

Exercício 1 – Pág 40

Partindo do pressuposto que p seja verdadeiro em todas as sentenças, teremos:

a) $p \wedge q$ é verdadeiro qualquer que seja q.

p	q	$p \wedge q$
V	V	V
V	F	F
V	V	V
V	F	F

FALSO. Temos que $p \land q$ é falso quando q é falso, logo não é valido <u>para qualquer</u> <u>que seja o valor de q.</u>

b) $p \lor q$ é verdadeiro para qualquer que seja q.

p	q	$p \lor q$
V	V	V
V	F	V
V	V	V
V	F	V

VERDADEIRO. Temos que $p \lor q$ é uma tautologia, logo é válido para **qualquer que seja q.**

c) $p \wedge q$ é verdadeiro só se q for verdadeiro.

p	q	$p \wedge q$
V	V	V
V	F	F
V	V	V
V	F	F

VERDADEIRO. Temos que quando q é verdadeiro, $p \land q$ é verdadeiro, logo é válido o argumento **quando q for verdadeiro.**

d) $p \rightarrow q$ é falsa, qualquer que seja q.

p	q	$p \rightarrow q$
V	V	V
V	F	F
V	V	V

V	F	F

FALSO. Temos que quando q é verdadeiro, $p \to q$ é verdadeiro, logo não é valido para qualquer que seja q.

e) $p \rightarrow q$ é verdadeiro, qualquer que seja p e q.

P	q	$p \rightarrow q$
V	V	V
V	F	F
V	V	V
V	F	F

FALSO. Temos que quando q é falso, $p \rightarrow q$ é falso, logo não é valido para **qualquer que seja q.**

f) $p \leftrightarrow q$ é verdadeira só se q for verdadeira.

P	q	$p \leftrightarrow q$
V	V	V
V	F	F
V	V	V
V	F	F

VERDADEIRO. Temos que $p \leftrightarrow q$ é verdadeiro sempre que q é verdadeiro, logo é válido o argumento **quando q for verdadeiro.**

2. Vamos partir do pressuposto que para todo:

p é F, q é V, r é V, s é F. Portanto com a coluna referente a casa proposição está predefinida, não há a necessidade de executarmos as 8 linhas em questão. Uma outra opção seria

a)
$$(p \land (\sim q \rightarrow q) \lor \sim ((r \leftrightarrow \sim q) \rightarrow (q \land \sim r))$$

$$2^3 = 8$$

р	q	r	~q	~r	$(\sim q \rightarrow q)$	$p \wedge (\sim q \rightarrow q)$	$(r \leftrightarrow \sim q)$	(<i>q</i> ∧ ~ <i>r</i>)	$(r \leftrightarrow \sim q) \to (q \land \sim r)$
F	٧	٧	F	F	V	F	F	F	V
1	1	1	2	2	3	4	5	6	7

$\sim (r \leftrightarrow \sim q) \rightarrow (q \land \sim r)$	$(p \land (\sim q \rightarrow q) \lor \sim ((r \leftrightarrow \sim q) \rightarrow (q \land \sim r))$
F	F
8	9

b) $(p \land q) \lor \sim s \rightarrow \sim (q \leftrightarrow \sim r)$

р	q	S	r	~s	~r	$(p \wedge q)$	$(p \land q) \lor \sim s$	$(q \leftrightarrow \sim r)$	$\sim (q \leftrightarrow \sim r)$
F	V	F	V	V	F	F	V	F	V
1	1	1	1	2	2	3	4	5	6

$(p \land q) \lor \sim s \to \sim (q \leftrightarrow \sim r)$
V
7

c) $(p \land q \rightarrow r) \lor (\sim p \leftrightarrow q \lor \sim r)$

р	q	S	r	~p	~r	$(p \land q)$	$(p \land q \rightarrow r)$	<i>q</i> ∨ ~ <i>r</i>	$(\sim p \leftrightarrow q \lor \sim r)$
F	٧	F	V	V	F	F	F	V	V
1	1	1	1	2	2	3	4	5	6

$(p \land q \rightarrow r) \lor (\sim p \longleftrightarrow q \lor \sim q)$	r)
V	
7	

$$d) \sim (r \to (\sim r \to s))$$

S	r	~r	$(\sim r \rightarrow s)$	$r \to (\sim r \to s)$	$\sim (r \to (\sim r \to s))$
F	٧	F	V	V	F
1	1	2	3	4	5

3.

a)
$$(p \leftrightarrow q) \land \sim r$$

р	q	r	~r	$(p \leftrightarrow q)$	$(p \leftrightarrow q) \land \sim r$
V	V	٧	F	V	F
V	F	V	F	F	F

Falso. Perceba que nesse exercício não foi necessário realizar as 8 linhas referentes as 3 proposições já que a princípio o exercício nos deu que V(p)=V e V(r)=V, logo nesse caso só precisamos provar a proposição "q" que permaneceu com V ou F.

b) $p \land q \rightarrow p \lor r$

р	q	r	$p \wedge q$	$p \lor r$	$p \land q \rightarrow p \lor r$
٧	>	F	V	V	V

IVIFIFI F I V I V

Verdadeiro. Perceba que nesse exercício não foi necessário realizar as 8 linhas referentes as 3 proposições já que a princípio o exercício nos deu que V(p)=V e V(r)=F, logo nesse caso só precisamos provar a proposição "q" que permaneceu com V ou F.

c)
$$(p \rightarrow \sim q) \land (\sim p \land \sim r)$$

р	q	r	~q	~p	~r	$(p \rightarrow \sim q)$	$(\sim p \land \sim r)$	$(p \to \sim q) \land (\sim p \land \sim r)$
٧	F	V	V	F	F	V	F	F
F	F	V	V	V	F	V	F	F

Falso. Perceba que nesse exercício não foi necessário realizar as 8 linhas referentes as 3 proposições já que a princípio o exercício nos deu que V(q)=F e V(r)=V, logo nesse caso só precisamos provar a proposição "p" que permaneceu com V ou F.

4.

Para o operador "não e" ou "nand" teremos:

р	q	$\sim (p \land q)$
V	٧	F
V	F	V
F	٧	V
F	F	V

Para o operador "não ou" ou "nor"

р	q	$\sim (p \lor q)$
V	V	F
V	F	F
F	V	F
F	F	V

5.

- a) Linux não é um software livre e Pascal não é uma linguagem de programação.
- b) Nem todos os homens são bons motoristas.

ou uma outra forma seria: Existem homens que não são bons motoristas.

- c) T é um trapézio e T não é um quadrilátero.
- d) O processador não é rápido ou a impressora não é lenta.
- e) O processador é rápido e a impressora não é lenta.
- f) Todos os números pares são múltiplos de 2.

- g) Canta e não está vivo.
- h) Existe solução de $x^2 6 = 0$ que não é positiva.
- i) Todos os inteiros são ímpares e não são divisíveis por 5.
- j) Windows não é um editor de textos, ou Pascal é uma planilha eletrônica.

6.

a)
$$(\forall x)(\forall y)(x+6 < y + 10)$$
.

A Frase em questão nos diz que para todo x e para todo y é válido a sentença x+6 < y+10, logo se encontramos um e apenas um contra exemplo a sentença será falsa.

Suponhamos que x=10 e y=0, teremos:

$$x + 6 < y + 10$$

$$10 + 6 < 0 + 10$$

b)
$$(\forall x)(\exists y)(x.y \ n\tilde{a}o \ \acute{e} \ par).$$

A Frase em questão nos diz que para todo x existe um y que x.y não é par 10, logo se encontramos um e apenas um contra exemplo a sentença será falsa.

Suponhamos que x=3 e y=3, teremos:

$$3.3 = 9$$

9 é um número ímpar, portanto é falso.

c)
$$(\exists x)(\forall y)(x^2 > y)$$
.

A Frase em questão nos diz que existe um x que para todo y que $x^2 > y$, logo se encontramos um e apenas um contra exemplo a sentença será falsa.

Suponhamos que x=0 e y=4, teremos:

$$x^2 > y$$

$$0^2 > 4$$

Como 0 não é maior do que 4, temos uma sentença Falsa.

d)
$$(\forall x)(\exists y)(x^2 > y)$$
.

A Frase em questão nos diz que para todo x existe um y que $x^2 > y$, logo se encontramos um e apenas um argumento válido a sentença será verdadeira.

Suponhamos que x=3 e y=4, teremos:

$$x^2 > y$$

$$3^2 > 4$$

Como 9 é maior do que 4, temos uma sentença Verdadeira.

7. Livro Didático.