LOGICA PROPOSIZIONALE

Una $\emph{proposizione}$ è una frase che dichiara un fatto e che può essere \emph{vera} o \emph{falsa} , ma non entrambe.

Una proposizione più complessa può essere costruita attraverso proposizioni elementari connesse attraverso connettivi logici.

CONNETTIVI LOGICI:

Negazione	È la proposizione "non è vero che p", ed ha valore opposto a p, denotata con ¬p			
Congiunzione	la proposizione "p e q", denotata con p ∧ q			
Disgiunzione	È la proposizione "p o q", denotata con p V q			
Disgiunzione esclusiva	È denotato con p \oplus q			
Implicazione	È la proposizione "p(<i>ipotesi</i>) implica q(<i>conclusione</i>)", denotata con p → q			
	Può essere letta come: se allora,solo se,è sufficiente/necessario per,ogniqualvolta			
Inverso (Implicazione)	Denotata con q → p			
Opposto (implicazione)	Denotata con ¬p → ¬q			
Contronominale (implicazione)	Denotata con ¬q → ¬p, ed ha gli stessi valori di p → q			
Bicondizione (equivalenza)	È la proposizione "p se e solo se q", denotata con p \leftrightarrow q, ed ha gli stessi valori di (p \rightarrow q) \land (q \rightarrow p)			
	Può essere letta come: se allora e viceversa,iff,è necessario e sufficiente per			

р	q	¬р	¬q	pΛq	p V q	p⊕q	p→q	q→p	¬p → ¬q	-q -> -p	p↔q
Т	Т	F	F	Т	Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т	Т	F	F	Т	F
F	F	Т	Т	F	F	F	Т	Т	Т	Т	Т

Tautologia	È una proposizione composta che è sempre vera per tutti i possibili valori delle proposizioni elementari che la compongono
Contraddizione	È una proposizione composta che è <i>sempre falsa</i> per tutti i possibili valori delle proposizioni elementari che la compongono
Contingenza	È una proposizione composta che non è né una <i>tautologia</i> né una <i>contraddizione</i>

EQUIVALENZE LOGICHE:

Le proposizioni p e q sono *logicamente equivalenti* se hanno gli stessi valori di verità, denotata con **p≡q.**

IDENTITÀ:	COMMUTATIVA:	ALTRE UTILI EQUIVALEN	IZA:	
 p ∧ T ≡ p p ∨ F ≡ p DOMINAZIONE: p ∨ T ≡ T p ∧ F ≡ F 	 p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p ASSOCIATIVA: (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) 	■ $p \lor \neg p \equiv T$ ■ $p \land \neg p \equiv F$ ■ $p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$ ■ $p \rightarrow q \equiv (\neg p \lor q)$ ■ $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$		
IDEMPOTENZA: $p \lor p \equiv p$ $p \land p \equiv p$ DOPPIA NEGAZIONE: $\neg (\neg p) \equiv p$	■ $(p \land q) \land r \equiv p \land (q \land r)$ DISTRIBUTIVA: ■ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ ■ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	operatore	1 2 3 4 5	

LOGICA PREDICATIVA

Rimedia alle limitazioni della *logica proposizionale*, ovvero modella in modo esplicito gli *oggetti* e le loro *proprietà* (chiamati *predicati*) e permette di costruire asserzioni con *costanti* (specifico oggetto), *variabili* (oggetto di un certo tipo) e *quantificatori* (proprietà di un oggetto).

PREDICATI:

Un predicato P(x) assume un valore T o F in dipendenza dal fatto che la proprietà P vale o meno per x (oggetto preso dall'universo del discorso). La quantificazione converte una funzione proposizionale (predicato P(x)) in una proposizione poiché fissa un valore ben definito per la variabile. NOTA: P(x) NON è una proposizione perché può essere applicata a più oggetti ed assumere valori diversi. NOTA: Importante definire esattamente il dominio (universo del discorso)

	LOGICA PROPOSIZIONALE	LOGICA PREDICATIVA			
Utilizza asserzioni che descrivono proprietà di oggetti ben definiti		Consente di utilizzare asserzioni valide per più oggetti (<i>predicati</i>)			
(proposizioni)		Permette di quantificare le asserzioni, consente di fare asserzioni			
		riguardanti gruppi di oggetti (<i>quantificatori</i>)			
QUANTIFICATORI	:				
Universale	$P(x)$ è vera per tutti i valori di x nel dominio (<i>universo del discorso</i>), denotata con $\forall x P(x)$, esse sono legate alle <i>implicazioni</i> .				
	Per provare che $\forall x P(x)$ è falsa, basta trovare un controesempio , ovvero c'è una x per il quale $P(x)$ è falsa.				
	Se si suppone che gli elementi possano essere enumerati, allora $\forall x P(x) \hat{e}$ vera se $P(x_1) \land P(x_2) \land \land P(x_n) \hat{e}$ vera.				
	La <i>negazione</i> di $\forall x P(x) \ earlier = \exists x \neg P(x)$.				
Esistenziale	P(x) è vera se esiste un elemento x del dominio che soddisfa la proprietà, denotata con ∃x P(x), sono legate alle congiunzioni.				
	Se si suppone che gli elementi possano essere enumerati, allora $\exists x P(x) \hat{e}$ vera se $P(x_1) V P(x_2) V V P(x_n) \hat{e}$ vera.				
	Per provare che $\exists x P(x)$ è falsa si deve provare che $P(x)$ è falsa per tutte le x .				
	La <i>negazione</i> di $\exists x P(x) \ \exists : \neg \exists x P(x) \equiv \forall x \neg P(x)$.				

INSIEMISTICA

Un *insieme* è una *collezione non ordinata di oggetti (elementi* dell'insieme).

Numeri naturali: \rightarrow N = {0,1,2,3, ...} Interi: \rightarrow Z = {..., -2,-1,0,1,2, ...}

Interi positivi: \rightarrow Z⁺ = {1,2, 3, ...}

Numeri razionali: \rightarrow Q = {p/q | p \in Z, q \in Z, q \neq 0}

Numeri reali: \rightarrow R Insieme universale \rightarrow U Insieme Vuoto \rightarrow Ø

Uguaglianza	Due insiemi sono uguali se e solo se sono costituiti dagli stessi elementi, $A = B \stackrel{.}{e} \forall x (x \in A) \leftrightarrow (x \in B)$.
Sottoinsieme	A è sottoinsieme di B se e solo se ogni elemento di A è anche un elemento di B, $A \subseteq B \ \ \forall x \ (x \in A) \rightarrow (x \in B)$.
	Nota : Ø è sottoinsieme di qualsiasi elemento.
Sottoinsieme proprio	A è sottoinsieme proprio di B se e solo se A \subseteq B e A \neq B.
Cardinalità	Se ci sono esattamente n distinti elementi di S, diciamo che n è la cardinalità di S, denotata con S .
Insieme potenza	È l'insieme di tutti i sottoinsiemi di S, denotata con P(S), se S = n allora P(S) = 2 ⁿ .
n-pla	È una collezione ordinata che ha x₁ come primo elemento, x₂ come secondo,, xn come n-simo elemento, con n≥2.
Prodotto cartesiano	È l'insieme di tutte le coppie ordinate (s,t) dove s∈S e t∈T, denotata con SxT.
	Nota : $SxT \neq TxS$ e la cardinalità di SxT è $ SxT = S * T $.

OPERAZIONI SUGLI INSIEMI:

Unione	È l'insieme che contiene gli elementi in A o quelli in B, denotata con A U B = { x x \in A V x \in B }.
Intersezione	È l'insieme che contiene gli elementi in A e quelli in B, denotata con $A \cap B = \{x \mid x \in A \land x \in B\}$.
	Due insiemi, si dicono <i>disgiunti</i> se la loro intersezione è vuota, cioè $A \cap B = \emptyset$.
	La cardinalità dell'insieme unione è $ A \cup B = A + B - A \cap B $, se la loro intersezione non è vuota.
Differenza	È l'insieme che contiene quegli elementi che sono in A ma non sono in B, denotata con A − B = { x x∈A ∧ x∉B }.
Complemento	È l'insieme di tutti gli elementi di U che non appartengono ad A, denotata con Ā = { x x∈U ∧ x∉A }.

IDENTI	À:	
•	A U Ø = A	
•	$A \cap U = A$	
DOMIN	AZIONE:	
•	A U U = U	
•	$A \cap \emptyset = \emptyset$	
IDEMPO	TENZA:	
•	A U A = A	

 $\begin{array}{ccc} & & & A \cap A = A \\ \textbf{DOPPIA} & \textbf{NEGAZIONE} : \\ & & \overline{\overline{A}} = A \end{array}$

COMMUTATIVA:

■ AUB=BUA ■ A∩B=B∩A

ASSOCIATIVA:

- (A U B) U C = A U (B U C)
- $\bullet \quad (A \cap B) \cap C = A \cap (B \cap C)$

DISTIBUTIVA:

- A U (B \cap C) = (A U B) \cap (A U C)
- $\bullet \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

DE MORGAN:

- $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$

LEGGE DELL'ASSORBIMENTO:

- AU(A∩B)=A
- A ∩ (A U B) = A

LEGGE DEL COMPLEMENTO:

- AUĀ=U
- $A \cap \overline{A} = \emptyset$

FUNZIONI:

Iniettiva	Una funzione è detta <i>iniettiva</i> se e solo se $f(x) = f(y) => x = y$ per ogni x ed y nel dominio di f.
	Alternativamente, $x \neq y \Rightarrow f(x) \neq f(y)$.
Surriettiva	Una funzione da A a B è detta <i>suriettiva</i> se e solo se ∀b∈B ∃a∈A tale che <i>f(a) = b</i> .
	Alternativamente, f(A)=B.
Biettiva	Una funzione è detta <i>biettiva</i> se è sia <i>iniettiva</i> che <i>suriettiva</i> .

DIMOSTRAZIONI

Una *dimostrazione* è un ragionamento corretto che stabilisce la verità di un'asserzione matematica.

Diretta	$p \rightarrow q$ viene dimostrata mostrando che "se p è T allora q è T".		
Contrapposizione	p → q viene dimostrata mostrando che "se (¬q è T) allora (p è F)" / "se (¬q è T) allora (¬p è T)".		
	Nota: $\neg q \rightarrow \neg p \equiv p \rightarrow q$ contronominale.		
Contraddizione (assurdo)	$p \rightarrow q$ viene dimostrata mostrando che "se [(p è T) e (¬q è T)] allora F ".		
Equivalenza	$p \leftrightarrow q \ ensuremath{\mbox{\'e}} \ dimostrata \ con \ (p \to q) \ \land \ (q \to p).$		
Banale	Se la conclusione q è sempre vera, allora p \rightarrow q è banalmente vera.		
Vuota	Se l'ipotesi p è sempre falsa allora p \rightarrow q è banalmente vera.		
Analisi dei casi	Vogliamo provare che $(p_1 \lor p_2 \lor \lor p_n) \rightarrow q$ è equivalente a $(p_1 \rightarrow q) \land (p_2 \rightarrow q) \land \land (p_n \rightarrow q)$		
Esaustiva	Provati esaminando un numero relativamente piccolo di esempi.		
Con Qualificatori	La dimostrazione esistenziale $\exists x P(x)$ può essere provata in due modi, ovvero trovando un esempio che mostri che		
	l'asserzione vale, oppure se non si trova un esempio, dimostrarlo per assurdo con $\forall x \neg P(x)$, arrivando all'assurdo.		
	La <i>dimostrazione universale</i> ∀x P(x) può essere provata che la proprietà vale per qualsiasi valore nel dominio, utilizzando l'analisi dei casi, oppure trovando un elemento per il quale la proprietà è falsa.		