§ 1.

Thm I Every isometry of \mathbb{R}^2 is a product of 1, 2 or 3 reflections

Proof: Consider A.B.C non calinean.

Then the cases one:

(a) it f(A) = A, f(B) = B, f(C) = C,

the f = Id

(I) f(A) = A, f(B) = B, $f(C) \neq C$ we argue that f(C) = f(

Indeed, le, fice, satisfies fra)=A

that $\overline{\Gamma}_{L,f(c)}(c) = f(c)$ $\overline{\Gamma}_{L}(A) = A$

If we conclude $\ell_{c,f(c)}=L$, $T_{c,c}(B)=B$ the $T_{c,c}(c)=f(c)$

L contains A & B

d(A,C) = d(A,C) $|(1 \neq isometry)|$ d(A,f(C)) = d(f(A),f(C)) A = f(A) A = f(A)

Consider
$$l_B$$
, $f(B) \neq B$, $f(C) \neq C$

consider l_B , $f(B)$, then $T_{e_{b} \neq b}$,

 $= f(B)$

Do we have $T_{e_{b}, f_{b}}$, $(A) = f(A)$

Since $d(A, B) = d(A, f(B))$,

because $f(A) = A$.

 $A \in l_B, f_{e_B}$, and then

 $d(A, B) = d(A, f(B))$
 $T_{B} \neq f_{e_B}$, $(A) = A = f(A)$

Remark: $2f T_{e_B}, f_{e_B}$, $(C) = C$, then $f = T_{e_B}, f_{e_B}$

and we are done.

We know $T_{e_B, f_{e_B}}$, $(A) = f(A)$, $T_{e_B, f_{e_B}}$, $(B) = f(B)$

In general, $f(C) \neq T_{e_B, f_{e_B}}$ (C)

Claim $f = T_{m}T_{L}$
 $f_{e_B} \neq f_{e_B} = f_{e_B} = f_{e_B} = f_{e_B}$
 $f_{e_B} \neq f_{e_B} = f_{e_B} = f_{e_B} = f_{e_B}$

Finally, verify that $f(c) = T_M T_L(c)$ it suffices to Show that $M = \ell T_{L(c)}$, f(c) ℓ $f(T_L(c)) = f(c)$

We know A = f(A), $f(B) \in M$. * Need to check A, $f(B) \in \ell_{F_L(C)}$, f(C)

Check $A \in l_{Te(C)}$, f(C): $d(A, T_{L(C)}) = d(A, f(C)) = d(A, C)$ $d(T_{L}(A), T_{L}(C)) \setminus_{A \cap f(A)} d(T_{L}(A), T_{L}(C))$

3) Last case; $f(A) \neq A$ $f(B) \neq B$ $f(C) \neq C$

HINI: Start by considering $A \cdot f(A) \in L$.

Look at F_Z . In the end, $f = F_N F_M F_Z$, where $f A \cdot f(A) \in L$ $B \cdot f(B) \in M$ $C \cdot f(C) \in N$

& 2. GLIDE REFLECTIONS

Thm I Every isometry of \mathbb{R}^2 is a translation, 2 refs rotation, or a glide reflection $\rightarrow 1073$ refs

Det of glide ref.

A glide reflection is a composition of a reflection \overline{r}_{L} and a translation along the line L.

3x1 t(1,0) 0 F

Ex.2 The world's most famous glide ref.

1 L pt

A f³cp) Note, known by Thm I

that a glide reflection

is a product of refs.

How many? [3]

Remark: a ref. is a glide ref

Prop: The product of 3 reflections is a glide reflection.