

Michael Brown - Jorge Terrazas

Objectives

Determine the most important attributes in determining an orange's quality.

Predict the quality of an orange from its measurable features using a regression model

Identify orange quality clusters using a clustering model

Context: Real World Applications

Uphold food quality standards

Reduce unnecessary food waste

Identify trends for pricing

About the Source Data

Mumerical attributes describing the quality of oranges, including their size, weight, sweetness (Brix), acidity (pH), softness, harvest time, and ripeness.

Categorical attributes such as color, variety, presence of blemishes, and overall quality.

Data Wrangling

Cleanup, preprocessing

dataset:

OrangeDF.head(5) v 0.0s													
	Size (cm)	Weight (g)	Brix (Sweetness)	pH (Acidity)	Softness (1-5)	HarvestTime (days)	Ripeness (1-5)	Color	Variety	Blemishes (Y/N)	Quality (1-5)		
0	7.5	180	12.0	3.2	2.0	10	4.0	Orange	Valencia	N	4.0		
1	8.2	220	10.5	3.4	3.0	14	4.5	Deep Orange	Navel	N	4.5		
2	6.8	150	14.0	3.0	1.0	7	5.0	Light Orange	Cara Cara	N	5.0		
3	9.0	250	8.5	3.8	4.0	21	3.5	Orange-Red	Blood Orange	N	3.5		
4	8.5	210	11.5	3.3	2.5	12	5.0	Orange	Hamlin	Y (Minor)	4.5		

preprocessing & cleaning data:

```
print(OrangeDF["Color"].apply(type).unique())
   print(OrangeDF["Variety"].apply(type).unique())
   print(OrangeDF["Blemishes (Y/N)"].apply(type).unique())
   print(OrangeDF.isna().sum())
                                                                                                                                                         Python
 [<class 'str'>]
 [<class 'str'>]
 [<class 'str'>]
Size (cm)
Weight (g)
Brix (Sweetness)
pH (Acidity)
Softness (1-5)
HarvestTime (days)
                                                 checking for missing or wrong format values:
Ripeness (1-5)
Color
 Variety
Blemishes (Y/N)
Quality (1-5)
 dtype: int64
^No columns with mixed values and no missing values in dataset
```

Data Analysis

Distributions, basic relationships

checking for outliers & data distribution of columns:

	Size (cm)	Weight (g)	Brix (Sweetness)	pH (Acidity)	Softness (1-5)	HarvestTime (days)	Ripeness (1-5)	Quality (1-5)
count	241.000000	241.000000	241.000000	241.000000	241.000000	241.000000	241.000000	241.000000
mean	7.844813	205.128631	10.907884	3.473900	3.072614	15.344398	3.599585	3.817427
std	1.086002	56.461012	2.760446	0.421007	1.323630	5.323852	1.205214	1.014410
min	6.000000	100.000000	5.500000	2.800000	1.000000	4.000000	1.000000	1.000000
25%	6.900000	155.000000	8.500000	3.200000	2.000000	11.000000	3.000000	3.000000
50%	7.800000	205.000000	11.000000	3.400000	3.000000	15.000000	4.000000	4.000000
75%	8.700000	252.000000	13.400000	3.800000	4.000000	20.000000	4.500000	4.500000
max	10.000000	300.000000	16.000000	4.400000	5.000000	25.000000	5.000000	5.000000

No extreme outliers and fairly normally distributed data for most columns as shown below

Visual relationship between: Sweetness & Quality

Relatively strong *positive* relationship

What does this tell us?

Visual relationship between: Harvest Time & Quality

Relatively strong *negative* relationship

Implication?

Models

Baseline, regression, clustering

Baseline Model

Quality Predictions with Regression Models

```
X = OrangeDF.drop(columns=['Quality (1-5)', 'Variety'])
  y = OrangeDF['Quality (1-5)']
  lin reg = LinearRegression()
  lin_scores = cross_validate(estimator=lin_reg, X=X, y=y, scoring = ('r2', 'neg_mean_absolute_error', 'neg_mean_squared_error'))
  mlp model = MLPRegressor(hidden layer sizes= 1000, activation="relu", early stopping=True, max iter=500)
  mlp_scores = cross_validate(estimator=mlp_model, X=X, y=y, scoring = ('r2', 'neg_mean_absolute_error', 'neg_mean_squared_error'))
   tree model = DecisionTreeRegressor()
  tree_scores = cross_validate(estimator=tree_model, X=X, y=y, scoring = ('r2', 'neg_mean_absolute_error', 'neg_mean_squared_error'))
   print("LINEAR REGRESSION:")
  print("r^2s:", lin scores["test r2"], "\nMAE:", -lin scores["test neg mean absolute error"], "\nMSE", -lin scores['test neg mean squared error'])
  print("\nMULTILAYER PERCEPTRON:")
  print("r^2s:", mlp_scores["test_r2"], "\nMAE:", -mlp_scores["test_neg_mean_absolute_error"], "\nMSE", -mlp_scores['test_neg_mean_squared_error'])
  print("\nDECISION TREE:")
  print("r^2s:", tree_scores["test_r2"], "\nMAE:", -tree_scores["test_neg_mean_absolute_error"], "\nMSE", -tree_scores['test_neg_mean_squared_error'])
 √ 3.3s
                                                                                                                                                                  Python
LINEAR REGRESSION:
r^2s: [0.39824754 0.42717193 0.23199958 0.23614747 0.22132411]
MAE: [0.63176573 0.53574796 0.72742815 0.54049215 0.69251087]
MSE [0.63496037 0.39375714 0.80391711 0.56286052 0.8922328 ]
MULTILAYER PERCEPTRON:
MAE: [0.64016155 0.55822475 0.69835993 0.64626905 0.6906529 ]
MSE [0.63828404 0.41645481 0.71777493 0.69990762 0.76300977]
DECISION TREE:
MAE: [0.32653061 0.20833333 0.82291667 0.63541667 0.72916667]
MSE [0.47959184 0.17708333 1.15104167 1.05729167 1.19791667]
```

K-Means Clustering Model: Good or Moderate Quality

Thank You

Citations

Source Data: https://www.kaggle.com/datasets/shruthiiiee/orange-quality/data

https://scikit-learn.org/stable/

https://matplotlib.org/

https://pandas.pydata.org/

https://numpy.org/

https://seaborn.pydata.org/

https://github.com/kiat/Elements-of-Data-Analytics