Programme Class:	Year: First	Semester:		
Certificate		Second		
	Subject: PHYSICS			
Course Code: Course title: Thermal Physics & Semiconductor Devices				
(B010201T)	Course title. Therman I mystes & semiconductor Bevices			
10 To				
Course Outcomes:	1 100 1 11 11 11			
(IIII)	the difference between reversible and irreversible processes.			
	Understand the physical significance of thermodynamical potentials.			
Comprehend the kinetic model of gases w.r.t. various gas laws.				
 Study the implementations and limitations of fundamental radiation laws. Utility of AC bridges. 				
-	-			
	the basic components of electronic devices.			
	ple electronic circuits.			
Credits: 4	the applications of various electronic instruments. Core Compulsory / Elective			
	2 2			
Max. Marks:	Min. Passing Marks:			
25+75				
То	tal No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0			
Unit	Topics	No. of		
		Lectures		
	Part A: Thermodynamics & Kinetic Theory of Gases			
I	0 th & 1 st Law of Thermodynamics:			
•	State functions and terminology of thermodynamics. Zeroth law and	8		
	temperature. First law, internal energy, heat and work done. Work done	8		
	in various thermodynamical processes. Enthalpy, relation between C _P and C _V . Carnot's engine, efficiency and Carnot's theorem. Efficiency of			
	internal combustion engines (Otto and diesel).			
П	2 nd & 3 rd Law of Thermodynamics:			
ш	Different statements of second law, Clausius inequality, entropy and its			
	physical significance. Entropy changes in various thermodynamical	8		
	processes. Third law of thermodynamics and unattainability of absolute			
	zero. Thermodynamical potentials, Maxwell's relations, conditions for			
	feasibility of a process and equilibrium of a system. Clausius- Clapeyron equation, Joule-Thompson effect.			
Ш	Kinetic Theory of Gases:			
	Kinetic model and deduction of gas laws. Derivation of Maxwell's	7		
	law of distribution of velocities and its experimental verification.	,		
	Degrees of freedom, law of equipartition of energy (no derivation) and its application to specific heat of gases (mono, di and poly			
	atomic).			
IV	Theory of Radiation:			
	Blackbody radiation, spectral distribution, concept of energy density and pressure of radiation. Derivation of Planck's law, deduction of Wien's	7		
	distribution law, Rayleigh-Jeans law, Stefan-Boltzmann law and Wien's			
	displacement law from Planck's law.			
	PART B: Circuit Fundamentals & Semiconductor Devices			
V	DC & AC Circuits:			
	Growth and decay of currents in RL circuit. Charging and discharging of	7		
	capacitor in RC, LC and RCL circuits. Network Analysis - Superposition, Reciprocity, Thevenin's and Norton's theorems. AC			
	12			

	Bridges - measurement of inductance (Maxwell's, Owen's and	
	Anderson's bridges) and measurement of capacitance (Schering's,	
	Wein's and de Sauty's bridges).	
VI	Semiconductors & Diodes:	
	P and N type semiconductors, qualitative idea of Fermi level. Formation of	8
	depletion layer in PN junction diode, field & potential at the depletion layer.	O
	Qualitative idea of current flow mechanism in forward & reverse biased diode.	
	Diode fabrication. PN junction diode and its characteristics, static and	
	dynamic resistance. Principle, structure, characteristics and applications of	
	Zener, Light Emitting, and Photo diodes. Half and Full wave rectifiers,	
	calculation of ripple factor, rectification efficiency and voltage regulation.	
	Basic idea about filter circuits and voltage regulated power supply.	
VII	Transistors:	
	Bipolar Junction PNP and NPN transistors. Study of CB, CE & CC	8
	configurations w.r.t. active, cutoff & saturation regions; characteristics;	O
	current, voltage & power gains; transistor currents & relations between	
	them. Idea of base width modulation, base spreading resistance &	
	transition time. DC Load Line analysis and Q-point stabilization. Voltage	
	divider bias circuit for CE amplifier.	
VIII	Electronic Instrumentation:	
	Multimeter: Principles of measurement of dc voltage, dc current, ac	
	voltage, ac current and resistance. Specifications of a multimeter and	
	their significance. Cathode Ray Oscilloscope: Block diagram of basic	7
	CRO. Construction of CRT, electron gun, electrostatic focusing and	
	acceleration (no mathematical treatment). Front panel controls, special	
	features of dual trace CRO, specifications of a CRO and their	
	significance. Applications of CRO to study the waveform and	
	measurement of voltage, current, frequency & phase difference.	

Suggested Readings:

- 1. M.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997, 7e
- 2. F.W. Sears, G.L. Salinger, "Thermodynamics, Kinetic theory & Statistical thermodynamics", Narosa Publishing House, 1998
- 3. Enrico Fermi, "Thermodynamics", Dover Publications, 1956
- 4. S. Garg, R. Bansal, C. Ghosh, "Thermal Physics", McGraw Hill, 2012, 2e
- 5. Meghnad Saha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973, 5e

PART B

- 6. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 7. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 8. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 9. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 10. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e
- 11. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books of local authors:

- 1. Heat and Thermodynamics, Brij Lal Subrahmanyam
- 2. Refresher Course in Physics, C.L.Arora (for U.P. State Universities), S.Chand Publication
- 3. Kinetic Theory and Thermodynamics, Agrawal, Jain & Sharma, Krishna Prakashan, Meerut
- 4. Circuit fundamentals & Basic Electronics, Agrawal, Jain & Sharma, Krishna Prakashan, Meerut
- 5. अणुगति सिद्धान्त एवं ऊष्मागतिकी, अग्रवाल, जैन व शर्मा, कृष्णा प्रकाशन, मेरठ
- 6. परिपथ के मुल सिद्धान्त व बेसिक इलेक्टॉनिकी, अग्रवाल, जैन व शर्मा, कृष्णा प्रकाशन, मेरठ

Suggestive Digital Platforms / Web Links:

• MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

- National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Quiz/ Assignment	(05 marks)
Class Test-I	(10 marks)
Class Test-II	(10 marks)

- The course is elective and can be opted as an elective, which is open to all students.
- **PREREQUISITE:** Physics in 12th / Chemistry in 12th

Programme Class:	Year: First	Semester:		
Certificate		Second		
Subject: PHYSICS				
Course Code: (B010202P)	Course Title: Thermal Properties of Matter & Electronic Circui	ts		
Course Outcomes:				
Experimental physics	s has the most striking impact on the industry wherever the instruments are use	ed to study and		
determine the thermal and electronic properties. Measurement precision and perfection is achieved through Lab				
Experiments. Online	Virtual Lab Experiments give an insight in simulation techniques and prov	ride a basis for		
modeling.				
Credits: 2	Core Compulsory / Elective			
Max. Marks:	Min. Passing Marks:			
25+75				
520 986				
To	tal No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 0-0-4			
Unit	Topics	No. of		
		Lectures		
	Lab Experiment List			
	 Mechanical Equivalent of Heat by Callender and Barne's method Coefficient of thermal conductivity of copper by Searle's apparatus Coefficient of thermal conductivity of rubber Coefficient of thermal conductivity of a bad conductor by Lee and 	60		
	Charlton's disc method 5. Value of Stefan's constant 6. Verification of Stefan's law 7. Variation of thermo-emf across two junctions of a thermocouple with temperature 8. Temperature coefficient of resistance by Platinum resistance			
	thermometer 9. Charging and discharging in RC and RCL circuits 10. A.C. Bridges: Various experiments based on measurement of L and			

C

- 11. Resonance in series and parallel RCL circuit
- 12. Characteristics of PN Junction, Zener, Tunnel, Light Emitting and Photo diode
- 13. Characteristics of a transistor (PNP and NPN) in CE, CB and CC configurations
- 14. Half wave & full wave rectifiers and Filter circuits
- 15. Unregulated and Regulated power supply
- 16. Various measurements with Cathode Ray Oscilloscope (CRO)

Online Virtual Lab Experiment List/Link

Thermal Properties of Matter:

Virtual Labs at Amrita Vishwa Vidyapeetham https://vlab.amrita.edu/?sub=1&brch=194

- 1. Heat transfer by radiation
- 2. Heat transfer by conduction
- 3. Heat transfer by natural convection
- 4. The study of phase change
- 5. Black body radiation: Determination of Stefan's constant
- 6. Newton's law of cooling
- 7. Lee's disc apparatus
- 8. Thermo-couple: Seebeck effects

Semiconductor Devices:

Virtual Labs an initiative of MHRD Govt. of India http://vlabs.iitkgp.ac.in/be/#

- 9. Familiarisation with resistor
- 10. Familiarisation with capacitor
- 11. Familiarisation with inductor
- 12. Ohm's Law
- 13. RC Differentiator and integrator
- 14. VI characteristics of a diode
- 15. Half & Full wave rectification
- 16. Capacitative rectification
- 17. Zener Diode voltage regulator
- 18. BJT common emitter characteristics
- 19. BJT common base characteristics
- 20. Studies on BJT CE amplifier

Suggested Readings:

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962,
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 4. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e

Suggestive Digital Platforms / Web Links:

Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=194

Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/be/#

Digital Platforms / Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows: