1) Условия получения por-Si

Для получения por-Si использовался кремний марки КЭФ-4,5 <111> и электролит — 12,25% раствор HF.

Таблица 1 – параметры	анодирования
-----------------------	--------------

№	Параметры травления		Примечание
	J_A , MA/cM^2	t _A ,мин	
1	80	10	-
2	80	30	-
3	120	30	-
4	80	5	С добавлением AgNO ₃

Рисунок 1 — схема анодирования кремния используемого в лабораторной работе

Лабораторный стенд представляет собой стеклоуглеродный тигель, подключенный к источнику питания, а также «крокодил», с помощью которого была подвешена кремниевая пластина. Данную схему можно сравнить с методом Унно-Имаи, в отличии от которой сама подложка кремния выступает в качестве анода и погружена в электролит не полностью. Это быстрый способ получения пористого кремния, однако присутствуют две проблемы: 1 – на границе раздела воздух\электролит будут происходить неравновесные процессы на поверхности кремния, из-за чего характеристики получаемого пористого кремния будут отличаться от ожидаемых, 2 – при проведении анодирования электролит выкипает, что приводит к изменению площади анодируемой поверхности И соответственно плотности пропускаемого тока, что также ведет к изменению выходного продукта.

2) Определение пористости образцов гравиметрическим методом

По измеренным массам образцов до и после анодирования рассчитаем пористость каждого из них.

Таблица 2 – измеренные массы образцов и их пористость

	т до,	m	P, %
	Γ	после, г	
1	0,7594	0,6929	8,8
2	0,6657	0,6039	9,3
3	0,581	0,4654	19,9
4	0,483	0,4757	1,5

Пример расчета:

$$P = \left(1 - \frac{\rho_c}{\rho_u}\right) \cdot 100\% = \left(1 - \frac{m_{nocne}}{m_{oo}}\right) \cdot 100\% = \left(1 - \frac{0,6929}{0,7594}\right) \cdot 100\% \approx 8,8\%$$

Однако данные для 3 и 4 образца вероятно ошибочные — 3 образец в процессе анодирования раскололся в тигле, а на 4 образце происходило осаждение НЧ серебра. Также производилось удаление скин-слоя на образцах 1-3, а значит это уменьшило массу после анодирования что могло привести к искаженным расчетам итоговой пористости (так как используем допущение, что объем образцов в процессе анодирования не изменяется).

3) АСМ изображения полученных образцов

Снятие изображение удалось произвести только у образцов 1, 2 и 4. Поверхность образца номер 3 после анодирования отслаивалась, из-за чего проведение исследований на ACM оказалось невозможным.

Измерения проводились полуконтактным методом с использованием зонда NSG01.

Рисунок 2 – АСМ изображение поверхности образца №1.

Средняя ширина поры на поверхности – 2098 нм.

При углублении ширина уменьшается, вплоть до минимально измеренной ширины в 267 нм.

Рисунок 3 – ACM изображение поверхности образца №2 (3D и 2D).

Средняя ширина поры на поверхности у узкой части — 1200 нм, у всей поры — 2055 нм.

Рисунок 4 – ACM изображение поверхности образца №4, а также разность фазы в прямом и обратном проходе.

При добавлении $AgNO_3$ в состав электролита происходит выпадение НЧ серебра. Методом ЛСМ можно удостовериться, что «сферы» на поверхности действительно НЧ серебра (фаза на НЧ и на плоских областях отличается).

Рисунок 5 – распределение НЧ серебра по размерам