

_		0 (4)	11 >010/12
学院和秘管院车级2005	7		号3015201043
			9
课程名称形态传感光和	温度传码实验日期		:绩
WITTH 1	路测气体的绝色	《指数	
同组实验者	02 11 2	K TOWN THE TAX TO THE	

实验13 压力传感器和温度传感路测气体的绝热分数。

b.实验目的:1.用绝热膨胀法测定空气的业热落此。

2、观察热力学过程中状态。变化及基本物理规律。

3. 营习总体压力传感器和电流型集成温度传感器的原理及使用方法。

C.实验仪器:空气业热溶业测量仪,放仪器主要尼含储气瓶(由玻璃瓶,进气治塞、橡皮塞组成),两尺传感器,测量空气压强的三位半数宫电压表,测量空气温度的四位半数宫电压表。 与压计,用于测量大气压。

d.实验原理:

1.压力传感器与温度传感器.

传感器是利用某种效应将一待测量变换成局于测量的量(通常电管量)的器件,其种类繁多,应用于近。按微量变换的功能可分为物理传感器和化管传感器.根据传感的工作原理不同一般又分为知性理传感器和结构型传感器两种。

(1) 扩散硅压力传感器.

半导体材料因侵力而产生应变时,由于载流飞的浓度和丝粉年的变化而导

致电阻率发生变心的现象和专压阻效应.

在硅膜片表面扩散一个四端之中,由于硅层各向导性材料,指的四端应变片应设置在剪切应场最大的位置和剪切后阻然数量大的方向上,在四端应变片的一个方向上为电流源或电压源,当有剪切应力作用时,将会对一个重直电流方向的变化,引起成方向的电位分布发生变化,从而在成方向的两端可以得到电待测压力引起的输出电压.

M

扩散硅压力传感器具有体 lux 积小一颗度高、稳定性好等优点。 lux

(2)电池型集成温度传感路.

温度传感强良利用金属、特体

材料的热取特准及PN结的证的

AD\$90电流型集成温度传感器是由多个参量相同的主极管和电阻组成、具有精度高、线性的,使用方便等优点,测量范围的'c~150'c.

2. 空气业热塔业的洲量.

后体的此热溶此CV 是指单位恢量的气体学体积,不变时,在不发生化学企业和更的条件下,温度改变1K价级收的热量

BY CV= dov

年 月 日

dav为后体在体积,不要时,温度变化所吸收或故饮的热量.

后体的心质压热溶 Cp是指单位恢量的总体,当压强不变时,在不发生心学自应和相变的条件,温度改变 K 阶吸收或放出的热量 即 clap, dop为气体在压链不变时,温度变化价吸收或放出的热量 根据热力管第一定律,气体吸出或放出的热量等于气体的内能增加2

dR=dU=从は)RdT = dR= Mは)R

其中.M为摩尔质量,i为与体自由度.R为常量.则 CV=六份R.

和对引做的功do=du+W,在皮容条件下气体不做功,则

同理在压强不变的条件下,由热力等第一定律 da=du+w= 点(空) RdT+ 由脚体)物态方程可得在等压条件下 pdv= 点 RdT. pdv.

所以 G= de= が(注1)PdT= が(注1)R.

根据热格此定义》=公,则可得到户,其也被秘书与体格热指

数,且55人体自由度相关.

若条物的状态。由心过程不与外界交换热量,则和为论热过程在良好的绝热。的材料隔绝的系统中进行的过程,或者进了过纸进行很快,以我同时界没有显著的故量交换过程均可如似看作很热,

市程本用热力管第一定律和2强想气体状态,市线,可导致论热,过程市程: PV=常量 7 可见经热,过程中7 是一个重要的物V^L/T=常量 强量.
P^L/T-1/=常量)
测定喷气心热,客心、装置如图价示:

电流型集成温度传感器AD\$90,接bV直流电源、它的测温灵敏度为1,UA1℃,若净接 5kΩ 电阻可产生 5mV/℃的信号电压.接 0~2V量稀四位半数字电压表,可测量到 0.02℃温度变化; 4为与体压力传感器积分,当待测与体压强力环境大气压 po+10.00kkk 时,数字电压表显示为200mV,测量气体压强灵敏度为20mV/kkk.测量精度为5kk.

测量空气此热感此方法如下

着抗关的储气瓶放气烟门C2.将原处子环境大气下10、温度为了(宝温)的空气从进气烟门C1打入储气瓶内,故时瓶内岭气压锅槽大.温度升高.当达到进气烟门C1大烟进气烟门C1.待温度稳定后、瓶内空气处于状态、工、V/为/储气瓶帘线,配后来就打开放气烟门C2.使瓶门空气5大气相弹,瓶的空气压为5大气散师签字:
很快达到平线行,文即关闭 C2.此时达到状态工., Rists 军月日

e. 实验步骤

小开启电源,将仪器:涿热、20 min,然后打开放后烟门,用调度电路,将>10半数字电压表示值调为D.

实验中只要测出的、P、和P、这一个量、P的求得妈的此热紧心、

2.用气压计测度大气压强力。

由上式D、D联立消支V、V2.并取对数位可得

分用压力传感器和AD\$90温度传感器测量储匀瓶内空气的无磁和温度。

(1) 把放气阀门关闭, 进气阀门打开. 用打气球把空气稳停的打进, 储气瓶内, 既后关闭进气阀门, 待刷瓶肉压锅相匀稳定作、冷桑压

强PI 和温度T.的值

12) 决婚打升阀门C. 持续约15时间, 扭嫌关闭阀门C2. 当《路示数稳定征记下温度下和储马瓶内的马体飞强尼".

的重复五本的器(1)、0)8次、特价得数据填入数据表格的

4月前 「絕思过程 P.W=R.W => V= 19R0-19P1 求得空 | 等温过程 P.W=P.W => V= 19R0-19P1 求得空

与此恐溶的值,并与文献进行此较.

Pi= Pi'/2000 + Po B= B'/2000 + Po.

f.数据表格.数据处理.

初始室温 To=1449.6mV

1 €00							1 - K			
实验	Po/105Pa	Ti/mv	TelmV	Pi/mV	B1/mV	Pi/10th	Block	Y	y	相对各
ı	1.0358	1449.7	1450.3	[10-]	26.6	1.09085	1.0491	1.327		
2			1462.1							麦苗似
3	1.0358	1453.1	14547	116.4	29.4	1.094	2020.1	1.348		1 40
4	1.0358			and a second construction of the second	AND DESCRIPTION OF THE PARTY OF	According to the second	-			一种杂
5	1.0358	1452.2	1413.2	[12.8	27.2	1.0922	1.0494	1.324	1.394	0.57%
6			1455.b							
7 .	1.0358	1452.9	145240	114.1	27.5	1.09285	1.04955	1.326		
8	1.0358	1454.6	1453.0	113.2	26.8	1.0924	1.0492	1.319		

教师签字:

年 月 日

表格咖選量解释:

Po为大气压强,Pi,T,为压力传感强和温度传感器示数. Pi,Tz

 $P_1 = \frac{P_1'}{2000} + P_0$, $P_2 = \frac{P_2'}{2000} + P_0$ 为实验前位的大气形.

由绝热方程 PIVIY=PoVY 和等温过程 PIVI=PoV2 可解得绝热措施

改数据处理过税:

P_=110.1/2000+Po=1.0908以10品同程P=1.0491

XIO Pa

实验1: 19 Po=19 (1.0358×105)= 5.015276

19 Pi= 19 (1.09025×105)= 6.037765

1gPz = 1g(\$1.0491×105)=5.0208169

$$\therefore \gamma_1 = \frac{\lg p_0 - \lg p_1}{\lg p_2 - \lg p_1} = \frac{-0.022439}{-0.016948} = 1.327.$$

\$30 2: P1=112.1/2000 + P0= 1.09135x10 P2= 33.6 + P0= 1.0526x15 Pa

·· /2= 1gPo-1gP1 = -0.022887 = 1.439. 同理可得 /3. /4··· /8.

因为8组实验中1分5.7.8 五组实验前后温度差计过大于0分.均含年.59米用2.4.6三组数据取平均.

7=(/2+1/4+1/6)/3=1.394

相对百分差 | 1-394-1.402|/1.402 ×100%=0.57%.

g.实验分析讨论

[误差分析]

小条新长差、压力传感器和温度传感器存在精度问题。可能存在关系;储气和漏气.

2. 导待时间不够未导到瓶内与体格。它就分录数据.

3、放气耐囱过长或过短可能导致误差.

4. 宝温可能在实验过程中波动,初始大气压局也可能存在波动,可导致误差.

[拓展与设计] 设计一种测量氧气业热溶此的实验装置和方法装置图记为空气业进客此装置.将进引电接一氧气泵,进气对装瓶内尼压打到110~130mV.其它步骤与此实验仍一更致. 售客与农实验取平均值。

教师签字:

年 月 日

	她室温了	Ti/mV	T2/mV	Pi/mV	B/mV	Pi/(iospa)	B(10 Pa)	γ	$\bar{\mathcal{V}}$	相对创
头近	Po. 1 (105 Pa)	1449.7	1450.3.	110.1	26.6	1.09085	1.0491	1.327		
2	1.0358	1462.2	14521	1/2.1	33.6	1.09185	1.0526	1.439		
3	1.0358		1454.7	116.4	29.4	1.094	1.0505	1.348	1.394	0.57%
1-17	1.0358	1453.3	[453.]	117.8	33.5	1.0947	1.05255	1413 1		• • • • • • • • • • • • • • • • • • • •
7	1.0358		1453.2	112.8	27.2	1.0922	1.0494	1.324		
5	1.0358		1455.6	µb.0	28.1	1.0938	1.04985	1.329 1		
	1.0358	1452.9		114.]	27.5	१. ७१७१५	1.04955	1.326		
7 8	1.0358	4 4	1453.0	113.2	26.8	1.0924	1.0492	1.319		
**************************************	enge te nationalist	lg Po = 19(1. lg Po = 5.0	37765	outh IL John		19P2-19P1 19P2-19P1 1-0.016948	= 1.427			
	2. 1gP 1gP 3.1gPi		3 4	19 Po - 191 19 P2 - 19			1.439			