HOCHSCHULE LUZERN TECHNIK & ARCHITEKTUR

EMANT

Design Report Laborübung 2

Entwicklung einer WLANTMPlanarantenne

Autoren Ervin Mazlagić Markus Birrer

Dozent Joss Marcel

Eingabe der Arbeit Horw, 8. Mai 2017

Inhaltsverzeichnis

1	Einführung
	.1 Erläuterungen zu den Berechnungen
2	Berechnungen
3	Simulation
	.1 Erläuterung zu der Simulation
	3.1.1 Modell
	3.1.2 Reflexionsfaktor S_{11}
	3.1.3 Impedanz
	3.1.4 Fernfeld

1 Einführung

Dieser Design Report zeigt die Berechnungen und Simulationen für eine erste Version einer Planarantenne für einen Wireless USB-Dongle. Die Sendefrequenz beträgt 2.4 GHz.

1.1 Erläuterungen zu den Berechnungen

Betreffend der Freiraumdämpfung wurde ein Sendedurchmesser von 20m gewählt. Dies resultiert in einer Freiraumdämpfung von -57 dB.

Über das Linkbudget ist ersichtlich, dass der Antennengewinn nicht kleiner als -6dB sein darf. Das Antennendesign benötigt nicht den gesamten zur Verfügung stehenden Platz. Mithilfe Chu's Kugel konnten die Aussenmasse der Antenne bestimmt werden. Das Harrington Gain Limit zeigt den maximal möglichen Gewinn der Antenne. Berechnet wurden 0.2dB, in der Praxis dürfte der Wert tiefer liegen. Er sollte aber nicht tiefer als -6 dB liegen.

2 Berechnungen

Parameter

Frequenz [GHz] Bandbreite [GHz]	240000000 100000000
Lichtgeschwindigkeit [m/s]	30000000
Wellenlänge [m]	0.125
lampda/2 [m]	0.063
lampda/4 [m]	0.031
Z_0 [Ohm]	50

Freiraumdämpfung

Sendedurchmesser d [m] 20

afs_dB -57.04 10*LOG(lampda/(4*PI()*d))^2

Link Budget [dBm]

Fläche maximal PCB in Simulation

Breite [m] 0.0155 Tiefe [m] 0.0073

Chu's Kugel

Frage: Handelt es sich um eine ESA?

k Wellenzahl 50.3 =2*PI()/lampda

a 0.009 k*a 0.43 Frage; kleiner als 0.5? Ja, es handelt sich um eine ESA

Harringtons's Gain Limit

Maximal möglicher Gewinn der Antenne

Erkenntnis; reicht solange grösser -6 dB

Abbildung 1: Link-Budget und weitere Berechnungen

3 Simulation

3.1 Erläuterung zu der Simulation

Die Antenne wurde über mehrere Simulationsschritte verfeinert, so dass sie das gewünschte Verhalten aufzeigt. Gemäss Simulation sollte die Antenne einen Reflexionsfaktor von knapp -16dB aufweisen bei einer Frequenz von 2.4GHz. Die reale Impedanz liegt gemäss Simulation bei 2.4 GHz bei 43 Ohm, der Imaginäranteil bei 14 Ohm induktiv. Der Imaginäranteil wurde bewusst im positiven Bereich gelassen, damit zur Kompensation ein C angebracht werden könnte.

3.1.1 Modell

Abbildung 2: 3D Modell

3.1.2 Reflexionsfaktor S_{11}

Abbildung 3: Reflexionsfaktor S_{11}

3.1.3 Impedanz

Abbildung 4: Impedanz

3.1.4 Fernfeld

Abbildung 5: \vec{E} Fernfeldanalyse (3D)