LC 24 : Optimisation d'un procédé chimique

Niveau: CPGE

<u>Prérequis</u>: Thermochimie : application des premier et second principes

Production d'ammoniac au cours du temps

Critères de performances

- Le rendement
- Le temps de réaction
- Le coût

Critères de performances

- Le rendement
- Le temps de réaction
- Le coût

La chimie verte :
Moins de déchets
Economie d'atomes
Minimum de toxicité
...

Protocole

Protocole

Solution d'acide benzoïque à saturation C=s la solubilité, s=C°Ks V=50mL

Protocole

Influence de la température et de la pression sur l'équilibre

Document 1: Fraction molaire d'ammoniac à la sortie du réacteur

Source : Chimie PSI, tout en un, Bruno Fosset

Influence des conditions initiales sur l'équilibre

Document 3: Fraction molaire d'ammoniac à la sortie du réacteur à P = 20 MPa.

Source : Chimie PSI, tout en un, Bruno Fosset

Lois de modérations

	Perturbation	Conséquence
Van 't Hoff	Augmentation de la température	Déplacement sens endothermique
	Diminution de la température	Déplacement sens exothermique
Le Chatelier	Augmentation de la pression	Déplacement sens diminution de la quantité de matière en phase gazeuse
	Diminution de la pression	Déplacement sens augmentation de la quantité de matière en phase gazeuse

Procédé Haber-Bosch

