Généralités sur les fonctions numérique

I. Généralités

1. Fonction majorée – fonction minorée – fonction bornée

₽Activité

Soit f une fonction numérique définie par $f(x) = \frac{1}{x^2 + 1}$

- 1) Déterminer D_f l'ensemble de définition de la fonction f
- 2) Montrer que $(\forall x \in D_f)$; $f(x) \le 1$
- 3) Montrer que $(\forall x \in D_f)$; $f(x) \ge 0$
- 4) Déduire que $(\forall x \in D_f)$; $0 \le f(x) \le 1$

Définition

Soit f une fonction définie un intervalle I $(I \subset \mathbb{R})$.

On dit que:

- * f est **majorée** sur I s'il existe un nombre réel M tel que $(\forall x \in I)$; $f(x) \le M$
- * f est **minorée** sur I s'il existe un nombre réel m tel que $(\forall x \in I)$; $f(x) \ge m$
- * f est **bornée** sur I s'elle est majorée et minorée sur I $((\forall x \in I); m \le f(x) \le M)$.

Remarque :

*Si f est majorée par M sur I alors $\left(C_{f}\right)$ est au-dessous de la droite d'équation y=M sur I.

*Si f est minorée par m sur I alors $\left(C_{f}\right)$ est au-dessus de la droite d'équation y=m sur I.

Exemple

Soit f une fonction numérique définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + 2}$

Montrer que f est majorée par $\frac{1}{2}$ sur \mathbb{R}

On a $(\forall x \in \mathbb{R})$; $x^2 \ge 0 \Rightarrow x^2 + 2 \ge 2 \Rightarrow \frac{1}{x^2 + 2} \le \frac{1}{2}$

Donc $(\forall x \in \mathbb{R})$; $f(x) \le \frac{1}{2}$, par conséquent f est majorée par $\frac{1}{2}$ sur \mathbb{R} .

Application *O*

1) Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = 1 - \frac{1}{x}$

Montrer que f est majorée par 1 sur \mathbb{R}_{+}^{*}

2) Soit f la fonction définie sur \mathbb{R} par : $g(x) = -2 + \frac{1}{x^2 + 1}$

Montrer que g est minorée par -2 sur \mathbb{R} .

- 3) Soit h la fonction définie par $h(x) = \frac{\sqrt{x} 3}{\sqrt{x} + 1}$
- a) Déterminer D_h .
- b) Montrer que la fonction *h* est majorée par 1 et minorée par -3. Interpréter les résultats géométriquement.

Propriété :

Soit f une fonction définie un intervalle $I(I \subset \mathbb{R})$.

f est dite **bornée** sur I; si $\exists k \in \mathbb{R}^*_+$ tel que $|f(x)| \le k$

Application 2

Soit f une fonction numérique définie sur \mathbb{R} par $f(x) = 2\sin(x) + \cos(x)$.

Montrer que $(\forall x \in \mathbb{R})$; $|f(x)| \le 3$

2. Extremums d'une fonction numérique

<u>Définition</u>

Soit f une fonction définie sur I et soit a un élément de I.

- On dit f(a) est une valeur minimale de f sur I si pour tout x de I on a $f(x) \ge f(a)$.
- On dit f(a) est une valeur maximale de f sur I si pour tout x de I on a $f(x) \ge f(a)$
- Si f(a) est une valeur maximale ou une valeur minimale de f sur I alors le point A(a; f(a)) est une valeur minimale de f sur I.

Application 3

Soit f une fonction définie par $f(x) = x + \frac{4}{x}$

- 1) Déterminer D_f l'ensemble de définition de la fonction f
- 2) Montrer que f(2) est une valeur minimale de la fonction f sur $]0;+\infty[$.
- 3) Montrer que f(-2) est une valeur maximale de la fonction f sur $]-\infty;0[$.

3. Fonction périodique

Définition

Soit f une fonction numérique et D_f son ensemble de définition et soit T un nombre réel.

On dit que f est une fonction périodique et T sa période si et seulement si :

$$\forall x \in D_f$$
 on a
$$\begin{cases} (x+T) \in D_f \\ f(x+T) = f(x) \end{cases}$$

Exemples

 $f: x \mapsto \cos(x)$ et $g: x \mapsto \sin(x)$ sont des fonction périodique et 2π leur période.

 $h: x \mapsto \tan(x)$ est une fonction périodique et π sa période.

Application **©**

Soient f, g et h trois fonctions numériques telles que

$$f(x) = \cos^2(x)$$
; $g(x) = \sin(2\pi x)$ et $h(x) = \tan(2x)$

Montrer que les fonctions f, g et h sont des fonctions périodiques et $\pi, 1$ et $\frac{n}{2}$ sont respectivement leurs périodes.

<u>Remarque</u>

Si f est une fonction périodique et T alors $(\forall x \in D_f), (\forall k \in \mathbb{Z})$ on a f(x+kT) = f(x)

4. Comparaison de deux fonctions

Egalité de deux fonctions

Soient f et g deux fonctions numériques et D_f et D_g ses ensembles de définitions respectives.

On dit que f et g sont *égales* si les deux conditions suivantes sont vérifiées :

- $\bullet D_f = D_g = D$
- $\bullet (\forall x \in D); f(x) = g(x)$

Application 🔊

Etudier l'égalité de f et g dans les cas suivants :

•
$$f(x) = \frac{x}{x^2}$$
 et $g(x) = \frac{1}{x}$

$$f(x) = \sqrt{(x+1)^2} \text{ et } g(x) = x+1$$

•
$$f(x) = \frac{x}{x^2}$$
 et $g(x) = \frac{1}{x}$ • $f(x) = \sqrt{(x+1)^2}$ et $g(x) = x+1$ • $f(x) = \frac{x^2-1}{x+1}$ et $g(x) = x-1$

Définition

Soient f et g deux fonctions numériques définies sur I.

On dit que f est inférieur ou égal à g si et seulement si $(\forall x \in I)$; $f(x) \le g(x)$ et on écrit $f \le g$

Interprétation graphique

Si $f \le g$ alors $\left(C_f\right)$ est au-dessous de $\left(C_g\right)$ sur I.

Si $f \ge g$ alors (C_f) est au-dessus de (C_g) sur I.

Si $f \le 0$ alors (C_f) est au-dessous d'axe des abscisses sur I.

Si $f \ge 0$ alors (C_f) est au-dessus d'axe des abscisses sur I.

Application ©

Soient f et g deux fonctions définies sur \mathbb{R} telles que : $f(x) = x^2 - 2x + 1$ et $g(x) = -2x^2 + 4x + 1$.

- 1) Comparer f et g pour tout x dans ces intervalles suivants $]-\infty;0]$; $]2;+\infty[$ et [0;2].
- 2) Déduire la position relative (C_f) et (C_g) dans les intervalles $]-\infty;0]$; $]2;+\infty[$ et [0;2].

5. Image d'un intervalle par une fonction

<u>Définition</u>

Soit f une fonction numérique définie sur un intervalle I $(I \subset D_f)$.

L'ensemble des éléments f(x), tel que $x \in I$, s'appelle l'image de l'intervalle I par la fonction f et se note f(I) telle que $f(I) = \{f(x) / x \in I\}$.

<u> Technique</u>

Soit f une fonction numérique définie sur un intervalle I et soit [a;b] un intervalle de I

- O Si f est croissante sur [a;b] alors f([a;b]) = [f(a);f(b)].
- O Si f est décroissante sur [a;b] alors f([a;b]) = [f(b); f(a)].
- O Si f change la monotonie sur [a;b] alors $f([a;b]) = [V_{\min};V_{\max}]$ où V_{\min} et V_{\max} sont respectivement la valeur minimale et la valeur maximale de f sur I.

Application *②*

Soit f une fonction numérique dont le tableau de variations est le suivant :

- 1) Déterminer f([-2;4]) et f([4;8])
- 2) Déterminer f([-7;8])

6. Monotonie d'une fonction numérique

a. <u>Définition</u>

Soit f une fonction définie sur I et soient a et b deux nombres réels dans I

- \circ Si a < b et f(a) < f(b) alors on dit que la fonction f est **strictement croissante** sur I
- \circ Si a < b et f(a) > f(b) alors on dit que la fonction f est **strictement décroissante** sur I.

0000000000000000

 \circ Si a < b et f(a) = f(b) alors on dit que la fonction f est **constante** sur I.

b. <u>Monotonie et parité</u>

Propriété

Soit une fonction numérique et D_f son ensemble de définition symétrique par rapport à 0 et soit I un intervalle de \mathbb{R}^+ et J son symétrique par rapport à 0

- \circ Si f est paire:
- * Si f est croissante sur I alors f est décroissante sur J
- * Si f est décroissante sur I alors f est croissante sur J.
- o Si f est impaire.
- * La fonction f garde le même sens de variations sur I et sur J.

Application ®

Le tableau présente les variations d'une fonction f

- 1) Déterminer D_f l'ensemble de définition de la fonction f.
- 2) Compléter le tableau si f est **paire**.
- 3) Compléter le tableau si f est **impaire**.
- c. Monotonie de f + k et $k \cdot f$

<u>Propriété</u>

Soit f une fonction numérique et $k \in \mathbb{R}^*$

- La fonction f + k et la fonction f ont même sens de variations.
- Si k > 0 alors la fonction $k \cdot f$ et la fonction f ont même sens de variations
- Si k < 0 alors la fonction $k \cdot f$ et la fonction f ont des sens de variations contraires

Application

Soit f une fonction numérique dont le tableau de variations est comme suit

x	-3	0	1	$\frac{5}{2}$	4
f(x)	5	\searrow_1	³		 7

- 1) Dresser le tableau de variations de f-3
- 2) Dresser le tableau de variations de 2f et -2f

II. Composée de deux fonctions

<u>Activité</u>

On considère les fonctions f et g telles que : $f(x) = \sqrt{x-2}$ et g(x) = x-1

- 1)
- a) Calculer g(5) puis déduire f(g(5))
- b) Calculer g(4) puis déduire f(g(4))
- c) Peut-on calculer f(g(1))?
- 2) Déterminer un intervalle I tel que $(\forall x \in I)$; $f(g(x)) \in \mathbb{R}$, puis déduire l'expression de f(g(x)) pour tout $x \in I$

1. Définition

Soit f une fonction numérique définie sur I et soit g une fonction numérique définie sur J telle $que(\forall x \in I); f(x) \in J$.

La composée de la fonction f et g, dans cet ordre, est la fonction qu'on note gof telle que $(\forall x \in I)$; gof(x) = g(f(x)).

<u>Remarque</u>

- Ensemble de définition de gof est : $D_{gof} = \{x \in \mathbb{R} \mid x \in D_f \text{ et } f(x) \in D_g\}$
- $\circ x \in D_{gof} \iff x \in D_f \text{ et } f(x) \in D_g.$

Application @

On considère les fonctions f et g telles que : $f(x) = \frac{1}{x+1}$ et $g(x) = 2x^2 + 1$

- 1) Déterminer D_f, D_g, D_{gof} et D_{fog}
- 2) Déterminer l'expression de gof(x) pour tout $x \in D_{gof}$ et l'expression de fog(x) pour tout $x \in D_{fog}$
- 3) Excirc la fonction h se forme d'une composée de deux fonctions telle que $(\forall x \in \mathbb{R}); h(x) = \frac{x^2}{|x|+1}$

2. La monotonie de la composée de deux fonctions

<u>Propriété</u>

Soit f une fonction numérique définie sur I et soit g une fonction numérique définie sur J telle que $(\forall x \in I)$; $f(x) \in J$.

- Si f et g ont même sens de variations sur I et f(I) respectivement, alors la fonction gof est croissante sur I.
- Si f et g ont des sens de variations contraires sur I et f(I) respectivement alors la fonction gof est décroissante sur I.

Remarque

Pour étudier la monotonie de gof sur un intervalle I, on étudier la monotonie de f sur I puis on étudie la monotonie de g sur J = f(I).

Application @

Soient f et g deux fonctions telles que f(x) = x+1 et $g(x) = \sqrt{x}$

- 1) Déterminer D_f et D_g
- 2) Déterminer D_h telle que h = gof et calculer $f([-1; +\infty[)]$
- 3) Etudier la monotonie de la fonction h sur D_h

III. Représentation graphique des fonction $x \mapsto \sqrt{x+a}$ et $x \mapsto ax^3$

1. La représentation graphique de la fonction $x \mapsto ax^3 (a \neq 0)$

On considère f une fonction numérique définie sur \mathbb{R} par $f(x) = ax^3$ $(a \neq 0)$ et (C_f) sa courbe dans le repère orthonormé $(O; \vec{i}; \vec{j})$.

*Parité de la fonction f

On a
$$(\forall x \in \mathbb{R})$$
; $-x \in \mathbb{R}$ et $f(-x) = a(-x)^3 = -ax^3 = -f(x)$

Donc f est une fonction impaire.

*Variations de f

Or f est une fonction impaire, alors il suffit de l'étudier sur \mathbb{R}^+

$$*\underline{Si}a>0$$

Soient x et y dans \mathbb{R}^+ tels que x < y

$$x < y \Rightarrow x^3 < y^3 \Rightarrow ax^3 < ay^3 \Rightarrow f(x) < f(y)$$

Donc f est croissante sur \mathbb{R}^+

Or f est une fonction impaire, alors f est croissante aussi sur \mathbb{R}^-

Par conséquent f est croissante sur $\mathbb R$

* <u>Si</u> a < 0

Soient x et y dans \mathbb{R}^+ tels que x < y

$$x < y \Rightarrow x^3 < y^3 \Rightarrow ax^3 > ay^3 \Rightarrow f(x) > f(y)$$

Donc f est décroissante sur \mathbb{R}^+

Or f est une fonction impaire, alors f est décroissante aussi sur \mathbb{R}^-

Par conséquent f est décroissante sur \mathbb{R}

2. Représentation graphique de la fonction $x \mapsto \sqrt{x+a}$

On considère f une fonction numérique définie sur \mathbb{R} par $f(x) = \sqrt{x+a}$ et $\left(C_f\right)$ sa courbe dans le repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$.

*Domaine de définition $D_f = [-a; +\infty[$

*Variations de f

Soient x et y dans D_f tels que x < y

$$x < y \Rightarrow x + a < y + a \Rightarrow \sqrt{x + a} < \sqrt{y + a} \Rightarrow f(x) < f(y)$$
 Donc f est croissante sur $[-a; +\infty[$

