OSPF konfigurálása

RouterID

A forgalomirányító számára meg kell határozni egy azonosítót. Angolosan RouterID. Az azonosító a következő módokon kerülhet meghatározásra:

- rendszergazda beállítja
- automatikusan kerül beállításra

```
Start
ha (kézzel meg van adva)
  routerID meg van
ellenben ha(van loopback interfész)
  routerID = lobbback interfész
ellenben
  legnagyobb IPv4 címet használjuk
ha vége
Vége
```



```
R1(config) # router ospf 10
R1(config-router) # router-id 1.1.1.1
R1# show ip protocols
...
Router ID 1.1.1.1
```

Ha már működik az OSPF, akkor szükség van az ID váltáshoz a következő parancsra:

```
R1# clear ip ospf process
```

Visszacsatoló interfésszel:

```
R1(config) # interface loopback 0
R1(config-if) # ip address 1.1.1.1 255.255.255
R1(config-if) # end
```

Helyettesítő maszk

Angolosan Wildcard mask. Veszem a decimális számokat binárisan. Binárisan minden számot az ellentétes állapotba billentek, azaz invertálom a biteket. Így meg kapom a helyettesítő maszkot.

Példa			
maszk	255.255.255.000		
helyettesítő maszk	000.000.000.255		
/25 maszk			
maszk	255.255.255.128		
helyettesítő maszk	000.000.000.127		
/26 maszk			
maszk	255.255.255.192		
helyettesítő maszk	000.000.000.063		
/27 maszk			
maszk	255.255.255.224		

/26 maszk			
helyettesítő maszk 000.000.000.031			
/28 maszk			
maszk	255.255.255.240		
helyettesítő maszk	000.000.000.015		
/29 maszk			
maszk	255.255.255.248		
helyettesítő maszk	000.000.000.07		
/30 maszk			
maszk	255.255.255.252		
helyettesítő maszk	000.000.000.003		

Hálózat megadása

```
R1(config) # router ospf 10
R1(config-router# network 10.1.0.0 0.0.255.255 area 0
R1(config-router# network 10.2.0.0 0.0.255.255 area 0
R1(config-router# network 10.8.0.0 0.0.255.255 area 0
R1(config-router#
```

Így is lehet:

```
R1(config) # router ospf 10
R1(config-router# network 10.1.0.0 0.0.0.0 area 0
R1(config-router# network 10.2.0.0 0.0.0.0 area 0
R1(config-router# network 10.8.0.0 0.0.0.0 area 0
R1(config-router#
```

Figyeljük meg a helyettesítő maszkot:

0.0.0.0

Passízválás

```
R1(config) # router ospf 10
R1(config-router# passive-interface GigabitEthernet 0/0
R1(config-router#
```

Ellenőrzés:

OSPF költségek

Az OSPF a legjobb útvonal meghatározásához a költséget használja; a költséget veszi mértéknek.

Egy interfész sávszélessége fordítottan arányos a költséggel. Vagyis egy 100Mb/s Ethernetnek nagyobb a költsége mint egy 1000Mb/s interfésznek.

Számítás:

$$koltseg {=} \frac{referenciaSavszelesseg}{interfeszSavszelesseg}$$

Az alapértelmezett referencia sávszélesség a 10 8 hatványon, azaz 100 000 000. Ezzel a referencia sávszélességgel a költség képlete:

$$koltseg {=} \frac{100000000}{interfeszSavszelesseg}$$

A következő táblázat mutatja 10 referencia sávszélességgel néhány interfész sávszélességét:

Interfész típus	Osztás	Költség
10 Gigabit Ethernet 10 Gbps	100 000 000 / 10 000 000 000	1
Gigabit Ethernet 1 Gbps	100 000 000 / 1 000 000 000	1
Fast Ethernet 100 Mbps	100 000 000 / 100 000 000	1
Ethernet 10 Mbps	100 000 000 / 10 000 000	10
Serial 1.544 Mbps	100 000 000 / 1 544 000	64
Serial 128 kbps	100 000 000 / 128 000	781
Serial 64 kbps	100 000 000 / 64 000	1562

Mindig az összes költséggel kell számolni. A példában R1 és R1 között 1.544 Mbps serial kapcsolat van, amelynek a költsége 64. Ehhez jön R4 g0/0 interfésze, amelynek a költsége 1. Így a 10.7.0.0/16 hálózat 65-ös költséggel érhető el közvetlenül R4 forgalomirányítón keresztül.

Költség ellenőrzése:

A fenti táblázatban láttuk, hogy a 10 Gigabit Ethernet, a Gigabit Ethernet és a Fast Ethernet azonos költséggel szerepel, konkrétan: 1. Ezért érdemes beállítani más referencia sávszélességet, például 1000.

```
auto-cost reference-bandwidth 1000
```

Persze így még mindig 1 költséggel szerepel a 10 Gigabit és a Gigabit Ethernet.

auto-cost reference-bandwidth 1000			
Interfész típus	Osztás	Költség	
10 Gigabit Ethernet 10 Gbps	1 000 000 000 / 10 000 000 000	1	
Gigabit Ethernet 1 Gbps	1 000 000 000 / 1 000 000 000	1	
Fast Ethernet 100 Mbps	1 000 000 000 / 100 000 000	10	
Ethernet 10 Mbps	1 000 000 000 / 10 000 000	100	
Serial 1.544 Mbps	1 000 000 000 / 1 544 000	647	
Serial 128 kbps	1 000 000 000 / 128 000	7812	
Serial 64 kbps	1 000 000 000 / 64 000	15625	

Állítsuk be 10000-es értéket.

Ekkor a költségek alakulása:

auto-cost reference-bandwidth 10000			
Interfész típus	pus Osztás		
10 Gigabit Ethernet 10 Gbps	10 000 000 000 / 10 000 000 000	1	
Gigabit Ethernet 1 Gbps	10 000 000 000 / 1 000 000 000	10	
Fast Ethernet 100 Mbps	10 000 000 000 / 100 000 000	100	
Ethernet 10 Mbps	10 000 000 000 / 10 000 000	1000	
Serial 1.544 Mbps	10 000 000 000 / 1 544 000	6476	
Serial 128 kbps	10 000 000 000 / 128 000	78125	
Serial 64 kbps	10 000 000 000 / 64 000	156250	

Beállítás:

```
R1(config) # router ospf 1
R1(config-router) # auto-cost reference-bandwidth 10000
```

Interfész költségének ellenőrzése:

```
R1# show ip ospf interface g0/0 ...
... 3.3.3.3, Network Type BROADCAST, Cost: 10
```


Interfész sávszélesség

Hasonlóan a referencia sávszélességhez nincs hatással az interfész tényleges sebességére. Az OSPF viszont ezt is figyelembe veszi a számításoknál (az EIGRP is ezt figyelembe veszi).

Nézzük meg a sávszélességet:

```
R1#show interfaces s0/0/0
Serial0/0/0 is up, line protocol is up (connected)
Hardware is HD64570
Internet address is 10.8.0.1/16
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
```

A referencia sávszélesség megtekintése:

```
R1#show ip ospf int s0/0/0

Serial0/0/0 is up, line protocol is up
   Internet address is 10.8.0.1/16, Area 0
   Process ID 10, Router ID 10.8.0.1, Network Type POINT-TO-POINT, Cost: 6476
```

Most változtassunk a sávszélességen:

```
R1(config)# int s0/0/0
R1(config-if)# bandwidth 128
R1(config-if)# end
```

Ellenőrzés:

```
R1#show int s0/0/0
Serial0/0/0 is up, line protocol is up (connected)
Hardware is HD64570
Internet address is 10.8.0.1/16
MTU 1500 bytes, BW 128 Kbit, DLY 20000 usec,
```

A beállítást a másik forgalomirányítón is be kell állítani.

Költség állítása közvetlenül

```
R1(config)# int s0/0/0
R1(config-if)# no bandwidth 128
R1(config-if)# ip ospf cost 15625
R1(config-if)# end
```

Sávszélesség ellenőrzése:

```
R1#show int s0/0/0 | include BW MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
```

Költség ellenőrzése:

```
R1#show ip ospf int s0/0/0
Serial0/0/0 is up, line protocol is up
```

```
Internet address is 10.8.0.1/16, Area 0
Process ID 10, Router ID 10.8.0.1, Network Type POINT-TO-POINT, Cost: 80
..
```

Utóbbi Packet Tracerben nem működik.

Ellenőrzés

R1# show ip ospf neighbor

Futtatásra példa:

R1#show ip ospf neighbor

Neighbor ID	Pri	State		Dead Time	Address	Interface
10.8.0.2	0	FULL/	_	00:00:33	10.8.0.2	
Serial0/0/0						
10.2.0.2	0	FULL/	_	00:00:35	10.2.0.2	Ge 0/1

- Pri
- Az interfész prioritása, OSPF számára
- DR és BDR választásnál jelentős
- State
 - FULL azt jelenti a szomszédok LSDB-je azonos
- Dead Time
 - Mikor tekintjük halottnak

A szomszédsági viszony ha nem jön létre, a következőket nézzük meg:

- egyeznek az alhálózati maszkok
- az OSPF Hello és Dead idő azonos a forgalomirányítók között?
- volt az OSPF beállításnál network parancs volt?

Az OSPF ellenőrzése:

```
R1# show ip protocols
R1# show ip ospf
R1# show ip ospf interface
R1# show ip ospf interface brief
R1# show ip ospf interface serial 0/0/0
```

OSPFv3

- IPv6 támogatással fut
- Egyszerre tudja az IPv4 és IPv6 útvonalakat is.
- De külön folyamat fut az IPv4 és az IPv6 számára
 - o külön irányítótábla
 - o külön topológia
 - o külön szomszédsági tábla

Eltérés OSPFv2 és OSPFv3 között:

OSPFv2	OSPFv3
IPv4 címek	IPv6 címek
minden OSPF router címe: 224.0.0.5	minden OSPF router: ff02::5
DR/BDR csoportcím: 224.0.0.6	DR/BDR csoportcím: ff02::6
IIDALWARK Daranes	ipv6 ospf <pre>procId> area <areaid> interfész parancs</areaid></pre>
MD5 azonosítás	IPv6 azonosítás

Címek használata

• forrás cím: link-local

• cél cím: ff02::5, ff02::6, IPv6 link-local

Konfigurálás


```
R1(config)# ipv6 unicast-routing
R1(config)#
R1(config) # int g0/0
R1(config-if) # des R1 LAN
R1(config-if) # ipv6 address 2001:db8:def:1::1/64
R1(config-if) # no shut
R1(config-if)#
R1(config-if) # int s0/0/0
R1(config-if) # des Link to R2
R1(config-if) # ipv6 address 2001:db8:def:2::1/64
R1(config-if) # clock rate 128000
R1(config-if) # no shut
R1(config-if)#
R1(config-if)# int s0/0/1
R1(config-if) # des Link to R3
R1(config-if) # ipv6 address 2001:db8:def:7::1/64
R1(config-if) # no shut
R1(config-if)# end
```

Ellenőrzés:

R1# show ipv6 interface brief

Link-local beállítása

```
R1(config) # int g0/0
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if) #
R1(config-if) # int s0/0/0
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if) #
R1(config-if) # int s0/0/1
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if) # end
```

Ellenőrizzük:

R1# show ipv6 interface brief

RouterID és költség beállítása:

```
R1(config) # ipv6 router ospf 10
R1(config-rtr)#
R1(config-rtr) # router-id 1.1.1.1
R1(config-rtr)#
R1(config-rtr)# auto-cost reference-bandwidth 1000
R1(config-rtr)#
R1(config-rtr)# end
R1# show ipv6 protocols
R1(config) # int g0/0
R1(config-rtr) # ipv6 ospf 10 area 0
R1(config-rtr)#
R1(config-rtr)# int s0/0/0
R1(config-rtr) # ipv6 ospf 10 area 0
R1(config-rtr)#
R1(config-rtr) # int s0/0/1
R1(config-rtr) # ipv6 ospf 10 area 0
R1(config-rtr)#
R1(config-rtr)# end
R1# show ipv6 ospf int brief
```

Ellenőrzés

```
R1(config) # show ipv6 ospf neighbor
OSPFv3 Router with ID (1.1.1.1) (Process ID 10)
Neighbor ID Pri State Dead Time
                                           Interface ID Interface
            0 FULL/ - 00:00:39
3.3.3.3
                                            6
Serial0/0/1
                 0 FULL/ - 00:00:36
2.2.2.2
                                                 6
Serial0/0/0
R1#
R1(config) # show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
  Router ID 1.1.1.1
 Number of areas: 1 normal, 0 stub, 0 nssa
 Interfaces (Area 0):
    Serial0/0/1
    Serial0/0/0
    GigabitEthernet0/0
  Redistribution:
    None
R1#
R1(config) # show ipv6 ospf interface brief
Interface
                PID
                       Area
                                              Intf ID Cost State
Nbrs F/C
Se0/0/1
                10
                                                 7
                                                            15625 P2P
1/1
Se0/0/0
                10
                                                 3
                                                            647
                                                                   P2P
1/1
Gi0/0
                 10
                           0
                                                   3
                                                              1
    0/0
DR
R1#
R1(config) # show ipv6 route ospf
IPv6 Routing Table - default - 10 entries
0
     2001:DB8:DEF:2::/64 [110/657]
      via FE80::2, Serial0/0/0
     2001:DB8:DEF:3::/64 [110/1304]
0
      via FE80::2, Serial0/0/0
     2001:DB8:DEF:8::/64 [110/1294]
0
      via FE80::2, Serial0/0/0
R1#
```

OSPF gyakorlat

Feladat 001

Kösse össze az alábbi hálózatokat OSPF segítségével.

Feladat 002

Kösse össze az alábbi hálózatokat OSPF segítségével.

