Московский физико-технический институт Физтех-школа прикладной математики и информатики

СЛУЧАЙНЫЕ ПРОЦЕССЫ ИЗБРАННОЕ

VI CEMECTP

Лектор: Владимир Игоревич Богачёв

Автор: Зенков Евгений

Содержание

1 Задачи про компактные классы

2

С учётом наличия лекторского конспекта курса, тех лекций не имеет особого смысла. Поэтому данный конспект выполняет несколько другую задачу: сюда планируется добавлять либо очень небольшие фрагменты лекций, которые стоит описать несколько подробнее, либо разборы задач, оставленных в конспекте и разобранных на семинарах, либо другие семинарские задачи.

Ответственность за материал в этом конспекте несёт только его автор, ему можно и нужно сообщать о найденных багах.

Конспект до какого-то момента планируется обновлять. Актуальную версию можно найти по этой ссылке.

1 Задачи про компактные классы

Определение 1.1. Класс \mathcal{K} подмножеств X называется компактным, если для всякой последовательности множеств из \mathcal{K} с пустым пересечением есть конечный поднабор множеств с пустым пересечением, то есть:

$$\bigcap_{n=1}^{\infty} K_n = \varnothing, \ K_n \in \mathcal{K} \ \Rightarrow \ \exists N \ \bigcap_{n=1}^{N} K_n = \varnothing$$

Задача.

- 1. Доказать, что любой набор компактов в \mathbb{R}^n компактный класс.
- 2. Доказать, что совокупность всех цилиндров в \mathbb{R}^T вида $C_{t_1,...,t_n,K}$, где K компакт в \mathbb{R}^n , есть компактный класс.
- 3. Пусть P аддитивная неотрицательная функция на алгебре A, причём имеется такой компактный класс $\mathcal{K} \subset A$, что для всякого $A \in \mathcal{A}$ выполнено:

$$P(A) = \sup_{K \subset A, \ K \in \mathcal{K}} P(K)$$

Доказать, что функция Р счётно-аддитивна.

Решение.

- 1. Докажем двумя способами, доказательства будут ссылаться на различные эквивалентные определения компактности в \mathbb{R}^n и будут иметь различные обобщения на случай произвольных топологических пространств.
 - \triangleright Пусть $X = \mathbb{R}^n$ объемлющее пространство. Рассмотрим произвольную последовательность компактов K_n , имеющих пустое пересечение $\bigcap_{n=1}^{\infty} K_n = \emptyset$. С помощью теоретико-множественных фокусов получим:

$$\bigcap_{n=1}^{\infty} K_n = \varnothing \implies \bigcup_{n=1}^{\infty} \overline{K_n} = X \implies K_1 \subset \bigcup_{n=1}^{\infty} \overline{K_n}$$

Вспомним, что компакт K является замкнутым множеством, следовательно, его дополнение \overline{K} открыто. Воспользуемся определением компакта, что из любого открытого покрытия можно выделить конечное подпокрытие:

$$K_1 \subset \bigcup_{n=1}^{\infty} \overline{K_n} \Rightarrow \exists N \ K_1 \subset \bigcup_{n=1}^{N} \overline{K_n}$$

И отсюда выведем требуемое:

$$K_1 \subset \bigcup_{n=1}^N \overline{K_n} \Rightarrow \bigcap_{n=1}^N K_n \subset \overline{K_1} \Rightarrow K_1 \cap \bigcap_{n=1}^N K_n = \bigcap_{n=1}^N K_n = \emptyset$$

Это рассуждение проходит для всех топологических пространств X, в которых из компактности следует замкнутость.

⊳ Пусть $X = \mathbb{R}^n$ – объемлющее пространство. Рассмотрим произвольную последовательность компактов K_n , предположим, что для всех $N \bigcap_{n=1}^N K_n \neq \emptyset$, докажем, что в таком случае $\bigcap_{n=1}^\infty K_n \neq \emptyset$.

Так как $\bigcap_{n=1}^{N} K_n \neq \emptyset$, то существует $x_N \in \bigcap_{n=1}^{N} K_n$. Получим последовательность $\{x_N\}_{N=1}^{\infty}$, по построению она полностью лежит в компакте K_1 . В силу компактности K_1 из неё можно выделить сходящуюся в K_1 подпоследовательность, то есть $\{x_{N_k}\}_{k=1}^{\infty} \subset \{x_N\}_{N=1}^{\infty}$, $x_{N_k} \to x \in K_1$.

Теперь зафиксируем произвольное $m \in \mathbb{N}$. Так как последовательность $\{x_{N_k}\}_{k=1}^{\infty}$, по построению, начиная с некоторого номера, полностью лежит в компакте K_m , при этом она сходится $x_{N_k} \to x$, то предел тоже лежит в K_m , то есть $x \in K_m$. Отсюда следует, что $x \in \bigcap_{n=1}^{\infty} K_n$, то есть это пересечение непусто, что и хотели доказать.

Это рассуждение проходит для всех топологических пространств X, для класса секвенциально компактных множеств.

2. Сначала докажем, что конечное пересечение цилиндров с компактными основаниями является цилиндром с компактным основанием, достаточно доказать для двух. Действительно, пусть есть два цилиндра C_{s_1,\ldots,s_m,K_1} , C_{t_1,\ldots,t_n,K_2} , где K_1 , K_2 – компакты в \mathbb{R}^m и \mathbb{R}^n соответственно. Их и их пересечение можно записать в следующем виде, не важно, что среди моментов времени $s_1,\ldots,s_m,t_1,\ldots,t_n$ могут быть дублирующиеся:

$$C_{s_1,\dots,s_m,K_1} = \{x \in \mathbb{R}^T : (x(s_1),\dots,x(s_m),x(t_1),\dots,x(t_n)) \in K_1 \times \mathbb{R}^n \}$$

$$C_{t_1,\dots,t_n,K_2} = \{x \in \mathbb{R}^T : (x(s_1),\dots,x(s_m),x(t_1),\dots,x(t_n)) \in \mathbb{R}^m \times K_2 \}$$

$$C_{s_1,\dots,s_m,K_1} \cap C_{t_1,\dots,t_n,K_2} = \{x \in \mathbb{R}^T : (x(s_1),\dots,x(s_m),x(t_1),\dots,x(t_n)) \in K_1 \times K_2 \}$$

Изначально, моменты времени s_1, \ldots, s_m были различны, моменты времени t_1, \ldots, t_n тоже были различны. Теперь возможное дублирование моментов времени внутри набора $s_1, \ldots, s_m, t_1, \ldots, t_n$ придётся победить, для этого будет немного формализма. Выберем дублирования из s-ок и t-шек, обозначим через r-ки, при необходимости поменяем нумерацию s-ок и t-шек, чтобы r-ки шли в конце.

Иными словами, без ограничения общности, выполнено:

$$(s_1,\ldots,s_m,t_1,\ldots,t_n)=(s_1,\ldots,s_i,r_1,\ldots,r_k,t_1,\ldots,t_j,r_1,\ldots,r_k)$$
 $s_1,\ldots,s_i,t_1,\ldots,t_j,r_1,\ldots,r_k$ – различные элементы T

Теперь хотим записать $K_1 \times K_2$ из пересечения цилиндров в другом виде для моментов времени без дублирования $s_1, \ldots, s_i, t_1, \ldots, t_j, r_1, \ldots, r_k$. Для этого рассмотрим следующее множество:

$$K = \{ (S_1, \dots, S_i, T_1, \dots, T_j, R_1, \dots, R_k) \in \mathbb{R}^{i+j+k} :$$

$$(S_1, \dots, S_i, R_1, \dots, R_k, T_1, \dots, T_j, R_1, \dots, R_k) \in K_1 \times K_2 \}$$

Множество K ограничено, так как в силу ограниченности K_1 и K_2 все координаты произвольной точки из K ограничены. Множество K замкнуто, так как если есть предел у последовательности векторов вида $(S_1,\ldots,S_i,T_1,\ldots,T_j,R_1,\ldots,R_k)$, зависимость от порядкового номера в последовательности здесь не указана, то он даёт пределы для $(S_1,\ldots,S_i,R_1,\ldots,R_k)$ и $(T_1,\ldots,T_j,R_1,\ldots,R_k)$, а эти пределы не покидают компакты K_1 и K_2 . Множество K замкнуто и ограничено, то есть компактно, так как мы живём в \mathbb{R}^{i+j+k} .

Отсюда мгновенно следует, что пересечение двух данных цилиндров с компактными основаниями тоже есть цилиндр с компактным основанием:

$$C_{s_1,\dots,s_m,K_1} \cap C_{t_1,\dots,t_n,K_2} = \{ x \in \mathbb{R}^T : (x(s_1),\dots,x(s_m),x(t_1),\dots,x(t_n)) \in K_1 \times K_2 \} =$$

$$= \{ x \in \mathbb{R}^T : (x(s_1),\dots,x(s_i),x(t_1),\dots,x(t_j),x(r_1),\dots,x(r_k)) \in K \}$$

Таким образом, получили, что конечное пересечение цилиндров с компактными основаниями тоже есть цилиндр с компактным основанием. Хорошо, с этим справились.

Теперь обратим внимание на ещё один полезный факт, что из вложения цилиндров с компактными основаниями следует обратная вложенность соответствующих моментов времени, имеется в виду, что:

$$C_{s_1,\dots,s_m,K_1}\subset C_{t_1,\dots,t_n,K_2},\ K_1,K_2$$
 – компакты в \mathbb{R}^m и \mathbb{R}^n \Downarrow $\{t_1,\dots,t_n\}\subset\{s_1,\dots,s_m\}$

Это логично, так как означает, что меньший цилиндр учитывает все ограничения большего цилиндра, возможно, добавляя к ним какие-то новые. Формально доказывается от противного: пусть $t_i \in \{t_1, \ldots, t_n\} \setminus \{s_1, \ldots, s_m\}$, возьмём $x \in C_{s_1, \ldots, s_m, K_1}$ и переопределим $x(t_i)$, получив функцию $y \in \mathbb{R}^T$, так, чтобы $(y(t_1), \ldots, y(t_n))$ гарантированно не попадала в компакт K_2 , так можно сделать, ибо все координаты точек из компакта ограничены. Так как x и y отличаются только в точке $t_i \notin \{s_1, \ldots, s_m\}$ и $x \in C_{s_1, \ldots, s_m, K_1}$, то и $y \in C_{s_1, \ldots, s_m, K_1}$. При этом по выбору $y(t_i)$ выполнено $y \notin C_{t_1, \ldots, t_n, K_2}$. Противоречие с $C_{s_1, \ldots, s_m, K_1} \subset C_{t_1, \ldots, t_n, K_2}$.

Справились с двумя вспомогательными фактами, теперь уже можно приступить к основному доказательству.

Нужно доказать, что совокупность всех цилиндров с компактными основаниями есть компактный класс. Рассмотрим последовательность цилиндров с компактными основаниями C_1, C_2, \ldots , таких, что:

$$\forall n \in \mathbb{N} \ \bigcap_{k=1}^{n} C_k \neq \varnothing$$

Нужно доказать, что тогда пересечение всех этих цилиндров тоже не пусто. Для этого также рассмотрим последовательность D_1, D_2, \ldots , где $D_n = \bigcap_{k=1}^n C_k$, она является последовательностью непустых вложенных цилиндров с компактными основаниями, непустота по предположению, вложенность по построению, компактность основания в силу уже доказанного. Элементы этой последовательности можно записать в виде:

$$D_{1} = \{x \in \mathbb{R}^{T} : (x(t_{1}), \dots, x(t_{d_{1}})) \in K_{1}\}$$

$$D_{2} = \{x \in \mathbb{R}^{T} : (x(t_{1}), \dots, x(t_{d_{1}}), \dots, x(t_{d_{2}})) \in K_{2}\}$$

$$D_{3} = \{x \in \mathbb{R}^{T} : (x(t_{1}), \dots, x(t_{d_{1}}), \dots, x(t_{d_{2}}), \dots, x(t_{d_{3}})) \in K_{3}\}$$

$$\vdots$$

Здесь K_1, K_2, \ldots – компакты, t_1, t_2, \ldots – конечная или счётная последовательность моментов времени. То, что моменты времени можно записать именно в таком виде, следует из вложенности $D_1 \supset D_2 \supset \ldots$, влекущей обратную вложенность соответствующих моментов времени, говоря иначе, каждый следующий цилиндр D_{n+1} наследует все моменты времени предыдущего цилиндра D_n , возможно, добавляя к ним новые.

Теперь воспользуемся непустотой цилиндров D_n , а именно выберем последовательность точек, они будут иметь разную размерность, из компактов K_n :

$$y_1^{(0)} = (y_{1,1}^{(0)}, \dots, y_{1,d_1}^{(0)}) \in K_1$$

$$y_2^{(0)} = (y_{2,1}^{(0)}, \dots, y_{2,d_1}^{(0)}, y_{2,d_1+1}^{(0)}, \dots, y_{2,d_2}^{(0)}) \in K_2$$

$$y_3^{(0)} = (y_{3,1}^{(0)}, \dots, y_{3,d_1}^{(0)}, y_{3,d_1+1}^{(0)}, \dots, y_{3,d_2}^{(0)}, y_{3,d_2+1}^{(0)}, \dots, y_{3,d_3}^{(0)}) \in K_3$$
 :

Посмотрим на первые префиксы этих точек $(y_{1,1}^{(0)},\ldots,y_{1,d_1}^{(0)}),(y_{2,1}^{(0)},\ldots,y_{2,d_1}^{(0)}),\ldots$ Так как можно определить функции $x_1,x_2,\cdots\in\mathbb{R}^T$, такие, что

$$(x_k(t_1), \dots, x_k(t_{d_k})) = (y_{k,1}^{(0)}, \dots, y_{k,d_k}^{(0)}) \Rightarrow x_k \in D_k$$

и есть вложенность $D_1\supset D_2\supset\dots$, то выполнено $x_1,x_2,\dots\in D_1$, откуда все первые префиксы $(y_{1,1}^{(0)},\dots,y_{1,d_1}^{(0)}),(y_{2,1}^{(0)},\dots,y_{2,d_1}^{(0)}),\dots$ лежат в K_1 . Так как K_1 является компактом, то из полученной последовательности первых префиксов можно выделить сходящуюся в K_1 подпоследовательность. Иными словами, из последовательности $y_1^{(0)},y_2^{(0)},\dots$ можно выделить подпоследовательность $y_1^{(1)},y_2^{(1)},\dots$, такую, что у неё существует предел по первому префиксу $\lim_{k\to\infty}(y_{k,1}^{(1)},\dots,y_{k,d_1}^{(1)})$, который лежит в K_1 .

Теперь смотрим на новую последовательность точек разной размерности $y_1^{(1)}, y_2^{(1)}, \dots$, начиная с некоторого номера, у элементов этой последовательности определены вто-

рые префиксы $(y_{k,1}^{(1)},\ldots,y_{k,d_2}^{(1)})$. По тем же причинам, что и раньше, все вторые префиксы лежат в компакте K_2 . Опять выбираем подпоследовательность $y_1^{(2)},\ y_2^{(2)},\ldots$ текущей последовательности $y_1^{(1)},\ y_2^{(1)},\ldots$, такую, что у неё существует предел по второму префиксу $\lim_{k\to\infty}(y_{k,1}^{(2)},\ldots,y_{k,d_2}^{(2)})$, который лежит в K_2 .

Продолжая далее эту процедуру, выбираем последовательность $y_1^{(n)}, y_2^{(n)}, \dots$, такую, что у неё существует предел по n-му префиксу $\lim_{k \to \infty} (y_{k,1}^{(n)}, \dots, y_{k,d_n}^{(n)})$, лежащий в K_n .

Теперь применим классический диагональный метод и рассмотрим последовательность точек разной размерности $y_1^{(1)}, y_2^{(2)}, y_3^{(3)}, \dots$ У неё существует предел по n-му префиксу для всех натуральных n. Более того, если $\lim_{k\to\infty} (y_{k,1}^{(n)}, \dots, y_{k,d_n}^{(n)}) = (z_1, \dots, z_{d_n}),$ то для всех $m\leqslant n$ предел $\lim_{k\to\infty} (y_{k,1}^{(m)}, \dots, y_{k,d_m}^{(m)}) = (z_1, \dots, z_{d_m}),$ в силу того, что векторная сходимость влечёт покомпонентную.

Отсюда получаем конечную или счётную последовательность точек z_1, z_2, \ldots из \mathbb{R} , такую, что при всех n выполнено $(z_1, \ldots, z_{d_n}) \in K_n$, так как этот префикс является пределом $\lim_{k \to \infty} (y_{k,1}^{(n)}, \ldots, y_{k,d_n}^{(n)}) = \lim_{k \to \infty} (y_{k,1}^{(k)}, \ldots, y_{k,d_n}^{(k)})$, который, как было замечено ранее, лежит в K_n .

Остался последний шаг: определим $x \in \mathbb{R}^T$ как $x(t_1) = z_1, x(t_2) = z_2, \ldots$, в оставшихся точках из T доопределим произвольным образом. Тогда по построению и формуле для множеств D_n выполнено $x \in D_1, x \in D_2, \ldots$, иными словами:

$$x \in \bigcap_{n=1}^{\infty} D_n = \bigcap_{n=1}^{\infty} \bigcap_{k=1}^{n} C_k = \bigcap_{n=1}^{\infty} C_n$$

В частности, доказали непустоту пересечения $\bigcap_{n=1}^{\infty} C_n$ всех цилиндров C_n , а ровно это мы и хотели доказать.

3. Нужно доказать, что функция P счётно-аддитивна. В условиях задачи это эквивалентно непрерывности в нуле, то есть, что для любой убывающей к нулю последовательности множеств из \mathcal{A}

$$A_1 \supset A_2 \supset \dots, \bigcap_{n=1}^{\infty} A_n = \emptyset, \forall n \ A_n \in \mathcal{A}$$

выполнено $\lim_{n\to\infty} P(A_n)=0$. Зафиксируем произвольное $\varepsilon>0$. Знаем, что значения P на множествах из $\mathcal A$ приближаются с помощью компактного класса $\mathcal K$, выберем для множеств A_n приближение с увеличивающейся точностью, то есть выберем K_n так, что $K_n\subset A_n,\, K_n\in\mathcal K$ и $P(K_n)>P(A_n)-\frac{\varepsilon}{2^n}$, что эквивалентно $P(A_n\setminus K_n)<\frac{\varepsilon}{2^n}$.

Так как $K_n \subset A_n$ и $\bigcap_{n=1}^{\infty} A_n = \emptyset$, то $\bigcap_{n=1}^{\infty} K_n = \emptyset$. В силу компактности класса \mathcal{K} есть m для которого $\bigcap_{n=1}^{m} K_n = \emptyset$. Осталось применить не очень хитрый теоретикомножественный трюк, помня, что $A_1 \supset A_2 \supset \ldots$:

$$A_m = A_m \setminus \varnothing = A_m \setminus \left(\bigcap_{n=1}^m K_n\right) = \bigcup_{n=1}^m (A_m \setminus K_n) \subset \bigcup_{n=1}^m (A_n \setminus K_n)$$

И воспользоваться тем, что мы брали приближение с увеличивающейся точностью:

$$P(A_m) \leqslant \sum_{n=1}^m P(A_n \setminus K_n) \leqslant \sum_{n=1}^m \frac{\varepsilon}{2^n} \leqslant \sum_{n=1}^\infty \frac{\varepsilon}{2^n} = \varepsilon$$

Это и означает, что интересующий нас предел равен нулю.