# TTK4240 – Prøvesett 3

## 1 STASJONÆRE BEREKNINGAR PÅ RLC-KRETS (25 %)

Figur 1 viser ein RLC-krets forsynt frå ei spenningskjelde. Bruk følgande talverdiar:

 $R = 1 \Omega$  L = 10 mH C = 2 mF f = 50 Hz  $v_s = 100 \cos(\omega t)$ 



Figur 1: RLC-seriekrets

- a) Finn  $V_s$ ,  $I_s$  (på visarform), samt den komplekse effekt  $S_s$ , aktiv effekt  $P_s$  og reaktiv effekt  $Q_s$
- b) Finn  $i_s(t)$  og  $P_s(t)$
- c) Kva er samanhengen mellom tidsfunksjonen  $P_s(t)$  og aktiv effekt  $P_s$ ? Et verbalt svar er tilstrekkelig

Anta no at vi har mulighet til å variere C.

- d) Kva verdi av  $C \operatorname{gir} i_s(t)$  i fase med  $v_s(t)$ ?
- e) Finn  $S_s, P_s, Q_s$  i dette tilfellet. Kommenter verdien av  $Q_s$

### 2 DIODELIKERETTER OG DC-MOTOR (25 %)

Figur 2 viser en diodelikeretter koblet til to ulike laster. Til venstre en resistiv last, til høyre en DC-maskin via et filter. Filteret sin funksjon er å gjøre terminalspenningen til DC-motoren mest mulig konstant, dvs. det er et lavpassfilter.

Bruk følgande talverdiar:

$$v_s = 100\sin(\omega t)$$

$$R_A = 0.2 \Omega$$

$$f = 50 Hz$$



Figur 2: Venstre: Diodelikeretter med resistiv last, Høyre: Diodelikeretter koblet til DC-motor via filter

a) Anta kretsen til venstre (resistiv last). Vis at  $\frac{V_o}{V_{s,rms}} = \frac{2\sqrt{2}}{\pi}$ , hvor  $V_o$  er gjennomsnittsverdien til DC-spenningen  $v_o$  og  $V_{s,rms}$  er RMS-verdien til kildespenningen  $v_s$ 

Bruk sammenhengen fra a) til å løse oppgavene nedenfor der informasjon om  $V_a$  er nødvendig.

b) Anta kretsen til høyre (filter+motor). Hvilken av de følgende verdier for filteret sin knekkfrekvens er mest hensiktsmessig: 20 Hz, 200 Hz eller 2000 Hz?

Anta nå at filteret fjerner all rippel i spenningen, dvs.  $V_a={\rm konstant}$  . Transferfunksjonen til filteret kalles  $H_a(s)=\frac{V_a}{V_o}$  . Det oppgis at  $H_a(j\omega=0)=\frac{1}{2}$  .

Vi kobler så til DC-motoren. Først lar vi den rotere i tomgang, dvs. uten last tilkoblet. I tomgang er momentet overført til lasten alltid lik null. Turtallet i tomgang blir målt til  $n_o=1500~{\rm o/min}$ . Deretter kobler vi til last, og turtallet faller til  $n_{\rm l}=1400~{\rm o/min}$ . Feltspenningen holdes konstant, dermed blir fluksen  $\varphi$  konstant.

c) Finn effekten som blir overført til lasten, i W.

### 3 PI-regulator basert på operasjonsforsterker (20 %)

En proposjonal-integral regulator (PI-regulator) er svært mye brukt i alle slags kybernetikk-systemer. Den kan realiseres som en elektrisk krets som vist i Figur 3. Navnet PI-regulator kommer av følgende:

P: Proporsjonalledd – et ledd i utgansspenningen skal være proporsjonal med inngangsspenningen

I: Integralledd – et ledd i utgangsspenningen skal være den integrerte av inngangsspenningen



Figur 3: PI-regulator ved hjelp av operasjonsforsterker

En vanlig måte å skrive en PI-regulator sin transferfunksjon er som følger:

$$H(s) = \frac{V_o}{V_i} = K_p \frac{1 + T_i s}{T_i s}$$
, hvor  $K_p$  er proporsjonal-leddet, og  $T_i$  er tidskonstanten

- a) Finn transferfunksjonen  $H(s) = \frac{V_o}{V_i}$  til kretsen i Figur 3.
- b) Finn  $K_p$  og  $T_i$  som funksjon av kretselementene i Figur 3
- c) Vi påtrykker et sprang i inngangsspenningen  $V_i$  fra  $0\,V$  til  $1\,V$  (enhetssprang). Finn det analytiske uttrykket til  $v_o(t)$ . Skissèr forløpet, og kommenter i forhold til beskrivelsen av en Plregulator gitt øverst i oppgaveteksten.

Tips til oppgave c): Hvis du ikke får til a) og b) går det an å løse c) ved å bruke den oppgitte transferfunksjonen H(s).

### 4 EFFEKTFLYT MELLOM TO SPENNINGSKILDER (30 %)

Figur 4 viser to spenningskilder,  $E_a$  og  $V_s$  koblet sammen via en reaktans  $X_a$ . Dette er en svært mye brukt modell av et kraftverk (synkrongenerator) koblet til et nett, og man kan dra mange nyttige konklusjoner fra denne tilsynelatende enkle modellen.



Figur 4: To spenningskilder koblet sammen via en reaktans

**NB:**  $E_a$ ,  $V_s$  er her absoluttverdien til spenningene, og er dermed ikke komplekse størrelser. Vi definerer vinkelen til  $V_s$  til å være lik 0 (referansevinkel), og kaller vinkelen til  $E_a$  for  $\delta$  (som vist i figuren)

Bruk følgende tallverdier:

 $V_s = 10 \, kV$ 

 $P_s = 5 MW$ 

 $Q_s = 2 MVAr$ 

 $X_a = 5\Omega$ 

- a) Hva blir effektfaktoren til spenningskilden  $V_s$  til dette driftstilfellet? Er den induktiv eller kapasitiv?
- b) Finn  $I_s$  (med vinkelen  $\varphi$ ), og  $E_a$  (med vinkelen  $\delta$ ) i dette driftstilfellet
- c) Tegn et viserdiagram hvor  $V_s, E_a, I_a$  inngår.
- d) Vis at generelt så er  $P_s = \frac{E_a V_s}{X_a} \sin \delta$  for denne kretsen, hvor  $P_s$  er definert i figuren. Du skal ikke sette inn tallverdier.

# **VEDLEGG: FORMLAR OG SAMANHENGAR**

#### Spole og kondensator

$$v_L = L \frac{di_L}{dt}$$
,  $i_C = C \frac{dv_C}{dt}$ ,  $X_L = j\omega L$ ,  $X_C = \frac{1}{j\omega C}$  Eksponential funksjon:  $\mathcal{L}(e^{at}) = \frac{1}{s-a}$ 

### Visarrekning og kompleks effekt

$$X\cos(\omega t + \theta) \Leftrightarrow Xe^{j\theta}$$
,  $S = VI^* = P + jQ$ 

#### Elektromagnetisme:

$$\varepsilon = N \frac{d\varphi}{dt}$$
,  $NI = \Re \varphi$ ,  $\Re = \frac{l}{\mu A}$ ,  $\varphi = BA$ 

#### Trigonometri

$$\cos(2x) = 1 - 2\sin^2(x)$$
$$= 2\cos^2(x) - 1$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

#### **Trefase**

$$\left|V_{LL}\right| = \sqrt{3} \left|V_{ph}\right|$$

#### Elektriske maskiner

$$f_{el} = \frac{p}{2} f_{mek}$$

#### DC-maskin

$$E_a = k\varphi\omega \qquad T = k\varphi I_a$$

### Mekanikk

$$P = T\omega$$
  $P = F \cdot v$   $v = \omega r$   $E_k = \frac{1}{2}mv^2$ 

#### Laplacetransformasjon

Sprangrespons: 
$$\mathcal{L}(u(t)) = \frac{1}{s}$$

Rampe: 
$$\mathcal{L}(t \cdot u(t)) = \frac{1}{s^2}$$

Eksponentialfunksjon: 
$$\mathcal{L}\left(e^{at}\right) = \frac{1}{s-a}$$