Relaciones

Luis Eduardo Amaya Sede Guanacaste, Universidad de Costa Rica.

> MA-0320 - Matemáticas Discretas Noviembre 2019

Contents

- Introducción
- 2 Conceptos básicos
- Formas de representar una relación
 - Matrices
 - Grafos

Introducción

Considerar

La teoría de relaciones nos brinda los conceptos, propiedades y operaciones que permiten modelar lo que veríamos en la vida cotidiana como una vinculación o relación entre objetos, personas, números, algoritmos o cualquier otro tipo de estructura. En las ciencias computacionales las relaciones (particularmente las binarias) tienen una importancia crucial par comprender los fundamentos de la teoría de grafos.

Relación de estudiantes con cursos

Estudiante	Curso
Guillermo	Computación
María	Matemáticas
Guillermo	Arte
Beatriz	Historia
Beatriz	Computación
David	Matemáticas

Definiciones

Definición

Dados dos conjuntos A y B, una relación \mathcal{R} de A en B es el triplete (G, A, B) con $G \subseteq A \times B$.

- A es el conjunto emisor o de partida.
- B es el conjunto receptor o de llegada.
- El conjunto G se llama el gráfico de la relación.
- Para $a \in A$ y $b \in B$, se dice que a **se relaciona con** b sii $(a,b) \in G$, en cuyo caso se escribe $a \mathcal{R} b$.

Considerar

¿Qué parentesco existe entre Relaciones y Funciones?

Ejemplo

 $A = \{Petra, Pitra, Patra\}, B = \{Thorn, Ironman, CapitanAmerica\}$

Conceptos básicos

Nota

- Al conjunto $D = \{a \in A | aRb\}, D = D_R \text{ se le llama dominio } de R.$
- Al conjunto Rang = {b ∈ B|aRb}, Rang = R[A] se le llama rango de R.
- Se dice que una relación R esta definida sobre A si el emisor y el receptor son el mismo conjunto A, es decir (G, A, A).

Ejemplo

- Considere los conjuntos $A = \{3, 5, 6\}$ y $B = \{4, 7\}$ y la relación \mathcal{R} de A en B, definida por $a\mathcal{R}b \iff a = b 1$. Determinar el gráfico, dominio y rango de \mathcal{R} .
- ② Considere los conjuntos $A = \{1,3,5,7\}$ y $B = \{2,4,6,8\}$ y la relación \mathcal{R} de A en B, definidad por $a\mathcal{R}b \iff mcd(a,b) = 1$. Determinar el gráfico, dominio y rango de \mathcal{R} .
- **③** Sea $A = \{1, 2, 3, \dots, 100\}$ y \mathcal{R} una relacion definida sobre A, tal que: $a\mathcal{R}b \iff a \ge b$. Determinar el gráfico de \mathcal{R} y su cardinalidad.
- Sobre el conjunto $A = \{1, 2, 3, 4\}$, considere la relación \mathcal{R} dada por $a\mathcal{R}b$ sii $(a = b + 1 \lor 2a = b)$. Calcule el gráfico de \mathcal{R} .
- **5** Establecer el gráfico de la relación \mathcal{R} para el conjunto $A = \{1, 3, 5, \cdots, 99\}$, donde $a\mathcal{R}b \iff b^3 \ge a$. ¿Están 63 \mathcal{R} 97 y 63 \mathcal{R} 3?

Conceptos básicos

Definición

 $Si \mathcal{R} = (G, A, B)$ y S = (H, A, B) son dos relaciones de A en B, se define

- Unión de \mathcal{R} y \mathcal{S} como $\mathcal{R} \cup \mathcal{S} = (G \cup H, A, B)$.
- Intersección de \mathcal{R} y \mathcal{S} como $\mathcal{R} \cap \mathcal{S} = (G \cap H, A, B)$.
- Diferencia de \mathcal{R} y \mathcal{S} como $\mathcal{R} \mathcal{S} = (G H, A, B)$.
- Inversa de \mathcal{R} como $\mathcal{R}^{-1} = (G^{-1}, B, A)$, donde

$$G^{-1} = \{(b,a) \mid (a,b) \in G\}$$

Conceptos básicos

Definición

Si $\mathcal{R} = (G, A, B)$ y $\mathcal{S} = (H, A, B)$ son dos relaciones de A en B, se define

• Complemento de $\mathcal R$ como $\overline{\mathcal R}=\left(\overline{G},A,B\right)$, donde

$$\overline{G} = \{(a,b) \mid (a,b) \notin G\}$$

• $Si \mathcal{R} = (G, A, B) \ y \mathcal{S} = (H, B, C)$ se define la relación **Compuesta** de \mathcal{R} y \mathcal{S} como $\mathcal{SoR} = (HoG, A, C)$, donde

$$HoG = \{(a, c) \mid \exists b \in B \text{ tal que } aRb \land bSc\}$$

Ejemplo

- **○** Sobre $A = \{1,2,3\}$ considere las relaciones \mathcal{R} y \mathcal{S} . El gráfico de \mathcal{R} es $G_{\mathcal{R}} = \{(1,2),(1,3),(2,3),(3,2),(3,3)\}$; el gráfico de \mathcal{S} es $G_{\mathcal{S}} = \{(1,2),(2,2),(3,3)\}$. Determine el gráfico de las relaciones $\mathcal{R} \cup \mathcal{S}$, $\mathcal{R} \cap \mathcal{S}$, \mathcal{R}^{-1} y $\overline{\mathcal{R}}$.
- ② Sobre $A = \{1,2,3,4\}$ se definen las relaciones \mathcal{R} y \mathcal{S} , donde el gráfico de \mathcal{R} es $G_{\mathcal{R}} = \{(1,2),(2,3),(2,4),(3,2),(4,1),(4,4)\}$ y el de \mathcal{S} es $G_{\mathcal{S}} = \{(2,4),(3,2),(4,3)\}$. Determine el gráfico de \mathcal{S} o \mathcal{R} .
- Libro de Murillo, sección 3.1, ejercicio 5 y/o 6.

Definiciones

Definición

Si $A = \{a_1, a_2, \cdots, a_m\}$ y $B = \{b_1, b_2, \cdots, b_n\}$, ambos conjuntos finitos, sobre los cuales se define una relación binaria \mathcal{R} de A en B, se puede representar por una matriz de tamaño m por n, denotada como $M_{\mathcal{R}}$, donde

Esta matriz se le denomina matriz de la relación R

Ejemplo

Para la relación \mathcal{R} definida sobre $A = \{a, b, c, d, e, f\}$, con gráfico, $G_{\mathcal{R}} = \{(b, c), (b, d), (c, a), (c, c), (d, c), (d, d), (d, e), (f, f)\}$, la matriz asociada es

Ejemplo

Usando Mathematica construya la matriz de relación de \mathcal{R} donde mcd(a,b)=1, esto para $a\in A=\{1,3,5,7\}$ y $b\in B=\{2,4,6,8\}$

$$M_{\mathcal{R}} = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array}\right)$$

La rutina que brinda dicha matriz está en el archivo Ejemplo Matrices.nb

Operaciones

Definición

Sean \mathcal{R} y \mathcal{S} relaciones sobre un conjunto A con matrices $M_{\mathcal{R}}$ y $M_{\mathcal{S}}$ respectivamente, entonces

- $M_{\mathcal{R} \cup \mathcal{S}} = M_{\mathcal{R}} \vee M_{\mathcal{S}}$
- $M_{\mathcal{R}\cap\mathcal{S}} = M_{\mathcal{R}} \wedge M_{\mathcal{S}}$
- $M_{\overline{R}} = \overline{M_R}$, esta se llama matriz complemento, en la cual los valores de la matriz original cambian de uno a cero y viceversa
- $\bullet \ M_{\mathcal{R}^{-1}} = (M_{\mathcal{R}})^t$
- M_{RoS} = M_S ⊙ M_S, donde La multiplicación booleana, A ⊙ B_{ij} = 1 si existe un 1 en la misma posición en la fila i de A y en la columna j de B y A ⊙ B_{ij} = 0 si no hay coincidencia.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, A \odot B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Ejemplo

Definiciones

Definición

Las diferentes relaciones de A en B se pueden representar por medio de su criterio, su gráfico o su matriz asociada. En el caso particular de relaciones definidas de A en A, se pueden representar por medio de un grafo dirigido o digrafo.

- El grafo estará formado por los elementos de A, que se llamarán vértices o nodos.
- Si aRb, es decir, $(a,b) \in G_R$, entonces se dibuja una flecha dirigida de a hacia b, en ese orden!
- Si aRa, se forma un lazo.
- Mathematica cuenta con el comando AdjacencyGraph el cual elabora el digrafo de R al recibir la matriz de relación.

Ejemplo

Para la relación \mathcal{R} definida sobre $A = \{1, 2, 3, 4\}$, donde, $G_{\mathcal{R}} = \{(1, 1), (1, 2), (2, 3), (3, 2), (3, 3), (4, 3)\}$, el digrafo asociado es:

Ejemplo

Para la relación \mathcal{R} definida sobre $A = \{a, b, c, d, e, f\}$, con gráfico, $G_{\mathcal{R}} = \{(b, c), (b, d), (c, a), (c, c), (d, c), (d, d), (d, e), (f, f)\}$, el digrafo asociado es:

Ejemplo

Dado el conjunto $A = \{2, 4, 6, \cdots, 100\}$ y \mathcal{R} la relación definida sobre A, donde $a\mathcal{R}b \iff a = b^k$, $k \in \mathbb{N}$, elabore en Mathematica una rutina que muestre el gráfico, la matriz y el digrafo de \mathcal{R} .

Es importante notar lo siguiente para poder construir lo solicitado

$$a = b^k \Rightarrow k = \frac{ln(a)}{ln(b)}$$

$$k = \frac{ln(a)}{ln(b)} = \log_b a$$
, donde $k \in \mathbb{N}$

Ejemplo

Considere las gráficas de dos relaciones \mathcal{R}_1 y \mathcal{R}_2 . Encuentre: $\mathcal{R}_1 \cup \mathcal{R}_2$, $\mathcal{R}_1 \cap \mathcal{R}_2$ y $\overline{\mathcal{R}_1}$.

