Sunrise or Sunset: Exploring the Design Space of Big Data Software Stack

HPBDC 2017 panel

Panel moderator: Dr. Jianfeng Zhan

Professor, ICT, Chinese Academy of Sciences and University of Chinese Academy of Sciences

May 29. 2017 Orlando, USA

The past panel (2015)

- Wide Adoption of HPC Techniques in Big Data: Hype or Reality?
- Panel Moderator: Jianfeng Zhan
- Panellists:
 - D. K. Panda, The Ohio State University
 - Dan Stanzione, Texas Advanced Computing Center
 - Zhiwei Xu, Institute of Computing Technology,
 Chinese Academy of Sciences, China
 - Xiaodong Zhang, The Ohio State University

The past panel (2016)

- Merge or Split: Mutual Influence between Big Data and HPC Techniques
- Panel Moderator: <u>Jianfeng Zhan</u>
- Panellists:
 - Chaitanya Baru, San Diego Supercomputer Center Slides
 - <u>Pete Beckman</u>, Argonne National Laboratory, The University of Chicago
 - Andrew A. Chien, The University of Chicago, Argonne National Laboratory <u>Slides</u>
 - Geoffrey C. Fox, Indiana University Bloomington Slides
 - D. K. Panda, The Ohio State University Slides

This year's panel

- Sunrise or Sunset: Exploring the Design Space of Big Data Software Stack
- Panel Moderator: Jianfeng Zhan
- Panellists:
 - Prof. Geoffrey C. Fox, Indiana University Bloomington
 - Prof. Satoshi Matsuoka, Tokyo Institute of Technology
 - Dr. Ren Wu, NovuMind
 - Prof. D. K. Panda, The Ohio State University

Topics

- Are big data software stacks mature or not?
 - If yes, what are the new technology challenge?
 - If not, what are the main driving forces for newgeneration big data software stacks?
- What chances are provided for the academia communities in exploring the design spaces of big data software stacks?

Two driving forces

- Application-driven
 - One-size-fits-a-bunch
 - SQL, NoSQL, DW
 - Need Benchmarks

- Technology-driven
 - Super computers and Big Data enable deep learning.

BigDataBench summary

- An open-source Big Data Benchmark suite
 - http://prof.ict.ac.cn/BigDataBench

- L. Wang, J. Zhan and etc. BigDataBench: a Big Data Benchmark Suite from Internet Services. HPCA' 14, February 15-19, 2014, Orlando, Florida, USA.
- Gao, W., Luo, C., Zhan, J., Ye, H., He, X., Wang, L., ... & Tian, X. (2015). Identifying Dwarfs Workloads in Big Data Analytics. arXiv preprint arXiv:1505.06872.

BigDataBench 3.2

BDGS(Big Data Generator Suite) for scalable data

Wikipedia Entries	Amazon Movie Reviews	Google Web Graph
Facebook Social Network	E-commerce Transaction	ProfSearch Resumes
ImageNet	English broadcasting audio	DVD Input Streams
Image scene	Genome sequence data	Assembly of the human genome
SoGou Data	MNIST	MovieLens Dataset

15 个真实数据集

Search Engine

Social Network

E-commerce

Multimedia

Bioinformatics

37 个负载

GraphX

Hadoop RDMA

MPI

DataMPI

The BigData 100 project

http://www.bafst.com/items/top100/ index.html

Using BigDataBench data sets and workloads

Requirement-Driven

- Human activities in terms of hundreds milliseconds
 - Nature of our nervous and motor systems
- Computers or smart devices consistently provide information and knowledge to human being in the order of a few tens milliseconds.
 - We coin a new term 10-ms computing to call attention to this class of workloads
- Lu, G., Zhan, J., Hao, T., & Wang, L. (2016). 10-millisecond Computing. arXiv preprint arXiv: 1610.01267.

Millisecond-scale computing

Grand Challenges to both big data software stack and hardware stack

Go game is only one of benchmarks

Energy efficiency of human brain!

Cost of deep learning

- https://www.reddit.com/r/MachineLearning/comments/ 6b64u4/d_nvidia_k80_training_time_performance/
- Imagenet 120 epochs 256 batch_size (~4k batches per epoch) ~ 3 or 4 gpus for a Resnet 50 (batchsize 64 per gpu).
 - With mxnet this setting it takes around 1.1 sec per batch 4.4K sec per epoch (say 1.2 hours) x120 epoch --->
 144hours *4 *1\$ ~ 570\$\$ of training time !!!
- Human being is still much expensive!

Workload driven

- Internet services have much simple workloads
 - Select, aggregation and etc.

Hive, SparkSQL and etc

We need consider more broader workloads

Big data dwarfs in BigDataBench

Paradigm change

SMB just rent infrastructure

Big data in cloud

- Alibaba
 - Can not tolerate 100 ms service interruption

Schedules

- Positions from the panelists (each one has 10 minutes)
- First round of rebuttals (each one has 4 minutes)
- Second round of rebuttals (each one has 4 minutes)
- Questions from the audience

