```
Lecture 19
Feb. 25th, 2015
```

problem 4 in assignment 4: n is a perfect product, if n = product of its divisors other than itself.

6=1.2.3

classify perfect product.

Suppose n has at least two distinct factors p = q, n is perfect product.

 $\frac{h}{p}$, $\frac{n}{2}$ are divisors of n.

n=product of divisor $\geqslant \frac{n}{p} \cdot \frac{n^2}{g} = \frac{n^2}{p^2}$ $pq \geqslant n \geqslant pq$, so n = pqSps n has only one prime factor p. $n = p^k$, $p^k = n = 1 \cdot p \cdot p^2 \cdots p^{k-1} = p^{k+2+\cdots+k-1} = p$ $k = \frac{k(k-1)}{2} \implies k=3$

Law of quadratic reciprocity: p.g are odd primes $p \neq g$, $(\frac{1}{6})(\frac{3}{6}) = -1$

Gauss's original proof:

Gauss's Lemma: P is an old prime, P / a
list a, 2a, ..., (P=1) a mod P.
So that they are all reduced between - (P=1) and P=1

Let n denote the number of negative integers in that list, then (==)=(-1)^n.

a=2, p=1/3. p=1/2=6 2=2, $2\times 2=4$. $2\times 3=6$, $2\times 4=8=-5$, $2\times 5=1/0=-3$ $2\times 6=12=-1=>n=3$, $(\frac{2}{13})=(-1)^{\frac{13}{8}}=-1$

e.g. $(\frac{3}{17})$, $\frac{P-1}{2} = 8$ 3 = 3, $3 \times 2 = 6$, $3 \times 3 = -8$, $3 \times 4 = -5$, $3 \times 5 = -2$, $3 \times 6 = 1$, $3 \times 7 = 4$, $3 \times 8 = 7$ 1 = 3, 1 = 3

(青)=(号)

 $17=2 \mod 3 : (\frac{2}{3})=-1$

Froof of Gauss' Lomma $a \cdot 2a \cdot \cdots \stackrel{P-1}{=} a = a^{\frac{P-1}{=}} \stackrel{P-1}{=} 1$ Euler's Criterion $\Rightarrow a^{\frac{P-1}{=}} \stackrel{P}{=} 1$ mod p

need to prove, $a^{\frac{p}{2}} = (-1)^n$ Claim: if $|\leq s < t < \frac{p-1}{2}|$, $sa \not\equiv ta \mod p$, $sa \not\equiv -ta \mod p$ If $sa \equiv ta \mod p$, p|(ta - sa), ta - sa = (t - s)a $\Rightarrow \text{ impossible}$, $since 0 < t - s < \frac{p-1}{2}|$, $et r_s \equiv sa \mod p$, $-\frac{p-1}{2} \le r_s \le \frac{p-1}{2}$, then $r_s \not\equiv r_t \mod p$, $r_s \not\equiv -r_t \mod p$ also $r_s \not\equiv 0 \mod p$ ∞ , $|r_1|$, $|r_2|$,..., $|r_{r_2}|$ are all distinct and permutation of $(1,2,...,\frac{p-1}{2})$ $|r_1|$... $|r_{r_2}|$ $|r_1|$ $|r_2|$... $|r_{r_2}|$ $|r_2|$... $|r_{r_2}|$ $|r_1|$ $|r_2|$... $|r_{r_2}|$ $|r_2|$ $|r_$

Hence, $\alpha^{\frac{p-1}{2}} \equiv (-1)^n \mod p$

Lemma: p odd prime, a odd, $p \nmid a$. then $\left(\begin{array}{c} a \\ P \end{array}\right) = \left(\begin{array}{c} -1 \end{array}\right)^{t}$, $t = \left[\begin{array}{c} a \\ P \end{array}\right] + \left[\begin{array}{c} 2a \\ P \end{array}\right] + \cdots + \left[\begin{array}{c} P \\ 2 \end{array}\right]$

where [x] is the greatest integer $\leq \chi$, e.g. [1.3]=1 e.g. $\alpha=3$, p=17, $\frac{17-1}{2}=8$, $t=\left[\frac{1}{4}\right]+\left[\frac{1}{4}\right]+\left[\frac{1}{4}\right]+\left[\frac{1}{4}\right]+\left[\frac{1}{4}\right]+\left[\frac{1}{4}\right]+\left[\frac{1}{4}\right]=9$ =>(-Dⁿ=(-1)^t, ten have the same parity $t=n \mod 2$

Proof: reduce to mod P, $t=1,2,\cdots,\frac{P-1}{2}$. So that they are all between $-\frac{P-1}{2}$ & $\frac{P-1}{2}$. Let r_1,\cdots,r_n be negative ints in the list r_1,\cdots,r_n be negative into r_n . So r_n positive i.e. r_n and r_n and r_n r_n r_n and r_n r_n r_n r_n r_n and r_n r_n

Claim: $t = n \mod 2$ Euclid Algorith: a = bq + r, $0 \le r \le b$, $q = \begin{bmatrix} -a \\ b \end{bmatrix}$ If $ka = S_k \mod p$, $ta = p \begin{bmatrix} ka \\ p \end{bmatrix} + S_k$ If $ka = r_k \mod p$, $ta = p \begin{bmatrix} ka \\ p \end{bmatrix} + p + r_k$ because $r_k < 0$.

5×3=15=17[青]+(17-2), rt=-2.

Add together; $\alpha + 2\alpha + \cdots + \frac{p-1}{2}\alpha = \sum_{k=1}^{n} P[\frac{k\alpha}{p}] + \sum_{i=1}^{n} (P + r_i) + \sum_{j=1}^{m} S_j$ $H2 + \cdots + \frac{p-1}{2} = \sum_{i=1}^{n} (-r_i) + \sum_{i=1}^{m} S_i$

subtract: $(a-1)[1+2+\cdots+\frac{p-1}{2}]=p\cdot t+\sum_{k=1}^{m}(p+2\Gamma_k)=p(t+n)+2\sum_{k=1}^{n}\Gamma_k$ p(t+n) is even, so t+n is even $\Rightarrow t$, n have the same parity $t=n \mod 2$