Espaces préhilbertiens réels

1 Produit scalaire et norme

1.1 Produit scalaire

Définition 1.1

Soit E un \mathbb{R} -espace vectoriel. On appelle **produit scalaire** sur E toute forme bilinéaire symétrique définie positive i.e. toute application $\phi \colon E^2 \to \mathbb{R}$ vérifiant :

$$\begin{aligned} \textbf{Bilin\'eaire} \ \ \forall (x,y,z) \in \mathrm{E}^3, \, \forall \lambda, \mu \in \mathbb{R}, \begin{cases} \phi(x,\lambda y + \mu z) = \lambda \phi(x,y) + \mu \phi(x,z) \\ \phi(\lambda x + \mu y,z) = \lambda \phi(x,z) + \mu \phi(y,z) \end{cases} ; \end{aligned}$$

Symétrique $\forall (x, y) \in E^2, \varphi(x, y) = \varphi(y, x);$

Définie $\forall x \in E, \varphi(x, x) = 0 \Rightarrow x = 0_E;$

Positive $\forall x \in E, \varphi(x, x) \ge 0.$

Notation 1.1

Le produit scalaire de deux éléments x et y de E se note généralement $(x \mid y), \langle x \mid y \rangle, (x, y)$ ou encore $\langle x, y \rangle$.

REMARQUE. Le produit scalaire en géométrie est bien un produit scalaire au sens de la définition précédente.

Méthode | Montrer qu'une application est un produit scalaire

On procède généralement dans l'ordre suivant.

- On vérifie que l'application est bien à valeurs dans \mathbb{R} .
- On montre la symétrie.
- On montre la linéarité par rapport à la première variable <u>ou</u> la seconde variable. La linéarité par rapport à l'autre variable découle de la symétrie.
- On montre la positivité.
- On finit par la «définition».

Exemple 1.1

On appelle produit scalaire **canonique** ou **usuel** sur \mathbb{R}^n l'application

$$\begin{cases}
(\mathbb{R}^n)^2 & \longrightarrow & \mathbb{R} \\
(x,y) & \longmapsto & \sum_{k=1}^n x_k y_k
\end{cases}$$

1

où $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$.

Exemple 1.2

L'application

$$\left\{ \begin{array}{ccc} \mathcal{M}_{n,1}(\mathbb{R})^2 & \longrightarrow & \mathbb{R} \\ (X,Y) & \longmapsto & X^\mathsf{T} Y \end{array} \right.$$

est un produit scalaire sur $\mathcal{M}_{n,1}(\mathbb{R})$.

Exemple 1.3

Soit [a, b] un segment de \mathbb{R} . Notons E le \mathbb{R} -espace vectoriel $\mathcal{C}([a, b], \mathbb{R})$. L'application

$$\left\{ \begin{array}{ccc} \mathbf{E}^2 & \longrightarrow & \mathbb{R} \\ (f, \mathbf{g}) & \longmapsto & \int_a^b f(t) \mathbf{g}(t) dt \end{array} \right.$$

est un produit scalaire.

Définition 1.2 Espace préhilbertien réel, espace euclidien

On appelle espace préhilbertien réel tout \mathbb{R} -espace vectoriel muni d'un produit scalaire.

On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

Définition 1.3

Soient E un espace vectoriel préhilbertien réel. Soit $(x, y) \in E^2$. On dit que x et y sont **orthogonaux** si $(x \mid y) = 0$. Dans ce cas, on note $x \perp y$.

REMARQUE. Le vecteur nul est orthogonal à tout vecteur.

1.2 Norme associée à un produit scalaire

Définition 1.4

Soit (. | .) un produit scalaire sur un R-espace vectoriel E. L'application

$$\left\{ \begin{array}{ccc} \mathrm{E} & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & \sqrt{(x \mid x)} \end{array} \right.$$

est appelée norme associée au produit scalaire (. | .).

Notation 1.2

Une norme associée à un produit scalaire se note usuellement ||.||.

Définition 1.5

Soit x un vecteur d'un espace préhilbertien réel. On dit que x est **unitaire** si ||x|| = 1.

Proposition 1.1 Relations entre produit scalaire et norme

Soit E un ℝ-espace vectoriel muni d'un produit scalaire (. | .) et d'une norme associée ||.||. On a les relations suivantes :

Identités remarquables : $||x + y||^2 = ||x||^2 + 2(x | y) + ||y||^2$

$$||x - y||^2 = ||x||^2 - 2(x | y) + ||y||^2$$

$$||x||^2 - ||y||^2 = (x + y \mid x - y)$$

Identités de polarisation : $(x \mid y) = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2) = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$

Identité du parallélogramme : $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

REMARQUE. Les identités de polarisation permettent donc de retrouver le produit scalaire à partir de la norme.

Remarque. Si x et y sont de même norme, alors x + y et x - y sont orthogonaux. Géométriquement, les diagonales d'un losange sont perpendiculaires.

Proposition 1.2 Inégalité de Cauchy-Schwarz

Soit (. | .) un produit scalaire sur un \mathbb{R} -espace vectoriel \mathbb{E} et $\|.\|$ sa norme associée. Alors pour tous $x, y \in \mathbb{E}$:

$$|(x \mid y)| \le ||x|| ||y||$$

avec égalité si et seulement si x et y sont colinéaires.

Remarque. Si l'on omet la valeur absolue, le cas d'égalité

$$(x \mid y) = ||x|| ||y||$$

ne se produit que si x et y sont **positivement** colinéaires, autrement dit si et seulement si il existe $\lambda \in \mathbb{R}_+$ tel que $x = \lambda y$ ou $y = \lambda x$.

Cauchy-Schwarz pour les intégrales –

Si f et g sont deux fonctions continues sur [a, b] à valeurs réelles

$$\left| \int_{a}^{b} f(t) g(t) dt \right| \le \left(\int_{a}^{b} f(t)^{2} dt \right)^{\frac{1}{2}} \left(\int_{a}^{b} g(t)^{2} dt \right)^{\frac{1}{2}}$$

ou encore

$$\left(\int_a^b f(t) g(t) dt\right)^2 \le \left(\int_a^b f(t)^2 dt\right) \left(\int_a^b g(t)^2\right)$$

Cauchy-Schwarz sur \mathbb{R}^n

Si $(x_1, ..., x_n)$ et $(y_1, ..., y_n)$ sont deux *n*-uplets de \mathbb{R}^n

$$\left| \sum_{k=1}^{n} x_k y_k \right| \le \left(\sum_{k=1}^{n} x_k^2 \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} y_k^2 \right)^{\frac{1}{2}}$$

ou encore

$$\left(\sum_{k=1}^{n} x_k y_k\right)^2 \le \left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right)$$

Proposition 1.3 Propriétés de la norme euclidienne

Soit E un ℝ-espace vectoriel muni d'un produit scalaire (. | .) et d'une norme associée ||.||.

Séparation $\forall x \in E, ||x|| = 0 \iff x = 0_E;$

Homogénéité $\forall (\lambda, x) \in \mathbb{R} \times E, ||\lambda x|| = |\lambda|||x||;$

Inégalité triangulaire $\forall (x, y) \in E^2$, $||x + y|| \le ||x|| + ||y||$.

Norme

De manière générale, on appelle **norme** sur un \mathbb{R} -espace vectoriel E toute application $N: E \to \mathbb{R}_+$ vérifiant

Séparation $\forall x \in E, N(x) = 0 \Rightarrow x = 0_E;$

Homogénéité $\forall (\lambda, x) \in \mathbb{R} \times E$, $N(\lambda x) = |\lambda|N(x)$;

Inégalité triangulaire $\forall (x, y) \in E^2$, $N(x + y) \le N(x) + N(y)$.

2 Familles orthogonales

2.1 Propriétés des familles orthogonales

Définition 2.1

Soit E un espace préhilbertien réel. Soit $(x_i)_{i \in I} \in E^I$.

(i) On dit que la famille $(x_i)_{i \in I}$ est **orthogonale** si les vecteurs x_i sont orthogonaux deux à deux i.e.

$$\forall (i,j) \in I^2, i \neq j \implies (x_i \mid x_i) = 0$$

(ii) On dit que la famille est **orthonormale** ou **orthonormée** si elle est orthogonale et si les x_i sont unitaires i.e.

$$\forall (i, j) \in I^2, (x_i \mid x_i) = \delta_{i, j}$$

Exemple 2.1

La base canonique de \mathbb{R}^n est orthonormale pour le produit scalaire canonique de \mathbb{R}^n .

Proposition 2.1 Liberté des familles orthogonales

Toute famille orthogonale ne comportant pas le vecteur nul est libre. En particulier, toute famille orthonormale est libre.

Proposition 2.2 Théorème de Pythagore

Soit (x_1, \dots, x_n) une famille orthogonale d'un espace préhilbertien réel E. Alors

$$\left\| \sum_{k=1}^{n} x_k \right\|^2 = \sum_{k=1}^{n} \|x_k\|^2$$

REMARQUE. C'est une généralisation du théorème de Pythagore que vous connaissez en deux dimensions.

2.2 Bases orthonormales

Proposition 2.3 Coordonnées dans une base orthonormale

Soient $(e_i)_{i \in I}$ une base **orthonormale** d'un espace préhilbertien E et $x \in E$. Alors $x = \sum_{i \in I} (x \mid e_i)e_i$.

Autrement dit les coordonnées de x dans la base $(e_i)_{i \in I}$ sont $((x \mid e_i))_{i \in I}$, ou encore, $\forall i \in I$, $e_i^*(x) = (x \mid e_i)$.

Proposition 2.4 Expression du produit scalaire et de la norme dans une base orthonormale

Soit $(e_i)_{i \in I}$ une base **orthonormale** d'un espace préhilbertien E. Soit $(x, y) \in E^2$. Alors

$$(x \mid y) = \sum_{i \in I} e_i^*(x) e_i^*(y) = \sum_{i \in I} (x \mid e_i) (y \mid e_i) \quad \text{et} \quad \|x\|^2 = \sum_{i \in I} e_i^*(x)^2 = \sum_{i \in I} (x \mid e_i)^2$$

Interprétation matricielle du produit scalaire

Si on note X et Y les matrices colonnes de deux vecteurs x et y dans une base orthonormale, alors $(x \mid y) = X^T Y$. En effet, $X^T Y$ est une matrice carrée de taille 1 qu'on peut identifier à un réel.

Proposition 2.5

Tout espace euclidien admet une base orthonormale.

Le résultat précédent peut être démontré grâce au procédé suivant qui permet de **construire** explicitement une famille orthonormale à partir d'une famille libre.

Procédé d'orthonormalisation de Gram-Schmidt

Soit $(e_1, ..., e_n)$ une famille libre d'un espace préhilbertien réel E. On cherche à construire une famille **orthonormale** $(f_1, ..., f_n)$ de E telle que :

$$\operatorname{vect}(e_1, \dots, e_n) = \operatorname{vect}(f_1, \dots, f_n)$$

On va raisonner par récurrence finie.

L'hypothèse de récurrence est la suivante :

HR(p): «il existe une famille orthonormale (f_1, \dots, f_p) telle que $vect(e_1, \dots, e_p) = vect(f_1, \dots, f_p)$.»

Initialisation L'initialisation est évidente, il suffit de normaliser e_1 i.e. de prendre $f_1 = \frac{e_1}{\|e_1\|}$

Hérédité On suppose HR(p) pour $1 \le p \le n-1$. Le but est de construire f_{p+1} . On cherche d'abord un vecteur g orthogonal à f_1, \ldots, f_p sous la forme

$$g = e_{p+1} - \sum_{k=1}^{p} \lambda_k f_k$$

On a alors nécessairement $\lambda_k = (f_k \mid e_{p+1})$ pour $1 \le k \le p$. Il suffit alors de normaliser g i.e. de prendre $f_{p+1} = \frac{g}{\|g\|}$. Par construction, f_{p+1} est unitaire et orthogonal à tous les f_i et $\text{vect}(e_1, \dots, e_{p+1}) = \text{vect}(f_1, \dots, f_{p+1})$.

Astuce de calcul : par le théorème de Pythagore, $\|g\|^2 = \|e_{p+1}\|^2 - \sum_{k=1}^p \lambda_k^2$.

Conclusion Par récurrence finie, HR(n) est vraie.

Exercice 2.1

Orthonormaliser la famille $(1, X, X^2)$ pour le produit scalaire sur $\mathbb{R}[X]$ suivant :

$$(P,Q) \mapsto \int_0^1 P(t)Q(t)dt$$

Corollaire 2.1

Soit E un espace euclidien. Toute famille orthonormale de E peut être complétée en une base orthonormale de E.

Remarque. Si l'on se donne une base $\mathcal{B}=(e_1,\dots,e_n)$ d'un \mathbb{R} -espace vectoriel \mathbb{E} de dimension finie, il est facile de trouver un produit scalaire pour lequel \mathcal{B} est orthonormale. Il suffit de choisir $\left\{ \begin{array}{ccc} \mathbb{E}\times\mathbb{E} & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \sum_{k=1}^n e_k^*(x)e_k^*(y) \end{array} \right.$

3 Orthogonalité

3.1 Sous-espaces orthogonaux

Définition 3.1 Sous-espaces orthogonaux

Soient F et G deux sous-espaces vectoriels d'un espace préhilbertien réel E. On dit que F et G sont orthogonaux et on note $F \perp G$ si tout vecteur de F est orthogonal à tout vecteur de G.

Proposition 3.1

Deux sous-espaces orthogonaux sont en somme directe.

Définition 3.2 Orthogonal d'une partie

Soient E un espace préhilbertien réel et A une partie E. On appelle **orthogonal** de A, noté A^{\perp} , l'ensemble des vecteurs orthogonaux à tout vecteur de A.

Exemple 3.1

$$E^{\perp} = \{0_E\} \text{ et } \{0_E\}^{\perp} = E.$$

Proposition 3.2

Soient E un espace préhilbertien réel et A une partie E. A^{\perp} est un sous-espace vectoriel de E. De plus, $A^{\perp} = \text{vect}(A)^{\perp}$.

Remarque. Si F est un sous-espace vectoriel d'un espace préhilbertien réel, F et F^{\perp} sont orthognaux.

ATTENTION! Dire que deux sous-espaces vectoriels sont orthogonaux ne signifie pas forcément que l'un est l'orthogonal de l'autre. Par exemple, deux droites de \mathbb{R}^3 peuvent être orthogonales sans que l'une soit l'orthogonal de l'autre puisque l'orthogonal d'une droite dans \mathbb{R}^3 est un plan. En fait,

$$F \perp G \iff F \subset G^{\perp} \iff G \subset F^{\perp}$$

Exercice 3.1

Soit A une partie d'un espace préhilbertien réel. Montrer que $A \subset (A^{\perp})^{\perp}$.

Exercice 3.2

Soient A et B deux parties d'un espace préhilbertien réel. Montrer que si $A \subset B$, alors $B^{\perp} \subset A^{\perp}$. Montrer à l'aide d'un contre-exemple que la réciproque est fausse.

Proposition 3.3 Propriétés de l'orthogonal

Soient E un espace préhilbertien réel et F un sous-espace vectoriel de E.

- (i) Si F admet un supplémentaire orthogonal G dans E, alors $G = F^{\perp}$. De plus, dans ce cas, $(F^{\perp})^{\perp} = F$.
- (ii) Si F est de **dimension finie**, alors F^{\perp} est l'unique supplémentaire orthogonal de F dans E. On a alors $(F^{\perp})^{\perp} = F$.
- (iii) Si E est un espace euclidien, $\dim F^{\perp} = \dim E \dim F$.

Remarque. Si F est de **dimension finie** (et a fortiori quand E est lui-même de dimension finie), on a toujours $E = F \oplus F^{\perp}$.

ATTENTION! Si F n'est pas de dimension finie, F^{\perp} n'est pas nécessairement un supplémentaire de F : on peut seulement affirmer que F et F^{\perp} sont en somme directe.

On ne peut pas non plus affirmer que $(F^{\perp})^{\perp} = F$ mais seulement que $F \subset (F^{\perp})^{\perp}$.

Exemple 3.2

Munissons $E = \mathbb{R}[X]$ de son produit scalaire «usuel»

$$\left(\sum_{n=0}^{+\infty} a_n X^n, \sum_{n=0}^{+\infty} b_n X^n\right) \mapsto \sum_{n=0}^{+\infty} a_n b_n$$

et considérons $F = \{P \in E, \ P(1) = 0\}$. Soit $P = \sum_{n=0}^{+\infty} a_n X^n \in F^{\perp}$. Notamment, $\langle P, X^{n+1} - X^n \rangle = 0$ pour tout $n \in \mathbb{N}$ i.e.

 $a_{n+1} = a_n$ pour tout $n \in \mathbb{N}$. La suite (a_n) est donc constante. Mais comme cette suite est presque nulle, elle est en fait constamment nulle. On en déduit que P = 0 puis que $F^{\perp} = \{0\}$. Par conséquent, $F \oplus F^{\perp} = F \neq E$ et $F \subseteq (F^{\perp})^{\perp} = E$.

Exercice 3.3

Soient F et G deux sous-espaces vectoriels d'un espace préhilbertien réel E.

- 1. Montrer que $F \subset G \implies G^{\perp} \subset F^{\perp}$ et que, si F et G sont de dimension finie, $G^{\perp} \subset F^{\perp} \implies F \subset G$.
- 2. Montrer que $(F + G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- 3. Montrer que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$ et que, si E est de dimension finie, $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Exemple 3.3

Soit E un espace euclidien de dimension 4 muni d'une base orthonormale $\mathcal{B}=(e_1,e_2,e_3,e_4)$. Soit F un sous-espace vectoriel défini par le système d'équation $\begin{cases} -x+y-3z+2t=0\\ 3x+4y-z+t=0 \end{cases}$ dans la base \mathcal{B} . Alors $F^{\perp}=\mathrm{vect}(-e_1+e_2-3e_3+2e_4,3e_1+4e_2-e_3+e_4)$.

3.2 Projecteurs orthogonaux, symétries orthogonales

Définition 3.3 Projecteur orthogonal

Soient E un espace préhilbertien réel et F un sous-espace vectoriel de E. Si $E = F \oplus F^{\perp}$, on appelle **projecteur orthogonal** sur F le projecteur sur F parallèlement à F^{\perp} .

REMARQUE. La projection orthogonale sur F est notamment définie lorsque F est de dimension finie.

Proposition 3.4 Expression de la projection orthogonale dans une base orthonormale

Soient E un espace préhilbertien réel et F un sous-espace vectoriel de **dimension finie** de E. On se donne une base orthonormale $(f_1, ..., f_n)$ de F. Soient p le projecteur orthogonal sur F et $x \in E$. Alors

$$p(x) = \sum_{k=1}^{n} (x \mid f_k) f_k$$

Remarque. En particulier la projection d'un vecteur x sur une droite vectorielle vect(u) est $\frac{(x \mid u)}{\|u\|^2}u$. Si u est normé, alors cette projection est simplement $(x \mid u)u$.

Remarque. On peut donner une interprétation géométrique de la méthode de Gram-Schmidt. Soit (e_1, \dots, e_n) une famille libre d'un espace préhilbertien réel E. On sait qu'on peut construire une famille **orthonormale** (f_1, \dots, f_n) de E telle que :

$$\forall k \in [1, n], \text{ vect}(e_1, \dots, e_k) = \text{vect}(f_1, \dots, f_k) = F_k$$

Alors, en convenant que $F_0 = \{0\}$, pour tout $k \in [0, n-1]$, $f_{k+1} = \frac{p_{F_k^{\perp}}(e_{k+1})}{\|p_{F_k^{\perp}}(e_{k+1})\|}$.

Exercice 3.4

Soit F un sous-espace vectoriel d'un espace euclidien E. On se donne \mathcal{B} une base orthonormale de E et \mathcal{F} une base orthonormale de F. On note enfin M la matrice de \mathcal{F} dans la base \mathcal{B} . Montrer que la matrice du projecteur orthogonals sur F dans la base \mathcal{B} est MM^{T} .

3.3 Distance à un sous-espace vectoriel

Définition 3.4 Distance à un sous-espace vectoriel

Soient E un espace préhilbertien réel, $x \in E$ et F un sous-espace vectoriel de **dimension finie** de E. La distance de x à F est :

$$d(x, F) = \inf_{y \in F} ||x - y||$$

Proposition 3.5

Soient E un espace préhilbertien réel, $x \in E$ et F un sous-espace vectoriel de **dimension finie** de E. La distance de x à F est atteinte en $p_F(x)$, où p_F désigne la projection orthogonale sur F. Autrement dit,

$$d(x, F) = ||x - p_F(x)||$$

De plus, $p_F(x)$ est l'unique vecteur y de F tel que d(x, F) = ||x - y||.

Remarque. D'après Pythagore, on a : $||x-p_{\mathbf{F}}(x)||^2 = ||x||^2 - ||p_{\mathbf{F}}(x)||^2$. En particulier, si (f_1, \dots, f_n) est une base orthonormale de \mathbf{F} ,

$$||x - p_{\mathbf{F}}(x)||^2 = ||x||^2 - \sum_{k=1}^{n} (x \mid f_k)^2$$

Cette remarque peut avoir un intérêt pour le calcul pratique de distance.

Remarque. Puisque $x - p_F(x) = p_{F^{\perp}}(x)$, on a également $d(x, F) = ||p_{F^{\perp}}(x)||$.

3.4 Hyperplans

Proposition 3.6 Vecteur normal à un hyperplan

Soit E un espace préhilbertien réel.

- (i) Pour tout vecteur non nul $n \in E$, $H = \text{vect}(n)^{\perp}$ est un hyperplan de E.
- (ii) Pour tout hyperplan H de E, il existe un vecteur non nul $n \in E$ tel que H = $\text{vect}(n)^{\perp}$.

Dans ce cas, on dit que *n* est un **vecteur normal** à l'hyperplan H.

REMARQUE. On peut toujours choisir un vecteur normal unitaire quitte à le diviser par sa norme.

Proposition 3.7 Projeté orthogonal sur un hyperplan

Soit $H = \text{vect}(n)^{\perp}$ un hyperplan d'un espace euclidien E. Alors le projeté orthogonal d'un vecteur $x \in E$ sur H est $x - \frac{\langle x, n \rangle}{\|n\|^2} n$.

Remarque. Si *n* est un vecteur unitaire, alors le projeté orthogonal de $x \in E$ sur $H = \text{vect}(n)^{\perp}$ est $x - \langle x, n \rangle n$.

Proposition 3.8 Distance à un hyperplan

Soit H = vect(n)^{\perp} un hyperplan d'un espace euclidien E. Alors la distance de $x \in E$ à H est $d(x, H) = \frac{|\langle x, n \rangle|}{\|n\|}$.

Remarque. Si *n* est unitaire, $d(x, H) = |\langle x, n \rangle|$.