

Đây là giáo trình cho các môn toán Vi tích phân 2 cho khối B và C do Bộ môn Giải tích (Khoa Toán-Tin học, Đại học Khoa học Tự nhiên Thành phố Hồ Chí Minh) chủ trì biên soạn.

Tham gia biên soạn: Lý Kim Hà, Nguyễn Vũ Huy, Bùi Lê Trọng Thanh, Nguyễn Thị Thu Vân, Huỳnh Quang Vũ

Liên hệ: hqvu@hcmus.edu.vn

Mỗi mục tương ứng với khoảng một buổi thảo luận trong lớp học.

Trang web Tài liệu hỗ trợ môn học của Bộ môn Giải tích có ở:

http://www.math.hcmus.edu.vn/giaitich

Đây là bản thảo, đang được tiếp tục chỉnh sửa bổ sung.

Mục lục

1	Đạo	o hàm của hàm nhiều biến 1								
	1.1	.1 Không gian \mathbb{R}^n								
		1.1.1	Vecto, điểm, chiều dài, khoảng cách, tích trong							
		1.1.2	Tập mở và tập đóng trong \mathbb{R}^n							
		1.1.3	Hình học trong \mathbb{R}^n							
	1.2	Hàm s	số nhiều biến. Giới hạn và sự liên tục							
		1.2.1	Giới hạn của hàm số nhiều biến 6							
		1.2.2	Hàm số liên tục							
	1.3	Đạo h	àm của hàm số							
		1.3.1	Đạo hàm riêng phần							
		1.3.2	Mặt phẳng tiếp xúc và Xấp xỉ tuyến tính							
		1.3.3	Đạo hàm riêng cấp cao							
	1.4	Đạo h	àm của hàm vectơ							
		1.4.1	Sự khả vi							
		1.4.2	Đạo hàm theo hướng. Ý nghĩa của vecto gradient							
		1.4.3	Đạo hàm của hàm hợp							
	1.5		rị của hàm số nhiều biến							
		1.5.1	Cực trị không có ràng buộc							
		1.5.2	Cực trị có ràng buộc							
		1.5.3	Giá trị lớn nhất và nhỏ nhất							
2	Tícl	Γích phân bội 26								
	2.1									
		2.1.1	Tích phân trên hình hộp							
		2.1.2	Tích phân trên tập tổng quát							
		2.1.3	Thể tích							
		2.1.4	Sự có tích phân và sự có thể tích							
		2.1.5	Tính chất của tích phân							
	2.2	Công	thức Fubini							
		2.2.1	Công thức Fubini cho miền phẳng							
		2.2.2	Công thức Fubini cho miền ba chiều							
	2.3	Công	thức đổi biến 41							
		2.3.1	Phép đổi biến							
		2.3.2	Công thức đổi biến cho vi phân và tích phân							
		2.3.3	Tọa độ cực							
		2.3.4	Tọa độ cầu							
		2.3.5	Giải thích công thức đổi biến							
	2.4		ụng của tích phân bội							

iv M UC L UC

\mathbf{C}	hỉ mụ	ic		126						
Tã	ài liệu	ı tham	ı khảo	125						
		4.3.2	Phương trình cấp hai tuyến tính không thuần nhất hệ số hằng							
		4.3.1	Phương trình vi phân cấp hai tuyến tính thuần nhất với hệ số hằng	116						
	4.3		hương trình vi phân cấp hai							
		4.2.3	Phương trình vi phân cấp một tuyến tính							
		4.2.2	Phương trình vi phân cấp một đẳng cấp							
	-: -	4.2.1	Phương trình vi phân cấp một tách biến							
	4.2		hương trình vi phân cấp một							
		4.1.2	Mô hình với phương trình vi phân cấp hai							
		4.1.1								
_	4.1	_	g trình vi phân và mô hình toán học							
4	Phu	ong tr	ình vi phân	98						
		3.4.5	Úng dụng	. 92						
		3.4.4	Ý nghĩa vật lý của div và curl							
		3.4.2 $3.4.3$	Công thức Gauss-Ostrogradsky							
		3.4.1 $3.4.2$	Ong thực Stokes Diều kiện để trường ba chiều là bảo toàn							
	3.4	Cong t 3.4.1	thức Stokes và Công thức Gauss-Ostrogradsky							
	3.4	3.3.5 Công t	Pháp tuyến của mặt. Liên hệ giữa hai loại tích phân mặt							
		3.3.4	Mặt như là tập điểm. Định hướng							
		3.3.3	Tích phân mặt loại hai							
		3.3.2	Tích phân mặt loại một							
		3.3.1	Diện tích mặt							
	3.3	_	hân mặt							
	0.0	3.2.5	Dạng thông lượng của công thức Green							
		3.2.4	Diều kiện để trường vecto phẳng là bảo toàn							
		3.2.3	Công thức Green							
		3.2.2	Ý nghĩa vật lý của khái niệm trường bảo toàn							
		3.2.1	Trường bảo toàn							
	3.2	_	thức Newton–Leibniz và Công thức Green							
		3.1.5	Liên hệ giữa hai loại tích phân đường							
		3.1.4	Sự phụ thuộc vào đường đi							
		3.1.3	Tích phân đường loại hai							
		3.1.2	Tích phân đường loại một	. 59						
		3.1.1	Chiều dài của đường đi	. 57						
	3.1		hân đường	57 . 57						
3	Giải	Giải tích vectơ								
		2.4.3	Xác suất của sự kiện ngẫu nhiên	. 52						
		2.4.2	Tâm khối lượng							
		2.4.1	Giá trị trung bình							
		9 4 1	Cić tri trung hình	51						

Chương 1

Đạo hàm của hàm nhiều biến

1.1 Không gian \mathbb{R}^n

Khoảng 300 năm trước Công nguyên, nhà toán học Hy Lạp Euclid viết bộ sách "Cơ sở của hình học", tổng kết hiểu biết hình học đương thời. Ngày nay hình học phẳng và hình học không gian ba chiều mà Euclid trình bày với hệ thống tiên đề và các chứng minh bằng suy diễn toán học vẫn được học ở trường trung học phổ thông.

Phát triển từ hình học Euclid, trong chương này chúng ta sẽ xét không gian Euclide n-chiều. Nhưng phương pháp của chúng ta là phương pháp Hình học Giải tích của Descartes, theo đó điểm sẽ tương ứng với số, nhờ đó quan hệ hình học được diễn tả bằng quan hệ số lượng. Cụ thể hơn, cũng như môn Vi Tích phân Hàm một biến (xem [Bmgt1]), môn Vi Tích phân Hàm nhiều biến đặt trên cơ sở trên tập hợp các số thực, và mặc dù chúng ta sẽ dùng hình vẽ và trực quan để dẫn dắt nhưng mỗi suy luận chỉ được coi là chặt chẽ khi nó nằm trong hệ thống suy luận từ tập hợp số thực bằng các quy tắc suy luận toán học. Tuy vậy phát triển của chúng ta vẫn nhắm tới sự tương thích và chứa các trường hợp n=1, n=2, n=3 mà ta đã học ở trung học phổ thông.

Trên tinh thần đó, chúng ta bắt đầu môn học với định nghĩa cho những khái niệm căn bản như không gian, điểm, vecto, đường thẳng, mặt phẳng, ...

Với mỗi số nguyên dương n, tập hợp \mathbb{R}^n là tập hợp tất cả các bộ có thứ tự n số thực. Vậy $\mathbb{R}^n = \{x = (x_1, x_2, \dots, x_n) \, | \, x_1, x_2 \dots, x_n \in \mathbb{R} \}$. Số thực x_i được gọi là thành phần hay **tọa độ** thứ i của phần tử x.

1.1.1 Vectơ, điểm, chiều dài, khoảng cách, tích trong

Khi tập \mathbb{R}^n được trang bị các phép toán nhất định thì nó được gọi là một không gian vectơ, và các phần tử của nó cũng được gọi là các vecto. Đôi khi, để nhấn mạnh việc nhìn phần tử x dưới khía cạnh vecto người ta dùng kí hiệu \vec{x} hay x, đặc biệt khi n=2,3. Các phép toán đó gồm phép toán cộng và phép toán nhân, được định nghĩa như sau. Phép cộng + của hai vecto $x=(x_1,x_2,\ldots,x_n)$ và $y=(y_1,y_2,\ldots,y_n)$ cho ra vecto

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

Phép nhân của vectơ x với số thực α cho vectơ

$$\alpha \cdot x = x \cdot \alpha = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

Hai phép toán + và \cdot có các tính chất:

Mệnh đề 1.1.1. Với mọi $x, y \in \mathbb{R}^n$, với mọi $\alpha, \beta \in \mathbb{R}$:

$$(a) x + y = y + x,$$

- (b) (x + y) + z = x + (y + z),
- (c) với 0 là vectơ có tất cả các thành phần bằng 0, nghĩa là 0 = (0, 0, ..., 0) (thường được gọi là **điểm gốc tọa độ**), thì x + 0 = 0 + x = x,
- (d) $t \delta n \ t a i \ vector \ d \delta i \ -x = (-1) \cdot x = (-x_1, -x_2, \dots, -x_n) \ sao \ cho \ x + (-x) = 0,$
- (e) $1 \cdot x = x$,
- (f) $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$,
- (g) $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$,
- (h) $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$.

Về sau để kí hiệu đơn giản hơn ta thường bỏ đi dấu chấm để kí hiệu phép nhân ở trên, ví dụ viết 2x thay vì $2 \cdot x$.

Hình 1.1.1: Hình ảnh minh họa cho một điểm (x, y, z) nằm trong không gian \mathbb{R}^3 .

Những tính chất trên phù hợp với các trường hợp riêng \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 đã biết. Tuy vậy có một điểm khác biệt khá tinh tế đáng chú ý là trong các trường hợp riêng này, cũng như trong vật lý, ta thường hình dung một vectơ là một đoạn thẳng có hướng, được xác định bởi một cặp có thứ tự hai điểm, một điểm đầu và một điểm cuối; tức là vectơ trước đây là có gốc. Còn vectơ như ta vừa định nghĩa trên, không đi kèm khái niệm gốc, trước đây có khi được gọi là "vectơ tự do".

Mỗi vectơ có một chiều dài, hay độ lớn, được gọi là **chiều dài Euclid**, cho bởi $|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$. Chiều dài của vectơ còn được gọi là **chuẩn** của vectơ (đặc biệt khi n > 3), kí hiệu là ||x||.

Trong trường hợp n=1 độ lớn này chính là giá trị tuyệt đối của số thực. Chiều dài vectơ có các tính chất quan trọng sau:

Mệnh đề 1.1.2. Với mọi $x, y \in \mathbb{R}^n$, với mọi $\alpha \in \mathbb{R}$ thì:

(a) $||x|| \ge 0$,

- (b) ||x|| = 0 khi và chỉ khi x = 0,
- (c) $\|\alpha x\| = |\alpha| \|x\|$,
- (d) $||x + y|| \le ||x|| + ||y||$ (bất đẳng thức tam giác).

Hai phần tử x, y bất kì của \mathbb{R}^n lại có một khoảng cách giữa chúng, kí hiệu là d(x, y), được gọi là **khoảng cách Euclid**, cho bởi

$$d(x,y) = ||y-x|| = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}.$$

Trong trường hợp n=1 khoảng cách này chính là chiều dài thông thường của một đoạn số thực. Trong trường hợp n=2 và n=3 khoảng cách từ x tới y bằng chiều dài của vectơ đi từ x tới y.

Khoảng cách có các tính chất quan trọng sau:

Mệnh đề 1.1.3. Với mọi $x, y, z \in \mathbb{R}^n$ thì:

- (a) $d(x,y) \ge 0$,
- (b) d(x,y) = 0 khi và chỉ khi x = y,
- $(c) \ d(x,y) = d(y,x),$
- (d) $d(x,y) \le d(x,z) + d(z,y)$ (bất đẳng thức tam giác).

Trên \mathbb{R}^n ta còn có một tích vô hướng của hai vectơ, tổng quát hóa tích của số thực và tích vô hướng trong \mathbb{R}^2 , \mathbb{R}^3 mà ta đã biết, và cũng được gọi là **tích vô hướng Euclid**, còn gọi là **tích trong Euclid**, cho bởi

$$x \cdot y = \langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Phép toán tích vô hướng có các tính chất sau:

Mệnh đề 1.1.4. Với mọi $x, y, z \in \mathbb{R}^n$, với mọi $\alpha \in \mathbb{R}$ thì:

- (a) $x \cdot x \ge 0$,
- (b) $x \cdot x = 0$ khi và chỉ khi x = 0.
- (c) $x \cdot y = y \cdot x$
- (d) $x \cdot (y+z) = x \cdot y + x \cdot z$,
- (e) $(\alpha x) \cdot y = \alpha(x \cdot y)$,

Ta có ngay quan hệ giữa tích vô hướng và độ lớn: $||x|| = \sqrt{x \cdot x}$. Như vậy chiều dài, khoảng cách, và tích vô hướng Euclid của \mathbb{R}^n có quan hệ gắn bó với nhau.

Mỗi phần tử x của tập hợp \mathbb{R}^n có nhiều vai trò tùy theo khía cạnh mà ta quan tâm: là một vectơ nếu ta quan tâm tới phép toán vectơ, hay là một $\operatorname{di\acute{e}m}$ nếu ta quan tâm hơn tới khoảng cách. Chính vì vậy một phần tử của \mathbb{R}^n khi thì được gọi là một vectơ, khi thì được gọi là một điểm. Người đọc không nên bị rối bởi điều này. Cũng vì lí do này mà ta không nhất thiết phải dùng kí hiệu khác nhau để phân biệt điểm hay vectơ.

Không gian \mathbb{R}^n có một bộ đặc biệt các vecto

$$(\mathbf{e}_1 = (1, 0, ..., 0), \mathbf{e}_2 = (0, 1, ..., 0), ..., \mathbf{e}_n = (0, 0, ..., 1))$$

có tính chất là với một vect
ơx bất kì trong \mathbb{R}^n thì

$$x = \sum_{i=1}^{n} x_i e_i.$$

Bộ trên được gọi là \mathbf{co} sở \mathbf{vecto} chính \mathbf{tac} của \mathbb{R}^n . Người ta nói rằng n là \mathbf{so} $\mathbf{chiều}$ của \mathbb{R}^n , bởi vì \mathbb{R}^n có một cơ sở vecto gồm đúng n phần tử, và mọi phần tử của \mathbb{R}^n đều nhận được từ cơ sở đó bằng phép cộng vecto và phép nhân với số thực.

1.1.2 Tập mở và tập đóng trong \mathbb{R}^n

Với khoảng cách và độ dài Euclid, ta có thể xây dựng tập mở, đóng, là cấu trúc thích hợp cho khái niệm giới hạn và liên tục.

Cho $x \in \mathbb{R}^n$ và $\epsilon > 0$. Các tập hợp

$$B(x,\epsilon) = \{ y \in \mathbb{R}^n \mid ||x - y|| < \epsilon \}$$

$$B'(x,\epsilon) = \{ y \in \mathbb{R}^n \mid ||x - y|| \le \epsilon \}$$

$$S(x,\epsilon) = \{ y \in \mathbb{R}^n \mid ||x - y|| = \epsilon \}$$

lần lượt được gọi là quả cầu (mở), quả cầu đóng, và mặt cầu tâm x bán kính ε trong \mathbb{R}^n . Vậy một quả cầu mở là tập hợp tất cả các điểm có khoảng cách tới một điểm cho trước nhỏ hơn một số cho trước. Đây rõ ràng là một phát triển của khái niệm khoảng, hình tròn, quả cầu trong trường hợp n=1,2,3.

Điểm x được gọi là một điểm trong của một tập $D \subset \mathbb{R}^n$ nếu có một số $\epsilon > 0$ sao cho quả cầu $B(x,\epsilon)$ được chứa trong D.

Tập tất cả các điểm trong của D được gọi là $phần\ trong$ của D được ký hiệu là $\overset{\circ}{D}$. Tập hợp D được gọi là một $t\hat{q}p\ m\vec{o}$ nếu mọi điểm của D đều là điểm trong của D.

Ví dụ 1.1.5. Quả cầu $B(x,\epsilon)$ là một tập mở.

Điểm $x \in \mathbb{R}^n$ được gọi là một **điểm biên** của tập $D \subset \mathbb{R}^n$ nếu một quả cầu $B(x,\epsilon)$ bất kì chứa ít nhất một điểm thuộc D và một điểm không thuộc D. Tập các điểm biên của D kí hiệu là ∂D , và được gọi là **biên** của D.

Rỗ ràng, điểm trong của D thì nằm trong D, còn điểm biên của D có thể thuộc D và cũng có thể không thuộc D.

Ví dụ 1.1.6. Mặt cầu $S(x,\epsilon)$ là biên của quả cầu $B(x,\epsilon)$.

Tập $D \subset \mathbb{R}^n$ được gọi là một $t\hat{q}p$ đóng nếu D chứa mọi điểm biên của nó.

Ví dụ 1.1.7. Quả cầu đóng $B'(x,\epsilon)$ và mặt cầu $S(x,\epsilon)$ là các tập đóng.

Ví dụ 1.1.8. Tập $C = \{(x, y, z) \in \mathbb{R}^3 \mid a \le x < b, \ a \le y < b, \ a \le z < b\}$ không là tập mở, cũng không là tập đóng trong \mathbb{R}^3 .

Điểm $x \in \mathbb{R}^n$ được gọi là một điểm tụ hay điểm giới hạn của tập $D \subset \mathbb{R}^n$ nếu một quả cầu $B(x,\epsilon)$ bất kì chứa ít nhất một điểm thuộc D khác với x.

Người ta thường dùng thuật ngữ $l\hat{a}n$ của một điểm trong \mathbb{R}^n để chỉ một tập mở của \mathbb{R}^n chứa điểm đó.

1.1.3 Hình học trong \mathbb{R}^n

Cho hai vecto u và v trong \mathbb{R}^n . Góc giữa hai vecto u và v là số thực $\theta \in [0, \pi]$ thỏa

$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|}.$$

Như thế ta được công thức

$$u \cdot v = ||u|| \, ||v|| \cos \theta.$$

Ta nói u vuông góc, hay trực giao với v nếu $u \cdot v = 0$, tức là góc giữa chúng là $\pi/2$, kí hiệu là $u \perp v$.

Hai vectơ là $cùng \ phương$ nếu góc giữa chúng bằng 0 hoặc π , tức là một vectơ là bội của vectơ kia. Hai vectơ là $cùng \ hướng$ nếu góc giữa chúng bằng 0, tức là một vectơ là bội dương của vectơ kia.

Nếu $v \neq 0$ thì vectơ đơn vị theo chiều của v là $\frac{v}{\|v\|}$. **Hình chiếu** của u lên v là vectơ cùng chiều với v có độ lớn bằng $|u \cdot \frac{v}{\|v\|}|$, tức là vectơ $\frac{u \cdot v}{\|v\|^2} v$.

Cho hai vecto trong \mathbb{R}^3 , $u=(u_1,u_2,u_3)$ và $v=(v_1,v_2,v_3)$. **Tích có hướng** của hai vecto này, kí hiệu là $u\times v$, được định nghĩa là vecto

$$u \times v = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

Một tính chất căn bản của tích có hướng mà ta kiểm được ngay là $(u \times v) \perp u$ và $(u \times v) \perp v$. Như vậy tích có hướng của hai vectơ vuông góc với hai vectơ ấy. Ngoài ra tích có hướng bằng vectơ 0 khi và chỉ khi hai vectơ là cùng phương.

1.2 Hàm số nhiều biến. Giới hạn và sự liên tục

Trong đời sống, một đại lượng thường phụ thuộc vào nhiều đại lượng khác. Ví dụ nhiệt độ phụ thuộc vào vị trí và thời gian; giá cả của một hàng hoá trên thị trường phụ thuộc vào chi phí sản xuất, sản lượng cung cấp, nhu cầu thị trường. Người đọc có thể đưa ra những ví dụ khác. Như thế để khảo sát các đại lượng trong đời sống chúng ta cần những hàm có nhiều biến.

Chúng ta có định nghĩa hàm số nhiều biến như sau:

Định nghĩa 1.2.1. Cho một tập không rỗng $D \in \mathbb{R}^n$, ánh xạ

$$f: D \longrightarrow \mathbb{R}$$

 $x = (x_1, ..., x_n) \longmapsto f(x) = f(x_1, ..., x_n)$

được gọi là một hàm số được xác định trên D. Ta gọi D là tập xác định, f là hàm số, x là biến số, f(x) là giá trị của f tại x.

Đồ thị của hàm số f là tập hợp tất cả các điểm $(x_1,...,x_n,y)$ trong không gian \mathbb{R}^{n+1} sao cho $y = f(x_1,...,x_n)$.

- **Ví dụ 1.2.2.** (a) Hàm số $f: D \to \mathbb{R}$ với $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ và $z = f(x,y) = \sqrt{1-x^2-y^2}$ có đồ thị là nửa mặt cầu có tâm tại gốc tọa độ O và bán kính 1 nằm trong nửa không gian trên $z \ge 0$.
 - (b) Đồ thị của hàm số $z=f(x,y)=\sqrt{x^2+y^2}$ là mặt nón tròn xoay quanh trục Oz, nằm trong nửa không gian trên $z\geq 0$.

1.2.1 Giới hạn của hàm số nhiều biến

Định nghĩa 1.2.3. Cho hàm số f xác định trên tập $D \subset \mathbb{R}^n$ theo biến x và a là một điểm tụ của D. Ta nói hàm f có giới hạn $L \in \mathbb{R}$ khi x dần đến a nếu

$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x \in D, 0 < ||x - a|| < \delta \Rightarrow |f(x) - L| < \epsilon.$$

Khi đó ta viết $\lim_{x\to a} f(x) = L$, hoặc viết $f(x) \to L$ khi $x \to a$.

Chúng ta thấy định nghĩa của giới hạn của hàm nhiều biến không khác gì với định nghĩa của giới hạn của hàm một biến (xem [Bmgt1]). Ý nghĩa của định nghĩa này cũng không có gì khác: $Giới \ hạn \ của \ f(x) \ là \ L \ khi \ x \ tiến \ tới \ a \ nếu khoảng cách giữa <math>f(x)$ và L nhỏ tùy ý miễn khoảng cách giữa x và a đủ nhỏ.

Như vậy giới hạn của hàm một biến là trường hợp n = 1 của giới hạn của hàm nhiều biến, và ta thừa hưởng mọi tính chất đã có trong Vi Tích phân Hàm một biến.

Trong một số trường hợp đơn giản hơn, có thể hiểu giới hạn một cách thô sơ: khi x gần tới a hơn thì f(x) gần tới L hơn.

Ghi chú 1.2.4. Trong định nghĩa trên ta cho phép điểm a là điểm tụ của miền xác định D, không nhất thiết thuộc D. Điều này là để chúng ta có thể xét những giới hạn như

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+4y^2}.$$

Ở đó chúng ta cho (x,y) dần tới (0,0) mà không bằng (0,0), nơi hàm không được xác định. Điều này giải thích điều kiện $0 < \|x - a\|$ trong định nghĩa.

Một số tính chất của giới hạn dưới đây có thể được giải thích và chứng minh từ định nghĩa, tương tự như với hàm một biến.

Mệnh đề 1.2.5. $Gi \mathring{a} s \mathring{u} f, g : D \to \mathbb{R}^n$ là hai hàm số có giới hạn khi $x \to a$. Khi đó:

- (a) $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$
- (b) $\lim_{x\to a} [kf(x)] = k \lim_{x\to a} f(x)$ với k là một hằng số,
- $(c) \lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x),$
- $(d) \ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \ n \acute{e} u \ \lim_{x \to a} g(x) \neq 0.$
- (e) $N\hat{e}u \ f \leq g \ thi \lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$.

Dưới đây là một hệ quả thường được dùng:

Hệ quả 1.2.6 (tiêu chuẩn kẹp). $Gi\mathring{a} s\mathring{u} f, g, h : D \to \mathbb{R} v \grave{a} f \leq g \leq h$. $Gi\mathring{a} s\mathring{u} f v \grave{a} h$ có cùng giới hạn L khi $x \to a$. Khi đó g cũng có giới hạn $l \grave{a} L$ khi $x \to a$.

Trong môn này phần lớn chúng ta làm việc trên \mathbb{R}^2 , để dễ hình dung cũng như thực hiện các tính toán hơn.

Ví dụ 1.2.7. Tìm giới hạn

$$\lim_{(x,y)\to(1,0)} (x^3 + y^3) \sin\left(\frac{1}{x^2 + y^2}\right).$$

Chúng ta có thể thấy rằng

$$\lim_{(x,y)\to(1,0)} (x^3+y^3) \sin\left(\frac{1}{x^2+y^2}\right) = 1 \cdot \sin(1/1) = \sin 1.$$

Một lý luận chi tiết có thể dùng các tính chất cơ bản trên của giới hạn và tính liên tục của hàm sin.

Ví dụ 1.2.8. Tìm giới hạn

$$\lim_{(x,y)\to(0,0)} (x^3 + y^3) \sin\left(\frac{1}{x^2 + y^2}\right).$$

Đặt $f(x,y) = (x^3 + y^3) \sin\left(\frac{1}{x^2 + y^2}\right)$. Hàm số f này xác định trên $\mathbb{R}^2 \setminus \{(0,0)\}$. Ta có $0 \le |f(x,y)| \le |x^3 + y^3|$. Vì $x^3 + y^3 \to 0$ khi $(x,y) \to (0,0)$ nên theo tiêu chuẩn kẹp thì $\lim_{(x,y)\to(0,0)} |f(x,y)| = 0$, do đó $\lim_{(x,y)\to(0,0)} f(x,y) = 0$. Vậy

$$\lim_{(x,y)\to(0,0)} (x^3 + y^3) \sin\left(\frac{1}{x^2 + y^2}\right) = 0.$$

Ta có thể mở rộng khái niệm giới hạn bằng vô hạn tương tự như với hàm một biến.

Ví dụ 1.2.9. Ta có

$$\lim_{(x,y)\to(0,1)} \frac{1+y}{x^2} = +\infty.$$

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2+1}{y^2+z^2} = +\infty.$$

Giới hạn của hàm số thông qua dãy

Tương tự như trường hợp hàm một biến, ta có khái niệm giới hạn của dãy trong \mathbb{R}^n . Định nghĩa không có gì khác trong trường hợp n=1. Ta nói rằng một dãy các điểm x_m , $m \in \mathbb{Z}^+$ trong \mathbb{R}^n hội tụ tới x nếu $\lim_{m\to\infty} ||x_m-x||=0$. Khi đó ta viết $\lim_{m\to\infty} x_m=x$.

Do định nghĩa của khoảng cách và độ lớn Euclid, ta có thể thấy giới hạn của dãy tương đương với giới hạn của từng tọa độ, tức là nếu viết $x_m = (x_m^1, x_m^2, \dots, x_m^n)$ và $x = (x^1, x^2, \dots, x^n)$ thì

$$\lim_{m \to \infty} (x_m^1, x_m^2, \dots, x_m^n) = (x^1, x^2, \dots, x^n) \Leftrightarrow \lim_{m \to \infty} x_m^1 = x^1, \lim_{m \to \infty} x_m^2 = x^2, \dots, \lim_{m \to \infty} x_m^n = x^n.$$

Chúng ta có một liên hệ giữa hội tụ của dãy và hội tụ của hàm số:

Mệnh đề 1.2.10. Hàm f có giới hạn L khi x dần đến a khi và chỉ khi với mọi dãy $(x_m)_{m\in\mathbb{Z}^+}$ mà $x_m\neq a$ thì

$$\lim_{m \to \infty} x_m = a \Rightarrow \lim_{m \to \infty} f(x_m) = L.$$

Người đọc có thể thử giải thích kết quả này. Có thể chứng minh nó bằng lý luận xuất phát từ đinh nghĩa.

1.2.2 Hàm số liên tục

Định nghĩa 1.2.11. Cho hàm số f xác định trên tập $D \subset \mathbb{R}^n$, ta nói f *liên tục* tại $a \in D$ nếu

$$\lim_{x \to a} f(x) = f(a).$$

Hàm f được gọi là liên tục trên D nếu nó liên tục tại mọi điểm thuộc D.

Một lần nữa, khái niệm liên tục trong \mathbb{R}^n không có gì khác với liên tục trong \mathbb{R} . Nó vẫn có ý nghĩa là: **thay đổi giá trị của hàm là nhỏ tùy ý nếu thay đổi giá trị của biến là đủ nhỏ**. Như vậy tính liên tục cho phép ta kiểm soát được sai số.

Các khái niệm và kết quả về sự liên tục đối với hàm một biến vẫn còn giữ nguyên cho trường hợp hàm nhiều biến. Các kết quả về tính liên tục của tổng, hiệu, tích, thương, hàm hợp của các hàm liên tục, vẫn còn giữ nguyên cho trường hợp hàm nhiều biến, và có thể được suy ra ngay từ các tính chất tương ứng của sự hội tụ.

Ví dụ 1.2.12. Xét sự liên tục của hàm số

$$f(x,y) = \begin{cases} \frac{(xy)^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Ta thấy hàm f liên tục tại mọi điểm $(x,y) \neq (0,0)$. Xét tại (0,0). Theo bất đẳng thức Cauchy

$$0 \le |xy| \le \frac{x^2 + y^2}{2},$$

do đó

$$\frac{(xy)^2}{x^2+y^2} \le \frac{(x^2+y^2)^2}{4(x^2+y^2)} = \frac{x^2+y^2}{4},$$

suy ra

$$0 \le \lim_{(x,y)\to(0,0)} f(x,y) \le \lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{4} = 0.$$

Vậy $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$. Như vậy f liên tục tại mọi điểm trên miền xác định.

Bài tập

1.2.1. Tìm

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+4y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{x^2+y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{(\sin^2 x)y}{x^2 + y^2}$$

1.2.2. Hàm

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

có liên tục hay không?

1.3 Đạo hàm của hàm số

1.3.1 Đạo hàm riêng phần

Cho một hàm số nhiều biến $z = f(x) = f(x_1, x_2, ..., x_n)$ xác định trên một tập mở $D \subset \mathbb{R}^n$. Xét điểm $a = (a_1, a_2, ..., a_n) \in D$. Ta giả sử D là một tập mở, hoặc thay vào đó, một cách tương đương đối với vấn đề đạo hàm, giả sử a là một điểm trong của b. Cố định b0 b1 b1 b2 b3 b4 hàm chỉ theo một biến là b5.

Nếu hàm này có đạo hàm tại $x_1 = a_1$ thì đạo hàm đó gọi là đạo hàm riêng phần của hàm $z = f(x_1, x_2, \dots, x_n)$ theo biến x_1 (biến thứ nhất) tại điểm $a = (a_1, a_2, \dots, a_n)$.

Đạo hàm riêng phần thực chất là đạo hàm theo một biến số khi tất cả các biến còn lại nhận giá trị cố định. Như vậy đạo hàm riêng phần cũng chỉ là đạo hàm.

Khi tính đạo hàm riêng theo biến nào thì ta coi các biến còn lại như là hằng số, và tính đạo hàm theo biến đang xét theo cách tính đạo hàm của hàm một biến.

Chính thức, từ định nghĩa của đạo hàm của hàm một biến, ta có định nghĩa sau:

Định nghĩa 1.3.1. Cho $f: D \subset \mathbb{R}^n \to \mathbb{R}$ và $a = (a_1, a_2, \dots, a_n)$ là một điểm trong của D. Giới hạn

$$\lim_{h_1\to 0} \frac{f(a_1+h_1,a_2,\ldots,a_n)-f(a_1,a_2,\ldots,a_n)}{h_1},$$

nếu có, được gọi là **đạo hàm riêng** theo biến thứ nhất của f tại a.

Giả thiết a là điểm trong của miền xác định là để đảm bảo tồn tại $f(a_1+h_1,a_2,\ldots,a_n)$ khi h_1 đủ nhỏ.

Ta kí hiệu đạo hàm riêng phần trên bởi một trong các cách sau: $f_{x_1}(x)$, $f'_{x_1}(x)$, $f'_{1}(x)$, $D_1 f(x)$, $\frac{\partial f}{\partial x_1}(x)$, hay $\frac{\partial z}{\partial x_1}(x)$.

Ghi chú 1.3.2. Giải thích của chúng ta rằng đạo hàm riêng là đạo hàm khi chỉ một biến thay đổi có nghĩa chính xác như sau: nếu ta đặt $g(x_1) = f(x_1, a_2, \ldots, a_n)$ thì g là hàm chỉ theo một biến là x_1 và $\frac{\partial f}{\partial x_1}(a)$ chính là $g'(a_1)$.

Ý nghĩa của đạo hàm riêng là ý nghĩa của đạo hàm mà ta đã biết: đạo hàm riêng đo tỉ lệ thay đổi giữa giá trị của hàm với giá trị của biến đang xét tại điểm đang xét. Giá trị của đạo hàm riêng theo một biến cho thấy hàm đang thay đổi như thế nào theo biến đó. Vì thế mỗi khi muốn khảo sát sự thay đổi của các đại lượng người ta thường thấy sự xuất hiện của đạo hàm riêng. ¹

Ví dụ 1.3.3. cho $f(x,y)=x^3y^2$. Muốn tính $\frac{\partial f}{\partial x}$ ta xem y như hằng số và biến số là x, như thế $\frac{\partial f}{\partial x}(x,y)=3x^2y^2$. Tương tự, $\frac{\partial f}{\partial y}(x,y)=2x^3y$.

Khi f có đạo hàm riêng theo tất cả các biến tại x thì ta gọi $gradient^2$ của f tại x, ký hiệu grad f(x) hay $\nabla f(x)$ (nabla) là vectơ mà các thành phần là các đạo hàm riêng:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right).$$

Ví dụ 1.3.4. Xét hàm $f: \mathbb{R}^2 \to \mathbb{R}$ xác định bởi $f(x,y) = x^2 + y^2$. Tính $\nabla f(0,1)$. Ta có $\frac{\partial f}{\partial x}(x,y) = 2x$, do đó $\frac{\partial f}{\partial x}(0,1) = 0$. Tương tự $\frac{\partial f}{\partial y} = 2y$, do đó, $\frac{\partial f}{\partial y}(0,1) = 2$. Vậy $\nabla f(0,1) = (0,2)$.

1.3.2 Mặt phẳng tiếp xúc và Xấp xỉ tuyến tính

Giả sử f(x,y) có đạo hàm riêng tại điểm (a,b). Đặt r(x,y)=(x,y,f(x,y)). Ảnh của r chính là đồ thị của f. Nếu ta cố định y=b thì r(x,y) trở thành một đường đi trên đồ thị của f. Vận tốc của đường đi đó là $r_x(a,b)=\frac{\partial}{\partial x}r(a,b)=(1,0,f_x(a,b))$. Vectơ này "tiếp xúc" với đồ thị của f tại điểm (a,b,f(a,b)). Tương tự, cố định x=a ta được một vectơ tiếp xúc nữa là $r_y(a,b)=(0,1,f_y(a,b))$. Hai vectơ tiếp xúc này căng một mặt phẳng, được

 $^{^{1}}$ Thuật ngữ đạo hàm trong tiếng Anh là derivative, có nghĩa là dẫn xuất, từ một cái khác mà ra: đạo hàm của một hàm là một hàm dẫn xuất từ hàm ban đầu.

²trong tiếng Anh gradient có nghĩa là dốc, nghiêng, . . .

gọi là mặt phẳng tiếp xúc của đồ thị của f ở điểm (a,b). Mặt phẳng này có một vecto pháp tuyển là $r_x(a,b) \times r_y(a,b) = (-f_x(a,b), -f_y(a,b), 1)$. Từ đó ta có một phương trình cho mặt phẳng tiếp xúc của đồ thị của hàm f tại điểm (a,b,f(a,b)) là

$$-(x-a)f_x(a,b) - (y-b)f_y(a,b) + (z-f(a,b)) = 0,$$

hay

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$
(1.3.1)

Ý chính của xấp xỉ tuyến tính là dùng mặt phẳng tiếp xúc để xấp xỉ đồ thị. Như thế với $(x,y)\approx (a,b)$ ta có xấp xỉ

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

Môt cách viết khác là

$$\Delta f(x,y) \approx f_x(a,b)\Delta x + f_y(a,b)\Delta y.$$

1.3.3 Đạo hàm riêng cấp cao

Ta biết đạo hàm cấp cao của hàm một biến số được định nghĩa theo quy nạp: đạo hàm cấp n bằng đạo hàm của đạo hàm cấp (n-1). Đối với hàm nhiều biến khái niệm tương ứng là đạo hàm riêng và đạo hàm riêng cấp cao.

Cho $f:D\subset\mathbb{R}^n\to\mathbb{R}$. Nếu $\frac{\partial f}{\partial x_i}$ tồn tại tại mọi điểm $x\in D$ thì ta có một hàm mới

$$\frac{\partial f}{\partial x_i}: D \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{\partial f}{\partial x_i}(x).$$

Ta lại có thể xét đạo hàm riêng của hàm $\frac{\partial f}{\partial x_i}$ này, tức là

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right).$$

Các đạo hàm này, nếu có, được gọi là các đạo hàm riêng cấp 2 của f. Ta thường dùng ký hiêu

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_i \partial x_i} = f_{x_i x_j}.$$

Tương tự, nếu f có các đạo hàm riêng cấp 2 tại mọi điểm của D thì đạo hàm riêng theo các biến của các đạo hàm riêng cấp 2 này gọi là đạo hàm riêng cấp 3 của f, ký hiệu là

$$\frac{\partial}{\partial x_k} \left(\frac{\partial^2 f}{\partial x_j \partial x_i} \right) = \frac{\partial^3 f}{\partial x_k \partial x_j \partial x_i} = f_{x_i x_j x_k}.$$

Ví dụ 1.3.5. Hàm $f(x,y) = x^3y^4 - 4xy^2$ có $f_x(x,y) = 3x^2y^4 - 4y^2$, $f_y(x,y) = 4x^3y^3 - 8xy$. Các đạo hàm cấp 2 là $f_{xx}(x,y) = 6xy^4$, $f_{xy}(x,y) = 12x^2y^3 - 8y = f_{yx}(x,y)$, $f_{yy}(x,y) = 12x^3y^2 - 8x$.

Ví dụ 1.3.6. Hàm
$$f(x,y) = x^2 e^y + x^3 y^2 - y^5$$
 có $f_x(x,y) = 2x e^y + 3x^2 y^2$, $f_y(x,y) = x^2 e^y + 2x^3 y - 5y^4$, $f_{xy}(x,y) = 2x e^y + 6x^2 y = f_{yx}(x,y)$.

Trong các ví dụ trên ta thấy $f_{xy} = f_{yx}$. Đây không phải là tình cờ. Định lý sau cho biết một điều kiện đủ để hai đạo hàm riêng hỗn hợp bằng nhau.

11

Định lý 1.3.7. Nếu $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có tất cả các đạo hàm riêng cấp 2 liên tục trên D

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

 $tr\hat{e}n \ D, \ v\acute{o}i \ moi \ i,j=1,2,...,n.$

Vậy nếu các đạo hàm riêng liên tục thì thứ tự lấy đạo hàm không ảnh hưởng tới kết quả.

Chứng minh. Ta viết chúng minh cho trường hợp n=2 cho dễ theo dõi hơn. Trường hợp tổng quát không có gì khác về nôi dung. Theo định nghĩa

$$\begin{split} f_{yx}(a,b) &= \lim_{h \to 0} \frac{f_y(a+h,b) - f_y(a,b)}{h} \\ &= \lim_{h \to 0} \frac{\lim_{k \to 0} f(a+h,b+k) - f(a+h,b)}{k} - \frac{\lim_{k \to 0} f(a,b+k) - f(a,b)}{k} \\ &= \lim_{h \to 0} \lim_{k \to 0} \frac{1}{hk} [(f(a+h,b+k) - f(a+h,b)) - (f(a,b+k) - f(a,b))]. \end{split}$$

Đặt
$$g(x) = f(x, b + k) - f(x, b)$$
 thì

$$[f(a+h,b+k) - f(a+h,b)] - [f(a,b+k) - f(a,b)] = g(a+h) - g(a).$$

Vì g khả vi liên tục nên theo Định lý giá trị trung bình (xem [Bmgt1]) có một số θ giữa a và a+h sao cho $g(a+h)-g(a)=g'(\theta)h$. Chú ý $g'(x)=f_x(x,b+k)-f_x(x,b)$, ta được

$$[f(a+h,b+k)-f(a+h,b)]-[f(a,b+k)-f(a,b)]=[f_x(\theta,b+k)-f_x(\theta,b)]h.$$

Vì $f_x(\theta,y)$ là hàm khả vi liên tục theo biến y nên lại theo Định lý giá trị trung bình có một số δ giữa b và b+k sao cho $f_x(\theta,b+k)-f_x(\theta,b)=f_{xy}(\theta,\delta)k$. Vậy

$$f_{yx}(a,b) = \lim_{h \to 0} \lim_{k \to 0} f_{xy}(\theta, \delta).$$

Chú ý θ và δ phụ thuộc vào (h,k). Khi h và k đủ nhỏ thì (θ,δ) đủ gần (a,b), và vì f_{xy} liên tục nên $f_{xy}(\theta, \delta)$ gần tùy ý $f_{xy}(a, b)$. Do đó giới hạn ở vế phải bằng $f_{xy}(a, b)$.

Bài tập

1.3.1. Cho

$$f(x,y) = \int_x^y \sqrt{1+t^3} \ dt.$$

Tìm
$$\frac{\partial f}{\partial x}(1,2)$$
 và $\frac{\partial f}{\partial y}(1,2)$.

1.3.2. Tìm một xấp xỉ tuyến tính của hàm $f(x,y) = x - xy + y^2$ gần điểm (x,y) = (5,6). Viết phương trình cho mặt phẳng tiếp xúc của đồ thị ở điểm (x,y)=(5,6). Ước lượng f(5.1,5.9).

1.3.3. Cho
$$f_v(10,20) = -5$$
, $f_x(10,20) = 1$, $f(10,20) = 45$. Hãy ước lượng $f(11,18)$.

1.3.4. Tìm xấp xỉ tuyến tính của hàm $f(x,y) = x^2y^3$ gần điểm (x,y) = (2,1).

1.3.5. Chứng tỏ với mỗi c, hàm $u(x,t) = (2\cos(ct) + 3\sin(ct))\sin(x)$ là nghiệm của phương trình sóng $u_{tt} = c^2 u_{xx}$.

1.4 Đạo hàm của hàm vectơ

Tổng quát hơn hàm số ta có hàm vectơ. Đó đơn giản là những ánh xạ $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$. Mỗi hàm vectơ f như vậy là một bộ của m hàm số của n biến, cụ thể nếu ta viết

$$f(x_1, x_2, \dots, x_n) = (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n))$$

thì $f = (f_1, f_2, \dots, f_m)$ trong đó các f_i là các hàm số của n biến.

Ví dụ 1.4.1. Một ánh xạ $r:(a,b)\subset\mathbb{R}\to\mathbb{R}^m$, $r(t)=(x_1(t),x_2(t),\ldots,x_m(t))$ thường được gọi là một đường đi trong \mathbb{R}^m , mô hình hóa chuyển động trong không gian theo thời gian.

Ví dụ 1.4.2. Hàm vectơ có thể được dùng để biểu diễn đường hay chuyển động trong không gian. Chẳng hạn hàm $t \mapsto (x(t) = \cos t, y(t) = \sin t, z(t) = t)$ được gọi là một đường xoắn.

Vì không gian đến \mathbb{R}^m có sẵn khoảng cách Euclid, nên khái niệm hội tụ và liên tục có thể mở rộng từ hàm số lên hàm vectơ mà không thay đổi nội dung.

Ma trận các đạo hàm riêng của f tại x được gọi là ma trận $Jacobi^3$ của f tại x, kí hiệu là $J_f(x) = \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{1 \leq i \leq m, \ 1 \leq j \leq n}$.

Ví dụ 1.4.3. Khi m=1 ma trận Jacobi $J_f(x)$ chính là vecto gradient

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right).$$

1.4.1 Sư khả vi

Với hàm một biến ta đã thấy

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Nếu đạo hàm f'(x) tồn tại thì ta có thể viết

$$\epsilon(h) = \frac{f(x+h) - f(x)}{h} - f'(x)$$

và

$$f(x+h) = f(x) + f'(x)h + \epsilon(h)h,$$

với $\lim_{h\to 0} \epsilon(h) = 0$.

Giờ ta làm tương tự cho hàm nhiều biến. Cho x là một điểm trong của D. Nếu có một hàm tuyến tính $f'(x): \mathbb{R}^n \to \mathbb{R}^m$ sao cho có một quả cầu $B(x,\epsilon) \subset D$ và một hàm $r: B(x,\epsilon) \to \mathbb{R}^m$ thỏa mãn:

$$f(x+h) = f(x) + f'(x)(h) + r(h), \forall h \in B(x,\epsilon)$$

và $\lim_{h\to 0} \frac{r(h)}{\|h\|} = 0$, thì ánh xạ f'(x) (còn được kí hiệu là df(x)) được gọi là dao hàm của f tại x.

Khi hàm f có đạo hàm tại x thì f được gọi là $kh \stackrel{a}{o} vi$ (có vi phân) tại x.

 $^{^3{\}rm Jacobi}$ là họ của một nhà toán học sống vào thế kỉ 19

Đạo hàm cho một xấp xỉ tuyến tính của hàm:

$$f(x+h) \approx f(x) + f'(x)(h)$$
.

Hàm khả vi có nghĩa là hàm có thể được xấp xỉ "tốt" bằng xấp xỉ tuyến tính. Đạo hàm chính là xấp xỉ tuyến tính đó.

Có thể thấy ngay nếu hàm khả vi thì nó liên tục.

Trong định nghĩa đạo hàm nếu lấy $h = e_i$ thì ta được ngay: Nếu hàm f có đạo hàm thì nó có các đạo hàm riêng, và ánh xạ đạo hàm f'(x) được biểu diễn trong cơ sở chuẩn tắc $(e_i)_{1 \le i \le n}$ bởi ma trận Jacobi $J_f(x)$.

Ngược lại, nếu tất cả các đạo hàm riêng của các hàm thành phần của f tồn tại và liên tuc tai x thì ta nói f khả vi liên tuc hay tron tai x. Ta có:

Mệnh đề 1.4.4. Nếu f khả vi liên tục tại x thì f có đạo hàm tại x, và ánh xạ tuyến tính f'(x) có thể biểu diễn trong cơ sở tuyến tính chuẩn tắc của \mathbb{R}^n bởi ma trận Jacobi $J_f(x)$, tức là $f'(x)(h) = J_f(x) \cdot h$, trong đó phép nhân bên vế phải là phép nhân ma trận.

Lưu ý là tổng quát ở mọi số chiều, người ta coi đạo hàm tại một điểm là một ánh xạ tuyến tính, không phải một bộ số. Bộ số này chỉ đóng vai trò làm ma trận biểu diễn cho ánh xạ tuyến tính. Tuy vậy trong môn học này để cụ thể hơn ta thường đồng nhất ánh xạ đạo hàm tại một điểm với ma trận Jacobi biểu diễn ánh xạ đó.

1.4.2 Đạo hàm theo hướng. Ý nghĩa của vectơ gradient

Cho hàm $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ và x là một điểm trong của D. Đạo hàm của hàm f tại điểm x theo hướng vecto $u\in\mathbb{R}^n$ được định nghĩa là

$$D_u f(x) = \lim_{t \to 0} \frac{f(x + tu) - f(x)}{t}.$$

Đây là tỉ lệ thay đổi của hàm theo biến của nó khi biến chỉ được thay đổi theo hướng cho trước.

Trong định nghĩa của đạo hàm, lấy h = tu ta được

$$f'(x)(u) = \lim_{t \to 0} \frac{f(x+tu) - f(x)}{t} = D_u f(x).$$

Vậy f'(x)(u) bằng đạo hàm của f tại x theo hướng u, đo tỉ lệ thay đổi của f tại x theo hướng u.

Người ta thường qui ước lấy các vectơ có độ dài bằng 1 để chỉ hướng, mục đích là để chiều dài của vectơ chỉ hướng không làm ảnh hưởng tới các khái niệm liên quan tới hướng.

Đặt
$$g(h) = f(x + hu)$$
 thì $D_u f(x) = \frac{dg}{dh}(0) = g'(0)$. Dùng đạo hàm hàm hợp ta được

$$g'(0) = f'(x) \circ \frac{d}{dh}(x + hu)\Big|_{h=0} = J_f(x) \cdot u.$$

Vậy

$$D_u f(x) = J_f(x) \cdot u.$$

Trong phần còn lại của mục này ta xét trường hợp riêng f là hàm số.

Từ trường hợp tổng quát ta có công thức biểu diễn đạo hàm theo hướng qua vectơ gradient:

$$D_u f(x) = \nabla f(x) \cdot u. \tag{1.4.1}$$

Từ đó ta suy ra $D_u(f)(x) = \nabla f(x) \cdot u$ là lớn nhất khi và chỉ khi vectơ đơn vị u có cùng hướng với $\nabla f(x)$, tức là $u = \frac{\nabla f(x)}{\|\nabla f(x)\|}$. Giá trị lớn nhất của $D_u(f)(x)$ là $\|\nabla f(p)\|$. Vậy $\boldsymbol{gi\acute{a}}$

trị của hàm tăng nhanh nhất theo hướng của vectơ gradient. Tương tự, giá trị của hàm giảm nhanh nhất theo hướng đối của vectơ gradient.

Với mỗi số thực c cố định, phương trình f(x) = c xác định tập $C = f^{-1}(\{c\})$, được gọi là tập mức của hàm f ứng với mức c. Giả sử x_0 là một điểm thuộc C. Giả sử x = r(t) là một đường trong C đi qua điểm x_0 , với $r(0) = x_0$. Ta luôn có f(r(t)) = c, do đó lấy đạo hàm theo t ta được $\nabla f(r(t)) \cdot r'(t) = 0$, đặc biệt $\nabla f(x_0) \cdot r'(0) = 0$. Điều này có nghĩa là vecto $\nabla f(x_0)$ phải vuông góc với vecto r'(0). Mà vecto r'(0) là vecto vận tốc của đường r tại điểm r(0), là một vecto tiếp xúc bất kì của tập C tại điểm x_0 , ta đi đến một quan sát quan trọng: vecto gradient của một hàm luôn vuông góc với tập mức của hàm đó và chỉ theo hướng tăng của mức. Điều kiện cho điều này chỉ đơn giản là vecto gradient là khác 0, đây là một ứng dụng của định lý hàm ẩn cho hàm nhiều biến, được trình bày trong các khảo sát nâng cao hơn.

Trong trường hợp n=3, phương trình f(x,y,z)=c xác định một mặt cong trong \mathbb{R}^3 , và tại một điểm (x_0,y_0,z_0) trên mặt này thì vectơ gradient $\nabla f(x_0,y_0,z_0)$ vuông góc với mặt, do đó là một vectơ pháp tuyến, chỉ phương của mặt phẳng tiếp xúc của mặt cong tại điểm đó. Ta lập tức thu được điều kiện để một điểm (x,y,z) nằm trên mặt phẳng tiếp xúc tại điểm (x_0,y_0,z_0) là

$$\nabla f(x_0, y_0, z_0) \cdot [(x, y, z) - (x_0, y_0, z_0)] = 0.$$

Như vậy mặt phẳng tiếp xúc có phương trình

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Ví dụ 1.4.5. Cho mặt đồ thị z = g(x,y). Đặt f(x,y,z) = g(x,y) - z thì đồ thị của g chính là tập mức f(x,y,z) = 0 của f. Theo cách tiếp cận này thì mặt phẳng tiếp xúc của mặt z = g(x,y) tại (x_0,y_0) là

$$g_x(x_0, y_0)(x - x_0) + g_y(x_0, y_0)(y - y_0) - 1(z - z_0) = 0,$$

chính là phương trình đã biết (1.3.1).

1.4.3 Đạo hàm của hàm hợp

Giả sử f là hàm số của x và y, nhưng x và y lại là hàm số của t. Như thế ta có thể xem f cũng phụ thuộc vào t, là hàm của t. Ta muốn tính đạo hàm của f theo t. Đây là vấn đề đạo hàm của hàm hợp.

Định lý 1.4.6. Cho hàm số f(x,y) với x=x(t) và y=y(t), $t\in\mathbb{R}$. Đặt z(t)=f((x(t),y(t)). Giả sử f, x và y khả vi. Khi đó

$$\frac{dz}{dt}(t) = \frac{\partial f}{\partial x}(x(t), y(t)) \cdot \frac{dx}{dt}(t) + \frac{\partial f}{\partial y}(x(t), y(t)) \cdot \frac{dy}{dt}(t).$$
(1.4.2)

Người ta thường hiểu ngầm f là hàm của t, tuy đúng ra phải đặt ra một hàm hợp mới là z = f((x(t), y(t))), để công thức ngắn gọn hơn và đỡ phải đặt thêm biến mới, và viết tắt rằng

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$
 (1.4.3)

Ta có một cách giải thích Công thức (1.4.2) (không phải chứng minh) dựa trên xấp xỉ tuyến tính như sau. Vì

$$\Delta z \approx f_x(x,y)\Delta x + f_y(x,y)\Delta y \approx f_x(x,y)x'(t)\Delta t + f_y(x,y)y'(t)\Delta t$$

nên $\frac{\Delta z}{\Delta t} \approx f_x(x, y) x'(t) + f_y(x, y) y'(t)$.

Dùng khái niệm đạo hàm chứ không dùng đạo hàm riêng, ta có thể viết công thức đạo hàm hàm hợp theo cùng hình thức như với hàm một biến. Cho U, V, W là tập mở của $\mathbb{R}^k, \mathbb{R}^l, \mathbb{R}^p$ theo thứ tự đó, cho $f: U \to V$ and $g: V \to W$ có đạo hàm, ta có công thức đạo hàm hàm hợp

$$(g \circ f)'(x) = g'(f(x)) \circ f'(x).$$

Chú ý rằng ở vế phải là hợp của hai ánh xạ tuyến tính. Nếu viết ở dạng ma trận biểu diễn thì công thức này cho

$$J_{g \circ f}(x) = J_g(f(x)) \cdot J_f(x). \tag{1.4.4}$$

Ở vế phải tích là phép nhân của ma trận.

Ví dụ 1.4.7. Cho z=f(x,y), với (x,y)=r(t). Công thức đạo hàm hàm hợp (1.4.4) trở thành

$$\frac{d(f \circ r)}{dt}(t) = \frac{df(x(t), y(t))}{dt}(t) = (\nabla f)(x(t), y(t)) \cdot (x'(t), y'(t))$$
$$= \frac{\partial f}{\partial x}(x(t), y(t)) \frac{\partial x}{\partial t}(t) + \frac{\partial z}{\partial y}(x(t), y(t)) \frac{\partial y}{\partial t}(t),$$

hay ngắn gọn hơn

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.$$

Vậy ta thu lại được công thức đạo hàm hàm hợp (1.4.2).

Bài tập

- **1.4.1.** Đặt hệ tọa độ trên một vùng trên mặt phẳng sao cho hướng trục x là hướng đông và hướng trục y là hướng bắc. Nhiệt độ tại một điểm có tọa độ (x,y) trong vùng được mô hình hóa bởi công thức $T(x,y) = 100e^{-2x^2+3y^2}$. Tại điểm có tọa độ (1,2):
 - (a) Nếu đi về hướng đông thì nhiệt độ tăng hay giảm?
 - (b) Nếu đi về hướng đông bắc thì nhiệt độ tăng hay giảm?
 - (c) Nên đi theo hướng nào để nhiệt độ giảm nhanh nhất?
- **1.4.2.** Cho $f(x,y) = y\sqrt{x}$. Tìm đạo hàm của f tại điểm (1,2) theo hướng của vecto (2,3) (lưu ý cần lấy vecto đơn vị). Tìm hướng tại điểm (1,2) mà giá trị của hàm f tăng nhanh nhất.
- **1.4.3.** Tìm đạo hàm của $f(x,y) = 5x^2y^3$ tại điểm (1,1) theo hướng tới điểm (3,2).
- **1.4.4.** Cho $T(x,y)=x^2+y^2-x-y$ là nhiệt độ tại điểm (x,y) trên mặt phẳng. Một con kì nhông đang nằm ở điểm (1,3) đang muốn được ấm lên càng nhanh càng tốt. Nó nên bò theo hướng nào?
- **1.4.5.** Cho $z=f(x,y),\, x=u-v,\, y=v-u.$ Chứng tỏ $\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=0.$
- **1.4.6.** Cho $z = f(x^2, y^4)$. Tính $\frac{\partial^2 z}{\partial x \partial y}$.
- **1.4.7.** Điện thế V trong một mạch điện đơn giản đang giảm dần vì pin yếu đi theo thời gian. Điện trở R đang dần tăng lên do thiết bị bị nóng lên. Theo định luật Ohm, V=IR. Dùng đạo hàm hàm hợp, hãy tìm xem cường độ dòng điện I đang thay đổi như thế nào khi $R=400\Omega,\,I=0.08A,\,dV/dt=-0.01V/s,\,$ và $dR/dt=0.03\Omega/s.$
- **1.4.8.** Tìm điểm trên mặt $2x^2 + xy + y^2 + 4x + 8y z + 14 = 0$ mà tiếp xúc với mặt phẳng 4x + y z = 0.

1.4.9. Tìm mặt phẳng tiếp xúc của mặt

$$x^{2} + y^{2} + z^{2} + x^{4}y^{4} + x^{4}z^{4} + y^{4}z^{4} - 9z = 21$$

tại điểm (1,1,2).

1.4.10. Cho $u, v : (a, b) \to \mathbb{R}^3$. Hãy kiểm tra các công thức sau về đạo hàm:

- (a) $(u \cdot v)' = u' \cdot v + u \cdot v'$.
- (b) $(u \times v)' = u' \times v + u \times v'$.

1.4.11. Cho $f,g:D\subset\mathbb{R}^n\to\mathbb{R}$. Chứng tỏ nếu f,g có đạo hàm riêng theo mọi biến tại $x\in D$, thì

$$\nabla (f+g)(x) = \nabla f(x) + \nabla g(x),$$

(b)

$$\nabla (fg)(x) = g(x)\nabla f(x) + f(x)\nabla g(x),$$

(c) nếu $g(x) \neq 0$ thì

$$\nabla \left(\frac{f}{g}\right)(x) = \frac{1}{g^2(x)}(g(x)\nabla f(x) - f(x)\nabla g(x)).$$

1.5 Cực trị của hàm số nhiều biến

Như ta đã thấy với hàm một biến, tìm giá trị lớn nhất và nhỏ nhất là một bài toán phổ biến, được gọi là bài toán cực trị hay bài toán tối ưu hóa. Ở bài này chúng ta phát triển một số phương pháp để khảo sát bài toán này. Ở đây có sự tương tự với hàm một biến, nhưng cũng có những điều mới do tính nhiều chiều.

Cũng giống như đối với hàm một biến, ta chia vấn đề thành hai phần: cực trị địa phương và cực trị toàn cục.

Định nghĩa 1.5.1. Hàm $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có cực đại địa phương (hay cực đại tương đối) tại $a \in D$ nếu có một quả cầu $B(a,r) \subset D$ sao cho $f(a) \geq f(x)$ với mọi $x \in B(a,r)$. Tương tự $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có cực tiểu địa phương (hay cực tiểu tương đối) tại $a \in D$ nếu có một quả cầu $B(a,r) \subset D$ sao cho $f(a) \leq f(x)$ với mọi $x \in B(a,r)$.

Cực tiểu và cực đại được gọi chung là *cực trị*. Chú ý rằng nếu hàm có cực trị địa phương ở một điểm thì điểm đó phải là một điểm trong của miền xác định.

Định nghĩa 1.5.2. Hàm $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có cực đại toàn cục (hay cực đại tuyệt đối) tại $a \in D$ nếu $f(a) \geq f(x)$ với mọi $x \in D$. Khi đó f(a) là giá trị lớn nhất của f.

Tương tự $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có *cực tiểu toàn cục* (hay *cực tiểu tuyệt đối*) tại $a \in D$ nếu $f(a) \leq f(x)$ với mọi $x \in D$. Khi đó f(a) là giá trị nhỏ nhất của f.

Do định nghĩa cực trị địa phương, bài toán cực trị với tập xác định của hàm mục tiêu là tập mở thì được gọi bài toán không có ràng buộc, ngược lại bài toán với tập xác định của hàm mục tiêu không là tập mở được gọi là bài toán cực trị có ràng buộc.

1.5.1 Cực trị không có ràng buộc

Với hàm một biến, để hàm khả vi có cực trị địa phương tại một điểm thì đạo hàm phải bằng 0 tại điểm đó. Đối với hàm nhiều biến, một cực trị theo tất cả các biến hẳn nhiên phải là một cực trị theo từng biến, do đó đạo hàm theo từng biến phải bằng 0 tại điểm đó. Vậy một điều kiện cần để có cực trị địa phương là tất cả các đạo hàm riêng phải bằng 0:

Định lý 1.5.3 (Điều kiện cần cấp 1). Nếu $f: D \subset \mathbb{R}^n \to \mathbb{R}$ khả vi tại a và f có cực trị địa phương tại a thì $\nabla f(a) = 0$, nghĩa là $\forall i = 1, \ldots, n$, $\frac{\partial f}{\partial x_i}(a) = 0$.

Chứng minh. Đặt $a=(a_1,a_2,\ldots,a_n)$, một điểm trong của D. Hàm một biến $\varphi_1:t\mapsto f(t,a_2,\ldots,a_n)$ xác định trong một khoảng mở I chứa a_1 và khả vi tại a_1 . Vì f có cực trị địa phương tại a nên φ_1 có cực trị địa phương tại a_1 . Do vậy $0=\varphi_1'(a_1)=\frac{\partial f}{\partial x_1}(a)$. Tương tự $\frac{\partial f}{\partial x_2}(a)=\frac{\partial f}{\partial x_3}(a)=\cdots=\frac{\partial f}{\partial x_n}(a)=0$.

Nếu tại a các đạo hàm riêng cấp một triệt tiêu thì a được gọi là một điểm dừng hay điểm tới hạn. Đây là những điểm ở đó có thể xảy ra cực trị địa phương. Như vậy ta tìm cực trị địa phương trong các điểm dừng.

Việc các đạo hàm riêng cấp một triệt tiêu tại điểm cực trị chỉ là điều kiện cần, nhưng không phải là điều kiện đủ.

Ví dụ 1.5.4. Xét hàm hai biến $f(x,y) = x^2 - y^2$. Ta có $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$, nhưng f(x,0) > f(0,0) > f(0,y) với mọi $x \neq 0$ và $y \neq 0$. Vậy (0,0) là một điểm dùng, nhưng hàm không có cực trị địa phương tại (0,0). Điểm (0,0) thường được gọi, dựa vào hình dạng đồ thị, là một điểm yên, xem Hình 1.5.1.

Như vậy cần lưu ý rằng cực trị địa phương phải xảy ra ở điểm dừng, nhưng điều ngược lại không đúng.

Để tìm điều kiện đủ, ta nhớ lại trong hàm một biến tại các điểm dừng ta đã dùng dấu của đạo hàm bậc hai để có thể kiểm soát chặt chẽ hơn cách thay đổi của hàm.

Cho f khả vi liên tục mọi cấp trong một quả cầu B(x,r). Với h sao cho ||h|| < r ta đặt g(t) = f(x+th), $t \in (-1,1)$. Giá trị của hàm g là giá trị của hàm f khi biến chỉ di chuyển dọc theo đoạn thẳng từ x tới h. Hàm g khả vi liên tục mọi cấp, và ta tính được đạo hàm của nó theo qui tắc đạo hàm hàm hợp:

$$g'(t) = \sum_{1 \le i \le n} \frac{\partial f}{\partial x_i}(x + th)h_i, \tag{1.5.1}$$

$$g'(0) = \sum_{1 \le i \le n} \frac{\partial f}{\partial x_i}(x) h_i, \tag{1.5.2}$$

$$g''(t) = \sum_{1 \le i \le n} \sum_{1 \le j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x + th) h_i h_j, \tag{1.5.3}$$

$$g''(0) = \sum_{1 \le i \le n} \sum_{1 \le j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_i h_j. \tag{1.5.4}$$

Ta có thể đoán rằng dấu của g''(0) có thể có vai trò trong điều kiện đủ cho cực trị. Chẳng hạn nếu g''(0) > 0 và g'(0) = 0 thì theo kết quả về hàm một biến chắc chắn $g(t) = f(x+th) \ge g(0) = f(x)$ với mọi t đủ bé (phụ thuộc vào h).

Để trình bày chính xác ta dùng phương pháp khai triển Taylor.

Mệnh đề 1.5.5 (Khai triển Taylor). Cho f khả vi liên tục cấp hai trong một quả cầu B(x,r). Với mọi $h \in B(0,r)$ ta có

$$f(x+h) = f(x) + \sum_{1 \le i \le n} \frac{\partial f}{\partial x_i}(x)h_i + \frac{1}{2} \sum_{1 \le i \le n} \sum_{1 \le j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x+\theta h)h_i h_j,$$

 $v\acute{o}i \theta \in (0,1)$ phụ thuộc vào h. Một công thức khác là

$$f(x+h) = f(x) + \sum_{1 \le i \le n} \frac{\partial f}{\partial x_i}(x)h_i + \frac{1}{2} \sum_{1 \le i \le n} \sum_{1 \le j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x)h_i h_j + \epsilon(h) \|h\|^2,$$

 $v\acute{\sigma}i \lim_{h\to 0} \epsilon(h) = 0.$

 $Ch\acute{u}ng\ minh.$ Áp dụng khai triển Taylor cho hàm một biến g tại 0 ta được

$$g(t) = g(0) + g'(0)t + \frac{1}{2}g''(\theta)t^{2},$$

với θ nằm giữa 0 và t. Chú ý là ta có thể cho t thuộc một khoảng mở chứa 0 và 1 mà vẫn đảm bảo $x + th \in B(x, r)$. Cho t = 1 ta được ngay công thức thứ nhất.

So sánh công thức thứ nhất và công thức thứ hai, ta chỉ cần chứng minh

$$\lim_{h \to 0} \Big(\sum_{1 \le i,j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j} (x + \theta h) - \sum_{1 \le i,j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j} (x) \Big) \frac{h_i h_j}{\|h\|^2} = 0.$$

Dùng đánh giá $|h_ih_j| \leq \frac{1}{2}(h_i^2 + h_j^2) \leq \frac{2}{2} \left\|h\right\|^2$ ta được

$$\left| \sum_{1 \leq i,j \leq n} \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x + \theta h) - \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right) \frac{h_i h_j}{\|h\|^2} \right| \leq \sum_{1 \leq i,j \leq n} \left| \frac{\partial^2 f}{\partial x_i \partial x_j}(x + \theta h) - \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right| \frac{|h_i h_j|}{\|h\|^2} \\
\leq \sum_{1 \leq i,j \leq n} \left| \frac{\partial^2 f}{\partial x_i \partial x_j}(x + \theta h) - \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right|.$$

Cho
$$h \to 0$$
 thì $\frac{\partial^2 f}{\partial x_i \partial x_j}(x + \theta h) \to \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$, ta được kết quả.

Các đạo hàm bậc hai $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$ có vai trò quan trọng trong vấn đề này. Bảng các số này xếp dưới dạng một ma trận $n \times n$ được gọi là $ma\ trận\ Hess^4$, kí hiệu là

$$\operatorname{Hess}(f,x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{1 \le i,j \le n}.$$

Bây giờ ta có thể phát biểu một điều kiện đủ cho cực trị địa phương:

Định lý 1.5.6 (Điều kiện đủ cấp 2). Giả sử f có các đạo hàm riêng cấp hai liên tục trên một quả cầu chứa x và x là một điểm dừng của f, tức $\nabla f(x) = 0$.

- (a) Nếu ma trận $\operatorname{Hess}(f,x)$ xác định âm, nghĩa là $\forall h = (h_1,h_2,\cdots,h_n) \in \mathbb{R}^n \setminus \{0\}$ thì $\sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_j h_j < 0$, thì f có cực đại địa phương tại x.
- (b) Nếu ma trận $\operatorname{Hess}(f,x)$ xác định dương, nghĩa là $\forall h=(h_1,h_2,\cdots,h_n)\in\mathbb{R}^n\setminus\{0\}$ thì $\sum_{i=1}^n\sum_{j=1}^n\frac{\partial^2 f}{\partial x_i\partial x_j}(x)\,h_jh_j>0$, thì f có cực tiểu địa phương tại x.
- (c) Nếu ma trận $\operatorname{Hess}(f,x)$ không xác định dương và cũng không xác định âm, thì f không có cực trị tại x, và x được gọi là một **điểm yên** của f.

Chứng minh. Áp dụng công thức công thức Taylor, chú ý x là điểm dừng, nghĩa là tất cả các đạo hàm bậc nhất $\frac{\partial f}{\partial x_i}(x)$ đều bằng 0, ta được

$$f(x+h) - f(x) = \frac{1}{2} \sum_{1 \le i \le n} \sum_{1 \le j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_i h_j + \epsilon(h) \|h\|^2$$
$$= \left(\frac{1}{2} \sum_{1 \le i \le n} \sum_{1 \le j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \frac{h_i h_j}{\|h\|^2} + \epsilon(h)\right) \|h\|^2,$$

với $\lim_{h\to 0} \epsilon(h) = 0$.

 $^{^4}$ tên một nhà toán học sống vào thế kỉ 19

Giả sử $\operatorname{Hess}(f,x)$ xác định dương. Với $h \neq 0$, đặt $u = h/\|h\|$, thì

$$\frac{1}{2} \sum_{1 \le i \le n} \sum_{1 \le j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \frac{h_i}{\|h\|} \frac{h_j}{\|h\|} = \frac{1}{2} \sum_{1 \le i \le n} \sum_{1 \le j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) u_i u_j$$

là một hàm liên tục theo biến u trên mặt cầu đơn vị S(0,1). Vì mặt cầu có tính đóng và bị chặn (compắc) nên hàm này có giá trị lớn nhất $\alpha < 0$ (xem Định lý 1.5.13). Vậy bây giờ ta có

$$f(x+h) - f(x) \le (\alpha + \epsilon(h)) \|h\|^2.$$

Khi h đủ nhỏ thì $\epsilon(h) < -\alpha$, do đó f(x+h) < f(x). Vậy x là một cực đại địa phương của f.

Trường hợp $\operatorname{Hess}(f,x)$ xác định âm là tương tự.

Nếu $\operatorname{Hess}(f,x)$ không xác định dương và cũng không xác định âm thì từ công thức $g''(0) = \sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_i h_j$ ở Phương trình (1.5.4) ta thấy tồn tại hướng h theo hướng đó g có cực đại ngặt tại 0, đồng thời lại tồn tại hướng h mà theo hướng đó g có cực tiểu ngặt tại 0. Vậy f không có cực trị tại x. (Điều này lý giải tên "điểm yên", vì đồ thị của hàm phần nào trông giống một cái yên ngựa.)

Tính xác định dương và xác định âm của ma trận thực ra không dễ kiểm tra, trừ phi chúng ta khảo sát sâu hơn về điều này (một chủ đề của môn Đại số tuyến tính nâng cao). Trong môn học này chúng ta chỉ dừng lại ở việc chỉ ra rằng trong trường hợp hai chiều, n=2, có một cách rất thiết thực để kiểm tra điều này.

Mệnh đề 1.5.7. Cho ma trận

$$H = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

 $D \breve{a} t D = \det H = ac - b^2.$

- (a) Nếu D > 0 và a > 0 thì H là xác định dương. (Chú ý nếu D > 0 thì a và c cùng dấu, nên vai trò của a và c ở đây như nhau.)
- (b) $N\hat{e}u D > 0$ $vac{a} < 0$ thì H $lac{a} xac dinh <math>am$,
- (c) Nếu D < 0 thì H không xác định dương và không xác định âm.

Chứng minh. Giả sử $a \neq 0$, ta biến đổi với $h = (h_1, h_2)$,

$$\Delta(h) = ah_1^2 + 2bh_1h_2 + ch_2^2 = a\left[(h_1 + \frac{b}{a}h_2)^2 + \frac{ac - b^2}{a^2}h_2^2\right].$$

Nếu D>0 và a>0 thì rõ ràng $\forall h\neq 0, \Delta(h)>0$ (vì nếu $h_2=0$ và $(h_1+\frac{b}{a}h_2=0$ thì $h_1=0$). Tương tự, nếu D>0 và a<0 thì $\forall h\neq 0, \Delta(h)<0$.

Nếu D < 0, lấy h = (1,0) thì $\Delta(h) = a$, nhưng lấy h = (-b/a,1) thì $\Delta(h) = D/a$, trái dấu. Vậy H không xác định dương và cũng không xác định âm.

Nếu a=0 thì $D\leq 0$ và $\Delta(1,0)=0$, nên H không xác định dương và cũng không xác định âm.

Tóm tắt lại, các bước để tìm cực trị của một hàm hai biến khả vi liên tục cấp hai là:

Bước 1. Tìm điểm dùng (x_0, y_0) bằng cách giải hệ phương trình $\nabla f(x, y) = 0$.

Bước 2. Tính định thức D của ma trận $\operatorname{Hess}(f,(x_0,y_0))$, cụ thể là tính số

$$D = \det(\operatorname{Hess}(f, (x_0, y_0))) = \frac{\partial^2 f}{\partial x^2}(x_0, y_0) \cdot \frac{\partial^2 f}{\partial y^2}(x_0, y_0) - \left(\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)\right)^2.$$

- Nếu D>0 thì (x_0,y_0) là điểm cực trị địa phương của hàm f. Để phân loại điểm cực trị ta xét tiếp:
 - * Nếu $\frac{\partial^2 f}{\partial x^2}(x_0,y_0)>0$ thì f có cực tiểu địa phương tại (x_0,y_0) .
 - * Nếu $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0$ thì f có cực đại địa phương tại (x_0, y_0) .
- Nếu D < 0 thì điểm (x_0, y_0) không là điểm cực trị của f, và là một điểm yên của f.

Ví dụ 1.5.8. Xét $f(x,y) = x^2 + y^2$. Ta có $f_x(x,y) = 2x$, $f_y(x,y) = 2y$. Giải hệ phương trình 2x = 0 và 2y = 0 ta được điểm dừng duy nhất là (x,y) = (0,0).

Tính đạo hàm bậc hai, ta được $f_{xx} = 2 > 0$, $f_{xy} = f_{yx} = 0$, $f_{yy} = 2$. Tiếp theo $D = [f_{xx}f_{yy} - f_{xy}^2] = 4 > 0$. Vậy hàm có cực tiểu địa phương tại (0,0). Điều này ta thấy ngay từ hình vẽ đồ thị của hàm, và có thể kiểm lại được dễ dàng bằng cách khác. Tương

Hình 1.5.1:

tự với $g(x,y) = -x^2 - y^2$ ta có $g_x(x,y) = -2x$, $g_y(x,y) = -2y$. Điểm dùng duy nhất là (x,y) = (0,0). Ta có $g_{xx} = -2 < 0$, $g_{xy} = g_{yx} = 0$, $g_{yy} = -2$, $D = [g_{xx}g_{yy} - g_{xy}^2] = 4 > 0$. Vậy hàm có cực đại địa phương tại (0,0).

Với $h(x,y)=x^2-y^2$ ta có $h_x(x,y)=2x$, $h_y(x,y)=-2y$. Điểm dừng duy nhất là (x,y)=(0,0). Ta có $h_{xx}=2$, $h_{xy}=h_{yx}=0$, $h_{yy}=-2$, $D=[h_{xx}h_{yy}-h_{xy}^2]=-4<0$. Vậy hàm không có cực trị tại (0,0), đó là một điểm yên. Điều này ta thấy rõ từ hình vẽ đồ thị của hàm.

Ví dụ 1.5.9. Tìm và phân loại các điểm cực trị của hàm $f(x,y) = x^4 + y^4 - 4xy + 1$. Bước 1. Tìm các điểm dừng. Tính,

$$\frac{\partial f}{\partial x} = 4x^3 - 4y; \quad \frac{\partial f}{\partial y} = 4y^3 - 4x.$$

Cho những đạo hàm riêng này bằng 0,

$$x^3 - y = 0$$
 và $y^3 - x = 0$.

Thế $y=x^3$ từ phương trình thứ nhất vào phương trình thứ hai,

$$0 = x^9 - x = x(x^8 - 1) = x(x^4 - 1)(x^4 + 1) = x(x^2 - 1)(x^2 + 1)(x^4 + 1).$$

Có 3 nghiệm thực: x = 0, 1, -1. Có ba điểm dừng là (0, 0), (1, 1), và (-1, -1). Bước 2. Tính các đạo hàm riêng cấp 2 và $\det(\operatorname{Hess}(f, (x_0, y_0)))$:

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 12x^2; \quad \frac{\partial^2 f}{\partial x \partial y}(x,y) = -4; \quad \frac{\partial^2 f}{\partial y^2}(x,y) = 12y^2.$$

$$\det(\text{Hess}(f, (x, y))) = 144x^2y^2 - 16.$$

Vì $\det(\operatorname{Hess}(f,(0,0))) = -16 < 0$, nên (0,0) là một điểm yên. Vì $\det(\operatorname{Hess}(f,(1,1))) = 128 > 0$ và $\frac{\partial^2 f}{\partial x^2}(1,1) = 12 > 0$, nên f có cực tiểu địa phương tại (1,1). Tương tự $\det(\operatorname{Hess}(f,(-1,-1))) = 128 > 0$ và $\frac{\partial^2 f}{\partial x^2}(-1,-1) = 12 > 0$ nên f cũng có cực tiểu địa phương tại (-1,-1).

1.5.2 Cực trị có ràng buộc

Ta xét bài toán tìm cực trị của f(x) thỏa điều kiện g(x) = c trong đó c là một hằng số thực. Đây là một bài toán cực trị có ràng buộc, hay còn được gọi là cực trị có điều kiện. Ta vẫn tìm cực trị của một hàm f, tuy nhiên bây giờ miền xác định của hàm f là tập có dạng $g^{-1}(\{c\})$. Tập như vậy có thể không phải là một tập mở, thậm chí có phần trong bằng tập rỗng, khiến cho các phương pháp của chúng ta ở phần trước không áp dụng được.

Ví dụ 1.5.10. Tìm cực trị của hàm f(x,y) = x + y thỏa $x^2 + y^2 = 1$.

Ta có thể nhìn bài toán như là tìm cực trị của x+y trên đường tròn đơn vị. Vì đường tròn đơn vị có phần trong bằng rỗng.

Ta hết ta khảo sát trường hợp hai chiều mà ta có trực quan hình học. Bài toán là

$$\begin{cases} \text{Tìm cực trị của } f(x,y) \\ \text{thỏa } g(x,y) = c. \end{cases} \tag{1.5.5}$$

Như ta đã thảo luận trong mục 1.4.2, dưới điều kiện $g(x_0, y_0) = c$ và $\nabla g(x_0, y_0) \neq 0$ thì phương trình g(x, y) = c xác định một đường cong phẳng C quanh điểm (x_0, y_0) , là một đường mức của hàm g, và vecto gradient của hàm ràng buộc g phải vuông góc với đường mức C này tại điểm (x_0, y_0) .

Bây giờ giả sử (x_0, y_0) là một nghiệm địa phương của Bài toán (1.5.5). Như thế hàm f(r(t)) có cực trị địa phương tại t=0, do đó đạo hàm phải bằng 0 tại t=0, tức là $0=\frac{d}{dt}(f(r(t))|_{t=0}=\nabla f(r(0))\cdot r'(0)$. Vậy vecto gradient của hàm mục tiêu f cũng phải vuông góc với đường C tại điểm cực trị địa phương (x_0,y_0) .

Như thế trên mặt phẳng ta có hai vectơ $\nabla g(x_0, y_0)$ và $\nabla f(x_0, y_0)$ cùng vuông góc với đường C tại điểm (x_0, y_0) , do đó hai vectơ này phải cùng phương, dẫn tới có một số thực λ sao cho $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$. Số thực này được gọi là **nhân tử Lagrange**. Lý luận trên là cơ sở cho phương pháp nhân tử Lagrange sau đây:

Định lý 1.5.11 (Điều kiện cần cấp 1 – Phương pháp nhân tử Lagrange). $Gi\mathring{a}$ sử f và g khả vi liên tục trên trên tập mở Ω trong \mathbb{R}^2 . Nếu (x_0, y_0) là một nghiệm địa phương của Bài toán (1.5.5) thỏa $\nabla q(x_0, y_0) \neq 0$, thì phải tồn tại $\lambda \in \mathbb{R}$ sao cho

$$\nabla f(x_0, y_0) + \lambda \nabla g(x_0, y_0) = 0,$$

tức là

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) + \lambda \frac{\partial g}{\partial x}(x_0, y_0) = 0\\ \frac{\partial f}{\partial y}(x_0, y_0) + \lambda \frac{\partial g}{\partial y}(x_0, y_0) = 0. \end{cases}$$

Như vậy để giải bài toán cực trị ta giải hệ phương trình gồm 3 phương trình và 3 ẩn x, y, λ :

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) + \lambda \frac{\partial g}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) + \lambda \frac{\partial g}{\partial y}(x,y) = 0\\ g(x,y) = c. \end{cases}$$

Chứng minh. Chứng minh này chỉ là chi tiết hóa của lý luận hình học ở trên. Sự tồn tại của một tham số hóa địa phương của đường mức sẽ được kiểm tra bằng định lý hàm ẩn. Trước hết ta thấy rằng vì $\nabla g(x_0,y_0) \neq 0$ nên $\frac{\partial g}{\partial x}(x_0,y_0) \neq 0$ hoặc $\frac{\partial g}{\partial y}(x_0,y_0) \neq 0$ và do vậy không mất tính tổng quát ta giả sử $\frac{\partial g}{\partial y}(x_0,y_0) \neq 0$. Áp dụng được định lý hàm ẩn cho hàm

g, tồn tại một khoảng mở I chứa x_0 và một khoảng mở J chứa y_0 và một hàm $\phi: I \to J$ khả vi liên tục sao cho $\forall x \in I, g(x, \phi(x)) = c, \phi(x_0) = y_0$, và

$$\{(x,y) \in I \times J \mid g(x,y) = 0\} = \{(x,\phi(x)) \mid x \in I\}.$$

Điều này có nghĩa là quanh điểm (x_0, y_0) đường mức là đồ thị của một hàm theo biến x. Từ phương trình $g(x, \phi(x)) = c$ lấy đạo hàm theo biến x ta được

$$\frac{\partial g}{\partial x}(x,\phi(x)) + \frac{\partial g}{\partial y}(x,\phi(x))\phi'(x) = 0.$$

Do hàm f có cực trị địa phương tại (x_0, y_0) nên x_0 là điểm xảy ra cực trị địa phương của hàm một biến $\bar{f}(x) = f(x, \phi(x))$ nên phải có

$$\bar{f}'(x_0) = \frac{\partial f}{\partial x}(x_0, \phi(x_0)) + \frac{\partial f}{\partial y}(x_0, \phi(x_0))\phi'(x_0) = 0.$$

Đặt
$$\lambda = \frac{\frac{\partial f}{\partial y}(x_0, y_0)}{\frac{\partial g}{\partial y}(x_0, y_0)}$$
 thì

$$\frac{\partial f}{\partial x}(x_0, (y_0)) = -\phi'(x_0)\frac{\partial f}{\partial y}(x_0, y_0) = -\phi'(x_0)\lambda\frac{\partial g}{\partial y}(x_0, y_0) = \lambda\frac{\partial g}{\partial x}(x_0, y_0).$$

Như thế λ chính là nhân tử Lagrange.

Bây giờ ta tổng quát hóa các kết quả trên cho trường hợp hàm n biến. Cho hàm f định nghĩa trên tập mở Ω trong \mathbb{R}^n . Ta xét bài toán

$$\begin{cases}
\text{Tìm cực trị của } f(x) \\
\text{thỏa } g_i(x) = c_i, \ 1 \le i \le p < n.
\end{cases}$$
(1.5.6)

Làm tương tự trường hợp n=2, ta có thể thu được một tổng quát hóa của phương pháp nhân tử Lagrange:

Định lý 1.5.12. Cho f và g_i , $1 \le i \le p$ khả vi liên tục trên tập mở Ω trong $\mathbb{R}n$ và $a \in \Omega$. Nếu các điều kiên sau thỏa

- (a) a là nghiệm địa phương của Bài toán (1.5.6),
- (b) $\nabla g_1(a), \nabla g_2(a), \dots, \nabla g_n(a)$ độc lập tuyến tính,

thì tồn tại $\lambda_1, \lambda_2, \dots, \lambda_p \in \mathbb{R}$ sao cho

$$\nabla f(a) + \sum_{j=1}^{p} \lambda_j \nabla g_j(a) = 0.$$

1.5.3 Giá trị lớn nhất và nhỏ nhất

Trong phần này chúng ta khảo sát bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất, tức là tìm cực trị toàn cục.

Một tập đóng và bị chặn trong \mathbb{R}^n còn được gọi là một $t\hat{q}p$ compắc.

Định lý 1.5.13. Một hàm liên tục trên một tập compắc thì có giá trị lớn nhất và giá trị nhỏ nhất trên đó.

 $^{^5}$ từ compact trong tiếng Anh có nghĩa là gọn, chặt, \dots

Đây là một tổng quát hóa của Định lý giá trị lớn nhất và nhỏ nhất của hàm một biến. Chứng minh của nó vượt ra khỏi phạm vi của môn học này, thường có trong các giáo trình nhập môn Giải tích.

Áp dụng định lý này, để tìm giá trị lớn nhất và nhỏ nhất của một hàm liên tục trên một tập compắc ta thực hiện các bước sau:

- Bước 1. Tìm các giá trị của f ở phần trong của tập D, dùng các phương pháp của cực trị không có ràng buộc.
- Bước 2. Tìm các giá trị cực trị của f trên biên của tập D, dùng các phương pháp của cực trị có ràng buộc.
- Bước 3. Số lớn nhất trong các giá trị ở Bước 1 và Bước 2 là giá trị lớn nhất và số nhỏ nhất trong các giá trị này là giá trị nhỏ nhất.

Ví dụ 1.5.14. Tìm giá trị lớn nhất và nhỏ nhất của hàm số $f(x,y) = x^2 - 2xy + 2y$ trong hình chữ nhật $D = \{(x,y) \mid 0 \le x \le 3, 0 \le y \le 2\}.$

Trước hết ta thấy f là một đa thức nên nó liên tục trên hình chữ nhật đóng và bị chặn D. Trước hết ta thực hiện Bước 1, xét phần trong của hình chữ nhật D. Giải hệ

$$f_x(x,y) = 2x - 2y = 0,$$
 $f_y(x,y) = -2x + 2 = 0,$

ta có được điểm dừng duy nhất là (1,1), và giá trị của f ở đó là f(1,1)=1.

Hình 1.5.2:

Trong Bước 2 chúng ta nhìn các giá trị của f trên biên của D, bao gồm 4 đoạn thẳng L_1, L_2, L_3, L_4 được biểu diễn trong Hình 1.5.2. Trên L_1 chúng ta có y=0 và

$$f(x,0) = x^2, \qquad 0 \le x \le 3.$$

Đây là một hàm tăng của x, do đó giá trị nhỏ nhất của nó là f(0,0)=0 và giá trị lớn nhất của nó là f(3,0)=9. Trên L_2 ta có x=3 và

$$f(3,y) = 9 - 4y, \quad 0 \le y \le 2.$$

Đây là một hàm giảm của y, do đó giá trị cực đại của nó là f(3,0)=9 và giá trị cực tiểu của nó là f(3,2)=1. Trên L_3 chúng ta có y=2 và

$$f(x,2) = x^2 - 4x + 4, \qquad 0 \le x \le 3.$$

Bằng các phương pháp của vi phân hàm một biến, hay đơn giản bằng cách quan sát rằng $f(x,2) = (x-2)^2$, chúng ta thấy rằng giá trị cực tiểu của hàm số này là f(2,2) = 0 và giá trị cực đại là f(0,2) = 4. Cuối cùng, trên L_4 chúng ta có x = 0 và

$$f(0,y) = 2y, \quad 0 \le y \le 2$$

với giá trị cực đại f(0,2) = 4 và giá trị cực tiểu f(0,0) = 0. Do đó, trên biên, giá trị nhỏ nhất của f là 0 và giá trị lớn nhất là 9.

Trong Bước 3 chúng ta so sánh các giá trị này với giá trị f(1,1) = 1 tại điểm dừng và kết luận rằng giá trị lớn nhất của f trên D là f(3,0) = 9 và giá trị nhỏ nhất là f(0,0) = f(2,2) = 0.

24

Bài tập

- 1.5.1. Tìm và phân loại các điểm tới hạn của hàm số.
 - (a) $f(x,y) = x^2 xy + y^2 + 9x 6y + 10$
 - (b) $f(x,y) = x^3 6xy + 8y^3$
 - (c) $f(x,y) = 3xy x^2y xy^2$
 - (d) $f(x,y) = (x^2 + y)e^{y/2}$
 - (e) $f(x,y) = -x^3 + 4xy 2y^2 + 1$
 - (f) $f(x,y) = x^3 + y^3 3x^2 3y^2 9x$
 - (g) $f(x,y) = x^4 + y^4 4xy + 4$. Hàm này có giá trị lớn nhất hay giá trị nhỏ nhất hay không?
- **1.5.2.** Một công ty sản xuất hai loại điện thoại di động. Gọi x là số điện thoại loại 1 (đơn vị nghìn cái), và y là số điện thoại loại 2 (đơn vị nghìn cái). Doanh thu được mô hình hóa bởi hàm R(x,y)=3x+2y (đơn vị triệu đồng). Chi phí được mô hình hóa bằng hàm $C(x,y)=3x^2-3xy+4y^2$. Hãy tính $C_x(3,4)$ và giải thích ý nghĩa của kết quả. Công ty nên sản xuất với sản lượng mỗi loại là bao nhiêu để được lợi nhuân tối đa?
- **1.5.3.** Một công ty sản xuất hai loại máy thu hình: loại CRT và loại LCD. Gọi x là số máy thu hình loại CRT (đơn vị nghìn cái) và y là số máy thu hình loại LCD (đơn vị nghìn cái). Doanh thu được cho bởi hàm R(x,y)=x+4y (đơn vị triệu đồng). Chi phí được mô hình hóa bằng hàm

$$C(x,y) = x^2 - 2xy + 2y^2 + 7x - 12y + 9$$

Công ty nên sản xuất với sản lương mỗi loại là bao nhiều để được lợi nhuân tối đa?

- **1.5.4.** Một công ty sản xuất hai mẫu xe gắn máy. Gọi x là số xe theo mẫu thứ nhất, y là số xe theo mẫu thứ hai (đơn vị là nghìn chiếc). Chi phí sản xuất được cho bởi hàm $C(x,y) = 3x^2 + 4xy + 5y^2$ (đơn vị triệu đồng). Giá bán mỗi xe thuộc mẫu thứ nhất là 34 triệu đồng và giá bán mỗi xe thuộc mẫu thứ thứ hai là 52 triệu đồng.
 - (a) Tìm công thức cho doanh thu và lợi nhuận.
 - (b) Công ty nên sản xuất với sản lượng mỗi loại là bao nhiêu để có lợi nhuận lớn nhất?
- **1.5.5.** Tìm các giá trị cực đại và cực tiểu tuyệt đối của f trên tập D.
 - (a) $f(x,y) = 4xy^2 x^2y^2 xy^3$; D là miền tam giác đóng trên mặt phẳng xy với các đỉnh (0,0), (0,6) và (6,0)
 - (b) $f(x,y) = e^{-x^2 y^2}(x^2 + 2y^2)$; D là đĩa $x^2 + y^2 \le 4$
- **1.5.6.** Tìm các giá trị lớn nhất và nhỏ nhất của f theo các ràng buộc được cho
 - (a) $f(x,y) = x^2y$; $x^2 + y^2 = 1$
 - (b) $f(x,y) = \frac{1}{x} + \frac{1}{y}$; $\frac{1}{x^2} + \frac{1}{y^2} = 1$
 - (c) f(x, y, z) = xyz; $x^2 + y^2 + z^2 = 3$
 - (d) $f(x,y,z) = x^2 + 2y^2 + 3z^2$; x + y + z = 1, x y + 2z = 2
- **1.5.7.** Xét hàm f(x,y) = xy x 2y trên tam giác D với các đỉnh (3,0), (0,6), (0,0). Tìm giá trị lớn nhất và nhỏ nhất của hàm.
- **1.5.8.** Dùng phương pháp nhân tử Lagrange để tìm cực trị của hàm $f(x,y) = x^2y$ dưới ràng buộc $x^2 + 2y^2 = 6$.
- **1.5.9.** Tìm cực trị của hàm $f(x,y) = x^2 + xy^2 2x + 3$ dưới ràng buộc $x^2 + y^2 \le 10$.
- **1.5.10.** Tìm các điểm trên mặt $xy^2z^3=2$ mà gần nhất với góc tọa độ.
- **1.5.11.** Tìm điểm trên đồ thị $z=x^2+y^2$ mà gần nhất tới điểm (0,0,2).

- **1.5.12.** Nhiệt độ trên mặt cầu $x^2+y^2+z^2=1$ được mô hình hóa bằng hàm $T(x,y,z)=50-100(x+2y+3z)^2$. Tìm nơi lạnh nhất trên mặt cầu.
- **1.5.13.** Tìm điểm trên mặt bầu dục $g(x,y,z)=5x^2+y^2+3z^2=9$ mà tại đó nhiệt độ f(x,y,z)=750+5x-2y+9z là cao nhất.
- **1.5.14.** Dùng phương pháp nhân tử Lagrange để chứng minh rằng trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
- **1.5.15.** Dùng phương pháp nhân tử Lagrange để chứng minh bất đẳng thức Cauchy: Nếu x, y, z là các số thực không âm thì $\sqrt[3]{xyz} \leq \frac{x+y+z}{3}$.

Chương 2

Tích phân bội

Trong chương này chúng ta sẽ nghiên cứu tích phân Riemann trong không gian nhiều chiều. Tích phân trên không gian nhiều chiều là sự phát triển tương tự của tích phân một chiều. Do đó các ý chính đã quen thuộc và không khó, để dễ theo dõi hơn người đọc có thể xem lại phần tích phân một chiều trong [Bmgt1].

2.1 Định nghĩa và tính chất của tích phân bội

Cho I là một hình hộp, và $f:I\to\mathbb{R}$. Ta muốn tính tổng giá trị của hàm f trên hình hộp I. Ta chia nhỏ hình hộp I bằng những hình hộp con nhỏ hơn. Ta hy vọng rằng trên mỗi hình hộp nhỏ hơn đó, giá trị của hàm f sẽ thay đổi ít hơn, và ta có thể xấp xỉ f bằng một hàm hằng. Ta hy vọng rằng nếu ta chia càng nhỏ thì xấp xỉ càng tốt hơn, và khi qua giới hạn thì ta sẽ được giá trị đúng của tổng giá trị của f.

Sau đây là một cách giải thích hình học. Giả sử thêm hàm f là không âm, ta muốn tìm "thể tích" của khối bên dưới đồ thị của hàm f bên trên hình hộp I. Ta sẽ xấp xỉ khối đó bằng những hình hộp với đáy là một hình hộp con của I và chiều cao là một giá trị của f trong hình hộp con đó. Ta hy vọng rằng khi số hình hộp tăng lên thì ta sẽ gần hơn giá trị đúng của thể tích.

2.1.1 Tích phân trên hình hộp

Dưới đây ta bắt đầu làm chính xác hóa các ý tưởng ở trên. Người đọc có thể hình dung các trường hợp 1, 2, 3 chiều để dễ theo dõi.

Để khởi đầu chúng ta hãy xét trường hợp một chiều. Chiều dài của đoạn thẳng [a,b] bằng bao nhiêu? Ta muốn khái niệm chiều dài toán học mô phỏng khái niệm chiều dài vật

lý thường dùng trong đời sống từ xưa. Như vậy trước hết chiều dài của một đoạn thẳng [a,b] là một số thực không âm. Vì chiều dài vật lý không phụ thuộc vào cách đặt hệ tọa độ, nếu ta tịnh tiến đoạn thẳng thì chiều dài không thay đổi, vậy nếu kí hiệu chiều dài của đoạn [a,b] là |[a,b]| thì cần có |[a+c,b+c]|=|[a,b]|. Nếu n là số nguyên dương, thì vì đoạn thẳng [0,na] gồm n đoạn thẳng $[0,a],[a,2a],[2a,3a],\ldots,[(n-1)a,na],$ nên ta muốn có tính chất "cộng tính" thể hiện qua |[0,na]|=n|[0,a]|. Điều này dẫn tới $|[0,a]|=n|[0,\frac{1}{n}a]|$, hay $|[0,\frac{1}{n}a]|=\frac{1}{n}|[0,a]|$. Do đó với m,n là số nguyên dương thì $|[0,\frac{m}{n}a]|=\frac{m}{n}|[0,a]|$. Trong trường hợp riêng, ta có $|[0,\frac{m}{n}]|=\frac{m}{n}|[0,1]|$. Vì mọi số thực a là giới hạn của một dãy các số hữu tỉ, nên nếu như ta muốn chiều dài có "tính liên tục" thì ta cần có |[0,a]|=a|[0,1]|, do đó phải có |[a,b]|=|[0,b-a]|=(b-a)|[0,1]|. Để chuẩn hóa ta thường lấy |[0,1]|=1, và như thế |[a,b]|=(b-a).

Như vậy để là chiều dài có những tính chất như thường dùng thì nó buộc phải được định nghĩa một cách duy nhất sai khác cách chọn chiều dài đơn vị, giống như việc chọn đơn vị đo trong vật lý.

Lý luận tương tự cho số chiều cao hơn, ta có thể đưa ra định nghĩa sau:

Định nghĩa 2.1.1. Ta định nghĩa một hình hộp n-chiều trong \mathbb{R}^n là một tập con của \mathbb{R}^n có dạng $[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n]$ với $a_i < b_i$ với mọi $1 \le i \le n$, tức là tích của n đoạn thẳng. Thể tích n-chiều của hình hộp $[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n]$ được định nghĩa là số thực $(b_1-a_1)(b_2-a_2)\cdots (b_n-a_n)$.

Ta thường dùng kí hiệu |I| để chỉ thể tích của I. Khi số chiều n=1 ta thường thay từ thể tích bằng từ chiều dài. Khi n=2 ta thường dùng từ diện tích.

Đối với khái niệm tổng, lý luận tương tự như đối với khái niệm thể tích, ta có thể đi đến kết luận là tổng của hàm hằng 1 trên hình hộp I là |I|.

Bây giờ ta bắt đầu quá trình chia nhỏ miền xác định. Một **phép chia** (hay phân hoạch) của một khoảng [a,b] là một tập con hữu hạn của khoảng [a,b] mà chứa cả a và b. Ta có thể đặt tên các phần tử của một phép chia là x_0, x_1, \ldots, x_m với $a = x_0 < x_1 < x_2 < \cdots < x_m = b$. Mỗi khoảng $[x_{i-1}, x_i]$ là một **khoảng con** của khoảng [a,b] tương ứng với phép chia.

Một phép chia của hình hộp $I = \prod_{i=1}^n [a_i, b_i]$ là một tích Descartes của các phép chia của các khoảng $[a_i, b_i]$. Cụ thể nếu mỗi P_i là một phép chia của khoảng $[a_i, b_i]$ thì $P = \prod_{i=1}^n P_i$ là một phép chia của hình hộp I. Xem ví dụ ở Hình 2.1.1.

Hình 2.1.1: Một phép chia của hình chữ nhật $[a,b] \times [c,d]$ gồm những điểm mà các tọa độ thứ nhất tạo thành một phép chia của [a,b] và các tọa độ thứ hai tạo thành một phép chia của [c,d].

Một *hình hộp con* ứng với một phép chia P của một hình hộp I là một tích các khoảng con của các cạnh của hình hộp I. Cụ thể một hình hộp con của hình hộp I có dạng $\prod_{i=1}^n T_i$ trong đó T_i là một khoảng con của khoảng $[a_i, b_i]$ ứng với phép chia P_i .

Bây giờ là việc xấp xỉ. Cho I là một hình hộp, và $f:I\to\mathbb{R}$. Với một phép chia P của I, thành lập $t \tilde{o} ng Riemann^1$

$$\sum_{R} f(x_R)|R|$$

ở đây tổng được lấy trên tất cả các hình hộp con R của P, và x_R là một điểm bất kì thuộc R, xem Hình 2.1.2. Đây là một xấp xỉ của "tổng giá trị" của f trên I. Nếu $f \geq 0$ thì đây là một xấp xỉ của "thể tích" của khối bên dưới đồ thị của f bên trên I.

Hình 2.1.2: Xấp xỉ Riemann.

Cuối cùng là quá trình giới hạn. "Giới hạn" của tổng Riemann khi phép chia "mịn hơn"

 sẽ là tích phân của hàm f trên I, kí hiệu là $\int_I f.$ Vậy $\int_I f$ đại diện cho khái niệm "tổng giá trị" của hàm f trên I. Nếu $f \geq 0$ thì $\int_I f$ đại diện cho khái niệm "thể tích" của khối bên dưới đồ thị của f bên trên $I.^2$

Để làm chính xác ý tưởng trên ta cần làm rõ quá trình qua giới han. Chúng ta đưa ra một cách định nghĩa tích phân Riemann như sau.

Định nghĩa 2.1.2. Ta nói f là **khả tích** (có tích phân) trên I nếu có một số thực, gọi là *tích phân* của f trên I, kí hiệu là $\int_I f$, có tính chất là với mọi $\epsilon > 0$ có $\delta > 0$ sao cho nếu tất cả các cạnh của các hình chữ nhật con của một phép chia đều có chiều dài nhỏ hơn δ thì với mọi cách chọn điểm đại diện x_R thuộc hình hộp con R ta có $\left|\sum_R f(x_R)|R| - \int_I f\right| < \epsilon$.

Như thế tổng Riemann gần tùy ý tới giá trị tích phân miễn là phép chia đủ mịn. Người đọc quan tâm chi tiết hơn có thể xem ở các giáo trình nâng cao hơn, chẳng hạn [Vugt3].

¹Bernard Riemann là người đã đề xuất một định nghĩa chặt chẽ cho tích phân vào khoảng năm 1854, mặc dù tích phân đã được dùng trước đó.

 $^{^2}$ Kí hiệu \int do Gottfried Leibniz đặt ra khi xây dựng phép tính vi tích phân vào thế kỉ 17. Nó đại diện cho chữ cái "s" trong chữ Latin "summa" (tổng).

Ví dụ 2.1.3. Nếu f = c là hàm hằng có giá trị bằng hằng số thực c thì ta thấy ngay từ định nghĩa là mọi tổng Riemann đều bằng c|I|, nên $\int_I c = c|I|$. Đặc biệt $\int_I 1 = |I|$.

Khi số chiều n=1 ta có tích phân của hàm một biến quen thuộc từ trung học và đã được khảo sát trong môn Vi tích phân hàm một biến, với $\int_{[a,b]} f$ thường được viết là $\int_a^b f(x) \ dx$. Như vậy ta thừa hưởng tất cả các kết quả đã có trong Vi tích phân hàm một biến, chẳng hạn như công thức Newton–Leibniz để tính tích phân.

Khi n=2 ta có **tích phân bội hai**, thường được viết là $\iint_I f(x,y) dA$ hay $\iint_I f(x,y) dxdy$. Khi n=3 ta có **tích phân bội ba**, thường được viết là $\iiint_I f(x,y,z) dV$ hay $\iiint_I f(x,y,z) dxdydz$.

Ghi chú 2.1.4. Hiện giờ dx, dxdy, dxdydz, dA, dV chỉ là kí hiệu để chỉ loại tích phân, không có ý nghĩa độc lập.

2.1.2 Tích phân trên tập tổng quát

Để ngắn gọn hơn ta thường dùng từ miền để chỉ một tập con của \mathbb{R}^n . Chúng ta chi xét những miền bị chặn. Nhớ lại rằng trong tích phân hàm một biến để xét tích phân trên khoảng không bị chặn ta đã phải dùng tới giới hạn của tích phân và xây dựng khái niệm tích phân suy rộng.

Cho D là một miền bị chặn, và cho $f:D\to\mathbb{R}$. Vì D bị chặn nên có hình hộp I chứa D. Mở rộng hàm f lên hình hộp I thành hàm $F:I\to\mathbb{R}$ xác định bởi

$$F(x) = \begin{cases} f(x), & x \in D \\ 0, & x \in I \setminus D. \end{cases}$$

Định nghĩa 2.1.5. Ta nói f là **khả tích** trên D nếu F khả tích trên I, và khi đó tích phân của f trên D được định nghĩa là tích phân của F trên I:

$$\int_{D} f = \int_{I} F.$$

Để tích phân của f trên D được định nghĩa thì F phải bị chặn trên I, do đó f phải bị chặn trên D.

Tích phân $\int_D f$ không phụ thuộc vào cách chọn hình hộp I. Điều này dễ đoán, và người ta có thể kiểm tra chặt chẽ được.

Chúng ta thấy khi D là một hình hộp thì định nghĩa tích phân này trùng với định nghĩa đã có.

2.1.3 Thể tích

Ta định nghĩa thể tích thông qua tích phân:

Định nghĩa 2.1.6. Cho D là một tập con bị chặn của \mathbb{R}^n . **Thể tích** n-chiều của D được định nghĩa là tích phân của hàm 1 trên D:

$$|D| = \int_D 1.$$

Nếu D là hình hộp thì định nghĩa này trùng với định nghĩa của hình hộp đã có.

Ta thường thay từ thể tích bằng từ chiều dài khi n=1 và bằng từ diện tích khi n=2.

Có thể giải thích định nghĩa thể tích ở trên như sau. Đặt miền bị chặn D vào trong một hình hộp I. Xét hàm có giá trị bằng 1 trên D và bằng 0 ngoài D. Hàm này thường được gọi là gọi là *hàm đặc trưng* của D, kí hiệu là χ_D^3 :

 $^{3\}chi$ là một chữ cái Hy Lạp, có thể đọc là "khi")

$$\chi_D(x) = \begin{cases} 1, & x \in D \\ 0, & x \in \mathbb{R}^n \setminus D. \end{cases}$$

Định nghĩa nói rằng

$$|D| = \int_I \chi_D.$$

Xét một phép chia của I. Tùy cách chọn điểm đại diện trong mỗi hình chữ nhật con mà mỗi tổng Riemann của hàm đặc trưng tương ứng một xấp xỉ của thể tích của D bởi tổng thể tích của một số hình chữ nhật con của I. Tập D có thể tích khi và chỉ khi các xấp xỉ này gần tùy ý một số thực được gọi là thể tích của D. Xem minh họa ở Hình 2.1.3.

Hình 2.1.3: Các xấp xỉ dư và xấp xỉ thiếu diện tích của một hình tròn bằng diện tích của các hình chữ nhất.

 \acute{Y} niệm thể tích đã có từ hàng nghìn năm trước nhưng ta nên chú ý đây có thể là lần đầu tiên ta định nghĩa thể tích.

2.1.4 Sư có tích phân và sư có thể tích

Qua ý của tích phân ta thấy việc xấp xỉ dựa trên một giả thiết: nếu biến thay đổi ít thì giá trị của hàm thay đổi ít. Như vậy sự khả tích phụ thuộc chặt chẽ vào sự liên tục.

Mặt khác không nhất thiết phải liên tục thì mới khả tích. Sau đây là một ví dụ một hàm không liên tục nhưng khả tích.

Ví dụ 2.1.7. Cho $f : [0,1] \to \mathbb{R}$,

$$f(x) = \begin{cases} 0, & x \neq \frac{1}{2} \\ 1, & x = \frac{1}{2}. \end{cases}$$

Với phép chia bất kì của [0,1] sao cho chiều dài của các khoảng con nhỏ hơn $\frac{\epsilon}{2}$ thì tổng Riemann nhỏ hơn ϵ . Vì thế hàm f khả tích. Chú ý rằng f không liên tục tại $\frac{1}{2}$.

Để nói rõ không liên tục tới mức độ nào thì khả tích ta đưa ra một số khái niệm sau. Một tập con của \mathbb{R}^n là có thể tích n-chiều không nếu ta có thể phủ tập đó bằng hữu hạn hình hộp có tổng thể tích nhỏ hơn số dương cho trước bất kì. Một tập con của \mathbb{R}^n là có dộ do n-chiều không nếu ta có thể phủ tập đó bằng một họ đếm được các hình hộp có tổng thể tích nhỏ hơn số dương cho trước bất kì. Có thể hiểu sơ lược tập có dộ do không là tập "không dáng kể dối với tích phân".

- **Ví dụ 2.1.8.** (a) Tập rỗng \emptyset có thể tích n-chiều không.
 - (b) Tập hợp gồm một điểm trong \mathbb{R}^n có thể tích n-chiều không.
 - (c) Một đoạn thẳng trong \mathbb{R}^2 có diện tích không.
 - (d) Hội của hai tập có thể tích không là một tập có thể tích không.

Ta nói hàm f là liên tục $h\hat{a}u$ $kh\acute{a}p$ (hầu như khắp nơi) nếu tập hợp tất cả điểm ở đó f không liên tục có độ đo không.

Định lý 2.1.9 (khả tích trên tập có thể tích = bị chặn + liên tục hầu khắp). Cho D là tập con có thể tích của \mathbb{R}^n . Khi đó f khả tích trên D khi và chỉ khi f bị chặn và liên tục hầu khắp trên D.

Chứng minh khó vượt ngoài phạm vi môn học này, người đọc quan tâm có thể xem ở [Vugt3].

Ví dụ 2.1.10. Vì hình chữ nhật có thể tích nên hàm liên tục trên hình chữ nhật thì khả tích.

Về sự có thể tích, vì tập điểm không liên tục của hàm đặc trưng của một tập chính là biên của tập đó nên ta có:

Hệ quả 2.1.11. Một tập con bị chặn của \mathbb{R}^n có thể tích n-chiều khi và chỉ khi biên của nó có thể tích n-chiều không.

Ta có một miêu tả tiện dùng cho các tập không đáng kể:

Mệnh đề 2.1.12. Đồ thị của một hàm khả tích trên một tập con bị chặn của \mathbb{R}^n có thể tích không trong \mathbb{R}^{n+1} .

Ví dụ 2.1.13. Đồ thị của một hàm liên tục trên một khoảng đóng có diện tích không trong \mathbb{R}^2 . Vậy một đoạn thẳng, một đoạn parabola, một đường tròn thì có diện tích không.

Ví dụ 2.1.14 (hình tròn có diện tích). Xét hình tròn cho bởi $x^2 + y^2 \leq R^2$. Biên của hình tròn này là đường tròn $x^2 + y^2 = R^2$. Đường tròn này là hội của nửa đường tròn trên và nửa đường tròn dưới. Nửa đường tròn trên là đồ thị của hàm $y = \sqrt{R^2 - x^2}$, $-R \leq x \leq R$. Theo Mệnh đề 2.1.12, tập này có diện tích không. Tương tự nửa đường tròn dưới có diện tích không. Vậy đường tròn có diện tích không, do đó theo Hệ quả 2.1.11 ta kết luận hình tròn có diện tích.

Ví dụ 2.1.15. Tương tự, một hình tam giác thì có diện tích vì biên của nó là một hội của hữu hạn những đoạn thẳng, là những tập có diện tích không.

Ví dụ 2.1.16 (quả cầu có thể tích). Xét quả cầu cho bởi $x^2+y^2+z^2 \leq R^2$. Nửa mặt cầu trên là đồ thị của hàm $z=\sqrt{R^2-x^2-y^2}$ với (x,y) thuộc về hình tròn $x^2+y^2 \leq R^2$. Vì hình tròn có diện tích và hàm trên liên tục, nên theo Định lý 2.1.9 hàm trên khả tích, và theo Mệnh đề 2.1.12 thì đồ thị của nó có thể tích không trong \mathbb{R}^3 . Tương tự nửa mặt cầu dưới cũng có thể tích không, do đó mặt cầu có thể tích không, và do Hệ quả 2.1.11 nên quả cầu có thể tích.

Các ví dụ trên nhằm minh họa rằng chúng ta đã có thể thảo luận các đối tượng tích phân và thể tích một cách chặt chẽ, thống nhất. Tuy nhiên các vấn đề này không phải là trọng tâm của giáo trình này, nên ta sẽ không bàn thêm nữa.

2.1.5 Tính chất của tích phân

Ta có những tính chất cơ bản của tích phân, tương tự ở trường hợp hàm một biến:

Mệnh đề 2.1.17. Nếu f và g khả tích trên D thì:

- (a) f+g khả tích và $\int_D (f+g) = \int_D f + \int_D g$.
- (b) Với mọi số thực c thì cf khả tích và $\int_D cf = c \int_D f$.
- (c) Nếu $f \leq g$ thì $\int_D f \leq \int_D g$.

Tuy chúng ta không chứng minh chặt chẽ các tính chất này từ định nghĩa nhưng không khó để giải thích chúng bằng cách dùng sự xấp xỉ bởi tổng Riemann. Chẳng hạn nếu $f \leq g$ thì một xấp xỉ Riemann của f phải nhỏ hơn hay bằng xấp xỉ Riemann của g với cùng cách chia và cùng cách chọn điểm đại diện, do đó tích phân của f nhỏ hơn hay bằng tích phân của g. Người đọc nên thử đưa ra lí luận cho các tính chất còn lại.

Kết quả sau nói rằng giá trị của một hàm bị chặn trên một tập có thể tích không không ảnh hưởng đến tích phân.

Mệnh đề 2.1.18. Cho D là tập con bị chặn của \mathbb{R}^n , f và g bị chặn trên D, và f(x) = g(x) trừ ra một tập có thể tích không. Khi đó f khả tích khi và chỉ khi g khả tích, và khi đó $\int_D f = \int_D g$.

Một hệ quả nữa là thêm bớt một tập có thể tích không không ảnh hưởng tới tích phân.

Hệ quả 2.1.19. Cho D_1 và D_2 là hai tập con bị chặn của \mathbb{R}^n . Giả sử $D_1 \cap D_2$ có thể tích không. Nếu f khả tích trên D_1 và trên D_2 thì f khả tích trên $D_1 \cup D_2$, và

$$\int_{D_1 \cup D_2} f = \int_{D_1} f + \int_{D_2} f.$$

Kết quả này cho phép ta tính tích phân trên một miền bằng cách chia miền đó thành những miền đơn giản hơn. Đây là dạng tổng quát của công thức quen thuộc cho hàm một biến: $\int_a^b f + \int_b^c f = \int_a^c f$. Trong mệnh đề trên lấy f = 1 ta có kết quả: Nếu D_1 và D_2 có thể tích và $D_1 \cap D_2$

Trong mệnh đề trên lấy f = 1 ta có kết quả: Nếu D_1 và D_2 có thể tích và $D_1 \cap D_2$ có thể tích không thì $|D_1 \cup D_2| = |D_1| + |D_2|$. Đây chính là tính chất "cộng tính" của thể tích. Ứng dụng, khi tính diện tích một hình ta vẫn thường chia hình đó thành những hình đơn giản hơn bằng những đoạn thẳng hay đoạn cong, rồi cộng các diện tích lại.

Bài tập

2.1.1. Một hồ nước hình chữ nhật kích thước $4m \times 8m$ có độ sâu không đều. Người ta đo được chiều sâu tại một số điểm trên hồ như trong bảng sau. Ví dụ trong bảng này độ sâu tại điểm cách bờ trái 5m và bờ trên 1m là 4,6m. Hãy ước lượng lượng nước trong hồ.

vị trí	1	3	5	7
1	3,1	4,5	4,6	4.,0
3	3,7	4,1	4,5	4,4

- **2.1.2.** Hãy cho một ví dụ minh họa rằng xấp xỉ Riemann ứng với một phép chia mịn hơn không nhất thiết tốt hơn.
- **2.1.3.** Tại sao khoảng (a, b) có chiều dài bằng (b a)?
- **2.1.4.** Tại sao miền phẳng bên dưới đồ thị $y=1-x^2$, bên trên đoạn $-1 \le x \le 1$ có diện tích?
- **2.1.5.** Tại sao một khối tứ diện thì có thể tích?

33

2.1.6. Các hàm sau có khả tích không? Nếu hàm khả tích thì tích phân của nó bằng bao nhiêu?

(a)
$$f(x) = \begin{cases} x, & 0 \le x \le 1, \ x \ne \frac{1}{2}, \\ 0, & x = \frac{1}{2}. \end{cases}$$

(b)
$$f(x,y) = \begin{cases} \frac{x}{y}, & 0 \le x \le 1, \ 0 < y \le 1, \\ 0, & 0 \le x \le 1, \ y = 0. \end{cases}$$

(c)
$$f(x,y) = \begin{cases} 4, & 0 \le x \le 1, \ 0 \le y \le 1, \ (x,y) \ne (\frac{1}{2}, \frac{1}{2}), \\ 5, & (x,y) \ne (\frac{1}{2}, \frac{1}{2}). \end{cases}$$

(d)
$$f(x,y) = \begin{cases} 2, & 0 \le x \le 1, \ 0 \le y \le 1, \ y \ne x, \\ x, & 0 \le x \le 1, \ 0 \le y \le 1, \ y = x. \end{cases}$$

(e)
$$f(x,y) = \begin{cases} 3, & 0 \le x \le 1, \ 0 \le y \le 1, \ y \ne x^2, \\ x^2, & 0 \le x \le 1, \ 0 \le y \le 1, \ y = x^2. \end{cases}$$

(f)
$$f(x,y) = 4$$
, $0 < x < 1$, $0 \le y < 2$.

(g)
$$f(x,y) = \begin{cases} 2, & 0 \le x \le 1, \ 0 \le y \le 1, \\ 3, & 1 < x \le 2, \ 0 \le y \le 1. \end{cases}$$

2.1.7. Hãy cho một ước lượng cho giá trị của tích phân (nghĩa là cho biết tích phân có thể có giá trị từ đâu tới đâu)

$$\iint_{[0,1]\times[1,2]} e^{x^2y^3} \, dxdy.$$

2.1.8. Điều sau đây là đúng hay sai, giải thích:

$$\iint_{[0,1]\times[1,4]} (x^2 + \sqrt{y})\sin(xy^2) \ dA = 10.$$

- **2.1.9.** Giả sử $A \subset \mathbb{R}^n$, A có thể tích. Cho $c \in \mathbb{R}$. Giải thích vì sao $\int_A c = c|A|$.
- **2.1.10.** Giả sử $A \subset B \subset \mathbb{R}^n$, A và B có thể tích. Giải thích vì sao $|A| \leq |B|$.
- **2.1.11.** Giả sử $A\subset B\subset \mathbb{R}^n,\, f$ khả tích trên A và B, và $f\geq 0.$ Giải thích vì sao $\int_A f\leq \int_B f.$
- **2.1.12.** Giải thích vì sao nếu f khả tích và |f| khả tích thì $\left|\int_I f\right| \leq \int_I |f|$.
- **2.1.13.** Tìm tập $D \subset \mathbb{R}^2$ sao cho tích phân

$$\iint_D (1 - x^2 - y^2) dA$$

đạt giá trị lớn nhất.

2.2 Công thức Fubini

Công thức Fubini trong không gian hai chiều có dạng:

$$\iint_{[a,b]\times[c,d]} f(x,y) \ dxdy = \int_a^b \left(\int_c^d f(x,y) \ dy\right) \ dx = \int_c^d \left(\int_a^b f(x,y) \ dx\right) \ dy.$$

Một tích phân của tích phân được gọi là một *tích phân lặp* (iterated integral). Công thức Fubini đưa bài toán tính tích phân bội về bài toán tính tích phân của hàm một biến.

Về mặt số lượng công thức Fubini nói rằng tổng giá trị của hàm trên hình chữ nhật bằng tổng của các tổng giá trị trên các đoạn cắt song song.

Ta có thể giải thích bằng hình học công thức trên như sau. Giả sử f>0. Khi đó $\int_{[a,b]\times[c,d]}f$ là "thể tích" của khối bên dưới mặt z=f(x,y) bên trên hình chữ nhật $[a,b]\times[c,d]$. Khi đó $\int_c^df(x_0,y)\ dy$ là "diện tích" của mặt cắt (tiết diện) của khối bởi mặt phẳng $x=x_0$. Vậy công thức Fubini nói rằng thể tích của khối bằng tổng diện tích các mặt cắt song song.

Có thể giải thích công thức này bằng cách xấp xỉ thể tích của khối như sau. Chia khoảng [a,b] thành những khoảng con. Ứng với những khoảng con này, khối được cắt thành những mảnh bởi những mặt cắt song song. Vì chiều dài mỗi khoảng con là nhỏ, ta có thể xấp xỉ thể tích của mỗi mảnh bởi diện tích một mặt cắt nhân với chiều dài của khoảng con.

Chi tiết hơn, ta xấp xỉ theo tổng Riemann: Giả sử $a = x_0 < x_1 < \cdots < x_m = b$ là một phép chia của khoảng [a,b] và $c = y_0 < y_1 < \cdots < y_n = d$ là một phép chia của khoảng [c,d]. Với x_i^* là điểm đại diện bất kì thuộc khoảng con $\Delta x_i = [x_{i-1},x_i]$ và y_j^* là điểm bất kì thuộc $\Delta y_j = [y_{j-1},y_j]$ thì

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx \approx \sum_{i=1}^{m} \left(\int_{c}^{d} f(x_{i}^{*}, y) \, dy \right) |\Delta x_{i}|$$

$$\approx \sum_{i=1}^{m} \left(\sum_{j=1}^{n} f(x_{i}^{*}, y_{j}^{*}) |\Delta y_{j}| \right) |\Delta x_{i}|$$

$$= \sum_{1 \leq i \leq m, 1 \leq j \leq n} f(x_{i}^{*}, y_{j}^{*}) |\Delta x_{i}| |\Delta y_{j}|$$

$$\approx \iint_{[a,b] \times [c,d]} f(x, y) \, dx dy.$$

Định lý 2.2.1 (công thức Fubini⁴). Cho A là một hình hộp trong \mathbb{R}^m và B là một hình hộp trong \mathbb{R}^n . Cho f khả tích trên hình hộp $A \times B$ trong \mathbb{R}^{m+n} . Giả sử với mỗi $x \in A$ tích

 $^{^4}$ Guido Fubini chứng minh một dạng tổng quát của công thức vào đầu thế kỉ 20, nhưng những kết quả dạng này đã được biết trước đó khá lâu.

 $ph \hat{a}n \int_B f(x,y) \ dy \ t \hat{o}n \ tai. \ Khi \ d \acute{o}$

$$\int_{A\times B} f = \int_{A} \left(\int_{B} f(x, y) \ dy \right) \ dx.$$

Ví dụ 2.2.2. Tính tích phân $\iint_{[0,1]\times[2,3]} x \ dxdy$.

Vì hàm $(x,y) \mapsto x$ là liên tục trên hình chữ nhật $[0,1] \times [2,4]$ nên tích phân trên tồn tại, công thức Fubini áp dụng được, cho:

$$\iint_{[0,1]\times[2,4]} x \ dxdy = \int_0^1 \left(\int_2^4 x \ dy\right) \ dx = \int_0^1 xy|_{y=2}^{y=4} \ dx = \int_0^1 2x \ dx = x^2|_{x=0}^{x=1} = 1.$$

Ta cũng có thể áp dụng công thức Fubini theo thứ tự khác:

$$\iint_{[0,1]\times[2,4]} x \ dxdy = \int_2^4 \left(\int_0^1 x \ dx\right) \ dy = \int_2^4 \frac{1}{2} x^2 \Big|_{x=0}^{x=1} \ dy = \int_2^4 \frac{1}{2} \ dy = \frac{1}{2} y \Big|_{y=2}^{y=4} = 1.$$

Hệ quả 2.2.3 (thể tích của miền dưới đồ thị). Giả sử f là hàm xác định, không âm trên miền bị chặn $D \subset \mathbb{R}^n$. Gọi E là miền dưới đồ thị của f bên trên miền D, tức $E = \{(x,y) \in \mathbb{R}^n \times \mathbb{R} \mid x \in D, \ 0 \leq y \leq f(x)\}$. Nếu E có thể tích thì thể tích đó bằng tích phân của f trên D:

$$|E| = \int_D f.$$

Đây là một công thức mà ta đã hướng tới ngay từ đầu khi xây dựng tích phân nhưng phải tới giờ mới xây dựng được.

Chứng minh. Vì E có thể tích nên nó bị chặn, có một hình hộp chứa nó. Ta có thể lấy hình hộp đó là $I \times [0, c]$ với I là một hình hộp n-chiều trong \mathbb{R}^n chứa D và c đủ lớn. Áp dụng công thức Fubini:

$$|E| = \int_E 1 = \int_{I \times [0,c]} \chi_E = \int_I \left(\int_0^c \chi_E(x,y) \ dy \right) \ dx.$$

Nếu $x \in I \setminus D$ thì $\chi_E(x,y) = 0 \ \forall y \in [0,c]$, do đó $\int_0^c \chi_E(x,y) \ dy = 0$. Nếu $x \in D$ thì $\chi_E(x,y) = 1$ khi và chỉ khi $0 \le y \le f(x)$, do đó $\int_0^c \chi_E(x,y) \ dy = \int_0^{f(x)} 1 \ dy = f(x)$. Do đó

$$|E| = \int_D \left(\int_0^c \chi_E(x, y \, dy) \, dx = \int_D f(x) \, dx. \right)$$

Ví dụ 2.2.4 (tính diện tích tam giác). Xét D là tam giác với các đỉnh (0,0), (a,0), (0,b), với a,b>0. Đây là miền dưới đồ thị $y=\frac{b}{a}x$ với $0 \le x \le a$. Như ta đã biết ở Ví dụ 2.1.15, tam giác D có diện tích. Vậy

$$|D| = \int_0^a \frac{b}{a} x \ dx = \frac{1}{2} ab.$$

Hình 2.2.1: Miền hai chiều đơn giản.

2.2.1 Công thức Fubini cho miền phẳng

Việc áp dụng công thức Fubini sẽ dễ dàng hơn đối với những miền "đơn giản". Một tập con của \mathbb{R}^2 được gọi là một miền đơn giản theo chiều đứng nếu nó có dạng $\{(x,y)\in\mathbb{R}^2\mid a\leq x\leq b,\ g(x)\leq y\leq h(x)\}$. Đây là một miền giữa hai đồ thị có cùng miền xác định. Một đường thẳng đứng nếu cắt miền này thì phần giao là một đoạn thẳng.

Tương tự, một tập con của \mathbb{R}^2 được gọi là một miền đơn giản theo chiều ngang nếu nó có dạng $\{(x,y)\in\mathbb{R}^2\mid c\leq y\leq d,\ g(y)\leq x\leq h(y)\}.$

Mệnh đề 2.2.5. Cho miền đơn giản theo chiều đứng $D = \{(x,y) \in \mathbb{R}^2 \mid a \leq x \leq b, g(x) \leq y \leq h(x)\}$. Giả sử f, g và h liên tục. Khi đó

$$\iint_D f(x,y) \ dxdy = \int_a^b \left(\int_{g(x)}^{h(x)} f(x,y) \ dy \right) \ dx.$$

Công thức có thể đúng dưới những điều kiện tổng quát hơn như ở Hệ quả 2.2.3 nhưng chúng ta chỉ phát biểu ở dạng thường dùng trong môn học này. Trường hợp miền đơn giản theo chiều nằm ngang là tương tự.

Chứng minh. Ta có thể chỉ ra với những điều kiện này thì miền D có diện tích, tuy nhiên lí luận chi tiết vượt ra khỏi phạm vi môn học này (xem [Vugt3]). Lấy một hình chữ nhật $I = [a, b] \times [c, d]$ chứa D. Gọi F là mở rộng của f lên I bằng không ngoài D. Vì f liên tục trên tập có diện tích D nên f khả tích trên D, do đó F khả tích trên I. Ngoài ra $\int_{c}^{d} F(x, y) \ dy = \int_{g(x)}^{h(x)} f(x, y) \ dy$ tồn tại. Áp dụng công thức Fubini cho F:

$$\iint_D f(x,y) \, dxdy = \iint_I F(x,y) \, dxdy$$
$$= \int_a^b \left(\int_c^d F(x,y) \, dy \right) \, dx = \int_a^b \left(\int_{g(x)}^{h(x)} f(x,y) \, dy \right) \, dx.$$

Ghi chú 2.2.6. Trong trường hợp miền không đơn giản ta có thể tìm cách chia miền thành những phần đơn giản để tính, dựa trên cơ sở Hệ quả 2.1.19.

Ví dụ 2.2.7 (tính diện tích hình tròn). Xét hình tròn D cho bởi phương trình $x^2 + y^2 \le R^2$. Áp dụng công thức ở Mệnh đề 2.2.5 cho hàm f = 1, $g(x) = -\sqrt{R^2 - x^2}$,

 $h(x) = \sqrt{R^2 - x^2}$, với $-R \le x \le R$, hay nhanh hơn dùng 2.2.8, ta có

$$|D| = \iint_D 1 \ dx dy = \int_{-R}^R \left(\int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} 1 \ dy \right) \ dx = \int_{-R}^R 2\sqrt{R^2 - x^2} \ dx.$$

Đổi biến $x = R \sin t$, $dx = R \cos t \ dt$, $x = -R \implies t = -\pi/2$, $x = R \implies t = \pi/2$, ta được

$$\int_{-R}^{R} 2\sqrt{R^2 - x^2} \ dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2R^2 \cos^2 t \ dt = \pi R^2.$$

Vậy diện tích của hình tròn bán kính R là πR^2 .

Ví dụ 2.2.8. Tính tích phân $\iint_D e^{y^2} dA$, trong đó D là tam giác với các đỉnh (0,0), (4,2), (0,2).

Các giả thiết ở Mệnh đề 2.2.5 được thỏa. Ta có thể miêu tả D theo hai cách

$$D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 4, \ \frac{x}{2} \le y \le 2\} = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 2, \ 0 \le x \le 2y\}.$$

Theo cách miêu tả thứ nhất, tức là xem D là miền đơn giản theo chiều đứng, thì công thức Fubini cho:

$$I = \iint_D e^{y^2} dA = \int_0^4 \left(\int_{\frac{x}{2}}^2 e^{y^2} dy \right) dx.$$

Tuy nhiên người ta biết nguyên hàm của hàm e^{y^2} theo biến y không phải là một hàm sơ cấp, do đó không có công thức cho nó.

Ta chuyển hướng dùng cách miêu tả thứ hai, xem D là miền đơn giản theo chiều ngang:

$$I = \int_0^2 \left(\int_0^{2y} e^{y^2} dx \right) dy = \int_0^2 x e^{y^2} \Big|_{x=0}^{x=2y} dy = \int_0^2 2y e^{y^2} dy = e^{y^2} \Big|_{y=0}^{y=2}$$

$$= e^4 - 1$$

2.2.2 Công thức Fubini cho miền ba chiều

Tương tự trường hợp hai chiều ta có thể nói về miền ba chiều đơn giản. Một tập con của \mathbb{R}^3 được gọi là một miền đơn giản theo chiều trực z nếu nó có dạng $\{(x,y,z)\in\mathbb{R}^3\mid (x,y)\in D,\ f(x,y)\leq z\leq g(x,y)\}$. Đây là miền nằm giữa hai đồ thị có cùng miền xác định. Một đường thẳng cùng phương với trực z nếu cắt miền này thì phần giao là một đoạn thẳng. Tương tự có khái niệm miền đơn giản theo chiều trực x và trực y.

Tương tư trường hợp hai chiều ở Mênh đề 2.2.5, ta có:

Mệnh đề 2.2.9. Cho miền $D \subset \mathbb{R}^2$ có diện tích, và miền $E = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in D, g(x, y) \leq z \leq h(x, y)\}$. Giả sử f, g và h bị chặn và liên tục. Khi đó

$$\iiint_E f(x, y, z) \ dxdydz = \iint_D \left(\int_{g(x,y)}^{h(x,y)} f(x, y, z) \ dz \right) \ dxdy.$$

Chứng minh. Ta có thể chỉ ra với những điều kiện này thì E có thể tích.

Lấy mở rộng F của f lên $I \times [a,b]$ sao cho F bằng không ngoài E. Nếu $(x,y) \notin D$ thì F có giá trị 0 trên $\{(x,y)\} \times [a,b]$. Nếu $(x,y) \in D$ thì $\int_a^b F(x,y,z) \ dz = \int_{g(x,y)}^{h(x,y)} f(x,y,z) \ dz$.

Áp dụng công thức Fubini cho F:

$$\begin{split} \iiint_{I\times[a,b]} F(x,y,z) \ dV &= \iint_I \left(\int_a^b F(x,y,z) \ dz \right) \, dA \\ &= \iint_D \left(\int_a^b F(x,y,z) \ dz \right) \, dA \\ &= \iint_D \left(\int_{g(x,y)}^{h(x,y)} f(x,y,z) \ dz \right) \, dA. \end{split}$$

Ví dụ 2.2.10. Tính tích phân $\iiint_E x\ dV$ với E là khối tứ diện với các đỉnh (0,0,0), (1,0,0), (0,2,0), (0,0,3).

Bước chính là miêu tả khối E. Ta có thể xem E là một khối đơn giản theo chiều trục z, là miền bên dưới mặt phẳng P qua ba điểm (1,0,0), (0,2,0), (0,0,3) và bên trên tam giác D với các đỉnh (0,0,0), (1,0,0), (0,2,0) trong mặt phẳng xy.

Trước hết cần viết phương trình mặt phẳng P. Ta có hai vectơ cùng phương với mặt phẳng này là (0,0,3)-(1,0,0)=(-1,0,3) và (0,0,3)-(0,2,0)=(0,-2,3). Vectơ tích có hướng $(-1,0,3)\times(0,-2,3)=(6,3,2)$ vuông góc với mặt phẳng P, là một vectơ pháp tuyến. Một điểm (x,y,z) nằm trên P khi và chỉ khi vectơ (x,y,z)-(0,0,3) vuông góc với vectơ pháp tuyến (6,3,2), đồng nghĩa với tích vô hướng của hai vectơ này bằng 0. Vậy phương trình của P là $(x,y,z-3)\cdot(6,3,2)=0$, tức là 6x+3y+2z=6. Nếu ta nhớ dạng tổng quát của phương trình mặt phẳng là ax+by+cz=d thì bằng cách thế giá trị vào ta có thể tìm được phương trình của P nhanh chóng hơn.

Ta có thể chọn coi tam giác D là miền đơn giản theo chiều trục y trong mặt phẳng xy. Khi đó ta có một miêu tả:

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le 1, 0 \le y \le 2 - 2x, 0 \le z \le (6 - 6x - 3y)/2\}.$$

Một miêu tả khối E như một miền đơn giản lập tức cho cách viết tích phân trên E như là tích phân lặp, chú ý là các điều kiện áp dụng công thức Fubini ở Mệnh đề 2.2.9 đều được thỏa:

$$\iiint_{E} x \, dV = \int_{0}^{1} \left(\int_{0}^{2-2x} \left(\int_{0}^{3-3x-\frac{3}{2}y} x \, dz \right) \, dy \right) \, dx$$

$$= \int_{0}^{1} \left(\int_{0}^{2-2x} x \left(3 - 3x - \frac{3}{2}y \right) \, dy \right) \, dx$$

$$= \int_{0}^{1} \left(x(3-3x)y - \frac{3}{4}xy^{2} \right) \Big|_{y=0}^{y=2-2x} \, dx$$

$$= \int_{0}^{1} (3x^{3} - 6x^{2} + 3x) \, dx = \frac{1}{4}.$$

Nhờ công thức Fubini các tích phân nhiều chiều có thể được đưa về các tích phân một chiều. Các tích phân một chiều có thể được tính đúng hoặc tính xấp xỉ. Việc tính xấp xỉ về nguyên lý khá đơn giản, dựa trên việc tính một tổng Riemann. Việc tính đúng nói chung phức tạp hơn. Trong thực tế tính xấp xỉ lẫn tính đúng thường cần một lượng tính toán lớn và thích hợp để dùng máy tính. Người học có thể đọc lại phần tính tích phân trong giáo trình vi tích phân hàm một biến như [Bmgt1].

Bài tập

2.2.1. Cho hàm

$$f: [0,1] \times [0,1] \quad \to \quad \mathbb{R}$$

$$(x,y) \quad \mapsto \quad f(x,y) = \begin{cases} x+y, & x \leq y \\ xy, & x > y. \end{cases}$$

Tích phân của f bằng bao nhiêu?

2.2.2. Cho hàm số

$$f(x,y) = \begin{cases} x^2y, & 0 \le x \le 1, 0 \le y \le 1, y \le x^2, \\ xy^2, & 0 \le x \le 1, 0 \le y \le 1, y > x^2. \end{cases}$$

Tính tích phân của hàm f.

2.2.3. Tính:

(a) Tính:

$$\iint_D (\sqrt{x} - y^2) \ dA$$

trong đó D là miền bao bởi các đường cong $y=x^2,\,x=y^4.$

- (b) Gọi D là miền được bao bởi các đường cong $x=y^2,\,y-x=3,\,y=-3,\,y=2.$ Tính $\iint_D x\;dA.$
- (c) Gọi D là miền trong góc phần tư thứ nhất, nằm bên trên đường hyperbola xy=1, bên trên đường thẳng y=x, bên dưới đường thẳng y=2. Tính $\iint_D y \ dA$.
- (d) Tính tích phân của hàm x^2y^3 trên miền được bao bởi các đường $y=4x^2, y=5-\sqrt{3}x^2$.
- 2.2.4. Đổi thứ tự tích phân trong các tích phân lặp sau và tính chúng:

(a)
$$\int_0^1 \left(\int_{x^2}^1 x e^{-y^2} dy \right) dx$$
.

(b)
$$\int_0^1 \left(\int_{\sqrt{y}}^1 \sqrt{x^3 + 2} \ dx \right) \ dy$$
.

(c)
$$\int_0^1 \left(\int_{3y}^3 \cos(x^2) \ dx \right) \ dy$$
.

(d)
$$\int_0^2 \left(\int_{y^2}^4 y \cos(x^2) \ dx \right) \ dy$$
.

(e)
$$\int_0^1 \left(\int_{\sqrt{x}}^1 e^{y^3} dy \right) dx$$
.

2.2.5. Tính:

- (a) Tính tích phân $\iiint_E y \ dV$ trong đó E là khối tứ diện với 4 đỉnh (0,0,0), (1,0,0), (2,1,0) và (0,0,1).
- (b) Tính tích phân $\iiint_E z \; dV$ trong đó E là khối được bao bởi các mặt $z=0, \; x=0, \; y=x, \; y=1, \; z=2x+3y.$
- (c) Tìm thể tích của khối được bao bởi các mặt y = 0, z = 0, z = 1 x + y, $y = 1 x^2$.
- **2.2.6.** Cho f là hàm liên tục, hãy viết lại tích phân $\int_{-1}^{1} \int_{|x|}^{1} \int_{0}^{1-y} f(x,y,z) \ dz \ dy \ dx$ theo thứ tự $dx \ dz \ dy$.
- **2.2.7.** Tính $\int_0^2 \int_0^1 \int_{z^2}^4 x^3 z \cos(y^2) dy dx dz$.
- **2.2.8.** Giả sử f và g liên tục và $f \leq g$ trên [a,b]. Gọi D là miền giữa đồ thị của f và g, tức $D=\{(x,y)\in\mathbb{R}^2\mid a\leq x\leq b,\ f(x)\leq y\leq g(x)\}$. Chứng minh rằng

$$|D| = \int_a^b \left(g(x) - f(x) \right) dx.$$

2.2.9. Cho g liên tục trên hình hộp $[a,b] \times [c,d] \times [e,f]$, chứng tỏ

$$\iiint_{[a,b]\times[c,d]\times[e,f]}g(x,y,z)\ dV = \int_a^b \left(\int_c^d \left(\int_e^f g(x,y,z)\ dz\right)\ dy\right)\ dx.$$

2.2.10 (thể tích của khối bằng tổng diện tích các mặt cắt song song). Giả sử tập $E \subset \mathbb{R}^3$ có thể tích. Giả sử $a \leq z \leq b$ với mọi $(x,y,z) \in E$. Giả sử với mỗi $z \in [a,b]$ tập $E_z = \{(x,y) \in \mathbb{R}^2 \mid (x,y,z) \in E\}$ có diện tích . Chứng tỏ

$$|E| = \int_a^b |E_z| \ dz.$$

2.2.11. Tính thể tích của khối được miêu tả trong Hình 2.2.2.

Hình 2.2.2:

2.2.12 (khối tròn xoay). Cho f là hàm liên tục trên khoảng [a,b] và $f(x) \geq 0$ trên [a,b]. Chứng tỏ khối tròn xoay nhận được bằng cách xoay miền dưới đồ thị của f quanh trục x có thể tích và thể tích bằng $V = \pi \int_a^b [f(x)]^2 dx$.

2.2.13 (nguyên lý Cavalieri⁵). Nếu hai khối ba chiều có thể tích, và có một phương sao cho mọi mặt phẳng với phương đó cắt hai khối theo hai mặt cắt có cùng diện tích, thì hai khối đó có cùng thể tích.

2.2.14. Chứng tỏ rằng thể tích của khối bao bởi mặt $x^2+(y-z-3)^2=1,\ 0\leq z\leq 1$ bằng với thể tích của khối bao bởi mặt $x^2+y^2=1,\ 0\leq z\leq 1$ (Hình 2.2.3).

Hình 2.2.3: Mặt $x^2 + y^2 = 1$ (trái) và mặt $x^2 + (y - z - 3)^2 = 1$ (phải).

 $^{^5}$ Bonaventura Francesco Cavalieri là một nhà toán học Ý sống vào đầu thế kỉ 17.

2.3 Công thức đổi biến

Nhớ lại trong tích phân hàm một biến, để tính $\int_0^1 \sqrt{1-x^2} \ dx$ ta thường làm như sau. Đặt $x = \sin t$ thì $dx = \cos t \ dt$, x = 0 tương ứng t = 0, x = 1 tương ứng $t = \pi/2$, và

$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_0^{\pi/2} \sqrt{1 - \sin^2 t} \cos t \, dt = \int_0^{\pi/2} \cos^2 t \, dt$$
$$= \int_0^{\pi/2} \frac{1}{2} (1 + \cos 2t) \, dt = \left(\frac{1}{2} t + \frac{1}{4} \sin 2t \right) \Big|_{t=0}^{t=\pi/2} = \frac{\pi}{4}.$$

Mục đích của bài này là khảo sát tổng quát hóa phương pháp ở trên lên nhiều chiều: Với tích phân $\int_A f(x) dx$, nếu đổi biến $x = \varphi(u)$ thì tích phân sẽ biến đổi như thế nào?

2.3.1 Phép đổi biến

Cho A và B là hai tập mở trong \mathbb{R}^n . Một ánh xạ $f:A\to B$ được gọi là một $ph\acute{e}p$ đổi biến nếu f là song ánh, khả vi liên tục, và ánh xạ ngược f^{-1} cũng khả vi liên tục.

Ví dụ 2.3.1. Trong \mathbb{R}^n phép tịnh tiến $x \mapsto x + a$ là một phép đổi biến.

Giả sử f là một phép đổi biến trên một tập mở. Từ đẳng thức $(f^{-1} \circ f)(x) = x$ với mọi x, lấy đạo hàm hai vế, theo qui tắc đạo hàm của hàm hợp thì $(f^{-1})'(f(x)) \circ f'(x) = \mathrm{id}$ (identity: ánh xạ đồng nhất), hay $(f^{-1})'(y) \circ f'(x) = \mathrm{id}$ với y = f(x). Tương tự do $(f \circ f^{-1})(y) = y$ nên $f'(f^{-1}(y)) \circ (f^{-1})'(y) = \mathrm{id}$, hay $f'(x) \circ (f^{-1})'(y) = \mathrm{id}$. Hai điều này dẫn tới $(f^{-1})'(y)$ chính là ánh xạ ngược của f'(x), do đó

$$J_{f^{-1}}(y) = (J_f(x))^{-1}. (2.3.1)$$

2.3.2 Công thức đổi biến cho vi phân và tích phân

Định lý 2.3.2 (công thức đổi biến). Công thức đổi biến

$$\int_{\varphi(A)} f = \int_{A} (f \circ \varphi) |\det \varphi'| \tag{2.3.2}$$

được thỏa dưới những giả thiết: A là một tập mở trong \mathbb{R}^n , φ là một phép đổi biến từ A lên $\varphi(A)$, A và $\varphi(A)$ có thể tích, f và $(f \circ \varphi) |\det \varphi'|$ khả tích.

Có một cách viết hình thức dễ nhớ tương tự trường hợp một chiều như sau: Đăt

$$x = \varphi(u)$$

thì

$$dx = |\det \varphi'(u)| \ du.$$

Nếu

$$x \in X \iff u \in U$$

thì

$$\int_X f(x) \ dx = \int_U f(\varphi(u)) |\det \varphi'(u)| \ du.$$

Để tính toán, nhớ rằng

$$\det \varphi' = \det J_{\varphi}.$$

Nếu viết x = x(u) và $\frac{\partial x}{\partial u} = \det \left(\frac{\partial x_i}{\partial u_j}\right)_{i,j}$ thì có thể viết một cách hình thức dễ nhớ công thức cho đổi biến của dạng vi phân:

$$dx = \left| \frac{\partial x}{\partial u} \right| du.$$

Dấu trị tuyệt đối có thể được bỏ đi nếu ta biết dấu của det φ' . Nếu det φ' luôn dương thì φ được gọi là một **phép đổi biến bảo toàn định hướng**. Nếu det φ' luôn âm thì φ được gọi là một **phép đổi biến đảo ngược định hướng**.

Như trường hợp một chiều, đổi biến có thể dùng để làm cho hàm dưới dấu tích phân, tức dạng vi phân, đơn giản hơn. Trong trường hợp nhiều chiều, đổi biến hay được dùng để làm cho miền lấy tích phân đơn giản hơn.

Ví dụ 2.3.3 (đổi biến một chiều). Đây là phương pháp đổi biến trong tích phân cho hàm một biến quen thuộc. Thực vậy, cho $x = \varphi(t)$ với $t \in [a,b]$, ở đây φ liên tục và $\varphi:(a,b) \to \varphi((a,b))$ là một vi đồng phôi. Cho f khả tích trên $\varphi([a,b])$. Theo công thức đổi biến:

$$\int_{\varphi((a,b))} f(x) \ dx = \int_{(a,b)} f(\varphi(t)) |\varphi'(t)| \ dt.$$

Do $\varphi'(t) \neq 0$, $\forall t \in (a,b)$ nên hoặc $\varphi'(t) > 0$, $\forall t \in (a,b)$ hoặc $\varphi'(t) < 0$, $\forall t \in (a,b)$. Vì vậy hoặc φ là hàm tăng hoặc φ là hàm giảm trên [a,b].

Nếu φ là hàm tăng (bảo toàn định hướng) thì $\varphi([a,b]) = [\varphi(a), \varphi(b)]$. Do đó, dùng ?? để chuyển đổi giữa tích phân trên khoảng mở và tích phân trên khoảng đóng, ta được

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{[a,b]} f(\varphi(t))\varphi'(t) dt = \int_{(a,b)} f(\varphi(t))\varphi'(t) dt$$
$$= \int_{(\varphi(a),\varphi(b))} f(x) dx = \int_{[\varphi(a),\varphi(b)]} f(x) dx$$
$$= \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Nếu φ là hàm giảm (đảo ngược định hướng) thì $\varphi([a,b])=[\varphi(b),\varphi(a)]$ và $|\varphi'(t)|=-\varphi'(t)$. Do đó

$$\begin{split} \int_{a}^{b} f(\varphi(t))\varphi'(t) \ dt &= -\int_{(a,b)} f(\varphi(t))|\varphi'(t)| \ dt \\ &= -\int_{(\varphi(b),\varphi(a))} f(x) \ dx \\ &= -\int_{\varphi(b)}^{\varphi(a)} f(x) \ dx = \int_{\varphi(a)}^{\varphi(b)} f(x) \ dx. \end{split}$$

Trong cả hai trường hợp ta được công thức đổi biến cho tích phân hàm một biến:

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Nếu ta giả sử hàm f liên tục thì trong vi tích phân hàm một biến công thức đổi biến được chứng minh bằng cách dùng công thức Newton–Leibniz và qui tắc đạo hàm hàm hợp, và chỉ cần hàm φ là trơn.

43

Ví dụ 2.3.4 (đổi biến hai chiều). Với phép đổi biến $(u,v) \mapsto (x,y)$ người ta thường dùng kí hiệu

$$\frac{\partial(x,y)}{\partial(u,v)} = \det\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}.$$

Với kí hiệu này công thức đổi biến có dạng như sau. Nếu phép đổi biến $(u,v)\mapsto (x,y)$ mang tập A thành tập B thì

$$\iint_B f(x,y) \ dxdy = \iint_A f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \ dudv.$$

Một cách hình thức ta có thể viết:

$$dxdy = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv.$$

Chú ý rằng, do Phương trình (2.3.1):

$$\frac{\partial(u,v)}{\partial(x,y)} = \frac{1}{\frac{\partial(x,y)}{\partial(u,v)}}.$$

2.3.3 Toa đô cưc

Một điểm P=(x,y) trên mặt phẳng \mathbb{R}^2 có thể được miêu tả bằng hai số thực (r,θ) , với r là khoảng cách từ O tới P, và $0 \le \theta \le 2\pi$ là góc từ vectơ (1,0) (tia Ox) tới vectơ \overrightarrow{OP} . Vậy $x=r\cos\theta$, $y=r\sin\theta$, $r\ge 0$, $0 \le \theta \le 2\pi$.

Tuy nhiên tương ứng $(x,y) \mapsto (r,\theta)$ này không là song ánh và không liên tục trên tia Ox. Vì vậy ta phải hạn chế miền xác định là mặt phẳng bỏ đi tia Ox. Khi đó ánh xạ ngược là

$$(0,\infty) \times (0,2\pi) \rightarrow \mathbb{R}^2 \setminus \{(x,0) \mid x \ge 0\}$$
$$(r,\theta) \mapsto (x,y) = (r\cos\theta, r\sin\theta).$$

Ta tính được $\frac{\partial(x,y)}{\partial(r,\theta)}(r,\theta)=r>0$, vì vậy đây là một phép đổi biến. Một cách hình thức, có thể nhớ rằng

$$dxdy = r \ drd\theta.$$

Ví dụ 2.3.5 (tích phân trên hình tròn). Gọi $B'^2(O,R)$ là hình tròn đóng tâm O bán kính R. Để áp dụng công thức đổi biến ta dùng phép đổi biến φ từ hình chữ nhật mở $(0,R)\times(0,2\pi)$ sang miền D là $B'^2(O,R)$ bổ đi đường tròn biên và tia Ox. Giả sử f khả tích trên $B'^2(O,R)$. Tập bị bổ đi có diện tích không, do đó nó không ảnh hưởng đến tích phân, nên:

$$\begin{split} \iint_{B'^2(O,R)} f(x,y) \ dx dy &= \iint_D f(x,y) \ dx dy = \iint_{(0,R) \times (0,2\pi)} f(r\cos\theta, r\sin\theta) r \ dr d\theta \\ &= \iint_{[0,R] \times [0,2\pi]} f(r\cos\theta, r\sin\theta) r \ dr d\theta. \end{split}$$

Chẳng han diên tích của hình tròn là:

$$|B'^{2}(O,R)| = \iint_{B'^{2}(O,R)} 1 \ dxdy = \int_{0}^{R} \int_{0}^{2\pi} 1 \cdot r \ d\theta \ dr = \pi R^{2}.$$

Như vậy chú ý rằng với mục đích lấy tích phân thì để đơn giản ta thường lấy cận trong tọa độ cực là $r \ge 0$ và $0 \le \theta \le 2\pi$.

Ví dụ 2.3.6. Cho E là khối được bao bởi các mặt $z = x^2 + y^2$ và z = 1. Tính $\iiint_E z \, dx dy dz$. "Bao" ở đây chỉ là một miêu tả trực quan, vì thế ta nên vẽ hình rồi từ đó đưa ra một miêu tả toán học, tức là miêu tả dưới dạng tập hợp.

Xem E là một khối đơn giản theo chiều trục z, nằm trên mặt $z=x^2+y^2$, dưới mặt z=1. Như vậy $E=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2\leq z\leq 1\}$. Chiếu khối E xuống mặt phẳng xOy ta được hình tròn $x^2+y^2\leq 1$. Áp dụng công thức Fubini:

$$\iint_{E} z \, dx dy dz = \iint_{x^{2}+y^{2} \le 1} \left(\int_{x^{2}+y^{2}}^{1} z \, dz \right) \, dx dy
= \iint_{x^{2}+y^{2} \le 1} \frac{1}{2} z^{2} \Big|_{z=x^{2}+y^{2}}^{1} \, dx dy
= \iint_{x^{2}+y^{2} \le 1} \frac{1}{2} \left(1 - \left(x^{2} + y^{2} \right)^{2} \right) \, dx dy
= \iint_{0 \le r \le 1, 0 \le \theta \le 2\pi} \frac{1}{2} \left(1 - \left(r^{2} \right)^{2} \right) r \, dr d\theta
= \frac{1}{2} \int_{0}^{1} \left(\int_{0}^{2\pi} (r - r^{5}) \, d\theta \right) \, dr = \frac{\pi}{3}.$$

Trong ví dụ này một điểm (x, y, z) trong \mathbb{R}^3 được miêu tả bằng cách dùng tọa độ cực (r, θ) để miêu tả (x, y). Người ta thường gọi hệ tọa độ (r, θ, z) là hệ **toa đô tru**.

2.3.4 Tọa độ cầu

Một điểm P=(x,y,z) trong \mathbb{R}^3 có thể được miêu tả bằng bộ ba số thực (ρ,ϕ,θ) , với ρ là khoảng cách từ O tới P, ϕ là góc giữa vecto (0,0,1) (tia Oz) và vecto \overrightarrow{OP} , và nếu gọi M=(x,y,0) là hình chiếu của điểm P xuống mặt phẳng Oxy thì θ là góc từ vecto (1,0,0) (tia Ox) tới vecto \overrightarrow{OM} .

Trong hình 2.3.1 ta tính được ngay $z=PM=\rho\cos\phi,\,OM=\rho\sin\phi,\,x=OM\cos\theta=\rho\sin\phi\cos\theta,\,y=OM\sin\theta=\rho\sin\phi\sin\theta$. Tương tự như trường hợp tọa độ cực, để có một phép đổi biến thực sự ta phải hạn chế miền xác định bằng cách bỏ đi tập $\{(x,y,z)\in\mathbb{R}^3\mid y=0,\;x\geq 0\}$, tức một nửa của mặt phẳng xOz, ứng với $\rho=0,\,\phi=0,\,\phi=\pi,\,\theta=0,\,\theta=2\pi.$ Khi đó ánh xạ

$$\varphi: (0, \infty) \times (0, \pi) \times (0, 2\pi) \rightarrow \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 \mid y = 0, x \ge 0\}$$
$$(\rho, \phi, \theta) \mapsto (x, y, z) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$$

45

Hình 2.3.1: $\rho = \text{const}$ ứng với một mặt cầu. Trên mỗi mặt cầu các đường $\phi = \text{const}$ là các đường vĩ tuyến, các đường $\theta = \text{const}$ là các đường kinh tuyến, với $0 \le \rho, \ 0 \le \phi \le \pi, \ 0 \le \theta \le 2\pi$. Bộ (ρ, ϕ, θ) đại diện cho (cao độ, vĩ độ, kinh độ) của một điểm trong không gian.

là một song ánh, có det $J_{\varphi}(\rho, \phi, \theta) = \rho^2 \sin \phi > 0$. Vậy đây là một phép đổi biến. Cũng như trường hợp tọa độ cực, phần bị bỏ đi thường không ảnh hưởng tới tích phân nên ta thường không nhắc tới chi tiết kĩ thuật này.

Một cách hình thức, có thể nhớ rằng

$$dxdydz = \rho^2 \sin \phi \ d\rho d\phi d\theta.$$

Có tài liệu dùng thứ tự trong tọa độ cầu là (ρ, θ, ϕ) . Thứ tự tọa độ trong tọa độ cầu liên quan tới định hướng trên mặt cầu, tuy không ảnh hưởng tới tích phân bội nhưng sẽ ảnh hưởng tới tích phân mặt ở chương sau.

Ví dụ 2.3.7 (thể tích quả cầu). Gọi $B^3(O, R)$ là quả cầu mở tâm O bán kính R trong \mathbb{R}^3 . Thể tích của quả cầu này là:

$$|B^3(O,R)| = \iiint_{B^3(O,R)} 1 \ dV = \int_0^R \int_0^\pi \int_0^{2\pi} 1 \cdot \rho^2 \sin \phi \ d\theta \ d\phi \ d\rho = \frac{4\pi}{3} R^3.$$

Sau đây là một số ví dụ các phép đổi biến khác.

Ví dụ 2.3.8 (diện tích hình bầu dục). Một hình bầu dục (e-líp, ellipse) D trong mặt phẳng là tập hợp các điểm thỏa

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} \le 1$$

trong đó a, b > 0. Viết lại công thức ở dạng

$$\left(\frac{x-x_0}{a}\right)^2 + \left(\frac{y-y_0}{b}\right)^2 \le 1,$$

ta thấy có thể làm phép đổi biến

$$u = \frac{x - x_0}{a}$$
$$v = \frac{y - y_0}{b}.$$

Phép đổi biến này đưa hình bầu dục về hình tròn $u^2 + v^2 \le 1$. Đây chẳng qua là một phép co dãn (vị tự) trục tọa độ biến hình bầu dục thành hình tròn hợp với phép tịnh tiến về gốc tọa độ. Ta tính được $dudv = \frac{1}{ab} dx dy$, từ đó

$$|D| = \iint_D 1 \ dx dy = \iint_{u^2 + v^2 \le 1} 1 \cdot ab \ du dv = ab \iint_{u^2 + v^2 \le 1} 1 \ du dv = ab\pi.$$

Ví dụ 2.3.9. Tính $\iint_R \frac{x-2y}{3x-y} dA$ trong đó R là hình bình hành bao bởi các đường thẳng x-2y=0, x-2y=4, 3x-y=1, và 3x-y=8.

Đặt u = x - 2y và v = 3x - y. Miền bao bởi các đường thẳng u = 0, u = 4, v = 1, và v = 8 là hình chữ nhật $D = [0, 4] \times [1, 8]$ trong mặt phẳng (u, v).

$$\frac{\partial(u,v)}{\partial(x,y)} = \det\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \det\begin{pmatrix} 1 & -2 \\ 3 & -1 \end{pmatrix} = 5 \neq 0$$

nên ánh xạ $(x,y) \mapsto (u,v)$ là một phép đổi biến từ phần trong của D sang phần trong của R. Biên của D và R không ảnh hưởng đến tích phân vì chúng có diện tích không và ta đang lấy tích phân hàm liên tục.

Chú ý rằng

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{\frac{\partial(u,v)}{\partial(x,y)}} = \frac{1}{5}.$$

Công thức đổi biến cho:

$$\iint_{R} \frac{x - 2y}{3x - y} dxdy = \iint_{D} \frac{u}{v} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| dudv$$
$$= \frac{1}{5} \iint_{D} \frac{u}{v} dudv = \frac{1}{5} \int_{0}^{4} \left(\int_{1}^{8} \frac{u}{v} dv \right) du = \frac{8}{5} \ln 8.$$

2.3.5 Giải thích công thức đổi biến

Chúng ta sẽ không chứng minh công thức đổi biến vì một chứng minh sẽ khó và dài vượt khỏi phạm vi môn học này. Dưới đây chúng ta đưa ra một giải thích, tuy chưa phải là một chứng minh, nhưng sẽ giúp ta hiểu rõ hơn công thức.

Để cho đơn giản, xét trường hợp A là một hình chữ nhật. Ánh xạ φ mang miền A trên mặt phẳng (u,v) sang miền $\varphi(A)$ trên mặt phẳng (x,y).

Xét một phép chia A thành những hình chữ nhật con. Ta xem tác động của φ lên một hình chữ nhật con đại diện $[u_0, u_0 + \Delta u] \times [v_0, v_0 + \Delta v]$, có diện tích $\Delta u \Delta v$. Hàm trơn φ mang mỗi cạnh của hình chữ nhật này thành một đoạn cong trên mặt phẳng (x, y), do đó ta được một "hình chữ nhật cong" trên mặt phẳng (x, y) với một đỉnh là điểm $\varphi(u_0, v_0)$.

Hình 2.3.2: Minh họa công thức đổi biến.

Bây giờ ta tính diện tích hình chữ nhật cong này bằng cách xấp xỉ tuyến tính. Đoạn cong từ $\varphi(u_0, v_0)$ tới $\varphi(u_0 + \Delta u, v_0)$ sẽ được xấp xỉ tuyến tính bằng một đoạn thẳng tiếp tuyến tại $\varphi(u_0, v_0)$. Vì vectơ tiếp xúc chính là $\frac{\partial \varphi}{\partial u}(u_0, v_0)$ nên đoạn tiếp tuyến này cho bởi vectơ $\frac{\partial \varphi}{\partial u}(u_0, v_0)\Delta u$.

Hình 2.3.3: Xấp xỉ tuyến tính đường cong: $r(t + \Delta t) - r(t) \approx r'(t)\Delta t$.

Tương tự, đoạn cong $\varphi(u_0, v_0 + \Delta v)$ được xấp xỉ bởi vectơ tiếp xúc $\frac{\partial \varphi}{\partial v}(u_0, v_0) \Delta v$. Vậy hình chữ nhật cong được xấp xỉ bởi hình bình hành sinh bởi hai vectơ tiếp xúc trên.

Vấn đề bây giờ là tính diện tích hình bình hành sinh bởi hai vecto. Giả sử $a = (a_1, a_2)$

và $b = (b_1, b_2)$, diện tích của hình bình hành sinh bởi a và b là

$$|a||b| \sin \alpha = \sqrt{|a|^2 |b|^2 (1 - \cos^2 \alpha)} = \sqrt{|a|^2 |b|^2 - \langle a, b \rangle^2}$$

$$= \sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2) - (a_1 b_1 + a_2 b_2)^2}$$

$$= \sqrt{(a_1 b_2 - a_2 b_1)^2} = |a_1 b_2 - a_2 b_1|$$

$$= |\det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}| = |\det(a, b)|.$$
(2.3.3)

Ta vừa được một kết quả đáng chú ý, giải thích ý nghĩa hình học của định thức: giá trị tuyệt đối của định thức của ma trận chính là diện tích của hình bình hành sinh bởi hai vectơ cột của ma trận. Bản thân dấu của định thức cũng có thể được giải thích, nhưng ta gác việc này lại.

Người đọc kỹ tính có thể thắc mắc rằng công thức tính diện tích thông qua hàm sin ở trên chưa được thiết lập trong lý thuyết của chúng ta. Đây là một phản đối xác đáng. Lý luận trên chưa phải là một chứng minh mà chỉ cho thấy sự không mâu thuẫn với những kết quả đã biết.

Trở lại công thức đổi biến, vậy diện tích của hình bình hành sinh bởi hai vecto $\frac{\partial \varphi}{\partial u}(u_0, v_0)\Delta u$ và $\frac{\partial \varphi}{\partial v}(u_0, v_0)\Delta v$ là

$$|\det\left(\frac{\partial\varphi}{\partial u}(u_0, v_0)\Delta u, \frac{\partial\varphi}{\partial v}(u_0, v_0)\Delta v\right)| = |\det\left(\frac{\partial\varphi}{\partial u}(u_0, v_0), \frac{\partial\varphi}{\partial v}(u_0, v_0)\right)|\Delta u\Delta v$$
$$= |\det J_{\varphi}(u_0, v_0)|\Delta u\Delta v.$$

Điều này cũng giải thích sự xuất hiện của dấu trị tuyệt đối.

Bài tập

Một số bài tập tính toán có thể dùng máy tính và tính xấp xỉ.

2.3.1. Tính:

- (a) Tính thể tích của khối được bao bởi mặt $z = 4 x^2 y^2$ và mặt phẳng xOy.
- (b) Tính thể tích của khối được bao bởi mặt $z = 9 x^2 y^2$, $y \le x$, trong góc phần tám thứ nhất (tức $x, y, z \ge 0$).
- (c) Tính tích phân $\iint_D \sqrt{x^2+y^2}$ trong đó D là miền được bao bởi hai đường cong $x^2+y^2=4$ and $x^2+y^2=9$.
- (d) Tính tích phân $\iint_D (x^2 + y^2)^{3/2} dA$ trong đó D là miền trong góc phần tư thứ nhất bao bởi đường tròn $x^2 + y^2 = 9$, đường thẳng y = 0 và $y = \sqrt{3}x$.
- (e) Tính tích phân $\iint_D \frac{y^2}{x^2} dA$ trong đó D là miền trong góc phần tư thứ nhất bao bởi đường tròn $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, đường thẳng y = 0 và y = x.
- (f) Tính tích phân $\iint_D x^2 \ dA$ trong đó D là miền được bao bởi e-líp $3x^2 + 4y^2 = 8$.
- (g) Tính tích phân $\iiint_E \cos\left[(x^2+y^2+z^2)^{3/2}\right] \ dV$ trong đó E là quả cầu đơn vị $x^2+y^2+z^2\leq 1$.
- (h) Tính thể tích của khối được bao phía trên bởi mặt cầu $x^2 + y^2 + z^2 = 2$ và được bao phía dưới bởi mặt paraboloid $z = x^2 + y^2$.
- (i) Tìm thể tích của khối bị chặn trên bởi mặt cầu $x^2+y^2+z^2=4$ và bị chặn dưới bởi mặt nón $z^2=3x^2+3y^2,\,z\geq 0.$
- (j) Tìm thể tích của khối bị chặn bởi mặt cầu $x^2 + y^2 + z^2 = 9$ và mặt trụ $x^2 + y^2 = 2y$.
- (k) Tính thể tích của miền phía dưới mặt cầu $x^2 + y^2 + z^2 = 1$ phía trên mặt phẳng $z = 1/\sqrt{2}$.

- 49
- (l) Tính thể tích của khối bên dưới mặt $z = 4 x^2 y^2$ bên trên mặt $x^2 + y^2 + z^2 = 6$.
- (m) Tính thể tích của khối được bao bởi các mặt $z = 9 x^2 y^2$, $z = 3x^2 + 3y^2 16$.
- (n) Tính thể tích của khối được bao bởi các mặt $z=3-2y,\,z=x^2+y^2.$
- (o) Tính tích phân $\iiint_E x \ dV$ trong đó E là khối được bao bởi hai mặt $z=6-x^2-y^2$ và $z=x^2+3y^2$.
- **2.3.2.** Tính thể tích của khối được miêu tả bởi điều kiện $x^2+y^2 \le z^2 \le 3(x^2+y^2), 1 \le x^2+y^2+z^2 \le 4, z \ge 0.$

2.3.3. Tính:

(a) Tính diện tích của miền được bao bởi đường cong hình bông hoa $r=4+3\cos(11\theta)$ (đây là đường trong mặt phẳng xy được cho bởi phương trình tham số $x=r\cos\theta,\,y=r\sin\theta$ với r như trên).

Hình 2.3.4: Đường $r = 4 + 3\cos(11\theta)$.

(b) Tính diện tích miền được bao bởi đường cong hình trái tim $r = 1 + \cos \theta$.

Hình 2.3.5: Đường $r = 1 + \cos \theta$.

(c) Đường cong trong mặt phẳng xy cho bởi phương trình $r=\sqrt{\theta},\ 0\leq\theta\leq 2\pi$ cùng với tia Ox bao một miền D hình vỏ ốc được vẽ trong hình 2.3.6. Hãy tính tích phân $\iint_D e^{x^2+y^2}\ dxdy$.

2.3.4. Tính:

- (a) Tính tích phân $\iint_R (x^2+2xy)\ dA$ trong đó R là hình bình hành bao bởi các đường thẳng $y=2x+3,\ y=2x+1,\ y=5-x,\ y=2-x.$
- (b) Tính tích phân $\iint_R (x+y)^2 dA$ trong đó R là hình bình hành bao bởi các đường thẳng $y=-x,\ y=-x+1,\ y=2x,\ y=2x-3.$
- (c) Tính diện tích của miền phẳng được bao bởi các đường cong $y^2=x,\,y^2=2x,\,y=1/x,\,y=2/x.$

Hình 2.3.6: Đường $r = \sqrt{\theta}$.

- (d) Tính diện tích của miền phẳng được bao bởi các đường cong $y^2=x,\ 3y^2=x,\ y=x^2,\ y=2x^2.$
- **2.3.5.** Xét khối bầu dục E được bao bởi mặt có phương trình $x^2 + 2y^2 + 3z^2 = 4$. Hãy tính thể tích của E bằng cách đổi biến để đưa về thể tích của quả cầu. Tìm công thức thể tích của khối bầu dục tổng quát.
- **2.3.6.** Tìm diện tích của miền phẳng được bao bởi đường cong $x^2 2xy + 2x + 3y^2 2y = 2$.
- **2.3.7.** Gọi D là miền phẳng được xác định bởi $x^4 + x^2 + 3y^4 + y^2 2y \le 1$. Hãy tính tích phân $\iint_D x \ dx dy$. Hãy tổng quát hóa.
- **2.3.8.** Tìm thể tích của khối được tạo bằng cách xoay miền bao bởi đồ thị của hàm $f(x) = x x^3$ và trục x quanh trục y.
- **2.3.9.** Dùng máy tính hãy vẽ mặt cầu mấp mô cho bởi phương trình trong tọa độ cầu $\rho = 1 + \sin^2(3\theta) \sin^4(5\phi)$. Tính thể tích của khối bao bởi mặt này.
- 2.3.10. Hãy giải bài 2.2.12 (thể tích khối tròn xoay) bằng cách đổi biến.
- 2.3.11. Giải bài 2.2.14 bằng cách dùng công thức đổi biến.
- **2.3.12.** Mặt xuyến (torus) có thể được miêu tả như là mặt tròn xoay nhận được bằng cách xoay quanh trục z một đường tròn trên mặt phẳng Oyz không cắt trục z. Hãy kiểm tra rằng mặt xuyến

Hình 2.3.7: Mặt xuyến.

có phương trình dạng ẩn:

$$\left(\sqrt{x^2 + y^2} - b\right)^2 + z^2 = a^2, \ 0 < a < b,$$

và dạng tham số: $((b+a\cos\theta)\cos\phi,(b+a\cos\theta)\sin\phi,a\sin\theta),\ 0\leq\phi,\ \theta\leq2\pi.$ (Hình 2.3.8.) Hãy tính thể tích của khối bao bởi mặt xuyến.

Hình 2.3.8:

2.3.13 (thể tích của khối nón). Giả sử D là một miền trong mặt phẳng Oxy. Cho A là một điểm phía trên mặt phẳng Oxy trong \mathbb{R}^3 . Tập hợp tất cả các điểm nằm trên các đoạn thẳng nối A với các điểm thuộc D được gọi là một khối nón hay khối chóp. Chẳng hạn một khối tứ diện là một khối nón. Miền D được gọi là đáy của khối nón, còn khoảng cách từ A tới mặt phẳng Oxy được gọi là chiều cao của khối nón. Hãy chứng tỏ thể tích của thối nón đúng bằng một thể bà tiện tích đáy thển chiều the0.

2.3.14. Trong mặt phẳng \mathbb{R}^2 một phép quay quanh gốc tọa độ một góc α có thể được miêu tả bằng 2 cách: Trong tọa độ cực, đó là ánh xạ $(r,\theta) \mapsto (r,\theta+\alpha)$. Tương ứng trong tọa độ Euclid đó là

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto \left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right).$$

Dùng công thức đổi biến, hãy chứng tỏ một phép quay quanh gốc tọa độ mang một hình có diện tích thành một hình có cùng diện tích.

2.3.15 (phép dời hình bảo toàn thể tích). Một phép dời hình trong \mathbb{R}^2 được định nghĩa là một song ánh từ \mathbb{R}^2 vào chính nó bảo toàn khoảng cách.

Người ta biết trong mặt phẳng một phép dời hình bất kì là một hợp của các phép tịnh tiến, phép quay quanh gốc tọa độ, và phép lấy đối xứng qua trục x.

Dùng công thức đổi biến, hãy chứng tỏ diện tích của một hình không thay đổi qua một phép dời hình.

2.4 Ứng dụng của tích phân bội

Tích phân là tổng, đó là ý nghĩa chính của tích phân. Vì vậy mỗi khi có nhu cầu tính tổng của vô hạn giá trị thì tích phân có thể xuất hiện.

Về cơ bản, nếu tại mỗi điểm x_i , $1 \le i \le n$ có tương ứng các giá trị $f(x_i)$ của một đại lượng thì tổng giá trị của đại lượng đó dĩ nhiên là $\sum_{i=1}^n f(x_i)$. Nếu tập hợp D các điểm đang xét là vô hạn thì hàm $f:D\to\mathbb{R}$ có khi được gọi là **hàm mật độ** của đại lượng, và tổng giá trị của đại lượng là $\int_D f$.

2.4.1 Giá trị trung bình

Nếu tại các điểm x_i , $1 \leq i \leq n$ có tương ứng các giá trị $f(x_i)$ thì giá trị trung bình tại các điểm này như ta đã biết là $\frac{1}{n} \sum_{i=1}^n f(x_i)$. Trong trường hợp miền xác định có vô hạn phần tử, giả sử $f:D \to \mathbb{R}$, thì giá trị trung bình của f được cho bằng công thức tương tự, chỉ thay tổng bằng tích phân: $\frac{1}{|D|} \int_D f$.

Ví dụ 2.4.1. Nhiệt độ tại điểm (x, y) trên mặt phẳng là $50e^{-x^2-y^2}$ (độ Celcius). Hãy tìm nhiệt độ trung bình trên đĩa tròn đơn vị tâm tại gốc tọa độ.

Gọi D là đĩa tròn $x^2 + y^2 \le 1$. Nhiệt độ trung bình trên D được cho bởi

$$\frac{1}{|D|} \iint_D 50e^{-x^2 - y^2} dx dy = \frac{1}{\pi} \int_0^1 \int_0^{2\pi} 50e^{-r^2} r d\theta dr$$
$$= 50 \left(1 - \frac{1}{e} \right) \approx 31, 6.$$

2.4.2 Tâm khối lượng

Ta giới thiệu khái niệm tâm khối lượng (center of mass). Trong trường hợp hai chất điểm có khối lượng m_1 tại điểm p_1 và có khối lượng m_2 tại điểm p_2 thì tâm khối lượng của hệ hai điểm này, theo nguyên tắc đòn bẩy của vật lý, nằm tại điểm

$$\frac{m_1p_1 + m_2p_2}{m_1 + m_2}.$$

Đối với hệ gồm n chất điểm, bằng qui nạp ta tìm được vị trí của tâm khối lượng là

$$\frac{\sum_{i=1}^{n} m_i p_i}{\sum_{i=1}^{n} m_i},$$

với tổng khối lượng là $m = \sum_{i=1}^{n} m_i$.

Xét trường hợp khối lượng liên tục, giả sử ta có một khối vật chất chiếm phần không gian E trong \mathbb{R}^3 . Tại mỗi điểm $p=(x,y,z)\in\mathbb{R}^3$ gọi $\rho(p)$ là mật độ khối lượng của khối tại p, đó là giới hạn của khối lượng trung bình quanh p, có thể hiểu là khối lượng tại điểm p. Khối lượng của khối chính là tích phân của mật độ khối lượng:

$$m = \int_{E} \rho.$$

Từ công thức của trường hợp rời rạc ở trên ta suy ra vị trí của tâm khối lượng trong trường hợp liên tục sẽ là

$$\frac{\int_E \rho p}{\int_E \rho} = \frac{\int_E \rho p}{m}.$$

Ở đây tích phân của hàm vectơ được hiểu là vectơ tích phân của từng thành phần. Cụ thể hơn, nếu p=(x,y,z) thì tâm khối lượng nằm ở điểm $\frac{1}{m}(\int_E \rho x, \int_E \rho y, \int_E \rho z)$.

Ví dụ 2.4.2. Ta tìm tâm khối lượng của nửa hình tròn đồng chất. Gọi D là nửa trên của hình tròn tâm O bán kính R và gọi hằng số ρ là mật độ khối lượng của nó. Khối lượng của khối này là $m = \iint_D \rho \ dA = \rho \pi R^2/2$. Tọa độ của tâm khối lượng là

$$x = \frac{1}{m} \iint_D \rho x \, dx dy = 0,$$

$$y = \frac{1}{m} \iint_D \rho y \, dx dy = \frac{\rho}{m} \int_0^R \int_0^{\pi} (r \sin \theta) r \, d\theta \, dr = \frac{4}{3\pi} R.$$

2.4.3 Xác suất của sự kiện ngẫu nhiên

Một biến ngẫu nhiên X là một ánh xạ từ một tập hợp các sự kiện vào \mathbb{R} . Trong trường hợp tập giá trị D của X là hữu hạn thì ta nói X là một biến ngẫu nhiên rời rạc. Với mỗi giá trị $x \in D$ có một số thực $0 \le f(x) \le 1$ là xác suất để X có giá trị x, kí hiệu là

P(X=x). Hàm f được gọi là hàm phân bố xác suất của biến ngẫu nhiên X. Xác suất để X có giá trị trong tập $C \subset D$ được cho bởi

$$P(X \in C) = \sum_{x \in C} f(x).$$

Một hệ quả là $\sum_{x \in D} f(x) = P(X \in D) = 1$. Giá trị trung bình (mean) hay kỳ vọng (expected value) theo xác suất của X được cho bởi:

$$E(X) = \sum_{x \in D} x f(x).$$

Ví dụ 2.4.3. Xét một trò chơi với con xúc sắc như sau: Người chơi phải trả 20 đồng cho mỗi lần tung xúc sắc. Nếu mặt ngửa là mặt 6 nút thì người chơi được nhận 60 đồng, nếu là các mặt còn lại thì chỉ được nhận 10 đồng. Hỏi trong trò chơi này ai được lợi, người chơi hay người tổ chức trò chơi?

Gọi X là biến xác suất như sau: Mặt 6 nút của xúc sắc ứng với số thực 60, các mặt còn lại ứng với số thực 10. Hàm phân bố xác suất trong trường hợp này là f(10) = 5/6 và f(60) = 1/6. Câu trả lời cho câu hỏi trên được quyết định bởi giá trị trung bình của biến xác suất X. Ta có $E(X) = 10 \cdot \frac{5}{6} + 60 \cdot \frac{1}{6} = \frac{110}{6} < 20$, như vậy nếu chơi nhiều lần thì người chơi sẽ bị thiệt, còn người tổ chức trò chơi sẽ hưởng lợi.

Trong trường hợp biến ngẫu nhiên liên tục, tập giá trị của biến ngẫu nhiên X là một tập con vô hạn D của \mathbb{R} . Tương tự với trường hợp rời rạc, có một hàm phân bố xác suất, hay mật độ xác suất (probability density function) $f:D\to\mathbb{R}$ sao cho $f(x)\geq 0$ và xác suất để X có giá trị trong tập $C\subset D$ được cho bởi

$$P(X \in C) = \int_C f.$$

Một hệ quả là hàm mật độ xác suất phải thỏa $P(X \in D) = \int_D f = 1$. Trung bình hay kỳ vọng của biến ngẫu nhiên X được cho bởi:

$$E(X) = \int_D xf.$$

Chú ý sự tương tự của công thức này với công thức của tâm khối lượng.

Ví dụ 2.4.4. Một nhà sản xuất bảo hành một sản phẩm 2 năm. Gọi T là biến xác suất ứng thời điểm hư hỏng của sản phẩm với số thực $t \ge 0$ là thời gian từ khi sản phẩm được sản xuất theo năm. Giả sử hàm mật độ xác suất được cho bởi $f(t) = 0, 1e^{-0,1t}$. Xác suất sản phẩm bị hư trong thời gian bảo hành sẽ là

$$P(0 \le T \le 2) = \int_0^2 0.1e^{-0.1t} dt \approx 18\%.$$

Trong trường hợp có n biến ngẫu nhiên thì tập giá trị của biến ngẫu nhiên là một tập con của \mathbb{R}^n , hàm phân bố xác suất sẽ là một hàm n biến, và các tích phân trên sẽ là tích phân bội.

Ví dụ 2.4.5. Xét tình huống một chuyến xe buýt thường tới trạm trễ, nhưng không quá 10 phút, và đợi ở trạm 5 phút. Hàm mật độ xác suất của giờ xe tới trạm, gọi là X, được cho bởi $f_1(x) = -0.02x + 0.2$, $0 \le x \le 10$. Một người thường đi xe buýt vào giờ này nhưng hay bị trễ, có khi tới 20 phút. Hàm mật độ xác suất của giờ người này tới trạm, gọi là Y, được cho bởi $f_2(y) = -0.005y + 0.1$, $0 \le y \le 20$. Hỏi xác suất để người này đón được chuyến xe buýt này là bao nhiêu?

Ở đây có hai biến xác suất độc lập nên hàm phân bố xác suất chung là $f(x,y)=f_1(x)f_2(y)$. Xác suất cần tìm được cho bởi

$$P(Y \le X + 5) = \iint_{\{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 10, y \le x + 5\}} f(x,y) \, dx dy$$
$$= \int_0^{10} \int_0^{x+5} f(x,y) \, dy \, dx \approx 65\%.$$

Ví dụ 2.4.6 (Tính $\int_{-\infty}^{\infty} e^{-x^2} dx$). Tích phân $\int_{-\infty}^{\infty} e^{-x^2} dx$ rất quan trọng trong môn Xác suất (xem Bài tập 2.4.9). Ở đây ta sẽ tính nó thông qua tích phân bội.

Hình 2.4.1: Đường cong e^{-x^2} thường được gọi là đường hình chuông.

Gọi B'(R) là hình tròn đóng tâm 0 bán kính R, tức $B'(R) = \{(x,y) \mid x^2 + y^2 \le R^2\}$. Gọi I(R) là hình vuông tâm 0 với chiều dài cạnh 2R, tức $I(R) = [-R,R] \times [-R,R]$. Vì $B'(R) \subset I(R) \subset B'(R\sqrt{2})$ nên

$$\iint_{B'(R)} e^{-(x^2+y^2)} dA \le \iint_{I(R)} e^{-(x^2+y^2)} dA \le \iint_{B'(R\sqrt{2})} e^{-(x^2+y^2)} dA.$$

Vì

$$\iint_{B'(R)} e^{-(x^2+y^2)} \ dA = \iint_{[0,R]\times[0,2\pi]} re^{-r^2} \ dA = \pi(1-e^{-R^2}),$$

nên từ bất đẳng thức trên, lấy giới hạn ta được

$$\lim_{R \to \infty} \iint_{I(R)} e^{-(x^2 + y^2)} dA = \pi.$$

Mặt khác theo công thức Fubini:

$$\iint_{I(R)} e^{-(x^2+y^2)} \ dA = \left(\int_{-R}^R e^{-x^2} \ dx \right) \cdot \left(\int_{-R}^R e^{-y^2} \ dy \right) = \left(\int_{-R}^R e^{-x^2} \ dx \right)^2,$$

nên

$$\lim_{R\to\infty}\iint_{I(R)}e^{-(x^2+y^2)}\ dA=\lim_{R\to\infty}\Big(\int_{-R}^Re^{-x^2}\ dx\Big)^2=\Big(\int_{-\infty}^\infty e^{-x^2}\ dx\Big)^2.$$

Vậy ta được công thức nổi tiếng:

$$\int_{-\infty}^{\infty} e^{-x^2} \ dx = \sqrt{\pi}.$$

Bài tập

2.4.1. Tính:

- (a) Tìm tâm khối lượng của hình chữ nhật đồng chất $[-1,1] \times [-2,2] \subset \mathbb{R}^2$.
- (b) Tìm tâm khối lượng của vật có hình dạng một miếng mỏng chiếm miền trên mặt phẳng bao bởi đường $y=12,37x^2$ và đường y=8,5 với hàm mật độ khối lượng $\rho(x,y)=103,6x^4y^{1,2}$.
- (c) Tìm tâm khối lượng của hình trái tim ở Hình 2.3.5.
- (d) Tìm tâm khối lượng của hình vỏ ốc ở Hình 2.3.6.
- (e) Chứng tỏ tâm khối lượng của một tam giác chính là trọng tâm (giao điểm của ba đường trung tuyến) của tam giác.
- (f) Tìm tâm khối lượng của một khối đồng chất có dạng hình nón nhọn cân chiều cao là h và với đáy là hình tròn bán kính R.
- (g) Tìm tâm khối lượng của khối tứ diện đồng chất được bao bởi các mặt $x=0,\ y=0,\ z=0,$ $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ với a,b,c>0.
- **2.4.2.** Cho $D \subset \mathbb{R}^2$ là một tập đồng chất, có diện tích, đối xứng qua gốc tọa độ O tức là nếu $p \in D$ thì $-p \in D$. Hãy tìm tâm khối lượng của D.
- **2.4.3.** Xét một mô hình đơn giản cho cấu trúc hành tinh Trái đất, gồm phần lõi cứng ở gần tâm có mật độ khối lượng cao và phần ngoài có mật độ khối lượng giảm dần từ trong ra ngoài. Gọi ρ là khoảng cách từ một điểm tới tâm, thì mật độ khối lượng tại điểm đó được mô hình hóa như sau:

$$f(\rho) = \begin{cases} 13 \cdot 10^9, & 0 \le \rho \le 1000, \\ \frac{13 \cdot 10^{12}}{\rho}, & 1000 \le \rho \le 6400, \end{cases}$$

ở đây đơn vị khối lượng là kg và đơn vị chiều dài là km. Hãy ước lượng khối lượng của Trái đất.

- **2.4.4.** Khu trung tâm thành phố được miêu tả như một hình chữ nhật $[0,1] \times [0,2]$ với đơn vị chiều dài là km. Giá đất trong khu vực này trong được mô hình hóa bằng hàm p, ở vị trí $(x,y) \in [0,1] \times [0,2]$ thì $p(x,y) = 200 10(x-\frac{1}{2})^2 15(y-1)^2$ (triệu đồng/m²). Hãy tính giá đất trung bình ở khu vực này.
- **2.4.5.** Giả sử rằng gốc tọa độ ở trung tâm thành phố và mật độ dân số tại điểm có tọa độ (x,y) có mô hình $p(x,y)=2000(x^2+y^2)^{-0.2}$ người trên km², hãy tìm số dân trong bán kính 5 km từ trung tâm thành phố.
- **2.4.6.** Một cái bồn có dạng hình hộp với chiều rộng 3 mét, chiều dài 4 mét, chiều cao 5 mét chứa đầy nước. Ta cần tính công W năng lượng cần thiết để bơm hết nước ra khỏi bồn qua mặt trên của bồn.
 - (a) Gọi x là khoảng cách từ một chất điểm trong bồn tới mặt trên của bồn. Giải thích vì sao công để đưa chất điểm này ra khỏi bồn là $x\rho g$, với mật độ khối lượng của nước là $\rho=1000$ kg/m³, hằng số trọng lực là g=9,8 m/s².
 - (b) Thiết lập công thức $W = \int_0^5 x \rho g \cdot 3 \cdot 4 \ dx$. Tính W.
- **2.4.7.** Kim tự tháp Vua Khufu là kim tự tháp lớn nhất ở Ai Cập, được xây dựng trong khoảng từ năm 2580 TCN tới 2560 TCN. Đáy của nó là một hình vuông với chiều dài cạnh là 230,4 mét và chiều cao là 146,5 mét.
 - (a) Hãy ước lượng thể tích của kim tự tháp.
 - (b) Kim tự tháp được làm bằng đá vôi. Mật độ khối lượng của đá vôi vào khoảng $2400~{\rm kg/m^3}$. Hãy ước lượng khối lượng của kim tự tháp.
 - (c) Hãy ước lượng công xây dựng kim tự tháp này. (Công này ít nhất bằng thế năng trọng trường của khối kim tự tháp.)

- (d) Mỗi người nhận khoảng 2000 kcal năng lượng mỗi ngày từ thức ăn. Giả sử mỗi người dùng được 20% năng lượng đó để làm việc, 340 ngày một năm, trong 20 năm, thì cần ít nhất bao nhiêu người để xây dựng kim tự tháp này? (Giả sử họ không có máy móc, chưa kể những phần khác của công việc và những yếu tố khác, nên đây chỉ là một ước lượng thô.)
- **2.4.8.** Hai công ty sản xuất hai sản phẩm cạnh tranh với nhau. Gọi X, Y là biến xác suất ứng với thời điểm hư hỏng của hai sản phẩm tính theo thời gian từ khi sản phẩm được sản xuất (theo năm), và giả sử hai biến này là độc lập với nhau. Giả sử các hàm mật độ xác suất được cho bởi $f(x) = 0, 2e^{-0.2x}$ và $g(y) = 0.1e^{-0.1y}$. Hãy tính xác suất sản phẩm của công ty thứ nhất bị hư trước sản phẩm của công ty thứ hai trong thời gian bảo hành 3 năm.
- **2.4.9.** Chứng tỏ hàm được dùng trong mô hình phân bố chuẩn (normal distribution) của môn Xác suất

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

thỏa mãn tính chất cần có của hàm phân bố xác suất: $\int_{-\infty}^{\infty} f(x) \ dx = 1$.

2.4.10. Hãy đưa ra một giải thích cho công thức sau, thường được dùng trong xác suất khi có hai biến ngẫu nhiên:

$$\iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} \ dx dy = \pi.$$

Từ đó hãy đưa ra công thức cho mô hình phân bố chuẩn của hai biến ngẫu nhiên.

Hình 2.4.2: Hàm $e^{-(x^2+y^2)}$.

 $\bf 2.4.11$ (hàm Gamma). Hàm Gamma là một mở rộng của hàm giai thừa lên tập hợp các số thực. Ta định nghĩa

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt, \qquad z \in \mathbb{R}, \ z > 0.$$

- (a) Chứng tỏ $\Gamma(z)$ được xác định.
- (b) Kiểm tra rằng $\Gamma(z+1)=z\Gamma(z)$. Suy ra với số nguyên dương n thì $\Gamma(n+1)=n!$.
- (c) Kiểm tra công thức $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- **2.4.12** (công thức Pappus). Hãy tìm lại công thức của Pappus⁶: Thể tích của khối tròn xoay nhận được bằng cách xoay một miền phẳng quanh một trực bên ngoài bằng diện tích của miền nhân với chiều dài của đường đi của tâm khối lượng của miền.

Cụ thể hơn, gọi D là miền bao bởi hai đồ thị của hai hàm f và g trên đoạn [a,b], với $0 \le g(x) \le f(x)$ trên [a,b]. Gọi (x_0,y_0) là tâm khối lượng của D. Khi đó thể tích của khối tròn xoay nhận được bằng cách xoay miền D quanh trục x bằng $2\pi y_0|D|$.

Ứng dụng, hãy tìm lại công thức thể tích của khối xuyến.

 $^{^6\}mathrm{Pappus}$ xứ Alexandria, một nhà hình học sống vào thể kỉ thứ 4 sau Công nguyên.

Chương 3

Giải tích vectơ

Trong chương trước chúng ta đã khảo sát thể tích của miền trong không gian n-chiều và tích phân trên những miền đó. Tuy nhiên những câu hỏi chẳng hạn như về chu vi của đường tròn, diện tích của mặt cầu, hay nói chung là độ đo của tập con "k-chiều" trong không gian n-chiều với k < n và tích phân trên đó thì chúng ta chưa xét. Chương này sẽ trả lời những câu hỏi này cho trường hợp đường (k = 1) và mặt (k = 2).

Chương này cũng giới thiệu các quan hệ giữa phép tính vi phân và phép tính tích phân của hàm nhiều biến thông qua phép tính tích phân đường, phép tính tích phân mặt, và các công thức liên hệ chúng, như các công thức Green, công thức Stokes, công thức Gauss-Ostrogradsky.

3.1 Tích phân đường

3.1.1 Chiều dài của đường đi

Khi nói tới một "đường" ta thường nghĩ tới một "con đường", tức là một tập hợp điểm, ví dụ một đường thẳng hay một đường tròn. Mục đích của chúng ta trong mục này là thực hiện các đo đạc trên đường, chẳng hạn như đo chiều dài của đường. Các đo đạc đó sẽ được thực hiện qua một chuyến đi trên con đường. Tuy nhiên ta có thể đi trên một con đường theo nhiều cách khác nhau, và ta chưa có căn cứ để cho rằng các đo đạc bằng các cách đi khác nhau trên cùng một con đường sẽ cho ra cùng một kết quả. Do đó trước mắt chúng ta sẽ làm việc với từng cách đi cụ thể mà ta gọi là đường đi.

Một đường đi (path) là một ánh xạ từ một khoảng đóng [a, b] vào \mathbb{R}^n (một tương ứng mỗi thời điểm với một vi trí).

Tập hợp các điểm mà đường đi đã đi qua được gọi là $v\acute{e}t$ của đường đi (đây là "con đường" như đã bàn ở trên). Với đường đi $r:[a,b]\to\mathbb{R}^n$ thì vết của r tập ảnh $r([a,b])=\{r(t)\mid t\in[a,b]\}.$

Đường đi $r:[a,b]\to\mathbb{R}^n$ được gọi là:

- **đóng** hay **kín** nếu r(a) = r(b), tức là điểm đầu và điểm cuối trùng nhau.
- đơn nếu nó không đi qua điểm nào hai lần (không có điểm tự cắt). Chính xác hơn, nếu r không phải là đường đóng thì nó được gọi là đơn nếu r là đơn ánh trên [a, b]; nếu r là đường đóng thì nó được gọi là đơn nếu r là đơn ánh trên [a, b).
- $li\hat{e}n$ tuc nếu r là hàm liên tục trên [a,b].

Đường cong đơn, kín không kín

Đường cong kín, Đường cong không không đơn đơn, không kín

Đường đi $r:[a,b]\to\mathbb{R}^n$ được gọi là **trơn** nếu r là hàm trơn trên [a,b], nghĩa là nếu r mở rộng được thành một hàm trơn trên một khoảng (c,d) chứa [a,b]. Điều này đồng nghĩa với việc r có đao hàm phải tai a và đao hàm trái tai b.

Nếu r là một đường đi trơn thì đạo hàm r'(t) có ý nghĩa vật lý là $\mathbf{v}\mathbf{\hat{q}}\mathbf{n}$ $\mathbf{t}\mathbf{\acute{o}c}$ chuyển động (velocity) tại thời điểm t. Độ lớn của vận tốc |r'(t)| là $\mathbf{t\acute{o}c}$ $\mathbf{d\hat{o}}$ (speed) tại thời điểm t.

Cho đường đi $r:[a,b] \to \mathbb{R}^n$. Xét một phép chia $a=t_0 < t_1 < \cdots < t_m = b$ của [a,b]. Trên mỗi khoảng con $[t_{i-1},t_i]$, $1 \le i \le m$, ta xấp xỉ tuyến tính đường đi: $r(t)-r(t_{i-1}) \approx r'(t_{i-1})(t-t_{i-1})$. Nói cách khác, ta xấp xỉ chuyển động bằng một chuyển động đều với vận tốc không đổi $r'(t_{i-1})$. Quãng đường đi được trong khoảng thời gian từ t_{i-1} tới t_i được xấp xỉ bởi vecto $r'(t_{i-1})\Delta t_i$, với chiều dài là $|r'(t_{i-1})\Delta t_i|$.

Hình 3.1.1: Xấp xỉ tuyến tính: $r(t_i) - r(t_{i-1}) \approx r'(t_{i-1}) \Delta t_i$.

Như vậy "chiều dài" của đường đi được xấp xỉ bởi $\sum_{i=1}^{m} |r'(t_{i-1})| \Delta t_i$. Đây chính là tổng Riemann của hàm |r'(t)| trên khoảng [a,b].

Vậy ta đưa ra định nghĩa sau:

Định nghĩa 3.1.1. Chiều dài của đường đi $r:[a,b]\to\mathbb{R}^n$ được định nghĩa là

$$\int_a^b |r'(t)| \ dt.$$

Định nghĩa này chứa công thức đã quen biết: quãng đường đi được = tốc độ \times thời gian.

Ví dụ 3.1.2. Giả sử một vật di chuyển trên một đường với tốc độ hằng v, trong khoảng thời gian từ a tới b. Khi đó quãng đường vật đã đi được có chiều dài là $\int_a^b v \ dt = v(b-a)$, đúng như ta chờ đơi.

Một ý tưởng khác để đưa ra định nghĩa độ dài đường là lấy giới hạn tổng độ dài các đoạn thẳng gấp khúc nối các điểm liên tiếp trên đường cong, khi số điểm dần đến vô hạn (Hình 3.1.2). Cách tiếp cận này cũng cho ra kết quả tương tự như trên.

Hình 3.1.2:

3.1.2 Tích phân đường loại một

Cho đường đi $r:[a,b]\to\mathbb{R}^n$. Giả sử f là một hàm thực xác định trên vết của đường, tức $f:r([a,b])\to\mathbb{R}$. Ta muốn tính $t\mathring{o}ng$ giá trị của hàm trên đường.

Ta làm một cách tương tự như đã làm khi định nghĩa chiều dài đường đi. Xét một phép chia $a=t_0 < t_1 < \cdots < t_m = b$. Trên khoảng con $[t_{i-1},t_i]$ ta xấp xỉ tuyến tính đường đi $r(t)-r(t_{i-1})\approx r'(t_{i-1})(t-t_{i-1})$. Khi đó phần đường từ $r(t_{i-1})$ đến $r(t_i)$ được xấp xỉ bằng $r'(t_{i-1})\Delta t_i$. Trên phần đường này ta xấp xỉ hàm f bởi hàm hằng với giá trị $f(r(t_{i-1}))$. Do đó tổng giá trị của f trên phần đường từ $r(t_{i-1})$ đến $r(t_i)$ được xấp xỉ bằng $f(r(t_{i-1}))|r'(t_{i-1})|\Delta t_i$. Tổng giá trị của f trên đường f được xấp xỉ bằng

$$\sum_{i=1}^{m} f(r(t_{i-1}))|r'(t_{i-1})|\Delta t_i.$$

Vậy ta định nghĩa:

Định nghĩa 3.1.3. Cho f là một hàm xác định trên vết của đường $r:[a,b]\to\mathbb{R}^n$. Tích phân của f trên r được kí hiệu là $\int_r f\ ds$ và được định nghĩa là:

$$\int_r f \ ds = \int_a^b f(r(t))|r'(t)| \ dt.$$

Để có tích phân thì đường đi phải khả vi. Nếu đường đi chỉ **khả vi từng khúc**, tức là có các số $a=t_0 < t_1 < t_2 < \cdots < t_m = b$ sao cho trên mỗi khoảng $[t_{i-1},t_i]$ ánh xạ r là khả vi, thì gọi r_i là hạn chế của đường r lên khoảng $[t_{i-1},t_i]$, ta định nghĩa.

$$\int_{r} f \ ds = \sum_{i=1}^{m} \int_{r_i} f \ ds.$$

Ví dụ 3.1.4. Nếu $f \equiv 1$ thì $\int_r 1 \, ds = \int_a^b |r'(t)| \, dt$ là chiều dài của đường đi r.

Ví dụ 3.1.5. Xét trường hợp hai chiều, n=2. Viết r(t)=(x(t),y(t)), khi đó

$$\int_{r} f \ ds = \int_{a}^{b} f((x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \ dt.$$

Một cách hình thức có thể nhớ rằng

$$ds = \sqrt{x'(t)^2 + y'(t)^2} dt.$$

Hình 3.1.3: Đường khả vi từng khúc.

3.1.3 Tích phân đường loại hai

Một trường vectơ là một tương ứng mỗi điểm với một vectơ. Chính xác hơn, một **trường vectơ** trên tập $D \subset \mathbb{R}^n$ là một ánh xạ $F: D \to \mathbb{R}^n$. Đôi khi để nhấn mạnh hoặc để dùng kí hiệu thường có trong vật lý ta để thêm mũi tên trên kí hiệu trường, viết là \vec{F} .

Cho đường đi $r:[a,b]\to\mathbb{R}^n$ và cho F là một trường vectơ xác định trên vết của r. Ta muốn tính tổng thành phần của trường cùng chiều đường đi.

Ví dụ 3.1.6. Trong vật lý, nếu một vật di chuyển theo một đường dưới tác động của một trường lực thì tổng tác động của lực, tức tổng thành phần của lực cùng chiều chuyển động, được gọi là cong (work) của trường lực. Trong trường hợp đơn giản, nếu lực là hằng \vec{F} và vật chuyển động đều trên một đường thẳng theo một vecto \vec{s} thì công của lực bằng $|\vec{F}|\cos(\vec{F},\vec{s})|\vec{s}| = \vec{F} \cdot \vec{s}$.

Xét một phép chia $a=t_0 < t_1 < \cdots < t_m = b$ của [a,b]. Trên mỗi khoảng con $[t_{i-1},t_i]$, $1 \le i \le m$, ta xấp xỉ đường bằng xấp xỉ tuyến tính: $r(t) \approx r'(t_{i-1})(t-t_{i-1})$. Khi đó phần đường từ $r(t_{i-1})$ đến $r(t_i)$ được xấp xỉ bằng $r'(t_{i-1})\Delta t_i$. Trên phần đường này trường F có thể được xấp xỉ bằng trường hằng, đại diện bởi vector $F(r(t_{i-1}))$. Tổng của thành phần cùng chiều đường đi của trường F trên phần đường từ $r(t_{i-1})$ đến $r(t_i)$ được xấp xỉ bằng $F(r(t_{i-1})) \cdot r'(t_{i-1})\Delta t_i$. Tổng thành phần tiếp tuyến của F dọc theo r được xấp xỉ bằng $\sum_{i=1}^m F(r(t_{i-1})) \cdot r'(t_{i-1})\Delta t_i$.

Vậy ta định nghĩa:

Định nghĩa 3.1.7. Cho F là một trường vectơ trên vết của một đường đi $r:[a,b]\to\mathbb{R}^n$. Tích phân của F trên r được kí hiệu là $\int_r F\cdot d\vec{s}$ và được định nghĩa là:

$$\int_{r} F \cdot d\vec{s} = \int_{a}^{b} F(r(t)) \cdot r'(t) dt.$$

Định nghĩa này được mở rộng cho đường khả vi từng khúc theo cách như tích phân đường loại một.

Ghi chú 3.1.8. Có một số cách kí hiệu khác cho tích phân đường loại hai, chẳng hạn $\int_r F \cdot d\vec{r}$, $\int_r F \cdot d\vec{l}$.

Ví dụ 3.1.9. Xét trường hợp hai chiều, n=2. Viết F(x,y)=(P(x,y),Q(x,y)) và r(t)=(x(t),y(t)). Khi đó

$$\int_{r} F \cdot d\vec{s} = \int_{a}^{b} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)] dt.$$

Ta đưa ra hai tích phân mới:

$$\int_{T} P(x,y) \ dx = \int_{a}^{b} P(x(t), y(t))x'(t) \ dt.$$

$$\int_r Q(x,y) \ dy = \int_a^b Q(x(t),y(t))y'(t) \ dt.$$

Người ta thường viết

$$\int_{r} F \cdot d\vec{s} = \int_{r} P(x, y) \ dx + Q(x, y) \ dy.$$

Một cách hình thức có thể nhớ rằng

$$d\vec{s} = r'(t) dt$$
, $dx = x'(t) dt$, $dy = y'(t) dt$.

3.1.4 Sự phụ thuộc vào đường đi

Như đã bàn ở đầu chương, ta rất quan tâm tới việc các kết quả đo đạc có thay đổi hay không nếu ta đi theo những đường đi khác nhau trên cùng một con đường.

Cho $\varphi:[c,d]\to [a,b]$ là một phép đổi biến. Nếu $\varphi'(t)>0$ với mọi $t\in [c,d]$ thì ta nói φ bảo toàn định hướng. Nếu $\varphi'(t)<0$ với mọi $t\in [c,d]$ thì ta nói φ đảo ngược định hướng.

Nếu $r:[a,b]\to\mathbb{R}^n$ là một đường đi thì $r\circ\varphi$ là một đường đi cùng vết với r. Ta nói $r\circ\varphi$ và r sai khác một phép đổi biến. Ta có kết quả đơn giản sau đây về sự bất biến của tích phân đường qua một phép đổi biến.

Định lý 3.1.10 (đổi biến trong tích phân đường). (a) Tích phân đường loại một không thay đổi qua phép đổi biến.

(b) Tích phân đường loại hai không thay đổi qua phép đổi biến bảo toàn định hướng và đổi dấu qua phép đổi biến đảo ngược định hướng.

Chứng minh. Cho f là một hàm thực và F là một trường vectơ xác định trên vết của đường $r:[a,b]\to\mathbb{R}^n$. Cho $\varphi:[c,d]\to[a,b]$ là một phép đổi biến. Ta xét trường hợp φ đảo ngược định hướng, trường hợp còn lại là tương tự. Theo công thức đổi biến của tích phân bội, với phép đổi biến $u=\varphi(t)$ thì

$$\int_{r} f \ ds = \int_{a}^{b} f(r(u))|r'(u)| \ du = \int_{c}^{d} f(r(\varphi(t)))|r'(\varphi(t))||\varphi'(t)| \ dt$$

$$= \int_{c}^{d} f(r(\varphi(t)))|r'(\varphi(t))\varphi'(t)| \ dt$$

$$= \int_{c}^{d} f(r \circ \varphi(t))|(r \circ \varphi)'(t)| \ dt$$

$$= \int_{r \circ \varphi} f \ ds.$$

$$\int_{r} F \cdot d\vec{s} = \int_{a}^{b} F(r(u)) \cdot r'(u) \ du = \int_{c}^{d} [F(r(\varphi(t))) \cdot r'(\varphi(t))] |\varphi'(t)| \ dt$$

$$= -\int_{c}^{d} [F(r(\varphi(t))) \cdot r'(\varphi(t))] |\varphi'(t)| \ dt$$

$$= -\int_{c}^{d} F(r \circ \varphi(t)) \cdot (r \circ \varphi)'(t) \ dt$$

$$= -\int_{r \circ \varphi} F \cdot d\vec{s}.$$

Ví dụ 3.1.11. Cả hai loại tích phân đường không thay đổi dưới một phép tịnh tiến của biến thời gian $t \mapsto t + c$ với $c \in \mathbb{R}$.

Ví dụ 3.1.12. Với đường đi r(t), $t \in [a,b]$ thì đường r(a+b-t), $t \in [a,b]$, khởi đầu ở r(b) và kết thúc ở r(a), được gọi là **đường ngược** của đường r, kí hiệu là -r. Ta nói đường -r trái chiều với đường r. Định lý 3.1.10 nói **nếu đảo ngược định hướng của đường** thì tích phân đường loại một không thay đổi trong khi đó tích phân đường loại hai bị đổi dấu.

Đường đi $r:[a,b]\to\mathbb{R}^n$ được gọi là **chính qui** (regular) nếu r tron trên [a,b] và vận tốc r'(t) luôn khác không.

Ghi chú 3.1.13. Trong quyển sách của Stewart [Ste12] thuật ngữ đường tron chính là thuật ngữ đường chính qui ở đây.

Người ta có thể chứng tỏ hai đường đi đơn chính qui với cùng vết khác biệt bởi một phép đổi biến (xem [Vugt3]). Từ đó ta nói hai đường đi đơn chính qui có cùng vết là **có cùng định hướng** nếu chúng sai khác một phép đổi biến bảo toàn định hướng, và ngược lại nếu phép đổi biến là đảo ngược định hướng thì ta nói hai đường là **trái định hướng**. Ta có kết quả chính của phần này ([Vugt3]):

Định lý 3.1.14 (tích phân trên đường cong). (a) Tích phân đường loại một dọc theo hai đường đi đơn chính qui có cùng vết thì bằng nhau.

(b) Tích phân đường loại hai dọc theo hai đường đi đơn chính qui có cùng vết thì bằng nhau nếu cùng đinh hướng và đối nhau nếu trái đinh hướng.

Như vậy ta có thể nói đến tích phân đường loại một (chẳng hạn chiều dài) trên một **tập điểm**, ví dụ như một đường tròn, một đồ thị, ... nếu tập điểm ấy là vết của một đường đi đơn chính qui nào đó. Trong trường hợp này ta nói vết đó là một **đường cong** (curve).

Để tính tích phân trên một đường cong ta có thể chọn một đường đi đơn chính qui bất kì để thực hiện tính toán. Đối với tích phân đường loại hai thì ta được cho thêm một

"định hướng" trên đường cong và ta có thể chọn một đường đi đơn chính qui có cùng định hướng bất kì để tính.

Ví dụ 3.1.15. Giả sử hàm thực f xác định trên khoảng [a,b]. Gọi γ là một đường chính qui bất kì đi từ a tới b. Vì khoảng [a,b] cũng là vết của đường đơn chính qui $\alpha(t)=t$ với $t\in [a,b]$ nên

$$\int_{\gamma} f \ ds = \int_{\alpha} f \ ds = \int_{a}^{b} f(\alpha(t))\alpha'(t) \ dt = \int_{a}^{b} f(t) \ dt.$$

Đây chính là tích phân của hàm f trên khoảng [a,b]. Vậy tích phân của hàm thực trên khoảng là một trường hợp riêng của tích phân đường loại một.

Ví dụ 3.1.16 (chiều dài của đường tròn). Xét đường đi $r(t) = (R\cos t, R\sin t), 0 \le t \le 2\pi$, một đường đi với tốc độ hằng quanh đường tròn tâm O bán kính R. Chiều dài của đường này là $\int_0^{2\pi} R \ dt = 2\pi R$. Nếu ta lấy một đường đi khác $\alpha(t) = (R\cos(2\pi t), R\sin(2\pi t)), 0 \le t \le 1$, thì chiều dài của đường này là $\int_0^1 2\pi R \ dt = 2\pi R$.

Bây giờ ta có thể nói chiều dài của đường tròn bằng $2\pi R$, không phụ thuộc vào cách chọn một tham số hóa đơn chính qui để tính. (Chúng ta không nói là đã tìm ra công thức chiều dài của đường tròn, vì khi đưa ra tham số hóa chúng ta đã thừa nhận những tính chất định về đường tròn, trong đó có thừa nhận số π , góc t, hàm cos và hàm sin.)

Ví dụ 3.1.17. Cho trường $\vec{F}(x,y)=(2y,-3x)$ và C là đường cong $y=x^2,\ 0\leq x\leq 1,$ định hướng từ (0,0) tới (1,1). Hãy tính $I=\int_C \vec{F}\cdot d\vec{s}$.

Ta cần đưa ra một tham số hóa cho đường cong C. Vì C là một đồ thị, ta có ngay tham số hóa $C_1(x) = (x, x^2)$, $0 \le x \le 1$. Ta cũng có thể dùng các tham số hóa khác như $C_2(y) = (\sqrt{y}, y)$, $0 \le y \le 1$, hoặc $C_3(t) = (\ln t, \ln^2 t)$, $1 \le t \le e$. Đây đều là các đường đi đơn, chính qui với vết C, theo định hướng đã cho. Với C_1 :

$$\int_{C_1} \vec{F} \cdot d\vec{s} = \int_0^1 \vec{F}(C_1(x)) \cdot C_1'(x) \ dx = \int_0^1 (2x^2, -3x) \cdot (1, 2x) \ dx = -\frac{4}{3}.$$

Với C_2 :

$$\int_{C_2} \vec{F} \cdot d\vec{s} = \int_0^1 \vec{F}(C_2(y)) \cdot C_2'(y) \ dy = \int_0^1 (2y, -3\sqrt{y}) \cdot \left(\frac{1}{2\sqrt{y}}, 1\right) \ dy = -\frac{4}{3}.$$

Với C_3 :

$$\begin{split} \int_{C_3} \vec{F} \cdot d\vec{s} &= \int_1^e \vec{F}(C_3(t)) \cdot C_3'(t) \ dt = \int_1^e (2 \ln^2 t, -3 \ln t) \cdot \left(\frac{1}{t}, \frac{2 \ln t}{t}\right) \ dt \\ &= \int_1^e -4 \frac{\ln^2 t}{t} \ dt = -\frac{4}{3} \ln^3 t |_1^e = -\frac{4}{3}. \end{split}$$

3.1.5 Liên hệ giữa hai loại tích phân đường

Ta đưa ra định nghĩa hướng tiếp tuyến của đường cong được định hướng C, vết của một đường đi đơn chính qui r(t) theo hướng đã định, $a \le t \le b$, tại điểm p = r(t), a < t < b, là hướng của vectơ vận tốc r'(t). Hướng này không phụ thuộc vào cách chọn đường đi đơn chính qui trên đó. Vì vậy việc định hướng cho đường cong đồng nghĩa với việc chọn hướng tiếp tuyến.

Tại điểm p = r(t) vectơ tiếp tuyến cùng chiều đơn vị được định nghĩa, đó là $T(p) = \frac{r'(t)}{|r'(t)|}$, không phụ thuộc vào cách chọn đường đi r theo định hướng của C.

Nếu F là một trường vectơ trên C thì

$$\int_{C} F \cdot d\vec{s} = \int_{a}^{b} F(r(t)) \cdot r'(t) dt = \int_{a}^{b} \left[F(r(t)) \cdot \frac{r'(t)}{|r'(t)|} \right] |r'(t)| dt$$
$$= \int_{a}^{b} \left[F(r(t)) \cdot T(r(t)) \right] |r'(t)| dt = \int_{C} F \cdot T ds.$$

Vậy trong trường hợp này tích phân đường loại hai có thể được biểu diễn qua tích phân đường loại một. Biểu thức trên cũng khẳng định lại ý nghĩa của tích phân loại hai, đó là tổng thành phần tiếp tuyến của trường dọc theo đường.

Bài tập

- **3.1.1.** Tính:
 - (a) Chiều dài của đường $r(t)=(2\sqrt{2}t,e^{-2t},e^{2t}),\,0\leq t\leq 1.$
 - (b) Tìm khối lượng của sợi dây hình parabol $y=x^2, 1 \le x \le 2$, với mật độ khối lượng $\rho(x,y)=y/x$.
 - (c) $\int_C \sin z^2 dx + e^x dy + e^y dz$, với C là đường $(2, t, e^t)$, $0 \le t \le 1$.
 - (d) $\int_C \vec{F} \cdot d\vec{r}$, với $\vec{F}(x,y,z) = (\sin z, z, -xy)$ và C là đường $(\cos \theta, \sin \theta, \theta)$, $0 \le \theta \le 9\pi/4$.
 - (e) Tìm công của trường $\vec{F}(x,y,z)=(y-x^2,z^2+x,yz)$ trên đường $(t,t^2,t^3),\ 0\leq t\leq 1.$
- **3.1.2.** Cho trường $F(x,y) = \left(2xye^{x^2y}, x^2e^{x^2y}\right)$. Tính tích phân đường của trường này dọc theo một đường đi từ điểm (0,0) tới điểm (1,1) bằng các cách sau:
 - (a) dùng đường thẳng,
 - (b) dùng đường gấp khúc,
 - (c) dùng đường khác.
- **3.1.3.** (a) Một vật di chuyển trong trường trọng lực của Quả đất từ một điểm có cao độ 100 mét đến một điểm có cao độ 200 mét. Hỏi công của trọng lực là âm, bằng không, hay dương?
 - (b) Cho C là một đường và n là vectơ pháp tuyến. Hỏi $\int_C n \cdot d\vec{s}$ là âm, bằng không, hay dương?
- **3.1.4.** Phân tử DNA trong không gian ba chiều có hình dạng đường xoắn ốc kép, mỗi đường có thể được mô hình hóa bởi đường $(R \sin t, R \cos t, ht)$ (hãy vẽ đường này). Bán kính của mỗi đường xoắn ốc khoảng 10 angstrom (1 angstrom = 10^{-8} cm). Mỗi đường xoắn ốc xoắn lên khoảng 34 angstrom sau mỗi vòng xoay. Hãy ước tính chiều dài của mỗi vòng xoay của phân tử DNA.
- **3.1.5.** Một sợi dây với hai đầu cố định dưới tác động của trọng trường sẽ có hình dạng một đường xích (catenary) với phương trình $y = a \cosh\left(\frac{x}{a}\right)$, với cosh là hàm hyperbolic cosine cho bởi $\cosh x = (e^x + e^{-x})/2$.

Đài tưởng niệm Gateway Arch ở Saint Louis nước Mỹ có dạng một đường xích đảo ngược. Vị trí điểm tâm hình học (cũng là tâm khối lượng của mặt cắt vuông góc) (centroid) của cổng được thiết kế theo công thức $y=693,8597-68,7672\cosh0,0100333x$ với y là khoảng cách tới mặt đất và $-299,2239 \le x \le 299,2239$, đơn vị đo là feet. Hãy tính chiều dài của đường tâm hình học.

- 3.1.6. Cầu Akashi-Kaikyo ở Nhật Bản hiện là một trong những cây cầu treo dài nhất thế giới. Hai tháp cao 297m tính từ mặt biển. Chiều dài nhịp chính (khoảng cách giữa hai tháp) là 1991m. Mỗi sợi cáp chính có dạng một đường parabola. Điểm thấp nhất của sợi cáp chính cách mặt biển khoảng 97m. Hãy tính chiều dài của một sợi cáp chính, bằng tính chính xác hoặc tính xấp xỉ.
- **3.1.7.** Khi nào thì chiều dài của một đường đi bằng 0?

3.1.8. Cho đường đi chính qui $r:[a,b]\to\mathbb{R}^n$. Đặt

$$s(t) = \int_a^t |r'(u)| \ du.$$

Hàm s được gọi là hàm chiều dài của r. Đặt chiều dài của r là l=s(b).

- (a) Chứng tỏ hàm s(t) có hàm ngược tron. Gọi hàm đó là t(s), $0 \le s \le l$.
- (b) Kiểm tra rằng đường $\alpha(s) = r(t(s))$ có cùng vết với đường r. Chứng tỏ tốc độ của α luôn là 1.

Việc thay r bởi α được gọi là **tham số hóa lại theo chiều dài**. Chú ý rằng $\frac{ds}{dt}(t) = |r'(t)|$. Điều này thường được viết dưới dạng kí hiệu là ds = |r'(t)|dt.

3.2 Công thức Newton-Leibniz và Công thức Green

3.2.1 Trường bảo toàn

Định nghĩa 3.2.1. Một trường vectơ F được gọi là **bảo toàn** nếu có hàm số thực f, gọi là một **hàm thế** của F, sao cho $\nabla f = F$.

Vecto $\nabla f(x)$ đại diện cho đạo hàm f'(x), vì thế ta có thể hiểu là f' = F: hàm thế f chính là một nquyên hàm của hàm F.

Một trường bảo toàn còn được gọi là một trường gradient.

Ví dụ 3.2.2 (trường hằng). Giả sử $c \in \mathbb{R}^n$ và F là trường trên \mathbb{R}^n cho bởi F(x) = c. Một nguyên hàm của F là $f(x) = c \cdot x$, vậy F là bảo toàn.

Định lý 3.2.3 (công thức Newton-Leibniz). Giả sử r là một đường đi trơn bắt đầu ở A và kết thúc ở B. Cho f là một hàm thực trơn trên một tập mở chứa vết của r. Khi đó:

$$\int_{r} \nabla f \cdot d\vec{s} = f(B) - f(A).$$

Định lý trên có một hệ quả là tích phân $\int_r \nabla f \cdot d\vec{s}$ không phụ thuộc vào sự lựa chọn đường đi r từ điểm A tới điểm B. Ta nói tích phân này là $d\hat{\rho}c$ $l\hat{q}p$ $v\acute{o}i$ $du\acute{o}ng$ di.

Công thức trên có thể được hiểu như:

$$\int_{A}^{B} f' = f(B) - f(A).$$

Đây là dạng tổng quát hóa của công thức Newton–Leibniz của hàm một biến vốn được thường gọi là Định lý cơ bản của Vi Tích phân, vì vậy công thức này cũng được gọi là Định lý cơ bản của tích phân đường.

Chứng minh. Giả sử $r:[a,b]\to\mathbb{R}^n,\ r(a)=A$ và r(b)=B. Khi đó theo công thức Newton–Leibniz của hàm một biến:

$$\int_{r} \nabla f \cdot d\vec{s} = \int_{a}^{b} \nabla f(r(t)) \cdot r'(t) \ dt = \int_{a}^{b} \frac{d}{dt} (f \circ r)(t) \ dt = f \circ r(b) - f \circ r(a).$$

Hệ quả 3.2.4 (tích phân của trường bảo toàn chỉ phụ thuộc vào điểm đầu và điểm cuối của đường đi). Nếu F là một trường bảo toàn liên tục trên miền D thì tích phân của F trên một đường đi trơn trong D chỉ phụ thuộc vào điểm đầu và điểm cuối của đường đi.

Hệ quả 3.2.5 (tích phân của trường bảo toàn trên đường đi kín bằng không). Nếu F là một trường bảo toàn liên tục trên miền D thì tích phân của F trên một đường đi trơn kín trong D bằng không.

Những kết quả trong phần trên có thể được mở rộng cho các đường trơn từng khúc.

Ví dụ 3.2.6. Tính tính phân $\int_C y dx + (x+6y) dy$ trong đó C là một đường đi từ (1,0) tới (2,1).

Ta tìm một hàm thế cho trường (y, x + 6y). Ta giải hệ phương trình đạo hàm riêng để tìm nguyên hàm:

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= y\\ \frac{\partial f}{\partial y}(x,y) &= x + 6y. \end{cases}$$

Từ phương trình thứ nhất ta được $f(x,y) = \int y \ dx = xy + D(y)$. Thay vào phương trình thứ hai ta được D'(y) = 6y, suy ra $D(y) = \int 6y \ dy = 3y^2 + E$. Vậy ta tìm được một hàm thế là $f(x,y) = xy + 3y^2$. Suy ra tích phân đã cho bằng f(2,1) - f(1,0) = 5.

Ví dụ 3.2.7. Dự đoán trường vectơ trong hình sau có bảo toàn quanh điểm giữa hay không?

Lấy một đường kín quanh điểm giữa, chẳng hạn một đường tròn hay đường vuông, ta thấy tích phân của trường dọc theo đường đó bằng 0. Do đó ta dự đoán trường trong hình là bảo toàn.

3.2.2 Ý nghĩa vật lý của khái niệm trường bảo toàn

Ví dụ 3.2.8. Xét vật có khối lượng m ở trong không gian gần bề mặt quả đất. Ta xấp xỉ bằng cách giả sử trọng trường không đổi trong phần không gian này. Nếu ta đặt trục z vuông góc với mặt đất, chỉ ra ngoài, và gốc tọa độ trên mặt đất thì trọng lực tác động lên vật là $\vec{F} = -mg\vec{k} = (0,0,-mg)$ trong đó $g \approx 9,8 \text{ m/s}^2$ là hằng số trọng trường gần mặt đất. Ta tìm được hàm thế của trường này có dạng f(z) = -mgz + C. Trong vật lý ta thường cho thế năng của vật ở trên mặt đất là dương, còn thế năng tại mặt đất bằng 0, do đó thế năng của vật được cho bởi hàm U(z) = mgz. Như vậy hàm thế trong vật lý là đối của hàm thế trong toán.

Ví dụ 3.2.9 (trường trọng lực). Chính xác hơn, giả sử một vật có khối lượng M nằm ở gốc tọa độ trong \mathbb{R}^3 , và một vật có khối lượng m nằm ở điểm $\vec{r} = (x, y, z)$, theo cơ học

Newton, vật có khối lượng m sẽ chịu tác động của lực hấp dẫn từ vật có khối lượng M bằng

$$F(\vec{r}) = -\frac{mMG}{|\vec{r}|^3}\vec{r}.$$

Ta tìm một nguyên hàm cho F bằng cách giải hệ phương trình

$$\begin{cases} \frac{\partial f}{\partial x}(x,y,z) = -mMG \frac{x}{(x^2+y^2+z^2)^{3/2}} \\ \frac{\partial f}{\partial y}(x,y,z) = -mMG \frac{y}{(x^2+y^2+z^2)^{3/2}} \\ \frac{\partial f}{\partial z}(x,y,z) = -mMG \frac{z}{(x^2+y^2+z^2)^{3/2}}. \end{cases}$$

Từ phương trình thứ nhất, lấy tích phân theo x ta được

$$f(x,y,z) = \int -mMG \frac{x}{(x^2 + y^2 + z^2)^{3/2}} dx = \frac{mMG}{(x^2 + y^2 + z^2)^{1/2}} + C(y,z).$$

Thay vào hai phương trình còn lại, ta được C(y,z) thực sự chỉ là một hằng số C. Vậy trường trọng lực là một trường bảo toàn với một hàm thế là $f(\vec{r}) = \frac{mMG}{|\vec{r}|}$.

Giả sử một vật di chuyển dưới tác dụng của $tổng \, lực \, F$. Giả sử trường F là bảo toàn với f là một hàm thế. Giả sử vị trí của vật ở thời điểm t là r(t). Giả sử $r(t_0) = x_0$ và $r(t_1) = x_1$. Ta định nghĩa $dộng \, năng \, (năng lượng từ chuyển động) của vật là <math>K(t) = \frac{1}{2}m|r'(t)|^2$; và $thế \, năng \, (năng lượng từ vị trí) của vật là <math>U(x) = -f(x)$.

Theo định lý cơ bản của tích phân đường:

$$\int_{x_0}^{x_1} F \cdot d\vec{s} = f(x_1) - f(x_0) = -(U(x_1) - U(x_0)).$$

Vậy công của trường bằng đối của biến thiên thế năng. Mặt khác theo cơ học Newton: F = ma = mr''. Do đó:

$$\int_{x_0}^{x_1} F \cdot d\vec{s} = \int_{t_0}^{t_1} F(r(t)) \cdot r'(t) \ dt = \int_{t_0}^{t_1} mr''(t) \cdot r'(t) \ dt.$$

Bây giờ chú ý hệ thức (xem Bài tập 1.4.10) $(r' \cdot r')' = r'' \cdot r' + r' \cdot r'' = 2r'' \cdot r'$, hay $r'' \cdot r' = \frac{1}{2}(|r'|^2)'$, ta biến đổi

$$\int_{x_0}^{x_1} F \cdot d\vec{s} = \int_{t_0}^{t_1} m \frac{1}{2} (|r'(t)|^2)' dt$$
$$= \frac{1}{2} m |r'(t_1)|^2 - \frac{1}{2} m |r'(t_0)|^2 = K(t_1) - K(t_0).$$

Vậy công của trường bằng biến thiên động năng. Ta kết luận K(t) + U(r(t)) không đổi, vậy tổng động năng và thế năng, tức năng lượng cơ học, được bảo toàn trong quá trình chuyển đông trong trường bảo toàn.

3.2.3 Công thức Green

Trong phần này ta chỉ làm việc trên trên mặt phẳng Euclid hai chiều \mathbb{R}^2 .

Giả sử D là một miền đơn giản có biên trơn từng khúc trên \mathbb{R}^2 . Cụ thể, như là một miền đơn giản theo chiều thẳng đứng, D có dạng $D = \{(x,y) \mid a \le x \le b, f(x) \le y \le g(x)\}$ trong đó f(x) và g(x) là hàm trơn, trong khi đó theo chiều nằm ngang thì $D = \{(x,y) \mid c \le y \le d, \ h(y) \le x \le k(y)\}$ trong đó h(y) và k(y) là hàm trơn.

Biên của D phải được định hướng tương thích với D. Miêu tả trực quan là: biên được định hướng sao cho khi đi trên biên thì miền nằm bên tay trái; hoặc: đặt bàn tay phải theo hướng của biên thì miền nằm ở phía lòng bàn tay. Chính xác như sau: ∂D được định hướng cùng chiều với định hướng của các đường đi $\gamma_1(x) = (x, f(x)), a \le x \le b$ và đường $-\gamma_2$ với $\gamma_2(x) = (x, g(x)), a \le x \le b$. Có thể kiểm tra được rằng đây cũng là định hướng của đường $-\gamma_3$ với $\gamma_3(y) = (h(y), y), c \le y \le d$ và đường γ_4 với $\gamma_4(y) = (k(y), y), c \le y \le d$.

Định lý 3.2.10 (công thức Green). Cho D là một miền đơn giản với biên trơn từng khúc được định hướng tương thích. Giả sử (P,Q) là một trường vectơ trơn trên một tập mở chứa D. Khi đó:

$$\int_{\partial D} P \ dx + Q \ dy = \iint_{D} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \ dxdy.$$

Chứng minh. Ta có:

$$\int_{\partial D} P \ dx = \int_{\gamma_1} P \ dx + \int_{\gamma_2} P \ dx - \int_{\gamma_3} P \ dx - \int_{\gamma_4} P \ dx$$
$$= \int_a^b P(x, f(x)) \ dx - \int_a^b P(x, g(x)) \ dx.$$

Xem D là miền đơn giản theo chiều thẳng đứng, do các đạo hàm riêng của trường là liên tục trên D nên ta có

$$\iint_{D} -\frac{\partial P}{\partial y} dA = -\int_{a}^{b} \left(\int_{f(x)}^{g(x)} \frac{\partial P}{\partial y} dy \right) dx$$
$$= \int_{a}^{b} \left[P(x, f(x)) - P(x, g(x)) \right] dx.$$

Vây

$$\int_{\partial D} P \ dx = \iint_{D} -\frac{\partial P}{\partial y} \ dA.$$

Tương tự, xem D là miền đơn giản theo chiều nằm ngang, ta được

$$\int_{\partial D} Q \ dy = \iint_{D} \frac{\partial Q}{\partial x} \ dA.$$

Cộng lại ta được kết quả.

Đối với một miền không đơn giản nhưng có thể được phân chia thành một hội của hữu hạn những miền đơn giản với những phần chung chỉ nằm trên biên, ta có thể áp dụng công thức Green cho từng miền đơn giản rồi cộng lại.

Ví dụ 3.2.11. Công thức Green vẫn đúng cho miền $D = \{(x, y) \mid 1 \le x^2 + y^2 \le 2, \ y \ge 0\}$, mặc dù miền này không phải là một miền đơn giản.

Chia D thành hội của hai miền đơn giản D_1 và D_2 được miêu tả trong hình vẽ. Chú ý rằng khi được định hướng dương ứng với D_2 thì đường C_7 được định hướng ngược lại, trở thành $-C_7$, do đó hai tích phân đường tương ứng triệt tiêu. Áp dụng công thức Green cho D_1 và D_2 ta được:

$$\begin{split} \iint_D \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \; dA \; &= \; \iint_{D_1} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \; dA + \iint_{D_2} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \; dA \\ &= \; \int_{\partial D_1} F \cdot d\vec{s} + \int_{\partial D_2} F \cdot d\vec{s} \\ &= \; \left(\int_{C_1} F \cdot d\vec{s} + \int_{C_7} F \cdot d\vec{s} + \int_{C_5} F \cdot d\vec{s} + \int_{C_6} F \cdot d\vec{s} \right) + \\ &+ \left(\int_{C_2} F \cdot d\vec{s} + \int_{C_3} F \cdot d\vec{s} + \int_{C_4} F \cdot d\vec{s} + \int_{-C_7} F \cdot d\vec{s} \right) \\ &= \; \int_{C_1} F \cdot d\vec{s} + \int_{C_2} F \cdot d\vec{s} + \int_{C_3} F \cdot d\vec{s} + \int_{C_4} F \cdot d\vec{s} + \\ &+ \int_{C_5} F \cdot d\vec{s} + \int_{C_6} F \cdot d\vec{s} \\ &= \; \int_{\partial D} F \cdot d\vec{s}. \end{split}$$

3.2.4 Diều kiện để trường vectơ phẳng là bảo toàn

Định lý 3.2.12 (điều kiện cần để trường bảo toàn). Nếu trường F = (P,Q) trơn và bảo toàn trên một tập mở chứa tập D thì trên D ta phải có

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

Chứng minh. Giả sử f là hàm thế của F. Khi đó $\frac{\partial f}{\partial x}=P$ và $\frac{\partial f}{\partial y}=Q$. Với giả thiết về tính trơn như trên thì các đạo hàm riêng của P và Q tồn tại và liên tục trên D, và $\frac{\partial P}{\partial y}=\frac{\partial^2 f}{\partial y\partial x}$ và $\frac{\partial Q}{\partial x}=\frac{\partial^2 f}{\partial x\partial y}$. Vì $\frac{\partial^2 f}{\partial x\partial y}$ và $\frac{\partial^2 f}{\partial y\partial x}$ tồn tại và liên tục nên chúng bằng nhau, do đó $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$. \square

Ví dụ 3.2.13 ($P_y = Q_x$ **cần nhưng không đủ).** Dưới đây là một ví dụ kinh điển. Xét trường

$$F(x,y) = (P(x,y), Q(x,y)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Ta có $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ trên trên miền xác định là mặt phẳng bỏ đi điểm (0,0). Mặt khác, tính toán trực tiếp cho thấy nếu C là đường tròn bán kính đơn vị tâm tại (0,0) ngược chiều kim đồng hồ thì $\int_C \vec{F} \cdot d\vec{s} = 2\pi$ khác 0. Vậy \vec{F} không phải là một trường vectơ bảo toàn trên miền xác đinh của nó. Xem thêm ở Bài tâp 3.2.9.

Một tập $D \subset \mathbb{R}^n$ được gọi là một $miền \ hình \ sao$ nếu có một điểm $p_0 \in D$ sao cho với mọi điểm $p \in D$ thì đoạn thẳng nối p_0 và p được chứa trong D.

Ví dụ 3.2.14. \mathbb{R}^n là một miền hình sao. Một tập con lồi của \mathbb{R}^n là một miền hình sao. \mathbb{R}^n trừ đi một điểm không là miền hình sao.

Kết quả dưới đây nói rằng nếu miền là mở hình sao thì điều kiện $P_y = Q_x$ cũng là một điều kiện đủ để trường là bảo toàn.

Định lý 3.2.15 (bổ đề Poincaré). Giả sử F=(P,Q) là một trường vectơ trơn trên miền mở hình sao D. Nếu $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ trên D thì F là bảo toàn trên D.

Chứng minh. Để gợi ý, ở đây ta dùng kí hiệu $\int_{p_0}^p F \cdot d\vec{s}$ để chỉ tích phân của F trên đoạn thẳng $p_0 + t(p - p_0)$, $0 \le t \le 1$, nối điểm p_0 với điểm p. Đặt

$$f(p) = \int_{p_0}^p F \cdot d\vec{s}.$$

thì đây chính là một hàm thế của F. Ta sẽ kiểm tra rằng $\frac{\partial f}{\partial x} = P$, chứng minh $\frac{\partial f}{\partial y} = Q$

Hình 3.2.1: Bổ đề Poincaré cho miền hình sao.

là tương tự. Theo định nghĩa của đạo hàm, với $\vec{i} = (1,0)$, ta có:

$$\frac{\partial f}{\partial x}(p) = \lim_{h \to 0} \frac{1}{h} \left[\int_{p_0}^{p+h\vec{i}} F \cdot d\vec{s} - \int_{p_0}^p F \cdot d\vec{s} \right].$$

Chú ý do D mở nên nếu h đủ nhỏ thì điểm $p+h\vec{i}$ sẽ nằm trong D. Nếu ba điểm p_0 , p và $p+h\vec{i}$ không cùng nằm trên một đường thẳng thì chúng tạo thành một tam giác. Tam giác này là một miền đơn giản do đó ta có thể áp dụng định lý Green cho miền này, dùng giả thiết $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, ta được tích phân đường trên biên của tam giác bằng 0, tức là

$$\int_{p_0}^{p+h\vec{i}} F \cdot d\vec{s} - \int_{p_0}^{p} F \cdot d\vec{s} = \int_{p}^{p+h\vec{i}} F \cdot d\vec{s}.$$

Công thức này cũng đúng nếu ba điểm là thẳng hàng. Viết p=(x,y), và lấy đường đi thẳng từ p tới $p+h\vec{i}$ là r(t)=(x+t,y) với $0 \le t \le h$, ta được

$$\int_{p}^{p+h\vec{i}} F \cdot d\vec{s} = \int_{x}^{x+h} P(t,y) dt.$$

Do đó

$$\frac{\partial f}{\partial x}(p) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} P(t, y) \ dt = P(x, y).$$

Đẳng thức cuối cùng là một kết quả quen thuộc trong Giải tích 1, có thể được kiểm dễ dàng sử dụng việc hàm P liên tục theo x, xem Bài tập 3.2.25.

Ví dụ 3.2.16. Trường $\vec{F}(x,y)=(e^{x^2},y^3)$ có bảo toàn hay không?

Ta có $\frac{\partial e^{x^2}}{\partial y} = 0 = \frac{\partial y^3}{\partial x}$. Miền xác định của trường là \mathbb{R}^2 , một miền mở hình sao. Bổ đề Poincaré áp dụng được, cho ta kết luận trường là bảo toàn trên miền xác định.

Nếu có một trường (P,Q) mà $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ nhưng lại không bảo toàn thì bổ đề Poincaré cho biết miền xác định của trường không phải là một miền hình sao. Như vậy một giả thiết giải tích đã đưa đến một kết luận hình học.

Kết luận của bổ đề Poincaré vẫn đúng nếu thay miền hình sao bởi miền tổng quát hơn gọi là *miền đơn liên*, đại khái là miền chỉ gồm một mảnh không có lỗ thủng. Chi tiết chính xác vượt ra ngoài phạm vi môn học này.

3.2.5 Dạng thông lượng của công thức Green

Cho D là miền phẳng và F là một trường trên D sao cho ta có thể áp dụng công thức Green. Giả sử ∂D được tham số hóa theo chiều dương bởi $C(t) = (x(t), y(t)), a \le t \le b$.

Vectơ vận tốc của đường biên là C'(t) = (x'(t), y'(t)). **Vectơ pháp tuyến ngoài** n của ∂D tại điểm (x(t), y(t)) là

$$n = \frac{1}{|C'(t)|}(y'(t), -x'(t)).$$

Ta giải thích điều này sau đây. Vectơ (-y'(t), x'(t)) vuông góc (x'(t), y'(t)) (do tích vô hướng bằng 0), vậy n cùng phương với (-y'(t), x'(t)). Chiều của n được xác định theo nguyên tắc chiều từ pháp tuyến ngoài sang tiếp tuyến phải cùng chiều với chiều dương chuẩn tắc của mặt phẳng, tức là chiều từ (1,0) sang (0,1).

Từ công thức Green:

$$\int_{C} F \cdot n \ ds = \int_{a}^{b} \langle (P(C(t)), Q(C(t))), \frac{1}{|C'(t)|} (y'(t), -x'(t)) \rangle |C'(t)| \ dt$$
$$= \int_{C} -Q \ dx + P \ dy = \iint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dA.$$

Người ta thường đặt

$$\operatorname{div}(P,Q) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}.$$

Toán tử div sẽ được thảo luận nhiều hơn sau. Vậy

$$\int_{\partial D} F \cdot n \, ds = \iint_{D} \operatorname{div} F \, dA. \tag{3.2.1}$$

Tích phân $\int_C F \cdot n \ ds$ là tổng thành phần pháp tuyến ngoài của F dọc theo biên ∂D . Nếu F là một trường vectơ vận tốc thì tích phân này thể hiện **thông lượng** (flux) qua ∂D .

Bài tập

- **3.2.1.** Hình 3.2.2 vẽ của một trường vecto.
 - (a) Ước đoán trường có bảo toàn không?
 - (b) Ước đoán tích phân của trường dọc theo đường C là âm, dương hay bằng 0?
- 3.2.2. Ước đoán trường trong Hình 3.2.3 có bảo toàn không?
- **3.2.3.** Tính:
 - (a) Tìm một hàm f(x, y, z) sao cho f(0, 0, 0) = 6 và $\nabla f(x, y, z) = (2y, 2x, e^z)$.
 - (b) Tính công của trường lực $F(x, y, z) = (2, 3y, 4z^2)$ khi vật đi từ điểm (1, 1, 1) tới điểm (1, 0, 0).
 - (c) Giải bài 3.1.2 bằng cách dùng hàm thế.
 - (d) Tìm hàm thế cho trường $(e^x \sin y yz, e^x \cos y yz, z xy)$.
 - (e) Tính tích phân $\int_C (2y-3z)\ dx + (2x+z)dy + (y-3x)\ dz$ với C là đường gấp khúc đi từ (0,0,0) tới (0,1,2) tới (3,4,3) rồi tới (2,3,1).
 - (f) Tính $\int_C (x-4y^2) dx + (\ln y 8xy) dy$ với C là một đường trên nửa mặt phẳng y>0 đi từ điểm (-3,4) tới điểm (2,6).

Hình 3.2.2:

- (g) Tính $\int_C (\sqrt{x} + 8xy) dx + (\sqrt{y} + 4x^2) dy$ với C là một đường trong góc phần tư thứ nhất của mặt phẳng đi từ điểm (3,2) tới điểm (4,1).
- (h) Trường sau có bảo toàn không? Nếu có tìm một hàm thế:

$$\left(xy - \sin z, \frac{1}{2}x^2 - \frac{e^y}{z}, \frac{e^y}{z^2} - x\cos z\right).$$

- **3.2.4.** Cho C là đường $y = x^3$ từ điểm (0,0) tới điểm (1,1).
 - (a) Tính $\int_C 3y \ dx + 2x \ dy$
 - (b) Dùng câu trên, tính $\int_C (3y + ye^x) dx + (2x + e^x + e^y) dy$.
- **3.2.5.** Cho *C* là đường e-líp $4x^2 + y^2 = 4$.
 - (a) Tính $\int_C (e^x \sin y + 2y) dx + (e^x \cos y + 2x 2y) dy$.
 - (b) Tính $\int_C (e^x \sin y + 4y) \ dx + (e^x \cos y + 2x 2y) \ dy$.
- **3.2.6** (điện trường là bảo toàn). Định luật Coulomb¹ là một định luật của vật lý có được từ thực nghiệm được phát biểu như sau: Nếu trong \mathbb{R}^3 có hai điện tích q_1 và q_2 thì điện tích q_1 sẽ tác động lên điện tích q_2 một lực bằng

$$F(\vec{r}) = \frac{q_1 q_2}{4\pi\epsilon_0 |\vec{r}|^3} \vec{r},$$

trong đó \vec{r} là vectơ từ điểm mang điện tích q_1 sang điểm mang điện tích q_2 , và ϵ_0 là một hằng số. Để đơn giản ta giả sử điện tích q_1 nằm ở gốc tọa độ, khi đó $\vec{r}=(x,y,z)$ là vị trí của điện tích q_2 . Chứng tỏ điện trường là một trường bảo toàn.

- **3.2.7.** Chứng tỏ công của trọng trường do vật ở vị trí O tạo ra khi một vật khác di chuyển từ vị trí P tới vị trí Q chỉ phụ thuộc vào khoảng cách từ O tới P và khoảng cách từ O tới Q.
- **3.2.8.** Tính công của trường lực bảo toàn tác động lên vật di chuyển từ điểm P tới điểm Q theo đường C trong Hình 3.2.4. Trong hình các đường cong khác C là các đường mức của một hàm thế với các mức tương ứng được ghi. Chú ý các đường mức này đều vuông góc với trường vectơ (xem Bài tâp 3.2.11).

 $^{^1}$ Định luật này được phát biểu lần đầu tiên bởi Charles Coulomb năm 1785.

Hình 3.2.3:

Hình 3.2.4:

3.2.9 (tiếp tục Ví dụ 3.2.13). Trên mặt phẳng Oxy, xét trường

$$F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

(a) Kiểm tra rằng nếu $x \neq 0$ thì F có một hàm thế là $\theta = \arctan \frac{y}{x}$, với θ chính là biến góc trong tọa độ cực. Người ta thường viết một cách hình thức

$$d\theta = \frac{-y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy.$$

- (b) Có thể mở rộng θ thành một hàm trơn trên toàn miền xác định của F không?
- (c) Tích phân $\frac{1}{2\pi} \int_C d\theta$ được gọi $s\acute{o}$ vòng, tính theo chiều ngược chiều kim đồng hồ, của đường đi C quanh điểm O. Chứng tỏ số vòng của đường đi $(\cos t, \sin t)$, $0 \le t \le 2n\pi$ đúng bằng n.

Hình 3.2.5: Trường
$$\left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$$
.

3.2.10. Trên mặt phẳng Oxy, xét trường

$$F(x,y) = (P(x,y), Q(x,y)) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right).$$

- (a) Kiểm tra rằng $P_y = Q_x$ trên miền xác định của F.
- (b) Trường F có bảo toàn trên miền xác định không?

3.2.11 (trường gradient luôn vuông góc với tập mức). Cho F là một trường bảo toàn trên mặt phẳng, tức là một trường gradient, $F = \nabla f$. **Tập mức** của f là tập các điểm có cùng một giá trị qua f, tức là tập $f^{-1}(c) = \{p \in \mathbb{R}^2 \mid f(p) = c\}, c \in \mathbb{R}$. Nếu với mọi $p \in f^{-1}(c)$ thì $F(p) = \nabla f(p) \neq 0$ thì giá trị c còn được gọi là một giá trị chính

qui (regular value) của f.

- (a) Có thể chứng minh được nếu c là một giá trị chính qui của f thì tập mức $f^{-1}(c)$ là một đường cong, chính xác hơn phương trình "ở dạng ẩn" f(x,y)=c xác định vết một đường đi C(t)=(x(t),y(t)) trên một lân cận của điểm p. Từ điều kiện f(C(t))=c hãy suy ra $\nabla f(C(t)) \cdot C'(t) = 0$. Hãy giải thích vì sao điều đó có nghĩa là $F(p) \perp C$. Xem minh họa ở Hình 3.2.4.
- (b) Chứng minh rằng

$$\int_C \nabla f \cdot d\vec{r} = 0.$$

Vậy tích phân của trường gradient trên đường mức luôn bằng 0.

3.2.12. Tính:

- (a) Cho C là biên của hình vuông $[0,1]^2\subset\mathbb{R}^2$ định hướng theo chiều kim đồng hồ. Tính tích phân $\int_C x^3 dx + (x + \sin(2y)) dy$.
- (b) Cho $F(x,y)=2xy\vec{i}+x^2\vec{j}$. Gọi T là tam giác với các đỉnh $(0,0),\ (0,1),\ (1,1),$ định hướng ngược chiều kim đồng hồ. Giải thích tại sao $\int_T F \cdot d\vec{s} = 0$ bằng ba cách.
- (c) Tính $\int_C (x-y)^2 dx + (x+y)^2 dy$ trong đó C là chu tuyến (đường biên) theo chiều dương của tam giác OAB với O=(0,0), A=(2,0), B=(4,2) bằng cách tính trực tiếp và bằng công thức Green.

- (d) Cho $F(x,y)=(x^2+y,x+\sqrt{y^4+y^2+1})$. Trường này có bảo toàn không? Gọi $C(t)=(1-\cos^3t,\sin 2t),\,0\leq t\leq\pi.$ Tính $\int_C F\cdot d\vec{s}.$
- (e) Cho $F(x,y)=(y-2xye^{-x^2},e^{-x^2}+y)$. Tính tích phân của trường này trên cung tròn đơn vị trong góc phần tư thứ nhất đi từ (1,0) tới (0,1).
- (f) Hãy kiểm chứng công thức Green trong trường hợp miền được bao bởi hai đường cong y = x và $y = x^2$ và trường là (xy, y^2) .
- (g) Tính tích phân $\int_C 4y dx 5 dy$ với C là đường e-líp $x=2+4\cos\theta,\,y=3+2\sin\theta,\,0\leq\theta\leq 2\pi$ bằng 2 cách.
- **3.2.13.** Gọi D là một miền trên đó công thức Green có thể áp dụng được. Chứng tỏ diện tích của D có thể được tính theo công thức

$$|D| = -\int_{\partial D} y \ dx = \int_{\partial D} x \ dy = \frac{1}{2} \int_{\partial D} x \ dy - y \ dx.$$

- **3.2.14.** Cho đường cong trong mặt phẳng (x,y) viết bằng phương trình dùng tọa độ cực $r=4+3\cos(11\theta)$, với $0\leq\theta\leq2\pi$ (xem Hình 2.3.4). Dùng Bài tập 3.2.13, hãy tính diện tích của miền được bao bởi đường cong này.
- **3.2.15.** Cho đường cong hình sao (astroid) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2^{\frac{2}{3}}$.
 - (a) Vẽ đường này.
 - (b) Tính diện tích của miền bao bởi đường cong trên bằng cách dùng tích phân bội.
 - (c) Tính diện tích miền này bằng cách dùng tích phân đường, dùng tham số hóa của đường astroid: $x=2\cos^3\theta,\ y=2\sin^3\theta.$
- **3.2.16.** Cho $\vec{F}=(P,Q)$ là trường vectơ trơn xác định trên mặt phẳng trừ điểm O, có $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ tại mọi điểm. Giả sử $\int_a \vec{F} \cdot d\vec{s}=1$ và $\int_b \vec{F} \cdot d\vec{s}=2$ (xem Hình 3.2.6). Hãy tính tích phân của \vec{F} trên c, d, và e.

Hình 3.2.6:

- **3.2.17.** Cho $F(x,y)=\left(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$. Cho C_1 là đường e-líp $9x^2+4y^2=36$ và C_2 là đường tròn $x^2+y^2=1$, đều được định hướng cùng chiều kim đồng hồ. Chứng tổ tích phân của F trên C_1 và trên C_2 là bằng nhau.
- **3.2.18.** Trên mặt phẳng Oxy, xét trường

$$F(x,y) = (P(x,y), Q(x,y)) = \left(2x - \frac{y}{x^2 + y^2}, 1 + \frac{x}{x^2 + y^2}\right).$$

- (a) Trong hình vẽ a là một nửa đường tròn đi từ (-1,0) tới (1,0)). Tính tích phân của \vec{F} trên a.
- (b) Tính tích phân của \vec{F} trên f (một nửa đường tròn đi từ (-1,0) tới (1,0)).

- (c) Dùng công thức Green, hãy tính tích phân của \vec{F} trên c và d.
- (d) Hãy tính tích phân của \vec{F} trên b (một đường đi từ (-1,0) tới (1,0)).
- (e) Hãy tính tích phân của \vec{F} trên e.
- **3.2.19 (tích phân từng phần).** Cho D là miền đơn giản trên mặt phẳng có biên trơn từng khúc được định hướng dương. Cho f và g là hàm thực khả vi liên tục trên một tập mở chứa D. Hãy chứng minh công thức tích phân từng phần sau:

$$\iint_D f_x g \ dxdy = \int_{\partial D} fg \ dy - \iint_D fg_x \ dxdy.$$

3.2.20. Cho D là miền đơn giản trên mặt phẳng với biên trơn từng khúc được định hướng dương. Cho f là một hàm trơn trên một tập mở chứa D. Hãy kiểm rằng:

$$\int_{\partial D} f_x \ dx + f_y \ dy = 0.$$

(b)
$$\int_{\partial D} -f_y \ dx + f_x \ dy = \iint_D \Delta f \ dx dy.$$

Ở đây với f(x,y) là hàm thực trên miền $D \subset \mathbb{R}^2$ kí hiệu toán tử Laplace tác động vào f là $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$

3.2.21. Cho D là miền đơn giản trên mặt phẳng với biên trơn từng khúc được định hướng dương. Cho (P,Q) là một trường vectơ trơn trên một tập mở chứa D. Hãy kiểm rằng

$$\int_{\partial D} (QP_x - PQ_x) \ dx + (PQ_y - QP_y) \ dy = 2 \iint_D (PQ_{xy} - QP_{xy}) \ dxdy.$$

- **3.2.22.** Kí hiệu đạo hàm của f theo hướng cho bởi vectơ đơn vị v là $D_v f$. Nhắc lại công thức $D_v f = \nabla f \cdot v$. Kí hiệu n là véctơ pháp tuyến đơn vị ngoài của ∂D . Hãy chứng minh các công thức sau, cũng được gọi là các **công thức Green**, với giả thiết dạng thông lượng của công thức Green 3.2.1 có thể áp dụng được.
 - (a) $\int_{\partial D} D_n f \ ds = \iint_D \Delta f \ dA$.
 - (b) $\int_{\partial D} (f \nabla g) \cdot n \ ds = \iint_D (f \Delta g + \nabla f \cdot \nabla g) \ dA$.
 - (c) $\int_{\partial D} (f \nabla g g \nabla f) \cdot n \ ds = \iint_{D} (f \Delta g g \Delta f) \ dA$.

3.2.23 (diện tích của đa giác). (a) Một tam giác trong mặt phẳng có 3 đỉnh có tọa độ $(x_1, y_1), (x_2, y_2), (x_3, y_3)$. Chứng tỏ diện tích của tam giác này bằng

$$\frac{1}{2} \left| x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + x_3 y_1 - x_1 y_3 \right|.$$

(b) Tổng quát hơn, giả sử một đa giác trong mặt phẳng bao một miền mà công thức Green áp dụng được. Giả sử các đỉnh của đa giác này có tọa độ (x_i,y_i) , $1 \le i \le n$ với thứ tự theo định hướng "đa giác nằm bên trái" của công thức Green. Để cho tiện, đặt $(x_{n+1},y_{n+1})=(x_1,y_1)$. Khi đó ta có công thức cho diện tích của đa giác là

$$\frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i).$$

3.2.24. Giả sử nhiệt độ tại một điểm (x,y) trên mặt phẳng được cho bởi f(x,y). Dùng công thức Green 3.2.22, hãy giải thích vì sao nếu phân bố nhiệt độ là **điều hòa**, nghĩa là $\Delta f = 0$, thì trên mỗi miền kín lượng nhiệt đi ra luôn đúng bằng lượng nhiệt đi vào.

3.2.25. Liên quan tới phần chứng minh của Định lý 3.2.15, hãy kiểm tra: Nếu $f:[a,b]\to\mathbb{R}$ liên tục và $x\in[a,b]$ thì $\lim_{h\to 0}\frac{1}{h}\int_x^{x+h}f(t)\ dt=f(x)$. Hãy chỉ ra rằng định lý cơ bản của Vi Tích phân hàm một biến nói rằng $\int_a^x f(t)\ dt$ là một nguyên hàm của f trên [a,b] là một hệ quả của kết quả trên.

3.3 Tích phân mặt

Giống như đường, đối với chúng ta một $m \not a t$ là một ánh xạ r từ một tập con D của \mathbb{R}^2 vào \mathbb{R}^3 . Tập ảnh r(D) được gọi là $v \not e t$ của mặt.

Ví dụ 3.3.1. Nửa trên của mặt cầu là vết của mặt $(x,y,z=\sqrt{1-x^2-y^2})$ với $x^2+y^2\leq 1$ (tọa độ Euclid). Đó cũng là vết của mặt $(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi)$ với $0\leq\theta\leq 2\pi$ và $0\leq\phi\leq\pi/2$ (tọa độ cầu).

3.3.1 Diện tích mặt

Cho mặt

$$r: D \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3$$

 $(u, v) \mapsto r(u, v) = (x, y, z).$

Với một phép chia của D ta có một phép chia của mặt thành những mảnh nhỏ. Một hình chữ nhật con với kích thước $\Delta u \times \Delta v$ sẽ được mang thành một mảnh trên mặt được xấp xỉ tuyến tính bằng hình bình hành xác định bởi các vecto $r_u(u,v)\Delta u$ và $r_v(u,v)\Delta v$. Diện tích của hình bình hành này được cho bởi độ lớn của tích có hướng của hai vecto này, tức là $|r_u(u,v)\times r_v(u,v)|\Delta u\Delta v$.

Từ đó ta đưa ra định nghĩa:

Định nghĩa 3.3.2. Diện tích của mặt $r: D \to \mathbb{R}^3$ là

$$\iint_D |r_u \times r_v| \ dudv.$$

Ví dụ 3.3.3 (mặt đồ thị). Giả sử $f: D \to \mathbb{R}$ là một hàm tron trên một tập mở chứa D. Xét mặt r(x,y) = (x,y,f(x,y)) có vết là đồ thị của hàm f. Ta tính được $r_x = (1,0,f_x)$, $r_y = (0,1,f_y)$, $r_x \times r_y = (-f_x,-f_y,1)$. Diện tích của mặt này là

$$\iint_D \sqrt{1 + f_x^2 + f_y^2} \ dx dy.$$

Đặc biệt, nếu đây là một mặt phẳng, tức $f \equiv 0$, thì diện tích của mặt chính là diện tích của miền phẳng D.

3.3.2 Tích phân mặt loại một

Cho mặt $r:D\to\mathbb{R}^3$ và cho f là một hàm thực xác định trên vết S=r(D). Ta muốn tính **tổng giá trị của hàm trên mặt**. Làm như trong phần diện tích mặt, trên mỗi mảnh con trên mặt ta xấp xỉ tuyến tính diện tích của mảnh con bằng diện tích của một hình bình hành, bằng $|r_u(u,v)\times r_v(u,v)|\Delta u\Delta v$, và xấp xỉ giá trị của hàm f bằng giá trị của nó tại một điểm r(u,v). Từ đó ta đưa ra định nghĩa:

Định nghĩa 3.3.4. Cho mặt $r:D\to\mathbb{R}^3$ với vết S=r(D). Cho $f:S\to\mathbb{R}$. Tích phân mặt loại một của f trên r là

$$\iint_{r} f \ dS = \iint_{D} f(r(u,v)) |r_{u}(u,v) \times r_{v}(u,v)| \ dudv.$$

Ví dụ 3.3.5. Nếu $f \equiv 1$ thì $\iint_r 1 \, dS$ chính là diện tích của mặt r.

Ví dụ 3.3.6 (mặt đồ thị). Giả sử $f: D \to \mathbb{R}$ là một hàm tron trên một tập mở chứa D. Xét mặt r(x,y) = (x,y,f(x,y)) có vết là đồ thị S của hàm f. Giả sử $g: S \to \mathbb{R}$. Khi đó tích phân của g trên r là

$$\iint_{T} g \ dS = \iint_{D} g(x, y, f(x, y)) \sqrt{1 + f_{x}^{2} + f_{y}^{2}} \ dxdy.$$

Trong các tài liệu khác tích phân mặt loại 1 còn được kí hiệu bằng $\int_S f \ d\sigma$, $\int_S f \ d\Sigma$.

Ghi chú 3.3.7. Như đã thấy trong phần công thức đổi biến, Phương trình (2.3.3), ta có

$$|a \times b| = \sqrt{|a|^2|b|^2 - \langle a, b \rangle^2} = \left[\det \left(\begin{array}{cc} a \cdot a & a \cdot b \\ b \cdot a & b \cdot b \end{array} \right) \right]^{1/2}.$$

Công thức này có thể được dùng để định nghĩa tích phân mặt loại 1 cho mặt trong \mathbb{R}^n , với $n \geq 2$, không phải hạn chế n=3 như ở đây. Khi n=2 đây chính là công thức đổi biến của tích phân bội.

3.3.3 Tích phân mặt loại hai

Cho mặt $r: D \to \mathbb{R}^3$ với vết S = r(D). Cho F là một trường vectơ trên S, tức $F: S \to \mathbb{R}^3$. Ta muốn tính tổng của thành phần pháp tuyến của trường trên mặt.

Như trong tích phân mặt loại một, diện tích của một mảnh con của mặt được xấp xỉ bởi diện tích hình bình hành $|r_u(u,v) \times r_v(u,v)| \Delta u \Delta v$.

Trên mảnh con trường F được xấp xỉ bằng giá trị của nó tại điểm r(u,v). Vectơ pháp tuyến đơn vị của mặt tại điểm r(u,v) là

$$\frac{r_u(u,v) \times r_v(u,v)}{|r_u(u,v) \times r_v(u,v)|}.$$

Thành phần pháp tuyến của vecto F(r(u,v)) là số thực

$$F(r(u,v)) \cdot \frac{r_u(u,v) \times r_v(u,v)}{|r_u(u,v) \times r_v(u,v)|}$$

Tổng thành phần pháp tuyến của F trên mảnh con đó được xấp xỉ bằng

$$F(r(u,v)) \cdot \frac{r_u(u,v) \times r_v(u,v)}{|r_u(u,v) \times r_v(u,v)|} |r_u(u,v) \times r_v(u,v)| \Delta u \Delta v = [F(r(u,v)) \cdot r_u(u,v) \times r_v(u,v)] \Delta u \Delta v.$$

Chú ý rằng số thực trên cũng là thể tích có hướng của khối bình hành sinh bởi ba vecto $F(r(u,v)), r_u(u,v)\Delta u, r_v(u,v)\Delta v$. Từ đây ta đưa ra định nghĩa:

Định nghĩa 3.3.8. Cho mặt $r: D \to \mathbb{R}^3$ với vết S = r(D). Cho F là một trường vectơ trên S, tức $F: S \to \mathbb{R}^3$. Tích phân mặt loại hai của của F trên r là

$$\iint_{T} F \cdot d\vec{S} = \iint_{D} F(r(u,v)) \cdot (r_{u}(u,v) \times r_{v}(u,v)) \ dudv.$$

Ghi chú 3.3.9. Ta tính được ngay

$$r_u(u,v) \times r_v(u,v) = \frac{\partial(y,z)}{\partial(u,v)}\vec{i} + \frac{\partial(z,x)}{\partial(u,v)}\vec{j} + \frac{\partial(x,y)}{\partial(u,v)}\vec{k}.$$

Từ đó trong một số tài liệu người ta dùng thêm các tích phân mặt:

$$\iint_r P(x,y,z) \ dydz = \iint_r P\vec{i} \cdot d\vec{S} = \iint_r P(r(u,v)) \frac{\partial(y,z)}{\partial(u,v)} \ dudv,$$

$$\iint_r Q(x,y,z) \ dzdx = \iint_r Q\vec{j} \cdot d\vec{S} = \iint_r Q(r(u,v)) \frac{\partial(z,x)}{\partial(u,v)} \ dudv,$$

$$\iint_r R(x,y,z) \ dx dy = \iint_r R \vec{k} \cdot d\vec{S} = \iint_r R(r(u,v)) \frac{\partial (x,y)}{\partial (u,v)} \ du dv.$$

Với các kí hiệu này và $F = P\vec{i} + Q\vec{j} + R\vec{k}$ thì

$$\iint_{T} F \cdot d\vec{S} = \iint_{T} (P \, dydz + Q \, dzdx + R \, dxdy).$$

Tuy nhiên trong tài liệu này ta ít dùng các kí hiệu này.

81

3.3.4 Mặt như là tập điểm. Định hướng

Tương tự như đã xảy ra với đường, trong nhiều ứng dụng ta muốn xem mặt như là một tập điểm chứ không phải là một ánh xa. Bây giờ ta xây dựng quan điểm này.

Cho D và D' là hai tập con mở của \mathbb{R}^2 và giả sử có một phép đổi biến φ từ D lên D'. Những phép đổi biến như vậy chúng ta đã nghiên cứu trong phần công thức đổi biến của tích phân bội. Nếu det $d\varphi$ luôn dương trên D thì φ được gọi là một phép đổi biến bảo toàn định hướng. Nếu det $d\varphi$ luôn âm thì φ được gọi là một phép đổi biến đảo ngược định hướng.

Định lý 3.3.10 (bất biến của tích phân mặt qua phép đổi biến). Giả sử D và D' là hai tập con mở bị chặn của \mathbb{R}^2 và $\varphi: D' \to D$ là một phép đổi biến. Cho mặt trơn $r: D \to \mathbb{R}^3$. Khi đó:

(a) Tích phân mặt loại một không đổi qua phép đổi biến:

$$\iint_r f \ dS = \iint_{r \circ \varphi} f \ dS.$$

(b) Tích phân mặt loại hai không đổi qua phép đổi biến bảo toàn định hướng:

$$\iint_r F \cdot d\vec{S} = \iint_{r \circ \varphi} F \cdot d\vec{S}.$$

(c) Tích phân mặt loại hai đổi dấu qua phép đổi biến đảo ngược định hướng:

$$\iint_{r} F \cdot d\vec{S} = - \iint_{r \circ \omega} F \cdot d\vec{S}.$$

Chứng minh. Theo qui tắc đạo hàm của hàm hợp:

$$J_{r\circ\varphi}(s,t) = J_r(u,v)J_{\varphi}(s,t).$$

Cụ thể hơn:

$$\begin{split} \frac{\partial (r \circ \varphi)}{\partial s} &= \frac{\partial r}{\partial u} \cdot \frac{\partial u}{\partial s} + \frac{\partial r}{\partial v} \cdot \frac{\partial v}{\partial s}, \\ \frac{\partial (r \circ \varphi)}{\partial t} &= \frac{\partial r}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial r}{\partial v} \cdot \frac{\partial v}{\partial t}. \end{split}$$

Nhân hai vectơ này, và đơn giản hóa, ta được

$$\frac{\partial(r \circ \varphi)}{\partial s} \times \frac{\partial(r \circ \varphi)}{\partial t} = \left(\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right) \cdot \left(\frac{\partial u}{\partial s} \cdot \frac{\partial v}{\partial t} - \frac{\partial u}{\partial t} \cdot \frac{\partial v}{\partial s}\right)$$
$$= \left(\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right) \cdot \frac{\partial(u, v)}{\partial(s, t)}.$$

Viết cách khác:

$$(r \circ \varphi)_s \times (r \circ \varphi)_t = (r_u \times r_v) \det J_{\varphi}(s, t). \tag{3.3.1}$$

Bây giờ dùng công thức đổi biến của tích phân bội ta được điều phải chứng minh. □

Ta nói hai mặt r và r' có cùng dịnh hướng nếu $r'^{-1} \circ r$ là một phép đổi biến và bảo toàn định hướng; và trái dịnh hướng nếu $r'^{-1} \circ r$ là một phép đổi biến và đảo ngược định hướng. Mỗi lớp các tham số hóa có cùng định hướng của S được gọi là một dịnh hướng của măt cong S.

Ví dụ 3.3.11 (định hướng của mặt cầu). Xét phần mặt cầu $x^2+y^2+z^2=1, x, y, z>0$. Tập điểm này có thể được tham số hóa như là một mặt đồ thị $(x,y,\sqrt{1-x^2-y^2})$. Một cách khác để tham số hóa tập này là dùng tọa độ cầu: $x=\sin\phi\cos\theta,\ y=\sin\phi\sin\theta,$ $z=\cos\phi,$ với $0<\phi<\pi/2,\ 0<\theta<\pi/2$. Với thứ tự (ϕ,θ) của tọa độ cầu, phép biến đổi $(\phi,\theta)\mapsto (x,y)$ có $\frac{\partial(x,y)}{\partial(\phi,\theta)}=\sin\phi\cos\phi>0$, do đó bảo toàn định hướng. Như vậy hai tham số hóa này có cùng định hướng.

Măt $r: D \to \mathbb{R}^3$ được gọi là:

- don nếu r là đơn ánh,
- chính qui nếu hai vectơ $r_u(u,v)$ và $r_v(u,v)$ xác định và luôn không cùng phương trên D; nói cách khác vectơ $r_u(u,v) \times r_v(u,v)$ luôn khác 0 trên D. Một cách trực quan, mặt là chính qui nếu pháp tuyến có thể được xác định.

Ví dụ 3.3.12 (mặt đồ thị). Cho hàm thực f trơn trên một tập mở chứa D. Xét mặt r(x,y)=(x,y,f(x,y)) với $(x,y)\in D$. Vết của r là mặt đồ thị z=f(x,y). Ta có $r_x=(1,0,f_x)$ và $r_y=(0,1,f_y)$, do đó $r_x\times r_y=(-f_x,-f_y,1)\neq 0$. Vậy r là một mặt đơn, chính qui. Vì $r_x\times r_y=(-f_x,-f_y,1)$ hướng về nửa không gian trên (z>0) nên đây thường được gọi là mặt hướng lên.

Tương tự như cho đường, ta có kết quả sau đây cho biết khi nào thì hai mặt khác nhau bởi một phép đổi biến.

Mệnh đề 3.3.13. Cho D và D' là tập con đóng, bị chặn của \mathbb{R}^2 và cho $r:D\to\mathbb{R}^3$ và $r':D'\to\mathbb{R}^3$ là hai mặt đơn, liên tục, và chính qui trên phần trong của miền xác định, có cùng vết. Khi đó $r(\partial D)=r'(\partial D')$, và $r'^{-1}\circ r:\overset{\circ}{D}\to\overset{\circ}{D'}$ là một phép đổi biến.

Ta gọi tập $r(\partial D) = r'(\partial D')$, ảnh của biên của miền xác định của mặt, là **biên của mặt cong** S = r(D) = r'(D'), kí hiệu là ∂S .

Dùng Mệnh đề 3.3.13 và Định lý 3.3.10 ta có thể phát biểu một kết quả như sau:

Định lý 3.3.14 (tích phân trên mặt cong). Trên những mặt đơn xác định trên tập con đóng bị chặn có diện tích của \mathbb{R}^2 , chính qui trên tập mở chứa miền xác định, với cùng vết, thì:

- (a) tích phân mặt loại một là như nhau,
- (b) tích phân mặt loại hai là như nhau nếu hai mặt cùng định hướng và đối nhau nếu hai mặt trái định hướng.

Như vậy ta có thể nói tới tích phân mặt trên một tập điểm (một mặt cong) nếu tập điểm đó là vết của một mặt như trong định lý trên và bây giờ ta có thể dùng kí hiệu $\iint_S f \ dS$ và $\iint_S F \cdot d\vec{S}$.

Ví dụ 3.3.15 (diện tích mặt cầu). Xét phần mặt cầu nằm trong góc phần tám thứ nhất, tức tập hợp $A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = R^2, \ x \ge 0, y \ge 0, z \ge 0\}.$

Tham số hóa phần này như là một mặt đồ thị $r(x,y)=(x,y,z=\sqrt{R^2-x^2-y^2})$, $x^2+y^2\leq R^2, \ x\geq 0, y\geq 0$. Đây là một tham số hóa đơn, liên tục. Ta tính được ngay $(r_x\times r_y)(x,y)=\left(\frac{x}{\sqrt{R^2-x^2-y^2}},\frac{y}{\sqrt{R^2-x^2-y^2}},1\right)$, tuy nhiên đại lượng này chỉ có nghĩa trên phần trong của miền xác định, tức là tập $x^2+y^2< R^2, \ x>0, y>0$. Diện tích của phần

mặt cầu $B=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=R^2,\ x>0,y>0,z>0\}$ tính theo tham số hóa này bằng

$$\iint_{x^2+y^2 < R^2, x > 0, y > 0} |(r_x \times r_y)(x, y)| dxdy = \iint_{x^2+y^2 < R^2, x > 0, y > 0} \frac{R}{\sqrt{R^2 - x^2 - y^2}} dxdy$$

$$= \int_0^{\pi/2} \int_0^R \frac{Rr}{\sqrt{R^2 - r^2}} dr d\theta$$

$$= \pi R^2/2.$$

Tham số hóa tập A bằng tọa độ cầu $s(\phi,\theta) = R(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi)$, $0 \le \phi \le \pi/2$, $0 \le \theta \le \pi/2$. Đây là một tham số hóa đơn, chính qui, với $(s_{\phi} \times s_{\theta})(\phi,\theta) = R^2 \sin\phi(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi)$. Tập B ứng với s hạn chế lại trên phần trong của miền xác định, tức $0 < \phi < \pi/2$, $0 < \theta < \pi/2$. Áp dụng Định lý 3.3.13 và Mệnh đề 3.3.10 ta có diện tích của phần mặt cầu B tính theo s phải đúng bằng diện tích tính theo tham số hóa r ở trên. Thật vậy:

$$\iint_{0 < \phi < \pi/2, 0 < \theta < \pi/2} |(s_{\phi} \times s_{\theta})(\phi, \theta)| \ d\phi d\theta = \int_{0}^{\pi/2} \int_{0}^{\pi/2} R^{2} \sin \phi \ d\phi \ d\theta$$
$$= \pi R^{2}/2.$$

Từ đây ta nói diện tích của mặt cầu bán kính R là $4\pi R^2$.

Từ tính toán trên ta cũng có thể ghi lại một công thức cho phần tử diện tích của mặt cầu

$$dS = R^2 \sin \phi d\phi d\theta.$$

Có thể thấy việc tính diện tích mặt cầu bằng cách chia thành nhiều phần như trên dẫn tới những câu hỏi, chẳng hạn về sự phụ thuộc vào cách chia. Ở đây chúng ta không giải quyết được hết các vấn đề, cần các khảo cứu nâng cao hơn.

Ví dụ 3.3.16. Tính tích phân của trường $\vec{F}(x,y,z)=(x,y,1)$ trên mặt S là đồ thị $z=x^2+y^2$, với $x^2+y^2\leq 1$, định hướng lên trên. Mặt S có thể được tham số hóa bởi mặt đơn, chính qui $r(x,y)=(x,y,x^2+y^2)$, trên miền $x^2+y^2\leq 1$, xem Ví dụ 3.3.12. Tham số hóa này cho định hướng lên trên như yêu cầu. Vậy:

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{x^{2}+y^{2} \le 1} (\vec{F} \circ r) \cdot (r_{x} \times r_{y}) \, dxdy$$

$$= \iint_{x^{2}+y^{2} \le 1} (x, y, 1) \cdot (-2x, -2y, 1) \, dxdy$$

$$= \iint_{x^{2}+y^{2} \le 1} (-2x^{2} - 2y^{2} + 1) \, dxdy$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (-2r^{2} + 1)r \, dr \, d\theta = 2\pi.$$

3.3.5 Pháp tuyến của mặt. Liên hệ giữa hai loại tích phân mặt

Dưới các giả thiết của Mệnh đề 3.3.13, giả sử r và r' có cùng định hướng. Giả sử p=r(u,v)=r'(s,t) với $(u,v)\in \overset{\circ}{D}$ và $(s,t)\in \overset{\circ}{D'}$. Theo Phương trình (3.3.1) tại p hai vecto $r_u\times r_v$ và $r'_s\times r'_t$ có cùng phương cùng chiều. Vậy tại p vecto pháp tuyến đơn vị

$$n(p) = \frac{r_u(u, v) \times r_v(u, v)}{|r_u(u, v) \times r_v(u, v)|} = \frac{r'_s(s, t) \times r'_t(s, t)}{|r'_s(s, t) \times r'_t(s, t)|}$$

được xác định không phụ thuộc vào cách chọn tham số hóa cùng định hướng. Vì vậy *việc* định hướng mặt cong đồng nghĩa với việc chọn chiều pháp tuyến.

Ta có

$$\iint_{S} F \cdot n \ dS = \iint_{D} F(r(u,v)) \cdot \frac{r_{u}(u,v) \times r_{v}(u,v)}{|r_{u}(u,v) \times r_{v}(u,v)|} |r_{u}(u,v) \times r_{v}(u,v)| \ dA$$

$$= \iint_{D} F(r(u,v)) \cdot (r_{u}(u,v) \times r_{v}(u,v)) \ dA$$

$$= \iint_{S} F \cdot d\vec{S}.$$

Vây

$$\iint_{S} F \cdot d\vec{S} = \iint_{S} F \cdot n \ dS.$$

Điều này khẳng định lại rằng tích phân mặt loại hai là tổng thành phần pháp tuyến của trường trên mặt.

Bài tập

3.3.1. Tính:

- (a) Tính diện tích phần mặt nón $z^2 = x^2 + y^2$, $3 \le z \le 5$.
- (b) Cho S là mặt xác định bởi $z=x^2+y$ với $1\leq x\leq 2,\,0\leq y\leq 1.$ Tính $\iint_S x\ dS.$
- (c) Cho S là mặt cầu tâm 0 bán kính 2. Tính $\iint_S z^4 dS$.
- (d) Cho S là tam giác trong \mathbb{R}^3 với các đỉnh (1,0,0), (0,1,0), (0,0,1). Tính $\iint_S y \ dS$.
- (e) Cho S là mặt trụ $x^2 + y^2 = 9$, $0 \le z \le 2$. Tính $\iint_S z \ dS$.
- (f) Cho $\vec{F}(x,y,z)=(-x,y,z)$. Cho S là mặt tứ diện bao bởi các mặt phẳng $x=0,\ y=0,\ z=0,\ x+2y+z=2,$ định hướng ra ngoài. Tính tích phân $\iint_S \vec{F} \cdot d\vec{S}$.
- (g) Cho khối E xác định bởi điều kiện $x^2+y^2\leq 1,\,1\leq z\leq 2.$ Gọi S là mặt biên của E, định hướng ra ngoài. Cho F(x,y,z)=(2x,3y,4z). Tính thông lượng của F qua S.
- (h) Tính tích phân của trường (x,y,z-2y) trên mặt $(s\cos t,s\sin t,t),\ 0\leq s\leq 2,\ 0\leq t\leq 2\pi$. Hãy vẽ mặt này (bằng máy tính).
- **3.3.2.** Cho mặt elliptic paraboloid $z = \left(\frac{x}{3}\right)^2 + \left(\frac{y}{4}\right)^2$, $z \le 5$.
 - (a) Bằng cách đổi biến $\frac{x}{3} = r \cos \theta$, $\frac{y}{4} = r \sin \theta$ đưa ra một phương trình tham số của mặt.
 - (b) Tính xấp xỉ diện tích của mặt này.
- **3.3.3.** Cho S là mặt z=xy với $0 \le x \le 2$ và $0 \le y \le 3$. Tính tích phân mặt

$$\iint_{S} xyz \ dS$$

ra số thập phân.

3.3.4. Mặt helocoid có phương trình tham số $\varphi(r,\theta) = (r\cos\theta,r\sin\theta,\theta),\ 1 < r < 2,\ 0 \le \theta \le 2\pi.$ Vẽ mặt này. Giả sử một vật có hình dạng một mặt helocoid có mật độ khối lượng tỉ lệ với khoảng cách tới trục, cụ thể $\rho(x,y,z) = r$. Hãy tính khối lượng của vật này.

3.3.5. Trên bề mặt Quả đất, tọa độ kinh tuyến và vĩ tuyến có liên hệ chặt chẽ với tọa độ cầu. Đặt hệ trục tọa độ Oxyz với O ở tâm Quả đất, trục Oz đi qua Cực Bắc, và phần tư đường tròn từ tia Oz sang tia Ox đi qua Greenwich, nước Anh. Giả sử một điểm có tọa độ là φ° vĩ độ Bắc và λ° kinh độ Đông, khi đó tọa độ cầu của điểm đó là $\phi = (90 - \varphi)^{\circ}$ và $\theta = \lambda^{\circ}$ (tuy nhiên nhớ là trong tọa độ cầu góc cần được đo bằng radian).

Thành phố Hồ Chí Minh nằm trong vùng từ $10^{\circ}10'$ tới $10^{\circ}38'$ vĩ độ Bắc và $106^{\circ}22'$ tới $106^{\circ}54'$ kinh độ Đông ($1'=1/60^{\circ}$). Tính diện tích của vùng này. Bán kính của Quả đất là 6378 km.

- **3.3.6.** Cho $v=(y^2,x^2,z^2+2y)$ là trường vectơ vận tốc (đơn vị centimeter/giây) của một dòng chất lỏng trong \mathbb{R}^3 . Hãy tính tốc độ chất lỏng đi qua mặt cầu đơn vị tâm tại gốc tọa độ (tức là thể tích chất lỏng đi qua mặt trong một đơn vị thời gian).
- **3.3.7 (định luật Gauss về điện trường).** Gọi E là điện trường gây bởi điện tích q tại điểm O. Lấy quả cầu B(O,R) tâm O, định hướng ra ngoài. Dùng định luật Coulomb (3.2.6), hãy tính tích phân và chứng tỏ

$$\iint_{\partial B(O,R)} E \cdot d\vec{S} = \frac{q}{\epsilon_0}.$$

Vậy thông lượng của điện trường qua một mặt cầu tâm tại vị trí của điện tích tỉ lệ với điện tích (xem dạng tổng quát hơn ở Mục 3.4.5).

3.3.8. Giá trị trung bình của hàm f trên mặt S được định nghĩa bằng

$$\frac{1}{|S|} \iint_S f \ dS.$$

Nhiệt độ trên một mái vòm hình nửa mặt cầu bán kính 20 mét tỉ lệ với cao độ, cụ thể nhiệt độ tại điểm (x,y,z) trên mặt cầu $x^2+y^2+(z-50)^2=20^2$ là $T(x,y,z)=\frac{1}{2}z$. Hãy tính nhiệt độ trung bình trên mái vòm nàv.

- **3.3.9 (diện tích mặt tròn xoay).** Giả sử f(x) dương, tron trên [a,b]. Hãy tính diện tích của mặt tròn xoay nhận được bằng cách xoay đồ thị y = f(x) quanh trực x.
- **3.3.10.** Tính diện tích mặt ellipsoid $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1.$
- **3.3.11.** Tính diện tích mặt nón cân với đáy là hình tròn bán kính R và chiều cao h.
- **3.3.12.** Không cần tính, hãy cho biết giá trị của tích phân

$$\iint_{x^2+y^2+z^2=1} x \ dS.$$

- **3.3.13.** Cho S là mặt cầu tâm 0 bán kính R. Hãy tính $\iint_S x^2 \ dS$ mà không cần tham số hóa. Có thể làm theo ý sau đây:
 - (a) Chứng tỏ, mà không cần tính, rằng $\iint_S x^2 dS = \iint_S y^2 dS = \iint_S z^2 dS$.
 - (b) Tính $\iint_S (x^2+y^2+z^2) \; dS$ mà không cần tham số hóa.
- **3.3.14.** Hãy tính $\iint_S(x,y,z)\cdot d\vec{S}$ trong đó S là mặt cầu tâm 0 bán kính R định hướng ra ngoài, mà không tham số hóa, tức là hãy tính nhẩm!

3.4 Công thức Stokes và Công thức Gauss— Ostrogradsky

3.4.1 Công thức Stokes

Định nghĩa 3.4.1. Cho F=(P,Q,R) là trường theo ba biến (x,y,z) trên \mathbb{R}^3 thì

$$\operatorname{curl} F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right).$$

Dưới dạng kí hiệu hình thức, với $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$, thì curl $F = \nabla \times F$. Trường curl F còn được gọi là **trường xoay** của trường F. Toán tử curl còn được kí hiệu là rot. ² Dạng chính của công thức Stokes được dùng trong môn học này là

$$\int_{\partial S} F \cdot d\vec{s} = \iint_{S} \operatorname{curl} F \cdot d\vec{S}.$$

Trong công thức này $biện \partial S$ cần được định hướng tương thích với định hướng của <math>S. Một cách miêu tả trực quan cho định hướng trên biên ∂S là khi đi dọc theo biên theo chiều đã định, thân người hướng theo chiều pháp tuyến đã chọn của S thì mặt S phải nằm bên tay trái. Một cách miêu tả khác là: dặt lòng bàn tay phải hướng theo chiều của biên thì ngón tay cái chỉ chiều của pháp tuyến của mặt.

Công thức Stokes là một phát triển của công thức Green lên không gian ba chiều. Thực vậy, nếu S là miền phẳng và F là một trường phẳng trên S thì F(x,y,z) = (P(x,y),Q(x,y),0). Công thức Stokes trở thành

$$\int_{\partial S} P dx + Q dy = \iint_{S} (0, 0, Q_{x} - P_{y}) \cdot d\vec{S} = \iint_{S} (0, 0, Q_{x} - P_{y}) \cdot k \ dS
= \iint_{S} (Q_{x} - P_{y}) \ dS = \iint_{S} (Q_{x} - P_{y}) \ dxdy,$$

chính là công thức Green.

Công thức Stokes còn có thể được viết ở dạng tọa độ:

$$\int_{\partial S} P dx + Q dy + R dz = \iint_{S} (R_y - Q_z) \ dy dz + (P_z - R_x) \ dz dx + (Q_x - P_y) \ dx dy.$$

Tuy chúng ta ít dùng dạng trên trong môn này nhưng nó thể hiện rõ hơn sự tương tự của công thức Stokes với công thức Green.

Dưới đây là một phát biểu chính xác mà ta có thể chứng minh được:

Định lý 3.4.2 (công thức Stokes). Cho miền phẳng D có biên ∂D là vết của đường γ có hướng tương thích với D và giả sử công thức Green có thể áp dụng được cho D. Cho

²Trong tiếng Anh curl có nghĩa là xoắn, cuộn, quăn, ...; còn rotation nghĩa là sự xoay.

mặt r trơn cấp hai trên một tập mở chứa D. Gọi $\partial r = r \circ \gamma$ là đường biên của r. Cho trường F trơn trên một tập mở chứa vết của r. Khi đó:

$$\int_{\partial r} F \cdot d\vec{s} = \iint_r \operatorname{curl} F \cdot d\vec{S}.$$

Chứng minh. Chứng minh dưới đây tuy chứa những biểu thức dài dòng nhưng chỉ gồm những tính toán trực tiếp và việc áp dụng công thức Green. Viết F=(P,Q,R) và (x,y,z)=r(u,v). Viết $\gamma(t)=(u(t),v(t)),\ a\leq t\leq b,$ một tham số hóa theo định hướng dương của ∂D . Ta được (trong vài biểu thức dưới đây biến được lược bỏ cho gọn hơn):

$$\int_{\partial r} F \cdot d\vec{s} = \int_{a}^{b} F(r(u(t), v(t)) \cdot \frac{d}{dt} r(u(t), v(t)) dt$$

$$= \int_{a}^{b} F(r(u(t), v(t)) \cdot (r_{u}u' + r_{v}v') dt$$

$$= \int_{a}^{b} [P(x, y, z)(x_{u}u' + x_{v}v') + Q(x, y, z)(y_{u}u' + y_{v}v') + R(x, y, z)(z_{u}u' + z_{v}v')] dt$$

$$= \int_{a}^{b} [(P(x, y, z)x_{u} + Q(x, y, z)y_{u} + R(x, y, z)z_{u})u' + (P(x, y, z)x_{v} + Q(x, y, z)y_{v} + R(x, y, z)z_{v})v'] dt$$

$$= \int_{\gamma} (Px_{u} + Qy_{u} + Rz_{u}) du + (Px_{v} + Qy_{v} + Rz_{v}) dv.$$

Bây giờ áp dụng công thức Green cho D ta được tích phân trên bằng

$$\iint_D \left[\frac{\partial}{\partial u} \left(Px_v + Qy_v + Rz_v \right) - \frac{\partial}{\partial v} \left(Px_u + Qy_u + Rz_u \right) \right] du dv.$$

Tính các đạo hàm hàm hợp, chẳng hạn

$$(Px_v)_u = (P_x x_u + P_y y_u + P_z z_u) x_v + P x_{uv},$$

và đơn giản hóa, dùng tính tron cấp hai của r, ta được tích phân trên bằng

$$\iint_{D} [(R_y - Q_z)(y_u z_v - z_u y_v) + (P_z - R_x)(z_u x_v - x_u z_v) + (Q_x - P_y)(x_u y_v - x_v y_u)] du dv$$

$$= \iint_{D} [\operatorname{curl}(P, Q, R) \cdot (r_u \times r_v)] du dv = \iint_{r} \operatorname{curl} F \cdot d\vec{S}.$$

Ta có thể phát biểu một hệ quả độc lập với tham số hóa, là dạng thường gặp trong môn học này, sử dụng các khái niệm đã được đưa ra ở Mệnh đề 3.3.13:

Định lý 3.4.3. Giả sử S là vết của một mặt xác định trên tập đóng bị chặn, có biên là vết của một đường chính qui từng khúc, trên đó công thức Green áp dụng được. Giả sử mặt này là đơn, chính qui, hơn nữa tron cấp hai trên tập mở chứa miền xác định. Giả sử S và ∂S có định hướng tương thích. Cho trường F tron trên một tập mở chứa S. Khi đó

$$\int_{\partial S} F \cdot d\vec{s} = \iint_{S} \operatorname{curl} F \cdot d\vec{S}.$$

Ví dụ 3.4.4. Cho $F(x, y, z) = (x^2, y^3, z^4)$. Cho C là đường tam giác với các đỉnh (1, 2, 3), (2, 0, -1), (4, 3, 1), định hướng theo thứ tự đó. Ta tính $\int_C F \cdot d\vec{s}$.

Có thể tính trực tiếp hoặc dùng phương pháp trường bảo toàn, nhưng bây giờ ta có thêm một công cụ là công thức Stokes. Đường tam giác C bao hình tam giác S với định hướng sinh bởi C. Áp dụng công thức Stokes:

$$\int_C F \cdot d\vec{s} = \iint_S \operatorname{curl} F \cdot d\vec{S}.$$

 \mathring{O} đây curl F = 0. Vậy tích phân trên bằng 0.

Ví dụ 3.4.5. Cho F(x,y,z)=(xy,yz,zx). Gọi C là giao của mặt phẳng x+y+z=1 với mặt trụ $x^2+y^2=1$, định hướng ngược chiều kim đồng hồ nếu nhìn từ trên xuống. Ta tính $I=\int_C F\cdot d\vec{s}$ bằng hai cách: tính trực tiếp, và dùng công thức Stokes.

(a) Tính trực tiếp: Ta lấy một tham số hóa của đường C là $C(t) = (\cos t, \sin t, 1 - \cos t - \sin t)$, $0 \le t \le 2\pi$, ngược chiều kim đồng hồ nếu nhìn từ trên xuống. Tính trực tiếp I:

$$I = \int_C F(C(t)) \cdot C'(t) dt$$

$$= \int_0^{2\pi} (\cos t \sin t, \sin t (1 - \cos t - \sin t) + (1 - \cos t - \sin t) \cos t) \cdot (-\sin t, \cos t, \sin t - \cos t) dt$$

$$= -\pi.$$

(b) Dùng công thức Stokes: Trước hết tính được $\operatorname{curl} F(x,y,z) = (-y,-z,-x)$. Tham số hóa mặt S bao bởi C bởi $r(x,y) = (x,y,1-x-y), \, x^2+y^2 \leq 1$. Tham số hóa này có vectơ pháp tuyến tương ứng là $r_x \times r_y(x,y) = (1,1,1)$, hướng lên, do đó phù hợp với định hướng cần thiết trong công thức Stokes. Bây giờ:

$$\begin{split} I &= \iint_{S} \mathrm{curl} F \cdot d\vec{S} = \iint_{x^{2} + y^{2} \leq 1} \mathrm{curl} F(x, y) \cdot (r_{x} \times r_{y}(x, y)) \ dx dy \\ &= \iint_{x^{2} + y^{2} \leq 1} (-y, -(1 - x - y), -x) \cdot (1, 1, 1) \ dx dy = -\pi. \end{split}$$

3.4.2 Điều kiện để trường ba chiều là bảo toàn

Mệnh đề 3.4.6 (curl grad = 0). Nếu f là hàm thực có các đạo hàm riêng cấp hai liên tục trên một tập mở thì trên đó curl $(\nabla f) = 0$.

Dùng kí hiệu hình thức thì $\nabla \times (\nabla f) = 0$.

Chứng minh. Tương tự như trường hợp hai chiều, tính trực tiếp ta được³

$$\operatorname{curl} \nabla f = (f_{zy} - f_{yz}, f_{xz} - f_{zx}, f_{yx} - f_{xy}) = 0.$$

³ Chú ý qui ước về kí hiệu:

$$\frac{\partial^2 f}{\partial x \partial y} = f_{yx}.$$

Hệ quả 3.4.7 (điều kiện cần để trường ba chiều là bảo toàn). Nếu F là trường trơn bảo toàn trên một tập mở thì $\operatorname{curl} F = 0$ trên đó. Nói cách khác điều kiện sau phải được thỏa:

$$\begin{cases} R_y = Q_z \\ P_z = R_x \\ Q_x = P_y. \end{cases}$$

Ta có thể dùng kết quả này để chứng tỏ một trường là không bảo toàn bằng cách chỉ ra rằng curl của nó khác 0.

Ví dụ 3.4.8. Trường F(x, y, z) = (y, x, y) có bảo toàn trên \mathbb{R}^3 hay không?

Trường F trơn cấp một trên \mathbb{R}^3 . Nếu F là bảo toàn thì phải có curl F = 0. Nhưng trường hợp này curl $F = (1,0,0) \neq 0$, vậy F không bảo toàn.

Bằng cách chứng minh tương tự ở 3.2.15 nhưng thay công thức Green bởi công thức Stokes ta được:

Mệnh đề 3.4.9 (bổ đề Poincaré ba chiều). Nếu F trơn trên một miền mở hình sao trong \mathbb{R}^3 và curl F = 0 thì F là bảo toàn trên đó.

3.4.3 Công thức Gauss-Ostrogradsky

Định nghĩa 3.4.10. Cho F = (P, Q, R) là trường theo ba biến (x, y, z) trên \mathbb{R}^3 thì

$$\operatorname{div} F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

Dưới dạng kí hiệu hình thức thì div $F = \nabla \cdot F$. Hàm div F còn được gọi là **hàm phân tán** (divergence) của trường F.

Công thức Gauss–Ostrogradsky 4 còn được gọi là công thức Divergence 5 . Đây là tổng quát hoá của dạng thông lượng của công thức Green 3.2.1, cho một công thức có dạng

$$\iint_{\partial E} P \, dydz + Q \, dzdx + R \, dxdy = \iiint_{E} (P_x + Q_y + R_z) \, dxdydz.$$

Dưới đây ta sẽ phát biểu và chứng minh công thức này cho khối đơn giản theo cả ba chiều. Theo mỗi chiều thì khối là miền nằm giữa hai đồ thị. Chẳng hạn theo chiều trục z thì khối là $E = \{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \in D \subset \mathbb{R}^2, \ f(x,y) \leq z \leq g(x,y)\},$ với D đóng, bị chặn, có diện tích. Giả sử thêm rằng trên ∂D thì f = g hoặc f < g. Giả sử các hàm f, g là trơn thì biên ∂E là hội của mặt dưới là $\{(x,y,f(x,y)) \mid (x,y) \in D\}$ (chính qui, hướng xuống), mặt trên là $\{(x,y,g(x,y)) \mid (x,y) \in D\}$ (chính qui, hướng lên), ngoài ra nếu trên ∂D mà f < g thì biên còn gồm mặt bên hông là $\{(x,y,z) \mid (x,y) \in \partial D, f(x,y) \leq z \leq g(x,y)\}$. Giả sử thêm ∂D là vết của một đường chính qui từng khúc. Ta nói E là một khối đơn giản với biên trơn từng mảnh.

Ví dụ 3.4.11. Quả cầu đóng, khối ellipsoid, khối hộp chữ nhật là những khối đơn giản với biên trơn từng mảnh.

Định lý 3.4.12 (công thức Gauss–Ostrogradsky). Cho trường F trơn trên một tập mở chứa một khối đơn giản E với biên trơn từng mảnh được định hướng ra ngoài. Khi đó:

$$\iint_{\partial E} F \cdot n \ dS = \iint_{\partial E} F \cdot d\vec{S} = \iiint_{E} \operatorname{div} F \ dV.$$

⁴tên Ostrogradsky còn được viết là Ostrogradski

 $^{^5}$ trong tiếng Anh "divergence" có nghĩa là sự phát tán, sự phân kì, sự phân rã, \dots

Chứng minh. Viết $F = P\vec{i} + Q\vec{j} + R\vec{k}$. Viết E như là khối đơn theo chiều Oz như là tập hợp những điểm (x,y,z) với $f(x,y) \le z \le g(x,y)$ trong đó f,g là hàm trơn xác định trên miền phẳng D. Ta sẽ chứng tỏ

$$\iint_{\partial E} R\vec{k} \cdot d\vec{S} = \iiint_{E} \frac{\partial}{\partial z} R \ dV.$$

Tương tự ta chứng minh hai biểu thức tương ứng cho hai chiều còn lại, cộng lại và được đẳng thức phải được chứng minh.

Nếu f < g trên ∂D thì ∂E có mặt hông, nhưng tích phân của $R\vec{k}$ bằng không trên đó, cơ bản là vì mặt hông chứa những đoạn thẳng thẳng đứng, nên pháp tuyến của mặt hông nằm ngang, vuông góc với trường $R\vec{k}$. Chi tiết đầy đủ hơn chúng ta không khảo sát ở đây.

Như vậy tích phân của $R\vec{k}$ trên ∂E bằng tổng tích phân của $R\vec{k}$ trên mặt trên và mặt dưới, là các mặt đồ thị, bằng:

$$\begin{split} \iint_{D} R(x,y,g(x,y)) \vec{k} \cdot (-g_{x},-g_{y},1) \ dA + \\ &+ \iint_{D} R(x,y,f(x,y)) \vec{k} \cdot (f_{x},f_{y},-1) \ dA \\ &= \iint_{D} \left[R(x,y,g(x,y)) - R(x,y,f(x,y)) \right] \ dA. \end{split}$$

Mặt khác, theo công thức Fubini

$$\iiint_E R_z \ dV = \iint_D \left(\int_{f(x,y)}^{g(x,y)} R_z \ dz \right) dA$$

$$= \iint_D \left(R(x,y,g(x,y) - R(x,y,f(x,y)) \right) dA.$$

Vậy ta được đẳng thức mong muốn.

Ví dụ 3.4.13. Dùng công thức Gauss–Ostrogradsky, ta tính thông lượng của trường $F(x,y,z)=(2x+e^yz,x^2y,yz)$ qua mặt cầu đơn vị $x^2+y^2+z^2=1$ định hướng ra ngoài:

$$\begin{split} \iint_{x^2+y^2+z^2=1} F \cdot d\vec{S} &= \iiint_{x^2+y^2+z^2 \le 1} \operatorname{div} F(x,y,z) \ dx dy dz \\ &= \iiint_{x^2+y^2+z^2 \le 1} (2+x^2+y) \ dx dy dz \\ &= 2\frac{4\pi}{3} + \int_0^1 \int_0^\pi \int_0^{2\pi} (\rho \sin \phi \cos \theta)^2 \rho^2 \sin \phi \ d\theta d\phi d\rho + 0 \\ &= \frac{8\pi}{3} + \frac{1}{5} \cdot \frac{4}{3} \cdot \pi = \frac{44\pi}{15}. \end{split}$$

Ví dụ 3.4.14. Hãy tính thông lượng của trường F(x,y,z)=(x,y,2-2z) qua mặt S cho bởi $z=1-x^2-y^2, z\geq 0$, định hướng lên trên, bằng hai cách: (a) tính trực tiếp, và (b) tính thông lượng của F qua một mặt khác và dùng định lý Gauss–Ostrogradsky.

(a) Tham số hóa mặt $S: r(x,y) = (x,y,1-x^2-y^2)$ với $x^2+y^2 \le 1$. Có $r_x \times r_y(x,y) = (2x,2y,1)$ hướng lên trên.

$$I = \iint_{S} F \cdot d\vec{S} = \iint_{x^{2}+y^{2} \le 1} F(r(x,y)) \cdot (r_{x} \times r_{y})(x,y) \, dxdy$$
$$= \iint_{x^{2}+y^{2} \le 1} (x,y,2-2(1-x^{2}-y^{2}))(2x,2y,1) \, dxdy$$
$$= \iint_{x^{2}+y^{2} \le 1} 4(x^{2}+y^{2}) \, dxdy = \int_{0}^{2\pi} \int_{0}^{1} 4r^{2} \, rdrd\theta = 2\pi.$$

(b) Gọi S_1 là mặt cho bởi $x^2 + y^2 \le 1$, z = 0, định hướng xuống dưới. Mặt S cùng S_1 tạo thành mặt kín S_2 bao khối E. Áp dụng công thức Gauss–Ostrogradsky:

$$\iint_{S} F \cdot d\vec{S} + \iint_{S_{1}} F \cdot d\vec{S} = \iint_{S_{2}} F \cdot d\vec{S} = \iiint_{E} \operatorname{div} F \ dV = \iiint_{D} 0 \ dV = 0.$$

Mặt khác

$$\iint_{S_1} F \cdot d\vec{S} = \iint_{S_1} F \cdot n \ dS = \iint_{x^2 + y^2 \le 1} (x, y, 2 - 0) \cdot (0, 0, -1) \ dA$$
$$= \iint_{x^2 + y^2 \le 1} -2 \ dA = -2\pi.$$

Do đó $\iint_S F \cdot d\vec{S} = 2\pi$.

Tính trực tiếp từ công thức tương tự như ở Mệnh đề 3.4.6 ta có kết quả sau:

Mệnh đề 3.4.15 (div curl = 0). Nếu F là trường có các đạo hàm riêng cấp hai liên tục trên một tập mở thì trên đó div(curl F) = 0.

Viết bằng kí hiệu hình thức: $\nabla \cdot (\nabla \times F) = 0$. Kết quả này cho một điều cần để một trường là trường curl của một trường khác.

3.4.4 Ý nghĩa vật lý của div và curl

Trước hết ta cần bổ đề sau đây:

Bổ đề 3.4.16. Cho f là một hàm thực khả tích trên một lân cận của điểm $p \in \mathbb{R}^n$ và liên tục tại p. Gọi B'(p,r) là quả cầu đóng tâm tại p với bán kính r. Khi đó:

$$\lim_{r \to 0} \frac{1}{|B'(p,r)|} \int_{B'(p,r)} f = f(p).$$

Vậy giá trị trung bình của một hàm liên tục quanh một điểm tiến về giới hạn là giá trị của hàm tại điểm đó.

Chứng minh. Vì f liên tục tại p nên cho $\epsilon>0$, với r đủ nhỏ thì với mọi $q\in B'(p,r)$ ta có $|f(q)-f(p)|\leq \epsilon$. Từ đó

$$\left| \left(\frac{1}{|B'(p,r)|} \int_{B'(p,r)} f \right) - f(p) \right| = \left| \frac{1}{|B'(p,r)|} \int_{B'(p,r)} [f(q) - f(p)] \right|$$

$$\leq \frac{1}{|B'(p,r)|} \int_{B'(p,r)} |f(q) - f(p)|$$

$$\leq \frac{1}{|B'(p,r)|} \int_{B'(p,r)} \epsilon = \epsilon.$$

Áp dụng bổ đề trên cho div ta được

$$\operatorname{div} F(p) = \lim_{r \to 0} \frac{1}{|B'(p,r)|} \iiint_{B'(p,r)} \operatorname{div} F \ dA = \lim_{r \to 0} \frac{1}{|B'(p,r)|} \iint_{\partial B'(p,r)} F \cdot n \ dS. \quad (3.4.1)$$

Tích phân $\iint_{\partial B'(p,r)} F \cdot n \ dS$ là thông lượng của trường F ra khỏi mặt cầu $\partial B'(p,r)$. Vậy div F(p) chỉ độ phát tán của trường F trên đơn vị thể tích quanh p.

Xét một điểm p. Lấy một mặt phẳng qua p với phương định bởi pháp tuyến n. Xét hình tròn B'(p,r) trên mặt phẳng này với tâm tại p và bán kính r. Ta có:

$$\operatorname{curl} F(p) \cdot n = \lim_{r \to 0} \frac{1}{|B'(p,r)|} \iint_{B'(p,r)} \operatorname{curl} F \cdot n \ dA = \lim_{r \to 0} \frac{1}{|B'(p,r)|} \int_{\partial B'(p,r)} F \cdot d\vec{s}. \tag{3.4.2}$$

Vậy curl $F(p) \cdot n$ thể hiện lưu lượng ngược chiều kim đồng hồ (độ xoay) của trường F trên phần tử diện tích quanh p trong mặt phẳng qua p vuông góc n.

Ta có curl $F(p) \cdot n$ đạt giá trị lớn nhất khi n cùng phương cùng chiều với curl F(p). Vậy curl F(p) cho phương của mặt phẳng mà trên đó độ xoay của trường quanh p là lớn nhất, chiều của nó được xác định bởi chiều xoay của trường theo qui tắc bàn tay phải. Hơn nữa có thể chứng tỏ là độ lớn của curl F(p) tỉ lệ với tốc độ xoay theo góc của trường quanh p. Nói vắn tắt, curl F(p) chỉ sự xoay của trường F tại điểm p. Từ điều này tích phân $\iint_S \text{curl } F \cdot d\vec{S}$ còn được gọi là luu luợng (circulation) của trường F trên mặt S.

Ta có một miêu tả trực quan cho curl F(p): Tưởng tượng rằng ta thả một cái chong chóng vào trường, cố định nó tại điểm p nhưng để cho nó tự do đổi hướng và tự do xoay. Khi đó hướng ổn định của chong chóng chính là hướng của curl F(p), chiều xoay của nó chính là chiều xoay của trường, còn vận tốc xoay của chong chóng chỉ độ xoay của trường quanh p.

Ghi chú 3.4.17. Công thức cho div (3.4.1) và cho curl (3.4.2) cho thấy chúng là những đại lượng vật lý, không phụ thuộc hệ tọa độ.

3.4.5 Ung dụng

Điện từ

Gọi E là điện trường gây bởi điện tích q tại điểm O. Giả sử S là một mặt kín, biên của khối D. Giả sử công thức Gauss–Ostrogradsky có thể áp dụng được cho D. Nhắc lại từ 3.4.21 là div E=0. Nếu D không chứa điểm O thì

$$\iint_{S} E \cdot d\vec{S} = \iiint_{D} \operatorname{div} E \ dV = 0.$$

Nếu D chứa điểm O ở phần trong, nói cách khác nếu S bao điểm O, thì lấy một quả cầu B(O,R) đủ nhỏ sao cho nó không cắt S, và cho biên $\partial B(O,R)$ định hướng ra ngoài B(O,R). Khi đó S cùng $\partial B(O,R)$ tạo thành biên của một khối D' không chứa O. Giả sử công thức Gauss–Ostrogradsky có thể áp dụng được cho D', ta được

$$\iint_{S} E \cdot d\vec{S} - \iint_{\partial B(O,R)} E \cdot d\vec{S} = \iiint_{D'} \operatorname{div} E \ dV = 0.$$

Suy ra $\iint_S E \cdot d\vec{S} = \iint_{\partial B(O,R)} E \cdot d\vec{S}$. Ở Bài tập 3.3.7, dùng Định luật Coulomb (Bài tập 3.2.6), ta đã tính được $\iint_{\partial B(O,R)} E \cdot d\vec{S} = \frac{q}{\epsilon_0}$.

Vậy

$$\iint_{S} E \cdot d\vec{S} = \frac{q}{\epsilon_0},$$

thông lượng của điện trường qua một mặt kín bao điện tích không phụ thuộc vào mặt và tỉ lệ với điện tích. Đây là nội dung của định luật được phát biểu bởi Johann Carl Friedrich Gauss. 6

Ở trên ta vừa trình bày định luật Coulomb và định luật Gauss cho một điện tích. Trong trường hợp môi trường chứa điện tích tại mọi điểm (môi trường liên tục) thì ta có:

Định luật Coulomb	Định luật Gauss
$\label{eq:div} \begin{array}{l} \operatorname{div} E = \frac{\rho}{\epsilon_0}, \text{với} \rho \text{là hàm mật độ điện} \\ \text{tích} \end{array}$	$\iint_S E \cdot d\vec{S} = \frac{1}{\epsilon_0} \iiint_D \rho \ dV = \frac{Q}{\epsilon_0}, \text{ với } D \text{ là khối được bao bởi mặt } S \text{ và } Q \text{ là tổng điện tích trên } D$

Tuy có thể chỉ ra rằng hai định luật là tương đương về mặt toán học, nhưng Định luật Gauss có thể được kiểm chứng bằng thí nghiệm dễ hơn Định luật Coulomb, vì Định luật Gauss có tính vĩ mô trong khi Định luật Coulomb có tính vi mô.

Không lâu sau hai định luật Coulomb và Gauss, trong thập kỉ 1820, André Marie Ampère phát hiện ra rằng một dòng điện tạo ra quanh nó một từ trường theo định luật:

$$\int_C B \cdot d\vec{s} = \mu_0 I,$$

trong đó C là một đường cong kín bao quanh một dòng điện có cường độ không đổi I, B là từ trường, và μ_0 là một hằng số.

Năm 1831 Michael Faraday phát hiện rằng một từ trường thay đổi theo thời gian tới lượt nó lại tạo ra một điện trường. Định luật Faraday cho công thức:

$$\int_{\partial S} E \cdot d\vec{s} = -\frac{d}{dt} \iint_{S} B \cdot d\vec{S}.$$

 $^{^6}$ Trong các tài liệu vật lý định luật Gauss thường được phát biểu mà không kèm theo điều kiện gì về tính tron của mặt và của các hàm trong công thức.

ong vor va vraong.	
Các phương trình Maxwell	
Dạng vi phân	Dạng tích phân
(1) (Coulomb) div $E = \frac{\rho}{\epsilon_0}$	(Gauss) $\iint_S E \cdot d\vec{S} = \frac{Q}{\epsilon_0}$, với S là một
	mặt kín
(2) $\operatorname{curl} E = -\frac{\partial B}{\partial t}$	(Faraday) $\int_{\partial S} E \cdot d\vec{s} = -\frac{d}{dt} \iint_{S} B \cdot d\vec{S}$
$(3) \operatorname{div} B = 0$	$\iint_S B \cdot d\vec{S} = 0$, với S là một mặt kín
(4) (Ampère) $\frac{1}{\epsilon_0 \mu_0} \operatorname{curl} B = \frac{J}{\epsilon_0} + \frac{\partial E}{\partial t}$,	$\frac{1}{\epsilon_0 \mu_0} \int_{\partial S} B \cdot d\vec{S} = \frac{I}{\epsilon_0} + \frac{d}{dt} \iint_S E \cdot d\vec{S}$, với
với J là mật độ dòng điện	I là cường độ dòng điện qua mặt S

Năm 1864, James Clerk Maxwell phát triển định luật Ampère và thống nhất điện trường với từ trường:

Chẳng bao lâu sau lý thuyết của Maxwell đã được ứng dụng trong thực tế với việc phát minh ra sóng điện từ của Heinrich Hertz năm 1887. Các phương trình Maxwell cùng với các định luật của Newton tổng kết vật lý cổ điển.

Cơ học chất lỏng

Gọi \vec{F} là trường vận tốc chuyển động của một dòng chất lỏng. Nếu div $\vec{F}=0$ (tại mọi điểm) thì người ta nói dòng chất lỏng là không nén được (incompressible) (vì nó không có chỗ bơm vào lẫn chỗ thoát ra). Các toán tử vi phân của Giải tích vectơ xuất hiện phổ biến trong mô hình hóa các hiện tượng cơ học. Chẳng hạn, một trong những phương trình quan trọng nhất mô tả dòng chảy chất lỏng cho tới nay vẫn đang được tập trung nghiên cứu là phương trình Navier–Stokes:

$$\begin{cases} \frac{\partial \vec{F}}{\partial t} + (\vec{F} \cdot \nabla)\vec{F} - \nu \Delta \vec{F} &= -\nabla w + \vec{g}, \\ \operatorname{div} \vec{F} &= 0. \end{cases}$$

Bài tập

- 3.4.1. Trường sau có bảo toàn hay không?
 - (a) F(x, y, z) = (y, x, y).
 - (b) $F(x, y, z) = (2xe^{x^2}, z\sin y^2, z^3).$
- **3.4.2.** Cho S là mặt $z=x^2+y^2$ với $z\leq 1$, định hướng lên trên. Tính lưu lượng của trường $\vec{F}(x,y,z)=(3y,-xz,yz^2)$ trên S (tức là $\iint_S {\rm curl} \vec{F}\cdot d\vec{S}$) bằng hai cách:
 - (a) Tính trực tiếp.
 - (b) Dùng công thức Stokes.
- **3.4.3.** Cho S là mặt $z = 9 x^2 y^2$ với $z \ge 0$, định hướng lên trên.
 - (a) Cho trường F(x,y,z)=(2z-y,x+z,3x-2y). Tính trực tiếp lưu lượng của F trên S, tức $\iint_S \operatorname{curl} F \cdot d\vec{S}.$
 - (b) Dùng công thức Stokes tính $\iint_{S} \operatorname{curl} F \cdot d\vec{S}$.
- **3.4.4.** Cho C là đường giao của mặt $4x^2+4y^2+z^2=40$ và mặt z=2 được định hướng ngược chiều kim đồng hồ khi nhìn từ trên xuống. Tìm $\int_C \vec{F} \cdot d\vec{s}$ với $\vec{F}(x,y,z)=(y,2yz+1,xz^4+\cos(2z+1))$ bằng cách tính trực tiếp và bằng cách dùng công thức Stokes.
- **3.4.5.** Cho F(x,y,z)=(xy,yz,zx). Gọi C là giao của mặt phẳng x+y+z=1 với mặt trụ $x^2+y^2=1$, định hướng ngược chiều kim đồng hồ nếu nhìn từ trên xuống. Đặt $I=\int_C F\cdot d\vec{s}$.
 - (a) Tìm một tham số hóa của đường C.

- (b) Tính trực tiếp I.
- (c) Tính $\operatorname{curl} F$.
- (d) Dùng công thức Stokes, tính I.
- **3.4.6.** Cho f và g là hai hàm thực tron cấp hai trên \mathbb{R}^3 .
 - (a) Chứng tổ $\operatorname{curl}(f\nabla g) = \nabla f \times \nabla g$.
 - (b) Tính tích phân $\int_C f \nabla f \cdot d\vec{s}$ trong đó $C(t) = (\cos t, \sin t, \sin t), 0 \le t \le 2\pi$.
- **3.4.7.** Trong \mathbb{R}^3 cho S_1 là nửa mặt cầu trên $x^2 + y^2 + z^2 = 1$, $z \ge 0$; cho S_2 là mặt paraboloid $z = 1 x^2 y^2$, $z \ge 0$, cả hai được định hướng lên trên.
 - (a) Vẽ hai mặt này trên cùng một hệ tọa độ.
 - (b) Cho F là một trường tron trên \mathbb{R}^3 . Chúng tổ $\iint_{S_1} \operatorname{curl} F \cdot d\vec{S} = \iint_{S_2} \operatorname{curl} F \cdot d\vec{S}$.
 - (c) Hãy tổng quát hóa.
- **3.4.8.** Nếu S là mặt cầu thì $\iint_S \operatorname{curl} F \cdot d\vec{S} = 0.$
- **3.4.9.** Cho $\vec{v} \in \mathbb{R}^3$ là một vectơ cố định. Cho S là một mặt mà trên đó công thức Stokes có thể áp dụng được. Hãy chứng minh:

$$\int_{\partial S} (\vec{v} \times \vec{r}) \cdot d\vec{s} = 2 \iint_{S} \vec{v} \cdot \vec{n} \ dS,$$

trong đó \vec{r} là vecto vị trí, tức $\vec{r}(x, y, z) = (x, y, z)$.

3.4.10. (a) Chứng minh đẳng thức

$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c.$$

(b) Từ đó chứng minh

$$\operatorname{curl}(\operatorname{curl} F) = \nabla(\operatorname{div} F) - \Delta F.$$

Ở đây ΔF được hiểu là toán tử Laplace $\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ tác động vào từng thành phần của F.

3.4.11 (cảm ứng điện từ). Định luật Faraday phát biểu rằng khi thông lượng từ trường qua một mặt giới hạn bởi một mạch kín thay đổi thì trong mạch xuất hiện dòng điện cảm ứng. Chính xác hơn, gọi \vec{E} là điện trường, \vec{B} là từ trường, S là một mặt với biên là đường ∂S được định hướng tương thích như trong công thức Stokes, thì

$$\int_{\partial S} \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S}.$$

Giả sử một nguồn năng lượng cơ học như sức nước hay sức gió làm quay một trục với vận tốc ω vòng/đơn vị thời gian. Một vòng dây phẳng được gắn vào trục này, được đặt trong một từ trường cố định \vec{B} . Gọi A là diện tích của hình phẳng bao bởi vòng dây. Đại lượng $\int_{\partial S} \vec{E} \cdot d\vec{s}$ thường được kí hiệu là emf. Chứng tỏ

$$emf = -A|\vec{B}|2\pi\omega\sin(2\pi\omega t).$$

Vậy trong vòng dây xuất hiện một dòng điện xoay chiều. Đây là một nguyên lý cơ sở của máy phát điện.

- **3.4.12.** Tiếp tục bài tập 3.2.1 và 3.2.2, xem F như là trường phẳng trong không gian ba chiều. Ước đoán divF tại điểm gốc tọa độ là âm, dương hay bằng không? Hãy miêu tả curlF tại điểm gốc tọa độ.
- **3.4.13.** Tồn tại hay không một trường F khả vi liên tục cấp hai thỏa curl $F(x, y, z) = (e^{yz}, \sin(xz^2), z^5)$?

3.4.14. Tính:

- (a) Tiếp tục các bài tập 3.3.1. Nếu mặt S là kín hãy tính tích phân $\iint_S \vec{F} \cdot d\vec{S}$ bằng cách dùng công thức Gauss–Ostrogradsky.
- (b) Tính thông lượng của trường $\vec{F}(x,y,z)=(3x,y^2,z^2)$ qua mặt cầu đơn vị $x^2+y^2+z^2=1$, định hướng ra ngoài.
- (c) Tính thông lượng của trường $F(x,y,z)=(2x+e^{yz},2xy,y^2)$ qua mặt cầu đơn vị $x^2+y^2+z^2=1$ định hướng ra ngoài.
- (d) Tính thông lượng của trường F(x,y,z)=(y,z,x) qua mặt $x^2+y^4+z^6=2$, định hướng ra ngoài.

3.4.15. Cho trường

$$\vec{F}(x,y,z) = \left(\frac{x}{(x^2+y^2+z^2)^{3/2}}, \frac{y}{(x^2+y^2+z^2)^{3/2}}, \frac{z}{(x^2+y^2+z^2)^{3/2}}\right).$$

Chú ý đây là một trường xuyên tâm, tỉ lệ với trọng trường và điện trường.

- (a) Tính $\operatorname{div}(\vec{F})$.
- (b) Gọi S_2 là mặt cầu $x^2+y^2+(z-3)^2=1$ được định hướng ra ngoài. Dùng công thức Gauss–Ostrogradsky, hãy tính $\iint_{S_2} \vec{F} \cdot d\vec{S}$.
- (c) Gọi S_1 là mặt cầu $x^2 + y^2 + z^2 = 1$ được định hướng ra ngoài. Tính tích phân mặt $\iint_{S_1} \vec{F} \cdot d\vec{S}$ bằng cách dùng tọa độ Euclid (x, y, z) hoặc dùng tọa độ cầu.
- (d) Gọi S_3 là mặt $x^2+4y^2+9z^2=36$ được định hướng ra ngoài. Hãy tính $\iint_{S_3} \vec{F} \cdot d\vec{S}$.
- **3.4.16.** Cho S là mặt $z = 9 x^2 y^2$ với $z \ge 0$, định hướng lên trên.
 - (a) Cho $G(x,y,z)=(e^y\cos z,x^2z,y^2+z)$. Cho S_1 là đĩa $x^2+y^2\leq 9,\,z=0$, định hướng xuống dưới. Tính thông lượng của G qua S_1 , tức $\iint_{S_1}G\cdot\,d\vec{S}$.
 - (b) Dùng định lý Gauss–Ostrogradsky tính $\iint_{S \cup S_1} G \cdot d\vec{S}$.
 - (c) Tính $\iint_S G \cdot d\vec{S}$.
- **3.4.17.** Cho T là nhiệt độ trên một miền $D \subset \mathbb{R}^3$, giả sử là một hàm trơn cấp hai. Vì nhiệt được chuyển từ nơi có nhiệt độ cao tới nơi có nhiệt độ thấp, và vectơ gradient chỉ hướng mà hàm có tốc độ thay đổi lớn nhất, nên sự thay đổi nhiệt trên miền này được mô hình hóa một cách đơn giản bằng trường dòng nhiệt $F = -k\nabla T$, với k là một hằng số dương.
 - (a) Chứng tỏ $\operatorname{curl} F = 0$.
 - (b) Chứng tổ div $F=-k\Delta T$, trong đó Δ là toán tử Laplace: $\Delta T=\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}+\frac{\partial^2 T}{\partial z^2}$.
 - (c) Chứng tỏ nếu T là $\rat{hàm}$ điều $\rat{hòa}$, tức là $\Delta T=0$, thì tổng dòng nhiệt qua một mặt cầu bất kì trong miền D luôn bằng không. (Xem 3.2.24.)
- **3.4.18 (diện tích mặt cầu).** Áp dụng công thức Gauss–Ostrogradsky cho hàm F(x, y, z) = (x, y, z), hãy tính diện tích của mặt cầu tâm tại 0 với bán kính R.
- **3.4.19.** Hãy chứng minh các công thức sau, cũng được gọi là các *công thức Green*, với giả thiết công thức Gauss–Ostrogradsky có thể áp dụng được. (Xem 3.2.22.)
 - (a) $\iint_{\partial E} \nabla f \cdot n \ dS = \iiint_{E} \Delta f \ dV$.
 - (b) $\iint_{\partial E} (f \nabla g) \cdot n \ dS = \iiint_{E} (f \Delta g + \nabla f \cdot \nabla g) \ dV.$
 - (c) $\iint_{\partial E} (f \nabla g g \nabla f) \cdot n \ dS = \iiint_{E} (f \Delta g g \Delta f) \ dV.$
 - (d) $\iint_{\partial E} f n_i \ dS = \iiint_E \frac{\partial f}{\partial x_i} \ dV$. Ở đây n_i là tọa độ thứ i của vectơ pháp tuyến n.
 - (e) $\iint_{\partial E} fgn_i dS = \iiint_E \frac{\partial f}{\partial x_i} g dV + \iiint_E f \frac{\partial g}{\partial x_i} dV$.

- **3.4.20.** Dùng công thức Gauss–Ostrogradsky hãy đưa ra một cách khác để tìm ra thể tích của một khối nón (xem 2.3.13). Cụ thể, đặt đỉnh khối nón ở O và đáy khối nón trên một mặt phẳng nằm ngang z=a, và áp dụng công thức Gauss–Ostrogradsky cho trường (x,y,z).
- **3.4.21.** Giả sử có một điện tích q tại một điểm O. Theo định luật Coulomb (3.2.6), điện trường gây bởi điện tích q này tại một điểm bất kì trong không gian có vị trí cho bởi vectơ \vec{r} đi từ điểm mang điện tích q tới điểm đang xét là:

$$E(\vec{r}) = \frac{q}{4\pi\epsilon_0 |\vec{r}|^3} \vec{r}.$$

Đáng chú ý là điện trường có độ lớn tỉ lệ nghịch với $|\vec{r}|^2$, do đó định luật Coulomb thường được gọi là một luật nghịch đảo bình phương (inverse-square law). Như ta đã thấy (3.2.9), trọng trường cũng được cho bởi một luật nghịch đảo bình phương.

- (a) Tính toán trực tiếp, chứng tỏ div E=0.
- (b) Chứng tỏ rằng một trường có dạng $E = k \frac{\vec{r}}{|\vec{r}|^m}$ (được gọi là một trường xuyên tâm, radial) thì có div E = 0 khi và chỉ khi m = 3. (Các thí nghiệm sau này kiểm chứng hằng số m trong định luật Coulomb bằng 3 sai khác không quá 3×10^{-16} .)
- **3.4.22.** Mặt cyclide nhận được từ một mặt xuyến qua phép nghịch đảo qua một mặt cầu. Mặt xuyến được cho bởi tham số hóa

$$r(u, v) = ((5 + \cos u)\cos v, (5 + \cos u)\sin v, \sin u), \quad 0 \le u, v \le 2\pi.$$

Đưa mặt xuyến này ra ngoài mặt cầu đơn vị tâm O bán kính 1 bằng một phép tịnh tiến, chẳng hạn theo vecto (9,0,0), được một mặt xuyến mới với tham số hóa

$$rtorus(u, v) = (9 + (5 + \cos u)\cos v, (5 + \cos u)\sin v, \sin u), \quad 0 \le u, v \le 2\pi.$$

Thực hiện phép lấy nghịch đảo qua mặt cầu tâm O bán kính 1, tức là phép biến đổi mang mỗi điểm $p \neq 0$ thành điểm $\frac{p}{||p||^2}$. Khi đó mặt xuyến trở thành mặt cyclide S với tham số hóa

$$\operatorname{rcyclide}(u, v) = \frac{\operatorname{rtorus}(u, v)}{\|\operatorname{rtorus}(u, v)\|^{2}}.$$

- (a) V \tilde{e} m \tilde{a} t cyclide S.
- (b) Tính diện tích mặt cyclide S ra số thập phân.
- (c) Cho trường F(x,y,z)=(y,x,3z). Tính thông lượng của F qua mặt cyclide S ra số thập phân.
- (d) Tính thể tích của khối bao bởi mặt cyclide S ra số thập phân.

Chương 4

Phương trình vi phân

4.1 Phương trình vi phân và mô hình toán học

Con người xây dựng những mô hình toán học về các hiện tượng trong thế giới rồi cố gắng khảo sát các mô hình đó để hiểu về các hiện tượng. Thường các hiện tượng thay đổi theo thời gian và không gian, vì thế các mô hình thường chứa các đạo hàm để đo tốc độ thay đổi. Các mô hình như thế thường dẫn tới những phương trình ở đó ẩn là các hàm, còn bản thân phương trình thì chứa các đạo hàm. Những phương trình như thế được gọi là những phương trình vi phân.

Ví dụ 4.1.1. Đây là một phương trình vi phân:

$$y' = y$$
.

Giải phương trình này nghĩa là tìm một hàm y mà đạo hàm y' bằng y. Nói cách khác, tìm hàm y theo biến x sao cho với mọi x thì y'(x) = y(x).

Ta có thể kiểm được ngay là hàm $y=e^x$ là một nghiệm của phương trình vi phân trên. Làm sao để giải tìm nghiệm của một phương trình vi phân là một đề tài ta sẽ khảo sát trong chương này.

Một *phương trình vi phân cấp một* là một phương trình chứa một hàm số một biến chưa biết và đạo hàm cấp một của hàm số đó. Nói một cách khác, đây là phương trình có dạng

$$F(x, y(x), y'(x)) = 0$$

với F là biểu thức chứa x, y(x) và y'(x), và y là hàm số cần tìm phụ thuộc vào x.

Hàm số y(x) được gọi là nghiệm của phương trình vi phân cấp một nếu nó có đạo hàm cấp một tồn tại và thỏa đẳng thức trên. Giải phương trình vi phân cấp một là đi tìm hàm y thỏa đẳng thức trên.

Bài toán tìm nghiệm y của phương trình vi phân cấp một thỏa mãn điều kiện $y(x_0) = y_0$, với x_0 và y_0 cho trước, được gọi là một **bài toán giá trị đầu**. Như vậy đây là bài toán giải hệ

$$\begin{cases} F(x, y(x), y'(x)) = 0 \\ y(x_0) = y_0. \end{cases}$$

Ví dụ 4.1.2. Xét phương trình vi phân

$$y' = y$$
.

Thế vào phương trình, ta kiểm được ngay không chỉ $y = e^x$, mà $y = ke^x$ trong đó k là số thực bất kì, là nghiệm của phương trình vi phân.

Ví dụ 4.1.3. Xét bài toán giá trị đầu:

$$\begin{cases} y' = y \\ y(0) = 2. \end{cases}$$

Thay x=0 vào nghiệm $y=ke^x$ ta được y(0)=k. Do đó để y(0)=2 thì k=2. Vậy bài toán giá trị đầu này có một nghiệm là $y=2e^x$.

Tìm công thức nghiệm của một phương trình vi phân có thể khó. Ở các mục tiếp theo chúng ta sẽ tìm hiểu một số phương pháp tìm nghiệm của phương trình vi phân. Trong nhiều trường hợp thay vì tìm công thức của nghiệm ta tìm hiểu các tính chất của nghiệm, hay xấp xỉ nghiệm.

Ví dụ 4.1.4. Xét phương trình vi phân

$$y' = 2x + y.$$

Nếu đặt vế phải là F(x,y) = 2x + y thì ta có thể diễn đạt phương trình vi phân như sau: Tìm một đường cong y theo biến x mà tại mỗi điểm (x,y) thì độ nghiêng y'(x) của đường được cho bởi số thực F(x,y). Tại mỗi điểm (x,y) trên mặt phẳng ta vẽ một vecto có độ nghiêng bằng F(x,y), chẳng hạn như vecto (1,F(x,y)), thì ta được một trường vecto ứng với phương trình vi phân. Đường cong nghiệm phải luôn tiếp xúc với các vecto của trường vecto này tại điểm mà đường cong đi qua, vì cả hai có cùng độ nghiêng.

Cách tiếp cận này có thể sử dụng được dễ dàng hơn nếu ta dùng công cụ máy tính. Hình vẽ giúp chúng ta hình dung tính chất và dáng điệu của nghiệm.

Hình 4.1.1: Trường vectơ và đường cong nghiệm của phương trình y' = 2x + y đi qua điểm (0,0). Đường này là đồ thị của nghiệm của phương trình vi phân với điều kiện đầu y(0) = 0.

Qua Hình 4.1.1 ta có thể quan sát thấy những tính chất chẳng hạn như nghiệm y thỏa điều kiện đầu y(0) = 0 sẽ có y(x) càng lớn khi x càng lớn.

Trong các bài toán giải phương trình vi phân trong tài liệu này chúng ta bằng lòng với việc tìm ra được một nghiệm của phương trình. Dưới những điều kiện khá tổng quát mà thường được thỏa trong tài liệu này, với mỗi điều kiện đầu phương trình thực sự có

duy nhất một nghiệm. Kết quả này thường được khảo sát trong các tài liệu nâng cao hơn về môn Phương trình vi phân như [Long, Boyce09]. Điều này được thể hiện trong hình vẽ nghiệm của một phương trình vi phân: qua mỗi điểm chỉ có một đường cong nghiệm mà thôi.

4.1.1 Mô hình với phương trình vi phân cấp một

Ví dụ 4.1.5 (Mô hình tăng trưởng dân số). Ta lập mô hình tăng trưởng của dân số (số lượng cá thể trong một quần thể sinh vật nào đó) P theo thời gian t.

Ta đưa ra một giả thiết là tốc độ tăng dân số tỉ lệ hằng với qui mô dân số, nói cách khác tốc độ tăng tương đối là một hằng số. Ví dụ nếu cứ mỗi 100 người trong một năm có 3 trẻ được sinh ra và 1 người chết đi thì tốc độ tăng dân số tương đối là 2 người trên mỗi 100 người mỗi năm, tức là 2%/năm, và ta giả sử tốc độ này không thay đổi theo thời gian.

Tốc độ tăng trưởng dân số theo thời gian chính là đạo hàm $\frac{dP}{dt}$. Tốc độ tăng trưởng tương đối là

 $\frac{\frac{dP}{dt}}{P}$,

vậy mô hình là

$$\frac{\frac{dP}{dt}}{P} = k,$$

trong đó k là hằng số tỉ lệ, độc lập với thời gian, hay

$$\frac{dP}{dt} = kP. (4.1.1)$$

Phương trình (4.1.1) là một mô hình đơn giản nhưng hiệu quả về sự tăng trưởng số lượng của quần thể.

Hình 4.1.2: Một số nghiệm của phương trình dân số $P(t) = P_0 e^{kt}$ ứng với k = 1 và những giá trị khác nhau của P_0 .

Nếu k>0 thì $\frac{dP}{dt}$ luôn dương, nên dân số luôn tăng. Hơn nữa khi P càng lớn thì $\frac{dP}{dt}$ càng lớn, nghĩa là dân số càng lớn thì tăng càng nhanh. Như vậy mô hình dân số (4.1.1)

phù hợp với những tình huống mà sự phát triển của dân số không bị hạn chế bởi lương thực, sự tấn công của kẻ địch, bệnh dịch,

Nếu k=0 thì $\frac{dP}{dt}$ luôn bằng 0, do đó P bằng một hằng số. Vậy dân số không đổi. Một nghiệm hằng như vậy của phương trình vi phân còn được gọi là một nghiệm cân bằng. Nếu k<0 thì $\frac{dP}{dt}$ luôn âm, nên dân số luôn giảm.

Phương trình này được giải ở Ví dụ 4.2.2, còn lúc này ta có thể dễ dàng kiểm tra bằng cách thế vào rằng phương trình có một nghiệm là

$$P(t) = P_0 e^{kt}.$$

Trong đó $P_0 = P(0)$ là dân số tại thời điểm 0, tức là dân số ban đầu. Xem Hình 4.1.2.

Mô hình tăng trưởng dân số cũng áp dụng được cho các trường hợp khác mà tốc độ thay đổi của đại lượng tỉ lệ với giá trị của đại lượng, như mô hình lãi nhập vốn (Bài tập 4.2.8), mô hình phân rã mũ (Bài tập 4.2.9).

Ví dụ 4.1.6 (Mô hình tăng trưởng dân số có kìm hãm). Thường khi dân số của một cộng đồng tăng lên thì những yếu tố kìm hãm xuất hiện như hạn chế về lương thực, tài nguyên, sự cạnh tranh của các cộng đồng khác, Trong trường hợp này thì tốc độ tăng trưởng dân số tương đối sẽ không phải là một hằng số. Một mô hình đơn giản là tốc độ tăng trưởng dân số tương đối sẽ phụ thuộc vào chính dân số:

$$\frac{P'}{P} = h(P).$$

Đơn giản hơn nữa ta lấy h là một hàm cấp 1:

$$h(P) = r\left(1 - \frac{P}{K}\right),$$

trong đó r, K là các hằng số dương. Vậy ta có mô hình

$$\frac{P'}{P} = r\left(1 - \frac{P}{K}\right),\tag{4.1.2}$$

còn được gọi là *mô hình hậu cần*.

Quan sát mô hình hậu cần ta thấy nếu P < K thì P' > 0, như vậy dân số sẽ tăng. Tuy nhiên khi P càng lớn thì $\left(1 - \frac{P}{K}\right)$ sẽ càng nhỏ, tuy vẫn là số dương. Như vậy khi dân số lớn lên thì tốc độ tăng tương đối sẽ giảm đi, đúng như ta muốn miêu tả. Phương trình có một nghiệm hằng P(t) = K, được gọi là nghiệm cân bằng. Giá trị K được coi là $m\hat{u}c$ trần của môi trường, nếu dân số khởi đầu ở một mức thấp hơn thì dân số không thể tăng vượt qua mức này.

Trong mục sau ta sẽ giải phương trình hậu cần ở Ví dụ 4.2.3. Hiện giờ ta có thể kiểm rằng phương trình có một nghiệm là

$$P(t) = \frac{K}{1 + e^{-rt + C}},$$

với $C \in \mathbb{R}$. Ở Hình 4.1.3 ta thấy nghiệm có những tính chất như dự đoán từ mô hình.

4.1.2 Mô hình với phương trình vi phân cấp hai

Một *phương trình vi phân cấp hai* là một phương trình chứa một hàm số (một biến) chưa biết và đạo hàm cấp hai của hàm số đó (có thể có chứa thêm cả đạo hàm cấp một). Nói một cách khác, đây là phương trình có dạng

$$F(x, y(x), y'(x), y''(x)) = 0$$

Hình 4.1.3: Một số nghiệm của phương trình hậu cần với $r=1,\,K=3$ và những điều kiện đầu khác nhau. Nghiệm P=K là nghiệm cân bằng, có đồ thị là một đường thẳng nằm ngang. Các nghiệm mà có giá trị đầu nhỏ hơn K khi thời gian lớn hơn tăng gần tới nhưng không đạt giá trị K. Các nghiệm mà có giá trị đầu lớn hơn K khi thời gian lớn hơn giảm gần tới nhưng không đạt giá trị K.

với F là một hàm số của bốn biến thực và y là một hàm số cần tìm phụ thuộc vào x. Hàm số y được gọi là nghiệm của phương trình vi phân nếu nó có đạo hàm cấp hai và thỏa đẳng thức trên. Giải phương trình vi phân cấp hai là đi tìm hàm y thỏa đẳng thức trên.

Ví dụ 4.1.7. Xét phương trình vi phân cấp hai y''(x) + y'(x) = 0.

Ta có kiểm tra trực tiếp rằng họ các hàm số

$$y(x) = C_1 + C_2 e^{-x}$$

với C_1, C_2 là các hằng số thực, là nghiệm của phương trình vi phân này. Thật vậy, ta có $y'(x) = -C_2 e^{-x}$ và $y''(x) = C_2 e^{-x}$. Thay vào vế trái của phương trình ta thấy ngay dấu bằng xảy ra.

Bài toán giá trị đầu của phương trình vi phân cấp hai bao gồm thêm điều kiện đầu cho đạo hàm cấp một. Đây là bài toán có dạng tìm hàm y thỏa

$$\begin{cases} F(x, y(x), y'(x), y''(x)) = 0\\ y(x_0) = y_0\\ y'(x_0) = w_0, \end{cases}$$

với $x_0, y_0,$ và w_0 cho trước.

Ví dụ 4.1.8. Tiếp tục Ví dụ 4.1.7, xét bài toán giá trị đầu sau

$$\begin{cases} y''(x) + y'(x) = 0\\ y(0) = 1\\ y'(0) = -\frac{1}{2}. \end{cases}$$

Ở Ví dụ 4.1.7 ta đã thấy $y(x) = C_1 + C_2 e^{-x}$ là một nghiệm của phương trình vi phân chưa xét điều kiện đầu. Thay x = 0 vào y(x), ta được

$$C_1 + C_2 = 1.$$

Thay x = 0 vào y'(x), ta được

$$-C_2 = -\frac{1}{2}.$$

Giải hệ phương trình của C_1, C_2 , ta được

$$C_1 = \frac{1}{2}, C_2 = \frac{1}{2}.$$

Vậy nghiệm của bài toán là $y(x) = \frac{1}{2} + \frac{1}{2}e^{-x}$.

Ví dụ 4.1.9 (Mô hình chuyển động của lò xo). Bây giờ ta hãy xem một ví dụ về một mô hình từ cơ học cổ điển: sự chuyển động của một vật có khối lượng m được đặt ở cuối của một lò xo đứng so với mặt đất, như trong Hình 4.1.4.

Hình 4.1.4: Chuyển động của một lò xo ở vị trí thẳng đứng so với mặt đất.

Theo định luật Hooke trong Vật lí, nếu lò xo giãn ra hay nén lại một chiều dài x so với chiều dài tự nhiên (chiều dài khi ở trạng thái nghỉ, không chuyển động, vị trí là hằng) của nó thì vật chịu tác động của một lực có độ lớn tỉ lệ với x nhưng trái chiều chuyển động:

lực phục hồi =
$$-kx$$

trong đó k là một hằng số dương phụ thuộc vào cấu tạo của lò xo. Theo định luật thứ hai của Newton, tổng lực tác động bằng khối lượng nhân gia tốc chuyển động, giả sử rằng vật không chịu sự tác động của lực nào khác, thì tại mọi thời điểm t vị trí x của vật phải thỏa

$$m\frac{d^2x}{dt^2}(t) = -kx(t),$$

hay ngắn gon hơn:

$$mx'' = -kx. (4.1.3)$$

Đây là một ví dụ mô hình toán học dùng phương trình vi phân cấp hai. Ở Ví dụ 4.3.5 ta sẽ giải được phương trình này và sẽ biết hoàn toàn cách thức lò xo chuyển động.

Bài tập

- **4.1.1.** Kiểm tra rằng $y=\frac{2}{3}e^x+e^{-2x}$ là một nghiệm của phương trình vi phân $y'+2y=2e^x$.
- **4.1.2.** Kiểm tra rằng $y=-t\cos t-t$ là một nghiệm của bài toán giá trị đầu

$$t\frac{dy}{dt} = y + t^2 \sin t, \quad y(\pi) = 0.$$

- **4.1.3.** Xét phương trình vi phân $x^2y' + xy = 1$.
 - (a) Kiểm tra rằng mọi phần tử của họ các hàm số $y = (\ln x + C)/x$ đều là nghiệm của phương trình.

- (b) Tìm một nghiệm của phương trình vi phân thỏa mãn điều kiện ban đầu y(1) = 2.
- (c) Tìm một nghiệm của phương trình vi phân thỏa mãn điều kiện ban đầu y(2) = 1.
- **4.1.4.** Xét phương trình vi phân $y' = -y^2$.
 - (a) Hãy kiểm tra rằng tất cả các phần tử của họ y = 1/(x+C) đều là nghiệm của phương trình.
 - (b) Hãy tìm một nghiệm của bài toán giá trị ban đầu

$$y' = -y^2$$
, $y(0) = 0.5$.

- **4.1.5.** Xét phương trình vi phân $y' = xy^3$.
 - (a) Hãy kiểm tra rằng tất cả phần tử của họ $y = (c x^2)^{-1/2}$ đều là nghiệm.
 - (b) Hãy vẽ đồ thị nhiều phần tử của họ các nghiệm trên cùng một mặt phẳng
 - (c) Hãy tìm một nghiệm của bài toán giá trị ban đầu

$$y' = xy^3, \quad y(0) = 2.$$

4.1.6. Một dân số được mô hình bởi phương trình vi phân theo mô hình tăng trưởng có kìm hãm

$$\frac{dP}{dt} = 1.2P \left(1 - \frac{P}{4200} \right).$$

- (a) Với những giá trị nào của P thì dân số tăng theo thời gian?
- (b) Với những giá trị nào của P thì dân số giảm theo thời gian?
- (c) Những nghiệm nào là nghiệm cân bằng (nghiệm hằng, dân số không đổi theo thời gian)?
- **4.1.7** (Mô hình của sự nguội). Người ta đưa ra một quan sát rằng tốc độ nguội của một vật tỉ lệ với sự chênh lệch nhiệt độ giữa vật đó với môi trường xung quanh (đây là một định luật của I. Newton).
 - (a) Một ấm nước vừa sôi ở nhiệt độ $100^{\circ}C$ được để nguội trong một phòng có nhiệt độ $26^{\circ}C$. Hãy viết một phương trình vi phân miêu tả nhiệt độ của ấm nước để nguội phù hợp với quan sát này.
 - (b) Hãy vẽ phác họa đồ thị nghiệm của bài toán giá trị ban đầu ở phần (a).
- **4.1.8** (Mô hình của sự học). Đặt P(t) là lượng kiến thức tích lũy được của một người học (đo theo một cách nào đó) theo thời gian t. Đạo hàm dP/dt cho tốc độ tăng của lượng kiến thức tích lũy, thể hiện tốc độ tiến bộ của người học. Có quan sát rằng kiến thức tích lũy được tăng theo thời gian, nhưng với tốc độ giảm dần, và không thể vượt quá một mức trần M nhất định.
 - (a) Hãy giải thích vì sao phương trình vi phân

$$\frac{dP}{dt} = k(M - P),$$

với k là một hằng số, là phù hợp với quan sát trên.

- (b) Hãy vẽ phác họa một nghiệm của phương trình vi phân này dựa theo mô hình trên.
- **4.1.9.** Xét phương trình vi phân 2y'' + y' y = 0.
 - (a) Với các giá trị nào của r thì hàm số $y = e^{rx}$ thỏa mãn phương trình?
 - (b) Nếu r_1 và r_2 là các giá trị của r mà đã tìm được ở phần (a), chứng tỏ rằng mọi phần tử của họ các hàm số $y = ae^{r_1x} + be^{r_2x}$ đều là nghiệm.
- **4.1.10.** Xét phương trình vi phân 4y'' = -25y.
 - (a) Với các giá trị nào của k thì hàm số $y = \cos kt$ thỏa mãn phương trình?
 - (b) Với các giá trị k đó, kiểm tra rằng mọi phần tử của họ các hàm số $y = A \sin kt + B \cos kt$ đều là nghiệm.

4.2 Giải phương trình vi phân cấp một

4.2.1 Phương trình vi phân cấp một tách biến

Một phương trình vi phân cấp một tách biến, còn được gọi là phương trình vi phân cấp một biệt số phân li, là một phương trình vi phân cấp một mà trong đó biểu thức cho dy/dx có thể được phân tích thành một hàm của x nhân với một hàm của y. Cụ thể hơn, đó là phương trình có dang

$$\frac{dy}{dx} = g(x)f(y).$$

Đối với phương trình như vậy ta có thể đưa hết hàm của x về một vế và hàm của y về vế còn lại, tức là tách biến.

Ví du 4.2.1. Giải phương trình

$$y' = y$$
.

Viết lại phương trình ở dạng

$$\frac{dy}{dx} = y.$$

Đưa về dạng y ở một bên, x ở một bên (tách biến):

$$\frac{dy}{y} = dx.$$

Lấy tích phân hai vế:

$$\int \frac{dy}{y} \, dy = \int \, dx$$

ta được

$$ln |y| = x + C,$$

tức là

$$|y| = e^{x+C} = e^C e^x.$$

Vì y là hàm khả vi liên tục nên hoặc $y = e^C e^x$ hoặc $y = -e^C e^x$. Kết hợp hai trường hợp, cùng với trường hợp y = 0, ta có nghiệm tổng quát là

$$y = De^x$$
,

với D là một hằng số thực.

Cách giải chung của phương trình tách biến là như sau:

Cách giải phương trình tách biến

$$\frac{dy}{dx} = g(x)f(y)$$

Bước 1: Viết lại dưới dạng vi phân

$$h(y)dy = g(x)dx$$

ở đó tất cả y đều nằm về một vế của phương trình và tất cả x nằm về vế kia (tách biến). Ở đây $h=\frac{1}{f}.$

Bước 2: Lấy nguyên hàm hai vế:

$$\int h(y)dy = \int g(x)dx \tag{4.2.1}$$

Trong một số trường hợp ta có thể tính được tích phân rồi giải được phương trình (4.2.1) để được công thức tường minh y theo x.

Có thể giải thích cách giải này như sau. Ta viết

$$y'(x) = \frac{g(x)}{h(y)}$$

hay

$$h(y)y'(x) = g(x)$$

rồi lấy nguyên hàm cả hai vế thì được

$$\int h(y)y'(x) \ dx = \int g(x) \ dx.$$

 \mathring{O} vế trái, đổi biến y = y(x) ta được

$$\int h(y) \ dy = \int g(x) \ dx.$$

Ví dụ 4.2.2. Giải phương trình tăng trưởng dân số (4.1.1)

$$P' = kP$$
.

Bước 1: Viết

$$\frac{dP}{dt} = kP.$$

Đưa về dạng P ở một bên, t ở một bên (tách biến):

$$\frac{dP}{P} = kdt.$$

Bước 2: Lấy tích phân hai vế:

$$\int \frac{dP}{P} = \int k \, dt$$

ta được

$$ln |P| = kt + C,$$

tức là

$$|P| = e^{kt+C} = e^C e^{kt}.$$

Vì P là hàm khả vi liên tục nên hoặc $P=e^Ce^{kt}$ hoặc $P=-e^Ce^{kt}$. Kết hợp hai trường hợp ta được nghiệm

$$P = De^{kt}, \quad D \in \mathbb{R}.$$

Chú ý rằng P(0) = D. Nếu đặt $P_0 = P(0)$ là giá trị ban đầu của dân số thì ta viết được nghiệm là

$$P(t) = P_0 e^{kt}.$$

Ví dụ 4.2.3. Giải phương trình tăng trưởng dân số có kìm hãm (mô hình hậu cần) (4.1.2)

$$P' = r \left(1 - \frac{P}{K} \right) P.$$

Ta nhận thấy đây là một phương trình tách biến. Ta viết nó dưới dạng P ở một vế còn t ở vế kia:

$$\frac{dP}{\left(1 - \frac{P}{K}\right)P} = rdt.$$

Lấy nguyên hàm hai vế (giả sử P < K):

$$\int \frac{dP}{\left(1 - \frac{P}{K}\right)P} = \int r \, dt.$$

Suy ra

$$\int \left(\frac{1}{K-P} + \frac{1}{P}\right) dP = rt + C,$$

với $C \in \mathbb{R}$. Từ đó

$$-\ln(K - P) + \ln P = rt + C,$$

hay

$$\ln \frac{P}{K - P} = rt + C,$$

vậy

$$\frac{P}{K-P} = e^{rt+C}.$$

Giải phương trình này tìm P, ta được

$$P(1 + e^{rt+C}) = Ke^{rt+C},$$

vậy nghiệm là

$$P = \frac{Ke^{rt+C}}{1+e^{rt+C}} = \frac{K}{1+e^{-rt-C}},$$

với $C \in \mathbb{R}$.

4.2.2 Phương trình vi phân cấp một đẳng cấp

Một *phương trình vi phân cấp một đẳng cấp* là một phương trình có dạng

$$y' = F\left(\frac{y}{x}\right),\,$$

tức là

$$y'(x) = F\left(\frac{y(x)}{x}\right),$$

với F là một hàm theo biến $u = \frac{y}{x}$.

Ví dụ 4.2.4. Các phương trình sau có dạng đẳng cấp:

(a) $y'(x) = \frac{x+y}{x-y}$, vì ta có thể viết lại như sau, với $u = \frac{y}{x}$:

$$y'(x) = \frac{1 + y/x}{1 - y/x} = \frac{1 + u}{1 - u}.$$

(b) $y'(x) = \frac{x^2 + xy + y^2}{x^2 + y^2}$, vì ta có thể viết lại như sau, với $u = \frac{y}{x}$:

$$y'(x) = \frac{1 + y/x + (y/x)^2}{1 + (y/x)^2} = \frac{1 + u + u^2}{1 + u^2}.$$

Ví dụ 4.2.5. Giải phương trình sau

$$y'(x) = \frac{y^2 + 2xy}{x^2}.$$

Ta đưa về dạng đẳng cấp như sau:

$$y'(x) = \left(\frac{y}{x}\right)^2 + 2\frac{y}{x} = u^2 + 2u$$

với $u(x) = \frac{y(x)}{x}$.

Do y(x) = u(x)x, ta tính được y'(x) = u'(x)x + u(x), thay vào phương trình trên ta được

$$u'(x)x + u(x) = u^{2}(x) + 2u(x)$$

hay

$$u'(x)x = u^2(x) + u(x).$$

Ta giải phương trình tách biến như ở mục trước

$$\frac{u'}{u^2+u} = \frac{1}{x}.$$

Lấy nguyên hàm hai vế:

$$\int \frac{1}{u^2 + u} du = \int \frac{1}{x} dx.$$

Tính tích phân:

$$\int \frac{1}{u^2 + u} \, du = \int \frac{1}{u(u+1)} \, du = \int \left(\frac{1}{u} - \frac{1}{u+1}\right) \, du = \ln u - \ln(u+1) = D + \ln x.$$

Viết $D = \ln C$, ta thu được

$$\frac{u}{u+1} = Dx.$$

Thay hàm u bởi $\frac{y}{x}$, ta được

$$\frac{y}{y+x} = Dx.$$

Giải tìm y theo x, ta được một nghiệm là

$$y(x) = \frac{Dx^2}{1 - Dx}, \quad D \in \mathbb{R}.$$

Tổng kết lại, để giải phương trình đẳng cấp ta làm như sau:

Cách giải phương trình đẳng cấp

$$y' = F\left(\frac{y}{x}\right)$$

Bước 1: Đặt $u=\frac{y}{x}$ hay y(x)=u(x)x, do công thức đạo hàm của hàm tích, ta có y'(x)=u'(x)x+u(x).

Bước 2: Thay vào phương trình ban đầu ta thu được một phương trình vi phân cấp một u'x + u = F(u) tách biến được theo x và u.

Bước 3: Giải phương trình ở Bước 2 theo cách giải phương trình tách biến, ta tìm u, sau đó thay $u = \frac{y}{x}$ để tìm y theo x.

4.2.3 Phương trình vi phân cấp một tuyến tính

Một *phương trình vi phân cấp một tuyến tính* là một phương trình có dạng

$$\frac{dy}{dx} + P(x)y = Q(x).$$

Gọi là tuyến tính là vì bậc cao nhất của y là 1.

Ví dụ 4.2.6. Giải phương trình xy' + y = 2x.

Chú ý rằng phương trình vi phân này không tách được và cũng không đẳng cấp. Dùng công thức đạo hàm của tích:

$$xy' + y = xy' + x'y = (xy)',$$

nhờ đó chúng ta có thể viết lại phương trình là

$$(xy)' = 2x.$$

Lấy tích phân hai vế phương trình này chúng ta nhận được

$$xy = x^2 + C$$

hay

$$y = x + \frac{C}{x}.$$

Ví dụ trên chỉ ra rằng mỗi phương trình vi phân cấp một tuyến tính có thể được giải một cách tương tự bằng cách nhân hai vế phương trình bởi một hàm thích hợp.

Cách giải phương trình tuyến tính

$$\frac{dy}{dx} + P(x)y = Q(x)$$

Bước 1: Tính thừa số tích phân

$$\mu(x) = e^{\int P(x)dx}$$
.

Ta có $\mu'(x) = \mu(x)P(x)$.

Bước 2: Nhân hàm $\mu(x)$ vào hai vế của phương trình vi phân:

$$\mu(x)y'(x) + \mu(x)P(x)y(x) = \mu(x)Q(x).$$

Bước 3: Do công thức đạo hàm của tích phương trình được viết lại là

$$(\mu(x)y(x))' = \mu(x)Q(x).$$

Bước 4: Lấy nguyên hàm:

$$y(x) = \frac{1}{\mu(x)} \int \mu(x)Q(x)dx.$$

Ví dụ 4.2.7. Giải phương trình vi phân $\frac{dy}{dx} + 3x^2y = 6x^2$.

Phương trình này là tuyến tính với $P(x) = 3x^2$ và $Q(x) = 6x^2$. Thừa số tích phân là

$$\mu(x) = e^{\int 3x^2 dx} = e^{x^3}.$$

 $\r O$ đây ta chỉ cần một nguyên hàm nào đó mà thôi chứ không cần cả một họ nguyên hàm. Nhân hai vế của phương trình với e^{x^3} chúng ta được

$$\begin{array}{rcl} e^{x^3} \frac{dy}{dx} + 3x^2 e^{x^3} y & = & 6x^2 e^{x^3} \\ & \frac{d}{dx} (e^{x^3} y) & = & 6x^2 e^{x^3} \\ & e^{x^3} y & = & \int 6x^2 e^{x^3} dx = 2e^{x^3} + C \\ & y & = & 2 + Ce^{-x^3}. \end{array}$$

Ví dụ 4.2.8. Tìm nghiệm của bài toán giá trị đầu

$$x^2y' + xy = 1$$
, $x > 0$, $y(1) = 2$.

Đầu tiên chúng ta phải chia hai vế cho hệ số của y' để đưa phương trình vi phân về dạng chuẩn

$$y' + \frac{1}{x}y = \frac{1}{x^2}, \quad x > 0.$$

Thừa số tích phân là

$$\mu(x) = e^{\int \frac{1}{x} dx} = e^{\ln x} = x.$$

Nhân vế của phương trình được cho với x

$$xy' + y = \frac{1}{x}$$

tức là

$$(xy)' = \frac{1}{x}.$$

Từ đó

$$xy = \int \frac{1}{x} dx = \ln x + C$$

và do đó

$$y = \frac{\ln x + C}{x}.$$

Vì y(1) = 2 ta có

$$2 = \frac{\ln 1 + C}{1} = C.$$

Vậy nghiệm của bài toán giá trị đầu là

$$y = \frac{\ln x + 2}{x}.$$

Ví du 4.2.9. Giải phương trình tăng trưởng dân số (4.1.1)

$$P' = kP$$
.

Ta đã giải phương trình này theo phương pháp tách biến ở Ví dụ 4.2.2. Bây giờ viết lại phương trình ở dạng P'-kP=0 ta lại thấy đây cũng là một phương trình tuyến tính. Nhân hai vế với $e^{\int -k\,dt}=e^{-kt}$ ta được

$$e^{-kt}P' - ke^{-kt}P = 0,$$

hay

$$(e^{-kt}P)' = 0.$$

Lấy nguyên hàm ta được $e^{-kt}P = C$, hay

$$P = Ce^{kt}$$
.

Kết quả này trùng với kết quả thu được ở Ví dụ 4.2.2.

Ví dụ 4.2.10 (Ứng dụng vào mạch điện). Một nguồn điện tạo ra một điện áp E(t) vôn (volt) và một cường độ dòng điện tức thời I(t) ampe (ampere) tại thời điểm t trong một mạch điện. Mạch điện còn chứa một điện trở với trở kháng R ôm (Ohm) và một cuộn cảm với cảm kháng bằng L henri. Xem Hình 4.2.1.

Hình 4.2.1: Mạch điện.

Theo định luật Ohm độ giảm áp do điện trở gây ra là RI. Độ giảm áp do cuộn cảm gây ra là $L(\frac{dI}{dt})$. Một định luật của Kirchhoff nói rằng tổng độ giảm áp chính bằng điện áp tại nguồn E(t). Do đó chúng ta có

$$L\frac{dI}{dt} + RI = E(t).$$

Nghiệm là cường độ dòng điện tức thời I(t) tại thời điểm t.

Với L=4, R=12 và E(t)=60 (đây là trường hợp điện thế không đổi được cung cấp bởi pin chẳng hạn), phương trình trở thành

$$4\frac{dI}{dt} + 12I = 60,$$

hay

$$\frac{dI}{dt} = 15 - 3I.$$

Ta nhận ra rằng phương trình này là tách biến được, và ta giải nó như sau:

$$\int \frac{dI}{15 - 3I} = \int dt$$

$$\frac{-1}{3} \ln|15 - 3I| = t + C$$

$$|15 - 3I| = e^{-3(t+C)}$$

$$15 - 3I = \pm e^{-3C}e^{-3t} = Ae^{-3t}.$$

Vậy nghiệm là

$$I(t) = 5 - \frac{1}{3}Ae^{-3t}.$$

Giả sử thay vì dùng pin chúng ta dùng máy phát điện tạo ra một điện áp thay đổi $E(t)=60\sin 30t$ vôn. Phương trình vi phân trở thành

$$4\frac{dI}{dt} + 12I = 60\sin 30t$$

hay

$$\frac{dI}{dt} + 3I = 15\sin 30t.$$

Đây là một phương trình cấp một tuyến tính. Thừa số tích phân là $e^{\int 3\,dt}=e^{3t}$, dẫn đến

$$e^{3t}\frac{dI}{dt} + 3e^{3t}I = \frac{d}{dt}(e^{3t}I) = 15e^{3t}\sin 30t.$$

Dùng bảng tích phân hoặc dùng máy tính ta có thể tính được tích phân:

$$e^{3t}I = \int 15e^{3t}\sin 30t \, dt = 15\frac{e^{3t}}{909}(3\sin 30t - 30\cos 30t) + C.$$

Vậy nghiệm là

$$I(t) = \frac{5}{101}(\sin 30t - 10\cos 30t) + Ce^{-3t}.$$

Bài tập

Phương trình tách biến

4.2.1. Giải các phương trình vi phân.

(a)
$$\frac{dy}{dx} = xy^2$$
.

(b)
$$\frac{dy}{dx} = xe^{-y}$$
.

(c)
$$xy^2y' = x + 1$$
.

(d)
$$(y^2 + xy^2)y' = 1$$
.

(e)
$$(y + \sin y)y' = x + x^3$$
.

(f)
$$\frac{dv}{ds} = \frac{s+1}{sv+s}$$
.

(g)
$$\frac{dp}{dt} = t^2p - p + t^2 - 1$$
.

(h)
$$\frac{dz}{dt} + e^{t+z} = 0.$$

(i)
$$(x^2+4)\frac{dy}{dx} = xy$$
.

(j)
$$y' = y^2 x^3$$
.

(k)
$$\frac{dx}{dt} = x^2 - 2x + 2$$
.

4.2.2. Tìm nghiệm của phương trình vi phân thỏa điều kiện đầu cho trước.

(a)
$$\frac{dy}{dx} = \frac{x}{y}$$
, $y(0) = -3$.

(b)
$$\frac{dy}{dx} = \frac{\ln x}{xy}, \quad y(1) = 2.$$

(c)
$$\frac{dP}{dt} = \sqrt{Pt}$$
, $P(1) = 2$.

(d)
$$\frac{dL}{dt} = kL^2 \ln t$$
, $L(1) = -1$.

Phương trình đẳng cấp

4.2.3. Giải các phương trình vi phân.

(a)
$$y' = \frac{y+x}{x}$$
.

(b)
$$y' = \frac{y - x}{x}$$
.

(c)
$$y' = \frac{2y + x}{x}$$
.

(d)
$$y'(x) = \frac{x - y}{x + y}$$
.

(e)
$$\frac{dy}{dx} = \frac{4x - 3y}{x - y}$$

(f)
$$\begin{cases} \frac{dy}{dx} = \frac{y - 6x}{2x - y} \\ y(0) = 1. \end{cases}$$

(g)
$$y' = \frac{x^2 + y^2}{xy}$$
, $y(1) = 2$.

(h)
$$(x^2 + y^2)\frac{dy}{dx} + 2x(y + 2x) = 0.$$

(i)
$$\begin{cases} x^2y'(x) = y^2 - xy + x^2 \\ y(1) = 2. \end{cases}$$

$$(j) \quad y^2 = (xy - x^2) \frac{dy}{dx}.$$

(k)
$$\begin{cases} x \frac{dx}{dt} = \frac{x^2 + t^2}{t} \\ x(2) = 1. \end{cases}$$

Phương trình tuyến tính

4.2.4. Giải phương trình vi phân

(a)
$$y' + y = 1$$
.

(b)
$$y' - y = e^x$$
.

(c)
$$y' = x - y$$
.

(d)
$$4x^3y + x^4y' = \sin^3 x$$
.

(e)
$$xy' + y = \sqrt{x}$$
.

(f)
$$y' + y = \sin(e^x)$$
.

(g)
$$x\frac{dy}{dx} - 4y = x^4 e^x.$$

(h)
$$(1+t)\frac{du}{dt} + u = 1+t, \quad t > 0.$$

(i)
$$t \ln t \frac{dr}{dt} + r = te^t$$
.

(j)
$$\frac{dz}{dx} = xz - x$$
.

(k)
$$z' - \frac{2}{r}z = \frac{2}{3}x^4$$
.

4.2.5. Giải bài toán giá tri đầu

(a)
$$y' + 3xy = 4x$$
.

(b)
$$x^2y' + 2xy = \ln x$$
, $y(1) = 2$

(c)
$$t\frac{du}{dt} = t^2 + 3u$$
, $t > 0$, $u(2) = 4$

(d)
$$2xy' + y = 6x$$
, $x > 0$, $y(4) = 20$

(e)
$$(x^2+1)\frac{dy}{dx} + 3x(y-1) = 0$$
, $y(0) = 2$

(f)
$$y' + y\cos x = e^{-\sin x}$$

Ứng dụng và các bài toán khác

- **4.2.6.** Một quần thể vi khuẩn có tăng trưởng số lượng tỉ lệ với số lượng hiện có. Sau 1 giờ có 1000 cá thể vi khuẩn, sau 4 giờ có 3000 cá thể. Hãy tìm số cá thể ở một thời điểm bất kì và số cá thể ở thời điểm ban đầu.
- **4.2.7.** Lượng muỗi tr
ong môi trường đang tăng với tốc độ theo thời gian (tính bằng ngày) tỉ lệ
 với số lượng hiện có, và gấp đôi sau mỗi tuần. Giả sử số lượng muỗi ban đầu là 100.000 con, hãy
 tìm công thức của số lượng muỗi tại thời điểm bất kì.
- **4.2.8** (Mô hình lãi nhập vốn liên tục). Một tài khoản có lượng tiền ban đầu là P (gốc). Lãi suất theo thời gian là r/năm, thường được viết ở dạng phần trăm/năm. Chẳng hạn r=0.05=5% có nghĩa là sau 1 năm thì cứ 100 đơn vị tiền tài khoản sẽ nhận được một khoản lãi là 5 đơn vị tiền. Nếu lãi được nhập vào vốn, thì r chính là tốc độ tăng tương đối của lượng tiền trong tài khoản. Trong mô hình lãi nhập vốn liên tục thì lượng tiền A ở thời điểm t (tính bằng năm) thỏa

$$\frac{A'(t)}{A(t)} = r.$$

(a) Chứng tỏ lượng tiền trong tài khoản được cho bởi

$$A(t) = Pe^{rt}$$
.

- (b) Chứng tỏ thời gian cần để lượng tiền trong tài khoản tăng gấp đôi không phụ thuộc vào khoản đầu tư ban đầu.
- (c) Để lượng tiền tăng gấp đôi mỗi 10 năm thì lãi suất phải bằng bao nhiêu?
- **4.2.9** (**Phân rã của Carbon** C^{14}). Carbon C^{14} là một chất phóng xạ. Theo hóa học số lượng nguyên tử bị phân rã trong một đơn vị thời gian trên một đơn vị số lượng nguyên tử là không đổi. Như vậy nếu gọi C là số lượng nguyên tử ở thời điểm t thì

$$\frac{C'(t)}{C(t)} = k$$

trong đó k là một số thực không thay đổi theo t.

(a) Chứng tỏ

$$C(t) = C_0 e^{kt}$$

trong đó $C_0 = C(0)$.

- (b) Người ta biết C^{14} phân rã theo qui luật số lượng giảm đi phân nửa sau 5730 năm. Từ đó hãy kiểm rằng k = -0,00012.
- **4.2.10** (Định tuổi bằng Carbon). Carbon C^{14} được sinh ra trong khí quyển Quả Đất do tác động của tia vũ trụ. Tỉ lệ giữa C^{14} (phóng xạ) và C^{12} (không phóng xạ) trong môi trường có thể coi là không thay đổi theo thời gian. Các cơ thể sống trao đổi chất với môi trường nên tỉ lệ giữa C^{14} và C^{12} trong cơ thể bằng với tỉ lệ trong môi trường. Khi một cơ thể chết đi, nó không trao đổi chất nữa, lượng C^{12} không đổi trong khi lượng C^{14} giảm đi theo thời gian do phóng xạ. Bằng cách đo tỉ lệ C^{14} còn trong cơ thể người ta có thể suy ra thời điểm mà cơ thể chết. Đây là nguyên lí của phương pháp định tuổi bằng Carbon. Về mặt toán học, nếu biết giá trị của $\frac{C(t)}{C(0)}$ ta có thể tính được t.

Năm 1991 người ta phát hiện được một xác người đóng băng trên dãy núi Alps ở Châu Âu, và đo được lượng C^{14} trong xác ướp này bằng 53% lượng C^{14} có trong một cơ thể sống. Hãy tính xem xác ướp này bao nhiêu tuổi?

- **4.2.11.** Năm 1950 người ta phát hiện ở gần Biển Chết những phần của những cuốn sách viết trên giấy và da có nội dung liên quan tới kinh của người Do Thái cổ. Các nhà khảo cổ xác định được hàm lượng Carbon-14 trong các cuốn sách chỉ còn là 78%. Hãy tính tuổi của các cuốn sách này.
- **4.2.12.** Người ta tìm thấy những bánh xe bằng gỗ của các chiến xa do ngựa kéo ở Kazakhstan. Hàm lượng Carbon-14 trong gỗ chỉ còn bằng 62.5% so với hàm lượng trong cây sống. Hãy tính tuổi của các bánh xe này.

- **4.2.13.** Dân số loài người là 5,28 tỉ người vào năm 1990 và 6,07 tỉ người vào năm 2000. Giả thiết rằng do các hạn chế về tài nguyên, Quả Đất không thể đủ chỗ cho quá 10 tỉ người. Hãy dùng mô hình tăng trưởng dân số có kìm hãm để dự đoán dân số thế giới vào năm 2025.
- **4.2.14.** Giải phương trình của sự học ở Bài tập 4.1.8

$$P' = k(M - P).$$

Hãy vẽ đường cong nghiệm.

- 4.2.15. Giải phương trình của sự nguội ở Bài tập 4.1.7. Hãy vẽ đường cong nghiệm.
- **4.2.16.** Một vật nóng được để nguội trong môi trường có nhiệt độ là 30° . Sau 10 phút ta đo được nhiệt độ của vật là 50° và sau 20 phút thì nhiệt độ của vật là 40° . Dùng mô hình phương trình vi phân của sự nguội, hãy tính nhiệt độ ban đầu của vật và sau bao lâu thì nhiệt độ của vật còn là 35° ?
- **4.2.17.** Trong mạch điện được cho ở Hình 4.2.1 tìm cường độ dòng điện tức thời I(t) và vẽ đồ thị của nó (có thể dùng máy tính) trong các trường hợp:
 - (a) Một pin cung cấp một điện áp không đổi 40 vôn, cảm kháng là 2 henri, trở kháng là 10 ôm và I(0)=0.
 - (b) Một máy phát điện cung cấp một điện áp $E(t)=40\sin 60t$ vôn, cảm kháng là 1 henri, trở kháng là 20 ôm và I(0)=1 ampe.
- **4.2.18.** Một *phương trình vi phân Bernoulli* là phương trình có dạng

$$\frac{dy}{dx} + P(x)y = Q(x)y^n.$$

Nếu n=0 hoặc n=1 thì phương trình Bernoulli là tuyến tính. Với n nhận những giá trị khác, phép thế $u=y^{1-n}$ biến đổi phương trình Bernoulli thành phương trình tuyến tính

$$\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x).$$

Dùng phương pháp trên để giải các phương trình vi phân sau:

(a)
$$xy' + y = -xy^2$$
.

(b)
$$y' + \frac{2}{x}y = \frac{y^3}{x^2}$$
.

4.2.19. Một phương trình vi phân

$$\frac{dy}{dx} = \frac{-P(x,y)}{Q(x,y)}$$

có thể được viết lại là

$$Pdx + Qdy = 0,$$

và được gọi là một *phương trình vi phân toàn phần*, hay một phương trình vi phân khớp (exact), nếu

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

Ta tìm một hàm f(x, y) sao cho

$$\begin{cases} \frac{\partial f}{\partial x} = P\\ \frac{\partial f}{\partial y} = Q. \end{cases}$$

khi đó phương trình ẩn f(x,y)=C, với $C\in\mathbb{R}$ là một hằng số, xác định một nghiệm của phương trình vi phân.

Ta có thể nhận thấy phương pháp này chính là phương pháp tìm hàm thế của một trường phẳng thỏa điều kiện cần của trường bảo toàn mà ta đã khảo sát ở Chương Giải tích vectơ, Mục 3.2.1, xem Ví dụ 3.2.6.

Dùng phương pháp trên để giải các phương trình vi phân sau:

(a)
$$y' = \frac{-2xy}{1+x^2}$$
.

(c)
$$y' = \frac{2 + ye^{xy}}{2y - xe^{xy}}$$

(b)
$$y' = \frac{-y^2}{2xy+1}$$
.

(d)
$$y' = -\frac{x^2 + y + 1}{x + y + y^3}$$

4.2.20. Một *phương trình tích phân* là một phương trình chứa một ẩn hàm y(x) và một tích phân chứa y(x). Giải phương trình tích phân sau. (*Hướng dẫn*: Lấy đạo hàm và sử dụng một điều kiện đầu thu được từ phương trình tích phân.)

(a)
$$y(x) = 2 + \int_{2}^{x} [t - ty(t)] dt$$
.

(b)
$$y(x) = 4 + \int_0^x 2t \sqrt{y(t)} dt$$
.

4.3 Giải phương trình vi phân cấp hai

4.3.1 Phương trình vi phân cấp hai tuyến tính thuần nhất với hệ số hằng

Một *phương trình vi phân cấp hai tuyến tính thuần nhất với hệ số hằng* là một phương trình có dạng

$$ay''(x) + by'(x) + cy(x) = 0$$

với $a, b, c \in \mathbb{R}$ và $a \neq 0$.

Ta ứng phương trình vi phân trên với một phương trình với ẩn là số thực hoặc phức, gọi là **phương trình đặc trưng** cho phương trình vi phân trên, là

$$ar^2 + br + c = 0.$$

Cách giải phương trình cấp hai tuyến tính thuần nhất với hệ số hằng

$$ay''(x) + by'(x) + cy(x) = 0$$

Bước 1: Giải phương trình đặc trưng $ar^2 + br + c = 0$.

Bước 2: Biện luận dựa vào nghiệm của phương trình đặc trưng:

• nếu phương trình đặc trưng có hai nghiệm thực khác nhau r_1, r_2 thì phương trình vi phân có nghiệm tổng quát là

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x},$$

• nếu phương trình đặc trưng có nghiệm thực kép là r_0 thì phương trình vi phân có nghiệm tổng quát là

$$y(x) = C_1 e^{r_0 x} + C_2 x e^{r_0 x},$$

• nếu phương trình đặc trưng có nghiệm phức là $\alpha \pm i\beta$, thì phương trình vi phân có nghiệm tổng quát là

$$y(x) = e^{\alpha x} [C_1 \cos \beta x + C_2 \sin \beta x],$$

với $C_1, C_2 \in \mathbb{R}$.

 $\mathring{\text{O}}$ đây ta gọi $nghiệm\ tổng\ quát$ là nghiệm có thể thỏa điều kiện đầu cho trước bất kì.

Chứng minh. Ta xét trường hợp thứ nhất: phương trình đặc trưng có hai nghiệm thực khác nhau r_1, r_2 . Với

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

ta tính được

$$y'(x) = C_1 r_1 e^{r_1 x} + C_2 r_2 e^{r_2 x}$$

và

$$y''(x) = C_1 r_1^2 e^{r_1 x} + C_2 r_2^2 e^{r_2 x}.$$

Từ đó

$$ay''(x) + by'(x) + cy(x) = C_1 e^{r_1 x} (ar_1^2 + br_1 + cr_1) + C_2 e^{r_2 x} (ar_2^2 + br_2 + cr_2) = 0.$$

Trường hợp thứ hai tương tự, với

$$y(x) = C_1 e^{r_0 x} + C_2 x e^{r_0 x}$$

ta tính được

$$y'(x) = C_1 r_0 e^{r_0 x} + C_2 e^{r_0 x} + C_2 x r_0 e^{r_0 x}$$

và

$$y''(x) = C_1 r_0^2 e^{r_0 x} + C_2 r_0 e^{r_0 x} + C_2 r_0 e^{r_0 x} + C_2 x r_0^2 e^{r_0 x},$$

từ đó

$$ay''(x) + by'(x) + cy(x) = C_1 e^{r_0 x} (ar_0^2 + br_0 + cr_0) + C_2 x e^{r_0 x} (ar_0^2 + br_0 + cr_0) + C_2 e^{r_0 x} (2ar_0 + b) = 0,$$

chú ý rằng $r_0 = -b/2a$.

Trường hợp thứ ba cần tính toán nhiều hơn một chút. Thế nghiệm $\alpha+i\beta$ vào phương trình đặc trưng ta được $a(\alpha^2-\beta^2)+b\alpha+c=0$ và $2a\alpha\beta+b\beta=0$. Ta cũng tính trực tiếp được

$$ay''(x) + by'(x) + cy(x) = C_1 e^{\alpha x} \left[(\cos \beta x) \left(a\alpha^2 - a\beta^2 + b\alpha + c \right) - (\sin \beta x) \left(2a\alpha\beta + b\beta \right) \right] + C_2 e^{\alpha x} \left[(\sin \beta x) \left(a\alpha^2 - a\beta^2 + b\alpha + c \right) + (\cos \beta x) \left(2a\alpha\beta + b\beta \right) \right] = 0$$

Ví dụ 4.3.1. Giải phương trình vi phân cấp hai

$$y'' - 2y' - 8y = 0.$$

Phương trình đặc trưng $r^2-2r-8=0$ có hai nghiệm thực phân biệt $r_1=4,\,r_2=-2.$ Do đó nghiệm tổng quát của phương trình này là

$$y(x) = C_1 e^{4x} + C_2 e^{-2x}$$

với $C_1, C_2 \in \mathbb{R}$.

Ví dụ 4.3.2. Giải phương trình vi phân cấp hai

$$y'' - 4y' + 4y = 0.$$

Phương trình đặc trưng $r^2 - 4r + 4 = 0$ có một nghiệm thực kép $r_0 = 2$. Do đó nghiệm tổng quát của phương trình này là

$$y(x) = C_1 e^{2x} + C_2 x e^{2x}.$$

với $C_1, C_2 \in \mathbb{R}$.

Ví dụ 4.3.3. Giải phương trình vi phân cấp hai

$$y'' + 2y' + 10y = 0.$$

Phương trình đặc trung $r^2+2r+10=0$ có hai nghiệm phức là $-1\pm 3i$. Do đó nghiệm tổng quát của phương trình này là

$$y(x) = e^{-x} [C_1 \cos 3x + C_2 \sin 3x]$$

với $C_1, C_2 \in \mathbb{R}$.

Ví dụ 4.3.4. Giải bài toán giá trị đầu sau

$$\begin{cases} y''(x) + y'(x) = 0\\ y(0) = 1\\ y'(0) = -\frac{1}{2}. \end{cases}$$

Phương trình đặc trưng $r^2+r=0$ có hai nghiệm thực phân biệt $r_1=-1,\,r_2=0.$ Do đó nghiệm tổng quát của phương trình này là

$$y(x) = C_1 + C_2 e^{-x},$$

với $C_1, C_2 \in \mathbb{R}$. Do y(0) = 1, ta thu được $C_1 + C_2 = 1$. Ngoài ra, ta tính được đạo hàm của y như sau

$$y'(x) = -C_2 e^{-x}$$
.

Từ điều kiện $y'(0)=-\frac{1}{2}$, ta tìm được $C_2=\frac{1}{2}$. Do đó, $C_1=\frac{1}{2}$. Vậy, nghiệm của bài toán là

$$y(x) = \frac{1}{2} + \frac{1}{2}e^{-x}.$$

Ví dụ 4.3.5. Ta giải phương trình vi phân chuyển động của lò xo (4.1.3):

$$mx'' = -kx$$
.

Đây là một phương trình vi phân cấp hai tuyến tính thuần nhất với hệ số hằng. Giải phương trình đặc trưng

$$mr^2 = -k$$

ta được hai nghiệm phức $r=\pm i\sqrt{\frac{k}{m}}$. Vậy phương trình có nghiệm tổng quát là

$$x(t) = C_1 \cos \sqrt{\frac{k}{m}} x + C_2 \sin \sqrt{\frac{k}{m}} x,$$

với $C_1, C_2 \in \mathbb{R}$. Nếu C_1 và C_2 không đồng thời bằng 0, ta viết được

$$x(t) = \sqrt{C_1^2 + C_2^2} \left(\frac{C_1}{\sqrt{C_1^2 + C_2^2}} \cos \sqrt{\frac{k}{m}} x + \frac{C_2}{\sqrt{C_1^2 + C_2^2}} \sin \sqrt{\frac{k}{m}} x \right).$$

Đặt $\sin\beta=\frac{C_1}{\sqrt{C_1^2+C_2^2}},\,\cos\beta=\frac{C_2}{\sqrt{C_1^2+C_2^2}}$ thì ta viết được

$$x(t) = \sqrt{C_1^2 + C_2^2} \left(\sin\beta\cos\sqrt{\frac{k}{m}}x + \cos\beta\sin\sqrt{\frac{k}{m}}x\right) = \sqrt{C_1^2 + C_2^2}\sin\left(\beta + \sqrt{\frac{k}{m}}x\right).$$

Đây là một hàm thể hiện một dao động điều hòa có đồ thị hình sin, đúng như hiện tượng vất lí.

4.3.2 Phương trình vi phân cấp hai tuyến tính không thuần nhất với hệ số hằng

Một *phương trình vi phân cấp hai tuyến tính không thuần nhất với hệ số hằng* là một phương trình có dang

$$ay''(x) + by'(x) + cy(x) = f(x)$$

với $a, b, c \in \mathbb{R}$ và $a \neq 0$, f là một hàm liên tục trên một khoảng nào đó.

Ta giới thiệu một phương pháp được gọi là **phương pháp hệ số bất định** giúp tìm được nghiệm trong một số trường hợp. Trong các trường hợp này ta cố gắng tìm ra một nghiệm của phương trình, gọi là **nghiệm riêng** hay **nghiệm đặc biệt**. Gọi như vậy là vì nghiệm này chỉ thỏa một điều kiện đầu nhất định, trái với nghiệm tổng quát mà ta muốn tìm có thể thỏa điều kiện đầu cho trước bất kì.

Giả sử y là nghiệm tổng quát và y_r là một nghiệm riêng. Ta có đồng thời

$$ay'' + by' + cy = f$$

và

$$ay_r'' + by_r' + cy_r = f.$$

Trừ hai phương trình ta được

$$a(y - y_r)'' + b(y - y_r)' + c(y - y_r) = 0.$$

Vậy hiệu $y - y_r$ của nghiệm tổng quát với nghiệm riêng của phương trình không thuần nhất là một nghiệm của phương trình thuần nhất tương ứng

$$ay'' + by' + cy = 0.$$

Cách giải phương trình thuần nhất này ta đã thảo luận trong mục trước. Đặt y_0 là nghiệm tổng quát của phương trình thuần nhất tương ứng này, ta được nghiệm tổng quát của phương trình không thuần nhất là

$$y = y_0 + y_r$$
.

Như vậy bước chính để giải là tìm một nghiệm riêng của phương trình không thuần nhất.

Cách giải phương trình vi phân cấp hai tuyến tính không thuần nhất với hệ số hằng

$$ay''(x) + by'(x) + cy(x) = f(x)$$

Bước 1: Giải phương trình thuần nhất

$$ay''(x) + by'(x) + cy(x) = 0$$

để được nghiệm tổng quát y_0 của phương trình này.

Bước 2: Tìm một nghiệm riêng y_r của phương trình không thuần nhất. Nếu hàm f là một tổng, tức là $f = f_1 + \cdots + f_n$, thì ta tìm nghiệm riêng tương ứng $y_{r,1}, \ldots, y_{r,n}$ cho từng hàm thành phần f_1, \ldots, f_n , khi đó $y_r = y_{r,1} + \cdots + y_{r,n}$.

Bước 3: Bây giờ nếu hàm f chỉ có một thành phần thì:

- (a) Nếu f là một đa thức bậc n thì y_r là một đa thức bậc n, có dạng $y_r(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, với các a_i là hằng số.
- (b) Nếu $f(x) = Ce^{kx}$ với C và k là hằng số, thì $y_r(x) = ae^{kx}$, với a là hằng số.
- (c) Nếu $f(x) = C \sin \alpha x$ hoặc $f(x) = C \cos \alpha x$ với C là hằng số, thì $y_r(x) = a \sin \alpha x + b \cos \alpha x$, với a và b là hằng số.

Bước 4: So sánh y_r với y_0 . Nếu có thành phần trong y_r xuất hiện trong y_0 thì phải chỉnh y_r bằng cách nhân thêm x hoặc x^2 vào y_r để y_r và y_0 không còn thành phần chung.

Bước 5: Thế y_r vào phương trình không thuần nhất tương ứng để giải tìm các hệ số chưa biết.

Bước 6: Nghiệm tổng quát của phương trình không thuần nhất là

$$y = y_0 + y_r.$$

Phương pháp này còn được phát triển hơn nữa, như khi f là một tích, có ở các tài liệu nâng cao hơn như [Long, Boyce09]. Phương pháp này khá phức tạp, để dễ hiểu hơn ta hãy xem xét các ví dụ sau.

Ví dụ 4.3.6. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y = x^2.$$

Giải phương trình thuần nhất tương ứng

$$y'' - y = 0$$

ta có nghiệm $y_0(x) = C_1 e^x + C_2 e^{-x}$.

Vế phải của phương trình vi phân x^2 là một đa thức bậc 2, vậy ta tìm nghiệm y_r có dạng

$$y_r(x) = ax^2 + bx + c,$$

và ta thấy không có thành phần nào của y_r xuất hiện trong y_0 .

Ta có

$$\begin{cases} y'_r(x) = 2ax + b \\ y''_r(x) = 2a. \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu, ta được

$$2a - (ax^2 + bx + c) = x^2$$

hay

$$-ax^2 - bx + 2a - c = x^2$$
.

Đồng nhất các hệ số tương ứng, ta được

$$\begin{cases}
-a = 1 \\
-b = 0 \\
2a - c = 0
\end{cases}$$

hay a = -1, b = 0, c = -2. Do đó ta tìm được $y_r(x) = -x^2 - 2$. Vậy nghiệm tổng quát của phương trình không thuần nhất là

$$y(x) = y_0(x) + y_r(x) = C_1 e^x + C_2 e^{-x} - x^2 - 2.$$

Ví dụ 4.3.7. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' + y = e^{2x}.$$

Giải phương trình thuần nhất tương ứng

$$y'' + y = 0$$

ta có nghiệm tổng quát $y_0(x) = C_1 \cos x + C_2 \sin x$.

Vế phải của phương trình không thuần nhất là hàm e^{2x} , vậy nghiệm y_r có dạng

$$y_r(x) = ae^{2x},$$

và ta thấy không có thành phần nào của y_r xuất hiện trong y_0 .

Ta có

$$\begin{cases} y'(x) = 2ae^{2x} \\ y''(x) = 4ae^{2x}. \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu ta được $5ae^{2x}=e^{2x}$, do đó $a=\frac{1}{5}$, và $y_r(x)=\frac{1}{5}e^{2x}$.

Vậy nghiệm tổng quát của phương trình không thuần nhất là

$$y(x) = y_0(x) + y_r(x) = C_1 \cos x + C_2 \sin x + \frac{1}{5}e^{2x}.$$

Ví dụ 4.3.8. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y' - 2y = \sin 2x.$$

Giải phương trình thuần nhất tương ứng

$$y'' - y' - 2y = 0$$

ta có nghiệm tổng quát $y_0(x) = C_1 e^{-x} + C_2 e^{2x}$.

Vế phải của phương trình không thuần nhất là hàm $\sin 2x$, vậy nghiệm y_r có dạng

$$y_r(x) = a \sin 2x + b \cos 2x$$

và ta thấy không có thành phần nào của y_r xuất hiện trong y_0 .

Ta có

$$\begin{cases} y'(x) = 2a\cos 2x - 2b\sin 2x \\ y''(x) = -4a\sin 2x - 4b\cos 2x. \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu ta được -6a+2b=1 và -2a-6b=0, do đó $a=-\frac{3}{20},\,b=\frac{1}{20},$ và

$$y_r(x) = -\frac{3}{20}\sin 2x + \frac{1}{20}\cos 2x.$$

Vậy nghiệm tổng quát của phương trình không thuần nhất là

$$y(x) = y_0(x) + y_r(x) = C_1 e^{-x} + C_2 e^{2x} - \frac{3}{20} \sin 2x + \frac{1}{20} \cos 2x.$$

Ví dụ 4.3.9. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y' - 12y = e^{4x}.$$

Giải phương trình thuần nhất tương ứng

$$y'' - y' - 12y = 0$$

ta có nghiệm $y_0(x) = C_1 e^{4x} + C_2 e^{-3x}$.

Vế phải của phương trình không thuần nhất là hàm e^{4x} , vậy nghiệm y_r có dạng

$$y_r(x) = ae^{4x},$$

nhưng ta thấy **thành phần** e^{4x} **của** y_r **cũng xuất hiện trong** y_0 , do đó theo phương pháp ta phải nhân thêm với y_r thừa số x, và nghiệm y_r thực ra có dạng

$$y_r(x) = axe^{4x}$$
.

Bây giờ thì y_r không còn thành phần chung với y_0 .

Ta có

$$\begin{cases} y'(x) = ae^{4x} + 4axe^{4x} \\ y''(x) = 8ae^{4x} + 16axe^{4x}. \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu, ta được

$$(8ae^{4x} + 16axe^{4x}) - (ae^{4x} + 4axe^{4x}) - 12axe^{4x} = e^{4x}.$$

Đồng nhất các hệ số tương ứng, ta được $a = \frac{1}{7}$. Do đó ta tìm được

$$y_r(x) = \frac{1}{7}xe^{4x}.$$

Vậy nghiệm tổng quát của phương trình không thuần nhất là

$$y(x) = y_0(x) + y_r(x) = C_1 e^{4x} + C_2 e^{-3x} + \frac{1}{7} x e^{4x}.$$

Ví dụ 4.3.10. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y' - 12y = e^{4x} + 3x - 2.$$

Phương trình thuần nhất tương ứng

$$y'' - y' - 12y = 0$$

ta đã giải trong Ví dụ 4.3.9 vừa rồi. Nghiệm là $y_0(x) = C_1 e^{4x} + C_2 e^{-3x}$.

Vế phải của phương trình không thuần nhất là hàm $e^{4x} + (3x - 2)$, là tổng của hai hàm e^{4x} và 3x - 2, vậy ta cần tìm hai nghiệm riêng $y_{r,1}$ tương ứng với e^{4x} và $y_{r,2}$ tương ứng với 3x - 2.

Nghiệm $y_{r,1}$ tương ứng với phương trình

$$y'' - y' - 12y = e^{4x}$$

ta đã tìm được trong Ví dụ 4.3.9 vừa rồi là

$$y_{r,1}(x) = \frac{1}{7}xe^{4x}.$$

Nghiệm $y_{r,2}$ tương ứng với phương trình

$$y'' - y' - 12y = 3x - 2,$$

là một đa thức bậc 1, có dạng

$$y_{r,2}(x) = ax + b.$$

Thay vào phương trình ta được

$$-a - 12(ax + b) = 3x - 2.$$

Suy ra $a = -\frac{1}{4}$ và $b = \frac{3}{16}$. Vậy

$$y_{r,2}(x) = -\frac{1}{4}x + \frac{3}{16}.$$

Vậy nghiệm tổng quát của phương trình đã cho là

$$y(x) = y_0(x) + y_{r,1}(x) + y_{r,2}(x) = C_1 e^{4x} + C_2 e^{-3x} + \frac{1}{7} x e^{4x} - \frac{1}{4} x + \frac{3}{16}.$$

Bài tập

4.3.1. Tìm nghiệm của phương trình vi phân.

(a)
$$y'' + 3y' - 10y = 0$$
.
(b)
$$\begin{cases} y'' + 3y' - 10y = 0 \\ y(0) = 1 \\ y'(0) = 3. \end{cases}$$

(c)
$$\begin{cases} 4y'' + 20y' + 25y = 0 \\ y(0) = 1 \\ y'(0) = 2. \end{cases}$$

(d)
$$\begin{cases} y'' - 8y' + 16y = 0 \\ y(0) = 1 \\ y'(0) = 6. \end{cases}$$

(e)
$$\begin{cases} y'' + 3y' = 0 \\ y(0) = 1 \\ y'(0) = 1. \end{cases}$$

(f)
$$\begin{cases} y'' + y' + y = 0 \\ y(0) = 1 \\ y'(0) = 3. \end{cases}$$

(g)
$$\begin{cases} y'' + 2y' + 2y = 0 \\ y(\pi) = e^{-\pi} \\ y'(\pi) = -2e^{-\pi}. \end{cases}$$

4.3.2. Tìm nghiệm của phương trình vi phân.

(a)
$$y'' + y' - 2y = 2x$$
.

(b)
$$y'' - y' - 2y = 4x^2$$
.

(c)
$$y'' - 2y' + y = x^2 - 1$$
.

(d)
$$\begin{cases} y'' - 7y' + 10y = 100x \\ y(0) = 0 \\ y'(0) = 5. \end{cases}$$

(e)
$$y'' + 4y = 3\sin x$$
.

(f)
$$y'' - y' + 4y = \sin 2x$$
.

(g)
$$y'' + 2y' - 3y = 2\cos 3x$$
.

(h)
$$y'' - 3y' - 4y = 2\sin x$$
.

(i)
$$y'' - 3y' + 2y = 6e^{3x}$$
.

(j)
$$y'' - 2y' + y = -4e^x$$
.

(k)
$$y'' - 3y' - 4y = 3e^{2x}$$
.

(1)
$$y'' + 4y' - 5 = e^{-5x}$$
.

(m)
$$y'' - 6y' + 9y = e^{3x}$$
.

(n)
$$y'' + y = 2e^{-x}$$
.

(o)
$$y'' + 4y = x^2 + 3e^x$$
.

(p)
$$y'' + 4y = \sin t + \sin(2t)$$
.

(q)
$$\begin{cases} y'' + 3y' + 2y = 3 - 2e^x \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

Tài liệu tham khảo

- [Apo69] Tom M. Apostol, Calculus, vol. 2, John Wiley and Sons, 1969.
- [Bmgt1] Bộ môn Giải tích, Giáo trình Phép tính vi tích phân 1, Khoa Toán-Tin học Đại học Khoa học Tự nhiên Thành phố Hồ Chí Minh, http://www.math.hcmus.edu.vn/giaitich
- [Boyce09] William E. Boyce and Richard C. DiPrima, *Elementary Differential Equations* and Boundary Value Problems, 9th ed., John Wiley and Sons, 2009.
- [Buc78] Greighton Buck, Advanced calculus, 3rd ed., McGraw-Hill, 1978.
- [Fich77] G. M. Fichtengôn, Cơ sở Giải tích toán học, NXB Đại học và Trung học chuyên nghiệp, 1977.
- [Kap02] Wilfred Kaplan, Advanced calculus, 5th ed., Addison-Wesley, 2002.
- [Lan97] Serge Lang, Undergraduate analysis, 2nd ed., Springer, 1997.
- [Long] Nguyễn Thành Long, Giáo trình Giải tích A4, Khoa Toán–Tin học Đại học Khoa học Tự nhiên Thành phố Hồ Chí Minh.
- [MT03] Jerrold E. Marsden and Anthony J. Tromba, Vector calculus, Freeman, 2003.
- [PTT02] Nguyễn Đình Phư, Nguyễn Công Tâm, Đinh Ngọc Thanh, Đặng Đức Trọng, Giáo trình giải tích hàm nhiều biến, Nhà Xuất Bản Đại học Quốc gia Thành phố Hồ Chí Minh, 2002.
- [Rud76] Walter Rudin, Principles of mathematical analysis, 3rd ed., McGraw-Hill, 1976.
- [Ste12] James Stewart, Calculus: Early transcendentals, 7th ed., Brooks/Cole, 2012. (Có bản dịch tiếng Việt.)
- [Tri07] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh, *Toán học cao cấp*, NXB Giáo dục, 2007.
- [Vugt3] Huỳnh Quang Vũ, *Bài giảng Tích phân bội và Giải tích vecto*, Đại học Khoa học Tự nhiên Thành phố Hồ Chí Minh, http://www.math.hcmus.edu.vn/~hqvu/gt3.pdf

Chỉ mục

Định lý cơ bản của tích phân đường, 65	công thức tích phân từng phần, 77
đồ thị, 5	cực đại địa phương, 16
động năng, 67	cực đại toàn cục, 16
đạo hàm riêng, 9	cực đại tương đối, 16
đạo hàm theo hướng, 77	cực đại tuyệt đối, 16
định luật Faraday, 95	cực tiểu địa phương, 16
định tuổi bằng Carbon, 114	cực tiểu toàn cục, 16
đường đi, 57	cực tiểu tương đối, 16
dóng, 57	cực tiểu tuyệt đối, 16
đơn, 57	cực trị, 16
cùng định hướng, 62	cơ sở vectơ chính tắc, 4
chính qui, 62	chiều dài Euclid, 2
liên tục, 57	chuẩn, 2
trái định hướng, 62	curl, 85
vết, 57	curi, 89
đường chính qui từng khúc, 89	div, 72, 89
dường cong, 62	, ,
hướng tiếp tuyến, 63	góc giữa hai vecto, 5
	giá trị chính qui, 75
đường mức, 21 điểm, 3	1 2 11 4 94
_ '	hầu khắp, 31
điểm biên, 4	hình chiếu, 5
điểm dừng, 17	hình hộp, 27
điểm gốc tọa độ, 2	con, 27
điểm giới hạn, 4	thể tích, 27
điểm tới hạn, 17	hình sao, 70
điểm tụ, 4	hàm đặc trưng, 29
điểm trong, 4	hàm điều hòa, 78, 96
điểm yên, 17, 18	hàm Gamma, 56
bài toán giá trị đầu, 98	hàm mật độ, 51
bổ đề Poincaré, 70, 89	hàm thế, 65
biên, 4	khối đơn giản với biên tron tùng mảnh, 89
bicii, 4	khối nón, 51
công thức đổi biến, 41	khả tích, 28, 29
công thức Divergence, 89	khả vi, 12
công thức Fubini, 35	•
công thức Gauss–Ostrogradsky, 89	khả vi liên tục, 13
công thức Green, 68, 72, 77, 96	khả vi từng khúc, 59
công thức Newton–Leibniz, 65	khoảng cách Euclid, 3
công thức Pappus, 56	lân cận, 4
công thức Stokes, 86	liên tục, 7
G	•/

 $CH\mathring{I}MUC$ 127