Algoritmos, Datos y Programas - 13/7/2010.

Práctica: Realice un programa que lea números enteros hasta leer el cero a partir de esos números debe ir creando una lista ordenada, considerando que si el número ya está en la lista, sólo debe contabilizar la cantidad de ocurrencias.

1. Ordenación de vectores.

- a) Defina el problema de ordenación en vectores.
- b) Mencione y describa al menos las características de dos métodos de ordenación que conoce. Destaque las diferencias más importantes entre los métodos mencionados.

2. Eficiencia.

- a) Defina el concepto de eficiencia.
- b) Explique de qué maneras puede medir la eficiencia de un algoritmo en tiempo y memoria.
- © Suponga que se quiere ordenar un arreglo de N elementos y existen dos soluciones:
 - 1- Ordenar el arregio completo por alguno de los métodos planteados en 1).
 - 2- Dividir el arreglo en dos partes, ordenar cada una de las partes por el método elegido en el inciso anterior y luego realizar un merge entre las dos partes ordenadas (el merge tiene orden N, siendo N la cantidad de elementos a ordenar)

¿Cuál de las dos soluciones es más eficiente en cuanto a tiempo? Justifique su respuesta

3. Modularización y parámetros.

- a) Defina el concepto de modularización. Describa las principales ventajas.
- b) Analice y diferencie los medios de comunicación entre los módulos.
- d) Qué diferencias hay entre un parámetro por referencia y una variable global.

4. Recursión

- a) Explique cuáles son las condiciones del problema que llevan a una solución recursiva.
- b) Cuáles son los aspectos que deben estar presentos en una solución recursiva.
- c) Escriba un módulo "potenciaRecursiva" que reciba un número x y otro número n y calcule x donde n>=0), de manera recursiva.
- d) Escriba un módulo "potencialterativa" que reciba un número x y otro número n y calcule xº (donde n>=0), de manera iterativa.
- e) Realice un análisis detallado de eficiencia desde el punto de vista de la memoria empleada en las soluciones c) y d) para el cálculo de (3⁴)

5. Corrección.

- a) Defina el concepto de corrección.
- b) ¿Cuáles técnicas conoce para "demostrar" corrección? Describa brevemente cada una de
- c) ¿Existe una única solución correcta a un problema planteado? Justifique.
- d) ¿Las estructuras de datos elegidas determinan que una solución sea correcta o no? Justifique.

