§4.2 相似矩阵与矩阵对角化

数学系 梁卓滨

2017 - 2018 学年 I

定义 设 A, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P, 满足 $P^{-1}AP = B.$

则称 A 与 B相似,记为 $A \sim B$ 。

定义 设
$$A$$
, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P , 满足
$$P^{-1}AP = B.$$

则称 $A 与 B相似, 记为 A \sim B$ 。

注

1.
$$A \sim B \iff \exists \, \text{可逆}Q, \, \text{使}QAQ^{-1} = B$$

定义 设
$$A$$
, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P , 满足
$$P^{-1}AP = B.$$

则称 A 与 B相似,记为 $A \sim B$ 。

注

1.
$$A \sim B \iff \exists \, \text{可逆}Q, \, \text{使}QAQ^{-1} = B$$
 (令 $P := Q^{-1}, \, \text{则} \, P^{-1}AP = B$)

定义 设
$$A$$
, B 是 n 阶方阵。若存在 n 阶可逆矩阵 P , 满足
$$P^{-1}AP = B.$$

则称 A 与 B相似,记为 $A \sim B$ 。

注

- 1. $A \sim B \iff \exists \, \text{可逆}Q, \, \text{使}QAQ^{-1} = B$ $(\diamondsuit P := Q^{-1}, \, \text{则} \, P^{-1}AP = B)$
- 2. $A \sim B \iff B \sim A$

$$\underbrace{\begin{pmatrix} 19 & 45 \\ -7 & -17 \end{pmatrix}}_{A} \qquad \underbrace{\begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}}_{B}$$

$$\left(\begin{array}{cc}1&2\\2&5\end{array}\right)^{-1}\underbrace{\left(\begin{array}{cc}19&45\\-7&-17\end{array}\right)}_{A}\left(\begin{array}{cc}1&2\\2&5\end{array}\right)\quad\underbrace{\left(\begin{array}{cc}3&1\\5&-1\end{array}\right)}_{B}$$

$$\left(\begin{array}{cc}1&2\\2&5\end{array}\right)^{-1}\underbrace{\left(\begin{array}{cc}19&45\\-7&-17\end{array}\right)}_{A}\left(\begin{array}{cc}1&2\\2&5\end{array}\right)=\underbrace{\left(\begin{array}{cc}3&1\\5&-1\end{array}\right)}_{B}$$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{cc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{cc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\left(\begin{array}{cc}19&45\\-7&-17\end{array}\right)}_{A}$$

$$\underbrace{\left(\begin{array}{cc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{cc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{cc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

$$\underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)^{-1}}_{P^{-1}} \underbrace{\left(\begin{array}{ccc} 19 & 45 \\ -7 & -17 \end{array}\right)}_{A} \underbrace{\left(\begin{array}{ccc} 1 & 2 \\ 2 & 5 \end{array}\right)}_{P} = \underbrace{\left(\begin{array}{ccc} 3 & 1 \\ 5 & -1 \end{array}\right)}_{B}$$

所以 $A \sim B$

- 1. "λ矩阵"的方法,但并不简单的。。。
- 2. 下面只给出两个矩阵相似的必要条件

定理设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|

定理设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

证明 存在可逆矩阵 P, 满足

$$P^{-1}AP = B$$

1. $|\lambda I - B| =$

$$|\lambda I - A|$$

定理设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| =$$

 $|\lambda I - A|$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$
1. $|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |\lambda I - A|$

定理设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地, A 与 B 同时可逆或不可逆

证明 存在可逆矩阵 P. 满足

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| \quad |\lambda I - A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

1.
$$|\lambda I - B| = |\lambda P^{-1}IP - P^{-1}AP| = |P^{-1}(\lambda I - A)P| = |P^{-1}| \cdot |\lambda I - A| \cdot |P| = |\lambda I - A|$$

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$

定理设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}($
- 2. $r(B) = r(P^{-1}AP) = r(A)$
- 3. |B| = |A|

定理 设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地, A 与 B 同时可逆或不可逆

证明 存在可逆矩阵 P,满足

$$P^{-1}AP = B$$

|A|

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}($
- 2. $r(B) = r(P^{-1}AP) = r(A)$

3.
$$|B| = |P^{-1}AP| =$$

定理设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$
- 3. $|B| = |P^{-1}AP| = |P^{-1}| \cdot |A| \cdot |P|$ |A|

定理设 $A \sim B$,则

- 1. A 与 B 有相同特征值;
- 2. r(A) = r(B);
- 3. |A| = |B|,特别地,A 与 B 同时可逆或不可逆

$$P^{-1}AP = B$$

- 1. $|\lambda I B| = |\lambda P^{-1}IP P^{-1}AP| = |P^{-1}(\lambda I A)P| = |P^{-1}| \cdot |\lambda I A| \cdot |P| = |\lambda I A|$
- 2. $r(B) = r(P^{-1}AP) = r(A)$
- 3. $|B| = |P^{-1}AP| = |P^{-1}| \cdot |A| \cdot |P| = |A|$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化
$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\underbrace{(\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n)}_{P}$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{A}$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (, , \dots,) = (, \dots, \dots)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, \dots, \dots, \dots) = (\dots, \dots, \dots)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \ldots,) = (, , \ldots,)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{p} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{n}$$

$$\Leftrightarrow (A\alpha_1,\,A\alpha_2,\,\ldots,\,A\alpha_n)=(\qquad,\qquad,\ldots,\qquad)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{P}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \ldots, A\alpha_n) = (\lambda_1\alpha_1, \ldots, \lambda_n)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \dots,)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \ldots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \ldots, \lambda_n\alpha_n)$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \ldots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \ldots, \lambda_n\alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i \alpha_i$$

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化

$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \ldots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \ldots, \lambda_n\alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i\alpha_i$$
 (λ_i 是特征值, α_i 是特征向量)

定义 若方阵
$$A_{n \times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化
$$P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{P} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \lambda_n \end{pmatrix}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \ldots, A\alpha_n) = (\lambda_1\alpha_1, \lambda_2\alpha_2, \ldots, \lambda_n\alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i\alpha_i$$
 (λ_i 是特征值, α_i 是特征向量)

定理 A 可对角化 ⇔ A 有 n 个线性无关的特征向量

定义 若方阵
$$A_{n\times n}$$
 与对角阵 $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$ 相似,则称 A 可对角化 $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$

$$\Leftrightarrow A(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n \alpha_n)$$

 $\Leftrightarrow A\alpha_i = \lambda_i \alpha_i$ (λ_i 是特征值, α_i 是特征向量)

定理 A 可对角化 ⇔ A 有 n 个线性无关的特征向量

推论 若方阵 $A_{n\times n}$ 有 n 不同特征值,则 A 可对角化。

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵

Λ,使得 $P^{-1}AP = \Lambda$ 。

问题 判断 n 阶方阵 A 是否可以对角化? 若能,确定可逆矩阵 P 及对角阵

Λ,使得 $P^{-1}AP = Λ$ 。

步骤

1. 求出 A 的所有特征值,及相应特征向量

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵 Λ . 使得 $P^{-1}AP = \Lambda$ 。

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有n个线性无关特征向量,则A可对角化;否则,不能对角化

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵 Λ . 使得 $P^{-1}AP = \Lambda$ 。

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$,记对应特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵 Λ ,使得 $P^{-1}AP = \Lambda$ 。

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$,记对应特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$

$$(\alpha_1, \alpha_2, \ldots, \alpha_n)$$

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵 Λ . 使得 $P^{-1}AP = \Lambda$ 。

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$,记对应特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$

$$(\alpha_1, \alpha_2, \ldots, \alpha_n)$$

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵 Λ . 使得 $P^{-1}AP = \Lambda$ 。

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 $\alpha_1, \alpha_2, \ldots, \alpha_n$,记对应特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$

$$\underbrace{(\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n)}_{P}$$

$$\Rightarrow P^{-1}AP = \Lambda$$

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵 Λ . 使得 $P^{-1}AP = \Lambda$ 。

- 1. 求出 A 的所有特征值, 及相应特征向量
- 2. 若有n个线性无关特征向量,则A可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$(\alpha_1, \alpha_2, \ldots, \alpha_n)$$

$$\Rightarrow P^{-1}AP = \Lambda$$

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵 Λ ,使得 $P^{-1}AP = \Lambda$ 。

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \ddots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Rightarrow P^{-1}AP = \Lambda$$

问题 判断 n 阶方阵 A 是否可以对角化?若能,确定可逆矩阵 P 及对角阵 Λ . 使得 $P^{-1}AP = \Lambda$ 。

- 1. 求出 A 的所有特征值,及相应特征向量
- 2. 若有 n 个线性无关特征向量,则 A 可对角化;否则,不能对角化
- 3. 假设存在 n 个线性无关特征向量 α_1 , α_2 , ..., α_n , 记对应特征值为 λ_1 , λ_2 , ..., λ_n (即: $A\alpha_i = \lambda_i \alpha_i$)则

$$A\underbrace{(\alpha_1, \, \alpha_2, \, \ldots, \, \alpha_n)}_{P} = \underbrace{(\alpha_1, \, \alpha_2, \, \ldots, \, \alpha_n)}_{P} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Rightarrow AP = P\Lambda \Rightarrow P^{-1}AP = \Lambda$$

例 $1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

• 特征方程: $0 = |\lambda I - A| = (\lambda + 2)(\lambda - 4)$

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 λ₁ = 4,
- 特征值 λ₂ = −2,

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 λ₂ = −2,

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: 0 = |λI A| = (λ + 2)(λ 4)
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: 0 = |λI A| = (λ + 2)(λ 4)
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

$$P = ($$
) , $\wedge = ($

$$P^{-1}AP = \Lambda$$

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

$$P = (\alpha_1, \alpha_2)$$
 , $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$,

$$P^{-1}AP = \Lambda$$

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

$$P = (\alpha_1, \alpha_2) = \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

$$P^{-1}AP = \Lambda$$

例
$$1A = \begin{pmatrix} 3 & 1 \\ 5 & -1 \end{pmatrix}$$

- 特征方程: $0 = |\lambda I A| = (\lambda + 2)(\lambda 4)$
- 特征值 $\lambda_1 = 4$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = -2$,特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$

$$P = (\alpha_1, \alpha_2) = \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix},$$

$$P^{-1}AP = \Lambda$$

例 2 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能, 写出 P 和 Λ

特征方程: 0 = |λI − A|

例 2 判断
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 是否能对角化? 若能,写出 P 和 Λ

• 特征方程: $0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 λ₁ = 2 (二重)
- 特征值 λ₂ = 6

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 λ₂ = 6

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

• 特征值
$$\lambda_1 = 2$$
(二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

• 特征值
$$\lambda_2 = 6$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

 $P^{-1}AP = \Lambda$

P = (

• 特征方程:
$$0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$$

• 特征值 $\lambda_1 = 2$ (二重),特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

• 特征值
$$\lambda_2 = 6$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

$$P = (\alpha_1, \alpha_2, \alpha_3)$$
 , $\Lambda = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix}$ 则

 $P^{-1}AP = \Lambda$

- 特征方程: $0 = |\lambda I A| = (\lambda 2)^2 (\lambda 6)$
- 特征值 $\lambda_1 = 2$ (二重) ,特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ 可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

今

 $P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$ 则

 $P^{-1}AP = \Lambda$

• 特征方程:
$$0 = |\lambda I - A| = (\lambda - 2)^2 (\lambda - 6)$$

• 特征值 $\lambda_1 = 2$ (二重) ,特征向量 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ • 特征值 $\lambda_2 = 6$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$

可见
$$A$$
 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。

今

 $P^{-1}AP = \Lambda$

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Potails
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ **Det**

例 3 判断
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix}$$
 是否能对角化? 若能, 写出 P 和 Λ

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ **DET**

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

• 特征方程:
$$0 = |\lambda I - A| = (\lambda - 1)(\lambda - 2)^2$$
 Details

• 特征值
$$\lambda_1 = 1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details

• 特征值
$$\lambda_2 = 2$$
(二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Determined to $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

可见 A 有 B 个线性无关特征向量: α_1 , α_2 , α_3 。所以 A 可以对角化。

$$P = ($$
) , $\wedge = ($

 $P^{-1}AP = \Lambda$

• 特征方程:
$$0 = |\lambda I - A| = (\lambda - 1)(\lambda - 2)^2$$
 Details

• 特征值
$$\lambda_1 = 1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details

• 特征值
$$\lambda_2 = 2$$
(二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ Det

可见 A 有 3 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

$$P = (\alpha_1, \alpha_2, \alpha_3)$$
 , $\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$

 $P^{-1}AP = \Lambda$.

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

可见 A 有 B 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

今

$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}$$

 $P^{-1}AP = \Lambda$.

- 特征方程: $0 = |\lambda I A| = (\lambda 1)(\lambda 2)^2$ Details
- 特征值 $\lambda_1 = 1$,特征向量 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ Details
- 特征值 $\lambda_2 = 2$ (二重),特征向量 $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

可见 A 有 B 个线性无关特征向量: α_1 , α_2 , α_3 。 所以 A 可以对角化。

令
$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix},$$
则

 $P^{-1}AP = \Lambda$.

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i ,矩

阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i ,矩 阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同

特征值

 λ_1

 n_1

 $(\lambda_i I - A)x = 0$ 基础解系 /线性无关特征向量

 λ_2 n_2

:

 λ_s n_s

共n

阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i ,矩

回知加工

图解如下:

特征值

 λ_1

 λ_s

 n_1 $r(\lambda_1 I - A) = n - n_1$

 $(\lambda_i I - A)x = 0$ 基础解系

/线性无关特征向量

$$\lambda_2$$
 n_2

阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i 矩

 $r(\lambda_1 I - A) = n - n_1 \implies \alpha_1^{(1)}, \alpha_2^{(1)}, \dots, \alpha_n^{(1)}$

图解如下:

不同

特征值

 λ_1

 n_1

 $(\lambda_i I - A)x = 0$ 基础解系 /线性无关特征向量

$$\lambda_2$$
 n_2
 \vdots \vdots
 λ_s n_s

)s

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

共 n

阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i 矩

图解如下:

特征值

 λ_1

 λ_s

 n_{ς}

重 $(\lambda_i I - A)x = 0$ 基础解系数 /线性无关特征向量

$$\lambda_2$$
 n_2 $r(\lambda_2 I - A) = n - n_2$
 \vdots \vdots

$$n_1 \quad r(\lambda_1 I - A) = n - n_1 \quad \Rightarrow \quad \alpha_1^{(1)}, \, \alpha_2^{(1)}, \, \cdots, \, \alpha_{n_1}^{(1)}$$

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i ,矩 阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同 重 $(\lambda_i I - A)x = 0$ 基础解系 特征值 数 /线性无关特征向量

特征值 数 /线性无关特征向量
$$\lambda_1 \qquad n_1 \qquad r(\lambda_1 I - A) = n - n_1 \quad \Rightarrow \quad \alpha_1^{(1)}, \, \alpha_2^{(1)}, \, \cdots, \, \alpha_{n_1}^{(1)}$$

$$\lambda_2 \qquad n_2 \qquad r(\lambda_2 I - A) = n - n_2 \quad \Rightarrow \quad \alpha_1^{(2)}, \, \alpha_2^{(2)}, \, \cdots, \, \alpha_{n_2}^{(2)}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\lambda_s \qquad n_s$$

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i ,矩 阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同

重 $(\lambda_i I - A)x = 0$ 基础解系数 /线性无关特征向量

特征值 数 /线性无关特征向量
$$\lambda_1 \qquad n_1 \qquad r(\lambda_1 I - A) = n - n_1 \quad \Rightarrow \quad \alpha_1^{(1)}, \, \alpha_2^{(1)}, \, \cdots, \, \alpha_{n_1}^{(1)}$$

$$\lambda_2 \qquad n_2 \qquad r(\lambda_2 I - A) = n - n_2 \quad \Rightarrow \quad \alpha_1^{(2)}, \, \alpha_2^{(2)}, \, \cdots, \, \alpha_{n_2}^{(2)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\lambda_s \qquad n_s \qquad r(\lambda_s I - A) = n - n_s$$

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i 矩 阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同

 λ_1

 λ_2

$$n_1$$
 $r(\lambda_1 I -$

$$\lambda_s$$
 n_s

共 n

$$n_1 \quad r(\lambda_1 I - A) = n - n_1 \quad \Rightarrow \quad \alpha_1^{(1)}, \, \alpha_2^{(1)}, \, \cdots, \, \alpha_{n_1}^{(1)}$$

$$n_2 \quad r(\lambda_2 I - A) = n - n_2 \quad \Rightarrow \quad \alpha_1^{(2)}, \, \alpha_2^{(2)}, \, \cdots, \, \alpha_{n_2}^{(2)}$$

$$\vdots \qquad \vdots \qquad \vdots \\ n_s \qquad r(\lambda_s I - A) = n - n_s \quad \Rightarrow \quad \alpha_1^{(s)}, \, \alpha_2^{(s)}, \, \cdots, \, \alpha_s^{(s)}$$

$$|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_5)^{n_5}$$

定理 n 阶方阵 A 可对角化的充分必要条件是:每个 n_i 重的特征值 λ_i 矩 阵 $\lambda_i I - A$ 的秩是 $n - n_i$ 。

图解如下:

不同

特征值

 $(\lambda_i I - A)x = 0$ 基础解系 数 /线性无关特征向量

$$\lambda_1$$
 n_1 $r(\lambda_1 I - A) = n - n_1$ \Rightarrow $\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots, \alpha_{n_1}^{(1)}$
 λ_2 n_2 $r(\lambda_2 I - A) = n - n_2$ \Rightarrow $\alpha_1^{(2)}, \alpha_2^{(2)}, \cdots, \alpha_{n_2}^{(2)}$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ \lambda_s \qquad n_s \qquad r(\lambda_s I - A) = n - n_s \quad \Rightarrow \quad \alpha_1^{(s)}, \ \alpha_2^{(s)}, \ \cdots, \ \alpha_{n_s}^{(s)}$$

共 n 共 n 个无关特征向量

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A \subseteq \Lambda$ 相似 \iff $A \cap \forall \exists A \cap \lambda_1 = 1$ $\lambda_2 = 2$

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 100\\ 010\\ 002 \end{pmatrix}$ 相似?

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A \subseteq \Lambda$ 相似 \iff $A \cap A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 100\\ 010\\ 002 \end{pmatrix}$ 相似?

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若
$$A$$
 与 Λ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)
$$\Leftrightarrow r(I-A) = \qquad \qquad \exists \ r(2I-A) =$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I-A) = 3-2 = 1$ 且 r(2I-A) =

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

解
$$\Rightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$$

$$A_1 \qquad A_2 \qquad A_3 \qquad A_4$$

I - A

2I - A

r(I-A)

r(2I-A)

 $A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似?

提示 若
$$A$$
 与 Λ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

解
$$\Rightarrow r(I-A) = 3-2 = 1 \pm r(2I-A) = 3-1 = 2$$

$$A_1 \qquad A_2 \qquad A_3 \qquad A_4$$

$$I-A \qquad \begin{pmatrix} 0-1 & 0 \\ 0-1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$r(I-A)$$

2I - A

r(2I-A)

例下列哪个矩阵与
$$\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 相似?

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

r(2I-A)

2I - A

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

解
$$\Rightarrow r(I-A) = 3-2 = 1$$
且 $r(2I-A) = 3-1 = 2$

$$A_1 \qquad A_2 \qquad A_3 \qquad A_4$$

$$I-A \qquad \begin{pmatrix} 0-1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$r(I-A)$$

2I - A

$$r(2I-A)$$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

2*I* – A

r(2I-A)

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

解
$$\Rightarrow r(I-A) = 3-2 = 1$$
且 $r(2I-A) = 3-1 = 2$

$$A_1 \qquad A_2 \qquad A_3 \qquad A_4$$

$$I-A \qquad \begin{pmatrix} 0-1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0-1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$r(I-A) \qquad 2$$

r(2I — A) §4.2 相似矩阵与矩阵对角化

2I - A

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

解
$$\Rightarrow r(I-A) = 3-2 = 1$$
且 $r(2I-A) = 3-1 = 2$

$$A_1 \qquad A_2 \qquad A_3 \qquad A_4$$

$$I-A \qquad \begin{pmatrix} 0-1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$r(I-A) \qquad 2 \qquad 2$$

2I - A

r(2I-A)

§4.2 相似矩阵与矩阵对角化

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A \subseteq \Lambda$ 相似 $\iff A \subseteq \Lambda$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

解
$$\Rightarrow r(I-A) = 3-2 = 1$$
 且 $r(2I-A) = 3-1 = 2$

$$A_1 \qquad A_2 \qquad A_3 \qquad A_4$$

$$I-A \qquad \begin{pmatrix} 0-1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$r(I-A) \qquad 2 \qquad 2 \qquad 1$$

r(2I – A)

● 整布大 MAN UNIVE

2I - A

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 ⇔ A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

解	$\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$			
	A_1	A ₂	A ₃	A ₄
I-A	$\left(\begin{smallmatrix}0&-1&0\\0&-1&-1\\0&0&0\end{smallmatrix}\right)$	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$
r(I-A)	2	2	1	2

r(2I-A)相似矩阵与矩阵对角化

2I - A

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 A 与 Λ 相似 \Leftrightarrow A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重

提示 若 $A \subseteq \Lambda$ 相似 $\Leftrightarrow A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$ 解

r(2I-A)§4.2 相似矩阵与矩阵对角化

解

r(I-A)

$$\begin{array}{c|cccc}
A_1 \\
\hline
\begin{pmatrix}
0 & -1 & 0 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{pmatrix}$$

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似?

 $A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 提示 若 $A \subseteq \Lambda$ 相似 $\Leftrightarrow A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$ $I - A \qquad \begin{pmatrix} 0 - 1 & 0 \\ 0 - 1 - 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 - 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 - 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & -1 \\ 0 - 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$

 A_4

r(2I-A)

2I - A

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

提示 若 $A = A$ 所相似 $\iff A$ 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重)

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似?

 $\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$ 解 I-A $\begin{pmatrix} 0-1 & 0 \\ 0-1-1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0-1 & 0 \\ 0 & 0 \\ 0 & 0-1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0-1 \\ 0 & 0 \\ 0 & 0-1 \end{pmatrix}$ $\begin{pmatrix} 0 & 0-1 \\ 0-1-1 \\ 0 & 0 \end{pmatrix}$ r(I-A)2I-A $\begin{pmatrix} 1-1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1-1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

例 下列哪个矩阵与 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 相似?

提示 若 A 与 Λ 相似 ⇔ A 可对角化, $\lambda_1 = 1$ (二重), $\lambda_2 = 2$ (一重) $\Leftrightarrow r(I-A) = 3-2 = 1 \perp r(2I-A) = 3-1 = 2$

r(2I-A)§4.2 相似矩阵与矩阵对角化

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则

$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 6 \end{pmatrix}$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则

$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 6 \end{pmatrix} \quad \Rightarrow \quad A = P \begin{pmatrix} 2 & & \\ & 2 & \\ & & 6 \end{pmatrix} P^{-1}$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则

$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

这相当对 A 作了一个"好的"分解。

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

这相当对 A 作了一个"好的"分解。应用:

$$A^n =$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} \implies A = P \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

这相当对
$$A$$
 作了一个"好的"分解。应用:
$$A^n = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} \implies A = P \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

这相当对
$$A$$
 作了一个"好的"分解。应用:
$$A^n = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdot \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} \implies A = P \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

这相当对
$$A$$
 作了一个"好的"分解。应用:

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$
$$= P \wedge^{n} P^{-1}$$

=

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则
$$P^{-1}AP = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & 0 \\ 0 & 6 & 0 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$

$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$

$$= P \wedge^{n} P^{-1}$$

$$= \begin{pmatrix} 2^{n} & & \\ & 2^{n} & \\ & & 6^{n} \end{pmatrix}$$

例
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
,则

$$P^{-1}AP = \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} \Rightarrow A = P \begin{pmatrix} 2 & & \\ & 2 & \\ & 6 \end{pmatrix} P^{-1} = P \wedge P^{-1}$$

这相当对 A 作了一个"好的"分解。应用:

$$A^{n} = (P \wedge P^{-1}) \cdot (P \wedge P^{-1})(P \wedge P^{-1}) \cdots (P \wedge P^{-1})(P \wedge P^{-1})$$
$$= P \wedge \cdot \wedge \cdots \wedge P^{-1}$$

$$\begin{split} &= P \Lambda^n P^{-1} \\ &= \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2^n & & \\ & 2^n & \\ & & 6^n \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}^{-1} \end{split}$$

———The End———

$$0 = |\lambda I - A| =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1\\ 2 & \lambda - 4 & 2\\ 2 & -2 & \lambda \end{vmatrix}$$

$$r_3-r_2$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$
$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$
$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$
$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \xrightarrow{c_2 + 2c_3}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$= \frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + 2c_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + 2c_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 \\ 0 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + 2c_3}{=} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda - 2)(\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 \\ 0 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 2 & -2 & \lambda \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -\lambda + 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 & 1 \\ 2 & \lambda - 4 & 2 \\ 0 & -1 & 1 \end{vmatrix} \frac{c_2 + 2c_3}{2} (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 2 & \lambda - 2 & 2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda - 2)(\lambda - 2) \begin{vmatrix} \lambda - 1 & 1 \\ 0 & 1 \end{vmatrix}$$

$$= (\lambda - 1)(\lambda - 2)^2$$

• $\exists \lambda_1 = 1$, $\forall x \in (\lambda_1 I - A)x = 0$:

$$(1I - A : 0) =$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix}$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

• $\exists \lambda_1 = 1$, $\forall x \in (\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$r_2-r_1$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array} \right)$$

• $\exists \lambda_1 = 1$, $\forall x \in (\lambda_1 I - A)x = 0$:

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \xrightarrow{r_3-r_2} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \xrightarrow{r_3-r_2} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(1I - A : 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2 - r_1} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(x_1 \quad -\frac{1}{2}x_3 = 0)$$

所以
$$\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \end{cases}$$

$$(1I - A \vdots 0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \xrightarrow{r_3-r_2} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

$$(x_1 \quad -\frac{1}{2}x_2 = \frac{1}{2}x_3 = \frac{1}{2}x_4 = \frac{1}{2}x_4 = \frac{1}{2}x_5 =$$

所以
$$\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

所以
$$\begin{cases} x_1 & -\frac{\pi}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

$$(1I - A : 0) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 2 & -2 & 1 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 2 & -3 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$
$$\xrightarrow{r_2 - r_1} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以
$$\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = x_3 \end{cases}$$

$$(1I - A : 0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \xrightarrow{r_3-r_2} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以 $\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = x_3 \end{cases}$

基础解系:
$$\alpha_1 = \begin{pmatrix} \\ 2 \end{pmatrix}$$

$$(1I - A : 0) = \begin{pmatrix} 0 & -1 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 2 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 2 & -2 & 1 & | & 0 \\ 2 & -3 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right) \xrightarrow{r_3-r_2} \left(\begin{array}{ccc|c} 2 & -2 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以 $\begin{cases} x_1 & -\frac{1}{2}x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{2}x_3 \\ x_2 = x_3 \end{cases}$

基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

• $\exists \lambda_2 = 2$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(2I - A : 0) =$$

• $\exists \lambda_2 = 2$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$x_1 - x_2 + x_3 = 0$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$x_1 - x_2 + x_3 = 0 \Rightarrow x_1 = x_2 - x_3$$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$x_1 - x_2 + x_3 = 0$$
 \Rightarrow $x_1 = x_2 - x_3$ 基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$x_1 - x_2 + x_3 = 0$$
 \Rightarrow $x_1 = x_2 - x_3$ 基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I-A:0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$x_1 - x_2 + x_3 = 0 \Rightarrow x_1 = x_2 - x_3$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$(2I - A \vdots 0) = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -2 & 2 & 0 \\ 2 & -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$x_1 - x_2 + x_3 = 0 \Rightarrow x_1 = x_2 - x_3$$

基础解系: $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

