计算机组成原理

第十五讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心

5.6 DMA方式

- •一、DMA方式的特点
 - ·1、DMA和程序中断方式的数据通路
 - · 2、DMA与主存交换数据的三种方式
 - · 停止CPU访问主存、周期挪用、DMA与CPU交替访问
- ·二、DMA接口的功能和组成
 - ·1、DMA接口的功能
 - · 2、DMA接口的组成
- •三、DMA的工作过程
 - ·1、DMA的传送过程
 - 预处理、DMA传送过程示意、数据的输入和输出过程
 - · 2、DMA接口与系统的连接方式
 - ·3、DMA方式与程序中断方式的比较

二、DMA接口的功能和组成

5.6

- 1. DMA接口功能
 - (1) 向 CPU 申请 DMA 传送
 - (2) 处理总线 控制权的转交
 - (3) 管理系统总线、控制数据传送
 - (4) 确定 数据传送的 首地址和长度

修正 传送过程中的数据 地址 和 长度

(5) DMA 传送结束时,给出操作完成信号

三、DMA的工作过程

5.6

1. DMA 传送过程

预处理、数据传送、后处理

(1) 预处理

通过几条输入输出指令预置如下信息

- 通知 DMA 控制逻辑传送方向(入/出)
- 设备地址 → DMA 的 DAR
- 主存地址 → DMA 的 AR
- · 传送字数 → DMA 的 WC

(2) DMA 传送过程示意

CPU

预处理:

主存起始地址 \longrightarrow DMA 设备地址 → DMA 传送数据个数 — DMA 启动设备

数据传送:

继续执行主程序 同时完成一批数据传送

后处理:

中断服务程序 做 DMA 结束处理

继续执行主程序

(3) 数据传送过程(输入)

5.6

(4) 数据传送过程(输出)

5.6

(5) 后处理

校验送入主存的数是否正确

是否继续用 DMA

测试传送过程是否正确,错则转诊断程序

由中断服务程序完成

2022/8/24

2. DMA 接口与系统的连接方式

(1) 具有公共请求线的 DMA 请求

(2) 独立的 DMA 请求

5.6

2022/8/24

3. DMA 方式与程序中断方式的比较 5.6

中断方式 DMA 方式 (1) 数据传送 程序 硬件 (2) 响应时间 指令执行结束 存取周期结束 (3) 处理异常情况 能 不能 (4) 中断请求 传送数据 后处理 (5) 优先级 低 高

四、DMA接口的类型

5.6

1. 选择型 在物理上连接多个设备 在逻辑上只允许连接一个设备 系统总线

2022/8/24

2. 多路型 在物理上连接多个设备 5.6 在逻辑上允许连接多个设备同时工作

3. 多路型 DMA 接口的工作原理

5.6

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.1 无符号数和有符号数

一、无符号数

寄存器的位数

反映无符号数的表示范围

8位

 $0 \sim 255$

16 位

 $0 \sim 65535$

二、有符号数

6.1

1. 机器数与真值

真值

带符号的数

+0.1011

-0.1011

+ 1100

-1100

机器数

符号数字化的数

小数点的位置

小数点的位置

小数点的位置

小数点的位置

2. 原码表示法

(1) 定义

整数
$$[x]_{\mathbb{R}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^n - x & 0 \ge x > -2^n \end{cases}$$

x 为真值 n 为整数的位数

小数

6.1

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

x 为真值

如

$$x = +0.1101$$
 $[x]_{\text{fi}} = 0$, 1101

用 小数点 将符号 位和数值部分隔开

$$x = -0.1101$$
 $[x]_{\mathbb{R}} = 1 - (-0.1101) = 1.1101$

$$x = +0.1000000$$
 $[x]_{\mathbb{R}} = 0$, 1000000

用 小数点 将符号 .位和数值部分隔开

$$x = -0.1000000$$
 $[x]_{\mathbb{R}} = 1 - (-0.1000000) = 1.1000000$

```
(2) 举例
```

6.1

例 6.1 已知
$$[x]_{\mathbb{R}} = 1.0011$$
 求 $x - 0.0011$

解:由定义得

$$x = 1 - [x]_{\text{ff}} = 1 - 1.0011 = -0.0011$$

例 6.2 已知
$$[x]_{\mathbb{R}} = 1,1100$$
 求 $x - 1100$

解:由定义得

$$x = 2^4 - [x]_{\text{ff}} = 10000 - 1,1100 = -1100$$

例 6.3 已知
$$[x]_{\mathbb{R}} = 0.1101$$
 求 x

6.1

解: 根据 定义 :
$$[x]_{\mathbb{R}} = 0.1101$$

$$x = +0.1101$$

例 6.4 求 x=0 的原码

解: 设
$$x = +0.0000$$

$$[+0.0000]_{\text{@}} = 0.0000$$

$$x = -0.0000$$

$$[-0.0000]_{\text{ff}} = 1.0000$$

$$[+0]_{\mathbb{R}} = 0,0000$$

$$[-0]_{\text{@}} = 1,0000$$

∴
$$[+0]_{\mathbb{R}} \neq [-0]_{\mathbb{R}}$$

原码的特点:简单、直观

6.1

但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法?

找到一个与负数等价的正数来代替这个负数

就可使 减 —— 加

3. 补码表示法

6.1

(1) 补的概念

时钟 逆时针 6 顺时针 6 +9 15
 可见 -3 可用 +9 代替 减法 →加法 -12
 称 +9 是 -3 以 12 为模的 补数
 记作 -3 = +9 (mod 12)

同理 -4≡+8 (mod 12)

$$-5 \equiv +7 \pmod{12}$$

- 一个负数加上"模"即得该负数的补数
- > 一个正数和一个负数互为补数时 它们绝对值之和即为模数
 - 计数器 (模 16) 1011 ──0000?

$$\frac{1011}{-1011}$$

1011 +01010000

自然去掉

可见-1011 可用 + 0101 代替

记作-1011≡+0101

 $\pmod{2^4}$

同理 - 011 ≡ + 101

 $\pmod{2^3}$

 $-0.1001 \equiv +1.0111$ 2022/8/24

 $\pmod{2}$

(2) 正数的补数即为其本身

6.1

```
+ 0101 \pmod{2^4}
两个互为补数的数
分别加上模
                   +10000
                                  +10000
                    +0101
结果仍互为补数
                                (\text{mod}2^4)
       \therefore +0101 \equiv +0101
                                               手掉
   可见 +0101 \rightarrow +0101
                      - 1011
       ? [0],0101 \rightarrow + 0101
          1,0101 \longrightarrow -1011
           \overline{-1011} = 100000
                                          (mod 2^{4+1})
                      - 1011
                                     用 逗号 将符号位
                                     和数值部分隔开
```

(3) 补码定义

6.1

整数

$$[x]_{\nmid h} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

n 为整数的位数

如
$$x = +1010$$
 $x = -1011000$
$$[x]_{\stackrel{}{\mathcal{N}}} = 0,1010$$

$$[x]_{\stackrel{}{\mathcal{N}}} = 2^{7+1} + (-1011000)$$

$$= 1000000000$$

$$= 1011000$$

$$1,0101000$$

小数

$$[x]_{\nmid h} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

x 为真值

如
$$x = +0.1110$$
 $x = -0.1100000$ $[x]_{\stackrel{}{\uparrow}} = 0.1110$ $[x]_{\stackrel{}{\uparrow}} = 2 + (-0.1100000)$ $= 10.00000000$ -0.1100000 -0.11000000 和数值部分隔开

(4) 求补码的快捷方式

6.1

设
$$x = -1010$$
时

$$\mathbf{X}[x]_{\mathbb{R}} = \mathbf{1,1010}$$

当真值为负时,补码可用原码除符号位外

每位取反,末位加1求得

```
(5) 举例
```

6.1

例 6.5 已知
$$[x]_{\uparrow h} = 0.0001$$
 求 x

解: 由定义得 x = +0.0001

例 6.6 已知
$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{\beg$$

$$x = [x]_{\frac{1}{2}} - 2$$

$$= 1.0001 - 10.0000$$

$$= -0.1111$$

例 6.7 已知 $[x]_{\stackrel{}{N}} = 1,1110$ 求 x

6.1

解: 由定义得

$$[x]_{\stackrel{?}{\rightarrow}}[x]_{\stackrel{}{\otimes}}$$

$$x = [x]_{3} - 2^{4+1}$$

$$[x]_{\mathbb{R}} = 1,0010$$

$$= 1,1110 - 100000$$

$$\therefore x = -0010$$

$$= -0010$$

当真值为负时,原码可用补码除符号位外

每位取反,末位加1求得

练习 求下列真值的补码

6.1

真值	$[x]_{ eqh}$	[x]原
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1,0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = \boxed{0.0000} [+0]_{\mbox{$?$}} = [-$	0.0000 ∤≰[0	0.0000
$x = \boxed{-0.0000}$	0.0000	1.0000
x = -1.0000	1.0000	不能表示

由小数补码定义
$$[x]_{\stackrel{}{\mathbb{A}}} = \begin{cases} x & 1 > x \geq 0 \\ 2+x & 0 > x \geq -1 \pmod{2} \end{cases}$$

$$\begin{bmatrix} -1 \end{bmatrix}_{\frac{1}{2}} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

4. 反码表示法

6.1

(1) 定义

整数

如
$$x = +1101$$
 $x = -1101$ $[x]_{\overline{\mathbb{D}}} = 0,1101$ $[x]_{\overline{\mathbb{D}}} = (2^{4+1}-1)-1101$ $= 11111-1101$ 用 逗号 将符号位 $= 1,0010$ 和数值部分隔开

2022/8/24

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ (2-2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \end{cases}$$

x 为真值 n 为小数的位数

如

$$x = +0.1101$$
 $x = -0.1010$
$$[x]_{\overline{\mathbb{Q}}} = 0.1101$$

$$[x]_{\overline{\mathbb{Q}}} = (2-2^{-4}) - 0.1010$$

$$= 1.1111 - 0.1010$$

$$= 1.0101$$
 和数值部分隔开

```
(2) 举例
```

6.1

例 6.8 已知
$$[x]_{\xi} = 0,1110$$
 求 x 解: 由定义得 $x = +1110$
例 6.9 已知 $[x]_{\xi} = 1,1110$ 求 x 解: 由定义得 $x = [x]_{\xi} - (2^{4+1} - 1)$ $= 1,1110 - 11111$ $= -0001$ 例 6.10 求 0 的反码 解: 设 $x = +0.0000$ $[+0.0000]_{\xi} = 0.0000$ $x = -0.0000$ $[-0.0000]_{\xi} = 1.1111$ 同理,对于整数 $[+0]_{\xi} = 0,0000$ $[-0]_{\xi} = 1,1111$

$$\therefore \quad [+0]_{\mathbb{Z}} \neq [-0]_{\mathbb{Z}}$$

三种机器数的小结

6.1

- ▶最高位为符号位,书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码 = 补码 = 反码
- ▶ 对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反一反码

2022/8/24

例6.11 设机器数字长为8位(其中1位为符号位)6.1 对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
00000000	0	+0	±0	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
•	•	•	•	•
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
•	•	•	•	•
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

2022/8/24

例 6.12 已知 $[y]_{i}$ 求 $[-y]_{i}$

6.1

解: 设 $[y]_{*} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot y_n$

$$\langle I \rangle$$
 $[y]_{\nmid h} = 0. y_1 y_2 ... y_n$

[y] 海连同符号位在内, 每位取反, 末位加 1

即得[-y]*

$$\left[[-y]_{\not \uparrow h} = 1.\overline{y_1} \, \overline{y_2} \, ... \overline{y_n} + 2^{-n} \right]$$

$$\langle II \rangle$$
 $[y]_{\nmid h} = 1. y_1 y_2 \cdots y_n$

[y]**连同符号位在内, 每位取反, 末位加1 即得[-y]**

$$[-y]_{\not= h} = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

5. 移码表示法

补码表示很难直接判断其真值大小

十进制

补码

$$x = +21$$

$$x = -21$$

$$-10101$$

$$x = +31$$

$$x = -31$$

$$x + 2^5$$

$$+10101 + 100000 = 110101$$

$$-10101 + 100000 = 001011$$

$$+111111 + 1000000 = 11111111$$

$$-11111 + 100000 = 000001$$

(1) 移码定义

6.1

$$[x]_{38} = 2^n + x (2^n > x \ge -2^n)$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如
$$x = 10100$$

$$[x]_{8} = 2^5 + 10100 = 1,10100$$

 $x = -10100$

 $[x]_{38} = 2^5 - 10100 = 0,01100$

用 逗号 将符号位 和数值部分隔开

(2) 移码和补码的比较

设
$$x = +1100100$$

$$[x]_{8} = 2^{7} + 1100100 = 1,1100100$$

$$[x]_{1} = 0,1100100$$
设 $x = -1100100$

$$[x]_{1} = 2^{7} - 1100100 = 0,0011100$$

$$[x]_{1} = 1,0011100$$

补码与移码只差一个符号位

(3) 真值、补码和移码的对照表

\mathbf{O}_{\bullet}	ı,

真值 x (n=5)	$[x]_{ eqh}$	[x] _移	[x] _移 对应的 十进制整数
-100000 -111111 -111110 : -00001 ±00000 +00001 +00010 : +11110	100000 100001 100010 :: 111111 000000 000001 000010 :: 011110	00000 000001 000010 : 011111 100000 100001 100010 : 111110	0 1 2 : 31 32 33 34 : 62
+ 11111	011111	111111	63

2022/8/24

(4) 移码的特点

6.1

 \rightarrow 当 n = 5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 - 100000 = 000000$

可见,最小真值的移码为全 0 用移码表示浮点数的阶码 能方便地判断浮点数的阶码大小

6.2 数的定点表示和浮点表示

小数点按约定方式标出

一、定点表示

定点机 小数定点机 整数定点机 原码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

二、浮点表示

6.2

$$N = S \times r^{j}$$
 浮点数的一般形式 S 尾数 j 阶码 r 基数 (基值) 计算机中 r 取 2、4、8、16 等 当 $r = 2$ $N = 11.0101$ $\checkmark = 0.110101 \times 2^{10}$ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$

计算机中 S 小数、可正可负 i 整数、可正可负

6.2

1. 浮点数的表示形式

 $S_{\rm f}$ 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_t和 m 共同表示小数点的实际位置

2022/8/24

2. 浮点数的表示范围

6.2

上溢 阶码 > 最大阶码

下溢 阶码 < 最小阶码 按 机器零 处理

最大负数

$$-2^{-(2^{m}-1)} \times 2^{-n}$$
 $-2^{-15} \times 2^{-10}$

设
$$m=4$$
 $n=10$