

Master thesis Spring 2020

Development of a Multi-phase Optimal Control Software for Aerospace applications (MPOPT)

Automatic control Laboratory, EPFL

Master thesis in Mechanical Engineering

https://github.com/mpopt

Overview

An open-source, extensible, pseudo-spectral collocation based multi-phase nonlinear optimal control problem (OCP) solver package named MPOPT is developed in Python programming language as part of the thesis.

- Main features of the solver are:
 - Customizable collocation approximation (Legendre / Chebyshev polynomial based/User defined)
 - Novel adaptive grid refinement schemes
 - NLP solution using algorithmic differentiation
 - Sophisticated post-processing module

Method and usage

Multi-phase Optimal Control Problem (OCP)

Pseudo-spectral Collocation (Global or Multi-segment)

Nonlinear Programming Problem (NLP)

Solve and retrieve solution

Van der Pol Oscillator (2D): OCP

Solution under 10 lines of Python code

1 from mpopt import mp 2 ocp = mp.OCP(n_states=2, n_controls=1, n_phases=1) 3 ocp.dynamics $[0] = lambda \times u, t : [(1-x[1]*x[1])*x[0]-x[1]+u, x[0]]$ 4 ocp.running_costs[0] = $lambda \times u, t : x[0] * x[0] + x[1] * x[1] + u * u$ 5 ocp.lbx[0][1] = -0.256 ocp. lbu [0], ocp. ubu [0] = -1, 1 $7 \text{ ocp.} \times 00[0] = [0, 1]$ 8 ocp.lbtf[0], ocp.ubtf[0] = 10, 10mpo, post = mp.solve(ocp, n_segments=1, poly_orders=15,"LGR")

Examples of software usage : Results

Multi-stage rocket ascent trajectory optimization : Delta-III Rocket

Optimal Altitude profile

Launch vehicle velocity

Mass decay profile

	1.00 -	
collit of variables	0.75	
	0.50	
	0.25	
	0.00 -	
	- 0.25	• control 0
-	- 0.50	control 1 + control 2
		0 200 400 600 800 Time, s

Solver	Payload, kg	IT, S	solve time, s			
MPOPT	7529.7129	924.1393	3.20			
PSOPT*	7529.6610	924.1413	3.35			
GPOPS-II*	7529.7123	-	-			
SOCS *	7529.7125	-	-			
*D						

*Popular optimal control software

Thrust vector direction

Table: Comparison with similar software

Global. multi-segment collocation e.g.: van der Pol Oscillator (2D)

Global collocation: Chebyshev-Gauss-Lobatto (CGL)

Multi-segment collocation: Legendre-Gauss-Radau (LGR)

Case	Optimal cost	NLP var.	NLP cons.	Time total	Time NLP sol.
LGR, 15 nodes	2.87373	50	47	$85.2~\mathrm{ms}\pm.842~\mathrm{ms}$	≈ 9.5 ms
CGL, 15 nodes	2.87397	50	47	84.2 ms \pm 1.14 ms	\approx 8.7 ms
LGR, 5 seg, 75 nodes	2.87332	230	227	326 ms \pm .872 ms	\approx 30ms

Adaptive grid refinement schemes

Accurate transcription of continuous time OCP into an NLP is a challenging exercise. Grid refinement overcomes this problem by adapting the location of collocation nodes so that the solution is robust.

Three promising adaptive schemes are developed

Case study: Reusable rocket trajectory optimization

SpaceX Falcon9 Telemetry: NROL-76

Optimal booster thrust profile: MPOPT

Parameter	Reference	non-adaptive	Adaptive:Heuristic	Adaptive-III
Payload, kg	17310	17139.5	17267.4	17451.4
mass at landing, kg	22100	22100	22100	22100
MECO, s	131.4	131.4	131.4	131.4
SECO, s	453.4	453.98	453.52	452.86
Landing, s	569.7	579.7	581.3	569.1
Solve time, s	1.9	2.3	2.86	17.3

External examiner Dr. UP Rajeev, VSSC, ISRO

Acknowledgements Petr Listov, Doctoral Assistant, EPFL

Author Devakumar THAMMISETTY, GM

Supervisor Prof. Colin Jones, LA, EPFL