

Cell Injury

Cell Injury

D

Injury

 It is an alteration in cell structure or function resulting from some <u>STRESS</u> that exceeds its ability to compensate through normal physiologic adaptive mechanisms.

Cell Injury

Causes:

- Hypoxia: reduced oxygen availability
- Chemical agents
- Physical agents
- 4. Infection
- 5. Immune reactions
- 6. Nutritional imbalance
- 7. Genetic derangements

Targets of Cellular Injury

- 1. The cell membrane integrity
- 2. Aerobic Respiration and ATP Production
- 3. Protein synthesis
- 4. Genes

Types of cell injury

Reversible

Irreversible

changes are reversible if the damaging stimulus is removed With continuing damage, cell can't recover and it dies

Reversible Cell Injury

1. Cell swelling

It is associated with the abnormal influx of <u>sodium and water</u> into the cell.

2. Fatty change

this results from accumulation of <u>lipids</u> inside parenchymal cells.

It can affect the liver, heart, kidney and other organs.

Reversible Cell Injury

Cell swelling

small clear vacuoles may be seen within the cytoplasm

Fatty liver

Irreversible Cell Injury

- The ultimate consequence of irreversible injury is cell death.
- Types of cell death:
 - 1. Necrosis
 - 2. Apoptosis

Irreversible cell injury 1- Necrosis

Definition:

- Death of a group of cells within a living body.
- It occurs as a result of denaturation of intracellular proteins and enzymatic digestion of the lethally injured cell

Types of cell necrosis

1. Coagulation necrosis:

in cases of hypoxia

2. Liquefactive necrosis:

proteolysis as in abscess and brain infarction

3. Caseous necrosis:

Combination of the above 2 types as in cases of tubeculosis

4 Fat necrosis

Occur in adipose tissue due to trauma or enzymes

5 Gangrenous necrosis

Gangrene as in diabetic foot

TYPES OF NECROSIS

The cytoplasm tell you HOW cells have died.

Fibrinoid necrosis in an artery

necrotic cells in the infarct (I) showing preserved cellular outlines

Irreversible cell injury 2- Apoptosis

Apoptosis is genetically programmed cell death.

Causes:

- In physiologic situations: during embryogenesis, and throughout adulthood, to eliminate unwanted, aged or potentially harmful cells.
- In pathologic events: Apoptosis eliminates cells that are injured beyond repair without eliciting a host reaction.

Irreversible cell injury 2- Apoptosis

Apoptosis is genetically programmed cell death.

Causes:

- In physiologic situations: during embryogenesis, and throughout adulthood, to eliminate unwanted, aged or potentially harmful cells.
- In pathologic events: Apoptosis eliminates cells that are injured beyond repair without eliciting a host reaction.

Intracellular Accumulations

- The cell can accumulate and store various substances in the cytoplasm to adapt to injury that disrupts metabolic pathways.
- Intracellular accumulations are not usually harmful to the cell.
 In some instances, however, intracellular accumulations can impair cell function and contribute to a disease process.

Intracellular Accumulation Of Abnormal Amounts Of Substances Substances Normal cellular Abnormal substances constituents -Water Endogenous Exogenous -Lipids proteins

e.g. a product of

abnormal synthesis

or metabolism

e.g. a mineral or

products of

infectious agents

-carbohydrates

Intracellular accumulations include the following:

- Water (hydropic change)
- 2. Fats may accumulate in the liver as fatty change.
- Mucin---mucoid change
- 4. Proteins: e.g. hyaline change (hyalinosis).
- Cholesterol accumulation in macrophages (foam cells) as in atherosclerosis
- Glycogen: in case of glycogen storage diseases.
- Complex carbohydrates: mucopolysaccharidoses
- Minerals: iron, as hemosiderin, or carbon.
- 9. Pigments: exogenous and endogenous
- 10. Calcium
- 11. Amyloid

Federite Leem