Pushdown Automata-PDA

Prof. (Dr.) K.R. Chowdhary *Email: kr.chowdhary@iitj.ac.in*

Formerly @ Dept. of CS MBM Engineering College, Present: Prof of CS, JIET, Jodhpur

Wednesday 15th April, 2020

Introduction to Pushdown Automata (PDA)

Definition

A PDA consists: a infinite tape, a read head, set of states, and a start state. The additional components from FA are: Pushdown stack, initial symbol on stack, and stack alphabets (Γ). PDA $M=(Q,\Sigma,\delta,s,\Gamma,Z_0,F)$, where,

Q is finite set of states,

 Σ is finite set of terminal symbols (language alphabets),

s start state (q_0) , F is final state.

 δ is transition function: $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow \textit{ finite subset of } Q \times \Gamma.$

The transition function of a PDA is so defined, because a PDA may have transitions without any input read.

kr chowdhary TOC 2/ 7

Introduction to PDA

The PDA has two types of storage; 1) infinite tape, just like the FA, 2) pushdown stack, is read-write memory of arbitrary size, with the restriction that it can be read or written at one end only.

Definition

ID (Instantaneous Description) of a PDA is: $ID: Q \times \Sigma^* \times \Gamma^*$, start-id $\in \{q_0\} \times \Sigma^* \times \{Z_0\}$, e.g., start ID may be (q_0, aaa, Z_0) .

kr chowdhary TOC 3/ 7

PDA Transitions

 $\delta(q,a,Z)=$ finite subset of $\{(p_1,\beta_1),(p_2,\beta_2),\ldots,(p_m,\beta_m)\}$. Therefore, $(p_i,\beta_i)\in\delta(q,a,z))$, for $1\leq i\leq m$. By default, a *PDA* is non-derministic machine. Due to this fact, a *PDA* can manipulate the stack without any input from tape. Following are some of the transitions in *PDA*:

- Case (a): A PDA currently in state q, stack symbol A, with input ε , moves to state q and write ε on the stack: $\delta(q, \varepsilon, A) = (q, \varepsilon)$.
- Case (b): A PDA currently in state q, with ε input, and stack symbol ε , moves to state q, and writes A on stack: $\delta(q, \varepsilon, \varepsilon) = (q, A)$.
- Case (c): A PDA in state q,

reads input a, with stack symbol Z, moves to state pand write β on stack: $\delta(q, a, Z) = (p, \beta)$.

4/7

kr chowdhary TOC

Language recognition: $a^n b^n$

A move of a PDA is defined as $(q, ax, Z\alpha) \vdash_M (q', x, \beta\alpha)$, if $(q', \beta) \in (q, a, Z)$. (In $Z\alpha$, Z is top symbol on stack)

Example

Construct a PDA to recognize $L = \{a^n b^n | n \ge 0\}$.

$$\vdash (q_2, b, AZ_0), \vdash (q_2, \varepsilon, Z_0), \vdash (q_3, \varepsilon, \varepsilon), \text{ the PDA halts & accepts.}$$

 $\vdash (q_1, bb, AAZ_0)$

Language Recognition: wcw^R

Example

Construct a PDA to recognize $L = \{wcw^R | w \in \{a, b\}^*\}.$

Solution: Transition function. moves, and PDA:

$$M = (Q, \Sigma, \delta, s, F, \Gamma, Z_0)$$

 $\Sigma = \{a, b, c\}, \ d \in \{a, b\}, \ c \in \Gamma$
 $Q = \{q_0, q_1, q_2\}, \ F = \{q_2\},$
 $\Gamma = \{a, b, Z_0\}$
 $\delta(q_0, d, \varepsilon) = (q_0, d)$

$$\delta(q_0,c,\varepsilon)=(q_1,\varepsilon)$$

$$\delta(q_1,d,d)=(q_1,\varepsilon)$$

$$\delta(q_1, \varepsilon, \varepsilon) = (q_2, \varepsilon)$$

Note that we have not included the transitions corresponding to first writing Z_0 on stack and finally retrieving it back. This is acceptable as PDA is non-deterministic.

PDA moves

PDA moves

- 1. $(q, x, \alpha) \vdash^* (q', \varepsilon, \beta) \Rightarrow (q, xy, \alpha) \vdash^* (q', y, \beta)$
- 2. $(q, xy, \alpha) \vdash^* (q', y, \beta) \Rightarrow (q, xy, \alpha\gamma) \vdash^* (q', y, \beta\gamma)$

The case 1., above is obvious, however, the case 2., is not guaranteed due to the trace of computation shown below.

