COM2109 Automata

Robert Hierons

More on DFA: equivalence

Equivalence

Remember:

Finite Automata M and M' are equivalent if L(M) = L(M')

We can extend this to states s and s' of a finite automaton M:

s and s' are equivalent if L(M(s))=L(M(s'))

where, for a state t, M(t) is the automaton formed by starting M in state t

Reducing a finite automaton

A DFA is minimal if there is no equivalent DFA that has fewer states.

We can reduce a DFA if it is not minimal.

We can simply:

Merge equivalent states

Reduction is checking for equivalence.

Remember: Intersection and DFA

Machine M_1

DFA for L_1

Machine M_2

DFA for L_2

Construct a new DFA M that accepts $L_1 \cap L_2$

M simulates in parallel M_1 and M_2

States in M

DFA M_2

DFA M

DFA M_2

initial state

initial state

DFA M

New initial state

Both constituents must be accepting states

Example:

$$L_1 = \{a^n b\}$$

ab $\sqrt{a,b}$ a,b

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

11

$\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

$$L(M) = L(M_1) \cap L(M_2)$$

How can we use this?

Simple:

A sequence separates M_1 and M_2 if either: the sequence is in L_1 and not in L_2 or

the sequence is in L_2 and not in L_1

This is the case if we reach a pair of states (p,q) where one is accepting and the other is not.

ab $\sqrt{a,b}$ a,b

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

Summary

There are efficient algorithms that:

Minimise a DFA

Determine whether DFA are equivalent

Determine whether the languages defined by two DFA intersect

Potential applications include verification of designs/models.