Escola Secundária de Francisco Franco Matemática A – 12.º ano

Funções reais de variável real

FUNÇÕES CONTÍNUAS

1) Função contínua num ponto

Dada uma função f, real de variável real, de domínio D_f e um ponto $a de D_f$, diz-se que:

• f é contínua em a se existir $\lim_{x \to a} f(x)$, isto é, f é contínua em $a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

- f é descontínua em a se não for contínua em a;
- f é contínua num conjunto $A \subset D_f$ se f for contínua em todos os pontos de A;
- f é contínua se for contínua em D_f .

2) Operações com funções contínuas

• Dadas duas funções reais de variável real f e g contínuas em $a \in D_f \cap D_g$, são também contínuas em a as funções:

f + g, f - g, $f \times g$ e $\frac{f}{g}$ (se $g(a) \neq 0$)

• São contínuas, nos seus domínios, as funções polinomiais, racionais, as de potências de expoente racional, as funções trigonométricas (funções seno, cosseno e tangente) e as funções exponenciais e as funções logarítmicas.

Nota:

Considera o gráfico a seguir da função f de domínio $\mathbb{R} \setminus \{a_1\}$.

Assim:

 $\lim_{x \to a_1} f(x) = b_1 \text{ mas não faz sentido}$

falar em continuidade em a_1 ;

- f é contínua em a_2 porque existe $\lim_{x \to a_2} f(x) \left(\lim_{x \to a_2} f(x) = b_2 \right);$
- f é descontínua em a_3 porque não existe $\lim_{x \to a_3} f(x)$ (já que se tem

$$\lim_{x \to a_3^-} f(x) \neq \lim_{x \to a_3^+} f(x) ;$$

f é descontínua em a4 porque não existe $\lim_{x \to a_4} f(x)$ (já que se tem

$$\lim_{x \to a_4} f(x) \neq f(a_4) .$$

Exercício resolvido 1

Considera a função f, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} 5 - x^2 & \text{se } x \le 3\\ \frac{2x - 6}{9 - x^2} & \text{se } x > 3 \end{cases}.$$

- **1.1.** Justifica que f não é contínua em 3.
- **1.2.** Estuda a continuidade de f em \mathbb{R} .

Resolução

1.1.
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} (5 - x^{2}) = 5 - 3^{2} = -4 = f(3)$$

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3} \frac{2x - 6}{9 - x^{2}} = \lim_{x \to 3} \frac{2(x - 3)}{(3 - x)(3 + x)} = \lim_{x \to 3} \frac{-2(3 - x)}{(3 - x)(3 + x)} = \frac{-2}{3 + 3} = -\frac{1}{3} \neq f(3)$$

Dado que $\lim_{x \to \infty} f(x) = f(3) \neq \lim_{x \to \infty} f(x), f(3) = f(3) = f(3) \neq \lim_{x \to \infty} f(x), f(3) = f($

1.2. $f \in \text{contínua em }]-\infty,3[$ por estar definida por uma função polinomial (quadrática) e é contínua em $]3,+\infty[$ por estar definida por uma função racional. Como f é descontínua em 3, conclui-se que \underline{f} é contínua em $\mathbb{R}\setminus\{3\}$.

Exercício proposto 1

Considera, no referencial o.n. xOy a seguir, parte do gráfico da função f, de domínio $\mathbb{R}\setminus\{3\}$.

Qual é a afirmação falsa?

- (A) $\lim_{x \to -1^+} f(x) = \lim_{x \to 2^-} f(x)$
- **(B)** Existe $\lim_{x \to 3} f(x)$.
- (C) f é contínua em [-1,2].
- $(\mathbf{D})f$ é descontínua em 2.

Exercício resolvido 2

Para um certo número real k, é contínua a função g, de domínio \mathbb{R}^+

definida por $g(x) = \begin{cases} k+5 & \text{se } x = 0\\ \frac{x}{\sqrt{3x}} - 5 & \text{se } x > 0 \end{cases}$

Calcula k.

Resolução

g é continua em 0, logo $\lim_{x \to 0} g(x) = g(0)$

Ora,
$$\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} \left(\frac{x}{\sqrt{3}x} - 5 \right) = \lim_{x \to 0^{+}} \frac{\sqrt{x} \sqrt{x}}{\sqrt{3} \sqrt{x}} - 5 = \frac{0}{\sqrt{3}} - 5 = -5$$

$$\therefore k + 5 = -5 \iff k = -10$$

Exercício resolvido 3

Seja k um número real não nulo e sejam f e g as funções, de domínios, respetivamente, $\mathbb{R} \setminus \{-2\}$ e \mathbb{R} , definidas por

$$f(x) = \begin{cases} \frac{4 - \sqrt{-8x}}{x^2 - 3x - 10} & \text{se } x < -2 \\ \frac{x^3 + 8}{kx + 2k} & \text{se } x > -2 \end{cases} \quad \text{e} \quad g(x) = \begin{cases} f(x) & \text{se } x \neq -2 \\ -\frac{1}{7} & \text{se } x = -2 \end{cases}.$$

- **3.1.** Sabendo que existe $\lim_{x \to -2} f(x)$, determina k.
- **3.2.** A função g é contínua no ponto de abcissa -2? Resolução
- **3.1.** Se $\lim_{x \to -2} f(x)$ existe, então $\lim_{x \to -2^-} f(x) = \lim_{x \to -2^+} f(x)$ (pois $-2 \notin (x)$

3.1. Se
$$\lim_{x \to -2} f(x)$$
 existe, então $\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{+}} f(x)$ (pois $-2 \notin D_f$).

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2} \frac{4 - \sqrt{-8x}}{x^{2} - 3x - 10} = \lim_{x \to -2} \left(\frac{4 - \sqrt{-8x}}{x^{2} - 3x - 10} \times \frac{4 + \sqrt{-8x}}{4 + \sqrt{-8x}} \right) = \lim_{x \to -2} \frac{4^{2} - (-8x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 + \sqrt{-8x})} = \lim_{x \to -2} \frac{8(2 + x)}{(x + 2)(x - 5)(4 +$$

$$\lim_{x \to -2^{+}} f(x) = \lim_{x \to -2} \frac{x^{3} + 8}{kx + 2k} = \lim_{x \to -2} \frac{(x + 2)(x^{2} - 2x + 4)}{k(x + 2)}$$

$$= \frac{4 + 4 + 4}{k} = \frac{12}{k}$$

$$\therefore \frac{12}{k} = -\frac{1}{7} \Leftrightarrow k = \boxed{-84}$$

3.2. Atendendo a que $\lim_{x \to -2} g(x) = -\frac{1}{7} = g(-2)$, conclui-se que $g \in \text{contínua em } 2$.

4.2.
$$g(x) = \begin{cases} \frac{4 - \sqrt{8 - 4x}}{12 + 10x - x^3} & \text{se } x > -2\\ \frac{2}{3x - 1} & \text{se } x \le -2 \end{cases}$$

4.3.
$$h(x) = \begin{cases} \frac{2x^3 - 2x}{x^4 + x^3 + x^2 + x} & \text{se } x < -1 \\ 2\cos(\pi x) & \text{se } x \ge -1 \end{cases}$$

4.2.
$$g(x) = \begin{cases} \frac{4-\sqrt{8-4x}}{12+10x-x^3} & \text{se } x > -2\\ \frac{2}{3x-1} & \text{se } x \le -2 \end{cases}$$
 4.4. $i(x) = \begin{cases} \frac{1}{x-2} - \frac{2}{x^2-2x} & \text{se } x \ne 2\\ \frac{1}{2} & \text{se } x = 2 \end{cases}$

4.3.
$$h(x) = \begin{cases} \frac{2x^3 - 2x}{x^4 + x^3 + x^2 + x} & \text{se } x < -1 \\ 2\cos(\pi x) & \text{se } x \ge -1 \end{cases}$$
4.5. $f(x) = \begin{cases} \frac{4x^3 - 8x - 16}{4 - x^2} & \text{se } x < 2 \\ -10 & \text{se } x = 2 \\ \frac{x - 2}{5 - \sqrt{x} + 23} & \text{se } x > 2 \end{cases}$
5.1. $f(x) = \begin{cases} 3 - x^3 & \text{se } x < 2 \\ 4x + k & \text{se } x \ge 2 \end{cases}$ em $x = 2$;
$$\begin{cases} \frac{5kx^2 - 5k}{x + 1} & \text{se } x < -1 \\ \sqrt{x + 5} & \text{se } x \ge -1 \end{cases}$$

Exercício proposto 2

No referencial o.n. xOy a seguir, encontra-se parte do gráfico da função g, de domínio $]-\infty,8]\setminus\{6\}$.

Indica, justificando, o valor lógico das seguintes proposições.

i)
$$\lim_{x \to 1^+} g(x) = \lim_{x \to 4^-} g(x)$$

ii)
$$\lim_{x \to 1^{-}} g(x) = g(4)$$

- iii) g é contínua em 6
- iv) g é contínua em 8
- v) g é contínua no seu domínio.
- vi) g é contínua em [1,4].
- vii) g é contínua em]4,6[.

Exercício proposto 3

Estuda as funções seguintes quanto à continuidade no seu domínio.

3.1.
$$f(x) = \begin{cases} \sec \frac{2x}{3} & \sec x \neq \pi \\ -\frac{\sqrt{3}}{2} & \sec x = \pi \end{cases}$$

3.2.
$$g(x) = \begin{cases} \frac{x^3 - 5x^2 - x + 5}{x - 1} & \text{se } x < 1 \\ x^3 - 9 & \text{se } x \ge 1 \end{cases}$$

3.3.
$$h(x) = \begin{cases} \frac{2x^2 - 12x + 18}{15 - 5x} & \text{se } x < 3 \\ 0 & \text{se } x = 3 \\ \frac{x - 3}{\sqrt{x^3 - 27}} & \text{se } x > 3 \end{cases}$$

Exercício proposto 4

Estuda a continuidade das funções nos pontos relevantes

4.1.
$$f(x) = \begin{cases} \frac{x^2 - 2x - 3}{4\sqrt{x + 1} - 8} & \text{se } x > 3 \\ 4 & \text{se } x = 3 \\ \frac{144x - 24x^2 - 8x^3}{81 - 9x^2} & \text{se } x < 3 \end{cases}$$

Exercício proposto 5

Determina o valor de k de modo que sejam contínuas as funções seguintes

5.1.
$$f(x) = \begin{cases} 3 - x^3 & \text{se } x < 2 \\ 4x + k & \text{se } x \ge 2 \end{cases}$$
 em $x = 2$;

5.2.
$$g(x) = \begin{cases} \frac{5kx^2 - 5k}{x+1} \text{ se } x < -1 \\ \sqrt{x+5} \text{ se } x \ge -1 \end{cases} \text{ em } x = -1$$