

WHAT IS CLAIMED IS:

1 1. A system for computing optical flow between
2 images within an image sequence comprising:

3 an image processor processing the image sequence,
4 wherein the image processor:

5 derives epipolar geometry for the images
6 from point matches between the images; and
7 computes optical flow for each pixel within
8 at least one of the images under a constraint derived
9 from the epipolar geometry.

1 2. The system according to claim 1, wherein the
2 image processor, in deriving the epipolar geometry for the
3 images, computes sparse optical flow between the images.

1 3. The system according to claim 1, wherein the
2 image processor, in computing optical flow for each pixel
3 within at least one of the images, employs a constraint
4 derived from a fundamental matrix between the images.

1 4. The system according to claim 1, wherein the
2 image processor utilizes the constraint derived from the
3 epipolar geometry in combination with least squares
4 minimization to compute optical flow for each pixel within
5 at least one of the images.

1 5. The system according to claim 1, wherein the
2 image processor utilizes the constraint derived from the
3 epipolar geometry in combination with robust statistical
4 methods to compute optical flow for each pixel within at
5 least one of the images.

1 6. The system according to claim 1, wherein the
2 image processor computes optical flow u, v for each pixel
3 within at least one of the images from $I_x u + I_y v + I_t = 0$, where
4 I_x , I_y , and I_t are known spatio-temporal derivatives of
5 image intensity at each pixel within the at least one
6 image, and $a_{x,y}u + b_{x,y}v + c_{x,y} = 0$, where $a_{x,y}$, $b_{x,y}$ and $c_{x,y}$ are
7 derived from a fundamental matrix F between the images.

1 7. The system according to claim 1, wherein the
2 image processor computes dense optical flow between the
3 images.

1 8. A system for computing optical flow between
2 images within an image sequence comprising:

3 a video receiver including an input for receiving
4 the image sequence;

5 an image processor within the video system
6 processing the image sequence, wherein the image processor:

7 derives epipolar geometry for the images
8 from point matches between the images; and

9 computes optical flow for each pixel within
10 at least one of the images under a constraint derived
11 from the epipolar geometry.

2 9. The system according to claim 8, wherein the
3 image processor, in deriving the epipolar geometry for the
4 images, computes sparse optical flow between the images.

1 10. The system according to claim 8, wherein the
2 image processor, in computing optical flow for each pixel
3 within at least one of the images, employs a constraint
4 derived from a fundamental matrix between the images.

1 11. The system according to claim 8, wherein the
2 image processor utilizes the constraint derived from the
3 epipolar geometry in combination with least squares
4 minimization to compute optical flow for each pixel within
5 at least one of the images.

1 12. The system according to claim 8, wherein the
2 image processor utilizes the constraint derived from the
3 epipolar geometry in combination with robust statistical
4 methods to compute optical flow for each pixel within at
5 least one of the images.

1 13. The system according to claim 8, wherein the
2 image processor computes optical flow u, v for each pixel
3 within at least one of the images from $I_x u + I_y v + I_t = 0$, where
4 I_x , I_y , and I_t are known spatio-temporal derivatives of
5 image intensity at each pixel within the at least one
6 image, and $a_{x,y}u + b_{x,y}v + c_{x,y} = 0$, where $a_{x,y}$, $b_{x,y}$ and $c_{x,y}$ are
7 derived from a fundamental matrix F between the images.

1 14. The system according to claim 8, wherein the
2 image processor computes dense optical flow between the
3 images.

1 15. A method for computing optical flow between
2 images within an image sequence comprising:

3 deriving epipolar geometry for the images from
4 point matches between the images; and

5 computing optical flow for each pixel within at
6 least one of the images under a constraint derived from the
7 epipolar geometry.

1 16. The method according to claim 15, wherein the
2 step of deriving the epipolar geometry for the images from
3 point matches between the images further comprises:

4 computing sparse optical flow between the images.

1 17. The method according to claim 15, wherein the
2 step of computing optical flow for each pixel within at
3 least one of the images under a constraint derived from the
4 epipolar geometry further comprises:

5 computing optical flow employing a constraint
6 derived from a fundamental matrix between the images.

1 18. The method according to claim 15, wherein the
2 step of computing optical flow for each pixel within at
3 least one of the images under a constraint derived from the
4 epipolar geometry further comprises:

5 utilizing the constraint derived from the
6 epipolar geometry in combination with least squares
7 minimization to compute optical flow for each pixel within
8 at least one of the images.

1 19. The method according to claim 15, wherein the
2 step of computing optical flow for each pixel within at
3 least one of the images under a constraint derived from the
4 epipolar geometry further comprises:

5 utilizing the constraint derived from the
6 epipolar geometry in combination with robust statistical
7 methods to compute optical flow for each pixel within at
8 least one of the images.

1 20. The method according to claim 1, wherein the step
2 of computing optical flow for each pixel within at least
3 one of the images under a constraint derived from the
4 epipolar geometry further comprises:

5 computing optical flow u, v for each pixel within
6 at least one of the images from $I_x u + I_y v + I_t = 0$, where I_x , I_y ,
7 and I_t are known spatio-temporal derivatives of image
8 intensity at each pixel within the at least one image, and
9 $a_{x,y}u + b_{x,y}v + c_{x,y} = 0$, where $a_{x,y}$, $b_{x,y}$ and $c_{x,y}$ are derived from a
10 fundamental matrix F between the images.