

Dr. Ananda M

Department of Electronics and Communication.

Unit-3 Digital Electronics

Combinational Logic Circuits: Half Adder and Full adder

Dr. Ananda M

Department of Electronics and Communication.

Combinational Logic Circuits: Half Adder and Full adder

Combinational circuits are constructed by interconnection of logic gates.

whose outputs at any time are determined from only the present combination of inputs

- ❖ A combinational circuit performs an operation that can be specified logically by a set of **Boolean functions**
- **Examples:** Binary Adders, Multiplexers, etc.

Combinational Logic Circuits: Half Adder and Full adder

Half Adder

- > x and y are the two binary inputs
- > Sum (s) and Carry (c) are the two binary outputs

Boolean Expression:

$$s = x'.y + x.y'$$

 $c = x.y$

Truth Table

X	y	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Combinational Logic Circuits: Half Adder and Full adder

*** Half Adder:** $S = X \oplus Y$

$$c = x.y$$

***** Half Adder using Logic Gates

Sum expression: s = x'.y + x.y'

Combinational Logic Circuits: Half Adder and Full adder

- ❖ Full Adder:
 - > x, y and z are three binary inputs.
 - > S is sum and C is carry outputs
- ❖ Truth Table:

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

* Boolean Expression:

Reference: "Digital Design with an Introduction to Verilog HDL" M Morris Mano, Michale D Ciletti

Combinational Logic Circuits: Half Adder and Full adder

❖ Full Adder:

> Carry Expression:

$$C = x'yz + xy'z + xyz' + xyz$$

 $C = x'yz + xy'z + xy (z'+z)$

$$C = x'yz + xy'z + xy$$

$$C = x'yz + x(y'z + y)$$
 Absorption Law

$$C = x'yz + x(z + y)$$

$$C = x'yz + xz + xy$$

$$C = z(x'y + x) + xy$$

$$C = z(y + x) + xy$$

$$C = yz + xz + xy$$

Logic Diagram

Combinational Logic Circuits: Half Adder and Full adder

***** Boolean Expression for Sum:

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$S = x' (y'z + yz') + x (y'z' + yz)$$

$$S = x' (y \oplus z) + x ((y \oplus z)')$$

$$S = x \oplus (y \oplus z)$$

***** Boolean Expression for Carry:

$$C = x'yz + xy'z + xyz' + xyz$$

$$C = z. (x'y + xy') + xy (z' + z)$$

$$C = z. (x \oplus y) + xy .(1)$$

$$C = (x \oplus y).z + xy$$

Combinational Logic Circuits: Half Adder and Full adder

Full Adder Boolean Expression:

$$S = (x \oplus y) \oplus z$$

$$C = (x \oplus y).z + x.y$$

Implementation of full adder with two half adders and an OR gate

Reference: "Digital Design with an Introduction to Verilog HDL" M Morris Mano, Michale D Ciletti

Combinational Logic Circuits: Half Adder and Full adder

$$C = (x \oplus y).z + x.y$$

Full adder circuit using NAND Gates

$$C = ((x \oplus y).z + x.y)$$

$$C = (\overline{(x \oplus y).z}).\overline{(x.y)}$$

Combinational Logic Circuits: Half Adder and Full adder

❖ Four-bit adder

Using four Full adder Ripple adder circuit is constructed.

***** Example

Combinational Logic Circuits: Half Adder and Full adder

Summary:

Half Adder Circuits: (i) Using Basic Gates(ii) Using NAND Gates

❖ Full Adder Circuits: (i) Using Basic Gates (ii) Using NAND Gates

THANK YOU

Dr. Ananda M
Department of Electronics and Communication
anandam@pes.edu