

Definición y tipos de estructuras de datos

Bienvenidos a este módulo sobre estructuras de datos y algoritmos. Aprenderemos qué son las estructuras de datos, cómo se clasifican, y los conceptos clave relacionados con su diseño y análisis.

¿Qué es una estructura de datos?

Definición

Una estructura de datos es una forma de organizar y almacenar datos en la memoria de una computadora, con el fin de facilitar su acceso y manipulación.

Características

Las estructuras de datos tienen propiedades como tamaño, forma y relaciones entre elementos que influyen en cómo se pueden utilizar.

Objetivos

Su objetivo es permitir un procesamiento eficiente de la información, optimizando el uso de recursos como tiempo y espacio.

Tipos básicos de estructuras de datos

Arrays

Colección de elementos del mismo tipo, almacenados en posiciones contiguas de la memoria.

Listas Enlazadas

Secuencia de nodos, cada uno con un valor y un puntero al siguiente nodo.

Árboles

Estructura jerárquica con un nodo raíz y subárboles, utilizados para búsqueda y organización.

Grafos

Conjunto de nodos (vértices) conectados por enlaces (aristas), útiles para representar relaciones.

0	"Plátano"
1	"Manzana"
2	"Pera"
3	"Uva"
4	"Fresa"

¿Qué es un algoritmo?

1 Definición

Un algoritmo es un conjunto de instrucciones o pasos bien definidos y ordenados que resuelven un problema o realizan una tarea específica.

2 Importancia

Los algoritmos son fundamentales en la programación, ya que permiten automatizar procesos y solucionar problemas de manera eficiente.

3 Características

Un algoritmo debe ser preciso, finito, efectivo y genérico para poder ser aplicado a diferentes situaciones.

Órdenes de complejidad

Definición

La complejidad de un algoritmo se refiere al tiempo y espacio necesarios para ejecutarlo, en función del tamaño de la entrada.

Big O Notation

La notación Big O permite clasificar los algoritmos según su complejidad, como constante (O(1)), lineal (O(n)), logarítmica (O(log n)), etc.

Importancia

Conocer la complejidad de un algoritmo es crucial para diseñar soluciones eficientes y predecir el rendimiento de un programa.

Tipos básicos de algoritmos

1 Búsqueda

Algoritmos para encontrar un elemento dentro de una estructura de datos, como búsqueda secuencial o binaria.

2 Ordenación

Algoritmos para organizar los elementos de una estructura de datos en un orden específico, como quicksort o mergesort.

3 Camino mínimo

Búsqueda del recorrido de menos coste en un grafo desde el punto A al punto B.

Hashing

Definición

El hashing es una técnica para asignar datos a una estructura de almacenamiento mediante una función hash, que transforma la información en un índice.

Aplicaciones

Se utiliza en tablas hash, caches, índices de bases de datos y otros sistemas que requieren acceso rápido a los datos.

Ventajas

El hashing permite realizar operaciones como búsqueda, inserción y eliminación de datos de manera eficiente.

Ejemplos de código

1

Implementación de una Pila

Una pila es una estructura de datos que sigue el principio LIFO (Last In, First Out), donde los elementos se van apilando y el último en entrar es el primero en salir.

2

Búsqueda Binaria

La búsqueda binaria es un algoritmo eficiente para encontrar un elemento en una lista ordenada. Divide repetidamente el espacio de búsqueda por la mitad hasta encontrar el elemento.

Ordenamiento Quicksort

3

El algoritmo Quicksort es un método de ordenamiento basado en dividir y conquistar. Selecciona un elemento como pivote y particiona la lista en dos sublistas, antes y después del pivote.

