MATEMÀTIQUES II DELS GRAUS DE BIOLOGIA I BIOQUÍMICA. TAULES DE CONTRASTOS D'HIPÒTESI MÉS USUALS II: DUES MOSTRES

En aquest document recollim els contrastos d'hipòtesis paramètrics més usuals per a dues mostres que es poden portar a terme "a mà." Per a cada contrast donam: les condicions, l'estadístic de contrast, la regió crítica, l'interval de confiança i el p-valor.

En la definició dels l'estadístics hem emprat la notacions següents:

- Z: Distribució normal estàndard N(0,1).
- t_n : Distribució t de Student amb n graus de llibertat.
- χ_n^2 : Distribució khi-quadrat amb n graus de llibertat.
- F_{n_1,n_2} : Distribució F de Fisher amb n_1 i n_2 graus de llibertat.
- X_{α} : Indica l' α -quantil de la variable aleatòria X, és a dir (si X és contínua, que és sempre el cas en aquest document), el valor on la funció de distribució de X val α : $P(X \leq X_{\alpha}) = \alpha$. Recordau la traducció als quantils de les propietats de simetria de Z, t i F:
 - Simetria de la normal: $z_{\alpha} = -z_{1-\alpha}$.
 - Simetria de la t de Student: $t_{n,\alpha} = -t_{n,1-\alpha}$.
 - Permutació dels graus de llibertat de la F de Fisher: $F_{n_1,n_2,\alpha}=\frac{1}{F_{n_2,n_1,1-\alpha}}$.

Els contrastos paramètrics amb R els estudiam a la lliçó 23 del manual.

Tipus de contrast i condicions								
Hip. nul·la	Condicions	Mostra	Hip. alt.	Cas				
$H_0: \mu_1 = \mu_2$ Cas independent	σ_1 i σ_2 conegudes.	Dues m.a.s. independents de mides n_1 i n_2	$H_1: \mu_1 \neq \mu_2$	I				
	Poblacions normals o n_1 i n_2 grans.		$H_1: \mu_1 < \mu_2$	II				
	_	mides W ₁ 1 W ₂	$H_1: \mu_1 > \mu_2$	III				
	σ_1 i σ_2 desconegudes i $\sigma_1 = \sigma_2$. Poblacions normals o n_1 i n_2 grans.	Dues m.a.s. independents de mides n_1 i n_2	$H_1: \mu_1 \neq \mu_2$	IV				
			$H_1: \mu_1 < \mu_2$	V				
		mides not the	$H_1: \mu_1 > \mu_2$	VI				
	σ_1 i σ_2 desconegudes i $\sigma_1 \neq \sigma_2$. Poblacions normals	Dues m.a.s. independents de mides n_1 i n_2	$H_1: \mu \neq \mu_2$	VII				
			$H_1: \mu_1 < \mu_2$	VIII				
	o n_1 i n_2 grans.	mides n ₁ 1 n ₂	$H_1: \mu_1 > \mu_2$	IX				
	Dues poblacions normals dependents o n gran. σ_d coneguda. (1)	Dues m.a.s.	$H_1: \mu_1 \neq \mu_2$	X				
		dependents de mida n	$H_1: \mu_1 < \mu_2$	XI				
$H_0: \mu_1 = \mu_2$ Cas dependent			$H_1: \mu_1 > \mu_2$	XII				
	$\sigma_d = 0$ Dues poblacions normals dependents. $\sigma_d = 0$ desconeguda.	Dues m.a.s. dependents de mida n	$H_1: \mu_1 \neq \mu_2$	XIII				
			$H_1: \mu_1 < \mu_2$	XIV				
			$H_1: \mu_1 > \mu_2$	XV				
	$\sigma_d = 0$ Dues poblacions dependents, $\sigma_d = 0$ desconeguda.	Dues m.a.s. dependents de mida n	$H_1: \mu_1 \neq \mu_2$	XVI				
			$H_1: \mu_1 < \mu_2$	XVII				
			$H_1: \mu_1 > \mu_2$	XVIII				
H m. — m.	Poblacions Bernoulli, n_1 i n_2 grans, molts èxits i fracasos.	Dues m.a.s. independents de	$H_1: p_1 \neq p_2$	XIX				
$ H_0: p_1 = p_2 $ Cas independent			$H_1: p_1 < p_2$	XX				
		mides n_1 i n_2	$H_1: p_1 > p_2$	XXI				
$H_0: p_a = p_d$	Poblacions Bernoulli, n_1 i n_2 grans, molts casos discordants.	Dues m.a.s. dependents de mida n	$H_1: p_a \neq p_b$	XXII				
$\begin{array}{c} H_0 : p_a = p_d \\ \text{Cas dependent} \end{array}$			$H_1: p_a < p_b$	XXIII				
			$H_1: p_a > p_b$	XXIV				
$H_0: \sigma_1^2 = \sigma_2^2$	Poblacions normals.	Dues m.a.s. independents de	$H_1:\sigma_1^2\neq\sigma_2^2$	XXV				
$H_0: \sigma_1 = \sigma_2$ Cas independent			$H_1: \sigma_1^2 < \sigma_2^2$	XXVI				
		mides n_1 i n_2	$H_1: \sigma_1^2 > \sigma_2^2$	XXVII				

⁽¹⁾ σ_d és la desviació típica de la variable $D=X_1-X_2.$

Detalls del test								
Cas	Estadístic	Regió crítica	Interval confiança	p-valor				
I	$Z = \frac{\overline{X}_1 - \overline{X}_2}{\widetilde{S}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\left]\overline{X}_{1}-\overline{X}_{2}-z_{1-\frac{\alpha}{2}}\widetilde{S},\overline{X}_{1}-\overline{X}_{2}+z_{1-\frac{\alpha}{2}}\widetilde{S}\right[$	$2P(Z \ge z)$				
II	és $N(0, \overset{s}{1})$	$\{Z{\le}z_{\alpha}\}$	$\left]-\infty, \overline{X}_1 - \overline{X}_2 - z_\alpha \widetilde{S}\right[$	$P(Z \leq z)$				
III	(vegeu (a))	$\{Z{\ge}z_{1-\alpha}\}$	$]\overline{X}_1 - \overline{X}_2 - z_{1-\alpha}\widetilde{S}, +\infty[$	$P(Z \ge z)$				
IV	$T = \frac{\overline{X}_1 - \overline{X}_2}{\widetilde{S}_1}$	$\{T{\leq}{-}t_{m,1-\frac{\alpha}{2}}\}{\cup}\{T{\geq}t_{m,1-\frac{\alpha}{2}}\}$	$\left] \overline{X}_1 - \overline{X}_2 - t_{m,1 - \frac{\alpha}{2}} \widetilde{S}_{1,2}, \overline{X}_1 - \overline{X}_2 + t_{m,1 - \frac{\alpha}{2}} \widetilde{S}_{1,2} \right[$	$2P(t_m> T)$				
V	és t_m	21,2		$P(t_m \leq T)$				
VI	(vegeu (b,c))	$\{T \ge t_{m,1-\alpha}\}$	$]\overline{X}_1 - \overline{X}_2 - t_{m,1-\alpha}\widetilde{S}_{1,2}, +\infty[$	$P(t_m \ge T)$				
VII	$T = \frac{\overline{X}_1 - \overline{X}_2}{\widetilde{S}_{1,2}}$	$\{T{\leq}{-}t_{f,1-\frac{\alpha}{2}}\}{\cup}\{T{\geq}t_{f,1-\frac{\alpha}{2}}\}$	$\left] \overline{X}_1 - \overline{X}_2 - t_{f,1 - \frac{\alpha}{2}} \widetilde{S}_{1,2}, \overline{X}_1 - \overline{X}_2 + t_{f,1 - \frac{\alpha}{2}} \widetilde{S}_{1,2} \right[$	$2P(t_f > T)$				
VIII	és t_f	$\{T \leq t_{f,\alpha}\}$	$\left]-\infty, \overline{X}_1 - \overline{X}_2 - t_{f,\alpha} \widetilde{S}_{1,2} \right[$	$P(t_f \leq T)$				
IX	(vegeu (d,e))	$\{T{\ge}t_{f,1-\alpha}\}$	$]\overline{X}_{1}-\overline{X}_{2}-t_{f,1-\alpha}\widetilde{S}_{1,2},+\infty[$	$P(t_f \ge T)$				
X	$Z = \frac{\overline{D}}{\underline{\sigma_D}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\left] \overline{D} - z_{1 - \frac{\alpha}{2}} \frac{\sigma_D}{\sqrt{n}}, \overline{D} + z_{1 - \frac{\alpha}{2}} \frac{\sigma_D}{\sqrt{n}} \right[$	$2P(Z \ge z)$				
XI	és $N(0,1)$	$\{Z{\le}z_{\alpha}\}$	$\left]-\infty,\overline{D}-z_{lpha}rac{\sigma_{D}}{\sqrt{n}} ight[$	$P(Z \leq z)$				
XII	(vegeu (f))	$\{Z{\ge}z_{1-\alpha}\}$	$]\overline{D}-z_{1-lpha}rac{\sigma_D}{\sqrt{n}},+\infty[$	$P(Z \ge z)$				
XIII	$T = \frac{\overline{D}}{\frac{\tilde{S}_D}{\sqrt{2}}}$	$\{T{\leq}{-}t_{n-1,1-\frac{\alpha}{2}}\}{\cup}\{T{\geq}t_{n-1,1-\frac{\alpha}{2}}\}$	$\boxed{\overline{D} - t_{n-1,1-\frac{\alpha}{2}} \frac{\widetilde{S}_D}{\sqrt{n}}, \overline{D} + t_{n-1,1-\frac{\alpha}{2}} \frac{\widetilde{S}_D}{\sqrt{n}}} $	$2P(t_{n-1}> T)$				
XIV	és t_{n-1}	$\{T \leq t_{n-1,\alpha}\}$	$\left]-\infty,\overline{D}-t_{n-1,lpha}rac{\widetilde{S}_{D}}{\sqrt{n}} ight[$	$P(t_{n-1} \leq T)$				
XV	(vegeu (f))	$\{T{\ge}t_{n-1,1-\alpha}\}$	$]\overline{D} - t_{n-1,1-\alpha} \frac{\sigma_D}{\sqrt{n}}, +\infty[$	$P(t_{n-1} \ge T)$				
XVI	$Z = \frac{\overline{D}}{\underline{\tilde{s}_{\underline{D}}}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\left[\overline{D} - z_{1-rac{lpha}{2}}rac{ ilde{S}_D}{\sqrt{n}}, \overline{D} + z_{1-rac{lpha}{2}}rac{ ilde{S}_D}{\sqrt{n}} ight[$	$2P(Z \ge z)$				
XVII	és $N(0,1)$	$\{Z{\le}z_{lpha}\}$	$\left] - \infty, \overline{D} - z_{lpha} rac{\widetilde{S}_D}{\sqrt{n}} ight[$	$p(Z \leq z)$				
XVIII	(vegeu (f))	$\{Z \ge z_{1-\alpha}\}$	$]\overline{D}-z_{1-lpha}\frac{\sigma_D}{\sqrt{n}},+\infty[$	$P(Z \ge z)$				
XIX	$Z = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\widehat{p}\widehat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$		$2P(Z{\ge} z)$				
XX	$\operatorname{\acute{e}s} N(0,1) \ \operatorname{(vegeu (g,h))}$	$\{Z{\le}z_\alpha\}$	$\left[-\infty, \widehat{p}_1 - \widehat{p}_2 - z_\alpha \sqrt{\widehat{p}\widehat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \right]$	$P(Z \leq z)$				
XXI	(Vegeu (g,n))	$\{Z \ge z_{1-\alpha}\}$	$\widehat{p}_1 - \widehat{p}_2 - z_{1-\alpha} \sqrt{\widehat{p}\widehat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, +\infty$	$P(Z \ge z)$				
XXII	$Z = \frac{\widehat{p}_{1 \bullet} - \widehat{p}_{\bullet 1}}{\sqrt{\frac{b+d}{n^2}}}$	$\{Z{\le}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\ge}z_{1-\frac{\alpha}{2}}\}$	$\begin{split} \Big] \widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}}, \\ \widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{b+d}{n^2}} \Big[\end{split}$	$2P(Z{\ge} z)$				
XXIII	$\begin{array}{c} \text{és } N(0,1) \\ \text{(vegeu (i))} \end{array}$	$\{Z{\le}z_{lpha}\}$	$\left]-\infty,\widehat{p}_{1\bullet}-\widehat{p}_{\bullet 1}-z_{\alpha}\sqrt{\frac{b+d}{n^{2}}}\right[$	$P(Z \leq z)$				
XXIV	(1/)	$\{Z \ge z_{1-\alpha}\}$	$\widehat{p}_{1\bullet} - \widehat{p}_{\bullet 1} - z_{1-\alpha} \sqrt{\frac{b+d}{n^2}}, +\infty$	$P(Z \ge z)$				
XXV	≈2	$\{F{\le}F_{n_1-1,n_2-1,\frac{\alpha}{2}}\}{\cup}$		$2\min\{P(F_{n_1-1,n_2-1} \leq F),$				
2121 V	$F = rac{\widetilde{S}_1^2}{\widetilde{S}_2^2}$	$\{F{\ge}F_{n_1-1,n_2-1,1-\frac{\alpha}{2}}\}$	$\frac{\tilde{s}_1^2}{\tilde{s}_2^2} F_{n_1 - 1, n_2 - 1, 1 - \frac{\alpha}{2}} \bigg[$	$P(F_{n_1-1,n_2-1} \ge F)$ }				
XXVI	és F_{n_1-1,n_2-1}	$\{F \leq F_{n_1-1,n_2-1,\alpha}\}$	$0, \tilde{\tilde{s}_{1}^{2}} F_{n_{1}-1, n_{2}-1, 1-\alpha} $	$P(F_{n_1-1,n_2-1} \leq F)$				
XXVII		$\{F{\ge}F_{n_1-1,n_2-1,1-\alpha}\}$	$\left] \begin{array}{l} \widetilde{S}_1^2 \\ \overline{\widetilde{S}}_2^2 F_{n_1-1,n_2-1,\alpha}, +\infty \end{array} \right[$	$P(F_{n_1-1,n_2-1} \ge F)$				

(a)
$$\widetilde{S} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

(b)
$$\widetilde{S}_{1,2} = \sqrt{\frac{(n_1 - 1)\widetilde{S}_1^2 + (n_2 - 1)\widetilde{S}_2^2}{n_1 + n_2 - 2} \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

(c)
$$m = n_1 + n_2 - 2$$

(d)
$$\tilde{S}_{1,2} = \sqrt{\frac{\tilde{S}_1^2}{n_1} + \frac{\tilde{S}_2^2}{n_2}}$$

(e)
$$f = \left[\frac{\left(\frac{\tilde{S}_1^2}{n_1} + \frac{\tilde{S}_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{\tilde{S}_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{\tilde{S}_2^2}{n_2}\right)^2} \right] - 2$$

(f) \overline{D} i \widetilde{S}_D són la mitjana i la desvació típica mostrals de $D=X_1-X_2$

(g)
$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

(h)
$$\hat{q} = 1 - \hat{p}$$

(i) Per fer el contrast, hem de construir la taula següent:

		Mostra després			
		Èxit	Fracàs	Freqüència	Proporció
	Èxit	a	b	a+b	$\widehat{p}_{1\bullet} = \frac{a+b}{n}$
Mostra	Fracàs	d	c	c+d	$\widehat{p}_{2\bullet} = \frac{c+d}{n}$
abans	Freqüència	a+d	b+c	n	
	Proporció	$\widehat{p}_{\bullet 1} = \frac{a+d}{n}$	$\widehat{p}_{\bullet 2} = \frac{b+c}{n}$		1

Aleshores, l'estadístic de contrast també es pot escriure

$$Z = \frac{\frac{b}{n} - \frac{d}{n}}{\sqrt{\frac{b+d}{n^2}}}$$