Riemann Integral (Lecture 21 & 22)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

- Let $f:[a,b] \to \mathbb{R}$ be a bounded real valued function on the closed, bounded interval [a,b]. Also let m, M be the infimum and supremum of f(x) on [a,b], respectively.
- A partition *P* of [a, b] is an ordered set $P := \{a = x_0, x_1, x_2, ..., x_n = b\}$ such that $x_0 < x_1 < \cdots < x_n$.
- Let m_k and M_k be the infimum and supremum of f(x) on the subinterval $[x_{k-1}, x_k]$, respectively.

Definition

Lower sum: The Lower sum, denoted with L(P,f) of f(x) with respect to the partition P is given by

$$L(P,f) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}).$$

Upper sum: The Upper sum, denoted with U(P,f) of f(x) with respect to the partition P is given by

$$U(P,f) = \sum_{k=1}^{n} M_k(x_k - x_{k-1}).$$

• For a given partition P, $U(P,f) \ge L(P,f)$.

Refinement of a Partition: A partition Q is called a refinement of the partition P if $P \subseteq Q$.

Lemma

If Q is a refinement of P, then

$$L(P,f) \leq L(Q,f) \quad \text{ and } \quad U(P,f) \geq U(Q,f).$$

Proof: Let $P = \{x_0, x_1, x_2, ..., x_{k-1}, x_k, ..., x_n\}$ and $Q = \{x_0, x_1, x_2, ..., x_{k-1}, z, x_k, ..., x_n\}$. Then

$$L(P,f) = m_0(x_1 - x_0) + \dots + m_k(x_k - x_{k-1}) + \dots + m_{n-1}(x_n - x_{n-1})$$

$$\leq m_0(x_1 - x_0) + \dots + m'_k(x_k - z) + m''_k(z - x_{k-1}) + \dots + m_{n-1}(x_n - x_{n-1})$$

$$= L(Q,f)$$

where $m'_{k} = \inf_{[z,x_{k}]} f(x)$ and $m''_{k} = \inf_{[x_{k-1},z]} f(x)$.

Lemma

If P_1 and P_2 be any two partitions, then $L(P_1, f) \leq U(P_2, f)$.

Proof: Let $Q = P_1 \cup P_2$. Then Q is a refinement of both P_1 and P_2 . So by above Lemma, we have $L(P_1, f) \le L(Q, f) \le U(Q, f) \le U(P_2, f)$.

Definition

Let \mathcal{P} be the collection of all possible partitions of [a, b]. Then upper integral of f is defined as

$$\int_{a}^{b} f = \inf\{U(P, f) : P \in \mathcal{P}\}$$

and lower integral of f is defined as

$$\int_{a}^{b} f = \sup\{L(P, f) : P \in \mathcal{P}\}.$$

- For a bounded function $f:[a,b]\to\mathbb{R}$, we have $\int^b f\leq \int^b f$.
- **Riemann integrability:** $f:[a,b]\to\mathbb{R}$ is said to be Riemann integrable if $\int_a^b f = \int_a^b f$ and the value of the limit is denoted with $\int_{-b}^{b} f(x)dx$. We say $f \in \mathcal{R}[a,b]$.

Consider f(x) = x on [0, 1] and the sequence of partitions $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, \frac{n}{n}\}$. Then

$$L(P_n, f) = 0 \cdot \frac{1}{n} + \frac{1}{n} \cdot \frac{1}{n} + \dots + \frac{n-1}{n} \cdot \frac{1}{n}$$
$$= \frac{1}{n^2} [1 + 2 + \dots + (n-1)]$$
$$= \frac{n(n-1)}{2n^2}$$

Thus $\lim_{n\to\infty} L(P_n,f)=\frac{1}{2}$. Hence from the definition $\int_{\underline{0}}^1 f(x)dx\geq \frac{1}{2}$. Similarly

$$U(P_n, f) = \frac{1}{n} \cdot \frac{1}{n} + \frac{2}{n} \cdot \frac{1}{n} + \dots + \frac{n}{n} \cdot \frac{1}{n}$$
$$= \frac{1}{n^2} [1 + 2 + \dots + n]$$
$$= \frac{n(n+1)}{2n^2}$$

Hence $\lim_{n\to\infty} U(P_n,f) = \frac{1}{2}$. Again from the definition $\int_0^{\overline{1}} f(x) dx \leq \frac{1}{2}$.

Consider $f(x) = x^2$ on [0, 1] and the sequence of partitions $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, \frac{n}{n}\}$. Then

$$U(P_n, f) = \frac{1}{n^2} \cdot \frac{1}{n} + \left(\frac{2}{n}\right)^2 \cdot \frac{1}{n} + \dots + \left(\frac{n}{n}\right)^2 \cdot \frac{1}{n}$$
$$= \frac{1}{n^3} [1 + 2^2 + \dots + n^2]$$
$$= \frac{n(n+1)(2n+1)}{6n^3}$$

Thus $\lim_{n\to\infty} U(P_n,f) = \frac{1}{3}$. Similarly

$$L(P_n, f) = 0 \cdot \frac{1}{n} + \left(\frac{1}{n}\right)^2 \cdot \frac{1}{n} + \dots + \left(\frac{n-1}{n}\right)^2 \cdot \frac{1}{n}$$
$$= \frac{1}{n^3} [1 + 2^2 + \dots + (n-1)^2]$$
$$= \frac{n(n-1)(2n-1)}{6n^3}$$

Therefore, $\lim_{n\to\infty} L(P_n,f)=\frac{1}{3}$. Hence from the definition $\int_{\underline{a}}^{\underline{b}} f \geq \frac{1}{3}$ and $\int_{a}^{\overline{b}} f \leq \frac{1}{3}$.

On
$$[0, 1]$$
, define $f(x) = \begin{cases} 1, & x \in Q, \\ 0, & x \notin Q. \end{cases}$

Let *P* be a partition of [0, 1]. In any sub interval $[x_{k-1}, x_k]$, there exists a rational number and irrational number. Then the supremum in any subinterval is 1 and infimum is 0. Therefore,

$$L(P,f) = 0$$
 and $U(P,f) = 1$. Hence $\int_0^1 f \neq \int_0^{\overline{1}} f$.

Necessary and sufficient condition for integrability

A bounded function $f \in \mathcal{R}[a,b]$ if and only if for every $\epsilon > 0$, there exists a partition P_{ϵ} such that $U(P_{\epsilon},f) - L(P_{\epsilon},f) < \epsilon$.

• The functions considered in Example 1 and Example 2 are integrable. For any $\epsilon > 0$, we can find n (large) and P_n such that $\frac{1}{n} < \epsilon$. Then

$$U(P_n,f) - L(P_n,f) = \frac{1}{2n^2}(n(n+1) - n(n-1)) = \frac{1}{n} < \epsilon.$$

Similarly we can choose n in Example 2.

Remark: $f:[a,b] \to \mathbb{R}$ is integrable if and only if there exists a sequence $\{P_n\}$ of partitions of [a,b] such that $\lim_{n\to\infty} U(P_n,f) - L(P_n,f) = 0$.

Remark

Let $S(P,f) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}), \ \xi_i \in [x_{i-1}, x_i].$ Then we have the following

$$m(b-a) \le L(P,f) \le S(P,f) \le U(P,f) \le M(b-a).$$

Darboux theorem

Let $f:[a,b]\to\mathbb{R}$ be a Riemann integrable function. Then for a given $\epsilon>0$, there exists $\delta>0$ such that for any partition P with $\|P\|:=\max_{1\leq i\leq n}|x_i-x_{i-1}|<\delta$, we have

$$\left| S(P,f) - \int_{a}^{b} f(x) dx \right| < \epsilon.$$

Result

If $f \in \mathcal{R}[a,b]$, then for any sequence of partitions $\{P_n\}$ with $||P_n|| \to 0$, we have $L(P_n,f) \to \int_a^b f(x)dx$ and $U(P_n,f) \to \int_a^{\overline{b}} f(x)dx$.

Remark

From the above theorem, we note that if there exists a sequence of partition $\{P_n\}$ such that $\|P_n\| \to 0$ and $U(P_n, f) - L(P_n, f) \not\to 0$ as $n \to \infty$, then f is not integrable.

Problem 1

Show that the function $f:[0,1] \to \mathbb{R}$

$$f(x) = \begin{cases} 1 + x & x \in \mathbb{Q} \\ 1 - x & x \notin \mathbb{Q} \end{cases}$$

is not integrable.

Solution: Consider the sequence of partitions $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n} = 1\}$. Then

$$U(P_n, f) = \left(1 + \frac{1}{n}\right) \frac{1}{n} + \left(1 + \frac{2}{n}\right) \frac{1}{n} + \dots + \left(1 + \frac{n}{n}\right) \frac{1}{n}$$

= $1 + \frac{1}{n^2} (1 + 2 + \dots + n) \to \frac{3}{2} \text{ as } n \to \infty.$

Now using the fact that infimum of f on $[0, \frac{1}{n}]$ is $1 - \frac{1}{n}$, though it is not achieved, we get

$$L(P_n, f) = \left(1 - \frac{1}{n}\right) \frac{1}{n} + \left(1 - \frac{2}{n}\right) \frac{1}{n} + \dots + \left(1 - \frac{n}{n}\right) \frac{1}{n} \to \frac{1}{2} \text{ as } n \to \infty.$$

Hence f is not integrable.

Problem 2

Consider $f(x) = \frac{1}{x}$ on [1,b]. Divide the interval in geometric progression and compute $U(P_n,f)$ and $L(P_n,f)$ to show that $f \in \mathcal{R}[1,b]$.

Solution: Let $P_n = \{1, r, r^2, ..., r^n = b\}$ be a partition on [1, b]. Then

$$U(P_n,f) = f(1)(r-1) + f(r)(r^2 - r) + \dots + f(r^{n-1})(r^n - r^{n-1})$$

= $(r-1) + \frac{1}{r}r(r-1) + \dots + \frac{1}{r^{n-1}}r^{n-1}(r-1) = n(r-1) = n(b^{\frac{1}{n}} - 1).$

Therefore
$$\lim_{n \to \infty} U(P_n, f) = \lim_{n \to \infty} \frac{b^{\frac{1}{n}} - 1}{\frac{1}{n}} = \lim_{n \to \infty} \frac{b^{\frac{1}{n}} \ln b(\frac{-1}{n^2})}{\frac{-1}{n^2}} = \ln b$$
. Similarly

$$L(P_n, f) = f(r)(r-1) + f(r^2)(r^2 - r) + \dots + f(r^n)(r^n - r^{n-1})$$

$$= \frac{1}{r}(r-1) + \dots + \frac{1}{r^n}r^{n-1}(r-1)$$

$$= \frac{n}{r}(b^{\frac{1}{n}} - 1) = n(1 - \frac{1}{b^{\frac{1}{n}}}) = \frac{b^{\frac{1}{n}} - 1}{\frac{1}{r} \cdot b^{\frac{1}{n}}} \to \ln b \text{ as } n \to \infty.$$

Result

Suppose f is a continuous function on [a, b]. Then $f \in \mathcal{R}[a, b]$.

Integrability and discontinuous functions

Example

Consider the following function $f:[0,1]\to\mathbb{R}$,

$$f(x) = \begin{cases} 1, & x \neq \frac{1}{2} \\ 0, & x = \frac{1}{2} \end{cases}$$

Clearly U(P,f)=1 for any partition P. We notice that L(P,f) will be less than 1. We can try to isolate the point $x=\frac{1}{2}$ in a subinterval of small length. Consider the partition

$$P_{\epsilon} = \{0, \frac{1}{2} - \frac{\epsilon}{2}, \frac{1}{2} + \frac{\epsilon}{2}, 1\}.$$

Then

$$L(P_{\epsilon},f) = \left(\frac{1}{2} - \frac{\epsilon}{2}\right) + \left(1 - \frac{1}{2} - \frac{\epsilon}{2}\right) = 1 - \epsilon.$$

Therefore, for given $\epsilon > 0$ we have

$$U(P_{\epsilon},f) - L(P_{\epsilon},f) = \epsilon.$$

Hence f is integrable.

Theorem

Suppose $f:[a,b]\to\mathbb{R}$ be a bounded function which has finitely many discontinuities. Then $f\in\mathcal{R}[a,b]$.

Properties of definite integral

- (a) For a constant $c \in \mathbb{R}$, $\int_{-b}^{b} cf(x)dx = c \int_{-b}^{b} f(x)dx$.
- (b) Let $f_1, f_2 \in \mathcal{R}[a, b]$. Then

$$\int_{a}^{b} (f_1 + f_2)(x) dx = \int_{a}^{b} f_1(x) dx + \int_{a}^{b} f_2(x) dx.$$

- (c) If $f(x) \le g(x)$ on [a, b]. Then $\int_a^b f(x)dx \le \int_a^b g(x)dx$.
- (d) If $f \in \mathcal{R}[a,b]$ then $|f| \in \mathcal{R}[a,b]$ and $\left| \int_a^b f(x) dx \right| \le \int_a^b |f|(x) dx$.
- (e) Let f be bounded on [a, b] and let $c \in (a, b)$. Then f is integrable on [a, b] if and only if f is integrable on [a, c] and [c, b]. In this cases

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Consider the following function $f:[0,1] \to \mathbb{R}$

$$f(x) = \begin{cases} 1 & x = \frac{1}{n}, & \text{for some } n \in \mathbb{N}, \ n \ge 2 \\ 0 & x \ne \frac{1}{n}. \end{cases}$$

Then f is Riemann integrable.

Solution: Let $\epsilon > 0$. Choose N such that $\frac{1}{N} < \frac{\epsilon}{2}$. Note that f(x) has only finitely many discontinuities in $[\frac{1}{N}, 1]$ say $\xi_1, \xi_2, ..., \xi_r$. Define the partition P_{ϵ} as

$$P_{\epsilon} = \{0, \frac{1}{N}, \xi_1 - \frac{\epsilon}{4r}, \xi_1 + \frac{\epsilon}{4r}, ..., \xi_r - \frac{\epsilon}{4r}, \xi_r + \frac{\epsilon}{4r}, 1\}.$$

Since ξ_r is the last discontinuity, f=0 in $[\xi_r+\frac{\epsilon}{4r},1]$. Now $L(P_\epsilon,f)=0$ and

$$U(P_{\epsilon}, f) = 1 \cdot \frac{1}{N} + \frac{\epsilon}{2r} + \frac{\epsilon}{2r} + \dots + \frac{\epsilon}{2r} + 0 \cdot (1 - \xi_r - \frac{\epsilon}{4r})$$
$$= \frac{1}{N} + \frac{\epsilon}{2} < \epsilon.$$

Consider the following function $f:[0,1]\to\mathbb{R}$.

$$f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ \sin\frac{1}{x} & x \notin \mathbb{Q}. \end{cases}$$

Then f is not Riemann integrable.

Solution: Consider f on the subinterval $I_1 = [\frac{2}{\pi}, 1]$. Clearly L(P, f) = 0 for any partition P of I_1 because $f(x) \ge 0$ in the subinterval I_1 . Let M_k be the supremum of f on subintervals $[x_{k-1}, x_k]$ of I_1 . Also the minimum of M_k 's is sin 1. Therefore,

$$U(P,f) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) > \left(1 - \frac{2}{\pi}\right) \sin 1.$$

Hence U(P,f)-L(P,f) cannot be made less than ϵ for any $\epsilon<(1-\frac{2}{\pi})\sin 1$.

Mean value theorem

Theorem

Let f(x) be a continuous function on [a,b]. Then there exists $\xi \in [a,b]$ such that

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

Proof: Let $m = \min_{x \in [a,b]} f(x)$ and $M = \max_{x \in [a,b]} f(x)$. Then

$$m(b-a) \le \int_a^b f \le M(b-a) \implies m \le \frac{1}{(b-a)} \int_a^b f \le M.$$

Now since f(x) is continuous, it attains all values between it's maximum and minimum values.

Therefore there exists $\xi \in [a,b]$ such that $f(\xi) = \frac{1}{(b-a)} \int_a^b f$.

Fundamental theorem

Let f(x) be a continuous function on [a,b] and let $\phi(x) = \int_a^x f(s)ds$. Then ϕ is differentiable and $\phi'(x) = f(x)$.

Proof: As

$$\frac{\phi(x+\Delta x)-\phi(x)}{\Delta x}=\frac{1}{\Delta x}\int_{x}^{x+\Delta x}f(s)ds,$$

by Mean value theorem, there exists $\xi \in [x, x + \Delta x]$ such that

$$\int_{x}^{x+\Delta x} f(s)ds = \Delta x f(\xi).$$

Therefore

$$\lim_{\Delta x \to 0} \frac{\phi(x + \Delta x) - \phi(x)}{\Delta x} = \lim_{\Delta x \to 0} f(\xi).$$

Since f is continuous,

$$\lim_{\Delta x \to 0} f(\xi) = f(\lim_{\Delta x \to 0} \xi) = f(x).$$

Thus $\phi'(x) = f(x)$.

Remark

It is always not true that $\int_a^b f'(x)dx = f(b) - f(a)$.

Example: Let $f(x) = x^2 \sin \frac{1}{x^2}$ for $x \neq 0$ and f(0) = 0. Then f is differentiable on [0, 1] and $f'(x) = 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}$ for $x \in (0, 1)$ and f'(0) = 0. Hence f' is not bounded and so not integrable.

• A function F(x) is called anti-derivative of f(x), if F'(x) = f(x).

Second fundamental theorem

Suppose F(x) is an anti-derivative of continuous function f(x). Then $\int_a^b f(x)dx = F(b) - F(a)$.

Proof: By first fundamental theorem, we have

$$\frac{d}{dx} \int_{a}^{x} f(s)ds = f(x).$$

Also F'(x) = f(x). Hence $\int_a^x f(s)ds = F(x) + c$ for some constant $c \in \mathbb{R}$. Taking x = a, we get c = -F(a). Now taking x = b we get $\int_a^b f(x)dx = F(b) - F(a)$.

Change of variable formula

Theorem

Let u(t), u'(t) be continuous on [a,b] and f is a continuous function on the interval u([a,b]). Then

$$\int_{a}^{b} f(u(x)) \ u'(x) dx = \int_{u(a)}^{u(b)} f(y) dy.$$

Proof: Note that u([a,b]) is a closed and bounded interval. Since f is continuous, it has primitive F i.e.,

$$F(x) = \int_{a}^{x} f(t)dt.$$

Then by chain rule

$$\frac{d}{dt}F(u(t)) = f(u(t)) \ u'(t).$$

i.e., F(u(t)) is the primitive of f(u(t))u'(t) and by Newton-Leibnitz formula, we get

$$\int_{a}^{b} f(u(t))u'(t)dt = F(u(b)) - F(u(a)).$$

On the other hand, for any two points in u([a, b]), we have

$$\int_{A}^{B} f(y)dy = F(B) - F(A). \text{ Hence } B = u(b) \text{ and } A = u(a).$$

Problem

Evaluate $\int_{0}^{1} x \sqrt{1 + x^2} dx$.

Solution: Taking $u = 1 + x^2$, we get u' = 2x and u(0) = 1, u(1) = 2. Then

$$\int_0^1 x \sqrt{1 + x^2} dx = \frac{1}{2} \int_1^2 \sqrt{u} du = \frac{1}{3} \left[u^{\frac{2}{3}} \right]_{u=1}^2 = \frac{1}{3} (2^{\frac{2}{3}} - 1).$$

