Teoría de la Medida e Integración 2022

Lista 02

27.febrero.2022

- 1. Sea $\{E_k\}_{k=1}^{\infty}$ una secuencia de conjuntos Lebesgue mesurables. Mostrar que:
 - a) Si $E_k \nearrow E$, entonces $\lim_{k \to \infty} |E_k| = |E|$.
 - b) Si $E_k \searrow E$, y $|E_k| < \infty$, $\forall k$, entonces $\lim_{k \to \infty} |E_k| = |E|$.
- 2. (a) Construir un subconjunto de [0,1] usando la misma estrategia que el conjunto de Cantor, excepto que en el k-ésimo paso, cada intervalo removido tiene longitud $\frac{\delta}{3^k}$, con $0 < \delta < 1$. Mostrar que el conjunto resultante es perfecto, no contiene intervalos, y que posee medida de Lebesgue 1δ .
 - (b) Construir un subconjunto de [0,1] al estilo Cantor, pero removiendo en el k-ésimo paso un subintervalo de longitud θ_k , con $0 < \theta_k < 1$. Mostrar que el conjunto remanente posee medida cero si, y sólo si, $\sum_k \theta_k = +\infty$.
- 3. Pruebe que si E_1 y E_2 son subconjuntos Lebesgue mesurables en \mathbb{R} , entonces $E_1 \times E_2$ es Lebesgue mesurable en \mathbb{R}^2 , y que

$$|E_1 \times E_2| = |E_1| \cdot |E_2|.$$

(Aquí interpretamos $0 \cdot \infty$ como 0.) (Hint: Usar alguna caracterización de mesurabilidad.)

4. Definimos la **medida interior (de Lebesgue)** de $E \subseteq \mathbb{R}^n$, como

 $|E|_i = \sup |F|$, donde el supremo se toma sobre todos los subconjuntos cerrados $F \subseteq E$.

Mostrar que

- i) $|E|_i \le |E|_e$,
- ii) Si $|E|_e < +\infty$, entonces E es Lebesgue measurable si, y sólo si, $|E|_i = |E|_e$.
- 5. Dar un ejemplo para mostrar que la imagen de un conjunto (Lebesgue) mesurable, por una función continua, no necesariamente es (Lebesgue) mesurable. (Hint: Considere la función de Cantor–Lebesgue).
- 6. (a) ¿ Cuál es la σ -álgebra de \mathbb{R} generada por los subconjuntos unitarios $\{x\}$, $x \in \mathbb{R}$?
 - (b) Sea (X, A) un espacio mesurable. Demuestre que no puede haber una σ -álgebra A que contiene una cantidad infinita enumerable de miembros.

(Hint: recuerde que $A \in \mathcal{A}$ es un átomo si A no contiene un subconjunto propio $\emptyset \neq B \in \mathcal{A}$, y mostrar que $\#\mathcal{A} = \#\mathbb{N}$ implica que \mathcal{A} tiene una cantidad infinita enumerable de átomos.)

- 7. (i) Dar un ejemplo de dos σ -álgebras \mathcal{A}_1 y \mathcal{A}_2 en X cuya unión no es una σ -álgebra.
 - (ii) Dar un ejemplo de una secuencia $\{A_n\}_n$ estrictamente creciente de σ -álgebras en X, es decir, $A_n \subsetneq A_{n+1}$, cuya unión $A = \bigcup_n A_n$ no es una σ -álgebra.
- 8. Probar el Teorema π - λ :

Sea \mathcal{P} un π -sistema en X y \mathcal{D} un λ -sistema en X, con $\mathcal{P} \subseteq \mathcal{D}$. Entonces $\sigma(\mathcal{P}) \subseteq \mathcal{D}$.