SS EXPERIMENT LAB 1

TITLE: Generation of basic signals using MATLAB

NAME: Yash Gupta

ROLL NO: S20200010234

SOFTWARE USED: MATLAB

OBSERVATION: In this lab, I learnt how to plot basic continuous and discrete signals and how to calculate its periodicity.

Q1.

Write a MATLAB script to generate the signal x(t) expressed as $x(t) = \sum_{k=1}^K c_k \sin(2\pi kt)$ Assume that $c_k = 1/e^k$.

```
t=0:0.01:1;
K=10;
xt = zeros(1,length(t));
for k=1:K
     c=exp(-k);
     xt=xt+ c* sin(2*pi*k*t);
end
plot(t,xt,'b');
xlabel('t in sec');
ylabel('x(t)');
tx='Plot of $\ x(t)=\sum_{k=1}^K c_{k} \sin(2\ast pi \ast k \ast t)$';
title(tx, 'interpreter', 'latex'); % Title plot
grid on;
```


Q2.

Write a MATLAB script to generate *exponential growing* and *decaying exponential signals* for the continuous and discrete-time.

```
x=0:0.1:4;
subplot(2,2,1);
y=exp(x);
plot(x,y,'b');
xlabel('x in sec');
ylabel('y(x)');
tx='Plot of $\ e^k $';
title(tx, 'interpreter', 'latex');
grid on;
subplot(2,2,2);
y=exp(x);
stem(x,y,'b');
xlabel('x in sec');
ylabel('y(x)');
tx='Plot of $\ e^k $';
title(tx, 'interpreter', 'latex');
grid on;
subplot(2,2,3);
y=exp(-x);
plot(x,y,'b');
xlabel('x in sec');
ylabel('y(x)');
tx='Plot of $\ e^{-k} $';
title(tx, 'interpreter', 'latex');
grid on;
subplot(2,2,4);
y=exp(-x);
stem(x,y,'b');
xlabel('x in sec');
ylabel('y(x)');
tx='Plot of $\ e^{-k} $';
title(tv 'interpreter' 'latev').
```


Write a MATLAB script to generate the periodic sinusoid signal for the continuous and discrete time systems.

```
x(t) = A\sin(\Omega_0 t + \theta), assume T = 10/3, \theta = 45^{\circ}
              x(n) = A\cos(\omega_0 t + \theta), assume T = 5, \theta = 45^{\circ}
t=0:0.1:5;
A=5;
subplot(2,1,1);
T=10/3;
xt=A*sin(((2*pi)/T)*t+pi/4);
plot(t,xt,'b');
xlabel('x in sec');
ylabel('y(x)');
grid on;
subplot(2,1,2);
T=5;
xt=A*cos(((2*pi)/T)*t+pi/4);
stem(t,xt,'b');
xlabel('x in sec');
ylabel('y(x)');
grid on;
```


Justify whether the following signals are periodic or aperiodic with both graphical and theatrical demonstration.

(a)
$$x(n) = 3\cos(5n + \frac{\pi}{6})$$
 (c) $x(t) = 3\cos(5t + \frac{\pi}{6})$ (d) $x(t) = \sin(2\left(t - \frac{1}{2}\right))$ (b) $\sin 3n$

a)
$$x(n) = 3\cos(5n + \frac{\pi}{6})$$

 $x(n) = x(n+N) = 3\cos(5n + 5N + \frac{\pi}{6})$
 $5N = 2\pi k$
 $N = \frac{2\pi k}{5}$

Since N and k can be integer only, signal is aperiodic

b)
$$x(n) = \sin 3n$$

 $x(n) = x(n+N) = \sin(3n+3N)$
 $3N = 2\pi k$
 $N = \frac{2\pi k}{3}$

Since N and k can be integer only, signal is aperiodic

c)
$$x(t) = 3\cos(5t + \frac{\pi}{6})$$

 $x(t) = x(t+T) = 3\cos(5t + 5T + \frac{\pi}{6})$
 $5T = 2\pi k$
 $T = \frac{2\pi k}{5}$
Keeping $k = 1$, $T = \frac{2\pi}{5}$
d) $x(t) = \sin(2(t - \frac{1}{2}))$
 $x(t) = \sin(2t - 1)$
 $x(t) = x(t+T) = \sin(2t + 2T - 1)$

 $2T = 2\pi k$

Keeping k = 1, $T=\pi$

```
n=0:0.1:3;
subplot(2,2,1);
xn=3*cos(5*n+pi/6);
stem(n,xn,'b');
xlabel('x in sec');
ylabel('y(x)');
grid on;
subplot(2,2,2);
xn=sin(3*n);
stem(n,xn,'b');
xlabel('x in sec');
ylabel('y(x)');
grid on;
t=0:0.1:8;
subplot(2,2,3);
xt=3*cos(5*t+pi/6);
plot(t,xt,'b');
xlabel('x in sec');
ylabel('y(x)');
grid on;
subplot(2,2,4);
xt=sin(2*(t-1/2));
plot(t,xt,'b');
xlabel('x in sec');
ylabel('y(x)');
grid on;
```


THANK YOU YASH GUPTA \$20200010234