LAB 05

PH142 Fall 2025

Announcements

- Lab05: due 10/4 at 11:59pm (extended to Saturday)
- Quiz04: due 10/4 at 11:59pm (extended to Saturday)
- Group Project Part II: due 10/24 at 11:59pm

*Your group must meet with your assigned GSI before the due date.

Midterm 1

- Date: Friday, October 3rd
- Time: 8:10-9:00AM, arrive no later than 8:00AM
- Material Covered: Lectures 1-10, Lab 1-3
- Location(s): Room assignments were emailed on Monday 9/29
 - o If you did not receive this message, please contact 142gsi@berkeley.edu ASAP

What to Bring

- Student ID
- Pencil/Pen
- Cheat Sheet (single sided, handwritten, 8.5x11")
- Scientific Calculator (non-graphing)

Independence of Events

Independent Events

 A and B are independent if knowing whether A occurs does not change the probability of B

Dependent Events

 A and B are dependent if knowing whether A occurs does change the probability of B

Screening Tests: Key Terms

Sensitivity: Probability the test is positive given disease present

- Sensitivity = P(Test+ | Disease+)

Specificity: Probability the test is negative given disease absent

- Specificity = P(Test- | Disease-)

Sensitivity and specificity are properties of the test. They do not change based on prevalence of disease in the population.

Predictive Values

Positive Predictive Value (PPV): Probability the disease is present given a positive test result

- PPV = P(Disease+ | Test+)

Negative Predictive Value (NPV): Probability the disease is absent given a negative test result

- NPV = **P(Disease-|Test-)**

PPV and NPV change with the prevalence of disease in the population.

Tree Diagrams

The Normal Distribution

The normal distribution is a bell-shaped, symmetric distribution, with notation $X \sim N(\mu, \sigma)$

- μ = mean
- σ = standard deviation

R Functions:

- pnorm() → outputs the probability of value x or below
- rnorm() → generates random draws from the distribution

The Normal Distribution

Z-Scores

Z-score formula:
$$z = \frac{x - \mu}{\sigma}$$

x = data point

 μ = mean

 σ = standard deviation

The Z-score tells you how many standard deviations the data point is from the mean.

LAB 05 Walkthrough

Lab Submission

- Follow the directions on the LAB05 file
- Submit using the **Terminal Tab** (next to the console in the bottom left pane)
 - Copy and paste the given line into the terminal
 - Follow prompts (NOTE: the terminal will **not** show your password being typed out!)
- CHECK IN GRADESCOPE THAT ALL YOUR TESTS PASSED