Machine Learning Lecture 1: intro to ML

Radoslav Neychev MIPT, 2021

Outline

- Introduction to Machine Learning, motivation
- 2. ML thesaurus and notation
- 3. Maximum Likelihood Estimation
- 4. Machine Learning problems overview (selection):
 - a. Classification
 - o. Regression
 - c. Dimensionality reduction
- 5. Naïve Bayes classifier
- 6. k Nearest Neighbours (kNN)

Motivation, historical overview and current state of ML and Al

girafe ai

Machine Learning applications

- Object detection
- Action classification
- Image captioning
-

Machine Learning applications

Machine Learning applications

Data Knowledge

Long before the ML

Isaac Newton

Johannes Kepler

Long before the ML

Eratosthenes

girafe

Denote the **dataset**.

\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
· ·	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
J	student	23	3	3	NA	Esperanto	2	FALSE

Observation (or datum, or data point) is one piece of information.

,		•		. ,	·			
\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

In many cases the observations are supposed to be *i.i.d.*

- independent
- identically distributed

Feature (or predictor) represents some special property.

\langle			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

	,							
/			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

	,							
/			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

,								
\langle			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

And even the name is a **feature**

	<mark>/</mark>							
/			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

The **design matrix** contains all the features and observations.

,	,							
\langle			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
X	student	23	3	3	NA	Esperanto	2	FALSE

Features can even be multidimensional, we will discuss it later in this course.

Target represents the information we are interested in.

							I	
/			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
Y	student	23	3	3	NA	Esperanto	2	FALSE

Target can be either a **number** (real, integer, etc.) – for **regression** problem

Target represents the information we are interested in.

/								
			Statistics	Python		Native	Target	Target
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
/	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
	student	23	3	3	NA	Esperanto	2	FALSE

Or a **label** – for **classification** problem

Target represents the information we are interested in.

/								
/			Statistics	Python		Native	Target	Target
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(passed)
	John	22	5	4	Brown	English	5	TRUE
1	Aahna	17	4	5	Brown	Hindi	4	TRUE
	Emily	25	5	5	Blue	Chinese	5	TRUE
	Michael	27	3	4	Green	French	5	TRUE
	Some							
Y	student	23	3	3	NA	Esperanto	2	FALSE

Mark can be treated as a label too (due to finite number of labels: 1 to 5). We will discuss it later.

Further we will work with the numerical target (mark)

Name	Age	Statistics (mark)	Python (mark)	Eye color	Native language	Target (mark)
John	22	,	,	Brown	English	5
Aahna	17	4	5	Brown	Hindi	4
Emily	25	5	5	Blue	Chinese	5
Michael	27	3	4	Green	French	5
Some						
student	23	3	3	NA	Esperanto	2

The **prediction** contains values we predicted using some **model**.

\langle			Statistics	Python		Native	Target	Predicted
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	4.5
1	Aahna	17	4	5	Brown	Hindi	4	4.5
	Emily	25	5	5	Blue	Chinese	5	5
	Michael	27	3	4	Green	French	5	3.5
	Some							
	student	23	3	3	NA	Esperanto	2	3

One could notice that prediction just averages of Statistics and Python marks. So our **model** can be represented as follows:

The **prediction** contains values we predicted using some **model**.

			Statistics	Python	_	Native	Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	4.5
	Aahna	17	4	5	Brown	Hindi	4	4.5
	Emily	25	5	5	Blue	Chinese	5	5
_	Michael	27	3	4	Green	French	5	3.5
	Some							
1	student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions:

The **prediction** contains values we predicted using some **model**.

	Name	Age	Statistics (mark)	Python (mark)	Eye color		Target (mark)	Predicted (mark)
	John	22	5	4	Brown	English	5	1
	Aahna	17	4	5	Brown	Hindi	4	5
	Emily	25	5	5	Blue	Chinese	5	2
	Michael	27	3	4	Green	French	5	4
	Some							
1	student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions:

$$\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$$

The **prediction** contains values we predicted using some **model**.

			I			I	I	
			Statistics	Python		Native	Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	1
/	Aahna	17	4	5	Brown	Hindi	4	5
	Emily	25	5	5	Blue	Chinese	5	2
	Michael	27	3	4	Green	French	5	4
	Some							
	student	23	3	3	NA	Esperanto	2	3

Different models can provide different predictions.

Usually some hypothesis lies beneath the model choice.

Loss function measures the error rate of our model.

Square deviation	Target (mark)	Predicted (mark)
16	5	1
1	4	5
9	5	2
1	5	4
1	2	3

• **Mean Squared Error** (where **y** is vector of targets):

$$MSE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2 = \frac{1}{N} \sum_{i} (y_i - \hat{y}_i)^2$$

Loss function measures the error rate of our model.

Absolute deviation	Target (mark)	Predicted (mark)
4	5	1
1	4	5
3	5	2
1	5	4
1		7
	2	3

• **Mean Absolute Error** (where **y** is vector of targets):

$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_1 = \frac{1}{N} \sum_{i} |y_i - \hat{y}_i|$$

To learn something, our **model** needs some degrees of freedom:

	Name	Age	Statistics (mark)	Python (mark)	Eye color		Target (mark)	Predicted (mark)
	John	22	5	4	Brown	English	5	4.5
	Aahna	17	4	5	Brown	Hindi	4	4.5
	Emily	25	5	5	Blue	Chinese	5	5
	Michael	27	3	4	Green	French	5	3.5
	Some							
1	student	23	3	3	NA	Esperanto	2	3

$$\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$$

To learn something, our **model** needs some degrees of freedom:

			Statistics	Python		Native	Target	Predicted
\	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	4.447
	Aahna	17	4	5	Brown	Hindi	4	4.734
	Emily	25	5	5	Blue	Chinese	5	5.101
	Michael	27	3	4	Green	French	5	3.714
	Some							
1	student	23	3	3	NA	Esperanto	2	3.060

$$\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$$

To learn something, our **model** needs some degrees of freedom:

			Statistics	Python		Native	Target	Predicted
	Name	Age	(mark)	(mark)	Eye color	language	(mark)	(mark)
	John	22	5	4	Brown	English	5	1
	Aahna	17	4	5	Brown	Hindi	4	5
	Emily	25	5	5	Blue	Chinese	5	2
	Michael	27	3	4	Green	French	5	4
	Some							
1	student	23	3	3	NA	Esperanto	2	3

$$\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$$

Last term we should learn for now is **hyperparameter**.

Hyperparameter should be fixed before our model starts to work with the data.

We will discuss it later with kNN as an example.

Recap:

- Dataset
- Observation (datum)
- Feature
- Design matrix
- Target
- Prediction
- Model
- Loss function
- Parameter
- Hyperparameter

Maximum Likelihood Estimation

girafe

Likelihood

Denote dataset generated by distribution with parameter heta

Likelihood function:

$$L(\theta|X,Y) = P(X,Y|\theta)$$

$$L(\theta|X,Y) \longrightarrow \max_{\theta}$$

samples should be i.i.d.

$$L(\theta|X,Y) = P(X,Y|\theta) = \prod_{i} P(x_i, y_i|\theta)$$

Maximum Likelihood Estimation

Likelihood

Denote dataset generated by distribution with parameter $oldsymbol{ heta}$

Likelihood function:

$$L(\theta|X,Y) = P(X,Y|\theta)$$

$$L(\theta|X,Y) \longrightarrow \max_{\theta} \ \ \text{samples should be i.i.d.}$$

$$L(\theta|X,Y) = P(X,Y|\theta) = \prod_{i} P(x_i,y_i|\theta)$$

equivalent to

$$\log L(\theta|X,Y) = \sum_{i} \log P(x_i, y_i|\theta) \longrightarrow \max_{\theta}$$

Machine Learning problems overview

girafe

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - $\circ (\mathbf{x} \in \mathbb{R}^p, y \in \mathbb{R})$ for regression
 - $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification
- ullet Model $f(\mathbf{X})$ predicts some value for every object
- ullet Loss function $Q(\mathbf{x},y,f)$ that should be minimized

• Regression problem

- Regression problem
- Classification problem

- Regression problem
- Classification problem
- Dimensionality reduction

girafe ai

Let's denote:

- ullet Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - $oldsymbol{arphi}_i \in \mathbb{R}^{p}$, $y_i \in \{C_1, \dots, C_k\}$ for k-class classification

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

or, in our case

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{C_1, \dots, C_K\}$ for K-class classification

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are **independent**

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are independent:

$$P(\mathbf{x}_i|y_i = C_k) = \prod_{l=1}^{r} P(x_i^l|y_i = C_k)$$

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Optimal class label:

$$C^* = \arg\max_k P(y_i = C_k | \mathbf{x_i})$$

To find maximum we even do not need the denominator

But we need it to get probabilities

kNN – k Nearest Neighbors

girafe ai

kNN - k Nearest Neighbours

kNN - k Nearest Neighbours

k Nearest Neighbors Method

Given a new observation:

- 1. Calculate the distance to each of the samples in the dataset.
- 2. Select samples from the dataset with the minimal distance to them.
- 3. The label of the new observation will be the most frequent label among those nearest neighbors.

How to make it better?

• The number of neighbors k (it is a **hyperparameter**)

kNN - k Nearest Neighbours

How to make it better?

- The number of neighbors k (it is a **hyperparameter**)
- The distance measure between samples
 - a. Hamming
 - b. Euclidean
 - c. cosine
 - d. Minkowski distances
 - e. etc.
- Weighted neighbours

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

$$k = 4$$

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

ullet or on the distance itself $w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$

$$p_{\text{green}} = \frac{w(\mathbf{x}_1) + w(\mathbf{x}_2)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

 $oldsymbol{w}$ or on the distance itself $w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$

$$p_{\text{blue}} = \frac{w(\mathbf{x}_3) + w(\mathbf{x}_4)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

Outro

- Remember the i.i.d. property
- Usually the first dimension corresponds to the batch size, the second (and so on) to the features/time/...
- Even the naïve assumptions may be suitable in some cases
- Simple models provide great baselines

Revise

- Introduction to Machine Learning, motivation
- 2. ML thesaurus and notation
- 3. Maximum Likelihood Estimation
- 4. Machine Learning problems overview (selection):
 - a. Classification
 - b. Regression
 - c. Dimensionality reduction
- 5. Naïve Bayes classifier
- 6. k Nearest Neighbours (kNN)

A&Q

Thanks for attention!

Model validation and evaluation

Supervised learning problem statement

Let's denote:

- ullet Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ ($\mathbf{x} \in \mathbb{R}^p$, $y \in \mathbb{R}$) for regression
 - $\mathbf{x}_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification

Model $f(\mathbf{x})$ predicts some value for every object

Loss function $Q(\mathbf{x},y,f)$ that should be minimized

Overfitting vs. underfitting

Under-fitting

Appropriate-fitting

Over-fitting

(too simple to explain the variance)

(forcefitting -- too good to be true)

Overfitting vs. underfitting

Overfitting vs. underfitting

- We can control overfitting / underfitting by altering model's capacity (ability to fit a wide variety of functions):
- select appropriate hypothesis space
- learning algorithm's effective capacity may be less than the representational capacity of the model family

Dataset

Training

Testing

Holdout Method

Is it good enough?

Cross-validation

