Taller de Programación

Clase 7 (TP) - Billar Elíptico Con Obstáculo

Segundo Cuatrimestre de 2023 – FCEyN, UBA

Introducción

En este TP deben hacer simulaciones numéricas sobre un billar con borde elíptico y un obstáculo cuadrado centrado en la elipse.

Como en la clase anterior: dados $a \geq b > 0$, la ecuación de la elipse viene dada por la identidad

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

La elipse $\mathcal E$ queda definida por los $\{(x,y)\}\in\mathbb R^2$ que verifican la ecuación previa.

El objetivo es hacer simulaciones de trayectorias sobre el billar para ello necesitamos hacer un programa que

Que admita parámetros $a \ge b > 0$ y defina el billar determinado por los pares de puntos para los cuales

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1.$$

- ▶ Que admita un parámetro c>0 de modo tal que el cuadrado centrado en el origen y definido por $\mathcal{C}=[-c,c]\times[-c,c]$ quede incluido en \mathcal{E} .
- ▶ Que grafique el borde del billar (ahora es la unión del borde de E y el borde de C) junto con los focos de la elipse.
 - Permita elegir una posición y velocidad inicial para la bola de billar.
- Que calcule los puntos de rebote de la bola sobre las bandas y los vaya
- almacenando en un arreglo.
 Que finalmente grafique la travectoria uniendo los puntos de rebote con líneas.

Deberían obtenerse gráficos del estilo

Como en la clase anterior nuestras hipótesis son que el el billar es ideal:

- No hay pérdida de energía ni en el rozamiento de la bola con el paño ni en los rebotes.
- Los rebotes, perfectamente elásticos, cumplen que el ángulo de rebote es el reflejado del ángulo incidente a través de la normal al borde.

Sugerencias generales y resumen de objetivos:

- Una vez definida la elipse y el obstáculo, se toma un punto de partida (x_0,y_0) de la bola $dentro\ del\ billar\ y$ una dirección de disparo o movimiento v_0 .
- Sugerencia: Se recomienda ir normalizando las direcciones de movimiento porque en las iteraciones podrían ir creciendo o disminuyendo en norma lo cual podría generar problemas numéricos.
 - ▶ Calcule el punto de impacto (x_1, y_1) .
 - Calcule la nueva dirección de movimiento v₁ (Sug. :normalice).
 Calcule el punto de impacto (x₂, y₂) (puede dar en el borde de la elipse o en el cuadrado), repita el ciclo.
 - Vaya almacenando los puntos (x_k, y_k) , $k = 0, 1, 2, \cdots$ para luego plotearlos.

Se propone

Ejercicios

- Genere puntos iniciales al azar dentro de la elipse y direcciones de movimiento al azar para iniciar el movimiento, señale el punto inicial y en cada caso observe el comportamiento de los rebotes.
- Muestre que el algoritmo funciona para tamaños variables de elipses y cuadrados como en los gráficos siguentes.

