微積分 I 演習(6) 2007 年 5 月 23 日

微積分I演習

- 第1~3回の補足 -

担当:佐藤 弘康

問題 1.1. 以下のことを示せ.

- (1) 有理数 a,b (ただし a < b) に対して a < c < b を満たす有理数 c が存在する.
- (2) 有理数 a,b (ただし $b \neq 0$) に対して $a+b\sqrt{2}$ は有理数ではない.
- (3) 有理数 a,b (ただし a < b) に対して a < c < b を満たす無理数 c が存在する.

解. (1) $c = \frac{a+b}{2}$ とおけば、c は有理数で a < c < b を満たす。 \square

(2)

$$A = a + b\sqrt{2} \tag{6.1}$$

とおく、「Aが有理数である」と仮定して矛盾を導く(背理法)。

(6.1) 式から,

$$\sqrt{2} = \frac{A - a}{b} \tag{6.2}$$

と書けるが、有理数の集合は四則演算で閉じているから、(6.2) の右辺は有理数である。 しかし、これは $\sqrt{2}$ が無理数であるという事実に反する。したがって、 $a+b\sqrt{2}$ は有理数 でないことがわかる。

(3) 次の事実

$$a < b \text{ find } 0 < \theta < 1 \Longrightarrow a < a + \theta(b - a) < b$$
 (6.3)

を用いて証明しよう。(6.3) と (2) の結果から, $0 < p\sqrt{2} < 1$ を満たす $p \in \mathbf{Q}$ が存在すれば, $c = a + (b-a)p\sqrt{2}$ は a < c < b を満たす無理数である。例えば, $p = \frac{1}{2}$ はこれを満たす. \square

(3) の別解 $x, y \in \mathbf{Q}$ を

$$a < x < b \tag{6.4}$$

$$a < y < b \tag{6.5}$$

を満たす数とする. (6.4) に $\sqrt{2}$ をかけて, (6.5) との和をとると

$$(1+\sqrt{2})a < x\sqrt{2} + y < (1+\sqrt{2})b$$

微積分 I 演習(6) 2007 年 5 月 23 日

を得る.各辺に $(\sqrt{2}-1)$ をかけると

$$a < (2x - y) + (x - y)\sqrt{2} < b$$

を得る。したがって,(6.4),(6.5) かつ $x \neq y$ を満たす $x,y \in \mathbf{Q}$ に対して, $c = (2x-y) + (x-y)\sqrt{2}$ とおけば,c は a < c < b を満たす無理数である。(1) の議論を使うことにより,例えば $x = \frac{a+b}{2}$, $y = \frac{a+x}{2} = \frac{3a+b}{4}$ は上の条件を満たす. \square

問題 1.1 の補足問題. —

- (6.3) が成立することを確かめよ。また、(6.3) を用いて、次のことを証明せよ。
- (1) $a,b\in \mathbf{Q}$ に対して、開区間 (a,b) の中には無限個の有理数が存在する.
- (2) $a,b \in \mathbf{Q}$ に対して、開区間 (a,b) の中には無限個の無理数が存在する.

問題 **2.3.**
$$a_n = \left(1 + \frac{1}{n}\right)^{n+1}$$
, $b_n = \sum_{k=1}^n \frac{1}{k} - \log n$ とおくとき, 次の問に答えよ.

- (1) 数列 $\{a_n\}$ は下に有界な減少列であることを示せ、また、その極限はどのような値か?
- (2) 数列 $\{b_n\}$ は下に有界な減少列であることを示せ.

解を述べる前に、次の例題を考える.

例題 **6.1.**
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
 で定まる数列 $\{a_n\}$ は増加列であることを示せ.

解. この事実は教科書 (p.12~) で証明されているが、ここでは相加平均と相乗平均の関係

$$\frac{x_1 + x_2 + \dots + x_k}{k} \ge \sqrt[k]{x_1 x_2 \cdots x_k}$$
 (6.6) (ただし、等号成立は $x_1 = \dots = x_k$ のとき)

を用いた別証明を与える. n を $\frac{n}{n-1}$ に (n-1) 等分して (6.6) を適用すると

$$\sqrt[n]{a_n} = \frac{n+1}{n} = \frac{\frac{n}{n-1} + \dots + \frac{n}{n-1} + 1}{n} > \sqrt[n]{\left(\frac{n}{n-1}\right)^{n-1}} = \sqrt[n]{a_{n-1}}.$$

微積分 I 演習 (6) 2007 年 5 月 23 日

したがって、 $a_n > a_{n-1}$ となり、数列 $\{a_n\}$ は増加列であることがわかる.

<u>問題 2.3 の解</u> (1) 例題 6.1 の解を参考に証明する。 $\frac{n}{n+1} = \frac{(n-1)+1}{n+1}$ であるから、

$$\frac{n}{n+1} = \frac{\frac{n-1}{n} + \dots + \frac{n-1}{n} + 1}{n+1} > \sqrt[n+1]{\left(\frac{n-1}{n}\right)^n}$$

が成り立つ. この不等式の両辺を (n+1) 乗して逆数をとれば

$$a_n = \left(\frac{n+1}{n}\right)^{n+1} < \left(\frac{n}{n-1}\right)^n = a_{n-1}.$$

したがって、 a_n は減少列である。また、 $a_n > 0$ より、下に有界であるから、極限が存在する。

定理 1.1 を用いることにより

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \left(1 + \frac{1}{n} \right)$$
$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)$$
$$= e \cdot 1 = e$$

を得る. □

(2)

$$b_n - b_{n+1} = \log \frac{n+1}{n} - \frac{1}{n+1}$$
$$= \frac{1}{n+1} \left(\log \left(\frac{n+1}{n} \right)^{n+1} - 1 \right).$$

ここで、(1) の結果から $\left(\frac{n+1}{n}\right)^{n+1} > e$ が成り立つから、 $\log\left(\frac{n+1}{n}\right)^{n+1} > \log e = 1$. したがって、 $b_n > b_{n+1}$ となり、数列 $\{b_n\}$ は減少列である. また、 b_n は

$$b_n = \sum_{k=1}^n \frac{1}{k} - \log n$$

$$= \sum_{k=1}^n \frac{1}{k} - \left(\log 2 + \log \frac{3}{2} + \dots + \frac{n}{n-1}\right)$$

$$= \sum_{k=1}^{n-1} \frac{1}{k} \left(1 - \log\left(\frac{k+1}{k}\right)^k\right) + \frac{1}{n}.$$

微積分 I 演習 (6) 2007 年 5 月 23 日

と書けるが、数列 $\left\{\left(\frac{n+1}{n}\right)^n\right\}$ が上に有界な増加列で、その極限がe であることから、 $\log\left(\frac{k+1}{k}\right)^k < \log e = 1$. したがって、 $b_n > 0$ となり $\{b_n\}$ は下に有界である *1 . \square

問題 **2.8.** 数列 $\{a_n\}$ を

$$a_n = \frac{n+1}{n} + \frac{n}{n+1}$$

によって定める. このとき, 次の問に答えよ.

- (1) 高校までに習った知識を使ってこの数列の極限を求めよ.
- (2) 正の実数 ε が与えられたとき、 $|a_n \alpha| < \varepsilon$ が成り立つためには自然数 n を どのくらい大きくとればよいか?

ヒント. (2) $|a_n - \alpha| < \frac{1}{n}$ が成り立つことを示し、後は問題 2.6 の解法を参考にせよ。

問題 3.4(1) の補足問題 -

関数 $f(x) = \frac{ax+b}{cx+d}$ に関して、次の問いに答えよ.

- (1) ad bc = 0 のとき、関数 f は定数関数であることを示せ(つまり、ある定数 C が存在し、任意の $x \in \mathbf{R}$ に対して f(x) = C).
- (2) $ad-bc \neq 0$ のとき、y=f(x) のグラフはどのような形になるか考察せよ.

ヒント. $f(x) = a' + \frac{b'}{c'x + d'}$ の形に変形せよ(ただし $a', b', c', d' \in \mathbf{R}$).

^{**1} 実際に, $\lim_{n\to\infty} \left(1+\frac{1}{2}+\dots+\frac{1}{n}-\log n\right) = 0.577215664901532\dots$ で,この数はオイラーの定数 と呼ばれている。ちなみに,オイラーの定数が有理数なのか無理数なのか,未だにわかっていない.