Extended Entity Relationship (ER) Features

- As the complexity of data increased in the late 1980's, it became more and more difficult to use the traditional ER model for database modelling.
- Hence some improvements or enhancements were made to the existing ER model to make it able to handle the complex applications better.

Extended Entity Relationship (ER) Features

Three concepts are added to the existing ER model

Generalization

Specialization

Aggregation

Generalization

- Generalization is the process of extracting common properties from a set of entites and create a generalized entity from it.
- Generalization is a "bottom-up approach" in which two or more entites can be combined to form a higher level entity if they have some attributes in common

subclasses are combined to make superclass

Example: Generalization

 Consider we have 3 sub entites Car, Bus and Motorcycle, now these three entities can be generalized into one higher-level entity (or super class)

Specialization

- Specialization is opposite of Generalization
- In Specialization, an entity is broken down into sub entities based on their characteristics
- Specialization is a "top-down approach" where higher level entity is specialized into two or more lower level entities
- It is used to identify the subset of an entity set that shares some distinguishing characteristics

Inheritance

Inheritance is an important feature of generalization and specialization.

Attribute inheritance allows lower level entities to inherit the attributes of higher level entities.

example: Consider relations Car and Bus inheriting the attributes of Vehicle. Thus, Car is described by attributes of super-class Vehicle as well as its own attributes.

Participation Inheritance

Participation Inheritance in which relationships involving higher -level entity sets are also inherited by lower-level entity set note: A lower level entity set can participate in its own relationship-sets too.

Consider the example

How schemas or Tables can be formed for given example

```
Four Tables can be formed:
customer(name,street,city,credit_rating)
officer(name,street,city,salary,office_number)
teller(name,street,city,salary,station_number,h
ours_worked)
secretary(name,street,city,salary,hours_worked)
```


Aggregation

Aggregation is used when we need to express a relationship among relationships.

Aggregation is an abstraction through which relationships are treated as higher level entities.

Aggregation is a process when a relationship between two entities is considered as a single entity and again this single entity has a relationship with another entity.

Example: Relationship of Relations

Basic E-R can't represent relationships involving other relationships

Consider a ternary relationship works_on between Employee,Branch and Job.

An employee works on a particular job at particular branch

Suppose we want to assign a manager for jobs performed by an employee at a branch(ie, want to assign managers to each employee, job, branch combination)

Need a separate manager entity set relation between each manager, employee, branch and job entity.

ER Diagram with redundant Relationship

Relation sets works-on and manages represent overlapping (redundant) information

Every manages relationship corresponds to a works-on relationship

However, some works-on relationships may not correspond to any manages relationships

So we can't discard the works-on relationship

Elimination of redundancy using aggregation

- Treat relationship as an abstract entity.
- Allow relationships between relationships
- Abstraction of relationship into new entity

E-R Diagram With Aggregation

With Aggregation:

- An employee works on a particular job at a particular branch
- An employee ,branch,job combination may have an associated manager