Le théorème général

Jean-Stéphane Varré

Université Lille 1

jean-stephane.varre@univ-lille1.fr

Le théorème général permet de connaître le comportement asymptotique des équations de récurrence qui s'écrivent sous la forme suivante :

$$c(n) = a \times c \binom{n}{b} + f(n)$$

Théorème général

Soient $a \ge 1$ et b > 1 deux constantes, soit f(n) une fonction et soit c(n) définie pour les entiers non négatifs par la récurrence

$$c(n) = a \times c(n/b) + f(n)$$

où l'on interprète n/b comme étant $\lfloor \frac{n}{b} \rfloor$ ou $\lceil \frac{n}{b} \rceil$. c(n) peut alors être bornée asymtotiquement de la façon suivante.

Théorème général

Soient $a \ge 1$ et b > 1 deux constantes, soit f(n) une fonction et soit c(n) définie pour les entiers non négatifs par la récurrence

$$c(n) = a \times c(n/b) + f(n)$$

où l'on interprète n/b comme étant $\lfloor \frac{n}{b} \rfloor$ ou $\lceil \frac{n}{b} \rceil$. c(n) peut alors être bornée asymtotiquement de la façon suivante.

1 si $f(n) = O(n^{\log_b a - \varepsilon})$ pour une certaine constante $\varepsilon > 0$, alors

$$c(n) = \Theta(n^{\log_b a}).$$

Théorème général

Soient $a \ge 1$ et b > 1 deux constantes, soit f(n) une fonction et soit c(n) définie pour les entiers non négatifs par la récurrence

$$c(n) = a \times c(n/b) + f(n)$$

où l'on interprète n/b comme étant $\lfloor \frac{n}{b} \rfloor$ ou $\lceil \frac{n}{b} \rceil$. c(n) peut alors être bornée asymtotiquement de la façon suivante.

1 si $f(n) = O(n^{\log_b a - \varepsilon})$ pour une certaine constante $\varepsilon > 0$, alors

$$c(n) = \Theta(n^{\log_b a}).$$

2 si $f(n) = \Theta(n^{\log_b a})$, alors

$$c(n) = \Theta(n^{\log_b a} \log_2 n).$$

Théorème général

Soient $a \ge 1$ et b > 1 deux constantes, soit f(n) une fonction et soit c(n) définie pour les entiers non négatifs par la récurrence

$$c(n) = a \times c(n/b) + f(n)$$

où l'on interprète n/b comme étant $\lfloor \frac{n}{b} \rfloor$ ou $\lceil \frac{n}{b} \rceil$. c(n) peut alors être bornée asymtotiquement de la façon suivante.

1 si $f(n) = O(n^{\log_b a - \varepsilon})$ pour une certaine constante $\varepsilon > 0$, alors

$$c(n) = \Theta(n^{\log_b a}).$$

2 si $f(n) = \Theta(n^{\log_b a})$, alors

$$c(n) = \Theta(n^{\log_b a} \log_2 n).$$

3 si $f(n) = \Omega(n^{\log_b a + \varepsilon})$ pour une certaine constante $\varepsilon > 0$, et si $a \times f(n/b) \le k \times f(n)$ pour une certaine constante k < 1 et pour n suffisamment grand, alors

$$c(n) = \Theta(f(n)).$$

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 4 c \left(\frac{n}{2}\right) + \sqrt{n}$$

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 4 c \left(\frac{n}{2}\right) + \sqrt{n}$$

On commence par identifier

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \frac{4}{2}c\left(\frac{n}{2}\right) + \sqrt{n}$$

On commence par identifier a = 4,

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \cfrac{4}{c}\left(\cfrac{n}{2}\right) + \sqrt{n}$$
 On commence par identifier $a=4$, $b=2$,

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 4 \ c\left(\frac{n}{2}\right) + \sqrt{n}$$
 On commence par identifier $a=4$, $b=2$, et $f(n)=\sqrt{n}$.

On calcule ensuite $\log_b a = \log_2 4 = 2$ puis $n^{\log_b a} = n^2$.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \frac{4}{c} \left(\frac{n}{2}\right) + \sqrt{n}$$
 On commence par identifier $a = 4$, $b = 2$, et $f(n) = \sqrt{n}$.

On calcule ensuite $\log_b a = \log_2 4 = 2$ puis $n^{\log_b a} = n^2$.

Il faut maintenant trouver le comportement asymptotique de f(n) vis-à-vis de $n^{\log_b a - \varepsilon}$, $n^{\log_b a}$ et $n^{\log_b a + \varepsilon}$ pour savoir dans quel cas du théorème général on se place.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 4 \ c\left(\frac{n}{2}\right) + \sqrt{n}$$
 On commence par identifier $a=4$, $b=2$, et $f(n)=\sqrt{n}$.

On calcule ensuite $\log_b a = \log_2 4 = 2$ puis $n^{\log_b a} = n^2$.

lci il paraît évident que $f(n)=\sqrt{n}$ ne majore pas $n^{2+\varepsilon}$, on a donc

 $\sqrt{n} \not\in \Omega(n^{2+\varepsilon})$. On n'est donc pas dans le cas 3 du théorème général.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 4 \ c\left(\frac{n}{2}\right) + \sqrt{n}$$
 On commence par identifier $a=4$, $b=2$, et $f(n)=\sqrt{n}$.

On calcule ensuite $\log_b a = \log_2 4 = 2$ puis $n^{\log_b a} = n^2$.

De la même manière, il paraît évident que $f(n) = \sqrt{n}$ n'a pas le même comportement asymptotique que n^2 , on a donc $\sqrt{n} \notin \Theta(n^2)$. On n'est donc pas dans le cas 2 du théorème général.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \frac{4}{c} \left(\frac{n}{2}\right) + \sqrt{n}$$
 On commence par identifier $a = 4$, $b = 2$, et $f(n) = \sqrt{n}$

от сеттеме раз тастето.

On calcule ensuite $\log_b a = \log_2 4 = 2$ puis $n^{\log_b a} = n^2$.

Comme $\sqrt{n} < n^{2-0.1}$ $(\varepsilon = 0.1)$ pour tout n supérieur ou égal à 1, on en déduit que $\sqrt{n} = \mathcal{O}(n^{2-\varepsilon})$.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \frac{4}{c} \left(\frac{n}{2}\right) + \sqrt{n}$$
 On commence par identifier $a = 4$, $b = 2$, et $f(n) = \sqrt{n}$

on commence par facilities

On calcule ensuite $\log_b a = \log_2 4 = 2$ puis $n^{\log_b a} = n^2$.

Comme $\sqrt{n} < n^{2-0.1}$ ($\varepsilon = 0.1$) pour tout n supérieur ou égal à 1, on en déduit que $\sqrt{n} = \mathcal{O}(n^{2-\varepsilon})$.

On est donc dans le $cas\ 1$ du théorème général, on conclut que :

$$c(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$$

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{3}\right) + n^2$$

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{3}\right) + n^2$$

On commence par identifier

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{3}\right) + n^2$$

On commence par identifier a = 8,

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{3}\right) + n^{2}$$
On commence par identifier $a = 8$, $b = 3$,

$$[b] = 3$$

Université Lille 1, ASD, Licence Informatique S4 — Complexité et récursivité

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8c\left(\frac{n}{3}\right) + n^{2}$$
 On commence par identifier $a = 8$, $b = 3$, et $f(n) = n^{2}$.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \frac{8}{3}c\left(\frac{n}{3}\right) + \frac{n^2}{3}$$
On commence par identifier $a = 8$, $b = 3$, et $f(n) = n^2$

On calcule ensuite $\log_b a = \log_3 8 \le 2$ (inutile d'avoir la valeur exacte qui

est 1.89) puis $n^{\log_b a} = n^{1.xxx}$

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{3}\right) + n^2$$
On commence par identifier $a = 8$, $b = 3$, et $f(n) = n^2$

On calcule ensuite $\log_b a = \log_3 8 \le 2$ (inutile d'avoir la valeur exacte qui est 1.89) puis $n^{\log_b a} = n^{1.xxx}$

Il faut maintenant trouver le comportement asymptotique de f(n)vis-à-vis de $n^{\log_b a - \varepsilon}$, $n^{\log_b a}$ et $n^{\log_b a + \varepsilon}$ pour savoir dans quel cas du théorème général on se place.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \underbrace{8}_{c} c \left(\frac{n}{3} \right) + \underbrace{n^{2}}_{d}$$
 On commence par identifier $a = 8$, $b = 3$, et $f(n) = n^{2}$

On calcule ensuite $\log_b a = \log_3 8 \le 2$ (inutile d'avoir la valeur exacte qui est 1.89) puis $n^{\log_b a} = n^{1.xxx}$

Ici il paraît évident que $f(n) = n^2$ majore $n^{1.xxx+\varepsilon}$ $(n^{1.89+0.01} < n^2)$,

on a donc $n^2 \in \Omega(n^{1.xxx+\varepsilon})$. On est donc dans le **cas 3** du théorème général.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \underbrace{8}_{c} c \left(\frac{n}{3} \right) + \underbrace{n^{2}}_{d}$$
 On commence par identifier $a = 8$, $b = 3$, et $f(n) = n^{2}$

On calcule ensuite $\log_b a = \log_3 8 \le 2$ (inutile d'avoir la valeur exacte qui est 1.89) puis $n^{\log_b a} = n^{1.xxx}$.

Dans le cas 3 il faut vérifier en plus la condition

$$a \times f(n/b) \le k \times f(n)$$
 pour une certaine constante $k < 1$.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \underbrace{8}_{0} c\left(\frac{n}{3}\right) + \frac{n^{2}}{3}$$
 On commence par identifier $a = 8$, $b = 3$, et $f(n) = n^{2}$

On calcule ensuite $\log_b a = \log_3 8 \le 2$ (inutile d'avoir la valeur exacte qui est 1.89) puis $n^{\log_b a} = n^{1.xxx}$

$$\mathbf{a} \times \mathbf{f} \left(\frac{n}{b} \right) = 8 \left(\frac{n}{3} \right)^2 = \frac{8}{9} n^2$$

Existe-t-il k < 1 tel que cette quantité est inférieure ou égale à $k n^2$? Oui il suffit de prendre $\frac{8}{9} \le k < 1$, donc par exemple $\frac{8}{9}$ convient.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = \frac{8}{5}c\left(\frac{n}{3}\right) + \frac{n^2}{3}$$

On commence par identifier a = 8, b = 3, et $f(n) = n^2$

On calcule ensuite $\log_b a = \log_3 8 \le 2$ (inutile d'avoir la valeur exacte qui est 1.89) puis $n^{\log_b a} = n^{1.xxx}$.

$$a \times f \left(\frac{n}{b} \right) = 8 \left(\frac{n}{3} \right)^2 = \frac{8}{9} n^2$$

Existe-t-il k<1 tel que cette quantité est inférieure ou égale à k n^2 ? Oui il suffit de prendre $\frac{8}{9} \le k < 1$, donc par exemple $\frac{8}{9}$ convient. On est dans le cas 3 du théorème général, on conclut donc que

$$c(n) = \Theta(f(n)) = \Theta(n^2)$$

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{2}\right) + 4n^3$$

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{2}\right) + 4n^3$$

On commence par identifier

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{2}\right) + 4n^3$$

On commence par identifier a = 8,

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{2}\right) + 4n^3$$
 On commence par identifier $a = 8$, $b = 2$,

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{2}\right) + 4n^3$$
 On commence par identifier $a = 8$, $b = 2$, et $f(n) = 4n^3$.

On calcule ensuite $\log_b a = \log_2 8 = 3$ puis $n^{\log_b a} = n^3$.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{2}\right) + 4n^3$$
 On commence par identifier $a = 8$, $b = 2$, et $f(n) = 4n^3$.

On calcule ensuite $\log_b a = \log_2 8 = 3$ puis $n^{\log_b a} = n^3$.

Il faut maintenant trouver le comportement asymptotique de f(n) vis-à-vis de $n^{\log_b a - \varepsilon}$, $n^{\log_b a}$ et $n^{\log_b a + \varepsilon}$ pour savoir dans quel cas du théorème général on se place.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8 c \left(\frac{n}{2}\right) + 4n^3$$
 On commence par identifier $a = 8$, $b = 2$, et $f(n) = 4n^3$.

On calcule ensuite $\log_b a = \log_2 8 = 3$ puis $n^{\log_b a} = n^3$.

lci il paraît évident que $f(n) = 4n^3$ a le même comportement que n^3 (il existe les constantes 3 et 5 telles que $3n^3 < 4n^3 < 5n^3$ pour tout n), on a donc $4n^3 = \Theta(n^3)$. On est donc dans le **cas 2** du théorème général.

Supposons avoir un algorithme dont la complexité est donnée par l'équation de récurrence suivante :

$$c(n) = 8c\left(\frac{n}{2}\right) + 4n^3$$
 On commence par identifier $a = 8$, $b = 2$, et $f(n) = 4n^3$.

On calcule ensuite $\log_b a = \log_2 8 = 3$ puis $n^{\log_b a} = n^3$.

lci il paraît évident que $f(n)=4n^3$ a le même comportement que n^3 (il existe les constantes 3 et 5 telles que $3n^3<4n^3<5n^3$ pour tout n), on a donc $4n^3=\Theta(n^3)$. On est donc dans le **cas 2** du théorème général.

On conclut donc que:

$$c(n) = \Theta(n^{\log_b a} \log n) = \Theta(n^3 \log n)$$