



## Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

## ON THE CIRCLES OF APOLLONIUS.

By NATHAN ALTSCHILLER, University of Colorado.

**DEFINITION.** The interior and exterior bisectors of the angles  $A, B, C$  of a triangle  $ABC$  meet the opposite sides in the points  $U, U'; V, V'; W, W'$  respectively. The circles described on the segments  $UU', VV', WW'$  as diameters, are called the *circles of Apollonius*.



Not all the lines considered are drawn in the figure.

(1) The bisectors  $CW, CW'$  being perpendicular to each other, the segment  $WW'$  subtends a right angle at the vertex  $C$ , therefore  $C$  is on the circle  $\gamma_3$  described on  $WW'$  as diameter. Similarly for the points  $A$  and  $B$  with respect to the circles  $\gamma_1$  and  $\gamma_2$  described on  $UU'$  and  $VV'$  as diameters, and therefore:

*The Apollonian circles pass through the respective vertices of the triangle.*

(2) The bisectors  $CW, CW'$  separate harmonically the lines  $CA, CB$ ,<sup>1</sup> hence any point  $S$  of the circle  $\gamma_3$  is the center of the harmonic pencil of lines  $S(ABWW')$ , and since  $SW, SW'$  are perpendicular to each other, they are the bisectors of the angles at  $S^1$ . According to a well-known theorem of plane geometry, we have for the triangles  $ABC$  and  $ABS$ ,

$$\frac{CA}{CB} = \frac{AW}{BW} = \frac{AW'}{BW'}; \quad \frac{SA}{SB} = \frac{AW}{BW} = \frac{AW'}{BW'}.$$

Hence

$$\frac{SA}{SB} = \frac{CA}{CB}.$$

Now, if for any point  $S'$  in the plane we have  $S'A/S'B = CA/CB$ , the bisectors of the angles at  $S'$  will pass through  $W, W'$ , according to the converse of the theorem cited, and the segment  $WW'$  will subtend at  $S'$  a right angle, i. e.,  $S'$  is on  $\gamma_3$ . These considerations may be repeated for the circles  $\gamma_1$  and  $\gamma_2$ . Hence:

<sup>1</sup> John W. Russell, *Elementary Treatise on Pure Geometry*, pp. 18, 19.

The circle of Apollonius is the locus of a point the ratio of whose distances from two fixed points is constant.<sup>1</sup>

This property is frequently taken as the definition of the circle of Apollonius.

(3) From the definition and (1) it is evident that any two of the circles of Apollonius cross each other. Now, if  $I, I'$  are the points common to any two of these circles, say  $\gamma_2, \gamma_3$ , we have (2)

$$\frac{IA}{IC} = \frac{BA}{BC}; \quad \frac{IA}{IB} = \frac{CA}{CB}.$$

Hence

$$\frac{IB}{IC} = \frac{BA}{CA}, \text{ i. e., } I \text{ is on } \gamma_1.$$

The same being true for the point  $I'$ , we infer that

*The three circles of Apollonius have two points in common.<sup>2</sup>*

COROLLARY. *The centers of the three circles of Apollonius are collinear.*

(4) The points  $A, B, W, W'$  being harmonic (2) and  $WW'$  being a diameter of  $\gamma_3$  (1), any circle passing through  $A, B$  cuts the circle  $\gamma_3$  orthogonally.<sup>3</sup> Similarly for  $\gamma_1$  and  $\gamma_2$ . Hence:

*The circumcircle is orthogonal to each of the three circles of Apollonius.*

(5) The radii  $OA, OB, OC$  of the circumcircle  $\omega$  are the tangents drawn from the center  $O$  of  $\omega$  to the respective circles of Apollonius (1, 4), and since  $OA = OB = OC$ , the point  $O$  belongs to the radical axis of the circles  $\gamma_1, \gamma_2, \gamma_3$ , which is the line joining the points  $I, I'$  (3) common to the three circles. Consequently:

*The common chord of the three circles of Apollonius passes through the center of the circumcircle.<sup>2</sup>*

COROLLARY.<sup>3</sup> *The points of intersection  $M, M'$  of the circumcircle with the chord  $s \equiv II'$  are harmonically separated by the points  $I, I'$ .*

(6) The circles  $\omega$  and  $\gamma_3$  having the point  $C$  in common (1) and being orthogonal (4), the tangent to  $\omega$  at  $C$  passes through the center  $C_3$  of  $\gamma_3$ . The centers  $C_1, C_2$  of the circles  $\gamma_1, \gamma_2$  are determined in a like manner. Hence:

*The tangents to the circumcircle at the vertices of the triangle meet the opposite sides of the triangle in the centers of the respective circles of Apollonius.<sup>2</sup>*

(7) The circles  $\omega$  and  $\gamma_3$  intersect in  $C$  (1); let  $C'$  denote their other point of intersection. Since  $OC, OC'$  are the tangents drawn from  $O$  to  $\gamma_3$  (4), the chord  $s_3 \equiv CC'$  is the polar of  $O$  with respect to  $\gamma_3$ , and therefore meets  $s \equiv$  chord  $II'$  at the harmonic conjugate  $K$  of  $O$  with respect to the pair of points  $I, I'$ . Similarly for the chords of intersection  $s_1 \equiv AA', s_2 \equiv BB'$  of  $\omega$  with the circles  $\gamma_1$  and  $\gamma_2$ . Therefore:

*The three chords joining the three pairs of points of intersection of the circum-*

<sup>1</sup> Weber and Wellstein, *Encyklopädie der Elementar-Matematik*, Vol. 2, p. 250, sec. ed.

<sup>2</sup> John Casey, *Analytic Geometry*, p. 146, sec. ed. This MONTHLY, February, 1915, p. 59.

<sup>3</sup> Russell, *loc. cit.*, p. 26.

*circle with each of the three circles of Apollonius, meet on the radical axis of the Apollonian circles.<sup>1</sup>*

The common point  $K$  is called the *Lemoine or Symmedian point* of the triangle; the chords  $s_1, s_2, s_3$  are called the *Symmedian lines* or *Symmedians* of the triangle;<sup>2</sup>  $s \equiv II'$  is called the *Brocard diameter*.<sup>3</sup>

(8) The tangents from  $C$  to  $\omega$  are the lines  $C_3C$  and  $C_3C'$  (4),  $C_3$  is therefore the pole of  $s_3 \equiv CC'$  with respect to  $\omega$ ; since  $C_3$  is on  $AB$ , the line  $s_3$  passes through the pole of  $AB$  with respect to  $\omega$ , which pole is the point of intersection of the tangents to  $\omega$  at  $A$  and  $B$ . Similarly for the chords  $s_1, s_2$ . Hence:

*The Symmedian lines pass through the respective vertices of the triangle formed by the tangents to the circumcircle at the vertices of the given triangle.<sup>4</sup>*

(9) The four lines  $s_1, s_2, s_3, s$  meeting at  $K$  (7) have their respective poles  $C_1, C_2, C_3, \infty$  (8) with regard to the circumcircle  $\omega$  on the polar of  $K$  with respect to  $\omega$ , and the anharmonic ratio of the four lines is equal to the anharmonic ratio of the four points.<sup>5</sup> Hence:

*A. The line of centers of the Apollonian circles is the polar of the Lemoine point with respect to the circumcircle.*

The line is called the *Lemoine axis* or *line*.<sup>6</sup>

*B. The anharmonic ratio of the three Symmedians and the Brocard diameter is numerically equal to  $C_1C_3/C_2C_3$ .*

(10) The Lemoine axis 1 is perpendicular to  $s$  at the mid-point  $J$  of the segment  $II'$  (3), and since the segments  $MM'$  and  $II'$  are harmonic (5, cor.), the point  $J$  lies without the segment  $MM'$ . Consequently:

*The points of intersection of the Lemoine axis with the circumcircle are always imaginary.*

**COROLLARY.** *The Lemoine point of a triangle lies always within the circumcircle (9A).*

(11) Since the line  $s$  passes through the pole  $O$ , with regard to  $\gamma_3$ , of the chord  $CC'$  (7), the pole  $P_3$  of  $s$  with respect to  $\gamma_3$  lies on  $CC'$ . On the other hand  $P_3$  lies on 1, since  $s$  is perpendicular to the diameter 1 of  $\gamma_3$ . Similarly for the poles  $P_1, P_2$  of  $s$  with respect to  $\gamma_1, \gamma_2$ . Hence:

*The Symmedians meet the Lemoine axis in the respective poles of the Brocard diameter with regard to the Apollonian circles.*

<sup>1</sup> William Gallatly, *The Modern Geometry of the Triangle*, p. 6.

<sup>2</sup> Casey, *loc. cit.*, pp. 63, 64; Gallatly, *loc. cit.*, pp. 1, 2; R. Lachlan, *An. Elem. Treatise on Pure Geometry*, pp. 62, 63.

<sup>3</sup> John Casey, *Analytical Geometry*, p. 146, sec. ed. This MONTHLY, Feb., 1915, p. 59.

<sup>4</sup> Gallatly, *loc. cit.*, p. 5.

<sup>5</sup> Russell, *loc. cit.*, pp. 165, 117.

<sup>6</sup> William Gallatly, *The Modern Geometry of the Triangle*, p. 6.

<sup>7</sup> Russell, *loc. cit.*, p. 15.