Size and Shape Characterization for Shot-Peening Impingement Models

Langdon Feltner, Paul Mort, Mark Gruninger, Dave Bahr
Purdue School of Materials Engineering
Center for Surface Engineering & Enhancement
Sep 5, 2022

International Conference on Shot Peening 14, Milan, IT

 Dynamic image analysis can quantify size and shape distributions of cast and cut-wire shot.

- Size and shape characteristics are used in a peening impingement model:
 - Model accounts for shot momentum and radius of curvature (ROC) at the point of impact.
 - Parameters include shot particle's size-dependent mass, shape-dependent ROC, and probability function for ROC selection based on orientation of the shot particle.

Characterization of shot size and shape distributions

Legacy methods & specifications:

Size analysis; mass fraction through sieve openings.

Shape inspection; qualitative comparison to 2D archetypes.

Dynamic image analysis of Shot Particles:

 2D projections of shot particles, randomly oriented.[†]

Threshold

raw

image

B&W

binary

• Quantitative analysis for BOTH <u>size and shape</u>:

• Shot size and mass (~ peening work): $v = \sqrt{4.4 / \pi}$: $M = o^{\frac{\pi}{4}} v^{3}$

$$x_A = \sqrt{4A/\pi}; \ M = \rho \frac{\pi}{6} x_A^3$$

• Shot Shape (~ impact stress): $FF = 4\pi A/P^2$

• Elongation:
$$AR_{box} = xF_{min}/x_{LF}$$

 $AR_{ISO} = xF_{Fmin}/xF_{Fmax}$

• Irregularity: $EFF = \beta \pi A/P^2$;

$$\beta = \left(1.5 \cdot (AR + 1) / \sqrt{AR} - 1\right)^2$$

Dry system: size 100 - 3000 um;

Wet system: 10 − 300 um.

Dynamic imaging, S170 cast shot

Size & shape distributions, selected cast and cut-wire steel shot

Detailed Shape Map (S70)

Thresholded grayscale images illustrate detailed features.

Shape factor mapping using orthogonal factors:

- (1,1) is a spherical projection (circle)
- Aspect ratio, AR, \rightarrow elongation;
- Elliptical Form Factor, EFF, \rightarrow perimeter irregularity;
- ISO Form Factor, FF, is a lumped-sum measure of both.

Shape archetypes → contact curvature

Cast w/ satellites:

- Degree of overlap (in color)
- Satellite size ratio (dashed)

Conditioned Cut Wire:

- Degree of rounding (in color)
- Cut orientation (dashed)

Size and shape: Express shape as glued-spheres

 x_{Fmin} and x_{RC} are contact curvatures, mass (energy) ~ x_A^3

S70	D5	D15	D25	D50	D75	D85	D95	CW12	D5	D15	D25	D50	D75	D85	D95
x_A	191	218	234	261	283	297	367	x_A	182	209	226	248	264	272	285
x_{Fmin}	183	206	220	245	267	278	296	x_{Fmin}	173	196	210	228	242	249	263
x_{RC}	113	152	170	199	220	229	240	x_{RC}	120	139	150	171	190	199	214
S110	D5	D15	D25	D50	D75	D85	D95	CW14	D5	D15	D25	D50	D75	D85	D95
x_A	256	292	315	351	379	391	413	x_A	239	271	290	320	340	350	365
x_{Fmin}	251	282	304	341	364	376	394	x_{Fmin}	223	251	270	295	311	318	333
x_{RC}	190	229	251	289	315	327	345	x_{RC}	163	185	199	227	251	263	282
S230	D5	D15	D25	D50	D75	D85	D95	CW20	D5	D15	D25	D50	D75	D85	D95
x_A	502	545	570	617	667	694	745	x_A	421	453	469	498	524	535	554
x_{Fmin}	476	521	548	595	641	666	705	x_{Fmin}	380	401	414	437	455	464	477
x_{RC}	336	427	466	524	577	603	645	x_{RC}	298	325	341	369	396	411	432
S330	D5	D15	D25	D50	D75	D85	D95	CW32	D5	D15	D25	D50	D75	D85	D95
x_A	786	832	859	916	978	1013	1082	x_A	668	701	718	750	779	794	818
x_{Fmin}	761	805	831	886	942	969	1019	x_{Fmin}	615	638	650	677	700	711	726
x_{RC}	523	681	729	800	862	896	944	x_{RC}	441	494	522	569	608	628	661

Glued-sphere representation of contact curvature

Model shot shape effects as overlapping spheres having characteristic Radii of Curvature (*ROC*):

- $x_{Fmin} \rightarrow ROC1$
- $x_{RC} \rightarrow ROC2$
- Reduced curvature, x_{RC} , and impact probabilities determined using:
 - x_{Fmin} ,
 - x_{Fmax} ,
 - A
- Details in report.

Peening impact w/glued-sphere model

Example from DIA characterization:

- $A = 0.181 \, mm^2$
- $x_A = 480 \ \mu m$
- $V = 0.058 \, mm^3$
- $\rho = 7.8 \, g/ml$
- m = 0.45 mg
- $x_{Fmin} = 453 \, \mu m$
- $x_{Fmax} = 573 \ \mu m$
- $x_{RC} = 235 \, \mu m$

Discrete impact effects – shape dependent

FEM using simple Hertzian contact model – sphere on plate

(ABAQUS Inc.)

Distribution of impact curvature

Shape broadens the distribution of impact curvature. It affects:

- Dimple size,
- Compressive depth profile.

Glued-sphere model incorporates shape effects into simplified statistical frameworks:

- Discrete impacts (# distribution);
- Mass flux (volume distribution).

Peening texture with random impacts, (312 impacts \rightarrow ~100% coverage)

Area-Equivalent (x_A) Diameter Model

Qualitatively, x_A simulations appear more uniformly distributed..

Statistical quantification of surface coverage and depth profile texture (RSD)

- Relative standard deviation (RSD) as a function of sampling scale.
- At a given scale of scrutiny, heterogeneity of discrete impacts contributes to higher RSD of the stress field; as scale \downarrow , RSD \uparrow .

Work in progress: Shot peening process flowsheet model

At steady state:

 Mass balance of media replenishment with breakage removal:

$$\dot{M}_{replenish} = \dot{M}_{breakage} + \dot{M}_{leakage}$$

- Energy balance of shot power (kW) with part's compressive stress depth profile obtained at treatment throughput $(Pa \cdot m) \cdot (m^2/s)$.
- Details of stress profile depend on work mix (WM) shot size & shape distributions.

Steady-state flowsheets:

Control on centerline objectives.

Dynamic flowsheets:

- Manage transient or upset conditions;
- Optimize:
- Startup & shutdown;
- Changeovers (e.g., shot size).

Size tracking, χ_A

- A) Lognormal d_a = 800 um, σ_a = 1.15
- B) Lognormal d_a = 643 um, σ_a = 1.18
- Weibull (breakage) d^* = 403 um, n = 3.1

Cumulative vol%

Shape tracking

Conclusion

- x_{Fmin}
- Dynamic image analysis can quantify size and shape distributions of cast and cut-wire shot.
- Size and shape characteristics are used in a peening impingement model:
 - The model accounts for shot momentum and radius of curvature (ROC) at the point of impact.
 - Parameters include shot particle's size-dependent mass, shape-dependent ROC, and probability function for ROC selection based on orientation of the shot particle.
- Work in progress: Process flowsheet with including size and shape effects.

Thanks to the organizers of ICSP14! Enjoy the banquet!

Size Features	Impact curvatures & probabilities	Shape Factors (dimensionless)				
\Box x_{Fmin} = min Feret length	$x_{RC} = \text{reduced curvature diameter}, x_{RC} = \frac{-b + \sqrt{b^2 - 4ac}}{2a};$	\Box AR_{ISO} = aspect ratio, ISO definition,				
\Box x_{LF} = Feret length		x_{Fmin}/x_{Fmax}				
orthogonal to x_{Fmin}	$a = \frac{\pi - 2}{8}$; $b = \frac{x_{Fmax} - x_{Fmin}}{2}$; $c = \frac{4 \cdot x_{Fmax} \cdot x_{Fmin} + (\pi - 2)x_{Fmin}^2}{8}$	\Box AR_{box} = aspect ratio, bounding box,				
$\Box x_{Fmax}$ = max Feret length	A	x_{Fmin}/x_{LF}				
\Box $A = area$	\square ROC1 = major curvature ~ $x_{Fmin}/2$	\Box FF = form factor, $\frac{4\pi A}{P^2}$				
\square $P = perimeter$	\square ROC2 = minor curvature $\sim x_{RC}/2$	$\Box EFF = \text{elliptical } FF, \frac{\beta \pi A}{P^2};$				
\Box x_A = equivalent area	$\Box d_{cc} = x_{Fmax} - (x_{Fmin} + x_{RC})/2$	2				
diameter, $x_A = \sqrt{4A/\pi}$	$\Box cos(\alpha) = (ROC1 - ROC2)/d_{cc}$	$\beta = \left(\frac{1.5 \cdot (AR+1)}{\sqrt{AR}} - 1\right)^2$				
	\Box $\Phi 1$ = major probability, $(\pi - lpha)/\pi$					
	\Box $\Phi 2$ = minor probability, α/π					

