

D. Y. Patil College of Engineering & Technology

Kasaba Bawada, Kolhapur 416006 (An Autonomous Institute)

Academic Year: 2023-24 Semester: II Class: F.Y.B.Tech.

Course: Differential Equations and Numerical Techniques Course Code: 231FYL111

Tutorial-VIII

Numerical Solutions of Algebraic and Transcendental Equations-II (Regula-Falsi Method and Secant Method)

Course Outcomes (COs): After successfully completion of this tutorial, the students will be able to:		
111.4	Apply the numerical techniques to solve algebraic and transcendental equations.	
Q.1	Using Regula-Falsi method, find approximate root of $x^2 - 2x - 1 = 0$ in the interval (2,3). Perform three iterations only.	
Q.2	Using Regula-Falsi method, find approximate root of $x^3 + 2x^2 - 8 = 0$ in the interval (1,2). Perform three iterations only.	
Q.3	Using Regula-Falsi method, find approximate root of $x^2 - logx - 12 = 0$ in the interval (3,4). Perform three iterations only.	
Q.4	Find the approximate root of $x^3 - 4x + 1 = 0$ using Secant method in the interval (1,2). Carry out three iterations only.	
Q.5	Find the approximate root of $x^3 - x - 1 = 0$ using Secant method in the interval (1,2). Carry out three iterations only.	
Q.6	Find the approximate value of $\sqrt[3]{100}$ in the interval (4,5) using Secant method. Perform three iterations only.	

D. Y. Patil College of Engineering & Technology

Kasaba Bawada, Kolhapur 416006 (An Autonomous Institute)

Academic Year: 2023-24 Semester: II Class: F.Y.B.Tech.

Course: Differential Equations and Numerical Techniques Course Code: 231FYL111

Tutorial-IX

Numerical Differentiation-I

(Newton's Forward Difference Formula and Newton's Backward Difference Formula)

Course Outcomes (COs): After successfully completion of this tutorial, the students will be able to:

111.5 Calculate the derivative using interpolation formulae.

	Calculate the first and second derivatives of the function tabulated below at the point $x = 1.5$ and at $x = 2$
Q.1	x: 1.5 2.0 2.5 3.0 3.5 4.0 4.5
	f(x): 3.375 7.000 13.625 24.000 38.875 59.000 85.125
	Calculate the first and second derivatives of the function tabulated below at the point $x = 1.4$.
Q.2	x: 1.0 1.4 1.8 2.2 2.6 3.0
	y: 1.3 1.7512 5.7992 17.2072 40.9672 83.3000
	Calculate the first and second derivatives of the function tabulated below at the point $x = 3$
Q.3	x: 2.0 2.2 2.4 2.6 2.8 3.0
	f(x): -23.000 -21.952 -20.376 -18.224 -15.448 -12.000
	Calculate the first and second derivatives of the function tabulated below at the point $x = 2.6$ and $x = 2.8$
Q.4	x: 2.0 2.2 2.4 2.6 2.8
	f(x): 2.000 5.576 9.968 15.272 21.584
	Calculate the first and second derivative of the function tabulated below at the point $x = 4$ and $x = 9$
Q.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	f(x): 4.8 8.4 14.5 23.6 36.2 52.8 73.9

D. Y. Patil College of Engineering & Technology

Kasaba Bawada, Kolhapur 416006 (An Autonomous Institute)

Academic Year: 2023-24 Semester: II Class: F.Y.B.Tech.

Course: Differential Equations and Numerical Techniques Course Code: 231FYL111

Tutorial-X

Numerical Differentiation-II

(Stirling's Central Difference Formula and Lagrange's Interpolation Formula)

Course Outcomes (COs): After successfully completion of this tutorial, the students will be able to:

111.5 Calculate the derivative using interpolation formulae.

Q.1	From the following table, calculate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = 0$ $x: -3 -2 -1 0 1 2 3$ $y: 0 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774$
Q.2	From the following table, calculate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = 1.15$ x: 1.00 1.05 1.10 1.15 1.20 1.25 1.30 y: 1.0000 1.0247 1.0488 1.0723 1.0954 1.1180 1.1401
Q.3	Calculate the first and second derivative of the function tabulated below at the point $x = 6$ $x : 3 4 5 6 7 8 9$ $f(x)$: 4.8 8.4 14.5 23.6 36.2 52.8 73.9
Q.4	Using Lagrange's formula of interpolation compute y(9.5) given x: 7 8 9 10 y: 3 1 1 9
Q.5	Using Lagrange's formula of interpolation compute y(2) given x: 0 1 3 4 y: 5 6 50 105
Q.6	Find the polynomial $f(x)$ by using Lagrange's interpolation formula and hence find $f(2)$ and $f'(3)$ $x : -2 1 3 7$ $f(x)$: 5 7 11 34