=((g<\$>).(h<\$7)) Left a unapply composition

		Hyeyeon Lee
A3 Written	Either	
	The Functor and Applicative for the Either data-t	ype is as follows:
	instance Functor (Either a) where	
	fmap f (Right x) = Right (f x)	
	fmap f (Left x) = Left x	
	instance Applicative (Either e) where	
	pure = Right	
	Left e <*> _ = Left e	
	Right f <*> r = fmap f r	
	Question 1. [4 MARKS]	
	Show Either satisfies the <i>second</i> functor law:	
	fmap (g . h) = fmap g . fmap h	
	· · · · · · · · · · · · · · · · · · ·	
	Application of composition	
	(f·9) x = f.9 \$ x = f \$ 9 x = f \$ 9 \$ x	
	for any x:: Either	
	P(x) ←→ (g,h) <\$> x = (9 <\$>) (h <\$>) x	
	Suppose x= Right a	Suppose x= Left a
	(9.h) <\$> (Righ+ a)	(9.n) <\$> (Left a)
	= Right (9.h \$ a) apply (9.h)<\$>	= Left a apply (9.h) (\$>
	= Right (9 \$ h \$ a) Composition	= (9 <\$>) Left a unapply 9 <\$>
	= (9 <\$>) Right (h \$a) unapply 9 <\$>	= (9<\$>) \$ (h <\$>) Left a unapply h <\$>

=(9 <\$>) \$ (h <\$>) Right a unapply h <\$>

Therefore, P(Right a)

= ((9(\$>) (h(\$>)) (Righta) unapply composition Therefore, P(Lefta)

Either The Functor and Applicative for the Either data-type is as follows: instance Functor (Either a) where fmap f (Right x) = Right (f x)fmap f (Left x) = Left xinstance Applicative (Either e) where = Right pure Left e <*> _ = Left e Right f < *> r = fmap f rQuestion 2. [6 MARKS] Show Either satisfies the *third* applicative law: $x \ll pure y = pure (\g -> g y) \ll x$ x <*> pure y = pure (\$y) <*> x Assuming x = Right a Pure (\$y) (#> Right a = (\$y) <\$> Right a apply <#> = Right ((\$y)a) apply <\$> = Right (a \$ y) apply (\$ y) = a <\$> Right y unapply <\$> = Right a <#> Right y unapply <#> = x <*> Right y by assumption = x <+> pure y unapply pure

	ZipWith Recall the alternate definition for a list applicative given in tutorial 8. instance Functor [] where fmap _ [] = [] map g (x:xs) = g x : (fmap g xs) instance Applicative [] where pure f = repeat f [] <*> = [] - <*> [] = [] (f:fs) <*> (x:xs) = (f x) : (fs <*> xs) When writing your proofs use the line numbers given above when justifying your steps. Question 3. [7 MARKS] Show your Applicative satisfies the second applicative law:		
	pure (g x) = pure g <*> pure x		
Base case	pure (g []) P(x): Pure (g x) = pure g <*> pure x		
	= C3 line 5 abbix 3		
	=(Pure 9) (*) [] unapply (pure 9) (*)		
	= (pure 9) (%> (pure []) unapply pure		
	Therefore P(C3)		
Induction	Suppose P(x5) and prove P(x:x5) HI P(x5): pure (9 x5) = pure 9 (#> pure x5		
	Pure 9 (*> Pure(x:x5) repeat(9x5) = repeat 9 (*> repeat x5		
=	Defection of the control of the cont		
	repeat 9 (*) repeat (x:x5) apply pure Definition of repeat : repeat $x = x : (repeat x)$		
τ.	The peak a_{x} (x : Lebeat x : a_{x} : Lebeat a_{x} : a_{x} : Lebeat		

=

repeat (9 (x:x5)) apply 9\$

Therefore P(x:x5)

	ZipWith	
	Recall the alternate definition for a list applicative given in tutorial 8.	
	_ , instance Functor [] where fmap _ [] = []	
	_ 3	
	s instance Applicative [] where pure f = repeat f	
	7 [] <*> _ = [] s _ <*> [] = []	
	s _ <8 1 = 11 , (f:fs) <*> (x:xs) = (f x) : (fs <*> xs)	
	When writing your proofs use the line numbers given above when justifying your steps.	
	Question 4. [8 MARKS]	
	Show your Applicative satisfies the forth applicative law:	
	x <*> (y <*> z) = (pure (.) <*> x <*> y) <*> z	
Base case	x= [] Y= b5 &= C5	
	(] (*> (b5 (*> c5)	
	= () line T apply <*>	
	= (] <*> < b5) line q unapply <*> b5	
	= (pure (.) <*> [] <*> b5) line 8 unapply Pure (.) <*>	
	= (pure(.) < *> (] (*> b5) (*> c5 line 1 unapply (*> C5	
	Loss of Generality, Same progress when y = () or z = ()	
	x(*>(y(*>Z) = (pure (.)(*>x(*>y) (*>Z) is true for Base case when one of the	
	input is empty.	

Induction	x= (a:a5) Y= (b:b5) Z= (C:(5)	
	x <+> (y <+>z) = (purg (.) <+> x <+> y) <+> z	
	Presume as (*> (b5 (*> 2) = (pure (.) (*> as (*	> b5) <*> c5
	(pure (.) <%> (a: as) <*> (b: bs) <%> ((:(s)	
	((.) a : repeat (.) (*> a5) (*> (b:b5) <*> (c:C5)	apply <*>
	(((.) a b) : (repea+(.) <*> a5) <*> b5)) <*> (c:c5)	apply (*>
	(a.b)c: (((repea+(.)<*>a5)<*>b5)<*>c5)	apply (*)
	(a.b)c : a5 (*> b5 (*> C5	by HI
	(a\$b\$c): as <*> b\$ <*> C\$	CompoSi+ion
	(a:a5) <*> ((b\$c): (b5 <*> <5))	line 9 unapply <*>
	(a:a5) (*> ((b:b5) (*> (C:(5))	line 9 unapply <+>
	Therefore , (a:a5) (*> ((b:b5) (*> (C:C5))	
	= (pure (.) (*) (a:a5)) (*> (b:b5)	(*) (C:C5)
	= × <*>(Y <*>Z)	