#### 第三章: 语法分析

LR(1)方法



## 例子

#### 设有文法G:

$$R \rightarrow L$$



### SLR(1)问题所在

- $\square Z \rightarrow B^1 a B^2 b B^3 c$
- $\Box B \rightarrow d$

SLR(1)归约时向前看一个符号,但是不区分语法符号的不同出现。上述文法中,B出现了三次,很显然B<sup>1</sup>的后继符只能是a,B<sup>2</sup>的后继符只能是b,B<sup>3</sup>的后继符只能是c,而Follow(B)={a,b,c},用SLR(1)就失去了精度。

## 几种LR方法的简单对比

- □ LR(0)方法不依赖输入流,直接判定归约, 容易出现冲突。
- □ SLR(1)方法简单的把非终极符的follow集做为可归约的依据,并不精确。
- □ 一个非终极符在不同的位置上出现,它所允许的后继符是不同的。LR(1)针对不同产生式上的非终极符,分别定义其后继符集,减少了移入/归约、归约/归约冲突。

# LR(1)基本思想

□构造各种LR分析器的任务就是构造其 action表和goto表,其他部分基本相同。 LR(1)的基本思想是对非终极符的每个不 同出现求其后继符,而不是给每个非终极 符求其统一的后继符,我们称其为展望符 集。

## LR(1)项目、投影

wLR(1)项目: [A→α•β, a], 即LR(0)项目及一个V<sub>T</sub>∪{#}的展望符组成的二元组。用IS表示LR(1)项目的集合,简称LR(1)项目集。其中,项Z→•α的展望符为#

w  $IS_{(x)}$ : LR(1)项目集IS对于X的投影  $IS_{(x)} = \{[A \rightarrow \alpha X \bullet \beta, a] | [A \rightarrow \alpha \bullet X \beta, a] \in IS \}$ 

# LR(1)闭包集、GO函数

wCLOSURE(IS)= ISU {[A $\rightarrow$ • $\beta$ ,a]| [B $\rightarrow \alpha_1$ •A $\alpha_2$ ,b] ∈ CLOSURE(IS), A $\rightarrow \beta$ 是产生式,a ∈ First( $\alpha_2$ b)}

wGO:若IS是一个LR(1)项目集,X是一个文法符号,则GO(IS,X)=CLOSURE(IS<sub>(X)</sub>)。

### 可归前缀图的构造

- 1.产生初始项目集IS<sub>0</sub>,且IS<sub>0</sub>∈ISS IS<sub>0</sub>=CLOSURE(Z→•α,#),其中Z为开始符。
- 2.若IS¡∈ISS, X∈VŢUVN, 则定义IS¡=GO(IS¡,X),若IS¡不空且不属于ISS则将IS¸加入ISS, 建立IS¸到IS¸的X映射,重复该过程,直到ISS不产生新状态。

# 例子

□ 有文法:

Z→BB

B→aB

B→b



#### LR分析表

□有文法: [1]Z→BB [2]B→aB [3]B→b

|   | action表 |    |    | goto表 |
|---|---------|----|----|-------|
|   | а       | b  | #  | В     |
| 0 | S6      | S4 |    | 1     |
| 1 | S5      | S3 |    | 2     |
| 2 |         |    | AC |       |
| 3 |         |    | R3 |       |
| 4 | R3      | R3 |    |       |
| 5 | S5      | S3 |    | 8     |
| 6 | S6      | S4 |    | 7     |
| 7 | R2      | R2 |    |       |
| 8 |         |    | R2 |       |

| 状态栈       | 符号栈  | 输入串    | Action | GoTo |
|-----------|------|--------|--------|------|
| 0         |      | abaab# | S6     |      |
| 0,6       | a    | baab#  | S4     |      |
| 0,6,4     | ab   | aab#   | R3     | 7    |
| 0,6,7     | aB   | aab#   | F      | R2   |
| 0,1       | В    | aab#   | S5     |      |
| 0,1,5     | Ba   | ab#    | S5     |      |
| 0,1,5,5   | Baa  | b#     | S3     |      |
| 0,1,5,5,3 | Baab | #      | R3     | 8    |
| 0,1,5,5,8 | BaaB | #      | R2     | 8    |
| 0,1,5,8   | BaB  | #      | R2     | 2    |
| 0,1,2     | BB   | #      | AC     |      |

#### 习题

设文法G[S]为:

 $S \rightarrow AS$ 

S→ε

 $A \rightarrow aA$ 

 $A \rightarrow b$ 

证明G[S]是LR(1)文法;构造它的LR(1)分析表;给出符号串abab#的分析过程



action

|   | а  | b  | #   |
|---|----|----|-----|
| 0 | S3 | S4 | R2  |
| 1 |    |    | Acc |
| 2 | S3 | S4 | R2  |
| 3 | S3 | S4 |     |
| 4 | R4 | R4 | R4  |
| 5 |    |    | R1  |
| 6 | R3 | R3 | R3  |

goto

|   | Α | S |
|---|---|---|
| 0 | 2 | 1 |
| 1 |   |   |
| 2 | 2 | 5 |
| 3 | 6 |   |
| 4 |   |   |
| 5 |   |   |
| 6 |   |   |

| 状态栈  | 符号栈  | 输入流   |
|------|------|-------|
| 0    | #    | abab# |
| 03   | #a   | bab # |
| 034  | #ab  | ab#   |
| 036  | #aA  | ab#   |
| 02   | #A   | ab#   |
| 023  | #Aa  | b #   |
| 0234 | #Aab | #     |
| 0236 | #AaA | #     |
| 022  | #AA  | #     |
| 0225 | #AAS | #     |
| 025  | #AS  | #     |
| 01   | #S   | #     |

**G**[Z]:

 $Z \rightarrow S^{[0]}$ 

 $S \rightarrow AS^{[1]}$ 

 $S \rightarrow \epsilon^{[2]}$ 

 $A \rightarrow aA^{[3]}$ 

 $A \rightarrow b^{[4]}$