SBML Model Report

Model name: "SmithAE2002_RanTransport"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri¹ at January 31st 2008 at 8:56 p.m. and last time modified at April seventh 2014 at 0:12 a.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	5
species types	0	species	26
events	0	constraints	0
reactions	29	function definitions	0
global parameters	12	unit definitions	14
rules	5	initial assignments	0

Model Notes

The model reproduces the compartmental model for Ran transport as depicted in Fig 3 of the paper. Model reproduced using MathSBML.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it,

 $^{^{1}} California\ Institute\ of\ Technology, {\tt hdharuri@cds.caltech.edu}$

commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of 17 unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition μmol

2.2 Unit area

Definition μm²

2.3 Unit molecules

Definition item

2.4 Unit umol_litre_um_3

Definition $10^{-21} \cdot \text{mol}$

2.5 Unit um2

Definition μm^2

2.6 Unit uM_s_1

Definition $0.0010 \text{ dimensionless} \cdot \text{m}^{-3} \cdot \text{mol} \cdot \text{s}^{-1}$

2.7 Unit uM_1_s_1

Definition $1000 \text{ dimensionless} \cdot \text{m}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$

2.8 Unit s_1

Definition s^{-1}

2.9 Unit uM

Definition $0.0010 \text{ dimensionless} \cdot \text{m}^{-3} \cdot \text{mol}$

2.10 Unit s

Definition s

2.11 Unit uM_um_s_1

Definition 10^{-9} dimensionless \cdot m⁻² \cdot mol \cdot s⁻¹

2.12 Unit pA_um_2

Definition dimensionless $\cdot A \cdot m^{-2}$

2.13 Unit um_s_1

Definition 10^{-6} dimensionless \cdot m \cdot s⁻¹

2.14 Unit um3

Name um3

Definition μm^3

2.15 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.16 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.17 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains five compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
Cytosol	Cytosol		3	1	μm ³	\overline{Z}	PM
EC	EC		3	1.40845070422535	μ m ³	$ \overline{\checkmark} $	
Nucleus	Nucleus		3	0.408450704225352	μ m ³	$ \overline{\checkmark} $	Nuc_membran
Nuc_membrane	Nuc_membrane		2	0.245070422535211	μm^2		Cytosol
PM	PM		2	1.40845070422535	μm^2	$\overline{\mathbf{Z}}$	EC

3.1 Compartment Cytosol

This is a three dimensional compartment with a constant size of one μm^3 , which is surrounded by PM (PM).

Name Cytosol

3.2 Compartment EC

This is a three dimensional compartment with a constant size of $1.40845070422535 \, \mu m^3$.

Name EC

3.3 Compartment Nucleus

This is a three dimensional compartment with a constant size of $0.408450704225352 \,\mu\text{m}^3$, which is surrounded by Nuc_membrane (Nuc_membrane).

Name Nucleus

3.4 Compartment Nuc_membrane

This is a two dimensional compartment with a constant size of $0.245070422535211 \,\mu\text{m}^2$, which is surrounded by Cytosol (Cytosol).

Name Nuc_membrane

3.5 Compartment PM

This is a two dimensional compartment with a constant size of $1.40845070422535~\mu m^2$, which is surrounded by EC (EC).

Name PM

4 Species

This model contains 26 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Carrier_Cytosol	Carrier_Cytosol	Cytosol	μ mol·l ⁻¹	В	В
Carrier_RanGTP- _Cytosol	Carrier_RanGTP_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		
RanGAP_Cytosol	RanGAP_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		
RanBP1_Cytosol	RanBP1_Cytosol	Cytosol	μ mol·l ⁻¹		\Box
RanBP1_Carrier- _RanGTP_Cytosol	RanBP1_Carrier_RanGTP_Cytosol	Cytosol	$\mu \text{mol} \cdot l^{-1}$		
NTF2_Nucleus	NTF2_Nucleus	Nucleus	$\mu mol \cdot l^{-1}$	В	
RanGDP_Nucleus	RanGDP_Nucleus	Nucleus	$\mu \text{mol} \cdot 1^{-1}$		
RCC1_Nucleus	RCC1_Nucleus	Nucleus	μ mol·1 ⁻¹		
RanGTP_Nucleus	RanGTP_Nucleus	Nucleus	$\mu \text{mol} \cdot l^{-1}$		
NTF2_RanGDP- _Nucleus	NTF2_RanGDP_Nucleus	Nucleus	μ mol· 1^{-1}		
Carrier_Nucleus	Carrier_Nucleus	Nucleus	$\mu mol \cdot l^{-1}$		
RanGDP_Cytosol	RanGDP_Cytosol	Cytosol	μ mol· 1^{-1}		
Carrier_RanGTP-	Carrier_RanGTP_Nucleus	Nucleus	$\mu mol \cdot l^{-1}$		
NTF2_RanGDP-	NTF2_RanGDP_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		
_Cytosol					
FRanGTP_Cytosol	FRanGTP_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		\Box
FCarrier_RanGTP- _Cytosol	FCarrier_RanGTP_Cytosol	Cytosol	$\mu \text{mol} \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
FRanGDP_Cytosol	FRanGDP_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		
FNTF2_RanGDP- _Cytosol	FNTF2_RanGDP_Cytosol	Cytosol	$\mu \text{mol} \cdot l^{-1}$		
FRanBP1_Carrier- _RanGTP_Cytosol	FRanBP1_Carrier_RanGTP_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		
FCarrier_RanGTP- _Nucleus	FCarrier_RanGTP_Nucleus	Nucleus	$\mu mol \cdot l^{-1}$		
FRanGDP_Nucleus	FRanGDP_Nucleus	Nucleus	$\mu mol \cdot l^{-1}$		
FNTF2_RanGDP-	FNTF2_RanGDP_Nucleus	Nucleus	μ mol · l ⁻¹		
$_{ extsf{N}}$ ucleus					
${\tt FRanGTP_Nucleus}$	FRanGTP_Nucleus	Nucleus	$\mu mol \cdot l^{-1}$	\Box	
${\tt NTF2_Cytosol}$	NTF2_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		
${ t Pipet_Cytosol}$	Pipet_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		
${\tt RanGTP_Cytosol}$	RanGTP_Cytosol	Cytosol	$\mu mol \cdot l^{-1}$		\Box

5 Parameters

This model contains twelve global parameters.

Table 4: Properties of each parameter.

Table 4: Properties of each parameter.					
Id Name	SBO	Value	Unit	Constant	
RanGAP_Kcat-		6.0	s^{-1}	Ø	
_FRanGTP-					
$_\mathtt{dephosphorylation}$					
Vmax_RanGTP-		0.0	0.0010 dimensionless	. 🗎	
$_\mathtt{dephosphorylation} extsf{-}$			$m^{-3} \cdot mol \cdot s^{-1}$		
_FRanGTP-					
$_{ extstyle }$ dephosphorylation					
RanGAP_Kcat-		6.0	s^{-1}		
$_\mathtt{dephosphorylationF}$					
Vmax-		0.0	0.0010 dimensionless	. \square	
$_\mathtt{dephosphorylation} extsf{-}$			$m^{-3} \cdot mol \cdot s^{-1}$		
$_\mathtt{dephosphorylationF}$					
RanGAP-		6.0	s^{-1}		
_Kcat_RanGTP-					
$_{ extstyle }$ dephosphorylation					
$Vmax_RanGTP-$		0.0	0.0010 dimensionless	. \square	
$_\mathtt{dephosphorylation} extsf{-}$			$m^{-3} \cdot mol \cdot s^{-1}$		
_RanGTP-					
$_\mathtt{dephosphorylation}$					
RanGAP_Kcat-		6.0	s^{-1}		
$_{ extstyle }$ dephosphorylation					
Vmax-		0.0	0.0010 dimensionless	. 🗎	
$_\mathtt{dephosphorylation} extsf{-}$			$\mathrm{m}^{-3}\cdot\mathrm{mol}\cdot\mathrm{s}^{-1}$		
$_\mathtt{dephosphorylation}$					
kinj		25.0	s^{-1}		
start		1.0	S		
tau		0.4	S		
ar_for-		0.0			
_Microinj					

6 Rules

This is an overview of five rules.

6.1 Rule Vmax_RanGTP_dephosphorylation_FRanGTP_dephosphorylation

Rule Vmax_RanGTP_dephosphorylation_FRanGTP_dephosphorylation is an assignment rule for parameter Vmax_RanGTP_dephosphorylation_FRanGTP_dephosphorylation:

Derived unit $s^{-1} \cdot \mu mol \cdot l^{-1}$

6.2 Rule Vmax_dephosphorylation_dephosphorylationF

Rule Vmax_dephosphorylation_dephosphorylationF is an assignment rule for parameter Vmax_dephosphorylation_dephosphorylationF:

$$Vmax_dephosphorylation_dephosphorylationF = [RanGAP_Cytosol] \\ \cdot RanGAP_Kcat_dephosphorylationF$$
 (2)

Derived unit $\mu mol \cdot l^{-1} \cdot s^{-1}$

6.3 Rule Vmax_RanGTP_dephosphorylation_RanGTP_dephosphorylation

Rule Vmax_RanGTP_dephosphorylation_RanGTP_dephosphorylation is an assignment rule for parameter Vmax_RanGTP_dephosphorylation_RanGTP_dephosphorylation:

Derived unit $s^{-1} \cdot \mu mol \cdot l^{-1}$

6.4 Rule Vmax_dephosphorylation_dephosphorylation

Rule Vmax_dephosphorylation_dephosphorylation is an assignment rule for parameter Vmax_dephosphorylation_dephosphorylation:

$$Vmax_dephosphorylation_dephosphorylation = [RanGAP_Cytosol] \\ \cdot RanGAP_Kcat_dephosphorylation$$
 (4)

Derived unit $\mu mol \cdot l^{-1} \cdot s^{-1}$

6.5 Rule ar_for_Microinj

Rule ar_for_Microinj is an assignment rule for parameter ar_for_Microinj:

7 Reactions

This model contains 29 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	Carrier- _FRanGTP- _binding	Carrier FRanGTP binding	Carrier_Cytosol + FRanGTP_Cytosol =	⇒ FCarrier_RanGTP_Cytosol
2	FRanGTPdephosphorylati	FRanGTP dephosphorylation	FRanGTP_Cytosol RanGAP_Cytosol	FRanGDP_Cytosol
3		ndephosphorylationF	RanBP1_Carrier_RanGTP_Cytosol = RanBP1_Cytosol + Carrier_Cytosol	nGAP_Cytosol + FRanGDP_Cytosol +
4	FRanGTP- _Carrier- _binding	FRanGTP Carrier binding	Carrier_Nucleus + FRanGTP_Nucleus =	⇒ FCarrier_RanGTP_Nucleus
5	NTF2_FRanGDP- _Unbinding	NTF2_FRanGDP Unbinding	$NTF2_Cytosol + FRanGDP_Cytosol \rightleftharpoons$	⇒ FNTF2_RanGDP_Cytosol
6	RanBP1_bindingF	RanBP1 bindingF	FCarrier_RanGTP_Cytosol RanBP1_Cytosol → FRanBP1_Carrie	+ r RanGTP Cytosol
7	NTF2_FRanGDP- _unbinding	NTF2_FRanGDP unbinding	FNTF2_RanGDP_Nucleus NTF2_1 FRanGDP_Nucleus	•
8	Microinj	Microinj	<pre></pre>	
9	FRanGDP_to- _FRanGTP	FRanGDP to FRanGTP		FRanGDP_Nucleus, RanGDP_Nucleus

Nº	Id	Name	Reaction Equation	SBO
10	RanGTP- _dephosphorylati	RanGTP dephosphorylation	RanGTP_Cytosol RanGDI	P_Cytosol
11	RanGTP_Carrier- _binding	RanGTP Carrier binding	RanGTP_Nucleus Carrier_Nucleus Carrier_RanGTP_Nucle	+ us
12	NTF2_RanGDP- _Unbinding	NTF2_RanGDP Unbinding	RanGDP_Cytosol NTF2_Cytosol NTF2_RanGDP_Cytosol	+
13	dephosphorylatio	ondephosphorylation	RanBP1_Carrier_RanGTP_Cytosol ===================================	Cytosol RanGDP_Cytosol+
14	RanGDP_to- _RanGTP	RanGDP to RanGTP	RanGDP_Nucleus RCC1_Nucleus, NTF2_Ra	nGDP_Nucleus RanGTP_Nucleus
15	NTF2_RAN_Nuc- _Exchange	NTF2_RAN_Nuc_Exchange	4 NTF2_RanGDP_Nucleus RCC1_Nucleus 4 RanGDP_Nucleus + 3 RanGTP_Nucleus	NTF2_Nucleus+
16	NTF2_RanGDP- _unbinding	NTF2_RanGDP unbinding	NTF2_RanGDP_Nucleus RanGDP_Nucl NTF2_Nucleus	eus +
17	Carrier_RanGTP- _binding	Carrier RanGTP binding	RanGTP_Cytosol Carrier_Cytosol Carrier_RanGTP_Cytoso	+ bl
18	NTF2_FRAN_Nuc- _Exchange	NTF2_FRAN_Nuc_Exchange		NTF2_RanGDP_Nucleus, RanGDP_Nu
19	RanBP1_binding	RanBP1 binding	RanBP1_Cytosol Carrier_RanGTP_Cytosol RanBP1_Carri	+ er_RanGTP_Cytosol
20	Carrier_RanGTP- _flux	Carrier_RanGTP flux	Carrier_RanGTP_Cytosol ← Carrier_RanG	•
21	NTF2_flux	NTF2 flux	NTF2_Cytosol	
22	NTF2_RanGDP- _flux	NTF2_RanGDP flux	NTF2_RanGDP_Cytosol	P_Nucleus
23	${\tt Carrier_flux}$	Carrier flux	Carrier_Cytosol	
23	Calllel_llux	Carrier nux	Carrier_Cytosor — Carrier_Ivueleus	

N₀	Id	Name	Reaction Equation	SBO
24	$FRanGDP_flux$	FRanGDP flux	FRanGDP_Cytosol === FRanGDP_Nucleus	
25	Carrier-	Carrier_FRanGTP flux	FCarrier_RanGTP_Cytosol ← FCarrier_RanGTP_N	ucleus
	$_{ t LFRanGTP_flux}$			
26	FNTF2_RanGDP-	FNTF2_RanGDP flux	FNTF2_RanGDP_Cytosol === FNTF2_RanGDP_Nuc	eleus
	$_{ extsf{-}} extsf{flux}$			
27	$FRanGTP_flux$	FRanGTP flux	FRanGTP_Cytosol \improx FRanGTP_Nucleus	
28	${\tt RanGDP_flux}$	RanGDP flux	$RanGDP_Cytosol \Longrightarrow RanGDP_Nucleus$	
29	$RanGTP_flux$	RanGTP flux	$RanGTP_Cytosol \Longrightarrow RanGTP_Nucleus$	

7.1 Reaction Carrier_FRanGTP_binding

This is a reversible reaction of two reactants forming one product.

Name Carrier FRanGTP binding

Reaction equation

$$Carrier_Cytosol + FRanGTP_Cytosol \Longrightarrow FCarrier_RanGTP_Cytosol$$
 (6)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
Carrier_Cytosol FRanGTP_Cytosol	•	

Product

Table 7: Properties of each product.

Id	Name	SBO
FCarrier_RanGTP_Cytosol	FCarrier_RanGTP_Cytosol	

Kinetic Law

$$v_1 = (Kon_Carrier_RanGTP_binding \cdot [Carrier_Cytosol] \cdot [FRanGTP_Cytosol] + ((Koff_Carrier_RanGTP_binding \cdot [FCarrier_RanGTP_Cytosol]))) \cdot vol(Cytosol)$$
(7)

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kon_Carrier- _RanGTP-			0.0	$\begin{array}{l} 1000dimensionless \cdot \\ m^3 \cdot mol^{-1} \cdot s^{-1} \end{array}$	
_binding Koff- Carrier-			0.0	s^{-1}	
_RanGTP- _binding					

7.2 Reaction FRanGTP_dephosphorylation

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name FRanGTP dephosphorylation

Reaction equation

$$FRanGTP_Cytosol \xrightarrow{RanGAP_Cytosol} FRanGDP_Cytosol \tag{8}$$

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
FRanGTP_Cytosol	FRanGTP_Cytosol	

Modifier

Table 10: Properties of each modifier.

Id	Name	SBO
RanGAP_Cytosol	RanGAP_Cytosol	

Product

Table 11: Properties of each product.

	erenes or each product.	
Id	Name	SBO
FRanGDP_Cytosol	FRanGDP_Cytosol	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} v_2 &= Vmax_RanGTP_dephosphorylation_FRanGTP_dephosphorylation \cdot [FRanGTP_Cytosol] \\ &\cdot \frac{1}{Km_RanGTP_dephosphorylation + [FRanGTP_Cytosol]} \cdot vol\left(Cytosol\right) \end{split} \tag{9}$$

Table 12: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km_RanGTP	- orylation		0.43	0.0010 dimensionless $m^{-3} \cdot mol$	s· 🗹

7.3 Reaction dephosphorylationF

This is a reversible reaction of one reactant forming three products influenced by one modifier.

Name dephosphorylationF

Reaction equation

$$FRanBP1_Carrier_RanGTP_Cytosol \xrightarrow{RanGAP_Cytosol} FRanGDP_Cytosol + RanBP1_Cytosol + Carrier_Cytosol \tag{10}$$

Reactant

Table 13: Properties of each reactant.

	11100 01 0110111101	
Id	Name	SBO
FRanBP1_Carrier_RanGTP_Cytosol	FRanBP1_Carrier_RanGTP_Cytosol	

Modifier

Table 14: Properties of each modifier.

1401C 14.110pt	erties of each mount	C1.
Id	Name	SBO
${\tt RanGAP_Cytosol}$	RanGAP_Cytosol	

Table 15: Properties of each product.

Id	Name	SBO
FRanGDP_Cytosol	FRanGDP_Cytosol	
$RanBP1_Cytosol$	RanBP1_Cytosol	
Carrier_Cytosol	Carrier_Cytosol	

Derived unit contains undeclared units

$$\label{eq:v3} \begin{split} v_3 &= Vmax_dephosphorylation_dephosphorylationF \cdot [FRanBP1_Carrier_RanGTP_Cytosol] \\ &\cdot \frac{1}{Km_dephosphorylation + [FRanBP1_Carrier_RanGTP_Cytosol]} \cdot vol\left(Cytosol\right) \end{split} \tag{11}$$

Table 16: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km- _dephosp	horylation		0.43	0.0010 dimensionl $m^{-3} \cdot mol$	ess· 🗹

7.4 Reaction FRanGTP_Carrier_binding

This is a reversible reaction of two reactants forming one product.

Name FRanGTP Carrier binding

Reaction equation

Reactants

Table 17: Properties of each reactant.

Id	Name	SBO
Carrier_Nucleus FRanGTP_Nucleus	Carrier_Nucleus FRanGTP_Nucleus	

Table 18: Properties of each product.

Id	Name	SBO
FCarrier_RanGTP_Nucleus	FCarrier_RanGTP_Nucleus	

$$v_4 = (Kon_RanGTP_Carrier_binding \cdot [Carrier_Nucleus] \cdot [FRanGTP_Nucleus] \\ + ((Koff_RanGTP_Carrier_binding \cdot [FCarrier_RanGTP_Nucleus]))) \cdot vol (Nucleus)$$
(13)

Table 19: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kon_RanGTP- _Carrier-			100.0	$\begin{array}{l} 1000 dimensionless \cdot \\ m^3 \cdot mol^{-1} \cdot s^{-1} \end{array}$	Ø
_binding Koff_RanGTP- _Carrier-			1.0	s^{-1}	
$_{ extstyle }$ binding					

7.5 Reaction NTF2_FRanGDP_Unbinding

This is a reversible reaction of two reactants forming one product.

Name NTF2_FRanGDP Unbinding

Reaction equation

$$NTF2_Cytosol + FRanGDP_Cytosol \Longrightarrow FNTF2_RanGDP_Cytosol$$
 (14)

Reactants

Table 20: Properties of each reactant.

		·
Id	Name	SBO
NTF2_Cytosol FRanGDP_Cytosol	NTF2_Cytosol FRanGDP_Cytosol	

Table 21: Properties of each product.

	berties of each product.	
Id	Name	SBO
FNTF2_RanGDP_Cytosol	FNTF2_RanGDP_Cytosol	

Table 22: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kon_NTF2-			100.0	1000 dimensionless ·	
_RanGDP-				$m^3 \cdot mol^{-1} \cdot s^{-1}$	
$_\mathtt{binding}$					
Koff_NTF2-			2.5	s^{-1}	\checkmark
_RanGDP-					
$_{ extstyle }$ binding					

7.6 Reaction RanBP1_bindingF

This is a reversible reaction of two reactants forming one product.

Name RanBP1 bindingF

Reaction equation

FCarrier_RanGTP_Cytosol + RanBP1_Cytosol ← FRanBP1_Carrier_RanGTP_Cytosol (16)

Reactants

Table 23: Properties of each reactant.

Tuesto 2011 reportates of outen route units			
Id	Name	SBO	
FCarrier_RanGTP_Cytosol RanBP1_Cytosol	FCarrier_RanGTP_Cytosol RanBP1_Cytosol		

Table 24: Properties of each product.

Id	Name	SBO
FRanBP1_Carrier_RanGTP_Cytosol	FRanBP1_Carrier_RanGTP_Cytosol	

$$v_6 = (Kon_RanBP1_binding \cdot [FCarrier_RanGTP_Cytosol] \cdot [RanBP1_Cytosol] \\ + ((Koff_RanBP1_binding \cdot [FRanBP1_Carrier_RanGTP_Cytosol]))) \cdot vol (Cytosol)$$
 (17)

Table 25: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kon_RanBP1-			100.0	1000 dimensionless ·	\square
$_\mathtt{binding}$				$m^3 \cdot mol^{-1} \cdot s^{-1}$	
Koff_RanBP1	.–		0.5	s^{-1}	
$_{ extstyle }$ binding					

7.7 Reaction NTF2_FRanGDP_unbinding

This is a reversible reaction of one reactant forming two products.

Name NTF2_FRanGDP unbinding

Reaction equation

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
FNTF2_RanGDP_Nucleus	FNTF2_RanGDP_Nucleus	

Table 27: Properties of each product.

Id	Name	SBO
NTF2_Nucleus FRanGDP Nucleus	NTF2_Nucleus FRanGDP_Nucleus	
Thangbi _Nucleus	TRanobi indefeus	

Derived unit $\ s^{-1} \cdot \mu mol \cdot l^{-1} \cdot \mu m^3$

$$\begin{array}{l} \nu_7 = (Koff_NTF2_RanGDP_unbinding \cdot [FNTF2_RanGDP_Nucleus] \\ + ((Kon_NTF2_RanGDP_unbinding \cdot [NTF2_Nucleus] \cdot [FRanGDP_Nucleus]))) \\ \cdot vol \, (Nucleus) \end{array}$$

Table 28: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Koff_NTF2-			2.5	s^{-1}	$lue{2}$
_RanGDP-					
$_$ unbinding					
Kon_NTF2-			100.0	1000 dimensionless ·	
_RanGDP-				$m^3 \cdot mol^{-1} \cdot s^{-1}$	
$_{ t unbinding}$					

7.8 Reaction Microinj

This is a reversible reaction of no reactant forming one product influenced by one modifier.

Name Microinj

Reaction equation

$$\emptyset \xrightarrow{\text{Pipet_Cytosol}} FRanGDP_Cytosol$$
 (20)

Modifier

Table 29: Properties of each modifier.

Id Name SBC		
	Name	
$Pipet_Cytosol$	Pipet_Cytosol	

Table 30: Properties of each product.

	I	<u> </u>
Id	Name	SBO
FRanGDP_Cytosol	FRanGDP_Cytosol	

Id	Name	SBO

Derived unit contains undeclared units

$$v_8 = \text{ar_for_Microinj} \cdot \text{vol}(\text{Cytosol}) \cdot 1$$
 (21)

7.9 Reaction FRanGDP_to_FRanGTP

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name FRanGDP to FRanGTP

Reaction equation

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
FRanGDP_Nucleus	FRanGDP_Nucleus	

Modifiers

Table 32: Properties of each modifier.

Id	Name	SBO
RCC1_Nucleus	RCC1_Nucleus NTF2 RanGDP Nucleus	
RanGDP_Nucleus	RanGDP_Nucleus	

Table 33: Properties of each product.

Id	Name	SBO
FRanGTP_Nucleus	FRanGTP_Nucleus	

Derived unit contains undeclared units

$$\begin{aligned} \nu_9 &= 0.75 \cdot RCC1Kcat \cdot [RCC1_Nucleus] \cdot [FRanGDP_Nucleus] \\ &\cdot \frac{1}{RCC1Km + [FRanGDP_Nucleus] + [NTF2_RanGDP_Nucleus]} \cdot vol\left(Nucleus\right) \end{aligned}$$

Table 34: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
RCC1Kcat RCC1Km			8.5 1.1	s^{-1} 0.0010 dimensionless $m^{-3} \cdot mol$	✓ s· ✓

7.10 Reaction RanGTP_dephosphorylation

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name RanGTP dephosphorylation

Reaction equation

$$RanGTP_Cytosol \xrightarrow{RanGAP_Cytosol} RanGDP_Cytosol$$
 (24)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
RanGTP_Cytosol	RanGTP_Cytosol	

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
RanGAP_Cytosol	RanGAP_Cytosol	

Product

Table 37: Properties of each product.

	P	
Id	Name	SBO
${\tt RanGDP_Cytosol}$	RanGDP_Cytosol	

Kinetic Law

Derived unit contains undeclared units

Table 38: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km_RanGTP	orylation		0.43	0.0010 dimensionles $m^{-3} \cdot mol$	ss· 🗹

7.11 Reaction RanGTP_Carrier_binding

This is a reversible reaction of two reactants forming one product.

Name RanGTP Carrier binding

Reaction equation

Reactants

Table 39: Properties of each reactant.

Id	Name	SBO
RanGTP_Nucleus	RanGTP_Nucleus	
Carrier_Nucleus	Carrier_Nucleus	

Table 40: Properties of each product.

Id	Name	SBO
Carrier_RanGTP_Nucleus	Carrier_RanGTP_Nucleus	<u>. </u>

$$\begin{split} \nu_{11} &= (\text{Kon_RanGTP_Carrier_binding} \cdot [\text{RanGTP_Nucleus}] \cdot [\text{Carrier_Nucleus}] \\ &+ ((\text{Koff_RanGTP_Carrier_binding} \cdot [\text{Carrier_RanGTP_Nucleus}]))) \cdot \text{vol} (\text{Nucleus}) \end{split} \tag{27}$$

Table 41: Properties of each parameter.

	racie in riep	erties or	each pa	rumeten.	
Id	Name	SBO	Value	Unit	Constant
Kon_RanGTP- _Carrier- _binding Koff_RanGTP-				$\begin{array}{c} 1000 dimensionless \cdot \\ m^3 \cdot mol^{-1} \cdot s^{-1} \\ \\ s^{-1} \end{array}$	a
_Carrier- _binding					_

7.12 Reaction NTF2_RanGDP_Unbinding

This is a reversible reaction of two reactants forming one product.

Name NTF2_RanGDP Unbinding

Reaction equation

$$RanGDP_Cytosol + NTF2_Cytosol \Longrightarrow NTF2_RanGDP_Cytosol$$
 (28)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
RanGDP_Cytosol NTF2_Cytosol	RanGDP_Cytosol NTF2_Cytosol	

Product

Table 43: Properties of each product.

Id	Name	SBO
NTF2_RanGDP_Cytosol	NTF2_RanGDP_Cytosol	

Kinetic Law

$$v_{12} = (Kon_NTF2_RanGDP_binding \cdot [RanGDP_Cytosol] \cdot [NTF2_Cytosol] + ((Koff_NTF2_RanGDP_binding \cdot [NTF2_RanGDP_Cytosol]))) \cdot vol(Cytosol)$$
(29)

Table 44: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kon_NTF2- _RanGDP-			100.0	$1000 dimensionless \cdot m^3 \cdot mol^{-1} \cdot s^{-1}$	Ø
_binding Koff_NTF2- _RanGDP- _binding			2.5	s^{-1}	Ø

7.13 Reaction dephosphorylation

This is a reversible reaction of one reactant forming three products influenced by one modifier.

Name dephosphorylation

Reaction equation

$$RanBP1_Carrier_RanGTP_Cytosol \xrightarrow{RanGAP_Cytosol} RanGDP_Cytosol + Carrier_Cytosol + RanBP1_Cytosol \\ (30)$$

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
RanBP1_Carrier_RanGTP_Cytosol	RanBP1_Carrier_RanGTP_Cytosol	

Modifier

Table 46: Properties of each modifier.

Id	Name	SBO
RanGAP_Cytosol	RanGAP_Cytosol	

Products

Table 47: Properties of each product.

Id	Name	SBO
RanGDP_Cytosol	RanGDP_Cytosol	
${\tt Carrier_Cytosol}$	Carrier_Cytosol	
${\tt RanBP1_Cytosol}$	RanBP1_Cytosol	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = Vmax_dephosphorylation_dephosphorylation \cdot [RanBP1_Carrier_RanGTP_Cytosol] \\ \cdot \frac{1}{Km_dephosphorylation + [RanBP1_Carrier_RanGTP_Cytosol]} \cdot vol\left(Cytosol\right)$$
 (31)

Table 48: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Km- _dephospl	horylation		0.43	0.0010 dimensionless $m^{-3} \cdot mol$	s· 🗹

7.14 Reaction RanGDP_to_RanGTP

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name RanGDP to RanGTP

Reaction equation

$$RanGDP_Nucleus \xrightarrow{RCC1_Nucleus, \ NTF2_RanGDP_Nucleus} RanGTP_Nucleus \tag{32}$$

Reactant

Table 49: Properties of each reactant.

Id	Name	SBO
RanGDP_Nucleus	RanGDP_Nucleus	

Modifiers

Table 50: Properties of each modifier.

Id	Name	SBO
RCC1_Nucleus NTF2_RanGDP_Nucleus	RCC1_Nucleus NTF2_RanGDP_Nucleus	

Product

Table 51: Properties of each product.

Id	Name	SBO
RanGTP_Nucleus	RanGTP_Nucleus	

Kinetic Law

Derived unit contains undeclared units

$$\begin{aligned} \nu_{14} &= 0.75 \cdot RCC1Kcat \cdot [RCC1_Nucleus] \cdot [RanGDP_Nucleus] \\ &\cdot \frac{1}{RCC1Km + [RanGDP_Nucleus] + [NTF2_RanGDP_Nucleus]} \cdot vol\left(Nucleus\right) \end{aligned}$$

Table 52: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
RCC1Kcat RCC1Km			8.5 1.1	s^{-1} 0.0010 dimensionles $m^{-3} \cdot mol$	s· Ø

7.15 Reaction NTF2_RAN_Nuc_Exchange

This is a reversible reaction of one reactant forming three products influenced by one modifier.

Name NTF2_RAN_Nuc_Exchange

Reaction equation

$$4NTF2_RanGDP_Nucleus \\ \underbrace{RCC1_Nucleus}_{} 4NTF2_Nucleus \\ + RanGDP_Nucleus \\ + 3RanGTP_Nucleus \\ (34)$$

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
NTF2_RanGDP_Nucleus	NTF2_RanGDP_Nucleus	

Modifier

Table 54: Properties of each modifier.

Id	Name	SBO
RCC1_Nucleus	RCC1_Nucleus	

Products

Table 55: Properties of each product.

Id	Name	SBO
NTF2_Nucleus RanGDP_Nucleus RanGTP_Nucleus	NTF2_Nucleus RanGDP_Nucleus RanGTP_Nucleus	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = 0.25 \cdot RCC1Kcat \cdot [RCC1_Nucleus] \cdot [NTF2_RanGDP_Nucleus] \\ \cdot \frac{1}{RCC1Km + [RanGDP_Nucleus] + [NTF2_RanGDP_Nucleus]} \cdot vol (Nucleus)$$
(35)

Table 56: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
RCC1Kcat			8.5	s^{-1}	
RCC1Km			1.1	0.0010 dimensionless $m^{-3} \cdot mol$	s. \[\Big
				111 • 11101	

7.16 Reaction NTF2_RanGDP_unbinding

This is a reversible reaction of one reactant forming two products.

Name NTF2_RanGDP unbinding

Reaction equation

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
NTF2_RanGDP_Nucleus	NTF2_RanGDP_Nucleus	

Products

Table 58: Properties of each product.

Id	Name	SBO
RanGDP_Nucleus	RanGDP_Nucleus NTF2_Nucleus	

Kinetic Law

Derived unit $\ s^{-1} \cdot \mu mol \cdot l^{-1} \cdot \mu m^3$

$$\begin{array}{l} v_{16} = (Koff_NTF2_RanGDP_unbinding \cdot [NTF2_RanGDP_Nucleus] \\ + ((Kon_NTF2_RanGDP_unbinding \cdot [RanGDP_Nucleus] \cdot [NTF2_Nucleus]))) \\ \cdot vol (Nucleus) \end{array}$$

Table 59: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
Koff_NTF2-			2.5	s^{-1}	\square
_RanGDP-					
$_\mathtt{unbinding}$					
Kon_NTF2-			100.0	1000 dimensionless ·	\square
_RanGDP-				$m^3 \cdot mol^{-1} \cdot s^{-1}$	
$_$ unbinding					

7.17 Reaction Carrier_RanGTP_binding

This is a reversible reaction of two reactants forming one product.

Name Carrier RanGTP binding

Reaction equation

$$RanGTP_Cytosol + Carrier_Cytosol \Longrightarrow Carrier_RanGTP_Cytosol$$
 (38)

Reactants

Table 60: Properties of each reactant.

Id	Name	SBO
RanGTP_Cytosol Carrier_Cytosol	RanGTP_Cytosol Carrier_Cytosol	

Product

Table 61: Properties of each product.

Id	Name	SBO
Carrier_RanGTP_Cytosol	Carrier_RanGTP_Cytosol	

Kinetic Law

$$v_{17} = (Kon_Carrier_RanGTP_binding \cdot [RanGTP_Cytosol] \cdot [Carrier_Cytosol] \\ + ((Koff_Carrier_RanGTP_binding \cdot [Carrier_RanGTP_Cytosol]))) \cdot vol(Cytosol)$$
 (39)

Table 62: Properties of each parameter.

	Name	SBO	Value	Unit	Constant
Kon_Carrier- _RanGTP- _binding			0.0	$\begin{array}{c} 1000 dimensionless \cdot \\ m^3 \cdot mol^{-1} \cdot s^{-1} \end{array}$	
KoffCarrierRanGTPbinding			0.0	s^{-1}	✓

7.18 Reaction NTF2_FRAN_Nuc_Exchange

This is a reversible reaction of one reactant forming three products influenced by three modifiers.

Name NTF2_FRAN_Nuc_Exchange

Reaction equation

$$4FNTF2_RanGDP_Nucleus \xrightarrow{RCC1_Nucleus, \ NTF2_RanGDP_Nucleus, \ RanGDP_Nucleus} 4NTF2_Nucleus + 3FRanGDP_Nucleus \xrightarrow{(40)}$$

Reactant

Table 63: Properties of each reactant.

Tueste os. Troperties of each reactain.		
Id	Name	SBO
FNTF2_RanGDP_Nucleus	FNTF2_RanGDP_Nucleus	

Modifiers

Table 64: Properties of each modifier.

Id	Name	SBO
RCC1_Nucleus NTF2_RanGDP_Nucleus RanGDP_Nucleus	RCC1_Nucleus NTF2_RanGDP_Nucleus RanGDP_Nucleus	

Table 65: Properties of each product.

Id	Name	SBO
NTF2_Nucleus FRanGTP_Nucleus FRanGDP_Nucleus	NTF2_Nucleus FRanGTP_Nucleus FRanGDP_Nucleus	

Derived unit contains undeclared units

$$\begin{aligned} \nu_{18} &= 0.25 \cdot RCC1Kcat \cdot [RCC1_Nucleus] \cdot [FNTF2_RanGDP_Nucleus] \\ &\cdot \frac{1}{RCC1Km + [RanGDP_Nucleus] + [FNTF2_RanGDP_Nucleus]} \cdot vol\left(Nucleus\right) \end{aligned}$$

Table 66: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
RCC1Kcat RCC1Km			8.5 1.1	s^{-1} 0.0010 dimensionles $m^{-3} \cdot mol$	s· 🗹

7.19 Reaction RanBP1_binding

This is a reversible reaction of two reactants forming one product.

Name RanBP1 binding

Reaction equation

 $RanBP1_Cytosol + Carrier_RanGTP_Cytosol \Longrightarrow RanBP1_Carrier_RanGTP_Cytosol$ (42)

Reactants

Table 67: Properties of each reactant.

Id	Name	SBO
RanBP1_Cytosol	RanBP1_Cytosol	
$Carrier_RanGTP_Cytosol$	Carrier_RanGTP_Cytosol	

Product

Table 68: Properties of each product.

Id	Name	SBO
RanBP1_Carrier_RanGTP_Cytosol	RanBP1_Carrier_RanGTP_Cytosol	

Kinetic Law

$$v_{19} = (Kon_RanBP1_binding \cdot [RanBP1_Cytosol] \cdot [Carrier_RanGTP_Cytosol] \\ + ((Koff_RanBP1_binding \cdot [RanBP1_Carrier_RanGTP_Cytosol]))) \cdot vol(Cytosol)$$
 (43)

Table 69: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kon_RanBP1-			100.0	1000 dimensionless ·	$lue{2}$
$_$ binding				$m^3 \cdot mol^{-1} \cdot s^{-1}$	
Koff_RanBP1-			0.5	s^{-1}	
$_{ extstyle }$ binding					

7.20 Reaction Carrier_RanGTP_flux

This is a reversible reaction of one reactant forming one product.

Name Carrier_RanGTP flux

Reaction equation

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
Carrier_RanGTP_Cytosol	Carrier_RanGTP_Cytosol	

Table 71: Properties of each product.

Id	Name	SBO
Carrier_RanGTP_Nucleus	Carrier_RanGTP_Nucleus	

Derived unit $(1.00000000000000004 \cdot 10^{-4} \text{ m})^3 \cdot s^{-1} \cdot \mu \text{mol} \cdot l^{-1}$

$$v_{20} = Carrier_RanGTP_Kperm \cdot ([Carrier_RanGTP_Cytosol] + ([Carrier_RanGTP_Nucleus])) \cdot area (Nuc_membrane)$$
(45)

Table 72: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.000	dimensionless \cdot A \cdot m ⁻²	Ø
Carrier- _RanGTP_			0.173	10^{-6} dimensionless · $m \cdot s^{-1}$	

7.21 Reaction NTF2_flux

This is a reversible reaction of one reactant forming one product.

Name NTF2 flux

Reaction equation

$$NTF2_Cytosol \Longrightarrow NTF2_Nucleus \tag{46}$$

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
NTF2_Cytosol	NTF2_Cytosol	

Table 74: Properties of each product.

Id	Name	SBO
NTF2_Nucleus	NTF2_Nucleus	

 $\textbf{Derived unit} \ \, \big(1.00000000000000004 \cdot 10^{-4} \ m\big)^{3} \cdot s^{-1} \cdot \mu mol \cdot l^{-1} \\$

$$\textit{v}_{21} = \text{NTF2_Kperm} \cdot ([\text{NTF2_Cytosol}] + ([\text{NTF2_Nucleus}])) \cdot \text{area} (\text{Nuc_membrane}) \quad (47)$$

Table 75: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I				$\begin{array}{l} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	
NTF2_Kpe1	cm		3.733	10^{-6} dimensionless · $m \cdot s^{-1}$	\square

7.22 Reaction NTF2_RanGDP_flux

This is a reversible reaction of one reactant forming one product.

Name NTF2_RanGDP flux

Reaction equation

$$NTF2_RanGDP_Cytosol \Longrightarrow NTF2_RanGDP_Nucleus$$
 (48)

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
NTF2_RanGDP_Cytosol	NTF2_RanGDP_Cytosol	_

Table 77: Properties of each product.

Id	Name	SBO
NTF2_RanGDP_Nucleus	NTF2_RanGDP_Nucleus	

 $\textbf{Derived unit} \ \, \big(1.00000000000000004 \cdot 10^{-4} \ m \big)^{3} \cdot s^{-1} \cdot \mu mol \cdot l^{-1} \\$

$$v_{22} = NTF2_RanGDP_Kperm \\ \cdot ([NTF2_RanGDP_Cytosol] + ([NTF2_RanGDP_Nucleus])) \cdot area (Nuc_membrane)$$
(49)

Table 78: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.000	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	
NTF2_Ra _Kperm	nGDP-		3.733	10^{-6} dimensionless · $m \cdot s^{-1}$	Ø

7.23 Reaction Carrier_flux

This is a reversible reaction of one reactant forming one product.

Name Carrier flux

Reaction equation

$$Carrier_Cytosol \Longrightarrow Carrier_Nucleus$$
 (50)

Reactant

Table 79: Properties of each reactant.

Id	Name	SBO
Carrier_Cytosol	Carrier_Cytosol	

Table 80: Properties of each product.

Id	Name	SBO
Carrier_Nucleus	Carrier_Nucleus	

 $\textbf{Derived unit} \ \, \big(1.00000000000000004 \cdot 10^{-4} \ m\big)^3 \cdot s^{-1} \cdot \mu mol \cdot l^{-1} \\$

 $v_{23} = Carrier_Kperm \cdot ([Carrier_Cytosol] + ([Carrier_Nucleus])) \cdot area (Nuc_membrane)$ (51)

Table 81: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I				$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	\square
Carrier- _Kperm			1.867	10^{-6} dimensionless · $m \cdot s^{-1}$	\square

7.24 Reaction FRanGDP_flux

This is a reversible reaction of one reactant forming one product.

Name FRanGDP flux

Reaction equation

$$FRanGDP_Cytosol \Longrightarrow FRanGDP_Nucleus \tag{52}$$

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
${\tt FRanGDP_Cytosol}$	FRanGDP_Cytosol	

Table 83: Properties of each product.

Id	Name	SBO
FRanGDP_Nucleus	FRanGDP_Nucleus	

 $\textbf{Derived unit} \ \, \big(1.00000000000000004 \cdot 10^{-4} \ m\big)^3 \cdot s^{-1} \cdot \mu mol \cdot l^{-1} \\$

$$v_{24} = RanGDP_Kperm \cdot ([FRanGDP_Cytosol] + ([FRanGDP_Nucleus])) \cdot area (Nuc_membrane)$$
 (53)

Table 84: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	Ø
RanGDP_Kper	m		0.0	10^{-6} dimensionless · $m \cdot s^{-1}$	

7.25 Reaction Carrier_FRanGTP_flux

This is a reversible reaction of one reactant forming one product.

Name Carrier_FRanGTP flux

Reaction equation

Reactant

Table 85: Properties of each reactant.

Table 63. I Toperties of each reactant.			
Id	Name	SBO	
FCarrier_RanGTP_Cytosol	FCarrier_RanGTP_Cytosol		

Table 86: Properties of each product.

Id	Name	SBO
FCarrier_RanGTP_Nucleus	FCarrier_RanGTP_Nucleus	

Derived unit $(1.00000000000000004 \cdot 10^{-4} \text{ m})^3 \cdot s^{-1} \cdot \mu \text{mol} \cdot l^{-1}$

$$v_{25} = Carrier_RanGTP_Kperm \cdot ([FCarrier_RanGTP_Cytosol] + ([FCarrier_RanGTP_Nucleus])) \\ \cdot area (Nuc_membrane)$$
(55)

Table 87: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
I			0.000	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	
Carrier- _RanGTP_			0.173	10^{-6} dimensionless · $m \cdot s^{-1}$	\square

7.26 Reaction FNTF2_RanGDP_flux

This is a reversible reaction of one reactant forming one product.

Name FNTF2_RanGDP flux

Reaction equation

Reactant

Table 88: Properties of each reactant.

Id	Name	SBO
FNTF2_RanGDP_Cytosol	FNTF2_RanGDP_Cytosol	

Table 89: Properties of each product.

Id	Name	SBO
FNTF2_RanGDP_Nucleus	FNTF2_RanGDP_Nucleus	<u>. </u>

Derived unit $(1.00000000000000004 \cdot 10^{-4} \text{ m})^3 \cdot s^{-1} \cdot \mu \text{mol} \cdot l^{-1}$

Table 90: Properties of each parameter.

_						
Ī	Id	Name	SBO	Value	Unit	Constant
	I				$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	Ø
	NTF2_RanGDP- _Kperm			3.733	10^{-6} dimensionless · $m \cdot s^{-1}$	

7.27 Reaction FRanGTP_flux

This is a reversible reaction of one reactant forming one product.

Name FRanGTP flux

Reaction equation

$$FRanGTP_Cytosol \Longrightarrow FRanGTP_Nucleus$$
 (58)

Reactant

Table 91: Properties of each reactant.

Id	Name	SBO
$FRanGTP_Cytosol$	FRanGTP_Cytosol	

Table 92: Properties of each product.

Id	Name	SBO
FRanGTP_Nucleus	FRanGTP_Nucleus	

 $\textbf{Derived unit} \ \, \big(1.00000000000000004 \cdot 10^{-4} \ m\big)^{3} \cdot s^{-1} \cdot \mu mol \cdot l^{-1} \\$

 $\textit{v}_{27} = RanGTP_Kperm \cdot ([FRanGTP_Cytosol] + ([FRanGTP_Nucleus])) \cdot area (Nuc_membrane) \tag{59}$

Table 93: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	Ø
RanGTP_Kp	erm		0.0	10^{-6} dimensionless · $m \cdot s^{-1}$	Ø

7.28 Reaction RanGDP_flux

This is a reversible reaction of one reactant forming one product.

Name RanGDP flux

Reaction equation

$$RanGDP_Cytosol \Longrightarrow RanGDP_Nucleus$$
 (60)

Reactant

Table 94: Properties of each reactant.

rusies in Properties of each federalit.				
Id	Name	SBO		
RanGDP_Cytosol	RanGDP_Cytosol			

Table 95: Properties of each product.

Id	Name	SBO
RanGDP_Nucleus	RanGDP_Nucleus	

 $\textbf{Derived unit} \ \, \big(1.00000000000000004 \cdot 10^{-4} \ m\big)^{3} \cdot s^{-1} \cdot \mu mol \cdot l^{-1} \\$

$$\textit{v}_{28} = RanGDP_Kperm \cdot ([RanGDP_Cytosol] + ([RanGDP_Nucleus])) \cdot area(Nuc_membrane) \tag{61}$$

Table 96: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	Ø
RanGDP_Kperm			0.0	10^{-6} dimensionless · $m \cdot s^{-1}$	

7.29 Reaction RanGTP_flux

This is a reversible reaction of one reactant forming one product.

Name RanGTP flux

Reaction equation

$$RanGTP_Cytosol \Longrightarrow RanGTP_Nucleus$$
 (62)

Reactant

Table 97: Properties of each reactant.

Tuble 77: 1 Toperties of each reactant.			
Id	Name	SBO	
RanGTP_Cytosol	RanGTP_Cytosol		

Table 98: Properties of each product.

Id	Name	SBO
RanGTP_Nucleus	RanGTP_Nucleus	

Derived unit $(1.00000000000000004 \cdot 10^{-4} \text{ m})^3 \cdot s^{-1} \cdot \mu \text{mol} \cdot l^{-1}$

$$v_{29} = RanGTP_Kperm \cdot ([RanGTP_Cytosol] + ([RanGTP_Nucleus])) \cdot area (Nuc_membrane)$$
(63)

Table 99: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
I			0.0	$\begin{array}{c} \text{dimensionless} \cdot A \cdot \\ m^{-2} \end{array}$	Ø
RanGTP_Kperm			0.0	10^{-6} dimensionless · $m \cdot s^{-1}$	\square

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species Carrier_Cytosol

Name Carrier_Cytosol

Initial concentration 11.8952664327711 µmol·µm⁻³

This species takes part in five reactions (as a reactant in Carrier_FRanGTP_binding, Carrier_RanGTP_binding, Carrier_flux and as a product in dephosphorylationF, dephosphorylation).

$$\frac{d}{dt} Carrier_Cytosol = v_3 + v_{13} - |v_1| - |v_{17}| - |v_{23}|$$
(64)

8.2 Species Carrier_RanGTP_Cytosol

Name Carrier_RanGTP_Cytosol

Initial concentration $0.00182967434742422~\mu mol\cdot \mu m^{-3}$

This species takes part in three reactions (as a reactant in RanBP1_binding, Carrier_RanGTP_flux and as a product in Carrier_RanGTP_binding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Carrier_RanGTP_Cytosol} = |v_{17}| - |v_{19}| - |v_{20}|$$
(65)

8.3 Species RanGAP_Cytosol

Name RanGAP_Cytosol

Initial concentration $0.5~\mu mol \cdot \mu m^{-3}$

This species takes part in four reactions (as a modifier in FRanGTP_dephosphorylation, dephosphorylationF, RanGTP_dephosphorylation, dephosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanGAP}_{-}\mathrm{Cytosol} = 0 \tag{66}$$

8.4 Species RanBP1_Cytosol

Name RanBP1_Cytosol

Initial concentration $2.91577340630959 \, \mu mol \cdot \mu m^{-3}$

This species takes part in four reactions (as a reactant in RanBP1_bindingF, RanBP1_binding and as a product in dephosphorylationF, dephosphorylation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanBP1}_{-}\mathrm{Cytosol} = v_3 + v_{13} - v_6 - v_{19}$$
(67)

8.5 Species RanBP1_Carrier_RanGTP_Cytosol

Name RanBP1_Carrier_RanGTP_Cytosol

Initial concentration $0.0842265936904004~\mu mol \cdot \mu m^{-3}$

This species takes part in two reactions (as a reactant in dephosphorylation and as a product in RanBP1_binding).

$$\frac{d}{dt}RanBP1_Carrier_RanGTP_Cytosol = v_{19} - v_{13}$$
 (68)

8.6 Species NTF2_Nucleus

Name NTF2_Nucleus

Initial concentration $0.560888580955963 \ \mu mol \cdot \mu m^{-3}$

This species takes part in five reactions (as a product in NTF2_FRanGDP_unbinding, NTF2_RAN-_Nuc_Exchange, NTF2_RanGDP_unbinding, NTF2_FRAN_Nuc_Exchange, NTF2_flux).

$$\frac{d}{dt} NTF2 \text{-Nucleus} = v_7 + 4 v_{15} + v_{16} + 4 v_{18} + v_{21}$$
 (69)

8.7 Species RanGDP_Nucleus

Name RanGDP_Nucleus

Initial concentration $0.0466849733424111~\mu mol \cdot \mu m^{-3}$

This species takes part in six reactions (as a reactant in RangDP_to_RangTP and as a product in NTF2_RAN_Nuc_Exchange, NTF2_RangDP_unbinding, RangDP_flux and as a modifier in FRangDP_to_FRangTP, NTF2_FRAN_Nuc_Exchange).

$$\frac{d}{dt} \text{RanGDP_Nucleus} = |v_{15}| + |v_{16}| + |v_{28}| - |v_{14}|$$
 (70)

8.8 Species RCC1_Nucleus

Name RCC1_Nucleus

Initial concentration $0.4 \, \mu \text{mol} \cdot \mu \text{m}^{-3}$

This species takes part in four reactions (as a modifier in FRanGDP_to_FRanGTP, RanGDP_to_RanGTP, NTF2_RAN_Nuc_Exchange, NTF2_FRAN_Nuc_Exchange).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RCC1}\mathrm{.Nucleus} = 0 \tag{71}$$

8.9 Species RanGTP_Nucleus

Name RanGTP_Nucleus

Initial concentration $0.0118032373274648 \mu mol \cdot \mu m^{-3}$

This species takes part in four reactions (as a reactant in RanGTP_Carrier_binding and as a product in RanGDP_to_RanGTP, NTF2_RAN_Nuc_Exchange, RanGTP_flux).

$$\frac{d}{dt} \text{RanGTP_Nucleus} = v_{14} + 3 v_{15} + v_{29} - v_{11}$$
 (72)

8.10 Species NTF2_RanGDP_Nucleus

Name NTF2_RanGDP_Nucleus

Initial concentration $0.939111419044037 \ \mu mol \cdot \mu m^{-3}$

This species takes part in six reactions (as a reactant in NTF2_RAN_Nuc_Exchange, NTF2_RanGDP_unbinding and as a product in NTF2_RanGDP_flux and as a modifier in FRanGDP_to_FRanGTP, RanGDP_to_RanGTP, NTF2_FRAN_Nuc_Exchange).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{NTF2_RanGDP_Nucleus} = v_{22} - 4 v_{15} - v_{16}$$
 (73)

8.11 Species Carrier_Nucleus

Name Carrier_Nucleus

Initial concentration $10.8211328580636 \, \mu \text{mol} \cdot \mu \text{m}^{-3}$

This species takes part in three reactions (as a reactant in FRanGTP_Carrier_binding, RanGTP_Carrier_binding and as a product in Carrier_flux).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Carrier_Nucleus} = |v_{23}| - |v_4| - |v_{11}| \tag{74}$$

8.12 Species RanGDP_Cytosol

Name RanGDP_Cytosol

Initial concentration 1.75546095870568 µmol·µm⁻³

This species takes part in four reactions (as a reactant in NTF2_RanGDP_Unbinding, RanGDP_flux and as a product in RanGTP_dephosphorylation, dephosphorylation).

$$\frac{d}{dt} RanGDP_Cytosol = v_{10} + v_{13} - |v_{12}| - |v_{28}|$$
 (75)

8.13 Species Carrier_RanGTP_Nucleus

Name Carrier_RanGTP_Nucleus

Initial concentration $11.5694219089212 \mu mol \cdot \mu m^{-3}$

This species takes part in two reactions (as a product in RanGTP_Carrier_binding, Carrier_RanGTP_flux).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Carrier_RanGTP_Nucleus} = |v_{11}| + |v_{20}| \tag{76}$$

8.14 Species NTF2_RanGDP_Cytosol

Name NTF2_RanGDP_Cytosol

Initial concentration $1.47617820113791 \ \mu mol \cdot \mu m^{-3}$

This species takes part in two reactions (as a reactant in NTF2_RanGDP_flux and as a product in NTF2_RanGDP_Unbinding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{NTF2}_{-}\mathrm{RanGDP}_{-}\mathrm{Cytosol} = |v_{12}| - |v_{22}| \tag{77}$$

8.15 Species FRanGTP_Cytosol

Name FRanGTP_Cytosol

Initial concentration $0 \mu mol \cdot \mu m^{-3}$

This species takes part in three reactions (as a reactant in Carrier_FRanGTP_binding, FRanGTP_dephosphorylation, FRanGTP_flux).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{FRanGTP_Cytosol} = -|v_1| - v_2 - |v_{27}| \tag{78}$$

8.16 Species FCarrier_RanGTP_Cytosol

Name FCarrier_RanGTP_Cytosol

Initial concentration $0 \, \mu \text{mol} \cdot \mu \text{m}^{-3}$

This species takes part in three reactions (as a reactant in RanBP1_bindingF, Carrier_FRanGTP_flux and as a product in Carrier_FRanGTP_binding).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{FCarrier_RanGTP_Cytosol} = |v_1| - |v_6| - |v_{25}| \tag{79}$$

8.17 Species FRanGDP_Cytosol

Name FRanGDP_Cytosol

Initial concentration $1 \mu mol \cdot \mu m^{-3}$

This species takes part in five reactions (as a reactant in NTF2_FRanGDP_Unbinding, FRanGDP_flux and as a product in FRanGTP_dephosphorylation, dephosphorylationF, Microinj).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{FRanGDP_Cytosol} = v_2 + v_3 + |v_8| - |v_5| - |v_{24}| \tag{80}$$

8.18 Species FNTF2_RanGDP_Cytosol

Name FNTF2_RanGDP_Cytosol

Initial concentration $0 \mu mol \cdot \mu m^{-3}$

This species takes part in two reactions (as a reactant in FNTF2_RanGDP_flux and as a product in NTF2_FRanGDP_Unbinding).

$$\frac{d}{dt}FNTF2_RanGDP_Cytosol = v_5 - v_{26}$$
 (81)

8.19 Species FRanBP1_Carrier_RanGTP_Cytosol

Name FRanBP1_Carrier_RanGTP_Cytosol

Initial concentration $0 \mu mol \cdot \mu m^{-3}$

This species takes part in two reactions (as a reactant in dephosphorylationF and as a product in RanBP1_bindingF).

$$\frac{d}{dt}FRanBP1_Carrier_RanGTP_Cytosol = |v_6| - v_3$$
 (82)

8.20 Species FCarrier_RanGTP_Nucleus

Name FCarrier_RanGTP_Nucleus

Initial concentration $0 \, \mu mol \cdot \mu m^{-3}$

This species takes part in two reactions (as a product in FRanGTP_Carrier_binding, Carrier_FRanGTP_flux).

$$\frac{d}{dt}FCarrier_RanGTP_Nucleus = |v_4| + |v_{25}|$$
(83)

8.21 Species FRanGDP_Nucleus

Name FRanGDP_Nucleus

Initial concentration $0 \mu mol \cdot \mu m^{-3}$

This species takes part in four reactions (as a reactant in FRanGDP_to_FRanGTP and as a product in NTF2_FRanGDP_unbinding, NTF2_FRAN_Nuc_Exchange, FRanGDP_flux).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{FRanGDP_Nucleus} = |v_7| + |v_{18}| + |v_{24}| - |v_9| \tag{84}$$

8.22 Species FNTF2_RanGDP_Nucleus

Name FNTF2_RanGDP_Nucleus

Initial concentration $0 \mu mol \cdot \mu m^{-3}$

This species takes part in three reactions (as a reactant in NTF2_FRanGDP_unbinding, NTF2-FRAN_Nuc_Exchange and as a product in FNTF2_RanGDP_flux).

$$\frac{d}{dt}FNTF2_RanGDP_Nucleus = |v_{26}| - |v_7| - 4|v_{18}|$$
(85)

8.23 Species FRanGTP_Nucleus

Name FRanGTP_Nucleus

Initial concentration $0 \mu mol \cdot \mu m^{-3}$

This species takes part in four reactions (as a reactant in FRanGTP_Carrier_binding and as a product in FRanGDP_to_FRanGTP, NTF2_FRAN_Nuc_Exchange, FRanGTP_flux).

$$\frac{d}{dt} FRanGTP_Nucleus = |v_9| + 3|v_{18}| + |v_{27}| - |v_4|$$
 (86)

8.24 Species NTF2_Cytosol

Name NTF2_Cytosol

Initial concentration $0.023821798862085 \, \mu mol \cdot \mu m^{-3}$

This species takes part in three reactions (as a reactant in NTF2_FRanGDP_Unbinding, NTF2_RanGDP_Unbinding, NTF2_flux).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{NTF2_Cytosol} = -|v_5| - |v_{12}| - |v_{21}| \tag{87}$$

8.25 Species Pipet_Cytosol

Name Pipet_Cytosol

Initial concentration $0 \, \mu \text{mol} \cdot \mu \text{m}^{-3}$

This species takes part in one reaction (as a modifier in Microinj).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pipet_Cytosol} = 0 \tag{88}$$

8.26 Species RanGTP_Cytosol

Name RanGTP_Cytosol

Initial concentration $0~\mu mol \cdot \mu m^{-3}$

This species takes part in three reactions (as a reactant in RanGTP_dephosphorylation, Carrier_RanGTP_binding, RanGTP_flux).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RanGTP_Cytosol} = -v_{10} - |v_{17}| - |v_{29}| \tag{89}$$

 $\mathfrak{BML2}^{a}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany