Une approche d'apprentissage automatique pour la recharge intelligente des véhicules électriques

Karol Lina López karol-lina.lopez.1@ulaval.ca

22 jan 2019

Effets de la recharge sur le réseau électrique

Source: Inauguration of the European Interoperability Centre for Electric Vehicles and Smart Grids

Effets de la recharge sur le réseau électrique

Source: Report on the Economic and Environmental Impacts of Large-Scale Introduction on EV/PHEV. Shakoor & Aunedi, 2011

Comment faciliter la recharge intelligente de VE ?

Stratégies pour la gestion de la demande

Stratégies pour la gestion de la demande

Tarification dynamique

ES

Hydro-Québec va offrir des tarifs variables selon l'heure du jour

Hydro-Québec offrira dès l'hiver prochain des tarifs d'électricité variables selon les heures de la journée à ses clients.

- « On ira de l'avant comme prévu, et ce, sur une base volontaire et progressive
- », a confirmé hier au *Journal* un porte-parole d'Hydro-Québec, Marc-Antoine Pouliot.

Programmation des périodes de recharge

Programmation des périodes de recharge

Programmation des périodes de recharge

Objectif: Minimiser le coût en énergie du VE

Objectif: Minimiser le coût en énergie du VE

$$\min_{\{a(t)\}_{t=1}^{T}} \sum_{t=1}^{I} \left[z(t) \cdot S_{p}(t) + (1 - z(t)) \cdot S_{u}(t) \right], \tag{1}$$

$$S_p(t) = a(t) \cdot C_{el}(t) \cdot \frac{E_{ch}(SoC(t))}{\eta}, \qquad (2)$$

$$S_u(t) = C_{fuel}(t) \cdot \max(F_c(SoC(t)), 0), \tag{3}$$

Processus de décision Marcovien

Les états :

$$s(t) = \frac{\lfloor SoC(t) \cdot B \rfloor + 0.5}{B},$$
 (4)

- Les actions (a = 0, a = 1)
- La function de transition (modèle de batterie)
- La function de récompense :

$$r(s(t), a) = \begin{cases} 0 & \text{if } z(t) = 1 \text{ and } a = 0 \\ -C_{el}(t) \cdot \frac{E_{ch}(SoC(t))}{\eta} & \text{if } z(t) = 1 \text{ and } a = 1 . \\ -C_{fuel}(t) \cdot F_{c}(SoC(t)) & \text{if } z(t) = 0 \end{cases}$$
 (5)

Optimisation basée sur la Programmation Dynamique

$$Q(s(t), a) = r(s(t), a) + \max_{a \in A} Q(s(t+1), a)$$
 (6)

$$a^*(t) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q(s(t), a). \tag{7}$$

Exemple illustrative de la programmation dynamique pour prise de décisions

Analyse de l'intervalle de temps

Comparaison de la programmation dynamique avec des techniques de base

		Summer					Winter							
EV	GAS	DP	•	AC		RD	1	GAS	DI	•	AC	:	RE)
	S	S	%	-\$	%	\$	%	\$	\$	%	-\$	%	\$	%
203	131.2	34.0	74	91.0	31	93.7	29	65.1	7.9	88	29.1	55	30.1	54
205	93.0	22.1	76	57.4	38	57.1	39	45.5	5.4	88	22.2	51	24.8	45
206	52.4	1.5	97	16.4	69	14.6	72	34.9	5.5	84	20.5	41	21.4	39
213	187.4	15.7	92	60.6	68	60.4	68	66.5	7.4	89	27.2	59	28.7	57
215	230.8	66.8	71	165.6	28	184.1	20	58.8	6.3	89	24.6	58	25.2	57
216	93.2	3.3	96	24.7	73	23.9	74	79.2	19.4	76	55.8	29	59.1	25
218	81.0	3.2	96	21.4	74	20.7	74	40.5	4.2	90	18.3	55	18.8	53
222	66.5	3.0	95	21.0	68	21.9	67	42.9	4.6	89	19.3	55	20.8	52
224	228.4	87.1	62	207.2	9	220.8	3	31.9	2.8	91	13.8	57	13.1	59
225	64.4	1.4	98	17.7	73	15.8	75	66.0	8.4	87	28.1	57	29.9	55
237	156.8	17.3	89	56.5	64	63.0	60	108.3	14.2	87	44.4	59	47.4	56
239	72.2	2.5	97	23.3	68	22.0	70	64.2	7.4	88	26.4	59	28.5	56
242	364.3	98.0	73	232.5	36	287.3	21	178.0	49.6	72	133.8	25	150.1	16
249	122.1	5.0	96	34.9	71	32.9	73	36.1	3.6	90	15.1	58	15.9	56
262	20.8	0.4	98	6.2	70	5.8	72	61.8	6.4	90	25.8	58	27.2	56
263	32.0	2.3	93	9.6	70	8.3	74	52.8	7.2	86	23.0	56	24.7	53
265	57.7	1.6	97	17.3	70	15.7	73	23.8	2.4	90	10.9	54	11.1	53
Mean	120.8	21.5	88	62.6	58	67.5	57	62.1	9.6	87	31.7	52	33.9	50
Median	93.0	3.3	96	24.7	68	23.9	70	58.8	6.4	88	24.6	56	25.2	54

Analyses univariées des données - Corrélation et ACP

Analyses multivariées des données - Corrélation et ACP

	Temperature	Energy used	Gasoline price	HOD	HOEP
Temperature	1.00	0.02	0.81	-0.02	0.15
Energy used		1.00	0.02	0.06	0.06
Gasoline price			1.00	-0.00	0.17
HOD				1.00	0.71
HOEP					1.00

Analyses multivariées des données - Corrélation et ACP

	Temperature	Energy used	Gasoline price	HOD	HOEP
Temperature	1.00	0.02	0.81	-0.02	0.15
Energy used		1.00	0.02	0.06	0.06
Gasoline price			1.00	-0.00	0.17
HOD				1.00	0.71
HOEP					1.00

	1 st	2 nd	3 rd	4 th	5 th
Temperature	0.57	-0.41	-0.01	-0.06	0.71
Energy used	0.08	0.08	0.99	0.01	0.00
Gasoline price	0.58	-0.40	-0.02	-0.10	-0.71
HOD	0.35	0.63	-0.07	-0.69	0.03
HOEP	0.47	0.52	-0.09	0.71	-0.01

Définition du Système d'Information

- HOEP (x^1) , HOD (x^2) , and air temperature (x^3) with 101 lags.
- Energy consumed (x^4) with 199 lags.
- Scalar variables (converted into real values when necessary and normalized in the range [0, 1]):
 - w₁ : weekdays;
 - *w*₂ : hour;
 - $w_3: C_{el}(t-1) C_{el}(t)$ is the difference in electricity price;
 - w_4 : $C_{el}(t)$ is the electricity price [\$/kWh] at time t;
 - w_5 : $C_{fuel}(t)$ is the gasoline price [\$/I] at time t;
 - $w_6: dis(t)$ is the distance traveled [km] at time t.

Définition du Système d'Information

- HOEP (x^1) , HOD (x^2) , and air temperature (x^3) with 101 lags.
- Energy consumed (x^4) with 199 lags.
- Scalar variables (converted into real values when necessary and normalized in the range [0, 1]):
 - w_1 : weekdays;
 - *w*₂ : hour;
 - $w_3: C_{el}(t-1) C_{el}(t)$ is the difference in electricity price;
 - w_4 : $C_{el}(t)$ is the electricity price [\$/kWh] at time t;
 - w_5 : $C_{fuel}(t)$ is the gasoline price [\$/I] at time t;
 - w_6 : dis(t) is the distance traveled [km] at time t.
- ... et l'état de charge du véhicule ainsi que les optimal décisions obtenues avec la programmation dynamique.

ACP du Système d'Information

Stratification des données

Stratification dans un problème de régression avec réseau de neurones

Stratification dans un problème de régression avec machines à vecteurs de support

Contributions

- Définition de la recharge comme un problème de prise de décisions en temps réel
- Développement des algorithmes d'apprentissage pour la recharge intelligente de VE
- Analyse des données
- Convergence de méthodes déterministes et de l'apprentissage automatique

Bénéfices de la recharge décentralisée des VE à tarifs dynamiques

- Aplatir la courbe de charge
- Régulation de fréquence
- Réduire le coût de production de l'énergie électrique
- Optimiser l'efficacité générale du système

