CASCADE Conference 03/04/2025

Improving Leakage Exploitability in Horizontal Side Channel Attacks through Anomaly Mitigation with Unsupervised Neural Networks

Gauthier Cler, Sébastien Ordas, Philippe Maurine

Outline

- 1 Horizontal Attacks
- 2 Impact of anomalies on Pol selection
- 3 Anomalies mitigation
- 4 Results
- 5 Conclusion

Horizontal Attacks

Horizontal Attacks

- ► Single trace attack
- ▶ No profiling on open device possible, no leakage assessment.
- ▶ Usually on asymmetric implementations (RSA, ECC).
- ► Clustering approach:
 - Divide trace into patterns
 - 2 Points of Interest (PoI) selection with univariate clustering
 - 3 Multidimensional clustering

Attack success highly relies on the quality of the trace.

Impact of anomalies on Pol selection

Anomalies in data

Outliers (interquantile range)

Distribution tails

$$x \notin [Q_1 - 1.5 \times IQR, Q_3 + 1.5 \times IQR]$$

Anomalies in data

Outliers (interquantile range)

Distribution tails

$$x \notin [Q_1 - 1.5 \times IQR, Q_3 + 1.5 \times IQR]$$

Saturated values

min/max values of digital sampling, for 8bit:

$$x = -128 \lor x = 127$$

Anomalies in data

Impact of anomalies on Pol selection

- ► Clustering is **not robust** to anomalies in data
- ► Can cause centroids shift, singularities,...

¹BRR: Bit Recovery Rate

Anomalies mitigation

Limits of simple mitigation

Mitigation by ablation

- ► Remove time points based on anomalies threshold
- ► Possibly loosing information about the leakage

Limits of simple mitigation

Mitigation by ablation

- ► Remove time points based on anomalies threshold
- ► Possibly loosing information about the leakage

Mitigation by replacement

- ▶ Replace anomalies points with mean/median of non anomalies for each time point
- ► Decrease separability of mixture components

Contribution - Mitigation with neural networks

Consider alternative methods

- ► Able to be trained in an unsupervised manner
- ► Leakage/information conservation
- ► Two approaches:
 - : Robust auto-encoder
 - : CycleGAN

Robust auto-encoder unsupervised mitigation

Decomposition of input data to **cleaned** and **anomalies** matrices.

Limits

- ightharpoonup RAE Generate new synthetic patterns ightharpoonup Can cause side effects on non anomalies.
- ▶ RAE does not exploit the anomalies model.

Multiplexer CycleGAN self-supervised mitigation

Results

Information conservation

No change in the global MI. ¹

Supervised selection - upper bound

Select k Pol with highest t-values and apply multidimensional clustering.

10/20

Unsupervised selection

Multidimensional clustering on the best k Pol from Cler *et al.* 2023 unsupervised selection.

Benefits

- ► Anomalies mitigation improves leakage exploitability
- ▶ Methods are applicable in a completely unsupervised context

Benefits

- ► Anomalies mitigation improves leakage exploitability
- ▶ Methods are applicable in a completely unsupervised context

Limitations

- ▶ Architecture choice and parameters tuning can be hard in practice
- ► Attack success **still** depends on the exploitation method

Benefits

- ► Anomalies mitigation improves leakage exploitability
- ▶ Methods are applicable in a completely unsupervised context

Limitations

- ▶ Architecture choice and parameters tuning can be hard in practice
- ▶ Attack success still depends on the exploitation method

Future work

- ► Consider additional anomalies models
- ► Generalize on other targets/algorithms

Thank you for your attention.

Do you have any question?

Bonus

