Homework 2 (due 9/18)

- 1. If $E \subseteq [0,1]$ has measure 1, then E is dense in [0,1].
- 2. Let F be a proper closed subset in [0,1]. Show that |F| < 1.
- 3. Let $E_k \subseteq [0,1]$ be measurable with $\sum_{k=1}^N |E_k| > N-1$. Prove that $|\bigcap_{k=1}^N E_k| > 0$. (HINT: show that $|[0,1] \setminus \bigcap_{k=1}^N E_k| < 1$.)
- 4. Problem 10 on P. 59 in the textbook.
- 5. Suppose that the measurable sets A_1, A_2, \cdots are "almost disjoint" in the sense that $|A_i \cap A_j| = 0$ if $i \neq j$.
 - (i) Use the mathematical induction to show that for any N > 1,

$$|\bigcup_{k=1}^{N} A_k| = \sum_{k=1}^{N} |A_k|.$$

(ii) Show that

$$|\bigcup_{k=1}^{\infty} A_k| = \sum_{k=1}^{\infty} |A_k|.$$

- 6. (Bonus) Problem 13 on P. 59 in the textbook.
- 7. (Bonus) Problem 15 on P. 59 in the textbook.
- 8. Problem 30 on P. 60 in the textbook.
- 9. Problem 32 on P. 60 in the textbook.
- 10. Problem 34 on P. 60 in the textbook.

1. Let I_1 and I_2 be two intervals in \mathbb{R}^2 . Show the following elementary fact that $I_1 \cup I_2$ is a union of finitely many non-overlapping intervals J_k for $k = 1, \dots, N$, with

$$\sum_{k=1}^{N} v(J_k) \le v(I_1) + v(I_2).$$

Hint. All intervals mean closed intervals. You may prove by cases with the help of sketching figures. Note that this fact is used in the proof of Theorem 3.2.

- 2. (i) Show that if $f:[a,b] \to \mathbb{R}$ is continuous where $-\infty < a < b < \infty$, then its graph $E = \{(x, f(x)) : x \in [a,b]\}$ as a subset of \mathbb{R}^2 has the Lebesgue measure zero.
 - (ii) Show that that if $f : \mathbb{R} \to \mathbb{R}$ is continuous, then its graph $E = \{(x, f(x)) : x \in \mathbb{R}\}$ as a subset of \mathbb{R}^2 has the Lebesgue measure zero.
- 3. Let $A = \{r_1, r_2, \dots\}$ be the set of rational numbers in (0, 1). Given $\varepsilon \in (0, 1/2)$, let

$$A_k = (r_k - \frac{\varepsilon}{2^k}, r_k + \frac{\varepsilon}{2^k}) \cap (0, 1), \qquad k = 1, 2, \cdots,$$

and

$$E = \bigcup_{k=1}^{\infty} A_k.$$

Show that $0 < |E| \le 2\varepsilon$ and $|\partial E| = 1$.

(Note: This gives an example that the Lebesgue measure of the boundary set of an open set may not be zero.)

- 4. (i) Show that if $E \subset \mathbb{R}$ is such that |E| = 0, then $\mathring{E} = \emptyset$.
 - (ii) Show that if $E \in [0,1]$ is Lebesgue measurable with |E| = 1, then E is dense in [0,1].