Dynamic Mechanism-Design

Michael Füg und Philip Zilke

22. März 2016

- Vom statischen zum dynamischen Mechanismus Design
- Dynamische private Informationen
 - Dynamischer direkter Mechanismus
 - Das Revelations-Prinzip
 - Anreiz-Kompatibilität und indiviuelle Rationalität
 - Optimaler Verkaufs-Mechanismus
- Ausblicke
 - Die Rolle der privaten Information
 - Sequentieller Mechanismus Design
 - Dynamische Allokation

Aufbau des Vortrages

Die Hauptansätze:

- Dynamische private Informationen und statische Allokationen
- Dynamische Allokationen und statische private Informationen

Dynamischer direkter Mechanismus Das Revelations-Prinzip Anreiz-Kompatibilität und indiviuelle Rationalität Optimaler Verkaufs-Mechanismus

Modelrahmen

Modellrahmen ist Zwei-Personen Spiel:

- Verkäufer
 - Verkauft unteilbares Gut
 - ullet Legt Mechanismus Γ fest
- Käufer
 - ullet Bewertung des Gutens heta zunächst unbekannt
 - Erhält Signal τ , welches mit θ korreliert ist
 - ullet Wenn Mechanismus aktzeptiert wird, dann wird au berichtet
 - θ ist erst nach Aktzeptieren des Mechanismus Γ und wird danach berichtet

Mathemtische Modellierung

Sei im Folgenden für das Signal au

- Kommulierte Verteilung $G(\tau)$
- Positive Dichte $g(\tau)$
- Trägermenge $[\underline{\tau}, \bar{\tau}]$

Sei im Folgenden für die Bewertung θ

- Kommulierte Verteilung $F(\theta \mid \tau)$
- Korrespondierende Dichte $f(\theta \mid \tau)$
- Trägermenge $[\underline{\theta}, \bar{\theta}]$ mit $0 \leq \underline{\theta} < \bar{\theta}$ für alle $au \in [\underline{ au}, \bar{ au}]$

Annahmen

Wir setzen im Folgenden voraus, dass

- Trägermenge von $F(\theta \mid \tau)$ ist $[\underline{\theta}, \overline{\theta}]$ für alle $\tau \in [\underline{\tau}, \overline{\tau}], 0 \leq \underline{\theta} < \overline{\theta}$
- Trägermenge von $F(\theta \mid \tau)$ unabhängig von τ
- $f(\theta \mid \tau) > 0$ für alle $\tau \in [\underline{\tau}, \overline{\tau}]$ und $\theta \in [\underline{\theta}, \overline{\theta}]$
- $F(\theta \mid \tau)$ und $f(\theta \mid \tau)$ sind stetig differenzierbar in τ
- Für die Familie $F(\cdot \mid \tau)$ mit $\tau \in [\underline{\tau}, \overline{\tau}]$ gilt

$$\delta F(\theta \mid \tau)/\delta \tau < 0 \text{ für alle } \theta \in [\underline{\theta}, \overline{\theta}]$$
 (FOSD)

Dynamischer direkter Mechanismus

Definition

Ein (dynamischer) direkter Mechanismus besteht aus den beiden **Funktionen**

$$q: [\underline{\tau}, \bar{\tau}] \times [\underline{\theta}, \bar{\theta}] \to [0, 1] \quad \textit{und} \quad t: [\underline{\tau}, \bar{\tau}] \times [\underline{\theta}, \bar{\theta}] \to \mathbb{R}.$$

Zwei wesentliche Hauptänderungen:

- Verwende nun das kartesische Produkt $[\tau, \bar{\tau}] \times [\theta, \bar{\theta}]$
- 2 Zwei Report-Ebenen: τ und θ (dynamisch hinsichtlich Zeit)

Ein-Personen-Entscheidungsproblem

Optimale Entscheidung ist das Paar $\sigma = (\sigma_1, \sigma_2)$ mit

- $\sigma_1: [\underline{\tau}, \overline{\tau}] \to [\underline{\tau}, \overline{\tau}]$ (Report ex ante Typ τ)
- $\sigma_2 : [\underline{\tau}, \overline{\tau}] \times [\underline{\theta}, \overline{\theta}] \times [\underline{\tau}, \overline{\tau}] \to [\underline{\theta}, \overline{\theta}]$ (Report ex post Typ θ)

Das Revelations-Prinzip

Proposition (Nur Beweisidee und Interpretation)

Für jeden dynamischen Mechanismus Γ und jede optimale Käuferstrategie σ in Γ gibt es einen direkten Mechanismus Γ' und eine optimale Käuferstrategie $\sigma = (\sigma'_1, \sigma'_2)$ so dass gilt:

i) Die Strategie σ genügt

$$\sigma_1'(\tau) = \tau \ \forall \tau \in [\underline{\tau}, \overline{\tau}] \quad \text{und} \quad \sigma_2'(\tau, \theta, \tau) = \theta \ \forall \theta \in [\underline{\theta}, \overline{\theta}], \tau \in [\underline{\tau}, \overline{\tau}]$$

ii) Wenn der Käufer seine optimale Strategie spielt, dann ist für alle $(\tau,\theta) \in [\underline{\theta},\overline{\theta}] \times [\underline{\tau},\overline{\tau}]$ die Wahrscheinlichkeit $q(\tau,\theta)$ und die Auszahlung $t(\tau,\theta)$ unter Γ' identisch mit der Wahrscheinlichkeit eines Kaufes und der erwarteten Auszahlung unter Γ .

Folgerungen aus dem Revelations-Prinzip

Betrachte direkte Mechanismen:

- Im Gleichgewicht: Die Wahrheit wird berichtet (keine Aussage f $\tilde{\text{A}}$ ijr τ möglich?)
- Wein Gleichgewicht: Keine Aussage möglich
- ⇒ Definiere Anreiz-kompatibel und individuell rational:

$$\begin{array}{ccc} \theta^r: [\underline{\theta}, \bar{\theta}] \to [\underline{\theta}, \bar{\theta}] & \text{Berichtsfunktion} \\ u(\tau, \theta) = \theta q(\tau, \theta) - t(\tau, \theta) & \text{Nutzenfunktion} \\ U(\tau') := \hat{U}(\tau', \tau) = \int_{\underline{\theta}}^{\bar{\theta}} u(\tau', \hat{\theta}) f(\hat{\theta} \mid \tau) \ d\hat{\theta} & \text{Interpretation?} \end{array}$$

Dynamischer direkter Mechanismus
Das Revelations-Prinzip
Anreiz-Kompatibilität und indiviuelle Rationalität
Optimaler Verkaufs-Mechanismus

Anreiz-kompatibel und individuell rational

Definition

Ein direkter Mechanismus ist Anreiz-kompatibel, wenn

i) er Anreiz-kompatibel gegeben seinem Ex-Post Typen θ ist:

$$u(\tau,\theta) \geq \theta q(\tau,\theta') - t(\tau,\theta') \quad \forall \tau \in [\underline{\tau},\overline{\tau}] \text{ und } \theta,\theta' \in [\underline{\theta},\overline{\theta}]$$

ii) er Anreiz-kompatibel gegeben seinem Ex-Ante Typen au ist:

$$U(\tau) \ge \int_{\underline{\theta}}^{\overline{\theta}} [\hat{\theta}q(\tau', \theta^r(\hat{\theta})) - t(\tau', \theta^r(\hat{\theta}))] f(\hat{\theta} \mid \tau) d\hat{\theta}$$
$$\forall \tau, \tau' \in [\underline{\tau}, \overline{\tau}] \text{ und } \theta^r : [\underline{\theta}, \overline{\theta}] \to [\underline{\theta}, \overline{\theta}].$$

Ein direkter Mechanismus ist individuel rational, wenn

$$U(\tau) \geq 0 \quad \forall \tau \in [\underline{\tau}, \bar{\tau}]$$

Vereinfache Anreiz-Kompatibilität I

Proposition (Nur Beweisidee und Interpretation)

Ein direkter Mechanismus ist Anreiz-kompatibel genau dann, wenn

i)
$$u(\tau,\theta) \geq \theta q(\tau,\theta') - t(\tau,\theta') \quad \forall \tau \in [\underline{\tau},\overline{\tau}] \text{ und } \theta,\theta' \in [\underline{\theta},\overline{\theta}],$$

ii)
$$U(\tau) \geq \hat{U}(\tau'\tau) \quad \forall \tau, \tau' \in [\underline{\tau}, \overline{\tau}].$$

Betrachte jetzt Monotonie-Kriterien \rightarrow Allgemein gilt nicht:

- $\textbf{ Anreiz-Kompatibilität des Ex-Ante Typen } \tau \text{ impliziert nicht } \\ \text{Monotonie der Allokationsregel}.$
 - \Rightarrow Wesentlicher Unterschied zu statischen Screening Model.
- **2** Betrachte Anreiz-Kompatibilität des Ex-Post Typen θ .

Vereinfache Anreiz-Kompatibilität II

Proposition (Nur Beweisidee und Interpretation)

Ein direkter Mechanismus ist Anreiz-kompatibel gegeben seinem Ex-Post Typen θ genau dann, wenn

- i) Für alle Ex-Ante Typen au die Funktion q(au, heta) steigend in heta ist,
- ii) Für alle Ex-Ante Typen τ und Ex-Post Typen θ :

$$\frac{\delta u(\tau,\theta)}{\delta \theta} = q(\tau,\theta),$$

iii) Für alle Ex-Ante Typen au und Ex-Post Typen heta:

$$t(au, heta) = t(au, heta) + (heta q(au, heta) - heta q(au, heta)) - \int_{ heta}^{ heta} q(au, \hat{ heta}) \ d\hat{ heta}.$$

Implikationen aus Anreiz-Kompatibilität I

Proposition (Beweis an der Tafel)

Wenn ein direkter Mechanismus Anreiz-kompatibel ist, dann gilt für alle Ex-Ante Typen τ :

$$\begin{split} i) \ \ U'(tau) &= -\int_{\underline{\theta}}^{\theta} q(\tau, \hat{\theta}) \frac{\delta F(\hat{\theta} \mid \tau)}{\delta \tau} \ d\hat{\theta}, \\ ii) \ \ \int_{\underline{\theta}}^{\bar{\theta}} t(\tau, \hat{\theta}) f(th\hat{e}ta \mid \tau) \ d\hat{\theta} &= \int_{\underline{\theta}}^{\bar{\theta}} \hat{\theta} q(\tau, \hat{\theta}) f(\hat{\theta} \mid \tau) \ d\hat{\theta} \\ &+ \int_{\underline{\theta}}^{\bar{\theta}} [t(\underline{\tau}, \hat{\theta}) - \hat{\theta} q(\underline{\tau}, \hat{\theta})] f(th\hat{e}ta \mid \underline{\tau}) \ d\hat{\theta} \\ &+ \int_{\tau}^{\tau} \int_{\theta}^{\bar{\theta}} q(\hat{\tau}, \hat{\theta}) \frac{\delta F(\hat{\theta} \mid \hat{\tau})}{\delta \tau} \ d\hat{\theta} \ d\hat{\tau}. \end{split}$$

Implikationen aus Anreiz-Kompatibilität II

Wir haben festgestellt:

- Vorigen Propositionen implizieren zwei Restriktionen an $t(\tau, \theta)$.
- Führen diese Restriktionen zu Widersprüchen?
- **3** Nein! Nächste Proposition impliziert: Gegeben $q(\tau, \theta)$, dann wird $t(\tau, \theta)$ festgelegt durch $t(\underline{\tau}, \underline{\theta})$.

Implikationen aus Anreiz-Kompatibilität III

Proposition (Beweis an der Tafel)

Wenn ein direkter Mechanismus Anreiz-kompatibel ist, dann gilt

$$t(\tau,\theta) = t_0(\tau) + \theta q(\tau,\theta) - \int_{\underline{\theta}}^{\theta} q(\tau,\hat{\theta}) d\hat{\theta},$$

mit

$$t_{0}(\tau) = t(\underline{\tau}, \underline{\theta}) - \underline{\theta}q(\underline{\tau}, \underline{\theta}) + \int_{\underline{\tau}}^{\tau} \int_{\underline{\theta}}^{\bar{\theta}} q(\hat{\tau}, \hat{\theta}) \frac{\delta F(\hat{\theta} \mid \hat{\tau})}{\delta \tau} d\hat{\theta} d\hat{\tau} + \int_{\theta}^{\bar{\theta}} \int_{\theta}^{\hat{\theta}} [q(\tau, x)f(\hat{\theta} \mid \tau) - q(\underline{\tau}, x)f(\hat{\theta} \mid \underline{\tau})] dx d\hat{\theta}.$$

Existenz eines Transferplanes für Anreiz-Kompatibilität

Anfangsproblem: Monotonie-Kriterium versagt im dynamischen Kontext für Anreiz-Kompatibilität!

⇒ Wir benötigen eine zusätzliche Existenz-Eigenschaft.

Proposition (Beweisskizze Tafel?)

Wenn $q(\tau, \theta)$ wachsend in τ und θ ist, dann existiert einn Transferplan $t(\tau, \theta)$, so dass der direkte Mechanismus Anreiz-kompatibel ist.

Dynamischer direkter Mechanismus Das Revelations-Prinzip Anreiz-Kompatibilität und indiviuelle Rationalität Optimaler Verkaufs-Mechanismus

Individuel-rational und Anreiz-kompatibel

Proposition (Nur mündlicher Beweis)

Ein Anreiz-kompatibler direkter Mechanismus ist individuel-rationaler genau dann, wenn

$$U(\underline{\tau}) \geq 0$$
.

Die erwartete Auszahlung

Lemma (An der Tafel - 4 Zeiler)

Die erwartete Auszahlung für den Verkäufer ergibt sich zu

$$\begin{split} &\int_{\underline{\tau}}^{\bar{\tau}} \int_{\underline{\theta}}^{\bar{\theta}} [\hat{\theta} q(\hat{\tau}, \hat{\theta}) - u(\hat{\tau}, \hat{\theta})] f(\hat{\theta} \mid \hat{\tau}) g(\hat{\tau}) \ d\hat{\theta} \ d\hat{\tau} \\ &= \int_{\tau}^{\bar{\tau}} \int_{\theta}^{\bar{\theta}} \psi(\hat{\tau}, \hat{\theta}) q(\hat{\tau}, \hat{\theta}) f(\hat{\theta} \mid \hat{\tau}) g(\hat{\tau}) \ d\hat{\theta} \ d\hat{\tau} - U(\underline{\tau}), \end{split}$$

mit

$$\psi(\tau,\theta) := \hat{\theta} + \frac{1 - G(\hat{\tau})}{g(\hat{\tau})} \frac{\delta F(\theta \mid \tau)/\delta \tau}{f(\theta \mid \tau)}.$$

Optimierung der erwarteten Auszahlung

Annahme

 $\psi(\tau,\theta)$ ist wachsend in τ und θ .

Ferner gilt:

- Maximiere erwartete Auszahlung unter Berücksichtigung von individueler Rationalität $\Rightarrow U(\underline{\tau}) = 0$
- Nach Modelannahme ist $\psi(\tau,\theta)$ stetig $\Rightarrow p(\tau) = \min\{\hat{\theta} \in [\underline{\theta}, \overline{\theta}] \mid \psi(\tau, \hat{\theta}) \geq 0\}$ wohldefiniert
- **3** Erwartete Auszahlung linear in $q(\tau, \theta)$

$$\Rightarrow q(\tau,\theta) = \left\{ \begin{array}{l} 1, & \text{falls } \psi(\tau,\theta) \geq 0 \\ 0, & \text{sonst } 0 \end{array} \right. = \left\{ \begin{array}{l} 1, & \text{falls } \theta \geq p(\tau) \\ 0, & \text{sonst } 0 \end{array} \right.$$

Der optimale direkte Mechanismus

Satz (Wenn noch Zeit, Beweis an Tafel)

Unter der vorigen Annahme ist ein Anreiz-kompatibler und individuel rationaler direkter Mechanismus optimal genau dann, wenn

$$q(au, heta) = \left\{ egin{array}{ll} 1, & ext{falls } heta \geq p(au) \ 0, & ext{sonst } 0 \end{array}
ight.$$

und

$$t(au, heta) = \left\{ egin{array}{ll} t_0(au) p(au), & ext{falls } heta \geq p(au) \\ t_0, & ext{sonst } 0, \end{array}
ight.$$

mit t₀ wie in Proposition vorher. Ferner gilt

$$t(b\tau,b\theta) = \hat{\theta}f(\hat{\theta}\mid\underline{\tau})\ d\hat{\theta} - p(\underline{\tau})[1 - F(p(\underline{\tau})\mid\underline{\tau})] + \underline{\theta}q(\underline{\tau},\underline{\theta}).$$

Die Rolle der privaten Information Sequentieller Mechanismus Design Dynamische Allokation

• • •

. . .

Die Rolle der privaten Information Sequentieller Mechanismus Design Dynamische Allokation

. . .

. . .

Die Rolle der privaten Information Sequentieller Mechanismus Design Dynamische Allokation

• • •

. . .