Assignment report submission guide lines

Guide lines to students:

1. Find you assignment:

Find the page with your Name and roll number and, solve only those 6 questions.

2. Preparing the solution of the Assignment

Write your name, roll number, section and registration number on each and every page. the page which will not carry these 4 details will not be considered for evaluation.

3. Submission

After solving the assignment of A4 size paper, I will recommend you the "Microsoft Office Lens - PDF Scanner" app to convert your images to **Black & white** and then **into PDF**. It will be good.

Link for "Microsoft Office Lens - PDF Scanner" app:

https://play.google.com/store/apps/details?id=com.microsoft.office.officelens&hl=en IN

4. Submission Mode

Upload the file on UMS Only, no other way of submission will be acceptable.

Very important Instructions:

- 1. Use the white pages only, don't use the rough sheets. Prefer A4 size pages.
- 2. Prefer to use blue/Black pen, and highlight Question Number and headings.
- **3.** Start every question from new page.
- 4. The content should be neatly written and visible, and avoid cutting text.
- 5. If any student fails to submit the Assignment as per the submission date, his/her marks will be uploaded as Zero.

Name: Sailesh Pubial

Registration Number: 12001918 Roll Number: RK20BEA01

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-101)_{10}$ and $(-70)_{10}$ using 2's and 9's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1101)_2 - (0010)_2) \left(\frac{(100)_2}{(100)_2}\right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (C7)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design 3-bit gray to binary converter using k-map.

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Bachhu Jaswanth

Registration Number: 12001934 Roll Number: RK20BEA02

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-102)_{10}$ and $(-70)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1001)_2 - (0100)_2) \left(\frac{(100)_2}{(10)_2}\right) + (100)_2 - (11)_2$$

3. Convert the BCD of (C6)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full adder circuit using k-map.

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Koneti Venkata Tharun Reddy

Registration Number: 12001692 Roll Number: RK20BEA03

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-103)_{10}$ and $(-70)_{10}$ using 2's and 15's complement form.

$$X = ((0111)_2 - (0010)_2) \left(\frac{(1100)_2}{(100)_2} \right) + (101)_2 - (11)_2$$

- 3. Convert the BCD of (C5)₁₆ into 7-bit left to right odd parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit binary to gray converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Nelluri Mahesh Babu

Registration Number: 12002587 Roll Number: RK20BEA04

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-104)_{10}$ and $(-70)_{10}$ using 1's and 8's complement form.

$$X = ((1100)_2 - (0001)_2) \left(\frac{(1000)_2}{(10)_2} \right) + (110)_2 - (11)_2$$

- 3. Convert the BCD of (C4)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: Vallabhaneni Prudhvi Sai

Registration Number: 12002918 Roll Number: RK20BEA05

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-105)_{10}$ and $(-70)_{10}$ using 2's and 7's complement form.

$$X = ((1101)_2 - (0010)_2) \left(\frac{(10100)_2}{(100)_2} \right) + (111)_2 - (11)_2$$

- 3. Convert the BCD of (C3)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Polavena Venkatesh

Registration Number: 12003618 Roll Number: RK20BEA07

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-107)_{10}$ and $(-70)_{10}$ using 1's and 10's complement form.

$$X = ((1101)_2 - (0010)_2) \left(\frac{(1110)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

- 3. Convert the BCD of (C1)₁₆ into 7-bit left to right even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design the Full adder circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Sangaraju Guru Vishnuvardhan Raju

Registration Number: 12003495 Roll Number: RK20BEA08

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-108)_{10}$ and $(-70)_{10}$ using 2's and 9's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1010)_2 - (0101)_2) \left(\frac{(100000)_2}{(100)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (C0)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: Chamarthi Manoj Kumar Raju

Registration Number: 12003450 Roll Number: RK20BEA10

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-110)_{10}$ and $(-70)_{10}$ using 1's and 16's complement form.

$$X = ((0101)_2 - (0110)_2) \left(\frac{(10100)_2}{(10)_2} \right) + (110)_2 - (11)_2$$

- 3. Convert the BCD of (BE)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Janyavula Karthikeswar Registration Number: 12003204

Roll Number: RK20BEA11

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-111)_{10}$ and $(-70)_{10}$ using 2's and 15's complement form.

$$X = ((1001)_2 - (0100)_2) \left(\frac{(101100)_2}{(100)_2} \right) + (111)_2 - (11)_2$$

- 3. Convert the BCD of (BD)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Deblina Das

Registration Number: 12003888 Roll Number: RK20BEA12

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-112)_{10}$ and $(-70)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1101)_2 - (0010)_2) \left(\frac{(11000)_2}{(10)_2} \right) + (1000)_2 - (11)_2$$

3. Convert the BCD of (BC)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full adder circuit using k-map.

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Ripu Bhushan Singh

Registration Number: 12003949 Roll Number: RK20BEA13

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-113)_{10}$ and $(-70)_{10}$ using 2's and 7's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1110)_2 - (0011)_2) \left(\frac{(110100)_2}{(100)_2} \right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (BB)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Abhishek Choudhary

Registration Number: 12004591 Roll Number: RK20BEA14

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-114)_{10}$ and $(-70)_{10}$ using 1's and 10's complement form.

$$X = ((0110)_2 - (0001)_2) \left(\frac{(11100)_2}{(10)_2} \right) + (100)_2 - (11)_2$$

- 3. Convert the BCD of (BA)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: Shibu Kumar

Registration Number: 12004889 Roll Number: RK20BEA15

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-115)_{10}$ and $(-70)_{10}$ using 2's and 9's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1110)_2 - (0011)_2) \left(\frac{(111100)_2}{(100)_2} \right) + (101)_2 - (11)_2$$

3. Convert the BCD of (B9)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design 3-bit gray to binary converter using k-map.

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Shishank Debnath

Registration Number: 12005057 Roll Number: RK20BEA16

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-116)_{10}$ and $(-70)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1100)_2 - (0001)_2) \left(\frac{(100000)_2}{(10)_2}\right) + (110)_2 - (11)_2$$

3. Convert the BCD of (B8)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full adder circuit using k-map.

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Koripelli Pavan

Registration Number: 12005630 Roll Number: RK20BEA18

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-118)_{10}$ and $(-70)_{10}$ using 2's and 15's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0101)_2 - (0110)_2) \left(\frac{(1001000)_2}{(100)_2} \right) + (1000)_2 - (11)_2$$

3. Convert the BCD of (B6)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: Dhiraj Upadhyay

Registration Number: 12006499 Roll Number: RK20BEA19

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-119)_{10}$ and $(-70)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1110)_2 - (0011)_2) \left(\frac{(100110)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (B5)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full subtractor circuit using k-map.

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Amanpreet Kour

Registration Number: 12006521 Roll Number: RK20BEA20

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-120)_{10}$ and $(-70)_{10}$ using 2's and 7's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0110)_2 - (0001)_2) \left(\frac{(1010000)_2}{(100)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (B4)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design 3-bit gray to binary converter using k-map.

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Umang Kumar

Registration Number: 12006142 Roll Number: RK20BEA21

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-121)_{10}$ and $(-70)_{10}$ using 1's and 10's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0111)_2 - (0010)_2) \left(\frac{(101010)_2}{(10)_2} \right) + (101)_2 - (11)_2$$

3. Convert the BCD of (B3)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design the Full adder circuit using k-map.

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Mylavarapu Sreepada Bharadwaj

Registration Number: 12005891 Roll Number: RK20BEA22

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-122)_{10}$ and $(-70)_{10}$ using 2's and 9's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0110)_2 - (0001)_2) \left(\frac{(1011000)_2}{(100)_2} \right) + (110)_2 - (11)_2$$

3. Convert the BCD of (B2)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Prakhyat Singhal

Registration Number: 12005809 Roll Number: RK20BEA23

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-123)_{10}$ and $(-70)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1110)_2 - (0011)_2) \left(\frac{(101110)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (B1)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full subtractor circuit using k-map.

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: Kotana Satya Sai Ganesh

Registration Number: 12005827 Roll Number: RK20BEA24

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-124)_{10}$ and $(-70)_{10}$ using 2's and 15's complement form.

$$X = ((1100)_2 - (0001)_2) \left(\frac{(1100000)_2}{(100)_2} \right) + (1000)_2 - (11)_2$$

- 3. Convert the BCD of (B0)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Debasish Borah

Registration Number: 12007776 Roll Number: RK20BEA25

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-125)_{10}$ and $(-70)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1011)_2 - (0110)_2) \left(\frac{(110010)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (AF)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full adder circuit using k-map.

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Nalli Shiva

Registration Number: 12008888 Roll Number: RK20BEA26

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-126)_{10}$ and $(-70)_{10}$ using 2's and 7's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1101)_2 - (0010)_2) \left(\frac{(1101000)_2}{(100)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (AE)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: Gatadi Varshith

Registration Number: 12009549 Roll Number: RK20BEA27

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-127)_{10}$ and $(-70)_{10}$ using 1's and 10's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1110)_2 - (0011)_2) \left(\frac{(110110)_2}{(10)_2} \right) + (101)_2 - (11)_2$$

3. Convert the BCD of (AD)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design the Full subtractor circuit using k-map.

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Kolla Devendra Praneeth Registration Number: 12010162

Roll Number: RK20BEA28

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-128)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

$$X = ((0111)_2 - (0010)_2) \left(\frac{(1110000)_2}{(100)_2} \right) + (110)_2 - (11)_2$$

- 3. Convert the BCD of (AC)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Aman Jaiman

Registration Number: 12010331 Roll Number: RK20BEA29

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-129)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0110)_2 - (0001)_2) \left(\frac{(111010)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (AB)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full adder circuit using k-map.

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Tirtharaj Paul

Registration Number: 12011819 Roll Number: RK20BEA30

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-130)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

$$X = ((1110)_2 - (0011)_2) \left(\frac{(1111000)_2}{(100)_2} \right) + (1000)_2 - (11)_2$$

- 3. Convert the BCD of (AA)₁₆ into 7-bit left to right odd parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit binary to gray converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Prakhar Singh

Registration Number: 12012088 Roll Number: RK20BEA31

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-131)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1101)_2 - (0010)_2) \left(\frac{(111110)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (A9)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full subtractor circuit using k-map.

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: Mohit

Registration Number: 12012540 Roll Number: RK20BEA33

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-133)_{10}$ and $(-130)_{10}$ using 2's and 7's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0101)_2 - (0110)_2) \left(\frac{(10000100)_2}{(100)_2} \right) + (101)_2 - (11)_2$$

3. Convert the BCD of (A7)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design 3-bit gray to binary converter using k-map.

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Paramjeet

Registration Number: 12013003 Roll Number: RK20BEA35

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-135)_{10}$ and $(-130)_{10}$ using 1's and 10's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1000)_2 - (0011)_2) \left(\frac{(1000110)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (A5)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design the Full adder circuit using k-map.

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Ayushi Singh

Registration Number: 12013250 Roll Number: RK20BEA36

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-136)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0101)_2 - (0110)_2) \left(\frac{(10010000)_2}{(100)_2} \right) + (1000)_2 - (11)_2$$

3. Convert the BCD of (A4)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: Sachin Choudhary

Registration Number: 12013255 Roll Number: RK20BEA37

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-137)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1010)_2 - (0101)_2) \left(\frac{(1001010)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (A3)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full subtractor circuit using k-map.

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Kiran Kumari

Registration Number: 12014132 Roll Number: RK20BEA39

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-139)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

$$X = ((0111)_2 - (0010)_2) \left(\frac{(10011100)_2}{(100)_2} \right) + (101)_2 - (11)_2$$

- 3. Convert the BCD of (A1)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Perumalla Siva Gopi

Registration Number: 12014666 Roll Number: RK20BEA40

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-140)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1011)_2 - (0110)_2) \left(\frac{(1010000)_2}{(10)_2} \right) + (110)_2 - (11)_2$$

3. Convert the BCD of (A0)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full adder circuit using k-map.

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Shaik Mahaboob Subhani

Registration Number: <u>12014653</u> Roll Number: <u>RK20BEA41</u>

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-141)_{10}$ and $(-130)_{10}$ using 2's and 7's complement form.

$$X = ((1000)_2 - (0011)_2) \left(\frac{(10100100)_2}{(100)_2} \right) + (111)_2 - (11)_2$$

- 3. Convert the BCD of (9F)₁₆ into 7-bit left to right odd parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design 3-bit binary to gray converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Arpit Gupta

Registration Number: 12014337 Roll Number: RK20BEA42

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-142)_{10}$ and $(-130)_{10}$ using 1's and 10's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1100)_2 - (0001)_2) \left(\frac{(1010100)_2}{(10)_2} \right) + (1000)_2 - (11)_2$$

3. Convert the BCD of (9E)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design the Full subtractor circuit using k-map.

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: Abhishek Sharma

Registration Number: 12014674 Roll Number: RK20BEA44

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-144)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1001)_2 - (0100)_2) \left(\frac{(10110000)_2}{(100)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (9C)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design 3-bit gray to binary converter using k-map.

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Subham Ghosh

Registration Number: 12015859 Roll Number: RK20BEB47

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-147)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1110)_2 - (0011)_2) \left(\frac{(1011110)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (99)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full adder circuit using k-map.

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Divyanshi Panwar

Registration Number: 12014279 Roll Number: RK20BEB49

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-149)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

$$X = ((1110)_2 - (0011)_2) \left(\frac{(11000100)_2}{(100)_2} \right) + (1001)_2 - (11)_2$$

- 3. Convert the BCD of (97)₁₆ into 7-bit left to right odd parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit binary to gray converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: Sahil Negi

Registration Number: 12014092 Roll Number: RK20BEB50

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-150)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0111)_2 - (0010)_2) \left(\frac{(1100100)_2}{(10)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (96)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full subtractor circuit using k-map.

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Md Moniruzzaman Piyash

Registration Number: 12013416 Roll Number: RK20BEB51

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-151)_{10}$ and $(-130)_{10}$ using 2's and 7's complement form.

$$X = ((1011)_2 - (0110)_2) \left(\frac{(11001100)_2}{(100)_2} \right) + (101)_2 - (11)_2$$

- 3. Convert the BCD of (95)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Singh Niraj Ashok

Registration Number: 12013433 Roll Number: RK20BEB53

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-153)_{10}$ and $(-130)_{10}$ using 1's and 10's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1000)_2 - (0011)_2) \left(\frac{(1101010)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (93)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design the Full adder circuit using k-map.

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Doma Tharun

Registration Number: 12013232 Roll Number: RK20BEB54

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-154)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

$$X = ((0111)_2 - (0010)_2) \left(\frac{(11011000)_2}{(100)_2} \right) + (1000)_2 - (11)_2$$

- 3. Convert the BCD of (92)₁₆ into 7-bit left to right odd parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

- **5.** Design 3-bit binary to gray converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Gaurav Kumar Tripathi

Registration Number: 12012506 Roll Number: RK20BEB55

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-155)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

$$X = ((1011)_2 - (0110)_2) \left(\frac{(1101110)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

- 3. Convert the BCD of (91)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: Anisha Joshi

Registration Number: 12012507 Roll Number: RK20BEB56

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-156)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1100)_2 - (0001)_2) \left(\frac{(11100000)_2}{(100)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (90)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design 3-bit gray to binary converter using k-map.

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Gurram Ajay

Registration Number: 12012111 Roll Number: RK20BEB57

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-157)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0110)_2 - (0001)_2) \left(\frac{(1110010)_2}{(10)_2} \right) + (101)_2 - (11)_2$$

3. Convert the BCD of (8F)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full adder circuit using k-map.

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Deepak Kumar Sharma

Registration Number: 12011397 Roll Number: RK20BEB58

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-158)_{10}$ and $(-130)_{10}$ using 2's and 7's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1100)_2 - (0001)_2) \left(\frac{(11101000)_2}{(100)_2} \right) + (110)_2 - (11)_2$$

3. Convert the BCD of (8E)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: Vasireddy Aarya Chowdary

Registration Number: 12010880 Roll Number: RK20BEB59

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-159)_{10}$ and $(-130)_{10}$ using 1's and 10's complement form.

$$X = ((0101)_2 - (0110)_2) \left(\frac{(1110110)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

- 3. Convert the BCD of (8D)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Vinit Kaswan

Registration Number: 12010897 Roll Number: RK20BEB60

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-160)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

$$X = ((1100)_2 - (0001)_2) \left(\frac{(11110000)_2}{(100)_2} \right) + (1000)_2 - (11)_2$$

- 3. Convert the BCD of (8C)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Akhil Jais

Registration Number: 12011001 Roll Number: RK20BEB61

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-161)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0110)_2 - (0001)_2) \left(\frac{(1111010)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (8B)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full adder circuit using k-map.

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Rakesh Roshan

Registration Number: 12011028 Roll Number: RK20BEB62

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-162)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1101)_2 - (0010)_2) \left(\frac{(11111000)_2}{(100)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (8A)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Bhavya

Registration Number: 12011088 Roll Number: RK20BEB63

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-163)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1101)_2 - (0010)_2) \left(\frac{(1111110)_2}{(10)_2} \right) + (101)_2 - (11)_2$$

3. Convert the BCD of (89)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full subtractor circuit using k-map.

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: Amit Yadav

Registration Number: 12011146 Roll Number: RK20BEB64

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-164)_{10}$ and $(-130)_{10}$ using 2's and 7's complement form.

$$X = ((1011)_2 - (0110)_2) \left(\frac{(100000000)_2}{(100)_2} \right) + (110)_2 - (11)_2$$

- 3. Convert the BCD of (88)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Manish Yadav

Registration Number: 12010213 Roll Number: RK20BEB65

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-165)_{10}$ and $(-130)_{10}$ using 1's and 10's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1000)_2 - (0011)_2) \left(\frac{(10000010)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (87)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design the Full adder circuit using k-map.

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Deepak Avinash Katuri

Registration Number: 12010217 Roll Number: RK20BEB66

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-166)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

$$X = ((1100)_2 - (0001)_2) \left(\frac{(100001000)_2}{(100)_2} \right) + (1000)_2 - (11)_2$$

- 3. Convert the BCD of (86)₁₆ into 7-bit left to right odd parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

- **5.** Design 3-bit binary to gray converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: B Maneesh Kumar Singh

Registration Number: 12010265 Roll Number: RK20BEB67

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-167)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

$$X = ((1010)_2 - (0101)_2) \left(\frac{(10000110)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

- 3. Convert the BCD of (85)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Prince Yadav

Registration Number: 12010769 Roll Number: RK20BEB68

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-168)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

$$X = ((1110)_2 - (0011)_2) \left(\frac{(100010000)_2}{(100)_2} \right) + (100)_2 - (11)_2$$

- 3. Convert the BCD of (84)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Nivedita Pal

Registration Number: 12010516 Roll Number: RK20BEB69

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-169)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1011)_2 - (0110)_2) \left(\frac{(10001010)_2}{(10)_2} \right) + (101)_2 - (11)_2$$

3. Convert the BCD of (83)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full adder circuit using k-map.

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Mayank Singh

Registration Number: 12008774 Roll Number: RK20BEB70

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-170)_{10}$ and $(-130)_{10}$ using 2's and 7's complement form.

$$X = ((1001)_2 - (0100)_2) \left(\frac{(100011000)_2}{(100)_2} \right) + (110)_2 - (11)_2$$

- 3. Convert the BCD of (82)₁₆ into 7-bit left to right odd parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design 3-bit binary to gray converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Rishabh Saluja

Registration Number: 12008100 Roll Number: RK20BEB71

Date of allotment: 22 February 2021

Last Date of submission: 05 March, 2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-171)_{10}$ and $(-130)_{10}$ using 1's and 10's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0101)_2 - (0110)_2) \left(\frac{(10001110)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (81)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design the Full subtractor circuit using k-map.

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: Aditya Kumar

Registration Number: 12006075 Roll Number: RK20BEB73

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-173)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1010)_2 - (0101)_2) \left(\frac{(100100100)_2}{(100)_2} \right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (7F)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design 3-bit gray to binary converter using k-map.

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Ramandeep Kaur

Registration Number: 12005698 Roll Number: RK20BEB74

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-174)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1101)_2 - (0010)_2) \left(\frac{(10010100)_2}{(10)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (7E)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full adder circuit using k-map.

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Anuraj Kumar

Registration Number: 12005602 Roll Number: RK20BEB75

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-175)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

$$X = ((0111)_2 - (0010)_2) \left(\frac{(100101100)_2}{(100)_2} \right) + (101)_2 - (11)_2$$

- 3. Convert the BCD of (7D)₁₆ into 7-bit left to right odd parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit binary to gray converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: Manish Kumar Nirmalkar Registration Number: 12004940

Roll Number: RK20BEB76

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-176)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

$$X = ((0101)_2 - (0110)_2) \left(\frac{(10011000)_2}{(10)_2} \right) + (110)_2 - (11)_2$$

- 3. Convert the BCD of (7C)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Anish Gupta

Registration Number: 12004767 Roll Number: RK20BEB77

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-177)_{10}$ and $(-130)_{10}$ using 2's and 7's complement form.

$$X = ((1100)_2 - (0001)_2) \left(\frac{(100110100)_2}{(100)_2} \right) + (111)_2 - (11)_2$$

- 3. Convert the BCD of (7B)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Deepak Tiwari

Registration Number: 12004390 Roll Number: RK20BEB78

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-178)_{10}$ and $(-130)_{10}$ using 1's and 10's complement form.

$$X = ((0101)_2 - (0110)_2) \left(\frac{(10011100)_2}{(10)_2} \right) + (1000)_2 - (11)_2$$

- 3. Convert the BCD of $(7A)_{16}$ into 7-bit left to right even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design the Full adder circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Asif Akhtar

Registration Number: 12004238 Roll Number: RK20BEB79

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-179)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1101)_2 - (0010)_2) \left(\frac{(100111100)_2}{(100)_2} \right) + (1001)_2 - (11)_2$$

3. Convert the BCD of (79)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Saurav Singh

Registration Number: 12003653 Roll Number: RK20BEB80

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-180)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1000)_2 - (0011)_2) \left(\frac{(10100000)_2}{(10)_2} \right) + (100)_2 - (11)_2$$

3. Convert the BCD of (78)₁₆ into 7-bit right to left even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design the Full subtractor circuit using k-map.

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$

Name: B Bharath

Registration Number: 12003815 Roll Number: RK20BEB82

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-182)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

$$X = ((1010)_2 - (0101)_2) \left(\frac{(101001000)_2}{(100)_2} \right) + (110)_2 - (11)_2$$

- 3. Convert the BCD of (76)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(1,2,6,7,8,10,12,14) \cdot d(13,15)$$

Name: Divay

Registration Number: 12003253 Roll Number: RK20BEB83

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-183)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1000)_2 - (0011)_2) \left(\frac{(10100110)_2}{(10)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (75)₁₆ into 7-bit left to right even parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

5. Design the Full adder circuit using k-map.

$$Y = \Sigma m(0,1,6,8,10,11,12,13) + d(2,7)$$

Name: Chava Surya Rao

Registration Number: 12003493 Roll Number: RK20BEB84

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-184)_{10}$ and $(-130)_{10}$ using 2's and 7's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((1000)_2 - (0011)_2) \left(\frac{(101010000)_2}{(100)_2} \right) + (1000)_2 - (11)_2$$

3. Convert the BCD of (74)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \Sigma m(0,1,2,7,8,11,12,14) + d(3,5)$$

Name: Ambavarapu Kasi Nithin Kumar

Registration Number: 12003000 Roll Number: RK20BEB86

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-186)_{10}$ and $(-130)_{10}$ using 1's and 10's complement form.

$$X = ((0101)_2 - (0110)_2) \left(\frac{(10101100)_2}{(10)_2} \right) + (100)_2 - (11)_2$$

- 3. Convert the BCD of (72)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(3,4,8,9,11,14,15) + d(1,2)$$

Name: Gauraw Kumar Sharma

Registration Number: 12002828 Roll Number: RK20BEB87

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-187)_{10}$ and $(-130)_{10}$ using 2's and 9's complement form.

$$X = ((1101)_2 - (0010)_2) \left(\frac{(101011100)_2}{(100)_2} \right) + (101)_2 - (11)_2$$

- 3. Convert the BCD of $(71)_{16}$ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

- **5.** Design 3-bit gray to binary converter using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \Sigma m(1,2,6,7,8,10,12,14) + d(0,15)$$

Name: Rupesh Gaur

Registration Number: 12001533 Roll Number: RK20BEB88

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-188)_{10}$ and $(-130)_{10}$ using 1's and 16's complement form.

$$X = ((1000)_2 - (0011)_2) \left(\frac{(10110000)_2}{(10)_2} \right) + (110)_2 - (11)_2$$

- 3. Convert the BCD of (70)₁₆ into 7-bit left to right even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Z = A'B + (AC)'$$

- **5.** Design the Full adder circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(0,1,6,8,10,11,12,13) \cdot d(2,14)$$

Name: Tushar Chatterjee

Registration Number: 12001901 Roll Number: RK20BEB89

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-189)_{10}$ and $(-130)_{10}$ using 2's and 15's complement form.

2. Solve for X, show all calculation in binary number system only

$$X = ((0110)_2 - (0001)_2) \left(\frac{(101100100)_2}{(100)_2} \right) + (111)_2 - (11)_2$$

3. Convert the BCD of (6F)₁₆ into 7-bit left to right odd parity hamming code.

4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$X = AB' + (BC')'$$

5. Design 3-bit binary to gray converter using k-map.

$$Y = \prod M(0,1,2,7,8,11,12,14) \cdot d(3,10)$$

Name: Tulasi Ram Charan Teja Registration Number: 12002331

Roll Number: RK20BEB91

Date of allotment: 22 February 2021

Last Date of submission: 05 March,2021

Note: Each question carries 5 Marks.

1. Perform the addition $(-191)_{10}$ and $(-130)_{10}$ using 1's and 8's complement form.

$$X = ((0110)_2 - (0001)_2) \left(\frac{(10110110)_2}{(10)_2} \right) + (1001)_2 - (11)_2$$

- 3. Convert the BCD of (6D)₁₆ into 7-bit right to left even parity hamming code.
- 4. Write the standard SOP form, standard POS form, Min-terms and Max-terms representations of the following expression.

$$Y = (AB)' + BC$$

- **5.** Design the Full subtractor circuit using k-map.
- **6.** Find the reduced Boolean expression for functions Y

$$Y = \prod M(3,4,8,9,11,14,15) \cdot d(0,2)$$