11 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2075 Ashwin

Exam.	Back Back		
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT, BAME, BIE, B. Agri, B. Arch.	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Applied Mechanics (CE401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Define rigid body. Explain about the principles of Mechanics?

[1+2]

2. It is very important to draw free body diagram for the analysis of problem in statics, Explain. Describe about the equations of static equilibrium for 2-D and 3-D analysis of a particle and a rigid body.

[3+3]

3. State principle of transmissibility with its limitations. Explain, couple is a free vector.

[2+2]

4. Determine the magnitude; direction and position with respect to center 'O' of the resultant of the forces acting on the resultant plate ABCD as shown in the figure below.

[8]

5. Define centroid, centre of gravity and axis of symmetry. Find I_{xx} and I_{yy} for the given triangle about it's centroidal axes.

[3+9]

6. A ladder shown in figure is 4m long and is supported by a horizontal floor and a vertical wall. The co-efficient of friction at the wall is 0.3 and at the floor is 0.45. The weight of the ladder is 300N. The ladder supports a vertical load of 1000N at C. Determine the reactions at A, B and C and compute the least value of α at which ladder may be placed without slipping to right.

[5]

7. Draw AFD, SFD and BMD for the following structure. Also show salient features, if any. [13]

8. Determine the member forces in the members 26,23,27,67,37. How can we check the determinancy and stability of the plane truss? Explain with examples. [5+4]

9. Define average and instantaneous velocity. Two cars A and E travel along the same straight route. At any time t their distance x_a and x_e from the starting point are given by: [2+8]

$$x_a = 2.5t + 1.2t^2$$

 $x_e = 3t^2 - 0.25t^3$

Where t in seconds and x_a and x_e are in meters.

- a) Which car is ahead just after they leave the straight point?
- b) At what time are the cars at the same point?
- c) At what time is the distance between A and E neither increasing nor decreasing?
- d) At what time do A and E have the same acceleration?
- 10. The resultant of the force applied on a 3kg particle is given by the relation; $\vec{F} = \left(12t\,\hat{i} 24t^2\,\hat{j} 40t^3\,\hat{k}\,\right) N.$ The particle is initially at origin at rest. Determine the

y-component of acceleration, velocity and position at the instant of 3 sec. What do you mean by dynamic equilibrium for a particle?