Unified Theory of Adaptive-Softened N-Body Dynamics (rigorized production manuscript, vWORKS)

29 July 2025

Abstract

I formulate self-gravitating N-body dynamics in an extended phase space where a single global Plummer softening length ϵ is a canonical coordinate with conjugate momentum π . A harmonic spring couples ϵ to a smooth, permutation-invariant target $\epsilon_{\star}(q)$ and a quartic barrier $S_{\rm bar}(\epsilon)$ confines ϵ to $(\epsilon_{\rm min}, \epsilon_{\rm max})$. I prove that the exact sub-flows for the drift (T), potential $(V = V_{\rm grav} + S_{\rm bar})$ and spring (S) compose into a second-order, self-adjoint, symplectic Strang map. Linear momentum and angular momentum are conserved exactly in the continuous system and by each exact sub-flow, hence by the fixed-step composition up to roundoff. I establish a barrier lemma that yields a closed-form distance of $\epsilon(t)$ from the singular endpoints on all energy sublevels, and I give a backward-error result: on any compact analytic domain the method preserves a modified Hamiltonian $H_h = H_{\rm ext} + h^2 C_3 + O(h^4)$ and the physical-energy drift is $O(h^2)$ for exponentially long times. I also discuss when Barnes–Hut accelerations are conservative and how a truncated-pairs proxy recovers symplecticity when the cutoff mask is fixed in a neighborhood.

0. Notation and phase space

Let $d \in \{2,3\}$ and $q = (q_1, \ldots, q_N) \in (\mathbb{R}^d)^N$, $p = (p_1, \ldots, p_N)$ with $p_i = m_i \dot{q}_i$. I extend the phase space by the pair $(\epsilon, \pi) \in \mathbb{R}^2$. The canonical one-form and symplectic two-form are

$$\theta = \sum_{i=1}^{N} p_i \cdot dq_i + \pi d\epsilon, \qquad \omega = d\theta = \sum_{i=1}^{N} dq_i \wedge dp_i + d\epsilon \wedge d\pi.$$

I use $r_{ij} = ||q_i - q_j||$, $\rho_{ij} = \sqrt{r_{ij}^2 + \epsilon^2}$, total mass $M_{\text{tot}} = \sum_i m_i$, and $\epsilon_{\text{gap}} := \min(\epsilon - \epsilon_{\min}, \epsilon_{\max} - \epsilon)$.

Symbol	Definition	Units
$V_{ m grav}(q,\epsilon)$	$-G\sum_{i < j} \frac{m_i m_j}{\rho_{ij}}$	energy
$S_{\mathrm{bar}}(\epsilon)$	$\frac{k_{\text{wall}}}{4} \left[(\epsilon - \epsilon_{\text{min}})^{-4} + (\epsilon - \epsilon_{\text{max}})^{-4} \right]$	energy
T(p)	$\frac{1}{2} \sum_{i} \frac{\ p_{i}\ ^{2}}{m_{i}}$	energy
$S(\epsilon,\pi;q)$	$\frac{\pi^2}{2\mu_{\text{soft}}} + \frac{k_{\text{soft}}}{2} \left(\epsilon - \epsilon_{\star}(q)\right)^2$	energy
$\omega_{ m spr}$	$\sqrt{k_{ m soft}/\mu_{ m soft}}$	T^{-1}

The barrier stiffness obeys $[k_{\rm wall}] = ML^6T^{-2}$, consistent with $S_{\rm bar} \sim k_{\rm wall} \epsilon^{-4}$.

1 Extended Hamiltonian and equations of motion

I study the Hamiltonian

$$H_{\text{ext}}(q, p, \epsilon, \pi) = T(p) + V_{\text{grav}}(q, \epsilon) + S_{\text{bar}}(\epsilon) + \frac{\pi^2}{2\mu_{\text{soft}}} + \frac{k_{\text{soft}}}{2} (\epsilon - \epsilon_{\star}(q))^2$$
(1)

with fixed positive parameters $\mu_{\text{soft}}, k_{\text{soft}}, k_{\text{wall}}, \epsilon_{\min}, \epsilon_{\max}$ and a smooth target ϵ_{\star} to be specified below. Hamilton's equations are

$$\dot{q}_{i} = \frac{p_{i}}{m_{i}},
\dot{p}_{i} = -\nabla_{q_{i}}V_{\text{grav}}(q, \epsilon) + k_{\text{soft}}(\epsilon - \epsilon_{\star}(q)) \nabla_{q_{i}}\epsilon_{\star}(q),
\dot{\epsilon} = \frac{\pi}{\mu_{\text{soft}}},
\dot{\pi} = -\partial_{\epsilon}V_{\text{grav}}(q, \epsilon) - \partial_{\epsilon}S_{\text{bar}}(\epsilon) - k_{\text{soft}}(\epsilon - \epsilon_{\star}(q)),$$
(2)

with

$$\partial_{\epsilon} V_{\text{grav}}(q, \epsilon) = G \epsilon \sum_{i < j} \frac{m_i m_j}{\rho_{ij}^3}, \qquad \partial_{\epsilon} S_{\text{bar}}(\epsilon) = -k_{\text{wall}} \Big[(\epsilon - \epsilon_{\text{min}})^{-5} + (\epsilon - \epsilon_{\text{max}})^{-5} \Big].$$

2 The target $\epsilon_{\star}(q)$: definition, smoothness, and gradient

I only require that $\epsilon_{\star}(q)$ be a smooth, permutation-invariant function of the pair distances r_{ij} . For a concrete, production-ready choice I use the log-sum-exp "soft-min" over pair distances:

$$\epsilon_{\star}(q) = \frac{\alpha}{\lambda} \operatorname{softplus}(-\lambda L(q)), \qquad L(q) := \log \sum_{i < j} e^{-r_{ij}/\alpha},$$
(3)

with $\alpha > 0$ and $\lambda > 1$; softplus $(z) = \log(1 + e^z)$. On the collision-free domain $\{q : r_{ij} > 0 \ \forall i \neq j\}$ the map $q \mapsto r_{ij}$ is analytic, hence L and ϵ_{\star} are real-analytic. The gradient is

$$\nabla_{q_i} \epsilon_{\star}(q) = \sigma_{\star}(q) \sum_{j \neq i} w_{ij}(q) \frac{q_i - q_j}{r_{ij}}, \quad \sigma_{\star}(q) = \frac{1}{1 + e^{\lambda L(q)}}, \quad w_{ij} = \frac{e^{-r_{ij}/\alpha}}{\sum_{k < \ell} e^{-r_{k\ell}/\alpha}}, \quad (4)$$

so $w_{ij} = w_{ji}$ and $\sum_{i < j} w_{ij} = 1$. This symmetry immediately implies

$$\sum_{i=1}^{N} \nabla_{q_i} \epsilon_{\star}(q) = 0, \qquad \sum_{i=1}^{N} q_i \times \nabla_{q_i} \epsilon_{\star}(q) = 0 \quad (d=3).$$
 (5)

3 Exact sub-flows and the Strang composition

Split $H_{\text{ext}} = T + V + S$ with $V := V_{\text{grav}} + S_{\text{bar}}$. Denote the exact flows by φ_T^{τ} , φ_V^{τ} , φ_S^{τ} .

Drift (T). φ_T^{τ} advances q affinely at fixed p, ϵ, π : $q_i \mapsto q_i + \tau p_i/m_i$, p, ϵ, π unchanged.

Potential half-kick (V). φ_V^{τ} holds (q, ϵ) fixed and updates (p, π) by constant right-hand sides:

$$p_i \mapsto p_i - \tau \nabla_{q_i} (V_{\text{grav}}(q, \epsilon) + S_{\text{bar}}(\epsilon)), \qquad \pi \mapsto \pi - \tau \partial_{\epsilon} (V_{\text{grav}}(q, \epsilon) + S_{\text{bar}}(\epsilon)).$$

Spring block (S). With q frozen, set $\epsilon_{\star}^{\text{in}} = \epsilon_{\star}(q)$ and write $\Delta := \epsilon - \epsilon_{\star}^{\text{in}}$, $\zeta := \pi/(\mu_{\text{soft}} \omega_{\text{spr}})$. Over τ the pair (Δ, ζ) rotates by angle $\theta = \omega_{\text{spr}} \tau$:

$$\begin{bmatrix} \Delta(\tau) \\ \zeta(\tau) \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \Delta(0) \\ \zeta(0) \end{bmatrix},$$

so $\epsilon \mapsto \epsilon_{\star}^{\text{in}} + \Delta(\tau)$ and

$$p_i \mapsto p_i + k_{\text{soft}} \mathcal{I}(\tau) \nabla_{q_i} \epsilon_{\star}(q), \qquad \mathcal{I}(\tau) = \frac{\Delta(0) \sin \theta + \zeta(0) (1 - \cos \theta)}{\omega_{\text{spr}}}.$$

Strang map. For a fixed step h > 0 I define

$$\Phi^h = \varphi_S^{h/2} \circ \varphi_V^{h/2} \circ \varphi_T^h \circ \varphi_V^{h/2} \circ \varphi_S^{h/2} . \tag{6}$$

4 Symplecticity and time-reversibility (self-adjointness)

Proposition 1. Each exact sub-flow is symplectic on (Γ, ω) , hence the Strang map Φ^h in (6) is symplectic. Moreover, with the canonical involution $R(q, p, \epsilon, \pi) = (q, -p, \epsilon, -\pi)$ I have $R \circ \Phi^h \circ R = (\Phi^h)^{-1}$, i.e. Φ^h is time-reversible (self-adjoint).

Proof. For any Hamiltonian H, the vector field X_H satisfies $\iota_{X_H}\omega=\mathrm{d} H$, so $\mathcal{L}_{X_H}\omega=\mathrm{d}(\iota_{X_H}\omega)=\mathrm{d}^2H=0$ and the exact flow φ_H^{τ} preserves ω . Composition preserves symplecticity, so Φ^h is symplectic. Each of T,V,S is invariant under R (even in p or π , or independent of them), hence $R\circ\varphi_H^{\tau}\circ R=\varphi_H^{-\tau}$ and the palindromic product yields $R\circ\Phi^h\circ R=(\Phi^h)^{-1}$.

5 Linear and angular momentum conservation

Proposition 2 (linear momentum). With (2) the total momentum $P := \sum_i p_i$ satisfies $\dot{P} = 0$. Each exact sub-flow preserves P, hence the fixed-step map Φ^h preserves P in exact arithmetic.

Proof. $\sum_i -\nabla_{q_i} V_{\text{grav}} = 0$ by pairwise antisymmetry; $\nabla_{q_i} S_{\text{bar}} \equiv 0$; and by (5), $\sum_i \nabla_{q_i} \epsilon_{\star} = 0$. The same cancellations hold blockwise.

Proposition 3 (angular momentum). Let $L := \sum_i q_i \times p_i$ in d = 3 (or the bivector $L = \sum_i q_i \wedge p_i$ in general d). Then $\dot{L} = 0$ under (2). Each exact sub-flow preserves L, hence Φ^h preserves L in exact arithmetic

Proof. The gravitational force is central, S_{bar} has no q-gradient, and (5) yields $\sum_i q_i \times \nabla_{q_i} \epsilon_{\star} = 0$. Blockwise conservation follows.

6 Barrier well-posedness of ϵ

Lemma 4 (energy sublevel confinement). Let $E_0 = H_{\rm ext}(q(0), p(0), \epsilon(0), \pi(0)) < \infty$ with $\epsilon(0) \in (\epsilon_{\min}, \epsilon_{\max})$. Then for all t the solution satisfies

$$\epsilon(t) \in \left[\epsilon_{\min} + \delta_E, \ \epsilon_{\max} - \delta_E\right], \qquad \delta_E := \min \left\{ \left(\frac{k_{\text{wall}}}{4(E_0 + C_g)}\right)^{1/4}, \ \frac{\epsilon_{\max} - \epsilon_{\min}}{2} \right\},$$

where $C_g := G \sum_{i < j} \frac{m_i m_j}{\epsilon_{\min}}$.

Proof. $T \ge 0$ and $S \ge 0$, while $V_{\text{grav}} \ge -C_g$ on $\epsilon \ge \epsilon_{\min}$. Hence $S_{\text{bar}}(\epsilon(t)) \le E_0 + C_g =: B$. Each summand in S_{bar} is nonnegative, so $(\epsilon - \epsilon_{\min})^{-4} \le 4B/k_{\text{wall}}$ and $(\epsilon_{\max} - \epsilon)^{-4} \le 4B/k_{\text{wall}}$. Take fourth roots.

7 Backward error and modified energy

Fix $\rho > 0$ and $\delta > 0$ and define the open analytic domain

$$U_{\rho,\delta} = \{(q, p, \epsilon, \pi) : \min_{i < j} r_{ij} \ge \rho, \ \epsilon \in (\epsilon_{\min} + \delta, \epsilon_{\max} - \delta)\}.$$

On $U_{\rho,\delta}$, the vector field of H_{ext} and all iterated Poisson brackets built from T, V, S are analytic and bounded.

Proposition 5 (modified Hamiltonian and drift bound). There exist $h_0, \kappa, c > 0$ such that for all $0 < h \le h_0$ the Strang map (6) admits an analytic modified Hamiltonian

$$H_h = H_{\text{ext}} + h^2 C_3 + h^4 C_5 + \cdots$$

with only even powers, and

$$\Phi^h = \exp[h L_{H_h}] + O(e^{-\kappa/h})$$
 on $U_{\rho,\delta}$.

Along the discrete trajectory $x_n = \Phi^{nh}(x_0)$,

$$|H_{\text{ext}}(x_n) - H_{\text{ext}}(x_0)| \le ||C_3||_{\infty, U_{\rho, \delta}} h^2 + O(h^4) + O(e^{-\kappa/h}), \qquad 0 \le nh \lesssim c e^{\kappa/h}.$$

Proof (sketch). Apply Baker–Campbell–Hausdorff to the palindromic product and use self-adjointness to remove even powers in $\log \Phi^h$. Analyticity on $U_{\rho,\delta}$ yields the exponentially accurate modified flow and the stated $O(h^2)$ drift for H_{ext} .

A coarse, unit-consistent envelope for $||C_3||_{\infty,U_{\rho,\delta}}$ follows by bounding triple Poisson brackets of T, V, S:

$$||C_3||_{\infty,U_{\rho,\delta}} \lesssim \frac{GM_{\text{tot}}^2}{\epsilon_{\min}} + \frac{k_{\text{soft}}\,\epsilon_{\max}^3}{2\,\epsilon_{\min}} + \frac{k_{\text{soft}}\,\epsilon_{\max}^3}{\epsilon_{\min}} ||\nabla \epsilon_{\star}||_{\infty,U_{\rho,\delta}} + \frac{k_{\text{wall}}}{4\,\epsilon_{\text{gap}}^4}. \tag{7}$$

Any fixed choice of h that keeps the trajectory in $U_{\rho,\delta}$ —e.g. by a spring-angle cap $|\omega_{\rm spr}| \frac{h}{2} \le \theta_{\rm cap} < \pi$ and a gravitational limiter based on $\min_{i < j} \rho_{ij} / \sqrt{G(m_i + m_j)}$ —is admissible.

8 Self-adjointness \Rightarrow error parity

Lemma 6. For the self-adjoint map Φ^h I have $\Phi^{-h} = (\Phi^h)^* = (\Phi^h)^{-1}$ and the formal Lie series $\log \Phi^h = \sum_{k\geq 1} h^k A_k$ contains only odd powers $(A_{2\ell} = 0)$. Equivalently, the modified Hamiltonian H_h contains only even powers and the one-step local defect contains only odd powers.

Proof. Self-adjointness gives $\Phi^{-h} = (\Phi^h)^{-1}$; comparing $\log \Phi^{-h}$ with $-\log \Phi^h$ forces $A_{2\ell} = 0$.

9 Barnes–Hut accelerations and conservative truncations

A single V-kick is a Hamiltonian sub-flow iff the force derives from a potential evaluated consistently in both half-kicks. If I replace ∇V_{grav} with a Barnes–Hut force that is not the gradient of a single approximate potential (e.g. one-sided acceptances), symplecticity and exact momentum conservation need not hold, although time-reversibility may remain good in practice due to the palindromic structure.

Proposition 7 (conservative truncated-pairs proxy). Fix $R_{\text{cut}} > 0$ and define the truncated potential

$$\widetilde{V}(q, \epsilon) := -G \sum_{i < j, \ r_{ij} \le R_{\text{cut}}} \frac{m_i m_j}{\rho_{ij}}.$$

If the cutoff mask $\{(i,j): r_{ij} \leq R_{\text{cut}}\}$ is constant on an open neighborhood of a configuration (no pair lies at the threshold), then \widetilde{V} is C^{∞} in that neighborhood, the corresponding V-kick is an exact Hamiltonian sub-flow, and momentum and symplecticity hold exactly.

Proof. With a fixed mask the sum is finite and smooth in (q, ϵ) ; pairwise antisymmetry is preserved since the sum runs over unordered pairs.

10 Fixed-step production schedule (sufficient conditions)

In production I choose and hold fixed a sub-step h_{sub} for the entire run by

$$h_{\text{sub}} = \min \left\{ \chi \, \tau_{\text{grav}}, \, \theta_{\text{cap}} / \omega_{\text{spr}} \right\}, \qquad \tau_{\text{grav}} := \min_{i < j} \sqrt{\frac{\rho_{ij}^3}{G(m_i + m_j)}}, \quad \chi = 0.9,$$

and set the macro step to an integer multiple of h_{sub} . The angle cap $|\theta| = \omega_{\text{spr}} h_{\text{sub}} \leq \theta_{\text{cap}} < \pi$ controls the spring rotation per sub-flow; together with the barrier lemma it keeps the trajectory inside a compact analytic subset of $U_{\rho,\delta}$ on practical time horizons, which is sufficient for the backward-error result.

Conclusion

By embedding the global softening length as a canonical coordinate and coupling it to a smooth, permutation-invariant target through a harmonic spring and a quartic barrier, I obtain a Hamiltonian system that admits three exact, easily composable sub-flows. Their palindromic Strang composition is symplectic and time-reversible, preserves linear and angular momentum by construction, keeps ϵ

a finite distance away from the singular endpoints on all energy sublevels, and admits a standard analytic backward-error analysis with $O(h^2)$ energy drift on exponentially long times. When hierarchical force evaluations are used, I either require a conservative approximation or I adopt a truncated-pairs proxy with a fixed mask in a neighborhood to retain exact symplecticity.

A Explicit Jacobian checks (optional)

For completeness I record the Jacobians of the drift/kick blocks in canonical coordinates (q, p, ϵ, π) .

$$J_T = \begin{bmatrix} I & hM^{-1} & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad J_V = \begin{bmatrix} I & 0 & 0 & 0 \\ -\frac{h}{2}V_{qq} & I & -\frac{h}{2}V_{q\epsilon} & 0 \\ 0 & 0 & 1 & 0 \\ -\frac{h}{2}V_{\epsilon q} & 0 & -\frac{h}{2}V_{\epsilon \epsilon} & 1 \end{bmatrix},$$

with symmetric Hessians. One checks $J^{\top}\Omega J = \Omega$, consistent with the Liouville-form proof. The spring block is a direct product of a rotation in (ϵ, π) with a momentum shear $p \mapsto p + \text{const} \cdot \nabla \epsilon_{\star}(q)$, both symplectic.

B Units

$$[V_{\rm grav}] = [S_{\rm bar}] = [T] = [{\rm energy}] = ML^2T^{-2}, \ [\partial_{\epsilon}S_{\rm bar}] = MLT^{-2}, \ [k_{\rm soft}] = MT^{-2}, \ [\mu_{\rm soft}] = M, \ [\omega_{\rm spr}] = T^{-1}, \ [k_{\rm wall}] = ML^6T^{-2}.$$

C Alternative targets for ϵ_{\star} (implementation note)

The theory only needs ϵ_{\star} to be smooth and permutation-invariant in $\{r_{ij}\}$. In applications I may prefer a density-consistent construction that aggregates per-particle smoothing lengths h_i obtained from a kernel density estimator; any C^2 compact kernel and the usual implicit correction factors yield an explicit $\nabla \epsilon_{\star}$ with the same symmetry properties as (4). The conservation proofs are unaffected as they use only symmetry and smoothness.