$$\eta_c(2S)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Quantum numbers are quark model predictions.

$\eta_c(2S)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT		
3639.2±1.2 OUR	AVERAGE					
$3637.0 \pm 5.7 \pm 3.4$	178		.4E BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^0$		
$3635.1\!\pm\!5.8\!\pm\!2.1$	47	1,3 LEES 1	.4E BABR	$\gamma \gamma \rightarrow K^+ K^- \eta$		
$3646.9\!\pm\!1.6\!\pm\!3.6$	57 ± 17	ABLIKIM 1	3K BES3			
				$_{\gamma}$ $_{S}^{0}$ $_{K}$ $_{\pi}$ $_{\pi}$ $_{\pi}$ $_{\pi}$ $_{\pi}$		
$3637.6\!\pm\!2.9\!\pm\!1.6$	127 ± 18	⁴ ABLIKIM 1	.2G BES3	$\psi(2S) \rightarrow \gamma K^0 K \pi$,		
		4		$KK\pi^0$		
$3638.5\!\pm\!1.5\!\pm\!0.8$	624	¹ DEL-AMO-SA1	1M BABR	$\gamma \gamma \rightarrow K_S^0 K^{\pm} \pi^{\mp}$		
$3640.5\!\pm\!3.2\!\pm\!2.5$	1201	¹ DEL-AMO-SA1	1M BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$		
$3636.1_{-4.2}^{+3.9}_{-2.0}^{+0.7}$	128	⁵ VINOKUROVA 1	.1 BELL	$B^{\pm} \rightarrow K^{\pm} (K_S^0 K^{\pm} \pi^{\mp})$		
3626 ± 5 ± 6	311	⁶ ABE 0	7 BELL	$e^+e^- o J/\psi(c\overline{c})$		
$3645.0\pm5.5^{+4.9}_{-7.8}$	121 ± 27	AUBERT 0	5c BABR	$e^+e^- o J/\psi c \overline{c}$		
$3642.9\!\pm\!3.1\!\pm\!1.5$	61	ASNER 0	4 CLEO	$\gamma \gamma \rightarrow \eta_c \rightarrow K_S^0 K^{\pm} \pi^{\mp}$		
• • • We do not use the following data for averages, fits, limits, etc. • •						
3639 ±7	98 + 52	⁷ AUBERT 0	6E BABR	$B^{\pm} \rightarrow K^{\pm} X_{C\overline{C}}$		
$3630.8 \pm 3.4 \pm 1.0$	112 ± 24			$\gamma \gamma \rightarrow \eta_{C}(2S) \rightarrow K\overline{K}\pi$		
$3654 \pm 6 \pm 8$		_		$B \rightarrow KK_SK^-\pi^+$		
3594 ±5	00 ± 11			$e^+e^- \rightarrow \gamma X$		
3337 ±3		EDWANDS 0	2C CDAL	$C C \rightarrow J X$		

¹ Ignoring possible interference with continuum.

$\eta_c(2S)$ WIDTH

VALUE (MeV)	CL% EVTS	DOCUMENT ID	TECN	COMMENT
11.3 ⁺ 3.2 OUR	AVERAGE			
$9.9 \pm \ 4.8 \pm 2.9$	57 ± 17	ABLIKIM	13K BES3	$\psi(2S) o$
				$\gamma K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$ $\psi(2S) \rightarrow \gamma K^0 K \pi$,
$16.9 \pm \ 6.4 \pm 4.8$		¹¹ ABLIKIM	12G BES3	$\psi(2S) \rightarrow \gamma K^0 K \pi$,
13.4± 4.6±3.2	624	12 DEL-AMO-S	A11M BABR	$\gamma \gamma \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
HTTP://PDG	i.LBL.GOV	Page 1	Creat	red: 5/30/2017 17:21

With a width fixed to 11.3 MeV. 3 With a width fixed to 11.3 MeV. Using both $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$ decays. 4 From a simultaneous fit to $K_S^0 K^\pm \pi^\mp$ and $K^+ K^- \pi^0$ decay modes.

 $^{^5}$ Accounts for interference with non-resonant continuum. 6 From a fit of the J/ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.

⁷ From the fit of the kaon momentum spectrum. Systematic errors not evaluated.

 $^{^8}$ Superseded by DEL-AMO-SANCHEZ 11M.

⁹ Superseded by VINOKUROVA 11.

¹⁰ Assuming mass of $\psi(2S) = 3686$ MeV.

• • We do not use the following data for averages, fits, limits, etc. •

< 23	90	98 ± 52	¹⁴ AUBERT	06E BABR	$B^{\pm} \rightarrow K^{\pm} X_{c} \overline{c}$
22 ± 14		121 ± 27		05c BABR	$e^+e^- o J/\psi c \overline{c}$
$17.0 \pm 8.3 \pm 2.5$		112 ± 24	¹⁵ AUBERT	04D BABR	$\gamma \gamma \rightarrow \eta_{c}(2S) \rightarrow$
			1.0		$K\overline{K}\pi$
<55	90	39 ± 11		02 BELL	$B \rightarrow KK_SK^-\pi^+$
<8.0	95		¹⁷ EDWARDS	82c CBAL	$e^+e^- ightarrow \gamma X$

 $^{^{11}}$ From a simultaneous fit to $K_{S}^{0}~K^{\pm}~\pi^{\mp}$ and $K^{+}~K^{-}~\pi^{0}$ decay modes.

$\eta_c(2S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	hadrons	not seen	_
Γ_2	$K\overline{K}\pi$	$(1.9\pm1.2)\%$	
Γ_3	$K\overline{K}\eta$	$(5 \pm 4) \times 10^{-3}$	3
	$2\pi^{+}2\pi^{-}$	not seen	
Γ_5	$ ho^0 ho^0$	not seen	
Γ_6	$3\pi^{+}3\pi^{-}$	not seen	
Γ_7	$K^+K^-\pi^+\pi^-$	not seen	
Γ ₈	$K^{*0}\overline{K}^{*0}$	not seen	
	$K^+K^-\pi^+\pi^-\pi^0$	$(1.4\pm1.0)\%$	
	$K^{+}_{-}K^{-}2\pi^{+}2\pi^{-}$	not seen	
Γ_{11}	$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	seen	
Γ_{12}	$2K^{+}2K^{-}$	not seen	
Γ_{13}	$\phi\phi$	not seen	
Γ_{14}	$p\overline{p}$	$< 2.0 \times 10^{-3}$	90%
Γ_{15}	$\gamma\gamma$	$(1.9\pm1.3)\times10^{-4}$	4
Γ_{16}	$\pi^+\pi^-\eta$	not seen	
	$\pi^+\pi^-\dot{\eta'}$	not seen	
Γ ₁₈	$\pi^+\pi^-\eta_c(1S)$	< 25 %	90%

¹² Ignoring possible interference with continuum.
13 Accounts for interference with non-resonant continuum.
14 From the fit of the kaon momentum spectrum. Systematic errors not evaluated.
15 Superseded by DEL-AMO-SANCHEZ 11M.
16 For a mass value of 3654 ± 6 MeV. Superseded by VINOKUROVA 11.

 $^{^{17}}$ For a mass value of 3594 \pm 5 MeV

$\eta_c(2S)$ PARTIAL WIDTHS

<i>(10)</i>					
$\Gamma(\gamma\gamma)$	15				
VALUE (keV) DOCUMENT ID TECN COMMENT					
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
1.3 \pm 0.6 18 ASNER 04 CLEO $\gamma\gamma \rightarrow \eta_{c} \rightarrow K_{S}^{0}K^{\pm}\pi^{\mp}$					
They measure $\Gamma(\eta_{\mathcal{C}}(2S)\gamma\gamma)$ B $(\eta_{\mathcal{C}}(2S)\to K\overline{K}\pi)=(0.18\pm0.05\pm0.02)$ $\Gamma(\eta_{\mathcal{C}}(1S)\gamma)$ B $(\eta_{\mathcal{C}}(1S)\to K\overline{K}\pi)$. The value for $\Gamma(\eta_{\mathcal{C}}(2S)\to \gamma\gamma)$ is derived assuming the branching fractions for $\eta_{\mathcal{C}}(2S)$ and $\eta_{\mathcal{C}}(1S)$ decays to $K_{\mathcal{S}}K\pi$ are equal and us $\Gamma(\eta_{\mathcal{C}}(1S)\to \gamma\gamma)=7.4\pm0.4\pm2.3$ keV.	$\gamma)$ nat				
$\eta_c(2S) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$					
$\Gamma(2\pi^+2\pi^-) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_4\Gamma_{15}$ VALUE (eV) CL% DOCUMENT ID TECN COMMENT	/Γ				
<6.5 90 UEHARA 08 BELL $\gamma\gamma \rightarrow \eta_{\mathcal{C}}(2S) \rightarrow 2(\pi^{+}\pi^{-})$	_)				
$\Gamma(\overline{K}\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (eV)}$ $EVTS$ $DOCUMENT ID$ $TECN$ $COMMENT$	/Г				
41±4±6 624 19 DEL-AMO-SA11M BABR $\gamma \gamma \rightarrow \kappa_S^0 \kappa^{\pm} \pi^{\mp}$	_				
$^{19}\mathrm{Not}$ independent from other measurements reported in DEL-AMO-SANCHEZ 11M.					
$\Gamma(K^+K^-\pi^+\pi^-) \times \Gamma(\gamma\gamma)/\Gamma_{ ext{total}}$ $VALUE (eV)$ CL% DOCUMENT ID TECN COMMENT					
<5.0 90 UEHARA 08 BELL $\gamma \gamma \rightarrow \eta_{\mathcal{C}}(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	_				
$\Gamma(K^+K^-\pi^+\pi^-\pi^0) \times \Gamma(\gamma\gamma)/\Gamma_{ ext{total}}$ $\Gamma_9\Gamma_{15}$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT	/Γ 				
30±6±5 1201 ²⁰ DEL-AMO-SA11M BABR $\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^-$	$_{ au}$ 0				
$^{20}\mathrm{Not}$ independent from other measurements reported in DEL-AMO-SANCHEZ 11M.					
$\Gamma(2K^+2K^-) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{12}\Gamma_{15}$	/Г				
VALUE (eV) CL% DOCUMENT ID TECN COMMENT <2.9 90 UEHARA 08 BELL $\gamma\gamma \rightarrow \eta_c(2S) \rightarrow 2(K^+K^-)$					
$\Gamma(\pi^+\pi^-\eta_c(1S)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{18}\Gamma_{15}$					
VALUE (eV) CL% DOCUMENT ID TECN COMMENT <133 90 LEES 12AE BABR $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$	—				
<133 90 LEES 12AE BABR $e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{+}\pi^{-}$	η_{c}				
$\eta_c(2S) \; \Gamma(i) \Gamma(\gamma \gamma) / \Gamma^2(total)$					
$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{14}/\Gamma \times \Gamma_{15}$					
VALUE (units 10^{-8})CL% 90 21 ,22,23DOCUMENT ID AMBROGIANI 01TECN E835COMMENT 	/Г				
	/F				
• • • We do not use the following data for averages, fits, limits, etc. • • •	/ Г				
00/1 // 7/4 AMBRO CLAND OF FOOT -	/Γ —				
< 8.0 $90^{21,22,24}$ AMBROGIANI 01 E835 $\overline{p}p \rightarrow \gamma\gamma$ < 12.0 $90^{22,24}$ AMBROGIANI 01 E835 $\overline{p}p \rightarrow \gamma\gamma$	/ Г				

$\eta_c(2S)$ BRANCHING RATIOS

70		U			
$\Gamma(\text{hadrons})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID	TECN	СОМ!	MENT	
not seen	ABREU 980	DLP	Н e ⁺ е	$^- \rightarrow e^+e^- +$	hadrons
• • • We do not use the following	owing data for average	es, fits,	limits, e	etc. • • •	
seen 2	⁵ EDWARDS 820	СВА	L e ⁺ e	$- \rightarrow \gamma X$	
²⁵ For a mass value of 3594	\pm 5 MeV				
$\Gamma(K\overline{K}\pi)/\Gamma_{total}$					Γ_2/Γ
$VALUE$ (units 10^{-2}) $EVTS$	DOCUMENT ID	TEC	COI	MMENT	
VALUE (units 10^{-2}) EVTS 1.9±0.4±1.1 59 ± 12	26 AUBERT 08/	в ВА	BR B-	$\rightarrow \eta_{c}(2S)K \rightarrow$	$K\overline{K}\pi K$
• • • We do not use the following	owing data for average	es, fits,	limits, e	etc. • • •	
seen 127 ± 18	ABLIKIM 13k				
seen 39 ± 11				$\rightarrow KK_SK^-\pi^+$	
²⁶ Derived from a measuren	nent of [B($B^+ ightarrow \eta$	$l_c(2S)$	K^+) ×	$B(\eta_C(2S) \rightarrow$	$K\overline{K}\pi)]$ /
$[B(B^+ \rightarrow \eta_c K^+) \times B]$	$(\eta_c \to K\overline{K}\pi)] = ($	9.6^{+2}_{-1}	$^{1.0}_{.9} \pm 2.9$	5)% and using	$B(B^+ \rightarrow$
$\eta_c(2S)K^+) = (3.4 \pm 1.4)$		3+ →	$\eta_c K^+$	$)$ \times B(η_c \rightarrow	$(K\overline{K}\pi)] =$
$(6.88 \pm 0.77 {+0.55 \atop -0.66}) imes 10$					
²⁷ For a mass value of 3654	\pm 6 MeV				
$\Gamma(K\overline{K}\eta)/\Gamma(K\overline{K}\pi)$					Γ_3/Γ_2
VALUE (units 10^{-2}) EVTS	DOCUMENT ID		TECN	COMMENT	
27.3±7.0±9.0 225		14E	BABR	$\gamma \gamma \rightarrow K^+ K^-$	$^-\gamma\gamma$
28 LEES 14E reports B(η_c (2.5	$(S) \rightarrow K^+ K^- \eta)/B(\eta)$	$a_{c}(2S)$	\rightarrow K ⁺	$K^-\pi^0$) = 0.82	\pm 0.21 \pm
0.27, which we divide by	3 to account for isosp	in symi	metry.	,	
$\Gamma(2\pi^+2\pi^-)/\Gamma_{ m total}$					Γ_4/Γ
VALUE // total	DOCUMENT ID		TECN	COMMENT	. 4/ .
not seen	UEHARA	08		$\gamma \gamma \rightarrow \eta_{c}(2S)$)
=					
$\Gamma(ho^0 ho^0)/\Gamma_{ m total}$					Γ_5/Γ
<u>VALUE</u>	<u>DOCUMENT ID</u>			COMMENT	
not seen	ABLIKIM	11H	BES3	$\psi(2S) \rightarrow \gamma 2\tau$	τ' 2π
$\Gamma(K^+K^-\pi^+\pi^-)/\Gamma_{ ext{total}}$					Γ_7/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
not seen	UEHARA			$\gamma \gamma \rightarrow \eta_c(2S)$)

 $^{^{21}}$ Including the measurements of of ARMSTRONG 95F in the AMBROGIANI 01 analysis. 22 For a total width $\Gamma{=}5$ MeV. 23 For the resonance mass region 3589–3599 MeV/ c^2 .

²⁴ For the resonance mass region 3575–3660 MeV/ c^2 .

 $\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma(K\overline{K}\pi)$ DOCUMENT ID TECN COMMENT 29 DEL-AMO-SA..11M BABR $\gamma\gamma \to K^+K^-\pi^+\pi^-\pi^0$ 29 We have multiplied the value of $\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma(K^0_SK^\pm\pi^\mp)$ reported in DEL-AMO-SANCHEZ 11M by a factor 1/3 to obtain $\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma(K\overline{K}\pi)$. Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M. $\Gamma(K^{*0}\overline{K}^{*0})/\Gamma_{\text{total}}$ VALUE DOCUMENT ID TECN COMMENT 11H BES3 $\psi(2S) \rightarrow \gamma K^+ K^- \pi^+ \pi$ not seen **ABLIKIM** $\Gamma(K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.})/\Gamma_{\text{total}}$ TECN COMMENT 13K BES3 $\psi(2S)
ightarrow \gamma K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$ seen $\Gamma(2K^+2K^-)/\Gamma_{\text{total}}$ Γ_{12}/Γ DOCUMENT ID TECN COMMENT 08 BELL $\gamma \gamma \rightarrow \eta_c(2S)$ not seen **UEHARA** $\Gamma(\phi\phi)/\Gamma_{\text{total}}$ TECN COMMENT 11H BES3 $\psi(2S) \rightarrow \gamma K^+ K^- K^+ K^-$ **ABLIKIM** not seen $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ Γ_{15}/Γ DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • ³⁰ WICHT BELL $B^{\pm} \rightarrow K^{\pm} \gamma \gamma$ $\times 10^{-4}$ E835 $\overline{p}p \rightarrow \gamma \gamma$ AMBROGIANI 01 not seen CBAL $\psi' \rightarrow$ photons < 0.01 90 85 ³⁰ WICHT 08 reports $[\Gamma(\eta_c(2S) \to \gamma\gamma)/\Gamma_{\text{total}}] \times [B(B^+ \to \eta_c(2S)K^+)] < 0.18 \times 10^{-6}$ which we divide by our best value B($B^+ \rightarrow \eta_C(2S)K^+$) = 3.4 × 10⁻⁴. $\Gamma(\pi^+\pi^-\eta_c(1S))/\Gamma(K\overline{K}\pi)$ Γ_{18}/Γ_{2} TECN COMMENT DOCUMENT ID **VALUE** 12AE BABR $e^{+}e^{-} \rightarrow e^{+}e^{-}\pi^{+}\pi^{-}n$ <3.33 31 We divided the reported limit by 3 to take into account isospin relations. $\eta_c(2S)$ CROSS-PARTICLE BRANCHING RATIOS $\Gamma(\eta_c(2S) o 2\pi^+ 2\pi^-)/\Gamma_{ ext{total}} \, imes \, \Gamma(\psi(2S) o \gamma \, \eta_c(2S))/\Gamma_{ ext{total}}$ $\Gamma_4/\Gamma\times\Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}$ 32 CRONIN-HEN..10 CLEO $\psi(2S)
ightarrow \gamma 2\pi^{+} 2\pi^{-}$ 32 Assuming $\Gamma(\eta_c(2S))=14$ MeV. CRONIN-HENNESSY 10 gives the analytic dependence

of limits on width.

```
\Gamma(\eta_c(2S) \to \rho^0 \rho^0)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(2S))/\Gamma_{\text{total}}
                                                                                               \Gamma_5/\Gamma\times\Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}
                                                       ABLIKIM 11H BES3 \psi(2S) \rightarrow \gamma 2\pi^{+} 2\pi^{-}
\Gamma(\eta_c(2S) \to 3\pi^+ 3\pi^-)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(2S))/\Gamma_{\text{total}}
                                                                            TECN COMMENT
                                            33 CRONIN-HEN..10 CLEO \psi(2S) \rightarrow \gamma 3\pi^{+} 3\pi^{-}
 ^{33} Assuming \Gamma(\eta_c(2S))=14 MeV. CRONIN-HENNESSY 10 gives the analytic dependence
\Gamma(\eta_c(2S) \to K^+ K^- \pi^+ \pi^-)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(2S))/\Gamma_{\text{total}} \\ \Gamma_7/\Gamma \times \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}
 VALUE CL% DOCUMENT ID TECN COMMENT < 90 34 CRONIN-HEN..10 CLEO \psi(2S) \rightarrow \gamma K^+ K^- \pi^+ \pi^-
 ^{34} Assuming \Gamma(\eta_{c}(2S))=14 MeV. CRONIN-HENNESSY 10 gives the analytic dependence
      of limits on width.
\Gamma(\eta_c(2S) \to K^{*0} \overline{K}^{*0})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(2S))/\Gamma_{\text{total}}
VALUE CL% DOCUMENT ID TECN COMMENT

<19.6 × 10<sup>-7</sup>
90 ABLIKIM 11H BES3 \psi(2S) \rightarrow \gamma K^+ K^- \pi^+ \pi^-
\Gamma(\eta_c(2S) \to K^+ K^- \pi^+ \pi^- \pi^0) / \Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(2S)) / \Gamma_{\text{total}}
                                                                                               \Gamma_9/\Gamma \times \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}
                                                       DOCUMENT ID
                                                   ^{35} CRONIN-HEN..10 CLEO \psi(2S) 
ightarrow
                                                                                                       _{\gamma K} + _{K} - _{\pi} + _{\pi} - _{\pi} 0
  ^{35} Assuming \Gamma(\eta_c(2S))=14 MeV. CRONIN-HENNESSY 10 gives the analytic dependence
      of limits on width.
\Gamma(\eta_c(2S) \to K^+ K^- 2\pi^+ 2\pi^-)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(2S))/\Gamma_{\text{total}}
                                                                                             \Gamma_{10}/\Gamma \times \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}
                                    \frac{DOCUMENT~ID}{36~\text{CRONIN-HEN...}10}~\frac{TECN}{\text{CLEO}}~\frac{COMMENT}{\psi(2S)} \rightarrow \gamma \, K^+ \, K^- \, 2\pi^+ \, 2\pi^-
  <sup>36</sup> Assuming \Gamma(\eta_c(2S)) = 14 MeV. CRONIN-HENNESSY 10 gives the analytic dependence
\Gamma(\eta_c(2S) \to K_S^0 K^- 2\pi^+\pi^- + \text{c.c.})/\Gamma_{	ext{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(2S))/\Gamma_{	ext{total}}
                                                                                             \Gamma_{11}/\Gamma \times \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}
Γ<sub>total</sub>
VALUE (units 10^{-6}) CL\% EVTS
                                                                                            COMMENT
                                                                                 TECN
7.03\pm2.10\pm0.7
                                                                         13K BES3
• • • We do not use the following data for averages, fits, limits, etc. • •
                                             <sup>37</sup> CRONIN-HEN..10 CLEO \psi(2S) \rightarrow
< 15.2
                           90
                                                                                                  \gamma K_{S}^{0} K^{-} 2\pi^{+} \pi^{-} + \text{c.c.}
HTTP://PDG.LBL.GOV
                                                            Page 6
                                                                                        Created: 5/30/2017 17:21
```

 37 Assuming $\Gamma(\eta_c(2S))=14$ MeV. CRONIN-HENNESSY 10 gives the analytic dependence of limits on width.

$$\Gamma(\eta_c(2S) \to \pi^+\pi^-\eta)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma\eta_c(2S))/\Gamma_{\text{total}}$$

 $\Gamma_{16}/\Gamma \times \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}$

 $\Gamma_{16}/\Gamma imes \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}$ CL% DOCUMENT ID TECN COMMENT OCUMENT OCUMENT OCUMENT ID OCUMENT O

 38 Assuming $\Gamma(\eta_{c}(2S))=14$ MeV. CRONIN-HENNESSY 10 gives the analytic dependence of limits on width.

$$\Gamma(\eta_c(2S) o \pi^+\pi^-\eta')/\Gamma_{ ext{total}} imes \Gamma(\psi(2S) o \gamma\eta_c(2S))/\Gamma_{ ext{total}}$$
 $\Gamma_{17}/\Gamma imes \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}$

 $\Gamma_{17}/\Gamma \times \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}$ $\frac{CL\%}{90}$ $\frac{DOCUMENT\ ID}{39}$ CRONIN-HEN..10 CLEO $\psi(2S) \rightarrow \gamma \pi^+ \pi^- \eta'$

 39 Assuming $\Gamma(\eta_{c}(2S))=14$ MeV. CRONIN-HENNESSY 10 gives the analytic dependence of limits on width.

$$\Gamma\big(\eta_c(2S) \to K\overline{K}\eta\big)/\Gamma_{\mathsf{total}} \, \times \, \Gamma\big(\psi(2S) \to \gamma \eta_c(2S)\big)/\Gamma_{\mathsf{total}} \\ \Gamma_3/\Gamma \times \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}$$

CL% • • • We do not use the following data for averages, fits, limits, etc. • •

⁴⁰ CRONIN-HEN..10 CLEO $\psi(2S) \rightarrow \gamma K^+ K^- \eta$ $<11.8 \times 10^{-6}$

⁴⁰CRONIN-HENNESSY 10 reports a limit of $< 5.9 \times 10^{-6}$ for the decay $\eta_c(2S) \rightarrow$ $K^+K^-\eta$ which we multiply by 2 account for isospin symmetry. It assumes $\Gamma(\eta_c(2S))$ = 14 MeV. It also gives the analytic dependence of limits on width.

$$\Gamma(\eta_c(2S) \to \pi^+\pi^-\eta_c(1S))/\Gamma_{ ext{total}} \times \Gamma(\psi(2S) \to \gamma\eta_c(2S))/\Gamma_{ ext{total}}$$
 $\Gamma_{18}/\Gamma \times \Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}$

 $\Gamma_{18}/\Gamma imes \Gamma_{138}^{\psi(2S)}/\Gamma_{138}^{\psi(2S)}/\Gamma_{138}^{\psi(2S)}$ $\Gamma_{18}/\Gamma imes \Gamma_{138}^{\psi(2S)}/\Gamma_{138}^{\psi(2S)}/\Gamma_{138}^{\psi(2S)}$ $\Gamma_{18}/\Gamma imes \Gamma_{138}^{\psi(2S)}/\Gamma_{138}^{\psi($

$$\Gamma(\eta_c(2S) \to \rho \overline{\rho})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \eta_c(2S))/\Gamma_{\text{total}}$$

 $\Gamma_{14}/\Gamma\times\Gamma_{138}^{\psi(2S)}/\Gamma^{\psi(2S)}$

Created: 5/30/2017 17:21

CL% TECN COMMENT **VALUE** DOCUMENT ID $< 1.4 \times 10^{-6}$ 90 13V BES3 $\psi(2S) \rightarrow \gamma p \overline{p}$ ABLIKIM

 $^{^{41}}$ Assuming $\Gamma(\eta_{_C}(2S))=1$ 4 MeV. CRONIN-HENNESSY 10 gives the analytic dependence of limits on width.

$\eta_c(2S)$ REFERENCES