

Project Title:

AI/ML-Based IoT Framework for Wide-Area Energy Management System

B25RVP01

Mentor:

Dr Raja Vara Prasad Y

Presented By:

P HARISH RAGAVENDER (S20220020301)

Table of Contents

- 1.ML Models
 - 1.1 DataSet
 - 1.2 LSTM Model
 - 1.3 FNN Model
 - 1.4 XGBoost Model
- 2.Station S & IIITS
 - 2.1 Data Preprocessing
 - 2.2 Data Analysis
 - 2.3 XGBoost Model
- 3.Lora Range Test
- **4.Future Work**

1. ML MODELS

1.1 Data Set

Training Data: 1-year (Datetime vs

Power)

Validation Data: 1 day (24 hourly

points)

Target Column: Power in watts

Used For: Time series forecasting –

predict next hour's power

Sample Training Data:

Datetime Power

0 2005-07-01 00:00:00 13981

1 2005-07-01 01:00:00 13162

2 2005-07-01 02:00:00 12699

3 2005-07-01 03:00:00 12464

4 2005-07-01 04:00:00 12599

Sample Validation Data:

Datetime Power

0 2006-07-01 00:00:00 12930

1 2006-07-01 01:00:00 12045

2 2006-07-01 02:00:00 11457

3 2006-07-01 03:00:00 11133

4 2006-07-01 04:00:00 10999

1.2 LSTM Model

Data Processing:

- Extracted Power, normalized (0 to 1)
- Created sequences of last 24 hours to predict the next hour

Model:

- 1 LSTM layer (50 units), 1 Dense layer
- Trained for 20 epochs, batch size 32

Prediction:

- Used both training + validation sequences
- De-normalized output to get actual values

Metrics:

○ $R^2 = 0.971$, MAE ≈ 320 units

1.2 LSTM Model

1.3 FNN Model

• Architecture:

- Input: 24 lag values
- Hidden layers: Dense layers with ReLU
- Output: 1 value

• Training:

- \circ Epochs = 50
- Batch size = 32

• Evaluation:

- \circ R² \approx 0.7733
- O MAE ≈ 1037
- It is the least performer compare to LSTM and XGBoost

1.3 FNN Model

Evaluation Metrics: MAE = 1037.6221 MSE = 1388160.8750 RMSE = 1178.2024

 $R^2 = 0.7733$

1.4 XGBoost Model

Preprocessing:

- Merged training + testing into one DataFrame
- Created lag features: lag1 to lag24 (past 24 hours)

Model:

o XGBRegressor(n_estimators=100, max_depth=5, learning_rate=0.1)

• Evaluation:

- \circ R² \approx 0.989
- MAE ≈ 204 (better than LSTM)

1.4 XGBoost Model

Evaluation Metrics for XGBoost Forecasting:

MAE : 204.76 RMSE : 248.66 R² : 0.9899 MAPE : 1.49%

2. Station S & IIITS

2.1 Data Preprocessing

- 1.Removed empty (null) values from the dataset.
- 2. Selected only the 'Energy' column for analysis.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 894 entries, 0 to 893
Data columns (total 4 columns):
    Column
              Non-Null Count Dtype
    Date
              894 non-null
                              object
              894 non-null
                              int64
    Hour
              894 non-null
                              float64
    Energy
    Datetime 894 non-null
                              datetime64[ns]
dtypes: datetime64[ns](1), float64(1), int64(1), object(1)
memory usage: 28.1+ KB
None
```

- 3. The data was recorded every 5 minutes, so we converted it to **1-hour intervals** by subtracting the minimum from the maximum value in each hour.
- 4. This gave us **24 energy values per day**.
- 5. The data used for this analysis ranges from 8th March to 17th April.

STATION S GROUND AND FIRST FLOOR DAILY ENERGY CONSUMPTION

Basic Info					
First Station:					
		Date	Daily_Energy_Consumption		
count		40	40.000000		
mean	2025-03-27	12:00:00	126.252550		
min	2025-03-08	00:00:00	39.190000		
25%	2025-03-17	18:00:00	102.660250		
50%	2025-03-27	12:00:00	136.147500		
75%	2025-04-06	06:00:00	153.510000		
max	2025-04-16	00:00:00	223.165000		
std		NaN	42.920159		
Ground	Station:				
		Date	Daily_Energy_Consumption		
count		40	40.000000		
mean	2025-03-27	12:00:00	219.206475		
min	2025-03-08	00:00:00	75.426000		
25%	2025-03-17	18:00:00	171.833500		
50%	2025-03-27	12:00:00	237.718500		
75%	2025-04-06	06:00:00	269.594000		
max	2025-04-16	00:00:00	476.295000		
std		NaN	82.971121		

IIITS FACULTY WING AND G08 DAILY ENERGY CONSUMPTION


```
DESCRIPTIVE STATISTICS (Common Dates Only) ---
Faculty Consumption (Common Dates):
          27.000000
 count
          3.336111
mean
std
          1.855421
min
          0.398000
25%
          1.774000
50%
          3.486000
          4.446500
75%
          7.701000
max
Name: Faculty_Consumption, dtype: float64
G08 Consumption (Common Dates):
          27.00000
 count
          8.11663
mean
std
          4.37884
min
          1.57800
          3.85450
25%
         8.88700
50%
75%
         11.84750
         14.06800
max
Name: G08_Consumption, dtype: float64
```

2.3 XGBoost Model

XGBoost Regression Evaluation Metrics:

R² Score : 0.7307 MAE : 2.37 kWh MSE : 13.94 (kWh)^2 RMSE : 3.73 kWh

XGBoost - Actual vs Predicted Energy (kWh) $R^2 = 0.7307$, RMSE = 3.73 kWh

Date	Hour	Energy (in IdM/h)
	Hour	Energy (in kWh)
2025-03-08	0	2.10500000000047
2025-03-08	1	2.125
2025-03-08	2	2.13599999999951
2025-03-08	3	2.1279999999997
2025-03-08	4	2.125
2025-03-08	5	1.73500000000058
2025-03-08	6	1.39599999999973
2025-03-08	7	1.326000000000002
2025-03-08	8	3.64899999999943
2025-03-08	9	5.28700000000026
2025-03-08	10	7.10300000000007
2025-03-08	11	7.1989999999961
2025-03-08	12	6.9970000000003
2025-03-08	13	6.43900000000031
2025-03-08	14	6.7460000000001
2025-03-08	15	6.6109999999988
2025-03-08	16	5.5699999999971
2025-03-08	17	5.3999999999964
2025-03-08	18	5.15900000000056
2025-03-08	19	4.55799999999999
2025-03-08	20	1.44500000000062
2025-03-08	21	3.31099999999969
2025-03-08	22	2.47599999999966
2025-03-08	23	2.0379999999956
2025-03-09	0	1.95799999999963

3.Lora Range Test

3.Lora Range Test

LoRa Range Test -C Block, A Block and Station-S

Data Interval:30 sec

Location:

- 1.Water Sump-From 6:25 to 6:27
- 2.DB Panel Room-From 6:28 to 6:31
- 3.A1 Energy Meter-From 6.33 to 6:40
- 4.Station-S(In/Out)-From 6:46 to 6:57
- 5.Return From Station-S to Campus-From 6:57 to 7:12

Inference:

- 1.NO data packet is lost
- 2.NO Bit Reversal
- 2.Data Comes seamlessly every 30 sec

4. Future works

- 1.Develop a **custom hardware solution** for improved efficiency, scalability, and cost-effectiveness.
- 2.Deploy a **complete IoT framework** with real-time analytics and an advanced dashboard for energy management.

THANK YOU