

Project 1

Hybrid Images

 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

Why do we get different, distance-dependent interpretations of hybrid images?

Thinking in Frequency

Recap of Filtering

- Linear filtering is dot product at each position
 - Not a matrix multiplication
 - Can smooth, sharpen, translate (among many other uses)
- Be aware of details for filter size, extrapolation, cropping

1 9	1	1	1
	1	1	1
	1	1	1

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Comparison: salt and pepper noise

Review: questions

1. Write down a 3x3 filter that returns a positive value if the average value of the 4-adjacent neighbors is less than the center and a negative value otherwise

2. Write down a filter that will compute the gradient in the x-direction:

```
gradx(y,x) = im(y,x+1)-im(y,x) for each x, y
```

Review: questions

3. Fill in the blanks:

a)
$$_{-}$$
 = D \star B

b)
$$A = *$$

$$C) F = D *$$

$$d) = D * D$$

Filtering Operator

Н

Today's Class

- Fourier transform and frequency domain
 - Frequency view of filtering
 - Hybrid images
 - Sampling
- Reminder: Read your textbook
 - Today's lecture covers material in 3.4

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Thinking in terms of frequency

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):

Any univariate function can rewritten as a weighted sum sines and cosines of different frequencies.

• Don't believe it?

- Neither did Lagrange,
 Laplace, Poisson and
 other big wigs
- Not translated into English until 1878!
- But it's (mostly) true!
 - called Fourier Series
 - there are some subtle restrictions

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

Fourier, Joseph (1768-1830)

French mathematician who discovered that any periodic motion can be written as a superposition of sinusoidal and cosinusoidal vibrations. He developed a mathematical theory of heat in *Théorie Analytique de la Chaleur (Analytic Theory of Heat)*, (1822), discussing it in terms of differential equations.

Fourier was a friend and advisor of Napoleon. Fourier believed that his health would be improved by wrapping himself up in blankets, and in this state he tripped down the stairs in his house and killed himself. The paper of Galois which he had taken home to read shortly before his death was never recovered.

SEE ALSO: Galois

Additional biographies: MacTutor (St. Andrews), Bonn

© 1996-2007 Eric W. Weisstein

How would math have changed if the Slanket or Snuggie had been invented?

A sum of sines

Our building block:

$$A\sin(\omega x + \phi)$$

Add enough of them to get any signal g(x) you want!

• example : $g(t) = \sin(2\pi f t) + (1/3)\sin(2\pi(3f) t)$

Slides: Efros

$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt)$$

Example: Music

 We think of music in terms of frequencies at different magnitudes

Other signals

 We can also think of all kinds of other signals the same way

xkcd.com

Fourier analysis in images

Intensity Image

Fourier Image

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal there is at a particular frequency
 - Phase encodes spatial information (indirectly)
 - For mathematical convenience, this is often notated in terms of real and complex numbers

Amplitude:
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$
 Phase: $\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$

Salvador Dali invented Hybrid Images?

Salvador Dali

"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Fourier Bases

Teases away fast vs. slow changes in the image.

This change of basis is the Fourier Transform

Fourier Bases

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Intermission Slow mo guys – Saccades and CRTs

- https://youtu.be/Fmg9ZOHESgQ?t=21s
- https://youtu.be/3BJU2drrtCM

Man-made Scene

Can change spectrum, then reconstruct

Low and High Pass filtering

The Convolution Theorem

 The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$F[g * h] = F[g]F[h]$$

 Convolution in spatial domain is equivalent to multiplication in frequency domain!

$$g * h = F^{-1}[F[g]F[h]]$$

Filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1

Filtering in frequency domain **FFT** log fft magnitude FFT Inverse FFT Slide: Hoiem

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian

Box Filter

Is convolution invertible?

- If convolution is just multiplication in the Fourier domain, isn't deconvolution just division?
- Sometimes, it clearly is invertible (e.g. a convolution with an identity filter)
- In one case, it clearly isn't invertible (e.g. convolution with an all zero filter)
- What about for common filters like a Gaussian?