CS 228 : Logic in Computer Science

Krishna. S

Moving On: Temporal Logics

Starting Linear Temporal Logic (LTL)

Transition Systems

A Transition System is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $s \stackrel{\alpha}{\to} s'$ in $S \times Act \times S$ is the transition relation
- ▶ $I \subset S$ is the set of initial states
- ► AP is the set of atomic propositions
- ▶ $L: S \rightarrow 2^{AP}$ is the labeling function

- ▶ Labels of the locations represent values of all observable propositions ∈ AP
- Captures system state
- ▶ Focus on sequences $L(s_0)L(s_1)...$ of labels of locations
- Such sequences are called traces
- Assuming transition systems have no terminal states,
 - Traces are infinite words over 2^{AP}
 - ▶ Traces $\in (2^{AP})^{\omega}$

Given a transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states,

▶ All maximal executions/paths are infinite

5/14

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$
- ► For a set Π of paths, $Trace(Π) = \{trace(π) \mid π ∈ Π\}$

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$
- ► For a set Π of paths, $Trace(Π) = \{trace(π) \mid π ∈ Π\}$
- For a location s, Traces(s) = Trace(Paths(s))

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$
- ► For a set Π of paths, $Trace(Π) = \{trace(π) \mid π ∈ Π\}$
- ▶ For a location s, Traces(s) = Trace(Paths(s))
- ▶ $Traces(TS) = \bigcup_{s \in I} Traces(s)$

6/14

- $\blacktriangleright \{p,q\}\emptyset \{q,r\}^{\omega}$
- $\blacktriangleright (\{p,q\}\emptyset\{r\})^{\omega}$

- $AP = \{p, q, r, t\}$
 - $\blacktriangleright \{p,q\}\emptyset \{q,r\}^{\omega}$
 - $\blacktriangleright (\{p,q\}\emptyset\{r\})^{\omega}$
 - $(\{p,q\}\emptyset\{r\})^* \{p,q\}\emptyset \{q,r\}^{\omega}$

Linear Time Properties

- ▶ Linear-time properties specify traces that a *TS* must have
- ▶ A LT property P over AP is a subset of $(2^{AP})^{\omega}$
- ► TS over AP satisfies a LT property P over AP

$$TS \models P \text{ iff } Traces(TS) \subseteq P$$

▶ $s \in S$ satisfies LT property P (denoted $s \models P$) iff $Traces(s) \subseteq P$

7/14

▶ Whenever *p* is true, *r* will eventually become true

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, p\in A_i\rightarrow \exists j\geqslant i, r\in A_i \}$

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, p\in A_i\rightarrow \exists j\geqslant i, r\in A_j \}$
- q is true infinitely often

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i \geqslant 0, p \in A_i \rightarrow \exists j \geqslant i, r \in A_i \}$
- q is true infinitely often
 - $A_0A_1A_2\cdots \mid \forall i \geqslant 0, \exists j \geqslant i, q \in A_i$

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i \geqslant 0, p \in A_i \rightarrow \exists j \geqslant i, r \in A_i \}$
- q is true infinitely often
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, \exists j\geqslant i, q\in A_i$
- ▶ Whenever *r* is true, so is *q*

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i \geqslant 0, p \in A_i \rightarrow \exists j \geqslant i, r \in A_i \}$
- q is true infinitely often
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, \exists j\geqslant i, q\in A_j$
- ▶ Whenever *r* is true, so is *q*
 - $A_0A_1\cdots \mid \forall i\geqslant 0, r\in A_i\rightarrow q\in A_i$

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

- Propositional logic formulae over AP
 - $ightharpoonup a \in AP$ (atomic propositions)
 - $\triangleright \neg \varphi, \varphi \land \psi, \varphi \lor \psi$

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

- Propositional logic formulae over AP
 - $ightharpoonup a \in AP$ (atomic propositions)
 - $\neg \varphi, \varphi \land \psi, \varphi \lor \psi$
- Temporal Operators
 - $\triangleright \bigcirc \varphi \text{ (Next } \varphi)$
 - $\varphi \cup \psi \ (\varphi \text{ holds until a } \psi \text{-state is reached})$
- ▶ LTL : Logic for describing LT properties

LTL formulae over AP interpreted over words over Σ^{ω} , $\Sigma=2^{AP}$ This is not an automaton, but a word over Σ

LTL formulae over AP interpreted over words over Σ^{ω} , $\Sigma=2^{AP}$ This is not an automaton, but a word over Σ

LTL formulae over AP interpreted over words over Σ^{ω} , $\Sigma=2^{AP}$ This is not an automaton, but a word over Σ

LTL formulae over AP interpreted over words over Σ^{ω} , $\Sigma = 2^{AP}$ This is not an automaton, but a word over Σ $aUb > (a) \rightarrow (a) \rightarrow (b)$ $\Box a \rightarrow (a) \rightarrow (a)$

Derived Operators

- $true = \varphi \lor \neg \varphi$
- ▶ false = ¬true
- $\Diamond \varphi = true \, \mathsf{U} \varphi \, (\mathsf{Eventually} \, \varphi)$

Precedence

- Unary Operators bind stronger than Binary
- ▶ and ¬ equally strong
- U takes precedence over ∧, ∨, →
 - ▶ $a \lor b \cup c \equiv a \lor (b \cup c)$

► Whenever the traffic light is red, it cannot become green immediately:

12/1

► Whenever the traffic light is red, it cannot become green immediately:

 \Box (red $\rightarrow \neg \bigcirc$ green)

► Whenever the traffic light is red, it cannot become green immediately:

```
\Box (red \rightarrow \neg \bigcirc green)
```

Eventually the traffic light will become yellow

12/1

Whenever the traffic light is red, it cannot become green immediately:

```
\Box (red \rightarrow \neg \bigcirc green)
```

Eventually the traffic light will become yellow \(\forall yellow\)

Whenever the traffic light is red, it cannot become green immediately:

```
\Box (red \rightarrow \neg \bigcirc green)
```

- Eventually the traffic light will become yellow \(\forall yellow \)
- Once the traffic light becomes yellow, it will eventually become green

Whenever the traffic light is red, it cannot become green immediately:

```
\Box (red \rightarrow \neg \bigcirc green)
```

- Eventually the traffic light will become yellow \(\frac{\chi vellow}{\chi} \)
- Once the traffic light becomes yellow, it will eventually become green

```
\Box(yellow \rightarrow \Diamond green)
```

Examples

Whenever the traffic light is red, it cannot become green immediately:

```
\Box(red \rightarrow \neg \bigcirc green)
```

- Eventually the traffic light will become yellow vellow
- Once the traffic light becomes yellow, it will eventually become green

```
\Box(yellow \rightarrow \Diamondgreen)
```

► Whenever the traffic light is red, it will eventually become green, but it must be yellow for sometime in between the red and the green

12/14

Examples

Whenever the traffic light is red, it cannot become green immediately:

```
\Box(red \rightarrow \neg \bigcirc green)
```

- Eventually the traffic light will become yellow vellow
- Once the traffic light becomes yellow, it will eventually become green

```
\Box(yellow \rightarrow \Diamondgreen)
```

Whenever the traffic light is red, it will eventually become green, but it must be yellow for sometime in between the red and the green

```
\Box(red \rightarrow \bigcirc(red \Box[yellow
```

Examples

Whenever the traffic light is red, it cannot become green immediately:

```
\Box(red \rightarrow \neg \bigcirc green)
```

- Eventually the traffic light will become yellow \$\display\$ yellow
- Once the traffic light becomes yellow, it will eventually become green

```
\Box(yellow \rightarrow \Diamondgreen)
```

Whenever the traffic light is red, it will eventually become green, but it must be yellow for sometime in between the red and the green

```
\Box(red \rightarrow \bigcirc(red \Box[yellow \land \bigcirc (yellow \Boxgreen)]))
```

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

Let $\sigma = A_0 A_1 A_2 \dots$

13/1

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

Let $\sigma = A_0 A_1 A_2 \dots$

▶ $\sigma \models a \text{ iff } a \in A_0$

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

- $ightharpoonup \sigma \models a \text{ iff } a \in A_0$
- \bullet $\sigma \models \varphi_1 \land \varphi_2 \text{ iff } \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (\mathbf{2}^{AP})^{\omega} \mid \sigma \models \varphi \}$$

- $ightharpoonup \sigma \models a \text{ iff } a \in A_0$

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (\mathbf{2}^{AP})^{\omega} \mid \sigma \models \varphi \}$$

- $ightharpoonup \sigma \models a \text{ iff } a \in A_0$
- $\sigma \models \varphi_1 \land \varphi_2 \text{ iff } \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$
- $\triangleright \ \sigma \models \bigcirc \varphi \text{ iff } A_1 A_2 \ldots \models \varphi$

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

- $ightharpoonup \sigma \models a \text{ iff } a \in A_0$
- $\sigma \models \varphi_1 \land \varphi_2 \text{ iff } \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$
- $\triangleright \ \sigma \models \bigcirc \varphi \text{ iff } A_1 A_2 \ldots \models \varphi$
- ▶ $\sigma \models \varphi \cup \psi$ iff $\exists j \geqslant 0$ such that $A_i A_{i+1} \dots \models \psi \land \forall 0 \leqslant i < j, A_i A_{i+1} \dots \models \varphi$

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

14/1

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

- $ightharpoonup \sigma \models \Box \varphi \text{ iff } \forall j \geqslant 0, A_i A_{i+1} \ldots \models \varphi$

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

Given LTL formula φ over AP,

$$L(\varphi) = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}$$

If $\sigma = A_0 A_1 A_2 \ldots$, $\sigma \models \varphi$ is also written as $\sigma, 0 \models \varphi$. This simply means $A_0 A_1 A_2 \ldots \models \varphi$. One can also define $\sigma, i \models \varphi$ to mean $A_i A_{i+1} A_{i+2} \ldots \models \varphi$ to talk about a suffix of the word σ satisfying a property.