Electrical Engineering Technology

Capacitor Charge - Continued
Fall 2018

Recall - Equations for the <u>charge phase</u>:

KVL is still true!

$$E - V_R(t) - V_C(t) = 0$$

$$V_C(t) = E - V_R(t)$$

$$V_C(t) = E - E * e^{\frac{-t}{\tau}}$$

$$V_C(t) = E\left(1 - e^{\frac{-t}{\tau}}\right)$$

$$\frac{t}{0} \qquad \frac{i_c(t)}{\frac{E}{R}} \qquad \text{Investigating } i_c(t) = \frac{E}{R} * e^{\frac{-t}{\tau}}$$

$$RC= au$$
 $rac{E}{R}\left(e^{-1}
ight)$ = 0.368 $\left(rac{E}{R}
ight)$ 36.8% of E/R

$$2RC=2 au$$
 $\frac{E}{R}(e^{-2})$ = 0.135 $\left(\frac{E}{R}\right)$ 13.5% of E/R

$$3RC=3 au$$
 $\frac{E}{R}\left(e^{-3}\right)$ = 0.05 $\left(\frac{E}{R}\right)$ 5% of E/R

$$\frac{1}{R} = \frac{1}{R} = \frac{1}$$

$$4RC = 4\tau \qquad \frac{E}{R}(e^{-4}) \qquad = 0.018\left(\frac{E}{R}\right) \qquad 1$$

$$5RC = 5\tau$$
 $\frac{E}{R}(e^{-5})$ = 0.0067 $\left(\frac{E}{R}\right)$

Less than 1% of max (initial) current. Considered "fully charged".

Equations for the charge phase -ic(t) and VR(t)

$$i_c(t) = \frac{E}{R} * e^{\frac{-t}{\tau}}$$
$$V_r(t) = E * e^{\frac{-t}{\tau}}$$

$$V_r(t) = E * e^{\frac{-t}{\tau}}$$

FIG. 10.30 Plotting the equation $i_C = \frac{E}{R}e^{-t/\tau}$ versus time (t).

Equations for the <u>charge phase – Vc(t)</u>

$$i_c(t) = \frac{E}{R} * e^{\frac{-t}{\tau}}$$

$$V_C(t) = E\left(1 - e^{\frac{-t}{\tau}}\right)$$

$$\begin{array}{ccc} t & V_C(t) & \text{Investigating} & V_C(t) = E\left(1-e^{\frac{-t}{\tau}}\right) \\ 0 & 0 & \leftarrow \text{Initial value} \end{array}$$

$$RC = \tau$$
 $E(1 - e^{-1}) = E(0.632)$ 63.2% of E

$$2RC = 2\tau$$
 $E(1 - e^{-2}) = E(0.865)$ 86.5% of E

$$3RC = 3\tau$$
 $E(1 - e^{-3}) = E(0.950)$ 95% of E

$$4RC = 4\tau$$
 $E(1 - e^{-4})$ = $E(0.982)$ 98.2 of E

$$5RC = 5\tau \quad E(1 - e^{-5}) = E(0.993)$$

Less than 1% error (less than 1% from E or the **max** value). Considered "fully charged" at 5τ.

Recall - Equations for the <u>charge phase</u>:

 2τ

 1τ

Switch closed

0

 3τ

 5τ

 6τ

 4τ

In Class Problem

Given:

- There is no initial voltage on the capacitor, Vc(0) = 0V
- E = 10V, R = 4000 Ohms, C = 2uF
- The switch is moved to position 1 at t=0

Find:

- Ic(t) and sketch
- Vc(t) and sketch
- VR(t) and sketch
- Vc(t) at 10ms
- Ic(t) at 10ms

Multisim - Demo

Analyses and Simulation

Analyses and Simulation		
Active Analysis:		
Interactive Simulation	Transient	
DC Operating Point	Analysis parameters Output Analysis options Summary	Set to 5τ to view
AC Sweep		the entire transient
Transient	Initial conditions: User-defined	
DC Sweep	Start time (TSTART): 0 s	period
Single Frequency AC		
Parameter Sweep	End time (TSTOP): 0.04	
Noise	Maximum time step (TMAX): Determine automatically s	
Monte Carlo		
Fourier	Setting a small TMAX value will improve accuracy, however the simulation time will increase.	
Temperature Sweep		
Distortion	Initial time step (TSTEP): Determine automatically s	
Sensitivity		
Worst Case		

Multisim - Demo

Multisim - Demo

Voltage (V)

Find:

- Vc(t) and sketch for t > 0 seconds
- Estimate t for Vc(t) = 100V

Approach??

Hint – Can we handle THIS circuit?

<u> Vth</u>

- V1*[(R2,3)/((R2,3)+R1)]
- 150V

<u>**R**TH</u>

- R1//(R2+R3)
- 20 Ohms

Analyze the Thevenin Equivalent Circuit:

$$V_C(t) = E\left(1 - e^{\frac{-t}{\tau}}\right)$$

$$V_c(t) = 150 \left(1 - e^{\left(\frac{-t}{2ms}\right)}\right) \quad V$$

Estimate t for Vc(t) = 100V

From the plot: Just over 1 time constant or ~ 2.1ms

Thevenin Eq

Estimate t for Vc(t) = 100V

From the plot: Just over 1 time constant or ~ 2.1ms

Original Circuit

