THE SHALL SO THE SHALL SO SHALL SO

COLLEGE OF ARTS AND SCIENCES

UNIVERSITY OF THE PHILIPPINES LOS BAÑOS

- 1/F Wing C Physical Sciences Bldg., Harold Cuzner Royal Palm Ave. College 4031, Laguna, Philippines
- Phone +63 49 536 2313
- @ ics.uplb@up.edu.ph

INSTITUTE OF COMPUTER SCIENCE

CMSC 180: Introduction to Parallel Computing Second Semester 2022-2023

Laboratory Exercise 02 PART 02 Runtime-efficient Threaded Interpolating elevation

Research Activity 1: Using the programming exercise from the previous week, do the following tasks and answer the following questions.

Tasks Specifications

A. Fill in the following table with your time reading:

n (size of matrix)	t (number of processors)	Time Elapsed (seconds)			Average
		Run 1	Run 2	Run 3	Runtime (seconds)
8,000	1				
8,000	2				
8,000	4				
8,000	8				
8,000	16				
8,000	32				
8,000	64				

B. Using a graphing software for each *n*, graph *t* versus **Average** obtained from the Table above. Describe in detail what you have observed.

Research Question 1: What do you think is the complexity of estimating the point elevation of a $n \times n$ square matrix with given/randomized values at grid points divisible by 10 when using n concurrent processors? The obvious processor assignment is one column of M for each processor.

Research Question 2: What do you think is the complexity of estimating the point elevation of a $n \times n$ square matrix with given/randomized values at grid points divisible by 10 when using n/2 concurrent processors (*what is the obvious processor assignment here*)? What about with n/4 concurrent processors (*i.e. processor assignment*)? What about with n/8 concurrent processors?

Research Question 3: Why do you think the running time of t=1 will be higher than the average that was obtained in Exercise 01?

Research Question 4: Do you think you can go as far as t = n? If not, what about t = n/2? Or, t = n/4? Or, t = n/8?

Research Activity 2: Repeat research activity 1 for n = 16,000 and n = 20,000. Do you think you can achieve n=50,000 and even n = 100,000? **Try to see if you can**. If you were able to do so, why do you think you can now do it? If not yet, why do you still can not?

Lab Report Guidelines

Submit a report on your answers to the research questions posted in this exercise. All laboratory reports and term projects must be written in a technical way. That means each must have the following sections:

- 1. Introduction,
- 2. Objectives,
- 3. Methodology,
- 4. Results and Discussion,
- 5. Conclusion,
- 6. List of Collaborators, (Yes, you can collaborate with other students but make sure that you can explain your work)
- 7. References, and
- 8. Appendices.

Submit your report through the Google Classroom Laboratory Exercise 02 Part 02 portal.