$$\widehat{f_1}(x) = \widehat{t}(x) + \widehat{\widehat{t}}(x) = \widehat{t}(x) + t(-x) = \widehat{t}(x) + t(x) = f_1(x).$$

Ainsi, f_1 est un élément, clairement non nul, de \mathcal{W}^* tel que $\widehat{f_1} = f_1$. Donc 1 est effectivement une valeur propre réelle de la transformation de FOURIER dans \mathcal{W}^* .

• De même, pour tout réel x,

$$\widehat{f_2}(x) = \widehat{t}(x) - \widehat{\widehat{t}}(x) = \widehat{t}(x) - t(-x) = \widehat{t}(x) - t(x) = -f_2(x).$$

Ainsi, f_2 est un élément non nul de \mathcal{W}^* tel que $\widehat{f_2} = f_2$. Donc -1 est effectivement une valeur propre réelle de la transformation de FOURIER dans \mathcal{W}^* .

Les valeurs propres réelles de la transformation de Fourier dans \mathcal{W}^* sont 1 et -1.

D. Application au théorème d'échantillonnage de Whittaker

13) Soit $f \in \mathcal{W}^*$ telle que \hat{f} s'annule en dehors de l'intervalle $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Notons alors que \hat{f} s'annule en $-\frac{1}{2}$ et $\frac{1}{2}$ par continuité.

D'après la formule de Poisson généralisée de la question 10), utilisée avec x = 0, pour tout réel ξ , on a

$$\sum_{n\in\mathbb{Z}} f(n) e^{-2i\pi n\xi} = \sum_{n\in\mathbb{Z}} \widehat{f}(n+\xi).$$

Supposons de plus $\xi \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. Si $n \geqslant 1$, $n + \xi \geqslant 1 - \frac{1}{2} = \frac{1}{2}$ et donc $\widehat{f}(n + \xi) = 0$.

De même, si $n\leqslant -1,\ n+\xi\leqslant -1+\frac{1}{2}=-\frac{1}{2}$ et donc $\widehat{f}(n+\xi)=0.$ Il reste

$$\forall \xi \in \left[-\frac{1}{2},\frac{1}{2}\right],\, \widehat{f}(\xi) = \sum_{n \in \mathbb{Z}} f(n) e^{-2i\pi n \xi}.$$

(et d'autre part, $\widehat{f}(\xi) = 0$ si $|\xi| > \frac{1}{2}$). Ainsi, la donnée des $(f(n))_{n \in \mathbb{Z}}$ détermine \widehat{f} de manière unique. Mais alors, f est déterminée de manière unique grâce à la formule d'inversion de FOURIER :

$$\forall x \in \mathbb{R}, \ f(x) = \int_{-\infty}^{+\infty} \widehat{f}(\xi) e^{2i\pi x \xi} \ d\xi = \int_{-1/2}^{1/2} \left(\sum_{n \in \mathbb{Z}} f(n) e^{-2i\pi n \xi} \right) e^{2i\pi x \xi} \ d\xi.$$

14) Soit $\varepsilon > 0$. Pour $\xi \in \mathbb{R}$, posons $g(\xi) = t\left(\frac{\xi - \frac{1}{2}}{\varepsilon}\right) - t\left(\frac{\xi + \frac{1}{2}}{\varepsilon}\right)$. g est dans \mathscr{W}^* . On peut donc appliquer à g la formule d'inversion de Fourier.

$$\mathrm{Pour}\ x\in\mathbb{R},\ \mathrm{posons}\ f(x)=\int_{-\infty}^{+\infty}\left(t\left(\frac{\xi-\frac{1}{2}}{\epsilon}\right)-t\left(\frac{\xi+\frac{1}{2}}{\epsilon}\right)\right)e^{2i\pi x\xi}\ d\xi=-\widehat{g}(-x).$$

Pour tout réel x, on a $\widehat{f}(x) = -(-\widehat{\widehat{g}})(-x) = g(x)$.

Si $\xi > \frac{1}{2} + \epsilon$, alors $\frac{\xi + \frac{1}{2}}{\epsilon} \geqslant \frac{\xi - \frac{1}{2}}{\epsilon} > 1$ et donc $\widehat{f}(\xi) = g(\xi) = 0$. On a aussi $\widehat{f}(\xi) = 0$ si $\xi < -\frac{1}{2} - \epsilon$ par parité. \widehat{f} est donc nulle en dehors de $\left[-\frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon \right]$. D'autre part, f est un élément de l'espace vectoriel \mathcal{W}^* .

Déterminons maintenant les f(n), $n \in \mathbb{Z}$. D'après la question 3), pour tout réel ξ ,

$$\mathsf{f}(\xi) = -\widehat{\mathsf{g}}(-\xi) = -\epsilon \left(e^{-i\pi\xi} - e^{i\pi\xi}\right)\widehat{t}\left(-\epsilon\xi\right) = 2i\epsilon\sin(\pi\xi)\widehat{t}\left(\epsilon\xi\right).$$

Par suite, pour $n \in \mathbb{Z}$,

$$f(n) = 2i\varepsilon \sin(n\pi)\hat{t}(\varepsilon n) = 0.$$

Ainsi, f est un élément de \mathcal{W}^* qui coïncide avec la fonction nulle sur \mathbb{Z} . Mais f n'est pas la fonction nulle car pour $\xi \neq 0$, $f(\xi) = 2i\epsilon \sin(\pi \xi) \frac{1 - \cos(2\epsilon \pi \xi)}{2\pi^2 \epsilon^2 \xi^2}$. f n'est donc pas uniquement déterminée par ses valeurs sur \mathbb{Z} .

E. Contre-exemple de Katznelson

15) Puisque la fonction t s'annule en chaque entier non nul, pour tout $k \in \mathbb{N}$ et tout $n \in \mathbb{Z}^*$, on a $u_k(n) = 0$. D'autre part, $u_k(0) = t(0) - t(0) = 0$. Ainsi, chaque fonction u_k s'annule sur \mathbb{Z} . Mais alors, si x est un entier relatif, chaque $u_{k,N_k}(x)$ est nul. On en déduit que f(x) existe et vaut 0.

On note maintenant que pour $k \in \mathbb{N}$, la fonction u_k s'annule en dehors de $\left[-\frac{1}{2^k},\frac{1}{2^k}\right]$ car si x est un réel tel que $|x|>\frac{1}{2^k}$, alors $|2^kx|>1$ et $|2^{k+1}x|>2>1$ puis $u_k(x)=0$.

Soit $\epsilon \in \left]0, \frac{1}{2}\right[$ puis $K \in \mathbb{Z}$. Pour $x \in [K + \epsilon, K + 1 - \epsilon]$, on a $|x - n| \geqslant \epsilon$ pour tout entier relatif n. Soit alors k_0 un entier naturel tel que $\frac{1}{2^{k_0}} < \epsilon$ (par exemple, $k_0 = \log_2\left(\frac{1}{\epsilon}\right) + 1$). Pour tout entier naturel $k \geqslant k_0$, on a $\frac{1}{2^k} \leqslant \frac{1}{2^{k_0}} < \epsilon$ et donc pour tout x de $[K + \epsilon, K + 1 - \epsilon]$ et $n \in \mathbb{Z}$, on a $|x - n| > \frac{1}{2^k}$ et donc

$$\forall k \geqslant k_0, \ \forall x \in [K + \varepsilon, K + 1 - \varepsilon], \ \forall n \in \mathbb{Z}, \ u_k(x - n) = 0$$

puis

$$\forall k \geqslant k_0, \ \forall x \in [K + \varepsilon, K + 1 - \varepsilon], \ u_{k,N_k}(x) = 0,$$

et donc

$$\forall x \in [K+\epsilon, K+1-\epsilon], \, f(x) = \sum_{k=0}^{k_0} u_{k,N_k}(x).$$

Ainsi, $f_{[K+\epsilon,K+1-\epsilon]} = \sum_{k=0}^{k_0} u_{k,N_k/[K+\epsilon,K+1-\epsilon]}$. Puisque la somme est finie et que chaque u_{k,N_k} est continue sur \mathbb{R} , ceci

montre que f est définie et continue sur $[K + \varepsilon, K + 1 - \varepsilon]$. Ceci étant vrai pour chaque $K \in \mathbb{Z}$ et chaque $\varepsilon \in \left]0, \frac{1}{2}\right[$, on a montré que

f est définie sur $\mathbb R$ et continue sur $\mathbb R\setminus\mathbb Z.$

16) D'après l'énoncé, f est continue par morceaux sur R. Ensuite,

- si $|x| > \frac{1}{2^k}$, $u_k(x) = 0$,
- si $\frac{1}{2^{k+1}} < |x| \le \frac{1}{2^k}$, $u_k(x) = t(2^k x) = 1 2^k |x| \ge 0$,
- si $|x| \le \frac{1}{2^k}$, $u_k(x) = (1 2^k |x|) (1 2^{k+1} |x|) = 2^k |x|$.

Donc, chaque fonction u_k , $k \in \mathbb{N}$, est positive sur \mathbb{R} , puis chaque fonction u_{k,N_k} , $k \in \mathbb{N}$, est positive sur \mathbb{R} et finalement f est positive sur \mathbb{R} .

Soit $k \in \mathbb{N}$.

$$\begin{split} \int_{-\infty}^{+\infty} u_k(x) \; dx &= \int_{-1/2^k}^{1/2^k} t(2^k x) \; dx - \int_{-1/2^{k+1}}^{1/2^{k+1}} t(2^{k+1} x) \; dx = \frac{1}{2^k} \int_{-1}^1 t(u) \; du - \frac{1}{2^{k+1}} \int_{-1}^1 t(u) \; du = \frac{1}{2^k} - \frac{1}{2^{k+1}} \\ &= \frac{1}{2^{k+1}}. \end{split}$$

Ensuite, pour tout $k \in \mathbb{N}$ et tout $n \in \mathbb{Z}$, $\int_{-\infty}^{+\infty} u_k(x-n) \ dx = \int_{-\infty}^{+\infty} u_k(t) \ dt = \frac{1}{2^{k+1}}$. Par suite,

$$\begin{split} \int_{-\infty}^{+\infty} u_{k,N_k}(x) \ dx &= \frac{1}{N_k} \sum_{\substack{n \in \mathbb{Z}, \\ |n| < N_k}} \left(1 - \frac{|n|}{N_k} \right) \int_{-\infty}^{+\infty} u_k(x - n) \ dx = \frac{1}{N_k 2^{k+1}} \sum_{\substack{n \in \mathbb{Z}, \\ |n| < N_k}} \left(1 - \frac{|n|}{N_k} \right) \\ &= \frac{1}{N_k 2^{k+1}} \left(1 + 2 \sum_{n=1}^{N_k} \left(1 - \frac{n}{N_k} \right) \right) = \frac{1}{N_k 2^{k+1}} \left(1 + 2 N_k - \frac{1}{N_k} \times N_k(N_k + 1) \right) \\ &= \frac{1}{2^{k+1}}. \end{split}$$

On en déduit que la série de terme général $\int_{-\infty}^{+\infty} u_{k,N_k}(x) dx$ converge.

Ainsi,

- \bullet Chaque fonction $u_{k,N_k},\,k\in\mathbb{N},$ est continue par morceaux sur $\mathbb{R}.$
- La série de fonctions de terme général u_{k,N_k} , $k \in \mathbb{N}$, converge simplement vers f sur \mathbb{R} et f est continue par morceaux sur \mathbb{R} .
- La série numérique de terme général $\int_{-\infty}^{+\infty} |u_{k,N_k}(x)| dx = \int_{-\infty}^{+\infty} u_{k,N_k}(x) dx$, $k \in \mathbb{N}$, converge.

D'après un théorème d'intégration terme à terme, f est intégrable sur $\mathbb R$ et

$$\int_{-\infty}^{+\infty} f(x) \ dx = \sum_{k=0}^{+\infty} \int_{-\infty}^{+\infty} u_{k,N_k}(x) \ dx = \sum_{k=0}^{+\infty} \frac{1}{2^{k+1}} = 1.$$

Ensuite, pour $K \in \mathbb{N}$,

$$\left\| f - \sum_{k=0}^K u_{k,N_k} \right\|_1 = \int_{-\infty}^{+\infty} \left| \sum_{k=K+1}^{+\infty} u_{k,N_k}(x) \right| \ dx = \sum_{k=K+1}^{+\infty} \int_{-\infty}^{+\infty} u_{k,N_k}(x) \ dx = \sum_{k=K+1}^{+\infty} \frac{1}{2^{k+1}} = \frac{1}{2^K},$$

 $\mathrm{et}\;\mathrm{donc}\;\left\|f-\sum_{k=0}^Ku_{k,N_k}\right\|_1\;\mathrm{tend}\;\mathrm{vers}\;0\;\mathrm{quand}\;K\;\mathrm{tend}\;\mathrm{vers}\;+\infty\;\mathrm{ou}\;\mathrm{encore}\;\mathrm{la}\;\mathrm{s\acute{e}rie}\;\mathrm{de}\;\mathrm{terme}\;\mathrm{g\acute{e}n\acute{e}ral}\;u_{k,N_k},\;k\in\mathbb{N},\;\mathrm{converge}\;\mathrm{de$

en moyenne vers f sur \mathbb{R} . Maintenant, f est dans \mathscr{L} de même que chaque $\sum_{k=0}^K u_{k,N_k}$, $K \in \mathbb{N}$. Les calculs effectués à la question 6) sont encore valables et montrent que la série de terme général $\widehat{u_{k,N_k}}$, $k \in \mathbb{N}$, converge uniformément vers \widehat{f} sur \mathbb{R} .

17) D'après la question 3), pour chaque $k \in \mathbb{N}$ et chaque $n \in \mathbb{Z}$, la transformée de Fourier de la fonction $x \mapsto u_k(x-n)$ est la fonction $\xi \mapsto e^{-2in\pi\xi}\widehat{u_k}(\xi)$. Par suite, pour tout réel non entier ξ , pour tout $k \in \mathbb{N}$ et tout $N \in \mathbb{N}^*$,

$$\widehat{u_{k,N}}(\xi) = \frac{1}{N} \sum_{\substack{n \in \mathbb{Z}, \\ |n| < N}} \left(1 - \frac{|n|}{N}\right) e^{-2i\pi\pi\xi} \widehat{u_k}(\xi) = \frac{1}{N} \left(\sum_{\substack{n \in \mathbb{Z}, \\ |n| < N}} \left(1 - \frac{|n|}{N}\right) e^{2i\pi\pi\xi}\right) \widehat{u_k}(\xi) = \frac{1}{N^2} \left(\frac{\sin\pi N \xi}{\sin\pi\xi}\right)^2 \widehat{u_k}(\xi).$$

et donc pour $n \in \mathbb{Z}$ et $\xi \in]n, n+1[$,

$$\left|\widehat{u_{k,N}}(\xi)\right| = \frac{1}{N} \left(\sum_{\substack{n \in \mathbb{Z}, \\ |n| < N}} \left(1 - \frac{|n|}{N} \right) e^{2in\pi\xi} \right) \left|\widehat{u_k}(\xi)\right| \leqslant \frac{1}{N} \left(\sum_{\substack{n \in \mathbb{Z}, \\ |n| < N}} \left(1 - \frac{|n|}{N} \right) e^{2in\pi\xi} \right) \sup_{[n,n+1]} \left|\widehat{u_k}\right|,$$

ce qui reste vrai pour x = n ou x = n + 1 par continuité. Mais alors,

$$\begin{split} \int_{-\infty}^{+\infty} \left| \widehat{u_{k,N}}(\xi) \right| \ d\xi &= \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} \left| \widehat{u_{k,N}}(\xi) \right| \ d\xi \\ &\leqslant \frac{1}{N} \sum_{n \in \mathbb{Z}} \sup_{[n,n+1]} \left| \widehat{u_k} \right| \int_{n}^{n+1} \left(\sum_{\substack{p \in \mathbb{Z} \\ |p| < N}} \left(1 - \frac{|p|}{N} \right) e^{2ip\pi\xi} \right) \ d\xi \\ &= \frac{1}{N} \sum_{n \in \mathbb{Z}} \sup_{[n,n+1]} \left| \widehat{u_k} \right| \left(1 + \sum_{\substack{p \in \mathbb{Z}^* \\ |p| < N}} \left(1 - \frac{|p|}{N} \right) \left[\frac{e^{2ip\pi\xi}}{2ip\pi} \right]_{n}^{n+1} \right) \\ &= \frac{1}{N} \sum_{n \in \mathbb{Z}} \sup_{[n,n+1]} \left| \widehat{u_k} \right|. \end{split}$$

Soit maintenant $n \in \mathbb{Z} \setminus \{-1, 0\}$. Pour $\xi \in [n, n+1]$, d'après les questions 3) et 4),

$$\begin{split} |\widehat{u_k}(\xi)| &= \left| \frac{1}{2^k} \widehat{t} \left(\frac{\xi}{2^k} \right) - \frac{1}{2^{k+1}} \widehat{t} \left(\frac{\xi}{2^{k+1}} \right) \right| = \left| \frac{1}{2^k} \frac{1 - \cos\left(2\pi \frac{\xi}{2^k}\right)}{2\pi^2 \frac{\xi^2}{2^{2k}}} - \frac{1}{2^{k+1}} \frac{1 - \cos\left(2\pi \frac{\xi}{2^{k+1}}\right)}{2\pi^2 \frac{\xi^2}{2^{2k+2}}} \right| \\ &\leqslant \frac{2^k}{\pi^2 \xi^2} + \frac{2^{k+1}}{\pi^2 \xi^2} \leqslant \frac{3 \times 2^k}{\pi^2 n^2}. \end{split}$$

et donc, pour tout $n \in \mathbb{Z} \setminus \{-1,0\}$, $\sup_{[n,n+1]} |\widehat{u_k}| \leqslant \frac{3 \times 2^k}{\pi^2 n^2}$. Ceci montre que $\sum_{n \in \mathbb{Z}} \sup_{[n,n+1]} |\widehat{u_k}| < +\infty$.

18) Pour $k \in \mathbb{N}$, on choisit $N_k = 2^k \left(E\left(\sum_{n \in \mathbb{Z}} \sup_{[n,n+1]} |\widehat{u_k}| \right) + 1 \right)$. $(N_k)_{k \in \mathbb{N}}$ est une suite d'entiers strictement positifs et pour tout $k \in \mathbb{N}$,

$$\int_{-\infty}^{+\infty} \left| \widehat{u_{k,N_k}}(\xi) \right| \ d\xi \leqslant \frac{1}{N_k} \sum_{n \in \mathbb{Z}} \sup_{[n,n+1]} |\widehat{u_k}| \leqslant \frac{1}{2^k}.$$

Mais alors la série de terme général $\int_{-\infty}^{+\infty} \left| \widehat{u_{k,N_k}}(\xi) \right| d\xi, \, k \in \mathbb{N}, \, \text{converge}.$

D'autre part, f est continue par morceaux et intégrable sur \mathbb{R} de même que chaque \mathfrak{u}_{k,N_k} , $k \in \mathbb{N}$ ou encore f et les \mathfrak{u}_{k,N_k} sont dans \mathscr{L} . La question 1) permet d'affirmer que \hat{f} et les $\widehat{\mathfrak{u}_{k,N_k}}$, $k \in \mathbb{N}$, sont définies et continues sur \mathbb{R} .

Ainsi, comme à la question 16),

- Chaque fonction $\widehat{u_{k,N_k}}$, $k \in \mathbb{N}$, est continue par morceaux sur \mathbb{R} .
- La série de fonctions de terme général $\widehat{u_{k,N_k}}$, $k \in \mathbb{N}$, converge simplement vers \widehat{f} sur \mathbb{R} et \widehat{f} est continue par morceaux sur \mathbb{R} .
- La série numérique de terme général $\int_{-\infty}^{+\infty} |\widehat{u_{k,N_k}}(\xi)| d\xi, k \in \mathbb{N}$, converge.

D'après un théorème d'intégration terme à terme, \widehat{f} est intégrable sur \mathbb{R} puis la série de fonctions de terme général $\widehat{u_{k,N_k}}$, $k \in \mathbb{N}$, converge en moyenne vers \widehat{f} .

Comme chaque fonction $\widehat{u_{k,N_k}}$, $k \in \mathbb{N}$ est dans \mathscr{L} de même que \widehat{f} , on en déduit encore que la série de fonctions de terme général $\widehat{\widehat{u_{k,N_k}}}$, $k \in \mathbb{N}$, converge uniformément vers $\widehat{\widehat{f}}$ sur \mathbb{R} .

Soi $k \in \mathbb{N}$. La fonction \mathfrak{u}_{k,N_k} est continue sur \mathbb{R} et nulle sur un voisinage de $\pm \infty$. Donc la fonction \mathfrak{u}_{k,N_k} est dans \mathscr{L}^* . Ensuite, $\widehat{\mathfrak{u}_{k,N_k}}$ est continue sur \mathbb{R} puis pour tout réel ξ ,

$$\begin{split} \left| \widehat{u_{k,N_k}}(\xi) \right| &= \left| \frac{1}{N_k} \sum_{\substack{n \in \mathbb{Z}, \\ |n| < N_k}} \left(1 - \frac{|n|}{N_k} \right) e^{-2i\pi n \xi} \widehat{u_k}(\xi) \right| \\ &\leqslant \frac{1}{N_k} \sum_{\substack{n \in \mathbb{Z}, \\ |n| < N_k}} \left(1 - \frac{|n|}{N_k} \right) |\widehat{u_k}(\xi)| = |\widehat{u_k}(\xi)| = \left| \frac{1}{2^k} \widehat{t} \left(\frac{\xi}{2^k} \right) - \frac{1}{2^k} \widehat{\xi} \left(\frac{t}{2^k} \right) \right|. \end{split}$$

La question 4) permet alors d'affirmer que la fonction $\xi \mapsto \xi^2 \widehat{u_{k,N_k}}(\xi)$ est bornée sur \mathbb{R} et finalement que la fonction u_{k,N_k} est dans \mathscr{W}^* . La formule d'inversion de Fourier montre alors que pour tout $\xi \in \mathbb{R}$, $\widehat{\widehat{u_{k,N_k}}}(\xi) = u_{n,N_k}(-\xi)$.

On en déduit que la série de fonction de terme général \mathfrak{u}_{k,N_k} converge uniformément sur \mathbb{R} vers la fonction $\xi \mapsto \widehat{\widehat{f}}(-\xi)$ qui est donc aussi la fonction f. La formule d'inversion de FOURIER s'applique donc à la fonction f.

19) On a déjà vu que f s'annule sur \mathbb{Z} . Par suite, $\sum_{n\in\mathbb{Z}}f(n)=0$.

Pour tout $k \in \mathbb{N}$ et tout $\xi \in \mathbb{R}$, d'après la question 3),

$$\widehat{u_{k,N_k}}(\xi) = \frac{1}{N_k} \sum_{\substack{n \in \mathbb{Z}, \\ |n| < N_k}} \left(1 - \frac{|n|}{N_k}\right) e^{-2i\pi n \xi} \widehat{u_k}(\xi) = \frac{1}{N_k} \sum_{\substack{n \in \mathbb{Z}, \\ |n| < N_k}} \left(1 - \frac{|n|}{N_k}\right) e^{-2i\pi n \xi} \left(\frac{1}{2^k} \widehat{t}\left(\frac{p}{2^k}\right) - \frac{1}{2^{k+1}} \widehat{t}\left(\frac{p}{2^{k+1}}\right)\right).$$

En particulier, pour tout $k \in \mathbb{N}$ tout $p \in \mathbb{Z}$,

$$\begin{split} \widehat{u_{k,N_k}}(p) &= \frac{1}{N_k} \sum_{\substack{n \in \mathbb{Z}, \\ |n| < N_k}} \left(1 - \frac{|n|}{N_k}\right) \widehat{u_k}(p) \\ &= \widehat{u_k}(p) \text{ (d'après le calcul de la question 16)} \\ &= \frac{1}{2^k} \widehat{t}\left(\frac{p}{2^k}\right) - \frac{1}{2^{k+1}} \widehat{t}\left(\frac{p}{2^{k+1}}\right) \end{split}$$

puis,

$$\begin{split} \widehat{f}(p) &= \sum_{k=0}^{+\infty} \widehat{u_{k,N_k}}(p) = \sum_{k=0}^{+\infty} \left(\frac{1}{2^k} \widehat{t}\left(\frac{p}{2^k}\right) - \frac{1}{2^{k+1}} \widehat{t}\left(\frac{p}{2^{k+1}}\right)\right) = \lim_{m \to +\infty} \sum_{k=0}^{m} \left(\frac{1}{2^k} \widehat{t}\left(\frac{p}{2^k}\right) - \frac{1}{2^{k+1}} \widehat{t}\left(\frac{p}{2^{k+1}}\right)\right) \\ &= \lim_{m \to +\infty} \left(\frac{1}{2^0} \widehat{t}\left(\frac{p}{2^0}\right) - \frac{1}{2^{m+1}} \widehat{t}\left(\frac{p}{2^{m+1}}\right)\right) \text{ (somme t\'elescopique)} \\ &= \widehat{t}(p). \end{split}$$

Ainsi, $\forall p \in \mathbb{Z}$, $\widehat{f}(p) = \widehat{t}(p) = \delta_{p,0}$ puis $\sum_{p \in \mathbb{Z}} \widehat{f}(p) = 1 \neq 0 = \sum_{n \in \mathbb{Z}} f(n)$. La formule de Poisson n'est donc pas vérifiée par la fonction f. On a donc un exemple de fonction vérifiant la formule d'inversion de Fourier et ne vérifiant pas la formule de Poisson.

F. Application à la resommation d'Ewald

20) Pour $x \in \mathbb{R}$, posons $h(x) = g\left(\frac{x}{100}\right)$. h est dans \mathscr{L} et d'après la question 3), pour tout $x \in \mathbb{R}$, $\widehat{h}(x) = 100\widehat{g}(100x) = 100g(100x)$. Mais alors, h est dans \mathscr{W}^* et on peut lui applique la formule de Poisson. On obtient

$$1 + 2S = \sum_{n = -\infty}^{+\infty} g\left(\frac{n}{100}\right) = \sum_{n = -\infty}^{+\infty} h(n) = \sum_{n = -\infty}^{+\infty} \widehat{h}(n)$$
$$= 100 \sum_{n = -\infty}^{+\infty} g(100n) = 100 \left(1 + 2\sum_{n = 1}^{+\infty} e^{-10000\pi n^2}\right),$$

puis

$$S = 49,5 + 100 \sum_{n=1}^{+\infty} e^{-10000\pi n^2}$$

et donc

$$\begin{split} |S-49,5| &= 100 \sum_{n=1}^{+\infty} e^{-10000\pi n^2} \\ &\leqslant 100 \sum_{n=1}^{+\infty} \left(e^{-10000\pi} \right)^n = \frac{100 e^{-10000\pi}}{1 - e^{-10000\pi}} \leqslant 101 e^{-10000\pi} = \left(\frac{1}{e^{\pi - \frac{\ln(101)}{10000}}} \right)^{10000} = (0,04\dots)^{10000} \\ &\leqslant 0,1^{10000} = 10^{-10000}. \end{split}$$