

# Machine Learning

#### Logistic Regression Classifier

Dr. Mehran Safayani

safayani@iut.ac.ir

safayani.iut.ac.ir



https://www.aparat.com/mehran.safayani



https://github.com/safayani/machine\_learning\_course



#### Classification

- Email: spam/not spam
- Animal: cat/non cat





#### Classification



If: 
$$h_{\theta}(x) \ge 0.5 \rightarrow predict, y = 1$$
  
If:  $h_{\theta}(x) \le 0.5 \rightarrow predict, y = 0$ 

$$0 \le h_{\theta}(x) \le 1$$
  

$$0 \le h_{\theta}(x) = P(y = 1)|x) \le 1$$

# Logistic Regression

#### مبانی رگرسیون لجستیک:

- عمدتاً برای مسائل طبقهبندی دودویی استفاده میشود.
- احتمال تعلق یک ورودی به یکی از دو کلاس را مدلسازی می کند.

#### مرزهای تصمیمگیری خطی:

• رگرسیون لجستیک بهطور معمول مرزهای تصمیم گیری خطی را در فرم استاندارد خود ایجاد می کند.

#### کاربردها:

• در مسائلی مانند طبقهبندی تصویر، تشخیص پزشکی و همچنین جایی که سطوح تصمیم پیچیده برای بهبود دقت ضروری هستند، استفاده می شود.

# **Logistic Regression**



Output Purchase | Yes or No

#### **Decision Boundary**



$$\theta = \begin{bmatrix} -3\\1\\1 \end{bmatrix}$$

Predict 
$$y = 1$$
,  $if \underbrace{-3 + x_1 + x_2 \ge 0}_{\theta^T X}$  
$$x_1 + x_2 \ge 3$$

### Sigmoid Function: Logistic Function





Model output example : P(y =

$$P(y=1|x)=0.8$$

#### Non-Linear Decision Boundaries



#### **Cost Function**

Training Set:  $\{(x^1, y^1), (x^2, y^2), ..., (x^m, y^m)\}$ 

$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}, x_0 = 1, y \in \{0,1\}$$

Linear Regression:  $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$ 

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic Regression:  $h_{\theta}(x^i) = g(\theta^T x^i)$ 

MSE: 
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (g(\theta^T x^i) - y^i)^2$$

#### Convex VS Non-Convex Cost Function

#### **Convex Cost Function:**

- •Bowl-shaped with a single global minimum.
- •Easier optimization, guarantees finding the global minimum.

#### **Non-Convex Cost Function:**

- •Contains multiple local minima.
- •Challenges: Optimization algorithms can get stuck in local minima.
- •Impact: Risk of poor model performance, as finding the global minimum is difficult.



#### Logistic Regression

#### **MSE Cost Function:**

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)})^2)$$

#### Binary Cross Entropy cost function:

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)), & if \quad y = 1 \\ -log(1 - h_{\theta}(x)), & if \quad y = 0 \end{cases}$$

if y=1 and 
$$h_{\theta}(x) = 1 \Rightarrow cost = 0$$
;  
if y=1 and  $h_{\theta}(x) = 0 \Rightarrow cost = \infty$ ;  
if y=0 and  $h_{\theta}(x) = 0 \Rightarrow cost = 0$ ;  
if y=0 and  $h_{\theta}(x) = 1 \Rightarrow cost = \infty$ ;



### Logistic Regression

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)), & if \quad y = 1 \\ -log(1 - h_{\theta}(x)), & if \quad y = 0 \end{cases}$$

$$cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1 - y)log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{i}log(h_{\theta}(x^{i})) - (1 - y^{i})log(1 - h_{\theta}(x^{i}))$$

$$\min_{\theta} J(\theta)$$

#### **Gradient Descent: Repeat Unit Convergence:**

repeat { 
$$\theta_j = \theta_j - \alpha \frac{dJ(\theta)}{d_\theta} \quad J = 0, \dots, n$$
 } until convergence

$$\frac{dJ(\theta)}{d_{\theta}} = ? J(\theta) = \frac{1}{m} \sum_{i=1}^{m} T_i \frac{dJ(\theta)}{d_{\theta}} = \frac{1}{m} \sum_{i=1}^{m} \frac{dT_i}{di}$$

$$T_i = -[y^i \log h_{\theta}(x^i) + (1 - y^i) \log(1 - h_{\theta}(x^i))] \quad h_{\theta}(x^i) = \sigma(\theta^T x^i) = \sigma(z^i) = \frac{1}{1 + e^{-z^i}}$$

$$T_i = -[y^i \log \sigma(z^i) + (1 - y^i) \log(1 - \sigma(z^i))]$$

$$(1)\frac{dT_i}{d\sigma(z^i)} = -\left[\frac{y^i}{\sigma(z^i)} + \left(1 - y^i\right) \cdot \frac{-1}{1 - \sigma(z^i)}\right] = -\left[\frac{y^i}{\sigma(z^i)} - \frac{1 - y^i}{1 - \sigma(z^i)}\right]$$

$$(2)\frac{d\sigma(z^{i})}{dz^{i}} = \frac{e^{-z^{i}}}{(1+e^{-z^{i}})^{2}} = \frac{1}{1+e^{-z^{i}}} \cdot \frac{e^{-z^{i}}}{1+e^{-z^{i}}} = \sigma(z^{i}) \cdot (1-\sigma(z^{i}))$$

$$(3)\frac{dz^{i}}{d\theta_{j}} = x_{j}^{i}$$

$$z^{i} = \theta^{T}x^{i} = \theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n}$$

$$1 - \sigma(z^{i}) = 1 - \frac{1}{1 + e^{-z^{i}}} = \frac{1 + e^{-z^{i}} - 1}{1 + e^{-z^{i}}} = \frac{e^{-z^{i}}}{1 + e^{-z^{i}}}$$

From (1), (2) and (3):

$$\frac{dT_i}{d\theta_j} = -\left[\frac{y^i}{\sigma(z^i)} - \frac{1 - y^i}{1 - \sigma(z^i)}\right] \sigma(z^i) \cdot (1 - \sigma(z^i)) x_j^i 
= -\left[y^i \cdot \left(1 - \sigma(z^i)\right) - \left(1 - y^i\right) \cdot \sigma(z^i)\right] x_j^i 
= -\left[y^i - \sigma(z^i)\right] x_j^i = \left[\sigma(z^i) - y^i\right] x_j^i$$

$$\frac{dy(\theta)}{d\theta_j} = \frac{1}{m} \sum_{i=1}^m \frac{dT_i}{d\theta_j} = \frac{1}{m} \sum_{i=1}^m \frac{dT_i}{dz^i} \cdot \frac{dz^i}{d\theta_j} = \frac{1}{m} \sum_{i=1}^m \left( \frac{\sigma(z^i)}{h_{\theta}(x^i)} - y^i \right) \cdot x_j^i$$

GD: RpeatUntiConvergance{

$$\theta_j = \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^i) - y^i) \cdot x_j^i$$

#### Logistic regression on m examples

$$\theta_1 \leftarrow \text{ran}dom \quad \theta_2 \leftarrow \text{ran}dom \quad b \leftarrow \text{ran}dom$$

$$\theta_2 \leftarrow \text{ran}dom$$

$$b \leftarrow \text{ran}dom$$

# $heta^t = egin{bmatrix} heta_1^t \ heta_2^t \ heta_t \end{bmatrix} heta^{t+1} = egin{bmatrix} heta_1^{t+1} \ heta_2^{t+1} \ heta_{t+1} \end{bmatrix}$

#### Repeat{

$$J=0;$$
  $d\theta_1=0;$   $d\theta_2=0;$   $db=0;$ 

$$d\theta_2 = 0$$
;

$$db = 0$$
;

$$\|\theta^{t+1} - \theta^t\|_2 \le \varepsilon$$

For 
$$i=1$$
 to  $m$ 

$$z^{(i)} = \theta^T x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J += \left[ y^{(i)} Log a^{(i)} + \left( 1 - y^{(i)} \right) Log \left( 1 - a^{(i)} \right) \right]$$

$$dz^{(i)} = a^{(i)} - y^{(i)}$$

$$d\theta_1 += x_1^{(i)} dz^{(i)}$$
  $d\theta_2 += x_2^{(i)} dz^{(i)}$   $db += dz^{(i)}$ 

$$d\theta_2 += x_2^{(i)} dz^{(i)}$$

$$db += dz^{(i)}$$

$$J/=m$$
;

$$J/=m;$$
  $d\theta_1/=m;$ 

$$d\theta_2/=m$$
;

$$db/=m$$
;

$$\theta_1 = \theta_1 - \alpha \, d\theta_1$$

$$\theta_1 = \theta_1 - \alpha d\theta_1$$
  $\theta_2 = \theta_2 - \alpha d\theta_2$   $b = b - \alpha db$ 

$$b = b - \alpha db$$

 $d\theta = \begin{bmatrix} d\theta_1 \\ d\theta_2 \\ dh \end{bmatrix}$ 

 $||d\theta|| \le \varepsilon = 10^{-4}$ 

#### Decision Boundary of logistic regression



$$\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

# تعبير احتمالاتي رگرسيون لاجستيک

$$p(y, \mathbf{X}|\theta) = p(\mathbf{X}|\theta)p(y|\mathbf{X}, \theta) = p(\mathbf{X})p(y|\mathbf{X}, \theta)$$

$$L = p(Y|X,\theta) = \prod_{i=1}^{m} p(y_i|x_i)$$

$$= \prod_{\substack{n:y_n=1\\m}} \underbrace{p(y_i = 1|x_i)}_{\mu_i} \prod_{\substack{n:y_i=0\\1-\mu_i}} \underbrace{p(y_i = 0|x_i)}_{1-\mu_i}$$

$$= \prod_{\substack{i=1\\i=1}} \underbrace{\left[\sigma(x_i^T\theta)\right]^{y_i}}_{\mu_i} \underbrace{\left[1 - \sigma(x_i^T\theta)\right]^{1-y_i}}_{1-\mu_i}$$

$$LL = \sum_{i=1}^{m} y_i log(h_{\theta}(x_i)) + (1 - y_i) log(1 - h_{\theta}(x_i))$$
$$j(\theta) = -LL$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} j(\theta)$$

#### Bernoulli distribution

$$p(y|x) = f(x) = \begin{cases} \mu, & y = 1\\ 1 - \mu, & y = 0 \end{cases}$$
$$\mu_i = h_{\theta}(x_i) = \sigma(x_i^T \theta)$$

برای ساده کردن رابطه و هم چنین مسائل محاسباتی از تابع log میگیریم. هم چنین یک منفی در آن ضرب می کنیم تا تابع را کمینه کنیم وحالت تابع هزینه پیدا کند.

# محاسبات رگرسیون لاجستیک به صورت برداری

$$j(\theta) = -\sum_{i=1}^{m} y_i ln\left(\sigma(x_i^T \theta)\right) + (1 - y_i) ln(1 - \sigma(x_i^T \theta))$$

$$j(\theta) = \sum_{i=1}^{m} \ln[1 + \exp(x_i^T \theta)] - y_i x_i^T \theta$$

$$\frac{\partial \ln[1 + \exp(x)]}{\partial x} = \sigma(x).$$

$$\nabla L(\theta) = \sum_{i=1}^{m} x_i \left( \sigma(x_i^T \theta) - y_i \right)$$

$$= \underbrace{X^T}_{P \times m} \left[ \underbrace{\sigma(X \theta)}_{m \times 1} - \underbrace{y}_{m \times 1} \right].$$

$$\frac{d \ln \left[ 1 + \exp(\overline{x_i^T \theta}) \right]}{\partial \theta}$$

$$= d \frac{ln[1 + \exp(z)]}{\partial z} \cdot \frac{\partial z}{\partial \theta}$$
$$= \sigma(z) \frac{\partial x_i^T \theta}{\partial \theta} = \sigma(z) x_i$$

$$= \sigma(z) \frac{\partial x_i^I \theta}{\partial \theta} = \sigma(z) x_i$$

$$\alpha_1 \overrightarrow{x_1} + \alpha_2 \overrightarrow{x_2} + \dots + \alpha_m \overrightarrow{x_m}$$

می تو ان نشان داد:

می توان نشان داد:

بنابراین:

$$\underbrace{\nabla L(\theta)}_{P \times 1} = \underbrace{X}^{T} \left[ \underbrace{\sigma(X\theta)}_{m \times 1} - \underbrace{y}_{m \times 1} \right]$$

نمی توانیم رابطه بالا را برابر با صفر قرار دهیم و نسبت به ۷ مسئله را حل کنیم بنابراین از روش نزول گرادیانی استفاده می کنیم.

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla L(\theta^{(t)}),$$

روش نیوتن:

از مشتق مرتبه دوم استفاده میکند و در تعداد گام های کمتری همگرا می شود:

$$\mathbf{H}_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial \theta_{1}^{2}} & \frac{\partial^{2} f}{\partial \theta_{1} \partial \theta_{2}} & \cdots & \frac{\partial^{2} f}{\partial \theta_{1} \partial \theta_{n}} \\ \frac{\partial^{2} f}{\partial \theta_{2} \partial \theta_{1}} & \frac{\partial^{2} f}{\partial \theta_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial \theta_{2} \partial \theta_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial \theta_{n} \partial \theta_{1}} & \frac{\partial^{2} f}{\partial \theta_{n} \partial \theta_{2}} & \cdots & \frac{\partial^{2} f}{\partial \theta_{n}^{2}} \end{bmatrix}$$

ماتریس هسین ( Hessian ) را به صورت زیر تعریف می کنیم:

$$(\mathbf{H}_f)_{i,j} = \frac{\partial^2 f}{\partial \theta_i \partial \theta_j} \qquad \frac{\partial^2 f}{\partial \vec{\theta} \partial \vec{\theta}} = \frac{\partial}{\partial \vec{\theta}} \left(\frac{\partial f}{\partial \vec{\theta}}\right)^T$$

اگر  $\theta$ ، P بعدی باشه H یک ماتریس  $P \times P$ است قبلا گرادیان  $\frac{dL(\theta)}{\partial \theta}$  را حساب کردیم:

$$\underbrace{\nabla L(\theta)}_{P \times 1} = x_i (\sigma(x_i^T \theta) - y_i)$$

نشان دهید اگر از ترانهاده رابطه بالا نسبت به  $\theta$  یک بار دیگر مشتق بگیریم داریم :

$$\underbrace{x_i}_{P \times 1} \underbrace{x_i^T}_{scalar} \underbrace{\underbrace{\sigma(x_i^T \theta)}_{scalar} \underbrace{(1 - \sigma(x_i^T \theta))}_{scalar}}_{q}$$

$$\underbrace{H(\theta)}_{P \times P} = \sum_{i=1}^{m} \underbrace{x_i}_{P \times 1} \underbrace{x_i^T}_{scalar} \underbrace{\underbrace{\sigma(x_i^T \theta)}_{scalar} \underbrace{(1 - \sigma(x_i^T \theta))}_{scalar}}_{scalar}$$

$$\underbrace{H(\theta)}_{P \times P} = \sum_{i=1}^{m} \underbrace{x_i}_{P \times 1} \underbrace{x_i^T}_{scalar} \underbrace{\underbrace{\sigma(x_i^T \theta)}_{scalar} \underbrace{(1 - \sigma(x_i^T \theta))}_{scalar}}_{}$$

$$H(\theta) = X^T S X,$$

$$S_{ii} := \sigma(x_i^T \theta) [1 - \sigma(x_i^T \theta)]$$

$$\theta^{t+1} = \theta^{(t)} - \alpha (H^{(t)})^{-1} \nabla L(\theta^{(t)}).$$

می توان نشان داد برای m نمونه داریم:

S یک ماتریس قطری mxm است.

به روز رسانی به روش نیوتن

$$\theta^{t+1} = \theta^{(t)} - \alpha (H^{(t)})^{-1} \nabla L(\theta^{(t)}).$$

این رابطه چگونه بدست آمد:

بسط تابع تیلور تابع  $(\theta)$  را در نقطه  $\theta$  می نویسیم :

$$L(\theta) \approx L(\theta^*) + \nabla L(\theta^*)^T (\theta - \theta^*) + \frac{1}{2} (\theta - \theta^*)^T H(\theta^*) (\theta - \theta^*).$$

سمت راست تابع یک تخمین محلی درجه دوم از تابع  $L(\theta)$  در نقطه  $\theta^*$  نقطه کمینه این تخمین محلی را محاسبه می کنیم خوشبختانه رابطه بالا یک راه حل بسته دار د

$$L(\theta) \approx L(\theta^*) + \nabla L(\theta^*)^T (\theta - \theta^*) + \frac{1}{2} (\theta - \theta^*)^T H(\theta^*) (\theta - \theta^*).$$

$$\frac{\partial L(\theta)}{\partial \theta} = 0$$

$$\nabla \mathcal{L}(\theta^*) + \mathbf{H}(\theta^*)(\theta - \theta^*) = 0.$$

$$\theta = \theta^* - \mathbf{H}(\theta^*)^{-1} \nabla \mathcal{L}(\theta^*).$$

$$\frac{\partial(\theta^T)A\theta}{\partial\theta} = (A + A^T)\theta$$

$$H(\theta^*)\theta = -\nabla \mathcal{L}(\theta^*) + H(\theta^*)\theta^*$$
  

$$\theta = H(\theta^*)^{-1}(-\nabla \mathcal{L}(\theta^*) + H(\theta^*)\theta^*)$$
  

$$\theta = \theta^* - H(\theta^*)^{-1}\nabla \mathcal{L}(\theta^*)$$

با توجه به اینکه تابع یک تخمین از تابع اصلی است بهتر است ضریب  $\alpha$  هم در فرمول لحاظ شود و در چند گام به جواب برسیم



### Regularized Logistic Regression

اگرچه حد پایین تابع هزینه رگرسیون لاجیستیک صفر است. ولی در حالتی که داده ها خطی تفکیک نشده باشند هیچ  $\theta$  محدود این حداقل را به ما نمی دهد. و اگر بهینه سازی را ادامه دهیم  $\theta$  به بی نهایت میل میکند (این را نشان دهید) (به عبارتی مسئله ما بیش برازش می شود) برای اجتناب از این مسئله میتوانیم یک ترم جریمه به تابع هزینه اضافه کنیم :

$$argmin_{ heta}\left(-\sum_{n=1}^{N}\ln p(y_n|x_n^T heta)+rac{oldsymbol{\lambda}}{2}|| heta||^2
ight)$$
این کار از بی نهایت شدن  $heta$  ممانعت می کند.