PERBANDINGAN PERAMALAN MENGGUNAKAN METODE DOUBLE EXPONENTIAL SMOOTHING, DOUBLE MOVING AVERAGE DAN ARIMA

Kelompok 2:

- Achmad Chafid Aufa (210312625266)
- Shafida Afifah (210312625309)
- Yusuf Ananta Tirtodjojo (210312625272)

ABSTRACT

Penelitian ini menggunakan data Gross Domestic Product(GDP) di India dari 1961 sampai 2021 yang didapat dari website Kaggle. GDP adalah perhitungan untuk mengukur kegiatan perekonomian negara dengan mengukur volume produksi di wilayah tertentu. Penelitian ini akan meramalkan data dengan metode Double Exponential Smoothing(DES), Double Moving Average(DMA), dan ARIMA. Penelitian ini menggunakan alat bantu Minitab. Tujuan dari penelitian ini adalah untuk membandingkan metode peramalan terbaik dengan melihat nilai MSD atau MSE yang terkecil. Lalu juga akan dibandingkan nilai MAPE terkecil.

Kata Kunci: Double Exponential Smoothing, Double Moving Average, ARIMA, Gross Domestic Product, GDP

- Penelitian ini mengambil fokus pada data GDP India dari tahun 1960 hingga 2021, yang telah dikumpulkan dari sumber yang dapat diandalkan, yaitu Kaggle
- Alat bantu yang digunakan dalam penelitian ini adalah Minitab
- Penelitian ini bertujuan untuk membandingkan ketiga metode peramalan yang digunakan dengan melihat nilai MSD atau MSE terkecil juga nilai MAPE.
- Hasil dari perbandingan ini diharapkan dapat memberikan wawasan yang lebih baik tentang metode peramalan mana yang paling cocok untuk meramalkan GDP India.

METODE

Data yang akan digunakan adalah data Gross Domestic Product(GDP). GDP adalah nilai yang digunakan untuk mengukur nilai barang dan jasa yang telah dibeli oleh konsumen dan diproduksi oleh suatu negara pada waktu yang telah ditentukan. Data diperoleh dari sebuah website bernama Kaggle yang diunggah oleh Mukati dan diperbaharui terakhir 2022. Untuk melakukan peramalan, dibutukan metode-metode peramalan yang sesuai dengan data GDP tersebut. Peramalan yang sesuai yaitu:

- Double Exponential Smoothing(DES)
- Double Moving Average(DMA)
- ARIMA

Berikut ini adalah data Growth Domestic Product(GDP) dari tahun 1960 sampai 2021:

Year	GDP in (Billion)	Per Capita in rupees	Growth
2021	3173,4	182160	8,95
2020	2667,69	154640	-6,6
2019	2831,55	165760	3,74
2018	2702,93	159840	6,45
2017	2651,47	158480	6,8
2016	2294,8	138640	8,26
2015	2103,59	128480	8
2014	2039,13	125920	7,41
2013	1856,72	116000	6,39
2012	1827,64	115520	5,46
2011	1823,05	116640	5,24
2010	1675,62	108640	8,5
2009	1341,89	88160	7,86
2008	1198,9	79920	3,09
2007	1216,74	82240	7,66
2006	940,26	64560	8,06
2005	820,38	57200	7,92
2004	709,15	50240	7,92
2003	607,7	43760	7,86
2002	514,94	37680	3,8
2001	485,44	36160	4,82
2000	468,39	35440	3,84
1999	458,82	35360	8,85
1998	421,35	33040	6,18

1997	415,87	33200	4,05
1996	392,9	32000	7,55
1995	360,28	29920	7,57
1994	327,28	27680	6,66
1993	279,3	24080	4,75
1992	288,21	25360	5,48
1991	270,11	24240	1,06
1990	320,98	29440	5,53
1989	296,04	27680	5,95
1988	296,59	28320	9,63
1987	279,03	27200	3,97
1986	248,99	24800	4,78
1985	232,51	23680	5,25
1984	212,16	22160	3,82
1983	218,26	23280	7,29
1982	200,72	21920	3,48
1981	193,49	21600	6,01
1980	186,33	21360	6,74
1979	152,99	17920	-5,24
1978	137,3	16480	5,71
1977	121,49	14880	7,25
1976	102,72	12880	1,66
1975	98,47	12640	9,15
1974	99,53	13040	1,19
1973	85,52	11520	3,3

1972	71,46	9840	-0,55
1971	67,35	9520	1,64
1970	62,42	8960	5,16
1969	58,45	8640	6,54
1968	53,09	8000	3,39
1967	50,13	7680	7,83
1966	45,87	7200	-0,06
1965	59,55	9520	-2,64
1964	56,48	9280	7,45
1963	48,42	8080	5,99
1962	42,16	7200	2,93
1961	39,23	6800	3,72
1960	37,03	6560	0

Berikut ini data GDP direpresentasikan dalam grafik garis dan dilakukan trend analisis:

Statistik Deksriptif	Nilai
Banyaknya Data	62
Total Data	43340
Minimum	37
Maksimum	3173
Varians	752085
Standar Deviasi	867

Berikut ini hasil peramalan dari metode Double Exponential Smoothing (DES):

Period Forecast Lower Upper 63 34,4712 -103,229 172,172 64 31,4653 -129,176 192,107 65 28,4594 -157,437 214,356 66 25,4534 -187,188 238,095 67 22,4475 -217,934 262,829

Untuk Double Moving Average (DMA) kita cari hasil dari Moving Average (MA) terlebih dahulu, Berikut hasil nya:

MA = 3

$$MA = 4$$

*Disini kita gunakan MA = 2,3,4

Dari hasil Moving Average (MA) kita lanjut mencari Double Moving Average (DMA), Berikut hasilnya:

$$MA = 2$$

$$MA = 3$$

$$MA = 4$$

*Disini kita gunakan MA = 2,3,4 (sama seperti kita mencari hasil MA)

Dari hasil Double Moving Average (DMA) kita temukan untuk MA Lenght = 2 memiliki nilai MAPE Terkecil yaitu 12,9 Berikut hasilnya:

Forecasts			
Period	Forecast	Lower	Upper
63	39,4125 -	194,525	273,350
64	39,4125 -	194,525	273,350
65	39,4125 -	194,525	273,350
66	39,4125 -	194,525	273,350
67	39,4125 -	194,525	273,350

Berikut adalah langkah-langkah mencari hasil ARIMA:

Box cox

Rounded value GDP adalah 0 maka data ditransformasi dengan fungsi "In Zt" sehingga rounded value menjadi 1 (stasioner dalam varian)

Rounded Value GDP adalah 1,00 yang berarti sudah stasioner dalam varian

Trend Analysis Plot for Diff1

Linear Trend Model Yt = -0,0819 + 0,000278×t

Langkah berikutnya:

• Uji Kestasioneran Data

Data belum stasioner maka kita diferensiasi

Hasil plot trend analysis setelah di diferensiasi satu kali

Hasil plot trend analysis setelah di diferensiasi dua kali

Langkah berikutnya:

Identifikasi Model

PACF

Sehingga model sementara ARIMA yang terbentuk adalah sebagai berikut

- I. ARIMA(1,2,0)
- 2. ARIMA(2,2,0)
- 3.ARIMA(3,2,0)
- 4. ARIMA(0,2,1)
- 5. ARIMA(1,2,1)
- 6. ARIMA(2,2,1)
- 7. ARIMA(3,2,1)

Dari plot ACF dan PACF di dapatkan nilai p= 0,1,2,3, nilai q=0,1 dan d=2

Universitas Negeri Malang | 2023

Langkah berikutnya:

• Uji Signifikasi

Model	P-Value	Keterangan
ARIMA(1,2,0)	AR(1) = 0,000	Signifikan terhadap model
ARIMA(2,2,0)	AR(1) = 0,000	Signifikan terhadap model
	AR(2) = 0,023	
ARIMA(3,2,0)	AR(1) = 0,000	Signifikan terhadap model
	AR(2) = 0,002	
	AR(3) = 0.018	
ARIMA(0,2,1)	MA(1) = 0,000	Signifikan terhadap model
ARIMA(1,2,1)	AR(1) = 0.910	Tidak signifikan terhadap model
	MA(1) = 0,000	
ARIMA(2,2,1)	AR(1) = 0,000	Signifikan terhadap model
	AR(2) = 0,000	
	MA(1) = 0,000	
ARIMA(3,2,1)	AR(1) = 0.865	Tidak signifikan terhadap model
	AR(2) = 0,984	
	AR(3) = 0,574	
	MA(1) = 0,000	

Dari tabel diketahui ARIMA(1,2,1) dan ARIMA(3,2,1) tidak signifikan terhadap model

Langkah berikutnya:

• Uji Diagnostik Residual

Model	P-Value Lag 12	P-Value Lag 24	P-Value Lag 36	P-Value Lag 48	Keterangan
ARIMA(1,2,0)	0,221	0,769	0,777	0,659	Memenuhi asumsi white noise
ARIMA(2,2,0)	0,329	0,804	0,671	0,712	Memenuhi asumsi white noise
ARIMA(3,2,0)	0,181	0,515	0,469	0,500	Memenuhi asumsi white noise
ARIMA(0,2,1)	0,809	0,889	0,734	0,729	Memenuhi asumsi white noise
ARIMA(1,2,1)	0,747	0,867	0,682	0,704	Memenuhi asumsi white noise
ARIMA(2,2,1)	0,108	0,686	0,751	0,582	Memenuhi asumsi white noise
ARIMA(3,2,1)	0,515	0,719	0,521	0,542	Memenuhi asumsi white noise

Model	P-Value	Keterangan
ARIMA(1,2,0)	0,174	Residual mengikuti distribusi normal
ARIMA(2,2,0)	0,070	Residual mengikuti distribusi normal
ARIMA(3,2,0)	0,070	Residual mengikuti distribusi normal
ARIMA(0,2,1)	0,014	Residual tidak mengikuti distribusi
		normal
ARIMA(1,2,1)	0,012	Residual tidak mengikuti distribusi
		normal
ARIMA(2,2,1)	0,444	Residual mengikuti distribusi normal
ARIMA(3,2,1)	0,012	Residual tidak mengikuti distribusi
		normal

Uji White Noise

Uji Normalitas Residual

Sehingga dapat disimpulkan bahwa dari uji siginifikan parameter dan uji diagnostik residual adalah sebagai berikut:

Model	Uji Signinifikasi	Asumsi White Noise	Uji Normalitas Residual	Layak
ARIMA(1,2,0)	✓	✓	✓	✓
ARIMA(2,2,0)	✓	✓	✓	✓
ARIMA(3,2,0)	✓	✓	✓	✓
ARIMA(0,2,1)	✓	✓	-	-
ARIMA(1,2,1)	-	✓	-	-
ARIMA(2,2,1)	✓	✓	✓	✓
ARIMA(3,2,1)	-	✓	-	-

Dari tabel tersebut didapatkan model yang layak digunakan untuk tahap selanjutnya adalah model ARIMA(1,2,0), ARIMA(2,2,0), ARIMA(3,2,0), ARIMA(2,2,1)

Langkah berikutnya:

• Pemilihan model terbaik

Model	MSE
ARIMA(1,2,0)	0,0104175
ARIMA(2,2,0)	0,0097227
ARIMA(3,2,0)	0,0089846
ARIMA(2,2,1)	0,0102044

Dari tabel tersebut maka dapat dilihat perbandingan nilai MSE masing – masing model ARIMA, Dan nilai MSE yang paling minimum adalah milik model ARIMA(3,2,0). Maka model ARIMA(3,2,0) akan digunakan sebagai metode peramalan pada tahap berikutnya

Langkah berikutnya:

Peramalan

Sebelum dilakukan peramalan, data harus ditransformasi kembali dengan fungsi invers. Karena data transformasi memiliki nilai rounded value dari 0 maka data ditransformasi dengan fungsi "In Zt" sehingga rounded value menjadi I. Lalu data akan ditransformasi balik dengan fungsi "e^In Zt".

Setelah itu data hasil transformasi dilakukan peramalan untuk 5 tahun ke depan

Langkah berikutnya:

Peramalan

Berikut hasil peramalan untuk 5 tahun ke depan:

KESIMPULAN

Berikut adalah hasil perbandingan nilai error MSE peramalan menggunakan metode DES, DMA,

ARIMA:

Model	Nilai Error
Double Exponential Smoothing	MSD = 9245,52
Double Moving Average	MSD = 14246,4
ARIMA	MSE = 7108,71

Maka dari itu dapat kita simpulkan perhitungan menggunakan ARIMA adalah yang terbaik dengan nilai MSE = 7108,71

KESIMPULAN

Berikut adalah hasil perbandingan nilai error MAPE peramalan menggunakan metode DES, DMA, ARIMA:

Model	MAPE
Double Exponential Smoothing	9,87
Double Moving Average	12,9
ARIMA	4,459934

Maka dari itu dapat kita simpulkan perhitungan menggunakan ARIMA adalah yang terbaik dengan nilai MAPE = 4,459934

Universitas Negeri Malang | 2023

THANKYOU

Kelompok 2:

Achmad Chafid Aufa (210312625266)

Shafida Afifah (210312625309)

Yusuf Ananta Tirtodjojo (210312625272)