Udacity - Artificial Intelligence Nanodegree Program

Project: Forward Planning Agent Student: Jair Miranda França Submission Date: July, 25, 2021

1 Introduction:

The project is to build a planning graphic with various agents to solve a deterministics logistics planning problem; Air Cargo Transport System.

I build a planning agent to efficiently plan a strategy to reach the final goal.

We have 4 different cargo problems, and we'll describe below several different search algorithms.

1.1 Cargo Problems:

- 1. Cargos; C1, C2, Planes; P1, P2, Airports; JFK, SFO.
- 2. Cargos: C1, C2, C3, Planes; P1, P2, P3 Airports; JFK, SFO, ATL.
- 3. Cargos: C1, C2, C3, C4, Planes; P1, P2, Airports; JFK, SFO, ATL, ORD.
- 4. Cargos: C1, C2, C3, C4, C5 Planes; P1, P2, Airports; JFK, SFO, ATL, ORD.

1.2 Functions Implemented:

- **1.2.1 Action Layer -** Define mutex relation between two action in a given level:
 - 1. _incosistent_effects: The Idea is to check if any effect in actionA is a negation of actionB.
 - 2. inference: Check if any effect of action is negation of a precondition of the other.
 - 3. _competing_need: Check if the precondition of one level is mutually exclusive with a precondition of a parent layer.
- **1.2.2 Literal Layer -** Layer of states, logical condition.
 - _inconsistent_support: Check if actions in a layer and parent layer are pairwise mutex.
 - 2. _negation: Check one literal is a negation of another.
- **1.2.3 Heuristics on a Planning Graph -** Using the knowledge about the problem to find the solution in a more efficient way.
 - 1. h_levelsum Calculate the sum of levels of all goals until we find the target.
 - 2. h maxlevel Calculate the max level cost of all layers to reach the target.
 - 3. h_setlevel Find the first level layer where all goals are not mutex .

2- Results:

2.1 Reports on Each problem.

Problem 1 -							
Actions	20						
Search Algorithm	Expansion	Goal Tests	New Nodes	Time (s)	Plan Length		
Breadth First Search	43	56	178	0,00485	6		
Depth First Graph Search	21	22	84	0,00257	20		
Uniform Cost Search	60	62	240	0,0072	6		
Greedy Best First Graph Sear	Greedy Best First Graph Search						
Heuristic unmet Goals	7	9	29	0,00122	6		
Heuristic Planning Graphic Sum	6	8	28	0,09187	6		
Heuristic Planning Graphic Max Level	6	8	24	0,06683	6		
Heuristic Planning Graphic Set Level	6	8	28	0,12835	6		
A* Graph Search							
Heuristic unmet Goals	50	52	206	0,00354	6		
Heuristic Planning Graphic Sum	28	30	122	0,22651	6		
Heuristic Planning Graphic Max Level	43	45	180	0,25588	6		
Heuristic Planning Graphic Set Level	33	35	138	0,33378	6		

Problem 2 -						
Actions	72					
Search Algorithm	Expansion	Goal Tests	New Nodes	Time (s)	Plan Length	
Breadth First Search	3343	4609	30503	0,73592	9	
Depth First Graph Search	642	625	5602	0,99041	619	
Uniform Cost Search	5154	5156	46618	1,49222	9	
Greedy Best First Graph Search						
Heuristic unmet Goals	17	19	170	0,00911	9	
Heuristic Planning Graphic Sum	9	11	86	2,16440	9	
Heuristic Planning Graphic Max Level	27	29	249	4,53520	9	
Heuristic Planning Graphic Set Level	9	11	84	3,41640	9	
A* Graph Search						
Heuristic unmet Goals	2467	2469	22522	0,88160	9	
HeuristicPlanning Graphic Sum	357	359	3426	58,16600	9	
Heuristic Planning Graphic Max Level	2887	2889	26594	347,19510	9	
Heuristic Planning Graphic Set Level	1037	1039	9605	318,19710	9	

Problem 3 -							
Actions	88						
Search Algorithm	Expansion	Goal Tests	New Nodes	Time (s)	Plan Length		
Breadth First Search	14663	18098	129625	3,86499	12		
Greedy Best First Graph Search							
Heuristic unmet Goals	25	27	230	0,0133	15		
Heuristic Planning Graphic Sum	14	16	126	4,8675	14		
A* Graph Search							
Heuristic unmet Goals	7388	7390	65711	3,28572	12		
Heuristic Planning Graphic Sum	369	371	3403	86,67390	12		

Problem 4 -						
Actions	104					
Search Algorithm	Expansion	Goal Tests	New Nodes	Time (s)	Plan Length	
Breadth First Search	99736	114953	944130	34,33390	14	
Greedy Best First Graph Search						
Heuristic unmet Goals	29	31	280	0,02409	18	
Heuristic Planning Graphic Sum	17	19	165	8,23347	17	
A* Graph Search						
Heuristic unmet Goals	34330	34332	328509	20,726256	14	
Heuristic Planning Graphic Sum	1208	1210	12210	483,59964	15	

2.2 The worst algorithm

On the two first problems we can see the deep first graph search algorithm is unique to find the most plan length bigger than 6, so we'll not use it on problems 3 and 4.

2.3 Time to find solution analyses

Comparing problem one and two we have a significant increase in time to find solutions, especially those using A* search, graphic sum, max level and set level. Of course we have more than 3 times of action on problem 2.

So to run problem 3 and 4 we chose the more efficient algorithms:

- 1. Uninformed search; Breadth First Search.
- 2. Greedy Best First Graph Search: Heuristic Unmet Goals, Heuristic Planning Graphic Sum.
- 3. A* Graph Search: Heuristic Unmet Goals, Heuristic Planning Graphic Sum.

On problem 3, more complex than one and two, we can saw different behavior, 3 of 5 combined algorithms reach the best plan Length, BFS, A* unmet goals and A* with sum of levels, none of options with GBF reach the best plan length, and the fastest option is the A* unmet goals.

On problem 4, the most complex on all 4, only 2 of 5 reached the optimal plan length, the BFS and A* with Unmet goals, and the fastest option was is the A* with Unmet goals.

2.4 Relation between actions and expanded nodes.

As we can see when the actions increase the expansion increase too, and of corse new nodes are generated

3- Questions to answer.

3.1 Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real time?

GBF, unmet goal, A* unmet goal and BFS, this 3 can reach the best plan length and and very fast for a streaming application.

3.2 Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)?

For the large domain i should use A* with unmet goals, was the fastest and reached the optimal plan length.

3.2 Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?

The only two algorithms that find the optimal plans was the A* with unmet Goals and the BFS.