FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY (FISAT)TM

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

DATA SCIENCE

LABORATORY RECORD

Name: SHINCY JOHNY

Branch: MASTER OF COMPUTER APPLICATION

Semester: 3 Batch: B Roll No: 45

FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY

 $(FISAT)^{TM}$

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

Name : SHINCY JOHNY

Branch: MASTER OF COMPUTER APPLICATION

Semester: 3 Roll No: 45

University Exam.Reg. No:

<u>CERTIFI</u>	<u>CATE</u>
This is to certify that this is a Bonafide record of Kerala Technological University in partial full Computer Applications is a record of the or JOHNY in the DATA SCIENCE Laboratory	lfillment for the award of the Master Of iginal research work done by SHINCY of the Federal Institute of Science and
Technology during the academic year 2021-202	72.
Signature of Staff in Charge	Signature of H.O.D
Name:	Name:
Date:	
Date of University practical examination	
Signature of	Signature of
Internal Examiner	External Examiner

CONTENT

SI No	Date :	Name of Experiment:	Page No:	Signature of Staff –In – Charge:
1	19/11/2021	Matrix operations (using vectorization) and transformation using python and SVD using Python	1	ŭ.
2	30/11/2021	Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.	4	
3	26/11/2021	Programs to handle data using pandas	15	
4	07/12/2021	Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.	22	
5	14/12/2021	Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm	28	
6	04/01/2022	Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.	31	
7	14/01/2022	Program to implement text classification using Support vector machine.	34	

8	21/12/2022	Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm	38	
9	25/01/2022	Program to implement k-means clustering technique using any standard dataset available in the public domain	40	
10	28/01/2022	Programs on feed forward networkto classify any standard dataset available in the public domain	45	
11	28/01/2022	Programs on convolutional neural network to classify images from any standard dataset in the public domain.	47	

AIM

1: Matrix operations(using vectorization) and transformation using python and SVD

CODE:

```
a = np.arange(0,4).reshape((2,2))
b = np.eye(2)
print(np.dot(a,b)) ##Matrix multiplication
```

OUTPUT:

```
[[0. 1.]
[2. 3.]]
```

CODE:

```
x = np.arange(1,10).reshape(3,3)
print(x)
```

OUTPUT:

```
[[1 2 3]
[4 5 6]
[7 8 9]]
```

CODE:

#SVD image compresion

```
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

img_eg = mpimg.imread("rose.jpg")
plt.imshow(img_eg)
print(img_eg.shape) #Operation results: (800, 1280,3)

#Converting image data into two-dimensional matrix and singular value decomposition
img_temp = img_eg.reshape(800, 1280 * 3)
U,Sigma,VT = np.linalg.svd(img_temp)

# Take the first 10 singular values
sval_nums = 10
```

```
img_re-
struct1 = (U[:,0:sval nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval nums,:])
img_restruct1 = img_restruct1.reshape(800, 1280,3)
img restruct1.tolist()
# Take the first 50 singular values
sval nums = 50
img re-
struct2 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:
sval nums,:])
img restruct2 = img restruct2.reshape(800, 1280,3)
# Take the first 100 singular values
sval nums = 100
img re-
struct3 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:
sval nums,:])
img_restruct3 = img_restruct3.reshape(800, 1280,3)
#Exhibition
fig, ax = plt.subplots(nrows=1, ncols=3)
ax[0].imshow(img restruct1.astype(np.uint8))
ax[0].set(title = "10")
ax[1].imshow(img restruct2.astype(np.uint8))
ax[1].set(title = "50")
ax[2].imshow(img restruct3.astype(np.uint8))
ax[2].set(title = "100")
plt.show()
```


AIM

2. Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.

Dataset used: iris.csv

CODE:

import pandas as pd
iris = pd.read csv('iris.csv')

Plotting Using Matplotlib import matplotlib.pyplot as plt plt.plot(iris["sepal.length"], "r--") plt.show

OUTPUT:

CODE:

Scatter Plot

CODE:

Plotting using Seaborn

import seaborn as sns
sns.set_style("whitegrid")
sns.FacetGrid(iris, hue ="variety",height = 6).map(plt.scatter, 'sepal.length',
'petal.length').add_legend()

Distribution Chart #Visualizing the target(class label) column

sns.countplot(x='variety', data=iris,)
plt.show()

OUTPUT:

CODE:

#plotting all the column's relationships using a pairplot. It can be used for multivariate analysis. sns.pairplot(iris,hue='variety', height=2)

#Histogram for Sepal Length

```
plt.figure(figsize = (10, 7))

x = iris["sepal.length"]

plt.hist(x, bins = 20, color = "green")

plt.title("Sepal Length in cm")

plt.xlabel("Sepal_Length_cm")

plt.ylabel("Count")
```

OUTPUT:

CODE:

#Histogram for Petal Width plt.figure(figsize = (12, 7)) x = iris["petal.width"]

plt.hist(x, bins =20, color = "blue")
plt.title("Petal width in cm")
plt.xlabel("Petal_Width_cm")
plt.ylabel("Count")

CODE:

#Histograms allow seeing the distribution of data for various columns. # It can be used for uni as well as bi-variate analysis.

```
fig, axes = plt.subplots(2, 2, figsize=(10,10))

axes[0,0].set_title("Sepal Length")
axes[0,0].hist(iris['sepal.length'], bins=7)

axes[0,1].set_title("Sepal Width")
axes[0,1].hist(iris['sepal.width'], bins=5);

axes[1,0].set_title("Petal Length")
axes[1,0].hist(iris['petal.length'], bins=6);

axes[1,1].set_title("Petal Width")
axes[1,1].hist(iris['petal.width'], bins=6);
```


#Histograms with Distplot Plot

```
plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "sepal.length").add_legend()
```

plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "sepal.width").add_legend()

plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "petal.length").add_legend()

plot = sns.FacetGrid(iris, hue="variety")

plot.map(sns.distplot, "petal.width").add legend()

plt.show()

#In the case of Sepal Length, there is a huge amount of overlapping.
#In the case of Sepal Width also, there is a huge amount of overlapping.
#In the case of Petal Length, there is a very little amount of overlapping.
#In the case of Petal Width also, there is a very little amount of overlapping.

Box Plot for Iris Data plt.figure(figsize = (10, 7))

OUTPUT:

iris.boxplot()


```
import matplotlib.gridspec as gridspec
fig = plt.figure(figsize=(9, 40))
outer = gridspec.GridSpec(4, 1, wspace=0.2, hspace=0.2)
for i, col in enumerate(iris.columns[:-1]):
    inner = gridspec.GridSpecFromSubplotSpec(2, 1,subplot_spec=outer[i], wspace=0.2, hspace=0.4)
    ax = plt.Subplot(fig, inner[1])
    _ = sns.violinplot(y="variety", x=f"{col}", data=iris, inner='quartile', ax=ax)
    fig.add_subplot(ax)
fig.show()
```


Make default density plot sns.kdeplot(iris['sepal.width'])

AIM

3. Programs to handle data using pandas

CODE:

```
#Pandas is a Python library.
```

#Pandas is used to analyze data.

import numpy as np

import pandas as pd

```
s = pd.Series([1, 3, 5, 6, 8])
print(s)
```

OUTPUT:

```
0 1
1 3
2 5
3 6
4 8
dtype: int64
```

CODE:

OUTPUT

	country	capital	area po	pulation
0	Brazil	Brasilia	8.516	200.40
1	Russia	Moscow	17.100	143.50
2	India	New Dehli	3.286	1252.00
3	China	Beijing	9.597	1357.00
4	South Africa	Pretoria	1.221	52.98

```
b.index = ["BR", "RU", "IN", "CH", "SA"]
```

print(b)

OUTPUT:

	country	capital	area	population
BR	Brazil	Brasilia	8.516	200.40
RU	Russia	Moscow	17.100	143.50
IN	India	New Dehli	3.286	1252.00
СН	China	Beijing	9.597	1357.00
SA	South Africa	Pretoria	1.221	52.98

CODE:

import pandas as pd
cars = pd.read_csv('cars1.csv')
print(cars)

0 1 2 3 4 5	Car Toyoty Mitsubishi Skoda Fiat Mini VW	Model Aygo Space Star Citigo 500 Cooper Up!	Volume 1000 1200 1000 900 1500	Weight 790 1160 929 865 1140 929 1	CO2 99 95 95 90 105
Sko	da Fabia 14	100 1109 90)		
7	Mercedes	A-Class	1500	1365	92
8	Ford	Fiesta	1500	1112	98
9	Audi	A1	1600	1150	99
10	Hyundai I20	1100 980	99		
11	Suzuki	Swift	1300	990	101
12	Ford	Fiesta	1000	1112	99
13	Honda	Civic	1600	1252	94
14	Hundai	I30	1600	1326	97
15	Opel	Astra	1600	1330	97
16	BMW	1	1600	1365 99	
17	Mazda	3	2200	1280	104
18	Skoda	Rapid	1600	1119	104
19	Ford	Focus	2000	1328	105
20	Ford	Mondeo	1600	1584	94
21	Opel	Insignia	2000	1428	99
22	Mercedes	C-Class	2100	1365	99
23	Skoda	Octavia	1600	1415	99
24	Volvo	S60	2000	1415	99
25	Mercedes	CLA	1500	1465	102
26	Audi	A4	2000	1490	104
27	Audi	A6	2000	1725	114
28	Volvo	V70	1600	1523	109
29	BMW	5	2000	1705	114
30	Mercedes	E-Class	2100	1605	115
31	Volvo	XC70	2000	1746	117
32	Ford	B-Max	1600	1235	104
33	BMW	216	1600	1390	108

```
CODE:
import pandas as pd
cars = pd.read csv('cars1.csv')
cars = pd.read csv('/cars1.csv')
print(cars)
# Print out first 4 observations
print(cars[0:4])
# Print out fifth and sixth observation
print(cars[4:6])
import pandas as pd
cars = pd.read_csv('cars1.csv', index_col = 0) #first column is taen as index column
print(cars.iloc[2])
OUTPUT:
Model
           Citigo
Volume
            1000
Weight
                929
                  95
Name: Skoda, dtype: object
CODE:
#Slicing dataframe
import pandas as pd
df = pd.DataFrame([['Jay','M',18],['Jennifer','F',17],
           ['Preity','F',19],['Neil','M',17]],
           columns = ['Name','Gender','Age'])
print(df)
df1 = df.iloc[2:,:]
df2 = df.iloc[:2,:]
print(df1)
print(df2)
OUTPUT
       Name Gender Age
0
        Jay M 18
1 Jennifer F 17
2 Preity F 19
3 Neil M 17
```

```
Name Gender Age
2 Preity F 19
3 Neil M 17
       Name Gender Age
0 Jay M 18
1 Jennifer F 17
CODE:
import pandas as pd
import numpy as np
#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print(s)
print ("The actual data series is:")
print( s.values)
OUTPUT:
0 -1.138968
1 -1.097746
2 0.109717
3 1.159537
dtype: float64
The actual data series is:
[-1.13896826\, -1.09774589\  \, 0.10971687\  \, 1.15953676]
CodeText
CODE:
print (s.head(2))
OUTPUT:
    -1.138968
    -1.097746
dtype: float64
CODE:
print(s.tail(3))
```

```
1 -1.097746
2 0.109717
3 1.159537
dtype: float64
```

CODE:

```
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
# Create a DataFrame
df = pd.DataFrame(d)
print(df)
print ("The transpose of the data series is:")
```

OUTPUT:

print(df.T)

```
Name Age Rating
0
  Tom 25 4.23
1 James 26
            3.24
2 Ricky 25
            3.98
 Vin 23 2.56
4 Steve 30
            3.20
5 Smith 29 4.60
       23 3.80
  Jack
The transpose of the data series is:
     0 1 2 3 4
                                 5
Name Tom James Ricky Vin Steve Smith Age 25 26 25 23 30 29
      Tom James Ricky Vin Steve Smith Jack
                                      23
Rating 4.23 3.24 3.98 2.56 3.2 4.6 3.8
```

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print(df)
print ("Row axis labels and column axis labels are:")
print (df.axes)
```

```
Name Age Rating
     Tom 25
0
                  4.23
1
  James 26
                  3.24
 Ricky 25
                 3.98
    Vin 23
3
                 2.56
4 Steve 30
                 3.20
5 Smith 29
                 4.60
          23
    Jack
                 3.80
Row axis labels and column axis labels are:
[RangeIndex(start=0, stop=7, step=1), Index(['Name', 'Age',
'Rating'], dtype='object')]
CODE:
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
 'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print (df)
print ("The dimension of the object is:")
print (df.ndim)
OUTPUT:
   Name Age Rating
  Tom 25 4.23
  James 26
                  3.24
1
2 Ricky 25
3 Vin 23
                 3.98
                 2.56
4 Steve 30
  Smith
5
           29
                  4.60
6 Jack 30
                 3.80
Our object is:
The shape of the object is:
(7, 3)
CODE:
print (df.size)
OUTPUT:
21
```

print (df.values)

OUTPUT:

```
[['Tom' 25 4.23]

['James' 26 3.24]

['Ricky' 25 3.98]

['Vin' 23 2.56]

['Steve' 30 3.2]

['Smith' 29 4.6]

['Jack' 30 3.8]]
```

CODE:

df.isnull().sum() #sum returns the number of missing values

OUTPUT:

Name 0
Age 0
Rating 0
dtype: int64

CODE:

df = pd.DataFrame(np.arange(12).reshape(3, 4), columns=['A', 'B', 'C', 'D']) print(df)

```
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
```

<u>AIM</u>

4: Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import pandas as pd

```
df = pd.read_csv("iris.csv")
print(df)
```

OUTPUT:

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

[150 rows x 5 columns]

CODE:

df['variety'].value_counts()

OUTPUT:

```
Setosa 50
Versicolor 50
Virginica 50
Name: variety, dtype: int64
```

```
X = df.drop('variety', axis=1)
y = df['variety']
# splitting to trainset and Test set in the ratio 70:30
```

```
X_{train}, X_{test}, y_{train}, y_{test} = train_{test\_split}(X, y, test\_size=0.30)
```

```
print(X_train)
print(" ")
```

$print(X_test)$

sepal.leng	th sepal.wi	dth petal.	length petal.	width
46	5.1	3.8	1.6	0.2
95	5.7	3.0	4.2	1.2
67	5.8	2.7	4.1	1.0
45	4.8	3.0	1.4	0.3
143	6.8	3.2	5.9	2.3
116	6.5	3.0	5.5	1.8
41	4.5	2.3	1.3	0.3
62	6.0	2.2	4.0	1.0
91	6.1	3.0	4.6	1.4
123	6.3	2.7	4.9	1.8
[105 rows x	4 columns]			
sepal.l	ength sepal	.width pet	tal.length pet	al.width
25	5.0	3.0	1.6	0.2
141	6.9	3.1	5.1	2.3
125	7.2	3.2	6.0	1.8
102	7.1	3.0	5.9	2.1
128	6.4	2.8	5.6	2.1
122 76	7.7 6.8	2.8 2.8	6.7	2.0
103	6.3	2.9	4.8 5.6	1.4 1.8
14	5.8	4.0	1.2	0.2
37	4.9	3.6	1.4	0.1
100	6.3	3.3	6.0	2.5
63	6.1	2.9	4.7	1.4
64	5.6	2.9	3.6	1.3
61	5.9	3.0	4.2	1.5
17	5.1	3.5	1.4	0.3
74	6.4	2.9	4.3	1.3
111 120	6.4 6.9	2.7 3.2	5.3 5.7	1.9 2.3
79	5.7	2.6	3.5	1.0
85	6.0	3.4	4.5	1.6
49	5.0	3.3	1.4	0.2
21	5.1	3.7	1.5	0.4
110	6.5	3.2	5.1	2.0
149	5.9	3.0	5.1	1.8
72	6.3	2.5	4.9	1.5
11 36	4.8 5.5	3.4 3.5	1.6 1.3	0.2
6	4.6	3.4	1.4	0.2
68	6.2	2.2	4.5	1.5
144	6.7	3.3	5.7	2.5
43	5.0	3.5	1.6	0.6
80	5.5	2.4	3.8	1.1
32	5.2	4.1	1.5	0.1
7	5.0	3.4	1.5	0.2
55	5.7	2.8	4.5	1.3
129	7.2	3.0	5.8	1.6
117	7.7	3.8	6.7	2.2

12 4.8 3.0 1.4 0.1

CODE:

```
print("Number transactions X_train dataset: ", X_train.shape)
print("Number transactions y_train dataset: ", y_train.shape)
print("Number transactions X test dataset: ", X test.shape)
print("Number transactions y test dataset: ", y test.shape)
```

OUTPUT:

```
Number transactions X train dataset: (105, 4)
Number transactions y train dataset: (105,)
Number transactions X test dataset: (45, 4)
Number transactions y test dataset:
```

CODE:

```
classifier = KNeighborsClassifier(n neighbors=5)
classifier.fit(X train, y train)
y pred = classifier.predict(X test)
print(y pred)
print(' ')
print(y test)
```

OUTPUT:

63

```
['Setosa' 'Virginica''Virginica''Virginica''Virginica'
'Versicolor''Virginica''Setosa''Setosa''Virginica' 'Versicolor'
'Versicolor''Versicolor''Setosa''Versicolor''Virginica''Virginica
'Versicolor''Versicolor''Setosa''Setosa' 'Virginica''Virginica'
'Virginica''Setosa''Setosa''Versicolor''Virginica''Setosa
'Setosa' 'Virginica' 'Versicolor' 'Setosa' 'Setosa' 'Virginica'
'Versicolor''Virginica''Versicolor''Virginica''Setosa''Virginica'
 'Virginica' 'Setosa']
```

```
Versicolor
64
       Versicolor
61
       Versicolor
17
           Setosa
74
       Versicolor
111
        Virginica
120
        Virginica
79
       Versicolor
85
       Versicolor
49
           Setosa
21
           Setosa
110
        Virginica
149
        Virginica
72
       Versicolor
11
           Setosa
36
           Setosa
6
           Setosa
```

68 Versicolor

```
144
        Virginica
43
           Setosa
47
           Setosa
77
       Versicolor
80
       Versicolor
32
           Setosa
           Setosa
148
        Virginica
88
       Versicolor
137
       Virginica
       Versicolor
55
112
        Virginica
29
           Setosa
129
        Virginica
117
        Virginica
           Setosa
Name: variety, dtype: object
```

from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_pred)) print(classification report(y test, y pred))

OUTPUT:

[[15 0 0] [0 11 2] [0 0 17]]				
	precision	recall	f1-score	support
Setosa	1.00	1.00	1.00	15
Versicolor	1.00	0.85	0.92	13
Virginica	0.89	1.00	0.94	17
accuracy			0.96	45
macro avg	0.96	0.95	0.95	45
weighted avg	0.96	0.96	0.95	45

```
weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy',
'Over cast','Sunny','Sunny', 'Rainy','Sunny','Overcast','Over-cast','Rainy']

# Second Feature
temp=['Hot','Hot','Hot','Mild','Cool','Cool','Mild',
'Cool'
,'Mild','Mild','Mild','Hot','Mild']

# Label or target varible

play=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','
```

```
from sklearn import preprocessing
#creating labelEncoder
le = preprocessing.LabelEncoder()
# Converting string labels into numbers.
weather_encoded=le.fit_transform(weather)
print(weather encoded)
```

```
[2 2 0 1 1 1 0 2 2 1 2 0 0 1]
```

```
temp_encoded=le.fit_transform(temp) print(temp_en-
coded)
print(" ") la-
bel=le.fit_transform(play)
print(label)
```

```
[1 1 1 2 0 0 0 2 0 2 2 2 1 2]
[0 0 1 1 1 0 1 0 1 1 1 1 0]
```

CODE:

```
features=list(zip(weather_encoded,temp_encoded))
print(features)
```

OUTPUT:

```
[(2, 1), (2, 1), (0, 1), (1, 2), (1, 0), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (2, 2), (0, 2), (0, 1), (1, 2)]
```

CODE:

```
from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

# Train the model using the training sets

model.fit(features,label)

predicted= model.predict([[0,1]]) # 0:Overcast, 1:Hot

print(predicted)
```

OUTPUT:

[1]

<u>AIM</u>

5: Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: Social Network Ads.csv

```
import pandas as pd
dataset = pd.read_csv("/content/Social_Network_Ads.csv")
print(dataset.describe())
print(dataset.head())
X = dataset.iloc[:, [1, 2, 3]].values
y = dataset.iloc[:, -1].values
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X[:,0] = le.fit_transform(X[:,0])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test si ze = 0.20, random state = 0)
```

			User ID		Age	Estimate	dSalary	Purchased
cou	ınt	4.000	000e+02	400.	000000	400	.000000	400.000000
mea	an	1.569	154e+07	37.	655000	69742	.500000	0.357500
std	1	7.165	832e+04	10.	482877	34096	.960282	0.479864
min	1	1.556	669e+07	18.	000000	15000	.000000	0.000000
25%	6	1.562	676e+07	29.	750000	43000	.000000	0.000000
50%	6	1.569	434e+07	37.	000000	70000	.000000	0.000000
75%	6	1.575	036e+07	46.	000000	88000	.000000	1.000000
max	(1.581	524e+07	60.	000000	150000	.000000	1.000000
	Us	er ID	Gender	Age	Estima	tedSalary	Purcha	ised
0	156	24510	Male	19		19000		0
1	158	10944	Male	35		20000		0
2	156	68575	Female	26		43000		0
3	156	03246	Female	27		57000		0
4	158	04002	Male	19		76000		0

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB() classi-
fier.fit(X train, y train)
```

OUTPUT:

GaussianNB()

CODE:

```
y_pred = classifier.predict(X_test)
y pred
```

OUTPUT:

```
y_pred = classifier.predict(X_test)
y_test
```

```
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1])
```

CODE:

```
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
print(cm)
print(ac)
```

```
[[56 2]
[4 18]]
0.925
```

AIM

6: Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.

CODE:

```
import matplotlib.pyplot as plt
x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
plt.scatter(x, y)
plt.show()
```

OUTPUT:


```
import matplotlib.pyplot as plt
from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

+slope, intercept, r, p, std_err = stats.linregress(x, y) # r
corre lation coefficient # p probability of hypothesis

def myfunc(x):
```

```
return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()
```

-0.758591524376155


```
import pandas
import warnings
warnings.filterwarnings("ignore")

df = pandas.read_csv("cars1.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']
```

```
from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(X, y)
```

LinearRegression()

CODE:

```
predictedCO2 = regr.predict([[2300, 1000]])
print(predictedCO2)
```

OUTPUT:

[104.86715554]

7. Program to implement text classification using Support vector machine.

CODE:

Dataset used: iris.csv

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
# import some data to play with
iris = datasets.load iris()
X = iris.data[:, :2] # we only take the first two features.
We could
 # avoid this ugly slicing by using a two-dim dataset
y = iris.target
# we create an instance of SVM and fit out data. We do not
scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
svc = svm.SVC(kernel='linear', C=1,gamma='auto').fit(X, y)
# create a mesh to plot in
\#x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
y_min, y_n) = X[:, 1].min() - 1, X[:, 1].max() + 1
\#h = (x \max / x \min)/100
\#xx, yy = np.meshgrid(np.arange(x min, x max, h),
#np.arange(y min, y max, h
plt.subplot(1, 1, 1)
Z = svc.predict(np.c ravel[xx.(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
```

```
plt.title('SVC with linear kernel')
plt.show()
```


CODE:

Dataset used: True.csv, Fake.csv

```
#Importing Libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.metrics import accuracy_score, confusion_matrix,class
ification_report

from sklearn.svm import LinearSVC

import csv
true = pd.read_csv("True.csv")
fake = pd.read_csv("Fake.csv")
```

```
fake['target'] = 'fake'
true['target'] = 'true'
#News dataset
news = pd.concat([fake, true]).reset_index(drop = True)
news.head()
news.dropna()
```

	title	text	subject	date	target
0	you were wrong! 70-year-old men don t change \dots	News	"December 31	2017"	fake
165	look at me! I m violating the U.S. flag code	News	"October 29	2017"	fake
277	particularly those where people are dying. Ob	News	"September 29	2017"	fake
294	utterly and completely misunderstanding it. T	News	"September 25	2017"	fake
379	I salute you.Featured image via David Becker/	News	"September 10	2017"	fake
•••		•••	908-) **** *****		
39998	rescuers pulled Maria s body from the rubble	worldnews	"September 21	2017 "	true
40742	adding she had a Spanish passport but chose t	worldnews	"September 14	2017 "	true
40788	adding the Rohingya belong in camps for displ	worldnews	"September 14	2017 "	true
40824	said Reick."	worldnews	"September 14	2017 "	true
41394	in general. "	worldnews	"September 7	2017 "	true
				2000000	

236 rows × 5 columns

```
pipe2 = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTran
sformer()), ('model', LinearSVC())])

model_svc = pipe2.fit(x_train.astype('U'), y_train.astype('U'))
svc_pred = model_svc.predict(x_test.astype('U'))

print("Accuracy of SVM Classifier: {}%".format(round(accuracy_scor
e(y_test, svc_pred)*100,2)))
print("\nConfusion Matrix of SVM Classifier:\n")
print(confusion_matrix(y_test, svc_pred))
print("\nClassification Report of SVM Classifier:\n")
print(classification report(y test, svc_pred))
```

Accuracy of SVM Classifier: 51.43%

Confusion Matrix of SVM Classifier:

[[4302 3] [4085 26]]

Classification Report of SVM Classifier:

	precision	recall	f1-score	support
fake	0.51	1.00	0.68	4305
true	0.90	0.01	0.01	4111
accuracy			0.51	8416
macro avg	0.70	0.50	0.35	8416
weighted avg	0.70	0.51	0.35	8416

8. Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: iris

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
data=load_iris()
X=data.data
y=data.target
print(X.shape,y.shape)
```

OUTPUT:

```
(150, 4) (150,)
```

CODE:

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier#for checking testi
ng results
from sklearn.metrics import classification_report, confusion_matri
x#for visualizing tree
from sklearn.tree import plot_tree
X_train, X_test, y_train, y_test = train_test_split(X , y, test_si
ze = 25, random_state = 10)
clf=DecisionTreeClassifier()
clf.fit(X_train,y_train)
```

OUTPUT:

DecisionTreeClassifier()

```
y_pred =clf.predict(X_test)
print("Classification report - \n", classification_report(y_test,y
_pred))
```

Classification	n report - precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	1.00	0.90	0.95	10
2	0.86	1.00	0.92	6
accuracy			0.96	25
macro avg	0.95	0.97	0.96	25
weighted avg	0.97	0.96	0.96	25

CODE:

```
cm = confusion_matrix(y_test, y_pred)
print(cm)
from sklearn import tree
fig,axes = plt.subplots(nrows=1,ncols=1,figsize =(3,3),dpi=200)
tree.plot_tree(clf,feature_names=data.feature_names,class_names=data.target_names,filled=True)
plt.show() fig.savefig("/con-tent/iris_tree.png")
```

OUTPUT:

[[9 0 0] [0 9 1] [0 0 6]]

9. Program to implement k-means clustering technique using any standard dataset available in the public domain.

CODE:

Dataset used: GENERAL.csv

OUTPUT:

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	1
PAYMENTS	0
MINIMUM_PAYMENTS	313
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

CODE:

```
dataset['CREDIT_LIMIT'].fillna(dataset.CREDIT_LIMIT.mean(), inplac
e = True) dataset['MINIMUM_PAYMENTS'].fillna(dataset.MINIMUM_PAY-
MENTS.mean()
, inplace = True) # unfilled vaues replaced using mean
print(dataset.isnull().sum()) print(dataset.de-
scribe())
```

OUTPUT:

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS PURCHASES	0
CASH ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF PURCHASES FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH ADVANCE TRX	0
PURCHASES_TRX	0
CREDIT LIMIT	0
PAYMENTS	0
MINIMUM_PAYMENTS	0
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

	BALANCE	BALANCE_FREQUENCY	 PRC_FULL_PAYMENT	TENURE
count	8950.000000	8950.000000	 8950.000000	8950.000000
mean	1564.474828	0.877271	 0.153715	11.517318
std	2081.531879	0.236904	 0.292499	1.338331
min	0.000000	0.000000	 0.000000	6.000000
25%	128.281915	0.888889	 0.000000	12.000000
50%	873.385231	1.000000	 0.000000	12.000000
75%	2054.140036	1.000000	 0.142857	12.000000
max	19043.138560	1.000000	 1.000000	12.000000

CODE:

dataset.drop(['CUST_ID'], axis= 1, inplace = True) #no relevance f
or custid

```
# No Categorical Values found
X = dataset.iloc[:,:].values
```

```
# Using standard scaler
from sklearn.preprocessing import StandardScaler
standardscaler= StandardScaler()
X = standardscaler.fit_transform(X) #scaling the values
print(X)
```

```
"""K MEANS CLUSTERING """
#Inertia, or the within-
cluster sum of squares criterion, can be recognized as a measure o
f how internally coherent clusters are
from sklearn.cluster import KMeans
wss= []
for i in range(1, 11):
    kmeans= KMeans(n_clusters = i, init = 'k-
means++', random_state = 0)
    kmeans.fit(X) wss.ap-
    pend(kmeans.inertia_)
plt.plot(range(1,11), wss) # selecting 4
```


CODE:

```
wss_mean=np.array(wss).mean()
print(wss)
print(wss_mean)
print([abs(wss_mean-x) for x in wss])
k=np.argmin([abs(wss_mean-x) for x in wss])+1
```

OUTPUT:

```
[152149.99999999983, 127784.92103208725, 111986.41162208859, 99073.93826774803, 91502.98328256077, 84851.13240432573, 79532.40237691796, 75568.97609993909, 69954.91393943134, 67546.56302862825] 95995.22420537268 [56154.775794627145, 31789.69682671457, 15991.187416715911, 3078.714062375351, 4492.240922811907, 11144.091801046947, 16462.82182845472, 20426.248105433595, 26040.31026594134, 28448.661176744426]
```

```
kmeans = KMeans(n_clusters = k, init= 'k-
means++', random_state = 0)
kmeans.fit(X)

Y_pred_K= kmeans.predict(X)
print(Y_pred_K)
```

```
#showing the clusters of first 100 persons
plt.figure(figsize=(16,4))
plt.plot(range(1,100+1),Y_pred_K[:100],'ro')
```


10:Programs on feedforward network to classify any standard dataset available in the public domain.

Dataset used: HR_comma_sep.csv

CODE:

```
import numpy as np
import pandas as pd

# Load data
data=pd.read csv('HR comma sep.csv')
```

OUTPUT:

data.head()

satis	faction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	left	promotion_last_5years	sales	salary
0	0.38	0.53	2	157	3	0	1	0	sales	low
1	0.80	0.86	5	262	6	0	1	0	sales	medium
2	0.11	0.88	7	272	4	0	1	0	sales	medium
3	0.72	0.87	5	223	5	0	1	0	sales	low
4	0.37	0.52	2	159	3	0	1	0	sales	low

```
from sklearn import preprocessing

# Creating labelEncoder

le = preprocessing.LabelEncoder()

# Converting string labels into numbers.

data['salary']=le.fit_transform(data['salary'])

data['sales']=le.fit_transform(data['sales'])
```

```
X=data[['satisfaction level', 'last evaluation', 'number project', 'average montly hour
s', 'time_spend_company', 'Work_accident', 'promotion_last_5years', 'sales', 'salary']]
y=data['left']
# Import train test split function
from sklearn.model selection import train test split
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42
) # 70% training and 30% test
from sklearn.neural network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden_layer_sizes=(6,5),
            random_state=5,
            verbose=False,
            learning rate init=0.01)
# Fit data onto the model
clf.fit(X train,y train)
```

CODE:

```
ypred=clf.predict(X_test)
# Import accuracy score
from sklearn.metrics import accuracy_score
# Calcuate accuracy
accuracy_score(y_test,ypred)
```

OUTPUT:

0.938666666666666

Aim:

11:Programs on convolutional neural network to classify images from any standard dataset in the public domain.

CODE:

import numpy as np import pandas as pd

Load data data=pd.read csv('HR comma sep.csv')

data.head()

Output:

	satis- fac- tion_l evel	last_e valu- ation	num- ber_p ro- ject	aver- age_montly _hours	time_spen d_com- pany	Work _acci- dent	le ft	promo- tion_last_ 5years	sal es	sal ar y
0	0.38	0.53	2	157	3	0	1	0	sal es	lo w
1	0.80	0.86	5	262	6	0	1	0	sal es	me diu m
2	0.11	0.88	7	272	4	0	1	0	sal es	me diu m
3	0.72	0.87	5	223	5	0	1	0	sal es	lo w
4	0.37	0.52	2	159	3	0	1	0	sal es	lo w

CODE:

from sklearn import preprocessing

Creating labelEncoder le = preprocessing.LabelEncoder()

Converting string labels into numbers. data['salary']=le.fit_transform(data['salary']) data['sales']=le.fit_transform(data['sales'])

 $X = data \hbox{\tt [['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours',}$

```
'time spend company', 'Work accident', 'promotion last 5years', 'sales', 'salary']]
y=data['left']
# Import train test split function
from sklearn.model selection import train test split
# Split dataset into training set and test set
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42) #
70% training and 30% test
from sklearn.neural network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden layer sizes=(6,5),
            random state=5,
            verbose=False,
            learning rate init=0.01)
# Fit data onto the model
clf.fit(X_train,y_train)
ypred=clf.predict(X test)
OUTPUT:
```

CODE:

Import accuracy score from sklearn.metrics import accuracy_score # Calcuate accuracy print ("Accuracy:",accuracy score(y test,ypred))

OUTPUT:

CODE:

from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, ypred)) print(classification_report(y_test, ypred))

	.80] 976]]				
		precision	recall	f1-score	support
	0	0.97	0.95	0.96	3428
	1	0.84	0.91	0.88	1072
accur	racy			0.94	4500
macro	avg	0.91	0.93	0.92	4500
weighted	avg	0.94	0.94	0.94	4500