局所テストと同値な条件

1

設定 1.1. $\mathcal{D}' = \mathcal{D}'(\mathbb{R}^n)$ とする.

定義 1.2. $T \in \mathcal{D}'$ が $x \in \mathbb{R}^n$ において局所的に C^{∞} であるとは, x の開近傍 U_x と $f \in C^{\infty}(\mathbb{R}^n)$ で, $\operatorname{supp} \varphi \subset U_x$ である $\varphi \in \mathcal{D}$ に対して

$$T\varphi = \int f(x)\varphi(x)dx$$

を満たすものが存在することをいう.

注意 1.3. こういう f を, T を U_x において代表する関数ということにする.

命題 1.4. $T\in\mathcal{D}'$ が $x\in\mathbb{R}^n$ において局所的に C^∞ であることと, $\chi(x)\neq 0$ である $\chi\in C_c^\infty(\mathbb{R}^n)$ に対して $\chi T\in C_c^\infty(\mathbb{R}^n)$ が成り立つことは必要十分である.

証明・(\Leftarrow). 明らか. (\Rightarrow). 適当な開集合 U_x と, T を U_x において代表する関数 $f \in C^\infty(U_x)$ をとる. $\chi \in C^\infty_c(\mathbb{R}^n)$ として, x で局所的に $\chi(x) \neq 0$ であるようなものをとると, 任意の $\varphi \in \mathcal{D}'$ に対して,

$$(\chi T, \varphi) = (T, \chi \varphi)$$

であるが, supp $\chi \varphi \subset U_x$ であるので,

$$(T, \chi \varphi) = \int f(x)\chi(x)\varphi(x)dx$$

が成り立つので、超関数の意味で $\chi T=\chi f$ であるが、右辺が $C_c^\infty(\mathbb{R}^n)$ であるので、主張が従う.