# Modelagem de Decisões no Jiu-Jitsu Competitivo usando MDP

Objetivo: Criar estratégias ótimas para atletas de Jiu-Jitsu utilizando um modelo matemático.

Método: Processos de Decisão Markovianos (MDP).

Motivação: Combinar regras da IBJJF, hierarquia posicional e probabilidades para melhorar tomadas de decisão.



## O que é um Processo de Decisão Markoviano?

- 1 Estados (S)
  - Situações no combate. Exemplos: guarda fechada, montada ou controle de costas.
- 3 Transições (P)

Probabilidade de mudar entre estados após uma ação.

2 Ações (A)

Movimentos que o atleta pode fazer. Ataques, defesas e transições.

4 Recompensas (R)

Pontos e melhoria da posição durante as transições.

## Estados e Hierarquia Posicional no Modelo

## Estados (Posições)

O modelo considera diferentes posições como estados. Cada estado tem um valor estratégico.

- Controle de Costas
- Montada
- Guarda Aberta
- Meia Guarda
- Guarda Fechada
- Embaixo (Desfavorável)

## Hierarquia Posicional

Cada posição possui um valor numérico. Este valor reflete a vantagem estratégica da posição.

| Posição            | Valor |
|--------------------|-------|
| Controle de Costas | 1.5   |
| Montada            | 1.3   |
| Guarda Aberta      | 1.0   |
| Meia Guarda        | 0.7   |
| Guarda Fechada     | 0.3   |
| Embaixo            | -0.5  |



## Ações no Jiu-Jitsu Competitivo

1 Posições Superiores

Atletas buscam passar a guarda. Também manter o controle e finalizar.

3 Exemplo: Meia Guarda

Na meia guarda, pode-se passar ou finalizar. Estratégia crucial. Posições Inferiores

O objetivo é raspar ou defender. Finalizar também é uma opção.

4 Posição "Embaixo"

Pode-se tentar raspar ou defender. A finalização também é possível.

## Probabilidades e Transições entre Estados

- Transição Meia Guarda para Embaixo
  - Exemplo de transição e suas possibilidades. Ações como passar a guarda ou defender.
- ദ്ദ 📗 Ação: Defender

Probabilidade de 40% de manter a posição. Sem alteração na pontuação.

2 Ação: Passar a Guarda

Probabilidade de 60% de sucesso. Resulta em +3 pontos IBJJF.

4 Componentes da Transição

Probabilidade de sucesso. Pontuação baseada nas regras da IBJJF.

# Cálculo da Recompensa no Modelo



A recompensa é crucial para o modelo. Ela combina pontos IBJJF e mudança posicional. O objetivo é maximizar a recompensa total. Isso influencia as decisões do atleta no combate.

Exemplo: Transição de Meia Guarda (0.7) para Guarda Aberta (1.0). Pontos IBJJF: 3.  $\Delta$ Posição: (1.0 - 0.7) = 0.3. Recompensa total: 3 + (0.3 x 10) = 6.



# Dinâmica Competitiva Simétrica do Modelo

Cada posição dominante do Atleta 1 tem um estado simétrico para o Atleta 2. Isso mantém o equilíbrio no modelo. Ambos os atletas têm ações equivalentes.

| Estado Atleta 1         | Estado Atleta 2       |
|-------------------------|-----------------------|
| Montada (dominando)     | Embaixo (inferior)    |
| Guarda Aberta           | Guarda Aberta         |
| Meia Guarda (dominando) | Embaixo (Meia Guarda) |

# Algoritmos de Solução do MDP

#### Value Iteration

Calcula valores ideais iterativamente. Garante convergência para a solução ótima.

- Atualiza a função valor.
- Baseado em Bellman.
- Menos custo computacional por iteração.

## **Policy Iteration**

Alterna entre avaliação e melhoria da política. Consegue a estratégia ideal em menos iterações.

- Avalia a política atual.
- Melhora a política com base na avaliação.
- Pode ser mais intensivo computacionalmente.

# Comparação de Performance dos Algoritmos

Análise da performance dos algoritmos Value Iteration e Policy Iteration. Avaliamos iterações e tempo para encontrar a solução ideal no Jiu-Jitsu.

| Método           | Iterações | Tempo Total | Tempo por Iteração |
|------------------|-----------|-------------|--------------------|
| Value Iteration  | 47        | 3.3 ms      | 0.07 ms/iter       |
| Policy Iteration | 3         | 1.6 ms      | 0.53 ms/iter       |

Value Iteration realiza mais iterações de forma rápida. Policy Iteration chega à solução em menos iterações.

# Estratégias Ótimas Encontradas

1 Posições Dominantes

Finalizar o oponente é a ação mais recompensadora. Maximiza os ganhos no modelo MDP. Posições Inferiores

Raspar para inverter a posição é crucial. Recuperar a dominância é o objetivo.

3 Defesa

Priorizar a fuga de finalizações é vital. Evitar a derrota imediata é fundamental.

## O Que os Resultados Significam na Prática?

1 Priorizar Domínio

Buscar posições dominantes aumenta as chances de finalização. Reverter Desvantagens

Estratégias para inverter posições são cruciais.

3 Decisões Embasadas

O modelo auxilia na tomada de decisões estratégicas.

# Próximas Etapas do Modelo

**Validação Empírica:** Comparar as estratégias do modelo com as de atletas profissionais.

**Melhoria Contínua:** Refinar parâmetros com dados reais de lutas.

**Expansão do Modelo:** Adicionar novas posições, como "joelho na barriga".



## Conclusões e Aplicações

## Estratégias Concretas

O modelo MDP oferece estratégias quantificáveis para combates competitivos.

## Impacto Positivo

Há potencial significativo para impactar treinos e decisões táticas.

#### Eficiência Analítica

A utilização analítica traz clareza e eficiência ao esporte.