Hashing sets

Your company has a database $S \in U$ of keys. For this database, it uses a randomly chosen hash function h from a universal family H (as seen in class); it also keeps a bit vector B_S of m entries, initialized to zeroes, which are then set $B_S[h(k)] = 1$ for every $k \in S$ (note that collisions may happen). Unfortunately, the database S has been lost, thus only B_S and h are known, and the rest is no more accessible. Now, given $k \in U$, how can you establish if k was in S or not? What is the probability of error? [Note: you are not choosing k and S randomly as the they are both given... randomization here is in the choice of $k \in H$ performed when building k0 Under the hypothesis that k1 for some k2 I, find the expected number of k3 in k5 under a uniform choice at random of k6.

SOLUTION

- a) To check whether $k \in U$ belong to S, we simply check $B_S[h(k)] = 1$. The probability of error is equal to $P(error) = 1 (1 \frac{1}{m})^{|S|}$. This problem is similar to the "Birthday paradox" (i.e. fixed a day how many people are born on the same day). In word: the probability of a collision is $\frac{1}{m}$, thus the probability to do not have a collision is $(1 \frac{1}{m})$. If we have |S| key the probability do not have any collision is $(1 \frac{1}{m})^{|S|}$. Therefore the probability to have a collision is: $1 (1 \frac{1}{m})^{|S|}$. That is, the probability that there is at least one collision within the key of S, that is the probability that $\exists j \in S : h(k) = h(j)$ but $j \neq k$ with $k \in U$.
- **b)** To estimate the size of S, we first create an indicator variable $X = \sum_{i=0}^{m-1} X_i$ where

$$X_i = \begin{cases} 1 & \text{if } B_S[i] = 1 \\ 0 & \text{otherwise} \end{cases}$$

Than the expectation E[X] represents the expected number of 1 in the B_s table. To calculate the expectation we need to estimate the $P(B_S[h(k)] = 1)$, that, by the point a), is $1 - (1 - \frac{1}{m})^{|S|}$. Since we do not know |S| we use the hypothesis, that is $|S| \leq \frac{m}{c}$. Therefore we have:

$$P(B_S[h(k)] = 1) = 1 - (1 - \frac{1}{m})^{|S|} \le 1 - (1 - \frac{1}{m})^{\frac{m}{c}}$$

Hence we have $E[X] = \sum_{i=0}^{m-1} 1 - (1 - \frac{1}{m})^{\frac{m}{c}} = m - m(1 - \frac{1}{m})^{\frac{m}{c}}$. Now we have got a bound for |S|: $E[X] \leq |S| \leq \frac{m}{c}$.