Name:	File	
Teacher:		

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12 HSC ASSESSMENT TASK 3

JUNE 2011

MATHEMATICS Extension 1

Time Allowed:

70 minutes

Instructions:

- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new page.
- Standard integrals can be found on the last page.

/10 /10 /10 /10 /10 /10 /60	Ques	tion 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
710 710 710 710 710		/10	/10	/10	/10	/10	/10	/60

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Question 1 (10 marks) Marks

Differentiate $e^{\sin x}$ a)

1

b) Find
$$\frac{d}{dx}(3^x)$$

1

c) Find the exact value of tan
$$(\sin^{-1}\frac{1}{5})$$

1

d) Solve
$$\sin 2\theta = \cos\theta \text{ for } 0 \le \theta \le 2\pi$$

3

e) Find i)
$$\int \frac{1}{\sqrt{9-x^2}} dx$$

1

ii)
$$\int \sin\left(\frac{\pi}{4} - x\right) dx$$

2

iii)
$$\int 3xe^{x^2} dx$$

1

Question 2 (10 marks) Start a new page

a) If $\int_0^2 \frac{dx}{x^2+4} = k$ find k

2

i) Differentiate
$$f(x) = tan^{-1}x + tan^{-1}\frac{1}{x}$$
 if $x \neq 0$

2

ii) Hence evaluate
$$\int_1^2 f(x) dx$$

1

c) i) Find
$$\frac{d}{dx}(x \ln x)$$

2

ii) Hence show that
$$\int_{e}^{e^2} \frac{1 + lnx}{x lnx} dx = 1 + ln2$$

3

a) Find $\int_0^{\frac{\pi}{2}} \cos^2 4x \, dx$

c)

i)

3

b) Sketch $y = 2sin^{-1}(x - 1)$ and state its domain and range.

2

3

ii) Hence, sketch $y = cos x - \sqrt{3} sin x$ for $0 \le x \le 2\pi$. Find and label

clearly, the points where the curve cuts the x and y axes.

Write $y = cos x - \sqrt{3} sin x$ in the form y = Acos(x + B), where B is acute.

2

Question 4 (10 marks) Start a new page

- a) An area of 1 square unit is bounded by the curve $y = \frac{1}{x}$, the x axis and the lines x = e and x = k. Find k if k > e.
- 2
- b) i) Show that $f(x) = \frac{1}{1+x^2}$ is an even function and then, without the use of calculus, make a neat sketch of $f(x) = \frac{1}{1+x^2}$.
 - 2
 - ii) What is the largest domain, containing x = -1, for which f(x) has an inverse function $f^{-1}(x)$?
- 1

iii) Find $f^{-1}(x)$

2

iv) Sketch $y = f^{-1}(x)$

1

c) Find the general solution for $\sin x = \frac{1}{2}$

2

a) i) Show that $x^2 + 6x + 10 = (x+3)^2 + 1$

1

ii) Hence find $\int \frac{1}{x^2 + 6x + 10} dx$

1

b) i) Differentiate $xtan^{-1}x$

1

ii) Hence find $\int tan^{-1}x \ dx$

2

- An object, removed from a freezer at $-5^{\circ}C$, is placed in a room where the temperature is kept at a constant $15^{\circ}C$. Thereafter, its temperature $T^{\circ}C$, is changing so that after t minutes $\frac{dT}{dt} = k(15 T)$, where k is a constant
 - i) show that $T = 15 Ae^{-kt}$ satisfies this differential equation

1

ii) Find the value of A

1

iii) If initially, the temperature was increasing at $5^{\circ}C$ per min, find the value of k.

1

iv) Find the temperature of the object, 5 mins after it was placed in the room (correct to 2 dec. pl.)

1

v) Find to, the nearest second, the time taken for the temperature of the object to rise to $0^{\circ}C$.

1

Question 6 (10 marks) Start a new page

- a) A square metal plate has sides x cm and an area of Acm^2 . It is expanding, so that the sides are increasing at 0.08 cm/min. Find the rate at which the area is increasing, when the sides are 7cm long.
- b) i) Sketch $y = 1 \tan x$, in the domain $0 \le x \le \frac{\pi}{4}$, without the use of calculus.
 - ii) Prove the area of the region enclosed by the above curve, the x axis and the y axis is $\frac{\pi \ln 4}{4}$ square units.

2

iii) The region in part ii) is rotated around the x axis.Find the volume of the solid formed.3

Question 1

b)
$$\frac{d}{dn}(3^x) = \frac{\ln 3.3^{3c}}{3}$$

c) Let
$$u = \sin^{-1} \frac{1}{5}$$

 $\sin u = \frac{1}{5}$

d)
$$\sin 2\theta = \cos \theta$$

 $2\sin \theta \cdot \cos \theta - \cos \theta = 0$
 $\cos \theta \cdot (2\sin \theta - 1) = 0$
 $\cos \theta = 0$ $\sin \theta = \frac{1}{2}$
 $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$

e) i)
$$\int \frac{1}{\sqrt{9-x^2}} dx = \sin^2 \frac{3}{3} + c$$

$$= \frac{\cos(\frac{\pi}{4} - st) + c}{2sc}$$
iii)
$$\int 3 sc \cdot e^{-st} ds = \frac{3sc}{2sc} + c$$

$$= \frac{3e^{x^2} + c}{2}$$

Question 2

a)
$$\int_{0}^{2} \frac{d\omega}{x^{2}+4} = \left[\frac{1}{2} \tan^{-1} \frac{x}{2}\right]_{0}^{2}$$

 $= \frac{1}{2} \left(\tan^{-1} 1 - \tan^{-1} 0\right)$
 $dz = \frac{\pi}{8}$

bi)
$$f(x) = \tan^{-1}x + \tan^{-1}(x^{-1})$$

 $f'(x) = \frac{1}{1+x^2} + \frac{-x^{-2}}{1+x^{-2}}$
 $= \frac{1}{1+x^2} - \frac{1}{1+x^{-2}}$

$$\frac{Q_1(x)}{Q_1(x)} = \frac{1+x_1}{1} - \frac{x_1+1}{1}$$

$$= \frac{1+x_1}{1} - \frac{x_2+1}{1}$$

$$= \frac{1+x_1}{1} - \frac{x_2+1}{1}$$

$$\therefore \int_{1}^{2} \int_{1}^{2} f(x) dx = 1 \times \mathbb{T}$$

$$= \mathbb{T}$$

c) i)
$$u = x$$
 $v = 1 \cdot x$
 $u' = 1$ $v' = \frac{1}{2}$
 $\frac{d}{dn}(x \ln x) = \ln x + 1$

e =
$$\ln \left(e^{2} \cdot \ln e^{2} \right) - \ln \left(e \cdot \ln e \right)$$

= $\ln \left(e^{2} \cdot \ln e^{2} \right) - \ln \left(e \cdot \ln e \right)$
= $\ln \left(e^{2} \cdot 2 \ln e \right) - 1$
= $\ln 2 \cdot e^{2} \cdot -1$
= $\ln 2 + 2 \ln e - 1$
= $\ln 2 + 1$

$$= \left[\frac{1}{2} \tan^{-1} \frac{x}{2}\right]_{0}^{2}$$

$$= \frac{1}{2} \left(\tan^{-1} 1 - \tan^{-1} 0\right)$$

$$= \frac{\pi}{8}$$

$$= \frac{\pi}{8}$$

$$= \frac{\pi}{2} \left[\frac{1}{8} \sin 8x + x\right]_{0}^{2} = \frac{1}{2} \left[\frac{1}{8} \sin 8x + x\right]_{0}^{2} = \frac{1}{2} \left[\frac{1}{8} \sin 8x + x\right]_{0}^{2}$$

b)
$$y = 2 \sin^{-1}(x-1)$$

 $\frac{y}{2} = \sin^{-1}(x-1)$
 $-\frac{\pi}{2} \le \frac{y}{2} \le \frac{\pi}{2}$

$$\frac{2}{2} = \frac{2}{2}$$

$$\frac{2}{2} \cdot \frac{2}{2} \cdot \frac{2}$$

c)
$$y = \cos x - \sqrt{3} \sin x$$

 $h = \sqrt{1 + 3} = 2$

$$\cos B = \frac{1}{2} \quad \sin B = \frac{13}{2}$$

$$\therefore \beta = \frac{\pi}{3}$$

: y=cosx - 13 sin x canbe unter y = 2 cos (x+ #)

$$1 = \ln k - 1 = 2$$

$$\log_e k = 2$$

$$e = k$$

$$f(-x) = \frac{1+(x)}{1} = \frac{1+x}{1}$$

$$f(x) = f(-x) \text{ even}$$

$$3x = \frac{1}{1+y^2}$$

$$\frac{1}{3x} = 1+y^2$$

$$\frac{1}{3x} - 1 = xy^2$$

$$\therefore f^{-1}(x) = -\sqrt{\frac{1}{x} - 1}$$

c)
$$\sin x = \frac{1}{2}$$

 $x = \pi \pi + (-1)^n \sin^{-1} \frac{1}{2}$

Question 6
Question 5 $(x+3)^2+1$
1+P+x0+1c=
= x2+6x + 10
= LHS
ii) $\int \frac{1}{\pi^2 + 6\pi + 10} d\pi = \int \frac{1}{(x+3)^2 + 1} d\pi$
= tan" (x+3) +c

b);)
$$u = 3t$$
 $v' = \frac{1}{1 + x^2}$

$$\frac{d}{dx} \left(x + 2x^{-1}x \right) = \frac{1}{1 + x^2}$$

$$tan^{-1}x = \frac{d}{dx}\left(x \cdot tan^{-1}x\right) - \frac{x}{1+x^{2}}$$

$$\therefore \int tan^{-1}x \cdot dx = \int \left(\frac{d}{dx}\left(x \cdot tan^{-1}x\right) - \frac{x}{1+x^{2}}\right) dx$$

$$= x \cdot tan^{-1}x - \frac{1}{2}\ln\left(1+x^{2}\right) + c \quad \text{sub } x = 7$$

$$\therefore df = \frac{d}{dx}$$

iii)
$$t=0$$
 $\frac{dT}{dt}=5$ sub into $*$

$$5=k.20 e$$

$$\frac{5}{20}=k \cdot k=\frac{1}{4}$$

$$-t/4 = \ln \frac{3}{4}$$

 $t = 1.1507...min$
 $t = 69 seconds$

Overtion 6

a) side
$$x$$
 $A = x^2$

$$\frac{dx}{dt} = 0.08 \quad \frac{dA}{dx} = 20$$

$$\frac{dA}{dt} = \frac{dA}{dx} \cdot \frac{dx}{dt}$$

$$= 2x \times 0.08$$

$$x = 7$$

$$\frac{dA}{dt} = 1.12 \text{ cm} / \text{min}$$

$A_{x} = \int_{0}^{\pi} (1 - \tan x) dx$
= 11- 310x ch
= [oc + 1 n cos x] "14
= (I + p(02 I)) - (0 + /2 coso)
$= \frac{1}{4} + \ln \frac{1}{12}$ $= \frac{1}{4} + \ln 2^{-1/2}$
$= \sqrt{1/4} - \frac{1}{2} \ln 2$

iii)
$$V_{x} = \pi \int (1 - \tan x)^{2} obc$$

$$= \pi \int (1 - 2 \tan x + \tan^{2} x) obc$$

$$= \pi \int (\sec^{2} x - 2 \tan x) obc$$

$$= \pi \left[\tan x + 2 \ln(\cos x) \right]_{0}^{\pi/4}$$

$$= \pi \left[\tan \pi + 2 \ln(\cos \pi) \right]_{0}^{\pi/4}$$

$$= \pi \left[1 + 2 \ln \frac{1}{12} \right]_{0}^{\pi/4}$$