1. (7 pts) Answer these questions for the following variance-covariance matrix.

$$\mathbf{S} = \left[\begin{array}{rrr} 4 & -2 & 4 \\ -2 & 3 & 3 \\ 4 & 3 & 20 \end{array} \right]$$

- (a) (1pt) What is the dimension of the data?
- (b) (1pts) Which of the following two results is most likely those from PCA on the variance-covariance matrix, S? Explain your answer.

$\overline{\mathbf{A}}$			В	
	PC1	PC2 PC3		PC1 PC2 PC3
V1	-0.74	0.01 0.67	V1	-0.32 0.69 -0.65
V2	0.49	0.69 0.53	V2	-0.03 -0.69 -0.72
VЗ	-0.46	0.72 -0.52	V3	-0.95 -0.21 0.24
Var	1.76	1.18 0.05	Var	20.21 4.85 0.23

- (c) (1pt) Calculate the proportion of total variance explained by the first principal component of analysis A. _____
- (d) (1pt) What is the value of the second eigenvalue in analysis A? _____
- (e) (1pt) What is the value of the coefficient of V2 in the second eigenvector in analysis A?
- (f) (1pts) Draw the scree plot for results from analysis A. Be sure to label your axes.

- (g) (1pts) If an observation has the values [3 2 0] calculate its score on the first principal component of analysis A. (Assume that the means for each variables are 0.)
- 2. (3 pts) True or False.
 - (a) When PCA is done on the correlation matrix, the total variance is equal to the number of variables. ${\bf T}$ or ${\bf F}$
 - (b) PCA summarizes only linear dependence. ${f T}$ or ${f F}$
 - (c) The first eigenvector describes the direction of maximum variance of the data. T or F