Pb.9.6 (Conception d'un contrôleur proportionnel dérivé (PD))

Le schéma bloc d'un système non compensé est donné à la figure ci-dessous :

Où $G(s) = \frac{(s+6)}{(s+2)(s+3)(s+5)}$ et K est le gain d'un contrôleur proportionnel.

- 1) Faites la conception d'un contrôleur PD qui permet de réduire le temps de stabilisation, Ts par un facteur de 2. Le facteur d'amortissement est $\zeta = 0.707$.
- 2) Comparer les performances du système compensé et non compensé.

Solution

1) Conception du contrôleur PD (proportionnel dérivé)

a) Calcul des coordonnées du pôle dominant P_d^{SC} du système compensé (SC)

Selon l'énoncé on veut réduire le temps de stabilisation par un facteur de 2. Donc,

$$P_d^{SC} = 2P_d^{SNC}$$

Où P_d^{SNC} - pôle dominant du système non compensé (SNC).

$$P_d^{SNC} = \omega_n^{SNC} (-\zeta + j\sqrt{1-\zeta^2}) = \omega_n^{SNC} (-0.707 + j0.707)$$

Pour calculer $\omega_n^{snc}\,$ et le gain K on résout le système d'équations suivant :

$$\begin{cases} real \left[D_{bf}^{snc}(s) \right]_{s=P_d^{snc}} = 0 \\ imag \left[D_{bf}^{snc}(s) \right]_{s=P_d^{snc}} = 0 \end{cases}$$

Où $D_{bf}^{\mathit{SNC}}(s)$ - dénominateur de la fonction de transfert (FT) en boucle fermée du SNC :

$$D_{bf}^{SNC}(s) = (s+2)(s+3)(s+5) + K(s+6)$$

La résolution du système d'équations ci-dessus donne (on retient les valeurs positives et non nulles) :

$$\begin{cases} \omega_n^{snc} = 3,276 rad / s \\ K = 4,602 \end{cases}$$

Donc, $P_d^{SNC} = -2,316 + i2,316$. D'où:

$$P_d^{SC} = 2P_d^{SNC} = -4,632 + j4,632$$

b) Calcul de la fonction de transfert du compensateur Soit

$$G_c(s) = K_{pd}(s - z_{pd})$$

Pour calculer K_{pd} et z_{pd} on résout le système d'équations suivant :

$$\begin{cases} real \left[D_{bf}^{sc}\left(s\right)\right]_{s=P_{d}^{sc}} = 0 \\ imag \left[D_{bf}^{sc}\left(s\right)\right]_{s=P_{d}^{sc}} = 0 \end{cases}$$

Où $D_{bf}^{SC}(s)$ - dénominateur de la fonction de transfert en boucle fermée du SC :

$$D_{bf}^{SC}(s) = (s+2)(s+3)(s+5) + K_{pd}(s+6)(s-z_{pd})$$

La résolution du système d'équations ci-dessus donne :

$$\begin{cases} K_{pd} = 4,752 \\ z_{pd} = -7,208 \end{cases}$$

Donc,

$$G_c(s) = 4,752(s+7,208)$$
.

2) Performances des systèmes

Les performances du SNC et SC sont résumées dans le tableau suivant :

Paramètre	SNC	SC
Fonction de transfert en	4,602(s+6)	4,752(s+7,208)(s+6)
boucle ouverte, G _{bo} (s)	(s+2)(s+3)(s+5)	(s+2)(s+3)(s+5)
T_s , s	1,727	0,8635
$K_p = \lim_{s \to 0} G_{bo}(s)$	0.920	6,850
$e_{ss} = \frac{1}{1 + K_p}$	0,520	0,127
Pôle dominant	-2,316 + i2.316	-4.633 + i4,633
Autres pôles	-5.366	-5.485

Le schéma bloc d'un système non compensé est donné à la figure ci-dessous :

Où $G(s) = \frac{1}{(s+3)^3}$ et K est le gain d'un contrôleur proportionnel.

- 1) Déterminer les coordonnées du pôle dominant P_d^{SC} du SC si le temps de stabilisation, Ts = 1,6 s et le dépassement, %OS = 25%.
- 2) Le zéro du compensateur est situé à -1. Déterminer les valeurs du pôle P_c et du gain K_c du compensateur pour satisfaire les performances requises dans 1).
- 3) Quelle est la contribution angulaire du pôle du compensateur ?
- 4) L'approximation du système par un système du 2^e ordre est –elle valide?

Solution

1) Coordonnées du pôle dominant (Pd)

$$P_d^{SC} = \omega_n^{SC} \left(-\zeta + j\sqrt{1 - \zeta^2} \right)$$

On sait que:

$$\zeta = \frac{-\ln(\frac{\%OS}{100})}{\sqrt{\pi^2 + \ln^2(\frac{\%OS}{100})}}$$

D'après l'énoncé %OS = 25%. Donc, $\zeta = 0,404$.

D'autre part :

$$T_s^{SC} = \frac{4}{\zeta \omega_n^{SC}} \Rightarrow \omega_n^{SC} = \frac{4}{T_s^{SC} \zeta}$$

D'après l'énoncé T_s^{SC} = 1,6s. Donc, ω_n = 6,188rad/s.

D'où:

$$P_d^{SC} = \omega_n^{SC} (-\zeta + j\sqrt{1-\zeta^2}) = -2.5 + j5.66$$
.

2) Calcul de Pc et du gain K

La fonction de transfert du compensateur a la forme suivante :

$$G_c(s) = \frac{K_c(s - z_c)}{(s - p_c)}.$$

D'après l'énoncé $z_c = -1$. Donc,

$$G_c(s) = \frac{K_c(s+1)}{(s-p_c)}$$

Pour calculer K_c et p_c on résout le système d'équations suivant :

$$\begin{cases} real \bigg[D_{bf}^{sc}\left(s\right)\bigg]_{s=P_{d}^{sc}} = 0 \\ imag \bigg[D_{bf}^{sc}\left(s\right)\bigg]_{s=P_{d}^{sc}} = 0 \end{cases}$$

Où $D_{bf}^{SC}(s)$ - dénominateur de la fonction de transfert en boucle fermée du SC :

$$D_{bf}^{SC} = (s - p_c)(s+3)^3 + K_c(s+1)$$

La résolution du système d'équations ci-dessus donne :

$$\begin{cases} K_c = 354.9 \\ p_c = -12.31 \end{cases}$$

Donc,

$$G_c(s) = \frac{354,9(s+1)}{(s+12,31)}$$

3) Contribution angulaire du pôle du compensateur

La contribution angulaire θP_c du pôle du compensateur est :

$$\theta P_c = -\angle(s + p_c)\big|_{s = P_d^{SC}} = -\angle(s + 12,31)\big|_{s = -2,5+j5,66} \approx -30^\circ$$

4) Validité de L'approximation par un système du 2^e ordre.

Déterminons tous les pôles de la FT du SC en boucle fermée. Pour cela on résout :

$$D_{bf}^{SC}(s) = 0 \iff (s+12,31)(s+3)^3 + 354,9(s+1) = 0$$
.

On trouve: $s_1 = -2.5 + j5.66$, $s_2 = -2.5 - j5.66$ $s_3 = -15.123$ et $s_4 = -1.187$.

Le pôle s_1 est dominant par rapport au pôle s_3 car $\frac{-15,123}{-2,5} = 6,05 > 5$. Mais s_1 n'est pas dominant par

rapport à s₄. Par contre si on suppose que le pôle s₄ est proche du zéro (-1) de la FT du système, alors l'approximation est valide.

Pb. 9.15 (Conception d'un compensateur par avance de phase)

Le schéma bloc d'un système non compensé est donné à la figure ci-dessous :

Où $G(s) = \frac{1}{s(s+1)(s^2+10s+26)}$ et K est le gain d'un contrôleur proportionnel.

- 1) Déterminer le temps de stabilisation, Ts du SNC si le dépassement %OS = 15%.
- 2) On souhaite avoir un temps de stabilisation égal à 7s. Pour cela on utilise un compensateur dont le pôle est situé à -15. Déterminer la fonction de transfert du compensateur.

Solution

1) Temps de stabilisation du SNC

Le temps de stabilisation du SNC est :

$$T_s^{SNC} = \frac{4}{\zeta \omega_n^{SNC}}$$

Le facteur d'amortissement est :

$$\zeta = \frac{-\ln(\frac{\%OS}{100})}{\sqrt{\pi^2 + \ln^2(\frac{\%OS}{100})}}$$

D'après l'énoncé %OS = 15%. Donc, $\zeta = 0.517$.

Le pôle dominant du SNC est :

$$P_d^{SNC} = \omega_n^{SNC} (-\zeta + j\sqrt{1-\zeta^2}) = \omega_n^{SNC} (-0.517 + j0.856)$$

Pour calculer $\omega_n^{snc}\,$ et le gain K on résout le système d'équations suivant :

$$\begin{cases} real \left[D_{bf}^{snc}(s)\right]_{s=P_{d}^{snc}} = 0 \\ imag \left[D_{bf}^{snc}(s)\right]_{s=P_{d}^{snc}} = 0 \end{cases}$$

Où $D_{bf}^{SNC}(s)$ - dénominateur de la fonction de transfert (FT) en boucle fermée du SNC :

$$D_{bf}^{SNC}(s) = s(s+1)(s^2+10s+26) + K$$

La résolution du système d'équations ci-dessus donne (on retient les valeurs positives et non nulles) :

$$\begin{cases} \omega_n^{snc} = 0.719 rad / s \\ K = 14.4 \end{cases}$$

Le temps de stabilisation du SNC est :

$$T_s^{SNC} = \frac{4}{0,517(0,719)} = 10,76 \text{ s.}$$

2) Fonction de transfert du compensateur

Le temps de stabilisation, T_s^{SC} souhaité du SC est 7 s. Comme $T_s^{SC} < T_s^{SNC}$ on doit utiliser un compensateur par avance de phase dont la FT est :

$$G_c(s) = \frac{K_{ap}(s - z_{ap})}{(s - p_{ap})}$$

D'après l'énoncé le pôle du compensateur est situé à -15. Donc,

$$G_c(s) = \frac{K_{ap}(s - z_{ap})}{(s + 15)}$$

Pour déterminer
$$K_{ap}$$
 et z_{ap} on résout le système d'équations suivant :
$$\begin{cases} \text{real} \Big[D^{sc}_{bf}(s) \Big]_{s=P^{sc}_d} = 0 \\ \text{imag} \Big[D^{sc}_{bf}(s) \Big]_{s=P^{sc}_d} = 0 \end{cases}$$

Où $D_{bf}^{SC}(s)$ - dénominateur de la FT en boucle fermée du SC :

$$D_{bf}^{SC}(s) = s(s+1)(s^2+10s+26)(s+15) + K_{ap}(s-z_{ap})$$

$$P_d^{SC} = \omega_n^{SC}(-\zeta + j\sqrt{1-\zeta^2}) = \frac{4}{\zeta T_s^{SC}}(-\zeta + j\sqrt{1-\zeta^2}) = -0.571 + j0.946$$

La résolution du système d'équations ci-dessus donne :

$$\begin{cases} K_{ap} = 207,5 \\ z_{ap} = -2 \end{cases}$$

Donc, la FT du compensateur est :

$$G_c(s) = \frac{207,5(s+2)}{(s+15)}$$

Le schéma bloc d'un système non compensé est donné à la figure ci-dessous :

Où
$$G(s) = \frac{1}{(s^2 + 20s + 101)(s + 20)}$$
 et K est le gain d'un contrôleur proportionnel.

Le facteur d'amortissement est $\zeta = 0.4$ et le temps de stabilisation $T_s = 0.5s$.

- 1) Déterminer les coordonnées du pôle dominant du SC.
- 2) Déterminer le gain et le zéro du compensateur si son pôle est -15.
- 3) Comparer les performances du SC et SNC.

Solution

1) Coordonnées du pôle dominant P_d^{SC} du SC

$$P_d^{SC} = \omega_n^{SC} \left(-\zeta + j\sqrt{1 - \zeta^2} \right)$$

D'après l'énoncé:

$$\begin{cases} \zeta = 0.4 \\ T_s = \frac{4}{\zeta \omega_n^{SC}} = 0.5 \Rightarrow \omega_n^{SC} = 20 \end{cases}$$

Donc.

$$P_d^{SC} = -8 + j18,33$$

2) Calcul du gain et zéro du compensateur

Soit K_c et z_c le gain et le zéro recherchés respectivement

D'après l'énoncé le pôle du compensateur est -15. Donc, la fonction de transfert (FT) du compensateur peut s'écrire sous la forme suivante :

$$G_c(s) = K_c \frac{s - z_c}{s + 15}$$

Pour déterminer K_c et z_c on résout le système d'équations suivant :

$$\begin{cases} \text{real} \left[D_{bf}^{sc} \left(s \right) \right]_{s=P_{d}^{sc}} = 0 \\ \text{imag} \left[D_{bf}^{sc} \left(s \right) \right]_{s=P_{d}^{sc}} = 0 \end{cases}$$

Où $D_{bf}^{SC}(s)$ - dénominateur de la FT en boucle fermée du SC :

$$D_{bf}^{SC}(s) = (s^2 + 20s + 101)(s + 20)(s + 15) + K_c(s - z_c)$$

La résolution du système d'équations ci-dessus donne :

$$\begin{cases} K_c = 7296,74 \\ z_c = -0,069 \end{cases}$$

Donc, la FT du compensateur est :

$$G_c(s) = \frac{7296,74(s+0,069)}{(s+15)}$$

3) Performances des systèmes

Calcul du gain K et des coordonnées du pôle dominant du système non compensé (SNC) Le dénominateur de la FT du SNC en boucle fermée (bf) est :

$$D_{bf}^{SNC}(s) = (s^2 + 20s + 101)(s + 20) + K$$

Pour déterminer K et ω_n^{SNC} on pose :

$$s = P_d^{SNC} = \omega_n^{SNC} (-\zeta + j\sqrt{1-\zeta^2}) = \omega_n^{SNC} (-0.4 + j0.916)$$

Et on résout :

$$\begin{cases} real \Big[D_{bf}^{snc}(s)\Big]_{s=P_{d}^{snc}} = 0 \\ imag \Big[D_{bf}^{snc}(s)\Big]_{s=P_{d}^{snc}} = 0 \end{cases}$$

On trouve : K = 3353,86 et $\omega_n^{SNC} = 13,581$.

Donc,

$$P_d^{SNC} = -5,432 + j12,447$$

Les performances du SNC et SC sont résumées dans le tableau suivant :

Paramètre	SNC	SC
Fonction de transfert en	3353,86	7296,74(s+0,069)
boucle ouverte, G _{bo} (s)	$\overline{(s^2 + 20s + 101)(s + 20)}$	$s^2 + 20s + 101(s + 20)(s + 15)$
T_s , s	0,736	0,5
$K_p = \lim_{s \to 0} G_{bo}(s)$	1.66	0,016
$e_{ss} = \frac{1}{1 + K_p}$	0,376	0,984
Pôles dominants (supposés)	-5,432 + j12,447	$-8 \pm + j18,33$
Autres pôles	-29,135	-36,914 et -2,086

Analyse: L'approximation du SNC par un système du 2^e ordre est valide car:

$$\frac{-29,135}{-5,432} = 5,363 > 5$$
.

Par contre, l'approximation du SC par un système du 2^e ordre n'est pas valide car :

$$\frac{-2,086}{-8} = 0,26 < 5$$

Pb.9.19 (Conception d'un compensateur par avance et retard de phase (CAPR))

Le schéma bloc d'un système non compensé est donné à la figure ci-dessous :

Où

$$G(s) = \frac{1}{(s+2)(s+4)(s+6)(s+8)}$$
 et K est le gain d'un contrôleur proportionnel.

Déterminer la fonction de transfert d'un compensateur par avance et retard de phase qui permet d'avoir :

- 1) un temps de stabilisation T_s qui est de 0,5 s plus court par rapport au temps de stabilisation du système non compensé (SNC) avec $\zeta = 0,5$.
- 2) Une erreur e_{ss} en régime permanent réduite de 30 fois.

Solution

La fonction de transfert d'un CARP a la forme générale suivante :

$$G_{arp}(s) = K_{arp} \frac{(s - z_{ap})(s - z_{rp})}{(s - p_{ap})(s - p_{rp})}$$

1) Choix de z_{ap}

Supposons $z_{ap} = -4$ (2^e pôle de G(s) le plus proche de l'axe j ω)

2) Calcul de K_{arp} et p_{ap}

Ici on remplace le contrôleur K par la fonction de transfert suivante :

$$G_{ap}(s) = K_{arp} \frac{(s - z_{ap})}{(s - p_{ap})}$$

En tenant compte de la valeur choisie de z_{ap} on trouve :

$$G_{ap}(s) = K_{arp} \frac{(s+4)}{(s-p_{ap})}$$

Pour déterminer K_{arp} et p_{ap} on résout le système d'équations suivant :

$$\begin{cases} real \left[D_{bf}^{sc}\left(s\right)\right]_{s=P_{d}^{sc}} = 0 \\ imag \left[D_{bf}^{sc}\left(s\right)\right]_{s=P_{d}^{sc}} = 0 \end{cases}$$

En tenant compte de G(s) donnée et de l'expression de G_{ap}(s) ci-dessus on a :

$$D_{bf}^{sc} = (s+2)(s+6)(s+8)(s-p_{ap}) + K_{arp}$$

 $\textbf{Remarque}: Dans \ l'expression \ ci-dessus \ les \ termes \ (s+4) \ de \ G(s) \ et \ de \ G_{ap}(s) \ ont \ \acute{e}t\acute{e} \ simplifiés.$

Déterminons les coordonnées du pôle dominant du SC P_d^{SC}

On a:

$$P_d^{sc} = \frac{T_s^{snc}}{T_s^{sc}} P_d^{snc}$$

D'après l'énoncé:

$$T_s^{sc} = T_s^{snc} - 0.5$$

Le temps de stabilisation T_s^{snc} du SNC est :

$$T_{s}^{snc} = -\frac{4}{real \left[P_{d}^{snc} \right]}$$

Le pôle dominant du SNC est :

$$P_d^{snc} = \omega_n^{snc} \left(-\zeta + j\sqrt{1 - \zeta^2} \right)$$

D'après l'énoncé

$$\zeta \approx 0.5$$

Donc,

$$P_d^{snc} = \omega_n^{snc} (-0.5 + j0.866)$$

Pour calculer $\omega_n^{snc}\,$ et le gain K on résout le système d'équations suivant :

$$\begin{cases} real \Big[D_{bf}^{snc}(s)\Big]_{s=P_{d}^{snc}} = 0 \\ imag \Big[D_{bf}^{snc}(s)\Big]_{s=P_{d}^{snc}} = 0 \end{cases}$$

En tenant compte de G(s) donnée on a :

$$D_{bf}^{snc} = (s+2)(s+4)(s+6)(s+8) + K$$

La résolution du système d'équations ci-dessus donne (on retient les valeurs positives et non nulles) :

$$\begin{cases} \omega_n^{snc} = 3,062 \text{rad/s} \\ K = 354,504 \end{cases}$$

Donc,

$$P_d^{snc} = \omega_n^{snc} (-0.5 + j0.866) = 3.062(-0.5 + j0.866) = -1.531 + j2.651$$

D'où:

$$T_s^{snc} = -\frac{4}{(-1,531)} = 2,612s$$

et:

$$T_s^{sc} = 2,612 - 0,5 = 2,112s$$

D'où:

$$P_d^{sc} = \frac{2,612}{2.112}(-1,531 + j2,651) = -1,893 + j3,28$$

On trouve:

$$\begin{cases} p_{ap} = -8,932 \\ K_{arp} = 928,147 \end{cases}$$

3) Choix de p_{rp}

Le pôle de p_{rp} doit être placé à droite du pôle dominant et près de l'origine. La partie réelle de P_d^{sc} est -1,893. Donc choisissons arbitrairement :

$$p_{rp} = -0.01$$

4) Calcul de z_{rp}

$$z_{rp} = \beta p_{rp}$$

Où

$$\beta = \frac{K_p^{south}}{K_p^{ap}} = \frac{56,69}{1,082} = 52,394$$

Note : Dans l'expression de β on utilise les constantes d'erreur en position car le SNC et le SC sont de type 0.

Où

 K_p^{souh} - Constante d'erreur souhaitée.

 K_n^{ap} - Constante d'erreur avec le compensateur par avance de phase (AP).

a) Calcul de K_p^{souh}

D'après l'énoncé on doit réduire l'erreur par un facteur de 30. Donc, la constante d'erreur souhaitée est :

$$\frac{1}{K_p^{souh} + 1} = \frac{1}{30(K_p^{snc} + 1)} \Rightarrow K_p^{souh} = 30(K_p^{SNC} + 1) - 1$$

Où

 K_p^{SNC} - Constante d'erreur du système non compensé.

On a:

$$K_p^{\text{snc}} = \lim_{s \to 0} G(s) = \frac{K}{(2)(4)(6)(8)} = \frac{354,504}{(2)(4)(6)(8)} = 0,923$$

Donc,

$$K_p^{souh} = 30(K_p^{SNC} + 1) - 1 = 30(0.923 + 1) - 1 = 56.69$$

b) Calcul de K_p^{ap}

$$K_p^{ap} = \lim_{s \to 0} G_{ap}(s)G(s) = \frac{Karp(z_{ap})}{(2)(4)(6)(10)(p_{ap})} = \frac{928,147(4)}{(2)(4)(6)(8)(8,932)} = 1,082$$

Remarque : La constante d'erreur du SC avec un compensateur AP est inférieure à la constante d'erreur souhaitée. Donc, l'utilisation d'un compensateur par ARP est nécessaire. Donc,

$$\beta = \frac{K_p^{south}}{K_p^{ap}} = \frac{56,69}{1,082} = 52,394$$

D'où:

$$z_{rp} = 52,394(-0,01) \approx -0,524$$

La FT recherchée est:

$$G_{arp}(s) = \frac{928,147(s+4)(s+0,524)}{(s+8,932)(s+0,01)}$$

Le schéma bloc d'un système non compensé est donné à la figure ci-dessous :

 $G(s) = \frac{1}{(s+2)(s+4)}$ et K est le gain d'un contrôleur proportionnel.

- 1) Déterminer le gain K du système non compensé (SNC) si le dépassement %OS = 4,32%.
- 2) On souhaite améliorer l'erreur statique du système. Pour cela on utilise un compensateur par retard de phase dont la fonction de transfert est : $G_{rp}(s) = \frac{K_{rp}(s+0.5)}{(s+0.1)}$. Déterminer le gain K_{rp} du compensateur.
- 3) Déterminer les constantes d'erreur de position K_p du SNC et du système compensé (SC).
- 4) Déterminer le temps de stabilisation du SNC et du SC.
- 5) L'approximation du SNC et du SC par un système du 2^e ordre est-elle valide?

Solution

1) Calcul du gain K du SNC

Pour calculer K et $\omega_n^{\text{snc}}\,$ on résout le système d'équations suivant :

$$\begin{cases} real \left[D_{bf}^{snc}(s) \right]_{s=P_{d}^{snc}} = 0 \\ imag \left[D_{bf}^{snc}(s) \right]_{s=P_{d}^{snc}} = 0 \end{cases}$$

Où $D_{bf}^{\mathit{SNC}}(s)$ - dénominateur de la FT en boucle fermée du SNC :

$$D_{bf}^{SNC}(s) = (s+2)(s+4) + K |$$

$$P_d^{SNC} = \omega_n^{SNC} \left(-\zeta + j\sqrt{1-\zeta^2} \right)$$

Le facteur d'amortissement est :

$$\zeta = \frac{-\ln(\frac{\%OS}{100})}{\sqrt{\pi^2 + \ln^2(\frac{\%OS}{100})}}$$

D'après l'énoncé %OS = 4,32%. Donc, ζ = 0,707 et

$$P_d^{SNC} = \omega_n^{SNC} (-0.707 + j0.707)$$

La résolution du système d'équations ci-dessus donne (on retient les valeurs positives et non nulles) :

$$\begin{cases} \omega_n^{snc} = 4,242 rad / s \\ K = 10 \end{cases}$$

2) Calcul du gain K_{rp} du compensateur

Pour calculer K_{rp} et ω_n^{sc} on résout le système d'équations suivant :

$$\begin{cases} real \left[D_{bf}^{sc}(s) \right]_{s=P_d^{sc}} = 0 \\ imag \left[D_{bf}^{sc}(s) \right]_{s=P_d^{sc}} = 0 \end{cases}$$

Où $D_{bf}^{SC}(s)$ - dénominateur de la FT en boucle fermée du SC :

$$D_{bf}^{SC}(s) = (s+2)(s+4)(s+0,1) + K_{rp}(s+0,5)$$

$$P_{d}^{SC} = \omega_{n}^{SC}(-\zeta + j\sqrt{1-\zeta^{2}}) = \omega_{n}^{SC}(-0,707 + j0,707)$$

La résolution du système d'équations ci-dessus donne (on retient les valeurs positives et non nulles) :

$$\begin{cases} \omega_n^{sc} = 4,066 rad / s \\ K_{rp} = 9,943 \end{cases}$$

3) Calcul du K_p

La constante d'erreur de position est déterminée par :

$$K_p = \lim_{s \to 0} G_c(s) G(s)$$

Pour le SNC on a :

$$K_p^{snc} = \frac{10}{(2)(4)} = 1,25$$

Pour le SC on a:

$$K_p^{sc} = \frac{9,943(0,5)}{(2)(4)(0,1)} = 6,214$$

4) Calcul du temps de stabilisation

Le temps de stabilisation est déterminé par :

$$T_s = \frac{4}{\zeta \omega_n}$$

Pour le SNC on a :

$$T_s^{SNC} = \frac{4}{0.7071.4.242} = 1,333 \,\mathrm{s}$$

Pour le SC on a:

$$T_s^{SC} = \frac{4}{0.7071.4.066} = 1,391 \,\mathrm{s}$$

5) Validité de l'approximation

Le SNC est un système du 2^e ordre. Donc, pour ce système l'approximation est d'avance valide. Par contre le SC est un système du 3^e ordre. Pour conclure sur la validité de l'approximation, déterminons d'abord tous les pôles du SC. Pour cela on résout l'équation caractéristique suivante :

$$D_{bf}^{SC}(s) = 0 \Leftrightarrow (s+2)(s+4)(s+0,1) + 9,943(s+0,5) = 0$$

On trouve : $s_{1,2} = -2,875 \pm j2,875$ et $s_3 = -0,349$.

Le pôle s₃ est plus proche de l'axe imaginaire que le pôle qui est considéré comme dominant. Donc, l'approximation est valide si et seulement si une simplification du pôle s₃ avec le zéro -0,5 est possible.

Pb.9.25 (Conception d'un PID)

Le schéma bloc d'un système non compensé est donné à la figure ci-dessous :

Où
$$G(s) = \frac{1}{(s+1)(s+4)}$$
 et K est le gain d'un contrôleur proportionnel.

Déterminer la fonction de transfert d'un compensateur PID qui permet d'avoir T_p =1,047s et une erreur nulle en régime permanent pour une entrée de type échelon. Le facteur d'amortissement du système est $\zeta = 0.8$.

Solution

La fonction de transfert d'un contrôleur PID a la forme générale suivante :

$$G_c(s) = K_{pid} \frac{(s - z_{pd})(s - z_{pi})}{s},$$

où z_{pd} – zéro du contrôleur PD et z_{pi} – zéro du contrôleur PI.

1) Calcul de z_{pd}

Ici on remplace le contrôleur **K** par la fonction de transfert suivante :

$$G_{pd}(s) = K_{pd}(s - z_{pd})$$

Pour calculer K_{pd} et z_{pd} on résout le système d'équations suivant :

$$\begin{cases} real \Big[D_{bf}^{sc}\left(s\right)\Big]_{s=P_{d}^{sc}} = 0 \\ imag \Big[D_{bf}^{sc}\left(s\right)\Big]_{s=P_{d}^{sc}} = 0 \end{cases}$$

En tenant compte de G(s) donnée et de l'expression de $G_{pd}(s)$ ci-dessus on a :

$$D_{bf}^{sc} = (s+1)(s+4) + K_{pd}(s-z_{pd})$$

Le pôle dominant P_d^{SC} du système compensé est :

$$P_d^{sc} = \omega_n^{sc} \left(-\zeta + j\sqrt{1 - \zeta^2} \right)$$

D'après l'énoncé $\zeta = 0.8$ et $T_p = 1.047$ s. On sait que :

$$T_{p} = \frac{\pi}{\omega_{n} \sqrt{1 - \zeta^{2}}} \Rightarrow \omega_{n} = \frac{\pi}{T_{p} \sqrt{1 - \zeta^{2}}} = \frac{\pi}{1,047 \sqrt{1 - 0.8^{2}}} \approx 5 \text{ rad/s}.$$

Donc,

$$P_d^{sc} = -4 + j3$$

La résolution du système d'équations ci-dessus donne :

$$\begin{cases} z_{pd} = -7 \\ K_{pd} = 3 \end{cases}$$

2) Choix de z_{pi}

Comme la partie réelle de P_d^{sc} est -4 on peut choisir :

$$z_{pi} = -0.1$$
.

En tenant compte des valeurs de \mathbf{z}_{pd} et \mathbf{z}_{pi} on a :

$$G_{pid}(s) = \frac{K_{pid}(s+7)(s+0,1)}{s}$$

3) Calcul de K_{pid}

Pour calculer K_{pid} on résout le système d'équations suivant :

$$\begin{cases} real \left[D_{bf}^{sc}\left(s\right)\right]_{s=P_{d}^{sc}} = 0\\ imag \left[D_{bf}^{sc}\left(s\right)\right]_{s=P_{d}^{sc}} = 0 \end{cases}$$

En tenant compte de l'expression de $G_{pid}(s)$ obtenue à l'étape 2) on a :

$$D_{bf}^{sc} = s(s+1)(s+4) + K_{pid}(s+7)(s+0,1)$$

où:

$$P_d^{sc} = \omega_n^{sc} (-\zeta + j\sqrt{1-\zeta^2}) = \omega_n^{sc} (-0.8 + j0.6)$$

La résolution du système d'équations ci-dessus donne les paires de solutions ci-dessous:

$$\begin{cases} K_{pid} = 2,826 \\ \omega_{n}^{sc} = 4,838 \text{rad/s} \end{cases}$$

$$\begin{cases} K_{pid} = 5,288 \\ \omega_n^{sc} = 6,373 \text{rad/s} \end{cases}$$

On retient la première paire car elle donne une fréquence naturelle plus proche de la fréquence naturelle souhaitée, c'est-à-dire 5 rad/s.

Donc, la FT du compensateur PID est :

$$G_c(s) = \frac{2,826(s+7)(s+0,1)}{s}$$

La FT d'un moteur en boucle ouverte est $G(s) = \frac{25}{s(s+1)}$

Le schéma bloc du SC est donné à la figure ci-dessous :

- 1) Déterminer le facteur d'amortissement et le temps de stabilisation du moteur en boucle fermée à retour unitaire.
- 2) Afin d'améliorer les performances du système on insère dans la boucle fermée un amplificateur de gain K_1 et un tachymètre dont la fonction de transfert est K_f s (voir schéma bloc ci-dessus). Déterminer les constantes K_1 et K_f qui permettent d'avoir un dépassement, %OS = 25% et un temps de stabilisation, $T_s = 0.2$ s.
- 3) Déterminer l'erreur en régime permanent du SNC et du SC.

Solution

1) Calcul de ζ et T_s du SNC

Le schéma block du SNC en boucle fermée (bf) est :

D'où la fonction de transfert (FT) en bf suivante :

$$T^{SNC}(s) = \frac{25}{s^2 + s + 25}$$

La FT standard d'un système du 2^e ordre est :

$$G^{st}(s) = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

La comparaison de T^{SNC}(s) avec Gst(s) donne :

$$\begin{cases} \omega_n = 5 \\ \zeta = 0,1 \end{cases}$$

D'où:

$$\begin{cases} \zeta = 0.1 \\ T_s = \frac{4}{\zeta \omega_n} = \frac{4}{0.1(5)} = 8s \end{cases}$$

2) Calcul de K_1 et K_f

Le schéma block du SC en bf peut être réduit sous la forme suivante :

D'où la FT en bf suivante :

$$T^{SC}(s) = \frac{25K_1}{s^2 + (25K_f + 1)s + 25K_1}$$

La comparaison de $T^{SC}(s)$ avec $G^{st}(s)$ donne :

$$\begin{cases} 25K_1 = (\omega_n)^2 \\ 25K_f + 1 = 2\zeta\omega_n \end{cases}$$

D'après l'énoncé:

$$\begin{cases} \%OS = 25\% \Rightarrow \zeta = 0.4 \\ T_s = \frac{4}{\zeta \omega_n} = 0.2 \Rightarrow \omega_n = 50 \end{cases}$$

Donc,

$$\begin{cases} K_1 = 100 \\ K_f = 1,56 \end{cases}$$

3) Calcul des erreurs

a) Erreur du SNC

Le SNC est de type 1. Donc, l'erreur est :

$$e_{ss} = \frac{1}{K_v^{SNC}}$$

où:

$$K_V^{SNC} = \lim_{s \to 0} s \frac{25}{s(s+1)} = 25 \Rightarrow e_{ss} = \frac{1}{25} = 0.04$$

b) Erreur du SC

Le SC est de type 1. Donc, l'erreur est :

$$e_{ss} = \frac{1}{K_v^{SC}}$$

où:

$$K_V^{SC} = \lim_{s \to 0} s \frac{25K_1}{s(s+25K_f+1)} = \frac{25(100)}{25(1,56)+1} = 62,5 \Rightarrow e_{ss} = \frac{1}{62,5} = 0,016$$