GRANDEURS CHIMIQUES

Exercice 1: (niveau facile)

L'anhydride éthanoïque, de formule $C_4H_6O_3$, est un liquide très utilisé pour synthétiser des espèces chimiques. Par exemple, elle est un réactif de la synthèse de la vanilline, principal arôme de vanille.

La production mondiale annuelle d'anhydride éthanoïque est d'environ 2,70 milliards de litres.

Données:

- Masses molaires atomiques : $M(C) = 12.0 \text{ g.mol}^{-1}$; $M(O) = 16.0 \text{ g.mol}^{-1}$; $M(H) = 1.0 \text{ g.mol}^{-1}$
- Masse volumique de l'anhydride éthanoïque : ρ = 1,08 g.mL⁻¹
- 1) Calculer la masse molaire *M* de l'anhydride éthanoïque.
- 2) Calculer la masse *m* d'anhydride éthanoïque produite chaque année.
- 3) En déduire la quantité de matière n d'anhydride éthanoïque produite chaque année.

Exercice 2: (niveau moyen)

Le chlorure d'hydrogène HCl est une gaz très soluble dans l'eau. On peut le dissoudre dans l'eau pour préparer une solution d'acide chlorhydrique. Au laboratoire, on utilise un volume V_{gaz} = 200 mL de gaz pour préparer V = 250 mL d'une solution d'acide chlorhydrique.

<u>Données</u>: Volume molaire des gaz dans les conditions de l'expérience : $V_m = 25,0$ L.mol⁻¹

- 1) Calculer la quantité de matière n_{qaz} de chlorure d'hydrogène utilisée lors de la préparation de cette solution.
- 2) Vérifier que la concentration de la solution est $C_0 = 3,20 \times 10^{-2} \text{ mol.L}^{-1}$.
- 3) Quel volume V_0 de cette solution faut-il prélever pour préparer V_1 = 50,0 mL d'une solution de concentration C_1 = 6,40 x 10^{-3} mol.L⁻¹?

Exercice 3: (niveau difficile)

Votre professeur tient dans le creux de sa main du sucre en poudre, de masse m et de masse molaire $M_{(glucose)} = 180 \text{ g.mol}^{-1}$. Le but de cet exercice consiste à trouver cette masse m (parce que ça aurait été trop simple de la peser avant). Pour ce faire :

<u>étape 1</u>: Il dissout le sucre en poudre dans 50,0 mL d'eau et obtient une solution S_1 , de volume V_1 et de concentration molaire C_1 .

<u>étape 2</u>: Il prélève ensuite 1,0 mL de cette solution S_1 , et obtient ainsi une nouvelle solution S_2 , de volume V_2 et de concentration C_2 .

<u>étape 3</u> : Il introduit la solution S_2 dans une fiole jaugée de 20,0 mL qu'il complète avec de l'eau. Il obtient de cette façon une solution S_3 , de volume V_3 et de concentration molaire C_3 .

<u>étape 4</u> : M. Lencioni réalise enfin un dosage (on en parlera plus tard dans l'année) qui lui permet de trouver la concentration de C_3 : $C_3 = 2.0 \times 10^{-1}$ mol.L⁻¹.

Que vaut la masse m de glucose que tenait votre professeur dans sa main ?