Queueing Theory (Part 3)

M/M/s Queueing Systems with Variations (M/M/s, M/M/s//K, M/M/s//N)

M/M/s Queueing System

- We define
 - λ = mean arrival rate
 - μ = mean service rate
 - s = number of servers (s > 1)
 - $\rho = \lambda / s\mu = utilization ratio$
- We require $\lambda < s\mu$, that is $\rho < 1$ in order to have a steady state

Rate Diagram

M/M/s Queueing System

Steady-State Probabilities

$$P_0 = \frac{1}{\sum_{n=0}^{s-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^s}{s!} \left(\frac{1}{1-\lambda/s\mu}\right)}$$

and $P_n = C_n P_0$

Use Birth Death Processes

Rate In = Rate Out

Coefficients are easy to remember

if you think of rate diagram

Example: s = 3

where
$$C_n = \frac{\lambda_{n-1}\lambda_{n-2}...\lambda_0}{\mu_n\mu_{n-1}...\mu_1} = \begin{cases} n! \\ \frac{\left(\frac{\lambda}{\mu}\right)^n}{s! \, s^{n-s}} & n = s+1, s+2, ... \end{cases}$$

$$C_{0} = 1$$

$$C_{1} = \frac{\lambda}{\mu}$$

$$C_{2} = \frac{\lambda}{\mu} \frac{\lambda}{2\mu} = \left(\frac{\lambda}{\mu}\right)^{2} \frac{1}{2!}$$

$$C_{3} = \left(\frac{\lambda}{\mu}\right)^{3} \frac{1}{3!}$$

$$C_{4} = \left(\frac{\lambda}{\mu}\right)^{4} \frac{1}{3} \frac{1}{3!}$$

$$C_{5} = \left(\frac{\lambda}{\mu}\right)^{5} \left(\frac{1}{3}\right)^{2} \frac{1}{3!}$$

$$C_{6} = \left(\frac{\lambda}{\mu}\right)^{3} \frac{1}{3!}$$

$$C_{1} = \left(\frac{\lambda}{\mu}\right)^{3} \frac{1}{3!}$$

$$C_{2} = \left(\frac{\lambda}{\mu}\right)^{3} \frac{1}{3!}$$

$$C_{3} = \left(\frac{\lambda}{\mu}\right)^{3} \frac{1}{3!}$$

$$C_{4} = \left(\frac{\lambda}{\mu}\right)^{5} \left(\frac{1}{3}\right)^{5} \frac{1}{3!}$$

M/M/s Queueing System

 L, L_q, W, W_q

$$L_q = \frac{P_0(\lambda/\mu)^s \rho}{s!(1-\rho)^2}$$

$$= \frac{P_0 \lambda^{s+1}}{(s-1)! \mu^{s-1} (s\mu - \lambda)^2}$$

$$P(\omega > t) = e^{-\mu t} \left[1 + \frac{P_0(\lambda/\mu)^s}{s!(1-\rho)} \left(\frac{1 - e^{-\mu t(s-1-\lambda/\mu)}}{s-1-\lambda/\mu} \right) \right]$$

$$P(\omega_q > t) = \left(1 - \sum_{n=0}^{s-1} P_n\right) e^{-s\mu(1-\rho)t}$$

If
$$s - 1 - \lambda / \mu = 0$$

then this term is (µt)

Use
$$L_q$$
 to find W_q ($L_q = \lambda W_q$):

$$W_q = L_q/\lambda$$

Use W_q to find W:

$$W = W_a + 1/\mu$$

Use $L=\lambda W$ to find L in terms of L_n :

$$L = \lambda W$$

$$= \lambda (W_q + 1/\mu)$$

$$= \lambda (L_q/\lambda + 1/\mu)$$

$$= L_q + \lambda/\mu$$

M/M/s Example: A Better ER

- As before, we have
 - Average arrival rate = 1 patient every $\frac{1}{2}$ hour λ = 2 patients per hour
 - Average service time = 20 minutes to treat each patient μ = 3 patients per hour
- Now we have 2 doctors
 s = 2
- Utilization

$$\rho = \lambda/2\mu = 2/6 = 1/3$$
 (Before s=1, ρ =2/3)

M/M/s Example: ER Questions

In steady state, what is the...

1. probability that both doctors are idle?

probability that exactly one doctor is idle?

2. probability that there are *n* patients?

3. expected number of patients in the ER?

M/M/s Example: ER

Questions

In steady state, what is the...

1. probability that both doctors are idle?

$$P_0 = \frac{1}{\frac{\left(\frac{\lambda}{\mu}\right)^0}{0!} + \frac{\left(\frac{\lambda}{\mu}\right)^1}{1!} + \frac{\left(\frac{\lambda}{\mu}\right)^2}{2!} \frac{1}{1-\rho}} = \frac{1}{1 + \frac{2}{3} + \frac{4}{9 \cdot 2} \frac{1}{2/3}} = \frac{1}{2}$$

probability that exactly one doctor is idle?

$$P_1 = \frac{(\lambda/\mu)^1}{1!} P_0 = \frac{2}{3} \frac{1}{2} = \frac{1}{3}$$

2. probability that there are *n* patients?

$$P_{n} = \begin{cases} \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{n!} P_{0} = \left(\frac{2}{3}\right)^{n} \frac{1}{n!} \frac{1}{2} & \text{if } 0 \le n < 2\\ \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{s! s^{n-s}} P_{0} = \left(\frac{2}{3}\right)^{n} \frac{1}{2!} \left(\frac{1}{2}\right)^{n-2} \frac{1}{2} = \left(\frac{1}{3}\right)^{n} & \text{if } n \ge 2 \end{cases}$$

3. expected number of patients in the ER?

$$L = \lambda W = \lambda (L_q / \lambda + 1/\mu) = L_q + \lambda / \mu = 1/12 + 2/3 = 3/4$$

M/M/s Example: ER Questions

In steady state, what is the...

- 4. expected number of patients waiting for a doctor?
- 5. expected time in the ER?
- 6. expected waiting time?
- 7. probability that there are at least two patients waiting in queue?

probability that a patient waits more than 30 minutes?

M/M/s Example: ER

Questions

In steady state, what is the...

4. expected number of patients waiting for a doctor?

$$L_q = \frac{P_0(\lambda/\mu)^s \rho}{s!(1-\rho)^s} = \frac{(1/2)(2/3)^2(1/3)}{2!(2/3)^2} = \frac{1}{12}$$

5. expected time in the ER?

$$W = L/\lambda = (3/4)/2 = 3/8 \text{ hour} \approx 22.5 \text{ minutes}$$

6. expected waiting time?

$$W_a = L_a/\lambda = (1/12)/2 = 1/24 \text{ hour} \approx 2.5 \text{ minutes}$$

7. probability that there are at least two patients waiting in queue?

P(≥ 4 patients in system) =
$$1 - P_0 - P_1 - P_2 - P_3$$

= $1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{9} - \frac{1}{27} \approx 0.0185$

8. probability that a patient waits more than 30 minutes?

$$\begin{split} P\Big(\omega_q > t\Big) &= \Big(1 - P_0 - P_1\Big)e^{-2\mu(1-\rho)t} = \left(1 - \frac{1}{2} - \frac{1}{3}\right)e^{-2(3)(2/3)t} = \frac{1}{6}e^{-4t} \\ P\Big(\omega_q > 30\,\mathrm{min}\Big) &= P\Big(\omega_q > \frac{1}{2}\,\mathrm{hour}\Big) \approx 0.022 \end{split}$$
 Queueing Theory-9

Performance Measurements	s = 1	s = 2
ρ	2/3	1/3
L	2	3/4
Lq	4/3	1/12
W	1 hr	3/8 hr
Wq	2/3 hr	1/24 hr
P(at least two patients waiting in queue)	0.296	0.0185
P(a patient waits more than 30 minutes)	0.404	0.022

Travel Agency Example

- Suppose customers arrive at a travel agency according to a Poisson input process and service times have an exponential distribution
- We are given
 - λ = 0.10/minute, that is, 1 customer every 10 minutes
 - $-\mu$ =0.08/minute, that is, 8 customers every 100 minutes
- If there was only one server, what would happen?

$$\lambda/\mu > 1$$

Customers would balk at long lines – never reach steady state

- lose customers
- go out of business?
- How many servers would you recommend?
 Calculate P₀, L_a and W_a for s=2, s=3, and s=4

	Α	В	С	D	E	G	Н	- 1	J	K
1	Ten	nplate for	the M/I	M/s Queueing N	Model					
2		•								
3			Data				Results		Range Name	Cells
4		λ =	0.1	(mean arrival rate)		L=	1.361051883		L	G4
5		μ=	0.08	(mean service rate)		L _a =	0.111051883		Lambda	C4
6		s =	3	(# servers)					Lq	G5
7						W =	13.61051883		Mu	C5
8		P(ω>t) =	0.93426			$W_q =$	1.110518834		n	F13:F38
9		when t =	1						P0	G13
10						ρ=	0.416666667		Pn	G13:G3
11		P(ω _c >t) =	0.135161						Rho	G10
12		when t =	1			n	P _n		s	C6
13						0			Time1	C9
14		0.4				1	0.348258706		Time2	C12
15		0.4				2	0.217661692		W	G7
16		0.2				3	0.090692371		Wq	G8
17		0.25 0.25 0.25 0.15	_			4	0.037788488			
18		물 0.2 #HH				5	0.015745203			
19		2 0.15 0.1				6	0.006560501			
20		0.05	Н			7	0.002733542			
21		اجللجلل ل 0	┸┦┸┦┸╌┖╌╾	 		8	0.001138976			
22		0 133 6 5 6 1 9 9 0 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0			5<000000000000000000000000000000000000	9	0.000474573			
23				Number of Customers in	System	10				
24						11				
25						12				
26						13				
27						14				
28						15				
29						16				
30						17	4.31135E-07			
31 32						18	1.7964E-07 7.48498E-08			
33						19 20				
34						21	1.29948E-08			
35						22	5.41449E-09			
36						23				
37						24				
01						25				

Α		С	D	Е	G	Н	I	J	K
1 T	emplate for	the M/I	M/s Queueing Model						
2	•								
3		Data				Results		Range Name	Cells
4	λ =	0.1	(mean arrival rate)		L=	1.269190145		L	G4
5	μ=	0.08	(mean service rate)		L _q =	0.019190145		Lambda	C4
6	s =	4	(# servers)					Lq	G5
7					W =	12.69190145		Mu	C5
8	P(ω>t) =	0.926026			W _q =	0.191901452		n	F13:F38
9	when t =	1						P0	G13
10					ρ=	0.3125		Pn	G13:G38
11	P(ω _~ >t) =	0.033881						Rho	G10
12	when t =	1			n	P _n		s	C6
13	1111211				0			Time1	C9
14					1	0.356660362		Time2	C12
15	0.4				2			W	G7
16					3			Wq	G8
17	0.3 1) 0.25 1 qq 0.2				4	0.029025095			
18					5				
19	를 0.15 0.1				6	0.002834482			
20	0.05				7	0.000885776			
21	بالبالل و	┸┼┸┼┸╌╾╌╾	 		8	0.000276805			
22	0 133 6 5 5 1 5 5 5 6 5 5 5 5 5 5 5 5			**********	9	8.65015E-05			
23			Number of Customers in System		10				
24					11				
25					12				
26					13				
27					14				
28						8.05608E-08			
29					16				
30					17	7.86727E-09			
31 32					18 19				
33					20				
34					21	7.50281E-11			
35					22				
36					23				
37						2.28968E-12			
38						7.15524E-13			-

Single Queue vs. Multiple Queues

 Would you ever want to keep separate queues for separate servers?

Bank Example

- Suppose we have two tellers at a bank
- Compare the single server and multiple server models
- Assume $\lambda = 2$, $\mu = 3$,

L	L_q	W	\mathbf{W}_{q}	P_0	ρ
0.75	0.083	0.375	0.042	0.5	λ/2μ =1/3
1.0	0.334	0.5	0.167	0.4449	$\lambda'/\mu = (\lambda/\mu)/3 = 1/3$

Bank Example Continued

- Suppose we now have 3 tellers
- Again, compare the two models

M/M/3	Three M/M/1 queues
\	V = V = 0 = 0

$$\lambda = 2, \ \mu = 3$$
 $\lambda' = \lambda/3 = 2/3, \ \mu = 3$

$$\rho = \lambda/(s\mu) = 2/9$$
 M/M/1: $\rho = \lambda'/3 = 2/9$ ρ is the same

$$L = 0.676$$
 $L = 0.286$ $3L = 0.858$

$$L_{q} = 0.009$$
 $L_{q} = 0.063$ $3L_{q} = 0.189$

$$W = 0.338$$
 $W = 0.429$

$$W_a = 0.005$$
 $W_a = 0.095$

$$P_0 = 0.5122$$
 $P_0 = 0.7778$ $(P_0)^3 = 0.47$

(Finite Queue Variation of M/M/s)

- Now suppose the system has a maximum capacity, K
- We will still consider s servers
- Assuming $s \le K$, the maximum queue capacity is K s
- Some applications for this model:

Trunk lines for phone – call center

Warehouse with limited storage

Parking garage

Draw the rate diagram for this problem:

Queueing Theory-18

(Finite Queue Variation of M/M/s)

Balance equations: Rate In = Rate Out

State 0:
$$\mu P_1 = \lambda P_0$$

State 1:
$$\lambda P_0 + 2\mu P_2 = (\lambda + \mu)P_1$$

State 2:
$$\lambda P_1 + 3\mu P_3 = (\lambda + 2\mu)P_2$$

State 3:
$$\lambda P_2 + 3\mu P_4 = (\lambda + 3\mu)P_3$$

:

State K-1:
$$\lambda P_{K-2} + 3\mu P_{K} = (\lambda + 3\mu)P_{K-1}$$

State K:
$$\lambda P_{K-1} = 3\mu P_{K}$$

$$C_{0} = 1$$

$$C_{1} = \frac{\lambda}{\mu}$$

$$C_{2} = \frac{\lambda^{2}}{2\mu^{2}}$$

$$C_{3} = \frac{\lambda^{3}}{3!\mu^{3}}$$

$$C_{4} = \left(\frac{1}{3! \cdot 3}\right) \left(\frac{\lambda}{\mu}\right)^{4}$$

$$C_{n} = \left(\frac{1}{3! \cdot 3^{(n-s)}}\right) \left(\frac{\lambda}{\mu}\right)^{n}$$
for $s \le n \le K$

$$C_{K+1} = 0$$

(Finite Queue Variation of M/M/s)

Solving the balance equations, we get the following steady state probabilities:

$$P_{0} = \frac{1}{1 + \sum_{n=1}^{s} \frac{(\lambda/\mu)^{n}}{n!} + \frac{(\lambda/\mu)^{s}}{s!} \sum_{n=s+1}^{K} \left(\frac{\lambda}{s\mu}\right)^{n-s}} \qquad P_{n} = \begin{cases} \frac{\lambda^{n}}{n!\mu^{n}} P_{0} & \text{for } n = 1, 2, ..., s \\ \frac{\lambda^{n}}{s^{n-s}s!\mu^{n}} P_{0} & \text{for } n = s, s+1, ..., K \\ 0 & n > K \end{cases}$$

Verify that these equations match those given in the text for the single server case (M/M/1//K)

(Finite Queue Variation of M/M/s)

$$L_{q} = \frac{P_{0}(\lambda/\mu)^{s} \rho}{s! (1-\rho)^{2}} [1 - \rho^{K-s} - (K-s)\rho^{K-s} (1-\rho)], \text{ where } \rho = \lambda/s\mu$$

$$L = \sum_{n=0}^{s-1} n P_n + L_q + s \left(1 - \sum_{n=0}^{s-1} P_n \right)$$

To find W and W_q :

Although $L \neq \lambda W$ and $L_q \neq \lambda W_q$ because λ_n is **not** equal for all n,

$$L = \overline{\lambda}W$$
 and $L_q = \overline{\lambda}W_q$ where $\overline{\lambda} = \sum_{n=0}^{\infty} \lambda_n P_n = \lambda(1 - P_K)$

Also, because there is a finite number of states, the steady state equations do hold, even if ρ >1

(Finite Calling Population Variation of M/M/s)

- Now suppose the calling population is finite, N
- We will still consider s servers
- Assuming s ≤ N, the maximum number in the queue capacity is N s, so K ≥ N does not affect anything
 If N is the entire population, then the maximum number in system is N. Assume N ≤ K and s ≤ N
- Application for this model:
 Machine replacement
- Draw the rate diagram for this problem:

(Finite Calling Population Variation of M/M/s)

Balance equations: Rate In = Rate Out

State 0:
$$\mu P_1 = \lambda P_0$$
 \rightarrow $P_1 = (N\lambda/\mu)P_0$

State 1:
$$N\lambda P_0 + 2\mu P_2 = ((N-1)\lambda + \mu)P_1$$
 $\rightarrow P_2 = (1/2)(N\lambda/\mu)((N-1)\lambda/\mu)P_0$

:

$$C_0 = 1$$

$$C_1 = N\left(\frac{\lambda}{\mu}\right)$$

$$C_2 = \frac{N(N-1)}{2} \left(\frac{\lambda}{\mu}\right)^2$$

$$C_3 = \frac{N(N-1)(N-2)}{3!} \left(\frac{\lambda}{\mu}\right)^3$$

Queueing Theory-23

M/M/s///N Results

$$P_{0} = \frac{1}{\sum_{n=0}^{s-1} \frac{N!}{(N-n)! \, n!} \left(\frac{\lambda}{\mu}\right)^{n} + \sum_{n=s}^{N} \frac{N!}{(N-n)! \, s! \, s^{n-s}} \left(\frac{\lambda}{\mu}\right)^{n}}$$

$$P_{n} = \begin{cases} \frac{N!}{(N-n)! \, n!} \left(\frac{\lambda}{\mu}\right)^{n} P_{0} & \text{for} \quad n = 0,1,...,s \\ \frac{N!}{(N-n)! \, s! \, s^{n-s}} \left(\frac{\lambda}{\mu}\right)^{n} P_{0} & \text{for} \quad s \le n \le N \\ 0 & \text{for} \quad n > N \end{cases}$$

$$L_q = \sum_{n=s}^{N} (n-s)P_n$$

$$L = \sum_{n=0}^{s-1} nP_n + L_q + s\left(1 - \sum_{n=0}^{s-1} P_n\right)$$