Final Review Problems

Saturday, July 30, 2016 9:33 PM

9.18. Let $A = \{w, x, y, z\}$ and $B = \{r, s, t\}$. Give an example of a function $f: A \to B$ that is neither one-to-one nor onto. Explain why f fails to have these properties.

- 9.26. Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ that is
 - (a) one-to-one and onto (b) one-to-one but not onto
 - (c) onto but not one-to-one
- (d) neither one-to-one nor onto

$$f(x)=x$$
 $f(x)=2x$
 $f(x)=\begin{cases} 1 & x=1 \\ 2 & x=2 \\ x-1 & x \neq 2 \end{cases}$ $f(x)=x^2+5$

9.28. Let $A = \{2, 4, 6\}$ and $B = \{1, 3, 4, 7, 9\}$. A relation f is defined from A to B by a f b if f divides ab + 1. Is f a one-to-one function?

9.30. Prove that the function $f : \mathbf{R} \to \mathbf{R}$ defined by f(x) = 7x - 2 is bijective.

$$f(a) = f(b)$$

 $7a-2 = 7b-2$ injective

For all ber,
$$\exists a \in \mathbb{R}$$
 s.t. $f(a) = b$
Consider $a = \frac{b+e}{7}$
 $f(a) = 7(\frac{b+e}{7}) - 2 = b+2-2 = b$ surjective

9.32. Prove that the function $f: \mathbf{R} - \{2\} \to \mathbf{R} - \{5\}$ defined by $f(x) = \frac{5x+1}{x-2}$ is bijective.

$$\frac{5a+1}{a-2} = \frac{5b+1}{b-2} \implies a=b$$

$$b(a-2) = 5a+1$$

$$ab-2b = 5a+1$$

$$A(b-3) = (+2b)$$
Consider $b = \frac{5a+1}{a-2}$

$$a = \frac{1+2b}{b-6}$$

$$4a) = \frac{5a+1}{b-6} = \frac{1+2b}{b-6} = b$$

- 9.36. Let $A = \{a, b, c, d, e, f\}$ and $B = \{u, v, w, x, y, z\}$. With each element $r \in A$, there is associated a list or subset $L(r) \subseteq B$. The goal is to define a "list function" $\phi: A \to B$ with the property that $\phi(r) \in L(r)$ for
 - (a) For $L(a) = \{w, x, y\}$, $L(b) = \{u, z\}$, $L(c) = \{u, v\}$, $L(d) = \{u, w\}$, $L(e) = \{u, x, y\}$, $L(f) = \{v, y\}$, does there exist a bijective list function $\phi : A \to B$ for these lists?
 - (b) For $L(a) = \{u, v, x, y\}$, $L(b) = \{v, w, y\}$, $L(c) = \{v, y\}$, $L(d) = \{u, w, x, z\}$, $L(e) = \{v, w\}$, $L(f) = \{w, y\}$, does there exist a bijective list function $\phi : A \to B$ for these lists?

9.40. Let A and B be nonempty sets. Prove that if $f: A \to B$, then $f \circ i_A = f$ and $i_B \circ f = f$.

Let beb. Then for some ach
$$f(a)=b$$
 $i_A(a)=a$, so $(f\circ i_A)(a)=f(i_A(a))=f(a)$

so $f\circ i_A=f$
 $i_B(a)=b$, so $(i_B\circ f)(a)=i_B(f(a))=f(a)$

so $i_B\circ f=f$

- 9.42. Prove or disprove the following:
 - (a) If two functions $f:A\to B$ and $g:B\to C$ are both bijective, then $g\circ f:A\to C$ is bijective.

 - (b) Let $f:A \to B$ and $g:B \to C$ be two functions. If g is onto, then $g \circ f:A \to C$ is onto. (c) Let $f:A \to B$ and $g:B \to C$ be two functions. If g is one-to-one, then $g \circ f:A \to C$ is one-to-one.

 - (d) There exist functions f: A → B and g: B → C such that f is not onto and g ∘ f: A → C is onto.
 (e) There exist functions f: A → B and g: B → C such that f is not one-to-one and g ∘ f: A → C is one-to-one.

a)
$$f: A \rightarrow B$$
 and $g: B \rightarrow C$
 $(g \circ f)(a_1) = (g \circ f)(a_2)$
 $g(f(a_1)) = g(f(a_2))$, since g is injective, then $f(a_1) = f(a_2)$
since f is injective, then $a_1 = a_2$

since g is surjective, then for all ceC
$$\exists b \in B \ s.t \ g(b) = c$$

So $(g \circ f)(a) = g(f(a)) = g(b) = c$.

So surjective

b) consider
$$A = \{1,2,3\}$$
 $B = \{a,b,e\}$ $C = \{x,7,4\}$

$$f = \{(1,a),(2,a),(3,b)\}$$

$$g = \{(a,k),(b,7),(c,\overline{z})\}$$

$$g \circ f = \{(1, \times), (2, \times), (3, y)\}$$
 not surjective, Disprove

$$g = \{(1, \times), (2, \times), (3, y)\} \text{ not surjective, } pispeouse}$$
c) consider $A = \{(1, 2, 3)\}$ $B = \{(1, x), (2, x)\}$ $C = \{(1, x), (2, x)\}$

9.46. Let A be the set of odd integers and B the set of even integers. A function $f: A \times B \to A \times A$ is defined by f(a, b) = (3a - b, a + b) and a function $g: A \times A \rightarrow B \times A$ is defined by g(c, d) = (c - d, 2c + d).

- (a) Determine $(g \circ f)(3, 8)$.
- (b) Determine whether the function $g \circ f : A \times B \to B \times A$ is one-to-one.
- (c) Determine whether $g \circ f$ is onto.

a)
$$g(f(3,8))$$

 $f(3,8) = (3\cdot3-8, 3+8) = (1,11)$
 $g(1,11) = (1-11, 2\cdot1+11) = (-10,13)$
b) $g(f(a,b)) = g(3a-b,a+b) = ((3a-b)-(a+b), 2(3a-b)+a+b)$
 $= (3a-b-a-b, 6a-2b+a+b)$
 $= (2a-2b, 7a-b)$
 $g(f(a_1,b_1)) = g(f(a_2,b_2))$
 $2a_1-2b_1 = 2a_2-2b_2$ $a_1=a_2$ $b_1=b_2$... injective $a_1-b_1 = a_2-b_1 = a_2-b_2$ $a_1=a_2$ $a_1-a_2-b_1 = a_2-b_2$... injective

9.54. Let the functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ be defined by f(x) = 2x + 3 and g(x) = -3x + 5.

- (a) Show that f is one-to-one and onto.
- (b) Show that g is one-to-one and onto.
- (c) Determine the composition function $g \circ f$.
- (d) Determine the inverse functions f⁻¹ and g⁻¹.
 (e) Determine the inverse function (g ∘ f)⁻¹ of g ∘ f and the composition f⁻¹ ∘ g⁻¹.

$$(g - f)(x) = g(f(x)) = -3f(x) + 6 = -3(2x + 3) + 6$$

$$x = 2f + 3 \implies f^{-1} = \frac{x - 3}{2}$$

$$x = -3g + 5 \implies g^{-1} = \frac{x - 6}{-3}$$

$$x = -3(2(g4)+3)+5$$

 $x = -6gf - 9+5 = -6gf - 4$
 $80f^{-1} = -4-x = -x-4$

$$x = -6gf - q + 6 = -6gf - 4$$

$$g \circ f^{-1} = \frac{-4 - x}{6} = \frac{-x - 4}{6}$$

$$f^{-1} \circ g^{-1} = f^{-1}(g^{-1}(x)) = \frac{\left(\frac{x - 6}{-8}\right) - 3}{2}$$

$$= \frac{x - 6}{-5} - \frac{3 \cdot (-3)}{5}$$

$$= \frac{x - 6 + 9}{-6} = \frac{x + 4}{-6} = \frac{-x - 4}{6}$$

9.58. Suppose, for a function $f:A\to B$, that there is a function $g:B\to A$ such that $f\circ g=i_B$. Prove that if g is surjective, then $g\circ f=i_A$.

Assume g is surjective. Then for each ach, those exists a beb such that
$$g(b) = a$$
.

fog = ig $_{1}$ so $(f \circ g(b)) = b = f(g(b))$

so $g(b) = g(f(g(b))) = g(f(a)) = a$
 $f(g(b)) = a$

so $(g \circ f)(a) = a$
 $f(g(b)) = a$
 $f(g(b)) = a$

10.4. Let \mathbb{R}^+ denote the set of positive real numbers and let A and B be denumerable subsets of \mathbb{R}^+ . Define $C = \{x \in \mathbb{R} : -x \in B\}$. Show that $A \cup C$ is denumerable.

- 10.6. (a) Prove that the function $f: \mathbf{R} \{1\} \to \mathbf{R} \{2\}$ defined by $f(x) = \frac{2x}{x-1}$ is bijective.
 - (b) Explain why $|\mathbf{R} \{1\}| = |\mathbf{R} \{2\}|$.

$$f(a) = f(b)$$

$$\frac{2a}{a-1} = \frac{2b}{b-1}$$

$$\forall b \in \mathbb{R} - \{2\}, \quad \exists a \in \mathbb{R} - \{1\}, \quad \text{s.t.} \quad f(a) = b$$

$$consider \quad a = \frac{b}{b-2}$$

$$f(a) = \frac{b}{b-2} \cdot 2 = \frac{2b}{b-2}$$

$$\frac{b}{b-2} - \frac{b-2}{b-2} = b$$

$$a(b-2) = b$$

$$a(b-2) = b$$

an uncountaine cut mins a finite cut is still uncountable

10.12. Prove that the set of all 2-element subsets of N is denumerable.

/ ,

10.12. Prove that the set of all 2-element subsets of N is denumerable.

10.16. Let A_1, A_2, A_3, \ldots be pairwise disjoint denumerable sets. Prove that $\bigcup_{i=1}^{\infty} A_i$ is denumerable.

10.20. Prove that the set of irrational numbers is uncountable.

Assume to the contray that I is countaine.

case 1: It is finite, then since Q is denomenable and so IUQ is derverible. Then R=IIUQ is denumerable But we know Ph is uncountable so this contradiction is a

case 2: II is denumerable

Then IUQ is denumerable b/c Q is denumerable and the union of dermerable sets is denumerable. Moner IUQ=R, and TR is uncountable. So this contradiction.

10.24. Prove that R and R+ are numerically equivalent.

Ther exists an injective function from R to Rt $f(x)=e^{x}$, then $f(a)=f(b) \rightarrow a=b$ is injective. Since, Rt is an infinite subset of R and there is an injection f.R-R+ Then those exists a bijection f: R -> R+

10.26. Prove or disprove the following:

- (a) If A is an uncountable set, then |A| = |R|.
 (b) There exists a bijective function f: Q → R.
 (c) If A, B and C are sets such that A ⊆ B ⊆ C and A and C are denumerable, then B is denumerable.
 (d) The set S = {√n / n}: n ∈ N} is denumerable.
- (e) There exists a denumerable subset of the set of irrational numbers.
- (f) Every infinite set is a subset of some denumerable set.
- (g) If A and B are sets with the property that there exists an injective function $f: A \to B$, then |A| = |B|.
- a) P(A) is uncountable, and IP(A) (> IR) so FALSE
- b) |Q|<|R| so no bijection FALSE
- c) TRUE
- d) $f(x) = \frac{\sqrt{2}}{x}$ and is brijective, so TRUE
- e) TRUE
- f) FALSE IP is infinite but not demende

10.28. Prove or disprove: If A and B are two sets such that A is countable and |A| < |B|, then B is uncountable.

10.32. Prove that if A, B and C are nonempty sets such that $A \subseteq B \subseteq C$ and |A| = |C|, then |A| = |B|.

Assure
$$A \in B \in C$$
 and $|A| = |C|$. Since $A \in B$, then $|A| \in |B|$ Since $B \in C$, then $|B| \le |C|$ and since $|A| = |C|$. Then $|B| \le |A|$.

So B_T Smoder Bornslein $|A| = |B|$

10.34. Prove that $|\mathbf{Q} - \{q\}| = \aleph_0$ for every rational number q and $|\mathbf{R} - \{r\}| = c$ for every real number r.

$$Q=\{q\}$$
 is an infinite subset of a denunciable set Q , so its denunciable so $|Q-\{q\}|=K_0$

10.42. Let S and T be two sets. Prove that if
$$|S - T| = |T - S|$$
, then $|S| = |T|$.

6.8. Find a formula for $1+4+7+\cdots+(3n-2)$ for positive integers n, and then verify your formula by mathematical induction.

$$S = 1 + 4 + 7 + \dots + (3n-5) + (3n-2)$$

$$+ S = (3n-2) + (3n-5) + \dots + 7 + 4 + 1$$

$$2S = (3n-1) + (3n-1) + \dots$$

$$2S = n(3n-1) - S = \frac{n(3n-1)}{2}$$

Bise case:
$$S_1 = 1 = \frac{1(3 \cdot 1 - 1)}{2} = 1$$

Assume: $S = \frac{k(3k - 1)}{2}$

(k+1)[3(k+1)-1]

Inductive slep:
$$[+4+7+...+(3k-5)+(3k-2)+(3(k+1)-2)$$

$$\frac{(e(3k-1)}{2}+3k+1=\frac{1}{2}k(8k-1)+3k+1=\frac{1}{2}(3k^2-k)+8k+1=\frac{1}{2}[3k^2-k+6k+2]$$

$$=\frac{1}{2}[3k^2+6k+2]$$

$$=\frac{1}{2}(3k+2)(k+1)$$

6.10. Let $r \neq 1$ be a real number. Use induction to prove that $a + ar + ar^2 + \cdots + ar^{n-1} = \frac{a(1-r^n)}{1-r}$ for every positive integer n.

Base onse:
$$n=1$$
 $\alpha = \frac{\alpha(1-r^{-1})}{1-r} = \alpha$

Trove exists some KGIN s.t.

$$a + ar + ar^{2} + ... + ar^{k-1} = a (1-r^{k})$$

$$1-r$$

1M:
$$a + ar + ar^{2} + \cdots + ar^{k-1} + ar^{k}$$

$$= \alpha \frac{(1-r^{k})}{1-r} + ar^{k} \frac{1-r}{1-r}$$

$$= \alpha \frac{(1-r^{k}) + ar^{k}(1-r)}{1-r} = \alpha - ar^{k} + ar^{k} - rar^{k}$$

$$= \alpha \frac{[1-rr^{k}]}{1-r} = \alpha \frac{(1-r^{k+1})}{1-r}$$

- 6.12. Consider the open sentence P(n): $9 + 13 + \cdots + (4n + 5) = \frac{4n^2 + 14n + 1}{2}$, where $n \in \mathbb{N}$.
 - (a) Verify the implication $P(k) \Rightarrow P(k+1)$ for an arbitrary positive integer k.
 - (b) Is $\forall n \in \mathbb{N}$, P(n) true?

$$9 + 13 + ... + (4n + 5) = \frac{4n^2 + 14n + 1}{2}$$

$$9 + 13 + ... + (4n + 5) + 4(k+1) + 5$$

$$\frac{4k^2 + 14k + 1}{2} + \frac{2(4(k+1) + 5)}{2}$$

$$\frac{4k^2 + 14k + 1}{2} + \frac{2(4(k+1) + 5)}{2}$$

$$\frac{4k^2 + 14k + 1 + 8k + 8 + 10}{2}$$

$$\frac{4k^2 + 14k + 1 + 8k + 8 + 10}{2} = \frac{(4k^2 + 8k + 4) + (14k + 14) + 1}{2} = \frac{4(k+1)^2 + 14(k+1) + 1}{2}$$

$$q = \frac{4+19+1}{2} = \frac{19}{2} = 8.5$$

(b) Use (a) to prove that every finite nonempty set of real numbers has a smallest element.

Base ase. A set with one element has a largest element that is the one element.

Inductive step: Assume a set with k elements has a largest element.

There a set with kell elements has a largest element; the first k elements, and if that is larger than the kellth element. That's the largest. It kells clement.

6.22. Prove that $3^n > n^2$ for every positive integer n.

Base ase: n=1 371 =0 tre
n=2 974
n=3 27>9

(K+1)2 K2+2K+1

Inductive step: 3k > k2 for some kell

IH: $3^{k+1} = 3 \cdot 3^k > 3k^2 = k^2 + 2k^2 > k^2 + 2 \cdot k \cdot 2 > k^2 + 2k + 1 = (k+i)^2$

since k=2

0

6.24. Prove Bernoulli's Identity: For every real number x > -1 and every positive integer n,

$$(1+x)^n \ge 1 + nx.$$

- 6.26. Prove that $81 \mid (10^{n+1} 9n 10)$ for every nonnegative integer n.
- 6.30. Recall for integers $n \ge 2$, a, b, c, d, that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then both $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$. Use these results and mathematical induction to prove the following: For any 2m integers a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_m for which $a_i \equiv b_i \pmod{n}$ for $1 \le i \le m$,
 - (a) $a_1 + a_2 + \cdots + a_m \equiv b_1 + b_2 + \cdots + b_m \pmod{n}$ and
 - (b) $a_1a_2\cdots a_m \equiv b_1b_2\cdots b_m \pmod{n}$.
- 12.4. Prove that the sequence $\left\{\frac{1}{n^2+1}\right\}$ converges to 0.

EZO. Thre exists NEW s.t NZN

$$|a_{\alpha}-L| = \left|\frac{1}{n^{2}+1} - 0\right| < \varepsilon$$
Corside $\alpha = \left[\sqrt{\frac{1}{\varepsilon}-1}\right]$

Consider
$$N = \left\lceil \frac{1}{N^2 + 1} \right\rceil = \frac{1}{N^2 + 1} \left\langle \frac{1}{\left(\frac{1}{N^2 + 1}\right)^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1} \left\langle \frac{1}{N^2 + 1} \right\rangle = \frac{1}{N^2 + 1}$$

12.8. Show that the sequence $\{n^4\}$ diverges to infinity.

- 1. (12.12) Prove that the series $\sum_{k=1}^{\infty} \frac{1}{(3k-2)(3k+1)}$ converges and determine its sum by
 - (a) computing the first few terms of the sequence $\{s_n\}$ of partial sums and conjecturing a formula for s_n .

$$(3k-2)(3k+1) = \frac{A}{(3k-2)} + \frac{B}{(3k+1)} = \frac{1}{3(3k-2)} - \frac{1}{3(3k+1)}$$

$$1 = (3k+1)A + (3k-2)B$$

$$k = \frac{1}{3} = (-\frac{1}{3}3 - 2)B - \frac{1}{3} = B$$

$$k = \frac{2}{3} = 1 = (3\frac{2}{3} + 1)A - \frac{1}{3} = A$$

$$S_1 = \frac{1}{3} - \frac{1}{12} = \frac{4}{12} - \frac{1}{12} = \frac{3}{12} = \frac{1}{4}$$

$$S_2 = \frac{1}{3} - \frac{1}{12} + \frac{1}{12} - \frac{1}{21} = \frac{2}{7}$$

$$S_3 = \frac{1}{3} - \frac{1}{12} + \frac{1}{12} - \frac{1}{21} + \frac{1}{12} - \frac{3}{70} = \frac{3}{70}$$

$$V = \frac{1}{3}$$

$$S_1 = \frac{3}{3} - \frac{1}{12} + \frac{1}{12} - \frac{1}{21} + \frac{1}{12} - \frac{3}{70} = \frac{3}{70}$$

(b) using mathematical induction to verify that your conjecture in (a) is correct

$$S_{n} = \frac{n}{3n+1}$$

$$L = \frac{1}{3}$$

$$E > 0. \quad \exists N \in \mathbb{N} \quad \text{s.t.} \quad n > N \Rightarrow |S_{n} - L| \leq E$$

$$Consider \quad N = \left\lceil \frac{1}{2} - \frac{3}{7} \right\rceil$$

$$\left| \frac{n}{3n+1} - \frac{1}{3} \right| = \left| \frac{3n}{3(3n+1)} - \frac{(3n+1)}{3(3n+1)} \right|$$

$$= \left| \frac{3n}{3n} - \frac{3n}{3n+1} - \frac{1}{3(3n+1)} \right|$$

$$|3n+1-3| = |3(3n+1)-3(3n+1)|$$

$$= |\frac{3n-3n-1}{9n+3}|$$

$$= |\frac{-1}{9n+3}|$$

$$= \frac{1}{4n+3} = \frac{1}{2n+3} < \frac{1}{2n$$

- 2. (12.16)
 - (a) Prove that if $\sum_{k=1}^{\infty} a_k$ is a convergent series, then $\lim_{n\to\infty} a_n = 0$.

3. (12.46) Prove that
$$\lim_{n\to\infty}\frac{2n^2}{4n^2+1}=\frac{1}{2}$$

E70.
$$\exists N \in \mathbb{N}$$
 st. $n > N \Rightarrow \left| \frac{2n^2}{4n^2+1} - \frac{1}{2} \right| \leq \varepsilon$

$$\left|\frac{2(2n^2)}{2(4n^2+1)} - \frac{(4n^2+1)}{2(4n^2+1)}\right| = \left|\frac{4n^2 - 4n^2 - 1}{2(4n^2+1)}\right| = \left|\frac{-1}{2(4n^2+1)}\right| = \frac{1}{8n^2+2}$$

$$< \frac{1}{8 \cdot \frac{1}{\epsilon^2 - 2} + 2} = \frac{1}{\frac{1}{\epsilon^2 - 2} + 2} = \epsilon$$

4. (12.47) Prove that the sequence $\{1+(-2)^n\}$ diverges.

E70.
$$\exists N \in \mathbb{N}$$
 s.t. $n > N \Rightarrow |1 + (-2)^n - L| < \epsilon$ for some $L \in \mathbb{R}$
Consider $\epsilon = 1$. So $|1 + (-2)^n - L| < 1$

Cuse 1: n is odd, so n=2k+1 keZ

$$|1+(-2)^n - L| = |1-(2)^n - L| < |$$

so $-|<1-2^n - L < 1$
 $-2<-2^n - L < 0$
 $L - 2<-2^n$
 $L<-2^n + 2$

Honever since Leo and Leo, this is a contraciction

5. (12.48) Prove that $\lim_{n\to\infty} (\sqrt{n^2+1} - n) = 0$.

Consider
$$N = \left\lceil \frac{\varepsilon^2 - 1}{2\varepsilon} \right\rceil$$

$$\sqrt{n^2+1} - n < \epsilon$$
 $\sqrt{n^2+1} - n < \epsilon$

$$2 \varepsilon_n < \varepsilon^2 - 1$$

$$n < \frac{\varepsilon^2 - 1}{2\varepsilon}$$