Unsupervised Speaker Identification in TV Broadcast

Hervé BREDIN

Claude BARRAS

Johann POIGNANT Laurent BESACIER Georges QUENOT

Viet-Bac LE

Speaker verification vs. recognition

- Let S be a set of N speakers {s₁, ..., s_N}
- Speaker verification (= authentication)
 - « is person s_i speaking? »
- Speaker recognition (= identification)
 - Closed-set conditions
 - « which speaker s; is speaking? »
 - Open-set conditions
 - « is any speaker s_i speaking? »
 - « if so, which one? »

``Supervised'' paradigm

Outline

- Context
- Multimodal & unsupervised identification
 - Overlaid name detection
 - Speaker diarization
 - Name propagation
- Results & discussion
- Conclusion

REPERE challenge

- Speaker identification in TV broadcast
 - Closed-set conditions « which speaker s; is speaking? »
 - Open-set conditions
 « is any speaker s_i speaking? »
 « if so, which one? »
 - REPERE challenge conditions « who is speaking and when? »

Reaching the limits

The REPERE test set contains 116 different speakers...

... of which only 57 have a corresponding model

Even a "supervised oracle" could not get 100 % accuracy.

Think multimodal

Any source of information can be used.

The REPERE test set contains 116 different speakers...

- ... 49 % have a corresponding speaker model
- ... 34 % have a corresponding face model
- ... 64 % have their name written on screen at least once

Overlaid name detection

- Text detection
- Optical Character Recognition (OCR)
 - Tesseract
 http://code.google.com/p/tesseract-ocr/
- Temporal filtering & smoothing
 - MAIT DAMUN | MATT DAMUN | MAIT DAMON | MATT DAMON
 - $-\implies$ MATT DAMON

Johann Poignant, Laurent Besacier, Georges Quénot, and Franck Thollard From Text Detection in Videos to Person Identification
IEEE International Conference on Multimedia and Expo, 2012.

Multimodal fusion

 Speech activity detection & temporal segmentation into homogeneous segments (a.k.a. speech turns t)

Overlaid name detection

Name propagation
 find the best mapping function

$$m \colon \mathcal{T} \to \mathcal{N} \cup \varnothing$$

$$t \mapsto \begin{cases} n & \text{if name of speech turn } t \text{ is } n \in \mathcal{N} \\ \varnothing & \text{if it is unknown or not in } \mathcal{N} \end{cases}$$

Speaker diarization

- Agglomerative clustering
 - MFCC coefficients extracted every 10 ms (d=13)
 - Bayesian information criterion (BIC)

$$\Delta \text{BIC} = (n_i + n_j) \log |\Sigma| - n_i \log |\Sigma_i| - n_j \log |\Sigma_j| - \lambda P$$

$$P = \frac{1}{2} \left(d + \frac{1}{2} d (d+1) \right) \log(n_i + n_j)$$

– Stop merging when $\Delta {
m BIC} > 0$

Multimodal fusion

 Smaller (easier?) problem find the best mapping function

$$m \colon \mathcal{S} \to \mathcal{N} \cup \varnothing$$

$$s \mapsto \begin{cases} n & \text{if name of speaker } s \text{ is } n \in \mathcal{N} \\ \varnothing & \text{if it is unknown or not in } \mathcal{N} \end{cases}$$

1-to-1 mapping / M1

- Assumption
 - speaker diarization is perfect
 - one name $n \Leftrightarrow$ one speaker s
- Assignment problem

$$\texttt{M1} = \underset{m: \, \mathcal{S} \rightarrow \mathcal{N} \cup \varnothing}{\operatorname{argmax}} \sum_{s \in \mathcal{S}} \mathbb{K} \left(s, m(s) \right)$$

where $\mathbb{K}(s,n)$ is the cooccurrence duration of $s \otimes n$

Solved using the Hungarian algorithm

Speech turn tagging / M2

Observation

– when a single name cooccurs with a speech turn,p = 95 % that this is the correct name.

Principle

- first, tag unambiguously named speech turns
- then, apply previous approach on remaining speech turns

1-to-N mapping / M3

- Assumption
 - over-segmented speaker diarization
 - one name ⇔ multiple speaker clusters
- Apply speech turn tagging first
- $f(s) = \underset{n \in \mathcal{N}}{\operatorname{argmax}} \operatorname{TF}(s, n) \cdot \operatorname{IDF}(n)$

$$TF(s,n) = \frac{\text{duration of name } n \text{ in cluster } s}{\text{total duration of all names in cluster } s}$$

$$IDF(n) = \frac{\# \text{ speaker clusters}}{\# \text{ speaker clusters co-occurring with } n}$$

Experiments on REPERE test set

- 7 TV shows
 - from BFM TV and LCP
 - talk shows and news
- 27 hours of videos
 - 6 hours annotated

- 9 anchors
 - 45 speech turns / anchor
 - 5 minutes / anchor
- 113 other speakers
 - 10 speech turns / speaker
 - 1 minute / speaker

Speakers	Propagation	Precision (%)	Recall (%)	F_1 -measure
	M1	80.5	58.2 M	67.5 M
All	M2	82.1	60.7	69.8
	МЗ	77.7	63.9	70.2
No anchor	МЗ	89.2	75.3	81.7

The longer, the better

Speakers	Condition	Precision (%)	Recall (%)	F_1 -measure
All	Standard	82.0	55.6	66.3
	Full video	77.7	63.9	70.2
No anchor	Standard	88.5	72.4	79.7
	Full video	89.2	75.3	81.7

Error analysis

- Speaker diarization is not perfect

 Diarization Error Rate ≈ 10 %
- How does it impact the overall system?

Speaker Diarization	Propagation	Precision (%)	Recall (%)	F_1 -measure
Perfect	Perfect	100.0	76.5	86.7
	M1	98.0	76.4	85.8
	M1	89.1	70.3	78.6
Automatic	M2	91.0	73.1	81.0
	M3	88.5	72.4	79.7

No anchor

The best of both worlds

- Gathering training data for anchors is easy.
- Why not combine both supervised (SID) and unsupervised (M3) approaches?

Speakers	Approach	Precision (%)	Recall (%)	F_1 -measure
All	SID	60.1	55.1	57.5
	МЗ	77.7	63.9	70.2
	M3 + SID	77.9	77.0	77.5
No anchor	SID	47.0	44.4	45.7
	МЗ	89.2	75.3	81.7
	M3 + SID	80.7	83.4	82.0

Conclusion

- Unsupervised multimodal identification better than its supervised monomodal counterpart.
- ... and they are complementary

Reproducible research

http://herve.niderb.fr/reproducible research

J. Poignant, H. Bredin, V.B. Le, L. Besacier, C. Barras, G. Quénot **Unsupervised Speaker Identification using Overlaid Texts in TV Broadcast** *Interspeech 2012, 13th Annual Conference of the International Speech Communication Association*

Hervé BREDIN – <u>bredin@limsi.fr</u>

http://herve.niderb.fr/