Sparse Table

Laboratório de Programação Competitiva - 2020

Pedro Henrique Paiola

Introdução

- A Sparse Table é uma estrutura de dados que permite responder a consultas em intervalos (range queries).
- A maioria das queries s\u00e3o realizadas em complexidade O(log(n))
- Porém, para certos problemas, como a RMQ (Range Mininum Query), a resposta por ser calculada em tempo O(1).
- Desvantagem: essa estrutura só pode ser usada em arrays imutáveis.
 Qualquer alteração implica na reconstrução da Sparse Table: O(n.log(n))

Intuição

- Sabemos que qualquer número não negativo pode ser representado por uma soma de potências decrescentes de 2. Esta é a base para a representação binária de um número
 - \circ Ex: 13 = (1101)₂ = 8 + 4 + 1
- ullet Para um número x, pode haver no máximo $\lceil log_2x
 ceil$ números somando.
- Pelo mesmo raciocínio, qualquer intervalo pode ser representado exclusivamente como a uni\u00e3o de intervalos com comprimentos que s\u00e3o pot\u00e9ncias de dois.

Intuição

0								
0	1	2	3	4	5	6	7	8

- Intervalo [2,8]= [2,5] U [6,7] U [8,8]
- | [2,5] | = 4
- | [6,7] | = 2
- | [8,8] | = 1

Intuição

- A ideia principal por trás das Sparse Tables é pré-calcular todas as respostas para os intervalos com tamanho de potências de 2.
- Posteriormente, uma consulta de intervalo diferente pode ser respondida dividindo o intervalo em subintervalos de tamanho de potência de 2.
- Como já sabemos que para um número n pode haver no máximo log(n) números somando, então essa divisão em intervalo pode ter complexidade O(log n).

- Vamos armazenar as consultas pré-calculadas em uma matriz st.
- A posição st[i][j] armazenará a resposta para o intervalo [i, i + 2^j 1], de tamanho
 2^j.
- O tamanho da matriz será MAXN x (K + 1), onde K >= $log_2(MAXN)$.
- Para construir a matriz st considerando um vetor v e uma função f (soma, mínimo, ...), usaremos programação dinâmica baseada na seguinte relação de recorrência:

$$st(i,j) = egin{cases} f(v[i]) & ext{se } j = 0 \ f(st(i,j-1), st(i+2^{j-1}, j-1) & ext{c.c.} \end{cases}$$

 $\vee =$

0	1	2	3	4	5	6	7	
3	1	5	3	4	7	6	1	

 $\vee =$

0	1	2	3	4	5	6	7	
3	1	5	3	4	7	6	1	

3				

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1			

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5			

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1

 $\vee =$

0	1	2	3	4	5	6	7	
3	1	5	3	4	7	6	1	

3	1	5	3	4	7	6	1
1							

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1						

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3					

V =

0	1	2	3	4	5	6	7	
3	1	5	3	4	7	6	1	

3	1	5	3	4	7	6	1
1	1	3	3				

V =

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3	3	4	6	1	
1							

$$[i,j] \leftarrow [i,j-1] e [i+2^{j},j-1]$$

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3	3	4	6	1	
1	1						

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3	3	4	6	1	
1	1	3					

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3	3	4	6	1	
1	1	3	3				

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3	3	4	6	1	
1	1	3	3	1			

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3	3	4	6	1	
1	1	3	3	1			
1							

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3	3	4	6	1	
1	1	3	3	1			
1							

```
int st[MAXN][K+1];
void buildSparseTable(int v[], int n)
   for (int i = 0; i < n; i++)
       st[i][0] = f(v[i]);
   for (int j = 1; j \le K; j++)
       for (int i = 0; i + (1 << j) <= N; i++)
          st[i][j] = f(st[i][j-1],
                        st[i + (1 << (i-1))][i-1]);
//Complexidade de tempo e memória O(nlog(n))
```

- Para realizar uma consulta em O(log n) em uma Sparse Table, vamos partir da ideia de dividir o intervalo em subintervalos de comprimento potência de 2.
- Para um intervalo [L,R], iteramos sobre todas as potências de dois, começando pela maior. Assim que uma potência 2^j for menor ou igual ao comprimento do intervalo (R - L + 1), processamos a primeira parte do intervalo [L, L+2^j-1] e continuamos com o intervalo restante [L + 2^j, R].

```
int query(int L, int R)
   int acc = elem neutro;
   for (int j = K; j >= 0; j--) {
      if ((1 << j) <= R - L + 1){
          acc = f(acc, st[L][j]);
          L += 1 << j;
```

```
int query(int L, int R) //Exemplo: versão específica para soma
   int sum = 0;
   for (int j = K; j >= 0; j--) {
       if ((1 << j) <= R - L + 1) {
           sum += st[L][j];
          L += 1 << \dot{1};
```

 $\lor =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
4	6	8	7	11	13	7	
12	13	19	20	18			
30							

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
4	6	8	7	11	13	7	
12	13	19	20	18			
30							

 $\vee =$

st =

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

 3
 1
 5
 3
 4
 7
 6
 1

 4
 6
 8
 7
 11
 13
 7

 12
 13
 19
 20
 18

 30
 30

$$C = R - L + 1 = 7$$

$$j = 3 \rightarrow 2^3 = 8 > 7$$

V	7	=

- 4	_	
~ I		=
-	M.	

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
4	6	8	7	11	13	7	
12	13	19	20	18			
30							

$$C = R - L + 1 = 7$$

$$j = 2 \rightarrow 2^2 = 4 \le 7 \rightarrow sum += st[1][2]$$

sum = 13

\sim +	_
\leq	=
JL	

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
4	6	8	7	11	13	7	
12	13	19	20	18			
30							

$$C = R - L + 1 = 3$$

$$j = 1 \rightarrow 2^1 = 2 \le 3 \rightarrow sum += st[5][1]$$

 $\vee =$

st =

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

 3
 1
 5
 3
 4
 7
 6
 1

 4
 6
 8
 7
 11
 13
 7

 12
 13
 19
 20
 18

 30

$$C = R - L + 1 = 1$$

$$j = 0 \rightarrow 2^0 = 1 \le 1 \rightarrow sum += st[7][0]$$

- A Sparse Table apresenta grande vantagem quando estamos trabalhando com funções que permitem a sobreposição de problemas. Ou seja, ao dividimos um intervalo em subintervalos, NÃO precisamos nos preocupar se eles são disjuntos.
- Ou ainda, quando temos funções **idempotentes**: f(x,x) = x
- Isso vale para calcularmos o mínimo de um intervalo, por exemplo, mas não vale para a soma.
 - \circ min([1, 6]) = min([1,4], [3,6])
 - o sum([1, 6]) != sum([1,4], [3,6]) //Os elementos 3 e 4 são somados duas vezes

 Se a função com que estamos trabalhando tiver esta propriedade, iremos dividir nosso intervalo em apenas dois subintervalos sobrepostos com comprimentos de potência de 2.

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1
0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

• Em resumo, para uma consulta (L,R) vamos selecionar como j a maior potência de 2 tal que $2^j \le R - L + 1$, e então pegar o intervalo que começa em L de tamanho 2^j , e o intervalo que termina em R de tamanho 2^j .

$$min(st[L][j], st[R-2^j+1][j])$$

onde $j=\lfloor log_2(R-L+1)
floor$

 $\vee =$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

3	1	5	3	4	7	6	1
1	1	3	3	4	6	1	
1	1	3	3	1			
1							

 \bullet Para esta operação, precisamos ser capazer de calcular $\log_2(R-L+1)$ rapidamente. Usualmente, fazemos isso pré-computando todos os logaritmos

```
int log[MAXN+1];
log[1] = 0;
for(int i = 2; i <= MAXN; i++)
    log[i] = log[i/2] + 1;</pre>
```

 Então, tendo construído a Sparse Table, a consulta de um intervalo [L, R] se torna bastante simples:

```
int j = log[R - L + 1];
int minimum = min(st[L][j], st[R - (1 << j) + 1][j]);
```

Variações

- Existem estruturas de dados semelhantes a Sparse Table que conseguem realizar consultas em O(1) mesmo com funções que não sejam idempotentes.
- Exemplos:
 - Disjoint Sparse Table: [Tutorial] Disjoint Sparse Table tutorial
 - Sqrt Tree: <u>Sqrt Tree</u>

Comparativo

Segment Tree	BIT	Sparse Table		
 Complexidades Preprocess: O(n) Query: O(log n) Update: O(log n) 	 Complexidades Preprocess: O(n) Query: O(log n) Update: O(log n) 	 Complexidades Preprocess: O(n log(n)) Query: O(1) ~ O(log n) Update: O(n log n) 		
Obs: • Bastante versátil • Vantagem com atualizações em intervalos com lazy propagation	 Apenas para RSQ (ou funções similares) Embora tenha a mesma complexidade da SegTree, na prática é mais eficiente tanto em relação a tempo quanto memória 	 Obs: Grande vantagem em queries de funções idempotentes. Query em O(1) Não indicado para quando temos atualizações. 		

Referências

https://cp-algorithms-brasil.com/Estruturas%20de%20dados/sparsetable.html

https://cp-algorithms.com/data_structures/sparse-table.html

https://brilliant.org/wiki/sparse-table/

https://www.geeksforgeeks.org/sparse-table/