An Introduction to Manifold

Chapter 1 Euclidean Spaces
1. Smooth Functions on a Euclidean Space 1
1.1. C^{∞} Analytic Functions
1.2. Taylor's Theorem with Remainder
2. Tangent Vevtors in \mathbb{R}^n as Derivations
2.1. The Directional Derivative
2.2. Germs of Functions
2.3. Derivations at a Point
2.4. Vector Fields
2.5. Vector Fields as Derivations

1. Smooth Functions on a Euclidean Space

The calculus of C^{∞} functions will be our primary tool for studying higher-dimensional manifolds.

1.1. C^{∞} Analytic Functions

Let $p = (p^1, \dots, p^n)$ be a point in an open subset $U \subset \mathbb{R}^n$.

Definition 1.1 Let k be a non-negative integer. A real-valued function $f: U \to \mathbb{R}$ is said to be C^k at p if its partial derivatives

$$\frac{\partial^j f}{\partial x_1^{i_1} \cdots \partial x_n^{i_n}}$$

of all orders $j \leq k$ exist and are continuous at p.

The function $f: U \to \mathbb{R}$ is C^{∞} at p if it is C^k at p for all $k \ge 0$.

A vector-valued function $f: U \to \mathbb{R}^m$ is said to be C^k at p if all of its components f^1, \dots, f^m are C^k at p.

 $f: U \to \mathbb{R}$ is said to be C^k on U if it is C^k at every point $p \in U$.

The set of all C^{∞} functions on U is denoted by $C^{\infty}(U)$ or $\mathcal{F}(U)$.

The function $f: U \to \mathbb{R}$ is real-analytic at p if in some neighborhood of p, it is equal to its Taylor series at p.

A real-analytic function is necessarily C^{∞} , but the converse is not true.

1.2. Taylor's Theorem with Remainder

Definition 1.2 A subset $S \subseteq \mathbb{R}^n$ is **star-shaped** with respect to a point $p \in S$ if for every point $x \in S$, the line segment from p to x lies entirely in S.

Lemma 1.3 Let $f \in C^{\infty}(U)$, where $U \subset \mathbb{R}^n$ is an open subset, star-shaped with respect to a point $p \in U$. Then there are functions $g_1(x), \dots, g_n(x) \in C^{\infty}(U)$ such that

Vivi (1/6)

$$f(x) = f(p) + \big(x^i - p^i\big)g_i(x), \quad g_i(x) = \frac{\partial f}{\partial x^i}(p).$$

If f is a C^{∞} function on an open subset U containing p, then there is an $\varepsilon > 0$ such that

$$p \in B(p, \varepsilon) \subset U$$
,

where $B(p,\varepsilon) = \{x \in \mathbb{R}^n : ||x-p|| < \varepsilon\}$ is the open ball of radius ε centered at p, which is clearly star-shaped with respect to p.

2. Tangent Vevtors in \mathbb{R}^n as Derivations

In this section, we will find a characterization of tangent vectors in \mathbb{R}^n that will generalize to manifolds.

2.1. The Directional Derivative

To distinguish between points and vectors, we write a point in \mathbb{R}^n as $p = (p^1, \dots, p^n)$ and a vector in the tangent space at p, denoted by $T_p\mathbb{R}^n$, as

$$v = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix}$$
 or $v = \langle v^1, \dots, v^n \rangle$.

We usually denote the standard basis of \mathbb{R}^n by e_1, \dots, e_n , then $v = v^i e_i$ for some $v^i \in \mathbb{R}$. The line through $p = (p^1, \dots, p^n)$ in the direction of $v = (v^1, \dots, v^n)$ has parametrization

$$c(t) = (p^1 + tv^1, \dots, p^n + tv^n).$$

Definition 2.1 If f is C^{∞} in a neighborhood of p in \mathbb{R}^n , the **directional derivative** of f at p in the direction of v is defined as the limit

$$D_{v}f = \lim_{t \to 0} \frac{f(c(t)) - f(c(0))}{t}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} f(c(t))$$

$$= \frac{\mathrm{d}c^{i}}{\mathrm{d}t}(0) \frac{\partial f}{\partial x^{i}}(p)$$

$$= v^{i} \frac{\partial f}{\partial x^{i}}(p).$$

We write

$$D_v = v^i \frac{\partial}{\partial x^i} \bigg|_p$$

for the map from a function f to its directional derivative $D_v f$.

The association $v \to D_v$ offers a way to characterize tangent vectors as a certain operators on C^{∞} functions.

Vivi (2/6)

2.2. Germs of Functions

Definition 2.2 A **relation** on a set S is a subset R of $S \times S$. Given $x, y \in S$, we write $x \sim y$ if and only if $(x, y) \in R$.

A relation R is an **equivalence relation** if it satisfies the following properties for all $x, y, z \in S$:

- (i) Reflexivity: $x \sim x$,
- (ii) Symmetry: If $x \sim y$, then $y \sim x$,
- (iii) **Transitivity:** If $x \sim y$ and $y \sim z$, then $x \sim z$.

Consider the set of all pairs (f, U) where U is a neighborhood of p and $f: U \to \mathbb{R}$ is a C^{∞} function. We say that (f, U) is **equivalent** to (g, V) if there exists a neighborhood $W \subseteq (U \cap V)$ such that $f|_{W} = g|_{W}$.

Definition 2.3 The **germ** of f at p is the equivalence class of the pair (f, U). We write $C_p^{\infty}(\mathbb{R}^n)$, or simply C_p^{∞} , for the set of all germs of C^{∞} functions on \mathbb{R}^n at p.

Definition 2.4 An **algebra** over a field K is a vector space A over K with a multiplication map

$$\mu: A \times A \to A$$

usually written $\mu(a,b) = a \cdot b$, that satisfies the following properties for all $a,b,c \in A$ and $r \in K$:

- (i) Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- (ii) **Distributivity:** $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$,
- (iii) Homogeneity: $r(a \cdot b) = (ra) \cdot b = a \cdot (rb)$.

Usually we write the multiplication as simply ab instead of $a \cdot b$.

Definition 2.5 A map $L: V \to W$ between two vector spaces over the field K is said to be a **linear map** or a **linear operator** if for all $u, v \in V$ and $r \in K$:

- (i) L(u+v) = L(u) + L(v),
- (ii) L(ru) = rL(u).

To emphasize the scalars are in the field K, such a map is said to be K-linear.

Definition 2.6 If A and A' are algebras over a field K, an **algebra homomorphism** is a linear map $L: A \to A'$ that preserves the algebra multiplication: L(ab) = L(a)L(b) for all $a, b \in A$.

The addition and multiplication of functions induce corresponding operations on C_p^{∞} , making it into an algebra over \mathbb{R} .

2.3. Derivations at a Point

For each tangent vector $v \in T_p \mathbb{R}^n$, the directional derivative at p gives a map

$$D_v: C_p^{\infty} \to \mathbb{R}.$$

Definition 2.7 A linear map $D: C_p^{\infty} \to \mathbb{R}$ is called a **derivation** at p or a **point derivation** if it satisfies the Leibniz rule:

Vivi (3/6)

$$D(fg) = D(f)g(p) + f(p)D(g)$$

Denote the set of all derivations at p by $\mathcal{D}_p(\mathbb{R}^n)$, which is a vector space over \mathbb{R} .

Obviously, the directional derivatives at p are all derivations at p, so there is a map

$$\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n),$$

$$v \mapsto D_v = v^i \frac{\partial}{\partial x^i} \bigg|_{p}.$$

Since D_v is clearly linear in v, ϕ is a linear map of vector spaces.

Lemma 2.8 If D is a point-derivation of C_p^{∞} , then D(c) = 0 for any constant function c.

Proof. By \mathbb{R} -linearity, D(c) = cD(1). By the Leibniz rule, we have

$$D(1) = D(1 \cdot 1)$$

$$= D(1) \cdot 1(p) + 1(p) \cdot D(1)$$

$$= 2D(1),$$

which implies that D(1) = 0, and therefore $D(c) = cD(1) = c \cdot 0 = 0$.

Lemma 2.9 The map $\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$ is an isomorphism of vector spaces.

Proof. To show that ϕ is injective, suppose $\phi(v) = D_v = 0$ for some $v \in T_p(\mathbb{R}^n)$. For the coordinate functions x^j , we have

$$0 = D_v x^j = v^i \frac{\partial x^j}{\partial x^i} \Big|_p$$
$$= v^i \delta_i^j$$
$$= v^j,$$

which implies that v = 0. Thus, ϕ is injective.

To show that ϕ is surjective, let $D \in \mathcal{D}_p(\mathbb{R}^n)$ and let (f, V) be a representative of a germ in C_p^{∞} . We may assume V is an open ball, hence star-shaped. From Taylor's theorem with remainder, we have

$$f(x) = f(p) + \big(x^i - p^i\big)g_i(x), \quad g_i(p) = \frac{\partial f}{\partial x^i}(p).$$

Applying D to both sides, we get

$$\begin{split} D(f(x)) &= D[f(p)] + D\big[\big(x^i - p^i\big)g_i(x)\big] \\ &= \big(Dx^i\big)g_i(p) + \big(p^i - p^i\big)Dg_i(x) \\ &= \big(Dx^i\big)g_i(p) \\ &= \big(Dx^i\big)\frac{\partial f}{\partial x^i}(p), \end{split}$$

Vivi (4/6)

which gives $D=D_v$ for $v=\langle Dx^1,\cdots,Dx^n\rangle$. Thus, ϕ is surjective.

Under this vector space isomorphism $T_p(\mathbb{R}^n)\simeq \mathcal{D}_p(\mathbb{R}^n)$, we can identify tangent vectors with derivations at p, and the standard basis e_1,\cdots,e_n of $T_p(\mathbb{R}^n)$ with the set $\frac{\partial}{\partial x^1}\big|_p,\cdots,\frac{\partial}{\partial x^n}\big|_p$ of partial derivatives,

$$\begin{split} v &= \langle v^1, \cdots, v^n \rangle \\ &= v^i e_i \\ &= v^i \frac{\partial}{\partial x^i} \bigg|_p. \end{split}$$

2.4. Vector Fields

Definition 2.10 A vector field on an open subset $U \subseteq \mathbb{R}^n$ is a function that assigns to each point $p \in U$ a tangent vector $X_p \in T_p(\mathbb{R}^n)$. Since $T_p(\mathbb{R}^n)$ has basis $\frac{\partial}{\partial x^i}|_p$, we can write

$$X_p=a^i(p)\frac{\partial}{\partial x^i}\bigg|_p,\quad a^i(p)\in\mathbb{R}.$$

Omitting p, we can write

$$X = a^i \frac{\partial}{\partial x^i} \quad \leftrightarrow \quad \begin{bmatrix} a^1 \\ \vdots \\ a^n \end{bmatrix},$$

where a^i are functions on U. We say that X is C^{∞} on U if all the coefficient functions a^i are C^{∞} on U.

The set of all C^{∞} vector fields on U is denoted by $\mathfrak{X}(U)$.

Definition 2.11 If R is a commutative ring with identity, a (left) R-module is an abelian group A with a scalar multiplication

$$\mu: R \times A \to A$$

usually written $\mu(r, a) = ra$, such that for all $r, s \in R$ and $a, b \in A$,

- (i) Associativity: (rs)a = r(sa),
- (ii) **Identity:** 1a = a,
- (iii) Distributivity: r(a+b) = ra + rb and (r+s)a = ra + sa.

 $\mathfrak{X}(U)$ is a module over the ring $C^{\infty}(U)$ with the multiplication defined pointwise:

$$(fX)_p = f(p)X_p, \quad$$

for $f \in C^{\infty}(U), X \in \mathfrak{X}(U), p \in U$.

Definition 2.12 Let A and A' be R-modules. An R-module homomorphism from A to A' is a map $f: A \to A'$ that preserves both the addition and the scalar multiplication: for all $a, b \in A$ and $r \in R$,

(i)
$$f(a+b) = f(a) + f(b)$$
,

Vivi (5/6)

(ii) f(ra) = rf(a).

2.5. Vector Fields as Derivations

If $X \in \mathfrak{X}(U)$ and $f \in C^{\infty}(U)$, we can define a new function Xf by

$$(Xf)(p) = X_p f \quad \text{for all } p \in U.$$

Writing $X = a^i \frac{\partial}{\partial x^i}$, we have

$$(Xf)(p)=a^i(p)\frac{\partial f}{\partial x^i}(p),$$

or

$$Xf = a^i \frac{\partial f}{\partial x^i},$$

which is a C^{∞} function on U. Thus, a C^{∞} vector field X induces an \mathbb{R} -linear map

$$X:C^{\infty}(U)\to C^{\infty}(U),$$

$$f\mapsto Xf.$$

X(fg) satisfies the Leibniz rule:

$$X(fg) = (Xf)g + f(Xg).$$

Definition 2.13 If A is an algebra over a field K, a **derivation** on A is a K-linear map $D: A \to A$ that satisfies the Leibniz rule:

$$D(ab) = (Da)b + a(Db)$$
 for all $a, b \in A$.

The set of all derivations on A is closed under addition and scalar multiplication and forms a vector space, denoted by Der(A).

We therefore have a map

$$\varphi: \mathfrak{X}(U) \to \mathrm{Der}(C^{\infty}(U)),$$

$$X \mapsto (f \mapsto Xf),$$

which is an isomorphism of vector spaces, just as the map $\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$.

Vivi (6/6)