$11n_{76} (K11n_{76})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^9 + u^8 - 6u^7 - 4u^6 + 12u^5 + u^4 - 8u^3 + 8u^2 + 2d - u, \\ u^{10} + 2u^9 - 6u^8 - 12u^7 + 14u^6 + 21u^5 - 21u^4 - 5u^3 + 22u^2 + 2c - 10u, \\ u^{10} + 2u^9 - 5u^8 - 10u^7 + 8u^6 + 11u^5 - 9u^4 + 4u^3 + 13u^2 + 4b + u, \ a - 1, \\ u^{11} + 2u^{10} - 6u^9 - 12u^8 + 13u^7 + 21u^6 - 17u^5 - 7u^4 + 18u^3 - 3u^2 - u - 1 \rangle \\ I_2^u &= \langle 3u^7 + 5u^6 - 3u^5 - u^4 + 3u^3 - 10u^2 + 4d - 9u - 2, \ 7u^7 + 9u^6 - 15u^5 - u^4 + 15u^3 - 34u^2 + 8c - 9u + 14, \\ u^7 + u^6 - u^5 + u^4 + u^3 - 4u^2 + 2b - 3u, \ -u^7 - 3u^6 - 3u^5 + 3u^4 + 3u^3 - 6u^2 + 8a + 7u + 18, \\ u^8 + u^7 - 3u^6 - u^5 + 3u^4 - 4u^3 - 3u^2 + 4u + 4 \rangle \\ I_3^u &= \langle d + u, \ c, \ -au + b + a + 1, \ a^2 + a - u - 1, \ u^2 + u - 1 \rangle \\ I_4^u &= \langle u^3 + d - u + 1, \ u^3 - u^2 + c, \ u^3 - u^2 + b - u + 2, \ -u^3 + a - 1, \ u^4 - u^3 + 2u - 1 \rangle \\ I_5^u &= \langle d + u, \ c, \ b + u + 1, \ a - 1, \ u^2 + u - 1 \rangle \\ I_7^u &= \langle d, \ c + 1, \ b, \ a + 1, \ u - 1 \rangle \\ I_7^u &= \langle d, \ c - 1, \ b + 1, \ a, \ u - 1 \rangle \\ I_8^u &= \langle d, \ cb + 1, \ a + 1, \ u - 1 \rangle \\ I_1^v &= \langle a, \ d, \ c - 1, \ b + 1, \ v - 1 \rangle \\ \end{split}$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 1$

^{* 8} irreducible components of $\dim_{\mathbb{C}} = 0$, with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

²All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated

 $\begin{array}{c} \text{I. } I_1^u = \langle u^9 + u^8 + \dots + 2d - u, \ u^{10} + 2u^9 + \dots + 2c - 10u, \ u^{10} + 2u^9 + \dots + 4b + u, \ a - 1, \ u^{11} + 2u^{10} + \dots - u - 1 \rangle \end{array}$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{10} - u^{9} + \dots - 11u^{2} + 5u \\ -\frac{1}{2}u^{9} - \frac{1}{2}u^{8} + \dots - 4u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -\frac{1}{4}u^{10} - \frac{1}{2}u^{9} + \dots - \frac{13}{4}u^{2} - \frac{1}{4}u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{10} - \frac{1}{2}u^{9} + \dots - 7u^{2} + \frac{9}{2}u \\ -\frac{1}{2}u^{9} - \frac{1}{2}u^{8} + \dots - 4u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{10} - \frac{3}{4}u^{9} + \dots + \frac{19}{4}u + \frac{3}{4} \\ -\frac{1}{2}u^{10} - \frac{3}{4}u^{9} + \dots + \frac{3}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -\frac{1}{4}u^{10} - \frac{1}{2}u^{9} + \dots - \frac{9}{4}u^{2} - \frac{1}{4}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{4}u^{9} + \frac{1}{2}u^{8} + \dots + \frac{5}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$u^{10} + \frac{7}{2}u^9 - 4u^8 - \frac{45}{2}u^7 + u^6 + 47u^5 + \frac{3}{2}u^4 - \frac{71}{2}u^3 + 20u^2 + \frac{23}{2}u + \frac{1}{2}u^3 + \frac{1}{2}u^$$

in decimal forms when there is not enough margin.

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{11} - 2u^{10} + u^9 + 2u^8 - 5u^6 + 7u^5 + 6u^4 - 13u^3 + 3u^2 + 8u - 4$
c_2	$u^{11} + 2u^{10} + \dots + 88u + 16$
c_{3}, c_{7}	$u^{11} + 2u^{10} - u^9 - 8u^8 - 11u^7 + 46u^5 + 76u^4 + 32u^3 - 12u^2 - 16u - 8$
$c_5, c_6, c_8 \ c_9, c_{11}$	$u^{11} + 2u^{10} + \dots - u - 1$
c_{10}	$u^{11} - 16u^{10} + \dots - 5u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{11} - 2y^{10} + \dots + 88y - 16$
c_2	$y^{11} + 14y^{10} + \dots + 2336y - 256$
c_{3}, c_{7}	$y^{11} - 6y^{10} + \dots + 64y - 64$
c_5, c_6, c_8 c_9, c_{11}	$y^{11} - 16y^{10} + \dots - 5y - 1$
c_{10}	$y^{11} - 36y^{10} + \dots - 93y - 1$

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.552760 + 0.641799I		
a =	1.00000		
b =	0.82545 - 1.53098I	0.79689 + 3.53286I	6.46290 - 7.08687I
c =	0.712390 + 0.815288I		
d =	1.044080 + 0.152224I		
u =	0.552760 - 0.641799I		
a =	1.00000		
b =	0.82545 + 1.53098I	0.79689 - 3.53286I	6.46290 + 7.08687I
c =	0.712390 - 0.815288I		
d =	1.044080 - 0.152224I		
u =	0.590824		
a =	1.00000		
b = -	-1.42161	0.987118	9.97440
c =	0.0396568		
d = -	-0.620148		
u =	1.64391 + 0.11631I		
a =	1.00000		
b =	0.437522 - 0.637453I	10.83450 + 3.51232I	10.06687 - 2.29315I
c =	0.234439 - 1.284060I		
d =	0.24685 - 1.67120I		
u =	1.64391 - 0.11631I		
a =	1.00000		
b =	0.437522 + 0.637453I	10.83450 - 3.51232I	10.06687 + 2.29315I
c =	0.234439 + 1.284060I		
d =	0.24685 + 1.67120I		
u = -			
a =	1.00000		
b =	0.32965 + 2.04536I	14.9243 - 12.3125I	9.62929 + 5.75829I
c =	0.194428 - 1.371430I		
d =	1.57467 - 0.87175I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.60901 - 0.41639I		
a = 1.00000		
b = 0.32965 - 2.04536I	14.9243 + 12.3125I	9.62929 - 5.75829I
c = 0.194428 + 1.371430I		
d = 1.57467 + 0.87175I		
u = -0.162723 + 0.277330I		
a = 1.00000		
b = 0.160409 + 0.252652I	-1.66390 - 0.61823I	-3.63835 + 1.22407I
c = -0.22673 + 2.50982I		
d = 0.267436 + 0.517187I		
u = -0.162723 - 0.277330I		
a = 1.00000		
b = 0.160409 - 0.252652I	-1.66390 + 0.61823I	-3.63835 - 1.22407I
c = -0.22673 - 2.50982I		
d = 0.267436 - 0.517187I		
u = -1.72035 + 0.28600I		
a = 1.00000		
b = -0.04222 + 1.42193I	17.3830 - 4.9116I	11.49209 + 1.65700I
c = -0.434360 + 0.920646I		
d = -1.82296 + 0.61164I		
u = -1.72035 - 0.28600I		
a = 1.00000		
b = -0.04222 - 1.42193I	17.3830 + 4.9116I	11.49209 - 1.65700I
c = -0.434360 - 0.920646I		
d = -1.82296 - 0.61164I		

II.
$$I_2^u = \langle 3u^7 + 5u^6 + \dots + 4d - 2, 7u^7 + 9u^6 + \dots + 8c + 14, u^7 + u^6 + \dots + 2b - 3u, -u^7 - 3u^6 + \dots + 8a + 18, u^8 + u^7 + \dots + 4u + 4 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{7}{8}u^{7} - \frac{9}{8}u^{6} + \dots + \frac{9}{8}u - \frac{7}{4} \\ -\frac{3}{4}u^{7} - \frac{5}{4}u^{6} + \dots + \frac{9}{4}u + \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{8}u^{7} + \frac{3}{8}u^{6} + \dots - \frac{7}{8}u - \frac{9}{4} \\ -\frac{1}{2}u^{7} - \frac{1}{2}u^{6} + \dots + 2u^{2} + \frac{3}{2}u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{8}u^{7} + \frac{1}{8}u^{6} + \dots - \frac{9}{8}u - \frac{9}{4} \\ -\frac{3}{4}u^{7} - \frac{5}{4}u^{6} + \dots + \frac{9}{4}u + \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{7} + 2u^{5} + \dots - \frac{1}{2}u - \frac{5}{2} \\ -\frac{3}{4}u^{7} - \frac{5}{4}u^{6} + \dots + \frac{13}{4}u + \frac{3}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{8}u^{7} + \frac{3}{8}u^{6} + \dots - \frac{7}{8}u - \frac{9}{4} \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{6} + \dots - \frac{5}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{7} + \frac{3}{4}u^{6} + \dots - \frac{7}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^7 + 6u^6 4u^5 + 6u^3 14u^2 14u + 4u^3 + 6u^3 14u^2 14u + 4u^3 + 6u^3 14u^2 14u + 4u^3 + 6u^3 14u^3 14u^3 + 6u^3 + 6u^3$

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^4 - u^3 + u + 1)^2$
c_2	$(u^4 + u^3 + 4u^2 + u + 1)^2$
c_3, c_7	$(u^4 - 3u^3 + 3u^2 - 2u + 2)^2$
c_5, c_6, c_8 c_9, c_{11}	$u^8 + u^7 - 3u^6 - u^5 + 3u^4 - 4u^3 - 3u^2 + 4u + 4$
c_{10}	$u^8 - 7u^7 + 17u^6 - 17u^5 + 19u^4 - 50u^3 + 65u^2 - 40u + 16$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^4 - y^3 + 4y^2 - y + 1)^2$
c_2	$(y^4 + 7y^3 + 16y^2 + 7y + 1)^2$
c_3, c_7	$(y^4 - 3y^3 + y^2 + 8y + 4)^2$
$c_5, c_6, c_8 \\ c_9, c_{11}$	$y^8 - 7y^7 + 17y^6 - 17y^5 + 19y^4 - 50y^3 + 65y^2 - 40y + 16$
c_{10}	$y^8 - 15y^7 + 89y^6 - 213y^5 + 343y^4 - 846y^3 + 833y^2 + 480y + 256$

Solutions to I_2^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.695289 + 0.428533I		
a = -1.29532 - 0.84192I		
b = -0.109976 - 0.519497I	2.62917 - 1.45022I	7.43990 + 4.72374I
c = -0.57622 - 2.77692I		
d = 0.066121 - 0.864054I		
u = -0.695289 - 0.428533I		
a = -1.29532 + 0.84192I		
b = -0.109976 + 0.519497I	2.62917 + 1.45022I	7.43990 - 4.72374I
c = -0.57622 + 2.77692I		
d = 0.066121 + 0.864054I		
u = 0.529919 + 1.081980I		
a = -0.745137 + 1.110160I		
b = -0.39002 + 1.84237I	8.06290 + 6.78371I	8.56010 - 4.72374I
c = -1.47609 - 1.17606I		
d = -1.56612 - 0.45882I		
u = 0.529919 - 1.081980I		
a = -0.745137 - 1.110160I		
b = -0.39002 - 1.84237I	8.06290 - 6.78371I	8.56010 + 4.72374I
c = -1.47609 + 1.17606I		
d = -1.56612 + 0.45882I		
u = 1.261410 + 0.030288I		
a = -0.542730 + 0.352757I		
b = -0.109976 - 0.519497I	2.62917 - 1.45022I	7.43990 + 4.72374I
c = 0.054288 - 0.560610I		
d = 0.066121 - 0.864054I		
u = 1.261410 - 0.030288I		
a = -0.542730 - 0.352757I		
b = -0.109976 + 0.519497I	2.62917 + 1.45022I	7.43990 - 4.72374I
c = 0.054288 + 0.560610I		
d = 0.066121 + 0.864054I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.59604 + 0.21793I $a = -0.416815 + 0.621004I$ $b = -0.39002 - 1.84237I$ $c = -0.001980 + 0.777911I$	8.06290 - 6.78371I	8.56010 + 4.72374I
d = -1.56612 + 0.45882I		
u = -1.59604 - 0.21793I		
a = -0.416815 - 0.621004I		
b = -0.39002 + 1.84237I	8.06290 + 6.78371I	8.56010 - 4.72374I
c = -0.001980 - 0.777911I		
d = -1.56612 - 0.45882I		

III. $I_3^u = \langle d+u, \ c, \ -au+b+a+1, \ a^2+a-u-1, \ u^2+u-1 \rangle$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u \\ -u+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} a \\ au - a - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} au - 1 \\ au + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = 10

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_{11}	$u^4 - u^3 + 2u - 1$
c_2	$u^4 + u^3 + 2u^2 + 4u + 1$
c_3, c_6, c_7 c_8, c_9	$(u^2+u-1)^2$
c_{10}	$u^4 - u^3 + 2u^2 - 4u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_{11}	$y^4 - y^3 + 2y^2 - 4y + 1$
c_2, c_{10}	$y^4 + 3y^3 - 2y^2 - 12y + 1$
c_3, c_6, c_7 c_8, c_9	$(y^2 - 3y + 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0.866760		
b = -1.33107	0.986960	10.0000
c = 0		
d = -0.618034		
u = 0.618034		
a = -1.86676		
b = -0.286961	0.986960	10.0000
c = 0		
d = -0.618034		
u = -1.61803		
a = -0.500000 + 0.606658I		
b = 0.30902 - 1.58825I	8.88264	10.0000
c = 0		
d = 1.61803		
u = -1.61803		
a = -0.500000 - 0.606658I		
b = 0.30902 + 1.58825I	8.88264	10.0000
c = 0		
d = 1.61803		

 $IV. \\ I_4^u = \langle u^3 + d - u + 1, \ u^3 - u^2 + c, \ u^3 - u^2 + b - u + 2, \ -u^3 + a - 1, \ u^4 - u^3 + 2u - 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} + u^{2} \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} + 1 \\ -u^{3} + u^{2} + u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} - u + 1 \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - 2u + 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 1 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} - 1 \\ u^{3} + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} - 1 \\ u^{3} - 2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{3} - 2u^{2} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 10

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_8, c_9	$u^4 - u^3 + 2u - 1$
c_2	$u^4 + u^3 + 2u^2 + 4u + 1$
c_3, c_5, c_7 c_{11}	$(u^2+u-1)^2$
c_{10}	$(u^2 - 3u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_8, c_9	$y^4 - y^3 + 2y^2 - 4y + 1$
c_2	$y^4 + 3y^3 - 2y^2 - 12y + 1$
c_3, c_5, c_7 c_{11}	$(y^2 - 3y + 1)^2$
c_{10}	$(y^2 - 7y + 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.15372		
a = -0.535687		
b = -0.286961	0.986960	10.0000
c = 2.86676		
d = -0.618034		
u = 0.809017 + 0.981593I		
a = -0.809017 + 0.981593I		
b = 0.30902 + 1.58825I	8.88264	10.0000
c = 1.50000 + 0.60666I		
d = 1.61803		
u = 0.809017 - 0.981593I		
a = -0.809017 - 0.981593I		
b = 0.30902 - 1.58825I	8.88264	10.0000
c = 1.50000 - 0.60666I		
d = 1.61803		
u = 0.535687		
a = 1.15372		
b = -1.33107	0.986960	10.0000
c = 0.133240		
d = -0.618034		

V.
$$I_5^u = \langle d+u, c, b+u+1, a-1, u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -2u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ -u+2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 10

Crossings	u-Polynomials at each crossing	
c_1, c_3, c_4 c_5, c_6, c_7 c_8, c_9, c_{11}	$u^2 + u - 1$	
c_2	$u^2 + 3u + 1$	
c_{10}	$u^2 - 3u + 1$	

Crossings	Riley Polynomials at each crossing	
c_1, c_3, c_4 c_5, c_6, c_7 c_8, c_9, c_{11}	$y^2 - 3y + 1$	
c_2, c_{10}	$y^2 - 7y + 1$	

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 1.00000		
b = -1.61803	0.986960	10.0000
c = 0		
d = -0.618034		
u = -1.61803		
a = 1.00000		
b = 0.618034	8.88264	10.0000
c = 0		
d = 1.61803		

VI.
$$I_6^u = \langle d, c+1, b, a+1, u-1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_7	u	
c_5, c_8, c_9	u-1	
c_6, c_{10}, c_{11}	u+1	

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	y
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{11}$	y-1

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000		
b = 0	3.28987	12.0000
c = -1.00000		
d = 0		

VII.
$$I_7^u=\langle d,\; c-1,\; b+1,\; a,\; u-1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing	
c_1, c_8, c_9	u-1	
c_2, c_4, c_6	u+1	
$c_3, c_5, c_7 \\ c_{10}, c_{11}$	u	

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_4 c_6, c_8, c_9	y-1	
c_3, c_5, c_7 c_{10}, c_{11}	y	

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0		
b = -1.00000	0	0
c = 1.00000		
d = 0		

VIII.
$$I_8^u = \langle d, cb+1, a+1, u-1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} c \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} c \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} c - 1 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ b - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-c^2 b^2 + 8$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$		
$b = \cdots$	1.64493	8.06956 - 0.34732I
$c = \cdots$		
$d = \cdots$		

IX.
$$I_1^v = \langle a, \ d, \ c-1, \ b+1, \ v-1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1,c_{11}	u-1
c_2, c_4, c_5 c_{10}	u+1
c_3, c_6, c_7 c_8, c_9	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \\ c_5, c_{10}, c_{11}$	y-1
c_3, c_6, c_7 c_8, c_9	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0		
b = -1.00000	0	0
c = 1.00000		
d = 0		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u-1)^{2}(u^{2}+u-1)(u^{4}-u^{3}+u+1)^{2}(u^{4}-u^{3}+2u-1)^{2}$ $\cdot (u^{11}-2u^{10}+u^{9}+2u^{8}-5u^{6}+7u^{5}+6u^{4}-13u^{3}+3u^{2}+8u-4)$
c_2	$u(u+1)^{2}(u^{2}+3u+1)(u^{4}+u^{3}+2u^{2}+4u+1)^{2}$ $\cdot ((u^{4}+u^{3}+4u^{2}+u+1)^{2})(u^{11}+2u^{10}+\cdots+88u+16)$
c_{3}, c_{7}	$u^{3}(u^{2} + u - 1)^{5}(u^{4} - 3u^{3} + 3u^{2} - 2u + 2)^{2}$ $\cdot (u^{11} + 2u^{10} - u^{9} - 8u^{8} - 11u^{7} + 46u^{5} + 76u^{4} + 32u^{3} - 12u^{2} - 16u - 8)$
c_4	$u(u+1)^{2}(u^{2}+u-1)(u^{4}-u^{3}+u+1)^{2}(u^{4}-u^{3}+2u-1)^{2}$ $\cdot (u^{11}-2u^{10}+u^{9}+2u^{8}-5u^{6}+7u^{5}+6u^{4}-13u^{3}+3u^{2}+8u-4)$
c_5,c_{11}	$u(u-1)(u+1)(u^{2}+u-1)^{3}(u^{4}-u^{3}+2u-1)$ $\cdot (u^{8}+u^{7}+\cdots+4u+4)(u^{11}+2u^{10}+\cdots-u-1)$
c_6	$u(u+1)^{2}(u^{2}+u-1)^{3}(u^{4}-u^{3}+2u-1)$ $\cdot (u^{8}+u^{7}+\cdots+4u+4)(u^{11}+2u^{10}+\cdots-u-1)$
c_8, c_9	$u(u-1)^{2}(u^{2}+u-1)^{3}(u^{4}-u^{3}+2u-1)$ $\cdot (u^{8}+u^{7}+\cdots+4u+4)(u^{11}+2u^{10}+\cdots-u-1)$
c_{10}	$u(u+1)^{2}(u^{2}-3u+1)^{3}(u^{4}-u^{3}+2u^{2}-4u+1)$ $\cdot (u^{8}-7u^{7}+17u^{6}-17u^{5}+19u^{4}-50u^{3}+65u^{2}-40u+16)$ $\cdot (u^{11}-16u^{10}+\cdots-5u-1)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y(y-1)^{2}(y^{2}-3y+1)(y^{4}-y^{3}+2y^{2}-4y+1)^{2}$ $\cdot ((y^{4}-y^{3}+4y^{2}-y+1)^{2})(y^{11}-2y^{10}+\cdots+88y-16)$
c_2	$y(y-1)^{2}(y^{2}-7y+1)(y^{4}+3y^{3}-2y^{2}-12y+1)^{2}$ $\cdot ((y^{4}+7y^{3}+16y^{2}+7y+1)^{2})(y^{11}+14y^{10}+\cdots+2336y-256)$
c_3, c_7	$y^{3}(y^{2} - 3y + 1)^{5}(y^{4} - 3y^{3} + y^{2} + 8y + 4)^{2}$ $\cdot (y^{11} - 6y^{10} + \dots + 64y - 64)$
c_5, c_6, c_8 c_9, c_{11}	$y(y-1)^{2}(y^{2}-3y+1)^{3}(y^{4}-y^{3}+2y^{2}-4y+1)$ $\cdot (y^{8}-7y^{7}+17y^{6}-17y^{5}+19y^{4}-50y^{3}+65y^{2}-40y+16)$ $\cdot (y^{11}-16y^{10}+\cdots-5y-1)$
c_{10}	$y(y-1)^{2}(y^{2}-7y+1)^{3}(y^{4}+3y^{3}-2y^{2}-12y+1)$ $\cdot (y^{8}-15y^{7}+89y^{6}-213y^{5}+343y^{4}-846y^{3}+833y^{2}+480y+256)$ $\cdot (y^{11}-36y^{10}+\cdots-93y-1)$