Markov networks

Hwanjo Yu POSTECH

http://di.postech.ac.kr/hwanjoyu

Roadmap

Markov networks

Conditional independence

Review: probability

Random variables: sunshine $S \in \{0,1\}$, rain $R \in \{0,1\}$

Joint distribution (unknown world)

$$\mathbb{P}(S,R) = \begin{pmatrix} s & r & \mathbb{P}(S=s,R=r) \\ 0 & 0 & 0.20 \\ 0 & 1 & 0.08 \\ 1 & 0 & 0.70 \\ 1 & 1 & 0.02 \end{pmatrix}$$

Marginal distribution (aggregate rows)

$$\mathbb{P}(S) = \begin{bmatrix} s & \mathbb{P}(S=s) \\ 0 & 0.28 \\ 1 & 0.72 \end{bmatrix}$$

Conditional distribution

(select rows, normalize)

$$\mathbb{P}(S \mid R = 1) = \begin{bmatrix} s & \mathbb{P}(S = s \mid R = 1) \\ 0 & 0.8 \\ 1 & 0.2 \end{bmatrix}$$

Review: factor graph and CSPs

Definition: factor graph

• Variables:

$$X = (X_1, ..., X_n)$$
, where $X_i \in Domain_i$

• Factors:

$$f_1, \dots, f_m$$
, with each $f_i(X) \ge 0$

Definition: assignment weight

• Each assignment $x = (x_1, ..., x_n)$ has a weight:

Weight(
$$x$$
) = $\prod_{j=1}^{m} f_j(x)$

Objective: find the maximum weight assignment

$$\underset{x}{arg} \max_{x} Weight(x)$$

Example: object tracking

$$\begin{bmatrix} x_1 & o_1(x_1) \\ 0 & 2 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_2 & o_2(x_2) \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$egin{array}{cccc} x_3 & o_3(x_3) & & & & & \\ 0 & & 0 & & & & \\ 1 & & 1 & & & \\ 2 & & 2 & & & & \\ \end{array}$$

$$|x_i - x_{i+1}| \ t_i(x_i, x_{i+1})$$
0 2
1 1
2 0

Maximum weight assignment

• CSP objective: find the maximum weight assignment \max Weight(x)

- Maximum weight assignment: $\{x_1: 1, x_2: 2, x_3: 2\}$ (weight 8)
- But this doesn't represent how likely it is.

Markov network

Definition: Markov network

• A Markov network is a factor graph which defines a joint distribution over random variables $X = (X_1, ..., X_n)$:

$$\mathbb{P}(X = x) = \frac{\text{Weight}(x)}{Z}$$

$$Z = 4 + 4 + 4 + 4 + 2 + 8 = 26$$

Marginal probabilities

Object tracking example:

•
$$\mathbb{P}(X_2 = 1) = 0.15 + 0.15 + 0.15 + 0.15 = 0.62$$

•
$$\mathbb{P}(X_2 = 2) = 0.08 + 0.31 = 0.38$$

x_1	x_2	x_3	Weight(x)	$\mathbb{P}(X=x)$
0	1	1	4	0.15
0	1	2	4	0.15
1	1	1	4	0.15
1	1	2	4	0.15
1	2	1	2	0.08
1	2	2	8	0.31

• Where was the object at time step 2 (X_2) ? Different than max weight assignment!

Definition: Marginal probability

• The marginal probability of $X_i = v$ is given by:

$$\mathbb{P}(X_i = v) = \sum_{x: x_i = v} \mathbb{P}(X = x)$$

Gibbs sampling

Algorithm: Gibbs sampling

- Initialize x to a random complete assignment
- Loop through i = 1, ..., n until convergence (converge depending on the initial assignment):
 - For each variable X_i :
 - Set $x_i = v$ with prob. $\mathbb{P}(X_i = v | X_{-i} = x_{-i})$ (notation: $X_{-i} = X \setminus \{X_i\}$)
 - Increment count_i (x_i)
- Estimate $\widehat{\mathbb{P}}(X_i = x_i) = \frac{\text{count } i(x_i)}{\sum_{v \text{ count } i(v)}}$

Example: sampling one variable

- Weight($x \cup \{X_2: 0\}$) = 1 prob. 0.2
- Weight($x \cup \{X_2: 1\}$) = 2 prob. 0.4
- Weight($x \cup \{X_2: 2\}$) = 2 prob. 0.4

Application: image denoising

Example: image denoising

- $X_i \in \{0,1\}$ is pixel value in location i
- Subset of pixels are observed $o_i(x_i) = [x_i = \text{observed value at } i]$
- Neighboring pixels more likely to be same than different $t_{ij}(x_i,x_j) = [x_i = x_j] + 1$
- Scan through image and update each pixel given rest:

v weight
$$\mathbb{P}(X_i = v | X_{-i} = x_{-i})$$

0 2*1*1*1 0.2
1 1*2*2*2 0.8

Search versus sampling

Iterated Conditional Modes Gi
maximum weight assignment m
choose best value sa
converge to local optimum m

Gibbs sampling marginal probabilities

sample a value

marginals converge to correct answer*

^{*}under technical conditions (sufficient condition: all weights positive), but could take exponential time

Summary

Markov networks = factor graphs + probability

- Normalize weights to get probability distribution
- Can compute marginal probabilities to focus on variables

CSPs	Markov networks	
Variables	Random variables	
Weights	Probabilities	
Maximum weight assignment	Marginal probabilities $\mathbb{P}(X_i = x_i)$	
ICM	Gibbs sampling	

Roadmap

Markov networks

Conditional independence

Motivation

Key idea:

• Leverage graph properties to derive efficient algorithms which are exact.

Motivation

Backtracking search:

exponential time in number of variables n

Efficient algorithm:

maximize each variable separately

Independence

Definition: independence

- Let A and B be a partitioning of variables X.
- We say A and B are **independent** if there are no edges between A and B.
- In symbols: $A \perp B$.

{WA, NT, SA, Q, NSW, V} and {T} are independent.

Non-independence

No variables are independent of each other, but feels close...

Conditioning

Goal: try to disconnect the graph

Condition on $X_2 = B$: remove X_2 , f and add g

Conditioning: example

Example: map coloring

• Condition on Q = R and SA = G.

New factors:

$$[NT \neq R] \qquad [WA \neq G]$$

$$[NSW \neq R] \qquad [NT \neq G]$$

$$[NSW \neq G]$$

$$[V \neq G]$$

Conditioning: general

Graphically: remove edges from X_i to dependent factors

Definition: conditioning

- To condition on a variable $X_i = v$, consider all factors f_1, \dots, f_k that depend on X_i .
- Remove X_i and f_1, \dots, f_k .
- Add $g_j(x) = f_j(x \cup \{X_i : v\})$ for j = 1, ..., k.

Conditional independence

Definition: conditional independence

- Let A, B, C be a partitioning of the variables.
- We say A and B are **conditionally independent** given C if conditioning on C produces a graph in which A and B are independent.
- In symbols: $A \perp B \mid C$.

Equivalently: every path from A to B goes through C.

Conditional independence

Example: map coloring

Conditional independence assertion:

 $\{WA, NT\} \perp \{V, NSW, T\} \mid \{SA, Q\}$

Markov blanket

How can we separate an arbitrary set of nodes from everything else?

Definition: Markov blanket

- Let $A \subseteq X$ be a subset of variables.
- Define MarkovBlanket(A) be all the neighbors of A that are not in A.

*the smaller the Markov blanket, the easier the factor graph is to deal with

Markov blanket

Proposition: conditional independence

- Let C = MarkovBlanket(A).
- Let B be $X \setminus (A \cup C)$.
- Then $A \perp B \mid C$.
- C is the smallest set of variables to condition on to make A independent of the rest.

Using conditional independence

For each value v = R, G, B:

Condition on $X_1 = v$.

Find the maximum weight assignment (easy).

maximum weight is 6

Summary

- Independence: when sets of variables A and B are disconnected; can solve separately.
- Conditioning: assign variable to value, replaces binary factors with unary factors
- Conditional independence: when C blocks paths between A and B
- Markov blanket: what to condition on to make A conditionally independent of the rest.