

Differential expression and downstream analysis

Alexey Sergushichev

2021-08-26, Tomsk

Outline

- Exploring gene expression datasets
- Simple analysis methods
- Working with public datasets

Open the filtered dataset from gct (or continue working in the open tab)

Differential expression

▼ Tools/Differential expression/limma

Cancel

Differential expression: results

- Sort decreasing by "t"
- Save the results as GSE53986_Ctrl_vs_LPS.gct

P-value

P-value - the probability that, when the null hypothesis is true, the statistical summary (such as the sample mean difference between two groups) would be equal to, or more extreme than, the actual observed results.

Differential expression p-value

- Null hypothesis: average gene expression is distributed in two conditions and the distributions follows a certain model
- Summary: t-statistic like
- When p-value is low, then we **reject** null hypothesis and assume genes are differentially expressed

Multiple hypothesis testing

- P-values are uniformly distributed when null hypothesis is true
- ✓ If there are no real differential expression at all, for 10⁴ genes there will be P-values as low as 10⁻⁴
- Using Benjamini-Hochberg adjustment procedure which limits False Discovery Rate (FDR)

Differential expression: results

- Sort decreasing by "t"
- Save the results as GSE53986_Ctrl_vs_LPS.gct

Sharing the results

- ▼ File/Get link to a dataset
- Open the link in another browser tab

Pathway enrichment: using MSigDB tool

Put <u>alsergbox@gmail.com</u> here for now Register later, it's free!

Pathway enrichment: selecting signature genes

Right click on "Gene symbol" column and click "Copy" (not Ctrl-C)

12

Pathway enrichment: using MSigDB tool

Paste genes here

Pathway enrichment results

Gene Set Name [# Genes (K)]	Description	# Genes in Overlap (k)	k/K	p-value 🖸	FDR q-value 🖸
HALLMARK_INTERFERON_GAMMA_RESPONSE [200]	Genes up-regulated in response to IFNG [GeneID=3458].	67		5.51 e ⁻¹¹²	7.6 e ⁻¹⁰⁹
HALLMARK_INTERFERON_ALPHA_RESPONSE [97]	Genes up-regulated in response to alpha interferon proteins.	34		6.43 e ⁻⁵⁷	4.43 e ⁻⁵⁴
REACTOME_IMMUNE_SYSTEM [933]	Genes involved in Immune System	49		2.51 e ⁻³⁹	1.15 e ⁻³⁶
HALLMARK_INFLAMMATORY_RESPONSE [200]	Genes defining inflammatory response.	30		7.61 e ⁻³⁸	2.63 e ⁻³⁵
HALLMARK_TNFA_SIGNALING_VIA_NFKB [200]	Genes regulated by NF-kB in response to TNF [GeneID=7124].	29		3.76 e ⁻³⁶	1.04 e ⁻³³
REACTOME_INTERFERON_SIGNALING [159]	Genes involved in Interferon Signaling	26		6.39 e ⁻³⁴	1.47 e ⁻³¹
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_ NE_SYSTEM [270]	Genes involved in Cytokine Signaling in Immune system	30		9.04 e ⁻³⁴	1.78 e ⁻³¹
REACTOME_INTERFERON_ALPHA_BETA_SIGNALI ALING [64]	Genes involved in Interferon alpha/beta signaling	17		1.85 e ⁻²⁶	3.19 e ⁻²⁴
HALLMARK_ALLOGRAFT_REJECTION [200]	Genes up-regulated during transplant rejection.	18		5.83 e ⁻¹⁹	8.78 e ⁻¹⁷
REACTOME_INTERFERON_GAMMA_SIGNALING [63]	Genes involved in Interferon gamma signaling	13		6.37 e ⁻¹⁹	8.78 e ⁻¹⁷

gene/pathway matrix

Gene/geneset overlap matrix

How p-value is calculated

Converted 250 submitted identifiers into 196 entrez genes. click here for details.

Collections	# Overlaps Shown	# Gene Sets in Collections	# Genes in Comparison (n)	# Genes in Universe (N)	
CP	10	1329	196	45956	

Click the gene set name to see the gene set page. Click the number of genes [in brackets] to download the list of genes.

Color bar shading from light green to black, where lighter colors indicate more significant FDR q-values (< 0.05) and black indicates less significant FDR q-values (>= 0.05).

Save to: Excel | MigGenomeSpace

Gene Set Name [# Genes (K)]	Description	# Genes in Overlap	k/K	p-value 🔽	FDR q-value 🔁
REACTOME_IMMUNE_SYSTEM [933]	Genes involved in Immune	(k)		5.65 e ⁻⁴⁰	7.51 e ⁻³⁷
REACTOME_INTERFERON_SIGNALING [159]	System Genes involved in Interferon	26		1.29 e ⁻³³	8.6 e ⁻³¹
REACTOME CYTOKINE SIGNALING IN IMMUNE	Signaling Genes involved in Cytokine	30		2 04 e ⁻³³	9.04 e ⁻³¹
NE_SYSTEM [270]	Signaling in Immune system			2.010	
REACTOME_INTERFERON_ALPHA_BETA_SIGNALI ALING [64]	Genes involved in Interferon alpha/beta signaling	17		2.91 e ⁻²⁶	9.67 e ⁻²⁴
DEACTOME INTERESPON CAMMA CICNALING [CO]	Canas involved in Interferen	12		10	1.0

Fisher test table

Expected overlap if independent

query non-query
pathway 17 196-17
non-pathway 64-17 45956-64-196+17

196*64/45956 = 0.27

Notice: MSigDB p-values are biased

Converted 250 submitted identifiers into 196 entrez genes, click here for details.

Collections	# Overlaps Shown	# Gene Sets in Collections	# Genes in Comparison (n)	# Genes in Universe ((N)
CP	10	1329	196	45956	
Click the gene	set name to see the ge	ne set page. Click the number of	genes [in brackets] to download t	he list of genes.	
	ding from light green to (s, q)	black, where lighter colors indica	te more significant FDR q-values (< 0.05) and black indicate	tes less

Save to: Excel | misGenomeSpace

Gene Set Name [# Genes (K)]	Description	# Genes in Overlap (k)	k/K	p-value 🖸	FDR q-value 🖸
REACTOME_IMMUNE_SYSTEM [933]	Genes involved in Immune System	50		5.65 e ⁻⁴⁰	7.51 e ⁻³⁷
REACTOME_INTERFERON_SIGNALING [159]	Genes involved in Interferon Signaling	26		1.29 e ⁻³³	8.6 e ⁻³¹
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_ NE_SYSTEM [270]	Genes involved in Cytokine Signaling in Immune system	30		2.04 e ⁻³³	9.04 e ⁻³¹
REACTOME_INTERFERON_ALPHA_BETA_SIGNALI ALING [64]	Genes involved in Interferon alpha/beta signaling	17		2.91 e ⁻²⁶	9.67 e ⁻²⁴
DEACTOME INTERESPON CAMMA CICNALING [62]	Canas involved in Interferen	12		10	1.0

Fisher test table

Expected overlap if independent

query non-query
pathway 17 196-17
non-pathway 64-17 45956-64-196+17

196*64/45956 = 0.27 → = 1.05

Looking into reactome pathways

Google: reactome interferon alpha beta signalling

Let's look how the whole pathway looks in our dataset

Click on IFNa/b signalling

Exercise

- **♥** Get list of genes in IFNa/b reponse pathway from QuickGO:
 - https://www.ebi.ac.uk/QuickGO

Put the genes from the pathway into Phantasus

Tools/Plots/GSEA plot

Pre-ranked gene set enrichment analysis

GSEA statistic calculation

- \heartsuit ES[i] = ES[i-1] + |stat[i]| / NS, if $i \in \text{gene set}$
- **♥** ES[i] = ES[i-1] 1 / (N k), if not
- \vee NS = sum |stat[i]| for $i \in \text{gene set}$

Fast gene set enrichment analysis (FGSEA)

- Fast estimation of arbitrarily low p-values
- https://github.com/ctlab/fgsea
- The error can be estimated

					log2P	log2P	mean	sd	expected
size	5	ES	Z		(exact)	(approx)	error	error	error
:	100	0.9		1001	-159.53812	-159.53769	0.00043054	0.61	0.48
	100	0.7		1001	-79.54245	-79.5298	0.01265205	0.41	0.34
:	100	0.6		1001	-31.54746	-31.54093	0.00652617	0.26	0.21
	100	0.5		1001	-13.56805	-13.5644	0.00364966	0.17	0.14

Gennady Korotkevich

Vladimir Sukhov

Running FGSEA

- Tools/Pathway analysis/Perform FGSEA
- Pathway database: MSigDB Hallmarks (Mouse)
- Rank by: t
- Column with gene ID: Gene ID

Actions: Save as TSV FGSEA:

pathway	♦ pval ♦	padj	log2err	ES \$	NES ,	size 🌲	leadingEdge
Interferon gamma response	1.00e-10	8.17e-10	NA	0.836	3.14	183	17329 14962 20293 14293 16193
Interferon alpha response	1.00e-10	8.17e-10	NA	0.814	2.82	94	15945 56066 99899 231655 57444
Inflammatory response	1.00e-10	8.17e-10	NA	0.771	2.81	150	17329 17167 16175 20293 14293
IL6-JAK-STAT3 signaling	1.00e-10	8.17e-10	NA	0.787	2.59	72	17329 330122 16193 12494 15945
Allograft rejection	1.00e-10	8.17e-10	NA	0.681	2.47	142	17329 20293 16193 16176 18126

Pathway detail:

Pathway name:Interferon gamma response
Pathway genes (ID):56417 71939 71371 11861 3199
74 12010 242248 74481 12183 69550 12226 667277
317677 12362 12367 12363 12369 12370 20293 2030
4 20306 60533 12494 21939 12515 16149 12524 125
75 14962 12628 12265 147477 22169 74157 12984 15
945 56066 17329 230073 234311 80861 19106 66892
08670 14102 14129 14190 14293 55932 236573 145
28 110168 14938 229003 67138 15251 14964 15006
15007 15013 15015 15018 110557 15040 630294 667
977 14990 14991 14998 14960 14969 15894 15930 5

Pathway profile plot

- Tools/Chart
- Select genes from IFNa/b pathway

Add profile: mean

Adjust: Z-score

Using Enrichr

Select ~250 genes

▼ Tools/Pathway analsysis/Submit to Enrichr

Choose gene symbol column

Submit

Enrichr results

Check out different tabs

NB: if the new tab is not opening, probably pop-up windows are blocked

https://artyomovlab.wustl.edu/phantasus/

Tools Help Rows Columns ADAR EGR1 GBP2 HLA-A HLA-B HL

Done

Always allow pop-ups and redirects

Continue blocking

Manage

from https://artyomovlab.wustl.edu

Other tools

- Gorilla
 - http://cbl-gorilla.cs.technion.ac.il/
- **O** DAVID
 - https://david.ncifcrf.gov/home.jsp
- GSEA desktop tool
 - http://software.broadinstitute.org/gsea/downloads.jsp
- GenePattern
 - https://genepattern.broadinstitute.org/
- WebGestalt
 - http://www.webgestalt.org/

Summary

- Differential expression analysis and pathway enrichment are one of the most useful tools for data interpretation
- There are many online tools and databases for downstream analysis
- Next: working with public gene expression databases