In [63]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Loading the dataset

In [64]:

data=pd.read_csv("/abalone.csv")
data

Out[64]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

In [65]:

data.head()

Out[65]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

Performing visualization

Univariant Analysis

In [66]:

sns.displot(data.Rings)

Out[66]:

<seaborn.axisgrid.FacetGrid at 0x7fe75dbb2090>

In [67]:

sns.histplot(data.Height,kde=True)

Out[67]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe75b694810>

In [68]:

```
sns.barplot(data.Sex.value_counts().index,data.Sex.value_counts())
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarn ing: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

Out[68]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe75b2d6cd0>

Bivariant Analysis

In [69]:

```
sns.lineplot(data.Length,data.Rings)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarn ing: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

Out[69]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe75b2b46d0>

In [70]:

plt.scatter(data.Height,data.Rings,c='blue')
plt.show()

In [71]:

sns.pairplot(data)

Out[71]:

<seaborn.axisgrid.PairGrid at 0x7fe75b1fb750>

Multivariant Analysis

In [72]:

data.corr()

Out[72]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

In [73]:

sns.heatmap(data.corr())

Out[73]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe759b07310>

In [74]:

sns.heatmap(data.corr(),annot=True)

Out[74]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe759267d50>

Descriptive Analysis of Data

In [75]:

data.describe()

Out[75]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell we
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005
4							•

```
In [76]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):
 #
     Column
                      Non-Null Count
                                      Dtype
                      4177 non-null
                                      object
 0
     Sex
 1
     Length
                      4177 non-null
                                      float64
 2
                                      float64
     Diameter
                      4177 non-null
                      4177 non-null
 3
     Height
                                      float64
 4
     Whole weight
                      4177 non-null
                                      float64
     Shucked weight 4177 non-null
 5
                                      float64
 6
     Viscera weight 4177 non-null
                                      float64
 7
     Shell weight
                      4177 non-null
                                      float64
 8
     Rings
                      4177 non-null
                                      int64
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
In [77]:
data.shape
Out[77]:
(4177, 9)
In [78]:
data.isnull().any()
Out[78]:
Sex
                   False
                   False
Length
Diameter
                   False
Height
                   False
Whole weight
                   False
Shucked weight
                  False
Viscera weight
                  False
Shell weight
                   False
                   False
Rings
dtype: bool
In [79]:
data.Sex.value_counts()
Out[79]:
Μ
     1528
Ι
     1342
F
     1307
Name: Sex, dtype: int64
```

```
In [80]:
data.Length.value_counts()
Out[80]:
0.625
         94
0.550
         94
0.575
         93
0.580
         92
0.600
         87
          . .
0.075
          1
0.815
          1
0.110
0.150
          1
0.800
Name: Length, Length: 134, dtype: int64
```

Checking for Missing values

```
In [81]:
data.isnull().sum()
Out[81]:
Sex
                  0
                  0
Length
Diameter
                  0
Height
                  0
Whole weight
                  0
Shucked weight
                  0
Viscera weight
                  0
Shell weight
                  0
Rings
                  0
dtype: int64
In [82]:
data['Sex'].fillna(data['Sex'].mode(),inplace=True)
In [83]:
np.where(data['Shell weight']>0.7)
Out[83]:
(array([ 129, 163, 164, 165,
                                 166, 168, 334, 891, 1428, 2108, 2157,
        2161, 3008, 3149, 3151]),)
```

Performing label encoding for Gender

```
In [84]:
from sklearn.preprocessing import LabelEncoder
gender=LabelEncoder()
In [85]:
gender.fit(data['Sex'])
Out[85]:
LabelEncoder()
In [86]:
values=gender.transform(data['Sex'])
In [87]:
values
Out[87]:
array([2, 2, 0, ..., 2, 0, 2])
In [88]:
data['Sex'].unique()
Out[88]:
array(['M', 'F', 'I'], dtype=object)
In [89]:
values[:10]
```

Out[89]:

array([2, 2, 0, 2, 1, 1, 0, 0, 2, 0])

```
In [90]:
```

```
data['Sex'][:10]
```

Out[90]:

0 M 1 M

3 M

יו כ

4 I 5 I

. .

- I

8 1

9

Name: Sex, dtype: object

In [91]:

```
data['new_sex']=values
```

In [92]:

data

Out[92]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	new_sex
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15	2
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7	2
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9	0
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10	2
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7	1
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11	0
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10	2
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9	2
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10	0
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12	2

⁴¹⁷⁷ rows × 10 columns

Spliting dependent and independent variables

In [93]:

```
x=data.loc[:,data.columns.difference(['Sex','Rings'])]
x
```

Out[93]:

	Diameter	Height	Length	Shell weight	Shucked weight	Viscera weight	Whole weight	new_sex
0	0.365	0.095	0.455	0.1500	0.2245	0.1010	0.5140	2
1	0.265	0.090	0.350	0.0700	0.0995	0.0485	0.2255	2
2	0.420	0.135	0.530	0.2100	0.2565	0.1415	0.6770	0
3	0.365	0.125	0.440	0.1550	0.2155	0.1140	0.5160	2
4	0.255	0.080	0.330	0.0550	0.0895	0.0395	0.2050	1
4172	0.450	0.165	0.565	0.2490	0.3700	0.2390	0.8870	0
4173	0.440	0.135	0.590	0.2605	0.4390	0.2145	0.9660	2
4174	0.475	0.205	0.600	0.3080	0.5255	0.2875	1.1760	2
4175	0.485	0.150	0.625	0.2960	0.5310	0.2610	1.0945	0
4176	0.555	0.195	0.710	0.4950	0.9455	0.3765	1.9485	2

4177 rows × 8 columns

In [94]:

```
y=data.iloc[:,8:9]
y
```

Out[94]:

	Rings
0	15
1	7
2	9
3	10
4	7
4172	11
4173	10
4174	9
4175	10
4176	12

4177 rows × 1 columns

Spliting Training and Testing Data

```
In [95]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=10)
In [96]:
x_train.shape
Out[96]:
(3341, 8)
In [97]:
y_train.shape
Out[97]:
(3341, 1)
Building the model
In [98]:
from sklearn import linear_model
In [99]:
regr = linear_model.LinearRegression()
regr.fit(x_train,y_train)
Out[99]:
LinearRegression()
```

In [100]:

pred=regr.predict(x_test)

In [101]:

```
pred
Out[101]:
array([[ 7.90577325],
       [10.94927208],
       [ 9.90587762],
       [ 6.65525637],
       [ 9.00223145],
       [ 7.04180093],
       [12.5651143],
       [13.84757893],
       [ 8.43762198],
       [10.30188958],
       [ 9.15437232],
       [12.45795602],
       [ 9.36745087],
       [ 7.85119455],
       [11.15978466],
       [ 5.95616867],
       [13.8170673],
       [ 6.44047461].
```

In [102]:

y_test

Out[102]:

	Rings
1080	7
1371	10
2591	8
235	9
2143	10
1058	4
1323	9
784	5
2291	10
725	17

836 rows × 1 columns

In [103]:

from sklearn.metrics import mean_squared_error, mean_absolute_error

In [104]:

```
# model evaluation
print(
'mean_squared_error : ', mean_squared_error(y_test, pred))
print(
'mean_absolute_error : ', mean_absolute_error(y_test, pred))
from sklearn.metrics import r2_score
score=r2_score(y_test,pred)
score
```

mean_squared_error : 4.568012913619505 mean_absolute_error : 1.581377031426174

Out[104]:

0.5387176640137976

In [105]:

from sklearn.ensemble import RandomForestRegressor

In [106]:

```
regressor = RandomForestRegressor(n_estimators = 100, random_state = 0)
```

In [107]:

```
regressor.fit(x_train,y_train)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DataConversi onWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

"""Entry point for launching an IPython kernel.

Out[107]:

RandomForestRegressor(random_state=0)

In [108]:

```
pred1=regressor.predict(x_test)
```

In [109]:

pred1

Out[109]:

```
array([ 8.13, 10.59, 8.54,
                           6.65,
                                  9.59, 5.89, 11.81, 12.94,
                                                             9.38.
       9.35, 9.35, 10.79, 9.11,
                                 7.67, 9.82,
                                              5.44, 12.89,
                                                            5.75.
      10.67, 14.51, 10.04, 10.96,
                                 9.12, 10.67, 9.28, 4.66, 10.87,
      10.38, 16.22, 11.79, 8.77, 12.17, 10.54, 16.38, 10.11, 7.16,
      10.43, 12.41, 10.81, 14.22,
                                 4.35, 9.39, 6.72, 9.22, 9.11,
      10.9, 10.74, 10.74, 13.33, 10.38, 17.01, 11.51, 9.77, 11.02,
       5.76, 9.69, 9.16, 11.62, 4.72, 16.23, 12.29, 11.29, 13.75,
       5.52, 11.8, 12.51, 11.34, 7.81, 9.35, 9.57, 7.13, 13.95,
       7.62, 11.05, 8.74, 10.7, 13.79, 9.53, 10.47, 10.78, 13.7,
      12.77, 8.61, 11.53, 10.96, 14.82, 3.62, 9.99, 9.04, 10.21,
       9.18,
              8.36, 9.1, 12.39, 11.1, 14.36, 11.19, 9.22,
              9.38, 10.23, 10.83, 10.08, 9.76, 8.6, 8.64, 8.62,
       6.15,
              9.08, 10.93, 7.28, 6.43, 12.16, 11.99, 15.03, 8.95,
       5.91.
       9.56, 10.01, 13.86, 7.54, 4.82, 15.13, 6.91, 10.4, 10.07,
       7.64, 13.51, 13.67, 9.76, 8.36, 11.26, 12.89, 11.46, 13.23,
       6.96, 11.44, 10.67, 8.56, 13.21, 11.06, 10.33, 11.14, 15.85,
       9.79, 6.75,
                    9.06, 11.07, 9.94, 10.39, 7.55, 8.38, 6.64,
      11.24, 8.94,
                    7.96,
                           6.69, 8.78, 5.66, 11.73, 9.76, 10.52,
       9.69, 13.2, 8.68, 11.03, 6.97,
                                        8.27, 6.4, 11.32, 9.85,
       7.86, 6.23, 11.77, 5.72, 10.65,
                                               9.85, 10.54, 9.4,
                                        5.91,
              8.95, 13.72, 5.62, 12.81,
                                        9.52, 12.56, 13.9,
       9.07,
                                                            9.11,
              6.52, 8.85, 7.16, 10.08,
                                        7.69, 11.38, 8.54,
       7.48,
                                        8.76, 12. , 7.63, 8.91,
       9.31, 5.83, 2.88, 10.25, 5.2,
       4.26, 12.32, 16.13, 10.19, 10.8,
                                        6.59, 11.34,
                                                     8.94, 11.25,
       9.05, 10.71, 8.82, 13.33, 8.75,
                                        9.09, 11.95, 13.95, 11.04,
       6.63, 7.36, 9.86, 10.15, 7.62,
                                        8.63, 6.32, 10.19, 11.12,
      11.42, 10.11, 11.93,
                          7.08, 10.51,
                                        6.67, 10.29, 8.7, 6.58,
      11.77, 13.54,
                    9.02,
                          7.78, 7.7,
                                        9.65, 6.9, 9.59, 10.54,
       8.27, 8.69, 15.13, 9.59, 11.69, 10.17, 7.62, 9.09, 11.53,
      10.76, 10.37, 14.25, 8.72, 13.48,
                                        7.37, 9.51, 8.69, 11.12,
       9.8, 13.22, 13.9, 10.48, 10.26, 7.18, 18.16, 12.64, 9.95,
                    6.52, 10.92, 10.36, 9.09, 8.3, 10.32,
       4.23, 6.27,
                                                            7.64,
      13.83, 10.13,
                    8.82, 10. , 9.98, 12.63, 11.01, 9.89, 10.76,
                                 7.95, 8.66, 10.25, 8.58, 9.1,
      12.43, 9.76,
                    8.68, 9.26,
                                 7.51, 10.39, 7.31, 8.73,
       8.52,
             7.02,
                    6.13, 14.72,
                                                            9.85,
                    5.35, 7.96, 10.03, 11.3, 8.06, 12.59, 10.74,
      10.04,
              6.39,
       9.02, 10.87,
                    8.6 , 6.39, 6.04, 10.45, 9.63, 11.45, 15.2 ,
                    8.16, 8.83, 10.13, 11.08, 13.09,
                                                     8.64,
       8.04,
              8.51,
                                                            8.32,
                    7.41, 10.49, 11.12, 12.46, 8.74, 16.62,
      12.37, 10.11,
                                                             8.72,
       7.69, 10.26,
                    7.76, 11.35, 12.48, 12.28, 6.9,
                                                      6.43, 11.04,
                                                      9.34, 9.23,
      10.8 , 11.52,
                    8.46, 11.67, 10.6, 8.54, 13.63,
             4.38, 11.91, 10.68, 10.28,
                                        6.18,
                                              8.32,
                                                      7.65,
                                                             8.33,
       7.12,
            8.09,
                    7.56, 12.01, 6.52, 13.36, 10.74,
                                                      6.78,
      12.54,
                                                             7.08,
       9.73, 14.3, 12.12, 11.06, 9.9, 8.22, 7.04,
                                                      8.97,
                                                             9.38,
       9.31, 4.85, 13.29, 10.04, 6.55, 8.79, 6.99,
                                                      9.58, 17.25,
                    7.21, 10.23, 13.13, 10.35,
                                                      7.03,
       9.58,
             8.95,
                                              6.62,
                                                            6.98,
                                                      5.94, 11.4,
      10.63, 11.13, 14.97, 10.29, 7.53, 6.61, 15.42,
      11.46, 10.53, 8.81, 12.28, 8.82, 11.42, 10.07,
                                                      8.28,
                                                             8.52,
      10.07, 8.88, 10.36, 10.98, 13.55, 9.01, 8.94,
                                                      9.51,
                                                             7.56,
      13.25, 13.06, 10.24, 10.88, 4.9,
                                        9.5 , 9.32,
                                                     7.59,
                                                             9.08,
                    7.74, 8.08, 5.7, 10.4,
                                              9.28, 15.5 ,
       7.91, 11.74,
      10.07, 9.08,
                    9.65, 10.3 , 14.9 ,
                                        7.18,
                                               5.6 , 10.93,
                                                             8.48,
                    8.93, 13.51, 16.67,
      13.85,
             7.75,
                                        9.25,
                                               9.23,
                                                      8.43,
                                                             5.8,
       9.54, 11.01, 10.34, 11.99, 9.39, 10.04, 7.46,
                                                     9.63, 13.73,
       8.79, 10.1,
                    9.24, 15.31, 9.28, 10. , 8.24, 8.68, 9.19,
```

```
9.88, 11.72, 11.35,
11.26, 10.41,
             9.93, 9.35, 10.87,
8.61,
      9.86,
             7.93,
                    7.49, 16.51, 6. , 8.59, 11.21,
       5.64, 10.53, 10.86, 15.19, 3.82, 10.53, 6.99,
7.75,
                                                      6.17,
             4.2, 8.81, 9.63, 10.88, 8.57, 7.85,
6.8, 10.69,
                                                     9.05,
10.54, 9.86, 6.54, 10.66, 10.37, 6.19, 8.42, 12.05,
8.37, 10.47, 17.07, 10.41, 11.24, 11.87, 10.03, 5.55, 12.9,
      9.14, 12.45, 9.72, 7.15, 15.77, 11.99, 12.5, 11.75,
10.29,
14.93, 9.76, 10.57, 9.93, 10.33, 10.5, 10.2, 14.64, 13.04,
10.46, 7.62, 11.15, 12. , 9.02, 12.4 , 11.52, 10.64, 12.6 ,
       8.39, 11.31, 11.1, 13.27, 8.81, 7.64, 10.35, 10.6,
10.35,
   , 6.39, 11.53, 9.15, 14.46, 10.85, 6.2, 10.91, 8.93,
9.97, 10.82, 15.14, 8.44, 4.28, 10.3, 10.05, 12.07, 12.72,
7.11, 10.24, 10.05, 8.88, 4.66, 10.17, 3.84, 8.59, 12.45,
8.79, 10.8, 11.04, 13.06, 11.05, 9.93, 16.32, 11.49, 9.65,
8.92, 9.95, 12.15, 16.62, 10.27, 9.38, 14.46, 9.08, 10.3,
9.22, 10.7, 9.26, 8.54, 8.89, 11.39, 7.8, 11.64, 11.25,
9.87, 16.07,
             7.63, 8.94, 9.27, 7.54, 7.99, 11.1, 15.89,
                          9.88, 11.41, 7.51, 8.32, 8.95,
             8.33, 10.03,
11.58, 9.59,
             7.75, 12.97, 6.92, 13.51, 12.98, 10.02, 10.35,
2.88, 8.58,
11.79, 7.55, 12.72, 9.56, 15.97, 8.41, 6.49, 10.45, 8.06,
             3.72, 10.59, 9.62, 9.98, 11.48, 11.52, 9.78,
12.88, 10.69,
10.37, 13.83, 10.25, 10.52, 12.33, 10.09, 13.03,
                                              9.21, 13.42,
4.36, 11.03, 4.29, 11.39, 13.73, 9.28, 14.97, 6.61, 7.62,
7.74, 5.69, 6.47, 13.34, 16.57, 12.25, 12.44, 9.96, 10.46,
9.03, 8.43, 10.67, 7.35, 7.66, 7.07, 9.12, 6.69, 7.81,
10.33, 10.41, 12.05, 10.86, 9.6, 11.21, 11.28, 6.42, 15.04,
7.04, 15.38, 10.48, 12.6, 12.69, 6.67, 8.76, 11.41,
8.77, 10.19, 9.24, 8.78, 8.79, 9.78, 10.57, 9.77,
                                                     8.74,
9.73, 16.83, 10.27, 11.23, 8.35, 6.05,
                                       9.4,
                                              7.53,
                                                     8.68,
11.3, 16.25, 11.09, 8., 4.81, 16.18, 10.19,
                                              9.73,
                                                     9.92,
9.39, 10.42, 7.22, 12.16, 10.76, 12.67, 11.61, 15.74, 8.22,
8.8, 10.64, 13.25, 8.75, 12.04, 12.32, 9.81,
                                              8.24, 10.83,
      4.43, 7.47, 8.7, 6.24, 6.76, 6.74,
                                               9.13,
13.29,
                                                     9.33,
       9.46, 10.28, 5.93, 5.26, 13.14, 10.05,
9.53,
                                               6.52,
                                                     9.06,
       5.9, 11.77, 10.45, 12.34, 8.53, 7.01,
                                               6.88, 7.9,
8.74,
       5.56, 11.11, 9.62, 9.95, 7.87, 5.68, 8.48, 10.43,
10.27,
       6.15, 9.36, 6.34, 8.69, 14.12, 10.58, 5.97, 10.47,
8.79,
       8.65, 15.12, 4.48, 9.08, 4.44, 9.18, 13.2 ])
```

```
In [110]:
y_test
Out[110]:
      Rings
          7
 1080
 1371
         10
 2591
          8
 235
          9
 2143
         10
 1058
          4
 1323
 784
          5
 2291
 725
         17
836 rows × 1 columns
In [111]:
print(
'mean_squared_error : ', mean_squared_error(y_test, pred1))
mean_squared_error : 4.340792105263159
In [112]:
print(np.sqrt(mean_squared_error(y_test,pred1)))
2.0834567682731406
In [113]:
from sklearn.metrics import r2_score
score=r2_score(y_test,pred1)
score
Out[113]:
```

User input value for random Forset

0.5616626397056985

In [117]:

```
import math
```

In [120]:

```
pred_val=regressor.predict([[0.365,0.095,0.455,0.65,0.2245,0.1010,0.5140,0]])
print("The Predicted Number of Rings: ",*pred_val)
print("The Predicted age of the Abalone: ",math.floor(*pred_val+1.5))
```

The Predicted Number of Rings: 18.24 The Predicted age of the Abalone: 19

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X d oes not have valid feature names, but RandomForestRegressor was fitted with feature names

"X does not have valid feature names, but"