WHAT IS CLAIMED IS:

1. A method for obtaining a cell-specific binding molecule useful for
increasing uptake or specificity of a genetic vaccine to a target cell, the method comprising:
creating a library of recombinant polynucleotides that by recombining
nucleic acid that encodes a polypeptide that comprises a nucleic acid binding domain and a
nucleic acid that encodes a polypeptide that comprises a cell-specific binding domain; and
screening the library to identify a recombinant polynucleotide that
encodes a binding molecule that can bind to a nucleic acid and to a cell-specific receptor.
2. A method for obtaining a cell-specific binding moiety useful for
/increasing uptake or specificity of a genetic vaccine to a target cell, the method comprising:
(1) recombining at least first and second forms of a nucleic acid which
comprises a polynucleotide that encodes a nucleic acid binding domain and at least first and
second forms of a nucleic acid which comprises a cell-specific ligand that specifically binds
to a protein on the surface of a cell of interest, wherein the first and second forms differ from
each other in two or more nucleotides, to produce a library of recombinant binding moiety-
encoding nucleic acids;
(2) transfecting into a population of host cells a library of vectors, each
of which comprises: a) a binding site specific for the nucleic acid binding domain and 2) a
member of the library of recombinant binding moiety-encoding nucleic acids, wherein the
recombinant binding moiety is expressed and binds to the binding site to form a vector-
binding moiety complex;
(3) lysing the host cells under conditions that do not disrupt binding of
the vector-binding moiety complex;
(4) contacting the vector-binding moiety complex with a target cell of
interest; and
(5) identifying target cells that contain a vector and isolating the
optimized recombinant cell-specific binding moiety nucleic acids from these target cells.
3. The method of claim 2, wherein the method further comprises:
'

.

2	(6) recombining at least one optimized recombinant binding moiety
3	encoding nucleic acid with a further form of the polynucleotide that encodes a nucleic acid
4	binding domain and/or a further form of the polynucleotide that encodes a cell-specific
5	ligand, which are the same or different from the first and second forms, to produce a further
6	library of recombinant binding moiety-encoding nucleic acids;
7	(7) transfecting into a population of host cells a library of vectors that
8	comprise: a) a binding site specific for the nucleic acid binding domain and 2) the
9	recombinant binding moiety-encoding nucleic acids, wherein the recombinant binding
10	moiety is expressed and binds to the binding site to form a vector binding moiety complex;
1]	(8) lysing the host cells under conditions that do not disrupt binding of
12	the vector-binding moiety complex;
)3	(9) contacting the vector-binding moiety complex with a target cell of
14 /	interest and identifying target cells that contain the vector; and
15 /	(10) isolating the optimized recombinant binding moiety nucleic acids
16	from the target cells which contain the vector; and
17	(11) repeating (6) through (10), as necessary, to obtain a further
18	optimized cell-specific binding moiety useful for increasing uptake or specificity of a genetic
19	vaccine vector to a target cell.
	· /
1	4. The method of claim 2, wherein the method further comprises
2	identifying cell-specific binding moieties that result in the highest efficiency in transfecting
3	the target cells.
1	5. The method of claim 2, wherein the nucleic acid binding domain is a
2	DNA binding domain derived from a protein selected from the group consisting of a
3	transcriptional regulator, a polypeptide involved in DNA replication or recombination, a
4	repressor, a histone, a protamine, an E. coli CAP protein, myc, a protein having a leucine
5	zipper, a protein having a DNA binding basic domain, a protein having a POU domain, a
6	protein having a zinc finger, and a protein having a Cys ₃ His box.

1	15. A genetic vaccine that comprises a cell-specific recombinant binding
2	moiety of claim 14!
1	16. A genetic vaccine that comprises an optimized recombinant binding
7_2	moiety-encoding nucleic acid obtained by the method of claim 2,
1	17. A genetic vaccine that comprises:
2	a) an optimized recombinant binding moiety that comprises a nucleic
3	acid binding domain and a cell-specific ligand, and
4	b) a polynucleotide sequence that comprises a binding site, wherein the
5	nucleic acid binding domain is capable of specifically binding to the binding site.
1	18. A method for obtaining an optimized cell-specific binding moiety useful
2	for increasing uptake, efficacy, or specificity of a genetic vaccine for a target cell, the
3	method comprising:
4	(1) recombining at least first and second forms of a nucleic acid that
5	comprises a polynucleotide which encodes a non-toxic receptor binding moiety of an
6	Atterotoxin, wherein the first and second forms differ from each other in two or more
7	nucleotides, to produce a library of recombinant nucleic acids;
לואר	(2) transfecting vectors that contain the library of nucleic acids into a
(7)	population of host cells, wherein the nucleic acids are expressed to form recombinant cell-
Yo	specific binding moiety polypeptides;
11	(3) contacting the recombinant cell-specific binding moiety
12	polypeptides with a cell surface receptor of a target cell; and
13	(4) determining which recombinant cell-specific binding moiety
14	polypeptides exhibit chanced ability to bind to the target cell.
	
1	19. The method of claim 18, wherein the cell surface receptor is present on
2	the surface of a target cell.

20. The method of claim 18, wherein the cell surface receptor is G_{M1} .

The method of claim 18, wherein the host cell is a V. cholerae cell

The method of claim 24, wherein the method further comprises:

1

1

28.

	1
2	culturing the cells for a predetermined time after contacting the cells
3	with the library of vectors;
4	washing the cells after the contacting step to remove vectors that did not
5	enter an antigen-presenting cell; and
6	isolating the vectors from the cells that contain a vector.
1	29. The method of claim 24, wherein the cells that contain a vector are
2	identified by:
3	transfecting individual library members or pools of library members
4	into separate cultures of antigen-presenting cells;
5	co-culturing the cultures of antigen-presenting cells with T lymphocytes
6	obtained from the same individual as the antigen-presenting cells; and
7	identifying cultures in which a T lymphocyte response is induced.
1	30. The method of claim 29, wherein the T lymphocyte response is selected
2	from the group consisting of increased T lymphocyte proliferation, increased T lymphocyte-
3	mediated cytolytic activity against a target cell, and increased cytokine production.
1	31. The method of claim/24/wherein the vector is a replicable genetic
2	package and the recombinant nucleic acids are expressed as a fusion protein which is
3	displayed on the surface of the replicable genetic package.
1	32. The method of claim 31, wherein the replicable genetic package is a
2	bacteriophage.
2	bacteriophage.
1	33. A method of obtaining a genetic vaccine component that confers upon a
2	vector an enhanced ability to enter cell or tissue when administered to a mammal by a
3	desired administration protocol, the method comprising:
4	creating a library of recombinant nucleic acids by subjecting to
5	recombination at least two forms of a polynucleotide;
6	administering to a mammal a library of vectors, each of which
7	comprises a member of the library of recombinant nucleic acids, into a mammal.

8	obtaining target cells or tissues from the mammal;
9	identifying target cells or tissues that contain a vector, and
10	recovering vectors from the identified target cells or tissues.
1	34. The method of claim 33, wherein the target cells are lymphatic cells.
	· · · · · · / · · · · · · · · · · · · ·
1	35. The method of claim 33, wherein the administering is by oral ingestion,
2	inhalation, injection, or topical application to skin or mucous membrane.
1	36. The method of claim 33, wherein the vector is a replicable genetic
2	package and the recombinant nucleic acids are expressed as a fusion protein which is
3	displayed on the surface of the replicable genetic package.
1	27 A seeded 6 seeds 4 for seeds 4 disconstable to obtain an antimized
1	37. A method for evolving a vaccine delivery vehicle to obtain an optimized
2	delivery vehicle having enhanced ability to enter a selected mammalian tissue upon
3	administration to a mammal, the method comprising:
4	(1) recombining/members of a pool of polynucleotides to produce a
5	library of recombinant polynucleotides;
6	(2) administering to a test animal a library of replicable genetic
7	packages, each of which comprises a member of the library of recombinant polynucleotides
8	operably linked to a polynucleotide that encodes a display polypeptide, wherein the
9	recombinant polynucleotide and the display polypeptide are expressed as a fusion protein
10	which is which is displayed on the surface of the replicable genetic package; and
11	(3) recovering replicable genetic packages that are present in the
12	selected tissue of the test animal at a suitable time after administration, wherein recovered
13	replicable genetic packages have enhanced ability to enter the selected mammalian tissue
14	upon administration to the mammal.
1	38. The method of claim 37, wherein the method further comprises:
2	(4) recombining a nucleic acid that comprises at least one recombinant
3	polynucleotide obtained from a replicable genetic package recovered from the selected tissue

	/
4	with a further pool of polynucleotides to produce a further library of recombinant
5	polynucleotides;
6	(5) administering to a test animal a library of replicable genetic
7	packages, each of which comprises a member of the further library of recombinant
8	polynucleotides operably linked to a polynucleotide that encodes a display polypeptide,
9	wherein the recombinant polynucleotide and the display polypeptide are expressed as a
10	fusion protein which is which is displayed on the surface of the replicable genetic package;
11	(6) recovering replicable genetic packages that are present in the
12	selected tissue of the test animal at a suitable time after administration; and
13	(7) repeating (4) through (6), as necessary, to obtain a further optimized
14	recombinant delivery vehicle that exhibits further enhanced ability to enter a selected
15	mammalian tissue upon administration-to a mammal.
1	39. The method of claim/37, wherein the replicable genetic package is a
2	bacteriophage.
1	40. The method of claim 39, wherein the bacteriophage is M13.
•	
1	41. The method of claim 40, wherein the polynucleotide which encodes a
2	display polypeptide is selected from the group consisting of gene III and gene VIII.
1	42. The method of claim 37, wherein the selected mammalian tissue is the
2	bloodstream and the administration is by inhalation.
1	43'. The method of claim 37, wherein the administration is intravenous and
2	the selected mammalian tissue is selected from the group consisting of lymph node and
3	spleen. / ,
1	AA A weath at few wealthing a weaping delivery yeshiola to obtain an optimized
1	44. A method for evolving a vaccine delivery vehicle to obtain an optimized
2	delivery vehicle having enhanced specificity for antigen-presenting cells, the method
3	comprising:

	,
4	(1) recombining members of a pool of polynucleotides to produce a
5	library of recombinant polynucleotides;
6	(2) producing a library of replicable genetic packages, each of which
7	comprises a member of the library of recombinant polynucleotides operably linked to a
8	polynucleotide that encodes a display polypeptide, wherein the recombinant polynucleotide
9	and the display polypeptide are expressed as a fusion protein which is which is displayed on
10	the surface of the replicable genetic package;
11	(3) contacting the library of recombinant replicable genetic packages
12	with a non-APC to remove replicable genetic packages that display non-APC-specific fusion
13	polypeptides; and
14	(4) contacting the recombinant replicable genetic packages that did not
15	bind to the non-APC with an APC and recovering those that bind to the APC, wherein the
16	recovered replicable genetic packages are capable of specifically binding to APCs.
1	45. The method of claim 44 wherein the method further comprises the steps
2	of:
3	(5) recombining a nucleic acid which comprises at least one
4	recombinant polynucleotide obtained from a replicable genetic package that is capable of
5	specifically binding to APCs with a further pool of polynucleotides to produce a further
6	library of recombinant polynucleotides;
7	(6) producing a further library of recombinant replicable genetic
8	packages, each of which comprises a member of the library of recombinant polynucleotides
9	operably linked to a polynucleotide that encodes a display polypeptide, wherein the
10	recombinant polynucleotide and the display polypeptide are expressed as a fusion protein
11	which is which is displayed on the surface of the replicable genetic package;
12	(7) contacting the further library of recombinant replicable genetic
13	packages with a non-APC to remove those that display non-APC-specific fusion
14	polypeptides:/and
15	(8) contacting the recombinant replicable genetic packages which did
16	not bind to the non-APC with an APC and recovering replicable genetic packages which
17	bind to the APC, wherein the recovered replicable genetic packages are capable of
18	specifically binding to APCs; and

	.7
19	(9) repeating (5) through (8), as necessary, to obtain a further optimized
20	recombinant delivery vehicle which exhibits further enhanced specificity for antigen-
21	presenting cells.
1	46. A method for evolving a vaccine delivery vehicle to obtain an optimized
. 2	delivery vehicle having enhanced ability to enter a target cell, the method comprising:
3	(1) recombining at least first and second forms of a nucleic acid which
4	encodes an invasin polypeptide, wherein the first and second forms differ from each other in
5	two or more nucleotides, to produce a library of recombinant invasin nucleic acids;
6	(2) producing a library of recombinant bacteriophage, each of which
7	displays on the bacteriophage surface a fusion polypeptide encoded by a chimeric gene that
8	comprises a recombinant invasin nucleic acid operably linked to a polynucleotide that
9	encodes a display polypeptide;
10	(3) contacting the library of recombinant bacteriophage with a
11	population of target cells;
12	(4) removing up sound phage and phage which is bound to the surface
13	of the target cells; and
14	(5) recovering phage which are present within the target cells, wherein
15	the recovered phage are enriched for phage that have enhanced ability to enter the target
16	cells.
1	47. The method of claim 46, wherein the method further comprises:
2	(6) recombining a nucleic acid which comprises at least one
3	recombinant invasin nucleic acid obtained from a bacteriophage which is recovered from a
4	target cell with a further pool of polynucleotides to produce a further library of recombinant
5	invasin polynucleotides;
6	(7) producing a further library of recombinant bacteriophage, each of
7	which displays on the bacteriophage surface a fusion polypeptide encoded by a chimeric
8	gene that comprises a recombinant invasin nucleic acid operably linked to a polynucleotide
9	that/encodes a display polypeptide;
10	(8) contacting the library of recombinant bacteriophage with a
11	population of target cells;

		1
	12	(9) removing unbound phage and phage which is bound to the surface
	13	of the target cells; and
	14	(10) recovering phage which are present within the target cells; and
	15	(11) repeating (6) through (10), as necessary, to obtain a further
	16	optimized recombinant delivery vehicle which exhibits further have enhanced ability to enter
	17	the target cells.
	1	48. The method of claim 47, wherein the method further comprises:
	2	(12) inserting into the optimized recombinant delivery vehicle a
	3	polynucleotide which encodes an antigen of interest, wherein the antigen of interest is
	4	expressed as a fusion polypeptide which comprises a second display polypeptide;
	5	(13) administering the delivery vehicle to a test animal; and
	6	(14) determining whether the delivery vehicle is capable of inducing a
	7	CTL response in the test animal.
	1	49. The method of claim 47, wherein the method further comprises:
:	2	(12) inserting into the optimized recombinant delivery vehicle a
	3	polynucleotide which encodes an antigen of interest, wherein the antigen of interest is
	4	expressed as a fusion polypeptide which comprises a second display polypeptide;
	5	(13) administering the delivery vehicle to a test animal; and
	6	(14) determining whether the delivery vehicle is capable of inducing
	7	neutralizing antibodies against a pathogen which comprises the antigen of interest.
	1	50. The method of claim 46, wherein the target cell is an APC.
		,

add by odd op