Blind Estimation of HDR Image Quality

Navaneeth K. K.

PhD, Multimedia Research Centre

Contents

- Introduction to concepts
- Problem and relevance
- Proposed solution
- Results
- Conclusion

Image Quality Assessment

- Objective measure of perceived quality of image.
- Psycho-visual experiments to determine the limits of HVS

Objective Quality Assessment

- DMOS Difference in Mean Option Scores
- Large DMOS -> Very noisy
- Is measure of Perceived noise.
- Datasets:
 Clean-noisy image pair,
 DMOS for noisy image.

Quality Assessment Algorithms

 Automated algorithms that can predict a quality score for content that can correspond to human judgement of quality.

Quality Assessment Algorithms

 Automated algorithms that can predict a quality score for content that can correspond to human judgement of quality.

High Dynamic Range Imaging

• Use of larger number of bits in imaging to display a larger range of luminance (brightness) values.

Courtesy: http://adaptivesamples.com/2016/03/ 16/make-your-own-hdri/

High Dynamic Range Imaging

- It all the technologies involved in use of 10+ bit to encode images as opposed to conventional 8 bits in Low Dynamic range images.
- The compatible displays need to display large luminance range.

Problem

Design of Image quality assessment algorithm for High Dynamic

Range Images.

 This research is limited to Low level distortions and its effects on quality.

• Noise, Image compression artifacts, changes in contrast etc are modelled.

Problem

• Design of Image quality assessment algorithm for High Dynamic

Range Images.

 This research is limited to Low level distortions and its effects on quality.

 Noise, Image compression artifacts, changes in contrast etc are modelled.

Why

THE NETFLIX TECH BLOG

- Works behind the scenes in a lot of fields.
 - Better displays.
 - Improved algorithms.
 - Efficient compression of image.
 - Better video codec.
 - Comparing algorithms.

MRC, U of A

At Netflix we care about video quality, and we care about measuring video quality accurately at scale. Our method, Video Multimethod Assessment Fusion (VMAF), seeks to reflect the viewer's perception of our streaming quality. We are open-sourcing this tool and invite the research community to collaborate with us on this important project. **Our Quest for High Quality Video**

earn more about how Netflix designs, builds, and operates our systems and engineering organizations.

Toward A Practical Perceptual Video Quality Metric by Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy and Megha Manohara

SCIENCE - CULTURE - CARS - REVIEWS - LONGFORM MORE

No-reference image quality assessment

Performance of existing algorithms on HDR data

Scheme	Processing	SRCC	KRCC	PLCC	RMSE
BRISQUE	Lin	0.5400	0.3732	0.4772	28.8475
	PU	0.7135	0.5121	0.6503	20.5534
	TMO - Drago	0.6337	0.4483	0.5903	21.7118
	TMO - Reinhard 02	0.6583	0.4670	0.6512	18.4500
	TMO - Reinhard 05	0.3524	0.2482	0.3946	30.6615
	TMO - Mantiuk	0.5887	0.4103	0.5493	22.7529
	Lin	0.5287	0.3599	0.4714	25.2588
	PU	0.6492	0.4543	0.6111	19.6977
SSEO	TMO - Drago	0.5865	0.3956	0.5634	22.6987
SSEQ	TMO - Reinhard 02	0.5810	0.4075	0.5644	22.9900
	TMO - Reinhard 05	0.4990	0.3401	0.5036	24.9193
	TMO - Mantiuk	0.4973	0.3398	0.4770	21.2044
	Lin	0.2845	0.1876	0.2831	31.0686
	PU	0.4386	0.3041	0.4399	21.2084
BIQI	TMO - Drago	0.5332	0.3780	0.4436	25.6200
BIQI	TMO - Reinhard 02	0.4632	0.3196	0.4358	22.0376
	TMO - Reinhard 05	0.5748	0.4048	0.5630	19.4825
	TMO - Mantiuk	0.4651	0.3204	0.4571	24.2268
DIIVINE	Lin	0.5041	0.3429	0.5209	20.6506
	PU	0.5318	0.3691	0.5442	19.6772
	TMO - Drago	0.4143	0.2852	0.4065	25.9697
	TMO - Reinhard 02	0.3634	0.2434	0.3953	26.1464
	TMO - Reinhard 05	0.5558	0.3849	0.5374	19.3122
	TMO - Mantiuk	0.4138	0.2838	0.4496	21.0499
kCNN	Lin	0.6991	0.5156	0.7008	19.3677
kCNN	PU	0.7694	0.5845	0.7544	18.5854

PU experiment

- Tests on real images performed by [6].
 - 16 test subjects, assess the quality of the distorted image with respect to the reference on a 5 point scale.
 - 3 types of distortions (random pixel noise, gaussian blur and JPEG compression) at 2 levels (high and low) to 3 images.
 - Each image displayed on screens with contrast Low (1 100 Cd/m2) and High (10 1000Cd/m2)
 - Mean quality value for the Low brightness was 1.85, and for the High brightness was 2.15
- Low contrast display showed less errors less sensitivity to errors.

Statistical assumptions in NR-IQA

- All the algorithms work by assessing the noise statistics and modelling its impact on image quality. Assumes Weber's Law holds.
- Not valid in HDR range.

Courtesy: Aydin et al. [6]

Need to Model additional perceptual effect in HDR.

Mathematical Framework: Quality Model

- For any distorted image patch with mean error $\delta(i,j)$.
- The impact of the error $\delta(i,j)$ at location (i,j) will be :

$$DMOS(i,j) = 1 - \exp(-|\frac{\delta(i,j)}{T(i,j)}|)$$

- Where T(i,j) is the perceptual sensitivity threshold component for the image block.
- T() conventionally measured by pshycovisual experiments.

Mathematical Framework

$$DMOS(i,j) = 1 - \exp(-|\frac{\delta(i,j)}{T(i,j)}|)$$

- DMOS (perceived noise)
 - -> Increase with error
 - -> Decrease with sensitivity threshold

Approach

- Implemented by using a **learning system** that predicts quality score of every patch of image.
- System trained with human quality score of image as target .

Approach

 Process can be broken to two subcomponents with independent underlying distributions – Perceptual vs Statistical

- Model the learning system with two Convolutional Neural Nets.
 - The first net learns to detects error δ .
 - The second net learns to detect perceptual thresholds Perceptual Resistance - T.
 - Combine both these with quality model.

Problems in Training

- Datasets:
 Clean-noisy image pair, DMOS for noisy image.
- E-net easy to train.

$$\delta(i,j) = Y_N(i,j) - Y_C(i,j)$$

• P-net – train indirectly. Ground truth not known.

Derive T(i,j) that takes error $\delta(i,j)$ and produce a score equal to the ground truth DMOS using quality model.

Stage 1

Network Training

Stage 2

y(i,j)

E-Net $\hat{\delta}(i,j)$ Mixing function DMOS(i, j)

Datasets

• Multiple datasets for HDR combined with iterated nested least square algorithm (INLSA) proposed by Pinson and Wolf.

Dataset Number	Number of Reference Images	Number of Distorted Images	Distortion type	Maximum Luminance (Cd/m ²)
#1	27	140	JPEG	1000
#2	29	210	JPEG 2000	1000
#3	24	240	JPEG-XT	4000
#4	15	50	JPEG JPEG2000 JPEGXT	4000
#5	15	50	JPEG JPEG2000 JPEGXT	4000

Results on the full dataset

• Mean results of 100 cycles of train-test shown.

Scheme	Processing	SRCC	KRCC	PLCC	RMSE
BRISQUE	Lin	0.7274	0.5430	0.7231	18.1797
	PU	0.8047	0.6116	0.7825	17.3576
	TMO - Drago	0.7374	0.5415	0.7203	19.1261
	TMO - Reinhard 02	0.7782	0.5853	0.7699	18.1523
	TMO - Reinhard 05	0.6903	0.5061	0.6643	20.3307
	TMO - Mantiuk	0.6172	0.4559	0.6148	22.1868
	Lin	0.6022	0.4378	0.6008	23.3017
	PU	0.7342	0.5451	0.7175	19.4117
SSEQ	TMO - Drago	0.6853	0.5011	0.6954	20.8766
BBEQ	TMO - Reinhard 02	0.6866	0.5183	0.6688	21.0673
	TMO - Reinhard 05	0.6568	0.4845	0.6467	20.5737
	TMO - Mantiuk	0.4185	0.2926	0.4651	25.7570
	Lin	0.1817	0.1391	0.1466	38.7513
	PU	0.3387	0.2406	0.3445	30.5220
BIQI	TMO - Drago	0.2803	0.1923	0.2960	41.0579
ыці	TMO - Reinhard 02	0.3756	0.2778	0.3766	33.2005
	TMO - Reinhard 05	0.3097	0.2213	0.2874	27.7294
	TMO - Mantiuk	0.2822	0.1957	0.2408	39.0999
	Lin	0.6677	0.4853	0.6759	21.8020
	PU	0.7156	0.5290	0.7193	18.7586
DIIVINE	TMO - Drago	0.7418	0.5562	0.7400	18.9959
DIIVINE	TMO - Reinhard 02	0.7149	0.5266	0.7024	20.7177
	TMO - Reinhard 05	0.7900	0.5932	0.7809	17.2134
	TMO - Mantiuk	0.4946	0.3549	0.4936	27.4918
kCNN	Lin	0.8363	0.6530	0.8134	19.1753
	PU	0.8638	0.6852	0.8497	16.8937
	TMO - Drago	0.7700	0.5853	0.7485	18.2759
	TMO - Mantiuk	0.8075	0.6188	0.8053	17.7948
	TMO - Reinhard 02	0.8613	0.6668	0.8179	17.7157
	TMO - Reinhard 05	0.6438	0.4631	0.6074	22.3484
Proposed	PU	0.8860	0.7170	0.8871	16.4171
Proposed	Lin	0.8920	0.7184	0.8860	14.1464
					2/1

Results on the full dataset

• Training on dataset [1] to [3] test on [4] and [5].

Dataset Number	Number of Reference Images	Number of Distorted Images	Distortion type	Maximum Luminance (Cd/m ²)
#1	27	140	JPEG	1000
#2	29	210	JPEG 2000	1000
#3	24	240	JPEG-XT	4000
#4	15	50	JPEG JPEG2000 JPEGXT	4000
#5	15	50	JPEG JPEG2000 JPEGXT	4000

Scheme	Processing	SRCC	KRCC	PLCC	RMSE
BRISQUE	Lin	0.5400	0.3732	0.4772	28.8475
	PU	0.7135	0.5121	0.6503	20.5534
	TMO - Drago	0.6337	0.4483	0.5903	21.7118
	TMO - Reinhard 02	0.6583	0.4670	0.6512	18.4500
	TMO - Reinhard 05	0.3524	0.2482	0.3946	30.6615
	TMO - Mantiuk	0.5887	0.4103	0.5493	22.7529
	Lin	0.5287	0.3599	0.4714	25.2588
	PU	0.6492	0.4543	0.6111	19.6977
SSEQ	TMO - Drago	0.5865	0.3956	0.5634	22.6987
SSEQ	TMO - Reinhard 02	0.5810	0.4075	0.5644	22.9900
	TMO - Reinhard 05	0.4990	0.3401	0.5036	24.9193
	TMO - Mantiuk	0.4973	0.3398	0.4770	21.2044
	Lin	0.2845	0.1876	0.2831	31.0686
	PU	0.4386	0.3041	0.4399	21.2084
BIQI	TMO - Drago	0.5332	0.3780	0.4436	25.6200
biQi	TMO - Reinhard 02	0.4632	0.3196	0.4358	22.0376
	TMO - Reinhard 05	0.5748	0.4048	0.5630	19.4825
	TMO - Mantiuk	0.4651	0.3204	0.4571	24.2268
	Lin	0.5041	0.3429	0.5209	20.6506
	PU	0.5318	0.3691	0.5442	19.6772
DIIVINE	TMO - Drago	0.4143	0.2852	0.4065	25.9697
DIIVINE	TMO - Reinhard 02	0.3634	0.2434	0.3953	26.1464
	TMO - Reinhard 05	0.5558	0.3849	0.5374	19.3122
	TMO - Mantiuk	0.4138	0.2838	0.4496	21.0499
kCNN	Lin	0.6991	0.5156	0.7008	19.3677
kCNN	PU	0.7694	0.5845	0.7544	18.5854
Proposed	Lin	0.8672	0.6773	0.8780	18.626

High

Low

Results: P-net (Replication of PU experiment)

- We used JPEG distorted images scaled the images to luminance 100 cd/m2 and 1,000 cd/m2, respectively computed the quality of these images using the proposed method.
- We found that the mean value of DMOS for the images of low brightness was 68.76 and those of high brightness was 76.72.
- Difference found to be is statistically significant.
- Same results as the original paper data driven method can recover perceptual thresholds.

Results: Error Map

Error map

Failure cases

Conclusion

- Learning based system that can predict quality of compressed HDR images.
- Can estimate perceived errors and error detection thresholds.
- Produces state of the art results in terms of similarity to human judgement.

Team

Dr Giuseppe Valenzise

Dr Frederic Dufaux

Navaneeth K. K.

Dr Irene Cheng

Thanks

Emin Zerman

Dr Anup Basu

References

- [1] M. Narwaria, M. P. Da Silva, P. Le Callet, and R. Pepion, "Tone mapping-based high-dynamic-range image compression: study of optimization criterion and perceptual quality," Optical Engineering, vol. 52, no. 10, pp. 102 008–102 008, 2013.
- [2] M. Narwaria, M. P. Da Silva, P. Le Callet, and R. P´epion, "Impact of tone mapping in high dynamic range image compression," in International Workshop on Video Processing and Quality Metrics for Consumer Electronics, 2014, pp. pp–1.
- [3] P. Korshunov, P. Hanhart, T. Richter, A. Artusi, R. Mantiuk, and T. Ebrahimi, "Subjective quality assessment database of HDR images compressed with JPEG XT," in Quality of Multimedia Experience (QoMEX), 2015 Seventh International Workshop on. IEEE, 2015, pp. 1–6.
- [4] G. Valenzise, F. De Simone, P. Lauga, and F. Dufaux, "Performance evaluation of objective quality metrics for HDR image compression," in SPIE Optical Engineering Applications. International Society for Optics and Photonics, 2014, pp. 92 170C–92 170C.
- [5] E. Zerman, G. Valenzise, and F. Dufaux, "An extensive performance evaluation of full-reference HDR image quality metrics." in Springer: Quality and User Experience, vol. 2, no. 1, 2017.
- [6] Aydin, Tunç Ozan, et al. "Dynamic range independent image quality assessment." ACM Transactions on Graphics (TOG). Vol. 27. No. 3. ACM, 2008.

