

Indian Institute of Technology, Bombay Department of Electrical Engineering Electronic Devices Lab(EE-236)

O : 0 D / M | 1 00 1 0000

Quiz 2, Date: March 23rd, 2022

Timing: 2:00 PM to 2:50 PM Spring 2022 Max marks: 5

Instructions

- You are allowed to use only those models that have been provided. You can download by clicking the name.
- Read the questions thoroughly.
- You can use previous lab reports and netlist.

Part-1

- 1. We want to build a good analog switch i.e. $V_{out} = V_{in}$, on resistance $(R_{ON}) = |V_{DS}/I_{DS}| = 0 \Omega$ for all V_{in} when control input is enabled. Consider VDD = 3.3 V
 - Write ngspice netlist for below PMOS pass gate having W/L= 4 $\mu m/0.4 \mu m$. Plot and comment on V_{out} vs V_{in} , R_{ON} vs V_{in} .
 - Similary, write ngspice netlist for below NMOS pass gate having W/L= $4 \mu m/0.4 \mu m$. Plot and comment on V_{out} vs V_{in} , R_{ON} vs V_{in} . Which MOSFET has higher R_{ON} and explain the reason?

Figure 1: PMOS transistor switch

Figure 2: NMOS transistor switch

• Write ngspice netlist for below transmission gate circuit with each MOSFET having $W/L=4 \ \mu m/0.4 \ \mu m$, plot V_{out} vs V_{in} , R_{ON} vs V_{in} . Explain the reason for small peak in R_{ON} plot and mention the maximum value of R_{ON} . Change device parameters such that on-resistance on either side of the small peak is the same. Show both the plots of R_{ON} vs Vin before and after changing device parameters.

Note: Ignore the peak value of R_{ON} at V_{in} near 0 V for PMOS, NMOS, transmission gate plots

Figure 3: Transmission Gate Circuit

Note: For both part -1&2 questions use PMOS_NMOS model file, the same as you have used for CMOS inverter experiment in last lab (Click on the name)