UCB

```
library(data.table)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
##
       between, first, last
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(reshape2)
##
## Attaching package: 'reshape2'
## The following objects are masked from 'package:data.table':
##
##
       dcast, melt
library(scales)
library(parallel)
library(stringr)
library(knitr)
dt.aging.stats = fread("annotations/aging_stats.txt") %>%
 filter(age > 0, !is.na(sex)) %>%
  mutate(count_total = count, occurrences_total = diversity) %>%
  select(sample_id, sex, count_total, occurrences_total)
Load VDJdb annotations with 1 mismatch for aging data
dt.aging = rbindlist(mclapply(as.list(dt.aging.stats$sample_id),
                   function(x) fread(paste0("annotations/aging_split_1mm/", x, ".annot.txt")) %>%
                     mutate(sample_id = x), mc.cores = 40)) %>%
  group_by(sample_id, cdr3) %>%
  summarise(count = sum(count), occurrences = n())
VDJdb data
dt.vdjdb = fread("rearr_model/VDJDB_fullP_rob_ageing.txt") %>%
  filter(gene == "TRB", mhc.class == "MHCI") %>%
  mutate(hla_spec = str_split_fixed(mhc.a, pattern = "[:,]", 2)[,1]) %>%
  select(cdr3, hla_spec, antigen.epitope, antigen.species) %>%
  group_by(antigen.epitope) %>%
  mutate(unique_cdrs = n()) %>%
  filter(unique_cdrs > 30) %>%
```

Evenness of epitope-specific TCR occurrences

```
dt.aging.s2 = as.data.table(dt.aging.m) %>%
    group_by(sample_id, sex, antigen.epitope, antigen.species, unique_cdrs) %>%
    summarise(occurrences = sum(occurrences)) %>%
    group_by(sample_id) %>%
    mutate(occurrences_share = occurrences / sum(occurrences) / unique_cdrs)

dt.p = data.table(antigen.epitope = unique(dt.aging.s2$antigen.epitope), p = 1, freq.ratio = 1) %>%
    merge(dt.aging.s2 %>% ungroup %>% select(antigen.species, antigen.epitope) %>% unique)

for (i in 1:nrow(dt.p)) {
    tmp = dt.aging.s2 %>% filter(antigen.epitope == dt.p$antigen.epitope[i])
    dt.p$freq.ratio[i] = with(tmp, mean(occurrences_share[which(sex == "M")]) / mean(occurrences_share[which.p$p[i] = t.test(occurrences_share ~ sex, tmp)$p.value
}

dt.p$p = p.adjust(dt.p$p, method = "BH")
dt.p$len = nchar(as.character(dt.p$antigen.epitope))

kable(dt.p %>% arrange(p))
```

antigen.epitope	p	freq.ratio	antigen.species	len
ATDALMTGY	0.4643940	1.0594762	HCV	9
EIYKRWII	0.4643940	1.1539361	HIV-1	8
GILGFVFTL	0.4643940	0.9711087	InfluenzaA	9
LPRRSGAAGA	0.4643940	0.9658870	InfluenzaA	10
RAKFKQLL	0.4643940	1.0376307	EBV	8
RPRGEVRFL	0.4643940	0.9000810	HSV-2	9
VTEHDTLLY	0.4643940	0.9624216	CMV	9
KLVALGINAV	0.5758008	1.0423553	HCV	10
AMFWSVPTV	0.5813778	1.0584902	HomoSapiens	9
LLWNGPMAV	0.6627509	1.0349229	YellowFeverVirus	9
ELAGIGILTV	0.8028196	1.0090034	HomoSapiens	10
FLYNLLTRV	0.8028196	0.9383875	HomoSapiens	9
IIKDYGKQM	0.8028196	1.0840442	HIV-1	9

antigen.epitope	p	freq.ratio	antigen.species	len
YVLDHLIVV	0.8299260	0.9593484	EBV	9
EPLPQGQLTAY	0.8673266	1.0672729	EBV	11
FLKEKGGL	0.8673266	1.0315159	HIV-1	8
FPRPWLHGL	0.8673266	0.9761859	HIV-1	9
GPGHKARVL	0.8673266	1.0243763	HIV-1	9
HPKVSSEVHI	0.8673266	0.9599714	HIV-1	10
HSKKKCDEL	0.8673266	1.0682158	HCV	9
IPSINVHHY	0.8673266	1.0294460	CMV	9
KRWIILGLNK	0.8673266	1.0154329	HIV-1	10
KRWIIMGLNK	0.8673266	0.9814059	HIV-1	10
LPPIVAKEI	0.8673266	1.0366933	HIV-1	9
TPGPGVRYPL	0.8673266	0.9823725	HIV-1	10
TPQDLNTML	0.8673266	0.9795780	HIV-1	9
TPRVTGGGAM	0.8797360	1.0249844	CMV	10
GLCTLVAML	0.9043370	0.9974496	EBV	9
ISPRTLNAW	0.9043370	0.9931273	HIV-1	9
KAFSPEVIPMF	0.9043370	0.9945367	HIV-1	11
LLLGIGILV	0.9043370	0.9927336	HomoSapiens	9
NLVPMVATV	0.9043370	0.9955132	CMV	9
SLYNTVATL	0.9043370	0.9925401	HIV-1	9
CINGVCWTV	0.9135497	0.9932904	HCV	9

```
good_epi = (dt.p %>% filter(p < 0.05))$antigen.epitope</pre>
dt.aging.s2 = dt.aging.s2 %>%
  mutate(antigen.epitope = ifelse(antigen.epitope %in% good_epi, paste(antigen.epitope, "(*)"),antigen.
dt.aging.s2.s = dt.aging.s2 %>%
  group_by(antigen.epitope) %>%
  summarise(freq = mean(occurrences_share[which(sex == "M")]))
dt.aging.s2$antigen.epitope = factor(dt.aging.s2$antigen.epitope,
                                    levels = dt.aging.s2.s$antigen.epitope[order(dt.aging.s2.s$freq)])
dt.aging.s2$epi.len = nchar(as.character(dt.aging.s2$antigen.epitope))
ggplot(dt.aging.s2, aes(x = antigen.epitope, group = paste(antigen.epitope,sex),
                        fill = sex,
                       y = occurrences_share)) +
  geom_boxplot() +
  coord_flip() +
  scale_fill_brewer(palette = "Set1") +
  xlab("") + scale_y_continuous("Share of annotated rearrangements",
                                expand = c(0,0) +
  theme_bw() +
  theme(aspect = 1.1,
        panel.grid.major = element_blank(), panel.grid.minor = element_blank())
```

