Statistical and computational methods for bioinformatics and social network analysis

or how did I learn to stop worrying and love the bomb

George G Vega Yon

University of Southern California, Department of Preventive Medicine

October 10, 2019

Statistical and computational methods for bioinformatics and social network analysis

- ▶ We live in a non-*IID* world.
- ► Some times, looking the whole helps understanding the parts.
- ▶ We have the computational tools to do such.

Contents

Paper 1: Exponential Random Graph Models for Small Networks

Paper 2: On the prediction of gene functions using phylogenetic trees

Exponential Random Graph Models for Small Networks

Joint with: Andrew Slaughter and Kayla de la Haye

Exponential Family Random Graph Models, aka ERGMs are:

- ► Statistical models of (social) networks
- ▶ In simple terms: statistical inference on what network patterns/structures/motifs govern social networks

A vector of

A vector of model parameters sufficient statistics

$$\mathsf{Pr}\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\boldsymbol{\theta^t}s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$

$$\mathsf{All possible networks}$$

$$\mathsf{Constant}$$

The normalizing constant has $2^{n(n-1)}$ terms!

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to the millions of vertices)

- ► Semi-parametric bootstrap
- Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- ► Equilibrium Expectation Algorithm (millions of vertices)

What about small networks?

Do we care about small networks?

Keck School of Medicine of USC

We see small networks everywhere

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- Online networks (sometimes)
- ► etc.

ERGMs for Small Networks

From the methodological point of view, current methods are great, but:

- ► Possible accuracy issues (error rates)
- ▶ Prone to degeneracy problems (sampling and existence of MLE)
- ▶ It is not MLE...

A vector of A vector of model parameters sufficient statistics

$$\Pr\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\theta^{t} s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\theta^{t} s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$

$$\text{All possible networks}$$

$$\text{constant}$$

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► For example, a network with 5 nodes has 1,048,576 unique configurations.
- ► This allow us to directly compute the normalizing constant.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.

Early and a deal

Figure 1 Random sample of 5 networks simulated using the ergmito package

	Bernoulli	Full model
Edge-count	-0.69*	-1.70**
	(0.27)	(0.54)
Homophily (on Gender)		1.59*
		(0.64)
AIC	78.38	73.34
BIC	80.48	77.53
Log Likelihood	-38.19	-34.67
Num. networks	5	5
Standard errors in parenthesis.	*** p < 0.001. **	p < 0.01 $p < 0.05$

Standard errors in parenthesis. *** p < 0.001, ** p < 0.01, * p < 0.05

 $\begin{tabular}{ll} \textbf{Table 1} & \textbf{Fitted ERGMitos using the fiveness dataset}. \end{tabular}$

We performed a large simulation study occuparing MC-MLE (ergm) with MLE (ergmito).

GGVY Stat. Comp. Bioinf & SocNets.

		P(Type I error)		
Sample size	N. Simulations	MC-MLE (ergm)	MLE (ergmito)	χ^2
5	2,189	0.084	0.057	11.71 ***
10	2,330	0.070	0.045	12.46 ***
15	2,395	0.084	0.066	5.55 *
20	2,430	0.074	0.060	3.58
30	2,460	0.057	0.052	0.67
50	2,495	0.046	0.044	0.17
100	2,499	0.048	0.048	0.00

Table 2 Empirical Type I error rates. The χ^2 statistic is from a 2-sample test for equality of proportions, and the significance levels are given by *** p < 0.001, ** p < 0.01, and * p < 0.05. The lack of fitted samples in some levels is due to failure of the estimation method.

Paper 1 Simulation Studies: Elapsed time

▶ more results

Paper 1: Exponential Random Graph Models for Small Networks

Key takeaways

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Next steps

- ► Revisit measurement of goodness-of-fit.
- ► Explore extending this method for (very) large networks.

On the prediction of gene functions using phylogenetic trees

Joint with: Paul D Thomas, Paul Marjoram, Huaiyu Mi, Duncan Thomas, and John Morrison

How we organize the information about genes (according to the Gene Ontology Project)

Molecular function Active transport GO:0005215

Cellular component Mitochondria GO:0004016

Biological process Heart contraction GO:0060047

(filling)

The Gene Ontology Project

- \blacktriangleright Currently, the Gene Ontology Project has: 44,945 validated terms, \sim 6,400,000 annotations on \sim 1,150,000 species.
- \blacktriangleright Of all annotations, about \sim 500,000 are on human genes.
- ▶ Knowledge about gene functions can accelerate bio-medical research.

Example of GO term

Accession	GO:0060047
Name	heart contraction
Ontology	biological_process
Synonyms	heart beating, cardiac contraction, hemolymph circulation
Al ternate	IDs None
Definition	The multicellular organismal process in which the heart decreases in volume
Demilition	in a characteristic way to propel blood through the body. Source: GOC:dph

Table 3 Heart Contraction Function. source: amigo.geneontology.org

You know what is interesting about this function?

These four species have a gene with that function... and two of these are part of the same evolutionary tree!

Anolis carolinensis pthr11521

Equus caballus pthr24356

Phylogenetic Trees: The PANTHER classification system

- ► It can be very general: think of the tree of life
- Nowadays, thanks to gene-sequencing techniques, we are building trees at the gene level.
- ► A single phylogenetic tree can host multiple species
- ► The PANTHER project provides information about 15,524 trees w/ 1.7 million genes

Figure 2 Random annotated phylogenetic tree.

We can use

the evolutionary tree

to infer presence/absence of

gene functions (annotations)!

An evolutionary model of gene functions

Keck School of Medicine of USC

- ► Initial (spontaneous) gain of function.
- ▶ We control for human error.

We implemented the model using Felsenstein's' pruning algorithm (linear complexity) in the R package aphylo • more.

Prediction with real data

	(1)	(2)
Mislab. prob.		
ψ_{0}	0.23	0.25
ψ_1	0.01	0.01
Gain/Loss at dupl.		
μ_{d0}	0.97	0.96
μ_{d1}	0.52	0.58
Gain/Loss at spec.		
μ_{s0}	0.05	0.06
μ_{s1}	0.01	0.02
Root node		
π	0.81	0.45
Prior	Uniform	Beta
AUC (mean)	0.69	0.67
AUC (median)	0.81	0.75

Table 4 Parameter estimates using different priors.

- ▶ 141 pooled functions (trees) with 7,388 genes with 0/1 annotations.
- ▶ Parameter estiamtes are actually probabilities.
- ▶ Data driven results (uninformative prior).
- Biologically meaningful results.
- ▶ Took about 5 minutes each.

Keck School of Medicine of USC

Annotated Phylogenetic Tree

Prediction with real data: Out-of-sample prediction

Keck School of Medicine of USC

Key takeaways

- ▶ Yet another model for predicting gene functions using phylogenetics.
- ▶ Big difference, this is computationally scalable. SIFTER (our benchmark) would take about 66 years (yes, years) to estimate a model for 100 families of size 300, we take about 5 minutes.
- ► Meaningful biological results.
- ▶ Preliminary accuracy results comparable to state-of-the-art phylo-based models.

Next steps

▶ Adapt the model to incorporate joint estimation of functions using pseudo-likelihood.

$$P(a,b,c) \approx P(a,b)P(b,c)P(a,c)$$

▶ Make the model hierarchical when pooling trees: different mutation rates.

Statistical and computational methods for bioinformatics and social network analysis

or how did I learn to stop worrying and love the bomb

George G Vega Yon

University of Southern California, Department of Preventive Medicine

October 10, 2019

Thanks!

References I

Dodd, D. M. B. (1989). Reproductive isolation as a consequence of adaptive divergence in drosophila pseudoobscura. *Evolution*, 43(6), 1308–1311. Retrieved from http://www.jstor.org/stable/2409365

Here are some by-products of my research here at USC

- ► The slurmR R package
- ► The pruner C++ library
- ► The fmcmc R package

Sufficient statistics have various forms

Representation	Description
$\bigcirc \longleftrightarrow \bigcirc$	Mutual Ties (Reciprocity)
	$\sum_{i eq j} y_{ij} y_{ji}$
\rightarrow	Transitive Triad (Balance)
$\bigcirc \hspace{-1pt} \rightarrow \hspace{-1pt} \bigcirc$	$\sum_{i eq j eq k} y_{ij} y_{jk} y_{ik}$
	Homophily
	$\sum_{i\neq j} y_{ij} 1 (x_i = x_j)$
	Covariate Effect for Incoming Ties
	$\sum_{i\neq j} y_{ij} x_j$
$\bigcirc \longleftarrow \bigcirc$	Four Cycle
	$\sum_{i\neq j\neq k\neq l} y_{ij} y_{jk} y_{kl} y_{li}$

One of the most popular methods for estimating ERGMs is the MC-MLE approach (citations here) This consists on the following steps

- 1. Start from a sensible guess on what should be the population parameters (usually done using pseudo-MLE estimation)
- 2. While the algorithm doesn't converge, do:
 - 2.1 Simulate a stream of networks with the current state of the parameter, θ_t
 - 2.2 Using the law of large numbers, approximate the ratio of likelihoods based on the parameter θ_t , this is the objective function
 - $2.3\,$ Update the parameter by a Newton-Raphson step
 - 2.4 Next iteration

- ► Implements estimation of ERGMs using exact statistics for small networks
- ▶ Meta-programming allows specifying likelihood (and gradient) functions for joint models
- ► Includes tools for simulating, and post-estimation checks
- ► Getting ready for CRAN!

Paper 1 Simulation Studies

We performed a simulation study with the following features:

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks
- ▶ We estimated the models using MC-MLE and MLE.

Paper 1 Simulation Studies: Empirical Bias

Keck School of Medicine of USC

◀ go back

An evolutionary model of gene functions (algorithmic view)

Keck School of Medicine of USC

```
Data: A phylogenetic tree, \{\pi, \mu, \psi\} (Model probabilities)
Result: An annotated tree
for n \in PostOrder(N) do
   Nodes gain/loss function depending on their parent;
   switch class of n do
       case root node do
           Gain function with probability \pi:
       case interior node do
           if Parent has the function then Keep it with prob. (1 - \mu_1):
           else Gain it with prob. \mu_0:
   end
   Finally, we allow for mislabeling:
   if n is leaf then
       if has the function then Mislabel with prob. \psi_1:
       else Mislabel with prob. \psi_0:
end
```

▶ go back

Figure 3 11989DoddDodd (): After one year of isolation, flies showed a significant level or assortativity in mating (wikimedia)

Figure 4 A key part of molecular innovation, gene duplication provides opportunity for new functions to emerge (wikimedia)

GGVY

- ▶ Pruning algorithm implemented in C++ using the pruner template library (implemented in this project).
- ▶ The estimation is done using either Maximum Likelihood, Maximum A Posteriory, or MCMC.
- ► The MCMC estimation is done via the fmcmc R package using adaptive MCMC (also implemented as part of this project)

◀ go back