Step-1

Let A be a 3×3 matrix such that det A = -1.

a) We have to find $\det\left(\frac{1}{2}A\right)$.

We know that if A is an $n \times n$ matrix then $\det(kA) = k^n \det A$.

Now

$$\det\left(\frac{1}{2}A\right) = \left(\frac{1}{2}\right)^n \det\left(A\right)$$

$$= \left(\frac{1}{2}\right)^3 (-1)$$
 (Since $n = 3$

$$=-\frac{1}{8}$$

Thus.
$$\det\left(\frac{1}{2}A\right) = \frac{-1}{8}$$

Step-2

b) We have to find $\det(-A)$.

Now

$$\det(-A) = -\det(A)$$

$$=-(-1)$$

=1

Thus,
$$\det(-A)=1$$

Step-3

- c) We have to find $\det(A^2)$.
- We know that $\det(A^n) = (\det A)^n$.

Now

$$\det\left(A^2\right) = \left(\det\left(A\right)\right)^2$$

$$= (-1)^2$$
$$= 1$$

Thus,
$$\det(A^2) = 1$$

Step-4

d) We have to find $\det(A^{-1})$.

Now

$$\det\left(A^{-1}\right) = \frac{1}{\det\left(A\right)}$$

$$=\frac{1}{-1}$$

$$= -1$$