NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

AY2021, Semester 1 MA1508E Linear Algebra for Engineering Tutorial 5

Solutions

1. Let
$$\mathbf{u}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 3 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 3 \\ -1 \\ 5 \\ 2 \end{pmatrix}$, and $\mathbf{u}_3 = \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$.

(a) If possible, express each of the following vectors as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

Suppose $x_1 + 7x_2 + 2x_3 - 3x_4 = 0$. We may proceed

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{2x_1 + 11x_2 + x_3}{15} \\ 0 & 1 & 0 & \frac{2x_1 - 4x_2 + x_3}{15} \\ 0 & 0 & 1 & \frac{15}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

So a vector $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ if and only if it satisfies $x_1 + 7x_2 + 2x_3 - 3x_4 = 0$. If that is true, then

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$$

where

$$a = \frac{2x_1 + 11x_2 + x_3}{15}, \qquad b = \frac{2x_1 - 4x_2 + x_3}{15}, \qquad c = \frac{-x_1 + 2x_2 + x_3}{3}$$

(i) 2 + 7(3) + 2(-7) - 3(3) = 0. It is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \begin{pmatrix} 2 \\ 3 \\ -7 \\ 3 \end{pmatrix} = 2\mathbf{u}_1 - \mathbf{u}_2 - \mathbf{u}_3$.

(ii) This is clearly a linear combination with a = b = c = 0.

(iii)
$$1+7+2-3=7$$
. It is not a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

(iv)
$$-4 + 7(6) + 2(-13) - 3(4) = 0$$
. It is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \begin{pmatrix} -4 \\ 6 \\ -13 \\ 4 \end{pmatrix} = 3\mathbf{u}_1 - 3\mathbf{u}_2 + \mathbf{u}_3$.

(b) Is it possible to find 2 vectors
$$\mathbf{v}_1$$
 and \mathbf{v}_2 such that they are not a multiple of each other, and both are not a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$?

Yes, for example,
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.

2. Let
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x - y - z = 0 \right\}$$
 be a subset of \mathbb{R}^3 .

(a) Let
$$S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix} \right\}$$
. Show that span $(S) = V$.

Since
$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
 and $\begin{pmatrix} 5\\2\\3 \end{pmatrix}$ satisfy the equation $x-y-z=0, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 5\\2\\3 \end{pmatrix} \in V$ and hence $\operatorname{span}(S) \subset V$.

Note that a general solution of x - y - z = 0 is x = s + t, y = s, z = t where $s, t \in \mathbb{R}$. Let (s + t, s, t) be any vector in V. Consider the following equation:

$$a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} s+t \\ s \\ t \end{pmatrix} \iff \begin{cases} a+5b=s+t \\ a+2b=s \\ 3b=t. \end{cases}$$

Since

$$\begin{pmatrix} 1 & 5 & s+t \\ 1 & 2 & s \\ 0 & 3 & t \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 5 & s+t \\ 0 & 3 & t \\ 0 & 0 & 0 \end{pmatrix},$$
Elimination

the system is consistent for all $s, t \in \mathbb{R}$. So $V \subseteq \text{span}(S)$.

We have shown that span
$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 5\\2\\3 \end{pmatrix} \right\} = V.$$

(b) Let
$$\mathbf{x} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
. Find a vector \mathbf{y} such that span $\{\mathbf{x}, \mathbf{y}\} = V$.

Note that
$$V$$
 is a plane in \mathbb{R}^3 and \mathbf{x} belongs to the plane since $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$ satisfies $x-y-z=0$. To span V , we just need another vector on the plane that is not a multiple of $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$. For example $\mathbf{y}=\begin{pmatrix} 1\\1\\0 \end{pmatrix}$.

(c) Let
$$T = S \cup \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
. Show that span $(T) = \mathbb{R}^3$.

Consider the row-echelon form of the matrix:

$$\begin{pmatrix} 1 & 5 & 0 \\ 1 & 2 & 0 \\ 0 & 3 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 5 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{R}.$$

Since there are no zero rows in \mathbf{R} , we conclude that T spans \mathbb{R}^3 .

3. (a) Which of the following sets S spans \mathbb{R}^4 ?

$$(i) \ S = \left\{ \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} \right\}.$$

$$(ii) \ S = \left\{ \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}.$$

$$(iii) \ S = \left\{ \begin{pmatrix} 6\\4\\-2\\4 \end{pmatrix}, \begin{pmatrix} 2\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 3\\2\\-1\\2 \end{pmatrix}, \begin{pmatrix} 5\\6\\-3\\2 \end{pmatrix}, \begin{pmatrix} 0\\4\\-2\\-1 \end{pmatrix} \right\}.$$

$$(iv) \ S = \left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\-1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \right\}.$$

(iv)
$$S = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\}$$
.
(b) For those sets that does not span \mathbb{R}^4 , find a vector \mathbf{x} in \mathbb{R}^4 that does not belong

to span(S). Does $S \cup \{\mathbf{x}\}$ span \mathbb{R}^4 ?

(c) For those sets that spans \mathbb{R}^4 find a vector \mathbf{v} if possible in the set S such that

(c) For those sets that spans \mathbb{R}^4 , find a vector \mathbf{y} , if possible, in the set S such that $\operatorname{span}(S) = \mathbb{R}^4 = \operatorname{span}(S - \{\mathbf{y}\})$.

(i)
$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

So S spans \mathbb{R}^4 . It is not possible to find \mathbf{y} such that span $(S - {\mathbf{y}}) = \mathbb{R}^4$ since we need at least 4 vectors to span \mathbb{R}^4 ..

(ii) S does not span \mathbb{R}^4 since it has only 3 vectors. To span \mathbb{R}^4 we find a $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$

such that the reduced row-echelon form of
$$\begin{pmatrix} 1 & 1 & 0 & x_1 \\ 2 & 1 & 0 & x_2 \\ 1 & -1 & 0 & x_3 \\ 0 & 0 & 1 & x_4 \end{pmatrix}$$
 has no zero

rows,

$$\begin{pmatrix} 1 & 1 & 0 & x_1 \\ 2 & 1 & 0 & x_2 \\ 1 & -1 & 0 & x_3 \\ 0 & 0 & 1 & x_4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 & x_1 \\ 0 & -1 & 0 & x_2 - 2x_1 \\ 0 & 0 & 1 & x_4 \\ 0 & 0 & 0 & x_3 + 2x_2 - 5x_1 \end{pmatrix}.$$

Any choice such that $x_3 + 2x_2 - 5x_1 \neq 0$ will work, say $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. Indeed,

 $S \cup \{\mathbf{x}\}$ will span \mathbb{R}^4 .

Remark: In the next tutorial we will learn a more efficient way, that is, to use the row space method.

(iii)

$$\begin{pmatrix} 6 & 2 & 3 & 5 & 0 \\ 4 & 0 & 2 & 6 & 4 \\ -2 & 0 & -1 & -3 & -2 \\ 4 & 1 & 2 & 2 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \mathbf{R}$$

Since there is a row of zeros in \mathbb{R} , S does not span \mathbb{R}^4 . Following the method

in (ii), we can find $\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ that does not belong to $\operatorname{span}(S)$. Again $S \cup \{\mathbf{x}\}$ spans \mathbb{R}^4 .

(iv)

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 & 2 \\ 0 & -1 & 1 & 2 & 3 \\ 0 & 1 & 1 & 1 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix} = \mathbf{R}.$$

So S spans \mathbb{R}^4 . From the reduced row-echelon form of **A**, we see that

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix}.$$

So we can choose $\mathbf{y} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ and $S - \{\mathbf{y}\}$ will span \mathbb{R}^4 .

4. (a) Determine whether span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \subseteq \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and/or span $\{\mathbf{v}_1, \mathbf{v}_2\} \subseteq \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ if

(i)
$$\mathbf{u}_1 = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

(ii)
$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 6 \\ 4 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 8 \\ 9 \end{pmatrix}$.

(b) In each of the above, describe span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and span $\{\mathbf{v}_1, \mathbf{v}_2\}$ geometrically. If span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ or span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a plane, find the equation of the plane.

(i)
$$\begin{pmatrix} 2 & -1 & 0 & 1 & 0 \\ -2 & 1 & 0 & -1 & 1 \\ 0 & -1 & 9 & -5 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -\frac{9}{2} & 3 & 0 \\ 0 & 1 & -9 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

 $\mathrm{So}\;\mathrm{span}\{\mathbf{v}_1,\mathbf{v}_2\}\not\subseteq\mathrm{span}\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}.$

$$\begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ -1 & 1 & -2 & 1 & 0 \\ -5 & 1 & 0 & -1 & 9 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{5} & -\frac{9}{5} \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\frac{3}{5} & \frac{9}{10} \end{pmatrix}.$$

So span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \not\subseteq \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$. From the first RREF above, we can see that $\mathbf{u}_3 = -\frac{9}{2}\mathbf{u}_1 - 9\mathbf{u}_2$ so span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \text{span}\{\mathbf{u}_1, \mathbf{u}_2\}$, which is a plane in \mathbb{R}^3 . To find the equation of the plane ax + by + cz = 0, we substitute (2, -2, 0) and (-1, 1, -1) into ax + by + cz = 0 and solve for a, b, c:

$$\left\{ \begin{array}{ccccc} 2a & - & 2b & & = & 0 \\ -a & + & b & - & c & = & 0 \end{array} \right. \Rightarrow \left(\begin{array}{ccccc} 2 & -2 & 0 & 0 \\ -1 & 1 & -1 & 0 \end{array} \right) \longrightarrow \left(\begin{array}{ccccc} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right).$$

So a solution to the linear system is a = 1, b = 1, c = 0 and the equation of the plane spanned by \mathbf{u}_1 and \mathbf{u}_2 is x + y + 0z = 0. Similarly span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is also a plane and the equation of the plane is found to be 4x - y + z = 0. Note that in this case, span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and span $\{\mathbf{v}_1, \mathbf{v}_2\}$ are both planes in \mathbb{R}^3 that intersect in a line that passes through the origin.

(ii)
$$\begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 6 & 4 & 2 & -2 & 8 \\ 4 & -1 & 5 & -5 & 9 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

So $\operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\} \subseteq \operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}.$

$$\begin{pmatrix} 1 & 0 & 1 & 2 & -1 \\ -2 & 8 & 6 & 4 & 2 \\ -5 & 9 & 4 & -1 & 5 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

So span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \subseteq \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$. We conclude that the two linear spans are equal. To find the equation of the plane span $\{\mathbf{v}_1, \mathbf{v}_2\}$, we substitute (1, -2, -5) and (0, 8, 9) into ax + by + cz = 0 to find a, b, c:

$$\left\{ \begin{array}{cccc|c}
a & - & 2b & - & 5c & = & 0 \\
& & 8b & + & 9c & = & 0
\end{array} \right. \Rightarrow \left(\begin{array}{ccc|c}
1 & -2 & -5 & 0 \\
0 & 8 & 9 & 0
\end{array} \right) \longrightarrow \left(\begin{array}{ccc|c}
1 & 0 & -\frac{11}{4} & 0 \\
0 & 1 & \frac{9}{8} & 0
\end{array} \right)$$

So a solution to the linear system is a = 22, b = -9, c = 8 and the equation of the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 is 22x - 9y + 8z = 0.

5. Determine which of the following sets are subspaces. For those sets that are subspaces, express the set as a linear span. For those sets that are not, explain why.

(a)
$$S = \left\{ \begin{pmatrix} p \\ q \\ p \\ q \end{pmatrix} \middle| p, q \in \mathbb{R} \right\}.$$

$$S = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$
(b) $S = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| a \ge b \text{ or } b \ge c \right\}.$

S is not a linear span (thus not a subspace) since $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ is in S but $(-1) \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$

is not.

(c)
$$S = \left\{ \begin{array}{c} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \middle| 4x = 3y \text{ and } 2x = -3w \right\}.$$

$$S = \left\{ \begin{array}{c} \begin{pmatrix} x \\ \frac{4x}{3} \\ z \\ -\frac{2x}{3} \end{pmatrix} \middle| x, z \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ \frac{4}{3} \\ 0 \\ -\frac{2}{3} \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

$$\left\{ \begin{array}{c} \begin{pmatrix} a \\ \end{pmatrix} \middle| 1 \quad 0 \quad 1 \quad 0 \middle| \right\}$$

(d)
$$S = \left\{ \begin{array}{c} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \middle| \begin{array}{ccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ a & b & c & d \end{array} \right\} = 0 \right\}.$$

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ a & b & c & d \end{vmatrix} = a - c - d.$$

So the set S can be rewritten as

$$S = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \middle| a - c - d = 0 \right\} = \left\{ \begin{pmatrix} s + t \\ u \\ s \\ t \end{pmatrix} \middle| s, t, u \in \mathbb{R} \right\}$$
$$= \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

(e)
$$S = \left\{ \left. \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \middle| w + x = y + z \right. \right\}.$$

S can be rewritten as $S = \left\{ \begin{array}{c} \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \middle| w + x - y - z = 0 \end{array} \right\}$. Solving the equa-

tion w + x - y - z = 0, we have

$$S = \left\{ \begin{array}{c} \begin{pmatrix} -s + t + u \\ s \\ t \\ u \end{pmatrix} \middle| s, t, u \in \mathbb{R} \end{array} \right\} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

(f)
$$S = \left\{ \begin{array}{c|c} a \\ b \\ c \\ d \end{array} \middle| ab = cd \end{array} \right\}.$$

S is not a linear span (thus not a subspace) since $\begin{pmatrix} 2\\0\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\2\\0\\1 \end{pmatrix}$ are vectors

in
$$S$$
 but $\begin{pmatrix} 2\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\2\\0\\1 \end{pmatrix} = \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix}$ is not.

(g) S is the solution set of
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
 where $\mathbf{A} = \begin{pmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & -2 & 0 & -1 \end{pmatrix}$.

Solving $\mathbf{A}\mathbf{x} = \mathbf{0}$, we have

$$\begin{pmatrix}
2 & 2 & -1 & 0 & 1 & 0 \\
-1 & -1 & 2 & -3 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & -2 & 0 & -1 & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

So an arbitrary vector in the solution set of $\mathbf{A}\mathbf{x} = \mathbf{0}$ is

$$\left\{ \left. \begin{pmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{pmatrix} \right| s, t \in \mathbb{R} \right\}.$$

So we can rewrite S as

$$\operatorname{span}\left\{ \begin{pmatrix} -1\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\-1\\0\\1 \end{pmatrix} \right\}.$$

(h)
$$S = \left\{ \begin{array}{l} \mathbf{u} + \mathbf{v} \mid \mathbf{v} \in \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \right\}$$
 and $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is a fixed vector. Let $T = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. We claim that $S = T$. Suppose \mathbf{y} is a vector in S , then $\mathbf{y} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ for some real numbers a, b . But notice that $\mathbf{y} = (a+1) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + (b+1) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ which is also a vector in T , thus $S \subseteq T$.

On the other hand, suppose **x** is a vector in *T*. Then $\mathbf{x} = c \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ for

some real numbers c, d. Then \mathbf{x} can be rewritten as

$$\mathbf{x} = c \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + (c-1) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + (d-1) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

which is a vector in S. Thus $T \subseteq S$. Combining, we have S = T =span $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$.

Supplementary Problems

6. (a) Show that the solution set to any homogeneous linear system

$$S = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = \mathbf{0} \}$$

is a subspace.

We will show that the solution set $S = \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{v} = \mathbf{0} \}$ is nonempty and is closed under linear combinations. It is obviously nonempty, since it contains the trivial solution A0 = 0. Suppose $u, v \in S$. Then for any $\alpha, \beta \in \mathbb{R}$, $\mathbf{A}(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \mathbf{A} \mathbf{u} + \beta \mathbf{A} \mathbf{v} = \alpha \mathbf{0} + \beta \mathbf{0} = \mathbf{0}$. So $(\alpha \mathbf{u} + \beta \mathbf{v}) \in S$. Hence, S is a subspace of \mathbb{R}^n .

(b) Suppose the homogeneous linear system Ax = 0 has a nontrivial solution. Prove that if the linear system Ax = b is consistent, it must have infinitely many solutions.

Let \mathbf{x}_0 be a nontrivial solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$. Let \mathbf{x}_p be a particular solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$. Then for any $t \in \mathbb{R}$, $\mathbf{A}(\mathbf{x}_p + t\mathbf{x}_0) = \mathbf{A}\mathbf{x}_p + t\mathbf{A}\mathbf{x}_0 = \mathbf{b} + t\mathbf{0} = \mathbf{b}$. Since \mathbf{x}_0 is nontrivial, the set $\{ \mathbf{x}_p + t\mathbf{x}_0 \in \mathbb{R}^n \mid t \in \mathbb{R} \}$ is infinite and is a subset of the solution set of $\mathbf{A}\mathbf{x} = \mathbf{b}$.

- (c) Prove that if the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has two distinct solutions, then it must have infinitely many solution.
 - Suppose \mathbf{u} and \mathbf{v} are distinct solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$. Then $\mathbf{A}(\mathbf{u} \mathbf{v}) = \mathbf{A}\mathbf{u} \mathbf{A}\mathbf{v} = \mathbf{b} \mathbf{b} = 0$. Since $\mathbf{u} \neq \mathbf{v}$, $(\mathbf{u} \mathbf{v})$ is a nontrivial solution to the homogenous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$. The statement now follows from (b).
- (d) (MATLAB) Let \mathbf{A} be the 10×10 magic square, and let \mathbf{b} be the 10-vector of all 1's. We may key these special matrices into MATLAB fairly quickly.
 - >> A=magic(10);
 - >> b=ones(10,1);
 - i. Express the solution set of $\mathbf{A}\mathbf{x} = \mathbf{b}$ as

$$\{ \mathbf{x}_p + s_1 \mathbf{u}_1 + s_2 \mathbf{u}_2 + \dots + s_k \mathbf{u}_k \mid s_1, s_2, \dots, s_k \in \mathbb{R} \}.$$

The RREF of the augmented matrix of Ax = b is \Rightarrow rref([A b])

We assign arbitrary parameters $x_8 = r, x_9 = s, x_{10} = t$. Then, the solution set is given by

$$\left\{ \left(\begin{array}{c} \frac{1}{253} \\ \frac{1}{101} \\ \frac{1}{253} \\ \frac{1}{253} \\ \frac{1}{0} \\ 0 \\ 0 \\ 0 \end{array} \right) + s_1 \left(\begin{array}{c} -1 \\ -1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} \right) + s_2 \left(\begin{array}{c} 0 \\ -2 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} \right) + s_3 \left(\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{array} \right) \right\} .$$

- ii. Pick a few $s_1, s_2, ..., s_k \in \mathbb{R}$ and compute $\mathbf{A}(s_1\mathbf{u}_1 + s_2\mathbf{u}_2 + \cdots + s_k\mathbf{u}_k)$. What is the set $S = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$?

 Whatever the choice of $s_1, s_2, s_3 \in \mathbb{R}$, $\mathbf{A}(s_1\mathbf{u}_1 + s_2\mathbf{u}_2 + s_3\mathbf{u}_2) = \mathbf{0}$. S is the solution set to the homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$.
- iii. Running the null command outputs a collection of column vectors v_1, \ldots, v_ℓ .

```
>> null(A)
```

Show that span $\{u_1, \ldots, u_k\}$ = span $\{v_1, \ldots, v_\ell\}$. What does this say about the vectors v_1, \ldots, v_ℓ ? In particular, what is the output of the null command in relation to the matrix A?

Let N represent the matrix null(A)

```
>> N=null(A);
```

Let U represent the matrix whose columns are $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$

```
>> U=[-1 -1 -1 0 0 1 1 1 0 0;0 -2 0 -1 0 0 2 0 1 0;0 -1 0 0 -1 0 1 0 0 1]';
```

Find the RREF of ($\mathbf{U} \mid \mathbf{N}$) and ($\mathbf{N} \mid \mathbf{U}$)

```
>>rref([U N])
```

```
>>rref([N U])
```

and check that both systems are consistent. Hence, the columns of the output of the null command spans the solution set to the homogeneous linear system Ax = 0.

A subset of \mathbb{R}^n is called an *affine space* if it is of the form $\{\mathbf{u} + \mathbf{v} \mid \mathbf{v} \in V\}$ for some subspace $V \subseteq \mathbb{R}^n$. Geometrically, an affine space is a subset of \mathbb{R}^n that is parallel to a subspace. This exercise shows that the solution set to the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is an affine space $\{\mathbf{x}_p + \mathbf{v} \mid \mathbf{v} \in S\}$, where S is the solutions to homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$, and \mathbf{x}_p is any particular solution.