Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

7. Time series regression models

7.1 Evaluating the regression model OTexts.org/fpp3/

Regression residuals

Residuals are defined as:

$$e_{t} = y_{t} - \hat{y}_{t}$$

$$= y_{t} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1,t} - \hat{\beta}_{2}x_{2,t} - \dots - \hat{\beta}_{k}x_{k,t}$$

Regression residuals

Residuals are defined as:

$$e_{t} = y_{t} - \hat{y}_{t}$$

$$= y_{t} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{1,t} - \hat{\beta}_{2}x_{2,t} - \dots - \hat{\beta}_{k}x_{k,t}$$

Useful properties

$$\sum_{t=1}^{T} e_t = 0$$
 and $\sum_{t=1}^{T} x_{k,t} e_t = 0$ for all k .

Checking assumptions

- \bullet ε_t have mean zero and are uncorrelated, NID(0, σ^2).
- lacksquare ε_t are uncorrelated with each $x_{j,t}$.
 - Timeplot, ACF, Histogram (gg_tsresiduals())
 - Against predictors (non-linearity)
 - Against fitted values (heteroscedasticity)
 - Against predictors not in the model (include predictor in the model)

Expect to see scatterplots resembling a horizontal band with no values too far from the band and no patterns such as curvature or increasing spread.

Example: US consumption expenditure

Example: US consumption expenditure

Example: US consumption expenditure

