Capítulo 23

Secções 23.1-23.3

Aprendizagem automática

Arthur Samuel, 1956
"Machine learning", jogo de damas

Tom M. Mitchell, 1997

"A computer program is said to **learn** from experience *E* with respect to some class of tasks *T* and performance measure *P* if its performance at tasks in *T*, as measured by *P*, improves with experience *E*."

Aprendizagem...

- Aprendizegem supervisionada: treino com input/output
 - Exemplos de fruta categorizados em banana, maçã, laranja, etc.
- Aprendizagem não supervisionada: treino com input apenas
 - Exemplos de fruta que vão sendo separados pelas suas características
- Aprendizagem por reforço
 - Não requer treino prévio
 - Agente monitoriza respostas às ações (recompensa)

A tarefa de aprendizagem por reforço consiste em usar recompensas que são observadas para aprender (ou avaliar) uma política (policy) ótima (ou perto de ótima) para o ambiente

política = escolha de ação

Multi-agent hide and seek

https://www.youtube.com/watch?v=kopoLzvh5jY

A aprendizagem por reforço pode ser considerada uma abordagem que envolve toda a IA:

um agente é colocado num ambiente e tem de aprender a comportar-se para aí ter sucesso

Saber mais... https://youtu.be/nyjbcRQ-uQ8

• Ideia base:

- Receber feedback na forma de recompensa (reforço em Psicologia)
- Agente tem de (aprender a) agir para maximizar reforços esperados
- Aprendizagem baseada nos exemplos de output observados

Exemplos: recompensas em jogos

- Xadrez
 - Só recebe feedback no fim do jogo (sparse rewards)
 - Ou a cada momento teria de classificar cada uma das jogadas...
- Ping pong
 - Recebe feedback por cada ponto
- Mais simples dar recompensa do que modelar comportamento!
- Aprendizagem por reforço estudada em psicologia animal desde o século XIX!

Modelação do problema

A cada momento, o agente tem de selecionar uma ação Como resultado da ação, recebe uma recompensa e atualiza estado

- Espaço de estados: $X = x_1, x_2, ..., x_n$
- Espaço de ações: $A = a_1, a_2, ..., a_m$
- Função de recompensa: $X \times A \rightarrow R$ (ou $X \times A \times X \rightarrow R$ no caso de não determinismo)

Exemplo: ambiente

Estados? Ações? Recompensas?

Exemplo: estados

- Numerar cada posição
- Posição inicial: 1

Exemplo: ações

- Cima, baixo, esquerda, direita
- Limitações *apenas* junto à fronteira
 - Por exemplo, a partir da posição 4 são possíveis ações cima, esquerda e direita

Exemplo: recompensas

- -1 quando bate num obstáculo
- -0.01 quando alcança posição vazia
- 100 quando chega à posição Exit

Aprendizagem por reforço: categorias

- Model-based
 - Agente usa modelo de transição do ambiente para ajudar a interpretar recompensas e tomar decisões em relação a ações
 - Modelo pode ser inicialmente desconhecido
- Model-free (ex^o Q learning)
 - Agente não conhece nem aprende modelo do ambiente
 - Modelo aprende como se comportar
 - Aprendizagem ação-utilidade (Q-function)
 - Procura de uma política que mapeia estados para ações

Aprendizagem por reforço: passiva e ativa

- Aprendizagem por reforço passiva
 - Política é fixa
 - Tarefa consiste em aprender utilidade dos estados (ou pares estado-ação)
- Aprendizagem ativa (ex^o Q-learning)
 - Agente precisa de explorar o ambiente
 - Aprende a política

Aprendizagem por reforço passiva

- Agente já tem uma política π (fixa) que determina as suas ações
- Agente pretende determinar função de utilidade $U^{\pi}(s)$
- Agente não conhece...
 - Modelo de transição P(s'|s,a), i.e. probabilidade de alcançar estado s' a partir de estado s depois de realizar ação a
 - Função de recompensa R(s,a,s')

Aprendizagem Passiva

- A política do agente é fixa
- O objetivo do agente é avaliar a qualidade de uma política ótima
- O agente precisa de aprender a utilidade esperada $U^{\pi}(s)$ para cada estado s

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(S_t, \pi(S_t), S_{t+1})
ight]$$

• $R(S_t, \pi(S_t), S_{t+1})$ é a recompensa para um estado S_t dada a ação $\pi(S_t)$ que alcança S_{t+1} , S_t é um estado qualquer alcançado no instante t ao executar a política π a partir do estado S_0 =s, γ^t é um fator de desconto gamma (entre 0 e 1)

Fator de desconto: exemplo γ^t =0.86

 γ^t

Valor de diminui ao longo do tempo

i.e. recompensa inicial é mais relevante

Como estimar a utilidade?

- Utilidade de um agente definida pela função de recompensa
- O agente executa uma **trajetória**, i.e. sequência de transições estadoação até atingir um estado terminal
- A cada trajetória é associado um valor que é usado para estimar o valor de utilidade
- A desvantagem deste método é o facto de assumir que a utilidade de cada estado é independente, o que implica demorar a convergir

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(S_t, \pi(S_t), S_{t+1})\right]$$

Exemplo: modelo de transição

Figure 17.1 (a) A simple 4×3 environment that presents the agent with a sequential decision problem. (b) Illustration of the transition model of the environment: the "intended" outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results in no movement. The two terminal states have reward +1 and -1, respectively, and all other states have a reward of -0.04.

Exemplo: política óptima

Figure 23.1 (a) The optimal policies for the stochastic environment with R(s,a,s') = -0.04 for transitions between nonterminal states. There are two policies because in state (3,1) both *Left* and *Up* are optimal. We saw this before in Figure 16.2. (b) The utilities of the states in the 4×3 world, given policy π .

Trajetoria: estado, ação, recompensa

Sequência do estado inicial s₀ ao estado objetivo s_n

Exemplos de três trajetórias

$$(1,1) \xrightarrow{\bullet.04} (1,2) \xrightarrow{\bullet.04} (1,3) \xrightarrow{\bullet.04} (1,2) \xrightarrow{\bullet.04} (1,2) \xrightarrow{\bullet.04} (1,3) \xrightarrow{\bullet.04} (2,3) \xrightarrow{\bullet.04} (3,3) \xrightarrow{+1} (4,3)$$

$$(1,1) \xrightarrow{\bullet.04} (1,2) \xrightarrow{\bullet.04} (1,3) \xrightarrow{\bullet.04} (2,3) \xrightarrow{\bullet.04} (3,3) \xrightarrow{\bullet.04} (3,2) \xrightarrow{\bullet.04} (3,3) \xrightarrow{+1} (4,3)$$

$$(1,1) \xrightarrow{\bullet.04} (1,2) \xrightarrow{\bullet.04} (1,3) \xrightarrow{\bullet.04} (2,3) \xrightarrow{\bullet.04} (3,3) \xrightarrow{\bullet.04} (3,2) \xrightarrow{\bullet.04} (3,2) \xrightarrow{\bullet.04} (4,3)$$

$$(1,1) \xrightarrow{\bullet.04} (1,2) \xrightarrow{\bullet.04} (1,3) \xrightarrow{\bullet.04} (2,3) \xrightarrow{\bullet.04} (3,3) \xrightarrow{\bullet.04} (3,2) \xrightarrow{\bullet.04} (4,2)$$

$$(1,1) \xrightarrow{\bullet.04} (1,2) \xrightarrow{\bullet.04} (1,3) \xrightarrow{\bullet.04} (2,3) \xrightarrow{\bullet.04} (3,3) \xrightarrow{\bullet.04} (3,2) \xrightarrow{\bullet.04} (4,2)$$

Recompensa de uma trajetória

- Assumir $\gamma = 1$
- $U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(S_t, \pi(S_t), S_{t+1})\right]$ • Trajetória $(1,1) \xrightarrow{\text{-.04}} (1,2) \xrightarrow{\text{-.04}} (1,3) \xrightarrow{\text{-.04}} (1,2) \xrightarrow{\text{-.04}} (1,3) \xrightarrow{\text{-.04}} (2,3) \xrightarrow{\text{-.04}} (3,3) \xrightarrow{\text{+1}} (4,3)$
- Recompensa de -.04*6+1=0.76 para estado (1,1)
- Recompensas de 0.80 e 0.88 para estado (1,2)
- Recompensas de 0.84 e 0.92 para estado (1,3)
- Com número de trajetórias infinito, média converge para valores na Figura 23.1(b)

Aprendizagem por reforço ativa

- Agente passivo usa política para determinar ação
 - E determina função de utilidade
- Agente ativo decide que ações tomar
 - Aprende uma política

Função de recompensa V

 Função V(x) calcula a recompensa obtida após uma trajetória com T passos que começa no estado x em t=0

$$V(x) = \sum_{t=0}^{T-1} (\gamma^t r_t)$$

- Valor de gamma 0 ≤ γ < 1 é o fator de desconto
 - Permite abordagem *greedy*: determina a importância de recompensas futuras, valorizando recompensas com menor valor de t
- r_t é a recompensa recebida no instante t

Q-learning

- Q-learning é um algoritmo de aprendizagem por reforço para aprender a utilidade/qualidade das ações e consequentemente que ações deve tomar
 - "Q" refere-se a qualidade
- Não requer a existência de um modelo (é chamado "model-free") do ambiente
 - Pode lidar com problemas com transições estocásticas e recompensas, sem necessitar de adaptações
- Encontra uma política que maximiza o valor esperado da recompensa total para uma sequência de passos a partir do estado atual
 - Converge para política ótima com probabilidade 1

Função de recompensa Q

- Função Q : X × A → R
 calcula o mesmo que V mas para um par estado / ação
- Uma política π(a|x): X × A → [0, 1] define a probabilidade de se executar cada ação a para cada estado x
- π^* é a política que maximiza a recompensa total
- π* é obtida a partir de Q*

$$\pi^*(x) = argmax_{a \in A}Q^*(x, a)$$

Aprender função Q*

- Para encontrar a política ótima π* para um dado ambiente, apenas precisamos de aprender a função Q*
- Utilizando Q-learning podemos aproximar a função Q* a partir de trajetórias de exemplo no ambiente
- Para um agente num dado estado seguir a política ótima apenas tem que selecionar a ação que maximiza o valor de Q* para esse estado

Aprender função Q*

• Caraterização de um passo de uma trajetória (s_t, a_t, s_{t+1}, r_t):

s_t: estado antes realizar ação a

a_t: ação utilizada

s_{t+1}: estado após realizar ação a_t

r_t: recompensa obtida por realizar ação a_t no estado s_t

• Regra de update (0<α≤1 é a *learning rate*)

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

Regra de update

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}}\right)}_{\text{new value (temporal difference target)}}$$

- Q^{new}(s_t,a_t) resulta da soma de 3 parcelas
 - (1- α) Q(s_t , a_t) : valor inicial pesado pela learning rate α ; α próximo de 1 altera Q mais depressa
 - α r_t : recompensa obtida se ação a_t é executada em s_t pesada por α
 - $\alpha \gamma \max_a Q(s_{t+1},a)$: máxima recompensa que pode ser obtida a partir do estado s_{t+1} pesada por α

Aprendizagem Q-learning

- Inicializar matriz Q a zeros
- Começar a explorar ações: Para cada estado, selecionar uma ação possível (a_t) para esse estado (s_t)
- Transitar para o próximo estado (s_{t+1}) como resultado da ação (a_t)
- Para todas as possíveis ações a a partir do estado s_{t+1} selecionar a ação que tem o maior valor de Q
- Atualizar os valores da matriz Q usando a regra de update
- Próximo estado s_{t+1} passa a estado atual
- Se o estado objetivo é alcançado, terminar e repetir o processo

Matriz Q-Learning: exemplo

Initialized

Q-Table		Actions								
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)			
	0	0	0	0	0	0	0			
				20		- 4				
States	327	0	0	0	0	0	0			
	499	0	0	0	0	0	0			

Training

Q-Table		Actions							
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)		
		0	0	0	0	0	0		
States		1.5		-					
	328	-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017		
			V						
	499	9.96984239	4.02706992	12.96022777	29	3.32877873	3.38230603		

Reinforcement learning solves a particular kind of problem where decision making is sequential, and the goal is long-term, such as game playing, robotics, resource management, or logistics.

Andriy Burkov, The Hundred Page Machine Learning Book