CS 5003: Parameterized Algorithms

Lectures 5-7

Krithika Ramaswamy

IIT Palakkad

Assume graph is a multigraph

- * Reduction Rule 1: Pelete isolated vertices
- * Reduction Rule 2: Delete degree-1 vertices
- * Reduction Rule 3: If there is a loop at a vertex v, delete v from the graph and reduce the parameter by 1

* Reduction Rule 4: If there is an edge with multiplicity > 2, reduce it to 2

Suppose we have a (k+1)-size solution S

- * We want <= k size solution R
- * Suppose we know $S \cap R$
 - * If we don't know $S \cap R$, guess!
 - * 2k+1 choices

Forest

(k+1)-size solution S

k+1-r vertices

r vertices

Forest

To find a set of <= r-1 vertices here

If these r vertices cannot make a forest in themselves that means we nee

r-size solution

Forest

Forest

Find a disjoint (r-1) size solution

Add v into solution and reduce parameter by 1

Pisjoint Compression

Pisjoint Compression

Instance: (X,Y,r-1)

Y

v: vertex of degree (in Y) <= 1

Pisjoint Compression

Instance: (X,Y,r-1)

Y

a and b are in different components

Pisjoint Compression

Instance: (X,Y,r-1)

Branch 1: v in the solution

Instance: (X,Y-{v},r-2)

Pisjoint Compression

Instance: (X,Y,r-1)

Branch 2: v not in the solution

Instance: $(X \cup \{v\}, Y - \{v\}, r-1)$

Pisjoint Compression

Instance: (X,Y,r-1)

Branch 2: v not in the solution

Instance: $(X \cup \{v\}, Y - \{v\}, r-1)$

Pisjoint Compression

r + #C(X) <= k+1 + k <= 2k+1

Pisjoint Compression

Let T(I) denote the no. of leaves in the tree rooted at instance with measure I

$$T(||) <= 2T(|-1|) \text{ if } ||>= 1$$
1 otherwise

0*(2^{2k}) time for Disjoint Compression

(k+1)-size solution S

- * We want <= k size solution R
- * Guess $S \cap R(2^{k+1} \text{ choices})$
 - * Solve Disjoint Compression in 0*(4k) time

Summation i = 0 to k + 1, $(k+1)C(i)4^{k + 1 - i} = 5^{k + 1}$.

0*(5k) algorithm

How to get a (k+1)-size solution S?

Graph G

Consider any k+2 vertices of G

Forest

k+1 solution for subgraph on k+2 vertices

Compress in 0*(5k) time

k+1 solution for subgraph on k+3 vertices

Iterative Compression