Istituzioni e didattica della matematica

Marina Cazzola (marina.cazzola@unimib.it)

11 aprile 2016

Gruppi

Esempio

Simmetria

Non solo riflessioni

Gruppi

Esempio

Simmetria

Non solo riflessioni

L'insieme delle isometrie del piano è un gruppo rispetto alla composizione di isometrie.

o è associativa

Gruppi

Esempio

Simmetria

Non solo riflessioni

- o è associativa
- id è l'elemento neutro di ∘

Gruppi

Esempio

Simmetria

Non solo riflessioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

Gruppi

Esempio

Simmetria

Non solo riflessioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

$$\Box (\sigma_r)^{-1} = \sigma_r$$

Gruppi

Esempio

Simmetria

Non solo riflessioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

$$\Box (\sigma_r)^{-1} = \sigma_r$$

$$\Box (\rho_{O,\alpha})^{-1} = \rho_{O,-\alpha}$$

Gruppi

Esempio

Simmetria

Non solo riflessioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

$$\Box (\sigma_r)^{-1} = \sigma_r$$

$$\Box (\rho_{O,\alpha})^{-1} = \rho_{O,-\alpha}$$

$$\Box (\tau_v)^{-1} = \tau_{-v}$$

Gruppi

Esempio

Simmetria

Non solo riflessioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

$$\Box (\sigma_r)^{-1} = \sigma_r$$

$$\Box (\rho_{O,\alpha})^{-1} = \rho_{O,-\alpha}$$

$$\Box (\tau_v)^{-1} = \tau_{-v}$$

$$\Box (\sigma_r \circ \tau_v)^{-1} = \sigma_r \circ \tau_{-v} \text{ (r e v paralleli)}$$

Gruppi

Esempio

Simmetria

Non solo riflessioni

Cosa è $\sigma_r \circ \rho_{O,90}$?

(senso orario)

Gruppi

Esempio

Simmetria

$$\sigma_r \circ \rho_{O,90} = \sigma_s$$

Gruppi

Esempio

Simmetria

- $\sigma_r \circ \rho_{O,90} = \sigma_s$
- Cosa è $\sigma_r \circ \sigma_s$?

Gruppi

Esempio

Simmetria

$$\sigma_r \circ \rho_{O,90} = \sigma_s$$

- Cosa è $\sigma_r \circ \sigma_s$?
- $\sigma_r \circ \sigma_s = \rho_{O,90}$

Gruppi

Esempio

Simmetria

Non solo riflessioni

- $\sigma_r \circ \rho_{O,90} = \sigma_s$
- Cosa è $\sigma_r \circ \sigma_s$?
- $\sigma_r \circ \sigma_s = \rho_{0,90}$

Quest'ultimo risultato poteva essere ricavato in questo modo. Il conto che abbiamo eseguito è

$$\sigma_r \circ (\sigma_r \circ \rho_{O.90})$$

Gruppi

Esempio

Simmetria

Non solo riflessioni

- $\sigma_r \circ \rho_{0,90} = \sigma_s$
- Cosa è $\sigma_r \circ \sigma_s$?
- $\sigma_r \circ \sigma_s = \rho_{O,90}$

Quest'ultimo risultato poteva essere ricavato in questo modo. Il conto che abbiamo eseguito è

$$\sigma_r \circ (\sigma_r \circ \rho_{O,90}) = (\sigma_r \circ \sigma_r) \circ \rho_{O,90}$$

Gruppi

Esempio

Simmetria

Non solo riflessioni

- $\sigma_r \circ \rho_{O,90} = \sigma_s$
- Cosa è $\sigma_r \circ \sigma_s$?
- $\sigma_r \circ \sigma_s = \rho_{0,90}$

Quest'ultimo risultato poteva essere ricavato in questo modo. Il conto che abbiamo eseguito è

$$\sigma_r \circ (\sigma_r \circ \rho_{O,90}) = (\sigma_r \circ \sigma_r) \circ \rho_{O,90}$$

Che è uguale a $\rho_{0.90}$ essendo $\sigma_r \circ \sigma_r = id$

Gruppi

Esempio

Simmetria

Gruppi

Esempio

Simmetria

Non solo riflessioni

La composizione di una rotazione e una traslazione (entrambe diverse dall'identità) non può essere una traslazione.

Esempio

Simmetria

Non solo riflessioni

Simmetria

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

Mosaici

Non solo riflessioni

Gruppi

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

Mosaici

Non solo riflessioni

Gruppi

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

Mosaici

Data una figura del piano, chiamiamo simmetria di questa figura *ogni* isometria del piano che manda la figura in sé stessa.

Non solo riflessioni

Gruppi

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

Mosaici

Data una figura del piano, chiamiamo simmetria di questa figura *ogni* isometria del piano che manda la figura in sé stessa.

Questa definizione ci permette di riconoscere regolarità anche in figure di questo tipo

Rosoni ciclici

Quali isometrie mandano la figura così ottenuta in se stessa?

Sette e solo sette

Fregi

Gruppi

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

Sette e solo sette

Gruppi

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

Sette e solo sette

Gruppi

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

Mosaici

Gruppi

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

Mosaici

Gruppi

Esempio

Simmetria

Non solo riflessioni

Non solo riflessioni

Traslazioni

Fregi

Sette e solo sette

