471 Lab 4

Kyle Discher

May 26, 2018

1 Introduction

In this Lab, the following algorithms have been coded.

- 1. Particle Swarm
- 2. Firely

The Particle Swarm algorithm treats each value in the 2d array as its own particle. Each particle is modified using a velocity value calculated by

$$v_{i,j}^{t+1} = v_{i,j}^{t} + c_1 * rand[0,1] * (pBest_{i,j}^{t} - p_{i,j}^{t}) + c_1 * rand[0,1] * (gBest_{i,j}^{t} - p$$

 c_1 and c_2 are defined by the user. A higher c_1 value allows the particle to move towards its personal best while a higher c_2 value. After each particle is modified, the fitness of each row is then calculated, and then the value is checked against the global best. In this iteration, each row is handled by a thread and once all threads are completed the last thread to finish checks the best personal best against the global best.

Firefly Algorithm is modeled after the behaviors of fireflys. They are attracted towards the brightest firefly and are asexual, so they can breed with any other fireflys. The fireflys are separated randomly and over time will converge towards the brightest one.

2 Experimentation

Particle Swarm and Firefly were used to minimize the standard benchmark functions listed in table 1. For Particle Swarm, the basic parameters were kept. For each however, c1 and c2 were set as three seperate value pairs (1.5, .5), (.8, 1.2), (.5, 1.5). The data was then collected and averaged to be put in tables 2, 3 and 4 based on dimension. Each Particle Swarm ran 100 times. Firefly was ran for 1000 iterations, however while taking a quick look at the 10 dimensional values for 100 iterations, the values are slightly worse, but still produce similar end results.

	Table 1: Fitness Functions	S
Function	Name	Range
f_1	Schwefel's	[-512, 512]
f_2	1st De Jong's	[-100, 100]
f_3	Rosenbrock	[-100, 100]
f_4	Rastrigin	[-30, 30]
f_5	Griewangk	[-500, 500]
f_6	Sine Envelope Sine Wave	[-30, 30]
f_7	Stretched V Sine Wave	[-30, 30]
f_8	Ackley's One	[-32, 32]
f_9	Ackley's Two	[-32, 32]
f_{10}	Egg Holder	[-500, 500]
f_{11}	Rana	[-500, 500]
f_{12}	Pathological	[-100, 100]
f_{13}	Micalewicz	[-0, 3.14]
f_{14}	Masters' Cosine Wave	[-30, 30]
f_{15}	Shekel's Foxhole	[0, 10]

3 Analysis

For Particle Swarm, the data significantly improved. Looking at best/1/exp for differential evolution, the values obtained in most iterations of particle swarm were the same if not better. In the case of the rand/1/bin and best/2/bin, most solutions for particle swarm were exceptionally better. The particle swarm also took a fraction of the time to run. Excluding Sine

Envelope Sine Wave, every problem had a better average solution when given the c1, c2 parameters of 1.5 and .5. It would seem that if a particle is given permission to search on its own, the whole solution gets better. This did create a larger range of values in most cases. One iteration was ran to get the data to plot in the graphs. Because of this, many plots were ommitted for the sake of data integrity.

In the case of Firefly, we can see some significant improvement. Rosenbrocks Saddle is the most amazing result. It is close to the global best noted in the table in Lab 1 and the difference between 100 and 1000 iterations is numbers in the hundreds of thousands. The only firefly's that didn't see improvement were Schwefels and Pathological. This could be because of the nature of their algorithms or because of a bad seed for the fireflies. One conclusion that can be draw from this is that Firefly is a better algorithm. However, in the way it was coded, the Firefly took 40 minutes longer for all tests than the Particle Swarm. More work could be done to speed up the Firefly algorithm.

What can be taken away form this is that swarm algorithms are inherantly better than evolutionary algorithms. While a population needs more solutions to be effective, a moving swarm can accomplish the same results with many less resources. These results are also substantially better than the Local Search methods, in both time taken to run and the results they produce.

Table 2: Values for 30 tests of Particle Swarm and Firefly for 10 dimensions^1

(C1,C2)		(1.5, .5)			(.8, 1.2) (.5, 1.5))			(.5, 1.5)			Firefly	
$roblem^2$	Min	Avg	Range	Min	Avg	Range	Min	Avg	Range			
f_1		-2868.077	747.84	-3038.14	-2697.767	642.45	-3059.74	-2562.000667	932.97	-2885.85	-2529.926	878.02
f_2		4451.838	5550.18	3540.35	5486.347667	4369.03	4228.08	7201.429	7182.82	0.0180253	0.031136327	0.0325303
f_3		297278710	533648500	138544000	445438400	1296676000	62565200	401526440	1328434800	8.06052	91.87695167	666.17348
f_4		6286.273333	8635.64	3441.44	8581.871333	9259.16	4919.02	12499.86433	16074.88	-1738.95	-1559.259667	288.18
f_5		25.85717333	27.3301	25.3257	38.39408333	43.5096	19.5502	37.29920333	38.3198	0.074136	0.3914458	1.177044
f_6		-9.710598	1.40758	-10.8224	-9.689355667	1.56345	-10.1977	-9.532428333	1.46486	-12.6507	-12.23454	0.8071
f_7		-44.34324333	8.0708	-51.1593	-44.03325667	12.8993	-50.9627	-45.31627	14.0099	-47.0039	-38.48986667	12.9525
f_8		58.80380333	39.3534	47.9058	66.66601	46.1178	43.03	72.49994667	50.5982	-24.5955	-19.49638733	15.34039
f_9		116.7697633	57.8682	91.6523	130.4071433	53.7847	117.482	131.7923333	31.996	7.97867	19.33466567	48.78543
f_{10}		-4511.890667	2341.12	-5667.47	-4648.678	1864.21	-4740.15	-4298.915	1013.85	-4648.01	-3954.687667	2026.83
f_{11}		-2928.858667	1244.8	-3552.76	-2766.398667	1317.5	-3438.96	-2921.126667	1039.52	-2795.32	-2280.611	1084.61
f_{12}		1.504478567	1.236401	1.30162	2.110692333	1.45528	1.69366	2.101828	0.80674	2.50671	2.892958	0.99359
f_{13}		-5.901567	12.69482	-7.52693	-6.529815	1.54332	-7.08126	-5.813566667	2.35726	-8.8488	-8.343356667	0.88867
f_{14}	-8.06024	-7.375619333	1.21616	-8.51589	-7.412709	1.96167	-8.26613	-7.266401	1.69357	-8.91591	-8.747302667	1.00835
f_{15}	-0.345772	-0.3444565	0.002631	-0.341809	-0.335312	0.012994	-0.482889	-0.4163655	0.133047	-1.45556	-1.427420667	0.04531

 $^{1}\mathrm{Processor}:$ Intel Core i
7-6500 U CPU 2.5GHz, Ram: 16GB $^{2}\mathrm{Functions}$ listed from table 1

Table 3: Values for 30 tests of Particle Swarm and Firefly for 20 dimensions¹

	(1 2 1)			(0 1 0)			(E 1E)			Dimoffee	
	(1.9, .9)			(.8, 1.2)			(.9, 1.9)			г пепу	
	Avg	Range	Min	Avg	Range	Min	Avg	Range			
	-4250.365667	1580.65	-4594.29	-3922.645333	1200.11	-4248.24	-3758.671333	1080.15	-4326.69	-3597.222333	1710.17
	23736.59333	21558.4	9320.57	26579.44233	26814.63	22325.2	29560.26667	13574.9	0.270145	0.317996233	0.151774
	6.58 E + 09	8.63 E+09	3.86 E + 09	6.92 E + 09	7.67 E+09	5.76 E + 09	1.11 E+10	6.98 E+09	43.9018	175.7000233	2412.7782
	89426.91333	67904.5	83601.3	105691.5567	49078.7	64157.3	102552.5733	77521.7	-4802.15	-3398.095	2765.18
	143.6976667	99.303	102.549	176.2841	125.712	163.622	208.9564	93.318	0.0404467	0.793202367	2.0122733
	-17.55042667	2.1844	-19.0286	-17.81632333	2.2215	-18.5867	-17.37792	2.0573	-25.1581	-24.12332333	2.0247
	-72.81860333	25.9161	-79.9229	-68.75118	22.7018	-86.4054	-69.18948	27.6379	-98:9396	-80.1739	34.9098
	207.1600667	83.561	185.142	222.8675	77.281	171.018	235.1541333	95.225	-38.7	-24.35174667	25.7599
	309.6444333	50.837	281.467	315.0902667	58.85	305.35	325.7179	38.348	44.9094	69.13354333	81.8686
	-7030.683333	2253.02	-7329.08	-6153.487333	2182.57	-7495.92	-6421.499667	2364.81	-7263.84	-5766.472	2446.23
	-4471.234	1533.37	-4574.28	-3884.188667	1358.76	-5337.61	-4176.723667	1959.9	-5556.38	-4469.873667	2239.86
2.70344	3.915558667	2.3988	4.61083	5.584084333	2.10808	5.03145	6.035843	1.7264	6.69953	7.038698	0.90394
	-8.671754333	3.48562	-9.446	-8.376957	1.88817	-10.4391	-8.564559333	2.69112	-14.2644	-12.36623667	3.045
	-11.631577	4.63679	-13.9881	-11.39067867	4.25117	-12.6892	-11.62225667	2.2415	-17.7059	-16.50583667	2.2829

 $^{1}\mathrm{Processor}$: Intel Core i7-6500U CPU 2.5GHz, Ram: 16GB $^{2}\mathrm{Functions}$ listed from table 1 $^{3}\mathrm{Graphed}$ values are not part of the 30 tests.

Table 4: Values for 30 tests of Particle Swarm and Firefly for 30 $dimensions^1$

		2083.92	0.53193	1221.539	4562.93	3.53841	3.5421	42.9593	30.71	156.7674	4355.16	1865.17	2.0279		
		-4926.136667	1.178440667	323.0147333	-3657.652	3.445160333	-35.16174667	-122.7133033	-30.60958	131.88306	-7324.88	-5262.411667	11.16533667		
Firefly		-6256.52	1.05141	112.991	-5723.77	1.53443	-36.3556	-135.618	-42.714	70.8106	-9836.7	-6605.35	10.1639	-16.156 -14.99832667 2.1696	-24.3984 -21.84409333 4.276
	Range	1323.92	21854.2	9.98 E+09	102719	91.504	2.1264	29.8762	90.787	41.971	2389.73	2052.77	2.80554	3.05732	4.9131
(.5, 1.5)	Avg	-4660.217	61469.86667	1.11 E+10	339628.6	398.1241667	-24.83895667	-89.99067333	434.4003667	520.5076333	-7320.700667	-4999.751333	9.384332667	-9.694836667	-15.36264333
	Min	-5339.48	48637.7	5.76 E + 09	282390	354.573	-26.1199	-104.345	372.569	496.221	-8559.14	-6278.82	8.07116	-11.2194	-18.1155
	Range	1535.35	27300.6	7.67 E+09	101897	185.768	2.9625	26.8657	101.577	47.064	3989.66	2020.78	3.6181	4.64429	5.8616
(.8, 1.2)	Avg	-4821.762667	57823.53333	6.92 E + 09	312907.1667	357.8138667	-25.34963	-93.26265	404.0947667	508.2753667	-7821.004	-5153.661333	9.720120667	-10.24204833	-15.05550333
	Min	-5527.14	38712.8	3.86 E + 09	265355	234.045	-26.8678	-108.559	339.467	478.05	-10293.1	-6256.03	7.3033	-13.1153	-19.2365
	Range	2213.97	23756.4	8.63 E+09	106207	168.282	2.3614	28.4513	99.693	52.56	3749.85	3152.96	3.24644	2.97708	4.6969
(1.5, .5)	Avg	-5359.868667	50211.43667	6.58 E + 09	276163.4333	321.7818333	-25.29226333	-92.20514667	394.3161	494.2757333	-9495.312	-6137.533	6.905728	-10.27934467	-14.81444
	Min	-6722.09	35540	2.9 E+09	207775	255.088	-26.6812	-109.105	332.522	465.702	-11331.1	-7874.16	5.17904	-12.1411	-17.7912
(C1,C2)	$Problem^2$	l							f_8						

 $^1\mathrm{Processor}\colon$ Intel Core i
7-6500 U CPU 2.5GHz, Ram: 16GB $^2\mathrm{Functions}$ listed from table 1

6

		102552.57	-17.38	-6421.5
		97265.1	-17.0524	-5780.37
	$Average^1$	105691.56	-17.82	-6153.49
)ata	$Average^1$ Graphed Number	98332.1	-16.9439	-6601.13
Table 5: Graphed Data	$Average^1$ Graphed Number	89426.91	-17.55	-7030.68
	Graphed Number	64190.1	-17.9177	-8016.82
	Function	f_4	f_6	f_{10}

 1 Taken from Table 3

