

Contenidos

Tema 1

Repaso: algoritmos de aprendizaje supervisado Tema 2

Overfitting y underfitting

Proceso de Ciencia de Datos

Fuente: Adaptado de O'Neil, Cathy, Schutt, Rachel. "Doing Data Science", O'Reilly Media.

ALGORITMOS DE APRENDIZAJE SUPERVISADO

ALGORITMOS DE APRENDIZAJE DE MÁQUINA

Algoritmos de aprendizaje de máquina (ML)

métodos computacionales que utilizan data anterior (i.e. experiencia) para generar modelos o programas capaces de realizar tareas como predecir, clasificar, agrupar, ordenar o reducir dimensionalidad.

- Para una tarea dada, pueden proponerse múltiples algoritmos posibles.
- El éxito de un algoritmo de ML se evalúa en base a métricas de precisión, eficiencia y tiempo computacional.
- La elección del algoritmo a usar dependerá de: contexto y complejidad del problema, suposiciones de base, tamaño y variedad de la data disponible.
- Implementación.

APRENDIZAJE SUPERVISADO

El objetivo es realizar predicciones precisas para *nuevos datos* con características similares a los datos usados para construir el modelo -> generalización

Entrenamiento y testeo:

Hiperparámetros (θ) \Rightarrow parámetros libres del modelo que no son determinados por el algoritmo, sino entregados como input

MODELOS DE REGRESIÓN

En un problema de regresión, buscamos predecir el valor de una variable a partir del valor de otras variables.

Ejemplo: Predecir el consumo de combustible de un auto a partir de sus características de diseño.

												[
_ >		car_name	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
	d :	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
	1,2,.	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
	<u>II</u> 3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
	4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
		$V - \alpha$	27		v _	· V		V					V

$$Y = y_1, \dots, y_n$$

$$Y = y_1, \dots, y_n \qquad X = X_1, \dots, X_p$$

outcome / variable dependiente respuesta

$$X_j = x_{1j}, \dots, x_{ij}, \dots, x_{nj}$$

predictores /variable independiente/ features

MODELOS DE REGRESIÓN: kNN

Regresión kNN

$$\hat{y}_i = \frac{1}{k} \sum_{j=1}^k y_{i_j}$$

Donde $\{x_{i1},...,x_{ik}\}$ son las k observaciones más similares (cercanas) a x_i

Requiere normalización de variables.

MODELOS DE REGRESIÓN: REGRESIÓN LINEAL Y MULTILINEAL

Regresión Lineal

Y depende de una variable predictora.

$$Y = f(X) + \epsilon = \beta_0 + \beta_1 X + \epsilon$$

Regresión Multilineal

Y depende de varias variables predictoras.

$$Y = f(X_1, ..., X_J) + \epsilon = \beta_0 + \beta_1 X_1 ... + \beta_J X_J + \epsilon$$

$$\Rightarrow Y = \beta X$$

$$\mathbf{Y} = \left(egin{array}{c} y_1 \ dots \ y_y \end{array}
ight), \qquad \mathbf{X} = \left(egin{array}{cccc} 1 & x_{1,1} & \dots & x_{1,J} \ 1 & x_{2,1} & \dots & x_{2,J} \ dots & dots & \ddots & dots \ 1 & x_{n,1} & \dots & x_{n,J} \end{array}
ight), \qquad oldsymbol{eta} = \left(egin{array}{c} eta_0 \ eta_1 \ dots \ eta_J \end{array}
ight),$$

$$\mathcal{L}(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 X_1 \dots + \beta_J X_J))^2 \Rightarrow \hat{\beta} = \operatorname{argmin} \mathcal{L}(\beta)$$

MODELOS DE REGRESIÓN: REGRESIÓN POLINOMIAL

Regresión polinomial:

$$Y = f_{\beta}(X)$$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$$

f: una función no-lineal

 β : vector de parámetros de f

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} 1 & x_1^1 & \dots & x_1^M \\ 1 & x_2^1 & \dots & x_2^M \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^M \end{pmatrix}, \qquad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_M \end{pmatrix}. \qquad \Rightarrow \mathbf{Y} = \boldsymbol{\beta} \mathbf{X}$$

$$\begin{array}{c|c} & \beta_1 \\ \vdots & \end{array} \qquad \Rightarrow \qquad Y =$$

MODELOS DE CLASIFICACIÓN

Underfitting (subajuste)

Alto error de entrenamiento Error de prueba similar a error de entrenamiento

Óptimo

Error de entrenamiento levemente más bajos que error de prueba

Overfitting (sobreajuste)

Muy bajo error de entrenamiento Error de prueba mucho mayor a error de entrenamiento

Si el modelo se ajusta muy cercanamente a la data de entrenamiento, pero falla al generalizar o predecir la data de prueba overfitting

Factores que influyen en overfitting:

1. Complejidad del modelo (d)

- Demasiado simple

 underfitting
- Demasiado complejo

 overfitting

Figure 2-1. Trade-off of model complexity against training and test accuracy

Factores que influyen en overfitting:

2. Nº de datos de entrenamiento (N)

A mayor cantidad y variedad de datos, más complejo puede ser el modelo sin caer en overfitting

3. Magnitud del ruido

Mientras más ruidosos son los datos,
 mayor posibilidad de sobreajuste.

Figure 2-1. Trade-off of model complexity against training and test accuracy

Underfitting (subajuste)

Alto error de entrenamiento Error de prueba similar a error de entrenamiento

Complejizar modelo Agregar features

Óptimo

Error de entrenamiento levemente más bajos que error de prueba

Regresión

Clasificación

Overfitting (sobreajuste)

Muy bajo error de entrenamiento Error de prueba mucho mayor a error de entrenamiento

REGRESIÓN Y OVERFITTING $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$

Supongamos un modelo de regresión polinomial para un conjunto de n=30 datos

Ajuste lineal

underfitting

REGRESIÓN Y OVERFITTING $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$

Disminuye el error ©

REGRESIÓN Y OVERFITTING $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$

Disminuye el error ©

 $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$

Supongamos un modelo de regresión polinomial para un conjunto de n=30 datos

Aumenta el error de validación

comienza el overfitting...(M=8)

Valores de los coeficientes se hacen extremos 😕

 $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$

Supongamos un modelo de regresión polinomial para un conjunto de n=30 datos

Overfitting!! : Valores de los coeficientes se hacen más extremos :

Supongamos un modelo de regresión polinomial para un conjunto de n=30 datos

se hacen muy extremos 😕

¿Qué pasa si agregamos más datos?

□ Con más datos, puedo entrenar un modelo más complejo, con menor riesgo de caer en overfitting.

Conclusión: ¿Cómo evitar problemas de overfitting en modelos de regresión?

- ☐ Revisar la complejidad del modelo (grado de la función polinomial, cantidad de features)
- Agregar datos
- Reducir el ruido de los datos

Regularización: agregar términos en la función de pérdida, que penalizan los valores extremos de los coeficientes de la regresión.

$$L_{reg}(\beta) = L(\beta) + \boxed{\alpha R(\beta)} \longrightarrow \text{regularización}$$

$$L_{LASSO}(\beta) = L(\beta) + \alpha \sum_{m=1}^{M} |\beta_m|$$

