Direct and Inverse Proportion Answer

George

November 3, 2023

$\mathbf{Q}\mathbf{1}$

Given that y is directly proportional to \sqrt{x} ,

 $y = k\sqrt{x}$, where k is the constant of proportionality.

Using the given information, when x = 9, y = 6:

$$6 = k\sqrt{9}$$

$$6 = 3k$$

$$k = 2$$

So our equation becomes:

$$y = 2\sqrt{x}$$

To find y when x = 25:

$$y = 2\sqrt{25}$$

$$y = 2(5)$$

$$y = 10$$

$\mathbf{Q2}$

Given:
$$d \propto t^2$$

 $\Rightarrow d = kt^2$ (where k is the constant of proportionality)
Using $t=3$ seconds, $d=44.1$ meters:

$$44.1 = k(3^2)$$

$$44.1 = 9k$$

$$k = \frac{44.1}{9}$$

$$k = 4.9$$

Thus, the formula for d in terms of t is:

$$d=4.9t^2$$
 For $t=2$ seconds:
$$d=4.9(2^2)$$

$$d=4.9(4)$$

$$d=19.6$$

Q3

Given:
$$y \propto \frac{1}{x}$$

 $\Rightarrow y = \frac{k}{x}$ (where k is the constant of proportionality)
Using $x = 9, y = 8$:
 $8 = \frac{k}{9}$
 $k = 8 \times 9$
 $k = 72$

Thus, the formula for y in terms of x is:

$$y = \frac{72}{x}$$
 For $x = 6$:
$$y = \frac{72}{6}$$

$$y = 12$$

 $\mathbf{Q4}$

Given:
$$y \propto \frac{1}{x^2}$$

 $\Rightarrow y = \frac{k}{x^2}$ (where k is the constant of proportionality)
Using $x = 4, y = 7.5$:
 $7.5 = \frac{k}{4^2}$
 $k = 7.5 \times 16$
 $k = 120$

Thus, the formula for y in terms of x is:

$$y = \frac{120}{x^2}$$
 For $x = 5$:
$$y = \frac{120}{5^2}$$

$$y = \frac{120}{25}$$

$$y = 4.8$$

 Q_5

Given:
$$y \propto \frac{1}{x^2}$$

 $\Rightarrow y = \frac{k}{x^2}$ (where k is the constant of proportionality)
Using $x = 4, y = 2$:
 $2 = \frac{k}{4^2}$
 $k = 2 \times 16$
 $k = 32$

Thus, the formula for y in terms of x is:

$$y = \frac{32}{x^2}$$
 For $x = \frac{1}{2}$:
$$y = \frac{32}{\left(\frac{1}{2}\right)^2}$$

$$y = \frac{32}{\frac{1}{4}}$$

$$y = 128$$