1. For the following subquestions consider the following grammar:

$$S \rightarrow AA\$$$

$$A \rightarrow xA$$

$$A \rightarrow B$$

$$B \rightarrow yB$$

$$B \rightarrow \lambda$$

(a) What are the terminals and nonterminals of this language

The terminals are $\$, x, y, \lambda$ The nonterminals are S, A, B

(b) Describe the strings that are generated by this language. Is this a regular language?

This language generates strings that start with 0 or more x's, and ends with 0 or more y's and exactly one \$. It is regular and can be described by the regular expression $x^*y^*x^*y^*\$$.

(c) Show the derivation of the string xyxxy\$ starting from S, and give the parse tree according to that derivation.

Derivation	Remaining	Predict Rule
Borrows	String	1100100 10010
S	xyxxy\$	Predict(1)
AA\$	xyxxy\$	Predict(2)
xAA\$	xyxxy\$	Match(x)
AA\$	yxxy\$	Predict(3)
BA\$	yxxy\$	Predict(4)
yBA\$	yxxy\$	Match(y)
BA\$	xxy\$	Predict(5)
A\$	xxy\$	Predict(2)
xA\$	xxy\$	Match(x)
A\$	xy\$	Predict(2)
xA\$	xy\$	Match(x)
A\$	<i>y</i> \$	Predict(3)
B\$	<i>y</i> \$	Predict(4)
yB\$	<i>y</i> \$	Match(y)
B\$	\$	Predict(5)
\$	\$	Match(\$)

Parse Tree

(d) Give the first and follow sets for each nonterminal

$$First(S) = \{x,y,\$,\lambda\}$$

$$First(A) = \{x, y, \lambda\}$$

$$First(B) = \{y, \lambda\}$$

$$Follow(S) = \{\$\}$$

$$Follow(A) = \{x, y, \$\}$$

$$Follow(B) = \{x, y, \$\}$$

(e) Give the predict sets for each production

$$Predict(1) = \{x, y, \$\}$$

$$Predict(2) = \{x\}$$

$$Predict(3) = \{y, \$\}$$

$$Predict(4) = \{y\}$$

$$Predict(5) = \{x, y, \$\}$$

(f) Give the parse table for the grammar. Is this a LL(1) grammar? Why or why not?

Left Hand Side	x	y	\$
S	Predict(1)	Predict(1)	Predict(1)
A	Predict(2)	Predict(3)	Predict(3)
В	Predict(5)	Predict(4)	Predict(5)

The grammar is LL(1) because there is at most one predict rule in every place in the table.

2. For the following subquestions consider the following grammar:

$$S \to AB\$$$

$$A \to xB$$

$$A \to xw$$

$$B \to xyA$$

$$B \to z$$

- (a) Build a CFSM for this grammar
- (b) Build the goto and action tables for this grammar. Is it an LR(0) grammar? Why or why not?
- (c) Show the steps taken by the parser when parsing the string: xzxyxz. Give the action and show the state stack and remaining input for each step of the parse. Shift actions should be in the form of "Shift X" where X is the state shifting to, and Reduce actions should be in the form "Reduce R, goto X" where R is the rule being use dot reduce and X is the state the parser winds up in.
- (d) Suppose we change the last production to:

$$B \to w$$

Is the resulting grammar LR(0)? Why or why not?