Lecture 13 Competitive Equilibrium in Two-Period Model

Hui-Jun Chen

The Ohio State University

May 5, 2022

real interest rate r increase \Rightarrow budget line rotate

Figure 9.12 An Increase in the Real Interest Rate

- Recall $we = y t + \frac{y' t'}{1 + r}$, $r \uparrow \Rightarrow we \downarrow$
- lacktriangledown can do nothing: pivot around E
- similar to wage increase (slope

 †)
- income & substitution effects (change in relative price)
- income effect depends on the sign of saving s

Hui-Jun Chen (OSU) Lecture 13 May 5, 2022 2/14

Increase in Real Interest Rate: Effect on Lender (s > 0)

Figure 9.13 An Increase in the Real Interest

Let initial bundle be A.

- Substitution effect: rotate from \overline{AE} to \overline{FG}
 - : $r \uparrow$, current consumption pecome more expensive \Rightarrow $c_D < c_A, c_D' > c_A'$
- Income effect: shift from \overline{FG} to \overline{BE}
 - normality: $c_B > c_D$, $c_B' > c_D$
 - $c' \uparrow$, : both effects aligned
 - c and s=y-t-c are ambiguous, \because both effects contradict

Hui-Jun Chen (OSU) Lecture 13 May 5, 2022 3/14

Increase in Real Interest Rate: Effect on Borrower (s < 0) Let initial bundle be A.

Figure 9.14 An Increase in the Real Interest Rate for a Borrower

- Substitution effect: rotate from \overline{AE} to \overline{FG}
 - : $r \uparrow$, current consumption become more expensive \Rightarrow
 - $c_D < c_A, c'_D > c'_A$ [same as lender!
- **Income effect**: shift from \overline{FG} to \overline{BE}
 - normality: $c_B < c_D, c_B'$ [opposite to lender!]
 - $c, s \downarrow$, : both effects aligned
 - c' is ambiguous, : both effects contradict

Lecture 13 May 5, 2022 4 / 14

Both borrowers and lenders experience intertemporal substitution:

- $r \uparrow \Rightarrow$ cost of current consumption $\uparrow \Rightarrow c \downarrow$
- aggregate effect depends on the distribution of borrowers and lenders
 - : both effects are in opposite directions
 - important and active research topic in macro!
- tendency for confounding income effects on borrowers and lenders to roughly cancel out, still effect on aggregate consumption is not guaranteed.

Lecture 13 May 5, 2022 5/14 Impose lump-sum tax T and issue government bond B to finance government spending G in each period.

- lacksquare government purchase G unit of good today and G' tomorrow,
- \blacksquare impose T and T' of lump-sum taxes to consumers, and
- Issue B unit of bond today and pay back (1+r)B tomorrow.

Budget constraints:

date 1:
$$G' + (1+r)B = T'$$
 (2)

$$\Rightarrow$$
 lifetime budget constraint : $G + \frac{G'}{1+r} = T + \frac{T'}{1+r}$ (3)

Budget deficit is allowed in one period, but must be repaid in the future.

Hui-Jun Chen (OSU) Lecture 13 May 5, 2022 6 / 14

A competitive equilibrium given government spending and consumers' endowment is a set of **endogenous quantities and prices** of current and future consumption, current and future lump-sum taxes, savings, government bond, as well as the real interest rate such that

- Taken the real interest rate and lump-sum taxes as given, consumers maximized their lifetime utility subject to the intertemporal budget constraints.
- Taken the real interest rate as given, the intertemporal government budget constraint holds.
- 3 The credit market clears determines the equilibrium real interest rate.

Hui-Jun Chen (OSU) Lecture 13 May 5, 2022 7/14

Two-Period Competitive Equilibrium in Math

A competitive equilibrium given exogenous quantities $\{G, G', Y, Y'\}$, is a set of endogenous quantities and prices $\{C, C', S, T, T', B, r\}$

1 Taken r, T, and T', consumers solve

$$\max_{C,C'} U(C,C') \quad \text{subject to} \quad C + \frac{C'}{1+r} = Y - T + \frac{Y' - T'}{1+r},$$

where solutions are C^* , C'^* , and $S^* = Y - T - C^*$.

The present value of government budget constraint holds:

$$G + \frac{G'}{1+r} = T + \frac{T'}{1+r},$$

where government bond B is determined by B = G - T.

3 The **credit market clears**: S = B at the equilibrium interest rate r^* .

Lecture 13 May 5, 2022 8/14

The Credit Market and GDP Accounting

In one-period model, firm and consumer interact in the labor market.

Here, government and consumer interact in the credit market.

- lacksquare S is private saving, and $-B=S^g$ is public saving
- lacksquare closed economy: national net saving must equals 0, so S-B=0.

current consumer budget:
$$S=Y-T-C$$
 with current gov budget: $S=Y-(G-B)-C$
$$S=B: Y=C+G$$
 future consumer budget: $(1+r)S=C'+T'-Y'$ with future gov budget: $(1+r)S=C'+(G'+(1+r)B)-Y'$
$$S=B: Y'=C'+G'$$

Hui-Jun Chen (OSU)

Lecture 13

An Example

Suppose G = G' = T = T' = B = 0, i.e., government is ignored, then

consumer: let $U(C,C') = \ln C + \ln C'$, and Y = Y' = 1,

$$\max_{C,C'} \ln C + \ln C' \quad \text{subject to} \quad C + \frac{C'}{1+r} = 1 + \frac{1}{1+r}$$

■ FOC:

$$MRS_{C,C'} = \left(\begin{array}{c} C' \\ \hline C \end{array} \right) \Rightarrow C + \frac{(1+r)C}{1+r} = \frac{2+r}{1+r}$$

$$C' = \left(\begin{array}{c} (+t)C \\ \hline C \end{array} \right) \Rightarrow 2C = \frac{2+r}{1+r} \Rightarrow C^* = \frac{2+r}{2(1+r)}$$

■ credit market clear:

$$S = B = Y - T + C^* = 1 - 0 - \frac{2 + r}{2(1 + r)} = 0 \Rightarrow r^* = 0 \Rightarrow C = C' = 1$$

Lecture 13 May 5, 2022 10 / 14

Ricardian Equivalence

In this model, the timing of taxes is **neutral**: no effect on the real interest rate or on the consumption of individual consumers.

Recall consumer and government budget constraint:

consumer:
$$G + \frac{G'}{1+r} = T + \frac{T'}{1+r}$$

$$C + \frac{C'}{1+r} = Y + \frac{Y'}{1+r} + \left(T + \frac{T'}{1+r}\right)$$

$$= Y + \frac{Y'}{1+r} - \left(G + \frac{G'}{1+r}\right)$$

Therefore, for any tax scheme such that government budget constraint holds, there's no effect on r, C and C'.

Lecture 13 May 5, 2022 11 / 14

丁く丁司

Figure 9.16 Ricardian Equivalence with a Cut in Current Taxes for a Borrower

Suppose under tax scheme (T,T'), consumer:

- \blacksquare has endowment point E_1
- chooses optimal bundle A If there's a tax cut scheme (T, T')such that (G, G') remain the same,
 - lower current taxes $(\tilde{T} < T)$
 - but higher future taxes $(\tilde{T}' > T')$

Then consumer has endowment E_2 , but still choose optimal bundle A.

Ricardian Equivalence and Credit Market

G=T+ B following the tax cut in last slide, $T \downarrow \Rightarrow \text{larger deficit today}$

Figure 9.17 Ricardian Equivalence and Credit Market Equilibrium

- \blacksquare Recall B = G T, $(A \uparrow)$ bonds today (demand ↑)
- more private saving today (supply \uparrow)
- Ricardian Equivalence: both shifts exactly offsets, $r_2 = r_1$
- Recall PIH: tax cut is 100%temporary!

Lecture 13 May 5, 2022 13 / 14

This is an extreme result! It provides a useful benchmark to consider richer settings. What can change to "undo" this result?

- **1** distribution of tax burden: consider a case of this model with N consumers, labeled $i=1,\ldots N$. Assume that $T=\sum_{i=1}^{N}t_{i}$ and consumer i pays t_i .
 - Everyone pays different t_i ! What if tax cut not apply to everyone?
- **2** consumer lives the whole time: government can "kick the can" until long in the future, when current generation is retired or dead.
 - redistribution of wealth across generations, social security
- **3** distorting taxes: lump sum not feasible, but proportional distort
- **4** imperfect credit market: borrowing and lending is often "frictional"
 - example: different rates on borrowing and saving, many others!

Lecture 13 May 5, 2022 14 / 14