

Lecture No.- 02

Subject Name- Mathematics

Chapter Name- Circles

By- RITIK SIR

Topic to be Covered

Topic

Important Question (Part I)

Recap of Previous Lecture

Topic Theorem

Tangents are equally inclined to the line Segment Joining the centre to that Point

#Q. In fig, if TP and TQ are the two tangents to a circle with centre O so that

 $\angle POQ = 110^{\circ}$, then $\angle PTQ$ is equal to

D 90

#Q. If tangent <u>PA</u> and <u>PB</u> form a point <u>P</u> to a circle with centre <u>Q</u> are inclined to each other at angle of 80° , then $\angle POA$ is equal to

B 60°

C 70°

D 80°

ع°50 ع

#Q. Shown below is a circle with 3 tangents KQ, KP and LM, QL = 2 cm and KL = 6 cm. $PM = \frac{1}{2}$ KL. What is the measure of \angle LMK?

- A 50° PM=16)
- B 65° (PM=3)
- C 80°
- Cannot be uniquely determined with the given information.

[CBSE Latert Practice Sheet Questions]

at Q and R respectively. Prove that
$$AQ = \frac{1}{2}$$
 (Perimeter of \triangle ABC)

[CBSE 2000, 2001, 2002, NCERT Exemplar]

#Q. If PQ = 28 cm, then find the perimeter Δ PLM.

[CBSE SQP, 2020-21]

PQ is a tangent to a circle with centre 0 at point P. If \triangle OPQ is an isosceles triangle, then find $\angle OQP$.

[CBSE SQP, 2020-21]

- B) us
- c) so

#Q. In fig. PA and PB are tangents from an external point P to a circle with centre O. LN touches the circle at M. Prove that PL + LM = PN + MN. [CBSE 2010]

tangents from eaternal point

BN+PN MN+PN = R·HS

#Q. A circle touches all the four sides of a quadrilateral ABCD. Prove that:

AB + CD = BC + DA.

= AD+BC

[NCERT, CBSE 2008, 2009, 2012-2015 2017]

ASTOS + BOTCO - ARTOPTBRTCP

#Q. If all the side of a parallelogram touch a circle, show that the parallelogram is

Proved in the

P

#Q. If a hexagon ABCDEF circumscribes a circle, prove that

AB + CD + EF = BC + DE + FA.

[NCERT EXEMPLAR]

Pair

#Q. From an external point P, two tangents PA and PB are drawn to the circle with centre O. Prove that OP is the perpendicular bisector of AB.

#Q. Two tangent segments PA and PB are drawn to a circle with centre 0 such that $\angle APB = 120^{\circ}$. Prove that OP = 2AP. [CBSE 2014]

OB-SUB

#Q. In the figure, two tangents RQ and RP are drawn from an external point R to the circle with centre O. If \angle PRQ = 120°, then prove that OR = PR + RQ.

#Q. If two tangents inclined at 60° are drawn to a circle of radius 3 cm, then find length of each tangent.

[CBSE SQP, 2020-21]

- \mathbf{A} $3\sqrt{3}$ cm
- $\frac{3\sqrt{3}}{2}$ cm
- $\frac{\mathbf{C}}{\frac{\sqrt{3}}{2}}$ cm
- None of these

#Q. Two tangent TP and TQ are drawn to a circle with centre 0 from an external point T. Prove that $\angle PTQ = 2\angle OPQ$.

- Pw
- **#Q.** A circle is drawn. Two points are marked outside the circle such that only 3 tangents can be drawn to the circle using these two points.

 Which of the following is true based on the above information?
- All 3 tangents are equal in length.
- B Both the points lie on one of the tangents.
- C The tangents and the circle have two common points in total
- (such a situation is not possible as with 2 points, there will be 4 tangents to the circle)

