北京市平谷区 2018 年中考统一练习(二) 数学试卷

2018.5

一、选择题(本题共16分,每小题2分)

第 1-8 题均有四个选项,符合题意的选项只有一个.

1. 下面四幅图中所作的∠AOB 不一定等于 60° 的是

2. 实数 a 在数轴上的位置如图,则化简 |a-3| 的结果正确的是

- B. a 3
- C. a 3

3. 下列图形中, 既是轴对称图形, 又是中心对称图形的是

В.

D.

4. 如图, a//b, 点 B 在直线 b 上, 且 $AB \perp BC$, $\angle 1$ =40°, 那么 $\angle 2$ 的 度数

- B. 50° C. 60° D. 90°

中,不等式①和②的解集在数轴上表示正确的是

Α.

C.

6. 1978年,以中共十一届三中全会为标志,中国开启了改革开放历史征程. 40年众志成城, 40 年砥砺奋进, 40 年春风化雨, 中国人民用双手书写了国家和民族发展的壮丽史诗. 下图 是 1994—2017 年三次产业对 GDP 的贡献率统计图(三次产业是指:第一产业是指农、林、 牧、渔业(不含农、林、牧、渔服务业);第二产业是指采矿业(不含开采辅助活动),制造 业(不含金属制品、机械和设备修理业),电力、热力、燃气及水生产和供应业,建筑业; 第三产业即服务业,是指除第一产业、第二产业以外的其他行业).下列推断不合理的是

- A. 2014年,第二、三产业对 GDP 的贡献率几乎持平;
- B. 改革开放以来,整体而言三次产业对 GDP 的贡献率都经历了先上升后下降的过程;
- C. 第三产业对 GDP 的贡献率增长速度最快的一年是 2001 年;
- D. 2006年,第二产业对 GDP 的贡献率大约是第一产业对 GDP 的贡献率的 10倍.
- 7. 姐姐和妹妹接计划周末去距家 18km 的电影院 vkm 看电影,由于妹妹需要去书店买课外书,姐姐也 要完成妈妈布置的家务任务, 所以姐姐让妹妹骑 公共自行车先出发,然后自己坐公交赶到电影院 与妹妹聚齐. 如图是她们所走的路程 y km 与所 用时间 $x \min$ 的函数图象,观察此函数图象得出 有关信息:

- ①妹妹比姐姐早出发 20min;
- ②妹妹买书用了 10 min;
- ③妹妹的平均速度为 18km/h:
- ④姐姐大约用了 52 min 到达电影院.

其中正确的个数为

A. 1 个 B. 2 个 *C*. 3 ↑ D. 4个

8.右图所示是一个三棱柱纸盒.在下面四个图中,只有一个展开图是这个纸盒的展

二、填空题(本题共16分,每小题2分)

- 9. 北京大力拓展绿色生态空间,过去 5 年,共新增造林绿化面积 134 万亩. 将 1 340 000 用科学计数法表示为_____.
- 10. 如图,是某个正多边形的一部分,则这个正多边形是 边形.

这个函数的表达式为_____.

12. 化简,代数式
$$\left(1+\frac{1}{x}\right)$$
÷ $\frac{x^2-1}{x}$ 的值是_____.

13. 《数》是中国数学史上的重要著作,比我们熟知的汉代《九章算术》还要古老,保存了许多古代算法的最早例证(比如"勾股"概念),改变了我们对周秦数学发展水平的认识. 文中记载"有妇三人,长者一日织五十尺,中者二日织五十尺,少者三日织五十尺,今威有功五十尺,问各受几何?"译文:"三位女人善织布,姥姥1天织布50尺,

O B x

妈妈 2 天织布 50 尺,妞妞 3 天织布 50 尺. 如今三人齐上阵,共同完成 50 尺织布任务,请问每人织布几尺?"设三人一共用了x天完成织布任务,则可列方程为_____.

- 14. 如图, 一名滑雪运动员沿着倾斜角为34°的斜坡, 从A滑行至
- B,已知 AB = 500 米,则这名滑雪运动员的高度下降了约
- 米. (参考数据: $\sin 34^{\circ} \approx 0.56$, $\cos 34^{\circ} \square 0.83$, $\tan 34^{\circ} \approx 0.67$)
- 15. 农科院新培育出 *A、B* 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:

	种子数量	100	200	500	1000	2000
	出芽种子数	96	165	491	984	1965
Α	发芽率	0.96	0.83	0.98	0.98	0.98
	出芽种子数	96	192	486	977	1946
В	发芽率	0.96	0.96	0.97	0.98	0.97

下面有三个推断:

- ①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;
- ②随着实验种子数量的增加,A 种子出芽率在 0.98 附近摆动,显示出一定的稳定性,可以估计 A 种子出芽的概率是 0.98:
- ③在同样的地质环境下播种,A 种子的出芽率可能会高于 B 种子. 其中合理的是 (只填序号).

16. 如图,在平面直角坐标系 xOy 中, $\triangle OA_1B_1$ 绕点 O 逆时针旋转 90°,得 $\triangle OA_2B_2$; $\triangle OA_2B_2$ 绕点 O 逆时针旋转 90°,得 $\triangle OA_3B_3$; $\triangle OA_3B_3$ 绕点 O 逆时针旋转 90°,得 $\triangle OA_4B_4$;…;若点 A_1 (1,0), B_1 (1,1),则点 B_4 的坐标是______,点 B_{2018} 的坐标是

三、解答题(本题共 68 分, 第 17~22 题每小题 5 分, 第 23~26 题每小题 6 分, 第 27、28 题每小题 7 分)

17. 在数学课上,老师提出一个问题"用直尺和圆规作以 AB 为底的等腰直角三角形 ABC". 小美的作法如下:

- ①分别以点 A, B 为圆心, 大于 $\frac{1}{2}AB$ 作弧, 交于点 M, N;
- ②作直线 MN, 交 AB 于点 O;
- ③以点 O 为圆心,OA 为半径,作半圆,交直线 MN 于点 C;
- ④连结 AC, BC.

所以, $\triangle ABC$ 即为所求作的等腰直角三角形.

请根据小美的作法,用直尺和圆规作以 AB 为底的等腰直角三角形 ABC,并保留作图痕迹. 这种作法的依据是

18. 计算:
$$\left(\frac{1}{3}\right)^{-1} - \left(\pi - \sqrt{3}\right)^0 + \sqrt{27} - 4\sin 60^\circ$$

19. 如图, 四边形 ABCD 是平行四边形, BE 平分 $\angle ABC$, 交 AD 于点 E, $AF \bot BE$ 于点 F. 求证: $\angle BAF = \angle EAF$.

- 20. 已知关于 x 的一元二次方程 $x^2 (m+3)x + m = 0$.
- (1) 求证: 无论实数 m 取何值,方程总有两个不相等的实数根;
- (2) 若方程一个根是 2, 求 m 的值.

- 21. 如图,在平面直角坐标系 xOy 中,函数 $y = \frac{k}{x} (k \neq 0)$ 的图象与直线 y=x-2 交于点 A(a, 1).
- (1) 求 a, k 的值;
- (2) 已知点 P(m, 0) ($1 \le m < 4$), 过点 P 作平行于 y 轴的直线, 交直线 y = x 2 于点 $M(x_1, y_1)$, 交函数 $y = \frac{k}{x} (k \ne 0)$ 的图象于点 $N(x_1, y_2)$, 结合函数的图象,

- 22. 如图,已知 □ABCD,延长 AB 到 E 使 BE=AB,连接 BD, ED, EC,若 ED=AD.
- (1) 求证: 四边形 BECD 是矩形;

直接写出 $|y_1-y_2|$ 的取值范围.

(2) 连接 AC, 若 AD=4, CD=2, 求 AC 的长.

23. 为了解 2018 年某校九年级数学质量监控情况,随机抽取 40 名学生的数学成绩进行分析.成绩统计如下.

93	92	84	55	85	82	66	75	88	67
87	87	37	61	86	61	77	57	72	75
68	66	79	92	86	87	61	86	90	83

90 18 70 67 52 79 86 71 61 89

2018年某校九年级数学质量监控部分学生成绩统计表:

Ī	分数段	<i>x</i> <50	50≤ <i>x</i> <60	60≤ <i>x</i> <70	70≤ <i>x</i> <80	80≤ <i>x</i> <90	90≤ <i>x</i> <100
	人数	2	3	9		13	

平均数、中位数、众数如下表:

统计量	平均数	中位数	众数
分值	74.2	78	86

请根据所给信息,解答下列问题:

- (1) 补全统计表中的数据;
- (2) 用统计图将 2018 年某校九年级数学质量监控部分学生成绩表示出来;
- (3) 根据以上信息,提出合理的复习建议.

24. 已知: 在 $\triangle ABC$ 中,AB=BC,以AB为直径作 $\Box O$,交BC于点D,交AC于E,过点E作 $\Box O$ 切线EF,交BC于F.

- (1) 求证: *EF*⊥*BC*;
- (2) 若 CD=2,tan C=2,求 $\Box O$ 的半径.

25. 如图, $\triangle ABC$ 中, $\angle ACB$ =90°, $\angle A$ =30°, AB=6, 点 P 是斜边 AB 上一点 (点 P 不与点 A, B 重合), 过点 P 作 PQ \bot AB 于 P, 交边 AC (或边 CB) 于 点 Q, 设 AP=x, $\triangle APQ$ 的面积为 y.

小明根据学习函数的经验,对函数 y 随自变量 x 的变换而变化的规律进行了探究.

下面是小明的探究过程,请补充完整:

(1) 通过取点、画图、测量、计算,得到了 x 与 y 的几组值,如下表:

х	 0.8	1.0	1.4	2.0	3.0	4.0	4.5	4.8	5.0	5.5	
у	 0.2	0.3	0.6	1.2	2.6	4.6	5.8	5.0	m	2.4	•••••

经测量、计算,m的值是 (保留一位小数).

(2) 建立平面直角坐标系, 描出以补全后的表中各对对应值为坐标的点, 画出该函数的图 象;

(3) 结合几何图形和函数图象直接写出,当 QP=CQ 时,x 的值是_____

- 26. 在平面直角坐标系中, 点 D 是抛物线 $y = ax^2 2ax 3a$ (a > 0) 的顶点, 抛物线与 x轴交于点A, B (点A 在点B 的左侧).
- (1) 求点 A, B 的坐标;
- (2) 若 M 为对称轴与 x 轴交点,且 DM=2AM,求抛物线表达式;
- (3) 当 30 *<∠ADM*<45 时,求 a 的取值范围.

- 27. 正方形 ABCD 的对角线 AC, BD 交于点 O, 作 $\angle CBD$ 的 角平分线 BE, 分别交 CD, OC 于点 E, F.
- (1) 依据题意,补全图形(用尺规作图,保留作图痕迹);
- (2) 求证: *CE=CF*;
- (3) 求证: DE=2OF.

- 28. 对于平面直角坐标系 xOy 中的点 P 和 \square M ,给出如下定义:若 \square M 上存在两个点 A , B ,使 AB=2PM ,则称点 P 为 \square M 的 "美好点" .
- (1) 当 $\square M$ 半径为 2, 点 M 和点 O 重合时,
- ① 点 $P_1(-2,0)$, $P_2(1,1)$, $P_3(2,2)$ 中, \square O 的 "美 好点" 是_____;
- ②点 P 为直线 y=x+b 上一动点,点 P 为 \square O 的 "美好点",求 b 的取值范围;
- (2) 点 M 为直线 y=x 上一动点,以 2 为半径作 \square M ,点 P 为直线 y=4 上一动点,点 P 为 \square M 的 "美好点",求点 M 的横坐标 m 的取值范围.

北京市平谷区 2018 年中考统一练习(二) 数学试卷参考答案及评分标准

2018.5

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
----	---	---	---	---	---	---	---	---

答案	D	A	С	В	С	В	В	D
----	---	---	---	---	---	---	---	---

- 二、填空题(本题共16分,每小题2分)
- 9. 1.34×10^6 ; 10. 十; 11. 答案不唯一,如: $y = \frac{2}{x}$; 12. $\frac{1}{x-1}$; 13. $\left(50 + \frac{50}{2} + \frac{50}{3}\right)x = 50$;
- 14. 280; 15. ②③; 16. 点 B₄ 的坐标是(1, -1), 点 B₂₀₁₈ 的坐标是(-1,1).
- 三、解答题(本题共 68 分, 第 17~22 题每小题 5 分, 第 23~26 题每小题 6 分, 第 27、28 题每小题 7 分)

依据答案不唯一,如:线段垂直平分线上的点到线段两个端点的距离相等;直径所对的圆周角是直角;到线段两个端点的距离相等的点在线段的垂直平分线上......5

18. 计算:
$$\left(\frac{1}{3}\right)^{-1} - \left(\pi - \sqrt{3}\right)^0 + \sqrt{27} - 4\sin 60^\circ$$
.

解:
$$=3-1+3\sqrt{3}-4\times\frac{\sqrt{3}}{2}$$
 ;4

19. 证明: : 'AE 平分∠ABC,

::四边形 ABCD 是平行四边形,

$$AB=AE$$
.

$$: (m-1)^2 \ge 0,$$

		$\therefore \Delta = \left(m-1\right)^2 + 8 > 0.$
		∴无论实数 m 取何值,方程总有两个不相等3
	(2)	把 $x=2$ 代入原方程,得 $4-2(m+3)+m=0$
		解得 <i>m</i> = - 25
21. 解:	(1)	∵ 直线 <i>y=x</i> −2 经过点 <i>A</i> (<i>a</i> , 1), ∴ <i>a</i> =3
		∴A (3,1).
		∵函数 $y = \frac{k}{x} (k \neq 0)$ 的图象经过点 $A(3, 1)$,
		∴ <i>k</i> =3
	(2)	$ y_1 - y_2 $ 的取值范围是 $0 \le y_1 - y_2 \le 4$
22. (1)	证明	$\exists: \; \because \Box ABCD,$
		∴ AB // CD, AB=CD
		∵BE=AB,
		∴ BE=CD. ∴ 四边形 BECD 是平行四边形2
		$\therefore AD = BC, \ AD = DE, $ $D \qquad C$
		$\therefore BC = DE$.
		∴ □BECD 是矩形3
(2))解	: ∵CD=2,
		$\therefore AB = BE = 2.$
		$AD=4$, $\angle ABD=90^{\circ}$, $A B E$
		$\therefore BD = 2\sqrt{3} . \qquad . 4$
N		$\therefore CE = 2\sqrt{3}.$
1	V	$\therefore AC = 2\sqrt{7} . \dots 5$

分数段	<i>x</i> ≤50	50< <i>x</i> <60	60≤ <i>x</i> <70	70≤ <i>x</i> <80	80≤ <i>x</i> <90	90≤ <i>x</i> <100
人数	2	3	9	8	13	5

2018年某校九年级数学质量监控 部分学生成绩统计图

24. (1) 证明: 连结 BE, OE. ::AB 为 $\square O$ 直径, ∴ ∠AEB=90° AB=BC∴点 E 是 AC 的中点. :点O是AB的中点, ∴ OE // BC. :: EF 是□ O 的切线, $\therefore EF \perp OE$. *∴EF*⊥*BC*.3 (2) 解: 连结 AD. :: AB 为 $\square O$ 直径,

 $AB^2 = AD^2 + BD^2$,

设AB=x,则BD=x-2.

 $\therefore \angle ADB = 90^{\circ}$,

CD=2, tan C=2,

∴*AD*=4.4

解得 x=5.

即 *AB*=5.6

(3) 3.0 或 5.2.

26. M: (1) \Leftrightarrow y=0, H $ax^2 - 2ax - 3a = 0$,

解得 $x_1 = -1$, $x_2=3$.

$$A = (-1,0), B = (3,0)$$
.

(2) $\therefore AB=4$.

:抛物线对称轴为x=1,

 $\therefore AM=2$.

 $\therefore DM=2AM$,

 $\therefore DM=4$.

$$\therefore D(1, -4)$$
.....3

∴a=1.

当 $\angle ADM$ =30 时, $a=\frac{\sqrt{3}}{2}$.

$$\therefore \frac{1}{2} < a < \frac{\sqrt{3}}{2}.$$

- (2) 证明: *∵BE* 平分∠*CBD*,
 - *∴∠CBE=∠DBE*.2
 - :正方形 ABCD 的对角线 AC, BD 交于点 O,
 - $\therefore \angle BOC = \angle BCD = 90^{\circ}$.
 - \therefore $\angle CBE+\angle CEB=90^{\circ}$, $\angle DBE+\angle BFO=90^{\circ}$,
 - ∴ ∠CEB=∠BFO.3
 - $\therefore \angle EFC = \angle BFO$,
 - $\therefore \angle EFC = \angle CEB$.
- ∴ CF=CE.4
- (3) 证明: 取 BE 的中点 M, 连接 OM.5
 - :O 为 AC 的中点,
 - ∴ OM // DE, DE=2OM.6
 - $\therefore \angle OMF = \angle CEF$.
 - $\therefore \angle OFM = \angle EFC = \angle CEF$,
 - $\therefore \angle OMF = \angle OFM$.
 - $\therefore OF = OM$.
 - ∴DE=2OF.7
- - - $\therefore 2 \leq m \leq 6.$