Integrarea sistemelor informatice

Suport curs practic nr. 4

Integrare hard-soft. IoT.

2024-2025

Obiective

- Înțelegerea arhitecturii sistemelor IoT
- Înțelegerea metodelor de conectare a dispozitivelor IoT
- Identificarea funcționalităților comune în sistemele IoT
- Înțelegerea modului de realizare a unei aplicații IoT

Cuprins

- Introducere în IoT
- Clasificarea sistemelor IoT
- Arhitectura sistemelor IoT
 - Arhitectura generală
 - Dispozitive IoT
 - Conectivitate
 - Platforme IoT

- Aplicație practică
 - Dezvoltarea aplicațiilor IoT cu ESP32
 - Integrarea cu Firebase
 - Platforme IoT

IoT – Scurt istoric

	1969	ARPANET este lansat ca un precursor al internetului modern
<u>©</u>	1982	Cercetătorii de la Carnegie-Mellon conectează un automat pentru băuturi la internet
	1993	Prima cameră web este instalată pentru a monitoriza un automat de cafea
	1995	Sistemul GPS devine complet operațional
	1999	Termenul de "Internet of Things" este folosit pentru prima dată de Kevin Ashton de la MIT
IÎT	2008	Prima conferință internațională de IoT / numărul de dispozitive IoT depășește pe cel al oamenilor
	2009	Google inițiază programul mașinilor autonome
TV.	2014	Amazon Echo pornește trendul dispozitivelor de tip Smart Home
	2017	Dezvoltarea sistemelor IoT și a multiplelor integrări: AI, blockchain, edge computing

Evoluția sistemelor IoT

Rolul IoT în sistemele hard-soft

IoT – Internet of Things reprezintă tehnologia prin care se conectează dispozitivele fizice la internet

CPS – Cyber Physical System este un sistem integrat de monitorizare și control a proceselor fizice

CPSS – Cyber Physical Social System implică interacțiunea factorului uman în procesele de monitorizare și control

Rolul IoT în sistemele hard-soft

- Machine to Machine (M2M)
 Communication
- Device to Device (D2D)
 Communication
- Wireless Sensor Networks (Distributed Sensor Nodes)
- Remote Ubiquitous Computing and Monitoring Systems

Clasificarea sistemelor IoT

Domeniile de aplicabilitate ale sistemelor IoT

- Smart Home: integrarea sistemelor de monitorizare inteligentă și control la nivel de locuințe / clădiri
- Smart Mobility: creşterea mobilității prin interconectarea dispozitivelor mobile
- Smart City: gestionarea infrastructurii inteligente la nivel de oraș
- Smart Government: Digitalizarea proceselor în diferite domenii cheie

Funcțiile sistemelor IoT

- MONITORIZARE: Utilizarea senzorilor inteligenți pentru colectarea informațiilor despre un proces fizic
- COMUNICARE: Transmiterea informațiilor
- AGREGARE: Integrarea diferitelor informații colectate la momente sau din surse diferite
- ANALIZĂ: Identificarea modelelor sau a relaţiilor dintre fenomene pentru definirea acţiunilor necesare
- CONTROL: Menţinerea sau modificarea parametrilor proceselor fizice

Clasificarea sistemelor IoT

- The Internet of Health Things (IoHT)
- The Internet of Medical Things (IoMedT)
- The Medical Internet of Things (m-IoT)
- The Internet of Bio-Nano things

The Internet of Nano Things (IoNT)

The Industrial Internet of Things (IIoT)

- The Internet of Vehicles (IoV)
- The Internet of Vehicle Things (IoVT)

The Internet of Robotic Things (IoRT)

The Internet of Home Things (IHoT)

- The Internet of Multimedia Things (IoMulT)
- The Internet of Multimedia Nano-Things (IoMNT)
- The Internet of Audio Things (IoAuT)
- The Internet of Musical Things (IoMusT)
- The Internet of Sound (IoS)
- The Internet of Video Things (IoViT)
- The Visual Internet of Things (VIoT)

- The Internet of Surveillance Things (IoSurT)
- The Surveillance of Things (SoT)
- The Internet of Secure Things (IoSecT)

- The Environmental Internet of Things (EIoT)
- The Internet of Environmental Things (IoET)

The Internet of Smart Things (IoSmaT)

Studiu de caz Sistem IoT de localizare a vehiculelor

- Tehnologii
 - RFID (Radio-frequency identification)
 - GPS (Global Positioning System)
 - OBD-II (On-board diagnostics)
- IoT pentru vehicule
 - V2V (Vehicle-to-Vehicle)
 - V2I (Vehicle-to-Infrastructure)
 - V2P (Vehicle-to-Pedestrian)
 - V2N (Vehicle-to-Network)

Niveluri de dezvoltare

Dispozitive IoT

Dispozitive IoT. Structură generală

- Procesoare low-power
 - Resurse computaționale limitate
- Memorie
 - Capacitate redusă
- Modul comunicație wireless
 - Low-power
 - Viteză de transfer redusă
 - Distanță limitată
- Senzori
 - Scalari: temperatură, lumină, etc.
 - Multimedia: imagine, sunet, etc.
- Sursă de alimentare
 - Eficiență energetică

Studiu de caz Dispozitive portabile

- Achiziția datelor
 - Amplificatoare
 - Filtre analogice
 - ADC
- Procesarea datelor
 - Reducerea zgomotelor
 - Extragerea parametrilor
 - Compresia datelor
 - Securitatea datelor
- Transmisia datelor
 - Transmisie wireless
- Stocarea datelor
 - Scrierea/citirea datelor
 - La nivel de dispozitiv

Consum

Studiu de caz Dispozitive portabile

Device	Voltage	Power Consumption	Ref.						
Accelerometers									
Analog, 300 mV/g, ADXL337	3.0 V	900 μW	[<u>16</u>]						
Digital, 3.9 mg/LSB, ADXL345	2.5 V	350 μW	[<u>16</u>]						
KX022 tri-axis (*—low power mode)	1.8–3.6 V	522 (36*) μW	[<u>17</u>]						
Temperature sensors									
BD1020HFV -30 °C to +100 °C	2.4-5.5 V	38.5 μW	[<u>17</u>]						
MAX30208 0 °C to +70 °C	1.7–3.6 V	241 μW	[<u>18</u>]						
MCP9700 -40 °C to +150 °C	2.3–5.5 V	82 μW	[<u>19</u>]						
Heart rate monitors	Heart rate monitors								
Samsung Galaxy Gear Neo 2 component	-	~50 mW	[<u>20</u>]						
MAX30102 pulse oximetry/heart-rate monitor	1.8–3.3 V	<1 mW	[<u>18</u>]						
BH1790GLC optical heart rate sensor	1.7–3.6 V	720 μW	[<u>17</u>]						
A/D converters									
AD7684 16-bit SAR 100 kS/s	2.7–5.0 V	15 μW	[<u>16</u>]						
ADS1114 16-bit sigma-delta 0.860 kS/s	2.0-5.5 V	368 μW	[<u>16</u>]						
DS1251 24-bit sigma-delta 20 kS/s	3.3–5.0 V	1.95 mW	[<u>18</u>]						
Signal processors									
MC56F8006 Audio DSP, 16-bit 56800E	1.8–3.6 V	4282 μW/MHz	[<u>16</u>]						
STM32L151C8 High-perf. MCU, 32-bit ARM Cortex-M3	1.7–3.6 V	540 μW/MHz	[<u>16</u>]						
nRF52832 Bluetooth SoC, 32-bit ARM Cortex-M4	1.7–3.6 V	100 μW/MHz	[<u>16</u>]						
Wireless communication devices									
RFID 13.56 MHz 860–960 MHz (range: 0–3 m)	5.0 V	200 mW	[<u>29</u>]						
Bluetooth 2.4–2.5 GHz (range: 1–100 m)	-	2.5–100 mW	[<u>29</u>]						
MICS 402–405 MHz (range: 0–2 m)	-	25 μW	[29]						

Gljušćić P, Zelenika S, Blažević D, Kamenar E. Kinetic Energy Harvesting for Wearable Medical Sensors. Sensors (Basel). 2019;19(22):4922.

Dispozitive IoT. Tehnologii wireless

- Alegerea tehnologiei wireless pentru o aplicație IoT
 - Viteza de transmisie
 - QoS calitatea transmisiei
 - Securitate
 - Consum energetic
 - Cost dispozitive hardware

Dispozitive IoT. Tehnologii wireless

Caracteristici	Bluetooth	LR-WPAN	WiFi	Mobile	WiMAX	LoRa
Standard	IEEE 802.15.1	IEEE 802.15.4 (ZigBee) Low-Rate Wireless Personal Area Network	IEEE 802.11 a/c/b/d/g/n	2G (GSM) CDMA 3G (UMTS) CDMA2000 4G LTE	IEEE 802.16	LoRaWAN R1.0
Consum	Mediu / Foarte scăzut (BLE)	Scăzut	Ridicat	Mediu	Mediu	Foarte scăzut
Frecvență	2.4 GHZ	868/915 MHz, 2.4 GHz	5 – 60 GHz	865 MHz – 2 GHz	2 – 66 GHz	868/900 MHz
Viteză	1 – 24 Mb/s	40 – 250 Kb/s	1 Mb/s – 6.75 Gb/s	200 Kb/s – 1 Gb/s	1 Mb/s – 1 Gb/s (fix) 50 – 100 Mb/s (mobil)	0.3 – 50 Kb/s
Distanță	8 – 10 m	10 – 20 m	20 – 100 m	Arie acoperire	<50 Km	<30 Km
Cost	\$	\$	\$\$	\$\$\$	\$\$\$	\$\$\$

Conectivitate

Protocoale de comunicație

Conectivitate

- Protocoale de comunicație
- La nivel de
 - Conexiune (Link Layer)
 - Rețea (Network Layer)
 - Transport (Transport Layer)
 - Aplicație (Application Layer)

Conectivitate – protocoale de comunicație

Client-Server

Conectivitate

- Protocoale de comunicație
 - Nivel aplicație
- Arhitecturi
 - Client Server
 - Publish Subscribe
 - Push Pull
 - Exclusive Pair

Conectivitate – arhitecturi nivel aplicație

- Arhitectură REST –
 REpresentational State Transfer
 - Reprezentare unificată (REST API)
 - Arhitectură decuplată
 - Client Server
 - Stateless întreg contextul este conținut în mesajul curent
- HTTP Request
- HTTP Response

- HTTP Request Metode
 - GET
 - POST
 - PUT
 - DELETE
- URL Endpoint
- HTTP Headers
 - General: Via
 - Context: User-Agent, Accept
 - Reprezentare: Content-Type
- Date (Body)
 - Simplu (single-resource)
 - Multiplu (multipart)

- HTTP Response Status
 - 1XX (informational)
 - 2XX (successful)
 - 3XX (redirection)
 - 4XX (client error)
 - 5XX (server error)

- HTTP Response MIME Type
- Multipurpose Internet Mail Extensions – type/subtype
 - Text
 - application/octet-stream
 - text/plain
 - text/html
 - Imagini
 - image/jpeg
 - Audio/Video
 - audio/wav
 - video/webm
 - Multipart
 - multipart/form-data

HTTP/1.1 200 OK Date: Mon, 23 May 2005 22:38:34 GMT Content-Type: text/html; charset=UTF-8 Content-Length: 155 Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

ETag: "3f80f-1b6-3e1cb03b"

Accept-Ranges: bytes

Connection: close

```
<html>
 <head>
  <title>An Example Page</title>
 </head>
 <body>
```

Hello World, this is a very simple HTML document.

</body>

</html>

Conectivitate. WebSockets

- Comunicație full duplex pentru schimb de mesaje bidirecțional între client și server
- Are la bază protocolul TCP
- Client: browser, dispozitiv IoT, aplicație mobilă, etc.

Conectivitate. WebSockets

- API standardizat la nivel de browser
- Event based
- Exemplu în CodePen

Utilizează <u>Postman</u>
 WebSocket Echo Service

```
var socket = new WebSocket('wss://ws.postman-echo.com/raw');
socket.onerror = function(error) {
 console.log('WebSocket Error: ' + error);
};
socket.onopen = function(event) {
 console.log("Connected to: " + event.currentTarget.url);
};
socket.onmessage = function(event) {
 console.log("Received message: " + event.data);
};
socket.onclose = function(event) {
 console.log("Disconnected from WebSocket");
};
```


Conectivitate. MQTT

- Arhitectură Publish Subscribe
 - Broker mesaje
 - Subjecte (topics)
- Acţiuni
 - Publish
 - Subscribe
 - Ping
 - Disconnect
- QoS: cum ajunge mesajul
 - 0 cel mult o dată (best effort)
 - 1 cel puţin o dată (retry)
 - 2 o singură dată (ack)

Aplicație IoT cu ESP32

Aplicație IoT cu ESP32

- Platformă IoT programabilă în Arduino IDE
- Capabilități
 - Wi-Fi
 - Bluetooth / BLE
 - Dual-core 32 bit 160 / 240 MHz
 - ROM: 448 KB, SRAM: 520 KB, Flash: 0-4 MB
 - Varietate mare de periferice: ADC (18x12 bit), DAC (2x8 bit), UART, CAN, SPI, I2C (2x), PWM (16x), GPIO + senzori touch capacitivi (10x) + RTC
- Software
 - <u>FreeRTOS</u> (sistem de operare în timp real pentru microcontrolere)
- Cost ~10 EUR

Aplicație IoT cu ESP32

Aplicație IoT cu ESP32

- Arduino IDE
- Instalare driver USB CP210x
- Instalare definiții Arduino IDE
 - https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package esp32 index.json
 - http://arduino.esp8266.com/stable/package_esp8266com_index.json
- Biblioteci
 - https://github.com/adafruit/Adafruit HTU21DF Library
 - https://github.com/me-no-dev/AsyncTCP

Aplicație IoT cu ESP32 (1)

Biblioteci

- https://github.com/adafruit/Adafruit HTU21DF Library
- https://github.com/me-no-dev/AsyncTCP
- https://github.com/me-no-dev/ESPAsyncWebServer

Webserver

- Pagină web interactivă hostată pe ESP32
- HTTP server configurat asincron
- <u>Încărcarea paginilor web în memoria</u> Flash (compatibil Ardino IDE 1.x)

Aplicație IoT cu ESP32 (2)

- Biblioteci
 - https://github.com/adafruit/Adafruit HTU21DF Library
 - https://github.com/me-no-dev/AsyncTCP
 - https://github.com/mobizt/Firebase-ESP-Client
- Firebase
 - Conectarea la Firebase
 - Activare mod conectare anonimă din Firebase Console

ESP32: Getting Started with Firebase (Realtime Database)

Aplicație IoT cu ESP32 (3)

Biblioteci

- https://github.com/adafruit/Adafruit HTU21DF Library
- https://github.com/me-no-dev/AsyncTCP
- https://github.com/knolleary/pubsubclient (MQTT standard)
- https://github.com/marvinroger/async-mqtt-client (MQTT asincron)

MQTT

- Conectarea la un broker MQTT
- Mosquitto (broker MQTT)
 - Instalare
 - Configurare

 listener 1883
 allow_anonymous true
- MQTT Explorer (client MQTT)

Platforme IoT

Platforme IoT

- Funcționalități
 - Vizualizare date
 - Acționare dispozitive
 - Colectare şi agregare date
 - Stocare date
 - Fluxuri de automatizare
- Studiu de caz
 - Smart Home platforme de automatizare a locuinței
 - Platforme generice pentru aplicații IoT

9 Home Automation Open-Source Platforms for Your projects

- Platformă IoT Open-Source cu aplicabilitate în domeniul Smart Home
- Integrarea dispozitivelor IoT în scheme de automatizare a locuinței
- Instalare
 - Instalare Java 11
 - Instalare OpenHAB
 - Instalare legături (bindings)
 - MQTT Binding

- Platformă IoT Open-Source cu aplicabilitate în domeniul Smart Home
- Integrarea dispozitivelor IoT în scheme de automatizare a locuinței
- Configurare
 - Things (devices)
 - Channels (sensors)
 - Items (UI)
 - Pages (dashboard)
 - Rules (automation)
 - ...

- Platformă IoT Open-Source cu aplicabilitate în domeniul Smart Home
- Integrarea dispozitivelor IoT în scheme de automatizare a locuinței
- Configurare: Things
 - MQTT Thing
 - MQTT Broker (conectare)
 - Generic MQTT Thing
 - Channels (via MQTT topic)

- Platformă IoT Open-Source cu aplicabilitate în domeniul Smart Home
- Integrarea dispozitivelor IoT în scheme de automatizare a locuinței
- Configurare: Pages
 - Items (UI)
- Concluzii
 - Platformă user-friendly
 - Configurare din interfață

Întrebări?

Bibliografie

- Internet of Things: Concepts, Recent Trends and Key Challenges (lecture notes, Assoc. Prof. Dr. M. Sabarimalai Manikandan, ECAI-2022: 14th Edition of International Conference on Electronics, Computers and Artificial Intelligence)
- Internet of Things (curs şi laborator, Conf. Dr. Ing. Dan Tudose master AAC, Conf. Dr. Ing. Laura Ruse master SRIC)
- Naito, Katsuhiro. (2017). A Survey on the Internet-of-Things: Standards, Challenges and Future Prospects. Journal of Information Processing. 25. 23-31.
- Song, Yonghua & Lin, Jin & Tang, Ming & Dong, Shufeng. (2017). An Internet of Energy Things Based on Wireless LPWAN. Engineering. 3. 460-466. 10.1016/J.ENG.2017.04.011.
- History of IoT: A Timeline of Development
- Architecture of Internet of Things (IoT)
- Getting Started with the ESP32 Development Board
- 9 Home Automation Open-Source Platforms for Your projects

