Day 13 (Review Session)

Problem Solving Methodology

- 1. What problems look like
- 2. What info to look for
- 3. How to solve them

Independent vs. Disjoint

Are A and B Disjoint

Looks like: define two events

Looking for:

- P(A)
- P(B)
- $P(A \cap B)$

Check: Is $P(A \cap B) = 0$

If yes \rightarrow disjoint

If no \rightarrow not disjoint

Are A and B independent

Looking for:

- P(A)
- P(B)
- $P(A \cap B)$

Find <u>ONE OF</u> the following comparisons:

Is
$$P(A \cap B) = P(A)P(B)$$

If yes \rightarrow independent

If no \rightarrow dependent

Is
$$P(B \mid A) = P(B)$$
?

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Event vs Probability

- Event: an actual thing that could happen or not
 - Example: the dog will go to the right place
- Probability: a number between 0-1 assigned to the "chance" of an event
 - Example: The dog has a 50% chance of going to the right bowl

Example

Problem: 3 lights, independently red/green

If red \rightarrow 2 minutes

10 minutes to get to work

All green \rightarrow 8 minutes

$$P(A) = 0.6 P(B) = 0.4 P(C) = 0.9$$

 $A \to Light 1$ is red $B \to Light 2$ is red $C \to Light 3$ is red

Goal: Find the probability of not being late to work

Employee is not late $\underline{\text{if:}}$

- all green
- one light is red

$$P(\text{not late}) = P(\text{all green}) + P(\text{one red})$$

all green =
$$\{(A^c, B^c, C^c)\}$$
 he hits no red lights

one red =
$$\{(A, B^c, C^c), (A^c, B, C^c), (A^c, B^c, C)\}$$
 he hits at most one light

all green =
$$P(\{(A^c, B^c, C^c)\})$$

$$= P(A^c)P(B^c)P(C^c)$$

$$= (0.4)(0.6)(0.1)$$

$$= 0.024$$

finish from picture

Conditional Probability/Bayes' Rule

Given: two conditional probabilities/proportions $P(B|A), P(B|A^c)$

One unconditional probability/proportions (prevalence/base rate) P(A)

Goal: Find a different conditional probability P(A|B)

$$P(A|B) = \frac{P \cap B}{P(B)}$$