Vessel Optimization and Safety System (VOSS)

"Some people are weather wise, but most are otherwise"

Benjamin Franklin

Sources of Heavy Weather Damage

- Weather routing not taking ship responses into account
- Operator not knowing the ship's design limits
- Ship too big too powerful to get the feel
- Improper loading for the expected wind and waves conditions
- Commercial pressure on the captain to take unwarranted risks

Too late to exercising "Prudent Seamanship"

Bottom Slam

Parametric Rolling

- Wide beam, large flare and
- Transom stern hull form
- → Large stability variations as wave travel along the ship length due to water plan area changes
- Could happen in head or following seas
- Sudden, unexpected large roll motion with high lateral accelerations developed in minutes
- ◆ Resonance occurs when the wave encounter period or pitch period is half the natural roll period of the ship

Typhoon Forecast

The OWI/OSI Weather forecast process

500MB Upper Air Charts

Surface Pressure Charts

Weather - Pressure

Ø❷⊘■

7:45 PM

Start | Q Exploring - Paintpro

Paint Shop Pro - wave

Detailed wind and wave forecast available onboard Weather - Wave and Wind File Configure View Help 10 12Z 13 NOV 98 (060HR) 140E 140W 130W 150E 160E - 50 → 60+ 10 → 30 60N + 10 × SIG. HT 50-00.0N, 172-30.0E WIND (meters) (knots) 12Z 13 NOV 98 (060HR) 50N 2 12Z 13 NOV 98 (060HR), 12.5M, 61KTS Forecast Time Grid Position 247.5 DIR(deg) PRD(sec) 240.0 Wave Train 1 150.0 210.0 37-27.7N, 164-47.1W **Ø⊗**⊘■ Start | Q Exploring - Paintpro Paint Shop Pro Weather - Wave and Wind 7:43 PM

Daily Global Current Nowcast

Shipboard voyage planning process

Download weather from OSI Program generates weather charts GPS, Gyro, Echosounder Displays weather and **Motion Sensor** KYMA, Anemometer Performance Data Accelerations, roll, pitch Customized ship performacne Optimize route plan based on Sperry VMS or other models with actual load ETA, Minimum Fuel without exceed **Electronic Chart System** conditions from CARGOMAX stress, motion and overload limits Execute and refine voyage plan with actual Ship position, ETA requirement and weather

Safe Operating Envelope

🙀 Start | 🚇 My Computer | 🔯 Exploring - 3½ Floppy (A:) | 🙆 Route - (Passage) San Fra...

₩₩ 4:34 AM

Route Simulation in forecast wind and waves

Start Paint Shop Pro Route - (Passage) Oa...

|**♥**❷**♥**|

Optimization to arrive on time with minimum fuel

Unique Optimization Algorithm

- → True optimization on fuel consumption based on ship performance in forecast wind, wave and current conditions
- ◆ User specified Safe Operating Limits in terms of ship motion, engine overload and storm/seastate avoidance to minimize heavy weather damage
- Show fuel differences for arriving early or late from schedule
- Optimize on set route or thousands of possible routes within specified route envelop

Route Comparisons

Comparison

Route - (Passage) Oaklan... | 🔯 Exploring - Paintpro

Start | 🚇 My Computer

♠ ♠ ♠ ↑ 10:07 PM

Predicts and monitors ship motion

- Based on Ship Motion Theory
- Predicts motions for different speeds, heading and wind and wave conditions
- Provide guidance to many "What if" questions

Monitoring/Detection of Parametric/Synchronous Motions

- Alarms when max motion or Parametric roll are detected
- Uses latest theory and model test data
- Advices speed and heading changes
- Low cost sensor box measures roll, pitch and accelerations in XYZ
- USB interface, no external power required

Sources of Fuel Waste

- Bad weather routing
- Improper speed management
 e.g. Tried to increase speed in head seas;
 Too high speed in the beginning of a voyage to make sure on-time arrival
- Engine not properly tuned
- Propeller/hull fouling
- → Improper trim and GM

Required SHP to increase extra knot doubled (2X) from 13-16 knots

BHP vs Speed for a typical tanker

Required SHP to increase extra knot is 4X at 23 knots compared to 13

Engine Efficiency and Weather Factor

- Plot SFC ratio = SFC actual / SFC ideal over time to see trends
- → If the engine is properly tuned and fuel quality is good, the SFC should be very close to the engine test-bed condition at the same power output
- → Plot WX = SHP actual / SHP calm weather
- Check trends and compare to base line

Engine Efficiency and Fuel Quality Monitoring

Hull/Propeller Roughness

- True slip increases when hull/propeller roughness increase
- Observed slip not a good measure
- Need to account for the effect of weather and draft changes to reduce scatter
- Other indicators (EngineTemperature, Torque limits in calm weather etc.)
- Thrust meter needed to separate hull/prop
- Post Voyage analysis to create database

Slip vs Time for Condi Rice to show changes in Hull Roughness

Performance Evaluation

Shipboard Monitoring

Ship Monitoring - Test Ship Performance

∮: 🚵 12:50 PM

Start 6 2 2

Comparison of Fuel and Transit time for the same passage

TITULE T SERVER TEC DOLL	Multip	le Passage	Report
--------------------------	--------	------------	--------

Dep Port:

OAK

									Rei	port :	Ar. genei	r Port: ate a		GUM 9/28		3:13	3:04PM			
In Port hrs	At Sea hrs	Fwd Draft ft	Aft Draft ft	Ave Spd kn		ormai Wx	SFC	Eng Miles NM	Obs Miles NM	HF	In Por O MD (otal BE	cLO	HFC	MDO al BBL	CLC	SFC	HFO/ NM	Obs Slip %	RPM	Engine Power SHP
Rec:	0	Ship C	ode: Mis	MHI	Voy#:		44 De	p. Time	: 7/1	5/2000	4:12:00	AM	Arr.	Time:	7.	/24/2000 3	MA00:00:8			
412	214.8	263	32.6	23.5		1.1	1.0	5,545.7	5,040.8	280.0	35.0	0.4	7,967,0	15.0	53.4	162.6	1.6	9.1	119.4	34,641.5
Rec:	1	Ship C	ode: Mts	MHI	Voy#:		46 D e	p. Time	9/2	3/2000	1:00:00	PM	Arr.	Time:	10	0/2/2000 8	3:24:00PM			
412	223.4	30.0	343	22.8		13	1.0	5,8459	5,102.0	212.0	17.0	0.4	8,562,0	282.0	48.0	153.9	1.7	12.7	121.0	37,809.6
Rec:	2	Ship C	ode: Mts	MHI	Voy#:		48 De	p. Time	: 12/	1/2000	6:12:00	PM	Arr.	Time:	1:	2/11/2000	3:00:00AM			
27.4	224.8	30.4	29.4	22.7		12	1.0	5,7742	5,104.8	146.0	56.0	0.4	8,279.0	330.0	53.9	1563	1.6	11.6	118.8	35,787.2
Rec:	3	Ship C	ode: Mts	MHI	Voy#:		49 De	ep. Time	: 1/6	/2001 2	2:30:00P	M	Arr.	Time:	1.	/16/2001 8	3:48:00PM			
29.6	2463	28.0	30.8	22.0		13	1.0	6,131.0	5,410.1	170.0	34.0	0.4	8,722.0	58.0	56.9	159.4	1.6	11.8	115.1	33,725.2
Rec:	4	Ship C	ode: Mts	:MHI	Voy#:		50 D e	ep. Time	: 2/9	/2001 6	5:42:00P	M	Arr.	Time:	2.	/19/2001 6	5:18:00AM			

Capture performance data using Electronic Log

Evaluating Daily Performance

Fuel Consumption normalized by drafts and environmental conditions

Normalized HFO Consumption on OAK-GUAM Passage

Use of Statistical Quality Control Techniques

- Originally developed for manufacturing QC/QA by Dr. Edwards Deming
- ➤ Establish historical level with random variation (Upper bound and lower bound)
- Sporadic departure from historical level can be explained
- Establish optimum level after the fact using hindcast data, i.e. post voyage optimization
- > % approaching optimum demonstrates the effectiveness of operation policy changes

Operation Support Information via Web Services

- Hosting of secured voyage database for shipping companies
- ✓ Post Voyage analysis using VOSS weather, current and ship model
- ✓ Performance analysis on hull, propeller roughness
- ✓ Wave, Fatigue cycle counting
- ✓ Generate custom reports on energy
- conservation improvements

Performance Report			грого	Departure: Class: Amival: GUM					C09 HON Beginning: Ending: 3/13/1996							: 2/15/1996 Finlay, March 04, 2005 12 #5:51 A.M										
Code	Vog	y#	Service	Departus GMI	AssivalGMI			Draft	Draf		Ime	$W\pi$	Eng	Fug Miks NM	Miles	ню	In Post MIDO total BBLAN	cro	ню	At Sea MDO total		SPC /SHIP-la	им		RPM	Fugine Po wez SHP
мні	1		PIX	2/15/1994 2:54:00	2/21/1994 9:30:00	37.9	150.	28.6	29.0	22.0	173	1.0	0.9	3543	3315	147 3.9	27	12 0.3	5194 34.5	7 0.0	1427 9.5	155.	1.58	6.5	109	31414
MDVA	. 1		PIX	2/22/1994 3 12:00	2/28/1994 7:00:00	33.7	147.	27.4	30.3	22.4	17.2	1.0	1.2	3590	3315	140 4.7	0.0		480 5	60 0.4	11+0 2.2	179.	1.45	7.4	112	24595
MECA	. 1		PIX	3/7/1994 5 \$2 00	3/13/1996 4:30:00	38.5	142.	30.8	31.5	23.3	1+.0	0.9	11	3458	3323	110 2.9	0.0			0.0	1393 9.8	177.	1.65	91	119	27504
					Average	36.7	147.	28.9	30.3	22.6	16.2	1.0	1.0	3603.	3317.	139 3.8		24 <u>0.7</u>	5163 <u>35.7</u>	22 <u>0.2</u>	1320 <u>9.0</u>	170.	156	7.73	113.	28572

- ✓ Track ships and anticipate delay due to weather
- Emergency response

Shore-side Fleet Tracking

Start | Ship Tracking

Examples of Operation Support Information

- Provide detailed long range wind and wave forecast to assist Captain in planning optimum passages.
- Provide expert advice on motion/stress responses in heavy weather to minimize risk of damage.
- → Monitor motion and engine performance and alert the operator of impending danger as well as avoid Engine overload.
- Analysis of voyage record to improve performance
- ◆ Training and accident prevention

Benefits of OSI Technology Solution

- Complete model ship motion and structure responses; engine and power characteristics.
- Optimum ship routing to increase schedule reliability, minimize damage and fuel cost.
- Voyage Data Recorder to capture pertinent operation data for incident investigation and training.
- Real-time display to alert operator of abnormal conditions and damaging events.
- Post voyage analysis to evaluate/monitor performance of hull, engine and propeller.

Here is what a client found after using OSI

- ◆ Actual number of hours delayed due to heavy weather decreased by 80%
- ◆ Number of Structural damage claims due to heavy weather decreased by 73%, cost by 29%
- Cargo damage claims due to heavy weather decreased by 87%
- Eliminated 23% variability in fuel consumed on each crossing.

Partial list of clients

- The US Navy, Coast Guard
- Maersk Sea-Land, US Ship Management
- American Ship Management, APL
- Matson Navigation
- Chevron Shipping, SeaRiver Maritime
- ◆ CSX Lines
- Royal Caribbean Cruise Lines

Contact: Ocean Systems Inc. 2701 Monarch Street #210 Alameda, CA 94501 U.S.A.

Tel: 1 (510) 337-0812

Fax: 1 (510) 337-0120

E-mail: osi@ocean-systems.com

Web: www.ocean-systems.com

Company Profiles

- OSI and OWI were founded 16 and 22 years ago.
- Staffed with professional meteorologists, scientists.
 Oceanographers, naval architects, computer programmers and a ship captain.
- Major clients include Army, Navy, international oil companies, shipping lines and engineering firms.
- → Joint Venture established 10 years ago. Over 100 ships currently using the routing system. 5 oil companies using the South China Sea Typhoon Forecast System since 95.
- ♦ VOSS has developed over the last 15 years with help of shipboard captains and engineers under several government sponsored programs. A version is used by the US Navy OTSR Centers.