Homework 1

Stamate Valentin 2B4

October 27, 2020

Abstract

While the problems became more complex, finding an efficient algorithm to solve that problem became harder. This is why heuristic algorithms were a good alternative. The results given are pretty close and they have a better time complexity.

1 Introduction

The raport contain contain the results, comparisons and a conclusion of my algorithms. The problem is finding the global minimum of a function with various dimensions. The motivation is to see if the methods I used(hich will be discussed in the next section) gives a good result for small or big imputs. To test the algorithms I selected 4 functions: **DeJong's function**, **Schwefel's function**, **Rastrigin's function** and **Michalewicz's function**. As you can see each one has a different number of local minimum points.

(a) Rastrigin's function (b) Michalewicz's function

2 Methods

I used three methods: HillClimbing - First Improvement, HillClimbing - Best Improvement and Simulated Annealing for each function. I combined HCFI and HCBI by adding a simple condition after finding the first neighbour.

For representing the numbers I used a bit map that contain all components of a point. This way I can easily generate a random neighbour. In my algorithm one neighbour in HC is one that has the most unsignificant bit changed the same way in numbers I add and subtract 1, but manipulating the bits. To generate a neighbour in SA I only negate one bit from the bit map. The main difference between SA and HC is that in SA I can choose a bad neighbour with a small probability. This was SA has a larger domain exploration than HC.

The initialization is the same for all methods. I generate a bit map with 0 or 1 for each position.

The HCFI algorithm stops when it cannot find any better neighbours. SA algorithm stops when is reaching a temperature eqal with 10^-8 .

3 Experiment Description

Each method I combined it with it's iterated version. The number of repetitions are equal with 10^5 , enought to get a good result. To see how the methods are behaving over different inputs I choose 2, 5, 10, 15 and 30 as point dimension. The precision for each component is 5 meaning $\epsilon = 10^-5$. And the number global repetition is 30.

4 Results

Below are the results, a table for every input. Every cell has multiple values in this order: minimum value returned, running time, mean and standard distribution.

Algorithm Result (2)			
function	HCFI	HCBI	SA
De Jong	$1.81899e^-10$	$1.81899e^-10$	$4.73165e^{-}10$
	17s	19s	9s
	$1.81899e^-10$	$1.81899e^-10$	$8.665234e^{-6}$
	0	0	$2.359996e^-5$
Schwefel	-837.964	-837.964	-837.966
	27s	30s	12s
	-837.9059	-837.903	-837.8847
	0.04788257	0.05601569	0.08802122
Rastrigin	1.80426e - 08	1.80426e - 08	0
	21s	23s	9s
	1.80426e - 08	1.80426e - 08	0.005112576
	0	0	0.007384009
Michalewicz	-0.801323	-0.801323	-0.801323
	22s	23s	9s
	-0.8013227	-0.8013223	-0.8013221
	4.794633e - 07	-0.8013223	2.537081e - 07

Algorithm Result (5)			
function	HCFI	HCBI	SA
De Jong	4.54747e - 10	4.54747e - 10	2.23713e - 07
	1m 56s	$1 \mathrm{m} \ 37 \mathrm{s}$	24s
	4.54747e - 10	4.54747e - 10	0.04696127
	0	0	0.1665665
Schwefel	-2088.19	-2057.46	-2053.71
	3m 12s	2m 54s	37s
	-1991.65	-1995.07	-1895.261
	46.19519	38.03182	79.70068
Rastrigin	1.80426e - 08	1.80426e - 08	5.95225
	2m 44s	2m 18s	28s
	1.80426e - 08	1.80426e - 08	9.125848
	0	0	2.059847
Michalewicz	-3.69195	-3.68325	-3.6938
	3m 13s	2m 55s	30s
	-3.656661	-3.646231	-3.460571
	0.02152056	0.01848281	0.131784

Algorithm Result (10)			
function	HCFI	HCBI	SA
De Jong	$9.09495e^{-}10$	$9.09495e^-10$	$1.05876e^{-6}$
	$14\mathrm{m}$	8m	59s
	$9.09495e^{-}10$	$9.09495e^{-}10$	0.0001858588
	0	0	0.0004888328
Schwefel	-3634.03	-3742.84	-3630.58
	$23\mathrm{m}$	11m	59s
	-3394.599	-3440.418	-3211.317
	97.74172	115.7556	247.4637
Rastrigin	$1.80426e^-8$	$1.80426e^-8$	8.68414
	18m	$9\mathrm{m}$	53s
	$1.80426e^-8$	$1.80426e^-8$	25.81046
	0	0	9.338441
Michalewicz	-7.84583	-7.60421	-8.1224
	$19\mathrm{m}$	$10\mathrm{m}$	45s
	-7.05834	-7.131895	-6.258278
	0.2676364	0.2289028	1.08582

Algorithm Result (15)			
function	HCFI	HCBI	SA
De Jong	$1.36424e^{-9}$	$1.36424e^-9$	$1.29213e^{-6}$
	40m	$17\mathrm{m}$	1m 25s
	$1.36424e^-9$	$1.36424e^-9$	0.3072009
	0	0	1.222033
Schwefel	-4996.19	-4932.18	-5035.86
	1h 4m	$25\mathrm{m}$	1m 31s
	-4675.259	-4646.454	-4216.178
	143.6435	131.4299	479.3601
Rastrigin	$1.80426e^-8$	$1.80426e^-8$	20.3447
	51m	$21\mathrm{m}$	1m 18s
	$1.80426e^{-8}$	$1.80426e^-8$	36.68338
	0	0	10.20887
Michalewicz	-10.938	-10.6536	-11.9283
	44m	$20\mathrm{m}$	1m 6s
	-9.793424	-9.765478	-8.65901
	0.3922462	0.2919562	2.086646

Algorithm Result (30)			
function	HCFI	HCBI	SA
De Jong	$2.72848e^-09$	$2.72848e^-9$	0.0883307
	5h 48m	1h 11m	$2m\ 56s$
	$2.72848e^{-9}$	$2.72848e^-9$	2.972082
	0	0	2.592697
Schwefel	-8481.25	-8437.5	-10557.7
	8h 43m	1h 36m	$2 \mathrm{m} 57 \mathrm{s}$
	-8062.989	-8069.389	-9186.45
	145.3006	164.2671	601.2258
Rastrigin	$1.80426e^-8$	$1.80426e^-8$	57.882
	7h 11m	1h 25m	2m 40s
	$1.80426e^{-8}$	$1.80426e^-8$	93.20304
	0	0	19.97291
Michalewicz	-17.7899	-17.5032	-23.5971
	7h 40m	1h 37m	2m 18s
	-16.48712	-16.40962	-20.7609
	0.5326	0.3950859	1.685605

This graph represents the evolution of time when increasing the input size. The input is the number of components the function receives. I choose the Rastrigin's function because it has many local minimum points.

The input-time variation for Rastrigin's function

So, as shown in this graph the input has a signifficant time impact for HC algorithms. SA time doesn't change that much.

5 Comparisons

Next, I will discuss about the differences between these algorithms. The HC algorithm pick always a good neighbour: the best or the first. On the other side, SA algorithms can choose a bad neighbour but this chance descreases together with temperature. This way SA algorithm can explore more while HC algorithm can ramain stuck in a local minimum. Also, can be seen that SA algorithm is much more time efficient while giving a good result. But, increasing the input size, SA algorithm gives a more general result than a close one. Between the two HC methods, best improvement seems to be better and have a better time.

6 Conclusions

Finding global minimum can be a challenging goal. Deterministic algorithms can find it with backtracking but the time complexity makes it impossible to run in real time with big inputs. So, I tested three heuristic algorithms Hill Climbing first and best improvement and Simulated Annealing.

My conclusion is that SA can be a very good candidate for use cases bacause it is very fast comparing with HC algorithms witch gives a better result but they are much slower.

References

- [1] https://stackoverflow.com/questions/26282709/ heuristic-algorithm-for-finding-minimal-value-from-function/ 26283364
- [2] https://en.wikipedia.org/wiki/Hill_climbing
- [3] https://en.wikipedia.org/wiki/Simulated_annealing
- [4] https://www.youtube.com/watch?v=S9vs05eAGN0&ab_channel= EricSchirtzinger
- [5] Second seminar notes
- [6] http://www.geatbx.com/docu/fcnindex-01.html#P89_3085
- [7] http://www.geatbx.com/docu/fcnindex-01.html#P150_6749
- [8] http://www.geatbx.com/docu/fcnindex-01.html#P140_6155
- [9] http://www.geatbx.com/docu/fcnindex-01.html#P204_10395

- $[10] \ \mathtt{https://www.geeksforgeeks.org/function-pointer-in-c/}$
- [11] https://stackoverflow.com/questions/59565481/create-a-vector-from-a-txt-data-file-in-r