1º	Cuatri	imestı	e 2013		
Fie	rcicio	Nº 1	- Cálculo	dь	Multag

Taller de Programación I (75.42) Facultad de Ingeniería Universidad de Buenos Aires

Ejercicio Nº 1 - Cálculo de Multas Eléctricas

Introducción

Por los múltiples apagones de los últimos días, el ENRE (Ente Nacional Regulador Eléctrico) nos ha pedido ayuda para calcular las multas a las distribuidoras de servicio eléctrico. Las multas están basadas en la frecuencia y duración de las mismas, así como en el consumo típico de los clientes.

El objetivo de este programa es procesar un archivo con el listado de interrupciones de servicio y calcular la multa que se debe pagar para cada cliente.

Descripción

Se recibe un archivo con el detalle de las interrupciones registradas para cada cliente. El programa debe primero evaluar si corresponde aplicar una multa y para el caso que aplique, calcular el monto de esta.

Interrupciones Momentáneas

Toda interrupción que tiene una duración de [x_m] minutos o menos se considera momentánea y no es considerada para el cálculo. Por ejemplo, si [x_m] tuviese valor 3, toda interrupción que dure 3 minutos o menos es ignorada para el resto del proceso.

Tolerancia de Interrupciones por Frecuencia

Existe en el periodo evaluado una tolerancia máxima de número de interrupciones antes de comenzar a penalizar. Este es indicado como $[x_f]$, por ejemplo si $[x_f]$ tiene un valor de 3. Las primeras 3 interrupciones son ignoradas, pero la 4ta interrupción y las siguientes son utilizadas para la multa.

Tolerancia de Interrupciones por Duración Acumulada

Existe en el periodo evaluado una tolerancia máxima de duración acumulada de interrupciones antes de comenzar a penalizar. Este es indicado como $[x_d]$, por ejemplo si $[x_d]$ tiene un valor de 240 minutos (4 horas). La acumulación de duración de interrupciones hasta llegar a 4 horas no penaliza, los minutos siguientes a las 4 horas si serán multados.

Para el caso que una interrupción supere la tolerancia, se debe considerar que a partir de que este límite es superado, una fracción de la interrupción será multada. Por ejemplo, si [x_d] tiene un valor de 240 y tengo una interrupción en el pasado de 200. Cuando suceda una nueva interrupción de 60 minutos, los primeros 40 no son penalizados, pero los siguientes 20 si.

Criterio de multa por Duración o Frecuencia

Es importante entender que la multa será aplicada cuando se supere la tolerancia de Duración o de Frecuencia, lo que suceda primero.

Cálculo de la Multa

Para el tiempo interrumpido que está excedido de la tolerancia de duración o frecuencia, se aplicará una multa correspondiente proporcional a la energía no entregada por el factor de multa [x_p]. Por lo tanto si

el cliente tiene un consumo típico de 3W/minuto, y el factor es \$1/W. Para un periodo penalizado de 43 minutos la multa será de: \$129 (3 * 1 * 43).

Formato de línea de comandos

El programa se ejecutara del siguiente modo:

./ejecutable [x_m] [x_f] [x_d] [x_p] archivo_interrupciones

donde x_m y x_d están expresados en minutos y x_p en pesos.

El archivo de interrupciones tiene el siguiente formato

[numero_cliente]:[consumo_tipico]:[duracion interrupcion]

Los 3 campos son numericos. Para cada cliente, el consumo típico sera siempre igual. Todas las interrupciones de un cliente aparecen seguidas en el archivo.

Códigos de retorno

El programa retonara 0 en todos los casos.

Entrada/salida estándar

La entrada estándar es ignorada, y la salida estándar tendra este formato: [numero_cliente]:[multa_calculada]

Ejemplos de ejecución

Ejemplos para parámetros: $[x_m]=3$, $[x_f]=5$, $[x_d]=240$, $[x_p]=2$

Ejemplo 1

ver spreadsheet

Restricciones

La siguiente es una lista de restricciones técnicas exigidas por el cliente:

- 1. El sistema debe desarrollarse en ISO C (C99).
- 2. Se puede asumir que la cantidad de los parámetros de entrada siempre será correcta.
- 3. Está prohibido el uso de variables globales
- 4. No se puede usar el archivo a memoria y en general no se recomienda usar memoria dinamica para este ejercicio.