10. POLYNOMIAL MAPPINGS ON A VARIETY Definition 10.1 Let VCKM, WCKM be venetics. · A mapping &: V->W is a polynomial mapping if JPI-- PnEK[x, -- xm] such that \$(a) = (p,6), --, pn(a)) YaeV · The tuple (pi-pn) represents & - The polynomials Pi one components of this representation Example 10.2 (1) polynomial parametrization: $P_1=t$, $P_2=t^2$, $P_3=t^3$, $\phi=(P_1,P_2,P_3)$ gives a pulynomial mapping 4: K -> V(y-x2, z-x3). (2) projection: P=y, Pz=z in K[xy,z], b=(P1/2) on V(y-x2, z-x2) gives a polynomial napping φ: V(y-2, 2-x3) → V(y3-z²)

 $\phi: V(y-2, z-x3) \to V(y3-z^2)$ (3) $q_1=y$, $q_2=xy$ in k[x,y,z], $\psi=(q_1,q_2)$ also gives a polynomial mapping $\psi: V(y-x^2, z-x^3) \to V(y^3-z^2)$ In fact, if $a=(t,t^2,t^3) \in V(y-x^2,z-x^3)$ then $\psi(a)=(q_1(a),q_2(a))=(t^2,t\cdot t^2)=(t^2,t^3)=\phi(a)$

Proposition 10.3

Let VCKM be a variety.

(i) p,q \(\) \(\) \(\) \(\) represent the same polynomial mapping \(\) \(

(i) p(a) = q(a) $\forall a \in V \iff (p-q)(a) = 0 \forall c \in V$ $\iff p-q \in I(V)$

(ii) Apoly (i) componentuse [

· The coordinate ring of a voriety VCK

is the quotient ring

 $K[V] = K[x, -x_n]/I(V)$

The equivalence class of pok[x, -xn] in K[V] will be denoted by [p].

Prop 10.3 implies the byective correspondence K[V] >> {polynomial nappings V->K}

Proposition 10.5 ProoF

Let VCK" be a variety. Then

Virreducible
$$\iff$$
 K[V] is an integral domain $(\phi. \psi=0 \Rightarrow \phi=0 \text{ or } \psi=0)$

(\$· \$\psi =0 ⇒ \$=0 or \$\psi =0) "=" Let \$: V=> K and 4: V=> K polynomial mappings, \$.4=0.

Take representatives pack[x = xn] of \$4,4 so

Paga = 0 VaeV = V = (Vn V(p)) U (VnV(q)).

Virreducible \Rightarrow $V \subset V(p) \Rightarrow p \in I(v) \Rightarrow \phi = 0$ $V \subset V(q) \Rightarrow g \in I(v) \Rightarrow \psi = 0$

=" suppose V not irreducible, so V= V, UVz, V, FV, Vz &V. Then $J_P \in I(V_i) \setminus I(V)$ and $g \in I(V_i) \setminus I(V)$, so

p(c)q(a)=0 Yae I(V) => \$4.4=0 For the polynomial mappings \$1,4:V=K with representatives P. 9.

bt \$ \$0 on and \$40. []

Example 10.6
Let
$$V = V(P_1, P_2, P_3) \subset \mathbb{C}^3$$
, where $P_1 = x^2 + 2xz + 2y^2 + 3y$
 $P_2 = xy + 2x + z$
 $P_3 = xz + y^2 + 2y$
Clain: $\mathbb{C}[V]$ has a byector with $\mathbb{C}[V]$

P1= x2+2x2+2y2+3y

Pz = xy+2x+Z

p3 = x5+2+5A Clain: C[V] has a byecton with C[x]. Proof: A Grobnen basis of CP, PZP3> in les order y>z>x

9, = y-x2 92 = Z+x3+2x Conster the polynomial mappings

 $\pi: V \rightarrow \mathbb{C}$ $\pi(xy,z) = x$ $\phi: \mathbb{C} \to V$ $\phi(x) = (x, x^2, -x^3 - 2x)$

Then IT and & are inverse reppings: $\Lambda \circ \phi : \mathcal{L} \rightarrow \mathcal{L}, \quad \pi \circ \phi(x) = x$

 $\phi \circ \pi : V \rightarrow V$, $\phi \circ \pi(x, y, z) = (x, x^2, -x^3 - 2x)$ $=(x, x^2+g, -x^3-2x+g_2)$ =(x,y,z) on V

This implies that $C[V] \rightarrow C[x]$, [p] $\rightarrow P \circ \phi$

is a well defined map and C(V) -> C(V), P -> [p.n] 15 its inverce map.

Definition 10.7 Let V, W be voneties. Let $\alpha: V \to W$ be a polynomial mapping. The pullback mapping of a is $\alpha^*: K[w] \rightarrow K[v], \quad \alpha^*(\phi) = \phi \circ \alpha$ Proposition 10.8 (i) The pullback mapping at K[W] > K[V] is a ring homomorphyn and $\alpha^*(EcJ) = [c]$ any constant polynomial < (representing a constant rapping) (ii) Let 重 KIWJ→KIVJ be a ring homomorphism such that $\mathbb{E}(ICI) = [C]$ for any constant polynomial C. Then there is a unique polynomial mapping a: V→W such that == ~. Posf (i) If & W > K polynomial nappang, then x*(\$)=\$0a:V>K polynomial mapping. That at is a ring homomorphism follows by $(\phi_1 + \phi_2) \circ \alpha = \phi_1 \circ \alpha + \phi_2 \circ \alpha$

 $(\phi, \phi_z) \circ \alpha = (\phi, \alpha)(\phi_z \circ \alpha)$ If $C \in K$ is a constant, the constant mapping $\phi: W \to K$, $\phi(a) = C$ $\forall a \in W$ has the pullback $\alpha^* \phi: V \to K$, $\alpha^* \phi(a) = \#(\alpha(a)) = C$ $\forall a \in V$. (ii) Let VCKm and wck, and consider $K[V] = K[x, x_n]/I(v)$ $k[w] = K[y, -, y_n]/I(w)$ Consider the \$- images [y,]EK[W] > \(\pi(\text{(yJ)}EK[V]\) and take representative PiEK[x,-xn] of \(\overline{\pi}(Cyi)\). Define the polynomial mapping $\alpha = (p_1 - p_n)$ Claim x is a map V→W and x = 重. Proof: First we show [goa] = \(\Pi[q]) \(\mathreal{E}[V]\) \(\mathreal{E}[V]) \(\mathreal{E}[V]\) (quigon) and I are both ring homomorphisms, so it suffice to check that [gox] = I([9]) for generators [q] of k[w] as a ring.

The ring K[y1,-, yn] is generated by the constants and the monomials y, , -, yn since every polynomial is a sun ECXY, -. your, Cack, (x, -, an) EN'

Hence K[W] u generated as a range by the constant mappings and [y,], _ lyn] & K[W].

[C . K] = [c] = E([c]) For the coordinate generators yiekly - Yn]

For constants CEK

 $[y_{\epsilon} \circ \alpha] = [p_{i}] = \Phi[y_{i}]$ Proving [402] = \$\overline{\pi}(9).

If geI(w), the [q]=0 e K[w]. Then $O = \overline{\mathcal{F}}([q]) = [q \circ \alpha] \in K[V]$, so goreI(V) YgcI(W). =) if GeV then a(G) 6 V(I(W))=W =) a(V) CW. That is, a is a mapping V-> W. Finally, by definition of the pullbuck So ~ = 更. To show uniqueness of $\alpha: V \rightarrow W$, let $B: V \rightarrow W$ be another polynomial mapping represented by $(q_1 - q_n)$ with B*= = Then $[q_i] = B^*[[y_i]) = \overline{E}([y_i]) = \alpha^*([y_i]) = [\rho_i] \in K[V]$

=> [pi-q]=OEK[V] => pi-qieT(V)

Prop 10.3 => or and B define the same mapping V->W []

Definition 10.9 Varieties VCK" and WCK" are isomorphic IF FX: V+W, B. W+V polynomial mappings such that OCOB = idw and Box = idv The identity rigging (x1-xn) ->(x,-xn) on W Theorem 10.10 Varieties V and W are isomorphic if and only if J ₱: K[V] → K[W] ring wonorphism with I[[c])=[c] the identity map on constants. CEK. POUL "=>" Let a: V->W and B: WoV inverse polynomial mappings. Then oroB=idw, so For all det(W) $(B^* \circ \alpha^*)(\phi) = B^*(\alpha^* \phi) = B^*(\phi \circ \alpha) = \phi \circ \alpha \circ B = \phi$ = (x 0 B) > \$ Similarly (atorst) (4) = 6 4 4 e KTV] so a*: k[w]→k[v] and B*: k[v] → k[v] are inverse ring homomyphisms. Take \$=13t. "E" Prop 10.8 => I=13" and I= = at for some Polynomial mappings a:V >W and BIW >V. Then (000)= B*0 x* = \$\Pi = 10 k[w] = (10) * By the uniqueress in Pap 10.8 aoB=1dw, and similarly Poa = idy 1