

厦门大学《大学物理 A (下)》课程 期末试卷 (B卷)

(考试时间: 2019年1月)

(真空中光速 $c=3\times10^8$ m/s; 普朗克常量 $h=6.63\times10^{-34}$ J·s; 电子静止质量 $m_e=9.11\times10^{-31}$ kg) 一、选择题: 本题共 10 小题,每小题 2 分,共 20 分。请将每题答案写在答题纸的对应位置。 每小题给出的四个选项中只有一个选项正确。错选、多选或未选的得 0 分。

- 1. 1. 以下哪一项不属于几何光学的理论基础(

- A. 干涉和衍射理论 B. 直线传播 C. 独立传播定律 D. 反射和折射定律
- 2. 2. 在焦距为f的透镜光轴上,物点从3f移到2f处,在移动的过程中物像点之间的距离(
 - A. 先减小后增大

B. 先增大后减小

C. 由小到大

- D. 由大到小
- 3. 3. 当一薄透镜浸没在水中(n=1.33),此透镜(n=1.50)的焦距 f如何变化? ()
 - A. 不变

B. 增加为 1.33 倍

C. 增加 1.5 倍

- D. 增加 3.91 倍
- 4. 4. 在相同的时间内,一束波长为 λ 的单色光在空气中和在玻璃中(
- A. 传播的路程相等, 走过的光程相等
- B. 传播的路程相等, 走过的光程不相等
- C. 传播的路程不相等, 走过的光程相等
- D. 传播的路程不相等, 走过的光程不相等
- 5. 如图所示, 平行单色光垂直照射到薄膜上, 经上下两表面反射的 两束光发生干涉, 若薄膜的厚度为 e, 并且薄膜上, 薄膜和薄膜下 的媒质折射率满足: $n_1 < n_2 > n_3$, λ_1 为入射光在折射率为 n_1 的媒质 中的波长,则两束反射光在相遇点的光程差为(

 $A. n_2 e$

B.
$$2n_1e + \frac{\lambda}{2}$$

C.
$$2n_2e + \frac{\lambda}{2}$$

D.
$$2n_1e$$

6. 一束波长为 λ 的单色光			上,透明薄膜放在空气	中,要使反射
光得到干涉加强,则薄膜				
A. $\frac{\lambda}{4}$ B. $\frac{\lambda}{4n}$	$C.\frac{\lambda}{2}$	$D.\frac{\lambda}{2n}$		
7. 在均匀磁场 <i>B</i> 内放置一出的电子(质量为 <i>m</i> ,电极光子的能量是:(苛的绝对值为 e) 在垂直于			
A. $\frac{hc}{\lambda_0}$ B. $\frac{hc}{\lambda_0}$	$-\frac{(eRB)^2}{2m} \qquad C. \frac{hc}{\lambda_0}$	$+\frac{eRB}{m}$ D	$\frac{hc}{\lambda_0} + 2eRB$	
8. 一凸透镜的焦距为	10.0cm,如果已知物距	为 30.0cm,则核	黄向放大率为()
A. $-\frac{1}{2}$ B. $\frac{1}{2}$	C. $\frac{1}{3}$	D. $-\frac{1}{3}$		
9. 已知一单色光照射在那么入射光的波长是(A. 5350 Å B. 5)			长为 5400Å,
10. 由氢原子理论知, A. 一种波长的光				
二、 填空题 :本大题共错填、不填均无分。 1.一球面镜的半径为				
2. 自然光和线偏振透射光的强度也跟着改光的强度之比为				
3. 天狼星的温度大约是1	1000 摄氏度,试由维恩位	7.移定律计算其辐射	寸峰值的波长	
4. 钾的截止频率为4.	62×10 ¹⁴ Hz ,今以波长	:为 435.8nm 的为	七照射, 求 钾 放 出 的	电子的初速

- 三、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

在平面玻璃片上放一油滴,并展开成圆形油膜(如图 a 所示), 在波长 $\lambda = 600nm$ 的单色光垂直入射下,从反射光中可观察到油 膜所形成的干涉条纹。玻璃和油膜的折射率分别为1.5和1.2。

- (1) 当油膜中心最高点与玻璃片的上表面相距 e = 800nm 时,可以看到几个明环?
- (2) 当油膜展开之后(如图b所示),干涉条纹如何变化?

四、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

由薄透镜 L1、L2 组成的光学系统,两透镜的像方焦点重合,L1 与 L2 的距离为 d,L2 透镜 焦距为 d,如图所示,求整个系统的焦距 f。

五、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

在光栅衍射中,光栅常数 d=4.8×10⁻³mm,缝宽 b=1.6×10⁻³mm,总缝数 N=5000。今以波长 λ =600nm 的单色光垂直入射。求:

(1) 第一级主极大的衍射角;

- (2) 最多能观察到第几级主极大?
- (3) 在可能出现的主极大中, 哪些为缺级?

六、计算题: 本题 12 分。请在答题纸上按题序作答,并标明题号。

在康普顿效应中,入射光子的波长为 $\lambda=3\times10^{-3}$ nm,反冲电子的速度为光速的 60%,求散射光子的波长 及散射角。

七、计算题:本题 12 分。请在答题纸上按题序作答,并标明题号。

用波长为500nm的平行光垂直照射在宽度为1mm的狭缝上,在缝后放置一焦距f = 1m的凸透镜,将屏幕置于缝后凸透镜焦平面处,求,

- (1) 第一级暗纹到衍射图样中心的距离;
- (2) 第二级明纹到衍射图样中心的距离;
- (3) 改用波长为600nm的平行光垂直照射,中央明条纹的线宽度将如何变化?