

Chapter 1 Computer Abstraction and Technology Computer Architecture and Organization School of CSEE

Implication of Computer (Network) Technol

It has led the 3rd revolution for civilization

Implication of Computer (Network) Technology Authorists

- The Computer revolution continues
 - Applications that were economically infeasible suddenly become practical
 - e.g. World Wide Web, Computers in automobiles,
 Robot, Cell phone, Human genome project, peer-to-peer computing, Cloud computing, Smart home/factory/city, Telecommuting, IoT, Big data,
 AI, IT convergence etc.
- Advances in Computer Technology now affect almost every aspect of our society

Overview of Physical Implementations

The hardware out of which we make systems.

- Integrated Circuits (ICs)
 - Combinational logic circuits, memory elements, analog interfaces.
- Printed Circuits (PC) boards
 - substrate for ICs and interconnection, distribution of CLK,
 Vdd, and GND signals, heat dissipation.
- Power Supplies
 - Converts line AC voltage to regulated DC low voltage levels.
- Chassis (rack, card case, ...)
 - holds boards, power supply, provides physical interface to user or other systems.
- Connectors and Cables.

Classes of Computing Applications In the Computing Applications

Desktop computers

A computer designed for use by an individual, usually incorporating a graphics display, keyboard, and mouse.

Servers

A computer used for running larger programs for multiple users often simultaneously and typically accessed only via a network.

Embedded Computers

A computer inside another device used for running one predetermined applications or collection of software.

- General purpose machine vs. Special purpose machine

Classes of Computing Applications Williams

- Desktop Computers
 - Including laptops (notebook computers)
- Servers
 - Used to be called mainframes, minicomputers, and supercomputers
 - Supercomputer : consists of hundreds to thousands of computers
- Embedded Computers
 - Including
 microprocessors in
 washing machine, car,
 cell phone, video game,
 printers, ...

What You Will Learn

- How programs are translated into the machine language.
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance.
 - And how it can be improved
- How hardware designers improve performance.
- What is parallel processing.

What are "Machine Structures"?

* Coordination of many

levels (layers) of abstraction

Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

Levels of Representation

High and low signals on control lines

Instruction Set Architecture (ISA)

Computer System Organization

- 5 Classic components of computer:
 - Control
 - Datapath
 - Input (mouse, keyboard)
 - Output (display, printer)
 - Memory (disk drives, DRAM, SRAM, CD)

- Or CPU(Control & Datapath), Memory, I/O
- Our primary focus: the processor (datapath and control)
 - implemented using millions of transistors
- Note : SoC (System on Chip)

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

Technology Trends: Memory Capacity 查景可塑画 (Single-Chip DRAM)

- Moore's law: The number of transistors that can be inexpensively placed on an IC is doubling approximately every two years. (1965)
- Hwang's law: In 2002, Hwang put forward a new idea
 that supplanted the long-standing principle
 governing semiconductor capacity growth
 known as Moore's Law. Hwang's theory that
 capacity doubles every 12 months came to
 be known as Hwang's Law.

DRAM capacity

A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

Technology Trends: Microprocessor Complexity

Itanium 2: 410 Million

Athlon (K7): 22 Million

Alpha 21264: 15 million

Pentium Pro: 5.5 million

PowerPC 620: 6.9 million

Alpha 21164: 9.3 million

Sparc Ultra: 5.2 million

Technology Trends: Processor Performance BALUNIVERSITY School of CSEE

Computer Technology - Dramatic Change Fully School of CSEE

- Memory
 - DRAM capacity: 2x / 12 months (since '96);
 64x size improvement in last decade.
- Processor
 - Speed 2x / 1.5 years (since '85);
 100X performance in last decade.
- Disk
 - Capacity: 2x / 1 year (since '97)
 250X size in last decade.

Historical Perspective

- ENIAC built in World War II was the first general purpose computer
 - Used for computing artillery firing tables
 - 80 feet long by 8.5 feet high and several feet wide
 - Each of the twenty 10 digit registers was 2 feet long
 - Used 18,000 vacuum tubes

- Since then:

Moore's Law Hwang's law

ENIAC vs. Core Duo

DOWNSIZING AND UPGRADING

The inception of computing inspired a remarkable race for faster, smaller, lighter, cheaper hardware.

	ENIAC	Intel Core Duo chip
Debut	1946	2006
Performance	5,000 addition problems/sec	21.6 billion ops/sec
Power use	170,000 watts	31 watts max
Weight	28 tons	negligible
Size	80' w x 8' h	90.3 sq. mm.
What's inside	17,840 vacuum tubes	151.6 M transistors
Cost	\$487,000	\$637

In this course

Things you'll be learning:

- how computers work, a basic foundation
- how to analyze their performance (or how not to!) ?
- issues affecting modern processors (caches, pipelines)

Why learn this stuff?

- you want to call yourself a "computer scientist (or engineer)".
- you want to build software people use (need performance)
- you need to make a purchasing decision or offer "expert" advice

Where we are headed

- Instruction set architecture (Chapter 2)
- Arithmetic and how to build an ALU (Chapter 3)
- Performance issues (Chapter 1) vocabulary and motivation
- Constructing a processor to execute our instructions (Chapter 4)
- Pipelining to improve performance (Chapter 4)
- Memory: caches and virtual memory (Chapter 5)
- I/O (Chapter 6)
- Multiprocssors (Chapter 7) ?

Key to a good grade: reading the textbook!