Guida Completa ai Comandi R per l'Analisi Esplorativa dei Dati

Basato sulla dispensa di Nicola Torelli

$17~{\rm giugno}~2025$

Indice

1	Introduzione	3
2	Caricamento di Dati e Pacchetti 2.1 Caricamento di Pacchetti	
3	Esplorazione Iniziale dei Dati 3.1 Struttura e Dimensioni	3
4	Tabelle di Frequenza4.1 Tabelle Semplici4.2 Tabelle a Doppia Entrata	
5	Grafici per Variabili Categoriali 5.1 Diagramma a Torta	4
6	Grafici per Variabili Quantitative 6.1 Diagramma Ramo e Foglie	
7	Indici Numerici7.1 Indici di Tendenza Centrale7.2 Indici di Dispersione7.3 Indici di Forma	7
8	Gestione dei Dati Mancanti 8.1 Identificazione e Conteggio	

9	9.1 Trasformazioni Quantitative	
10	Analisi Bivariata 10.1 Due Variabili Categoriali	9
11	Regressione Lineare 11.1 Regressione Semplice	10
12	Analisi Multivariata 12.1 Matrici di Correlazione	
13	Analisi di Raggruppamento (Clustering) 13.1 Calcolo delle Distanze	12 12
14	Grafici con ggplot2 14.1 Grafici Base	
15	Test Statistici 15.1 Test per Variabili Categoriali	
16	Q-Q Plot e Test di Normalità	14
17	Lisciamento e Densità	14
18	Parametri Grafici 18.1 Controllo della Finestra Grafica	15 15 15
19	Funzioni Utili 19.1 Manipolazione Dati	15 15 16
20	Esempio Completo: Analisi Esplorativa	17
21	Risoluzione Problemi Comuni 21.1 Errori Frequenti	18
22	Risorse Aggiuntive	18

1 Introduzione

Questa guida raccoglie tutti i comandi R presenti nel corso di "Analisi dei dati - Introduzione all'analisi esplorativa dei dati con R", organizzati per argomento con spiegazioni dettagliate ed esempi pratici.

2 Caricamento di Dati e Pacchetti

2.1 Caricamento di Pacchetti

```
# Caricamento di pacchetti essenziali
library(MASS)  # Contiene dataset e funzioni statistiche
library(insuranceData)  # Dataset assicurativi
library(lattice)  # Grafici a pannelli multipli
library(ggplot2)  # Grafici avanzati
library(cluster)  # Analisi di raggruppamento
library(moments)  # Calcolo di asimmetria e curtosi
```

2.2 Caricamento di Dataset

```
# Caricamento di dataset incorporati
data(Cars93)  # Dataset automobili
data(AutoBi)  # Dataset sinistri assicurativi
data(iris)  # Dataset fiori di iris
data(eurodist)  # Distanze tra citt europee

# Lettura da file CSV
dati <- read.csv("nomefile.csv", header=TRUE, sep=",")</pre>
```

Nota Importante

Il parametro header=TRUE indica che la prima riga contiene i nomi delle variabili. Il parametro sep="," specifica il separatore dei campi.

3 Esplorazione Iniziale dei Dati

3.1 Struttura e Dimensioni

```
# Struttura del dataset
str(Cars93)
                       # Mostra struttura e tipi di variabili
 dim(Cars93)
                        # Dimensioni: righe x colonne
nrow(Cars93)
                        # Numero di righe
 ncol(Cars93)
                        # Numero di colonne
names (Cars93)
                       # Nomi delle variabili
7 head (Cars93)
                        # Prime 6 righe
8 tail(Cars93)
                        # Ultime 6 righe
9 head(Cars93, n=10) # Prime 10 righe
```

3.2 Riassunti Descrittivi

```
# Riassunto generale
summary(Cars93)  # Riassunto per tutte le variabili

# Per variabili quantitative
summary(Cars93$Price)  # Riassunto per singola variabile
mean(Cars93$Price)  # Media
median(Cars93$Price)  # Mediana
var(Cars93$Price)  # Varianza
sd(Cars93$Price)  # Deviazione standard
```

4 Tabelle di Frequenza

4.1 Tabelle Semplici

```
# Tabella di frequenze assolute
table(AutoBi$ATTORNEY)

# Tabella di frequenze relative
prop.table(table(AutoBi$ATTORNEY))

# Tabella con valori mancanti
table(AutoBi$MARITAL, useNA="ifany")
```

4.2 Tabelle a Doppia Entrata

```
# Tabella di contingenza
tab1 <- table(AutoBi$ATTORNEY, AutoBi$CLMSEX)
tab1

# Frequenze relative per riga
prop.table(tab1, 1)

# Frequenze relative per colonna
prop.table(tab1, 2)

# Frequenze relative sul totale
prop.table(tab1)</pre>
```

5 Grafici per Variabili Categoriali

5.1 Diagramma a Torta

```
# Diagramma a torta semplice
tabtipo <- table(Cars93$Type)</pre>
```

```
pie(tabtipo)

# Con personalizzazioni
pie(tabtipo, main="Distribuzione per Tipo di Auto")
```

Nota Importante

Il diagramma a torta è sconsigliato per l'analisi dei dati. È preferibile usare il diagramma a barre.

5.2 Diagramma a Barre

```
# Diagramma a barre semplice
maritab <- table(AutoBi$MARITAL)</pre>
  barplot(maritab)
  # Con personalizzazioni
  barplot(maritab,
          main="Stato Civile",
          names.arg=c("sposato", "single", "vedovo", "divorziato"),
8
          col="blue")
9
10
  # Barre affiancate per confronti
11
  barplot(table(AutoBi$ATTORNEY, AutoBi$CLMSEX),
12
          beside=TRUE,
13
          legend=TRUE)
14
15
 # Barre sovrapposte
barplot(prop.table(table(AutoBi$ATTORNEY, AutoBi$LOSSclass), 2),
          legend=TRUE)
18
```

6 Grafici per Variabili Quantitative

6.1 Diagramma Ramo e Foglie

```
# Stem-and-leaf plot
stem(Cars93$Length)
```

6.2 Diagramma a Punti

```
# Stripchart
stripchart(Cars93$Length, pch=19, method="stack", cex=1.2)

# Dotchart
dotchart(Cars93$Length)

# Plot semplice (mostra indice vs valore)
```

```
plot(Cars93$Length)
```

6.3 Istogramma

```
# Istogramma base
  hist(Cars93$Length)
  # Istogramma con densit
  hist(Cars93$Length, prob=TRUE)
  # Personalizzazioni
  hist(Cars93$Length,
       prob=TRUE,
9
       breaks=12,
       main="Distribuzione Lunghezza Auto",
11
       xlab="Lunghezza (pollici)",
12
       col="lightblue")
13
  # Con classi personalizzate
15
  hist (Cars93$Length,
16
       breaks=c(140,160,170,180,190,200,220),
17
       prob=TRUE)
18
```

6.4 Box Plot

```
# Box plot semplice
  boxplot(Cars93$Length)
2
  # Box plot orizzontale
  boxplot(Cars93$Length, horizontal=TRUE)
  # Box plot multipli
  boxplot(Sepal.Length ~ Species, data=iris)
9
  # Con personalizzazioni
10
  boxplot(Sepal.Length ~ Species,
          data=iris,
12
          main="Lunghezza Sepali per Specie",
13
          xlab="Specie",
14
          ylab="Lunghezza Sepalo",
15
           col=c("red", "green", "blue"))
```

6.5 Funzione di Ripartizione Empirica

```
# Funzione di ripartizione empirica
plot(ecdf(Cars93$Length))

# Con personalizzazioni
```

7 Indici Numerici

7.1 Indici di Tendenza Centrale

```
# Media aritmetica
  mean(AutoBi$LOSS, na.rm=TRUE)
 # Media sfrondata (trimmed)
 mean(AutoBi$LOSS, na.rm=TRUE, trim=0.05)
  # Mediana
8 median(AutoBi$LOSS, na.rm=TRUE)
 # Quantili
  quantile(AutoBi$LOSS, na.rm=TRUE)
                                                         # Quartili
  quantile(AutoBi$LOSS, probs=seq(0,1,0.1), na.rm=TRUE) # Decili
12
  quantile(AutoBi$LOSS, probs=0.5, na.rm=TRUE)
13
14
 # Riassunto dei 5 numeri
  fivenum(AutoBi$LOSS)
```

7.2 Indici di Dispersione

```
# Varianza
var(AutoBi$LOSS, na.rm=TRUE)

# Deviazione standard
sd(AutoBi$LOSS, na.rm=TRUE)

# Scarto interquartile
Q1 <- quantile(AutoBi$LOSS, 0.25, na.rm=TRUE)
Q3 <- quantile(AutoBi$LOSS, 0.75, na.rm=TRUE)
SI <- Q3 - Q1

# MAD (Median Absolute Deviation)
mad(AutoBi$LOSS, constant=1, na.rm=TRUE)</pre>
```

7.3 Indici di Forma

```
# Asimmetria (skewness) - richiede library(moments)
library(moments)
skewness(AutoBi$CLMAGE, na.rm=TRUE)
```

```
# Curtosi - richiede library(moments)
kurtosis(AutoBi$CLMAGE, na.rm=TRUE)

# Indice di Galton (basato sui quartili)
Qloss <- fivenum(AutoBi$LOSS)
galton <- (Qloss[4] + Qloss[2] - 2*Qloss[3]) / (Qloss[4] - Qloss
[2])
```

8 Gestione dei Dati Mancanti

8.1 Identificazione e Conteggio

```
# Verifica presenza di NA
is.na(AutoBi$CLMAGE)  # Vettore logico
anyNA(AutoBi$CLMAGE)  # TRUE se ci sono NA
sum(is.na(AutoBi$CLMAGE))  # Conteggio NA

# Rimozione casi con NA
AutoBi_complete <- na.omit(AutoBi)  # Rimuove righe con NA
anyNA(AutoBi_complete)  # Verifica</pre>
```

8.2 Gestione Parametrica

```
# Molte funzioni hanno il parametro na.rm
mean(AutoBi$CLMAGE, na.rm=TRUE)
var(AutoBi$CLMAGE, na.rm=TRUE)
sd(AutoBi$CLMAGE, na.rm=TRUE)
```

9 Trasformazioni delle Variabili

9.1 Trasformazioni Quantitative

```
# Standardizzazione
AutoBi$LOSS_std <- scale(AutoBi$LOSS)

# Trasformazione logaritmica
AutoBi$LOSS_log <- log(AutoBi$LOSS)

# Radice quadrata
AutoBi$LOSS_sqrt <- sqrt(AutoBi$LOSS)

# Normalizzazione min-max
AutoBi$LOSS_norm <- (AutoBi$LOSS - min(AutoBi$LOSS, na.rm=TRUE))
/ (max(AutoBi$LOSS, na.rm=TRUE) - min(AutoBi$
LOSS, na.rm=TRUE))</pre>
```

9.2 Trasformazioni Categoriali

10 Analisi Biyariata

10.1 Due Variabili Categoriali

```
# Tabella di contingenza
tab <- table(AutoBi$ATTORNEY, AutoBi$CLMSEX)

# Test Chi-quadrato
chisq.test(tab)
chisq.test(tab, correct=FALSE) # Senza correzione di continuit

# Odds ratio (per tabelle 2x2)
OR <- (tab[1,1] * tab[2,2]) / (tab[1,2] * tab[2,1])
LOR <- log(OR) # Log odds ratio</pre>
```

10.2 Variabile Quantitativa per Gruppi

10.3 Due Variabili Quantitative

11 Regressione Lineare

11.1 Regressione Semplice

```
# Modello di regressione semplice
modello <- lm(Gas ~ Temp, data=whiteside)</pre>
summary(modello)
5 # Coefficienti
6 coef (modello)
                                     # Tutti i coefficienti
7 modello$coefficients[1]
                                     # Intercetta
8 modello$coefficients[2]
                                    # Coefficiente angolare
10 # Valori predetti e residui
  yhat <- fitted(modello)</pre>
                                     # Valori predetti
  residui <- residuals(modello)</pre>
                                   # Residui
14 # Aggiungere la retta al grafico
plot(whiteside$Temp, whiteside$Gas)
abline (modello, col="red")
```

11.2 Regressione Multipla

```
# Modello con pi variabili
modello_mult <- lm(Gas ~ Temp + Insul, data=whiteside)
summary(modello_mult)

# Modello con interazione
modello_int <- lm(Gas ~ Temp + Insul + Temp:Insul, data=whiteside
)

# Equivalente a:
modello_int <- lm(Gas ~ Temp * Insul, data=whiteside)

# Selezione automatica (stepwise)
modello_step <- step(modello_mult, direction="both")</pre>
```

11.3 Diagnostiche del Modello

```
# Grafici diagnostici
par(mfrow=c(2,2))
plot(modello) # 4 grafici standard
par(mfrow=c(1,1))

# Grafici specifici
plot(modello, which=1) # Residui vs Fitted
plot(modello, which=2) # Q-Q plot
plot(modello, which=3) # Scale-Location
plot(modello, which=4) # Cook's distance
```

12 Analisi Multivariata

12.1 Matrici di Correlazione

```
# Matrice di correlazione
matrice_cor <- cor(iris[,-5]) # Esclude variabile categoriale
matrice_cor

# Matrice di covarianza
matrice_cov <- cov(iris[,-5])

# Visualizzazione matrice correlazioni (richiede ggcorrplot)
library(ggcorrplot)
ggcorrplot(matrice_cor, type="lower", lab=TRUE)</pre>
```

12.2 Grafici Multipli

```
# Matrice di scatterplot
pairs(iris[,-5])

# Con ggplot2 esteso (richiede GGally)
bibrary(GGally)
ggpairs(iris)

# Grafici con lattice
bibrary(lattice)
histogram(~ Sepal.Length | Species, data=iris, layout=c(1,3))
densityplot(~ Sepal.Length | Species, data=iris, layout=c(1,3))
```

13 Analisi di Raggruppamento (Clustering)

13.1 Calcolo delle Distanze

```
# Distanze euclidee
dist_euclidea <- dist(iris[,-5])
dist_euclidea <- daisy(iris[,-5])

# Distanze con standardizzazione
dist_std <- daisy(iris[,-5], stand=TRUE)

# Distanza di Gower (per dati misti)
dist_gower <- daisy(iris, metric="gower")</pre>
```

13.2 K-means

```
# Clustering K-means
2 set.seed (123)
  km_result <- kmeans(iris[,-5], centers=3, nstart=20)</pre>
5 # Risultati
  km_result$cluster
                          # Assegnazione ai cluster
  km_result$centers
                         # Centroidi
                          # Dimensione dei cluster
  km_result$size
8
 # Visualizzazione
  plot(iris$Sepal.Length, iris$Petal.Length,
11
       col=km_result$cluster, pch=19)
12
13
# Confronto con classificazione vera
table(km_result$cluster, iris$Species)
```

13.3 Clustering Gerarchico

```
# Clustering gerarchico agglomerativo
library(cluster)
hc_result <- agnes(iris[,-5], method="ward")

# Dendrogramma
pltree(hc_result, hang=-1, cex=0.8)

# Taglio del dendrogramma
cluster_labels <- cutree(hc_result, k=3)

# Aggiungere rettangoli al dendrogramma
rect.hclust(hc_result, k=3, border="red")</pre>
```

13.4 PAM (Partitioning Around Medoids)

```
# Clustering PAM
pam_result <- pam(iris[,-5], k=3)
```

```
# Medoidi
pam_result$medoids

full Grafico silhouette
plot(pam_result, which=2) # Silhouette plot
```

14 Grafici con ggplot2

14.1 Grafici Base

```
library(ggplot2)
 # Scatterplot
  ggplot(iris, aes(x=Sepal.Length, y=Petal.Length)) +
    geom_point()
6
  # Con colori per gruppi
  ggplot(iris, aes(x=Sepal.Length, y=Petal.Length, color=Species))
    geom_point()
9
 # Istogramma
11
  ggplot(iris, aes(x=Sepal.Length)) +
12
    geom_histogram(bins=20)
14
# Box plot
ggplot(iris, aes(x=Species, y=Sepal.Length)) +
    geom_boxplot()
```

14.2 Grafici Avanzati

```
# Con linea di tendenza
  ggplot(iris, aes(x=Sepal.Length, y=Petal.Length)) +
    geom_point() +
    geom_smooth(method="lm")
4
  # Curve loess per gruppi
  ggplot(iris, aes(x=Sepal.Length, y=Petal.Length, color=Species))
    geom_point() +
8
    geom_smooth(se=FALSE)
9
  # Faceting (pannelli multipli)
11
  ggplot(iris, aes(x=Sepal.Length, y=Petal.Length)) +
    geom_point() +
13
    facet_wrap(~Species)
14
```

15 Test Statistici

15.1 Test per Variabili Categoriali

```
# Test Chi-quadrato
chisq.test(table(AutoBi$ATTORNEY, AutoBi$CLMSEX))

# Test esatto di Fisher (per tabelle 2x2)
fisher.test(table(AutoBi$ATTORNEY, AutoBi$CLMSEX))
```

15.2 Test per Variabili Quantitative

16 Q-Q Plot e Test di Normalità

17 Lisciamento e Densità

```
# Stima della densit con metodo del nucleo
densita <- density(iris$Sepal.Length)
plot(densita)

# Sovrapposizione a istogramma
hist(iris$Sepal.Length, prob=TRUE)
lines(density(iris$Sepal.Length), col="red", lwd=2)</pre>
```

```
# Regressione liscia (lowess/loess)
plot(Cars93$Weight, Cars93$MPG.city)
lines(lowess(Cars93$Weight, Cars93$MPG.city), col="red")
```

18 Parametri Grafici

18.1 Controllo della Finestra Grafica

```
# Divisione della finestra grafica
par(mfrow=c(2,2)) # 2x2 pannelli
par(mfrow=c(1,2)) # 1x2 pannelli
par(mfrow=c(1,1)) # Torna a singolo pannello

# Margini
par(mar=c(4,4,2,1)) # bottom, left, top, right
```

18.2 Personalizzazione Grafica

```
# Simboli e colori
plot(x, y, pch=19)
                               # Punto pieno
g plot(x, y, pch=1)
                               # Cerchio vuoto
plot(x, y, col="red")
                               # Colore rosso
  plot(x, y, col=2)
                               # Colore rosso (numero)
                               # Dimensione simboli
  plot(x, y, cex=1.5)
8 # Linee
 plot(x, y, type="1")
                              # Solo linee
plot(x, y, type="b")
                               # Punti e linee
plot(x, y, type="o")
                              # Punti sovrapposti alle linee
12 lines(x, y, lwd=2)
                              # Spessore linea
13 lines(x, y, lty=2)
                              # Tipo linea (tratteggiata)
14
# Etichette e titoli
plot(x, y, main="Titolo", xlab="Asse X", ylab="Asse Y")
17
 # Aggiungere elementi
  abline(h=0)
                               # Linea orizzontale
19
  abline(v=0)
                               # Linea verticale
21 abline(a, b)
                               # Retta con intercetta a e pendenza
text(x, y, "etichetta")
                               # Testo
  legend("topright", legend=c("A", "B"), col=c(1,2), pch=c(1,2))
```

19 Funzioni Utili

19.1 Manipolazione Dati

```
# Selezione di subset
subset_data <- subset(iris, Species == "setosa")
subset_data <- iris[iris$Species == "setosa", ]

# Ordinamento
iris_ordinato <- iris[order(iris$Sepal.Length), ]

# Funzioni apply
apply(iris[,1:4], 2, mean) # Media per colonna
sapply(iris[,1:4], mean) # Stesso risultato, output
semplificato</pre>
```

19.2 Controllo e Debug

20 Esempio Completo: Analisi Esplorativa

```
Esempio
 # Esempio completo di analisi esplorativa
2 # 1. Caricamento dati
 data(iris)
 # 2. Esplorazione iniziale
 str(iris)
 summary(iris)
9 # 3. Analisi univariata
 # Variabile quantitativa
 hist(iris$Sepal.Length, prob=TRUE, main="Distribuzione")
    Lunghezza Sepalo")
 lines(density(iris$Sepal.Length), col="red", lwd=2)
 # Statistiche descrittive
 mean(iris$Sepal.Length)
sd(iris$Sepal.Length)
 quantile(iris$Sepal.Length)
# Variabile categoriale
table(iris$Species)
barplot(table(iris$Species), main="Distribuzione Specie")
23 # 4. Analisi bivariata
# Quantitativa vs Categoriale
boxplot(Sepal.Length ~ Species, data=iris)
summary(aov(Sepal.Length ~ Species, data=iris))
🛚 # Quantitativa vs Quantitativa
plot(iris$Sepal.Length, iris$Petal.Length)
cor(iris$Sepal.Length, iris$Petal.Length)
32 # Regressione
modello <- lm(Petal.Length ~ Sepal.Length, data=iris)
summary (modello)
abline(modello, col="red")
 # 5. Analisi multivariata
pairs(iris[,-5])
 cor(iris[,-5])
# Clustering
km \leftarrow kmeans(iris[,-5], 3)
 table(km$cluster, iris$Species)
```

21 Risoluzione Problemi Comuni

21.1 Errori Frequenti

Nota Importante

Errore: "object not found"

Soluzione: Verificare che il dataset sia caricato e i nomi delle variabili siano

corretti.

Errore: "missing values"

Soluzione: Aggiungere na.rm=TRUE alle funzioni o rimuovere i dati mancanti.

Errore: Grafici non visualizzati

Soluzione: Controllare le impostazioni grafiche con par() e assicurarsi che i

dispositivi grafici siano aperti.

22 Risorse Aggiuntive

• Help in R: ?nome_funzione o help(nome_funzione)

• Esempi: example(nome_funzione)

• Vignette: vignette(package="nome_pacchetto")

• Ricerca: ??termine_ricerca