

Predicting Structural Damage from an Earthquake

-Lhamu Tsering

Business Context

- "Earthquakes don't kill people, buildings do."
- 2015 Nepal Earthquake
- Model purpose

Process Outline

Data Collection

2015 Nepal Earthquake Portal

Preprocessing

Feature Engineer, Class Imbalance, standardizing

Model Evaluation/ Model Selection

Evaluation Metrics Confusion Matrix

Cleaning and EDA

Data cleaning, Exploration and visuals

Multiclass Classification Models

Logistic Reg, Decision Tree

Data Introduction

2015 Earthquake Nepal Data Portal

- Building Use (762106, 17)
- Building Structure (762106, 31)
- Building Damage(762106, 12)

Feature assembly

- Building Location
- Superstructure make up
- Geotechnical risk
- Secondary use info
- Other building construction properties

Target variable

Damage grade

- 1 Minor Damage
- 2 Major Damage
- 3 Sever Damage

Building Floor Type

Foundation Type

Roof Type

Class Imbalance

Before Resampling

Target variable distribution showing Class Imbalance 400000 Number of buildings 300000 200000 100000 0 target

After Resampling

Model Results **Decision Tree Classifier**

Decision Tree Model Important Features

Further Steps

Thank You!

https://github.com/Yeshi341/s tructural damage from earthq uake

boutlhamu@gmail.com

slides template credit: www.slidesgo.com