On the Impact of Known-Key Attacks on Hash Functions

Bart Mennink and Bart Preneel KU Leuven (Belgium)

> ASIACRYPT 2015 December 3, 2015

Introduction

- Hash functions classically built from:
 - Blockciphers: Davies-Meyer ('84), PGV ('93), ...
 - Permutations: Sponge ('07), Grøstl ('09), . . .
- Security classically in ideal cipher/permutation model

- $\mathrm{Bloc}(\kappa,n)$: all blockciphers with κ -bit key and n-bit state
- ullet iE is randomly drawn from $\mathrm{Bloc}(\kappa,n)$

- Bloc (κ, n) : all blockciphers with κ -bit key and n-bit state
- iE is randomly drawn from $\mathrm{Bloc}(\kappa,n)$
- ullet Adversary ${\cal A}$ has query access to iE and iE^{-1}

- Bloc (κ, n) : all blockciphers with κ -bit key and n-bit state
- iE is randomly drawn from $\mathrm{Bloc}(\kappa,n)$
- ullet Adversary ${\cal A}$ has query access to iE and iE^{-1}

ullet ${\cal A}$ tries to find collisions/preimages/... for ${\sf F}^{iE}$

- Bloc (κ,n) : all blockciphers with κ -bit key and n-bit state
- iE is randomly drawn from $\mathrm{Bloc}(\kappa,n)$
- ullet Adversary ${\cal A}$ has query access to iE and iE^{-1}

• \mathcal{A} tries to find collisions/preimages/... for F^{iE}

How realistic is this model?

- Consider any blockcipher E (e.g. AES)
- ullet E should look like an ideal cipher iE

- Consider any blockcipher E (e.g. AES)
- ullet E should look like an ideal cipher iE

- Consider any blockcipher E (e.g. AES)
- ullet E should look like an ideal cipher iE

- E is not a random system
- ullet In theory, ${\cal D}$ always succeeds with probability 1

- ullet Consider any blockcipher E (e.g. AES)
- ullet E should look like an ideal cipher iE

- E is not a random system
- ullet In theory, ${\cal D}$ always succeeds with probability 1
- In practice, not trivial to demonstrate this
 - quest for open-key distinguishers

•

• Known-(related-)key attacks distinguish E from iE:

```
    Feistel<sub>7</sub>/AES<sub>7</sub>

                              (Knudsen-Rijmen, AC '07)
AES<sub>7</sub>
                              (Mendel et al., FSE '09)

 Threefish-512<sub>35</sub>

                              (Aumasson et al., AC '09)
AES<sub>8</sub>
                              (Gilbert-Peyrin, FSE '10)
                              (Sasaki-Yasuda, FSE '11)

 Feistel<sub>11</sub>

 BLAKE-32<sub>8</sub>

                              (Biryukov et al., FSE '11)

    RIPEM D-12859

                              (Sasaki-Wang, ACNS '12)
                              (Yu et al., SAC '12)

 Threefish-512<sub>36</sub>
```

Impact of Distinguishers Unclear

Impact of Distinguishers Unclear

• "Banana attack" (Aumasson '10)

Impact of Distinguishers Unclear

- "Banana attack" (Aumasson '10)
- (Knudsen-Rijmen, AC '07):

Impact of Distinguishers Unclear

- "Banana attack" (Aumasson '10)
- (Knudsen-Rijmen, AC '07):

"In some cases block ciphers are used with a key that is known to the adversary, (...). Our attacks are quite relevant to this case."

ullet Attacks on E do not necessarily invalidate security of F^E

Impact of Distinguishers Unclear

- "Banana attack" (Aumasson '10)
- (Knudsen-Rijmen, AC '07):

"In some cases block ciphers are used with a key that is known to the adversary, (...). Our attacks are quite relevant to this case."

ullet Attacks on E do not necessarily invalidate security of ${\sf F}^E$

Potential Solution

Indifferentiability of blockciphers

Indifferentiability (Maurer et al. '04)

Indifferentiability (Maurer et al. '04)

• E based on π is indifferentiable from iE if for some simulator S, distinguishability advantage is small

Indifferentiability (Maurer et al. '04)

- E based on π is indifferentiable from iE if for some simulator S, distinguishability advantage is small
- Blockcipher behaves like ideal cipher . . .
 . . . and can replace it in certain applications

Indifferentiability (Maurer et al. '04)

- E based on π is indifferentiable from iE if for some simulator S, distinguishability advantage is small
- Blockcipher behaves like ideal cipher . . .
 . . . and can replace it in certain applications
- Much (!!) harder to prove

Feist el	bound	remark
Coron et al. '08	$2^{18} q^8 / 2^n$	6 rnd (flawed)
Holenstein et al. '10	$2^{66} q^{10}/2^n$	14 rnd
Guo and Lin '15	$2^{222}q^{30}/2^n$	21 rnd (alter. key)
Dachman-Soled et al. '15	$2^{51} q^{12}/2^n$	10 rnd
Dai and Steinberger '15	$2^{23} q^8 / 2^n$	8 rnd

Feist el	bound	remark
Coron et al. '08 Holenstein et al. '10 Guo and Lin '15 Dachman-Soled et al. '15 Dai and Steinberger '15	$\begin{array}{cccc} 2^{18} & q^8 & /2^n \\ 2^{66} & q^{10} / 2^n \\ 2^{222} q^{30} / 2^n \\ 2^{51} & q^{12} / 2^n \\ 2^{23} & q^8 & /2^n \end{array}$	6 rnd (flawed) 14 rnd 21 rnd (alter. key) 10 rnd 8 rnd

Even-Mansour	bound	remark
Andreeva et al. '13 Lampe and Seurin '13 Guo and Lin '15	$\begin{array}{c} 2^{34}q^{10}/2^n \\ 2^{91}q^{12}/2^n \\ 2^{11}q^8/2^n \end{array}$	5 rnd (random kdf) 12 rnd 15 rnd (alter. key)

Feist el	bound	remark
Coron et al. '08 Holenstein et al. '10 Guo and Lin '15 Dachman-Soled et al. '15 Dai and Steinberger '15	$\begin{array}{cccc} 2^{18} & q^8 & /2^n \\ 2^{66} & q^{10} / 2^n \\ 2^{222} q^{30} / 2^n \\ 2^{51} & q^{12} / 2^n \\ 2^{23} & q^8 & /2^n \end{array}$	6 rnd (flawed) 14 rnd 21 rnd (alter. key) 10 rnd 8 rnd

Even-Mansour	bound	remark
Andreeva et al. '13 Lampe and Seurin '13 Guo and Lin '15	$\begin{array}{c} 2^{34}q^{10}/2^n \\ 2^{91}q^{12}/2^n \\ 2^{11}q^8 \ /2^n \end{array}$	5 rnd (random kdf) 12 rnd 15 rnd (alter. key)

Extremely hard research question!

Feist el	bound	remark
Coron et al. '08 Holenstein et al. '10 Guo and Lin '15 Dachman-Soled et al. '15 Dai and Steinberger '15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 rnd (flawed) 14 rnd 21 rnd (alter. key) 10 rnd 8 rnd

pointless for n=128; security up to $q\lesssim 2$ for n=256

Even-Mansour	bound	remark
Andreeva et al. '13 Lampe and Seurin '13 Guo and Lin '15	$\begin{array}{c} 2^{34}q^{10}/2^n \\ 2^{91}q^{12}/2^n \\ 2^{11}q^8 \ /2^n \end{array}$	5 rnd (random kdf) 12 rnd 15 rnd (alter. key)

Extremely hard research question!

Coron et al. '08 2 ¹⁸ Holenstein et al. '10 2 ⁶⁶	$q^8/2^n$ 6 rnd (flawed)
Guo and Lin '15 Dachman-Soled et al. '15 Dai and Steinberger '15 222: 223: 224: 225: 226: 227: 228: 228: 228: 229: 229: 229: 229: 220: 220: 220: 220	$rac{q^{10}/2^n}{2^{30}/2^n}$ 14 rnd $^{2}q^{30}/2^n$ 21 rnd (alter. key) $^{12}/2^n$ 10 rnd $^{2}q^8/2^n$ 8 rnd

pointless for n=128; security up to $q\lesssim 2$ for n=256

Even-Mansour	bound	remark
Andreeva et al. '13 Lampe and Seurin '13 Guo and Lin '15	$ \begin{array}{c} 2^{34}q^{10}/2^n \\ 2^{91}q^{12}/2^n \\ 2^{11}q^8/2^n \end{array} $	5 rnd (random kdf) 12 rnd 15 rnd (alter. key)

security up to $q \lesssim 8$ for n=128

Extremely hard research question!

Weak Cipher Model

- ullet Consider a predicate Φ
- $\mathrm{Bloc}[\Phi](\kappa,n)$: all (κ,n) -blockciphers that comply with Φ

- ullet Consider a predicate Φ
- $\mathrm{Bloc}[\Phi](\kappa,n)$: all (κ,n) -blockciphers that comply with Φ
- iE is randomly drawn from $\mathrm{Bloc}[\Phi](\kappa,n)$

- ullet Consider a predicate Φ
- $\mathrm{Bloc}[\Phi](\kappa,n)$: all (κ,n) -blockciphers that comply with Φ
- iE is randomly drawn from $\mathrm{Bloc}[\Phi](\kappa,n)$
- Simple examples:

Φ	$\mathrm{Bloc}[\Phi](\kappa,n)$
true $\exists (k,m,c): \ m=c \\ \forall (k,m,c): \ m=c$	all ciphers $\mathrm{Bloc}(\kappa,n)$ all ciphers with a fixed point $m\mapsto m$ identity mapping

- Core idea: analyze F in WCM instead of ICM
- Analysis in WCM depends on type of predicate
- Type of predicate depends on type of primitive attack

- Core idea: analyze F in WCM instead of ICM
- Analysis in WCM depends on type of predicate
- Type of predicate depends on type of primitive attack

• We focus on specific type of predicate

- Core idea: analyze F in WCM instead of ICM
- Analysis in WCM depends on type of predicate
- Type of predicate depends on type of primitive attack

We focus on specific type of predicate

```
\Phi = \Phi(A,B,\varphi): \text{ for each key } k \text{ there exist } A \text{ sets } \\ \text{ of } B \text{ queries } \{(x^1,z^1),\dots,(x^B,z^B)\} \\ \text{ that comply with a certain condition } \varphi
```

- Core idea: analyze F in WCM instead of ICM
- Analysis in WCM depends on type of predicate
- Type of predicate depends on type of primitive attack

We focus on specific type of predicate

```
\begin{split} \Phi = \Phi(A,B,\varphi): \text{ for each key } k \text{ there exist } A \text{ sets} \\ \text{ of } B \text{ queries } \{(x^1,z^1),\dots,(x^B,z^B)\} \\ \text{ that comply with a certain condition } \varphi \end{split}
```

General enough to cover many primitive attacks

Weak Cipher Model: Known-Key Distinguishers

Attack on Feistel₇ (Knudsen-Rijmen '07)

• Consider Feistel₇ based on n/2-bit permutation p

• Consider known key $k=(k_1,\ldots,k_7)$

Attack on Feistel₇ (Knudsen-Rijmen '07)

• Consider Feistel₇ based on n/2-bit permutation p

- Consider known key $k=(k_1,\ldots,k_7)$
- Choose $y \in \{0,1\}^{n/2}$

Attack on Feistel₇ (Knudsen-Rijmen '07)

• Consider Feistel₇ based on n/2-bit permutation p

- Consider known key $k=(k_1,\ldots,k_7)$
- Choose $y \in \{0,1\}^{n/2}$
- Derive (m,c) and (m',c') satisfying

$$\mathsf{Right}_{n/2}(m \oplus c \oplus m' \oplus c') = 0$$

Attack on Feistel₇ (Knudsen-Rijmen '07)

• Consider Feistel₇ based on n/2-bit permutation p

- Consider known key $k = (k_1, \dots, k_7)$
- Choose $y \in \{0,1\}^{n/2}$
- Derive (m,c) and (m',c') satisfying

Attack on Feistel₇ (Knudsen-Rijmen '07)

ullet Consider Feistel $_7$ based on n/2-bit permutation p

- Consider known key $k = (k_1, \dots, k_7)$
- Choose $y \in \{0,1\}^{n/2}$
- Derive (m,c) and (m',c') satisfying

$$\mathsf{Right}_{n/2}(m \oplus c \oplus m' \oplus c') = 0$$

$$B=2$$

Attack on Feistel₇ (Knudsen-Rijmen '07)

ullet Consider Feistel $_7$ based on n/2-bit permutation p

- Consider known key $k = (k_1, \dots, k_7)$
- Choose $y \in \{0,1\}^{n/2}$ \longleftrightarrow $A = 2^{n/2}$
- Derive (m,c) and (m',c') satisfying

$$\begin{array}{c} \text{Right}_{n/2}(m\oplus c\oplus m'\oplus c')=0 \end{array}$$

B=2

Generalization

• For $C\in\{1,\dots,n\}$, define arphi as 1 $\mathsf{Right}_C\left(x^1\oplus z^1\oplus\dots\oplus x^B\oplus z^B\right)=0$

¹ simplified for sake of presentation

Generalization

ullet For $C\in\{1,\ldots,n\}$, define arphi as 1

$$\mathsf{Right}_{C}\left(x^{1}\oplus z^{1}\oplus\cdots\oplus x^{B}\oplus z^{B}\right)=0$$

Covers virtually all existing known-key attacks

A	B	C
$=2^{n/2}$	2	n/2
$\lesssim 2^{n/8}$	2	10n/16
$\lesssim 2^{n/8}$	4	n
:		:
~ ~ ~	$ \begin{array}{l} - \\ 5 \\ 2^{n/8} \\ 5 \\ 2^{n/8} \end{array} $	$\lesssim 2^{n/8}$ 2 $\lesssim 2^{n/8}$ 4

simplified for sake of presentation

- $\mathrm{Bloc}[\Phi](\kappa,n)$: all (κ,n) -blockciphers that comply with Φ
- ullet iE is randomly drawn from $\mathrm{Bloc}[\Phi](\kappa,n)$

- ullet Bloc $[\Phi](\kappa,n)$: all (κ,n) -blockciphers that comply with Φ
- iE is randomly drawn from $\mathrm{Bloc}[\Phi](\kappa,n)$
- ullet Adversary ${\cal A}$ has query access to iE and iE^{-1}

- ullet Bloc $[\Phi](\kappa,n)$: all (κ,n) -blockciphers that comply with Φ
- iE is randomly drawn from $\mathrm{Bloc}[\Phi](\kappa,n)$
- ullet Adversary ${\cal A}$ has query access to iE and iE^{-1}
- ullet It has additional query access to iE^Φ
 - Returns tuples $\{(x^1,z^1),\dots,(x^B,z^B)\}$ satisfying φ

iE and iE^{-1} as usual

- ullet P_k for all keys k: initially empty lists of iE_k -evaluations
- Query to iE: random response from $\{0,1\}^n \backslash \operatorname{rng}(P_k)$
- Query to iE^{-1} : random response from $\{0,1\}^n \backslash \text{dom}(P_k)$

iE and iE^{-1} as usual

- ullet P_k for all keys k: initially empty lists of iE_k -evaluations
- Query to iE: random response from $\{0,1\}^n \backslash \operatorname{rng}(P_k)$
- Query to iE^{-1} : random response from $\{0,1\}^n \backslash \text{dom}(P_k)$

iE^{Φ}

- Σ_k : list of potential responses $\{(x^1,z^1),\ldots,(x^B,z^B)\}$ that
 - satisfy φ
 - are consistent with P_k

iE and iE^{-1} as usual

- ullet P_k for all keys k: initially empty lists of iE_k -evaluations
- ullet Query to iE: random response from $\{0,1\}^n \backslash \operatorname{rng}(P_k)$
- Query to iE^{-1} : random response from $\{0,1\}^n \backslash \text{dom}(P_k)$

iE^{Φ}

- Σ_k : list of potential responses $\{(x^1,z^1),\ldots,(x^B,z^B)\}$ that
 - satisfy φ
 - are consistent with P_k
- ullet New query: random response from Σ_k

iE and iE^{-1} as usual

- ullet P_k for all keys k: initially empty lists of iE_k -evaluations
- ullet Query to iE: random response from $\{0,1\}^n \backslash \operatorname{rng}(P_k)$
- Query to iE^{-1} : random response from $\{0,1\}^n \backslash \text{dom}(P_k)$

iE^{Φ}

- Σ_k : list of potential responses $\{(x^1,z^1),\ldots,(x^B,z^B)\}$ that
 - satisfy φ
 - are consistent with P_k
- ullet New query: random response from Σ_k

Notes

- Behavior of (iE, iE^{-1}) detached from iE^{Φ}
- Works reasonably well as long as $|\Sigma_k| \gg 0$
- Thanks to Damian Vizár for pointing this out

PGV (Preneel et al. '93)

- 12 blockcipher-based compression functions
- Optimally secure in ICM (Black et al. '02)
- Attacks beyond ICM are often fixed-key differential attacks

B	C	collision	preimage
idea	l model	$2^{n/2}$	2^n
1	arbitrary		
2	$\leq n/2$		
	> n/2		
≥ 3	arbit ra ry		

B	C	collision	preimage
idea	ıl model	$2^{n/2}$	2^n
1	arbitrary		
2	$\leq n/2$	$2^{n/2}$	2^n
	> n/2		
≥ 3	arbitrary	$2^{n/2}$	2^n

• $B \geq 3$ or $(B = 2 \wedge C \leq n/2)$: ICM security bounds retained

B	C	collision	preimage
idea	l model	$2^{n/2}$	2^n
1	arbitrary		
2	$\leq n/2$	$2^{n/2}$	2^n
	> n/2	2^{n-C}	2^n
≥ 3	arbitrary	$2^{n/2}$	2^n

- $B \ge 3$ or $(B = 2 \land C \le n/2)$: ICM security bounds retained
- $(B=2 \wedge C>n/2)$: any predicate query satisfies $x\oplus z\oplus x'\oplus z'=0$ on >n/2 bits

B	C	collision	preimage
idea	l model	$2^{n/2}$	2^n
1	arbitrary	$2^{(n-C)/2}$	2^{n-C}
2	$\leq n/2$	$2^{n/2}$	2^n
	> n/2	2^{n-C}	2^n
≥ 3	arbit ra ry	$2^{n/2}$	2^n

- $B \ge 3$ or $(B = 2 \land C \le n/2)$: ICM security bounds retained
- $(B=2 \wedge C>n/2)$: any predicate query satisfies $x\oplus z\oplus x'\oplus z'=0$ on >n/2 bits
- ullet B=1: any predicate query satisfies $x\oplus z=0$ on C bits

Grøstl and Shrimpton-Stam in WCM

- Blockcipher with a fixed and known key is a permutation and can be used as such
- Understand impact of distinguishers on permutations

Grøstl and Shrimpton-Stam in WCM

- Blockcipher with a fixed and known key is a permutation and can be used as such
- Understand impact of distinguishers on permutations
- Similar security observations in ICM versus WCM

Conclusions

Weak Cipher Model

- Model to investigate impact of blockcipher weaknesses
- Application: existing known-key attacks have limited impact on PGV, Grøstl, and Shrimpton-Stam
- Approach generalizes to other functions and attacks

Conclusions

Weak Cipher Model

- Model to investigate impact of blockcipher weaknesses
- Application: existing known-key attacks have limited impact on PGV, Grøstl, and Shrimpton-Stam
- Approach generalizes to other functions and attacks

The Road Ahead

- First step to security beyond ideal model
- Still "controversial"
 - Also an idealized model
 - Simplification in random weak cipher
 - Abstraction of existing attacks
 - Only covers specific attacks

Thank you for your attention!

Supporting Slides

SUPPORTING SLIDES

Random Abortable Weak Cipher

iE and iE^{-1} as usual

- ullet P_k for all keys k: initially empty lists of iE_k -evaluations
- Query to iE: random response from $\{0,1\}^n \backslash \operatorname{rng}(P_k)$
- Query to iE^{-1} : random response from $\{0,1\}^n \backslash \text{dom}(P_k)$

iE^{Φ}

- ullet Σ_k : list of potential responses $\{(x^1,z^1),\ldots,(x^B,z^B)\}$ that
 - satisfy φ
 - may be inconsistent with P_k

Random Abortable Weak Cipher

iE and iE^{-1} as usual

- ullet P_k for all keys k: initially empty lists of iE_k -evaluations
- Query to iE: random response from $\{0,1\}^n \backslash \operatorname{rng}(P_k)$
- Query to iE^{-1} : random response from $\{0,1\}^n \backslash \text{dom}(P_k)$

iE^{Φ}

- Σ_k : list of potential responses $\{(x^1, z^1), \dots, (x^B, z^B)\}$ that
 - satisfy φ
 - ullet may be inconsistent with P_k
- New query: random response from Σ_k
- ullet Abort if response creates inconsistency with P_k

Random Abortable Weak Cipher

iE and iE^{-1} as usual

- ullet P_k for all keys k: initially empty lists of iE_k -evaluations
- Query to iE: random response from $\{0,1\}^n \backslash \operatorname{rng}(P_k)$
- Query to iE^{-1} : random response from $\{0,1\}^n \backslash \text{dom}(P_k)$

iE^{Φ}

- Σ_k : list of potential responses $\{(x^1, z^1), \dots, (x^B, z^B)\}$ that
 - satisfy φ
 - ullet may be inconsistent with P_k
- New query: random response from Σ_k
- Abort if response creates inconsistency with P_k

Notes

- Now: (iE, iE^{-1}) and iE^{Φ} behave somewhat independently
- ullet RAWC aborts with probability $\mathcal{O}\left(rac{(Bq)^2}{2^n}
 ight)$

All Results in WCM

		PGV		Grøst		Shrimpton-Stam	
B	C	collision	preimage	collision	preimage	collision	preimage
idea	al model	$2^{n/2}$	2^n	$2^{n/4}$	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$
1	$\leq n/2$	$2^{(n-C)/2}$	2^{n-C}	$2^{(n-C)/4}$	$2^{(n-C)/2}$	$2^{(n-C)/2}$	$2^{n/2}$
	> n/2	$2^{(n-C)/2}$	2^{n-C}	$2^{(n-C)/4}$	$2^{(n-C)/2}$	$2^{(n-C)/2}$	2^{n-C}
2	$\leq n/2$	$2^{n/2}$	2^n	$2^{n/4}$	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$
	> n/2	2^{n-C}	2^n	$2^{(n-C)/2}$	$2^{n/2}$	2^{n-C}	$2^{n/2}$
≥ 3	arbitrary	$2^{n/2}$	2^n	$2^{n/4}$	$2^{n/2}$	$2^{n/2}$	$2^{n/2}$

- $B \ge 3$ or $(B = 2 \land C \le n/2)$: ICM security bounds retained
- $(B=2 \wedge C > n/2)$: any predicate query satisfies $x \oplus z \oplus x' \oplus z' = 0$ on > n/2 bits
- ullet B=1: any predicate query satisfies $x\oplus z=0$ on C bits