MAP2014 - Cálculo Numérico com Aplicações em Física

EXERCÍCIO PROGRAMA I

Nome: Ícaro Vaz Freire

N° USP: 11224779

RESULTADOS

Item A

Resolvemos a equação $x^3-\cos(x)=0$ pelo método da bissecção. Os parâmetros usados na computação estão na Tabela 1.

Tabela 1. Valores computados no método da bissecção.

<i>X</i> ₁	X_2	<i>X</i> _m	$f(x_1)$	$f(x_2)$	$f(x_m)$	$\left x_{2}-x_{1}\right $
0.00000000	1.00000000	0.50000000	-1.00000000	0.45969769	-0.75258256	1.00000000
0.50000000	1.00000000	0.75000000	-0.75258256	0.45969769	-0.30981387	0.50000000
0.75000000	1.00000000	0.87500000	-0.30981387	0.45969769	0.02892502	0.25000000
0.75000000	0.87500000	0.81250000	-0.30981387	0.02892502	-0.15130861	0.12500000
0.81250000	0.87500000	0.84375000	-0.15130861	0.02892502	-0.06398824	0.06250000
0.84375000	0.87500000	0.85937500	-0.06398824	0.02892502	-0.01824073	0.03125000
0.85937500	0.87500000	0.86718750	-0.01824073	0.02892502	0.00516361	0.01562500
0.85937500	0.86718750	0.86328125	-0.01824073	0.00516361	-0.00658304	0.00781250
0.86328125	0.86718750	0.86523438	-0.00658304	0.00516361	-0.00072085	0.00390625
0.86523438	0.86718750	0.86621094	-0.00072085	0.00516361	0.00221859	0.00195312
0.86523438	0.86621094	0.86572266	-0.00072085	0.00221859	0.00074817	0.00097656
0.86523438	0.86572266	0.86547852	-0.00072085	0.00074817	0.00001349	0.00048828
0.86523438	0.86547852	0.86535645	-0.00072085	0.00001349	-0.00035373	0.00024414
0.86535645	0.86547852	0.86541748	-0.00035373	0.00001349	-0.00017013	0.00012207

A raíz da função está no intervalo [0.86535645, 0.86547852]

Item B

Resolvemos a mesma equação do Item A, porém agora fazemos o uso do Método de Newton-Raphson, cujo a eficiência é superior.

Analiticamente, obtemos o seguinte valor da derivada da equação:

$$\frac{df}{dx}(x) = 3x^2 + \cos(x)$$

Os parâmetros são apresentados na Tabela 2.

Tabela 2. Parâmetros usados no método de Newton-Raphson.

n	X _n	$f(x_n)$	$f'(x_n)$
0	0.10000000	-0.99400416	0.12983342
1	7.75599636	466.46785180	181.46164190
2	5.18538228	138.96998777	79.77435948
3	3.44334400	41.78123165	35.27266087
4	2.25882232	12.16015351	16.07933583
5	1.50256263	3.32414655	7.77075635
6	1.07478618	0.76563543	4.34498441
7	0.89857486	0.10281671	3.20475058
8	0.86649227	0.00306643	3.01448892
9	0.86547504	0.00000302	3.00854443
10	0.86547403	0.00000000	3.00853856

Da Tabela 2, estimamos a raíz como: x = 0.86547403

Item C

Vamos determinar a distância de equilíbrio entre os dois núcleos atômicos. A energia potencial em função da distância é dada pela expressão:

$$V(r) = \frac{-e^2}{4\pi\epsilon_0 r^2} + V_0 \exp\left(\frac{-r}{r_0}\right)$$

A Figura 1 ilustra a relação entre a energia potencial e a distância interatômica. O ponto de mínimo do potencial é a distância de equilíbrio, neste ponto, a força devido ao potencial deve se anular.

Figura 1. Gráfico da relação entre energia potencial (em eV) e distância dos núcleos atômicos (em Å).

Figura 2. Gráfico da relação entre força (em eV/Å) e distância dos núcleos atômicos (em Å).

Como vemos na Figura 2, o ponto onde a força se anula é compatível com o mínimo do potencial, usamos o método das secantes para determinar a distância de equilíbrio:

Tabela 3. Valores usados para computar o método das secantes.

n	<i>X</i> _n	$f(x_n)$	\boldsymbol{X}_{n-1}	$f(x_{n-1})$
1	-0.12601420217775	3932.14327263901851	0.100000000000000	999.54127048936357
2	0.17703415691178	1472.18664437512939	-0.12601420217775	3932.14327263901851
3	0.35839660116196	1002.82069134649714	0.17703415691178	1472.18664437512939
4	0.74588531983383	318.70048726858028	0.35839660116196	1002.82069134649714
5	0.92639868972948	182.62376732486189	0.74588531983383	318.70048726858028
6	1.16865931797275	85.15506092295941	0.92639868972948	182.62376732486189
7	1.38031410768778	42.83365885400429	1.16865931797275	85.15506092295941
8	1.59453075964790	20.66569422607774	1.38031410768778	42.83365885400429
9	1.79423045701953	9.90254486726063	1.59453075964790	20.66569422607774
10	1.97796248073068	4.55743550150028	1.79423045701953	9.90254486726063
11	2.13461911585729	1.96434988225805	1.97796248073068	4.55743550150028
12	2.25329180467341	0.74055325650508	2.13461911585729	1.96434988225805
13	2.32510393776122	0.21357081441246	2.25329180467341	0.74055325650508
14	2.35420732816520	0.03614049885690	2.32510393776122	0.21357081441246
15	2.36013535148147	0.00227601346816	2.35420732816520	0.03614049885690
16	2.36053377067351	0.00002659179326	2.36013535148147	0.00227601346816
17	2.36053848063114	0.00000001989596	2.36053377067351	0.00002659179326
18	2.36053848415776	0.0000000000018	2.36053848063114	0.00000001989596
19	2.36053848415779	0.00000000000000	2.36053848415776	0.0000000000018
20	2.36053848415779	0.00000000000000	2.36053848415779	0.00000000000000

Portanto, pelo método das secantes o ponto de equílibrio é estimado em $r_{_0}$ =2.36053848 \mathring{A}