

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Instructor Details</u>

☆ Course / Assessments / Assignment 1

Assignment 1

 $\hfill\square$ Bookmark this page

Q1
1.0/1.0 point (graded) PCA is employed for
C Linear regression
Oimensionality expansion
Dimensionality Reduction
Clustering
•
Submit
Q2
1.0/1.0 point (graded) The direction of the largest principal component is given as
eigenvector corresponding to minimum eigenvalue of the data covariance matrix
eigenvector corresponding to maximum eigenvalue of the data covariance matrix
any eigenvector corresponding to the covariance matrix
any vector belonging to the null space of the data covariance matrix
✓
Submit
Q3
1.0/1.0 point (graded) Principal components of data can be found
Via projection of data along principal directions
Via projection of data orthogonal to principal directions
Same as the principal directions
Orthogonal to the principal directions
✓
Submit
Q4

1.0/1.0 point (graded) Find the principal direction corresponding to _ _ $\lceil 1$ _ 2 $\rceil \lceil 4$ _ 0 $\rceil \lceil 1$ _ 2 \rceil

$\begin{bmatrix} 12 & -1 \end{bmatrix} \begin{bmatrix} 10 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \end{bmatrix}$
$\begin{bmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{bmatrix}$
$ \begin{array}{c} \left(\begin{array}{c} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{array}\right) $
$ \begin{array}{ c c c } \hline \bullet & \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \end{array} $
$ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} $
✓
Submit
Q5
1.0/1.0 point (graded)
The data matrix X in the lecture has been defined as
$\bigcap_{\substack{1 \\ \overline{\sqrt{N-1}}}} \begin{bmatrix} \overline{\mathbf{x}}_1 \\ \overline{\mathbf{x}}_2 \\ \vdots \\ \overline{\mathbf{x}}_N \end{bmatrix}$
$\bigcirc \ \frac{1}{\sqrt{N-1}} [\bar{\mathbf{x}}_1^T \bar{\mathbf{x}}_2^T \bar{\mathbf{x}}_N^T]$
$ \underbrace{\frac{1}{\sqrt{N-1}}}_{\frac{1}{N-1}} \begin{bmatrix} \overline{\mathbf{X}}_1^T \\ \overline{\mathbf{X}}_2^T \\ \vdots \\ \overline{\mathbf{X}}_N^T \end{bmatrix} $
$\bigcirc \ \ \frac{1}{\sqrt{N-1}}[\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2 \overline{\mathbf{x}}_N]$
✓
Submit
Q6
1.0/1.0 point (graded)
The principal directions can also be obtained as
$\bigcap p$ dominant left singular vectors of $ extbf{ iny X}$
p dominant right singular vectors of X

 $\bigcirc p$ dominant right eigenvectors of **X**

(p	dominant column space vectors of X
~	
Subr	nit
Q7	
	oint (graded) A routine can be imported in PYTHON a
o fi	rom sklearn.decomposition import PCA
O fi	rom sklearn import PCA
ir	mport PCA
O fi	rom decomposition import PCA
~	
Subr	nit
Q8	
	oint (graded) er the datasets imported as from sklearn import datasets The Iris dataset can be loaded as
	risset = datasets.iris()
ir	risset = load_iris()
ir e	risset = datasets.load_iris()
ir	risset = iris()
~	
Subr	nit
Q9	
	oint (graded) er PCA routine called as pca = PCA(n_components=2); PCA can be applied and data X can be transformed in N as
x	p = pca.fit(X).transform(X)
(x	p = pca.fit_transform(X)
(x	p = pca.fittransform(X)
(x	(p = pca(X)

ussian mixture can be				
from sklearn.mixt	ure import Gaussian	Mixture		
from sklearn impo	ort GaussianMixture			
from mixture impe	ort GaussianMixture			
from numpy impo	rt GaussianMixture			
•				
Submit				

© All Rights Reserved

