Параллельная симуляция. Параллельная дискретная симуляция

Курс «Программное моделирование вычислительных систем»

Григорий Речистов grigory.rechistov@phystech.edu

19 апреля 2015 г.

1 Обзор

Идея PDES

На прошлых лекциях

- Моделирование многих агентов, работающих асинхронно
 DES в один поток
- Параллельное моделирование исполняющих устройств процессоров

Вопросы

■ Что такое атомарная инструкция?

Вопросы

- Что такое атомарная инструкция?
- Что такое инструкция-барьер?

Вопросы

- Что такое атомарная инструкция?
- Что такое инструкция-барьер?
- Верно ли, что любая атомарная инструкция является барьером?

Идея PDES

Общая схема моделируемой системы

TODO: a mess

Обзор Идея РОЕ

DES

Наивный PDES

Идея PDES

Проблемы

- Нарушение каузальности (причинно-следственной связи)
- Недетерминизм модели
- Эффект ускорения от параллелизации не гарантирован

Как детектировать нарушения

- При пересылке сообщения добавлять к нему метку локального симулируемого времени
- По получении проверять метку и корректировать точку создания события
- При отрицательном значении корректировки бить тревогу

Метки времени

Консервативно или оптимистично?

Теперь мы можем обнаруживать нарушения, но всё ещё не можем избавиться от их появления/последствий. Необходимо:

1. Предотвращать их возникновение или 2. Подавлять их вредное проявление

Консервативная схема 1

Взаимоблокировка

Консервативная схема $3 \boxtimes \text{Необходимо}$ детектировать ситуацию дедлока и разрушать его, освобождая один поток \boxtimes Лучший выбор — очередь с наименьшим значением симулируемого времени \boxtimes Система может оказаться в ситуации, когда большую часть времени почти все потоки стоят \Longrightarrow выигрыша в скорости нет

Пустые сообщения $1 \boxtimes M$ ожно ли избежать блокировок? \boxtimes Необходимость в них возникает из-за того, что отдельные потоки не знают, в какой стадии находятся остальные \boxtimes Как поток A может узнать локальное время потока B? Через временную метку, хранящуюся в каждом событии

Пустые сообщения

Пустые сообщения 2 ⊠ Периодическая рассылка пустых (null) сообщений, не связанных с архитектурными событиями, но несущими метку времени ⊠ Теперь каждый поток имеет представление о том, не слишком ли он далеко убежал в будущее, и может сам притормаживать/блокировать своё исполнение

Slack

Пустые сообщения

Как часто рассылать сообщения? \boxtimes Часто => потоки могут бежать свободнее, но большой трафик \boxtimes Редко => потоки не имеют актуальной информации о состояниях остальных и простаивают зря Кому рассылать? \boxtimes Всем остальным — большой трафик \boxtimes Не всем — дедлоки вероятны \boxtimes Случайным адресатам — можно балансировать

Частный случай: домены синхронизации

Оптимистичные схемы

Даём параллельной программе работать самой по себе Периодически сохраняем (корректное) состояние всей системы При обнаружении каузальных ошибок откатываемся до ближайшего сохранённого состояния Проходим проблемный участок аккуратными методами (напр. консервативно)

Точки сохранения

Time Warp

Сообщение — набор данных, описывающих событие, которое должно быть добавлено в одну из очередей событий. Оно характеризуется, кроме своего непосредственного содержимого, виртуальными временами отправки tsend и обработки treceive. LVT (local virtual time) — значение симулируемого времени отдельного потока, участвующего в симуляции. Для создаваемых событий их время отправки tsend равно значению LVT отправителя. В отличие от консервативных схем, эта величина может как расти в процессе симуляции, так и убывать в случае отката процесса.

GVT

GVT (global virtual time) — глобальное время для всей симуляции, определяющее, до какой степени возможно её откатывать. Глобальное время всегда монотонно растёт, всегда оставаясь позади локального времени самого медленного потока, а также оно меньше времени отправки самого раннего ещё не доставленного события:

$$GVT \leq \min\left(\min_{i} LVT_{i}, \min_{k} t_{k}^{send}\right).$$

Straggler, antimessage

Отставшее сообщение (straggler) — событие, пришедшее в очередь с меткой времени treceivestraggler, меньшей, чем LVT получателя. Его обнаружение вызывает откат текущего состояния, при этом LVT уменьшается, пока не станет меньше, чем treceivestraggler, после чего оно может быть обработано. После этого возобновляется прямая симуляция. Антисообщение (antimessage). Каждое антисообщение соответствует одному ранее созданному сообщению, порождённому в интервале симулируемого времени [tstraggler, LVTi] и вызывает эффект, обратный его обработке (т.е. возвращает состояние в исходное).

Работа Time Warp

Fossil Collection

Освобождение места, занятого сообщениями, расположенными левее GVT

Идея РDE

Рекомендуемая литература I

- Fujimoto Richard M. Parallel discrete event simulation // Commun. ACM. 1990. Οκτ. Τ. 33, No 10. С. 30—53. http://doi.acm.org/10.1145/84537.84545
- Liu Jason. Parallel Discrete-Event Simulation. 2009. http://www.cis.fiu.edu/~liux/research/papers/pdes-eorms09.pdf
- Jayadev Misrsa. Distributed discrete-event simulation //ACM Computing Surveys 18 1986
 www.cis.udel.edu/~cshen/861/notes/p39-misra.pdf

Обзор Идея РОЕ:

На следующей лекции

Эффективная современная виртуализация

Спасибо за внимание!

Слайды и материалы курса доступны по адресу http://is.gd/ivuboc

Замечание: все торговые марки и логотипы, использованные в данном материале, являются собственностью их владельцев. Представленная здесь точка зрения отражает личное мнение автора, не выступающего от лица какой-либо организации.

