Let (1) $\lim_{x\to x_0} fw = A$ (2) $\lim_{x\to x_0} gw = B$ and $B \neq 0$, https://wanminliu.github.io/KTH/

Show that (3) lim fix = AB

Phys. We want use the definition of limit to show (3).

i.e. $\forall \in >0$, we need to find δ (depending on ϵ)

So that for all x with $o < |x - x_0| < \delta$,

we have $|f_{uv} - \frac{A}{B}| < \epsilon$.

We find such of by using definition of limit for (1) and (2)

Now
$$\left|\frac{fw}{nw} - \frac{A}{B}\right| = \left|\frac{fw}{gw} - \frac{A}{gw} + \frac{A}{gw} - \frac{A}{B}\right|$$

$$= \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \left|\frac{A}{gw} - \frac{A}{B}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{1}{19w} \left|\frac{gw}{gw} - \frac{B}{gw}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{1}{19w} \left|\frac{gw}{gw} - \frac{B}{gw}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{1}{19w} \left|\frac{gw}{gw} - \frac{B}{gw}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{1}{19w} \left|\frac{gw}{gw} - \frac{B}{gw}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{1}{19w} \left|\frac{gw}{gw} - \frac{B}{gw}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{1}{19w} \left|\frac{gw}{gw} - \frac{B}{gw}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{1}{19w} \left|\frac{gw}{gw} - \frac{B}{gw}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{A}{19w} - \frac{A}{19w} \left|\frac{gw}{gw} - \frac{B}{gw}\right|$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{A}{19w} - \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{gw}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

$$= \frac{1}{19w} \left|\frac{fw}{gw} - \frac{A}{19w}\right| + \frac{A}{19w} - \frac{A}{19w}$$

since 19041 appears in the denominator of formulars in 161. We want to give a bound of of 191x).

By We take
$$E_2 = \frac{|B|}{2}$$

then $3 \cdot G_2(\frac{|M|}{2})$, we call it 63 now,

10 that

 $|9(x) - B| < \frac{|B|}{2}$ for and x .

 $|9(x) - B| < |9(x) - B|$

12 | $|9(x) - B|$

13 | $|9(x) - B| < \frac{|B|}{2}$

14 | $|9(x) - B| < \frac{|B|}{2}$

16 | $|9(x) - |B| < \frac{|B|}{2}$

17 | $|9(x) - |B| < \frac{|B|}{2}$

18 | $|9(x) - |B| < \frac{|B|}{2}$

19 | $|9(x) - |B| < \frac{|B|}{2}$

NOW WE SHOW (B)

we find $\varepsilon_1 = \frac{\varepsilon}{2} \cdot \frac{2}{|B|}$

€ 5,(E) - WE can it 5,

so that

By wing 15) again, and taking $E_2 = \frac{E}{2} \frac{1131^2}{21A141}$

we find becker - we could be

Now we take &= min {di, di, di}}

then for all x when ox1x-xo1<0

(9) and (10)
$$< \frac{2}{|B|} \cdot \frac{\varepsilon}{2} \cdot \frac{|B|}{2} + \frac{2|A|H}{|B|^2} \cdot \frac{\varepsilon}{2} \cdot \frac{|B|^2}{2|A|H}$$

So we checked (), He definition of limit in (3)

Therefore (3) holds.

- Remark 1) The above is a region part, where up use (5) twee - one time for the control the bound of Iwod - the other is for 1900-B1
- 2) The essential part is inequality (6), where on the right Mand side, we know

1921 - bounded. [A] bounded

HM-A/- small |9W-B/- small

3 The trick in 18) 2/A/11 is because it is Not zero so we you can use the number you prefer for the computation, for example, 2/A/1+2023