Music and Data

Mathieu Lagrange

October 23, 2018

- Music
- 2 Data
- Recommendation
- 4 Content based Analysis

- Music
- 2 Data
- Recommendation
- 4 Content based Analysis

- Music
- 2 Data
- 3 Recommendation
- 4 Content based Analysis

- Music
- 2 Data
- 3 Recommendation
- 4 Content based Analysis

- Music
- 2 Data
- Recommendation
- 4 Content based Analysis

Definition

Definition

- Music is an art form consisting of sound and silence, expressed through time.
- Aesthetic: "the harmony of the spheres" and "it is music to my ears" vs. "There is no noise, only sound."
- E can be divided into genres, which can be divided in sub genres

Genre, you said genre?

A music genre is a conventional category

- that identifies some pieces of music as belonging to a shared tradition or set of conventions.
- It is to be distinguished from musical form and musical style, although in practice these terms are sometimes used interchangeably.
- Recently, academics have argued that categorizing music by genre is inaccurate and outdated.

Genre relations

Data

The dataset is the Whitburn Project list:

- E it is a collective effort to gather historical weekly music sales rankings published by the Billboard company (the project is now maintained at the Bullfrogs Pond.
- E The list goes back up to 1890, but data is more complete after 1954.
- E The subset used contains 33560 songs.

Howard Gardner

Several kinds of intelligence

- Logical-mathematical (number/reasoning smart)
- Bodily-kinesthetic (body smart)
- Naturalist (nature smart)
- Existential (life smart)
- Intra-personal (self smart)
- Interpersonal (people smart)

Music is about total engagement of those intelligence

Music is about emotion

- ⊱ Most of us absolutely love music.
- We are compelled by it.
- We are provoked by it.
- We feel connected to it.
- It reflects something profound about who we are and our experience of the world.

Another tentative definition

As a conclusion, music can be considered

- E as an artifact
- but the important thing is what this artifact generates in terms of human responses.

Music is thus "what feeling sound is like".

Dr. Lagrange :)

Music

- 2 Data
- Recommendation
- 4 Content based Analysis

Music IS Data

That being said, music nowadays is:

- ⊱ part of the digital revolution
- \succeq its artifact definition is present in many digital forms
- that follows a production / consumption pipeline that has drastically evolved

Success??

Selling Albums Is Not the Main Measure of Success for a New Generation of Digital Age Artists

Data

The materials involved can be divided into 3 types of data that can be organized in an emission, transmission, reception sequence.

Data

- ⊱ Creation: Score, Lyrics, Track metadata
- ⊱ Production: Audio (live or studio)
- Consumption: Reviews, Ratings, Download patterns, Micro-blogging, ...

Scale?

Major music streaming providers

- ⊱ itunes music
- spotify
- ⊱ google play
- ⊱ deezer
- ⊱ youtube

Spotify

- ⊱ 75M users
- ⊱ 30M songs
- ⊱ 1.5B playlists
- ⊱ 1TB of user data every day
- ⊱ number of songs added each day > 20 000

IT infrastructure:

- 42 PB storage,
- ⊱ 200 TB data generated / day,
- ⊱ 1300 servers

Youtube

- ⊱ 100 hours of video are uploaded to YouTube every minute
- ⊱ Content ID scans over 250 years of video every day
- ⊱ among 15 million references

Genre through time

Data

The Music Timeline is based on album and artist statistics aggregated from Google Play Music

- Popularity: defined by how many users have an artist or album in their music library.
- Normalization: overview data is normalized by the total number of albums from that year.

=

Genre through time

- Music
- 2 Data
- 3 Recommendation
- 4 Content based Analysis

Recommendation

A recommendation system

- is a subclass of information filtering system that seeks to predict the "rating" or "preference" a user would give to an item.
- Recommender systems are utilized in a variety of areas including movies, music, news, books, research articles, search queries, social tags,
- E and products in general.

Recommendation works!!

"[Amazon.com] recommendations generated a couple orders of magnitude more sales than just showing top sellers."

Greg Linden, who implemented the first recommendation engine for Amazon

Popularity

The popularity curve is composed by a small number of popular items (the hits), and the rest are located in the tail of the curve.

- the huge shift from physical media to digital media, and the fall in production costs
- make everything available, in contrast to the limitations of the brick-and-mortar stores.
- But, personalized recommendations and filters are needed to help users find the right content in this humongous digital space

The long tail problem

The Long Tail of items in a recommender system.

An important role of a recommender is to drive the user from the head region (popular items) to the long tail of the curve (Anderson, 2006)

Music consumption

Music consumption based on sales is biased towards a few popular artists.

- Ideally, by providing personalised filters and discovery tools to users, music consumption would diversify.
- There is a need to assist people to discover, recommend, personalise and filter the huge amount of music content.

Assumption about user behaviors

Netflix

Since October 2006, this field enjoyed an increase of interest thanks to the Netflix competition.

- ← The competition offers a prize of \$1,000,000 to those that improve their movie recommendation system
- the Netflix competition provides the largest open dataset, containing more than 100 million movie ratings from anonymous users.
- Entremental The research community was challenged in developing algorithms to improve the accuracy of the current Netflix recommendation system.

Joe using Netflix

Collaborative Filtering?

Insight: Personal preferences are correlated

⊱ If Jack loves A and B, and Jill loves A, B, and C, then Jack is more likely to love C

Collaborative Filtering Task

- Discover patterns in observed preference behavior (e.g. purchase history, item ratings, click counts) across community of users
- Predict new preferences based on those patterns

Does not rely on item or user attributes (e.g. demographic info, author, genre)

Content-based filtering: complementary approach

Collaborative Filtering?

Insight: Personal preferences are correlated

⊱ If Jack loves A and B, and Jill loves A, B, and C, then Jack is more likely to love C

Collaborative Filtering Task

- Discover patterns in observed preference behavior (e.g. purchase history, item ratings, click counts) across community of users
- Predict new preferences based on those patterns

Does not rely on item or user attributes (e.g. demographic info, author, genre)

Content-based filtering: complementary approach

Given:

- \vdash Users $u \in \{1, ..., U\}$
- \vdash Items $i \in \{1, ..., M\}$
- Entraining set *train* with observed, real-valued preferences r_{ui} for some user-item pairs (u, i)
 - $\geq r_{ui} = \text{e.g.}$ purchase indicator, item rating, click count . . .

Goal: Predict unobserved preferences

 \succeq Test set test with pairs (u,i) not in train

View as matrix completion problem

$$R = \begin{bmatrix} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{bmatrix} U \text{ users}$$

$$M \text{ items}$$

Given:

- \vdash Users $u \in \{1, ..., U\}$
- \vdash Items *i* ∈ {1,...,*M*}
- E Training set *train* with observed, real-valued preferences r_{ui} for some user-item pairs (u,i)
 - $r_{ui} = \text{e.g.}$ purchase indicator, item rating, click count ...

Goal: Predict unobserved preferences

 \vdash Test set *test* with pairs (u,i) not in *train*

View as matrix completion problem

$$R = \underbrace{ \begin{bmatrix} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{bmatrix} }_{M \text{ items}} U \text{ users}$$

Given:

- \vdash Users $u \in \{1, ..., U\}$
- \vdash Items *i* ∈ {1,...,*M*}
- \vdash Training set *train* with observed, real-valued preferences r_{ui} for some user-item pairs (u, i)
 - $r_{ui} = \text{e.g.}$ purchase indicator, item rating, click count ...

Goal: Predict unobserved preferences

 \succeq Test set test with pairs (u,i) not in train

View as matrix completion problem

$$R = \left[\begin{array}{cccc} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{array}\right] U \text{ users}$$

$$M \text{ items}$$

Given:

- \vdash Users $u \in \{1, ..., U\}$
- \vdash Items *i* ∈ {1,...,*M*}
- \vdash Training set *train* with observed, real-valued preferences r_{ui} for some user-item pairs (u,i)
 - $r_{ui} = \text{e.g.}$ purchase indicator, item rating, click count ...

Goal: Predict unobserved preferences

 \succeq Test set test with pairs (u,i) not in train

View as matrix completion problem

⊱ Fill in unknown entries of sparse preference matrix

$$R = \begin{bmatrix} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{bmatrix} U \text{ users}$$

$$M \text{ items}$$

Given:

- \vdash Users $u \in \{1, ..., U\}$
- \vdash Items *i* ∈ {1,...,*M*}
- \vdash Training set *train* with observed, real-valued preferences r_{ui} for some user-item pairs (u, i)
 - $r_{ui} = \text{e.g.}$ purchase indicator, item rating, click count ...

Goal: Predict unobserved preferences

 \vdash Test set test with pairs (u,i) not in train

View as matrix completion problem

⊱ Fill in unknown entries of sparse preference matrix

$$R = \left[\begin{array}{cccc} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{array}\right] U \text{ users}$$

$$M \text{ items}$$

Given:

- \vdash Users $u \in \{1, ..., U\}$
- \vdash Items $i \in \{1, ..., M\}$
- \vdash Training set *train* with observed, real-valued preferences r_{ui} for some user-item pairs (u, i)
 - $r_{ui} = \text{e.g.}$ purchase indicator, item rating, click count ...

Goal: Predict unobserved preferences

 \vdash Test set test with pairs (u,i) not in train

View as matrix completion problem

⊱ Fill in unknown entries of sparse preference matrix

$$R = \begin{bmatrix} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{bmatrix} U \text{ users}$$

$$M \text{ items}$$

Projection

Projecting movies and users

Measuring success

- Interested in error on unseen test set test, not on training set
- For each (u,i) let r_{ui} = true preference, \hat{r}_{ui} = predicted preference
- Root Mean Square Error

$$E- RMSE = \sqrt{\frac{1}{|test|} \sum_{(u,i) \in test} (r_{ui} - \hat{r}_{ui})^2}$$

⊱ Mean Absolute Error

$$E MAE = \frac{1}{|test|} \sum_{(u,i) \in test} |r_{ui} - \hat{r}_{ui}|$$

- ⊱ Ranking-based objectives
 - e.g. What fraction of true top-10 preferences are in predicted top 10?

Music

- Music
- 2 Data

- Recommendation
- 4 Content based Analysis

Music Information Retrieval

MIR is the interdisciplinary science of retrieving information from music. It has background in

- ⊱ musicology, psychoacoustics, psychology
- \succeq signal processing, informatics, machine learning.

The analysis can be performed at 2 levels:

- song level analysis,
- ⊱ collection level analysis.

Song level analysis

- ⊱ transcription
- \succeq rhythm, melody, chords
- ⊱ demixing
- ⊱ generation

Collection level analysis

- ⊱ genre classification
- ⊱ mood regression
- ⊱ fingerprinting
- $\succ \ \, \text{cover song detection}$

Genre classification

Mood regression

Fingerprinting

An acoustic fingerprint

- is a condensed digital summary, a fingerprint, deterministically generated from an audio signal
- that can be used to identify an audio sample or quickly locate similar items in an audio database.

3

Application scenarios:

- meta data retrieval: Shazam
- monitor the use of specific musical works and performances on radio broadcast, records, CDs, streaming media and peer-to-peer networks.
- E This identification has been used in copyright compliance, licensing, and other monetization schemes.

Processing pipeline

Challenges

- Immunity to channel added noise
- Recognize fragments from anywhere in the track (the shorter, the better)

Hash composition

Cover song

A cover song is

- a song initially played by a given band (say Let it Be from the Beatles) played by another band (cover from David Bowie).
- Even if the cover is easily and universally recognized by a human listeners (even non musically trained),
- the sound features that triggers the detection of covers are challenging to design.

Cover song detection

Cover songs may have variations

- \succeq in key, tempo, structure, harmony, timbre, language.
- \succeq Most of the time, melody and lyrics are largely preserved.

Processing pipeline

Serra & al Audio cover song identification and similarity: background, approaches, evaluation, and beyond 2010

Building invariant representations

- 1 translation: phase shift
- 2 transposition: frequency shift
- 3 tempo change: time warping

Dynamic time warping

In time series analysis, dynamic time warping (DTW) is

- one of the algorithms for measuring similarity between two temporal sequences which may vary in speed.
- The sequences are "warped" non-linearly in the time dimension
- E to determine a measure of their similarity independent of certain non-linear variations in the time dimension.

Sequence warping

DTW algorithm

