第四章: Hilbert 空间

2023年6月9日

1. (**Stein 中译本, P144, 题 1**) 设 \mathcal{H} 是 Hilbert 空间,其上配备有内积 (\cdot, \cdot) ,试用 内积的定义证明 Cauchy-Schwarz 不等式和三角不等式成立.

证明. 设 $(f,g) = |(f,g)|\alpha$, 这里 $\alpha \in \mathbb{C}$ 且 $|\alpha| = 1$, 令 $h = ge^{-i\theta}$, 则 (f,h) = |(f,g)| 而且 ||h|| = ||g||. 考虑实函数:

$$F(\lambda) = (f + \lambda h, f + \lambda h) = ||f||^2 + 2|(f, g)|\lambda + \lambda^2 ||g||^2.$$

以上关于 λ 的二次函数在 $-\frac{|(f,g)|}{||g||^2}$ 处取得最小值,令 λ 取该值,于是:

$$0 \le ||f + \lambda g|| = ||f||^2 - ||g||^{-2} |(f, g)|^2.$$

所以:

$$|(f,g)| \le ||f|| ||g||.$$

等号成立当且仅当 $f + \lambda h = f + \lambda e^{-i\theta}g = 0$.

对于三角不等式,只需注意到:

$$||f+g||^2 = (f+g,f+g) = ||f||^2 + ||g||^2 + (f,g) + \overline{(f,g)} \le ||f||^2 + ||g||^2 + 2||f|| ||g|| = (||f|| + ||g||)^2.$$

2. (**Stein 中译本, P144, 题 2**) 在 Cauchy-Schwarz 不等式中,等号成立的情形我们 有如下结论: 若 |(f,g)| = ||f|| ||g|| 且 $g \neq 0$,则存在某个数 c 使得 f = cg.

证明. 不妨假设已经有 $\|f\| = \|g\| = 1$,否则可以考虑 $\frac{f}{\|f\|}$ 和 $\frac{g}{\|g\|}$. 则此时 |(f,g)| = 1. 所以存在 $\theta \in [0,2\pi)$ 使得 $(f,g) = e^{i\theta}$. 若用 $fe^{-i\theta}$ 代替 f,则仍然有 $\|fe^{-i\theta}\| = 1$,

所以不妨假设已经有 (f,g) = 1,于是 (f-g,g) = (f,g) - (g,g) = 0,由勾股定理可知

$$||f||^2 = ||f - g||^2 + ||g||^2$$
.

所以 $\|f-g\|^2=0$,于是 f=g,合并前面的常数($\|f\|,\|g\|,e^{i\theta}$)可得存在 c 使得 f=cg.

3. (**Stein 中译本,P144,题 3**) 注意到 Hilbert 空间 H 的任何一对元素都有 $||f + g||^2 = ||f||^2 + ||g||^2 + 2 \operatorname{Re}(f, g)$. 作为一个结果,验证平行四边形法则:

$$||f - g||^2 + ||f + g||^2 = 2(||f||^2 + ||g||^2).$$

证明. 直接计算得

$$||f + g||^2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g)$$
$$= (f, f) + (f, g) + \overline{(f, g)} + (g, g) = ||f||^2 + 2\operatorname{Re}(f, g) + ||g||^2.$$

作为结果,将 f-g和 f+g代入上式得

L.H.S. =
$$||2f||^2 = 4||f||^2$$
.

R.H.S. =
$$||f - g||^2 + 2\operatorname{Re}(f - g, f + g) + ||f + g||^2$$

= $||f - g||^2 + ||f + g||^2 + 2(||f||^2 - ||g||^2) + 2\operatorname{Re}[(f, g) - \overline{(f, g)}]$

注意 $(f,g) - \overline{(f,g)}$ 是一个纯虚数,于是对比等式两侧即可得到平行四边形法则:

$$||f - g||^2 + ||f + g||^2 = 2(||f||^2 + ||g||^2).$$

4. (Stein 中译本, P144, 题 4) 用定义证明, $\ell^2(\mathbb{Z})$ 完备且可分.

证明. • 先证明完备性. 令 $\{a^k\}_{k\geq 1}$ 是 $\ell^2(\mathbb{Z})$ 中的一个 Cauchy 列,其中 $a^k=\{a^k_j\}_{j\geq 1}\in \ell^2(\mathbb{Z})$. 由 $\{a^k\}_{k\geq 1}$ Cauchy 可知:

$$\sum_{j=-\infty}^{\infty} |a_j^m - a_j^n|^2 \to 0 \quad (m, n \to \infty).$$

所以

$$\sum_{j=-N}^{N} |a_j^m - a_j^n|^2 \to 0 \quad (m, n \to \infty), \quad$$
 对任何 $N \in \mathbb{N}$.

因此, $|a_j^m - a_j^n| \to 0 (m, n \to \infty)$ 对任何 j 成立,所以 $\{a_j^i\}_{i \ge 1}$ 是 $\mathbb C$ 中的 Cauchy 列,所以它有极限 $b_j \in \mathbb C$. 令 $b = \{b_j\}_{j = -\infty}^{\infty}$.

另一方面,注意到以下极限可以分步计算,

$$\lim_{n \to \infty} \lim_{m \to \infty} \sum_{j=-N}^{N} |a_j^m - a_j^n|^2 = \lim_{n \to \infty} \sum_{j=-N}^{N} |b_j - a_j^n|^2 = 0,$$

以上极限对任何 N 成立,于是:

$$||b - a^n||_{\ell^2}^2 = \sum_{j=-\infty}^{\infty} |b_j - a_j^n|^2 \to 0 \quad (n \to \infty).$$

这就是说 $\{a^n\}_{n\geq 1}$ 在 ℓ^2 范数意义下收敛到数列 b. 最后注意到:

$$||b||_{\ell^2} \le ||b - a^n||_{\ell^2} + ||a^n||_{\ell^2} < \infty.$$

这里用到 $\|b-a^n\|_{\ell^2}\to 0 (n\to\infty)$ 以及 Cauchy 列在 ℓ^2 范数下的有界性,于是 $b\in\ell^2(\mathbb{Z})$.

所以 $\ell^2(\mathbb{Z})$ 是完备的.

• 再证明可分性. 这是容易的,只需考虑 $\mathcal{B} = \{e_i\}_{i \in \mathbb{Z}} \subset \ell^2(\mathbb{Z})$,其中 e_i 指的是在第 i 项取 1,其他各项都取 0 的数列. 任取 $\{a_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$,则有:

$$\sum_{n=-\infty}^{+\infty} |a_n|^2 < \infty.$$

所以

$$\sum_{|n| \ge N+1} |a_n|^2 \to 0 \quad (N \to \infty).$$

考虑 $\sum_{k=-N}^{N} a_k e_k \in \operatorname{Span}(\mathscr{B})$,则有:

$$\left\| \sum_{k=-N}^{N} a_k e_k - a \right\|_{\ell^2}^2 = \sum_{|n| \ge N+1} |a_n|^2 \to 0 \quad (N \to \infty).$$

这说明 $\mathrm{Span}(\mathcal{B})$ 在 $\ell^2(\mathbb{Z})$ 中是稠密的. 所以, $\ell^2(\mathbb{Z})$ 是可分的.

- 5. (Stein 中译本, P144, 题 5) 本题讨论 $L^2(\mathbb{R}^d)$ 和 $L^1(\mathbb{R}^d)$ 的关系:
 - (a) $L^2(\mathbb{R}^d) \subset L^1(\mathbb{R}^d)$ 以及 $L^1(\mathbb{R}^d) \subset L^2(\mathbb{R}^d)$ 都不成立;
 - (b) 若 f 支撑在有限测度的集合 E 上,且 $f \in L^2(\mathbb{R}^d)$,则 $f \in L^1(\mathbb{R}^d)$ 且

$$||f||_{L^1(\mathbb{R}^d)} \le \sqrt{m(E)} ||f||_{L^2(\mathbb{R}^d)}.$$

(c) 若 f 是有界的,即 $|f(x)| \leq M$,且 $f \in L^1(\mathbb{R}^d)$,则 $f \in L^2(\mathbb{R}^d)$ 且

$$||f||_{L^2(\mathbb{R}^d)} \le \sqrt{M} ||f||_{L^1(\mathbb{R}^d)}^{1/2}.$$

证明. (a) 考虑函数 $f(x) = \frac{1}{|x|^{\alpha}}$. 由极坐标公式计算得:

$$\int_{B(0,1)} f(x) dx = \int_{S^{d-1}} \int_{0}^{1} \frac{1}{r^{\alpha}} r^{d-1} dr d\sigma = \sigma(S^{d-1}) \int_{0}^{1} r^{d-1-\alpha} dr.$$

$$\int_{B(0,1)} f(x)^{2} dx = \int_{S^{d-1}} \int_{0}^{1} \frac{1}{r^{2\alpha}} r^{d-1} dr d\sigma = \sigma(S^{d-1}) \int_{0}^{1} r^{d-1-2\alpha} dr.$$

$$\int_{B(0,1)^{c}} f(x) dx = \int_{S^{d-1}} \int_{1}^{\infty} \frac{1}{r^{\alpha}} r^{d-1} dr d\sigma = \sigma(S^{d-1}) \int_{1}^{\infty} r^{d-1-\alpha} dr.$$

$$\int_{B(0,1)^{c}} f(x)^{2} dx = \int_{S^{d-1}} \int_{1}^{\infty} \frac{1}{r^{\alpha}} r^{d-1} dr d\sigma = \sigma(S^{d-1}) \int_{1}^{\infty} r^{d-1-\alpha} dr.$$

取 $\frac{d}{2} < \alpha < d$, 则 $d - 1 - \alpha > -1$, $d - 1 - 2\alpha < -1$, 于是 $\int_0^1 r^{d-1-\alpha} dr < \infty$, $\int_0^1 r^{d-1-2\alpha} dr = \infty$, $\int_1^\infty r^{d-1-\alpha} dr = \infty$, $\int_1^\infty r^{d-1-\alpha} dr < \infty$.

所以, $f\chi_{B(0,1)} \in L^1(\mathbb{R}^d)$, $f\chi_{B(0,1)} \notin L^2(\mathbb{R}^d)$, $f\chi_{B(0,1)^c} \notin L^1(\mathbb{R}^d)$, $f\chi_{B(0,1)^c} \in L^2(\mathbb{R}^d)$. 所以, $L^1(\mathbb{R}^d) \subset L^2(\mathbb{R}^d)$ 和 $L^2(\mathbb{R}^d) \subset L^1(\mathbb{R}^d)$ 都不成立.

(b) 因为 f 支撑在 E 上,所以 $f = f\chi_E$,所以由 Cauchy-Schwarz 不等式得:

$$||f||_{L^{1}(\mathbb{R}^{d})} \leq \int f(x)\chi_{E}(x)dx \leq \left(\int |f(x)|^{2}dx\right)^{1/2} \left(\int \chi_{E}(x)^{2}dx\right)^{1/2} = \sqrt{m(E)}||f||_{L^{2}(\mathbb{R}^{d})}.$$

(c) 这是因为:

$$||f||_{L^{2}(\mathbb{R}^{d})} \leq \left(\int |f(x)|^{2} dx\right)^{1/2} \leq \left(\int M|f(x)| dx\right)^{1/2} = \sqrt{M} \left(\int |f(x)| dx\right)^{1/2} = \sqrt{M} ||f||_{L^{1}(\mathbb{R}^{d})}^{1/2}.$$

- 6. (Stein 中译本, P144, 题 6) 证明如下的集合是 $L^2(\mathbb{R}^d)$ 的稠密子空间:
 - (a) 简单函数;
 - (b) 具有紧支撑的连续函数.

证明. (a) 在证明 L^2 空间的可分性时我们已经说明了, $\forall f \in L^2(\mathbb{R}^d)$,对任何 $\varepsilon > 0$,都存在阶梯函数 $\psi \in L^2(\mathbb{R}^d)$ 使得 $\|f - \psi\|_{L^2(\mathbb{R}^d)} < \varepsilon$,而阶梯函数都是简单函数,于是简单函数在 $L^2(\mathbb{R}^d)$ 中稠密.

(b) 对任何
$$f \in L^2(\mathbb{R}^d)$$
,取截断 $g_n = \begin{cases} f, |x| \leq n, |f| \leq n \\ 0, \text{o.w.} \end{cases}$. 则对每个 g_n ,几乎

处处成立 $|f - g_n|^2 \le 4|f|^2$,且逐点成立 $g_n \to f(n \to \infty)$,所以由控制收敛定理可得 $||f - g_n||_{L^2}^2 \to 0 (n \to \infty)$. 所以 $\forall \varepsilon > 0$,存在 N,使得 $||f - g_N||_{L^2} < \frac{\varepsilon}{2}$. 由题 5 的结论可得 $g_N \in L^1$,所以存在具有紧支撑的连续函数 h,使得 |h| < N 且 $||g_N - h||_{L^1} < \frac{\varepsilon^2}{8N}$. 根据题 5(c) 的结论:

$$||g_N - h||_{L^2} \le \sqrt{2N} ||f||_{L^1}^{1/2} \le \sqrt{2N} \frac{\varepsilon}{2\sqrt{2N}} = \frac{\varepsilon}{2}$$

最后:

$$||h - f||_{L^2} \le ||g_N - f||_{L^2} + ||g_N - h||_{L^2} < \varepsilon.$$

所以具有紧支撑的连续函数在 $L^2(\mathbb{R}^d)$ 中稠密.

7. (Stein 中译本, P144, 题 7) 设 $\{\varphi_k\}_{k=1}^{\infty}$ 是 $L^2(\mathbb{R}^d)$ 的一组标准正交基. 证明, $\{\varphi_{k,j}\}_{1\leq k,j<\infty}$ 是 $L^2(\mathbb{R}^d\times\mathbb{R}^d)$ 的一组标准正交基,其中 $\varphi_{k,j}(x,y)=\varphi_k(x)\varphi_j(y)$.

证明. 首先证明这是一组标准正交向量组. 由 Fubini 定理计算得:

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_{k,j}(x,y) \overline{\varphi_{k',j'}(x,y)} dx dy = \left(\int_{\mathbb{R}^d} \varphi_k(x) \overline{\varphi_{k'}(x)} dx \right) \left(\int_{\mathbb{R}^d} \varphi_j(y) \overline{\varphi_{j'}(y)} dy \right) = \delta_{kk'} \delta_{jj'}.$$

由此可见 $(\varphi_{k,j},\varphi_{k',j'})=1$ 当且仅当 (k,j)=(k',j'),其他情况下等于 0,所以,这是一组标准正交向量组.

然后我们用标准正交基的等价定义来说明这是一组标准正交基. 设 $(F, \varphi_{k,j}) = 0$ 对任何 (k,j) 成立,若能推出 F = 0,则说明 $\varphi_{k,j}$ 是一组标准正交基. 对每个 j,考虑函数 $F_j(x) = \int_{\mathbb{R}^d} F(x,y) \overline{\varphi_j(y)} \mathrm{d}y$,则有 $\int F_j(x) \overline{\varphi_k(x)} \mathrm{d}x = 0$ 对每个 j 成立. 因为 $\{\varphi_k\}_{k\geq 1}$ 是 $L^2(\mathbb{R}^d)$ 的一组标准正交基,且由 Fubini 定理可知 $F_j \in L^2(\mathbb{R}^d)$,所以 $F_j = 0$ 对每个 j 都成立,再次根据 F_j 的定义以及 $\{\varphi_j\}_{j\geq 1}$ 是标准正交基得 F(x,y) = 0.

以上证明了 $\{\varphi_{k,j}\}$ 的确是 $L^2(\mathbb{R}^d \times \mathbb{R}^d)$ 的一组标准正交基.

8. (Stein 中译本, P144, 题 8) 令 $\eta(t)$ 是 [a,b] 上严格正的连续函数. 定义 $\mathcal{H}_{\eta} = L^2([a,b],\eta)$ 是由 [a,b] 上可测函数 f 构成的空间,满足:

$$\int_{a}^{b} |f(t)|^{2} \eta(t) dt < \infty, \quad \forall f \in \mathcal{H}_{\eta}.$$

定义 \mathcal{H}_{η} 上内积为:

$$(f,g)_{\eta} = \int_{a}^{b} f(t)\overline{g(t)}\eta(t)dt.$$

- (a) 证明, \mathcal{H}_{η} 是 Hilbert 空间,且映射 $U: f \mapsto \eta^{1/2} f$ 给出了 \mathcal{H}_{η} 和通常的空间 $L^2([a,b])$ 之间的一个酉对应;
- (b) 将这一结果推广至 η 未必连续的情形.

证明. (a) 显然 \mathcal{H}_{η} 是一个配备有内积的线性空间. 下面只需要说明它是完备的. 设 $\{f_j\}_{j\geq 1}$ 是 \mathcal{H}_{η} 中的一个 Cauchy 列,与证明通常的 $L^2([a,b])$ 的完备性类似的构造方法得存在子列 $\{f_{k_j}\}_{j\geq 1}$,并且令 $f(x)=f_{k_1}+\sum_{j=1}^{\infty}[f_{k_{j+1}}-f_{k_j}]$,则可说明 f 是绝对收敛, $f\in L^2([a,b],\eta)$,而且 f_j 依照内积 $(\cdot,\cdot)_{\eta}$ 诱导的 L^2 范数收敛到 f. 所以 \mathcal{H}_{η} 是 Hilbert 空间. U 显然是一个线性映射,且由 $U^{-1}:g\mapsto \eta^{-1/2}g$ 可得 U 是双射,最后,对 $f\in L^2([a,b])$

$$||Uf||_{L^{2}([a,b],\eta)}^{2} = \int_{a}^{b} |f(t)|^{2} \eta(t) dt = ||f||_{L^{2}([a,b])}^{2}.$$

所以 U 是一个酉对应.

(b) 这一结果依然是正确的. 我们令 $\{f_j\}_{j\geq 1}$ 是 \mathcal{H}_{η} 中 Cauchy 列,则 $\{f_j\eta^{1/2}\}_{j\geq 1}$ 是 $L^2([a,b])$ 中的 Cauchy 列,根据 L^2 空间的完备性可得存在 $g\in L^2([a,b])$ 使得 $f_n\eta^{1/2}\to g$ 依照 L^2 范数成立. 因为 η 是正的,则可定义 $f=\frac{g}{\eta^{1/2}}$,计算 $\|f\|_{L^2([a,b],\eta)}=\|g\eta^{-1/2}\|_{L^2([a,b],\eta)}=\|g\|_{L^1}<\infty$,所以 $f\in\mathcal{H}_{\eta}$,再注意到:

$$||f_j - f||_{L^2([a,b],\eta)} = ||(f_j - f)\eta^{1/2}||_{L^1} = ||f_j\eta^{1/2}||_{L^1} \to 0 \quad (j \to \infty),$$

也就是 $f_n \to f$ 在 \mathcal{H}_η 的范数下成立. 所以此时 \mathcal{H}_η 仍是 Hilbert 空间. 有关酉对 应的结论同样成立.

9. (Stein 中译本, P145, 题 9) 令 $\mathcal{H}_1 = L^2([-\pi,\pi])$ 是由单位圆周上的函数 $F(e^{i\theta})$ 组成的 Hilbert 空间,其上配备有内积 $(F,G) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{i\theta}) \overline{G(e^{i\theta})} d\theta$. 令 \mathcal{H}_2 是 $L^2(\mathbb{R})$. 考虑由 \mathbb{R} 到单位圆周的映射:

$$x \mapsto \frac{i-x}{i+x}$$

证明:

(a) 映射 $U: F \mapsto f$ 定义为:

$$f(x) = \frac{1}{\sqrt{\pi}(i+x)} F\left(\frac{i-x}{i+x}\right)$$

给出了一个从 \mathcal{H}_1 到 \mathcal{H}_2 的酉映射.

(b) 因此,

$$\left\{ \frac{1}{\pi^{1/2}} \left(\frac{i-x}{i+x} \right)^n \frac{1}{i+x} \right\}_{n=-\infty}^{\infty}$$

是 $L^2(\mathbb{R})$ 的一组标准正交基.

证明. (a) 显然 U 是一个线性映射,且其逆映射为 $F(y) = \sqrt{\pi}(\frac{2i}{1+y})f(i\frac{1-y}{1+y})$,所以 U 是双射. 最后,

$$\begin{split} \|UF\|_{L^{2}(\mathbb{R})}^{2} &= \int_{\mathbb{R}} \left| \frac{1}{\sqrt{\pi}(i+x)} \right|^{2} F\left(\frac{i-x}{i+x}\right) \right|^{2} \mathrm{d}x \\ &= \frac{1}{\pi} \int_{0}^{2\pi} \left| \frac{1}{(\frac{2i}{1+e^{i\theta}})} \right|^{2} |F(e^{i\theta})|^{2} \frac{i[-ie^{i\theta}(1+e^{i\theta})-ie^{i\theta}(1-e^{i\theta})]}{(1+e^{i\theta})^{2}} \mathrm{d}\theta \\ &= \frac{1}{4\pi} \int_{0}^{2\pi} |1+e^{i\theta}|^{2} |F(e^{i\theta})|^{2} \frac{2}{(1+e^{i\theta})(1+e^{-i\theta})} \mathrm{d}\theta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} |F(e^{i\theta})|^{2} \mathrm{d}\theta \\ &= \|F\|_{L^{2}([-\pi,\pi])}^{2}. \end{split}$$

所以 U 是一个酉映射.

(b) 我们知道 $\{e^{in\theta}\}_{n\in\mathbb{Z}}$ 是 \mathcal{H}_1 的一组标准正交基,又注意到它在酉同构 U 下的像就是 $\{\frac{1}{\pi^{1/2}}\left(\frac{i-x}{i+x}\right)^n\frac{1}{i+x}\}_{n=-\infty}^{\infty}$,所以这是 \mathcal{H}^2 的一组标准正交基. 这是因为酉映射保证内积从而保证正交性,另一方面,对 \mathcal{H}_2 中的一个元素 f,考虑它在 \mathcal{H}_1 中的逆像 F,则对任何 $\varepsilon > 0$,存在 G 是 $\{e^{in\theta}\}_{n\in\mathbb{Z}}$ 中有限个元素的线性组合,使得:

$$||F - G||_{\mathcal{H}^1} < \varepsilon.$$

则根据 U 的线性性可知 g = UG 也是 $\left\{\frac{1}{\pi^{1/2}} \left(\frac{i-x}{i+x}\right)^n \frac{1}{i+x}\right\}_{n=-\infty}^{\infty}$ 中有限个元素的线性组合,而且:

$$||f - g||_{\mathcal{H}^2} = ||UF - UG||_{\mathcal{H}^2} < \varepsilon.$$

所以 $\left\{\frac{1}{\pi^{1/2}}\left(\frac{i-x}{i+x}\right)^n\frac{1}{i+x}\right\}_{n=-\infty}^{\infty}$ 中有限个元素的线性组合在 \mathcal{H}^2 中也是稠密的,以上证明了酉映射将一组 O.N. 基映为 O.N. 基.

10. (**Stein 中译本, P145, 题 10**) 设 E 是 Hilbert 空间 \mathcal{H} 的子集,那么 $E^{\perp\perp}$ 包含 E 的最小的闭子空间.

证明. 我们先说明 E^{\perp} 是闭子空间. 首先 E^{\perp} 显然在线性运算下是封闭的,所以它是子空间. 另一方面,对任何 E^{\perp} 中的收敛序列 $\{f_n\}_{n\geq 1}$ 满足 $f_n\to f$, $\forall g\in E$,都有:

$$|(f,g)|^2 = |(f-f_n,g)|^2 \le ||f-f_n||^2 ||g||^2 \to 0 \quad (n \to \infty).$$

所以 (f,g)=0, $f\in E^{\perp}$,所以 E^{\perp} 是闭的. 所以 $E^{\perp\perp}$ 也是闭的.

另一方面,对任何 $g \in E$,我们说明 $g \in E^{\perp\perp}$,这只需要说明对任何 $f \in E^{\perp}$ 都有 $g \perp f$. 而根据 E^{\perp} 的定义自然有 $g \perp f$,所以 $E^{\perp\perp}$ 包含 E. 设 S 是另一个包含 E 的闭子空间,我们说明 $E^{\perp\perp} \subset S$. 首先注意到任取 S^{\perp} 中的一个元素,它都必须与 E 中所有元素垂直,所以 $S^{\perp} \subset E^{\perp}$. 我们说明 $S^{\perp\perp} = S$, $S^{\perp\perp} \subset S$ 是显然的,另一方面,根据 S 是闭子空间可知 $\mathcal{H} = S^{\perp\perp} \oplus S^{\perp} = S \oplus S^{\perp}$,因此对所有 $x \in S$,y 有分解 x = y + z,其中 $y \in S^{\perp\perp} \subset S$, $z \in S^{\perp}$. 根据 S 是子空间得 $z = x - y \in S$,于是 $z \in S^{\perp} \cap S$,所以 z = 0,因此 $x = y \in S^{\perp\perp}$,于是 $S = S^{\perp\perp}$. 于是由 $S^{\perp} \subset E^{\perp}$ 得 $E^{\perp\perp} \subset S^{\perp\perp} = S$.

- 11. (**Stein 中译本, P145, 题 11**) 令 P 是关于 Hilbert 空间 \mathcal{H} 的闭子空间 S 的正交 投影,也就是,若 $f \in S$,则 P(f) = f;若 $f \in S^{\perp}$,则 P(f) = 0.
 - (a) 证明 $P^2 = P$, $P^* = P$;
 - (b) 反过来,如果 P 是满足 $P^2 = P$ 以及 $P^* = P$ 的有界算子,则 P 是关于 \mathcal{H} 的某个闭子空间的正交投影:
 - (c) 利用 P 证明如果 S 是可分 Hilbert 空间 \mathcal{H} 的闭子空间,则 S 也是一个可分的 Hilbert 空间.

证明. (a) 对任何 $f \in \mathcal{H}$,它存在唯一的分解 f = g + h,使得 $g \in S$, $h \in S^{\perp}$,于是:

$$P(f) = P(g) + P(h) = g + 0 = g.$$

 $P^{2}(f) = P(P(f)) = P(g) = g.$

所以 $P^2 = P$. 为了证明 P 是自伴的,只需要验证 (Px, y) = (x, Py) 对所有 $x, y \in \mathcal{H}$ 成立. 令 $x = x_1 + x_2$, $y = y_1 + y_2$,其中 $x_1, y_1 \in S$, $x_2, y_2 \in S^{\perp}$,那么有:

$$(Px, y) = (x_1, y) = (x_1, y_1) + (x_1, y_2) = (x_1, y_1).$$

$$(x, Py) = (x, y_1) = (x_1, y_1) + (x_2, y_1) = (x_1, y_1).$$

所以 P 是自伴的,也就是 $P = P^*$.

(b) 令 S = Im P,则容易验证 S 在线性运算下封闭,于是它是一个子空间. 下面说明 S 是紧的,设 $\{f_n\}$ 是 S 中一列元素,且依范数收敛到 $f \in \mathcal{H}$,于是

 $||Pf - f|| \le ||Pf - f_n|| + ||f - f_n|| = ||P(f - f_n)|| + ||f - f_n|| \le 2||f - f_n|| \to 0 (n \to \infty).$

所以 Pf = f,于是 $f \in S$,所以 S 是一个闭子空间. 下面说明 P 是关于 S 的正交投影. 前面已经说明若 $f \in S$,则 P(f) = f. 若 $f \in S^{\perp}$,则对任何 $g \in S$,都有

$$(Pf, g) = (f, Pg) = (f, g) = 0.$$

所以 $Pf \in S^{\perp}$,但是另一方面 $Pf \in \text{Im } P = S$,所以由闭子区间及其正交补的直和关系可得 Pf = 0. 以上证明了 P 的确是关于 S 的正交投影.

(c) 因为 \mathcal{H} 是可分的 Hilbert 空间,所以存在 $\{\phi_k\}_{k\geq 1}$ 使得其有限线性组合在 \mathcal{H} 中稠密. 对任何 $f \in S$, $\forall \varepsilon > 0$,不妨设

$$\left\| f - \sum_{k=1}^{K} c_k \phi_k \right\| < \varepsilon$$

于是

$$\left\| f - \sum_{k=1}^K c_K P \phi_k \right\| = \left\| P \left(f - \sum_{k=1}^K c_k \phi_k \right) \right\| \le \left\| f - \sum_{k=1}^K c_k \phi_k \right\| < \varepsilon.$$

所以 $\{P\phi_k\}_{j\geq 1}$ 的有限线性组合在 S 中是稠密的,于是 S 是可分的 Hilbert 空间.

12. (Stein 中译本, P145, 题 12) $E \in \mathbb{R}^d$ 可测子集, $S \in L^2(\mathbb{R}^d)$ 中对 a.e. $x \notin E$ 都等于零的函数构成的子空间. 证明, S 上的正交投影 P 由 $P(f) = \chi_E f$ 给出, 其中 $\chi_E \in E$ 的特征函数.

证明. 首先说明 S 是一个闭子空间. 设 f_n 是 S 中的序列,且依范数有 $f_n \to f$. 则 $\|\chi_E f - f\| \le \|\chi_E f - f_n\| \le \|f_n - f\| \le \|\chi_E (f - f_n)\| \le \|f - f_n\| \le 2\|f_n - f\| \to 0 (n \to \infty).$ 所以 $\chi_E f = f$ a.e.,所以 $f \in S$,于是 S 的确是闭子空间.

下面我们用题 11 的 b 结论来验证 P 就是到 S 的正交投影. 为此,只需验证 P 是有界线性算子、 $P^2 = P$ 以及 $P^* = P$.

P 显然线性,其次,注意到 $|\chi_E(x)f(x)| \leq |f(x)|$ 对所有 $x \in \mathbb{R}^d$,所以:

$$||Pf|| = ||\chi_E f|| \le ||f||.$$

所以 P 的确是有界线性算子.

另外, $\chi_E^2 = \chi_E$ 对任何 $x \in \mathbb{R}^d$ 成立,所以, $P^2 f = \chi_E^2 f = \chi_E f = P f$,因此 $P^2 = P$.

最后,对任何 $q \in L^2(\mathbb{R}^d)$,我们都有:

$$(Pf,g) = \int_{\mathbb{R}^d} \chi_E(x) f(x) \overline{g(x)} dx = \int_{\mathbb{R}^d} f(x) \overline{\chi_E(x)} g(x) dx = (f, Pg).$$

再根据 P 是有界线性算子知 $P = P^*$.

综上所述,P 的确是到子空间 $\operatorname{Im} P$ 的正交投影(根据题 11 的 b). 然而,对所有在 E^c 上几乎处处为 0 的函数 f, $\chi_E f = f$ 在几乎处处的意义下. 因此, $f \in \operatorname{Im} P$,所以 $\operatorname{Im} P = S$,即 P 是对闭子空间 S 的正交投影.

13. (**Stein 中译本,P145,题 13**) P_1 和 P_2 分别是 S_1 和 S_2 上的正交投影,则 P_1P_2 也是正交投影当且仅当 P_1 和 P_2 交换. 在这种情形下, P_1P_2 是闭子空间 $S_1 \cap S_2$ 上的正交投影.

证明. • 设 P₁ 和 P₂ 交换,则:

$$(P_1P_2)^2 = P_1P_2P_1P_2 = (P_1)^2(P_2)^2 = P_1P_2,$$

 $(P_1P_2)^* = (P_2P_1)^* = P_1^*P_2^* = P_1P_2,$

综上所述, $(P_1P_2)^* = (P_1P_2)^2 = P_1P_2$. P_1 和 P_2 都是有界线性算子 $\Rightarrow P_1P_2$ 是有界线性算子,所以 P_1P_2 是到某个闭子空间的正交投影.

- 设 P_1P_2 是正交投影,则 $P_1P_2 = (P_1P_2)^* = P_2^*P_1^* = P_2P_1$.
- 在以上情况下,我们说明 P_1P_2 是对闭子空间 $S_1 \cap S_2$ 的正交投影. 首先,因为 S_1 和 S_2 的欧式闭子空间,所以 $S_1 \cap S_2$ 也是闭子空间,所以 H 有直和分解:

$$H = (S_1 \cap S_2) \oplus (S_1 \cap S_2)^{\perp}.$$

 $\forall f \in H$, 存在唯一的 $g \in S_1 \cap S_2$, $h \in (S_1 \cap S_2)^{\perp}$, 使得 f = g + h, 于是有:

$$(P_1P_2)f = P_1P_2g + P_1P_2h = P_1g + P_1P_2h = g + P_1P_2h.$$

因为 $P_1P_2h = P_2P_1h$, 所以 $P_1P_2h \in S_1 \cap S_2$, 于是根据 $h \in (S_1 \cap S_2)^{\perp}$:

$$||P_1P_2h||^2 = (P_1P_2h, P_1P_2h) = (h, (P_1P_2)^2h) = (h, P_1P_2h) = 0.$$

所以 $P_1P_2h = 0$,所以 $(P_1P_2)f = g$,所以 P_1P_2 的确是到 $S_1 \cap S_2$ 的正交投影.

14. (**Stein 中译本, P146, 题 14**) 假定 \mathcal{H} 和 \mathcal{H}' 是准 Hilbert 空间 \mathcal{H}_0 的两个完备化,证明存在 \mathcal{H} 到 \mathcal{H}' 的酉映射 U,使得它是一个 \mathcal{H}_0 -酉同构(即 $U|_{\mathcal{H}_0} = \mathrm{Id}|_{\mathcal{H}_0}$).

证明. 任取一个 $f \in \mathcal{H}$,因为 \mathcal{H}_0 在 \mathcal{H} 中稠密,所以存在一个 \mathcal{H}_0 中的点列 $\{f_n\}_{n\geq 0}$ 使得 $f_n \to f$. 因为它是 \mathcal{H}_0 中的收敛列,所以必然是 \mathcal{H}_0 中的 Cauchy 列. 根据 \mathcal{H}' 的完备性可知 $\{f_n\}_{n\geq 0}$ 收敛到某个 $f' \in \mathcal{H}'$,且这个 f' 在 \mathcal{H}' 中是唯一的,于是这给出了一个映射 $U: \mathcal{H} \to \mathcal{H}'$, $f \mapsto f'$,根据唯一性可知它是良好定义的. 下面验证它是一个酉同构.

- (1) 它是线性映射. 这是因为对 f 和 g 存在 \mathcal{H}_0 中的 Cauchy 列 $\{f_n\}_{n\geq 0}$ 和 $\{g_n\}_{n\geq 0}$ 分别收敛到 f 和 g,于是 $\{\alpha f_n + \beta g_n\}_{n\geq 0}$ 也是 \mathcal{H}_0 中的 Cauchy 列,收敛到 $\alpha f + \beta g \in \mathcal{H}$. 另一方面 $f_n \to f' \in \mathcal{H}'$, $g_n \to g' \in \mathcal{H}'$,所以 $\alpha f_n + \beta g_n \to \alpha f' + \beta g'$,所以 $U(\alpha f + \beta g) = \alpha f' + \beta g' = \alpha U f + \beta U g$.
- (2) 若 Uf = 0,则 $\{f_n\}_{n\geq 0}$ 收敛到 0,因此 0 的原像只能为 0,又因为 U 线性,所以 U 单射. 另外,对于任何 $f' \in \mathcal{H}'$,根据 \mathcal{H}_0 在 \mathcal{H}' 中稠密存在 $\{f_n\}_{n\geq 0}$ 是 \mathcal{H}_0 中的点列使得 $f_n \to f'$,所以 f_n 是 \mathcal{H}_0 中 Cauchy 列,所以 f_n 也收敛到某个点 $f \in \mathcal{H}$,所以 U 是满射. 综上所述 U 是双射.
- (3) 注意到 $||f_n f||_{\mathcal{H}} \to 0$, $||f_n f'||_{\mathcal{H}'} = ||f_n Uf||_{\mathcal{H}'} \to 0$,所以根据三角不等式得:

$$||f||_{\mathcal{H}} - ||f_n - f||_{\mathcal{H}} \le ||f_n||_{\mathcal{H}_0} \le ||f||_{\mathcal{H}} + ||f_n - f||_{\mathcal{H}};$$

$$||Uf||_{\mathcal{H}'} - ||f_n - Uf||_{\mathcal{H}'} \le ||f_n||_{\mathcal{H}_0} \le ||Uf||_{\mathcal{H}'} + ||f_n - Uf||_{\mathcal{H}'}.$$

取 $n \to \infty$ 可得 $\lim_{n \to \infty} \|f_n\|_{\mathcal{H}_0}$ 存在而且

$$\lim_{n \to \infty} \|f_n\|_{\mathcal{H}_0} = \|f\|_{\mathcal{H}} = \|Uf\|_{\mathcal{H}'}.$$

即对任何 $f \in \mathcal{H}$,都有:

$$||f||_{\mathcal{H}} = ||Uf||_{\mathcal{H}'}.$$

15. (**Stein 中译本, P146, 题 15**) 令 T 是从 H_1 到 H_2 的线性算子, H_1 有限维,则 T 必是有界线性算子.

证明. 取 H_1 的一组标准正交基 $\{e_1, \dots, e_n\}$. 对任何 $x \in H_1$, x 表示成 $x = \sum_{i=1}^n x_i e_i$, 则 $\|x\| = (|x_1|^2 + \dots + |x_n|^2)^{1/2}$ 。令 $M = \max_{1 \le i \le n} \|Te_i\|$,则:

$$||Tx|| \le \sum_{i=1}^{n} |x_i|||Te_i|| \le M \sum_{i=1}^{n} |x_i| \le \sqrt{2}M \left(\sum_{i=1}^{n} |x_i|^2\right) = \sqrt{2}M||x||.$$

16. (**Stein 中译本, P146, 题 17**) 如下所述, Fatou 定理有一种推广的版本,即允许 点趋向大区域的边界.

对每个 0 < s < 1 和单位圆周上的点 z,考虑 $\Gamma_s(z)$ 定义为包含 z 和闭圆盘的最小闭凸集. 即, $\Gamma_s(z)$ 由连接 z 与 $D_s(0)$ 所有点的所有点的所有直线组成. 如书中图所示.

我们说定义在开单位圆盘上的函数 F 有一个非切向极限,如果对每个 0 < s < 1,极限

$$\lim_{\Gamma_s(z)\ni w\to z} F(w)$$

存在.

证明,若 F 在开圆盘上全纯且有界,则 F 在单位圆周上几乎每个点存在切向极限.

证明. 根据复分析, 我们注意 $F(re^{i\theta})$ 可以用 Poisson 积分计算;

$$F(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{i\varphi}) P_r(\varphi - \theta) d\varphi.$$

所以我们只需要说明右边的 Poisson 积分几乎处处存在非切向极限即可.

我们首先证明关于 Poisson 积分的一个结论:

引理 1. 设 $P_r(\theta)$ 是 Poisson 核:

$$P_r(\theta) = \frac{1 - r^2}{|1 - re^{i\theta}|}.$$

则对所有靠近 $e^{i\theta_0}$ 的 $re^{i\theta} \in \Gamma_s(e^{i\theta_0})$, 存在一个和 s 有关的常数 $\beta > 0$, 使得:

$$P_r(\theta) \le (1+\beta)^2 P_r(\theta_0).$$

证明.(引理的证明)根据三角不等式有:

$$|1 - re^{i\theta_0}| \le |1 - re^{i\theta}| + r|e^{i\theta} - e^{i\theta_0}| \le |1 - re^{i\theta}| + |\theta - \theta_0|.$$

下面估计 $|\theta - \theta_0|$. 记 $\delta = 1 - r$,则如图1所示, $|\theta - \theta_0| < \alpha = \angle AOB$.

记 $\gamma = \angle ABO$, 在三角形 AOB 用余弦定理可得:

$$|OA| = \sqrt{1 + \delta^2 - 2\delta \cos \gamma}.$$

再用正弦定理可得:

$$\sin \alpha = \frac{\delta \sin \gamma}{\sqrt{1 + \delta^2 - 2\delta \cos \gamma}}.$$

即

$$\alpha = \arcsin\left(\frac{\delta\sin\gamma}{1 + \delta^2 - 2\delta\cos\gamma}\right) \le 3\delta\sin\gamma = \beta(s)\delta.$$

这里假设了 $re^{i\theta}$ 距离 $e^{i\theta_0}$ 足够近使得 $\delta < \frac{1}{3}$,此时 $1+\delta^2-2\delta\cos\gamma > 1-2\delta\cos\gamma > \frac{1}{3}$. 于是:

$$|1 - re^{i\theta_0}| \le |1 - re^{i\theta}| + \beta \delta = |1 - re^{i\theta}| + \beta(1 - r) \le (1 + \beta)|1 - re^{i\theta}|.$$

因此立刻得到

$$P_r(\theta) = \frac{1 - r^2}{|1 - re^{i\theta}|} \le (1 + \beta)^2 \frac{1 - r^2}{|1 - re^{i\theta_0}|} = (1 + \beta)^2 P_r(\theta_0).$$

图 1: 引理 1 示意图

下面我们运用引理的结论证明 Poisson 积分几乎处处存在非切向极限,即极限:

$$\lim_{\substack{re^{i\theta} \to e^{i\theta_0} \\ re^{i\theta} \in \mathbb{F}_0(e^{i\theta_0})}} \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{i\varphi}) P_r(\varphi - \theta) d\varphi = F(e^{i\theta_0}), \quad$$
対几乎处处 θ_0 成立.

我们把积分分成两个部分来估计,考虑一段圆弧:

$$A_1(h) = \{e^{i\tau} : |\tau| < h, h > 0, \tau \in [-\pi, \pi]\},\$$

以及 $A_2(h)$ 为单位圆周去掉 $A_1(h)$ 剩余的部分,则有;

$$\int_{-\pi}^{\pi} = \int_{A_1(h)} + \int_{A_2(h)}.$$

对于第一部分,因为 $re^{i\theta}$ 在开凸集 $\Gamma_s(e^{i\theta_0})$ 中,所以我们选取 h 足够小就有 $re^{i(\theta-\varphi)} \in \Gamma_s(e^{i\theta_0})$.

首先,由引理的结论有如下估计:

$$\left| \frac{1}{2\pi} \int_{A_1} [F(e^{i\varphi}) - F(e^{i\theta_0})] P_r(\varphi - \theta) d\varphi \right| \leq \frac{1}{2\pi} \int_{A_1} |F(e^{i\varphi}) P_r(\varphi - \theta)| d\varphi$$

$$\leq \frac{(1+\beta)^2}{2\pi} \int_{A_1} |[F(e^{i\varphi}) - F(e^{i\theta_0})] P_r(\varphi - \theta_0)| d\varphi$$

$$= \frac{(1+\beta)^2}{2\pi} ((F - F(e^{i\theta_0})) * P_r)(e^{i\theta_0}).$$

注意到 Poisson 核 $\{P_r\}$ 在 $r \to 1$ 时是一族恒同逼近,于是对所有 θ_0 在函数 $F(e^{i\theta_0})$ 的 Lebesgue 集中,都有:

$$\lim_{\substack{re^{i\theta} \to e^{i\theta_0} \\ re^{i\theta} \in \Gamma_s(e^{i\theta_0})}} ((F - F(e^{i\theta_0})) * P_r)(e^{i\theta_0}) = \lim_{r \to 1^-} ((F - F(e^{i\theta_0})) * P_r)(e^{i\theta_0}) = F(e^{i\theta_0}) - F(e^{i\theta_0}) = 0.$$

而根据径向形式的 Fatou 定理, $F(e^{i\theta_0})$ 是一个 L^2 函数,因而也是 L^1 函数,于是对几乎处处 θ_0 , θ_0 都是其 Lebesgue 点,所以极限式:

$$\lim_{\substack{re^{i\theta} \to e^{i\theta_0} \\ re^{i\theta} \in \Gamma_S(e^{i\theta_0})}} \left| \frac{1}{2\pi} \int_{A_1} [F(e^{i\varphi}) - F(e^{i\theta_0})] P_r(\varphi - \theta) d\varphi \right| = 0.$$

对几乎处处 θ_0 成立.

另一方面,

$$\begin{split} \left| \frac{1}{2\pi} \int_{A_2} [F(e^{i\varphi}) - F(e^{i\theta_0})] P_r(\varphi - \theta) \mathrm{d}\varphi \right| &\leq \frac{\|F\|_{L^1} + \|F\|_{L^\infty}}{2\pi} \int_{A_2} P_r(\varphi - \theta) \mathrm{d}\varphi \\ &= \frac{\|F\|_{L^1} + \|F\|_{L^\infty}}{2\pi} \int_{[-\pi,\pi] \cap \{|\tau| > h\}} P_r(\tau) \mathrm{d}\tau. \end{split}$$

根据 $\{P_r\}$ 在 $r \to 1$ 是为恒同逼近可知:

$$\int_{[-\pi,\pi]\cap\{|\tau|>h\}} P_r(\tau) \to 0 \quad (r \to 1^-)$$

由此可知

$$\lim_{\substack{re^{i\theta} \to e^{i\theta_0} \\ re^{i\theta} \in \mathbb{F}_2(e^{i\theta_0})}} \left| \frac{1}{2\pi} \int_{A_2} [F(e^{i\varphi}) - F(e^{i\theta_0})] P_r(\varphi - \theta) d\varphi \right| = 0.$$

综上所述:

$$\lim_{\substack{re^{i\theta} \to e^{i\theta_0} \\ re^{i\theta} \in \Gamma_S(e^{i\theta_0})}} \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} F(e^{i\varphi}) P_r(\varphi - \theta) d\varphi - F(e^{i\theta_0}) \right| = 0,$$

对几乎处处 θ_0 成立.

17. (**Stein 中译本, P146, 题 18**) 令 H 是 Hilbert 空间,L(H) 是 H 上所有有界线 性算子组成的线性空间. 给定 $T \in L(H)$,定义算子范数:

$$||T|| = \inf\{B : ||Tv|| \le B||v||, \text{ for all } v \in H\}.$$

- (a) 证明,只要 $T_1, T_2 \in L(H)$,就成立 $||T_1 + T_2|| \le ||T_1|| + ||T_2||$.
- (b) 证明,

$$d(T_1, T_2) = ||T_1 - T_2||.$$

定义了 L(H) 上的一个度量.

(c) 证明度量 d 下 L(H) 是完备的.

证明. (a) 事实上 $\|T\| = \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|}$, 于是:

$$||T_1 + T_2|| = \sup_{x \neq 0} \frac{||T_1 x + T_2 x||}{||x||}$$

$$\leq \sup_{x \neq 0} \frac{||T_1 x|| + ||T_2 x||}{||x||}$$

$$\leq \sup_{x_1 \neq 0} \frac{||T_1 x_1||}{||x_1||} + \sup_{x_2 \neq 0} \frac{||T_2 x_2||}{||x_2||}$$

$$= ||T_1|| + ||T_2||.$$

(b) 我们需要验证 d 满足正性、对称性和三角不等式.

根据定义 $||T_1 - T_2|| = \sup_{x \neq 0} \frac{||T_1 x - T_2 x||}{||x||}$ 可知 $||T_1 - T_2|| \ge 0$ 且 $||T_1 - T_2|| = ||T_2 - T_1||$. 三角不等式由 (a) 可知成立.

(c) 设 $\{T_i\}_{i\geq 0}$ 是 L(H) 中算子范数下的 Cauchy 列,于是 $\forall x\in H$,都有:

$$||T_n x - T_m x|| \le ||(T_n - T_m)x|| \le ||T_n - T_m|| ||x|| \to 0 \quad (m, n \to \infty).$$

所以 $\{T_i x\}_{i\geq 0}$ 是 H 中的 Cauchy 列. 根据 Hilbert 空间的完备性可知,存在唯一的 $y\in H$,使得依照 Hilbert 空间上的范数有:

$$T_i x \to y \quad (i \to \infty).$$

因此,我们可以定义一个映射 $T: H \to H$, $x \mapsto Tx$,其中 Tx 是上述的 y,下面证明 T 是一个有界线性算子.

首先证明线性性. 对于 $x, y \in H$,考虑 $\alpha x + \beta y \in H$,我们说明 $T_i(\alpha x + \beta y) \rightarrow \alpha Tx + \beta Ty$,从而 $T(\alpha x + \beta y) = \alpha Tx + \beta Ty$. 这是因为:

$$||T_i(\alpha x + \beta y) - \alpha Tx - \beta Ty|| \le |\alpha| ||T_i x - Tx|| + |\beta| ||T_i y - Ty||.$$

注意到 $T_i x \to T x (i \to \infty)$, $T_i y \to T y (i \to \infty)$, 所以 $||T_i(\alpha x + \beta y) - \alpha T x - \beta T y|| \to 0 (i \to \infty)$, 所以 T 的确是一个线性算子.

其次证明有界性. 注意 $||Tx|| = \lim_{i \to \infty} ||T_ix|| \le (\lim_{i \to \infty} ||T_i||) ||x||$. 因为由三角不等式可得 $|||T_m|| - ||T_n||| \le ||T_m - T_n||$,所以 $||T_i||$ 是 \mathbb{R} 中的一个 Cauchy 列,所以它收敛,因此 $\lim_{i \to \infty} ||T_i||$ 存在且有限,因此 T 是有界算子.

以上证明了 T 是有界线性算子,最后说明 $\{T_i\}$ 按照算子范数收敛到 T. 对任何 $\varepsilon > 0$,存在 N 足够大,设 m > n > N,则有 $\|T_n - T_m\| < \varepsilon$,所以对任何 $x \in H$ 都有:

$$||T_m x - T_n x|| \le ||T_m - T_n|| ||x|| \le \varepsilon ||x||.$$

因为 $T_n x - T_m x$ 依 H 中的范数收敛到 $T_n x - T$ $(m \to \infty)$,所以

$$||T_n x - Tx|| \le \varepsilon ||x||, \forall x \in H$$

于是:

$$||T_n - T|| = \sup_{x \neq 0} \frac{||T_n x - Tx||}{||x||} \le \varepsilon, \forall n > N$$

- 18. (Folland, Chap. 5, Ex. 63) Let H be an infinite-dimensional Hilbert space.
 - (a) Every orthonormal sequence in H converges weakly to 0;
 - (b) The unit sphere $\mathbb{S} = \{x : ||x|| = 1\}$ is weakly dense in the closed unit ball $B = \{x : ||x|| \le 1\}$. (Every $x \in B$ is the weak limit of some sequence in \mathbb{S} .)

证明. (a) 设 $\{e_k\}_{k\geq 1}$ 是 H 中比标准正交序列,根据 Bessel 不等式, $\forall f\in H$,都有:

$$\sum_{k=1}^{\infty} |(f, e_k)|^2 \le ||f||^2 < \infty.$$

所以 $\lim_{k}(f, e_k) = 0$. 于是 e_k 弱收敛到 0.

(b) 即证明单位球面在单位闭球中弱稠密. 取 S 中的一列标准正交序列 $\{e_k\}_{k\geq 1}$. 对任何 $x \in B$,考虑 $\varphi_k(\lambda) = \|x + \lambda e_k\|^2 (\lambda \in \mathbb{R})$,则 $\varphi_k(\lambda) = (x + \lambda e_k, x + \lambda e_k) = \|x\|^2 + 2\operatorname{Re}(x, e_k)\lambda + \lambda^2$. 因为 $0 \leq \|x\| \leq 1$,根据二次函数的性质可知,对每个 k,存在 λ_k 使得 $|\varphi_k(\lambda_k)| = 1$,即 $x + \lambda_k e_k \in \mathbb{S}$. 我们说明 $\{x + \lambda_k e_k\}_k \subset \mathbb{S}$ 实际上弱收敛到 x. 首先断言 $|\lambda_k| \leq 2$, $\forall k \in \mathbb{N}$,否则:

$$||x + \lambda_k e_k|| \ge |\lambda_k|||e_k|| - ||x|| > 2 - ||x|| \ge 1,$$

这与 $x + \lambda_k e_k \in \mathbb{S}$ 是矛盾的.

因此,根据(a)的结论:

$$|(x + \lambda_k e_k, f) - (x, f)| \le |\lambda_k| |(e_k, f)| \le 2|(e_k, f)| \to 0 (k \to \infty)$$

于是 $\lim_{k}(x + \lambda_{k}e_{k}, f) = (x, f)$. 这就证明了单位球面在单位闭球中弱稠密.

19. (**Stein 中译本, P147, 题 20**) 假设 H 是无穷维可分 Hilbert 空间. 我们已经见过 这样的例子: 即 $\{f_n\} \subset H$ 为 H 中的序列,满足对所有的 n 都有 $||f_n|| = 1$,但是 $\{f_n\}$ 的任何子列在 H 中不(依范数)收敛.

但是,对任何 H 中的序列 $\{f_n\}$ 满足 $||f_n|| = 1$,存在 $f \in H$ 以及子列 $\{f_{n_k}\}$,使 得对任何 $g \in H$,都有

$$\lim_{k \to \infty} (f_{n_k}, g) = (f, g).$$

我们称子列 $\{f_{n_k}\}$ 弱收敛于 f.

证明. 因为 H 是无穷维可分 Hilbert 空间,取 H 的一个标准正交基 $\{e_i\}_{i\geq 1}$,对每个 f_n ,令:

$$a_n^{(i)} = (f_n, e_i).$$

则根据 Parseval 恒等式,有:

$$||f_n||^2 = \sum_{i=1}^{\infty} |a_n^{(i)}|^2 = 1.$$

由此可知每个 i,数列 $\{a_n^{(i)}\}_{n\geq 1}$ 都是有界数列. 特别地,对 i=1, $\{a_n^{(1)}\}_{n\geq 1}$ 有收敛子列 $\{a_{1n}^{(1)}\}_{n\geq 1}$,设其极限为 $a^{(1)}$. 其次,对数列 $\{a_{1n}^{(2)}\}_{n\geq 1}$,仍然是有界数列,于是存在收敛子列 $\{a_{2n}^{(2)}\}_{n\geq 1}$,设其极限为 $a^{(2)}$. 而且,根据 $\{a_{2n}^{(1)}\}$ 是 $\{a_{1n}^{(1)}\}$ 的子列可知 $a_{2n}^{(1)} \to a^{(1)}$. 这样依次操作下去,我们得到了一系列的点列:

$$\{f_{0n}\}, \{f_{1n}\}, \{f_{2n}\}, \cdots$$

其中, $\{f_{0n}\}=\{f_n\}$,且每个 $\{f_{(j+1)n}\}$ 是 $\{f_{jn}\}$ 的子列. 而且,对于 $\{f_{jn}\}$,有 $a_{jn}^{(i)} \to a^{(i)}(n \to \infty)$,对所有 $1 \le i \le j$ 都成立. 我们选取 $\{f_{nn}\}_{n \ge 1}$,则对每个 i,当 $n \ge i$ 时, $a_{nn}^{(i)}$ 是 $a_{in}^{(i)}$ 子列,所以 $a_{nn}^{(i)} \to a^{(i)}(n \to \infty)$ 对每个 i 都成立. 我们定义 f 使得 $(f,e_i)=a^{(i)}$,则: $(f_{nn}-f,e_i)=a_{nn}^{(i)}-a^{(i)}\to 0(n\to\infty)$. 因为对任何 g,g 可以用有限个 e_i 的线性组合逼近,因此 $(f_nn-f,g)\to 0(n\to\infty)$ 即 $(f_n,g)\to (f,g)(n\to\infty)$ 对任何 $g\in H$ 都成立,所以 $\{f_{nn}\}$ 的确弱收敛到 g. 注意到 $\{f_{nn}\}$ 实际上是来自 $\{f_n\}$ 的一个子列,所以将其重新记为 $\{f_{nk}\}$ 即证明了结论.

评注 1. 该命题和 Arzelà-Ascoli 定理的证明方法是完全相同的.

- 20. (**Stein 中译本, P147, 题 21**) 可分 Hilbert 空间 H 上的有界算子空间 L(H) 中的序列 $\{T_n\}$ 收敛到有界算子 T 有多种形式:
 - 依范数收敛: $||T_n T|| \to 0 (n \to \infty)$;
 - 强收敛: 逐点收敛, 即 $\forall f \in H$, 都有 $T_n f \to T f(n \to \infty)$;
 - 弱收敛: 即 $\forall f, g \in H$, 都有 $(T_n f, g) \to (T f, g)(n \to \infty)$.
 - (a) 举例说明:弱收敛无法推出强收敛,强收敛无法推出依范数收敛;
 - (b) 证明,对任何有界算子 T,存在有限秩的有界算子序列 $\{T_n\}$ 使得当 $n \to \infty$ 时,在强收敛意义下有 $T_n \to T$.

证明. (a) 弱收敛无法推出强收敛: 设 $H = \ell^2(\mathbb{N})$, T_n 是平移算子, 即:

$$T_n:(a_1,\cdots)=(\underbrace{0,\cdots,0}_{n\uparrow},a_1,\cdots)$$

显然, T_n 是线性的,而且,对 $x \in \ell^2(\mathbb{N})$,有 $||T_n x|| = ||x||$,所以 T_n 是有界线性 算子.

对 $x = (a_1, \dots)$ 和 $y = (b_1, \dots)$, 我们有:

$$(T_n x, y) = \sum_{k=1}^{\infty} a_k b_{n+k} = (x, S^n y).$$

其中 S 是向左平移的算子,定义为 $Sy=(b_2,b_3,\cdots)$. 根据 Cauchy-Schwarz 不等式:

$$|(T_n x, y)| \le ||x|| ||S^n y|| \to 0 (n \to \infty).$$

这是因为, $\sum |b_n| < \infty$,所以其尾项之和即 $\|S^n y\|^2 \to 0 (n \to \infty)$. 这说明, T_n 弱收敛到零算子 O. 但是我们指出 T_n 不强收敛到 O. 这是因为归纳可得 $\|T_n x\| = \|x\|$,对任何 n,所以取 $x \neq 0$ 即可得到 $T_n x \to O x = 0$.

强收敛无法推出依范数收敛: 仍然设 $H = \ell^2(\mathbb{N})$,S 是向左平移的算子, 显然 S 是线性的. 因为:

$$||Sy||^2 = \sum_{i=2}^{\infty} |b_i|^2 = \sum_{i=1}^{\infty} |b_i|^2 - |b_1|^2 = ||y||^2 - |b_1|^2 \le ||y||^2.$$

所以,S 是有界线性算子. 令 $T_n = S^n$,则对任何 $x = (a_1, \dots) \in \ell^2(\mathbb{N})$,我们有:

$$||T_n x - Ox||^2 = \sum_{k > n+1} |a_n|^2 \to 0 (n \to \infty)$$

即 $T_n x \to O x = 0 (n \to \infty)$,因此 $\{T_n\}$ 强收敛至零算子 O. 但是,我们指出 T_n 不依范数收敛到 O,这是因为:

$$||T_n - O|| = \sup_{x \neq 0} \frac{||T_n x||}{||x||} \ge \frac{||T_n(1, 0, \dots)||}{||(1, 0, \dots)||} = \frac{1}{1} = 1.$$

所以 $||T_n - O|| \not\to 0 (n \to \infty)$.

(b) 定义 $T_n e_i = \sum_{j=1}^n (Te_i, e_j) e_j$,其中 $\{e_i\}$ 是 H 一组标准正交基. 记 $a_{ij} = (Te_i, e_j)$. 注意 $\operatorname{Im} T_n \subset \operatorname{Span}(e_1, \dots, e_n)$,所以 T_n 都是有限秩的. 设 $f \in H$,其中 f 由 $(f, e_i) = c_i$ 决定,于是 f 可表示为 $f = \sum_{i=1}^{\infty} c_i e_i$,则此时由 T_n 、T 都是有界线性 算子可得:

$$Tf = T\left(\lim_{N} \sum_{i=1}^{N} c_{i}e_{i}\right) = \lim_{N} \sum_{i=1}^{N} c_{i}T(e_{i}) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{i}a_{ij}e_{j},$$

$$T_n f = T_n \left(\lim_N \sum_{i=1}^N c_i e_i \right) = \lim_N \sum_{i=1}^N c_i T_n(e_i) = \sum_{i=1}^\infty \sum_{j=1}^n c_i a_{ij} e_j.$$

注意到 T 和 T_n 都是有界线性算子,所以以上级数都是绝对收敛的,由此可知:

$$Tf = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} c_i a_{ij} e_j.$$

$$T_n f = \sum_{j=1}^n \sum_{i=1}^\infty c_i a_{ij} e_j.$$

绝对收敛性保证了求和顺序交换的合法性. 由此可知, $T_n f$ 就是 T f 的部分和,所以 $T_n \to T$ 强收敛.

- 21. (**Stein 中译本, P147, 题 22**) 如果对所有 $f \in H$, ||Tf|| = ||f||, 那么就称算子 T 是等距的.
 - (a) 证明若 T 是一个等距,则对每个 $f,g \in H$, (Tf,Tg) = (f,g),特别地, $T^*T = I$;
 - (b) 若 T 是等距且是满射,则 T 是酉映射且 $TT^* = T^*T = I$;
 - (c) 给出一个是等距但不是酉映射的例子;
 - (d) 证明,若 T*T 是酉映射,则 T 是等距.

证明. (a) 证明是考虑极化公式:

$$(x,y) = \frac{1}{4} \left(\|x+y\| - \|x-y\| + i \left\| \frac{x}{i} + y \right\| - i \left\| \frac{x}{i} - y \right\| \right),$$

代入 Tf 和 Tq 可得:

$$(Tf, Tg) = \frac{1}{4} \left(||Tf + Tg|| - ||Tf - Tg|| + i \left\| \frac{Tf}{i} + Tg \right\| - i \left\| \frac{Tf}{i} - Tg \right\| \right)$$

$$= \frac{1}{4} \left(||T(f + g)|| - ||T(f - g)|| + i \left\| T \left(\frac{f}{i} + g \right) \right\| - i \left\| T \left(\frac{f}{i} - g \right) \right\| \right)$$

$$= \frac{1}{4} \left(||f + g|| - ||f - g|| + i \left\| \frac{f}{i} + g \right\| - i \left\| \frac{f}{i} - g \right\| \right)$$

$$= (f, g).$$

因此等距是保持内积的. 特别地, $(Tf, Tg) = (f, T^*(Tg)) = (f, (T^*T)g), \forall f, g \in H$,即 $(f, (T^*T - I)g) = 0$, $\forall f, g \in H$. 取 $f = (T^*T - I)g$,则有 $\forall g \in H$,都有:

$$\|(T^*T-I)g\|=0,\quad \forall g\in H.$$

所以 $(T^*T-I)g=0$, $\forall g\in H$, 所以 $T^*T-I=0$ 即 $T^*T=I$.

(b) 我们断言 T 是单射. 否则,设 $f \neq g$,Tf = Tg,则两边同时作用 T^* 可得 f = g,这与 $f \neq g$ 矛盾,所以 T 是单射且满射,于是 T 是双射. 再根据 $T^*T = I$ 可得 $T^* = T^{-1}$,所以 $TT^* = I$. 最后,我们说明 T 是线性映射. 为此我们首先验证 T^* 是线性的,这是因为:

$$(f, T^*(\alpha g_1 + \beta g_2)) = (Tf, \alpha g_1 + \beta g_2)$$

$$= (Tf, \alpha g_1) + (Tf, \beta g_2)$$

$$= \overline{\alpha}(Tf, g_1) + \overline{\beta}(Tf, g_2)$$

$$= \overline{\alpha}(f, T^*g_1) + \overline{\beta}(f, T^*g_2)$$

$$= (f, \alpha T^*g_1) + (f, \beta T^*g_2)$$

$$= (f, \alpha T^*g_1) + \beta T^*g_2).$$

对所有 f, g_1, g_2 都成立,类似 (a) 中的论证过程可得

$$T^*(\alpha g_1 + \beta g_2) = \alpha T^* g_1 + \beta T^* g_2, \quad \forall \alpha, \beta \in \mathbb{C}, g_1, g_2 \in H.$$

所以:

 $T(\alpha f + \beta g) = T[T^*(\alpha T f + \beta T g)] = (TT^*)(\alpha T f + \beta T g) = I(\alpha T f + \beta T g) = \alpha T f + \beta T g.$ 综上所述 T 是酉映射.

(c) 定义 $H^* \to H: \ell \mapsto g$,这里 g 定义为使得 $\ell(f) = (f,g)$ 对任何 $f \in H$ 成立的 H 中的元素. 根据 Riesz 表示定理,这样的 g 是唯一的,因此该映射是良定义的. 对于 Hilbert 空间 H^* 和 H,其上的范数分别为有界线性泛函的算子范数以及 H 中元素的范数. 根据 Cauchy-Schwarz 不等式可得

$$|(f,g)| \le ||f|| ||g|| \Rightarrow \frac{|\ell(f)|}{||f||} = \frac{|(f,g)|}{||f||} \le ||g||.$$

另一方面,当 f = g 时,

$$\frac{|\ell(f)|}{\|f\|} = \frac{|(g,g)|}{\|g\|} = \frac{\|g\|^2}{\|g\|} = \|g\|.$$

所以 ℓ 的算子范数恰好就是 $\|g\|_H$,由此可知这一映射给出了 H^* 和 H 之间的等距.

但是我们指出该映射不是线性的. 这需要回忆 Riesz 表示定理的证明过程. 我们设 ℓ 的零空间为 $\ker \ell = \{x \in H : \ell(x) = 0\}$,则它是 H 的一个闭子空间. 如果 $\ker \ell = H$,则 ℓ 是零线性泛函,这时 g = 0. 如果 $\ker \ell \neq H$,则 $\ker \ell^{\perp}$ 是非平凡的,此时任取一个 $h \in \ker \ell^{\perp}$ 满足 $\|h\| = 1$,则 g 可以表示为 $g = \overline{l(h)}h$. 我们说明 $\ell(f) = (f,g)$ 对任何 $f \in H$ 成立,这是因为,可以考虑 $u = \ell(f)h - \ell(h)f$,则 $u \in \ker \ell^{\perp}$,(u,h) = 0. 所以:

$$0 = (u, h) = \ell(f)(h, h) - (f, \overline{l(h)}h) = \ell(f) - (f, g).$$

总结来说,线性泛函 ℓ 在该等距下的像可以表示为 $g = \overline{l(h)}h$. 对于线性泛函 $\alpha \ell$, $\alpha \in \mathbb{C}$, $\ker \alpha \ell = \ker \ell$, 所以其像可以表示为 $g' = \overline{\alpha l(h)}h = \overline{\alpha}\overline{\ell(h)}h = \overline{\alpha}g \neq \alpha g$, 这说明改等距不是线性的,因此不是酉的.

(d) 首先,根据 Cauchy-Schwarz 不等式:

$$||Tf||^2 = (Tf, Tf) = (f, T^*Tf) \le ||f|| ||T^*Tf|| = ||f||^2$$

所以, $||Tf|| \le ||f||$, 于是, 另一方面,

$$||f||^2 = ||T^*Tf||^2 = (T^*Tf, T^*Tf) \le (Tf, TT^*Tf)$$

$$\le ||Tf||||T(T^*Tf)|| \le ||Tf||||T^*Tf|| = ||Tf||||f||$$

所以, $||f|| \le ||Tf||$ 对所有 $f \in H$ 成立. 将两个不等号结合可知 ||Tf|| = ||f||.

22. (**Stein 中译本, P147, 题 23**) 假定 $\{T_k\}$ 是 Hilbert 空间 H 上一列有界线性算子, 同时, 对所有的 k, 都有 $\|T_k\| \le 1$, 也假定对所有的 $k \ne j$, 都有:

$$T_k T_j^* = T_k^* T_j = 0.$$

令 $S_N = \sum_{k=-N}^N T_k$ 证明,当 $N \to \infty$ 时,对每个 $f \in H$,都有 $S_N(f)$ 收敛. 若以 T(f) 表示该极限,证明 $||T|| \le 1$.

证明. 首先考虑只有有限多个算子不为零的情形. 此时存在一个正整数 N 使得对所有的 k > 0 都有:

$$S_{N+k}(f) = S_N(f).$$

所以按照定义 $S_N(f)$ 就收敛,记其极限为 T(f),则有:

$$T(f) = \sum_{i=-N}^{N} T_i(f).$$

记 H 的一个闭子空间为 $V_i = \operatorname{Im} T_i$,则我们断言每个 V_i 相互正交,这是因为,对任何 $T_i x \in V_i$, $T_i y \in V_i$, $i \neq j$,都有:

$$(T_i x, T_j y) = (x, T_i^* T_j y) = 0.$$

所以,这些闭子空间相互正交. 我们设到闭子空间 V_i 的正交投影为 P_i . 同样,我们记 $V_i^* = \operatorname{Im} T_i^*$,同样的论述可得这些 V_i^* 也相互正交,记到 V_i^* 的正交投影为

 Q_i . 由此可得,对所有 ||f|| = ||g|| = 1, $f, g \in H$:

$$|(Tf,g)| \leq \sum_{i=-N}^{N} |(T_{i}f,g)| = \sum_{i=-N}^{N} |(T_{i}f,P_{i}g)| = \sum_{i=-N}^{N} |(f,T_{i}^{*}P_{i}g)|$$

$$= \sum_{i=-N}^{N} |(Q_{i}f,T_{i}^{*}P_{i}g)| = \sum_{i=-N}^{N} |(T_{i}Q_{i}f,P_{i}g)|$$

$$\leq \sum_{i=-N}^{N} ||T_{i}|| |(Q_{i}f,P_{i}g)| \leq \sum_{i=-N}^{N} |(Q_{i}f,P_{i}g)|$$

$$\leq \sum_{i=-N}^{N} ||Q_{i}f|| ||P_{i}g|| \leq \left(\sum_{i=-N}^{N} ||Q_{i}f||^{2}\right)^{1/2} \left(\sum_{i=-N}^{N} ||P_{i}f||^{2}\right)^{1/2}$$

$$\leq ||f|| ||g|| = 1. \quad (*)$$

上式用到了 Cauchy-Schwarz 不等式以及 Bessel 不等式. 关于 Bessel 不等式的这个版本,其成立的原因是:

$$(f - \sum P_i f, \sum P_i f) = \sum (f, P_i f) - (\sum P_i f, \sum P_i f)$$

$$= \sum (f, P_i f) - \sum_i \sum_j (P_i f, P_j f)$$

$$= \sum (f, P_i f) - \sum_i (P_i f, P_i f)$$

$$= \sum (f, P_i f) - \sum (f, P_i^* P_i f)$$

$$= \sum (f, P_i f) - \sum (f, P_i f)$$

$$= 0$$

其中, P_i 是对相互彼此正交的闭子空间 V_i 的正交投影,求和号为有限和. 上式用到了不同闭子空间彼此正交,以及 $P_i^* = P_i = P_i^2$ 这一基本性质,所以,根据勾股定理可得

$$||f||^2 = ||f - \sum P_i f||^2 + ||\sum P_i f||^2 \ge ||\sum P_i f||^2 = \sum ||P_i f||^2$$

此即 Bessel 不等式.

回到本题,对(*)式两边取上确界可得:

$$||T|| = \sup_{\|f\| = \|g\| = 1} |(Tf, g)| \le 1.$$

以上证明了对只有有限多个算子不为零的情况下,结论是成立的.

对于一般情况,考虑 $S_N(f) = \sum_{i=-N}^N T_i(f)$,根据有限多个算子的情形可知:

$$||S_N(f)|| \le ||S_N|| ||f|| \le 1 \cdot ||f|| = ||f||.$$

而且,根据正交性可得:

$$||S_N(f)||^2 = \left(\sum T_i f, \sum T_i f\right) = \sum \left(T_i f, T_i f\right) = \sum_{i=-N}^N ||T_i f||^2 < ||f||^2.$$

所以,取 $N \to \infty$ 可得

$$\sum_{i=-N}^{N} ||T_i f||^2 < ||f||^2 < \infty \Rightarrow \sum_{M+1 \le |i| \le N} ||T_i f||^2 \to 0 (M \to \infty, N > M)$$

因此:

$$||S_N(f) - S_M(f)||^2 = \sum_{M+1 \le |i| \le N} ||T_i f||^2 \to 0 (N > M, M \to \infty).$$

所以 $\{S_N f\}_N$ 是 H 中的 Cauchy 列,由 H 的完备性可知 $S_N f$ 收敛,将极限记为 Tf.

所以根据 $||S_N|| \le 1$ 可得:

$$||Tf|| = \lim_{n} ||S_N f|| \le ||f||.$$

所以
$$||T|| \le 1$$
.

23. (**Stein 中译本, P148, 题 24**) 令 $\{e_k\}$ 是 Hilbert 空间 H 的一组标准正交基,若 $\{c_k\}_{k>1}$ 是正实数列,且 $\sum c_k^2 < \infty$,则集合:

$$A = \left\{ \sum_{k=1}^{\infty} a_k e_k : |a_k| \le c_k \right\}.$$

在 H 中是紧的.

证明. 只需证明对任何 A 中的序列 $\{x_n\}_{n\geq 1}$,它都有收敛到 A 中某个点的子列. 设 $x_n = \sum_n a_k^{(n)} e_k$,根据 $|a_1^{(n)}| < c_1$,可知 $\{a_1^{(n)}\}_n$,是有界数列,于是有收敛子列 $\{a_1^{(1n)}\}_n$,设其极限为 a_1 . 其次,对数列 $\{a_2^{(1n)}\}_n$,它仍是有界数列,选出其收敛 子列 $\{a_2^{(2n)}\}_n$,记其极限为 a_2 ,根据它是 $\{a_1^{(1n)}\}_k$ 的子列可知 $a_1^{(2n)} \to a_1, n \to \infty$. 依此这样找下去,我们得到一系列点列:

$$\{x_{0n}\},\{x_{1n}\},\{x_{2n}\},\cdots$$

其中, $\{x_{0n}\}=\{x_n\}$,且每个点列都是前一个点列的子列. 而且,对某个 $\{x_{in}\}_n$,都有 $a_j^{(in)} \to a_j$ 对每个 $1 \le j \le i$ 成立. 我们定义 $x = \sum_{k=1}^{\infty} a_k e_k$. 根据每个 $|a_k| \le c_k$ 可得 $\sum_k |a_k|^2 < \infty$,x 有意义而且 $x \in A$. 下面说明 $\{x_{nn}\}_n$ 将会收敛到 $x \in A$,这是因为,对每个 k, $\{x_{nn}\}_n$ 最终都是 $\{x_{kn}\}_n$ 的子列,于是:

$$a_k^{(nn)} - a_k \to 0 \quad (n \to \infty).$$

由 Parseval 恒等式可得:

$$||x_{nn} - x||^2 = \sum_{k=1}^{\infty} |a_k^{(nn)} - a_k|^2.$$

取极限 \lim_n ,并根据正项级数极限和求和次序可交换可得:

$$\lim_{n} ||x_{nn} - x||^2 = \sum_{k=1}^{\infty} \lim_{n} \left| a_k^{(nn)} - a_k \right|^2 = 0.$$

所以 $\{x_n\}$ 的子列 $\{x_{nn}\}$ 收敛到 $x \in A$.

24. (Stein 中译本, P148, 题 25) 假定 T 是一个有界线性算子,而且被标准正交基 $\{\varphi_k\}$ 对角化,满足 $T\varphi_k = \lambda_k \varphi_k$,则 T 是紧的当且仅当 $\lambda_k \to 0 (k \to \infty)$.

证明. 假设 $\lambda_k \to 0$. 我们考虑 $f \in H$ 满足 ||f|| = 1, P_n 是到闭子空间 $\mathrm{Span}(\varphi_1, \cdots, \varphi_n)$ 的正交投影. 我们设 f 关于基 $\{\varphi_n\}$ 的展开为 $f \sim \sum_{k=1}^{\infty} c_k \varphi_k$,则 Tf 关于这组基的展开为

$$Tf \sim \sum_{k=1}^{\infty} c_k \lambda_k \varphi_k.$$

所以 P_nTf 关于这组基的展开为:

$$P_n T f \sim \sum_{k=1}^n c_k \lambda_k \varphi_k.$$

这根据 $(P_nTf,\varphi_m)=0$ 对所有 $m \geq n+1$,以及 $(P_nTf,\varphi_m)=(Tf,P_n\varphi_m)=(Tf,\varphi_m)$ 对所有 $m \leq n$ 立刻看出. 此外,由于该展开式中只有有限项,根据 $\{\varphi_n\}$ 是标准正交基以及范数意义下的收敛性可知实际上有:

$$P_n Tf = \sum_{k=1}^n c_k \lambda_k \varphi_k = S_n(Tf).$$

其中 $S_n(Tf)$ 表示 Tf 展开式的部分和,于是,根据 Parseval 恒等式,有:

$$\|(P_nT - T)f\|^2 = \|S_n(Tf) - Tf\|^2 = \sum_{k=n+1}^{\infty} |c_k|^2 |\lambda_k|^2.$$

对任何 $\varepsilon > 0$,取 n 足够大,则所有 $|\lambda_k| < \varepsilon$,对 $k \ge n+1$ 由此可知:

$$\|(P_nT - T)f\|^2 \le \sum_{k=n+1}^{\infty} |c_k|^2 \varepsilon^2 \le \varepsilon^2 \sum_{k=1}^{\infty} |c_k|^2 = \varepsilon^2 \|f\|^2 = \varepsilon^2.$$

取上确界可得:

$$||P_nT - T|| = \sup_{||f||=1} ||(P_nT - T)f|| \le \varepsilon.$$

对所有 n 足够大.

这就证明了在算子范数下有: $||P_nT - T|| \rightarrow 0$.

因为 P_nT 是有限秩的有界线性算子,所以对每个 n, P_nT 都是紧算子,所以 T 作为其算子范数下的极限,T 也是紧算子.

反过来,假设 $\lambda_k \to 0$ 不成立,则存在 $\mu > 0$,使得数列 $\{\lambda_k\}$ 有无限多项满足 $|\lambda_k| > \mu$. 取出该无限多项 $\{\lambda_{n_k}\}_k$,则该数列为 $\{\lambda_k\}$ 的子列. 因为 $\{\varphi_k\}$ 是标准正交基,所以 $\|\varphi_{n_k}\|_k \subset \mathbb{S} = \{x \in H : \|x\| = 1\}$. 因为 T 是紧算子,所以 $\{T\varphi_{n_k}\}_k$ 在 H 中有收敛子列,但是:

$$||T\varphi_{n_k} - T\varphi_{n_\ell}||^2 = ||\lambda_{n_k}\varphi_{n_k} - \lambda_{n_\ell}\varphi_{n_\ell}||^2 = |\lambda_{n_k}|^2 + |\lambda_{n_\ell}|^2 \ge 2\mu^2.$$

对 $k \neq \ell$. 所以, $\{T\varphi_{n_k}\}_k$ 的任何子列都不是 Cauchy 列,所以都不可能收敛,从而推出了矛盾.

- 25. (Stein 中译本,P148,题 26) 假定 $w \in \mathbb{R}^d$ 上可测函数满足对 a.e.x, $0 < w(x) < \infty$, 且 $K \in \mathbb{R}^d \times \mathbb{R}^d$ 上的可测函数满足:
 - (i) 对几乎每个 $x \in \mathbb{R}^d$, $\int_{\mathbb{R}^d} |K(x,y)| w(y) \mathrm{d}y \le Aw(x)$;
 - (ii) 对几乎每个 $y \in \mathbb{R}^d$, $\int_{\mathbb{R}^d} |K(x,y)| w(x) dx \le Aw(y)$;

证明如下定义的积分算子:

$$Tf(x) = \int_{\mathbb{R}^d} K(x, y) f(y) dy, \quad x \in \mathbb{R}^d.$$

在 $L^2(\mathbb{R}^d)$ 上有界而且满足 $||T|| \leq A$.

作为一个特殊情形,若对所有的 x, $\int |K(x,y)| dy \le A$,且对所有的有 y, $\int_{\mathbb{R}^d} |K(x,y)| dx \le A$,则 $||T|| \le A$.

证明. 对 $f \in L^2(\mathbb{R}^d)$, 我们有:

$$\int |K(x,y)f(y)| \mathrm{d}y \le A^{1/2} w(x)^{1/2} \left[\int |K(x,y)| |f(y)|^2 w(y)^{-1} \mathrm{d}y \right]^{1/2}.$$

根据非负可测函数的 Fubini 定理可知:

$$||Tf||^{2} \leq \int_{\mathbb{R}^{d}} \left(\int_{\mathbb{R}^{d}} |K(x,y)| |f(y)| dy \right)^{2} dx$$

$$\leq A \int_{\mathbb{R}^{d}} w(x) \int_{\mathbb{R}^{d}} |K(x,y)| |f(y)|^{2} w(y)^{-1} dy dx$$

$$= A \int_{\mathbb{R}^{d}} w(y)^{-1} |f(y)|^{2} \int_{\mathbb{R}^{d}} |K(x,y)| w(x) dx dy$$

$$\leq A \int_{\mathbb{R}^{d}} |f(y)|^{2} (Aw(y)) w(y)^{-1} dy$$

$$= A^{2} \int_{\mathbb{R}^{d}} |f(y)|^{2} dy$$

$$= A^{2} ||f||^{2}.$$

因为 $A < \infty$, 所以:

$$||T|| \le \sup_{f \in H - \{0\}} \frac{||Tf||}{||f||} \le A.$$

所以 T 是有界线性算子而且 $||T|| \le A$.

特别地,如果取 $w \equiv 1$ 为满足题给条件的可测函数,则得到了一个特殊结论: 即 若 $\left\| \int_{\mathbb{R}^d} |K^x| \mathrm{d}x \right\|_{L^1} \le A < \infty$ 且 $\left\| \int_{\mathbb{R}^d} |K^y| \mathrm{d}y \right\|_{L^1} \le A < \infty$,则 $\|T\| \le A$.

26. (Stein 中译本, P148, 题 27) 证明算子

$$Tf(x) = \frac{1}{\pi} \int_0^\infty \frac{f(y)}{x+y} \mathrm{d}y$$

在 $L^2(0,\infty)$ 上是有界的而且 $||T|| \le 1$.

证明. 令 $K(x,y) = \frac{1}{x+y}$ 是 $(0,\infty)^2$ 上非负可测函数, $w(x) = \frac{1}{\sqrt{x}}$ 是 $(0,\infty)$ 上处处有限函数,我们计算:

$$\begin{split} \int_0^\infty \frac{1}{x+y} \frac{1}{\sqrt{x}} \mathrm{d}x &= 2\sqrt{y} \int_0^\infty \frac{1}{x+y} \mathrm{d}\sqrt{\frac{x}{y}} \\ &= 2\sqrt{y} \cdot \frac{1}{y} \int_0^\infty \frac{1}{\left(\sqrt{\frac{x}{y}}\right)^2 + 1} \mathrm{d}\sqrt{\frac{x}{y}} \\ &= \frac{2}{\sqrt{y}} \left[\arctan\left(\frac{x}{y}\right)\right]_{x=0}^{x=\infty} \\ &= \frac{\pi}{\sqrt{y}}. \end{split}$$

因此我们有:

$$\frac{1}{\pi} \int_0^\infty |K(x,y)| w(x) \mathrm{d}x \le w(y).$$

对所有 y 都成立, 以及对称地,

$$\frac{1}{\pi} \int_0^\infty |K(x,y)| w(y) \mathrm{d}y \le w(x).$$

对所有x都成立. 因此,根据题 26 的结论可得,T 是有界线性算子而且

$$||T|| \le 1.$$

27. (**Stein 中译本, P148, 题 28**) 假定 $H = L^2(B)$, 其中 $B \subset \mathbb{R}^d$ 为单位球. 令 K(x,y) 是 $B \times B$ 上满足存在 $\alpha > 0$ 使得 $|K(x,y)| \le A|x-y|^{-d+\alpha}$ 对所有 $x,y \in B$ 都成立的可测函数. 定义:

$$Tf(x) = \int_{B} K(x, y)f(y)dy.$$

- (a) 证明 T 是 H 上有界线性算子;
- (b) 证明 T 是紧算子.
- (c) T 是 Hilbert-Schmidt 算子,当且仅当 $\alpha > \frac{d}{2}$. (这里只能说明 $\frac{d}{2}$ 是保证 T 是 Hilbert-Schmidt 算子的最优下界,因为题目只给出了 K 的上界,无法退出反过来的结果)

证明. (a) 我们有如下估计:

$$\int_{B} |K(x,y)| dx \le \int_{B} \frac{A}{|x-y|^{d}} |x-y|^{\alpha} dx$$

$$= \int_{B+y} \frac{A}{|x|^{d}} |x|^{\alpha} dx$$

$$\le \int_{2B} \frac{A}{|x|^{d}} |x|^{\alpha} dx$$

$$= \int_{S^{d-1}} \int_{0}^{2} \frac{A}{r^{d}} r^{\alpha} r^{d-1} dr d\sigma$$

$$= \sigma(S^{d-1}) \int_{0}^{2} A r^{\alpha-1} dr$$

$$= \frac{2^{\alpha} A \sigma(S^{d-1})}{\sigma}$$

所以, $\|K^x\|_{L^1(B)} < \infty$,以及对称地, $\|K^y\|_{L^1(B)} < \infty$,所以,根据题 26 中 $w \equiv 1$ 的特殊情形可得,T 是有界线性算子.

(b) 考虑截断核

$$K_n(x,y) = \begin{cases} K(x,y), & |x-y| \ge \frac{1}{n} \\ 0, \text{ otherwise.} \end{cases}$$

则对每个 $K_n(x,y)$,都有 $K_n(x,y) \leq K(x,y)$,而且 $K_n(x,y) \leq A|x-y|^{-d+\alpha} \leq An^{d-\alpha}$.

根据 (a) 的估计过程可知 $K \in L^1(B \times B)$,所以 $K_n \in L^1(B \times B)$. 再根据 K_n 有界可知 $K_n \in L^2(B \times B)$. 于是,每个 T_n 定义为 $T_n f(x) = \int_B K_n(x,y) f(y) dy$ 都是Hilbert-Schmidt 算子,于是 T_n 是紧算子. 另一方面,对任何 $\varepsilon > 0$,对所有足够大的 n,都有:

$$\|(K - K_n)^x\|_{L^1(B)} \le A \int_{|x-y| < \frac{1}{n}} \frac{1}{|x-y|^{d-\alpha}} dx$$

$$= A \int_{|x| < \frac{1}{n}} \frac{1}{|x|^{d-\alpha}} dx$$

$$= A \int_{S^{d-1}} \int_0^{1/n} \frac{1}{r^{d-\alpha}} r^{d-1} dr d\sigma$$

$$= \frac{A\sigma(S^{d-1})}{\alpha n^{\alpha}} < \varepsilon.$$

根据题 26 的结论可知 $||T - T_n|| < \varepsilon$ 对所有 n 足够大成立. 根据一列紧算子的极限仍是紧算子可知 T 是紧算子.

(c) 设
$$\eta/2 = \alpha - \frac{d}{2} > 0$$
,则:

$$\begin{aligned} \|K(x,y)\|_{L^{2}(B\times B)}^{2} &\leq \int_{B} \int_{B} \frac{A^{2}}{|x-y|^{2(d-\alpha)}} \mathrm{d}y \mathrm{d}x \\ &\leq \int_{B} \int_{2B} \frac{A^{2}}{|y|^{2(d-\alpha)}} \mathrm{d}y \mathrm{d}x \\ &\leq \int_{B} \int_{2B} \frac{A^{2}}{|y|^{d-\eta}} \mathrm{d}y \mathrm{d}x \\ &\leq \int_{B} \int_{S^{d-1}} \int_{0}^{2} \frac{A^{2}}{r^{d-\eta}} \mathrm{d}r \mathrm{d}r \mathrm{d}x \\ &= \int_{B} \sigma(S^{d-1}) \int_{0}^{2} A^{2} r^{\eta-1} \mathrm{d}r \mathrm{d}x \\ &= \frac{2^{\eta} m(B) \sigma(S^{d-1}) A^{2}}{r} < \infty. \end{aligned}$$

所以此时 T 是 Hilbert-Schmidt 算子.

28. (Stein 中译本, P149, 题 29) 令 T 是 Hilbert 空间 H 上紧算子,且假设 $\lambda \neq 0$.

(a) 证明,由:

$$\{g \in H : g = (\lambda \operatorname{Id} - T)f, \text{ for some } f \in H\}.$$

定义的 $\lambda Id - T$ 的值域是 H 的闭子空间.

- (b) 举例说明当 $\lambda = 0$ 时 (a) 的结果不成立.
- (c) 证明 $\lambda \text{Id} T$ 的值域是整个 H,当且仅当 $\overline{\lambda} \text{Id} T^*$ 的零空间是平凡的. (这是 Fredholm 二择一定理的特殊情形)

证明. (a) 设 $g_j = (\lambda \operatorname{Id} - T)f_j$. 令 $V_{\lambda} = \ker(\lambda \operatorname{Id} - T)$. 则 f_j 在相差 V_{λ} 的意义下唯一. 特别地,我们可以设 $f_j \in V_{\lambda}^T$,受此启发,令 L 是映射: $\operatorname{Im}(\lambda \operatorname{Id} - T) \to V_{\lambda}^{\perp}$, $g \mapsto f$,其中 f 是使得 $g = (\lambda \operatorname{Id} - T)f$ 的 V_{λ}^{\perp} 中的元素.

- 我们说明该映射良定义. 假设存在 $f' \neq f$ 也满足条件,则 $(\lambda \operatorname{Id} T)f' = (\lambda \operatorname{Id} T)f \Rightarrow \lambda(f' f) = T(f' f)$,因此 $f' f \in V_{\lambda}$. 但是,根据 V^{\perp} 是线性子空间可知 $f' f \in V_{\lambda}^{\perp}$. 根据 V_{λ} 是闭的可知 $H = V_{\lambda} \oplus V_{\lambda}^{\perp}$,因此 $f' f \in V_{\lambda}^{\perp} \cap V_{\lambda} = \{0\}$ 即 f' = f.
- 此外, 映射 L 是一个线性双射. 对于线性性, 对于 αg₁ + βg₂ ∈ V_λ[⊥], 其中 g₁ = (λId T)f₁, g₂ = (λId T)f₂, 其中 L(g_i) = f_i ∈ V_λ[⊥], i = 1,2. 而另一方面 (λId T)(αf₁ + βf₂) = αg₁ + βg₂, 根据 αf₁ + βf₂ ∈ V_λ[⊥] 以及唯一性可知 L(αg₁ + βg₂) = αf₁ + βf₂ = αL(g₁) + βL(g₂). 此外, 若 L(g) = 0,则有 g = (λId T)L(g) = 0,所以 L 单射. 最后,对任何 f ∈ V_λ[⊥],它是(λId T)f 在 L 下的像,因此 L 满射. 以上说明 L 是线性双射. 特别地,(λId T)|_{V,1} = L⁻¹.
- 我们说明 L 是 Im(λId − T) 上有界线性算子,即存在 M > 0,使得对任何 x ∈ Im(λId − T),都有 ||Lx|| ≤ M||x||,也即存在 η > 0,使得对任何 y ∈ V_λ[⊥],都有 ||L⁻¹y|| ≥ η||y||.如果不然,则存在 V_λ[⊥] 中的序列 {y_n},使得 ||y_n|| = 1 而且 ||L⁻¹y_n|| = ||λy_n − Ty_n|| → 0.因为 T 是紧算子,所以 {Ty_n} 有收敛子列 {Ty_{n_k}}_k,设极限为 x ∈ H,则

$$\|\lambda y_{n_k} - x\| \le \|\lambda y_{n_k} - Ty_{n_k}\| + \|Ty_{n_k} - x\| \to 0.$$

因此 $||x|| = \lim_k ||\lambda y_{n_k}|| = |\lambda| \cdot 1 > 0$. 另一方面, $||L^{-1}|| \le ||T|| + |\lambda|$,所以 L^{-1} 是有界线性算子,由此可知它是连续线性算子,因此:

$$||L^{-1}x|| = \lim_{k} ||L^{-1}y_{n_k}|| = 0.$$

所以 $L^{-1}x = 0$, 这与 $x \neq 0$ 以及 L 是双射矛盾, 所以 L 是有界线性算子.

综上所述,我们证明了 L 是有界线性算子,所以,对所有 m, n,都有:

$$||f_m - f_n|| = ||Lg_m - Lg_n|| \le ||L|| ||g_m - g_n|| \to 0 (m, n \to \infty).$$

所以 $\{f_j\}$ 是闭子空间 V_{λ}^{\perp} 中 Cauchy 列,所以存在 $f \in V_{\lambda}^{\perp}$,使得 $f_j \to f$. 令 $g = (\lambda I - T)f \in \operatorname{Im}(\lambda \operatorname{Id} - T) \in \operatorname{Im}(\lambda \operatorname{Id} - T)$,则有:

$$||g_j - g|| \le (|\lambda| + ||T||)||f_j - f|| \to 0.$$

- (b) 考虑 $T: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$, $\{x_n\} \mapsto \{\frac{x_n}{n}\}$. 显然 T 关于标准正交基 $\{e_n\}$ 是对角的且特征值为 $\frac{1}{n} \to 0$ (其中 $\{e_n\}$ 是第 n 项是 1,其他各项都是 0 的数列),根据题 25 可知 T 是紧算子. 显然, $\{e_n\}$ 在 T 的值域中,而 $\{e_n\}$ 的有限线性组合在 $\ell^2(\mathbb{N})$ 中稠密,假设 T 的像集是闭的,则 T 应是满射. 但是,显然 $\{\frac{1}{n}\}$ 不在 T 的像集中,矛盾. 因此,T 是紧算子但是 $\mathrm{Im}\,T$ 不是闭的.
- (c) 我们说明事实上 $\operatorname{Im}(\lambda \operatorname{Id} T)^{\perp} = \ker(\overline{\lambda} \operatorname{Id} T^*)$. 若 $x \in \operatorname{Im}(\lambda \operatorname{Id} T)$,则对任何 $y \in H$,都有:

$$((\lambda \operatorname{Id} - T)y, x) = (y, (\overline{\lambda} \operatorname{Id} - T^*)x) = 0.$$

特别地,取 $y = (\overline{\lambda} \operatorname{Id} - T^*)x$,则得到 $\|(\overline{\lambda} \operatorname{Id} - T^*)x\|^2 = 0 \Rightarrow (\overline{\lambda} \operatorname{Id} - T^*)x = 0$,所以 $x \in \ker(\overline{\lambda} \operatorname{Id} - T^*)$.

另一方面,如果 $x \in \ker(\overline{\lambda} \operatorname{Id} - T^*)$,则对任何 $y \in H$,都有:

$$((\lambda \operatorname{Id} - T)y, x) = (y, (\overline{\lambda} \operatorname{Id} - T^*)x) = 0.$$

所以 $x \in \text{Im}(\lambda \text{Id} - T)^{\perp}$,综上所述,我们有:

$$\operatorname{Im}(\lambda \operatorname{Id} - T)^{\perp} = \ker(\overline{\lambda} \operatorname{Id} - T^*).$$

由 (a) 知 $\operatorname{Im}(\lambda \operatorname{Id}-T)$ 是闭的,根据前面的题 10 可知 $(\operatorname{Im}(\lambda \operatorname{Id}-T)^{\perp})^{\perp}=\operatorname{Im}(\lambda \operatorname{Id}-T)$,因此上式两边同时取正交补可得:

$$\operatorname{Im}(\lambda \operatorname{Id} - T) = \ker(\overline{\lambda} \operatorname{Id} - T^*)^{\perp}.$$

所以,左边是整个 H 当且仅当 $\ker(\overline{\lambda} \operatorname{Id} - T^*)$ 是平凡的.

29. (Stein 中译本, P149, 题 30) 设 $H = L^2([-\pi, \pi])$,固定一个有界复数列 $\{\lambda_n\}_{n \in \mathbb{Z}}$,且将算子 Tf 定义为:

$$Tf(x) \sim \sum_{n \in \mathbb{Z}} \lambda_n a_n e^{inx}$$
, whenever $f(x) \sim \sum_{n \in \mathbb{Z}} a_n e^{inx}$.

这样的算子称为 Fourier multiplier operator, $\{\lambda_n\}$ 叫做 multiplier sequence.

- (a) 证明 T 是 H 上有界线性算子,且 $||T|| = \sup_n |\lambda_n|$;
- (b) 验证 T 与平移是可交换的,即 $\tau_h(x)=f(x-h)$,则对于每个 $h\in\mathbb{R}$,都有 $T\circ\tau_h=\tau_h\circ T$;
- (c) 反过来,如果 T 是 H 上与平移可交换的有界线性算子,则 T 必然是 Fourier multiplier operator.

证明. (a) $f \in H$, ||f|| = 1, $f \sim \sum_{n \in \mathbb{Z}} a_n e^{inx}$,则根据 Parseval 恒等式可得

$$\sum_{n \in \mathbb{Z}} |a_n|^2 = 1.$$

所以:

$$||Tf||^2 = \sum_{n \in \mathbb{Z}} |\lambda_n|^2 |a_n|^2 \le (\sup_n |\lambda_n|)^2 \sum_n |a_n|^2 = (\sup_n |\lambda_n|)^2,$$

对 ||f|| = 1 取上确界可得:

$$||T|| \le \sup_{n} |\lambda_n|.$$

另一方面,

$$T(e^{inx}) = \lambda_n e^{inx} \Rightarrow ||T|| \ge ||Te^{inx}|| = |\lambda_n|.$$

对 $n ∈ \mathbb{Z}$ 取上确界可得:

$$||T|| \ge \sup_{n} |\lambda_n|.$$

所以, $||T|| = \sup_n |\lambda_n|$.

(b) 只需说明两者在基 $\{e^{inx}\}_{n\in\mathbb{Z}}$ 上是可交换的.

$$(T \circ \tau_h)(e^{inx}) = T(e^{inx}e^{-inh}) = \lambda_n e^{inx-inh}.$$

$$(\tau_h \circ T)(e^{inx}) = \tau_h(\lambda_n e^{inx}) = \lambda_n e^{inx-inh}.$$

(c) 考虑 Te^{inx}, 设:

$$Te^{inx} \sim \sum_{m \in \mathbb{Z}} b_m e^{imx}.$$

于是:

$$(T - b_n \operatorname{Id}) e^{inx} \sim \sum_{m \neq n} b_m e^{inx}.$$

两边同时作用 τ_h ,则 τ_h 与 T和 Id 都交换,于是:

$$(T - b_n \operatorname{Id}) e^{inx} e^{-inh} \sim \sum_{m \neq n} b_m e^{imx} e^{-imh}.$$

即:

$$(T - b_n \operatorname{Id})e^{inx} \sim \sum_{m \neq n} b_m e^{imx} e^{i(n-m)h}.$$

于是:

$$(T - b_n \operatorname{Id})e^{inx} \sim \sum_{m \neq n} b_m e^{imx} e^{i(n-m)h}.$$

比较系数可得

$$b_m e^{i(n-m)h} = b_m, \quad \forall m \neq n, \quad h \in \mathbb{R}.$$

所以 $b_m=0$, $\forall m\neq n$. 因此 $Te^{inx}=b_ne^{inx}$. 此外,根据 T 是有界线性算子可知 $\sup_n |b_n|<\infty$,于是 $\{b_n\}$ 有界.

30. (Stein 中译本, P149, 题 31) 考虑一种定义在 $[-\pi, \pi)$ 上的锯齿波:

$$K(x) = i(sgn(x)\pi - x),$$

且将其周期延拓为 ℝ 上周期为 2π 的函数.

设 $f \in L^1([-\pi,\pi])$ (周期延拓后看成 \mathbb{R} 上周期为 2π 的函数),且定义

$$Tf(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K(x - y) f(y) dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} K(y) f(x - y) dy.$$

- (a) 证明 F(x) = Tf(x) 是绝对连续的,且如果 $\int_{-\pi}^{\pi} f(y) dy = 0$,则 F' = if,a.e.x.
- (b) 证明, $T \in L^2([-\pi, \pi])$ 上对称紧算子.
- (c) 证明, $\varphi \in L^2([-\pi,\pi])$ 是 T 的特征函数,当且仅当(在相差一个常数因子的意义下) $\varphi(x) = e^{inx}$, $n \neq 0$ 为整数,特征值为 1/n,或 $\varphi(x) = 1$,特征值为 0.
- (d) 说明 $\{e^{inx}\}_{n\in\mathbb{Z}}$ 是 $L^2([-\pi,\pi])$ 的标准正交基.

证明. (a) 简单计算可得:

$$\begin{split} \frac{2\pi}{i} F(x) &= \int_{-\pi}^{\pi} (\pi sgn(x-y) - (x-y)) f(y) \mathrm{d}y \\ &= \int_{-\pi}^{x} (\pi - (x-y)) f(y) \mathrm{d}y + \int_{x}^{\pi} (-\pi - (x-y)) f(y) \\ &= (\pi - x) \int_{-\pi}^{x} f(y) \mathrm{d}y + \int_{-\pi}^{x} y f(y) \mathrm{d}y - (\pi + x) \int_{x}^{\pi} f(y) \mathrm{d}y + \int_{x}^{\pi} y f(y) \mathrm{d}y \\ &= \int_{-\pi}^{\pi} y f(y) \mathrm{d}y - x \int_{-\pi}^{\pi} f(y) \mathrm{d}y + \pi \left(\int_{-\pi}^{x} f(y) \mathrm{d}y + \int_{\pi}^{x} f(y) \mathrm{d}y \right). \end{split}$$

根据 $f \in L^1([-\pi,\pi])$ 以及积分的绝对连续性可知 F(x) 是绝对连续的,而且,如果 $\int_{-\pi}^{\pi} f(y) \mathrm{d}y = 0$,根据 Lebesgue 微分定理可得:

$$\frac{2\pi}{i}F'(x) = 2\pi f'(x).$$

对几乎处处 x 成立, 即 F' = if 对几乎处处 x 成立.

(b) 注意 K(x-y) 是 $[-\pi,\pi] \times [-\pi,\pi]$ 上的有界函数,从而是 $L^1([-\pi,\pi]^2)$ 的,从而是 $L^2([-\pi,\pi]^2)$ 的. 因此,T 是 $[-\pi,\pi]^2$ 上 Hilbert-Schmidt 算子,故为紧算子. 根据 Fubini 定理:

$$(Tf,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} Tf(x)\overline{g(x)} dx = \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} \overline{g(x)} \int_{-\pi}^{\pi} K(x-y)f(y) dy dx$$

$$= \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} f(y) \int_{-\pi}^{\pi} K(x-y)\overline{g(x)} dx dy$$

$$= \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} f(y) \int_{-\pi}^{\pi} i(sgn(x-y)\pi - (x-y))\overline{g(x)} dx dy$$

$$= \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} f(y) \int_{-\pi}^{\pi} \overline{i(sgn(y-x) - (y-x))g(x)} dx dy$$

$$= \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} f(y) \int_{-\pi}^{\pi} \overline{K(y-x)g(x)} dx dy = \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} f(y) \overline{Tg(y)} dy$$

$$= (f, Tg).$$

(c) 首先,若 $n \neq 0$:

$$T(e^{inx}) = -\frac{i}{2\pi} \int_{-\pi}^{0} (\pi e^{in(x-y)}) dy + \frac{i}{2\pi} \int_{0}^{\pi} (\pi e^{in(x-y)}) dy$$
$$= -\frac{i}{2} e^{inx} \int_{-\pi}^{0} e^{-iny} dy + \frac{i}{2} e^{inx} \int_{0}^{\pi} e^{-iny} dy$$
$$= \frac{i}{2} \cdot \frac{1}{in} e^{inx} + \frac{i}{2} \cdot \frac{1}{in} e^{inx}$$
$$= \frac{1}{n} e^{inx}.$$

若 n = 0, 令 1(x) 表示 $1(x) \equiv 1$, 则:

$$T(1(x)) = -\frac{i}{2}e^{inx} \int_{-\pi}^{0} dy + \frac{i}{2}e^{inx} \int_{0}^{\pi} dy = 0.$$

反过来,如果 φ 是特征值为 λ 的特征函数,则 $T\varphi(x) = \lambda \varphi(x)$. 根据 (a) 可得 $(T\varphi(x))' = i\varphi(x)$ 即 $\lambda \varphi'(x) = i\varphi(x)$. 解该 ODE 可得 $\varphi(x) = e^{ix/\lambda}$

计算

$$\begin{split} T(e^{ix/\lambda}) &= -\frac{i}{2\pi} \int_{-\pi}^{0} (\pi e^{i(x-y)/\lambda}) \mathrm{d}y + \frac{i}{2\pi} \int_{0}^{\pi} (\pi e^{i(x-y)/\lambda}) \mathrm{d}y \\ &= -\frac{i}{2} e^{ix/\lambda} \int_{-\pi}^{0} e^{-iy/\lambda} \mathrm{d}y + \frac{i}{2} e^{ix/\lambda} \int_{0}^{\pi} e^{-iy/\lambda} \mathrm{d}y \\ &= -\frac{i}{2} \cdot \frac{\lambda}{i} e^{ix/\lambda} (e^{i\pi/\lambda} - 1) - \frac{i}{2} \cdot \frac{\lambda}{i} e^{ix/\lambda} (e^{-i\pi/\lambda} - 1) \\ &= \left(1 - \frac{e^{-i\pi/\lambda} + e^{i\pi/\lambda}}{2}\right) \lambda e^{ix/\lambda}. \end{split}$$

因此 $\frac{e^{-i\pi/\lambda} + e^{i\pi/\lambda}}{2} = 0$,所以 $e^{2i\pi/\lambda} = 1$,因此 $1/\lambda \in \mathbb{Z}$.

- (d) 根据 (a) 和 (b) 可知 T 是对称紧算子,因此其特征函数集 $\{e^{inx}\}_{n\in\mathbb{Z}}$ 相互正交且由 $\{e^{inx}\}_{n\in\mathbb{Z}}$ 张成的子空间的闭包是整个 H. 所以, $\{e^{inx}\}_{n\in\mathbb{Z}}$ 是 H 一组标准正交基.
- 31. (Stein 中译本, P150, 题 32) 考虑算子 $L^2([0,1])$ 上的算子 $T: f(t) \mapsto tf(t)$.
 - (a) 证明 $T \in L^2([0,1])$ 上对称的有界线性算子,但不是紧算子;
 - (b) 证明 T 没有特征向量.

证明. (a) 对 ||f|| = 1, 我们有:

$$||Tf||^2 = \int_0^1 |f(t)|^2 \cdot |t|^2 dt \le \int_0^1 |f(t)|^2 = ||f||^2 = 1.$$

所以 T 是有界线性算子. 另外,

$$(Tf,g) = \int_0^1 tf(t)\overline{g(t)}dt = \int_0^1 f(t)\overline{tg(t)}dt = (f,Tg).$$

所以 T 是对称算子.

我们说明 T 不是紧算子,为此,我们考虑 $\{f_n\}_{n\geq 1}\subset L^2([0,1])$,其中 $f_n(x)=((n+1)x^n)^{1/2}$,则该集合是 $L^2([0,1])$ 中有界集. 而 $Tf_n=((n+1)t^{n+2})^{1/2}$,计算可得

$$||Tf_n||^2 = \int_0^1 (n+1)t^{n+2} dt = \frac{n+1}{n+3}.$$

假设存在子列 $Tf_{n_k} \to g$ 在 L^2 范数下成立,根据 Riesz 引理可知,存在 Tf_{n_k} 的 一个子列 Tf_{n_ℓ} ,使得 Tf_{n_ℓ} 几乎处处收敛于 g,但是注意到对任何 $t \in (0,1)$ 都有:

$$\lim_{n \to \infty} \sqrt{(n+1)t^{n+2}} = 0$$

所以 g 几乎处处为 0,因此 ||g||=0. 但是,根据 Tf_{n_ℓ} 是 Tf_n 的子列可知 Tf_{n_ℓ} 依 范数收敛到 g,于是有

$$||g|| = \lim_{\ell} ||Tf_{n_{\ell}}|| = \lim_{n} ||T_{n}|| = \lim_{n} \frac{n+1}{n+3} = 1.$$

这与 ||g|| = 0 矛盾. 所以, $\{Tf_n\}$ 并不存在收敛子列,这与 T 是紧算子矛盾.

(b) 假设 T 有特征向量 φ , $\varphi \neq 0$, 特征值为 λ , 则:

$$(T\varphi)(t) = \lambda \varphi(t) = t\varphi(t), \text{a.e.} t \in [0, 1].$$

这与 $\varphi(t) \neq 0$ a.e. t 矛盾.

32. (**Stein 中译本, P150, 题 33**) 令 H 是具有基 $\{\varphi_k\}_{k\geq 1}$ 的 Hilbert 空间,验证如下定义的算子 T:

$$T(\varphi_k) = \frac{1}{k} \varphi_{k+1}$$

是紧算子,但是没有特征向量.

证明. 设 $\{\varphi_k\}$ 是标准正交基, 我们定义 T_N 是满足:

$$T_N(\varphi_k) = \frac{1}{k}\varphi_{k+1}, \quad \forall k \le N,$$

而且 $T_N(\varphi_k) = 0, \forall k \geq N+1$ 的算子. 则显然该算子是有限秩的有界线性算子. 另外,对任何 $f \in H$,设 f 按照 $\{\varphi_k\}$ 展开为:

$$f \sim \sum_{k=1}^{\infty} a_k \varphi_k.$$

根据 Parseval 恒等式可得 $||f|| = \sum_{k=1}^{\infty} |a_k|^2 < \infty$. 注意到:

$$T_N f \sim \sum_{k=1}^N \frac{1}{k} a_k \varphi_{k+1}, \quad T f \sim \sum_{k=1}^\infty \frac{1}{k} a_k \varphi_{k+1}.$$

所以

$$||T_N f - Tf||^2 = \sum_{k=N+1}^{\infty} \frac{1}{(N+1)^2} |a_k|^2 \le \frac{1}{(N+1)^2} ||f||^2.$$

所以,对 ||f|| = 1, $\forall \varepsilon > 0$,对足够大的 N,都有:

$$||T_N - T|| = \sup_{\|f\|=1} ||T_N f - Tf|| \le \frac{1}{(N+1)^2} < \varepsilon.$$

所以, $||T_N - T|| \to 0$ $(N \to \infty)$. 因为 $\{T_N\}$ 是一列紧算子,所以 T 也是紧算子.

若 f 是 T 的特征向量,特征值为 λ ,则

$$Tf \sim \sum_{k=1}^{\infty} \lambda a_k \varphi_k.$$

另一方面,

$$Tf \sim \sum_{k=2}^{\infty} \frac{1}{k-1} a_{k-1} \varphi_k.$$

因为 $f \neq 0$,所以 a_k 不全为零,所以 $\lambda \neq 0$,于是 $\lambda a_1 = 0 \Rightarrow a_1 = 0$,而且 $\frac{1}{k-1}a_{k-1} = \lambda a_k$ 对所有 k > 1 都成立. $a_1 = 0 \Rightarrow \lambda a_2 = 1 \cdot a_1 = 0 \Rightarrow a_2 = 0$,归纳可得每个 $a_k = 0$,这与 f 是特征向量矛盾.

- 33. (**Stein 中译本, P150, 题 34**) 令 K 是实对称 Hilbert-Schmidt 核,由它定义的 Hilbert-Schimidt 算子 T 是对称紧算子. 设 T 被标准正交基 $\{\varphi_k\}$ 对角化,特征值 为 λ_k ,则:
 - (a) $\sum_{k} |\lambda_k|^2 < \infty$;
 - (b) 核 K 在 $\{\varphi_i(x)\varphi_i(y)\}$ 下的展开为

$$K(x,y) \sim \sum_{k} \lambda_{k} \varphi_{k}(x) \varphi_{k}(y).$$

(c) 设 T 是紧对称的算子,则 T 是 Hilbert-Schmidt 型的,当且仅当 $\sum_{n} |\lambda_{n}|^{2} < \infty$,其中 $\{\lambda_{n}\}$ 是 T 的全体特征值(按重数计算).

证明. 先解答 (b),因为 K 是 H-S 核,所以 $K \in L^2(X \times X)$:

$$(K(x,y), \varphi_i(x)\varphi_j(y)) = \int_{X \times X} K(x,y)\varphi_i(x)\varphi_j(y) dy dx$$

$$= \int_X \varphi_i(x) \int_X \varphi_j(y) K(x,y) dy dx$$

$$= \int_X \varphi_i(x) T \varphi_j(x) dx$$

$$= (\varphi_i, T \varphi_j)$$

$$= \begin{cases} \lambda_i, i = j \\ 0, i \neq j \end{cases}.$$

因为 $\{\varphi_k\}$ 是紧算子 T 的特征向量集,所以 $\{\varphi_k\}$ 是 $L^2(X)$ 标准正交基. 如果 $F(x,y) \in L^2(X \times X)$,根据 Fubini 定理可知,对几乎处处 y, $F^y \in L^2(X)$,

所以,令 $a_i(y) = \int F^y(x) \overline{\varphi_i(x)} dx \in L^2(X)$,因此对每个 $a_i(y)$ 都存在 b_j 使得 $a_i(y) = \sum_j b_j \varphi_j(y)$,于是:

$$F \sim \sum_{i} \sum_{j} a_{i} b_{j} \varphi_{i}(x) \varphi_{j}(y)$$

因此 $\varphi_i(x)\varphi_j(y)$, $i,j=1,2,\cdots$ 是 $L^2(X\times X)$ 的一组标准正交基,所以,综上所述

$$K \sim \sum_{k} \lambda_k \varphi_k(x) \varphi_j(y).$$

(a) 由 $K \in L^2(X \times X)$ 可知 $\{\lambda_k\} \in \ell^2(\mathbb{N})$.

(c) 设紧算子 T 被标准正交基 $\{\varphi_k\}$ 对角化,特征值为 λ_k ,定义截断核

$$K_n(x,y) = \sum_{k=1}^n \lambda_k \varphi_k(x) \varphi_k(y).$$

根据 (a) 可知 $\{\lambda_k\} \in \ell^2(\mathbb{N})$,所以,根据 Parseval 恒等式可知

$$||K_m - K_n||_{L^2(X \times X)}^2 = \sum_{k=m}^n |\lambda_k|^2 \to 0 (m, n \to \infty).$$

所以 $\{K_n\}$ 是 $L^2(X \times X)$ 中 Cauchy 列,根据 L^2 空间的完备性可知存在 $K \in L^2(X \times X)$,使得 $K_n \to K$. 我们说明,事实上 T 是由 K 定义的 H-S 算子. 令 T_n 为由 K 定义的 H-S 算子,因此:

$$T_n f = \int_0^1 K_n(x, y) f(y) dy = \sum_{k=1}^n \lambda_k \varphi_k(x).$$

所以

$$||T_n - T|| = \sup_{\|f\|=1} ||T_n f - T|| \le ||f|| |\lambda_n| \to 0 (n \to \infty).$$

因此, T_n 按照算子范数收敛到 T,另一方面取 T' 是由 K 定义的 H-S 算子,则根据 Holder 不等式可得

$$||T_n - S|| = \sup_{\|f\|=1} ||T_n f - S f|| \le ||f|| ||K_n - K||_{L^2(X \times X)} \to 0 (n \to \infty).$$

所以 T_n 又按照算子范数收敛到 S_n 因此 $T = S_n$ 即 T 是由 K 定义的 H-S 算子.

34. (**Stein 中译本, P150, 题 35**) 令 *H* 是 Hilbert 空间.

- (a) 若 T_1 和 T_2 是两个交换的对称紧算子(即 $T_1T_2 = T_2T_1$),则它们可以被同时对角化. 即,存在由 T_1 和 T_2 的共同特征向量组成的 H 的标准正交基.
- (b) 称线性算子 T 是 H 上的正规变换,如果 $TT^* = T^*T$,证明如果 T 是正规紧算子,则 T 可对角化.
- (c) 若 U 是酉变换,且 $U = \lambda I T$,其中 T 是紧的,证明 U 可对角化.

证明. (a) 证明仿照对称紧算子的谱定理. 设 S 是由所有 T_1, T_2 的公共特征向量张成的子空间的闭包,则 S 是 H 的闭子空间,所以 $H = S \oplus S^{\perp}$. 我们说明 S^{\perp} 是空集. 首先注意到 $T_iS \subset S$ 而且 $T_iS^{\perp} \subset S_i^{\perp}$ (即 S 和 S^{\perp} 都是 T_i -不变子空间,其中i=1,2),所以 T_1 限制在 S^{\perp} 上也是紧对称算子,而这说明存在 $x \in S^{\perp}, x \neq 0$ 使得它是 T_1 的特征向量,即 $T_1x = \lambda x$. 记 λ 对应的特征子空间为 $V_{\lambda} \subset S^{\perp}$, $V_{\lambda} \neq \emptyset$. 对任何 $y \in V_{\lambda}$,根据 T_1 和 T_2 交换可得:

$$(T_2T_1)y = T_2(\lambda y) = \lambda(T_2y) = T_1(T_2y).$$

所以 T_2y 也是 T_1 的特征向量,于是 V_λ 是 T_2 -不变子空间,从而 T_2 限制在 V_λ 上 仍是对称紧算子,因此有特征向量 $z \neq 0$,而 z 是 T_1 和 T_2 的共同特征向量,这 与 S 的定义矛盾.

(b) 写

$$T = T_1 + iT_2 = \frac{T + T^*}{2} + i\frac{T - T^*}{2i}.$$

容易验证 T_1 和 T_2 都是对称的,另外,因为 T 紧,所以 T^* 紧,于是 T_1 和 T_2 也是紧的. 最后:

$$(T+T^*)(T-T^*) = T^2 + T^*T - TT^* - (T^*)^2 = (T-T^*)(T+T^*).$$

所以 T 正规保证了 T_1 和 T_2 可交换,根据 (a) 可知 T_1 和 T_2 可以同时对角化,于是 $T=T_i+T_2$ 也被这组基对角化.

(c) U 是酉的 $\Rightarrow U^*U = UU^* = I$,即 U 是正规的.

$$(\lambda I - T)(\lambda I - T)^* = |\lambda|^2 I - \lambda T^* - \overline{\lambda} T - TT^*;$$

$$(\lambda I - T)^*(\lambda I - T) = |\lambda|^2 I - \overline{\lambda}T - \lambda T^* - T^*T.$$

由以上两式相等可得 T 是紧且正规的,所以存在 $\{\varphi_k\}$ 使得 T 在这组基下对角化,特征值为 μ_k ,所以

$$U\varphi_k = (\lambda - \mu_k)\varphi_k.$$

即, U 也被这组特征值对角化,特征值为 $\lambda - \mu_k$.