

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Procesos estocásticos

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	221518EE	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Introducir al estudiante los principios básicos de procesos estocásticos en tiempo discreto y tiempo continuo, y sus aplicaciones en algunas áreas del conocimiento.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. Distribuciones de probabilidad conjuntas y propiedades.
- 1.2. Probabilidad condicional.
- 1.3. Independencia.
- 1.4. Esperanza condicional.

2. Cadenas de Markov

- 2.1. Definiciones.
- 2.2. Probabilidades y matrices de transición.
- 2.3. Ejemplos: la ruina del jugador, modelo de inventario y sistemas de espera.
- 2.4. Ecuaciones de Chapman-Kolmogorov.
- 2.5. Análisis de primer paso.
- 2.6. Cadenas de Markov especiales: cadena de dos estados, cadena definida por variables aleatorias independientes y caminata aleatoria.
- 2.7. Simulación de cadenas de Markov.

3. Propiedades asintóticas de cadenas de Markov

- 3.1. Cadenas regulares.
- 3.2. Distribuciones límites.
- 3.3. Clasificación de estados: cadenas de Markov irreducibles y aperiódicas; estados recurrentes y transitorios; descomposición de espacio de estados.
- 3.4. El teorema límite básico de cadenas de Markov.
- 3.5. Ejemplos y aplicaciones.

4. Proceso de Poisson

- 4.1. La distribución exponencial, gamma y de Poisson.
- 4.2. Proceso de Poisson.
- 4.3. La ley de los eventos raros.
- 4.4. Relación entre la ley de los eventos raros y el proceso de Poisson
- 4.5. Distribuciones asociadas al proceso de Poisson.
- 4.6. La distribución uniforme y el proceso de Poisson.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis en los resultados y en las técnicas de demostración. Los estudiantes acudirán a asesorías extra clase. Solución de problemas relacionados con el tema.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y el cumplimiento de tareas.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO) Básica:

- 1. An Introduction to stochastic modeling; Mark. A. Pinsky y Samuel Karlin, Academic Press, 2012.
- 2. Stochastic processes and Models; D. Stirzaker, Oxford University Press, 2005.
- 3. Essentials of Stochastic Processes; R. Durrett, Springer, 1999.

Consulta

- 1. Introduction to stochastic processes; P.G. Hoel, Port, S.C. & Stone, Ch. J. Houghton Mifflin, 1972.
- 2. Introduction to probability models; S. M. Ross. Academic Press, 1997.
- 3. Theory and statistical applications of stochastic processes; Y. Mishura & G. Shevchenko, Wiley, 2017.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Maestría en Matemáticas o en Matemáticas Aplicadas.

DIVISION DE ESTUDIOS

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ARVARADORIA VICE-RECTOR ACADÉMICOMICA