- a. Replace the 2.5 V source in the circuit in Fig. P5.1 \square and calculate v_o for each of the following source values: -6 V, -3.5 V, -1.25 V, 1 V, 2.4 V, 5.4 V.
- b. Specify the range of voltage source values that will not cause the op amp to saturate

a)
$$\frac{V_n - V_{source}}{10K} + \frac{V_n - V_o}{40K} = 0$$

Since Vn=0: Vo= - 40K Viole

$$V_{source} = -6V = 7$$
 $V_{o} = -4(-6) = 24V$ Since $24 > 15$ $V_{o} = 15V$
 $V_{source} = -3.5V = 7$ $V_{o} = -4(-3.6) = 14V$
 $V_{source} = -1.25V \Rightarrow V_{o} = -4(-1.26) = 5V$
 $V_{source} = 1V = > V_{o} = -4(1) = -4V$
 $V_{source} = 2.4V = > V_{o} = -4(2.4) = -4.6V$
 $V_{source} = 3.4V = > V_{o} = -4(5.4) = -21.6V$ Since $-21.6V = -15V$

$$V_6 = \frac{15}{-4} = -3.75 V$$

$$V_s = \frac{-15}{-4} = 3.75 \text{ V}$$

the voltage source must be between -3.75V and 375 V to avoid saturation

- 5.4 PSPICE The op amp in the circuit in Fig. P5.4 is ideal
- a. Calculate v_o if $v_{\rm a}=4\,{
 m V}$ and $v_{\rm b}=0\,{
 m V}$.
- c. Calculate v_o if $v_a=2$ V and $v_b=0$ V c. Calculate v_o if $v_a=2$ V and $v_b=1$ V
- d. Calculate v_o if $v_a=1$ V and $v_b=1$ V.
- e. If $v_b = 1.0 \text{ V}$ Figure P5.4

$$\frac{V_{b} - V_{a}}{z_{co}} + \frac{V_{b} - V_{a}}{100} = 0$$

$$V_{o} = -5V_{a} + 6V_{b}$$

- $\Delta V_0 = -5(4) + 600$ $V_0 = -16V$
- $V_0 = \frac{-5(2) + 6(0)}{V_0 = -10V}$
- $V_0 = -5(2) + 6(1)$ $V_0 = -4V$
- d) $V_0 = -\zeta(1) + \zeta(2)$ $V_0 = 7V$
- e) $|6 = -5V_a + 6(1.6) + -16 = -5V_a + 6(1.6)$ $V_a = -1.25$ $V_a = 5.12$

5.6 $\stackrel{\mathrm{DSPICE}}{\mathrm{MULTISIM}}$ Find i_L (in milliamperes) in the circuit in Fig. P5.6 \blacksquare . Figure P5.6

$$V_{p} = \frac{5K}{5krlok}(6V) = 2V$$

$$V_{n} = V_{p} = 2V$$

$$\frac{V_{n} + 5}{3K} + \frac{V_{n} - V_{0}}{6K} = 0$$

$$V_{0} = 2(2+5) + 2$$

$$V_{0} = 16V$$
Using ohms law $(V = if = 5)$

Vsing ohns law
$$(V=ir \Rightarrow i = \frac{V}{r})$$

$$i_{L} = \frac{V_{0}}{g_{K}p_{L}} = \frac{16}{g_{K}}$$

$$i_{L} = 2mK$$

Since Vm is turned the opposite of Vo

5.12
$$\frac{PSPICE}{MULTISIM}$$
 The op amp in Fig. P5.12 \blacksquare is ideal.

- $\begin{array}{ll} 5.12 & \frac{\text{PSPICE}}{\text{MULTISM}} & \text{The op amp in Fig. P5.12} \; \underline{\textbf{w}} \text{ is ideal.} \\ a. & \text{What circuit configuration is shown in this figure?} \\ b. & \text{Find } v_{o} \text{if } v_{a} = 1.2 \text{ V}, v_{b} = -1.5 \text{ V}, \text{ and } v_{c} = 4 \text{ V}. \\ c. & \text{The voltages } v_{a} \text{ and } v_{c} \text{ remain at 1.2 V and 4 V, resp.} \end{array}$
 - linear region? Figure P5.12

c)
$$V_0 = 6V + V_0 = -6V$$

b)
$$V_0 = -\left(\frac{R_c}{R_c}V_c + \frac{R_c}{R_b}V_b + \frac{R_c}{R_c}V_c\right)$$

 $V_0 = -\left(\frac{220}{33k}(12) + \frac{220k}{22k}(-1.5) + \frac{220k}{30k}(1)\right)$
 $V_0 = -4V$

5.14 $\frac{\text{PSPICE}}{\text{MULTISIM}}$ Refer to the circuit in Fig. 5.11 \square , where the op amp is assumed to be ideal. Given that $R_a=3\,\mathrm{k}\Omega,$

 $R_{\rm b}=5\,{
m k}\Omega$, $R_{\rm c}=25\,{
m k}\Omega$, $v_{\rm a}=150\,{
m mV}$, $v_{\rm b}=100\,{
m mV}$, $v_{c}=250\,{
m mV}$, and $V_{CC}=\pm6$ V, specify the range of R_{f} for which the op amp operates within its linear region.

Figure 5.11 A summing amplifier.

$$\begin{cases} V_o = -\left(\frac{R_f}{3k} (150mV) + \frac{R_f}{5k} (100mV) + \frac{R_f}{25k} (250mV)\right) \\ R_f = \frac{V_o}{5kN_o} = 6 \end{cases}$$

$$\frac{1}{v_0} \qquad 0 \quad k_{\rm f} = \frac{+6}{-8 \times 10^5} = -75 \, \rm kSZ \quad 2 \quad k_{\rm f} = \frac{-6}{-8 \times 10^5} = -75 \, \rm kSZ$$

5.17 $\frac{\text{PSPICE}}{\text{MILLUSIM}}$ The $220\,\mathrm{k}$ O feedback resistor in the circuit in Fig. P5.16 \square is replaced by a variable resistor R_f . The voltages $v_{
m a}-v_{
m d}$ have the same values as given in Problem 5.16(a) lacktriangle

a. What value of R_f will cause the op amp to saturate? Note that $0 \leq R_f \leq \infty$.

b. When
$$R_f$$
 has the value found in (a), what is the current (in microamperes) into the output terminal of the op amp? Figure P5.16
$$\begin{array}{c} 220 \text{ k}\Omega \\ 40 \text{ k}\Omega \\ \hline + 22 \text{ k}\Omega \\ \hline + 100 \text{ k}\Omega \\ v_c \quad 352 \text{ k}\Omega \end{array} \right. \begin{array}{c} 220 \text{ k}\Omega \\ \hline + 15 \text{ V} \\ \hline \end{array}$$

9)
$$\frac{8-4}{40k} + \frac{8-9}{22k} + \frac{8-13}{100k} + \frac{8-4}{8+4} + \frac{8}{362k} = 0$$

$$R_f = \frac{8-4}{273 \times 10^5}$$

b)
$$i = -\left[\frac{15-8}{256.411K} + \frac{15}{10K}\right]$$

$$(i = -1.53 \text{ mA})$$

a) Magative mode

$$\frac{V_{n}-V_{a}}{20K} + \frac{V_{n}-V_{b}}{(8K)} + \frac{V_{n}-V_{c}}{160K} = 0$$

$$9V_{n}-9V_{n}+loV_{n}-loV_{p}+V_{n}-V_{0}=0$$

$$V_{o}=20V_{n}-9V_{n}-loV_{p}=20V_{n}-29$$

Positive node

$$\frac{V_{\rho}}{20K} + \frac{V_{\rho} - V_{c}}{30K} + \frac{V_{\rho} - V_{d}}{20K} = 0$$

$$V_{N} = \frac{q}{4} = 226$$

$$V_0 = 20(2K) - 29 = K$$

$$V_0 = 16 V$$

b) $V_0 = 5V_c + 30 - 9 - 20 = 5V_c + 1$

$$V_{c} = \frac{19}{5} = 3.8$$
 $V_{c} = -\frac{21}{5} = -4.2$

-4.215 Vc =3.81/