262,144-Word x 16-Bit Dynamic Random Access Memory

■ DESCRIPTION

The Hitachi HM514260A/AL are CMOS dynamic RAM organized as 262,144-word x 16-bit. HM514260A/AL have realized higher density, higher performance and various functions by employing 0.8 μ m CMOS process technology and some new CMOS circuit design technologies. The HM514260A/AL offer fast page mode as a high speed access mode.

Multiplexed address input permits the HM514260A/AL to be packaged in standard 400 mil 40-pin plastic SOJ, standard 475 mil 40-pin plastic ZIP and standard 400 mil 40-pin plastic TSOPII.

Internal refresh timer enables HM51S4260A/AL self refresh operation.

■ FEATURES

- Single 5V (±10%)
- · High Speed

Access Time70 ns/80 ns/100 ns (max)

Low Power Dissipation

Active Mode825 mW/770 mW/688 mW (max) Standby Mode11 mW (max)

1.1 mW (max) (L-Version)

Fast Page Mode Capability

• 512 Refresh Cycles 8 ms

128 ms (L-Version)

- 2 CAS Byte Control
- 2 Variations of Refresh
 RAS Only Refresh
 CAS Before RAS Refresh
- · Battery Back-up Operation (L-Version)
- Self-Refresh Operation (HM51S4260A/AL)

M ORDERING INFORMATION

Part No.	Access Time	Package
HM514260AJ-7	70 ns	400 mil 40-pin
HM514260AJ-8	80 ns	Plastic SOJ
HM514260AJ-10	100 ns	(CP-40DA)
HM514260AZ-7	70 ns	475 mil 40-pin
HM514260AZ-8	80 ns	Plastic ZIP
HM514260AZ-10	100 ns	(ZP-40)
HM514260ATT-7	70 ns	400 mil 40-pin
HM514260ATT-8	80 ns	Plastic TSOPII
HM514260ATT-10	100 ns	(TTP-40DB)
HM514260ARR-7	70 ns	400 mil 40-pin
HM514260ARR-8	80 ns	Plastic TSOPII
HM514260ARR-10	100 ns	(TTP-40DB)
HM514260ALJ-7	70 ns	400 mil 40-pin
HM514260ALJ-8	80 ns	Plastic SOJ
HM514260ALJ-10	100 ns	(CP-40DA)
HM514260ALZ-7	70 ns	475 mil 40-pin
HM514260ALZ-8	80 ns	Plastic ZIP
HM514260ALZ-10	100 ns	(ZP-40)
HM514260ALTT-7	70 ns	400 mil 40-pin
HM514260ALTT-8	80 ns	Plastic TSOPII
HM514260ALTT-10	100 ns	(TTP-40DB)
HM514260ALRR-7	70 ns	400 mil 40-pin
HM514260ALRR-8	80 ns	Plastic TSOPII
HM514260ALRR-10	100 ns	(TTP-40DB)

Part No.	Access Time	Package
HM51S4260AJ-7	70 ns	400 mil 40-pin
HM51S4260AJ-8	80 ns	Plastic SOJ
HM51S4260AJ-10	100 ns	(CP-40DA)
HM51S4260AZ-7	70 ns	475 mil 40-pin
HM51S4260AZ-8	80 ns	Plastic ZIP
HM51S4260AZ-10	100 ns	(ZP-40)
HM51S4260ATT-7	70 ns	400 mil 40-pin
HM51S4260ATT-8	80 ns	Plastic TSOPII
HM51S4260ATT-10	100 ns	(TTP-40DB)
HM51S4260ARR-7	70 ns	400 mil 40-pin
HM51S4260ARR-8	80 ns	Plastic TSOPII
HM51S4260ARR-10	100 ns	(TTP-40DB)
HM51S4260ALJ-7	70 ns	400 mil 40-pin
HM51S4260ALJ-8	80 ns	Plastic SOJ
HM51S4260ALJ-10	100 ns	(CP-40DA)
HM51S4260ALZ-7	70 ns	475 mil 40-pin
HM51S4260ALZ-8	80 ns	Plastic ZIP
HM51S4260ALZ-10	100 ns	(ZP-40)
HM51S4260ALTT-7	70 ns	400 mil 40-pin
HM51S4260ALTT-8	80 ns	Plastic TSOPII
HM51S4260ALTT-10	100 ns	(TTP-40DB)
HM51S4260ALRR-7	70 ns	400 mil 40-pin
HM51S4260ALRR-8	80 ns	Plastic TSOPII
HM51S4260ALRR-10	100 ns	(TTP-40DB)

		LRR Series	
VO11 (VO10 (VO9 (3 4 5 5 7	40 V _{CC} 39 1000 38 101 37 102 36 103 35 104 33 105 32 106 31 107	
NC LCAS LUCAS COE AB A7 A6 A5 A4 LVss L		30 NC 29 NC 28 WE 27 RAS 26 NC 25 A0 24 A1 23 A2 22 A3 21 Vcc	
	(Top View	v)	00134-4

■ PIN DESCRIPTION

Pin Name	Function
A ₀ -A ₈	Address Input -Row Address A ₀ -A ₈ -Column Address A ₀ -A ₈ -Refresh Address A ₀ -A ₈
I/O ₀ -I/O ₁₅	Data-in/Data-out
RAS	Row Address Strobe
UCAS/LCAS	Column Address Strobe
WE	Read/Write Enable
ŌĒ	Output Enable
v _{cc}	Power (+ 5V)
V _{SS}	Ground

■ BLOCK DIAGRAM

TRUTH TABLE

	/0	I,			Inputs		
Operation	I/O ₈ -I/O ₁₅	I/O ₀ -I/O ₇	ŌĒ	WE	<u>UCAS</u>	LCAS	RAS
Standby	High-Z	High-Z	Н	Н	Н	Н	H
Refresh	High-Z	High-Z	Н	Н	Н	Н	L
Lower Byte Read	High-Z	D _{out}	L	Н	Н	L	L
Upper Byte Read	D _{out}	High-Z	L	Н	L	Н	L
Word Read	D _{out}	D _{out}	L	Н	L	L	L
Lower Byte Write	Don't Care	D _{in}	Н	L	Н	L	L
Upper Byte Write	D _{in}	Don't Care	H	L	L	Н	L
Word Write	D _{in}	D _{in}	Н	L	L	L	L
	High-Z	High-Z	Н	Н	L	L	L
CDD D 4 4	High-Z	High-Z	_		Н	L	H to L
CBR Refresh or	High-Z	High-Z	_		L	Н	H to L
Self Refresh	High-Z	High-Z			L	L	H to L

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on Any Pin Relative to V _{SS}	v _T	-1.0 to +7.0	v
Supply Voltage Relative to V _{SS}	v _{cc}	- 1.0 to + 7.0	v
Short Circuit Output Current	I _{out}	50	mA
Power Dissipation	P_{T}	1.0	w
Operating Temperature	Topr	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	

■ ELECTRICAL CHARACTERISTICS

• Recommended DC Operating Conditions ($T_A = 0 \text{ to } +70^{\circ}\text{C}$)²

Para	meter	Symbol	Min	Тур	Max	Unit	Note
Supply Voltage		V _{SS}	0	0	0	v	
		v _{cc}	4.5	5.0	5.5	v	1
Input High Volt	age	v _{IH}	2.4		6.5	v	
Input Low	(I/O Pin)	V _{IL}	- 1.0	_	0.8	v	1
Voltage	(Others)	V _{IL}	- 2.0		0.8	v	1

Notes: 1. All voltage referenced to VSS.

^{2.} The supply voltage with all $V_{\rm CC}$ pins must be on the same level. The supply voltage with all V_{SS} pins must be on the same level.

 \bullet DC Electrical Characteristics (T_A = 0 to +70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V)

Parameter	Symbol	HM51426 HM51S426		HM51426 HM51S426		HM514260 HM51S426		Unit	Test Conditions	Note
•		Min	Max	Min	Max	Min	Max			
Operating Current	I _{CC1}		150	_	140	_	125	mA		1, 2
		_	2	_	2	_	2	mA	$\begin{array}{l} \text{TTL Interface} \\ \overline{\text{RAS}}, \overline{\text{LCAS}}, \overline{\text{UCAS}} = V_{\text{IH}} \\ D_{\text{out}} = \text{High-Z} \end{array}$	
Standby Current	I _{CC2}	_	1	_	1	_	1	mА	CMOS Interface RAS, ICAS, UCAS, WE $\overline{OE} \ge V_{CC} - 0.2V$, $D_{out} = High-Z$	
Standby Current (L-Version)		_	200	_	200	_	200	μΑ	$ \begin{array}{l} \textbf{CMOS Interface} \\ \hline \textbf{RAS, LCAS, OE, WE} \\ \hline \textbf{UCAS} \geq \textbf{V}_{CC} - 0.2 \textbf{V}, \\ \textbf{D}_{out} = \textbf{High-Z} \\ \end{array} $	
RAS Only Refresh Current	I _{CC3}	_	140	-	130	-	110	mA	t _{RC} = min	2
Standby Current	I _{CC5}	-	5	_	5	_	5	mA		1
CAS Before RAS Refresh Current	I _{CC6}	_	140	_	130	_	110	mA	t _{RC} = min	2
Fast Page Mode Current	I _{CC7}	_	130	_	120	_	110	mA	t _{PC} = min	1,
Battery Back-up Current (Standby with CBR Refresh) (L-Version)	I _{CC10}	_	300	_	300	_	300	μА	$\begin{array}{ll} \text{Standby: CMOS Interface} \\ D_{out} = \text{High-Z} \\ \text{CBR Refresh: } t_{RC} = 250 \ \mu\text{s} \\ t_{RAS} \leq 1 \ \mu\text{s}, \ \overline{LCAS}, \ \overline{UCAS} = V_{IL} \\ \overline{WE}, \ \overline{OE} = V_{IH} \end{array}$	4
Self-Refresh Mode Current (HM51S4260A)		_	1		1	_	1	mA	CMOS Interface RAS, LCAS, UCAS ≤ 0.2V D _{out} = High-Z	
Self-Refresh Mode Current (HM51S4260AL	Iccu	_	200	_	200	_	200	μΑ	$\frac{\text{CMOS Interface}}{\text{RAS}, \text{ LCAS}, \text{ UCAS}} \le 0.2\text{V}$ $D_{\text{out}} = \text{High-Z}$	
Input Leakage Current	I _{LI}	- 10	10	- 10	10	- 10	10	μА	0V ≤ V _{in} ≤ 6.5V	
Output Leakage Current	I_{LO}	- 10	10	- 10	10	- 10	10	μА	$0V \le V_{out} \le 6.5V$ $D_{out} = Disable$	
Output High Voltage	v _{OH}	2.4	v _{cc}	2.4	v _{cc}	2.4	v _{cc}	v	High $I_{out} = -5.0 \text{ mA}$	
Output Low Voltage	VOL	0	0.4	0	0.4	0	0.4	v	Low $I_{out} = 4.2 \text{ mA}$	

Notes: 1. ICC depends on output load condition when the device is selected. ICC max is specified at the output open condition.

2. Address can be changed \leq 1 time while $\overline{RAS} = V_{IL}$.

3. Address can be changed ≤ 1 time while \overline{LCAS} and $\overline{UCAS} = V_{IH}$. 4. $V_{IH} \geq V_{CC} - 0.2V$, $0 \leq V_{IL} \leq 0.2V$. Address can be changed ≤ 1 time while $\overline{RAS} = V_{IL}$.

5. All the $V_{\rm CC}$ pins shall be supplied with the same voltage. All the VSS pins shall be supplied with the same voltage.

• Capacitance ($T_A = 25^{\circ}C$, $V_{CC} = 5V \pm 10\%$)

Parameter	Symbol	Тур	Max	Unit	Note
Input Capacitance (Address)	C _{I1}		5	pF	1
Input Capacitance (Clocks)	C _{I2}	_	7	pF	1
Output Capacitance (Data-in, Data-out)	C _{I/O}	_	10	pF	1.2

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. LCAS and UCAS = VIH to disable Dout-

• AC Characteristics (T_A = 0 to +70°C, V_{CC} = 5V ±10%, V_{SS} = 0V)1, 14, 15, 17, 18

Test Conditions

· Input rise and fall times: 5 ns • Input timing reference levels: 0.8V, 2.4V

• Output load: 2 TTL gate + C_L (100 pF) (Including scope and jig)

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

Parameter	Symbol		60A/AL-7 260A/AL-7		60A/AL-8 260A/AL-8	HM514260A/AL-10 HM51S4260A/AL-10		Unit	Note
		Min	Max	Min	Max	Min	Max	1	11010
Random Read or Write Cycle Time	t _{RC}	130	_	150	_	180		ns	
RAS Precharge Time	tRP	50	_	60		70	 	ns	
RAS Pulse Width	tRAS	70	10000	80	10000	100	10000	ns	
CAS Pulse Width	tCAS	20	10000	20	10000	25	10000	пs	23
Row Address Setup Time	tASR	0	_	0		0	1000	ns	23
Row Address Hold Time	t _{RAH}	10		10		15	 	ns	
Column Address Setup Time	tASC	0		0	 	0	 - 	ns	19
Column Address Hold Time	t _{CAH}	15		15		20		ns	19
RAS to CAS Delay Time	tRCD	20	50	20	60	25	75		8
RAS to Column Address Delay Time	tRAD	15	35	15	40	20	55	ns	9
RAS Hold Time	tRSH	20		20	<u> </u>	25	- 33	ns	,
CAS Hold Time	t _{CSH}	70		80		100		ns	
CAS to RAS Precharge Time	t _{CRP}	15		15		15		ns	20.24
OE to Din Delay Time	topp	20		20		25		ns	20, 24
OE Delay Time from Din	t _{DZO}	0		0		0		ns	
CAS Setup Time from Din	t _{DZC}	0		0		0		ns	
Transition Time (Rise and Fall)	t _T	3	50	3	50	3	-	ns	<u> </u>
Refresh Period	tREF		8		8		50	ns	7
Refresh Period (L-Version)	tREF		128		128		128	ms ms	

HITACHI®

Read Cycle

Parameter	Symbol	HM514260A/AL-7 HM51S4260A/AL-7		HM514260A/AL-8 HM51S4260A/AL-8		HM514260A/AL-10 HM5184260A/AL-10		Unit	Note
rarameter	Symoon	Min	Max	Min	Max	Min	Max	<u></u>	
Access Time from RAS	tRAC		70	_	80		100	ns	2, 3
Access Time from CAS	t _{CAC}	_	20	_	20	_	25	ns	3, 4, 13
Access Time from Address	tAA	_	35	_	40	_	45	ns	3, 5, 13
Access Time from OE	toac	_	20	_	20		25	ns	23
Read Command Setup Time	tRCS	0	_	0		0	T	ns	19
Read Command Hold Time to CAS	tRCH	0		0	_	0		ns	16, 19
Read Command Hold Time to RAS	trrh	0		0	_	0		ns	16
Column Address to RAS Lead Time	tRAL	35	_	40		45		ns	
Output Buffer Turn-off Time	toff1	0	15	0	15	0	20	ns	6
Output Buffer Turn-off to OE	toff2	0	15	0	15	0	20	ns	6
CAS to Din Delay Time	tCDD	15	_	15	_	20		ns	

Write Cycle

Parameter	Symbol	HM514260A/AL-7 HM51S4260A/AL-7		HM514260A/AL-8 HM51S4260A/AL-8		HM514260A/AL-10 HM5184260A/AL-10		Unit	Note
	Symoon	Min	Max	Min	Max	Min	Max]	
Write Command Setup Time	twcs	0	_	0	_	0	_	ns	10, 19
Write Command Hold Time	twch	15	_	15	_	20	_	ns	19
Write Command Pulse Width	twp	10	-	10		20		ns	
Write Command to RAS Lead Time	tRWL	20	_	20		25		ns	
Write Command to CAS Lead Time	tcwL	20		20		25	_	ns	21
Data-in Setup Time	tDS	0	_	0		0		ns	11
Data-in Hold Time	t _{DH}	15	_	15	_	20		ns	11
CAS to OE Delay Time	tCOD	_	0	_	0	_	0	ns	23

Read-Modify-Write Cycle

Parameter	Symbol	HM514260A/AL-7 HM51S4260A/AL-7		HM514260A/AL-8 HM51S4260A/AL-8		HM514260A/AL-10 HM51S4260A/AL-10		Unit	Note
		Min	Max	Min	Max	Min	Max		
Read-Modify-Write Cycle Time	tRWC	180	_	200		245	_	ns	
RAS to WE Delay Time	t _{RWD}	95	_	105	_	135		ns	10
CAS to WE Delay Time	t _{CWD}	45	_	45		60		ns	10
Column Address to WE Delay Time	tAWD	60		65	<u> </u>	80		ns	10, 13
OE Hold Time from WE	t _{OEH}	20	_	20		25		ns	

Refresh Cycle

Parameter	Symbol	HM514260A/AL-7 HM51S4260A/AL-7		HM514260A/AL-8 HM51S4260A/AL-8		HM514260A/AL-10 HM51S4260A/AL-10		Unit	Note
		Min	Max	Min	Max	Min	Max	1	
CAS Setup Time (CAS Before RAS Refresh Cycle)	t _{CSR}	10	_	10	_	10		ns	19
CAS Hold Time (CAS Before RAS Refresh Cycle)	tCHR	10	_	10		10	_	ns	20
RAS Precharge to CAS Hold Time	tRPC	10		10		10		ns	19
CAS Precharge Time in Normal Mode	t _{CPN}	10		10		10		ns	22

Fast Page Mode Cycle

Parameter	Symbol	HM514260A/AL-7 HM51S4260A/AL-7		HM514260A/AL-8 HM51S4260A/AL-8		HM514260A/AL-10 HM51S4260A/AL-10		Unit	Note
		Min	Max	Min	Max	Min	Max	"	11010
Fast Page Mode Cycle Time	tPC	45		50		55	T	ns	
Fast Page Mode CAS Precharge Time	t _{CP}	10		10		10		ns	22
Fast Page Mode RAS Pulse Width	tRASC	_	100000		100000		100000	ns	12
Access Time from CAS Precharge	tACP		40		45		50	ns	3, 13, 20
RAS Hold Time from CAS Precharge	tRHCP	40		45		50	_	ns	3, 13, 20
Fast Page Mode Read-Modify-Write Cycle CAS Precharge to WE Delay Time	t _{CPW}	65	-	70	_	85	_	ns	
Fast Page Mode Read-Modify-Write Cycle Time	t _{PCM}	95	_	100	_	110	_	ns	

Self-Refresh Mode

	Symbol	HM51S4260A/AL-7		HM51S4260A/AL-8		HM51S4260A/AL-10		T	Г
	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note
RAS Pulse Width (Self-Refresh)	tRASS	100	_	100	_	100	_	μs	
RAS Precharge Time (Self-Refresh)	t _{RPS}	130		150	_	180		ns	
CAS Hold Time (Self-Refresh)	tCHS	- 50	_	- 50	_	- 50		ns	21

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - 2. Assumes that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, tRAC exceeds the value shown.
 - 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
 - Assumes that t_{RCD} ≥ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max).
 - 5. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \ge t_{RAD}$ (max).
 - 6. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referred to output voltage levels
 - 7. VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH and VIL.
 - 8. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
 - 9. Operation with the t_{RAD} (max) limit insures that t_{RAC} (max) can be met, t_{RAD} (max) is specified as a reference point only, if t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA}.
 - 10. twcs, tRWD, tcWD and tAWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if twcs \ge twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{RWD} ≥ t_{RWD} (min), t_{CWD} ≥ t_{CWD} (min), t_{AWD} ≥ t_{AWD} (min) and t_{CPW} ≥ t_{CPW} (min), the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
 - 11. These parameters are referred to CAS leading edge in an early write cycle and to WE leading edge in a delayed write or a read-modify-write cycle.
 - 12. t_{RASC} defines RAS pulse width in fast page mode cycles.
 - 13. Access time is determined by the longer of tAA or tCAC or tACP.
 - 14. An initial pause of 100 µs is required after power up followed by a minimum of eight initialization cycles (RAS only refresh cycle or CAS before RAS refresh cycle). If the internal refresh counter is used, a minimum of eight CAS before RAS refresh cycles is required.
 - 15. In delayed write or read-modify-write cycles, \overline{OE} must disable output buffer prior to applying data to the device.
 - 16. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
 - 17. When both LCAS and UCAS go low at the same time, all 16-bits data are written into the device. LCAS and UCAS cannot be staggered within the same write/read cycles.
 - 18. All the V_{CC} and V_{SS} pins shall be supplied with the same voltages.
 - 19. tASC, tCAH, tRCS, tRCH, tWCS, tWCH, tCSR and tRPC are determined by the earlier falling edge of UCAS or LCAS.
 - 20. t_{CRP}, t_{CHR}, t_{ACP} and t_{CPW} are determined by the later rising edge of UCAS or LCAS.
 - t_{CWL} and t_{CHS} should be satisfied by both UCAS and LCAS.
 - 22. t_{CPN} and t_{CP} are determined by the time that both \overline{UCAS} and \overline{LCAS} are high.
 - 23. When output buffers are enabled once, sustain the low impedance state until valid data is obtained. When output buffer is turned on and off within a very short time, generally it causes large V_{CC}/V_{SS} line noise, which causes to degrade V_{IH} (min)/VII (max) level.
 - 24. t_{CRP} is planned to be improved to match the standard DRAM specifications.
 - 25. If you use distributed CBR refresh mode with 15.6 µs interval in normal read/write cycle, CBR refresh should be executed within 15.6 µs immediately after exiting from and before entering into self refresh mode.
 - 26. IF you use RAS only refresh or CBR burst refresh mode in normal read/write cycle, 512 cycles of distributed CBR refresh with 15.6 µs interval should be executed within 8 ms immediately after exiting from and before entering into the self refresh mode.
 - 27. Repetitive self refresh mode without refreshing all memory is not allowed. Once you exit from self refresh mode, all memory cells need to be refreshed before re-entering the self refresh mode again.

Notes Concerning 2CAS Control

Please do not separate the UCAS/LCAS operation timing intentionally. However skew between UCAS/LCAS are allowed under the following conditions.

- (1) Each of the UCAS/LCAS should satisfy the timing specifications individually.
- (2) Different operation mode for upper/lower byte is not allowed; such as following.

(3) Closely separated upper/lower byte control is not allowed. However when the condition (t_{CP} ≤ t_{UL}) is satisfied, fast page mode can be performed.

■ TIMING WAVEFORMS

• Read Cycle

• Early Write Cycle

• Delayed Write Cycle

• RAS Only Refresh Cycle

• Fast Page Mode Read Cycle

• Fast Page Mode Early Write Cycle

• Fast Page Mode Delayed Write Cycle

• Fast Page Mode Read-Modify-Write Cycle

• Self Refresh Cycle

The low self refresh current is achieved by introducing extremely long internal refresh cycle. Therefore some care needs to be taken on the refresh.

- Please do not use t_{RASS} timing, 10 μs ≤ t_{RASS} ≤ 100 μs. During this period, the device is in transition state from normal operation
 mode to self refresh mode. If t_{RASS} ≥ 100 μs, then RAS precharge time should use t_{RPS} instead of t_{RP}.
- 2. IF you use RAS only refresh or CBR burst refresh mode in normal read/write cycle, 512 cycles of distributed CBR refresh with 15.6 µs interval should be executed within 8 ms immediately after exiting from and before entering into the self refresh mode.
- 3. If you use distributed CBR refresh mode with 15.6 µs interval in normal read/write cycle, CBR refresh should be executed within 15.6 µs immediately after exiting from and before entering into self refresh mode.
- 4. Repetitive self refresh mode without refreshing all memory is not allowed. Once you exit from self refresh mode, all memory cells need to be refreshed before re-entering the self refresh mode again.