Assignment 2 Report

Group 16

Hanna Waage Hjelmeland, Siri Holde Hegsvold

→ Task 1

task 1a)

5.55_m-1_g
output:
Wrij:= Wrij-a2C = Wrij-a8raj (1)
where $\delta_n = \frac{\partial \mathcal{L}}{\partial \mathcal{L}_n}$
Hidden:
$W_{ji} := W_{ji} - \alpha \frac{\partial C}{\partial W_{ji}}$ (2)
$Can use \delta := \frac{2C}{2} (4)$
Tank 10: Backsuppedials
Task 1a: Backpropagation
By Using the delinition of 8: share Heat
By using the definition of 8; show that
$\omega_{ji} := \omega_{ji} - \infty \delta_{j} \times i$
and that & = f(z) Ex ww. dn
First try to rewrite are using the chain rule
rule 0
$\frac{\partial C}{\partial w_{ij}} = \alpha \delta_{j} \alpha_{i} = \alpha \frac{\partial C}{\partial z_{j}} \times_{i} \qquad \text{Using } (*) \&$
$\partial \omega_i - \partial \delta_i \alpha_i - \partial \delta_i = \omega_i$
= a (Z dc dz) Xi
~ 02x 02; 1 / C
= \(\(\le \delta \kappa \frac{\partial \chi}{22} \right) \(\times \text{Z} \tau = \le \text{Wuj. xj. (xi=ai)} \)
4 (Bus lost ossions and
= O(\(\int_{\mathbb{n}}\left\lambda_{\mathbb{n}}\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\left\lambda_{\mathbb{n}}\l
V
= a (Ex du (Examin + (By)) x; aj=f(Zj) from
intermeters about
= a (Endr writ'(2;)) Xi notation in intro
= a(f(zj) Zn Snwkj) Xi
= 028jxi where 8; must be f(zi) En Snuni

task 1b)

Task 16: Vectorize computation
Show update rule for the weight matrix form
1. Hidden layer to output layer Normal: www. = ww a swy = ww a swaj
Vectorizing: Wij=Wkj-a8n2j
3x; shape = $(64, 10)3x$. shape = $(100, 10)3i$. shape = $(100, 64)$
2. Input layer to hidden layer Normal: of (Zi) Zwy8x, Xi
Vectorizing:
W _i :=W _i :-∞ f '(Z _i)∘ Z _i x _i ^T = W _i :-∞ S j x i ^T
W_i , shape = (785, 64) S_i , shape = (100, 64) W_i , shape = (100, 785)

→ Task 2 c)

Final Train Cross Entropy Loss: 0.07770593272819233
Final Validation Cross Entropy Loss: 0.2994116833858604

Train accuracy: 0.9823

Validation accuracy: 0.9164

Comment: The network works, but *very* slowly. We also see

 signs of overfitting (as the training accuracy continues to increase while the validation accuracy stagnates).

Task 2d)

Number of parameters = number of weights + number of biases The number of weights is the number of connections between the nodes of the input, hidden and outputlayer. The number of biases is the number of nodes in the hidden and outputlayer.

$$w = i * j + j * k$$

$$b = j + k$$

sum = i*j + j*k + j + k = 784*64 + 64*10 + 64 + 10 = 50890Task 3:

The tricks are added incrementally.

We make 3 comparisons:

```
# With and without:
# 1. weight init
# 2. improved sigmoid
# 3. momentum
```

PS: The trick from the previous step is implemented in the next, e. g. when adding the improved sigmoid, we have the weight initialization trick implemented.

Plots of comparisons:

3a) Implementing weight initialization from normal distribution

Final Train Cross Entropy Loss for initial model: 0.07770593272819233
Final Validation Cross Entropy Loss for initial model: 0.2994116833858604
Train accuracy for initial model: 0.9823
Validation accuracy for initial model: 0.9164

Final Train Cross Entropy Loss for model with weight initialization: 0.013895749 Final Validation Cross Entropy Loss for model with weight initialization: 0.1426 Train accuracy for model with weight initialization: 0.99955

Validation accuracy for model with weight initialization: 0.958

Comparison (with weight initialization as opposed to without):

- Convergence speed is faster (training loss decreases more rapidly)
- Better generalization (validation accuracy is much better, all the way from the start)
- Final accuracy and loss has improved both for the training and the validation set.

→ 3b) Implementing the improved sigmoid

Final Train Cross Entropy Loss for model with weight initialization: 0.013895749 Final Validation Cross Entropy Loss for model with weight initialization: 0.1426 Train accuracy for model with weight initialization: 0.99955 Validation accuracy for model with weight initialization: 0.958 Final Train Cross Entropy Loss for model with improved sigmoid: 0.00387384100639 Final Validation Cross Entropy Loss for model with improved sigmoid: 0.148627663 Train accuracy for model with improved sigmoid: 0.99995 Validation accuracy for model with improved sigmoid: 0.9617

Comparison (with improved sigmoid as opposed to without):

- Convergence speed is faster (training loss decreases more rapid)
- Better generalization (validation accuracy is better). We also see that the training stops early, which can prevent overfitting.
- Final accuracy and loss stays very similar to the previous, except for training loss which has a more significant decrease. Validation loss increases a little bit.

→ 3c) Implementing momentum

Final Train Cross Entropy Loss for model with improved sigmoid: 0.00387384100639 Final Validation Cross Entropy Loss for model with improved sigmoid: 0.148627663 Train accuracy for model with improved sigmoid: 0.99995 Validation accuracy for model with improved sigmoid: 0.9617 Final Train Cross Entropy Loss for model with momentum: 0.001605220786994835 Final Validation Cross Entropy Loss for model with momentum: 0.1612057320623876 Train accuracy for model with momentum: 1.0

Comparison (with momentum as opposed to without):

- · Convergence speed is somewhat faster
- Generalization seems to be at the same level as before. (The fact that the model with improved sigmoid did not stop early here is likely due to a different seed in random for the weight-initalization).

• Final accuracy and loss stays very similar to the previous.

Conclusion: it seems wise to implement all of the trics of the trade.

Task 4

- → For reference: Result from baseline from task 3
 - · all tricks implemented
 - one hidden layer of 64 neurons

Final Train Cross Entropy Loss: 0.0016052207869949714
Final Validation Cross Entropy Loss: 0.16120573206239205

Train accuracy: 1.0

Validation accuracy: 0.9619

▼ Task 4a)

Result with 32 hidden units:

We see that the resulting performance is slightly worse (but code takes less time to run). The convergence is also slower. We also see that the the accuracies and losses are a bit more noisy, which can be due to every neuron cathing less nuanced features due to the smaller number of neurons. Thus, every neuron has to cover a broader "responsibility" which means that it, at every training step, more likely will change its value more dramatically than with more neurons.

→ Task 4b)

Result with 128 hidden units:

Cross Entropy

0.10

0.05

We see that increasing the number of parameters in the hidden layer improves convergence time, reduces the loss and somewhat improves the validation accuracy. When the number of hidden units become too high, we introduce more complexity to the model which increases the risk of

• overfitting. Also, a very large number of neurons in the hidden layers can increase the time it takes to train the network. In the extreme case the amount of training time can increase to the point where it is impossible to adequately train the neural network. That is not a problem in this case, but the time it took to train the network did increased a little. Task 4d) Two hidden layers

Let x be the number of nodes in the hidden layers. Then

$$W = i * x + x * x + x * k$$

$$b = 2*x + k$$

Want approximately the same number of parameters as in task 3, i. e. 50890 (task 3 has the same number of parameters as calculated in 2d). This yields an equation which we choose to solve in Geogebra, yielding that the closest power of 2 to solve the equation is x = 64.

.02	1	CVDL_ass2_group10.pyilo - Colaboratory
	1	$k := 10$ $\rightarrow k := 10$
	2	i := 784
	0	→ i := 784
	3	$w(x) := i^*x + x^*x + x^*k$
	0	$\rightarrow w(x) := x^2 + 794 x$
	4	b(x) := 2 * x + k
	0	$\rightarrow b(x) := 2 x + 10$
	5	S(x):=w+b
	•	\rightarrow S(x) := $x^2 + 796 x + 10$
	6	S = 50890
	0	Løs: $\left\{ x = -2 \sqrt{52321} - 398, x = 2 \sqrt{52321} - 398 \right\}$
	7	$\{x = -2 \text{ sqrt}(52321) - 398, x = 2 \text{ sqrt}(52321) - 398\}$
	0	$\approx \{x = -855.48, x = 59.48\}$
	8	S(64)
		≈ 55050

Thus, we use 64 nodes in the hidden layers. This gives 55050 parameters.

```
Train shape: X: (20000, 784), Y: (20000, 1)
Validation shape: X: (10000, 784), Y: (10000, 1)
Initializing weight to shape: (785, 64)
Initializing weight to shape: (64, 64)
Initializing weight to shape: (64, 10)
Early stopping at epoch: 16
Final Train Cross Entropy Loss: 0.0005760154222621541
Final Validation Cross Entropy Loss: 0.1682561304705854
Train accuracy: 1.0
Validation accuracy: 0.9642
```


The performance seems a lot like the performance of the

 model in the previous step (with 128 nodes) except it converges a little slower.

▼ Task 4e)

Assuming "baseline model from task 3" means the model with all tricks implemented, and with only one hidden layer with 64 neurons:

```
Downloading train-images-idx3-ubyte.gz...

Downloading t10k-images-idx3-ubyte.gz...

Downloading train-labels-idx1-ubyte.gz...

Downloading t10k-labels-idx1-ubyte.gz...

(47040000,)

(7840000,)

(60000,)

(10000,)

Train shape: X: (20000, 784), Y: (20000, 1)
```

We see worse performance when increasing to 10 layers. This is likely due to the way backpropagation works - when the architecture is very deep, the gradient can vanish when propagating and thus the training becomes very ineffective.

```
Early stopping at epoch: 25
Final Train Cross Entropy Loss with 10 layers: 0.06464538550135918
Final Validation Cross Entropy Loss with 10 layers: 0.2128677091691643
Train accuracy with 10 layers: 0.98095
Validation accuracy with 10 layers: 0.9477
Initializing weight to shape: (785, 64)
Initializing weight to shape: (64, 10)
Early stopping at epoch: 17
```


