Site_No	Samp_No	Location
A8K9	TP01_081815	TP01
A8K9	TP01_081815	TP01
A8K9	TP01_081815	TP01
A8K9		TP01
A8K9	TP01_081815	TP01
A8K9	 	TP01
A8K9	TP01_081815	TP01
A8K9		TP01
A8K9	TP01_081815	TP01
A8K9	TP02_081815	TP02
A8K9		TP02
A8K9	TP02_081815	TP02
A8K9		TP02

A8K9	TP02_081815	TP02	
A8K9	TP02_081815	TP02	

CAS_NO	Analyte	Total_Or_Disolved
7439-89-6	Iron	T
7439-92-1	Lead	T
7440-50-8	Copper	Т
7440-43-9	Cadmium	Т
7440-22-4	Silver	T
7440-48-4	Cobalt	Т
7429-90-5	Aluminum	T
7440-36-0	Antimony	Т
7440-39-3	Barium	T
7439-96-5	Manganese	T
7440-41-7	Beryllium	T
7439-98-7	Molybdenum	Т
STL00204	pH adj. to 25 deg C	Т
7440-62-2	Vanadium	Т
7440-66-6	Zinc	Т
7439-95-4	Magnesium	Т
7440-70-2	Calcium	Т
7440-09-7	Potassium	Т
7440-23-5	Sodium	Т
STL00291	Total Solids	Т
7440-47-3	Chromium	Т
7440-38-2	Arsenic	T
7440-28-0	Thallium	Т
7440-02-0	Nickel	T
7782-49-2	Selenium	T
7439-97-6	Mercury	T
7440-66-6	Zinc	Т
7440-28-0	Thallium	T
7440-09-7	Potassium	T
7782-49-2	Selenium	T
7440-23-5	Sodium	Т
7429-90-5	Aluminum	T
7440-41-7	Beryllium	T
7440-22-4	Silver	T
7440-47-3	Chromium	Т
7440-38-2	Arsenic	T
7440-02-0	Nickel	Т
7440-70-2	Calcium	T
7440-36-0	Antimony	Т
7439-97-6	Mercury	T
7440-39-3	Barium	T
STL00204	pH adj. to 25 deg C	T
7440-50-8	Copper	Т
7440-43-9	Cadmium	Т

7439-95-4	Magnesium	Т
STL00291	Total Solids	Т
7440-62-2	Vanadium	Т
7439-98-7	Molybdenum	Т
7439-96-5	Manganese	Т
7439-89-6	lron	Т
7440-48-4	Cobalt	Т
7439-92-1	Lead	Т

Result	Result_Units	Detected
300000		Y
		Y
		Υ
		Υ
		Υ
		Y
		Υ
		Υ
		Y
		Y
		Υ
		Υ
3.99		Υ
44	mg/kg dry wt	Υ
***************************************		Υ
3700	mg/kg dry wt	Υ
9400	mg/kg dry wt	Υ
2400	mg/kg dry wt	Υ
1500	mg/kg dry wt	Υ
4.7	%	Υ
6.3	mg/kg dry wt	Υ
73	mg/kg dry wt	Υ
0.36	mg/kg dry wt	Υ
4.2	mg/kg dry wt	Υ
2.5	mg/kg dry wt	N
0.13	mg/kg dry wt	N
640	mg/kg dry wt	Υ
0.29	mg/kg dry wt	Υ
1600	mg/kg dry wt	Υ
2.8	mg/kg dry wt	Y
	- 0/ 0 - /	Υ
	mg/kg dry wt	Y
	101 10 1 1 1 1 1 1 1 1	Y
	mg/kg dry wt	Υ
	0/ 0/ /	Y
	mg/kg dry wt	Y
	mg/kg dry wt	Y
	3, 3	Y
	7 - 6/ - 6 /	Υ
		N
	· · · · · · · · · · · · · · · · · · ·	Y
3.82		Y
		Y
1.8	mg/kg dry wt	Υ

1200 mg/kg dry wt	Υ
4.7%	Υ
57 mg/kg dry wt	Υ
13 mg/kg dry wt	Υ
650 mg/kg dry wt	Υ
150000 mg/kg dry wt	Υ
3.2 mg/kg dry wt	Υ
220 mg/kg dry wt	Υ

Result_Qualifier	Sample Date Sample Time
J	18-Aug-15 14:20
J-	18-Aug-15 14:20
J-	18-Aug-15 14:20
J	18-Aug-15 14:20
J-	18-Aug-15 14:20
J	18-Aug-15 14:20
J	18-Aug-15 14:20
J-	18-Aug-15 14:20
J+	18-Aug-15 14:20
J	18-Aug-15 14:20
J-	18-Aug-15 14:20
700706-00707	18-Aug-15 14:20
J	18-Aug-15 14:20
]	18-Aug-15 14:20
	18-Aug-15 14:20
U	18-Aug-15 14:20
U	18-Aug-15 14:20
	18-Aug-15 14:25
J	18-Aug-15 14:25
J-	18-Aug-15 14:25
	18-Aug-15 14:25
UJ	18-Aug-15 14:25
U	18-Aug-15 14:25
J+	18-Aug-15 14:25
J	18-Aug-15 14:25
J-	18-Aug-15 14:25
J	18-Aug-15 14:25
,	10 /146 15 17.25

J-	18-Aug-15 14:25
	18-Aug-15 14:25
J	18-Aug-15 14:25
J-	18-Aug-15 14:25

MDL	MDL_Units	Reporting_Limit
78	mg/kg dry wt	310
0.35	mg/kg dry wt	2.9
1.4	mg/kg dry wt	4.8
0.18	mg/kg dry wt	1.9
0.39	mg/kg dry wt	1.9
0.13	mg/kg dry wt	1.9
32	mg/kg dry wt	210
0.27	mg/kg dry wt	3.8
1.3	mg/kg dry wt	3.8
0.63	mg/kg dry wt	4.8
0.43	mg/kg dry wt	1.9
	mg/kg dry wt	3.8
0.1	SU	0.1
	mg/kg dry wt	9.6
6	mg/kg dry wt	19
76	mg/kg dry wt	410
290	mg/kg dry wt	1000
	mg/kg dry wt	6200
1200	mg/kg dry wt	10000
0.25	%	0.25
1.5	mg/kg dry wt	3.8
	mg/kg dry wt	11
0.067	mg/kg dry wt	1.9
0.48	mg/kg dry wt	2.9
	mg/kg dry wt	9.6
	mg/kg dry wt	0.39
	mg/kg dry wt	16
	mg/kg dry wt	1.6
	mg/kg dry wt	4900
	mg/kg dry wt	8.2
	mg/kg dry wt	8200
	mg/kg dry wt	160
	mg/kg dry wt	1.6
	mg/kg dry wt	1.6
	mg/kg dry wt	3.3
	mg/kg dry wt	9.9
	mg/kg dry wt	2.5
	mg/kg dry wt	820
	mg/kg dry wt	3.3
	mg/kg dry wt	0.34
	mg/kg dry wt	3.3
0.1		0.1
	mg/kg dry wt	4.1
0.15	mg/kg dry wt	1.6

61 mg/kg dry wt	330
0.25 %	0.25
0.63 mg/kg dry wt	8.2
0.29 mg/kg dry wt	3.3
0.54 mg/kg dry wt	4.1
63 mg/kg dry wt	250
0.11 mg/kg dry wt	1.6
0.3 mg/kg dry wt	2.5

Reporting_Limit_Units	Matrix	QA_Comment
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
SU	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
%	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
SU	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val
mg/kg dry wt	Sediment	L2 Val

mg/kg dry wt	Sediment	L2 Val	
%	Sediment	L2 Val	
mg/kg dry wt	Sediment	L2 Val	
mg/kg dry wt	Sediment	L2 Val	
mg/kg dry wt	Sediment	L2 Val	
mg/kg dry wt	Sediment	L2 Val	
mg/kg dry wt	Sediment	L2 Val	
mg/kg dry wt	Sediment	L2 Val	

Latitude	Longitude Analysis
37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 9045D pH
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 SM2540B Solids, Total
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 7471A Mercury (CVAA)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 7471A Mercury (CVAA)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 9045D pH
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6020A Metals (ICP/MS)

37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 SM2540B Solids, Total
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6010C Metals (ICP)
37.89493	-107.64733 6020A Metals (ICP/MS)
37.89493	-107.64733 6020A Metals (ICP/MS)