

N- and P-Channel 100 V (D-S) MOSFET

PRODUCT SUMMARY							
	N-CHANNEL	P-CHANNEL					
V _{DS} (V)	100	-100					
$R_{DS(on)}(\Omega)$ at $V_{GS} = \pm 10 \text{ V}$	0.167	0.251					
$R_{DS(on)}(\Omega)$ at $V_{GS} = \pm 4.5 \text{ V}$	0.186	0.338					
Q _g typ. (nC)	2.4	4.0					
I _D (A) ^{a, b}	4						
Configuration	N- and	p-pair					

FEATURES

- TrenchFET® power MOSFETs
- Thermally enhanced PowerPAK®
- 100 % R_q tested
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHSCOMPLIANT

HALOGEN FREE

APPLICATIONS

- DC/DC converters
- Active clamp
- · Brushless DC motors
- AC/DC inverter
- · Motor drive switch

ORDERING INFORMATION	
Package	PowerPAK 1212-8
Lead (Pb)-free and halogen-free	SIS590DN-T1-GE3

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)						
PARAMETER		SYMBOL	N-CHANNEL	P-CHANNEL	UNIT	
Drain-source voltage		V _{DS}	100	-100	V	
Gate-source voltage		V _{GS}	±	V		
	T _C = 25 °C		4 ⁹	4 9		
Continuous drain surrent	T _C = 70 °C	1 . 🗆	4 ^g	4 9	۸	
Continuous drain current	T _A = 25 °C	I _D	2.7 ^{a, b}	2.3 ^{a, b}	A	
	T _A = 70 °C	1	2.1	1.8		
Pulsed drain current (t = 100 μs)		I _{DM}	8	10		
Continuous source-drain diode current	T _C = 25 °C		14.9	19.3		
Continuous source-drain diode current	T _C = 70 °C	I _S	9.5	12.3		
Single pulse avalanche current	L = 0.1 mH	I _{AS}	4	10	w	
Single pulse avalanche energy	L = 0.1 IIII	E _{AS}	0.8	5.0	VV	
	T _C = 25 °C		17.9	23.1		
Maximum Dawar Dissination	T _C = 70 °C	1 , [11.4	14.8		
Maximum Power Dissipation	T _A = 25 °C	P _D	2.5 ^{a, b}	2.6 ^{a, b}		
	T _A = 70 °C	1	1.6	1.7		
Operating junction and storage temperature range T _J , T _{stg} -55 to +150				°C		
Soldering recommendations (peak tempera		260				

THERMAL RESISTANCE RATINGS							
PARAMETER		SYMBOL	N-CH/	ANNEL	P-CH/	ANNEL	UNIT
PANAMETEN		STWIBOL	TYP.	MAX.	TYP.	MAX.	ONII
Maximum junction-to-ambient b, f	t ≤ 10 s	R_{thJA}	40	50	38	48	°C/W
Maximum junction-to-case (drain)	Steady state	R_{thJC}	5.6	7	4.3	5.4	C/VV

- a. Based on silicon capability only
- b. Surface mounted on 1" x 1" FR4 board
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
 e. Rework conditions: Manual soldering with a soldering iron is not recommended for leadless components
 f. Maximum under steady state conditions is 94 °C/W

- Package limited

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX	UNIT	
Static				l				
		$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	N-Ch	100	_	_	l	
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	P-Ch	-100	-	-	V	
		I _D = 250 μA	N-Ch	-	79	-		
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	I _D = -250 μA	P-Ch	-	-68	-	mV/°C	
	A)/ /T	I _D = 250 μA	N-Ch	-	-4.4	-		
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	P-Ch	-	4.3	-		
Cata threshold valtage	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	N-Ch	1.5	=.	2.5	V	
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	P-Ch	-1.5	-	-2.5	V	
Gata bady laakaga	l	V 0 V V + 20 V	N-Ch	-	-	± 100		
Gate-body leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	P-Ch	-	-	± 100	nA	
		$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$	N-Ch	-	-	1		
Zero gate voltage drain current	1	$V_{DS} = -100 \text{ V}, V_{GS} = 0 \text{ V}$	P-Ch	-	-	-1		
zero gate voltage drain current	I _{DSS}	V_{DS} = 100 V, V_{GS} = 0 V, T_J = 55 °C	N-Ch	-	-	10	μΑ	
		V_{DS} = -100 V, V_{GS} = 0 V, T_J = 55 °C	P-Ch	-	-	-10		
On-state drain current ^b	1	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$ N-Ch		4	-	-	^	
On-State drain current -	I _{D(on)}	$V_{DS} \le$ -5 V, $V_{GS} =$ -10 V	P-Ch	-4	-	-	A	
Drain-source on-state resistance b		$V_{GS} = 10 \text{ V}, I_D = 1.5 \text{ A}$	N-Ch	-	0.139	0.167	- Ω	
	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -2.3 \text{ A}$	P-Ch	-	0.197	0.251		
Drain-Source on-state resistance		$V_{GS} = 4.5 \text{ V}, I_D = 1.0 \text{ A}$	N-Ch	-	0.155	0.186		
		$V_{GS} = -4.5 \text{ V}, I_D = -2.0 \text{ A}$	P-Ch	-	0.260	0.338		
Forward transconductance b	a	$V_{DS} = 10 \text{ V}, I_D = 2.7 \text{ A}$	N-Ch	-	10	-	- S	
Torward transcoriductance	9fs	$V_{DS} = -10 \text{ V}, I_D = 2.3 \text{ A}$	P-Ch	-	24	-		
Dynamic ^a			_					
Input capacitance	C _{iss}		N-Ch	=.	265	-	pF	
mpat supusitanss	OISS	N-channel	P-Ch	-	325	-		
Output capacitance	C _{oss}	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch	=.	20	-		
Cutput capacitance	Ooss	P-channel	P-Ch	-	90	-		
Reverse transfer capacitance	C _{rss}	$V_{DS} = -50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch	=.	2	=		
rieverse transfer capacitance	Orss		P-Ch	=.	5	-		
		$V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 0.2 \text{ A}$	N-Ch	-	5.2	104	nC	
Total gate charge	Q_g	$V_{DS} = -50 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -9 \text{ A}$	P-Ch	-	11.2	22.4		
rotal gate charge	₩g		N-Ch	=.	2.4	4.8		
		N-channel	P-Ch	-	5.7	11.4		
Gate-source charge	0	$V_{DS} = 50 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 0.2 \text{ A}$	N-Ch	-	1.0	-	110	
Gate-source charge	Q _{gs}	P-channel	P-Ch	-	2.4	-		
Gate drain charge	0	$V_{DS} = -50 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = 2.3 \text{ A}$	N-Ch	-	0.5	-		
Gate-drain charge	Q_{gd}			-	2.5			
Gate resistance	D	f = 1 MHz		0.24	1.2	2.4	Ω	
Cate resistance	R_g	I = I IVITIZ	P-Ch	0.76	3.8	7.6	5.2	

www.vishay.com

Vishay Siliconix

PARAMETER	AMETER SYMBOL TEST CONDITIONS				TYP.	MAX	UNIT
Dynamic ^a							
Turn-on delay time	t _{d(on)}		N-Ch	-	12	25	
Tant on dolay time	ra(on)	N-channel	P-Ch	-	15	30	
Rise time	t _r	$V_{DD} = 10 \text{ V}, R_{L} = 2 \Omega$	N-Ch	-	45	90	
T 100 til 110	4	$I_D \cong 2.1 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	P-Ch	-	50	100	
Turn-off delay time	t _{d(off)}	P-channel	N-Ch	-	22	45	
Tam on dolay time	- a(oii)	V_{DD} = -10 V, R_L = 2 Ω $I_D \cong$ -1.8 A, V_{GEN} = -10 V, R_q = 1 Ω	P-Ch	-	30	60	
Fall time	t _f	g	N-Ch	-	12	25]
	-1		P-Ch	-	11	20	ns
Turn-on delay time	t _{d(on)}		N-Ch	-	6	15	110
Tam on dolay amo	-d(on)	N channel	P-Ch	-	10	15	
Rise time	t _r	N-channel $V_{DD} = 10 \text{ V}, R_L = 2 \Omega$	N-Ch	-	21	40	
THISC LITTLE	٠r	$I_D \cong 2.1 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	P-Ch		23	45	
Turn-off delay time	t _{d(off)}	P-channel	N-Ch	-	20	40	
Turn-off delay time		$V_{DD} = -10 \text{ V}, R_L = 2 \Omega$ $I_D \cong -1.8 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$	P-Ch	-	26	50	
Fall time	t _f	J J GEN J g	N-Ch		10	20	
Tall time	ч		P-Ch		10	20	
Drain-Source Body Diode Characteristi	cs				,	T	T
Continuous source-drain diode current	I _S	T _A = 25 °C	N-Ch	-	-	2.1	- A
		1,7 20 0	P-Ch	-	-	-2.2	
Pulse diode forward current (t = 100 µs)	I _{SM}		N-Ch	-	-	8	
	-3141		P-Ch	-	=.	-10	
Body diode voltage	V _{SD}	I _S = 2.1 A, V _{GS} = 0 V	N-Ch	-	0.8	1.2	V
	- 3D	I _S = -1.8 A, V _{GS} = 0 V	P-Ch	-	-0.81	-1.2	v
Body diode reverse recovery time	t _{rr}		N-Ch	-	23	46	ns
Body diode reverse recevery time			P-Ch	-	37	74	
Body diode reverse recovery charge	Q _{rr}	N-channel	N-Ch	-	21	42	nC
	≪rr	$I_F = -1.8 \text{ A, dI//dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 ^{\circ}\text{C}$	P-Ch	-	65	130	
Reverse recovery fall time	t _a	P-channel	N-Ch	-	21	-	
neverse recovery rail time	ча	$I_F = -1.8 \text{ A}, \text{ dI/dt} = -100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	P-Ch	-	34	-	ns
Reverse recovery rise time	t _b			-	2	-	113
Reverse recovery rise time	'D		P-Ch	-	3		

Notes

- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

On-Resistance vs. Drain Current and Gate Voltage

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

Single Pulse Power (Junction-to-Ambient)

Safe Operating Area, Junction-to-Ambient

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

On-Resistance vs. Drain Current and Gate Voltage

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Current Derating a

Power Junction to Ambient

Power Junction to Case

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63046.

PowerPAK® 1212-8, (Single / Dual)

Notes

- 1. Inch will govern
- 2 Dimensions exclusive of mold gate burrs 3. Dimensions exclusive of mold flash and cutting burrs

Backside view of dual pad

D2

추

DIM.		MILLIMETERS INCHES				MILLIMETERS			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.			
Α	0.97	1.04	1.12	0.038	0.041	0.044			
A1	0.00	-	0.05	0.000	-	0.002			
b	0.23	0.30	0.41	0.009	0.012	0.016			
С	0.23	0.28	0.33	0.009	0.011	0.013			
D	3.20	3.30	3.40	0.126	0.130	0.134			
D1	2.95	3.05	3.15	0.116	0.120	0.124			
D2	1.98	2.11	2.24	0.078	0.083	0.088			
D3	0.48	-	0.89	0.019	-	0.035			
D4		0.47 typ.			0.0185 typ				
D5		2.3 typ.			0.090 typ				
E	3.20	3.30	3.40	0.126	0.130	0.134			
E1	2.95	3.05	3.15	0.116	0.120	0.124			
E2	1.47	1.60	1.73	0.058	0.063	0.068			
E3	1.75	1.85	1.98	0.069	0.073	0.078			
E4	0.034 typ.			0.013 typ.					
е	0.65 BSC				0.026 BSC				
K		0.86 typ.			0.034 typ.				
K1	0.35	-	-	0.014	-	=			
Н	0.30	0.41	0.51	0.012	0.016	0.020			
L	0.30	0.43	0.56	0.012	0.017	0.022			
L1	0.06	0.13	0.20	0.002	0.005	0.008			
θ	0°	-	12°	0°	-	12°			
W	0.15	0.25	0.36	0.006	0.010	0.014			
М		0.125 typ.	•	0.005 typ.					

ECN: S16-2667-Rev. M, 09-Jan-17

DWG: 5882 Revison: 09-Jan-17

Document Number: 71656

Recommended Land Pattern for PowerPAK® 1212-8 Dual

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.