

CAR DRIVER DROWSINESS DETECTION

Federico Cavedoni Francesco Bruno

DROWSINESS DETECTION SYSTEM

A system capable of understanding if the driver is falling asleep by analysing his hearthbeat

SYSTEM DESCRIPTION

The system is composed of:

- ECG Sensor (Polar T34)
- Sensor Controller (Raspberry PI 3)
- Classification Server

PROTOTYPE DESCRIPTION (1/2)

Hardware description

• Polar T34

Polar Heart Rate Receiver

• Raspberry PI 3

Controller Software

- Communication_API.py
- Controller_firmware.py
- Hearth_beat_analysis.py
- Sensor_driver.py

Classifier Server Software

- Communication_API.py
- Project_network.py
- Thread_receiver.py

PERFORMANCE EVALUATION (1/3)

KNeighborsClassifier

KNeighborsClassifier is used because it has great accuracy and good precision, respect to other types of classifiers model KNN

accuracy 0.870844 precision 0.295082

Scheduling

Scheduling is managed by the Raspbian O.S.

PERFORMANCE EVALUATION (2/3)

Our SamplingTask is: (Soft – Firm – Hard) Real Time?

Firm-Task, because with deadline miss, it will lose the data becoming useless for the system. This event has been handled invalidating the session, restarting the sampling session (60s).

Periodic?

Aperiodic?

Sporadic?

Minumum Interrival Time ~ 272mS

PERFORMANCE EVALUATION (3/3)

Deadline Analysis

Sampling session: ~4 hours

Minimum Interarrival Time: ~272mS

WCET taskISR: ~510uS

WCET MainThread: ~140mS

DEMO (1/3): NORMAL SITUATION

DEMO (2/3): ABNORMAL CLASSIFICATION

DEMO (3/3): HANDS OFF STEERING WHEEL

CONCLUSIONS

• Improve the training procedure
The classification is surely influenced by
the unbalanced dataset used

Use a PPG sensor

For better classification due to the incrementing of the sensor precision and usability

REFERENCES

• PPG Cognitive Fatigue Prediction Source:

https://www.kaggle.com/code/katariinaparkja/ppg-cognitive-fatigue-prediction

THANKS FOR THE ATTENTION

Federico Cavedoni Francesco Bruno