

Arquitecturas Avançadas de Computadores

Laboratório I

$Simulação \ de \ um \\ microprocessador \ \mu RISC \ com \\ funcionamento \ multi-ciclo$

Gonçalo Ribeiro 73294 Miguel Costa 73359

Rafael Gonçalves 73786

Conteúdo

1	Intr	rodução	2
2	Arq	quitectura	2
	2.1	IF	2
		2.1.1 PC	2
		2.1.2 ROM	2
	2.2	IDRF	3
		2.2.1 RF	3
	2.3	EX	3
		2.3.1 ALU	3
		2.3.2 RAM	3
		2.3.3 Flag Tester	4
	2.4	WB	4
	2.5	Máquina de Estados	5
3	Test	tes e Simulações	5
	3.1	Fibonacci	5
4	Con	nclusão	5

1 Introdução

Nesta actividade laboratorial pretende-se desenvolver um processador µRISC com descrição em VHDL. Pretende-se que este processador com arquitectura RISC de 16 bits e funcionamento multi-ciclo execute 42 instruções diferentes, demorando 4 ciclos para completar cada uma. No primeiro ciclo (Instruction Fetch–IF), a próxima instrução a ser executada é carregada da memória e armazenada no registo de instruções. No segundo ciclo (Instruction Decode–ID) a instrução anteriormente carregada é descodificada e os operandos são lidos do Register File (RF). O terceiro ciclo (Execution–EX) consiste na execução da instrução e cálculo das condições dos resultados. Por fim, no quarto ciclo (Write Back–WB) os resultados são escritos no RF.

Tal como já foi referido, é um processador de 16 bits que contém 8 registos de uso geral, cada um com 16 bits de largura. Existem 42 instruções possíveis de executar, sendo estas compostas por até 3 operandos. Quanto à memória esta é do tipo big endian, sendo endereçável ao nível da palavra.

2 Arquitectura

2.1 IF

A unidade Instruction Fetch (IF) mantém o registo de qual a instrução do programa que está a ser correntemente executada. As suas saídas são a instrução actual e o endereço da próxima instrução. O IF é também responsável por actualizar o PC a cada flanco de relógio de forma a passar para a instrução seguinte. Ou, no caso de instruções de salto (jump), é responsável por actualizar o PC de forma a que a próxima instrução corresponda ao endereço se salto pretendido.

O esquema do IF pode ser visto na Figura 1. A descrição deste componente encontra-se no ficheiro IF.vhd.

2.1.1 PC

O Program Counter (PC) é um contador que em cada momento contém o endereço da memória em que se encontra a instrução a executar. No caso de instruções "normais" o valor do PC é incrementado em uma unidade. No caso de instruções de salto o PC suporta o carregamento de um ponteiro para a próxima instrução que deve ser executada.

Quando o µRISC é iniciado a primeira instrução que deve ser executada é a que se encontra no endereço 0 da memória de programa. Assim sendo, o PC conta com um sinal de resete (rst) que é usado para que o valor do PC seja 0 no inicio da execução.

2.1.2 ROM

No caso do µRISC optou-se por usar uma ROM como memória de programa. Esta ROM é endereçada à palavra (16 bits), constituindo cada palavra uma instrução do programa. A ROM é um bloco assíncrono de forma a que mal seja endereçada a instrução seja propagada para a saída. Se ROM fosse síncrona seria necessário esperar até o final do ciclo de relógio para obter a instrução.

A ROM utilizada tem 16K palavras. Como o PC tem 16 bits seria possível expandir a ROM até 64K palavras. Criou-se a ROM de forma a que o XST leia um ficheiro de texto que contém as palavras a colocar na mesma. Desta forma, basta fornecer diferentes ficheiros ao XST para que a ROM seja inicializada com diferentes programas.

A descrição da ROM pode encontrar-se no ficheiro IMem. vhd.

2.2 IDRF

2.2.1 RF

2.3 EX

Neste módulo são executadas as instruções e calculadas as condições de resultados. Podemos então considerar 3 grandes componentes que funcionam neste ciclo: ALU, Flag Tester e RAM.

Tal como é visível na Figura 2, podemos ainda considerar lógica adicional, correspondente ao *load* de constantes. Como o processador permite o carregamento de constantes para a parte *high* ou parte *low*, é feita aqui essa concatenação, sendo que depois é feita uma multiplexagem para os restantes casos de carregamento de constantes (que provêm do *Signal Extender* em IDRF).

2.3.1 ALU

O componente da ALU é responsável por receber 2 operandos $(A \in B)$, efectuar uma dada operação sobre estes (aritmética, deslocamento lógico ou lógica), dando um resultado C.

Este componente é divisível em 3 subcomponentes: componente aritmética, lógica e shifts. É neste componente que são geradas as flags, consoante a operação a executar. Existem então 4 flags: signal(S), carry(C), zero(Z) e overflow(V). Mais à frente são descritas as funcionalidades destas e quais as suas utilidades.

O primeiro sub-componente é responsável por executar qualquer função aritmética: soma, subtração e as suas variantes. É de notar que nestas operações todas as *flags* são actualizadas neste bloco.

O componente responsável por fazer os deslocamentos lógicos (shifts) apenas tem que efectuar duas operações: shift aritmético direito e shift lógico esquerdo. Neste bloco são actualizadas as *flags* de signal, zero e carry.

Por último, a unidade lógica é responsável por efectuar todas as operações lógicas: and, or, xor, pass, nor, nand, entre outras. Neste componente, por a actualização das *flags* ser independente de operação para operação, é apenas feita a actualização das que forem necessárias (zero, signal ou nenhuma).

2.3.2 RAM

O bloco de memória RAM, tal como já foi referido, é endereçável ao nível da palavra, sendo que cada endereço de memória corresponde então a uma palavra de 2 bytes. Se o processador tem 16 bits de endereço, então a capacidade total de memória do processador é de 32 KB. Esta memória funciona com leitura assíncrona e escrita síncrona caso o enable de escrita se encontre activo (we = '1').

Quanto à descrição VHDL, a memória tem como sinal de entrada data_in, de saída data_out e de endereço addr, ou seja, para as instruções existentes de acesso à memória temos que podem ser feitas as operações de LOAD e STORE. Quanto à primeira é carregado para um registo C o valor da memória endereçável pelo conteúdo do registo A; quanto à segunda instrução é armazenado o conteúdo do registo B no endereço de memória apontado pelo conteúdo do registo A.

2.3.3 Flag Tester

Quanto à actualização das flags, tal como já foi referido, o método utilizado baseia-se em actualizar apenas as flags necessárias, ou seja, todas as flags guardadas entram dentro da ALU, mas dependendo da instrução a executar, é feita uma concatenação das flags a actualizar com as que não serão actualizadas. No entanto, no caso de ser uma operação aritmética, todas as flags são actualizadas.

O componente de Flag Tester serve então para indicar se se deve efectuar um determinado salto ou não dependendo se é instrução de salto ou se as condições de flag são válidas para que se efectue esse salto. Temos então como sinais de entrada as quatro flags, o código correspondente à condição de salto, o código da operação a efectuar (para distinguir os vários tipos de salto), um enable e como sinais de saída os valores das flags armazendos em registos e ainda um sinal s que indica qual valor de PC a utilizar, se PC+1 ou se um outro valor de PC. Em primeiro lugar é verificada a condição de salto de acordo com os sinais presentes nos registos das flags, a operação de salto, e caso se verifique que a condição é verdadeira para o salto indicado, então é colocado s com valor lógico '1'. Caso a condição não seja cumprida, é colocado o valor lógico '0'.

A saída deste bloco temos ainda lógica adicional para indicar caso não seja uma operação de salto (*mux* regulado por is_jump), sendo que se for um jump True ou False, é mandado o sinal proveniente do *Flag Tester*, mas caso seja um outro tipo de salto (por exemplo, Inconditional jump), seja carregado na mesma o valor do salto e não PC+1.

2.4 WB

O bloco Write-Back (WB) é o mais simples do µRISC. É constituído por um multiplexer que deixa passar um de três sinais: o resultado proveniente da ALU; ou uma palavra da memória; ou o valor de PC+1. O resultado da ALU é deixado passar no caso de operações que usam a ALU; a palavra de memória passa no caso das instruções de load; e PC+1 é usado para a instrução jal, em que o valor do PC é carregado para um registo (o registo R7).

O valor que passa para a saída output só é relevante para as operações que actualizam os registos do *Register File*. Pelo WB passam também os sinais que permitem endereçar o RF e o sinal de enable do mesmo.

O esquema do WB está patente na Figura 3 e o ficheiro que o descreve é o WB.vdh.

- 2.5 Máquina de Estados
- 3 Testes e Simulações
- 3.1 Fibonacci
- 4 Conclusão

Figura 1: Bloco $Instruction\ Fetch$ —IF

Figura 2: Bloco de Execução e acesso à memória–EX/MEM

Figura 3: Bloco Write-Back-WB