

Auxiliar 7 - "Búsqueda en Texto, Algoritmo basado en

Autómata"

Profesores: Pablo Barceló Gonzalo Navarro Auxiliar: Manuel Ariel Cáceres Reyes

7 de Mayo del 2018

P1. Búsqueda en Texto

El problema de Búsqueda en Texto consiste en, dadas dos cadenas T (texto) y P (patrón) con caracteres en un alfabeto Σ , encontrar todas las ocurrencias de P en T (esto es, las subcadenas de T iguales a P).

Parametrizaremos los costos de las soluciones por los tamaños de T, P y Σ que serán n, m y σ respectivamente.

- a) Muestre una solución que funcione en tiempo $\mathcal{O}(nm)$
- b) Muestre que existe un autómata finito determinista que sea capaz de reconocer $(\Sigma) * P$
- c) ¿Cómo se podría usar este autómata para resolver el problema de Búsqueda en Texto?
- d) Muestre como construir este autómata de forma eficiente.
- e) Muestre un algoritmo de tiempo $\mathcal{O}(n+m)$ (puede considerar que $\sigma \in \mathcal{O}(1)$).
- f) Muestre un algoritmos de tiempo $\mathcal{O}(n+m)$ incluso cuando $\sigma \in \omega(1)$.

Soluciones

P1. Búsqueda en Texto

a) El algoritmo por fuerza bruta

```
1 for i = 0 ... n - m do
       j \leftarrow 1 \text{ for } j = 1 \dots m \text{ do}
           if P[j]! = T[i+j] then
3
              break
4
           end
5
6
       end
7
       if j == m then
         report(i+1)
8
       end
9
10 end
```

multiplicando el costo de los ifs obtenemos un costo $\mathcal{O}(nm)$.

- b) El autómata es el siguiente:
 - Conjunto de estados $Q = \{0, 1, ..., m\}$ siendo 0 el estado inicial y m el final.
 - Función de transición

$$\delta: \Sigma \times Q \to Q$$

$$(q,a) \mapsto \delta(q,a) = \sigma(P[1:q]a)$$

$$= \text{largo del sufijo más largo de } P[1:q]a \text{ que es prefijo de } P$$

Figura 1: Autómata correspondiente al patrón P = ababaca.

Veamos ahora lo siguiente:

Si el sufijo más largo de lo que se ha leído que es prefijo del patrón es P[1:i], entonces el autómata se encuentra en el estado i

"I visualize a time when we will be to robots what dogs are to humans, and I'm rooting for the machines."

(esto pues justo antes de leer el último carácter P[i] se estaba en el estado $j \geq i-1$, por lo que se aplicó $\sigma(P[1:j]P[i]) = \sigma(P[1:i])$ (esto último por ser P[1:i] maximal) = i). Con esto es simple ver que cada vez que nuestro prefijo maximal leído sea P el autómata se encontrará en el estado m, reconociendo así $(\Sigma) * P$

- c) Podemos correr el autómata anterior sobre T y reportar una ocurrencia cada vez que pasamos por el estado final.
- d) Construir el autómata se reduce a construir su función de transición. El algoritmo más simple consiste en hacerlo para cada par $(q, a) \in Q \times \Sigma$ y para cada uno de ellos revisar si P[1:k] es sufijo de P[1:q]a, con k desde $\min(q+1,m)$ hasta 0 incurriendo en un costo total de $\mathcal{O}(|\Sigma|m^3) = \mathcal{O}(m^3)$.

Consideremos ahora la siguiente observación:

Al calcular $\delta(q, a) = \sigma(P[1:q|a)$

- Si P[q+1] = a, entonces $\delta(q, a) = q+1$.
- Si no $(P[q+1] \neq a)$, entonces $\delta(q, a) = \sigma(P[1:q]a) = \sigma(P[2:q]a) \leq q$, y por lo tanto, puede ser calculado corriendo el autómata parcialmente construído sobre P[2:q]a.

Considerando esto podemos construir el autómata en $\mathcal{O}(|\Sigma|m^2) = \mathcal{O}(m^2)$.

Finalmente, en el caso $P[q+1] \neq a$ no es necesario correr el autómata sobre P[2:q]a. Esto se puede lograr manteniendo una variable X que sea el resultado de correr el autómata sobre P[2:q], es decir, $X = \delta(\dots \delta(\delta(0, P[2]), P[3]) \dots, P[q])$. Con esto, $\delta(q, a) = \delta(X, a)$, cuando $P[q+1] \neq a$. Obteniendo un tiempo de $\mathcal{O}(|\Sigma|m) = \mathcal{O}(m)$.

- e) Construimos el autómata de P en $\mathcal{O}(m)$ y luego lo corremos en tiempo $\mathcal{O}(n)$.
- f) La solución anterior es en realidad $\mathcal{O}(n+\sigma m)$, y en caso que $\sigma\in\omega(1)$, no es $\mathcal{O}(n+m)$. Esta complejidad se logra con el algoritmo de Morris-Pratt. Este algoritmo define la función f(i) como el largo del prefijo propio más largo de P[1:i] que también es sufijo propio.

Con esto el algoritmo mantiene un contador j que avanza con el texto y un contador i que avanza con el patrón mientras los caracteres calcen. En caso de no haber calce, i se actualiza a f(i) repitiendo esto hasta que se encuentre un calce o i = 0.

Se puede mostrar que el algoritmo anteriormente descrito es correcto y que f(i) se puede construir en $\mathcal{O}(m)$ (de un modo similar a la construcción del autómata y con un análisis amortizado parecido al que haremos a continuación).

Veamos ahora que el algoritmo (teniendo f precomputada) es $\mathcal{O}(n)$. Un análisis de peor caso nos lleva a pensar que por cada j, podríamos aplicar la función f $\mathcal{O}(m)$ veces hasta

"I visualize a time when we will be to robots what dogs are to humans, and I'm rooting for the machines."

Universidad de Chile Departamento de Ciencias de la Computación CC4102 - Diseño y Análisis de Algoritmos

encontrar un calce, por lo que la complejidad es $\mathcal{O}(nm)$, sin embargo, para poder aplicar la función f un número k de veces, antes debimos haber aumentado i k veces, finalmente, como i no puede haber aumentado mas de n veces, el número de veces que se aplica f en total es n.