Exchange Rate Regimes and Dollar Demand

The Bolivian Experience

Pablo Cuba Borda

March 13, 2025

Universidad Católica Boliviana San Pablo Semestre I, 2025

Motivation

- Fixed exchange rate regimes typically accompanied by:
 - Domestic consumption boom
 - Sharp real exchange rate appreciation
 - Large external deficits
 - Vulnerability to external shocks
 - More often than not, fixed exchange rate regimes, fail.
- Bolivia: de-facto exchange rate regime in 2007 while experiencing a commodity boom
- Commodity bust has brought challenges to economic policy

Two Questions

- Can we make sense of the Bolivian experience using a simple macroeconomic model?
- Can we understand why are fixed exchange rate regimes prone to failure?

Roadmap

Stylized Facts

Nominal Rigidities and Exchange Rate Policy

Bolivia: Large swings in foreign Reserves

"Divisas" obtained through state-owned exports

Generación de Divisas por Sector

Public and private sectors are "hungry" for dollars

Uso de Divisas por Sector

Favorable TOT led to private sector import boom

Importaciones por Sector

Consumption boom fueled by credit

Crédito del Sector Financiero / GDP

Resulting in substatntial RER appreciation

Índice de Tipo de Cambio Real Multilateral

Roadmap

Stylized Facts

Nominal Rigidities and Exchange Rate Policy

Model Overview

Two-period model of small-open economy facing fluctuations in tradable endowment

- Based on Schmidt-Grohe, Uribe and Woodford (2023) and Schmidt-Grohe and Uribe (2020)
- Optimizing households and firms
- Govermnet only sets exchange rate regime
- Downward Nominal Wage Rigidity
- Emphasize private sector behavior

Households

$$\max u(C_1, C_2) = \ln C_1 + \beta \ln C_2$$

$$s.t.$$

$$P_1^T C_1^T + P_1^N C_1^N + \mathcal{E}_1 B_1 = \mathcal{E}_1 (1 + r_0) B_0 + P_1^T Q_1^T + W_1 h_1 + \Pi_1$$

$$P_2^T C_2^T + P_2^N C_2^N = \mathcal{E}_2 (1 + r_1) B_1 + P_2^T Q_2^T + W_2 h_2 + \Pi_2$$

- Q_t^T is the endownment of the tradable good
- \mathcal{E}_t is the nominal exchange rate, $\mathit{r}_t = \mathit{r}^*$ is the real interest rate
- Consumption is a composite good: $C_t = (C_t^{\mathsf{T}})^{\gamma} (C_t^{\mathsf{N}})^{1-\gamma}$
- Household supply \bar{h} hours of work inelastically.
- No-Ponzi condition $B_2 = 0$

Intertemporal budget constraint

$$C_1^T + p_1 C_1^N + \frac{C_2^T + p_2 C_2^N}{1 + r^*} = \bar{Y}$$

Households

Households' optimality conditions C_1^T , C_2^T , C_1^N , C_2^N

$$\frac{C_2^T}{C_1^T} = \beta(1 + r^*) \tag{1}$$

$$\frac{C_1^N}{C_1^T} = \frac{1 - \gamma}{\gamma} \frac{1}{\rho_1} \tag{2}$$

$$\frac{C_2^N}{C_2^T} = \frac{1-\gamma}{\gamma} \frac{1}{p_2} \tag{3}$$

Economy Wide Resource Constraint

$$C_1^T + \frac{C_2^T}{1+r^*} = (1+r_0)B_0 + Q_1^T + \frac{Q_2^T}{1+r^*}$$
 (4)

Equilibrium Demand for Tradables

Combine with (1) and (4)

$$C_1^T = \frac{1}{1+\beta} \left[(1+r_0)B_0 + Q_1^T + \frac{Q_2}{1+r^*} \right]$$

Which we can summarize as:

$$C_1^T = C^T(\underbrace{r_*}_{-}, \underbrace{Q_1^T}_{+}, \underbrace{Q_2^T}_{+}, \underbrace{(1+r_0)B_0}_{+})$$

Goods Market Clearing

$$C_t^N = F(h_t) \tag{5}$$

Production

- Endowment Q_t^T of T goods
- Firms sell NT goods at price \boldsymbol{P}_t^T
- Non-tradeable goods produced using labor (h_t) : $Q_t^N = \mathcal{F}(h_t)$
- Where F(.) satisfies F'(.) > 0 and F''(.) < 0". Interpretation?
- Law of one price applies to T goods: $P_t^T = \mathcal{E} P_t^{T^*}$
- Assume $P_t^{T*}=1 o \Delta \mathcal{E}_t = \Delta P_t^{NT}$

Firms' objective and optimality

Firms maximize per-period profits:

$$\Pi_t = P_t^N F(h_t) - W_t h_t$$

First order conditions:

$$P_t^N F'(h_t) = W_t$$

Which can be written as:

$$p_t \equiv \frac{P_t^N}{P_t^T} = \frac{W_t/P_t^T}{F'(h_t)} = \frac{W_t/\mathcal{E}_t}{F'(h_t)}$$

FOC determines the **supply schedule** of nontradable goods

Labor Market

Downward Nominal Wage Rigidity

$$W_t \geq W_{t-1}$$

Nominal wage can increase but it cannot fall. Interpretation? Labor Market Clearing

How does the DNWR affect the labor market?

- If $h_t < ar{h}
 ightarrow$ involuntary unemployment and $W_t = W_{t-1}$
- If $h_t = ar{h}
 ightarrow$ full employment, and $W_t > W_t 1$

In summary:

$$(W_t - W_{t-1})(\bar{h} - h_t) = 0$$

A slack labor market (unemployment) means that the downward

Exchange Rate Regimes

Exchange rate arrangements

- Fixed Exchange Rate: central banks guarantees convertibility of the domestic currency with a foreign currency at a fixed exchange rate. $\mathcal{E}_t = \bar{\mathcal{E}}$
- Floating Exchange Rate: the nominal exchange rate can change over time. Central bank focuses to achieve full employment and price stability in $P_t^{\it N}$

Pre-Boom: $Q_1^T = Q_2^T = Q_A^T$

Commodity Boom: $Q_B^T > Q_A^T$

Commodity Boom: $Q_B^T > Q_A^T$

With a fixed exchange rate, nominal wage must go up. Why?

Commodity Bust: $Q_C^T < Q_B^T$

Nominal wage rigidity + fixed exchange rate = unemployment

Restoring full employment: $E_F > \bar{E}$

Exchange rate flexibility can restore full employment

Summary

- Under fixed exchange rates:
 - Shocks can have asymmetric effects
 - Downward wage rigidity mediates the effect of negative shocks
- Under flexible exchange rates:
 - Can achieve full employment and price stability
 - Stabilize the economy through reallocation of demand