

Examen Systèmes Logiques

Documents non autorisés

Durée de l'épreuve : 1 heure et 30 minutes

Classes: 1er Année LAI

Nombre de pages : 2

<u>Exercice N°1</u>: (8 pts=3+3+2)

Soit la fonction logique suivante : $F(a,b,c,d) = (a+\overline{b}) \oplus (c+\overline{d})$

- a)Dresser la table de vérité.
- b) Simplifier cette fonction F en utilisant les diagrammes des Karnaugh.
- c)Donner le logigramme seulement à l'aide des portes NOR.

Exercice $N^{\circ}2$: (7 pts=3+2+2)

Soit la fonction $F(a,b,c,d) = (a + \overline{cd})(\overline{b} + \overline{a}c)$.

- a) Donner la table de vérité de cette fonction.
- b) Réaliser cette fonction à l'aide d'un multiplexeur à 3 bits d'adresses $S_2=a$ $S_1=b$ $S_0=c$
- c) Réaliser cette fonction à l'aide d'un multiplexeur à 2 bits d'adresses $S_1 = a$ $S_0 = b$

<u>Exercice N°3</u>: (5pts=1+2+2)

- a) Dresser la table de vérité de la bascule JK ainsi leur équation.
- b) Sur le document réponse, Compléter les chronogrammes correspondants aux chacun des circuits suivants :

Figure N°1

Figure N°2

Document réponse

Ne pas écrire votre nom sur ce document A remettre avec votre copie

Circuit de la figure 1

Circuit de la figure 2

Systèmes logique 2012/2013

Exercice	N	^e 1:			/ \	[0.]		$\overline{(+d)}$		
	F	la,	b, 0			(a+ 5	() () () () () () () () () () () () () (c+d	F	
, a)	0	6	0	0	11	PL	1v	0 v	0 V .	
	0	P	0	1	10	0,	10	0 0	0 v	1
	0	0	1	1	DV	10	1 1	11	1. V V	•
	0	1	0	P	01	10	100	0 v	1.00	
	0	1	1	0	11	pu	1 0	0 ~	0 v	3ph)
	1	P	D	1	11	D ·	100	10	1 v v	4
	1	0	1	1	10	100	10	0 V	O V	_
	1	1	P	1	1	V D V	1.00	11	AVV	/
	1	Λ	1	1	1	V OV	1 V	D V	OV	Ţ
									· \	

F=bed+
abot
abot 11

seulement à Dérôle purte Nor, il suffit des

[P2

Ex2:

 $F(a,b,c,d) = (a+cd)(b+\overline{ac})$ bje djedated ated ac ac Q V AV NV 0 1 1 N 0 1 O v LU 1.1 LV DI OV 1V. OJ OV NV OV 1.1 0 V OV OJ 1 V 1 V 1v 0) 6) à l'aide d'un Mul'a

P3 /

c) à Pariole d'un Mulliplesseur à 2 bits $\frac{S_{4}=9 \mid S_{0}=b \mid \overline{t}=F}{0 \mid 0 \mid \overline{L_{0}}=cdv \mid d} = 0 \quad 0$ $\frac{0}{1} \quad \overline{L_{1}}=0 \quad V \quad \overline{L_{0}} \quad \overline{L_{1}} \quad \overline{L_{1}} \quad \overline{L_{1}}$ $\frac{1}{1} \quad 0 \quad \overline{L_{2}}=0 \quad V \quad \overline{L_{1}} \quad \overline{L_{2}} \quad \overline{L_{3}} \quad F$

Ex3

H J K Q

O X X PE-1

1 0 0 QE-1

1 1 0 1

1 1 0 1

 $\varphi_{\xi} = H\left(\overline{J}Q_{\xi_{-1}} + \overline{K}Q_{\xi_{-1}}\right) \\
+ \overline{H}Q_{\xi_{-1}}$

F PU