Roadmap: From Continued Fractions to Modular Forms and Elliptic Curves

Expanded Curriculum with Bridges, Applications, and Fluency Plan

Audience and tone. For a mathematically gifted 9-year-old, comfortable with arithmetic, introductory algebra, and eager to explore. Lessons remain visual, computational, and playful, with proofs postponed unless short and accessible.

Materials. Graph paper, straightedge, compass, colored pencils; calculator or plotting app capable of parametric plots and discrete sampling.

Unit A — Tiny Complex/Calculus Boosters

Goal: Comfort with rotations, complex numbers, series, and Fourier intuition; prepare for Möbius maps and q-series.

Lesson A1: Complex Numbers and Rotations

What we will build. Interpret x + iy in polar form $re^{i\theta}$, and use multiplication by $e^{i\theta}$ to rotate points in \mathbb{C} . Learn to rotate about arbitrary centers a via $a + e^{i\theta}(z - a)$.

- Activities: Convert between rectangular and polar forms; compute $e^{i\pi/3}$ and $e^{i\pi/4}$; rotate (2,-1) by 45° about origin and (1,2).
- Visual/Computer: Plot $z(\theta) = e^{i\theta}(2-i)$ for $\theta \in [0, 2\pi]$ and see the circle.

Lesson A2: Power Series in One Page

What we will build. Approximate e^x , $\sin x$, $\cos x$ using Taylor series; apply Newton's binomial theorem $(1+x)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} x^n$.

- Activities: Expand $(1+x)^{1/2}$ up to x^4 ; approximate $\sqrt{1.04}$ and compare.
- Visual/Computer: Overlay $y = \sin x$ with its cubic Taylor polynomial near 0.

Lesson A3: First Look at Fourier

What we will build. Express periodic functions as $f(\theta) = a_0 + \sum_{n\geq 1} (a_n \cos n\theta + b_n \sin n\theta)$; connect to beats identity.

- Activities: Sample an 8-point square wave; identify odd harmonics.
- Visual/Computer: Plot S_1, S_3, S_5 partial sums; observe Gibbs overshoot.

Lesson A4 (Bridge): Matrices & Simple Möbius Maps

What we will build. Read 2×2 integer matrices, determinant ad - bc; compose simple maps $x \mapsto \frac{ax+b}{cx+d}$.

- Activities: Multiply $M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $M_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$; interpret T, S.
- Visual/Computer: Apply S, T to points on real line; plot the motion.

Capstone A:

- 1. Rotate multiple complex points about origin and arbitrary centers; verify distances preserved.
- 2. Approximate $\sin(0.3)$, $e^{0.5}$, $(1.02)^{1/2}$ via Taylor/binomial series; estimate remainder.
- 3. Sample and Fourier-approximate a simple wave; compare to original.
- 4. Given simple Möbius maps, express as products in S, T; apply to a set of points.

Unit B — Continued Fractions to $SL_2(\mathbb{Z})$

Lesson B1: CF as Matrix Products

What we will build. Compute convergents of $\alpha = [a_0; a_1, a_2, \dots]$ via $M(a) = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}$; product $M(a_0) \cdots M(a_k) = \begin{pmatrix} p_k & p_{k-1} \\ q_k & q_{k-1} \end{pmatrix}$.

- Activities: Compute $\sqrt{14}$ convergents by matrix and recurrence.
- Visual: Tree diagram of rationals with CF branches.

Lesson B2: Möbius Transformations and Fundamental Domain

What we will build. Action $\tau \mapsto \frac{a\tau+b}{c\tau+d}$ on \mathbb{H} ; reduce to $\mathcal{F} = \{|\Re \tau| \leq \frac{1}{2}, |\tau| \geq 1\}$ using S, T.

- Activities: Reduce $\tau = 3 + 2i$ to \mathcal{F} ; record S, T word.
- Visual: Modular tessellation; orbit of a point.

Lesson B3: Farey Sequences and Ford Circles

What we will build. Best approximations; mediant $\frac{p+r}{q+s}$ between $\frac{p}{q}$ and $\frac{r}{s}$; tangency ps-qr=1.

• Activities: Draw Ford circles with $q \le 5$; identify neighbors of 2/5.

Lesson B4: Quadratic Irrationals as Closed Geodesics

What we will build. Connect periodic CFs of \sqrt{D} to closed loops on modular surface.

• Activities: Use $\sqrt{14}$ period to trace loop on tessellation.

Lesson B5: CFs in the Wild

What we will build. Apply CFs to best approximations; explain 355/113 for π .

• Activities: Approximate e and $\sqrt{2}$ to within 10^{-4} by CF.

Lesson B6: Nested Radicals & Quadratic Surprises

What we will build. Evaluate $\sqrt{k+\sqrt{k+\cdots}}$ as quadratic fixed points; trigonometric connection $\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}=2\cos(\pi/2^{n+1})$; Viète's product for $\frac{2}{\pi}$.

- Activities: Solve $\sqrt{6+\sqrt{6+\cdots}}$; compare to CF expansion.
- Visual: Plot partial approximations.

Bridge to C: Fractions Modulo m

What we will build. Understand $\frac{a}{b} \mod m$ when gcd(b, m) = 1; invert small denominators.

Capstone B:

- 1. Reduce several τ to \mathcal{F} , recording S, T words.
- 2. Draw Ford circles up to q = 7; verify mediant property visually.
- 3. Match value of a nested radical to a quadratic irrational via CF expansion.

Unit C — Congruences and Quadratic Residues

Lesson C1: Modular Arithmetic and CRT

What we will build. Compute inverses mod m; solve $x \equiv a \pmod{m_1}$, $x \equiv b \pmod{m_2}$.

- Activities: Invert 7 mod 26; solve $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$.
- Visual: Wrap-around number lines.

Lesson C2: Quadratic Residues and Legendre Symbol

What we will build. List squares mod p; compute $\left(\frac{a}{p}\right)$ via Euler's criterion.

- Activities: Table squares mod 7, 11; evaluate $(\frac{2}{7})$.
- Visual: Color quadratic residues on $p \times p$ grid.

Lesson C3: A Friendly Theta Function

What we will build. $\theta(q) = \sum_{n \in \mathbb{Z}} q^{n^2}$; $\theta(q)^2$ counts $x^2 + y^2$.

- Activities: List coefficients to q^9 ; count integer solutions to $x^2 + y^2 = m$.
- Visual: Lattice points on circles.

Lesson C4: Fast Modular Exponentiation and Miller-Rabin

What we will build. Compute $a^n \mod m$ by square-and-multiply; run Miller-Rabin primality test.

• Activities: $3^{100} \mod 13$; test n = 561 with a = 2, 3.

Lesson C5: Square Roots mod p (Tonelli–Shanks)

What we will build. Solve $x^2 \equiv a \pmod{p}$ for odd prime p.

• Activities: $\sqrt{10} \mod 13$; verify by squaring.

Capstone C:

- 1. Solve 3 CRT problems quickly.
- 2. Invert several $a \mod m$ and check with multiplication.
- 3. Run Miller–Rabin on a 5-digit composite.
- 4. Find $\sqrt{a} \mod p$ for two cases and verify.

Unit D — Elliptic Curves Two Ways

Pre-Bridge: From Grid to Donut

What we will build. Turn $\mathbb{R}^2/\mathbb{Z}^2$ into a paper torus; generalize to \mathbb{C}/Λ .

Lesson D1: Lattices and Complex Tori

What we will build. Lattice $\Lambda = \mathbb{Z} + \mathbb{Z}\tau$; fundamental parallelograms.

• Activities: Draw $\tau = i$ and $\tau = e^{i\pi/3}$ lattices.

Lesson D2: Tori to Weierstrass Cubics (Peek)

What we will build. Statement $\mathbb{C}/\Lambda \leftrightarrow y^2 = 4x^3 - g_2x - g_3$.

Lesson D3: Group Law on a Cubic

What we will build. Chord-tangent addition; reflection in x-axis.

• Activities: On $y^2 = x^3 - x$, compute (0,0) + (1,0).

Lesson D4: Counting Points mod p; a_p

What we will build. Count $\#E(\mathbb{F}_p)$; define $a_p = p + 1 - \#E(\mathbb{F}_p)$.

• Activities: Count for p = 5, 7, 11; make table.

Lesson D5: Scalar Multiplication (Double-and-Add)

What we will build. Compute nP efficiently from binary n.

Lesson D6: Toy ECC

What we will build. Simulate ECDH over \mathbb{F}_p on a toy curve.

• Activities: Pick base point G; exchange public keys; compute shared secret.

Capstone D:

- 1. Add, double, and scalar multiply points on a curve.
- 2. Count $\#E(\mathbb{F}_p)$ for $p \leq 19$; plot a_p .
- 3. Run a toy ECC key exchange end-to-end.

Unit E — Modular Forms and the Bridge

Pre-Bridge Recap: Why q-series? Why S,T?

What we will build. Periodicity $\tau \mapsto \tau + 1 \Rightarrow$ Fourier in $q = e^{2\pi i \tau}$; $\tau \mapsto -1/\tau$ symmetry in \mathbb{H} .

Lesson E1: What is a Modular Form?

What we will build. $f: \mathbb{H} \to \mathbb{C}$ with $f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$; q-expansion.

Lesson E2: Eisenstein Series

What we will build. $E_4(\tau) = 1 + 240 \sum_{n} \sigma_3(n) q^n$, $E_6(\tau) = 1 - 504 \sum_{n} \sigma_5(n) q^n$.

• Activities: Make divisor-sum tables $n \leq 10$; compute coefficients.

Lesson E3: Δ and *j*-Invariant

What we will build. $\Delta = q \prod (1 - q^n)^{24}$; $j(\tau) = 1728 \frac{E_4^3}{E_4^3 - E_6^2}$.

Lesson E4: Hecke Operators (Taste)

What we will build. $(T_p f)(q) = \sum (a_{pn} + p^{k-1} a_{n/p}) q^n$.

Lesson E5: Bridge: Elliptic Curves \leftrightarrow Modular Forms

What we will build. Modularity theorem: E/\mathbb{Q} matches weight-2 newform with coefficients a_p .

Lesson E6: Ramanujan and Chudnovsky π Formulas

What we will build. Rapidly converging π series from modular equations; e.g.,

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}.$$

Capstone E:

- 1. Compute q-expansion coefficients for E_4, E_6, Δ to n = 8.
- 2. Match a_p table of a curve to weight-2 modular form.
- 3. Compute π to 6+ digits with first few terms of Ramanujan's series.

Unit F (Optional Story): Fermat's Last Theorem Pipeline

Fermat \rightarrow Frey curve \rightarrow Ribet \rightarrow Wiles. Map of the territory.

Fluency Plan

Daily skill ladders:

- CF/matrices: 3 CF expansions to depth 8; 3 matrix products; one τ to \mathcal{F} .
- Mod arithmetic: 5 inverses mod m; 2 CRT problems; one Tonelli–Shanks.
- Elliptic: Add/double 2 points mod p; count $\#E(\mathbb{F}_p)$.
- q-series: Generate coefficients for E_4, E_6, Δ up to n = 10.

Milestones

- End A: Rotate, expand series, do simple Fourier.
- End B: CF mastery, Ford circles, nested radicals.
- End C: CRT fluency, Miller-Rabin, Tonelli-Shanks.
- End D: ECC simulation, a_p computation.
- End E: q-expansion fluency, Ramanujan π computation, modular form-elliptic curve match.