

AD A 045589

AFGL-TR-77-0171



R&D EQUIPMENT INFORMATION REPORT Weather Radar Transponder (Volume 1) Ground-Clutter Canceller (Volume 2)

Ronald K. VanderKruik Anthony J. Jagodnik, Jr.

Raytheon Company Equipment Division Advanced Development Laboratory Boston Post Road Wayland, Massachusetts 01778

April 1977

Final Report 1 October 1976 - 28 February 1977

Approved for public release; distribution unlimited



AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731



Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

|        | Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
|        | SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)                                                                                                                                                                                                                                                                                                                                                                                                                                          | READ INSTRUCTIONS                                              |  |  |  |  |
|        | (18) (19) REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BEFORE COMPLETING FORM                                         |  |  |  |  |
|        | AFGL-TR-77-9171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3. RECIPIENT'S CATALOG NUMBER                                  |  |  |  |  |
| (1)    | 4. TITLE (and Subtitle) (And)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5. TYPE OF REPORT & PERIOD COVERED                             |  |  |  |  |
| 9      | R D Equipment Information Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Final Report                                                   |  |  |  |  |
| [W.L.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76 Oct. 1 - 77 Feb. 28                                         |  |  |  |  |
| Volum  | I. Weather Radar Transponder. (Vol. 1) (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ER77-4128                                                      |  |  |  |  |
| Lyonar | 1 AUTHOR(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8. CONTRACT OR GRANT NUMBER(s)                                 |  |  |  |  |
| (      | Ronald K./VanderKruik Anthony J./Jagodnik, Jr                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F19628-76-C-8297                                               |  |  |  |  |
|        | 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |  |  |  |  |
|        | Raytheon Company Equipment Division Advanced Development Laboratory Wayland, MA 01778                                                                                                                                                                                                                                                                                                                                                                                                             | 62101F<br>66720601                                             |  |  |  |  |
|        | 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12. REPORT DATE                                                |  |  |  |  |
|        | Air Force Geophysics Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr 1977                                                       |  |  |  |  |
|        | Hanscom AFB, Massachusetts 01731 Monitor/Graham M. Armstrong/LYW                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13. NUMBER OF PAGES                                            |  |  |  |  |
| _      | 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                        | 15. SECURITY CLASS. (of this report)                           |  |  |  |  |
| (9)    | Final rept.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unclassified                                                   |  |  |  |  |
|        | 1 Oct 76-28 Feb 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                     |  |  |  |  |
|        | 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |  |  |  |  |
|        | Approved for Public Release; Distribution U                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OCT 27 1977                                                    |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В                                                              |  |  |  |  |
|        | 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |  |  |  |  |
|        | Weather Radar Calibrator, Radar Performance Monitor, Transponder Weather Radar Clutter Cancellation, Infinite Impulse Response Sampled-Data Filters, Digital Signal Processing, Serial Digital Arithmetic                                                                                                                                                                                                                                                                                         |                                                                |  |  |  |  |
| 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |  |  |  |  |
|        | This document describes two distinct equipments developed for use with meteorological radar systems. The Weather Radar Transponder calibrates radar system in amplitude for both directions of travel from a remote location and additionally verifies its doppler response from an on-site location the Ground Clutter Canceller removes unwanted ground returns and feed-through which would otherwise corrupt estimates of doppler spectral mean and width obtained by a Pulse-Pair Processor. |                                                                |  |  |  |  |

EDITION OF 1 NOV 65 IS OBSOLETE

DD 1 JAN 73 1473

# TABLE OF CONTENTS VOLUME I

| Section |                                                                                                               | Page |
|---------|---------------------------------------------------------------------------------------------------------------|------|
| 1.      | INTRODUCTION                                                                                                  | 5    |
| 2.      | GENERAL DESCRIPTION                                                                                           | 6    |
| 3.      | INSTALLATION AND OPERATION                                                                                    | 10   |
| 3.1     | Input/Output Characteristics                                                                                  | 10   |
| 3.2     | Installation Procedure                                                                                        | 10   |
| 3.3     | Operation                                                                                                     | 11   |
| 4.      | DETAILED DESCRIPTION                                                                                          | 13   |
| 4.1     | Timing and Control Card                                                                                       | 13   |
| 4.1.1   | Reset and Start                                                                                               | 13   |
| 4.1.2   | T1, T2, T3 Generation                                                                                         | 16   |
| 4.1.3   | Serial Code Generation                                                                                        | 16   |
| 4.2     | A/D Converter Card                                                                                            | 19   |
| 4.3     | Switch Driver Card                                                                                            | 21   |
| 4.4     | Microwave Circuitry                                                                                           | 21   |
|         |                                                                                                               |      |
|         | APPENDIX                                                                                                      |      |
| A       | INSTALLATION SITE CONSIDERATIONS                                                                              | 25   |
| В       | PHASE-LOCKED OSCILLATOR CRYSTAL REPLACEMENT AND TUNE-UP PROCEDURE                                             | 27   |
| С       | PRODUCT INFORMATION                                                                                           | 31   |
| D       | DRAWINGS FOR THE CRT                                                                                          | 37   |
|         | NTIS VOLTO Section D  DDC But Section D  UNAMY D  DUSTRIEU DEST, APPLAGENTY SEES  DIST. AVAIL 2017 or SPECIAL |      |
|         | 3 A                                                                                                           |      |

#### LIST OF ILLUSTRATIONS

| Figures |                                                         | Page |
|---------|---------------------------------------------------------|------|
|         |                                                         |      |
| 2-1     | Block Diagram of the Coded Radar Transponder            | 7    |
| 2-2     | CRT Response Timing                                     | 8    |
| 4-1     | Timing and Control Reset and Start Block Diagram        | 14   |
| 4-2     | Reset and Start Timing                                  | 15   |
| 4-3     | Timing and Control T1, T2, T3 Generation Block Diagram  | 17   |
| 4-4     | Timing and Control Serial Code Generation Block Diagram | 18   |
| 4-5     | Functional Diagram of the A/D Converter Card            | 20   |
| 4-6     | Functional Diagram of the Switch Drivers Card           | 22   |

#### SECTION I. INTRODUCTION

The Coded weather Radar Transponder (CRT) is a device which provides calibrated RF pulses to be used in the calibration of coherent and noncoherent E-band (old S-band) weather radars. It can be used at the site of the radar or at a remote location (where 115 VAC power is available) in the far field of the radar antenna pattern. When at a remote location, the transponder picks up radar transmission using a standard gain horn, detects the amplitude of each RF pulse and compares the amplitude to a standard level determined at the time of installation. The transponder then retransmits a noncoherent pulse-coded signal indicating the amplitude of the received radar pulse. The amplitude of the CRT response is known and alternates between two levels, one 20 dB below the other, every 1024 (or 2048) radar pulses.

When used at the site of the radar, the CRT can provide a calibration for a coherent processor. In this mode the transponder uses a CW sample of the radar STAMO instead of its own internal oscillator to produce a coherent coded signal response. A one-bit phase shifter alternates between 0° and 180° phase shift every trigger producing a fixed doppler shift. As in the off-site application, the amplitude of the coherent response alternates between two levels 20 dB apart every 1024 (or 2048) radar trigger pulses.

## SECTION 2. GENERAL DESCRIPTION

A block diagram of the CRT is given in Figure 2-1. In the far field application, a waveguide horn receives the radar signal which is then directed to the CRT via coaxial cable. A circulator directs the RF pulse through some attenuation to the detector. The detected signal is amplified and fed to a sample-and-hold circuit and then to a set of 16 voltage comparators. Each voltage comparator has an adjustable reference which enables the set to be calibrated to indicate 1 dB increments in received power level. The 16 comparator outputs are encoded into a 4-bit word as indicated in Table 2-1.

The 4-bit word therefore covers a power level range of -12 dB to +3 dB with respect to the initial reference level. This 4-bit word is combined with a single reference bit to produce a 5-bit word which controls an RF switch and produces a coded group of up to 5 pulses. The reference bit indicates the start of the code and is present whenever the received power level is greater than -12 dB reference.

An additional comparator has a reference level midway between the number 13 and number 14 reference levels. Upon initial installation, in the test mode, the variable attenuator preceding the RF detector is adjusted to just activate this comparator and light a front panel indicator.

This establishes the 0 dB power level reference.

Figure 2-2 shows the response timing of the CRT. The coded group of pulses are repeated up to three times for each received radar pulse, with the start of each group variable and determined by decade switches on a panel. T1 is adjustable in 10 µs steps with a potentiometer fine tune of 10 µs. T2 and T3 each are increments of 10 µs. The pulse width is either 2.0 µs every 4.0 µs for all three groups or is 2.0 µs for the first group, 4.0 µs for the second and 8.0 µs for the third as determined by a switch on the card.



Figure 2-1. Block Diagram of the Coded Radar Transponder

If the radar PRF is such that a pulse occurs before completion of all three groups of pulses, the CRT response immediately stops, resets and begins at  $T_0$  again.

TABLE 2-1. CRT RESPONSE CODE

| Received Signal Amplitude with<br>Respect to Installation Reference | Comparator<br>Number | Pulse<br>2 | Pulse<br>3 | Pulse<br>4 | Pulse<br>5 |
|---------------------------------------------------------------------|----------------------|------------|------------|------------|------------|
| 6.0                                                                 |                      |            | 1          |            |            |
| +3 dB                                                               | 16                   | 1          | 1          | 1          | 1          |
| +2                                                                  | 15                   | 1          | 1          | 1          | 0          |
| +1                                                                  | 14                   | 1          | 1          | 0          | 1          |
| 0                                                                   | 13                   | 1          | 1          | 0          | 0          |
| -1                                                                  | 12                   | 1          | 0          | 1          | 1          |
| -2                                                                  | 11                   | 1          | 0          | 1          | 0          |
| -3                                                                  | 10                   | 1          | 0          | 0          | 1          |
| -4                                                                  | 9                    | 1          | 0          | 0          | 0          |
| -5                                                                  | 8                    | 0          | 1          | 1          | 1          |
| -6                                                                  | 7                    | 0          | 1          | 1          | 0          |
| -7                                                                  | 6                    | 0          | 1          | 0          | 1          |
| -8                                                                  | 5                    | 0          | 1          | 0          | 0          |
| -9                                                                  | 4                    | 0          | 0          | 1          | 1          |
| -10                                                                 | 3                    | 0          | 0          | 1          | 0          |
| -11                                                                 | 2                    | 0          | 0          | 0          | 1          |
| -12                                                                 | 1                    | 0          | 0          | 0          | ō          |



<sup>\*</sup>Shortest interval is 40 µsec, if the pulse width of the T2 group is 4 µsec.

Figure 2-2. CRT Response Timing

The CRT response is derived from a crystal-controlled oscillator at exactly the same frequency as the radar. RF switch A10 (Figure 2-1) is controlled by the 5-bit word (translated to serial form) to produce the pulse-coded response; a digital 'l' means a pulse is transmitted, a digital '0' means no pulse transmitted.

RF switches All and Al2 provide the two levels of CRT response. Both switches are in one state (no loss line) for 1024 or 2048 radar pulses (determined by a switch on board), then switch to the other state (-20 dB line) for an equal number of pulses.

RF switch A8 is not used in the remote application and remains in one state all the time.

In the on-site application the CRT internal oscillator is switched off, a coherent signal from the radar is applied to the external input, and the output of the CRT is connected to the radar front end test point input. Except for RF switch A8, the CRT functions the same as in the remote application. Switch A8 and the 180° hybrid (A7) provide a doppler shift calibration for coherent radars, alternately switching between the 0° line and the 180° line every radar pulse.

The CRT is expected to operate normally over an ambient temperature range of -30°C to +50°C. A thermostatically-controlled fan is switched on at the high temperature range, and provision for a heater has been included for operation at the low temperature range. The enclosure can be sealed (if additional air ducting is included) and exposed to outside weather with only the input/output coaxial connector and the AC power cord accessible. Normal operation is with the top half of the enclosure removed allowing access to the control panel and test points.

#### SECTION 3. INSTALLATION AND OPERATION

## 3.1 Input/Output Characteristics

It is absolutely necessary that the peak power level of the radar pulse to be applied to J1 be known! The reference level of the detector (A19) is approximately 0 dBm; burn-out level is approximately +20 dBm. The appropriate attenuator (A17) must be inserted before the radar pulse is applied to J1.

Table 3-1 lists the input/output characteristics of the CRT.

TABLE 3-1. INPUT/OUTPUT CHARACTERISTICS

| Connector          | Characteristics                                                                                                        |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| AC Power           | • 115 VAC, 60 Hz, approximately 120 watts w/o heater.                                                                  |  |  |  |
| J1                 | • 50 n, type 'N' Jack.                                                                                                 |  |  |  |
| Input Signal       | maximum of 400 watts peak with all attenuators (A17) inserted.                                                         |  |  |  |
|                    | • 2700 - 2900 MHz                                                                                                      |  |  |  |
| Output Signal      | 0 dBm, internal source     18 dB below external source input                                                           |  |  |  |
| J2 Enable Input    | <ul> <li>High impedance, BNC Jack</li> <li>Open, or TTL "high", enables CRT</li> <li>TTL "low" disables CRT</li> </ul> |  |  |  |
| J3 External Source | • 50 A, type 'N' Jack +20 dBm maximum input                                                                            |  |  |  |

#### 3.2 Installation Procedure

The following procedure should be followed at the time of installation:

#### CAUTION

Peak power at detector input greater than +20 dBm will destroy the detector diode.

- 1. Insert appropriate attenuator values (Al7) between the coupler (Al6) and variable attenuator (Al8) to reduce the radar signal level at the input of the variable attenuator to between 0 dBm and +10 dBm.
- 2. Adjust the variable attenuator (Al8) for maximum attenuation (fully CCW).
- 3. Apply power to the CRT and place MODE switch to TEST.
- 4. Apply the radar signal to Jl.
- 5. Reduce attenuation (A18 adj. CW) until the REFERENCE LEVEL light just comes on (the LED will flicker, depending upon the PRF of the radar). This establishes the reference level midway between comparators 13 and 14, and produces a 1 1 1 0 0 code. A decrease of 1/2 dB in the radar input power level will change the code to 1 1 0 1 1; an increase of 1/2 dB will change the code to 1 1 1 0 1.

## 3.3 Operation

The response times of the coded signal are determined by the settings of the three sets of thumb switches on the control panel (see response timing, Figure 2-2). These switches provide delays in multiples of 10 µsec. A ten-turn potentiometer (U67) on the Timing and Control card (A2) provides an additional continuously variable 2 to 10 µsec delay in the T1 start time.

A summary of all the controls for the CRT is given in Table 3-2.

TABLE 3-2. CRT CONTROLS

## Control Panel

| POWER                 | ON/OFF             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MODE                  | OPERATE            | Normal operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                       | TEST               | For installation and test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1021200               |                    | Reference Level indicator is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Las reagons           |                    | RF switch Al0 directs RF signal to termination AT-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| SOURCE                | INTERNAL           | RF oscillator A5 is activated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                       |                    | <ul> <li>RF switch A8 is held in one state<br/>(no phase shift).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                       | EXTERNAL           | RF oscillator A5 is deactivated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                       |                    | RF switch A8 is activated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| RESPONSE<br>TIME      | T1, T2, T3<br>0-99 | Selects delay in multiples of 10 µsec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 1371ki 359x           | Internal           | LINO Share 616) and remains a sylven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Attenuator A18        |                    | Provides up to approximately 15 dB variable attenuation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| A2, Potentiometer U67 |                    | Provides continuously variable delay of 2 to 10 µsec for T1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| A2, Switch            | U 56               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| SW-1                  | ON                 | Response pulse width is 2 µs for T1, T2, T3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                       | OFF                | Response pulse width is 2 µs for T1,<br>4 µs for T2, and 8 µs for T3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| SW-2                  | ON                 | Response amplitude alternates 20 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                       | OFF                | every 1024 radar pulses.  Response amplitude alternates 20 dB every 2048 radar pulses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| SW-3                  | ON                 | Normal operation - RF switch A10 con-<br>trolled by coding and by OPERATE/TES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                       | OFF                | control.  RF switch AlO in one state such that a CW signal is produced at Jl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| SW-4                  | ON<br>OFF          | RF switch A8 held in one state, resulting in no phase shift.  Normal operation - RF switch A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                       | OFF                | alternates when CRT is in External Source mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                       |                    | And the second s |  |  |

#### SECTION 4. DETAILED DESCRIPTION

## 4.1 Timing and Control Card (A2)

#### 4.1.1 Reset and Start

A block diagram of the reset and start circuitry is given in Figure 4-1 and the corresponding timing sequence is given in Figure 4-2. The start pulse is applied to two one-shot (o.s.) multivibrators, one which produces a 1  $\mu$ s wide pulse and another which produces a variable (0.2 to 0.4  $\mu$ s) width pulse. The 1  $\mu$ s pulse provides a delay before starting the clock while the variable pulse resets all the digital functions. This reset pulse is variable because it also starts the HOLD time for the sample-and-hold on the A/D converter card and therefore allows for optimization of this function.

The reset pulse also starts a 2 µs one-shot pulse, at the end of which a 0.2 µs LOAD pulse is generated. The combined time of these two pulses determines the duration of the HOLD pulse. The LOAD pulse is used elsewhere on the card to road data into a shift register.

Up to this point everything depends upon just the start pulse (with ENABLE high). Now a check is made to see if the radar pulse amplitude is large enough (greater than -12 dB reference) to warrant a response. The load pulse clocks a register and if the first comparator of the A/D card has been activated, the remaining operations continue. The 1024/2048 counter is advanced by one and when the count of either 1024 or 2048 (determined by SW-2) is reached, a flip-flop is activated which changes the state of RF switches All and Al2 (for the 20 dB response step). A flip-flop which changes the state of RF switch A8 (phase shift) is also activated if not inhibited by SW-4 or by internal mode operation. If the first comparator has not been activated (COMP-1 is low), the clock enable is reset, stopping the clock and the RF switch logic is not activated.



Figure 4-1. Timing and Control Reset and Start Block Diagram



Figure 4-2. Reset and Start Timing

The clock will be stopped by two other conditions, in addition to the one just mentioned. If the T1, T2 and T3 settings are such that their combined time is less than the radar period, the transponder will produce all three responses. At the time of T3, a pulse is produced which resets the clock enable and stops the clock. If the radar period is less than the combined T1, T2 and T3 times, the RESET pulse will stop the clock for 1 µs before starting up again.

## 4.1.2 T1, T2, T3 Generation

The T1, T2 and T3 time periods are determined by comparing a counter output with panel switch settings as shown in the block diagram in Figure 4-3. The 10 MHz clock is divided down by 100 to produce a 100 kHz clock which drives the counter. Upon the receipt of a start pulse and subsequent reset pulse, the Tl output is enabled and the T2 and T3 outputs are inhibited. When the counter output is equal to the Tl switch settings, the comparator produces a "high" which is clocked to start an adjustable one-shot. This one-shot provides a continuously variable delay at the end of which a Il start pulse is generated. The time of Il is therefore equal to the switch setting times 10 µs plus 2 to 10 µs, depending upon the variable one-shot setting. The Tl start pulse resets the counter to zero, inhibits the Tl output and enables the T2 output. The next output is therefore determined by the T2 switch setting. Likewise, the T2 start pulse resets the counter, inhibits the T2 output and enables the T3 output. The T3 start pulse inhibits the T3 output and stops the clock. T2 and T3 have no variable adjustment and are therefore integral multiples of 10 us.

#### 4.1.3 Serial Code Generation

The 16 lines from the comparators are encoded into a four-bit word which along with the reference bit ( $\overline{\text{COMP-1}}$ ) is loaded into the parallel-to-serial shift register. The shift register is ten bits long and the 5 data bits are loaded into the even numbered cells. The odd numbered cells are loaded with hard-wired "zeros" (Figure 4-4).



Figure 4-3. Timing and Control T1, T2, T3 Generation Block Diagram



Figure 4-4. Timing and Control Serial Code Generation Block Diagram

The T1 start pulse starts a 500 kHz clock which is applied to the shift register through a multiplexer. A counter allows exactly ten clock pulses to trigger the shift register which therefore cycles its data once. The 500 kHz clock is divided by two and by four and each of the resultant clocks is applied to a multiplexer input. Switch SW-1 controls another counter which addresses the multiplexer and selects one of the three clock inputs to be applied to the shift register. In one switch position the same 500 kHz clock is used for each of the T1, T2 and T3 responses. The resultant RF code is the same for each group of responses; 2.0 µs pulse width. With the switch in the other position, a different clock is selected for each pulse group: T1 has a 2.0 µs pulse width, T2 a 4.0 µs pulse width and T3 an 8.0 µs pulse width.

The buffered shift register output drives the switch drivers for RF switch A10 which gates the microwave signal to produce the coded response. Switch SW-3 disconnects the code generator from the switch drivers and causes them to produce a CW response at the CRT output (J1).

## 4.2 A/D Converter Card (A3)

The A/D Converter card contains a video amplifier, a sample-and-hold circuit and a bank of voltage comparators as shown in Figure 4-5.

The detected RF pulse is inverted, amplified by a factor of about 10, and applied to the FET switch of the S/H circuit and to a fast comparator. This comparator has a low threshold level and generates the start pulse which triggers the Timing and Control card. The Timing and Control card generates the S/H waveform (see Figure 4-2) as described in section 4.1.1. The S/H pulse causes the FET switch to open and the R-C network "stores" the detected pulse amplitude while each of the remaining comparators "compares" this value with its respective preset reference level. These reference levels are adjustable and are set to match the RF detector characteristics to provide the 1 dB steps in amplitude measurement.

In addition to the start comparator and the sixteen level comparators, a separate comparator is used to indicate the RF input reference amplitude during installation or test. This comparator has a reference level set



Figure 4-5. Functional Diagram of the A/D Converter Card

midway between those of comparators 13 and 14. During test mode operation when the video pulse exceeds this level, the comparator triggers a one-shot pulse generator (~1 ms pulse width) which lights a control panel LED.

## 4.3 Switch Driver Card (A4)

The Switch Driver card contains the drivers for all the RF switches plus the temperature sensing circuitry for the fan and heater (if implemented).

There are two types of driver circuits used as shown in Figure 4-6. RF switch AlO produces the coded response pulses and must change states moderately fast (~0.1 µsec). This requires a driver which produces current spikes at the transition times. The remaining RF switches (A8, AlO and All) have moderate switching speed requirements (few µsec) and do not need the current spikes.

The temperature sensing circuitry consists of two voltage comparators and a balanced bridge with a negative-coefficient thermistor (located elsewhere) in one arm. When the ambient temperature is above a preset level, one comparator will activate a relay which turns on the fan. When the temperature is below another lower preset level, the other comparator activates another relay which applies power to the heaters (if installed). Hysteresis is used in the comparator designs to prevent on-off oscillations.

## 4.4 Microwave Circuitry

The signal received by the CRT horn antenna (16 dB gain) can range in power level from 10 to 400 watts peak, depending upon the installation site (see Appendix A). The input circulator (A15-Figure 2-1) is capable of handling this peak power, but other components in the CRT will be damaged or destroyed by power levels greater than one watt, and the RF detector (A19) will be destroyed by an incident power level greater than 100 milliwatts.

A total attenuation value of up to 56 dB is needed to reduce the radar signal power at J1 to the operating level of the detector. This is accomplished by the 20 dB coupler (A16), 10 dB and 20 dB fixed pads (A17), and the variable attenuator (A18). Separate 10 dB and 20 dB pads, inserted as necessary, are used rather than a 0 to 40 dB variable attenuator because



Figure 4-6. Functional Diagram of the Switch Driver Card

the latter has a large temperature coefficient. Minimum amplitude variation over temperature is therefore achieved by using as little attenuation in the variable attenuator as possible and removing or inserting the fixed pads as required.

The RF detector (A19) uses a tunnel diode which has excellent temperature stability compared to the Schottky diode and crystal detectors. The normal operating point (0 dB reference level) of the detector is minus 2 dBm, at which level it produces approximately 150 mV into a 180 ohm load (video amplifier of A3).

The input circulator provides approximately 20 dB of isolation between the input port (#1) the third port (#3). This means that with peak input powers greater than 100 watts, leakage power at port #3 can be greater than 1 watt, the peak power limitation of the solid-state RF switches. A limiter (A14) is therefore included to protect the switches from this excessive power. It passes almost unattenuated a signal of peak power less than 5 mW, but reflects signals greater than that. Its maximum leakage power is no greater than 150 mW, well below the maximum power limitation of the switch.

The internal RF source (A5) is a tunable phase-locked cavity oscillator (PLO) with a replaceable reference crystal. Frequency stability requirements over temperature and time (one month) dictates the use of a crystal source, while system versatility requires a tunable source for different installations. This phase-locked oscillator meets both these requirements by using field replaceable crystals. Complete crystal replacement and tune up procedures are given in Appendix B. With no crystal installed, the PLO can be used as a standard cavity-tuned source by disabling an internal sweep circuit.

A circulator (A6) is placed on the output of the oscillator to prevent pulling of the frequency by RF load changes. Slow, gradual load changes are compensated for by the phase-locking feature, but fast abrupt load changes (such as from switching transients) can cause the oscillator to lose

lock momentarily. Even though an internal sweep mechanism will cause it to reacquire, this interruption of response is unacceptable if frequently occurring. The circulator greatly reduces the chance of this happening.

The  $180^{\circ}$  hybrid (A7) and the SPDT switch (A8) combination produce a one-bit phase shift when used with an external source. A signal fed into the  $\Delta$  arm of the hybrid is split into two equal amplitude signals differing in phase by  $180^{\circ}$ . The RF switch alternately selects the  $0^{\circ}$  phase and  $180^{\circ}$  phase signals every radar pulse. Switch A8 is a non-reflective switch which means that both outputs of the hybrid "see" a good match no matter which state the switch is in, thus insuring proper balance of the hybrid. A signal fed into the  $\Sigma$  arm of the hybrid is also split into two equal amplitude signals, but in this case they are also of equal phase.

The remaining RF switches (A10, A11, A12) are standard reflective type switches. Switch A10 produces the pulse-coded response signal by switching the source signal from the termination to the output circuitry. Switches A11 and A12 operate simultaneously and essentially insert either a no loss line or a 20 dB attenuator (A13) into the response signal path.

# APPENDIX A

INSTALLATION SITE CONSIDERATIONS

The pertinent characteristics of the three known installation sites are given in Table A-1. It can be seen from this data that the CRT has ample transmission power capability, and in fact may have too much for the Spandar installation. Additional attenuation can easily be inserted between Jl and the horn antenna if necessary.

The Spandar site presently has a tower and horn installation which has been used successfully. For the remaining two sites careful consideration should be given to the exact location of the CRT horn antenna to avoid the typical low-angle radar problems such as ground reflections. It should also be noted that the CRT horn has a fairly wide beamwidth (~28°) and no frequency filtering (other than typical waveguide or octave bandwidth components) and is therefore susceptible to being triggered by other radars in the area.

TABLE A-1. INSTALLATION SITES

| Radar Site                                                    | Spandar                                                    | Cimmaron          | Sudbury           |
|---------------------------------------------------------------|------------------------------------------------------------|-------------------|-------------------|
| E                                                             | 2840.0 MHz                                                 | 2725 0 MHz        | ~2800 MHz         |
| Frequency                                                     | 2840.0 MHZ                                                 | 2735.0 MHz        | ~2800 MHZ         |
| Power                                                         | 4 mW                                                       | 0.5 mW            | 1.0 mW            |
| Antenna Gain                                                  | 50.6 dB                                                    | 46 dB             | ~46 dB            |
| Pulse Width                                                   | 1,2 µs                                                     | l µs              | ~1 µs             |
| IF BW                                                         | ?                                                          | 0.65 MHz          | ?                 |
| Receiver Dyn. Range                                           | -40 dBm max.                                               | -30 → -110 dBm    | ?                 |
| CRT Installation Range                                        | 3.1 km                                                     | ~2.5 km           | 6.6 km            |
| Power Received at<br>CRT Horn                                 | 400 W<br>(+ 56 dBm)                                        | 50 W<br>(+47 dBm) | 10 W<br>(+40 dBm) |
| CRT Power Received<br>by radar antenna<br>(0 dBm transmitted) | -40 dBm<br>(-45 dBm with<br>one-way cable<br>loss of 5 dB) | -40 dBm           | -51 dBm           |
| Return Power from<br>Weather at 100 km                        |                                                            |                   |                   |
| for: 40 dBz                                                   | -51 dBm                                                    | -64 dBm           | -61 dBm           |
| 20 dBz                                                        | -71 dBm                                                    | -84 dBm           | -81 dBm           |
| 0 dBz                                                         | -91 dBm                                                    | -104 dBm          | -101 dBm          |

#### APPENDIX B

# PHASE-LOCKED OSCILLATOR CRYSTAL REPLACEMENT AND TUNE-UP PROCEDURE

The following three (3) pages contain the manufacturer's crystal replacement and tune-up procedures for the phase-locked oscillator.

Inapplicable sections have been cross-hatched off.

This oscillator uses a multiplication factor of 27 for the reference. Therefore, the required crystal frequency is determined by dividing the desired output frequency by 27. For example, the delivered unit has an output frequency of 2840.0 MHz and the crystal frequency is 105.1852 MHz. Crystals used should meet Frequency West Specification 37-051991 (suggested vendor is Croven-Canada).



# TUNEUP PROCEDURE -PHASE-LOCKED SOURCES AND OSCILLATORS

#### INTRODUCTION

These instructions cover the crystal installation and alignment procedures for Frequency West crystal controlled phase locked sources and oscillators. The procedures cover the various equipment models and are organized by sections listed below. The user should perform only those procedural steps that apply to his own equipment.

#### Section

#### Crystal Installation

Sources without Ovens

Spulces with Ovens

#### Alignment Procedures

Rreliminary Setup - Sources Using Ex-ternal Reference Oscillator

Alignment - All Phase Locked Sources and Oscillators

#### Equipment

Equipment model numbers ending in: X, XA, XB

Equipment model numbers ending in XX and XX

Equipment model numbers ending in: XE

All equipment

\*NOTE: Supplied PLO has slightly different mechanical configuration.



Figure 1



#### CRYSTAL INSTALLATION

- Sources without Ovens
  - 1. Remove the side plate bearing the Frequency West logo from the unit (held by four screws).
  - 2. Clip the replacement crystal leads to between 0.150 and 0.190 inch in length. Insert the crystal in its socket. See Figure 2. For best results use crystals meeting Frequency West Specifications 37-051990 and 37-051991.
  - 3. Replace the side plate.
  - 4. Proceed to Alignment All Phase Locked Sources and Oscillators.

#### Sources with Ovens

- 1. Remove the side plate bearing the Frequency West logo from the unit, the oven insulator, crystal heat sink, and the crystal. See Figure 3.
- 2. Clip the replacement crystal leads to be tween 0.150 and 0.190 inch in length. Insert the crystal into its socket. For best results use crystals meeting Frequency West Specification 37-052243.
- 3. Replace the crystal heat sink, insuring that the heat sink slot clears the oven thermistor wire. Replace the oven insulator and side plate.
- 4. Proceed to Alignment All Phase Locked Sources and Oscillators.

#### ALIGNMENT PROCEDURES

- Preliminary Setup Sources Using External Reference Oscillator
  - 1. Turn the fundamental oscillator tuning screw counterclockwise until the source is tuned to the lowest frequency of the operating band while monitoring the source frequency with a frequency meter or counter.
  - 2. Divide the desired output frequency by the net multiplier ratio (see Table 1 or 2) to obtain the required reference input frequency from the external crystal oscillator or frequency synthesizer.
  - 3. Connect the external oscillator to the source reference oscillator input jack. (Input power requirement is 0 to +10 dBm; 50 ohms nominal impedance.)
  - 4. Proceed to Alignment All Phase Looked Sources and Oscillators.

# Alignment — All Phase Locked Sources and Oscillators

1. Apply the specified input (supply) voltage between the DC input terminal and ground. The required input voltage is indicated above the terminal.

#### NOTE

Sources with odd model numbers require positive power supply input voltages; those with even model numbers require negative input voltages. The procedure below applies to both types of units; however, the polarity of the voltages listed in the various steps must be reversed for those sources with positive voltage power supplies.

2. Connect a VOM to the crystal oscillator test point (XTAL). Set the VOM on the +1.5 VDC scale. The typical voltage level at this point will be 0.2 volts.

#### NOTE

Step 3 does not apply to units using external reference oscillators.

3. Tune the crystal oscillator coil, or capacitor (through a hole in the side plate or the front plate, depending on the configuration) until a reading is obtained (approximately 0.2V). Maximize this reading.

A maximized VOM reading at this point can be expected to yield a crystal oscillator accuracy within approximately 5 ppm of the marked crystal frequency.

If a frequency counter is available, connect the counter to the crystal oscillator monitor connector and tune the crystal oscillator to the exact frequency. Make sure that the crystal oscillator is not near dropout by rocking the tuning screw back and forth. The unit should tune a minimum of 5 ppm, or 500 Hz at 100 MHz.

Reset the crystal frequency to the correct frequency.

4. Connect an oscilloscope or VOM to one of the phase voltage terminals ( $\phi$  V). The two terminals should be jumpered together on units with two terminals. For sources that have a lock limit alarm, connect the scope or VOM to the single phase voltage terminal. The scope should show a waveform of between 50 and 500 Hz, with an amplitude greater than 12V p-p. The VOM should read approximately 9 volts on the AC (rms) scale.

5. If no AC waveform appears, adjust the DC balance potentiometer (under the crystal side plate) until the waveform appears. (Most units manufactured after August, 1973 do not require this adjustment.)

Find the middle of this adjustment, or adjust the potentiometer for either the highest frequency waveform (triangular or square wave, depending on the source model) or for the highest reading on the AC VOM.

Slowly tune the fundamental oscillator tuning screw clockwise until the waveform drops out or the AC voltage drops to zero on the VOM.

If the unit has a crystal that places the output frequency at the high end of the band, it may be necessary to continue to tune until a second lock occurs. Check for the proper lock point with a frequency meter or counter to insure locking on the correct harmonic of the reference oscillator.

- 7. Switch the scope to DC (2 V/cm scale) or the VOM to 30 VDC full scale. (The leads should still be connected between the phase lock terminal and ground.)
- 8. Check for lock by rocking the fundamental oscillator tuning screw slightly. The absolute magnitude should decrease as the tuning screw is rotated clockwise.

If the voltage does not change, the unit has not locked and has stopped sweeping. Repeat steps 4 and 5, then continue tuning the fundamental oscillator until lock occurs.



- 9. Tune the fundamental oscillator to the edge of the phase lock range. This should be between -3V ±2V and -16V ±2V. The unit should remain locked between these voltages and go into sweep as the fundamental oscillator is tuned further. This verifies that the unit remains phase locked over the appropriate tuning voltage range.
- 10. Set the fundamental oscillator so that the voltage at the phase lock terminals is -7.5 volts. Tuneup is complete.

#### NOTE

For units with lock limit alarm: To verify the operation of the lock limit alarm circuitry, connect a VOM (x10 ohm scale) between the lock limit terminal and ground. As the unit is tuned from one end of the lock range to the other  $(-3V \pm 2V \text{ to } -16V \pm 2V)$ , the VOM will read either zero or infinity. It will be infinity between approximately 4.5 and 13VDC (as read at the phase lock terminals), and zero elsewhere.



Figure 2

Figure 3

#### APPENDIX C

#### PRODUCT INFORMATION

## 1. Phase-Locked Oscillator (A5)

Manufacturer Frequency-West, Inc., Santa Clara, CA

Model Number MO-118-XB

Min. Power Output 20 mW

Mech. Tunable Frequency 2.70 - 3.22 GHz

Rnage

Operating Temperature -30°C to +60°C

Frequency Stability Crystal, + 0.002%

Spurious, Harmonics 60 dB below carrier (in-band) 20 dB below carrier (out-of-band)

Input Power -20 VDC + 1.5%

## 2. Circulators (A6, A15)

Manufacturer P & H Laboratories, Chatsworth, CA

Model Number B1-S35310

Frequency 2.7 - 2.9 GHz (optimized)

Insertion Loss 0.3 dB typ.
VSWR 1.2:1 max.

Isolation 20 dB min

Power Handling Capability 50 Watts avg., 1 kW peak

## 3. 180° Hybrid (A7)

Manufacturer Anaren Microwave, Syracuse, N.Y.

Model Number 30056

Frequency 2-4 GHz

Insertion Loss 0.5 dB max.

VSWR 1.3:1 max.

Isolation 15/18 dB min./typ.

Amplitude Balance  $\pm$  0.50 dB Phase Balance  $\pm$  6 deg.

## 4. Single-Pole Double-Throw Switch (A8) - (Non-reflective)

Manufacturer Alpha Industries, Woburn, MA

Model Number MT-3685-A-P3-Q1

Frequency 0.5 - 4 GHz

Insertion Loss 1.1 dB max.

VSWR 1.5:1 max.

Isolation 50 dB min.

Power Handling Capability 1 Watt CW

## 5. Fixed Attenuators (A9, A13, A17, A22)

Manufacturer Narda Microwave, Plainview, NY

Model Number 4772-(Value)

Frequency DC-6 GHz

VSWR 1.25:1 (to 4 GHz) max.

Attenuation Accuracy + 0.3 dB

Power Handling Capability 2 Watts avg., 0.2 kW peak

## 6. Single-Pole Double-Throw Switch (A10)

Manufacturer Alpha Industries, Woburn, MA

Model Number MT-3121A4

Frequency 2-4 GHz

Insertion Loss 0.9 dB max.

VSWR 1.5:1 max.

Isolation 60 dB min.

Switching Speed 20 ns typ.

Power Handling Capability 1 Watt CW

## 7. Single-Pole Double-Throw Switches (All, Al2)

Manufacturer Alpha Industries, Woburn, MA

Model Number MT-3127A4

Frequency 2-4 GHz

Insertion Loss 0.8 dB max.

VSWR 1.5:1 max.

Isolation 60 dB min.

Power Handling Capability 1 Watt CW

## 8. Limiter (Al4)

Alpha-Industries, Woburn, MA Manufacturer MT-3260A4 Model Number 2-4 GHz Frequency 0.6 dB max. Insertion Loss (-10 dBm input) VSWR (-10 dBm input) 1.4:1 max. 5 mW Limiting Threshold (input) Leakage Power 65 mW 1 Watt CW input 200 Watt peak input (1 µs) 150 mW

## 9. Coupler, 20 dB (A16)

Manufacturer
Narda Microwave, Plainview, NY
Model Number
4013C-20
Frequency
2-4 GHz
Insertion Loss
VSWR
1.15:1 max.
Directivity
22 dB min.
Power Handling Capability
50 Watts avg., 3 kW peak

#### Variable Attenuator (A18) 10.

Merrimac Industries, West Caldwell, NJ Manufacturer

Model Number AUM-15A 2-8 GHz

Frequency

1.5:1 max. VSWR 0.5 to 15 dB Attenuation Range (2 GHz)

2 Watts avg. Power Handling Capability

#### RF Detector (A19) 11.

Manufacturer Microwave Associates, Burlington, MA

MA 7700K-M07 Model Number

2-4 GHz Frequency

2:1 VSWR

700 mV/mW (-20 dBm, open circuit) Detection Sensitivity

~20 dBm (100 mW) max. Power Handling Capability

#### Power Supply, 20V (A20) 12.

Sorensen, Manchester, NH Manufacturer

QSA 18-1.9 Model Number Output Voltage 14-22 VDC Output Current (50°C) 0 - 1.9 ADC

Constant Voltage Regulation + 0.005%

300 µV rms Constant Voltage Ripple

#### Power Supply, 5V (A21) 13.

Sorensen, Manchester, NH Manufacturer

QSA 10 - 3.7 Model Number 0 - 10 VDC Output Voltage 0 - 3.7 ADC Output Current

+ 0.005% Constant Voltage Regulation

300 µV rms Constant Voltage Ripple

# 14. Additional Main Assembly (Al) Parts List

| Designation | Description              | Manufacturer & Model Number |
|-------------|--------------------------|-----------------------------|
| AT1,2,3     | Terminations             | Narda 4370 DM               |
| CP1,2,3     | SMA Male-Male<br>Adapter | OSM 218-07                  |
| Q1          | -5V Regulator            | LM 320K-05                  |
| Q2          | -12V Regulator           | LM 320K-12                  |
| K1, K2      | Hybrid Relay             | Magnecraft W501QPCX-11      |
| ZI          | Thermistor               | Fenwal GB41J1               |
| Fl          | Fan                      | Rotron MU2Al                |
| S4-S9       | BCD Switch               | Digitran 8011               |

# 15. Timing and Control Card (A2) Major Parts List

| Designation                             | Description             |
|-----------------------------------------|-------------------------|
| U1,12                                   | SN7406 (2)              |
| U2,3                                    | SN74148 (2)             |
| U4,40                                   | SN7404 (2)              |
| U5,6,7,17,18,19                         | SN7485 (6)              |
| U8, 20, 32, 44, 51                      | SN74160 (5)             |
| U10, 25, 35, 38, 42, 43                 | SN74123 (6)             |
| U14, 15                                 | SN7496 (2)              |
| U16,34                                  | SN7400 (2)              |
| U22, 53                                 | SN7408 (2)              |
| U23, 24, 27, 28, 29, 30, 31, 39, 58, 59 | SN7474 (10)             |
| U26                                     | SN74153 (1)             |
| U33                                     | SN7414 (1)              |
| U36,48,60                               | SN74161 (3)             |
| U41                                     | SN7410 (1)              |
| U46                                     | SN7437 (1)              |
| U21,52 (Resistor Network)               | Sprague 916C102X5PD (2) |
| U45 (Oscillator)                        | Greenray ZY-7409 (1)    |
| U56 (Switch)                            | AMP 435166-2 (1)        |

# 16. A/D Converter Card (A3) Major Parts List

| Designation           | Description |
|-----------------------|-------------|
| Ul                    | LH0032CG    |
| U2                    | CD4016AE    |
| U3                    | DH0034CD    |
| U4 (Resistor Network) | 916C472X5PE |
| U5                    | LM555CN     |
| U6                    | LM311N      |
| U7-U10                | LM339AD     |
| Ull                   | LM360H      |
| U12, U13              | LM113H      |

# 17. Switch Driver Card (A4) Major Parts List

| Designation | Description |
|-------------|-------------|
| U1, U2      | DH0035CG    |
| U3          | DM8830N     |
| U4-U9       | DH0034CD    |
| U10, U11    | LM311N      |
| D1, D2      | 1N752A      |

## APPENDIX D

# DRAWINGS FOR THE CRT

| Size | Title (Electrical)                   | Drawing Number |
|------|--------------------------------------|----------------|
| D    | Interconnection Diagram (Al)         | SD 975605      |
| D    | Timing and Control Card (A2)         | SD 975604      |
| С    | A/D Converter Schematic Diagram (A3) | SD 975603      |
| С    | Switch Driver Schematic Diagram (A4) | SD 975602      |
|      | Title (Mechanical)                   |                |
| A    | Spacer                               | 975593         |
| В    | RF Bracket                           | 975596         |
| В    | Conn Bracket                         | 975597         |
| В    | PCB Support Bracket                  | 975595         |
| С    | Corner Brackets                      | 975600         |
| C    | Control Panel                        | 975601         |
| В    | Mounting Brackets                    | 975594         |
| C    | P.S. Plate                           | 975598         |
| C    | Upper Level Bracket                  | 975599         |

# TABLE OF CONTENTS VOLUME II

| Section |                                           | Page |
|---------|-------------------------------------------|------|
|         | gulwerd ' Harring their                   |      |
| 1.      | INTRODUCTION                              | 40   |
| 2.      | GENERAL DESCRIPTION                       | 41   |
| 2.1     | Magnification and Overflow Considerations | 42   |
| 2.2     | Module Interconnection                    | 45   |
| 3.      | OPERATION                                 | 47   |
| 4.      | DETAILED CIRCUIT DESCRIPTION              | 48   |
| 4.1     | The Digital Filter Module                 | 48   |
| 4.2     | Canceller PPP Interface                   | 55   |
| 4.3     | The TIC Card                              | 57   |
| 4.4     | PPP Modifications                         | 63   |
| 4.5     | Expansion to the Eight-Card Version       | 66   |
|         |                                           |      |
|         | APPENDIX                                  |      |
|         | #2557 F. Smithage M. Wall Smithage M.     | 67   |
| A       | CANCELLER BACKPLANE T WIRING LIST         |      |
| В       | "PPP Canceller Constants", memo AJJ-58    | 82   |
| С       | CANCELLER FREQUENCY RESPONSE SIMULATIONS  | 85   |
| D       | 82S123 K PROM PATTERNS TIC CARD           | 94   |
| E       | 82S123 TIMING PROM PATTERNS TIC CARD      | 96   |
| F       | PPP CARD INDEXING SUMMARY                 | 102  |
| G       | DRAWING LIST                              | 103  |

# LIST OF ILLUSTRATIONS

| Figures |                                      | Page |
|---------|--------------------------------------|------|
|         |                                      |      |
| 2-1     | Three-Pole Elliptic High-Pass Filter | 43   |
| 2-2     | Canceller Interconnection Diagram.   | 46   |
|         |                                      |      |
| 4-1     | DFM Block Diagram                    | 50   |
| 4-2     | Memory Organization and Timing       | 52   |
| 4-3     | DFM Timing.                          | 53   |
|         |                                      |      |
| 4-4     | Shift Register Array                 | 56   |
| 4-5     | Timing and Interface Control Card    | 58   |
| 4-6     | Arithmetic Timing Waveforms          | 62   |
| 4-7     | PPP Timing Changes                   | 64   |

#### SECTION 1. INTRODUCTION

The Pulse Pair Processor (PPP) is a digital real-time signal processor designed by Raytheon for AFGL under contract No. F19628-72-C-0293 and described in the associated Equipment Information Report. The PPP computes first and second spectral moments of returns from any coherent meteorological radar for each of more than 1000 range cells of 0.5, 1, or 2 microseconds duration.

The Ground Clutter Canceller, described in this Equipment Information Report, was designed, constructed and installed in the PPP under contract F19628-76-C-0297. The canceller is a digital filter designed to reject unwanted ground clutter and coherent oscillator feed-through, thereby improving the sensitivity and accuracy of spectrum mean and width estimates.

#### SECTION 2. GENERAL DESCRIPTION

The synthesis of a digital filter for incorporation into the Pulse Pair Processor (PPP) for the purpose of rejecting unwanted ground-clutter interference has been described in Reference 1. This section describes the hardware design of the filter in general terms and indicates how the individual modules are interconnected and interfaced with the modified PPP. The circuit design of each module is discussed in detail in SECTION 4.

The approach which has been adopted for this implementation to meet the requirements listed in Table 2-1 begins with a design of the simplest possible digital filter module which meets the dynamic range and accuracy requirements by taking advantage of the economies possible with low-power Schottky serial two's-complement arithmetic elements (Reference 2) and NMOS random-access memories. The inadequate throughput rate of the resulting module is then overcome by multiplexing as many of the modules as required, with each of them assigned to range cells adequately spaced in time to match its throughput. The resulting filter is one where both memory and arithmetic processing elements are distributed rather than centralized as in the traditional general purpose computer architecture. While the basic form of the filter is "hard wired" within each module, some flexibility is achieved by distributing gain constants and timing signals from a single programmable read-only memory via busses to all of the modules. The eight-module version attains an impressive processing rate of 16 multiplications (16 x 16), 24 additions, and 24 memory references per microsecond.

References: 1. H.L. Groginsky memo HLG-365, "Weather Radar Canceller Design", dated 17 May 1976.

<sup>2. &</sup>quot;Digital Signal Processing Handbook", John R. Mick, Advanced Micro Devices, Inc. 1976.

## TABLE 2-1. DIGITAL CANCELLER REQUIREMENTS

Number of Channels: 2 (I & Q) Number of Range Gates: 1024 Min. Time/Gate: 0.5 µsec Inputs: 7 bits + sign Memory (both channels): 98,304 bits Arithmetic Unit (both channels): 8 multiplies (16 x 16) per range gate 12 adds per range gate 6 memory reads per range gate

per range gate

16 bit fixed-point arithmetic

## 2.1 Magnification and Overflow Considerations

6 memory writes

In infinite impulse response or recursive sampled-data filters (those having feedback), it is possible for variables within the filter to grow in magnitude to values many times that of the input, even though the overall transfer gain is less than unity. In a digital implementation of such a filter, an adequate number of bits must be allocated for each variable so as to prevent internal overflow which can cause catastrophic instability.

The three-pole elliptic filter described in Reference 1 is redrawn (Figure 2-1) using two-input adder/subtractor units and with the same topology as the network of hardware arithmetic and memory elements to be described later. The four coefficients have been evaluated for a transmitter frequency of 3200 MHz and a notch width of 0.32 m/sec for PRF's



| Elliptic<br>Filter      |  |
|-------------------------|--|
| Three-Pole<br>High-Pass |  |
| -                       |  |
| Figure                  |  |
|                         |  |

| SIGNAL | MAGNITUDE<br>Plein/=1 | @wT=   | WITH CONSTANTS<br>FOR PRF = (see Ref. |
|--------|-----------------------|--------|---------------------------------------|
| iə     | 81.8                  | 0      | 3300 Sec-1                            |
| 62     | 1.057                 | 7      | 3300                                  |
| 62     | 1.36                  | 4      | 525                                   |
| 62     | 2.                    | #      | - K4=0                                |
| 64     | 281.                  | 25850. | 3300                                  |
| 64     | 10.5                  | .371   | 525                                   |
| 63     | = /6-/                |        |                                       |
| Cour   | 0.73/                 | H      | 3300                                  |
| Pour   | 0.867                 | 11.    | 1630                                  |
| Pour   | 0.779                 | 11     | 417                                   |
| Cour   | 0.651                 | 11     | 525                                   |

of 525, 917, 1630 and 3300 sec<sup>-1</sup> (Table 1 of Reference 1). While these sets of constants will not necessarily be the ones stored in the canceller's constant ROM, they are representative enough to use in a magnification analysis.

In order to determine the magnification at a given point in the filter, the magnitude squared of the transfer function of that point from the input is differentiated and set equal to zero. The resulting equation is solved for the frequencies at which there are extremes in the magnitude squared function. The significant results are summarized in Figure 2-1. At e, the maximum magnitude is 9.18 at DC for the 3300 sec-1 PRF case; thus. if the input is 8 bits, 12 bits are needed at e, to avoid overflow. Obviously, as K, - 1 the magnification at e, becomes infinite. Twelve bits at e, allow  $K_4$  to be as large as 0.9375 without overflow; since the largest  $K_4$  in Table 1 of Reference 1 is 0.891 for 3300 sec-1 PRF, there is an adequate margin. At e2, only 9 bits are needed for an 8-bit input since the magnification only approaches two at half the PRF ( $\omega T = \pi$ ), even for  $K_4 = 0$ . The real problem is at e4, a memory input where 17 bits are needed for the PRF = 3300 sec case. Since we are reluctant to increase the width of the memory word beyond 16 bits, there is a possibility of overflow here but it would take a full amplitude signal at wT=.05955. This situation is extremely unlikely since the clutter spectrum at this frequency is 45 dB down from its maximum at DC. Besides, the magnitude at the peak is only 10% too large to be handled with 16 bits so that a small compromise in the values of K2 or K3 could bring it within range if necessary.

Should an overflow occur at  $\mathbf{e}_4$ , either for the reason just discussed or because of random numbers in the memories at turn-on, the filter could exhibit non-linear oscillation because of the "wrap-around" overflow characteristic of the two's-complement arithmetic. In order to guard against such a disaster, an overflow detector at  $\mathbf{e}_4$  zeroes both following memories for any range cell in which an overflow occurs.

## 2.2 Module Interconnection

The Digital Filter Module (DFM) card performs all of the operations indicated in Figure 2-1 for a range-cell interval of two microseconds. Thus, four time-multiplexed DFMs each are needed for the I and Q channels in order to process 0.5 microsecond range cells. The initial canceller has only four DFMs, hence, it can only handle 1 or 2 microsecond cells; however it can be expanded by the addition of four DFMs.

Figure 2-2 reveals how the DFM are interconnected; each block represents an Augat wire-wrap panel. The TIC (Timing and Interface Controller) card, to be described in SECTION 4, generates clocks, control signals, memory addresses and coefficients distributed on busses to all of the DFM. The TIC, together with four or eight DFM, is located in a panel rack designated "T" (top) which is mounted on hinges above rack "R" (rear) in the PPP.

All connections between the canceller in rack "T" and the PPP itself pass through a connector at the top of the PPP 20 Canceller Interface card, added to the PPP in slot F7. This card contains two identical arrays of shift registers, one for the I channel and one for Q, which perform the needed parallel/serial conversion of the PPP's A/D converter outputs, the time multiplexing of range cells among the DFMs, and serial/parallel conversion of the DFM outputs.

The wiring of the backplane of rack "T" and the connector to PPP 20 are described by the wire list included as Appendix A. Extensive use of twisted-pair transmission lines was required because of the high clock rates involved in the serial arithmetic circuits.



#### SECTION 3. OPERATION

Two controls, pictured in Figure 2-2, have been added to the PPP front panel. When the CANCELLER GAIN switch is in its OFF position, the canceller is bypassed on the PPP 20 card; however, the PPP still benefits from the crystal-controlled clock on the TIC card. If the connector to the top of the PPP 20 card in F7 is removed, the PPP still operates but uses its own internal delay line clock. The PPP will not operate with PPP 20 removed.

To use the canceller, select the desired GAIN and SHAPE switch positions\*. The gain settings are relative and depend on the particular set of constants as described in Reference 1, but in general a GAIN switch setting of 1 means that doppler components in the passband have about 0.6 to 0.9 amplitude compared with the canceller-off case. The important parameters of each of the eight sets of constants, as initially programmed, are summarized in Table 1 of Appendix B, while a frequency response plot for each set is included in Appendix C. Notch width increases (hence settling time decreases) monotonically with rotation of the SHAPE switch clockwise toward H. The constants are stored in two programmable Read-Only Memories located on the TIC card; the bit patterns and decimal constant values for these PROMS as initially supplied with the canceller are listed in Appendix D.

If the "T" rack only contains 4 DFMs, be sure that 0.5 µs cell width is not selected.

#### SECTION 4. DETAILED CIRCUIT DESCRIPTION

Each of the following subsections describes a major element of the canceller in terms of block diagrams and timing charts included in this report. Additional, more detailed information is contained in Appendices D and E (PROM Patterns), Appendix F (Summary of Card Indexing), and in the schematic diagrams referenced in Appendix G.

#### CAUTION

The 2606 memory devices used on the DFM cards are MOS and therefore require normal MOS handling precautions (storage in conductive foam, etc.) to prevent damage due to static discharge.

## 4.1 The Digital Filter Module

Serial, two's-complement, LSB-first arithmetic has many advantages in implementing a digital filter module for a processor such as a canceller where identical operations are performed on successive range cells and there is no cell-to-cell information transfer. In this type of processor, it is very straightforward to multiplex the modules, simple but slow because they use serial arithmetic, to obtain the required processing rate. This section describes a module which implements the filter presented in Figure 2-1 with a throughput rate of one range cell per two microseconds. The next section shows how eight such modules can be multiplexed to yield the required rate of two range cells per microsecond for both I and Q channels (the eight-card version) or how four modules can yield a compromise rate of one cell per microsecond (the four-card version).

A block diagram of the DFM appears in Figure 4-1. Four adder/
subtractor units are available in each Am25LS15, thus only two of these
packages are needed for the six operations in the DFM. Serial adders are
extremely simple to implement in hardware using LSB first two's complement
arithmetic; greater precision can be achieved with no additional hardware
by simply allowing more time which includes more cycles of the bit clock
hence more bits in the arithmetic representation. But adders alone do not
justify using serial arithmetic; the key reason is the availability of the
Am25LS14 eight-bit serial/parallel two's complement multiplier. Only
eight of these low-power Schottky devices are required to perform the four
16 x 16 multiplications required in the DFM. By using the parallel (multiplicand) inputs for the four coefficients, available on a time-multiplexed
basis from a 16-bit K bus common to all of the DFM, the serial inputs
(multiplier) and outputs (product) are compatible with the economical
serial adders.

The remaining consideration is memory; 16-bit words for each of 512 range cells required in the four-card version would require an 8192 bit shift register which isn't particularly a problem except that we need a bit clock frequency of about 20 MHz in order to achieve a one-cell per two microsecond throughput rate with the required 16-bit precision. Since long MOS shift registers do not have adequate speed, we would be forced to use bipolar shift registers which are not available in lengths greater than about 16 bits/package. Fortunately, there are alternatives to using one IC package of memory for each range cell. Along with the serial adder and multiplier, Advanced Micro Devices has provided us with the Am25LS22 eight-bit serial/parallel register with sign extend. This device, having eight terminals which can serve either as parallel inputs or outputs, is extremely versatile and can perform serial-to-parallel, or parallel-to-serial conversions with the sign-extend feature required by the multiplier input.



Figure 4-1. DFM Block Diagram

The implementation used for each of the three memories is illustrated in Figure 4-2a, with a timing diagram in Figure 4-2b. For the purposes of understanding the operation of the memories, the two microsecond processing interval can be divided into a first half, during which the random access memory is always written into, and a second half during which the memory is always read from. The RAM thus needs a read or write cycle time of no greater than one microsecond and can be a low-power economical device such as the NMOS 2606. The operation is as follows: At the beginning of cell n, the MIR (Memory Input Register) contains data calculated and shifted into it serially during n-1. These data are written into the RAM at address n-1 during the first half. During the second half, data for cell n+l are read from the RAM and are parallel-loaded into the MOR near the end of the cycle. These data are available for serial output during cell n+1. Also during the second half, data calculated in the arithmetic elements are shifted serially into the MIR. This scheme emulates an 8192 bit shift register (or one with some lesser multiple of 16 bits) using a total of only 12 IC packages and capable of operation at clock rates of the order of 50 MHz. It combines the best attributes of two technologies: Low-power Schottky TTL for the high-speed MIR and MOR elements and NMOS for the high-density RAM.

A detailed timing diagram for the DFM appears as Figure 4-3 where it can be seen that 40 periods of the Serial Arithmetic Clock (SACK) comprise one range cell interval which could be two, four or eight microseconds in the eight-card version depending on whether the PPP cell width has been set to one-half, one or two microseconds, respectively. The maximum frequency of SACK is thus 20 MHz, which leaves a comfortable margin since the minimum  $F_{max}$  for the 25LS14 multiplier is 25 MHz, while it is 30 and 50 MHz for the 25LS15 adder and the 25LS22 register, respectively.



(a) Block Diagram of one of the three memories.



(b) Simplified Memory Timing.

Figure 4-2. Memory Organization and Timing

| Ce                                                                                                                | ll n d        | ata                             | for                                            | ME                                                   | MI                            | rea                                                                        | dy                | _            | ell r                         | -                              | ta f | or N                         | 1EM               | -       | ead       | y)    |             |     |      |                               |  |
|-------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------|-------------------|--------------|-------------------------------|--------------------------------|------|------------------------------|-------------------|---------|-----------|-------|-------------|-----|------|-------------------------------|--|
| 1 1 1                                                                                                             | 公公公公公         | NINRITE                         |                                                | -25                                                  | -9                            | 15.                                                                        |                   | [-3          |                               |                                | 5    |                              |                   | 5       |           |       |             |     |      | Load MOR                      |  |
| SACK JULIA 6 6 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21 22 23 29 25 26 27 28 27 30 31 32 33 34 35 36 37 38 39 10 | KAIKS 194 194 | MEM ADRA<br>FUNCTION N+1 / READ | Pin Extra bits for 10-bit A/D/-9 -7 -5 -3 -1 S | -25 -21 -19 -17 -15 -13 -11, -9 -7 -5 -3 -1 1 3 5 S- | m, 1-9 -7 -5 -3 -1 1, 3, 58-0 | P. 1-35 - 25 - 21 - 19 - 17 - 15 - 13 - 11 - 9 - 7 - 5 - 3 - 1 1 3 5 5 - 5 | D <sup>8</sup> m, | e2 -3 -10.5- | C+ 1-5, -3, -1, 1-3, 5, 7.5,5 | m2 [-7 -5 -3 -1 1, 3, 5, 7,5-0 | 2m2  | P2 -7 -5 -3 -1 1 3 5 7 8 5-4 | (3) [-3] 5. 7,5-5 | m3] -7. | P3 -7.5-5 | D'83] | P4 7 8 5-12 | C5} | Corr | out@GAIN=32 out@GAIN=1 Par Le |  |

DFM Timing. The numbers x listed for each signal indicate the bit weight  $2^x$  relative to the input  $(-1 \le e_{in} < 1)$ .

The coefficients are entered from the K bus into the multiplicand register of each multiplier by  $P_jCLR$  pulses applied to each multiplier in succession. The multipliers are set up so that the multiplicands are always positive, thus we don't waste a sign bit on numbers which are never negative and the full 16 bits is available to represent the coefficients. The multiplicands are scaled so that the MSB has a weight of 0.5, thus the range of the coefficients is  $0 \le K \le (2^{16}-1)/2^{16}$  or  $0 \le K \le 0.9999847412$ . Coefficients  $K_1$  and  $K_2$  are close to two, so that half their value is carried; a compensating multiply by two is then performed at the corresponding serial multiplier inputs.

The number x listed in Figure 4-3 at each bit time for each signal (refer to Figure 4-1 to identify the signals) represent the bit weight  $2^{x}$  relative to the input which has a most significant bit weight of  $2^{-1}$ , hence a range of  $-1 \le e_{in} \le 255/256$  for an eight-bit A/D. Two extra bits can be included if the A/D converters are ever upgraded to ten-bits. S represents the sign bit.

Bit delay elements (D<sup>N</sup> where N is the number of bits of delay) are included at various locations in Figure 4-1, usually to line-up adder inputs so that similarly-weighted bits appear simultaneously. In one case, however, a one-bit delay at the output of MEM2 is used to multiply that output by two. Note in Figure 4-3 that many of the serial words have many more than 16 bits; truncation to 16 bits occurs only at the memory inputs. It is interesting that the output (which is always less than one) is available by clock period 31 (SBN = 31) but that the computations must continue beyond that period in order to determine the numbers to be written back into the memories. The choice of 40 SACK periods allows a margin of a few spare bits at the end of each cycle. All adders and delay elements are asynchronously cleared during SBN = 0.

An overflow detector connected to e<sub>4</sub> determines that an overflow condition exists by responding to the condition of e<sub>4</sub> having different states during SBN = 38 and SBN = 39 (Figure 4-3). When such an abnormal condition is detected, memory input registers MIR2 and MIR3 are forced to zero for the particular cell in which the violation occurred. This precaution eliminates the problem of non-linear oscillation which could arise from either random numbers in the memories at power turn-on or an actual overflow resulting from an abnormally high amplitude response at e<sub>4</sub>.

## 4.2 Canceller -- PPP Interface

It is apparent from Figure 4-3 that the throughput delay of the DFM, allowing for eight-bit parallel/serial and serial/parallel conversions at the input and output, is 12 SACK cycles or 600 nsec at the fastest clock rate. Unfortunately, such a delay will upset the timing of the PPP. It is possible to arrange the timing of the DFM's so that each of the four sets of I & Q modules is offset in time by 500nsec so that the first range cell goes to modules I0 and Q0, the second to II and Q1, and so on. With this arrangement, the 600 nsec delay is equivalent to two 0.5 µsec range gates with 400 nsec margin. However, not only does the PPP timing have to be altered to accommodate two more cells worth of delay in the AGC loop (Reference 3), but there are four different sets of serial arithmetic and memory timing (Figure 4-3) to contend with.

The approach used in the ground clutter canceller is described in Figure 4-4. The serial/parallel/serial arrangement accumulates four input samples in the Input Register (IR) then parallel loads the four Parallel In/Serial Out Registers (PISOR) which are subsequently simultaneously shifted out to supply serial inputs to the four DFMs. The inverse operation

Reference 3. "Pulse Pair Processor Equipment Information Report" F19628-72-C-0293, May 1974.



|             | t-        | ->        |             |      |            |          |      |      | t - | -   |     |     |       |    |    |    |      |       |       |
|-------------|-----------|-----------|-------------|------|------------|----------|------|------|-----|-----|-----|-----|-------|----|----|----|------|-------|-------|
| -01.4       | 8-CAR     | D VERSION | V           | ×    | *          | 0.5,1,00 | 2/45 |      | 4-6 | AR  | DI  | /ER | 2510  | N  |    | *  | -    | _ /or | 2M5   |
| RCELL NO    | 0,1,23    | 3,4,5 6   | 7.8         | 9.1  | 011        | 12,13    | 14   | 0    | 1,2 | .3  | 4.  | 5   | 6.7   | .8 | .9 | 10 | 11   | 121   | 314   |
| LOAD PISOR  | *         | . 1       | -           |      |            | V        |      | -    | 1   |     | V   |     | 4     | 1  |    | *  | 21/4 | *     |       |
| LOAD OR     | 9         | 1 1 1     |             |      |            |          | 1    | 1+20 | MA  |     |     |     |       | V, |    |    |      |       | 4,    |
| A/D OUT     | ABCE      | FFG       | HI          | JI   | < L        | M        |      | A    | BC  | D   | E   | FI  | GH    | I  | J  | K  | L    | M     |       |
| IRO .       | ABO       | CDEF      | G H         | I:   | JK         | LM       |      |      | A B | C   | D   | E   | FG    | H  | I  | J  | KI   | LN    | •     |
|             | A         | BCDE      | FG          | H :  | IJ         | KL       | M    |      | A   | 8   | C   | -   | EF    | G  | H  |    | A .  | KL    | M     |
| 2           | 1         | ABCO      | EF          | G    | I          | JK       | L    |      |     | A   | B   | C   | DE    | F  | 6  | H  | 1    | J     | 1     |
| 3           |           | ABC       | DE          | F (  | <b>→</b> H | Il       | K    |      |     |     |     |     |       |    |    |    |      |       |       |
| DEM O INPUT |           | D         |             | H    |            | L        |      |      |     | A   |     | C   | E     |    | 6  |    | I    | H     | (     |
| 1           | h Account | C         |             | G    |            | K        |      |      |     |     |     | В   | 0     |    | F  |    | H    | J     |       |
| 2           | Section 1 | В         |             | F    |            | J        |      |      |     |     |     |     |       |    |    |    |      |       |       |
| 3           |           | A         |             | E    |            | I        |      |      | ,   |     |     |     |       |    |    |    |      |       |       |
| ORO         |           |           | D'E         | F    | - H'       | IJ       | K    |      | 197 |     | A   | B   | C, D  |    |    |    | H    |       | r K'  |
| 1           | o-travel  |           | CD          | EF   | G'         | H' I     | J    |      |     |     |     | V.  | B' C' | D  |    |    |      |       |       |
| 1 2         |           |           | B, C        | D' E | F          | G' H     | I    |      |     |     |     |     | A' B' | C  | D  | E' | F'   | G' t  | i' I' |
| 3           |           |           | A B         | c' t | )' E'      | F'G'     | H'   |      |     |     |     |     | A     | 8  | c' | 0" | E'   | F' 6  | + H   |
|             | 1 7 CEL   | L DELAY - | <b>&gt;</b> |      |            |          |      | K    | -70 | PLL | DEL | AY  | ->    |    |    |    |      |       |       |

Figure 4-4. Shift Register Array

equivalent to seven range cells. In the four-card version, the simple changes indicated by dashed lines are made to retain the seven-cell delay. With the canceller turned off or removed, the data samples flow through the "CANCELLER OUT" data path and the array functions simply as a seven-cell shift register so that the PPP, with timing modified to accommodate this delay, can operate normally.

A new card, PPP20 (Canceller Interface) containing two of the Register arrays described in Figure 4-4 (one for the I channel and one for the Q) plugs into formerly vacant slot F7 of the PPP front panel rack. A variable delay unit, controlled by the CANCELLER GAIN switch added to the PPP front panel, allows selection of various canceller gains in powers of two by sampling e out (Figure 4-3, bottom) at different times. PPP20 also performs code conversions between offset binary and two's complement arithmetic.

The top of PPP20 is fitted with a connector which mates with a cable wired to the T backplane. All signals between the PPP and the canceller, including the serial DFM inputs and outputs, pass through this cable. When it is disconnected to remove the canceller, the PPP can function normally with A/D outputs passing through the "CANCELLER OUT" data paths (Figure 4-4).

#### 4.3 The TIC Card

The Timing and Interface controller card block and timing diagrams appear as Figure 4-5. The three-bit code CS, from an eight-position CANCELLER SHAPE control added to the PPP panel (Figure 2-2), selects one of eight sets of coefficients stored in the K ROM, a 32 x 16 programmable read-only memory. Programming for the two PROMs which comprise this memory is described in Appendix D which lists not only the binary codes but also the decimal values of the constants as calculated from the binary codes. Other sets of constants can be obtained by similarly



programming pairs of Signetics N82S123B devices. The remaining two address inputs are driven by the two least significant bits of the Modulo 40 EBN counter such that, after passing through a register clocked by a 20 MHz clock, the constants appear on the K BUS as indicated in Figure 4-3. The constants repeat this cycle ten times during each 40 bit cycle, but only the values during SBN 0, 1, 2, and 3 are important since the P.CLR occur during these times.

All timing for the canceller and for the PPP when the canceller is connected is derived by frequency division of the output of an 80 MHz crystal-controlled oscillator as shown in Figure 4-5. Modifications to the PPP5 "Timing and Dump Generator" allow the PPP to use its existing delay line oscillator when the canceller is disconnected (DLOE = High), or the two-MHz ACX signal from the TIC when it is connected. In the latter case, when the CG signal from PPP5 goes high following a radar trigger, a narrow pulse RDIV resets the MOD2 counter thereby setting the phase of its 40 MHz output, while the MOD10/MOD2 counter is allowed to generate the ACX waveform for the PPP (see timing diagram in Figure 4-5). These operations take place whether or not the canceller has been switched on. Because of the high clock frequency, the timing jitter is only ± .5/80 MHz or ± 6.25 nsec, while the timing accuracy over many range cells is far superior to that obtainable with the PPP's delay line oscillator.

Since the PPP clock rates vary with cell width as selected from the front panel, the same method is used in the canceller but the multiplexer used to accomplish this switching must be wired differently (see "SACK FREQ." table in Figure 4-5), depending on whether a four or eight card version is in operation. In any case, the frequency of the serial arithmetic clock SACK ranges from 5 MHz to 20 MHz, as developed by the MOD8 counter and selected by the MUX.

In the PPP5 card, the various clock phases are developed using monostable analog delay elements. The only clock phase of concern to the canceller is the leading edge of  $\phi_{3L}$  which clocks the IR and OR on PPP20

and which indicates that the A/D outputs are valid. In order to minimize the effects of timing variations in  $\phi_{3L}$  with respect to  $\overline{ACX}$  caused by variations in the monostables on PPP5, the synchronization scheme shown in Figure 4-5 has been used. Every fourth  $\phi_{3L}$  edge generates an SBNL pulse beginning at the next SACK positive transition. SBNL, in turn, sets the MOD40 counter to state EBN = 21 at the next SACK transition so that SBN becomes 21 after one more SACK transition (see examples in Figure 4-5). Note that at any given time the state of the MOD40 counter, EBN, is one ahead of SBN, the Serial Bit Number to which all arithmetic timing is referenced. Once synchronized, the various load or shift events and memory-address changes occur at the proper times as indicated at the bottom of Figure 4-5, where examples for both 4 and 8-card versions are shown with a one-microsecond cell width selected.

The address generator develops the n + 1, n - 1 sequence of addresses as described in Figure 4-2. The selection of various numbers of cells processed in the PPP will not need to be taken into account since CG will go low when that number has been reached; everything is then reset and ready for the next radar trigger. The only problem is when "1024 cells processed" has been selected. Because of timing changes to the PPP described in the next section, the last eight cells would exceed the memory capacity of the canceller. The solution is to disable the canceller by turning off the load commands to the OR's on PPP20, thereby permitting data to flow through the "CANCELLER OUT" path (Figure 4-4), in this case. The canceller thus does not operate on the last eight range cells when "1024 cells processed" has been selected. The same mechanism is used to disable the canceller when the CANCELLER GAIN switch is in its OFF position (CG ON = low).

The functions just described are combined in the SYNCHronizer (Figure 4-5) which generates the ENABLE signal. When ENABLE is low, only those counters necessary for non-canceller PPP operation are allowed to run and  $\overline{ORL}$  is forced high so that data flow through the

"CANCELLER OUT" path on PPP20. Within the synchronizer but not shown in Figure 4-5 are two signals, NORE and OVFE which are anded to form ENABLE. If other than "1024 cells processed" has been selected on the PPP panel, OVFE stays high and NORE (hence ENABLE in this case) is asynchronously set when CG goes high. After CG goes low, NORE stays high until the next SBN = 20 so that the last memory write operation can be completed. If "1024 cells processed" has been selected, NORE stays high and OVFG (hence ENABLE in this case) goes low when the write address counter has reached its limit. OVFG is synchronously set when CG goes high. If CG ON is low (canceller switched OFF), then NORE is held low to disable the canceller.

The Address generator is composed of a Write counter and a Read counter, initialized to two different starting values and multiplexed onto the MA BUS so as to generate the sequence of addresses required (see Figures 4-2 and 4-5). Starting values are loaded by  $\overline{\text{LDAC}}$  which goes high after ENABLE at the beginning of each radar period. The first Write operation is inhibited by a signal called  $\overline{\text{BWR}}$  so that bad data do not over write the last range cell if "1024 cells processed" has been selected.

In addition to the P<sub>1</sub>CLR - P<sub>4</sub>CLR signals already mentioned (see Figure 4-3), a number of timing signals both for the DFMs and PPP20 are generated by the TIC. The waveforms, illustrated in Figure 4-6, are developed using PROMS addressed by EBN with outputs registered and buffered. The PROM patterns are included as Appendix E.

The TIC card also includes a test waveform generator which provides signals convenient for troubleshooting the canceller (see schematic). Eight different serial words representing points on a sinusoid are stored in PROM U35 (L26). One of these waveforms, as selected by an eight-input multiplexer, can be made to appear on pin 119 (ein TEST OUT) with timing compatible with the DFM inputs. Another PROM, U54 (N44), drives the select and enable lines of the multiplexer and is itself addressed by a four-bit binary counter. A jumper selects sinusoidal or square-wave



Figure 4-6. Arithmetic Timing Waveforms

functions by selecting the lower or upper addresses of U54. The binary counter can be jumpered to either count once every 2 µsec or to serve as a register for a second four-bit binary counter which drives its inputs. This second counter can be incremented by applying a clock pulse to pin 117 (PA CLK TEST INPUT). The tester can be used to simulate signals which vary either from cell-to-cell or from period-to-period or both.

#### 4.4 PPP Modifications

Modifications which have been performed on the PPP, many of which have been mentioned in preceding sections, are summarized in this section. The drawing list in Appendix G contains all PPP drawings which have been revised as a result of these modifications, including the block diagram which shows the addition of the canceller interface after the A/D converter outputs.

In order to compensate for the seven range cells of delay being added after the A/D converters, seven cells of delay had to be added in the 16-bit AGC accumulator loop. This was accomplished by replacing four four-bit registers with eight dual eight-bit 9328 shift registers with a net increase of four IC packages on the PPP6 (AGC Accumulator) card. Seven cells of delay, in the form of seven SN 74273 octal D registers, were also added to the PPP3 card in the power channel. The resulting card, PPP3A, has different indexing from the other PPP3 cards (see Appendix F) since it has added circuitry. The schematic additions and a layout of the revised card are described in a new drawing listed in Appendix G.

The timing and dump generator card needed the most extensive modifications. The gates which control the short and long clocks had to be changed so that after each radar trigger, the short clocks do not turn on until 9 periods of the long clocks have elapsed. Both short and long clocks now end simultaneously. The display trigger had to be correspondingly delayed to line up with the first range cell in the outputs. The effects of these changes have been determined by simulations (Figure 4-7) following



the methods used in Reference 3, Section 5, to be consistent with proper AGC loop timing. PPP5 also has extra inputs and outputs to permit operation from the clocks developed on the TIC card as described in the last section.

The clock driving the input register on the two PPP1 (sign-magnitude and delay) cards has been changed from  $\phi_{3S}$  to  $\phi_{3L}$ . The eight-bit inputs to these cards were rerouted to come from the outputs of PPP20 in slot F7, while the two A/D outputs now connect to the inputs of PPP20.

The wiring of the PPP power supply chassis and its interconnection to the PPP were revised extensively. A new +5 volt Sorensen STM5-36 supply, driving a separate +5 volt bus labeled "+5VC", was added to supply the canceller and to relieve the load on the existing Lambda supply. This new supply provides current for the canceller cards in the T rack (TIC and four DFMs--measured current of 13.7A) and for the PPP simulator. The Lambda supply feeds the PPP itself, the PPP interface, and the PPP20 Card (measured current of 1.55A). These two five-volt busses, "+5V" and "+5VC" are separately remotely-sensed and should not be connected together. All of the DC supply current and sense lines pass through a new power cable which is wired to the PPP but mates with a connector on the power supply chassis.

Mechanically, the T panel rack was mounted on hinges to permit access to the R panel rack below. All signal connections to this rack are through the short cable wired to the "T" backplane and mating with a connector on the top of PPP20. The two canceller controls are rotary switches so that the modifications to the front panel involved simply drilling two 3/8" holes and labeling according to Figure 2-2. Connections to these switches pass through F7 and PPP20 along with all other canceller signals. Power connections, including remote sense for the STM5-36, have been routed separately to a barrier strip on the rear apron.

## 4.5 Expansion to the Eight-Card Version

As delivered, the canceller has four DFM cards, hence can operate only at cell widths of 1 or 2 microseconds. Provision has been included for expansion to the full eight-card configuration which will allow operation at 0.5, 1 or 2 microsecond cell widths. All necessary registers on PPP20 (see Figure 4-4) have been provided and tested. The four present DFM cards have 512 cells of memory each as opposed to 256 cells in the eight-card version; they therefore contain enough memory for all eight modules. When the four additional DFM cards are constructed, expanding the canceller will simply amount to unplugging half of the memory IC's from the existing cards, inserting them in the new cards\*, inserting the new cards in the T panel rack, wiring the four new slots in that rack, and changing a few jumpers on the TIC and PPP20 cards. The additional 5-volt current, estimated at 7 Amps for the four additional DFMs without memories, is well within the capabilities of the STM5-36 supply.

<sup>\*</sup>Observing MOS handling precautions of course.

APPENDIX A

CANCELLER BACKPLANE T WIRING LIST

# CANCELLER BACKPLANE T WIRING LIST

| Twisted Pairs*                                |                                | Signal Na | ime   |
|-----------------------------------------------|--------------------------------|-----------|-------|
| 09-002 to 08-002<br>09-042 to 08-042          | level one                      | K0        | (LSB) |
| 07-002 to 06-002<br>07-042 to 06-042          | level one                      |           |       |
| 08-002 to 07-002<br>08-042 to 07-042          | level two                      |           |       |
| 06-002 to 05-002<br>06-042 to 05-0 <b>4</b> 2 | level two to level one on five | 9         |       |
|                                               |                                |           |       |
| 09-003 to 08-003<br>09-043 to 08-043          | level one                      | Kl        |       |
| 07-003 to 06-003<br>07-043 to 06-043          | level one                      |           |       |
| 08-003 to 07-003<br>08-043 to 07-043          | level two                      |           |       |
| 06-003 to 05-003<br>06-043 to 05-043          | level two to level one on five | 9         |       |
|                                               |                                |           |       |
| 09-004 to 08-004<br>09-044 to 08-044          | level one                      | K2        |       |
| 07-004 to 06-004<br>07-044 to 06-044          | level one                      |           |       |
| 08-004 to 07-004<br>08-044 to 07-044          | level two                      |           |       |
| 06-004 to 05-004<br>06-044 to 05-044          | level two to level one on five | •         |       |
|                                               |                                |           |       |

\* SLOT PIN # # 09-002 Signal 09-042 Gnd

|                     | Twisted P        | airs     |                  |           |               | Si      | ignal N | Vame |  |  |
|---------------------|------------------|----------|------------------|-----------|---------------|---------|---------|------|--|--|
|                     | 09-005<br>09-045 | to<br>to | 08-005<br>08-045 | level one |               |         | K3      |      |  |  |
|                     | 07-005<br>07-045 | to<br>to | 06-005<br>06-045 | level one |               |         |         |      |  |  |
|                     | 08-005<br>08-045 | to<br>to | 07-005<br>07-045 | level two | l of owl fees |         |         |      |  |  |
|                     | 06-005<br>06-045 | to<br>to | 05-005<br>05-045 | level two | to level one  | on five |         |      |  |  |
| to 08-010 level one |                  |          |                  |           |               |         |         |      |  |  |
|                     | 09-006<br>09-046 | to<br>to | 08-006<br>08-046 | level one |               |         |         |      |  |  |
|                     | 07-006<br>07-046 | to<br>to | 06-006<br>06-046 | level one |               |         |         |      |  |  |
|                     | 08-006<br>08-046 | to<br>to | 07-006<br>07-046 | level two |               |         |         |      |  |  |
|                     | 06-006<br>06-046 | to<br>to | 05-006<br>05-046 | level two | to level one  | on five |         |      |  |  |
|                     |                  |          |                  |           |               |         |         |      |  |  |
|                     | 09-007<br>09-047 | to<br>to | 08-007<br>08-047 | level one |               |         | K5      |      |  |  |
|                     | 07-007<br>07-047 | to<br>to | 06-007<br>06-047 | level one |               |         |         |      |  |  |
|                     | 08-007<br>08-047 | to<br>to | 07-007<br>07-047 | level two | ni awriawal   |         |         |      |  |  |
|                     | 06-007<br>06-047 | to<br>to | 05-007<br>05-046 | level two | to level one  | on five |         |      |  |  |
|                     |                  |          |                  |           |               |         |         |      |  |  |
|                     | 09-008<br>09-048 | to<br>to | 08-008<br>08-048 | level one |               |         | K6      |      |  |  |
|                     | 07-008<br>07-048 | to<br>to | 06-008<br>06-048 | level one |               |         |         |      |  |  |
|                     | 08-008<br>08-048 | to<br>to | 07-008<br>07-048 | level two | ot unit lens) |         |         |      |  |  |
|                     | 06-008<br>06-048 | to<br>to | 05-008<br>05-048 | level two | to level one  | on five |         |      |  |  |
|                     |                  |          |                  |           |               |         |         |      |  |  |

| Twisted F        |          |                  |       |     | <u>s</u> | Signal Name |     |  |
|------------------|----------|------------------|-------|-----|----------|-------------|-----|--|
| 09-009<br>09-049 | to<br>to | 08-009<br>08-049 | level | one |          |             | K7  |  |
| 07-009<br>07-049 | to<br>to | 06-009<br>06-049 | level | one |          |             |     |  |
| 08-009<br>08-049 | to<br>to | 07-009<br>07-049 | level | two |          |             |     |  |
| 06-009<br>06-049 | to<br>to | 05-009<br>05-049 |       |     | level on |             |     |  |
|                  |          |                  |       |     |          |             |     |  |
| 09-010<br>09-050 | to<br>to | 08-010<br>08-050 | level | one |          |             | K8  |  |
| 07-010<br>07-050 | to<br>to | 06-010<br>06-050 | level | one |          |             |     |  |
| 08-010<br>08-050 | to<br>to | 07-010<br>07-050 | level | two |          |             |     |  |
| 06-010<br>06-050 | to<br>to | 05-010<br>05-050 | level |     | level on |             |     |  |
|                  |          |                  |       |     |          |             |     |  |
| 09-011<br>09-051 | to<br>to | 08-011<br>08-051 | level | one |          |             | K9  |  |
| 07-011<br>07-051 | to<br>to | 06-011<br>06-051 | level | one |          |             |     |  |
| 08-011<br>08-051 | to<br>to | 07-011<br>07-051 | level | two |          |             |     |  |
| 06-011<br>06-051 | to<br>to | 05-011<br>05-051 | level |     | level on |             |     |  |
|                  |          |                  |       |     |          |             |     |  |
| 09-012<br>09-052 | to       | 08-012<br>08-052 | level | one |          |             | K10 |  |
| 07-012<br>07-052 | to       | 06-012<br>06-052 | level | one |          |             |     |  |
| 08-012<br>08-052 | to<br>to | 07-012<br>07-052 | level | two |          |             |     |  |
| 06-012<br>06-052 | to       | 05-012<br>05-052 |       |     | level on |             |     |  |
|                  |          |                  |       |     |          |             |     |  |

------

| Twisted I | Pairs |        | Signal Name                    |
|-----------|-------|--------|--------------------------------|
| 09-013    | to    | 08-013 | level one K11                  |
| 09-053    | to    | 08-053 |                                |
| 07-013    | to    | 06-013 | level one                      |
| 07-053    | to    | 06-053 |                                |
| 08-013    | to    | 07-013 | level two                      |
| 08-053    | to    | 07-053 |                                |
| 06-013    | to    | 05-013 | level two to level one on five |
| 06-053    | to    | 05-053 |                                |
|           |       |        |                                |
| 09-014    | to    | 08-014 | level one K12                  |
| 09-054    | to    | 08-054 |                                |
| 07-014    | to    | 06-014 | level one                      |
| 07-054    | to    | 06-054 |                                |
| 08-014    | to    | 07-014 | level two                      |
| 08-054    | to    | 07-054 |                                |
| 06-014    | to    | 05-014 | level two to level one on five |
| 06-054    | to    | 05-054 |                                |
|           |       |        |                                |
| 09-015    | to    | 08-015 | level one K13                  |
| 09-055    | to    | 08-055 |                                |
| 07-015    | to    | 06-015 | level one                      |
| 07-055    | to    | 06-055 |                                |
| 08-015    | to    | 07-015 | level two                      |
| 08-055    | to    | 07-055 |                                |
| 06-015    | to    | 05-015 | level two to level one on five |
| 06-055    | to    | 05-055 |                                |
|           |       |        |                                |
| 09-016    | to    | 08-016 | level one K14                  |
| 09-056    | to    | 08-056 |                                |
| 07-016    | to    | 06-016 | level one                      |
| 07-056    | to    | 06-056 |                                |
| 08-016    | to    | 07-016 | level two                      |
| 08-056    | to    | 07-056 |                                |
| 06-016    | to    | 05-016 | level two to level one on five |
| 06-056    | to    | 05-056 |                                |

------

| Twisted I        | Pairs    |                  |                           | Signal Name                                           |
|------------------|----------|------------------|---------------------------|-------------------------------------------------------|
| 09-017<br>09-057 | to<br>to | 08-017<br>08-057 | level one                 | K15                                                   |
| 07-017<br>07-057 | to<br>to | 06-017<br>06-057 | level one                 |                                                       |
| 08-017<br>08-057 | to<br>to | 07-017<br>07-057 | level two                 |                                                       |
| 06-017<br>06-057 | to<br>to | 05-017<br>05-057 | level two to level one on | five                                                  |
|                  |          |                  |                           |                                                       |
| 08-023<br>08-063 | to<br>to | 07-023<br>07-063 | level one                 | MOSP                                                  |
| 06-023<br>06-063 | to<br>to | 05-023<br>05-063 | level one                 |                                                       |
| 09-099<br>09-059 | to<br>to | 08-023<br>08-063 | level two                 |                                                       |
| 07-023<br>07-063 | to<br>to | 06-023<br>06-063 | level two                 |                                                       |
|                  |          |                  |                           |                                                       |
| 08-104<br>08-065 | to<br>to | 07-104<br>07-065 | level one                 | SEXCK1                                                |
| 06-104<br>06-065 | to<br>to | 05-104<br>05-065 | level one                 |                                                       |
| 09-104<br>09-064 | to<br>to | 08-104<br>08-065 | level two                 |                                                       |
| 07-104<br>07-065 | to<br>to | 06-104<br>06-065 | level two                 |                                                       |
|                  |          |                  |                           |                                                       |
| 08-025<br>08-026 | to<br>to | 07-025<br>07-026 | level one                 | SEXCK23                                               |
| 06-025<br>06-026 | to<br>to | 05-025<br>05-026 |                           |                                                       |
| 09-102<br>09-062 | to<br>to | 08-025<br>08-026 |                           |                                                       |
| 07-025<br>07-026 | to<br>to | 06-025<br>06-026 | level two                 | 10-19 of a10-86<br>10-10 or a20-40<br>10-81 at at0-80 |
|                  |          |                  |                           |                                                       |

| Twisted          | Pairs    | 3_               |           | S | ignal Na         | m e |
|------------------|----------|------------------|-----------|---|------------------|-----|
| 08-108<br>08-069 | to<br>to | 07-108<br>07-069 | level one |   | $R/\overline{W}$ |     |
| 06-108<br>06-069 | to<br>to | 05-108<br>05-069 | level one |   |                  |     |
| 09-108<br>09-068 | to<br>to | 08-108<br>08-069 | level two |   |                  |     |
| 07-108<br>07-069 | to<br>to | 06-108<br>06-069 | level two |   |                  |     |
|                  |          |                  |           |   |                  |     |
| 08-022<br>08-062 | to<br>to | 07-022<br>07-062 | level one |   |                  | 23  |
| 06-022<br>06-062 | to<br>to | 05-022<br>05-062 | level one |   |                  |     |
| 09-101<br>09-061 | to<br>to | 08-022<br>08-062 | level two |   |                  |     |
| 07-022<br>07-062 | to       | 06-022<br>06-062 | level two |   |                  |     |
|                  |          |                  |           |   |                  |     |
| 08-105<br>08-066 | to<br>to | 07-105<br>07-066 | level one |   | MOSE             | 1   |
| 06-105<br>06-066 | to<br>to | 05-105<br>05-066 | level one |   |                  |     |
| 09-105<br>09-065 | to<br>to | 08-105<br>08-066 | level two |   |                  |     |
| 07-105<br>07-066 | to       | 06-105<br>06-066 | level two |   |                  |     |
|                  |          |                  |           |   |                  |     |
| 08-024<br>08-064 | to<br>to | 07-024<br>07-064 | level one |   | MOSE             | 23  |
| 06-024<br>06-064 | to<br>to | 05-024<br>05-064 | level one |   |                  |     |
| 09-103<br>09-063 | to<br>to | 08-024<br>08-064 | level two |   |                  |     |
| 07-024<br>07-064 | to<br>to | 06-024<br>06-064 | level two |   |                  |     |

| Twisted I        | Pairs    |                  | •         | <u>s</u> | ignal Name |
|------------------|----------|------------------|-----------|----------|------------|
| 08-106<br>08-067 | to       | 07-106<br>07-067 | level one |          | OVFG       |
| 06-106<br>06-067 | to<br>to | 05-106<br>05-067 | level one |          |            |
| 09-106<br>09-066 | to<br>to | 08-106<br>08-067 | level two |          |            |
| 07-106<br>07-067 | to<br>to | 06-106<br>06-067 | level two |          |            |
|                  |          |                  |           |          |            |
| 08-089<br>08-090 | to<br>to | 07-089<br>07-090 | level one |          | PZCLR      |
| 06-089<br>06-090 | to<br>to | 05-089<br>05-090 | level one |          |            |
| 09-083<br>09-043 | to<br>to | 08-089<br>08-090 | level two |          |            |
| 07-089<br>07-090 | to<br>to | 06-089<br>06-090 | level two |          |            |
|                  |          |                  |           |          |            |
| 08-084<br>08-085 | to<br>to | 07-084<br>07-085 | level one |          | P3CLR      |
| 06-084<br>06-085 | to<br>to | 05-084<br>05-085 | level one |          |            |
| 09-084<br>09-044 | to<br>to | 08-084<br>08-085 | level two | 439-80   |            |
| 07-084<br>07-085 | to<br>to | 06-084<br>06-085 | level two |          |            |
|                  |          |                  |           |          |            |
| 08-088<br>08-087 | to<br>to | 07-088<br>07-087 | level one |          | SACK DFM   |
| 06-088<br>06-087 | to<br>to | 05-088<br>05-087 | level one |          |            |
| 09-088<br>09-087 | to<br>to | 08-088<br>08-087 | level two |          |            |
| 07-088<br>07-087 | to<br>to | 06-088<br>06-087 | level two |          |            |
|                  |          |                  |           |          |            |

| Twisted Pairs                        |           | Signal Name |
|--------------------------------------|-----------|-------------|
| 08-103 to 07-103<br>08-102 to 07-102 |           | P4CLR       |
| 06-103 to 05-103<br>06-102 to 05-102 |           |             |
| 09-085 to 08-103<br>09-045 to 08-102 |           |             |
| 07-103 to 06-103<br>07-102 to 06-102 |           |             |
|                                      |           |             |
| 08-082 to 07-082<br>08-083 to 07-083 |           | PICLR       |
| 06-082 to 05-082<br>06-083 to 05-083 |           |             |
| 09-082 to 08-082<br>09-042 to 08-083 |           |             |
| 07-082 to 06-082<br>07-083 to 06-083 |           |             |
|                                      |           |             |
| 08-109 to 07-109<br>08-110 to 07-110 |           | MIRE 1      |
| 06-109 to 05-109<br>06-110 to 05-110 |           |             |
| 09-109 to 08-109<br>09-069 to 08-110 |           |             |
| 07-109 to 06-109<br>07-110 to 06-110 |           |             |
|                                      |           |             |
| 08-021 to 07-021<br>08-020 to 07-020 |           | MIRE 23     |
| 06-021 to 05-021<br>06-020 to 05-020 | level one |             |
| 09-100 to 08-021<br>09-060 to 08-020 |           |             |
| 07-021 to 06-021<br>07-020 to 06-020 |           |             |

| Twisted                    | Pairs    |                            |                        | Sig | nal N | ame                        |
|----------------------------|----------|----------------------------|------------------------|-----|-------|----------------------------|
| 08-107<br>08-068           | to<br>to | 07-107<br>07-068           | level one              |     | MORE  | ī                          |
| 06-107<br>06-068           | to<br>to | 05-107<br>05-068           | level one              |     |       |                            |
| 09-107<br>09-067           | to<br>to | 08-107<br>08-068           | level two              |     |       |                            |
| 07-107<br>07-068           | to<br>to | 06-107<br>06-068           | level two              |     |       |                            |
|                            |          |                            |                        |     |       |                            |
| 08-091<br>08-092           | to<br>to | 07-091<br>07-092           | level one              |     | DFM   | CLR                        |
| 06-091<br>06-092           | to<br>to | 05-091<br>05-092           | level one              |     |       |                            |
| 09-093<br>09-092           | to<br>to | 08-091<br>08-092           | level two              |     |       |                            |
| 07-091<br>07-092           | to<br>to | 06-091<br>06-092           | level two              |     |       |                            |
|                            |          |                            |                        |     |       |                            |
|                            | #26      | Wires                      |                        |     |       |                            |
|                            |          | Slot 9,                    | 8, 7, 6, 5:            |     |       |                            |
|                            | IO 4     | 0, 80,                     | 120                    |     |       |                            |
|                            |          | Gnd: 1 w                   | ire from each          |     |       |                            |
|                            | IO 1     | , 41, 8                    | 1 /                    |     |       |                            |
|                            |          | +5V; 1 w                   | ire from each          |     |       |                            |
|                            |          |                            |                        |     |       |                            |
| Single #3                  | 30 Wir   | es                         | _                      |     |       |                            |
| 08-031<br>06-031<br>09-071 | to<br>to |                            | level one<br>level two |     | ADDR  | 0                          |
| 07-031                     | to       | 06-031                     | level two              |     |       |                            |
|                            |          |                            |                        |     | - 01  | 050-00                     |
| 08-032<br>06-032<br>09-072 | to<br>to | 07-032<br>05-032<br>08-032 | level one<br>level two |     | ADDR  | 101-00<br>030-00<br>150-50 |
| 07-031                     | to       | 06-031                     | level two              |     |       |                            |

| Single #3 | 30 Wi | res    |           | Signal Name |
|-----------|-------|--------|-----------|-------------|
| 08-033    | to    | 07-033 | level one | ADDR 2      |
| 06-033    | to    | 05-033 | level one |             |
| 09-073    | to    | 08-033 | level two |             |
| 07-033    | to    | 06-033 | level two |             |
|           |       |        |           |             |
| 08-034    | to    | 07-034 | level one | ADDR 3      |
| 06-034    | to    | 05-034 | level one |             |
| 09-114    | to    | 08-034 | level two |             |
| 07-034    | to    | 06-034 | level two |             |
|           |       |        |           |             |
| 08-035    | to    | 07-035 | level one | ADDR 4      |
| 06-035    | to    | 05-035 | level one |             |
| 09-075    | to    | 08-035 |           |             |
| 07-035    | to    | 06-035 | level two |             |
|           |       |        |           |             |
|           |       |        |           |             |
| 08-036    | to    | 07-036 | level one | ADDR 5      |
| 06-036    | to    | 05-036 | level one |             |
| 09-076    | to    | 08-036 | •         |             |
| 07-036    | to    | 06-036 | level two |             |
|           |       |        |           |             |
| 08-037    | to    | 07-037 | level one | ADDR 6      |
| 06-037    | to    | 05-037 | level one |             |
| 09-077    | to    | 08-037 | level two |             |
| 07-037    | to    | 06-037 | level two |             |
|           |       |        |           |             |
| 08-038    | to    | 07-038 | level one | ADDR 7      |
| 06-038    | to    | 05-038 | level one |             |
| 09-078    | to    | 08-038 | level two |             |
| 07-038    | to    | 06-038 | level two |             |
|           |       |        |           |             |
|           |       |        |           |             |
| 08-039    | to    | 07-039 |           | ADDR 8      |
| 06-039    | to    | 05-039 | level one |             |
| 09-079    | to    | 08-039 | level two |             |
| 07-039    | to    | 06-039 | level two |             |



Cable: T Backplane to Canceller Interface (CI) Connector on top of PPP20 card in slot F7

| Twisted          | Pairs    | -Cable           | Color       | Signal Name          |
|------------------|----------|------------------|-------------|----------------------|
| CI-007<br>CI-008 | to<br>to |                  | Wh<br>Brn   | Spare                |
| CI-010<br>CI-011 | to       |                  | Pur<br>Blk  | Spare                |
| CI-012<br>CI-013 | to<br>to |                  | Pur<br>Blk  | Spare                |
| CI-014<br>CI-015 | to<br>to | 09-034<br>09-074 | Pur<br>Blk  | Ø3LB                 |
| CI-016<br>CI-017 | to<br>to | 09-032<br>09-033 | Pur<br>Blk  | ACX                  |
| CI-018<br>CI-019 | to       | 09-018<br>09-019 | Wh<br>Brn   | ORL                  |
| CI-020<br>CI-021 | to       | 09-020<br>09-021 | Wh<br>Brn   | PISOR RE             |
| CI-022<br>CI-023 | to<br>to | 09-022<br>09-023 | Wh<br>Brn   | SRE                  |
| CI-024<br>CI-025 | to<br>to | 09-024<br>09-025 | Wh<br>Brn   | SACK B               |
| CI-026<br>CI-027 | to       | 09-026<br>09-027 | Wh<br>Brn   | PISOR SP             |
| CI-028<br>CI-029 | to<br>to | 09-028<br>09-029 | Wh<br>Brn   | e <sub>in</sub> GATE |
| CI-082<br>CI-083 | to<br>to | 08-100<br>08-101 | Brn<br>Blk  | e <sub>out</sub> 0Q  |
| CI-084<br>CI-085 | to       | 08-098<br>08-099 | Wh<br>Blk   | e <sub>in</sub> 0Q   |
| CI-086<br>CI-087 | to       | 07-100<br>07-101 | Gray<br>Blk | e <sub>out</sub> 0I  |
| CI-088<br>CI-089 | to       | 07-098<br>07-099 | Pur<br>Blk  | e <sub>in</sub> 0I   |
| CI-090<br>CI-091 | to<br>to | 06-100<br>06-101 | Blu<br>Blk  | e <sub>out</sub> 1Q  |
| CI-092<br>CI-093 | to<br>to | 06-098<br>06-099 | Grn<br>Blk  | e <sub>in</sub> lQ   |

| Twisted                              | Pairs -Cable           |        | Color                  | Signal Name           |
|--------------------------------------|------------------------|--------|------------------------|-----------------------|
| CI-094<br>CI-095                     | to 05-100<br>to 05-101 | (23.0) | Yel<br>Blk             | e <sub>out</sub> lI   |
| CI-096<br>CI-097                     | to 05-098<br>to 05-099 |        | Or<br>Blk              | e <sub>in</sub> lI    |
| CI-098<br>CI-099                     | to<br>to               |        | Red<br>Blk             | e <sub>out</sub> 2Q   |
| CI-100<br>CI-101                     | to<br>to               |        | Brn<br>Blk             | e <sub>in</sub> 2Q    |
| CI-102<br>CI-103                     | to<br>to               |        | Brn<br>Blk             | e <sub>out</sub> 2I   |
| CI-104<br>CI-105                     | to<br>to               |        | Wh<br>Blk              | e <sub>in</sub> 2I    |
| CI-106<br>CI-107                     | to<br>to               |        | Gray<br>Blk            | e <sub>out</sub> 3Q   |
| CI-108<br>CI-109                     | to<br>to               |        | Pur<br>Blk             | e <sub>in</sub> 3Q    |
| CI-110<br>CI-111                     | to<br>to               |        | Blu<br>Blk             | e <sub>out</sub> 3I   |
| CI-112<br>CI-113                     | to<br>to               |        | Grn<br>Blk             | e <sub>in</sub> 3I    |
| CI-114<br>CI-115                     | to<br>to               |        | Yel<br>Blk             | Spare                 |
| CI-116<br>CI-117                     | to<br>to               |        | Or<br>Blk              | Spare                 |
| CI-118<br>CI-119                     | to<br>to               |        | Red<br>Blk             | Spare                 |
| CI-120<br>CI-080                     | to<br>to               |        | Brn<br>Blk             | Spare                 |
| Single W                             | ires - Cable           |        |                        |                       |
| CI-001<br>CI-002<br>CI-003<br>CI-004 | TG plane               |        | Wh<br>Brn<br>Wh<br>Brn | Gnd<br>Spare<br>Gnd   |
| CI-004<br>CI-005<br>CI-006           | TG plane               |        | Wh<br>Brn              | Spare<br>Gnd<br>Spare |

| Single W | ires - Cable | Color | Signal Name |
|----------|--------------|-------|-------------|
| CI-009   | TG plane     | Wh    | Gnd         |
| CI-030   | to 09-030    | Wh    | DLOE        |
| CI-031   | to 09-031    | Brn   | CG          |
| CI-032   | to 09-090    | Wh    | CLK WIDTH   |
| CI-033   | to 09-091    | Wh    | CLK WIDTH   |
| CI-034   | to           | Wh    | Spare       |
| CI-035   | to 09-035    | Wh    | CSA         |
| CI-036   | to 09-036    | Wh    | CSB         |
| CI-037   | to 09-037    | Wh    | CSC         |
| CI-038   | to 09-038    | Wh    | CGON        |
| CI-039   | TG plane     | Wh    | Gnd         |
| CI-040   | TG plane     | Wh    | Gnd         |

APPENDIX B

"PPP Canceller Constants", memo AJJ-58



DIVISION EQUIPMENT

Operation EDL

Department ADL - Wayland

H. L. Groginsky

A. J. Jagodnik, Jr.

Subject PPP Canceller Constants

Unclassified Classification

Contract No.

F19628-76-C-0297

Distribution

CC

File No.

Memo No.

AJJ-58

Date

31 January 1977

The radar system parameters necessary to specify the eight sets of constants for the PPP Ground Clutter Canceller have been established as listed in Table 1 (attached). The bold-face numbers under each PRF/radar frequency combination represent AFGL requirements per our 77 Jan. 31 meeting. By chance, one set of constants, "G" in the table, satisfied two AFGL requirements. I therefore took the liberty of specifying the extra constant to give a 0.16 meters/sec. cut-off at the highest Porcupine PRF. With this arrangement, notch width increases monotonically as the CANCELLER SHAPE switch is rotated clockwise and a useful range of widths is available at each PRF.

Jagodnik, Jr.

Advanced Electronic Techniques

Wayland Box M9, x5171

AJJ/11d

G. Armstrong

A. Bishop

K. M. Glover

A. L. Glick

AFGL

Unclassified AJJ-58 31 January 1977 Page 2 of 2

Table 1.

|               | RADAR FREQ          | PORCUP      |             |             | MARON           |
|---------------|---------------------|-------------|-------------|-------------|-----------------|
| APE"<br>JITCH | 2 fo fr             |             | 1222 1833   |             | 5 MHZ<br>5 1302 |
|               | (x103)              | VELOCITY    | CUT-OFF     | (m/sec)     | -               |
| A             | 3,199709            | .02 .04     | .0533 .08   | .16 .04     | .1142           |
| В             | 4.481311            | ,0280 .0560 | .0746 1120  | .2240 .056  | 0 .16           |
| C             | 6,39 94 18<br>(ZA)  | 204 .08     | .1066 .16   | .32 .08     | .2285           |
| D             |                     | .0560 .1120 | .1473 2241  | .4482 .1120 | .32             |
| E             | 12.80233            | .08 .16     | .2133 .32   | .64 . 16    | .4569           |
| F             | 19 2034 9<br>(1.5E) | .12 .24     | .32 .48     | .96 .24     | .6855           |
| G             | 25.59069<br>(2E)    | .16 .32     | .4266 -64   | 1.28 .32    | .9140           |
| Н             |                     | .32 .64     | .8533   -28 | 2.56 .64    | 1.828           |

## APPENDIX C

CANCELLER FREQUENCY RESPONSE SIMULATIONS















## APPENDIX D

82S123 K PROM PATTERNS -- TIC CARD

| SHAPE<br>SWITCH | PROM                 | CONST                    | B7<br>1111<br>5 <b>43</b> 2 | R26<br>11<br>1098    | 765 <b>4</b>       | T26<br>3210           | ,                    | CO       |
|-----------------|----------------------|--------------------------|-----------------------------|----------------------|--------------------|-----------------------|----------------------|----------|
| A               | 00<br>01<br>02<br>03 | K4<br>K3<br>K2/2<br>K1/2 | H                           | .H.H<br>.H.H<br>HH   | HH.H<br>HH<br>H.   | H<br>H<br>.HH.        | K4<br>K3<br>K2<br>K1 | 1.       |
| В               | 04<br>05<br>06<br>07 | K4<br>K3<br>K2/2<br>K1/2 |                             |                      | H                  | .H.H<br>.H.H.<br>.HHH | K4<br>K3<br>K2<br>K1 | 1.1.     |
| С               | 08<br>09<br>10<br>11 | K4<br>K3<br>K2/2<br>K1/2 | H.                          | HH<br>HH<br>         | HHH.<br>.H.H<br>HH | HH                    | K4<br>K3<br>K2<br>K1 | 1:       |
| D               | 12<br>13<br>14<br>15 | K4<br>K3<br>K2/2<br>K1/2 |                             | H<br>HHHH<br>HH      | HH<br>HH<br>HHHH   | н                     | K4<br>K3<br>K2<br>K1 | 1.<br>1. |
| E               | 16<br>17<br>18<br>19 | K4<br>K3<br>K2/2<br>K1/2 |                             | HH.H<br>.HH.<br>HHHH | «H                 | H.H.<br>HH            | K4<br>K3<br>K2<br>K1 | 1.       |
| F               | 20<br>21<br>22<br>23 | K4<br>K3<br>K2/2<br>K1/2 |                             | HH<br>HH.            | HH<br>HH<br>.H     | H.                    | K4<br>K3<br>K2<br>K1 | 1.       |
| G               | 24<br>25<br>26<br>27 | K4<br>K3<br>K2/2<br>K1/2 | H<br>H.                     | .HH.<br>HH.<br>.H    | HH.H<br>H<br>H     | H.<br>HH              | K4<br>K3<br>K2<br>K1 | 1.       |
| Н               | 28<br>29<br>30<br>31 | K4<br>K3<br>K2/2<br>K1/2 | .H.H                        | .HH.<br>.HHH<br>H.H. | .H.H.              | H<br>                 | K4<br>K3<br>K2<br>K1 | 1.       |



## APPENDIX E

82S123 TIMING PROM PATTERNS -- TIC CARD

200196229. 182361749.1 1828989.1

Signetics 82S123, U35 (L26) on TIC Card

| Address | B7 | В6 | В5 | B4 | В3 | B2 | Bl | В0 | 1                          |
|---------|----|----|----|----|----|----|----|----|----------------------------|
| 0 08    | н  | H  | н  | Н  |    |    |    |    | 0                          |
| 1       | Н  | Н  | н  | Н  |    |    |    | Н  | 1                          |
| 2       | Н  | Н  | Н  | Н  |    |    | Н  |    | 1<br>2<br>3<br>4<br>5<br>6 |
| 3       | Н  | Н  | Н  | Н  |    |    | Н  | Н  | 3                          |
| 4       | Н  | Н  | Н  | Н  | `  |    |    |    | 4                          |
| 5       |    |    |    |    |    |    |    |    | 5                          |
| 6       |    |    |    |    |    |    |    |    | 6                          |
| 7       |    |    |    |    |    |    |    |    | 7                          |
| 8       |    |    |    |    |    |    |    |    | 8                          |
| 9       |    |    |    |    |    |    |    |    | 9                          |
| 10      |    |    |    |    |    |    |    |    | 10                         |
| 11      |    |    |    |    |    |    |    |    | 11                         |
| 12      |    |    |    |    |    |    |    |    | 12                         |
| 13      |    |    |    |    |    |    |    |    | 13                         |
| 14      |    |    |    |    |    |    |    |    | 14                         |
| 15      |    |    |    |    |    |    |    |    | 15                         |
| 16      |    |    |    |    |    |    |    |    | 16                         |
| 17      |    |    |    |    |    |    |    |    | 17                         |
| 18      |    |    |    |    |    |    |    |    | 18                         |
| 19      |    |    |    |    |    |    |    |    | 19                         |
| 20      | Н  |    |    | Н  | Н  | Н  |    | Н  | 20                         |
| 21      |    | Н  | Н  | Н  |    | Н  | Н  | Н  | _1_1                       |
| 22      |    |    | Н  | Н  |    |    | Н  | Н  | 22.                        |
| 23      |    | Н  |    | Н  |    | Н  |    | Н  | 23                         |
| 24      |    |    |    |    | Н  | Н  | Н  | ·H | 24                         |
| 25      |    |    | н  |    | Н  |    | Н  | Н  | 25                         |
| 26      |    |    |    | Н  |    | Н  | Н  | Н  | 26<br>27                   |
| 27      | Н  | Н  | Н  | Н  |    |    |    |    | 27                         |
| 28      | Н  | Н  | Н  | Н  |    |    |    |    | 28                         |
| 29      | Н  | Н  | Н  | Н  |    |    |    |    | 29                         |
| 30      | Н  | Н  | Н  | Н  |    |    |    |    | 30                         |
| 31      | Н  | Н  | Н  | Н  |    |    |    |    | 31                         |

H ≡ High ≡ Logic One ≡ Programmed

Blank ≡ Low ≡ Logic Zero ≡ Not Programmed

Signetics 82S123, U36 (J26) on TIC Card

|                  |      |    | MORE   | $\overline{R/\overline{W}}$ | MIRE 23     |        | MIRE 1 |       |         |
|------------------|------|----|--------|-----------------------------|-------------|--------|--------|-------|---------|
|                  | ORL  |    |        | Early                       |             |        | Late   | Early |         |
| ddress           | В7   | В6 | B5     | B4                          | В3          | B2     | Bl     | В0    |         |
| 0                |      |    | 1      |                             | 1 1         |        | 1      |       | 0       |
| 0<br>1<br>2<br>3 |      | 1  |        |                             | 1<br>1<br>1 |        | 1      |       | 0 1 2 3 |
| 3                |      |    |        |                             | 1           |        |        |       | 3       |
| 1                | 1    |    |        |                             | 1<br>1      |        |        |       | 4       |
| 1<br>5<br>7      |      |    |        | 1                           | 1           |        |        |       | 4 5 6 7 |
|                  |      |    |        | 1                           |             |        |        |       |         |
| 3                |      |    |        | 1<br>1                      |             |        |        |       | 8 9     |
| )                |      |    |        | 1                           |             |        |        | 1     | 0       |
|                  |      |    |        | l                           |             |        |        |       |         |
|                  |      |    |        | 1                           |             |        |        |       | 2       |
| <u>1</u><br>5    |      |    |        | 1                           |             |        |        | 1     | 4       |
|                  |      |    |        |                             |             |        |        |       |         |
| 7                |      |    | 1<br>1 | 1<br>1                      |             |        |        | 1     | 16      |
| 3                |      |    | 1      |                             |             |        |        |       | 8       |
| )                |      |    |        |                             |             |        |        |       | 20      |
| l                |      |    |        |                             |             |        |        | 1 2   | 21      |
| 2                |      |    |        |                             |             | 1      |        | 1 2   | 22      |
| 4                | H    |    |        |                             |             | 1      |        | 1 2   | 24      |
| 5                | 18   |    |        |                             |             | 1      |        | 1 2   | 2.5     |
| 6                |      |    |        |                             |             | 1      |        | 1 2   | 27      |
| 8                | 1 25 |    |        |                             |             | 1      |        | 1 2   | 28      |
| 9                | 23   |    |        |                             |             | 1<br>1 |        | 1 2   | 29      |
| 0                |      |    |        |                             |             | ì      |        | 1 3   | 31      |

1 = High = Logic One = Programmed

Blank = Low = Logic Zero = Not Programmed

Signetics 82S123, U37 (G26) on TIC Card

|         |    | MOSE<br>23 | OVFG |    | MOSE 1 |    | MOSP | MORE<br>23 |          |
|---------|----|------------|------|----|--------|----|------|------------|----------|
|         |    | Early      | Late |    | Early  |    | Late | Early      |          |
| Address | B7 | В6         | B5   | B4 | В3     | B2 | Bl   | В0         |          |
| 0       |    |            |      |    |        |    |      | 1          | 0        |
| 1       |    |            |      |    |        |    |      | 1          | 1        |
| 2 3     |    |            |      |    |        |    |      | 1          | 2 3      |
| 4 5     |    |            |      |    |        |    |      |            | 4        |
| 5       |    |            | 1    |    |        |    |      |            | 5        |
| 6<br>7  |    |            | 1    |    |        |    | 1    |            | 6        |
| 8       |    |            |      |    |        |    |      |            | 8        |
| 9       |    |            |      |    |        |    |      |            | 9        |
| 1       |    |            |      |    |        |    |      |            | 11       |
| 2       |    |            |      |    |        |    |      | ,          | 12       |
| 3 4     |    |            |      |    |        |    |      |            | 13<br>14 |
| 5       |    |            |      |    |        |    |      |            | 15       |
| 6       |    |            |      |    |        |    |      |            | 16       |
| 7       |    |            |      |    | 1      |    |      |            | 17       |
| 8       |    |            |      |    | 1      |    |      |            | 18       |
| .0      |    | 1          |      |    | 1 .    |    |      | 1 1        | 20       |
| 1 2     |    | 1<br>1     |      |    | 1 1    |    |      | 1          | 21       |
| 3       |    | ì          |      |    | i      |    |      |            | 23       |
| 4       |    | 1          |      |    | 1      |    |      |            | 24       |
| 6       |    | 1 .        |      |    | 1      |    |      |            | 25<br>26 |
| 7       |    | į          |      |    | 1      |    |      |            | 27       |
| 28      |    | 1          |      |    | 1      |    |      |            | 28       |
| 9 80    |    | 1          |      |    | 1<br>1 |    |      |            | 29<br>30 |
| 31      |    | i          |      |    | i      |    |      |            | 31       |

<sup>1 ≡</sup> High ≡ Logic One ≡ Programmed
Blank ≡ Low ≡ Logic Zero ≡ Not Programmed

Signetics 82S123 (3S), U38 (E26) on TIC Card

|                  |     |    |    |      | VCD   | SRE   | PISOR  | RE PIS | OR SP    |
|------------------|-----|----|----|------|-------|-------|--------|--------|----------|
|                  |     |    |    | Late | Early | Early | Early  | Early  |          |
| Address          | В7  | В6 | В5 | B4   | В3    | B2    | Bl     | В0     |          |
| 0                | 111 |    |    |      |       |       |        |        | 0        |
| 0<br>1<br>2<br>3 |     |    |    |      |       |       |        |        |          |
| 2                |     |    |    |      |       |       |        |        | 1 2 3    |
| 3                |     |    |    |      |       |       |        |        | 3        |
| 4                |     |    |    |      |       |       |        |        | 4        |
| 5                |     |    |    |      |       |       |        |        | 5        |
| 4<br>5<br>6<br>7 |     |    |    | 1    |       |       |        |        | 7        |
|                  |     |    |    |      |       |       |        |        |          |
| 8 9              |     |    |    |      |       |       |        |        | 8 9      |
| 10               |     |    |    |      |       |       |        |        | 10       |
| 11               |     |    |    |      |       |       |        |        | 11       |
| 12               |     |    |    |      |       |       |        |        | 12       |
| 13               |     |    |    |      |       |       |        |        | 13       |
| 14               |     |    |    |      |       |       |        |        | 14       |
| 15               |     |    |    |      |       |       |        |        | 15       |
| 16               |     |    |    |      |       |       | 1      | 1      | 16       |
| 17               |     |    |    |      |       |       |        |        | 17       |
| 18               |     |    |    |      | 1     |       |        |        | 18       |
| 19               |     |    |    |      |       | 1     |        |        | 19       |
| 20               |     |    |    |      |       | 1     | 1      |        | 20       |
| 21               |     |    |    |      |       | 1     | 1<br>1 |        | 21       |
| 22 23            |     |    |    |      |       | 1     | i      |        | 23       |
|                  |     |    |    |      |       |       |        |        |          |
| 24               |     |    |    |      |       | 1     | 1      |        | 24       |
| 25<br>26         |     |    |    |      |       | 1 .   | 1 1    |        | 25<br>26 |
| 27               |     |    |    |      |       |       |        |        | 27       |
| 28               |     |    |    |      |       |       |        |        | 28       |
| 29               |     |    |    |      |       |       |        |        | 29       |
| 30               |     |    |    |      |       |       |        |        | 30       |
| 31               |     |    |    |      |       |       |        |        | 31       |

<sup>1 ≡</sup> High ≡ Logic One ≡ Programmed

Blank = Low = Logic Zero = Not Programmed

Signetics 82S123 (3S), U54 (N44) on TIC Card

| Add | ress   | B7 B6 | B5 | B4 | B3     | B2 | Bl | ВО |    |
|-----|--------|-------|----|----|--------|----|----|----|----|
| 0   |        |       |    |    | Н      |    |    |    | 0  |
| 1   |        |       | H  | Н  |        |    | Н  | Н  | 1  |
| 2   |        |       | Н  |    |        |    | н  |    | 2  |
| 3   | xabut. |       |    | Н  |        |    |    | H  | 3  |
| 4   |        |       |    |    |        |    |    |    | 4  |
| 5   | ASST   |       |    | Н  | - FEEA |    |    | H  | 5  |
| 6   | A684   |       | Н  |    |        |    | Н  |    | 6  |
| 7   | SESA   |       | Н  | H  |        |    | Н  | H  | 7  |
| 8   | ASSA   |       |    |    | Н      |    |    |    | 8  |
| 9   | AFRA:  | Н     |    |    |        | Н  |    |    | 9  |
| 10  | ASB7   | H     |    | Н  |        | Н  |    | Н  | 10 |
| 11  | THEA   | Н     | Н  |    |        | Н  | Н  |    | 11 |
| 12  | ABBI   | H     | Н  | Н  | FEEA   | Н  | Н  | Н  | 12 |
| 13  | SHSA   | Н     | Н  |    |        | H  | Н  |    | 13 |
| 14  |        | н     |    | Н  |        | Н  |    | Н  | 14 |
| 15  |        | Н     |    |    |        | Н  |    |    | 15 |
| 16  |        |       | Н  |    |        |    |    |    | 16 |
| 17  |        | H     |    | H  |        | Н  | Н  | H  | 17 |
| 18  |        |       | Н  |    | Igua   |    |    |    | 18 |
| 19  |        | Н     |    | Н  |        | H  | Н  | H  | 19 |
| 20  |        |       | Н  |    |        |    |    |    | 20 |
| 21  |        | Н     |    | Н  |        | Н  | Н  | Н  | 21 |
| 22  |        |       | Н  |    |        |    |    |    | 22 |
| 23  |        | Н     |    | Н  |        | Н  | Н  | H  | 23 |
| 24  |        |       | Н  |    |        |    |    |    | 24 |
| 25  |        | Н     |    | Н  |        | Н  | Н  | H  | 25 |
| 26  |        |       | Н  |    |        |    |    |    | 26 |
| 27  |        | Н     |    | H  |        | Н  | Н  | Н  | 27 |
| 28  |        |       | Н  |    |        |    |    |    | 28 |
| 29  |        | н     |    | Н  |        | н  | Н  | Н  | 29 |
| 30  |        |       | Н  |    |        |    |    |    | 30 |
| 31  |        | Н     |    | Н  |        | Н  | Н  | Н  | 31 |

H ≡ High ≡ Logic One ≡ Programmed

Blank = Low = Logic Zero = Not Programmed

APPENDIX F
PPP CARD INDEXING SUMMARY

|                |   | Card Type       | Index        |                | Card Type                | Index                |          |
|----------------|---|-----------------|--------------|----------------|--------------------------|----------------------|----------|
| R1<br>R2<br>R3 |   | PPP-13          | A3B7         | F1<br>F2<br>F3 | PPP-13<br>PPP-6<br>PPP-3 | A3B7<br>A8B5<br>A6B4 |          |
| R4<br>R5       |   | PPP-3A<br>PPP-9 | A6B5<br>A5B4 | F4<br>F5       | PPP-2<br>PPP-2           | A8B8<br>A8B8         |          |
| R6<br>R7       |   | PPP-10<br>PPP-5 | A4B4<br>A7B4 | F6<br>F7       | PPP-4A<br>PPP-20         | A8B6<br>A7B3         | Top-AlB3 |
| R8<br>R9       |   | PPP-3<br>PPP-3  | A6B4<br>A5B4 | F8<br>F9       | PPP-2<br>PPP-1           | A8B8<br>A8B7         | 77       |
| R10<br>R11     |   | PPP-10<br>PPP-3 | A4B4<br>A6B4 | F10<br>F11     | PPP-1<br>PPP-2A          | A8B7<br>A4B8         |          |
| R12<br>R13     |   | PPP-9<br>PPP-10 | A5B4<br>A4B4 | F12<br>F13     | PPP-8<br>PPP-7           | A8B1<br>A8B2         |          |
|                | H | H               |              | B              | H                        | 11020                |          |

| Tl  |     |      |
|-----|-----|------|
| T2  |     |      |
| T3  |     |      |
| T4  |     |      |
| T5  | DFM | AlBl |
| T6  | DFM | AlBl |
| T7  | DFM | AlBI |
| T8  | DFM | AlBl |
| T9  | TIC | A1B2 |
| T10 |     |      |
| T11 |     |      |
| T12 |     |      |
| T13 |     |      |

APPENDIX G

DRAWING LIST

## TRACAN PPP Canceller Drawings

| Size | Form   | No. Sht.       | New Drawings                                                                   | Dwg. No.         | Rev. |
|------|--------|----------------|--------------------------------------------------------------------------------|------------------|------|
| С    | V      | 1              | Power Supply Interconnection Schematic,<br>Pulse Pair Processor with Canceller | <b>S</b> D192634 | A    |
| D    | S      | 1              | Layout and Schematic Additions Scale<br>Card with Delay PPP3A                  | SD192635         | A    |
| E    | v      | 1              | Schematic - Canceller Interface - PPP20                                        | SD192636         | Α    |
| D    | S      | 1              | Layout - Canceller Interface - PPP20                                           | SD192637         | A    |
| D    | v      | 1}             | Schematic and Layout Digital Filter<br>Module - DFM                            | SD192638         | Α    |
|      | S      | 4              |                                                                                |                  |      |
| D    | v<br>s | $\binom{1}{1}$ | Schematic and Layout Timing Interface<br>Controller - TIC                      | SD192639         | A    |
|      |        |                | Revised PPP Drawings                                                           |                  |      |
| E    | s      | 1              | Electrical Schematic-AGC Accumulator<br>Card- PPP 6                            | SD895169         | В    |
| J    | S      | 1              | Interconnection Diagram Pulse Pair<br>Processor                                | 895171           | С    |
| D    |        | 1              | Power Supply Interconnection Diagram PPP OBSOLETE                              | 895157           |      |
| E    | S      | 1              | Electrical Schematic - Timing and Dump<br>Generator Card - PPP5                | SD895162         | В    |
| D    | v      | 1              | Block Diagram of Pulse Pair Processor                                          | 895155           | В    |







