

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level in Mechanics (WME02) Paper 01

Question	Scheme	Mark	Notes		
1	Accept column vectors throughout this question				
1a	Differentiate r (both components)	M1	In each component at least one power going down by 1		
	$\mathbf{v} = \left(4t^3 - 16t\right)\mathbf{i} + \left(12t - 3\sqrt{t}\right)\mathbf{j}$	A1	Accept as two separate components		
	Equate i component of v to zero and solve for <i>t</i>	DM1	Dependent on the first M1. Must start with a component of the vector for v Can have more than one value at this stage.		
	Obtain $(24-3\sqrt{2})\mathbf{j}$ (m s ⁻¹)	A1	Accept $20\mathbf{j} (\text{m s}^{-1})$ or better. (19.757359) Correct answer only Answer must be a vector		
		[4]			
1b	Differentiate v (both components)	M1	For differentiating their v , even if the method for obtaining it was incorrect. Their v must be a vector. In each component at least one power going down by 1		
	Obtain $\mathbf{a} = (12t^2 - 16)\mathbf{i} + (12 - \frac{3}{2}t^{-\frac{1}{2}})\mathbf{j}$	A1	Any equivalent form for acceleration		
	Obtain $176i + \frac{45}{4} j (m s^{-2})$	A1	Accept $180\mathbf{i} + 11\mathbf{j} \left(\mathbf{m} \mathbf{s}^{-2} \right)$ or better ISW		
		[3]			
		(7)			

Question	Scheme				Mark	Notes
2a		PQUY	RSTU	VWXY		
	Mass	$16a^{2}$	$2\times 4a^2$	$2\times 4a^2$	B1	Correct mass ratios (accept
	From	2 <i>a</i>	5 <i>a</i>	а	B1	2:1:1)
	PX					Correct vertical distances
	Moments a	bout <i>PX</i>	or a paral	llel axis	M1	Dimensionally correct
						equation. All terms required
						Allow for an equation within a
						vector equation.
	$16a^2 \times 2a + 8a^2 \times 5a + 8a^2 \times a = 32a^2d$				Correct unsimplified equation	
				A1	Allow for an equation within a	
			,			vector equation.
	or equivale			is		Could have y for d here o.e.
	80a = 32d	$\Rightarrow d = \frac{5}{3}$	a *		A1*	Obtain given answer from
		2				correct working. At least one stage of simplifying the
						moments equation is required.
						e.g. $32a^3 + 40a^3 + 8a^3$ seen,
						or they might have simplified
						the mass ratios at the start.
						Must get to $d = \dots$ in the final
					r = 1	line
2b	Moments a	hout PO	or a para	llal avic	[5] M1	Dimensionally correct
20	Wioments a	oout I Q	or a para	iici axis	IVII	equation.
						All terms required
	$16a^2 \times 2a +$	$8a^2 \times 3a$	$+8a^2\times5a$	\overline{a}	A1ft	Unsimplified equation with at
	_(16±8	$+8)a^2 \times$	h			most one error. Follow their
	`	/		.•	A1	mass ratios.
	or equivale		arailei ax	X1S	A1	Correct unsimplified equation
	$\Rightarrow h = 3a \text{ from } PQ$ The working for the first 4 marks mu			<u> </u>	a from YT, 3a from XW	
	Correct use				M1	With their 3a e.g.
	of a relevan	_	- 1111G UIV			
		-				$\tan \theta = \frac{3}{4 - \frac{5}{2}}$
	$\tan \theta = 2$				A1	Correct only
	11110 - 2				[6]	contect only
2c	Complete r	nethod to	obtain a	n	M1	e.g. Moments about Q
	equation in					Dimensionally correct
						equation.
	$3a \times Mg = 4$	$4a \times F$			A1	Correct unsimplified equation
						Condone if <i>a</i> missing
	2				A 1	throughout Correct only
	$F = \frac{3}{4}$	Mg			A1	Correct only
	4				[3]	
					(14)	
	1				(17)	<u> </u>

Question	Scheme	Mark	Notes
3	Form impulse-momentum equation	M1	Dimensionally correct.
			Accept answers in "vector" form, or as
			separate components. Condone sine /
			cosine confusion.
	One correct equation	A1	e.g. one correct component of
			$ \left \begin{pmatrix} I\cos 60^{\circ} \\ I\sin 60^{\circ} \end{pmatrix} \right = \frac{1}{4} \left[\begin{pmatrix} 12\cos \alpha \\ 12\sin \alpha \end{pmatrix} - \begin{pmatrix} 8 \\ 0 \end{pmatrix} \right] $
			$\left[\left(I \sin 60^{\circ} \right)^{-} \overline{4} \left[\left(12 \sin \alpha \right)^{-} \left(0 \right) \right] \right] $
			$ \left(= \begin{pmatrix} 3\cos\alpha - 2 \\ 3\sin\alpha \end{pmatrix} \right) $
			$\left(\begin{array}{ccc} 3\sin\alpha \end{array}\right)$
			$ \left \begin{pmatrix} I\cos 60^{\circ} \\ I\sin 60^{\circ} \end{pmatrix} \right = \frac{1}{4} \left \begin{pmatrix} v_x \\ v_y \end{pmatrix} - \begin{pmatrix} 8 \\ 0 \end{pmatrix} \right $
			$\left \left(I \sin 60^{\circ} \right)^{=} \frac{1}{4} \left[\left(v_{y} \right)^{-} \left(0 \right) \right] \right $
			$ = \begin{pmatrix} 3\cos\alpha - 2 \\ 3\sin\alpha \end{pmatrix} $
			((5 5 11 6 7))
			if working parallel and perpendicular to the initial direction
			or one of $8\sin 60^\circ = 12\cos(30^\circ + \alpha)$
			or $I = 0.25(12\sin(30^{\circ} + \alpha) - 8\cos 60^{\circ})$
			if working parallel and perpendicular to the impulse
	Form a second impulse-momentum equation	M1	
	correct second equation	A1	
	Complete method to solve for <i>I</i>	DM1	Dependent on the two preceding M marks. e.g. from
			$36 = (I+4)^2 + 3I^2 (4I^2 + 8I - 20 = 0)$
	$I = \sqrt{6} - 1$ (or 1.45 or 1.4)	A1	
		[6]	
3 alt	2	M1	Use of $I = mv - mu$ to draw a vector triangle. Dimensionally consistent.
	120° I	A1	Correct diagram
	Form an equation in <i>I</i>	M1	e.g. by using cosine rule
	$4 + I^2 - 4I\cos 120^\circ = 9$	A1	Correct unsimplified equation
			A correct cosine rule equation can imply the first M1A1 if no diagram
l I			seen
			Donandant on the 2 preceding M marks
	Solve for <i>I</i>	DM1	Dependent on the 2 preceding M marks $I^2 + 2I - 5 = 0$
	Solve for <i>I</i> $I = \sqrt{6} - 1 \text{ (or 1.45 or 1.4)}$	DM1 A1	Dependent on the 2 preceding W marks $I^2 + 2I - 5 = 0$

	$\frac{20}{19}$ $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{3}$ $\frac{3}{4}$ $$
4b Height of Q above P :	suvat and 7 cal pression in T_1
4b Height of Q above P :	oression in T_1
4b Height of Q above P : M1 Complete method using and 4 for the initial vertice components $h = \left(7T_1 - \frac{1}{2}gT_1^2\right) - \left(4T_1 - \frac{1}{2}gT_1^2\right) (=3T_1)$ A1 Correct unsimplified export or their T_1 . They do not respect to the initial vertice components.	oression in T_1
or their I_1 . They do not r	
(2.0408 0.8163)	need to have
$h = 1.2 \text{ (m)}$ A1ft $2 \text{ sf only } (3 \times their T_1)$	
[3]	
4c Correct time for P to reach B . B1 Seen or implied. $(\frac{40}{49}, 0.816, \text{ or } \frac{8}{g} \text{ or better})$	
Vertical component of speed $= 7 - g \times 2T_1$ (= -1) M1 Complete method using $2T_1$ or their t for the time M0 if not using 7	
$\tan \alpha = \pm \frac{their 1}{5}$ M1 Correct use of their 1 and equation in a relevant an α)	
$\alpha = 11$ A1 11 or better (e.g. 11.3)	
If they use T_1 in place of $2T_1$ can score B0M0M1A0	
[4]	
Form an equation in T_2 only $ M1 Complete method using perpendicular gradients. $ $e.g. \begin{pmatrix} 5 \\ 7 \end{pmatrix}. \begin{pmatrix} 5 \\ 7 - gT_2 \end{pmatrix} = 0$	suvat and
Condone sign errors	1 + 25 >
(Vertical component of s	- '
(perpendicular direction at 35.5° to the horizontal	
$-\frac{25}{7} = 7 - gT_2$ A1 Correct unsimplified equ	ıation
$T_2 = 1.08 \text{ or } T_2 = 1.1$ A1 3 sf or 2 sf only	
[3]	
(12)	

Question	Scheme	Mark	Notes
5a	Use of $P = Fv \left(F = \frac{500}{6} \right)$	M1	
	Equation of motion	M1	Dimensionally correct.
			Required terms and no extras
	F - 60 = 80a	A1	Correct unsimplified equation in <i>F</i>
	$a = \frac{7}{24} \left(\text{m s}^{-2} \right)$	A1	0.29 or better (0.291666666)
		[4]	
5b	Gain in KE = $\frac{1}{2} \times 80 \times 8^2$ (J) (= 2560(J))		
	Gain in GPE =	B1	Any one correct (seen or
	$80 \times 9.8 \times 300 \text{ (J)} (= 235200 \text{ (J)})$	B1	implied)
	Work done against resistance = 20000×60		A second term correct (seen or implied)
	2000000		(KE gain + GPE gain = 237760 J)
	Use of <i>suvat</i> and $F = ma$ is M0A0A0		
	expression for combined work and energy	M1	All terms required and no double counting. Mass replaced with 80. Condone sign errors. Dimensionally correct. Condone error in zeros in 20000
	Total work done = $40 \times 64 + 80 \times 9.8 \times 300 + 20000 \times 60$	A1	Correct unsimplified expression for the work done
	1440(kJ)or 1400(kJ)	A1	Accept answers in joules. 3 sf or 2 sf (1437760)
		[5]	, ,
5c	Equation of motion	M1	Dimensionally correct.
			Required terms and no extras
	$F - 60 - 80g \times \sin \alpha = 0$	A1	Unsimplified equation in <i>P</i> or
	$\frac{P}{7} - 60 - 80g \times \frac{1}{20} = 0$	A 1	F with at most one error
		A1	Correct unsimplified equation in <i>P</i>
	P = 694 or P = 690	A1	3sf or 2 sf only
		[4]	222 31 2 31 3111
		(13)	
	<u>l</u>	()	L

Question	Scheme	Mark	Notes
ба	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	W H A	M1	Need all terms and no extras.
		1411	Dimensionally consistent. Condone sign
	M0 if there is no resolving $4a\cos 30^{\circ} \times W + 8a\cos 30^{\circ} \times \frac{W}{4}$	A1	errors and sine/cosine confusion. Correct unsimplified equation
	$= 5a\cos 30^{\circ} \times T$ $6W = 5T \Rightarrow T = \frac{6}{5}W *$	A1*	Obtain given answer from correct working, e.g. show cancelling of the common factors or some simplification of the moments equation
		[3]	the moments equation
6b	They need 2 equations. Award M1A1 for the first correct equation seen and M1A1 for the second correct equation. Common alternatives: $M(B)$: $T\cos 30^{\circ} \times 3a + V\cos 30^{\circ} \times 8a = W\cos 30^{\circ} \times 4a + H\cos 60^{\circ} \times 8a$ $M(C)$: $W\cos 30^{\circ} \times a + H\cos 60^{\circ} \times 5a = \frac{1}{4}W\cos 30^{\circ} \times 3a + V\cos 30^{\circ} \times 5a$ Perpendicular to $\cot \frac{1}{4}W\cos 30^{\circ} + W\cos 30^{\circ} + H\cos 60^{\circ} = T\cos 30^{\circ} + V\cos 30^{\circ}$ Parallel to $\cot \frac{1}{4}W\cos 60^{\circ} + T\cos 60^{\circ} + W\cos 60^{\circ} = V\cos 60^{\circ} + H\cos 30^{\circ}$		
	First equation dimensionally correct. Condone sine/cosine confusion and sign errors	M1	e.g. Resolve horizontally
	Correct unsimplified equation	A1	$H = T\cos 30^{\circ} \left(H = \frac{3\sqrt{3}}{5}W\right)$
	Second equation dimensionally correct. Condone sine/cosine confusion and sign errors	M1	e.g. resolve vertically
	Correct unsimplified equation	A1	$V + T\cos 60^{\circ} = W + \frac{W}{4} \left(V = \frac{13}{20}W\right)$
	$ R = \sqrt{V^2 + H^2} \text{ or } R ^2 = V^2 + H^2$	DM1	Correct use of Pythagoras Dependent on two preceding M marks.
	$ R = \frac{W}{20}\sqrt{3\times144 + 169} = \frac{\sqrt{601}}{20}W$	A1	1.2W or better (1.22576)
		[6] (9)	

Question	Scheme	Mark	Notes
7a	2 <i>u</i>		
	\longrightarrow $\stackrel{3u}{\longleftarrow}$		
	$\left(\begin{array}{c} P \\ 4m \end{array} \right) \left(\begin{array}{c} Q \\ 2m \end{array} \right)$		
	$\langle x \rangle$		
	Equation for CLM	M1	Dimensionally correct.
	1		All terms required.
			Condone sign errors.
	8mu - 6mu = 2my - 4mx	A1	Correct unsimplified equation
	$\left(u=y-2x\right)$		
	Equation for kinetic energy	M1	Dimensionally correct. Correct masses paired
	$(\frac{1}{2}$ or 2 must be used)		with correct velocities. All terms required. No
	,	A 1	sign errors. Condone 2 on the wrong side.
	$2mx^{2} + my^{2} = \frac{1}{2} \left(2m \times 4u^{2} + m \times 9u^{2} \right)$	A1	Correct unsimplified equation
	$\left(17u^2 = 4x^2 + 2y^2\right)$		
	Solve for <i>y</i> :	DM1	Some working must be shown to obtain the
	$17u^2 = 2y^2 + (y - u)^2$		quadratic in y (and u).
	$\Rightarrow 3y^2 - 2yu - 16u^2 = 0$		Dependent on the preceding M marks
		A 1 1/2	((3y-8u)(y+2u)=0)
	$\Rightarrow y = \frac{8}{3}u$ *	A1*	Obtain given answer from correct working
7b	Has of Large at Large when a 2150	[6] M1	Condona sion among but must be used the might
70	Use of Impact Law: $x + y = e \times 5u$	IVII	Condone sign errors but must be used the right way round.
	1(8) 8		/
	$e = \frac{\frac{1}{2} \left(\frac{8}{3}u - u\right) + \frac{8}{3}u}{5u}$	A1	Correct unsimplified equation. $\left(x = \frac{5u}{6}\right)$
	$e = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
	7	A1	Correct only
	$=\frac{10}{10}$		
		[3]	
7c	Valority of O after impact = $\frac{8}{100}$	B1	Allow ±
	Velocity of Q after impact $= f \times \frac{6}{3}u$		
	No collision if $f \times \frac{8}{3}u \le \frac{5}{6}u$	M1	Correct inequality with their values
	i.e. speed of $P \ge $ speed of Q		Accept strict inequality. Dimensionally correct.
	$\Rightarrow 0 < f \le \frac{5}{16}$	A1	Both ends required. $(0 < f \le 0.3125)$
		[3]	- /
7d		M1	Subtraction seen or implied with <i>their</i> $\frac{1}{4}$ <i>y</i>
	Use of $I = \pm 2m \left(y - \left(-\frac{1}{4} y \right) \right)$		Requires correct mass
			Requires correct impact law
	$ I = \frac{20}{3}mu$	A1	Or equivalent. Must be positive
	3 """		6.7mu or better
			Condone $-\frac{20}{3}mu \rightarrow \frac{20}{3}mu$ with no
			3 3
		[2]	explanation
		(14)	
<u> </u>	1	(= -)	