Semestrálna práca "Supermarket"

Bc. Juraj Pobeha

Žilinská Univerzita v Žiline Fakulta riadenia a informatiky

15. decembra 2014

Obsah

- Slovný popis úlohy
- Popis stavov
- Matica prechodov Q
- Hľadanie stacionárneho rozdelenia
- Optimalizačná úloha
- Oblasti ďaľšieho skúmania
- Záver

Slovný popis úlohy

Modelujeme systém hromadnej obsluhy "Supermarket". Do supermarketu prichádzajú zákazníci, ktorí sa po vybratí požadovaného tovaru presunú k pokladniam. V supermarkete sú 3 pokladne. Prvú obsluhuje skúsená (prioritná) predavačka, druhú novoprijatá (neprioritná) predavačka, ktorá sa ešte len zaúča a tretia pokladňa je samoobslužná. Zákazníci sa stavajú do jedného frontu, kde si vyberú obsluhu. S pravdepodobnosťou α si vyberú obsluhu skúsenou (prioritnou) predavačkou. Ak si vyberú obsluhu prioritnou predavačkou a tá je obsadená, presunú sa k neprioritnej. S pravdepodobnosťou $1-\alpha$ si vyberú obsluhu samoobslužnou pokladňou. Vstupný tok zákazníkov je elementárny s parametrom λ . Stredná doba obsluhy, či už u pokladníčok, alebo pri samoobslužnej pokladni má exponenciálne rozdelenie postupne s priemernými dobami $\frac{1}{\mu_1}$, $\frac{1}{\mu_2}$, $\frac{1}{\mu_3}$.

Grafické zobrazenie modelovaného systému

Popis stavov v modelovanom systéme s konečným frontom dĺžky m = 3

Vytvoríme maticu prechodov $Q = q_{ij}$, pričom

```
i - počet zákazníkov vo fronte
i \in \{0, 1, 2, 3\}
```

j – stav obslužných liniek

 $j \in \{\mathsf{P},\,\mathsf{N},\,\mathsf{S},\,\mathsf{PN},\,\mathsf{PS},\,\mathsf{NS},\,\mathsf{PNS}\}$

P – obsluha prioritnou pokladňou

N – obsluha neprioritnou pokladňou

S – obsluha samoobslužnou pokladňou

S - množina stavov

 $S = \{00, P0, N0, S0, PN0, PS0, NS0, PNS0, PNS1, PNS2, PNS3\}$

00 - prázdny systém

P0 - jeden zákazník obsluhovaný prioritnou pokladňou

PNS2 - všetky pokladne sú obsadené a 2 zákazníci čakajú vo fronte

Prechodový graf

Popis niektorých prechodov

- Zo stavu 00 (prázdny systém) sa môžem dostať do stavu P0 (jeden zákazník obsluhovaný prioritnou pokladňou) s intenzitou αλ alebo do stavu S0 (jeden zákazník obsluhovaný samoobslužnou pokladňou s intenzitou (1-α)λ.
- Zo stavu NS0 (obsluha neprioritnou a samoobslužnou pokladňou) sa môžem dostať do stavu PNS0 (všetky pokladne obsluhujú) s intenzitou $\alpha\lambda$, do stavu N0 (obsluha zákazníka neprioritnou pokladňou) s intenzitou μ_3 a do stavu S0 (obsluha zákazníka samoobslužnou pokladňou) s intenzitou μ_2 .
- Do stavu PNS1 (všetky pokladne obsluhujú a jeden zákazník čaká vo fronte) sa môžem dostať iba zo stavu PNS0 (všetky pokladne obsluhujú). Zo stavu PNS1 sa môžem dostať iba do stavu PNS0 s intenzitou $\mu_1 + \mu_2 + \mu_3$.

Matica prechodov Q

	0 0	P0	PN0	N0	50	PS0	NS0	PNS0	PNS1	PNS2	PNS3
0 0	-λ	αλ	0	0	(1-α)λ	0	0	0	0	0	0
PO	μ_1	-λ-μ1	αλ	0	0	(1-α)λ	0	0	0	0	0
PN0	0	μ2	-(1-α)λ-μ1-μ2	μ1	0	0	0	(1-α)λ	0	0	0
NO	μ_2	0	αλ	-λ-μ2	0	0	(1-α)λ	0	0	0	0
S 0	μ3	0	0	0	-αλ-μ3	αλ	0	0	0	0	0
PS0	0	μ3	0	0	μ1	-αλ-μ1-μ3	0	αλ	0	0	0
NS0	0	0	0	μ3	μ2	0	-αλ-μ2-μ3	αλ	0	0	0
PNS0	0	0	μ3	0	0	μ2	μ_1	-λ-μ1-μ2-μ3	λ	0	0
PNS1	0	0	0	0	0	0	0	μ1+μ2+μ3	-λ-μ1-μ2-μ3	λ	0
PNS2	0	0	0	0	0	0	0	0	μ1+μ2+μ3	-λ-μ1-μ2-μ3	λ
PNS3	0	0	0	0	0	0	0	0	0	μ1+μ2+μ3	-μ1-μ2-μ3

	0 0	PO	PN0	NO	50	PS0	NS0	PNS0	PNS1	PNS2	PNS3
00	-0,2	0	0	0	0,2	0	0	0	0	0	0
PO	2	-2,2	0	0	0	0,2	0	0	0	0	0
PN0	0	5	-7,20	2,00	0	0	0	0,2	0	0	0
NO	5,00	0	0	-5,2	0	0	0,2	0	0	0	0
S 0	3	0	0	0	-3	0	0	0	0	0	0
PS0	0	3	0	0	2	-5	0	0	0	0	0
NS0	0	0	0	3	5	0	-8	0	0	0	0
PNS0	0	0	3	0	0	5	2	-10,2	0,2	0	0
PNS1	0	0	0	0	0	0	0	10	-10,2	0,2	0
PNS2	0	0	0	0	0	0	0	0	10	-10,2	0,2
PNS3	0	0	0	0	0	0	0	0	0	10	-10

 λ = 0,2 (vstupný tok zákazníkov je 0,2 za minútu, čiže 12 zákazníkov za hodinu)

 μ_1 = 2 (stredná doba obsluhy prioritnej pokladne sú 2 minúty)

 μ_2 = 5 (stredná doba obsluhy neprioritnej pokladne je 5 minút)

 μ_3 = 3 (stredná doba obsluhy samoobslužnej pokladne sú 3 minúty)

 α = 0 (pravdepodobnosť výberu obsluhy prioritnou pokladňou, ak je obsadená presun k neprioritnej)

1- α = 1 (pravdepodobnosť výberu obsluhy samoobslužnou pokladňou)

Keďže α = 0, vznikol nám jednolinkový systém hromadnej obsluhy.

V Markovovom procese určenom konečnou množinou stavov $\mathbb S$ a maticou intenzít $\mathbf Q$ hľadáme stacionárne rozdelenie v tvare riešenia systému

$$\pi \ \mathsf{Q} = 0, \ \sum_{j \in \mathcal{S}} \pi_j = 1 \ , \ \pi \geq 0$$

ktoré môžeme prepísať na tvar

$$A\pi^T = b^T, b = (0, 0, ..., 0, 1) \Rightarrow \pi^T = A^{-1}b^T,$$

			_			_	_	_		_	
	-0,2	0	0	0	0,2	0	0	0	0	0	1
	2	-2,2	0	0	0	0,2	0	0	0	0	1
	0	5	-7,2	2	0	0	0	0,2	0	0	1
	5	0	0	-5,2	0	0	0,2	0	0	0	1
A=	3	0	0	0	-3	0	0	0	0	0	1
	0	3	0	0	2	-5	0	0	0	0	1
	0	0	0	3	5	0	-8	0	0	0	1
	0	0	3	0	0	5	2	-10,2	0,2	0	1
	0	0	0	0	0	0	0	10	-10,2	0,2	1
	0	0	0	0	0	0	0	0	10	-10,2	1
	0	0	0	0	0	0	0	0	0	10	1

Posledný stĺpec matice A sme nahradili jednotkami.

 $\pi Q = 0$, našli sme stacionárne riešenie

Overenie riešenia:

Kostra

$$\pi_0=\frac{B_0}{B_0+B_1+B_2+B_3} \text{ , po dosadení } \pi_0=0,9333 \doteq 0,9375$$

$$B_0=\mu_3^3$$

$$B_1=\lambda\mu_3^2$$

$$B_2=\lambda^2\mu_3$$

$$B_3=\lambda^3$$

H'adanie stacionárneho rozdelenia pre α =0.6, 1- α =0.4

 α = 0,6 (pravdepodobnosť výberu obsluhy prioritnou pokladňou, ak je obsadená presun k neprioritnej)

1- α = 0,4 (pravdepodobnosť výberu obsluhy samoobslužnou pokladňou)

	0 0	P0	PN0	N0	S 0	PS0	NS0	PNS0	PNS1	PNS2	PNS3
0 0	-0,2	0,12	0	0	0,08	0	0	0	0	0	0
PO	2	-2,2	0,12	0	0	0,08	0	0	0	0	0
PNO	0	5	-7,08	2,00	0	0	0	0,08	0	0	0
NO	5,00	0	0,12	-5,2	0	0	0,08	0	0	0	0
S0	3	0	0	0	-3,12	0,12	0	0	0	0	0
PS0	0	3	0	0	2	-5,12	0	0,12	0	0	0
NS0	0	0	0	3	5	0	-8,12	0,12	0	0	0
PNS0	0	0	3	0	0	5	2	-10,2	0,2	0	0
PNS1	0	0	0	0	0	0	0	10	-10,2	0,2	0
PNS2	0	0	0	0	0	0	0	0	10	-10,2	0,2
PNS3	0	0	0	0	0	0	0	0	0	10	-10

H'adanie stacionárneho rozdelenia pre α =0.6, 1- α =0.4

	-0,2	0,12	0	0	0,08	0	0	0	0	0	1
	2	-2,2	0,12	0	0	0,08	0	0	0	0	1
	0	5	-7,08	2	0	0	0	0,08	0	0	1
	5	0	0,12	-5,2	0	0	0,08	0	0	0	1
A=	3	0	0	0	-3,12	0,12	0	0	0	0	1
	0	3	0	0	2	-5,12	0	0,12	0	0	1
	0	0	0	3	5	0	-8,12	0,12	0	0	1
	0	0	3	0	0	5	2	-10,2	0,2	0	1
	0	0	0	0	0	0	0	10	-10,2	0,2	1
	0	0	0	0	0	0	0	0	10	-10,2	1
	0	0	0	0	0	0	0	0	0	10	1

Posledný stĺpec matice A sme nahradili jednotkami.

H'adanie stacionárneho rozdelenia pre α =0.6, 1- α =0.4

	0,91852658	0,054198143	0,000935375	0,000365381	0,02449404	0,001445284	9,74349E-06	2,49433E-05	4,9887E-07	9,9773E-09	1,99547E-10 ->
	-0,0918527			,	,	-0,00014453	-	-2,49433E-06	-	- 1	0,1
	-0,1855424	-0,01094802	-0,00018895	-7,38069E-05	-0,0049478	-0,00029195	-1,9682E-06	-5,03855E-06	-1,008E-07	0,1	0,102
	-0,2792688	-0,0164784	-0,00028439	-0,00011109	-0,0074472	-0,00043942	-2,9624E-06	-7,58377E-06	0,09999985	0,102	0,10204
	-0,5138492	0,20984492	0,045412879	-0,039546496	-0,1082424	0,098752109	-0,09882251	0,100362458	0,10200725	0,10204014	0,102040803
	-0,3115671	-0,05852886	0,041654179	0,030322423	-0,0322893	-0,09988211	0,024789413	0,099432121	0,10198864	0,10203977	0,102040795
-1=	-0,5862518	0,208017219	0,047238906	0,032828217	-0,2324753	0,097264521	0,025409638	0,101850001	0,102037	0,10204074	0,102040815
	-0,7087369	0,203877973	0,0438856	-0,161870227	0,08661594	0,104717321	0,023501206	0,101889707	0,10203779	0,10204076	0,102040815
	-0,3814754	-0,11571126	-0,10096501	-0,024667621	0,09282185	0,098679108	0,024552798	0,100671063	0,10201342	0,10204027	0,102040805
	-0,4359115	-0,25597431	0,03929678	0,029747441	0,09200971	0,097560663	0,025364377	0,101789475	0,10203579	0,10204072	0,102040814
	-0,9034147	0,200613015	0,047150504	0,032806655	0,08468592	0,104668625	0,025431199	0,101938402	0,10203877	0,10204078	0,102040816

 $\pi Q = 0$, je to stacionárne riešenie

Optimalizačná úloha

 c_{p} - mzda priorotnej predavačky v eurách na hodinu

 c_n - mzda neprioritnej predavačky v eurách na hodinu

 c_s - náklady na údržbu samoobslužnej pokladne v eurách na hodinu

ca - priemerná cena nákupu zákazníka v eurách

c_r - jednotková cena za reklamu

Cieľom optimalizačnej úlohy je nájsť takú intenzitu vstupného toku zákazníkov, pri ktorej bude zisk maximálny.

$$Z(\lambda) = E(N_Q)c_a - E(N_P)c_p - E(N_N)c_n - E(R_\lambda)c_r$$

 $E(N_Q)c_a$ - priemerný príjem z obsluhy zákazníkov

 $E(N_P)c_p$ - priemerné náklady na mzdu prioritnej predavačky podľa jej výkonnosti

 $E(N_N)c_n$ - priemerné náklady na mzdu neprioritnej predavačky podľa jej výkonnosti

 $E(R_{\lambda})c_{r}$ - priemerné náklady vynaložené na reklamu

Optimalizačná úloha

 $E(R_{\lambda})$ je dané funkciou 0,4 λ - $\frac{\lambda^2}{3}$.

Po dosadení príslušných hodnôt za λ mi vyšli nasledovné funkčné hodnoty:

λ	Z(λ)
0	0,0000
0,1	0,0367
0,2	0,0667
0,3	0,0900
0,4	0,1067
0,5	0,1167
0,6	0,1200
0,7	0,1167
0,8	0,1067
0,9	0,0900
1	0,0667
1,1	0,0367
1,2	0,0000

Najlepší výsledok vyšiel pre vstupný tok $\lambda = 0.6$ zákazníkov za minútu (36 zákazníkov za hodinu).

Optimalizačná úloha

 $E(R_{\lambda})$ je dané funkciou 0,4 λ - $\frac{\lambda^2}{3}$.

Oblasti ďaľšieho skúmania

- Zistiť optimálnu veľkosť nákladov na reklamu, aby sme prilákali čo najviac zákazníkov.
- Preskúmať, koľko pokladní by sme mali pridať, aby bol zisk z predaja čo najvyšší.

Záver

- V tejto semestrálnej práci som si precvičil základné poznatky z teórie hromadnej obsluhy nadobudnuté počas semestra.
- Riešil som systém hromadnej obsluhy "Supermarket", ktorý som popísal a následne spravil rôzne výpočty.
- Snažil som sa daný systém optimalizovať, čo sa mi čiastočne podarilo.