

xercice 1:

$$\Rightarrow \frac{1}{17} \times (1 \times 8 + \infty \times 4) = \frac{8 + \infty}{17}$$

noté Rep 1

· Pour EST_2:

$$= > \frac{4}{47} \times (4 \times 4 + 2 \times 3) = \frac{3x + 1}{47}$$

inparaison: Soit
$$f: x \mapsto x + 8 - 3x = 1$$
 (i.e. $f(x) = -2x + \frac{x}{4}$)

 $\frac{x}{4}$
 $\frac{$

Ainsi: Pour ==]-2; 7[; Rep 1 > lep 2 et pour]= [Rep 1 < Rep 1 < Rep 1

d) Arbre de décision:

edinai: le risque enprique vant: $\frac{1}{17} \times (3 \times 2 + 1 \times 2) = \frac{7}{17}$

c). Un arbre de décision nous a permis d'avoir des résultats

17/11/11	and the second		
	1	2	
$\times_{\!\scriptscriptstyle 4}$	5	2	
\times_{2}	2	5	
	7		

MM	1	2
\times_{4}	3	7
$ \chi_{z} $	6	4

e)
$$X_1 = 1$$
 et $X_2 = 1$ (Δ)

$$P(Y=T \mid X_1=1 \ 2X_2=1) = \frac{7}{17} \times \frac{5}{7} \times \frac{2}{7} = \frac{10}{119}$$

$$P(Y=F \mid X_1=1) = \frac{7}{17} \times \frac{5}{7} \times \frac{2}{7} = \frac{10}{119}$$

$$P(Y=F \mid X_1 = 1 & X_2 = 1) = \frac{10}{17} \times \frac{3}{10} \times \frac{6}{10} = \frac{9}{85}$$

$$P(Y=F/x) = \frac{10}{17} \times \frac{3}{10} \times \frac{4}{10} = \frac{6}{85}$$

$$P(Y=T/\$)=\frac{7}{17}\times\frac{2}{7}\times\frac{2}{7}=\frac{4}{119}$$

$$P(Y=F) = \frac{10}{17} \times \frac{7}{10} \times \frac{6}{10} = \frac{21}{85}$$

•
$$\frac{X_{2}=2 \text{ ef } X_{2}=2}{P(Y=T|V)} = \frac{7}{17} \times \frac{2}{7} \times \frac{5}{7} = \frac{10}{19}$$

$$P(Y=F|V) = \frac{10}{17} \times \frac{7}{10} \times \frac{4}{10} = \frac{14}{85}$$

De ce fait, nous obtenons ce table our résumment l'estimateur truyessen raif optimal:

	1	12
1	F	T
2	F	F

X: greaters points. X: 5 derniers points.

-: Cluster 1 possible

-; Cluster 2 possible

. On pourrait utiliser un kreans ou bien une classification hierarchique.

1) Dendogramme d'une dissifiation hierarchique ascendante.

e)

Exercise 3:

a) Pour révilier l'indépardence des deux raniables (noté A et B):

1) On calcule les effectifs croises espérés:

$$E_{i,j} = \frac{4}{n} \times \sum_{i,j} \operatorname{card}(X=i) \times \operatorname{card}(B=j)$$

2) On calcule les effectifs croisés observés:

$$O_{i,j} = Card((A=i) \cap (B=j))$$

3) Enfin, on calcule l'écart entre les 2 variables. L'indépendence se treaduit par une faible valeure de cet écart.

$$\varepsilon = \sum_{i \neq j} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}$$