NDIAN STATISTICAL INSTITUTE

Assignment-1 (Mathematics III)

Bachelor of Statistical Data Science (BSDS)

- 1. Write the matrix representations of the linear operators with respect to the ordered basis \mathcal{B}
 - Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x,y) = (x,y), and let $\mathcal{B} = \{(1,1), (1,-1)\}$ be the ordered basis.
 - Let $D: \mathbb{P}_n(\mathbb{R}) \to \mathbb{P}_n(\mathbb{R})$ be the differentiation operator:

$$D(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_1 + 2a_2x + \dots + na_nx^{n-1},$$

with $\mathcal{B} = \{1, x, x^2, \dots, x^n\}.$

• Let $T: M_2(\mathbb{F}) \to M_2(\mathbb{F})$ be given by

$$T\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \begin{bmatrix} x+w & z \\ z+w & x \end{bmatrix},$$

and let the ordered basis be

$$\mathcal{B} = \left\{ E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \ E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

- 2. Which of the following is an inner product.
 - (a) $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 + y_1 y_2 + 3$ on \mathbb{R}^2 over \mathbb{R} .
 - (b) $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 y_1 y_2 \text{ on } \mathbb{R}^2 \text{ over } \mathbb{R}.$
 - (c) $\langle (x_1, y_1), (x_2, y_2) \rangle = y_1(x_1 + 2x_2) + y_2(2x_1 + 5x_2)$ on \mathbb{R}^2 over \mathbb{R} .
 - (d) $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 \overline{x_2} + y_1 \overline{y_2}$ on \mathbb{C}^2 over \mathbb{C} .
 - (e) $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 \overline{x_2} y_1 \overline{y_2}$ on \mathbb{C}^2 over \mathbb{C} .
 - (f) If $A, B \in M_n(\mathbb{C})$, define $\langle A, B \rangle = \text{Trace}(A\overline{B})$.
 - (g) Suppose C[0,1] is the space of continuous complex-valued functions on the interval [0,1], and for $f,g \in C[0,1]$,

$$\langle f, g \rangle := \int_0^1 f(t) \overline{g(t)} \, dt.$$

3. Suppose $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix} \in M_2(\mathbb{R})$ is such that a > 0 and $\det(A) = ad - b^2 > 0$. Show that

$$\langle X, Y \rangle = X^t A Y$$

is an inner product on \mathbb{R}^2 .