§4. Достаточные условия существования экстремума.

С помощью теоремы 3.1 можно найти критические точки данной функции (или точки, подозрительные на экстремум). Однако, не в каждой критической точке функция имеет экстремум (замечание 3.2). Вопрос о наличии экстремума в критических точках решается путём применения достаточных условий, или достаточных признаков существования экстремума.

1°. Достаточный признак существования экстремума, связанный с первой производной.

Теорема 4.1. Пусть функция f(x) непрерывна на некоторой окрестности $U(x_0)$ критической точки x_0 и дифференцируема во всех точках этой окрестности за исключением, быть может, самой точки x_0 . Если при переходе аргумента x через эту точку слева направо производная f'(x)меняет знак, то в точке x_0 функция f(x) имеет экстремум (при изменении знака f'(x) с плюса на минус – максимум, с минуса на плюс – минимум).

▶ Рассмотрим $\forall x \in U(x_0)$. Для функции f(x) на отрезке $[x, x_0]$ $(x < x_0)$ или на отрезке $[x_0, x]$ $(x > x_0)$ выполнены все условия теоремы Лагранжа, поэтому для неё справедлива формула (3.3) из главы 2, имеющая здесь вид:

$$f(x) - f(x_0) = \Delta f(x_0) = f'(c)(x - x_0), \tag{4.1}$$

где c – некоторое число, заключённое между x_0 и x. Пусть f'(x) > 0 при $x < x_0$ и f'(x) < 0 при $x > x_0$, в этом случае f'(c) и $x - x_0$ имеют разные знаки для $\forall x \in U(x_0)$. Действительно, f'(c) > 0 и $x - x_0 < 0$ при $x < x_0$, f'(c) < 0 и $x - x_0 > 0$ при $x > x_0$. Итак, в окрестности $U(x_0)$ приращение функции $\Delta f(x_0) < 0$ в силу (4.1), следовательно, в точке x_0 функция f(x)имеет максимум (замечание 1.1, глава 2). Случай изменения знака f'(x) с минуса на плюс рассматривается аналогично.

Пример 4.1. Найти промежутки монотонности и экстремумы функции $f(x) = (2-x)e^x + 2$.

 $\triangleright D(f) = \mathbf{R}, \quad f'(x) = ((2-x)e^x + 2)' = (1-x)e^x, \quad x = 1$ критическая точка, f'(1) = 0. Она делит ось Oxна два интервала: $(-\infty, 1)$ и $(1, +\infty)$. Знак f'(x) на них приведён в таблице 4.1.

		Таблица 4.1		
X	$(-\infty, 1)$	1	$(1, +\infty)$	
f'(x)	+	0	_	
f(x)	7	$2+e \approx 4.7$ гладкий максимум	Ä	

единственная

В силу теоремы 2.1 на первом из указанных интервалов f(x) возрастает, а на втором – убывает (направление стрелок в таблице 4.1 указывает характер изменения функции). имеет функция гладкий максимум (теорема $f(1) = 2 + e \approx 4.7$ (рис. 5.6).

Пример 4.2. Найти промежутки монотонности и экстремумы функции $f(x) = \arcsin \frac{1 - x^2}{1 + x^2}$.

►
$$D(f) = \mathbf{R}$$
, $f'(x) = \begin{cases} 2/(1+x^2), & x < 0, \\ -2/(1+x^2), & x > 0 \end{cases}$ (пример 7.6 главы 1), не

существует f'(0) (пример 3.3 главы 2), x=0 – единственная критическая точка f(x). Она делит ось Ox на два интервала: $(-\infty,0)$ и $(0,+\infty)$, знак f'(x)

промежутках на ЭТИХ таблице 4.2, приведён В стрелками показан характер функции поведения интервалах, указанных установленный с помощью

		Таолица 4.2		
X	$(-\infty,0)$	0	$(0,+\infty)$	
f'(x)	+	Ē	_	
f(x)	7	$\pi/2$	A	
		угловой максимум		

теоремы 2.1. В точке x = 0 функция имеет угловой максимум (теорема 4.1), $f(0) = \pi/2$, $f'_{-}(0) = 1$, $f'_{+}(0) = -1$. В §7, после дополнительных исследований, таблица 4.2 используется при построении графика этой функции. ◀

2°. Достаточный признак существования экстремума, связанный с второй производной. Если в стационарной точке функция имеет вторую производную, то вопрос о существовании экстремума в ней может быть решён с помощью следующей теоремы.

Теорема 4.2. Пусть x_0 – стационарная точка функции f(x) (т.е. $f'(x_0) = 0$) и f(x) имеет в данной точке вторую производную. Тогда:

- а) если $f''(x_0) < 0$, то x_0 точка локального максимума f(x);
- б) если $f''(x_0) > 0$, то x_0 точка локального минимума f(x).

Рис. 4.1. График функции $f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - 2x^2 + 4x + 5.$

Пример 4.3. Исследовать на существование экстремумов функцию

$$f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - 2x^2 + 4x + 5.$$

►
$$D(f)=\mathbf{R}$$
, $f'(x)=x^3-x^2-4x+4=$
 $=(x-1)(x^2-4)$, $x=1$ и $x=\pm 2-$ стационарные точки $f(x)$, $f'(1)=f'(\pm 2)=0$. Имеем $f''(x)=3x^2-2x-4$, $f''(-2)=12>0$, $f''(1)=-3<0$, $f''(2)=4>0$. В силу теоремы 4.2, приходим к выводу: $x=\pm 2-$ точки минимума $f(x)$, а $x=1-$ точка максимума. Вычислив значения функции в этих точках:

Вычислив значения функции в этих точках: f(-2) = -13/3, f(2) = 19/3, f(1) = 83/12,

можно построить достаточно обоснованный эскиз графика f(x) (рис. 4.1).

Замечание 4.1. Теорема 4.1, вообще говоря, более универсальна, чем теорема 4.2, она применима для любой критической точки, в окрестности которой установлен знак первой производной. Теорема 4.2 неприменима, вопервых, в тех критических точках, где первая производная не существует или равна бесконечности, во-вторых, в стационарных точках, в которых вторая производная равна нулю, не существует или является бесконечной.