

### Vorlesung: Statistik I

Prof. Dr. Simone Abendschön

10. Vorlesung am 11.01.24: Fortsetzung bivariate Zusammenhänge, metrisch skalierte Merkmale (Pearson's r)

- Zusammenhänge zwischen (pseudo-)metrischen Merkmalen
  - Allgemein
  - Hypothesen
  - Grafische Veranschaulichung
  - Zusammenhangsmaß Pearson's r

#### ...berechnen

| Messniveau | nominal                                            | ordinal                                      | metrisch                                           |
|------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|
| nominal    | Chi-Quadrat,<br>Cramer's V<br>Lambda<br>C          | Cramer's V<br>Lambda<br>C                    | Eta-Koeffizient<br>Mittelwertvergleich<br>(t-test) |
| ordinal    | Cramer's V<br>Lambda<br>C                          | Spearman's Rho;<br>(Kendalls Tau B<br>gamma  | Spearman's Rho;<br>(Kendalls Tau B)<br>gamma       |
| metrisch   | Eta-Koeffizient<br>Mittelwertvergleich<br>(t-test) | Spearman's Rho;<br>(Kendalls Tau B)<br>gamma | Pearson's r                                        |

#### ...darstellen

| Messniveau | nominal      | ordinal      | metrisch              |
|------------|--------------|--------------|-----------------------|
| nominal    | Kreuztabelle | Kreuztabelle | (gruppierte) Boxplots |
| ordinal    |              | Kreuztabelle | (gruppierte) Boxplots |
| metrisch   |              |              | Streudiagramm         |

## Zusammenhangsmaße

- Maße zur Berechnung, ob und wie stark zwei Merkmale miteinander statistisch zusammenhängen oder "korrelieren"
- Bei ordinal- und metrisch skalierten Maßen auch Aussagen über die Richtung des Zusammenhangs möglich (positiv oder negativ)
- Pearson's r als Zusammenhangsmaß für zwei metrisch skalierte Merkmale (Korrelationskoeffizient)

## **Allgemein**

# Folgende Fragen stellen sich bei der statistischen Analyse von Merkmalszusammenhängen:

- Wie lässt sich die Form des Zusammenhangs zwischen X und Y beschreiben?
- Welche Richtung hat der Zusammenhang zwischen X und Y, d.h. ist er negativ oder positiv?
- Welche Stärke hat der Zusammenhang zwischen X und Y?
- (Lässt sich der in der Stichprobe ermittelte Zusammenhang auf die Population übertragen? → Inferenzstatik → nächstes Semester)

## Zusammenhangsmaße

- Quantifizierung des Zusammenhangs durch Korrelationskoeffizienten
- Positive Korrelation:
  - Hohe Werte in der einen Variablen gehen mit hohen Werten in der anderen Variablen einher
  - Niedrige Werte in der einen gehen mit niedrigen Werten in der anderen Variablen einher

#### Negative Korrelation:

- Hohe (niedrige) Werte in der einen Variablen gehen mit niedrigen (hohen) Werten in der anderen Variablen einher
- Ggfs. auch kein Zusammenhang (Korrelation um 0)

# Zusammenhangsmaße

### Wann ist ein Messwert "hoch"? Wann ist ein Messwert "niedrig"?

- Vergleich anhand des arithmetischen Mittels der jeweiligen Variablen
  - Hohe Messwerte entsprechen Werten über dem arithmetischen Mittel
  - Niedrige Messwerte entsprechen Werten unter arithmet. Mittel

Stärke des Zusammenhangs zwischen zwei metrischen Variablen ergibt sich unter Berücksichtigung der Abweichung der Messwerte vom jeweiligen arithmetischen Mittel

# In der quantitativen Sozialforschung entwickeln wir Hypothesen, die Zusammenhänge zwischen (mind.) 2 Merkmalen postulieren

### Zusammenhangshypothesen

Beispiel: Je geringer der soziale Status desto schlechter der Gesundheitszustand im Rentenalter -> linearer Zusammenhang

### Unterschiedshypothesen

Beispiel: Rentner\*innen mit hohem sozialen Status haben einen besseren Gesundheitszustand als Rentner\*innen mit niedrigem sozialen Status

Korrelationen

 Eine lineare Korrelation beschreibt einen linearen Zusammenhang zwischen zwei Variablen

- D.h. eine Veränderung von X geht mit einer dazu proportionalen Veränderung von Y einher
  - Beispiel: Je größer eine Person ist, desto schwerer ist sie (pro cm mehr Größe, bestimmte Grammzahl mehr)
- Korrelation trifft keine Aussage zur Kausalität
- Korrelationsanalyse misst nur, ob sich zwei Merkmale im Gleichklang bewegen

10

- Bi- (und multi-)variate Analysen, um Zusammenhänge zwischen Merkmalen zu untersuchen
- Bei metrisch skalierten Daten:
  - Korrelationsanalyse (Pearson's r)
  - zunächst bietet sich eine grafische Darstellung an:
     Streudiagramm (auch Punktwolkendiagramm, Scatterplot)

- Zusammenhänge zwischen (pseudo-)metrischen Merkmalen
  - Allgemein
  - Hypothesen
  - Grafische Veranschaulichung
  - Zusammenhangsmaß Pearson's r

Zusammenhangshypothese: "Je intelligenter eine Person ist, desto kreativer ist sie auch."

Zusammenhangshypothese: "Je intelligenter eine Person ist, desto kreativer ist sie auch".



# **Beispiel 2: Streudiagramm**

# Zusammenhangshypothese (S. Lehrbrief S. 63/64): "Je intelligenter eine Person ist, desto besser kann sie auch räumlich denken"

Tabelle 34: IQ und Testergebnis beim räumlichen Denken – Urliste

| ID | IQ  | Testergebnis |
|----|-----|--------------|
| 1  | 104 | 98           |
| 2  | 90  | 80           |
| 3  | 103 | 85           |
| 4  | 115 | 99           |
| 5  | 105 | 95           |
| 6  | 118 | 106          |
| 7  | 109 | 100          |
| 8  | 95  | 88           |

Quelle: Eigene Darstellung

## Beispiel 2: Streudiagramm

# Zusammenhangshypothese (S. Lehrbrief S. 63/64): "Je intelligenter eine Person ist, desto besser kann sie auch räumlich denken."

Abbildung 13: IQ und Testergebnis beim räumlichen Denken – Streudiagramm



Quelle: Eigene Darstellung

Zusammenhangshypothese: "Je größer man ist, desto schwerer ist man auch." (Streudiagramm erstellt auf Basis des Allbus 2016)





Zusammenhangshypothese: "Je mehr Alkohol man trinkt, desto schlechter fährt man Auto."



Zusammenhangshypothese: "Je älter ein Auto ist, desto niedriger sein Verkaufswert" – negativer Zusammenhang





Matthias Quent @Matthias\_Quent · 12. Dez. 2020

000

Hängen #AfD-Hochburgen und hohe #Coronazahlen zusammen?

@plateauton @Tagesspiegel hat unsere Berechnungen @IDZ\_Jena überprüft und ausgeweitet. Die Ergebnisse bestätigen die Korrelation.

interaktiv.tagesspiegel.de/lab/hotspots-u... via @tagesspiegel



Hängen AfD-Hochburgen und hohe Coronazahlen zusammen? Eine Analyse legt nahe, dass in Landkreisen mit großer AfD-Wählerschaft auch die Fallzahlen höher sind. Was ist dran? Wir rechnen nach. Ø interaktiv.tagesspiegel.de



https://interaktiv.tagesspiegel.de/lab/hotspots-und-rechte-haengen-afd-hochburgen-



https://interaktiv.tagesspiegel.de/lab/hotspots-und-rechte-haengen-afd-hochburgen-

11.01.2024

# Weitere Streudiagramme und "Zusammenhänge"



Quelle: Eigene Darstellung



- Zusammenhänge zwischen (pseudo-)metrischen Merkmalen
  - Allgemein
  - Hypothesen
  - Grafische Veranschaulichung
  - Zusammenhangsmaß Pearson's r

### Pearson's r

- Auch Bravais-Pearson Produktkorrelation
- Berechnet die Stärke des linearen Zusammenhangs zwischen zwei (pseudo-)metrisch skalierten Variablen
- Zwischenschritt zur Berechnung: Kovarianz

## **Kovarianz - Berechnung**

#### Kovarianz beschreibt die gemeinsame Streuung zweier Merkmale:

- 1) Abweichung vom Mittelwert für jedes Messwertepaar bestimmen
- 2) Gemeinsame Abweichung beider Messwerte von ihren Mittelwerten durch Multiplikation berechnen
- 3) Berechnung der Summe der Abweichungsprodukte
- 4) Berechnung des durchschnittlichen Abweichungsprodukt (mittels Division durch n)

cov (x,y) = 
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{n}$$

Wiederholung Varianz 
$$\sigma^2 = \frac{1}{n} * \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$

### **Kovarianz**

- hoch positiv, wenn hohe positive Abweichungen mit hohen positiven Abweichungen einhergehen bzw. hohe negative Abweichungen mit hohen negativen Abweichungen
- hoch negativ, wenn hohe positive Abweichungen mit hohen negativen Abweichungen einhergehen und umgekehrt.
- gleich null, wenn die Richtung der Abweichungen vom Mittelwert in X nicht systematisch mit einer bestimmten Richtung der Abweichungen vom Mittelwert in Y einhergeht.

### Kovarianz

- Aber: unstandardisiertes Maß, Größe ist abhängig von den jeweiligen Maßeinheiten der beiden Merkmale
- Vergleich zwischen Kovarianzen wird erschwert
- → Standardisierung durch Korrelationskoeffizienten Pearson's r anhand der Division durch das Produkt der Standardabweichungen beider Merkmale

### Pearson's r

Pearson's r entspricht der anhand des Produkts der Standardabweichungen standardisierten Kovarianz

$$r = \frac{cov(x;y)}{s_x * s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) * (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 * \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- Wertebereich von -1 bis +1,
- Vorzeichen zeigt Richtung der Korrelation an, Betrag die Stärke des Zusammenhanges
  - Negatives Vorzeichen: negativer Zusammenhang
  - Positives Vorzeichen: positiver Zusammenhang

# Interpretation Pearson's r - Faustregel

Tabelle 36: Interpretation von Pearson's r

| Korrelationskoeffizient ( r ) | Interpretation             |
|-------------------------------|----------------------------|
| ≤ 0,05                        | kein Zusammenhang          |
| $> 0.05 \text{ bis} \le 0.20$ | schwacher Zusammenhang     |
| $> 0.20 \text{ bis} \le 0.50$ | mittelstarker Zusammenhang |
| $> 0.50 \text{ bis} \le 0.70$ | starker Zusammenhang       |
| > 0,70                        | sehr starker Zusammenhang  |

Quelle: Eigene Darstellung

Aber: Die Beurteilung der Höhe einer Korrelation hängt immer von der zugrunde liegenden Fragestellung ab!



|                  | X    | Υ  |
|------------------|------|----|
|                  | 1    | 5  |
|                  | 2    | 7  |
|                  | 2    | 7  |
|                  | 3    | 9  |
|                  | 4    | 11 |
|                  | 6    | 15 |
|                  | 6    | 15 |
|                  | 8    | 19 |
| <i>M</i> =       | 4    | 11 |
| S <sup>2</sup> = | 5,25 | 21 |



|                  | X    | Υ  |
|------------------|------|----|
|                  | 1    | 5  |
|                  | 2    | 7  |
|                  | 2    | 7  |
|                  | 3    | 9  |
|                  | 4    | 11 |
|                  | 6    | 15 |
|                  | 6    | 15 |
|                  | 8    | 19 |
| M =              | 4    | 11 |
| S <sup>2</sup> = | 5,25 | 21 |

34



| X    | Y                                    |
|------|--------------------------------------|
| 1    | 5                                    |
| 2    | 7                                    |
| 2    | 7                                    |
| 3    | 9                                    |
| 4    | 11                                   |
| 6    | 15                                   |
| 6    | 15                                   |
| 8    | 19                                   |
| 4    | 11                                   |
| 5,25 | 21                                   |
|      | 2<br>2<br>3<br>4<br>6<br>6<br>8<br>4 |

## Pearson's r: Schritt für Schritt



|                  | 2    | 1  |
|------------------|------|----|
|                  | 2    | 7  |
|                  | 3    | 9  |
|                  | 4    | 11 |
|                  | 6    | 15 |
|                  | 6    | 15 |
|                  | 8    | 19 |
| <i>M</i> =       | 4    | 11 |
| S <sup>2</sup> = | 5,25 | 21 |
|                  |      |    |

Wann ist der Zusammenhang zwischen zwei Variablen X und Y positiv?

## Pearson's r: Schritt für Schritt



Zusammenhang X und Y dann positiv, wenn x-Werte> $\bar{x}$  mit y-Werte > $\bar{y}$  einhergehen (und umgekehrt)



|                      | X    | Υ  |
|----------------------|------|----|
|                      | 1    | 18 |
|                      | 2    | 16 |
|                      | 2    | 16 |
|                      | 3    | 14 |
|                      | 4    | 12 |
|                      | 6    | 8  |
|                      | 6    | 8  |
|                      | 8    | 4  |
| M = s <sup>2</sup> = | 4    | 12 |
| s² =                 | 5,25 | 21 |

Negativer Zusammenhang zwischen 2 Variablen X und Y?



|                      | X    | Υ  |
|----------------------|------|----|
|                      | 1    | 18 |
|                      | 2    | 16 |
|                      | 2    | 16 |
|                      | 3    | 14 |
|                      | 4    | 12 |
|                      | 6    | 8  |
|                      | 6    | 8  |
|                      | 8    | 4  |
| M = s <sup>2</sup> = | 4    | 12 |
| s <sup>2</sup> =     | 5,25 | 21 |

Zusammenhang dann negativ, wenn zwischen 2 Variablen x-Werte  $> \overline{x}$  einhergehen mit y-Werte  $< \overline{y}$ 



|                  | X    | Υ  |
|------------------|------|----|
|                  | 1    | 5  |
|                  | 2    | 7  |
|                  | 2    | 7  |
|                  | 3    | 9  |
|                  | 4    | 11 |
|                  | 6    | 15 |
|                  | 6    | 15 |
|                  | 8    | 19 |
| M =              | 4    | 11 |
| S <sup>2</sup> = | 5,25 | 21 |





Schritt 1: Für jedes x<sub>i</sub> sowie y<sub>i</sub> wird Differenz vom jeweiligen arithmetischen Mittel berechnet

| $x_i - \bar{x}$ | $y_i - \bar{y}$ |
|-----------------|-----------------|
| 1 – 4 = -3      | 5 – 11 = -6     |
| 2 – 4 = -2      | 7 – 11 = -4     |
| 2 – 4 = -2      | 7 – 11 = -4     |
| 3 – 4 = -1      | 9 – 11 = -2     |
| 4 - 4 = 0       | 11 – 11 = 0     |
| 6 – 4 = 2       | 15 – 11 = 4     |
| 6 – 4 = 2       | 15 – 11 = 4     |
| 8 – 4 = 4       | 19 – 11 = 8     |



Schritt 2: Für jedes Wertepaar xy<sub>i</sub> wird das *Kreuzprodukt*, d.h. das Produkt der Mittelwertsabweichung berechnet

| $(x_i - \bar{x})(y_i - \bar{y}) =$ |    |    |  |  |
|------------------------------------|----|----|--|--|
| -3                                 | -6 | 18 |  |  |
| -2                                 | -4 | 8  |  |  |
| -2                                 | -4 | 8  |  |  |
| -1                                 | -2 | 2  |  |  |
| 0                                  | 0  | 0  |  |  |
| 2                                  | 4  | 8  |  |  |
| 2                                  | 4  | 8  |  |  |
| 4                                  | 8  | 32 |  |  |



Schritt 3: Berechnung der Kreuzproduktsumme, d.h. die Summe aller Kreuzprodukte von i = 1 bis n

| $(x_i - \bar{x})(y_i - \bar{y}) =$ |    |    |  |  |
|------------------------------------|----|----|--|--|
| -3                                 | -6 | 18 |  |  |
| -2                                 | -4 | 8  |  |  |
| -2                                 | -4 | 8  |  |  |
| -1                                 | -2 | 2  |  |  |
| 0                                  | 0  | 0  |  |  |
| 2                                  | 4  | 8  |  |  |
| 2                                  | 4  | 8  |  |  |
| 4                                  | 8  | 32 |  |  |

| Summe: | 84 |
|--------|----|
|--------|----|

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$



Schritt 4: Berechnung Kovarianz, indem durch n geteilt wird ("mittleres Kreuzprodukt")

| $(x_i - \bar{x})(y_i - \bar{y}) =$ |    |      |  |  |
|------------------------------------|----|------|--|--|
| -3                                 | -6 | 18   |  |  |
| -2                                 | -4 | 8    |  |  |
| -2                                 | -4 | 8    |  |  |
| -1                                 | -2 | 2    |  |  |
| 0                                  | 0  | 0    |  |  |
| 2                                  | 4  | 8    |  |  |
| 2                                  | 4  | 8    |  |  |
| 4                                  | 8  | 32   |  |  |
| Summe:                             |    | 84   |  |  |
| Kovarianz:                         |    | 10,5 |  |  |

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$



$$s_X^2 = 5,25$$
  $s_X = 2,29$   
 $s_Y^2 = 21$   $s_Y = 4,58$   
 $s_X \cdot s_Y = 2,29 \cdot 4,58 = 10,5$ 

$$r = \frac{Cov_{xy}}{s_x s_y}$$

$$r = \frac{10,5}{10.5} = 1$$

Schritt 5: Berechnung Pearson's r durch Relativierung der empirischen Kovarianz am Produkt der Standardabweichungen (Maximale Kovarianz)

## Pearson's r: Ergänzung

Korrelationskoeffizienten sind sensitiv gegenüber Ausreißern und Extremwerten, v.a. bei kleinen Stichproben



# Pearson's r: Ergänzung

Korrelationskoeffizienten sind sensitiv gegenüber Ausreißern und Extremwerten, v.a. bei kleinen Stichproben





Keine lineare Korrelation! r=0 (Bsp. Leistungsfähigkeit und Anspannung während Klausur)



- 1) Zeichnen Sie ein Streudiagramm
- 2) Berechnen Sie Pearson's r
- 3) Interpretieren Sie das Ergebnis

|   | $x_i$ | $y_i$ | $(x_i-\overline{x})$ | $(y_i - \overline{y})$ | $(x_i - \overline{x})(y_i - \overline{y})$ | $(x_i - \overline{x})^2$ | $(y_i - \overline{y})^2$ |
|---|-------|-------|----------------------|------------------------|--------------------------------------------|--------------------------|--------------------------|
| Α | 0     | 2     |                      |                        |                                            |                          |                          |
| В | 10    | 6     |                      |                        |                                            |                          |                          |
| C | 4     | 2     |                      |                        |                                            |                          |                          |
| D | 8     | 4     |                      |                        |                                            |                          |                          |
| Е | 8     | 6     |                      |                        |                                            |                          |                          |
|   |       |       |                      |                        |                                            |                          |                          |