순위인 공변량에 기반한 커널 로지스틱 회귀

서울시립대학교 통계학과

김 윤 회

Contents

001 연구목적

002 순위 자료에 대한 켄달 커널과 멜로우즈 커널

• 순위 자료와 커널

• 켄달 커널과 멜로우즈 커널

003 지지벡터기계와 커널로지스틱 회귀

개요

• 정규화 함수 추정

004 데이터 분석

• 모의 실험

• 실제 데이터

005 결론

연구 목적

연구 목적

- **공변량** (covariates)이 순위인 경우 **순열** (permutation)로 표현 가능하며 N개의 공변량에 대해 N!개의 서로 다른 순열이 존재.
- 순열에 자료에 대한 이진 분류문제에 위해 효율적 계산이 가능한 **켄달 커널**과 **멜로우즈 커널** 을 사용한 지지벡터기계 모형을 고려.
- 지지벡터기계는 로지스틱 회귀에서와 같이 분류에 대한 직접적인 **확률 추정값** (probability estimates)을 제공하지 못함.

켄달 커널과 멜로우즈 커널을 사용한 커널 로지스틱 회귀 모형을 고려

순위 자료에 대한 켄달 커널과 멜로우즈 커널

- 순위 자료와 커널
- 켄달 커널과 멜로우즈 커널

순위자료와커널

순위 자료(Ranking data)

• 항목에 대한 선호를 표현하는 경우 예) 선거 자료, 소비자 선호도 조사

• 값의 절대적인 크기보다 상대적 순서가 중요하다고 생각되는 경우 예) 유전자 발현 데이터 (D. Genman et al., 2004)

순위자료와커널

• 완전 순위 (total ranking)

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_n}$$

$$\{1, 2, \dots, n\} =: [1, n]$$

$$(2.1)$$

• 순열 (permutation)

$$\sigma: [1, n] \to [1, n] \tag{2.2}$$

$$| \phi |) \quad x_2 \succ x_4 \succ x_3 \succ x_1 \qquad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$$

$$\sigma (1) = 1, \ \sigma (2) = 4, \ \sigma (3) = 2, \ \sigma (4) = 3$$

• 대칭군 (symmetric group)

$$(\sigma_1\sigma_2)(i) = \sigma_1(\sigma_2(i))$$
 이부여된 \mathbb{S}_n

순위자료와커널

• 일치 쌍 (concordant pair)

$$n_c\left(\sigma,\sigma'\right) = \sum_{i < j} \left[\mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)} + \mathbb{1}_{\sigma(i) > \sigma(j)} \mathbb{1}_{\sigma'(i) > \sigma'(j)} \right]$$
(2.4)

• 불일치 쌍 (discordant pair)

$$n_d\left(\mathbf{\sigma},\mathbf{\sigma}'\right) = \sum_{i < j} \left[\mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) > \sigma'(j)} + \mathbb{1}_{\sigma(i) > \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)} \right]$$
(2.5)

켄달 커널과 멜로우즈 커널

켄달과 멜로우즈 커널 (Kendall and Mallows kernel) (Jiao and Vert, 2015)

$$\Phi: \mathbb{S}_n o \mathbb{R}^{\binom{n}{2}}$$

$$\Phi(\sigma) = \left(\frac{1}{\sqrt{\binom{n}{2}}} \left(\mathbb{1}_{\sigma(i) > \sigma(j)} - \mathbb{1}_{\sigma(i) < \sigma(j)}\right)\right)_{1 \le i < j \le n}$$
(2.6)

Kendall kernel:
$$K_{\tau}\left(\sigma,\sigma'\right) = \frac{n_c\left(\sigma,\sigma'\right) - n_d\left(\sigma,\sigma'\right)}{\binom{n}{2}}$$
 (2.7)

(= Linear kernel in Euclidean space)

Mallows kernel:
$$K_M^{\mathsf{v}}\left(\sigma, \sigma'\right) = e^{-\mathsf{v} n_d\left(\sigma, \sigma'\right)}$$
 (2.8)

(= Gaussian kernel in Euclidean space)

지지벡터기계와 커널 로지스틱 회귀

- 개요
- 정규화 함수 추정

개 요

지지벡터기계 (Support Vector Machine)

minimize
$$\frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i$$
 (3.1) subject to $y_i \left(x_i^T \beta + \beta_0 \right) \ge 1 - \xi_i$, $\xi_i \ge 0, \ \forall i$

개 요

지지벡터기계 (Support Vector Machine)

• Kernel function :
$$K(x_i, x_j) = \langle h(x_i), h(x_j) \rangle$$
 (3.3)

• Model :
$$f(x) = \beta_0 + \sum_{i=1}^{N} \alpha_i y_i K(x, x_i)$$
 (3.4)

개요

로지스틱 회귀 (Logistic Regression)

• Model :
$$f(x) = \log \frac{Pr(Y = +1|x)}{Pr(Y = -1|x)} = \beta_0 + \beta^T x$$
,

$$Pr(Y = +1|x) = \frac{e^{f(x)}}{1 + e^{f(x)}}$$
(3.5)

최대가능도추정 (Maximum Likelihood Estimation) with Newton-Rapshon

• Log-Likelihood :
$$\ell(\beta) = \sum_{i=1}^{N} \left[y_i \beta^T x_i - \log \left(1 + e^{\beta^T x_i} \right) \right]$$
 (3.6)

$$\beta^{\text{new}} = \beta^{\text{old}} - \left(\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T}\right)^{-1} \frac{\partial \ell(\beta)}{\partial \beta}$$

정규화 함수 추정

커널을 사용하는 정규화된 함수 추정 (regularized function estimation with kernel)

• Objective function :
$$\min_{f \in \mathcal{H}_K} \left[\sum_{i=1}^N L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}_K}^2 \right]$$
 (3.7)

by Representer theorem (Kimeldorf & Wahba, 1971)

• Model :
$$f(x) = \sum_{i=1}^{N} \alpha_i K(x, x_i)$$
 (3.8)

• Regularization term :
$$J(f) = \sum_{i=1}^{N} \sum_{j=1}^{N} K(x_i, x_j) \alpha_i \alpha_j$$
 (3.9)

• Objective function :
$$\min_{\alpha} L(\mathbf{y}, \mathbf{K}\alpha) + \lambda \alpha^T \mathbf{K}\alpha$$
 (3.10) (in finite dim space)

정규화 함수 추정

지지벡터기계의 정규화 함수 추정

• Objective function :
$$\min_{\beta,\beta_0} \sum_{i=1}^{N} \left[1 - y_i f(x_i)\right]_+ + \frac{\lambda}{2} \|\beta\|^2$$
 (3.11)

• Model :
$$f(x) = \beta_0 + \sum_{i=1}^{N} \alpha_i K(x, x_i)$$
 (3.12)

• Objective function :
$$\min_{\beta_0,\alpha} \sum_{i=1}^{N} (1 - y_i f(x_i))_+ + \frac{\lambda}{2} \alpha^T \mathbf{K} \alpha$$
 (3.13)

정규화함수추정

로지스틱 회귀의 정규화 함수 추정 (커널 로지스틱 회귀)

• Objective function :
$$\min_{\beta,\beta_0} \sum_{i=1}^N \ln\left(1 + e^{-y_i f(x_i)}\right) + \frac{\lambda}{2} \|\beta\|^2$$
 (3.14)

• Model :
$$f(x) = \log \frac{Pr(Y=+1|x)}{Pr(Y=-1|x)} = \beta_0 + \sum_{i=1}^{N} \alpha_i K(x, x_i)$$
 (3.15)

• Objective function :
$$\min_{\beta_0,\alpha} \sum_{i=1}^N \ln\left(1 + e^{-y_i f(x_i)}\right) + \frac{\lambda}{2} \alpha^T \mathbf{K} \alpha$$
 (3.16)

정규화 함수 추정

Hinge Loss

$$[1 - y_i f\left(x_i\right)]_+$$

 Binomial Negative Log Likelihood

$$ln\left(1 + e^{-y_i f(x_i)}\right)$$

그림 1 지지벡터기계(Hinge loss)와 로지스틱 회귀 손실함수, $y \in \{-1,1\}$

데이터분석

- 모의 실험
- 실제 데이터

모의 실험

데이터 생성 방법

•
$$\mu^+$$
: $(\underline{D, \dots, D}, \underline{0, \dots, 0})$ $(\mu^- = -\mu^+)$

• Σ : (k,l) 원소가 $r^{|k-l|}$ 인 분산-공분산 행렬 $(r \in [0,1))$

$$n/2$$
 개의 데이터 $\mathcal{X}_1 \sim N_p(\mu^+, \Sigma)$ $n/2$ 개의 데이터 $\mathcal{X}_2 \sim N_p(\mu^-, \Sigma)$ $y=1$ 할당 $y=-1$ 할당

- 데이터 : $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2$
- 데이터 변환 : $\mathbb{R}^p o \mathbb{S}_p$

모의 실험

실험 과정

$$p: 10, 50, 250 / D = 3 / r = 0 / q: 10\%, 30\%, 50\%$$

- 훈련 데이터 : n = 100
- 시험 데이터 : n = 10000
- $\lambda \& \nu$ 튜닝 : 5-fold 교차 검증(cross validation)
- 평가 기준 : 오분류율 (표준오차)
- 반복수: 200회

모의실험

표 1 모의실험 결과 : 평균 오분류율 (표준오차)

n	p	Significant Variable	SVMkdt	KLRkdt	SVMmlws	KLRmlws
		10%	0.0905	0.1145	0.0884	0.1001
			(0.0007)	(0.0015)	(0.0004)	(0.0022)
	10	30%	0.1270	0.1521	$\boldsymbol{0.1252}$	0.1443
	10		(0.0010)	(0.0019)	(0.0007)	(0.0030)
		50%	0.1738	0.2032	0.1690	0.1870
			(0.0011)	(0.0020)	(0.0005)	(0.0021)
		10% 30%	0.1134	0.1203	0.1096	0.1148
			(0.0007)	(0.0007)	(0.0005)	(0.0007)
100	50		0.1546	0.1619	0.1470	0.1539
100	50		(0.0008)	(0.0008)	(0.0004)	(0.0008)
		50%	0.2054	0.2139	0.2085	0.2036
			(0.0010)	(0.0010)	(0.0026)	(0.0010)
	250	10%	0.1959	0.1934	0.1976	0.1909
			(0.0011)	(0.0008)	(0.0023)	(0.0009)
		30%	0.2429	0.2382	0.2443	0.2359
			(0.0014)	(0.0011)	(0.0020)	(0.0012)
		50%	0.3065	0.2988	0.3122	0.2979
			(0.0012)	(0.0011)	(0.0026)	(0.0012)

모의실험

그림 2 모의실험 모형 성능 비교

실제 데이터

Eurobarometer 55.2 (2012)

No. of samples: 12527

Respondent	Gender	Age	Ranking of news sources		
1	F	32	TV > Radio > School/University > Newspapers/Mags. > Web > Sci. Mags.		
2	F	84	TV > Radio > Newspapers/Mags. > School/University > Sci. Mags. > Web		
3	F	65	TV > Newspapers/Mags. > Sci. Mags. > Radio > School/University > Web		
4	M	29	Web > Radio > Newspapers/Mags. > TV > Sci. Mags. > School/University		

$$Age \ge 40, \quad y = 1 \quad / \quad Age < 40, \quad y = -1$$

- 훈련 데이터 : n = 500
- 시험 데이터 : n = 12027
- 평가 기준 : 오분류율 (표준오차)
- 반복수: 200회

실제 데이터

• 유전자 발현 (gene expression) 데이터

 Dataset	No. of features	No. of samples		- Reference	
	No. of realtires	Class 1	Class 2	- Nererence	
결장 종양 (CT)	2000	40 (종양)	22 (정상)	(Alon et al., 2005)	
폐암(LC)	12533	150 (암)	31 (정상)	(Gordon et al., 2005)	
수모세포종 (MB)	7129	39 (실패)	21 (생존)	(Pomeroy et al., 2005)	
전립선 암 (PC)	15154	77 (종양)	59 (정상)	(Singh et al., 2005)	
난소암 (OC)	12600	162 (암)	91 (정상)	(Petricoin et al., 2005)	

• 훈련 & 시험 데이터 : 7:3

반복수: 200회

• 평가 기준 : 오분류율 (표준오차)

실제데이터

 ± 2 Eurobarometer & 유전자 발현 데이터 결과: 평균 오분류율 (표준오차)

Data	\mathbf{n}	p	SVMkdt	KLRkdt	SVMmlws	KLRmlws
EURO	12527	10	0.3747	0.3715	0.3722	0.3664
			(0.0012)	(0.0006)	(0.0012)	(0.0011)
$\overline{\text{CT}}$	62	2000	0.16	0.1264	0.2378	0.1453
			(0.0056)	(0.0045)	(0.0097)	(0.0052)
LC	181	12533	0.0059	0.0054	0.124	0.0064
			(0.0007)	(0.0006)	(0.0119)	(0.0006)
MB	60	7129	0.3615	0.365	0.3588	0.3638
			(0.0029)	(0.0039)	(0.0029)	(0.0031)
OC	253	15154	0.0065	0.0069	0.36	0.64
			(0.0008)	(0.0009)	(0)	(0)
PC	136	12600	0.0962	0.0988	0.5	0.5
			(0.0035)	(0.0033)	(0)	(0)

결론

결론

- 자료수에 비해 차원이 작은 경우 멜로우즈 커널을, 자료수에 비해 차원이 큰 경우 켄달 커널을 사용한 모형이 좋은 성능을 보임.
- 데이터에 따라서 차이가 있으나 전반적으로 지지벡터기계와 커널 로지스틱 회귀 모형의 성 능은 비슷함.
- 커널 로지스틱 회귀 모형의 경우 지지벡터기계에 비해 계산 시간이 오래 걸리므로 근사적 방법을 고려해 볼 수 있음 (J. Zhu and T. Hastie, Import Vector Machine, 2005).

감사합니다