- 1. My Submission consists of two notebooks that entail two different approaches to solve this assigned problem.
- 2. Approach-I:

Traditional Machine Learning-Based

- i. I have used the following categories of feature engineering:
 - a. POS-based count and density
 - b. Static features capturing special character count
 - c. TF-IDF
 - d.Word2Vec
- ii. For Categorization, I have used LGBM as the final algorithm.

	precision	recall	f1-score
1	0.97	0.93	0.95
2	0.95	0.85	0.89
3	0.95	0.99	0.97
4	0.72	0.86	0.79
5	0.74	0.94	0.83
6	0.79	1.00	0.88
7	0.82	1.00	0.90
accuracy			0.90
macro avg	0.85	0.94	0.89
weighted avg	0.91	0.90	0.90

- iii. Train Performance:
- iv. Feature Importance

- ** We can observe in top-30 Features:
 - a. Entropy Based Feature is of highest importance.
 - b. Density of POS based features are in the top-10.
- c. Only one Word2Vec based Feature is in top-30 Features.
- v. Test Performance: 84%

3. Approach-II:

Transformer-based Text Classification.

- i. It's a deep learning-based solution.
- ii. I dumped all the information in one column and used it as an input to the model.
- iii. Train Performance F1 'weighted': 91%
- iv. Test Performance F1 'weighted': 85%
- v. However, I decided to go with this as my final model because while training the difference between train and validation was the least for this model.