## Formation initiale aux métiers d'ingénieurs Filière : Amerinsa ; Lanières A, B, D, E

## THERMODYNAMIQUE 1 – IE $n^{\circ}2$ - corrigé

| D         | N. T 1. 1           | C 1 11044    | (11.05                     |
|-----------|---------------------|--------------|----------------------------|
| Exercice1 | : Machine thermique | Cycle a Otto | (11.25  points + 1  bonus) |

| Etude du cycle                                                                                                                                                         | nque Cyt                                                    | ic a Otto (11,25 po                                                | into i i bolida)                         | 7,5 points                 |                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|----------------------------|------------------------------------|--|
| 1) Le système étudié est dans                                                                                                                                          | la chambre                                                  | e à combustion.                                                    |                                          | 7,6 points                 | 0,25                               |  |
| 2) Transformations adiabatic                                                                                                                                           |                                                             |                                                                    | rs de la compression                     | et de la détente sont      | 0,25                               |  |
| lents par rapport à la durée de                                                                                                                                        |                                                             |                                                                    | •                                        |                            | ,                                  |  |
| 3) $n = P_A V_A / RT_A = 0.028$                                                                                                                                        | 3  mol = 28                                                 | 8,3 mmol                                                           |                                          |                            | 0,25                               |  |
| adiab rev GP donc $P_B = P_A$                                                                                                                                          | $(V_A\!/V_B)^{\gamma}$                                      |                                                                    |                                          |                            | 0,25                               |  |
| P (bar) V (mL)                                                                                                                                                         | T (K)                                                       |                                                                    |                                          |                            |                                    |  |
| A 1,00 800                                                                                                                                                             | 340                                                         |                                                                    |                                          |                            |                                    |  |
| B 21,3 90                                                                                                                                                              | 815                                                         |                                                                    |                                          |                            |                                    |  |
| C 63,5 90                                                                                                                                                              | 2430                                                        |                                                                    |                                          |                            |                                    |  |
| D 2.98 800                                                                                                                                                             | 1014                                                        | inconnues P <sub>B</sub> , T <sub>B</sub> , P                      | $D_a$ $D_b$ $T_b$                        |                            | 5 0 25                             |  |
| Compter juste si arrondi différen                                                                                                                                      | nt sur n· pa                                                |                                                                    |                                          | $P_{p=3}$ 06bar            | $5 \times 0,25$                    |  |
|                                                                                                                                                                        | u sur n , pa                                                | . cx. avec n=25nanoi, 1 (                                          |                                          | <i>p</i> =3,000 <i>u</i> 1 | $2 \times 0,25$                    |  |
| 4) $\overline{C}_v = \frac{R}{\gamma - 1}$ ; $\overline{C}_p = \frac{R \times \gamma}{\gamma - 1}$                                                                     |                                                             |                                                                    |                                          |                            |                                    |  |
| 5) Transformation AB ad                                                                                                                                                |                                                             |                                                                    |                                          |                            |                                    |  |
| $Q_{AB} = 0$ car transformation                                                                                                                                        |                                                             |                                                                    |                                          |                            | $2 \times 0,25$                    |  |
| $W_{AB} = \Delta U_{AB} = n \ \overline{C_V} (T_B -$                                                                                                                   | $T_A$ ) = $\frac{nR}{v-1}$                                  | $(T_B - T_A) = 279 J$                                              |                                          |                            | $2 \times 0,25$                    |  |
| Transformation BC isoch                                                                                                                                                | , -                                                         |                                                                    |                                          |                            |                                    |  |
| $W_{BC} = 0$ car transformation                                                                                                                                        |                                                             |                                                                    |                                          |                            | $2 \times 0.25$                    |  |
|                                                                                                                                                                        | _                                                           | $\frac{R}{T_0}$ (T <sub>0</sub> - T <sub>p</sub> )= 950 I          |                                          |                            | $2 \times 0,25$<br>$2 \times 0,25$ |  |
| $Q_{BC} = \Delta U = n \overline{C_V} (T_C - T_B) = \frac{nR}{\gamma - 1} (T_C - T_B) = 950 J$                                                                         |                                                             |                                                                    |                                          |                            | 2 × 0,23                           |  |
| Transformation CD adia                                                                                                                                                 | -                                                           |                                                                    |                                          |                            | $2 \times 0,25$                    |  |
| $Q_{CD} = 0$ car transformation                                                                                                                                        |                                                             |                                                                    |                                          |                            | $2 \times 0,25$<br>$2 \times 0,25$ |  |
| $W_{CD} = \Delta U_{CD} = n \overline{C_V} (T_D - T_C) = \frac{nR}{\gamma - 1} (T_D - T_C) = -833 J$                                                                   |                                                             |                                                                    |                                          |                            | 2 ~ 0,20                           |  |
| Transformation DA isochore brutale:                                                                                                                                    |                                                             |                                                                    |                                          |                            | $2 \times 0,25$                    |  |
| $W_{DA} = 0$ car transformation isochore                                                                                                                               |                                                             |                                                                    |                                          |                            |                                    |  |
| $Q_{DA} = \Delta U = n \overline{C_V} (T_A - T_D) = \frac{nR}{\gamma - 1} (T_A - T_D) = -396 J$                                                                        |                                                             |                                                                    |                                          |                            |                                    |  |
| A                                                                                                                                                                      | $\rightarrow$ B                                             | $B \to C$                                                          | $C \rightarrow D$                        | $D \rightarrow A$          |                                    |  |
|                                                                                                                                                                        | 9 (274)                                                     | $\begin{array}{c} B \to C \\ 0 \end{array}$                        | -833 (-853)                              | 0                          |                                    |  |
| Q(J)                                                                                                                                                                   | 0                                                           | 950 (986)                                                          | 0                                        | -396 (-406)                |                                    |  |
| Valeurs obtenues avec n=29mmol (compter juste si arrondi différent sur n)                                                                                              |                                                             |                                                                    |                                          |                            |                                    |  |
| $W_T = -553 \text{ J } (-580)$ ; c'est un cycle moteur                                                                                                                 |                                                             |                                                                    |                                          |                            |                                    |  |
| 6) AS = 0 car transformation formée                                                                                                                                    |                                                             |                                                                    |                                          |                            |                                    |  |
| <ul> <li>6) ΔS<sub>cycle</sub>= 0 car transformation fermée</li> <li>Etude du rendement</li> <li>2,5 points</li> </ul>                                                 |                                                             |                                                                    |                                          |                            |                                    |  |
|                                                                                                                                                                        |                                                             |                                                                    |                                          |                            | 3× 0,25                            |  |
| 7) $CoP = \frac{-W_T}{Q_{BC}} = \frac{Q_{BC} + Q_{DA}}{Q_{BC}} = \frac{(T_A - T_B + T_C - T_D)}{(T_C - T_B)} = 1 + \frac{(T_A - T_D)}{(T_C - T_B)} = 58,3\% $ (59%)    |                                                             |                                                                    |                                          |                            | J. 0,20                            |  |
| <b>8)</b> $T_A V_A^{\gamma - 1} = T_B V_B^{\gamma - 1}$ et $T_C V_C^{\gamma - 1} = T_D V_D^{\gamma - 1}$ donc $T_A = T_B x^{\gamma - 1}$ et $T_D = T_C x^{\gamma - 1}$ |                                                             |                                                                    |                                          |                            | 3× 0,25                            |  |
| $CoP = 1 + (T_A - T_D)/(T_C - T_B) = 1 - x^{1-\gamma}$                                                                                                                 |                                                             |                                                                    |                                          |                            | <del></del>                        |  |
| Le CoP augmente avec x (compter juste si conclusion inverse à partir de la formule donnée dans l'énoncé)                                                               |                                                             |                                                                    |                                          |                            | 0,25                               |  |
| 9) $4500 \text{ tr/min} = 2250/60 = 37.5 \text{ cycles/s}$                                                                                                             |                                                             |                                                                    |                                          |                            | 0,25                               |  |
| En 1 seconde : $-W_T = 37.5 \times 553 = 207.10^2$ J soit $P = 207.10^2 / 736 = 28,1$ CV                                                                               |                                                             |                                                                    |                                          |                            | $2\times0,25$                      |  |
| Influence de la combustion  1,25 points + 1 bonus                                                                                                                      |                                                             |                                                                    |                                          |                            | , -                                |  |
| 10) $C_8H_{18(g)} + 25/2 O_{2(g)} \rightarrow 8CO_{2(g)} + 9H_2O_{(g)}$                                                                                                |                                                             |                                                                    |                                          |                            |                                    |  |
|                                                                                                                                                                        | $_{2(g)} \rightarrow 8C0$                                   | $O_{2(g)} + 9H_2O_{(g)}$                                           |                                          |                            | 0,25                               |  |
| $\mathbf{10)} \qquad C_8 H_{18(g)} + 25/2 \text{ O}$                                                                                                                   |                                                             |                                                                    | $\frac{1}{1,2} = 62,5 \text{ moles d'a}$ | ir.                        | 0,20                               |  |
| 10) C <sub>8</sub> H <sub>18(g)</sub> + 25/2 O<br>11) 1 mole d'octane pour 1                                                                                           |                                                             |                                                                    | $\frac{1}{1}$ ,2 = 62,5 moles d'a        | ir.                        | 0,5                                |  |
| 10) $C_8H_{18(g)} + 25/2 O$<br>11) 1 mole d'octane pour 1<br>$x_{octane} = \frac{1}{63,5} = 0,0157.$                                                                   | 2,5 moles                                                   | d'O <sub>2</sub> et donc 12,5/0                                    |                                          | ir.                        | ,                                  |  |
| 10) C <sub>8</sub> H <sub>18(g)</sub> + 25/2 O<br>11) 1 mole d'octane pour 1                                                                                           | $2,5 \text{ moles}$ $n_{\text{octane}} > n_{\text{octane}}$ | d' $O_2$ et donc 12,5/0 $< M_{octane} = n_{tot} \times x_{octane}$ |                                          | ir.                        | 0,5                                |  |

| 12) On brule à chaque explosion 50,7 mg, ce qui génère une chaleur                                  |      |  |
|-----------------------------------------------------------------------------------------------------|------|--|
| $Q'_{BC} = 447.10^2 \times 50, 7.10^{-3} = 22, 7.10^2 J$                                            | 0,25 |  |
| Valeur anormalement élevée due au caractère idéal de ce qui a été considéré ici, combustion totale, |      |  |
| octane pur, pas de pertes de chaleur, valeurs calculées pour des molécules diatomiques, alors que   |      |  |
| beaucoup sont plus complexes.                                                                       | 0,25 |  |

Exercice 2 (4,5 points)



Exercice 3 (4,25 points)

