Доказательства к кр по линалу 3 модуля.

1. Сформулируйте и докажите утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

 \forall подгруппа в (\mathbb{Z} , +) имеет вид $k\mathbb{Z}$ для некоторых $k \in \mathbb{N} \cup \{0\}$ \square Если $H = \{0\}$, то положим k = 0. Иначе: $k = \min(H \cap \mathbb{N}) \to$ и очевидно, что $k\mathbb{Z} \subseteq H$. Если возьмем $a \in H$ и разделим a на k с остатком: a = qk + r, где $0 \le r < k \Rightarrow r = a - q \cdot k \in H \Rightarrow r = 0 \Rightarrow a = q \cdot k$, то есть всегда $H = k\mathbb{Z}$

2. Сформулируйте и докажите теорему Лагранжа (включая две леммы).

Лемма 1: $\forall g_1, g_2 \in G$ либо $g_1H = g_2H$, либо $g_1H \cap g_2H = \emptyset$ \square Если $g_1H \cap g_2H \neq \emptyset$, то $g_1H = g_2h_2h_1^{-1}H \subseteq g_2H$ и аналогично в обратную сторону $\exists h_1, h_2 : g_1h_1 = g_2h_2$, так как пересечение не пусто $\Rightarrow g_1 = g_2h_2h_1^{-1}$

Лемма 2: $|gH| = |H| \ \forall g \in G$, \forall конечной подгруппы H \square $|gH| \leq |H|$, так как $gH = \{gh|h \in H\}$ Если $gh_1 = gh_2 \Rightarrow g^{-1}gh_1 = g^{-1}gh_2 \Rightarrow h_1 = h_2 \Rightarrow$ нет совпадений и |gH| = |H|

Теорема Лагранжа:

Пусть G – конечная группа и $H\subseteq G$ – подгруппа. Тогда $|G|=|H|\cdot [G:H]$

 \forall элемент группы G лежит в своем левом смежном классе по H и смежные классы не пересекаются (по лемме 1) и \forall из них содержит |H| элементов (по лемме 2)

Следствие 1: Пусть G – конечная группа и $g \in G$. Тогда ord(g) делит |G|

Следствие 2: Пусть G – конечная группа. Тогда $g^{|G|} = e$

Следствие 3 (малая теорема Ферма): Пусть \bar{a} – ненулевой вычет по простому модулю p.

Тогда $\overline{a}^{p-1} \equiv 1 \mod p$

3. Докажите, что гомоморфизм инъективен тогда и только тогда, когда его ядро тривиально.

Гомоморфизм а инъективен тогда и только тогда, когда $\mathit{Kera} = \{e_{_1}\}$

Доказательство.

Поскольку $a\left(e_{_{1}}\right)=e_{_{_{2}}}$, указанное условие необходимо. С другой стороны, если $a\left(g\right)=a\left(g'\right)$, то $a\left(gg'^{_{-1}}\right)=e_{_{2}}\Rightarrow gg'^{_{-1}}\in \mathit{Kera}$ и если ядро тривиально, g=g' и отображение инъективно.

4. Сформулируйте и докажите критерий нормальности подгруппы, использующий сопряжение.

Пусть $H \subseteq G$ — подгруппа в группе G. Тогда 3 условия эквивалентны: 1. H нормальна 2. $\forall g \in G \ gHg^{-1} \subseteq H \ (gHg^{-1} = \{ghg^{-1}|h \in H\})$ 3. $\forall g \in G \ gHg^{-1} = H$ \square 1 Схема: $\nearrow \searrow$ 3 \leftarrow 2 \square \square Пусть $h \in H$ и $g \in G$. Из определения $\Rightarrow \exists h, h' \in H : gh = h'g$ $ghg^{-1} = h' \in H$, то есть $gHg^{-1} \subseteq H$

 $ghg^{-1} = h \in H$, то есть $gHg^{-1} \subseteq H$ $[2 \to 3]$ Остается показать, что $H \subseteq gHg^{-1}$. Для $h \in H$ имеем $h = gg^{-1}hgg^{-1} = g(g^{-1}hg)g^{-1} \in gHg^{-1}$, так как $g^{-1}hg \in H$ (вместо g взяли g^{-1})

 $3 \to 1$ $\forall g \in G$ по пункту 3 $gH = gHg^{-1}g \subseteq Hg$. Аналогично $Hg \subseteq gH \Rightarrow Hg = gH$ — по определению это нормальность.

5. Сформулируйте и докажите критерий нормальности подгруппы, использующий понятие ядра гомоморфиз- ма.

H – нормальная подгруппа $\Leftrightarrow H = Kerf$, где f – некоторый гомоморфизм

□ Необходимость

Дано: H — нормальная подгруппа

Нужно доказать: $\exists f$ – гомоморфизм: H = Kerf

Это естественный гомоморфизм, сопоставляющий \forall элементу $a \in G$ его смежный класс aH $\varepsilon: G \to G/H$

Тогда $Ker \varepsilon = eH = H$

Достаточность

H = Kerf

Ранее показали, что Kerf – подгруппа.

Покажем, что Kerf – нормальная подгруппа. Пусть $f:G\to F$ – гомоморфизм и $z\in Kerf$. Тогда $f(g^{-1}zg)=f(g^{-1})f(z)f(g)=f(g^{-1})ef(g)=f(g^{-1}g)=f(e_G)=e_F$. То есть $\forall g\in G:g^{-1}Hg\subseteq H$, где $H=Kerf\Rightarrow$ по критерию H=Kerf – нормальна

6. Сформулируйте и докажите теорему о гомоморфизме групп.

7. Докажите, что центр группы является её нормальной подгруппой.

```
Z(G) является нормальной подгруппой G \square 1. Покажем, что Z(G) — подгруппа, то есть \forall a,b \in Z(G)a \cdot b^{-1} \in Z(G) ab^{-1}g = ab^{-1}(g^{-1})^{-1} = a(g^{-1}b)^{-1} = a(bg^{-1})^{-1} = a(g^{-1})^{-1}b^{-1} = agb^{-1} = gab^{-1} \Rightarrow ab^{-1} \in Z(G) 2. Если a \in Z(G) и g,b \in G g^{-1}agb = g^{-1}gab = ab = ba = bag^{-1}g = bg^{-1}ag, то есть если элемент a \in Z(G), то g^{-1}ag тоже \in Z(G). А это по критерию означает нормальность.
```

8. Сформулируйте и докажите утверждение о том, чему изоморфна факторгруппа группы по её центру.

```
G/Z(G)\simeq Inn(G) \square Рассмотрим отбражение f:G\to Aut(G), которое задается формулой \phi_g(h)=ghg^{-1}. Тогда Imf=Inn(G) по определению. Kerf=Z(G), так как ghg^{-1}=ehe^{-1}=h\Leftrightarrow gh=hg \Rightarrow по теореме о гомоморфизме G/Kerf\simeq Imf, то есть G/Z(G)\simeq Inn(G)
```

9. Сформулируйте и докажите теорему Кэли.

 \forall конечная группа порядка n изоморфна некоторой подгруппе группы S_n

Пусть |G|=n. $\forall a\in G$ рассмотрим отображение $L_a:G\to G$ по формуле: $L_a(g)=a\cdot g$

Пусть $e, g_1, g_2, \ldots, g_{n-1}$ — элементы группы. Тогда $a, ag_1, ag_2, \ldots, ag_{n-1}$ — те же элементы, но в другом порядке (если $ag_i = ag_j \Rightarrow g_i = g_j$, так как $\exists a^{-1} \forall a \in G$)

 $\Rightarrow L_a$ – биективное отображение G в себя (то есть перестановка элементов g)

Эти отображения можно умножать (взяв композицию)

Есть единичный элемент: L_e

Обратным элементом к L_a является $L_{a^{-1}}$

Из ассоциативности в $G \Rightarrow L_{ab}(g) = (a \cdot b)g = a(b \cdot g) = L_a(L_b(g)) \Rightarrow$ множество $L_e, L_{g_1}, L_{g_2}, \dots, L_{g_{n-1}}$ образует подгруппу H в множестве всех биективных отображений G в себя, то есть S(G)

А изоморфизм устроен так: $a \mapsto L_a \in H$ это биекция и гомоморфизм

10. Докажите, что характеристика поля может быть либо простым числом, либо нулем.

Определение Пусть P - поле. Характеристикой поля называется наименьшее $q \in \mathbb{N}: \underbrace{1+1+\ldots 1}_q = 0$ Если такого q нет, то характеристика

равно нулю

Обозначение: char(P)

Примеры

1.
$$char(\mathbb{R}) = char(\mathbb{C}) = char(\mathbb{Q}) = 0$$

2.
$$char(\mathbb{Z}_p)=p$$

Утверждение:
$$char(p) = egin{cases} 0, \\ p, p - \text{простое} \end{cases}$$

$$\square$$
 Пусть $p
eq 0 \implies p \ge 2(1
eq 0)$

Если
$$p = m \cdot k$$
, где $1 \leq m, k < p$

$$0 = \underbrace{1 + \dots + 1}_{m \cdot k} = \underbrace{(1 + \dots + 1)}_{m} \cdot \underbrace{(1 + \dots + 1)}_{k}$$
 так как $p = M \cdot k$ минимально, то обе скобки $\neq 0 \implies m$ и k - делители нуля - а из нет в поле

по определению

11. Сформулируйте и докажите утверждение о том, каким будет простое подполе в зависимости от характеристики.

Пусть F – поле. F_0 – его простое подполе. Тогда:

- 1. Если char F = p > 0, то $F_0 \simeq \mathbb{Z}_p$
- 2. Если char F = 0, то $F_0 \simeq \mathbb{Q}$

П

- $\langle 1 \rangle \subseteq (F,+)$, где $\langle 1 \rangle$ циклическая подгруппа по сложению, порожденная 1 (то есть нейтральным элементом по умножению)
- $|\langle 1 \rangle| = char F$
- $\langle 1 \rangle$ подкольцо в F. Так как \forall подполе F содержит $1 \Rightarrow$ оно содержит и $\langle 1 \rangle \subseteq F_0$
- 1. Если char F=p>0, то $\langle 1 \rangle \simeq \mathbb{Z}_p$ поле $\Rightarrow F_0=\langle 1 \rangle \simeq \mathbb{Z}_p$
- 2. Если char F=0, то $\langle 1\rangle\simeq\mathbb{Z}$ не поле. Но F_0 содержит и все дроби вида $\frac{a}{b}$, где $a,b\in\langle 1\rangle,b\neq 0$ и они образуют поле, изоморфное \mathbb{Q} (\mathbb{Q} поле частных для кольца \mathbb{Z})

12. Сформулируйте и докажите критерий того, что кольцо вычетов по модулю п является полем.

Меняем р на n!

 \mathbb{Z}_k – поле $\Leftrightarrow k$ – простое

 \mathbb{Z}_k – коммутативное кольцо с 1.

Если k=p – простое, то в \mathbb{Z}_p^* (то есть $\mathbb{Z}_p \setminus \{0\}$ с операцией умножения) все элементы обратимы.

Рассмотрим $\overline{1}, \ldots, \overline{p-1}$

Возьмем остаток \overline{s} и докажем, что $\exists \overline{s}^{-1}$

Рассмотрим $\{\overline{s}, \overline{s} \cdot \overline{2}, \overline{s} \cdot \overline{3}, \dots, \overline{s} \cdot \overline{p-1}\} = A$. Если $\overline{s} \neq 0 \Rightarrow \overline{k} \cdot \overline{s} \neq 0 \mod p \Rightarrow$ в A нет нуля. Более того, это те же элементы, но в другом порядке. Если $\overline{k} \cdot \overline{s} = \overline{q} \cdot \overline{s} \Rightarrow (\overline{k} - \overline{q}) \cdot \overline{s} = \overline{0} \Rightarrow \overline{k} - \overline{q} = \overline{0} \Rightarrow$ в наборе $\overline{s}, \overline{s} \cdot \overline{2}, \overline{s} \cdot \overline{3}, \dots, \overline{s} \cdot \overline{p-1}$ найдется $1 \Rightarrow \overline{s} \cdot \overline{s}' = 1$, то есть \overline{s} обратим

13. Докажите, что ядро гомоморфизма колец является идеалом.

Лемма Ker(arphi), где arphi - гомоморфизм колец, всегда являетя идеалом в кольце K_1 $(arphi:K_1 o K_2)$

□ Идеал:

1. Подгруппа в $(K_1,+)$

2. $\forall a \in Ker(\varphi) \forall r \in K_1 : a \cdot r \in Ker(\varphi) \land r \cdot a \in Ker(\varphi)$

Любой гомоморфизм колец является гомоморфизмом их их аддитивных групп $\implies Ker(\varphi)$ является нормальной подгруппой в $(Ker_1,+)$. Пусть $a\in Ker(\varphi)$ т. е. $\varphi(a)=0$. Берем $a\cdot r$ и рассмотрим

$$\varphi(a\cdot r)=\varphi(a)\cdot\varphi(r)=0\cdot\varphi(r)=0$$

И аналогично $arphi(r\cdot a)=arphi(r)\cdot 0=0$

Лемма $r\cdot 0=0\cdot r=0$

$$\Box r+0=r \implies r(r+0)=r\cdot r \implies r^2+r\cdot 0=r^2|+(-r^2)r\cdot 0=0 \text{ y. t. g.} \blacksquare$$

14. Сформулируйте и докажите утверждение о том, когда факторкольцо кольца многочленов над полем само является полем.

Теорема Пусть F - поле, а $f(x) \in F[x]$. Тогда факторкольцо F[x]/< f(x)> является полем $\iff f(x)$ - неприводим над F

Пусть дан неприводимы многочлен $f(x) \in F[x]$ тогда в качестве поля, являеются расширением F, в котором f(x) имеет корень можно взять $F_1 \cong F[x]/< f(x)>\supset F$

Пример $\mathbb{R}[x]/< x^2+1>\cong \mathbb{C}$

15. Выпишите и докажите формулу для описания изменения координат вектора при изменении базиса.

Пусть
$$x\in V,A$$
 и B — базисы в $V.$ $x^a=\begin{pmatrix}x_1^a\\\vdots\\x_n^a\end{pmatrix}$ — столбец координат вектора x в базисе $A,$
$$x^b=\begin{pmatrix}x_1^b\\\vdots\\x_n^b\end{pmatrix}$$
 — столбец координат вектора x в базисе $B.$ Тогда $x^b=T_{A\to B}^{-1}\cdot x^a$

$$x^b = \begin{pmatrix} x_1^b \\ \vdots \\ x_n^b \end{pmatrix}$$
 — столбец координат вектора x в базисе B . Тогда $x^b = T_{A o B}^{-1} \cdot x^a$

Докажем, что
$$x^a = T_{A \to B} \cdot x^b$$

$$x = \mathbb{A} \cdot x^a = (a_1, \dots, a_n) \cdot \begin{pmatrix} x_1^a \\ \vdots \\ x_n^a \end{pmatrix} = \mathbb{B} \cdot x^b$$

 $\mathbb{B}=\mathbb{A}\cdot T_{A\to B}$ — определение матрицы перехода в матричной форме $\mathbb{A}\cdot x^a=\mathbb{A}\cdot T_{A\to B}\cdot x^b\Rightarrow$ так как разложение по базису единственно, то $x^a=T_{A\to B}x^b$

16. Выпишите формулу для преобразования матрицы билинейной формы при замене базиса и докажите её.

Пусть U – матрица перехода от базиса e к базису f. Пусть B_e – матрица билинейной формы в базисе e, B_f – матрица билинейной формы в базисе f. Тогда: $B_f = U^T B_e U$

$$b(x,y)=(x^e)^TB_ey_e=(Ux^f)^TB_e(Uy^f)=(x^f)^T\underbrace{U^TB_eU}_{B_f}y^f=(x^f)^TB_fy^f$$
 (где x^e – столбец координат

x в базисе e)

 $\Rightarrow B_f = U^T B_e U$ (подставляем все базисные векторы)

17. Выпишите формулу для преобразования матрицы линейного отображения при замене базиса и докажите её.

Пусть φ – линейное отображение из линейного пространства V_1 в линейное пространство V_2 . Пусть $A_{E_1E_2}$ – матрица линейного отображения в паре базисов: E_1 в пространстве V_1 и E_2 в пространстве V_2 и пусть T_1 – матрица перехода от E_1 к E_1', T_2 – матрица перехода от E_2 к E_2' . Тогда $A_{E_1'E_2'} = T_2^{-1}A_{E_1E_2}T_1$

Пространетье
$$V_2$$
 и пусть T_2 Тогда $A_{E_1'E_2'} = T_2^{-1}A_{E_1E_2}T_1$

$$X^{E_1'} = T_1^{-1} x^{E_1}; Y^{E_2'} = T_2^{-1} x^{E_2}$$

$$X^{E_1} = T_1^{-1} x^{E_1}; Y^{E_2} = T_2^{-1} x^{E_2}$$
 Пусть y – образ x под действием φ . Тогда
$$Y^{E_2} = A_{E_1E_2} X^{E_1}$$
 и $Y^{E_2'} = A_{E_1'E_2'} X^{E_1'} \Rightarrow T_2^{-1} Y^{E_2} = A_{E_1'E_2'} T_1^{-1} X^{E_1} \Rightarrow Y^{E_2} = \underbrace{T_2 A_{E_1'E_2'} T_1'}_{A_{E_1E_2}} X^{E_1} \Rightarrow$

$$\Rightarrow A_{E_1E_2} = T_2 A_{E_1'E_2'} T_1^{-1}$$