Assignment -2 Data Visualization and Preprocessing

Assignment Date	26 September 2022
Team ID	PNT2022TMID31585
Project Name	AI BASED DISCOURSE FOR BANKING INDUSTRY
Student Name	Arun Kumar S
Student Roll Number	711719104013
Maximum Marks	2 Marks

Question-1. Download dataset

2 3 4 5	15634602 15647311	Hargrave	619 France									
3 4 5			013 Hance	Female	42	2	0	1	1	1	101348.9	1
4 5	to consideration of	Hill	608 Spain	Female	41	. 1	83807.86	1	0	1	112542.6	0
5	15619304	Onio	502 France	Female	42	. 8	159660.8	3	1	0	113931.6	1
200	15701354	Boni	699 France	Female	39	1	0	2	0	0	93826.63	0
-	15737888	Mitchell	850 Spain	Female	43	2	125510.8	1	1	1	79084.1	0
0	15574012	Chu	645 Spain	Male	44	. 8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822 France	Male	50	7	0	2	1	1	10062.8	0
8	15656148	Obinna	376 Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9	15792365	He	501 France	Male	44	4	142051.1	2	0	1	74940.5	0
10	15592389	H?	684 France	Male	27	2	134603.9	1	1	1	71725.73	0
11	15767821	Bearce	528 France	Male	31	. 6	102016.7	2	0	0	80181.12	0
12	15737173	Andrews	497 Spain	Male	24	3	0	2	1	0	76390.01	0
13	15632264	Kay	476 France	Female	34	10	0	2	1	0	26260.98	0
14	15691483	Chin	549 France	Female	25	5	0	2	0	0	190857.8	0
15	15600882	Scott	635 Spain	Female	35	7	0	2	1	1	65951.65	0
16	15643966	Goforth	616 Germany	Male	45	3	143129.4	2	0	1	64327.26	0
17	15737452	Romeo	653 Germany	Male	58	1	132602.9	1	1	0	5097.67	1
18	15788218	Henderso	549 Spain	Female	24	9	0	2	1	1	14406.41	0
19	15661507	Muldrow	587 Spain	Male	45	6	0	1	0	0	158684.8	0
20	15568982	Hao	726 France	Female	24	6	0	2	1	1	54724.03	0
21	15577657	McDonald	732 France	Male	41	. 8	0	2	1	1	170886.2	0
22	15597945	Dellucci	636 Spain	Female	32	. 8	0	2	1	0	138555.5	0
23	15699309	Gerasimo	510 Spain	Female	38	4	0	1	1	0	118913.5	1
24	15725737	Mosman	669 France	Male	46	3	0	2	0	1	8487.75	0
25	15625047	Yen	846 France	Female	38	5	0	1	1	1	187616.2	0
26	15738191	Maclean	577 France	Male	25	3	0	2	0	1	124508.3	0
27	15736816	Young	756 Germany	Male	36	2	136815.6	1	1	1	170042	0
28	15700772	Nebechi	571 France	Male	44	. 9	0	2	0	0	38433.35	0
29	15728693	McWillian	574 Germany	Female	43	3	141349.4	1	1	1	100187.4	0
30	15656300	Lucciano	411 France	Male	29	0	59697.17	2	1	1	53483.21	0
31	15589475	Azikiwe	591 Spain	Female	39	3	0	3	1	0	140469.4	1
32	15706552	Odinakac	533 France	Male	36	7	85311.7	1	0	1	156731.9	0
33	15750181	Sanderso	553 Germany	Male	41	. 9	110112.5	2	0	0	81898.81	0
34	15659428	Maggard	520 Spain	Female	42	. 6	0	2	1	1	34410.55	0
35	15732963	Clements	722 Spain	Female	29	9	0	2	1	1	142033.1	0
36	15794171	Lombardo	475 France	Female	45	0	134264	1	1	0	27822.99	1
37	15788448	Watson	490 Spain	Male	31	. 3	145260.2	1	0	1	114066.8	0
38	15729599	Lorenzo	804 Spain	Male	33	7	76548.6	1	0	1	98453.45	0
39	15717426	Armstron	850 France	Male	36	7	0	1	1	1	40812.9	0

Question-2. Load the dataset

Solution:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
data = pd.read_csv(r'Churn_Modelling.csv')
df.head

<bound< th=""><th>method</th><th>NDFrame.</th><th>head of</th><th>Rov</th><th>Number</th><th>Custo</th><th>merId :</th><th>Surname</th><th>CreditScore</th><th>Geography</th><th>Gender</th><th>Ag</th></bound<>	method	NDFrame.	head of	Rov	Number	Custo	merId :	Surname	CreditScore	Geography	Gender	Ag
0		1 156	34602	Hargrave		619		Female				
1		2 156	47311	Hill			Spain					
2		3 156:	19304	Onio		502	France	Female	42			
3		4 1570	01354	Boni		699	France	Female	39			
4		5 157	37888	Mitchell		850	Spain	Female	43			
		***					17.00	***	2.2.2			
9995	99			Obijiaku		771	France	Male	39			
9996	99			Johnstone		516	France					
9997	99			Liu		709	France	Female	36			
9998	99	99 156	82355	Sabbatini		772	Germany	Male	42			
9999	10000 1562		28319	Walker		792	France	Female	28			
	Tenure	Balance	e NumC	fProducts	HasCrCa	rd I	sActiveMer	mber \				
0	2	0.00	9	1		1		1				
1	1	83807.8	6	1		0		1				
2	8	159660.80	9	3		1		0				
3	1	0.00	9	2		0		0				
4	2	125510.8	2	1		1		1				
:::_	***			***	10.50			2.55				
9995	5	0.0		2		1		0				
9996		57369.6		1		1		1				
9997	7			1		0		1				
		75075.3		2		1	0					
9999	4	130142.79	9	1		1		0				
		edSalary	Exited	i								
0		01348.88	1									
1		12542.58	6)								
2		13931.57	1	L								
3		93826.63	6									
4		79084.10	6									
 9995		96270.64										
			6									
9996		01699.77	6									
9997		42085.58	1									
9998		92888.52	1									
9999		38190.78	6	2								

Question-3. Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

```
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
```


plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10)) sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

RowNumber	5.000500e+03					
CustomerId	1.569094e+07					
CreditScore	6.505288e+02					
Age	3.892180e+01					
Tenure	5.012800e+00					
Balance	7.648589e+04					
NumOfProducts	1.530200e+00					
HasCrCard	7.055000e-01					
IsActiveMember	5.151000e-01					
EstimatedSalary	1.000902e+05					
Exited	2.037000e-01					
dtype: float64						

data.median(numeric_only = True)

RowNumber 5.000500e+03 CustomerId 1.569074e+07 6.520000e+02 CreditScore Age 3.700000e+01 Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 1.000000e+00 HasCrCard IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00

dtype: float64

data['CreditScore'].mode()

0 850 dtype: int64

data['EstimatedSalary'].mode()

0 24924.92 dtype: float64

data['HasCrCard'].unique()

array([1, 0])

data['Tenure'].unique()

array([2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])

data.std(numeric_only=True)

2886.895680 RowNumber 71936.186123 CustomerId 96.653299 CreditScore 10.487806 Age Tenure 2.892174 62397.405202 Balance 0.581654 NumOfProducts HasCrCard 0.455840 IsActiveMember 0.499797 EstimatedSalary 57510.492818 Exited 0.402769 dtype: float64

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1,00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution:

data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	a
CustomerId	9
Surname	0
	(5)
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6. Find the outliers and replace the outliers

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

```
# x-axis label
ax.set_xlabel('Balance')

# y-axis label
ax.set_ylabel('Exited')
plt.show()
```

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore
zscore = np.abs(stats.zscore(data['CreditScore']))
print(zscore)

print('No. of Outliers:', np.shape(np.where(zscore>3)))

```
0.332952
1
        0.447540
2
        1.551761
        0.500422
3
        2.073415
       1.250458
9995
9996
        1.405920
9997
        0.604594
9998
        1.260876
9999
        1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25])

q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0.0	0.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1] iar

RowNumber	4999.5000
CustomerId	124705.5000
Surname	1464.5000
CreditScore	134.0000
Geography	1.0000
Gender	1.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000
dtype: float64	

u = q.iloc[0] + (1.5*iqr)

u

RowNumber	1.499950e+04
CustomerId	1.594029e+07
Surname	4.435000e+03
CreditScore	9.190000e+02
Geography	2.500000e+00
Gender	2.500000e+00
Age	6.200000e+01
Tenure	1.300000e+01
Balance	3.191106e+05
NumOfProducts	3.500000e+00
HasCrCard	2.500000e+00
IsActiveMember	2.500000e+00
EstimatedSalary	2.969675e+05
Exited	0.000000e+00
dtype: float64	

I = q.iloc[1] - (1.5*iqr)

ı

RowNumber	-4.998500e+03
CustomerId	1.544147e+07
Surname	-1.423000e+03
CreditScore	3.830000e+02
Geography	-1.500000e+00
Gender	-1.500000e+00
Age	1.400000e+01
Tenure	-3.000000e+00
Balance	-1.914664e+05
NumOfProducts	-5.000000e-01
HasCrCard	-1.500000e+00
IsActiveMember	-1.500000e+00
EstimatedSalary	-9.657710e+04
Exited	0.000000e+00
dtype: float64	

```
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] > upper))
count = count + np.size(np.where(data['EstimatedSalary'] < lower))
print('No. of outliers: ', count)
98386.1375
No. of outliers: 0
```

data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65
0, data['CreditScore'])


```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))

Upper range : 70.38521935511383
Lower range : 7.458380644886169
No. of Outliers : 133</pre>
```

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
for i in columns:

Q1 = data[i].quantile(0.25)

Q3 = data[i].quantile(0.75)

iqr = Q3 - Q1

upper=Q3 + 1.5 * iqr

lower=Q1 - 1.5 * iqr

count = np.size(np.where(data[i] > upper))

count = count + np.size(np.where(data[i] < lower))

print('No. of outliers in ', i, ':', count)

No. of outliers in EstimatedSalary : 0

No. of outliers in Age : 0

No. of outliers in Balance : 0

No. of outliers in NumOfProducts : 0

No. of outliers in Tenure : 0

No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit_transform(data['Surname'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit_transform(data['Geography'])
data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

x # independent values (inputs)

x = data.iloc[:, 0:13]

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
	***	3855	500	67%	8000	575	27%	(00)	800	27	755	(86)	365
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows x 13 columns

0

y # dependent values (output)

y = data['Exited']

1

Name: Exited, Length: 10000, dtype: int64

Question-9. Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled
```

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

Solution:

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)

x train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
[ 1.39655257,  0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
[ -0.4532777,  0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
...,
[ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
[ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
[ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

(7000, 13)

x_test

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],
[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611 ],
...,
[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

x_test.shape

(3000, 13)

y_train

```
7681
       1
9031
       0
3691
202
       1
5625
       0
9225
       0
4859
       0
3264
       0
9845
       0
2732
Name: Exited, Length: 7000, dtype: int64
```

y_test

```
9394
       0
898
       1
2398
       0
5906
       0
2343
       0
4004
       0
      0
7375
9307
       0
       0
8394
5233
       1
Name: Exited, Length: 3000, dtype: int64
```