

Exploring the Effects of Bilingualism on Filled Pauses: An Acoustic-Phonetic Perspective

Justin Lo

Department of Language and Linguistic Science, University of York

2018 Colloquium of the British Association of Academic Phoneticians

Background

- Filled pauses: "uh", "um" in hesitation
- Why bilingual FPs?
 - Forensic phonetics
 - Excellent speaker-discriminatory power (Hughes, Wood & Foulkes, 2016)
 - Speakers "consistent in their respective personal variant" (Künzel, 1997)
 - Dominant focus on monolingual speakers
 - What are FPs?
 - Words, planned (Clark & Fox Tree, 2002)?
 - Unconscious, automatic (Jessen, 2008)?

Background

Candea, Vasilescu & Adda-Decker, 2005; Pätzold & Simpson, 1995; Silber-Varod, Weiss & Amir, 2015

Research Questions

1. How do German-French bilinguals differentiate FPs in German and French?

2. How do FPs of bilinguals and monolinguals speaking French differ?

Data & Methods

Materials

- Hamburg Adult Bilingual LAnguage
 - Kupisch, 2011; Kupisch et al, 2012
- 16 female
 - Simultaneous bilingual
- Semi-structured interviews
 - Separate German/French sessions

- Nijmegen Corpus of Casual French
 - Torreira, Adda-Decker & Ernestus, 2010
- 20 female
- Conversation between friends

Procedure: Segmentation

Based on transcripts accompanying the corpora euh qu' elle lui achèterait aussi certainement euh zd zc

Very few monolingual UM's → UH only

Procedure: Extraction

- ► Formant dynamics: F1–F3 at +10% time-steps
- Discarded if formant, at any time-step, beyond threshold:

(in Hz)	F1	F2	F3
Upper limit	1000	2500	_
Lower limit	300	1000	2000

Number of tokens:

	Bi. G	erman Bi. Fr	ench M. Fre	ench
Total	331	631	920	
Min	3	8	23	
Max	60	79	67	
Mean	23.6	39.4	46	

Procedure: Modelling

- To compare midpoint formants & duration: linear mixed effects models
 - R: Ime4 package (Bates et al, 2015)
 - Significance of effects tested with Likelihood Ratio Test

	Fixed Effect	Random intercept	Random slope
(RQ1) vs	Language	Speaker	Speaker
(RQ2) vs	Linguistic background	Speaker	_

VS

	F1 (p = 0.061)	* F2 (p = 0.0083)	F3 (p = 0.085)	* Dur (p = 0.017)
German	593 Hz	1646 Hz	2710 Hz	299 ms
French	566 Hz	1597 Hz	2688 Hz	326 ms
Difference	-27 Hz	-49 Hz	-22 Hz	+27 ms

RQ1:

VS

Summary

- Bilinguals tend to distinguish their FPs by vowel quality
 - Individuals make use of different mechanisms (e.g. height, rounding)
- Bilinguals also distinguish their FPs by duration
 - ► French > German

	F1 (p = 0.26)	F2 (p = 0.33)	F3 (p = 0.95)	* Dur (p = 0.0011)
Bilingual	572 Hz	1597 Hz	2694 Hz	329ms
Monolingual	567 Hz	1610 Hz	2687 Hz	268ms
Difference	-5 Hz	+13 Hz	-7 Hz	-61 ms

Summary

- Bilinguals and monolinguals have similar vowel quality for UH
- Bilinguals hesitate longer than monolinguals (in French)

General Discussion: Vowel Quality

- Support for language specificity
 - Bilinguals tend to distinguish their UHs by language
 - Bilinguals can produce monolingual-like UHs
- Speaker specificity
 - Within language: contributes to within-language variation
 - Across language: different dimensions of contrast

General Discussion: Duration

Recap: BG (-27ms) < $\frac{BF}{}$ > MF (-61ms)

General Discussion: Duration

Summary

- 1. Bilinguals tend to distinguish the vowel quality of UHs in different languages
 - Duration too but it's more complicated
- 2. Bilinguals produce UHs similar to monolinguals in terms of vowel quality
- 3. Bilinguals produce longer UHs than monolinguals in the same language

Thank you!

Acknowledgements: Prof Paul Foulkes & Dr Vincent Hughes

Justin Lo

References

- Bates, D., M. Mächler, B. Bolker and S. Walker (2015). Fitting linear mixed-effects models using Ime4. Journal of Statistical Software, 67(1), 1–48.
- Candea, M., I. Vasilescu and M. Adda-Decker (2005). Inter- and intra-language acoustic analysis of autonomous fillers. The 5th Workshop on Disfluency in Spontaneous Speech. Aix-en-Provence, France.
- Clark, H.H. And J.E. Fox Tree (2002). Using uh and um in spontaneous speaking. Cognition, 84(1), 73–111.
- Hughes, V., S. Wood and P. Foulkes (2016). Strength of forensic voice comparison evidence from the acoustics of filled pauses. *International Journal of Speech, Language and the Law*, 23(1), 99–132.
- Künzel, H.J. (1997). Some general phonetic and forensic aspects of speaking tempo. International Journal of Speech, Language and the Law, 4(1), 48–83.
- Kupisch, T. (2011). Hamburg Adult Bilingual LAnguage. Archived in Hamburger Zentrum für Sprachkorpora. Version 0.02. URL: http://hdl.handle.net/11022/0000-0000-5C64-9.
- Kupisch, T., D. Barton, G. Bianchi and I. Stangen (2012). The HABLA-Corpus German-French and German-Italian. In T. Schmidt and K. Wörner (Eds). Multilingual Corpora and Multilingual Corpus Analysis, pp. 163–179. Amsterdam: John Benjamins.
- Pätzold, M. and A. Simpson (1995). An Acoustic Analysis of Hesitation Particles in German. Proceedings of the 13th International Congress of Phonetic Sciences, Vol. 3. Stockholm, Sweden, pp. 512–515.
- Silber-Varod, V., A. Weiss and N. Amir (2015). Can you hear these mid-front vowels? Formant analysis of hesitation disfluencies in spontaneous Hebrew. The 7th Workshop on Disfluency in Spontaneous Speech. Edinburgh, UK.
- Torreira, F., M. Adda-Decker and M. Ernestus (2010). The Nijmegen Corpus of Casual French. Speech Communication, 52(3), 201–212.

Formant dynamics: German vs French

Formant dynamics: German vs French (Individual)

Formant dynamics: Bilingual vs Monolingual

