Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання РГР

з дисципліни: «Вакуумна та плазмова електроніка»

Виконавець:		
Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Перевірив:	(підпис)	О.М. Бевза

Завдання

- 1. Дивимось на графіки побудовані для п.3 лабораторної роботи.
 - 1.1 Визначити частоту червоної границі фотоефекту.
 - 1.2 Необхідно визначити напругу запирання для кожного елементу при інтенсивності 50 % та 100%. Пояснити, чому напруги запирання відрізняються при різній інтенсивності.
 - 1.3 Побудувати графіки залежностей напруги запирання від частоти (у вас вказані довжини хвиль, отже їх треба перерахувати в частоту) для випадку інтенсивності 50% та 100%. Для кожного матеріалу (у кожного свої три матеріала).
 - 1.4 Визначити з цих нових побудованих графіків роботу виходу в точці (будь-якій, назвіть її А) за вашим власним вибором, яка розташована десь посередині отриманого графіку. Для всіх трьох матеріалів. Для обох значень інтенсивності (50% та 100%). Порівняйте отримані значення роботи виходу при двох різних інтенсивностей для кожного матеріалу та зробити висновки.
 - 1.5 Розрахувати кінетичну швидкість електронів для точки A для всіх трьох матеріалів.
 - 1.6 Порівняти отримане із розрахунку значення роботи виходу з відомими значеннями роботи виходу (довідкові дані, вказати джерело) та розрахувати абсолютну та відносну помилки. Зробити для трьох ваших матеріалів матеріалів.
 - 1.7 Отримані результати звести до таблиці, де повинен бути вказаний кожен з трьох матеріалів та розраховані для нього значення: частота червоної границі фотоефекту, напруга запирання (для двох інтенсивностей), робота виходу в точці А (дві інтенсивності), кінетична швидкість електронів в точці А (для двох інтенсивностей 50% та 100%).

- 1.8 Зробіть перевірку правильності виконання розрахунків за формулою Ейнштейна для фотоефекту.
- 2. Беремо графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності. Ви вибирали самі три довжини хвилі. У кожного вибрано свій один матеріал. Робимо:
 - 2.1 Побудуйте ваш графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм. Беремо значення струму для Інтенсивності 50%.
 - 2.2 Побудуйте самі (ваші припущення) на вашому новому графіку іншим кольором як буде виглядати ця залежність, якщо інтенсивність буде складати, а далі за списком вибираємо свій варіант(5-60%).
- 3. Пояснити чому струм змінився саме так. Дивимось на графіки побудовані для пункта 5. Де залежності енергії від частоти. Треба:
 - 3.1 Визначити яка саме енергія стоїть у вас по осі ігрек. Це повна енергія фотону чи робота виходу чи кінетична енергія електрона чи щось інше? Відповідь аргументовано пояснити.

Виконання роботи

Табл. 1: Робота виходу даних матеріалів

Речовина	Робота виходу, еВ
Na	2,5
Zn	4
Cu	4,4

Рис. 1: Сімейство кривих залежності Енергія (частота) при інтенсивності 50% на всьому інтервалі частот для матеріалів мішені: натрій, цинк, мідь, платина, кальцій, магній.

1.1

Використовуючи рис.1 визначаемо частоту червоної границі фотоефекту.

Табл. 2: Визначення частоти червоної межі фотоефекту

Речовина	Частота червоної границі фотоефекту, 10^{15} Гц
Na	0.5
Zn	1,1
Cu	1,25

За допомогою формули 1 знайдемо частоту:

$$\lambda = \frac{c}{v} \implies v = \frac{c}{\lambda} \tag{1}$$

Довжина хвилі, нм	Частота, 10 ¹⁵ Гц
200	1,5
400	0,75
650	0,46
700	0,42

Na				
$f\cdot 10^{15}, \Gamma$ ц	U_3 , B			
ј 10 , 1 ц	50%	100%		
0.42	0	0		
0.46	0	0		
0.75	-5	-6		
1.5	-7.4	-7.4		

Zn				
$f \cdot 10^{15}$, Гц	U_3 , B			
ј. 10 , 1 ц	50%	100%		
0.42	0	0		
0.46	0	0		
0.75	0	0		
1.5	-7	-7		

Cu				
$f \cdot 10^{15}$, Гц	U_3 , B			
$\int \cdot 10^{10}$, ГЦ	50%	100%		
0.42	0	0		
0.46	0	0		
0.75	0	0		
1.5	-6.2	-7		

1.4

Роботу виходу можна знайти за наступною формулою:

$$A = h \cdot f \tag{2}$$

$$A_{Na-50\%} = 3.105 \text{ eB}$$

 $A_{Na-100\%} = 2.898 \text{ eB}$
 $A_{Zn} = 4.471 \text{ eB}$
 $A_{Cu-50\%} = 4.513 \text{ eB}$
 $A_{Cu-100\%} = 4.140 \text{ eB}$

1.5

Обрахувавши дані за наступною формулою можна отримати кінетичну швидкість електронів для точки A для всіх трьох матеріалів

$$v = \sqrt{\frac{2 \cdot e \cdot U_3}{m}} \tag{3}$$

Na

$$v = \sqrt{\frac{2 \cdot 5 \cdot 1.6 \cdot 10^{-19}}{9.1 \cdot 10^{-31}}} = 13.25 \cdot 10^5 \frac{M}{c}$$
 $v = 14.52 \cdot 10^5 \frac{M}{c}$

Zn

$$v = 10.27 \cdot 10^5 \frac{M}{c}$$

Cu

$$v = 8.99 \cdot 10^5 \, \frac{\text{M}}{\text{c}}$$
 $v = 9.18 \cdot 10^5 \, \frac{\text{M}}{\text{c}}$

Na		Zn		Cu			
	A, eB						
розраховане	з довідника ¹	ідника ¹ розраховане з довідника р			з довідника		
3.1	2.2	4.4	4	4.5	4.4		
2.8	2.2	4.4	4	4.1	4.4		
Похибка							
Δ	δ	Δ	δ	Δ	δ		
0.9	40%	0.4	10%	0.1	2%		
0.6	27%	0.4	1070	0.3	6%		

1.7

	Na Zn		Cu			
	A, eB					
	розраховане	з довідника	розраховане	з довідника	розразоване	з довідника
50%	3.1	2.2	4.4	4	4.5	4.4
100%	2.8	2.2	4.4	4	4.1	
	Частота червоної границі фотоефекту, 10 ¹⁵ Гц					
	0.5		1.1		1.25	
	U_3 , B					
50%	5		2		2.	.3
100%	6)	2.4		
	Кінетична швидкість електронів в точці $A, \cdot 10^5 \frac{M}{c}$					
50%	13.	25			8.99	
100%	14.52		10.27		9.3	18

В даному пункті можна наочно преконатися у другому занконі Столетова, який каже про те, що максимальна кінетична енергія фотоелектронів не залежить від інтенсивності світла та лінійно зростає з підвищенням частоти. Що ми бачимо і в

¹Landolt-Borstein's Zahlenwerte und Funktionen aus Phsik, Chemie, Astrunumie, Geophysik, Thechnik, 6-е издание., Берлин, т. I, ч.4, 1955; т. II, ч.6, разд. 1, 1959

даному випадку: максимальна швидкість, що харктеризує максимальну кінетичну енергію практично не змінилась, і лінійно зменшується з ростом довжини хвилі.

1.8

Зробимо перевірку правильності виконання розрахунків за формулою Ейнштейна для фотоефекту:

$$hf = A + \frac{mv^2}{2} \Rightarrow hf - A = \frac{mv^2}{2}$$

$$4.1 \cdot 10^{-15} \cdot 1.5 \cdot 10^{15} - 3.1 = \frac{9.1 \cdot 10^{15} \cdot (13.2 \cdot 10^{5})^{2}}{2}$$

$$3.1 \text{ eB} \approx 3.8 \text{ eB}$$

Оскільки деякі початкові значення були вибрані не дуже коректно, то присутня невеличка похибка.

Рис. 2: Сімейство кривих залежності Енергія (частота)

Виходячи з теоретичних відомостей та засвоєного материалу, можна стверджувати, що по осі Y маэмо максимальну кінетична енергію електронів, це можна легко довести оперуючи II законом Столетова: максимальна кінетична енергія електрона не залежить від інтенсивності світла і лінійно збільшується з ростом частоти.