

Quadrilaterals Ex 14.4 Q12 Answer:

ABCD is a kite such that AB = AD and BC = BD

Quadrilateral PQRS is formed by joining the mid-points P,Q,R and S of sides AB,BC,CD and AD respectively.

We need to prove that Quadrilateral PQRS is a rectangle.

In $\triangle ABC$, P and Q are the mid-points of AB and BC respectively. Therefore

$$PQ \parallel AC$$
 and $PQ = \frac{1}{2}AC$

Similarly, we have

$$RS \parallel AC$$
 and $RS = \frac{1}{2}AC$

Thus.

$$PQ \parallel RS$$
 and $PQ = RS$

Therefore, PQRS is a parallelogram.

Now.

$$AB = AD$$

$$\frac{1}{2}AB = \frac{1}{2}AD$$

But, P and S are the mid-points of AB and AD

$$AP = AS$$
(1)

In $\triangle ABD$: P and S are the mid-point of side AB and AD By mid-point Theorem, we get:

$$PS \parallel BD$$

Or,

$$PM \parallel BO$$

In $\triangle ABO$, P is the mid-point of side AB and $PM \parallel BO$ By Using the converse of mid-point theorem, we get: M is the mid-point of AO

Thus,

 $PM = MS \dots (||)$

In $\triangle APM$ and $\triangle ASP$, we have:

AM = AM (Common)

AP = AS [From (I)]

PM = MS [From (II)]

By SSS Congruence theorem, we get:

 $\Delta APM \cong \Delta ASP$

By corresponding parts of congruent triangles property, we get:

$$\angle AMP = \angle AMS$$

But.

 $\angle AMP + \angle AMS = 180^{\circ}$

 $\angle AMS + \angle AMS = 180^{\circ}$

 $2\angle AMS = 180^{\circ}$

 $\angle AMS = 90^{\circ}$

and $\angle AMP = 90^{\circ}$

Therefore,

 $\angle AON = 90^{\circ}$ ($PM \parallel BO$, Corresponding angles should be equal)

Or, $\angle MON = 90^{\circ}$

We have proved that $PS \parallel BD$

Similarly, $PQ \parallel AC$.

Then we can say that $PM \parallel NO$ and $PN \parallel MO$

Therefore, PMNO is a parallelogram with $\angle MON = 90^{\circ}$

Or, we can say that PMNO is a rectangle.

$$\angle MPN = 90^{\circ}$$

We get:

$$\angle SPQ = 90^{\circ}$$

Also, PQRS is a parallelogram.

Therefore, PQRS is a rectangle.

Hence proved.

********* END ********