

From Noise to Information: Reconstructing Quantum States from Wigner Functions

ETH Quantum Hackathon challenge presentation

April 2025

Reconstructing Quantum States from Wigner Functions

Real-World Problem:

How do we efficiently know our quantum state?

For Alice & Bob: Measuring Wigner Function

R. Rousseau et al. – arXiv (2025)

CONFIDENTIAL

Density Matrix

Describe statistical mixtures of quantum states

$$ho = \sum_{i} p_{i} \ket{\psi_{i}} ra{\psi_{i}}$$

 $|\psi_i
angle$ Orthogonal quantum states

 \mathcal{P}_i Probability of the system being in state $|\psi_i
angle$

→ very useful for describing decoherence, incomplete knowledge

Key Properties of the Density Matrix

- Hermitian: $\rho^{\dagger} = \rho$
- Positive semi-definite: $\lambda_i \geq 0$
- Normalization: $Tr(\rho) = 1$

Pure vs. Mixed States

Pure state:
$$ho^2=
ho$$
 e.g.: $|\psi\rangle=lpha\,|0\rangle+eta\,|1
angle$ $ho=|\psi\rangle\,\langle\psi|$

Mixed state:
$$\rho = \rho |0\rangle\langle 0| + (1-\rho) |1\rangle\langle 1|$$

The Wigner Function

Quasi-probability distribution in phase-space:

$$W_{\rho}(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} \langle x + y | \rho | x - y \rangle e^{2ipy/\hbar} dy$$

- x and p: position and momentum of the system
- $\langle x+y|\,\rho\,|x-y\rangle$ density matrix in position-basis \rightarrow coherence of the system Integral over $\int e^{-2ipy/\hbar}dy$: Fourier transform \to how different position states interfere with each other in the momentum domain.
- $\frac{-}{\pi \hbar}$: normalization factor

The Wigner Function

Quasi-probability distribution in phase-space:

$$W_{\rho}(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} \langle x + y | \rho | x - y \rangle e^{2ipy/\hbar} dy$$

In classical mechanics: State of the system described by a **single point** in phase space

In quantum mechanics:

- → Quasi-probability distribution
- → Heisenberg uncertainty

- **negative regions:** indicate quantum interference effects.
- **zero regions**: the state has no contribution.

The Wigner Function

Quasi-probability distribution in phase-space:

$$W_{\rho}(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} \langle x + y | \rho | x - y \rangle e^{2ipy/\hbar} dy$$

Properties:

$$\int W_{\rho}(x,p)dxdp = 1 \quad \text{(Normalization)}$$

 $W_{\rho}(x, p)$ Real-valued function

$$W_{\rho}(x \to \pm \infty, p \to \pm \infty) \to 0$$

The Wigner Function II

Displacement and **Parity Operators**

Displacement operator:

$$\hat{D}(\alpha) = \exp(\alpha \hat{a}^{\dagger} - \alpha \hat{a})$$

 $lpha \in \mathbb{C}$ \hat{a} : annihilation operator

$$D(\alpha)|0\rangle = |\alpha\rangle$$

Identical way of expressing the Wigner function:

$$W(\alpha) = \frac{2}{\pi} \text{Tr} \left[D(\alpha) P D^{\dagger}(\alpha) \rho \right]$$

→ Measure Parity of a displaced state

Parity operator:

$$\hat{P} = e^{i\pi\hat{a}^{\dagger}\hat{a}}$$

In Fock basis:

$$\hat{P}|n\rangle = (-1)^n|n\rangle$$

Challenge: Density matrix reconstruction

One-to-one mapping: (Isomorphism)

$$\hat{\rho} \longleftrightarrow W(\alpha)$$

Numerically:

$$\tilde{\rho} = fit(W(x, p))$$

How to implement this numerically?

How to obtain the density matrix from an existing Wigner function?

$$W(\alpha) \longrightarrow \hat{\rho}$$

Challenge: Density matrix reconstruction

Wigner Tomography: A Convex-Optimization Approach

Wigner function does not correspond to a measurement → **Parity** is a physical measurement

Measurement Operator:
$$E_{\alpha} = \frac{1}{2}(I + D(\alpha)PD^{\dagger}(\alpha))$$

Probability:

$$p_{\alpha} = \operatorname{Tr}(E_{\alpha}\rho)$$
 $p_{\alpha} \in [0, 1]$

$$W(\alpha) = \frac{2}{\pi}(2p_{\alpha} - 1) \Longleftrightarrow p_{\alpha} = \frac{1}{2}(1 + \frac{\pi}{2}W(\alpha))$$

if we know $\mathcal{W}(lpha)$, we can compute the corresponding measurement probability

Switch of perspective:

 $W(\alpha)$ as a given function treat the measured parity probabilities P_{α} as data points

Each point α corresponds to a measurement operator E_{α} , find ρ s.t. $p_{\alpha}={\rm Tr}(E_{\alpha}\rho)$

Challenge: Convex Optimization

Goal: From a given set of measurement results p_{α} , find a density matrix ρ that best explains the data.

Assume finite number of measurement results:

$$\{p_{\alpha_k}\}_{k=1}^n$$

Cost function:

$$\mathcal{L}(\rho) = \sum_{k=1}^{n} |\text{Tr}(E_{\alpha_k} \rho) - p_{\alpha_k}|^2$$

$$\rho \succeq 0$$
 (positive semidefinite), $Tr(\rho) = 1$

Convex optimization problem

Challenge: Robustness against noise

How does the reconstruction scale when (gradually) introducing noise to the system?

Challenge: Robustness against noise

Reglade et al., Nature 629, 778-783 (2024)

CONFIDENTIAL

Challenge: Dealing with real-world data

In practice: Callibration of measurement outcomes necessary

How to correct the affine distortion numerically?

Affine distortion:

$$W_{measured}(\alpha) = aW_{\rho}(\alpha) + b + \text{noise}$$

Remember:

$$\int W(\alpha)d\alpha = 1$$
 $W_o(\alpha \to \pm \infty) \to 0$

How to filter or denoise the Wigner function?

Apply 2D Gaussian filter

Challenge: Optional Task

Supervised Learning for Wigner Denoising

1. Design a realistic noise model
Create multiple noise models to simulate
imperfections seen in experiments

2. Build a Supervised Dataset

- **Generate Clean Wigners**: Simulate a variety of pure quantum states
- **Corrupt the Data**: Apply your noise models to generate paired samples

$$\tilde{W}_i = \text{NoiseModel}(W_i)$$

3. Train a Denoising Model

Accelerate Reconstruction Method

How to speed up the reconstruction?

Useful Tools

Software:

- Dynamiqs, JAX
- cvxpy or other convex optimization tools
- Scikit learn
- Scipy
- Linear algebra (numpy, etc.)
- Machine Learning libraries
 - Pytorch
 - Tensorflow
 - Keras
 - □ ...

Getting Help:

- Ask us!
- Explore suggested references
- Explore scientific articles

