Assignment-3 Solution

2. Consider the data set shown in Table

Table 6.22. Example of market basket transactions.

Customer ID	Transaction ID	Items Bought
1	0001	$\{a,d,e\}$
1	0024	$\{a,b,c,e\}$
2	0012	$\{a,b,d,e\}$
2	0031	$\{a,c,d,e\}$
3	0015	$\{b,c,e\}$
3	0022	$\{b,d,e\}$
4	0029	$\{c,d\}$
4	0040	$\{a,b,c\}$
5	0033	$\{a,d,e\}$
5	0038	$\{a,b,e\}$

a. Compute the support for item sets {e}, {b, d}, and {b, d, e} by treating each transaction ID as a market basket.

support = (Frequency of item set) / (total number of item sets)

The support for **{e}** is **0.8**.

EXPLANATION: In simple words e appeared 8 times out of 10 ie 8/10

The support for **{b, d}** is **0.2**.

EXPLANATION: as mentioned in above explanation

The support for **{b, d, e}** is **0.2**.

EXPLANATION: as mentioned in above explanation

b. Use the results in part (a) to compute the confidence for the association rules $\{b, d\}$ à $\{e\}$ and $\{e\}$ -> $\{b, d\}$. Is confidence a symmetric measure?

Confidence = Measure how frequently Y appears in a transaction that contains X.

Confidence for $\{b, d\}$ as measured by $\{e\}$ = support $(\{b, d, e\})$ / support $(\{b, d\})$

$$= 0.2 / 0.2 = 1.$$

Confidence for $\{e\}$ as measured $\{b, d\}$ = support $(\{b, d, e\})$ / support $(\{e\})$

No, confidence is not a symmetric measure.

c. Repeat part (a) by treating each customer ID as a market basket. Each item should be treated as a binary variable (1 if an item appears in at least one transaction bought by the customer, and 0 otherwise.)

support = (Frequency of g item set) / (total number of item sets)

The support for **{e}** is **0.8**.

EXPLANATION: 'e' appeared 4 times in 5 Customer ID transactions mentioned above.

The support for **{b, d}** is **1**.

EXPLANATION: 'b' & 'd' appeared 5 times together in 5 Customer ID transactions mentioned above.

The support for **{b, d, e}** is **0.8**.

EXPLANATION: 'b', 'd' & 'e' appeared 4 times together in 5 Customer ID transactions mentioned above.

d. Use the results in part (c) to compute the confidence for the association rules $\{b, d\}$ à $\{e\}$ and $\{e\}$ -> $\{b, d\}$. Is confidence a symmetric measure?

Confidence = Measure how often Y appears in a transaction that contains X.

Confidence for
$$\{b, d\} \rightarrow \{e\} = \text{support } (\{b, d, e\}) / \text{support } (\{b, d\})$$

= 0.8 / 1 = 0.8 which implies 80%

Confidence for $\{e\} \rightarrow \{b, d\} = \text{support } (\{b, d, e\}) / \text{support } (\{e\})$

= 0.8 / 0.8 = 1 which implies 100%

No, confidence is not an asymmetric measure.

3. Consider the market basket transactions shown in Table 6.23 Table 6.23. Market basket transactions.

Transaction ID	Items Bought
1	{Milk, Beer, Diapers}
2	{Bread, Butter, Milk}
3	{Milk, Diapers, Cookies}
4	{Bread, Butter, Cookies}
5	{Beer, Cookies, Diapers}
6	{Milk, Diapers, Bread, Butter}
7	{Bread, Butter, Diapers}
8	{Beer, Diapers}
9	{Milk, Diapers, Bread, Butter}
10	{Beer, Cookies}

d. Find an itemset (of size 2 or larger) that has the largest support.

Item	Support Count
Milk	5
Beer	4
Diapers	7
Bread	5
Cookies	4
Butter	5

Support Count for 2 items is as below

Item	Support Count
Milk, Beer	1
Milk, Diaper	4
Milk, Bread	3
Milk, Cookies	1
Milk, Butter	2
Beer, Diaper	3
Beer, Bread	0
Beer, Cookies	2
Beer, Butter	0
Diaper, Bread	3
Diaper, Cookies	2
Diaper, Butter	3
Bread, Cookies	1
Bread, Butter	5
Cookies, Butter	1

As the number of k items sets keep increasing, the support count will be the same or decrease. So, for 2-item set the support will be higher.

So, looking into the above table **{bread, butter}** will have higher support followed by {milk, diaper} data sets.

e. Find a pair of items, a and b, such that the rules $\{a\} \rightarrow \{b\}$ and $\{b\} \rightarrow \{a\}$ have the same confidence

Looking into table 1 of the above problem the support count for Milk, **bread, butter** and Beer, Cookies are the same.

The following pairs will have the same confidence

- 1. Milk, butter and butter, milk
- 2. Milk, bread and bread, milk

- 3. Bread, butter and butter, bread
- 4. Beer, cookies and cookies, beer
- 4) Using the data at www.stats202.com/more_stats202_logs.txt and treating each row as a "market basket" compute the support and confidence for the rule ip=65.57.245.11 → "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3".

State what the support and confidence values mean in plain English in this context

The rule for which we have to find the support and confidence is $\{65.57.245.11\} -> \{\text{``Mozilla/5.0}\}$

(X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"}

Support for $\{65.57.245.11\} = 5021 / 14803 = 0.33$

Support for {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309

Firefox/2.0.0.3" $\} = 1619/14803 = 0.109$

Confidence for rule {65.57.245.11} -> {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3)

Gecko/20070309 Firefox/2.0.0.3"}

= support count ({65.57.245.11, "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3)

Gecko/20070309 Firefox/2.0.0.3"}) / support count ({65.57.245.11})

= 1619 / 5021= 0.322