Power Electronics

Project: Design of a Full-Wave Rectifier and Buck Converter

Name: Jaydeep Gupta

Matriculation No. 427044

RPTU Kaiserslautern

Course of Study:-Master in Commercial Vehicle Technology

Guided by:- M. Sc. Nielson Tschá

1. Introduction

Objective:

 The goal of this project is to design a power conversion system consisting of a single-phase full-wave rectifier followed by a buck converter that meets specific ripple constraints under input voltage variations.

Schematic

Design requirements

- Input Voltage = 20Vrms
- Switching frequency = 20kHz
- Output ripple current = 25%
- Output voltage ripple = 1.5%
- Load current = 1 Amp
- Output load = 5 ohm

2.System Design

2.1 Rectifier stage

- Four 1N5819 Schottky diodes are arranged to rectify AC Vrms to DC supply.
- Resistor R1(0.15ohm) protects capacitor C1 from surge current
- Capacitor C1(74mf) stabilizes rectified voltage to constant 27.2v

Without capacitor

With capacitor

2.3 Buck converter stage

 Mosfet BSC030N04NS is use as a switch driven by pulse generator for that we need Ton time which can be calculated with Duty ratio

Calculations of Inductor and Output capacitor

> calculation of Inductance and capacitor under nominal conditions:		
$\Delta_{12}^{2} = -(V_{out} - V_{in}) ton - (V_{in} - V_{out}) \cdot 0.7s$ $L = (27.28v - 5v) 0.1832 \times 1$	" DUCPP = DIL =) C= 8 FSWC	DIL DVCPP X8XFSW
0.25 20x103 H2	0.015x5x8x20x103H2	20,8 UF

Considering System constraints

* Iv	nput vol	tage veriat	ions of ±	20%
e Su	oitching	tage veriat	variation of	±20%
Vin	Frw	Inductor	Capacitor	
+20%	+20%	7.08, 5 yH	254F	
	-20 x	1062,744	37 M F	worst ca
-204.	+20%	641 MH	25.4F	
	-204.		3746	
Closes	t real	component	ed Mices 2	1-1111
F 1 .	tor!-		acitor!-	

Surge current resistor

Output ripple

Current ripple = 22.5%

Voltage ripple = 2.5%

*can be reduced by reducing resistance through inductor

Real Components with data sheets

BSC030N04NS G

MOSFET

OptiMOS™3 Power-Transistor, 40 V

Features

- Fast switching MOSFET for SMPS
- Optimized technology for DC/DC converters
- Qualified according to JEDEC¹⁾ for target applications
- N-channel; Normal level
- Excellent gate charge x R_{DS(on)} product (FOM)
- Very low on-resistance R_{DS(on)}
- Superior thermal resistance
- 100% Avalanche tested
- Pb-free plating; RoHS compliant
- Halogen-free according to IEC61249-2-21

Table 1 Key Performance Parameters

Parameter	Value	Unit	V	
V _{DS}	40	V		
R _{DS(on),max}	3.0	mΩ		
I _D	132	A		

Justification

• As our circuit operates with an input voltage of 22v to 33v, we need MOSFET with Vds >33v with Id > 1amp

Shielded Power Inductors MSS1812T

- 7 inductance values from 100 µH to 1000 µH
- Very low DCR and excellent current handling
- AEC-Q200 Grade 1 (-40°C to +125°C)
- Designer's Kit C499 contains 3 of each part

Core material Ferrite

Core and winding loss See www.coilcraft.com/coreloss

Environmental RoHS compliant, halogen free

Terminations RoHS compliant matte tin over nickel over phos bronze.

Other terminations available at additional cost.

Weight: 11.82 – 13.26 g Operating voltage 400 V max

Ambient temperature -40°C to +125°C with (40°C rise) Irms current.

Maximum part temperature +165°C (ambient + temp rise). Derating.

Storage temperature Component: -40°C to +165°C.

Tape and reel packaging: -40°C to +80°C

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

Teat (A)5

Irme (A)6

		123		100000000000000000000000000000000000000	SRF		Isat (A)			IIIIs (A)	
	Indu	ctance ²	DCR (Ohms)3		typ ⁴	10%	20%	30%	20°C	40°C	
Part number ¹	(μ H)	typ	max	(MHz)	drop	drop	drop	rise	rise	
MSS1812T-104MED	100	±20%	0.045	0.052	3.3	5.2	5.8	6.0	2.87	4.35	
MSS1812T-154KED	150	±10%	0.057	0.066	2.8	4.2	4.6	4.8	2.50	3.80	
MSS1812T-224KED	220	±10%	0.086	0.098	2.3	3.6	3.8	4.0	2.09	3.16	
MSS1812T-334KED	330	±10%	0.13	0.15	1.8	2.9	3.1	3.1	1.68	2.55	
MSS1812T-474KED	470	±10%	0.20	0.23	1.35	2.4	2.7	2.8	1.39	2.10	
MSS1812T-684KED	680	±10%	0.24	0.27	1.33	2.0	2.2	2.3	1.24	1.88	
MSS1812T-105KED	1000	±10%	0.45	0.52	0.85	1.7	1.8	1.8	0.93	1.40	

Inductor for worst case

muRata

Chip Monolithic Ceramic Capacitor for General GRM32ER61A476KE20_ (1210, X5R:EIA, 47uF, DC10V)

_: packaging code

Reference Sheet

1.Scope This product specification is applied to Chip Monolithic Ceramic Capacitor used for General Electronic equipment.

2.MURATA Part NO. System

(Ex.) GRM	32	Е	R6	1A	476	K	E20	L
	(1)L/W Dimensions	(2)T Dimensions	(3)Temperature Characteristics	(4)Rated Voltage	(S)Nominal Capacitance	(6)Capacitance Tolerance	(7)Murata's Control Code	(8)Packaging Code

3. Type & Dimensions

(Unit:mm)

(1)-1 L	(1)-2 W	(2) T	e	g
3.2±0.3	2.5±0.2	2.5±0.2	0.3 min.	1.0 min.

4.Rated value

(3) Temperature Characteristics (Public STD Code):X5R(EIA)		(4) Rated	(5) Nominal	(6) Capacitance	Specifications and Test Methods	
Temp. coeff or Cap. Change	Temp. Range (Ref.Temp.)	Voltage	Capacitance	Tolerance	(Operating Temp. Range)	
-15 to 15 %	-55 to 85 °C (25 °C)	DC 10 V	47 uF	±10 %	-55 to 85 *C	

Thanks for your attention