Collaborative Agents for Task-oriented Dialogue Systems

Jiahuan Pei jpei@amazon.de July 26, 2022

Bio

- Applied scientist at Amazon, Core Search NLP, Berlin, Germany.
- PhD supervised by Maarten de Rijke and Pengjie Ren, University of Amsterdam
- Research interests
 - Natural Language Processing (<u>dialogue systems</u>, word embeddings);
 - Information Retrieval (conversational recommendation, query understanding, matcher embedding)

Outline of main content

Model collaboration

(Chapter 2)

User collaboration (Chapter 3) collaborate effectively to improve the performance of a single-module agent?

RQ1 Can multiple dialogue agents

RQ2 Can multiple users collaborate successfully to meliorate the quality of a dialogue for a single user?

RQ3 Can multiple languages be used in a collaborative way to promote the performance of each single language?

RQ4 Can we enable collaborative agents with the capability of uncertainty estimation towards trustable systems?

Collaborative Agents for Task-oriented Dialogue Systems

> Language collaboration (Chapter 4)

Uncertainty estimation (Chapter 5) Biomedical topics

- ReMeDi: Dataset & Benchmarks
- Survey:
 PLMs in Biomedical Domain.

Motivation: Cooperative dialogue agents

Task-oriented DSs \rightarrow complete certain tasks or goals on specific domain (e.g., finding restaurants)

User: I'm looking for an affordable restaurant.

System: How about Thai food?

User: Yes please, in <u>central</u> Cambridge. **System**: The Horse serves cheap Thai food.

User: Where is it?

System: It is at 106 Regent Street.

Collaborative agents

Dry Run: Simple Data Collaboration (SEntNet)

Main findings

- Aware of source-specific history helps with selecting responses for TDSs.
- Optimizing embeddings is useful.

J. Pei, A. Stienstra, J. Kiseleva, M.de Rijke. SEntNet: Source-aware Recurrent Entity Network for Dialogue Response Selection. SCAI Workshop, IJCAI 2019.

Model Collaboration: Response Generation (TokenMoE)

- No general single-module TDS model can constantly outperform the others
- TokenMoE greatly beats baselines
- Global-and-local learning scheme is important

	Inform (%)			Success (%)			BLEU (%)				Score			. C.			
	Baseline	/V1	/V2	/V3	Baseline	/V1	/V2	V3	Baseline	/V1	/V2	/V3	Baseline	/V1	/V2	/V3	/V3 # of turns
Attraction	87.20	86.20	91.80	88.70	81.30	74.80	83.70	83.70	15.14	14.95	16.08	14.86	99.39	95.45	103.83	101.06	1042
Hotel	89.90	93.90	89.90	90.30	87.50	91.70	87.40	89.10	16.60	15.60	15.11	14.13	105.30	108.40	103.76	103.83	1068
Restaurant	89.20	91.70	86.40	86.10	85.80	87.80	84.00	83.40	17.07	17.70	16.07	17.34	104.57	107.45	101.27	102.09	1024
Taxi	100.00	100.00	100.00	100.00	99.90	99.80	99.90	99.80	17.33	19.18	20.13	18.32	117.28	119.08	120.08	118.22	395
Train	77.70	77.70	79.00	81.60	75.60	74.80	77.20	79.60	20.35	15.64	22.81	20.62	97.00	91.89	100.91	101.22	1702
Booking	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	22.05	21.61	21.96	22.06	122.05	121.61	121.96	122.06	1407
General	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	20.21	19.53	20.13	20.80	120.21	119.53	120.13	120.80	2596
UNK	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	12.40	11.75	13.12	11.80	112.40	111.75	113.12	111.80	81

Model Collaboration: Response Generation (MoGNet)

- MoGNet beats baselines on both automatic and human evaluations.
- Coordination mechanisms (i.e., RMoG and PMoG) effectively cooperate chair and expert generators.
- GL learning scheme makes good use of data.

Model Collaboration: Response Generation (MoGNet)

Table 2: Comparison results of MoGNet and the baselines.

	BLEU	Inform	Success	Score	PPL
S2SAttnLSTM	18.90%	71.33%	60.96%	85.05	3.98
S2SAttnGRU	18.21%	81.50%	68.80%	93.36	4.12
Structured Fusion [20]	16.34%	82.70%	72.10%	93.74	_
LaRLAttnGRU [36]	12.80%	82.78%	79.20%	93.79	5.22
MoGNet	20.13%*	85.30%*	73.30%	99.43*	4.25

Bold face indicates leading results. Significant improvements over the best baseline are marked with * (paired t-test, p < 0.01).

Table 3: Results of human evaluation.

	S2SAt	tnGRU	LaRLA	ttnGRU	MoGNet		
	≥ 1	≥ 2	≥ 1	≥ 2	≥ 1	$\geqslant 2$	
Informativeness	56.79%	31.03%	76.54%	44.83%	80.25%	53.45%	
Consistency	45.21%	23.53%	71.23%	39.22%	80.82%	50.98%	
Satisfactory	26.79%	25.00%	44.64%	21.88%	60.71%	37.50%	

Bold face indicates the best results. $\geqslant n$ means that at least n AMT workers regard it as a good response w.r.t. *Informativeness*, *Consistency* and *Satisfactory*.

User Collaboration: Personalized TDSs (CoMemNet)

Main findings

- A close-loop cooperative paradigm
 - Dialogue to perfect the user-item interactions gradually as dialogues progress.
 - User-item interactions to improve the dialogue learning
- A learning algorithm to effectively learn CoMemNN with multiple hops

J. Pei, P. Ren, C. Monz, M. de Rijke. A Cooperative Memory Network for Personalized Task-oriented Dialogue Systems with Incomplete User Profiles. The Web Conf 2021. (first author, CCF A conference).

User Collaboration: Personalized TDSs (CoMemNet)

Overall performance in terms of accuracy.

	Small set (%)	Large set (%)
MemNN [9]	77.74	85.10
SMemNN [9]	78.10	87.28
RMemNN [47]	83.94	87.33
PMemNN [19]	88.07	95.33
NPMemNN	87.91	97.49
CoMemNN	91.13*	98.13*

 Comparison of SOTA baseline in terms of accuracy w.r.t. different profile discard ratios.

Discard Ratio	0%	10%	30%	50%	70%	90%	100%
NPMemNN	87.91	86.11	86.56	85.79	83.93	84.08	84.83
CoMemNN	91.13*	89.90*	88.69*	87.80*	86.35*	84.83*	82.85
Small Set/Diff.	3.22	3.79	2.13	2.01	2.42	0.75	-1.98
NPMemNN	97.49	97.01	96.05	95.52	95.40	90.96	90.50
CoMemNN	98.13*	97.94*	97.68*	97.53*	96.98*	96.63*	92.73
Large Set/Diff.	0.64	0.93	1.63	2.01	1.58	5.67	2.23

J. Pei, P. Ren, C. Monz, M. de Rijke. A Cooperative Memory Network for Personalized Task-oriented Dialogue Systems with Incomplete User Profiles. The Web Conf 2021. (first author, CCF A conference).

Language Collaboration: Multilingual TDSs (MOLR)

- A unified generation framework with mixture-of-language routing for Multilingual TDSs.
- Benefits from multilingual data argumentation, language characteristic modeling, mixture-of-language routing.

Language Collaboration: Multilingual TDSs (MOLR)

Main findings

• Genetic and embedding-based similarity: Gains are language-specific.

Language	Code	Classification				
English eng		Indo-European>Germanic>West>English				
German	deu	Indo-European>Germanic>West>High German>German>Middle German>East Middle German				
Italian	ita	Indo-European>Italic>Romance>Italo-Western>Italo-Dalmatian				
Spanish	spa	Indo-European>Italic>Romance>Italo-Western>Western>Gallo-Iberian>Ibero-Romance>West Iberian>Castilian				
Thai	tha	Kra-Dai>Kam-Tai>Tai>Southwestern				

Collaboration Uncertainty: StoTransformer

Why should we care about Uncertainty? ☐ X falsely over-confident prediction

Collaboration Uncertainty: StoTransformer

Main findings

Transformers as a classifier.

- Enable transformers with uncertainty estimation while retain the original predictive performance.
- STO-TRANS has difficulties in the trade-off between in-domain and out-of-domain performance.

J. Pei, C. Wang, G. Szarvas. Transformer Uncertainty Estimation with Hierarchical Stochastic Attention. AAAI 2022.

Multi-Head Attention

Biomedical topics: ReMeDi

- A dataset contains 96,965 conversations between doctors and patients, including 1,557 conversations with fine-gained labels.
- Benchmarks: (a) pretrained models (i.e., BERT-WWM, BERT-MED, GPT2, and MT5) and (b) a self-supervised contrastive learning(SCL) model.
- Code: https://github.com/yanguojun123/Medical-Dialogue

Biomedical topics: PLMs Survey

B. Wang, Q. Xie, J Pei, et al. ReMeDi: Pre-trained language models in biomedical domain: A systematic survey. Association for Computing Machinery 2021.

Conclusion & Future work

Conclusion

- Collaborative TDSs;
- Study in four aspects: model, user, language, uncertainty;
- Two biomedical work: dataset, benchmarks, and PLMs survey.

Future Work

- Partition view of dialogue agents in terms of various aspects;
- o Topological structure construction of dialogue agents, e.g., sequential and chair-expert type;
- Collaboration mechanisms of dialogue agents;
- Collaboration efficiency.

Thank you for your attention! Q & A