ECEN 743: Reinforcement Learning

Introduction

Dileep Kalathil

Assistant Professor

Department of Electrical and Computer Engineering

Texas A&M University

What is Reinforcement Learning?

What is Machine Learning?

What is Machine Learning?

• [Murphy, 2012]: "We define machine learning as a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty"

What is Machine Learning?

■ [Murphy, 2012]: "We define machine learning as a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty"

Three Main Classes of Machine Learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

• Supervised learning is the class of machine learning where the goal is to learn a function that maps an input to an output based on example input-output pairs (labelled data)

- Supervised learning is the class of machine learning where the goal is to learn a function that maps an input to an output based on example input-output pairs (labelled data)
- Examples: Image classification, Email spam filtering, Speech recognition

- Supervised learning is the class of machine learning where the goal is to learn a function that maps an input to an output based on example input-output pairs (labelled data)
- Examples: Image classification, Email spam filtering, Speech recognition

• Unsupervised machine learning is the machine learning task of inferring a function that describes the structure of "unlabeled" data (i.e. data that has not been classified or categorized)

- Unsupervised machine learning is the machine learning task of inferring a function that describes the structure of "unlabeled" data (i.e. data that has not been classified or categorized)"
- Examples: Clustering, Dimensionality Reduction (e.g. PCA, Autoencoder),

- Unsupervised machine learning is the machine learning task of inferring a function that describes the structure of "unlabeled" data (i.e. data that has not been classified or categorized)"
- Examples: Clustering, Dimensionality Reduction (e.g. PCA, Autoencoder),

- Unsupervised machine learning is the machine learning task of inferring a function that describes the structure of "unlabeled" data (i.e. data that has not been classified or categorized)"
- Examples: Clustering, Dimensionality Reduction (e.g. PCA, Autoencoder),

• Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward

- Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward
- Agent and the environment:
 - At each time step t, the agent:
 - Gets an observation o_t
 - Executes an action a_t
 - \blacksquare Receives reward r_t
 - The goal is to select the sequence of actions in order to maximize the cumulative reward

- Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward
- Agent and the environment:
 - At each time step t, the agent:
 - Gets an observation o_t
 - Executes an action a_t
 - \blacksquare Receives reward r_t
 - The goal is to select the sequence of actions in order to maximize the cumulative reward
 - The model of the environment is unknown

- Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward
- Agent and the environment:
 - At each time step t, the agent:
 - Gets an observation o_t
 - Executes an action a_t
 - \blacksquare Receives reward r_t
 - The goal is to select the sequence of actions in order to maximize the cumulative reward
 - The model of the environment is unknown
 - Rules of the game are unknown

Reinforcement Learning: Challenges

- No prior data: RL agent (algorithm) generates data, by taking actions in an unknown environment
- Data generated is not i.i.d.
- No supervisor: optimal policy has to be learnt from the rewards observed in the self-generated data
- Actions have long term consequences, rewards are often delayed
- Dynamical systems issues: feedback and stability

■ RL for playing Atari Games (Mnih et al. "Human-level control through deep reinforcement learning", Nature, 2015)

■ RL for playing Go (Silver et al. "Mastering the game of Go with deep neural networks and tree search", Nature, 2016)

■ RL for robotics (Kumar et al. "RMA: Rapid Motor Adaptation for Legged Robots", RSS, 2021)

■ RL for drone control (V. Saj, B. Lee, D. Kalathil, M. Benedict, "Robust Reinforcement Learning Algorithm for Vision-based Ship Landing of UAVs", 2022)

- YouTube video compression from DeepMind (<u>Link</u>)
- Several application from Microsoft, including in Azure platform, recommendation systems, video streaming, robotics (<u>Link</u>)
- Fast matrix multiplication algorithm from DeepMind (<u>Link</u>)
- Optimizing and finetuning ChatGPT (<u>Link</u>)
- Fast chip design algorithm from Google (<u>Link</u>)
- Optimizing recommendation systems from Netflix (<u>Link</u>)
- Optimizing recommendation systems from Google (<u>Link</u>)
- Playing strategic games from Meta (<u>Link</u>)

Course Syllabus Overview