Question 1

(i)

Proof. (\Rightarrow) Assume f is surjective. Hence, for each element $y \in Y$ there exists a $z \in X/\sim$ such that f(z)=y.

Since $\tilde{f} = f \circ \pi$, $\pi : X \to X/\sim$, and π is surjective. Thus,

$$\tilde{f}(X) = f(X/\sim) = Y$$

Hence \tilde{f} is surjective.

(\Leftarrow) Assume \tilde{f} is surjective. Hence, for each $y \in Y$, there exists a $x \in X$ such that $y = \tilde{f}(x)$. Then, because $f \circ \pi = \tilde{f}$, for each $y \in Y$, there exists $\pi(x)$ so that $f(\pi(x)) = y$. Hence, f is surjective.

(ii)

Proof. (\Rightarrow) Assume f is injective. Then, if $\pi(x) = \pi(x')$ it follows that $f(\pi(x)) = f(\pi(x'))$. Consequently, if $x \sim x'$, then $\pi(x) = \pi(x')$ and $\tilde{f}(x) = \tilde{f}(x')$ by characteristics of a quotient set function.

(\Leftarrow) Assume that $x \sim x' \Leftrightarrow \tilde{f}(x) = \tilde{f}(x')$. Since $x \sim x'$, then $\pi(x) = \pi(x')$. Hence, if $\pi(x) = \pi(x')$, then $f(\pi(x)) = f(\pi(x'))$. Thus, f is injective.

Question 2

Proof. Let $p, q \in \mathbb{Z}$. Let $a \sim a'$ so that

$$a - a' = np$$

Define

$$\{0\} \stackrel{\mathrm{def}}{=} \{b : b = nq\}$$

Then,

$$a + \{0\} = a' + n(p+q) = a$$

Hence, $\{0\}$ is the additive identity for $\mathbb{Z}/n\mathbb{Z}$. Similarly, define

$$\{1\} \stackrel{\text{def}}{=} \{c : c = 1 + nq\}$$

Then,

$$a \cdot \{1\}$$

$$= (a' + np) \cdot (1 + nq)$$

$$= a' + np + a'nq + n^2pq$$

$$= a' + n(p + a'q + npq)$$

$$= a$$

Hence, $\{1\}$ is the multiplicative identity for $\mathbb{Z}/n\mathbb{Z}$.

Question 3

Proof. Let V be a vector space and let $v \in V$. We know that 0 + 0 = 0 since it is the additive identity. Hence,

$$0 \cdot v = (0+0) \cdot v$$
$$0 \cdot v = 0 \cdot v + 0 \cdot v$$

Thus by the uniqueness of the additive identity,

$$0 \cdot v = 0$$

Additionally, we want to show that $(-1) \cdot v$ is the additive inverse of v. So, given the multiplicative identity and the distributive property of vector spaces,

$$v + (-1) \cdot v = (1) \cdot v + (-1) \cdot v = v \cdot (1 - 1) = 0$$

Consequently,

$$(-1) \cdot v = -v$$

Question 4

Proof. Let X be a set and V a vector space. Assume the Fun(X,V) is equipped with addition and scalar multiplication via:

$$(f+g)(x) = f(x) + g(x) \quad (a \cdot f)(x) = a \cdot f(x)$$

Hence,

$$a \cdot (f+g)(x) = a \cdot (f(x) + g(x)) = a \cdot f(x) + a \cdot g(x)$$

Also,

$$(a+b) \cdot f(x) = (a \cdot f)(x) + (b \cdot f)(x) = a \cdot f(x) + b \cdot f(x)$$

Thus, Fun(X,V) is a vector space.

Question 5

Let $\phi, \psi: V \to W$ be linear maps.

(i)

Let $v, v' \in V$. Hence,

$$(\phi + \psi)(v + v') = \phi(v + v') + \psi(v + v')$$

Because each of these functions are linear maps,

$$\phi(v + v') + \psi(v + v')$$
= $\phi(v) + \phi(v') + \psi(v) + \psi(v')$
= $(\phi + \psi)(v) + (\phi + \psi)(v')$

Hence the first requirement of a linear map is met. Next, take $a \in k$. Then, because each function is a linear map,

$$(\phi + \psi)(v \cdot a)$$

$$= \phi(v \cdot a) + \psi(v \cdot a)$$

$$= a \cdot \phi(v) + a \cdot \psi(v)$$

$$= a \cdot (\phi + \psi)(v)$$

Thus, $(\phi + \psi)$ is a linear map.

(ii)

Let $v, v' \in V$. Hence,

$$a \cdot \phi(v + v')$$

$$= (a \cdot \phi)(v + v')$$

$$= a \cdot (\phi(v) + \phi(v'))$$

$$= a \cdot \phi(v) + a \cdot \phi(v')$$

Also,

$$(a \cdot \phi)(b \cdot v)$$

$$= a \cdot (\phi(b \cdot v))$$

$$= a \cdot (b \cdot (\phi(v)))$$

$$= b \cdot (a \cdot \phi)(v)$$

Thus, $a \cdot \phi$ is a linear map.

Question 6

Proof. Let V be a vector space. Take the linear maps, $\psi: k^n \to V$ to be defined as:

$$k^n \to V$$

Given these linear maps, point in k^n will deliver a set of vectors $(v_1, v_2, ..., v_n)$. In order to construct a bijection, we want to construct an inverse of that takes

$$(v_1, v_2, ... v_n) \rightarrow k^n$$

and gives us a linear map. We know that

$$\psi((k^n)) = (v_1, v_2, ..., v_n)$$

If we take, $\psi(e_1)$, then $v_1 = \psi_1$. Hence, $v_i = \psi_i$. So, $\psi = (\psi_1, \psi_2, ..., \psi_n) = (\psi(e_1), \psi(e_2), ..., \psi(e_n)) = (v_1, v_2, ..., v_n)$. Hence we can find the linear map given just the vectors and thus a bijection is created between the two pieces of data.