Problemas Física Nuclear y Partículas

Pedro Bargueño, Universidad de Alicante

- 1. Calculad la energía cinética máxima de los positrones emitidos en la desintegración $^{15}O \longrightarrow ^{15}N + e^+ + \nu_e$.
 - Sabiendo que $R=1.45\cdot 10^{-15}A^{1/3}$ (m), explicad las hipótesis que se están introduciendo. Ayuda: ¿en qué se diferencian esencialmente ^{15}O y ^{15}N ?
 - Considerad que el neutrino no tiene masa. ¿A la vista del resultado del ejercicio, se os ocurre alguna forma de medirla?
- 2. Calculad las energías de enlace por nucleón de los siguientes núcleos: 3He , ${}^{16}O$, ${}^{120}Sn$ y ${}^{63}Cu$ y representadlas en una gráfica.
- 3. Si un núcleo que posee igual número de protones y neutrones y tiene un radio igual a 2/3 el radio del ^{54}V (tomad $R_0=1.4\cdot 10^{-13}$ (cm)), encontrad la energía de enlace.
- 4. Demostrad que el 8Be puede desintegrarse en dos partículas α con desprendimiento de 0.1 MeV de energía, pero que el el ${}^{12}C$ no puede desintegrarse en tres partículas α . Ayuda: las energías de enlace (MeV) para 2H , 4He , 6Li , 8Be y ${}^{12}C$ son 2.22, 28.3, 31.99, 56.5 y 92.16, respectivamente.
 - Demostrad que la energía desprendida (incluyendo la del fotón) en la reacción $^2H+\,^4He\longrightarrow\,^6Li+\gamma$ es de 1.5 MeV.
- 5. Utilizando la fórmula semiempírica de masas,
 - Evaluad los puntos sobre la parábola de A=27 para valores Z=12,13,14.
 - \bullet ¿Qué valor de Z corresponde al núcleo estable?
 - Encontrad los tipos de decaimientos y las energías para las desintegraciones β de los núcleos inestables.
- 6. Demostrad que si el protón se considera como un cuerpo uniforme cuyo número cuántico de momento angular es s=1/2, su momento magnético (en valor absoluto) es $\frac{\sqrt{3}\mu_N}{2}$, siendo $\mu_N=\frac{e\hbar}{2m_p}$ el magnetón nuclear.
- 7. Cálculos sencillos, órdenes de magnitud y lecturas.

- Elaborad un argumento (basado en la teoría) en contra de la existencia de los electrones dentro de los núcleos.
- Estimad la energía mínima que tiene que tener un protón para atravesar la barrera de Coulomb de un núcleo ligero.
- Leed el capítulo *More two-state systems* en *The Feynman Lectures* on *Physics* (https://www.feynmanlectures.caltech.edu/
- 8. Se tiene una especie radiactiva X_1 cuyo periodo es de 2 h. Esta especie se desintegra en otra, X_2 , con periodo de 10 h. Esta segunda especie se desintegra a su vez en una tercera, X_3 , que es estable. Suponiendo que el número de átomos de la primera especie es 50 000 en el instante inicial, y que en dicho instante no existen otras especies, calculad: (i) la actividad inicial de la especie X_1 ; (ii) La cantidad de la especie X_2 que existe al cabo de 1 h; (iii) La actividad de la especie X_2 al cabo de 1 h; (iv) la masa de la especie X_2 al cabo de 5 h, suponiendo que su masa atómica es 97.
- 9. El ^{98}Pd se desintegra por positrones en ^{98}Rh . Sus periodos respectivos son de 17 y 8.7 m. Encontrad la actividad máxima del segundo nucleido en función de la inicial de la preparación, si en el momento inicial había sólo del primer elemento.
- 10. Entre los productos radiactivos que se emiten en un accidente nuclear están el ^{131}I ($t_{1/2}=8$ días) y el ^{137}Cs ($t_{1/2}=30$ años). Hay unas cinco veces más átomos de Cs que de I producidos en la fisión. (i) Al cabo de cuánto tiempo a partir del accidente tendrán la misma actividad?; (ii) Qué isótopo contribuye con mayor actividad a la nube radiactiva, transcurrido el primer día? Suponed que el reactor está operando durante varios días antes de producirse el accidente; (iii) De los productos de fisión, aproximadamente el 1 % es ^{131}I y cada fisión produce 200 MeV. Suponiendo el reactor con una potencia de 1000 MW, calculad la actividad del ^{131}I después de 24 h de operación.