POWER PULSE: HOUSE HOLD ENERGY USAGE FORECAST

1. Project Overview:

This project aims to build an accurate predictive model for household power consumption using time-series and numerical data. The final objective is not only to predict energy usage but also to understand the underlying patterns and feature influences.

Key Goals:

- Build an accurate regression model to forecast household energy consumption.
- Identify and interpret the most influential factors affecting household energy usage.
- Provide data-driven insights into daily and seasonal consumption trends.
- Enable visualization of energy behavior and prediction accuracy.

Tools Used:

- Python (Pandas, Matplotlib, Seaborn)
- Power BI
- Scikit-learn (Linear Regression, Random Forest Regressor, Gradient Boosting Regressor, MLP Regressor)

2. Data Preparation:

Dataset:

https://archive.ics.uci.edu/dataset/235/individual+household+electric+power+consumption

a. Cleaning:

- Loaded dataset and converted numeric columns using numeric function
- Missing values were handled using **median imputation**.

• Dropped "Global_intensity" due to very high correlation with target variable (Global_active_power).

b. Outlier Handling:

• Used **z-score** method (threshold = 3) to detect and remove extreme outliers.

c. Parsing & Transformation:

- Parsed and merged Date and Time into a datetime object.
- Set as index and extracted features: hour, month, day, is_weekend, etc.

d. Feature Scaling:

• Applied "MinMaxScaler" to normalize features for better model convergence.

3. Feature Engineering:

- Created time-based features: hour, month, is_weekend.
- Added "daily_avg_power" and "rolling_avg_power" (60-minute window).
- Created "**is_peak_hour**" based on whether consumption exceeded the daily average.
- Dropped redundant features post feature extraction.

4. Model Selection and Training:

Model	Random State	Hyperparameters	
Linear Regression	30	default	
Random Forest Regressor	30	max_depth=10	
Gradient Boosting Regressor	30	learning_rate=0.1	
MLP Regressor (Neural Net)	30	hidden_layer_sizes=(50,), max_iter=300	

Train-Test Split:

• Dataset split into 80% training and 20% testing using train_test_split.

• Random State = 30 was used to ensure consistent data splits and reproducible results for training and visualizations.

5. Model Evaluation Metrics:

Metric	Linear Regression	Random Forest Regressor	Gradient Boosting Regressor	MLP Regressor
Train RMSE	0.2170	0.1954	0.1955	0.1998
Test RMSE	0.2168	0.1959	0.1954	0.1997
Train MAE	0.0317	0.0237	0.0237	0.0246
Test MAE	0.0316	0.0237	0.0237	0.0246
Train R ²	0.7553	0.8391	0.8389	0.8241
Test R ²	0.7564	0.8377	0.8393	0.8247

Best Model: Gradient Boosting Regressor

- Lowest RMSE and MAE, indicating better predictive accuracy.
- **Highest R²** Score, meaning it explains **83.9%** of the variance in energy usage.
- Less overfitting compared to Random Forest and MLP (similar train vs test scores).

6. Insights and Recommendations:

Insights

- **Sub_metering_3** is the **most important predictor** of overall household energy usage, followed by Sub_metering_1 and Sub_metering_2.
- **Time-based features** like hour and month also influence energy consumption patterns, indicating temporal trends in usage.
- Voltage and Global Reactive Power contribute comparatively less to predicting active power consumption.
- The **correlation analysis** showed a very strong linear relationship between **Global_active_power** and **Global_intensity**, leading to the removal of the latter to avoid multicollinearity.

- Gradient Boosting Regressor was able to capture non-linear relationships in the data and delivered the most **accurate predictions** among all tested models.
- The **Actual vs Predicted plot** revealed that predictions are generally aligned with true values but tend to underpredict at higher values

Recommendations

- Adopt Gradient Boosting Regressor as the model for forecasting shortterm household energy consumption due to its strong performance.
- Continuously update the model with new data and periodically retrain it to maintain prediction accuracy.
- Use real-time data preprocessing pipelines to handle missing values, outliers, and normalization automatically.
- Consider deploying this model as part of an **energy monitoring dashboard** to assist households in understanding usage patterns and saving energy.
- Incorporate **peak-hour detection logic** into user-facing applications to alert households about high-usage periods.
- Further exploration can include integrating weather data, appliance-level monitoring, or occupancy sensors to improve prediction accuracy.