Úkol

- 1. Provést interaktivní simulace základních typů částic a zobrazit jednotlivé interakce,
- 2. Kvantitativně porovnat energetické ztráty v kalorimetru pro různé druhy částic (elektron, mion, pion),
- 3. Prostudovat odezvu modelu kalorimetru a jeho energetické rozlišení

Teorie

V tomto praktiku se zabýváme počítačovou simulací průchodu vysokoenergetických částic kalorimetrem. Model kalorimetru je implementován po vzoru experimentu ATLAS v CERNu. Modelovaný kalorimetr má délku 150 cm, příčné rozměry 80×80 cm a obsahuje 75 střídavých vrstev železa a scintilátoru.

Jedná se o simulaci destruktivního měření. Částice kalorimetru předá veškerou svoji energii, většinu ve vrstvách železa a část ve scintilátoru, kde je transformována ve světelné záblesky, které je možné sledovat a vyhodnocovat. Při průchodu kalorimetrem se částice rozpadají a vytvářejí tzv. spršku.

Částice lze dle způsobu interakce s látkou rozdělit do skupin:

- 1. částice vytvářející čistě elektromagnetickou spršku (e^-,e^+,γ,π^0)
- 2. částice produkující hadronovou spršku (vysokoenergetické hadrony kromě π^0)
- 3. ionizující částice (μ)
- 4. neinteragující částice (ν)

V zájmu stručnosti byl popis jednotlivých způsobů interakce přenechán do sekce výsledků. Energetické rozlišení kalorimetru lze vyjádřit jako

$$\frac{\sigma(E_{dep})}{E_{dep}} = \frac{a}{\sqrt{E_0}} + b,\tag{1}$$

kde E_0 je původní energie částice a a tzv. sampling term.

Výsledky

Úkol 1

Obrázky 1 - 10 ukazují průlety částic kalorimetrem. Kvůli nesprávnému nastavení zobrazení interaktivní simulace byly výsledné snímky obrazovky barevně velice nevýrazné a nekontrastní. V mnoha případech také sprška zabírala jen malou část kalorimetru, při zobrazení celého snímku by zanikly detaily. Proto byly tyto snímky oříznuty a barevně vylepšeny softwarem pro digitální úpravu obrázků.

Jako první jsou zobrazeny elektromagnetické spršky elektronu (obr. 1), částice γ (obr. 2) a π^0 (obr. 3). Elektromagnetické spršky vznikají opakovanou konverzí částice γ na elektronpozitronový pár, který následně brzdně září. Částice π^0 se s vysokou pravděpodobností (99%)

rychle rozpadá na 2γ a ve zbytku případů na elektron pozitronový pár a γ . Na obrázku 3 vlevo vstupují do kalorimetru dvě z těchto částic. Elektron je zobrazen modře, nenabité částice se nezobrazují.

Obrázek 1: Průlet elektronu s energií 20 GeV kalorimetrem

Obrázek 2: Průlet částice γ s energií 10 GeV kalorimetrem

Obrázek 3: Průlet dvou částic π^0 s energií $10\,\mathrm{GeV}$ kalorimetrem

Obrázky 4 až 9 zachycují průlet částic produkujících hadronovou spršku. Ve všech případech jsou produktem další hadrony, především protony (světle modře) a částice π (fialově). Interakce se liší převážně dobou života původní částice, viz obr. 5, kde se částice K_L^0 (vlevo) šíří až za polovinu délky kalorimetru, kdežto K_S^0 se hned po dopadu na kalorimetr rozpadla. Všechny tyto interakce jsou dále doprovázeny sprškami elektromagnetickými. Kromě hadronů a elektronů nám zde také část energie unášejí neutrina, která jsou však vysoce nereaktivní a nezobrazují se.

Obrázek 4: Průlet částice K^+ s energií 10 GeV kalorimetrem

Obrázek 5: Průlet částic K^0_L a K^0_S s energií $10\,{\rm GeV}$ kalorimetrem

Obrázek 6: Průlet částice Λ s energií 10 GeV kalorimetrem

Obrázek 7: Průlet neutronu s energií 10 GeV kalorimetrem

Obrázek 8: Průlet částice π^- s energií 10 TeV kalorimetrem

Obrázek 9: Průlet protonu s energií 10 GeV kalorimetrem

Na obrázku 10 vidíme dva průlety částice μ^- . Tato částice ztrácí jen minimum energie a kalorimetr vzápětí opouští. Tyto ztráty energie jsou způsobeny ionizací, z obrázku je patrné, že při vyšší energii je efekt ionizace větší.

Obrázek 10: Průlet částice μ^- s energií 10 GeV a 2 TeV kalorimetrem

Úkol 2

V zadní části protokolu jsou přiloženy výstupy programu root z měření průchodu elektronu a částice μ a π kalorimetrem. Všechny částice měly počáteční energii 17 GeV.

Z výsledků měření elektronu je zřejmé, že celá energie elektronu byla předána kalorimetru v jeho přední části, součet energie předané železu a scintilátoru se téměř rovná energii počáteční, úniky po stranách kalorimetru jsou zanedbatelné.

Výsledky měření částice μ ukazují (společně s obrázkem 10), že jen malá část energie (12 %) částice byla předána kalorimetru, a to rovnoměrně po celou dobu průletu. Většinu energie si částice odnesla s sebou po odchodu z kalorimetru. Úniky energie po stranách kalorimetru jsou opět zanedbatelné.

Předávání energie částice π probíhalo pozvolněji než v případě elektronu. Ze součtu energie předané železu a scintilátoru a z grafu ve spodní části přílohy je zřejmé, že nezanedbatelné množství energie uniklo po stranách kalorimetru.

Úkol 3

Bylo provedeno 5 simulací průchodu elektronu s různou energií kalorimetrem. Byly zaznamenány hodnoty sampling term a_i pro ztráty energie v železe a a_s pro ztráty energie v scintilátoru. Tyto hodnoty jsou uvedeny v tabulce.

E_0 [eV]	a_i	a_s
1.1×10^{10} 2.4×10^{10} 4.2×10^{10} 5.7×10^{10} 7.2×10^{10}	1,70 1,68 2,00 2,86 2,12	18,40 18,38 19,19 19,58 17,06

Tabulka 1: Tabulka hodnot pro úkol 3

Jak lze vidět z grafů na obrázku 11, není závislost a na $\sqrt{E_0}$ ani přibližně lineární, bylo proto od určení energetického rozlišení kalorimetru upuštěno.

Obrázek 11: Závislost a_i a a_s na odmocnině počáteční energie E_0

Diskuse

Jelikož toto praktikum bylo teoretičtějšího rázu a neproběhlo žádné skutečné měření, proběhla diskuse již v rámci shrnutí výsledků výše.

Závěr

Byly provedeny a popsány interaktivní simulace průchodu částic kalorimetrem.

Byly popsány průběhy energetických ztrát v kalorimetru pro elektron a částice μ a π .

Z důvodu nelinearity závislosti $a(\sqrt(E_0))$ nebylo možné určit energetické rozlišení kalorimetru.

Reference

[1] Pokyny k měření "Simulace průchodu vysoko
energetických částic kalorimetrem", dostupné z

https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_406.pdf, 10.10.2018