DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

Lab 3: Loading Effect of Voltage Divider Circuit

Objective:

- To analyze how the voltage divider circuit behaves when there is no load resistance connected.
- Evaluate the performance of voltage divider circuit due to loading.

List of Equipment:

- Trainer Board
- DMM
- $2 \times 560\Omega$ resistors
- $1 \times (0-10k\Omega)$ variable resistor

Theory:

Voltage Divider circuit provides a simple way to convert a DC voltage to another lower DC voltage. Consider the following voltage divider circuit.

Figure 1: (a) A Voltage divider, (b) A Potentiometer

The voltage drop across R_2 is the output voltage, V_{out} . V_{out} is less than V_{in} because the total voltage across R_1 and R_2 must add up to Vin. A potentiometer can also be used to change V_{out} by changing the resistance R_2 . As the value of R_2 is changed, it allows the output voltage to be adjusted from 0 to V_{in} .

In Figure 1, there is no output load (R_L) connected in parallel to R_2 hence we call it a No-Load circuit.

According to Voltage Divider Rule: $V_{out} = V_{in} \frac{R_2}{R_1 + R_2}$ (1)

• Say $V_{in}=5v$ and you need $V_{out}=3v$. How would you set the values of R_1 and R_2 ?

$$\frac{V_{out}}{V_{in}} = \frac{R_2}{R_1 + R_2}$$

Choice of resistor value should follow the ratio: $\frac{R_1}{R_2} = \frac{2}{3}$ One possible combination: $R_1 = 2k$ and $R_2 = 3k$

• Now say we connect an output load, R_3 in parallel to R_2 :

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE141L/ETE141L

Figure 2: With Output Load Connected

 \Rightarrow Do you think keeping the values of resistors same would still give $V_{out}=3v$ from $V_{in}=5v$? Let's check:

Since you have a Load resistance parallel to R_2 , your Voltage divider formula to find V_{out} is:

$$V_{out} = V_{in} \frac{(R_2 //R_3)}{R_1 + (R_2 //R_3)}$$
 (2)

Let
$$R_3 = 10$$
k.
 $R_2 // R_3 = 2.31$ k

$$\rightarrow V_{out} = 2.68 v$$

So, our Designed value was 3v, but connecting a load resistor reduced it to 2.68v.

Design Criteria:

To minimize the loading effect, choose the load resistor to be much larger than its parallel resistor. If R_3 is much greater than R_2 then R_2 // R_3 (parallel combination of R_2 and R_3) is approximately equal to R_2

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE141L/ETE141L

Circuit Diagram:

Procedure:

- 1. Construct the voltage divider circuit as shown in figure above.
- 2. Measure the unloaded output voltage V_{out} . Record the value in Table 1.
- 3. Connect 10 $k\Omega$ variable load resistor, parallel with R_2 to the circuit. (Connect 1 middle pin of variable resistor and one of the other pins).
- 4. Change the value of the variable resistor according to Table 1, and record V_{out} for each resistor value in Table 1.

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

EEE141L/ETE141L

Group No. _____

Data Collection for Lab 3:		

$R_{\rm L}$	V _{out} (Measured)	V _{out} (Calculated)	%Error
No resistor			
1k			
4k			
7k			
10k			

Questions:

- 1. Explain the loading effect of your circuit (i.e explain how does your V_{out} vary with increasing Load resistor)
- 2. Showing all steps in details, theoretically calculate the value of V_{out} for each load resistor.
- 3. Comparing the theoretical data to the experimental data, comment how far the loading effect of your circuit supports the theory.