

Biol 432

Transcriptome sequencing

Sequencing Review

High-throughput sequencing (HTS)

Illumina flow cells

Illumina sequencing (formerly Solexa)

- 1. Prepare genomic DNA
- 2. Attach DNA to surface
- 3. Bridge amplification
- 4. Fragment become double stranded
- 5. Denature the double stranded molecules
- 6. Complete amplification

Illumina sequencing

- 7. Determine first base
- 8. Image first base
- 9. Determine second base
- 10. Image second base
- 11. Sequence reads over multiple cycles
- 12. Align data

Review of 'omics'

Genome – DNA content of an organism

Exome – all coding genes in a genome

Transciptome – expressed RNA

RNA sequencing

rRNA-Depleted whole RNA sequencing

(Most intracellular RNA Is ribosomal RNA)

rRNA-Depleted transcriptomics

Illumina Sequencing Kits:

FFPE

Stranded

Human

Plant

Mouse/Rat

rRNA-Depleted transcriptomics

Alignment coverage (e.g. RNA-Sequencing)

1. Collect
2. Extract
3. Prepare
4. Sequence
5. Process
6. Visualize
7. Analyze
8. Report

Group Discussion

Brainstorm three different biological applications where transcriptome analysis could be used.

e.g. Test which genes of a crop plant are differentially expressed (i.e. upregulated/downregulated) following exposure to a herbivore.