Cubic Splines

Given the following list of points:

$$x: a = x_0 < x_1 < \cdots < x_n = b$$

 $y: y_0 y_1 \cdots y_n$

- ➤ Basic idea: "piecewise polynomial interpolation"
 - ullet Use lower order polynomials that interpolate on each subinterval $[x_i,x_{i+1}]$.
 - Force the polynomials to join up as smoothly as possible.
- ➤ Simplest example: a linear spline just "connects the dots"

<u>Definition:</u> A cubic spline S(x) is a piecewise-defined function that satisfies the following conditions:

- 1. $S(x) = S_i(x)$ is a cubic polynomial on each subinterval $[x_i, x_{i+1}]$ for $i = 0, 1, \ldots, n-1$.
- 2. $S(x_i) = y_i$ for $i = 0, 1, \dots, n$ (S interpolates all the points).
- 3. S(x), S'(x), and S''(x) are continuous on [a,b] (S is smooth).

So we write the n cubic polynomial pieces as

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3,$$

for $i=0,1,\ldots,n-1$, where a_i,b_i,c_i , and d_i represent 4n unknown coefficients.

Derivation

Using the definition, let's determine equations relating the coefficients and keep a count of the number of equations:

		# cqiis.
Interpolation and contin	nuity:	
$S_i(x_i)=y_i$	for $i=0,1,\dots,n-1$	$m{n}$
$S_i(x_{i+1})=y_{i+1} \\$	for $i=0,1,\dots,n-1$	\boldsymbol{n}
(based on both of these, $S(\boldsymbol{x})$ is	s continuous)	
Derivative continuity:		
$S_i^{\prime}(x_{i+1}) = S_{i+1}^{\prime}(x_{i+1})$	for $i=0,1,\dots,n-2$	n-1
$S_i''(x_{i+1}) = S_{i+1}''(x_{i+1})$	for $i=0,1,\dots,n-2$	n-1
	Total # of equations:	4n-2

There are still 2 equations missing! (later)

eans

Derivation (cont'd)

We need expressions for the derivatives of S_i :

$$egin{array}{lll} S_i(x) &= a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 \ S_i'(x) &= b_i + 2c_i(x-x_i) + 3d_i(x-x_i)^2 \ S_i''(x) &= 2c_i + 6d_i(x-x_i) \end{array}$$

It is very helpful to introduce the $h_i = x_{i+1} - x_i$. Then the spline conditions can be written as follows:

$$ullet S_i(x_i) = y_i ext{ for } i = 0, 1, \ldots, n-1 ext{:} \ oxedsymbol{a_i = y_i}$$

$$ullet S_i(x_{i+1})=y_{i+1} ext{ for } i=0,1,\ldots,n-1 ext{:} \ egin{aligned} a_i+h_ib_i+h_i^2c_i+h_i^3d_i=y_{i+1} \end{aligned}$$

$$ullet S_i'(x_{i+1})=S_{i+1}'(x_{i+1}) ext{ for } i=0,1,\ldots,n-2$$
: $egin{bmatrix} b_i+2h_ic_i+3h_i^2d_i-b_{i+1}=0 \end{bmatrix}$

$$oldsymbol{S}_i''(x_{i+1})=S_{i+1}''(x_{i+1}) ext{ for } i=0,1,\ldots,n-2$$
: $oxed{2c_i+6h_id_i-2c_{i+1}=0}$

The boxed equations above can be written as a large linear system for the 4n unknowns

$$[a_0,b_0,c_0,d_0,a_1,b_1,c_1,d_1,\ldots,a_{n-1},b_{n-1},c_{n-1},d_{n-1}]^T$$

Alternate formulation

This linear system can be simplified considerably by defining

$$m_i = S_i''(x_i) = 2c_i$$
 or $c_i = rac{m_i}{2}$

and thinking of the m_i as unknowns instead. Then:

$$ullet \ S_i''(x_{i+1}) = S_{i+1}''(x_{i+1}) \ ext{for} \ i=0,1,\ldots,n-2$$
:

$$\implies 2c_i + 6h_id_i - 2c_{i+1} = 0$$

$$\implies m_i + 6h_id_i - m_{i+1} = 0$$

$$\implies \left| \; d_i = rac{m_{i+1} - m_i}{6h_i} \;
ight|$$

$$ullet$$
 $S_i(x_i)=y_i$ and $S_i(x_{i+1})=y_{i+1}$ for $i=0,1,\ldots,n-1$:

$$\implies y_i + h_i b_i + h_i^2 c_i + h_i^3 d_i = y_{i+1}$$

Substitute c_i and d_i from above:

$$\Longrightarrow egin{array}{c} b_i = rac{y_{i+1}-y_i}{h_i} - rac{h_i}{2}m_i - rac{h_i}{6}(m_{i+1}-m_i) \end{array}$$

$$ullet \ S_i'(x_{i+1}) = S_{i+1}'(x_{i+1}) ext{ for } i=0,1,\ldots,n-2$$
:

$$\implies b_i + 2h_ic_i + 3h_i^2d_i = b_{i+1}$$

Substitute b_i , c_i and d_i from above and simplify:

$$h_i m_i + 2(h_i + h_{i+1}) m_{i+1} + h_{i+1} m_{i+2} = 6 \left[rac{y_{i+2} - y_{i+1}}{h_{i+1}} - rac{y_{i+1} - y_i}{h_i}
ight]$$

Notice: These are n-1 linear equations for n+1 unknowns

$$[m_0,m_1,m_2,\ldots,m_n]^T$$
 where $m_i=g_i''(x_i).$

Endpoint Conditions: Natural Spline

- ➤ Now, we'll deal with the two missing equations ...
- Note: Derivative matching conditions are applied *only* at interior points, which suggests applying some constraints on the derivative(s) at x_0 and x_n .
- ➤ There is no unique choice, but several common ones are
 - 1. Natural Spline (zero curvature):

$$m_0=0$$
 and $m_n=0$

for taken together gives an $(n+1) \times (n+1)$ system:

$$= 6 \begin{bmatrix} 0 \\ \frac{y_2 - y_1}{h_1} - \frac{y_1 - y_0}{h_0} \\ \frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1} \\ \frac{y_4 - y_3}{h_3} - \frac{y_3 - y_2}{h_2} \\ \vdots \\ \frac{y_n - y_{n-1}}{h_{n-1}} - \frac{y_{n-1} - y_{n-2}}{h_{n-2}} \\ 0 \end{bmatrix}$$

 \dots or you could just drop the equations for m_0 and m_n and write it as an (n-1) imes (n-1) system.

Interpretation of a Natural Spline

- The word "spline" comes from the draftsman's spline, which is shown here constrained by 3 pegs.
- There is no force on either end to bend the spline beyond the last pegs, which results in a flat shape (zero curvature).
- ullet This is why the S''=0 end conditions are called *natural*.

Endpoint Conditions: Clamped Spline

2. Clamped Spline, sometimes called a "complete spline" (derivative is specified):

$$egin{align} S_0'(x_0) &= A &\Longrightarrow &b_0 &= A \ &\Longrightarrow &A &= rac{y_1-y_0}{h_0} - rac{h_0}{2} m_0 - rac{h_0}{6} (m_1-m_0) \ &\Longrightarrow &2h_0 m_0 + h_0 m_1 = 6 \left[rac{y_1-y_0}{h_0} - A
ight] \end{aligned}$$

and

$$S_{n-1}'(x_n)=B \implies b_{n-1}=B$$
 $\Longrightarrow h_{n-1}m_{n-1}+2h_{n-1}m_n=6\left[B-rac{y_n-y_{n-1}}{h_{n-1}}
ight]$

These two equations are placed in the first/last rows

$$egin{bmatrix} 2h_0 & h_0 & 0 & \cdots & \cdots & 0 \ h_0 & 2(h_0+h_1) & h_1 & 0 & & dots \ 0 & h_1 & 2(h_1+h_2) & h_2 & 0 & dots \ dots & 0 & \ddots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \ 0 & \cdots & 0 & h_{n-1} & 2h_{n-1} \ \end{bmatrix}$$

and the first/last RHS entries are modified accordingly.

Endpoint Conditions: Not-A-Knot

3. Not-A-Knot Spline (third derivative matching):

$$S_0'''(x_1) = S_1'''(x_1)$$
 and $S_{n-2}'''(x_{n-1}) = S_{n-1}'''(x_{n-1})$

Using $S_i'''(x)=6d_i$ and $d_i=rac{m_{i+1}-m_i}{6}$, these conditions become

$$m_1 - m_0 = m_2 - m_1$$

and

$$m_{n-1} - m_{n-2} = m_n - m_{n-1}$$

The matrix in this case is

and the first/last RHS entries are zero.

Note: Matlab's spline function implements the not-a-knot condition (by default) as well as the clamped spline, but not the natural spline. Why not? (see Homework #4).

Summary of the Algorithm

Starting with a set of n+1 data points

$$(x_0,y_0), \ \ (x_1,y_1), \ \ (x_2,y_2), \ldots, (x_n,y_n)$$

- 1. Calculate the values $h_i=x_{i+1}-x_i$ for $i=0,1,2,\ldots,n-1$.
- 2. Set up the matrix A and right hand side vector r as on page 6 for the natural spline. If clamped or not-a-knot conditions are used, then modify A and r appropriately.
- 3. Solve the (n+1) imes (n+1) linear system Am = r for the second derivative values m_i .
- 4. Calculate the spline coefficients for $i=0,1,2,\ldots,n-1$ using:

$$egin{aligned} a_i &= y_i \ b_i &= rac{y_{i+1} - y_i}{h_i} - rac{h_i}{2} m_i - rac{h_i}{6} (m_{i+1} - m_i) \ c_i &= rac{m_i}{2} \ d_i &= rac{m_{i+1} - m_i}{6h_i} \end{aligned}$$

5. On each subinterval $x_i \leq x \leq x_{i+1}$, construct the function

$$g_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

Natural Spline Example

x	4.00	4.35	4.57	4.76	5.26	5.88
y	4.19	5.77	6.57	6.23	4.90	4.77
h	0.35	0.22	0.19	0.50	0.62	

Solve Am = r when

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.35 & 1.14 & 0.22 & 0 & 0 & 0 \\ 0 & 0.22 & 0.82 & 0.19 & 0 & 0 \\ 0 & 0 & 0.19 & 1.38 & 0.50 & 0 \\ 0 & 0 & 0 & 0.50 & 2.24 & 0.62 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad r = \begin{bmatrix} 0 \\ -5.2674 \\ -32.5548 \\ -5.2230 \\ 14.70180 \end{bmatrix}$$

$$\implies m = [0, 3.1762, -40.4021, -0.6531, 6.7092, 0]^T$$

Calculate the spline coefficients:

	x_i	$ y_i=a_i $	b_i		•	Interval
, ,			4.3290	0	1.5125	$[4.00, \ 4.35]$
		5.77				$[4.35, \ 4.57]$
$S_2(x)$	4.57	6.57	0.7900	-20.2010	34.8675	[4.57, 4.76]
$S_3(x)$	4.76	6.23	-3.1102	-0.3266	2.4541	[4.76, 5.26]
$S_4(x)$	5.26	4.90	-1.5962	3.3546	-1.8035	[5.26, 5.88]

Then the spline functions are easy to read off, for example:

$$S_2(x) = 6.57 + 0.7900(x - 4.57) - 20.2010(x - 4.57)^2 + 34.8675(x - 4.57)^3$$

 $S_3(x) = 6.23 - 3.1102(x - 4.76) - 0.3266(x - 4.76)^2 + 2.4541(x - 4.76)^3$

Exercise: Verify that S_2 and S_3 satisfy the conditions defining a cubic spline.

Splines vs. Interpolation

The Newton divided difference table for the data points is

\boldsymbol{x}	\boldsymbol{y}	a_1	a_2	a_3	a_4	a_5
4.00	4.19					
		4.5143				
4.35	5.77		-1.5402			
		3.6364		-15.3862		
4.57	6.57		-13.2337		22.6527	
		-1.7895		13.1562		-15.7077
4.76	6.23		-1.2616		-6.8778	
		-2.6600		2.6331		
5.26	4.90		2.1878			
		-0.2097				
5.88	4.77					

$$\implies P_5(x) = 4.19 + 4.5143(x-4) - 1.5402(x-4)(x-4.35) - \dots$$

Clamped Spline Example

\boldsymbol{x}	4.00	4.35	4.57	4.76	5.26	5.88
y	4.19	5.77	6.57	6.23	4.90	4.77
h	0.35	0.22	0.19	0.50	0.62	

(same data)

Assume S'(4.00) = -1.0 and S'(5.88) = -2.0 (clamped).

Solve Am = r where

$$A = \begin{bmatrix} 0.70 & 0.35 & 0 & 0 & 0 & 0 \\ 0.35 & 1.14 & 0.22 & 0 & 0 & 0 \\ 0 & 0.22 & 0.82 & 0.19 & 0 & 0 \\ 0 & 0 & 0.19 & 1.38 & 0.50 & 0 \\ 0 & 0 & 0 & 0.50 & 2.24 & 0.62 \\ 0 & 0 & 0 & 0 & 0.62 & 1.24 \end{bmatrix} \quad \text{and} \quad r = \begin{bmatrix} 33.0858 \\ -5.2674 \\ -32.5548 \\ -5.2230 \\ 14.7018 \\ -10.7418 \end{bmatrix}$$

 $\implies m = [54.5664, -14.6022, -35.0875, -3.0043, 11.1788, -14.2522]^T$

	x_i	$ig y_i = a_i$	b_i	c_i	$\boldsymbol{d_i}$	Interval
						$[4.00, \ 4.35]$
						$[4.35, \ 4.57]$
						[4.57, 4.76]
$S_3(x)$	4.76	6.23	-3.0908	-1.5021	4.7277	[4.76, 5.26]
$S_4(x)$	5.26	4.90	-1.0472	5.5894	-6.8363	[5.26, 5.88]

Exercise: Verify that the spline satisfies the clamped end conditions:

$$S_0'(4.00) = -1.0$$
 and $S_4'(5.88) = -2.0$.

Comparison

Below is a comparison of the splines with various endpoint conditions:

Second Example

Consider the following data representing the thrust of a model rocket versus time.

t	T
0.00	0.00
0.05	1.00
0.10	5.00
0.15	15.00
0.20	33.50
0.30	33.00
0.40	16.50
0.50	16.00

$oldsymbol{t}$	$oldsymbol{T}$
0.60	16.00
0.70	16.00
0.80	16.00
0.85	16.00
0.90	6.00
0.95	2.00
1.00	0.00

Below is a plot of the natural spline:

Notice how wiggles are introduced near the ends of the flat region – non-smooth data cause some problems for cubic splines.