

Why

What are the affine sets in terms of subspaces?

Affine sets which are subspaces

The subspaces of \mathbf{R}^n are the affine sets which contain the origin.

Proposition 1. $M \subset \mathbb{R}^n$ is a subspace if and only if M is affine and $0 \in M$.

Proof. (\Rightarrow) Suppose M is a subspace. Then $0 \in M$. Also $\alpha x + \beta y \in M$ for all $\alpha, \beta \in \mathbf{R}$ and $x, y \in \mathbf{R}^n$ In particular, $(1 - \lambda)x + \lambda y \in M$ for all $\lambda \in \mathbf{R}$, $x, y \in \mathbf{R}^n$. In other words, M contains the line through x and y.

 (\Leftarrow) Suppose M is affine and $0 \in M$. M is closed under scalar multiplication since

$$\alpha x = (1 - \alpha)0 + \alpha x$$

is in the line through 0 and x. M is closed under vector addition since

$$(1/2)(x+y) = (1-1/2)x + (1/2)y$$

is in the line through x and y. Thus, $x + y = 2(1/2)(x + y) \in M$. \square

Affine sets as translated subspaces

Proposition 2. Suppose $M \neq \emptyset$ is affine. Then there exists a unique subspace L and vector $a \in \mathbb{R}^n$ for which M = L + a. Moreover,

$$L = M - M = \{x - y \mid x, y \in M\}.$$

Proof. First, uniqueness. Suppose L_1 and L_2 are subspaces parallel to M. We will show that $L_2 \supset L_1$ (and similarly, $L_1 \supset L_2$).

Since L_1 and L_2 are both parallel to M, they are also parallel to each other. Consequently, there exists $a \in \mathbf{R}^n$ with $L_2 = L_1 + a$. Since $0 \in L_2$ (it is a subspace, after all), $-a \in L_1$. Since L_1 is a subspace, $a \in L_1$.

So $x + a \in L_1$ for every $a \in L_1$, and so $L_2 = L_1 + a \subset L_1$. A similar argument gives $L_1 \supset L_2$.

If $y \in M$, then M + (-y) = M - y is a translate of M containing zero (since y - y = 0). In other words, the affine set M - y is a subspace. This, then, is the unique subspace parallel to M. Since y was arbitrary, the subspace parallel to M is $L = \bigcup_{y \in M} M - y = \{x - y \mid x, y \in M\}$. \square

