1. Vorlesung Grundlagen der Informatik

Christian Baun

Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

13.10.2011

Heute

- Vorstellung
- Organisatorisches zur Vorlesung
- Literatur
- Grundlagen der Informatik
 - Definition der Informatik
 - Teildisziplinen der Informatik
 - Informationen und Daten
 - Repräsentation von Zahlen
 - Datei- und Speichergrößen
 - Datel- und Speichergrober
 - Informationsdarstellung

Christian Baun

- 2005 Diplom in Informatik an der FH-Mannheim
- 2006 Master of Science an der HS-Mannheim
- 2006 2008 Wissenschaftler im Institut für Wissenschaftliches Rechnen des Forschungszentrum Karlsruhe
 - Teil des D-Grid Integrationsprojekts (http://www.d-grid.de)
- 2008 2011 Wissenschaftler im Steinbuch Centre for Computing des Karlsruher Institut für Technologie
 - Schwerpunkte: Cloud-Computing, Virtualisierung, Verteilte Dateisysteme
 - Titel: Untersuchung und Entwicklung von Cloud Computing-Diensten als Grundlage zur Schaffung eines Marktplatzes
- 2011 Promotion an der Universität Hamburg
- Ab Oktober 2011 Vertretungsprofessur an der HS-Darmstadt

Organisatorisches zur Vorlesung und Übung

- Homepage: https://www.fbi.h-da.de/organisation/personen/baun-christian.html
- E-Mail: christian.baun@h-da.de
- Skriptum: Folienskript auf der Homepage
- Vorlesung:
 - Zug C + D: Donnerstags. 14:15-15:45 Uhr. Raum 17/119
 - Zug A + B: Prof. Dr. Hans-Peter Wiedling
- Übungen: Praktikum als Voraussetzung zur Klausurteilnahme!
 - Zug C: Donnerstags. 17:45-19:15 Uhr. Raum 16/012a
 - Zug D: Donnerstags. 16:00-17:30 Uhr. Raum 16/012a
 - Übungsblatt 1: Morgen online!

Organisatorisches

 Zitat von Mr. Miyagi: "Nicht nur der Schüler lernt von seinem Meister; auch der Meister lernt von seinem Schüler."

Bildquelle: Google

• Rege Teilnahme an Vorlesung und Übung ist sehr erwünscht!

Inhalt der Vorlesung

- Organisatorisches
- Definition der Informatik und historische Entwicklung
- Informationsdarstellung
- Boolesche Algebra, Hardware-Komponenten
- Weg vom Programm zum Maschinenprogramm
- Betriebssysteme
- Formale Sprachen
- Datentypen und Kontrollstrukturen
- Grundlagen der Computervernetzung
- Client-Server
- Informationsdarstellung mit HTML und XML

Literatur

- Grundlagen der Informatik, Helmut Herold, Bruno Lurz, Jürgen Wohlrab, Pearson (2007)
- Einführung in die Informatik, Heinz Peter Grumm, Manfred Sommer, Oldenburg (2011)
- Moderne Betriebssysteme, Andrew S. Tanenbaum, Pearson Studium (2009)
- Betriebssysteme, William Stallings, Pearson Studium (2003)
- Computernetzwerke, Andrew S. Tanenbaum, Pearson (2000)
- Verteilte Systeme: Prinzipien und Paradigmen, Andrew S. Tanenbaum, Maarten van Steen, Pearson (2008)
- IT Handbuch für Fachinformatiker, Sascha Kersken, Galileo Computing (2009)
 http://openbook.galileocomputing.de/it_handbuch/

Informatik

- Informatik ist die Wissenschaft von der systematischen Darstellung, Speicherung, Verarbeitung und Übertragung von Informationen, besonders der automatischen Verarbeitung mit Hilfe von Digitalrechnern (Computern)
 - Quelle: Duden (leicht abgewandelt)

- "In der Informatik geht es genau so wenig um Computer, wie in der Astronomie um Teleskope." (Edsger W. Dijkstra)
- Die englische Bezeichnung der akademischen Disziplin Informatik ist Computer Science und nicht Information Technology (IT)
 (Informationstechnik)
- Bis in die 1960er Jahre war Informatik ein Spezialgebiet anderer wissenschaftlicher Disziplinen wie der Mathematik oder Elektrotechnik
- In vielen Teilbereichen ist Informatik heute eine Ingenieurwissenschaft

Christian Baun - 1. Vorlesung Grundlagen der Informatik - Hochschule Darmstadt - WS1112

Teildisziplinen der Informatik

- Die Informatik unterteilt sich in 3 Teilgebiete
 - Theoretische Informatik
 - Logik, Automatentheorie, formale Sprachen, Berechenbarkeitstheorie, Komplexitätstheorie,...
 - Praktische Informatik
 - Algorithmen, Datenstrukturen, Programmiersprachen, Compiler, Interpreter, Softwareentwicklung, Betriebssysteme, Datenbanken,...
 - Technische Informatik
 - Hardwareentwicklung, Eingebettete Systeme, Systemnahe
 Softwareentwicklung, Elektrotechnik (insbes. Digitaltechnik),
 Echtzeitsysteme, Rechnernetze, Sensorik, Signal- und Bildverarbeitung,...
- Diese 3 Teilgebiete nennt man auch Kerninformatik
- Auf der Kerninformatik baut die Angewandte Informatik mit ihren verschiedenen Ausprägungen auf
 - Wirtschaftsinformatik, Medizinische Informatik, Bioinformatik, Geoinformatik, Umweltinformatik, Rechtsinformatik, Künstliche Intelligenz, Computerlinguistik,...

Informationen und Daten

- In Computersystemen (Rechnern) werden **Informationen** in Form von Zahlen (Nullen und Einsen) verarbeitet
- Es existieren verschiedene Wege, wie die Informationen mit Nullen und Einsen repräsentiert werden können
- Die so repräsentierten Informationen sind die Daten
- Die Repräsentation muss immer so gewählt sein, dass man aus den Daten wieder die Information zurückgewinnen kann

Die Interpretation von Daten als Information heißt Abstraktion

Bit

- Kleinstmögliche Einheit der Information
- Jede Information ist an einen Informationsträger gebunden
- Ein Informationsträger, der sich in genau einem von 2 Zuständen befinden kann, kann die Datenmenge 1 Bit darstellen
 - In der Informatik nennt man den Wert eines oder mehrerer Bits Zustand
 - 1 Bit stellt 2 Zustände dar
- 1 Bit ist die Informationsmenge in einer Antwort auf eine Frage, die zwei mögliche Antworten zulässt
 - ja oder nein
 - wahr oder falsch
 - hell oder dunkel
 - ...
- Die Antwort wird mit Hilfe der beiden Zeichen 0 und 1 kodiert
- Diese Kodierung (binärer Code) stellt Informationen technisch dar
 - ullet Elektrische Ladungen: 0 = ungeladen, 1 = geladen
 - Elektrische Spannungen: 0 = 0 Volt, 1 = 5 Volt
 - Magnetisierung: 0 = nicht magnetisiert, 1 = magnetisiert

Bitfolgen

- Mit n Bit kann man 2^n verschiedene Zustände darstellen
- Mit 2 Bit kann man $2^2 = 4$ verschiedene Zustände repräsentieren, nämlich 00, 01, 10 und 11
- Mit 3 Bit kann man $2^3 = 8$ verschiedene Zustände repräsentieren, nämlich 000, 001, 010, 011, 100, 101, 110 und 111
- ullet Mit 4 Bit kann man schon $2^4=16$ verschiedene Zustände repräsentieren
- Jedes zusätzliche Bit verdoppelt die Anzahl der möglichen darstellbaren Zustände
 - ullet Darum gilt: Es gibt genau 2^n verschiedene Bitfolgen der Länge n

Anzahl der Bit	Anzahl der Zustände	Anzahl der Bit	Anzahl der Zustände
1	$2^1 = 2$	9	$2^9 = 512$
2	$2^2 = 4$	10	$2^{10} = 1.024$
3	$2^3 = 8$	11	$2^{11} = 2.048$
4	$2^4 = 16$	12	$2^{12} = 4.096$
5	$2^5 = 32$	13	$2^{13} = 8.192$
6	$2^6 = 64$	14	$2^{14} = 16.384$
7	$2^7 = 128$	15	$2^{15} = 32.768$
8	$2^8 = 256$	16	$2^{16} = 65.536$

Repräsentation von Zahlen

- Zahlen kann man auf unterschiedliche Arten darstellen
 - Aufgabe: Zahlen aus der realen Welt im Computer abbilden
- Wichtig ist die Unterscheidung zwischen Wert und Darstellung
- In der Mathematik unterscheidet man Zahlen als Elemente verschiedener Wertemengen
 - Natürliche Zahlen, ganze Zahlen, reelle Zahlen, komplexe Zahlen,...
 - Beispiel: 2 ist ein Element der natürlichen Zahlen
- Konkrete Zahlen werden durch Zeichen repräsentiert
 - Im täglichen Leben handelt es sich üblicherweise um Dezimalzahlen
- Neben der Darstellung interessiert häufig auf der Wert einer Zahl
 - Den Wert nennt man abstrakte Zahl
 - Der Wert ist unabhängig von der Darstellung (z.B. 0, 5 = 1/2)

Repräsentation von Zahlen

- Operationen eines Rechners werden auf Zeichen (Bitmuster) und nicht auf Werten ausgeführt
 - Darum ist f
 ür die Informatik besonders die Darstellung der Zahlen interessant
- Um Bitmuster korrekt zu interpretieren, muss eine Abbildung zwischen der Darstellung und dem Wert einer (binär) kodierten Zahl vorliegen

Als nächstes werden die für die Informatik wichtigsten Zahlendarstellungen vorgestellt

Positive ganze Zahlen

- Wir rechnen im Dezimalsystem
 - Wird auch als Zehnersystem System bezeichnet
 - Darstellung von natürlichen Zahlen mit den Symbolen $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, +\}$
 - Beispiel: 0, +123, −987
 - ullet Die Zahlen beginnen mit einem Vorzeichensymbol aus der Menge $\{+,-\}$
 - Bei positiven Zahlen und der Null kann das Vorzeichensymbol weggelassen werden
 - Danach kommen Ziffernsymbole aus der Menge $\{0,1,2,3,4,5,6,7,8,9\}$
 - Das Dezimalsystem verwendet als Basis die Zahl 10
 - Jede Ziffer D an der Stelle i hat den Wert $D*10^{i}$
 - Beispiel: $2011 = 2 * 10^3 + 0 * 10^2 + 1 * 10^1 + 1 * 10^0$
- Rechner unterscheiden zwischen 2 elektrischen Werten
 - Darum ist als Basis die Zahl 2 optimal geeignet

Dualzahlen

- Zahlen werden nur mit den Ziffern des Wertes Null und Eins dargestellt
- Die Zahldarstellungen im Dualsystem werden auch Dualzahlen oder Binärzahlen genannt
- \bullet Positive natürliche Zahlen inklusive der Null können mit den Symbolen $B=\{1,0\}$ repräsentiert werden
 - Somit werden dann alle positiven natürliche Zahlen inklusive der Null durch Folgen von Symbolen aus der Menge B abgebildet
 - Beispiel: 1011011011

LSB, MSB

- x₀, das niederwertigste Bit, heißt **LSB** (Least Significant Bit)
- x_{n-1} , das höchstwertigste Bit, heißt **MSB** (Most Significant Bit)

Umrechnung: Dualzahlen ↔ Dezimalzahl

- Dualzahl ⇒ Dezimalzahl
 - Beispiel: $100100100 = 2^8 + 2^5 + 2^2 = 292$
- Dezimalzahl ⇒ Dualzahl

• Beispiel: 292

Vorgehensweise:

$$i \leftarrow 0;$$
 $X_0 \leftarrow 0;$
WHILE $k \neq 0$ DO
$$X_i \leftarrow k \text{ MODULO 2}$$
 $k \leftarrow k \text{ DIV 2}$
 $i \leftarrow i + 1$

k	k MODULO 2	k DIV 2	i
292	x ₀ :0	146	0
146	$x_1 : 0$	73	1
73	x ₂ :1	36	2
36	x ₃ :0	18	3
18	x ₄ :0	9	4
9	x ₅ :1	4	5
4	<i>x</i> ₆ : 0	2	6
2	x ₇ :0	1	7
1	x ₈ :1	0	8

 \bullet 292₁₀ = 100100100₂

Oktal- und Hexadezimalzahlen

- Bits werden zur besseren Lesbarkeit zu **Bitgruppen** zusammengefasst
- Oktaden (3 Bit) \Longrightarrow Kodierung im Oktalsystem
 - Das Oktalsystem ist ein Zahlensystem mit der Basis 8
 - Kennt 8 Ziffern zur Darstellung einer Zahl: 0, 1, 2, 3, 4, 5, 6 und 7
- Tetraden (4 Bit) ⇒ Kodierung im Hexadezimalsystem
 - Das Hexadezimalsystem ist ein Zahlensystem mit der Basis 16
 - Kennt 16 Ziffern zur Darstellung einer Zahl: 0,1,...8,9,A,B,C,D,E,F
 - 1 Byte (8 Bit) kann mit 2 Hexadezimalziffern dargestellt werden

dezimal	binär	oktal	hexadezimal	dezimal	binär	oktal	hexadezimal
0	0000	0	0	8	1000		8
1	0001	1	1	9	1001	_	9
2	0010	2	2	10	1010	_	A
3	0011	3	3	11	1011	_	В
4	0100	4	4	12	1100	_	C
5	0101	5	5	13	1101	_	D
6	0110	6	6	14	1110	_	E
7	0111	7	7	15	1111	_	F

- \bullet 327₁₀ = 101|000|111₂ = 507₈
- \bullet 327₁₀ = 1|0100|0111₂ = 147₁₆

Datei- und Speichergrößen

- Unter der Größe einer Datei versteht man die Anzahl der Bytes dieser Datei
- Da sich die Größenordnungen der allermeisten Dateien im Bereich mehrerer Tausend oder Millionen Bytes befinden, müssen die entsprechenden Längenmaße bekannt sein
- Für Datenspeicher mit binärer Adressierung ergeben sich Speicherkapazitäten von 2ⁿ Byte, also **Zweierpotenzen**

Name (Symbol)	binär
Kilobyte (kB)	2 ¹⁰ Byte = 1.024 Byte
Megabyte (MB)	2 ²⁰ Byte = 1.048.576 Byte
Gigabyte (GB)	2 ³⁰ Byte = 1.073.741.824 Byte
Terabyte (TB)	2 ⁴⁰ Byte = 1.099.511.627.776 Byte
Petabyte (PB)	2 ⁵⁰ Byte = 1.125.899.906.842.624 Byte
Exabyte (EB)	2 ⁶⁰ Byte = 1.152.921.504.606.846.976 Byte
Zettabyte (ZB)	2 ⁷⁰ Byte = 1.180.591.620.717.411.303.424 Byte
Yottabyte (YB)	2 ⁸⁰ Byte = 1.208.925.819.614.629.174.706.176 Byte

 Diese Maßeinheiten haben sich für die Größenangabe von Hauptspeicher und anderen Speichermedien eingebürgert

19/29

Datei- und Speichergrößen

- Die Hersteller von Festplatten, CD/DVDs und USB-Speichermedien verwenden für die Berechnung lieber die Dezimal-Präfixe, also den Faktor 10^9 anstatt 2^{30} für Gigabyte und 10^{12} anstatt 2^{40} für Terabyte
 - Darum wird z.B. bei einem DVD-Rohling mit einer angegebenen Kapazität von 4,7 GB in einigen Anwendungen nur eine Kapazität von 4,38 GB angezeigt
 - $10^9 = 1.000.000.000, 2^{30} = 1.073.741.824$
 - Unterschied: ca. 7,37 %
 - Ein Rechner mit einer angeblich 1 TB großen Festplatte bekommt nur eine Kapazität von ca. 930 GB angezeigt
 - $10^{12} = 1.000.000.000.000, 2^{40} = 1.099.511.627.776$
 - Unterschied: ca. 9,95 %

Kibibyte (KiB), Mebibyte (MiB), Gibibyte (GiB), Tebibyte (TiB), Pebibyte (PiB), Exbibyte (EiB), Zebibyte (ZiB),...

- Die International Electrotechnical Commissio (IEC) schlug 1996 vor, die populären Größenfaktoren, die auf den Zweierpotenzen basieren, mit einem kleinen "i" zu kennzeichnen
- Die etablierten Bezeichnungen der Maßeinheiten wären dann für die Dezimal-Präfixe reserviert
 - Dieser Vorschlag konnte sich bislang nicht durchsetzen

Informationsdarstellung

- Daten sind Folgen von Nullen und Einsen, die beliebige Informationen repräsentierten
- Wie erfolgt aber die Darstellung von Texten und Zahlen durch Daten?
- Um Texte darzustellen, kodiert man die Zeichen des Alphabets (Großund Kleinschreibung), die Satzzeichen wie Punkt, Komma und Semikolon, sowie einige Spezialzeichen wie +, %, & und \$ in Bitfolgen
- Zudem benötigt man noch Sonderzeichen zur Steuerung wie das Leerzeichen (SP) den Wagenrücklauf (CR) und das Tabulatorzeichen (TAB)
- Die populärste Form der Kodierung ist der American Standard Code for Information Interchange (ASCII)

ASCII-Kodierung

- 7-Bit-Zeichenkodierung
 - Jedem Zeichen wird ein Bitmuster aus 7 Bit zugeordnet
 - Es gibt 2⁷ = 128 verschiedene Bitmuster
- Standard seit 1963
 - Letzte Aktualisierung 1968
- Die Zeichenkodierung definiert 128 Zeichen
 - 33 nicht druckbare Zeichen
 - 95 druckbare Zeichen
- Die druckbaren Zeichen sind (beginnend mit dem Leerzeichen):

```
!"#$%&'()*+,-./0123456789:;<=>?
```

```
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
```

- 'abcdefghijklmnopqrstuvwxyz{|}~
- Das 8. Bit ermöglichte als Paritätsbit die Fehlererkennung
 - Es wurde auf 0 gesetzt, wenn die Anzahl der Einsen an den übrigen 7
 Bitpositionen gerade ist und ansonsten auf 1 gesetzt
- Heute wird das 8. Bit fast immer als Erweiterung von ASCII auf einen 8-Bit-Code verwendet

ASCII-Tabelle

Dec	Н	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ci	hr
0	0	000	NUL	(null)	32	20	040	6#32;	Space	64	40	100	@	0	96	60	140	`	8
1	1	001	SOH	(start of heading)	33	21	041	6#33;	1	65	41	101	a#65;	A	97	61	141	6#97;	a
2	2	002	STX	(start of text)	34	22	042	6#34;	rr .	66	42	102	B	В	98	62	142	6#98;	b
3	3	003	ETX	(end of text)	35	23	043	#	#	67	43	103	C	C	99	63	143	c	c
4	4	004	EOT	(end of transmission)	36	24	044	\$	ş	68	44	104	D	D	100	64	144	d	d
5	5	005	ENQ	(enquiry)	37	25	045	6#37;	÷	69	45	105	E	E				6#101;	
6				(acknowledge)				&		70			F					f	
7	7	007	BEL	(bell)	39	27	047	'	1	71	47	107	6#71;	G				6#103;	
8	8	010	BS	(backspace)				6#40;		72			6#72;					6#104;	
9	9	011	TAB	(horizontal tab)				6#41;					6#73;					i	
10		012		(NL line feed, new line)				*					J					j	
11		013		(vertical tab)				6#43;					6#75;					k	
12		014		(NP form feed, new page)				6#44;					6#76;					l	
13		015		(carriage return)				&# 4 5;					e#77;					m	
14	E	016	30	(shift out)				.					N					n	
15		017		(shift in)				6#47;		79			6#79;					6#111;	
				(data link escape)				6#48;		80			480;					6#112;	
				(device control 1)				&#49;</td><td></td><td></td><td></td><td></td><td>Q</td><td></td><td></td><td></td><td></td><td>q</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 2)</td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>6#82;</td><td></td><td></td><td></td><td></td><td>6#114;</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 3)</td><td></td><td></td><td></td><td>6#51;</td><td></td><td></td><td></td><td></td><td>6#83;</td><td></td><td></td><td></td><td></td><td>6#115;</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(device control 4)</td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td>4;</td><td></td><td></td><td></td><td></td><td>t</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(negative acknowledge)</td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td></td><td>u</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(synchronous idle)</td><td></td><td></td><td></td><td>6#54;</td><td></td><td></td><td></td><td></td><td>V</td><td></td><td></td><td></td><td></td><td>6#118;</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(end of trans. block)</td><td></td><td></td><td></td><td>6#55;</td><td></td><td></td><td></td><td></td><td>6#87;</td><td></td><td></td><td></td><td></td><td>6#119;</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>(cancel)</td><td></td><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td>X</td><td></td><td></td><td></td><td></td><td>x</td><td></td></tr><tr><td></td><td></td><td>031</td><td></td><td>(end of medium)</td><td></td><td></td><td></td><td>6#57;</td><td></td><td></td><td></td><td></td><td>6#89;</td><td></td><td></td><td></td><td></td><td>6#121;</td><td></td></tr><tr><td></td><td></td><td>032</td><td></td><td>(substitute)</td><td></td><td></td><td></td><td>6#58;</td><td></td><td></td><td></td><td></td><td>6#90;</td><td></td><td></td><td></td><td></td><td>6#122;</td><td></td></tr><tr><td></td><td></td><td>033</td><td></td><td>(escape)</td><td></td><td></td><td></td><td>;</td><td></td><td>91</td><td></td><td></td><td>[</td><td></td><td></td><td></td><td></td><td>6#123;</td><td></td></tr><tr><td></td><td></td><td>034</td><td></td><td>(file separator)</td><td></td><td></td><td></td><td><</td><td></td><td></td><td></td><td></td><td>\</td><td></td><td></td><td></td><td></td><td> </td><td></td></tr><tr><td></td><td></td><td>035</td><td></td><td>(group separator)</td><td></td><td></td><td></td><td>=</td><td></td><td></td><td></td><td></td><td>6#93;</td><td></td><td></td><td></td><td></td><td>6#125;</td><td></td></tr><tr><td></td><td></td><td>036</td><td></td><td>(record separator)</td><td></td><td></td><td></td><td>6#62;</td><td></td><td></td><td></td><td></td><td>6#94;</td><td></td><td></td><td></td><td></td><td>6#126;</td><td></td></tr><tr><td>31</td><td>1F</td><td>037</td><td>US</td><td>(unit separator)</td><td>63</td><td>ЗF</td><td>077</td><td>?</td><td>2</td><td>95</td><td>5F</td><td>137</td><td>_</td><td>_</td><td>127</td><td>7F</td><td>177</td><td>6#127;</td><td>DEL</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>11-</td><td> T-LI-</td><td></td></tr></tbody></table>											

Source: www.LookupTables.com

ASCII-Erweiterungen

- Die vergangen Jahre und Jahrzehnte wurde fast immer zur Erweiterung von ASCII ein 8 Bit-Code verwendet
 - Wird jedem Zeichen ein Bitmuster aus 8 Bit zugeordnet, sind $2^8=256$ verschiedene Bitmuster verfügbar
- Die Erweiterungen sind mit dem ursprünglichen ASCII weitgehend kompatibel, so dass alle im ASCII definierten Zeichen auch in den verschiedenen Erweiterungen durch die gleichen Bitmuster kodiert werden
- Die Erweiterungen wie z.B. ISO 8859-1 (ISO Latin 1) enthalten sprachspezifische Zeichen (z.B. Umlaute) und Sonderzeichen, die nicht im lateinischen Grundalphabet enthalten sind

ASCII-Erweiterung ISO 8859-1 (ISO Latin 1)

	ISO-8859-1															
	x0	х1	x2	хЗ	х4	х5	х6	х7	х8	х9	хA	хВ	хC	хD	хE	хF
0x	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	TAB	LE.	ΛΙ	EE	CR	SO	SI
1x	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	ES	GS	BS	US
2x	SP	.!		#	\$	%	&	1	()	•	+		-		1
3x	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4x	@	Α	В	С	D	Е	F	G	Н	ı	J	К	L	М	N	0
5x	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	[١]	٨	_
6x	,	a	b	С	d	е	f	g	h	i	j	k	-1	m	n	0
7x	р	q	r	s	t	u	v	w	х	у	z	{	- 1	}	~	DEL
<u>8x</u>	PAD	HOP	BPH	NBH	IND	NEL	SSA	ESA	HTS	HIJ	VIS	PLD	PLU	BJ	SS2	SS3
9x	DCS	PU1	PU2	STS	ССН	MW	SPA	EPA	SOS	SGCI	SCI	CSI	ST	osc	PМ	APC
Ax	NBSP	i	¢	£	¤	¥	- }	§	-	©	a	ec	7	SHY	®	-
Вх	0	±	2	3	*	μ	1		3	1	0	39	1/4	1/2	3/4	٤
Сх	À	Á	Â	Ã	Ā	À	Æ	Ç	È	É	Ê	Ê	Ì	ĺ	Î	Ĩ
Dx	Ð	Ñ	Ò	Ó	Ô	Ō	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	В
Ex	à	á	â	ã	ä	â	æ	ç	è	é	ê	ë	ì	í	î	ï
Fx	ō	ñ	ò	Ó	ô	ō	Ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ

UNICODE

- Zeichenkodierung, die jede menschliche Schriftzeichen oder Textelement aller bekannten Schriftkulturen und Zeichensysteme enthalten soll
- Ziel: Vermeidung der Verwendung unterschiedlicher und inkompatibler Kodierungen in verschiedenen Ländern oder Kulturkreisen
- Es existieren verschiedene UNICODE-Standards (UTF-2, UTF-7, UTF-8, UTF-16)
- Am populärsten ist UTF-8
 - UTF-8 ist eine Mehrbyte-Kodierung
 - Die ersten 128 Zeichen werden mit einem Byte codiert und sind mit der ASCII-Kodierung identisch
 - Die Kodierungen aller anderen Zeichen verwenden zwischen 2 und 6 Byte
 - 1.114.112 Codepunkte (Zeichen) sind möglich
 - Enthält bereits über 100.000 Zeichen und wird ständig erweitert
- Unter der ISO-Norm 10636 wurde UNICODE international standardisiert

Zeichenkodierung bei UTF-8 (UNICODE)

- Jedes mit 0 beginnende Byte ist ein 7-Bit ASCII-Zeichen
- Jedes mit 1 beginnende Byte gehört zu einem aus mehreren Bytes bestehenden UTF-8 Code
 - Besteht ein UTF-8 Code aus $n \ge 2$ Byte, beginnt das erste Byte mit n vielen Einsen und jedes der n-1 folgenden Byte mit der Bitfolge 10

Code- Länge	Bit zur Zeichen- Codierung	Format
1 Byte	7 Bit	0xxxxxxx
2 Byte	11 Bit	110xxxxx 10xxxxxx
3 Byte	16 Bit	1110xxxx 10xxxxxx 10xxxxxx
4 Byte	21 Bit	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
5 Byte	26 Bit	111110xx 10xxxxxx 10xxxxxx 10xxxxxx
6 Byte	31 Bit	1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

Darstellung von Zeichenketten

- Um einen fortlaufenden Text zu kodieren, fügt man die einzelnen Zeichen zu einer Zeichenkette (String) aneinander
- Der Text Vorlesung Netzwerke. wird zur folgenden Zeichenfolge
 V, o, r, l, e, s, u, n, g, , N, e, t, z, w, e, r, k, e, .
- Alle Zeichen (auch das Leerzeichen) werden durch die Nummer in der ASCII-Tabelle ersetzt

```
086 111 114 108 101 115 117 110 103 032 078 101 116 122 119 101 114 107 101 046
```

- Alternativ kann man die ASCII-Nummern auch hexadezimal schreiben
 56 6F 72 6C 65 73 75 6E 67 20 4E 65 74 7A 77 65 72 6B 65 2E

Nächste Vorlesung

Nächste Vorlesung:

20.10.2011