

Oscylator harmoniczny

- O1. Wahadło matematyczne wyprowadź wzór na okres T dla małych wychyleń.
 - Wzory (do wyprowadzenia z II zasady dynamiki dla ruchu obrotowego lub sił):
 - Siła przywracająca: $F_t = -mg\sin\theta$
 - Dla małych kątów $\sin heta pprox heta$
 - Ruch po łuku: x=L heta
 - ullet II Zasada Dynamiki: $ma_t = \overline{F_t} \implies mL\ddot{ heta} = -mg heta$
 - Równanie drgań harmonicznych: $\ddot{ heta} + rac{g}{L} heta = 0$
 - Częstość kołowa: $\omega = \sqrt{rac{g}{L}}$
 - ullet Okres: $T=rac{2\pi}{\omega}=2\pi\sqrt{rac{L}{g}}$

• Wzory:

- ullet Siła tarcia: $F_{tarcia} = -\gamma v(t)$
- Moc chwilowa tracona przez tarcie: $P_{tracona}(t) = F_{tarcia} \cdot v(t) = -\gamma v(t) \cdot v(t) = -\gamma v(t)^2$
- Prędkość z podanego położenia: $v(t)=rac{dx}{dt}=A_{rez}\omega\cos(\omega t+\phi)$, gdzie $A_{rez}=rac{f_0}{\sqrt{(\omega_0^2-\omega^2)^2+(2\alpha\omega)^2}}$
- ullet Moc średnia: $\langle P
 angle = rac{1}{T} \int_0^T P(t) dt$
- Kwadrat kosinusa uśredniony po okresie: $\langle \cos^2(\omega t + \phi)
 angle = rac{1}{2}$
- Wyprowadzenie: $\langle P_{tracona} \rangle = \frac{1}{T} \int_0^T -\gamma [A_{rez}\omega\cos(\omega t + \phi)]^2 dt = -\gamma A_{rez}^2 \omega^2 \frac{1}{T} \int_0^T \cos^2(\omega t + \phi) dt = -\gamma A_{rez}^2 \omega^2 \cdot \frac{1}{2}$ Znak minus oznacza, że energia jest tracona