機器學習作業四 report

學號:B05901040 系級:電機三 姓名:蔡松達

1. (2%)從作業三可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps, 觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

(Collaborators: Ref: https://reurl.cc/0Kvx9)

答:圖片如下表所示,基本上在進行分類時,生氣(0)聚集在額頭,可能是生氣時額頭皺褶特別深;厭惡(1)集中於臉頰輪廓的皺褶,表達很討厭某事物的感覺;恐懼(2)主要集中在眉梢之間,眉頭緊繃表達出緊張害怕的感受;高興(3)與前三者的區域明顯不同,集中於鼻子至嘴巴處的微笑;難過(4)涵蓋眼睛、鼻子、嘴巴,較不容易表達出來;驚訝(5)也較不顯著,只能大概推斷臉頰兩側及眼睛下方可能是在驚嚇時臉部肌肉收縮;中立(6)明顯集中在額頭處,說明在沒有表情的狀況下額頭是平整而沒有任何皺褶的。由此可見大多數的特徵集中在額頭、眼睛、臉頰、嘴巴之間,分類的方式以明顯的臉部皺褶處居多。

圖片編號	fig1_0.jpg	fig1_1.jpg	fig1_2.jpg	fig1_3.jpg
training	0	299	5	7
data				
圖片	Saliency map for feature 0, picture number 0 - 0.003 - 0.002 - 0.001 - 0.000 - 0.001 - 0.000 - 0.001 - 0.002	Saliency map for feature 1, picture number 299 -0.00100 -0.00075 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050 -0.000050	Saliency map for feature 2, picture number 5 -0.002 -0.001 -0.001 -0.001 -0.002 -0.001 -0.002 -0.004	Saliency map for feature 3, picture number 7 -0.00006 -0.00004 -0.00002 -0.000002 -0.000004 -0.000004 -0.000004 -0.000006 -0.000006
圖片編號	fig1_4.jpg	fig1_5.jpg	fig1_6.jpg	
training	6	15	4	
data				
圖片	Saliency map for feature 4, picture number 6 0 -0002 -0001 -0001 -0001 -0002 -0002 -0002 -0002 -0003	Saliency map for feature 5, picture number 15 10 - 0002 - 0001 - 0001 - 0 001 - 0 002 - 0 002 - 0 002 - 0 003	Saliency map for feature 6, picture number 4 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008 0 008	

2. (3%)承(1),利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate 與觀察 filter 的 output。(Collaborators: Ref: https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html)

答:此處觀察 $conv2d_7$ 這層,含有 128 個 filter,此處選擇 16 個 filter,分別是編號 4, 6, 18, 20, 21, 22, 24, 25, 41, 42, 43, 44, 47, 53, 57, 59, $fig2_1$ (下圖)呈現出這些 filters,其實這些 filter 呈現出的輪廓雖然各有不同,但大多數的圖片是具有規則性的,而且其中有幾張圖感覺只是翻轉過後的結果而已,代表這些 filter

在進行辨識的時候喜歡去找紋路較深,特徵較為顯著的地方;此外我也嘗試過對 於較為前面的 conv 層進行 gradient ascent,得到的結果其實較不明顯,紋路比較 淡,表示前面層比較沒辦法描繪出比較深刻的紋路,越深層紋路也越深。

fig2_1.jpg

而 fig2_2 (下圖)呈現出 conv2d_7 這層的 output (取前 64 個 filter),由此層可見圖片大多模糊,卻各自強調不同的重點,有些強調眼睛,有些強調嘴巴,也有些強調背景,而較前面 layer 的 output 則仍可較為清晰的看見人臉的樣子,兩相比較下越深層的 output 較能夠 focus 在圖片中的某些地方。

fig2_2.jpg

3. (3%)請使用 Lime 套件分析你的模型對於各種表情的判斷方式,並解釋為何你的模型在某些 label 表現得特別好(可以搭配作業三的 Confusion Matrix)。 答:從 confusion matrix 可以發現最佳的 label 是高興,從圖片中可以發現重點多在圖片下半部分,也就是下巴處可能微笑的特徵較明確,是其他表情甚少會有的;而其次較好的是中立,全都 focus 在圖片上緣,代表中立的圖片表情通常不

明顯,所以可能將重點擺在不是臉部的部分,而其餘的 attribute 重點較為分散,不過在眼睛、嘴巴的部分都有重點的存在,代表可能從眼睛的表達上來判定成功的機會較大;但較為分散也說明可能重點並不明確,比較不容易分辨正確。

17 M						
圖片編號	fig3_0.jpg	fig3_1.jpg	fig3_2.jpg	fig3_3.jpg		
training	0	473	5	7		
data						
圖片	200 213 225 207 207 207 207 207 207 207 207 207 207	20 100 100 100 100 100 100 100 100 100 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	200 23 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40		
圖片編號	fig3_4.jpg	fig3_5.jpg	fig3_6.jpg			
training	6	15	11			
data						
圖片		200 215 20 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	200 200 200 200 200 200 200 200 200 200			
Normalized confusion matrix						

4. (2%) [自由發揮] 請同學自行搜尋或參考上課曾提及的內容,實作任一種方式來觀察 CNN 模型的訓練,並說明你的實作方法及呈現 visualization 的結果。答:這裡使用與第二題類似的觀念進行觀察,得到下列兩張不同的 output,第一張圖 (fig4_1.jpg) 是使用訓練好的 model;第二張圖 (fig4_2.jpg) 是使用只 train一個 epoch 的爛 model,而這裡是取出最後 model 中最後一次進行 Maxpooling前的 Leaky_relu 層的 output,128 個 output 中選出前 64 個的 output,可以發現第一張圖的 output 幾乎都還能看出臉型,而且圖中黑色都只有出現在部分區域,代表每個 filter 都有各自不同的作用;然而可以從第二張圖發覺黑的部分就佔了一大半,幾乎沒辦法看出每個 filter 各自重點在哪,因此由較為深層(例如此層)的 output 來判斷分類的結果好壞是觀察 CNN 模型訓練的好方法。

fig4_2.jpg