Siraj Bagwan

Project on Big Data Platform Engineering

Challenges

Improve click-through rates

Improving click-through rate (the number of clicks that your content receives divided by the number of times your content is shown.) by recommending content to relevant users.

Personalize online ads and content

Showing more relevant ads and content basis on their past interaction to online users to improve user experience.

Lead acquisition

By improving user experience and interaction can be able to raise the ratio of subscription.

Solution

Collect

collect and gather data of user behavior and interaction and store it to data lake from different sources in order to process.

Process

Transform the click stream data on data lake and ingest it to data warehouse. Ingest the data from OLTP system to Data Warehouse.

Analyze

Analyze the data present on the cluster using different tools available in order to generate insights.

Capacity Planning

Сар	Capacity Planning						
Daily Data in Motion:	90 GB	90 GB					
Replication Factor:	3						
Total Data in a Day (Daily data in motion * replication) :	90 * 3=270 GB	270 GB					
Data in a Month:	270 *30 = 8100 GB	7.91 TB					
Data in Year:	7.91*12 = 115.92 TB	94.92 TB					
Data at Rest:	30 TB	30 TB					
Replication of data at rest	30*3=90	90 TB					
DFS Data:		184.92 TB					
10% Overhead Needed:	10% of (94.92)	9.43 TB					
Non DFS Data and Overhead 30% :	30% of (184.92)	55.47 TB					
Final Data:	104 02+0 42+55 47 240 02	~250 75					
Final Data:	184.92+9.43+55.47=249.82	~250 TB					

- Data retention period: 1 year
- Total data collected per year: 250 TB
- Data to be stored on each data node: 10 TB
- No. of data nodes required: 250/10 = 25
- 10% overhead (node failure): 3
- Total data nodes required: 28
- Kafka nodes: 3

Cluster Planning

Hosts	No. of Hosts Required	Specification				
Master Hosts	3	Instance Type: r6a.4xlarge Ram: 128 GB Core: 16				
Utility Hosts	2	Instance Type: r6a.4xlarge Ram: 128 GB Core: 16				
Edge hosts	1	Instance Type: c6a.8xlarge Ram: 64 GB Core: 32				
Worker Hosts	28	Instance Type: c5a.16xlarge Ram: 128 GB Core: 64				

Cluster Planning

Nodes	Services
Master Node 1:	NN, JN, Failover Controller, Zookeeper
	Resource Manager,
Master Node 2:	Standby NN, JN, Failover Controller, Standby
	Resource Manager, Zookeeper
Master Node 3:	JN, Zookeeper, JHS,SHS
Utility Node 1:	Cloudera Manager
Utility Node 2:	HMS,HS2,ICS,SS,
Edge Node:	Gateway of HDFS, YARN, HIVE. HUE, OOZIE
Data Nodes:	DN, NM, ID
3 Kafka Nodes:	Kafka Brokers

Cluster Planning

- Block size of HDFS: 128 MB
- 1 MB fsimage size for per 1000 blocks (Cloudera Suggest)
- 250 TB = 256000 GB = 262,144,000 MB
- No. of blocks = 262144000/128 = 2048000
- Fsimage = 2048000/1000 = 2048 MB = 2GB
- Heap Size of name node = 2 GB * 2 = 4 GB

Service Stack

Services	Versions
 Hadoop 	3.0.0
 Kafka 	2.1.0
Sqoop	1.4.7
Spark	2.4.0
Hive	2.1.1
 Impala 	3.2.0
Hue	4.3.0
 Oozie 	5.1.0
 Zookeeper 	3.4.5
Sentry	2.1.0

Data Flow Diagram

Roles

Hosts	Count	Roles											
p-10-0-0-105.ap-south-1.compute.internal	1	FC	□ JN	NN	₩ RM	n s							
p-10-0-0-113.ap-south-1.compute.internal	1	₫ G	€ G	(d) LB	(H) HS	() KTR	% G	os os	i s G	₫G	● G	<mark>₩</mark> G	
p-10-0-0-120.ap-south-1.compute.internal	j	□ JN	₽ G	is SS	☆ HS	₩ JHS	i s						
p-10-0-0-121.ap-south-1.compute.internal	1	В	□ FC	₫ JN	S NN	₩ RM	i s						
p-10-0-0-122.ap-south-1.compute.internal	1	C AP	C ES	Снм	C RM	C SM							
p-10-0-0-89.ap-south-1.compute.internal	1	₽ G	₩ HMS	₩ HS2	¥ ICS	¥ ISS	₫G						
p-10-0-0-[69, 82, 84, 104, 115].ap-south-1.compute.internal	5	DN	¥ ID	₩ NM									
p-10-0-0-[75, 77, 88].ap-south-1.compute.internal	3	% KB											

This table is grouped by hosts having the same roles assigned to them.

Impact

- Click through rate increased thoroughly
- Five times increase in conversion rate for successful subscriptions
- Grew profitability with delivery of new services and customized content
- Increased subscription sales

THANK YOU