²¹²₈₃ Bi ₁₂₉

1 Decay Scheme

Bi-212 undergoes β^- decay to Po-212 (64.07(7)%), and α decay to Tl-208 (35.93(7)%). Le bismuth 212 se désintègre à 64,07(7)% par émission β^- vers le polonium 212 et à 35,93(7)% par émission α vers le thallium 208.

2 Nuclear Data

 $\begin{array}{c} T_{1/2}(^{212}{\rm Bi}\;) \\ T_{1/2}(^{212}{\rm Po}\;) \\ T_{1/2}(^{208}{\rm Tl}\;) \\ Q^-(^{212}{\rm Bi}\;) \end{array}$ 60,54 \min 10^{-9} s 300 (2)3,060 \min (8)2254(2)keV $Q^{\alpha}(^{212}\mathrm{Bi})$: 6207,14 (4)keV

2.1 α Transitions

	Energy keV	Probability $\times 100$	F
$lpha_{0,7}$ $lpha_{0,6}$ $lpha_{0,5}$ $lpha_{0,4}$ $lpha_{0,3}$ $lpha_{0,2}$ $lpha_{0,1}$ $lpha_{0,0}$ * $lpha_{1,0}$ * $lpha_{4,0}$ * $lpha_{5,0}$	5400 (1) 5448 (1) 5586,7 (3) 5714,45 (14) 5733,6 (2) 5879,2 (1) 6167,28 (4) 6207,14 (4) 9681,46 (12) 10633,58 (13) 10755,0 (3)	0,000039 (4) 0,00036 (18) 0,0050 (7) 0,43 (4) 0,06 (1) 0,63 (3) 25,1 (1) 9,7 (1) 0,0024 (2) 0,0010 (1) 0,0106 (8)	20800 3810 1370 66,9 594 269 126 480
$\alpha_{5,0}$	10755,0 (3)	0,0100 (8)	

^{*} Transitions α of long range.

2.2 β^- Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$
$\beta_{0,6}^{-}$ $\beta_{0,5}^{-}$ $\beta_{0,4}^{-}$ $\beta_{0,3}^{-}$ $\beta_{0,2}^{-}$ $\beta_{0,1}^{-}$ $\beta_{0,0}^{-}$	448 (2) 453 (2) 575 (2) 633 (2) 741 (2) 1527 (2) 2254 (2)	0,68 (5) 0,029 (1) 0,21 (5) 1,90 (4) 1,45 (2) 4,58 (21) 55,23 (21)	1st Forbidden non-unique	6,69 8,08 7,56 6,74 7,1 7,71 7,269

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	α_M+	$lpha_T$
$\gamma_{1,0}(\mathrm{Tl})$	39,858 (4)	26 (1)	[M1]		18,6 (5)	6,00 (18)	24,6 (7)
$\gamma_{5,3}(\text{Po})$	180,2(2)	0,010(3)	M1	1,79(5)	0,32(1)	0,100(3)	2,21(7)
$\gamma_{2,1}(\mathrm{Tl})$	288,08(6)	0,47(3)	[M1+E2]	0,378(11)	0,064(2)	0,0190(6)	0,461 (14
$\gamma_{2,0}(\mathrm{Tl})$	327,94(6)	0,160(4)	[M1]	0,267(8)	0,0450 (13)	0,0130(4)	0,325 (10)
$\gamma_{3,1}(\mathrm{Tl})$	433,7(2)	0,011(2)	[M1]	0,126(4)	0,0210(6)	0,0060(2)	0,153(5)
$\gamma_{4,1}(\mathrm{Tl})$	452,8(1)	0,39(3)	[M1]	0,112(3)	0,0190(6)	0,0060(2)	0,137(4)
$\gamma_{3,0}(\mathrm{Tl})$	473,6(2)	0,049(3)	[M1]	0,100(3)	0,0160(5)	0,00500(15)	0,121(4)
$\gamma_{4,0}(\mathrm{Tl})$	492,7(1)	0.04(1)	[M1]	0,090(3)	0,0150(5)	0,00400(12)	0,109(3)
$\gamma_{5,1}(\mathrm{Tl})$	580,5(3)	0,0010 (2)	[E2]	0,0148(5)	0,0039(1)	0,00130(4)	0,0200 (6)
$\gamma_{5,0}(\mathrm{Tl})$	620,4(3)	0,0040 (6)	[M1]	0,0492(15)	0,0081 (2)	0,00250 (8)	0,0598 (18
$\gamma_{1,0}(\text{Po})$	727,33(1)	6,84 (12)	E2	0,0106(3)	0,00260(8)	0,00090(3)	0,0141 (4)
$\gamma_{6,0}(\mathrm{Tl})$	759(1)	0,00036(18)					
$\gamma_{2,1}(\text{Po})$	785,37(9)	1,16(1)	[M1+E2]	0,0338(10)	0,0057(2)	0,00180(5)	0,0413 (12
$\gamma_{7,0}(\mathrm{Tl})$	807 (1)	0,000039(4)					
$\gamma_{3,1}(Po)$	893,41 (2)	0,39(1)	[M1+E2]	0,0243(7)	0,0041(1)	0,00130(4)	0,0297(9)
$\gamma_{4,1}(Po)$	952,12(2)	0.14(4)	[M1+E2]	0,0164(5)	0,00280(8)	0,00100(3)	0,0202 (6)
$\gamma_{5,1}(\text{Po})$	1073,6(2)	0,015(5)	E2	0,00516 (15)	0,00100(3)	0,00033(1)	0,00649 (20
$\gamma_{6,1}(\text{Po})$	1078,63 (11)	0,56(2)	[M1+E2]	0,0149 (4)	0,00230(7)	0,00090(3)	0,0181 (5)
$\gamma_{2,0}(\mathrm{Po})$	1512,70 (8)	0,29(1)	E2	0,00278 (8)	0,00048 (2)	0,000160(5)	0,00342 (10
$\gamma_{3,0}(Po)$	1620,74 (1)	1,52(3)	[M1+E2]	0,00504(15)	0,00078(2)	0,000030(1)	0,00585 (18
$\gamma_{4,0}(\text{Po})$	1679,45(1)	0.07(1)	E2	0,00230(7)	0,00039(1)	0,000130(4)	0,00282 (8)
$\gamma_{5,0}(\text{Po})$	1800,9(2)	0,004(2)	E0	. ,	. ,	. ,	
$\gamma_{6,0}(\text{Po})$	1805,96 (10)	0.12(3)	E2	0,00202(6)	0,00034(1)	0,000110(3)	0,00247 (7)

3 Atomic Data

3.1 Po

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probability
X_{K}				
11	$K\alpha_2$	76,864		60,1
	$K\alpha_1$	79,293		100
	$K\beta_3$	89,256	}	
	$K\beta_1$	89,63	}	
	$\mathrm{K}\beta_5''$	90,363	}	$34,\!4$
	$K\beta_2$	92,45	}	
	$K\beta_4$	92,62	} }	10,7
	$KO_{2,3}$	92,98	}	,
X_{L}				
	$\mathrm{L}\ell$	$9,\!66$		
	$L\alpha$	$11,\!016-11,\!13$		
	$\mathrm{L}\eta$	12,085		
	$\mathrm{L}eta$	$12,\!823-13,\!778$		
	${ m L}\gamma$	15,742 - 16,21		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	58,98 - 65,21 $71,90 - 79,29$ $84,8 - 93,1$ $5,43 - 10,93$	100 57 8,1 3190

3.2 Tl

 $\omega_K : 0,963 (4)$ $\bar{\omega}_L : 0,367 (15)$ $n_{KL} : 0,812 (5)$

3.2.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probability
${ m X_K}$				
11	$K\alpha_2$	70,833		59
	$K\alpha_1$	72,873		100
	$K\beta_3$	82,118	}	
	$K\beta_1$	82,43	}	
	$\mathrm{K}eta_5^{\prime\prime}$	83,115	}	34
	$K\beta_2$	84,838	}	
	$K\beta_4$	85,134	}	10,1
	$KO_{2,3}$	85,444	} } }	- /
${ m X_L}$				
	$\mathrm{L}\ell$	8,953		
	$L\alpha$	$10,\!172 - 10,\!268$		
	${ m L}\eta$	10,994		
	$\mathrm{L}eta$	$11,\!812-12,\!643$		
	${ m L}\gamma$	14,291 - 14,738		

3.2.2 Auger Electrons

	Energy keV	Relative probability
Auger K		
KLL	$54,\!59 - 59,\!95$	100
KLX	$66,\!37-72,\!86$	55
KXY	$78,\!12 - 85,\!50$	7,6
Auger L	$5,\!18-10,\!13$	363000

4 α Emissions

	Energy keV	Probability $\times 100$
$lpha_{0,7}$ $lpha_{0,6}$ $lpha_{0,5}$ $lpha_{0,4}$ $lpha_{0,3}$ $lpha_{0,2}$ $lpha_{0,1}$ $lpha_{0,0}$ * $lpha_{1,0}$ * $lpha_{4,0}$ * $lpha_{5,0}$	5298 (1) 5345 (1) 5481,3 (3) 5606,63 (14) 5625,4 (2) 5768,27 (10) 6050,92 (4) 6090,02 (4) 9498,79 (12) 10432,95 (13) 10552,1 (3)	0,000039 (4) 0,00036 (18) 0,0050 (7) 0,43 (4) 0,06 (1) 0,63 (3) 25,1 (1) 9,7 (1) 0,0024 (2) 0,0010 (1) 0,0106 (8)

^{*} α of long range.

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Po)	5,43 - 10,93	0,0958 (16)
${ m e}_{ m AK}$	(Po) KLL KLX KXY	58,98 - 65,21 71,90 - 79,29 84,8 - 93,1	0,0050 (6) } }
e_{AL}	(Tl)	5,18 - 10,13	16,7 (7)
${ m e}_{ m AK}$	(Tl) KLL KLX KXY	66,37 - 72,86	0,0074 (9) } } }
$\begin{array}{c} ec_{1,0} \ L \\ ec_{1,0} \ M \end{array}$	(Tl) (Tl)		19 (1) 6,1 (2)
$\beta_{0,6}^{-}$ $\beta_{0,6}^{-}$	max:	448 (2) 130,7 (7)	0,68 (5)
$\beta_{0,5}^{-}$ $\beta_{0,5}^{-}$	max:	453 (2) 132,3 (7)	0,029 (1)
$\beta_{0,4}^{-}$ $\beta_{0,4}^{-}$	max:	575 (2) 173,0 (7)	0,21 (5)

		Ene.	00	Electrons per 100 disint.
$\beta_{0,3}^{-}$	max:	633	(2)	1,90 (4)
$\beta_{0,3}^{-}$	avg:	193,3	(7)	
$\beta_{0,2}^-$	max:	741	(2)	1,45(2)
$\beta_{0,2}^{-}$	avg:	231,5	(8)	
$\beta_{0,1}^{-}$	max:	1527	(2)	4,58(21)
$\beta_{0,1}$	avg:	533,9	(8)	
$\beta_{0,0}^{-}$	max:	2254	(2)	55,23(21)
$\beta_{0,0}^{-}$	avg:	835,0	(9)	

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Po)	9,66 - 16,21		0,0581 (12)	
$XK\alpha_2 XK\alpha_1$	(Po) (Po)	76,864 $79,293$		0,0404 (10) 0,0672 (17)	$K\alpha$
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{"} \end{array}$	(Po) (Po) (Po)	89,256 89,63 90,363	} } }	0,0231 (7)	$\operatorname{K}'\beta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Po) (Po) (Po)	92,45 92,62 92,98	<pre>} } </pre>	0,00720 (24)	$\operatorname{K}'\beta_2$
XL	(Tl)	8,953 — 14,738		6,73 (22)	
$XK\alpha_2 XK\alpha_1$	(Tl) (Tl)	70,833 $72,873$		0,0563 (27) 0,095 (5)	} Κα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5'' \end{array}$	(Tl) (Tl) (Tl)	82,118 82,43 83,115	} } }	0,0323 (16)	$\operatorname{K}'\beta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Tl) (Tl) (Tl)	84,838 85,134 85,444	} } }	0,0096 (5)	$\operatorname{K}'\beta_2$

6.2 Gamma Emissions

	Energy	Photons
	keV	per 100 disint.
$\gamma_{1,0}(\mathrm{Tl})$	39,858(4)	1,01 (3)
$\gamma_{5,3}(Po)$	180,2(2)	0,003(1)
$\gamma_{2,1}(\mathrm{Tl})$	288,08(6)	0,32(2)
$\gamma_{2,0}(\mathrm{Tl})$	327,94(6)	0,121(3)
$\gamma_{3,1}(\mathrm{Tl})$	433,7(2)	0,0095 (20)
$\gamma_{4,1}(\mathrm{Tl})$	452,8(1)	0,34(3)
$\gamma_{3,0}(\mathrm{Tl})$	473,6(2)	0,044(3)
$\gamma_{4,0}(\mathrm{Tl})$	492,7(1)	0.04(1)
$\gamma_{5,1}(\mathrm{Tl})$	580,5(3)	0,0010(2)
$\gamma_{5,0}(\mathrm{Tl})$	620,4(3)	0,0038(6)
$\gamma_{1,0}(Po)$	727,33(1)	6,74 (12)
$\gamma_{6,0}(\mathrm{Tl})$	759 (1)	0,00036 (18)
$\gamma_{2,1}(Po)$	785,37(9)	1,11(1)
$\gamma_{7,0}(\mathrm{Tl})$	807 (1)	0,000039(4)
$\gamma_{3,1}(Po)$	893,41(2)	0,38(1)
$\gamma_{4,1}(Po)$	952,12(2)	0,14(4)
$\gamma_{5,1}(Po)$	1073,6(2)	0,015(5)
$\gamma_{6,1}(Po)$	1078,63 (11)	0,55(2)
$\gamma_{2,0}(Po)$	1512,70(8)	0,29(1)
$\gamma_{3,0}(Po)$	1620,74(1)	1,51(3)
$\gamma_{4,0}(Po)$	1679,45(1)	0,07(1)
$\gamma_{5,0}(Po)$	1800,9(2)	0,004(2)
$\gamma_{6,0}(\mathrm{Po})$	1805,96 (10)	0,12(3)

7 Main Production Modes

Pb – 212 β ⁻ decay

8 References

- F.V. LERCH. Sitzber. Akad. Wiss. Wien, Wath-naturw. Kl. Abt. IIa 123 (1914) 699 (Half-life)
- W.B. LEWIS, B.V. BOWDEN. Proc. Roy. Soc. (London) A145 (1934) 235 (Alpha emission energies, Alpha emission probabilities)
- D.E. BUNYAN, A. LUNDBY, W. WALKER. Proc. Phys. Soc. (London) 62A (1949) 253 (Half-life)
- A. RYTZ. Comp. Rend. Acad. Sci. (Paris) 233 (1951) 790 (Alpha emission energies, Alpha emission probabilities)
- K. SIEGBAHN, K. EDVARSON. Nucl. Phys. 1 (1956) 137 (Gamma-ray energies)
- J. BURDE, B. ROZNER. Phys. Rev. 107 (1957) 531 (Beta-ray emission probabilities)
- R.J. WALEN, G. BASTIN-SCOFFIER. Nucl. Phys. 16 (1960) 246 (Alpha emission energies, Alpha emission probabilities)

- G. SCHUPP, H. DANIEL, G.W. EAKINS, E.N. JENSEN. Phys. Rev. 120 (1960) 189 (Gamma-ray emission probabilities)
- G.T. EMERY, W.R. KANE. Phys. Rev. 118 (1960) 755 (Gamma-ray emission probabilities, high-energy alpha)
- K.P. APPLEGATE, E.M. MORIMOTO, M. KAHR, J.D. KNIGHT. J. Inorg. Nucl. Chem. 19 (1961) 375 (Half-life)
- F.C. FLACK, J.E. JOHNSON. Proc. Phys. Soc. 79 (1962) 10 (Gamma-ray emission probabilities, branching fraction)
- G. BERTOLINI, F. CAPELLANI, G. RESTELLI, A. ROTA. Nucl. Phys. 30 (1962) 599 (Alpha emission probabilities)
- G. ASTNER, I. BERGSTROM, L. ERIKSSON, U. FAGERQUIST, G. HOLM, A. PERSSON. Nucl. Phys. 45 (1963) 49 (Half-life)
- H. DANIEL, G. LUHRS. Z. Phys. 176 (1963) 30 (Gamma-ray emission probabilities)
- J.L. WININGER. J. Phys. (Paris) 25 (1964) 897 (Gamma-ray energies)
- J. WALKER, T. SALGIR. Proc. Phys. Soc. 86 (1965) 423 (Branching fraction)
- C.F. LEANG. Comp. Rend. Acad. Sci. (Paris) 260 (1965) 3037 (Alpha emission energies, Alpha emission probabilities)
- S.S. KLEIN. NP-16835 (1965) (Gamma-ray energies)
- N.O. LASSEN, N. HORNSTRUP. Mat. Fys. Medd. Dan. Vit. Selsk. 36, No.4 (1967) (Half-life)
- R. BENOIT, G. BERTOLINI, F. CAPPELLANI, G. RESTELLI. Nuovo Cim. 49B (1967) 125 (Gamma-ray emission probabilities)
- J. DALMASSO, C. MARSOL. Comp. Rend. Acad. Sci. (Paris) 267B (1968) 1366 (Gamma-ray emission probabilities)
- C. YTHIER, H. FOREST, G. ARDISSON, H. MARIA. Comp. Rend. Acad. Sci. (Paris) 267 (1968) 1362 (Gamma-ray energies, Gamma-ray emission probabilities)
- B. GRENNBERG, A. RYTZ. Comp. Rend. Acad. Sci. (Paris) 269B (1969) 652 (Alpha emission probabilities, Alpha emission energies)
- S.M. BRAHMAVAR, J.H. HAMILTON. Nucl. Instrum. Methods 69 (1969) 353 (Gamma-ray energies)
- R. ACKERHALT, P. ELLERBE, G. HARBOTTLE. Radiochem. Radioanal. Lett. 8 (1971) 75 (Half-life)
- J. DALMASSO. FRNC-TH-441 (1972) (Gamma-ray emission probabilities)
- J. DALMASSO, H. MARIA, C. YTHIER. Comp. Rend. Acad. Sci. (Paris) 277B (1973) 467 (Gamma-ray emission probabilities)
- A.G.DA SILVA, L.T. AULER, G.L. AULER, G.L.DE ALMEIDA, R.H. TOPKE. INIS Atomindex-mf-1222 (1974)
 - (Gamma-ray energies, Gamma-ray emission probabilities)
- S. SANYAL, R.K. GARG, S.D. CHAUHAN, S.I. GUPTA, S.C. PANCHOLI. Phys. Rev. C12 (1975) 318 (Half-life)
- F.T. AVIGNONE, A.G. SCHMIDT. Phys. Rev. C17 (1978) 380 (Gamma-ray emission probabilities)
- F. RÖSEL, H.M. FRIES, K. ALDER, H.C. PAULI. At. Data Nucl. Data Tables 21 (1978) 291 (Internal convesion coefficients)
- R.G. HELMER. Nucl. Instrum. Methods 164 (1979) 355 (Gamma-ray energies)
- A. RYTZ. At. Data. Nucl. Data Tables 23 (1979) 507 (Alpha emission energies, Alpha emission probabilities)
- S. SADASIVAN, V.M. RAGHUNATH. Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities)
- B. BENGTSON, H.L. NIELSEN, N. RUD, K. WILSKY. Nucl. Phys. A378 (1982) 1 (Multipolarity)
- R. VANINBROUKX, H.H. HANSEN. Int. J. Appl. Radiat. Isotop. 34 (1983) 1395 (Gamma-ray emission probabilities)

- U. SCHÖTZIG, K. DEBERTIN. Int. J. Appl. Radiat. Isotop. 34 (1983) 533 (Gamma-ray emission probabilities)
- R.J. GEHRKE, V.J. NOVICK, J.D. BAKER. Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities)
- A.H. WAPSTRA, G. AUDI. Nucl. Phys. A432 (1985) 1 (Q values)
- M.J. MARTIN. Nucl. Data Sheets 47 (1986) 797 (Nuclear structure, energies)
- A. ARTNA-COHEN. Nucl. Data Sheets 66 (1992) 171 (Nuclear structure, energies)
- W-J. LIN, G. HARBOTTLE. J. Radioanal. Nucl. Chem. 157 (1992) 367 (Gamma-ray emission probabilities)
- G. AUDI, A.H. WAPSTRA. Nucl. Phys. A595 (1995) 409 (Q values)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (K-x ray, L-x ray, Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-1999-1 (1999) (K-x ray)

 $\boldsymbol{\gamma}$ Emission probabilities per 100 disintegrations

