Remedial Procedure in SLR: transformation

Overview of remedial measures

If the simple linear regression model is not appropriate for a data set

- Abandon regression model and develop a more appropriate model
- Employ some transformation on the data so that regression model is appropriate for the transformed data
 - ➤ Nonlinearity of regression function → Transformations
 - ➤ Non-constancy of error variance → Transformations and Weighted least squares
 - ➤ Non-normality of error terms → Transformations
 - ➤ Outliers → Transformations or Robust regression
 - ➤ Non-independence of Error terms → Autocorrelation, time series analysis

When the error terms approximately have a Normal distribution with constant variance

Transformation on X should be attempted (at first).

$$Y = \beta_{0} + \beta_{1}X + \beta_{2}X^{2} + \varepsilon \quad \Rightarrow Y = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \varepsilon, where X_{1} = X, X_{2} = X^{2}$$

$$Y = \beta_{0} + \beta_{1}\log(X) + \varepsilon \quad \Rightarrow Y = \beta_{0} + \beta_{1}X_{1} + \varepsilon, where X_{1} = \log(X)$$

$$Y = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \beta_{3}X_{1}X_{2} + \varepsilon \quad \Rightarrow Y = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \beta_{3}X_{3} + \varepsilon, where X_{3} = X_{1}X_{2}$$

• The reason why transformation on Y may not be desirable is that transformation of Y may materially change the shape of distribution of the error terms from the Normal distribution and lead to differing error term variances.

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
 $\rightarrow \sqrt{Y} = \beta_0 + \beta_1 X_1 + new \varepsilon$

Some common transformation form on X

Prototype Regression Pattern Transformations of X $X' = \log_{10} X$ $X' = \sqrt{X}$ (a) $X' = X^2$ $X' = \exp(X)$ (b) (c) X' = 1/X $X' = \exp(-X)$

Comment

 If some of the X data are near 0 and reciprocal transformation is desired.
 Shift the origin by

$$X' = \frac{1}{X + k}$$

Where $k \neq 0$

Unequal error variance and nonnormality of the error terms frequently appear together, and we need a transformation on Y

Transformations on Y

$$Y' = Y^{\lambda}$$
 (Box-Cox Transformation)

For example,

$$\lambda = 2 \quad Y' = Y^{2}$$

$$\lambda = 0.5 \quad Y' = \sqrt{Y}$$

$$\lambda = 0 \quad Y' = \ln Y$$

$$\lambda = -0.5 \quad Y' = \frac{1}{\sqrt{Y}}$$

$$\lambda = -1 \quad Y' = \frac{1}{Y}$$

Comment

 Consider use constant values to validate the transformation function

$$Y' = \log_{10}(Y + k)$$

k is selected such that $Y + k > 0$ for all Y.

 Can be combined with transformation on X

Box-Cox Procedure

Transformations on Y sometimes help with variance issue: non-normality and non-constant.

Box-Cox considers a family of so-called "power transformations",

$$Y' = Y^{\lambda}$$

- "Works by using the method of maximum likelihood or minimum SSE to find the value of λ that produces the best (transformed) regression $Y^{\lambda} = \beta_0 + \beta X + \varepsilon$
- Need to check assumptions for the transformed regression model.

The Plasma example

Age (X) and plasma level of a poly amine (Y) for a portion of the 25 healthy children are studied. Scatter plot shows there is greater variability for younger children than for older ones

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.4752   0.6379   21.126   < 2e-16 ***
age     -2.1820   0.2604   -8.379   1.92e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 1.841 on 23 degrees of freedom Multiple R-squared: 0.7532, Adjusted R-squared: 0.7425 F-statistic: 70.21 on 1 and 23 DF, p-value: 1.92e-08

Check Normality and constancy on the residuals

qqnorm(residuals(plasma.mod))

qqline(residuals(plasma.mod))

```
Residual plot
     9
     4
resid
     \sim
                                                   0
     0
     \dot{c}
                                                   2
                                             plasma$age
```

```
Brown-Forsythe Test

data: residual and agef

statistic: 2.059299
num df: 4
denom df: 6.526859
p.value: 0.1965498

Result: Difference is not statistically significant.

bf.test(residual~agef, plasma)
```

Confident interval band

$$egin{aligned} \widehat{Y}_h &\pm t_c s_{\{\hat{Y}_h\}} \ \end{aligned}$$
 Where $s_{\{\hat{Y}_h\}}^2 = s^2 \left[rac{1}{n} + rac{(X_h - ar{X})^2}{\Sigma (X_i - ar{X})^2}
ight] \ \widehat{Y}_h &\pm t_c s_{\{pred\}} \ \end{aligned}$ Where $s_{\{pred\}}^2 = s^2 + s_{\{\hat{Y}_h\}}^2$

After a careful exam on the experiment procedure, no mistake has been found, hence we should keep this observation.

Box-cox procedure

$$\lambda = -0.5 \quad Y' = \frac{1}{\sqrt{Y}}$$

The best $\lambda = -0.515$ (biggest log – likelihood)

library(MASS)
bcmle<-boxcox(lm(plasma~age,data=orig),lambda=seq(-3,3, by=0.1))
lambda<-bcmle\$x[which.max(bcmle\$y)]
lambda</pre>

The best $\lambda = -0.5$ (*smallest SSE*)

library(ALSM)
bcsse<-boxcox.sse(plasma\$age,plasma\$plasma,l=seq(-2,2,0.1))
lambda<-bcsse\$lambda[which.min(bcsse\$SSE)]
lambda</pre>

 $Y^{\lambda} = \beta_0 + \beta_1 X$, where λ ranges from -3 to 3, increases by 0.1)

Transform
$$Y' = \frac{1}{\sqrt{Y}}$$

Because s{residual} has the same unit as the response variable, but transformation alters that.

Why the s(residual) is not comparable?

Re-Check Normality and constancy on the residuals

Back-transformations

Transformations can improve model performance, but make interpretation hard.

Back transformation lets us make inferences (and graphs!) on the original scale.

Very helpful for communicating results to the public.

Interpreting the confidence interval for the mean and single prediction

• In general, let Y' = f(Y) and let f' be the back-transformation function.

```
For example, Y' = f(Y) = Y^2, the back-transformation function f' does f'(Y') = Y, so f'(Y') = \sqrt{Y^2} = Y
```

 Then, back transform the mean and single response confidence interval (a, b) as following

$$(f'(a), f'(b))$$
, For example, (\sqrt{a}, \sqrt{b})

Back transforming the coefficients or the standard error is not accurate.

For example, do not back transform the point estimate with
$$\hat{Y}=f'(b_0)+f'(b_1)X=\sqrt{b_0}+\sqrt{b_1}X$$
, in stead, do $\sqrt{b_0+b_1X}$

If only X is transformed to X', then no need to back transform Y's estimation because Y hasn't been transformed.

For example,
$$\hat{Y} = b_o + b_1 X'$$

Back-transform $Y' = \frac{1}{\sqrt{Y}}$

- 1. The back transform function $f' = \frac{1}{Y'^2} = (Y')^{-2}$
- 2. The predicted value should be $\hat{Y} = (\hat{Y}')^{-2}$
- 3. The confidence interval for the prediction, either for the mean or single response, should also be back transformed with $(value)^{-2}$.

coefficients:

$$\frac{1}{\sqrt{Y}} = 0.268 + 0.04(X)$$

Back-transform $Y' = \frac{1}{\sqrt{Y}}$, then $Y = (Y')^{-2}$


```
plot(ty ~ age, plasma, main="Confidence Bands before back transformation")
lines(cim$age, cim$Lower.Band,col="green", lwd=2, lty=2)
lines(cim$age, cim$Upper.Band, col="green", lwd=2, lty=2)
lines(cin$age, cin$Lower.Band,col="blue", lwd=2, lty=3)
lines(cin$age, cin$Upper.Band, col="blue", lwd=2, lty=3)
```

```
\label{lines} $$ plot(plasma \sim age, plasma, main="Confidence Bands after back transformation") $$ lines(cim$age, (cim$Lower.Band)^(-2), col="green", lwd=2, lty=2) $$ lines(cim$age, (cim$Upper.Band)^(-2), col="green", lwd=2, lty=2) $$ lines(cin$age, (cin$Lower.Band)^(-2), col="blue", lwd=2, lty=3) $$ lines(cin$age, (cin$Upper.Band)^(-2), col="blue", lwd=2, lty=3) $$ lines(cin$age, (cin$age, (cin$blue", lwd=2, lty=3) $$ lines(cin$age, (cin$blue", lwd=2, lty=3) $$ lin
```

Summary of remedial measures

- For nonlinear functional relationships with well behaved residuals
 - Try transforming X
 - May require a polynomial or piecewise fit (we will cover these later)
- For non-constant or non-normal variance, possibly with a nonlinear functional form
 - Try transforming Y
 - The Box-Cox procedure may be helpful
 - If the transformation on Y doesn't fix the non constant variance problem, weighted least squares can be used (we will cover this later).

- Transformations of X and Y can be used together.
- Any time you consider a transformation
 - Remember to recheck all the diagnostics.
 - Consider whether you gain enough to justify losing interpretability.
 - Reciprocal transformations make interpretation especially hard.
 - Consider back-transforming the results of the final model for presentation.
- For very non-normal errors, especially those arising from discrete responses, generalized linear models are often a better option, but linear regression may be "good enough."

Transformation – our primary tool to improve model fit

Always repeat diagnostic process after transformation