Summary for Probability Theory

Jiaxin Hu

July 6, 2020

1 Preliminary

- DeMorgan's Laws: Let $\{A_i\}_{i=1}^{\infty}$ be a collection of set. Then, $(\bigcup_{i=1}^{\infty} A_i)^c = \bigcap_{i=1}^{\infty} A_i^c$ and $(\bigcap_{i=1}^{\infty} A_i)^c = \bigcup_{i=1}^{\infty} A_i^c$.
- Some set operations: Suppose A, B are two sets. (1) $A B = A \cap B^c$; (2) $\bigcup_{i=1}^{\infty} A_i = \{x : x \in A_i \text{ for some } i\}$, $\bigcap_{i=1}^{\infty} A_i = \{x : x \in A_i \text{ for all } i\}$.

2 Single variable

2.1 Probability and conditional probability

Definition 1 (Sample space). The set S containing all possible outcomes is called the sample space.

Definition 2 (σ -field). A collection \mathcal{F} of subsets of a sample space S is called a σ -field (or σ -algebra) if and only if (iff) it has the following properties:

- (1) The empty set $\emptyset \in \mathcal{F}$;
- (2) If $A \in \mathcal{F}$, then the complement $A^c \in \mathcal{F}$;
- (3) If $A_i \in \mathcal{F}$, i = 1, 2, ..., then their union $\bigcup_i A_i \in \mathcal{F}$.

If $A \in \mathcal{F}$, then A is called an event.

Definition 3 (*Measure and probability*). A set function v defined on a σ -field \mathcal{F} is called a measure iff it has the following properties:

- (1) $0 \le v(A) \le \infty$ for any $A \in \mathcal{F}$;
- (2) $v(\varnothing) = 0$;
- (3) If $A_i \in \mathcal{F}, i = 1, 2, ...$ and A_i 's are disjoint, i.e. $A_i \cap A_j = \emptyset, \forall i \neq j$, then

$$v(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} v(A_i).$$

If $v(\mathcal{F}) = 1$, then v is a probability defined on \mathcal{F} and we use notation P instead of v.

Theorem 2.1 (Probability). Let the sample space $S = \{s_1, s_2, ...\}$ and \mathcal{F} be all subsets of S. Let $p_1, p_2, ...$ be non-negative numbers that $\sum_i p_i = 1$. The following defines a probability on \mathcal{F}

$$P(A) = \sum_{i:s_i \in A} p_i, \quad A \in \mathcal{F}.$$

Theorem 2.2 (Properties of probability). Let P be a probability, A, B be events and $\{A_i\}_{i=1}^{\infty}$ be a collection of event. Let $\{C_i\}_{i=1}^{\infty}$ be a partition of sample space S, i.e. $C_i \cap C_j, \forall i \neq j$ and $\bigcup_{i=1}^{\infty} C_i = S$. Then,

$$1.P(A) \le 1; P(A^c) = 1 - P(A); P(A) = P(A \cap B) + P(A \cap B^c);$$

- 2. If $A \subset B$, then $P(A) \leq P(B)$;
- 3.(General addition formula)

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n);$$

$$4.P(A) = \sum_{i=1}^{\infty} P(A \cap C_i);$$

5. (Boole's inequality)
$$P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i);$$

6. (Bonferroni's inequality)
$$P(\bigcap_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} P(A_i) - (n-1)$$
.

Definition 4 (Conditional Probability). If A and B are events with P(B) > 0, then the conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

For convenience, we define P(A|B) = 0 when P(B) = 0.

Theorem 2.3 (Useful formulas for conditional probability). Let A, $\{A_i\}_{i=1}^{\infty}$, B, $\{B_i\}_{i=1}^{\infty}$, C be events. Then we have:

$$1.P(A|B) = \frac{P(A)P(B|A)}{P(B)};$$

$$2.P(A^{c}|B) = 1 - P(A|B); P(A \cup C|B) = P(A|B) + P(C|B) - P(A \cap C|B);$$

$$3.P(\bigcap_{i=1}^{n} A_{i}) = P(A_{1})P(A_{2}|A_{1}) \cdots P(A_{n}|\bigcap_{i=1}^{n-1} A_{i});$$

$$4.If \{B_{i}\}_{i=1}^{\infty} is \ a \ partition \ of \ S, P(A) = \sum_{i=1}^{\infty} P(B_{i})P(A|B_{i}).$$

Theorem 2.4 (Bayes formula). Let A be an event and $\{B_i\}_{i=1}^{\infty}$ be a partition of S. Then,

$$P(B_i|A) = \frac{P(A|B_i)P(A)}{\sum_{j=1}^{\infty} P(A|B_i)P(B_i)}.$$

Definition 5 (*Independence*). Two events A, B are independent **iff**

$$P(A \cap B) = P(A)P(B)$$
 or $P(A|B) = P(A)$ or $P(B|A) = P(B)$.

If A, B are independent, then the following pairs are also independent: A and B^c , A^c and B, A^c and B^c .

Definition 6 (Mutual and pairwise independence). A collection of events $A_1, ..., A_n$ are mutually independent **iff** for any sub-collection $A_{i_1}, ..., A_{i_k}$,

$$P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_K}).$$

The events $A_1, ..., A_n$ are pairwise independent **iff** A_i and A_j are independent for all $i \neq j$. Mutual independence is stronger than pairwise independence.

Definition 7 (Conditional independence). Events A and B are conditionally independent given event C iff

$$P(A \cap B|C) = P(A|C)P(B|C).$$

Let A, B, C are events. Independence does not imply conditional independence:

$$P(A \cap B) = P(A)P(B) \Rightarrow P(A \cap B|C) = P(A|C)P(B|C).$$

Conditional independence does not imply independence:

$$P(A \cap B|C) = P(A|C)P(B|C) \Rightarrow P(A \cap B) = P(A)P(B).$$

Mutual independence implies conditional independence:

$$A, B, C$$
 mutually independent $\Rightarrow P(A \cap B|C) = P(A|C)P(B|C)$.

2.2 Random variable and distribution

Definition 8 ((Random variable and distribution)). A random variable X is a function from S to \mathbb{R} such that, for any Borel set $\mathcal{B} \subset \mathbb{R}$,

$${X \in \mathcal{B}} = {\omega \in S : X(\omega) \in \mathcal{B}}.$$

The induced probability of X is

$$P_X(\mathcal{B}) = P(X \in \mathcal{B}) = P(\omega \in \{\omega \in S : X(\omega) \in \mathcal{B}\}).$$

The probability P_X is called the distribution of X.

Definition 9 (Cumulative distribution function(cdf)). The cdf of a random variable X, denoted by $F_X(x)$, is defined as

$$F_X(x) = P(X \le x), \quad x \in \mathbb{R}.$$

Theorem 2.5 (Cdf). The function F(x) is a cdf iff

1.
$$\lim_{x \to -\infty} F(x) = 0$$
 and $\lim_{x \to \infty} F(x) = 1$;

2.F(x) is non-decreasing in x;

$$3.F(x)$$
 is right-continuous: $\lim_{\epsilon > 0, \epsilon \to 0} F(x + \epsilon) = F(x), \quad \forall x \in \mathbb{R}.$

Definition 10 (Continuity of random variable). A random variable X is continuous if $F_X(x)$ is continuous in x. A random variable x is discrete if $F_X(x)$ is a step function of x.

Note that the continuity of a random variable depends on the cdf rather than pdf or pmf. There are random variable's that are mixtures of these two types.

Definition 11 (Probability mass function(pmf)). The pmf of a discrete random variable X is

$$f_X(x) = P(X = x), \quad x \in \mathbb{R}.$$

The cdf of X, $F_X(x) = P(X \le x) = \sum_{k \le x} f_X(k)$.

Definition 12 (Probability density function(pdf)). The pdf of a continuous random variable X is the function $f_X(x)$ such that

$$F_X(x) = \int_{-\infty}^x f_X(t)dt, \quad x \in \mathbb{R},$$

if $f_X(x)$ exists. The continuous random variable X has a pdf **iff** F_X is absolutely continuous. If f is a pdf, the set $\{x: f(x) > 0\}$ is called its support.

If F_X is differentiable, then $f_X(x) = \frac{d}{dx} F_X(x)$.

Theorem 2.6 (Pdf). A function f(x) is a pdf iff:

$$1.f(x) \ge 0, \quad \forall x \in \mathbb{R};$$

$$2. \int_{-\infty}^{\infty} f(x)dx = 1.$$

How to find pdf given cdf? (1) $f_X(x) = F'_X(x)$ for x at which F_X is differentiable; (2) $f_X(x)$ can be any $c \ge 0$ for x at which F_X is not differentiable.

2.3 Transformation

Let X be a random variable and Y = g(X), where g is function $\mathbb{R} \mapsto \mathcal{Y}$ and \mathcal{Y} is the domain of Y. For any $A \in \mathcal{Y}$,

$$P(Y \in A) = P(g(X) \in A) = P(X \in g^{-1}(A)), \text{ where } g^{-1}(A) = \{x : g(x) \in A\}.$$

Given F_X or f_X , we want to obtain $f_Y(y)$. If X is discrete, then

$$f_Y(y) = \sum_{x \in g^{-1}(\{y\})} P(X = x)$$

If f_X is continuous and g is a continuously differentiable monotone function, then

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) | \frac{d}{dy} g^{-1}(y) | & y \in \mathcal{Y} \\ 0 & \text{otherwise} \end{cases}$$

Theorem 2.7 (Transformation for continuous random variable). Let X be a continuous random variable with pdf f_X . Suppose there are disjoint $\{A_i\}_{i=1}^k$ such that $P(X \in \bigcup_{i=1}^k A_i) = 1$, and f_X is continuous on each A_i , $i \in [k]$. There are functions $g_1(x), ..., g_k(x)$ defined on A_i , $i \in [k]$ respectively, satisfying

- 1. $g(x) = g_i(x), \forall x \in A_i;$
- 2. $g_i(x)$ is strictly monotone on A_i ;
- 3. The set $\mathcal{Y} = \{y : y = g_i(x) \text{ for some } x \in A_i\}$ is the same for each i;
- 4. $g_i^{-t}(y)$ has a continuous derivative on $\mathcal Y$ for each i. Then

$$f_Y(y) = \begin{cases} \sum_{i=1}^k f_X(g_i^{-1}(y)) | \frac{d}{dy} g_i^{-1}(y) | & y \in \mathcal{Y} \\ 0 & otherwise \end{cases}$$

Example 1. Suppose a random variable $X \sim N(0,1)$. Obtain the distribution of Y = |X|.

Proof. Let $A_1 = (-\infty, 0)$, $A_2 = (0, +\infty)$ and $\mathcal{Y} = (0, +\infty)$. On A_1 , $g_1(x) = x$ and $g_1^{-1}(x) = x$. On A_2 , $g_2(x) = -x$ and $g_2^{-1}(x) = -x$. By theorem 2.7,

$$f_Y(y) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} + \frac{1}{\sqrt{2\pi}}e^{-x^2/2} = \sqrt{\frac{2}{\pi}}e^{-x^2/2}.$$

2.4 Expectation

Definition 13 (Expectation). The expected value or mean of a random variable g(x) is

$$\mathbb{E}[g(x)] = \begin{cases} \int_{-\infty}^{+\infty} g(x) f_X(x) dx & \xrightarrow{Y = g(x)} \int_{-\infty}^{+\infty} y f_Y(y) dx & \text{if } X \text{has pdf } f_X \\ \sum_{x} g(x) f_X(x) & \xrightarrow{Y = g(x)} \sum_{x} y f_Y(y) & \text{if } X \text{has pmf } f_X \end{cases}$$

provided that $\mathbb{E}[|g(x)|] < \infty$. Otherwise, the expected value of g(X) does not exist.

Theorem 2.8 (Properties of expectation). Let X, Y be random variables whose expectations exist. Let a, b, c be constants.

- 1. $\mathbb{E}(aX + bY + c) = a\mathbb{E}(X) + b\mathbb{E}(Y) + c;$
- 2. If $X \geq Y$, then $\mathbb{E}(X) \geq \mathbb{E}(Y)$.

Theorem 2.9 (Relationship between expectation and cdf). Let F be the cdf of a random variable X. If X has a pdf or pmf, then,

$$\mathbb{E}[|X|] = \int_0^{+\infty} [1 - F(x)] dx + \int_{-\infty}^0 F(x) dx,$$

and $\mathbb{E}[|X|] < +\infty$ iff both integrals are finite. In case where $\mathbb{E}[|X|] < +\infty$,

$$\mathbb{E}[X] = \int_0^{+\infty} [1 - F(x)] dx - \int_{-\infty}^0 F(x) dx.$$

Proof. Without the loss of generality, suppose random variable X has a pdf. Let f be the pdf of X. We have

$$\mathbb{E}[|X|] = \int_0^{+\infty} x f(x) dx - \int_{-\infty}^0 x f(x) dx$$

$$= \int_0^{+\infty} \int_0^x f(x) dt dx + \int_{-\infty}^0 \int_x^0 f(x) dt dx$$

$$= \int_0^{+\infty} \int_t^{+\infty} f(x) dx dt + \int_{-\infty}^0 \int_{-\infty}^t f(x) dx dt$$

$$= \int_0^{+\infty} [1 - F(t)] dt + \int_{-\infty}^0 F(t) dt.$$

Therefore, $\mathbb{E}[|X|] < +\infty$ iff the two integrals are finite. Similarly,

$$\mathbb{E}[X] = \int_0^{+\infty} x f(x) dx + \int_{-\infty}^0 x f(x) dx$$
$$= \int_0^{+\infty} [1 - F(t)] dt - \int_{-\infty}^0 F(t) dt.$$

Corollary 1 (Relationship between expectation and cdf). Let F be the cdf of a random variable X. If X has a pdf or pmf, then,

$$\mathbb{E}[|X|] = \int_0^{+\infty} P(X > x) + P(-X \le x) dx,$$

and

$$\sum_{n=1}^{\infty} P(|X| \ge n) \le \mathbb{E}[|X|] \le 1 + \sum_{n=1}^{\infty} P(|X| \ge n).$$

Proof. By the proof of theorem 2.9,

$$\mathbb{E}[|X|] = \int_0^{+\infty} [1 - F(t)]dt + \int_{-\infty}^0 F(t)dt$$

$$= \int_0^{+\infty} [1 - F(t)]dt + \int_0^{+\infty} F(-t)dt$$

$$= \int_0^{+\infty} P(X > t) + P(-X \le t)dt$$

To show $\sum_{n=1}^{\infty} P(|X| \ge n) \le \mathbb{E}[|X|]$, we have

$$\mathbb{E}[|X|] = \int_0^{+\infty} P(X > t) + P(-X \le t) dt$$

$$\ge \int_0^{+\infty} P(|X| > t) dt$$

$$= \sum_{n=0}^{+\infty} \int_n^{(n+1)} P(|X| > t) dt$$

$$\ge \sum_{n=0}^{+\infty} \int_n^{(n+1)} P(|X| \ge (n+1)) dt$$

$$= \sum_{n=0}^{+\infty} P(|X| \ge n)$$

To show $\mathbb{E}[|X|] \leq 1 + \sum_{n=1}^{\infty} P(|X| \geq n)$, we have

$$\mathbb{E}[|X|] = \int_0^{+\infty} P(X > t) + P(-X \le t) dt$$

$$\le \int_0^{+\infty} P(|X| \ge t) dt$$

$$= \sum_{n=0}^{+\infty} \int_n^{(n+1)} P(|X| \ge t) dt$$

$$\le \sum_{n=0}^{+\infty} \int_n^{(n+1)} P(|X| \ge n) dt$$

$$\le 1 + \sum_{n=1}^{+\infty} P(|X| \ge n).$$