

Wintersemester 2023/24 Prof. Dr. Stephan Elsenhans 23.10.2023 Benedikt Wolf

Lineare Algebra: Aufgabenblatt 02

2.1 Eine Relation in \mathbb{R}^2

/30 Punkte

Gegeben sei die Relation $\sim \subseteq (\mathbb{R}^2 \setminus \{\mathcal{O}\}) \times (\mathbb{R}^2 \setminus \{\mathcal{O}\})$ mit $x \sim y$ genau dann, wenn es eine Gerade $L \subseteq \mathbb{R}^2$ gibt, die \mathcal{O}, x und y enthält.

- (a) Bestimmen Sie alle $y \in \mathbb{R}^2 \setminus \{(0,0)\}$ mit $(0,1) \sim y$ bzw. $(1,0) \sim y$ und skizzieren Sie die beiden Mengen in einem geeigneten Koordinatensystem.
- (b) Begründen Sie, dass \sim eine Äquivalenzrelation ist.
- (c) Bleibt \sim auch dann eine Äquivalenzrelation, wenn man sie als Relation in \mathbb{R}^2 betrachtet?

2.2 Abbildungen

/30 Punkt

Es sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $(x_1, x_2, x_3) \mapsto (x_1, x_2)$, s die Spiegelung an der Geraden $x_1 = x_2$ in \mathbb{R}^2 , $T: \mathbb{R}^2 \to \mathbb{R}^2$ die Translation um (1,0) und $em: \mathbb{R}^2 \to R^3$ die Einbettung.

- (a) Bilden Sie die Verkettungen $f \circ em$, $em \circ f$, $s \circ f$, $T \circ s$, $s \circ T$ und $em \circ s$. Geben Sie dabei jeweils Argumentmenge, Zielmenge und Zuordnungsvorschrift an.
- (b) Untersuchen Sie die Funktionen aus der vorherigen Teilaufgabe auf Surjektivität, Injektivität bzw. Bijektivität.
- (c) Sei $F = em \circ T \circ s \circ f$. Bestimmen und skizzieren Sie das Bild bzw. Urbild von $[0,1] \times [-1,1] \times [0,2]$ unter F.

2.3 Mehrfachkomposition

/20 Punkte

Es sei M eine beliebige, nichtleere Menge und $f: M \to M$ eine Abbildung. Wir definieren induktiv $f^0 := \text{id}$ und für $k \in \mathbb{N}$ $f^k := f \circ f^{k-1}$.

- (a) Zeigen Sie: $f^{k+l} = f^k \circ f^l$ für alle $k, l \in \mathbb{N}_0$.
- (b) Zeigen Sie: Gibt es $k_0 \in \mathbb{N} \cup \{0\}$ und $l \in \mathbb{N}$ mit $f^{k_0+l} = f^{k_0}$, dann gilt $f^{k+l} = f^k$ für alle $k \in \mathbb{N}_0$ mit $k \geq k_0$
- (c) Geben Sie eine Funktion $f: \{1, 2, 3, 4, 5\} \to \{1, 2, 3, 4, 5\}$ an, für die $f^1 \neq f^3$, aber $f^{k+2} = f^k$ für alle $k \geq 2$ gilt. Begründen Sie, dass Ihre Funktion diese Eigenschaft hat.

2.4 Kartesisches Produkt

/20 Punkte

Es seien M,N Mengen, m,n natürliche Zahlen und die Abbildungen $f:M\to\{1,2,3,\ldots,m\}$, $g:N\to\{1,2,3,\ldots,n\}$ bijektiv. Finden Sie eine natürliche Zahl k und eine bijektive Abbildung $F:M\times N\to\{1,2,3,\ldots,k\}$.

Lösungshinweise

Aufgabe 1:

Welche Eigenschaften müssen Sie nachweisen?

Aufgabe 2:

Zur Definition von Spiegelung, Translation und Einbettung siehe 1.3.1-1.3.3.

Aufgabe 3:

Induktion.

Unbewertete weiterführende Fragen zu (c): Finden Sie eine Funktion $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$, sodass $f^{k+l} \neq f^k$ für alle $k \in \mathbb{N}_0, l \in \mathbb{N}$ gilt? Wenn nein, können Sie beweisen, dass es nicht geht?

Aufgabe 4:

Wie groß ist k? Verwenden Sie g und f.

In der Vorlesung wurde im mengentheoretischen Sinn eigentlich nicht definiert, was ein Paar (x,y) ist. Eine formale Definition wäre beispielsweise $(x,y):=\{\{x\},\{x,y\}\}$. Sie dürfen aber ohne Beweis die im Skript genannten Eigenschaften benutzen.