

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C07F 5/02, A61K 31/69		A1	(11) International Publication Number: WO 94/21650 (43) International Publication Date: 29 September 1994 (29.09.94)
(21) International Application Number: PCT/US94/02965 (22) International Filing Date: 23 March 1994 (23.03.94)		(81) Designated States: AU, CA, JP, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 08/036,377 24 March 1993 (24.03.93) US		Published <i>With international search report.</i>	
(71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).			
(72) Inventors: AMPARO, Eugene, Cruz; 107 Garfield Avenue, West Chester, PA 19380 (US). MILLER, William, Henry; 1909 Coventry Lane, Glen Mills, PA 19342 (US). PACOF-SKY, Gregory, James; 86A Paladin Drive, Wilmington, DE 19802-1715 (US). WITTYAK, John; 127 Kelton Road, West Grove, PA 19390 (US).			
(74) Agents: REINERT, Norbert, F. et al.; The Du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).			
(54) Title: BORONIC ACID AND ESTER INHIBITORS OF THROMBIN			
(57) Abstract			
Novel boronic acid derivatives of formula (I), which are useful inhibitors of trypsin-like enzymes, are disclosed: R ¹ -Z-CHR ² -BY ¹ Y ² .			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	L1	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

Title

Boronic Acid and Ester Inhibitors of Thrombin

Field of the Invention

5 This invention relates to the discovery of new boronic acid derivatives which are inhibitors of thrombin and pharmaceutical compositions thereof.

Background of the Invention

10 Hemostasis is the normal physiological process in which bleeding from an injured blood vessel is arrested. It is a dynamic and complex process in which thrombin plays a key role. Blood coagulation may occur through either of two cascades of zymogen activations, the 15 extrinsic and intrinsic pathways of the coagulation cascade. The last protease in each pathway is thrombin, which acts to hydrolyze four small peptides (two FpA and two FpB) from each molecule of fibrinogen, thus deprotecting its polymerization sites. Once formed, the 20 linear fibrin polymers may be cross-linked by factor XIIIa, which is itself activated by thrombin. In addition, thrombin is a potent activator of platelets, upon which it acts at specific receptors. Thrombin activation of platelets leads to aggregation of the 25 cells and secretion of additional factors that further accelerate the creation of a hemostatic plug. Thrombin also potentiates its own production by the activation of factors V and VIII (see Hemker and Beguin in: Jolles, et. al., "Biology and Pathology of Platelet Vessel Wall 30 Interactions," pp. 219-26 (1986), Crawford and Scrutton in: Bloom and Thomas, "Haemostasis and Thrombosis," pp. 47-77, (1987), Bevers, et. al., *Eur. J. Biochem.* 1982, 122, 429-36, Mann, *Trends Biochem. Sci.* 1987, 12, 229-33).

35 Thrombosis may be regarded as the pathological condition wherein improper activity of the hemostatic

mechanism results in intravascular thrombus formation. Etiological factors such as the presence of atherosclerotic plaque, phlebitis and septicemia may cause thrombosis, leading to impaired blood flow to the 5 effected tissues and possible serious pathological consequences.

Currently, two of the most effective classes of drugs in clinical use as anticoagulants are the heparins and the vitamin K antagonists. The heparins are ill-defined 10 mixtures of sulfated polysaccharides that bind to, and thus potentiate the action of antithrombin III. Antithrombin III is a naturally occurring inhibitor of the activated clotting factors IXa, Xa, XIa, thrombin and probably XIIa (see Jaques, *Pharmacol. Rev.* 1980, 15 31, pp. 99-166). The vitamin K antagonists, of which warfarin is the most well-known example, act indirectly by inhibiting the post-ribosomal carboxylations of the vitamin K dependent coagulation factors II, VII, IX and X (see Hirsch, *Semin. Thromb. Hemostasis* 1986, 12, 1-20 11). While effective therapies for the treatment of thrombosis, heparins and vitamin K antagonists have the unfortunate side effects of bleeding and marked interpatient variability, resulting in a small and unpredictable therapeutic safety margin. The use of 25 direct acting thrombin inhibitors is expected to alleviate these problems.

Thrombin is a serine protease having trypsin-like specificity for the cleavage of sequence-specific Arg-Xxx peptide bonds. As with other serine proteases, the 30 cleavage event begins with an attack of the active site serine on the scissile bond of the substrate, resulting in the formation of a tetrahedral intermediate. This is followed by collapse of the tetrahedral intermediate to form an acyl enzyme and release of the amino terminus of 35 the cleaved sequence. Hydrolysis of the acyl enzyme then releases the carboxy terminus.

A number of naturally occurring thrombin inhibitors have been reported. These include nazumamide A from *Theonella sp.* (see Fusetani, et. al., *Tetrahedron Lett.* 1991, 32, 7073-4), cyclotheonamide A from *Theonella sp.* (see Fusetani, et. al., *J. Am. Chem. Soc.* 1990, 112, 7053-4), amblyommin from *Amblyomma hebraeum* (see Bonin, et. al., EP 345614), hirudin from *Hirudo medicinalis*, recombinant versions of hirudin and hirudin fragments (see Rigbl and Jackson, EP 352903, Koerwer, WO 9109946, Meyer, et. al., WO 9108233, Dawson, et. al., WO 9109125, Maraganore, et. al., WO 9102750 and Maraganore, EP 333356).

Synthetic thrombin inhibitors have also been disclosed. Arylsulfonylarginine amides such as (2R,4R)-4-methyl-1-[N²-{(3-methyl-1,2,3,4-tetrahydro-8-quinolinyl)sulfonyl}-L-arginyl]-2-piperidinecarboxylate have been shown to be effective inhibitors of thrombin (see Okamoto, et. al. *Thromb Res.* 1976, 8, 77-82, Ohshiro, et. al., *Blood Vessel* 1983, 14, 216-8), as have compounds containing constrained arginine mimics such as (2-naphthylsulfonylglycyl)-4-amidino-phenylalanyl piperidine (see Stuerzebecher, et. al., *Thromb. Res.* 1983, 29, 635-42), 1-[2-[5-(dimethylamino)naphth-1-ylsulfonamido]-3-(2-iminohexahydropyrimidin-5-yl)propanoyl]-4-methylpiperidine dihydrochloride (see Ishikawa, JP 88227572 and Ishikawa and Inamura, JP 88227573), N-(trans-4-amino-methylcyclohexylcarbonyl)-4-O-(2-picollyl)-L-tyrosine 4-acetanilide dihydrochloride (see Okamoto, et. al., EP 217286) and 4-[(aminoiminomethyl)amino]benzoic acid esters (see Fuji, et. al., DE 3005580, Matsuoka, et. al., *Jpn. J. Pharmacol.* 1989, 51, 455-63, and Takeshita, et. al., EP 435235). Inhibitor design has benefitted from the knowledge of the mechanism of action and of the peptide sequences

which are thought to bind in the catalytic site of thrombin, e.g., -Gly-Val-Arg-Gly- of fibrinogen (see Blombäck, et. al., *J. Biol. Chem.*, 1972, 247, 1496-512), Ile-Pro-Arg-Ser- of prothrombin (see Magnussen, et. al., in: Reich, et. al., "Proteases and Biological Control," pp. 123-149 (1975)) and -Val-Pro-Arg-Gly- of factor XIII (see Takagi and Doolittle, *Biochemistry* 1974, 13, 750-6 and Nakamura, et. al., *Biochem. Biophys. Res. Commun.* 1974, 58, 250-256). This class 10 of mechanism-based inhibitors are exemplified by the tripeptide aldehyde D-Phe-Pro-N-Me-Arg-H (see Bajusz, et. al., *J. Med. Chem.* 1990, 33, 1729-35), the chloromethyl ketone Ac-(D)-Phe-Pro-ArgCH₂Cl (see Kettner and Shaw, *Thromb. Res.* 1979, 14, 969-73) and the 15 trifluoromethyl ketone D-Phe-Pro-ArgCF₃ (see Kolb, et. al., US 697987).

Kettner and Shenvi (EP 293881, published June 12, 1988), disclose peptide boronic acid inhibitors of trypsin-like proteases of formula (1)

wherein Y¹ and Y², independently, are hydroxyl or fluoro or, taken together, form a moiety derived from a dihydroxy compound having at least two hydroxy groups 25 separated by at least two connecting atoms in a chain or ring, said chain or ring comprising 1 to about 20 carbon atoms and, optionally, a heteroatom which can be N, S, or O; R² is a substituted alkyl selected from the group consisting of -(CH₂)_z-X, -CH(CH₃)-(CH₂)₂-X, -CH₂-CH(30)CH₃-CH₂-X, -(CH₂)₂-CH(CH₃)-X and -(CH₂)₂-CH(CH₃)-X, where X is -NH₂, -NH-C(NH)-NH₂ or -S-C(NH)-NH₂, and z is 35 3 to 5; n, o, p and q are, independently, either 0 or 1; A¹, A² and A³ are, independently, amino acids of L- or D-configuration selected from the group consisting of Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val; and R¹

is a peptide comprised of 1 to about 20 amino acids, an acyl or a sulfonyl group comprised of 1 to about 20 carbon atoms, H, or an N-terminal protecting group. In this disclosure, Kettner and Shenvi demonstrated that 5 the pinanediol esters of boropeptides are pharmacologically equivalent to the corresponding boronic acids.

Metternich (EP 0471651 A2) discloses borolysine thrombin inhibitors of formula (2)

wherein W is an N-protecting group; Y is a sequence of n
amino acids such that the n+1 amino acid peptide Y-Lys
or Y-Arg has an affinity for the active site of a
trypsin-like protease; where n is an integer of from 1
to 10 and in which at least one amino acid is an
unnatural amino acid having a hydrophobic side chain; Q¹
and Q² are the same or different and are selected from
-OH, -COR₁, -CONR₁R₂, -NR₁R₂ or -OR₃ of Q¹ and Q² taken
together form a diol residue; R₁, R₂ and R₃ which may be
the same or different, are C₁₋₁₀alkyl, C₆₋₁₀aryl, C₆₋₁₀
aralkyl, or phenyl substituted by up to three groups
selected from C₁₋₄alkyl, halogen and C₁₋₄alkoxy; R₄ is
hydrogen or C₁₋₁₀alkyl; R₅ is a group -A-X; wherein A is
-(CH₂)_z- in which z is 2, 3, 4 or 5; -CH(CH₃)-(CH₂)₂-;
-CH₂-CH(CH₃)-CH₂-; -(CH₂)₂-CH(CH₃)-; -(CH₂)₂-C(CH₃)₂-;
CH(CH₃)-(CH₂)₃-; -CH₂-CH(CH₃)-(CH₂)₂-; -CH₂-CH₂-CH(CH₃)-
CH₂-; -(CH₂)₃-CH(CH₃)-; -(CH₂)₃-C(CH₃)₂: C₆₋₁₀aryl C₆₋₁₀
aralkyl and X is -NH₂, -NH-C(NH)-NH₂, -S-C(NH)-NH₂, -N₃,
-C₁₋₄alkoxy, C₁₋₄alkylthio or Si(CH₃)₃ or R₄ and R₅ taken
together form a trimethylene group and the asymmetric
carbon atom may have the D- or L-configuration or
represent any mixture of these.

aminoboronic and 1-aminophosphonic acid analogs of 3-methoxy-propylglycine (see Claeson, et. al., US 07-245428) and pentylglycine (see Cheng, et. al., "Symposium on Thrombosis and Hemostasis," 1991, 5 Amsterdam, Abstract 2150).

In addition to thrombin inhibition, boropeptides have been disclosed with utility as a treatment for tumors, viral infections and arthritis (US 4963655A and EP 354522A), emphysema (US 4499082A), hypertension (EP 10 315574A) and as factor VII/VIIa inhibitors (WO 8909612A). Kleemann, et. al. (AU A-24693/88) disclose renin-inhibiting 1-amino boronic acid derivatives of formula (3)

in which A^1 denotes a radical of formulae (4-8).

25 Despite the foregoing, more efficacious and specific thrombin inhibitors are needed as potentially valuable therapeutic agents for the treatment of thrombosis. None of the cited references describe or suggest the new 30 thrombin-inhibiting boronic acid derivatives of the present invention.

Summary of Invention

The present invention pertains to novel compounds of formula (I):

wherein

y^1 and y^2 are independently

- a) -OH ,
 - b) -F ,
 - c) $\text{-NR}^3\text{R}^4$, or
 - d) C1-C8-alkoxy;

y^1 and y^2 when taken together can form

- 15 a) a cyclic boron ester where said chain or ring
 contains from 2 to 20 carbon atoms and,
 optionally, a heteroatom which can be N, S, or O,
b) a divalent cyclic boro amide where said chain or
 ring contains from 2 to 20 carbon atoms,
c) a cyclic boro amide-ester where said chain or
 ring contains from 2 to 20 carbon atoms;

20

z is

- a) $-(CH_2)_mCONR^8-$,
 - b) $-(CH_2)_mCSNR^8-,$
 - c) $-(CH_2)_mSO_2NR^8-,$
 - d) $-(CH_2)_mCO_2-,$
 - e) $-(CH_2)_mC(S)O-,$ or
 - f) $-(CH_2)_mSO_2O-;$

\mathbb{R}^1 is

- 30 a) $-(CH_2)_p$ -aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of halo (F, Cl, Br, I), -CN, C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, methylenedioxy, $-R^8$, $-OR^8$, $-NO_2$, $-CF_3$, $-S(O)_rR^7$,

$-\text{NR}^8\text{R}^9$, $-\text{COR}^8$, $-\text{CO}_2\text{R}^8$, $-\text{CONR}^8\text{R}^9$, NR^8COR^9 ;

b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:

- 5 i) 5- or 6-membered aromatic ring, which contains from 1 to 3 heteroatoms selected from the group consisting of O, N, and S,
- ii) quinolinyl,
- iii) isoquinolinyl,
- 10 iv) benzopyranyl,
- v) benzothiophenyl,
- vi) benzofuranyl,
- vii) 5,6,7,8-tetrahydroquinolinyl
- viii) 5,6,7,8-tetrahydroisoquinolinyl

15

and wherein the substituents are members selected from the group consisting of halo (F, Cl, Br, I), $-\text{CN}$, C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, $-\text{R}^8$, $-\text{OR}^8$, $-\text{NO}_2$, $-\text{CF}_3$, $-\text{S(O)}_r\text{R}^7$, $-\text{NR}^8\text{R}^9$, $-\text{COR}^8$, $-\text{CO}_2\text{R}^8$, $-\text{CONR}^8\text{R}^9$, NR^8COR^9 , NRCO_2R^9 ,

20

c)

25

d)

e)

10

f)

15

 R^2 is

- a) $-(CH_2)_n-NHC(NH)NH_2$,
- 20 b) $-(CH_2)_n-NHC(NH)NHCOCH_3$,

- c) $-(CH_2)_n-SC(NH)NH_2$,
- d) $-(CH_2)_n-SC(NH)NHCOCH_3$,
- e) $-(CH_2)_n-NH_2$, or
- f) $-(CH_2)_n-NH(2\text{-pyridyl})$;

5 R³ is H, phenyl or C1-C4-alkyl;
 R⁴ is H or phenylsulfonyl;
 R⁵ and R⁶ are hydrogen or when taken together from a six
 membered aromatic ring optionally substituted with one,
 two or three substituents selected from the group
 10 consisting of halo (F, Cl, Br, I), -CN, C1-C10-alkyl,
 C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, -OR⁸,
 -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONR⁸R⁹,
 phenyl, benzyl, phenylethyl;
 R⁷ is

- 15 a) phenyl,
 b) C1-C4-alkyl,
 c) C1-C4-alkoxy, or
 d) -CF₃;

R⁸ and R⁹ are independently

- 20 a) H,
 b)

- 25 c) C3-C7-cycloalkyl,
 d) C1-C8-alkyl;

R¹⁰ and R¹¹ are independently

- a) halo (F, Cl, Br, I),
- b) -CN,

- 30 c) C1-C10-alkyl,
 d) C3-C8-cycloalkyl,
 e) C2-C10-alkenyl,
 f) C2-C10-alkynyl,
 g) -OR⁸,

- h) -NO_2 ,
- i) -CF_3 ,
- j) $\text{-S(O)}_x\text{R}^7$,
- 5 k) $\text{-NR}^8\text{R}^9$,
- l) -COR^9 ,
- m) $\text{-CO}_2\text{R}^8$
- n) $\text{-CONR}^8\text{R}^9$;

R^{12} is

- 10 a) H,
- b) C1-C4-alkyl,
- c) phenyl,
- d) benzyl
- e) -COR^7
- 15 f) $\text{-SO}_2\text{R}^7$

m is 0 to 6;

n is 3 or 4;

p is 0 to 2;

r is 0 to 2;

20 t is 1 to 5

E is -CO- , $\text{-SO}_2\text{-}$, $\text{-CH}_2\text{-}$ or a single bond,

F is -CO- ; and pharmaceutically acceptable salts thereof.

Preferred compounds of formula (I) are those
25 compounds wherein R^1 is phenyl and biphenyl containing
1-3 substituents selected from the series halo (F, Cl,
Br, I), C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl,
C2-C10-alkynyl, -R^8 , -OR^8 , -NO_2 , -CF_3 , $\text{-S(O)}_x\text{R}^7$, $\text{-NR}^8\text{R}^9$,
 -COR^8 , $\text{-CO}_2\text{R}^8$, $\text{-CONR}^8\text{R}^9$; NR^8COR^9 ;

30 R^2 is

- a) $\text{-(CH}_2)_3\text{-NH}\text{(NH)}\text{NH}_2$, or
- b) $\text{-(CH}_2)_3\text{-SC(NH)}\text{NH}_2$.

More preferred are those preferred compounds wherein
Z is $\text{-(CH}_2)_m\text{CONR}^8\text{-}$.

Most preferred are those more preferred compounds listed below:

- 5 N^1 -(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride
 N^1 -(3-phenoxybenzoyl)-(R)-boroarginine, hydrochloride
10 5 N^1 -(1-fluorenonyl)-(R)-boroarginine, hydrochloride
 N^1 -(4-[1-butyl]benzoyl)-(R)-boroarginine, hydrochloride
 N^1 -(2-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
 N^1 -(5-phenyl-2-furoyl)-(R)-boroarginine, hydrochloride
 N^1 -(3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-
15 10 benzoyl)-(R)-boroarginine, hydrochloride
 N^1 -(2-phenyl-4-isoquinolyl)-(R)-boroarginine,
 hydrochloride
 N^1 -(4-cyclohexylbenzoyl)-(R)-boroarginine,
 hydrochloride
15 15 N^1 -(2-methyl-4-phenylbenzoyl)-(R)-boroarginine,
 hydrochloride

Illustrative of the compounds of this invention are the following:

- 20 20 N^1 -(4-phenylbenzoyl)-(R)-boroarginine (+)-pinanediol,
 bisulfite
 N^1 -(3-phenylbenzoyl)-(R)-boroarginine (+)-pinanediol,
 bisulfite
25 25 N^1 -(3-phenoxybenzoyl)-(R)-boroarginine (+)-pinanediol,
 bisulfite
 N^1 -(4-[4-pyridyl]benzoyl)-(R)-boroarginine (+)-
 pinanediol, bisulfite
 N^1 -(2-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
30 30 bisulfite
 N^1 -(3-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
 bisulfite
 N^1 -(4-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
 bisulfite

35

- N*¹- (3-[*N*-benzyloxycarbonyl]aminobenzoyl)-(R)-
boroarginine (+)-pinanediol, bisulfite
*N*¹- (3-[*N*-benzyloxycarbonyl-*N*-methyl]aminobenzoyl)-(R)-
boroarginine (+)-pinanediol, bisulfite
- 5 *N*¹- (4-ethylbenzoyl)-(R)-boroarginine (+)-pinanediol,
bisulfite
*N*¹- (4-*n*-propylbenzoyl)-(R)-boroarginine (+)-pinanediol,
bisulfite
10 *N*¹- (4-isopropylbenzoyl)-(R)-boroarginine (+)-pinanediol,
bisulfite
*N*¹- (4-*n*-butylbenzoyl)-(R)-boroarginine (+)-pinanediol,
bisulfite
15 *N*¹- (4-*tert*-butylbenzoyl)-(R)-boroarginine (+)-
pinanediol, bisulfite
20 *N*¹- (4-*n*-hexylbenzoyl)-(R)-boroarginine (+)-pinanediol,
bisulfite
*N*¹- (4-cyclohexylbenzoyl)-(R)-boroarginine (+)-
pinanediol, bisulfite
25 *N*¹- (2-[*N*-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
boroarginine (+)-pinanediol, bisulfite
*N*¹- (4-*n*-butyloxybenzoyl)-(R)-boroarginine (+)-
pinanediol, bisulfite
*N*¹- (4-[*N*-cyclopropylcarbonyl]aminobenzoyl)-(R)-
boroarginine (+)-pinanediol, bisulfite
30 *N*¹- (4-[*N*-cyclohexylcarbonyl]aminobenzoyl)-(R)-
boroarginine (+)-pinanediol, bisulfite
*N*¹- (4-[*N*-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
boroarginine (+)-pinanediol, bisulfite
*N*¹- (4-[4-methoxy]phenylbenzoyl)-(R)-boroarginine (+)-
35 pinanediol, bisulfite
*N*¹- (2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
boroarginine (+)-pinanediol, bisulfite
*N*¹- (2-[1-naphthyl]benzoyl)-(R)-boroarginine (+)-
pinanediol, bisulfite
35 *N*¹- (4-[4-carboxy]phenylbenzoyl)-(R)-boroarginine (+)-
pinanediol, bisulfite

- N*¹- (4-phenylbenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- N*¹- (3-phenylbenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- 5 *N*¹- (3-phenoxybenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- N*¹- (2-benzoylbenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- N*¹- (3-benzoylbenzoyl)-(R)-borothioarginine (+)-
10 pinanediol, hydrobromide
- N*¹- (4-benzoylbenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- N*¹- (3-[*N*-benzyloxycarbonyl]aminobenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide
- 15 *N*¹- (3-[*N*-benzyloxycarbonyl-*N*-methyl]aminobenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide
- N*¹- (4-ethylbenzoyl)-(R)-borothioarginine (+)-pinanediol,
hydrobromide
- N*¹- (4-*n*-propylbenzoyl)-(R)-borothioarginine (+)-
20 pinanediol, hydrobromide
- N*¹- (4-isopropylbenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- N*¹- (4-*n*-butylbenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- 25 *N*¹- (4-tert-butylbenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- N*¹- (4-*n*-hexylbenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- N*¹- (4-cyclohexylbenzoyl)-(R)-borothioarginine (+)-
30 pinanediol, hydrobromide
- N*¹- (2-[*N*-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide
- N*¹- (4-*n*-butyloxybenzoyl)-(R)-borothioarginine (+)-
pinanediol, hydrobromide
- 35 *N*¹- (4-[*N*-cyclopropylcarbonyl]aminobenzoyl)-(R)-
borothioarginine (+)-pinanediol, hydrobromide

- N^1 -(4-[*N*-cyclohexylcarbonyl]aminobenzoyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 N^1 -(4-[*N*-(4-methoxy)benzoyl]aminobenzoyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
5 N^1 -(4-[4-methoxy]phenylbenzoyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 N^1 -(2-[2-phenylbenzyloxycarbonyl]benzoyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 N^1 -(2-[1-naphthyl]benzoyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
10 N^1 -(4-[4-carboxy]phenylbenzoyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 N^1 -([2-anthraquinonyl]carbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
15 N^1 -([2-dioxothioxanthinonyl]carbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
 N^1 -([2-anthraquinonyl]carbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 N^1 -([2-dioxothioxanthinonyl]carbonyl)-(R)-
20 borothioarginine (+)-pinanediol, hydrobromide
 N^1 -([2-fluoren-9-onyl]carbonyl)-(R)-borothiohomoarginine (+)-pinanediol, hydrobromide
 N^1 -([2-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
25 N^1 -([2-fluoren-9-onyl]carbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 N^1 -([3-fluoren-9-onyl]carbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 N^1 -([3-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
30 pinanediol, bisulfite
 N^1 -([4-fluoren-9-onyl]carbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
 N^1 -([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
35 N^1 -(1-naphthoyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide

- N*¹-(1-naphthoyl)-(R)-boroarginine (+)-pinanediol, bisulfite
- N*¹-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- 5 *N*¹-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
- 10 boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- 15 *N*¹-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
- 20 boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-trifluoromethylbenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
- 25 boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-boroarginine (+)-pinanediol, hydrobromide
- N*¹-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-boroarginine (+)-pinanediol, bisulfite
- 30 *N*¹-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-boroarginine (+)-pinanediol, bisulfite
- N*¹-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine (+)-pinanediol, bisulfite
- N*¹-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
- 35 boroarginine (+)-pinanediol, bisulfite

- N*¹- (2-methyl-4-phenyl-5-chlorobenzoyl) - (*R*) - boroarginine
(+) - pinanediol, bisulfite
- N*¹- (2-methyl-4-phenyl-5-hydroxybenzoyl) - (*R*) - boroarginine
(+) - pinanediol, bisulfite
- 5 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl) - (*R*) -
boroarginine (+) - pinanediol, bisulfite
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl) -
(*R*) - boroarginine (+) - pinanediol, bisulfite
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl) - (*R*) -
10 boroarginine (+) - pinanediol, bisulfite
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-
trifluoromethylbenzoyl) - (*R*) - boroarginine (+) - pinanediol,
bisulfite
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl) - (*R*) -
15 boroarginine (+) - pinanediol, bisulfite
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl) - (*R*) -
boroarginine (+) - pinanediol, bisulfite
- N*¹- (2-[5-phenyl]furylcarbonyl) - (*R*) - boroarginine (+) -
pinanediol, bisulfite
- 20 *N*¹- (2-[5-phenyl]thiophenylcarbonyl) - (*R*) - boroarginine
(+) - pinanediol, bisulfite
- N*¹- (2-[5-phenyl]furylcarbonyl) - (*R*) - borothioarginine (+) -
pinanediol, hydrobromide
- N*¹- (2-[5-phenyl]thiophenylcarbonyl) - (*R*) -
25 borothioarginine (+) - pinanediol, hydrobromide
- N*¹- (3-[6-phenyl]pyridylcarbonyl) - (*R*) - boroarginine (+) -
pinanediol, bisulfite
- N*¹- (3-[5-benzyloxy]pyridylcarbonyl) - (*R*) - boroarginine
(+) - pinanediol, bisulfite
- 30 *N*¹- (3-[6-phenyl]pyridylcarbonyl) - (*R*) - borothioarginine
(+) - pinanediol, hydrobromide
- N*¹- (3-[5-benzyloxy]pyridylcarbonyl) - (*R*) - borothioarginine
(+) - pinanediol, hydrobromide
- N*¹- (2-benzopyronylcarbonyl) - (*R*) - boroarginine (+) -
35 pinanediol, bisulfite

- N^1 -(2-benzopyronylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
- N^1 -(3-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
- 5 N^1 -(2-phenyl-4-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
- N^1 -(3-isoquinolinylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
- N^1 -(2-phenyl-4-isoquinolinylcarbonyl)-(R)-
- 10 borothioarginine (+)-pinanediol, hydrobromide
- N^1 -(2-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
- N^1 -(2-isoquinolinylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide
- 15 N^1 -(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(3-phenylbenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(3-phenoxybenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(4-[4-pyridyl]benzoyl)-(R)-boroarginine,
hydrochloride
- 20 N^1 -(2-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(3-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(4-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
- 25 boroarginine, hydrochloride
- N^1 -(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
- boroarginine, hydrochloride
- N^1 -(4-ethylbenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(4-n-propylbenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(4-isopropylbenzoyl)-(R)-boroarginine, hydrochloride
- 30 N^1 -(4-tert-butylbenzoyl)-(R)-boroarginine,
hydrochloride
- N^1 -(4-n-hexylbenzoyl)-(R)-boroarginine, hydrochloride
- N^1 -(4-cyclohexylbenzoyl)-(R)-boroarginine,
hydrochloride
- 35 N^1 -(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
- boroarginine, hydrochloride

- N*¹- (4-*n*-butyloxybenzoyl)- (*R*) -boroarginine,
hydrochloride
- N*¹- (4-[*N*-cyclopropylcarbonyl]aminobenzoyl)- (*R*) -
boroarginine, hydrochloride
- 5 *N*¹- (4-[*N*-cyclohexylcarbonyl]aminobenzoyl)- (*R*) -
boroarginine, hydrochloride
- N*¹- (4-[*N*- (4-methoxy)benzoyl]aminobenzoyl)- (*R*) -
boroarginine, hydrochloride
- N*¹- (4-[4-methoxy]phenylbenzoyl)- (*R*) -boroarginine,
10 hydrochloride
- N*¹- (2-[2-phenyl]benzyloxycarbonylbenzoyl)- (*R*) -
boroarginine, hydrochloride
- N*¹- (2-[1-naphthyl]benzoyl)- (*R*) -boroarginine,
hydrochloride
- 15 *N*¹- (4-[4-carboxy]phenylbenzoyl)- (*R*) -boroarginine,
hydrochloride
- N*¹- ([2-antraquinonyl]carbonyl)- (*R*) -boroarginine,
hydrochloride
- N*¹- ([2-dioxothioxanthinonyl]carbonyl)- (*R*) -boroarginine,
20 hydrochloride
- N*¹- ([2-fluoren-9-onyl]carbonyl)- (*R*) -boroarginine,
hydrochloride
- N*¹- ([3-fluoren-9-onyl]carbonyl)- (*R*) -boroarginine,
hydrochloride
- 25 *N*¹- (1-naphthoyl)- (*R*) -boroarginine, hydrochloride
- N*¹- ([4-fluoren-9-onyl]carbonyl)- (*R*) -boroarginine,
hydrochloride
- N*¹- (2-methyl-4-phenyl-5-methoxybenzoyl)- (*R*) -
boroarginine, hydrochloride
- 30 *N*¹- (2-methyl-4-phenyl-5-carboxamidobenzoyl)- (*R*) -
boroarginine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-fluorobenzoyl)- (*R*) -boroarginine,
hydrochloride
- N*¹- (2-methyl-4-phenyl-5-trifluoromethylbenzoyl)- (*R*) -
35 boroarginine, hydrochloride

- N*¹- (2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine,
hydrochloride
- N*¹- (2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
boroarginine, hydrochloride
- 5 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
boroarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-(R)-
boroarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
10 boroarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-
trifluoromethylbenzoyl)-(R)-boroarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
boroarginine, hydrochloride
- 15 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
boroarginine, hydrochloride
- N*¹- (2-[5-phenyl]furylcarbonyl)-(R)-boroarginine,
hydrochloride
- N*¹- (2-[5-phenyl]thiophenylcarbonyl)-(R)-boroarginine,
20 hydrochloride
- N*¹- (2-benzopyronylcarbonyl)-(R)-boroarginine,
hydrochloride
- N*¹- (2-isoquinolinylcarbonyl)-(R)-boroarginine,
hydrochloride
- 25 *N*¹- (3-isoquinolinylcarbonyl)-(R)-boroarginine,
hydrochloride
- N*¹- (2-phenyl-4-isoquinolinylcarbonyl)-(R)-boroarginine,
hydrochloride
- N*¹- (4-phenylbenzoyl)-(R)-borothioarginine,
30 hydrochloride
- N*¹- (3-phenylbenzoyl)-(R)-borothioarginine,
hydrochloride
- N*¹- (3-phenoxybenzoyl)-(R)-borothioarginine,
hydrochloride
- 35 *N*¹- (2-benzoylbenzoyl)-(R)-borothioarginine,
hydrochloride

- N*¹- (3-benzoylbenzoyl)-(R)-borothioarginine,
hydrochloride
- N*¹- (4-benzoylbenzoyl)-(R)-borothioarginine,
hydrochloride
- 5 *N*¹- (3-[*N*-benzyloxycarbonyl]aminobenzoyl)-(R)-
borothioarginine, hydrochloride
- N*¹- (3-[*N*-benzyloxycarbonyl-*N*-methyl]aminobenzoyl)-(R)-
borothioarginine, hydrochloride
- N*¹- (4-ethylbenzoyl)-(R)-borothioarginine, hydrochloride
- 10 *N*¹- (4-*n*-propylbenzoyl)-(R)-borothioarginine,
hydrochloride
- N*¹- (4-isopropylbenzoyl)-(R)-borothioarginine,
hydrochloride
- N*¹- (4-*n*-butylbenzoyl)-(R)-borothioarginine,
15 hydrochloride
- N*¹- (4-*tert*-butylbenzoyl)-(R)-borothioarginine,
hydrochloride
- N*¹- (4-*n*-hexylbenzoyl)-(R)-borothioarginine,
hydrochloride
- 20 *N*¹- (4-cyclohexylbenzoyl)-(R)-borothioarginine,
hydrochloride
- N*¹- (2-[*N*-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
borothioarginine, hydrochloride
- N*¹- (4-*n*-butyloxybenzoyl)-(R)-borothioarginine,
25 hydrochloride
- N*¹- (4-[*N*-cyclopropylcarbonyl]aminobenzoyl)-(R)-
borothioarginine, hydrochloride
- N*¹- (4-[*N*-cyclohexylcarbonyl]aminobenzoyl)-(R)-
borothioarginine, hydrochloride
- 30 *N*¹- (4-[*N*-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
borothioarginine, hydrochloride
- N*¹- (4-[4-methoxy]phenylbenzoyl)-(R)-borothioarginine,
hydrochloride
- N*¹- (2-[2-phenylbenzyloxycarbonyl]benzoyl)-(R)-
35 borothioarginine, hydrochloride

- N*¹- (2-[1-naphthyl]benzoyl)- (R)-borothioarginine,
hydrochloride
- N*¹- (4-[4-carboxy]phenylbenzoyl)- (R)-borothioarginine,
hydrochloride
- 5 *N*¹- ([2-anthraquinonyl]carbonyl)- (R)-borothioarginine,
hydrochloride
- N*¹- ([2-dioxothioxanthinonyl]carbonyl)- (R)-
 borothioarginine, hydrochloride
- N*¹- ([2-fluoren-9-onyl]carbonyl)- (R)-
- 10 borothiohomoarginine, hydrochloride
- N*¹- ([2-fluoren-9-onyl]carbonyl)- (R)-borothioarginine,
hydrochloride
- N*¹- ([3-fluoren-9-onyl]carbonyl)- (R)-borothioarginine,
hydrochloride
- 15 *N*¹- ([4-fluoren-9-onyl]carbonyl)- (R)-borothioarginine,
hydrochloride
- N*¹- (1-naphthoyl)- (R)-borothioarginine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-methoxybenzoyl)- (R)-
 borothioarginine, hydrochloride
- 20 *N*¹- (2-methyl-4-phenyl-5-carboxamidobenzoyl)- (R)-
 borothioarginine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-fluorobenzoyl)- (R)-
 borothioarginine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-trifluoromethylbenzoyl)- (R)-
- 25 borothioarginine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-chlorobenzoyl)- (R)-
 borothioarginine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-hydroxybenzoyl)- (R)-
 borothioarginine, hydrochloride
- 30 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)- (R)-
 borothioarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
 (R)-borothioarginine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)- (R)-
- 35 borothioarginine, hydrochloride

- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-trifluoromethylbenzoyl)-(R)-borothioarginine, hydrochloride
- 5 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-borothioarginine, hydrochloride
- 10 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-borothioarginine, hydrochloride
- 15 *N*¹- (2-[5-phenyl]furylcarbonyl)-(R)-borothioarginine, hydrochloride
- 20 *N*¹- (2-[5-phenyl]thiophenylcarbonyl)-(R)-borothioarginine, hydrochloride
- 25 *N*¹- (3-[6-phenyl]pyridylcarbonyl)-(R)-boroarginine, hydrochloride
- 30 *N*¹- (3-[5-benzyloxy]pyridylcarbonyl)-(R)-borothioarginine, hydrochloride
- 35 *N*¹- (2-benzopyronylcarbonyl)-(R)-borothioarginine, hydrochloride
- 40 *N*¹- (3-isoquinolinylcarbonyl)-(R)-borothioarginine, hydrochloride
- 45 *N*¹- (2-phenyl-4-isoquinolinylcarbonyl)-(R)-borothioarginine, hydrochloride
- 50 *N*¹- (2-isoquinolinylcarbonyl)-(R)-borothioarginine, hydrochloride
- 55 *N*¹- (4-phenylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 60 *N*¹- (3-phenylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 65 *N*¹- (3-phenoxybenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 70 *N*¹- (4-[4-pyridyl]benzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride

- N*¹- (2-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- N*¹- (3-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- 5 *N*¹- (4-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- N*¹- (3-[*N*-benzyloxycarbonyl]aminobenzoyl)-(R)-borolysine
(+)-pinanediol, hydrochloride
- 10 *N*¹- (3-[*N*-benzyloxycarbonyl-*N*-methyl]aminobenzoyl)-(R)-
borolysine (+)-pinanediol, hydrochloride
- 15 *N*¹- (4-ethylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- N*¹- (4-*n*-propylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- 20 *N*¹- (4-isopropylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- N*¹- (4-tert-butylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- 25 *N*¹- (4-*n*-hexylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- N*¹- (4-cyclohexylbenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- 30 *N*¹- (2-[*N*-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
borolysine (+)-pinanediol, hydrochloride
- 35 *N*¹- (4-*n*-butyloxybenzoyl)-(R)-borolysine (+)-pinanediol,
hydrochloride
- N*¹- (4-[*N*-cyclopropylcarbonyl]aminobenzoyl)-(R)-
borolysine (+)-pinanediol, hydrochloride
- N*¹- (4-[*N*-cyclohexylcarbonyl]aminobenzoyl)-(R)-borolysine
(+)-pinanediol, hydrochloride
- 30 *N*¹- (4-[*N*-(4-methoxy)benzoyl]aminobenzoyl)-(R)-borolysine
(+)-pinanediol, hydrochloride
- N*¹- (4-[4-methoxy]phenylbenzoyl)-(R)-borolysine (+)-
pinanediol, hydrochloride
- 35 *N*¹- (2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-borolysine
(+)-pinanediol, hydrochloride

- N*¹- (2-[1-naphthyl]benzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- (4-[4-carboxy]phenylbenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- 5 *N*¹- ([2-anthraquinonyl]carbonyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- ([2-dioxothioxanthinonyl]carbonyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- 10 *N*¹- ([2-fluoren-9-onyl]carbonyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- ([3-fluoren-9-onyl]carbonyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- 15 *N*¹- (1-naphthoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- ([4-fluoren-9-onyl]carbonyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-methoxybenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- 20 *N*¹- (2-methyl-4-phenyl-5-carboxamidobenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-fluorobenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- 25 *N*¹- (2-methyl-4-phenyl-5-chlorobenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-hydroxybenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- 30 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(*R*)-borolysine (+)-pinanediol, hydrochloride

- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-trifluoromethylbenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 5 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 10 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 15 *N*¹- (2-[5-phenyl]furylcarbonyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 20 *N*¹- (2-[5-phenyl]thiophen-ylcarbonyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 25 *N*¹- (2-benzopyronylcarbonyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 30 *N*¹- (2-isoquinolinylcarbonyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 35 *N*¹- (2-phenyl-4-isoquinolinylcarbonyl)-(R)-borolysine (+)-pinanediol, hydrochloride
- 40 *N*¹- (4-phenylbenzoyl)-(R)-borolysine, hydrochloride
- 45 *N*¹- (3-phenylbenzoyl)-(R)-borolysine, hydrochloride
- 50 *N*¹- (3-phenoxybenzoyl)-(R)-borolysine, hydrochloride
- 55 *N*¹- (4-[4-pyridyl]benzoyl)-(R)-borolysine, hydrochloride
- 60 *N*¹- (2-benzoylbenzoyl)-(R)-borolysine, hydrochloride
- 65 *N*¹- (3-benzoylbenzoyl)-(R)-borolysine, hydrochloride
- 70 *N*¹- (4-benzoylbenzoyl)-(R)-borolysine, hydrochloride
- 75 *N*¹- (3-[*N*-benzyloxycarbonyl]aminobenzoyl)-(R)-borolysine, hydrochloride
- 80 *N*¹- (3-[*N*-benzyloxycarbonyl-*N*-methyl]aminobenzoyl)-(R)-borolysine, hydrochloride
- 85 *N*¹- (4-ethylbenzoyl)-(R)-borolysine, hydrochloride
- 90 *N*¹- (4-*n*-propylbenzoyl)-(R)-borolysine, hydrochloride
- 95 *N*¹- (4-isopropylbenzoyl)-(R)-borolysine, hydrochloride
- 100 *N*¹- (4-tert-butylbenzoyl)-(R)-borolysine, hydrochloride
- 105 *N*¹- (4-*n*-hexylbenzoyl)-(R)-borolysine, hydrochloride
- 110 *N*¹- (4-cyclohexylbenzoyl)-(R)-borolysine, hydrochloride

- N*¹- (2-[*N*-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-borolysine, hydrochloride
- N*¹- (4-*n*-butyloxybenzoyl)-(R)-borolysine, hydrochloride
- N*¹- (4-[*N*-cyclopropylcarbonyl]aminobenzoyl)-(R)-borolysine, hydrochloride
- 5 *N*¹- (4-[*N*-cyclohexylcarbonyl]aminobenzoyl)-(R)-borolysine, hydrochloride
- 10 *N*¹- (4-[*N*-(4-methoxy)benzoyl]aminobenzoyl)-(R)-borolysine, hydrochloride
- 15 *N*¹- (2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-borolysine, hydrochloride
- 20 *N*¹- (2-[1-naphthyl]benzoyl)-(R)-borolysine, hydrochloride
- 25 *N*¹- (4-[4-carboxy]phenylbenzoyl)-(R)-borolysine, hydrochloride
- 30 *N*¹- ([2-anthraquinonyl]carbonyl)-(R)-borolysine, hydrochloride
- 35 *N*¹- ([2-dioxothioxanthinonyl]carbonyl)-(R)-borolysine, hydrochloride
- N*¹- ([2-fluoren-9-onyl]carbonyl)-(R)-borolysine, hydrochloride
- N*¹- ([3-fluoren-9-onyl]carbonyl)-(R)-borolysine, hydrochloride
- N*¹- (1-naphthoyl)-(R)-borolysine, hydrochloride
- N*¹- ([4-fluoren-9-onyl]carbonyl)-(R)-borolysine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-borolysine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-borolysine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-borolysine, hydrochloride
- N*¹- (2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-borolysine, hydrochloride

- N*¹- (2-methyl-4-phenyl-5-chlorobenzoyl) - (R) - borolysine,
hydrochloride
- N*¹- (2-methyl-4-phenyl-5-hydroxybenzoyl) - (R) - borolysine,
hydrochloride
- 5 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl) - (R) -
borolysine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl) -
 (R) - borolysine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl) - (R) -
- 10 borolysine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-
 trifluoromethylbenzoyl) - (R) - borolysine, hydrochloride
- N*¹- (2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl) - (R) -
 borolysine, hydrochloride
- 15 *N*¹- (2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl) - (R) -
borolysine, hydrochloride
- N*¹- (2-[5-phenyl]furylcarbonyl) - (R) - borolysine,
hydrochloride
- N*¹- (2-[5-phenyl]thiophen-ylcarbonyl) - (R) - borolysine,
- 20 hydrochloride
- N*¹- (2-benzopyronylcarbonyl) - (R) - borolysine,
hydrochloride
- N*¹- (2-isoquinolinylcarbonyl) - (R) - borolysine,
hydrochloride
- 25 *N*¹- (3-isoquinolinylcarbonyl) - (R) - borolysine,
hydrochloride
- N*¹- (2-phenyl-4-isoquinolinylcarbonyl) - (R) - borolysine,
hydrochloride
- N*¹- (2-methyl-4-phenylbenzoyl) - R - borolysine,
- 30 hydrochloride
- N*¹- (2-methyl-4-phenylbenzoyl) - R - borolysine, (+)-
pinanediol, hydrochloride
- N*¹- (2-methyl-4-phenylbenzoyl) - R - borothioarginine (+)-
hydrobromide
- 35 *N*¹- (2-methyl-4-phenylbenzoyl) - R - borothioarginine (+)-
pinanediol, hydrochloride

N¹-(2-methyl-4-phenylbenzoyl)-R-boroarginine (+)-hydrochloride

N¹-(2-methyl-4-phenylbenzoyl)-R-boroarginine (+)-pinanediol, bisulfite

5

Detailed Description of the Invention

Throughout the specification, the following conventional three-letter abbreviations for amino acid residues or amino acids apply:

	Ala = alanine
	Arg = arginine
	Asn = asparagine
	Asp = aspartic acid
15	Cys = cysteine
	Gln = glutamine
	Glu = glutamic acid
	Gly = glycine
	His = histidine
20	Ile = isoleucine
	Leu = leucine
	Lys = lysine
	Met = methionine
	Phe = phenylalanine
25	Pro = proline
	Ser = serine
	Thr = threonine
	Trp = tryptophan
	Tyr = tyrosine
30	Val = valine

The prefix "boro" indicates amino acid residues where the carboxy group is replaced by a boronic acid (Formula I, Y¹ and Y² = -OH).

35 The pinanediol boronic acid ester and the pinacol boronic acid ester are abbreviated "-C₁₀H₁₆" and

"-C₆H₁₂" respectively. Other illustrations of diols useful for deriving boronic acid esters are 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 2,3-butanediol, 1,2-diisopropylethanediol, 5,6-decanediol, 5 1,2-dicyclohexylethanediol.

Note that throughout the text when an alkyl substituent is mentioned, the normal alkyl structure is meant (e.g. butyl is n-butyl) unless otherwise specified. However, in the definition of radicals above 10 (e.g. R³), both branched and straight chains are included in the scope of alkyl.

It is understood that many of the compounds of the present invention contain one or more chiral centers and that these stereoisomers may possess distinct physical 15 and biological properties. The present invention comprises all of the stereoisomers or mixtures thereof. If the pure enantiomers or diastereomers are desired, they may be prepared using starting materials with the appropriate stereochemistry, or may be separated from 20 mixtures of undesired stereoisomers by standard techniques, including chiral chromatography and recrystallization of diastereomeric salts.

Synthesis

The compounds of formula (I) can be prepared using 25 the reactions and techniques described below. The reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being affected. It will be understood by those skilled in the art of organic synthesis that 30 the functionality present on the molecule should be consistent with the chemical transformations proposed and this will sometimes require judgment as to the order of synthetic steps or selection of particular process scheme used from that shown below in order to obtain a 35 desired compound of the invention.

5

Scheme 1. Synthesis of Thrombin Inhibitors

Reagents: a. IBCF, NMM, RCO₂H, Et₃N, 0 °C, b. NaN₃, c. H₂, Pd(OH)₂/C, HCl, d. DMAP, aminoiminomethanesulfonic acid, e. phenylboronic acid

10

Amine hydrochloride 1 is readily available via the procedure of Kettner and Shenvi (EP 0293881 A2).

There are numerous synthetic methods by which to prepare amide 2, however, competing with amide formation is the cyclization of 1 to afford a complex mixture containing the desired amide and the corresponding *N*-acylboroproline. Since purification at this stage is unfeasible, choosing the correct method for amide formation is crucial to obtaining 2 in a purity suitable for subsequent synthetic transformations.

- Three methods are preferred for the preparation of 2.
- 10 10 In the first, a solution of 1 in tetrahydrofuran or dichloromethane at 0 °C is treated sequentially with the desired acid chloride followed by two equivalents of triethylamine. The mixture is then allowed to warm to room temperature overnight. The second method is the 15 mixed anhydride procedure of Anderson, et. al. (*J. Am. Chem. Soc.* 1967, 89, 5012). In this method the isobutyl mixed anhydride is generated by dissolving the carboxylic acid component in tetrahydrofuran and adding one equivalent of *N*-methylmorpholine. The solution is 20 cooled to 0 °C and one equivalent of isobutyl chloroformate is added. After 5 minutes, a solution of 1 in chloroform is added, followed by the addition of one equivalent of triethylamine. The mixture is typically stirred at 0 °C for one hour followed by one 25 to several hours at room temperature. The third method for amide formation is the hydroxybenzotriazole/DCC method of König and Geiger (*Chem. Ber.* 1970, 103, 788-98). Thus, to a solution of 1 and the carboxylic acid component in dimethylformamide or tetrahydrofuran at 0 30 °C is added *N*-methylmorpholine, 1-hydroxybenzotriazole hydrate (2 eq) and DCC (1.05 eq). The solution is allowed to warm to room temperature overnight.

- The preferred method for the preparation of azide 3 is by reaction of 2 with sodium azide (1.1 eq) in 35 dimethylformamide at 70 °C for 2 hours.

The azide displacement may also be performed prior to amide formation. This is the preferred method in cases where the rate of amide formation is slow relative to the rate of cyclization. Azide 4 is prepared by a 5 modification of the procedure of Kettner and Shenvi (EP 0293881 A2) as shown in Scheme 2. Thus, bromide 5 is reacted with sodium azide, followed by homologation to give 6, chloride displacement to afford 7 and acidic hydrolysis to give 4. Amide formation between 4 and the 10 carboxylic acid component then affords 3 directly.

Scheme 2. Synthesis of Azide 4

Reagents: a. NaN_3 b. CHCl_2Li , ZnCl_2 , c. $\text{LiN}(\text{TMS})_2$,
d. 4M HCl, dioxane

15

Reduction of azide 3 to amine 8 may be accomplished by hydrogenation over precious metal catalysts. The preferred catalyst for this transformation is Pearlman's catalyst (palladium hydroxide on carbon). The amine is 20 typically isolated as the hydrochloride salt. Isolation of 8 as the free base typically results in lowered yields. Salts of 8 which may confer superior physical properties may be preferred over the hydrochloride salt.

Formamidination of amine 8 may be accomplished using 25 cyanamide. Due to the low reactivity of amine 8,

however, the preferred method for this transformation is reaction with 4-dimethylaminopyridine (DMAP) and aminoiminomethanesulfonic acid (AMSA, prepared by the method of Kim, et. al., *Tetrahedron Lett.* 1988, 29, 5 3183-6). This affords guanidine 9, which is isolated as the bisulfite or hydrochloride salt.

Cleavage of pinanediol ester 9 may be accomplished using anhydrous boron trichloride according to the procedure of Matteson and Ray (*J. Am. Chem. Soc.* 1980, 10 102, 7588). This method, however, is strongly Lewis acidic and leads to partial destruction of the substrate. The preferred method for water soluble boronic acids is a transesterification reaction that is run in the presence of excess phenylboronic acid. The 15 free boronic acid 10 may then be isolated using cation exchange chromatography.

The isothiouronium functionalized analogs 11/12 are prepared from bromide 2 according to the procedure of Kettner and Shenvi (EP 0293881 A2).

20 Inhibitors containing a sulfonamide in place of a carboxamide are prepared from either 1 or 4 by reaction with a sulfonyl chloride in the presence of a hindered amine (Scheme 3). The product sulfonamide 13 is then converted to the guanidinium 14 or isothiouronium 15 in 25 the same manner as the corresponding carboxamides.

5

Scheme 3. Synthesis of Sulfonamides

10

Inhibitors containing the borolysine moiety are prepared analogously to those containing boroarginine according to Kettner and Shenvi (EP 0293881 A2).

Novel biaryls synthesized in this invention are 15 prepared through palladium catalyzed coupling of an appropriate arylmetal species to the aryl halide of choice using the methods described in Negishi, et. al., *Org. Synth.* 1987, 66, 67-74, and references cited within.

20

EXAMPLE 1: *N*¹-(4-Phenylbenzoyl)boroarginine (+)-Pinanediol, Bisulfite

Part A: (+)-Pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate. To a solution of (+)-pinanediol 4-bromo-1(R)-aminobutane-1-boronate hydrochloride (5.00 g, 13.6 mmol) in dichloromethane (50 mL) at 0 °C was added 4-phenylbenzoyl chloride (4.97 g, 22.9 mmol) followed by N-methylmorpholine (4 mL, 36 mmol). After 1 hour, the cooling bath was removed and the mixture stirred at room temperature for 2 hours. The mixture was then diluted with ethyl acetate and washed with 0.1 M hydrochloric acid, saturated sodium bicarbonate and saturated sodium chloride. The organic phase was dried over anhydrous magnesium sulfate, filtered and the filtrate concentrated *in vacuo* to afford 3.37 g (48%) of the desired amide, mass spectrum: (M+H)⁺ = 510/512; ¹H NMR (300 MHz, CDCl₃) δ 7.9 (2H, d, J = 8.3), 7.84 (1H, bs), 7.6 (2H, d, J = 8.3), 7.44 (5H, m), 4.37 (1H, m), 3.41 (1H, t, J = 6.9), 2.0 (10H, m) 1.49 (3H, s), 1.38 (1H, m), 1.29 (3H, s), 0.91 (3H, s).

Part B: (+)-Pinanediol 4-azido-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate. To a solution of (+)-pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate (3.37 g, 6.60 mmol) in dimethylformamide (6 mL) was added sodium azide (547 mg, 8.41 mmol). The resulting mixture was heated at 70 °C for 2 hours, cooled to room temperature, and diluted with ethyl acetate. The mixture was then washed with water, saturated sodium chloride and dried over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate *in vacuo* gave 3.04 g (97%) of the desired azide, mass spectrum: (M+H)⁺ = 473; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (2H, d, J = 8.3), 7.75 (1H, bs), 7.3 (7H, m), 4.32 (1H, m), 3.32 (1H, m), 2.0 (10H, m) 1.48 (3H, s), 1.3 (4H, m), 0.9 (3H, s).

Part C: *N¹-(4-Phenylbenzoyl)bороornithine (+)-pinanediol, hydrochloride.* To a solution of (+)-pinanediol 4-azido-1(R)-(4-phenylbenzoyl)aminobutane-1-borone (3.04 g, 6.44 mmol) in methanol (30 mL) was added Pearlman's catalyst Pd(OH)₂/C, 200 mg) and 1 M hydrochloric acid (6.5 mL, 6.5 mmol). The mixture was placed on a Parr apparatus and hydrogenated at 50 psi for 3 hours. The mixture was filtered using Celite™, washed with methanol and the filtrate concentrated *in vacuo*. The resulting amorphous solid was dissolved in water and washed with ether. The aqueous phase was then concentrated *in vacuo* and crystallized from ethyl acetate-hexanes, giving 1.52 g (49%) of the desired amine hydrochloride, mass spectrum: (M+H)⁺ = 447; mp: 157-170 °C; ¹H NMR (400 MHz, CDCl₃/DMSO-d₆) δ9.88 (1H, bs), 8.18, (2H, d, J = 8.3), 8.13 (3H, bs), 7.68 (2H, d, J = 8.3), 7.61 (2H, d, J = 7.0), 7.45 (2H, d, J = 7.0), 7.37 (1H, d, J = 7.30), 4.20 (1H, d, J = 6.3), 2.99 (1H, m), 2.87 (2H, m), 2.31 (1H, m), 2.13 (1H, m), 1.84 (7H, m), 1.56 (1H, d, J = 10.0), 1.42 (3H, s), 1.29 (3H, s), 0.89 (3H, s).

Part D: *N¹-(4-Phenylbenzoyl)bороarginine (+)-pinanediol, bisulfite.* To a solution of *N¹-(4-phenylbenzoyl)bороornithine (+)-pinanediol, hydrochloride* (80 mg, 0.17 mmol) in ethanol (2 mL) was added 4-dimethylaminopyridine (40 mg, 0.33 mmol). After 15 minutes, aminoiminomethanesulfonic acid (40 mg, 0.32 mmol) was added and the resulting mixture heated at reflux for 3 hours. After cooling to room temperature, the mixture was filtered and the filtrate concentrated *in vacuo*. The residue was dissolved in chloroform and washed with 0.1 M hydrochloric acid, water and dried over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate *in vacuo* afforded 73 mg

(84%) of the desired guanidine, mass spectrum: $(M+H)^+ = 489$; ^1H NMR (400 MHz, CDCl_3 , 60 °C) δ 9.48 (1H, bs), 8.10 (2H, d, $J = 8.1$), 8.07 (1H, bs), 7.75 (1H, bs), 7.54 (2H, d, $J = 8.3$), 7.48 (2H, d, $J = 7.0$), 7.35 (3H, m), 5 7.06 (4H, bs), 4.19 (1H, bd, $J = 8.3$), 3.1 (2H, m), 2.84 (1H, m), 2.29 (1H, m), 2.12 (1H, m), 1.96 (1H, m), 1.75 (6H, m), 1.47 (1H, d, $J = 10.2$), 1.40 (3H, s), 1.24 (3H, s), 0.83 (3H, s).

10 EXAMPLE 34: (+)-Pinanediol 4-(Formamidino)thio-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate, Hydrobromide

(+)-Pinanediol 4-(formamidino)thio-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate, hydrobromide. To 15 a solution of (+)-pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate (200 mg, 0.392 mmol) in methanol (3 mL) was added thiourea (120 mg, 1.58 mmol). The reaction was stirred at room temperature for 3 days. The mixture was concentrated *in vacuo*, the residue 20 dissolved in water and washed with ether. Concentration of the aqueous portion afforded 80 mg (35%) of the desired isothiourea, mass spectrum: $(M+H)^+ = 506$; ^1H NMR (300 MHz, CDCl_3) δ 8.15 (2H, d, $J = 8.4$), 7.61 (2H, d, $J = 8.4$), 7.52 (2H, m), 7.38 (3H, m), 6.47 (1H, bs), 4.23 (1H, dd, $J = 6.6, 1.9$), 3.24 (1H, m), 3.14, (1H, m), 2.96, (1H, m), 2.32 (1H, m), 2.15 (1H, m), 1.99 (1H, m), 25 1.78 (6H, m), 1.48 (1H, d, $J = 10.1$), 1.42 (3H, s), 1.27 (3H, s), 0.86 (3H, s).

30 The compounds listed in Tables 1-12 can be prepared using the above examples.

TABLE 1

5

Ex	X	R ^A	R ^B	R ^C	Y ¹ , Y ²	Phys. Data
10	1 NHC(NH)NH ₂	H	H	Ph	(+)-pinanediol	A
	2 NHC(NH)NH ₂	H	Ph	H	(+)-pinanediol	
	3 NHC(NH)NH ₂	H	OPh	Ph	(+)-pinanediol	B
	4 NHC(NH)NH ₂	H	H	4-pyridyl	(+)-pinanediol	C
	5 NHC(NH)NH ₂	COPh	H	H	(+)-pinanediol	
	6 NHC(NH)NH ₂	H	COPh	H	(+)-pinanediol	
15	7 NHC(NH)NH ₂	H	H	COPh	(+)-pinanediol	
	8 NHC(NH)NH ₂	H	NHCbz	H	(+)-pinanediol	
	9 NHC(NH)NH ₂	H	NMeCbz	H	(+)-pinanediol	
	10 NHC(NH)NH ₂	H	H	Et	(+)-pinanediol	
	11 NHC(NH)NH ₂	H	H	n-Pr	(+)-pinanediol	
20	12 NHC(NH)NH ₂	H	H	i-Pr	(+)-pinanediol	
	13 NHC(NH)NH ₂	H	H	n-Bu	(+)-pinanediol	
	14 NHC(NH)NH ₂	H	H	t-Bu	(+)-pinanediol	
	15 NHC(NH)NH ₂	H	H	n-hexyl	(+)-pinanediol	
	16 NHC(NH)NH ₂	H	H	cyclohexyl	(+)-pinanediol	
25	17 NHC(NH)NH ₂	NHCO(CH ₂) ₂ Ph	H	H	(+)-pinanediol	

			R ^A	R ^B	R ^C	y ¹ , y ²	Phys	Date
	Ex	X						
	18	NHC(NH)NH ₂	H	H	O-n-Bu	(+)-pinanediol		
	19	NHC(NH)NH ₂	H	H	NHCOcyclopropyl	(+)-pinanediol		
5								
	20	NHC(NH)NH ₂	H	H	NHCO-cyclohexyl	(+)-pinanediol		
	21	NHC(NH)NH ₂	H	H	NHCO(4-C ₆ H ₄ OMe)	(+)-pinanediol		
	22	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ OMe	(+)-pinanediol		
	23	NHC(NH)NH ₂	CO ₂ CH ₂ (2-C ₆ H ₄ Ph)	H		H	(+)-pinanediol	
10	24	NHC(NH)NH ₂	H	H	1-naphthyl	(+)-pinanediol		
	25	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ H	(+)-pinanediol		
	26	NHC(NH)NH ₂	COPh	H		Me	(+)-pinanediol	
	27	NHC(NH)NH ₂		H	NHCbz		n-Bu	(+)-pinanediol
	28	NHC(NH)NH ₂		H	NMeCbz		n-Bu	(+)-pinanediol
15	29	NHC(NH)NH ₂	Me	H		Ph	(+)-pinanediol	QQ
	30	NHC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ H	(+)-pinanediol		
	31	NHC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ Me	(+)-pinanediol		
	32	NHC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ Me	(+)-pinanediol		
	33	NHC(NH)NH ₂	H	OMe		Ph	(+)-pinanediol	
20	34	SC(NH)NH ₂	H	H		Ph	(+)-pinanediol	D
	35	SC(NH)NH ₂	H	Ph		H	(+)-pinanediol	E
	36	SC(NH)NH ₂	H	OPh		H	(+)-pinanediol	F
	37	SC(NH)NH ₂	COPh	H		H	(+)-pinanediol	G
	38	SC(NH)NH ₂		H	COPh		H	(+)-pinanediol
25	39	SC(NH)NH ₂	H	H		COPh	(+)-pinanediol	I
	40	SC(NH)NH ₂	H	NHCbz		H	(+)-pinanediol	J
	41	SC(NH)NH ₂	H	NMeCbz		H	(+)-pinanediol	K
	42	SC(NH)NH ₂	H	H		Et	(+)-pinanediol	L
	43	SC(NH)NH ₂	H	H		n-Pr	(+)-pinanediol	M
30	44	SC(NH)NH ₂	H	H		i-Pr	(+)-pinanediol	N
	45	SC(NH)NH ₂	H	H		n-Bu	(+)-pinanediol	O
	46	SC(NH)NH ₂	H	H		t-Bu	(+)-pinanediol	P
	47	SC(NH)NH ₂	H	H		n-hexyl	(+)-pinanediol	Q
	48	SC(NH)NH ₂	H	H	cyclohexyl		(+)-pinanediol	R
35	49	SC(NH)NH ₂	NHCOCH ₂ CH ₂ Ph	H		H	(+)-pinanediol	S
	50	SC(NH)NH ₂		H	H	O-n-Bu	(+)-pinanediol	T

	51	SC(NH)NH ₂	H	H NHCOcyclopropyl	(+)-pinanediol	U	
	Ex	X	R ^A	R ^B	R ^C	Y ^{1, Y²}	Phys
							Data
5	52	SC(NH)NH ₂	H	H NHCOcyclohexyl	(+)-pinanediol	V	
	53	SC(NH)NH ₂	H	H NHCO(4-C ₆ H ₄ OMe)	(+)-pinanediol	W	
	54	SC(NH)NH ₂	H	H 4-C ₆ H ₄ OMe	(+)-pinanediol	X	
	55	SC(NH)NH ₂	CO ₂ CH ₂ (2-C ₆ H ₄ Ph)	H	H (+)-pinanediol	Y	
	56	SC(NH)NH ₂	H	H 1-naphthyl	(+)-pinanediol		
10	57	SC(NH)NH ₂	H	H 4-C ₆ H ₄ CO ₂ H	(+)-pinanediol		
	58	SC(NH)NH ₂	H NHCbz		n-Bu (+)-pinanediol	Z	
	59	SC(NH)NH ₂	H NMeCbz		n-Bu (+)-pinanediol	AA	
	60	SC(NH)NH ₂	COPh	H Me	(+)-pinanediol	BB	
	61	SC(NH)NH ₂	H	H 4-pyridyl	(+)-pinanediol		
15	62	SC(NH)NH ₂	Me	H 4-C ₆ H ₄ CO ₂ H	(+)-pinanediol		
	63	SC(NH)NH ₂	H	H 4-C ₆ H ₄ CO ₂ Me	(+)-pinanediol		
	64	SC(NH)NH ₂	Me	H 4-C ₆ H ₄ CO ₂ Me	(+)-pinanediol		
	65	SC(NH)NH ₂	Me	H Ph	(+)-pinanediol		
	66	SC(NH)NH ₂	H OMe		Ph (+)-pinanediol		
20	67	CH ₂ NH ₂	H	H Ph	(+)-pinanediol		
	68	CH ₂ NH ₂	H	Ph Ph	(+)-pinanediol		
	69	CH ₂ NH ₂	H	OPh	H (+)-pinanediol		
	70	CH ₂ NH ₂	COPh	H	H (+)-pinanediol		
	71	CH ₂ NH ₂	H	COPh	H (+)-pinanediol		
25	72	CH ₂ NH ₂	H	H COPh	(+)-pinanediol		
	73	CH ₂ NH ₂	H	NHCbz	H (+)-pinanediol		
	74	CH ₂ NH ₂	H	NMeCbz	H (+)-pinanediol		
	75	CH ₂ NH ₂	H	H Et	(+)-pinanediol		
	76	CH ₂ NH ₂	H	H n-Pr	(+)-pinanediol		
30	77	CH ₂ NH ₂	H	H i-Pr	(+)-pinanediol		
	78	CH ₂ NH ₂	H	H n-Bu	(+)-pinanediol		
	79	CH ₂ NH ₂	H	H t-Bu	(+)-pinanediol		
	80	CH ₂ NH ₂	H	H n-hexyl	(+)-pinanediol		
	81	CH ₂ NH ₂	H	H cyclohexyl	(+)-pinanediol		
35	82	CH ₂ NH ₂	NHCOCH ₂ CH ₂ Ph	H	H (+)-pinanediol		
	83	CH ₂ NH ₂	H	H O-n-Bu	(+)-pinanediol		

	Ex	X	R ^A	R ^B	R ^C	(+)-pinanediol	Y ¹ , Y ²	Phys.
	84	CH ₂ NH ₂		H	NHCOcyclopropyl	(+)-pinanediol		
	85	CH ₂ NH ₂		H	NHCOcyclohexyl	(+)-pinanediol		
5	86	CH ₂ NH ₂		H	NHCO(4-C ₆ H ₄ OMe)	(+)-pinanediol		
	87	CH ₂ NH ₂		H	H	4-C ₆ H ₄ OMe	(+)-pinanediol	
	88	CH ₂ NH ₂	CO ₂ CH ₂ (2-C ₆ H ₄ Ph)	H		H	(+)-pinanediol	
	89	CH ₂ NH ₂		H	H	1-naphthyl	(+)-pinanediol	
	90	CH ₂ NH ₂		H	H	4-C ₆ H ₄ CO ₂ H	(+)-pinanediol	
10	91	CH ₂ NH ₂		H	NHCbz	n-Bu	(+)-pinanediol	
	92	CH ₂ NH ₂		H	NMeCbz	n-Bu	(+)-pinanediol	
	93	CH ₂ NH ₂	COPh	H		Me	(+)-pinanediol	
	94	CH ₂ NH ₂		H	H	4-pyridyl	(+)-pinanediol	
	95	CH ₂ NH ₂		Me	H	4-C ₆ H ₄ CO ₂ H	(+)-pinanediol	
15	96	CH ₂ NH ₂		H	H	4-C ₆ H ₄ CO ₂ Me	(+)-pinanediol	
	97	CH ₂ NH ₂		Me	H	4-C ₆ H ₄ CO ₂ Me	(+)-pinanediol	
	98	CH ₂ NH ₂		Me	H	Ph	(+)-pinanediol	
	99	CH ₂ NH ₂		H	OMe	Ph	(+)-pinanediol	
	100	CH ₂ NH ₂		H	OMe	Ph		H, H
20	101	NHC(NH)NH ₂		H	H	Ph		H, H
	102	NHC(NH)NH ₂		H	Ph	H		H, H
	103	NHC(NH)NH ₂		H	OPh	Ph		H, H
	104	NHC(NH)NH ₂		H	H	4-pyridyl		H, H
	105	NHC(NH)NH ₂	COPh	H		H		H, H
25	106	NHC(NH)NH ₂		H	COPh	H		H, H
	107	NHC(NH)NH ₂		H	H	COPh		H, H
	108	NHC(NH)NH ₂		H	NHCbz	H		H, H
	109	NHC(NH)NH ₂		H	NMeCbz	H		H, H
	110	NHC(NH)NH ₂		H	H	Et		H, H
30	111	NHC(NH)NH ₂		H	H	n-Pr		H, H
	112	NHC(NH)NH ₂		H	H	i-Pr		H, H
	113	NHC(NH)NH ₂		H	H	n-Bu		H, H
	114	NHC(NH)NH ₂		H	H	t-Bu		H, H
	115	NHC(NH)NH ₂		H	H	n-hexyl		H, H
35	116	NHC(NH)NH ₂		H	H	cyclohexyl		H, H
	117	NHC(NH)NH ₂	NHCO(CH ₂) ₂ Ph	H		H		H, H

Ex	X	R ^A	R ^B	R ^C	Y ¹ , Y ²	Phys.
						Date:
	118 NHC(NH)NH ₂	H	H	O-n-Bu	H, H	
	119 NHC(NH)NH ₂	H	H NHCOcyclopropyl		H, H	
5	120 NHC(NH)NH ₂	H	H NHCO-cyclohexyl		H, H	
	121 NHC(NH)NH ₂	H	H NHCO(4-C ₆ H ₄ OMe)		H, H	
	122 NHC(NH)NH ₂	H	H	4-C ₆ H ₄ OMe	H, H	
	123 NHC(NH)NH ₂	CO ₂ CH ₂ (2-C ₆ H ₄ Ph)	H	H	H, H	
	124 NHC(NH)NH ₂		H	1-naphthyl	H, H	
10	125 NHC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ H	H, H	
	126 NHC(NH)NH ₂	COPh	H	Me	H, H	
	127 NHC(NH)NH ₂		H NHCbz	n-Bu	H, H	
	128 NHC(NH)NH ₂		H NMeCbz	n-Bu	H, H	
	129 NHC(NH)NH ₂	Me	H	Ph	H, H	
15	130 NHC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ H	H, H	
	131 NHC(NH)NH ₂	H	H	4-C ₆ H ₄ CO ₂ Me	H, H	
	132 NHC(NH)NH ₂	Me	H	4-C ₆ H ₄ CO ₂ Me	H, H	
	133 NHC(NH)NH ₂	H	OMe	Ph	H, H	
	134 SC(NH)NH ₂	H	H	Ph	H, H	
20	135 SC(NH)NH ₂	H	Ph	H	H, H	
	136 SC(NH)NH ₂	H	OPh	H	H, H	
	137 SC(NH)NH ₂	COPh	H	H	H, H	
	138 SC(NH)NH ₂	H	COPh	H	H, H	
	139 SC(NH)NH ₂	H	H	COPh	H, H	
25	140 SC(NH)NH ₂	H	NHCbz	H	H, H	
	141 SC(NH)NH ₂		H NMeCbz	H	H, H	
	142 SC(NH)NH ₂	H	H	Et	H, H	
	143 SC(NH)NH ₂	H	H	n-Pr	H, H	
	144 SC(NH)NH ₂	H	H	i-Pr	H, H	
30	145 SC(NH)NH ₂	H	H	n-Bu	H, H	
	146 SC(NH)NH ₂	H	H	t-Bu	H, H	
	147 SC(NH)NH ₂	H	H	n-hexyl	H, H	
	148 SC(NH)NH ₂	H	H	cyclohexyl	H, H	
	149 SC(NH)NH ₂	NHCOCH ₂ CH ₂ Ph	H	H	H, H	
35	150 SC(NH)NH ₂	H	H	O-n-Bu	H, H	
Ex	X	R ^A	R ^B	R ^C	Y ¹ , Y ²	Phys.

					Date:
	151	SC(NH)NH ₂	H	H NHCO(CH ₂) ₂ phenyl	H, H RR
	152	SC(NH)NH ₂	H	H NHCOcyclohexyl	H, H
	153	SC(NH)NH ₂	H	H NHCO(4-C ₆ H ₄ OMe)	H, H
5	154	SC(NH)NH ₂	H	H 4-C ₆ H ₄ OMe	H, H
	155	SC(NH)NH ₂	CO ₂ CH ₂ (2-C ₆ H ₄ Ph)	H	H
	156	SC(NH)NH ₂	H	H 1-naphthyl	H, H
	157	SC(NH)NH ₂	H	H 4-C ₆ H ₄ CO ₂ H	H, H
	158	SC(NH)NH ₂	H	NHCbz	n-Bu
10	159	SC(NH)NH ₂	H	NMeCbz	n-Bu
	160	SC(NH)NH ₂	COPh	H Me	H, H
	161	SC(NH)NH ₂	H	H 4-pyridyl	H, H
	162	SC(NH)NH ₂	Me	H 4-C ₆ H ₄ CO ₂ H	H, H
	163	SC(NH)NH ₂	H	H 4-C ₆ H ₄ CO ₂ Me	H, H
15	164	SC(NH)NH ₂	Me	H 4-C ₆ H ₄ CO ₂ Me	H, H
	165	SC(NH)NH ₂	Me	H Ph	H, H
	166	SC(NH)NH ₂	H	OMe Ph	H, H
	167	CH ₂ NH ₂	H	H Ph	H, H
	168	CH ₂ NH ₂	H	Ph H	H, H
20	169	CH ₂ NH ₂	H	OPh H	H, H
	170	CH ₂ NH ₂	COPh	H H	H, H
	171	CH ₂ NH ₂	H	COPh H	H, H
	172	CH ₂ NH ₂	H	H COPh	H, H
	173	CH ₂ NH ₂	H	NHCbz H	H, H
25	174	CH ₂ NH ₂	H	NMeCbz H	H, H
	175	CH ₂ NH ₂	H	H Et	H, H
	176	CH ₂ NH ₂	H	H n-Pr	H, H
	177	CH ₂ NH ₂	H	H i-Pr	H, H
	178	CH ₂ NH ₂	H	H n-Bu	H, H
30	179	CH ₂ NH ₂	H	H t-Bu	H, H
	180	CH ₂ NH ₂	H	H n-hexyl	H, H
	181	CH ₂ NH ₂	H	H cyclohexyl	H, H
	182	CH ₂ NH ₂	NHCOCH ₂ CH ₂ Ph	H H	H, H
	183	CH ₂ NH ₂	H	H O-n-Bu	H, H
35	Ex	X	R ^A	R ^B	R ^C Y ¹ , Y ² Phys Date:

	184	CH ₂ NH ₂	H	H NHCOcyclopropyl	H, H
	185	CH ₂ NH ₂	H	H NHCOcyclohexyl	H, H
	186	CH ₂ NH ₂	H	H NHCO(4-C ₆ H ₄ OMe)	H, H
	187	CH ₂ NH ₂	H	H 4-C ₆ H ₄ OMe	H, H
5	188	CH ₂ NH ₂	CO ₂ CH ₂ (2-C ₆ H ₄ Ph)	H	H
	189	CH ₂ NH ₂		H 1-naphthyl	H, H
	190	CH ₂ NH ₂		H 4-C ₆ H ₄ CO ₂ H	H, H
	191	CH ₂ NH ₂		H NHCbz	n-Bu
	192	CH ₂ NH ₂		H NMeCbz	n-Bu
	193	CH ₂ NH ₂	COPh	H Me	H, H
	194	CH ₂ NH ₂		H 4-pyridyl	H, H
	195	CH ₂ NH ₂	Me	H 4-C ₆ H ₄ CO ₂ H	H, H
	196	CH ₂ NH ₂	H	H 4-C ₆ H ₄ CO ₂ Me	H, H
	197	CH ₂ NH ₂	Me	H 4-C ₆ H ₄ CO ₂ Me	H, H
15	198	CH ₂ NH ₂	Me	H Ph	H, H

TABLE 2

20

	Ex	X	Y	Y ¹ , Y ²	Phys Data
	199	CH ₂ NH ₂	CO	(+)-pinanediol	
25	200	CH ₂ NH ₂	SO ₂	(+)-pinanediol	
	201	NHC(NH)NH ₂	CO	(+)-pinanediol	
	Ex	X	Y	Y ¹ , Y ²	Phys

				Data	
	202	NHC (NH) NH ₂	SO ₂	(+)-pinanediol	
	203	SC (NH) NH ₂	CO	(+)-pinanediol	CC
	204	SC (NH) NH ₂	SO ₂	(+)-pinanediol	DD
5	205	CH ₂ NH ₂	CO	H, H	
	206	CH ₂ NH ₂	SO ₂	H, H	
	207	NHC (NH) NH ₂	CO	H, H	
	208	NHC (NH) NH ₂	SO ₂	H, H	
	209	SC (NH) NH ₂	CO	H, H	
10	210	SC (NH) NH ₂	SO ₂	H, H	

TABLE 3

where R² is XCH₂(CH₂)CH₂- , and
where R¹ is

15

	Ex	X	t	γ^1, γ^2	Phys
	211	NH ₂	2	(+)-pinanediol	
	212	SC (NH) NH ₂	2	(+)-pinanediol	EE
20	213	SC (NH) NH ₂	1	(+)-pinanediol	FF
	214	NHC (NH) NH ₂	2	(+)-pinanediol	
	215	NHC (NH) NH ₂	1	(+)-pinanediol	
	216	NH ₂	2	H, H	
	217	SC (NH) NH ₂	2	H, H	

25

	Ex	X	t	γ^1, γ^2	Phys

Data

	218	SC (NH) NH ₂	1	H, H
	219	NHC (NH) NH ₂	2	H, H
5	220	NHC (NH) NH ₂	1	H, H

TABLE 4

where R² is X(CH₂)₃-⁻, and
where R¹ is

	Ex	X	Y ¹ , Y ²	Phys Data
10	221	CH ₂ NH ₂	(+)-pinanediol	
	222	NHC (NH) NH ₂	(+)-pinanediol	
	223	SC (NH) NH ₂	(+)-pinanediol	GG
	224	CH ₂ NH ₂	H, H	
15	225	NHC (NH) NH ₂	H, H	
	226	SC (NH) NH ₂	H, H	

TABLE 5

	Ex	X	Y^1, Y^2	Phys Data
5	227	CH_2NH_2	(+)-pinanediol	
	228	$NHC(NH)NH_2$	(+)-pinanediol	
	229	$SC(NH)NH_2$	(+)-pinanediol	HH
	230	CH_2NH_2	H, H	
	231	$NHC(NH)NH_2$	H, H	
	10 232	$SC(NH)NH_2$	H, H	

TABLE 6

	Ex	X	R^A	R^C	R^D	y¹, y²	Phys Data
	233	NHC (NH) NH ₂	Me	Ph	OMe	(+)-pinanediol	
	234	NHC (NH) NH ₂	Me	Ph	CONH ₂	(+)-pinanediol	
	235	NHC (NH) NH ₂	Me	Ph	F	(+)-pinanediol	
5	236	NHC (NH) NH ₂	Me	Ph	CF ₃	(+)-pinanediol	
	237	NHC (NH) NH ₂	Me	Ph	Cl	(+)-pinanediol	
	238	NHC (NH) NH ₂	Me	Ph	OH	(+)-pinanediol	
	239	NHC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	(+)-pinanediol	
	240	NHC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	(+)-pinanediol	
10	241	NHC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	(+)-pinanediol	
	242	NHC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	(+)-pinanediol	
	243	NHC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	(+)-pinanediol	
	244	NHC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	(+)-pinanediol	
	245	SC (NH) NH ₂	Me	Ph	OMe	(+)-pinanediol	
15	246	SC (NH) NH ₂	Me	Ph	CONH ₂	(+)-pinanediol	
	247	SC (NH) NH ₂	Me	Ph	F	(+)-pinanediol	
	248	SC (NH) NH ₂	Me	Ph	CF ₃	(+)-pinanediol	
	249	SC (NH) NH ₂	Me	Ph	Cl	(+)-pinanediol	
	250	SC (NH) NH ₂	Me	Ph	OH	(+)-pinanediol	
20	251	SC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	(+)-pinanediol	
	252	SC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	(+)-pinanediol	
	253	SC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	(+)-pinanediol	
	254	SC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	(+)-pinanediol	
	255	SC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	(+)-pinanediol	
25	256	SC (NH) NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	(+)-pinanediol	
	257	CH ₂ NH ₂	Me	Ph	OMe	(+)-pinanediol	
	258	CH ₂ NH ₂	Me	Ph	CONH ₂	(+)-pinanediol	
	259	CH ₂ NH ₂	Me	Ph	F	(+)-pinanediol	
	260	CH ₂ NH ₂	Me	Ph	CF ₃	(+)-pinanediol	
30	261	CH ₂ NH ₂	Me	Ph	Cl	(+)-pinanediol	
	262	CH ₂ NH ₂	Me	Ph	OH	(+)-pinanediol	
	263	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	(+)-pinanediol	
	264	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	(+)-pinanediol	
	265	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	(+)-pinanediol	
35	266	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	(+)-pinanediol	
	Ex	X	R^A	R^C	R^D	y¹, y²	Phys Data

	267	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	C1	(+)-pinanediol	
	268	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	(+)-pinanediol	
	269	NHC(NH)NH ₂	Me	Ph	OMe	H, H	
	270	NHC(NH)NH ₂	Me	Ph	CONH ₂	H, H	
5	271	NHC(NH)NH ₂	Me	Ph	F	H, H	
	272	NHC(NH)NH ₂	Me	Ph	CF ₃	H, H	
	273	NHC(NH)NH ₂	Me	Ph	Cl	H, H	
	274	NHC(NH)NH ₂	Me	Ph	OH	H, H	
	275	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	H, H	
10	276	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	H, H	
	277	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	H, H	
	278	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	H, H	
	279	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	H, H	
	280	NHC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	H, H	
15	281	SC(NH)NH ₂	Me	Ph	OMe	H, H	
	282	SC(NH)NH ₂	Me	Ph	CONH ₂	H, H	
	283	SC(NH)NH ₂	Me	Ph	F	H, H	
	284	SC(NH)NH ₂	Me	Ph	CF ₃	H, H	
	285	SC(NH)NH ₂	Me	Ph	Cl	H, H	
20	286	SC(NH)NH ₂	Me	Ph	OH	H, H	
	287	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	H, H	
	288	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	H, H	
	289	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F	H, H	
	290	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	H, H	
25	291	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	H, H	
	292	SC(NH)NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	H, H	
	293	CH ₂ NH ₂	Me	Ph	OMe	H, H	
	294	CH ₂ NH ₂	Me	Ph	CONH ₂	H, H	
	295	CH ₂ NH ₂	Me	Ph	F	H, H	
30	296	CH ₂ NH ₂	Me	Ph	CF ₃	H, H	
	297	CH ₂ NH ₂	Me	Ph	Cl	H, H	
	298	CH ₂ NH ₂	Me	Ph	OH	H, H	
	299	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OMe	H, H	
	300	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CONH ₂	H, H	
35	Ex	X	R ^A	R ^C	R ^D	y ¹ , y ²	Phys Data
	301	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	F		H, H

302	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	CF ₃	H, H
303	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	Cl	H, H
304	CH ₂ NH ₂	Me	4-C ₆ H ₄ CO ₂ H	OH	H, H

5

TABLE 7

	Ex	X	Y ¹ , Y ²	Phys Data
10	305	NHC(NH)NH ₂	(+)-pinanediol	
	306	SC(NH)NH ₂	(+)-pinanediol	II
	307	CH ₂ NH ₂	(+)-pinanediol	
	308	NHC(NH)NH ₂	H, H	
	309	SC(NH)NH ₂	H, H	
	310	CH ₂ NH ₂	H, H	

15

TABLE 8

	Ex	X	Y	y¹, y²	Phys Data
	311	NHC(NH)NH ₂	O	(+)-pinanediol	
	312	SC(NH)NH ₂	O	(+)-pinanediol	JJ
	313	CH ₂ NH ₂	O	(+)-pinanediol	
5	314	NHC(NH)NH ₂	S	(+)-pinanediol	
	315	SC(NH)NH ₂	S	(+)-pinanediol	
	316	CH ₂ NH ₂	S	(+)-pinanediol	
	317	NHC(NH)NH ₂	O	H, H	
	318	SC(NH)NH ₂	O	H, H	
10	319	CH ₂ NH ₂	O	H, H	
	320	NHC(NH)NH ₂	S	H, H	
	321	SC(NH)NH ₂	S	H, H	
	322	CH ₂ NH ₂	S	H, H	

TABLE 9

	Ex	X	R^B	R^C	y¹, y²	Phys Data
	323	NHC(NH)NH ₂	H	Ph	(+)-pinanediol	
	324	NHC(NH)NH ₂	OBn	H	(+)-pinanediol	
20	325	SC(NH)NH ₂	Ph	H	(+)-pinanediol	KK
	326	SC(NH)NH ₂	H	OBn	(+)-pinanediol	LL
	327	CH ₂ NH ₂	H	Ph	(+)-pinanediol	
	328	CH ₂ NH ₂	OBn	H	(+)-pinanediol	
	329	NHC(NH)NH ₂	H	Ph	H, H	
25	330	NHC(NH)NH ₂	OBn	H	H, H	
	331	SC(NH)NH ₂	H	Ph	H, H	
	Ex	X	R^B	R^C	y¹, y²	Phys Data
	332	SC(NH)NH ₂	OBn	H	H, H	

333	CH ₂ NH ₂	H	Ph	H, H
334	CH ₂ NH ₂	OBn	H	H, H

TABLE 10

5

	Ex	X	Y ¹ , Y ²	Phys Data
	335	NHC(NH)NH ₂	(+)-pinanediol	
	336	SC(NH)NH ₂	(+)-pinanediol	MM
10	337	CH ₂ NH ₂	(+)-pinanediol	
	338	NHC(NH)NH ₂	H, H	
	339	SC(NH)NH ₂	H, H	
	340	CH ₂ NH ₂	H, H	

15

TABLE 11

Ex	X	W ¹	W ²	R ³	Y ¹ , Y ²	Phys

Data

	341	NHC(NH)NH ₂	N	CH	H	(+)-pinanediol	
	342	SC(NH)NH ₂	N	CH	H	(+)-pinanediol	
	343	CH ₂ NH ₂	N	CH	H	(+)-pinanediol	
5	344	NHC(NH)NH ₂	CH	N	Ph	(+)-pinanediol	
	345	SC(NH)NH ₂	CH	N	Ph	(+)-pinanediol	OO
	346	CH ₂ NH ₂	CH	N	Ph	(+)-pinanediol	
	347	NHC(NH)NH ₂	N	CH	H		H, H
	348	SC(NH)NH ₂	N	CH	H		H, H
10	349	CH ₂ NH ₂	N	CH	H		H, H
	350	NHC(NH)NH ₂	CH	N	Ph		H, H
	351	SC(NH)NH ₂	CH	N	Ph		H, H
	352	CH ₂ NH ₂	CH	N	Ph		H, H

TABLE 12

	Ex	X	Y ¹ , Y ²	Phys Data
	353	NHC(NH)NH ₂	(+)-pinanediol	
	354	SC(NH)NH ₂	(+)-pinanediol	PP
20	355	CH ₂ NH ₂	(+)-pinanediol	
	356	NHC(NH)NH ₂		H, H
	357	SC(NH)NH ₂		H, H
	358	CH ₂ NH ₂		H, H

25

TABLE 13

Ex	X	R^3	Y^1, Y^2	Phys Data
359	SC(NH)NH2	H	(+)-pinanediol	NN

5

TABLE 14

10	Ex	X	m	R^A	R^B	R^C	Y^1, Y^2	Phys	Data
	SC(NH)NH2		2	H	NHCO(CH_2) ₂ Ph	H	(+)-pinanediol	RR	
	SC(NH)NH2		2	H	Ph	H	(+)-pinanediol		
	SC(NH)NH2		2	H	OPh	Ph	(+)-pinanediol		
	SC(NH)NH2		1	H	H	4-pyridyl	(+)-pinanediol		
15	NHC(NH)NH2		1	COPh	H	H	(+)-pinanediol		
	NHC(NH)NH2		3	H	COPh	H	(+)-pinanediol		
	NHC(NH)NH2		3	H	H	COPh	(+)-pinanediol		

Physical Data for Tables 1-14

A: MS (M+H)⁺ = 489; ¹H NMR (400 MHz, CDCl₃, 60 °C)
9.48 (1H, bs), 8.10 (2 H, d, J = 8.1), 8.07 (1 H,
5 bs), 7.75 (1 H, bs), 7.54 (2 H, d, J = 8.3), 7.48 (2
H, d, J = 7.0), 7.35 (3 H, m), 7.06 (4 H, bs), 4.19
(1 H, bd, J = 8.3), 3.1 (2 H, m), 2.84 (1 H, m), 2.29
(1 H, m), 2.12 (1 H, m), 1.96 (1 H, m), 1.75 (6 H,
m), 1.47 (1 H, d, J = 10.2), 1.40 (3 H, s), 1.24 (3
10 H, s), 0.83 (3 H, s).

B: MS (DCI - NH₃), 505 (M + H)⁺.

C: MS (M+H)⁺ = 490.

15 D: MS (M+H)⁺ = 506; ¹H NMR (300 MHz, CDCl₃) 8.15 (2 H,
d, J = 8.4), 7.61 (2 H, d, J = 8.4), 7.52 (2 H, m),
7.38 (3 H, m), 6.47 (1 H, bs), 4.23 (1 H, dd, J =
6.6, 1.9), 3.24 (1 H, m), 3.14, (1 H, m), 2.96, (1 H,
m), 2.32 (1 H, m), 2.15 (1 H, m), 1.99 (1 H, m), 1.78
20 (6 H, m), 1.48 (1 H, d, J = 10.1), 1.42 (3 H, s),
1.27 (3 H, s), 0.86 (3 H, s).

E: mp 145-150 °C.

25 F: MS (DCI - NH₃), 522 (M + H)⁺.

G: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

30 H: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2605.

I: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

J: [a]_D = -14.85° (c = 0.606, MeOH); ¹H NMR (300 MHz,
35 DMSO - d₆) 10.07 (br s, 1 H), 10.05 (br s, 1 H), 8.96
(4 H, br s), 8.08 (1 H, s), 7.71 (1 H, dd, J = 8.1,

1.1), 7.61 (1 H, d, J = 7.7), 7.30 - 7.50 (6 H, m),
 5.18 (2 H, s), 4.08 (1 H, br d), 3.08 - 3.25 (2 H,
 m), 2.50 - 2.65 (1 H, m), 2.15 - 2.30 (1 H, m), 1.97
 - 2.10 (1 H, m), 1.40 - 1.90 (8 H, m), 1.31 (3 H, s),
 5 1.24 (3 H, s), 0.84 (3 H, s); IR (KBr) 2500 - 3700
 (br), 1734, 1646, 1578, 1550, 1440, 1222, 1058 cm⁻¹;
 MS (CI - NH₃), m/e (%) 537.2 (10.2, M + H - H₂NCN)⁺,
 429.0 (42.8), 277.0 (100); Anal. Calcd for
 $C_{30}H_{40}BBrN_4O_5S$: C, 54.64; H, 6.11; N, 8.50; B, 1.64.
 10 Found: C, 54.52; H, 6.16; N, 8.45; B, 1.60.

K: [a]_D = -15.07° (c = 0.604, MeOH); ¹H NMR (300 MHz,
 DMSO - d₆) 9.98 (1 H, br s), 8.96 (4 H, br s), 7.93 (1
 H, narrow m), 7.80 (1 H, app d), 7.64 (1 H, m), 7.56
 15 (1 H, app t), 7.25 - 7.42 (5 H, m), 5.13 (2 H, s),
 4.11 (1 H, dd, J = 8.3, 1.7), 3.30 (3 H, s), 3.10 -
 3.25 (2 H, m), 2.57 - 2.68 (1 H, m), 2.15 - 2.30 (1
 H, m), 1.97 - 2.10 (1 H, m), 1.48 - 1.90 (7 H, m),
 1.44 (1 H, d, J = 9.9), 1.31 (3 H, s), 1.24 (3 H, s),
 20 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1710,
 1647, 1159 cm⁻¹; MS (CI - NH₃), m/e (%) 593.2 (1.2,
 (M + H)⁺), 568.3 (22, (M + NH₄ - H₂NCN)⁺), 551.3 (100,
 (M + H - H₂NCN)⁺); Anal. Calcd for $C_{31}H_{42}BBrN_4O_5S$: C,
 55.29; H, 6.29; N, 8.32; B, 1.61. Found: C, 55.15;
 25 H, 6.21; N, 8.22; B, 1.47.

L: [a]_D = -14.12° (c = 0.602, MeOH); ¹H NMR (300 MHz,
 DMSO - d₆) 10.09 (1 H, br s), 8.98 (4 H, br s), 7.90
 (2 H, d, J = 8.3), 7.42 (2 H, d, J = 8.3), 4.06 (1 H,
 30 d, J = 7.0), 3.15 - 3.20 (2 H, m), 2.70 (2 H, q, J =
 7.7), 2.54 (1 H, m), 2.18 - 2.28 (1 H, m), 1.98 -
 2.08 (1 H, m), 1.44 - 1.84 (8 H, m), 1.30 (3 H, s),
 1.24 (3 H, s), 1.20 (3 H, t, J = 7.7), 0.84 (3 H, s);
 IR (KBr) 2600 - 3700 (br), 1646, 1614, 1598, 1570,
 35 1500, 1123 cm⁻¹; MS (DCI - NH₃), m/e (%) 458 (100, (M

+ H)⁺); Anal. Calcd for C₂₄H₃₇BBrN₃O₃S: C, 53.54; H, 6.93; N, 7.81; B, 2.01. Found: C, 53.75; H, 6.98; N, 7.74; B, 1.97.

5 M: [a]_D = -14.21° (c = 0.556, MeOH); ¹H NMR (300 MHz, DMSO - d₆) 10.06 (1 H, br s), 8.95 (4 H, br s), 7.88 (2 H, d, J = 8.1), 7.40 (2 H, d, J = 8.1), 4.06 (1 H, dd, J = 1.7, 8.3), 3.14 - 3.17 (2 H, m), 2.65 (2 H, t, J = 7.5), 2.50 - 2.60 (1 H, m), 2.18 - 2.28 (1 H, m), 1.98 - 2.08 (1 H, m), 1.45 - 1.84 (10 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 0.89 (3 H, t, J = 7.3), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1646, 1614, 1598, 1570, 1500, 1446, 1236, 1124, 1082 cm⁻¹; MS (CI - NH₃), m/e (%) 472.2 (13.5, (M + H)⁺), 430.2 (100, (M + H - H₂N CN)⁺), 278.0 (61.9); Anal. Calcd for C₂₅H₃₉BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.50; H, 7.18; N, 7.83; B, 1.73.

N: [a]_D = -13.79° (c = 0.602, MeOH); ¹H NMR (300 MHz, DMSO - d₆) 10.03 (1 H, br s), 8.94 (4 H, br s), 7.89 (2 H, d, J = 8.3), 7.45 (2 H, d, J = 8.3), 4.06 (1 H, br d), 3.10 - 3.23 (2 H, m), 2.90 - 3.05 (1 H, m), 2.50 - 2.60 (1 H, m), 2.15 - 2.30 (1 H, m), 1.95 - 2.08 (1 H, m), 1.42 - 1.89 (8 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 1.23 (6 H, d, J = 7.0), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1646, 1613, 1598, 1123 cm⁻¹; MS (DCI - NH₃), m/e (%) 472 (100, (M + H)⁺), 430 (37, (M + H - H₂N CN)⁺); Anal. Calcd for C₂₅H₃₉BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.64; H, 7.17; N, 7.50; B, 1.74.

O: [a]_D = -13.19° (c = 0.364, MeOH); ¹H NMR (300 MHz, DMSO - d₆) 10.03 (1 H, br s), 8.93 (4 H, br s), 7.88 (2 H, d, J = 8.5), 7.40 (2 H, d, J = 8.5), 4.06 (1 H, br d, J = 6.6), 3.15 - 3.20 (2 H, m), 2.67 (2 H, t, J

= 7.7), 2.50 - 2.60 (1 H, m), 2.18 - 2.28 (1 H, m),
 1.95 - 2.08 (1 H, m), 1.24 - 1.84 (10 H, m), 1.23 -
 1.35 (2 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 0.90 (3
 H, t, J = 7.3), 0.84 (3 H, s); IR (KBr) 2500 - 3700
 5 (br), 1646, 1614, 1598, 1500, 1123 cm⁻¹; MS (CI -
 NH₃), m/e (%) 486.2 (3.3, (M + H)⁺), 444.2 (87.1, (M +
 H - H₂CN)⁺), 292.0 (100); Anal. Calcd for
 C₂₆H₄₁BBrN₃O₃S: C, 55.13; H, 7.30; N, 7.42; B, 1.91.
 Found: C, 54.99; H, 7.22; N, 7.29; B, 2.07.

10

P: [a]_D = -12.71° (c = 0.598, MeOH); ¹H NMR (300 MHz,
 DMSO - d₆) 10.05 (1 H, br s), 8.95 (4 H, br s), 7.90
 (2 H, d, J = 8.6), 7.59 (2 H, d, J = 8.6), 4.06 (1 H,
 br d), 3.10 - 3.23 (2 H, m), 2.50 - 2.62 (1 H, m),
 15 2.16 - 2.30 (1 H, m), 1.96 - 2.08 (1 H, m), 1.42 -
 1.90 (8 H, m), 1.31 (9 H, s), 1.30 (3 H, s), 1.24 (3
 H, s), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br),
 1646, 1613, 1597, 1498, 1123 cm⁻¹; MS (DCI - NH₃),
 m/e (%) 486 (100, (M + H)⁺), 444 (16, (M + H -
 20 H₂CN)⁺); Anal. Calcd for C₂₆H₄₁BBrN₃O₃S: C, 55.13; H,
 7.30; N, 7.42; B, 1.91. Found: C, 55.09; H, 7.45; N,
 7.40; B, 1.67.

Q: ¹H NMR (300 MHz, DMSO - d₆) δ 10.06 (1 H, br s), 8.95
 25 (4 H, br s), 7.88 (2 H, d, J = 8.5), 7.40 (2 H, d, J
 = 8.5), 4.06 (1 H, br d, J = 6.6), 3.10 - 3.23 (2 H,
 m), 2.66 (2 H, t, J = 7.7), 2.50 - 2.60 (1 H, m),
 2.15 - 2.30 (1 H, m), 1.95 - 2.08 (1 H, m), 1.40 -
 1.90 (10 H, m), 1.20 - 1.38 (12 H, m), 0.80 - 0.90 (6
 30 H, m); IR (KBr) 2500 - 3700 (br), 1646, 1614, 1598,
 1500, 1124 cm⁻¹; MS (DCI - NH₃), m/e (%) 514 (100, (M
 + H)⁺), 472 (16, (M + H - H₂CN)⁺); Anal. Calcd for
 C₂₈H₄₅BBrN₃O₃S: C, 56.57; H, 7.63; N, 7.07; B, 1.82.
 Found: C, 56.19; H, 7.53; N, 6.97; B, 1.99.

35

R: $[\alpha]_D = -11.70^\circ$ ($c = 0.530$, MeOH); ^1H NMR (300 MHz, DMSO - d_6) δ 10.05 (1 H, br s), 8.83 - 9.13 (4 H, br d), 7.88 (2 H, d, $J = 8.3$), 7.43 (2 H, d, $J = 8.3$), 4.06 (1 H, br d), 3.05 - 3.25 (2 H, m), 2.45 - 2.67 (2 H, m), 2.13 - 2.30 (1 H, m), 1.94 - 2.10 (1 H, m), 1.30 - 1.90 (18 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1646, 1613, 1598, 1500, 1448, 1122 cm^{-1} ; MS (DCI - NH₃), m/e (%): 512 (100, (M + H)⁺), 470 (40, (M + H - H₂N CN)⁺); Anal. Calcd for C₂₈H₄₃BBrN₃O₃S: C, 56.77; H, 7.32; N, 7.09; B, 1.82. Found: C, 56.49; H, 7.38; N, 6.96; B, 1.75.

S: HRMS (DCI - NH₃), Calc: 577.3019, Found: 577.3025.

T: $[\alpha]_D = -8.31^\circ$ ($c = 0.614$, MeOH); ^1H NMR (300 MHz, DMSO - d_6) δ 9.98 (1 H, br s), 8.95 (4 H, br s), 7.93 (2 H, d, $J = 8.8$), 7.11 (2 H, d, $J = 8.8$), 4.00 - 4.10 (3 H, m), 3.10 - 3.23 (2 H, m), 2.50 - 2.60 (1 H, m), 2.15 - 2.30 (1 H, m), 1.95 - 2.08 (1 H, m), 1.37 - 1.90 (12 H, m), 1.29 (3 H, s), 1.24 (3 H, s), 0.94 (3 H, t, $J = 7.4$), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1646, 1608, 1498, 1262, 1124 cm^{-1} ; MS (DCI - NH₃), m/e (%): 502 (100, (M + H)⁺), 460 (28, (M + H - H₂N CN)⁺); Anal. Calcd for C₂₆H₄₁BBrN₃O₄S: C, 53.62; H, 7.10; N, 7.21; B, 1.86. Found: C, 53.61; H, 7.09; N, 7.20; B, 1.78.

U: HRMS (DCI - NH₃), Calc: 513.2707, Found: 513.2702.

V: HRMS (DCI - NH₃), Calc: 555.3165, Found: 555.3176.
W: HRMS (DCI - NH₃), Calc: 579.2812, Found: 579.2801.

X: HRMS (DCI - NH₃), Calc: 450.2962, Found: 450.2958.

Y: HRMS (DCI - NH₃), Calc: 640.3016, Found: 640.3022.

Z: $[\alpha]_D = -8.80^\circ$ ($c = 0.602$, MeOH); ^1H NMR (300 MHz, DMSO - d_6) 10.03 (1 H, br s), 9.25 (1 H, br s), 8.96 (4 H, br s), 7.92 (1 H, d, $J = 1.5$), 7.72 (1 H, dd, $J = 8.1, 1.5$), 7.25 - 7.50 (6 H, m), 5.17 (2 H, s), 4.08 (1 H, dd, $J = 8.1, 1.5$), 3.08 - 3.27 (2 H, m), 2.65 (2 H, br t), 2.50 - 2.60 (1 H, m), 2.15 - 2.30 (1 H, m), 1.95 - 2.08 (1 H, m), 1.40 - 1.90 (10 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 1.15 - 1.38 (2 H, m, buried underneath methyl absorptions), 0.77 - 0.95 (6 H, m); IR (KBr) 2500 - 3700 (br), 1704, 1646, 1572, 1539, 1453, 1234, 1123, 1056 cm^{-1} ; MS (CI - NH₃), m/e (%) 593.2 (1.3, (M + H - H₂NCN)⁺), 485.2 (42.7), 333.0 (100); Anal. Calcd for C₃₄H₄₈BBrN₄O₅S: C, 57.07; H, 6.76; N, 7.83; B, 1.51. Found: C, 57.17; H, 6.84; N, 7.76; B, 1.41.

AA: ^1H NMR (300 MHz, DMSO - d_6) 89.98 (1 H, br s), 8.98 (4 H, br s), 7.77 - 7.92 (2 H, m), 7.08 - 7.55 (6 H, m), 4.90 - 5.30 (2 H, m), 4.09 (1 H, br d), 3.04 - 3.35 (5 H, m), 2.35 - 2.65 (3 H, m), 2.15 - 2.30 (1 H, m), 1.97 - 2.10 (1 H, m), 1.37 - 1.93 (10 H, m), 1.31 (3 H, s), 1.24 (3 H, s), 1.10 - 1.37 (2 H, m, buried underneath methyl absorptions), 0.72 - 0.93 (6 H, m); MS (CI - NH₃), m/e (%) 649.4 (1.9, (M + H)⁺), 624.4 (31, (M + NH₄ - H₂NCN)⁺), 607.2 (100, (M + H - H₂NCN)⁺), 455.0 (39), 444.0 (29.8); Anal. Calcd for C₃₅H₅₀BBrN₄O₅S: C, 57.62; H, 6.91; N, 7.68; B, 1.48. Found: C, 57.37; H, 6.86; N, 7.64; B, 1.40.

BB: HRMS (DCI - NH₃), Calc: 520.2805, Found: 520.2796.

CC: HRMS (DCI - NH₃), Calc: 560.2390, Found: 560.2407.

DD: HRMS (DCI - NH₃), Calc: 596.2060, Found: 596.2055.

EE: HRMS (DCI - NH₃), Calc: 546.2597, Found: 546.2604.

FF: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

5 GG: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2445.

HH: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2452.

II: HRMS (DCI - NH₃), Calc: 480.2493, Found: 480.2492.

10 JJ: HRMS (DCI - NH₃), Calc: 496.2441, Found: 496.2449.

KK: HRMS (DCI - NH₃), Calc: 507.2601, Found: 507.2592.

15 LL: HRMS (DCI - NH₃), Calc: 537.2667, Found: 537.2685.

MM: HRMS (DCI - NH₃), Calc: 498.2233, Found: 498.2231.

NN: HRMS (DCI - NH₃), Calc: 481.2445, Found: 481.2442.

20 OO: HRMS (DCI - NH₃), Calc: 557.2758, Found: 557.2754.

PP: HRMS (DCI - NH₃), Calc: 5481.2445, Found: 481.2440.

25 QQ: HRMS (NH₃) - CI/DEP), Calc: 503.3193, Found: 503.3199.

RR: HRMS (DCI-NH₃), Calc: 605.333; Found: 605.3325.

30 Utility

The compounds of formula (I) are useful as inhibitors of trypsin-like enzymes, notably human thrombin, plasma kallikrein and plasmin. Because of their inhibitory action, these compounds are indicated for use in the prevention or treatment of physiological

reactions catalyzed by the aforesaid enzymes such as blood coagulation and inflammation.

As an illustration of the above, the biological activity of compounds of the present invention is demonstrated by their *in vitro* inhibition of synthetic substrate hydrolysis by human thrombin S-2238 Chromogenic Assay (IC₅₀). The synthetic substrate H-D-Phe-Pip-Arg-pNA (S-2238, Kabi) is cleaved by thrombin, liberating the *p*-nitroanalide group which absorbs light at 405 nm. Enzyme activity is measured in both the presence and absence of inhibitor. A decrease in absorbance at 405 nm in the presence of inhibitor is indicative of thrombin inhibition.

A mixture of 10 μ L human thrombin (Enzyme Research Laboratories, Inc.) at an activity of approximately 7 units/mL, 10 μ L of the inhibitor (normally at a concentration of 10⁻³ M or less), and 160 μ L buffer (0.15 M NaCl, 10 mM HEPES, 10 mM Tris, 1 g/L PEG 8,000, pH 7.4) are incubated for 10 minutes at room temperature. To this mixture is added 20 μ L of the synthetic substrate S-2238 at a concentration of 1 mM and the reaction allowed to occur for 10 minutes, after which absorbance at 405 nm is determined.

Using the methodology described above, representative compounds of this invention were evaluated and found to exhibit an IC₅₀ of less than 1 mM, thereby confirming the utility of the compounds of the invention as effective thrombin inhibitors.

Since the compounds of formula (I) have anti-thrombogenic properties, they may be employed when an anti-thrombogenic agent is indicated, such as for control of the coagulation or the fibrinolysis system in mammals or they may be added to blood for the purpose of preventing coagulation or the blood due to

contact with blood collecting or distribution containers, tubing or apparatus.

Generally, these compounds may be administered orally or parenterally to a host to obtain an anti-thrombogenic effect. The dosage of the active compound depends on the mammalian species, body weight, age, and mode of administration as will be obvious to one skilled in the art. In the case of large mammals such as humans, the compounds may be administered alone or in combination with pharmaceutical carriers or diluents at a dose of from 0.02 to 15 mg/Kg to obtain the anti-thrombogenic effect, and may be given as a single dose or in divided doses or as a sustained release formulation.

Pharmaceutical carriers or diluents are well known and include sugars, starches and water, which may be used to make tablets, capsules, injectable solutions or the like which can serve as suitable dosage forms for administration of the compounds of this invention. Remington's Pharmaceutical Sciences, A. Osol, is a standard reference text which discloses suitable pharmaceutical carriers and dosage forms. The disclosure of this text is hereby incorporated by reference for a more complete teaching of suitable dosage forms for administration of the compounds of this invention.

WHAT IS CLAIMED IS:

1. A compound of formula (I)

5

wherein

 Y^1 and Y^2 are independently

- a) -OH
- b) -F,
- c) - NR³R⁴, or
- d) C1-C8- alkoxy;

10

 Y^1 and Y^2 when taken together can form

15

- a) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, a heteroatom which can be N, S, or O,
- b) a divalent cyclic boro amide where said chain or ring contains from 2 to 20 carbon atoms,
- c) a cyclic boro amide-ester where said chain or ring contains from 2 to 20 carbon atoms;

20

 Z is

- a) -(CH₂)_mCONR⁸-,
- b) -(CH₂)_mCSNR⁸-,
- c) -(CH₂)_mSO₂NR⁸-,
- d) -(CH₂)_mCO₂-,
- e) -(CH₂)_mC(S)O-, or
- f) -(CH₂)_mSO₂O-;

25

 R^1 is

30

- a) -(CH₂)_p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of halo (F, Cl, Br, I), CN, C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl,

C₂--C₁₀-alkynyl, -R⁸, -OR⁸, methylenedioxy,
-NO₂, -CF₃, -S(O)_rR⁷, NR⁸R⁹, -COR⁸, -CO₂R⁸,

-CONR⁸R⁹, NR⁸COR⁹, NR⁸CO₂R⁹;

- 5 b) heteroaryl, wherein heteroaryl is an
 unsubstituted or monosubstituted or
 disubstituted
10 i) 5- or 6-membered aromatic ring, which
 contains from 1 to 3 heteroatoms selected
 from the group consisting of O, N, and S,
 ii) quinolinyl,
 iii) isoquinolinyl,
 iv) benzopyranyl,
 v) benzothiophenyl,
15 vi) benzofuranyl,
 vii) 5,6,7,8-tetrahydroquinolinyl
 viii) 5,6,7,8-tetrahydroisoquinolinyl

and wherein the substitutents are members selected
20 from the group consisting of halo (F, Cl, Br, I,
 -CN, C₁-C₁₀-alkyl, C₃-C₈-cycloalkyl, C₂-C₁₀-
 alkenyl, C₂-C₁₀-alkynyl, -R⁸, OR⁸, NO₂, -CF₃,
 -S(O)_rR⁷, NR⁸R⁹, -COR⁸, -CONR⁸R⁹, NR⁸COR⁹,
 NR⁸CO₂R⁹,

25 ;

c)

5

10

g)

 R^2 is

- a) $-(CH_2)_n-NHC(NH)NH_2$,
 - b) $-(CH_2)_n-NHC(NH)NHCOCH_3$,
 - c) $-(CH_2)_n-SC(NH)NH_2$,
 - e) $-(CH_2)_n-SC(NH)_2$, or
 - f) $-(CH)_n-NH(2\text{-pyridyl})$;
- R^3 is H, phenyl or C1-C4-alkyl;

R^4 is H, or phenylsulfonyl;

R^5 and R^6 are hydrogen or when taken together form a six membered aromatic ring optionally substituted with one, two or three substituents selected from the group consisting of halo (F, Cl, Br, I), -CN, C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -COR₂R⁸, -CONR⁸R⁹, phenyl, benzyl, phenylethyl;

R^7 is

- 10 a) phenyl,
- b) C1-C4-alkyl,
- c) C1-C4-alkoxy, or
- d) -CF₃;

R^8 and R^9 are independently

- 15 a) H,
- b)

- c) C3-C7-Cycloalkyl,
- d) C1-C8-alkyl;

20 R^{10} and R^{11} are independently

- a) halo (F, Cl, Br, I),

- b) -CN,

- c) C1-C10-alkyl,

- d) C3-C8-cycloalkyl,

25 e) C2-C10-alkenyl,

- f) C2-C10-alkynyl,

- g) -OR⁸,

- h) NO₂,

- i) -CF₃,

30 j) -S(O)_rR⁷,

- k) -NR⁸R⁹,

- l) -COR⁹,

- m) -CO₂R⁸, or

- n) -CONR⁸R⁹;

R¹² is

- a) H,
- b) C1-C4-alkyl,
- 5 c) phenyl
- d) benzyl,
- e) -COR⁷
- f) -SO₂R⁷

m is 0 to 6;

10 n is 3 or 4;

p is 0 to 2;

r is 0 to 2;

t is 1 to 5

E is -CO-, -SO₂-, -CH₂- or a single bond,

15 F is -CO-, and

pharmaceutically acceptable salts thereof.

2. A compound of Claim 1 wherein:

R₁ is phenyl containing 1-3

20 substituents selected from the series halo (F, Cl,
Br, I), C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-
alkenyl, C2-C10-alkynyl, -R⁸, -OR⁸, -NO₂, -CF₃,
-S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, CONR⁸R⁹, NR⁸COR⁹,
and

25 ; and

R₂ is

- a) -(CH₂)₃-NHC(NH)NH₂, or
- b) -(CH₂)₃-SC(NH)NH₂.

30 3. A compound of Claim 2 wherein Z is -(CH₂)_mCONR⁸-.

4. A compound of Claim 3 selected from the group
consisting of

N¹-(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride,

- N¹-(3-phenoxybenzoyl)-(R)-boroarginine, hydrochloride,
N¹-(1-fluorenonyl)-(R)-boroarginine, hydrochloride,
N¹-(4-[butyl]benzoyl)-(R)-boroarginine, hydrochloride,
N¹-(2-benzoylbenzoyl)-R-boroarginine, hydrochloride,
5 N¹-(5-phenyl-2-furol)-R-boroarginine, hydrochloride,
N¹-(3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-
benzoyl)-(R)-boroarginine, hydrochloride,
N¹-(2-phenyl-4-isoquinolyl)-(R)-boroarginine,
hydrochloride,
10 N¹-(4-cyclohexylbenzoyl)-(R)-boroarginine, hydrochloride
N¹-(2-methyl-4-phenylbenzoyl)-(R)-boroarginine,
hydrochloride, or
5. A pharmaceutical composition comprising a
15 pharmaceutically suitable carrier and a
therapeutically effective amount of a compound of any
one of claims 1 through 4.
6. A method of treating a physiological disorder in a
20 warm blooded animal catalyzed by trypsin-like enzymes
comprising administering to an animal in need of such
treatment an effective amount of a compound of any
one of claims 1 through 4.

INTERNATIONAL SEARCH REPORT

Inte
ional Application No
PCT/US 94/02965

A. CLASSIFICATION OF SUBJECT MATTER
IPC 5 C07F5/02 A61K31/69

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 5 C07F A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP,A,0 471 651 (SANDOZ LTD/SANDOZ-PATENT-G MBH/SANDOZ-ERFINDUNGEN) 19 February 1992 cited in the application see the whole document	1-6
A	WO,A,92 07869 (KAKKAR, V.V. ET AL.) 14 May 1992 see the whole document	1-6
A	EP,A,0 293 881 (E.I. DU PONT DE NEMOURS AND COMPANY) 7 December 1988 cited in the application see the whole document	1-6

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

7 June 1994

Date of mailing of the international search report

14.06.94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentdaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 ecpo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Rinkel, L

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 94/02965

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
"Remark: Although claim 6 is directed to a method of treatment of (diagnostic method practised on) the human/animal body the search has been carried out and based on the alleged effects of the compound/composition."
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 94/02965

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0471651	19-02-92	AU-B-	643312	11-11-93
		AU-A-	8179291	20-02-92
		CA-A-	2048953	14-02-92
		JP-A-	4330094	18-11-92
		US-A-	5288707	22-02-94
WO-A-9207869	14-05-92	AU-B-	636521	29-04-93
		AU-A-	8900791	26-05-92
		EP-A-	0509080	21-10-92
		JP-T-	5504775	22-07-93
EP-A-0293881	07-12-88	US-A-	5187157	16-02-93
		AU-B-	623592	21-05-92
		AU-A-	1733288	08-12-88
		CA-A-	1328332	05-04-94
		DE-A-	3878991	15-04-93
		JP-A-	1063583	09-03-89
		US-A-	5242904	07-09-93
		US-A-	5250720	05-10-93