Подчеркнем, что запись $x \to x_0$ имеет здесь другой, чем обычно, смысл: она только указывает на то, что рассматриваемое свойство имеет место лишь в некоторой окрестности точки x_0 ; ни о каком пределе здесь речи нет.

 $\mathbf{\Pi} \mathbf{E} \mathbf{M} \mathbf{M} \mathbf{A}$ 3. Если $f(x) = \phi(x)g(x), x \in X$, и существует конечный предел.

$$\lim_{x \to \infty} \phi(x) = k,$$

mo

$$f(x) = O(g(x)), x \rightarrow x_0.$$

Доказательство. Из существования конечного предела $\lim_{x\to 0} \phi(x) = k$ (см.свойсво 1^0 пределов функций в п.5.10) следует существование такой окрестности $U(x_0)$ точки x_0 , что функции ϕ ограничена на $X\cap U(x_0)$, т.е. имеется такая постоянная c>0, что для всех $x\in X\cap U(x_0)$ выполняется неравенство $|\phi(x)|\leqslant c$, следовательно, и неравенство $|f(x)|=|\phi(x)||g(x)|\leqslant c|g(x)|$. Это, согласно определению 1, и означает, что $f(x)=O(g(x)), x\to x_0$. \square

 Π р и м е р ы . 1 . $\frac{1}{x} = O(\frac{1}{x^2})$ при $x \to x_0$, поскольку $|\frac{1}{x}| \leqslant \frac{1}{x^2}$ при $|x| \leqslant 1$.

 $2. \frac{1}{x^2} = O(\frac{1}{x}) \ npu \ x \to \infty, \ mak \ kak \frac{1}{x^2} \leqslant |\frac{1}{x^2}| \ npu \ |x| \geqslant 1.$ Запись

$$f(x) = O(1), x \to x_0,$$

означает, что функция f ограничена в некоторой окрестности точки x_0 , например $\frac{tg2x}{x} = O(1)$ при $x \to 0$, ибо $\lim_{x\to 0} \frac{tg2x}{x} = 2$ и, значит, функция $\frac{tg2x}{x}$ ограничена в окрестности точки x = 0. Определение 2. Если функции f(x) и g(x) такие, что f = O(g) и g = O(f) при $x \to x_0$, то они называются функциями одного порядка при $x \to x_0$; это записывается в виде $f(x) \asymp g(x)$, $x \to x_0$.

Это понятие наиболее содержательно в том случае, когда функция f и g являются либо бесконечно малыми, либо бесконечно большими при $x \to x_0$. Например, функция $\alpha = x$ и $\beta = x(2 + sin \frac{1}{x})$ являются при $x \to 0$ бесконечно малыми одного порядка, поскольку

$$|\frac{\alpha}{\beta}|=\frac{1}{|2+sin\frac{1}{x}|}\leqslant\frac{1}{2-|sin\frac{1}{x}|}\leqslant 1, |\frac{\beta}{\alpha}|=|2+sin\frac{1}{x}|\leqslant 2+|sin\frac{1}{x}|\leqslant 3.$$

 $\Pi \, \mathbf{E} \, \mathbf{M} \, \mathbf{M} \, \mathbf{A} \, 4$. Если сущесвует конечный предел $\lim_{x \to x_0} \frac{f(x)}{g(x)} = k \neq 0$, то $f(x) \approx g(x), x \to x_0$.

Доказательство. При $x \to x_0$ опеределен предел дроби $\frac{f(x)}{g(x)}$, поэтому существует такая окрестность $U(x_0)$ точки x_0 , что для всех точек $x \in X \cap U(x_0)$ выполняется неравенство $g(x) \neq 0$. Для этих x положим $\phi(x) = \frac{f(x)}{g(x)}$. Тогда $f(x) = \phi(x)g(x)$ и $\lim_{x \to x_0} \phi(x) = k$. Следовательно, по лемме 3, $f(x), x \to x_0$.

Из условия $\lim_{x\to x_0} \frac{f(x)}{g(x)} \neq 0$ следует, что существует и такая окрестность $U(x_0)$ точки x_0 , что для всех $x\in X\cap U(x_0)$ выполняется неравенство $\frac{f(x)}{g(x)}\neq 0$ (см. свойсво 2^0 пределов функции в п.5.10), а следовательно, и неравенство $f(x)\neq 0$. Для $x\in X\cap U(x_0)$ положим $\psi(x)=\frac{g(x)}{f(x)}$; тогда $g(x)=\psi(x)f(x)$ и $\lim_{x\to x_0}\psi(x)=\frac{1}{k}$. Поэтому снова, согласно лемме $3,\ g(x)=O(f(x)), x\to x_0$. \square

В качестве примера возьмем функции $f(x)=3x^2$ и $g(x=sinx^2)$. Имеем $\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{1}{3}\lim_{x\to x_0}\frac{sinx^2}{x^2}=\frac{1}{3}$ (см. 8.1)), поэтому, согласно лемме 4, функции $3x^2$ и $sinx^2$ одного порядка при $x\to x_0$.

 $3 \, a \, m \, e \, u \, a \, n \, u \, e$. Отметим, что условие (8.19) равносильно следующему: существует такая ограниченная функция $\phi: X \to R$, что в некоторой окрестности точки x_0 для всех $x \in X$ выполнятеся равенство $f(x) = \phi(x)g(x)$.