SIN 251 – Organização de Computadores (2023)

Aula 04 – Mintermos e maxtermos

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

- Mintermos e Maxtermos
- EXEMPLOS: Mintermos e Maxtermos
- Mintermos e Maxtermos a partir da Tabela Verdade
- Exemplo: Mintermos
- Exemplo: Maxtermos
- EXEMPLO: Comparador de 2 bits

Mintermos e Maxtermos

Mintermos e Maxtermos:

- Utilizados para reescrever-se uma função lógica em uma forma padronizada (forma canônica).
 - E dessa forma, obter uma simplificação da mesma.

Simplificação:

- Redução do número de portas do circuito lógico que implementa a função.
 - Através de manipulação algébrica da função lógica, sem alteração do valor lógico da mesma.

EXEMPLOS: Mintermos e Maxtermos

- Exemplo 1:
 - f(A,B,C) = A + BC= ABC + ABC' + AB'C' + AB'C' + A'BC
 - Função na forma de uma Soma Padrão de Produtos (Mintermos).
 - Após manipulação algébrica,
 - cada termo possui todas as variáveis (A, B e C) complementadas ou não.
- Exemplo 2:
 - f(A,B,C) = A(B'+C) = (A+B+C)(A+B'+C)(A+B+C')(A+B'+C')(A'+B'+C)
 - Função na forma de um Produto Padrão de Somas (Maxtermos).
 - Após manipulação algébrica,
 - cada fator contém a soma de todas as variáveis complementadas ou não.

Mintermos e Maxtermos a partir da Tabela Verdade

- Todas as variáveis aparecem em cada produto (mintermos) e em cada soma (maxtermos).
- Combinações dos valores lógicos das variáveis: ordem crescente (000, 001, 010, ...).
- As linhas da tabela-verdade começam com a Linha 0.
- Para mintermos:
 - Escreva o produto das variáveis, complementando-as, sempre que seu valor lógico seja 0.
 - Exemplo: Linha 2 → 010 → A'BC'. (Considere apenas as linhas onde o valor lógico da função seja 1)
- Para maxtermos:
 - Escreva a soma das variáveis, complementando-as, sempre que seu valor lógico seja 1.
 - Exemplo: Linha 5 → 101 → A' + B + C'. (Considere apenas as linhas onde o valor lógico da função seja 0)

Linha	Α	В	С	f(A,B,C)	Mintermos	Maxtermos
0	0	0	0	1	m ₀ = A'B'C'	$M_0 = A + B + C$
1	0	0	1	0	m ₁ = A'B'C	M ₁ = A + B + C'
2	0	1	0	1	m ₂ = A'BC'	M ₂ = A + B' + C
3	0	1	1	1	m ₃ = A'BC	M ₃ = A + B' + C'
4	1	0	0	0	m ₄ = AB'C'	M ₄ = A' + B + C
5	1	0	1	0	m ₅ = AB'C	M ₅ = A' + B + C'
6	1	1	0	1	m ₆ = ABC'	M ₆ = A' + B' + C
7	1	1	1	1	m ₇ = ABC	M ₇ = A' + B' + C'

Exemplo: Mintermos

- Escrever a função f(A,B,C) na forma de Mintermos
 - Soma ponderada dos Mintermos:
 - $\qquad f(A,B,C) = 1.(A'B'C') + 0.(A'B'C) + 1.(A'BC') + 1.(A'BC) + 0.(AB'C') + 0.(AB'C) + 1.(ABC') + 1.(ABC')$
- Após desconsiderar-se os termos com peso 0:

-
$$f(A,B,C) = A'B'C' + A'BC' + A'BC + ABC' + ABC$$

= $linha_0 + linha_2 + linha_3 + linha_6 + linha_7$
= $m_0 + m_2 + m_3 + m_6 + m_7$

- Que é a <u>soma dos produtos (mintermos; m minúsculo)</u> das linhas **0**, **2**, **3**, **6** e **7**.
 - $F(A,B,C) = \Sigma_{ABC} (0,2,3,6,7).$ (*) Forma abreviada.

Linha	Α	В	С	f(A,B,C)	Mintermos	Maxtermos
0	0	0	0	1	m ₀ = A'B'C'	$M_0 = A + B + C$
1	0	0	1	0	m ₁ = A'B'C	M ₁ = A + B + C'
2	0	1	0	1	m ₂ = A'BC'	M ₂ = A + B' + C
3	0	1	1	1	m ₃ = A'BC	M ₃ = A + B' + C'
4	1	0	0	0	m ₄ = AB'C'	M ₄ = A' + B + C
5	1	0	1	0	m ₅ = AB'C	M ₅ = A' + B + C'
6	1	1	0	1	m ₆ = ABC'	M ₆ = A' + B' + C
7	1	1	1	1	m ₇ = ABC	M ₇ = A' + B' + C'

Exemplo: Maxtermos

- Escrever a função **f(A,B,C)** na forma de Maxtermos (Procedimento dual)
 - Substitui-se soma por produto, produto por soma e complementado por não complementado.

$$- f(A,B,C) = (1 + (A + B + C))(0 + (A + B + C'))(1 + (A + B' + C))(1 + (A + B' + C'))(0 + (A' + B + C))(0 + (A' + B + C'))(1 + (A' + B' + C))(1 + (A' + B' + C'))(1 + (A' + B' + C'))(1$$

- Após desconsiderar-se os fatores com termos 1:
 - f(A,B,C) = (A + B + C')(A' + B + C)(A' + B + C')= $linha_1 \cdot linha_4 \cdot linha_5$ = $M_1 \cdot M_4 \cdot M_5$
- Que é o <u>produto das somas</u> (maxtermos; **M** maiúsculo) das linhas **1**, **4**, e **5**.
 - $F(A,B,C) = \Pi_{ABC} (1,4,5).$ (*) Forma abreviada.

Linha	Α	В	С	f(A,B,C)	Mintermos	Maxtermos
0	0	0	0	1	m ₀ = A'B'C'	$M_0 = A + B + C$
1	0	0	1	0	m ₁ = A'B'C	M ₁ = A + B + C'
2	0	1	0	1	m ₂ = A'BC'	M ₂ = A + B' + C
3	0	1	1	1	m ₃ = A'BC	M ₃ = A + B' + C'
4	1	0	0	0	m ₄ = AB'C'	M ₄ = A' + B + C
5	1	0	1	0	m ₅ = AB'C	M ₅ = A' + B + C'
6	1	1	0	1	m ₆ = ABC'	M ₆ = A' + B' + C
7	1	1	1	1	m ₇ = ABC	M ₇ = A' + B' + C'

EXEMPLO: Comparador de 2 bits

- Um circuito comparador de dois vetores de dois bits.
 - Entradas:
 - 2 vetores, N1 e N2, cada um com dois bits.
 - N1 = AB e N2 = CD
 - Saídas:
 - 3 saídas, de 1 bit cada uma (F1, F2 e F3)
 - Se AB = CD então F1 = 1 e F2=F3=0
 - Se AB < CD então F2 = 1 e F1=F3=0</p>
 - Se AB > CD então F3 = 1 e F1=F2=0

EXEMPLO: Comparador de 2 bits

Calcular os mintermos e os maxtermos a partir da tabela verdade.

L	Α	В	С	D	F1	F2	F3
0	0	0	0	0	1	0	0
1	0	0	0	1	0	1	0
2	0	0	1	0	0	1	0
3	0	0	1	1	0	1	0
4	0	1	0	0	0	0	1
5	0	1	0	1	1	0	0
6	0	1	1	0	0	1	0
7	0	1	1	1	0	1	0
8	1	0	0	0	0	0	1
9	1	0	0	1	0	0	1
10	1	0	1	0	1	0	0
11	1	0	1	1	0	1	0
12	1	1	0	0	0	0	1
13	1	1	0	1	0	0	1
14	1	1	1	0	0	0	1
15	1	1	1	1	1	0	0

Mintermos

F1 (A,B,C,D) =

1.A'B'C'D' + 0. A'B'C'D +

0.A'B'C D' + 0. A'B'C D +

0.A'B C'D' + 1. A'B C'D +

0.A'B C D' + 0. A'B C D +

0.A B'C'D' + 0. A B'C'D +

1.A B'C D' + 0. A B'C'D +

0.A B'C'D' + 0. A B'C'D +

0.A B'C'D' + 1. A B C D

F1 (A,B,C,D) =
$$m_0 + m_5 + m_{10} + m_{15}$$

F1 (A,B,C,D) = Σ_{ABCD} (0,5,10,15)

L	Α	В	С	D	F1	F2	F3	Mintermos	Maxtermos
0	0	0	0	0	1	0	0	A'B'C'D'	A+B+C+D
1	0	0	0	1	0	1	0	A'B'C'D	A+B+C+D'
2	0	0	1	0	0	1	0	A'B'CD'	A+B+C'+D
3	0	0	1	1	0	1	0	A'B'CD	A+B+C'+D'
4	0	1	0	0	0	0	1	A'BC'D'	A+B'+C+D
5	0	1	0	1	1	0	0	A'BC'D	A+B'+C+D'
6	0	1	1	0	0	1	0	A'BCD'	A+B'+C'+D
7	0	1	1	1	0	1	0	A'BCD	A+B'+C'+D'
8	1	0	0	0	0	0	1	AB'C'D'	A'+B+C+D
9	1	0	0	1	0	0	1	AB'C'D	A'+B+C+D'
10	1	0	1	0	1	0	0	AB'CD'	A'+B+C'+D
11	1	0	1	1	0	1	0	AB'CD	A'+B+C'+D'
12	1	1	0	0	0	0	1	ABC'D'	A'+B'+C+D
13	1	1	0	1	0	0	1	ABC'D	A'+B'+C+D'
14	1	1	1	0	0	0	1	ABCD'	A'+B'+C'+D
15	1	1	1	1	1	0	0	ABCD	A'+B'+C'+D'

Mintermos

F1 (A,B,C,D) =

1.A'B'C'D' +
$$\frac{0.A'B'C'D}{0.A'B'C}$$
 + $\frac{0.A'B'C}{0.A'B'C}$ + $\frac{0.A'B'C}{0.A'B}$ + $\frac{0.A'B}{0.A'B}$ + $\frac{0$

Maxtermos

F1 (A,B,C,D) =
$$(1+(A+B+C+D)) (0+(A+B+C+D')) (0+(A+B+C'+D')) (0+(A+B+C'+D')) (0+(A+B+C'+D')) (0+(A+B'+C+D')) (0+(A+B'+C'+D')) (0+(A+B'+C'+D)) (0+(A+B'+C'+D')) (0+(A'+B+C'+D')) (0+(A'+B+C'+D')) (0+(A'+B+C'+D')) (0+(A'+B+C'+D')) (0+(A'+B'+C+D')) (0+(A'+B'+C+D')) (0+(A'+B'+C'+D')) (0+(A'+B'+C'+D')) (1+(A'+B'+C'+D')) ($$

L	Α	В	С	D	F1	F2	F3	Mintermos	Maxtermos
0	0	0	0	0	1	0	0	A'B'C'D'	A+B+C+D
1	0	0	0	1	0	1	0	A'B'C'D	A+B+C+D'
2	0	0	1	0	0	1	0	A'B'CD'	A+B+C'+D
3	0	0	1	1	0	1	0	A'B'CD	A+B+C'+D'
4	0	1	0	0	0	0	1	A'BC'D'	A+B'+C+D
5	0	1	0	1	1	0	0	A'BC'D	A+B'+C+D'
6	0	1	1	0	0	1	0	A'BCD'	A+B'+C'+D
7	0	1	1	1	0	1	0	A'BCD	A+B'+C'+D'
8	1	0	0	0	0	0	1	AB'C'D'	A'+B+C+D
9	1	0	0	1	0	0	1	AB'C'D	A'+B+C+D'
10	1	0	1	0	1	0	0	AB'CD'	A'+B+C'+D
11	1	0	1	1	0	1	0	AB'CD	A'+B+C'+D'
12	1	1	0	0	0	0	1	ABC'D'	A'+B'+C+D
13	1	1	0	1	0	0	1	ABC'D	A'+B'+C+D'
14	1	1	1	0	0	0	1	ABCD'	A'+B'+C'+D
15	1	1	1	1	1	0	0	ABCD	A'+B'+C'+D'

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
 - Apêndice A
- Página do Prof. J. Bosco
 - http://inf.ufsc.br/ine5365/algboole.html
 - http://inf.ufsc.br/ine5365/mimaterm.html

FIM