

About 477,000,000 results (0.74 seconds)

Машинный перевод: план доклада

- 1. Формулировка задачи
- 2. Базовые методы. Перевод по словарю, по правилам и по примерам
- 3. Статистический машинный перевод
- 4. Вспомним RNN
- 5. Sequence-to-Sequence. Beam search decoder.
- 6. Sequence-to-Sequence with Attention
- 7. BLEU и оценки качества перевода

Задача машинного перевода

Последовательности слов $x \in X^*, y \in Y^*$

$$f: x \to y$$

$$f(x) = argmax_y p(y|x)$$

• Я съел торт \rightarrow I have eaten a cake

Перевод по словарю

Переводим каждое слово по фиксированному словарю

Плюсы:

- Простая модель

Минусы:

- Слово имеет только один перевод
- Не учитывает особенности языка

Rule-based machine translation (RBMT)

Храним словарь и список правил

Переводим каждое слово по фиксированному словарю, после чего применяем правила

Плюсы:

- Работает лучше

Минусы:

- Много ручного труда
- Всё правилами не покрыть

Example-based machine translation (EBMT)

Храним словарь и много примеров

Ищем похожее предложение среди примеров и подставляем туда новые слова

ЯИДУ В TEATP — I'M GOING TO THE THEATER

ЯИДУ В МАГАЗИН — I'M GOING TO THE STORE

Плюсы:

- Работает ещё лучше

Минусы:

- Нужно хранить очень много примеров

Statistical Machine Translation (SMT)

Решаем задачу:

$$argmax_{y}p(y|x)$$

По теореме Байеса,

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

$$argmax_{y}p(y|x) = argmax_{y}p(x|y)p(y)$$

Translation Model
Насколько фразы
соответствуют друг другу

Language Model

Несёт в себе структуру языка

SMT: Language Model

```
Надо искать p(y)
= p(y_0)p(y_1 \dots y_n|y_0)
= p(y_0)p(y_1|y_0)p(y_2 \dots y_n|y_0, y_1)
= p(y_0)p(y_1|y_0)p(y_2|y_0, y_1) \dots p(y_n|y_0, \dots, y_{n-1})
```

Яндекс

я съел

я съел деда

я съел деда текст

я съел две пачки фенибута

я съел 2 пачки фенибута

я съел деда моргенштерн

SMT: Language Model

Как искать p(y) $= p(y_0)p(y_1|y_0)p(y_2|y_1)p(y_3|y_2)\dots p(y_n|y_{n-1})$ $p(y_k|y_{k-1}) = \frac{\#\{y_{k-1},y_k\}}{\#\{y_{k-1}\}}$

SMT: Language Model

Как искать
$$p(y)$$

$$= p(y_0)p(y_1|y_0)p(y_2|y_0,y_1)p(y_3|y_1,y_2)\dots p(y_n|y_{n-2},y_{n-1})$$

$$p(y_k|y_{k-1},y_{k-2}) = \frac{\#\{y_{k-2},y_{k-1},y_k\}}{\#\{y_{k-2},y_{k-1}\}}$$

Так же и с n-граммами – phrase based.

Language model учится только на корпусе данного языка.

SMT: Translation Model

Надо искать p(x|y)

ПАРАЛЛЕЛЬНЫЙ КОРПУС

SMT: Translation Model

Как искать p(x|y)

- Разбиваем предложения параллельного корпуса на слова и сопоставляем
- p(x|y) = как часто слово x сопоставляется с y

SMT: Translation Model

p(x|y)Как искать

 $p(x, \alpha|y)$ • Добавляем параметр α – *alignment* (выравнивание)

SMT: overview

- Статистический машинный перевод широко применялся до 2015 года
- Меньше ручного труда, более универсальный
- Огромное количество деталей и вариаций
- Использует и хранит **огромные** объёмы данных

Recurrent Neural Network

• Вспоминаем RNN

Recurrent Neural Network

Recurrent Neural Network

Long Short Term Memory (LSTM)

Bidirectional RNN

Sequence-to-Sequence (seq2seq)

Sequence-to-Sequence: обучение

Sequence-to-Sequence: обучение

Sequence-to-Sequence: greedy decoding

• Decoder каждый раз выдаёт *argmax* вероятностного распределения на словаре (Note: здесь условные вероятности по x, нотация опущена)

$$p(y) = p(y_0)p(y_1|y_0)p(y_2|y_0, y_1) \dots p(y_n|y_0, \dots, y_{n-1})$$

• Проблема: Иногда может быть, что на первом шаге Decoder не угадывает. Тогда всё предсказание рушится

$$\arg\max_{y} \prod_{t=1}^{n} p(y_t|y_{< t}, x) \neq \prod_{t=1}^{n} \arg\max_{y_t} p(y_t|y_{< t}, x)$$

Решение: beam search

Sequence-to-Sequence: beam search

• Поддерживаем k самых вероятных последовательностей. Пример для k=2:

Sequence-to-Sequence: bottleneck problem

Sequence-to-Sequence with Attention

Sequence-to-Sequence: слой Attention

Для hidden state t-й итерации декодера h_t и каждого вектора S_k из Encoder states:

- Вычисляем attention score $e_k = score(h_t, s_k)$ (например, скалярное произведение $< h_t, s_k > 0$
- 2. Вычисляем attention distribution $(a_0, \dots a_T) = softmax(e_0, \dots, e_T)$
- Взвешиваем все S_k через a_k : $o_t = \sum_{i=0}^I s_i a_i$ attention output Конкатенируем attention output к h_t в декодере

Слой Attention фактически указывает контекст: чем больше слово из энкодера влияет на текущий hidden state декодера, тем сильнее оно участвует в предсказании.

Метрика BLEU

- 1. BiLingual Evaluation Understudy
- 2. Оценивает схожесть переводов
- 3. MT перевод модели ref истинный перевод

$$p_n = rac{\#n\text{-грамм в MT и ref}}{\#n\text{-грамм в MT}}$$
 $eta = e^{\min(0,1-rac{ ext{len}_{ ext{ref}}}{ ext{len}_{ ext{MT}}})}$
 $w_n = 1/2^n$
 $BLEU = eta \prod_n p_n^w$

BLEU для seq2seq

- Baseline лучшая SMT-модель
- Результаты 2014 года

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

BLEU для seq2seq

- WMT'14 лучшая SMT-модель
- Результаты 2015 года

Заключение

- Статистический машинный перевод решает декомпозированную задачу и показывает хороший результат
- Seq2seq генерирует текст напрямую и показывает результат лучше
- СМТ учит две задачи, seq2seq одну
- Лучше комбинировать

Источники

- Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation — Cho et al.
- Neural Machine Translation by Jointly Learning to Align and Bahdanau et al.
- Statistical Machine Translation -- Philipp Koehn
- Natural Language Processing with Deep Learning -- Abigail See, Matthew Lamm
- Effective Approaches to Attention-based Neural Machine Translation Luong et al.
- Визуал: https://vas3k.ru/blog/machine_translation/
- Визуал: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
- Визуал: https://guillaumegenthial.github.io/sequence-to-sequence.html
- Визуал: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Extras 1: another seq2seq scheme

Extras 2: score function examples

Extras 3: Bahdanau et al. Model

