Reading Seminar, Flow Matching

Flow Matching Guide and Code, Yaron Lipman et al.

Jonathan Ma March 6, 2025

University of Delaware

Table of contents

- 1. Introduction
- 2. Preliminary Knowledge
- 3. Flow Models
- 4. Tools for Flow Matching
- 5. Flow Matching
- 6. Conclusion

Introduction

Flow Matching

Figure 1: Flow Matching blueprint, described by Lipman

Goal

Given samples $X_0 \sim p$ from a source distribution, build a model to sample $X_1 \sim q$, for some target distribution q.

Preliminary Knowledge

Assumptions

- 1. Consider data in the d-dimensional Euclidean space \mathbb{R}^d , with the standard Euclidean inner product and norm.
- 2. We will consider random variables $X \in \mathbb{R}^d$.
- 3. We will omit integration interval when integrating over the whole space, that is, $\int \equiv \int_{\mathbb{R}^d}$.

Diffeomorphisms

Denote by $C^r(\mathbb{R}^m, \mathbb{R}^n)$ the space of functions $f: \mathbb{R}^m \to \mathbb{R}^n$ with continuous partial derivatives of order r.

Definition (Diffeomorphism)

A function $\psi \in C^r(\mathbb{R}^m, \mathbb{R}^n)$ is called a diffeomorphism if its inverse $\psi^{-1} \in C^r(\mathbb{R}^n, \mathbb{R}^m)$.

4

Push-Forward Maps

Given a RV $X \sim p_X$ (with density p_X), consider a RV $Y = \psi(X)$, where $\psi : \mathbb{R}^d \to \mathbb{R}^d$ is a C^1 diffeomorphism. The PDF of Y is called the push-forward of p_X , which we can compute as

$$p_{Y}(y) = p_{X}(\psi^{-1}(y))|\det \partial_{y}\psi^{-1}(y)|.$$

We will denote the push forward operator with the symbol #, that is

$$[\psi_{\sharp}p_X](y) := p_X(\psi^{-1}(y))|\det \partial_y \psi^{-1}(y)|.$$

5

Flow Models

Flow Models

Definition (Flow)

A C^r flow is a time-dependent mapping $\psi: [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ such that $\psi: (t,x) \mapsto \psi_t(x)$, and $\psi \in C^r([0,1] \times \mathbb{R}^d, \mathbb{R}^d)$, with each ψ_t being a C^r diffeomorphism in X, for all $t \in [0,1]$.

Definition (Flow Model)

A flow model is a continuous-time Markov process $(X_t)_{0 \le t \le 1}$ defined by applying a flow ψ_t to the RV X_0 , such that

$$X_t = \psi_t(X_0), \quad t \in [0, 1], \text{ where } X_0 \sim p.$$

6

Flow and Velocity Field Correspondence

We claim a C^r flow ψ can be defined in terms of a $C^r([0,1] \times \mathbb{R}^d, \mathbb{R}^d)$ velocity field $u:[0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ satisfying $u:(t,x) \mapsto u_t(x)$ via the following ODE:

$$\frac{d}{dt}\psi_t(x)=u_t(\psi_t(x)),\quad \psi_0(x)=x.$$

Theorem (Flow local existence and uniqueness)

If u is $C^r([0,1] \times \mathbb{R}^d, \mathbb{R}^d)$, $r \ge 1$ (in particular, locally Lipschitz), then the ODE described above has a unique solution which is a $C^r(\Omega, \mathbb{R}^d)$ diffeomorphism $\psi_t(x)$ defined over an open set Ω , which is a super-set of $\{0\} \times \mathbb{R}^d$.

7

Flow and Velocity Field Correspondence

Figure 2: A flow model $X_t = \psi_t(X_0)$ is defined by a diffeomorphism $\psi_t : \mathbb{R}^d \to \mathbb{R}^d$ (visualized with a brown square grid) pushing samples from a source RV X_0 (left, black points) toward some target distribution q (right).

Figure 3: A flow $\psi_t : \mathbb{R}^d \to \mathbb{R}^d$ (square grid) is defined by a velocity field $u_t : \mathbb{R}^d \to \mathbb{R}^d$ (visualized with blue arrows) that prescribes its instantaneous movements at all locations.

Computing Target Samples From Source Samples

To compute a target sample X_1 , or in general, any sample X_t , we approximate the solution of the ODE described on slide 7.

- · Euler Method
- · Midpoint Method

Euler Method

In the Euler method, we use the update rule

$$X_{t+h} = X_t + n^{-1}u_t(X_t),$$

where $n \in \mathbb{Z}^+$ is a step-size hyperparameter.

- To draw a sample X_1 from the target distribution, apply the Euler method starting at some $X_0 \sim p$, to produce the sequence X_h, X_{2h}, \ldots, X_1 .
- · Similarly for method such as the midpoint method.

Tools for Flow Matching

Why Flow Matching?

- · Flow modeling requires simulation of ODE.
- · Can we avoid this simulation?
- Yes! We will need some strong mathematical tools, and a carefully chosen probability path (p_t) .

Definition (Probability Path)

We call a time-dependent probability distribution $(p_t)_{0 \le t \le 1}$ a probability path.

Probability Paths

An important probability path is the marginal PDF of a flow model $X_t = \psi_t(X_0)$ at time t:

$$X_t \sim p_t$$
.

At each time $t \in [0,1]$, we claim these marginal PDFs are obtained via the push-forward formula

$$p_t(x) = [\psi_{t\sharp p}](x).$$

Definition

Given some arbitrary probability path p_t , we say a velocity field u_t generates p_t if $X_t = \psi_t(X_0) \sim p_t$, for all $t \in [0, 1)$.

¹Recall that velocity fields correspond with flow models.

Continuity Equation

We can verify that a velocity field u_t generates a probability path p_t by verifying that the pair (u_t, p_t) satisfies a PDE known as the continuity equation:

$$\frac{d}{dt}p_t(x) + \operatorname{div}(p_t u_t)(x) = 0.$$

Theorem (Mass Conservation)

Let (p_t) be a probability path, and u_t a locally Lipschitz integrable vector field. Then TFAE:

- 1. The continuity equation above holds, for $t \in [0,1)$.
- 2. The vector field u_t generates p_t .

Log-Likelihood Estimation

Flows allow tractable computation of exact likelihoods $\log p_1(x)$, for all $x \in \mathbb{R}^d$. By using the continuity equation, and some computation, we can find that by solving the ODE

$$\frac{d}{dt}\begin{bmatrix}f(t)\\g(t)\end{bmatrix} = \begin{bmatrix}u_t(f(t))\\-\operatorname{tr}(Z^T\partial_X u_t(f(t))Z\end{bmatrix}, \quad \begin{bmatrix}f(1)\\g(1)\end{bmatrix} = \begin{bmatrix}x\\0\end{bmatrix},$$

backwards in time from $t=1\,\mathrm{to}\ t=0$, we can compute an unbiased log-likelihood estimate 2

$$\widehat{\log p_1(x)} = \log p_0(f(0)) - g(0).$$

²This work also allows us to train a flow model by maximizing the log-likelihood of training data, and using a KL-divergence loss.

Flow Matching

Flow Matching

We will spend our remaining time building the Flow Matching algorithm. At the end, we will be presented with a simulation-free and scalable approach towards training Flow Models.

Figure 4: Diagram of FM Algorithm

The Flow Matching Problem

The Flow Matching Problem

Given source distribution p, and target distribution q, find u_t^{θ} generating p_t , with $p_0 = p$, and $p_1 = q$.

Flow Matching

Figure 5: The Flow Matching blueprint.

- (a) Find a flow mapping samples X_0 from a known source p into samples X_1 from a target data distribution q.
- (b) Design a time-continuous probability path $(p_t)_{0 \le t \le 1}$ interpolating between $p := p_0$ and $q := p_1$.
- (c) During training, use regression to estimate the velocity field u_t known to generate p_t .
- (d) Draw a new target sample $X_1 \sim q$ by integrating the estimated velocity field $u_t^{\theta}(X_t)$ from t=0 to t=1, where $X_0 \sim p$ is a new source sample.

16

Coupling

Source samples $X_0 \sim p$, and target samples $X_1 \sim q$ may be independent or they can originate from a general joint distribution known as coupling:

$$(X_0,X_1)\sim \pi_{0,1}(X_0,X_1).$$

If no coupling is known, then we set $\pi_{0,1}(X_0,X_1)=p(X_0)q(X_1)$.

Example

The case of producing images from random Gaussian noise vectors is an example of independent source-target distribution.

Example

The production of high-resolution images from their low resolution versions, or producing colorized versions from their gray-scale counterparts are examples of dependent couplings.

Designing a Probability Path - An Example

- Flow Matching adopts a conditional strategy for designing probability paths p_t , and corresponding velocity fields u_t . Consider as an example, designing p_t such p_t is conditioned on $X_1 = x_1$, which yields the conditional proabability path $p_{t|1}(x \mid x_1)$.
- We may then construct the overall marginal probability path p_t by aggregating such conditional probability paths³ $p_{t|1}$:

$$p_t(x) = \int p_{t|1}(x \mid x_1)q(x_1) dx_1.$$

 $^{^{3}}$ Recall $p_{1}=q$.

Designing a Probability Path - Figures

(a) Conditional probability (b) (Marginal) Probability path $p_t(x|x_1)$.

path $p_t(x)$.

Figure 6: Probability paths described last slide.

Designing a Probablity Path - Boundary Conditions

 \cdot To solve the Flow Matching Problem, we would like to design p_t such that the boundary conditions

$$p_0 = p$$
, $p_q = q$,

are satisfied.

• That is, the marginal probability path p_t interpolates from the source distribution p at t=0, to q at t=1.

Designing a Probablity Path - Boundary Conditions

 We can enforce these boundary conditions by requiring the conditional probability paths to satisfy

$$p_{0|1}(x \mid x_1) = \pi_{0|1}(x \mid x_1)$$
, and $p_{1|1}(x \mid x_1) = \delta_{x_1}(x)$,

where

- the conditional coupling $\pi_{0|1}(x_0 \mid x_1) = \pi_{0,1}(x_0, x_1)/q(x_1)$,
- and δ_{x_1} is the Dirac delta measure centered at x_1 .
- For the independent coupling $\pi_{0,1} = p(x_0)q(x_1)$, the first constraint reduces to $p_{0|1}(x \mid x_1) = p(x)$.
- Because the delta measure does not have a density, the second constraint should be read as

$$\int p_{t|1}(x\mid y)f(y)\,dy\to f(x), \text{ as } t\to 1, \text{ for continuous } f.$$

Deriving Generating Velocity Fields

Given a marginal probability path p_t , we now build a velocity field u_t generating p_t .

Claim

The generating velocity field u_t is an average of conditional velocity fields $u_t(x \mid x_1)$, satisfying

$$u_t(\cdot \mid x_1)$$
 generates $p_{t|1}(\cdot \mid x_1)$.

Then the marginal velocity field $u_t(x)$ generating the marginal path $p_t(x)$ is given by averaging the conditional velocity fields $u_t(x \mid x_1)$ across target examples:

$$u_t(x) = \int u_t(x \mid x_1) p_{1|t}(x_1 \mid x) dx_1.$$

Deriving Generating Velocity Fields

 We can express the aforementioned equation in known terms using Bayes' rule:

$$p_{1|t}(x_1 \mid x) = \frac{p_{t|1}(x \mid x_1)q(x_1)}{p_t(x)},$$

defined $\forall x, p_t(x) > 0$.

• We can interpret the prev. equation using conditional expectation. If X_t is any random variable such that $X_t \sim p_{t|1}(\cdot \mid X_1)$, then using LOTUS,

$$u_t(x) = \mathbb{E}[u_t(X_t \mid X_1) \mid X_t = x],$$

which is a useful interpretation of $u_t(x)$ as the least-squares approx. to $u_t(X_t \mid X_1)$ given $X_t = x$.

Deriving Generating Velocity Fields - Proof Sketches

- To prove our claimed construction works, we need to show that the described marginal velocity field u_t generates the marginal probability path p_t under some mild assumptions.
- Lipman uses the Mass Conservation Theorem discussed earlier to prove this.

Theorem (Mass Conservation Restated)

Let (p_t) be a probability path, and u_t a locally Lipschitz integrable vector field. Then TFAE:

- 1. The continuity equation holds, for $t \in [0, 1)$.
- 2. The vector field u_t generates p_t .

Deriving Generating Velocity Fields - Proof Sketches

Our mild assuimptions are as follows.

Assumption

Assume $p_{t|Z}(x \mid z)$ is $C^1([0,1) \times \mathbb{R}^d)$ and $u_t(x \mid z)$ is $C^1([0,1) \times \mathbb{R}^d, \mathbb{R}^d)$ as a function of (t,x). Furthermore, suppose p_Z has bounded support, that is, $p_Z(x) = 0$ outside some bounded set in \mathbb{R}^m . Finally, assume $p_t(x) > 0$, for all $x \in \mathbb{R}^d$, and $t \in [0,1)$.

Theorem (Marginalization Trick)

Under the previous assumption, if $u_t(x \mid z)$ is conditionally integrable, and generates the conditional probability path $p_t(\cdot \mid z)$, then the marginal velocity field u_t generates the marginal probability path p_t , for all $t \in [0,1)$.

The proof of the above is essentially some calculations and functional analysis to verify the two conditions of Mass Conservation.

Deriving Generating Velocity Fields - Figures

 $u_t(x|x_1)$.

(c) Conditional velocity field (d) (Marginal) Velocity field $u_t(x)$.

Figure 7: Velocity fields constructed previously.

Flow Matching Loss

We are missing one last ingredient – a tractable loss function to learn a velocity field model u_t^{θ} as close as possible to the target u_t .

- Directing computing the target u_t is infeasible, since it requires marginalizing over the entire training set.
- We are saved by Bregman divergence loss functions, which provide unbiased gradients to learn u_t^{θ} in terms of conditional velocities $u_t(x \mid z)$ alone.

Flow Matching Loss - Bregman Divergences

Definition

A Bregman divergence measures dissimilarity between two vectors $u,v\in\mathbb{R}^d$ as

$$D(u,v) := \Phi(u) - [\Phi(v) + \langle u - v, \nabla \Phi(v) \rangle],$$

where $\Phi : \mathbb{R}^d \to \mathbb{R}$ is a strictly convex function defined over some convex set $\Omega \subset \mathbb{R}^d$.

Figure 8: Bregman divergence.

Flow Matching Loss - Bregman Divergences

- Bregman divergence measures the difference between $\Phi(u)$, and the linear approximation to Φ developed around v and evaluated at u.
- Linear approximations are global lower bounds for convex functions $\Longrightarrow D(u,v) \ge 0$.
- Since Φ is strictly convex $\Rightarrow D(u, v) = 0$ iff u = v.
- The most basic Bregman divergence is squared Euclidean distance $D(u, v) = ||u v||^2$, resulting from choosing $\Phi(u) = ||u||^2$.
- Importantly for FM, Bregmen divergences have affine invariant gradients w.r.t their second arguments:

$$\nabla_v D(au_1+bu_2,v)=a\nabla_v D(u_1,v)+b\nabla_v D(u_2,v), \quad \forall a,b\in\mathbb{R}, a+b=1.$$

Flow Matching Loss - Bregman Divergences

Affine invariance is important in FM, as it allows us to swap expected values with gradients:

$$\nabla_v D(\mathbb{E}[Y], v) = \mathbb{E}[\nabla_v D(Y, v)], \text{ for any RV } Y \in \mathbb{R}^d.$$

Flow Matching Loss - Loss Function

The Flow Matching loss regressing our learnable velocity $u_t^{\theta}(x)$ onto the target velocity $u_t(x)$ along prob. path p_t is

$$\mathcal{L}_{FM}(\theta) = \mathbb{E}_{t,X_t \sim \rho_t} D(u_t(X_t), u_t^{\theta}(X_t)),$$

where $t \sim U[0,1]$. Since u_t is not tractable, we instead use the simpler and tractable Conditional Flow Matching (CFM) loss:

$$\mathcal{L}_{CFM}(\theta) = \mathbb{E}_{t,Z,X_t \sim p_{t|Z}(\cdot,Z)} D(u_t(X_t \mid Z), u_t^{\theta}(X_t)).$$

These two losses are equivalent for learning purposes, because their gradients coincide. (Next slide.)

Flow Matching Loss - Loss Function

Theorem

The gradients of the Flow Matching loss and the Conditional Flow Matching loss coincide:

$$\nabla_{\theta} \mathcal{L}_{FM}(\theta) = \nabla_{\theta} \mathcal{L}_{CFM}(\theta).$$

In particular, the minimizer of the CFM loss is the marginal velocity $u_t(x)$.

This theorem falls as a result of direct computation, and the expectation-gradient swapping property of Bregman divergences.

Solving Conditional Generation With Conditional Flows

We have reduced the problem of training a flow model u_t^{θ} to

- 1. Find conditional probability paths $p_{t|Z}(x \mid z)$ yielding a marginal probability path $p_t(x)$ satisfying the boundary conditions $p_0 = p, p_1 = q$.
- 2. Find conditional velocity fields $u_t(x \mid z)$ generating the conditional probability path.
- 3. Train using the CFM loss.

Our final discussion in this presentation will show us how to perform steps 1, 2, yielding our final FM algorithm.

Conditional Flows

Our flexible method to design our conditional probability paths and velocity fields uses conditional flows, described as follows.

- 1. Define a flow model $X_{t|1}$, satisfying $p_0 = p, p_1 = q$.
- 2. Extract the velocity field from $X_{t|1}$ by differentiation.

Define the conditional flow model

$$X_{t|1} = \psi_t(X_0 \mid X_1), \text{ where } X_0 \sim \pi_{0|1}(\cdot \mid X_1),$$

and where $\psi:[0,1)\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}^d$ is a conditional flow defined by

$$\psi_t(x \mid x_t) = \begin{cases} x & t = 0 \\ x_1 & t = 1, \end{cases}$$

is smooth in (t,x) and a diffeomorphism in x.

Push-Forward Formula Revisited

$$[\psi_{\sharp}p_X](y) := p_X(\psi^{-1}(y))|\det \partial_y \psi^{-1}(y)|.$$

The push-forward formula discussed earlier defines the probability density of $X_{t|1}$ as

$$p_{t|1}(x \mid x_1) := [\psi_t(\cdot, x_1)_{\sharp} \pi_{0|1}(\cdot, x_1)](x),$$

although this expression is not used in practical optimization of the CFM loss, and is used only to show that $p_{t|1}$ satisfies $p_0 = p, p_1 = q$.

We will use the equivalence of flows and velocity fields theorem we showed in the beginning of this presentation.

- 1. According to the definition of ψ , $\psi_0(\cdot, x_1)$ is the identity map, keeping $\pi_{0|1}(\cdot, x_1)$ intact⁴ at time t = 0.
- 2. Note that $\psi_1(\cdot, x_1) = x_1$ is the constant map, concentrating all probability mass at x_1 as $t \to 1$.
- 3. Note that $\psi_t(\cdot, x_1)$ is a smooth diffeomorphism for $t \in [0, 1]$.

 $^{^{4}\}pi_{0|1}(x_{0} \mid x_{1}) = \pi_{0,1}(x_{0}, x_{1})/q(x_{1}).$

Therefore, there exists a unique smooth conditional velocity field taking form

$$u_t(x \mid x_1) = \dot{\psi}_t(\psi_t^{-1}(x \mid x_1) \mid x_1).$$

This formula is derived within the proof of the equivalence theorem.

Conditional Flows - Optimal Transport

There are many useful choices for conditional flow $\psi_t(x \mid x_t)$. Motivated by wanting to choose a minimizer of a natural cost functional with desirable properties, we present the dynamic Optimal Transport problem with quadratic cost:

$$\begin{split} (p_t^*,u_t^*) &= \underset{p_t,u_t}{\operatorname{argmin}} \int_0^1 \int \|u_t(x)\|^2 p_t(x) \, dx \, dt, & \text{(Kinetic Energy)} \\ \text{s.t.} \quad p_0 &= p, p_1 = q, & \text{(Interpolation)} \\ &\qquad \frac{d}{dt} p_t + \operatorname{div}(p_t u_t) = 0. & \text{(Continuity Equation)} \end{split}$$

The (p_t^*, u_t^*) above defines a flow

$$\psi_t^*(x) = t\phi(x) + (1-t)x,$$

called the OT displacement interpolant, where $\phi: \mathbb{R}^d \to \mathbb{R}^d$ is the optimal transport map.

Conditional Flows - Optimal Transport

The OT displacement interpolant solves the FM problem by defining

$$X_t = \psi_t^*(X_0) \sim p_t^*$$
 when $X_0 \sim p$.

We're about out of time, so through some optimization, variational calculus, and computation, we find the minimizer to our OT problem, and our candidate for conditional flow to be

$$\psi_t(x \mid x_1) = tx_1 + (1-t)x.$$

Conclusion

Summary

- Lipman's manuscript provides a very detailed glimpse into the Flow Matching framework [1].
- We presented the intuition and machinery behind Flow Matching.
- Hopefully we will have time to look at the standalone code for Flow Matching, and I also want to point us towards section 2 of Lipman's paper to continue our discussion.

Questions?

References i

Y. Lipman, M. Havasi, P. Holderrieth, N. Shaul, M. Le, B. Karrer, R. T. Q. Chen, D. Lopez-Paz, H. Ben-Hamu, and I. Gat. Flow matching guide and code, 2024.