

of Engineers

WATER TEMPERATURE CASE STUDY

Isaac Mudge, MS

U.S. Army Corps of Engineers, New Orleans District

U.S. Army Engineer Research and Development Center, Environmental Laboratory

CE-QUAL-W2 Workshop

July 18 – 20, 2023

Case Study Overview

- 15-minute presentation, with files to follow along
- Purpose to become familiar with where temperature inputs and outputs exist in CE-QUAL-W2
- We will focus on where the temperature-related parameters show up in the control file, and the input and output files associated with running a successful temperature model
- Tying the theory section of the user-manual to the input/output section of the user-manual
- Will be followed by a case-study where water quality parameters are changed, and output analyzed

Start with an existing model

- We will use the DeGray Reservoir model, which is available automatically in the CE-QUAL-W2 download – it is currently set up to model sediment-diagenesis and vertical algae migration
- We will edit it down until it features only the essentials for modeling temperature
- We are happy with the bathymetry and will not change it for this case study. It is simple, with one main waterbody and branch.

W2 Model Input Files

Organized by File Directory – for me that is C:\Users\b2edhijm\Documents\Projects\ERDC Steiss\August 22 Tutorial\Temperature Workshop\Practice\DeGray Reservoir with sediment diagenesis and vertical algae migration2

File type	Label in Control File	File name	
Control File		w2 con.csv	Sets many heat-flux control parameters
Wind sheltering	WSC FILE WSCFN	wsc.npt	Wind function impacts both sensible and laten
Shading	SHDFN	shade.npt	Local shading – not cloud cover
Bathymetry			
	BTHFN	bth1.csv	
Meteorological	METFN	met.npt	Sets many heat-flux control parameters
	QINFN branch inflow	qin_br1_equal.npt	
	TINFN branch temp	tin_br1.npt	AD equation – boundary conditions
Branch inflow	CINFN branch conc	cin_br1.csv	
	QDTFN Distributed flow	qin_br1.npt	
Spillway/Gate	QGTFN	qgt.npt	

Advection Dispersion of Temp

Advection-Dispersion Equation Balance

$$\frac{\partial B\Phi}{\partial t} + \frac{\partial UB\Phi}{\partial x} + \frac{\partial WB\Phi}{\partial z} - \frac{\partial}{\partial x} \left[BD_x \frac{\partial \Phi}{\partial x} \right] - \frac{\partial}{\partial z} \left[BD_z \frac{\partial \Phi}{\partial z} \right] = q_{\Phi}B + S_{\Phi}B$$
 (4-12)

where:

 Φ = laterally averaged constituent concentration, $g m^{-3}$

 D_x = longitudinal temperature and constituent dispersion coefficient, m^2 sec⁻¹

 D_z = vertical temperature and constituent dispersion coefficient, m^2 sec⁻¹

 $q\phi$ = lateral inflow or outflow mass flow rate of constituent per unit volume, $g m^{-3} sec^{-1}$

 S_{ϕ} = laterally averaged source/sink term, $g m^{-3} sec^{-1}$

Substitute H into the equation for Φ , which relates to temperature as:

$$T = \frac{H}{\rho C_p V}$$

$$H = \rho C_p V T$$

HYD PRINT - Print in the SNP file	HNAME	FMTH	HMULT	HPRWBC1	HPRWB
NVIOL - Violations of time step	"Timestep violat	(110)	1	ON	
U	"Horizontal velo	(f10.3)	1	ON	
W	"Vertical velocity	(f10.3)	1	OFF	
Т	"Temperature [T	(f10.3)	1	ON	
RHO	"Density [RHO] g	(f10.3)	1	OFF	
AZ	"Vertical eddy vi	(f10.3)	1	OFF	
SHEAR	"Velocity shear s		1	OFF	
ST	"Internal shear [(f10.3)	1	OFF	
SB	"Bottom shear [(f10.3)	1	OFF	
ADMX	"Longitudinal me	(f10.3)	1	OFF	
DM	"Longitudinal me	(f10.3)	1	OFF	
HDG	"Horizontal dens	(f10.3)	1	OFF	
ADMZ	"Vertical momer	(f10.3)	1	OFF	
HPG	"Horizontal pres	(f10.3)	1	OFF	
GRAV	"Gravity term ch	(f10.3)	1	OFF	

- Temperature is included in the hydraulic calculations because it affects things like density and viscosity – we don't need to turn this on and off
- Will need initial and boundary conditions for this BCs for temperature in the tin_br1.npt file

Kinetics – Equilibrium Model or Term by Term?

Sources/Sinks from manual:

Term-by-term surface heat exchange is computed as:

 $\Phi_{n} = \Phi_{s} - \Phi_{sr} + \Phi_{a} - \Phi_{ar} - \Phi_{br} - \Phi_{e} - \Phi_{c}$ (4-13)

where:

 ϕ_n : net surface heat flux, $W m^{-2}$

 ϕ_s : incoming short-wave solar radiation, $W m^{-2}$

 $\phi_{\rm sr}$: reflected short-wave solar radiation, $W m^{-2}$

 ϕ_{sn} : net short-wave solar radiation, ϕ_{s} - ϕ_{sr} , $W m^{-2}$

 ϕ_a : incoming long-wave atmospheric radiation, $W m^{-2}$

 ϕ_{ar} : reflected atmospheric long-wave radiation, $W m^{-2}$

 ϕ_{br} : back long-wave radiation, $W \, m^{-2}$

 ϕ_e : evaporative heat loss, $W m^{-2}$

 ϕ_c : conductive heat loss, $W m^{-2}$

Heat Exchange Parameters in xslm interface:

EQ process described on pages 101-102 of manual part 2

HEAT EXCHANGE	WB1	WB2	WB3	W
H SLHTC - Heat computations - Equilibrium (ET) or Term-by-term (TERM)	TERM			
SROC - Read in Short wave solar radiation ON or OFF	OFF			
RHEVAP - Use Ryan-Harleman Evap Model - for cooling ponds ON or OFF	OFF			
METIC - Interpolate meteorological data ON or OFF	ON			
FETCHC - Heinz Stefan Lake fetch correction - there is already an internal fetc	OFF			
AFW - Evaporation coefficient	9.2			
BFW - Evaporation coefficient	0.46			
CFW - Evaporation coefficient	2			
WINDH - Wind height measurement above ground surface, m	10			

Shortwave Solar Radiation

File input or computed?

HEAT EXCHANGE	WB1	WB2	WB3	w
H SLHTC - Heat computations - Equilibrium (ET) or Term-by-term (TERM)	TERM	****		Ť.
SROC - Read in Short wave solar radiation ON or OFF	OFF			
RHEVAP - Use Ryan-Harleman Evap Model - for cooling ponds ON or OFF	OFF			
METIC - Interpolate meteorological data ON or OFF	ON			
FETCHC - Heinz Stefan Lake fetch correction - there is already an internal fetc	OFF			
AFW - Evaporation coefficient	9.2			
BFW - Evaporation coefficient	0.46			
CFW - Evaporation coefficient	2			
WINDH - Wind height measurement above ground surface, m	10			

It is rare to have a good short-wave solar radiation data source. Therefore, W2 uses an empirical calculation of short-wave solar radiation based on solar altitude and other parameters, as described in the user-manual, page 95-96. Many of these parameters are based on lat/long and time of day.

Shortwave Solar Radiation – Cloud Cover and Shade

The shortwave solar radiation is dampened by a cloud cover factor that gets defined in the meteorological file.

The shortwave solar radiation is also dampened by a local shading factor defined in the **shade file.**

met - Note	met - Notepad											
File Edit For	File Edit Format View Help											
1980 DeGray Reservoir meteorology												
JDAY	TAIR	TDEW	WIND	PHI	CLOUD							
1.000	2.2	-1.1	1.9	4.72	0.0							
1.125	1.7	-1.1	2.3	4.37	0.0							
1.250	0.0	-3.3	1.1	5.07	0.0							
1.375	3.3	-0.6	2.3	4.37	0.0							
1.500	11.1	1.1	2.7	5.07	0.0							
1.625	13.9	-1.1	1.1	1.22	0.0							
1.750	8.3	-0.6	2.3	2.62	0.0							
1.875	6.7	-0.6	1.1	3.85	0.0							
2.000	1.7	-1.7	0.0	0.00	0.0							
2.125	1.1	-1.7	0.0	0.00	3.0							
2.250	2.2	-1.1	1.9	4.02	3.0							
2.375	5.0	1.1	2.3	4.37	8.0							

W2	Shading	g Input	File,	Vegetatia	ınd	Topograp	calibrat	veg	characte	eand	correcte	topograp	ohy
Wahiawa	Delay												
Segmen	it Dyns	Sh TTEleL	B TTEleRB	ClDisLB	ClDiRB	SRFLB1	SRFLB2	SRFRB1	SRFRB2	TOP01	TOPO2	TOPO3	TOPO4
	1	1											
	2	1											
	3	1											
	4	1											
	5	1											
met	6Notepad	1											
File Edit	7	1											
1980	7 8	1											
T300 F	9 Gray Re	1											
_1	.0	1 LIR TDE											
1	.1	,1,											
1	.2	1 -											
1	.3	1 3											
1	.4	13 -0.											
1.1	5 11	11 1											
1 1	6	10 1											

Shortwave Solar Radiation – Penetration

Theory: Every cell in the model performs this computation.

Short wave solar radiation penetrates the surface and decays exponentially with depth according to Bear's Law (see Figure 53):

$$\phi_s(z) = (1 - \beta)\phi_{sn}e^{-\eta z}$$
 (4-26)

where:

 $\phi_5(z)$ =short wave radiation at depth z, W m^{-2}

 β =fraction absorbed at the water surface

 η =extinction coefficient, m^{-1}

 $\phi_{\rm sn}$ =net short-wave radiation reaching the surface, $W \, m^{-2}$

Model Input:

Extinction coefficient will be a combination of light extinction due to various constituents, such as suspended solids, algae, zooplankton, etc. Extinction will be a function of their concentrations.

EX COEF	WB1	WB2
EXH2O - water light extinction- 1/m	0.45	
EXSS - suspended solids light extinction- 1/m	0.01	
EXOM - extinction organic matter- 1/(m mg/l)	0.2	
BETA - fraction short wave absorbed on surface	0.45	
EXC - Read in light extinction time series ON or OFF	OFF	
EXIC - Interpolation of light extinction time series ON or OFF	OFF	
ALG EXTINCTION	EXA1	EXA2
Algae light extinction- 1/(m mg/l)	0.2	
ZOO EXTINCTION	EXZ1	EXZ2
Zooplankton light extinction- 1/(m mg/l)	0.2	
MACRO EXTINCTION	EXM1	EXM2
Macrophyte light extinction- 1/(m mg/l)	0.01	

Longwave Radiation

- Longwave radiation from air to water and water back to air use the same formula, based on the temperature of the emitting body, the Stephan-Boltzmann coefficient, and the emissivity of the body.
- Emissivity is a function of vapor pressure, which can be calculated from the measured dew point.

```
ENTRY SURFACE_TERMS (TSUR)
                                                                                              met - Notepad
                                                                                              File Edit Format View Help
! Partial water vapor pressure of air (mm hg)
                                                                                             1980 DeGray Reservoir meteorology
                                                                                                 JDAY
                                                                                                                                       CLOUD
   EA = EXP(2.3026*(9.5*TDEW(JW)/(TDEW(JW)+265.5)+0.6609))
                                                                                                         TAIR
                                                                                                                TDEW
                                                                                                                        WIND
                                                                        ! SW 6/10/2011
                                                                                                1.000
                                                                                                                -1.1
                                                                                                                                        0.0
                                                                                                                                4.72
! IF (TDEW(JW) > 0.0) EA = EXP(2.3026*(7.5*TDEW(JW)/(TDEW(JW)+237.3)+0.6609))
                                                                                                1.125
                                                                                                                -1.1
                                                                                                                                4.37
                                                                                                                                         0.0
  EA = DEXP(2.3026D0*(7.5D0*TDEW(JW)/(TDEW(JW)+237.3D0)+0.6609D0))
                                                                                                1.250
                                                                                                                -3.3
                                                                                                                                5.07
                                                                                                                                        0.0
                                                                                                1.375
                                                                                                          3.3
                                                                                                                -0.6
                                                                                                                                4.37
                                                                                                                                         0.0
 Partial water vapor pressure at the water surface
                                                                                                1.500
                                                                                                                 1.1
                                                                                                                                5.07
                                                                                                1.625
                                                                                                         13.9
                                                                                                                -1.1
                                                                                                                                1.22
                                                                                                                                         0.0
  IF(TSUR<0.0)THEN
                                                                                                                -0.6
                                                                                                1.750
                                                                                                                                2.62
  ES = DEXP(2.3026D0*(9.5D0*TSUR/(TSUR+265.5D0)+0.6609D0))
                                                                                                1.875
                                                                                                                -0.6
                                                                                                                         1.1
                                                                                                                                3.85
                                                                                                                                         0.0
                                                                                                          6.7
                                                                                                2,000
                                                                                                                -1.7
                                                                                                                                0.00
  ELSE
                                                                                                                 -1.7
                                                                                                                                         3.0
                                                                                                2.125
                                                                                                          1.1
                                                                                                                                0.00
  ES = DEXP(2.3026D0*(7.5D0*TSUR/(TSUR+237.3D0)+0.6609D0))
                                                                                                2.250
                                                                                                          2.2
                                                                                                                -1.1
                                                                                                                                4.02
                                                                                                                                         3.0
  ENDIF
                                                                                                2.375
                                                                                                          5.0
                                                                                                                 1.1
                                                                                                                         2.3
                                                                                                                                4.37
                                                                                                                                         8.0
```

Latent Heat – Evaporation

Parameters that control evaporation are specified in the met data file and the control file.

Evaporative heat loss is computed as:

$$\phi_{e} = f(W_{z})(e_{s} - e_{a}) \tag{4-24}$$

where:

f(Wz) = evaporative wind speed function at wind height of z, W m-2 mm Hg-1

 e_s = saturation vapor pressure at the water surface, mm Hg

ea = atmospheric vapor pressure, mm Hg

Evaporative heat loss depends on air temperature and dew point temperature or relative humidity. Surface vapor pressure is computed from the surface temperature for each surface cell on each iteration.

The model user can include different evaporation formulations using an evaporation wind speed formula of the form

$$f(W_z) = a + bW_z^c \tag{4-27}$$

where:

f(Wz) = wind speed function with wind measured at height z, $W m^{-2} mm Hg^{-1}$

a = empirical coefficient, 9.2 default

b = empirical coefficient, 0.46 default

c = empirical coefficient, 2 default

 W_z = wind speed measured at 2 m above the ground, m s⁻¹

```
met - Notepad
File Edit Format View Help
1980 DeGray Reservoir meteorology
            TAIR
                            WIND
                                           CLOUD
    JDAY
                    TDEW
             2.2
                    -1.1
                             1.9
                                    4.72
                                             0.0
   1.000
   1.125
             1.7
                    -1.1
                             2.3
                                    4.37
                                             0.0
   1.250
                    -3.3
                                    5.07
             0.0
                             1.1
                                             0.0
   1.375
             3.3
                    -0.6
                             2.3
                                    4.37
                                             0.0
   1.500
            11.1
                    1.1
                             2.7
                                    5.07
                                             0.0
   1.625
            13.9
                    -1.1
                             1.1
                                    1.22
                                             0.0
   1.750
            8.3
                    -0.6
                             2.3
                                    2.62
                                             0.0
   1.875
             6.7
                    -0.6
                             1.1
                                    3.85
                                             0.0
   2.000
             1.7
                    -1.7
                             0.0
                                    0.00
                                             0.0
   2.125
             1.1
                    -1.7
                             0.0
                                    0.00
                                             3.0
   2.250
             2.2
                    -1.1
                             1.9
                                    4.02
                                             3.0
   2.375
             5.0
                    1.1
                             2.3
                                    4.37
                                             8.0
```

Latent Heat – Evaporation

Parameters that control evaporation are specified in the met data file and the control file.

Evaporative heat loss is computed as:

$$\phi_e = f(W_z)(e_s - e_a) {4-24}$$

where:

f(Wz) = evaporative wind speed function at wind height of z, W m-2 mm Hg-1

 e_s = saturation vapor pressure at the water surface, mm Hg

 e_a = atmospheric vapor pressure, mm Hg

Evaporative heat loss depends on air temperature and dew point temperature or relative humidity. Surface vapor pressure is computed from the surface temperature for each surface cell on each iteration.

The model user can include different evaporation formulations using an evaporation wind speed formula of the form

$$f(W_z) = a + bW_z^c \tag{4-27}$$

where:

f(Wz) = wind speed function with wind measured at height z, $W m^{-2} mm Hg^{-1}$

a = empirical coefficient, 9.2 default

b = empirical coefficient, 0.46 default

c = empirical coefficient, 2 default

 W_z = wind speed measured at 2 m above the ground, m s⁻¹

HEAT EXCHANGE	WB1	WB2	WB3	W
H SLHTC - Heat computations - Equilibrium (ET) or Term-by-term (TERM)	TERM			
SROC - Read in Short wave solar radiation ON or OFF	OFF			
RHEVAP - Use Ryan-Harleman Evap Model - for cooling ponds ON or OFF	OFF			
METIC - Interpolate meteorological data ON or OFF	ON			
FETCHC - Heinz Stefan Lake fetch correction - there is already an internal fetc	OFF			
AFW - Evaporation coefficient	9.2			
BFW - Evaporation coefficient	0.46			
CFW - Evaporation coefficient	2			
WINDH - Wind height measurement above ground surface, m	10			

Sensible Heat – Conduction and Convection

Surface heat conduction is computed as:

$$\phi_c = C_c f(W_z) (T_s - T_a) \tag{4-25}$$

where:

C_c = Bowen's coefficient, 0.47 mm Hg °C⁻¹ ← Constant

Temperature Output Comparison

Model run with (1) default DeGray settings and with (2) all accessory modules and water quality calculations turned off.

MISCELLANEOUS	NDAY	SELECTC	HABTATC	ENVIRPC	AERATEC	INITUWL	ORGCC	SED_DIAG
	100	OFF	OFF	OFF	OFF	OFF	OFF	OFF

CST COMP - Water quality computations	ccc	LIMC	CUF	CO2PPM	CO2YRLY	
CCC: Turn ON or OFF water quality calculations, LIMC: Limiting nutrient comp	OFF	ON	1	400	ON	

Comparison at Layer 2

JUST	TEMP	DEGRAY	JNEDITED											
JDAY	Temp	JDAY	Temp	Difference	% Diff	Max % diff								
64.5	7.4	64.5	7.4	0	(0.0250392								
64.604	7.515	64.604	7.517	0.002	0.000266	6	40							
64.701	7.557	64.701	7.56	0.003	0.000397	7	35							
64.806	7.561	64.806	7.562	0.001	0.000132	2	33			A				
64.903	7.575	64.903	7.576	0.001	0.000132	2	30							
65	7.599	65	7.6	0.001	0.000132	2	25							
65.104	7.594	65.104	7.592	-0.002	-0.00026	6	25							
65.201	7.538	65.201	7.536	-0.002	-0.00027	7	20						Temp Only	
65.306	7.491	65.306	7.489	-0.002	-0.00027	7							 Degray Unedit 	ted
65.403	7.52	65.403	7.519	-0.001	-0.00013	3	15							
65.5	7.718	65.5	7.724	0.006	0.000777	7	10							
65.604	7.962	65.604	7.992	0.03	0.003754	4								
65.701	8.078	65.701	8.114	0.036	0.004437	7	5							
65.806	8.026	65.806	8.064	0.038	0.004712	2	0							
65.903	7.973	65.903	8.011	0.038	0.004743	3	-)	100	200	300	4	00	
66	7.93	66	7.969	0.039	0.004894	4								
66.104	7.889	66.104	7.928	0.039	0.004919	9								
66.201	7.85	66.201	7.887	0.037	0.004691	1								

Comparison at Layer 16

JUST	TEMP	DEGRAY U	JNEDITED				
JDAY	Temp	JDAY	Temp	Difference	% Diff	Max % diff	
64.5	7.2	64.5	7.2	0	0	0.256413148	
64.604	7.186	64.604	7.186	0	0		
64.701	7.164	64.701	7.164	0	0		
64.806	7.129	64.806	7.129	0	0		
64.903	7.114	64.903	7.114	0	0		
65	7.131	65	7.132	0.001	0.00014		
65.104	7.195	65.104	7.195	0	0		25
65.201	7.301	65.201	7.3	-0.001	-0.00014		
65.306	7.385	65.306	7.384	-0.001	-0.00014		20
65.403	7.482	65.403	7.481	-0.001	-0.00013		
65.5	7.483	65.5	7.479	-0.004	-0.00053		
65.604	7.494	65.604	7.49	-0.004	-0.00053		15
65.701	7.533	65.701	7.538	0.005	0.000663		• Just temp
65.806	7.607	65.806	7.628	0.021	0.002753		10 Degray unedited
65.903	7.675	65.903	7.707	0.032	0.004152		
66	7.716	66	7.747	0.031	0.004002		
66.104	7.726	66.104	7.743	0.017	0.002196		5
66.201	7.709	66.201	7.706	-0.003	-0.00039		
66.306	7.669	66.306	7.652	-0.017	-0.00222		0
66.403	7.619	66.403	7.601	-0.018	-0.00237		0 100 200 300 400
66.5	7.569	66.5	7.56	-0.009	-0.00119		
66.604	7.532	66.604	7.53	-0.002	-0.00027		
66 701	7 511	66 701	7 51	-0.001	0.00012		

Questions?

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED