DELHI TECHNOLOGICAL UNIVERSITY

SCIENTIFIC COMPUTING (MC-204) PRACTICAL FILE

SUBMITTED TO: PROF. DINESH UDAR MR. ANKIT SHARMA

SUBMITTED BY: NITYA MITTAL (2K19/MC/089)

EXPERIMENT 4

AIM

Write the MATLAB program of Newton Forward and Backward interpolation table of any data set.

For example:-

$$X = [3, 8, 13, 18, 23, 28]$$

THEORY

NEWTON FORWARD METHOD

The differences y1 – y0, y2 – y1, y3 – y2,, yn – yn–1 when denoted by dy0, dy1, dy2,, dyn–1 are respectively, called the first forward differences. Thus the first forward differences are : $\Delta Y_r = Y_{r+1} - Y_r$

Forward difference table

X	У	Ду	$\Delta^2 y$	$\Delta^{3}y$	$\Delta^I y$	$\Delta^5 y$
x_0	y ₀	Δy_0				
x ₁	y_1	350	$\Delta^2 y_0$			
$(=x_0 + h)$		Δy_1	$\Delta^2 y_1$	$\Delta^3 y_0$	$\Delta^4 y_0$	
$(=x_0+2h)$	y_2	Δy_2		$\Delta^3 y_1$		$\Delta^5 y_0$
x_3	y_3		$\Delta^2 y_2$.3	$\Delta^4 y_1$	
$= (x_0 + 3h)$ x_4	y ₄	Δy_3	$\Delta^2 y_3$	$\Delta^3 y_2$		
$= (x_0 + 4h)$		Δy_4				
$= (x_0 + 5h)$	y ₅					

NEWTON'S GREGORY FORWARD INTERPOLATION FORMULA:

$$f(a+hu) = f(a) + u\Delta f(a) + \frac{u(u-1)}{2!}\Delta^2 f(a) + \dots + \frac{u(u-1)(u-2)\dots(u-n+1)}{n!}\Delta^n f(a)$$

This formula is particularly useful for interpolating the values of f(x) near the beginning of the set of values given. h is called the interval of difference and u = (x - a)/h, Here a is first term.

NEWTON BACKWARD METHOD

The differences y1 - y0, y2 - y1, y3 - y2,, yn - yn-1 when denoted by dy0, dy1, dy2,, dyn-1 are respectively, called the first backward differences. Thus the first backward differences are :

i
$$x_{i}$$
 f_{i} ∇f_{i} $\nabla^{2} f_{i}$ $\nabla^{3} f_{i}$ $\nabla^{4} f_{i}$

0 x_{0} f_{0}

1 x_{1} f_{1} $\nabla^{4} f_{1}$

2 x_{2} f_{2} $\nabla^{4} f_{2}$ $\nabla^{2} f_{3}$ $\nabla^{3} f_{3}$ $\nabla^{4} f_{4}$

3 x_{3} f_{3} $\nabla^{4} f_{4}$ $\nabla^{4} f_{4}$

4 x_{4} f_{4}

Newton Gregory Backward Interpolation Formula:

$$P(x_n+ph) = y_0 + p\nabla y_n + \frac{p(p+1)}{2!}\nabla^2 y_n + \frac{p(p+1)(p+2)}{3!}\nabla^3 y_n + \Lambda + \frac{p(p+1)(p+2)...(p+n-1)}{n!}\nabla^n y_n$$

This formula is particularly useful for interpolating the values of f(x) near the end of the set of values given. h is called the interval of difference and $p = (x - x_n) / h$, Here x_n is first term.

SOURCE CODE

1. Newton Forward Method

```
clear all;
close all;
%sample data set taken
x=[3,8,13,18,23,28];
y=[7,18,26,37,48,57];
size=6;
```

```
%finding out different degrees of del for the function
delf(1,:)=y(:);
for t = 2:size+1
    for i = 1:size-t+1
        delf(t,i) = delf(t-1,i+1) - delf(t-1,i);
    end
end
%let the number be 10
%standard h=10 and num= a + hu
num=10;
h=10;
pos=0;
%finding the valu
for k = 1:size
    if (num>=x(k)) && (num<x(k+1))
        a=x(k);
        pos=k;
    end
end
u=(num-a)/h;
%finding f(x)
sum=0;
for i = 1:size
    multi=1;
    if(i>1)
        for j = 0:i-2
            multi= multi*(u-j);
        end
    end
    sum = sum + (multi*delf(i,pos)/factorial(i-1));
end
disp("The value of f(x) for x = 10 using Newton's Forward Method")
disp(sum)
```

2. Newton Backward Method

```
clear all;
close all;
%sample data set taken
x=[3,8,14,19,23,29];
y=[7,11,30,40,47,60];
size=6;
%let the number be 26
%standard h=10 and num= a + hu
num=26;
h=10;
pos=0;
%finding out different degrees of del for the function
delf(1,:)=y(:);
for t = 2:size+1
    for i = 1:size-t+1
        delf(t,i) = delf(t-1,i+1) - delf(t-1,i);
    end
end
%finding the value of a
for k = 2:size
    if (num>=x(k-1)) \&\& (num<x(k))
        a=x(k);
        pos=k;
    end
end
%finding out different degrees of nebula for the function
nebf= zeros(size);
for i =1:size
    for j=1:size
        if (i+j==k+1)
            nebf(i)=delf(i,j);
        end
    end
end
u=(num-a)/h;
```

```
%finding f(x)
sum=0;
for i = 1:size
    multi=1;
    if(i>1)
        for j = 0:i-2
            multi= multi*(u+j);
        end
    end
    sum = sum + (multi*nebf(i)/factorial(i-1));
end

disp("The value of f(x) for x= 26 using Newton's Backward Method")
disp(sum)
```

OUTPUT