

we will need to highlight an algebraic property satisfied by the first fundamental form

The idea is simple:

the distributivity of the first fundamental form can be used to relate terms

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$

whose arguments are different, with those whose arguments are the same.

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$

Notice that since $\langle v, w \rangle = \langle w, v \rangle$, we have only one term with different arguments

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

allowing us to express it entirely in terms of those that have both arguments the same

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Notice that we only used two properties of the first fundamental form:

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w,v+w\rangle = f^*\langle v,v\rangle + 2f^*\langle v,w\rangle + f^*\langle w,w\rangle$$

Luckily, these are the same properties the pull back also satisfies (easy exercise!)

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w,v+w\rangle = f^*\langle v,v\rangle + 2f^*\langle v,w\rangle + f^*\langle w,w\rangle$$
$$f^*\langle v,w\rangle = \frac{f^*\langle v+w,v+w\rangle - f^*\langle v,v\rangle - f^*\langle w,w\rangle}{2}$$

and once again we can express the mixed term in terms of the one which has both terms equal

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If,
$$f^*\langle v, v \rangle = \langle v, v \rangle$$
 for all v ,

All this proves that if the two forms are equal when tested on pairs of same vectors

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

they will be equal even when applied to pairs where the vectors are different

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w,v+w\rangle = f^*\langle v,v\rangle + 2f^*\langle v,w\rangle + f^*\langle w,w\rangle$$
$$f^*\langle v,w\rangle = \frac{f^*\langle v+w,v+w\rangle - f^*\langle v,v\rangle - f^*\langle w,w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v}

So if the first fundamental forms are different, the integrands must be different

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$

We can assume this, because if it is strictly smaller, we can proceed similarly

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some p

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

Remember that tangent vectors are defined as velocity vectors of some curve on the surface

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w,v+w\rangle = f^*\langle v,v\rangle + 2f^*\langle v,w\rangle + f^*\langle w,w\rangle$$
$$f^*\langle v,w\rangle = \frac{f^*\langle v+w,v+w\rangle - f^*\langle v,v\rangle - f^*\langle w,w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

So, $f^*\langle\dot{\gamma}(t_0),\dot{\gamma}(t_0)\rangle_{\gamma(t_0)} - \langle\dot{\gamma}(t_0),\dot{\gamma}(t_0)\rangle_{\gamma(t_0)} > 0$ for some t_0

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

so we can rephrase this in terms of a function from an interval to \mathbb{R} being strictly positive at some point

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

So, $f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$ for some t_0

By continuity,

$$f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$$
 in some interval $[t_1,t_2]$

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

Continuity will never allow only one point to be strictly positive

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

So, $f^*\langle\dot{\gamma}(t_0),\dot{\gamma}(t_0)\rangle_{\gamma(t_0)} - \langle\dot{\gamma}(t_0),\dot{\gamma}(t_0)\rangle_{\gamma(t_0)} > 0$ for some t_0

By continuity,

$$f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$$
 in some interval $[t_1,t_2]$

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

some interval around it must also be strictly positive even if the interval is very small

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some p

Let $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

So, $f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$ for some t_0

By continuity,

$$f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$$
 in some interval $[t_1,t_2]$

So,
$$\int_{t_1}^{t_2} f^* \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_p - \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_p dt > 0$$

At least in that interval the integral is forced to be positive

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

So,
$$f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$$
 for some t_0

By continuity, $f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$ in some interval $[t_1,t_2]$ So, $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt - \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$

and the difference of integrals is positive

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w,v+w\rangle = f^*\langle v,v\rangle + 2f^*\langle v,w\rangle + f^*\langle w,w\rangle$$
$$f^*\langle v,w\rangle = \frac{f^*\langle v+w,v+w\rangle - f^*\langle v,v\rangle - f^*\langle w,w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

So,
$$f^*\langle\dot{\gamma}(t_0),\dot{\gamma}(t_0)\rangle_{\gamma(t_0)} - \langle\dot{\gamma}(t_0),\dot{\gamma}(t_0)\rangle_{\gamma(t_0)} > 0$$
 for some t_0

By continuity, $f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0 \text{ in some interval } [t_1,t_2]$ So, $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt - \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt$

and the two integrals are forced to be different

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v}

Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ So, $f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$ for some t_0

By continuity,

$$f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0 \text{ in some interval } [t_1,t_2]$$
So,
$$\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$$

$$\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt - \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$$

$$\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt$$

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v}

Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ So, $f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$ for some t_0

By continuity, $f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$ in some interval $[t_1,t_2]$ So, $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt - \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt$ arc length of $f \circ \gamma$ from t_1 to $t_2 \neq$ arc-length of γ from t_1 to t_2

And we have, therefore, proved the converse

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v}

Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ So, $f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$ for some t_0

By continuity, $f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$ in some interval $[t_1,t_2]$ So, $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt - \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt$ arc length of $f \circ \gamma$ from t_1 to $t_2 \neq$ arc-length of γ from t_1 to t_2

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$

then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some pLet $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

So,
$$f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$$
 for some t_0

By continuity, $f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$ in some interval $[t_1,t_2]$ So, $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt - \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > \int_{t_1}^{t_2} \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt$ arc length of $f \circ \gamma$ from t_1 to $t_2 \neq$ arc-length of γ from t_1 to t_2

then f must fail to preserve the arc-length of some curve

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v,v\rangle = \langle v,v\rangle$ for all v, then $f^*\langle v,w\rangle = \langle v,w\rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ for some \mathbf{v} Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$

then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some p

Let
$$p = \gamma(t_0)$$
 and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

So,
$$f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$$
 for some t_0

By continuity, $f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$ in some interval $[t_1,t_2]$ So, $\int_{t_1}^{t_2} f^* \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_p - \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_p dt > 0$ $\int_{t_1}^{t_2} f^* \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_p dt - \int_{t_1}^{t_2} \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_p dt > 0$ $\int_{t_1}^{\tilde{t}_2} f^* \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_p \mathrm{d}t > \int_{t_1}^{\tilde{t}_2} \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_p \mathrm{d}t$ arc length of $f \circ \gamma$ from t_1 to $t_2 \neq$ arc-length of γ from t_1 to t_2

Alternatively, if a function preserves the arc-lengths of all curves,

$$\langle v + w, v + w \rangle = \langle v, v \rangle + 2\langle v, w \rangle + \langle w, w \rangle$$
$$\langle v, w \rangle = \frac{\langle v + w, v + w \rangle - \langle v, v \rangle - \langle w, w \rangle}{2}$$

Similarly,

$$f^*\langle v+w, v+w\rangle = f^*\langle v, v\rangle + 2f^*\langle v, w\rangle + f^*\langle w, w\rangle$$
$$f^*\langle v, w\rangle = \frac{f^*\langle v+w, v+w\rangle - f^*\langle v, v\rangle - f^*\langle w, w\rangle}{2}$$

If, $f^*\langle v, v \rangle = \langle v, v \rangle$ for all v, then $f^*\langle v, w \rangle = \langle v, w \rangle$ for all v, w

If $f^*\langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p \neq \langle \mathbf{w}_1, \mathbf{w}_2 \rangle_p$ then $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p \neq \langle \mathbf{v}, \mathbf{v} \rangle_p$ $\mathbf{v}_1 = \dot{\gamma}_1(t)$ for some \mathbf{v} $\mathbf{v}_2 = \dot{\gamma}_2(t)$ Assume, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p > \langle \mathbf{v}, \mathbf{v} \rangle_p$ $D_p(f)\mathbf{v}_1 = t$ then, $f^*\langle \mathbf{v}, \mathbf{v} \rangle_p - \langle \mathbf{v}, \mathbf{v} \rangle_p > 0$ for some p $D_p(f)\mathbf{v}_2 = t$ Let $p = \gamma(t_0)$ and $\mathbf{v} = \dot{\gamma}(t_0)$ for some γ

So,
$$f^*\langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} - \langle \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle_{\gamma(t_0)} > 0$$
 for some t_0

By continuity, $f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p > 0$ in some interval $[t_1,t_2]$ So, $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p - \langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt - \int_{t_1}^{t_2}\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > 0$ $\int_{t_1}^{t_2} f^*\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt > \int_{t_1}^{t_2}\langle\dot{\gamma}(t),\dot{\gamma}(t)\rangle_p dt$ arc length of $f \circ \gamma$ from t_1 to $t_2 \neq$ arc-length of γ from t_1 to t_2

$$\mathbf{v}_1 = \dot{\gamma}_1(t)$$
 $\mathbf{v}_2 = \dot{\gamma}_2(t)$
 $D_p(f)\mathbf{v}_1 = \frac{\mathrm{d}}{\mathrm{d}t}(f(\gamma_1(t)))$
 $D_p(f)\mathbf{v}_2 = \frac{\mathrm{d}}{\mathrm{d}t}(f(\gamma_2(t)))$

then it also preserves the first fundamental form

 $\gamma:(\alpha,\beta)\to S$

 $\gamma: (\alpha, \beta) \to S$ $\mathbf{v}(t) \in T_{\gamma(t)}(S)$

$$\gamma: (\alpha, \beta) \to S
\mathbf{v}(t) \in T_{\gamma(t)}(S)
\nabla_{\gamma} \mathbf{v} := \dot{\mathbf{v}}(t_0) - (\dot{\mathbf{v}}(t_0).\hat{\mathbf{n}}(\gamma(t_0)))\hat{\mathbf{n}}(\gamma(t_0))$$

$$\gamma: (\alpha, \beta) \to S
\mathbf{v}(t) \in T_{\gamma(t)}(S)
\nabla_{\gamma} \mathbf{v} := \dot{\mathbf{v}}(t_0) - (\dot{\mathbf{v}}(t_0).\hat{\mathbf{n}}(\gamma(t_0)))\hat{\mathbf{n}}(\gamma(t_0))$$

Definition. v is parallel along γ if $\nabla_{\gamma} \mathbf{v}(t) = 0$

$$\gamma: (\alpha, \beta) \to S
\mathbf{v}(t) \in T_{\gamma(t)}(S)
\nabla_{\gamma} \mathbf{v} := \dot{\mathbf{v}}(t_0) - (\dot{\mathbf{v}}(t_0).\hat{\mathbf{n}}(\gamma(t_0)))\hat{\mathbf{n}}(\gamma(t_0))$$

Definition. v is parallel along γ if $\nabla_{\gamma} \mathbf{v}(t) = 0$

$$\gamma$$
 is a geodesic if and only if $\nabla_{\gamma}\dot{\gamma}=0$

In terms of a surface patch:

$$\gamma(t) = \sigma(x(t), y(t))$$

$$\mathbf{v}(t) = \alpha(t)\sigma_x(x(t), y(t)) + \beta(t)\sigma_y(x(t), y(t))$$

 $\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_x(x(t), y(t)) + \beta(t)\sigma_y(x(t), y(t)))'$

$$\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_x(x(t), y(t)) + \beta(t)\sigma_y(x(t), y(t)))'$$

$$= \alpha'(t)\sigma_x(x(t), y(t)) + \alpha(t)(\sigma_x(x(t), y(t)))' + \beta'(t)\sigma_y(x(t), y(t)) + \beta(t)(\sigma_y(x(t), y(t)))'$$

$$\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_{x}(x(t), y(t)) + \beta(t)\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(\sigma_{x}(x(t), y(t)))' + \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(x'(t)\sigma_{xx}(x(t), y(t)) + y'(t)\sigma_{xy}(x(t), y(t)))
+ \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(x'(t)\sigma_{yx}(x(t), y(t)) + y'(t)\sigma_{yy}(x(t), y(t)))$$

```
\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_{x}(x(t), y(t)) + \beta(t)\sigma_{y}(x(t), y(t)))' 

= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(\sigma_{x}(x(t), y(t)))' + \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(\sigma_{y}(x(t), y(t)))' 

= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(x'(t)\sigma_{xx}(x(t), y(t)) + y'(t)\sigma_{xy}(x(t), y(t))) 

+ \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(x'(t)\sigma_{yx}(x(t), y(t)) + y'(t)\sigma_{yy}(x(t), y(t))) 

= \cdots
```

$$\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_{x}(x(t), y(t)) + \beta(t)\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(\sigma_{x}(x(t), y(t)))' + \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(x'(t)\sigma_{xx}(x(t), y(t)) + y'(t)\sigma_{xy}(x(t), y(t)))
+ \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(x'(t)\sigma_{yx}(x(t), y(t)) + y'(t)\sigma_{yy}(x(t), y(t)))
= \cdots$$

$$\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_{x}(x(t), y(t)) + \beta(t)\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(\sigma_{x}(x(t), y(t)))' + \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(x'(t)\sigma_{xx}(x(t), y(t)) + y'(t)\sigma_{xy}(x(t), y(t)))
+ \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(x'(t)\sigma_{yx}(x(t), y(t)) + y'(t)\sigma_{yy}(x(t), y(t)))
= \cdots$$

$$\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_{x}(x(t), y(t)) + \beta(t)\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(\sigma_{x}(x(t), y(t)))' + \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(x'(t)\sigma_{xx}(x(t), y(t)) + y'(t)\sigma_{xy}(x(t), y(t)))
+ \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(x'(t)\sigma_{yx}(x(t), y(t)) + y'(t)\sigma_{yy}(x(t), y(t)))
= \cdots$$

Corollary. The geodesic curvature of a curve on a surface depends only on the first fundamental form.

$$\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_{x}(x(t), y(t)) + \beta(t)\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(\sigma_{x}(x(t), y(t)))' + \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(\sigma_{y}(x(t), y(t)))'
= \alpha'(t)\sigma_{x}(x(t), y(t)) + \alpha(t)(x'(t)\sigma_{xx}(x(t), y(t)) + y'(t)\sigma_{xy}(x(t), y(t)))
+ \beta'(t)\sigma_{y}(x(t), y(t)) + \beta(t)(x'(t)\sigma_{yx}(x(t), y(t)) + y'(t)\sigma_{yy}(x(t), y(t)))
= \cdots$$

Corollary. The geodesic curvature of a curve on a surface depends only on the first fundamental form.

Proposition. $\mathbf{v}(t)$ is a parallel vector field along γ if and only if $\alpha(t)$ and $\beta(t)$ satisfy the following first order differential equation:

. . .

$$\dot{\mathbf{v}}(t) = (\alpha(t)\sigma_x(x(t), y(t)) + \beta(t)\sigma_y(x(t), y(t)))'$$

$$= \alpha'(t)\sigma_x(x(t), y(t)) + \alpha(t)(\sigma_x(x(t), y(t)))' + \beta'(t)\sigma_y(x(t), y(t)) + \beta(t)(\sigma_y(x(t), y(t)))'$$

$$= \alpha'(t)\sigma_x(x(t), y(t)) + \alpha(t)(x'(t)\sigma_{xx}(x(t), y(t)) + y'(t)\sigma_{xy}(x(t), y(t)))$$

$$+ \beta'(t)\sigma_y(x(t), y(t)) + \beta(t)(x'(t)\sigma_{yx}(x(t), y(t)) + y'(t)\sigma_{yy}(x(t), y(t)))$$

$$= \cdots$$

Corollary. The geodesic curvature of a curve on a surface depends only on the first fundamental form.

Proposition. $\mathbf{v}(t)$ is a parallel vector field along γ if and only if $\alpha(t)$ and $\beta(t)$ satisfy the following first order differential equation:

. . .

Corollary. Any vector \mathbf{v}_0 at $\gamma(t_0)$ can be extended to exactly one tangent vector field $\mathbf{v}(t)$ along γ .