

第4章

插值与 逼近

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

- 4.1 引言
 - 4.1.1 插值问题
 - 4.1.2 多项式插值的基本概念
- 4.2 Lagrange型插值
 - 4.2.1 Lagrange插值公式
 - 4.2.2 Newton插值公式
 - 4.2.3 插值余项
- 4.5 正交函数族在逼近中的应用
 - 4.5.1 正交多项式简介
 - 4.5.2 正交多项式的一些重要性质
 - 4.5.3 数据拟合的最小二乘法

4.1 引言

- 插值方法是数值分析中的一个简单而又重要的方法,利用该方法可以通过函数在有限个点处的函数值求出其近似函数,进而估算出函数在其它点处的值
- 插值方法在离散数据处理、函数的近似表示、 数值微分、数值积分、曲线与曲面的生成等方面有 重要的应用
 - 本文主要介绍了插值方法中的多项式插值方法

4.1.1 插值问题

设已知函数在[a, b]上n个互异点处的函数值和导数值

$$f(x_{1}), f'(x_{1}), \cdots, f^{(\alpha_{1}-1)}(x_{1});$$

$$f(x_{2}), f'(x_{2}), \cdots, f^{(\alpha_{2}-1)}(x_{2});$$

$$\cdots$$

$$f(x_{n}), f'(x_{n}), \cdots, f^{(\alpha_{n}-1)}(x_{n}),$$

$$(4-1)$$

构造一个简单易算的函数p(x),使其满足下述条件:

$$p^{(\mu_i)}(x_i) = f^{(\mu_i)}(x_i),$$

$$i = 1, 2, \dots, n; \quad \mu_i = 0, 1, \dots, \alpha_i - 1.$$
(4-2)

以上问题称作插值问题。

$$x_1, x_2, \dots, x_n$$
 称为插值节点; $p(x)$ 称为 $f(x)$ 关于节点组 x_1, x_2, \dots, x_n 的插值函数; (4-2) 称为插值条件。

在插值法中需考虑的问题:

- 简单函数类的选取问题
- 存在唯一性问题
- 余项估计问题
- 收敛性问题

4.1.2 插值函数的存在唯一性、插值基函数

设简单函数类 \mathbf{S} 是连续函数空间 $\mathbf{C}[a,b]$ 的n维子空间, $\varphi_1(x)$, $\varphi_2(x),\cdots,\varphi_n(x)$ 是 \mathbf{S} 的一组基底函数, 即 $\varphi_1(x),\varphi_2(x),\cdots,\varphi_n(x)$ 在[a,b]上线性无关,且对任意 $p(x) \in \mathbf{S}$,有且仅有一组系数 $c_1,c_2,\cdots,c_n \in \mathbf{R}$,使得 $p(x) = \sum_{i=1}^n c_k \varphi_k(x)$ 。

下面以(4-1)中所有 $\alpha_i = 1$ $(i=1,2,\dots,n)$ 的特殊情形为例,介绍插值函数的存在唯一性。 此时插值条件为

$$p(x_i) = f(x_i), \quad i = 1, 2, \dots, n$$
 (4-3)

而插值问题就是在S 中寻求一个函数 $p(x) = \sum_{k=1}^{n} c_k \varphi_k(x)$, 使得p(x)

满足插值条件(4-3)。 该问题等价于通过求解方程组

$$\sum_{k=0}^{n} c_k \varphi_k(x_i) = f(x_i), \quad i = 1, 2, \dots, n$$
 (4-4)

确定一组系数 c_1, c_2, \dots, c_n

定义4.1 设 $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ 是 [a,b] 上的连续函数,并且对 [a,b] 上的任意n个互异点 x_1, x_2, \dots, x_n ,行列式

$$D[x_{1}, x_{2}, \dots, x_{n}] = \begin{vmatrix} \varphi_{1}(x_{1}) & \varphi_{2}(x_{1}) & \cdots & \varphi_{n}(x_{1}) \\ \varphi_{1}(x_{2}) & \varphi_{2}(x_{2}) & \cdots & \varphi_{n}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{1}(x_{n}) & \varphi_{2}(x_{n}) & \cdots & \varphi_{n}(x_{n}) \end{vmatrix} \neq 0$$
(4-5)

则称 $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ 在[a,b]上满足**Haar**条件。

注:并不是任何线性无关的连续函数都满足Haar条件。

例如,取[-1,1]上的连续函数

$$\varphi_1(x) = \begin{cases} 0 & -1 \le x < 0 \\ x & 0 \le x \le 1 \end{cases} \qquad \varphi_2(x) = \begin{cases} 0 & -1 \le x < 0 \\ x^2 & 0 \le x \le 1 \end{cases}$$

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

显然 $\varphi_1(x)$ 和 $\varphi_2(x)$ 线性无关,但是不满足**Haar**条件。

即存在 x_1 、 x_2 使得

$$D[x_1, x_2] = \begin{vmatrix} \varphi_1(x_1) & \varphi_2(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ x_2 & x_2^2 \end{vmatrix} = 0$$

由定义4.1及线性代数的基本知识,易得下述定理.

定理4.1 设已知函数 f(x) 在n个互异点 x_1, x_2, \dots, x_n 处的函数值 y_1, y_2, \dots, y_n ,亦即

$$y_i = f(x_i)$$
 $(i = 1, 2, \dots, n)$,

又设**S**的基底函数 $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ 在 [a,b] 上满足**Haar** 条件,则存在唯一的函数

$$p(x) = \sum_{k=1}^{n} c_k \varphi_k(x) \in \mathbf{S}$$

满足插值条件

$$p(x_i) = y_i, \qquad i = 1, 2, \dots, n.$$

事实上,由插值条件

$$p(x_i) = \sum_{k=1}^{n} c_k \varphi_k(x_i) = y_i, \quad i = 1, 2, \dots, n$$

可得线性方程组

$$\begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

其系数矩阵行列式满足:

$$D[x_{1}, x_{2}, \dots, x_{n}] = \begin{vmatrix} \varphi_{1}(x_{1}) & \varphi_{2}(x_{1}) & \cdots & \varphi_{n}(x_{1}) \\ \varphi_{1}(x_{2}) & \varphi_{2}(x_{2}) & \cdots & \varphi_{n}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{1}(x_{n}) & \varphi_{2}(x_{n}) & \cdots & \varphi_{n}(x_{n}) \end{vmatrix} \neq 0$$

故其解 c_1, c_2, \dots, c_n 存在唯一,故定理4.1成立。

由定理4.1,特别地,对于插值问题(1):

$$x_1$$
 x_2 \cdots x_n 1 0 \cdots 0

应存在唯一的函数 $l_1(x)$ 满足如下的插值条件:

$$l_1(x_1) = 1 = y_1$$
, $l_1(x_i) = 0 = y_i$, $i = 2, 3, \dots, n$

对于插值问题(2):

$$x_1$$
 x_2 \cdots x_n 0 1 \cdots 0

应存在唯一的函数 $l_2(x)$ 满足如下的插值条件:

$$l_2(x_2) = 1 = y_2$$
, $l_1(x_i) = 0 = y_i$, $i = 1, 3, \dots, n$

对于插值问题(n):

$$x_1$$
 x_2 \cdots x_n 0 0 \cdots 1

应存在唯一的函数 $l_n(x)$ 满足如下的插值条件:

$$l_n(x_n) = 1 = y_n$$
, $l_n(x_i) = 0 = y_i$, $i = 1, 3, \dots, n-1$

DUT 大连醒三大学

DALIAN UNIVERSITY OF TECHNOLOGY

如此定义下去,就得到唯一的一组线性无关函数,

$$l_{k}(x) (k=1, 2, \dots, n)$$

月

$$l_k(x_i) = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}, \quad k = 1, 2, \dots, n; \quad i = 1, 2, \dots, n$$

$$D[x_{1}, x_{2}, \dots, x_{n}] = \begin{vmatrix} l_{1}(x_{1}) & l_{2}(x_{1}) & \cdots & l_{n}(x_{1}) \\ l_{1}(x_{2}) & l_{2}(x_{2}) & \cdots & l_{n}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ l_{1}(x_{n}) & l_{2}(x_{n}) & \cdots & l_{n}(x_{n}) \end{vmatrix} = \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix} \neq 0$$

即 $l_1(x)$, $l_2(x)$, \cdots , $l_n(x)$ 在 [a,b] 上满足**Haar**条件。 称其为插值基函数。

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

推论4.1 若S满足如定理4.1中所设,则S中存在唯一的一组函数 $l_1(x), l_2(x), \dots, l_n(x)$,

$$l_k(x_i) = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}, \quad k = 1, 2, \dots, n; \quad i = 1, 2, \dots, n$$

 $l_{k}(x)(k=1,2,...,n)$ 称为插值基函数。易证 $l_{1}(x),l_{2}(x),\cdots,l_{n}(x)$ 也是**S**的一组基底函数。

利用插值函数的存在唯一性,可证明

推论4.2 在定理4.1的假设下,函数 $p(x) = \sum_{k=1}^{n} y_k l_k(x)$ 是S中满足插值条件 $p(x_i) = y_i$, $i = 1, 2, \dots, n$ 的唯一函数。

4.1.2 多项式插值基本概念

假设f(x)是定义在区间[a,b]上的未知或复杂函数,但已知该函数在互异点

$$a \le x_0 < \cdots < x_n \le b$$

处的函数值

$$y_0, y_1, \cdots, y_n$$

我们的目标是找一个简单的函数,例如多项式函数 $p_n(x)$,使之满足条件

$$p_n(x_i) = y_i, \quad i = 0, 1, \dots, n$$
 (4-3)

即在给定点 x_i 处, $p_n(x)$ 与 f(x) 是相吻合的。

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

通常把 $x_0 < x_1 < \dots < x_{n-1} < x_n$ 称为插值节点,

 $p_n(x)$ 称为 f(x) 的插值多项式(函数),

f(x) 称为被插函数,[a,b] 称为插值区间,

条件(4-3)称为插值条件, $求p_n(x)$ 的过程称为插值法。

例1, 只需取
$$\varphi_0(x) = 1$$
, $\varphi_1(x) = x$, …, $\varphi_n(x) = x^n$

且在[a,b]上满足Haar条件,则有

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

由插值条件可得

$$\begin{cases} a_{n}x_{0}^{n} + a_{n-1}x_{0}^{n-1} + \dots + a_{1}x_{0} + a_{0} = f(x_{0}) \\ a_{n}x_{1}^{n} + a_{n-1}x_{1}^{n-1} + \dots + a_{1}x_{1} + a_{0} = f(x_{1}) \\ \dots \dots \dots \dots \dots \dots \\ a_{n}x_{n}^{n} + a_{n-1}x_{n}^{n-1} + \dots + a_{1}x_{n} + a_{0} = f(x_{n}) \end{cases}$$

显然,其系数是满足Vandermorde(范德蒙)行列式

$$V_{n}[x_{1}, x_{2}, \dots, x_{n}] = \begin{vmatrix} 1 & x_{0} & \cdots & x_{0}^{n} \\ 1 & x_{1} & \cdots & x_{1}^{n} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{n} & \cdots & x_{n}^{n} \end{vmatrix} = \prod_{i>j} (x_{i} - x_{j}) = \prod_{i=1}^{n} \prod_{j=0}^{i-1} (x_{i} - x_{j}) \neq 0$$

因此,在 P_n (所有次数不超过n的实系数代数多项式的集合)中有唯一的多项式 $p_n(x)$,满足

$$p_n(x_i) = f(x_i) = y_i$$
 $i = 0, 1, \dots, n$

这实际上就证明了代数多项式插值的存在唯一性。

返回本节

Lagrange插值问题

给定 f(x) 在区间 [a,b] 上n+1个互异点 $a \le x_0 < \dots < x_n \le b$ 及函数值 y_0, y_1, \dots, y_n 。

构造次数不超过n的实系数代数多项式 $p_n(x)$, 使之满足插值条件:

$$p_n(x_i) = f(x_i) = y_i$$
 $i = 0, 1, \dots, n$

此类函数插值问题,称为Lagrange插值问题。

4. 2. 1 <u>Lagrange</u>插值公式

考虑n=1的情形,给定 $(x_0, y_0), (x_1, y_1)$ 且 $x_0 \neq x_1$ 构造一次多项式 $p_1(x)$,满足条件: $p_1(x_0) = y_0$, $p_1(x_1) = y_1$

由直线的两点式可知: $\frac{y-y_0}{y_1-y_0} = \frac{x-x_0}{x_1-x_0}$, 解之, 得

$$p_1(x) = y = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

进一步可改写成: $p_1(x) = l_0(x)y_0 + l_1(x)y_1$

其中
$$l_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 $l_1(x) = \frac{x - x_0}{x_1 - x_0}$

分别称其为对应于节点x₀和x₁的插值基函数。

并且具有性质:

$$l_0(x_0) = \frac{x_0 - x_1}{x_0 - x_1} = 1$$
 $l_0(x_1) = \frac{x_1 - x_1}{x_0 - x_1} = 0$

$$l_1(x_1) = \frac{x_1 - x_0}{x_1 - x_0} = 1$$
 $l_1(x_0) = \frac{x_0 - x_0}{x_1 - x_0} = 0$

从而, $p_1(x)$ 满足插值条件条件:

$$p_1(x_1) = y_1$$
 $p_1(x_0) = y_0$

故 $p_1(x)$ 即为满足条件的一次Lagrange插值多项式。

注意: ● 插值基函数的个数=插值节点的个数;

- 插值基函数的次数=插值节点的个数-1;
- 插值基函数决定着插值多项式满足插值条件;
- 插值基函数与插值节点的次序无关。

考虑 n=2的情形, 给定 $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ 且 $x_0 \neq x_1 \neq x_2$ 构造二次多项式 $p_2(x)$,满足条件:

$$p_2(x_0) = y_0$$
, $p_2(x_1) = y_1$, $p_2(x_2) = y_2$

进一步写成 $p_2(x) = l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2$

其中 $l_i(x)$ i=0,1,2,均为二次的插值基函数多项式,且满足

$$l_0(x_0) = 1$$
 $l_0(x_1) = 0$ $l_0(x_2) = 0$

$$l_1(x_1) = 1$$
 $l_1(x_1) = 0$ $l_1(x_2) = 0$

$$l_2(x_2) = 1$$
 $l_2(x_0) = 0$ $l_2(x_1) = 0$

下面我们 $l_0(x)$ 以为例来确定出: $l_0(x)$, $l_1(x)$, $l_2(x)$

由条件 $l_0(x_1) = 0$ $l_0(x_2) = 0$ 可知, x_1, x_2 是 $l_0(x)$ 的两个根,从而 $l_0(x) = A(x-x_1)(x-x_2)$

其中A为待定系数。又由 $l_0(x_0)=1$,可得

$$1 = A(x_0 - x_1)(x_0 - x_2) \Rightarrow A = \frac{1}{(x_0 - x_1)(x_0 - x_2)}$$

从而,

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

同理,

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \qquad l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

进而满足条件的二次Lagrange插值多项式为:

$$p_{2}(x) = \frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} y_{0} + \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} y_{1} + \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})} y_{2}$$
设 $x_{0}, x_{1}, \dots, x_{n}$ 是 $[a,b]$ 上的 $n+1$ 个互异点,取

设 x_0, x_1, \dots, x_n 是 [a,b] 上的 n+1 个互异点,取

$$l_{j}(x) = \frac{(x - x_{0}) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_{n})}{(x_{j} - x_{0}) \cdots (x_{j} - x_{j-1})(x_{j} - x_{j+1}) \cdots (x_{j} - x_{n})} = \frac{\omega_{n+1}(x)}{(x - x_{j})\omega'(x_{j})} \quad j = 0, 1, \dots, n.$$

$$(4-6)$$

其中 $\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$

显然
$$l_{j}(x_{i}) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 $i, j = 0, 1, \dots, n.$ (4-7)

从而 $l_j(x_i)$ ($j = 0, 1, \dots, n$) 称为n次Lagrange插值基函数。 $p_n(x) = \sum_{i=0}^n y_i \cdot l_i(x)$

 $p_n(x_i) = y_i \quad (i = 0,1,\dots,n)$ 就是多项式空间 $P_n(x)$ 中满足插值条件: 的唯一的多项式 $p_n(x)$,称为n次Lagrange插值多项式。

已知函数 f(x) 的如下函数值:

$$x_i$$
 1 2 3
 $y_i = f(x_i)$ -1 1

求 f(x)的二次Lagrange插值多项式 $p_2(x)$,并利用 $p_2(x)$ 计算出 f(1.5)的近似值。

解 首先计算插值基函数:

$$l_0(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{1}{2}(x-2)(x-3), \quad l_1(x) = \frac{(x-1)(x-3)}{(2-1)(2-3)} = -(x-1)(x-3),$$

$$l_2(x) = \frac{(x-1)(x-2)}{(3-1)(3-2)} = \frac{1}{2}(x-1)(x-2) \circ$$

$$p_{2}(x) = l_{0}(x)y_{0} + l_{1}(x)y_{1} + l_{2}(x)y_{2}$$

$$= \frac{1}{2}(x-2)(x-3) \times (-1) + [-(x-1)(x-3) \times (-1)] + \frac{1}{2}(x-1)(x-2) \times 1$$

$$= -\frac{1}{2} \times (x^{2} - 5x + 6) + (x^{2} - 4x + 3) + \frac{1}{2} \times (x^{2} - 3x + 2) = x^{2} - 3x + 1$$

于是 $f(1.5) \approx p_2(1.5) = \left(\frac{3}{2}\right)^2 - 3 \times \frac{3}{2} + 1 = -1.25.$

返回本节

4.2.2 Newton插值公式

在插值问题中,为了提高插值精度,有时需增加插值节点个数。插值节点个数发生变化后,所有的Lagrange插值基函数都会发生变化,从而整个Lagrange插值多项式的结构发生变化,这在计算实践中是不方便的。为了克服Lagrange插值多项式的缺点,能灵活地增加插值节点,使其具有"承袭性",我们引进Newton插值公式。

设已知函数 f(x)在 [a,b] 上的 n+1 个互异插值节点 x_0, x_1, \dots, x_n 上的函数值 f_0, f_1, \dots, f_n ,将基函数取作:

$$\begin{cases}
\varphi_0(x) = 1, \\
\varphi_j(x) = (x - x_0)(x - x_1) \cdots (x - x_{j-1}) = \prod_{i=0}^{j-1} (x - x_i), \\
j = 1, 2, \dots, n
\end{cases} (4-8)$$

则可将n次插值多项式写成如下形式:

$$p_n(x) = \sum_{j=0}^{n} a_j \varphi_j(x)$$

$$= a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1}) \quad (4-9)$$

其中待定系数 a_0, a_1, \dots, a_n 由插值条件

$$p(x_i) = f_i, i = 0, 1, \dots, n$$

来确定。

例如,n=1时, $p_1(x)=a_0\varphi_0(x)+a_1\varphi_1(x)=a_0+a_1(x-x_0)$

由插值条件:
$$p(x_0) = f_0 \quad p(x_1) = f_1$$

可得,即

$$p_{1}(x_{0}) = a_{0} = f(x_{0})$$

$$p_{1}(x_{1}) = +a_{1}(x_{1} - x_{0}) = f(x_{1}) \Rightarrow = -----$$

从而

$$p_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

n=2时,应有

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

即

$$p_2(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + a_2(x - x_0)(x - x_1)$$

由

$$p_2(x_2) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f(x_2)$$

得

$$a_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

$$p_2(x) = a_0 \varphi_0(x) + a_1 \varphi_0(x) + a_2 \varphi_2(x)$$

= $a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$

即

$$p_{2}(x) = \underbrace{f(x_{0}) + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}(x - x_{0})}_{p_{2}(x) + \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}_{(x_{2} - x_{0})} (x - x_{1})$$

实际上,由于插值多项式的唯一性,Newton插值多项式只不过是Lagrange插值多项式的另一种表现形式,两者是可以互推的。为得到Newton插值多项式的一般表达式,即

$$a_j, j=1,\cdots,n$$

的一般表达式,我们给出均差的定义。

定义4.2 设函数 f(x) 在互异的节点 x_0, x_1, \dots, x_n 上的函数值为

$$f_0, f_1, \dots, f_n$$
, \Re

$$f[x_i, x_k] = \frac{f_k - f_i}{x_k - x_i} \qquad k \neq i$$
(4-11)

为 f(x) 关于 x_i , x_k 的一阶均差(差商)。称

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_k] - f[x_i, x_j]}{x_k - x_j} \qquad i \neq j \neq k$$

为f(x) 关于 x_i , x_i , x_k 的二阶均差(差商)。

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_0, \dots, x_{k-2}, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_{k-1}}$$
(4-12)

为 f(x)关于 x_0, x_1, \dots, x_k 的 k 阶均差(差商)。

均差有如下性质:

 2° 对称性,即在 $f[x_0, x_1, \dots, x_k]$ 中任意调换 x_0, x_1, \dots, x_k 的位置时,均差的值不变, 即

$$f[x_0, x_1, \dots, x_k] = f[x_1, x_0, \dots, x_k] = \dots = f[x_k, x_0, x_1, \dots, x_{k-1}]$$

 3° 若 $f(x)=x^{m}$, m为自然数,则

$$f[x_0, x_1, \dots, x_k] = \begin{cases} 0, & k > m \\ 1, & k = m \end{cases}$$
 诸 x_i 的齐次函数, $k < m$

 4° 设f(x)在包含 x_0, x_1, \dots, x_k 的区间(a, b)内k次可微,则

$$f[x_0, x_1, \dots, x_k] = \frac{f^{(k)}(\xi)}{k!}$$

此处 $\min(x_0, x_1, \dots, x_k) < \xi < \max(x_0, x_1, \dots, x_k)$ 。

练习,若 $f(x) = -3x^4 + 5x^3 - 2x^2 + 1$,求 $f[2^0, 2^1, \dots, 2^4]$ 和 $f[e^0, e^1, \dots, e^5]$

解:
$$f[2^{0},2^{1},\dots,2^{4}] = \frac{f^{(4)}(\xi)}{4!} = \frac{-3 \times 4!}{4!} = -3$$

$$f[e^{0},e^{1},\dots,e^{5}] = \frac{f^{(5)}(\xi)}{5!} = 0$$

由均差的定义, 我们可以推出

$$a_j = f \left[x_0, x_1, \dots, x_j \right] \quad j = 1, \dots, n$$

从而 $p_2(x)$ 的Newton插值公式为:

$$p_2(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1)$$

更一般地,我们可以构造出n次Newton插值多项式公式:

$$p_n(x) = f(x_0) + f[x_0, \dot{x}_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$= p_{n-1}(x) + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

构造n次Newton插值多项式公式,关键是构造f(x)的各阶关于插值节点 x_0 , x_1 , …, x_n 的均差值。

为了便于计算均差值,常常利用如下形式生成均差表:

$$x$$
 $f(x)$ 一阶均差 二阶均差 三阶均差 ...

 x_0 $f(x_0)$ x_1 $f(x_1)$ $f[x_0, x_1]$ x_2 $f(x_2)$ $f[x_1, x_2]$ $f[x_0, x_1, x_2]$ $f[x_0, x_1, x_2]$ $f[x_0, x_1, x_2, x_3]$ $f[x_0, x_1, x_2, x_3]$

注意:

$$\dot{p}_n(x) = f(x_0) + f[x_0, x_1] (x - x_0) + f[x_0, x_1, x_2] (x - x_0)(x - x_1)$$

$$+ \dots + f[x_0, x_1, \dots, x_n] (x - x_0)(x - x_1) \dots (x - x_{n-1})$$

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

用Newton插值公式,求解例1。

解 首先利用均差表计算各阶均差值

X	f(x)	一阶均差	二阶均差	三阶均差
1 2 3	-1 -1 1	$\frac{-1+1}{2-1} = 0$ $\frac{1+1}{3-2} = 2$	$\frac{2-0}{3-1} = 1$	

由上面的均差表可知, f[0,1]=0, f[0,1,2]=1,故所求的插值多项式为:

$$p_2(x) = -1 + 0(x-1) + (x-1)(x-2) = x^2 - 3x + 1$$

DUT

DALIAN UNIVERSITY OF TECHNOLOGY

例2 已知 f(0)=2, f(1)=-3, f(2)=-6, f(3)=11,求f(x)关于上述节点组的三次插值多项式 $p_3(x)$ 。

解 首先利用均差表计算均差值

x	f(x)	一阶均差	二阶均差	三阶均差
0	2	$\frac{-3-2}{1-0} = -5$		
1	-3		$\frac{-3+5}{2-0} = 1$	10-1
2	-6	$\frac{-6+3}{2-1} = -3$	$\frac{17+3}{3-1} = 10$	$\frac{10-1}{3-0} = 3$
3	11	$\frac{11+6}{3-2} = 17$	3–1	

由上面的均差表可知,f[0,1] = -5,f[0,1,2] = 1,f[0,1,2,3] = 3,故所求的插值多项式为:

$$p_3(x) = 2 - 5x + x(x-1) + 3x(x-1)(x-2) = 3x^3 - 8x^2 + 2$$

例 3 已知 f(-2) = -5, f(-1) = -2, f(0) = 3, f(1) = 10, f(2) = 19, f(3) = 30, 求 f(x) 关于上述节点组的插值多项式 p(x)。

解 首先利用均差表计算均差值

X	f(x)	一阶均差	二阶均差	三阶均差	• • •
-2	-5	$\frac{-2+5}{-1+2} = 3$	5 2		
-1	-2	$\frac{-1+2}{3+2} = 5$	$\frac{5-3}{0+2} = 1$	$\frac{1-1}{1+2} = 0$	
0	3		$\frac{7-5}{1+1} = 1$	• •	•
1	10	$\frac{10-3}{1-0} = 7$ $\frac{19-10}{2-1} = 9$	$\frac{9-7}{2-0} = 1$	$\frac{1-1}{2+1} = 0$ $1-1$	•
2	19		$\frac{11-9}{3-1} = 1$	$\frac{1-1}{3-0} = 0$	
3	30	$\frac{30-19}{3-2} = 11$			

由上面的均差表可知,f[-2,-1]=3,f[-2,-1,0]=1,f[-2,-1,0,1]=0,故所求的插值多项式为: $p_2(x)=-5+3(x+2)+(x+1)(x+2)$ $=x^2+6x+3$

下面给出均差的性质4°的证明。

即 $p_k(x)$ 是f(x)关于节点组 x_0, x_1, \dots, x_k 的k次插值多项式,则插值余项

$$r_k(x) = f(x) - p_k(x)$$

至少有k+1个互异的零点 x_0, x_1, \dots, x_k 。 反复利用**Rolle**定理,可知在 $\min(x_0, x_1, \dots, x_k)$ 和 $\max(x_0, x_1, \dots, x_k)$ 之间至少有一个 ξ ,使

$$r_k^{(k)}(\xi) = f^{(k)}(\xi) - p_k^{(k)}(\xi) = 0$$

又由 $p_k(x)$ 的表达式,

$$p_k^{(k)}(\xi) = k! f[x_0, x_1, \dots, x_k] = f^{(k)}(\xi)$$

所以

4.2.3 插值余项

定理4.2 若f(x)在包含着插值节点 x_0, x_1, \dots, x_n 的区间[a,b]上

n+1次可微,则对任意 $x \in [a, b]$,存在与x有关的 $\xi(a < \xi < b)$ 使得

$$r_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
 (4-14)

其中 $\omega_{n+1}(x) = (x - x_0) (x - x_1) \cdots (x - x_n)$

证 任取 $x \in [a, b]$, 当 $x = x_0$, x_1 , …, x_n 时,公式(4-14)显然成立。 以下设 $x \neq x_i$ ($i = 0, 1, \dots, n$), 视 x 为一个节点,据一阶均差的定义, $f(x) = f(x_0) + f[x, x_0]$ ($x - x_0$) (4-15)

$$= f[x_0, x_1] + f[x, x_0, x_1] (x - x_1)$$

$$= f[x_0, x_1, x_2] + f[x, x_0, x_1, x_2](x - x_2),$$

•

进一步, $k = 1, 2, \dots, n$ $f[x, x_0, \dots, x_{k-1}] = f[x_0, x_1, \dots, x_k] + f[x, x_0, \dots, x_k](x - x_k),$ (4-16)将(4-15) 递推展开: $f(x) = f(x_0) + f[x, x_0](x - x_0)$ $= f(x_0) + \left\{ f[x_0, x_1] + f[x, x_0, x_1](x - x_1) \right\} (x - x_0)$ $= f(x_0) + f[x_0, x_1](x - x_0) + f[x, x_0, x_1](x - x_0)(x - x_1) \qquad p_n(x)$ $= |f(x_0) + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n](x - x_0) \dots (x - x_{n-1})|$ $+ f[x, x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_n),$ 取余项 $r_n(x) = f(x) - p_n(x)$ $= f[x, x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_n)$ $= f[x, x_0, x_1, \dots, x_n] \omega_{n+1}(x),$ (4-17)由均差的性质4°, $r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_{n+1}(x),$ $\min(x, x_0, \dots, x_n) < \xi < \max(x, x_0, \dots, x_n)$

特别地,

$$f[x_0, x_1] = f'(\xi_1), \quad f[x_0, x_1, x_2] = \frac{f''(\xi_2)}{2!}, \quad f[x_0, x_1, \dots, x_n] = \frac{f^{(n)}(\xi_n)}{n!}$$

Newton公式可写成:

$$p_{n}(x) = f(x_{0}) + f'(\xi_{1})(x - x_{0}) + \frac{f''(\xi_{2})}{2!}(x - x_{0})(x - x_{1})$$

$$+ \dots + \frac{f^{(n)}(\xi_{n})}{n!}(x - x_{0})(x - x_{1}) \dots (x - x_{n})$$

其中 $\min(x_0,\dots,x_n) < \xi_i < \max(x_0,\dots,x_n)$, $i = 1,2,\dots,n$

若固定 x_0 , 令 x_1 , x_2 , …, x_n 一起趋于 x_0 , 那么,

$$p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Newton公式的极限即为f(x) 在 $x=x_0$ 点处的**Taylor**级数的前n+1项和。

插值余项的应用

证明
$$\sum_{i=0}^{n} l_i(x) \equiv 1, \qquad \sum_{i=0}^{n} l_i(x) x_i^k = x^k \quad 0 \le k \le n$$

首先,由Lagrange插值公式

$$p_n(x) = \sum_{i=0}^n l_i(x) \cdot f(x_i)$$

可知被插值函数应该为 $f(x) \equiv 1$ 。 由插值余项公式,

$$f(x) - p_n(x) = 1 - \sum_{i=0}^{n} l_i(x) = \frac{f(\xi)^{(n+1)}}{(n+1)!} \omega_{n+1}(x) \equiv 0 \implies \sum_{i=0}^{n} l_i(x) \equiv 1 \circ$$

同理, 由插值余项公式,

$$x^{k} - \sum_{i=0}^{n} l_{i}(x) x_{i}^{k} = \frac{\left(x^{k}\right)^{(n+1)}\Big|_{x=\xi}}{(n+1)!} \omega_{n+1}(x) \equiv 0 \implies \sum_{i=0}^{n} l_{i}(x) x_{i}^{k} = x^{k}$$

那么,
$$\sum_{i=0}^{n} l_i(0) x_i^k = 0^k = 0$$
。

练习 取节点 x_0 =100, x_1 =121, x_2 =144, 求逼近函数 $y = \sqrt{x}$ 的插值多项式 $p_2(x)$, 进一步求出y(115)的近似值,并估计误差。

解:
$$\sqrt{115} \approx p_2(115) = \frac{(115-121)(115-144)}{(100-121)(100-144)} \times 10 + \frac{(115-100)(115-144)}{(121-100)(121-144)} \times 11$$

$$+ \frac{(115-100)(115-121)}{(144-100)(144-121)} \times 12$$

$$= \frac{(-6)\times(-29)}{(-21)(-44)} \times 10 + \frac{15\times(-29)}{21\times(-23)} \times 11 + \frac{15\times(-6)}{44\times23} \times 12$$

$$= \frac{145}{77} + \frac{1595}{161} - \frac{270}{253} = 10.72276 \qquad \sqrt{115} = 10.72380\cdots$$
从而
$$r_2(115) = \sqrt{115} - p_2(115) = \frac{\left(\sqrt{x}\right)_{x=\zeta}^{(3)}}{(2+1)!} (115-100)\cdot(115-121)\cdot(115-144)$$

$$\left|\sqrt{115} - p_2(115)\right| \le \frac{1}{6} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{3}{2} \times \frac{1}{10^5} \times 2070 = \frac{6210}{48 \times 10^5} = \boxed{0.00129375}$$

THE END

作者姓名: 张宏伟、金光日

工作单位: 大连理工大学应用数学系

联系方式: E-mail: hwzhwdl@sohu.com

DUT 大连疆三大学

DALIAN UNIVERSITY OF TECHNOLOGY

第4章插值与逼近