Contents		5.4	Centroid decomposition	13	8.6 xor update, delete, find kth element 24
1 Include	1	5.5 5.6			
2 Math 2.1 Sieve	2	5.7 5.8	LCA	14 14	1 Include
 2.2 Extended Euclid 2.3 Catalan 2.4 Chinese Remainder Theorem 2.5 Derangement Number 	2 2 2 2	5.13 5.13	0 Kruskal	15 15 15 16	<pre>#include <bits stdc++.h=""> #include <ext assoc_container.hpp="" pb_ds=""> #include <ext pb_ds="" tree_policy.hpp=""> #define ull unsigned long long #define ll long long</ext></ext></bits></pre>
2.6 Mobius 2.7 Mod Inverse 2.8 Phi			3 Hopcroft Karp	17	#define endl '\n' #define cout<<""< <endl #define="" cout<<#x<<"="<<x<' ' #define sz(y) (11)v.size()</td></tr><tr><td>2.9 Lagrange interpolation </td><td>3
3
3</td><td>6.1
6.2
6.3</td><td>,</td><td>17
17</td><td><pre>#define srt(v) sort(v.begin(),v.end()) #define rsrt(v) sort(v.rbegin(),v.rend()) #define all(v) v.begin(),v.end()</pre></td></tr><tr><th>2.12 Gauss(mod 2)</th><th>4 4 4</th><th>6.4</th><th>Subset DP</th><th>18</th><th><pre>#define pb push_back #define pi acos(-1) #define ff first</pre></th></tr><tr><th>2.15 NTT (mod by any)</th><th>5
5
6</th><th>7.1</th><th>Hashing</th><th></th><th><pre>#define ss second #define pii pair<int,int> #define mp make_pair #define mod 1000000007 #define fast ios_base::sync_with_stdio(false); cin.tie(NULL)</pre></th></tr><tr><th>3 Geometry</th><th>6</th><th>7.4
7.5</th><th>Manacher</th><th>19
19</th><th><pre>#define filein freopen(" dd(x)="" fileout="" freopen("output.txt","w",stdout)<="" input.txt","r",stdin)="" pre=""></endl>
4 Data Structure 4.1 SQRT Decomposition	9	7.6 7.7	Suffix Array (sort substring range)	19 20	<pre>using namespace std; using namespacegnu_pbds; template <typename t=""> using os=tree < T, null_type</typename></pre>
 4.2 Mo's Algorithm	9 9 10 10	7.8 7.9 7.10	Trie	20 21 21 21	<pre>,less<t>, rb_tree_tag,tree_order_statistics_node_update >; ///find_by_order(k) : returns an iterator of the k-th index ///order_of_key(k) : returns the number of elements less than k mt19937</t></pre>
4.6 RMQ(sparse table) 4.7 BIT 4.8 Implicit Treap	11	8.1	rect Solution way to select k equal substrings	21 21 22	<pre>rng(chrono::steady_clock::now().time_since_epoch().count()); const ll mx=100009; os<int> s; //python:</int></pre>
5 Graph 5.1 2-SAT 5.2 Articulation Bridge 5.3 Articulation Point	12 12 12 12	8.3 8.4	count number of substring equals to lcp of two given strings longest path for each subtree number of triplets where $\gcd(a,b,c)=1$		<pre>//a=list(map(int,input().split()))</pre>

.

2 Math

2.1 Sieve

```
const int mx=1000009:
bitset<mx>prime:
int pr[mx]:
vector<int> v:
void sieve() {
    prime[1]=1;
    for(int i=4;i<mx;i+=2) prime[i]=1;</pre>
    for(int i=3;i*i<mx;i+=2) {</pre>
       if(prime[i]==false) {
           for(int j=i*i;j<mx;j+=2*i) {
               prime[j]=true;
       }
    for(int i=3;i<mx;i+=2) if(prime[i]==false ) v.pb(i);</pre>
void pre() {
    for(int i=1:i<mx:i++) {</pre>
       if(i%2==0) pr[i]=2;
       else pr[i]=i:
    for(int i=3:i<mx:i+=2) {</pre>
       if(pr[i]==i) {
           for(int j=i:j<mx:j+=i) pr[j]=i:
```

2.2 Extended Euclid

```
int extended(int a, int b,int &x, int &y) {
    if(b==0) {
        x=1; y=0; return a;
    }
    int x1,y1;
    int d=extended(b,a%b,x1,y1);
    x=y1; y=x1-(a/b)*y1;
    return d;
}
int main() {
    int a,b,x,y;
    cin>>a>>b;
    int ans=extended(a,b,x,y);
    cout<<xx<<'''><y<<end1;
}</pre>
```

2.3 Catalan

```
ll cat[1120]:
11 supcat[1120]:
formula 1: cn=(1/(n+1)) * (2n c n)
formula 2: cn=(2n)! / ((n+1)! * n!)
void pre() {
   cat[0]=1;
   for(ll i=1;i<=50;i++) {</pre>
       for(11 j=0;j<i;j++) {</pre>
          cat[i]+=cat[j]*cat[i-1-j];
   }
   supcat[0]=1;
   for(ll i=1;i<=50;i++) {</pre>
       supcat[i]=supcat[i-1];
       for(ll j=1;j<i;j++) {</pre>
          supcat[i]+=supcat[j]*supcat[i-j];
   supcat[1]=2:
   for(ll i=1:i<=50:i++) supcat[i]/=2:</pre>
Application:
1. Cn is the number of Dyck words[2] of length 2n. A Dyck
    word is a string
consisting of n X's and n Y's such that no initial segment
    of the string has
more Y's than X's. For example, the following are the Dvck
    words of length 6:
XXXYYY XYXXYY XYXYXY XXYXYY.
2. Re-interpreting the symbol X as an open parenthesis and
    Y as a close
parenthesis, Cn counts the number of expressions containing
    n pairs of
parentheses which are correctly matched:
((())) ()(()) ()(()) (()())
3. Cn is the number of different ways n + 1 factors can be
    completely parenthesized .
For n = 3, for example, we have the following five different
    parenthesizations of four factors:
((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))
4. Cn is the number of non-isomorphic ordered (or plane)
    trees with n + 1 vertices
5. Cn is the number of monotonic lattice paths along the
    edges of a grid with n n square
cells, which do not pass above the diagonal.
6. A convex polygon with n + 2 sides can be cut into
    triangles by connecting
vertices with non-crossing line segments in cn ways.
```

2.4 Chinese Remainder Theorem

```
vector<ll>r,m;
ll extended(ll a, ll b,ll &x, ll &y) {
   //ekhane template dekhe likhe dibo
11 crt() //result is unique when mod by lcm(all m)
   ll r1=r[0],m1=m[0];
   for(ll i=1;i<(int)r.size();i++) {</pre>
       11 r2=r[i]: 11 m2=m[i]:
       11 gcd=__gcd(m1,m2);
       if(r1%gcd != r2%gcd) return -1:
       ll lcm=m1/gcd*m2:
       m1/=gcd: m2/=gcd:
       11 p,q;
       extended(m1,m2,p,q);
       r1=((int128)(r1*m2)%lcm*q%lcm+(int128)(r2*m1)%lcm*p%lcm)
       r1%=1cm:
       m1=lcm:
       if(r1<0) r1+=lcm:</pre>
   return r1: //all solution x=r1+lcm*k
int main() {
   11 n;
   cin>>n:
   for(ll i=0;i<n;i++) {</pre>
       11 a.b:
       cin>>a>>b;
       m.pb(a); r.pb(b);
   11 ans=crt();
   if(ans==-1) cout<<"Impossible"<<endl;</pre>
   else cout<<ans<<endl;</pre>
```

2.5 Derangement Number

2.6 Mobius

```
int mob[10009];
int mobius() {
    /// 1 when n==1
    /// 0 when there is a prime more than once
    /// (-1)^p here p is the total distinct prime factor
    mob[1]=1;
```

```
for(int i=1;i<=10008;i++) {
    for(int j=2*i;j<=10003;j+=i) {
        mob[j]-=mob[i];
    }
}</pre>
```

2.7 Mod Inverse

```
11 facto[mx],invfacto[mx];
void pre() {
    facto[0]=1;
    for(ll i=1;i<mx;i++) facto[i]=(facto[i-1]*i)%mod;</pre>
    invfacto[0]=1; invfacto[1]=1;
    for(11 i=2;i<mx;i++)</pre>
        invfacto[i]=mod-(mod/i)*invfacto[mod%i]%mod; ///pre
        calculate mod inverse i
    for(int i=1:i<mx:i++)</pre>
        invfacto[i]=(invfacto[i-1]*invfacto[i])%mod;
        ///precalculate inverse factorial
ll ncr(ll n. ll r) {
    if(r>n) return 0:
    11 ans=facto[n]*invfacto[n-r]; ans%=mod;
    ans=(ans*invfacto[r])%mod:
    return ans:
```

2.8 Phi

```
int toti[mx];
//sum(n)=phi[1]+phi[2]+phi[3]+....phi[n]
//sum(n)=n*(n+1)/2-for(2 to n)sum(floor(n/i))
//sum of coprime number of n = n*phi(n)/2
void phi() {
    for(int i=1;i<mx;i++) toti[i]=i ;
    for( int i=2;i<mx;i++) {
        if(toti[i]==i) {
            for(int j=i;j<mx;j+=i) {
                toti[j]-=toti[j]/i;
            }
        }
    }
}</pre>
```

2.9 Lagrange interpolation

```
11 add(l1 a, l1 b) {
```

```
if(a+b<mod) return a+b;</pre>
   return a+b-mod:
ll sub(ll a,ll b) {
   if(a-b<0) return a-b+mod;</pre>
    return a-b;
11 mul(ll a, ll b) {
   return (a*b)%mod:
11 bigmod(ll a, ll b, ll m) {
    ll ans=1:
    a%=m:
    while(b) {
       if(b&1) ans=(ans*a)%m:
       b>>=1:
       a=(a*a)%m:
    return ans:
11 facto[mx].invfacto[mx]:
11 pre[mx],suf[mx];
void pre1() {
   facto[0]=1;
    for(ll i=1:i<mx;i++) facto[i]=(facto[i-1]*i)%mod;</pre>
    invfacto[0]=1;
    invfacto[1]=1:
    for(11 i=2;i<mx;i++)</pre>
         invfacto[i]=mod-(mod/i)*invfacto[mod%i]%mod; ///pre
         calculate mod inverse i
    for(ll i=1;i<mx;i++)</pre>
        invfacto[i]=(invfacto[i-1]*invfacto[i])%mod;
        ///precalculate inverse factorial
11 x.k:
vector<ll> f:
11 get() {
    if(x<=k+1) return f[x]:</pre>
    else {
       x\%=mod:
       11 sum=0:
       ll n=(ll)f.size()-1:
       pre[0]=1:
       suf[k+1]=1:
       for(ll i=0;i<=k+1;i++) pre[i+1]=mul(pre[i],(x-i));</pre>
       for(ll i=k+1:i>=1:i--) suf[i-1]=mul(suf[i].(x-i)):
       for(11 i=0;i<=n;i++) {</pre>
           11 lobb=mul(pre[i],suf[i]);
           lobb=mul(lobb,invfacto[i]);
           lobb=mul(lobb,invfacto[n-i]);
           11 anss=mul(f[i],lobb);
           if((n-i)%2) sum=sub(sum,anss);
           else sum=add(sum,anss);
        return sum;
```

2.10 Random Generator

2.11 Matrix

```
11 dm:
struct matrix {
   11 mat[20][20]:
   matrix() {
       memset(mat.0.sizeof mat):
   matrix operator *(const matrix &a) const {
       matrix d:
       for(ll i=0;i<dm;i++) {</pre>
           for(11 j=0;j<dm;j++) {</pre>
               for(ll k=0;k<dm;k++) {</pre>
                   d.mat[i][j]+=(mat[i][k]*a.mat[k][j])%mod;
                   d.mat[i][j]%=mod;
           }
       }
       return d;
   void identity() {
       for(ll i=0;i<dm;i++) {</pre>
           mat[i][i]=1;
```

```
}:
matrix power(matrix c,ll b) {
    matrix d:
    d.identity();
    while(b) {
        if(b&1) d=d*c;
        b>>=1; c=c*c;
    return d:
}
int main() {
    ///dm->dimension
    ///nth fibonacci
    ///complexity O(d^3 \log(n)) where d is dimension of
        matrix
    matrix a:
    int n:
    while(cin>>n){
       dm=2:
       a.mat[0][0]=1: a.mat[0][1]=1: a.mat[1][0]=1:
             a.mat[1][1]=0;
       if(n==1 \text{ or } n==2) \text{ cout} << 1 << \text{end} :
       else {
            a=power(a,n-2);
           11 ans=a.mat[0][0]+a.mat[0][1];
            cout<<ans<<endl:
       }
```

2.12 Gauss(mod 2)

```
11 basis[30]: 11 len=0:
void add(ll mask) {
    for(11 i=0:i<30:i++) {</pre>
       if((mask & 1LL<<i)==0) continue;</pre>
       if(basis[i]==0) {
           basis[i]=mask: len++:
           return:
       }
        mask^=basis[i];
bool check(ll mask) //array element nive particular xor
     banano jay kina
    for(11 i=0:i<30:i++) {</pre>
       if((mask & 1LL<<i)==0) continue;</pre>
       if(basis[i]==0) return 0;
       mask^=basis[i];
    return 1;
```

2.13 FFT

struct CD {

```
double x, y;
   CD(double x=0, double y=0) :x(x), y(y) {}
   CD operator+(const CD& o) { return {x+o.x, y+o.y};}
   CD operator-(const CD& o) { return {x-o.x, y-o.y};}
   CD operator*(const CD& o) { return {x*o.x-v*o.v.
        x*o.v+o.x*v}:}
   CD operator/(double d) { return {x/d, y/d};}
namespace FFT {
   int N:
   vector<int> perm;
   void precalculate() {
       perm.resize(N);
       perm[0] = 0;
       for (int k=1; k<N; k<<=1) {</pre>
           for (int i=0: i<k: i++) {</pre>
              perm[i] <<= 1;
              perm[i+k] = 1 + perm[i];
      }
   void fft(vector<CD> &v, bool invert = false) {
       if (v.size() != perm.size()) {
           N = v.size():
           assert(N && (N&(N-1)) == 0):
           precalculate():
       for (int i=0: i<N: i++)</pre>
           if (i < perm[i])</pre>
              swap(v[i], v[perm[i]]):
       for (int len = 2; len <= N; len <<= 1) {
           double angle = 2 * PI / len:
           if (invert) angle = -angle:
           CD factor = {cos(angle), sin(angle)};
           for (int i=0: i<N: i+=len) {</pre>
              CD w(1);
              for (int j=0; j<len/2; j++) {</pre>
                  CD x = v[i+j], y = w * v[i+j+len/2];
                  v[i+j] = x+y;
                  v[i+j+len/2] = x-y;
                  w = w*factor;
          }
      }
       if (invert)
           for (CD &x : v) x=x/N;
   vector<ll> multiply(const vector<ll> &a, const
        vector<11> &b) {
```

```
vector<CD> fa(a.begin(), a.end()), fb(b.begin(),
            b.end()):
       int n = 1;
       while (n < a.size()+ b.size()) n<<=1;</pre>
       fa.resize(n):
       fb.resize(n);
       fft(fa);
       fft(fb):
       for (int i=0: i < n: i++) fa[i] = fa[i] * fb[i]:
       fft(fa, true);
       vector<ll> ans(n);
       for (int i=0: i<n: i++)</pre>
           ans[i] = round(fa[i].x):
       return ans:
   }
using namespace FFT:
```

2.14 NTT (mod by 998244353)

```
namespace ntt {
       const int mod = 998244353;
       const int root=5;
       int power(int a, int b, int m ,int ans=1) {
              for (; b; b>>=1, a=1LL*a*a%m) if (b&1)
                   ans=1LL*ans*a%m;
              return ans;
       const int root 1=power(root, mod-2, mod);
       using VI = vector<int> ;
       void ntt(VI& a, bool invert) {
              int n=a.size():
              int PW=power(invert?root 1:root, (mod-1)/n.
                   mod):
              for (int m=n, h: h=m/2, m>=2:
                   PW=1LL*PW*PW%mod, m=h) {
                      for (int i=0. w=1: i<h: ++i.
                           w=1LL*w*PW%mod)
                      for (int j=i; j<n; j+=m) {</pre>
                             int k=i+h.
                                  x=(a[i]-a[k]+mod)%mod;
                             a[i]+=a[k]; a[i] %= mod;
                             a[k]=1LL*w*x\%mod;
                      }
              for (int i=0, j=1; j<n-1; ++j) {</pre>
                      for (int k=n/2; k>(i^=k); k /= 2);
                      if (j<i) swap(a[i], a[j]);</pre>
              if (invert) {
                      int rev=power(n, mod-2, mod);
                      for (int i=0; i<n; ++i)</pre>
                             a[i]=1LL*a[i]*rev%mod:
```

```
VI multiply(const VI& a, const VI& b, int ok=0) {
               int n=1, mx=a.size()+b.size()-1;
               while (n \le mx) n \le 1:
              if (mx<256) {</pre>
                      VI c(mx):
                      for (int i=0; i<a.size(); i++) for</pre>
                           (int j=0; j<b.size(); j++) {
                              c[i+j]=(c[i+j]+1ll*a[i]*b[j])%mod;
                      return c:
               VI na=a. nb=b:
               na.resize(n); nb.resize(n);
               ntt(na, false):
               if (ok) nb=na:
               else ntt(nb, false);
               for (int i=0: i<n: ++i)</pre>
                   na[i]=1LL*na[i]*nb[i]%mod:
              ntt(na, true):
              na.resize(mx):
               return na;
       }
using namespace ntt;
note: stirling number of second kind (for fixed n) can be
     generated by multiplyig two
polynomials A and B where
Ai = (-1)^i / (i!)
Bi=i^n / (i!)
```

2.15 NTT (mod by any)

```
const int N = 1e5 + 9, mod = 998244353; //can change mod
                   value
struct base {
      double x, y;
     base() { x = y = 0; }
     base(double x, double y): x(x), y(y) { }
inline base operator + (base a, base b) { return base(a.x +
                   b.x, a.y + b.y); }
inline base operator - (base a, base b) { return base(a.x -
                  b.x, a.y - b.y); }
inline base operator * (base a, base b) { return base(a.x *
                 b.x - a.y * b.y, a.x * b.y + a.y * b.x); }
inline base conj(base a) { return base(a.x, -a.y); }
int lim = 1:
vector<br/>
vector<br/>
vector<br/>
<math>vector<br/>
vector<br/>
<math>vector<br/>
vector<br/>
<math>vector<br/>
vector<br/>
<math>vector<br/>
vector<br/>
<math>vector<br/>
vector<br/>
vector<br/>
<math>vector<br/>
vector<br/>
vector<br/>
vector<br/>
<math>vector<br/>
vector<br/>
vector<br
vector < int > rev = \{0, 1\};
const double PI = acosl(- 1.0);
void ensure_base(int p) {
     if(p <= lim) return;</pre>
     rev.resize(1 << p):
```

```
for(int i = 0; i < (1 << p); i++) rev[i] = (rev[i >> 1]
      >> 1) + ((i & 1) << (p - 1));
 roots.resize(1 << p);</pre>
 while(lim < p) {</pre>
   double angle = 2 * PI / (1 << (lim + 1));</pre>
   for(int i = 1 << (lim - 1); i < (1 << lim); i++) {
     roots[i << 1] = roots[i];</pre>
     double angle_i = angle * (2 * i + 1 - (1 << lim));</pre>
     roots[(i << 1) + 1] = base(cos(angle_i), sin(angle_i));
   lim++:
 }
void fft(vector<base> &a. int n = -1) {
 if(n == -1) n = a.size():
 assert((n & (n - 1)) == 0):
 int zeros = builtin ctz(n):
 ensure base(zeros):
 int shift = lim - zeros:
 for(int i = 0; i < n; i++) if(i < (rev[i] >> shift))
      swap(a[i], a[rev[i] >> shift]):
 for(int k = 1; k < n; k <<= 1) {
   for(int i = 0; i < n; i += 2 * k) {
     for(int j = 0; j < k; j++) {</pre>
      base z = a[i + j + k] * roots[j + k];
      a[i + j + k] = a[i + j] - z;
       a[i + j] = a[i + j] + z;
 }
//eq = 0: 4 FFTs in total
//eq = 1: 3 FFTs in total
vector<int> multiply(vector<int> &a, vector<int> &b, int eq
 int need = a.size() + b.size() - 1:
 int p = 0:
 while((1 << p) < need) p++;</pre>
 ensure_base(p);
 int sz = 1 << p:
 vector<base> A, B;
 if(sz > (int)A.size()) A.resize(sz);
 for(int i = 0: i < (int)a.size(): i++) {</pre>
   int x = (a[i] \% mod + mod) \% mod:
   A[i] = base(x & ((1 << 15) - 1), x >> 15):
 fill(A.begin() + a.size(), A.begin() + sz, base{0, 0});
 fft(A. sz):
 if(sz > (int)B.size()) B.resize(sz);
 if(eq) copy(A.begin(), A.begin() + sz, B.begin());
 else {
   for(int i = 0; i < (int)b.size(); i++) {</pre>
    int x = (b[i] \% mod + mod) \% mod;
     B[i] = base(x & ((1 << 15) - 1), x >> 15);
   fill(B.begin() + b.size(), B.begin() + sz, base{0, 0});
```

```
fft(B, sz);
double ratio = 0.25 / sz;
base r2(0, - 1), r3(ratio, 0), r4(0, - ratio), r5(0, 1);
for(int i = 0; i <= (sz >> 1); i++) {
 int j = (sz - i) & (sz - 1);
 base a1 = (A[i] + conj(A[j])), a2 = (A[i] - conj(A[j]))
  base b1 = (B[i] + conj(B[j])) * r3, b2 = (B[i] -
       conj(B[j])) * r4;
 if(i != i) {
   base c1 = (A[j] + conj(A[i])), c2 = (A[j] -
        coni(A[i])) * r2:
   base d1 = (B[j] + conj(B[i])) * r3, d2 = (B[i] -
        coni(B[i])) * r4:
   A[i] = c1 * d1 + c2 * d2 * r5:
   B[i] = c1 * d2 + c2 * d1:
 A[i] = a1 * b1 + a2 * b2 * r5:
 B[i] = a1 * b2 + a2 * b1:
fft(A, sz); fft(B, sz);
vector<int> res(need):
for(int i = 0; i < need; i++) {</pre>
 long long aa = A[i].x + 0.5;
 long long bb = B[i].x + 0.5;
 long long cc = A[i].v + 0.5;
 res[i] = (aa + ((bb % mod) << 15) + ((cc % mod) <<
      30))%mod:
return res;
```

2.16 Stirling number of first kind

```
const int N = 1 << 18:</pre>
const int mod = 998244353:
const int root = 3:
int lim, rev[N], w[N], wn[N], inv_lim;
void reduce(int &x) { x = (x + mod) \% mod: }
int POW(int x, int y, int ans = 1) {
 for (; y; y >>= 1, x = (long long) x * x \% mod) if (y &
      1) ans = (long long) ans * x % mod;
 return ans;
void precompute(int len) {
 \lim_{s \to \infty} = wn[0] = 1; int s = -1;
 while (lim < len) lim <<= 1, ++s;</pre>
 for (int i = 0; i < lim; ++i) rev[i] = rev[i >> 1] >> 1 |
      (i & 1) << s:
 const int g = POW(root, (mod - 1) / lim);
 inv_lim = POW(lim, mod - 2);
 for (int i = 1; i < lim; ++i) wn[i] = (long long) wn[i -</pre>
      1] * g % mod;
```

```
void ntt(vector<int> &a, int typ) {
 for (int i = 0; i < lim; ++i) if (i < rev[i]) swap(a[i],</pre>
       a[rev[i]]):
  for (int i = 1; i < lim; i <<= 1) {
    for (int j = 0, t = \lim / i / 2; j < i; ++j) w[j] = wn[j]
    for (int j = 0; j < lim; j += i << 1)</pre>
     for (int k = 0; k < i; ++k) {
       const int x = a[k + j], y = (long long) a[k + j + i]
            * w[k] % mod:
       reduce(a[k + j] += y - mod), reduce(a[k + j + i] = x
     }
 }
  if (!tvp) {
   reverse(a.begin() + 1, a.begin() + lim):
   for (int i = 0: i < lim: ++i) a[i] = (long long) a[i] *
        inv lim % mod:
}
vector<int> multiply(vector<int> &f, vector<int> &g) {
 int n=(int)f.size() + (int)g.size() - 1;
 precompute(n);
  vector<int> a = f, b = g;
 a.resize(lim); b.resize(lim);
 ntt(a, 1), ntt(b, 1);
  for (int i = 0; i < lim; ++i) a[i] = (long long) a[i] *</pre>
       b[i] % mod;
  ntt(a, 0);
 //while((int)a.size() && a.back() == 0) a.pop_back();
int fact[N], ifact[N];
vector<int> shift(vector<int> &f. int c) \{ //f(x + c) \}
 int n=(int)f.size():
 precompute(n + n - 1);
  vector<int> a = f: a.resize(lim):
 for (int i = 0; i < n; ++i) a[i] = (long long) a[i] *</pre>
       fact[i] % mod:
 reverse(a.begin(), a.begin()+n);
  vector<int> b: b.resize(lim): b[0] = 1:
 for (int i = 1: i < n: ++i) b[i] = (long long) b[i - 1] *
       c % mod:
  for (int i = 0; i < n; ++i) b[i] = (long long) b[i] *</pre>
       ifact[i] % mod:
  ntt(a, 1), ntt(b, 1);
  for (int i = 0; i < lim; ++i) a[i] = (long long) a[i] *</pre>
      b[i] % mod;
 ntt(a, 0), reverse(a.begin(), a.begin() + n);
  vector<int> g; g.resize(n);
  for (int i = 0; i < n; ++i) g[i] = (long long) a[i] *</pre>
      ifact[i] % mod;
  return g;
// (x+1)*(x+2)*(x+3)...(x+n)
```

```
// O(n log n) only for ntt friendly primes
// otherwise use divide and conquer in O(n log^2 n)
vector<int> range_mul(int n) {
 if (n == 0) return vector<int>({1});
 if (n & 1) {
   vector<int> f = range_mul(n - 1);
   f.push_back(0);
   for (int i = (int)f.size()-1; i; --i) f[i] = (f[i-1] +
        (long long) n * f[i]) % mod:
   f[0] = (long long) f[0] * n % mod;
   return f:
 else {
   int n = n \gg 1:
   vector<int> f = range_mul(n_);
   vector<int> tmp = shift(f, n ):
   f.resize(n + 1):
   tmp.resize(n_+ 1);
   return multiply(f, tmp);
// returns stirling1st(n, i) for 0 <= i <= n</pre>
vector<int> stirling(int n) {
 if (n == 0) return {1};
 vector<int> ans = range_mul(n - 1);
 ans.resize(n + 1);
 for (int i = n - 1; i >= 0; i--) {
   ans[i + 1] = ans[i]:
 ans[0] = 0;
 return ans;
int32_t main() {
 fact[0] = 1:
 for (int i = 1: i < N: ++i) fact[i] = (long long) fact[i</pre>
      - 1] * i % mod:
 ifact[N-1] = POW(fact[N-1], mod-2):
 for (int i = N - 1; i; --i) ifact[i - 1] = (long long)
      ifact[i] * i % mod:
 int n: cin >> n:
 auto ans = stirling(n);
 for (int i = 0: i <= n: i++) {
   cout << ans[i] << ' ':</pre>
```

2.17 Number series

```
Some interesting facts:
1. there are N boxes and K types of balls (each type has
    infinity amount), K<=N
how many ways (mod p) are there to fill all the N boxes
    where every type should be used?</pre>
```

```
sol: S(N,K) * k! ----> using stirling number of second kind
combinatorics:
nc1+(n+1)c2+(n+2)c3+....+(n+r-1)cr = (n+r)cr -1
Catalan number series:
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786
    208012
Stirling number of second kind:
0:
      1
             1
2:
             1
                    1
3:
      0
                    3
                           1
4:
                    7
                           6
      Λ
             1
                                 1
5:
                    15
                           25
                                 10
6:
      Ω
            1
                    31
                           90
                                 65
                                        15
7 :
      0
                    63
                           301
                                 350
                                        140
8:
            1
                    127
                           966
                                 1701
                                        1050
                                               266
9:
                    255
                           3025
                                 7770
                                        6951
                                               2646
10:
                           9330
                                        42525
             1
                    511
                                 34105
                                               22827
Stirling number of first kind:
0 :
      1
1:
      0
             1
2:
      Ω
             1
                    1
3:
             2
                    3
      Ω
                           1
4:
      Ω
                    11
                           6
                                 1
5:
      0
             24
                    50
                           35
                                 10
                           225
6:
      0
             120
                    274
                                 85
                                        15
                                               1
7:
      0
             720
                    1764
                          1624
                                 735
                                        175
8:
      Ω
             5040
                    13068
                          13132 6769
                                        1960
9 :
                    109584 118124 67284
     Ο
             40320
                                        22449
10:
             362880 1026576 1172700 723680 269325 63273
```

3 Geometry

```
const int maxn = 1000001;
const double pi = acos(-1.0);
const double eps = 1e-9;
double ang;
typedef double T;
struct pt {
    T x, y;
    pt() {}
    pt(T _x, T _y) : x(_x), y(_y) {}
```

```
pt operator+(const pt &p) const {
        return pt(x + p.x, y + p.y);
    pt operator-(const pt &p) const {
       return pt(x - p.x, y - p.y);
    pt operator*(const T &d) const {
       return pt(x * d, v * d);
    pt operator/(const T &d) const {
       return pt(x / d, v / d):
    bool operator == (const pt &p) const {
       return (x == p.x \text{ and } y == p.y);
    bool operator!=(const pt &p) const {
       return !(x == p.x \text{ and } v == p.v):
    bool operator<(const pt &p) const {
       if (x != p.x)
           return x < p.x;</pre>
       return y < p.y;</pre>
};
T sq(pt p) {
    return p.x * p.x + p.y * p.y;
double abs(pt p) {
    return sqrt(sq(p));
pt translate(pt v, pt p) {
    return p + v;
pt scale(pt c, double factor, pt p) {
    return c + (p - c) * factor:
pt rot(pt p, double a) {
    return pt(p.x * cos(a) - p.y * sin(a), p.x * sin(a) +
        p.y * cos(a));
pt perp(pt p) {
    return pt(-p.y, p.x);
T dot(pt v, pt w) {
    return v.x * w.x + v.y * w.y;
bool isPerp(pt v, pt w) {
    return dot(v, w) == 0:
double smallAngle(pt v, pt w) {
    double cosTheta = dot(v, w) / abs(v) / abs(w);
    if (cosTheta < -1)
       cosTheta = -1:
    if (cosTheta > 1)
       cosTheta = 1;
    return acos(cosTheta);
```

```
T cross(pt v, pt w) {
   return v.x * w.y - v.y * w.x;
T orient(pt a, pt b, pt c) {
   return cross(b - a, c - a);
bool inAngle(pt a, pt b, pt c, pt x) {
   assert(orient(a, b, c) != 0):
   if (orient(a, b, c) < 0)
       swap(b, c):
   return orient(a, b, x) \geq= 0 and orient(a, c, x) \leq= 0:
//Line
struct line {
   pt v:
   T c:
   line() {}
   //From points P and Q
   line(pt p, pt q) {
       v = (q - p);
       c = cross(v, p);
   //From equation ax + by = c
   line(T a, T b, T c) {
       v = pt(b, -a);
       c = c:
   //From direction vector v and offset c
   line(pt v, T c) {
       v = v;
   //These work with T = int / double
   T side(pt p):
   double dist(pt p):
   double sqDist(pt p);
   line perpThrough(pt p):
   bool cmpProj(pt p, pt q);
   line translate(pt t):
   //These require T = double
   line shiftLeft(double dist):
   pt proj(pt p):
   pt refl(pt p);
T line ::side(pt p) {
   return cross(v, p) - c;
double line ::dist(pt p) {
   return abs(side(p)) / abs(v);
double line ::sqDist(pt p) {
   return side(p) * side(p) / (double)sq(v);
line line ::perpThrough(pt p) {
   return line(p, p + perp(v));
```

```
bool line ::cmpProj(pt p, pt q) {
   return dot(v, p) < dot(v, q);
line line ::translate(pt t) {
   return line(v, c + cross(v, t));
line line ::shiftLeft(double dist) {
   return line(v. c + dist * abs(v)):
bool areParallel(line 11, line 12) {
   return (11.v.x * 12.v.v == 11.v.v * 12.v.x):
bool areSame(line 11. line 12) {
   return areParallel(11, 12) and (11.v.x * 12.c == 12.v.x
        * 11.c) and (11.v.v * 12.c == 12.v.v * 11.c):
bool inter(line 11, line 12, pt &out) {
   T d = cross(11.v. 12.v):
   if (d == 0)
       return false:
   out = (12.v * 11.c - 11.v * 12.c) / d;
   return true:
pt line ::proj(pt p) {
   return p - perp(v) * side(p) / sq(v);
pt line ::refl(pt p) {
   return p - perp(v) * 2 * side(p) / sq(v);
line intBisector(line 11, line 12, bool interior) {
   assert(cross(11.v, 12.v) != 0);
   double sign = interior ? 1 : -1;
   return line(12.v / abs(12.v) + 11.v * sign / abs(11.v),
              12.c / abs(12.v) + 11.c * sign / abs(11.v));
//Segment
bool inDisk(pt a, pt b, pt p) {
   return dot(a - p, b - p) \le 0;
bool onSegment(pt a, pt b, pt p) {
   return orient(a, b, p) == 0 and inDisk(a, b, p):
bool properInter(pt a. pt b. pt c. pt d. pt &i) {
   double oa = orient(c, d, a).
          ob = orient(c, d, b).
          oc = orient(a, b, c),
          od = orient(a, b, d):
   //Proper intersection exists iff opposite signs
   if (oa * ob < 0 and oc * od < 0)
       i = (a * ob - b * oa) / (ob - oa):
       return true:
   return false;
```

```
bool inters(pt a, pt b, pt c, pt d) {
   pt out;
   if (properInter(a, b, c, d, out))
       return true;
   if (onSegment(c, d, a))
       return true;
   if (onSegment(c, d, b))
       return true:
   if (onSegment(a, b, c))
       return true:
   if (onSegment(a, b, d))
       return true:
   return false:
double segPoint(pt a, pt b, pt p) {
   if (a != b) {
       line 1(a, b):
       if (1.cmpProj(a, p) and 1.cmpProj(p, b))
          return l.dist(p):
   return min(abs(p - a), abs(p - b));
double segSeg(pt a, pt b, pt c, pt d) {
   pt dummy;
   if (properInter(a, b, c, d, dummy))
       return 0:
   return min(min(segPoint(a, b, c), segPoint(a, b,
        d)), segPoint(c, d, a)), segPoint(c, d, b));
}
int latticePoints (pt a, pt b){
   //requires int representation
   return \_gcd (abs (a.x - b.x), abs (a.y - b.y)) + 1;
bool isConvex(vector<pt> &p) {
   bool hasPos = false, hasNeg = false;
   for (int i = 0, n = p.size(): i < n: i++) {
       int o = orient(p[i], p[(i + 1) \% n], p[(i + 2) \% n]);
       if (0 > 0)
           hasPos = true:
       if (o < 0)
           hasNeg = true:
   return !(hasPos and hasNeg);
double areaTriangle(pt a, pt b, pt c) {
   return abs(cross(b - a, c - a)) / 2.0;
double areaPolygon(const vector<pt> &p) {
   double area = 0.0;
   for (int i = 0, n = p.size(); i < n; i++) {</pre>
       area += cross(p[i], p[(i + 1) \% n]);
   return fabs(area) / 2.0;
}
```

```
ll is_point_in_convex(vector<pt>& p, pt &x) // O(log n)
    ll n = p.size();
    if (n < 3)
       return 1;
    ll a =orient(p[0], p[1], x), b = orient(p[0], p[n-1],
    if (a < 0 | b > 0)
       return 1:
    11 1 = 1, r = n - 1:
    while (1 + 1 < r)
       int mid = 1 + r >> 1:
       if (p[0], p[mid], x) >= 0
           1 = mid:
       else
           r = mid:
    ll k = orient(p[1], p[r], x):
    if (k \le 0)
       return -k:
    if (1 == 1 && a == 0)
       return 0:
   if (r == n - 1 \&\& b == 0)
       return 0:
   return -1;
bool pointInPolygon(const vector<pt> &p, pt q) //rezaul
     vai's
    bool c = false:
    for (int i = 0, n = p.size(); i < n; i++) {</pre>
       int j = (i + 1) / p.size();
       if ((p[i].y \le q.y \text{ and } q.y \le p[j].y \text{ or } p[j].y \le q.y)
            and q.v < p[i].v) and
           a.x < p[i].x + (p[i].x - p[i].x) * (a.v -
                p[i].y) / (p[j].y - p[i].y))
    }
    return c:
pt centroidPolygon(const vector<pt> &p) {
   pt c(0, 0);
    double scale = 6.0 * areaPolygon(p):
    // if (scale < eps) return c:
    for (int i = 0, n = p.size(); i < n; i++) {
       int j = (i + 1) \sqrt[n]{n};
       c = c + (p[i] + p[j]) * cross(p[i], p[j]);
   return c / scale;
//Circle
pt circumCenter(pt a, pt b, pt c) {
   b = b - a:
    c = c - a:
    assert(cross(b, c) != 0);
```

```
return a + perp(b * sq(c) - c * sq(b)) / cross(b, c) / 2;
bool circle2PtsRad(pt p1, pt p2, double r, pt &c) {
   double d2 = sq(p1 - p2);
   double det = r * r / d2 - 0.25;
   if (det < 0.0)
       return false;
   double h = sqrt(det);
   c.x = (p1.x + p2.x) * 0.5 + (p1.y - p2.y) * h;
   c.y = (p1.y + p2.y) * 0.5 + (p2.x - p1.x) * h;
   return true:
int circleLine(pt c, double r, line l, pair<pt, pt> &out) {
   double h2 = r * r - 1.sqDist(c):
   if (h2 < 0)
       return 0: // the line doesn't touch the circle:
   pt p = 1.proj(c);
   pt h = 1.v * sqrt(h2) / abs(1.v):
   out = make pair(p - h, p + h):
   return 1 + (h2 > 0):
int circleCircle(pt c1, double r1, pt c2, double r2,
    pair<pt, pt> &out) {
   pt d = c2 - c1;
   \frac{1}{\text{double d2}} = \text{sa(d)}:
   if (d2 == 0) { //concentric circles
       assert(r1 != r2):
       return 0;
   double pd = (d2 + r1 * r1 - r2 * r2) / 2;
   double h2 = r1 * r1 - pd * pd / d2; // h^2
   if (h2 < 0)
       return 0:
   pt p = c1 + d * pd / d2, h = perp(d) * sqrt(h2 / d2);
   out = make pair(p - h, p + h):
   return 1 + h2 > 0:
int tangents(pt c1, double r1, pt c2, double r2, bool
    inner. vector<pair<pt. pt>> &out) {
   if (inner)
       r2 = -r2:
   pt d = c2 - c1:
   double dr = r1 - r2, d2 = sq(d), h2 = d2 - dr * dr;
   if (d2 == 0 \text{ or } h2 < 0) {
       assert(h2 != 0):
       return 0:
   for (int sign : {-1, 1}) {
       pt v = pt(d * dr + perp(d) * sqrt(h2) * sign) / d2;
       out.push_back(make_pair(c1 + v * r1, c2 + v * r2));
   return 1 + (h2 > 0);
//Convex Hull - Monotone Chain
int sz; //returned polygon's size;
pt H[100000 + 5];
```

```
vector<pt> monotoneChain(vector<pt> &v) /// from
     you_know_who
   if(v.size()==1) return v;
       sort(v.begin(), v.end());
       vector<pt> up(2*v.size()+2), down(2*v.size()+2);
   int szup=0, szdw=0;
       for(int i=0;i<v.size();i++) {</pre>
       while(szup>1 && orient(up[szup-2], up[szup-1],
            v[i])>=0)
           szup--:
       while(szdw>1 && orient(down[szdw-2], down[szdw-1],
            v[i])<=0)
           szdw--:
       up[szup++]=v[i]:
       down[szdw++]=v[i]:
   if(szdw>1) szdw--:
   reverse(up.begin(), up.begin()+szup):
       for(int i=0:i<szup-1:i++) down[szdw++]= up[i]:</pre>
   if(szdw==2 && down[0].x==down[1].x &&
        down[0].y==down[1].y) szdw--;
   sz = szdw:
       return down;
pt toPoint(pt p1, pt p2) {
   return pt(p2.x-p1.x,p2.y - p1.y);
double angle(pt a, pt o, pt b) {
    //double result = atan2(P3.y - P1.y, P3.x - P1.x) -
        atan2(P2.y - P1.y, P2.x - P1.x);
   double result;
   pt oa = toPoint(o, a);
   pt ob = toPoint(o, b);
   if(sq(oa)==0 | | sq(ob)==0){
       return 0.0:
   result = acos(dot(oa, ob)/sqrt(sq(oa)*sq(ob))):
   result*=180.0:
   result/=Pi:
   return result:
struct circle {
   pt c;
   double r:
    circle() {}
   //From points P , radius rq
   circle(pt p, double rq)
       c = p;
       r = rq;
};
bool in_circle(circle C, pt p) {
   double dist = sq(C.c - p);
   dist= sqrt(dist);
```

4 Data Structure

4.1 SQRT Decomposition

```
int n; int ara[10000]; int block[100]; int bs;
void update(int ind, int val) {
   block[ind/bs]+=val-ara[ind]:
   ara[ind]=val:
int query(int a,int b) {
   int sum=0:
   for(int i=a:i<=b:){</pre>
       if(i%bs==0 and i+bs-1<=b) sum+=block[i/bs]. i+=bs:</pre>
       else sum+=ara[i]. i++:
   return sum:
void pre() {
    bs=sartl(n):
    for(int i=0:i<n:i++) {</pre>
        block[i/bs]+=ara[i]:
int main() {
   cin>>n:
   for(int i=0:i<n:i++) cin>>ara[i]:
   pre();
   update(0,0);
   cout << query (0,3);
```

4.2 Mo's Algorithm

```
int n,m; int ara[mx]; int block;
11 ans[mx]; int cnt[mx]; int anss=0;
struct query {
   int l,r,id;
}q[mx];
bool comp(querv a. querv b) {
   if(a.1/block!=b.1/block) return a.1/block<b.1/block:
   return a.r<b.r:
void add(int ind) {
  if(cnt[ara[ind]]==0) anss++;
  cnt[ara[ind]]++:
void remove(int ind) {
  if(cnt[ara[ind]]==1) anss--:
  cnt[ara[ind]]--:
void MO() {
   anss=0:
   int l=0,r=-1;
   for(int i=0;i<m;i++) {</pre>
       int left=q[i].1;
       int right=q[i].r;
       left--; right--;
       while(l<left) remove(l++):</pre>
       while(l>left) add(--1);
       while(r<right) add(++r);</pre>
       while(r>right) _remove(r--);
       ans[q[i].id]=anss;
   }
int main() {
   cin>>n>>m:
   for(int i=0:i<n:i++) cin>>ara[i]:
   for(int i=0:i<m:i++) {</pre>
       cin>>q[i].1>>q[i].r;
       q[i].id=i;
   block=sartl(n):
   sort(q,q+m,comp);
   MO():
   for( int i=0;i<m;i++) {</pre>
       cout<<ans[i]<<endl:
```

4.3 Segment Tree(Lazy)

```
int ara[mx]; int tree[mx*4]; int lazy[mx*4];
void init(int node,int b, int e) {
   if(b==e) {
```

```
tree[node] = ara[b];
       return :
   int mid=(b+e)>>1;
   init(2*node, b,mid);
   init(2*node+1,mid+1,e);
   tree[node] = tree[2*node] + tree[2*node+1];
void pushdown(int node,int b,int e) {
   if(lazv[node]) {
       tree[node]+=(e-b+1)*lazv[node]:
       if(b!=e) {
           lazv[node*2]+=lazv[node]:
           lazy[node*2+1]+=lazy[node];
       lazv[node]=0:
}
void update(int node.int b. int e. int i. int i.int value) {
   pushdown(node.b.e):
   if(e<i or b>i) return :
   if(b)=i and e<=i) {
       lazy[node]+=value;
       pushdown(node,b,e);
       return :
   int mid=(b+e)>>1:
   update(2*node, b,mid,i,j,value);
   update(2*node+1,mid+1,e,i,j,value);
   tree[node] = tree[2*node] + tree[2*node+1];
int query(int node,int b, int e, int i,int j) {
   pushdown(node,b,e);
   if(e<i or b>j) return 0;
   if(b)=i and e<=i) {
       return tree[node]:
   int mid=(b+e)>>1:
   int x=query(2*node, b,mid,i,j);
   int y=query(2*node+1,mid+1,e,i,j);
   return x+y;
```

4.4 Persistent Segment Tree

```
int ara[mx]; int cnt=1;
struct node {
   int 1,r,val;
}tr[4*mx+mx*20];
void init(int node, int b, int e) {
   if(b==e) {
      tr[node].val=0;
      return;
}
```

```
int mid=(b+e)>>1:
   tr[node].l=cnt++;
   tr[node].r=cnt++;
   init(tr[node].1,b,mid);
   init(tr[node].r,mid+1,e);
   tr[node].val=tr[tr[node].1].val+tr[tr[node].r].val;
int update(int pre, int b, int e, int i, int j,int val) {
   if(b>i or e<i) return pre:
   int curr=cnt++:
   if(b>=i and e<=i) {
       tr[curr].val=tr[pre].val+val:
       return curr:
   int mid=(b+e)>>1:
    tr[curr].l=update(tr[pre].l.b.mid.i.i.val):
   tr[curr].r=update(tr[pre].r,mid+1,e,i,j,val);
   tr[curr].val=tr[tr[curr].l].val+tr[tr[curr].r].val:
   return curr:
11 query(11 pre, 11 cur, 11 b, 11 e, 11 k) {
   ll mid=(b+e)>>1:
   if(b==e) return b;
   11 val=tr[tr[cur].1].val-tr[tr[pre].1].val;
   if(val>=k) return query(tr[pre].l,tr[cur].l,b,mid,k);
   else return query(tr[pre].r,tr[cur].r,mid+1,e,k-val);
int root[mx]:
int main() {
   //kth smallest number
    int n,q;
    cin>>n>>q;
   root[0]=0; init(root[0],0,n);
    vector<int> v:
   for(int i=0:i<n:i++) {</pre>
      cin>>ara[i]:
      v.pb(ara[i]):
   sort(v.begin(),v.end());
   map<int,int> mm;
   for(int i=0:i<n:i++) {</pre>
            d=lower bound(v.begin().v.end().ara[i])-v.begin()
       mm[d]=ara[i]:
       ara[i]=d:
   }
   for(int i=1:i<=n:i++) {</pre>
      root[i]=update(root[i-1],0,n,ara[i-1],ara[i-1],1);
   while(q--) {
      int 1,r,k;
      cin>>l>>r>>k:
      cout<<mm[query(root[l-1],root[r],0,n,k)]<<endl;</pre>
```

4.5 Persistent Segment Tree(Lazy)

```
struct node {
   int val.lazv:
   node *1.*r:
   node() {
       val=lazv=0: l=r=nullptr:
   node(const node* p) {
       if(p==nullptr) {
           val=lazv=0: l=r=nullptr:
       else {
           val=p->val; lazy=p->lazy;
           l=p->l; r=p->r;
   }
};
void pushdown(node *&cur, int b, int e) {
   cur->l=new node(cur->l);
   cur->r=new node(cur->r):
   if(cur->lazy) {
       cur->val+=(e-b+1)*cur->lazy;
       if(b!=e) {
           cur->1->lazy+=cur->lazy;
           cur->r->lazy+=cur->lazy;
       }
       cur->lazv=0:
void update(node *&cur, int b, int e, int i, int i, int
    val) {
   pushdown(cur,b,e);
   if(b>i or e<i) return :</pre>
   if(b)=i and e <= i) {
       cur \rightarrow val += (e-b+1) * val:
       cur->1->lazv+=val:
       cur->r->lazv+=val:
       return :
   int mid=(b+e)>>1;
   update(cur->1,b,mid,i,j,val);
   update(cur->r,mid+1,e,i,j,val);
   cur->val=cur->l->val+cur->r->val;
int query(node *&cur, int b, int e, int i, int j) {
   pushdown(cur,b,e);
   if(b>j or e<i) return 0;</pre>
   if(b>=i and e<=j) return cur->val;
   int mid=(b+e)>>1;
   int x=query(cur->1,b,mid,i,j);
   int y=query(cur->r,mid+1,e,i,j);
   return x+y;
```

4.6 RMQ(sparse table)

```
int ara[mx]: int mini[mx][22]: int n:
void sparse() {
    for(int i=0:i<n:i++) mini[i][0]=ara[i]:</pre>
    for(int j=1:(1LL<<j)<=n:j++) {</pre>
       for(int i=0;i+(1LL<<(j))-1<n;i++) {</pre>
           int d=1LL<<(i-1):</pre>
           mini[i][j]=min(mini[i][j-1],mini[i+d][j-1]);
       }
int querv(int 1, int r) {
    int d = lg(r-l+1):
    return min(mini[1][d],mini[r-(1LL<<d)+1][d]);</pre>
}
int main() {
    cin>>n:
    for(int i=0;i<n;i++) cin>>ara[i];
    sparse();
    int q; cin>>q;
    while(q--) {
       int 1,r;
        cin>>l>>r;
        cout<<query(1,r)<<endl;</pre>
```

4.7 BIT

```
struct bit {
  int n;
  int tree[mx];
  void update(int ind, int value) {
    for(int i=ind;i<=n;i+=(i&-i)) {
       tree[i]+=value:</pre>
```

```
}
}
int query(int ind)
{
   int sum=0;
   for(int i=ind;i>0;i-=(i&-i)) {
      sum+=tree[i];
   }
   return sum;
}
}a,b;
int main() {
   a.n=5; a.update(3,4);
   cout<<a.query(5)<<endl;
}</pre>
```

4.8 Implicit Treap

```
struct node {
   11 key,pri,sz,lazy,sum;
   node *1, *r; bool rev;
   node(){}:
   node (ll val) {
       lazy=0,sum=val;
       rev=0; sz=0; key=val; pri=rng(); l=r=NULL;
node* root=NULL:
int cnt(node *cur) {
   return cur? cur->sz: 0:
void push(node *cur) {
   if(cur==NULL) return :
   if(cur and cur->lazv) {
       cur->kev+=cur->lazv:
       cur->sum+=cur->lazv*cnt(cur):
       if(cur->1) cur->1->lazv+=cur->lazv:
       if(cur->r) cur->r->lazy+=cur->lazy;
       cur->lazv=0:
   if(cur and cur->rev) {
       cur->rev^=1;
       swap(cur->1,cur->r);
       if(cur->1) cur->1->rev^=1;
       if(cur->r) cur->r->rev^=1;
   }
vector<int> ans;
void path(node *cur) {
   if(cur==NULL) return ;
   push(cur); path(cur->1);
   cout<<cur->key<<' ';
   path(cur->r):
```

```
int getsum(node *cur) {
  if(cur==NULL) return 0;
  return cur->sum;
void update (node *cur) {
  if(cur==NULL) return ;
  push(cur->1); push(cur->r);
  cur->sum=cur->kev:
  cur->sz=1+cnt(cur->1)+cnt(cur->r):
  cur->sum+=getsum(cur->1)+getsum(cur->r):
void split(node *cur.node *&1, node *&r.int pos, int add=0)
   if(cur==NULL) {
      1=r=NULL:
       return :
   push(cur):
   int kk=add+cnt(cur->1):
   if(pos<=kk) split(cur->1,1,cur->1,pos,add), r=cur;
        //element at pos goes to node r
   else split(cur->r,cur->r,r,pos,kk+1), l=cur;
   update(cur);
void merge(node * &cur, node *1, node *r) {
   push(1); push(r);
   if(l==NULL or r==NULL) cur=1?1:r;
   else if(l->pri > r->pri) merge(l->r,l->r,r),cur=1;
   else merge(r->1,1,r->1), cur=r;
   update(cur);
void insert(node *&cur, node *it,int pos) {
   node *1.*r:
   split(cur.l.r.pos):
   merge(l.l.it): merge(cur.l.r):
void erase(node *&cur, int pos) {
   if(cur==NULL) return :
   node *1.*mid.*r:
   split(cur,1,mid,pos);
   split(mid.mid.r.1):
   merge(cur.l.r):
void reverse(node *root, int a, int b) {
   node *1.*r.*mid:
   split(root,1,mid,a);
   split(mid,mid,r,b-a+1);
   mid->rev^=1:
   merge(root,1,mid); merge(root,root,r);
void right_shift(node *root,int a, int b) {
   node *a1; //store 0-> b-1;
   node *a2; //store b-> n-1;
   split(root,a1,a2,b);
   node *bb; //store b->b
```

```
split(a2,bb,a2,1);
   //now a2 will store b+1-> n-1
   node *a3; //store 0->a-1
   split(a1,a3,a1,a);
   //now a1 will store a->b-1
   merge(root,a3,bb); merge(a1,a1,a2);
   merge(root,root,a1);
void left shift(node *root.int a. int b) {
   node *a1: //store 0-> b:
   node *a2: //store b+1-> n-1:
   split(root,a1,a2,b+1);
   node *a3: //store a+1 -> b
   split(a1,a1,a3,a+1);
   //now a1 will store 0 -> a
   node *aa: //store a -> a
   split(a1.a1.aa.a):
   //now a1 will store 0 -> a
   merge(a1.a1.a3): merge(a1.a1.aa):
   merge(root.a1.a2):
// 0 indexing treap
//merge(a,b,c) b and c will be merged and their root will
    be stored in a
//split(a,b,pos) a will store array index from (0 to
    pos-1), b will store array (pos to n-1)
int main() {
  insert(root, new node(4),2);
  path(root);
```

5 Graph

5.1 2-SAT

```
vector<int> v[mx*2],rev[mx*2];
int scc[mx*2]; bool visit[mx*2];
stack<int> st;
void dfs(int s) {
    visit[s]=true;
    for(auto x: v[s] ) {
        if(visit[x]==false) {
            dfs(x);
        }
    }
    st.push(s);
}
void dfs1(int s,int no) {
    visit[s]=true; scc[s]=no;
    for(auto x: rev[s]) {
        if(visit[x]==false) {
            dfs1(x,no);
        }
}
```

```
int n; int ans[mx];
bool twosat() {
   for(int i=0;i<2*n;i++) {</pre>
        if(visit[i]==false) {
            dfs(i);
    int mark=0:
    memset(visit.0.sizeof visit):
    while(st.size()) {
        int a=st.top():
        st.pop();
        if(visit[a]==false) {
            mark++:
            dfs1(a,mark);
   for(int i=0:i<n:i++) {</pre>
       if (scc[2*i] == scc[2*i+1]) return false:
       ans[2*i] = scc[2*i] > scc[2*i+1];
   return true;
void add(int a, int b) {
   v[a].pb(b):
   rev[b].pb(a);
int main() {
   cin>>n:
   for(int i=0;i<n;i++) {</pre>
       int a,b;
       cin>>a>>b:
       add(a.b):
   if(twosat()==0) no():
   else ves():
```

5.2 Articulation Bridge

```
int n;
vector<int>v[mx]; int dis[mx],low[mx];
bool visit[mx]; int t=0;
set<pair<int,int> > edge;
void dfs( int s, int par) {
    dis[s]=low[s]=t++;
    int child=0; visit[s]=true;
    for(auto x: v[s]) {
        if(x==par) continue;
        if(visit[x]) {
            low[s]=min(low[s],dis[x]);
            continue;
        }
}
```

```
dfs(x,s); child++;
       low[s]=min(low[s],low[x]);
       if(dis[s]<low[x]) {</pre>
           edge.insert(mp(min(s,x),max(s,x)));
   }
int main() {
       int m :
       cin>>n>>m:
       for(int i=0:i<m:i++) {</pre>
           int a.b:
           cin>>a>>b:
           v[a].pb(b);
           v[b].pb(a):
       for(int i=0:i<n:i++) {</pre>
           if(visit[i]==false) {
              dfs(i,-1);
       printf("%d critical links\n",edge.size());
       for(auto x: edge){
           printf("%d - %d\n", x.first, x.second);
```

5.3 Articulation Point

```
vector<int> v[100]:
bool visit[100]: int t :
int dis[100]; int low[100]; bool ans[100];
void dfs(int s.int par){
   dis[s]=t++: low[s]=dis[s]:
   visit[s]=true: int child=0:
   for(auto x: v[s]) {
       if(x==par) continue;
       if(visit[x]) {
          low[s]=min(low[s],dis[x]);
           continue;
       dfs(x,s); low[s]=min(low[s],low[x]);
       if(dis[s]<=low[x] and par!=-1) {</pre>
          ans[s]=true; //one point can be counted more
               than once
       }
       child++:
       if(child>1 and par==-1) ans[s]=true;
int main() {
      v[1].pb(2);
       dfs(1,-1):
```

```
for(int i=1;i<=7;i++) {
    if(ans[i]) cout<<i<' ' ';
}
}</pre>
```

5.4 Centroid decomposition

```
vector<ll > v[mx]:
11 sub[mx].visit[mx]:
11 k.ans.cnt[mx]:
void dfs(ll s. ll par) {
    sub[s]=1:
    for(auto x: v[s]) {
       if(x==par or visit[x]) continue;
       dfs(x.s):
       sub[s] += sub[x];
}
11 centroid(ll s,ll par, ll tot) {
    for(auto x: v[s]) {
       if(visit[x] or x==par) continue;
       if(sub[x]*2>tot) return centroid(x,s,tot);
    return s;
}
void dfs1(ll s, ll par,ll lv,ll c) {
    cnt[lv]+=c ;
    for(auto x: v[s]) {
       if(visit[x] or x==par ) continue:
       dfs1(x.s.lv+1.c):
void path(ll s, ll par, ll lv) {
    if(lv<=k) ans+=cnt[k-lv];</pre>
    for(auto x: v[s]) {
       if(visit[x] or par==x) continue:
       path(x.s.lv+1):
}
void solve(ll s) {
    cnt[0]=2;
    for(auto x: v[s]) {
       if(visit[x]) continue;
       dfs1(x,s,1,1);
    for(auto x: v[s]) {
       if(visit[x]) continue;
       dfs1(x,s,1,-1);
       path(x,s,1);
       dfs1(x,s,1,1);
    for(auto x: v[s]) {
       if(visit[x]) continue;
       dfs1(x.s.1.-1):
```

```
void build(ll s) ///O(nlogn)
   dfs(s,-1);
   11 d=centroid(s,-1,sub[s]);
   solve(d);
   visit[d]=true;
   for(auto x: v[d]) {
       if(visit[x]) continue:
       build(x):
   }
int main() {
   //pair of nodes with exact k distance
   11 n:
   cin>>n>>k:
   for(ll i=0:i<n-1:i++) {</pre>
      ll a.b:
       cin>>a>>b:
       v[a].pb(b);
       v[b].pb(a);
   build(1);
   cout << ans/2 << endl;
```

5.5 Dijkstra

```
vector<pair<11,11> > v[100008];
ll dis[100009]: ll par[100009]:
void dii() {
   for(ll i=0:i<=n:i++) dis[i]=LLONG MAX:</pre>
   priority_queue<pair<11,11> > pq;
   pq.push(mp(0,1));
   dis[1]=0; par[1]=-1;
   par[n]=INT MAX:
    while(pq.size()) {
       11 u=pq.top().second;
       int cost=-pq.top().first;
       pq.pop();
       if(cost>dis[u]) continue;
       for(auto x: v[u]) {
           if(cost+x.second<dis[x.first]) {</pre>
              dis[x.first]=cost+x.second;
              pq.push(mp(-dis[x.first],x.first));
              par[x.first]=u;
   }
void path(ll x) {
   if(x==-1) return ;
```

```
path(par[x]);
    cout<<x<<' ';
}
int main() {
    cin>>n>>m;
    for(11 i=0;i<m;i++) {
        11 a,b,c;
        cin>>a>>b>>c;
        v[a].pb(mp(b,c));
        v[b].pb(mp(a,c));
}
dij();
if(par[n]==INT_MAX) cout<<-1<<end1;
else path(n);
}</pre>
```

5.6 Heavy Light Dec.

```
vector<ll > v[mx];
int level[mx],heavy[mx],head[mx],pos[mx],parent[mx];
int curr; int tree[4*mx];
int ara[mx]; int n;
void init(int node, int b, int e) {
   if(b==e) {
       tree[node] = ara[b];
       return ;
   int mid=(b+e)>>1:
   init(node*2.b.mid):
   init(node*2+1.mid+1.e):
   tree[node]=max(tree[node*2].tree[node*2+1]);
void update(int node, int b, int e, int i, int val) {
   if(b>i or e<i) return ;</pre>
   if(b==e) {
       tree[node]=val:
       return ;
   int mid=(b+e)>>1:
   update(node*2.b.mid.i.val):
   update(node*2+1,mid+1,e,i,val);
   tree[node] = max(tree[node*2], tree[node*2+1]);
int query(int node, int b, int e, int i, int j) {
   if(b>j or e<i) return 0;</pre>
   if(b>=i and e<=j) return tree[node];</pre>
   int mid=(b+e)>>1:
   return
        max(query(node*2,b,mid,i,j),query(node*2+1,mid+1,e,i,j));
int dfs(int s, int par) {
   int ss=1; ///subtree size
   int maxi=0:
   for(auto x: v[s]) {
```

```
if(x!=par) {
           parent[x]=s; level[x]=level[s]+1;
           int d=dfs(x,s); //returns the subtree size of x
           if(d>maxi) {
               maxi=d; heavy[s]=x;
       }
    return ss;
}
void hld(int s, int h) {
    head[s]=h: ///head of chain in which s lies
    pos[s]=curr; ///position of s in the segment tree
    ara[curr++]=s:
    if(heavv[s]!=-1) {
       hld(heavv[s].h): ///increase chain
    for(auto x: v[s]) {
       if(x!=parent[s] and x!=heavy[s]) {
           hld(x,x); ///start new chain
int solve(int a, int b) {
    int ans=0;
    for(; head[a]!=head[b];a=parent[head[a]]) ///maximum
        log(n) times
       if(level[head[a]] < level[head[b]]) swap(a,b);</pre>
       int temp=query(1,0,n-1,pos[head[a]],pos[a]);
       ans=max(temp,ans);
    if(level[a]>level[b]) swap(a,b);
    ans=max(ans.querv(1.0.n-1.pos[a].pos[b])):
    return ans:
int main() {
    cin>>n:
    for(int i=0:i<n-1:i++) {</pre>
       int a,b;
       cin>>a>>b:
       v[a].pb(b):
       v[b].pb(a):
    memset(heavv.-1.sizeof heavv):
    dfs(1,-1); hld(1,1);
    init(1,0,n-1);
    cout<<solve(1,6)<<endl; ///maximum value on the path</pre>
        from a to b
```

```
int n: int level[mx]:
int table[mx][22]:
vector<int>v[mx]:
void dfs(int curr.int pre) {
   if(pre==-1) level[curr]=0:
   else level [curr]=level[pre]+1;
   table[curr][0]=pre;
   for(auto x: v[curr]) {
       if(x==pre) continue:
       dfs(x,curr);
   }
int lca(int p, int q) {
     if(level[p]<level[q]) swap(p,q);</pre>
     int log=__lg(level[p]);
     for( int i=log;i>=0;i--) {
         if(level[p]-(1<<i)>=level[q]) {
            p=table[p][i];
     if(p==q) return p :
     for( int i=log;i>=0;i--) {
        if(table[p][i]!=-1 and table[p][i]!=table[q][i]) {
            p=table[p][i].q=table[q][i]:
     return table[p][0];
void sparse() {
   ///node number starts from 0
   for(int j=1;1<<j<=n;j++) {</pre>
        for(int i=0;i<n;i++) {</pre>
             if(table [i][j-1]!=-1) {
                table [i][j]=table [table[i][j-1]][j-1];
     }
int main() {
   n=6:
      v[0].pb(2):
       memset(table,-1,sizeof table);
      dfs(0,-1);
       sparse():
       printf( "%d\n",lca(6,5) );
```

5.8 Finding bridges (online)

```
vector<int> par, dsu_2ecc, dsu_cc, dsu_cc_size;
int bridges;
int lca_iteration;
vector<int> last_visit;
```

```
void init(int n) {
   par.resize(n):
   dsu_2ecc.resize(n);
   dsu cc.resize(n):
   dsu_cc_size.resize(n);
   lca_iteration = 0;
   last_visit.assign(n, 0);
   for (int i=0; i<n; ++i) {</pre>
       dsu 2ecc[i] = i:
       dsu cc[i] = i:
       dsu cc size[i] = 1:
       par[i] = -1:
   bridges = 0;
int find 2ecc(int v) {
   if (v == -1)
      return -1:
   return dsu 2ecc[v] == v ? v : dsu 2ecc[v] =
        find 2ecc(dsu 2ecc[v]):
int find_cc(int v) {
   v = find 2ecc(v):
   return dsu_cc[v] == v ? v : dsu_cc[v] =
        find_cc(dsu_cc[v]);
void make root(int v) {
   v = find_2ecc(v);
   int root = v:
   int child = -1;
   while (v != -1) {
       int p = find_2ecc(par[v]);
       par[v] = child;
       dsu_cc[v] = root;
       child = v:
   dsu cc size[root] = dsu cc size[child]:
void merge_path (int a, int b) {
   ++lca_iteration;
   vector<int> path a. path b:
   int lca = -1:
   while (lca == -1) {
       if (a != -1) {
          a = find 2ecc(a):
          path_a.push_back(a);
          if (last_visit[a] == lca_iteration){
              lca = a;
              break;
          last_visit[a] = lca_iteration;
          a = par[a];
      }
       if (b != -1) {
          b = find_2ecc(b);
```

14

```
path_b.push_back(b);
           if (last_visit[b] == lca_iteration){
              lca = b:
               break;
              }
           last_visit[b] = lca_iteration;
           b = par[b];
       }
    for (int v : path a) {
       dsu 2ecc[v] = lca:
       if (v == lca)
           break:
       --bridges;
    for (int v : path_b) {
       dsu 2ecc[v] = 1ca:
       if (v == lca)
          break:
       --bridges;
}
void add_edge(int a, int b) {
    a = find_2ecc(a);
    b = find_2ecc(b);
    if (a == b)
       return;
    int ca = find_cc(a);
    int cb = find_cc(b);
    if (ca != cb) {
       ++bridges:
       if (dsu cc size[ca] > dsu cc size[cb]) {
           swap(a, b):
           swap(ca, cb);
       make_root(a);
       par[a] = dsu cc[a] = b:
       dsu_cc_size[cb] += dsu_cc_size[a];
    } else {
       merge_path(a, b);
int main() {
    int n,m;
    cin>>n>>m;
    init(n+5);
    for(int i=0;i<m;i++) {</pre>
       int a,b;
       cin>>a>>b;
       add_edge(a,b);
       cout<<bridges<<endl;</pre>
}
```

5.9 SCC

```
vector<int> v[10009],rev[10009],scc[10009];
bool visit[10009]:
stack<int> st:
void dfs(int s) {
   visit[s]=true:
   for(auto x: v[s] ) {
       if(visit[x]==false) {
          dfs(x):
      }
   }
   st.push(s):
void dfs1(int s.int no) {
   visit[s]=true:
   scc[no].pb(s);
   for(auto x: rev[s]) {
       if(visit[x]==false) {
           dfs1(x,no);
   }
int main() {
       ///only for directed graph
    scanf("%d",&n);
    set<int> s;
    for(int i=0;i<n;i++) {</pre>
        int a.b:
        scanf("%d%d",&a,&b);
        v[a].pb(b):
        rev[b].pb(a);
        s.insert(a):
        s.insert(b);
    }
    for(auto x: s) {
        if(visit[x]==false) {
            dfs(x):
    int mark=0:
    memset(visit,0,sizeof visit);
    while(st.size()) {
        int a=st.top();
        st.pop();
        if(visit[a]==false)
            mark++;
            dfs1(a,mark);
    for(int i=1;i<=mark;i++) {</pre>
        cout<<i<": ";
        for(auto x:scc[i]) {
            cout<<x<' ':
```

```
}
cout<<endl;
}
```

5.10 Kruskal

```
struct edge {
   11 u, v, w;
11 n,m; vector<edge> v;
ll par[1000000];
11 findp(ll x) {
   if(par[x]==x) return x;
   return par[x]=findp(par[x]);
bool cmp(edge a, edge b) {
   return a.w<b.w:
void mst() {
   sort(v.begin(),v.end(),cmp);
   11 ans=0:
   for(ll i=1;i<=n;i++) par[i]=i;</pre>
   for(ll i=0;i<v.size();i++) {</pre>
       ll a=v[i].u: ll b=v[i].v:
       ll cost=v[i].w:
       11 m1=findp(a); 11 m2=findp(b);
       if(m1!=m2) {
           par[m1]=m2;
           ans+=cost;
       }
   }
   int cnt=0;
   for(ll i=1;i<=n;i++) {</pre>
       11 x=findp(i);
       if(x==i) cnt++;
   if(cnt>1) cout<<"IMPOSSIBLE"<<endl;</pre>
   else cout<<ans<<endl;</pre>
```

5.11 Bellman Ford

```
struct edge {
    int a,b,c;
};
vector<edge> v;
ll dis[1009];
int n,m;
void bford() {
    for(int i=0:i<n:i++) dis[i]=INT MAX;</pre>
```

```
dis[0]=0;
    for(int i=0;i<n-1;i++) {</pre>
       for(int j=0;j<v.size();j++) {</pre>
           int a=v[j].a;
           int b=v[i].b;
           int c=v[i].c;
            if(dis[a] == INT_MAX) continue ;
           if(dis[a]+c<dis[b]) {</pre>
               dis[b]=dis[a]+c:
       }
    int k=0:
    for(int j=0;j<v.size();j++) {</pre>
       int a=v[j].a;
       int b=v[i].b:
       int c=v[i].c:
       if(dis[a]+c<dis[b]) {
           k=1:
           break:
       }
    if(k) cout<<"find negative cycle"<<endl;</pre>
    else cout<<"no negative cycle"<<endl;</pre>
int main() {
    ///check negative cycle
    cin>>n>>m;
    for(int i=0;i<m;i++) {</pre>
       edge d;
       cin>>d.a>>d.b>>d.c;
       v.pb(d);
    bford();
```

5.12 Dinic

```
const int mx = 500+5;
const int INF = 1000000000;
struct edge {
   int a, b, cap, flow;
};
int src,snk,level[mx],ptr[mx];
vector<edge>e;
vector<int>g[mx];
void add(int a,int b,int cap) {
   edge e1 = { a, b, cap, 0 };
   edge e2 = { b, a, 0, 0 };
   g[a].push_back((int)e.size());
   e.push_back(e1);
   g[b].push_back((int)e.size());
   e.push_back(e2);
}
```

```
bool bfs() {
   int s = src , t = snk ;
   queue < int > q;
   q.push(s);
   memset(level,-1,sizeof(level));
   level[s]=0 ;
   while (!q.empty()) {
       int u=q.front();
       q.pop();
       for(int i=0; i<(int)g[u].size(); i++) {</pre>
           int id=g[u][i]:
           int v=e[id].b:
           if(level[v]==-1&&e[id].flow<e[id].cap) {</pre>
              q.push(v);
              level[v] = level[u] + 1 ;
   }
   return level[t]!=-1:
int dfs(int u.int flow) {
   if (!flow) return 0 ;
   if ( u==snk ) return flow ;
   for(; ptr[u]<(int)g[u].size(); ptr[u]++) {</pre>
       int id = g[ u][ptr[u]];
       int v = e[id].b;
       if ( level[v] != level[u]+1 ) continue ;
       int tempflow = dfs (v,min
            (flow,e[id].cap-e[id].flow));
       if (tempflow) {
           e [id].flow+=tempflow ;
           e [id^1].flow-=tempflow;
           return tempflow ;
      }
   }
   return 0:
int dinic() {
   int flow = 0
   while(bfs()) {
       memset(ptr,0,sizeof(ptr) );
       while ( int tempflow= dfs(src.INF ) )
           flow += tempflow :
   }
   return flow :
int main() {
  // complexity O(v*v*e)
   int n,m;
   cin>>n>>m;
   cin>>src>>snk;
   for(int i=0;i<m;i++) {</pre>
       int a,b,c;
       cin>>a>>b>>c:
       add(a,b,c);
       add(b,a,c);
```

```
}
cout<<dinic()<<endl;
}</pre>
```

5.13 Hopcroft Karp

```
const 11 mx=1009:
const 11 inf=(11)1e15:
vector<ll > v[mx]:
11 n. match[mx]. dis[mx]:
void add(ll a, ll b) {
   v[a].pb(b):
bool bfs() {
   queue<ll > q;
   for(ll i=1;i<=n;i++) {
       if(match[i] == 0) {
          dis[i]=0; q.push(i);
       else dis[i]=inf;
   }
   dis[0]=inf;
   while(q.size()) {
       11 a=q.front(); q.pop();
       for(auto x: v[a]) {
          if(dis[match[x]]==inf) {
              dis[match[x]]=dis[a]+1;
              q.push(match[x]);
       }
   return dis[0]!=inf:
bool dfs(ll u) {
   if(11) {
       for(auto x: v[u]) {
          if(dis[match[x]]==dis[u]+1) {
              if(dfs(match[x])) {
                  match[x]=u:
                  match[u]=x:
                  return true;
          }
       }
       dis[u]=inf;
       return false;
   return true;
11 hopcroft() {
   ll ans=0;
   while(bfs()) {
       for(ll i=1;i<=n;i++) {</pre>
          if(match[i]==false and dfs(i)) {
```

```
ans++;
}
}
return ans;
}
int main() {
    ///complexity O(sqrt(v)*e)
    ///find maximum matching in unweighted graph
    n=4; ///elements of the left side, start from 1
    add(1,6); add(1,7); add(2,5); add(3,6);
    add(4,6); add(4,8);
    cout<<hopcroft()<<endl; ///ans 4
}
minimum vertex cover (cover all edges) : bpm
minimum edge cover (cover all vertices) : n-bpm
size of maximum independent set : n-bpm</pre>
```

5.14 Biconnected Comp.

```
vector<int> v[100]:
bool visit[100]; int t;
int dis[100]; int low[100];
bool ans[100];
stack<pair<int,int> > st;
void dfs(int s,int par) {
   dis[s]=t++;
   low[s]=dis[s]:
   visit[s]=true:
   int child=0:
   for(auto x: v[s]) {
       if(x==par) continue:
       if(visit[x]) {
          low[s]=min(low[s],dis[x]);
          if(dis[x]<dis[s]) st.push(mp(s,x));</pre>
           continue:
       st.push(mp(s,x));
       dfs(x.s):
       low[s]=min(low[s].low[x]):
      if(dis[s] <= low[x] and par!=-1) {</pre>
           while(st.top().first!=s or st.top().second!=x) {
              cout<<st.top().first<<'
                    '<<st.top().second<<endl;
              st.pop();
           cout<<s<' '<<x<<endl:
           st.pop();
       child++;
       if(child>1 and par==-1) {
           while(st.top().first!=s or st.top().second!=x) {
              cout<<st.top().first<<'
                    '<<st.top().second<<endl:
```

```
st.pop();
}
cout<<s<','<<x<<endl;
st.pop();
}
}
int main() {
    ///print biconnected component
    v[1].pb(5);
    dfs(1,-1);
    while(st.size()) {
        cout<<st.top().first<<','<<st.top().second<<endl;
        st.pop();
}</pre>
```

3 DP

6.1 Digit Dp

```
vector<ll >v;
ll dp[16][2][180];
11 call(ll ind, bool check,ll sum) {
   if(ind==-1) return sum;
   11 cnt=0;
   11 limit=check? (v[ind]):9:
   11 &ret=dp[ind][check][sum]:
   if(ret!=-1 and !check) return ret:
   for(ll i=0:i<=limit:i++) {</pre>
       bool ck=(i==v[ind])? check:0:
       cnt+=call(ind-1.ck.sum+i):
   if(!check) ret=cnt: ///is used so that we can call this
        function without memset for another query
   return cnt:
ll get(ll n) {
   v.clear():
    while(n) {
       v.pb(n\%10); n/=10;
   return call((int)v.size()-1,1,0);
int main() {
   11 t:
   cin>>t:
   memset(dp,-1,sizeof dp);
    while(t--){
   11 a,b; ///take string for large number
    cout<<get(b)-get(a-1)<<endl;</pre>
```

```
6.2 Convex Hull(dynamic)
```

```
const ll is_query = -(1LL<<62);</pre>
struct Line {
   11 m, c;
   mutable function<const Line*()> succ;
   bool operator<(const Line& rhs) const {</pre>
       if (rhs.c != is_query) return m < rhs.m;</pre>
       const Line* s = succ();
       if (!s) return 0;
      11 x = rhs.m:
       return c - s->c < (s->m - m) * x:
struct HullDynamic : public multiset<Line> // will maintain
    upper hull for maximum
   bool bad(iterator v) {
       auto z = next(v):
      if (y == begin()) {
          if (z == end()) return 0:
          return y->m == z->m && y->c <= z->c;
       auto x = prev(v):
       if (z == end()) return y->m == x->m && y->c <= x->c;
       return 1.0*(x->c - y->c)*(z->m - y->m) >= 1.0*(y->c
            -z->c)*(y->m-x->m);
   void addline(ll m, ll c) {
       auto y = insert({ m, c });
       y->succ = [=] { return next(y) == end() ? 0 :
           &*next(v): }:
       if (bad(y)) { erase(y); return; }
       while (next(y) != end() && bad(next(y)))
            erase(next(y));
       while (y != begin() && bad(prev(y))) erase(prev(y));
   ll query(ll x) {
       auto 1 = *lower bound((Line) { x, is querv }):
       return 1.m * x + 1.c:
   }
int main() {
   //complexity nlog^(2)n (proti line add er jonne O(logn))
   Keeps upper hull for maximum.
   add lines with -m and -c and return -ans to
   make this code working for minimum.
```

6.3 Convex Hull(semi offline)

```
ll s[mx],p[mx];
ll ara[mx];
struct cht {
    vector<ll> m,c;
    bool bad(11 f1, 11 f2, 11 f3) {
       ///change sign depends on slope and upper/lower
            envelop
       return 1.0*(c[f3]-c[f1])*(m[f1]-m[f2])>=
       1.0*(c[f2]-c[f1])*(m[f1]-m[f3]):
    void addline(ll m1,ll c1) {
       m.pb(m1):
       c.pb(c1); ll sz=m.size();
       while(sz \ge 3 and bad(sz-3.sz-2.sz-1)) {
           m.erase(m.end()-2):
           c.erase(c.end()-2);
           sz--;
       }
    11 value(11 ind, 11 x) {
       return m[ind]*x+c[ind];
    11 query(11 x) {
       11 low=0,high=(int)m.size()-1;
       11 ans=-LLONG_MAX;
       while(low<=high) {</pre>
           int mid1 = low + (high-low)/3;
           int mid2 = high - (high-low)/3:
           if(value(mid1.x)>=value(mid2.x)) {
               ans=value(mid1.x):
              high=mid2-1:
           }
           else {
               ans=value(mid2.x):
              low=mid1+1:
           }
       }
       return ans:
}a:
int main() {
    //complexity nlogn
    11 n;
    cin>>n;
    for(ll i=1;i<=n;i++) {</pre>
       cin>>ara[i];
       s[i]=s[i-1]+ara[i];
       p[i]=p[i-1]+i*ara[i];
    //a.addline(0,0); if query occurs before adding line
    11 ans=0:
    for(int i=1;i<=n;i++) {</pre>
       a.addline(-i,i*s[i-1]-p[i-1]-s[i-1]);
       ans=max(ans,a.querv(s[i])+p[i]+s[i]):
```

6.4 Subset DP

7 String

7.1 Aho Corasick

```
ll node=1;
ll nxt[mx][68]; ll link[mx];
vector<int> mark[mx];
ll ans[mx]; ll id;
void add(string &pat) {
    ll now=0;
    for(auto x: pat) {
        ll d=x-'A';
        if(nxt[now][d]==-1) {
            link[node]=0;
            mark[node].clear();
            nxt[now][d]=node++;
        }
        now=nxt[now][d];
    }
    mark[now].pb(id);
```

```
void aho() {
   queue<11> q;
   11 root=0;
   q.push(root);
   while(q.size()) {
       11 a=q.front();
       q.pop();
       for(ll i=0;i<60;i++) {</pre>
           11 d=nxt[a][i]:
           if(d!=-1) {
              if(a==root) link[d]=root:
               else {
                  link[d]=nxt[link[a]][i];
                  11 e=nxt[link[a]][i];
                  for(auto x: mark[e]) mark[d].pb(x);
                  /// add all pattern no to node d which
                       ends to its link node
               q.push(d);
           }
           else {
               if(a==root) nxt[a][i]=root;
               else nxt[a][i]=nxt[link[a]][i];
       }
   }
void match(string &txt) {
  11 now=0;
  memset(ans,0,sizeof ans);
  for(ll i=0;i<txt.size();i++) {</pre>
    11 d=txt[i]-'A';
    now=nxt[now][d];
    for(auto x: mark[now]) ans[x]=true;
   }
int main() {
   ///find whether the pattern is in the text of not
   ///time complexity(total length of (pattern +text) + no
        of occurrences)
   node=1:
   memset(nxt,-1,sizeof nxt):
   int n: string pat.txt:
   cin>>txt>>n:
   for(ll i=0:i<n:i++) {</pre>
       cin>>pat:
       id=i+1; add(pat);
   aho(); match(txt);
   for(int i=1;i<=n;i++) {</pre>
       if(ans[i]) cout<<"y"<<endl;</pre>
       else cout<<"n"<<endl ;</pre>
   }
```

7.2 Hashing

```
#define mod 1000000007
#define mod1 1000000009
ll p[mx],p1[mx];
ll base=13331LL;
ll base1=23333LL;
void pre() {
    p[0]=1;
   p1[0]=1;
    for(ll i=1:i<mx:i++) {</pre>
       p[i]=(p[i-1]*base)%mod:
       p1[i]=(p1[i-1]*base1)%mod1;
}
struct Hash {
    ll h[mx].h1[mx]:
    11 n:
    void init(string &str) {
       n=str.size();
       h[0]=0; h1[0]=0;
       for(ll i=1;i<=n;i++) {</pre>
           h[i]=h[i-1]*base+str[i-1];
           h[i]%=mod;
           h1[i]=h1[i-1]*base1+str[i-1];
           h1[i]%=mod1;
       }
    11 range(ll 1,ll r) {
       11 a=h[r]-h[1-1]*p[r-1+1];
       a\%=mod; a=(a+mod)^{2}mod;
       ll b=h1[r]-h1[l-1]*p1[r-l+1];
       b\%=mod1: b=(b+mod1)\%mod1:
       return (a<<18)^b:
}a.b:
//1 indexing
```

7.3 KMP

```
string str,pat;
int ara[2*50009]; ///don't need to memset before every case
int pre() {
   int now=0;
   ara[0]=now;
   for(int i=1;i<pat.size();i++) {
      while(now and pat[now]!=pat[i]) now=ara[now-1];
      if(pat[now]==pat[i]) now++;
      ara[i]=now;
   }
}
bool match() {
   int now=0;</pre>
```

```
for(int i=0;i<str.size();i++) {
    while(now and str[i]!=pat[now]) now=ara[now-1];
    if(str[i]==pat[now]) now++;
    else now=0;
    if(now==pat.size()) return 1;
}
    return 0;
}
int main() {
    cin>>str>>pat;
    pre();
    for(int i=0;i<pat.size();i++) cout<<ara[i]<<''';
}</pre>
```

7.4 Manacher

```
int d[2][mx];
string str:
//d[0][i]=total number of odd length palindromes whose
//d[1][i]=total number of even length palindromes whose
    centre is i
void pre() {
   int n=(int)str.size():
   for(int i=0:i<2:i++) {</pre>
      for(int i=0.1=0.r=-1:i<n:i++) {
          int k=(i>r)?(!i):min(d[i][l+r-i+i].r-i+1);
          while(i-k-i>=0 and i+k<n and
               str[i-k-j]==str[i+k]) k++;
          d[i][i]=k--;
          if(i+k>r) l=i-k-j,r=i+k;
      }
   }
int main() {
   cin>>str;
   pre();
```

7.5 Suffix Array

```
struct SA {
  vector<int> sa, lcp;
  SA(){};
  void build(string& s, int lim = 256) {
    int n = s.size() + 1, k = 0, a, b;
    vector<int> x(s.begin(), s.end() + 1), y(n),
        ws(max(n, lim)), rank(n);
  sa = lcp = y;
  iota(sa.begin(), sa.end(), 0);
```

```
for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim
          p = j, iota(y.begin(), y.end(), n - j);
          for (int i = 0; i <= n - 1; i++) {</pre>
              if (sa[i] >= j) v[p++] = sa[i] - j;
          fill(ws.begin(), ws.end(), 0);
          for (int i = 0; i \le n - 1; i++) ws[x[i]]++;
          for (int i = 1: i <= lim - 1: i++) ws[i] += ws[i
                - 11:
           for (int i = n; i--;) sa[--ws[x[v[i]]]] = v[i];
          swap(x, y), p = 1, x[sa[0]] = 0;
          for (int i = 1; i <= n - 1; i++) {
              a = sa[i - 1], b = sa[i];
              x[b] = (y[a] == y[b] && y[a + j] == y[b + j])
                   ? p - 1 : p++:
       }
       for (int i = 1: i \le n - 1: i++) rank[sa[i]] = i:
       for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k) {
          for (k \&\& k--, j = sa[rank[i] - 1]; s[i + k] ==
               s[i + k]; k++);
       for(int i=1;i<n-1;i++) lcp[i]=lcp[i+1];</pre>
       lcp[n-1]=0:
   }
}sa:
int main() {
   fast:
   string str; cin>>str;
   sa.build(str);
   11 n=(int)str.size();
   long long ans=n*(n+1)/2;
   for(auto x: sa.lcp) ans-=x;
   cout << ans << endl:
```

7.6 Suffix Array (sort substring range)

```
///no need to clear any ara before every test case
const int mx=4e5+9;
int n, m;
int ra[mx], tempra[mx];
int sa[mx], tempsa[mx];
int c[mx]; string str;
void countSort(int k) {
   int maxi = max(300, n);
   int sum=0;
   memset(c, 0, sizeof c);
   for (int i = 0; i < n; i++) c[i + k < n ? ra[i + k] :
        0]++;
   for (int i = sum = 0; i < maxi; i++) {
        int t = c[i];
        c[i] = sum;
}</pre>
```

```
for (int i = 0; i < n; i++) tempsa[c[sa[i] + k < n ?
         ra[sa[i] + k] : 0] ++] = sa[i];
    for (int i = 0; i < n; i++) sa[i] = tempsa[i];</pre>
}
void makesa() {
    for (int i = 0; i < n; i++) {</pre>
       ra[i] = str[i]; sa[i] = i;
    for (int k = 1: k < n: k <<= 1) {
       countSort(k): countSort(0):
       tempra[sa[0]]=0:
       int r=0:
        for (int i = 1: i < n: i++)</pre>
            tempra[sa[i]] =(ra[sa[i]] == ra[sa[i - 1]] &&
                ra[sa[i] + k] == ra[sa[i - 1] + k]) ? r :
        for (int i = 0; i < n; i++) ra[i] = tempra[i];</pre>
}
int temp[mx];
int lcp[mx]; ///lcp[i] is the length of longest common
     prefix of sa[i] and sa[i+1]
void buildlcp() {
    for(int i=0; i<n; i++) temp[sa[i]]=i;</pre>
    int k=0:
    for(int i=0; i<n; i++) {</pre>
        if(temp[i]==n-1) {
           lcp[temp[i]]=0;
            k=0:
            continue;
        int j=sa[temp[i]+1];
       while(i+k<n and j+k<n and str[i+k]==str[j+k]) k++;</pre>
       lcp[temp[i]]=k:
       if(k) k--:
}
struct edge {
   int rank, 1, r;
   bool operator < (edge &p) const {
      if(rank==p.rank) {
         int len1=r-l+1:
         int len2=p.r-p.l+1:
         if(len1==len2) {
            if(l==p.1) return 1;
            return r<p.r;</pre>
         return len1<len2;</pre>
      return rank<p.rank;</pre>
};
int mini[mx][22];
void sparse() {
```

```
//template dekhe lcp er minimum sparse table
int query(int 1, int r) {
  //sparse table er query function
bool check(int mid,int ses,int 1, int r) {
  int soto=query(mid,ses-1);
  int len=r-l+1;
  if(soto<len) return false:
  return true:
int main() {
   // sort the substring range
  cin>>str: str+=' ':
  n=str.size():
  makesa(); buildlcp(); sparse();
  vector<int> dp(n+4);
  vector<pair<int,int> > vv;
  for(int i=0:i<n:i++) {</pre>
     dp[sa[i]]=i;
  vector<edge> v;
  int q; cin>>q;
  while(q--)
     int 1,r; cin>>l>>r;
     1--: r--:
     int low=1,high=dp[l]-1;
     int suru=-1;
     while(low<=high) {</pre>
        int mid=(low+high)/2;
        if(check(mid,dp[1],1,r)) {
           suru=mid;
           high=mid-1;
        else low=mid+1:
     if(suru==-1) v.pb({dp[1],1,r});
     else v.pb({suru,1,r});
  sort(v.begin(),v.end());
  for(auto x: v) cout<<x.l+1<<' ' '<<x.r+1<<endl:</pre>
```

7.7 Suffix Automata

```
if(p==0) link[cur]=1;
   else {
       int q=nxt[p][c];
       if(len[q]==len[p]+1) link[cur]=q; //continuous
            transition, so don't change anything
       else {
           int cl=++sz; ///non continuous transition , so
                make clone of q
           len[cl]=len[p]+1:
           link[cl]=link[q];
           for(int i=0;i<26;i++) nxt[cl][i]=nxt[q][i];</pre>
           while(p and nxt[p][c]==q) nxt[p][c]=cl,p=link[p];
           link[cur]=link[a]=cl:
       }
   }
int main() {
   string str:
   cin>>str:
   for(auto x: str) add(x-'a');
   cout<<sz<<endl:
1. length of distinct substrings ends at node i =
    (len[link[i]]+1 to len[i])
2. when a character is added to the string, number of new
    distinct substring
  that is created is = index of the character(1 base) -
       len[link[last]
```

7.8 Trie

```
int nxt[100009*26][26]:
bool mark[100009*26];
int node=1:
void add(string str) {
   int now=0:
   for(int i=0:i<str.size():i++) {</pre>
       int d=str[i]-'a':
       if(nxt[now][d]==0) nxt[now][d]=node++;
       now=nxt[now][d]:
   mark[now]=true:
bool check(string str) {
   int now=0;
   for(int i=0;i<str.size();i++) {</pre>
       int d=str[i]-'a';
       if(nxt[now][d]==0) return false;
       now=nxt[now][d];
   return mark[now] ;
int main() {
   string str:
```

```
cin>>str; add(str);
string str1; cin>>str1;
if(check(str1)) printf("found");
else printf("not found");
```

7.9 Persistent Trie

```
struct edge {
    11 1.r:
    edge() {
       l=0.r=0:
}nxt[mx*50]:
int root[mx*50]:
ll cnt=1;
void init(ll k) {
    ll now=1;
    for(11 i=31;i>=0;i--) {
       bool d=k&(1<<i);</pre>
       if (d==0) nxt[now].l=++cnt:
       else nxt[now].r=++cnt;
       now=cnt;
}
void add(ll k, ll pre) {
    11 now=++cnt;
    for(11 i=31:i>=0:i--) {
       bool d=k&(1<<i):</pre>
       if(d==0) {
           nxt[now].l=++cnt:
           nxt[now].r=nxt[pre].r:
           pre=nxt[pre].1;
        else {
           nxt[now].r=++cnt:
           nxt[now].l=nxt[pre].l:
           pre=nxt[pre].r:
       }
       now=cnt:
int main() {
    int n; cin>>n;
    int r,val;
    cin>>r>>val;
    init(val); root[r]=1;
    for(int i=0;i<n;i++) {</pre>
       int a,b,val;
        cin>>a>>b>>val; //add edge a to b, value of b is val
       root[b]=cnt+1;
       add(val,root[a]);
}
```

7.10 Palindromic Tree

```
ll node.t:
11 nxt[mx][26] .link[mx].len[mx]:
11 cnt[mx].cnt1[mx]:
string str;
void pre() {
   memset(link,0,sizeof link);
   memset(nxt,0,sizeof nxt);
   link[1]=link[2]=1;
   len[1]=-1; len[2]=0;
   node=t=2:
void add(ll p) {
   while(str[p-len[t]-1]!=str[p]) t=link[t];
   11 x=link[t]:
   while(str[p-len[x]-1]!=str[p]) x=link[x];
   11 c=str[p]-'a';
   if(!nxt[t][c]) {
       nxt[t][c]=++node;
       len[node] = len[t] + 2:
       link[node]=len[node]==1? 2: nxt[x][c]:
   }
   t=nxt[t][c]:
int main() {
   //number of common palindromic substring of two strings
   cin>>str:
   pre():
  for(ll i=0:i<str.size():i++) add(i).cnt[t]++:</pre>
  cin>>str:
  t=2 :
  for(ll i=0;i<str.size();i++) add(i),cnt1[t]++;</pre>
  11 ans=0:
  for(11 i=node:i>=3:i--) {
      cnt[link[i]]+=cnt[i];
      cnt1[link[i]]+=cnt1[i];
      ans+=cnt[i]*cnt1[i];
      cnt[i]=cnt1[i]=0;
   cout << ans << endl;
```

7.11 Z Algorithm

```
11 left=0,right=0;
   for(ll i=1;i<str.size();i++) {</pre>
       if(right>=i) ara[i]=min(ara[i-left],right-i+1);
       while(i+ara[i]<str.size() and</pre>
            str[ara[i]]==str[i+ara[i]]) ara[i]++;
       if(i+ara[i]-1>right) left=i,right=i+ara[i]-1;
int main() {
   ///minimum length palindrome by adding character to the
   cin>>str1: str=str1:
   reverse(str.begin().str.end()):
   str=str+'#'+str1:
   findz(): 11 d=0 :
   for( ll i=0:i<str.size():i++) {</pre>
      if(ara[i]+i==str.size()) {
           d=ara[i]:
           break:
      }
   cout<<str1;
   for(ll i=d;str[i]!='#';i++ ) {
       cout<<str[i];
```

8 Direct Solution

8.1 way to select k equal substrings

```
int nxt[mx<<1][26],link[mx<<1],len[mx<<1];</pre>
int last=1.sz=1:
int cnt[mx<<1]:</pre>
void add(int c) {
   int cur=++sz:
   cnt[cur]=1:
   int p=last: last=cur:
   len[cur]=len[p]+1:
   while(p and nxt[p][c]==0) nxt[p][c]=cur,p=link[p]; //add
        character c to the suffix of p
   if(p==0) link[cur]=1;
   else {
       int q=nxt[p][c];
       if(len[q]==len[p]+1) link[cur]=q; //continuous
            transition, so don't change anything
       else {
           int cl=++sz; ///non continuous transition , so
                make clone of q
           len[cl]=len[p]+1;
           link[cl]=link[q];
           for(int i=0;i<26;i++) nxt[cl][i]=nxt[q][i];</pre>
           while(p and nxt[p][c]==q) nxt[p][c]=cl,p=link[p];
```

```
link[cur]=link[q]=cl;
   }
}
11 facto[mx],invfacto[mx];
void pre() {
    facto[0]=1;
    for(ll i=1;i<mx;i++) facto[i]=(facto[i-1]*i)%mod;</pre>
    invfacto[0]=1:
    invfacto[1]=1:
    for(ll i=2:i<mx:i++) {</pre>
       invfacto[i]=mod-(mod/i)*invfacto[mod%i]%mod: ///pre
            calculate mod inverse i
    for(int i=1:i<mx:i++)</pre>
         invfacto[i]=(invfacto[i-1]*invfacto[i])%mod:
         ///precalculate inverse factorial
}
11 ncr(11 n, 11 r) {
    if(r>n) return 0:
    11 ans=facto[n]*invfacto[n-r]:
    ans%=mod:
    ans=(ans*invfacto[r])%mod;
    return ans;
11 ans[mx];
vector<int>szz[mx]:
int main() {
    pre();
    int n,q;
    cin>>n>>q;
    string str; cin>>str;
    for(auto x: str) add(x-'a');
    for(int i=1;i<=sz;i++) szz[len[i]].pb(i);</pre>
    for(int i=n:i>0:i--) {
      for(auto x: szz[i]) cnt[link[x]]+=cnt[x]:
    for(int i=2:i<=sz:i++) {</pre>
        int suru=len[link[i]]+1:
        int ses=len[i]:
        int len=ses-suru+1;
        for(int i=1:i<=cnt[i]:i++) {</pre>
            11 d=ncr(cnt[i].i):
            d=(d*len)%mod:
            ans[i]=(ans[i]+d)%mod:
        }
    while(q--)
         int k; cin>>k;
        if(k>(int)str.size()) cout<<0<<endl;</pre>
         else cout<<ans[k]<<endl;</pre>
    }
```

8.2 longest common substring

int nxt[mx<<1][28],link[mx<<1],len[mx<<1];</pre>

```
int last=1.sz=1:
int cnt[mx<<1][4]:
int ind[mx<<1]:</pre>
void add(int c, int val) {
   int cur=++sz:
   cnt[cur][val]=1:
   int p=last; last=cur;
   len[cur]=len[p]+1:
   ind[cur]=len[cur]-1:
   while(p and nxt[p][c]==0) nxt[p][c]=cur.p=link[p]: //add
        character c to the suffix of p
   if(p==0) link[cur]=1:
   else {
       int a=nxt[p][c]:
      if(len[q]==len[p]+1) link[cur]=q; //continuous
            transition, so don't change anything
       else {
           int cl=++sz; ///non continuous transition , so
               make clone of q
           len[cl]=len[p]+1;
           link[cl]=link[q];
           for(int i=0;i<27;i++) nxt[cl][i]=nxt[q][i];</pre>
           while(p and nxt[p][c]==q) nxt[p][c]=cl,p=link[p];
           link[cur]=link[q]=cl;
           ind[cl]=ind[q];
      }
   }
int c=0:
int main() {
   string str.str1:
   cin>>str>>str1:
   for(auto x: str1) add(x-'a'.0):
   add(26.2):
   for(auto x: str) add(x-'a',1);
   vector<pair<int.int> > v:
   for(int i=1;i<=sz;i++) v.pb({len[i],i});</pre>
   sort(v.rbegin(),v.rend());
   for(auto x: v) {
       cnt[link[x.second]][0]+=cnt[x.second][0];
       cnt[link[x.second]][1]+=cnt[x.second][1];
   int maxi=0;
   int ii=1e7;
   for(int i=1;i<=sz;i++) {</pre>
      int ses=len[i]:
      if(cnt[i][0] and cnt[i][1]) {
           if(ses>maxi) {
              maxi=ses;
   for(int i=1:i<=sz:i++) {</pre>
```

```
int ses=len[i];
  if(cnt[i][0] and cnt[i][1]) {
     if(ses==maxi) {
        ii=min(ii,ind[i]);
     }
  }
}
if(maxi) cout<<str1.substr(ii-maxi+1,maxi)<<endl;
cout<<maxi<<endl;
}</pre>
```

8.3 count number of substring equals to lcp of two given strings

```
struct SA {
   vector<int> sa, lcp;
   SA(){};
   void build(string& s, int lim = 256) {
       int n = s.size() + 1, k = 0, a, b;
       vector < int > x(s.begin(), s.end() + 1), v(n),
            ws(max(n, lim)), rank(n);
       sa = lcp = v;
       iota(sa.begin(), sa.end(), 0);
       for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim
           p = j, iota(y.begin(), y.end(), n - j);
           for (int i = 0: i \le n - 1: i++) {
              if (sa[i] >= i) v[p++] = sa[i] - i:
          fill(ws.begin(), ws.end(), 0);
           for (int i = 0; i \le n - 1; i++) ws[x[i]]++;
          for (int i = 1: i <= lim - 1: i++) ws[i] += ws[i
          for (int i = n: i--:) sa[--ws[x[v[i]]]] = v[i]:
           swap(x, y), p = 1, x[sa[0]] = 0:
          for (int i = 1: i <= n - 1: i++) {
              a = sa[i - 1], b = sa[i]:
              x[b] = (y[a] == y[b] && y[a + j] == y[b + j])
                   ? p - 1 : p++:
       for (int i = 1; i <= n - 1; i++) rank[sa[i]] = i;</pre>
       for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k) {
          for (k \&\& k--, j = sa[rank[i] - 1]; s[i + k] ==
               s[i + k]; k++);
       for(int i=1;i<n-1;i++) lcp[i]=lcp[i+1];</pre>
       lcp[n-1]=0;
int mini[mx][22];
int n:
void sparse() {
```

```
for(int i=0;i<n;i++) mini[i][0]=sa.lcp[i];</pre>
    for(int j=1;(1LL<<j)<=n;j++) {</pre>
       for(int i=0;i+(1LL<<(j))-1<n;i++) {</pre>
           int d=1LL<<(j-1);</pre>
           mini[i][j]=min(mini[i][j-1],mini[i+d][j-1]);
    }
int query(int 1, int r) {
    if(1>r) swap(1,r);
    int d=log2(r-l+1):
    return min(mini[]][d].mini[r-(1LL<<d)+1][d]):
int pos[mx];
int len:
int sz[mx]:
bool check(int ses.int mid) {
    int d=querv(ses.mid):
    return d>=len:
}
int dp[mx];
int main() {
    //given n strings, find the lcp of string a and b and
         print number of substring equals to this lcp over
         all given strings
    int n1;
    cin>>n1:
    string str;
    for(int i=0;i<n1;i++) {</pre>
       if(i) {
           str+='$';
       string a; cin>>a;
       sz[i]=(int)a.size();
       pos[i]=(int)str.size();
       str+=a:
    sa.build(str):
    n=(int)str.size()+1;
    sparse():
    for(int i=0;i<n;i++) dp[sa.sa[i]]=i;</pre>
    int a:
    cin>>a:
    while(a--) {
       int a.b:
        cin>>a>>b:
       a--; b--;
       int l=pos[a],r=pos[b];
       l=dp[l]; r=dp[r];
       if(1>r) swap(1,r);
       if(a==b) len=sz[a];
        else len=query(1,r-1);
       if(len==0) {
           cout<<0<<endl; continue;</pre>
       len=min({len,sz[a],sz[b]});
```

```
int suru=-1;
    int low=1,high=l-1;
    while(low<=high) {</pre>
       int mid=(low+high)>>1;
       if(check(mid,l-1)) {
           suru=mid;
           high=mid-1;
       else low=mid+1:
   if(suru==-1) suru=1:
   int ses=-1:
   low=1,high=n-1;
    while(low<=high) {</pre>
       int mid=(low+high)>>1;
       if(check(1.mid)) {
           ses=mid+1:
           low=mid+1:
       else high=mid-1;
   if(ses==-1) ses=1;
    cout<<ses-suru+1<<endl;</pre>
}
```

8.4 longest path for each subtree

```
vector<11> v[100009]:
ll dis[100009].dis1[100009]:
11 c:
void dfs(ll s. ll par. ll t) {
   for(auto x: v[s]) {
       if(x==par) continue;
       dfs(x.s.t+1):
       dis[s]=max(dis[s].dis[x]+1):
   }
void dfs1(ll s, ll par) {
   for(auto x: v[s]) {
       if(x==par) continue;
       dfs1(x,s);
   dis1[s]=dis[s];
   11 \max 1=-1, \max 2=-1;
   for(auto x: v[s]) {
       if(x==par) continue;
       dis1[s]=max(dis1[s],dis1[x]);
       if(dis[x]>max1) {
           max2=max1;
           max1=dis[x];
       else if(dis[x]>max2) max2=dis[x];
```

```
if(max1>=0 and max2>=0) dis1[s]=max(dis1[s],max1+max2+2);
}
int main() {
    //longest path for each subtree , tree is rooted c
    ll n;
    cin>>n;
    for(ll i=0;i<n-1;i++) {
        ll a,b;
        cin>>a>>b;
        v[a].pb(b);
        v[b].pb(a);
}
cin>>c;
dfs(c,-1,0);
dfs1(c,-1);
for(int i=1;i<=n;i++) {
        cout<<i<<' ''<<dis1[i]<<endl;
}
}</pre>
```

8.5 number of triplets where gcd(a,b,c)=1

```
ll mobi[mx];
11 cnt[mx];
11 divi[mx];
void pre() {
   mobi[1]=1;
   for(ll i=1:i<mx:i++) {</pre>
       if(cnt[i]) divi[i]=cnt[i]:
       for(ll i=2*i:i<mx:i+=i) {</pre>
            mobi[i]-=mobi[i]:
            if(cnt[i]) divi[i]+=cnt[i]:
       }
ll ncr(ll n) {
   if(n<3) return 0:</pre>
   ll ans=n*(n-1)*(n-2):
   return ans/6:
int main() {
  ll n; cin>>n;
  vector<ll>v(n);
  for(ll i=0;i<n;i++) {</pre>
      11 x; cin>>x;
      v[i]=x;
      cnt[x]++;
  }
  pre();
  11 ans=0;
  for(ll i=1;i<=1000000;i++) {</pre>
        ans+=mobi[i]*ncr(divi[i]);
   cout << ans << end 1:
```

}

8.6 xor update, delete, find kth element

```
struct edge {
   11 1.r:
   edge() {
       1=0.r=0:
}nxt[mx*50]:
int mark[mx*32];
int root[mx*32]:
11 cnt=1:
void init(ll k) {
    ll now=1;
    for(11 i=31:i>=0:i--) {
       bool d=k&(1<<i);</pre>
       if(d==0) nxt[now].l=++cnt;
       else nxt[now].r=++cnt;
       now=cnt:
void add(ll k, ll pre) {
    11 now=++cnt:
    for(ll i=31;i>=0;i--) {
       bool d=k&(1<<i);</pre>
       if(d==0) {
           nxt[now].l=++cnt:
           nxt[now].r=nxt[pre].r;
           pre=nxt[pre].1;
           mark[cnt]=1+mark[pre]:
       else {
           nxt[now].r=++cnt:
           nxt[now].l=nxt[pre].l:
           pre=nxt[pre].r;
           mark[cnt]=1+mark[pre]:
       }
       now=cnt;
}
int get(int x,int now, int pre) {
    int ans=0:
    for(int i=31;i>=0;i--) {
       bool d=x&(1LL<<i):
       if(d==0) {
           int temp=mark[nxt[now].r]-mark[nxt[pre].r];
           if(temp) {
              now=nxt[now].r;
               pre=nxt[pre].r;
```

```
ans | =1LL << i;
           else {
              pre=nxt[pre].1;
              now=nxt[now].1;
      }
       else {
           int temp=mark[nxt[now].1]-mark[nxt[pre].1];
           if(temp) {
              pre=nxt[pre].1:
              now=nxt[now].1:
              ans|=1LL<<i:
           else {
              pre=nxt[pre].r:
              now=nxt[now].r:
      }
   return ans:
int soto(int x,int now, int pre) {
   int ans=0:
   for(int i=31;i>=0;i--) {
       bool d=x&(1LL<<i);</pre>
       if(d==0) {
           if(nxt[now].1==0) return ans;
           now=nxt[now].1;
           pre=nxt[pre].1;
      }
           int temp=mark[nxt[now].1]-mark[nxt[pre].1];
           ans+=temp:
           if(nxt[now].r) {
              now=nxt[now].r:
              pre=nxt[pre].r;
           else return ans;
   ans+=mark[now]-mark[pre]:
   return ans:
int kth(int k,int now, int pre) {
   int ans=0:
   for(int i=31;i>=0;i--) {
       int temp=mark[nxt[now].1]-mark[nxt[pre].1];
       if(temp>=k) {
           now=nxt[now].1;
           pre=nxt[pre].1;
       else {
```

```
ans |=1LL<<i;
           k-=temp;
           now=nxt[now].r;
           pre=nxt[pre].r;
       }
   return ans;
int main() {
   int m:
   cin>>m:
   int n=0:
   root[0]=1:
   init(0);
   while(m--) {
       int id: cin>>id:
       if(id==0)
           //add x to the end of array
           n++:
           root[n]=cnt+1:
           int x; cin>>x;
           add(x.root[n-1]):
       else if(id==1) {
           //find x in range (l,r) that maximize (x xor y)
           int 1,r,v;
           cin>>l>>r>>y;
           int ans=get(y,root[r],root[l-1])^y;
           cout << ans << endl;
       }
       else if(id==2) {
           //delete last k elements in the array
           int k;cin>>k;
           n-=k:
       else if(id==3) {
           //count integer <=x in range (1,r)</pre>
           int 1.r.x:
           cin>>l>>r>>x:
           int ans=soto(x,root[r],root[l-1]);
           cout << ans << endl:
       }
       else {
           //find kth smallest in range (1,r)
           int 1.r.k:
           cin>>l>>r>>k;
           int ans=kth(k,root[r],root[l-1]);
           cout<<ans<<endl;</pre>
   }
```

	Theoretical	Computer Science Cheat Sheet					
Definitions		Series					
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$					
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	i=1 i=1 i=1 In general:					
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$					
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$					
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:					
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$ \sum_{i=0}^{n} c^{i} = \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1-c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1-c}, c < 1, $					
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\begin{cases} \sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, & c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, & c < 1. \end{cases}$					
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$					
$\limsup_{n\to\infty}a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	<i>i</i> =1					
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$					
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,					
$\left\{ egin{array}{l} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element						
$\binom{n}{k}$	set into k non-empty sets. 1st order Eulerian numbers:	$6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$					
\ k /	Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$					
$\binom{n}{k}$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$					
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,					
$14. \begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	1)!, 15. $\binom{n}{2} = (n - 1)!$	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$					
18. $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$, 19. $\begin{Bmatrix} n \\ n-1 \end{Bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}$, 20. $\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!$, 21. $C_n = \frac{1}{n+1} \binom{2n}{n}$,							
$22. \ \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle = 1, \qquad \qquad 23. \ \left\langle {n \atop k} \right\rangle = \left\langle {n \atop n-1-k} \right\rangle, \qquad \qquad 24. \ \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle,$							
25. $\binom{0}{k} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ 26. $\binom{n}{1} = 2^n - n - 1,$ 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$ 28. $x^n = \sum_{k=0}^n \binom{n}{k} \binom{x+k}{n},$ 29. $\binom{n}{m} = \sum_{k=0}^m \binom{n+1}{k} (m+1-k)^n (-1)^k,$ 30. $m! \binom{n}{m} = \sum_{k=0}^n \binom{n}{k} \binom{k}{n-m},$							
n=0	` '.` .	32. $\left\langle \binom{n}{0} \right\rangle = 1$, 33. $\left\langle \binom{n}{n} \right\rangle = 0$ for $n \neq 0$,					
1111	$+1$) $\left\langle \left(n-1 \atop k \right) \right\rangle + (2n-1-k) \left\langle \left(n-1 \atop k \right) \right\rangle$	k=0 \\\'' \''					
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(\frac{x+n-1-k}{2n} \right),$	37. ${n+1 \brace m+1} = \sum_{k} {n \choose k} {k \brace m} = \sum_{k=0}^{n} {k \brack m} (m+1)^{n-k},$					

Theoretical Computer Science Cheat Sheet	
Identities Cont.	Trees
$\boxed{ 38. \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad 39. \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{x+k}{2n}, }$	
	edges. Kraft inequal- ity: If the depths
	of the leaves of a binary tree are
$\boxed{ 44. \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, 45. \ (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \text{for } n \ge m, }$	$d_1, \dots, d_n:$ $\sum_{n=1}^{\infty} 2^{-d_i} \le 1,$
$46. {n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k}, \qquad 47. {n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$	i=1 and equality holds
$48. {n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}, \qquad 49. {n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$	only if every internal node has 2 sons.
Recurrences	

1(T(n) - 3T(n/2) = n)3(T(n/2) - 3T(n/4) = n/2)

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have $=2n(c^{\log_2 n}-1)$

the previous equation by 2^{i+1} we get

Substituting we find
$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

Master method:

then

 $T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

 $T(n) = \Theta(n^{\log_b a}).$

 $T(n) = \Theta(n^{\log_b a} \log_2 n).$

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$,

and $\exists c < 1$ such that af(n/b) < cf(n)

 $T(n) = \Theta(f(n)).$

Substitution (example): Consider the

 $T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$ Note that T_i is always a power of two.

Let $u_i = t_i/2^i$. Dividing both sides of

Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$

If $f(n) = \Theta(n^{\log_b a})$ then

for large n, then

following recurrence

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$(n/2) = n$$

$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$

$$= 2n(c^{\log_2 n} - 1)$$

$$= 2n(c^{(k-1)\log_e n} - 1)$$

$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j$$

Subtracting we find
$$T_{i+1}-T_i=1+\sum_{j=0}^i T_j-1-\sum_{j=0}^{i-1} T_j$$

$$=T_i.$$

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:
$$\sum_{i \geq 0} g_{i+1} x^i = \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite

we choose
$$G(x) = \sum_{i \ge 0} x^i g_i$$
. Rewr in terms of $G(x)$:
$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

$$G(x) = \frac{x}{(1-x)(1-2x)}$$

$$= x \left(1 - 2x \quad 1 - x \right)$$

$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$q_i = 2^i - 1$$
.