The University of Texas at Arlington

Lecture 13 Hardware Connections

CSE 3442/5442 Embedded Systems 1

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

Power Supply Name Conventions

Typical supply pin labeling								
BJT	BJT FET							
V _{CC}	V _{DD}	V+	V _{S+}	Positive supply voltage				
V _{EE}	V _{SS}	V-	V _S -	Negative supply voltage				

BJT (N-channel)

MOSFET (N-channel)

PIC18 Packaging Through-Hole

SIP

Single In-Line Package

DIP

Dual In-Line Package

QIP

Quadruple In-Line Package

PIC18 Packaging Surface Mount

SMD

Surface Mount Device

SMT

Surface Mount Technology

PLCC

Plastic Leaded Chip Carrier

TQFP

Thin Quad Flat Pack

Product/Device Naming

PIC18F2420/2520/4420/4520 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X	<u>/XX</u>	XXX
Device	Temperatu Range	re Package	Pattern
Device	PIC18F242 VDD rang PIC18LF24 PIC18LF24	0/2520 ⁽¹⁾ , PIC18F4- 0/2520T ⁽²⁾ , PIC18F4- ge 4.2V to 5.5V 20/2520 ⁽¹⁾ , PIC18LF 20/2520T ⁽²⁾ , PIC18Le e 2.0V to 5.5V	4420/4520T ⁽²⁾ ; =4420/4520 ⁽¹⁾ .
Temperature Range	= : E = :	-40°C to +85°C (In -40°C to +125°C (Ex	dustrial) ktended)
Package	SO = S	Skinny Plastic DIP PDIP	atpack)
Pattern	QTP, SQTP (blank other	R, Code or Special R rwise)	equirements

Examples:

- a) PIC18LF4520-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301.
- b) PIC18LF2420-I/SO = Industrial temp., SOIC package, Extended VDD limits.
- c) PIC18F4420-I/P = Industrial temp., PDIP package, normal VDD limits.

Note 1: F = Standard Voltage Range LF = Wide Voltage Range 2: T = in tape and reel TQFP packages only.

5

Product/Device Naming

Image	Mouser Part #	Mfr. Part #	Mfr.	Description		Availability	Pricing (USD)
	^~	^~	^~				^~
Q Enlarge	579-PIC18F4520-I/PT	PIC18F4520-I/PT Available in MultiSIM BLUE	Microchip Technology	8-bit Microcontrollers - MCU 32KB 1536 RAM 36I/O	Datasheet	3,691 In Stock Alternative Packaging	1: \$4.89 10: \$4.07 25: \$3.97 100: \$3.88
Enlarge	579-PIC18F4520-E/PT	PIC18F4520-E/PT Available in MultiSIM BLUE	Microchip Technology	8-bit Microcontrollers - MCU 32KB 1536 RAM 36I/O	Datasheet	2,564 In Stock	1: \$5.37 10: \$4.47 25: \$4.37 100: \$4.27
Q Enlarge	579-PIC18F4520-I/P	PIC18F4520-I/P Available in MultiSIM BLUE	Microchip Technology	8-bit Microcontrollers - MCU 32KB 1536 RAM 36I/O	Product Info.	1,373 In Stock	1: \$4.98 10: \$4.15 25: \$4.05 100: \$3.95
Q Enlarge	579-PIC18F4520-I/ML	PIC18F4520-I/ML Available in MultiSIM BLUE	Microchip Technology	8-bit Microcontrollers - MCU 32KB 1536 RAM 36I/O	Datasheet	407 In Stock Alternative Packaging	1: \$5.14 10: \$4.28 25: \$4.17 100: \$4.08

PIC Max/Min Ratings

22.0 ELECTRICAL CHARACTERISTICS

than pulling this pin directly to Vss.

Absolute Maximum Ratings ^(†)	
Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL)	

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather

Sink vs. Source

Sink vs. Source

Sink vs. Source

PIC Max/Min Ratings

22.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (Vol x IOL)

^{2:} Voltage spikes below Vss at the $\overline{\text{MCLR}/\text{VPP}}$ pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}/\text{VPP}}$ pin, rather than pulling this pin directly to Vss.

Powering Up & MCLR PIC18F458

Powering Up & MCLR PIC18F458

SFR Values Upon Resets

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Register	Applicable Devices			Applicable Devices Power-on Reset, Brown-out Reset RESET Instruction Stack Resets					Wake-up via WDT or Interrupt
ADRESH	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADRESL	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu		
ADCON0	242	442	252	452	0000 00-0	0000 00-0	uuuu uu-u		
ADCON1	242	442	252	452	00 0000	00 0000	uu uuuu		
CCPR1H	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CCPR1L	242	442	252	452	xxxx xxxx	uuuu uuuu	uuuu uuuu		
CCP1CON	242	442	252	452	00 0000	00 0000	uu uuuu		
CCPR2H	242 442 252 452		xxxx xxxx	uuuu uuuu	uuuu uuuu				

• • •

EEDATA	242	442	252	452	0000 0000	0000 0000	uuuu uuuu
EECON1	242	442	252	452	xx-0 x000	uu-0 u000	uu-0 u000
EECON2	242	442	252	452			

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition.

External Crystal

Reason for parallel capacitors?

Great video: https://www.youtube.com/watch?v=5StwZCeNzVU

External Crystal for the PIC18F452

39

38

- 2. XT Crystal/Resonator
- 3. HS High Speed Crystal/Resonator
- 4. HS + PLL High Speed Crystal/Resonator

with PLL enabled

- RC External Resistor/Capacitor
- 6. RCIO External Resistor/Capacitor with

I/O pin enabled

- 7. EC External Clock
- 8. ECIO External Clock with I/O pin enabled

TABLE 2-2:	CAPACITOR SELECTION FOR
	CRYSTAL OSCILLATOR

	Ranges Tested:								
Mode	Freq	C1	C2						
LP	32.0 kHz	33 pF	33 pF						
	200 kHz	15 pF	15 pF						
XT	200 kHz	22-68 pF	22-68 pF						
	1.0 MHz	15 pF	15 pF						
	4.0 MHz	15 pF	15 pF						
HS	4.0 MHz	15 pF	15 pF						
	8.0 MHz	15-33 pF	15-33 pF						
	20.0 MHz	15-33 pF	16 15-33 pF						
	25.0 MHz	15-33 pF	15-33 pF						

External or Internal Crystal for the PIC18F4520

- LP Low-Power Crystal
- XT Crystal/Resonator
- HS High-Speed Crystal/Resonator
- HSPLL High-Speed Crystal/Resonator with PLL enabled
- RC External Resistor/Capacitor with Fosc/4 output on RA6
- RCIO External Resistor/Capacitor with I/O on RA6
- INTIO1 Internal Oscillator with Fosc/4 output on RA6 and I/O on RA7
- INTIO2 Internal Oscillator with I/O on RA6 and RA7
- EC External Clock with Fosc/4 output
 ECIO External Clock with I/O on RA6

40

39

TABLE 2-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal	Typical Capacitor Values Tested:				
	Freq	C1	C2			
LP	32 kHz	30 pF	30 pF			
XT	1 MHz 4 MHz	15 pF 15 pF	15 pF 15 pF			
HS	4 MHz 10 MHz 20 MHz 25 MHz 25 MHz	15 pF 15 pF 15 pF 0 pF 15 pF	15 pF 15 pF 15 pF 5 pF ₁₇ 15 pF			

On-Chip Reset Circuit Simplified Diagram (452)

Brown-Out Reset (BOR) Voltage

- Sometimes the V_{DD} (positive supply) can drop below the desired level (+5V)
- This can cause CPU issues and unreliable operation (instr. execution, I/O, ADC, etc.)
- You may specify a BORV threshold level where the PIC "resets" automatically if the V_{DD} falls below
- V_{BOR} options: 2.5, 2.7, 4.2, and 4.5 V (for 452)

Watchdog Timer (WDT) Reset

- PIC can automatically reset itself when code execution is hung up or non-logical
 - User must clear/restart the WDT periodically
 - Infinite loop, malfunctioning peripherals, etc.
 - Can be used as a makeshift debugger
- Programmer can enable or disable and set the time-out period
 - − Possible ms − 100xsec range
- Clear the WDT (prevent a reset) by using
 - CLRWDT

FIGURE 4-2: PROGRAM MEMORY MAP PC<20:0>

CSE(

200000h

21

Configuration Registers 452

TABLE 19-1: CONFIGURATION BITS AND DEVICE IDS

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	_	_	OSCSEN	_	1	FOSC2	FOSC1	FOSC0	1111
300002h	CONFIG2L	_	_	_	_	BORV1	BORV0	BOREN	PWRTEN	1111
300003h	CONFIG2H	_	_	_	_	WDTPS2	WDTPS1	WDTPS0	WDTEN	1111
300005h	CONFIG3H	_	_	_	_	_	_	_	CCP2MX	1
300006h	CONFIG4L	DEBUG	_	_	_	_	LVP	_	STVREN	11-1
300008h	CONFIG5L	_	_	_	_	CP3	CP2	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	_	_	_	_	_	_	11
30000Ah	CONFIG6L	_	_	1	_	WRT3	WRT2	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	1	_		_	111
30000Ch	CONFIG7L	_	_	-	_	EBTR3	EBTR2	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_	_	_	-1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	(1)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0100

Configuration Registers 4520

TABLE 23-1: CONFIGURATION BITS AND DEVICE IDs

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H	IESO	FCMEN	_	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0111
300002h	CONFIG2L	_	_	_	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	1 1111
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_	_		1	LPT10SC	PBADEN	CCP2MX	1011
300006h	CONFIG4L	DEBUG	XINST	_	_	_	LVP	_	STVREN	101-1
300008h	CONFIG5L		_	_	_	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	_		1	_	_	_	11
30000Ah	CONFIG6L	_	_	_		WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC		1	_	_	_	111
30000Ch	CONFIG7L	_	_	_		EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_	_	_	_	_	-1
3FFFFEh	DEVID1 ⁽¹⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx(2)
3FFFFFh	DEVID2 ⁽¹⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 1100

CONFIG1H - Oscillator

REGISTER 19-1: CONFIGURATION REGISTER 1 HIGH (CONFIG1H: BYTE ADDRESS 300001h)

U-0	U-0	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
_	_	OSCSEN	_	_	FOSC2	FOSC1	FOSC0
L 14 7							L:1 O

bit 7 bit 0

- bit 7-6 **Unimplemented:** Read as '0'
- bit 5 OSCSEN: Oscillator System Clock Switch Enable bit
 - 1 = Oscillator system clock switch option is disabled (main oscillator is source)
 - 0 = Oscillator system clock switch option is enabled (oscillator switching is enabled)
- bit 4-3 **Unimplemented:** Read as '0'
- bit 2-0 FOSC2:FOSC0: Oscillator Selection bits
 - 111 = RC oscillator w/ OSC2 configured as RA6
 - 110 = HS oscillator with PLL enabled/Clock frequency = (4 x Fosc)
 - 101 = EC oscillator w/ OSC2 configured as RA6
 - 100 = EC oscillator w/ OSC2 configured as divide-by-4 clock output
 - 011 = RC oscillator
 - 010 = HS oscillator
 - 001 = XT oscillator
 - 000 = LP oscillator

CONFIG2L – Initial Transients

REGISTER 19-2: CONFIGURATION REGISTER 2 LOW (CONFIG2L: BYTE ADDRESS 300002h)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
_	_	_	_	BORV1	BORV0	BOREN	PWRTEN
bit 7							bit 0

bit 7-4 Unimplemented: Read as '0'

bit 3-2 **BORV1:BORV0:** Brown-out Reset Voltage bits

11 = VBOR set to 2.5V

10 = VBOR set to 2.7V

01 = VBOR set to 4.2V

00 = VBOR set to 4.5V

bit 1 BOREN: Brown-out Reset Enable bit

1 = Brown-out Reset enabled

0 = Brown-out Reset disabled

bit 0 **PWRTEN:** Power-up Timer Enable bit

1 = PWRT disabled

0 = PWRT enabled

CONFIG2H – Rottweilers

REGISTER 19-3: CONFIGURATION REGISTER 2 HIGH (CONFIG2H: BYTE ADDRESS 300003h)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
_	_	_	_	WDTPS2	WDTPS1	WDTPS0	WDTEN
bit 7							bit 0

bit 7-4 **Unimplemented:** Read as '0'

bit 3-1 WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits

111 = 1:128

110 = 1:64

101 = 1:32

100 = 1:16

011 = 1:8

010 = 1:4

001 = 1:2

000 = 1:1

bit 0 **WDTEN:** Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled (control is placed on the SWDTEN bit)

Configuration Bit Settings

```
#pragma config OSC = HS
                                // Oscillator Selection bits (HS oscillator)
#pragma config FCMEN = OFF
                                // Fail-Safe Clock Monitor Enable bit (Fail-Safe Clock Moni
#pragma config IESO = OFF
                                // Internal/External Oscillator Switchover bit (Oscillator
#pragma config PWRT = OFF
                                // Power-up Timer Enable bit (PWRT disabled)
#pragma config BOREN = OFF
                                // Brown-out Reset Enable bits (Brown-out Reset disabled in
#pragma config BORV = 3
                                // Brown Out Reset Voltage bits (Minimum setting)
#pragma config WDT = OFF
                                // Watchdog Timer Enable bit (WDT disabled (control is place
#pragma config WDTPS = 32768
                                // Watchdog Timer Postscale Select bits (1:32768)
#pragma config CCP2MX = PORTC
                                // CCP2 MUX bit (CCP2 input/output is multiplexed with RC1)
#pragma config PBADEN = OFF
                                // PORTB A/D Enable bit (PORTB<4:0> pins are configured as
#pragma config LPT10SC = OFF
                                // Low-Power Timer1 Oscillator Enable bit (Timer1 configured
#pragma config MCLRE = ON
                                // MCLR Pin Enable bit (MCLR pin enabled; RE3 input pin disa
```


Software Program Flow


```
:0600000000F03CEF04F0EB
   :1006000080202020202020202000C020202020200A
   :100610002020200080456D625379735F3100C05007
   :100620004943726573657400333228010C0600007B
   :100630000000FFFF11EC04F0929692949292809643
   :1006400080948092060E086E000E076EC2EC03F0D6
   :10065000060E086E0A0E076EC2EC03F0060E086E58
   :10066000140E076EC2EC03F0060E086E1E0E076E27
   :10067000C2EC03F0FFFF80760C6E640E016E0C502E
   :1006800028EC04F00C6E640E016E0C5028EC04F0A3
   :1006900080740C6E640E016E0C5028EC04F00C6E2D
11
12
   :1006A000640E016E0C5028EC04F080720C6E640E27
   :1006B000016E0C56
13
                             C6E640E016E0C50B0
                     0C6E64
                                E0C5028EC04F063
   :1006C00028EC0
                      16E0C
   :1006D0000C6E
                                 04F00C6E640E6F
   :1006E000016E
                      8EC04
                                 640E016E0C5080
17
   :1006F00028EC04ru0C6E64
                                 0C5028EC04F033
   :100700000C6E640E016E0
                               CC04F0B3D7FFFFA2
   :10071000076E0A0E0D6E
                            04D0FFFFECEC03F0DD
   :100720000D06FFFF0D6
                          9D78490060E096E280EA0
   :10073000086E1AD0FFF
                        08C0F6FF09C0F7FF0800D7
   :10074000FFFFF5CF0AF 84820AC083FF8492ECECAD
   :1007500003F00A3AF00E0A1684820AC083FF8492DC
                          22AFFFF08C0F6FF09C0B5
   :10076000ECEC03F00
   :10077000F7FF0800
                           000009D8B41200FFFF93
   :10078000D9D7FFFF
                           9019D0FFFF07C0F6FF06
   :1007900008C0F7FF0800rFFFF5CF09F0848209C009
   :1007A00083FF8492093AF00E0916848209C083FF00
   :1007B0008492ECEC03F08480074A082AFFFF07C00C
   :1007C000F6FF08C0F7FF0800FFFFF5500009D8B496
   :1007D0001200FFFFDAD7FFFFFFFF000E046E020ECC
   :1007E000036E000E066E000E056E000E066E000E05
   :1007F000056E09D0FFFF026EE20E016E025032EC70
   :1008000004F0054A062AFFFF0650800A026E0350D4
   :10081000055C0450800A0258D8B01200FFFFEAD7E6
   :10082000FFFFFFFF8E0EC16EE10E926EDC0E936E27
   :10083000D00E946E0F0E956E000E966E100E806E9A
   :100840000B6E000E0E6E0B5087EC03F01200FFFFD4
   :10085000FFFFFFFFFA0EFFFFE82EFDD7012EF9D7AD
   :100860001200FFFFFFFFFFFF190EFFFFE82EFDD76D
   :10087000012EF9D71200FFFF0E6A000EF86E00017C
   :0408800019EF03F079
43
   :020000040020DA
44
   :08000000FFFFFFFFFFFFFFF00
   :020000040030CA
   :0E000000FF220D0EFF0181FF0FC00FE00F4029
   :00000001FF
```


So, What's in a HEX File?

Table 8-13: Intel Hex File Formats Produced by MPLAB (See http://www.microchip.com)

INHX8M

Format Name	Format Type File Extension		Max. ROM Address	
Intel Hex format	INHX8M	.hex	16-bit address	
Intel Hex 32 format	INHX32	.hex	32-bit address	
Intel Split Hex	INHX8S	.hxl and .hxh	16-bit address for each	

- :10000000936A550E816E811E07EC00F0FCD7020E3C
- :10001000076EFA0E086EFA0E096E0000000009065F
- :0C002000FCE10806F8E10706F4E112001C
- :0300010022020ECA
- :010006008079
- :060008000FC00FE00F40E5
- :00000001FF

Separating the fields, we get the following:

:BB	AAAA	TT	ннининининининининининининини	CC	
:10	0000	00	936A550E816E811E07EC00F0FCD7020E	3 C	
:10	0010	00	076EFA0E086EFA0E096E000000000906	5F	
:00	0020	00	FCE10806F8E10706F4E11200	1C	
:03	0001	00	22020E	CA	
:01	0006	00	80	79	
:06	8000	00	OFCOOFEOOF40	E 5	
:00	0000	01		FF	

```
:020000040000FA
:0E000000936A550E816E811E78EC94F0FCD749
:020000040001F9
:1028F000020E076EFA0E086EFA0E096E0000000056
:0E2900000906FCE10806F8E10706F4E1120002
:020000040030CA
:0600010022020E830180C3
:06000800FFC0FFE0FF4015
:00000001FF

Separating the fields we get the following:
```

вв	AAAA	TT	ннининининниннинининнинниннин	CC	
02	0000	04	0000	FA	
OE	0000	00	936A550E816E811E78EC94F0FCD7	49	
02	0000	04	0001	F9	
10	28 F O	00	020E076EFA0E086EFA0E096E00000000	56	
OΕ	2900	00	0906FCE10806F8E10706F4E11200	02	
02	0000	04	0030	CA	
06	0001	00	22020E830180	C3	20
06	8000	00	FFCOFFEOFF40	15	30
00	0000	01		FF	

HEX File Content INHX8M

```
31 :1007D0001200FFFFDAD7FFFFFFFFF000E046E020ECC

32 :1007E000036E000E066E000E056E000E066E000E05

33 :1007F000056E09D0FFFF026EE20E016E025032EC70

34 :1008000004F0054A062AFFFF0650800A026E0350D4

35 :10081000055C0450800A0258D8B01200FFFFAD7E6

36 :10082000FFFFFFF8E0EC16EE10E926EDC0E936E27

37 :10083000D00E946E0F0E956E000E966E100E806E9A

38 :100840000B6E000E0E6E0B5087EC03F01200FFFFD4
```

BB (count byte): how many DATA bytes in the line, max value 0x10 (16)

AAAA (address): ROM address space where data needs to go

TT (type): 00 means hex file is continuing, 01 means it is over (EOF)

HHH...HHH (data): opcode and data/location, at most 16 in a line – see BB

CC (checksum): to ensure integrity of incoming hex code

10				
41	BB AAAA TT	НННН	НННН	CC
			FFFF 190E FFFF E82E FDD7	
43	:10 0870 00	012E F9D7 1200	FFFF 0E6A 000E F86E 0001	7C
44	:04 0880 00	19EF 03F0		79
. –				

Checksum

Calculate Checksum Byte

- Add all bytes together and drop the carries (mask anything above 8 bits)
- Take the 2's complement of the sum, and that is now your checksum byte
- Append as the last byte in the series in the HEX file row
- Check Integrity (perform checksum operation)
 - 1. Add all bytes together with checksum byte
 - If bottom 8 bits == ZERO → NO CORRUPTION
 - If bottom 8 bits != ZERO → SOMETHING'S WRONG

Calculate checksum byte

- 1. Add all bytes together and drop the carries (mask anything above 8 bits)
- 2. Take the 2's complement of the sum, and that is now your checksum byte
- 3. Append as the last byte in the series in the HEX file row

Data to	o Send
	0x04
	80x0
	0x80
+	0x00
	0x19
	0xEF
	0x03
	0xF0
$0x287 = 0b \ 10 \ 10$	00 0111

Calculate checksum byte

- 1. Add all bytes together and drop the carries (mask anything above 8 bits)
- 2. Take the 2's complement of the sum, and that is now your checksum byte
- 3. Append as the last byte in the series in the HEX file row

Check integrity (perform checksum operation)

- 1. Add all bytes together with checksum byte (0x79)
 - If bottom 8 bits == ZERO → NO CORRUPTION
 - If bottom 8 bits != ZERO → SOMETHING'S WRONG

Data Sent (truth) 0x04 0x08 0x80 0x00 0x19 0xEF 0x03 0xF0

Check integrity (perform checksum operation)

- 1. Add all bytes together with checksum byte (0x79)
 - If bottom 8 bits == ZERO → NO CORRUPTION
 - If bottom 8 bits != ZERO → SOMETHING'S WRONG

Data Sent (truth) 0x04 0x08 0x80 0x00 0x19 0xEF 0x03 0xF0

We have the Hex File, What Now?

Need to burn/flash the .hex file

onto the microcontroller

- Three methods:
 - Off-circuit (OCSP): the microcontroller is programmed as a stand alone chip and is then inserted into the circuit
 - In-circuit (ICSP): microcontroller has to set aside pins that are used to program it while inside the circuit
 - Boot loader: a special code running on the microcontroller, allowing it to accept code from any of its interfaces (boot loader needs to be burned with one of the previous two methods beforehand)

PicKit 3 - ICSP

Boot loader

- See our QwikFlash boards (old method)
- Takes away ROM space from the developer
- Can use any communication methods available to the microcontroller (SPI, I2C, etc.)
 - But slower
- Code space for boot loader must be reserved and protected
- May be a good choice for development but usually not for final product

Boot Loader in Program ROM

Questions?