Diszkrét matematika 1. Gráfok

Juhász Zsófia jzsofia@inf.elte.hu jzsofi@gmail.com Mérai László diái alapján

Komputeralgebra Tanszék

2020 tavasz

Gráfok alapfogalmai

Definíció ((irányítatlan) gráf)

A $G=(\varphi,E,V)$ hármast (irányítatlan) gráfnak nevezzük, ha E,V halmazok, $V\neq\emptyset$, $V\cap E=\emptyset$ és $\varphi\colon E\to \{\{v,v'\}\,|\,v,v'\in V\}$. E-t az élek halmazának, V-t a csúcsok (pontok) halmazának és φ -t az illeszkedési leképezésnek nevezzük. A φ leképezés E minden egyes eleméhez egy V-beli rendezetlen párt rendel.

Definíció (illeszkedés, él végpontja(i))

 $v \in \varphi(e)$ esetén e illeszkedik v-re, illetve v illeszkedik e-re vagy v végpontja e-nek.

Megjegyzés

Az illeszkedési leképezés meghatározza az $I \subseteq E \times V$ illeszkedési relációt: $(e, v) \in I \Leftrightarrow v \in \varphi(e)$.

Példa

$$\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5\} \\ E &= \{e_1, e_2, e_3, e_4, e_5\} \\ \varphi &= \{(e_1, \{v_1, v_2\}), (e_2, \{v_1, v_2\}), (e_3, \{v_1, v_4\}), (e_4, \{v_3, v_4\}), (e_5, \{v_4\})\} \end{split}$$

Gráfok alapfogalmai

Definíció (véges gráfok, üres gráfok)

Ha E és V is véges halmazok, akkor a gráfot véges gráfnak nevezzük, egyébként végtelen gráfnak.

 $E = \emptyset$ esetén üres gráfról beszélünk.

Megjegyzés

Az informatikában elsősorban a véges gráfok játszanak szerepet, így a továbbiakban mi is véges gráfokkal foglalkozunk.

Definíció (hurokél, párhuzamos élek, egyszerű gráf)

Ha egy él egyetlen csúcsra illeszkedik, azt hurokélnek nevezzük. Ha $e \neq e'$ esetén $\varphi(e) = \varphi(e')$, akkor e és e' párhuzamos élek. Ha egy gráfban nincs sem hurokél, sem párhuzamos élek, akkor azt egyszerű gráfnak nevezzük.

Gráfok alapfogalmai

Definíció (szomszédos élek, szomszédos csúcsok)

Az $e \neq e'$ élek szomszédosak, ha van olyan $v \in V$, amelyre $v \in \varphi(e)$ és $v \in \varphi(e')$ egyszerre teljesül. A $v \neq v'$ csúcsok szomszédosak, ha van olyan $e \in E$, amelyre $v \in \varphi(e)$ és $v' \in \varphi(e)$ egyszerre teljesül.

Definíció (csúcs foka)

A v csúcs fokszámán (vagy fokán) a rá illeszkedő élek számát értjük, a hurokéleket kétszer számolva. Jelölése: d(v) vagy deg(v).

Definíció (izolált csúcs)

Ha d(v) = 0, akkor v-t izolált csúcsnak nevezzük.

A fokszámösszeg

Állítás (Gráfok fokszámösszege)

A
$$G = (\varphi, E, V)$$
 gráfra
$$\sum d(v) = 2|E|.$$

Bizonyítás

Élszám szerinti teljes indukció: |E|=0 esetén mindkét oldal 0. Tfh. |E|=n esetén igaz az állítás. Ha adott egy gráf, amelynek n+1 éle van, akkor annak egy élét elhagyva egy n élű gráfot kapunk. Erre teljesül az állítás az indukciós feltevés miatt. Az elhagyott élt újra hozzávéve a gráfhoz az egyenlőség mindkét oldala 2-vel nő.

Gráfok alapfogalmai

Definíció (élhalmaz törlése gráfból)

Ha $G=(\varphi,E,V)$ egy gráf, és $E'\subseteq E$, akkor a G-ből az E' élhalmaz törlésével kapott gráfon a $G'=(\varphi|_{E\setminus E'},E\setminus E',V)$ részgráfot értjük.

Definíció (csúcshalmaz törlésével kapott gráf)

Ha $G=(\varphi,E,V)$ egy gráf, és $V'\subseteq V$, akkor legyen E' az összes olyan élek halmaza, amelyek illeszkednek valamely V'-beli csúcsra. A G-ből a V' csúcshalmaz törlésével kapott gráfon a $G'=(\varphi|_{E\setminus E'},E\setminus E',V\setminus V')$ részgráfot értjük.

Gráfok alapfogalmai

Definíció (részgráf, szupergráf)

A $G'=(\varphi',E',V')$ gráfot a $G=(\varphi,E,V)$ gráf részgráfjának nevezzük, ha $E'\subseteq E,\ V'\subseteq V$ és $\varphi'\subseteq \varphi.$ Ekkor G-t a G' szupergráfjának hívjuk. Ha E' pontosan azokat az éleket tartalmazza, melyek végpontjai V'-ben vannak, akkor G'-t a V' által meghatározott feszített (vagy telített) részgráfnak nevezzük.

Példa

G-nek G_1 részgráfja, de nem feszített részgráfja, míg G_2 feszített részgráfja.

Gráfok alapfogalmai

Definíció (gráfok izomorfiája)

A $G=(\varphi,E,V)$ és $G'=(\varphi',E',V')$ gráfok izomorfak, ha léteznek $f\colon E\to E'$ és $g\colon V\to V'$ bijektív leképezések, hogy minden $e\in E$ -re és $v\in V$ -re e pontosan akkor illeszkedik v-re, ha f(e) illeszkedik g(v)-re.

Példa

Megfelelő f és g bijekciók:

$$f = \{(e_1, c_5), (e_2, c_2), (e_3, c_3), (e_4, c_4), (e_5, c_1)\}\$$

$$g = \{(v_1, w_1), (v_2, w_4), (v_3, w_2), (v_4, w_5), (v_5, w_3)\}\$$

10.

Teljes gráfok, reguláris gráfok

Definíció (teljes gráfok)

Ha egy egyszerű gráfban bármely két különböző csúcs szomszédos, akkor teljes gráfról beszélünk. Az n csúcsú teljes gráfot K_n -nel jelöljük.

Ha két teljes gráf csúcsszáma egyenlő, akkor e teljes gráfok izomorfak.

Állítás (Kn élszáma)

Az n csúcsú teljes gráfnak $\binom{n}{2} = \frac{n(n-1)}{2}$ éle van.

Definíció (reguláris gráf)

Ha egy gráf minden csúcsának a foka n, akkor azt n-reguláris gráfnak hívjuk. Egy gráfot regulárisnak nevezünk, ha valamely n-re n-reguláris.

Megjegyzés

Tetszőleges $n \in \mathbb{Z}^+$ esetén az n csúcsú teljes gráf (n-1)-reguláris.

Gráf komplementere

Definíció (gráf komplementere)

Egy G egyszerű gráf komplementere az a G egyszerű gráf, melynek csúcshalmaza megegyezik G csúcshalmazával, és amelyben két csúcs pontosan akkor van összekötve éllel, ha G-ben nincs.

Példák

12.

Gráfok alapfogalmai

Definíció (páros gráf)

A $G=(\varphi,E,V)$ gráfot páros gráfnak nevezzük, ha V-nek létezik V' és V'' diszjunkt halmazokra való felbontása úgy, hogy minden él egyik végpontja V'-nek, másik végpontja pedig V''-nek eleme.

Definíció $(K_{m,n})$

Azt az egyszerű páros gráfot, amelyben |V'|=m, |V''|=n és minden V'-beli csúccs minden V''-beli csúccsal szomszédos, $K_{m,n}$ -nel jelöljük.

Példa

Néhány további speciális gráf

Definíció (ciklus, ösvény, csillag)

Tetszőleges $n \in \mathbb{N}^+$ -re a C_n ciklus csúcsai egy szabályos n-szög csúcspontjai, és pontosan a szomszédos csúcspontoknak megfelelő csúcsok szomszédosak. (n=1 és n=2 esetén az "n-szög" elfajuló) Tetszőleges $n \in \mathbb{N}$ -re a P_n ösvény C_{n+1} -ből valamely él törlésével adódik. Tetszőleges $n \in \mathbb{N}$ -re az S_n csillagban egy szabályos n-szög csúcspontjainak és középpontjának megfelelő csúcsok közül a középpontnak megfelelő csúcs szomszédos az összes többivel.

Példák C_4 P_3 S_4

Gráfok alapfogalmai

Definíció (séta)

Legyen $G = (\varphi, E, V)$ egy gráf. A

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$$

sorozatot sétának nevezzük v_0 -ból v_n -be, ha

- $v_j \in V$ $0 \le j \le n$,
- $e_k \in E$ $1 \le k \le n$,

A séta hossza a benne szereplő élek száma (n).

Ha $v_0 = v_n$, akkor zárt sétáról beszélünk, különben nyílt sétáról.

Definíció (vonal)

Ha a sétában szereplő élek mind különbözőek, akkor vonalnak nevezzük. Az előzőeknek megfelelően beszélhetünk zárt vagy nyílt vonalról.

15.

Gráfok alapfogalmai

Definíció (út)

Ha a sétában szereplő csúcsok mind különbözőek, akkor útnak nevezzük.

Megjegyzés

Egy út mindig vonal.

A nulla hosszú séták mind utak, és egyetlen csúcsból állnak.

Egy egy hosszú séta pontosan akkor út, ha a benne szereplő él nem hurokél

Definíció (kör)

Egy legalább egy hosszú zárt vonalat körnek nevezünk, ha a kezdő- és végpont megyegyeznek, de egyébként a vonal pontjai különböznek.

Példa

út: $v_1, e_1, v_2, e_2, v_3, \dots, v_6, e_6, v_7$; vonal, de nem út: $v_1, e_1, v_2, e_2, v_3, \dots, v_8, e_8, v_9$; kör: $v_3, e_3, v_4, e_4, v_5, e_5, v_6, e_6, v_7, e_7, v_8 (= v_3)$.

17.

Gráfok alapfogalmai

Állítás (Út előállítása sétából)

Egy G gráfban a különböző v és v' csúcsokat összekötő sétából alkalmasan törölve éleket és csúcsokat a v-t v'-vel összekötő utat kapunk.

Bizonyítás

Legyen az állításban szereplő séta a következő:

$$v = v_0, e_1, v_1, e_2, v_2, \dots, v_{n-1}, e_n, v_n = v'.$$

Ha valamely i < j esetén $v_i = v_j$, akkor töröljük az

$$e_{i+1}, v_{i+1}, e_{i+2}, v_{i+2}, \dots, v_{j-1}, e_j, v_j$$

részt, és ismételjük ezt, amíg van csúcsismétlődés. Ha már nincs, akkor utat kaptunk. Mivel minden lépésben csökken a séta hossza, ezért az eljárás véges sok lépésben véget ér.

18.

Gráfok alapfogalmai

Definíció (összefüggő gráf)

Egy gráfot összefüggőnek nevezünk, ha bármely két csúcsa összeköthető sétával (és így úttal is).

A $G = (\varphi, E, V)$ gráf esetén V elemeire vezessük be a \sim relációt: $v \sim v'$ pontosan akkor, ha G-ben vezet séta (és így út is) v-ből v'-be.

A \sim ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V-n.

A csúcsok egy adott ilyen osztálya által meghatározott feszített részgráf a gráf egy komponense.

Megjegyzés

Bármely él két végpontja azonos osztályba tartozik (Miért?), így a gráf minden éle hozzátartozik egy komponenshez.

Megjegyzés

Egy gráf akkor és csak akkor összefüggő, ha minden csúcs ugyanabba az osztályba tartozik, azaz ha csak egyetlen komponense van.

19.

Fák

Definíció (fa)

Egy gráfot fának nevezünk, ha összefüggő és körmentes.

Tétel (Fák ekvivalens jellemzése 1.)

Egy G egyszerű gráfra a következő feltételek ekvivalensek:

- G fa;
- G összefüggő, de bármely él törlésével kapott részgráf már nem összefüggő;
- G tetszőleges v és w csúcsai esetén pontosan 1 út van v-ből w-be;
- G-nek nincs köre, de bármilyen új él hozzávételével kapott gráf már tartalmaz kört.

A bizonyítás menete

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$$

Fák

Bizonyítás

$$(1) \Rightarrow (2)$$

 ${\it G}$ összefüggősége következik a fa definíciójából. Az állítás másik részét indirekten bizonyítjuk.

Tfh. létezik egy olyan e él (a végpontjai legyenek v és v') a gráfban, aminek a törlésével kapott gráf összefüggő. Ekkor létezne út v-ből v'-be, amit kiegészítve a törölt éllel és a megfelelő csúccsal egy kört kapnánk:

$$v = v_0, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v_n = v', e, v.$$

(2) \Rightarrow (3)

Legalább egy út létezik az összefüggőség miatt. Indirekten bizonyítjuk, hogy nem létezhet két különböző út:

Tfh. 2 út is létezik a különböző v és w csúcsok között, legyenek ezek:

$$v = v_0, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v_n = w$$
 és

 $v=v_0',e_1',v_1',e_2',\ldots,v_{m-1}',e_m',v_m'=w$. Legyen k a legkisebb olyan index, amelyre $v_k\neq v_k'$. (Miért létezik ilyen?) Az e_k élt törölve összefüggő gráfot kapunk, mert a v_{k-1},e_k,v_k séta helyettesíthető a $v_{k-1},e_k',v_k',\ldots,e_m',v',e_n,v_{n-1},e_{n-1},v_{n-2},\ldots,v_{k+1},e_{k+1},v_k$ sétával.

21.

Fák

Bizonyítás

$$(3) \Rightarrow (4)$$

Annak a bizonyítása, hogy nincs kör a gráfban indirekt:

tfh. létezik kör: $v,e_1,v_1,e_2,\ldots,v_{n-1},e_n,v$. Ekkor v_1 és v között két

különböző út is van: $v_1, e_2, \dots, v_{n-1}, e_n, v$ illetve v_1, e_1, v .

Ha a hozzávett e él hurokél, és a v csúcsra illeszkedik, akkor v, e, v kör lesz. Ha a hozzávett e él a különböző v és v' csúcsokra illeszkedik, akkor a köztük lévő utat megfelelően kiegészítve kapunk kört:

 $v, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v', e, v.$

$$(4) \Rightarrow (1)$$

Az, hogy G-nek nincs köre triviálisan teljesül. Kell, hogy G összefüggő, vagyis tetszőleges v és v' csúcsa között van út. Vegyük a gráfhoz a v-re és v'-re illeszkedő e élet. Az így keletkező körben szerepel e (Miért?):

 $v', e, v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v'$. Ekkor $v, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v'$ út

lesz v és v' között.

22.

Fák

Lemma (Elsőfokú csúcsok száma körmentes gráfokban)

Ha egy G véges gráfban nincs kör, de van él, akkor G-nek van legalább 2 elsőfokú csúcsa.

Bizonyítás

A G-beli utak között van maximális hosszúságú (hiszen G véges), és a hossza legalább 1, így a végpontjai különbözőek. Megmutatjuk, hogy ezek elsőfokúak. Legyen az említett út: $v_0, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v_n$. Ha lenne az e_1 -től különböző v_0 -ra illeszkedő e él, annak másik végpontja (v') nem lehet az útban szereplő csúcsoktól különböző, mert akkor $v', e, v_0, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v_n$ út hossza nagyobb lenne, mint a maximális út hossza, ami ellentmondás. Ha viszont e másik végpontja az út valamely v_k csúcsa, akkor $v_k, e, v_0, e_1, v_1, e_2, \ldots, v_{k-1}, e_k, v_k$ kör lenne, ami szintén ellentmondás.

23.

Fák

Tétel (Fák ekvivalens jellemzése 2. (élszám segítségével))

Egy G gráfra, amelynek n csúcsa van $(n \in \mathbb{Z}^+)$ a következő feltételek ekvivalensek:

- G fa;
- **a** G-ben nincs kör, és n-1 éle van;
- 9 G összefüggő, és n-1 éle van.

Bizonyítás

n = 1 esetén az állítás triviális. (Miért?)

 $(1)\Rightarrow(2)$: n szerinti TI: Tfh. valamely $n\in\mathbb{Z}^+$ -re igaz az állítás. Tekintsünk egy n+1 csúcsú G fát. Ennek legyen v egy olyan csúcsa, amelynek a foka 1. (Miért van ilyen?) Hagyjuk el a gráfból v-t. Az így kapott gráf, G' nyilván körmentes. Összefüggő is lesz, hiszen v egy G-beli útnak csak kezdő- vagy végpontja lehet, így a G' tetszőleges v' és v'' csúcsa közti G-beli út nem tartalmazhatja sem v-t, sem a rá illeszkedő élt, így G'-beli út is lesz egyben. Tehát G' fa, ezért alkalmazva az indukciós feltevést n-1 éle van, és így G-nek n éle van

Fák

Bizonyítás

(2) \Rightarrow (3): n szerinti TI: tfh. $n \in \mathbb{Z}^+$ -re igaz az állítás. Tekintsünk egy n+1 csúcsú körmentes G gráfot, aminek n éle van. Ennek legyen v egy olyan csúcsa, aminek a foka 1. (Miért van ilyen?) Hagyjuk el a gráfból v-t. Az így kapott G' gráf szintén körmentes,de n csúcsa van, így az indukciós feltevés miatt összefüggő. Tehát tetszőleges v' és v'' csúcsa között vezet séta G'-ben, ami tekinthető G-beli sétának is. G' tetszőleges csúcsa és v közötti sétát úgy kaphatunk, hogy az adott csúcs és a v-vel szomszédos csúcs közötti sétát kiegészítjük az elhagyott éllel és v-vel. $(3) \Rightarrow (1)$: Ha a feltételnek eleget tevő gráfban van kör, akkor az abban szereplő tetszőleges él elhagyásával összefüggő gráfot kapunk. (Miért?) Folytassuk az élek törlését, amíg már nincs több kör a kapott gráfban, tehát fa lesz. Ha k élt hagytunk el, akkor a kapott gráfnak n-1-k éle van, ugyanakkor az $(1) \Rightarrow (2)$ rész miatt a kapott fának n-1 éle van, így k = 0, tehát a gráfunkban nem volt kör, így fa.

Feszítőfa

Definíció (feszítőfa)

A G gráf egy F részgráfját a feszítőfájának nevezzük, ha a csúcsainak halmaza megegyezik G csúcsainak halmazával, és fa.

Példa

Feszítőfa

Állítás (Feszítőfa létezése)

Minden összefüggő véges gráfnak létezik feszítőfája.

Bizonyítás

Amíg van kör a gráfban, hagyjuk el annak egy élét. A kapott gráf összefüggő marad. Véges sok lépésben fát kapunk.

Feszítőfa

Állítás (Alsó korlát körök számára összefüggő véges gráfban)

Egy $G=(\varphi,E,V)$ összefüggő véges gráfban létezik legalább |E|-|V|+1 kör, amelyek élhalmaza különböző.

Bizonyítás

Tekintsük G-nek egy F feszítőfáját. Ennek |V|-1 éle van. Jelöljük E'-vel G azon éleinek halmazát, amelyek nem élei F-nek. $e \in E'$ -t hozzávéve F-hez keletkezik egy K_e kör (Miért?), ami kör G-ben. A K_e kör tartalmazza e-t (Miért?), és $e \neq e' \in E'$ esetén $K_{e'}$ nem tartalmazza e-t. Így kapunk |E|-|V|+1 kört, amiknek az élhalmaza különbözik.

Megjegyzés

Előfordulhat, hogy a becslés nem pontos (3 > 7 - 6 + 1 = 2).

Erdő, feszítőerdő

Definíció (erdő, gráf feszítőerdeje)

Egy körmentes gráfot erdőnek nevezünk.

Egy gráfnak olyan részgráfját, ami minden komponensből egy feszítőfát tartalmaz, feszítőerdőnek nevezzük.

Állítás (Feszítőerdő létezése)

Tetszőleges gráfnak létezik feszítőerdeje.

Állítás (Erdő élszáma)

Egy véges erdő éleinek száma a csúcsainak és komponenseinek számának különbsége.

Meg jegyzés

A nem összefüggő gráfoknál az erdők, illetve feszítőerdők azt a szerepet töltik be, mint összefüggő gráfok esetén a fák, illetve feszítőfák.

Euler-vonal

A Königsbergi hidak problémája

Definíció (Euler-vonal)

Egy gráfban egy olyan vonalat, amelyben a gráf minden éle szerepel, Euler-vonalnak nevezünk. (Beszélhetünk nyílt vagy zárt Euler-vonalról, attól függően, hogy a vonal nyílt vagy zárt.)

Megjegyzés

Mivel vonalban nincs élismétlődés, ezért egy Euler-vonal a gráf minden élét pontosan egyszer tartalmazza.

30.

Euler-vonal

Tétel (Zárt Euler-vonal létezésének szükséges és elégséges feltétele)

Egy összefüggő véges gráfban pontosan akkor van zárt Euler-vonal, ha minden csúcs foka páros.

Bizonyítás

⇒: Legyen a zárt Euler-vonal a következő:

 $v_0, e_1, v_1, e_2, \ldots, v_{n-1}, e_n, v_0.$

A vonal kezdő- és végpontját leszámítva egy csúcs minden előfordulása esetén a mellette lévő két él összesen 2-vel járul hozzá a fokszámához. A kezdő- és végpont ugyanaz, ezért ennek is páros lesz a foka.

31.

Fuler-vonal

Bizonyítás

 \Leftarrow : a bizonyítás konstruktív.

Induljunk ki egy tetszőleges zárt vonalból. (Ilyen biztos, hogy létezik a gráfban: például egy élet nem tartalmazó, 0 hosszú zárt vonal.) Ez a gráfbármely csúcsa esetén páros számú élet tartalmaz az adott csúcsra illeszkedő élek közül (a hurokéleket kétszer számolva). (Miért?) Ha az eddig kapott zárt vonalban nem minden él szerepel, akkor az összefüggőség miatt van olyan csúcs (w) a zárt vonalunkon, amelyre illeszkedő élek közül nem szerepel mindegyik. Induljunk el ebből a csúcsból egy fel nem használt élen, és haladjunk tovább mindig fel nem használt éleken. Mivel minden csúcsra páros sok fel nem használt él illeszkedik, a továbbhaladás csak akkor nem lehetséges, ha visszaértünk w-be. Ha most először w-ből kiindulva az eredeti zárt vonalon körbemegyünk, majd a w-be visszaérkezés után az új vonalon megyünk körbe, visszatérve végül w-be, akkor az eredeti vonalnál hosszabb zárt vonalat kapunk, így ezt az eljárást ismételve véges sok lépésben megkapunk egy Euler-vonalat.

Hamilton-út/kör

Definíció (Hamilton-út, Hamilton-kör)

Egy gráfban egy olyan utat, amelyben a gráf minden csúcsa szerepel, Hamilton-útnak nevezünk.

Egy gráfban egy olyan kört, amelyben a gráf minden csúcsa szerepel, Hamilton-körnek nevezünk.

Megjegyzés

Mivel útban nincs csúcsismétlődés, ezért egy Hamilton-út a gráf minden csúcsát pontosan egyszer tartalmazza.

Tétel (Dirac)

Ha egy $G=(\varphi,E,V)$ egyszerű gráfra |V|>2, és minden csúcsának a foka legalább |V|/2, akkor van Hamilton-köre.

Bizonyítás

NB.

Síkgráfok

Definíció (síkgráf)

Egy G gráfot síkgráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy különböző éleinek a csúcspontokon kívül lennének közös pontjai. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának is nevezzük.

Megjegyzés

Nem minden gráf ilyen, ellenben \mathbb{R}^3 -ban minden gráf lerajzolható.

Definíció (tartományok gráf síkbeli reprezentációjában)

A G gráf egy síkbeli reprezentációja esetén tartományoknak nevezzük az élek által határolt síkidomokat. Egy tartomány nem feltétlenül korlátos, ilyenkor külső tartományról beszélünk, egyébként pedig belső tartományról.

Megjegyzés

A tartományok alakja igen, de száma nem függ a reprezentációtól.

34.

Síkgráfok

35.

Síkgráfok

Tétel (Euler-formula)

Egy $G=(\varphi,E,V)$ összefüggő síkgráf tetszőleges síkbeli reprezentációját tekintve, melyre t jelöli a tartományok számát, teljesül a következő összefüggés.

$$|E| + 2 = |V| + t$$

Bizonyítás (vázlat)

Ha a gráfban van kör, annak egy élét törölve az általa elválasztott két tartomány egyesül, így a tartományok és élek száma is (vagyis az egyenlet mindkét oldala) 1-gyel csökken. Az eljárás ismétlésével fát kapunk, aminek 1 tartománya van, így teljesül rá az összefüggés (Miért?), így az eredeti gráfra is teljesült.

Síkgráfok

Állítás (Felső korlát élek számára egyszerű síkgráfban)

Ha a $G=(\varphi,E,V)$ egyszerű, összefüggő síkgráfra $|V|\geq 3$, akkor $|E|\leq 3|V|-6$.

Bizonyítás

|V|=3esetén 2 ilyen gráf van: P_2 és C_3 , amelyekre teljesül az állítás. |V|>3esetén legalább 3 éle van a gráfnak (Miért?). Mivel Gegyszerű, ezért minden tartományát legalább 3 él határolja, ezért a tartományok határán végigszámolva az éleket az így kapott érték legalább 3t. Mivel minden él legfeljebb két tartományt választ el, ezért $3t \leq 2|E|$. Az Euler-formulát használva $3(|E|+2-|V|) \leq 2|E|$, amiből kapjuk az állítást.

Meg jegyzés

A becslés nem összefüggő síkgráfok esetén is teljesül, hiszen élek hozzávételével összefüggő síkgráfot kaphatunk.

Síkgráfok

Állítás (Felső korlát minimális fokszámra egyszerű síkgráfban)

Ha $G = (\varphi, E, V)$ egyszerű síkgráf, akkor

$$\delta = \min_{v \in V} d(v) \le 5.$$

Bizonyítás

Feltehető, hogy $|V| \ge 3$ (Miért?).

Indirekt tfh. $\delta \geq$ 6. Ekkor $6|V| \leq 2|E|$ (Miért?), továbbá az előző állítást használva $2|E| \leq 6|V|-12$, vagyis $6|V| \leq 6|V|-12$, ami ellentmondás.

Megjegyzés

Létezik 5-reguláris egyszerű síkgráf.

Síkgráfok

Állítás

 $K_{3,3}$ nem síkgráf.

Bizonyítás

Indirekt tfh. $K_{3,3}$ síkgráf, és jelöljük t-vel a síkbeli reprezentációiban a tartományok számát. Ekkor |E|=9 és |V|=6 miatt az Euler-formula alapján t=5. Mivel egyszerű, páros gráf, így minden tartomány határa legalább 4 élt tartalmaz (Miért?), és minden él legfeljebb két tartomány határán van, ezért $4t \leq 2|E|$, amiből $20 \leq 18$ adódik, ami ellentmondás.

Állítás

K₅ nem síkgráf.

Bizonyítás

Indirekt tfh. K_5 síkgráf. |E|=10 és |V|=5, így az élszámra vonatkozó becslés alapján $10 < 3 \cdot 5 - 6 = 9$, ami ellentmondás.

Síkgráfok

Definíció (gráfok topologikus izomorfiája)

A G és G' gráfokat topologikusan izomorfnak nevezzük, ha az alábbi lépést, illetve a fordítottját alkalmazva, véges sok lépésben az egyikből a másikkal izomorf gráfot kaphatunk: egy másodfokú csúcsot törlünk, és a szomszédjait összekötjük egy éllel.

Tétel (Kuratowski) (NB)

Egy egyszerű gráf pontosan akkor síkgráf, ha nincs olyan részgráfja, ami topologikusan izomorf K_5 -tel vagy $K_{3,3}$ -mal.

Példa

