Examen

- 1. Flutur => a=6 Angelia - Bostela => b=8
- 2. mr. permutati impare de ordin 5 din grupul de permutati S9

Ordinal unei promutori este cel mai mic multiplu diribri lungimite ciclurilor, daca ordinal este 5, atunci ciclurile trebuie sa aiba lungimite 1 sau 5 si cel putin ciclurile trebuie sa lungimilor ciclurilor trebuie sa unul sa fie 5. Suma lungimilor ciclurilor trebuie sa die 9. Asta înveamna că avem un singur care:

. 5 1 1 1 1

Ascolar, T rearranjeaza 9 elimente si ara 5 ciclii
7m descempennere
9+5 = 14. Ascolar Te para => mu exista permutari cu
proprietatea courta.

4.
$$8^{146} = ? \pmod{37}$$

Observam ca 37 exte numer prim $= 36 \equiv 1 \pmod{37}$ Este suficient sa determinam $146 \equiv 7 \pmod{36}$ $(14,36) \neq 1$

Vom obsorva repetitule lui 14 in 214 > C7236

Fig. 14 Este clar ca
$$6^6 \pm 1$$
; $6^6 = 46656$

Virum sā veri ficam $46655 = ? \pmod{6}$
 $14^2 = 16$

Virum sā veri ficam $46655 = ? \pmod{6}$
 $14^3 = 8$

Neci $14^6 = ? \pmod{36} = 32 \pmod{36}$
 $14^5 = 20$
 $14^5 = 20$
 $14^6 = 28$
 $14^7 = 32$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^8 = 16$
 $14^$

=) $8^{146} = 10 \pmod{37}$

8.
$$f:R \rightarrow R$$

$$f(x) = \begin{cases} x^{2} + 4x - 2, & x \leq -2 \\ -4x - 3, & x \in (-2, 1) \end{cases}$$

$$-x^{2} + 4x - 9, & x \geq 1$$

$$f injectiva pe (-2, 12]?$$

$$f^{-1}(f-6, 8])$$

bornsideram
$$f_3(x) = -x^2 + 4x - 9^3 = 1$$

function de gradul \overline{U}
coef. Hormanului dominante magaturi $\sqrt{\left(-\frac{b}{2a}, -\frac{b}{4a}\right)} = 1$ $\sqrt{\left(-\frac{b}{2a}, -\frac{b}{4a}\right)} = 1$ $\sqrt{\left(-\frac{b}{2a}, -\frac{b}{4a}\right)} = 1$ $\sqrt{\left(-\frac{b}{2a}, -\frac{b}{4a}\right)} = 1$

Deci pentru $x \in [1, 2]$ $f_3(x)$ este strict crosectoore $f_3(1) = -6$

$$\frac{1}{g_3(x) - 6} \frac{2}{77 - 5} \frac{3}{55} \frac{3}{55} - 6$$

Doim sa verificam daca 7 xo E(-2,1) aî Jz(xo) E[-6,-5]

Down sa verification

Pp
$$f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$$

Po $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

Po $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

Po $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

For $f_2(x) = -6(=) -4x - 3 = -6 (=) x = \frac{3}{4} \in (-2, 1)$

Flutur Amgelica - Costila

Trebuie sa gasim toti x cu proprietatea ca $f(x) \in (-6, 8]$

• pourin de la
$$x_3 \in [1,+\infty)$$
, $f_3(x) = -x^2 + 4x - 9$.

punctul de maxim al functiei il reprezinta varful

poraboli $V(2,-5) = y_3 \text{ max} = -5$

burn
$$f_3(1) = -6$$
 pri pe $[1,2)$ f_3 e strict overscateure =) $(1,2)$ burn $f_3(3) = -6$ pri pe $[2,3)$ f_3 e strict descrescateure =) $f_3(3) = -6$ pri pe $[2,3)$ f_3 e strict descrescateure =) $f_3(3) = -6$ pri pe $[2,3)$ f_3 e $f_3(3) = -6$ pri pe $[2,3)$

X z ∈ (-z, 1), respectivi f z(x) = -4x-3
 functié de gradul I, struct desoresca toure (coeficiental termenului dominant negative)

$$\frac{x}{|z(x)|} = \frac{3}{4} \frac{17}{-6} = 0$$
Rezolvary $f_z(x) = -6 = 0$ $x = \frac{3}{4}$

=)
$$X \in \left(-2, \frac{3}{4}\right)(2)$$

* X1 \(\int (-00, -2]\), respectivi \(f_1(x) = x^2 + 4x - 2\)

functie de gradul al \(\overline{I}\) -lea au minim global in ref.

parabolei (coeficienteil termenului dominant pozitiv)

Rezolvam ecuatia $f_1(x)=8$ $f_1(x)=x^2+4x-z=8=) x_1=-z-\sqrt{14}$ $x_2=\sqrt{14}-z \notin (-\infty,-z)$

81(x) = -6 L=> x2+4x-z=-6-) x1=xz=-z (vôrgul, pernet de minim)

Deci x, E(-00,-2] descrie door o semiparabelà pontru f(x) pe (-00,-2], f(x) functie strict descrescatoore =)

=> xe [-2, xe [-z- 14, -2) (3)

Dim (1) $_{3}(z)$ $_{7}(z)$ $_{7}(z$

$$a = 6$$
 $b = 8$
 $c = 14$
 $d = 48 + 64 + 1 = 113$

(14, 113 X) $\Delta 72[x]$

i'

 $i = \int_{140 + 113} x \cdot b / a_1 b \in 72[x]^3$

Daca $x^3 - 4x + 6 \in i$, atumal are exists um $t \in 72$
pt core $14 \cdot t = 6$ Fals

=) $x^3 - 4x + 6 \notin i$

La D am folosit tevrama I de iromorfism:

Dooa A imel, I, J A A cu i = 7.

Attunci
$$4/i$$
 $\approx A/J$
 $P(\hat{x}) = \hat{x}$ unde $x \in A$
 $|| A'' = clasa Tor A/i$
 $|| - || clasa Tor J/i$
 $|| - || clasa Tor J/i$
 $|| \sim || clasa$

10.
$$\begin{cases} 7 \times = 6 \text{ (meol 8)} \\ 8 \times = 5 \text{ (meol 9)} \\ 8 \times = 9 \text{ (meol 17)} \end{cases}$$
Simplification sixtemul
$$7 \times = 6 \text{ (meol 8)}$$

$$8 \times = 5 \text{ (meol 9)}$$

$$8 \times = 6 \text{ (meol 9)}$$

$$8 \times = 1 \times 8 \times 9 \text{ (meol 17)}$$

$$8 \times = 9 \text{ (meol 17)}$$