Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №1 З дисципліни «Методи наукових досліджень» Загальні принципи організації експериментів з довільними значеннями факторів

ВИКОНАВ: Студент II курсу ФІОТ Групи IB-91 Мусійчук Я. С. Залікова-9121

ПЕРЕВІРИВ: ас. Регіда П.Г.

Мета:

Вивчити основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Варіант завдання:

119	Үэт←

Лістинг програми:

```
import numpy as np
from random import randint
import prettytable
MIN, MAX = 0, 20
a0, a1, a2, a3 = 1, 2, 2, 3
X = np.empty((8, 3), dtype=float)
Y = np.empty(8)
X0 = np.empty(3)
DX = np.empty(3)
XNormalized = np.empty((8, 3), dtype=float)
for i in range(8):
   for j in range(3):
       X[i, j] = randint(MIN, MAX)
for i in range(8):
   Y[i] = a0 + a1 * X[i, 0] + a2 * X[i, 1] + a3 * X[i, 2]
for i in range(3):
   X0[i] = (X[:, i].max() + X[:, i].min()) / 2
   DX[i] = X[:, i].max() - X0[i]
Y et = a0 + a1 * X0[0] + a2 * X0[1] + a3 * X0[2]
for i in range(8):
   for j in range(3):
       XNormalized[i, j] = ((X[i, j] - X0[j]) / DX[j]).round(3)
bigger_lst = [i for i in Y if i >= Y_et]
number = np.where(Y==(min(bigger_lst)))[0][0]
Y2 = a0 + a1 * X[number, 0] + a2 * X[number, 1] + a3 * X[number, 2]
table = prettytable.PrettyTable()
table.field_names = ["№", "X1", "X2", "X3", "Y", "XH1", "XH2<u>"</u>, "XH3"]
for i in range(8):
   table.add_row([i+1, X[i][0], X[i][1], X[i][2], Y[i], XNormalized[i][0],
XNormalized[i][1], XNormalized[i][2]])
table.add row(["X0", X0[0], X0[1], X0[2], "-", "-", "-"])
```

```
table.add_row(["Dx", DX[0], DX[1], DX[2], "-", "-", "-", "-"])

print(table)

print("Yet = ", Y_et)

print("Вираз який задовольняє критерій вибору 'Yet <-':", )

print( "{} + {} * {} + {} * {} + {} * {} = {}".format(a0,a1,X[number][0], a2,

X[number][1], a3, X[number][2], Y2))
```

Контрольні запитання:

1. З чого складається план експерименту?

Сукупність усіх точок плану - векторів Xi (для i = 1, 2, ..., N) утворює план експерименту. Таким чином, план експерименту описується матрицею, яка містить N рядків і K стовбців. Кожен рядок матриці означає точку плану експерименту, а стовпчик — фактор експерименту.

2. Що називається спектром плану?

Сукупність усіх точок плану, що відрізняються рівнем хоча б одного фактора (різних строк матриці планування), називається спектром плану.

3. Чим відрізняються активні та пасивні експерименти?

В пасивному експерименті існують контрольовані, але некеровані вхідні параметри — ми не маємо можливості втручатись в хід проведення експерименту, і виступаємо в ролі пасивного користувача. В активному — існують керовані і контрольовані вхідні параметри — ми самі являємось адміністраторами нашої системи.

4. Чим характеризується об'єкт досліджень? Дайте визначення факторному простору.

Об'єкт досліджень розглядається як «чорний ящик». Аналізуються деякі властивості та якості, які можуть описуватися числовими значеннями. Вектор $X_1...X_{\kappa}$ представляє собою групу контрольованих та керованих величин, котрі можуть змінюватись необхідним чином при проведенні експерименту, Цю групу характеристик $X_1...X_{\kappa}$ також називають факторами або керованими впливами.

Факторний простір — це множина зовнішніх і внутрішніх параметрів моделі, значення яких дослідник може контролювати в ході підготовки і проведення модельного експерименту.

Результат виконання роботи:

```
| NF | X1 | X2 | X3 | Y | XH1 | XH2 | XH3 | H | XH2 | XH3 | XH3 | XH2 | XH3 |
```

Висновок:

Під час виконання даної лабораторної роботи я вивчив основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчив побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпив отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.