Tercera entrega Estadística. Grupo m3

- 1. Sea $(X_1, X_2, ..., X_{25})$ una muestra aleatoria simple de $X \sim N(\mu, \sigma = 5)$. Si la región de rechazo para contrastar $H_0: \mu = 12$ frente a $H_1: \mu = 15$ es $R = \{(x_1, ..., x_n): \bar{x} \geq 14\}$, determinar:
 - (a) La probabilidad de cometer un error de tipo I.
 - (b) La probabilidad de cometer un error de tipo II.
 - (c) La función de potencia.
 - (d) El tamaño del test.
 - (e) El p-valor cuando observamos $\bar{x} = 13.75$. En función del resultado, ¿debemos rechazar H_0 ?
- 2. Para contrastar si un instrumento de medida es suficientemente preciso, se supone que el error cometido en la medición es una variable aleatoria $X \sim N(0, \sigma^2)$. El instrumento es aceptable si $\sigma^2 < \sigma_0^2$, donde σ_0^2 es un valor conocido. Como queremos estar seguros de esta afirmación realizamos el contraste $H_0: \sigma^2 \geq \sigma_0^2$ frente a $H_1: \sigma^2 < \sigma_0^2$. Si $(X_1, X_2, ..., X_n)$ es una muestra aleatoria simple de $X \sim N(0, \sigma^2)$, hallar el test UMP de tamaño α .¿Cuál es el p-valor del contraste?
- 3. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim N(0, \sigma^2)$. Hallar el contraste de razón de verosimilitudes de tamaño α para contrastar $H_0: \sigma^2 \leq \sigma_0^2$ frente a $H_1: \sigma^2 > \sigma_0^2$.
- 4. Dada una observación de $X \sim f_{\theta}(x) = (2\theta x + 1 \theta)I_{(0,1)}(x)$ donde $\theta \in \Theta = [-1,1]$. Construir el contraste de razón de verosimilitudes para contrastar $H_0: \theta = 0$ frente a $H_1: \theta \neq 0$ de tamaño α .
- 5. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = \theta x^{\theta-1} I_{(0,1)}(x)$, donde $\theta \in \Theta = \{1, 2\}$. Para contrastar $H_0 : \theta = 1$ frente a $H_1 : \theta = 2$ se utiliza como distribución a priori la distribución uniforme. Calcular la distribución a posteriori e indicar la región de rechazo.
- 6. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim N(\theta, 1)$. Dada la distribución a priori $\pi(\theta) \sim N(0, 1)$, contrastar $H_0: \theta \geq 0$ frente a $H_1: \theta < 0$.