

T Flip Flop

A T flip flop is known as a toggle flip flop because of its toggling operation. It is a modified form of the JK flip flop. A T flip flop is constructed by connecting J and K inputs, creating a single input called T. Hence why a T flip flop is also known as a single input JK flip flop.

Deriving T Flip Flop from JK Flip Flop

If J=K in JK flip-flop then it will act as a T Flip-Flop. By observing the truth table of JK Flip-Flop, we can conclude that if J=K=1 then the previous state is toggle and if J=K=0 then the previous state remains unchanged.

State	Q ₊₁	Q	K	J	CP
NO CHANCE	0	0	o	0	1
NO CHANGE	1	1	0	0	1
	0	0	1	0	1
RESET	0	1	1	0	1
	1	0	0	1	1
SET	1	1	0	1	1
	1	0	1	1	1
TOGGLES	0	1	1	1	1

Fig: Logic Diagram of JK Flip-Flop

Truth Table of and Excitation Table T Flip Flop

Т	Present state Q _n	Next state Q_{n+1}	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Truth table of Tflip flop

Q _n	Q _{n+1}	Т
O	0	0
0	1	1
1	0	1
1	1	0

Excitation table of Tflip flop

Characteristics Table of T Flip-Flop

CHARACTERISTIC EQUATION OF T FLIP-FLOP:

THE TRUTH TABLE IS AS

Previo us			1	Vew
T	${\sf Q}_{\rho}$	Q p (bar)	Q	Q (bar)
0	1	0	1	0
0	0	1	0	1
1	1	0	0	1
1	0	1	1	0

And the equation we get is as:

The Equation we get is

$$Q = T Q_p' + T' Q_p$$

= T XOR Q_p

Block Diagram of T Flip Flop

Thank You

