Wykład trzeci

Ciągłość funkcji

Zał. Funkcja f jest określona na pewnym otoczeniu punktu x_0 .

Definicja 1. Funkcja f jest ciągła w punkcie x_0 , jeśli $\lim_{x\to x_0} f(x) = f(x_0)$.

Uwaga 1. Suma (f+g), różnica (f-g), iloczyn $(f \cdot g)$ oraz iloraz $\left(\frac{f}{g}, \text{gdy } g(x_0) \neq 0\right)$ funkcji ciągłych w punkcie x_0 jest funkcją ciągłą w punkcie x_0 .

Definicja 2. Funkcja f jest ciągła w zbiorze $A \subset \mathbb{R}$, jeśli jest ciągła w każdym punkcie tego zbioru.

Uwaga 2. Wielomiany, f. wymierne, f. trygonometryczne, f. wykładnicze, f. logarytmiczne, f. hiperboliczne są ciągłe w swoich dziedzinach naturalnych.

Punkt $x_0 \in D_f$, w którym funkcja f nie jest ciągła nazywamy punktem nieciągłości tej funkcji. Jeżeli punkt x_0 jest punktem nieciągłości funkcji f i jest ona ciągła na pewnym jego sąsiedztwie, to nazywamy go odosobnionym punktem nieciągłości funkcji f.

Definicja 3. Odosobniony punkt nieciągłości x_0 funkcji f jest punktem nieciągłości I rodzaju, jeśli istnieją granice jednostronne $\lim_{x\to x_0^-} f(x)$, $\lim_{x\to x_0^+} f(x)$ i są skończone. W przeciwnym wypadku punkt x_0 jest punktem nieciągłości II rodzaju.

Punkt nieciągłości I rodzaju (po lewej) i II rodzaju (po prawej)

Uwaga 3. Jeżeli funkcja f jest nieciągła w punkcie x_0 i istnieje $\lim_{x\to x_0} f(x)$, to można tę nieciągłość usunąć.

Własności funkcji ciągłych

- 1. (tw. o ciągłości funkcji odwrotnej) Jeżeli funkcja f jest ciągła i rosnąca (odp.malejąca) na przedziale $A \subset \mathbb{R}$, to f(A) jest przedziałem oraz funkcja odwrotna f^{-1} jest ciągła i rosnąca (odp.malejąca) na przedziale f(A).
- 2. (tw. o lokalnym zachowaniu znaku) Jeżeli funkcja f jest ciągła w punkcie x_0 oraz $f(x_0) < 0$ (odp. $f(x_0) > 0$), to istnieje takie otoczenie O punktu x_0 , że dla każdego $x \in O \cap D_f$ zachodzi nierówność f(x) < 0 (odp. f(x) > 0). Zastosowanie: jeżeli funkcja f jest ciągła w punkcie x_0 i $f(x_0) \neq 0$, to na pewnym otoczeniu punktu x_0 wartości funkcji f mają ten sam znak co liczba $f(x_0)$.
- 3. (tw. o przyjmowaniu wartości pośrednich) Jeżeli funkcja f jest ciągła na przedziale A (domkniętym lub otwartym, ograniczonym lub nieograniczonym) oraz dla pewnych x₁, x₂ ∈ A : f(x₁) = a₁ ≠ f(x₂) = a₂, to dla każdej liczby c leżącej między a₁ i a₂ istnieje x ∈ A taki, że f(x) = c.
 Zastosowanie: Jeżeli funkcja f jest ciągła na przedziale ⟨a; b⟩ oraz f(a)·f(b) < 0, to istnieje c ∈ (a; b) taki, że f(c) = 0.</p>
- 4. (tw. o ciągłości funkcji złożonej) Jeżeli funkcja wewnętrzna f jest ciągła w punkcie x_0 i funkcja zewnętrzna g jest ciągła w punkcie $y_0 = f(x_0)$, to funkcja złożona $g \circ f$ jest ciągła w punkcie x_0 .
- 5. (tw. o wchodzeniu granicy do argumentu funkcji ciągłej) Jeżeli istnieje granica właściwa $\lim_{x\to x_0} f(x) = y_0$ i funkcja zewnętrzna g jest ciągła w punkcie y_0 , to

$$\lim_{x \to x_0} (g \circ f)(x) = g\left(\lim_{x \to x_0} f(x)\right) = g(y_0)$$

- 6. (tw. Weierstrassa) jeżeli funkcja f jest ciągła na przedziale domkniętym $\langle a;b\rangle$, to
 - (a) f jest ograniczona w $\langle a; b \rangle$ (tzn. $\exists m, M \in \mathbb{R} \ \forall x \in \langle a; b \rangle \ [m \leqslant f(x) \leqslant M]$),
 - (b) istnieją takie liczby $x_1, x_2 \in \langle a; b \rangle$, że $\sup_{x \in \langle a; b \rangle} f(x) = f(x_1)$ oraz $\inf_{x \in \langle a; b \rangle} f(x) = f(x_2)$.

Asymptoty pionowe

Zał. Funkcja f jest określona w pewnym sąsiedztwie (co najmniej jednostronnym) punktu x_0 .

Definicja 4. Prosta $x = x_0$ jest asymptotą pionową lewostronną (odp.prawostronną) krzywej y = f(x), jeśli granica $\lim_{x \to x_0^-} f(x)$ (odp. $\lim_{x \to x_0^+} f(x)$) jest niewłaściwa.

Asymptoty poziome

Zał. Funkcja f jest określona w przedziale $(-\infty; a)$ $(\text{odp.}(a; +\infty))$ dla pewnego $a \in \mathbb{R}$.

Definicja 5. Prosta y=m jest asymptotą poziomą lewostronną (odp.prawostronną) krzywej y=f(x), jeśli $\lim_{x\to -\infty} f(x)=m$ (odp. $\lim_{x\to +\infty} f(x)=m$).

