Blatt 4 Abgabe: Mo 20.11.2017, 10:00 Uhr

Hinweis:

▶ Denken Sie an den OMB+ Kurs (https://www.ombplus.de) - dort absolvieren Sie bitte die Lektion II (Gleichungen in einer Unbekannten) und die Lektion IV (Lineare Gleichungssysteme). In Ihrer Übungsstunde der 5. Vorlesungswoche (13.-17.11) werden Sie einen Test über die Inhalte dieser Lektionen schreiben. Mit Hilfe dieses Testes können Sie Zusatzpunkte erwerben - diese Punkte werden Ihnen als Hausaufgabenpunkte angerechnet, aber nicht auf die zu erreichende Gesamthausaufgabenpunktzahl dazugezählt.

Aufgabe 4.1 6 Punkte

a) Sei

$$\blacktriangleright \text{ für } \vec{x}, \vec{y} \in G \text{ mit } \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ und } \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \text{ die Addition definiert als } \vec{x} \oplus \vec{y} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix}$$

Zeigen Sie, dass das Paar (G, \oplus) eine abelsche Gruppe ist.

Hinweis: Sie dürfen als bereits bewiesen voraussetzen, dass $(\mathbb{R}, +)$ eine abelsche Gruppe ist.

- b) Zeigen Sie, dass das Paar $(\{1, 2, 3, 4, 5, 6\}, \odot_7)$ eine abelsche Gruppe ist.
- c) Für welche $n \in \mathbb{N}$ ist $(\{1, 2, ..., n-1\}, \odot_n)$ eine Gruppe? Beweisen Sie Ihre Antwort. **Hinweis:** Sie dürfen als bereits bewiesen voraussetzen, dass die Verknüpfungen \odot_n assoziativ sind.

Aufgabe 4.2 4 Punkte

Beweisen Sie, dass die Gleichung $s \cdot a + t \cdot b = c$ genau dann eine Lösung $s, t \in \mathbb{Z}$ hat, wenn c ein Vielfaches von ggT(a, b) ist.

Aufgabe 4.3 4 Punkte

Es sei $G:=\{a,b,c,d,g,h\}$ und $\circ:G\times G\to G$ eine Verknüpfung mit der folgenden Verknüpfungstabelle:

		$\beta =$							
$\alpha \circ \beta$		a	b	c	d	$\mid g \mid$	$\mid h \mid$		
$\alpha =$	a	c	g	b	a	h	d		
	b	g	d	h	b	a	c		
	c	b	h	g	c	d	a		
	\overline{d}	a	b	c	d	g	h		
	g	h	a	d	g	c	b		
	h	d	c	a	h	b	g		

Das Paar (G, \circ) bildet eine Gruppe (dies muss/soll nicht bewiesen werden).

- a) Nennen Sie das neutrale Element e in (G, \circ) .
- b) Bestimmen Sie für alle Elemente in G jeweils das Inverse Element.
- c) Ist (G, \circ) eine abelsche Gruppe? (Geben Sie eine Begründung!)
- d) Zeigen Sie, dass das Assoziativgesetz für die Elemente a,b,c (das sind keine Variablen also beliebige Gruppenelemente sondern speziell die Gruppenelemente a,b,c) gilt, d.h. zeigen Sie $(a \circ b) \circ c = a \circ (b \circ c)$.

Homepage der Veranstaltung: http://tinygu.de/MatheInfo1718

Aufgabe 4.4 7 Punkte

- a) Berechnen Sie die Eulersche φ -Funktion für $n_1=17, n_2=204$ und $n_3=540$.
- b) Berechnen Sie $Rest(2^{167}, 83)$.
- c) Berechnen Sie $Rest(3^{167}, 17)$.
- d) Berechnen Sie das inverse Element zur 7 in der Gruppe (Z_{30}^*, \odot_{30}) .
- e) Berechnen Sie das inverse Element zur 11 in der Gruppe (Z_{41}^*, \odot_{41}) .
- f) Hat 12 ein inverses Element modulo 15 (d.h. es gibt ein $s \in \mathbb{Z}$ mit $12 \cdot s \equiv 1 \pmod{15}$)? (Beweisen Sie Ihre Ausssage.)
- g) Sei $n \in \mathbb{N}$, $n \geq 2$. Beweisen Sie, dass eine ganze Zahl $a \in \mathbb{Z}$ genau dann ein inverses Element modulo n besitzt (d.h. es gibt ein $s \in \mathbb{Z}$ mit $a \cdot s \equiv 1 \pmod{n}$), wenn ggT(a, n) = 1?

 Tipp: Hilft Ihnen die Aussage aus Aufgabe 4.2?

Zusatzaufgabe 4.5

Für alle, Spaß dran haben!

Es sei $(G := \{a, b, c, d, g, h\}$ und $\circ : G \times G \to G$ eine Verknüpfung, sodass das Paar (G, \circ) eine Gruppe bildet. Vervollständigen Sie die folgende Verknüpfungstabelle:

		$\beta =$						
$\alpha \circ \beta$		a	b	c	d	g	h	
$\alpha =$	a					c	b	
	b		d	h				
	c		g					
	d				d			
	g							
	h		a			d		