תורת הגרפים - טענות בלבד

מתמטיקה בדידה - 80181

מרצה: צור לוריא

מתרגלת: שני שלומי

סוכם ע"י: שריה אנסבכר

סמסטר א' תשפ"ג, האונ' העברית

תורת הגרפים - טענות בלבד

תוכן העניינים

1	זתחלה	3
2	מסלולים וקשירות	3
3	מסלולים מיוחדים	3
4	צים	4
5	נורת רמזי	4
6	קוביות, גרפים דו-צדדיים וזיווגים	5

תודתי נתונה לגלעד שרם על סיכומיו המצוינים שהיו לי לעזר רב עד כדי כך שניתן לומר שהסיכום הזה מבוסס על סיכומיו.

* * *

אשמח לקבל הערות והארות על הסיכומים על מנת לשפרם בעתיד, כל הערה ולו הפעוטה ביותר (אפילו פסיק שאינו במקום או רווח מיותר) תתקבל בברכה; sraya.ansbacher@mail.huji.ac.il.:

: לסיכומים נוספים היכנסו אקסיומת השלמות - סיכומי הרצאות במתמטיקה https://srayaa.wixsite.com/math 3 מסלולים מיוחדים

1 התחלה

 $\sum_{i=1}^{n-1}i=rac{n^2-n}{2}=inom{n}{2}$ הוא K_n - מספר הצלעות הצלעות $n\in\mathbb{N}$

. גרף. G:=(V,E) יהי

. מספר הקודקודים ב-G שדרגתם אי-זוגית הוא אי-זוגיG מספר מספר הקודקודים ב-

2 מסלולים וקשירות

. גרף א מכוון G:=(V,E) יהי

.2.1 טענה

- . יש רכיב קשירות יחיד. G יש רכיב קשירות יחיד.
 - 2. החיתוך של שני רכיבי קשירות שונים ריק.
- .($\{v,u\} \notin E$) אין צלע המחברת ביניהם על פשירות שונים אין צלע ברכיבי ברכיבי ברכיבי .3

 $|x| \leq |V| - |E|$ טענה 2.2. נסמן ב-r את מספר רכיבי הקשירות של

3 מסלולים מיוחדים

.וון. גרף א מכוון G:=(V,E) יהי

.000 טענה G-טענה $|E| \geq |V|$ ו- ווי $|V| \geq 3$ אז יש ב-3.1 טענה

. אין גרפים המקיימים $|E| \geq |V|$ וגם |V| < 3, התנאי הראשון מיותר

. קשיר G-עניח ש

. טענה 3.2 אם יש ב-G מעגל אוילר אז דרגתו של כל אחד מן הקודקודים זוגית.

. טענה G. אם יש ב-G מסילת אוילר אז דרגתו של כל אחד מן הקודקודים זוגית או שיש בדיוק שני קודקודים שדרגתם אי-זוגית.

תורת הגרפים - טענות בלבד

4 עצים

טענה 4.1. בכל עץ יש עלה.

מסקנה 4.2. בכל עץ עם יותר מקודקוד אחד יש שני עלים.

|E| = |V| - 1 טענה 4.3. יהיG := (V, E) יהי

טענה 4.4. יהי G:=(V,E) גרף קשיר כך שיר G:=(V,E), אין ב-G:=(V,E) טענה 4.4. יהי

 $|E| \geq |V|$ נקבל שבגרף קשיר יש מעגל פשוט אם יחד עם טענה 3.1. נקבל שבגרף קשיר יש

למה 4.5. יהי $G:=(V,E\setminus\{v_1,v_2\})$ גרף הוא $G:=(V,E\setminus\{v_1,v_2\})$ הוא מעגל פשוט ב-4.5 אז גם הגרף $G:=(V,E\setminus\{v_1,v_2\})$ הוא גרף קשיר.

:מסקנה את גוררים את גרף, כל שניים מהתנאים הבאים גוררים את השלישיG:=(V,E) יהי

- .קשיר G .1
- 1 חסר מעגלים פשוטים G .2
- |E| = |V| 1 מתקיים.
- . בפרט אם G ומתקיים אחד משני התנאים ומתקיים אז וומתקיים אז |E|=|V|-1

5 תורת רמזי

: כך שמתקיים מו $a,b\in\mathbb{N}$ טענה 2.5. אם קיימים, כא יהיו

- . ב- K_{m-1} הצבוע באדום וכחול יש בהכרח תת-גרף K_n הצבוע כולו הצבוע בחדום וכחול יש בהכרח תת-גרף .1
- . ב- K_m הצבוע האדום ו/או תת-גרף הצבוע כולו הצבוע כולו הצבוע כולו יש בהכרח תת-גרף הצבוע כולו הצבוע כולו כחול.

. הצבוע כולו אדום אדום ו/או K_m הצבוע כולו הצבוע כולו הברח תת-גרף הצבוע כולו בהכרח הצבוע כולו הצבוע כולו האבוע האבוע באדום וכחול ה

משפט במזי 2.5. משפט רמזי

יהיו אדום אדום K_n שכולו צבוע אדום אדום וכחול, יש ב- K_N עם ויהי ויהי איזו אדום ויהי אויהי ויהי אויהי איזו אדום ויהי וויהי איזו אדום ויהי איזו אדום ויהי אדום ויהי אדום ויהי אדום ויהי איזו אדום ויהי אדו

 K_M באדום ו K_M שיש ב-אדום אדום ואו שיש ב-אדום וכחול שב הביעת אדום ואו שיש ב-אדום ואו ואו שיש ב-אדום ואו ואום ואום ואו שיש ב-אדום ואו שיש ב-אדום ואום ו

.טענה אבע. צבועות באותו צבועות באותו הצבע. היים ב- K_{6} עת-גרף באדום וכחול באדום באותו צבועות באותו הצבע. בהינתן צביעה של

R(3,3)=6 .5.5 מסקנה

 $R\left(2,n
ight)=n$ טענה 5.6. לכל

.R(3,4)=9 טענה 5.7 מתקיים

 $R\left(n,m
ight)=R\left(m,n
ight)$ מתקיים $2\leq n,m\in\mathbb{N}$ לכל. 5.8 טענה

 $^{^{1}}$ שקול לחסר מעגלים.

²ערך בוויקיפדיה: פרנק רמזי.

6 קוביות, גרפים דו-צדדיים וזיווגים

:טענה 6.1 ב- $Q_n=(V,E)$ מתקיים

$$|V| = 2^n$$
 .1

$$.v \in V$$
 לכל $\deg\left(v\right) = n$.2

$$|E| = n \cdot 2^{n-1}$$
 .3

. טענה לכל מעגל מעגל יש ב- $2 \leq n \in \mathbb{N}$ לכל 6.2.

יהי V_2 ו ו- V_1 הם צדדיו. גרף דו-צדדי אור $G:=(V_1\cup V_2,E)$ יהי

 $n \in \text{Even}$ מתקיים Gב- $(v_0, v_1, v_2, \dots, v_n)$ טענה 6.3. לכל מעגל

זיווג מושלם בגרף דו-צדדי מגדיר פונקציה חח"ע ועל מצד אחד לצד השני, מכאן שאם יש בגרף דו-צדדי זיווג מושלם אז צדדיו באותו גודל.

. טענה 6.4. אם קיימים $\{w,v\}$, $\{w,u\}\in E$ כך ש $\{w,v\}$ כך שדרגתם היא $\{w,v\}$ אז אין ב- $\{w,v\}$ אז אין ב- $\{w,v\}$ אווג מושלם.

 $.N\left(S
ight)\subseteq V_{2}$ מתקיים $S\subseteq V_{1}$ לכל. 6.5 טענה

 $|N\left(S
ight)|\geq |S|$ מתקיים $S\subseteq V_1$ טענה 6.6. אם יש ב-G זיווג מושלם אז לכל

זוהי הכללה של טענה 6.4.

משפט 6.7. משפט החתונה - משפט הול³

. אויוג G-ם איז יש ב- $|N\left(S
ight)| \geq |S|$ מתקיים אויוג מושלם לכל וגם לכל וגם לכל ו

 $|S\subseteq V_1|$ לכל אם"ם $|S|\geq |S|$ מתקיים: יש ב-G זיווג מושלם אם אם אם אוויר לכל אלכל לכל לכל לכל ל

. טענה 6.8. אם G הוא גם $d\in\mathbb{N}$ כלבור (עבור $d\in\mathbb{N}$ טענה 6.8. אם הוא גם

ערך בוויקיפדיה: פיליפ הול. ³

 d^4 בהכרח שונה מ- d^4