

Digital Circuit Design

Course Code: EBU4202 School of EECS

Lab Sheet 3: Sequential Logic Circuits	Date:
Student's Surname, First Name (in English):	Student's BUPT Number, Class Number:
Email Username (102xxxxx):	Total Mark (out of 40):

IMPORTANT:

- (a) <u>In advance of the lab session</u>: Print this Lab Sheet, read it and com plete all the indicated "Preparatory Work".
- (b) On the day of the lab session: Ensure that you have your notes to hand (taken during **Lab Session 1**) about how to set up the *Test Bench*.
- (c) Write all your answers on this Lab Sheet, where indicated.
- (d) Use additional A4 sheets of paper if you re quire more space to write your answers, ensuring that the question numbers are indicated clearly.
- (e) Before handing in your Lab Sheet, m ake sure that you fill in the Table above with your personal details, *and* staple any additional answer sheets (with your name written on them) together with this Lab Sheet.

1. Learning Objectives

In this set of experim ents, you will study and build sequential digital circuits. These circuits have memory and include flip-flops, which are the basic building blocks of computer registers and memories. You will be looking at latches and flip-flops, as well as shift registers which are built from flip-flops.

Please note that all the circuits you build during this experim ent will require the *Test Bench* previously described in **Lab Sheet 1**; you need to assemble this before you start your experiments.

2. Preparatory Work

It is <u>essential</u> to be well prepared before starting the is Lab Session. Read the Lab Sheet thoroughly, do all the background design work for **Experiments 1** and **2**, and produce properly numbered circuit diagrams where indicated. You should do all the **Preparatory Work** before the Lab Session takes place.

Use your textbook and lecture slides to review what SR latches and JK flip-flops do and how they can be implemented using the combinational logic gates that you used previously. Then plan how you will build or investigate the circuits in **Experiments 1** through to **3**.

3. Logic Gates

You will be using the following TTL integrated circ uits to build and investigate the sequential circuits described in this Lab Sheet:

- ✓ 2 x 7400 (labelled *HD74LS00P*) Quadruple 2-input NAND gates
- ✓ 1 x 7404 (labelled *HD74LS04P*) Hex inverters
- ✓ 1 x 7408 (labelled *HD74LS08P*) Quadruple 2-input AND gates
- ✓ 1 x 7474 (labelled *HD74LS74P*) Dual D type flip-flops
- ✓ 2 x 7476 (labelled *HD74LS76P*) Dual JK flip-flops with preset and clear

The pin-outs and schematic diagrams for these ICs can be found in the **Appendix** of this Lab Sheet. In addition, you also require a power supply unit and an oscillator with a TTL output (see **Figure 1**).

Figure 1 – Oscillator with TTL output¹.

4. Experiments

For the Characteristic Table of each latch/flip-flop, take the present state, **Qn**, of the output **Q**, to be an effective input to the following latches/flip-fl ops. Therefore e.g., the inputs to the first latch in this Lab Session are **Qn**, **S** and **R**, and the output is **Qn+1**, giving 8 lines in the Characteristic Table (see **Table 1**).

Inputs	Current State	Next State	State Comment
SR	Qn	Qn+1	
0 0	0	0	Hold
0 0	1	1	Hold
0 1	0	0	Reset
0 1	1	0	Reset
1 0	0	1	Set
1 0	1	1	Set
1 1	0	Oscillating	Invalid
1 1	1	Oscillating	Invalid

Table 1 – Characteristic Table of an SR latch.

_

¹ Please **note** that the picture of an oscillator in **Figure 1** is provided for illustration purposes only, as the oscillator available in your hardware lab may not look exactly like this (e.g., it may be from a different manufacturer).

EXPERIMENT 1 – SR Latches & D Latches

In this experim ent, you will be studying and constructing three different types of latches: an SR latch, an SR latch with Control Input (*aka* Clocked SR latch) and a D latch (*aka* Clocked D latch).

Question 4.1.1 [1 Mark] – (Preparatory Work) Write the <u>Functional Table</u> for an SR latch (using two NAND gates).
Answer to Question 4.1.1
Question 4.1.2 [2 Marks] – (Preparatory Work) Draw a labelled circuit diagram of an SR latch using two NAND gates.
Answer to Question 4.1.2
Question 4.1.3 [6 Marks] – Study, construct and verify the operation of an SR latch (built using two NAND gates – see Figure 4), and then describe in your own words how an SR latch works . Your answer must also include a labelled schem atic diagram of your SR latch. Note : Please make sure you indicate how different pins are connected.
Answer to Question 4.1.3

Question 4.1.4 [2 Marks] – (Preparatory Work) W rite both the Characteristic Table and Functional Table for a clocked SR latch (using four NAND gates).
Answer to Question 4.1.4
Question 4.1.5 [2 Marks] – (Preparatory Work) Draw a <u>labelled circuit diagram</u> of a clocked SR latch using four NAND gates.
Answer to Question 4.1.5

Question 4.1.6 [6 Marks] – Study, construct and verify the ope ration of a clocked SR latch (built using four NAND gates – see **Figure 4**), and then <u>describe in your own words how a clocked SR latch works</u>. Your answer must also include a <u>labelled schematic diagram</u> of your clocked SR latch. **Note**: Please make sure you indicate how different pins are connected.

Answer to Question 4.1.6		
Question 4.1.7 [2 Marks] – (Preparatory Work) W rite both the Characteristic Table and		
<u>Functional Table</u> for a D latch.		
Answer to Question 4.1.7		
Question 4.1.8 [2 Marks] – (Preparatory Work) Draw a labelled circuit diagram of a D latch,		
Question 4.1.8 [2 Marks] – (Preparatory Work) Draw a labelled circuit diagram of a D latch, formed by adding a NOT gate to a clocked SR latch.		
Question 4.1.8 [2 Marks] – (Preparatory Work) Draw a labelled circuit diagram of a D latch,		
Question 4.1.8 [2 Marks] – (Preparatory Work) Draw a labelled circuit diagram of a D latch, formed by adding a NOT gate to a clocked SR latch.		
Question 4.1.8 [2 Marks] – (Preparatory Work) Draw a labelled circuit diagram of a D latch, formed by adding a NOT gate to a clocked SR latch.		
Question 4.1.8 [2 Marks] – (Preparatory Work) Draw a labelled circuit diagram of a D latch, formed by adding a NOT gate to a clocked SR latch.		
Question 4.1.8 [2 Marks] – (Preparatory Work) Draw a labelled circuit diagram of a D latch, formed by adding a NOT gate to a clocked SR latch.		

a NOT gate to a clocked SR latch – see Figure 4 and Figure 5), and then describe in your own words how a D latch works. Your answer must also include a labelled schematic diagram of your D latch. Note : Please make sure you indicate how different pins are connected.		
Answer to Question 4.1.9		
EXPERIMENT 2 – JK Flip-Flops		
In this experiment, you will be studying and constructing a JK type Master-Slave Flip-Flop, using 7476 IC (see Figure 8). When building this flip-flop, please <u>note the following</u> : 1. The PRESETnot (P') and CLEARnot (C') inputs enable the flip-flop's initial conditions to be established.		
2. Both inputs P' and C' are <u>active low</u> , so that if P'=0 and C'=1 , then Q=1 . However, if P'=1 and C'=0 , then Q=0 .		
3. For normal operation, set up your JK flip-flop so that P'=C'=1 .		
Question 4.2.1 [3 Marks] – (Preparatory Work) Describe in your own words how a JK m asterslave flip-flop works. Your answer must include an explanation of what the "m aster-slave" part of the flip-flop's name means.		
Answer to Question 4.2.1		

Question 4.1.9 [6 Marks] – Study, construct and verify the ope ration of a D latch (built by adding

Question 4.2.2 [4 Marks] – Study, construct and verify the operation of a JK flip-flop (built using a 7476 IC – see **Figure 8**), by <u>writing the Characteristic Table</u> for a JK master-slave flip-flop. **Note**: Please take into account the instructions given at the beginning of this experiment.

EXPERIMENT 3 – Shift Registers

In this experiment, you will be studying and constructing a Shift Register, using four D flip-flops and an inverter. A Shift Register is thus called because it "shifts" its output by one-bit position, once every clock cycle. It consists of a set of folip flops (usually D folip-flops) or SR folip-flops) connected together so that the output of one becomes the input of the next and so on, in series.

Therefore in a Shift Register:

- 1. The same clock pulse is used to drive all the D flip-flops.
- 2. At each clock pulse, one bit is loaded into the first flip-flop, old bits are shifted down to the next flip-flop and the last bit is shifted out of the last flip-flop.
- 3. An *n-bit* number takes *n* clock cycles to be loaded.

A 4-bit Shift Register can be used either:

- ✓ as a buffer or delay for serial-in, serial-out data (see Figure 2); or
- ✓ as a series-in to parallel-out converter (see Figure 3).

Figure 2 – 4-bit serial-in serial-out Shift Register, implemented using D flip-flops.

Figure 3 – 4-bit serial-in parallel-out Shift Register, implemented using D flip-flops.

Question 4.3.1 [4 Marks] – Construct a 4-bit Shift Register (serial-in, parallel-out) using four D-type flip-flops (see Figure 7). <u>Draw a labelled schem</u> atic diagram of the 4-bit shift register, indicating how different pins are connected.
Answer to Question 4.3.1
Question 4.3.2 [2 Marks] – Verify the operation of the 4-bit Shift Register, and indicate what is the value of the next state $Q(t+1)=Q_0Q_1Q_2Q_3$ at the next positive clock edge when the input and current state are in = 1 and $Q(t)=Q_0Q_1Q_2Q_3=0110$, respectively.
Answer to Question 4.3.2

5. Appendix

Figure 4 – 7400 (labelled *HD74LS00P*) Quadruple 2-input NAND gates.

Figure 5 – 7404 (labelled *HD74LS04P*) Hex inverters.

Figure 6 – 7408 (labelled *HD74LS08P*) Quadruple 2-input AND gates.

Figure 7 – 7474 (labelled *HD74LS74P*) Dual D-type Flip-Flops.

Figure 8 – 7476 (labelled *HD74LS76P*) Dual JK Master-Slave Flip-Flops.

END OF Lab Session 3: Sequential Logic Circuits