Final Exam Review Worksheet, Spring 2020

1. (12 points) Indicate whether the statements are true or false.

true false
then the RREF of A must have a \bigcirc
hen the columns of A are linearly \bigcirc
$ \mathbf{n} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ is a basis } \bigcirc \bigcirc $
zero vector.
\mathbb{R}^n , then the matrix must be in-
will have the same column space.
ave n distinct eigenvalues.
value is greater than or equal to \(\) \(\) genvalue.
6, then S^{\perp} is a two-dimensional \bigcirc \bigcirc
en they are linearly independent.
eigenvectors of A , then v_1 and v_2 \bigcirc \bigcirc
value of $ Ax $ subject to the con-
zero vector. \bigcirc \bigcirc \bigcirc \bigcirc will have the same column space. \bigcirc \bigcirc ave n distinct eigenvalues. \bigcirc \bigcirc value is greater than or equal to \bigcirc genvalue. \bigcirc \bigcirc en they are linearly independent. \bigcirc eigenvectors of A , then v_1 and v_2 \bigcirc value of $ Ax $ subject to the con-

You do not need to justify your reasoning for questions on this page.

- 2. (10 points) Fill in the blanks.
 - (a) List all values of $k \in \mathbb{R}$ such that the vectors $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ k \\ -1 \end{pmatrix}$ are linearly dependent.
 - (b) Suppose $\det(A^2B) = 4$, $\det(B) = \frac{1}{3}$, and A and B are $n \times n$ real matrices. List all possible values of $\det(A)$.
 - (c) List all values of k such that $A\vec{x} = \vec{b}$ is inconsistent where $\vec{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2k \\ 0 & 0 & k \end{pmatrix}. \quad k = \boxed{}$$

(d) Consider the row operation that reduces matrix *A* to RREF.

$$A = \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & -5 & 1 \end{pmatrix}}_{A} \sim \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{E_{1}A} = E_{1}A$$

By inspection, E_1 is the elementary matrix $E_1 = \begin{pmatrix} & & \\ & & \end{pmatrix}$.

- (e) If $S = {\vec{x} \in \mathbb{R}^4 | x_1 = x_2}$ then dim S =
- (f) If $A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 3 & 6 \end{pmatrix}$, then a non-zero vector in NullA is $\begin{pmatrix} & & \\ & & \end{pmatrix}$.
- (g) If the basis for the column space of an 11×15 matrix consists of exactly three vectors, how many pivot columns does the matrix have?
- (h) If A is a 3×3 matrix with eigenvalues 5 and 1 i, then the third eigenvalue is
- (i) If \vec{v} is the steady-state vector for a regular stochastic matrix, then \vec{v} is an eigenvector of that matrix corresponding to the eigenvalue $\lambda = \boxed{}$.
- (j) List all values of k such that $A = \begin{pmatrix} 4 & k \\ 0 & 4 \end{pmatrix}$ is diagonalizable.

You do not need to justify your reasoning for questions on this page.

- 3. (6 points) Fill in the blanks.
 - (a) The distance between the vector $\vec{u} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ and the line spanned by $\vec{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is ______.
 - (b) If W is the plane spanned by the vectors $\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, a basis of W^{\perp} is given by $\vec{w} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

 - (d) If \vec{u} and \vec{v} are two vectors in \mathbb{R}^2 satisfying $||\vec{u}|| = 3$, $||\vec{v}|| = 2$ and $\vec{u} \cdot \vec{v} = \frac{3}{2}$, then the length of the sum of the two vectors is $||\vec{u} + \vec{v}|| = \boxed{}$.
 - (e) Let U be an $n \times n$ matrix with orthonormal columns. Then $U^tU = \underline{\hspace{1cm}}$
 - (f) The maximum value of $Q(\vec{x}) = 10x_1^2 7x_2^2 4x_3^2$ subject to the constraints $\vec{x} \cdot \vec{x} = 1$ and $\vec{x} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$ is equal to _____.

You do not need to justify your reasoning for questions on this page.

4. (6 points) marcute whether the statements are possible of impossible	possible	impossible
i) The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ is onto. $T = Ax$, and A has linearly independent columns.	\bigcirc	\circ
ii) The columns of a matrix with N rows are linearly dependent and span \mathbb{R}^N .	\circ	0
iii) Matrix A is $n \times n$, $A\vec{x} = A\vec{y}$ for some $\vec{x} \neq \vec{y}$, and $\dim(\text{Null}A) = 0$.	\bigcirc	\bigcirc
iv) P is a stochastic matrix which has zero in the first entry of the first row, but is regular.	\circ	0
v) There is a 2×2 real matrix A and a vector $\vec{u} \neq \vec{0}$, such that $\vec{u} \in \text{Null}(A)$ and $\vec{u} \in \text{Row}(A)$.	\circ	0
vi) A is a non-singular matrix which is not diagonalizable.	\bigcirc	\bigcirc
vi) \vec{v}_1 and \vec{v}_2 are eigenvectors of matrix A that correspond to distinct eigenvalues, $A = A^T$, and $\vec{v}_1 \cdot \vec{v}_2 = 1$.	\circ	0
viii) \vec{y} is a non-zero vector in \mathbb{R}^5 . The projection of \vec{y} onto a subspace of \mathbb{R}^5 is the zero vector.	0	<u> </u>

5. (2 points) Suppose A and B are $n \times n$ matrices and A is symmetric. Fill in the circles next to the expressions (if any) that are equal to

$$(B^TAB)^T$$

Leave the other circles empty.

- $\bigcirc BA^TB^T$
- $\bigcirc B^T A B$

6. (2 points) List the singular values of the matrix below. (No need to justify your answer.)

$$\begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix}, \qquad \sigma_1 = \underline{\qquad}, \quad \sigma_2 = \underline{\qquad},$$

7. (6 points) Let
$$A = \begin{pmatrix} -2 & -4 & 0 & 0 & 2 \\ -2 & -4 & 1 & 0 & 0 \\ -2 & -4 & 0 & 2 & 4 \\ -2 & -4 & 0 & 3 & 5 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 5 \\ 0 \\ 7 \\ 8 \end{pmatrix}$.

(a) Solve the system $A\vec{x} = \vec{b}$ where A and \vec{b} are as above. Write your answer in parametric vector form for full credit.

(b) Write down a basis for Col(A).

8. (4 points) Consider the following Markov chain.

(a) What is the transition matrix, *P*?

$$P = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

(b) Use your transition matrix from part (a) to calculate the steady-state probability vector, \vec{q} . Show your work.

9. (3 points) Apply the Gram-Schmidt process to construct an orthogonal basis for Col(A). Show your work.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$$

10. (3 points) Construct the LU factorization of the matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 0 \end{pmatrix}$. Clearly indicate matrices L and U.

11. (5 points) Compute Σ and V in the singular value decomposition of the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} = U\Sigma V^{T}$$

$$\Sigma = \begin{bmatrix} - & 0 \\ 0 & - \\ 0 & 0 \end{bmatrix} \qquad V = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$

12. (5 points) Find matrices D and P to construct the orthogonal diagonalization of A. Show your work.