Übungsblatt 2 zu Modellkategorien

Das ist das Koende, mein einziger Kofreund.

Aufgabe 1. Beispiele für Limiten

- a) Was ist das initiale Objekt in der Kategorie der Gruppen?
- b) Für die Fans von Optimierung unter euch. Sei \mathcal{C} die zur Partialordnung aller konvexen Teilmengen des \mathbb{R}^n gehörige Kategorie. Was sind Koprodukte in \mathcal{C} ?
- c) Zeige: In der Kategorie der k-Vektorräume ist k[X] der Kolimes des Diagramms $(k[X]_{\leq 0} \hookrightarrow k[X]_{\leq 1} \hookrightarrow k[X]_{\leq 2} \hookrightarrow \cdots)$. Dabei ist $k[X]_{\leq n}$ der Unterraum der Polynome vom Grad $\leq n$. Was ist der Limes dieses Diagramms?
- d) Finde ein Diagramm mit Limes k[[X]], dem Vektorraum der formalen Potenzreihen!

Aufgabe 2. Freie Konstruktionen

- a) Sei $V: \operatorname{Vect}(k) \to \operatorname{Set}$ der Vergissfunktor und $L: \operatorname{Set} \to \operatorname{Vect}(k)$ der Funktor, der einer Menge X den freien k-Vektorraum auf X zuordnet. Beweise: $L \dashv V$.
- b) Erkläre, was " $L \dashv V$ " anschaulich bedeutet! Verwende Erzeuger und Relationen.
- c) Finde Linksadjungierte zu den Vergissfunktoren Mon \rightarrow Set und Top \rightarrow Set.

Aufgabe 3. Das Tensorprodukt von Moduln als Koende

Sei R ein Ring. Seien M ein Rechts-R-Modul und N ein Links-R-Modul. Zeige:

$$M \otimes_R N = \int^R M \otimes_{\mathbb{Z}} N.$$

Aufgabe 4. Das australische Ninja-Yoneda-Lemma

Sei $F:\mathcal{C}^{\mathrm{op}}\to\mathrm{Set}$ eine Prägarbe. Beweise das australische Ninja-Yoneda-Lemma:

$$F = \int^{c \in \mathcal{C}} F(c) \times \operatorname{Hom}_{\mathcal{C}}(\underline{\ }, c).$$

