(9) BUNDESREPUBLIK DEUTSCHLAND

C07 D 263/24 Shr 09/857, 465 Grup 1626 2415

o Offenlegungsschrift

25 38 424

② Aktenzeichen:

P 25 38 424.1-44

Ø Anmeldetag:

29. 8.75

(3) Offenlegungstag:

3. 3.77

③ Unionspriorität:

(2) (3) (3)

Bezeichnung:

Neue Oxazolidinone, Verfahren zu deren Herstellung und diese

Verbindungen enthaltende Arzneimittel

(1) Anmelder:

64)

Nordmark-Werke GmbH, 2000 Hamburg

(7) Erfinder:

Köllensperger, Friedrich-Gero, Dr., Linz (Österreich);

Hartleben, York, Dr., 2081 Heist; Kretzschmar, Rolf, Dr., 2082 Moorrege; Neteler, Bernhard, Dr., 2900 Oldenburg

Prüfungsantrag gem. § 28b PatG ist gestellt

Nordmark-Werke GmbH Hamburg, Werk Uetersen/Holstein, 2082 Uetersen

Neue Oxazolidinone, Verfahren zu deren Herstellung und diese Verbindungen enthaltende Arzneimittel

Diese Erfindung betrifft neue Oxazolidinone der allgemeinen Formel I

709809/1117

worin X Hydroxy, Chlor oder Brom, R1 Wasserstoff, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkylreste mit 1 - 4 C-Atomen oder Benzyl, R2 Wasserstoff, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkylreste mit 1 - 4 C-Atomen, der unsubstituierte oder der einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituierte Phenylrest oder der unsubstituierte oder einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituierte Benzylrest, R3 Wasserstoff, ein geradkettiger oder verzweigter, gesättigter oder ungesättigter Alkylrest mit 1 - 4 C-Atomen, der unsubstituierte oder einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituierte Phenylrest oder der unsubstituierte oder einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituierte Benzylrest, R_4 Wasserstoff, ein geradkettiger oder verzweigter, gesättigter oder ungesättigter Alkylrest mit 1 - 4 C-Atomen oder der Phenylrest, R₅ Wasserstoff, ein Alkylrest mit 1 - 4 C-Atomen oder der Phenylrest und R6 Wasserstoff, ein Alkylrest mit 1 - 4 C-Atomen oder der Phenylrest ist oder R_5 und R_6 zusammen ein Alkylenrest mit 4 - 6 Kohlenstoffatomen in der Kette sind.

Bevorzugt sind hierbei Verbindungen der Formel I, worin X Hydroxy, Chlor oder Brom, R_1 Wasserstoff, Niederalkyl mit 1 - 4 C-Atomen, Allyl oder Benzyl, R_2 Wasserstoff, Niederalkyl mit 1 - 4 C-Atomen, Allyl, unsubstituiertes oder mit Chlor monosubstituiertes Phenyl, R_3 Wasserstoff, Niederalkyl mit 1 - 4 C-Atomen, Allyl, unsubstituiertes oder mit einem Chlor monosubstituiertes Phenyl, R_4 Wasserstoff, R_5 Wasserstoff, Niederalkyl mit 1 - 4 C-Atomen oder Phenyl und R_6 Wasserstoff ist.

Ganz besonders günstige Eigenschaften haben hierbei Verbindungen der Formel I, worin X Hydroxy, Chlor oder Brom, R_1 Wasserstoff oder Methyl, R_2 Wasserstoff, Methyl, Phenyl, p-Chlorphenyl oder Allyl, R_3 Wasserstoff, Methyl oder Allyl, R_4 Wasserstoff, R_5 Wasserstoff, Methyl oder Phenyl und R_6 Wasserstoff ist. Sie sind daher besonders bevorzugt.

Die Erfindung betrifft ferner Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I, welches dadurch gekennzeichnet ist, daß man in an sich bekannter Weise eine Verbindung der allgemeinen Formel II

709809/1117

in der Y einen niederen, geradkettigen Alkoxyrest mit bis zu zwei C-Atomen, Wasserstoff, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkylreste mit 1 - 4 C-Atomen, den unsubstituierten oder den einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituiertem Phenylrest oder den unsubstituierten oder einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituierten Benzylrest bedeutet und R_1 , R_4 , R_5 und R_6 die oben angegebene Bedeutung haben, mit einem Metallhydrid, z.B. Lithiumaluminiumhydrid oder Natriumborhydrid, hydriert, oder mit einer metallorganischen Verbindung entsprechend einer Grignardreaktion umsetzt, die erhaltene Verbindung der allgemeinen Formel I, worin X die Hydroxylgruppe ist und R_1 , R_2 , R_3 , R_4 , R_5 und R_6 die oben angegebene Bedeutung haben, falls erwünscht, mit einem Halogenierungsmittel, z.B. mit Thionylchlorid umsetzt und X so in ein Halogenatom umwandelt.

Bei Verwendung von Metallhydriden entstehen solche Verbindungen der Formel I, worin R_2 Wasserstoff und R_1 , R_3 , R_4 , R_5 und R_6 die angegebene Bedeutung haben. Bei Anwendung der Grignardreaktion entstehen Verbindungender Formel I, worin R_2 und R_3 die angegebene Bedeutung ausgenommen Wasserstoff haben.

Die Verbindungen der allgemeinen Formel II sind zum großen Teil literaturbekannt (vgl. z.B. G.F. Hennion u. F.X.O'Shea J.org.Chem. 23, (1958) 662 - 664; M.E. Dyen u. D. Swern Chem. Rev. 67, (1967) 197 - 246).

Die Oxazolidinone der allgemeinen Formel I weisen wertvolle pharmakodynamische Eigenschaften auf. Sie besitzen hervorragende antikonvulsive, zentralmuskelrelaxierende und sedierende-schlafbereitende Eigenschaften und sind daher zur Behandlung von Menschen geeignet, die z.B. an Epilepsie leiden.

So bewirken die erfindungsgemäßen Verbindungen bei oraler und intraperitonealer Verabreichung an laborüblichen Versuchstieren, wie Albino-Mäusen (Stamm NARI, Züchter Invanovas, Kissleg) und Albino-Ratten (Stamm Sprague Dawley, Züchter Invanovas, Kissleg) in geeigneten Dosen sowohl eine sichere Schutzwirkung vor dem tonischen Streckkrampf im Maximalen Elektroschock-Test (MES), als auch eine sichere Schutzwirkung vor den klonischen Konvulsionen, ausgelöst durch subkutane Injektion von 70 mg/kg Pentetrazol (Minimaler Pentetrazolschock-Test = Min PS). Die Toxizität der Verbindungen ist sehr gering. Bei geeigneter Substitution sind die Verbindungen der allgemeinen Formel I, insbesondere die der Beispiele 4, 5, 37, 54 und 67, in den genannten antikonvulsiven Testmodellen einigen klassischen Antiepileptica, wie Trimethadion und Dipropylacetat, überlegen.

Die Verbindungen unterscheiden sich darüber hinaus auch von der Wirkung der klassischen Antiepileptica vom Hydantointyp, wie beispielsweise von Diphenylhydantoin, indem sie klonische Krämpfe eindeutig hemmen, während Hydantoine diese unbeeinflußt lassen.

Neben der antikonvulsiven Wirkung bewirken die Verbindungen eine zentrale Muskelrelaxation, die sich in Paralyse und Seitenlage der Versuchstiere ausdrückt. Ferner verstärken sie die Wirkung von Narkotica, wie beispielsweise die Schlafdauer nach intravenöser Verabreichung von 70 mg/kg Hexobarbital-Na. Bei geeigneter Substitution sind Verbindungen der allgemeinen Formel I, insbesondere die der Beispiele 38, 43, 54 und 64, deutlich stärker schlafzeitverlängernd und muskelrelaxierend wirksam als bekannte Hypnotica und Tranquilizer, wie beispielsweise Chlorzoxazon und Meprobamat.

In der nachfolgenden Tabelle 1 wird die Wirkung einiger erfindungsgemäßer Substanzen im Tierexperiment mit der Wirkung bekannter Antiepileptica und Tranquilizer verglichen.

Rolle 1a Rolle 1a Rolle 1a Rolle 1a Rolle 1a Formel I	R2 -H -H -CH ₂ CII=CH ₂ -CH ₃ -CH ₃ -CH ₃
. •	Beispiel Nr. 54 37 39 39 39

709809/1117

1]									-		25	38424
R.	H-	H-	Ħ,	H.	H ₁	H-	н-	#-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H.	Ħ,	H-	
R5	-C _K H _E	-C ₆ 115	-c _H 2	, H	Ξ.	н	н,	Н	-c ₆ H ₅	-CH ₃	\ H-	н-	•
. A	H-	Н	H	Н-	- II-	Ħ	H-	Ħ	H.	н	Ħ.	H-	•
R ₅	-C ₂ H ₅	n-C ₂ II ₇ -	-CH2CII=CH2	n-C ₂ H ₇ -	-c ⁴ / ₁ / ₁ b-c ₁	-c ₆ H ₅ .	-C _C H _E	C _H ₂ -	Ħ	-c _H ₅	-c ^{-d} - ^t / _H ⁹	-c ⁻⁴ -h ⁻ 5-	
R 2	· -C ₂ H ₅	n-C ₂ H ₇ -	-cH2CH=CH2	n-C ₃ H ₇	H	-c ₆ H ₄ -m-c ₁	-c ₂ H ₅	-CH2-CII=CH2	-cH ₃	-c ₂ H ₅	-cH ₂	-C2H5	
r.	н-	н-	H	H-1	щ	r I	H	H	H.	Ħ I	н-	Ħ I	
×	ЮН	FO.	НО	ЮН	HO	НО	Oil	НО	НО	.HO	НО	Н0	
Heispiel Nr.	04	41	43	45	7	647	54	58		18	59	. 09	•

·	<u> </u>				 1
R _S	н-	Ħ	-cH ₃	·	H-
۳. تر	Н-	Н-	-ceH5	-C6H5	-c ₆ 11 ₅
ን የ	#	H-	H	Ħ	H.
R 2	-c ₆ H ₅	c _H ₅	F	r i	Н-
^К 2	-c ₂ H ₅	n-C ₂ H ₇ -	Ŧ	H	Н-
a:	-CH ₃	Ħ	H	H.	H
×	НО	НО	CJ	เว	Br
Beispiel Nr.	7 9	65	29	72	73

Tabelle 15 $R_{6} - \frac{R_{5}}{c} - \frac{R_{4}}{c} \times \frac{X}{R_{2}}$ $R_{6} - \frac{1}{c} - \frac{1}{c} - \frac{1}{c} \times \frac{1}{R_{2}}$
--

Formel I

	1				
ED ₂₀₀ ED ₅₀ looo looo 650 ll5 464 l30 - **	Antikonvulsive Wirkung	ırkung		Paralyse 4)	akute Toxizitat
1000 (Faus) 1000 1000 > 90 1000 > 115 464 > 130 - **	MES 1) Min PS 2) ED50 ED50	S 2)	ED ₂₀₀	ED ₅₀	LD ₅₀
1000 1000 > 90 1000 > 1000 > 115					
90 1000 > 650 1000 > 115 464 > 130 - **	165	*	1000	1000	> 1000
650 1000 > 115 + 464 > 130 - **	150	*	90	1000	> 1000
<pre></pre>	59 130		650	1000	> 1000
130	165 640	0	115	797	> 1000
	145	ٺ	130	* *	1000

													<u>`</u>	
+ :	anute Toxizität 5) LD ₅ o		>.1000	> 1000	1000	> 1000	> 1000	> 1000	> 1000	> 1000	> 1000	> 1000	> 1000	> 1000
	Faralyse 4) ED ₅ o	p.o. (Maus)	1000	* * *	225	1000	* * !	* *	800	1000	* *	* * 1	* *	1000
	Narkose- verlängerung 3) ED ₂₀₀	mg/kg	. 165	. 65	15	210	160	0	50	300	510	450	110	70
ive Wirkung	Min PS 2) EU ₅₀		430	*	*	430	140	*	85	300	150	200	*	*
Antikonvulsive Wirku	MES 1)		75	147	25	120	125	200	115	. 200	75	200	165	175
	Beispiel Nr.		07	41	43	45	7	67	54	58	<u>ν</u>	18	59	9

			_	 					12								2	<u>53</u>	8 4	24	4
akute poxizität	222421401	LU50		000	> 1000	> 1000		0001	> 1000		320		> 1000	000[/))) 1	360		1000	650		
Daralvse 4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EL50	(Maus)	650	* *	((000	**	**		150	\ \ \	* * 1		. 1000	keine para-	lyt.Wirkung	800	٠ د د		
No Se	verlängerung 3)	ED200	.0.б ду/дш	110.	и и	122	210	115		420	1	20	9)	355		50) ;	* 1	
adirda M	Chinal Law By I	Min PS 2) ED-	250	,k I		175	55	07/4	0 1 0	430		30		. 240	450		unwirksam		150	240	
	Antikonvuisive	MES 1)	20		07.0	170	93	, !	75	65	•	11		450	185		10		115	011	
		Beispiel			49	65	. 23	Ò	72	K C	2	Phenocar-	b1tal-Na	Trime thadion	Dipropyl-	acetat	Uiphenyl	hydantoin	Meprobamat	Chlorzoxazon	10110

Erläuterungen zu Tabelle lb:

- 60 min. nach p.o. Applikation (Reizdaten: Ohrelektroden, 19 mA, 4,54 msec.) EU_{5o} = Schutz vor tonischem Streckkrampf bei 50 % der Tiere 1) Wirkunf gepen den Maximalen Elektroschock der Maus
 - 70 mg/kg Pentetrazol s.c., 60 min nach p.o. Gabe der Substanzen El) = Schutz vor klonischen Krämpfen bei 50 % der Tiere 2) Wirkung gegen klonische Pentetrazolkrümpfe der Maus
- 3) Hexobarbital-Na, i.v. Injektion von 70 mg/kg, 60 min nach p.o. Gabe der Substanzen ED₂₀₀ = Verlängerung der Narkosedauer auf 200 %
 - 4) Verlust der Stell- und Haltereflexe bzw. Seitenlaarepsilone bei 50 % der Tiere $(arepsilon arDeta_{50})$
- 5) Akute Toxizität bei 7-tägiger Nachbeobachtung, höchste Prüfdosis = looo mg/kg
- * Bis zur Dosis von 464 mg/kg keine Wirkung ** Bis zur Dosis von looo mg/kg keine Wirkung.

Gegenstand der vorliegenden Erfindung sind demnach auch pharmazeutische Zubereitungen mit antikonvulsiver Wirkung zum einen
und zum anderen mit sedierender, schlafbereitender und tranquilisierender Wirkung, die ein oder mehrere Oxazolidinone
der allgemeinen Formel I als Wirkstoff enthalten.

Derartige pharmazeutische Mittel bzw. Zubereitungen können nach dem Fachmann an sich bekannten Methoden entsprechend der gewünschten Applikationsart hergestellt werden. Sie enthalten in der Regel mindestens eine aktive Verbindung gemäß der Erfindung in Mischung mit zur systemischen Verwendung geeigneten, nicht toxischen, inerten, an sich in solchen Präparaten üblichen, festen oder flüssigen Trägern und/oder Excipientien.

Zubereitungen für eine parenterale Verabreichung, beispielsweise zur Behandlung von Schlafstörungen oder von Krampfanfällen, können in an sich bekannter Weise formuliert werden,
indem man eine wirksame Menge einer Verbindung der Formel I
in einen üblichen inerten Träger eine Suspension oder ein
Lösungsmittelmedium zusammen mit anderen Zusätzen, wie Dispergiermitteln, Netzmitteln, Puffern und sonstigen Bestandteilen, einträgt.

Die für eine parenterale oder orale Verabreichung geeigneten Zubereitungen können im allgemeinen 1 bis 90 Gewichtsprozent, zweckmäßigerweise 3 - 40 Gewichtsprozent, Wirkstoff in Verbindung mit einem inerten Träger enthalten.

Zur Behandlung eines erwachsenen oder juvenilen Menschen, z.B. mit einer Epilepsie vom Petit Mal-Typ, beträgt jede Dosis des aktiven Bestandteiles einer Verbindung der allgemeinen Formel I in der Regel etwa 0,1 bis 10 mg/kg pro Tag. Gleiche Dosen gelten für die Behandlung von Schlafstörungen und motorischen Unruhezuständen mit geeigneten Verbindungen der allgemeinen Formel I.

Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung:

Beispiele zur Umsetzung mit Metallhydriden:

1) 4-Hydroxymethyl-oxazolidinon-(2)

Zu 31,7 g (0,199 Mol) 4-Carboäthoxy-oxazolidinon-(2) in 300 ml Äthanol gelöst werden portionsweise 7,54 g (0,199 Mol) Natriumborhydrid innerhalb 1 Stunde hinzugegeben.

Während der Zugabe steigt die Temperatur von 15° C auf 30° C an. Danach wird die Raktionslösung noch 1 Stunde bei Raum-temperatur gerührt.

Anschließend wird die Reaktionslösung mit 30 g Ammoniumchlorid in 400 ml Wasser gelöst hydrolysiert. Der pH-Wert
liegt dann bei 5. Diese Lösung wird zur Trockne eingeengt
und mehrfach mit Tetrahydrofuran ausgekocht. Die Tetrahydrofuranphasen werden vereinigt und am Rotationsverdampfer
eingeengt. Das hellgelbe Öl wird in Essigester gelöst. Die
gebildeten Kristalle werden abgesaugt.

Ausbeute: 23,4 g = 97 % d.Th. Fp.: $77 - 81^{\circ}$ C.

2) 4-Hydroxymethyl-4-methyl-5,5-pentamethylen-oxazolidinon-(2)

Zu 59,5 g (0,262 Mol) 4-Carbomethoxy-4-methyl-5,5-pentamethylen-oxazolidinon-(2) in 600 ml äthanol gelöst werden innerhalb 1 Stunde portionsweise 10,92 g (0,2882 Mol)

Natriumborhydrid hinzugegeben. Anschließend wird die Reaktionslösung noch 12 Stunden bei Raumtemperatur gerührt.

Dann wird sie vorsichtig auf eine gesättigte NH₄Cl-Lösung geschüttet, bis der pH-Wert bei 5 liegt. Diese Lösung wird mehrfach mit Chloroform extrahiert. Die vereinigten Chloroformphasen werden über Na₂SO₄ getrocknet, am Rotationsverdampfer eingeengt. Das hellgelbe Öl wird in Äther aufgenommen. Nach kurzer Zeit fallen Kristalle aus.

Ausbeute: 43,0 g = 82,5 % d.Th. Fp.: $113 - 115^{\circ} \text{ C.}$

3) 4-(&-Hydroxy-benzyl)-oxazolidinon-(2)

3 g (15,8 mMol) 4-Benzoyl-oxazolidinon-(2) werden in 100 ml Äthanol gelöst und bei Raumtemperatur portionsweise mit 900 mg (23,8 mMol) Natriumborhydrid versetzt. Anschließend wird noch 2 1/2 Stunden bei Raumtemperatur gerührt. Dann wird die Reaktionslösung mit einer gesättigten Ammoniumchloridlösung hydrolysiert. Die wässrige Phase wird mehrfach mit CHCl₃ extrahiert, die organischen Phasen werden vereinigt, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Öl wird in Methanol aufgenommen. Die Kristalle werden abgesaugt.

Ausbeute: 2,2 g = 75 % d.Th. Fp.: $138 - 140^{\circ}$ C.

4) 4-(&-Hydroxy-p-chlor-benzyl)-oxazolidinon-(2)

1 g (4,4 mMol) 4-(p-Chlorbenzoyl)-oxazolidinon-(2) wird in 50 ml Äthanol gelöst und bei Raumtemperatur portions-weise mit 300 mg (8,0 mMol) Natriumborhydrid versetzt.

Nach 1 Stunde wird die Reaktionslösung mit einer gesättigten NH₄Cl-Lösung zersetzt und mehrfach mit Chloroform extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und eingeengt. Das gelbe Öl wird in Äther/Hexan aufgenommen. Die gebildeten Kristalle werden abgesaugt.

Ausbeute: 0,5 g = 50 % d.Th. Fp.: $126 - 128^{\circ}$ C.

5) 4-(1-(1-Hydroxyäthyl))-5-phenyl-oxazolidinon-(2)

Zu 3,8 g (0,018 Mol) 4-Acetyl-5-phenyl-oxazolidinon-(2) in 50 ml Äthanol gelöst werden portionsweise 7,2 g (0,190 Mol) Natriumborhydrid innerhalb 1 Stunde hinzugegeben. Danach wird die Reaktionslösung noch 1 Stunde bei Raumtemperatur gerührt, mit einer gesättigten Ammoniumchloridlösung zersetzt und mehrfach mit Chloroform extrahiert. Die vereinigten Chloroformphasen werden getrocknet und eingeengt. Das gelbe Öl wird in wenig Methanol aufgenommen. Die gebildeten Kristalle werden abgesaugt.

Ausbeute: 3 g = 78,5 % d.Th. Fp.: $133 - 134^{\circ} C.$

Analog diesen Beispielen werden die folgenden Derivate hergestellt:

					19 	<u>-</u>						25.	384	724
	. O		168 - 170	(Action 1) 162 - 165	(Essigester)	103 - 105 (Methanol/Isopropyläther)	100 - 101 (maineter)	(basiges of)	102 = 107 (Äther/Hexan)	117 - 119 (Äther/Petroläther)	124 - 126 (Teopropyläther/Hexan)	131 - 135	(Methanol/Isopropyraume	
H0 —	(H6	C ₆ H ₅) ;	C ₆ H ₅	C6H5	$c_{KH_{S}}$)	ដ	ш	Ħ		1	
5 R4 R3 CH - CH	1	R S	CH ₂	0	$c_{\rm H_{\rm 2}}$	н	CH-	C	Ħ	¤	H	;	II.	
R6 - C-		R4	n.	cn ₂	Ħ	щ	-	G	Ħ	ш	=	:	щ	
		Rz	,	Ħ	Ħ	Ħ	1	Ħ	CH2		dH ₂	-CH3	() OCH ₂	, 0CH ₃
·		æ	_	H	ņ	•	iii	н		đ	E .	Ħ	缸	-
		Be1-	Nr.	9	ſ		œ	΄ σ	,	10	7	12	13	

709809/1117

Beispiele zur Anwendung von Grignardreaktionen:

14) 4-[1-(1-n-Butyl-1-hydroxy)-n-pentyl]-5-phenyl-oxazolidinon-(2)

11,06 g (0,05 Mol) 4-Carbomethoxy-5-phenyl-oxazolidinon-(2) in 100 ml abs. Tetrahydrofuran gelöst werden langsam zu einer Grignardlösung, die aus 20,5 ml (0,2 Mol) n-Butyl-bromid in 50 ml abs. Äther und 4,86 g (0,2 Grammäquivalent) Mg in 20 ml abs. Äther hergestellt wird, zugetropft. Dabei soll die Reaktionstemperatur nicht über +16° C steigen. Wenn nach 1 Stunde die Tetrahydrofuran-Lösung zugegeben ist, wird die Reaktionslösung noch 1 1/2 Stunden bei 30° C gerührt, dann mit einer gesättigten NH₄Cl-Lösung hydrolysiert und mehrfach mit Äther extrahiert. Die organischen Phasen werden vereinigt und über Na₂SO₄ gerocknet. Das Lösungsmittel wird abdestilliert. Der Rückstand wird kristallin.

Ausbeute: 7,1 g = 46 % d.Th. Fp.: 130 - 132° C.

15) 3-N-Methyl-4-/1-(1-hydroxy-1-methyl)-athyl/-5,5-diphenyl-oxazolidinon-(2)

Zu einer Grignardlösung, die aus 2,9 g (0,12 Mol) Magnesium und 17 g (0,12 Mol) Methyljodid in 100 ml abs. Äther hergestellt wird, werden unter Stickstoff langsam 7,82 (0,024 Mol) 3-N-Methyl-4-carboäthoxy-5,5-diphenyl-oxazolidinon-(2) in 200 ml abs. Tetrahydrofuran gelöst hinzugetropft. Die

Reaktionstemperatur beträgt 25 - 30° C. Anschließend wird die Reaktionslösung noch 2 Stunden unter Rückfluß zum Sieden erhitzt. Dann wird sie mit einer gesättigten NH₄Cl-Lösung hydrolysiert. Das ausgefallene Produkt wird abgesaugt.

Rohprodukt: 7,64 g Fp.: 195 - 210° C.

Diese Substanz wird zweimal aus Äthanol umkristallisiert.

Ausbeute: 2,5 g = 33,5 % d.Th. Fp.: $215 - 217^{\circ} \text{ C.}$

16) 4-[\alpha-(Hydroxy-p-tolyl)-benzyl]-oxazolidinon-(2)

Zu einer Grignardlösung, die aus 9 ml (75,8 mMol) p-Chlortoluol und 1,84 g (0,076 Grammäquivalent) Magnesium in 150 ml abs. Tetrahydrofuran hergestellt wird, werden langsam zwischen 10 - 15° C 5,0 g (26,2 mMol) 4-Benzoyl-oxazolidinon-(2) in 100 ml abs. Tetrahydrofuran gelöst zugetropft. Danach wird die Reaktionslösung noch 1 Stunde bei Raumtemperatur gerührt, mit Eis/Ammoniumchlorid hydrolysiert und mehfach mit Äther extrahiert. Die vereinigten organischen Phasen werden über Na₂SO₄ getrocknet und eingeengt. Das hellgelbe Öl wird in Isopropanol/Isopropyläther aufgenommen. Die gebildeten Kristalle werden abgesaugt.

Ausbeute: 2,5 g = 35,3 % d.Th. Fp.: 216 - 218° C.

17) 4-[a-(Hydroxy-cyclohexyl)-benzyl]-oxazolidinon-(2)

Zu einer Grignardlösung, die aus 12,8 ml (0,127 Mol) Bromcyclohexan und 2,98 g (0,128 Grammäquivalent) Magnesium in 150 ml abs. Tetrahydrofuran hergestellt wird, werden unter Eiskühlung 5,0 g (0,0262 Mol) 4-Benzoyloxazolidinon-(2) in 100 ml abs. Tetrahydrofuran gelöst zugetropft. Diese Lösung wird noch 2 Stunden bei 60° C gerührt, dann mit ca. 500 ml einer gesättigten Ammonium-chloridlösung hydrolysiert und mehrfach mit Chloroform extrahiert. Die organischen Phasen werden vereinigt, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt. Das Öl wird in Äther aufgenommen. Die gebildeten Kristalle werden abgesaugt.

Ausbeute: 2,5 g = 35 % d.Th. Fp.: 190 - 192° C.

18) 4-/-1-(1-Hydroxy-1-phenyl)-propyl/-5-methyl-oxazolidinon-(2)

Zu einer Grignardlösung, die aus 7,30 g (0,3 Grammäquivalent) Magnesium und 35,96 g (0,33 Mol) Äthylbromid in 120 ml abs. Äther hergestellt wird, werden tropfenweise unter Eiskühlung und unter Stickstoffatmosphäre 10,26 g (0,05 Mol) 4-Benzoyl-5-methyl-oxazolidinon-(2) in 250 ml abs. Tetrahydrofuran gelöst hinzugetropft. Die Innentemperatur steigt dabei von +2° C bis +12° C an. Dann wird die Reaktionslösung noch 1 Stunde zum Sieden unter Rückfluß erhitzt, mit einer gesättigten Ammoniumchloridlösung hydrolysiert und mehrfach mit Äther extrahiert. Die organischen Phasen werden vereinigt, getrocknet und eingeengt. Man erhält 12,85 g eines festen Rückstandes, der aus 60 ml Methanol umkristallisiert wird.

Ausbeute: 8,3 g = 70 % d.Th. Fp.: $192 - 194^{\circ}$ C.

Die aus der folgenden Tabelle2ersichtlichen Derivate wurden analog hergestellt.

- -	. Ръ, °с	205 - 207 (Methanol/Athon)	(Nethanol)	172 - 173 (Renzol)	(Jenzol) 134 - 135 (Benzol)	118 - 120 (Bonzol)	208 - 210 (Matherson)	(he chanol) Ather) 178 - 180	(Ather) Isopropanol) 184 - 186 (Äther)
	R6	Ħ	Ħ	Ħ	щ	ж	щ	Ħ	н
	R5	н	н	ж	н	Ħ	н	# .	Н
OH R2 CC R3	R4	H	н	H	н	н	Ħ	н	ж
R ₆ —c — c — c — c — c — c — c — c — c — c	R3	c ⁶ H ²	- ⁷ -СJ-С	o-cH ₃ 0-c ₆ H ₄ -	m-сн ₃ 0-с ₆ н ₄ -	ь-сн ³ 0-с ⁶ н ⁴ -	o-CH3-C6H4-	m-CF3-C6H4-	m-F-C ₆ H ₄ -
	R2	- ⁶ H ⁹ 5	- ⁷ н ⁹ 2-г2-ш	o-cH ₂ O-c ₆ H ₄ -	ш-сн ₃ 0-с ₆ н ₄ -	p-ch ³ 0-c ⁶ H ⁴ -	°-сн ₃ -сен ₄ -	п-сғ3-с644-	m-F-C ₆ H ₄ -
	R	ж	æ	Ħ	#	ж	Ħ	Ħ	н
·	Bei- spiel Nr.	9	20	21	22	23	54	25	56

Tabelle 2

709809/1117

					- 2	5 - 							i
. Fp, °C	173 - 174 (Methanol/Isopropyl-	163 - 165 (Nethanol)	96 - 97 (Methanol/Isopropyl-	215 - 217 (Methanol)	220 – 221 (Isopropyläther)	93 – 94 (Isopropyläther)	100 - 101 (Isopropyläther)	90 – 91 (Isopropyläther)	69 - 70 (Isopropyläther)	118 - 119 (Isopropyläther)	203 - 204 (Wethanol/Äther)	100 - 101 (Essigsäure-n-butyl.	92 – 93 (Essigsäure-n-butyl-ester
% %	н	щ	缸	-cH ₂	-сн ₅	-cH ₃	-cH ₃	-CH3	-cH ₃	-cH ₂	-c6H5	-c ₆ H ₅	-c ₆ H ₅
R ₅	Н	щ	н	#	Ħ	Ħ	Ħ	II.	щ	Ħ	Ħ	H	エ
$R_{f 4}$	н	Щ	¤	斑	щ	Ħ	ш	Ħ	口	Ħ	ם	田	Ħ
R ₃	-cH2-ceH5	-cH ₂ -C)-c1	-ch ₂ -ch=ch ₂	c ₆ H ₅ -	m-C1-C ₆ H ₄ -	-cH2-ceH5	-CH2-(O)-C1	-CH2-CH=CH2	-C2H5	n-C ₄ H ₉ -	-cH ₃	-cH ₃	-cH ₃
R2	-cH2-ceH5	-cH ₂ -CD-c1	-cH ₂ -cH=cH ₂	C6H5-	m-C1-C6H4-	-cH2-c ₆ H5	-cH ₂ -C ₂	-cH ₂ -cH=CH ₂	-c ₂ H ₅	n-C4H9-	-cH ₃	-cH ₃	-cH ₃
۳. د	н	ш	ш	ш	Ħ	#	.	Ħ	Щ.	¤	ж	-CH ₃	-ch2-ch=cH2
Bei-	27	28	59	30	27	32	33	34	35	36	37	38	39

Fp, ^o c	160 - 161 (Methanol)	136 - 138 (Ather)	238 - 239 (Methanol)	115 - 117 (Isopropanol)	106 - 107 (Wethanol/Isopropyl-	120 - 121 Ether (Äther)	90 - 91 (Essigester)	239 - 240 (Äthanol)	138 - 139 (Äther)
R6	-c ₆ H ₅	-c ₆ _H ₅	-c ₆ H ₅	-c ₆ H ₅	щ	Ħ	-c ⁶ H ₅	-c ⁶ H ₅	-c ₆ H ₅
R ₅	Ħ	ш	Ħ	H	H	Ħ	Ħ	-ce _H 5	-c _{6H5}
R4	ж	н	#	Ħ	н	ш		Ħ	щ
$^{ m R}_{ m 3}$	-C2H5	$n-c_3H_7-$	-c ₆ H ₅	-ch2-ch=ch2	-c ₂ H ₅	n-C ₂ H ₇ -	-CH ₃	-CH ₃	-ch ₂ -ch=ch ₂
R2	-C ₂ H ₅	n-C ₃ H ₇ -	-c ₆ H ₅	-cH ₂ -cH=CH ₂	c ₂ H ₅	n-C ₂ H ₇ -	-cH ₃	-cH ₃	-CH ₂ -CH=CH ₂
R.	m;	Ħ	Ħ	Ħ	Ħ	ш	-cH ² -c ^H 2 ,	н	Н
Bei- spiel %%.	07	41	77	43	7 ††	45	94	247	48

Fp. ° c	155 - 157	(Äther	116 - 116 (Isopropyläther/	isopropanol)	(Hexan/Ather)	195 - 197	189 - 191	(Benzol) 192 – 195	(Atner/neval) 168 - 171 (X+her)	(Ather)	174 – 176	(Atner) 112 - 113	(Meulianor)	
Re	H	1	Ħ		Ħ.	щ	Ħ	Ħ	H		H	田		
R.			Ħ		Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	二			
æ	†		Ħ		Ħ	щ	į p	; Þ	: #	; <u>p</u> :	; ¤	: #		
,	R ₃	-c _H ₅	H. C.	59	-C _K H _E) ;	-c ₆ H ₅	-c ₆ H ₅	-c ₆ H ₅	p-cH ₂ -c6 ^H d-	-c6 ^H 5	5 _H 9 ₂ -	-C6H5	
	R2	- C1 - C2 - H.	t-9001	p-c1-c ^H d-	i i	B-CF3-C6n4-	o-C1-C6H4-	m-F-С ₆ H ₄ -	-c ₂ H ₅	-CH2-C6H5	-cH2-c6H5	o-cH ² 0-c ² H ⁴ -	-ch2-ch=CH2	
	F.	+		н		Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	田	H	
!	Beispiel	+	64	50		51	52	53	54	55	56	57	58	

0 8	rp.,	115 - 118	(Ather)	176 - 179 (Methanol/Äther)	198 - 200 (Methanol)	184 - 186 (Methanol/Äther)	108 - 110 (Methanol)	172 - 173 (Methanol/Isopropyl-	172 - 173 (Methanol/Isopropyl-	160 - 161 (Benzol/Isopropyl- äther)	
-	ж б	Н		Ħ	Ħ	pi	H	ш	田	H	_
	R5	H	·	щ	н .	ni	Ħ	¤	=	-ceH5	
	R4	п	:	Ħ	Ħ	ш	斑	ш	田	#	
	R_{3}		-cent-p-cr	-c ⁶ H ⁴ -b-c1	-c6H5	-(O)- CH ₃	CBBH ₃ ←O≻ осн ₃	-c ₆ H ₅	-c _H ₅	n-c4H9-	·
	R2	_	-cH ₃	-C ₂ H ₅	CH2	-c ₂ H ₅	-C2H5	-C ₂ H ₅	n-C _z H ₇ -	-cH ₃	
	ᇫ	-	н	щ	×	ш	Ħ	-CH3	С ——	#	
	Beispiel	Nr.	59	Ç	3 5	62	63	79	65	99	

Beispiele für die eventuelle Umsetzung mit einem Halogenierungsmittel:

67) 4-Chlormethyl-5-methyl-5-phenyl-oxazolidinon-(2)

Zu 1,04 g (5 mMol) 4-Hydroxymethyl-5-methyl-5-phenyl-oxazolidinon-(2) in 15 ml Pyridin gelöst werden zwischen 0° und +5° C 1,5 ml (10 mMol) Thionylchlorid langsam zugetropft. Nach 1 Stunde bei 50° C wird die Reaktions-lösung über Nacht bei Raumtemperatur gerührt, auf Eis geschüttet und mehrfach mit Chloroform extrahiert. Die vereinigten und über Na₂SO₄ getrockneten Chloroform-phasen werden eingeengt. Die gebildeten Kristalle werden aus Methanol umkristallisiert.

Ausbeute: 0,56 g = 50 % d.Th. Fp.: $150 - 152^{\circ}$ C.

Die aus der Tabelle 3 ersichtlichen Derivate wurden analog hergestellt.

Fр., ° с	170 - 172 (Benzol)	61, Kp 140° c/ 0,02 Torr	175 - 180 (Methanol)	200 - 202 (Äthanol)	126 - 128 (Methanol)	117 - 118 (Methanol)	65 - 68 (Essigester/Petrol-	äther)
R6	н	# 	-(CH ₂) ₅ -	-c ₆ H ₅	=	Ħ	Ħ	
R5	н	ж		-c ₆ H ₅	-c ₆ H ₅	-c ₆ H ₅	Ħ	
$ m R_4$		Ħ	-cH ₂	н	ш	ш	н	
$\mathbb{R}_{\mathcal{Z}}$	-c ⁶ H ⁵	ш	Н	H	н	Ħ	н	
R2	-c ₂ H ₅	н	H	н	ш	н	耳	-
R	ш	н	Ħ	Ħ	Ħ	H	ш	
×	CJ	CJ	CJ	ದ	CJ	Br	Br	
Beispiel Nr.	89	69	20	71	72	73	4/2	

	R3 X X X X X X X X X X X X X X X X X X X	
Tabelle 3	$R_6 - C - C - C$	0

Anwendungsbeispiele:

Beispiel 75

Eine Tablette besteht aus 100 mg der Verbindung gemäß Beispiel 33, 10 mg Traganth, 147,5 mg Lactose, 25 mg Maisstärke,
15 mg Talkum und 2,5 mg Magnesiumstearat. Der Wirkstoff wird
mit dem Milchzuckergemisch in üblicher Weise granuliert, mit
Magnesiumstearat versetzt und in bekannter Weise zu Tabletten
verpreßt.

Beispiel 76

Ein Dragée besteht aus 20 mg der Verbindung des Beispiels 27, 110 mg Lactose, 25 mg Avicel und 5 mg Talkum. Die Bestandteile werden gemischt und in üblicher Weise zu Tabletten von 160 mg und 8 mm Durchmesser verpreßt und mit Zuckersirup auf ein Gewicht von 250 mg aufdragiert.

Beispiel 77

Eine Kapsel besteht aus 300 mg der Verbindung des Beispiels 67 und 10 mg Talkum. Der Wirkstoff wird mit dem Talkumgemisch und in Hartgelatinekapseln abgefüllt.

Beispiel 78

Ein Saft besteht aus 1,0 g der Verbindung des Beispiels 27, 2,0 g Bentonit, 1,5 g Natriumcarboxymethylzellulose, 30 g Zucker, 0,3 g Kaliumsorbat und 0,01 g Pfefferminzaroma. Der feingemahlene Wirkstoff wird mit den genannten Hilfsstoffen vermischt und unter Hinzufügen von Wasser in üblicher Weise

ein Suspensionssaft von 100,0 g hergestellt. Die Einzeldosis beträgt 1 - 3 Teelöffel.

Beispiel 79

Eine zur intravenösen Verabreichung geeignete Lösung enthält 5 Gewichtsprozent der Verbindung des Beispiels 33, eine zur Bildung einer isotonischen Lösung erforderlichen Menge Natriumchlorid, 10 - 20 Gewichtsprozent Äthanol, 15 - 25 Gewichtsprozent Propylenglykol und 55 - 75 Gewichtsprozent zur Injektion geeignetes Wasser.

Patentansprüche

ار ا

Oxazolidinon-(2)-Derivate der allgemeinen Formel I

worin X Hydroxy, Chlor oder Brom, R, Wasserstoff, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkylreste mit 1 - 4 C-Atomen oder Benzyl, R2 Wasserstoff, geradkettige oder verzweigte, gesättigte oder ungesättigte Alkylreste mit 1 - 4 C-Atomen, der unsubstituierte oder der einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituierte Phenylrest oder der unsubstituierte oder einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituierte Benzylrest, Rz Wasserstoff, ein geradkettiger oder verzweigter, gesättigter oder ungesättigter Alkylrest mit 1 - 4 C-Atomen, der unsubstituierte oder einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder Trifluormethyl substituierte Phenylrest oder unsubstituierte oder einfach oder zweifach mit Halogen, Niederalkyl mit 1 - 4 C-Atomen, Niederalkoxy mit 1 - 4 C-Atomen und/oder

Trifluormethyl substituierte Benzylrest, R_4 Wasserstoff, ein geradkettiger oder verzweigter, gesättigter oder ungesättigter Alkylrest mit 1 - 4 C-Atomen oder der Phenylrest, R_5 Wasserstoff, ein Alkylrest mit 1 - 4 C-Atomen oder der Phenylrest und R_6 Wasserstoff, ein Alkylrest mit 1 - 4 C-Atomen oder der Phenylrest und R_6 Wasserstoff, ein Alkylrest mit 1 - 4 C-Atomen oder der Phenylrest ist oder R_5 und R_6 zusammen ein Alkylenrest mit 4 - 6 Kohlenstoffatomen in der Kette sind.

- 2. Oxazolidinon-(2)-Derivate gemäß Anspruch 1, dadurch gekennzeichnet, daß X Hydroxy, Chlor oder Brom, R_1 Wasserstoff, Niederalkyl mit 1 4 C-Atomen, Allyl oder Benzyl, R_2 Wasserstoff, Niederalkyl mit 1 4 C-Atomen, Allyl, unsubstituiertes oder mit Chlor monosubstituiertes Phenyl, R_3 Wasserstoff, Niederalkyl mit 1 4 C-Atomen, Allyl, unsubstituiertes oder mit einem Chlor monosubstituiertes Phenyl, R_4 Wasserstoff, R_5 Wasserstoff, Niederalkyl mit 1 4 C-Atomen oder Phenyl und R_6 Wasserstoff ist.
- 3. Oxazolidinon-(2)-Derivate gemäß Anspruch 1, dadurch gekennzeichnet, daß X Hydroxy, Chlor oder Brom, R₁ Wasserstoff oder Methyl, R₂ Wasserstoff, Methyl, Phenyl, p-Chlor-phenyl oder Allyl, R₃ Wasserstoff, Methyl oder Allyl, R₄ Wasserstoff, R₅ Wasserstoff, Methyl oder Phenyl und R₆ Wasserstoff ist.

4. 4- 4'-(4'-{Hydroxy-propenyl-(1)} -butenyl-(1)}5-phenyl-oxazolidinon-(2) der Formel

5. 4-Chlormethyl-5-methyl-5-phenyl-oxazolidinon-(2) der Formel

6. 4-1:(1:-Hydroxy-1:-methyl)-äthyl]-5-phenyl-oxa-zolidinon-(2) der Formel

7. Pharmazeutische Präparate, gekennzeichnet durch den Gehalt einer Verbindung gemäß Ansprüchen 1 - 6.

