Set de problemas 7

Asignatura: Leyes Físicas III

Instructor: Dr. Wladimir E. Banda Barragán Correo electrónico: we.banda@uta.edu.ec

Fecha de envío: 5 de julio de 2018

Fecha de entrega: jueves 12 de julio de 2018, hasta las 15pm.

Créditos: 20 puntos a ponderarse.

Instrucciones:

Este trabajo debe remitirse de forma grupal en la fecha señalada. El trabajo consiste en resolver los siguientes ejercicios y problemas de aplicación relacionados a las Unidades 6, 7 y 8. Expresar las respuestas numéricas en unidades del Sistema Internacional (SI).

1. Un tanque de acero se llena totalmente con 2.80 m³ de etanol cuando tanto el tanque como el etanol están a 32 °C. Una vez que el tanque y el contenido se hayan enfriado a 18 °C, ¿qué volumen adicional de etanol podrá meterse en el tanque?

Datos:

Para el etanol,
$$\beta_{etanol} = 75 \times 10^{-5} \,^{\circ}\text{C}^{-1}$$

Para el acero, $\beta_{acero} = 3.6 \times 10^{-5} \,^{\circ}\text{C}^{-1}$

- 2. Un calorímetro de cobre con masa de $0.446\,\mathrm{kg}$ contiene $0.0950\,\mathrm{kg}$ de hielo. El sistema está inicialmente a $0\,^\circ\mathrm{C}$.
 - a) Si a la lata se agregan 0.035 kg de vapor de agua a 100 °C y 1 atm de presión, ¿qué temperatura final alcanzará la lata del calorímetro y su contenido?
 - b) A la temperatura final, ¿cuántos kilogramos habrá de hielo, cuántos de agua líquida y cuántos de vapor?

Datos:

$$L_{\rm v,H_2O} = 2256 \times 10^3 \frac{\rm J}{\rm kg}$$

$$L_{\rm f,H_2O} = 334 \times 10^3 \frac{\rm J}{\rm kg}$$

$$c_{\rm agua} = 4190 \frac{\rm J}{\rm kg\,K}$$

$$c_{\rm cobre} = 390 \frac{\rm J}{\rm kg\,K}$$

3. Un vaso aislado con masa despreciable contiene $0.25\,\mathrm{kg}$ de agua a $75.0\,^{\circ}\mathrm{C}$. ¿Cuántos kilogramos de hielo a $-20\,^{\circ}\mathrm{C}$ deben ponerse en el agua para que la temperatura final del sistema sea $30\,^{\circ}\mathrm{C}$?

Datos:

$$\begin{split} c_{\rm agua} &= 4190 \frac{\rm J}{\rm kg\,K} \\ L_{\rm f,H_2O} &= 334 \times 10^3 \frac{\rm J}{\rm kg} \\ c_{\rm hielo} &= 2100 \frac{\rm J}{\rm kg\,K} \end{split}$$

4. El propano (C_3H_8) gaseoso se comporta como gas ideal con $\gamma=1.127$. Determine la capacidad calorífica molar a volumen constante y a presión constante.

Ayuda: Recuerde que $C_p = C_v + R$

5. Determine el número de grados de libertad (f), el índice politrópico (γ) , y las capacidades caloríficas molares a volumen constante y a presión constante del monóxido de carbono (CO) gaseoso ideal a bajas temperaturas.

Ayuda: Recuerde que $\gamma = 1 + \frac{2}{f}$

- 6. Un sistema se lleva del estado a al b por las tres trayectorias de la figura.
 - a) ¿Por qué trayectoria el trabajo efectuado por el sistema es mayor? ¿Y por cuál menor?
 - b) Si $\epsilon_b > \epsilon_a$, ¿por cuál trayectoria es mayor el valor absoluto |Q| de la transferencia de calor?
 - c) En esa trayectoria, ¿el sistema absorbe o desprende calor?

Ayuda: Recuerde que el trabajo es el área bajo la curva y que $\Delta \epsilon = Q - W$

7. En un proceso adiabático de gases ideales, se cumple que $TV^{\gamma-1}$ es constante. Demuestre que pV^{γ} es también constante.

Ayuda: Use la ecuación de estado de un gas ideal, i.e. pV = nRT

- 8. Dos moles de gas ideal se calientan a presión constante desde $T=27\,^{\circ}\mathrm{C}$ hasta $T=107\,^{\circ}\mathrm{C}$.
 - a) Dibuje una gráfica pV para este proceso.
 - b) Calcule el trabajo efectuado por el gas.

Ayuda: Escriba la integral de trabajo y use pV = nRT

9. Cuando una cantidad de gas ideal monoatómico se expande a una presión constante de $4\times10^4\,\mathrm{Pa}$, el volumen del gas aumenta de $2\times10^{-3}\,\mathrm{m}^3$ a $8\times10^{-3}\,\mathrm{m}^3$. ¿Cuánto cambia la energía interna del gas?

 $\mathbf{Ayuda} \colon$ Recuerde que C_v es conocido para gases monoatómicos ideales.

- 10. Dos moles de monóxido de carbono (CO) están a una presión de 1.2 atm y ocupan un volumen de 30 litros. Después, el gas se comprime adiabáticamente a 1/3 de ese volumen. Suponga que el gas tiene comportamiento ideal.
 - a) ¿Cuánto cambia su energía interna? ¿La energía interna aumenta o disminuye?
 - b) ¿La temperatura del gas aumenta o disminuye durante el proceso?

Ayuda: Utilice las ecuaciones del problema 4, más las revisadas en clase para procesos adiabáticos en gases ideales. Recuerde que $1 \, \mathrm{atm} = 101325 \, \mathrm{Pa}$.

- 11. Un cilindro contiene 0.1 moles de un gas monoatómico con comportamiento ideal a una presión inicial de 1×10^5 Pa, en un volumen de 2.5×10^{-3} m³.
 - a) Calcule la temperatura inicial del gas en kelvins.
 - b) Se permite que el gas se expanda al doble de su volumen inicial. Calcule la temperatura (en kelvins) y la presión finales del gas, si la expansión es i) isotérmica, ii) isobárica, iii) adiabática.

Ayuda: Use pV = nRT y recuerde que $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$ puede usarse en casos no adiabáticos y que $T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1}$ se aplica a casos adiabáticos. Además, γ es conocido.

- 12. Media mol de un gas ideal se lleva del estado a al estado c, como se indica en la figura de abajo.
 - a) Calcule la temperatura final del gas.
 - b) Determine el trabajo efectuado por el gas (o sobre él), conforme se mueve del estado a al estado c.
 - c) En el proceso, ¿sale calor del sistema o entra a éste? ¿Qué tanto calor? Explique su respuesta.

Ayuda: Use pV = nRT para calcular T. Recuerde que el trabajo es el área bajo la curva y que $\Delta \epsilon = Q - W$.

- 13. Durante una compresión isotérmica de gas ideal, es preciso extraer 335 J de calor al gas para mantener la temperatura constante. ¿Cuánto trabajo efectúa el gas durante el proceso? **Ayuda**: Recuerde que $\Delta \epsilon = Q W$.
- 14. a) Enuncie con sus propias palabras los 3 principios de la termodinámica.
 - b) Dibuje y explique brevemente las trayectorias seguidas en una refrigeradora de Carnot.
 - c) ¿Es el ciclo de Carnot reversible o irreversible?
- 15. ¿Cuál es la eficiencia máxima de un refrigerador que opera con gas frío a -20°C para enfriar aire a 25°C? Nota: utilice unidades del SI.

Ayuda: Recuerde que la eficiencia máxima se logra en un ciclo de Carnot.