"Laporan Analisis Klasifikasi Dataset Iris Menggunakan Neural Network dan Logistic Regression"

Al Kelompok 6:

Wafa Billah

Mauludha Fiozaki

Abbas Al Badawi

Sabri Mutiurrahman

Jauhan Ahmad

Muhammad Setya Adjie

Pendahuluan

Dataset Iris adalah dataset klasik dalam machine learning yang berisi 150 sampel dari tiga spesies bunga Iris (Setosa, Versicolor, dan Virginica). Setiap sampel memiliki empat fitur: panjang sepal, lebar sepal, panjang petal, dan lebar petal, serta label spesies. Tujuan analisis ini adalah membangun model klasifikasi menggunakan Multi-Layer Perceptron (MLP) dan Logistic Regression untuk memprediksi spesies bunga berdasarkan fitur-fitur tersebut, serta membandingkan performa kedua model berdasarkan akurasi.

Metodologi

1. Pengumpulan dan Persiapan Data

Berdasarkan hasil riset kami dataset ini mencakup 150 baris dan lima kolom: sepal_length, sepal_width, petal_length, petal_width, dan species. Langkah pra-pemrosesan meliputi:

- Encoding Label: Kolom species diubah menjadi numerik (0, 1, 2) menggunakan LabelEncoder.
- Normalisasi Fitur: Fitur numerik dinormalisasi menggunakan StandardScaler.
- **Pemisahan Data**: Data dibagi menjadi 80% data latih (120 sampel) dan 20% data uji (30 sampel) dengan train_test_split dan random_state=42.
- Konversi ke Tensor: Input untuk MLP diubah menjadi tensor PyTorch.

2. Pembangunan Model

- Neural Network (MLP): Dibangun menggunakan PyTorch dengan arsitektur sebagai berikut:
 - Lapisan input: 4 neuron (sesuai fitur).
 - o Lapisan tersembunyi: 10 neuron dengan aktivasi ReLU.
 - Lapisan output: 3 neuron (sesuai kelas).
 Model dilatih selama 100 epoch dengan optimizer Adam (learning rate 0.01) dan fungsi loss CrossEntropyLoss.
- Logistic Regression: Dibangun menggunakan scikit-learn dengan parameter max iter=200.

3. Evaluasi Model

Kedua model ini dievaluasi menggunakan akurasi (accuracy_score) pada data uji. Proses pelatihan MLP divisualisasikan melalui plot loss terhadap epoch dengan hasil →

Hasil

- Neural Network (MLP):
 - o Loss menurun dari 0.8742 (epoch 10) menjadi 0.0845 (epoch 100).
 - o Akurasi pada data uji: 100%.
 - o Plot loss menunjukkan konvergensi yang mulus.

- Logistic Regression:
 - o Akurasi pada data uji: 100%.
- Model MLP disimpan dalam file model.pth.

Analisis

- **Performa Model**: Akurasi 100% pada kedua model menunjukkan dataset Iris memiliki pemisahan kelas yang jelas, terutama pada fitur petal_length dan petal_width.
- **Konvergensi MLP**: Penurunan loss yang konsisten mengindikasikan arsitektur MLP yang cukup untuk dataset ini.
- **Perbandingan Model**: Logistic Regression, meskipun sederhana, setara dengan MLP, hal ini menunjukkan dataset ini tidak memerlukan model kompleks.
- **Kelemahan**: Akurasi sempurna mungkin karena ukuran dataset ini kecil dan mudah. Evaluasi tambahan seperti confusion matrix atau cross-validation belum dilakukan.

Kesimpulan

Dari hasil analisis ini kami berhasil membangun model MLP dan Logistic Regression dengan akurasi 100% pada data uji. Dataset Iris yang sederhana memungkinkan performa optimal, dengan input empat fitur yang efektif untuk klasifikasi. Namun, kami masih membutuhkan evaluasi lebih lanjut untuk memastikan generalisasi modelnya.