New Approach of Numerical Relativity

Implementation, tests and applications

Alan Tsz-Lok Lam

Supervisor: Prof. Tjonnie G.F. LI

Department of Physics
The Chinese University of Hong Kong

This thesis is submitted for the degree of Master of Philosophy in Physics

June 2021

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 150 figures.

Alan Tsz-Lok Lam June 2021

Acknowledgements

And I would like to acknowledge ...

Abstract

This is where you write your abstract \dots

Table of contents

Li	st of	figures	xiii
Li	st of	tables	xv
1	Intr	oduction	1
	1.1	Introduction to General Relativity	1
		1.1.1 Einstein Field Equation	1
		1.1.2 Relativistic Star	1
		1.1.3 Gravitational Wave	1
	1.2	Gmunu: A general-relativistic electro-magneto-hydrodynamics code	
		for generic astrophysical simulations	1
	1.3	Outline of this thesis	1
	1.4	Units and Convention	1
2	For	nulations of Einstein Field Equations	3
	2.1	Introduction	3
	2.2	The 3+1 decomposition of spacetime	3
		2.2.1 The ADM formulation	3
	2.3	Conformal Decomposition	3
	2.4	Gauge Condition	3
		2.4.1 Maximal Slicing	3
		2.4.2 Generalized Dirac Gauge	3
	2.5	Constrained scheme for the Einstein equations	3
		2.5.1 The Conformal Flatness Condition	3
		2.5.2 The Fully Constrained Formulation	3
3	For	nulations of the Relativistic Hydrodynamics	5
	3.1	The 3+1 "Valencia" formulation	5
	3.2	The reference-metric formulism	5

xii Table of contents

	3.3	Conserved to Primitive variables conversion	5
4	NUı	nerical Method	7
	4.1	Multigrid Method for elliptic equations	7
		4.1.1 Overview	7
		4.1.2 The Full Approximation Scheme	7
		4.1.3 octree-mg	7
	4.2	Numerical method for hydrodynamics	7
		4.2.1 Finite volume methods	7
		4.2.2 Time Discretization	7
		4.2.3 Atmosphere Treatment	7
5	Nun	nerical Tests	9
	5.1	Multigrid solver tests	9
	5.2	General relativistic hydrodynamics in dynamic spacetime	9
Re	ferer	nces	11
Αŗ	peno	dix A Useful relations for implementation of constrained scheme	13
	A.1	The elliptic equations in constrained scheme	13
		• •	13
Αŗ	pend	dix B Reference flat metric in 3D	15

List of figures

List of tables

Introduction

- 1.1 Introduction to General Relativity
- 1.1.1 Einstein Field Equation
- 1.1.2 Relativistic Star
- 1.1.3 Gravitational Wave
- 1.2 Gmunu: A general-relativistic electro-magneto-hydrodynamics code for generic astrophysical simulations
- 1.3 Outline of this thesis
- 1.4 Units and Convention

Formulations of Einstein Field **Equations**

- 2.1 Introduction
- 2.2 The 3+1 decomposition of spacetime
- 2.2.1 The ADM formulation
- 2.3 Conformal Decomposition
- 2.4 Gauge Condition
- 2.4.1 Maximal Slicing
- 2.4.2 Generalized Dirac Gauge
- 2.5 Constrained scheme for the Einstein equations
- 2.5.1 The Conformal Flatness Condition
- 2.5.2 The Fully Constrained Formulation

Formulations of the Relativistic Hydrodynamics

- 3.1 The 3+1 "Valencia" formulation
- 3.2 The reference-metric formulism
- 3.3 Conserved to Primitive variables conversion

NUmerical Method

- 4.1 Multigrid Method for elliptic equations
- 4.1.1 Overview
- 4.1.2 The Full Approximation Scheme
- 4.1.3 octree-mg
- 4.2 Numerical method for hydrodynamics
- 4.2.1 Finite volume methods
- 4.2.2 Time Discretization
- 4.2.3 Atmosphere Treatment

Numerical Tests

- 5.1 Multigrid solver tests
- 5.2 General relativistic hydrodynamics in dynamic spacetime

References

Appendix A

Useful relations for implementation of constrained scheme

- A.1 The elliptic equations in constrained scheme
- A.2 Generalized Dirac gauge conditions

Appendix B

Reference flat metric in 3D