Vv285 Recitation Class 10 Fundamental Theorems of Vector Calculus

Yuxiang Chen

July 22, 2022

Outline

- $\textbf{ 1} \textbf{ Admissible Regions \& Hypersurfaces in } \mathbb{R}^3$
- Stoke's Theorem
- Gauss's Theorem
- 4 Find the best tuned theorem to solve your problem
- Seference

Admissible Regions & Admissible Hypersurfaces in \mathbb{R}^3

Suppose $R \subseteq \mathbb{R}^n$

- lacktriangledown lacktriangledown R is open and connected.
- R is admissible if it's bounded and its boundary is a union of finite number of parametrized hypersurfaces whose normal vector point outward.
- \triangleright An admissible region is just a body with volume (in \mathbb{R}^2 , area).

A hypersurface $\mathcal{S}\subseteq\mathbb{R}^3$ with parametrization $\varphi\colon R o\mathcal{S}$ is admissible if

- R is closed
 - ② the interior of R is an admissible region in \mathbb{R}^2 with oriented boundary curve ∂R^* .

Stokes' Theorem on Surface with Boundary in \mathbb{R}^3

Condition when using Stokes's Theorem:

- **1** $S \subseteq \Omega \subseteq \mathbb{R}^3$ a parametrized, **admissible** region with **boundary**
- ${f 2}$ $F:\Omega \to \mathbb{R}^3$ a continuously differentiable vector field

Then, the **rotation vector**, i.e, circulation density, over the whole **oriented** surface is the same as the line integral of F along the boundary of the surface S.

$$\iint_{\partial \mathcal{S}^*} F d\vec{l} = \int_{\mathcal{S}^*} \operatorname{rot} F d\vec{A}.$$

The orientation of the surface satisfies the right hand rule (demo)

Practice - Stokes's Theorem

TASK

Evaluate the integral

$$\iint_{\mathcal{S}} rot F \cdot d\vec{S}$$

Where $F = (z^2 - 1, z + xy^3, 6)^T$ and S is the portion of $x = 6 - 4y^2 - 4z^2$ in front of x = -2 with orientation in the negative x-axis direction.

Gauss's Theorem over Admissible Region in \mathbb{R}^3

Condition using Gauss' Theorem

- **1** $R \subseteq \mathbb{R}^3$ an admissible region (also can be generalized into \mathbb{R}^n)
- ② $F: \overline{R} \to \mathbb{R}^3$ a continuously differentiable vector field.

$$\iiint_{R} \operatorname{div} F dx = \iint_{\partial R^{*}} F d\vec{A}.$$

Practice - Gauss's Theorem

TASK

Evaluate $\iint_{\mathcal{S}} F \cdot \vec{S}$ where $F = (xy, -\frac{1}{2}y^2, z)$ and the surface consists of three surfaces: $z = 4 - 3x^2 - 3y^2$, $1 \le z \le 4$; $x^2 + y^2 = 1$, $0 \le z \le 1$ on the sides and z = 0 on the bottom.

Summary of Green's, Stokes's and Gauss's

Theorem	Dimension	Domain	Characteristic
Green's	\mathbb{R}^2	bounded, simple region	$\int_{\partial R} \vec{F} d\vec{l} \Leftrightarrow \iint_R \operatorname{rot} \vec{F} dx$
Stokes's	\mathbb{R}^3	surface with boundary	$\iint_{\mathcal{S}} \vec{F} d\vec{S} \Leftrightarrow \int_{\partial \mathcal{S}} \vec{F} d\vec{I}$
Gauss's	\mathbb{R}^3	admissible region	$\iiint_R \operatorname{div} \vec{F} dx \Leftrightarrow \iint_{\partial R} \vec{F} d\vec{A}$

Table: Summary

Practice - Choose the right theorem!

TASK

Evaluate $\int_{\mathcal{C}} \vec{F} d\vec{r}$ where $F = (3yx^2 + z^3, y^2, 4yx^2)^T$ and \mathcal{C} is a triangle with vertices (0,0,3), (0,2,0), (4,0,0), which has counter clockwise orientation when looking down towards x - o - y plane.

Practice - Choose the right theorem!

TASK

Evaluate $\int_{\mathcal{C}} \vec{F} d\vec{r}$ where $F = (3yx^2 + z^3, y^2, 4yx^2)^T$ and \mathcal{C} is a triangle with vertices (0,0,3), (0,2,0), (4,0,0), which has counter clockwise orientation when looking down towards x - o - y plane.

TASK

Evaluate $\iint_{\mathcal{S}} \vec{F} d\vec{S}$ where $F = (2xz, 1 - 4xy^2, 2z - z^2)^T$ and \mathcal{S} is the surface of the solid bounded by $z = 6 - 2x^2 - 2y^2$ and plane z = 0

Green's Identity

Remember the following relation:

$$\int_{R} \langle \nabla u, \nabla v \rangle \, dx = -\int_{R} u \cdot \Delta v dx + \int_{\partial R^{*}} u \frac{\partial v}{\partial n} dA$$

where R is an admissible region in \mathbb{R}^n and u, v are both continuously differentiable potential functions in \mathbb{R}^n .

TASK

Prove
$$\operatorname{div}(u\nabla v) = u\Delta v + \langle \nabla u, \nabla v \rangle$$

Green's Identity

Remember the following relation:

$$\int_{R} \langle \nabla u, \nabla v \rangle \, dx = -\int_{R} u \cdot \Delta v dx + \int_{\partial R^{*}} u \frac{\partial v}{\partial n} dA$$

where R is an admissible region in \mathbb{R}^n and u, v are both continuously differentiable potential functions in \mathbb{R}^n .

TASK

Prove
$$\operatorname{div}(u\nabla v) = u\Delta v + \langle \nabla u, \nabla v \rangle$$

TASK

¹Suppose u is a non-constant C^2 function on some open set U containing $\overline{B_1(0)}$. Furthermore, suppose u=0 on $\partial B_1(0)$. Show that $\int_{B_1(0)} u\Delta u < 0$.

¹This practice is from Leyang Zhang. Vielen Dank!

References I

- VV285 slides from Horst Hohberger
- Paul's online note
 https:
 //tutorial.math.lamar.edu/Classes/CalcIII/CalcIII.aspx
- Vv285 Review 11 from Leyang Zhang

