Name:	

MASTERY QUIZ DAY 18

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

S1. Determine if the set of matrices $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 1 & 3 \\ -1 & 2 & -8 \\ 0 & -2 & 6 \\ 4 & 1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has a nonpivot column, the vectors are linearly dependent.

S3. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix}, \begin{bmatrix} 1\\2\\2\end{bmatrix}, \begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$. Find a basis for W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute $RREF(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\left\{ \begin{bmatrix} -3\\-8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$ is a basis for W.

S4. Let W be the subspace of $M_{2,2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$. Compute the dimension of W.

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

A1. Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

A2. Determine if the map $T: \mathcal{P}^3 \to \mathcal{P}^4$ given by T(f(x)) = xf(x) - f(x) is a linear transformation or not.

S1:

S3:

S4:

A1:

A2: