All 4-variable functions can be perfectly quadratized with only 1 auxiliary variable

Nike Dattani¹ and Hou Tin Chau²

¹Harvard-Smithsonian Center for Astrophysics, USA

²Cambridge University, Department of Mathematics, UK

We prove that any function whose input is 4 binary variables and whose output is a real number, is perfectly equivalent to a function whose input is 5 binary variables and is minimized over the new variable. Our proof is constructive, so we provide quadratic functions that quadratize any 4-variable function, but there exists 8 different classes of 4-variable functions that each have their own 5-variable quadratization formula. Since we provide 'perfect' quadratizations, we can apply these formulas to any 4-variable subset of an n-variable function even if $n \gg 4$.

I. INTRODUCTION

Many problems can be solved by minimizing a real-valued degree-k function of binary variables with k > 2. Some examples include image de-blurring (where typically k = 4 but in general we can have $k = m^2$ with $m \ge 2$ being the length in pixels of the square-shaped mask) [1, 2], integer factoring (where typically k = 4) [3–10], and determining whether or not a number N is an m-color Ramsey number (where $k = \frac{mN(N-1)}{2}$) [11–13].

Solving such discrete optimization problems with k > 2 can be very difficult, and more algorithms have been developed for the k = 2 case (such as the algorithm known as "QPBO" and extensions of it [14]) than for the k > 2 case. Fortunately it is possible to turn any k-degree binary optimization problem into a 2-degree binary optimization problem, by a transformation called "quadratization" [15].

Quadratization methods exist which can turn an n-variable degree-k problem into an n-variable quadratic problem (i.e. the number of variables does not change) [8, 13, 16, 17], but not every case can be quadratized without adding some auxiliary variables (so the number of variables in the quadratic problem is usually much more than in the original degree-k problem). Coming up with better quadratizations (for example with fewer auxiliary variables) has been a very active area of research recently: The first quadratization method was published in 1975 [18], and some subsequent quadratization methods were published in 2004 [19], 2005 [20], and 2011 [1, 2, 21], but the rest of the methods were published in the last 5 years (from 2014-2018) [8, 13, 22–30].

In the most recent of these papers [29, 30], a remarkable discovery was made, that some entire functions (no matter how many terms and how many variables they contain) can be quadratized with only $\log_2(k) - 1$ auxiliary variables. Unfortunately those functions are either extremely obscure functions that would rarely come up in a real-world problem, or they are just monomials (meaning that for a real-world problem containing many terms, each of these terms would be quadratized separately, with $\log_2(k) - 1$ new auxiliary variables being added each time, and adding up to a potentially untractable number of total variables in the quadratic optimization problem).

This motivated us to look for quadratizations that are compact, but also applicable to many real-world problems. The result of this study is the theorem described in the title of this paper, and explained in more detail in the section below.

II. RESULTS

Theorem 1: All 4-variable functions can be quadratized perfectly with only 1-auxiliary variable.

By "perfect" quadratization we mean all 2^4 outcomes of the 4-variable function are exactly preserved when minimizing over the auxiliary variable in the 5-variable quadratic function. Therefore any 4-variable subset of an n-variable problem can be quadratized with only 1-auxiliary.

We prove the theorem by providing an explicit quadratization for various different cases, of the following function of binary variables $b_i \in \{0, 1\}$:

$$\alpha_{1234}b_1b_2b_3b_4 + \alpha_{123}b_1b_2b_3 + \alpha_{234}b_2b_3b_4 + \alpha_{134}b_1b_3b_4 + \alpha_{124}b_1b_2b_4. \tag{1}$$

Case 1: An even number (2 or 4) of α_{ijk} are $\leq -\alpha_{1234}/2$ or $\geq -\alpha_{1234}/2$: See Lemma 0.1.

Case 2: An odd number (1 or 3) of α_{ijk} are $\leq -\alpha_{1234}/2$ or $\geq -\alpha_{1234}/2$.

Case 2.1: 0 of α_{ijk} are in $[-\alpha_{1234}, 0]$: See Lemma 0.2

Case 2.2: 1 of α_{ijk} is in $[-\alpha_{1234}, 0]$: See Lemma 0.6

Case 2.3: 2 of α_{ijk} are in $[-\alpha_{1234}, 0]$, one is $\leq -\alpha_{1234}$: See Lemma 0.10

Case 2.4: 2 of α_{ijk} are in $[-\alpha_{1234}, 0]$, none are $\leq -\alpha_{1234}$, the lowest two α_{ijk} sum to $\geq -\alpha_{1234}$: see Lemma 0.11

Case 2.5: 2 or 3 of α_{ijk} are in $[-\alpha_{1234}, 0]$, none are $\leq -\alpha_{1234}$, the lowest two α_{ijk} sum to $\leq -\alpha_{1234}$: see Lemma 0.12

Case 2.6: 3 of α_{ijk} are in $[-\alpha_{1234}, 0]$, none are $\leq -\alpha_{1234}$, the lowest two α_{ijk} sum to $\geq -\alpha_{1234}$: see Lemma 0.13

Case 2.7: All 4 of α_{ijk} are in $[-\alpha_{1234}, 0]$, the lowest two α_{ijk} sum to $\geq -\alpha_{1234}$: See Lemma 0.14

Case 2.8: 3 or all 4 of α_{ijk} are in $[-\alpha_{1234}, 0]$, the lowest two α_{ijk} sum to $\leq -\alpha_{1234}$: See Lemma 0.15

- [1] H. Ishikawa, IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 1234 (2011).
- [2] A. Fix, A. Gruber, E. Boros, and R. Zabih, in 2011 International Conference on Computer Vision (IEEE, 2011) pp. 1020–1027.
- [3] N. S. Dattani and N. Bryans, (2014), arXiv:1411.6758.
- [4] C. J. C. Burges, Microsoft Research MSR-TR-200 (2002).
- [5] X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du, Physical Review Letters 101, 220405 (2008).
- [6] G. Schaller and R. Schützhold, Quantum Information & Computation 10, 109 (2010).
- [7] N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du, Physical Review Letters 108, 130501 (2012).
- [8] R. Tanburn, E. Okada, and N. Dattani, Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 1: The "deduc-reduc" method and its application to quantum factorization of numbers (2015) arXiv:1508.04816.
- [9] O. Lunt, R. Tanburn, E. Okada, and N. S. Dattani, Physical Review A (in preparation) (2015).
- [10] Z. Li, N. S. Dattani, X. Chen, X. Liu, H. Wang, R. Tanburn, H. Chen, X. Peng, and J. Du, http://arxiv.org/abs/1706.08061 (2017), arXiv:1706.08061.
- [11] F. Gaitan and L. Clark, (2012), arXiv:arXiv:1103.1345v3.
- [12] Z. Bian, F. Chudak, W. G. Macready, L. Clark, and F. Gaitan, Physical Review Letters 111, 130505 (2013).
- [13] E. Okada, R. Tanburn, and N. S. Dattani, Reducing multi-qubit interactions in adiabatic quantum computation without adding auxiliary qubits. Part 2: The "split-reduc" method and its application to quantum determination of Ramsey numbers (2015) arXiv:1508.07190.
- [14] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, in 2007 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007) pp. 1–8.
- [15] N. Dattani, Quadratization in discrete optimization and quantum mechanics (2019) arXiv:1901.04405.
- [16] H. Ishikawa, in 2014 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014) pp. 1362–1369.
- [17] R. Dridi and H. Alghassi, Scientific Reports 7, 43048 (2017).
- [18] I. G. Rosenberg, Cahiers du Centre d'Études de Recherche Operationnelle 17, 71 (1975).

- [19] V. Kolmogorov and R. Zabih, IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 147 (2004).
- [20] D. Freedman and P. Drineas, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), Vol. 2 (IEEE, 2005) pp. 939–946.
- [21] A. C. Gallagher, D. Batra, and D. Parikh, in CVPR 2011 (IEEE, 2011) pp. 1857–1864.
- [22] M. Anthony, E. Boros, Y. Crama, and A. Gruber, (2014), arXiv:1404.6535.
- [23] M. Anthony, E. Boros, Y. Crama, and A. Gruber, (2015).
- [24] M. Anthony, E. Boros, Y. Crama, and A. Gruber, Discrete Applied Mathematics 203, 1 (2016).
- [25] M. Leib, P. Zoller, and W. Lechner, Quantum Science and Technology 1, 15008 (2016).
- [26] A. Rocchetto, S. C. Benjamin, and Y. Li, Science Advances 2 (2016), 10.1126/sciadv.1601246.
- [27] M. Anthony, E. Boros, Y. Crama, and A. Gruber, Mathematical Programming 162, 115 (2017).
- [28] N. Chancellor, S. Zohren, and P. A. Warburton, npj Quantum Information 3, 21 (2017).
- [29] E. Boros, Y. Crama, and E. Rodríguez-Heck, Quadratizations of symmetric pseudo-Boolean functions: sub-linear bounds on the number of auxiliary variables, Tech. Rep. (2018).
- [30] E. Boros, Y. Crama, and E. Rodriguez Heck, Compact quadratizations for pseudo-Boolean functions (2018).