ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4.02

"Определение расстояния между двумя щелями интерференционным методом"

Группа: 1.1.1 Студенты: Стафеев И.А., Голованов Д.И.

Преподаватель: Середин А.А.

К работе допущен:

Работа выполнена:

Отчет принят:

1 Цель работы

Определение расстояния между двумя щелями по полученной от них интерференционной картине.

2 Задачи

Для достижения цели были поставлены следующиа цели:

- 1. измерить координаты минимумов интерференционной картины при различных расстояниях до экрана;
- 2. рассчитать ширину интерференционной полосы;
- 3. построить график зависимости ширины интерференционной полосы от расстояния до экрана;
- 4. определить расстояние между щелями, используя экспериментальные данные;
- 5. оценить погрешность измерений и сравнить результат с теоретическим значением.

3 Объект исследования

Интерференционная картина, возникающая при прохождении когерентного света через две щели.

4 Метод экспериментального исследования

- 1. измерение координат минимумов интерференционной картины;
- 2. анализ зависимости ширины интерференционных полос от расстояния между экраном и объектом;
- 3. графический метод обработки экспериментальных данных.

5 Рабочие формулы и исходные данные

1. Длина волны лазера

$$\lambda = 632.82 \pm 0.01 \text{ HM}$$
 (1)

2. Теоретическое расстояние между щелями

$$d_{\text{Teop}} = (0.12 \pm 0.01) \text{ mm}$$
 (2)

3. Разность хода волн:

$$\Delta \approx d \cdot \theta \approx d \frac{x}{L},\tag{3}$$

где d — расстояние между щелями, x — координата минимума на экране, L — расстояние от щелей до экрана.

4. Условие максимума интерференции:

$$\Delta = m\lambda,\tag{4}$$

где m — целое число порядка максимума, λ — длина волны лазерного излучения.

5. Условие минимума интерференции:

$$\Delta = \left(m + \frac{1}{2}\right)\lambda. \tag{5}$$

6. Ширина интерференционной полосы:

$$\Delta x = \frac{\lambda}{d}L = KL = \frac{x_m - x_1}{m},\tag{6}$$

где Δx — расстояние между соседними минимумами (или максимумами) интерференционной картины, K - коэффициент наклона графика, построенного по экспериментальным данным, x_1, x_m - координаты крайнего левого и крайнего правого минимумов, m - количество измеренных минимумов

7. Расстояние между щелями;

$$d = \frac{\lambda}{K},\tag{7}$$

где λ - длина волны лазерного излучения, K - коэффициент наклона аппроксимирующей прямой для зависимости Δx от L.

6 Измерительные приборы:

Таблица 1 — Измерительные приборы

Nº	Наименование	Предел измерения	Цена деления	Погрешность прибора
π/π				$\Delta_{\scriptscriptstyle{ extsf{H}}t}$
1	Линейка на оптиче-	1200 мм	1 мм/дел	0.05 мм
	ской скамье			
2	Линейка на экране	100 мм	1 мм/дел	0.05 мм

7 Схема установки

Вид лабораторной установки представлен на рис. 3. Источником света служит гелий-неоновый лазер 1. В роли вторичных источников выступают две щели на учебно-демонстрационном объекте 2. Для наблюдения интерференционной картины используется экран 3, закреплённый позади объекта на оптическом рельсе.

Рисунок 1 — Лабораторная установка

8 Прямые измерения

Таблица 2 — Результаты измерений (объект 33)

$X_0, 1005 \text{ mm}$	X_{\ni} , 0 mm	$X_{\ni}, 100 \text{ mm}$	$X_{\ni}, 200 \text{ mm}$	$X_{\ni}, 300 \text{ mm}$	$X_{\ni}, 400 \text{ mm}$	$X_{\ni}, 500 \text{ mm}$
left1, мм	-6	-5	-5	-4	-3	-2
left2, mm	-10	-8	-8	-6	-5	-4
left3, мм	-14	-12	-11	-9	-7	-6
left4, mm	-17	-16	-14	-12	-10	-8
left5, mm	-21	-19	-17	-15	-12	-10
right1, мм	6	6	5	5	4	2
right2, мм	9	9	8	7	6	4
right3, мм	14	13	11	10	9	6
right4, мм	17	16	14	13	11	8
right5, мм	20	20	17	15	13	11
L, mm	1005	905	805	705	605	505

9 Расчёт результатов косвенных измерений

По формуле 6 при каждом расстоянии L была найдена ширина интерференционной полосы. Поскольку были измерены координаты 10 минимумов (5 слева и 5 справа), то m=10. Пример расчета для расстояния L=1005 мм: $\Delta x=\frac{20-(-21)}{10}=4.1$ мм. В таблице 3 приведены все измеренные значения ширины при различных значениях расстояния L.

Таблица 3 — Ширина интерференционной полосы при различных значениях L

L, mm	1005	905	805	705	605	505
Δx , mm	4.1	3.9	3.4	3.0	2.5	2.1

При помощи МНК было найдено уравнение аппроксимирующей прямой y=0.0042x+0.017, откуда K=0.0042. По формуле 7 было получено значение $d=\frac{632.82~\text{нм}}{0.0042}\approx 0.151~\text{мм}.$

10 Расчет погрешностей

$$\begin{split} \Delta K &= 2S_K = 2 \cdot 0.0002 = 0.0004; \, \varepsilon_K = \tfrac{0.0004}{0.0042} = 9.5\%; \, \alpha = 0.95 \\ \Delta \lambda &= 0.01 \text{ нм (по начальным данным)} \\ \Delta d &= \sqrt{\left(\tfrac{\lambda \cdot \Delta K}{K^2}\right)^2 + \left(\tfrac{\Delta \lambda}{K}\right)^2} = 0.015 \text{ мм; } \varepsilon_d = \tfrac{0.015}{0.151} = 9.9\%; \, \alpha = 0.95 \end{split}$$

11 Графики

Рисунок 2 — График зависимости Δx от Lс аппроксимирующей прямой

12 Окончательные результаты

$$d = (0.151 \pm 0.015)$$
 mm;

Для сравнения теоретического и экспериментального значений расстояния между щелями была применена Zeta-оценка.

$$Zeta$$
-score = $\frac{d_{\text{Teop}} - d_{\text{экс}}}{\sqrt{(\Delta d_{\text{Teop}})^2 + (\Delta d_{\text{экс}})^2}} = \frac{0.12 - 0.151}{\sqrt{(0.01)^2 + (0.015)^2}} = -1.72$

Так как |Zeta-score|<2, то на уровне значимости 0.05 отклонение не является статистически значимым (вероятность случайного возникновения такого отклонения составляет 8.5%). Относительная погрешность измерений составляет $\frac{|0.12-0.151|}{0.12}\cdot 100\%=26\%$.

13 Выводы и анализ результатов работы

В ходе данной лабораторной работы была получена интерференционная картина, по которой были определены координаты минимумов картины и экспериментально посчитано расстояние между щелями в изучаемом объекте. Полученные экспериментальные данные $d=(0.151\pm0.015)$ мм отличаются от теоретических $d_{\rm Teop}=(0.12\pm0.01)$ мм. Поскольку |Zeta-score| <2 и относительная погрешность составляет 26%, можно говорить об умеренном отклонении экспериментальной и теоретической оценки. Причиной несовпадения значений может быть человеческий фактор, а также неидеальная настройка оборудования в экспериментальной установке.