Classification SVM pour données fonctionnelles

M2 ISIFAR 23/03/2020 Shon Amsalhem François Le Gac

Introduction

Objectif:

Peut-on prendre en compte la structure spécifique des données fonctionnelles pour améliorer les performances de l'algorithme SVM ?

Définition : Variable fonctionnelle et donnée fonctionnelle

Une variable aléatoire est dite fonctionnelle si ses valeurs sont dans un espace de dimension infinie. Une observation d'une variable fonctionnelle est appelée donnée fonctionnelle. Ce qui veut dire que chaque individu correspond non plus à un vecteur mais à une courbe, à un continuum.

Exemples: Données spectrométriques, reconnaissance vocale ...

Application : le jeu de données octane

Fig 0. Spectres d'échantillons d'essence

	Col 1	Col 2		Col 400	Var. cible
Ech-1	$X_1(\lambda_{900})$	$X_1(\lambda_{902})$		$X_1(\lambda_{1700})$	0
Ech-60	$X_{60}(\lambda_{900})$	$X_{60}(\lambda_{902})$	•••	$X_{60}(\lambda_{1700})$	1

Octane data set : references

Fig 1. jeu de données octane

Objectif : classer les 60 échantillons d'essence en deux catégories : "non résistante à l'auto-allumage (0)" et "résistante à l'auto-allumage (1)"

Problème posé par les données fonctionnelles

Exemple 1 (Théorique) : Régression Linéaire

 $X \in \mathbb{R}^d$ on souhaite prédire $Y \in \mathcal{Y}$

$$\mathbb{E}(Y|X) = X\beta$$

On estime aisément β par la méthode des moindres carrés, qui conduit à l'inversion de la matrice de covariance de X. Si d >> N (N = nombre d'obs.), alors il devient impossible d'inverser la matrice de covariance.

Exemple 2 (Pratique) : SVM

En pratique, les performances (précision) sont mauvaises : 62.9% (Linéaire), 63.2% (Gaussien)

Bref rappel sur SVM (1)

SVM

Fig 2. Support vector machine

Problème de "Soft Margin"

$$egin{cases} min \ rac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \ tel \ que \ orall i, y_i (w^t x_i + b) \geq 1 - \xi_i \ avec \ \xi_i \geq 0, i = 1, \ldots, n \end{cases}$$

SVM non linéaire:

Les données deviennent $(\phi(x_1),y_1),\ldots,(\phi(x_N),y_N)$

La règle de décision :

$$x\mapsto sign(\sum_{i=1}^N lpha_i y_i \langle \phi(x_i), \phi(x)
angle + b)$$

Bref rappel sur SVM (2)

Kernel

$$egin{aligned} E imes E &
ightarrow \mathbb{R} \ (x_1,x_2) &\mapsto K(x_1,x_2) = \phi(x_1)^t \phi(x_2) \end{aligned}$$

(Th. Mercer: K doit être continue, symétrique, semi-définie positive)

Exemples:

- Linéaire : $K(x_1,x_2)=\langle x_1,x_2
 angle+c$
- Gaussien : $K(x_1,x_2)=exp(-\gamma||x_1-x_2||^2)$

Transformation fonctionnelle (1)

Courbes des individus

Fig 3. Courbe - non résistant à l'auto allumage (0)

Fig 4. Courbe - résistant à l'auto allumage (1)

Transformation fonctionnelle (2)

Interpolation

Fig 5. Interpolation

Dérivée seconde (1 obs.)

Fig 6. Dérivée seconde pour une obs.

Transformation fonctionnelle (3)

Dérivées secondes

Fig 7. Dérivée seconde - non résistant à l'auto allumage (0)

Fig 8. Dérivée seconde - résistant à l'auto allumage (1)

Résultats Repeated CV (500x):

	KNN	SVM				
	Méthode de base (données brut)	Linéaire - données brutes	Gaussien - données brutes	Linéaire - dérivée seconde	Gaussien - dérivée seconde	
Accuracy	0.81	0.63	0.63	0.65	0.60	

Fig 9. Performances des modèles

MERCI