4.3 To show that $f(x) = x^4 + 6x^3 + 9x + 3$ generates a maximal ideal we need to show that it is irreducible. Note that for the prime p = 3, $f(x) \equiv x^4 \mod 3$, and $9 \nmid 3$. Therefore f is irreducible by Eisenstein's criterion. Thus (f) is a maximal ideal over $\mathbb{Q}[x]$.

- 4.6 $x^5 + 5x + 5$ is irreducible over \mathbb{Q} since it satisfies Eisenstein's criterion for p = 5. For $\mathbb{Z}/2$, $x^5 + 5x + 5 = (x^2 + x + 1)(x^3 + x^2 + 1)$
- $4.7 \ f(x) = x^3 + x + 1$
 - p=2 $x^3+x+1=x^3+x+1$ since for 0 and 1 the polynomial is 1
 - p = 3 $f(x) = (x 1)(x^2 + x 1)$ since $f(1) \equiv 0 \mod 3$
 - p = 5 $f(x) = x^3 + x + 1$ since for $x = 0, 1, 2, 3, 4, f(x) \neq 0$.
- 5.1 (a) 1-3i=(1-i)(2-i)
 - (b) 10 = (1-i)(1+i)(2-i)(2+i)
 - (c) 6+9i=3(2+3i), note that (2+3i)(2-3i)=13, which is a prime
 - (d) $7 + i = (2+i)^2(1-i)$
- 5.3 Note that $(2+i)^2 = 3+4i$ and (2+i)(3+2i) = 4+7i. Since 3+2i was computed above to be prime then the smallest element which generates both is (2+i).
- 5.5 Let π be a gauss prime.
 - Suppose π and $\overline{\pi}$ are associates. Then there are four possible units by which π and $\overline{\pi}$ are associates.
 - If $\overline{\pi} = \pi$ then π is invariant under complex conjugation. Therefore π is an integer. Since π is a gauss prime which is an integer then π must be an integer over the primes.
 - If $\overline{\pi} = -\pi$ then π must be purely imaginary since -(a+bi) = a-bi implies a = -a, which is only true when a = 0. Since we have a purely imaginary Gauss prime and we know that it's norm must correspond to the square of a prime (otherwise implying that the square root of a prime is defined in the integers) implies that π is an associate of an integer prime.
 - If $\overline{\pi} = i\pi$ then $\pi = a + bi$ must satisfy the relation a = -b. The only Gauss prime satisfying this requirement is 1 i, which is one of the factors which ramifies 2.
 - If $\overline{\pi} = -i\pi$ then we have the conjugate of the prime found above, 1+i, which is the other factor of 2 in $\mathbb{Z}[i]$.

Thus by cases we have shown that either π divides 2 or π is an associate of an integer prime.

• Suppose $\pi \overline{\pi} = 2$. Then $\pi = 1 - i$. Since $i\pi = i - i^2 = 1 + i = \overline{\pi}$, then π and $\overline{\pi}$ are associates.

Alex Valentino Homework 11
451

- Suppose π is an associate of a prime integer, $p \in \mathbb{Z}$. then if $\pi = \pm p$, the trivially $\overline{\pi} = \pm p$, thus $\pi = \overline{\pi}$, making them associates with 1. If $\pi = \pm ip$, then $\overline{\pi} = \mp ip$. Therefore π and $\overline{\pi}$ are associates by -1. Thus no matter by which unit π is an associate of p, π and $\overline{\pi}$ are associates.