Problem J. CntSQ

Input file stdin
Output file stdout

Squares are fun. Counting them is even more fun.

You're given a binary matrix (containing only os and Is), and your task is to count how many square submatrices have the property that every cell on their border is a I.

Task

Formally, a square is defined by its top-left corner (i_1, j_1) and bottom-right corner (i_2, j_2) , where $i_2 - i_1 = j_2 - j_1$. The border of such a square is the set of all cells (x, y) that satisfy at least one of the following:

- $(x = i_1 \text{ or } x = i_2) \text{ and } j_1 \le y \le j_2$
- $(y = j_1 \text{ or } y = j_2) \text{ and } i_1 \le x \le i_2$

Your task is to count how many such squares exist such that all the cells on their border contain the value 1.

Input Data

The first line of the input contains two integers N and M, representing the number of rows and columns in the matrix. Each of the next N lines contains a string of M digits (o or 1), with no spaces, representing one row of the matrix.

Output Data

Output a single integer: the number of square submatrices whose borders contain only is.

Restrictions and Clarifications

- $1 \le N, M \le 1000$
- A square of side length 1 (a single cell) is also valid if that cell is 1.

Examples

Input file	Output file
3 3	9
111	
101	
111	
7 7	27
0000000	
0111100	
0101111	
0100101	
0111111	
0000011	
0000011	