Esercizi

7 - Applicazioni Lineari

Legenda:

😀 : Un gioco da ragazz, dopo aver riletto gli appunti del corso

🤔 : Ci devo pensare un po', ma posso arrivarci

🤯 : Non ci dormirò stanotte

Esercizio 1. Si determinino quali tra le seguenti sono applicazioni lineari, giustificando la risposta in modo esaustivo:

(a)
$$f_1: \mathbb{R}^3 \to \mathbb{R}$$

 $(x, y, z) \mapsto x$

(b)
$$f_2: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x^2, y^2)$

(c)
$$f_3: \mathbb{R} \to \mathbb{R}^3$$

 $x \mapsto (2x, 0, -x)$

(d)
$$f_4: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x,y) \mapsto (x+1,x+y,y-3)$

(e)
$$f_5: \mathbb{R}_{\leq 3}[X] \rightarrow \mathbb{R}^2$$

 $p(X) \mapsto (p(0), p(1))$

igoplusEsercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ l'applicazione lineare tale che

$$f(1,2,-1) = (1,0,0,2),$$
 $f(0,1,-3) = (0,1,2,-5)$ e $f(2,2,2) = (1,2,4,-8).$

- (a) Si determini f(1, 8, -17).
- (b) Si determinino la dimensione e una base di ker(f).
- (c) Si determinino la dimensione e una base di Im(f).

Esercizio 3. Si stabilisca, giustificando opportunamente la rispossta, se esiste una funzione lineare $f: \mathbb{R}_{\leq 2}[X] \to \mathbb{R}$ che verifichi simultaneamente le condizioni seguenti:

•
$$f(X^2 - X) = 1$$
.

•
$$f(1) = 2$$

•
$$f(X+3)=3$$

•
$$f(X^2+4)=4$$

Se esiste, dire se f è unica e in tal caso determinare $f(aX^2 + bX + c)$ in funzione di $a, b, c \in \mathbb{R}$.

Esercizio 4. Si consideri l'applicazione lineare:

$$f: \quad \mathbb{R}^2 \quad \to \quad \mathbb{R}^3$$
$$(x,y) \quad \mapsto \quad (x+3y,-x,2x-y).$$

- (a) Si determinino la dimensione e una base del nucleo di f.
- (b) Si determinino la dimensione e una base dell'immagine di f.
- (c) Si determini se f è iniettiva e/o suriettiva.

Esercizio 5. Si consideri l'endomorfismo:

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (3x + z, x + 2y + 5z, -x + 4y + 9z).$

- (a) Si scriva la matrice associata a f rispetto alla base canonica di \mathbb{R}^3 .
- (b) Si determini il rango di f e se ne deduca se f è iniettiva e/o suriettiva.
- (c) Si determini una base del nucleo e dell'immagine di f.
- (d) Sia $W = \langle (1,2,3), (1,1,1) \rangle$. Si determini una base di f(W).
- (e) Si determini l'insieme delle controimmagini di (1,-2,1), ossia $f^{-1}(1,-1,-3):=\{v\in\mathbb{R}^3: f(v)=(1,-1,-3)\}.$
- Esercizio 6. Sia $f: V \to W$ un'applicazione lineare di spazi vettoriali e siano $v \in V$ e $w \in W$ tali che f(v) = w. Denotiamo $f^{-1}(w)$ l'insieme delle controimmagini di w. Dimostrare che $f^{-1}(w) = v + \ker(f)$, dove $v + \ker(f) := \{v + v_1 : v_1 \in \ker(f)\}$. (Procedere per doppio contenimento.)
- **Esercizio 7.** Per $k \in \mathbb{R}$ si condiseri l'endomorfismo $f_k : \mathbb{R}^3 \to \mathbb{R}^3$ la cui matrice rispetto alla base canonica è

$$A_k = \begin{pmatrix} 0 & 1 - k & 1 \\ 2 & -2 & 1 \\ k & -k & 2 \end{pmatrix}.$$

- (a) Si determinino tutti i valori di k tali che f_k è un isomorfismo.
- (b) Per k = 0 si determini la matrice associata all'isomorfismo inverso f_0^{-1} rispetto alla base canonica.
- **Esercizio 8.** Si consideri l'endomorfismo

$$f: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$
$$(x, y, z) \quad \mapsto \quad (x + y + z, -3x, x + z).$$

- (a) Si scriva la matrice $M_{\mathcal{B}}(f)$ di f rispetto alla base canonica \mathcal{B} di \mathbb{R}^3
- (b) Dopo aver verificato che $\mathcal{B}' = \{(0,1,1), (2,5,1), (0,0,1)\}$ è una base di \mathbb{R}^3 , si scriva la matrice $M_{\mathcal{B},\mathcal{B}'}(id_{\mathbb{R}^3})$ del cambiamento di base dalla base \mathcal{B}' alla base \mathcal{B} .
- (c) Ricordando che $M_{\mathcal{B}'}(f) = M_{\mathcal{B}',\mathcal{B}}(id_{\mathbb{R}^3}) \cdot M_{\mathcal{B}}(f) \cdot M_{\mathcal{B},\mathcal{B}'}(id_{\mathbb{R}^3})$, calcolare la matrice $M_{\mathcal{B}'}(f)$ di f rispetto alla base \mathcal{B}'
- **Esercizio 9.** Siano V e W due spazi vettoriali su K e sia $f:V\to W$ un'applicazione lineare.
 - (a) Si dimostri che se $v_1, \ldots, v_n \in V$ sono linearmente dipendenti, allora $f(v_1), \ldots, f(v_n)$ sono linearmente dipendenti.
 - (b) Si mostri con un controesempio che l'implicazione inversa non è vera.
 - (c) Si assuma ora che f è iniettiva. Si mostri che $v_1, \ldots, v_n \in V$ sono linearmente dipendenti se e solo se $f(v_1), \ldots, f(v_n)$ sono linearmente dipendenti.
 - (d) Si usi il punto (c) per dimostrare che se f è iniettiva e U è un sottospazio di V allora $\dim(f(U)) = \dim(U)$.
- Esercizio 10. Una matrice A si dice diagonalizzabile se è simile a una matrice diagonale D, ossia se esiste P invertibile tale che $A = P^{-1}DP$. Mostrare che se A è diagonalizzabile, allora per ogni $n \ge 1$ anche A^n è diagonalizzabile.

(a)
$$A_1 = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

(b)
$$A_2 = \begin{pmatrix} 5 & 1 & 1 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{pmatrix}$$

(c)
$$A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

Si proceda per i punti seguenti:

- Calcolare il polinomio caratteristico e determinare gli autovalori.
- Per ogni autovalore si determinino la molteplicità algebrica e geometrica e si trovi una base dell'autospazio corrispondente.
- Determinare, se esiste, una base di \mathbb{R}^3 diagonalizzante.
- Per i=1,2,3 determinare, se esiste, una matrice invertibile P tale che $P^{-1}A_iP$ è diagonale.
- Esercizio 12. Sia f l'endomorfismo di \mathbb{R}^3 tale che f(1,2,1)=(1,3,3), $(1,1,0)\in \ker(f)$ e (0,1,2) è un autovettore relativo all'autovalore 1. Discutere la diagonalizzabilità di f.
- Esercizio 13. Per $k \in \mathbb{R}$, si consideri l'operatore f di \mathbb{R}^3 associato alla seguente matrice rispetto alla base canonica \mathbb{R}^3 :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - k & k - 2 & k \end{pmatrix}$$

- (a) Determinare gli autovalori di f in funzione di k.
- (b) Per quali valori di k l'operatore f è diagonalizzabile?
- (c) Per k=2 calcolare A^n per ogni $n\geq 1$.
- Esercizio 14. Sia $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ una matrice triangolare superiore tale che
 - $a_{ii} = a_{jj}, \forall i, j \in \{1, \dots, n\};$
 - esistono $i, j \in \{1, ..., n\}$, con j > i, tali che $a_{ij} \neq 0$.

Dimostrare che A non è diagonalizzabile.