Quantile GAM modelling with qgam

Matteo Fasiolo

matteo.fasiolo@bristol.ac.uk

Material available at:

 $\verb|https://github.com/mfasiolo/GAM_Workshop_Enbis_EDF_23|$

These slides cover:

1 Intro to quantile GAM models

Fitting GAMs with mgcv

Fitting GAMs with qgam

4 Quantile GAM modelling with qgam

What is quantile regression

Regression setting:

- y is our response or dependent variable
- x is a vector of covariates or independent variables

In **distributional regression** we want a good model for Distr(y|x).

Model is $\operatorname{Distr}_m\{y|\theta_1(\boldsymbol{x}),\ldots,\theta_q(\boldsymbol{x})\}$, where $\theta_1(\boldsymbol{x}),\ldots,\theta_q(\boldsymbol{x})$ are parameters.

Given $\operatorname{Distr}_m(y|\mathbf{x})$ we can get the conditional quantiles $\mu_{\tau}(\mathbf{x})$.

What is quantile regression

Quantile regression estimates conditional quantiles $\mu_{\tau}(\mathbf{x})$ directly.

No model for Distr(y|x).

No assumptions on Distr(y|x):

- no need to find good model for Distr(y|x);
- no need to find normalizing transformations (e.g. Box-Cox);

The median is also more resistant to outliers.

Some quantiles are more important than others:

- electricity producers need to satisfy high electricity demand
- urban planners need estimates of extreme rainfall

Effect of explanatory variables may depend on quantile

These slides cover:

- 1 Intro to quantile GAM models
- Fitting GAMs with mgcv
- Fitting GAMs with qgam
- Quantile GAM modelling with qgam

Model fitting

Recall the GAM model structure:

$$y|\mathbf{x} \sim \mathsf{Distr}\{y|\mu(\mathbf{x}), \mathbf{ heta}\}$$
 where $g(\mu(\mathbf{x})) = \sum_{j=1}^m f_j(\mathbf{x})$.

In mgcv $oldsymbol{eta}$ estimated by maximising **penalized** log-likelihood

$$\hat{eta} = \operatorname*{argmax}_{eta} \operatorname{PenLogLik}(eta|\gamma) = \operatorname*{argmax}_{eta} \left\{ \overbrace{\log p(oldsymbol{y}|eta)}^{\operatorname{goodness of fit}} - \underbrace{\operatorname{Pen}(eta|\gamma)}_{\operatorname{penalize complexity}} \right\}$$

where:

- $\log p(y|\beta)$ is log-likelihood
- ullet Pen $(eta|\gamma)$ penalizes the complexity of the f_j 's
- $\gamma > 0$ smoothing parameters ($\uparrow \gamma \uparrow$ smoothness)

mgcv uses a hierarchical fitting framework:

1 Select γ to determine smoothness

$$\hat{\gamma} = \operatorname*{\mathsf{argmax}}_{\gamma} \mathsf{LAML}(\gamma).$$

 $oldsymbol{\circ}$ For fixed γ , estimate $oldsymbol{\beta}$ to determine actual fit

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{argmax}}_{a} \mathop{\mathsf{PenLogLik}}(oldsymbol{eta}|oldsymbol{\gamma}).$$

What is the Laplace Approximate Marginal Likelihood? Under Bayesian perspective, let $p(\beta|\gamma)$ be prior on β and

$$\mathsf{LAML}(\gamma) \approx p(\mathbf{y}|\gamma) = \int p(\mathbf{y}|\beta)p(\beta|\gamma)d\beta.$$

(In plots above λ should be γ)

Alternatives LAML for γ selection:

- Generalized Cross-Validation (GCV)
- Akaike Infomation Criterion (AIC)

but LAML is most widely applicable in mgcv.

To choose γ estimation method in mgcv

see ?gam.

LAML is the default for multi-parameter GAMs.

These slides cover:

- 1 Intro to quantile GAM models
- Fitting GAMs with mgcv
- Fitting GAMs with qgam
- Quantile GAM modelling with qgam

Quantile GAM fitting

In parametric GAMs $\mu_{\tau}(\mathbf{x}) = F^{-1}(\tau|\mathbf{x})$.

Key fact: $\mu_{\tau}(\mathbf{x})$ is the minimizer of

$$L(\mu|\mathbf{x}) = \mathbb{E}\{ \rho_{\tau}(\mathbf{y} - \mu) \,|\, \mathbf{x} \},\,$$

where ρ_{τ} is the "pinball" loss (Koenker, 2005):

In additive modelling context $\mu_{\tau}(\mathbf{x}) = \sum_{j=1}^{m} f_{j}(\mathbf{x}) = \mu_{\tau}(\boldsymbol{\beta})$.

ggam uses a modified loss which we call Extended log-F (ELF) loss.

This is smooth and convex and, as $\lambda \to 0$, we recover pinball loss.

Since qgam 1.3.0, λ (err parameter) is selected automatically. Smoothing the loss has statistical advantages, see Fasiolo et al. (2021a).

Recall $oldsymbol{eta}$ estimated by minimising negative **penalized** log-likelihood

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} - \operatorname{PenLogLik}(\boldsymbol{\beta}|\boldsymbol{\gamma}) = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \, \big\{ - \underbrace{\log p(\boldsymbol{y}|\boldsymbol{\beta})}_{\text{penalize complexity}} + \underbrace{\operatorname{Pen}(\boldsymbol{\beta}|\boldsymbol{\gamma})}_{\text{penalize complexity}} \big\}.$$

We plug the ELF loss in place of $-\log p(\mathbf{y}|\beta)$ so

$$\hat{\boldsymbol{\beta}} = \mathop{\mathsf{argmin}}_{\boldsymbol{\beta}} \, \mathsf{PenElfLoss}(\boldsymbol{\beta}|\boldsymbol{\gamma}) = \mathop{\mathsf{argmin}}_{\boldsymbol{\beta}} \big\{ \mathsf{ELFLoss}(\boldsymbol{y}|\boldsymbol{\beta}) + \mathsf{Pen}(\boldsymbol{\beta}|\boldsymbol{\gamma}) \big\}.$$

Getting a good fit requires adding a new parameter, the **learning rate** σ .

We use a hierarchical fitting framework:

lacktriangle Select σ to optimise coverage

$$\hat{\sigma} = \underset{\sigma}{\operatorname{argmin}} \operatorname{CalibrLoss}(\sigma).$$

2 For fixed σ , select γ to determine smoothness

$$\hat{\gamma} = \mathop{\mathsf{argmax}}_{oldsymbol{\gamma}} \mathsf{LAML}(oldsymbol{\gamma}).$$

3 For fixed γ and σ , estimate β

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{argmin}}_{oldsymbol{eta}} \mathop{\mathsf{PenElfLoss}}_{oldsymbol{eta}}(oldsymbol{eta}|\gamma)$$

Minimise CalibrLoss(σ) to match model-based and sampling uncertainty.

NOTE: we can let σ and λ vary with \boldsymbol{x} (see R demo)

These slides cover:

- 1 Intro to quantile GAM models
- Fitting GAMs with mgcv
- Fitting GAMs with qgam
- Quantile GAM modelling with qgam

Demonstration in R

For more details on methodology, see Fasiolo et al. (2021a) and Fasiolo et al. (2021b).

Ben Griffiths (EDF-sponsored PhD) is working on Big Data (bam) method from QGAMs.

Email him at ben.griffiths@bristol.ac.uk to keep updated!

For more software training material, see

http://mfasiolo.github.io/qgam/articles/qgam.html

https://mfasiolo.github.io/mgcViz/articles/qgam_mgcViz.html

THANK YOU!

Examples of quantile GAMs from Fasiolo et al. (2021a).

References I

- Fasiolo, M., S. N. Wood, M. Zaffran, R. Nedellec, and Y. Goude (2021a). Fast calibrated additive quantile regression. *Journal of the American Statistical Association* 116(535), 1402–1412.
- Fasiolo, M., S. N. Wood, M. Zaffran, R. Nedellec, and Y. Goude (2021b). ggam: Bayesian nonparametric quantile regression modeling in r. *Journal of statistical software 100*(9).
- Koenker, R. (2005). Quantile regression. Number 38. Cambridge university press.
- Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 73(1), 3–36.
- Wood, S. N., N. Pya, and B. Säfken (2016). Smoothing parameter and model selection for general smooth models. *Journal of the American Statistical Association* 111 (516), 1548–1575.