Predictive Analytics Using SAS

Project Report – Group 2

Akshay Pathak

Apurva Sinha

Priya Srinivas Gundevaina

Priyanka Guha

Sudharsana Rajasekaran

Varun Suresh

Introduction:

Pampers is an American household name for baby and toddler products sold by Proctor & Gamble. With data available at ProductUPC week level, we have made the following analysis to understand and answer the following questions:

- 1. What are the leading factors that affect the sales of diapers in stores. How do the prices of Pampers and its major competitors affect same ?
- 2. Understand the target segment of customer purchasing Pampers
- 3. Identify the reasons why customers select/or reject Pampers as a brand choice

Market Share:

To begin with, we wanted to understand where Pampers stands with respect to other important players in the market. P&G, the parent company is the leader when it comes to capturing the baby and toddler products market, however Pampers as a brand comes second to Huggies.

Both Pampers and Luvs (3rd in the market segment) contribute to P&G's growth

We get more clarity on Pampers by looking into the contribution of respective products/categories within Pampers that contributes to its overall sales. Pampers Baby Dry and Pampers Premium are most preferred product brands.

Weekly trend of the tot_units gives us a weekly outlook of fluctuations in the total units of the respective brands sold:

Tot_units -> Y axis, Week -> X axis

Analysis on Price Elasticity:

We perform this analysis to get a better understanding of the factors that would influence the sales of diapers with a concentration on price of Pampers and its competitors. This would help us come up with effective pricing strategies to help improve performance of Pampers.

Analytical Dataset preparation:

Since, the diapers come in different pack-sizes, we will need to first get per Diaper Price. And since there several products under one diaper-brand, to compare the prices of one brand with other, it is important to convert the prices of each product to a weighted price and get a brand-level total of weighted price for a week and store.

The data was grouped into 4 different brands - Huggies, Luvs, Pampers and others(combining the remaining brands)

Weighted price per diaper =
$$\frac{Price \ per \ Diaper*Sales \ of \ Diaper \ for \ particular \ brand}{Total \ sales \ of \ diapers} \times \% \quad Market \ Share$$

We have similarly computed weighted values for Price reduction, display and Feature. These values were then aggregated at store- week -brand level.

To capture these values for respective brands, we have converted these into columns so that for every week we now have the price, price reduction and store promotion details for every store.

Other derived variables include creation of the following interaction variables:

PR_F = Weighted Price Reduction of respective Brand*Weighted Feature of respective Brand

Price_F = Weighted Price of respective Brand*Weighted Feature of respective Brand

Price_PR = Weighted Price of respective Brand* Weighted Price Reduction of respective Brand

Figure: List of variables in the data

Hausman Test for Random Effects:

The Hausman test is done to determine whether fixed effects model or random effects model is to be used for panel regression

NULL Hypothesis (Ho): No Correlation between the error term (ui) and the independent variables in the model. Random effects model is to be used

ALTERNATE Hypothesis (H_a): Correlation is present between the error term (u_i) and the independent variables in the model. Fixed effects model is to be used

Since p-value of Hausman test is less than 0.05, there is convincing evidence to reject null hypothesis in favor of alternate hypothesis. Thus, fixed effects model needs to be used.

Panel Regression Model (Two Way Fixed Effects):

We observed a very strong correlation between tot_units and sales variables in the dataset. This implies that both explain the sales of diapers in the dataset. Secondly using both the variables in the model would result in endogeneity in the model.

Since there is high correlation between the two, using tot_units are synonymous with using sales as dependent variable.

Figure: Correlation between tot units and Sales

Dependent Variable:

Total units of diapers sold

Independent Variables:

WEIGHTED PRICE OF BRAND1(Huggies), WEIGHTED PRICE OF BRAND2(Luvs), WEIGHTED PRICE OF BRAND3(Pampers), WEIGHTED DISPLAY OF BRAND2(Luvs), WEIGHTED DISPLAY OF BRAND2(Luvs), WEIGHTED DISPLAY OF BRAND2(Luvs), WEIGHTED DISPLAY OF BRAND4(Others), WEIGHTED FEATURE OF BRAND4(Others), WEIGHTED PRICE REDUCTION OF BRAND4(Others), WEIGHTED PRICE*PRICE REDUCTION OF BRAND1(Huggies), WEIGHTED PRICE*PRICE REDUCTION OF BRAND2(Luvs), WEIGHTED PRICE*PRICE REDUCTION OF BRAND3(Pampers), WEIGHTED PRICE*PRICE REDUCTION OF BRAND4(Others) , WEIGHTED PRICE*WEIGHTED FEATURE BRAND1(Huggies), , WEIGHTED PRICE*WEIGHTED FEATURE BRAND3(Pampers), , WEIGHTED PRICE*WEIGHTED FEATURE BRAND3(Pampers), , WEIGHTED PRICE*WEIGHTED FEATURE BRAND4(Others)

Model Equation:

Sales_{Pampers} = B0 + B1*WEIGHTED PRICE OF BRAND1(Huggies) + B2*WEIGHTED PRICE OF BRAND2(Luvs)+ B4* WEIGHTED PRICE OF BRAND3(Pampers) + B6* WEIGHTED PRICE OF BRAND4(Others) + B7*WEIGHTED DISPLAY OF BRAND1(Huggies) + B8*WEIGHTED DISPLAY OF BRAND2(Luvs) + B9*WEIGHTED DISPLAY OF BRAND3(Pampers) + B10* WEIGHTED DISPLAY OF BRAND4(Others) + B11*WEIGHTED FEATURE OF BRAND4(Others) + B12*WEIGHTED PRICE REDUCTION OF BRAND2(Luvs) + B13* WEIGHTED PRICE REDUCTION OF BRAND1(Huggies) + B15* WEIGHTED PRICE*PRICE REDUCTION OF BRAND1(Huggies) + B15* WEIGHTED PRICE*PRICE REDUCTION OF BRAND3(Pampers) + B18*WEIGHTED PRICE*PRICE REDUCTION OF BRAND4(Others) + B19*WEIGHTED PRICE*WEIGHTED FEATURE BRAND1(Huggies) B20* WEIGHTED PRICE*WEIGHTED FEATURE BRAND1(Huggies) B20* WEIGHTED PRICE*WEIGHTED FEATURE BRAND2(Luvs)+ B21*WEIGHTED PRICE*WEIGHTED FEATURE BRAND3(Pampers)+ B22*WEIGHTED PRICE*WEIGHTED FEATURE BRAND4(Others)

Model Statistics:

From the entire dataset, the variables were treated for multicollinearity prior to building the model

Model interpretation

From the model parameter estimates, we notice that all the variables are significant besides weighted price for Luvs, weighted display for luvs, weighted price reduction for other brands and interaction of weighted price and price reduction for other brands.

Calculating Self and Cross Elasticity:

From the overall weekly trend of Sales and price of pampers, we notice that there seems to be some relation that indicates that when prices increase briefly, the sales of pampers decreases. This could be indicating that people are price sensitive when it comes to purchasing Pampers brand. This would be better explained based on the price elasticity calculation.

Calculating Means

Variable	N	Mean	Std Dev	Minimum	Maximum	
tot_units	66123	31.4197329	35.5111812	1.0000000	594.0000000	
wt_price_brand1	66123	0.0513165	0.0605905	0.000074441	1.2796067	
wt_price_brand2	66123	0.0896474	0.1018263	2.0834233E-6	0.6974754	
wt_price_brand3	66123	0.0708028	0.0884375	9.2194716E-6	1.0649970	
wt_price_brand4	66123	0.0180177	0.0246201	3.785543E-6	0.5406348	
price_PR1	66123	0.0035828	0.0558816	0	4.1286777	
price_PR2	66123	0.0045391	0.0272185	0	2.1357192	
price_PR3	66123	0.0037354	0.0284852	0	3.1484408	
price_PR4	66123	0.000875059	0.0065452	0	0.6774400	
price_F1	66123	0.0016960	0.0309911	0	3.6695957	
price_F2	66123	0.0021492	0.0287719	0	1.2323894	
price_F3	66123	0.0026007	0.0403474	0	2.6126301	
price F4	66123	0.000564494	0.0048334	0	0.3525845	

Price Elasticity Calculation:

Self-Price Elasticity: A measure used in economics to show the responsiveness, or elasticity, of the quantity demanded of a good or service to a change in its price when nothing but the price changes.

SelfPrice Elasticity of Pampers
$$= \frac{\beta 4 * PricePampers}{SalesPampers}$$
$$= -95.26*0.071/31.42$$
$$= -0.22$$

SelfPrice Elasticity of Pampers $= \frac{(\beta 4 + \beta 17 PR Pamper + \beta 21 Feature Pampers) * Price Pampers}{Sales Pampers}$

(considering Price reduction and Feature)

Inference:

This means that when Pampers reduces the price by 1% then there will be a 0.021% increase in sales. However, the Price reduction and advertisements for Pampers does not seem to be doing its effect. This is because the Price elasticity after considering Price reduction and Feature does not improve significantly.

This indicates that company needs to devote more attention for its marketing strategies and when it decides to give price reductions.

Another way of interpreting it is that price changes in Pampers does not really affect its overall sales, that is they are price inelastic. People are probably not price sensitive, but might be more brand sensitive

Cross Price Elasticity of Pampers $= \frac{\beta 2 * \text{PriceHuggies}}{\text{SalesHuggies}}$ = 13.18 * 0.05/31.42 = 0.021Cross Price Elasticity of Pampers $= \frac{(\beta 2 + \beta 15 \text{PRHuggies} + \beta 19 \text{FeatureHuggies}) * \text{PriceHuggies}}{\beta 1 + \beta 1}$

(considering Price reduction and Feature)

= (13.18 -18.72*0.0035-7.76 *0.0017)*0.05/31.42 = 0.027

SalesPampers

Inference:

Pampers is not significantly affected by the prices of Huggies which seems to be the market leader for baby products. Like the interpretation of self-price elasticity, this means that sales of Pampers are inelastic to the prices of its competitors.

ANALYSIS -2

Introduction:

To identify customer attributes that drive PAMPERS sales. This can be done by performing RFM analysis which helps us identify which segment of customers are more frequent, recent buyers of the product and revenue generators.

RFM Segmentation:

Applying RFM segmentation on the overall panel dataset from Grocery, Drug and MA stores. From sales of Diaper over the observed time has the following metrics were captured that were instrumental in segmentation.

- I. Recency Recency refers to how recent the customer has purchased. It is the difference between last purchase date and the most recent date.
- II. Frequency Number of purchases made by a customer in a given week
- III. Monetary Total amount spent by the customer in any given week.

Initial analysis helps us understand that a customer on an average spent around 42\$ by making 3 visits every 18 weeks. There is a high level of correlation between monetary value and frequency. So, we can consider monetary value as the prime criterion for segmentation.

We wanted to identify what demographic attributes of the customer are responsible for the customer's being high value or low value. Criterion:

- Top customers = Monetary_score 4,5
- Bottom customers = Monetary_score 1,2

Variable	N Mean		Std Dev	Minimum	Maximum	
PANID	132	2206066.88	1040816.33	1118786.00	3842443.00	
monetary	132	85.3001515	70.0039230	27.4700000	378.2100000	
freq	132	5.9242424	4.9940747	2.0000000	28.0000000	
weekcnt	132	12.2045455	11.8571257	0	50.0000000	
monetary_score	132	4.5227273	0.5013860	4.0000000	5.0000000	
frequency_score	132	4.3181818	0.7238382	3.0000000	5.0000000	
recency_score	132	3.6439394	1.2789104	1.0000000	5.0000000	
child_num	132	1.0454545	0.8548348	0	3.0000000	
pets_total	132	0.8560606	1.0198980	0	4.0000000	
fam_size_L	132	0.5227273	0.5013860	0	1.0000000	
fam_size_R	132	0.4772727	0.5013860	0	1.0000000	
fam_size_O	132	0	0	0	0	
fam_income_L	132	0.1439394	0.3523655	0	1.0000000	
fam_income_M	132	0.4318182	0.4972164	0	1.0000000	
fam_income_H	132	0.3333333	0.4732004	0	1.0000000	
fam_income_VH	132	0.0909091	0.2885750	0	1.0000000	
fam_income_O	132	0	0	0	0	
age_mY	132	0.0075758	0.0870388	0	1.0000000	
age_mM	132	0.6136364	0.4887705	0	1.0000000	
age_mE	132	0.1515152	0.3599162	0	1.0000000	
age_m0	132	0.2272727	0.4206667	0	1.0000000	
age_fY	132	0.0454545	0.2090924	0	1.0000000	
age_fM	132	0.7196970	0.4508583	0	1.0000000	
age_fE	132	0.1515152	0.3599162	0	1.0000000	
age_fO	132	0.0833333	0.2774383	0	1.0000000	
occ_mWH	132	0.3409091	0.4758206	0	1.0000000	
occ_mWL	132	0.1287879	0.3362411	0	1.0000000	
occ_mB	132	0.1590909	0.3671542	0	1.0000000	
occ_mNO	132	0.2196970	0.4156186	0	1.0000000	
occ_fWH	132	0.4318182	0.4972164	0	1.0000000	
occ_fWL	132	0.1515152	0.3599162	0	1.0000000	
occ_fB	132	0.0681818	0.2530179	0	1.0000000	
occ_fNO	132	0.1439394	0.3523655	0	1.0000000	
one_child	132	0.3636364	0.4828783	0	1.0000000	
two_child	132	0.2954545	0.4579849	0	1.0000000	
three_child	132	0.0303030	0.1720729	0	1.0000000	
zero_child	132	0.3106061	0.4645046	0	1.0000000	

Variable	N	Mean	Std Dev	Minimum	Maximun
PANID	141	2174533.54	1047184.78	1104935.00	3842559.0
monetary	141	12.0736879	2.2461225	5.9900000	16.990000
freq	141	1.0000000	0	1.0000000	1.000000
weekcnt	141	24.4113475	15.0736624	0	51.000000
monetary_score	141	1.0000000	0	1.0000000	1.000000
frequency_score	141	1.0000000	0	1.0000000	1.000000
recency_score	141	2.5035461	1.3396381	1.0000000	5.000000
child_num	141	0.6595745	0.8002659	0	3.000000
pets_total	141	1.0000000	1.3680017	0	6.000000
fam_size_L	141	0.3120567	0.4649847	0	1.000000
fam_size_R	141	0.6879433	0.4649847	0	1.000000
fam_size_O	141	0	0	0	
fam_income_L	141	0.1489362	0.3572948	.0	1.000000
fam_income_M	141	0.5460993	0.4996453	0	1.000000
fam_income_H	141	0.2624113	0.4415135	0	1.000000
fam_income_VH	141	0.0425532	0.2025671	0	1.000000
fam_income_O	141	0	0	0	
age_mY	141	0.0141844	0.1186722	0	1.000000
age_mM	141	0.4184397	0.4950617	0	1.000000
age_mE	141	0.3617021	0.4822062	0	1.000000
age_mO	141	0.2056738	0.4056341	0	1.000000
age_fY	141	0.0638298	0.2453210	0	1.000000
age_fM	141	0.4893617	0.5016689	0	1.000000
age_fE	141	0.3900709	0.4895048	0	1.000000
age_fO	141	0.0567376	0.2321653	0	1.000000
occ_mWH	141	0.2836879	0.4523943	0	1.000000
occ_mWL	141	0.1276596	0.3349001	0	1.000000
occ_mB	141	0.1347518	0.3426756	0	1.000000
occ_mNO	141	0.3617021	0.4822062	0	1.000000
occ_fWH	141	0.2695035	0.4452837	0	1.000000
occ_fWL	141	0.1843972	0.3891903	0	1.000000
occ fB	141	0.0851064	0.2800347	0	1.000000
occ_fNO	141	0.2624113	0.4415135	0	1.000000
one_child	141	0.3120567	0.4649847	0	1.000000
two_child	141	0.1418440	0.3501339	0	1.000000
three_child	141	0.0212766	0.1448194	0	1.000000
zero_child	141	0.5248227	0.5011638	0	1.000000

Figure 1: Top-Customers (M = 4,5)

Figure 2: Bottom-Customers (M = 1,2)

From the above output, for customers choosing 'PAMPERS' as their preferred brand, we can see that:

- 132 Top-customers have contributed up to 85.3% of the overall revenue. These are customers who visit the shop most frequently and are most recent compared to the other segment.
- 141 are the low revenue customers contribute to only 12% of the overall revenue.
- 52% of the Large family size households belong to high value customers group when compared to regular family size households which have only 47%.
- Middle-aged male and female groups in a household prefer Pampers more when compared to other age groups.
- 'PAMPERS' is preferred more by household having females occupying positions in White collar jobs whereas, females with no occupation are less likely to favor our products. This could mean that the pricing of our products is a little higher as compared to other brands.
- Households with one or two kids will more preferably buy our product.

Preference: high value customers:

Large family household, Middle aged male and female, female with white collar job and household with 1 or 2 children.

Preference: low value customers

Regular family household, Medium family income, female with no jobs and household expecting a child.

1. Households expecting a child do not have specific choice of brand as they are unaware about the benefits of the features of one brand over another. Hence, it is possible that their choice will be driven by price of the diaper with their income playing as a major role in it. 2. Large family size prefers to buy PAMPERS due to prior experience with the brand which had led to a strong brand
affinity. 3. Middle aged Male and Female are aware of the features of the product and its benefits. Hence, they prefer PAMPERS Brand Choice Preference

ANALYSIS -3

To study the impact of feature, display and price reduction on Brand selection.

Data Preparation:

- Combining store level data for a drug and grocery store
- Created 4 primary brands Huggies, Pampers, Luvs and Others.
- Data filtered for customers having continuous weeks of data
- Weighted Price weighted display, feature and price reduction score are calculated for a store(i):

$$Weighted \ Price_i = \Sigma \ Price_i * \frac{Sales \ of \ Diapers}{Total \ Sales \ of \ all \ Diapers}$$

$$Weighted \ PriceReduction_i = \Sigma \ Price \ reduction_i * \frac{Sales \ of \ Diapers}{Total \ Sales \ of \ all \ Diapers}$$

$$Weighted \ Feature_i = \Sigma \ Feature_i * \frac{Sales \ of \ Diapers}{Total \ Sales \ of \ all \ Diapers}$$

$$Weighted \ Display = \Sigma \ Display_i * \frac{Sales \ of \ Diapers}{Total \ Sales \ of \ all \ Diapers}$$

Model:

To identify brand preference based on Features, Display and Price reduction at a store level.

Model Stats:

AIC and BIC are very close this means that the model is getting penalized for using a higher number of variables.

$$McFadden's\ Rsqr = 1 - \frac{LogLiklih\ of\ the\ model}{LogNullliklihood\ of\ the\ model} = 7.5\%$$

Analysis of Maximum Likelihood Estimates							
Parameter	brand	DF	Estimat	Standard	Wald	Pr > Chi	Exp(Est)
			е			Sq	
				Error	Chi-		
		╄.			Square		
Intercept	HUGGIES	1	0.1473	0.0925	2.5366		1.159
Intercept	LUVS	1	0.0316	0.0952	0.1098	0.7403	1.032
Intercept	OTHER	1	1.0648	0.0808	173.495		2.9
disp_wt_brand1	HUGGIES	1	-0.445	0.3047	2.1321	0.1442	0.641
disp_wt_brand1	LUVS	1	-0.9218	0.3052	9.1241	0.0025	0.398
disp_wt_brand1	OTHER	1	-2.0033	0.2584	60.1138		0.135
disp_wt_brand2	HUGGIES	1	-0.3318	0.3329	0.9938	0.3188	0.718
disp_wt_brand2	LUVS	1	1.417	0.2805	25.5123	<.0001	4.125
disp_wt_brand2	OTHER	1	-0.3691	0.2919	1.5982	0.2062	0.691
disp_wt_brand3	HUGGIES	1	0.9094	0.2362	14.8176	0.0001	2.483
disp_wt_brand3	LUVS	1	0.0913	0.2513	0.132	0.7164	1.096
disp_wt_brand3	OTHER	1	-0.4691	0.2265	4.2885	0.0384	0.626
disp_wt_brand4	HUGGIES	1	-1.24	0.6439	3.708	0.0542	0.289
disp_wt_brand4	LUVS	1	0.3814	0.6812	0.3134	0.5756	1.464
disp_wt_brand4	OTHER	1	0.3405	0.5893	0.3339	0.5634	1.406
Feature_wt_brand1	HUGGIES	1	-0.8336	0.3001	7.7178	0.0055	0.434
Feature_wt_brand1	LUVS	1	-0.2057	0.2906	0.501	0.4791	0.814
Feature_wt_brand1	OTHER	1	0.3065	0.2426	1.5957	0.2065	1.359
Feature_wt_brand2	HUGGIES	1	0.1842	0.2092	0.7754	0.3785	1.202
Feature_wt_brand2	LUVS	1	0.5456	0.2096	6.7738	0.0093	1.726
Feature_wt_brand2	OTHER	1	-0.3125	0.1995	2.4517	0.1174	0.732
Feature_wt_brand3	HUGGIES	1	-0.1791	0.2246	0.6362	0.4251	0.836
Feature_wt_brand3	LUVS	1	0.0235	0.2307	0.0104	0.9187	1.024
Feature wt brand3	OTHER	1	0.0287	0.2048	0.0197	0.8884	1.029
Feature wt brand4	HUGGIES	1	0.2692	0.4832	0.3103	0.5775	1.309
Feature wt brand4	LUVS	1	-1.165	0.5403	4.6487	0.0311	0.312
Feature wt brand4	OTHER	1	-1.7091	0.4746	12.9687	0.0003	0.181
PR wt brand1	HUGGIES	1	0.5782	0.431	1.7999	0.1797	1.783
PR wt brand1	LUVS	1	-0.8935	0.5442	2.6959	0.1006	0.409
PR wt brand1	OTHER	1	-0.975	0.4801	4.1231	0.0423	0.377
PR wt brand2	HUGGIES	1	-0.0451	0.5922	0.0058	0.9394	0.956
PR wt brand2	LUVS	1	-1.5084	0.7965	3.5865	0.0582	0.221
PR wt brand2	OTHER	1	-0.9472	0.7082	1.7892	0.181	0.388
PR wt brand3	HUGGIES	1	13.534	7.5047	3.252	0.0713	754289
PR wt brand3	LUVS	1	-822	887.1	0.8587	0.3541	0
PR wt brand3	OTHER	1	10.19	7.7974	1.7077	0.1913	26623.4
PR wt brand4	HUGGIES	1	4.4302	2.5561	3.004	0.0831	83.948
PR wt brand4	LUVS	1	3.1269	2.7468	1.2959	0.255	22.803
PR wt brand4	OTHER	1	12.891	2.2732	32.159		396800

Statistically significant parameters are:

- disp_wt_brand1Luvs, disp_wt_brand1other, disp_wt_brand2Luvs, disp_wt_brand3Huggies, disp_wt_brand3other
- Feature_wt_brand1_{Huggies}, Feature_wt_brand2_{Luvs}, Feature_wt_brand4_{Pampers}, Feature_wt_brand4_{Other}
- PR_wt_brand1other, PR_wt_brand4other

Interpretation:

When compared with Pampers, keeping all the other variables are constant, the likelihood of choice selection between brands:

- **disp_wt_brand1**_{Luvs}: The relative odds of selecting Luvs products decreases by 61%, if there is a display for Pampers products
- **disp_wt_brand1**_{Other}: The relative odds of selecting Other products decreases by 87%, if there is a display for Pampers products
- **disp_wt_brand2**_{Luvs}: The relative odds of selecting Luvs products increases by 312%, if there is a display for Luvs products

- **disp_wt_brand3**_{Huggies}: The relative odds of selecting Huggies products increases by 140%, if there is a display for Huggies products
- disp_wt_brand3_{Other}: The relative odds of selecting Other products decreases by 40%, if there is a display for Huggies products
- **Feature_wt_brand1**_{Huggies}: The relative odds of selecting Huggies products decreases by 57%, if there is a store level promotion featuring Pampers products
- **Feature_wt_brand2**_{Luvs}: The relative odds of selecting Luvs products Increases by 70%, if there is a store level promotion featuring Luvs products
- **Feature_wt_brand4**_{Luvs}: The relative odds of selecting Luvs products decreases by 69%, if there is a store level promotion featuring Other products
- **Feature_wt_brand4**_{Other}: The relative odds of selecting Other products decreases by 82%, if there is a store level promotion featuring Other products
- **PR_wt_brand1**_{Other}: The relative odds of selecting Other products decreases by 63%, if there is a store level store level price reduction for Pampers products
- **PR_wt_brand4**_{Other}: The relative odds of selecting Other products becomes very high if there is store level price reduction for Other products

Insights:

- If there Display in a store for Pampers, then people prefer it over Luvs and Other brands
- If there Pampers is Featured in a store, then it is preferred over Huggies
- If there is a Price reduction for Pampers, then it is preferred over Other brands

Recommendation:

- Price Sensitivity analysis:
 - Sales of Pampers is price insensitive. People are probably not price sensitive but might be more brand sensitive. So, company needs to devote more attention for its marketing strategies and when it decides to give price reductions.

• RMF Analysis:

- Large family household, Middle aged male and female, female with white collar job and household with
 1 or 2 children prefer Pampers over other brands. The marketing team can reallocate some of the promotion budget to other group of customers with higher marketing potential.
- Regular family household, Medium family income, female with no jobs and household expecting a child prefer other brands over Pampers. Special promotional strategies must be designed to target this segment.

Band Choice model:

 Feature and Display in stores for Pampers improves the odds of getting purchased by the customers over other brands. Hence, Store Managers should try to predict the periods where the product sales and put the product on display and feature ads to promote sales.