Math 113: Functional Analysis

Sair Shaikh

June 2, 2025

Problem 54. Suppose that X is a reflexive Banach space. Show that the unit ball $B = \{x \in X : ||x|| \le 1\}$ is weakly compact. (Hint provided).

Solution. Let X^* be the dual of X. By Alaoglu's theorem, we know that $B^{**} = \{f \in X^{**} : ||f|| \le 1\}$ is compact in $\sigma(X^{**}, X^*)$. Thus, it suffices to show that B under the weak topology on X is homeomorphic to B^{**} in the weak-* topology on X^{**} under the natural map ι .

Since X is reflexive, we already know that $\iota: X \to X^{**}$ is a bijection. Recall the definition of an basic open set in the weak* topology on X^{**} , for $f_0 \in X^{**}$, $\phi_1, \dots, \phi_k \in X^*$ and $\epsilon > 0$:

$$U = \{ f \in X^{**} : |f(\phi_i) - f_0(\phi_i)| < \epsilon, 1 \le i \le k \}$$

Noting that ι is bijective, we may rewrite this as:

$$U = \{ \iota(x) \in X^{**} : |\iota(x)(\phi_i) - \iota(x_0)(\phi_i)| < \epsilon, 1 \le i \le k \}$$

= $\{ \iota(x) \in X^{**} : |\phi_i(x) - \phi_i(x_0)| < \epsilon, 1 \le i \le k \}$

The preimage of U under ι then is precisely:

$$\iota^{-1}(U) = \{ x \in X : |\phi_i(x) - \phi_i(x_0)| < \epsilon, 1 \le i \le k \}$$

which is a basic open set in the weak topology on X. Thus, ι is continuous.

Similarly, let V be a basic open set in the weak topology on X, written, for some $x_0 \in X$, $\phi_1, \dots, \phi_k \in X^*$ and $\epsilon > 0$ as:

$$V = \{ x \in X : |\phi_i(x) - \phi_i(x_0)| < \epsilon, 1 \le i \le k \}$$

Then, we have that:

$$\iota(V) = \{\iota(x) \in X^{**} : |(\phi_i(x)) - \phi_i(x_0)| < \epsilon, 1 \le i \le k\}$$

= $\{\iota(x) \in X^{**} : |\iota(x)(\phi_i) - \iota(x_0)(\phi_i)| < \epsilon, 1 \le i \le k\}$

which is a basic open set in the weak* topology on X^{**} . Thus, ι^{-1} is also continous.

Thus, ι is a homeomorphism from X with the weak topology to X^{**} with the weak* topology. Finally, note that as ι is isometric,

$$\iota(B) = \{\iota(x) : ||\iota(x)|| \le 1\} = B^{**}$$

Thus, as B^{**} is compact in the weak* topology, we have that B is weakly compact in the weak topology on X.

Problem 59. Let E be a nonempty subset of a Hilbert space H. Let Y be a subspace spanned by E. Then $E^{\perp\perp}$ is the closure of Y in H.

Solution. We show both inclusions separately.

Let $y \in Y$ be arbitrary. Then, we have that $y = \sum_{i=1}^n a_i e_i$ for some $e_i \in E$ and $a_i \in \mathbb{F}$ (\mathbb{R} or \mathbb{C}). Then, for all $w \in E^{\perp}$, we have that:

$$(y \mid w) = \left(\sum_{i=1}^{n} a_i e_i \mid w\right)$$
$$= \sum_{i=1}^{n} a_i (e_i \mid w)$$
$$= 0$$

Thus, $y \in E^{\perp \perp}$. Therefore, $Y \subseteq E^{\perp \perp}$ (as y was arbitrary). As noted in class, since the inner-product is continous, $E^{\perp \perp}$ is closed. Thus, we have that $\overline{Y} \subseteq E^{\perp \perp}$.

Next, let $z \in E^{\perp \perp}$. Since \overline{Y} is closed, we have that $H = \overline{Y} \oplus \overline{Y}^{\perp}$. Thus, we can write z = y + y' where $y \in \overline{Y}$ and $y' \in \overline{Y}^{\perp}$. It suffices to show y' = 0 and thus, $z = y \in \overline{Y}$, implying $E^{\perp \perp} \subseteq \overline{Y}$ (as z was arbitrary).

Let $w \in \overline{Y}^{\perp}$. Then, as $E \subset \overline{Y}$, we have that:

$$(w \mid e) = 0 \qquad \forall e \in E$$

Thus, we have $w \in E^{\perp}$, thus, $\overline{Y}^{\perp} \subseteq E^{\perp}$. In particular, $y' \in E^{\perp}$. Moreover, $(y \mid y') = 0$ as $y \in \overline{Y}$ and $y' \in \overline{Y}^{\perp}$. Since $z \in E^{\perp \perp}$, we have:

$$0 = (z | y')$$

= $(y | y') + (y' | y')$
= $(y' | y')$

Thus, y'=0 by positive definiteness of the inner product. Therefore, $z=y\in \overline{Y}$. Thus, we have that $E^{\perp\perp}\subseteq \overline{Y}$.

Therefore, we have that $E^{\perp \perp} = \overline{Y}$.

Problem 60. Let $X = l^2$. Show that the sequence $\{e_n\}$ of standard basis vectors converges weakly to 0.

Solution. Let $\phi \in (l^2)^*$ and $\epsilon > 0$. We need to show that there exists an N such that for all $n \geq N$, $e_n \in U := \{x \in l^2 : |\phi(x)| < \epsilon\}$. Since $(l^2) \cong (l^2)^*$ (isometric isomorphism) via the map $y \to \Phi_y$ defined by:

$$\Phi_y(x) = \sum_{n=1}^{\infty} x_n y_n$$

Thus, there exists a $y \in l^2$ such that $\phi = \Phi_y$. Then, we have:

$$\phi(e_n) = y_n$$

Then, since $y \in l^2$, we have that $\sum_{n=1}^{\infty} |y_n|^2 < \infty$. Thus, there exists an N, such that $\sum_{n=N+1}^{\infty} |y_n|^2 < \epsilon$. Thus, for all $n \geq N$, we have that:

$$|\phi(e_n)| = |y_n| < \epsilon$$

Thus, $e_n \in U$ for all $n \geq N$. Therefore, $\{e_n\}$ converges weakly to 0.

Problem 61. Let H be a hilbert space. If $x, y \in H$, define $\Theta_{x,y} : H \to H$ by:

$$\Theta_{x,y}(z) = (z \mid y)x$$

Compute the norm of $\Theta_{x,y}$ and its adjoint $\Theta_{x,y}^*$.

Solution. First, note that if x = 0 or y = 0, then $\Theta_{x,y}(z) = (z \mid y)x = 0$ for all $z \in H$. Thus, $||\Theta_{x,y}|| = 0$. Thus, assume $x \neq 0$ and $y \neq 0$. For $z \in H$ by homogeneity of the norm and Cauchy-Schwarz we have:

$$||\Theta_{x,y}(z)|| = ||(z | y)x||$$

= $|(z | y)| ||x||$
 $\leq ||z|| ||y|| ||x||$

Thus, $||\Theta_{x,y}|| \le ||y|| \, ||x||$. Let $z = \frac{y}{||y||}$. Then, ||z|| = 1. Moreover, we have:

$$\left| \left| \Theta_{x,y} \left(\frac{y}{||y||} \right) \right| \right| = \left| \left(\frac{y}{||y||} \mid y \right) \right| ||x||$$

$$= \frac{1}{||y||} ||y||^2 ||x||$$

$$= ||y|| ||x||$$

Thus, the bound is achieved. Therefore, $||\Theta_{x,y}|| = ||y|| \, ||x||$. This also captures the x = 0 or y = 0 case.

Next, let $z, w \in H$. Then, we have that:

$$(\Theta_{x,y}z \mid w) = ((z \mid y)x \mid w)$$
$$= (z \mid y)(x \mid w)$$
$$= (z \mid y)\overline{(w \mid x)}$$
$$= (z \mid (w \mid x)y)$$

Thus, we can define $\Theta_{x,y}^*(w) = (w \mid x)y$. Notice that:

$$\Theta_{x,y}^* = \Theta_{y,x}$$

Thus, by the previous argument, we have that:

$$||\Theta_{x,y}^*|| = ||\Theta_{y,x}|| = ||y|| ||x||$$

Problem 64. Let $P \in \mathcal{L}(H)$ be the orthogonal projection onto a nonzero subspace W. Show that $P = P^* = P^2$ and that ||P|| = 1. Conversely, show that if $P \in \mathcal{L}(H)$ and $P = P^* = P^2$, then P is an orthogonal projection onto its range.

Solution. We assume W is closed as the definition of P requires it. Let P^* be the adjoint of P. Note that $x - Px \in W^{\perp}$ for all $x \in H$. Let $h, k \in H$. Note that:

$$(Ph \mid k) = (Ph \mid Pk + (k - Pk))$$

$$= (Ph \mid Pk) + (Ph \mid k - Pk)$$

$$= (Ph \mid Pk) + 0$$

$$= (Ph \mid Pk) + (h - Ph \mid Pk)$$

$$= (Ph + (h - Ph) \mid Pk)$$

$$= (h \mid Pk)$$

Thus, P is self-adjoint. Moreover, note that:

$$(P^{2}h \mid k) = (Ph \mid Pk)$$

$$= (Ph \mid Pk) + (Ph \mid k - Pk)$$

$$= (Ph \mid k)$$

for all $h, k \in H$. Thus, $P^2 = P$.

First, note that by the Pythagorean theorem, for all $h \in H$,

$$||Ph||^2 \le ||Ph||^2 + ||h - Ph||^2$$

= $||h||^2$

Thus, $||Ph|| \le ||h||$. Therefore, $||P|| \le 1$.

Next, pick $h \in W$ with ||h|| = 1 (we can do this as W is a subspace and we can divide any non-zero vector by its norm to get norm 1). Then, Ph = h, thus ||Ph|| = ||h||. Thus, $||P|| \ge 1$ (by the sup definition of the operator norm). Therefore, ||P|| = 1.

Conversely, let $P \in \mathcal{L}(H)$ such that $P = P^* = P^2$. We need to show that P is an orthogonal projection onto $V := \operatorname{img}(P)$. Thus, we need to show that V is closed and $H = V \oplus V^{\perp}$.

Let $x \in H$ and $Py \in V$ be arbitrary. Then note:

$$(x - Px \mid Py) = (x \mid Py) - (Px \mid Py)$$

$$= (x \mid Py) - (x \mid P^*Py)$$

$$= (x \mid Py) - (x \mid P^2y)$$

$$= (x \mid Py) - (x \mid Py)$$

$$= 0$$

Thus, as Py was arbitrary, $x - Px \in V^{\perp}$. Therefore, we have that $H = V + V^{\perp}$. Next, let $v \in V \cap V^{\perp}$. Then, we have $(v \cap v) = 0$ thus v = 0. Thus, $V \cap V^{\perp} = \{0\}$. Therefore, we have that $H = V \oplus V^{\perp}$.

Then, note that V^{\perp} is closed as the inner product is continous (as we noted in class). Then, we note that $H = V^{\perp} \oplus V^{\perp \perp}$ by the orthogonal projections theorem we proved in class. Moreover, $V^{\perp \perp} = \overline{V}$ (Problem 59). Thus, we have:

$$H = V \oplus V^{\perp} = \overline{V} \oplus V^{\perp}$$

Then, let $x \in \overline{V} \setminus V$. Then, as $H = V \oplus V^{\perp}$, we must have $x \in V^{\perp}$. However, $\overline{V} \cap V^{\perp} = \{0\}$, thus x = 0. But $0 \in V$ as V is a subspace. Thus, we have a contradiction, and $\overline{V} \subseteq V$ is empty. Thus, $V = \overline{V}$, i.e. V is closed.

Thus, we have shown that P is an orthogonal projection onto its range $V = \operatorname{img}(P)$.

NOTE: Is this what the definition of orthogonal projection is?

Problem 65.(Dini's Theorem) Suppose that X is a compact metric space and that C(X) is the Banach space of real-valued functions on X. Show that if $(f_n) \subset C(X)$ is such that there is a $f \in C(X)$ such that $f_n(X) \nearrow f(x)$ for all $x \in X$, then $f_n \to f$ in C(X). Equivalently, show that $f_n \to f$ uniformly on X. (Hint provided).

Solution. Let $(f_n) \subset C(X)$ be such that $f_n(x) \nearrow f(x)$ for all $x \in X$. We need to show that $f_n \to f$ uniformly on X.

Let $\epsilon > 0$ be arbitrary. Let $E_n = \{x \in X : |f(x) - f_n(x)| < \epsilon\}$. Then, as $f_n(x) \leq f_{n+1}(x)$, we have that $|f(x) - f_{n+1}(x)| \leq |f(x) - f_n(x)|$ for all $x \in X$ for all n. Thus, we have that $E_n \subseteq E_{n+1}$ for all n. Moreover, for each $x \in X$, as $f_n(x) \to f(x)$, there exists N_x such that for all $n \geq N_x$,

$$|f(x) - f_n(x)| < \epsilon$$

Thus, $x \in E_n$ for all $n \ge N_x$. Therefore, we have that $\{E_n\}$ is a cover for X.

Moreover, since f and f_n are continous, so is $f - f_n$ for all n. As $\{c \in \mathbb{R} : |c| < \epsilon\}$ is open, we have that E_n is the continous preimage of an open set, thus is open. Thus, $\{E_n\}$ is an open cover for X.

Since X is compact, there exists finite subcover $\{E_{n_1}, \ldots, E_{n_k}\}$ such that:

$$X = \bigcup_{i=1}^{k} E_{n_i}$$

Let $N = \max\{n_1, \ldots, n_k\}$. Then, as noted previously, $E_{n_i} \subseteq E_N$ for all i. Thus for any $x \in X$, there exists an i such that $x \in E_{n_i} \subseteq E_N$. Thus, $X = E_N$.

Moreover, we also note that the containments $E_N \subseteq E_{N+1} \subseteq \cdots$ imply that $E_m = X$ for all $m \ge N$. Thus, we have that for $m \ge N$, for all $x \in X$,:

$$x \in E_m \iff |f(x) - f_m(x)| < \epsilon$$

Thus, $(f_n) \to f$ uniformly on X.

Problem 66. A linear map $V: H \to H$ is called an isometry if ||V(x)|| = ||x|| for all $x \in H$. Show that the following are equivalent:

- 1. V is an isometry.
- 2. $(V(x) \mid V(y)) = (x \mid y)$ for all $x, y \in H$.
- 3. $V^*V = I$.

Solution. We show $(1) \implies (2), (2) \implies (3), \text{ and } (3) \implies (1).$

((1) \Longrightarrow (2)). Let $x, y \in H$ be arbitrary. Then, by the polarization identity (for $\mathbb{F} = \mathbb{C}$), we have:

$$(Vx \mid Vy) = \frac{1}{4} (||Vx + Vy||^2 - ||Vx - Vy||^2 + i ||Vx + iVy||^2 - i ||Vx - iVy||^2)$$

$$= \frac{1}{4} (||V(x+y)||^2 - ||V(x-y)||^2 + i ||V(x+iy)||^2 - i ||V(x-iy)||^2)$$

$$= \frac{1}{4} (||x+y||^2 - ||x-y||^2 + i ||x+iy||^2 - i ||x-iy||^2)$$

$$= (x \mid y)$$

and for $\mathbb{F} = \mathbb{R}$, we have:

$$(Vx | Vy) = \frac{1}{4} (||Vx + Vy||^2 - ||Vx - Vy||^2)$$

$$= \frac{1}{4} (||V(x+y)||^2 - ||V(x-y)||^2)$$

$$= \frac{1}{4} (||x+y||^2 - ||x-y||^2)$$

$$= (x | y)$$

Thus, we have that $(Vx \mid Vy) = (x \mid y)$ for all $x, y \in H$.

 $((2) \implies (3))$. Let $y \in H$ be arbitrary. Then, for all $x \in H$, we have:

$$(x \mid y) = (Vx \mid Vy)$$
$$= (x \mid V^*Vy)$$

Thus, $(x \mid (y - V^*Vy)) = 0$ for all $x \in H$. Letting $x = y - V^*Vy$, we have that $y - V^*Vy = 0$ by the positive definiteness of the inner product. Thus, $V^*Vy = y$. Since y was arbitrary, $V^*V = I$.

 $((3) \implies (1))$. Let $x \in H$ be arbitrary. Then, we have:

$$||Vx||^2 = (Vx | Vx)$$

$$= (x | V^*Vx)$$

$$= (x | Ix)$$

$$= (x | x)$$

$$= ||x||^2$$

Thus, ||Vx|| = ||x|| for all $x \in H$. Therefore, V is an isometry.

Thus, we have shown that the three statements are equivalent.

Problem 67. A surjective isometry $U: H \to H$ is called a unitary. Show that the following are equivalent for $U \in \mathcal{H}$.

- 1. U is a unitary.
- 2. U is invertible with $U^{-1} = U^*$.
- 3. If $\{e_n\}$ an orthonormal basis for H, then $\{U(e_n)\}$ is an orthonormal basis for H.

(Remark: (c) implies (a) is not true unless U is both linear and bounded.)

Solution. We show $(1) \implies (2), (2) \implies (3), \text{ and } (3) \implies (1).$

 $((1) \implies (2))$. Let U be a unitary. Then, as U is an isometry, we have that:

$$||Ux|| = 0 \iff ||x|| = 0 \iff x = 0$$

Thus, U is injective. Since U is surjective, we have that U is a bijection. By a direct corollary of the Open Mapping theorem, we have that U is invertible (proved in class). Then, as $U^*U = I$ (Problem 66), we have that $U^* = U^{-1}$ by the uniqueness of the inverse.

 $((2) \implies (3))$. Let $\{e_n\}$ be an orthonormal basis for H. Let $h \in H$ be such that:

$$(h \mid U(e_n)) = 0$$

for all n. It suffices to show that this implies h = 0 by one of the alternative characterizations of an orthonormal basis (proved in class).

As U is inveritble, hence surjective, there exists $h' \in H$ such that U(h') = h. Moreover, as $U^* = U^{-1}$ implies $U^*U = I$, we use the results of Problem 66 to get:

$$(U(h') \mid U(e_n)) = (h' \mid e_n) = 0$$

for all n. Then, as $\{e_n\}$ is an orthonormal basis for H, we have that h'=0. Then h=U(h')=0. Thus, $\{U(e_n)\}$ is an orthonormal basis.

 $((3) \implies (1))$. Assume that if $\{e_n\}$ is an orthonormal basis for H, then $\{U(e_n)\}$ is an orthonormal basis for H. Since $\{Ue_n\}$ is an orthonormal basis, we can write $x \in H$ as:

$$x = \sum_{n=1}^{\infty} (x \mid Ue_n) Ue_n$$

Then, as U is linear and continous, we can write:

$$x = \sum_{n=1}^{\infty} (x \mid Ue_n) Ue_n$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} (x \mid Ue_n) Ue_n$$

$$= U \left(\lim_{N \to \infty} \sum_{n=1}^{N} (x \mid Ue_n) e_n \right)$$

$$= U \left(\sum_{n=1}^{\infty} (x \mid Ue_n) e_n \right)$$

Thus, U is surjective. Now, let $x, y \in H$ be arbitrary such that:

$$x = \sum_{n=1}^{\infty} (x \mid e_n)e_n \qquad y = \sum_{n=1}^{\infty} (y \mid e_n)e_n$$

Then, we have that:

$$Ux = \sum_{n=1}^{\infty} (x \mid e_n) Ue_n \qquad Uy = \sum_{n=1}^{\infty} (y \mid e_n) Ue_n$$

using the linearity and boundedness of U (as above). Thus, we have:

$$(Ux \mid Ue_n) = (x \mid e_n)$$

and similarly for Uy. Then, using alternative characterizations of an orthnormal basis, we have:

$$(Ux \mid Uy) = \sum_{n=1}^{\infty} (Ux \mid Ue_n)(Ue_n \mid Uy)$$
$$= \sum_{n=1}^{\infty} (x \mid e_n)(e_n \mid y)$$
$$= (x \mid y)$$

Thus, by Problem 66, we have that U is an isometry. Thus, U is a unitary.

Thus, we have shown that the three statements are equivalent.