Compactness

Definition (13.11)

Suppose $E \subset S$. A family \mathcal{U} of open sets is an open cover for E is $E \subset \cup_{U \in \mathcal{U}} U$. A subcover is a subfamily of \mathcal{U} which is also an open cover. E is called compact if any open cover has finite subcover.

Note. A cover \mathcal{U} is a collection of sets, not their union. In other words, a cover is a subset not of S, but of $\mathcal{P}(S)$ (the power set of S).

Compact sets are complete

Proposition (not in textbook)

Suppose $E \subset S$. If E is compact, then E is complete.

Recall: (E, d) is complete if any Cauchy sequence in E converges.

Completeness is intrinsic. Suppose E is a subset of a metric space (S,d); suppose also that E is a subset of another metric space (S',d'), so that $d|_E=d'|_E$. Then E is either complete in both S and S', or in none.

Is any complete metric space compact? **No!** \mathbb{N} with discrete metric $(d(x,y)=0 \text{ if } x=y,\ d(x,y)=1 \text{ if } x\neq y)$ is complete and bounded, but not compact.

Proof. Suppose E is not complete – that is, \exists a Cauchy sequence $(s_n)_{n\in\mathbb{N}}\subset E$ which has no limit in E. For $k\in\mathbb{N}$ find n_k s.t. $d(s_m,s_\ell)<2^{-k}$ for $m,\ell\geqslant n_k$. Let $U_k=\left\{s\in S:d(s,s_{n_k})>2^{-k}\right\}$. Note that U_k is an open set: if $s\in U_k$, then $\mathbf{B}_r^o(s)\subset U_k$, with $r=d(s,s_{n_k})-2^{-k}$.

Continues on the next slide

Compactness, completeness, etc.

Any compact set is complete (proof continues).

Claim 1. The family $(U_k)_{k\in\mathbb{N}}$ is an open cover for E. Suppose, for the sake of contradiction, that $x\in E\setminus (\cup_k U_k)$. Thus, $d(s_{n_k},x)\leqslant 2^{-k}$ for any k, hence (s_{n_k}) converges to x. Homework 4: as (s_n) is Cauchy, and has a subsequence converging to x, then (s_n) itself converges to x, contradiction!

Claim 2. The family $(U_k)_{k \in \mathbb{N}}$ has no finite subcover. $s_{n_m} \notin \bigcup_{j < m} U_j$, since $d(s_{n_m}, s_{n_j}) \leqslant 2^{-j}$.

Corollary (not in textbook)

Any compact set is closed.

Fact: Any complete set is closed (can assign this as homework).

Criterion for compactness

Definition (not in textbook)

 $E \subset S$ is called totally bounded if $\forall \varepsilon > 0 \ \exists s_1, \dots, s_n \in S$ s.t. $E \subset \bigcup_{i=1}^n \mathbf{B}_{\varepsilon}^o(s_i)$.

Observation. Total boundedness is intrinsic: we can assume $s_i \in E$. Indeed, find $x_1, \ldots, x_n \in S$ s.t. $E \subset \bigcup_{i=1}^n \mathbf{B}_{\varepsilon/2}^o(x_i)$ (assume $E \cap \mathbf{B}_{\varepsilon/2}^o(x_i) \neq \emptyset$, for any i). Pick $s_i \in E \cap \mathbf{B}_{\varepsilon/2}^o(x_i)$, then $\mathbf{B}_{\varepsilon/2}^o(x_i) \subset \mathbf{B}_{\varepsilon}^o(s_i)$, hence $E \subset \bigcup_{i=1}^n \mathbf{B}_{\varepsilon}^o(s_i)$.

Observation. Any totally bounded set is bounded. Indeed, suppose $E \subset \bigcup_{i=1}^n \mathbf{B}_1^o(s_i)$. Fix $s_0 \in S$, and let $r = \max_{1 \le i \le n} d(s_0, s_i)$. Then $E \subset \mathbf{B}_{r+1}^o(s_0)$. The converse is false (consider $\mathbb N$ with the metric d(x,y) = 1 whenever $x \ne y$).

Compactness versus convergence of sequences

Theorem (Characterization of compactness; not in textbook)

For a subset E of a metric space, the following are equivalent:

- E is compact.
- 2 E is complete and totally bounded.
- 3 Any sequence in E has a subsequence with a limit in E.

Both completeness and total boundedness are intrinsic, hence

Compactness is intrinsic.

Proof of (1) \Rightarrow (2). Suppose E is compact. Know: E is complete. To prove total boundedness, fix $\varepsilon > 0$. $E \subset \cup_{s \in E} \mathbf{B}_{\varepsilon}^{o}(s)$ (open cover). Find a finite subcover $E \subset \cup_{i=1}^{n} \mathbf{B}_{\varepsilon}^{o}(s_{i})$.

Total boundedness and Cauchy sequences

Proposition (not in textbook)

E is totally bounded iff any sequence in E has a Cauchy subsequence.

Proof: any sequence in E has a Cauchy subsequence $\Rightarrow E$ is totally bounded. We prove: if E is not totally bounded, then \exists sequence $(x_i) \subset E$ with no Cauchy subsequence.

 $\exists \, \varepsilon > 0 \text{ s.t. no finite collection of open balls of radius } \varepsilon \text{ covers } E.$

Need to find a sequence $(x_i)_{i\in\mathbb{N}}\subset E$ s.t. $d(x_i,x_j)\geqslant \varepsilon$ when $i\neq j$. Such a sequence has no Cauchy subsequences.

Pick $x_1 \in E$. $E \not\subset \mathbf{B}^o_{\varepsilon}(x_1)$, hence $\exists x_2 \in E$ s.t. $d(x_1, x_2) \geqslant \varepsilon$. $E \not\subset \mathbf{B}^o_{\varepsilon}(x_1) \cup \mathbf{B}^o_{\varepsilon}(x_2)$, hence $\exists x_3 \in E$ s.t. $d(x_1, x_3), d(x_2, x_3) \geqslant \varepsilon$. Continue in the same manner.

Proof of Proposition p. 2

Proof: E totally bounded \Rightarrow any sequence in E has a Cauchy subsequence. Suppose (s_i) is a sequence in a totally bounded set E; we look for a Cauchy subsequence.

Find $x_{11}, \ldots x_{1N_1} \in S$ so that $E \subset \bigcup_{j=1}^{N_1} \mathbf{B}_{2^{-2}}^o(x_{1j})$. Find $j_1 \in \{1, \ldots, N_1\}$ so that $I_1 = \{i : s_i \in \mathbf{B}_{2^{-2}}^o(x_{1j_1})\}$ is infinite. Pick $i_1 := \min I_1$.

Find $x_{21}, \ldots x_{2N_2} \in S$ so that $E \cap \mathbf{B}_{2^{-2}}^o(x_{1j_1}) \subset \bigcup_{j=1}^{N_2} \mathbf{B}_{2^{-3}}^o(x_{2j})$. Find $j_2 \in \{1, \ldots, N_2\}$ so that $I_2 = \{i \in I_1 : s_i \in \mathbf{B}_{2^{-3}}^o(x_{2j_2})\}$ is infinite. Pick $i_2 := \min(I_2 \setminus \{i_1\})$.

Note: $s_{i_1} \in \mathbf{B}_{2^{-2}}^o(x_{1j_1}), \ s_{i_2} \in \mathbf{B}_{2^{-2}}^o(x_{1j_1}) \cap \mathbf{B}_{2^{-3}}^0(x_{2j_2}).$

Proceed to obtain $i_1 < i_2 < \dots$ s.t. $s_{i_k} \in \mathbf{B}^o_{2^{-1-\ell}}(x_{\ell j_\ell})$ for $k \geqslant \ell$. For $k \geqslant \ell$, $d(s_{i_k}, s_{i_\ell}) \leqslant d(s_{i_k}, x_{\ell j_\ell}) + d(x_{\ell j_\ell}, s_{i_\ell}) < 2 \cdot 2^{-1-\ell} = 2^{-\ell}$. Thus, (s_{i_k}) is Cauchy.

Compactness versus convergence of sequences

Theorem (Characterization of compactness; not in textbook)

For a subset E of a metric space, the following are equivalent:

- E is compact.
- 2 E is complete and totally bounded.
- Any sequence in E has a subsequence with a limit in E.

Proof of $(2) \Rightarrow (3)$. Suppose E is totally bounded and complete. Any sequence has a Cauchy subsequence (total boundedness), which has limit in E (completeness).

Proof of (3) \Rightarrow (2). If E is not totally bounded, then it contains a sequence with no Cauchy subsequences, hence no convergent subsequences. If E is not complete, then it has a Cauchy sequence with no limit in E, hence with no convergent subsequences (Homework 4).

Proof of (3) \Rightarrow (1) (or (2) \Rightarrow (1)): omitted for lack of time.

Compactness and convergence of sequences

Lemma (Established for \mathbb{R} , true for any metric space)

A sequence (s_n) in a metric space (S,d) has a subsequence converging to s iff, for any $\varepsilon > 0$, $|\{n \in \mathbb{N} : d(s_n,s) < \varepsilon\}| = \infty$.

Proof of Characterization of Compactness, $(1) \Rightarrow (3)$. Shall show the contrapositive: $\neg(3) \Rightarrow \neg(1)$.

Suppose a sequence $(s_n) \subset E$ has no subsequence converging to a limit in E. Construct an open cover for E without a finite subcover.

For each $x \in E$, find r(x) > 0 s.t. $|\mathbf{B}_{r(x)}^o(x) \cap \{s_n : n \in \mathbb{N}\}| < \infty$. Then $\{\mathbf{B}_{r(x)}^o(x) : x \in E\}$ is an open cover for E. There is no finite subcover: for any finite collection $(x_i)_{i=1}^m$, $\bigcup_{i=1}^m \mathbf{B}_{r(x_i)}^o(x_i)$ contains only finitely many s_n 's.

Compact subsets of \mathbb{R}^n

Theorem (13.13 - Heine-Borel)

A subset of \mathbb{R}^n is compact iff it is closed and bounded.

Proof of HB: closed and bounded \Rightarrow **compact.** Recall: compact \Leftrightarrow complete and totally bounded.

Suppose $E \subset \mathbb{R}^n$ is closed and bounded.

 \mathbb{R}^n is complete, E is closed $\Rightarrow E$ is complete.

Remains to show: E is totally bounded – that is,

$$\forall \ \varepsilon > 0 \ \exists \ \vec{x}^{(1)}, \dots, \vec{x}^{(k)} \ \text{s.t.} \ E \subset \cup_{j=1}^n \mathbf{B}_{\varepsilon}^o(\vec{x}^{(j)}).$$

Pick
$$A > 0$$
 s.t. $\forall \vec{x} = (x_i)_{i=1}^n \in E$ we have $||\vec{x}|| < A$. Write

$$\vec{x} = (x_i)_{i=1}^n \in E$$
, then $|x_i| < A$. Find $N \in \mathbb{N}$ s.t. $\frac{A}{N} < \frac{\varepsilon}{\sqrt{n}}$. Let $\vec{x}^{(j)}$ be

vectors with coordinates $p\frac{A}{N}$, with $p \in \{-N, \dots, N\}$.

For
$$\vec{x} \in E$$
, find j s.t. $|x_i^{(j)} - x_i| < \frac{\varepsilon}{\sqrt{n}}$, for $1 \leqslant i \leqslant n$. Then

$$d(\vec{x}, \vec{x}^{(j)}) = \left(\sum_{i} (x_i^{(j)} - x_i)^2\right)^{1/2} < \varepsilon.$$