Logical Representations of Syllable Structures

Chapter 4 Outline

- Representations
 - Dot
 - Flat
 - Tree
- Transformations
 - L-interpretability
 - Flat-to-Tree
 - Tree-to-Flat
 - Flat-to-Dot
 - Dot-to-Flat

Dot Structure

Representation includes string of segments and syllable boundaries

$$\Sigma^{dot} \stackrel{\text{def}}{=} \mathcal{F} \cup \{\bullet\}$$

$$\mathcal{R}^{dot} \stackrel{\text{def}}{=} \{R_s \mid s \in \Sigma^{dot}\}$$

$$\mathcal{M}^{dot}_{plenty} \stackrel{\text{def}}{=} \langle \mathcal{D}; \mathcal{R}^{dot}; \{pred(x), succ(x)\} \rangle$$
Figure 4.4: $\mathcal{M}^{dot}_{plenty}$

Flat Structure

Syllable information encoded at positions - [p] explicitly labeled as an onset,
 [n] explicitly labeled as a coda, etc.

$$\Sigma^{flat} \stackrel{\mathrm{def}}{=} \mathcal{F} \cup \{ \mathsf{ons}, \mathsf{nuc}, \mathsf{cod} \}$$

$$\mathcal{R}^{flat} \stackrel{\mathrm{def}}{=} \{ R_s \mid s \in \Sigma^{flat} \}$$

$$\mathcal{M}^{flat}_{plenty} \stackrel{\mathrm{def}}{=} \langle \mathcal{D}; \mathcal{R}^{flat}; \{ pred(x), succ(x) \} \rangle$$
Figure 4.5: $\mathcal{M}^{flat}_{plenty}$

Tree Structure

- Hierarchical structure encoding onset, nucleus, coda positions, as well as σ for a single syllable
- Inclusion of par(x) function to denote a parent node

L-interpretability

- Existence of a logic L that allows for a transduction from M₁ to M₂
- The models listed here are QF-bi-interpretable (with bound on syllable size)
- Flat-to-Tree
- Tree-to-Flat
- Flat-to-Dot
- Dot-to-Flat
- Tree-to-Dot? Dot-to-Tree?

Figure 4.7: The codomain for $\Gamma_{ft}(\mathcal{M}_{plenty}^{flat})$

Figure 4.8: Labels for Copy Set 1 in $\Gamma_{ft}(\mathcal{M}_{plenty}^{flat})$

Figure 4.10: Labels for Copy Sets 1 and 2 in $\Gamma_{ft}(\mathcal{M}_{plenty}^{flat})$

$$\sigma(x^3) \stackrel{\text{def}}{=} \text{nuc}(x)$$

Figure 4.11: Labels for all three copy sets in $\Gamma_{ft}(\mathcal{M}_{plenty}^{flat})$

Figure 4.12: The successor function in $\Gamma_{ft}(\mathcal{M}_{plenty}^{flat})$

$$\operatorname{nuc}(x) \Rightarrow \operatorname{par}(x^2) = x^3$$

 $\operatorname{nuc}(x) \Rightarrow \operatorname{par}(x^1) = x^2$

Figure 4.13: Some dominance information in $\Gamma_{ft}(\mathcal{M}_{plenty}^{flat})$

$$ons_1(x) \Rightarrow par(x^2) = (succ(x))^3$$

$$\operatorname{cod}_{-1}(x) \Rightarrow \operatorname{par}(x^2) = (\operatorname{pred}(x))^3$$

Figure 4.14: Additional dominance information in $\Gamma_{ft}(\mathcal{M}_{plenty}^{flat})$

$$\operatorname{ons}_{i}(x) \stackrel{\text{def}}{=} \operatorname{ons}(x) \wedge \operatorname{ons}_{i}(i-1)(\operatorname{succ}(x)) \text{ for } i \in \{2, \dots, n\}$$

"Position x is 'onset-i' (i positions before the nucleus) iff x is labeled one and its successor is 'onset-(i-1)', for i ranging from 2 to n."

$$\operatorname{\mathsf{cod}}_{-i}(x) \stackrel{\text{def}}{=} \operatorname{\mathsf{cod}}(x) \wedge \operatorname{\mathsf{cod}}_{-}(i-1)(\operatorname{pred}(x)) \text{ for } i \in \{2,\ldots,m\}$$

"Position x is 'coda-i' (i positions after the nucleus) iff x is labeled cod and its predecessor is 'coda-(i-1)', for i ranging from 2 to m."

Tree-to-Flat

Figure 4.6: $\mathcal{M}_{plenty}^{tree}$

Figure 4.18: The codomain for $\Gamma_{tf}(\mathcal{M}_{plenty}^{tree})$

Tree-to-Flat

$$\operatorname{ons}(x^1) \stackrel{\operatorname{def}}{=} \operatorname{ons}(par(x))$$
 $\operatorname{nuc}(x^1) \stackrel{\operatorname{def}}{=} \operatorname{nuc}(par(x))$
 $\operatorname{cod}(x^1) \stackrel{\operatorname{def}}{=} \operatorname{cod}(par(x))$

Figure 4.19: Unary relations for $\Gamma_{tf}(\mathcal{M}_{plenty}^{tree})$

Figure 4.23: Labeling Copy Set 1 in $\Gamma_{fd}(\mathcal{M}_{plenty}^{flat})$

$$\begin{aligned} \operatorname{c.o}(x) &\stackrel{\operatorname{def}}{=} \operatorname{cod}(x) \wedge \operatorname{ons}(succ(x)) \\ \operatorname{n.o}(x) &\stackrel{\operatorname{def}}{=} \operatorname{nuc}(x) \wedge \operatorname{ons}((succ(x))) \\ \operatorname{c.n}(x) &\stackrel{\operatorname{def}}{=} \operatorname{cod}(x) \wedge \operatorname{nuc}((succ(x))) \\ \operatorname{n.n}(x) &\stackrel{\operatorname{def}}{=} \operatorname{nuc}(x) \wedge \operatorname{nuc}((succ(x))) \\ \end{aligned}$$

$$\operatorname{pre_bound}(x) &\stackrel{\operatorname{def}}{=} \operatorname{c.o}(x) \vee \operatorname{n.o}(x) \vee \operatorname{c.n}(x) \vee \operatorname{n.n}(x)$$

$$\bullet(x^2) &\stackrel{\operatorname{def}}{=} \operatorname{pre_bound}(x)$$

Figure 4.24: Labeling Copy Set 2 in $\Gamma_{fd}(\mathcal{M}_{plenty}^{flat})$

$$\operatorname{pre_bound}(x) \Rightarrow \operatorname{succ}(x^1) = x^2$$

"If x is a pre-boundary position in the input, then the successor of the first copy of x is the second copy of x."

$$succ(x^2) = (succ(x))^1 \Leftrightarrow \mathsf{pre_bound}(x)$$

"The successor of the second copy of x is the first copy of the successor of x iff x is a pre-boundary position in the input."

Figure 4.26: All successor information in $\Gamma_{fd}(\mathcal{M}_{plenty}^{flat})$

Figure 4.30: Some unary relations for $\Gamma_{df}(\mathcal{M}_{plenty}^{dot})$

$$\mathtt{nuc}(x^1) \stackrel{\mathrm{def}}{=} \mathtt{Eng_nuc}(x)$$

$$\mathsf{ons_1}(x) \stackrel{\mathrm{def}}{=} \neg(\mathtt{Eng_nuc}(x) \vee \bullet(x)) \wedge \mathtt{Eng_nuc}(succ(x))$$

$$\mathsf{cod}_{-}1(x) \stackrel{\mathrm{def}}{=} \neg(\mathtt{Eng_nuc}(x) \vee \bullet(x)) \wedge \mathtt{Eng_nuc}(\mathit{pred}(x))$$

$$\mathsf{ons}_i(x) \stackrel{\mathrm{def}}{=} \neg (\mathsf{Eng_nuc}(x) \vee \bullet(x)) \wedge \mathsf{ons}_(i-1)(succ(x)) \text{ for } i \in \{2,\dots,n\}$$

"Position x is 'onset i' iff x is not labeled Eng_nuc or \bullet , and its successor is 'onset (i-1)', for i ranging from 2 to n."

$$\mathsf{cod}_i(x) \stackrel{\mathrm{def}}{=} \neg (\mathsf{Eng_nuc}(x) \vee \bullet(x)) \wedge \mathsf{cod}_(i-1)(pred(x)) \text{ for } i \in \{2, \dots, m\}$$

"Position x is 'coda i' iff x is not labeled Eng_nuc or \bullet , and its predecessor is 'coda (i-1)', for i ranging from 2 to m."

$$\operatorname{ons}(x^1) \stackrel{\text{def}}{=} \operatorname{ons}_n(x) \vee \operatorname{ons}_n(n-1)(x) \vee \ldots \vee \operatorname{ons}_n(x)$$

"Position x in Copy Set 1 is labeled ons iff x belongs to a contiguous string of segments (up to length n) in the input that are not labeled Eng_nuc or \bullet , ending with the nucleus-adjacent onset (ons_1)."

Figure 4.32: Additional unary relations for $\Gamma_{df}(\mathcal{M}_{plenty}^{dot})$

$$succ(x^1) \stackrel{\mathrm{def}}{=} \begin{cases} (succ(succ(x)))^1 & \Leftrightarrow \mathsf{pre_dot}(x) \\ (succ(x))^1 & \Leftrightarrow \neg \mathsf{pre_dot}(x) \end{cases}$$

$$pred(x^1) \stackrel{\mathrm{def}}{=} \begin{cases} (pred(pred(x)))^1 & \Leftrightarrow \mathsf{post_dot}(x) \\ (pred(x))^1 & \Leftrightarrow \neg \mathsf{post_dot}(x) \end{cases}$$

Figure 4.33: $\Gamma_{df}(\mathcal{M}_{plenty}^{dot})$ fully specified

