In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]:

```
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
```

In [3]:

```
df = pd.read_csv(r"C:\Users\lenovo\Downloads\titanic.csv")
```

In [4]:

df.head()

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	С
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	_
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	
4										1	

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Survived	418 non-null	int64
2	Pclass	418 non-null	int64
3	Name	418 non-null	object
4	Sex	418 non-null	object
5	Age	332 non-null	float64
6	SibSp	418 non-null	int64
7	Parch	418 non-null	int64
8	Ticket	418 non-null	object
9	Fare	417 non-null	float64
10	Cabin	91 non-null	object
11	Embarked	418 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 39.3+ KB

In [6]:

```
df.isnull().mean()
```

Out[6]:

PassengerId 0.000000 Survived 0.000000 Pclass 0.000000 Name 0.000000 Sex 0.000000 Age 0.205742 0.000000 SibSp Parch 0.000000 Ticket 0.000000 Fare 0.002392 Cabin 0.782297 Embarked 0.000000

dtype: float64

In [7]:

```
X = df.drop(columns=['PassengerId','Survived','Pclass','Name','Sex','SibSp','Parch','Emba
```

In [8]:

```
y= df['Survived']
```

```
In [9]:
```

```
X.head()
```

Out[9]:

	Age	Fare	Cabin
0	34.5	7.8292	NaN
1	47.0	7.0000	NaN
2	62.0	9.6875	NaN
3	27.0	8.6625	NaN
4	22.0	12.2875	NaN

In [10]:

```
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=2)
```

In [11]:

```
X_train.shape, X_test.shape
```

Out[11]:

```
((334, 3), (84, 3))
```

In [12]:

```
X_train.isnull().mean()
```

Out[12]:

Age 0.215569
Fare 0.002994
Cabin 0.784431
dtype: float64

In [13]:

```
mean_age = X_train['Age'].mean()
median_age = X_train['Age'].median()

mean_fare = X_train['Fare'].mean()
median_fare = X_train['Fare'].median()
```

In [14]:

```
X_train['Age_median'] = X_train['Age'].fillna(median_age)
X_train['Age_mean'] = X_train['Age'].fillna(mean_age)

X_train['Fare_median'] = X_train['Fare'].fillna(median_fare)
X_train['Fare_mean'] = X_train['Fare'].fillna(mean_fare)
```

In [15]:

X_train.sample(10)

Out[15]:

	Age	Fare	Cabin	Age_median	Age_mean	Fare_median	Fare_mean
406	23.0	10.5000	NaN	23.0	23.000000	10.5000	10.5000
233	NaN	7.8792	NaN	27.0	29.307252	7.8792	7.8792
181	37.0	83.1583	E52	37.0	37.000000	83.1583	83.1583
21	9.0	3.1708	NaN	9.0	9.000000	3.1708	3.1708
58	NaN	16.1000	NaN	27.0	29.307252	16.1000	16.1000
13	63.0	26.0000	NaN	63.0	63.000000	26.0000	26.0000
316	57.0	146.5208	B78	57.0	57.000000	146.5208	146.5208
318	27.0	7.8542	NaN	27.0	27.000000	7.8542	7.8542
197	18.0	7.7750	NaN	18.0	18.000000	7.7750	7.7750
291	30.0	6.9500	NaN	30.0	30.000000	6.9500	6.9500

In [16]:

```
print('Orginal Age variable variance: ', X_train['Age'].var())
print('Age Varience after median imputation: ', X_train['Age_median'].var())
print('Age varience after mean imputation: ', X_train['Age_mean'].var())

print('Original Fare variable varience: ', X_train['Fare'].var())
print('Fare varience after median imputation: ', X_train['Fare_median'].var())
print('Fare varience after mean imputation: ', X_train['Fare_mean'].var())
```

Orginal Age variable variance: 184.7040299669505

Age Varience after median imputation: 145.67090989552415 Age varience after mean imputation: 144.76802348760975 Original Fare variable varience: 2333.007047160699

Fare varience after median imputation: 2327.1458643048404 Fare varience after mean imputation: 2326.0010199920484

In [17]:

```
fig = plt.figure()
ax = fig.add_subplot(111)

# original variable distributin
X_train['Age'].plot(kind= 'kde', ax=ax)

# variable imputed with median
X_train['Age_median'].plot(kind= 'kde', ax=ax, color='red')

# variable imputed with mean
X_train['Age_mean'].plot(kind='kde', ax=ax, color='green')

# Legends
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')
```

Out[17]:

<matplotlib.legend.Legend at 0x22766291850>

In [18]:

X_train.cov()

Out[18]:

	Age	Fare	Age_median	Age_mean	Fare_median	Fare_mean
Age	184.704030	216.034928	184.704030	184.704030	212.196215	214.533220
Fare	216.034928	2333.007047	178.883204	168.654128	2333.007047	2333.007047
Age_median	184.704030	178.883204	145.670910	144.768023	176.485104	178.346017
Age_mean	184.704030	168.654128	144.768023	144.768023	166.315953	168.147659
Fare_median	212.196215	2333.007047	176.485104	166.315953	2327.145864	2326.001020
Fare_mean	214.533220	2333.007047	178.346017	168.147659	2326.001020	2326.001020

In [19]:

X_train.corr()

Out[19]:

	Age	Fare	Age_median	Age_mean	Fare_median	Fare_mean
Age	1.000000	0.302479	1.000000	1.000000	0.295082	0.298455
Fare	0.302479	1.000000	0.309620	0.292746	1.000000	1.000000
Age_median	1.000000	0.309620	1.000000	0.996896	0.303117	0.306388
Age_mean	1.000000	0.292746	0.996896	1.000000	0.286540	0.289767
Fare_median	0.295082	1.000000	0.303117	0.286540	1.000000	0.999754
Fare_mean	0.298455	1.000000	0.306388	0.289767	0.999754	1.000000

In [20]:

X_train[['Age','Age_median','Age_mean']].boxplot()

Out[20]:

<AxesSubplot:>


```
In [21]:
```

```
X_train[['Fare','Fare_median','Fare_mean']].boxplot()
```

Out[21]:

<AxesSubplot:>

In []:

Random Imputation on numerical data

In [22]:

```
df1 = pd.read_csv(r"C:\Users\lenovo\Downloads\titanic.csv", usecols=['Age','Fare','Surviv
```

In [23]:

```
df1.head()
```

Out[23]:

	Survived	Age	Fare
0	0	34.5	7.8292
1	1	47.0	7.0000
2	0	62.0	9.6875
3	0	27.0	8.6625
4	1	22.0	12.2875

```
In [24]:
df1.isnull().mean()*100
Out[24]:
Survived
            0.000000
            20.574163
Age
Fare
             0.239234
dtype: float64
In [28]:
X = df1.drop(columns=['Survived'])
y = df1['Survived']
In [29]:
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state=2)
In [30]:
X_train
Out[30]:
     Age
            Fare
 280 23.0
           8.6625
 284
     2.0 20.2125
 40 39.0 13.4167
 17 21.0
         7.2250
 362 31.0 21.0000
 299 29.0
          7.8542
 22 NaN 31.6833
 72 29.0
          7.9250
 15 24.0 27.7208
 168 NaN 27.7208
334 rows × 2 columns
In [31]:
X_train['Age_imputed'] = X_train['Age']
X_test['Age_imputed'] = X_test['Age']
```

In [33]:

```
X_test.tail(10)
```

Out[33]:

	Age	Fare	Age_imputed
173	NaN	7.2292	NaN
70	24.0	7.7500	24.0
37	21.0	8.6625	21.0
217	57.0	164.8667	57.0
117	1.0	16.7000	1.0
348	24.0	13.5000	24.0
30	50.0	26.0000	50.0
174	40.0	31.3875	40.0
68	31.0	28.5375	31.0
204	25.0	10.5000	25.0

In [34]:

```
X_train['Age'] [X_train['Age_imputed'].isnull()]
```

Out[34]:

```
163 NaN41 NaN29 NaN
```

65 NaN

382 NaN

116 NaN

124 NaN47 NaN

22 NaN 168 NaN

Name: Age, Length: 72, dtype: float64

In [35]:

```
X_train['Age'].isnull().sum()
```

Out[35]:

72

```
In [37]:
```

```
X_train['Age'].dropna().sample(X_train['Age'].isnull().sum()).values
```

Out[37]:

```
array([45.
         , 45. , 6. , 27. , 30. , 18. , 24. , 21. , 18.
          , 25. , 21.
                      , 46.
                            , 26. , 41. , 22. , 39. , 24.
      36.
                            , 24.
      23.
          , 30. , 27.
                      , 35.
                                  , 0.75, 28. , 18. , 18.
                      , 24.
                                  , 24. , 55. , 63. , 32.
      16.
         , 37. , 25.
                            , 1.
      43. , 0.33, 43.
                      , 64. , 3. , 47. , 17. , 13. , 46.
                                               , 21.
      45.
          , 27. , 8.
                       , 27.
                             , 30.
                                   , 33. , 36.
                                                     , 17.
      17.
          , 45. , 33. , 59. , 20.
                                  , 45. , 20. , 30. , 60.
      29. , 38. , 45. , 34.5 , 31. , 24. , 31. , 21. , 48.
```

In [38]:

```
X_train['Age_imputed'][X_train['Age_imputed'].isnull()] = X_train['Age'].dropna().sample(
X_test['Age_imputed'][X_test['Age_imputed'].isnull()] = X_train['Age'].dropna().sample(X_t
```

In [39]:

X_train

Out[39]:

	Age	Fare	Age_imputed
280	23.0	8.6625	23.0
284	2.0	20.2125	2.0
40	39.0	13.4167	39.0
17	21.0	7.2250	21.0
362	31.0	21.0000	31.0
299	29.0	7.8542	29.0
22	NaN	31.6833	21.0
72	29.0	7.9250	29.0
15	24.0	27.7208	24.0
168	NaN	27.7208	25.0

334 rows × 3 columns

In [41]:

```
import seaborn as sns
```

In [42]:

```
sns.distplot(X_train['Age'], label='Original', hist=False)
sns.distplot(X_train['Age_imputed'], label= 'Imputed', hist= False)
plt.legend()
plt.show()
```

C:\Users\lenovo\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\lenovo\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

In [43]:

```
print('Original variable varience: ', X_train['Age'].var())
print('variable varience after random imputation: ', X_train['Age_imputed'].var())
```

Original variable varience: 184.7040299669505 variable varience after random imputation: 187.21043133642635

In [46]:

```
X_train[['Age','Age_imputed','Fare']].cov()
```

Out[46]:

	Age	Age_imputed	Fare
Age	184.704030	184.704030	216.034928
Age_imputed	184.704030	187.210431	171.823575
Fare	216.034928	171.823575	2333.007047

In [47]:

```
X_train[['Age','Age_imputed']].boxplot()
```

Out[47]:

<AxesSubplot:>

In []: