Tema 1: Circuitos Digitales

1.3 Circuitos Secuenciales

Miguel Ángel Otaduy

Sistema Combinacional vs. Secuencial

• X: entrada, Z: salida, S: estado

- Combinacional:
 - Z(t) = F(X(t))
- Secuencial:
 - Z(t) = G(X(t), S(t))
 - S(t+1) = H(X(t), S(t))
- FSM: máquina de estados finitos

Ejemplo: Cruce con Semáforos

- X: cambio (1), no-cambio (0)
- Z: rojo-verde (0, rv), verde-rojo (1, vr)

Sincronismo y Elementos de Memoria

• Señal de reloj. El estado cambia con el reloj.

• Biestables tipo D (delay), activos por flanco de subida: La salida toma el valor de la entrada en el flanco de subida del reloj.

Ejemplo: Cruce con Semáforos

Representaciones simplificadas

Tablas de estados y salidas

Diagrama de Estados

Función H

Х	Q	D
0	S0	S0
0	S1	S1
1	S0	S1
1	S1	S0

Función G

Q	Z
S0	vr
S1	rv

Ejemplo: Cruce con Semáforos++

- X: paso a ámbar (1), cambio de vía (0)
- Z:
 - Rojo EO Verde NS (rv),
 - Rojo EO Ámbar NS (ra),
 - Verde EO Rojo NS (vr),
 - Ámbar EO Rojo NS (ar)

Ejemplo: Cruce con Semáforos++

- Opción a (FSM Moore): 4 estados
 - S0: EO verde y NS rojo; Z = vr
 - S1: EO ámbar y NS rojo; Z = ar
 - S2: EO rojo y NS verde; Z = rv
 - S3: EO rojo y NS ámbar; Z = ra
- Opción b (FSM Mealy): 2 estados
 - S0: EO abierto y NS cerrado;
 Z = vr si X = 0, Z = ar si X = 1
 - S1: EO cerrado y NS abierto;
 Z = rv si X = 0, Z = ra si X = 1

Funciones de Estado y Salida

Procedimiento de Diseño

- 1. Especificación
- 2. Representación formal
 - a) Diagrama de transición de estados
 - b) Tabla de transiciones y salidas
- 3. Minimización de estados
- 4. Codificación binaria de entradas, estados y salidas
- 5. Elección de los elementos de memoria
- 6. Simplificación de las funciones de transición y salida
- 7. Síntesis de las funciones de próximo estado y salida

2. Representación FSM Moore Ej: Semáforos++

Diagrama de Estados

Estado O	D=H	(Q,X)	7 - 6(0)	
Estado Q	X=0	X=1	Z = G(Q)	
S0	S0	S1	vr	
S1	S2	S1	ar	
S2	S2	S3	rv	
S3	S0	S3	ra	

4. Codificación FSM Moore

Ej: Semáforos++

Entrada

Х	
0	
1	

Salida

Z	Z1	Z 0
vr	0	0
ar	0	1
rv	1	0
ra	1	1

Estado

Q/D	Q1	Q
S0	0	0
S1	0	1
S2	1	0
S3	1	1

Fatada O	D = H (Q,X)		7 - 6(0)	
Estado Q	X=0	X=1	Z = G(Q)	
00	00	01	00	
01	10	01	01	
10	10	11	10	
11	00	11	11	

6. Simplificación FSM Moore Ej: Semáforos++

In		0	ut
Q1	Q0	Z1	ZO
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1
_			

$$Z1 = Q1$$

$$Z0 = Q0$$

6. Simplificación FSM Moore Ej: Semáforos++

In		0	ut	
Q1	Q0	Х	D1	D0
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Q X	0	1
00	0	0
01	(1)	0
11)0	1
10	1	1

$$D1 = Q1 \cdot X + Q1 \cdot Q0' + Q1' \cdot Q0 \cdot X'$$

Q X	0		1	
00	0		1	
01	0		1	
11	0		1	
10	0	\	1	

7. Síntesis FSM Moore Ej: Semáforos++

2. Representación FSM Mealy Ej: Semáforos++

Diagrama de Estados

Fatada O	D = H(X,Q), Z = G(X,Q)		
Estado Q	X=0	X=1	
S0	S0, vr	S1, ar	
S1	S1, rv	S0, ra	

4. Codificación FSM Mealy

Ej: Semáforos

Entrada

Salida

Z	Z1	ZO
vr	0	0
ar	0	1
rv	1	0
ra	1	1

Estado

ď	ď
S0	0
S1	1

Fatada O	D = H(X,Q), Z = G(X,Q)		
Estado Q	X=0	X=1	
0	0,00	1,01	
1	1, 10	0, 11	

6. Simplificación FSM Mealy Ej: Semáforos++

In			Out	
Q	Х	D	Z1	ZO
0	0	0	0	0
0	1	1	0	1
1	0	1	1	0
1	1	0	1	1
			-	-

Q X	0	1
0	0	(1)
1	1	0

$$D = Q' \cdot X + Q \cdot X'$$

Q X	0	1
0	0	1
1	0	1

$$Z0 = X$$

Q X	0	1
0	0	0
1	1	1

$$Z1 = Q$$

7. Síntesis FSM Mealy Ej: Semáforos++

Extra: ¿Limitación de esta solución?

- Opción b (FSM Mealy):
 - 2 estados, 2 valores de entrada
 - S0: EO abierto y NS cerrado;
 Z = vr si X = 0, Z = ar si X = 1
 - S1: EO cerrado y NS abierto;
 Z = rv si X = 0, Z = ra si X = 1

Limitación: solo un ciclo en ámbar

Opción b (FSM Mealy):

- 2 estados, 2 valores de entrada
- S0: EO abierto y NS cerrado;
 Z = vr si X = 0, Z = ar si X = 1
- S1: EO cerrado y NS abierto;
 Z = rv si X = 0, Z = ra si X = 1

Opción c (FSM Mealy):

- 2 estados, 3 valores de entrada
- S0: EO abierto y NS cerrado;
 Z = vr si X = 0, Z = ar si X = 1, Z = ar si X = W
- S1: EO cerrado y NS abierto;
 Z = rv si X = 0, Z = ra si X = 1, Z = ra si X = W

2. Representación FSM Mealy Ej: Semáforos++ con 3 entradas

Diagrama de Estados

Estado O	D = H(X,Q), Z = G(X,Q)			
Estado Q	X=0 X=1 X=W			
S0	S0, vr	S1, ar	S0,ar	
S1	S1, rv	S0, ra	S1,ra	

4. Codificación FSM Mealy Ej: Semáforos++ con 3 entradas

Entrada

Х	X1	хо
0	0	0
1	0	1
W	1	0
	1	1

Salida

Z	Z1	Z 0
vr	0	0
ar	0	1
rv	1	0
ra	1	1

Estado

Q	ď
S0	0
S1	1

Tabla de Estados y Salidas

Estado O	D = H(X,Q), Z = G(X,Q)			
Estado Q	X=00	X=01	X=10	X=11
0	0,00	1,01	0,01	Х
1	1, 10	0, 11	1, 11	Х

6. Simplificación FSM Mealy Ej: Semáforos++ con 3 entradas

In			Out		
Q	X1	X0	D	Z1	ZO
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	0	0	1
0	1	1	Χ	Х	Х
1	0	0	1	1	0
1	0	1	0	1	1
1	1	0	1	1	1
1	1	1	Х	Х	Х
				<u> </u>	

Q X	00	01	11	10
0	0	1	Х	0
1	1	0	Х	1

$$D = Q \cdot XO' + Q' \cdot XO$$

Q X	00	01	11	10
0	0	1	X	1
1	0	1	X	1

$$Z0 = X0 + X1$$

Q X	00	01	11	10
0	0	0	X	0
1 (1	1	Х	1

$$Z1 = Q$$

7. Síntesis FSM Mealy Ej: Semáforos++ con 3 entradas

