

Mathematics 3 File

Name: Ashish Gupta

Roll Number: 2K16/MC/023

Department of Applied Mathematics

Delhi Technological University

Content:

S. No	Practical	Signature
1		
2		
3		
4		
5		
6		
7		
8		
9		

Page 2

Practical 1:

Write a program to determine the largest two Eigen values of the following matrix:

1	0	0	1	-1
0	2	3	5	0
-1	0	0	0	1
6	8	1	2	-2
1	1	1	1	1

Theory:

In linear algebra, an **eigenvector** or **characteristic vector** of a linear transformation is a non-zero vector that only changes by an overall scale when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and \mathbf{v} is a vector in V that is not the zero vector, then \mathbf{v} is an eigenvector of T if $T(\mathbf{v})$ is a scalar multiple of \mathbf{v} . This condition can be written as the equation

Function Used:

Ans=eig(A), evalues all the eigen values in the given matrix and saves it as a list.

Matlab Code:

```
A=[1 0 0 -1 1; 0 2 3 5 0; -1 0 0 0 1; 1 8 1 2 -2; 1 1 1 1 1];

Ans=eig(A);

sort(Ans);

for i=1:2

Ans(i,1)

end
```

```
ans = 8.1330
ans = -4.2354
```

Practical 2:

W.A.P to show the consistency/ non consistency of the system of linear equations. If the system is consistent, then write a program to solve the given system of equations for unique/ infinite solutions:

System Given: AX=B

A=

1	2	1
2	3	5
7	1	2

B=

Function Used:

RankofA=rank (A); Evaluates the rank of matrix A
RankOfAug=rank (Aug); Evaluates the rank of matrix Aug(Augmented Matrix)
X=inv(A); Evaluates the inverse of matrix A

```
A=[1 2 1;2 3 5;7 1 2];
B=[5;7;0];
Aug=[A,B];
flag=0;
RankofA=rank(A);
RankOfAug=rank(Aug);
if(RankofA~=RankOfAug)
    fprintf('The given system of equations is inconsistent')
    flag=1;
else
    fprintf('The given system is consistent\n')
end
clear X;
if(flag==0)
```

```
% fprintf('\n')
X=inv(A);
Ans=(X*B)
End
```

>> Practical2_ConsistencyOfMatrix

The given system is consistent

Ans =

-0.3636

2.7273

-0.0909

Practical 3:

Using inbuilt ode solver 23 and ODE 45, find y(0.3), where y is solution of the following initial value problem abd hence compare this value to the original value:

```
System Given: dy/dx = y+x, y(0) = 1
```

Function Used:

Eqn(y,t) gets the differential equation to be input into the ode23 inbuilt solver.

<u>ODE 23 and ODE 45</u> A function handle that evaluates the right side of the differential equations. All solvers solve systems of equations in the form y' = f(t,y) or problems that involve a mass matrix, M(t,y)y' = f(t,y). The ode23s solver can solve only equations with constant mass matrices. ode15s and ode23t can solve problems with a mass matrix that is singular, i.e., differential-algebraic equations (DAEs).

Tspan: Defines a range for ode solvers.

Matlab Code:

ODE-23 Solver:

```
function Value = eqn( y,t )

    Value=y+t;
end
syms x y t;

y0=1;
Value=eqn(x,y);
yspan=[-5,5];
[x,y]=ode23(value,yspan,y0);
%output
plot(x,y,'r*');
y1=y(3)
grid on;
title('using ode 23')
```

```
Output:
```

```
>> Practical2_ConsistencyOfMatrix
The given system is consistent
Ans =
 -0.3636
 2.7273
 -0.0909
ODE-45 Solver:
function Value = eqn( y,t )
     Value=y+t;
end
syms x y t;
y0=1;
Value=eqn(x,y);
yspan = [-5, 5];
[x,y] = ode23 (value, yspan, y0);
%output
plot(x,y,'r*');
y1 = y(3)
grid on;
title('using ode 23')
Output:
>> Practical2_ConsistencyOfMatrix
The given system is consistent
Ans =
 -0.3636
 2.7273
 -0.0909
```

Practical 4:

Write a program to solve $D^2(y) + 4y = Sec(x)$ by using the method of variation of parameters

Theory:

Variation of Parameters

Consider the differential equation,

$$y'' + q(t)y' + r(t)y = g(t)$$
$$y' + q(t)y' + r(t)y = g(t)$$

Assume that $y_1(t)$ and $y_2(t)$ are a fundamental set of solutions for

$$y'' + q(t)y' + r(t)y = 0$$

 $y' + q(t)y' + r(t)y = 0$

Then a particular solution to the nonhomogeneous differential equation is,

$$Y_{P}(t) = -y_{1} \int \frac{y_{2}g(t)}{W(y_{1}, y_{2})} dt + y_{2} \int \frac{y_{1}g(t)}{W(y_{1}, y_{2})} dt$$

$$Y_{P}(t) = -y_{1} \int \frac{y_{2}g(t)}{W(y_{1}, y_{2})} dt + y_{2} \int \frac{y_{1}g(t)}{W(y_{1}, y_{2})} dt$$

Function Used:

Eqn(v,t) gets the differential equation to be input into the ode23 inbuilt solver.

<u>ODE 23 and ODE 45</u> A function handle that evaluates the right side of the differential equations. All solvers solve systems of equations in the form y' = f(t,y) or problems that involve a mass matrix, M(t,y)y' = f(t,y). The ode23s solver can solve only equations with constant mass matrices. ode15s and ode23t can solve problems with a mass matrix that is singular, i.e., differential-algebraic equations (DAEs).

Tspan: Defines a range for ode solvers.

Matlab Code:

```
syms x t;
cf=dsolve('D2y+4*y=0');
yldot=diff('cos(2*t)',t);
y2dot=diff('sin(2*t)',t);

w=[cos(2*t) sin(2*t)',yldot y2dot];
wdet=det(w);
w1=[0 sin(2*t); sec(t) y2dot];
wldet=det(w1);
w2=[cos(2*t) 0;yldot sec(t)];
w2det=det(w2);
u=int(wldet/wdet);
v=int(w2det/wdet);
perticular_solution=u*cos(2*t)+v*sin(2*t);
Answer=cf+perticular solution
```

```
>> method_VariationOfParameters
```

```
Answer = \cos(2^*t)^*\cos(t) + C3^*\cos(2^*t) + C4^*\sin(2^*t) - \sin(2^*t)^*(\operatorname{atanh}(\sin(t))/2 - \sin(t))
```

Practical 5:

Graphically compare the function sin(x) and Taylor series expansion of sin(x) up to degree 10 in the neighbourhood of 1.

Theory:

The formula for the Taylor series expansion for sin(x) is :

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

In mathematics, a **Taylor series** is a representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point.

Function Used:

Taylor (£) computes the taylor's series expansion of 'f' up to the fifth order. The expansion point is 0.

Taylor (f, Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Ezplot(x,f) plots the function's graph.

```
syms f x;
f=taylor(sin(x),'Order',11);% it represents the powers
from 0
%all the way upto 10
h=ezplot(x,f);
set(h,'color','r');
grid on;
hold on;
y=sin(x);
plot2=ezplot(y);
set(plot2,'color','g');
hold off;
```

>> taylorSeries_Sinx

f =

x^9/362880 - x^7/5040 + x^5/120 - x^3/6 + x

Practical 6:

Sketch the area/ region enclosed by the curves $f(x) = x^3 - 3*x^2 + 3*x$ and $g(x) = x^2$ and find the area of the enclosed region.

Theory:

The area of RR is given by:

 $AREA = \int ba h(x) dx = \int ba (g(x) - f(x)) dx$ (ba is integration limits from a to b)

Function Used:

```
Ezplot(x,f) plots the function's graph.
area1=int(f1-f2,0,1);
area2=int(f2-f1,1,3);
```

int=int(x) (integrate is used to integrate a function from limits initial to final)

```
syms x t;
f1=x^3- 3*x^2 +3*x;
f2=x^2;
plot1=ezplot(f1);
set(plot1,'color','r');
hold on;
plot2=ezplot(f2);
```

```
set(plot2,'color','g');
grid on;
legend('x^3- 3*x^2 +3*x','x^2');
xlabel('X-Axis');
ylabel('Y-Axis');
title('Area Enclosed');
area1=int(f1-f2,0,1);
area2=int(f2-f1,1,3);
area=area1+area2
```

>> area_Enclosed
area =
37/12

Practical 7:

To draw the tangent line at point on a given curve $y=1+x^2$ at the point (2,5) and also find the Radius of curvature at that point..

Theory:

A **tangent line** is a line that touches a curve at a single point and does not cross through it. The point where the curve and the tangent meet is called the point of tangency. We know that for a line **y=m*x+c** its slope at any point is **m**. The same applies to a curve. When I say the slope of a curve, I mean the slope of tangent to the curve at a point.

Radius of curvature is:

$$\rho(t) = \frac{|1 + f'^2(t)|^{3/2}}{|f''(t)|}.$$

Function Used:

ezplot(FUN) plots the function FUN(X) over the default domain -2*PI < X < 2*PI, where FUN(X) is an explicitly defined function of X.

ezplot(FUN2) plots the implicitly defined function FUN2(X,Y) = 0 over the default domain -2*PI < X < 2*PI and -2*PI < Y < 2*PI.

sqrt(X) is the square root of the elements of X.

```
syms x t;
f1=1+x^2;
d(x)=diff(f1);
m=d(2);
c=5-m*2;
f2=m*x+c;
plot1=ezplot(f1);
set(plot1,'color','r');
hold on;
grid on;
plot2=ezplot(f2);
legend('1+x^2','y=m*x+c');
```

```
xlabel('X-axis');
ylabel('Y-axis');
title('Tangent to the curve');
ydot2=diff(diff(f1));
roc=sqrt((1+m^2)^3)/2
hold off;
```

```
>> tangent_to_a_curve
roc =
(17*17^(1/2))/2
```


Practical 8:

Plot the surface defined by the function $f(x, y) = -xye_{-2(x^2+y^2)}$ on the domain $-2 \le x \le 2$ and $-2 \le y \le 2$. Find the values and locations of the maxima and minima of the function.

Theory:

Maxima and Minima of Functions of Two Variables:

Locate relative maxima, minima and saddle points of functions of two variables. Several examples with detailed solutions are presented. 3-Dimensional graphs of functions are shown to confirm the existence of these points. More on Optimization Problems with Functions of Two Variables in this web site.

Theorem:

Let f be a function with two variables with continuous second order **partial** derivatives f_{xx} , f_{yy} and f_{xy} at a critical point (a,b). Let

$$D = f_{xx}(a,b) f_{yy}(a,b) - f_{xy}^{2}(a,b)$$

- a. If D > 0 and $f_{xx}(a,b) > 0$, then f has a relative minimum at (a,b).
- b. If D > 0 and $f_{xx}(a,b)$ < 0, then f has a relative maximum at (a,b).
- c. If D < 0, then f has a saddle point at (a,b).
- d. If D = 0, then no conclusion can be drawn.

Function Used:

ezplot(FUN) plots the function FUN(X) over the default domain -2*PI < X < 2*PI, where FUN(X) is an explicitly defined function of X.

ezplot(FUN2) plots the implicitly defined function FUN2(X,Y) = 0 over the default domain -2*PI < X < 2*PI and -2*PI < Y < 2*PI.

Plot: Plots the graph of the desired function, with valid inputs

Meshgrid: Used to plot graph of 3D plots, functions of 2 independent variables.

Max & Min: Calculate max/min of a set of values.

Matlab Code:

```
clc;
clear;
syms x y;
[x,y] = meshgrid(-2:0.03:2,-2:0.03:2);
f=-x.*y.*exp(-2*(x.^2+y.^2));
figure(1)
mesh(x,y,f), xlabel('X'), ylabel('y'), grid
figure(2)
contour(x, y, f)
xlabel('X'),ylabel('y'),grid,hold on
fmax=max(max(f))
kmax=find(f==fmax)
pos=[x(kmax) y(kmax)]
%pos = -0.5000 \ 0.5000 \ 0.5000 \ -0.5000
plot(x(kmax),y(kmax),'*')
text(x(kmax), y(kmax), 'Maximum')
%plotting the maximum value on the graph
fmin=min(min(f))
kmin=find(f==fmin)
pos1=[x(kmin) y(kmin)]
plot(x(kmin),y(kmin),'*')
% We are plotting the minimum value now
text(x(kmin), y(kmin), 'Minimum')
```

```
fmax =
0.0919
kmax =
6784
```

11173

pos =

-0.5000 0.4900

0.4900 -0.5000

fmin =

-0.0920

Practical 9:

Determine the characteristic polynomial of a matrix evaluating the polynomial $p(\lambda)$ at the nth points.

Theory:

In linear algebra, the **characteristic polynomial** of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix as coefficients. The **characteristic polynomial** of an endomorphism of vector spaces of finite dimension is the characteristic polynomial of the matrix of the endomorphism over any base; it does not depend on the choice of a basis.

The **characteristic equation** is the equation obtained by equating to zero the characteristic polynomial.

Function Used:

ezplot(FUN) plots the function FUN(X) over the default domain -2*PI < X < 2*PI, where FUN(X) is an explicitly defined function of X.

ezplot(FUN2) plots the implicitly defined function FUN2(X,Y) = 0 over the default domain -2*PI < X < 2*PI and -2*PI < Y < 2*PI.

sqrt(X) is the square root of the elements of X.

```
function [ co ] = MyFunction( A )
[m n]=size(A) ;
if m~=n
  disp('It is not a Square Matrix')
  co=[] ;
  return
end
for i=1:(n+1)
    x(i)=(i-1)*pi/n;
  y(i)=det(A-x(i)*eye(n));
```

```
end
co=polyfit(x,y,n);
A=[1 2 3; 4 5 6 ; 7 8 9];
MyFunction(A)
z=length(ans);
syms x;
f=0;
i=4;
for y=1:1:z
    f=f+ans(y).*x.^(i-1);
    i=i-1;
end
f
Output:
f =
- x^3 + 15*x^2 + 18*x
```