Braeden Hall 101143403

1.

a. - Let R be the proposition 'it is red'

- Let B be the proposition 'it is blue'

- Let G be the proposition 'it is green'

 $R \rightarrow \neg (B \land G)$

b. - Let R be the proposition 'it is red'

- Let B be the proposition 'it is blue'

- Let G be the proposition 'it is green'

- Let W be the proposition 'it is white'

$W \lor (R \land B \land G)$

c. - Let R be the proposition 'it is red'

- Let B be the proposition 'it is blue'

- Let G be the proposition 'it is green'

- Let K be the proposition 'it is balck'

$$K \leftrightarrow \neg (R \lor B \lor G)$$

2.

a. $\neg (n \land (\neg n \lor (a \rightarrow r)))$

<u>a.</u>	$(p \land$	$(p \lor q)$	$(\rightarrow r)))$				
p	q	r	$egin{array}{c} \mathbf{q} ightarrow \mathbf{r} \ (\mathbf{s}) \end{array}$	¬ p (t)	t V s (u)	p A u (v)	¬v
T	Т	Т	Т	F	Т	Т	F
Т	Т	F	F	F	F	F	T
T	F	Т	Т	F	Т	Т	F
T	F	F	Т	F	T	Т	F
F	Т	Т	Т	T	Т	F	T
F	Т	F	F	T	Т	F	T
F	F	Т	Т	T	Т	F	T
F	F	F	Т	T	Т	F	T

[∴] This is a Contingency

b. $(p \lor (q \leftrightarrow (\neg q \land (p \lor r))))$

р	q	r	p V r (s)	¬q (t)	t A s (u)	$\mathbf{q} \leftrightarrow \mathbf{u}(\mathbf{v})$	p V v
Т	Т	Т	Т	F	F	F	T
Т	Т	F	Т	F	F	F	T
Т	F	F	Т	Т	Т	F	T
Т	F	F	Т	Т	T	F	T
F	Т	Т	Т	F	F	F	F
F	Т	F	F	F	F	F	F
F	F	Т	Т	Т	Т	F	F
F	F	F	F	Т	F	Т	T

∴ This is a Contingency

c. $(q \land \neg (r \land (r \lor (p \leftrightarrow r))))$

p	q	r	$p \leftrightarrow r$ (s)	r V s (t)	r A t (u)	¬u (v)	q A v
Т	Т	Т	Т	Т	Т	F	F
Т	Т	F	F	F	F	Т	T
Т	F	Т	T	T	Т	F	F
Т	F	F	F	F	F	Т	F
F	T	Т	F	T	Т	F	F
F	Т	F	T	Т	F	Т	T
F	F	Т	F	Т	Т	F	F
F	F	F	Т	Т	F	Т	F

∴ This is a Contingency

d	$\neg (r \lor$	$\neg (n \rightarrow$	$(n \land$	(((p)
u.	' (1 V	$(p \rightarrow$	(p)	(())

p	q	r	$ \begin{array}{c c} p \wedge q \\ (s) \end{array} $	$p \to s $ (t)	¬t (u)	r V u (v)	¬v
Т	Т	T	Т	Т	F	Т	F
Т	Т	F	Т	Т	F	F	T
Т	F	Т	F	F	T	Т	F
Т	F	F	F	F	Т	Т	F
F	Т	Т	F	Т	F	Т	F
F	Т	F	F	Т	F	F	T
F	F	Т	F	Т	F	Т	F
F	F	F	F	Т	F	F	T

∴ This is a Contingency

a.
$$(p \land (p \rightarrow \neg p))$$

- = $(p \land (\neg p \lor \neg p))$ by Implication Equivalence
- = $p \land (\neg p)$ by Idempotent
- = False by Negation
- ∴ This is a contradiction

b.
$$(\neg p \rightarrow (p \lor q))$$

- = $(\neg(\neg p) \lor (p \lor q))$ by Implication Equivalence
- $= (p \lor (p \lor q))$ by Double Negation
- = (p V p) V qby Associativity
- = p V q by Idempotent
- ∴ This is a contingency

c.
$$(q \leftrightarrow (p \lor \neg p))$$

- = $(q \leftrightarrow True)$ by Negation
- = $(q \rightarrow True) \land (True \rightarrow q)$ by Biconditional Equivalence
- = $(\neg q \ V \ True) \ \Lambda \ (True \rightarrow q)$ by Implication Equivalence
- = $(\neg q \lor True) \land (\neg True \lor q)$ by Implication Equivalence
- = True \wedge (\neg True \vee q) by Domination
- = True \wedge (False \vee q)
- = True \wedge q by Identity
- = q by Identity
- ∴ This is a contingency

d.
$$(\neg q \lor (q \land p))$$

= $(\neg q \lor q) \land (\neg q \lor p)$ by Distributive
= True $\land (\neg q \lor p)$ by Negation
= $\neg q \lor p$ by Identity
 \therefore This is a contingency

4.
$$(p \rightarrow \neg (q \land \neg p)) \rightarrow (\neg q \lor p)$$

= $\neg (q \land \neg p)$

5.	5. $(p \rightarrow \neg (q \land \neg p)) \rightarrow (\neg q \lor p)$									
p	q	¬p (r)	q∧r (s)	¬s (t)	$p \to t $ (u)	¬q (v)	v V p (w)	$u \rightarrow w$		
Т	Т	F	F	T	Т	F	Т	T		
Т	F	F	F	T	Т	T	Т	T		
F	Т	Т	Т	F	Т	F	F	F		
F	F	Т	F	Т	Т	Т	T	T		

The *t* column is equal to $\neg(q \land \neg p)$ which is the final equation in the proper format and the truth table said column and the one for the final output are equivalent. Therefore the two equations $\neg(q \land \neg p)$ and $(p \to \neg(q \land \neg p)) \to (\neg q \lor p)$ are equivalent

6.
$$(p \rightarrow \neg (q \land \neg p)) \rightarrow (\neg q \lor p)$$

$$= (\neg p \lor \neg (q \land \neg p)) \rightarrow (\neg q \lor p) \text{ by Implication Equivalence}$$

$$= \neg (\neg p \lor \neg (q \land \neg p)) \lor (\neg q \lor p) \text{ by Implication Equivalence}$$

$$= \neg (\neg p \lor \neg q \lor \neg (\neg p)) \lor (\neg q \lor p) \text{ by De Morgan's Law}$$

$$= \neg (\neg p \lor p \lor \neg q) \lor (\neg q \lor p) \text{ by Double Negation}$$

$$= \neg (\text{True } \lor \neg q) \lor (\neg q \lor p) \text{ by Negation}$$

$$= \neg \text{True } \lor (\neg q \lor p) \text{ by Domination}$$

$$= \text{False } \lor (\neg q \lor p) \text{ by Identity}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

$$= \neg (\neg (\neg q \lor p)) \text{ by Double Negation}$$

- 7.
- a. Every animal that exists is both a giraffe and eats meat.
- b. There exists an animal that is either is not a giraffe that eats meat or is not a lion.
- c. For all animals that exist if it eats meat or is a lion then if it is not a giraffe it is a lion.