EX For what values of x is the
serres Sinix convergent?
$\lim_{h\to\infty} \frac{\lfloor a_{n+1}\rfloor \cdot \lim_{n\to\infty} (n41)! \cdot \lfloor \frac{x^{n+1}}{x^n} \rfloor}{n^{2n}}$
= lim (n+1) x = 00 h-700
i. The series is divergent everywhere
except for x=0.
$\sum_{i=1}^{n} \frac{(x-3)^n}{n}$

The state of the s

.

T

The Manager Ma

Theorem
$\boldsymbol{\wp}$
For a given series Signly-as" there are
only three possibilities
0) The sen's converges only for X=a
b) the series converges for all x
co there is a positive number R such that
the series converges if 1x-a1 < R and
diverges if 1x-al>R
In this case Ris called the
radius of convergence. In case as R=O,
In case by R=00.
The interval of convergence is the
inderval that consists of all values of
& for which the series converges.

First the interval of convergence	
of § CXID" check endpoints.	
	· · · · · · ·
	Arrest Manager
	P *** *******************************
er en	

ı