Annotation preprocessing improves the detection of genetic effects on transcript usage

Kaur Alasoo University of Tartu 6 December 2017

@kauralasoo
http://kauralasoo.net

Alternative 5' splice site in the first exon of IRF5

Transcript usage quantitative trait locus (QTL)

Ideal world

Scenario A: annotations match expressed transcripts

Ideal world

Scenario A: annotations match expressed transcripts

Scenario B: annotations differ from expressed transcripts

Scenario B: annotations differ from expressed transcripts

Scenario B: annotations differ from expressed transcripts

Biased estimates!

Scenario B: annotations differ from expressed transcripts

Which event is driving the signal?

Biased estimates!

- - ► Transcripts with truncated 5' or 3' ends

- - > Transcripts with truncated 5' or 3' ends

58% of the transcripts are truncated!

58% of the transcripts are truncated!

Alternative transcript starts

Distance from region start (bp)

Alternative middle sections

Distance from region start (bp)

Alternative transcript ends

Distance from region start (bp)

Quantification strategies

- read count STAR alignment + featureCounts
- transcript usage Ensembl transcripts + Salmon
- txrevise transcript events + Salmon
- Leafcutter exon-exon junction read counts

Cis window: +/- 100kb

Overlap with associations for 33 complex traits

Detected by:

x read count

X transcript usage

Leafcutter

/ txrevise

Response QTLs: genetic effects that appear after stimulation

IFNg-specific response QTL at the 5'UTR of CD40

IFNg-specific response QTL at the 5'UTR of CD40

Colocalisation with rheumatoid arthritis (RA) GWAS hit

Response QTLs across the gene body

Response QTLs across the gene body

Conclusions

- txrevise detects additional associations missed by other methods.
- Genetics of transcript usage is largely independent from gene expression.
- Promoter QTLs are more condition-specific than other transcript usage QTLs.

References

- txrevise: revised transcript annotations https://github.com/kauralasoo/txrevise
- wiggleplotr: RNA-seq read coverage plots <u>http://bioconductor.org/packages/release/bioc/html/</u> <u>wiggleplotr.html</u>
- Experimental setup and data:

Shared genetic effects on chromatin and gene expression reveal widespread enhancer priming in immune response http://www.biorxiv.org/content/early/2017/05/18/102392

Wellcome Trust Sanger Institute

Daniel Gaffney

Julia Rodrigues

Gordon Dougan

HipSci Project Sequencing Core Facility

University of Cambridge

Dirk Paul

Funding wellcome was Mobilitas ** Mobilitas**

