МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

	ິ	
本	ATTOTITE OTATIT	r
(I)akvnktet	шизичне кии	ı
Tak yabici	ФИЗИЧЕСКИЙ	L

Кафедра ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Направление подготовки 03.03.02 ФИЗИКА

Образовательная программа БАКАЛАВРИАТ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

Захаров Степан Алексеевич

(Фамилия, Имя, Отчество автора)

Тема работы <u>Исследование физических характеристик прототипа GEM-детектора для системы</u> измерения энергии коллайдера ВЭПП-4М

«К защите допущена» Научный руководитель Заведующий кафедрой, канд. физ.-мат. наук, канд. физ.-мат. наук, с.н.с. ИЯФ СО РАН зав. лаб ИЯФ СО РАН Николаев, И. Б./..... (фамилия, И.О.)/(подпись, МП) (фамилия, И.О.)/(подпись, МП) Консультант доктор физ.-мат. наук, с.н.с. ИЯФ СО РАН Шехтман, Л. И./..... (фамилия, И.О.)/(подпись, МП) Дата защиты: «....»..................20...г.

Оглавление

1	Вве	дение		4
2	Поляризационные эффекты и их применение для определения			
	энергии пучка			6
	2.1	Радиа	ционная поляризация	ϵ
	2.2	Метод	д резонансной деполяризации	7
2.3 Регистрация эффекта деполяризации				ç
	2.4	Оценк	ки измеряемого эффекта и точности определения энергии	11
3	Коо	рдинат	ные детекторы на основе GEM	13
	3.1	Общи	е принципы работы газовых координатных детекторов .	13
	3.2	Газові	ые микроструктурные детекторы	14
4	Про	тотип (GEM детектора для установки «Лазерный поляриметр»	. 17
	4.1	Конст	рукция детектора	17
	4.2	Особе	енности сбора и обработки сырых данных	18
4.3 Обработка сигнальных событий		ботка сигнальных событий	20	
		4.3.1	Привязка каналов к их физическим координатам	21
		4.3.2	Коррекция нулевого уровня в кадрах	22
		4.3.3	Поиск кластеров и определение их заряда	24
5	Исс	ледова	ние физических характеристик детектора «Лазерного)
	пол	яримет	pa»	26
	5.1	Опред	деление уровня шумов детектора	26
	5.2	Опред	деление коэффициента усиления	27
		5.2.1	Постановка эксперимента	29
		5.2.2	Обработка и анализ полученных данных	30
		5.2.3	Результаты	30

5.3	Определение эффективности регистрации	30
5.4	Определение пространственного разрешение	30

1. Введение

Развитие экспериментальных методов ядерной физики привело к появлению большого количества детектирующих систем. Отдельно стоит выделить координатные детекторы, по которым до сих пор ведутся активные исследования. Главными направлениями являются повышение эффективности регистрации и пространственного разрешения [1].

Широкое распространение новых материалов и методов их обработки многократно улучшило параметры имеющихся детектирующих устройств, а так же позволило создавать детекторы новых конструкций. Так в 1997 г. группа ученых из Европейского центра ядерных исследований (CERN) под руководством Ф. Саули успешно применила концепцию газового электронного умножения в микроструктурах для создания координатных детекторов, которые получили название «GEM-детекторы» или газовые электронные умножители [2]. Их отличительными особенностями являются сравнительная простота конструкции, коэффициент усиления вплоть до 10^6 , а так же высокая радиационная стойкость. Данный тип детекторов широко используется в таких экспериментах, как PHOENIX (Франция), СОМРАЅЅ (Швейцария), а так же в составе детекторов LHSb, ТОТЕМ (ЦЕРН) и КЕДР (ИЯФ СО РАН).

В ИЯФ микроструктурные детекторы применяются не только в составе детекторов для экспериментов в ФЭЧ (КЕДР, СНД и КМД-3), но и в различных системах, связанных с ними. Одной из таких систем является установка «лазерный поляриметр». В основе её работы лежит предложенный в 1975 г. в ИЯФ метод резонансной поляризации [3]. Применяется данная система для прецизионного измерения энергии на коллайдере ВЭПП-4М.

В рамках работ по усовершенствованию «лазерного поляриметра» планируется установить новый координатный детектор. Для выполнения данной задачи было решено использовать GEM-детекторы [4]. В ИЯФ существует возможность изготовления таких детекторов с использованием GEM-

электродов, производимых в CERN. Таким образом, возникает необходимость в исследовании новых моделей GEM-детекторов.

Целью данной работы являлось создание и исследование характеристик GEM-детектора для установки «лазерный поляриметр». Понимание физических процессов работы детектирующей системы, организацию модуля сбора данных, а также особенностей их анализа дает наиболее полную информацию о точности измерений. Для достижения поставленной цели были сформулированы основные задачи, которые определили ключевые направления деятельности:

- Изучение физических основ работы газовых электронных умножителей и основных схем GEM-детекторов
- Определение основных параметров, влияющих на коэффициент усиления детектора
- Установка, настройка и управление механизацией детектора
- Создание и отладка системы сбора и обработки данных.
- Проведение экспериментов на выведенном пучке, в ходе которых исследованы физические характеристики детектора
- Обработка и анализ полученных данных

2. Поляризационные эффекты и их применение для определения энергии пучка

2.1. Радиационная поляризация

Эффект самопроизвольной поляризации заряженных частиц в ускорителях был описан Соколовым и Терновым еще в 1963г [?]. Качественно данный эффект можно описать следующим обоазом: в магнитном поле \vec{H} потенциальная энергия частицы с магнитным моментом $\vec{\mu}$ выражается как:

$$U = -(\vec{\mu}, \vec{H}). \tag{2.1}$$

В случае поляризации пучка в ускорителе, \vec{H} есть ведущее поле. Минимум потенциальной энергии дает значение угла между магнитным моментом и ведущим полем, равное нулю. Магнитный момент и спин электрона противоположно направлены, следовательно состояние электрона в пучке, в котором спин и магнитное поле антипараллельны, более устойчиво.

В работе [5] определены доли от общего числа электронов, имеющие поляризацию против и по направлению поля:

$$n_{\uparrow\downarrow} = \frac{15 + 8\sqrt{3}}{30} \approx 0.962$$
 (2.2) $n_{\uparrow\uparrow} = \frac{15 - 8\sqrt{3}}{30} \approx 0.038$ (2.3)

Можно заметить, что практические все электроны в пучке имеют спин, направленный против ведущего поля.

Процесс поляризации пучков в ускорителях не мгновенный и может занимать от десятков минут до сотен часов. Временная зависимость поляризации пучка задается формулой:

$$\mathcal{P} = G\zeta_0(1 - e^{-t/\tau_p}), \tag{2.4}$$

где G — деполяризующий фактор, $\zeta_0=8/(5\sqrt{3})$ — максимально достижимое значение поляризации пучка. τ_p есть время поляризации, которое зависит от параметров ускорителя (радиуса орбиты R и энергии E). Полное выражение для него получили Соколов и Тернов:

$$\tau_p = \left[\frac{5\sqrt{3}}{8} \frac{e^2 \hbar}{m_e^2 c^2 R^3} \left(\frac{E}{m_e c^2} \right)^5 \right]^{-1} \propto \frac{1}{E^5}$$
 (2.5)

Время поляризации обратно пропорционально пятой степени энергии. Например, в ВЭПП-4М на энергии 4 GeV время поляризации — величина порядка часа.

2.2. Метод резонансной деполяризации

Еще одним эффектом, возникающим при движении частиц со спином в электромагнитных полях, является прецессия спина \vec{S} вокруг направления ведущего поля \vec{H} . Уравнение движения спина:

$$\frac{d\vec{S}}{dt} = [\vec{\Omega}, \vec{S}],\tag{2.6}$$

где $\vec{\Omega}$ имеет следующий вид:

$$\vec{\Omega} = -\left(\frac{q_0}{\gamma} + q'\right)\vec{H} + \frac{\gamma}{\gamma + 1}q'(\vec{v}, \vec{H})\vec{v} - \left(\frac{q_0}{\gamma + 1} + q'\right)[\vec{\mathcal{E}}, \vec{v}]. \tag{2.7}$$

Здесь q_0 и q' соответственно нормальная и аномальная части гиромагнитного отношения, γ — релятивистский гамма—фактор, \vec{v} — скорость частицы, $\vec{\mathcal{E}}$ — вектор электрического поля. В наиболее простом случае, когда (\vec{v}, \vec{H}) и $[\vec{\mathcal{E}}, \vec{v}]$ равны нулю, имеем только один член, определяющий прецессию спина

в ведущем магнитном поле. Таким образом, уравнение 2.6 принимает вид:

$$\frac{d\vec{S}}{dt} = -\left(\frac{q_0}{\gamma} + q'\right)[\vec{H}, \vec{S}]. \tag{2.8}$$

Если выразить ведущее поле через частоту обращения пучков как:

$$\vec{H} = \frac{\gamma mc}{e} \omega_r \vec{n}_H. \tag{2.9}$$

Подставим 2.9 в 2.8 и проведем серию математических преобразований чтобы получить выражение для частоты прецессии спина:

$$\omega_s = \omega_r \left(\frac{q'}{q_0} \frac{E}{mc^2} + 1 \right). \tag{2.10}$$

Если измерить ω_s и ω_r , то можно определить энергию электрона E т.к. остальные константы в выражении 2.10 известны. ω_r можно найти разными способами: прямым измерением с помощью ріскир—станций, по частоте ускоряющего поля в резонаторе и т.д. Однако, определение ω_s является весьма нетривиальной задачей.

Один из методов, с помощью которого можно косвенно измерить ω_s по регистрации резонансной деполяризации предварительно поляризованного пучка частиц, был разработан в ИЯФ СО РАН в 1974 г. и детально описывается в [6]. Идея метода заключается в воздействии на пучок переменного электромагнитного поля определенной частоты. Если выполняется резонансное условие:

$$\omega_s = k\omega_r \pm \omega_d,\tag{2.11}$$

где ω_d — частота электромагнитного поля, то исходная поляризация пучка нарушается. Это можно определить любым поляризационно чувствительным методом. Проводя сканирование по ω_d и фиксируя момент деполяризации, можно определить ω_s .

Приведем оценку точности данного метода. Для этого определим какова точность определения параметров, входящих в выражение 2.10:

•
$$\frac{\delta(q'/q_0)}{q'/q_0} = 2.24 \cdot 10^{-10} [7]$$

•
$$\frac{\delta(mc^2)}{mc^2} = 6.06 \cdot 10^{-9} [7]$$

$$\bullet \ \frac{\delta(\omega_r)}{\omega_r} = 10^{-10}$$

Можно заметить, что точность определения массы электрона вносит наибольший вклад в точность измерения энергии. Физическое ограничение для $\delta E/E$ устанавливается на уровне 10^{-8} . Измерения, использующие метод резонансной деполяризации, являются на данный момент самыми точными в мире.

2.3. Регистрация эффекта деполяризации

Существует несколько методов, с помощью которых можно зарегистрировать момент деполяризации. Все они предполагают рассеяние электронов пучка на ядрах — Моттовское рассеяние, на электронах этого же пучка — Тушековское рассеяние, а также Комптоновское рассеяние на поляризованных фотонах. Первый метод малоэффективен ввиду отсутствия в вакуумной камере достаточного количества атомов, на которых рассеивался бы пучок. Установки, использующие эффект Тушековского или внутрисгусткового рассеяния широко используются на малых энергиях ($E < 2~{\rm GeV}$). Из-за того, что измеряемый эффект обратно пропорционален четвертой степени энергии пучка, то в области Υ —резонанса его применение является малоэффективным.

В данном случае Комптоновское рассеяние поляризованных фотонов на пучке электронов является единственным методом, применимым в данном диапазоне энергий. Сечение рассеяния зависит как от поляризации электрона, так и от поляризации фотона. Идея метода заключается в следующем:

если пучок электронов поляризован, то существует связь между направление ем рассеяния фотонов и их поляризацией. Изменяя направление поляризации (используя например левоциркулярные и правоциркулярные лазерные пучки), можно регистрировать рассеяние преимущественно в верхнюю или нижнюю полуплоскость (См. Рис. 2.1). Т.к. поляризация электронов вертикальная, следовательно в системе существует выделенное направление. В таком случае величина измеряемого эффекта определяется формулой:

$$\Delta y = \frac{\hbar\omega_0}{2m_e c^2} \mathcal{P} \Delta V L, \qquad (2.12)$$

где ω_0 — частота падающего фотона, \mathcal{P} — поляризация электронного пучка, ΔV — разница параметров Стокса для циркулярно поляризованного пучка фотонов, L — расстояние от точки взаимодействия до точки регистрации рассеянного фотона.

Рис. 2.1. Принципиальная схема установки по регистрации поляризации электронного пучка. Пучок заряженных частиц (электронов) облучается циркулярно поляризованными фотонами. Происходит обратное комптоновское рассеяние фотонов на электронах, в результате чего образуются высокоэнергитичные (до $1~{\rm GeV}$) гамма–кванты, которые регистрируются координатным детектором. Измеряемый эффект есть вертикальное расстояние (Δy) между центрами распределений, полученных от фотонов левой и правой циркулярной поляризации.

При деполяризации электронного пучка $\mathcal{P}=0$, следовательно вертикальная асимметрия рассеяния фотонов пропадает. Чтобы это зарегистрировать, необходим детектор с возможностью регистрации вертикальной координаты. В случае поляризованного электронного пучка распределения по координате фотонов для левой и правой циркулярной поляризаций будут смещены друг

относительно друга. Деполяризация пучка будет выглядеть как слияние двух распределений в одно.

2.4. Оценки измеряемого эффекта и точности определения энергии

«Лазерный поляриметр» коллайдера ВЭПП-4М имеет следующие параметры: $\lambda=527\,\mathrm{Hm}$, $L=40\,\mathrm{m}$, $\Delta V=2$. Подставив их в формулу 2.12, можем получить оценку измеряемого эффекта Δy , которая составляет около 0.1 мм. Измерение такого малого смещения, на первый взгляд, представляется затруднительным, однако регистрация большого количества фотонов и определение средней вертикальной координаты по выборке дает в $1/\sqrt{N}$, чем одиночное измерение. Стоит заметить, что координатное разрешение детектора в данном случае может быть и больше величины эффекта, но определение среднего по выборке даст требуемую точность.

Чтобы оценить погрешность определения энергии рассмотрим, как проводится процесс измерения абсолютного значения энергии, концептуально описанный выше. Сканирование по частоте деполяризации, а значит по энергии проводится со скоростью — \dot{E} . В каждой точке за время T набирается суммарная статистика — N, которая представляет собой два набора по N/2 координат фотонов с левой и правой циркулярной поляризацией. Погрешности определения координат σ_x и σ_y в основном зависят от типа детектирующей системы. Для каждого набора определяется среднее значение. Разница между средними значениями вертикальных координат двух наборов (то есть, между центрами пятен в детекторе) и является измеряемым эффектом Δy .

Погрешность измерения Δy можно выразить следующим образом:

$$\delta(\Delta y) = \sqrt{(\delta y_{up})^2 + (\delta y_{down})^2} = \frac{\sqrt{2}\sigma_y}{\sqrt{N/2}},$$
(2.13)

где δy_{up} и δy_{down} погрешность определения центров пятен. Теперь удобно

сделать замену: $N=\dot{N}T$ потому что \dot{N} является параметром системы сбора данных. Измерение эффекта деполяризации фиксируется по слиянию двух пятен в детекторе.

На Рис. 2.2 показан вид экспериментальных данных с предыдущей системы калибровки абсолютного значения энергии, полученных методом резонансной деполяризации, в области массы τ -лептона. В качестве координатного детектора использовался детектор для установки «ДЕЙТОН».

Рис. 2.2. График измерения абсолютного значения энергии в области τ -лептона. δt есть ошибка определения времени деполяризации, а Δy – измеряемый эффект.

Определим погрешность измерения энергии как:

$$\delta(E) = \dot{E}\delta t = \frac{\delta(\Delta y)}{\Delta y}T\dot{E} = \frac{2\sigma_y}{\sqrt{\dot{N}}\Delta y}\sqrt{T}\dot{E}$$
 (2.14)

Видим, что δE обратно пропорциональна корню из скорости набора статистики. За одну вспышку лазера по расчетам на пучке будет происходить рассеяние порядка 10 фотонов на 1 мА тока. На энергии пучка 4 GeV возможно обеспечить ток в 10 мА. Это значит, что при успешной регистрации даже 10 % фотонов на частоте 4 kHz можно минимум на порядок уменьшить ошибку определения абсолютной энергии пучка против устаревшей схемы, где детектировались лишь единичные фотоны на частоте 2 kHz.

3. Координатные детекторы на основе GEM

3.1. Общие принципы работы газовых координатных детекторов

Измерения координат частиц проводятся с помощью довольно широкого спектра устройств, использующих различные физические принципы в основе своей работы. В отдельную группу стоит выделить газовые координатные детекторы. В основу их работы легло явление ионизации атомов газа первичной заряженной частицей. Если зарегистрировать первичную ионизацию — заряд, образовавшийся после пролета частицы через чувствительную область детектора, то можно восстановить её координаты. Основная проблема заключается в том, что для первичной частицы ионизация составляет по порядку величины $10 \div 100$ электрон—ионных пар на 1 см трека. Регистрация таких малых зарядов представляется проблематичной. Поэтому в детекторной технике используются различные усиливающие устройства, которые позволяют увеличивать количество заряда до значений, при которых его можно зарегистрировать современными зарядочувствительными устройствами [8].

При создании детектора для установки «Лазерный поляриметр» были выдвинуты требования, которые позволили определить тип используемой усилительной системы и общую схему детектора. Наиболее важные из них:

- регистрация координат фотонов
- достаточное для достоверного наблюдения эффекта порядка 0.1 мм пространственное разрешение
- возможность одновременного детектирования нескольких событий
- компактные размеры, простота и надежность конструкции

Регистрация фотонов с энергиями ~ 1GeV обычно производится посред-

ством их конверсии в электрон—позитронные пары и последующей регистрации уже заряженных частиц. После рассмотрения возможных схем, удовлетворяющих данным требованиям, было решено остановиться на т.н. микроструктурных детекторах, как на наиболее простых и, в то же время, обеспечивающих требуемое пространственное разрешение. Это достаточно новый тип детекторов [2], однако в ИЯФ СО РАН накоплен сравнительно большой опыт по работе с ними.

3.2. Газовые микроструктурные детекторы

Идея использования микроструктурных газовых координатных детекторов получила развитие в CERN в 1980–х г. Многие детекторы данного типа имеют схожий принцип работы: с помощью проводников определенной формы в газовой среде создаются локальные области с высокой напряженностью поля. При попадании в них, заряженная частица на длине свободного пробега приобретает энергию, большую, чем энергия ионизации атомов газовой смеси. Поэтому становится возможным образование электрон-ионных пар. Из-за

(а) Зависимость удельного количества электрон-ионных пар от напряжения, приложенного электродам в газовом промежутке. Количество ионизации различно для α , β и γ -частиц.

(b) Образование электронной лавины. В пропорциональном режиме количество вторичных электронов экспоненциально растет с координатой, вдоль которой движется частица. Полное их число пропорционально первичной ионизации

Рис. 3.1. Режимы работы газовых детекторов определяются напряженностью электрического поля в газовом промежутке, которое зависит от напряжения на электродах детектора и его геометрии. Микроструктурные детекторы работают в пропорциональной области (3)

того, что подвижность ионов почти на 3 порядка меньше подвижности электронов, основной вклад в эффект объясняется движением электронов. Более того, количество заряженных частиц экспоненциально растет, но электрического пробоя не происходит. Это объясняется определенной геометрией электродов, а так же экранировкой внешнего поля полем свободных зарядов. Т.к. микроструктурные детекторы работают в пропорциональном режиме, то суммарное количество заряда пропорционально первичной ионизации.

Рассмотрим подробнее один из видов микроструктурных детекторов – газовые электронные умножители, которые было решено применены в конструкции Они были впервые созданы группой Ф. Саули в CERN в 1997 г. и на данный момент активно исследуются и применяются в современных детектирующих системах. Газовый электронный умножитель представляет собой

Рис. 3.2. Микрофотография GEM. Видны последовательные ряды отверстий конической формы, протравленных в медном электроде и полиимидной пленке.

Рис. 3.3. Моделирование распределения электрического поля в отверстии GEM методом конечных элементов.

полиимидную плёнку толщиной 50 мкм, покрытую с двух сторон слоями меди, толщиной 5 мкм. В слоях меди и полиимида протравливаются отверстия размером 50 мкм с шагом 140 мкм. Такая конструкция позволяет точно (до 100 нм) выдерживать размеры отверстий и расстояние между электродами, а значит и величину электрического поля в отверстиях. Этот параметр напрямую влияет на коэффициент усиления и прозрачность GEM, а в конечном итоге на эффективность регистрации и надежность детектора.

Наиболее простая конструкция детектора на основе GEM состоит из катодного электрода, в качестве которого обычно применяют фольгированный полимид, анодного электрода (или группы электродов в случае координатного детектора) и GEM, расположенного между ними. следующий: к медным

Рис. 3.4. Схема детектора на основе GEM. Первичная частица вызывает ионизацию в дрейфовом промежутке, которая, проходя через GEM—электрод создает электронные лавины, регистрируемые считывающей структурой.

электродом прикладывается напряжение порядка 300 В, и в отверстиях создается поле порядка 1 МВ/м. Первичная ионизирующая частица проникает в дрейфовый промежуток, где ионизирует атомы газовой смеси. Электроны ионизации дрейфуют к GEM—электроду, в котором образуются электронные лавины. Вторичная ионизация попадает в индукционный промежуток и регистрируется анодами детектора.

В случае когда требуется обеспечить большие коэффициенты усиления или высокую эффективность регистрации, электроды GEM можно размещать последовательно, формируя дополнительные транспортные промежутки. Так можно достичь коэффициентов усиления вплоть до 10^7 [2]. Ограничением на максимальное количество заряда, образуемое в электронной лавине, то есть на максимальный коэффициент усиления является т.н. предел Рейтера, который равняется приблизительно $Q_{max}=10^6\div 10^7~e^-$. При достижении зарядом лавины данного значения вероятность электрического пробоя резко возрастает, поэтому следует выбирать оптимум по параметрам детектора между усилением схемы и вероятностью возникновения пробоя.

4. Прототип GEM детектора для установки «Лазерный поляриметр»

4.1. Конструкция детектора

Для регистрации одиночных гамма–квантов, полученных обратным комптоновским рассеянием на пучках электронов, был спроектирован и изготовлен прототип детектора, использующего ГЭУ для усиления сигнала первичной ионизации. В конструкции применен тройной электрод с питанием от резистивного делителя. Основа детектора представляет собой многослойную плату из СТЭФ с массивом плоских металлических электродов, расположенных в её центральной части, которую можно видеть на Рис. 4.1

(b) Схема ускоряющей структуры

Рис. 4.1. Прототип дететкора для «Лазерного поляриметра». Он включает главную плату с ускоряющей структурой из трех GEM — электродов и считывающую структуру, а также разъемы для подключения десяти front—end плат.

Электроды ГЭУ укреплены на рамках из 1.5 мм СТЭФ над считывающей структурой. Сверху на плату закрепляется герметичный кожух из СТЭФ с трубками для ввода и вывода газовой смеси. Сборка детектора осуществляется в корпусе из листового алюминия.

Данный детектор отличается от аналогов типом считывающей структуры (Рис. 4.2), которая позволяет регистрировать события с высокой множественностью. Это является критическим параметром для «Лазерного поляри-

метра» т.к. возможность регистрации каждого из них существенно увеличит статистику и, тем самым, повысит точность измерения энергии.

Рис. 4.2. Считывающая структура детектора выполнена в виде отдельных прямоугольных металлических площадок. В центральной области размер площадки 1×2 мм, в периферийной области — 2×4 мм. Всего на плате 1120 каналов

Заряд с электродов считывается посредством десяти front-end плат. Они установлены в специальные многоканальные разъемы на периферии основной платы. Front-end электроника включает в себя быстрые АЦП и ПЛИС для работы с ними. Далее сигнал по USB подается на компьютер. На данный момент разрабатывается программное обеспечивающее взаимодействие всех 10 плат и одновременное считывание события с детектора. Решено было использовать для последующих экспериментов только одну из плат, т.к. вычитывание данных с неё уже отлажено.

4.2. Особенности сбора и обработки сырых данных

Каналы детектора объединены в группы по 100 (центральная часть) или 120 (периферия) каналов. Каждая группа скоммутирована на отдельный разъем, к которому подключены два многоканальных АЦП. Одновременно можно вычитывать данные со всех каналов. При поступлении сигнала с триггера, схема начинает последовательно раз в 125 нс вычитывать заряд со всех каналов. Таким образом вычитывание происходит 100 раз. Каждый отсчет времени будем в дальнейшем называть «кадром», а массив данных о заряде для каждого из каналов группы и каждого кадра из 100 назовем «событием».

Из-за технических особенностей схемы нулевой уровень сигнала составляет 7400 каналов АЦП. Сигнал, соответствующий пришедшей на электрод

ионизации, представляет собой импульс отрицательной полярности, который имеет резкий передний фронт (1 кадр) и экспоненциально затухающий задний фронт (3-10 кадров в зависимости от суммарного заряда). Для последующей обработки сигнала, из него необходимо вычесть пьедестал. С этой целью в программе управления считывающей платой реализована возможность получения усредненных данных о пьедесталах, которые затем записываются в отдельный файл формата ТХТ. На Рис. 4.3 представлены гистограммы для пьедесталов одной считывающей платы.

Рис. 4.3. а): Карта пьедесталов АЦП. По горизонтальной оси обозначены номера каналов одной группы (Channel). По вертикальной оси — кадры (Frame). Значения заряда показаны на цветовой шкале и лежат в пределах 7200–7500 каналов АЦП (Ch). b): Распределение заряда по каналам для первого и второго чипа считывающей платы

Можно заметить, что существует как разброс значений пьедестала в одном чипе, так и между чипами в плате. Поэтому решено было вычитать из сигнала пьедестал, соответствующий данному каналу.

События последовательно записываются в ТХТ-файл. Формат вывода следующий: строка соответствует одному кадру и состоит из 128 чисел. Всего таких строк в событии 100. 101-я строка содержит номер кадра, с которого началось вычитывание значений АЦП. Данная информация важна по следующей причине: микросхемы АЦП непрерывно вычитывают заряд с каналов, но ПЛИС возвращает событие только при активации триггера. Это сделано для того, чтобы исключить накопление заряда на входах АЦП и искажения

данных о сигнале. Ввиду возможного разброса параметров электронных компонентов внутреннего pipeline АЦП, необходимо определять пьедесталы не только для каждого канала, но и для каждого кадра в канале. Поэтому номер канала в последней строке события дает необходимую привязку к физическим кадрам АЦП и позволяет правильно вычитать пьедесталы.

В ходе работы с прототипом детектора было обнаружено, что некоторые каналы имеют на порядок больший уровень шума, поэтому решено было их значения занулять и в анализе не использовать.

4.3. Обработка сигнальных событий

Электронная лавина обычно регистрируется не одним каналом считывающей структуры, а несколькими. Это вызвано диффузией носителей в газовых промежутках детектора, что вызывает увеличение поперечных размеров области с носителями. Назовем такое распределение заряда от одной электронной лавины кластером. На мониторе события, который представлен на Рис. 4.4, можно видеть группы вертикальных желтых полос. Это и есть кластеры. Заряд в них экспоненциально убывает со временем. Для анализа же требуется только значение с первого кадра, где наблюдается превышение уровня заряда над фоном. Заряд кластера является ключевой характеристикой при определении коэффициента усиления детектора. Поэтому необходим алгоритм, который ассоциирует группу каналов с кластером и вычисляет его заряд. С этой целью для детектора «Лазерного поляриметра» на языке Руthоп написана библиотека, осуществляющая обработку первичных данных с детектора. В ней реализованы следующие алгоритмы:

- предобработка данных события:
 - о чтение файлов «сырых данных»
 - о вычитание пьедесталов

Рис. 4.4. Вид сигнального события. Регистрировались $2.2~{\rm MeV}$ электроны источника Sr-90. По вертикальной оси отложены кадры, по горизонтальной - канале. Цвет показывает значение заряда в конкретном канале и кадре. В данном событии зафиксировано три кластера (два в первом чипе и один во втором)

- о маскировка шумовых каналов
- фильтрация сигнальных событий
- привязка номера канала АЦП к координатам считывающей площадки на плате
- нахождение кластера и определение его заряда

Особенности предобработки данных обсуждались выше (см. п. 4.2). Рассмотрим работу остальных алгоритмов.

4.3.1 Привязка каналов к их физическим координатам

Чтобы привязать канал АЦП к координатам считывающей площадки, необходимо знать карту каналов. Она была получена путём прямого измерения и сверена со схемой считывающей платы. Необходимость измерения в первую очередь была продиктована высокой плотностью расположения электродов на плате, а так же необходимостью проверки работоспособности её электрических соединений.

Рис. 4.5. Карты расположения считывающих площадок и номера каналов, которые им соответствуют. Представлено два случая расположения: для платы из периферийной и центральной областей. В цветных клетках указан номер канала АЦП, соответствующий данной считывающей площадке. Цифры вокруг цветной области - координаты считывающих площадок.

Возьмем для примера центральную область. Считанное из файла событие преобразуется во временный двумерный массив (128×100), а затем в соответствии с картой каналов данные из него перегружаются в трехмерный массив ($12 \times 10 \times 100$), первые две координаты массива соответствуют координатам считывающей структуры. Восемь каналов: $60 \div 67$ не используются, и входы АЦП, соответствующие им, не подключены к считывающей структуре. Дальнейшая работа проводится с этим трехмерным массивом.

4.3.2 Коррекция нулевого уровня в кадрах

Первичные эксперименты с детектором показали, что при регистрации кластера с большим значением заряда нулевой уровень шумовых каналов смещается. Результат этого виден на Рис. 4.4, где средний уровень кадра находится в желтой области, что говорит о его смещении на 100-200 каналов. Т.к. при регистрации кластера этот систематический сдвиг будет смещать значение каждого канала, то суммарная ошибка определения заряда кластера возрастёт в $\sqrt{N_{Ch}}$ раз, где N_{Ch} — количество сработавших каналов. Поэтому необходимо каким-то образом произвести поправку на систематический сдвиг нулевого уровня заряда для каждого кадра.

Рис. 4.6. Распределение заряда в сигнальном кадре. Красная вертикальная линия показывает среднее значение по распределению. Зеленая – медиану распределения. Медиана дает более точную оценку среднего по шумам, что позволяет сделать поправку и сместить средний уровень кадра к нулю.

Если построить распределение по заряду в каналах одного кадра, то можно заметить, значения заряда шумовых каналов сгруппированы вблизи нуля, а заряд от сигнальных каналов находится далеко справа от нуля (Рис. 4.6а.) Более того, на Рис. 4.6b виден сдвиг среднего значения шумов относительно нуля. Можно заметить, что использование обычного порогового фильтра в данном случае малоэффективно по двум причинам:

- 1. Систематический сдвиг нулевого значения канала может стать причиной ошибочного распознавания шумовых каналов, как сигнальных
- 2. При малом заряде кластера сигнальные каналы могут быть приняты за шумовые

Перед нами возник вопрос: как определять пороговое значение для разделения сигнала и шума? Для решения этой задачи была реализована идея медианного алгоритма, графическое представление которой можно видеть на Рис.4.6.

Суть алгоритма заключается в вычислении медианы распределения по заряду для отдельного кадра. Причем при небольшом количестве сработав-

ших каналов медиана достаточно точно описывает среднее значение заряда по шумовым каналам, которое, после вычитывания пьедесталов, должно равняться нулю. Если сдвинуть значение заряда в каждом канале кроме канала с максимальным зарядом на вычисленную медиану, то это позволяет подавить систематический сдвиг нулевого уровня в кадре.

4.3.3 Поиск кластеров и определение их заряда

Алгоритмическая часть, отвечающая за регистрацию кластеров на данный момент находится в разработке. Поэтому система имеет ограниченный функционал: регистрирует только один кластер в событии, в состав которого входит канал с максимальным зарядом. Регистрация происходит в несколько

Рис. 4.7. Сигнальное событие. По вертикали и горизонтали отложены условные координаты считывающих площадок. Цвет соответствует заряду в конкретном канале. Площадка с максимальным зарядом помечена зеленым треугольником, вокруг неё имеются каналы желтого цвета – кластер. Окрестность, из которой будет производиться вычитывание заряда, отмечена красным квадратом

этапов: сначала определяется канал и кадр с максимальным значением заряда, после этого генерируется окрестность в виде квадрата размером 5×5 считывающих площадок. Данная величина эмпирически определена из анализа размера и формы кластеров. Чтобы определить суммарный заряд кластера, проводится суммирование значений заряда по каналам в окрестности при условии того, что в конкретном канале значение заряда превышает пороговый уровень. Для определения порогов исследовались шумы детектора, подробнее о которых можно узнать из пункта 5.1. Информация о класте-

ре: суммарный заряд, количество сработавших каналов, координаты канала с максимальным зарядом записываются в массив.

5. Исследование физических характеристик детектора «Лазерного поляриметра»

5.1. Определение уровня шумов детектора

Рис. 5.1. a): Вид шумового события после вычитания пьедестала b): Распределение заряда в шумовом событии

Рис. 5.1 показывает вид одного шумового события и распределение заряда в кадрах и каналах. Важным значением, которое можно извлечь уже из одного шумового события является уровень шумов. Его можно определить как корень из дисперсии распределения на Рис. 5.1 b). Шумы в данном эксперименте составили ≈ 15 каналов АЦП. Если взять несколько шумовых событий, то можно уточнить данное значение. Более того, записывая данные через равные промежутки времени, можно зафиксировать наличие дрейфа уровня шумов и их среднего значения. Такое исследование тоже было проведено. Для каждого набора данных существовала привязка по времени начала измерения. Чтобы определить, временной дрейф уровня среднего значения шумов, нами были Его результаты показали, что уровень шумов со временем меняется незначительно (Рис.5.2.)

Относительное изменение уровня шума за 4 часа составило $0.01~\sigma$, а дрейф среднего значения — $0.33~\sigma$. Установившееся значение уровня шумов

Рис. 5.2. Временной дрейф параметров шумовых событий: уровня шума и среднего значения шума. Каждая точка - среднее по $3\cdot 10^7$ значений. В обоих случаях наблюдается линейный тренд.

скорее всего зависит от температурного дрейфа электроники. Это является отдельной довольно обширной темой и в данной работе рассматриваться не будет. Однако, необходимы дополнительные долговременные эксперименты, которые смогут показать, каков максимально достижимый уровень шумов системы и насколько сдвигаются нулевые значения АЦП. Тем не менее, промежуточные результаты показали, что для «Лазерного поляриметра» это не является критичным.

5.2. Определение коэффициента усиления

При исследовании новой модели детектора необходимо различными методами проверить правильность работы, как ускоряющей структуры, так и вычитывающей электроники. Это можно сделать путём измерения коэффициента усиления детектора. Коэффициент усиления в данной работе определяется как отношение зарегистрированного считывающей структурой заряда кластера к количеству частиц первичной ионизации, образованных в индукционном промежутке. Количество частиц первичной ионизации найдем, используя средние ионизационные потери и количество энергии, необходимое для образования ион—электронной пары. Известно, что потери энергии электронов

в тонких слоях описываются модифицированной формулой Бете-Блоха:

$$\frac{dE}{dx} = \frac{2\pi N_0 e^4 Z \rho}{m_e c^2 \beta^2 A} \left[ln \left(\frac{m_e c^2 T \beta^2 \gamma^2}{2I^2} \right) + f_{corr}(\beta) \right], \tag{5.1}$$

где N_0 – число Авогадро, e – элементарный электрический заряд, m_e – масса электрона, c – скорость света, $\beta=v/c$ – отношение скорости частицы к скорости света, Z – зарядовое число, A – массовое число, ρ – плотность вещества, T – кинетическая энергия электронов, I – энергия образования ион—электронной пары, $f_{coor}(\beta)$ – функция, которая содержит поправки в случае $\beta\sim 1$. Параметры A,Z,ρ относятся к веществу—радиатору т.е. к газовой смеси, которой заполнен детектор.

Вычисление показало, что средние потери энергии электронов с энергией 2.2 MeV составляют 2.5 keV/см. Энергия образования одной ион-электронной пары в аргоне есть 26eV. Размер дрейфового промежутка – 3 мм. Количество первичных электронов:

$$N_e = \frac{dE/dx \,\Delta x}{W} = \frac{2400 \,\text{eV}/cm \cdot 0.3 \,cm}{26 \,\text{eV}} = 28$$
 (5.2)

Зная средний заряд кластера $\langle Q \rangle$, можно определить коэффициент усиления системы GEM:

$$K = \frac{\langle Q \rangle}{\langle N_e W},\tag{5.3}$$

где $I=26\ {\rm eV}$ – средняя энергия образования ион-электронной пары в аргоне.

Такой метод определения коэффициента усиления имеет один недостаток: в эксперименте определить средний заряд кластера достаточно трудно т.к. существуют ограничения электроники на максимальное измеренное значение. Более того, средний заряд кластера имеет распределение Ландау, параметром которого является наиболее вероятный заряд кластера. Поэтому вместо средних ионизационных потерь необходимо рассчитывать наиболее

вероятные. Выражение для них можно записать следующим образом:

$$\Delta_p = \xi \left[ln \left(\frac{m_e c^2 T \beta^2 \gamma^2}{2I^2} \right) + ln \left(\frac{\xi}{I} \right) + j - \beta^2 \right], \tag{5.4}$$

где j=0.2, а параметр ξ задается формулой:

$$\xi = 2\pi r_0^2 N_A m_e c^2 \frac{Z}{A} \frac{\rho x}{\beta^2},\tag{5.5}$$

где r_0 – классический радиус электрона, N_A – число Авогадро. Оценка наиболее вероятных потерь в дрейфовом промежутке дает значение $\Delta_p=685~{\rm eV}$, а наиболее вероятное количество электронов $[N_e]=26$, что на самом деле довольно близко к среднему значению.

5.2.1 Постановка эксперимента

Для определения коэффициента усиления детектор облучался 2.2 MeV электронами источника Sr-90, который располагался на герметичном кожухе детектора. Т.к. энергии электронов не хватало, чтобы пройти сквозь детектор, организация внешнего триггера по схеме совпадений не представлялась возможной. Поэтому запуск детектора проводился в автоматическом режиме. Первичная ионизация из дрейфового промежутка попадает в ускоряющую структуру, где происходит образование электронных лавин и инжекция заряда в индукционный промежуток. Далее заряд кластеров регистрируется считывающей структурой.

(b) Расположение источника относительно ускоряющей структуры

Рис. 5.3. Схема проведения эксперимента по определению коэффициента усиления детектора.

5.2.2 Обработка и анализ полученных данных

5.2.3 Результаты

5.3. Определение эффективности регистрации

5.4. Определение пространственного разрешение

Литература

- [1] Шехтман Л.И. Быстродействующие координатные газовые детекторы высокого разрешения. 2012.
- [2] Sauli F. A new concept for electron amplification in gas detectors. 1997.
- [3] А.Д. Букин, Я.С. Дербенев, др. Кондратенко А.М. и. Препринт № 75-64 ИЯФ СО АН СССР. 1975.
- [4] Development of high-resolution GEM-based detector for the extracted electron beam facility at the VEPP-4M collider / V.Bobrovnikov, V.Kudryavtsev, L.Shekhtman [и др.]. 2017.
- [5] Соколов А. А., Тернов И. М. О поляризационных и спиновых эффектах в теории синхротронного излучения. 1963.
- [6] Метод абсолютной калибровки энергии пучков. Измерение массы Ф мезона. / А. Д. Букин, Я. С. Дербенёв, А. М. Кондратенко [и др.] // Высокие энергии и элементарные частицы. Дубна. ОИЯИ. 1975. с. 138.
- [7] Review of Particle Physics / M. Tanabashi, K. Hagiwara, K. Hikasa [и др.] // Phys. Rev. D. 2018. Aug. T. 98. c. 030001.
- [8] Клаус Групен. Детекторы элементарных частиц. Новосибирск: Сибирский хронограф, 1999.
- [9] Peskov V., Fonte P. Research on discharges in micropattern and small gap gaseous detectors. 2019.