CMOS共源放大电路 手工求解

无源电阻负载 NMOS共源放大电路

OP仿真结果

	subckt	
	elemer	nt <mark>0</mark> :m1
	model	0:n08
	region	Saturati
۲	id	1.0701m
	ibs	0.
	ibd	-28.5986f
	vgs	2.0000
l	vds	2.8599
	vbs	0.
	vth	700.0000m
	vdsat	1.3000
	vod	1.3000
	beta	1.2664m
	gam e	ff 400.0000m
	gm	1.6463m
l	gds	38.4091u
	gmb	393.5324u
	cdtot	2.2910f
	cgtot	21.1559f
	cstot	18.1174f
	cbtot	747.3930a
	cgs	18.1174f
	cgd	2.2910f

◆ 饱和区电流公式

$$I_{D} = \frac{\mu_{0} C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{T})^{2}$$

$$I_D = \frac{110U}{2} \frac{10U}{1U} (2 - 0.7)^2 = 929.5U$$

$$v_o = 5 - 929.5U \times 2k = 3.141V$$


```
.MODEL n08 NMOS VTO = 0.70 KP = 110U GAMMA = 0.4 LAMBDA = 0.04
+ PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N
.MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05
+ PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 560U CJSW = 350P LD = 0.014U TOX = 14N
```

◆ 饱和区电流公式

$$I_{D} = \frac{\mu_{0}C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$I_{D} = \frac{110U}{2} \frac{10U}{1U} (2 - 0.7)^{2} (1 + 0.04v_{o})$$

$$v_{o} = 5 - I_{D} \times 2k$$

$$\Rightarrow v_{o} = 2.9236V, I_{D} = 0.001A$$


```
.MODEL n08 NMOS(VTO = 0.70 KP = 110U)GAMMA = 0.4 (LAMBDA = 0.04)
+ PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N
.MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05
+ PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 560U CJSW = 350P LD = 0.014U TOX = 14N
```

二元方程Matlab辅助求解

$$I_{D} = \frac{110U}{2} \frac{10U}{1U} (2 - 0.7)^{2} (1 + 0.04v_{o})$$

$$v_{o} = 5 - I_{D} \times 2k$$

$$\Rightarrow v_{o} = 2.9236V, I_{D} = 0.001A$$

```
>> syms Id Vo;
```

sId =

sVo =

1714624861651303/1651536996919216168

>> 1714624861651303/1651536996919216168

ans =

0.0010

603554407661684355/206442124614902021

>> 603554407661684355/206442124614902021

ans =

2.9236

>> [sld sVo]=solve(Id==110e-6/2*10*1.3^2*(1+0.04*Vo), Vo==5-Id*2e3)

小信号等效参数计算

◆ 跨导公式

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} \bigg|_{Q} = \mu_{0} C_{ox} \frac{W}{L} (V_{GS} - V_{T})$$

$$g_m = 110U \frac{10U}{1U} (2 - 0.7) = 1.43m$$


```
.MODEL n08 NMOS VTO = 0.70 KP = 110U GAMMA = 0.4 LAMBDA = 0.04
+ PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N
.MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05
+ PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 560U CJSW = 350P LD = 0.014U TOX = 14N
```

小信号等效参数计算

◆ 输出电导公式

$$g_{ds} = \frac{\partial I_D}{\partial V_{DS}} \bigg|_{Q}$$

$$= \lambda \frac{\mu_0 C_{ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2 \approx \lambda I_{DQ}$$

$$g_{ds} = 0.04 \times \frac{110U}{2} \frac{10U}{1U} (2 - 0.7)^2 = 37.18U$$


```
.MODEL n08 NMOS VTO = 0.70 KP = 110U GAMMA = 0.4 LAMBDA = 0.04
+ PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N
.MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05
+ PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 560U CJSW = 350P LD = 0.014U TOX = 14N
```

增益计算(略)

◆ 增益公式

$$A_{v} = -g_{m} \left(r_{ds} \parallel R_{D} \right)$$

◆ 饱和区电流公式

$$I_D = \frac{\mu_0 C_{ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$
 $I_D = \frac{110U}{2} \frac{10U}{1U} (3 - 0.7)^2 (1 + 0.04 v_o)$
 $v_o = 5 - I_D \times 2k$
 $\Rightarrow v_o = -0.6644$
与饱和区矛盾


```
.MODEL n08 NMOS VTO = 0.70 KP = 110U GAMMA = 0.4 LAMBDA = 0.04
+ PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N
.MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05
+ PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 560U CJSW = 350P LD = 0.014U TOX = 14N
```

改用线性区电流公式

$$I_{D} = \mu_{0} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$I_{D} = 110 U \frac{10 U}{1 U} \left((3 - 0.7) v_{o} - \frac{v_{o}^{2}}{2} \right)$$

$$v_{o} = 5 - I_{D} \times 2k$$

 $\Rightarrow v_o = 1.0104$ 另1个解舍去

```
.MODEL n08 NMOS VTO = 0.70 \text{ KP} = 110 \text{U} \text{ GAMMA} = 0.4 \text{ LAMBDA} = 0.04
+ PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N
.MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05
+ PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P
+ CI = 560U CISW = 350P ID = 0.014U TOX = 14N
```

直流转移特性(仿真结果)

有源负载 NMOS共源放大电路

◆ 直流工作点计算

.MODEL n08 NMOS VTO = 0.70 KP = 110U GAMMA = 0.4 LAMBDA = 0.04 + PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P + CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N .MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05 + PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P + CJ = 560U CJSW = 350P LD = 0.014U TOX = 14N

NMOS二极管负载

◆ 直流工作点计算

$$I_{D} = \frac{\mu_{0}C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

留作练习

M2存在背栅效应,手工计算时建议忽略

```
M_2 10/1
V_i
M_1 10/1
V_i
```

```
.MODEL n08 NMOS VTO = 0.70 KP = 110U GAMMA = 0.4 LAMBDA = 0.04
+ PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N
.MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05
+ PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 560U CJSW = 350P LD = 0.014U TOX = 14N
```

PMOS电流源负载

◆ 直流工作点计算

$$I_{D} = \frac{\mu_{0}C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

留作练习

```
M_{2} 10/1
M_{2} 10/1
M_{1} 10/1
M_{1} 10/1
M_{2} 10/1
```

```
.MODEL n08 NMOS VTO = 0.70 KP = 110U GAMMA = 0.4 LAMBDA = 0.04
+ PHI = 0.7 MJ = 0.5 MJSW = 0.38 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 770U CJSW = 380P LD = 0.016U TOX = 14N
.MODEL p08 PMOS VTO = -0.70 KP = 50U GAMMA = 0.57 LAMBDA = 0.05
+ PHI = 0.8 MJ = 0.5 MJSW = 0.35 CGBO = 700P CGSO = 220P CGDO = 220P
+ CJ = 560U CJSW = 350P LD = 0.014U TOX = 14N
```