BOTT PERIODICITY

NILAY KUMAR

What assumptions do we need to make on the spaces? All vector bundles throughout will be complex.

Recall from last time the definition of K-theory.

Definition 1. Let Vect: HTOP^{op} \to CRIG denote the functor taking any space X to the commutative semiring of vector bundles over X with the operations of direct sum and tensor product. Notice that $f: X \to Y$ is taken to $f^*: \operatorname{Vect} Y \to \operatorname{Vect} X$. Then, by the usual Grothendieck construction, there exists a universal functor

$$K: \mathrm{HTop^{op}} \to \mathrm{CRing}$$

such that if R is a commutative ring then the diagram

commutes. It follows that for a map $f: X \to Y$ the diagram

$$\begin{array}{ccc}
\operatorname{Vect} Y & \xrightarrow{f^*} & \operatorname{Vect} X \\
\downarrow & & \downarrow \\
K(Y) & \xrightarrow{Kf} & K(X)
\end{array}$$

commutes.

Remark 2. By construction, every element in K(X) is of the form [E] - [F] for $E, F \in \mathrm{Vect}(X)$. There exists $G \in \mathrm{Vect}(X)$ such that $F \oplus G$ is trivial of rank n: $F \oplus G \cong \underline{n}$. Then $[E] - [F] = [E] + [G] - ([F] + [G]) = [E \oplus G] - [\underline{n}]$. We conclude that every element of K(X) is of the form $[H] - [\underline{n}]$.

Moreover, suppose $E, F \in \text{Vect } X$ are such that [E] = [F]. Then, by definition of the Grothendieck construction, there exists $G \in \text{Vect } X$ such that $E \oplus G \cong F \oplus G$. If $G' \in \text{Vect } X$ is such that $G \oplus G' \cong [\underline{n}]$ then adding G', we find that $E \oplus \underline{n} \cong F \oplus \underline{n}$. We conclude that [E] = [F] if and only if E and F are stably equivalent, i.e. there exists a suitable trivial bundle such that they become equivalent after adding the trivial bundle.

Definition 3. If $X \in \mathrm{HToP}^{\mathrm{op}}_+$, the inclusion of the basepoint into X yields a map $K(X) \to K(+)$. We define the reduced K-theory $\tilde{K}(X)$ to be the kernel

$$0 \longrightarrow \tilde{K}(X) \longrightarrow K(X) \longrightarrow K(+) \longrightarrow 0.$$

Date: February 15, 2016.

The constant map $X \to +$ yields a natural splitting of this exact sequence

$$K(X) \cong \tilde{K}(X) \oplus K(+) \cong \tilde{K}(X) \oplus \mathbb{Z},$$

hence inducing a functor $\tilde{K}: \mathrm{HToP}^{\mathrm{op}}_+ \to \mathrm{CRing}$. A straightforward computation shows that [E] = [F] in $\tilde{K}(X)$ if and only if $E \oplus \underline{n} \cong F \oplus \underline{m}$ for some $m, n \in \mathbb{N}$.

Let $A \subset X$. As in cohomology, we wish to obtain a long exact sequence on K-theory. Consider the cofiber sequence associated to $i: A \to X$:

$$A \xrightarrow{i} X \xrightarrow{j} Ci \xrightarrow{\pi} \Sigma A \xrightarrow{-\Sigma i} \Sigma X \xrightarrow{-\Sigma \pi} \Sigma Ci \xrightarrow{\Sigma^2 i} \Sigma^2 X \xrightarrow{} \cdots$$

where $(-\Sigma i)(x \wedge t) = f(x) \wedge (1-t)$. Applying K-theory, we claim:

Proposition 4. For $i: A \hookrightarrow X$ there is a natural long exact sequence

$$\cdots \longrightarrow K^{-1}(X) \longrightarrow K^{-1}(A) \longrightarrow K^{0}(X,A) \longrightarrow K^{0}(X) \longrightarrow K^{0}(A),$$

where $K^{-n}(X) \equiv K(\Sigma^n X)$ and $K^{-n}(X,A) \equiv K(\Sigma^n Ci)$ for all $n \geqslant 0$, and the maps are induced from the cofiber sequence above.

$$Proof.$$
 Work.

Bott periodicity is a fundamental result stating that K-theory is 2-periodic.

Theorem 5 (Bott periodicity). $K^{-n}(X) \cong K^{-n-2}(X)$ for all $n \ge 0$.

In particular, defining

$$K^{2n}(X) \equiv K^{0}(X)$$
$$K^{2n+1}(X) \equiv K^{-1}(X)$$

for $n \ge 0$, the data of the long exact sequence for a pair (X,A) reduces to the exact sequence

$$K^{0}(X,A) \longrightarrow K^{0}(X) \longrightarrow K^{0}(A)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K^{1}(A) \longleftarrow K^{1}(X) \longleftarrow K^{1}(X,A)$$

To prove Bott periodicity, we will use a series of results. We will work with reduced K-theory for convenience.

Lemma 6. Write $BU = \operatorname{colim}_n BU(n)$. Then there is a natural isomorphism of functors \tilde{K} and [-, BU]. That is, there is a natural bijection

$$[X, BU] \cong \tilde{K}(X).$$

Proof. Recall that $[X, BU(n)] \cong \operatorname{Vect}^n X$, whence

$$\begin{split} [X,BU] &= [X, \operatorname*{colim}_n BU(n)] \\ &= \operatorname*{colim}_n [X,BU(n)] \\ &= \operatorname*{colim}_n \operatorname{Vect}^n X. \end{split}$$

It is straightforward to see that the map $\operatorname{Vect}^n X \to \operatorname{Vect}^{n+1} X$ is given by adding a trivial bundle. Hence elements $E, F \in \operatorname{colim}_n \operatorname{Vect}^n X$ – say, vector bundles of rank r and s respectively – are equal in the colimit if and only if there exist $l, k \in \mathbb{N}$ such that $E \oplus \underline{l} \cong F \oplus \underline{k}$. Thus there is a natural isomorphism $\operatorname{colim}_n \operatorname{Vect}^n X \cong \tilde{K}(X)$, completing the proof. why does colim commute with maps?

Assume, for the moment, the following proposition.

Proposition 7. There is a homotopy equivalence $BU \simeq \Omega SU$.

Then we can prove Bott periodicity as follows.

Proof of Theorem 5. It suffices to show that there is a natural isomorphism $\tilde{K}(\Sigma^2 X) \cong \tilde{K}(X)$. Using Lemma 6 and the above proposition, we have natural isomorphisms

$$\begin{split} \tilde{K}(\Sigma^2 X) &\cong [\Sigma^2 X, BU] \\ &\cong [X, \Omega^2 BU] \\ &\cong [X, \Omega SU] \\ &\cong [X, BU] \\ &\cong \tilde{K}(X). \end{split}$$

Why is $\Omega BU \simeq SU$?

All the hard work lies lies in the proof of the homotopy equivalence $BU \simeq \Omega SU$.