Alexander M. Nicoara CS 411: Computer Graphics Professor Gady Agam

Assignment #1: Raster Graphics

Introduction

The goal of this assignment was to learn, familiarize ourself with, and apply practices pertaining to raster graphics. The first part of this assignment deals with using algorithms/methods to solve written problems, while the second part is applying them by programming them visually using HTML and JavaScript.

Questions

#1) Let (1,2) and (3,4) be the two endpoints of a discrete line segment. Find the value of the decision parameter at the second point of the line (the one after (1,2)) when using the Bresenham line algorithm.

	•
1) GIVEN (1,2) AND (3,4) AS ENDS OF A	LINE SEGIMENT, FIND
THE DECISION PARAMETER AT THE SECOND PO	DINT OF THE LINE USING
BRESENHAM ALGORITHM.	
$m = \frac{y_e - y_k}{x_e - x_k} = \frac{4 - 2}{3 - 1} = \frac{2}{2} = 1$	0000
SINCE ME LIBE LAND LINE PURENHAM	1 2 3 4
/ Px = 2	Yu Xuri Xe
When Px L O	-> Px+1 = Px + 2ay - 2ax (yx+1 - yx
- Xx+1 = Xx + 1	= 2 + 2(4-2) - 2(3-1)(1)
- YK+1 = YK (Same y-value as before)	= 2+4-4=2
When Px = 0	Px+1 = 2 Answer
- X w+1 = X w + 1	so that the next coordinate is
- yx+1 = yx +1 (go up by-1)	1 (3,47) since Part 20
(xxxx, yxxx) = (2,3)	1 which makes yet = yet, + 1 =

#2) Given the triangle vertices (1,1) (2,3) (3,1) find the start point of the second scanline of this triangle (counting from the bottom end).

#3) Given the triangle vertices (1,1) (2,2)(3,1) find the normal vector of the edge (1,1)(2,2).

#4) Given the vectors A=(2,3) and B=(3,2) find the projection of the vector A onto the vector B.

4.)
$$A = (2,3)$$
 $B = (3,2)$

$$Proj_{B}A = \frac{\vec{B} \cdot \vec{A}}{|\vec{B}|^{2}} \vec{B}$$

$$= \frac{(12)}{3} \vec{B}$$

$$= \frac{(12)}{13} \vec{B}$$

$$= \frac{72}{13} \vec{B} = 7$$

$$= \frac{36}{13} \cdot \frac{24}{13} \cdot \frac{36}{13}$$

$$= \frac{7}{13} \vec{B}$$

#5) Given the vectors A and B from the previous question, find two perpendicular vectors C and D such that C+D=A and the vector C is in the direction of B.

5.) given
$$\vec{A} = (2,3) \vec{8}(3,2)$$
, find \vec{C} and \vec{D}

To virualize Both carriodional And such that $\vec{C} + \vec{O} = \vec{A}$

With \vec{C} Bellium in the Direction of \vec{B} .

Comp. unit \vec{C} Bellium in the Projection of \vec{B} .

Comp. unit \vec{C} Bellium in the \vec{C} bellium in th

#6) Explain how can you determine is a point is inside a triangle or not.

#7) Given the triangle vertices (1,1) (2,2)(3,1) find the barycentric coordinates of the point (1.5,1.0).

#8) Given a line segment with vertices (1,1) (3,2) find the value that will be assigned at (2,1)

#9) Given an image having the value of 2 in each cell, write the value of the pixels in this image after applying a convolution filter having all 1-s in its entries.

JavaScript Program

The JavaScript program I created for assignment #1 was good way to visualize how the Bresenham algorithm and Triangle scanline fill method work. The picture below shows my application when you first open it:

Once the application is opened, you can do 3 things:

1. Draw a line using the Bresenham algorithm, which takes the following parameters listed below (2 coordinates, color rgb):

In my program, you can also randomize input so you can get a feel with how my program performs with arbitrary values.

2. Draw a Triangle using the scan line method, which takes the following parameters (3 coordinates (order doesn't matter), color rgb, switch for random color values for each scanline):

▲ Create Triangle using Scanline Method
First Point (X,Y): 351 116 Second Point (X,Y): 668 264 Third Point (X,Y): 385 148 Color (RGB): 136 17 90 Check to randomize color for scan lines Randomize Input Create

3. Start a random line/triangle generator which spawns either one of these figures every 0.1 seconds (100 milliseconds):

You can also clear/erase the canvas to start from scratch without having to refresh the page. You can also pause the animation.

JavaScript Test Cases

Here are some test cases which verify my programs correctly implement the algorithms and fulfill the requirements of the assignment:

Assignment Conclusion

Conclusively, this assignment was a challenge at first glance. Even though I am familiar with HTML and JavaScript, I knew very little about the HTML canvas and how to draw/implement pixelation (to show rasterization) on it. Using the MDN website, I learned how the canvas worked and found out how to use JavaScript to implement the rasterization algorithms. From there, I implemented my algorithm using handwritten/calculated test cases which I used the console to help me debug and find out what went wrong. One other issue I ran into along the way was the order of the coordinates and how the algorithm was calculated incorrectly because of the values being in a strange order. For the triangle scan line, I used conditional blocks to eliminate the need to put coordinate values in order so that the algorithm can be correctly calculated. As

for the Bresenham, I didn't do the same because the points should be in order to show that the slope should be 0 < m < 1.

Overall, this lab really helped me develop a deeper understanding of the mechanics of the Bresenham and Triangle scan line algorithms. I also really enjoyed programming in HTML/JS and thought it was good programming practice for me (since I want to pursue a web development career).