

Tom Hyer *Emergent Optimal Hedges*

Minimum-Variance Hedge

Optimal hedge for some covariance matrix of model parameters

- $U = U(model) = U(x) = U(x_{-}) + \delta \cdot dx$
 - so U has a variance, $\delta^T \sigma \delta$, where σ is the covariance matrix of x
- M candidate hedge instruments, with value V₁...V_M
- V_i(x) = V_i(x₋) + J_i·dx defines the matrix J
- For some hedge h, $U-\Sigma_iV_ih_i$ has minimum variance:

• h = -
$$(J\sigma J^T)^{-1}J\sigma\delta$$

• We need to know the model's covariance matrix σ as well as the (easier to measure) covariance matrix $J\sigma J^T$ of hedge instrument values

Understanding Underdetermined Search

Calibration is constrained optimization

- N parameters of a model means N degrees of freedom
- M calibration instruments
 - N<M in stationary models with very limited fitting power
 - Much more often we have N>>M
- So there is an (N-M)-dimensional manifold of solutions, and it is the calibrator's job to pick one
- Classical "bootstrap" methods accomplish this by reducing N
 - bootstrap is only defined with N=M
 - so we add constraints, such as interpolation rules between instrument maturities, and use them to describe our model in terms of a less-rich model with M parameters
 - these constraints are nonphysical, and often of low quality
 - the problem is intrinsically underdetermined, even if we ignore the fact
- Since we must choose one solution, let's try to choose the right one

Understanding Underdetermined Search (2)

Iterated Quadratic Programming

- We can't optimize without a figure of merit G(x)
 - we seek the valid solution (on the manifold of x reproducing market prices) with minimum G
- Most likely G has a global optimum (minimum) at x₀
 - and has a quadratic form near that minimum
- If G is a quadratic form, then it defines a metric
 - we seek the valid solution *closest to* x_0
 - $G(x_0+s) = s^TWs$ for some positive definite W
- If V is linear, then this is the *quadratic programming problem*
 - solution is very fast, even for large N, if W is sparse
- For nonlinear V, there is an iterative extension of Newton's method
 - linearize V around prior point x₋
 - solve QP problem and take the resulting QP step
 - iterate to convergence

Using Underdetermined Search

Iterated Quadratic Programming

- We control the parametrization (x)
 - favor parametrizations which make V linear
 - never calibrate a term structure of reversion rate
- We control the attractor x₀
 - we can make it sensible, smooth, and somewhat stationary
 - most likely we will give the user some control, with <M parameters
- We control the metric W
 - we can penalize non-smooth or non-stationary solutions
 - subject to the usual trade-off between smoothness and locality
 - build W from couplings, so it is naturally sparse

•
$$s = -W^{-1}J^{T}(JW^{-1}J^{T})^{-1}f$$

Using Underdetermined Search (2)

Efficiency of Calibrations

- Bootstrap calibration takes ~8 evaluations for each new constraint; total calibration time
 ~8M
- Fully-determined exact fit (M parameters) takes many more evaluations and also gradient computations
- Overdetermined fit (least squares) takes vastly more evaluations and gradients
- Underdetermined fit takes ~6 evaluations for common problems, but also requires ~2 gradient computations
 - so time ~(6+2N)M, where N can be very large
 - unless we can analytically compute the Jacobian
 - this computation need not be very exact
- In practice underdetermined fit is as fast as non-optimized bootstrap, much faster than other methods

Response Functions

Sufficient statistics of a calibration

- Bump one of the constraints (by a small amount), and measure the change in x
- The Law of Response Functions: If you don't know what they look like, they look bad
- Crucial for every aspect of calibration
 - if response to this artificial bump is bad, response to real fluctuations may be as well
 - response function dictates calibration instrument risk (chain rule)
 - hedge in one instrument is response function dotted with portfolio gradient δ
- Underdetermined response function is the QP step for this small bump
 - $s = -W^{-1}J^{T}(JW^{-1}J^{T})^{-1}e_{i}$ where e_{i} is a unit basis vector
 - note the base model is the starting point of recalibration: $x_0=x_1$
 - the hedge is

•
$$H = -(JW^{-1}J^{T})^{-1}JW^{-1}\delta$$

Conclusion

When does an optimal hedge emerge from calibration?

