A Guide to AGN Emission and Absorption Lines and "What they mean".

Nicholas P. Ross

March 5, 2019

Abstract

This is a (currently very) simple document which will hopefully/eventually be a pretty complete list of various AGN emission lines and 'what they mean'. That is to say, when a paper reports a flux of a certain line, why is that line special?

1 Narrow vs. Broad Lines

Broad-Line Region. The lines arising here include hydrogen and helium recombination lines, permitted and semi-forbidden lines such as C IV and [C III (most of these in the emitted UV), and complex multiplets of Fe II. The lack of other lines suggests densities in excess of 107 cm^{-3} , and some considerations suggest values as high as 10^{11} . At these densities, recombination is a very efficient radiator; a typical BLR requires only 10^6 solar masses.

And Seyfert Galaxies. The spectra of Seyfert galaxies typically contain:

- Non-thermal continuum emission;
- Narrow (→ low velocity), forbidden (→ low density material) lines which do not vary detectably (→ large emitting region)
- Broad (\rightarrow high velocity), permitted lines which vary on fairly short timescales (\rightarrow small emitting region)
- Also, strong emission in the radio, infrared, ultraviolet, and X-ray parts of the spectrum.

2 Type 1.5, 1.8 and 1.9s

In 1981, Donald Osterbrok introduced the notations Seyfert 1.5, 1.8 and 1.9, where the subclasses are based on the optical appearance of the spectrum, with the numerically larger subclasses having weaker broad-line components relative to the narrow lines. For example, Type 1.9 only shows a broad component in the H line, and not in higher order Balmer lines. In Type 1.8, very weak broad lines can be detected in the H β lines as well as H, even if they are very weak compared to the H α . In Type 1.5, the strength of the H α and H β lines are comparable.

From ?: Variations in the relative strength and visibility of the Balmer lines have led some investigators to define more detailed subdivisions of Seyferts. Seyfert 1.5 galaxies have moderate- strength broad H α and H β ; Seyfert 1.8 have weak broad H α and H β ; and Seyfert 1.9 have weak broad H α and only narrow H β (see Osterbrock & Ferland 2006; Ho 2008).

Table 1: Ionization Energies of some (mainly UV) emisson lines a http://physics.nist.gov/PhysRefData/Handbook/Tables/heliumtable4_a.htm#4685.3769

Ion	Wavelength	Ground	Ionized	Ionization
	_			
name	/ Angstroms	Level	Level	Energy / eV
$_{ m H{\scriptscriptstyle I}}$	912	${}^{2}\mathrm{S}\frac{1}{2}$	n/a	13.598
[OI]	1304	$^{3}P_{2}^{-}$	$2p^{3'4}S_{\frac{3}{2}}^{\circ}$	13.618
MgII	2800	${}^{2}S_{\frac{1}{2}}$ ${}^{6}D_{\frac{9}{2}}$	$2p^6 \ ^1S_0^2$	15.035
Fe II	1787	$^{6}\mathrm{D}^{5}_{2}$	$3d^{6} {}^{5}\mathrm{D}_{4}$	16.199
Si II	1260	${}^2\mathrm{P}_{rac{1}{2}}^{\circ}$	$3s^2 {}^1S_0$	16.345
AlII	1671?	${}^{1}\mathrm{S}_{0}^{^{2}}$	$3s\ ^{2}\mathrm{S}_{\frac{1}{2}}$	18.829
AlIII	1857	${}^{2}\mathrm{S}_{\frac{1}{2}}$	$2p^6 \ ^1\text{S}_0^2$	28.448
[OII]	3727	${}^{2}S_{\frac{1}{2}}$ ${}^{4}S_{\frac{3}{2}}^{\circ}$	$2p^2$ 3P_0	35.121
C III]	1909	$^{1}\mathrm{S}_{0}^{^{2}}$	$2s$ $^2\mathrm{S}_{rac{1}{2}}$	47.889
$^{a,b}{ m He{\scriptstyle II}}$	1640	$^2\mathrm{S}_{rac{1}{2}}$	n/a^2	54.417
$^{a,b}{ m He{\scriptscriptstyle II}}$	4686	2		54.417
[OIII]	5007	3P0	$2p \ 2P1/2$	54.93554
CIV	1548	${}^{2}\mathrm{S}_{rac{1}{2}}$	$1s^2 ^1S_0$	64.494
Nv	1240	${}^{2}\mathrm{S}_{\frac{1}{2}}^{2}$	$1s^2 {}^1S_0$	97.890

From https://ned.ipac.caltech.edu/level5/Sept01/Veilleux/Veilleux5.html

Ion	Wavelength	Ground	Ionized	Ionization
name	$/~\mu\mathrm{m}$	Level	Level	Energy / eV
[Ca VIII]	2.321			128
[Si VI]	1.962			167
[Si VII]	2.483			205
[Si IX]	3.935			303
[S IX]	1.252			328
[Si X]	1.430			351
[Si XI]	1.932			401

3 Ionization Line

NIST is your friend!!!

http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html

THIS LINK!!!:

https://dept.astro.lsa.umich.edu/cowley/ionen.htm

And also,

http://www.pa.uky.edu/~verner/atom.html

Figure 1: From ?: Mean spectrum of 50 HST quasar spectra. The spectrum is normalized near 1280Å. The wavelengths are taken from Morton (1991), except for Fe II , Fe III , and C III] * lines, which are observed wavelengths from Tytler et al. (2004a). The tick marks shown below the spectrum are the wavelengths of the Fe II and Fe III multiplet. The dotted line is the power-law continuum approximation. Note that the emission lines do exist in the Ly α wavelength region. We also note that the wavelength separation of the Si IV doublet at $\lambda 1400$ is relatively large and makes the line profile broad.

Table 2: Ionization Energies of some (mainly UV) emisson lines

Ion	Wavelength	Ground	Ionized	Ionization
name	/ Angstroms	Level	Level	Energy / eV
Ні	912	${}^{2}\mathrm{S}\frac{1}{2}$	n/a	13.598
$Ly\beta$	1025.72	$1s$ $^{2}\mathrm{S}$	n = 3	12.0875
$Ly\alpha$	1215.67	$1s$ 2S	n = 2	10.198
Nv	1240	${}^2\mathrm{S}_{rac{1}{2}}$	$1s^2 {}^1S_0$	97.890
SiII	1260	${}^{2}\mathrm{P}_{rac{1}{2}}^{\stackrel{2}{\circ}}$	$3s^2 {}^1S_0$	16.345
[OI]	1304	$^3\mathrm{P}_2$	$2p^3 \ ^4S_{\frac{3}{2}}^{\circ}$	13.618
$\mathrm{C}\mathrm{iv}$	1548	${}^{2}\mathrm{S}_{rac{1}{2}}$	$1s^2 {}^1S_0^2$	64.494
Неп	1640	${}^{2}\mathrm{S}_{rac{1}{2}}^{^{2}}$	n/a	54.417
AlII	1671?	${}^{1}S_{0}^{2}$	$3s\ ^{2}\mathrm{S}_{\frac{1}{2}}$	18.829
Fe II	1787	$^{6}\mathrm{D}^{\frac{9}{2}}$	$3d^{6} {}^{5}\mathrm{D}_{4}^{2}$	16.199
AlIII	1857	${}^{2}\mathrm{S}_{rac{1}{2}}^{^{2}}$	$2p^6 {}^1{ m S}_0$	28.448
$C_{III}]$	1909	$^{1}\mathrm{S}_{0}$	$2s {}^{2}S_{\frac{1}{2}}$	47.889
${ m MgII}$	2800	${}^{2}S_{\frac{1}{2}}$	$2p^6 \ ^1\text{S}_0^2$	15.035
[O II]	3727	${}^{4}\mathrm{S}_{rac{3}{2}}^{\circ}$	$2p^2 {}^3P_0$	35.121
[O III]	5007	$3P_0^2$	$2p \ 2P1/2$	54.93554

3.1 High-Ionization Line

From Wu et al. (2012) "...are clearly AGNs as evidenced by strong, high-ionization emission lines such as O vi, C iv, and/or C iii]."

"High-ionization BALQSOs (HiBALs) contain strong, broad absorption troughs shortward of high-ionization emission lines and are typically identified through the presence of C IV absorption troughs (?)."

3.2 Low-Ionization Line

"LoBALs are QSOs that have BALs from ions at lower ionization states such as Al III or Mg II" (?)

Table 3: The Lines

Name	Wavelength / Å	Transition	Rest Passband	Interpreation	Reference
Lyman- α	1215.67	2 to 1	\sim FUV	Major QSO line	
$\text{Lyman-}\beta$	1025.18	3 to 1	\sim FUV		1
$\text{Lyman-}\gamma$	972.02	4 to 1	\sim FUV		1
Lyman Limit	911.27	∞ to 1	\sim FUV		1
H - α	6563.	3 to 2	R,r	Recent major SF or AGN activity	2
H - β	4861.	4 to 2	B,V,g		2
H - γ	4341.	5 to 2	U,B,u		2
H - δ	4102.	6 to 2	\sim FUV	Previous SF history	3
Balmer Limit	3646.	$\infty ext{ to } 2$	\sim FUV		2
HI	3646.	∞ to 2	\sim FUV		2
HII	3646.	∞ to 2	\sim FUV		2
HeI	3646.	∞ to 2	\sim FUV		2
HeII	3646.	∞ to 2	\sim FUV		2
HeIII	3646.	$\infty ext{ to } 2$	\sim FUV		2
CIV	3646.	∞ to 2	\sim FUV	Major QSO line	2
OII	3646.	∞ to 2	\sim FUV	Major QSO line	2
OIII	3646.	∞ to 2	\sim FUV	Recent major SF line	2
OIII	5007.	$\infty ext{ to } 2$	\sim FUV	Recent major SF line	2
Ca II H	3999.	$\infty ext{ to } 2$	\sim FUV	Old stellar pop	3
${ m Ca~II~K}$	4001.	$\infty ext{ to } 2$	\sim FUV	Old stellar pop	3
NII	5007.	∞ to 2	\sim FUV		2
NeV	3646.	∞ to 2	\sim FUV	Major QSO line	2
$[OIII \lambda 5007/ H\beta]$				"BPT" diagram reliable tool for determining source	2, 4, 5
$[\mathrm{NII}~\lambda~6583/~\mathrm{H}lpha]$				of line emission from a galaxy visually differentiate	2,4,5
				between Seyferts, LINERs and SF gals. However, only at	
				"low" redshifts since need H α , (not at $z \sim 1$).	
				Modified BPT with $(U - B)$ colour replacing	
				[NII λ 6583/ H α] e.g. Montero-Dorta, 0801.2769.	
$[\mathrm{SII}~\lambda~6583/~\mathrm{H}lpha]$		$\infty ext{ to } 2$	\sim FUV	Major QSO line	2,4.5
$[lpha/{ m Fe}]$	3646.	$\infty ext{ to } 2$	\sim FUV	Major QSO line	2
NV	1333.67	2 to 1	\sim FUV	Major QSO line	1
SiIV	1???.67	2 to 1	\sim FUV	Major QSO line	1
CIV	1???.67	2 to 1	\sim FUV	Major QSO line	1
CIII]	1???.67	2 to 1	\sim FUV	Major QSO line	1
MgII	1????.67	2 to 1	\sim FUV	Major QSO line	1

4 IR fine-structure lines

e.g. arXiv:1903.00946v1, Section 3::

1 coronal region line: [SiVII] 6.50 m; 8 AGN fine-structure emission lines: [NeVI]7.65, [ArV]7.90, [CaV]11.48, [ArV]13.09, [MgV]13.50, [NeV] 14.32, [NeV] 24.31 and [OIV] 25.89 m;

5 CLAGN and CLQ Mini-lit review

This is just a quick section for a mini CLAGN and CLQ literature review. A lot of these references are from Steph LaMassa's "Hidden Monsters" talk: http://www.dartmouth.edu/hiddenmonsters/presentations_tab.php

Tohline & Osterbrock (1976) for NGC 7603.
? for NGC 4151.
? for NGC 4151.
?
?
?
?
?
? for NGC 7582.
? for Mrk 590.

6 MgII

This is just a quick mini-section on the MgII line.

Table 4: The Lines, in increasing Wavelength (Basis for this table from SDSS SkyServer Schema Browser, SpecLineNames view http://casjobs.sdss.org/dr6/en/help/browser/browser.asp)

	1	1
name	value	description
UNKNOWN	0	0.00
OVI_1033	1033	
Lya_1215	1215	1215.67
NV_1241	1241	1240.81
OI_1306		1305.53
$CII_{-}1335$	1335	1335.31
$SiIV_{-}1398$	1398	1397.61
SiIV_OIV_1400	1400	1399.80
$CIV_{-}1549$	1549	1549.48
$HeII_{-}1640$	1640	1640.40
$OIII_{-}1666$	1666	1665.85
$AlIII_1857$	1857	1857.40
$\text{CIII}_{-}1909$	1909	1908.73
$CII_{-}2326$	2326	2326.00
$NeIV_2439$	2439	2439.50
$MgII_2799$	2799	2799.12
_	3347	3346.79
${ m NeV}_3427$	3427	3426.85
OII_3727	3727	3727.09
		3729.88
Hh_3799		3798.98
Oy_3836		3836.47
HeI_3889		3889.00
CaII K_3935		3934.78
CAII H_3970		3969.59
He_3971	3971	
SII_4072		4072.30
Hd_4103		4102.89
$G_{-}4306$		4305.61
Hg_4342	4342	4341.68
OIII_4364		4364.44
Hb_4863 OIII_4933	4863	4862.68 4932.60
OIII_4955 OIII_4960	4933	
	4960	4960.30
OIII_5008	5008	5008.24
Mg_5177	5177	5176.70
Na_5896	5896	5895.60
OI_6302	6302	6302.05
OI_6366	6366	6365.54
NI_6529	6529	6529.03
NII_6550	6550	6549.86
Ha_6565	6565	6564.61
NII_6585	6585	6585.27
Li_6708	6708	6707.89
SII_6718	6718	6718.29
SII_6733	6733	6732.67
$CaII_8500$	8500	8500.36
$CaII_8544$	8544	8544.44
$CaII_8665$	8665	8664.52

IONIZATION POTENTIALS^a

Z Element											Spectrum										
	•	п	Ħ	2	^	I/	IIA	VIII	ĸ	×	IX	их	шх,	XIX	ΛX	IVX	хип	хуш	XIX	xx	ххі
л 3 Li	13.598 24.587 5.392	54.416 75.638	122.451																		
4 Be 5 B	9.322	18.211	153.893	259.368	340 217														•		
2 9	11.260	24.383	47.887	64.492	392.077	489.981															
Z	14.534	29.601	47.448	77.472	97.888	552.057	667.029														
8 0	13.618	35.116	54.934	77.412	113.896	138.116	739.315														
9 F	17.422	34.970	62.707	87.138	114.240	157.161	185.182	953.886													
10 Ne	21.564	40.962	63.45	97.11	126.21	157.93		239.09	_	1362.164											
Z Z	5.139	47.286	49.17	98.91	138.39	172.15		264.18		1465.091	1648.659										
12 Mg	5 086	15.035	28 447	109.24	141.26	186.50		265.90		367.53	1761.802										
14 Si	8.151	16.345	33 492	45.141	166.77	205.05	241.43	203 17	351.10	398.57	442.07	•		200							
15 P	10.486	19.725	30.18	51.37	65.023	230.43		309.41		424 50	470 67	00.020	0/07/547	201.5.108	02000						
16 S	10.360	23.33	34.83	47.30	72.68	88.049	280.93	328.23		447.09	504.78	564 65	8		3009.702	3494 000					
17 CI		23.81	39.61	53.46	8.79	98.03		348.28		455.62	529.26	591.97	626.69		809.39	3658 425	3946.193				
18 Ar		27.629	40.74	18.65	75.02	91.007		143.456	422.44	478.68	538.95	618.24	60.989	755.73	854.75	918	000	4426.114			
19 K		31.625	45.72	16.09	82.66	100.0		154.86		503.44	564.13	629.09	714.02	787.13	861.77				4933.931		
20 Ca		11.871	80.00	67.10	14.41	108.78	127.7	147.24		211.270	591.25	626.39	726.03	19.918	895.12					5469.738	
21 Sc		12.80	24.76	73.47	91.66	Ξ	138.0	158.7		225.32	249.832	685.89	755.47	829.79	926.00						
22 Ti		13.58	27.491	43.266	99.33	119.36	140.8	168.5		215.91	265.23	291.497	787.33	861.33	940.36						
v 52 5		14.65	29.310	46.707	65.23	128.12	150.17	173.7		230.5	255.04	308.25	336.267	895.58	974.02						
2 4 5		16.50	30.96	49.1	69.3	90.26	1.191	184.7		244.4	270.8	298.0	355	30	_						
25 PM		15.640	33.00/	2.10	4.77	S :	119.27	196.46		248.3	286.0	314.4	343.6	\$	3	1136.2					
3 6		10.18	100.00	8.4.3	0.00	8 9	125	151.06		262.1	290.4	330.8	361.0	392.2	457	489.5					
20 VS		90.71	35.30	51.3	2.67	102	129	157		276	305	336	379	411	44	512	00	1403.0			
26 Ci		20 202	36.83	55.3	20.07	801	133	162		224.5	321.2	352	384	430	464	466	571	7	1547		
30 Zo		17 064	30.73	20.05	63.6	201	15.4	8 2	8 8	767	907	308.8	104	435	484	520	257	633	1/9	8691	
31 Ga	5.999	20.51	30.71	2	0.70	100	5	<u> </u>		738	2/4	310.8	419.7	454	490	242	826	619	869	738	1856
32 Ge		15.934	34.22	45.71	93.5																
33 As		18.633	28.351	50.13	62.63	127.6															
36 26		21.19	30.820	45.944	68.3	81.70	155.4														
36 Kr		24 350	36 95	5.74	1.60	98.0	103.0	192.8	00 000												
37 Rb		27 28	4	52.6	5 1	84.4	000	97	150	1 222											
38 Sr	5.695	11.030	43.6	57	71.6	8.06	106	122.3	291	177	1 704 1		÷								
39 Y		12.24	20.52	8.19	77.0	93.0	116	129	146.52	161	206	374.0									
40 Zr		13.13	22.99	34.34	81.5																
41 No	88.9	14.32	25.04	38.3	50.55	102.6	125														
42 Mo	7.099	16.15	27.16	46.4	61.2	89	126.8	153													
45 Te	7.37	15.26	28.47																		
	7.46	18.08	31.06																		
P4 P4	8.34	19.43	32.93																		
	7.576	21.49	34.83																		

Figure 2: Property profile of the diverse library compared to the compound pool.

7 HST/COS lines

```
From Miller et al. arXiv:809.03114v1
Distance, Energy, and Variability of Quasar Outflows: Two HST/COS epochs of LBQS 1206+1052 H i,
C iii,
N iii,
N v,
O vi,
Si ii,
Si iii,
Pv,
S iii,
S iv,
S vi
e.g. Their figure 1 shows:: S VI 945
Ly \delta 950
Ly \gamma 973
C III 977
N III 990
N III* 992
N III 991
S III 1012
S III* 1016
Ly \beta 1026
O VI 1032
O VI 1037
S IV 1063
S IV* 1073
PV 1118
PV 1128
Si III 1207
Ly \alpha
N V 1239
N V 1243
N V 1240
Si II 1260
Si II* 1265
```

8 Notes, Links and To Dos...

9 "Manual" References and Links

Morton, D. C. 1991, ApJS, 77, 119 Tytler, D., OMeara, J. M., Suzuki, N., Kirkman, D., Lubin, D., & Orin, A.. 2004a, AJ, 128, 1058 see also::

https://arxiv.org/abs/1703.04250v1

References

Tohline J. E., Osterbrock D. E., 1976, ApJ Lett., 210, L117