Grundzüge der Logik

Aussagenlogik

Bezeichnungen

 $a \equiv b$ (a identisch b) ... a und b besitzen denselben Wahrheitswert.

0 ... falsche Aussage , 1 ... wahre Aussage

Aussagenverbindungen

Negation \overline{p} (nicht p), ist genau dann wahr (1), wenn p falsch (0) ist

Konjunktion $p \wedge q$ (p und q), Schreibweise auch $p \cdot q$ oder kurz pq

Disjunktion $p \vee q$ (p oder q)Implikation $p \Rightarrow q : \equiv \overline{p} \vee q$

Äquivalenz p⇔q

Wahrheitstafeln

р	q	$p \wedge q$	$\mathbf{p} \vee \mathbf{q}$	$p \Rightarrow q$	p ⇔ q
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	1	1	0
0	0	0	0	1	1

Zur Beachtung: Eine Implikation $p \Rightarrow q$ ist genau dann falsch, wenn die Prämisse p wahr und die Konklusion q falsch ist.

Logische Gesetze (Tautologien)

Eine Tautologie ist eine Aussagenverbindung, die unabhängig vom Wahrheitswert der einzelnen Aussagen stets wahr ist (d.h. $t \equiv 1$)

$$\mathbf{p} \Leftrightarrow \overline{\mathbf{p}}$$
 (Negation der Negation) 1)

 $p \vee \overline{p} \quad (Satz\ vom\ ausgeschlossenen\ Dritten)$

$$\mathbf{p} \wedge \mathbf{q} \Leftrightarrow \overline{\mathbf{p}} \vee \overline{\mathbf{q}}$$
, $\overline{\mathbf{p} \vee \mathbf{q}} \Leftrightarrow \overline{\mathbf{p}} \wedge \overline{\mathbf{q}}$ (Formeln von de MORGAN) 1)

$$(p \Rightarrow q) \Leftrightarrow (\overline{q} \Rightarrow \overline{p})$$
 (Kontrapositionsgesetz) 1)

$$(p \land (p \Rightarrow q)) \Rightarrow q$$
 (direkter Beweis)

$$(\mathbf{p} \wedge (\overline{\mathbf{q}} \Rightarrow \overline{\mathbf{p}})) \Rightarrow \mathbf{q}$$
 (indirekter Beweis)

Weitere Gesetze

$$\begin{split} p \wedge q &\equiv q \wedge p \ , \ p \vee q \equiv q \vee p \ (Kommutativgesetze) \\ (p \wedge q) \wedge r &\equiv p \wedge (q \wedge r) \ , \ (p \vee q) \vee r \equiv p \vee (q \vee r) \ (Assoziativgesetze) \\ (p \wedge q) \vee r &\equiv (p \vee r) \wedge (q \vee r) \ , \ (p \vee q) \wedge r \equiv (p \wedge r) \vee (q \wedge r) \ (Distributivgesetze) \\ p \vee 0 &\equiv p \ , \ p \vee 1 \equiv 1 \ , \ p \vee p \equiv p \ , \qquad p \wedge 0 \equiv 0 \ , \ p \wedge 1 \equiv p \ , \ p \wedge p \equiv p \\ p \vee (p \wedge q) &\equiv p \ (Absorptionsgesetz) \end{split}$$

¹⁾ Eine Äquivalenz ist genau dann eine Tautologie, wenn beide Seiten identisch sind, Schreibweise dann auch $p \equiv p$ usw.

Schaltfunktionen

BOOLEsche Funktion (Schaltfunktion): $y = f(x_1, ..., x_n)$. Die Variablen x_i und y können nur die Werte 0 und 1 annehmen.

Gatterdarstellung Und-Gatter
$$y = x_1x_2$$
: $x_1 - y$

Oder-Gatter
$$y = x_1 \lor x_2$$
: $x_1 \longrightarrow y$, Nicht-Gatter $x \longrightarrow \overline{x}$

Prädikatenlogik

Begriffe

X sei eine Menge.

Aussagefunktion (Aussageform) p(x) ... Jedem Element x aus X ist eine Aussage p(x) zugeordnet, p bezeichnet eine Eigenschaft (Prädikat).

Quantoren

Betrachtet werden die Aussagen:

- 1) Für alle x (aus X) gilt p(x).

 Bezeichnung $\forall_x p(x)$... Allquantor (universeller Quantor)
- 2) Es existiert (mindestens) ein x (aus X), für welches p(x) gilt. Bezeichnung $\exists_x p(x)$... existentieller Quantor

Schreibweisen (außerhalb der formalen Logik, z.B. in der Analysis): Es wird häufig die Grundmenge X mit angegeben, z.B. $\forall_{X \in X} p(x)$. Für eine Teilmenge M von X können dann die folgenden Schreibweisen verwendet werden:

$$a = \forall_{x \in M} p(x), b = \exists_{x \in M} p(x).$$

Die Schreibweisen in der formalen Logik sind dann:

$$a = \forall_x (x \in M \implies p(x)), b = \exists_x (x \in M \land p(x)).$$

Rechenregeln

$$\overline{\forall_{\mathbf{X}} \mathbf{p}(\mathbf{X})} \equiv \exists_{\mathbf{X}} \overline{\mathbf{p}(\mathbf{X})}$$
, $\overline{\exists_{\mathbf{X}} \mathbf{p}(\mathbf{X})} \equiv \forall_{\mathbf{X}} \overline{\mathbf{p}(\mathbf{X})}$ (Formeln von de MORGAN)

Beispiel: m und n seien natürliche Zahlen.

Es seien a:= $\forall_n \exists_m m > n$ und b:= $\exists_m \forall_n m > n$. Dann gilt z.B. $a \equiv 1$, da die Menge N nicht beschränkt ist. Für jedes n gibt es eine (von n abhängige) Zahl m die größer als n ist. Dagegen ist $b \equiv 0$, denn es gibt kein festes m, welches größer als alle natürlichen Zahlen ist. a und b sind also nicht das Gleiche. Die Reihenfolge unterschiedlicher Quantoren muss beachtet werden!