

AEW Auxiliary Problems II Ave Kludze (akk86) MATH 1920

Name:	
Collaborators: _	

1

Determine the minimum non-negative integer m such that both

$$\lim_{(x,y)\to(0,0)} x^{\frac{m}{3}} |x-y|$$

$$\lim_{(x,y)\to(0,0)} \frac{x^{\frac{m}{3}}|x-y|}{\sqrt{x^2+y^2}}$$

are real numbers.

Solution

For the first limit, if we convert to polar coordinates, we get

$$\lim_{r\to 0^+} r^{\frac{m+3}{3}}\cos\theta |\cos\theta - \sin\theta|$$

This is defined and real when $\frac{m+3}{3} > 0$, so m > -3.

Similarly for the second limit, we get

$$\lim_{r\to 0^+} r^{\frac{m}{3}} |\cos \theta - \sin \theta|$$

This is defined and real when $\frac{m}{3} > 0$, so m > 0.

Since we want m > -3 and m > 0, we have $\lceil m = 1 \rceil$ is the minimum integer solution.

2

Let $p = (\alpha, \beta, \gamma)$ be a point in which the function

$$f(x, y, z) = 4x + 2y - z^2$$

with the restriction $x^2+y^2+z^2=16$, takes the global minimum value. Find an expression for the sum $\alpha+2\beta+2\gamma$.

Solution

Since the given function is

$$f(x, y, z) = 4x + 2y - z^2$$

then the gradient is

$$\nabla f(x, y, z) = \langle 4, 2, -2z \rangle$$

Similarly,

$$g(x, y, z) = x^2 + y^2 + z^2 - 16$$

$$\nabla g(x, y, z) = \langle 2x, 2y, 2z \rangle$$

Applying Lagrange multiplers,

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$

$$\langle 4, 2, -2z \rangle = \lambda \langle 2x, 2y, 2z \rangle$$

Thus, we have the following set of equations

$$4 = 2\lambda x$$

$$2 = 2\lambda y$$
$$-2z = 2\lambda z$$
$$x^{2} + y^{2} + z^{2} = 16$$

simplifying, we have

$$2 = \lambda x$$

$$1 = \lambda y$$

$$(\lambda + 1)z = 0$$

$$x^{2} + y^{2} + z^{2} = 16$$

Case 1, $\lambda = -1$:

$$x = -2$$

$$y = -1$$

$$16 = x^{2} + y^{2} + z^{2} = 4 + 1 + z^{2} = 5 + z^{2}$$

$$z^{2} = 11$$

$$z = \pm \sqrt{11}$$

Case 2, z = 0:

$$x^{2} + y^{2} = 16$$

$$5 = 4 + 1 = 2^{2} + 1^{1} = (\lambda x)^{2} + (\lambda y)^{2} = \lambda^{2}(x^{2} + y^{2}) = 16\lambda^{2}$$

$$\lambda = \pm \frac{\sqrt{5}}{4}$$

$$x = \pm \frac{8\sqrt{5}}{5}$$

$$y = \pm \frac{4\sqrt{5}}{5}$$

$$z = 0$$

Now we must check the following set of coordinates,

$$(x, y, z) \in \left\{ \left(-2, -1, \sqrt{11}\right), \left(-2, -1, -\sqrt{11}\right), \left(\frac{8\sqrt{5}}{5}, \frac{4\sqrt{5}}{5}, 0\right), \left(-\frac{8\sqrt{5}}{5}, -\frac{4\sqrt{5}}{5}, 0\right) \right\}$$

and find which one gives the minimum value. We know that

$$z^2 = 16 - x^2 - y^2$$

so

$$f(x,y,z) = 4x + 2y - 16 + x^2 + y^2 = (x+2)^2 + (y+1)^2 - 21 \ge -21 \Rightarrow \min f(x,y,z) = -21$$

for

$$x = -2, y = -1, z = \pm \sqrt{11}$$

Thus, we have two possible expressions for $\alpha + 2\beta + 2\gamma$ since $P = (-2, -1, \pm \sqrt{11})$, where the sum is 2.633 or -10.633.

3

 $\text{Let } \mathbf{F}(x,y) = \langle F_1, F_2 \rangle \text{ where } F_1 = e^{8xy} \text{ and } F_2 = -\ln \left(\cos^2(x+y) + \pi^x y^{100}\right). \text{ Let } \mathcal{C} \text{ be the curve parametrized by } \mathbf{F}(x,y) = \langle F_1, F_2 \rangle \mathbf{F}(x,y) = \langle F_1$

$$\mathbf{r}(\mathsf{t}) = \begin{cases} \langle \cos \mathsf{t}, \sin \mathsf{t} \rangle & \text{for } 0 \le \mathsf{t} \le \pi, \\ \langle \cos \mathsf{t}, -\sin \mathsf{t} \rangle & \text{for } \pi \le \mathsf{t} \le 2\pi \end{cases}$$

Evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$

The curve C follows a semi-circle C_1 from (1,0) to (-1,0) and and then returns to (1,0) along a curve C_2 , which follows the same semi-circle in the reverse direction. Accordingly, the integral splits into two cancelling parts, giving the answer 0:

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}$$
$$= \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} - \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r}$$
$$= \boxed{0}$$

4

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is a function defined by

$$f(x,y) = \begin{cases} \frac{x^2y^3}{x^4+y^6}, & \text{if } x \neq 0, y \in \mathbb{R}, \\ 0, & \text{if } x = 0, y \in \mathbb{R}. \end{cases}$$

(a). Find all $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ such that f has a nonzero directional derivative at (0, 0) with respect to the direction (a, b).

(b) Is f continuous at (0, 0)? Justify your answer.

Hint: Part (a) requires using the limit definition.

Solution

(a)

Let a = 0, $b \neq 0$. Then the directional derivative at (0,0) with respect to the direction (a,b) is

$$\lim_{\varepsilon \to 0} \frac{f(\varepsilon a, \varepsilon b) - f(0, 0)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{f(0, \varepsilon b)}{\varepsilon} = \lim_{\varepsilon \to 0} 0 = 0.$$

Let $a \neq 0$. Then the directional derivative at (0,0) with respect to the direction (a,b) is

$$\begin{split} &\lim_{\varepsilon \to 0} \frac{f(\varepsilon a, \varepsilon b) - f(0, 0)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{f(\varepsilon a, \varepsilon b)}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\varepsilon^5 a^2 b^3}{\varepsilon \left(\varepsilon^4 a^4 + \varepsilon^6 b^6\right)} = \lim_{\varepsilon \to 0} \frac{a^2 b^3}{a^4 + \varepsilon b^6} = \frac{b^3}{a^2}. \end{split}$$

f has a nonzero directional derivative at (0,0) with respect to the direction (a,b) if and only if $a \neq 0$ and $b \neq 0$. (b) If f is continuous at (0,0), then for any sequence $(x_n,y_n) \to 0$ we have $f(x_n,y_n) \to 0$. Let $x_n = \frac{1}{n^3}$, $y_n = \frac{1}{n^2}$. Then

$$f(x_n, y_n) = \frac{n^{-6}n^{-6}}{n^{-12} + n^{-12}} = \frac{1}{2} \nrightarrow 0.$$

So, f is not continuous at (0,0).

5

For a fixed vector \vec{p} , define the vector field $\vec{F} = \vec{p} \times \vec{r}$, where $\vec{r}(x, y, z) = x\hat{i} + y\hat{j} + z\hat{k}$ is the usual radial vector field. Find a non-zero scalar multiple λ such that

$$\vec{\nabla} \times \vec{F} = \lambda \overrightarrow{p}.$$

Let $\overrightarrow{p} = \langle a, b, c \rangle$. We then compute that

$$\vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ x & y & z \end{vmatrix} = (bz - cy)\hat{i} + (cx - az)\hat{j} + (ay - bx)\hat{k}.$$

Calculating the curl

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (bz - cy) & (cx - az) & (ay - bx) \end{vmatrix} = 2a\hat{i} + 2b\hat{j} + 2c\hat{k} = 2\overrightarrow{p}.$$

Thus, $\lambda = 2$

6

The stream function $\vec{\Psi}$ for a particular flow is given by $\vec{\Psi}=\vec{F}+\vec{G}$ with

$$\vec{F}(r,\theta,z) = \left(1 - \frac{1}{r^2}\right) r \sin \theta \hat{k}, \vec{G}(r,\theta,z) = -\ln r \hat{k}$$

where (r, θ, z) are the usual cylindrical coordinates. The velocity vector is then defined by $\overrightarrow{u} = \overrightarrow{\nabla} \times \Psi$. Also, let

$$\varphi = \left(1 + \frac{1}{r^2}\right) r \cos \theta$$

- (a)Compute $\vec{\nabla} \times \vec{F}$ and $\vec{\nabla} \times \vec{G}$.
- (b) Show that $\vec{\nabla} \times \overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{0}}$. Give proper justification, and indicate any theorem you might be using.

Solution

(a)

Note that in Cartesean coordinates

$$\vec{F} = y - \frac{y}{x^2 + y^2}, G = -\ln \sqrt{x^2 + y^2}.$$

One can check by direct computation that

$$\vec{\nabla} \times \vec{F} = \left(1 + \frac{y^2 - x^2}{(x^2 + y^2)^2}\right) \hat{i} - \frac{2xy}{(x^2 + y^2)^2} \hat{j}$$
$$\vec{\nabla} \times \vec{G} = -\frac{y}{x^2 + y^2} \hat{i} + \frac{x}{x^2 + y^2} \hat{j}.$$

(b) $\vec{\nabla} \times \vec{G}$ is indeed a familiar vector field, and $\text{curl}(\vec{\nabla} \times \vec{G}) = \vec{0}$. On the other hand $\vec{\nabla} \times \vec{F} = \vec{\nabla} \phi$, and by a theorem proved in the textbook, $\text{curl}(\vec{\nabla} \phi) = \vec{0}$ Since $\vec{u} = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$, clearly $\vec{\nabla} \times \vec{u} = \vec{0}$.

7

Show that if $\vec{u} = \langle u_1, \dots, u_n \rangle$ and $\vec{v} = \langle v_1, \dots, v_n \rangle$, then

$$|\vec{u}|^2 |\vec{v}|^2 - |\vec{u} \cdot \vec{v}|^2 = \sum_{i < j} \left(u_i v_j - u_j v_i \right)^2.$$

Note that

$$\begin{split} |\vec{u}|^2 |\vec{v}|^2 &= \left(\sum_{i=1}^n |u_i|^2\right) \left(\sum_{j=1}^n |v_j|^2\right) \\ &= \sum_{i,j} |u_i|^2 |v_j|^2 \\ &= u_1^2 v_1^2 + u_2^2 v_2^2 + \dots + u_n^2 v_n^2 + \sum_{i < j} \left(u_i^2 v_j^2 + v_i^2 u_j^2\right). \end{split}$$

On the other hand,

$$\begin{split} |\vec{u} \cdot \vec{v}|^2 &= \left(\sum_{k=1}^n u_k v_k\right)^2 \\ &= u_1^2 v_1^2 + u_2^2 v_2^2 + \dots + u_n^2 v_n^2 + 2\sum_{i < j} u_i v_i u_j v_j \end{split}$$

So subtracting the two, we see that

$$\begin{split} |\vec{u}|^2 |\vec{v}|^2 - |\vec{u} \cdot \vec{v}|^2 &= \sum_{i < j} \left(u_i^2 v_j^2 + v_i^2 u_j^2 - 2 u_i v_i u_j v_j \right). \\ &= \sum_{i < j} \left(u_i v_j - u_j v_i \right)^2. \end{split}$$

Note: Do the cases n = 2, 3, to get a feel for what is happening. The notations means that we are summing over all indices i and j from 1 to n with i < j. Without the restriction i < j, the right hand side would be larger by a factor of two.

8

Collinearity is defined as a set of points lying on a single line in coordinate space. Given the coordinate points,

$$(8,3,-3)$$

 $(-1,6,3)$
 $(2,5,c)$

For what integer value(s) of c, do the given points lie in a straight line? Note that a calculator may be helpful for algebra and computation!

Solution

Given three points A, B, and C in \mathbb{R}^n , we can determine if they are colinear if

$$|AB| = |BC| + |AC|$$

Therefore, we must compute the distances between each pair of points and see if one is the sum of the other two. Let A = (8,3,-3), B = (-1,6,3), and C = (2,5,c). By the distance formula,

$$|AB| = \sqrt{(8+1)^2 + (3-6)^2 + (-3-3)^2} = \sqrt{81+9+36} = \sqrt{126}$$

$$|BC| = \sqrt{(-1-2)^2 + (6-5)^2 + (3-c)^2} = \sqrt{19-6c+c^2}$$

$$|AC| = \sqrt{(8-2)^2 + (3-5)^2 + (-3-c)^2} = \sqrt{49+6c+c^2}$$

After trial and error in determining the longest segment based on the distance formula, we can note that |AB| = |BC| + |AC|, which is required for the points to be colinear. To see this, and solve for c, consider squaring the right hand side,

$$126 = \left(\sqrt{19 - 6c + c^2} + \sqrt{49 + 6c + c^2}\right)^2$$
$$\sqrt{19 - 6c + c^2} + \sqrt{49 + 6c + c^2} - 3\sqrt{14} = 0$$

Hence, c = 1 is the only integer value.

9

Find each of the following limits or show that it does not exist:

$$\lim_{t\to\infty}\left\langle e^{2t}/\cosh^2t,t^{2012}e^{-t},e^{-2t}\sinh^2t\right\rangle$$

Solution

We find the limit in a similar manner as above. Here, $x(t) = e^{2t}/\cosh^2 t$, $y(t) = t^{2012}e^{-t}$, $z(t) = e^{-2t}\sinh^2 t$. First, $\cosh(t) = (e^t + e^{-t})/2$ and $\sinh(t) = (e^t - e^{-t})/2$. From these it can be shown that $d/dt\cosh(t) = \sinh(t)$ and $d/dt\sinh(t) = \cosh(t)$. The limits are

$$\begin{split} &\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \frac{4e^{2t}}{\left(e^t + e^{-t}\right)^2} = \lim_{t \to \infty} \frac{4e^{2t}}{e^{2t} + 2 + e^{-2t}} = \lim_{t \to \infty} \frac{4}{1 + 2e^{-2t} + e^{-4t}} = 4 \\ &\lim_{t \to \infty} y(t) = \lim_{t \to \infty} \frac{t^{2012}}{e^t} = \lim_{t \to \infty} \frac{2012t^{2011}}{e^t} = \lim_{t \to \infty} \frac{2012 * 2011t^{2010}}{e^t} = \dots = \lim_{t \to \infty} \frac{2012!}{e^t} = 0 \\ &\lim_{t \to \infty} z(t) = \lim_{t \to \infty} \frac{\left(e^t - e^{-t}\right)^2}{4e^{2t}} = \lim_{t \to \infty} \frac{e^{2t} - 2 + e^{-2t}}{4e^{2t}} = \lim_{t \to \infty} \left(1/4 - 1/2e^{-2t} + 1/4e^{-4t}\right) = 1/4 \end{split}$$

where repeated L'Hopitals rule has been used in finding the limit of y(t). Thus,

$$\lim_{t\to\infty}\left\langle e^{2t}/\cosh^2t,t^{2012}e^{-t},e^{-2t}\sinh^2t\right\rangle = \boxed{\langle 4,0,1/4\rangle}$$

10

Find the most general vector function whose n^{th} derivative vanishes, $\mathbf{r}^{(n)}(t) = \mathbf{0}$, in an interval.

Solution

Suppose that $\mathbf{r}^{(n)}(t) = 0$ for some positive integer n. Then $\mathbf{r}^{(n)}(t)$ is integrable and

$$\mathbf{r}^{(n-1)}(t) = \int \mathbf{r}^{(n)}(t)dt = n!c_n$$

for some constant vector $n!c_n!$. Now, $\mathbf{r}^{(n-1)}(t)$ is integrable, and

$$\mathbf{r}^{(n-2)}(t) = \int \mathbf{r}^{(n-1)}(t)dt = tn!/1!\mathbf{c}_n + (n-1)!\mathbf{c}_{n-1}$$

for some constant vector $(n-1)!c_{n-1}$. Then $\mathbf{r}^{(n-2)}(t)$ is integrable, and

$$r^{(n-3)}(t) = \int r^{(n-2)}(t) dt = t^2 n! / 2! c_n + t(n-1)! / 1! c_{n-1} + (n-2)! c_{n-2}$$

for some constant vector $(n-2)!c_{n-2}$. Continuing in this fashion, we reach

$$r(t) = t^{n-1}c_n + t^{n-2}c_{n-1} + \ldots + tc_2 + c_1$$

for constant vectors \mathbf{c}_k , k = 1, 2, ..., n.

11 (Challenge)

Find and sketch the domain of each of the following function:

$$f(x,y) = sign(\sin x \sin y)$$

Note that here sign(a) is the sign function, it has the values 1 and 1 for positive and negative a, respectively.

Solution

Here, the level sets are given by $sign(\sin x \sin y) = k$ for k = -1, 0, 1. Recall that sin(x) = 0 for $x = n\pi$ where n is an integer. Thus $sign(\sin x \sin y)$ partitions \mathbb{R}^2 with grid lines at $x = n\pi$ and $y = n\pi$. Focus on the plot with $0 \le x \le 2\pi$ and $0 \le y \le 2\pi$. This region is subdivided into four squares (by the lines $x = \pi$ and $y = \pi$).

In the lower left $(0 < x < \pi$ and $0 < y < \pi$), $\sin x$ and $\sin y$ are both positive, so $\text{sign}(\sin x \sin y) = 1$. Next, in the lower right $(\pi < x < 2\pi \text{ and } 0 < y < \pi)$ square, $\sin x$ is negative whereas $\sin y$ is positive, so $\text{sign}(\sin x \sin y) = -1$.

In the upper left $(0 < x < \pi$ and $\pi < y < 2\pi)$ square, $\sin x$ is positive whereas $\sin y$ is negative, so $sign(\sin x \sin y) = -1$.

Finally, in the upper right $(\pi < x < 2\pi \text{ and } \pi < y < 2\pi)$ square, sin y is negative and sin y is negative, so $sign(\sin x \sin y) = 1$. Due to the periodic nature of sin, this plot may be tessellated to cover all of \mathbb{R}^2 . The level sets are shown as a contour plot below:

In the diagram above, all white spaces should either be shaded yellow/blue, depending on the border of the square. Teal corresponds to 0.

12 (Challenge)

Find the limit, if it exists, or show that the limit does not exist

$$\lim_{r\to\infty}\frac{\ln\left(x^2y^2z^2\right)}{x^2+y^2+z^2}$$

Hint: Consider the limits along the curves x = y = z = t and $x = e^{-t^2}$, y = z = t

Solution

Step 1: The continuity argument does not apply because f is not defined at \mathbf{r}_0 .

Step 2: No substitution is possible to transform the limit to a one-variable limit.

Step 3: First let x(t) = y(t) = z(t) = t. Then the limit becomes

$$\lim_{r \to \infty} \frac{\ln (x^2 y^2 z^2)}{x^2 + y^2 + z^2} = \lim_{t \to \infty} \frac{\ln (t^6)}{3t^2} = \lim_{t \to \infty} \frac{2 \ln t}{t^2} = \lim_{t \to \infty} \frac{2(1/t)}{2t} = 0$$

Now let $x(t) = e^{-t^2}$ and y(t) = z(t) = t. Then the limit becomes

$$\begin{split} \lim_{r \to \infty} \frac{\ln \left(x^2 y^2 z^2\right)}{x^2 + y^2 + z^2} &= \lim_{t \to \infty} \frac{\ln \left(e^{-2t^2} t^4\right)}{e^{-2t^2} + 2t^2} = \lim_{t \to \infty} \frac{-2t^2 + 4 \ln(t)}{e^{-2t^2} + 2t^2} = \lim_{t \to \infty} \frac{-4t + 4/t}{-4te^{-2t^2} + 4t} \\ &= \lim_{t \to \infty} \frac{-t^2 + 1}{-t^2 e^{-2t^2} + t^2} = \lim_{t \to \infty} \frac{-2t}{-2te^{-2t^2} + 4t^3} e^{-2t^2} + 2t \\ &= \lim_{t \to \infty} \frac{-1}{-e^{-2t^2} + 2^3 e^{-2t^2} + 1} = -1 \end{split}$$

therefore the limit does not exist because it is path dependent.

13 (Challenge)

$$\lim_{r \to \infty} \frac{e^{3x^2 + 2y^2 + z^2}}{(x^2 + 2y^2 + 3z^2)^{2012}}$$

Hint: Consider the inequality $1 + u \le e^u$

Solution

Step 1: The continuity argument does not apply because f is not defined at r_0 .

Step 2: No substitution is possible to transform the limit to a one-variable limit.

Step 3: As a guess, let x(t) = y(t) = z(t) = t. Then the limit becomes

$$\lim_{r \to \infty} \frac{e^{3x^2 + 2y^2 + z^2}}{\left(x^2 + 2y^2 + 3z^2\right)^{2012}} = \lim_{t \to \infty} \frac{e^{6t^2}}{\left(6t^2\right)^{2012}} = \lim_{u \to \infty} \frac{e^u}{u^{2012}} = \dots = \lim_{u \to \infty} \frac{e^u}{2012!} = \infty$$

where the substitution $u = 6t^2$ has been used, and l'Hospital's rule has been used many times.

Step 4: Consider the function $g(x, y, z) = (1 + 3x^2 + 2y^2 + z^2) / (x^2 + 2y^2 + 3z^2)$. Owing to the known inequality $1 + u \le e^u$, we have that

$$g \leq f(x,y,z) = e^{3x^2 + 2y^2 + z^2} / \left(x^2 + 2y^2 + 3z^2\right)$$

It suffices to show that $\lim_{r\to\infty} g(r) = \infty$, due to the squeeze theorem. Let $R = \sqrt{x^2 + y^2 + z^2}$. For limits at infinity we need that g(r) > M for every M > 0 if $||r|| > \delta$.

14

Find the repeated limits

$$\lim_{x \to 1} \left(\lim_{y \to 0} \log_x(x+y) \right) \text{ and } \lim_{y \to 0} \left(\lim_{x \to 1} \log_x(x+y) \right)$$

What can be said about the corresponding two-variable limit?

SOLUTION: First recall the change of base formula

$$\log_{a} b = \frac{\ln b}{\ln a}$$

(proof: set $\log_{\alpha} b = k$ then $b = \alpha^k$, and $\ln b = \ln \alpha^k = k \ln \alpha$. So $k = \ln b / \ln \alpha$). The repeated limits are computed below:

$$\lim_{x \to 1} \left(\lim_{y \to 0} \frac{\ln(x+y)}{\ln x} \right) = \lim_{x \to 1} \left(\frac{\ln(x+0)}{\ln x} \right) = \lim_{x \to 1} (1) = 1$$

$$\lim_{y \to 0} \left(\lim_{x \to 1} \frac{\ln(x+y)}{\ln x} \right) = \lim_{y \to 0} \left(\frac{\ln(1+y)}{\ln 1} \right) = \infty$$

So the multivariable limit does not exist

15 (Challenge)

Find the specified partial derivatives of each of the following function:

 $f(x, y, z) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{r})$, where \mathbf{a} and \mathbf{b} are constant vectors; \mathbf{r} is the radial vector field

Solution

We have, by the product rule,

$$\mathbf{f}_{\mathbf{u}}' = \mathbf{a}_{\mathbf{u}}' \cdot (\mathbf{b} \times \mathbf{r}) + \mathbf{a} \cdot (\mathbf{b} \times \mathbf{r})_{\mathbf{u}}' = \mathbf{a} \cdot (\mathbf{b}_{\mathbf{u}}' \times \mathbf{r} + \mathbf{b} \times \mathbf{r}_{\mathbf{u}}') = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{r}_{\mathbf{u}}')$$

since $\mathbf{a}'_{\mathfrak{u}}=\mathbf{b}'_{\mathfrak{u}}=0$ (because they are constant). Moreover, $\mathbf{r}'_{\mathfrak{x}}=\langle 1,0,0\rangle, \mathbf{r}'_{\mathfrak{y}}=\langle 0,1,0\rangle$, and $\mathbf{r}'_{\mathfrak{z}}=\langle 0,0,1\rangle$. So, $\mathbf{b}\times\mathbf{r}'_{\mathfrak{x}}=\langle 0,b_3,-b_2\rangle$, $\mathbf{b}\times\mathbf{r}'_{\mathfrak{y}}=\langle -b_3,0,b_1\rangle$, and $\mathbf{b}\times\mathbf{r}'_{\mathfrak{z}}=\langle b_2,-b_1,0\rangle$ Thus we have

$$f'_{x} = a_{2}b_{3} - a_{3}b_{2} = (\mathbf{a} \times \mathbf{b})_{x}$$

$$f'_{y} = -a_{1}b_{3} + a_{3}b_{1} = (\mathbf{a} \times \mathbf{b})_{y}$$

$$f'_{z} = a_{1}b_{2} - a_{2}b_{1} = (\mathbf{a} \times \mathbf{b})_{z}$$

Another approach, calculate the cross-product first

$$\langle b_1, b_2, b_3 \rangle \times \langle x, y, z \rangle$$

which is equivalent to

$$\langle b_2 z - b_3 y, b_3 x - b_1 z, b_1 y - b_2 x \rangle$$

then calculate the dot product,

$$\begin{split} f(x,y,z) &= \left\langle \begin{array}{ccc} a_1, & a_2, & a_3 \end{array} \right\rangle \cdot \left\langle \begin{array}{ccc} b_2 z - b_3 y, & b_3 x - b_1 z, & b_1 y - b_2 x \end{array} \right\rangle \\ &= a_1 \left(b_2 z - b_3 y \right) + a_2 \left(b_3 x - b_1 z \right) + a_3 \left(b_1 y - b_2 x \right) \end{split}$$

calculating partial derivatives, we have

$$\begin{aligned}
f'_{x} &= a_{2}b_{3} - a_{3}b_{2} = (\mathbf{a} \times \mathbf{b})_{x} \\
f'_{y} &= -a_{1}b_{3} + a_{3}b_{1} = (\mathbf{a} \times \mathbf{b})_{y} \\
f'_{z} &= a_{1}b_{2} - a_{2}b_{1} = (\mathbf{a} \times \mathbf{b})_{z}
\end{aligned}$$

the same answer as in the first approach.

16

Find the integral of $f(x, y, z) = z(x^2 + y^2 + z^2)^{-7/4}$ over the half-ball $x^2 + y^2 + z^2 \le 1, z \ge 0$, if it exists.

The function is non-negative in the region of integration and singular at the origin. Therefore if the improper integral of f exists for a particular regularization, it exists for any regularization and has the same value. Let us regularize the improper integral in question. Put

$$E_{\varepsilon} = \{(x, y, z) \mid \varepsilon^2 \le x^2 + y^2 + z^2 \le 1, z \ge 0\}$$

The region E_{ϵ} is the image of the rectangular box $E'_{\epsilon} = [\epsilon, 1] \times [0, \pi/2] \times [0, 2\pi]$ in spherical coordinates. By converting the integral of f over E_{ϵ} to spherical coordinates and using Fubini's theorem to evaluate it,

$$\begin{split} \iiint_{E_{\epsilon}} f dV &= \iiint_{E_{\epsilon}'} \rho \cos \phi \cdot \rho^{-7/2} \cdot \rho^2 \sin \phi dV' \\ &= \int_0^{2\pi} d\theta \int_0^{\pi/2} \sin \phi \cos \phi d\phi \int_{\epsilon}^1 \rho^{-1/2} d\rho \\ &= 2\pi \cdot \left(\frac{1}{2} \sin^2 \phi \Big|_0^{\pi/2} \right) \cdot \left(2\rho^{1/2} \Big|_{\epsilon}^1 \right) \\ &= 2\pi (1 - \sqrt{\epsilon}). \end{split}$$

Taking the limit $\varepsilon \to 0^+$,

$$\iiint_{E} f dV = \lim_{\epsilon \to 0^{+}} \iiint_{E} f dV = \lim_{\epsilon \to 0^{+}} 2\pi (1 - \sqrt{\epsilon}) = \boxed{2\pi}$$

17

Two spacecraft are following paths in space given by $\mathbf{r}_1 = \langle \sin t, t, t^2 \rangle$ and $\mathbf{r}_2 = \langle \cos t, 1 - t, t^3 \rangle$. If the temperature for points in space are given by $T(x,y,z) = x^2y(1-z)$, use the chain rule to determine the rate of change of the difference D in the temperatures the two spacecraft experience at time $t = \pi$.

Solution

Let T_1 describe the temperature experienced by the first spaceship and T_2 the temperature experienced by the second spaceship. Then the difference in temperatures between the two spacecraft is given by $D = T_1 - T_2$. The rate of change of this difference is $\frac{dD}{dt}$. Using the sum rule for derivatives we know

$$\begin{split} \frac{dD}{dt} &= \frac{d}{dt} \left(T_1 - T_2 \right) \\ &= \frac{dT_1}{dt} - \frac{dT_2}{dt}. \end{split}$$

So we want to compute the two derivatives in the last line. To compute each of these derivatives, we will use the chain rule.

Note that the path \mathbf{r}_1 tells us about x, y and z as a function of t, for the first space craft. In particular, $x_1(t) = \sin t$, $y_1(t) = t$ and $z_1(t) = t^2$. By the chain rule we have

$$\frac{dT_1}{dt} = \frac{\partial T_1}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial T_1}{\partial y_1} \frac{\partial y_1}{\partial t} + \frac{\partial T_1}{\partial z_1} \frac{\partial z_1}{\partial t} = \nabla T_1 \left(\mathbf{r}_1(t) \right) \cdot \mathbf{r}_1'(t)$$

Taking the partial derivatives we get

$$\frac{dT_{1}}{dt} = 2x_{1}y_{1}(1-z_{1})(\cos t) + x_{1}^{2}(1-z_{1})(1) + (-x_{1}^{2}y_{1})(2t)$$

However, we still need to put x_1, y_1 , and z_1 in terms of t. Making this substitution we obtain

$$\frac{dT_1}{dt} = 2(\sin t)(t)\left(1-t^2\right)(\cos t) + (\sin t)^2\left(1-t^2\right)(1) + \left(-(\sin t)^2 t\right)(2t)$$

Lastly, we want to determine what this derivative is specifically when $t=\pi$. Note that $\sin \pi=0$ and every term in our expression is a multiple of $\sin \pi$. This implies $\frac{dT_1}{dt}=0$.

Now, we need to compute the derivative of T_2 with respect to t. As before, we will do so using the chain rule. By the chain rule,

$$\frac{dT_2}{dt} = \frac{\partial T_2}{\partial x_2} \frac{\partial x_2}{\partial t} + \frac{\partial T_2}{\partial y_2} \frac{\partial y_2}{\partial t} + \frac{\partial T_2}{\partial z_2} \frac{\partial z_2}{\partial t} = \nabla T_2 \left(\mathbf{r}_2(t) \right) \cdot \mathbf{r}_2'(t)$$

Taking these derivatives and then making the substitutions for x_2 , y_2 and z_2 as functions of t we obtain

$$\begin{split} \frac{dT_2}{dt} &= 2x_2y_2\left(1-z_2\right)\left(-\sin t\right) + x_2^2\left(1-z_2\right)\left(-1\right) + \left(-x_2^2y_2\right)\left(3t^2\right) \\ &= 2(\cos t)(1-t)\left(1-t^3\right)\left(-\sin t\right) + (\cos t)^2\left(1-t^3\right)\left(-1\right) + \left(-(\cos t)^2(1-t)\right)\left(3t^2\right). \end{split}$$

At time $t = \pi$, the first term in the expression of our derivative becomes 0. The rest simplifies as follows:

$$\begin{aligned} \frac{dT_2}{dt} &= (\cos \pi)^2 \left(1 - (\pi)^3 \right) (-1) + \left(-(\cos \pi)^2 (1 - \pi) \right) \left(3(\pi)^2 \right) \\ &= -\left(1 - \pi^3 \right) - (1 - \pi) \left(3\pi^2 \right) \\ &= 4\pi^3 - 3\pi^2 - 1. \end{aligned}$$

Combining this with the result of our first derivative, we obtain

$$\frac{dD}{dt} = 0 - (4\pi^3 - 3\pi^2 - 1) = \boxed{-4\pi^3 + 3\pi^2 + 1}$$

18

If u(x, y) is a solution to the Laplace Equation in the plane, what is the value of the line integral

$$\int_{\partial D} u_y dx - u_x dy$$

when C is a simple closed curve oriented counterclockwise? Assume that $u_{xx}(x,y) + u_{yy}(x,y) = 0$, for all $(x,y) \in D$.

Solution

Any function f satisfying Laplace's equation $u_{xx}(x,y) + u_{yy}(x,y) = 0$, for all $(x,y) \in D$ can be used as either a potential function for a conservative vector field or a stream function for a source free vector field. From the statement of the problem, we know that we can apply Green's Theorem to $\int_{\partial D} u_y dx - u_x dy$. We set $P = u_y$ and $Q = u_x$. We obtain

$$\int_{\partial D} u_{y} dx - u_{x} dy = \int_{D} -u_{xx} - u_{yy} dx dy = -\int_{D} u_{xx} + u_{yy} dx dy = 0$$

Where we have set the integral equal to zero since the integrand is zero everywhere in the disk. By Green's theorem, the integral value is $\boxed{0}$.

19

Find the specified partial derivatives of the function $f(\mathbf{r}) = \exp(\mathbf{a} \cdot \mathbf{r})$, where $\mathbf{a} \cdot \mathbf{a} = 1$ and $\mathbf{r} \in \mathbb{R}^m$, $f''_{x_1x_1} + f''_{x_2x_2} + \dots + f''_{x_mx_m} = f$

Solution

First calculate the necessary partial derivatives as follows:

$$f_{\mathbf{x}_{i}\mathbf{x}_{i}}^{\prime\prime} = \left(\exp(\mathbf{a}\cdot\mathbf{r})\left[\mathbf{a}_{\mathbf{x}_{i}}^{\prime}\cdot\mathbf{r} + \mathbf{a}\cdot\mathbf{r}_{\mathbf{x}_{i}}^{\prime}\right]\right)_{\mathbf{x}_{i}}^{\prime} = \alpha_{i}\left(\exp(\mathbf{a}\cdot\mathbf{r})\right)_{\mathbf{x}_{i}}^{\prime} = \alpha_{i}^{2}\exp(\mathbf{a}\cdot\mathbf{r})$$

for i = 1, 2, ..., m. Note that $exp(x) = e^x$. Then we have that

$$\alpha_1^2 \exp(\mathbf{a} \cdot \mathbf{r}) + \alpha_2^2 \exp(\mathbf{a} \cdot \mathbf{r}) + \ldots + \alpha_m^2 \exp(\mathbf{a} \cdot \mathbf{r}) = \exp(\mathbf{a} \cdot \mathbf{r}) \sum_{k=1}^m \alpha_k^2 = [\exp(\mathbf{a} \cdot \mathbf{r})](\mathbf{a} \cdot \mathbf{a}) = f$$

where it is assumed that $\mathbf{a} \cdot \mathbf{a} = 1$.

- (a) Let $\mathbf{a} = s\hat{\mathbf{u}} + \hat{\mathbf{v}}$ and $\mathbf{b} = \hat{\mathbf{u}} + s\hat{\mathbf{v}}$ where the angle between unit vectors $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ is $\pi/3$. Find the values of s for which the dot product $\mathbf{a} \cdot \mathbf{b}$ is maximal, minimal, or zero if such values exist. Do you notice anything special about these values?
- (b) Let $\mathbf{a} = s\hat{\mathbf{u}} + w\hat{\mathbf{v}}$ and $\mathbf{b} = w\hat{\mathbf{u}} + s\hat{\mathbf{v}}$ where the angle between unit vectors $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$ is $\pi/3$. Find values of s and w for which the dot product $\mathbf{a} \cdot \mathbf{b}$ is maximal, minimal, or zero if such values exist. Do you notice anything special about these values?

(a) First let us compute $\hat{\mathbf{u}} \cdot \hat{\mathbf{v}}$. By the geometric properties of the dot product,

$$\begin{split} \hat{\mathbf{u}} \cdot \hat{\mathbf{v}} &= \frac{\cos \theta}{\|\hat{\mathbf{u}}\| \|\hat{\mathbf{v}}\|} \\ &= \frac{\cos \pi/3}{(1)(1)} = \frac{1}{2} \end{split}$$

Note that since the dot product is commutative $\hat{\mathbf{u}} \cdot \hat{\mathbf{v}} = \hat{\mathbf{v}} \cdot \hat{\mathbf{u}}$, and that $\hat{\mathbf{u}} \cdot \hat{\mathbf{u}} = \|\hat{\mathbf{u}}\|$. Next we will compute $\mathbf{a} \cdot \mathbf{b}$ as follows

$$\begin{aligned} \mathbf{a} \cdot \mathbf{b} &= (s\hat{\mathbf{u}} + \hat{\mathbf{v}}) \cdot (\hat{\mathbf{u}} + s\hat{\mathbf{v}}) \\ &= s\hat{\mathbf{u}} \cdot \hat{\mathbf{u}} + s\hat{\mathbf{u}} \cdot s\hat{\mathbf{v}} + \hat{\mathbf{v}} \cdot \hat{\mathbf{u}} + \hat{\mathbf{v}} \cdot s\hat{\mathbf{v}} \\ &= s\|\hat{\mathbf{u}}\| + \left(s^2 + 1\right)\hat{\mathbf{u}} \cdot \hat{\mathbf{v}} + s\|\hat{\mathbf{v}}\| \\ &= s + \left(s^2 + 1\right)\left(\frac{1}{2}\right) + s \\ &= \frac{1}{2}\left(s^2 + 4s + 1\right) = \frac{1}{2}\left(s^2 + 4s + 4 - 3\right) = \frac{1}{2}(s + 2)^2 - \frac{3}{2} \end{aligned}$$

The function $f(s) = \frac{1}{2}(s+2)^2 - \frac{3}{2}$ is a parabola opening upwards. Hence there is no maximum value. There is a single minimum occurring at the vertex, when s = -2. The zeroes occur when f(s) = 0,

$$\frac{1}{2}(s+2)^{2} - \frac{3}{2} = 0$$

$$(s+2)^{2} = 3$$

$$s+2 = \pm\sqrt{3}$$

$$s = \boxed{-2 \pm \sqrt{3}}$$

(b)

As noted in part (a), by the geometric properties of the dot product, the value of $\hat{\mathbf{u}} \cdot \hat{\mathbf{v}} = \frac{1}{2}$. We can compute $\mathbf{a} \cdot \mathbf{b}$ as follows

$$\mathbf{a} \cdot \mathbf{b} = (s\hat{\mathbf{u}} + w\hat{\mathbf{v}}) \cdot (w\hat{\mathbf{u}} + s\hat{\mathbf{v}})$$

$$= s\hat{\mathbf{u}} \cdot w\hat{\mathbf{u}} + s\hat{\mathbf{u}} \cdot s\hat{\mathbf{v}} + w\hat{\mathbf{v}} \cdot w\hat{\mathbf{u}} + w\hat{\mathbf{v}} \cdot s\hat{\mathbf{v}}$$

$$= sw||\hat{\mathbf{u}}|| + s^2\hat{\mathbf{u}} \cdot \hat{\mathbf{v}} + w^2\hat{\mathbf{v}} \cdot \hat{\mathbf{u}} + ws||\hat{\mathbf{v}}||$$

$$= sw + \frac{1}{2}s^2 + \frac{1}{2}w^2 + sw$$

$$= 2sw + \frac{1}{2}s^2 + \frac{1}{2}w^2$$

The function $f(s, w) = 2sw + \frac{1}{2}s^2 + \frac{1}{2}w^2$ is a hyperbolic paraboloid opening upwards. Hence, there is no maximum value. There is a single value occurring at the vertex when f(s, w) = 0. To classify critical points formally, allow for the substitution x = s and y = w

$$\frac{\partial}{\partial x} \left(\frac{x^2}{2} + 2xy + \frac{y^2}{2} \right) = x + 2y$$
$$\frac{\partial}{\partial y} \left(\frac{x^2}{2} + 2xy + \frac{y^2}{2} \right) = 2x + y$$

Next, we solve the system $\left\{\begin{array}{l} \frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = 0\\ \text{nant, } D = \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y \partial x}\right)^2 = -3. \text{ For completeness the partial derivatives are} \end{array}\right.$

$$\frac{\partial^2}{\partial x^2} \left(\frac{x^2}{2} + 2xy + \frac{y^2}{2} \right) = 1$$

$$\frac{\partial^2}{\partial y \partial x} \left(\frac{x^2}{2} + 2xy + \frac{y^2}{2} \right) = 2$$

$$\frac{\partial^2}{\partial y^2} \left(\frac{x^2}{2} + 2xy + \frac{y^2}{2} \right) = 1$$

Since D(0,0) = -3 is less than 0, it can be stated that (0,0) is a saddle point at which f(s,w) = 0. Thus, the dot product is zero when s = w = 0.