S1: Principles of Data Science

Problem Sheet 2

MPhil in Data Intensive Science

Matt Kenzie mk652@cam.ac.uk

Michealmas Term 2023

Problem Sheet 2

Lectures 7 - 12

Topics covered: More distributions, generating from distributions, limit theorems, propagation of errors, estimates, minimum variance bound, the likelihood, maximum likelihood estimation, profile likelihood, extended likelihood, binned likelihood, least-squares, Wilks' theorem

- 1. For a two-dimensional normal distribution with parameters, $\mu_1 = 1$, $\mu_2 = 4$, $\sigma_1 = 3$, $\sigma_2 = 2$, $\rho = 0.5$ make plots of the conditional and marginal probabilities. Extension (don't waste too much time on this), what if this is now a 3D Gaussian? Can you think of ways of presenting the equivalent information?
- 2. Show that the mean and variance of the exponential distribution with p.d.f.

$$p(X;\lambda) = \lambda e^{-\lambda X} \tag{1}$$

are given by

Mean:
$$\mu = \frac{1}{\lambda}$$
 (2)

Variance:
$$V(X) = \frac{1}{\lambda^2}$$
 (3)

3. Show that the mean and variance of the χ^2 distribution with p.d.f.

$$p(X;k) = \frac{1}{2^{k/2}\Gamma(\frac{k}{2})}X^{k/2-1}e^{-X/2}$$
(4)

are given by

Mean:
$$\mu = k$$
 (5)

Variance:
$$V(X) = 2k$$
. (6)

- 4. Write a simple accept-reject generator in python which can generate from an arbitary function of a random variable, f(X). Generate some samples for the following distributions:
 - (a) $f(x) = \cos^2(x)$
 - (b) $f(x) = \sin(x) + \cos(x) + 2$
 - (c) $f(x) = \frac{\sin(x) + \cos(x)}{\sinh(x) + \cosh(x)} + 25$

Think about how you might adapt this to work for two-dimensions and then *n*-dimensions. Can you think about ways which would speed up the generation?

Can you now make a comparison of generation efficiencies with a 1D normal distributions. Let's take a standard normal distribution (i.e. $\mu = 0$, $\sigma = 1$). Make a plot of the acceptance efficiency as a function of the generation range in terms of standard deviations. What is the approximate accept efficiency if you generate all the way out to 8 standard deviations?

- 5. Using the Jacobian matrix derive the standard error propagation formula for σ_f given σ_x and σ_y for the following transformations
 - (a) f = x + y
 - (b) f = xy
 - (c) f = x/y
 - (d) $f = \sin(x)$
 - (e) $f = \cos(x)$

assuming that x and y are independent.

- 6. Using the minimum variance bound show that the sample mean, \bar{X} , is an efficience estimate of the distribution mean, μ .
- 7. Use the maximum likelihood method to mathematically show that an estimate for the lifetime, τ , of a decay-time distribution, $(1/\tau)e^{-t/\tau}$, is given by the average of the observed decay times, t.
- 8. Show that when fitting a straight line to pairs of points (x_i, y_i) with the least squares method that estimates of the slope and intercept are given by $\hat{c} = \bar{y} \hat{m}\bar{x}$ and m = cov(x, y)/V(x).