```
title: "chem_"
author: "Guangyu Ding"
date: "2024-10-31"
output: word document
```{r setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE)
Consider the survey d chem file.
```{r}
library(dplyr)
library (readr)
library(tidyr)
library (ggplot2)
chem data <- read csv("survey d chem.csv")
## Filter data for California, because California is one of the major strawberry
## producing regions in the United States. Observing the data here is more
## convincing.
chem_data_ca <- chem_data %>%
  filter(State == "CALIFORNIA")
# Clean the data by removing non-numeric values and converting to numeric
chem data ca <- chem data ca %>%
  filter(!Value %in% c("(D)", "(NA)")) %>%
  mutate(Value = as.numeric(Value))
# Summarize total applications per year for each chemical category
chem_summary <- chem_data_ca %>%
  group by (Year, col2) %>%
  summarise(Total Value = sum(Value, na.rm = TRUE)) %>%
  spread(key = co12, value = Total Value)
# Print the summary
print(chem_summary)
## Visualize the data by making line chart
chem data <- chem data %>%
  filter(!Value %in% c("(D)", "(NA)")) %>%
  mutate(Value = as.numeric(Value))
# Summarize total applications per year across all chemical types
```

```
chem summary <- chem data %>%
  group by (Year) %>%
  summarise(Total Value = sum(Value, na.rm = TRUE))
ggplot(chem summary, aes(x = Year, y = Total Value)) +
  geom_line(color = "darkgreen", size = 1) +
  geom point(color = "darkgreen", size = 2) +
  labs(title = "Total Chemical Application Trends",
       x = "Year",
       y = "Total Applications (in pounds)") +
  theme minimal() +
  theme (axis. text. x = element text(angle = 45, hjust = 1))
## Now separate the values by the categories listed in col2 column. Through
## this we can see which chemicals are being used more every year.
```{r}
Summarize total applications per year for each chemical category (col2)
chem summary1 <- chem data %>%
 group by (Year, co12) %>%
 summarise(Total Value = sum(Value, na.rm = TRUE))
Spread the data to have categories as columns (if needed)
chem summary wide <- chem summary1 %>%
 spread(key = col2, value = Total Value)
Print the summary data for each chemical category
print(chem summary1)
Obviously, Insecticides are the most commonly used chemical substances for
each year.
We can see the trend of usage of each types of chemical substances by making
a line chart to show all types of chemical substances used from 2018 to 2023.
chem data ca <- chem data ca %>%
 filter(!Value %in% c("(D)", "(NA)")) %>%
 mutate(Value = as.numeric(Value))
chem summary <- chem data ca %>%
 group_by(Year, co12) %>%
 summarise (Total Value = sum (Value, na.rm = TRUE)) %>%
 spread(key = co12, value = Total Value)
chem long <- chem summary %>%
 gather (key = "Chemical Type", value = "Total Value", -Year)
ggplot(chem long, aes(x = Year, y = Total Value, color = Chemical Type, group =
```

```
Chemical Type)) +
 geom_line(size = 1) +
 geom\ point(size = 2) +
 labs(title = "Chemical Application Trends in California",
 x = "Year",
 y = "Total Applications (in pounds)",
 color = "Chemical Type") +
 theme minimal() +
 theme (axis. text. x = element text(angle = 45, hjust = 1))
Based on the plot, the usage of insecticide decreases from 2018 to 2023.
The fungicide had an increase in 2019, but decreased since then.
The herbicide has an overall trend of decreasing, but experienced a rebound in 2021.
All other chemical substances has a similar trend with fungicide, but decreased more
from 2019 to 2021, less from 2021 to 2023.
We can make more specific observation on each types of chemical substances. i.e.
Fungicide
Filter data for California and fungicides
fungicide_data_ca <- chem_data %>%
 filter(State == "CALIFORNIA", co12 == "FUNGICIDE")
Clean the data by removing non-numeric values and converting to numeric
fungicide data ca <- fungicide data ca %>%
 filter(!Value %in% c("(D)", "(NA)")) %>%
 mutate(Value = as. numeric(Value))
Summarize total applications per year for fungicides
fungicide summary <- fungicide data ca %>%
 group by (Year) %>%
 summarise(Total_Value = sum(Value, na.rm = TRUE))
Plot the trends using ggplot2
ggplot(fungicide summary, aes(x = Year, y = Total Value)) +
 geom line(color = "blue", size = 1) +
 geom point(color = "blue", size = 2) +
 labs(title = "Fungicide Application Patterns in California",
 x = "Year",
 y = "Total Applications (in pounds)") +
 theme minimal() +
 theme (axis. text. x = element text (angle = 45, hjust = 1))
Now consider the suevey d fert file. By observing this file, we can get the usage
of the fertilizer
```

```
```{r}
library (dplyr)
library (readr)
library (ggplot2)
library(tidyr)
fert data <- read csv("survey d fert.csv")
fert data <- fert data %>%
  filter(!Value %in% c("(D)", "(NA)")) %>%
  mutate(Value = as.numeric(Value))
# Summarize total applications per year for each fertilizer type
fert summary <- fert data %>%
  group_by(Year, chem_name) %>%
  summarise(Total Value = sum(Value, na.rm = TRUE))
# Convert data to long format for easier plotting
fert long <- fert summary %>%
  spread(key = chem name, value = Total Value)
# Plot the trends
ggplot(fert_summary, aes(x = Year, y = Total_Value, color = chem_name, group =
chem name)) +
  geom\ line(size = 1) +
  geom\ point(size = 2) +
  labs(title = "Fertilizer Application Trends",
       x = "Year",
       y = "Total Applications (in pounds)",
       color = "Fertilizer Type") +
  theme minimal() +
  theme (axis. text. x = element text (angle = 45, hjust = 1))
## By observation, from March 2018 to June 2020, nitrogen was the one being used
## most. For the rest of time period from 2018 to 2023, Potash was at the first place.
## Now visualize the usage of fertilizer in California. Compare the overall data
## in the United States with the data in California.
```{r}
library(dplyr)
library (readr)
library (ggplot2)
library(tidyr)
fert data ca <- read csv("fert data ca.csv")
```

```
summary(fert_data_ca)
str(fert data ca)
head(fert data ca)
fert data ca <- fert data ca %>%
 filter(!Value %in% c("(D)", "(NA)")) %>%
 mutate(Value = as.numeric(Value))
fert_summary <- fert_data_ca %>%
 group by (Year, chem name) %>%
 summarise(Total Value = sum(Value, na.rm = TRUE))
print(fert summary)
Visualize trends in fertilizer applications over the years
ggplot(fert_summary, aes(x = Year, y = Total_Value, color = chem_name, group =
chem name)) +
 geom\ line(size = 1) +
 geom\ point(size = 2) +
 labs(title = "Fertilizer Application Trends in California",
 x = "Year",
 y = "Total Applications (in pounds)",
 color = "Fertilizer Type") +
 theme minimal() +
 theme (axis. text. x = element text (angle = 45, hjust = 1))
We find that the usage of Nitrogen is ahead in California. Maybe other places
in United State can change from using potash to nitrogen.
Now consider the files fung, fung ca only and fung fl only to observe which chem
is used most.
```{r}
library (dplyr)
library (readr)
library(ggplot2)
fung_fl <- read_csv("fung_fl_only.csv")</pre>
fung data <- read csv("fung.csv")
fung_ca <- read_csv("fung_ca_only.csv")</pre>
summary (fung f1)
summary (fung data)
summary (fung ca)
# Combine the data into one DataFrame for analysis
combined fung <- bind rows (fung fl, fung data, fung ca)
```

```
# Summarize or clean the data if necessary (e.g., handle missing values)
combined fung <- combined fung %>%
  filter(!is.na(chem index), !is.na(chem name))
# Create a bar plot to visualize chem name versus chem index
ggplot(combined\_fung, aes(x = chem\_name, y = chem\_index, fill = chem name)) +
  geom_bar(stat = "identity") +
  labs(title = "Chem Index Values by Chem Name",
       x = "Chem Name",
       y = "Chem Index") +
  theme minimal() +
  theme (axis. text. x = element text (angle = 45, hjust = 1)) +
  scale fill brewer(palette = "Set3")
## The plot produced seems not that useful. Here I think what we need to do is
## to sort the data in the three fung tables in descending order to obtain the
## usage quantities of each chemical substance nationwide, in California, and
## in Florida.
## To prove the series of results above, we can directly observe the relevant
## data of the harvest quantity. The files sur CA 19 23 and sur fl 19 23 are used.
```{r}
Load necessary libraries
library (ggplot2)
library (dplyr)
library (readr)
Load the data from the CSV files
data ca <- read csv("sur CA 19 23.csv")
data fl <- read csv("sur fl 19 23.csv")
Extract the years for plotting
years <- c("value 19", "value 20", "value 21", "value 22", "value 23")
Convert the selected columns to numeric after removing commas
convert_to_numeric <- function(x) as.numeric(gsub(",", "", x))</pre>
Visualize PRICE RECEIVED trends for California and Florida
price ca <- data ca
 %>% filter(product price
 "PRICE
 RECEIVED")
 %>%
select(all_of(years)) %>% unlist() %>% as.numeric()
price fl <- data fl %>% filter(product price
 "PRICE
 RECEIVED")
select(all_of(years)) %>% unlist() %>% as.numeric()
Plot PRICE RECEIVED trends
plot data <- data.frame(
```

```
Year = rep(years, 2),
 Price = c(price ca, price f1),
 State = rep(c("California", "Florida"), each = length(years))
)
ggplot(plot data, aes(x = Year, y = Price, group = State, color = State)) +
 geom line() + geom point() +
 ggtitle("PRICE RECEIVED Trend (2019-2023)") +
 xlab("Year") + ylab("Price ($/CWT)") +
 theme minimal()
Visualize HARVESTED acres trends for California and Florida
 %>%
 <-
 data ca
 filter(product price
 "HARVESTED")
 %>%
select(all of (years)) %>% unlist() %>% convert to numeric()
harvested fl
 <- data_fl
 %>%
 filter(product_price
 "HARVESTED")
select(all of(years)) %>% unlist() %>% convert to numeric()
Plot HARVESTED acres trends
harvested data <- data.frame(
 Year = rep(years, 2),
 Acres = c(harvested_ca, harvested_f1),
 State = rep(c("California", "Florida"), each = length(years))
)
ggplot(harvested_data, aes(x = Year, y = Acres, group = State, color = State)) +
 geom line() + geom point() +
 ggtitle ("HARVESTED Acres Trend (2019-2023)") +
 xlab("Year") + ylab("Acres") +
 theme minimal()
Calculate average HARVESTED acres for each state
avg_harvested_ca <- mean(harvested_ca)</pre>
avg_harvested_f1 <- mean(harvested_f1)</pre>
Print the averages
avg harvested ca
avg harvested fl
Maybe one conclustion we can get is for strawberriews cultivation, we may use nitrogen
as the fertilizer.
Since the assignment is related to the chemical usage of cultivating strawberries,
several data related to
the price of the strawberries may not be consider in my report.
```