

Yakeen NEET 2.0 2026

Basic Maths and Calculus (Mathematical Tools)

Assignment-03 By: M.R. Sir

1. The electric potential due to a uniformly charged ring at axial point can be given by formula $V = \frac{kQ}{\sqrt{R^2 + x^2}}, \text{ which of the following is correct } V$

vs x graph

2. The electric field due to a uniformly charged ring at axial point can be given by formula $E = \frac{kQx}{(R^2 + x^2)^{3/2}}, \text{ which of the following is correct}$

E vs x graph:

Current through a charging capacitor in RC circuit can be given by formula $i = i_0 (1 - e^{-t/\tau})$ where i is current and t is time, which of the following is correct i vs t graph

4. Voltage of a discharging capacitor in RC circuit can be given as $V = V_0 e^{-t/\tau}$, which of the following is correct V vs t graph

5. Which of the following represents correctly for γ vs θ for the function $\gamma = 5 \sin (\theta + 30^{\circ})$

6. $\sin \theta \text{ vs } \theta \text{ graph is given below find value of } a, b$ and c

7. Displacement time graphs of two moving particles make angles of 30° and 45° with the *x*-axis as shown in figure, ratio of their respective velocity is

- (1) $1:\sqrt{3}$
- (2) $\sqrt{3}:1$
- (3) 1:1
- (4) 1:2

8. Which of the following is correct rms speed vs temperature graph. If they are related as $V_{rms} = \sqrt{\frac{3RT}{M}}$

9. Which of the following figures represent the variation of particle momentum and the associated de-Broglie wavelength? (2015)

10. According the Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is, if they are related as $K.E = E - \phi$ (2004)

The graph which shows the variation of $\frac{1}{\lambda^2}$ and its 11. kinetic energy, E is (where λ is de Broglie wavelength of a free particle) and they are related as

$$E = \frac{1}{2m\lambda^2}$$

12. The variation of susceptibility χ with absolute temperature T for a paramagnetic material is related by $\chi \propto \frac{1}{T}$, then which of the following is correct graph.

13. In SHM a particle started from mean position and its acceleration and velocity can be given as $A\omega^2 \sin \omega t$ and $A\omega \cos \omega t$ then correct graph between v and a

will be:
$$\frac{a^2}{(A\omega^2)^2} = \frac{v^2}{(A\omega)^2} = 1$$

- $x = a \sin t$, $y = a \cos t$ find $\frac{dy}{dt}$
 - (1) tan t
- $(2) \cot t$
- $(3) -\frac{t}{\cot t}$
- **15.** You are given the equation of a curve:

$$\frac{x^2}{16} + \frac{y^2}{4} = 1$$

Which of the following correctly represents the graph between x and y?

- (1) An ellipse centered at origin with major axis along x-axis and x-intercepts at ± 4
- (2) An ellipse centered at origin with major axis along y-axis and y-intercepts at ±4
- (3) A parabola opening along x-axis
- (4) A circle of radius 4 centered at origin
- 16. Two ellipses are given:

Ellipse A:
$$\frac{x^2}{16} + \frac{y^2}{4} = 1$$

Ellipse B:
$$\frac{x^2}{4} + \frac{y^2}{1} = 1$$

Which ellipse has a greater area?

- (1) Ellipse A
- (2) Ellipse B
- (3) Both have same area
- (4) Can't be determined from given data
- **17.** Which equation will produce an ellipse that appears taller than it is wide?

$$(1) \quad \frac{x^2}{9} + \frac{y^2}{25} = 1$$

(2)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

(3)
$$\frac{x^2}{16} + \frac{y^2}{16} = 1$$

$$(4) \quad \frac{x^2}{36} + \frac{y^2}{36} = 1$$

- The equation $(x-3)^2 + (y+4)^2 = 25$ represents a circle with:
 - (1) Center: (3, 4), Radius: 5
 - (2) Center: (-3, -4), Radius: 25
 - (3) Center: (3, -4), Radius: 5
 - (4) Center: (-3, 4), Radius: 5
- If the area of a circle represented by $x^2 + y^2 r^2$ is 19. 49π , what is the correct equation of the circle?

(1)
$$x^2 + y^2 = 49$$
 (2) $x^2 + y^2 = 7$

$$(2) x^2 + y^2 = 7$$

$$(3) \quad x^2 + y^2 = 14$$

(3)
$$x^2 + y^2 = 14$$
 (4) $x^2 + y^2 = 154$

For the parabola $x^2 = 8y$, find the slope of the 20. tangent at point (x, y).

$$(1) \quad \frac{4}{x}$$

(2)
$$\frac{3}{2}$$

(3)
$$\frac{8}{x}$$

(4)
$$\frac{3}{8}$$

- In the parabola $x^2 = 4ay$, what happens to the slope 21. of the tangent as the point moves higher (i.e., y increases)?
 - (1) Slope increases
 - (2) Slope decreases
 - (3) Slope remains constant
 - (4) Slope tends to zero
- Find the slope of the tangent to $y = \frac{1}{x^2 + 1}$ at x = 1. 22.

(2)
$$\frac{-2}{(x^2+1)^2}$$

(3)
$$-\frac{1}{2}$$

$$(4) -\frac{1}{4}$$

- For $f(x) = x^3 3x$, the function has:
 - (1) One max and one min point
 - (2) No extreme values
 - (3) Two maxima
 - (4) One minimum only

