

Sea $Y = [v \ w \ e_3]$. Interprete Y como matriz de transición.

ii) Una rotación positiva un ángulo α alrededor del eje x producirá una base $\{e_1, v, w\}$, donde v es el vector obtenido al rotar e_2 y w es el vector obtenido al rotar e_3 . Usando los diagramas siguientes como guía, demuestre que

$$\mathbf{v} = \begin{pmatrix} 0 \\ \cos(\alpha) \\ \sin(\alpha) \end{pmatrix} \quad \mathbf{y} \quad \mathbf{w} = \begin{pmatrix} 0 \\ -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix}$$

Sea $R = [e_1 \ v \ w]$. Interprete R como una matriz de transición.

iii) Una rotación positiva un ángulo θ alrededor del eje y producirá una base $\{\mathbf{v}, \mathbf{e}_2, \mathbf{w}\}$, donde \mathbf{v} es el vector obtenido al rotar \mathbf{e}_1 y \mathbf{w} es el vector obtenido al rotar \mathbf{e}_3 . Empleando los diagramas siguientes como guía, demuestre que

$$\mathbf{v} = \begin{pmatrix} \cos(\varphi) \\ 0 \\ -\sin(\varphi) \end{pmatrix} \quad \mathbf{y} \quad \mathbf{w} = \begin{pmatrix} \sin(\varphi) \\ 0 \\ \cos(\varphi) \end{pmatrix}$$

Sea $P = [v e_2 w]$. Interprete P como una matriz de transición.