MATH 6140 HOMEWORK 12

COLTON GRAINGER APRIL 16, 2019

1. 14.2.1. The minimal polynomial over \mathbb{Q} for the element $\sqrt{2} + \sqrt{5}$ is $x^4 - 14x^2 + 9$.

Proof. Noting that $\mathbb{Q}(\sqrt{2} + \sqrt{5})$ is a subfield of the Galois extension $\mathbb{Q}(\sqrt{2}, \sqrt{5})$, it suffices to find the monic polynomial $m(x) \in \mathbb{Q}[x]$ of minimal degree such that $\mathbb{Q}[x]/\langle m(x)\rangle$ contains the four elements $\sqrt{2} \pm \sqrt{5}$ and $\pm \sqrt{2} + \sqrt{5}$. (These elements are the *distinct* conjugate pairs of $\sqrt{2} + \sqrt{5}$, and the Galois group $\operatorname{Gal}\left\{\mathbb{Q}(\sqrt{2} + \sqrt{5})\right\}$ necessarily permutes the conjugate elements.) Consider then the product

$$\prod_{\text{conjugates}} \left(x - \left(\pm \sqrt{2} \pm \sqrt{5} \right) \right) = \left(x^2 - \left(2 + 2\sqrt{10} + 5 \right) \right) \left(x^2 - \left(2 - 2\sqrt{10} + 5 \right) \right)$$
 (1.1)

$$=x^4 - 14x^2 - 9. (1.2)$$

We conclude $m(x) = x^4 - 14x^2 - 9$ is minimal, because any product of 3 or fewer linear factors in (1.1) is not a polynomial in $\mathbb{Q}[x]$.

2. 14.2.4. Let p be an odd¹ prime. Then the Galois group of $x^p - 2$ over \mathbb{Q} is the semidirect product of cyclic groups

$$\operatorname{Gal}\left(\mathbb{Q}\left(\zeta,\sqrt[p]{2}\right)/\mathbb{Q}\right) \cong C_p \rtimes_{\psi} C_{p-1}$$

where ζ is a primitive pth root of unity, $\sqrt[p]{2}$ is the real pth root of 2, and $\psi \colon C_{p-1} \xrightarrow{\cong} \operatorname{Aut} C_p$ is an isomorphism from C_{p-1} to the p-1 automorphisms of C_p .

Proof. Because chr $\mathbb{Q} = 0$, the polynomial $x^p - 2$ is separable, with roots

$$\left\{ \zeta^k \sqrt[p]{2} \text{ such that } 0 \le k \le p-1 \right\} \subset \mathbb{C}.$$

We see the splitting field of x^p-2 is generated by ζ , $\sqrt[p]{2} \in S$. Hence the extension $F=\mathbb{Q}(\zeta,\sqrt[p]{2})/\mathbb{Q}$ is the splitting field of a separable polynomial, and so F is Galois. To see that $[F:\mathbb{Q}]=(p-1)p$, note p and p-1 are coprime, and recall the (partial) Hasse diagram:

Now, the Galois group is determined by its action on the (fixed) generators $\sqrt[p]{2}$, ζ , which gives the possibilities

$$\zeta \longmapsto \zeta^k,$$
 $k = 1, \dots, p - 1,$ (2.1)

$$\sqrt[p]{2} \longmapsto \zeta^{\ell} \sqrt[p]{2}, \qquad \ell = 0, \dots, p - 1.$$
 (2.2)

¹The case p=2 with x^2-2 has Galois group C_2 and automorphisms $\sqrt{2}\mapsto\pm\sqrt{2}$.

By order considerations, as the degree of F/\mathbb{Q} is p(p-1), the automorphisms in (2.1) form a complete list. Now let m be an integer 1 < m < p-1 that is coprime to p-1 (we need a generator for the cyclic group of order p-1). Then define $\sigma, \tau \in \operatorname{Gal}(F/\mathbb{Q})$ by

$$\sigma = \begin{cases} \zeta \mapsto \zeta^m \\ \sqrt[p]{2} \mapsto \sqrt[p]{2} \end{cases} \quad \text{and} \quad \tau = \begin{cases} \zeta \mapsto \zeta \\ \sqrt[p]{2} \mapsto \zeta \sqrt[p]{2} \end{cases}.$$

Because p is prime and ord $\zeta = p$, it is visible that ord $\tau = p$. We deduce that ord $\sigma = p - 1$ from both (m, p - 1) = 1 and the fact that " $\sigma \in \text{Aut } \langle \zeta \rangle \cong C_{p-1}$ " is a cyclic group.

Moreover, as σ and τ have coprime orders, by Lagrange's theorem, they generate the Galois group. We conclude that, as a set, $\operatorname{Gal}(F/\mathbb{Q}) = \langle \tau \rangle \times \langle \sigma \rangle = C_p \times C_{p-1}$. The group structure $\operatorname{Gal}(F/\mathbb{Q}) \cong C_p \rtimes_{\psi} C_{p-1}$ follows from the isomorphism $\psi \colon \langle \sigma \rangle \to \langle \tau \rangle$ defined by

$$\psi(\sigma).\tau = \sigma^{-1}\tau\sigma.$$

3. 14.2.5. The Galois group $Gal(F/\mathbb{Q})$ of x^p-2 (as in problem 2) is isomorphic to the matrix group

$$H = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \text{ given } a, b \in \mathbb{F}_p \text{ and } a \neq 0 \right\}.$$

Proof. Fix a, a generator of the group of units \mathbb{F}_p^{\times} , and define a group homomorphism $f \colon \operatorname{Gal}(F/\mathbb{Q}) \to H$ by

$$\sigma \longmapsto_f \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \tau \longmapsto_f \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Because H has order p(p-1) and f is surjective (by choice of generator a), we have a surjective homomorphism between finite groups, and thus an isomorphism.

- **4.** 14.2.8. Suppose K is a Galois extension of F of degree p^n for some prime p and some $n \ge 1$. There are Galois extensions of F contained in K of degrees p and p^{n-1} .
- **5.** 14.2.11. Suppose $f(x) \in \mathbb{Z}[x]$ is an irreducible quartic whose splitting field has Galois group S_4 over \mathbb{Q} . Let θ be a root of f(x) and set $K = \mathbb{Q}(\theta)$. Then K is an extension of Q of degree 4 which has no proper subfields. We determine if there are any Galois extensions of \mathbb{Q} of degree 4 with no proper subfields.
- **6.** 14.2.13. If the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3, then all the roots of the cubic are real.
- 7. 14.3.1. The factors of $x^8 x$ as irreducibles in $\mathbb{Z}[x]$ and $\mathbb{F}_2[x]$, respectively, are:
- **8.** 14.3.3. An algebraically closed field is infinite.
- **9.** 14.3.7.
 - (a) One of 2, 3, or 6 is a square in \mathbb{F}_p for every prime p.
 - (b) Therefore, for every prime p, the polynomial

$$x^{6} - 11x^{4} + 36x^{2} - 36 = (x^{2} - 2)(x^{2} - 3)(x^{2} - 6)$$

$$(9.1)$$

has a root modulo p.

- (c) However, the polynomial (9.1) is irreducible over \mathbb{Z} .
- **10.** 14.3.8. We exhibit an Artin-Schreier extension.
 - (a) The splitting field E of the polynomial $x^p x a$ over \mathbb{F}_p , where $a \neq 0$ and $a \in \mathbb{F}_p$, is:
 - (b) For a root α of $x^p x a$, the map $\alpha \mapsto \alpha + 1$ induces an automorphism of E fixing \mathbb{F}_p .

COLTON GRAINGER MATH 6140 HW12

- (c) Therefore, the Galois group of $x^p x a$ over \mathbb{F}_p is cyclic.
- 11. 14.3.9. Let $q = p^m$ be a power of the prime p and let $\mathbb{F}_q = \mathbb{F}_{p^m}$ be the finite field with q elements. Then let $\sigma_q = \sigma_p^m$ be the mth power of the Froebenius automorphism σ_p , called the q-Froebenius automorphism.
 - (a) The q-Froebenius automorphism σ_q fixes \mathbb{F}_q .
 - (b) Every finite extension of \mathbb{F}_q of degree n is the splitting field K of $x^{q^n} x$ over \mathbb{F}_q , hence unique.
 - (c) For K/\mathbb{F}_q the unique degree n extension of \mathbb{F}_q , we have

$$\operatorname{Gal}(K/\mathbb{F}_q) = \langle \sigma_q \rangle$$
.

(d) Hence, there's a bijective correspondence

$$\begin{cases} \text{subfields } E \\ K \ge E \ge F \end{cases} \longleftrightarrow \begin{cases} \text{divisors } d \\ 1 \mid d \mid n \end{cases}.$$

12. 14.3.10. Let φ be the Euler totient function, p a prime, and n a natural number. Then

$$n$$
 divides $\varphi(p^n-1)$.

Proof. Observe that $\varphi(p^n-1)$ is the order of the group of automorphisms of a cyclic group of order p^n-1 . \square