1. Create a table "Station" to store information about weather observation stations

```
create table Station
(ID INT PRIMARY KEY,
CITY CHAR(20),
STATE CHAR(2),
LAT_N INT,
LONG_W INT)
```

```
1 v create table Station
(ID INT PRIMARY KEY,
CITY CHAR(20),
STATE CHAR(2),
LAT_N INT,
LONG_W INT)

7
```

Table created.

2. Insert the following records into the table:

```
INSERT INTO Station values (13, 'PHOENIX', 'AZ', 33, 112);
INSERT INTO Station values (44, 'DENVER', 'CO', 40, 105);
INSERT INTO Station values (66, 'CARIBOU', 'ME', 47, 68);
```

```
INSERT INTO Station values (13, 'PHOENIX', 'AZ', 33, 112);
INSERT INTO Station values (44, 'DENVER', 'CO', 40, 105);
INSERT INTO Station values (66, 'CARIBOU', 'ME', 47, 68);
```

```
1 row(s) inserted.
```

¹ row(s) inserted.

¹ row(s) inserted.

3. Execute a query to look at table STATION in undefined order.

SELECT * FROM STATION;

ID	CITY	STATE	LAT_N	LONG_W
13	PHOENIX	AZ	33	112
44	DENVER	СО	40	105
66	CARIBOU	ME	47	68

Download CSV

4. Execute a query to select Northern stations (Northern latitude > 39.7).

SELECT * FROM STATION WHERE LAT_N > 39.7;

ID	CITY	STATE	LAT_N	LONG_W
44	DENVER	СО	40	105
66	CARIBOU	ME	47	68

Download CSV

5. Create another table, 'STATS', to store normalized temperature and precipitation data:

```
CREATE TABLE STATS (
 ID INT,
 "MONTH" INT CHECK ("MONTH" BETWEEN 1 AND 12),
TEMP_F DECIMAL(5, 2) CHECK (TEMP_F BETWEEN -80 AND 150),
 RAIN_I DECIMAL(5, 2) CHECK (RAIN_I BETWEEN 0 AND 100),
 FOREIGN KEY (ID) REFERENCES STATION(ID),
CONSTRAINT UC_ID_MONTH UNIQUE (ID, "MONTH")
);
1 v CREATE TABLE STATS (
     ID INT,
     "MONTH" INT CHECK ("MONTH" BETWEEN 1 AND 12),
 3
     TEMP_F DECIMAL(5, 2) CHECK (TEMP_F BETWEEN -80 AND 150),
 5
    RAIN_I DECIMAL(5, 2) CHECK (RAIN_I BETWEEN 0 AND 100),
 6
     FOREIGN KEY (ID) REFERENCES STATION(ID),
 7
     CONSTRAINT UC_ID_MONTH UNIQUE (ID, "MONTH")
 8
    );
 9
10
11
```

Table created.

6. Populate the table STATS with some statistics for January and July:

```
INSERT INTO STATS VALUES (13, 1, 57.4, .31);
INSERT INTO STATS VALUES (13, 7, 91.7, 5.15);
INSERT INTO STATS VALUES (44, 1, 27.3, .18);
INSERT INTO STATS VALUES (44, 7, 74.8, 2.11);
INSERT INTO STATS VALUES (66, 1, 6.7, 2.1);
INSERT INTO STATS VALUES (66, 7, 65.8, 4.52);
```

```
1 v INSERT INTO STATS VALUES
2 (13, 1, 57.4, .31);
3 V INSERT INTO STATS VALUES
    (13, 7, 91.7, 5.15);
5 V INSERT INTO STATS VALUES
    (44, 1, 27.3, .18);
6
7 , INSERT INTO STATS VALUES
    (44, 7, 74.8, 2.11);
9 v INSERT INTO STATS VALUES
    (66, 1, 6.7, 2.1);
10
11 v INSERT INTO STATS VALUES
    (66, 7, 65.8, 4.52);
12
13
14
15
```

```
1 row(s) inserted.
```

7. Execute a query to display temperature stats (from STATS table) for each city (from Station table).

```
SELECT ST.CITY, AVG(S.TEMP_F) AS AVERAGE_TEMPERATURE, MIN(S.TEMP_F)

AS MIN_TEMPERATURE, MAX(S.TEMP_F) AS MAX_TEMPERATURE

FROM STATS S JOIN STATION ST ON S.ID = ST.ID

GROUP BY ST.CITY;
```

```
SELECT ST.CITY, AVG(S.TEMP_F) AS AVERAGE_TEMPERATURE, MIN(S.TEMP_F)

AS MIN_TEMPERATURE, MAX(S.TEMP_F) AS MAX_TEMPERATURE

FROM STATS S JOIN STATION ST ON S.ID = ST.ID

GROUP BY ST.CITY;

6
```

CITY	AVERAGE_TEMPERATURE	MIN_TEMPERATURE	MAX_TEMPERATURE
CARIBOU	36.25	6.7	65.8
DENVER	51.05	27.3	74.8
PHOENIX	74.55	57.4	91.7

Download CSV

8. Execute a query to look at the table STATS, ordered by month and greatest rainfall, with columns rearranged. It should also show the corresponding cities.

SELECT S."MONTH", S.RAIN_I, ST.CITY

FROM STATS S

JOIN STATION ST ON S.ID = ST.ID

ORDER BY S."MONTH" DESC, S.RAIN_I DESC;

```
SELECT S."MONTH", S.RAIN_I, ST.CITY
FROM STATS S
JOIN STATION ST ON S.ID = ST.ID
ORDER BY S."MONTH" DESC, S.RAIN_I DESC;
```

MONTH	RAIN_I	CITY
7	5.15	PHOENIX
7	4.52	CARIBOU
7	2.11	DENVER
1	2.1	CARIBOU
1	.31	PHOENIX
1	.18	DENVER

Download CSV

9. Execute a query to look at temperatures for July from table STATS, lowest temperatures first, picking up city name and latitude.

SELECT S."MONTH", S.TEMP_F, ST.CITY, ST.LAT_N FROM STATS S JOIN STATION ST ON S.ID = ST.ID WHERE "MONTH"=7 ORDER BY S.TEMP_F;

```
1 V SELECT S."MONTH", S.TEMP_F, ST.CITY, ST.LAT_N FROM STATS S

2 JOIN STATION ST
ON S.ID = ST.ID
WHERE "MONTH" = 7
ORDER BY S.TEMP_F;

6
7
```

MONTH	TEMP_F	CITY	LAT_N
7	65.8	CARIBOU	47
7	74.8	DENVER	40
7	91.7	PHOENIX	33

Download CSV

10. Execute a query to show MAX and MIN temperatures as well as average rainfall for each city.

SELECT ST.CITY, MAX(S.TEMP_F) AS MAX_Temperature,

MIN(S.TEMP_F) AS MIN_Temperature,

AVG(S.TEMP_F) AS AVERAGE_Temperature FROM STATS S

JOIN STATION ST

ON S.ID = ST.ID

GROUP BY CITY;

```
SELECT ST.CITY, MAX(S.TEMP_F) AS MAX_Temperature,

MIN(S.TEMP_F) AS MIN_Temperature,

AVG(S.TEMP_F) AS AVERAGE_Temperature FROM STATS S

JOIN STATION ST
ON S.ID = ST.ID

GROUP BY CITY;
```

CITY	MAX_TEMPERATURE	MIN_TEMPERATURE	AVERAGE_TEMPERATURE
CARIBOU	65.8	6.7	36.25
DENVER	74.8	27.3	51.05
PHOENIX	91.7	57.4	74.55

Download CSV

11. Execute a query to display each city's monthly temperature in Celcius and rainfall in Centimeter.

WORKING-

from stats- TEMP_F {FAHRENHEIT TO CELCIUS},
RAIN_I {INCHES TO CENTIMETER} (ID)

SELECT ST.CITY, S."MONTH",

 $((S.TEMP_F - 32) * (5.0/9.0))$ AS TEMPERATURE_C,

(S.RAIN_I * 2.54) AS RAINFALL_CM

FROM STATS S

JOIN STATION ST

ON S.ID = ST.ID GROUP BY CITY;

```
SELECT ST.CITY, S."MONTH",

((S.TEMP_F - 32) * (5.0/9.0)) AS TEMPERATURE_C,

(S.RAIN_I * 2.54) AS RAINFALL_CM

FROM STATS S

JOIN STATION ST

ON S.ID = ST.ID

7
```

CITY	MONTH	TEMPERATURE_C	RAINFALL_CM
PHOENIX	1	14.111111111111111111111111111111111111	.7874
PHOENIX	7	33.166666666666666666666666666666666666	13.081
DENVER	1	-2.6111111111111111111111111111111111111	.4572
DENVER	7	23.777777777777777777777777777777777777	5.3594
CARIBOU	1	-14.05555555555555555555555555555555	5.334
CARIBOU	7	18.7777777777777777777777777777777777	11.4808

Download CSV

12. Update all rows of table STATS to compensate for faulty rain gauges known to read 0.01 inches low.

UPDATE STATS
SET RAIN_I=RAIN_I + 0.01;
SELECT * FROM STATS

```
1 V UPDATE STATS

2 SET RAIN_I=RAIN_I + 0.01;

3 SELECT * FROM STATS

6
```

6 row(s) updated.

ID	MONTH	TEMP_F	RAIN_I
13	1	57.4	.32
13	7	91.7	5.16
44	1	27.3	.19
44	7	74.8	2.12
66	1	6.7	2.11
66	7	65.8	4.53

13. Update Denver's July temperature reading as 74.9

STEP 1 (TABLE BEFORE UPDATE)

CREATE VIEW JOIN_S_ST AS

SELECT ST.CITY, S."MONTH", S.TEMP_F FROM STATS S

JOIN STATION ST

ON S.ID=ST.ID;

SELECT * FROM JOIN_S_ST;

```
1    CREATE VIEW JOIN_S_ST AS
2    SELECT ST.CITY, S."MONTH", S.TEMP_F FROM STATS S
3    JOIN STATION ST
4    ON S.ID=ST.ID;
5
6    SELECT * FROM JOIN_S_ST;
7
```

CITY	MONTH	TEMP_F
PHOENIX	1	57.4
PHOENIX	7	91.7
DENVER	1	27.3
DENVER	7	74.8
CARIBOU	1	6.7
CARIBOU	7	65.8

Download CSV

STEP 2 (TABLE AFTER UPDATE)

UPDATE JOIN_S_ST
SET TEMP_F = 74.9
WHERE CITY = 'DENVER' AND "MONTH"=7;

1 row(s) updated.

CITY	MONTH	TEMP_F
PHOENIX	1	57.4
PHOENIX	7	91.7
DENVER	1	27.3
DENVER	7	74.9
CARIBOU	1	6.7
CARIBOU	7	65.8

Download CSV