Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения» Лабораторная работа №4

> Выполнил: студент группы ИУ5-64Б Коваленко Г. В.

> > Проверил: Гапанюк Ю. Е.

Линейные модели, SVM и деревья решений

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели:
- одну из линейных моделей (линейную или полиномиальную регрессию при решении задачи регрессии, логистическую регрессию при решении задачи классификации);
- SVM;
- дерево решений.
- 1. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.
- 2. Постройте график, показывающий важность признаков в дереве решений.
- 3. Визуализируйте дерево решений или выведите правила дерева решений в текстовом виле.

Ссылка на датасет:

https://www.kaggle.com/datasets/akshaydattatraykhare/diabetes-dataset

Описание датасета

Информация об атрибутах набора данных -

- Беременности: Для выражения количества беременностей
- Глюкоза: Для выражения уровня глюкозы в крови
- Кровяное давление: Для выражения измерения кровяного давления
- Толщина кожи: Для выражения толщины кожи
- Инсулин: Для выражения уровня инсулина в крови
- ИМТ: Для выражения индекса массы тела
- Функция "Родословная диабета": Для выражения процента диабета
- Возраст: Для выражения возраста
- Результат: Для выражения конечного результата 1 означает "Да", а 0 "Нет"

```
Archive: archive(4).zip
  inflating: diabetes.csv
from IPython.display import Image
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.datasets import load diabetes
from sklearn.metrics import mean absolute error, r2 score
from sklearn.linear_model import Lasso
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
import seaborn as sns
import matplotlib.pyplot as plt
from operator import itemgetter
%matplotlib inline
df = pd.read_csv("diabetes.csv")
df.head()
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

df.describe()

<Axes: >

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

data = pd.DataFrame(df, columns=df.columns)

```
fig, ax = plt.subplots(figsize=(15,7))
sns.heatmap(data.corr(method='pearson'), ax=ax, annot=True, fmt='.2f')
```



```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Glucose', y='Outcome', data=dia_df)
<Axes: xlabel='Glucose', ylabel='Outcome'>
```



```
X = data.drop('Outcome', axis=1)
y = data['Outcome']
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

Обучение моделей

Логистическая регрессия

```
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree
```

```
log reg = LogisticRegression(max iter=1000)
log_reg.fit(X_train, y_train)
LogisticRegression(max_iter=1000)
SVM
svm = SVC(probability=True)
svm.fit(X_train, y_train)
SVC(probability=True)
Дерево решений
tree = DecisionTreeClassifier(random_state=42)
tree.fit(X_train, y_train)
DecisionTreeClassifier(random state=42)
Оценка качества моделей
y_pred_log_reg = log_reg.predict(X_test)
y_pred_svm = svm.predict(X_test)
y pred tree = tree.predict(X test)
accuracy_log_reg = accuracy_score(y_test, y_pred_log_reg)
precision_log_reg = precision_score(y_test, y_pred_log_reg)
recall_log_reg = recall_score(y_test, y_pred_log_reg)
accuracy_svm = accuracy_score(y_test, y_pred_svm)
precision_svm = precision_score(y_test, y_pred_svm)
recall_svm = recall_score(y_test, y_pred_svm)
accuracy_tree = accuracy_score(y_test, y_pred_tree)
precision_tree = precision_score(y_test, y_pred_tree)
recall tree = recall score(y test, y pred tree)
print(f'Логистическая регрессия - Accuracy: {accuracy_log_reg}, Precision:
{precision_log_reg}, Recall: {recall_log_reg}')
print(f'SVM - Accuracy: {accuracy_svm}, Precision: {precision_svm}, Recall:
{recall svm}')
print(f'Дерево решений - Accuracy: {accuracy_tree}, Precision:
{precision_tree}, Recall: {recall_tree}')
Логистическая регрессия - Accuracy: 0.7467532467, Precision:
0.6379310344827587, Recall: 0.6727272727272727
SVM - Accuracy: 0.7662337662337663, Precision: 0.7209302325581395, Recall:
0.5636363636363636
Дерево решений - Accuracy: 0.7467532467532467, Precision: 0.625, Recall:
0.7272727272727273
#Функция построения графика для вывода признаков, наиболее важных для
определения целевого признака
def draw_feature_importances(tree_model, X_dataset, figsize=(18,5)):
```

```
11 11 11
    Вывод важности признаков в виде графика
    # Сортировка значений важности признаков по убыванию
    list_to_sort = list(zip(X_dataset.columns.values,
tree_model.feature_importances_))
    sorted_list = sorted(list_to_sort, key=itemgetter(1), reverse = True)
    # Названия признаков
    labels = [x for x,_ in sorted_list]
    # Важности признаков
    data = [x for _,x in sorted_list]
    # Вывод графика
    fig, ax = plt.subplots(figsize=figsize)
    ind = np.arange(len(labels))
    plt.bar(ind, data)
    plt.xticks(ind, labels, rotation='vertical')
    # Вывод значений
    for a,b in zip(ind, data):
        plt.text(a-0.05, b+0.01, str(round(b,3)))
    plt.show()
    return labels, data
diagram, _ = draw_feature_importances(tree, data)
0.30
0.25
0.20
                 0.171
                         0.148
0.15
0.10
                                          0.083
                                                          0.061
                                                                   0.057
0.00
                                 Age
importances = tree.feature_importances_
features = X.columns
indices = np.argsort(importances)
val_features = features[:5]
plt.figure(figsize=(10, 6))
plt.title('Важность признаков')
```

plt.barh(range(len(indices)), importances[indices], align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])

plt.xlabel('Важность признака')

plt.show()

Визуализация дерева решений

```
plt.figure(figsize=(20,20))
plot_tree(tree, feature_names=features, class_names=['No Diabetes',
'Diabetes'], filled=True)
plt.show()
```

