

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 18 Feb 2022 1 of 16

Sample Information

Patient Name: 鄭曉芬 Gender: Female ID No.: F222847292 History No.: 26355908

Age: 51

Ordering Doctor: DOC1654E 林庭安

Ordering REQ.: 0BSCQBJ Signing in Date: 2022/02/17

Path No.: S111-98430 **MP No.:** MY22007

Assay: Oncomine Myeloid Assay

Sample Type: Blood

Date of blood drawing: 2022/02/14

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Acute Myeloid Leukemia

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	4
Relevant Therapy Details	5
Prognostic Details	12
Diagnostic Details	13
Clinical Trials Summary	13
Alert Details	13

Report Highlights

- 3 Relevant Biomarkers
- 7 Therapies Available
- 1 Clinical Trials

Relevant Acute Myeloid Leukemia Variants

Gene	Finding	Gene	Finding
ABL1	None detected	MECOM	None detected
ASXL1	None detected	MLLT3	None detected
CEBPA	None detected	MYH11	None detected
CREBBP	None detected	NPM1	NPM1 p.(W288Cfs*12) c.863_864insTCTG
FLT3	FLT3 ITD mutation	NUP214	None detected
IDH1	None detected	RARA	None detected
IDH2	IDH2 p.(R140Q) c.419G>A	RUNX1	None detected
KMT2A	None detected	TP53	None detected

Relevant Biomarkers

Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
FLT3 ITD mutation fms related receptor tyrosine kinase 3 Allele Frequency: 18.26%	gilteritinib 1,2 midostaurin + chemotherapy 1,2 sorafenib + chemotherapy venetoclax + chemotherapy	None	0
Prognostic significance: ELN 2017: Diagnostic significance: None	Favorable to Intermediate		
IDH2 p.(R140Q) c.419G>A isocitrate dehydrogenase (NADP(+)) 2 Allele Frequency: 48.00%	enasidenib ¹ azacitidine decitabine venetoclax + chemotherapy	None	1
Prognostic significance: None Diagnostic significance: None			
NPM1 p.(W288Cfs*12) c.863_864insTCTG	None	None	0
nucleophosmin 1 Allele Frequency: 45.30%			
Prognostic significance: ELN 2017: Diagnostic significance: Acute Myel			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA	Sequence Varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
NPM1	p.(W288Cfs*12)	c.863_864insTCTG	COSM17559	chr5:170837547	45.30%	NM_002520.6	frameshift Insertion	1989
FLT3	p.(V579_K602dup)	c.1734_1735insGTA CAGGTGACCGGCTC CTCAGATAATGAGT ACTTCTACGTTGAT TTCAGAGAATATGA ATATGATCTCAAA		chr13:28608321	18.26%	NM_004119.3	nonframeshift Insertion	1835
IDH2	p.(R140Q)	c.419G>A	COSM41590	chr15:90631934	48.00%	NM_002168.4	missense	2000

Biomarker Descriptions

FLT3 (fms related receptor tyrosine kinase 3)

Background: The FLT3 gene encodes the fms related tyrosine kinase 3, a tyrosine kinase receptor that is a member of the class III receptor tyrosine kinase family that also includes PDGFR, FMS, and KIT¹. FLT3 is highly expressed in hematopoietic progenitor cells². Genomic alterations in FLT3 activate downstream oncogenic pathways including PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways which promote cellular proliferation, survival, and inhibition of differentiation¹.

Alterations and prevalence: Somatic mutations occur in approximately 30% of acute myeloid leukemia (AML), 7-10% of melanoma, and up to 8% of uterine cancer^{3,4,5,6}. The most common activating FLT3 mutations are internal tandem duplications (ITD) that range from 3 to 400 base pairs in length within exons 14 and 15 in the juxtamembrane (JM) domain⁷. The second most frequent mutations are

Date: 18 Feb 2022

Biomarker Descriptions (continued)

point mutations in exon 20 within the tyrosine kinase domain (TKD)⁸. FLT3 is amplified in up to 8% of colorectal cancer, 3% of stomach cancer, and is commonly overexpressed in AML^{5,6,9}.

Potential relevance: The presence of FLT3-ITD confers poor prognosis in myelodysplastic syndrome (MDS) and AML^{10,11}. Similarly, the FLT3 TKD mutation D835 confers poor prognosis in MDS¹⁰. Midostaurin¹² (2017) and gilteritinib¹³ (2018) are kinase inhibitors approved for AML patients with FLT3-ITD and TKD mutations including D835 and I836 mutations. The FDA granted fast track designations in 2017 to crenolanib¹⁴ for FLT3 mutation-positive relapsed or refractory AML and in 2018 to quizartinib¹⁵ for AML with FLT3-ITD. A phase II trial testing crenolanib in 34 patients with FLT3-ITD and TKD mutated relapsed/refractory AML, reported that FLT3 inhibitor naïve patients demonstrated a longer overall survival (OS) and event free survival (EFS) in comparison to previously treated patients (median OS: 55 weeks vs 13 weeks; median EFS: 13 weeks vs 7 weeks)¹⁶. Another phase II trial of crenolanib with chemotherapy in newly diagnosed FLT3 mutated AML reported complete remission in 24/29 (83%) patients¹⁷. Several multi-targeted tyrosine kinase inhibitors such as sorafenib (2005), sunitinib (2006), cabozantinib (2012), and ponatinib (2012) are FDA approved and include FLT3 as a target. Sorafenib is recommended in combination with chemotherapy in FLT3-ITD mutated AML¹¹.

IDH2 (isocitrate dehydrogenase (NADP(+)) 2)

Background: The IDH1 and IDH2 genes encode homologous isocitrate dehydrogenase enzymes that catalyze the conversion of isocitrate to α -ketoglutarate (α -KG)¹⁸. The IDH1 gene encodes the NADP+ dependent cytoplasmic isocitrate dehydrogenase enzyme; IDH2 encodes the mitochondrial isoform.

Alterations and prevalence: Recurrent somatic mutations in IDH1 and IDH2 are mutually exclusive and observed in several malignancies including glioma, chondrosarcoma, intrahepatic cholangiocarcinoma, acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS)¹⁹. Recurrent IDH2 variants include predominately R140Q and R172K plus other substitutions at lower frequencies. These gain of function variants confer neomorphic enzyme activity²⁰. Although wild-type enzymatic activity is ablated, recurrent IDH2 variants catalyze the conversion of α -KG to D-2-hydroxyglutarate, an oncometabolite with diverse effects on cellular metabolism, epigenetic regulation, redox states, and DNA repair^{18,21}. Recurrent IDH2 mutations are present in 10-20% of patients with AML and 5% of patients with MDS^{22,23,24}.

Potential relevance: Enasidenib²⁵ is FDA approved (2017) for the treatment of AML patients with IDH2 R140G/L/Q/W and R172G/K/M/S/W mutations. In AML, acquired resistance to enasidenib has been associated with the emergence of Q316E or I319M mutations²⁶. IDH2 R172 and R140Q variants are associated with poor prognosis in MDS but have been shown to confer improved prognosis in lower grade gliomas^{10,27,28}. Additionally, IDH2 mutations are associated with inferior overall survival in polycythemia vera (PV) and essential thrombocythemia (ET) as well as inferior leukemia-free survival in primary myelofibrosis (PMF)²⁹.

NPM1 (nucleophosmin 1)

Background: The NPM1 gene encodes the nucleophosmin protein, a histone chaperone of the nucleophosmin/nucleoplasmin family, which also includes NPM2 and NPM3³0. NPM1 functions as an oncogene and tumor suppressor, and is important in maintaining genomic stability, DNA repair, and apoptosis³0,³¹. NPM1 has a highly conserved N-terminal region which constitutes the core domain responsible for oligomerization, an acidic domain, a nuclear localization signal, and a disorganized C-terminal region which is required for nucleolar localization³0. Oligomerization of NPM1 localizes the protein in the nucleus of proliferating cells where it binds to Akt in response to growth factor stimulation and escapes proteolytic degradation by caspase activity, thereby promoting cell survival³0,³¹. NPM1 is one of the most frequently altered genes in hematological cancers³². Most NPM1 mutations occur in the C-terminus, impacting protein folding or the nucleolar localization signal, and result in the localization of NPM1 to the cytoplasm (NPMc) instead of to the nucleus³0.

Alterations and prevalence: NPM1 mutations are observed in 45-60% of AML with a normal karyotype (NK-AML), 28-35% of de novo acute myeloid leukemia (AML) and are frequently co-mutated with DNMT3A and/or FLT3-ITD^{11,33,34}. NPM1 fusions are associated with distinct partner genes in acute promyelocytic leukemia (APL), anaplastic large-cell lymphoma (ALCL), AML, and myelodysplasia³². Specifically, NPM1-ALK fusion is found in 30% of all ALCL and this specific fusion is observed in 85% of ALK-positive ALCL³⁰. The t(5;17)(q35;q21) translocation that results in NPM1-RARA fusion is observed in APL³⁵.

Potential relevance: NPM1 mutated AML is recognized as a distinct diagnostic disease entity by the World Health Organization (WHO)³⁶. NPM1 mutations are associated with better outcomes, increased complete remission, and improved overall survival in AML^{11,34}. NPM1 without FLT3-ITD mutations or with <0.5 allelic ratio FLT3-ITD mutations are associated with favorable risk in AML, whereas wild-type NPM1 confers poor/adverse risk¹¹. Concurrent NPM1 and with >0.5 allelic ratio FLT3-ITD mutations confer intermediate risk in AML¹¹. The NPM1 frameshift mutation W288fs*12 is associated with poor prognosis in myelodysplastic syndrome (MDS)¹⁰. The ALK-NPM1 fusion, and translocation t(2;5)(p23;q35) which leads to an ALK-NPM1 fusion, is diagnostic of cutaneous and non-cutaneous anaplastic large cell lymphoma^{37,38}.

Relevant Therapy Summary

IDH2 p.(R1400) c.419G>A

In this cancer type In other cancer type In this cancer type and other cancer types X No evidence

FLT3 ITD mutation					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
gilteritinib					×
midostaurin + cytarabine + daunorubicin				•	×
midostaurin + cytarabine	×		×	×	×
sorafenib + azacitidine	×		×	×	×
sorafenib + decitabine	×	•	×	×	×
venetoclax + azacitidine	×	•	×	×	×
venetoclax + cytarabine	×	•	×	×	×
venetoclax + decitabine	×	•	×	×	×
venerociax + decitabilie	×		×	×	×

15112 p.(111164) 611176171					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trial
enasidenib	•	•	×	•	×
azacitidine	×		×	×	×
decitabine	×	•	×	×	×
venetoclax + azacitidine	×	•	×	×	×
venetoclax + cytarabine	×	•	×	×	×
venetoclax + decitabine	×		×	×	×
LY-3410738	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 18 Feb 2022 5 of 16

Relevant Therapy Details

Current FDA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

FDA information is current as of 2021-11-17. For the most up-to-date information, search www.fda.gov.

FLT3 ITD mutation

gilteritinib

Cancer type: Acute Myeloid Leukemia Label as of: 2019-05-29 Variant class: FLT3 ITD mutation

Indications and usage:

XOSPATA® is a kinase inhibitor indicated for the treatment of adult patients who have relapsed or refractory acute myeloid leukemia (AML) with a FLT3 mutation as detected by an FDA-approved test.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211349s001lbl.pdf

midostaurin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Label as of: 2021-11-15 Variant class: FLT3 ITD mutation

Indications and usage:

RYDAPT® is a kinase inhibitor indicated for the treatment of adult patients with:

- Newly diagnosed acute myeloid leukemia (AML) that is FLT3 mutation-positive as detected by an FDA-approved test, in combination with standard cytarabine and daunorubicin induction and cytarabine consolidation.
 - Limitations of Use: RYDAPT® is not indicated as a single-agent induction therapy for the treatment of patients with AML.
- Aggressive systemic mastocytosis (ASM), systemic mastocytosis with associated hematological neoplasm (SM-AHN), or mast cell leukemia (MCL).

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/207997s008lbl.pdf

IDH2 p.(R140Q) c.419G>A

enasidenib

Cancer type: Acute Myeloid Leukemia Label as of: 2020-11-24 Variant class: IDH2 R140Q mutation

Indications and usage:

IDHIFA® is an isocitrate dehydrogenase-2 inhibitor indicated for the treatment of adult patients with relapsed or refractory acute myeloid leukemia (AML) with an isocitrate dehydrogenase-2 (IDH2) mutation as detected by an FDA-approved test.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209606s004lbl.pdf

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2021-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

FLT3 ITD mutation

gilteritinib

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 ITD mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

Relapsed, Refractory (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

midostaurin + cytarabine

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 ITD mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Maintenance therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

midostaurin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 ITD mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

sorafenib + azacitidine

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 ITD mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- (Induction therapy); Other recommended intervention
- Relapsed, Refractory (Line of therapy not specified)

Date: 18 Feb 2022 7 of 16

FLT3 ITD mutation (continued)

sorafenib + decitabine

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 ITD mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy); Other recommended intervention

Relapsed, Refractory (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

venetoclax + azacitidine

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

■ (Induction therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

venetoclax + cytarabine

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

venetoclax + decitabine

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy); Preferred intervention

Date: 18 Feb 2022 8 of 16

IDH2 p.(R140Q) c.419G>A

venetoclax + azacitidine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 1

Population segment (Line of therapy):

(Induction therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

azacitidine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

(Induction therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

decitabine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

enasidenib

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

- (Induction therapy); Preferred intervention
- Relapsed, Refractory (Line of therapy not specified)

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

venetoclax + cytarabine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy); Other recommended intervention

Date: 18 Feb 2022 9 of 16

IDH2 p.(R140Q) c.419G>A (continued)

venetoclax + decitabine

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

■ (Induction therapy); Preferred intervention

Date: 18 Feb 2022 10 of 16

Current EMA Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

EMA information is current as of 2021-11-17. For the most up-to-date information, search www.ema.europa.eu/ema.

FLT3 ITD mutation

gilteritinib

Cancer type: Acute Myeloid Leukemia

Label as of: 2021-09-08

Variant class: FLT3 ITD mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/xospata-epar-product-information_en.pdf

midostaurin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia

Label as of: 2021-09-10

Variant class: FLT3 ITD mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/rydapt-epar-product-information_en.pdf

Date: 18 Feb 2022 11 of 16

Current ESMO Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2021-11-01. For the most up-to-date information, search www.esmo.org.

FLT3 ITD mutation

midostaurin + cytarabine + daunorubicin

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 ITD mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

(Induction therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

gilteritinib

Cancer type: Acute Myeloid Leukemia Variant class: FLT3 mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Relapsed, Refractory (Line of therapy not specified)

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

IDH2 p.(R140Q) c.419G>A

enasidenib

Cancer type: Acute Myeloid Leukemia Variant class: IDH2 mutation

ESMO Level of Evidence/Grade of Recommendation: IV / B

Population segment (Line of therapy):

Relapsed, Refractory (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Date: 18 Feb 2022 12 of 16

Prognostic Details

Current NCCN Information

NCCN information is current as of 2021-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

FLT3 ITD mutation + NPM1 p.(W288Cfs*12) c.863_864insTCTG

Prognostic significance: ELN 2017: Intermediate

Cancer type: Acute Myeloid Leukemia Variant classes: FLT3 ITD mutation & NPM1 mutation

NCCN Recommendation category: 2A

Summary:

FLT3-ITD^{high}; High defined as allelic ratio (≥0.5).

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

Prognostic significance: ELN 2017: Favorable

Cancer type: Acute Myeloid Leukemia Variant classes: FLT3 ITD mutation & NPM1 mutation

NCCN Recommendation category: 2A

Summary:

■ FLT-ITDlow; Low defined as allelic ratio (<0.5).

Reference: NCCN Guidelines® - NCCN-Acute Myeloid Leukemia [Version 3.2021]

Current ESMO Information

ESMO information is current as of 2021-11-01. For the most up-to-date information, search www.esmo.org.

FLT3 ITD mutation + NPM1 p.(W288Cfs*12) c.863_864insTCTG

Prognostic significance: ELN 2017: Intermediate

Cancer type: Acute Myeloid Leukemia Variant classes: FLT3 ITD mutation & NPM1 mutation

Summary:

■ FLT3-ITD^{High}; High defined as allelic ratio (≥0.5)

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Prognostic significance: ELN 2017: Favorable

Cancer type: Acute Myeloid Leukemia Variant classes: FLT3 ITD mutation & NPM1 mutation

Summary:

■ FLT3-ITD^{Low}; Low defined as allelic ratio (<0.5)

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Date: 18 Feb 2022 13 of 16

Diagnostic Details

Current ESMO Information

ESMO information is current as of 2021-11-01. For the most up-to-date information, search www.esmo.org.

NPM1 p.(W288Cfs*12) c.863_864insTCTG

Diagnostic significance: Acute Myeloid Leukemia

Variant class: NPM1 mutation

Diagnostic notes:

■ AML with recurrent genetic abnormalities; WHO classification of AML

Reference: ESMO Clinical Practice Guidelines - ESMO-Acute Myeloblastic Leukaemia in Adult Patients [Ann Oncol (2020); 31(6): 697-712.]

Clinical Trials Summary

IDH2 p.(R140Q) c.419G>A

NCT ID	Title	Phase
NCT04603001	A Phase I Study of Oral LY3410738 in Patients With Advanced Hematologic Malignancies With IDH1 or IDH2 Mutations.	I

Alerts Informed By Public Data Sources

Current FDA Information

FDA information is current as of 2021-11-17. For the most up-to-date information, search www.fda.gov.

FLT3 ITD mutation

crenolanib

Cancer type: Acute Myeloid Leukemia

Variant class: FLT3 mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the benzimidazole type I kinase inhibitor, crenolanib, for:

- FLT3 mutation-positive relapsed or refractory acute myeloid leukemia (AML)
- PDGFRA D842V mutated unresectable or metastatic gastrointestinal stromal tumors (GIST)

Reference:

https://www.globenewswire.com/news-release/2017/12/01/1216122/0/en/Arog-Pharmaceuticals-Receives-FDA-Fast-Track-Designation-for-Crenolanib-in-Relapsed-or-Refractory-FLT3-Positive-AML.html

Date: 18 Feb 2022 14 of 16

Sig	natu	ıres
-----	------	------

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- 1. Grafone et al. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev. 2012 Mar 5;6(1):e8. PMID: 25992210
- 2. Short et al. Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol. 2019; 10: 2040620719827310. PMID: 30800259
- 3. Small. FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program. 2006:178-84. PMID: 17124058
- Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 May 30;368(22):2059-74. doi: 10.1056/NEJMoa1301689. Epub 2013 May 1. PMID: 23634996
- 5. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Nakao et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996 Dec;10(12):1911-8. PMID: 8946930
- Yamamoto et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001 Apr 15;97(8):2434-9. PMID: 11290608
- 9. Carow et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood. 1996 Feb 1;87(3):1089-96. PMID: 8562934
- 10. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 1.2022]
- 11. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 3.2021]
- 12. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/207997s008lbl.pdf
- 13. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211349s001lbl.pdf
- 14. https://www.globenewswire.com/news-release/2017/12/01/1216122/0/en/Arog-Pharmaceuticals-Receives-FDA-Fast-Track-Designation-for-Crenolanib-in-Relapsed-or-Refractory-FLT3-Positive-AML.html
- 15. https://www.daiichisankyo.com/media_investors/media_relations/press_releases/detail/006896.html
- 16. Jasleen et al. Results of a Phase II Study of Crenolanib in Relapsed/Refractory Acute Myeloid Leukemia Patients (Pts) with Activating FLT3 Mutations. Blood. 124:389
- 17. Bartus et al. Crenolanib in combination with standard chemotherapy in newly diagnosed FLT3-mutated AML patients. ASH 2017. Abstract #566
- 18. Molenaar et al. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene. 2018 Apr;37(15):1949-1960. PMID: 29367755
- 19. Yan et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009 Feb 19;360(8):765-73. PMID: 19228619
- 20. Dang et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009 Dec 10;462(7274):739-44. PMID: 19935646
- 21. Ward et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010 Mar 16;17(3):225-34. PMID: 20171147
- 22. Paschka et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 2010 Aug 1;28(22):3636-43. PMID: 20567020
- 23. Chou et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia. 2011 Feb;25(2):246-53. PMID: 21079611
- 24. Marcucci et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 2010 May 10;28(14):2348-55. PMID: 20368543
- 25. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209606s004lbl.pdf
- 26. Intlekofer et al. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature. 2018 Jul;559(7712):125-129. PMID: 29950729
- Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med. 2015 Jun 25;372(26):2481-98. doi: 10.1056/NEJMoa1402121. Epub 2015 Jun 10. PMID: 26061751
- 28. Houillier et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010 Oct 26;75(17):1560-6. PMID: 20975057
- 29. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 2.2021]
- 30. Box et al. Nucleophosmin: from structure and function to disease development. 2016 Aug 24;17(1):19. PMID: 27553022

References (continued)

- 31. Koike et al. Recruitment of phosphorylated NPM1 to sites of DNA damage through RNF8-dependent ubiquitin conjugates. Cancer Res. 2010 Sep 1;70(17):6746-56. PMID: 20713529
- 32. Sportoletti. How does the NPM1 mutant induce leukemia?. Pediatr Rep. 2011 Jun 22;3 Suppl 2:e6. PMID: 22053282
- 33. Hourigan et al. Accurate Medicine: Indirect Targeting of NPM1-Mutated AML. 2016 Oct;6(10):1087-1089. PMID: 27698101
- 34. Jain et al. Mutated NPM1 in patients with acute myeloid leukemia in remission and relapse. Leuk. Lymphoma. 2014 Jun;55(6):1337-44. PMID: 24004182
- 35. Redner et al. The t(5;17) acute promyelocytic leukemia fusion protein NPM-RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties. Blood. 2000 Apr 15;95(8):2683-90. PMID: 10753851
- 36. Arber et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. PMID: 27069254
- 37. NCCN Guidelines® NCCN-Primary Cutaneous Lymphomas [Version 2.2021]
- 38. NCCN Guidelines® NCCN-T-Cell Lymphomas [Version 1.2021]