ECE 372A

#WeDidTheThing

•••

Matt Dzurick
Brett Bushnell
Sydney Clark
Ryan Trumpinski

Outline

- > Requirements
- > Approach
- > Hardware
- Software
- Deliverables
- Conclusion

Requirements

- ➤ Part 1
 - Follow the black tape line to the end of the track and back
- Part 2
 - Integrate Bluetooth sensor to communicate with Pic
- ➤ Part 3
 - Win the competition

Divide and Conquer

- Two members take hardware
- Two members take software

Result?

Our robot is the first, the fastest, and the best!

Block Diagram

IR Sensors

- Three sets of LED and phototransistor.
- Arranged in a triangle formation.
- ➤ LED is closer to the ground than the phototransistor.

Circuit & Theory

Adafruit Bluefruit LE SPI Friend-Bluetooth Low Energy

JBteck HC-06 Bluetooth

JBteck HC-06 Bluetooth

- Option between UART and SPI
 - SPI = SYNCHRONOUS
 - UART = ASYNCHRONOUS
- Using UART
 - Easier to implement on PIC32
 - Example code available from past classes


```
#define TIMER1 FLAG IFSObits.T1IF
typedef enum stateTypeEnum {
   led0, led1, led2
int main() {
    SYSTEMConfigPerformance (10000000);
    enableInterrupts();
    initLEDs();
    initTimer1();
    while (1) {
        switch (state) {
            case led0:
                turnOnLED(0);
            case led1:
                turnOnLED(1);
            case led2:
                turnOnLED(2);
```

return 0:

Software

Finite State Machine

Part 1

- ➤ LineUp state:
 - LED's will light up when Robot is in position to start
- > Drive:
 - Begin moving forward (Never look back)
- Check ADC
 - Check values read from the phototransistors
- Calculate ODC
 - Adjust speed of the motors

Expectation Reality

Part 2

- Integrate Bluetooth chip with PIC32
- Uses UART
 - o Baud rate: 9600
- Commands sent from control

interface

Deliverables & Canclusian

Deliverables

- Code is available on Github
- Videos are available
- ➤ Final report is available

Conclusion

- Hardware is simple
- Software is simple
- Result: It works!

