Intervallskattning

- En intervallskattning av en parameter är ett intervall med slumpvariabler som gränser
- Konfidensgraden, $(1-\alpha)$, för en intervallskattning är sannolikheten att parametern tillhör intervallet
- En observerad intervallskattning kallas för konfidensintervall
 - Metoder som inte kräver känd fördelning kallas för icke-parametriska
 - Metoder som kräver känd fördelning kallas för parametriska

 Matematisk Statistik MA4025

Några hjälpfördelningar

• Om $X_1, X_2, ..., X_n$ är oberoende och N(0,1) så är

$$\sum_{i=1}^n X^2 \in \chi^2(n)$$

Chi-2-fördelad med *n* frihetsgrader

Om
$$X_1$$
, X_2 , ..., X_n är oberoende och $N(\mu, \sigma)$ så är
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X - \overline{X})^2 \in \chi^2(n-1)$$

Chi-2-fördelad med *n-1* frihetsgrader

 "summerar man kvadrater av oberoende och normalfördelade stokastiska variabler får man en Chi-2 fördelning"

Några hjälpfördelningar

• Om $X_1, X_2, ..., X_n$ är oberoende och $N(\mu, \sigma)$ så är

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

$$\sqrt{\frac{1}{\sigma^2} \sum_{i=1}^{n} (X - \overline{X})^2 / \sqrt{n}} \in t(n-1)$$

t-fördelad med n-1 frihetsgrader

• "Bildar man en kvot av en N(0,1) och roten ur en $\chi^2(n-1)$ får man en t-fördelad variabel med (n-1) frigetsgrader"

t-fördelningen är en släkting till normalfördelningen och finns i tabeller för olika antal frihetsgrader och olika sannolikheter.

Då antalet frihetsgrader blir stort, närmar sig t-fördelningen en normalfördelning

Konfidensintervall för μ där σ är känt - normalfördelning

Låt X_1 , X_2 , ..., X_n vara ett stickprov, X_i är oberoende och $N(\mu, \sigma)$ Låt x_1 , x_2 , ..., x_n vara en observation av stickprovet För alla normalfördelningar gäller t.ex.:

$$P(\mu - 1.96\sigma < X < \mu + 1.96\sigma) = 0.95$$

Speciellt gäller

$$P\left(\mu - 1.96 \frac{\sigma}{\sqrt{n}} < \overline{X} < \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Lös ut μ ur

$$\mu - 1.96 \frac{\sigma}{\sqrt{n}} < \overline{X} < \mu + 1.96 \frac{\sigma}{\sqrt{n}}$$

$$\mu - 1.96 \frac{\sigma}{\sqrt{n}} < \overline{X} \Leftrightarrow \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \text{ och } \overline{X} < \mu + 1.96 \frac{\sigma}{\sqrt{n}} \Leftrightarrow \overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu$$

$$P\left(\mu - 1.96 \frac{\sigma}{\sqrt{n}} < \overline{X} < \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95 \Leftrightarrow$$

$$P\left(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Ett konfidensintervall för μ med konfidensgraden 1- α fås då av

$$\mu \in \left(\overline{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right), (1-\alpha)100\%$$

$$\operatorname{där} \lambda_{\alpha/2} \operatorname{fås} \operatorname{ur} \ \Phi(\lambda_{\alpha/2}) = 1 - \alpha / 2$$

Konfidensintervall för μ där σ **är okänt** - normalfördelning X är en stokastisk variabel

- Låt X₁, X₂, ..., X_n vara ett stickprov av X, där X_i är oberoende
- Låt $x_1, x_2, ..., x_n$ vara en observation av stickprovet

$$\frac{\overline{X} - \mu}{\sigma^* / \sqrt{n}} \in t(n-1)$$

Ett konfidensintervall för μ med konfidensgraden 1-lpha fås då av

$$\mu \in \left(\bar{x} \pm t_{\alpha/2}^{(n-1)} \frac{s}{\sqrt{n}}\right), (1-\alpha)100\%$$

där $t_{\alpha/2}^{(n-1)}$ fås ur t-fördelningen, F(x), med n-1 frihetsgrader

$$F\left(t_{\alpha/2}^{(n-1)}\right) = 1 - \alpha/2$$

Konfidensintervall för varians - $N(\mu,\sigma)$

- X är en stokastisk variabel
 - Låt X₁, X₂, ..., X_n vara ett stickprov av X, där X_i är oberoende och normalfördelade $N(\mu,\sigma)$

$$\frac{(n-1)(\sigma^2)^*}{\sigma^2} \in \chi^2(n-1)$$

$$\frac{\left|\frac{(n-1)(\sigma^2)^*}{\sigma^2} \in \chi^2(n-1)\right|}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \in \chi^2(n-1)$$

Ett konfidensintervall, som är uppåt begränsat och med undre gräns 0, med konfidensgraden 1-lpha fås då av

$$\begin{bmatrix} \sum_{i=1}^{n} (x_i - \overline{x})^2 \\ 0, \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{\chi_{1-\alpha,(n-1)}^2} \end{bmatrix} = \begin{bmatrix} 0, \frac{(n-1)s^2}{\chi_{1-\alpha,(n-1)}^2} \end{bmatrix}$$

$$= \begin{bmatrix} 0, \frac{(n-1)s^2}{\chi_{1-\alpha,(n-1)}^2} \end{bmatrix}$$

där $\chi^2_{1-\alpha,(\mathsf{n-1})}$ fås ur

$$F(\chi^2_{1-\alpha.(n-1)}) = \alpha$$

Tvåsidigt konfidensintervall för varians - $N(\mu, \sigma)$

• En tvåsidig intervallskattning av **variansen**, σ^2 , konfidensgraden 1- α fås av

$$\left[\frac{(n-1)s^2}{\chi^2_{\alpha/2,(n-1)}},\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,(n-1)}}\right]$$

och för **standardavvikelsen**, σ

$$\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,(n-1)}}}, \sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,(n-1)}}}$$

Två stickprov - normalfördelning

- X₁, X₂, ..., X_{n₁} är stickprov med fördelningen N(μ₁,σ)
 Y₁, Y₂, ..., Y_{n₂} är stickprov med fördelningen N(μ₂,σ)
- Stickproven är oberoende

$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \in N(0,1), \text{ om } \sigma \text{ känd}$$

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sigma^* \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \in t(n_1 + n_2 - 2), \text{ om } \sigma \text{ okänd}$$

Där
$$\sigma^* = s_p = \sqrt{\frac{(n_1 - 1)s_x^2 + (n_2 - 1)s_y^2}{(n_1 + n_2 - 2)}}$$

Standardavvikelserna måste vara lika i modellen, annars går det inte att vikta ihop dem, se kap 11.7 s 266-267.

Två stickprov - normalfördelning

Konfidensintervall för $\mu_2 - \mu_1$ blir

$$\mu_{2} - \mu_{1} \in \left(\overline{y} - \overline{x} \pm \lambda_{\alpha/2} \sigma \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right), (1 - \alpha)100\%, \text{ om } \sigma \text{ känd}$$

$$\mu_{2} - \mu_{1} \in \left(\overline{y} - \overline{x} \pm t_{\alpha/2}^{(f)} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right), (1 - \alpha)100\%, \text{ om } \sigma \text{ okänd}$$

$$f = n_{1} + n_{2} - 2$$

Stickprov i par - normalfördelning

- Vi har parvisa oberoende observationer (X_i, Y_i) , i = 1, ..., n
- $X_i \in N(\mu_i, \sigma_X)$ och $Y_i \in N(\mu_i + \Delta, \sigma_Y)$, X_i oberoende av Y_i
- Låt $Z_i = Y_i X_i \in N(\Delta, \sigma_Z), \sigma_Z = \sqrt{V(Y_i X_i)}$

 Δ och σ_Z okända parametrar

skattas med
$$\Delta^* = \overline{Z}$$
 och $\sigma_Z^* = S_Z$ och $\frac{\overline{Z} - \Delta}{S_Z / \sqrt{n}} \in t(n-1)$

Ett konfidensintervall för Δ fås av

$$\Delta \in \left(\overline{z} \pm t_{\alpha/2}^{(n-1)} \frac{s_z}{\sqrt{n}}\right), (1-\alpha)100\%$$

Övning 12.22, s. 316

Låt

 X_i = blodtryck före behandling person $i, X_i \in N(\mu_i, \sigma)$

 Y_i = blodtryck efter behandling person $i, Y_i \in N(\mu_i + \Delta, \sigma)$

 $Z_i = Y_i - X_i = \text{skillnaden i blodtryck person } i, Z_i \in N(\Delta, \sigma_Z)$

 μ_i = person *i* förväntade (genomsnittliga) blodtryck, Δ = systematisk skillnad i blodtryck

Data										
Person	1	2	3	4	5	6	7	8	9	10
Före (x)	75	70	75	65	95	70	65	70	65	90
Efter (y)	85	70	80	80	100	90	80	75	90	100
Diff (z)	10	0	5	15	5	20	15	5	25	10

$$\Delta_{obs}^* = \bar{z} = 11$$

verkar höja blodtrycket i genomsnitt $\sigma_{\text{ZOBS}}^* = s_Z = 7.75$, $t_{0.025}^{(9)} = 2.26$

Konfidensintervall för Δ (samma som 1-stickprovsfallet med σ okänd)

$$\Delta \in \left(\bar{z} \pm t_{0.025}^{(9)} \frac{s_Z}{\sqrt{n}}\right)$$

$$\Delta \in \left(11 \pm 2.262 \rightleftharpoons \frac{7.75}{\sqrt{10}}\right), (95\%) \to \Delta \in (11 \pm 5.54), (95\%)$$

$$\Delta \in (6.46, 16.54), (95\%)$$

Med 5% risk att ha fel kan man påstå att preparatet höjer blodtrycket istället för att sänka det. (0 ∉ intervallet)

Om man inte har normalfördelning?

- Teckenintervall är en icke-parametrisk metod för intervallskattning av medianvärde
- Om vi har stora stickprov från en fördelning med väntevärde $E[X_i] = \mu$ och $V[X_i] = \sigma^2$, så är

$$\frac{X - \mu}{\sigma / \sqrt{n}} \approx N(0;1)$$

$$\frac{\overline{X} - \mu}{\sigma^* / \sqrt{n}} \approx N(0;1)$$

Enligt Centrala Gränsvärdes Satsen

"Väljarbarometer" - konfidensintervall för p

I en mängd med N element är en andel p av speciellt slag. Bland de N elementen väljs n element. X = antal speciella element bland n

- Då gäller: $X \in Hyp(N, n, p)$
- Om N stort och n/N < 0.1 gäller approximativt: $X \in Bin(n, p)$
- − Om n stort (n>30) gäller

$$X \approx N\left(np; \sqrt{np(1-p)}\right) \text{ eller } p^* = \frac{X}{n} \approx N\left(p; \sqrt{\frac{np(1-p)}{n}}\right)$$

- Om p^* skattas med $p^* = x/n$, ger detta följande konfidensintervall:

$$p \in \left(p_{obs}^* \pm \lambda_{\alpha/2} \sqrt{\frac{p_{obs}^* (1 - p_{obs}^*)}{n}}\right)$$

med approximativa konfidensgraden 1-lpha

Teckenintervall - en icke-parametrisk metod

- Låt X₁, X₂, ..., X_n vara ett stickprov
- Ordna i storlek observationerna så att: $X_{(1)} \le X_{(2)} \le ... \le X_{(n)}$
- Låt $Y = \text{antal obs. t.v. om } m, Y \in Bin(n, 0.5)$
- Ett konfidensintervall för medianen är $m \in (X_{(1)}, X_{(n)})$ med konfidensgrad $1-2P(Y=0) = 1-2\times0.5^n$
- Konfidensgraden minskas om man i stället tar $m \in (X_{(2)}, X_{(n-1)})$, konfidensgrad

$$P(Y \le 1) = 1 - 2\left(0.5^n + \binom{n}{1}0.5^n\right)$$

 $X_{(n)}$