ĆWICZENIE II

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

1. CEL ĆWICZENIA

Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach.

2. LITERATURA

- 1. Informacje z wykładów i ćwiczeń
- 2. Orzechowski Z., Prywer J. , Zarzycki R.: Mechanika płynów w inżynierii środowiska. WNT

Rozdziały: 1, 2, 3, 4, 5, 7

3. Słupek S., Nocoń J., Buczek A.: Technika Cieplna - Ćwiczenia obliczeniowe. Skrypt AGH nr 1646.

Rozdziały - 1 i 5

4. Kaleta A., Wojdalski J.: Technika i gospodarka cieplna. Wyd SGGW, Warszawa 2000.

3. WSTEP TEORETYCZNY

1. Opory miejscowe

Strata ciśnienia spowodowana jest zmianą kierunku i/lub wartości prędkości wywołanego konstrukcja przewodu, przez który przepływa płyn. Stratę ciśnienia na skutek oporów miejscowych wyznacza się z zależności:

$$\Delta p_m = \varsigma \frac{\varrho v^2}{2}$$

Strata ciśnienia wyrażona jest w postaci ciśnienia dynamicznego.

2. Opory tarcia

Straty tarcia wskutek tarcia mają duże znaczenie praktyczne. Stratę ciśnienia na skutek tarcia obliczamy z zależności:

$$\Delta p_t = \lambda \frac{L}{D} \frac{\varrho v^2}{2}$$

Wartość współczynnika tarcia zależy od dwóch parametrów: chropowatości ścianki rurociągu i liczby Reynoldsa. Zależność współczynnika λ przedstawia wykres (Rys.1).

W przepływach turbulentnych można wyróżnić trzy zakresy:

1. Zakres I

 $k < \delta_{lam}$

Chropowatość bezwzględna mniejsza od grubości podwarstwy laminarnej. Brak wpływu chropowatości na współczynnik tarcia.

2. Zakres II

 $k > \delta_{lam}$

Chropowatość bezwzględna większa od grubości podwarstwy laminarnej. Wpływ chropowatości na współczynnik tarcia zmienia się z liczba Re.

3. Zakres III

 $k >> \delta_{lam}$

Chropowatość bezwzględna dużo większa od grubości podwarstwy laminarnej. W pełni rozwinięty przepływ turbulentny. Brak wpływu liczby Re na współczynnik tarcia.

Rys. 1 Zależność współczynnika tarcia λ w rurze o przekroju kołowym od liczby Re

4. PRZYRZĄDY POMIAROWE

Rys. 2 Mikromanometr AirFlow

OPIS

Mikromanometr PVM100 jest mikroprocesorowym przyrządem do pomiarów małych różnic ciśnień.

DZIAŁANIE

Przyrząd może pracować w dwóch trybach.

W trybie pomiaru rzeczywistego mierzone wartości są bezpośrednio wyświetlane w wybranych jednostkach prędkości (m/s lub ft/min) lub nadciśnienia, podciśnienia lub różnicy ciśnień (Pa lub in H₂0) na dwurzędowym matrycowym wyświetlaczu LCD.

Fluktuacje przepływu są natychmiastowo obrazowane na graficznym wskaźniku w postaci linijki z ruchomym znacznikiem, a przez wybór szybkiej lub wolnej reakcji przyrządu wartości porównawcze są szybko uzyskiwane. Funkcja szczególnie użyteczna przy pulsującym przepływie. Wbudowana pamięć zezwala na natychmiastowy zapis do 60 indywidualnych odczytów, które są numerowane i mogą być następnie odczytywane i uśredniane. Wpisy te są bezpieczne w pamięci i zachowywane nawet w przypadku wymiany baterii aż do ich usunięcia przez użytkownika. W trybie odczytu pamięci można odczytywać oraz kasować uprzednio zapisane dane. W oby trybach można przesyłać dane z pamięci do urządzeń współpracujących takich jak drukarki, komputery i data-loggery poprzez port szeregowy RS232C.

5. Stanowisko pomiarowe

Stanowisko pomiarowe (Rys. 3) składa się z:

- 1. wentylatora
- 2. rurociągu wentylacyjnego
- 3. kształtek (kolanka, łuk)

Rys.3 stanowisko pomiarowe

W skład kształtek wchodzą:

- 1. 2 x kolano 45° (punkty 1 i 2)
- 2. Łuk 180° (punkty 3 i 4)
- 3. Kolano 90 ° (punkty 8 i 9)

Długość pomiarowego odcinka prostego wynosi 5.82 m (punkty 2 i 3).

6. WYKONYWANE POMIARY

Przed uruchomieniem silnika napędzającego wentylator podłączony do przewodu wentylacyjnego należy wykonać następujące pomiary:

- pomiar temperatury powietrza t
- pomiar ciśnienia barometrycznego **p**_b
- pomiar wilgotności względnej powietrza φ
- pomiar wielkości geometrycznych dla oporów miejscowych i tarcia (średnice, promienie zaokrągleń, długości)

Po uruchomieniu silnika (n = const) napędzającego wentylator, który jest podłączony do przewodu wentylacyjnego należy wykonać następujące pomiary:

- pomiary ciśnień:
 - nadciśnienia w rurociągu punkty pomiarowe opisane w tabelach z wynikami pomiarów.

OBLICZENIA DO SPRAWOZDANIA

Korzystając z przygotowanego Arkusza wykonać następujące obliczenia:

- 1. Określenie rzeczywistych parametrów powietrza gęstość, lepkość dla każdego rodzaju oporu (aktualna wartość nadciśnienia przed przeszkodą)
- 2. Wyznaczenie średniej prędkości przepływu na podstawie pomiarów wyniki z grupy realizującej ćwiczenie 1.
- 3. Określenie charakteru przepływu liczba Re
- 4. Obliczenie współczynników strat lokalnych ζ i porównanie ich z danymi tablicowymi dla elementów instalacji wentylacyjnej. Wyjaśnić różnice.
- Obliczenie współczynników λ tarcia i porównanie z wartościami odczytanymi z wykresu 1.
 Wyjaśnić różnice.

<u>Uwaga</u>

Do wyznaczenia chropowatości rurociągu przyjąć materiał - stal ocynkowana

<u>SPRAWOZDANIE POWINNO ZAWIERAĆ:</u>

- schemat stanowiska pomiarowego z zaznaczonymi punktami pomiarowymi,
- · wyniki pomiarów w tabeli,
- obliczenia,
- porównanie otrzymanych wyników z danymi tablicowymi z wyjaśnieniem ewentualnych różnic,
- wnioski.

Załączniki 1

Wartości współczynnika oporu miejscowego [4]

Rodzaj oporu	Wartość współczynnika ξ												
1	2		for a s	1 - 1								1	
Nagłe zwężenie**	$\frac{F_2}{F_1}$	0,01	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	
F ₁ F ₂	ξ	0,5	0,47	0,42	0,38	0,34	0,30	0,25	0,20	0,15	0,09	0	
0.73 0.71			80.5	16.0	1	10	30,0	an n				7/2	
Nagłe rozszerzenie							$\xi = \left(\frac{1-F}{F}\right)$	$\left(\frac{F_1}{2}\right)^2$					
F ₁ F ₂	$\frac{F_1}{F_2}$	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0	
an Lan In	ξ	0	0,01	0,04	0,09	0,16	0,25	0,36	0,49	0,64	0,81	1	
Stożkowe zwężenie	α°	7	10	15	5	20	25		30	35		40	
	ξ	0,16	0,16	0,	18	0,20	0,2		0,24	0,26	6	0,28	
	α°	45	50	55	5	60	65		70	75		80	
	ξ	0,30 0,31		0,	31	0,32	0,32 0,33		0,34 0,34		4	0,35	
F ₁ 8 F ₂	α° <i>K</i> α°	5 0,13 50	10 0,1 60	7	15 0,26 70	$= K \left(\frac{F_2}{F_1} - \frac{1}{F_2} \right)$ $= K \left(\frac{F_2}{F_1} - \frac{1}{F_2} \right)$ $= 0$ $= 0,41$ $= 0$	2	25 0,53	30 0,71 100	40 0,9		45 0,98 140	
	K	1,03	1,1		1,13	1,10		1,07	1,06	1,0		1,04	
Kryza w rurze	$\frac{F_0}{F_2}$	0,1	0,2				0,5	0,6	0,7	0,8	0,9	1	
F ₁ F ₂ =F ₁	ξ	226	47	.8 1	7,5	7,8	3,75	1,8	0,8	0,29	0,06	0,0	
Nylot przewodu													
					ξ	= 1							
Wlot przewodu			-					2 6 5	2000				
					Z	ostrą kra							
					Z	zaokrąg	loną kra	wędzią ξ	= 0,25				

Kurek														
The state of the s	α°	5		10	20		30	40		50	60		65	
1	ξ		05	0,29	1,5	6	5,47	17,3	1.2.5	52,6	206		486	
The state of the s							9.0							
- 4	1			110	6724		38.00	1	-					
Zasuwa w kolistym przewodzie	$\frac{s}{d}$	0		1/8	2/8		3/8	4/8		5/8	6/8		7/8	
ETTIN.	ξ	0,	05	0,07	0,2	6	0,81	2,08		5,52	17,0		97,8	
· ·														
Zasuwa w przewodzie	s	0,	1	0,2	0,3		0,4	0,5		0,6	0,7		0,8	0,9
prostokątnym	$\frac{s}{d}$			1	5,0			0,0		0,0	0,1		0,0	0,0
07////					1300				- 81					
9 14/4/2	1							100						
	ξ	0,	09	0,39	0,9	5	2,08	4,02		8,12	17,8		44,5	193,0
1												10710		W.
1	2													
Klapa	α°	20	25	30	35	40	45	50	55	60	65	70		85
	ξ	1,7	2,3	3,2	4,6	6,6	9,5	14	20	30	42	62		90
Kolano ostre												1		
ı			α		90		120		135		150			
			ł	ξ	1,1		0,55		0,25		0,2			
,0														
Kolano zaokrąglone	ļ													
(półłuk)														
				Γ			3,5 7 ,	,						
				$\xi = 0,1$	31 + 0,16	$33\left(\frac{d}{R}\right)$	α an	ō						
				_			اعور d; ξ ≈ (
					dia <i>i</i>	1=3.	u; ς ≈ (U,14						
-														

Załączniki 2

Chropowatość ścianek powierzchni przewodów [4]

Materiał	Stan przewodu	Chropowatość k [mm]				
Beton	nowy, handlowy, gładki	0,3-0,8				
Beton	nowy, handlowy, średnioszorstki	1–2				
Beton	nowy, handlowy, szorstki	2-5				
Beton	nowy, żelbetowy, starannie wygładzony	0,1-0,15				
Beton	nowy, natryskowy, wygładzony	0,1-0,15				
Beton	nowy, natryskowy, bez wygładzenia	0,2-0,8				
Beton	wygładzony po kilkuletnim ruchu (woda)	0,2-0,3				
Drewno	różny	0,2-1,0				
Guma	nowy, technicznie gładki	0,0015				
Miedź, mosiądz, brąz, aluminium, inne						
lekkie metale ciągnione i prasowane	nowy, technicznie gładki	0,001-0,0015				
PCW	nowy, technicznie gładki	0,025				
Polietylen	nowy, technicznie gładki	0,05				
Stal bez szwu	nowy	0,02				
Stal spawana	nowy	0,12				
Stal spawana	nieznaczna korozja	0,20				
Stal spawana	widoczna korozja	0,60				
Stal spawana	stary, silna korozja	1,5–3				
Stal ocynkowana	nowy	0,1-0,2				
Stal ocynkowana	po kilku latach eksploatacji	0,4-0,7				
Szkło	nowy, technicznie gładki	0,0015				
Żeliwo asfaltowane	nowy	0,1-0,2				
Żeliwo	nowy	0,2-0,5				
Żeliwo	stary	0,5–1,5				
Żeliwo	stary, silna korozja	do 3				