Claims

[c1] A method of secure distribution of encryption/decryption keys among two communicating parties comprising of:

> public (non-secret) selecting a natural number n; public (non-secret) selecting a natural number k; public (non-secret) selecting a k-tuple $S = (S_1, S_2, ..., S_k)$ of pairwise-commuting $n \times n$ matrices with integer coefficients;

> private (non-public) generating the polynomial $p(x_1, x_2, ..., x_k)$ in k variables $x_1, x_2, ..., x_k$ and with integer coefficients by the first communicating party;

private (non-public) generating the polynomial $q(x_1, x_2, ..., x_k)$ in k variables $x_1, x_2, ..., x_k$ and with integer coefficients by the second communicating party;

private (non-public) generating $n \times n$ matrix A with integer coefficients by the first communicating party according to the formula:

$$A = p(S_1, S_2, ..., S_k);$$

private (non-public) generating $n \times n$ matrix B with integer coefficients by the second communicating party:

$$B = q(S_1, S_2, ..., S_k),$$

(therefore, $A \cdot B = B \cdot A$);

public (non-secret) selecting a compact topological monoid G by both communicating parties;

public (non-secret) selecting an n-tuple $g = (g_1, g_2, ..., g_n)$ of pairwise commuting elements in G by both communicating parties;

generating the n-tuple g^A by the first communicating party by the formula:

$$g^{A} = (y_{1}, y_{2}, ..., y_{n}),$$

where

$$y_i = g_1^{A1,j} \cdot g_2^{A2,j} \cdot \dots \cdot g_n^{An,j}$$

for j = 1, 2, ..., n, where each A_{ij} is a corresponding matrix coefficient of the matrix A;

generating the n-tuple g^B by the second communicating party by the formula:

$$g^{B}=(z_{1}, z_{2},..., z_{n}),$$

where

$$z_i = g_1^{B1,j} \cdot g_2^{B2,j} \cdot \dots \cdot g_n^{Bn,j}$$

for j = 1, 2, ..., n, where each B_{ij} is a corresponding matrix coefficient of the matrix B;

public (non-secret) transmitting the n-tuple g^A from the first communicating party to the second communicating party;

public (non-secret) transmitting the n-tuple g^B from the second communicating party to the first communicating party;

creating the shared secrete key $g^{A \cdot B}$ by the communi-

cating parties: generating the n-tuple $(g^A)^B$ by the second communicating party and generating the n-tuple $(g^B)^A$ by the first communicating party (since $(g^A)^B = g^{A \cdot B} = g^{B \cdot A} = (g^B)^A$, both communicating parties possess this n-tuple $g^{A \cdot B}$).

- The method as defined by claim 1, wherein G is an arbitrary compact topological monoid and the polynomials p($x_1, x_2, ..., x_k$) and $q(x_1, x_2, ..., x_k)$ have non-negative integer coefficients, and all the matrices $S_1, S_2, ..., S_k$ have non-negative integer matrix coefficients.
- The method as defined by claim 1, wherein G is an arbitrary compact topological group and the polynomials $p(x_1, x_2, ..., x_k)$ and $q(x_1, x_2, ..., x_k)$ have arbitrary integer coefficients, and all the matrices $S_1, S_2, ..., S_k$ have arbitrary integer matrix coefficients.
- The method as defined by claims 1 and 2, wherein G is an arbitrary compact topological monoid, k = 1 and the $n \times n$ matrix S has non-negative integer matrix coefficients so that

$$A = a_0 \cdot I + a_1 \cdot S + a_2 \cdot S^2 + ... + a_{n-1} \cdot S^{n-1} \text{ and } B = b_0 \cdot I + b_1 \cdot S + b_2 \cdot S^2 + ... + b_{n-1} \cdot S^{n-1},$$

where a_0 , a_1 , ..., a_{n-1} are non-negative integers privately generated by the first communicating party and b_0 , b_1 ,..., b_{n-1} are non-negative integers privately gen-

erated by the second communicating party, and where I is the identity $n \times n$ matrix.

[05] The method as defined by claims 1 and 3, wherein G is an arbitrary compact topological group, k = 1 and the $n \times n$ matrix S has arbitrary integer matrix coefficients so that

$$A = a_0 \cdot I + a_1 \cdot S + a_2 \cdot S^2 + ... + a_{n-1} \cdot S^{n-1}$$
 and $B = b_0 \cdot I + b_1 \cdot S + b_2 \cdot S^2 + ... + b_{n-1} \cdot S^{n-1}$,

where a_0 , a_1 , ..., a_{n-1} are arbitrary integers privately generated by the first communicating party and b_0 , b_1 ,..., b_{n-1} are arbitrary integers privately generated by the second communicating party, and where I is the identity $n \times n$ matrix.

[c6] The method as defined by claims 1, 2, and 4, wherein G is an arbitrary compact topological monoid, k = 1, n = 2, and the 2×2 matrix S has non-negative integer matrix coefficients s_{11} , s_{12} , s_{21} , s_{22} so that

$$\mathbf{A} = \begin{bmatrix} a_0 + a_1 \mathbf{s}_{11} & a_1 \mathbf{s}_{12} \\ a_1 \mathbf{s}_{21} & a_0 + a_1 \mathbf{s}_{22} \end{bmatrix}$$

and

where a_0 , a_1 are non-negative integers privately generated by the first communicating party and b_0 , b_1 are non-negative integers privately generated by the second communicating party. Therefore,

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A} = \begin{bmatrix} a_0 b_0 + (a_0 b_1 + b_0 a_1 + a_1 b_1 \mathbf{s}_{11}) \mathbf{s}_{11} + a_1 b_1 \mathbf{s}_{12} \mathbf{s}_{21} & (a_0 b_1 + b_0 a_1 + a_1 b_1 \mathbf{s}_{11} + a_1 b_1 \mathbf{s}_{22}) \mathbf{s}_{12} \\ \vdots \\ (a_0 b_1 + b_0 a_1 + a_1 b_1 \mathbf{s}_{11} + a_1 b_1 \mathbf{s}_{22}) \mathbf{s}_{21} & a_0 b_0 + (a_0 b_1 + b_0 a_1 + a_1 b_1 \mathbf{s}_{22}) \mathbf{s}_{22} + a_1 b_1 \mathbf{s}_{12} \mathbf{s}_{21} \end{bmatrix}$$

[c7] The method as defined by claims 1, 3, and 5, wherein G is an arbitrary compact topological group, k = 1, n = 2, and the 2×2 matrix S has arbitrary integer matrix coefficients s_{11} , s_{12} , s_{21} , s_{22} so that

$$\mathbf{A} = \begin{bmatrix} a_0 + a_1 \mathbf{s}_{11} & a_1 \mathbf{s}_{12} \\ a_1 \mathbf{s}_{21} & a_0 + a_1 \mathbf{s}_{22} \end{bmatrix}$$

and

where a_0 , a_1 are arbitrary integers privately generated by the first communicating party and b_0 , b_1 are arbitrary integers privately generated by the second communicating party. Therefore,

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A} = \begin{bmatrix} a_0 b_0 + (a_0 b_1 + b_0 a_1 + a_1 b_1 \mathbf{s}_{11}) \mathbf{s}_{11} + a_1 b_1 \mathbf{s}_{12} \mathbf{s}_{21} & (a_0 b_1 + b_0 a_1 + a_1 b_1 \mathbf{s}_{11} + a_1 b_1 \mathbf{s}_{22}) \mathbf{s}_{12} \\ \vdots \\ (a_0 b_1 + b_0 a_1 + a_1 b_1 \mathbf{s}_{11} + a_1 b_1 \mathbf{s}_{22}) \mathbf{s}_{21} & a_0 b_0 + (a_0 b_1 + b_0 a_1 + a_1 b_1 \mathbf{s}_{22}) \mathbf{s}_{22} + a_1 b_1 \mathbf{s}_{12} \mathbf{s}_{21} \end{bmatrix}$$

- The method as defined by claims 1 and 2, wherein G is an arbitrary compact topological monoid, k=2 and the $n\times n$ matrices S_1 and S_2 have non-negative integer matrix coefficients and satisfy $S_1\cdot S_2=S_2\cdot S_1$ so that $A=\sum_{i,j=0}^{n-1}a_{i,j}\cdot S_1^{i}\cdot S_2^{j} \text{ and } B=\sum_{i,j=0}^{n-1}b_{i,j}\cdot S_1^{i}\cdot S_2^{j}$ where all $a_{i,j}$, i=0,1,...,n-1, and j=0,1,...,n-1, are non-negative integers privately generated by the first communicating party and all $b_{i,j}$, i=0,1,...,n-1, and j=0,1,...,n-1, are non-negative integers privately generated by the second communicating party, and where I is the identity $n\times n$ matrix.
- The method as defined by claims 1 and 3, wherein G is an arbitrary compact topological group, k=2 and the $n\times n$ matrices S_1 and S_2 have arbitrary integer matrix coefficients and satisfy $S_1 \cdot S_2 = S_2 \cdot S_1$ so that $A = \sum_{j=0}^{n-1} a_{j} \cdot S_1 \cdot S_2$ and $A = \sum_{j=0}^{n-1} b_{j} \cdot S_1 \cdot S_2$

where all $a_{i,j}$, i=0,1,...,n-1, and j=0,1,...,n-1, are arbitrary integers privately generated by the first communicating party and all $b_{i,j}$, i=0,1,...,n-1, and j=0,1,...,n-1, are arbitrary integers privately generated by the second communicating party, and where I is the identity $n \times n$ matrix.

- [c10] The method as defined by claim 1, wherein n = 1 and G is any compact topological monoid and the said 1×1 matrices A and B are any non-negative integers.
- [c11] The method as defined by claim 1, wherein n = 1 and G is any compact topological group and the said 1×1 matrices A and B are arbitrary integers.
- [c12] The method as defined by claims 1, 2, 4, 6, and 8 wherein G is any commutative compact topological monoid.
- [c13] The method as defined by claims 1, 3, 5, 7, and 9, wherein G is any commutative compact topological group.
- [c14] The method as defined by claim 11, wherein n = 1 and G is any connected compact Lie group.
- [c15] The method as defined by claim 11, wherein n = 1 and said G is a connected closed subgroup of the orthogonal

group O(V), where V is a Euclidean vector space.

- [c16] The method as defined by claim 11, wherein n = 1 and said G is a connected closed subgroup of the unitary group U(W), where W is a Hermitian vector space.
- [c17] The method as defined by claim 15, wherein the group G is the special orthogonal group SO(V), that is, G is the connected component of the identity in the orthogonal group O(V).
- [c18] The method as defined by claim 16, wherein the group G is the unitary group U(W).
- [c19] The method as defined by claim 15, wherein the set V is a Euclidean vector space of dimension m, where m is an integer greater than 1.
- [c20] The method as defined by claim 16, wherein the set W is a Hermitian vector space of dimension m, where m is an integer greater than 0.
- [c21] The method as defined by claim 19, wherein said V is the real vector space R^{m} with the standard Euclidean dot product:

$$x \cdot y = x_1 y_1 + x_2 y_2 + ... + x_m y_m$$

for any vectors $x = [x_1, x_2,, x_m]$ and $y = [y_1, y_2,, y_m]$
of R^m .

- [c22] The method as defined by claim 16, wherein said W is the complex vector space C^n with the standard Hermitian dot product:
 - $x \cdot y^* = x_1 y_1^* + x_2 y_2^* + ... + x_m y_m^*$ for any vectors $x = [x_1, x_2,, x_m]$ and $y = [y_1, y_2,, y_m]$ of C^m , where y_i^* is the complex conjugate number of the complex number y_i^* .
- [c23] The method as defined by claims 17 and 21, wherein the group G is the group SO_m of special orthogonal $m \times m$ matrices, that is, SO_m is the set of all real $m \times m$ matrices M such that the determinant of M is 1 and $M \cdot M^T = I$, where M^T is the transposed matrix of M and I is the identity $m \times m$ matrix.
- The method as defined by claims 18 and 22, wherein the group G is the group U_m of unitary $m \times m$ matrices, that is, U_m is the set of all complex $m \times m$ matrices M such that $M \cdot M^* = I$, where M^* is the transposed complex conjugate matrix of M and I is the identity $m \times m$ matrix.
- [c25] The method as defined by claims 23 and 24, wherein the group G is any of two isomorphic groups SO_2 or U_1 .
- [026] The method as defined by claims 13 and 25, wherein the group G is a torus of dimension m, that is, G is direct product of m copies of the group U_1 .

The method of claim 25, wherein as the group G is further defined as the semi-open interval [0, 1) of real numbers that includes 0 but does not include 1, where the group operation "*" is the fractional part of the sum: g*h = {g+ y} for any real g and h in the semi-open interval [0, 1),

for any real g and h in the semi-open interval [0, 1), where $\{z\}$ stands for the fractional part of a real number z.

[c28] The method as defined by the claims 1 and 27, wherein the said n-tuple g is given by:

$$g = (g_1, g_2, ..., g_n)$$
,

where $g_1, g_2, ..., g_n$ are real numbers in the semi-open interval [0,1); and for a given integer $n \times n$ matrix $A = (A_i)$ the power g^A is given by:

$$g^{A} = (y_1, y_2, ..., y_n),$$

where $y = \{g_1A_{1,j} + g_2A_{2,j} + ... + g_nA_{n,j}\}$ for j = 1, 2, ..., n; and for a given integer $n \times n$ matrix $B = (B_i)$ the power g^B is given by:

$$g^{B} = (z_{1}, z_{2}, ..., z_{n}),$$

where $z_{j} = \{g_{1}B_{1,j} + g_{2}B_{2,j} + ... + g_{n}B_{n,j}\}$ for $j = 1, 2, ..., n$.

[c29] The method as defined by the claims 1, 7, 27, and 28, wherein n = 2, $g = (g_1, g_2)$, the 2×2 matrices A and B are given by:

$$A = \begin{bmatrix} a_0 + a_1 \mathbf{s}_{11} & a_1 \mathbf{s}_{12} \\ a_1 \mathbf{s}_{21} & a_0 + a_1 \mathbf{s}_{22} \end{bmatrix}$$

and

and the powers g^{A} and g^{B} are given by:

$$g^{A} = (y_{1}, y_{2}),$$

where

$$y_1 = \{g_1(a_0 + a_1s_{11}) + g_2(a_1s_{21})\}$$
 and $y_2 = \{g_1(a_1s_{12}) + g_2(a_1s_{21})\}$;

and

$$g^{B} = (z_{1}, z_{2}),$$

where

$$z_1 = \{g_1(b_0 + b_1s_{11}) + g_2(b_1s_{21})\}$$
 and $z_2 = \{g_1(b_1s_{12}) + g_2(b_0 + b_1s_{22})\};$

Therefore, the shared key $g^{A \bullet B} = g^{B \bullet A} = (k_1, k_2)$ is given by:

$$k_{1} = \{(a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11})s_{11} + a_{1}b_{1}s_{12}s_{21})g_{1} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{21}g_{2}\},$$

$$k_{2} = \{(a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{1}s_{22})s_{12}g_{1} + (a_{0}b_{0} + (a_{0}b_{1} + b_{0}a_{1} + a_{1}b_{1}s_{11} + a_{1}b_{$$

$$a_1 + a_1 b_1 s_{22}) s_{22} + a_1 b_1 s_{12} s_{21}) g_2$$

[c30] Method as defined by the claims 1, 7, 27, 28, and 29, wherein n=2, $g=(g_1,g_2)$, and the said matrix S is given by

$$\mathbf{S} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

therefore:

the 2×2 matrices A and B are given by:

$$\mathbf{A} = \begin{bmatrix} a_0 & -a_1 \\ a_1 & \end{bmatrix}$$

$$\begin{bmatrix} a_1 & a_0 \end{bmatrix}$$

and

the powers g^{A} and g^{B} are given by:

$$g^{A} = (y_{1}, y_{2}),$$

where

$$y_1 = \{g_1 a_0 + g_2 a_1\}$$
 and $y_2 = \{-g_1 a_1 + g_2 a_0\}$; and $g_1 = \{z_1, z_2\}$,

where

 $z_1 = \{g_1 b_0 + g_2 b_1\}$ and $z_2 = \{-g_1 b_1 + g_2 b_0\}$; Therefore, the shared key $g^{A \cdot B} = g^{B \cdot A} = (k_1, k_2)$ is given by:

$$k_{1} = \{(a_{0}b_{0} - a_{1}b_{1})g_{1} + (a_{0}b_{1} + b_{0}a_{1})g_{2}\},\$$

$$k_{2} = \{-(a_{0}b_{1} + b_{0}a_{1})g_{1} + (a_{0}b_{0} - a_{1}b_{1})g_{2}\}.$$

The method as defined by the claim 27, wherein for each natural number P, each element g of the group G is rounded to a rational element $[g]_p$ of the group G according to the formula: $[g]_p$ =(Round(gP))/P if Round(gP)<P, and $[g]_p$ =0

if Round(gP)=P, where Round(z) stands for the standard

rounding of a real number z to the closest integer.

[c32] The method as defined by the claims 27 and 31, wherein for each n-tuple $P=(P_1, P_2, ..., P_n)$ of natural numbers, each n-tuple $g=(g_1, g_2, ..., g_n)$ of elements of the group G is rounded to a rational n-tuple $[g]_p$ according to the formula:

$$[g]_{p} = ([g_{1}]_{p}, [g_{2}]_{p}, ..., [g_{n}]_{p}).$$

[c33] A method of secure distribution of encryption/decryption keys among two communicating parties comprising of:

public (non-secret) selecting a natural number n and k as in claim 1;

public (non-secret) selecting a k-tuple $S = (S_1, S_2, ..., S_k)$ of pairwise-commuting $n \times n$ matrices with integer coefficients as in claim 1;

public (non-secret) selecting n-tuples natural numbers $P=(P_1, P_2, ..., P_n), Q=(Q_1, Q_2, ..., Q_n)$, and $K=(K_1, K_2, ..., K_n)$; public (non-secret) selecting a natural number D>1; public (non-secret) selecting the commutative compact topological group G as in claim 27;

public (non-secret) selecting an n-tuple $g = (g_1, g_2, ..., g_n)$ elements in G as in claims 28, 29, 30, 31 and 32; private (non-public) generating the polynomial $p(x_1, x_2, ..., x_k)$ in k variables $x_1, x_2, ..., x_k$ and with integer coefficients by the first communicating party as in claim 1;

private (non-public) generating the polynomial $q(x_1, x_2, ..., x_k)$ in k variables $x_1, x_2, ..., x_k$ and with integer coefficients by the second communicating party as in claim 1;

private (non-public) generating $n \times n$ matrix A with integer coefficients by the first communicating party as in claim1;

private (non-public) generating $n \times n$ matrix B with integer coefficients by the first communicating party as in claim1;

generating the n-tuple g^A by the first communicating party as in claim 1;

generating the P-rounded n-tuple $[g^A]_p$ by the first communicating party as in claim 32; generating the n-tuple g^B by the second communicating party as in claim 1; generating the Q-rounded n-tuple $[g^B]_Q$ by the second communicating party as in claim 32;

public (non-secret) transmitting the n-tuple $[g^A]_p$ from the first communicating party to the second communicating party;

public (non-secret) transmitting the n-tuple $[g^B]_Q$ from the second communicating party to the first communicating party;

creating the shared secrete key by the communicating parties: generating the n-tuple $[([g^A]_p)^B]_K$ by the second communicating party and generating the n-tuple $[([g^B]_0)^B]_K$

 $]_{K}$ by the first communicating party.

- [c34] The method as defined by the claims 28, 29, 30, 31, 32, and 33, wherein at least one coordinate of the said vector $g=(g_1, g_2, ..., g_n)$ is an irrational number.
- [c35] The method as defined by the claims 28, 29, 30, 31, 32, and 33, wherein each coordinate g_i of the said vector $g=(g_1, g_2, ..., g_n)$ is a rational number of the form $g_i=M_i/N_i$, where $0 \le M_i < N_i$.
- [c36] The method as defined by the claim 33, wherein the ntuples of natural numbers $P = (P_1, P_2, ..., P_n), Q = (Q_1, Q_2, ..., Q_n)$, and $K = (K_1, K_2, ..., K_n)$ and the natural number D satisfy the following compatibility conditions:

$$Q^{-1} \cdot \alpha \leq (D \cdot K)^{-1}, P^{-1} \cdot \beta \leq (D \cdot K)^{-1},$$

where α and β are arbitrary public (non-secret) $n \times n$ matrices with natural coefficients α_{ij} and β_{ij} respectively such that:

$$|A_{ij}| < \alpha_{ij}, |B_{ij}| < \beta_{ij}$$
 for all $i=1,2,...,n$, $j=1,2,...,n$; and $P^{-1} = (1/P_1,1/P_2,...,1/P_1)$, $Q^{-1} = (1/Q_1,1/Q_2,...,1/Q_n)$, $(D \cdot K)^{-1} = (1/(DK_1),1/(DK_2),...,1/(DK_n)$), and the vector inequality $(y_1, y_2, ..., y_n) \le (z_1, z_2, ..., z_n)$ is equivalent to n scalar inequalities:

 $y_1 \le z_1, y_2 \le z_2, ..., y_n \le z_n$. The compatibility conditions

guarantee that either at least one coordinate of $[([g^A]_p)^B]_D$ equals 0,or at least one coordinate of $[([g^B]_Q)^A]_{D \cdot K}$ equals 0, or $([g^A]_p)^B - ([g^B]_Q)^A = \theta \cdot (D \cdot K)^{-1}$, where $-\frac{1}{2} < \theta < \frac{1}{2}$.

- [c37] The method as defined by the claim 33, wherein a vector $x=(x_1,x_2,...,x_n)$ is defined to be (K, D)-consistent if: $(-c, -c, ..., -c) \le x-[x]_K \le (c, c, ..., c)$, where c=1/2-1/(2D).
- [c38] The method as defined by the claims 33, 36, and 37 wherein both n-tuples $([g^A]_p)^B$ and $([g^B]_Q)^A$ are (K, D)-consistent, which guarantees the equality of the shared keys: $[([g^A]_p)^B]_K = [([g^B]_Q)^A]_K.$
- [c39] The method as defined by the claims 30, 33, 35, 36, and 37, wherein $g=(M_1/N_1, M_2/N_2)$, where $0 \le M_1 < N_1$, $0 \le M_1 < N_2$; and the 2×2 matrices A and B are given by:

and

$$\mathbf{B} = egin{bmatrix} b_0 & -b_1 \ b_1 & b_0 \end{bmatrix}$$

where $|a_0| < \alpha_0$, $|a_1| < \alpha_1$, $|b_0| < \beta_0$, $|b_1| < \beta_1$, where α_0 , α_1 , β_0 , β_1 are natural numbers each of which does not exceed $N_1 \cdot N_2$; and:

$$\begin{aligned} &\alpha_{0}^{}/Q_{1}^{}+\alpha_{1}^{}/Q_{2}^{}\leq1/(DK_{1}^{}),\ \alpha_{1}^{}/Q_{1}^{}+\alpha_{0}^{}/Q_{2}^{}\leq(1/DK_{2}^{}),\\ &\beta_{0}^{}/P_{1}^{}+\beta_{1}^{}/P_{2}^{}\leq1/(DK_{1}^{}),\ \beta_{1}^{}/P_{1}^{}+\alpha_{0}^{}/P_{2}^{}\leq1/(DK_{2}^{}). \end{aligned}$$

[c40] The method as defined by the claims 36, 37, 38, and 39, wherein each coordinate K_i of the said n-tuple $K=(K_1, K_2, ..., K_n)$ is given by the formula: $K_i = r^{n-1}$

for i=1,2, ..., n, where r is a natural number, and C1, C2, ..., Cn are non-negative integers.

The method as defined by the claims 36, 37, 38, 39, and 40, wherein each i-th coordinate of the shared key $[([g^A]_p)^B]_K = [([g^B]_Q)^A]_K$ is presented as a rational r-ary number having at most Ci r-ary digits after the dot.