

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta099

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) | a) Să se calculeze modulul numărului complex 1+7i.
- (4p) b) Să se calculeze distanța de la punctul D(-1, -2, -3) la planul x + y + z 4 = 0.
- (4p) c) Să se determine ecuația tangentei la cercul $x^2 + y^2 = 13$ dusă prin punctul P(2,3).
- (4p) d) Să se arate că punctele L(-1, 2), M(-2, 3) și N(-3, 4) sunt coliniare.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1, 1, 2), B(1, 2, 1), C(2, 1, 1) și D(-1, -2, -3).
- (2p) f) Să se determine $a, b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $(\cos \pi + i \sin \pi)^{16} = a + bi$.

SUBIECTUL II (30p)

1.

- (3p) a) Dacă într-o progresie geometrică primul termen este 1 și rația este 2, să se calculeze termenul al patrulea.
- (3p) b) Să se calculeze probabilitatea ca un număr $n \in \{0, 1, 2, 3, 4\}$ să verifice relația $n+9 < 3^n$.
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^5 + 1$, are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(2).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $\log_2(x^2+7)=3$.
- (3p) e) Să se calculeze suma rădăcinilor polinomului $f = X^3 X 24$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = e^{x^2}$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f'(x) dx$.
- (3p) c) Să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
- (3p) e) Să se calculeze $\int_{0}^{1} x \cdot f(x) dx.$

SUBIECTUL III (20p)

În mulțimea $M_2(\mathbf{Z_3})$ se consideră matricele $O_2 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, \ A = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{0} & \hat{0} \end{pmatrix}, \ I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$ și mulțimea $N = \left\{ X \in M_2(\mathbf{Z_3}) \middle| \ X^2 = O_2 \right\}.$

- **(4p)** a) Să se verifice că $O_2 \in N$ și $A \in N$.
- (4p) b) Să se verifice că $I_2 \notin N$.
- (4p) c) Să se arate că, dacă $B \in N$, $B = \begin{pmatrix} \hat{a} & \hat{b} \\ \hat{c} & \hat{d} \end{pmatrix}$, atunci $\hat{a} + \hat{d} = \hat{0}$ și $\hat{a}\hat{d} \hat{b}\hat{c} = \hat{0}$.
- (2p) d) Să se găsească o matrice $C \in M_2(\mathbf{Z}_3)$ cu proprietățile $\det(C) = \hat{0}$ și $C \notin N$.
- (2p) e) Să se determine numărul elementelor mulțimii $M_2(\mathbf{Z}_3)$.
- (2p) f) Să se arate că dacă $P, Q \in N$ și $P \cdot Q = Q \cdot P$, atunci $P \cdot Q = O_2$.
- (2p) g) Să se arate că matricea I_2 nu se scrie ca o sumă finită de elemente din mulțimea N.

SUBIECTUL IV (20p)

Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = arctg \ x$ și șirul $(a_n)_{n \ge 1}$, definit prin $a_n = \frac{1}{1^2 + 1} + \frac{1}{2^2 + 1} + \dots + \frac{1}{n^2 + 1}$, $\forall n \in \mathbf{N}^*$.

- (4p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (4p) b) Să se arate că funcția f' este strict descrescătoare pe intervalul $[0, \infty)$.
- (2p) c) Utilizând teorema lui *Lagrange*, să se arate că $\forall k \in [0, \infty)$, există $c \in (k, k+1)$, astfel încât $f(k+1) f(k) = \frac{1}{c^2 + 1}$.
- (2p) d) Să se arate că $\frac{1}{(k+1)^2+1} < f(k+1) f(k) < \frac{1}{k^2+1}, \forall k \in [0, \infty).$
- (4p) e) Să se arate că șirul $(a_n)_{n\geq 1}$ este strict crescător
- (2p) f) Să se arate că $f(n+1)-f(1) < a_n < f(n)-f(0), \forall n \in \mathbb{N}^*$.
- (2p) g) Să se arate că șirul $(a_n)_{n\geq 1}$ este convergent și are limita un număr real din intervalul $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.