

S. T. Port¹, A. R. Santos², D. Lukco³, T. Kremic⁴, G. W. Hunter⁴

¹Oak Ridge Associated Universities, ²Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, ³HX5, LLC, ⁴NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135

1

Introduction

- Venus' atmosphere has trace abundances (120-180 ppmv) of SO₂
- SO₂
 - SO₂ gas is present in volcanic environments on Earth
 - Its interactions with minerals have been investigated in conditions present near volcanic vents and eruption plumes (Renggli et al. 2019; Delmelle et al., 2018; Prinn and Fegley, 1989)
 - SO₂ is reactive with several common elements including calcium; common outcome is CaSO₄ (anhydrite)
 - The kinetics of these reactions are not well documented, and very little investigations have been completed at Venus conditions

Introduction

- Knowledge on chemical reactions has implications for the past and current state of Venus
 - Venus may have had liquid water on its surface, thus hydrous silicates may have formed at that time
 - To determine if these minerals are still present, tremolite $(Ca_2Mg_5Si_8O_{22}(OH)_2)$ and phlogopite $(KMg_3AlSi_3O_{10}(OH)_2)$ were tested at simulated Venus conditions (Johnson and Fegley, 2003; 2003; 2005)
 - Conclusion:
 - They break down over billions of years and may still be present
 - However, experiments were not completed in SO₂

Introduction

- The Venus Emissivity Mapper (on VERITAS and EnVision) will be used to determine the presence and relative abundance of transition metals (mostly FeO) in the surface rock
 - Calcium diffuses through basalt to react with CO₂ and SO₂, changing the observed bulk composition and could potentially decrease the emissivity from orbit (Dyar et al., 2021)
 - Experiments investigating kinetics will be informative for future emissivity data

Objectives

- Investigate the interactions between several calcium bearing minerals and SO₂
 - Constrain the reaction rate
 - Determine the effect of crystal lattices

Methods

- Sample:
 - Cut with diamond saw
 - Polished to 0.5 µm
 - Cleaned in an ultrasonic bath
 - Wrapped with gold wire
 - Weighed

Mineral	Chemical Composition
Calcite	CaCO ₃
Wollastonite	CaSiO ₃
Anorthite	$CaAl_2Si_2O_8$
Tremolite	$Ca_2Mg_5Si_8O_{22}(OH)_2$
Grossular	$Ca_3Al_2(SiO_4)_3$

Methods

- Experiment
 - Sample is hung in the center of ceramic tube in TGA (Thermogravimetric Analysis)
 - Tested Temperatures:
 - 460°C: average lowland temperature on Venus
 - 700°C: to decrease experiment time
 - Tested Gas:
 - $CO_2/1.5\%$ SO_2 : SO_2 abundance similar to molecular number density as on Venus
 - 99.99% CO₂
 - Temperature and mass of sample are collected in real-time

Methods

- Analysis
 - Mineralogy confirmed with X-Ray Diffraction (XRD)
 - Surface chemistry analysis with X-ray Photoelectron Spectroscopy (XPS)
 - Mill using a Focused Ion Beam (FIB)
 - Analyze with Scanning Electron Microscope/Energy Dispersive X-Ray Spectroscopy (SEM/EDS)

Results

Mineral	Temp	Gas	Time
Calcite	460°C	CO ₂ /SO ₂	6 days
Calcite	700°C	CO_2	5 days
Calcite	700°C	CO ₂ /SO ₂	5 days
Wollastonite	460°C	CO ₂ /SO ₂	6 days
Tremolite	460°C	CO ₂ /SO ₂	6 days
Anorthite	460°C	CO ₂ /SO ₂	6 days

	at %		
	Ca	S	
Surface	11.5	0.8	
sputtered 1 min (100 Å)	20	nd	
After Experiment			
Surface	14.4	15.1	
sputtered 1 min (100Å)	18.2	14.1	
sputtered 5 min (500Å)	20.8	10.6	

Sulfate ([SO₄]²⁻) is present after the experiment

Calcite before (left) and after (right) it was heated

Pt coating \$\frac{1}{V}\$
Voids

1HfAGV045 20.0kV 12.0mm ×13.0k SE(M) 4.00um

The cliff face of the sample after it was milled via FIB. Void spaces are visible in the wall.

Calcite heated in pure CO₂ did not have voids nor secondary crystal structures on the surface. Both formations are likely correlated to SO₂.

	at %			
	Ca	S		
Surface	6.8	nd		
sputtered 1 min (100 Å)	8.7	nd		
After Experiment				
Surface	8.5	6.1		
sputtered 1 min (100Å)	10.9	2.5		
sputtered 2 min (200 Å)	11.8	1.6		

Sulfate is present after the experiment

Results

This ratio provides insight into the depth of S in the sample, its potential relationship to Ca, and may be used to complement the EDS data on the cliff wall.

Mineral	Location	S/Ca ratio	S (at %)
Calcite	Surface	1.05	15.1
	Sputtered 1 min (100Å)	0.77	14.1
	Sputtered 5 min (500Å)	0.51	10.6
Wollastonite	Surface	0.72	6.1
	Sputtered 1 min (100Å)	0.23	2.5
	Sputtered 2 min (200 Å)	0.14	1.6
Anorthite	Surface	0.95	5.9
	Sputtered 1 min (100Å)	0.03	0.2
Tremolite	Surface (dark grey)	1.24	4.1
	Sputtered 1 min (100Å) (dark grey)	0.33	1.4
	Sputtered 2 min (200 Å) (dark grey)	0.29	1.1
	Surface (white)	0.72	2.6

Anhydrite, CaSO₄, Ca:S is 1:1

Summary

- All samples formed sulfate on the surface
- Calcite is reactive with SO₂ and will produce CaSO₄ at the surface, but the reaction is slower at 460°C compared to 700°C
- According to XPS results, wollastonite, anorthite, and tremolite are less reactive to SO₂ than calcite (460°C in CO₂-1.5% SO₂ for 6 days)
- Higher abundance of calcium at the surface after an experiment
- Longer experiments will be completed in the future
- This information combined with the dimensions of the sample and the known change in mass will be used to constrain the reaction rate

Acknowledgements

The PI was supported by an appointment to the NASA Postdoctoral Program at the NASA GRC, administered by ORAU under contract with NASA. The authors would like to acknowledge Nathan S. Jacobson (NASA Glenn), John Setlock (Univ. of Toledo/NASA Glenn), and Peter Bonacuse (NASA Glenn) for their assistance in the lab.

