Assignment 1

Question 1.

Show that every equivalence relation on the set X determines a unique partition of X, and conversely.

Question 2.

Let $*: G \times G \to G$ be an associative binary operation on the set G such that

(G2R) There is an element $e \in G$ such that, for all $a \in G$,

$$a * e = a$$
.

(G3R) To each $a \in G$ there is an $\overline{a} \in G$ such that

$$a*\overline{a}=e.$$

Show that (G, *) is a group.

This shows that axioms (G2R), (G3R) and (G1) together imply (G1), (G2) and (G3).

Question 3.

Take $m \in \mathbb{Z}$ and let \mathbb{Z}_m be the set of residue classes modulo m.

Show that

$$+: \mathbb{Z}_m \times \mathbb{Z}_m \longrightarrow \mathbb{Z}_m; \quad ([l], [k]) \longmapsto [l+k]$$

is a well-defined binary operation, that is, [l+k] does not depend on the choice of representatives l and k of the equivalence classes [l] and [k].

Prove that $(\mathbb{Z}_m, +)$ is a group.

Question 4.

Let G be a group such that $(a*b)^2 = a^2*b^2$ for all $a, b \in G$.

Show that (G, *) is abelian.