ΛΥΣΗ

α) Έστω $x^3-4x^2+x+6=0$. Η εξίσωση έχει πιθανές ακέραιες ρίζες τις $\pm 1, \pm 2, \pm 3, \pm 6$. Το 2 είναι ρίζας της εξίσωσης διότι την επαληθεύει. Επομένως το (x-2) είναι παράγοντας του $P(x)=x^3-4x^2+x+6$. Είναι λοιπόν:

1	-4	1	6	$\rho = 2$
	2	-4	-6	
1	-2	-3	0	

Επομένως, $P(x) = (x-2)(x^2-2x-3)$.

Έτσι
$$P(x) = 0 \Leftrightarrow (x - 2)(x^2 - 2x - 3) = 0 \Leftrightarrow x = 2 \text{ ή } x^2 - 2x - 3 = 0.$$

Η διακρίνουσα της δευτεροβάθμιας εξίσωσης είναι $\Delta=16>0$. Οπότε η εξίσωση έχει δύο πραγματικές και άνισες ρίζες, τις

$$x_{1,2} = \frac{2 \pm 4}{2} \Leftrightarrow x_1 = -1 \ \ \ \ \ x_2 = 3.$$

Επομένως το πεδίο ορισμού της συνάρτησης είναι το σύνολο

$$A = (-\infty, -1) \cup (-1, 2) \cup (2, 3) \cup (3, +\infty).$$

β) Η συνάρτηση δεν είναι ούτε άρτια ούτε περιττή, διότι:

$$1 \in A$$
, $-2 \in A$, $-3 \in A$ αλλά το -1 , το 2 και το 3 δεν ανήκουν στο A .

Επομένως δεν ικανοποιείται το πρώτο σκέλος των αντίστοιχων ορισμών, δηλαδή για κάθε $x \in A$ το $-x \in A$.

γ)

i. Eίναι
$$f(x) = \frac{x^2 - 2x - 3}{(x - 2)(x^2 - 2x - 3)}$$
.

Ως εκ τούτου, ο τύπος της συνάρτησης απλοποιείται και έτσι είναι:

$$f(x) = \frac{1}{x - 2} , \ x \in A .$$

ii. Η γραφική παράσταση της f προκύπτει από μία οριζόντια μετατόπιση της γραφικής παράστασης της συνάρτησης $g(x)=\frac{1}{x}$ κατά 2 μονάδες δεξιά.

Η γραφική παράσταση της f είναι η παραπάνω υπερβολή με εξαίρεση τα σημεία B(3,1) και $\Gamma\left(-1,-\frac{1}{3}\right)$. Επιπλέον, έχει ασύμπτωτες τον άξονα x'x και την ευθεία x=2.

δ) Η εξίσωση $\left|\frac{1}{f(x)}\right|=1$ είναι ισοδύναμη με την $|x-2|=1,\;x\in A\Leftrightarrow$

$$x-2=-1$$
 $\acute{\eta}$ $x-2=1 \Leftrightarrow x=1$ $\acute{\eta}$ $x=3$

Μοναδική αποδεκτή λύση στο πεδίο ορισμού A της συνάρτησης είναι η x=1.