EXHIBIT12

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2007 (04.01.2007) (10) International Publication Number WO 2007/002204 A 2

- (51) International Patent Classification: *G01N 33/50* (2006.01)
- (21) International Application Number:

PCT/US2006/024157

(22) International Filing Date: 20 June 2006 (20.06.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/692,816 21 June 2005 (21.06.2005) US

- (71) Applicant (for all designated States except US): THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK [US/US]; West 116th Street And Broadway, New York, NY 10027 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): JU, Jingyue [US/US]; 267 Marietta Street, Englewood Cliffs, NJ 07632 (US). WU, Jian [CN/US]; 362 Riverside Drive #5A9, New York, NY 10025 (US). KIM, Dae, H. [US/US]; 100 Morningside Drive #5h, New York, NY 10027 (US).
- (74) Agent: WHITE, John, P.; COOPER & DUNHAM LLP, 1185 Avenue Of The Americas, New York, NY 10036 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, IP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidunce Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PYROSEQUENCING METHODS AND RELATED COMPOSTIONS

(57) Abstract: This invention provides methods for pyrosequencing and compositions comprising 3'-O- modified deoxynucleoside triphosphates.

Applicants: Jingyue Ju et al.

Serial No.: 10/735,081 Filed: December 11, 2003

Exhibit 12

PYROSEQUENCING METHODS AND RELATED COMPOSITIONS

5 This application claims benefit of U.S. Provisional Application No. 60/692,816, filed June 21, 2005, the contents of which are hereby incorporated by reference. The invention disclosed herein was made with government support under a grant from the Center for Excellence in Genomic 10 Science Grant No. P50 HG002806. Accordingly, the U.S. Government has certain rights in this invention.

Throughout this application, various publications are referenced in parentheses by number. Full citations for may be found at the these references end the immediately preceding specification the The disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains.

Background of the Invention

15

20

25

30

Pyrosequencing is a method based on the detection of the pyrophosphate group that is generated when a nucleotide is incorporated in a DNA polymerase reaction [1]. Each of the four deoxynucleotides (dNTPs) is added sequentially to the DNA template to be sequenced with a cocktail of enzymes and substrates in addition to the usual polymerase reaction components. If the added nucleotide is complementary with the first available base on the template, the nucleotide will be incorporated and a pyrophosphate will be released. The released pyrophosphate is converted to ATP by

sulfurylase, and this ATP is the substrate for a luciferase, e.g. firefly luciferase, which reaction produces visible light. If the added nucleotide is not incorporated, no light will be produced and the nucleotide will simply be degraded by the enzyme apyrase. This pyrosequencing technique, schematized in Fig. 1, has been applied to single nucleotide polymorphism (SNP) detection and other applications [2].

There are, however, inherent difficulties in the traditional pyrosequencing method for determining the number of incorporated nucleotides in homopolymeric regions (e.g. a string of several T's in a row) of the template.

Moreover, dATP greatly interferes with the luciferase detection system, which is deficient in the detection of dATP.

10

Summary of the Invention

This invention provides a method for determining the nucleotide sequence of a single-stranded DNA comprising performing the following steps for each nucleic acid residue of the DNA whose identity is to be determined:

- (a) contacting the DNA under DNA polymerization-permitting conditions with (i) a 3'-O-blocked dNTP selected from the group consisting of 3'-O-blocked dATP, 3'-O-blocked dCTP, 3'-O-blocked dGTP, and 3'-O-blocked dTTP, and (ii) 9°N DNA polymerase (exo-) A4851/Y409V or another DNA polymerase able to incorporate 3'-O-blocked dNTPs;
- 15 (b) (i) determining whether pyrophosphate is generated as result of step (a), whereby (1) pyrophosphate generation indicates that polymerization has occurred and the identity of the nucleic acid residue in the DNA is that which is complementary to the 3'-O-blocked 20 dNTP used in part (i) of step (a), and (2) the absence pyrophosphate generation indicates that identity of such nucleic acid residue is not that which is complementary to such 3'-O-blocked dNTP, and (ii) if pyrophosphate is not generated, repeating step 25 (a) once, twice or three times as necessary, wherein in each repetition a 3'-O-blocked dNTP is used which is different from any 3'-O-blocked dNTP already used, and determining, after each repetition of step (a), whether pyrophosphate is generated, such generation 30 indicating that polymerization has occurred and the identity of the nucleic acid residue in the DNA is that which is complementary to the 3'-O-blocked dNTP used in part (i) of the repeated step (a); and

5

(c) removing from the 3'-O-blocked dNTP polymerized in step (a) or (b), whichever is applicable, the moiety blocking the 3'-O atom of the dNTP, with the proviso that such removing step is optional in the event that there remains no further nucleic acid residue of the DNA whose identity is to be determined.

Brief Description of the Figures

Figure 1: Schematic of pyrosequencing in solution.

Reactants not shown are APS, which with PPi is converted to ATP and SO₄²⁻ by ATP-sulfurylase. In addition luciferase acts on ATP, luciferin and O₂ to give AMP, PPi, oxyluciferin, CO₂ and light, and apyrase converts ATP and dNTP to AMP, dNMP and 2Pi.

10

- Figure 2: 3'-O-Allyl-dNTP (A, C, G, T), instead of dNTP, is used in the single base extension on a solid surface. Four Allyl-dNTPs are added iteratively. Once the complementary base is incorporated, the pyrophosphate that is produced from the reaction 15 can be detected by its reaction with the lightgenerating luciferase system or a receptorindicator (R-I) coordination compound via the release of the fluorescent indicator molecule. Then the extended primers can be deallylated, 20 washed and reused in the next round. The use of an allyl-group solves inherent problems of traditional pyrosequencing.
- Figures 3A-3C: Schematic representation and step-by-step

 MALDI-TOF MS results for the deallylation of an
 allyl-modified oligonucleotide (SEQ ID NO:1) and
 the use of the deallylated DNA product as a
 primer in a polymerase extension reaction. (A)

 Peak at m/z 5871 corresponding to the HPLCpurified 3'-allyloxy 19-mer oligonucleotide. (B)
 Peak at m/z 5831 corresponding to the above DNA
 product without the allyl group, obtained after

5

20

25

30 secs of incubation with the Na_2PdCl_4 catalyst and the TPPTS (P(PhSO₃Na)₃) ligand at 70 °C. (C) Peak at m/z 6535 corresponding to the extension of the deallylated DNA product by Biotin-ddGTP using Thermo Sequenase DNA Polymerase.

- Figure 4: Synthesis of a 3'-O-allyl-modified oligonucleotide.
- Figures 5A & 5B: MALDI-TOF MS spectra showing the incorporation of 3'-O-allyl-modified dTTP into a growing DNA strand by 9°N Polymerase (exo-) A485L/Y409V; (A) unextended primer at m/z 5526; (B) primer extended with 3'-O-allyl-dTTP at m/z 5869.
 - Figures 6A & 6B: (A) Receptor (R): Zn²⁺-dipicolylamine (Zn2+DPA); (B) Indicator (I): fluorescent molecule (coumarin-derived indicator). See [5].
- Figures 7A & 7B: When R is titrated into I, the fluorescence intensity of I will decrease: (A)

 Zn²⁺DPA is titrated into (10µM) I; (B) PPi is added to R-I coordination compound.
 - Figure 8: Ronaghi's real-time pyrosequencing.
 - Figure 9: Improved real-time pyrosequencing method.
- 30 <u>Figure 10</u>: Structures of four reversibly-blocked nucleotides.

Figure 11: Mass spectrometry traces showing incorporation of four different reversibly-blocked allyl-dNTPs into a growing DNA strand in the solution phase.

5

- Figure 12: Polymerase extension reaction with 3'-O-allyl-dGTP-allyl-biodipy-FL-510 as a reversible terminator of SEO ID NO:2.
- Figure 13: Experimental results of pyrosequencing a DNA template (SEQ ID NO:3) in solution with allyldGTP and comparison with 'regular' unblocked nucleotides. The results indicate that allyldGTP is a good terminator in solution phase, and the incorporation Signal can be easily detected.
- Figure 14: An experimental scheme of a method employing allyl-dGTP for pyrosequencing with attachment of the primer (SEQ ID NO:4 and SEQ ID NO:5) to a solid surface/bead using an NHS ester.
- Figure 15: Comparison of pyrosequencing using 'regular' dNTPs and pyrosequencing using reversibly-blocked dNTPS (SEQ ID NO:3).
 - Figure 16: Pyrosequencing data using reversible terminators on sepharose bead immobilized looped primer-DNA (SEQ ID NO:3).

30

Figure 17: Light production by luciferase in the presence of dATP and in the presence of allyl-

dATP, demonstrating that allyl-dATP is not a luciferase substrate.

- Figure 18: Technique of immobilizing double-stranded

 DNA (SEQ ID NO:6 (top strand) and SEQ ID NO:7

 (lower strand)) to a derivatized bead and pyrosequencing using "normal" nucleotides.
- Figure 19: Pyrosequencing on sepharose bead-immobilized

 DNA (SEQ ID NO:6 (top strand) and SEQ ID NO:7

 (lower strand)) using Allyl-dNTPs.

Detailed Description of the Invention

Definitions

5 As used herein, and unless stated otherwise, each of the following terms shall have the definition set forth below.

PPi - pyrophosphate

dNTP - deoxynucleoside 5'-triphosphate - also known as

10 a deoxynucleotide

APS - adenosine 5'-phosphosulfate

ATP - adenosine 5'-triphosphate

dATP - deoxyadenosine 5'-triphosphate

THF - tetrahydrofuran

15 TEAB - tetraethylammonium bromide

TPPTS - tri sodium salt of tri (m-sulfophenyl)-phosphine

"Nucleic acid" shall mean any nucleic acid molecule, including, without limitation, DNA, RNA and hybrids thereof. The nucleic acid bases that form nucleic acid molecules can be the bases A, C, G, T and U, as well as derivatives thereof. Derivatives of these bases are well known in the art, and are exemplified in PCR Systems, Reagents and Consumables (Perkin Elmer Catalogue 1996-1997, Roche Molecular Systems, Inc., Branchburg, New Jersey, USA).

Embodiments of the Invention

Disclosed here is a method that solves the problems of homopolymeric regions and dATP interference by using 3'-O-allyl-nucleotides as reversible terminators in pyrosequencing using either a new PPi detection system

(Chemosensing Ensemble), or the traditional luciferase detection technique.

Specifically, this invention provides a method for determining the nucleotide sequence of a single-stranded DNA comprising performing the following steps for each nucleic acid residue of the DNA whose identity is to be determined:

(a) contacting the DNA under DNA polymerization-permitting conditions with (i) a 3'-O-blocked dNTP selected from the group consisting of 3'-O-blocked dATP, 3'-O-blocked dCTP, 3'-O-blocked dGTP, and 3'-O-blocked dTTP, and (ii) 9°N DNA polymerase (exo-) A4851/Y409V or other DNA polymerase;

10

(i) determining whether pyrophosphate is generated as 15 (b) result of step (a), whereby (1) pyrophosphate generation indicates that polymerization has occurred and the identity of the nucleic acid residue in the DNA is that which is complementary to the 3'-O-blocked dNTP used in part (i) of step (a), and (2) the absence 20 pyrophosphate generation indicates identity of such nucleic acid residue is not that which is complementary to such 3'-O-blocked dNTP, and (ii) if pyrophosphate is not generated, repeating step 25 (a) once, twice or three times as necessary (i.e. until pyrophosphate is generated), wherein in each repetition a 3'-O-blocked dNTP is used which different from any 3'-O-blocked dNTP already used, and determining, after each repetition of step (a), whether pyrophosphate is generated, such generation 30 indicating that polymerization has occurred and the identity of the nucleic acid residue in the DNA is

that which is complementary to the 3'-0-blocked dNTP used in part (i) of the repeated step (a); and

(c) removing from the 3'-O-blocked dNTP polymerized in step (a) or (b), whichever is applicable, the moiety blocking the 3'-O atom of the dNTP, with the proviso that such removing step is optional in the event that there remains no further nucleic acid residue of the DNA whose identity is to be determined.

- The identity of a nucleic acid residue in the DNA being 10 sequenced is that which is complementary to the 3'-0blocked dNTP incorporated, i.e. such identity is determined by the well-established complementary base-pairing rules. For example, if a 3'-O-blocked dATP is incorporated, then the corresponding nucleic acid residue in the DNA being 15 sequenced is a thymine. If a 3'-O-blocked dGTP incorporated, then the corresponding nucleic acid residue in the DNA being sequenced is a cytosine, and so forth with the understanding that adenine and thymine are complements of each other, and guanine and cytosine are complements of 20 each other. In addition, uridine is a complement of adenine.
- A 3'-O-blocked deoxynucleotide is a deoxynucleotide having attached to the 3' oxygen of its sugar component a chemical group, for example an allyl group, that precludes further polymerization from the 3' oxygen until that blocking group is removed.
- This invention further provides the instant method, wherein determining whether pyrophosphate generated in step (b)(i) is performed by detecting light generated by a luciferase-based reaction. In one embodiment, the luciferase is

firefly luciferase. In another embodiment, the luciferase-based reaction comprises contacting the pyrophosphate with a sulfurylase under conditions permitting the generation of ATP from the pyrophosphate, and contacting the ATP so generated with a luciferase under conditions permitting the generation of light by the luciferase in the presence of ATP. A luciferase-based reaction includes, for example, the reaction of luciferin and ATP in the presence of luciferase and O₂, whereby oxyluciferin, AMP, PPi, CO₂, and light are produced. The light produced can be measured by any standard photometry technique including, but not limited to, photomultiplier, video, CCD, CCCD, and the naked eye.

In a preferred embodiment, the moiety blocking the 3'-0 atom of the dNTP is an allyl moiety and the single-stranded DNA is immobilized to a solid substrate.

10

20

In another embodiment, determining whether pyrophosphate is generated in step (b)(i) is performed by detecting dissociation of a coumarin-derived indicator from a complex between the indicator and a bis-Zn²⁺-dipicolylamine coordination compound, wherein the coumarin-derived indicator has the following structure:

and the bis-Zn²⁺-dipicolylamine coordination compound, when in association with the coumarin-derived indicator, has the following structure:

In the preferred embodiment, the moiety blocking the 3'-O atom of the dNTP is an allyl moiety and the single-stranded DNA is immobilized to a solid substrate. In another embodiment the moiety blocking the 3'-O atom of the dNTP is an allyl moiety or a methoxymethyl moiety. Preferably, the moiety is an allyl moiety.

In the preferred embodiment of the instant method, the DNA substrate. In different immobilized on a solid 10 embodiments, the DNA is bound to the solid substrate via an an alkynyl linkage, a 1,3-dipolar linkage, azido cycloaddition linkage, or biotin-streptavidin interaction. The solid substrate can be, for example, in the form of a chip, a bead, a well, a capillary tube, or a slide. Also, 15 for example, the solid substrate can be gold, quartz, silica, or plastic. In one embodiment of this invention, the solid substrate is porous.

Single-stranded DNA can be immobilized on a solid surface, for example a glass surface, by a 1,3-dipolar cycloaddition reaction in the presence of a Cu(I) catalyst. The DNA is labeled with an azido group at the 5' end, while the glass surface is modified by an alkynyl group. After the 1,3-dipolar cycloaddition between the azido and the alkynyl group in the presence of a Cu(I) catalyst at room temperature, the DNA is covalently attached to the surface via a stable 1,2,3-triazole linkage. The positions of the

azido and the alkynyl functional groups are interchangeable. The resulting 1,2,3-triazoles are stable at aqueous conditions and high temperature.

- In the preferred embodiment of the instant methods, the moiety blocking the 3'-O atom of the dNTP is an allyl moiety and removing it is performed using Na₂PdCl₄ and TPPTS.
- This invention also provides a compound comprising a dNTP having bound to its 3' oxygen an allyl or methoxymethyl moiety. In the preferred embodiment, the moiety is an allyl moiety. In another embodiment, the moiety is a methoxymethyl moiety. In specific embodiments the dNTP is dATP, dCTP, dGTP, or dTTP. In a further embodiment, the instant compound is a 3'-O-allyl dNTP, and specifically 3'-O-allyl dATP, 3'-O-allyl dCTP, 3'-O-allyl dGTP, 3'-O-allyl dGTP, 3'-O-allyl dTTP.
- Examples of allyl derivatives include, without limitation, analogs or homologs thereof, or haloallyls such as iodoallyl, chloroallyl and fluoroallyl which perform as blocking moieties. Examples of methoxymethyl derivatives include, without limitation, analogs or homologs thereof which perform as blocking moieties.

This invention also provides a process for producing a 3'-O-allyl dNTP comprising:

(a) sequentially contacting a dimethoxytrityl (DMTr) 3'

protected nucleoside triphosphate with (i) 3-bromo propene, NaOH and benzene, and (ii) a suitable solvent; and

(b) sequentially contacting the product of step (a) with (i) $POCl_3/(MeO)_3P(O)$, (ii) tributylammonium pyrophosphate, and (iii) TEAB/NH₄OH, so as to produce the 3'-O-allyl dNTP.

5

In one embodiment of the instant method, the suitable solvent of step (a)(ii) is 3% THF/CHCl₃. In another embodiment, the concentration of TEAB in step (b)(iii) is about 0.1M.

10

Finally, this invention provides a kit for use in sequencing a single-stranded DNA comprising:

- (a) 3'-O-allyl dATP, 3'-O-allyl dCTP, 3'-O-allyl dTTP, and 3'-O-allyl dGTP, each in a separate compartment; and
- 15 (b) instructions for use.

In various embodiments, the instant kit further comprises (i) a 9°N DNA polymerase (exo-) A4851/Y409V, (ii) reagents permitting DNA polymerization, (iii) reagents permitting pyrophosphate detection using a luciferase-based reaction, (iv) reagents permitting pyrophosphate detection using a coumarin-derived indicator, and/or (v) reagents permitting removal of an allyl group from a 3'-O-allyl dNTP.

In differing embodiments, the 3'-O-allyl-modified dNTP has one of the following structures:

This invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative of the invention as described more fully in the claims which follow thereafter.

Experimental Details

10

15

20

25

30

The general scheme of the improved pyrosequencing method is shown in Fig. 2. 3'-O-allyl-dNTPs (A, C, G, T), instead of dNTPs, are used in the single base extension on a solid surface. Four allyl-dNTPs are added iteratively. Once the complementary base is incorporated, the pyrophosphate that is produced from the reaction can be detected by its reaction with the light-generating luciferase system or a receptor-indicator (R-I) coordination compound via the release of the fluorescent indicator molecule. In one case the R-I compound has negligible or no fluorescence, and the released/displaced indicator is detectably fluorescent. Then the extended primers can be deallylated, washed and reused in the next round. The use of an allyl group solves inherent problems of traditional pyrosequencing.

Synthesis and Deallylation of 3'-O-Allyl-dNTP and its Performance in Single Base Extension

A mild condition to remove a 3'-O-allyl group from DNA in aqueous solution using a catalyst system formed by Na₂PdCl₄ 3,3',3''water-soluble ligand and phosphinidynetris (benzenesulfonic acid), trisodium (TPPTS) [3] has been identified. Using this condition, the deallylation of the purified 19-mer oligonucleotide (5'-AGAGGATCCAACCGAGAC-T(ally1)-3') (SEQ ID NO:8) established using MALDI-TOF mass spectrometry. In Fig. 3A, the mass peak at m/z 5871 corresponds to the mass of the purified oligonucleotide bearing the allyl group. deallylation reaction on this oligonucleotide was carried out using the Na₂PdCl₄/TPPTS system. Fig. 3B shows near

complete deallylation with a DNA/catalyst/ligand ratio of 1/50/400 in a reaction time of 30 secs, as shown by the mass peak at m/z 5831.

The next step was to prove that the deallylated product 5 could be used in a primer extension reaction and that deallylation did not hinder the continuation polymerase reaction. A single base extension reaction using the deallylated product as a primer was performed with a synthetic template and a Biotin-ddGTP nucleotide terminator 10 complementary to the base immediately adjacent to the priming site on the template. The extension product was isolated using capture solid phase purification analyzed using MALDI-TOF MS [4]. The mass spectrum in Fig. 3C shows a clear peak at m/z 6535 corresponding to the 15 extension product proving that the deallylated product can be successfully used as a primer in a polymerase reaction.

These experiments established that Na₂PdCl₄ and TPPTS could 20 be used to efficiently carry out deallylation on DNA in an aqueous environment without the need for an allyl scavenger or harsh conditions. A next step was to ensure that an allyl-modified nucleotide could be incorporated in a DNA Polymerase reaction. For this purpose, a nucleotide analogue 3'-allyloxythymidine triphosphate (3'-O-allyl-25 dTTP) was synthesized (Fig. 4) and its incorporation ability was tested using a mutant form of Polymerase (exo-) bearing the mutations A485L and Y409V. Results showed that this enzyme could incorporate 3'-0allyl-dTTP in a polymerase reaction. 3'-O-allyl-dGTP, 3'-30 O-allyl-dATP and 3'-O-allyl-dCTP can be similarly prepared according to the scheme set forth in Fig. 4.

The 3'-O-allyl-thymidine triphosphate was used in a primer extension reaction to demonstrate its ability to be incorporated into a growing DNA strand by DNA Polymerase. The extension was performed using a 15-µl reaction mixture consisting of 50 pmol of an 18-mer primer (5'-AGA-GGA-TCC-AAC-CGA-GAC-3') (SEQ ID NO:9), 100 pmol of single-stranded 60-mer DNA template (5'-GTG-TAC-ATC-AAC-ATC-ACC-TAC-CAC-CAT-GTC-AGT-CTC-GGT-TGG-ATC-CTC-TAT-TGT-GTC-CGG-3') (SEQ ID NO:10) corresponding to a portion of exon 7 of the p53 gene 3'-O-allyl-thymidine triphosphate), 10 pmol of Thermopol reaction buffer (New England Biolabs) and 15 U of DNA polymerase (exo-) A485L/Y409V. The extension reaction consisted of 15 cycles at 94 °C for 20 sec, 48 °C for 30 sec and 60 °C for 60 sec. The product was desalted using Zip Tip and analyzed using MALDI-TOF MS. The mass 15 spectral data are shown in Fig. 5. Fig. 5(A) shows a single mass peak at m/z 5526 corresponding to the unextended shows a single peak at m/z 5869 primer. Fig. 5(B) corresponding to the primer extended by a single base 3'-O-20 allyl-thymidine triphosphate. These data confirm that the above 3'-allyl- modified nucleotide analogue can efficiently incorporated by 9°N DNA polymerase (exo-) A485L/Y409V.

25 Single Base Extension on Solid Surface with 3'-Allyl-dNTP (Click Chemistry)

In order to separate primers from the mixture after SBE and deallylation, the primers can be immobilized on a solid surface. One common method is to use paramagnetic beads which are coated with streptavidin. Primers which are labeled with biotin can be attached to the beads because of the biotin-streptavidin attraction. A recently developed

DNA immobilization method using click chemistry, [6] hereby incorporated by reference, can be used in the pyrosequencing method disclosed here. With the addition of template, ally-dNTP and polymerase, the extension can take place on the beads.

A New PPi Detection System for use in Pyrosequencing (Chemosensing Ensemble)

10 Roger reported a fluorescence chemosensing (Chemosensing Ensemble) which is described and shown to pyrophosphate under physiological selectively detect conditions [5]. Here, pyrophosphate is capable of displacing a fluorescent coumarin-derived indicator (I) a bis-Zn²⁺-dipicolylamine 15 (Zn²⁺DPA) coordination compound (R). See Fig. 6. With an increase of the Receptor (R) amount, the non-fluorescent R-I coordination compound is formed. When the proportion of R is 50%, its fluorescence reaches lowest, indicating a 20 stoichiometry. Once pyrophosphate is added to the solution, it can replace the Indicator (fluorescence molecule) from the R-I coordination compound. Therefore, the fluorescence molecule is released/displaced, and the fluorescence intensity of the solution will increase (Fig. 7A and B).

Schematically:

25

30 Using 3'-allyl-dNTPs as reversible terminators overcomes the inherent problem that the pyrosequencing method otherwise has in accurately detecting the bases in homopolymeric regions, because each base via this invention

is extended one by one with high fidelity. Meanwhile, the newly designed PPi detection system is simple to use and is not affected by dATP. The paradigm of pyrosequencing can be useful in the presence of automatic sequencing machines where each step is repeated in cycles.

Improvement upon the Ronaghi Method

30

Ronaghi proposed a real time pyrosequencing method in solution [1]. In his method, four enzymes are needed. Among them, sulfurylase is used to transfer PPi to ATP; then luciferase is used to generate light that indicates PPi has been generated. In the next step apyrase is used to degrade ATP and excess dNTP in the reaction; then the process goes to the next round. However, apyrase activity is decreased in later cycles, which is due to the accumulation of intermediate products (such as deoxynucleoside diphosphate, or dNDP) and eventually undegraded dNTP. Because of this limitation, this method can determine the sequence of only about 100 bases at most. See Fig. 8.

However, replacing dNTPs in Fig. 8 with the 3'-Allyl-dNTPs disclosed here, and then following the scheme in Fig. 8, permits one to unambiguously sequence the DNA using repeated cycles without the same degradation problems.

The method disclosed here using the R-I complex can greatly improve the real-time pyrosequencing in the Ronaghi method. (Fig. 9). The R-I complex is used to detect PPi. PPi is converted to PPi-R, while the released indicator I can be transferred to the R-I complex by adding R without removing the components from the solution. The excess dNTP in each cycle is degraded by apyrase. Because there will be no ATP

*

produced in the detection steps, apyrase now primarily degrades dNTP and is more efficient in its action. Accordingly, more bases can be determined.

Another advantage of this method is that only two kinds of enzymes are used here rather than four, and the detection step will not adversely affect the other steps. However, this improved method cannot detect the bases in homopolymeric regions either, and so 3'-O allyl dNTPs are employed to circumvent this problem.

References

10

15

- 1. Ronaghi M., Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. *Science* 281(5375), 363-365 (1998).
 - 2. Ronaghi M., Karamohamed S., Pettersson B., Uhlen M., Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242(1), 84-89 (1996).
 - 3. "Design and Synthesis of a 3'-O-Allyloxy Photocleavable Fluorescent Nucleotide as a Reversible Terminator for DNA Sequencing By Synthesis". H. Ruparel, L. Bi, Z. Li, X. Bai, D. H. Kim, N. Turro & J. Ju. Proceedings of the National Academy of Sciences USA 2005, 102, 5932-5937.
 - 4. Edwards, J. R., Itagaki, Y. & Ju, J. Solid Phase Capturable Dideoxynucleotides for Multiplex Genotyping Using Mass Spectrometry (2001). *Nucleic Acids Res.* 29, e104 (p1-6).
- 5. Roge G. etc. An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions. Tetrahedron Letters 45(2004) 8721-8724.
 - 6. Ju, J. et al., U.S. Patent 6,664,079.

What is claimed is:

5

10

15

20

25

30

1. A method for determining the nucleotide sequence of a single-stranded DNA comprising performing the following steps for each nucleic acid residue of the DNA whose identity is to be determined:

- (a) contacting the DNA under DNA polymerization-permitting conditions with (i) a 3'-O-blocked dNTP selected from the group consisting of 3'-O-blocked dATP, 3'-O-blocked dCTP, 3'-O-blocked dGTP, and 3'-O-blocked dTTP, and (ii) 9°N DNA polymerase (exo-) A4851/Y409V;
- (b) (i) determining whether pyrophosphate is generated as a result of step (a), whereby (1) pyrophosphate generation indicates that polymerization has occurred and the identity of the nucleic acid residue in the DNA is that which is complementary to the 3'-O-blocked dNTP used in part (i) of step (a), and (2) the absence of pyrophosphate generation indicates that identity of such nucleic acid residue is not that which is complementary to such 3'-O-blocked dNTP, and (ii) if pyrophosphate is not generated, repeating step (a) once, twice or three times as necessary, wherein in each repetition a 3'-0blocked dNTP is used which is different from any 3'-O-blocked dNTP already used, and determining, each repetition of step (a), pyrophosphate is generated, such generation indicating that polymerization has occurred and the identity of the nucleic acid residue in the DNA is that which is complementary to the 3'-0-

blocked dNTP used in part (i) of the repeated step (a); and

(c) removing from the 3'-O-blocked dNTP polymerized in step (a) or (b), whichever is applicable, the moiety blocking the 3'-O atom of the dNTP, with the proviso that such removing step is optional in the event that there remains no further nucleic acid residue of the DNA whose identity is to be determined.

10

5

2. The method of claim 1, wherein determining whether pyrophosphate generated in step (b)(i) is performed by detecting light generated by a luciferase-based reaction.

- 3. The method of claim 2, wherein the luciferase is firefly luciferase.
- 4. The method of claim 2, wherein the luciferase-based reaction comprises contacting the pyrophosphate with a sulfurylase under conditions permitting the generation of ATP from the pyrophosphate, and contacting the ATP so generated with a luciferase under conditions permitting the generation of light by the luciferase in the presence of ATP.
- 5. The method of claim 1, wherein determining whether pyrophosphate is generated in step (b)(i) is performed by detecting dissociation of a coumarin-derived indicator from a complex between the indicator and a bis-Zn²⁺-dipicolylamine coordination compound, wherein the coumarin-derived indicator has the following structure:

and the bis- $2n^{2+}$ -dipicolylamine coordination compound, when in association with the coumarin-derived indicator, has the following structure:

5

6. The method of claim 1, wherein the moiety blocking the 3'-0 atom of the dNTP is an allyl moiety or a methoxymethyl moiety.

- 7. The method of claim 6, wherein the moiety is an allyl moiety.
- 8. The method of claim 1, wherein the DNA is immobilized on a solid substrate.
- 9. The method of claim 8, wherein the DNA is immobilized on the solid substrate via an azido linkage, an alkynyl linkage, 1,3-dipolar cycloaddition linkage, or biotin-streptavidin interaction.
 - 10. The method of claim 8, wherein the solid substrate is in the form of a chip, a bead, a well, a capillary tube, or a slide.

- 11. The method of claim 8, wherein the solid substrate is gold, quartz, silica, or plastic.
- 5 12. The method of claim 8, wherein the solid substrate is porous.
- 13. The method of claim 4, wherein the moiety blocking the 3'-O atom of the dNTP is an allyl moiety and the single-stranded DNA is immobilized to a solid substrate.
 - 14. The method of claim 5, wherein the moiety blocking the 3'-O atom of the dNTP is an allyl moiety and the single-stranded DNA is immobilized to a solid substrate.

15

- 15. The method of claim 1, wherein the moiety blocking the 3'-0 atom of the dNTP is an allyl moiety and removing it is performed using Na₂PdCl₄ and TPPTS.
- 20 16. A compound comprising a dNTP having bound to its 3' oxygen an allyl or methoxymethyl moiety.
 - 17. The compound of claim 16, wherein the moiety is an allyl moiety.

25

- 18. The compound of claim 16, wherein the moiety is a methoxymethyl moiety.
- 19. The compound of claim 16, wherein the dNTP is dATP.

- 20. The compound of claim 16, wherein the dNTP is dCTP.
- 21. The compound of claim 16, wherein the dNTP is dGTP.

- 22. The compound of claim 16, wherein the dNTP is dTTP.
- 23. The compound of claim 16, wherein the compound is a 3'5 O-allyl dNTP.
 - 24. The compound of claim 23, wherein the compound is 3'-O-allyl dATP.
- 10 25. The compound of claim 23, wherein the compound is 3'-O-allyl dCTP.
 - 26. The compound of claim 23, wherein the compound is 3'-0-allyl dGTP.

- 27. The compound of claim 23, wherein the compound is 3'-0-allyl dTTP.
- 28. A compound comprising a dNTP having bound to its 3'
 20 oxygen an allyl derivative or a methoxymethyl derivative.
 - 29. A process for producing a 3'-O-allyl dNTP comprising:
- (a) sequentially contacting a dimethoxytrityl (DMTr)

 3' protected nucleoside triphosphate with (i) 3bromo propene, NaOH and benzene, and (ii) a
 suitable solvent; and
- (b) sequentially contacting the product of step (a) with (i) POCl₃/(MeO)₃P(O), (ii) tributylammonium pyrophosphate, and (iii) TEAB/NH₄OH, so as to produce the 3'-O-allyl dNTP.

- 30. The method of claim 29, wherein the suitable solvent of step (a)(ii) is 3% THF/CHCl₃.
- 31. The method of claim 29, wherein the concentration of TEAB in step (b)(iii) is about 0.1M.
 - 32. A kit for use in sequencing a single-stranded DNA comprising:
- (a) 3'-O-allyl dATP, 3'-O-allyl dCTP, 3'-O-allyl dTTP,

 and 3'-O-allyl dGTP, each in a separate compartment; and
 - (b) instructions for use.
- 33. The kit of claim 32, further comprising a 9°N DNA polymerase (exo-) A4851/Y409V.
 - 34. The kit of claim 33, further comprising reagents permitting polymerization.
- 20 35. The kit of claim 33, further comprising reagents permitting pyrophosphate detection using a luciferase-based reaction.
- 36. The kit of claim 33, further comprising reagents permitting pyrophosphate detection using a coumarinderived indicator.
- 37. The kit of claim 33, further comprising reagents permitting removal of an allyl group from a 3'-O-allyl dNTP.

Fig. 1

Non-Fluorescent

Fluorescent

Fig. 2

Fig. 3

Fig.

Fig. 5

A.

$$Z_n^{2+}$$
 Z_n^{2+}
 Z_n^{2+}

в.

Fig. 6

A.

в.

Fig. 7

Fig. 8

Fig. 9

3'-O-allyl-dATP

MW=502.99

3'-O-allyl-dCTP

Fig. 10

3'-O-allyl-dGTP

MW=517.99

3'-O-allyl-dTTP

Fig. 11

Allyl-dG control-no enzyme Followed by pyrosequencing with regular nucleotides

Followed by pyrosequencing with regular nucleotides

Allyl-dG incorporation

Fig.13

Fig. 14

Fig.15

Solid Phase Attached Looped Primer Sequence

3rd extension signal with allyl-dGTP

Fig. 16

Fig. 17

18/19

-0-); CATACGTCAATCGACAGACCGGTTTAAAGGGCCCCTACTGC-5" ~0 → GTATGCAGTTAGCTGTCTGGCC-3 Coupling buffer

ነ፪ CATACGTCAATCGACAGACCGGTTTAAAGGGCCCTACTGC-5' k GTATGCAGTTAGCTGTCTGGCC -3'

Sequencing the sepharose beads immobilized with DNA with Normal Nucleotides

Fig. 18

1st -allyl-dATP incorporation

10

Fig. 19

7th -allyl-dCTP incorporation

74689-a-pct.ST25 SEQUENCE LISTING

<110>	The Trustees of Columbia University in the City of New York Ju, Jingyue Wu, Jian Kim, Dae H	
<120>	PYROSEQUENCING METHODS AND RELATED COMPOSITIONS	
<130>	0575/74689-A-PCT	
<160>	10	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>		
<220> <223>	chemically synthesized	
<400> agagga	1 tcca accgagac	18
<210> <211> <212> <213>		
<220> <223>	chemically synthesized	
<400> cagagc	2 caac ctaggaga	18
<210> <211> <212> <213>	3 58 DNA Artificial Sequence	
<220> <223>	chemically synthesized	
400> ttttat	3 cga attcccggaa acagctatga ccatgcttgc atggtcatag ctgtttcc	58
:210> :211> :212>	4 5 DNA Artificial Sequence	
:220>	chemically synthesized	
400> tccc	4	5
		٦.

310	/4689-a-pct.ST25	
<210> <211> <212> <213>	6	
<220> <223>	chemically synthesized	
<400> ttccc	5	6
<210> <211> <212> <213>	6 22 DNA Artificial Sequence	
<220> <223>	chemically synthesized	
<400> gtatgo	6 agtt agctgtctgg cc	22
<210> <211> <212> <213>	7 40 DNA Artificial Sequence	
<220> <223>	chemically synthesized	
<400> catacg	7 tcaa tcgacagacc ggtttaaagg gccctactgc	40
	8 19 DNA Artifical Sequence	
<400> agagga	8 tcca accgagact	19
<210> <211> <212> <213>	9 18 DNA Artificial Sequence	
<220> <223>	primer directed to human p53 gene	
<400> 9 agaggatcca accgagac		18
<210> <211> <212> <213>	10 60 DNA homo sapiens	
-4005	10	

gtgtacatca acatcaccta ccaccatgtc agtctcggtt ggatcctcta ttgtgtccgg 60