$\begin{array}{c} \textit{University of Lethbridge} \\ \text{Department of Mathematics and Computer Science} \\ 15^{\text{th}} \text{ October, 2014, 5:00-5:50 pm} \end{array}$

Math 4310 - Term Test I

Last Name:		
First Name:		
Student Number:		

Record your answers below each question in the space provided. Left-hand pages may be used as scrap paper for rough work. If you want any work on the left-hand pages to be graded, please indicate so on the right-hand page.

Partial credit will be awarded for partially correct work, so be sure to show your work, and include all necessary justifications needed to support your arguments.

There is a list of potentially useful formulas available on the last page of the exam.

For grader's use only:

Page	Grade
2	/12
3	/8
4	/9
5	/6
Total	/35

- 1. For each of the following, give an example, or explain why no such example exists:
- [3] (a) A subset of a topological space that is both open and closed.

[3] (b) A continuous function $f: X \to Y$, if X is equipped with the indiscrete topology.

[3] (c) An interior point that is not a limit point.

[3] (d) A metric space that is not Hausdorff.

[8]

2. Let $X = l^1(\mathbb{R}) = \left\{ \sum_{n=1}^{\infty} a_n \, \left| \, \sum_{n=1}^{\infty} |a_n| < \infty \right. \right\}$ be the space of absolutely convergent sequences of real numbers. Prove that the function $d: X \times X \to \mathbb{R}$ given by

$$d\left(\sum a_n, \sum b_n\right) = \sum_{n=1}^{\infty} |a_n - b_n|$$

is well-defined (i.e. that d(x,y) is finite for all $x,y\in X$) and makes X into a metric space.

[6]

3. (a) Define what it means for a set \mathcal{B} of subsets of a set X to be a **basis** for a topology on [3] X.

(Either of the two definitions we discussed is acceptable.)

(b) Let X and Y be topological spaces, and let \mathcal{B} be a basis for the topology on Y. Prove that a function $f: X \to Y$ is continuous if and only if $f^{-1}(U)$ is open in X for every $U \in \mathcal{B}$.

Page 4 of 5

- [6] 4. Solve **one** of the following two problems:
 - (a) Let X, Y, and Z be topological spaces, and equip $X \times Y$ with the product topology. Show that a map $f: Z \to X \times Y$ is continuous if and only if the maps $\pi_X \circ f: Z \to X$ and $\pi_Y \circ f: Z \to Y$ are continuous. (Hint: one direction is easy. For the other, use 3(b).)
 - (b) Given a topological space X, let X_0 denote the space with the same underlying set as X, but with the cofinite topology. Show that the identity map $I: X \to X_0$ (given by I(x) = x) is continuous if and only if X is a T_1 space.

Hint: X is T_1 if and only if finite point sets are closed.