Sliding manifold design in HOSM

Leonid Fridman

UNAM

October 2016

(UNAM) 1/38

Participants

(UNAM) 2/38

Outline

- Introduction
- Motivation
- Contributions
- Methodologies
- First result

- 6 Example
- Second result
- 8 Example
- Conclusions
- 10 References

(UNAM) 3/38

Preliminaries

Consider

Linear system

$$\dot{x} = Ax + Bu$$
, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ (Σ)

with rank B = m and (A, B) controllable

Linear control design

 $\exists u = -Kx \text{ such that }$

$$\lambda(A - BK)$$

has desired eigenvalues

(UNAM) 4/38

Sliding mode control design

Sliding mode methodology

Sliding manifold design:

$$\{x: \bar{\sigma} = Cx = \bar{0}\}$$
 , $C \in \mathbb{R}^{m \times n}$, $\bar{\sigma} :=$ sliding vector

2 Control law design

$$u=-
ho\,\mathrm{sign}(ar\sigma)$$
 or $u=-
horac{ar\sigma}{||ar\sigma||}$

(UNAM) 5/38

Sliding manifold design

Since $\operatorname{rank} B = m$, B can be divided as follows

$$B=egin{bmatrix} B_1\ B_2 \end{bmatrix}$$
 , $B_1\in\mathbb{R}^{(n-m) imes m}$, $B_2\in\mathbb{R}^{m imes m}$, $\det B_2
eq 0$.

1. Transformation into the regular form

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = Tx , \quad T = \begin{bmatrix} I_{n-m} & -B_1B_2^{-1} \\ 0 & B_2^{-1} \end{bmatrix}$$

We obtain

Regular form

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2$$
 (A, B) controllable \Rightarrow $\dot{x}_2 = A_{21}x_1 + A_{22}x_2 + u$ (A_{11}, A_{22}) controllable

(UNAM) 6/38

Sliding manifold design

2. Virtual control

Since (A_{11}, A_{22}) is controllable

• Using x_2 as a virtual control of the (n-m)-dimensional subsystem

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2$$

Such that

$$x_2 = -Kx_1$$

assign n - m desired eigenvalues

Sliding manifold

$$\bar{\sigma} = x_2 - Kx_1 = \bar{0}$$

(UNAM) 7/38

• How to design the sliding variable $\sigma = Cx$ in Classical SM for SISO systems?

Ackermann-Utkin (A-U) formula

(UNAM) 8/38

Ackermann formula SISO systems

Linear system

$$\dot{x} = Ax + Bu$$
, (1)

Algorithm $\Sigma \qquad \qquad \alpha(s)$ $K \qquad \qquad u = -Kx$

Control

$$u = -Kx$$

$$K = e_1 F^{-1} \alpha(A)$$
,

- $e_1 = [0 \ 0 \cdots 0 \ 1]$
- *F* : Controllability matrix
- $\alpha(s)$: desired polynomial

Such that:

$$\det(\boldsymbol{\mathit{sI}} - \boldsymbol{\mathit{A}} + \boldsymbol{\mathit{BK}}) = \alpha(\boldsymbol{\mathit{s}})$$

Ackermann formula SISO systems

Linear system

$$\dot{x} = Ax + Bu$$
, (1)

Σ $\alpha(s)$ Κ

Control

$$u = -Kx$$

$$K = e_1 F^{-1} \alpha(A)$$
,

- $e_1 = [0 \ 0 \cdots 0 \ 1]$
- *F* : Controllability matrix
- $\alpha(s)$: desired polynomial

Such that:

$$det(sI - A + BK) = \alpha(s)$$

Ackermann formula

(UNAM) 9/38

Ackermann-Utkin formula

Linear perturbed system

$$\dot{x} = Ax + B(u + w) \quad (\Sigma_w)$$

Control

$$u = sign(\sigma)$$
, $\sigma = Cx$

$$C = e_1 F^{-1} \gamma(A)$$

- γ(s):=desired polynomial of order
 n-1
- ullet $\exists T: \forall t > T, \ \sigma = ullet$
- $x \to 0$ as $t \to \infty$.

Ackermann-Utkin formula

Linear perturbed system

$$\dot{x} = Ax + B(u + w) \quad (\Sigma_w)$$

Control

$$u = sign(\sigma)$$
, $\sigma = Cx$

$$C = e_1 F^{-1} \gamma(A)$$

- γ(s):=desired polynomial of order n − 1
- ullet \exists $T: \forall t > T$, $\sigma = \mathbf{0}$
- $x \to 0$ as $t \to \infty$.

Ackermann-Utkin formula

(UNAM) 10/38

Example order n = 3 with A-U formula

System

$$\dot{x}_1 = x_2
\dot{x}_2 = x_3$$
 (n3)
 $\dot{x}_3 = u + w$

Reduced order system

$$\dot{x}_1 = x_2 \\ \dot{x}_2 = x_3$$
 (n2)

A-U formula

$$C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} \gamma(A)$$
$$= \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}$$

Desired polynomial

Suppose

$$\gamma(s) = (s+1)(s+2)$$

$$x_3 = -K[x_1 \ x_2]^T$$
,
= $-(3x_1 + 2x_2)$

(UNAM) 11/38

Example order n = 3 with Singular LQ

Singular performance index for (n3)

$$J = rac{1}{2} \int\limits_{t_1}^{\infty} \left(x^{ op} Q x
ight) \mathrm{d}t \; , \quad Q = \left(egin{matrix} q_1 & 0 & 0 \ 0 & q_2 & 0 \ 0 & 0 & q_3 \end{matrix}
ight) \; ,$$

 The performance index is singular with respect to the control ⇒ free-cost control

Regular performance index

$$ar{J} = rac{1}{2} \int\limits_{t_1}^{\infty} \left(x_{12}^{ op} ar{Q} x_{12} + x_3 R x_3
ight) \mathrm{d}t \,, \quad ar{Q} = \left(egin{matrix} q_1 & 0 \ 0 & q_2 \end{matrix}
ight) \,, \quad R = q_3 \,,$$

which is no longer singular if $q_3 > 0$.

(UNAM) 12/38

Introduction: Singular LQ

Solution of Regular LQR

$$x_3 = -K[x_1 \ x_2]^T$$
, $K = R^{-1}\tilde{B}^T P$,

where

P is the solution of the algebraic Riccati equation (ARE)

$$P\tilde{A} + \tilde{A}^{T}P + \bar{Q} - P\tilde{B}R^{-1}\tilde{B}^{T}P = 0$$

with (\tilde{A}, \tilde{B}) is the system matrix pair of the reduced order system (n2).

(UNAM) 13/38

In briefly: How to design the manifold in FOSM in SISO systems?

$$\dot{x} = Ax + B(u + w) \tag{Σ_w}$$

A-U formula

$$C = eF^{-1}\gamma(A) \tag{2}$$

 $\gamma(s)$ of order n-1

Singular LQ

$$J = \frac{1}{2} \int_{t_1}^{\infty} \left(x^{\top} Q x \right) dt , \quad Q = \begin{pmatrix} q_1 & 0 & 0 \\ 0 & q_2 & 0 \\ 0 & 0 & q_3 \end{pmatrix} , \quad (3)$$

Q>0.

Singularity of index one

(UNAM) 14/38

Families of sliding-mode controllers

- Discontinuous
 - Twisting
 - Nested discontinuous
 - Quasi-continuous family
- Continuous
 - Super-twisting
 - Discontinuous integral
 - Continuous twisting
 - Continuous terminal

(UNAM) 15/38

Brunovsky canonical form

If (A, B) is controllable

$$\dot{y}_1 = y_2$$

$$\dot{y}_2 = y_3$$

$$\vdots = \vdots$$

$$y_n = \sum_{i=1}^n \alpha_i y_i + u + w$$

Finite time convergence

 $\exists T : \forall t > T \text{ the set}$ $(y_1, y_2, \dots, y_n) = 0$

HOSM

u := n-order QC

- Is it reasonable to use the higher order of sliding mode?
- What happens if the system is of relative degree r < n?

(UNAM) 16/38

Codimension of the sliding manifold

HOSM

Relative degree of σ	Codimension
1	<i>n</i> − 1
2	n – 2
:	:
r	<i>n</i> − <i>r</i> ??!!
r = n	0

Formula de A-U [Ackermann and Utkin, 1998, Ackermann and Utkin, 1998]

(UNAM) 17/38

Why HOSM?

SM order	QC control	Information	Accuracy
		needed	
1-SM	$u=- ho_0{ m sign}(\sigma)$	σ	1
2-SM	$u=- ho_0rac{\left(\dot{\sigma}+ \sigma ^{1/2}\operatorname{sign}(\sigma) ight)}{\left(\dot{\sigma} + \sigma ^{1/2} ight)}$	σ, σ	2
3-SM	$u = -\rho_0 \frac{\ddot{\sigma} + 2(\dot{\sigma} + \sigma ^{2/3})^{-1/2} + (\dot{\sigma} + \sigma ^{2/3} \operatorname{sign}(\sigma))}{ \ddot{\sigma} + 2(\dot{\sigma} + \sigma ^{2/3})^{1/2}}$	σ, σ, σ	3

(UNAM) 18/38

Motivation

How to design the sliding variable $\sigma = Cx$ of relative degree r < n?

 Methodologies to design a sliding manifold of codimension n - r.

(UNAM) 19/38

Contributions

Table: Sliding manifold design in HOSM

Relative degree	Codimension	Method
r	n-r	Generalized A-U formula 1
r	n-r	Singular LQ ²

(UNAM) 20/38

¹[Hernández et al., 2014, Hernández et al., 2014]

²[Castillo et al., 2015, Castillo et al., 2015]

Methodologies in the reduced order system

- Generalized A-U formula:
 - Zero dynamics, Isidori normal form [Isidori, 1996, Isidori, 1996].
 - Zero-placement problem: eigenvalue assignment
- Singular LQ:
 - Optimal behavior
 - Singularity of the performance index [Utkin, 1992, Utkin, 1992]

(UNAM) 21/38

Generalized Ackermann-Utkin formula

Consider again system Σ_w

$$\Sigma_{w}\left\{\dot{x}=Ax+B(u+w)
ight.$$

Assumption

- (A, B) controllable
- **2** $||w|| \leq \bar{w}$.

(UNAM) 22/38

Isidori normal form

Consider system (Σ) and output $y = \sigma$. If $r > 0 \to$ there exists $\begin{bmatrix} \xi \\ \eta \end{bmatrix} = Tx$ [Isidori, 1996, Isidori, 1996]:

$$\begin{bmatrix} \frac{\dot{\eta}}{\dot{\xi}_{1}} \\ \vdots \\ \dot{\xi}_{r-1} \\ \dot{\xi}_{r} \end{bmatrix} = \begin{bmatrix} \frac{A_{n}\eta + B_{n}\xi}{\xi_{2}} \\ \vdots \\ \xi_{r} \\ CA^{r}x \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ CA^{r-1}B \end{bmatrix} u,$$

$$\sigma = \xi_{1}.$$

The dynamics $\dot{\eta} = A_0 \eta$, $\eta \in \mathbb{R}^{n-r}$, are the zero dynamics

(UNAM) 23/38

A-U formula: theorem

Theorem

Let $e_1 := (0 \ 0 \ \cdots \ 0 \ 1)$ and let F be the system's controllability matrix. If

$$C = e_1 F^{-1} \gamma(A) , \qquad (4)$$

with $\gamma(\lambda) = \lambda^{n-r} + \gamma_{n-r-1}\lambda^{n-r-1} + \cdots + \gamma_1\lambda + \gamma_0$, then σ is of relative degree r and the roots of $\gamma(\lambda)$ are the eigenvalues of the sliding-mode dynamics in the intersection of the planes $\sigma = \dot{\sigma} = \cdots = \sigma^{(r-1)} = 0$.

(UNAM) 24/38

Control law design: Equivalent control + r-SM

Since $\sigma = Cx$ with C as in (4) is of relative degree r, we have

$$\sigma^{(r)} = CA^r x + CA^{r-1}B(u+w)$$

with $CA^{r-1}B \neq 0$. We can take

$$u=-\frac{v_r+CA^rx}{CA^{r-1}B},$$

where v_r is a HOSM control responsible for rejecting the perturbations.

(UNAM) 25/38

A-U formula: Example

Consider the linearized model of a real inverted pendulum on a cart [Fantoni and Lozano, 2002, Fantoni and Lozano, 2002]

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1.56 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 46.87 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0.97 \\ 0 \\ -3.98 \end{pmatrix} (u+w) , \tag{5}$$

- $\bullet \ \ X = [q_1, q_2, \dot{q}_1, \dot{q}_2]$
- |w| < 1
- Open-loop characteristic polynomial: $\lambda^2(\lambda + 6.85)(\lambda 6.85)$

(UNAM) 26/38

Sliding manifold design using the generalized A-U formula

1-SM	2-SM	3-SM
$z_i = -5, i = 1, 2, 3$	$z_i = -5, i = 1, 2$	$z_1 = -5$
$\gamma(\lambda)=(\lambda+5)^3$	$\gamma(\lambda)=(\lambda+5)^2$	$\gamma(\lambda) = \lambda + 5$
C = [-3.2 - 1.9 - 4.5 - 0.7]	$C = [-0.6 - 0.2 - 0.4 \ 0]$	$C = [-0.1 \ 0 \ 0 \ 0]$
$g(s) = rac{(s+5)^3}{\det(sl-A)}$	$g(s) = rac{(s+5)^2}{\det(sI-A)}$	$g(s) = rac{(s+5)}{\det(sI-A)}$

(UNAM) 27/38

(UNAM) 28/38

Singular LQ

Consider again system Σ_w

$$\Sigma_{\it w}\left\{\dot{\it x}={\it Ax}+{\it B}(\it u+\it w)
ight.$$
 ,

Assumption

- (A, B) controllable
- **2** $||w|| \leq \bar{w}$
- $x(0) = x_0, ||x_0|| \le L$

$$J = \frac{1}{2} \int_{t_1}^{\infty} \left(x^{\top} Q x \right) \mathrm{d}t$$

(UNAM) 29/38

1. System and index transformation

$$z = Tx$$
, $\dot{z} = \bar{A}z + \bar{B}(u + w)$,

Controllable canonical form

$$\bar{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \vdots & 1 \\ -\alpha_0 & -\alpha_1 & \dots & -\alpha_{n-2} & -\alpha_{n-1} \end{pmatrix}, \bar{B} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix},$$

Transformation of the performance index

$$\bar{Q} = (T^{-1})^T Q T^{-1}$$

(UNAM) 30/38

2. Order of Singularity of the Performance Index

3. Order of the singularity

$$\bar{Q} = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} & 0 & \dots & 0 \\ \bar{Q}_{21} & \bar{Q}_{22} & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \\ \\ n-k \text{ columns } k-\text{ zero columns} \end{pmatrix}$$

$$ar{Q}_{11} = ar{Q}_{11}^T \ge 0 \in \mathbb{R}^{(n-k-1) \times (n-k-1)}$$

$$ar{Q}_{22}>0,\ ar{Q}_{22}\in\mathbb{R}$$

Order of Singularity of the Performance Index: i

$$i = k + 1$$
, such that $\bar{Q}_{22} > 0$ in \bar{Q} .

(UNAM) 31/38

3. Manifold design

System Partition

$$ar{z}_1 = \begin{bmatrix} z_1 & \dots & z_{n-i} \end{bmatrix}^T$$
 $ar{z}_2 = z_{n-i+1}$
 $ar{z}_3 = \begin{bmatrix} z_{n-i+2} & \dots & z_n \end{bmatrix}^T$

Reduced Order System

$$\dot{\bar{z}}_1 = \bar{A}_{11}\bar{z}_1 + \bar{A}_{12}\bar{z}_2,$$
 (6)

$$\left\{ ar{Q}_{11} \right\} \in \mathbb{R}^{(n-i) \times (n-i)}$$

$$ar{A}_{12} \in \mathbb{R}^{(n-i)}$$

(UNAM) 32/38

Change of variable

Performance Index

$$\bar{J} = \frac{1}{2} \int_{t_0}^{\infty} \left(\bar{z}_1^T \bar{Q}_{11} \bar{z}_1 + 2 \bar{z}_1^T \bar{Q}_{12} \bar{z}_2 + \bar{z}_2^T \bar{Q}_{22} \bar{z}_2 \right) dt$$

Change of variable

$$u = \bar{z}_2 + \left(\bar{Q}_{22}\right)^{-1} \bar{Q}_{12}^T \bar{z}_1$$

(UNAM) 33/38

Regular conditions [Moore and Anderson, 1971, Moore and Anderson, 1971]

Performance Index

$$\bar{J} = \frac{1}{2} \int_{t_0}^{\infty} (\bar{z}_1^T (\underbrace{\bar{Q}_{11} - \bar{Q}_{12} (\bar{Q}_{22})^{-1} \bar{Q}_{12}^T}_{:=\hat{Q}}) \bar{z}_1 + \nu^T \underbrace{\bar{Q}_{22}}_{:=\hat{R}} \nu) dt$$

Reduced Order System

$$\dot{\bar{z}}_{1} = (\underbrace{\bar{A}_{11} + \bar{A}_{12}(\bar{Q}_{22})^{-1}\bar{Q}_{12}^{T}}_{:=\hat{A}})\bar{z}_{1} + \underbrace{\bar{A}_{12}}_{:=\hat{B}}\nu,$$

ARE

$$P\hat{A} + \hat{A}^T P + \hat{Q} - P\hat{B}\hat{R}^{-1}\hat{B}^T P = 0$$
 (7)

(UNAM) 34/38

Singular LQ: Sliding Manifold Design Lemma

Lemma

If $\bar{Q}_{22} > 0$, with the *Order of Singularity i*, the pair (A, B) is controllable, and the pair (\hat{A}, \bar{D}) is observable, where $\bar{D}^T \bar{D} = \hat{Q}$, then the optimal vector playing as minimizing virtual control in (6) is

$$ar{z}_2 = -Kar{z}_1$$
 , $K = (\hat{R})^{-1}(\hat{B}^TP + ar{Q}_{12}^T)$

where P is the unique positive definite solution to the Algebraic Riccati Equation (7).

Sliding variable

$$\sigma = \bar{z}_2 + K\bar{z}_1$$

(UNAM) 35/38

Singular LQ: Example

Consider the same linearized model of the inverted pendulum (5).

$$\bar{Q} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Partition			
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

(UNAM) 36/38

Singular LQ: Example

Consider the same linearized model of the inverted pendulum (5).

$$\bar{Q} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Partition				
	1	0	0	0
	0	1	0	0
_	0	0	1	0
	0	0	0	0

(UNAM) 36/38

Singular LQ: Example

Consider the same linearized model of the inverted pendulum (5).

Partition			
1	0	0	0
0	1	0	0
0	0	0	0
0	0	0	0

(UNAM) 36/38

Conclusions

- Old sliding manifold design:
 - $r = 1 \rightarrow A-U$ formula.
 - 2 $r = n \rightarrow \text{No sliding manifold design}$
- 2 New sliding manifold design (1 < r < n):
 - Zero-placement: Generalized A-U formula
 - Optimal stabilization: Singular LQ
- Order of singularity = Relative degree = Order of sliding modes
- HOSM := trade-off between accuracy and simplicity
- 6 A-U formula = Zero-placement problem = Choose the zero dynamics
- Ackermann formula = Pole-placement problem = Eigenvalue assignment

(UNAM) 37/38

- [Ackermann and Utkin, 1998] Ackermann, J. and Utkin, V. (1998). Sliding mode control design based on Ackermann's formula. *IEEE Transactions on Automatic Control*, 43:234 237.
- [Castillo et al., 2015] Castillo, I., Jiménez-Lizárraga, M., and Ibarra, E. (2015). Higher order sliding modes manifold design via singular {LQ} control. Journal of the Franklin Institute, 352(7):2810 – 2830.
- [Castillo et al., 2016] Castillo, I., nos, F. C., and Fridman, L. (2016). Recent Trends in Sliding Mode Control, chapter Sliding surface design for higher-order sliding modes, pages 29–56. Institute of Engineering and Technology (IET).
- [Fantoni and Lozano, 2002] Fantoni, I. and Lozano, R. (2002). Non-Linear Control for Underactuated Mechanical Systems. Springer-Verlag, London.
- [Hernández et al., 2014] Hernández, D., Castaños, F., and Fridman, L. (2014). Pole-placement in higher-order sliding-mode control. In *Proc. IFAC World Congress*, pages 1386 1391, Cape Town, South Africa.
- [Isidori, 1996] Isidori, A. (1996). Nonlinear Control Systems. Springer-Verlag, London, U.K.
- [Moore and Anderson, 1971] Moore, B. and Anderson, B. (1971). Linear optimal control.
- [Utkin, 1992] Utkin, V. I. (1992). Sliding modes in control and optimization, volume 116. Springer-Verlag Berlin.

(UNAM) 38/38