Tabelas Verdade

INTRODUÇÃO

"All truths are easy to understand once they are discovered; the point is to discover them." Galileu Galilei.

As tabelas verdade são representações gráficas criadas para permitir a visualização e consequente análise de todas as proposições em uma determinada fórmula lógica. A criação das tabelas verdade é creditada a *Ludwig Wittgenstein* (1889 – 1951) que, na página 34 do seu livro "*Some Remarks on Logical Form*", escreveu "... e podemos representar o produto p e q da seguinte forma..." e colocou a imagem que pode ser vista na Figura 1.

Figura 1 - Tabela verdade de uma conjunção proposta por Ludwig Wittgenstein em 1921

p	q	
T	T	T
T	F	F
\mathbf{F}	T	F
\mathbf{F}	F	F

Fonte: (WITTGENSTEIN, 1929)

Nesta representação de uma conjunção, Wittgenstein, criou um dos aparelhos cognitivos mais importantes para o entendimento das relações entre proposições atômicas. Estas relações criam proposições compostas, ou moleculares, como vimos antes. A leitora há de lembrar que vimos a negação (¬), a conjunção (∧), a disjunção (∨), a operação condicional, ou implicação (⇒) e a bicondicional, ou implicação dupla (⇔). Vimos estas operações de forma despretensiosa. Agora, precisamos nos aprofundar um pouco na linguagem formal da lógica matemática. Para tanto, teremos que voltar um tanto, mais ou menos até o alfabeto.

Transformando sentenças em fórmulas

As sentenças são claras e sua definição depende do idioma utilizado. Você deve ter aprendido o alfabeto, a sintaxe e a semântica do português, como falado no Brasil, nos ciclos básicos de educação. Aqui, vamos pegar este conhecimento para escrever sentenças declarativas que possam ser proposições. Proposição é uma sentença declarativa que só podem ser falsas ou verdadeiras. Sentenças interrogativas, exclamativas e imperativas não podem ser proposições porque é impossível determinar a verdade destas sentenças, não é possível determinar se são verdadeiras ou falsas. *Hoje está chovendo muito!* Não é uma proposição enquanto, *Hoje está chovendo muito.* É uma proposição. Então podemos dizer, só para lembrar, que:

Proposição é todo conjunto de palavras que exprimem um pensamento de sentido completo que pode ser verdadeiro ou falso.

As proposições seguem alguns princípios criados no século 3 A.C e são atribuídos a *Chrysippus*, professor da Escola Estoica. A leitora há de lembrar, conversamos sobre esta escola anteriormente neste mesmo livro. Em uma forma puramente literal e sentencial podemos enunciar estes princípios como:

Princípio de identidade: uma proposição verdadeira é verdadeira e uma proposição falsa é falsa.

Princípio da não contradição: nenhuma proposição pode ser verdadeira e falsa.

Princípio do terceiro excluído: uma proposição será verdadeira ou falsa. Não há uma alternativa.

As proposições podem ser atômicas, ou simples, e compostas, ou moleculares. Proposições simples, são aquelas contidas em si mesmo: *todo homem* é *mortal*; *Beatriz* é *alta*; *o Papa* é *argentino*. Para criar as proposições compostas,

usamos conectivos, para relacionar uma proposição com a outra. Como pode ser visto no Exemplo 1.

Exemplo 1

- Todo homem é mortal e Beatriz é alta.
- 2. Paris é a capital da Argentina e o Papa não é francês
- 3. Ou Marcela é curitibana, ou gaúcha.
- 4. Se os gatos são mamíferos, então eles mamam na infância.
- 5. Joana será aprovada se, e somente se, tirar mais que 8.

No Exemplo 1 estão destacados os conectivos (e; ou; não; então...se; e se, e somente se). Estes conectivos serão transformados em operadores lógicos e estão transformando proposições atômicas em proposições compostas. As proposições apresentadas no Exemplo 1 estão na forma de sentenças e, salvo engano, estão de acordo com as normas da língua portuguesa como falada e escrita no Brasil.

Para transformar as sentenças em fórmulas lógicas precisaremos de um conjunto de símbolos que chamaremos de alfabeto e representaremos por Σ_{CP} . Estamos começando nosso estudo da lógica pelo **cálculo proposicional** (CP), para tanto, usaremos o alfabeto $\Sigma_{CP} = \{p; q; r; s; t; V; F; \land; \lor; \neg; \rightarrow; \leftrightarrow; (;); =; ,; :\}$.

Com os 17 símbolos do alfabeto Σ_{CP} a amável leitora deve ser capaz de transformar qualquer proposição composta em fórmula lógica. Os símbolos V e F serão usados, respectivamente, para indicar a verdade e a falsidade de uma proposição. A leitora irá me permitir expandir este alfabeto sempre que eu precisar de mais variáveis proposicionais além de p,q,r,s e t que definimos como elementos do conjunto Σ_{CP} . Para a realização dos cálculos proposicionais, estes símbolos serão utilizados para substituir as sentenças proposicionais por variáveis proposicionais, na forma exposta no Exemplo 2.

Exemplo 2

1. p: Todo homem é mortal e Beatriz é alta.

- 2. q: Paris é a capital da Argentina e o Papa não é francês
- 3. r: Ou Marcela é curitibana, ou gaúcha.
- 4. s: Se os gatos são mamíferos, então eles mamam na infância.
- 5. t: Joana será aprovada se, e somente se, tirar mais que 8.

Ao longo de todo este trabalho vamos usar a palavra proposição substituindo a expressão variáveis proposicionais.

Se usarmos os símbolos de Σ , e apenas estes símbolos, para criar uma fórmula lógica, diremos que esta fórmula está bem formatada. Isto é importante porque apenas as fórmulas lógicas bem formatadas têm validade na lógica matemática. Isto é importante porque você não pode inferir a verdade de uma fórmula se ela não estiver de acordo com as regras léxicas, sintáticas e semânticas da linguagem.

Neste ponto da prosa, precisamos destacar que a linguagem da lógica proposicional não é regular e permite ambiguidades. Os símbolos (), parênteses, são usados para evitar possíveis ambiguidades isolando proposições compostas. **Não podemos encontrar a verdade de proposições ambíguas.** Já sabemos usar as variáveis proposicionais e os parênteses, nosso próximo passo é entender os operadores \land , \lor , \neg , \rightarrow e \leftrightarrow , não necessariamente nesta ordem.

Negação ¬

Usamos o operador de negação para transformar uma proposição verdadeira em falsa e vice-versa. Como pode ser visto no Exemplo 3.

Exemplo 3

- 1. p: Beatriz é alta.
- ¬p: Beatriz não é alta.
- 3. $\neg \neg p$: Beatriz é alta.
- 4. q: O papa não é francês.
- 5. $\neg q$: O papa é francês

Sentenças negativas podem ter diversas formas em português, como falado no Brasil, como pode ser visto no Exemplo 4:

Exemplo 4

- 1. p: Lógica não é fácil.
- 2. *q*: Não é verdade que lógica é difícil.
- 3. r: É falso que Beatriz é alta.

A Tabela Verdade da operação de negação ¬ pode ser vista na Tabela 1.

Cálculo Proposicional	
p $\neg p$	
V	F
V	V

Álgebra Booleana		
P	$ar{P}$	
1	0	
0	1	

Tabela 1 - Tabela verdade da negação em notação do cálculo proposicional e da Álgebra Booleana.

Existe uma relação muito próxima entre a lógica matemática e a teoria dos conjuntos. Na teoria dos conjuntos a negação é representada de forma indireta pelo símbolo $\not\in$ de tal forma que a sentença *a pertence ao conjunto L* deve ser representado por $a \in L$, a negação desta proposição será dada por $a \not\in L$ e deve lida como *a não pertence ao conjunto L* . O diagrama de Venn para esta operação pode ser visto na Figura 2.

Figura 2 - Diagrama de Venn da negação representada na teoria dos conjuntos. Fonte: o autor (2020)

Uma consequência direta do cálculo proposicional é criação de circuitos eletrônicos para a aplicação de operações lógicas. Representamos a negação pelo símbolo de uma proposição em letra maiúscula com uma barra horizontal, \bar{P} , que

se lê: negação de *P* ou *P* barrado. A implementação eletrônica da operação de negação é realizada pelo circuito inversor, ou *inverter* em inglês, que pode ser visto na representação gráfica da porta lógica inversora na Figura 3.

Figura 3 - Símbolo do inversor em circuitos lógicos. Fonte: o autor (2020)

As propriedades da negação serão vistas com detalhe assim que passarmos por todos os operadores do cálculo proposicional.

Conjunção ∧

A conjunção representada pelo símbolo A, já foi conhecida como produto lógico, mas atualmente fazemos uma analogia direta com o conectivo E, AND em inglês. A conjunção é uma operação binária, todas as conjunções terão dois, e somente dois, operandos.

Todas as sentenças onde existe o conectivo E, ou alguma outra sequência sintática com o mesmo significado, representa uma proposição conjuntiva, ou simplesmente uma conjunção. No Exemplo 5 podemos ver algumas conjunções.

Exemplo 5

- 1. **p**: A esfera é redonda, o quadrado não.
- 2. **q**: O Papa não é pop e Zico não é paulista.
- 3. *t*: Tatiana é alta **e** *u*: Tatiana é rápida.

É preciso ter muito cuidado com a linguagem natural, seja ela qual for, na hora de interpretar seu sentido para inferir as fórmulas lógicas equivalentes. No Exemplo 6 podemos dividir cada uma das proposições em outras duas e representálas por meio da operação conjunção.

Exemplo 6

1. p: A esfera é redonda e q: o quadrado não. $p \land q$ 2. r: O Papa não é pop e s: Zico não é paulista. $r \land s$ 3. t: Tatiana é alta e u: Tatiana é rápida. $t \land u$

A tabela verdade da conjunção pode ser vista na Tabela 2.

Cálculo Proposicional			
p	$q p \wedge p$		
V	V	V	
V	F	F	
F	V	F	
F	F	F	

Álgebra Booleana			
P	Q	$P \cdot Q$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Tabela 2 - Tabela verdade da operação conjunção em cálculo proposicional e em Álgebra Booleana.

Observe a diferença entre as práticas adotadas nas duas formas matemáticas desta mesma tabela verdade. Enquanto em cálculo proposicional começamos a tabela com os valores verdadeiros, em Álgebra Booleana, começamos a tabela com os valores falsos. Nos dois casos, a operação conjunção resultará em um resultado verdadeiro, se, e somente se, as duas proposições operandos forem verdadeiras.

Uma herança dos tempos passados quando a conjunção era chamada de produto lógico, pode ser vista na representação desta operação na Álgebra Booleana, ainda hoje, usamos o símbolo · para representar a conjunção, para lembrar a leitora, este é o símbolo utilizado para representar o produto escalar. O Exemplo 7 apresenta casos de conjunção.

Exemplo 7

Resultado

1.	$m{p}$: A esfera é redonda e $m{q}$: o quadrado não.	$p \wedge q$	V
2.	${m r}$: O Papa não é pop ${f e}$ ${m s}$: Zico não é paulista.	$r \wedge s$	F
3.	$m{t}$: Tatiana é alta $m{e}$ $m{u}$: Tatiana é rápida.	$t \wedge u$?

No Exemplo 7.1, a verdade é clara e indiscutível, no Exemplo 4.2, podemos discutir se o Papa é pop, ou não. Entretanto, com certeza, Zico não é paulista. Por fim, no Exemplo 7.3, não temos como definir o resultado da conjunção simplesmente porque não conhecemos a Tatiana.

A conjunção também tem representação na teoria dos conjuntos e pode ser representada pela interseção entre dois conjuntos $P \cap Q$ e pode ser vista no Diagrama de Venn apresentado na Figura 4.

Figura 4 - Diagrama de Venn da conjunção. Fonte: o autor (2020).

Na eletrônica o circuito que implementa a conjunção é a porta lógica AND que pode ser vista na Figura 5.

Figura 5 - Porta And, implementação da operação conjunção. Fonte: o autor (2020)

Formalmente analisamos as conjunções buscando a função verdade de cada um dos operandos. Como pode ser visto nos Exemplos 8, 9 e 10.

Exemplo 8

Resultado

1. Pelé praticava Futebol e Ayrton Sena automobilismo.

$$m{p}$$
: Pelé praticava Futebol $m{V}(m{p})$ $m{V}$

$$q$$
: Ayrton Sena praticava automobilismo. $V(q)$

2.
$$V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V(p \wedge q) = V \qquad V(p \wedge q) \qquad V$$

Pelé praticava Futebol e Ayrton Sena automobilismo, é uma proposição verdadeira

A última linha do Exemplo 8 (8.2) pode ser lida como: a verdade da conjunção entre p e q é igual a verdade de p em conjunção com a verdade de q, como as duas proposições são verdadeiras faremos a conjunção entre duas verdades de tal forma que a conjunção entre p e q é verdadeira. Ufa!!! O que um autor não faz para usar poucos símbolos. Na verdade, esta expressão, para ser perfeitamente redigida de acordo com as regras a lógica matemática, precisaríamos incluir mais três ou quatro símbolos no nosso alfabeto Σ_{CP} . Estou optando por só fazer isso quando for estritamente necessário.

Exemplo 9

Resultado

1. Brasília é a capital do Brasil e da Argentina.

$$p$$
: Brasília é a capital do Brasil. $V(p)$

$$q$$
: Brasília é a capital da Argentina. $V(q)$ F

2.
$$V(p \wedge q) = V(p) \wedge V(q) = V \wedge F = V(p \wedge q) = F$$
 $V(p \wedge q) = F$

Brasília é a capital do Brasil e da Argentina, é uma preposição falsa.

Exemplo 10

Resultado

1. Peru fica na Europa e é um país.

$$m{p}$$
: Peru fica na Europa. $m{V}(m{p})$ $m{V}$

$$m{q}$$
: Peru é um país. $m{V}(m{q})$

2.
$$V(p \wedge q) = V(p) \wedge V(q) = F \wedge V = V(p \wedge q) = F$$
 $V(p \wedge q) = F$

Peru fica na Europa e é um país, é uma proposição falsa.

Assim como a negação, a conjunção tem algumas propriedades bem interessantes que deixaremos para discutir adiante.

Disjunção ∨

A disjunção, operação proposicional que representa o conectivo Ou, OR em inglês, é representada pelo símbolo \lor do alfabeto Σ_{CP} que definimos anteriormente, foi inicialmente chamada de adição lógica. A disjunção é uma operação binária, utiliza dois e apenas dois operandos e será verdadeira se um dos operandos for verdadeiro.

Em linguagem natural, como o português falado no Brasil, a conjunção é representada pela palavra ou, e seus equivalentes semânticos. A leitora deve tomar cuidado aqui. Eu usei a expressão palavra ou porque gramaticalmente tanto o E, quanto o OU, em português, estão na classe gramatical conjunção. As expressões, isto é, e ou seja, são sinônimos de ou. E viva a língua portuguesa! O Exemplo 11 apresenta casos de disjunção.

Exemplo 11

Resultado
1. p: Einstein era alemão ou q: Einstein foi físico. $p \wedge q$ V2. r: O Chile é um país, **isto é**, s: não é uma cidade. $r \wedge s$ F

A tabela verdade da disjunção pode ser vista na Tabela 3.

Cálculo Proposicional		
p	$q \qquad p \wedge p$	
V	V	V
V	F	V
F	V	V
F	F	F

P	Q	P+Q
0	0	0
0	1	1
1	0	2
1	1	1

Tabela 3 - Tabela verdade da operação disjunção em cálculo proposicional e em Álgebra Booleana.

Novamente podemos observar discrepâncias entre a notação do cálculo proposicional e da Álgebra Booleana. Tanto a ordem de distribuição dos estados possíveis quanto o uso do símbolo + . O uso do símbolo + persistiu até os primeiros anos do século XX quando esta operação era chamada de adição lógica. A relação entre a disjunção e a teoria dos conjuntos pode ser vista na Figura 6.

Figura 6 - Diagrama de Venn da disjunção na teoria dos conjuntos

A disjunção é representada nos circuitos eletrônicos pela porta OU, OR em inglês que pode ser vista na Figura 7.

Figura 7 - Porta OR representação da disjunção em circuitos eletrônicos.

A descoberta da verdade de uma disjunção pode ser encontrada com a análise de cada uma das proposições que compõem o conjunto de operandos. Seguindo o mesmo padrão de pensamento que usamos para a conjunção, e disjunção. Entretanto, lembre-se no caso da implicação um operando é a hipótese e o outro a conclusão. O uso da implicação pode ser visto no Exemplo 12.

Exemplo 12

Resultado

1. Homens são mortais ou faz sol a noite.

$$p$$
: Homens são mortais. $V(p)$ V q : Faz sol a noite. $V(q)$ F

2.
$$V(p \lor q) = V(p) \lor V(q) = V \lor F = V(p \lor q) = V$$
 $V(p \lor q)$

Homens são mortais ou faz sol a noite, é uma preposição verdadeira.

Condicional, ou implicação →

Chamaremos de condicional qualquer sentença que contenha o conectivo $se..ent\~ao$, e a representaremos por \Rightarrow . As proposições na forma condicional, ou de implicação, representadas por $p\Rightarrow q$, onde p é chamada de hipótese e q é chamada de conclusão, serão falsas se, e somente se, q for falso. Ou seja, a condicional será falsa se a hipótese implicar em uma falsidade.

A implicação é a declaração mais comum na matemática e também se destaca entre aquelas que são mais mal entendidas. Para não fugir dos gregos, vamos voltar a *Pitágoras*. Se a amável leitora tomar o cuidado de pedir para qualquer aluno do ciclo médio de ensino para declarar o Teorema de Pitágoras ouvirá: $x^2 + y^2 = z^2$. O que soa correto, mas está completamente errado. Esta declaração é falsa. Caso contrário ela teria que ser verdadeira para qualquer valor de x, y e z. Uma forma mais correta seria:

Se x e y são os lados de um triângulo retângulo com hipotenusa z, então $x^2 + y^2 = z^2$ (LEVIN, 2019).

Parece pouco importante, mas é justamente a correção da declaração que permite inferir sua verdade ou falsidade. A leitora poderia lembrar que lá nos anos 1600, *Leibnitz* foi estudar lógica na esperança que a comprovação da verdade se transformasse em uma ferramenta para a solução de conflitos, sem a necessidade de gritos, armas e mortes. Então, sim, esta diferença é muito importante.

A tabela verdade da operação condicional pode ser vista na Tabela 4.

Cálc	ulo Propos	icional]	Álç	gebra Bool	eana
p	q	$p \rightarrow q$		P	Q	$P \rightarrow Q$

V	V	V
V	F	F
F	V	V
F	F	V

0	0	1
0	1	1
1	0	0
1	1	1

Figura 8 - Tabela verdade do operador condicional - implicação - em cálculo proposicional.

A forma mais simples de entender a implicação é considerar um contrato, ou uma promessa. A lógica interessa que esta promessa seja verdadeira, ou falsa para que possa ser considerada uma implicação. Considere, por exemplo, que você disse ao seu filho:

Se tirar 10 na prova, lhe darei R\$1.000,00.

Onde p= tirar 10 na prova e q= lhe darei R\$1.000,00. A proposição será verdadeira se você cumprir a promessa. Caso contrário será falsa.

Primeiro Suponha que seu filho tirou 10 na prova, então p=V e você mantenho a promessa, logo q=V. A proposição é verdadeira.

Considere agora que seu filho tirou 10 na prova, então p=V e você não cumpro a promessa, logo q=F. A proposição é falsa.

Suponha que seu filho tirou 8 na prova, e, ainda assim, você lhe dá os R\$ 1000,00, p=F e q=V, mesmo que a hipótese seja falsa, neste caso, a conclusão é verdadeira e a promessa foi mantida. A proposição é verdadeira.

Por fim, suponha que seu filho tirou 7 e você não paga os R\$1.000,00, neste caso, p = F e q = F a proposição ainda é verdadeira porque a promessa não foi quebrada. Você não precisa pagar o valor combinado.

Na teoria dos conjuntos a implicação pode ser representada pelo Diagrama de Venn apresentado na Figura 9.

Figura 9 - Implicação representada no diagrama de Venn

Na eletrônica não temos uma porta lógica exclusiva para representar a implicação, mas podemos fazer uma combinação de portas para implementar a mesma lógica este circuito pode ser visto na Figura 10.

Figura 10 - Combinação de portas lógicas, inversor e ou, para criar a implicação em circuitos eletrônicos.

Muito, muito importante. Não estamos falando de consequência. Estamos falando de conclusão. O operador condicional é apenas um conectivo lógico e alguns argumentos podem não fazer sentido e ainda assim serem logicamente correto.

Exemplo 13

		Resultado	
	$m{p}$: Alagoas está na região sul.	V(p)	F
	$m{q}$: Minas gerais está na região norte.	V(q)	F
1.	$V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow F = V(p \rightarrow q) = V$	$V(p \rightarrow q)$	V
	Alagoas está na região sul então Minas Gerais está na	região norte	

Alagoas está na região sul então Minas Gerais está na região norte.

Bicondicional ou implicação dupla \leftrightarrow

Chamamos de bicondicional, ou implicação dupla, a toda sentença que utilize o conectivo se, e somente se. A implicação dupla é representada por ↔. Uma proposição composta bicondicional será verdadeira se os dois operadores forem verdadeiros e se os dois operadores forem falsos. A forma simplificada de memorizar a ação da operação de implicação dupla se explicita na frase: os dois ou nenhum. Ou os dois operandos são verdadeiros ou nenhum é verdadeiro. Nos dois casos a proposição composta representada pela implicação dupla será verdadeira.

A tabela verdade da operação bicondicional pode ser vista na Tabela 5.

Cálculo Proposicional			
p	q	$p \leftrightarrow q$	
V	V	V	
V	F	F	
F	V	F	
F	F	V	

Álgebra Booleana		
P	Q	$P \leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

Figura 11 - Tabela verdade do operador bicondicional em cálculo proposicional e Álgebra Booleana.

A representação da implicação dupla com teoria dos conjuntos pode ser vista no diagrama de Venn apresentado na Figura 11.

Figura 12 - Diagrama de Venn representando o operador bicondicional

No caso da eletrônica a implicação dupla é representada pela porta XNOR que pode ser vista na Figura 12.

Figura 13 - Porta XNOR que representa a implicação dupla em circuitos eletrônicos.

REFERÊNCIAS

BEN-ARI, M. **Mathematical Logic For Computer Science**. 3º. ed. London, UK: Springer-Verlag, 2012.

BENNETT, D. J. Logic Made Ease How to Know when you Language Deceives You. New York, NY USA: W. W. Norton Company, 2004.

LEIBNITZ, G.-G. Mémoires de mathématique et de physique de l'Académie royale des sciences. **l'Académie royale des sciences**, 1703. Disponivel em: https://hal.archives-ouvertes.fr/ads-00104781/document>. Acesso em: 9 ago. 2020.

LEVIN, O. Discrete Mathmatics, an open itroduction. 3º. ed. Greely, CO. USA: Oscar Levin, 2019.

PRINCIPIA Mathematica. **Stanford Encyclopedia of Philosophy**, 2019. Disponivel em: https://plato.stanford.edu/entries/principia-mathematica/>. Acesso em: 10 ago. 2020.

SALMON, W. C. SPACE, TIME, AND MOTION A Philosophical Introduction. **University of Arizona**, 2009. Disponivel em:

https://math.dartmouth.edu/~matc/Readers/HowManyAngels/SpaceTimeMotion/STM.html. Acesso em: 08 ago. 2020.

WITTGENSTEIN, L. **Some Remarks on Logical Form**. Proceedings of the Aristotelian Society, Supplementary. [S.I.]: Blackwell Publishing. 1929. p. 162-171.