第七章 化学反应速率

本章内容:

- (1) 速率的概念
- (2) 速率方程的动力学实验
- (3) 影响速率的因素
- (4) 活化能的概念
- (5) 反应机理
- (6) 催化

§ 7.1 化学反应速率的概念 (the concept of the chemical reaction rates)

□ 化学反应速率的表示方法

下面是反应 $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ 在一定时间内反应物、产物浓度的变化实验数据(300 ℃)

Time (±1 s)	NO_2	Concentration (mol/L) NO	O_2
0	0.0100	0	0
50	0.0079	0.0021	0.0011
100	0.0065	0.0035	0.0018
150	0.0055	0.0045	0.0023
200	0.0048	0.0052	0.0026
250	0.0043	0.0057	0.0029
300	0.0038	0.0062	0.0031
350	0.0034	0.0066	0.0033
400	0.0031	0.0069	0.0035

◆ 反应速率---单位时间内反应物浓 度或者产物浓度改变量的正值 浓度常用 mol·dm⁻³, 时间常用s, min, h, d, y.

反应速率又分为平均速率(average rate)和 瞬时速率(instaneous rate)两种表示方法.

口 平均速率——段时间内的速率平均值

前50s 内反 应的平均 速率为:

Rate(
$$V_{\rm A}$$
) = $-\frac{\Delta c({\rm NO}_2)}{\Delta t}$ = $-\frac{c({\rm NO}_2)_{t=50} - c({\rm NO}_2)_{t=0}}{50s - 0s}$
= $-\frac{0.0079 \text{mol/L} - 0.0100 \text{mol/L}}{50s}$ = $4.2 \times 10^{-5} \text{mol/L} \cdot \text{s}$

同样可计算出其它时间间隔的平均速率:

$-rac{\Delta c({ m NO}_2)}{\Delta t}$	Time Period (s)
4.2×10 ⁻⁵	$0 \rightarrow 50$
2.8×10^{-5}	50 → 100
2.0×10^{-5}	100 → 150
1.4×10^{-5}	150 → 200
1.0×10^{-5}	200 → 250

显然,用反应物或产物表示都可以,但速率大小不同

$$-\frac{\Delta c(\text{NO}_2)}{\Delta t} = \frac{\Delta c(\text{NO})}{\Delta t} = 2\left(\frac{\Delta c(\text{O}_2)}{\Delta t}\right)$$

参加同一反应的各物质的反应速度之间的关系与计量系数有关

▲ 实际工作中如何选择,往往取决于哪一种物质更易通过 实验监测其浓度变化.

□瞬时速率----时间段趋近为0时的平均速率

能用作图的方法得到,例如对于反应(45°C): $2N_2O_5 \rightarrow 4NO_2 + O_2$

$$V(N_2O_5) = \lim_{\Delta t \to -0} \Delta C(N_2O_5)/\Delta t$$

$C(N_2O_5)/mol \cdot L^{-1}$	Rate/mol(L·s ⁻¹)
0.90	5.4×10^{-4}
0.43	2.7×10^{-4}

General Reactions:

$$aA + bB \longrightarrow gG + hH$$

各反应物和生成物的瞬时速率之间存在如下关系:

$$-\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{g}\frac{d[G]}{dt} = \frac{1}{h}\frac{d[H]}{dt}$$

- ➤ 现行国际单位制建议将dc/dt值除以化学反应 方程式中的计量系数,那么一个化学反应就只 有一个反应速率值。
- □需要注意的是,任何反应其正向与反向反应都是同时发生的,因 此实际测量的表观速度实际上是正向反应减掉反向反应的净速度,

§ 7.2 反应速率理论简介

(1) 碰撞理论 (Lewis):

a. 分子间的相互碰撞是反应进行的先决条件;

• 活化分子

凡反应物分子所具有的 动能高于化学反应的临界 能量,这样的分子称为活 化分子

▶ 随着温度的升高,大动能的分子分数增加,小动能的分子分数减少,所以分子的平均动能变大

c. 能量是有效碰撞的一个必要条件,但不充分,相碰分子必须有合适的取向。

采取合适的取向进行碰撞时,反应才能发生

$$NO_2+CO \longrightarrow NO+CO_2$$

□ 只有当CO分子中的碳原子与NO₂中的氧原子相碰时, 才能发生重排反应

- HCI 和 三丙胺的气相反应:
- HCI的 H端只能通过狭窄的"窗口"接近N孤对电子 > 发生有效碰撞

• 各因素对反应速率定性的影响

- (1) 浓度(或压力): →增加了单位体积的活化分子数,有效碰撞次数增加,反应速率加快。
- (2) 温度:升高温度,活化分子分数增加,有效碰撞次数增加,反应速率加快。
- (3) 加入催化剂:
- ——改变了反应机理、使 $Ea \lor k \land v \land$

加入正催化剂使化学反应所需的临界能量变小,增加了活化分子分数,有效碰撞次数增加,反应速率增大。

加入负催化剂使化学反应所需的临界能量变大,减少了活化分子分数,有效碰撞次数减少,反应速率降低。

◆碰撞理论很直观,也能正确解释反应速率及其变化规律,但是 它忽略了分子内部的结构影响,也仅限于处理气体双分子反应

11

(2) 过渡状态理论

反应物要经历一个中间过渡状态, 先生成活化 络合物然后进一步离解为产物:

反应物⇔过渡态→产物

过渡状态理论也称活化络合物理论。

✓ 反应中,只有那些势能达到或高于活化络合物 最低能量的活化分子才能越过能垒变成产物。

正反应的活化能减去逆反应的活化能等于该反应的焓变

化学反应热 A H=正反应活化能 Ea(正)-逆反应活化能 Ea(逆)

- ◆ 过渡态理论认为, 反应速率与下列三 个因素有关:
 - a. 活化络合物的浓度;
 - b. 活化络合物分解的几率;
 - c. 活化络合物的分解速率。

§ 7.3 影响化学反应速度的因素

一、化学反应速率与浓度的关系

(The Relationship of Chemical Reaction Rates and Concentrations)

1. 动力学实验(kinetic experiments)

$$aA + bB \longrightarrow eE + fF$$

反应速率方程或质量作用定律:

$$v = k \left[A \right]^x \left[B \right]^y$$

式中k: 速率常数(rate constant),x: 反应物A的级数 (order),y: 反应物B的级数,x+y: 反应(总)级数。

2. 反应级数 (reaction order)

$$x + y = 0$$
, 零级反应

$$x + y=1$$
, 一级反应

$$x + y = 2$$
, 二级反应

- > 只有一步完成的反应,即基元反应(elementary reaction),其反应级数才等于此步骤中该反应物的系数的代数和。
- 对于多步才能完成的反应,反应速率只取决于 所有步骤中最慢的一步。所以一个反应的反应 级数必须通过实验来确定。

$$C_2H_4Br_2+3KI \longrightarrow C_2H_4 + 2KBr + KI_3$$

实际的反应步骤如下:

$$C_2H_4Br_2 + KI \longrightarrow C_2H_4 + KBr + I + Br$$
 (slow)

$$KI + I + Br \longrightarrow 2I + KBr$$
 (fast)

$$KI + 2I \longrightarrow KI_3$$
 (fast)

rate =
$$k[C_2H_4Br_2][KI]$$

!!一个反应的反应级数必须通过实验来确定。

3. 速率常数 (k , rate constant)

$$k = \frac{\text{rate}}{[\mathbf{A}]^x [\mathbf{B}]^y}$$

速率常数k单位取决于反应级数,浓度,速率速率常数的单位为: $(mol\cdot dm^{-3})^{1-(x+y)}$ ·时间 $^{-1}$

- 一级反应: $k = s^{-1}$
- 二级反应: $k = mol^{-1} \cdot l \cdot s^{-1}$
- 三级反应: $k = mol^{-2} \cdot l^{2} \cdot s^{-1}$
- n级反应: $k = mol^{1-n} \cdot l^{n-1} \cdot s^{-1}$
- ✓ 通过k的单位可以判断反应级数

4. 具有简单级数的反应的浓度和时间的关系

(1) 0 级反应 (zero-order reactions): A → 产物

$$-d(A)/dt = k [A]^0$$

$$[A]_0 - [A] = k t$$

 $[A] = [A]_0 - k t$

▶ 反应物浓度对时间t 作图,呈直线关系

反应的半衰期:

$$[A]_0 - [A] = 1/2[A]_0$$

$$1/2[A]_0 = k t^{1/2}$$

$$t_{1/2} = [A]_0/2k$$

(2) 一级反应(first – order reaction)

A — 产物

$$-d[A]/dt = k_1 [A]^1 -d[A]/[A] = k_1 dt$$

$$-\int_{A_0}^{A} \frac{d[A]}{[A]} = \int_0^t kt \qquad \ln \frac{[A]_0}{[A]_t} = k_1 t$$

$$\ln \frac{\left[\mathbf{A}\right]_0}{\left[\mathbf{A}\right]_t} = k_1 t$$

> 以反应物浓度的对数对 时间 t作图,呈一条直 线。其斜率为(-k₁)

$$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$$

(与反应物浓度无关)

例题: 质量数为210的钚同位素进行β放射,经14天后,同位素的活性降低6.85%,试求此同位素蜕变常数k和半衰期,并计算经过多长时间才分解90%? (该反应为一级反应)

解:根据
$$\ln \frac{A_0}{A} = kt$$

$$k = \frac{\ln \frac{A_0}{A}}{t} = \frac{\ln \frac{1}{1 - 0.0685}}{14} = 0.00507 \text{天}^{-1}$$

$$t_{1/2} = \frac{0.693}{k} = 137 \text{天}$$

$$t_{90\%} = \frac{\ln \frac{\lfloor A_0 \rfloor}{\lceil A \rceil}}{k} = \frac{\ln 10}{0.00507} = 454\%$$

(3) 二级反应(second – order reaction)

$$-d[A]/dt = k_2[A][B] \xrightarrow{\Xi[A]=[B]} -d[A]/dt = k_2[A]^2$$

$$\xrightarrow{\tilde{\pi}[A]=[B]}$$

$$-d[A]/dt = k_2[A]^2$$

$$\frac{-d[A]}{[A]^2} = k_2 dt$$
 积分:

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + k_2 t$$

以反应物浓度的倒数对时间t作图,呈一条直线, 其斜率为k。

$$t_{1/2} = \frac{1}{k_2[\mathbf{A}]_0}$$

零级反应:

$$NH_3(g) \xrightarrow{\text{W\&a}} \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$$

一级反应(较普遍):

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g) \quad rate = K_1[N_2O_5]$$

$$2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g) \quad rate = K_1[H_2O_2]$$

$$SO_2Cl_2(l) \longrightarrow SO_2(g) + Cl_2(g) \quad rate = K_1[SO_2Cl_2]$$

二级反应:

$$NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$$

 $CH_3COOC_2H_5(aq) + OH^-(aq) \longrightarrow CH_3COO^- + C_2H_5OH(aq)$
 $2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$

不同级数反应速率变化规律

一级反应	-d(A)/dt=k (A) ¹ , lg(A)对t做图,呈直线	lg(A)=lg(A) ₀ - kt/2.303 斜率=-k/2.303
二级反应	-d(B)/dt=k(B) ² 1/(B)对t做图,呈直线	1/(B)=1/(B) ₀ +kt 斜率k
三级反应	-d(C)/dt=k(C) ³ 1/(C) ² 对t做图,呈直线	1/(C) ² =1/(C) ² ₀ +2kt 斜率2k
零级反应	-d(D)/dt=k(D) ⁰ =k (D)对t做图,呈直线	(D)-(D) ₀ =-kt 斜率-k

各级反应的动力学特性

- 二、反应速率与温度的关系 (The Relationship of Rate and Temperature)
 - 1、Van't Hoff's rule (经验公式)

温度每升高10℃,反应速率大约增大2~4倍,即 $k_{t+10}/k_t = 2~4$

2、Arrhenius 公式(定量公式)

化学反应的速率常数(k)与温度之间呈指数关系

$$k = A \cdot e^{-E_{\rm a}/RT}$$

 $E_{\rm a}$ 一活化能;

A: --指前因子或频率因子,表示碰撞和取向一致频率

E_a 活化能:

- ✓ 对于基元反应: 活化能为活化分子的平均能量 与反应物分子平均能量之差。
- ✓ 对于复杂反应: 从实验求得 Ea, 称为实验活化能或表观活化能(物理意义含糊)。

□ 对Arrhenius 经验公式取对数

$$\ln k = \ln A - \frac{E_a}{R} \left(\frac{1}{T}\right)$$

以 $\ln k$ 对1/T作图,是一条直线,其斜率为 $-E_a/R$,截距为 $\ln A$

◆ 一般化学反应的E。在40 - 400kJ·mol⁻¹之内。

3、不同温度下,速率常数之间的关系

$$\ln[k_{(T_2)} / k_{(T_1)}] = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

 T_1 , T_2 , k_1 , k_2 , E_a 可互求

Sample Exercise: 五氧化二氮晶体具有很高的蒸气压, 在气相或惰性溶剂中都能全部分解,其分解反应为:

 $N_2O_5(aq) \rightarrow 1/2O_2(g) + N_2O_4(g) \rightleftharpoons 2NO_2(g)$ 。 此反应为一级反应。由于分解产物 N_2O_4 和 NO_2 均溶于 CCl_4 中,只能有 O_2 放出,故 N_2O_5 在 CCl_4 中的分解可用气 量管测定分解产物逸出 O_2 的体积来量度。下表是0.7372克 $N_2O_5(s)$ 在30°C和p下的数据:

时间 t (s)	0	2400	9600	16800
体积 (ml)	0	15.65	45.85	63.00

- (a) 求算此反应的速率常数k及半衰期 $t_{1/2}$ 。
- (b) 30°C时,分解90.0% N₂O₅所需时间为多少秒?
- (c) 已知该反应活化能为 1.03×10^5 J·mol⁻¹,若要求2400 秒内收集60.00ml O₂(30°C时的体积),问需在什么条件下进行实验?(气体按理想气体处理)

解: (a)由于N₂O₅的分解反应为一级反应,

$$\ln \frac{C_0}{C_t} = kt$$

V_{∞} 应为0.7372g $N_{2}O_{5}(s)$ 完全分解所产生 O_{2} 的体积

$$V_{\infty} = \frac{1}{2} \times \frac{0.7372}{108} \times \frac{RT}{p} = \frac{1}{2} \times \frac{0.7372 \times 8.314 \times 303}{108 \times 101325} = 8.49 \times 10^{-5} \,\text{m}^3$$

$$k_1 = \frac{1}{2400} \ln \frac{84.9}{84.9 - 15.65} = 8.49 \times 10^{-5} (\text{s}^{-1})$$

$$k_2 = \frac{1}{9600} \ln \frac{84.9}{84.9 - 45.85} = 8.09 \times 10^{-5} (\text{s}^{-1})$$

$$k_3 = \frac{1}{16800} \ln \frac{84.9}{84.9 - 63.00} = 8.07 \times 10^{-5} (\text{s}^{-1})$$

$$\frac{-}{k} = \frac{k_1 + k_2 + k_3}{3}$$
$$= 8.22 \times 10^{-5} (s^{-1})$$

$$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{8.22 \times 10^{-5}} = 8.43 \times 10^{3} \text{(s)}$$

(b) 设30°C时,分解90.0% N₂O₅(s)所需时间为t,则

$$t = \frac{1}{k} \ln \frac{c_0}{c_0 - 0.9c_0} = \frac{1}{8.22 \times 10^{-5}} \ln 10 = 2.80 \times 10^4 \text{(s)}$$

(c) 当30°C时,2400秒内只能收集到15.65ml O2,现要 在此时间内收集到60.00ml O2, 速率常数为:

$$k_{(T_2)} = \frac{1}{2400} \ln \frac{84.9}{84.9 - 60.00} = 5.11 \times 10^{-4} (\text{s}^{-1})$$

根据Arrhenius equation:

$$\ln[k_{(T_2)}/k_{(T_1)}] = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \qquad T_2 = 317 \,\mathrm{K}$$

反应活化能已经知道为 1. 03×10⁵ J·mo1⁻¹ → 代入

$$T_2 = 317 \,\mathrm{K}$$

三、催化剂对反应速率的影响

1、催化剂:是一种能改变化学反应速率,其本身在反应前后质量和化学组成均不改变的物质。

只能对热力学上可能发生的反应起作用

- 2、催化剂的特点:
 - a. 改变反应速率。
 - b. 专一性。

例如:制备环氧乙烷,原来用氯气氧化乙烯,再用氢氧化钙除去H和C1,反应如下

$$CH_{z}\!\!=\!\!CH_{z} + Cl_{z} + H_{z}O \longrightarrow CH_{z}\!\!-\!\!CH_{z} + HCl$$

$$Cl OH$$

$$CH_{z}\!\!-\!\!CH_{z} + \frac{1}{2}Ca(OH)_{z}\!\!\longrightarrow CH_{z}\!\!-\!\!CH_{z} + \frac{1}{2}CaCl_{z} + H_{z}O$$

$$Cl OH$$

缺点:有副产物氯化钙,且原子利用率不高,只有25%

用银催化剂,乙烯和氧气在银表面直接化合成环氧乙烷,一步直达,优点:成本低,产量和质量高,原子利用率100%,达到零排放。

$$H_2C = CH_2 + 0.5 O_2$$
 Ag $H_2C - CH_2$

- 3、正催化剂和负催化剂
- 4、均相催化 催化剂溶解在气相或液相中
- 5、非均相催化或多相催化 催化剂和反应物的物态不同
- 6、选择性

§ 4. 化学反应机理

- 一、概念---- 反应机理,就是对反应进行的历程(或步骤)的描述。
- 二、基元反应:最简单的反应,参加反应的微粒一步就完成的反应.
 - ** 特点: 基元反应的速度方程式中浓度的方次就是方程式中该物质的系数.

$$aA + bB \longrightarrow eE + fF$$

$$v = k[A]^x[B]^y$$
 $x=a, y=b$ $v = k[A]^a[B]^b$

• 基元反应的逆反应也是基元反应

三. 非基元反应:

复杂反应: 由两个或两个以上的反应组合而成的总反应

1、速度表示和它的浓度不一致,这个反应肯定是复杂反应。(但是一致的反应不一定是基元反应)

过去认为 $H_2 + I_2 \rightarrow 2HI$,反应是双分子反应 $\upsilon = k$ $[H_2][I_2]$,似乎它就是基元反应,实际其为复杂反应:

$$I_2 \longrightarrow 2I$$
 快
 $\rightarrow k [I_2] = k_{-1}[I]^2$
 $H_2 + I + I \longrightarrow HI + HI$ 慢
也得到: $\upsilon = k [H_2][I_2]$

例: 一氧化氮被还原为氮气和水:

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

根据光谱学研究提出的反应机理是:

①
$$2NO \stackrel{k_1}{\longleftarrow} N_2O_2$$
 (快,平衡)
② $N_2O_2 + H_2 - {}^{k_2} \rightarrow N_2O + H_2O$ (慢)
③ $N_2O + H_2 \stackrel{k_3}{\longrightarrow} 2N_2 + H_2O$ (快)

依据这一反应机理推断其速率方程式,并确定 相关物种的反应级数

解: 按照速率控制步骤②

$$N_2O_2 + H_2 \xrightarrow{k_2} N_2O + H_2O$$

$$v = k_2 c(\mathbf{N}_2 \mathbf{O}_2) c(\mathbf{H}_2)$$

N₂O₂是中间产物,根据①

$$2NO \stackrel{k_1}{\rightleftharpoons} N_2O_2$$

则

$$k_1 c(NO)^2 = k_{-1} c(N_2O_2)$$
 $c(N_2O_2) = \frac{k_1}{k_1} c(NO)^2$

代入得:

$$v = k_2 \frac{k_1}{k_{-1}} c(NO)^2 c(H_2)$$

$$= kc(NO)^2 c(H_2)$$

 $(k = k_2 \cdot k_1 / k_{-1})$

该反应对NO是二级反应,对H2是一级反应

2. 常见的几种复杂类型的反应:

对峙反应: 正向和逆向同时进行的反应

$$\mathbf{A} \stackrel{k_{\mathrm{f}}}{\longleftarrow} \mathbf{B}$$

 $V = K_f[A] - K_r[B]$

平行反应: 相同反应条件下,反应物能同时进行几种不同的反应

$$\bigcirc -OH + HNO_3$$

$$\bigcirc -NO_2$$

$$OH$$

$$\rightarrow HO - \bigcirc -NO_2$$

假设都为一级反应

$$-d[A] / dt = k_1[A] + k_2[A] = (k_1 + k_2)[A]$$

连串反应: 凡反应所产生的物质能再起反应而产生其它物质的反应

$$CH_3CH = CH_2 \xrightarrow{O_2} H_3C - CH_3 \xrightarrow{O_2} CH_3COOH \xrightarrow{O_2} CO_2$$

设连串反应 $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ 都为一级反应,

则 $-d[A]/dt=k_1[A]$,

 $d[B] / dt = k_1[A] - k_2[B]$

链式反应:用某种方法(光、热、电等)使反应引发,产生自由基,发生一连串反应,反应自动进行下去,好像一条链一样,一环扣一环,直至反应停止,这类反应称为链反应。

例如:
$$H_2 + Cl_2 \xrightarrow{hv} 2HCl$$
,

$$Cl_2 \xrightarrow{hv} 2Cl$$
 (链的引发)
 $Cl \cdot + H_2 \longrightarrow HCl + \cdot H$
 $H \cdot + Cl_2 \longrightarrow HCl + \cdot Cl$ (链的传递)
 $Cl \cdot + H_2 \longrightarrow HCl + \cdot H$

$$2Cl \cdot \longrightarrow Cl_2$$

(链的终止)

总结

- 1. 速度表示
- 2. 速度方程式的表示,以及反应的级数,半衰期, k的计算.
- 3. Arrhenius 经验公式,理解过渡态, E_a ,催化反应,k与T的关系等.
- 4. 理解: 反应历程