

Compatibility Checking for Autonomous Lane-Changing Assistance Systems

Po-Yu Huang¹, Kai-Wei Liu¹, Zong-Lun Li¹, Sanggu Park², Edward Andert², Chung-Wei Lin¹, Aviral Shrivastava²
¹National Taiwan University, ²Arizona State University

BACKGROUND & MOTIVATION

☐ An incompatible scenario of lane changing

- > Two vehicles always accelerate or decelerate together
- > They always keep the same longitude along a road segment
- > They fail to exchange their lanes before the end of the road segment

□ Challenges

- Different automotive makers/suppliers) develop different types of systems by their own
- > A compatibility issue may be resolvable by human drivers, but not by autonomous vehicles

NEW INSIGHTS

- ☐ A methodology and an algorithm to verify if two lanechanging models are compatible
- Compatible := two vehicles exchange their lanes before the end of the road segment (liveness)
- ☐ Design-time usage (if incompatible)
 - > Trigger redesign of lane-changing models
- □ Runtime usage (if incompatible)
- > Prevent incompatible vehicles from entering the road segment with the incompatible conditions (by traffic lights or instruction messages)

DESCRIPTION

QUANTITATIVE IMPACT

 □ Four lane-changing models ➤ C₁ [Wang, ICCC'17] 		Right Lane					
	Г		C_1	C ₂	C ₃	C ₄	
> C ₂ [Ouyang, CAC'20]	(C_1					
 C₃ [Zheng, T-ITS'20] C₄: a priority-based controller Compatibility with ±5m/s initial velocities, ±5m initial longitudes, 	(\mathbb{C}_2					
	C	C_3					
		C ₄					
and 200m road segment Higher incompatible probabilities	Compatible						
Larger initial rangesShorter road segments			Inc	om	pat	ible	

SUMMARY AND CONCLUSION

- ☐ We verify if two lane-changing models are compatible
 - > The verification results can be utilized during runtime to prevent incompatible vehicles from entering a lane-changing road segment
 - > To the best of our knowledge, this is the first work targeting the compatibility for lane-changing models
- □ Future directions
 - > Compatibility checking for hybrid systems
 - > Lane-changing scenarios with more vehicles
 - > More complicated applications such as intersection management