Decoding

How well can we learn what the stimulus is by looking at the neur? responses?

Making a decision

Predictable from neural activity?

Behavioral performance

Britten et al. '92

Signal detection theory

How many errors are you going to make

False alarms: $P[r \ge z|-]$ Good calls = $P[r \ge z|+]$

This choice of z maximizes P[correct]

Likelihood ratio

The likelihood ratio test is the most eliminate it has the most power for a given size.

Power = probability of a false negative
Size = probability of a false positive

Neyman-Pearson lemma

Neurons vs organisms

Close correspondence between neuron decoding ana lehavior..

So why so many neurons?

Let's just consider for a moment

Now let's say we don't have to decide immediately...

Accumulated evidence for accumulated evidence

Kiani, Hanks & Shadlen, Nature Neuroscience (2006)

Back to one trial: building in what we already know

Role of *priors*:

Find z by maximizing P[correct] = p[+] b(z) + p[-](1 - a(z))

The wind or a tiger?

Rieke lab

That's prior knowledge: how about costs?

Building in cost

Cut your losses: answer + when / Loss

i.e.
$$L_{+}P[-|r] < L_{-}P[+|r]$$
.

$$\Rightarrow p[r|+]/p[r|-] \Rightarrow L_+P[-]/L_-P[+]$$