Exercice 6

Nous affirmons que l'hypothèse manquante est que \mathcal{R} soit total.

Démonstration Soit S un ensemble et $\mathcal{R} \subseteq S^2$ une relation symétrique, transitive, et totale. Nous voulons démontrer que \mathcal{R} est réflexive. Il faut montrer que $(\forall a \in S \mid a\mathcal{R}a)$. Soit $a \in S$. Comme \mathcal{R} est totale, par définition, il existe un $b \in S$ tel que

$$\langle a, b \rangle \in \mathcal{R}$$

Si a=b on a fini $\langle a,a\rangle\in\mathcal{R}$ implique que \mathcal{R} est reflexive.

Si $a \neq b$ alors, comme \mathcal{R} est symétrique on a $(\forall a, b \in S \mid \langle a, b \rangle \in \mathcal{R} \implies \langle b, a \rangle \in \mathcal{R})$ qui implique

$$\langle b, a \rangle \in \mathcal{R}.$$

Comme \mathcal{R} est aussi transitive $(\forall a, b, c, \in S \mid \langle a, b \rangle \in \mathcal{R} \land \langle b, c \rangle \in \mathcal{R} \implies \langle a, c \rangle \in \mathcal{R})$. Donc, on peut deduire $\langle a, b \rangle \in \mathcal{R} \land \langle b, a \rangle \in \mathcal{R}$ seulement si

$$\langle a, a \rangle \in \mathcal{R}.$$

Puisque pour tout a nous pouvons toujours épuiser les cas en considérant a=b et $a\neq b$ dans nos deux cas, et dans tous les cas, nous avons montré que $(\forall a\in S\mid \langle a,a\rangle\in\mathcal{R})$. Ainsi \mathcal{R} est reflexive.

1