MATH475 - PDEs

Summary

Fall 2024, Prof. Rustum Choksi. Notes by Louis Meunier

1 First-Order Equations	1
2 The Wave Equation	4
3 Distributions	3
4 Fourier Transform	4
5 Diffusion Equation	4
6 Laplace's Equation	
7 Fourier Series	7
8 Helpful Identities	7

1 First-Order Equations

Definition 1 (Method of Characteristics): A *characteristic* of a PDE

$$\begin{cases} F[u] = 0, \boldsymbol{x} \in \mathbb{R}^{N} \\ u(\boldsymbol{x}) = \varphi(\boldsymbol{x}), \boldsymbol{x} \in \Gamma \subset \mathbb{R}^{N-1} \end{cases}$$

is a curve upon which a solution to the PDE is constant. With appropriate assumptions on the PDE and its given initial data, one can find the value of a solution u(x) to F anywhere by

- Given x, find the characteristic curve γ that passes through x; one should take care to parametrize γ (for convenience) such that $\gamma(0)$ lies on Γ .
- "Trace back" along γ to where it hits the initial data. We have then that $u(x) = u(\gamma(0))$.

Theorem 1 (Linear Equations): Given a linear PDE of the form

$$\begin{cases} a(x,y)u_x+b(x,y)u_y=c_1(x,y)u+c_2(x,y)\\ u(x,y)=\varphi(x,y) \text{ on } \Gamma\subset\mathbb{R} \end{cases},$$

the characteristics $\gamma(s)=(x,y,z)(s)$ of u(x,y) is given by the solution to the system of ODEs

$$\begin{cases} \dot{x}(s) = a(x(s), y(s)) \\ \dot{y}(s) = b(x(s), y(s)) \\ \dot{z}(s) = c_1(x(s), y(s)) z(s) + c_2(x(s), y(s)), \\ x(0) \coloneqq x_0, y(0) \coloneqq y_0 \\ z(0) \coloneqq z_0 = u(x_0, y_0) = \varphi(x_0, y_0) \end{cases}$$

where x_0, y_0 such that $(x_0, y_0) \in \Gamma$.

Remark 1: Notice that the x, y and z equations are decoupled. Hence, one can begin by solving for x(s), y(s) then plugging into the ODE for z(s) to finish.

Remark 2: One can pick x_0, y_0 (with caveats) for convenience, as long as the point (x_0, y_0) lies on Γ , ensuring we can find u here. For simple data like $u(x,0)=\varphi(x)$ for $x\in\mathbb{R}$, it is easiest to pick $y_0:=0$, then letting x_0 be free; this serves as a "parametrization" of the curves; not in the sense that s is a parameter, rather a parametrization of the family of characteristics, i.e. one should end up with a family $\left\{\gamma\right\}_{x_0\in\mathbb{R}}$.

Remark 3: In temporal equations, i.e. where y (for instance) equals t, we will often have $b(x,t) \equiv 1$; in this case, one can often reparametrize with t rather than s, since the ODE for $\dot{t}(s)$ will just result in $t(s) = s + t_0$, effectively reducing from a system of 3 to 2 equations.

Remark 4: This method extends naturally to higher-dimensions equations; a PDE on \mathbb{R}^N will result in N+1 ODEs to solve. Note that characteristics are *still* curves in this case, *not* N-1 dimensional manifolds as one mihgt expect!!

Theorem 2 (Semiilinear Equations): Given a semiilinear PDE of the form

$$a(x,y)u_x + b(x,y)u_y = c(x,y,u),$$

where c may be nonlinear, we have characteristics given by

$$\begin{cases} \dot{x}(s) = a(\cdots) \\ \dot{y}(s) = b(\cdots) \\ \dot{z}(s) = c(\cdots) \end{cases}$$

Theorem 3 (Quasilinear Equations): Given a quasilinear equation of the form

$$a(x,y,u)u_x+b(x,y,u)u_y=c(x,y,u),\\$$

characteristics are given as in previous cases, though are ODEs are now all coupled.

Remark 5: "Unique"/classical solutions may not exist for all initial data in quasilinear equations; in particular, if the initial data u(x,0)=g(x) is nondecreasing, then our characteristic curves will intersect g(x) precisely once and we are all good; in general, this may not hold.

Theorem 4 (Fully Nonlinear Equations):

2 The Wave Equation

Definition 2: The (general) wave equation in \mathbb{R}^N is given by

$$\{u_{tt} = c^2 \Delta u, \boldsymbol{x} \in \mathbb{R}^N$$

where $\Delta u = \sum_{i=1}^N u_{x_i x_i}$ the Laplacian of u and c>0.

Theorem 5 (1D): In N=1, the general solution to the wave equation for $x \in \mathbb{R}$ with initial data $u(x,0)=\varphi(x), u_x(x,0)=\psi(x)$ is given by *D'Alembert's formula*

$$u(x,t) = \frac{1}{2}(\varphi(x+ct) + \varphi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \,\mathrm{d}s.$$

Remark 6: We prove/derive this formula by

- (i) Factor the wave equation $(\partial_t c\partial_x)(\partial_t + c\partial_x)u = 0$
- (ii) Make a change of variables $\xi = x + ct$, $\eta = x ct$ in which we see u = f(x + ct) + g(x ct) for any sufficiently smooth functions f, g
- (iii) Solve for f, g in terms of φ, ψ

Theorem 6 (1D, semi-infinite): In N=1, the "semi-infinite equation", namely th wave equation restricted to $x \ge 0$ with boundary condition u(0,t)=0 for all $t \ge 0$, has solution given by

$$\begin{split} u(x,t) &= \frac{1}{2}(\varphi_{\mathrm{odd}}(x+ct) + \varphi_{\mathrm{odd}}(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi_{\mathrm{odd}}(s) \, \mathrm{d}s \\ &= \begin{cases} \frac{1}{2}(\varphi(x+ct) + \varphi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, \mathrm{d}s \text{ if } x \geq ct \\ \\ \frac{1}{2}(\varphi(x+ct) - \varphi(ct-x)) + \frac{1}{2c} \int_{ct-x}^{x+ct} \psi(s) \, \mathrm{d}s \text{ if } 0 \leq x \leq ct \end{cases}, \end{split}$$

where $\varphi_{\mathrm{odd}}(x) := \begin{cases} \varphi(x) \text{ if } x \geq 0 \\ -\varphi(-x) \text{ if } x < 0 \end{cases}$, etc.

Remark 7: Domain of dependence, influence are quite different in the semi-infinite case:

Theorem 7 (3D Wave Equation): The solution to the 3D wave equation on all of \mathbb{R}^3 is given by

$$u(\boldsymbol{x},t) = \frac{1}{4\pi c^2 t^2} \iint_{\partial B(\boldsymbol{x},ct)} \varphi(\boldsymbol{y}) + \nabla \varphi(\boldsymbol{y}) \cdot (\boldsymbol{y}-\boldsymbol{x}) + t \psi(\boldsymbol{y}) \, \mathrm{d}S_{\boldsymbol{y}}.$$

3 Distributions

Definition 3: Let $C_c^{\infty}(\mathbb{R})$ denote the space of *test functions*, smooth (infinitely differentiable) functions with compact support. Then, a *distribution F* is an element of the dual of $C_c^{\infty}(\mathbb{R})$, that is, a linear functional acting on smooth functions to return real numbers.

If f a (sufficiently nice) function, we have a natural way of associating f to a functional F_f ; for any test function φ , we define

$$\langle F_f, \varphi \rangle \coloneqq \int_{-\infty}^{\infty} f(x) \varphi(x) \, \mathrm{d}x.$$

Definition 4 (Derivative): The *derivative* of a functional F is defined such that for any $\varphi \in C_c^{\infty}(\mathbb{R})$,

$$\langle F', \varphi \rangle = -\langle F, \varphi' \rangle.$$

Definition 5 (Delta Function): δ_0 is defined as the distribution such that for any test function φ ,

$$\langle \delta_0, \varphi \rangle = \varphi(0).$$

Definition 6: Let f_n be a sequence of functions and F a distribution. We say $f_n \to F$ in the sense of distributions (itsod) if for every test function φ ,

$$\langle f_n, \varphi \rangle \to \langle F, \varphi \rangle$$

as a sequence of real numbers.

Theorem 8: Let $f_n(x):=\left(n-n^2\ |x|\right)\mathbb{1}_{\left[-\frac{1}{n},\frac{1}{n}\right]}(x)$ for $n\geq 1$. Then, $f_n\to \delta_0$ itsod.

4 Fourier Transform

Definition 7: Let $f \in L^1(\mathbb{R})$. We define for every $k \in \mathbb{R}$

$$\hat{f}(k) \coloneqq \int_{-\infty}^{\infty} f(x) e^{-ikx} \, \mathrm{d}x = : \mathcal{F}\{f\}(k),$$

the Fourier transform of f.

Theorem 9 (Derivative of a Fourier Transform): Assume $f \in L^1(\mathbb{R})$ *n*-times differentiable, then for any positive integer $1 \le \ell \le n$,

$$rac{\widehat{\mathrm{d}^{(\ell)}f}}{\mathrm{d}x^{(\ell)}}(k) = i^\ell k^\ell \widehat{f}(k).$$

Theorem 10: Let $f, \hat{f} \in L^1$ be continuous. Then, for every $x \in \mathbb{R}$,

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k)e^{ikx} \, \mathrm{d}x.$$

More generally, given g(k), we define the *Inverse Fourier Transform* (IFT) as

$$\check{g}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(k)e^{ikx} dk.$$

Definition 8 (Convolution): Let f, g be integrable, then we define the *convolution*

$$(f * g)(x) := \int_{-\infty}^{\infty} f(x - y)g(y) \, \mathrm{d}y.$$

Theorem 11 (Properties of Convolution):

- (f*g)' = (f'*g) = (f*g') (supposing f or g differentiable). $(\widehat{f*g})(k) = \widehat{f}(k)\widehat{g}(k)$

5 Diffusion Equation

Definition 9: For $\alpha > 0$, the *diffusion equation* in 1 space dimension is

$$u_t = \alpha u_{xx}, \qquad u(x,0) = g(x), \qquad x \in \mathbb{R}, t > 0.$$

In \mathbb{R}^N , we have similarly

$$u_t = \alpha \Delta u_{xx}.$$

Theorem 12: The following solves the heat equation, under assumptions of integrability:

$$u(x,t) = \frac{1}{\sqrt{4\pi\alpha t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4\alpha t}} g(y) \, \mathrm{d}y.$$

In particular,

$$\lim_{t\to 0^+} u(x,t) = g(x)$$

for every $x \in \mathbb{R}$.

Let $\Phi(x,t):=\frac{1}{\sqrt{4\pi\alpha}}e^{-\frac{x^2}{4\alpha t}}$, this is called the *heat kernel*. Then, notice that

$$u(x,t) = (\Phi(\cdot,t) * g)(x).$$

Theorem 13: Φ as the following properties: (i) $\forall \, t>0, \int_{-\infty}^{\infty}\Phi(x,t)\,\mathrm{d}x=1.$

- (ii) Φ is just the normal probability density function with mean 0 and variance $2\alpha t$.
- (iii) Φ solves the heat equation itself.
- (iv) As $t \to 0^+$, $\Phi \to \delta_0$ in the sense of distributions.

6 Laplace's Equation

Definition 10: We call a function *harmonic* if $\Delta u = 0$.

Given a bounded domain Ω and a function g, we call

$$\begin{cases} \Delta u = 0 \text{ on } \Omega \\ u = g \text{ on } \partial \Omega \end{cases}$$
 [D]

the Dirichlet problem of the Laplacian

Theorem 14 (Properties of Harmonic Functions):

(Mean Value Property) Let $\Omega\subset\mathbb{R}^3$ a domain and $u\in C^2(\Omega)$ harmonic. Let $x_0\in\Omega$ and r>0 such that $B(x_0,r)\subset\Omega$. Then,

$$u(x_0) = \frac{1}{4\pi r^2} \iint_{\partial B(x_0,r)} u(x) \,\mathrm{d}S_x.$$

This actually holds if and only if.

(Maximum Principle) Let Ω bounded and connected, $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$. If u attains its maximum in Ω , then u must be identically constant on $\overline{\Omega}$.

(Stability of the Dirichlet Problem) Let g_1, g_2 continuous on $\partial\Omega$ and let u_i solve

$$\begin{cases} \Delta u_i = 0 \text{ on } \Omega \\ u_i = g_i \text{ on } \partial \Omega \end{cases}$$

for i = 1, 2. Then,

$$\max_{x\in\Omega}\lvert u_1-u_2\rvert \leq \max_{x\in\partial\Omega}\lvert g_1-g_2\rvert.$$

(Dirichlet's Principle) Let $\Omega\subset\mathbb{R}^N$ be a bounded domain $\mathcal{A}_h\coloneqq\left\{\omega\in C^2(\Omega)\cap C^1\left(\overline{\Omega}\right):\omega=h \text{ on }\partial\Omega\right\}$ for some function h. Let

$$E[\omega] := \frac{1}{2} \int_{\Omega} |\nabla \omega|^2 \, \mathrm{d}x.$$

Then, $u \in \mathcal{A}_h$ minimizes E if and only if u solves the Dirichlet problem with u = h on $\partial \Omega$.

Definition 11 (Fundamental Solution to the Laplacian): The *fundamental solution* to the Laplacian over \mathbb{R}^N is given by

$$\Theta(x) = \begin{cases} \frac{1}{2\pi} \ln|x| & N = 2\\ -\frac{1}{(4\pi)|x|} & N = 3,\\ \frac{1}{N(N-2)\omega_N |x|^{N-2}} N \ge 4 \end{cases}$$

where ω_N the volume of the unit sphere in \mathbb{R}^N .

Theorem 15: In the sense of distributions, $\Delta \Phi = \delta_0$.

Theorem 16 (Representation Formula): Let Ω bounded and $u \in C^2(\overline{\Omega})$ and harmonic on Ω . Then, for $x_0 \in \Omega$,

$$u(x_0) = \int_{\partial\Omega} u(x) \frac{\partial \Phi(x-x_0)}{\partial n} - \Phi(x-x_0) \frac{\partial u(x)}{\partial n} \, \mathrm{d}S_x.$$

Theorem 17: For [D], define the *Green's function* of Ω as the function $G(x, x_0)$, for $x \in \overline{\Omega}, x_0 \in \Omega$, such that, for $x \neq x_0$,

$$G(x,x_0) = \Phi(x-x_0) + H_{x_0}(x),$$

where H_{x_0} harmonic and $H_{x_0}(x)=-\Phi(x-x_0)$ for $x\in\partial\Omega.$ Suppose such a G exists, then $u(x_0)$ solves $[\mathrm{D}]$, where for $x_0\in\partial\Omega,$

$$u(x_0) = \int_{\partial\Omega} g(x) \frac{\partial}{\partial n} G(x, x_0).$$

Remark 8: Assuming existence, the proof follows by applying the representation formula and Green's Second identity.

Theorem 18 (Properties of Green's Function): Let G be the Green's function for some Ω . Then,

- (i) *G* is unique
- (ii) $G(x, x_0) = G(x, x_0)$ for every $x \neq x_0 \in \Omega$.

7 Fourier Series

8 Helpful Identities

Theorem 19 (Averaging Lemma): Let φ continuous on \mathbb{R}^3 . Then, for any $x_0 \in \mathbb{R}^3$,

$$\varphi(x_0) = \lim_{r \to 0^+} \frac{3}{4\pi r^3} \int_{B(x_0,r)} \varphi(x) \,\mathrm{d}x.$$

Similar statements hold in arbitrary dimensions.

Remark 9: This is just a special case of the Lebesgue Differentiation Theorem.

Theorem 20 (Vector Field Integration by Parts): Let u be a C^1 vector field and v a C^1 function defined on some $\Omega \subseteq \mathbb{R}^3$. Then,

$$\int_{\Omega} \boldsymbol{u} \cdot \nabla v \, \mathrm{d}x = -\int_{\Omega} (\mathrm{div} \ \boldsymbol{u}) v \, \mathrm{d}x + \int_{\partial \Omega} (v \boldsymbol{u}) \cdot \boldsymbol{n} \, \mathrm{d}S_x.$$

Remark 10: Computed $\left(u^iv\right)_{x_i}$ for i=1,2,3, sum over the indices, integrate, apply the divergence theorem.

Theorem 21 (Green's Identities): Let $u, v \in C^2(\Omega) \cap C^1(\overline{\Omega})$ for some bounded domain Ω . Then

1.
$$\int_{\Omega} v \Delta u \, \mathrm{d}x = \int_{\partial \Omega} v \frac{\partial u}{\partial n} - \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x$$

$$2. \qquad \int_{\Omega} v \Delta u - u \Delta v \, \mathrm{d}x = \int_{\partial \Omega} v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \, \mathrm{d}S_x.$$