crlmm to downstream data analysis

VJ Carey, B Carvalho March, 2012

1 Running CRLMM on a nontrivial set of CEL files

To use the crlmm algorithm, the user must load the crlmm package, as described below:

> library(crlmm)

We work with the 90 CEU samples hybridized to Affy 6.0 chips. When CEL files are available, they must be identified and passed to crlmm, as shown below. In this example, we assume that the results are stored in a variable called crlmmResult.

```
> celFiles <- list.celfiles()
> crlmmResult <- crlmm(celFiles)</pre>
```

Alternatively, the data aforementioned are available through the hapmapsnp6 package (required minimum version 1.3.6) and can be loaded by using:

```
> suppressPackageStartupMessages(library(hapmapsnp6))
```

> data(crlmmResult)

This is currently a *SnpSet* object.

> class(crlmmResult)

```
[1] "SnpSet"
attr(,"package")
[1] "Biobase"
```

2 Adding information to a SnpSet

We will use the GGdata package to obtain extra information on the samples. This will be later used when building an eSet extension to store the genotyping results.

- > suppressPackageStartupMessages(library(GGdata))
- > hmceuB36 <- getSS('GGdata', as.character(1:22))</pre>
- > pd <- phenoData(hmceuB36)</pre>
- > ggn <- sampleNames(pd)
- > preSN <- sampleNames(crlmmResult)</pre>
- > simpSN <- gsub("_.*", "", preSN)</pre>
- > if (!all.equal(simpSN, ggn)) stop("align GGdata phenoData with crlmmResult read")

The additional information obtained from GGdata can be easily combined to what is already available on ${\tt crlmmResult}$.

- > sampleNames(crlmmResult) <- simpSN</pre>
- > phenoData(crlmmResult) <- combine(pd, phenoData(crlmmResult))</pre>
- > dim(calls(crlmmResult))
- [1] 906600 90
- > dim(confs(crlmmResult, FALSE))
- [1] 906600 90
- > calls(crlmmResult)[1:10, 1:2]

NA06985 NA06991

SNP_A-2131660	2	2
SNP_A-1967418	3	3
SNP_A-1969580	3	3
SNP_A-4263484	2	1
SNP_A-1978185	1	1
SNP_A-4264431	1	1
SNP_A-1980898	3	3
SNP_A-1983139	1	1
SNP_A-4265735	2	2
SNP_A-1995832	2	3

> confs(crlmmResult, FALSE)[1:10, 1:2]

NA06985 NA06991

SNP_A-2131660	10561	11574
SNP_A-1967418	12517	14866
SNP_A-1969580	7632	7606
SNP_A-4263484	15621	20059
SNP_A-1978185	14030	18021
SNP_A-4264431	17792	17235
SNP_A-1980898	7640	7642
SNP_A-1983139	14127	8974
SNP_A-4265735	8976	9153
SNP A-1995832	10336	17920

3 Coercing to SnpMatrix as a prelude to a GWAS

From this point on, we will use only the genotype calls. Therefore, to reduce memory requirements, we will recode the *crlmm* genotype calls, so the *snpStats* package can be used, and delete the remaining crlmm results.

SNP's for which all the samples have the same genotype are not informative for association studies. Therefore, we remove such SNP's prior to fitting the models.

- > toRemove <- which(colSums(gtypeCounts == 0) == 2L)
- > gtypeCounts[, toRemove[1:4]]

```
      SNP_A-1978185
      SNP_A-1983139
      SNP_A-1997689
      SNP_A-1997709

      AA
      90
      90
      0
      90

      AB
      0
      0
      0
      0
      0

      BB
      0
      0
      90
      0
      0
```

> theCalls <- theCalls[, -toRemove]

The *snpStats* provides tools to simplify the analysis of GWAS. The snippet below shows how to load the package and convert the genotype calls to a format that *snpStats* is able to handle.

```
> suppressPackageStartupMessages(library(snpStats))
> crlmmSM <- new("SnpMatrix", theCalls)
coercing object of mode numeric to SnpMatrix</pre>
```

> crlmmSM

```
A SnpMatrix with 90 rows and 774475 columns Row names: NAO6985 ... NA12892
```

Col names: SNP_A-2131660 ... SNP_A-8573964

4 Conducting a GWAS

We want to find SNP for which genotype is predictive of expression of CPNE1. We will use expression data available from GGdata, using a naive analysis.

```
> suppressPackageStartupMessages(library(illuminaHumanv1.db))
> rmm <- revmap(illuminaHumanv1SYMBOL)
> mypr <- get("CPNE1", rmm)
> ex <- as.numeric(exprs(hmceuB36)[mypr[1],])
> subjdata <- pData(hmceuB36)
> subjdata[["ex"]] <- ex
> head(subjdata)
```

	famid	persid	${\tt mothid}$	${\tt fathid}$	sampid	${\tt isFounder}$	male	ex
NA06985	1341	14	0	0	NA06985	TRUE	FALSE	9.654887
NA06991	1341	2	14	13	NA06991	FALSE	FALSE	9.551434
NA06993	1341	13	0	0	NA06993	TRUE	TRUE	10.083945
NA06994	1340	9	0	0	NA06994	TRUE	TRUE	9.930053
NA07000	1340	10	0	0	NA07000	TRUE	FALSE	9.645724
NA07019	1340	2	12	11	NA07019	FALSE	FALSE	9.788195

With the expression data now available in **subjdata**, we can use the tools from *SnpMatrix* to fit models that will be used to evaluate the association between the genotypes of each available SNP and the expression levels of CPNE1.

p.value

```
> gwas <- snp.rhs.tests(ex~male, data=subjdata, snp.data=crlmmSM, family="gaussian")
> ok <- which(p.value(gwas) < 1e-10)
> gwas[ok,]
```

```
SNP_A-2047882    41.82453    1    9.984311e-11
SNP_A-2216659    41.82453    1    9.984311e-11
SNP_A-220183    46.38761    1    9.702689e-12
SNP_A-2231469    46.38761    1    9.702689e-12
SNP_A-2275065    46.38761    1    9.702689e-12
SNP_A-1890801    42.67888    1    6.450512e-11

> snp <- names(gwas[ok,])[1]
> gtypes <- theCalls[,snp]+1L
> boxplot(ex~gtypes, xlab=paste("Genotype Call for", snp),
```

Chi.squared Df

- + ylab="CPNE1 Expression", xaxt="n", range=0)
- > points(ex~jitter(gtypes), col=gtypes, pch=19)
 > axis(1, at=1:3, labels=c("AA", "AB", "BB"))

Genotype Can for SINF_A=2047862

5 Session Info

This vignette was created using the following packages:

> sessionInfo()

R version 2.15.0 beta (2012-03-20 r58793) Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:

[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/c/en_GB.UTF-8

attached base packages:

- [1] splines stats graphics grDevices datasets utils methods
- [8] base

other attached packages:

[1] GGdata_1.0.18 illuminaHumanv1.db_1.12.2

[3] org.Hs.eg.db_2.7.1 RSQLite_0.11.1

[5] DBI_0.2-5 AnnotationDbi_1.17.27

[7] GGBase_3.16.5 snpStats_1.5.5 [9] Matrix_1.0-6 lattice_0.20-6

[11] survival_2.36-12 Biobase_2.15.4 [13] BiocGenerics_0.1.14 hapmapsnp6_1.3.6

[15] crlmm_1.13.16 oligoClasses_1.17.36 [17] RColorBrewer_1.0-5 BiocInstaller_1.1.28

loaded via a namespace (and not attached):

[1]	affyio_1.23.2	annotate_1.33.8	Biostrings_2.23.6
[4]	bit_1.1-9	codetools_0.2-8	ellipse_0.3-7
[7]	ff_2.2-5	foreach_1.3.5	<pre>genefilter_1.37.1</pre>
[10]	grid_2.15.0	IRanges_1.13.32	iterators_1.0.5
[13]	mvtnorm_0.9-9992	preprocessCore_1.17.7	stats4_2.15.0
[16]	tools_2.15.0	xtable_1.7-0	zlibbioc_1.1.1