finite dimensional space

2024年1月9日

目录

1	spar	and linear independence	1
	1.1	Notation list of vectors	1
	1.2	definition linear combination	1
	1.3	definition span	1
	1.4	span is the smallest containing subspace	1
	1.5	definition spans	1
	1.6	definition polynoomial , $\rho(F)$	2
	1.7	degree of a polynoomial, $deg(p)$	2
	1.8	Linear independence	2
	1.9	linearly dependent	2
	1.10	length of linearly independent list \leq length of spanning list	3
	1.11	basis	4
	1.12	criterion for basis	4
	1.13	spanning list contains a basis	4
	1.14	linearly independent list extends to a basis	4
	1.15	every subspace of V is part of a direct sum equal to V $$	4
	1.16	Basis length does not depend on basis	4
	1.17	Definition dimension, $\dim V$	5
	1.18	Linear independent list of the right length is a basis	5

1 span and linear independence

1.1 Notation list of vectors

we will usually wirite lists of vectors without surrounding parentheses.

1.2 definition linear combination

a linear combination of list $v_1, ..., v_m$ of vectors in V is a vector of the form

$$a_1v_1 + ... + a_mv_m$$

where $a_1, ..., a_m \in F$

1.3 definition span

the set of all linear combination of a list of vectors $v_1, ..., v_m$ in V is called the span of $v_1, ..., v_m$, denoted span $(v_1, ..., v_m)$. in other words,

$$span(v_1,...,v_m) = \{a_1v_1 + a_2v_2 + ... + a_mv_m : a_1,...,a_m \in F\}.$$

the span of the empty list () is defined to be $\{0\}$

1.4 span is the smallest containing subspace

the span of a list of vectors in V is the smallest subspace in of V containing all the vectors in the list.

1.5 definition spans

if span $(v_1, ..., v_m)$ equals V, we say that $v_1, ..., v_m$ spans V.

1.6 definition polynoomial, $\rho(F)$

• A function ρ : F -> F is called a polynoomial with coefficients in F if there exists $a_0, ..., a_m \in F$ sunch that

$$\rho(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

for all $z \in F$

• ρ is set of all polynomial with coefficients \in F

1.7 degree of a polynoomial, deg(p)

• A polynoomial $p \in \rho(F)$ is said to hve degree m if there exists scalars $a_0, ..., a_m \in F$ with $a_m \neq 0$ sunch that

$$\rho(z) = a_0 + a_1 z + \dots + a_m z^m$$

for all $z \in F$ if p has degree m, we write deg(p) = m

• the polynoomial that is identically 0 is said to have degree $-\infty$

1.8 Linear independence

- A list $v_z, ..., v_m$ of vectors in V is called **linearly independent** if the only choice of $a_1, ..., a_m \in F$ that makes $a_1v_1 + ... + a_mv_m$ equal 0 is $a_1 = ... = a_m = 0$
- the empty list() is also declared to be linearly independent

1.9 linearly dependent

- A list of vectors in V is called linearly dependent if it is not linearly independent.
- in other words, a list $v_1, ..., v_m$ of vectors in V is linearly dependent if there exists $a_1, ..., a_m \in F$, not all 0, sunch that $a_1v_1 + ... + a_mv_m = 0$

$\begin{array}{ll} \textbf{1.10} & length \ of \ linearly \ independent \ list \ \leq \ length \ of \\ & spanning \ list \end{array}$

In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to length of every spanning list of vectors. Bases

1.11 basis

a **basis** of V is list of vectors in V that is linearly independent and spans V.

1.12 criterion for basis

A list of $v_1, ..., v_n$ of vectors in V is a basis of V if and only if every $v \in V$ can be written uniquely in the form

$$v = a_1 v_1 + \dots + a_n v_n$$

where $a_1, ..., a_n \in F$

1.13 spanning list contains a basis

Every spanning list in a vector space can be reduced to a basis of the vector space.

1.14 linearly independent list extends to a basis

Every linearly independent list of vectors in a finnite-dimensional vector space can be extended to a basis of vector space.

1.15 every subspace of V is part of a direct sum equal to V

suppose V is finite-dimensional and U is subspace of V. then there is a subspace W of V sunch that $V=U\oplus w$

1.16 Basis length does not depend on basis

any two bases of a finite-dimensional vector space have the same length.

1.17 Definition dimension, $\dim V$

- The dimension of a finite-dimensional vector space is the length of any basis of the vector space
- the dimension of V (if V is finite-dimensional) is denoted by $\dim V$

1.18 Linear independent list of the right length is a basis

Suppose V is finite-dimensional. then every linearly independent list of vectors in V with length $\dim V$ is a basis of V.

1.19 Spanning list of the right length is a basis

Suppose V is finnite-dimensional. then every spanning list of vectors in V with length $\dim V$ is basis of V.

1.20 Demension of a sum

if U_1 and U_2 are subspace of a finite-dimensional vector space, then

$$dim(U_1 + U_2) = dimU_1 + dimU_2 - dim(U_1 \cap U_2).$$