作业二

		Part1 死锁
1. 在操作系统	究中,死锁出现是指(А	A)
A. 多个进程竞	争资源出现了循环等待	B. 一个进程进入死循环
C. 进程释放§	资源	D. 多个进程竞争使用共享型的设备
2. 死锁的四个	个必要条件中,无法破坏	坏的是(C)
A. 非抢夺式分	分配	B. 占有且等待资源
C. 互斥使用的	资源	D. 环路等待资源
II. S1 需	不会给可能导致死锁的	序,而 S2 不会 原总量信息,而 S2 不需要 B进程分配资源,而 S2 会 C.仅 I、III D.I、II、III
	n 台互斥使用的同类设名 i的设备数 n 最小为(B	备,三个并发进程分别需要 3,4,5 台设备,可确保。)
统个发生死锁		

5. 下面是一个并发进程的程序代码, 正确的是(B)

```
Semaphore x1=x2=y=1
Int c1=c2=0;
P1()
                                  P2()
{
                                   {
 while(1) {
                                   while(1){
    P(x1);
                                       P(x2);
    If(++c1==1) P(y);
                                       If(++c2==1) P(y);
    V(x1);
                                       V(x2);
    computer(A);
                                       computer(B);
    P(x1);
                                       P(x2);
    If(--c1==0) V(y);
                                       If(--c2==0) V(y);
    V(x1);
                                       V(x2);
    }
                                       }
```

- A. 进程不会死锁, 也不会"饥饿"
- B. 进程不会死锁, 但是会"饥饿"
- C. 进程会死锁, 但是不会"饥饿"
- D. 进程会死锁, 也会"饥饿"
- 6. 设系统中有如下解决死锁的方法:
 - 1)银行家算法
 - 2) 检测死锁,终止处于死锁状态的进程,释放该进程占有的资源
 - 3)资源预分配,即进程运行前一次性申请完所需要的全部资源

简述哪种办法允许最大的并发性,即哪种办法允许更多的进程无等待地向前推进。请按 "并发性"从小到大对上述三种办法排序。

(1)银行家算法属于死锁避免,(2)检测死锁属于死锁检查,(3)资源预分配属于死锁预防

并发性大小为: 死锁检查 > 死锁避免 > 死锁预防

故(1)(2)(3)排序为:(3)((1)(2)

- 7. 假设具有 5 个进程的进程集合 P={P0, P1, P2, P3, P4}, 系统中有三类资源 A、B、
- C, 假设在某时刻有如下状态, 见下表。

	Allocation				Max			Available		
	Α	В	C	Α	В	C				
P_0	0	0	3	0	0	4	^	В	-	
P_1	1	0	0	1	7	5	Α	В	C	
P_2	1	3	5	2	3	5			_	
P_3	0	0	2	0	6	4	X	У	Z	
P_4	0	0	1	0	6	5				

请问当 x, y, z 取下列哪些值时,系统是处于安全状态的?给出计算过程。

I. 1, 4, 0 II. 0, 6, 2 III. 1, 1, 1 IV. 0, 4, 7

只有 I 是安全的,可以找到一个可行的序列为

进程	Available	MAXNEED	Allocation	可行性
P2	1 4 0	1 0 0	1 3 5	true
P1	2 7 5	0 7 5	1 0 0	true
Р0	3 7 5	0 0 1	0 0 3	true
Р3	3 7 8	0 6 2	0 0 2	true
P4	3 7 10	0 6 4	0 0 1	true

II 中最多满足 PO、P3、P4, 可用资源为 0, 6, 8, 此时 P1 和 P2 满足不了

III 中 B 资源只有 4 个小于 P1 所需,从数量上可排除。

IV 只能先满足 PO, 满足 PO 后可用资源为 0, 4, 10 满足不了任何进程。

Part2 CPU 调度

- 1. 若某单处理器多进程系统中有多个就绪态进程,则下列关于处理机调度的叙述中,错误 的是(D)。
 - A. 创建新进程后能进行处理机调度
 - B. 在进程结束时能进行处理机调度
 - C. 在系统调用完成并返回用户态时能进行处理机调度
 - D. 在进程处于临界区时不能进行处理机调度
- 2. P1、P2 和 P3 是在某个系统中正在执行的三个进程,各进程的计算(CPU)时间和 I/O 时间 比例如下表所示:

进程	计算时间	I/0 时间
P1	50%	50%
P2	20%	80%
Р3	30%	70%

为提高系统资源利用率,合理的进程优先级设置是(℃)。

Α	P1>P2>P3

3. 下列选项中,降低进程优先级的合理时机是(B)。

A. 进程刚完成 I/O, 进入就绪队列 B. 进程的时间片用完

C. 进程从就绪状态转为运行态 D. 进程长期处于就绪队列中

- 4. 陷阱指令(trap)可以使执行流程从用户态陷入内核,在用户进程使用陷阱(trap)执 行调用内核函数的过程中,以下哪些步骤是由操作系统内核完成的(B)
 - ① 执行用户进程的 main 函数
 - ② 切换至内核模式
 - ③ 跳转至陷阱处理器(trap handler)
 - ④ 处理陷阱 (handle trap)
 - ⑤ 执行系统调用

A. 46 B. 346 C. 2346 D. 16

- 5. 时钟中断(timer interrupt)是整个操作系统的脉搏,系统利用时钟中断维持系统时 间、**保证进程共享 CPU**、确定调度优先级。考虑如下场景:系统开机后,先执行进程 A,接 着遇到时钟中断,转为执行进程B,过程中需要执行以下操作
 - ① 从陷阱中返回(return from trap)
 - ② 初始化陷阱表 (initialize trap table)
 - ③ 处理时钟中断(timer interrupt)
 - ④ 开启中断计时器(start interrupt timer)
 - ⑤ 执行进程 A
 - ⑥ 执行进程 B

操作的正确顺序是(D)

A. 245361 B. 524361 C. 425316 D. 245316

6. 现有就绪进程 P1, P2, P3, P4, P5 其到达时间和 CPU 区间如下表所示, 0 时刻 P1 先到达,根据表格内容解决以下问题:

进程	到达时间(ms)	CPU 区间 (ms)
P ₁	0	15
P ₂	0	20
P ₃	5	8
P ₄	13	12
P ₅	29	5

1) 若 Round-Robin (RR)调度方式,时间片为 10ms,画出 P1 到 P5 的调度结果图 (维护一个就绪队列,轮转调度顺序按队列顺序依次进行调度);

运行情况:

调度时间	10ms	10ms	8ms	5ms	10ms	10ms	5ms	2ms
当前队列	P2 P3 P1	P3 P1 P4 P2	P1 P4 P2	P4 P2 P5	P2 P5 P4	P5 P4	P4	空
执行进程	P1	P2	Р3	P1	P4	P2	P5	P4

2) 若执行抢占式的 Shortest Job First (STCF)调度方式,画出 P1 到 P5 的调度结果图;

运行时间	5ms	8ms	10ms	6ms	5ms	6ms	20ms
执行进程	P1	Р3	P1	P4	P5	P4	P2

3) 分别计算两种模式下的平均响应时间和平均周转时间(假设不计进程调度所用时间)。

RR:

平均响应: (10+15+20+24) /5 = 13.8ms

平均周转: (33+53+23+47+29) /5=37ms

STCF

平均响应: (0+40+0+10+0) /5=10ms