Chapitre 2: Analyse combinatoire.

2.1 Principe fondamental de dénombrement :(Principe De Multiplication. (PDM)).

Si une expérience (ou procédure) peut être décomposée en $oldsymbol{k}$ étapes telles que :

- La première étape peut produire n₁ résultats possibles.
- Pour chaque résultat de la première étape, il y a n_2 résultats possibles pour la deuxième étape.
- Pour chaque résultat des deux premières étapes, il y a n_3 résultats possibles pour la troisième étape.
- Et ainsi de suite.

Alors le nombre de résultats possibles de l'expérience est égale à :

$$n_1 \times n_2 \times n_3 \times ... \times n_k$$

2.2 Arrangements Sans Répétition : (A.S.R.)

Soit $E=\{e_1,e_2,e_3,...,e_n\}$ un ensemble de n éléments distincts.Soit $1\leq p\leq n$. On appelle arrangement sans répétition d'ordre p de E, toute suite $\overline{\text{ORDONNEE}}$ de p éléments $\overline{\text{DISTINCTS}}$ de p.

Proposition: Leur nombre est égale à :

$$A_n^p = n(n-1)(n-2)...(n-p+1) = \frac{n!}{(n-p)!}$$

2.3 Arrangements Avec Répétition: (A.A.R.)

Soit $E=\{e_1,e_2,e_3,...,e_n\}$ un ensemble de n éléments distincts. Soit $p\geq 1$. On appelle arrangement avec répétition d'ordre p de E, toute suite <u>ORDONNEE</u> de p éléments <u>NON NECESSAIREMENT DISTINCTS</u> de p.

Proposition : Leur nombre est égale à :

$$\widetilde{\mathcal{A}}_n^p = n^p$$

2.4 Permutation Sans Répétition : (P.S.R.)

Soit $E=\{e_1,e_2,e_3,\;...,e_n\}$ un ensemble de n éléments distincts.

On appelle permutation sans répétition de E, toute suite $\overline{\text{ORDONNEE}}$ des n éléments $\overline{\text{DISTINCTS}}$ de E.

Proposition : Leur nombre est égale à :

$$P_n = n!$$

2.5 Combinaison Sans Répétition: (C.S.R.)

Soit $E=\{e_1,e_2,e_3,...,e_n\}$ un ensemble de n éléments distincts.Soit $1\leq p\leq n$. On appelle combinaison sans répétition d'ordre p de E, toute suite $\overline{\text{NON}}$ ORDONNEE de p éléments $\overline{\text{DISTINCTS}}$ de E.

Proposition: Leur nombre est égale à :

$$C_n^p = \frac{n!}{(n-p)!p!}$$

2.6 Permutation Avec Répétition : (P.A.R.)

Soit $F = [e_1, e_1, ..., e_1, e_2, e_2, ..., e_n, e_n, ..., e_n]$ une collection de p éléments $(p \ge n)$ dont : $\sum_{k \ge 1} P_k = n.$

 p_1 fois l'élément e_1 , p_2 fois l'élément e_2 , ..., p_n fois l'élément e_n .

On appelle permutation avec répétition de F, toute suite $\overline{ ext{ORDONNEE}}$ des \overline{p} éléments de F.

Proposition : Leur nombre est égale à :

$$\widetilde{\boldsymbol{p}}_{p_1p_2...p_n} = \frac{(n!)}{p_1!p_2!...p_{\boldsymbol{k}!}}$$

2.7 Combinaison Avec Répétition : (C.A.R.)

Soit $E=\{e_1,e_2,e_3,...,e_n\}$ un ensemble de n éléments distincts. Soit $p\geq 1$. On appelle combinaison avec répétition d'ordre p de E, toute suite $\overline{\text{NON}}$ ORDONNEE de p éléments $\overline{\text{NON NECESSAIREMENT DISTINCTS}}$ de E.

Proposition : Leur nombre est égale à :

$$K_n^p = C_{n+p-1}^{n-1} = C_{n+p-1}^p$$

Chapitre 3 : Calcul des probabilités.

Partie 1: Espaces probabilisés.

Définition 1 :

On appelle <u>expérience aléatoire</u> toute expérience dont le résultat dépend du Hasard.

Définition 2 :

On appelle $\underline{ensemble}$ fondamental (ou univers) de l'expérience aléatoire, l'ensemble de tous les résultats possibles de cette expérience, il est noté par Ω .

Définition 3 :

Un <u>événement</u> lié à une expérience est un <u>sous ensemble</u> de l'ensemble fondamental Ω .

Un événement de la forme $A=\{w\}$, où $w\in\Omega$, est appelé événement élémentaire.

Définition 4 :

L'événement A est dit <u>réalisé</u> si le résultat de l'expérience est un élément de A.

Remarque:

- Ω est dit événement certain.
- Ø est dit événement impossible.

Opérations sur les événements

Soient A et B deux événements d'une même expérience aléatoire.

a) Union (disjonction):

L'événement $A \cup B$ est réalisé \Leftrightarrow l'un au moins des événements A et B est réalisé.

b) Intersection (injonction):

L'événement $A \cap B$ est réalisé \Leftrightarrow les événements A et B sont réalisés simultanément.

Remargue: Si $A \cap B = \emptyset$ on dit que A et B sont incompatibles.

c) Evénement complémentaire : noté \overline{A} (ou encore A^c).

L'événement \overline{A} est réalisé \Leftrightarrow l'événement A n'est pas réalisé.

d) Inclusion:

 $A \subset B \Leftrightarrow$ la réalisation de l'événement A entraine celle de l'événement B.

Système complet d'événements :

Définition:

Soit Ω un ensemble fondamental d'une expérience aléatoire. On appelle <u>système complet d'événements</u> de Ω , toute famille de événements A_1,A_2,\ldots,A_n vérifiant les 2 propriétés suivantes :

1)
$$A_i \cap A_j = \emptyset$$
 , $\forall i \neq j$.

2)
$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup ... \cup A_n = \Omega$$
.

Tribu (ou σ -Algèbre) :

Soit Ω un ensemble fondamental d'une expérience aléatoire et soit $\mathcal A$ un ensemble de parties de Ω ($\mathcal A$ \subset $\mathcal P(\Omega)$). $\mathcal A$ est dit tribu sur Ω si :

- 1) $\Omega \in \mathcal{A}$.
- 2) $siA \in \mathcal{A}$ alors $\overline{A} \in \mathcal{A}$.
- 3) Pour toute famille $(A_i)_{i\in I}$ d'événements de $\mathcal A$

on a:
$$\bigcup_{i \in I} A_i \in \mathcal{A}$$
.

Où $I \subseteq \mathbb{N}$.

lemarque:

Le couple (Ω,\mathcal{A}) est appelé espace probabilisable.