

TD n°1: Mathématiques

SEG - S1 - 2024/2025 - Pr. El Mahjour

Fonctions réelles, Développements limités et Intégrales

Exercice 1

- (a) Démontrer que $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} = 1$.
- (b) Soient m, n des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.
- (c) Démontrer que $\lim_{x \to 0} \frac{1}{x} (\sqrt{1 + x + x^2} 1) = \frac{1}{2}$.

[01]

Exercice 2

Calculer lorsqu'elles existent les limites suivantes

$$a) \lim_{x \to 0} \frac{x^2 + 2|x|}{x}$$

$$b)\lim_{x\to-\infty}\frac{x^2+2|x|}{x}$$

a)
$$\lim_{x \to 0} \frac{x^2 + 2|x|}{x}$$
 b) $\lim_{x \to -\infty} \frac{x^2 + 2|x|}{x}$ c) $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2}$

$$d\lim_{x\to\pi}\frac{\sin^2 x}{1+\cos x}$$

$$d) \lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x} \qquad e) \lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x} \qquad f) \lim_{x \to +\infty} \sqrt{x + 5} - \sqrt{x - 3}$$

$$f$$
 $\lim_{x \to +\infty} \sqrt{x+5} - \sqrt{x-3}$

g)
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$
 h) $\lim_{x \to 1} \frac{x-1}{x^n-1}$

$$h)\lim_{x\to 1}\frac{x-1}{x^n-1}$$

[02]

Exercice 3

Soit f la fonction réelle à valeurs réelles définie par

$$f(x) = \begin{cases} x & \text{si } x < 1\\ x^2 & \text{si } 1 \le x \le 4\\ 8\sqrt{x} & \text{si } x > 4 \end{cases}$$

- a) Tracer le graphe de f.
- b) f est elle continue?
- c) Donner la formule définissant f^{-1} .

Indication ▼

Indication pour l'exercice 3 ▲

Distinguer trois intervalles pour la formule définissant f^{-1} .

Exercice 4

Donner le développement limité en 0 des fonctions :

a)
$$x \mapsto \ln(\cos(x))$$
 (à l'ordre 6).

d)
$$x \mapsto (\ln(1+x))^2$$
 (à l'ordre 4).

b)
$$x \mapsto \tan(x)$$
 (à l'ordre 7).

e)
$$x \mapsto \exp(\sin(x))$$
 (à l'ordre 3).

c)
$$x \mapsto \sin(\tan(x))$$
 (à l'ordre 7).

f)
$$x \mapsto \sin^6(x)$$
 (à l'ordre 9.)

[04]

Exercice 5

- 1. Développement limité en 1 à l'ordre 3 de $f(x) = \sqrt{x}$.
- 2. Développement limité en 1 à l'ordre 3 de $g(x) = e^{\sqrt{x}}$.
- 3. Développement limité à l'ordre 3 en $\frac{\pi}{3}$ de $h(x) = \ln(\sin x)$.

Indication ▼ [05]

Indication pour l'exercice 5 ▲

Pour la première question vous pouvez appliquer la formule de Taylor ou bien poser h = x - 1 et considérer un dl au voisinage de h = 0.

Exercice 6

Exercice 6
$$f(x) = \frac{x}{1+x^2} \qquad g(x) = \frac{e^{3x}}{1+e^{3x}} \qquad h(x) = \frac{\ln x}{x} \qquad k(x) = \cos(x)\sin^2(x)$$

$$l(x) = \frac{1}{x \ln x} \qquad m(x) = 3x\sqrt{1+x^2}$$
Indication \(\neq \text{1}\)

Indication pour l'exercice 6 ▲

Reconnaitre des fonctions de la forme $u' \times u$, u'/u, $u' \times u^2$, ...

Exercice 7

Les intégrales suivantes, sont-elles convergentes?

a) Déterminer une primitive des fonctions suivantes :

$$x \mapsto \arctan(x)$$
 $x \mapsto (\ln x)^2$ $x \mapsto \sin(\ln x)$

b) Calculer les intégrales suivantes :

$$\int_{1}^{2} \frac{\ln(x)}{x} dx \qquad \qquad \int_{0}^{\pi} e^{x} \sin(x) dx.$$

Indication ▼ [07]

Indication pour l'exercice 7 ▲

Pensez à une intégrale par parties ... deux fois peut être!

Exercice 8

1.
$$\int_{0}^{1} \ln t dt$$
 2. $\int_{0}^{+\infty} e^{-t^{2}} dt$ 3. $\int_{0}^{+\infty} x(\sin x) e^{-x} dx$
4. $\int_{0}^{+\infty} (\ln t) e^{-t} dt$ 5. $\int_{0}^{1} \frac{dt}{(1-t)\sqrt{t}} dt$
Indication \blacktriangledown

Indication pour l'exercice 8 ▲

1. Trouver une primitive ou comparer. 2. Comparer à une intégrale de Riemann. 3. Prouver la convergence absolue. 4. Comparer en 0 (utiliser une intégrale précédente), et majorer à l'infini. 5. Trouver des équivalents en 0 et en 1.