Course No.: ELEN-857

<u>Course Title:</u> Advanced Pattern Recognition Method <u>Department:</u> Electrical and Computer Engineering

Project 1: Data creation and display

Submitted To:

Dr. Robert Y.Li, Professor

Department of Electrical Engineering

Telephone: (336) 285-3716; E-mail: eeli@ncat.edu

E-mail: msarkar@aggies.ncat.edu

Name: Mrinmoy Sarkar

Banner Id: 950-363-260

Prepared By:

Contents:

- 1. Abstract
- 2. <u>Technical Description</u>
- 3. Results
- 4. **Summary**
- 5. Appendix

1. Abstract:

The main purpose of the project is to load data from a file and manage the data effectively to use in future project to implement different pattern recognition algorithm. And to visualize the data by plotting in a 2-d graph. For this project Fisher's Iris data is used which contains a set of measurements related to 3 species of the Iris plant. The three species are Iris Setosa, Iris Versicolor, and Iris Virginica.

2. Technical Description:

The dataset contains 50 plants from each of the 3 species. There are 4 features in the dataset named sepal length, sepal width, petal length and petal width. MATLAB programming language is used for loading the data from the file and plotting the data.

3. Results:

(1) 2-d plot of the Fisher's Iris data with petal width versus sepal length

Figure 1: 2-d plot of the Fisher's Iris data with petal width versus sepal length

Total overlapping data points for petal width vs sepal length is: 4

(2) 2-d plot of the Fisher's Iris data with petal length versus sepal width

Figure 2: 2-d plot of the Fisher's Iris data with petal length versus sepal width

Total overlapping data points for petal length vs sepal width is: 2

4. **Summary:**

(1)

- For petal width vs sepal length, Iris Setosa is linearly separable from Irsi Vesicolor and Iris Verginica
- There are 4 overlapping points between Irsi Vesicolor and Iris Verginica
- Because of the overlapping points, Irsi Vesicolor and Iris Verginica are not linearly separable

(2)

- For petal length vs sepal width, Iris Setosa is linearly separable from Irsi Vesicolor and Iris Verginica
- There are 2 overlapping points between Irsi Vesicolor and Iris Verginica
- Because of the overlapping points, Irsi Vesicolor and Iris Verginica are not linearly separable
- There are some points in Irsi Vesicolor and Iris Verginica that are enclosed in one another region

6. Appendix

MATLAB Code:

```
%% file name dataCreationAndDisplay.m
% author: Mrinmoy Sarkar
% email: msarkar@aggies.ncat.edu
% date: 9/2/2017
clear:
close all;
% load data to a veriable
data = importdata('iris.txt');
% no. of class is 3 named Iris-setosa, Iris-versicolor and Iris-
verginica
% there are 4 attributes named sepal-length, sepal-width, petal-
length,
% petal-width
% there are 50 plants for each species
irisSetosa = zeros(50,4);
irisVersicolor = zeros(50,4);
irisVerginica = zeros(50,4);
n = size(data, 1);
indxSeto = 1;
indxVers = 1;
indxVerg = 1;
for i=2:n
    x = strsplit(cell2mat(data(i)));
    if strcmp(x(5), 'Iris-setosa')
        for j=1:4
```

```
irisSetosa(indxSeto,j) = str2double(cell2mat(x(j)));
        end
        indxSeto = indxSeto + 1;
    elseif strcmp(x(5), 'Iris-versicolor')
        for j=1:4
            irisVersicolor(indxVers, j) = str2double(cell2mat(x(j)));
        end
        indxVers = indxVers + 1;
    elseif strcmp(x(5), 'Iris-virginica')
        for j=1:4
            irisVerginica(indxVerg,j) = str2double(cell2mat(x(j)));
        end
        indxVerg = indxVerg + 1;
    end
end
%% plot Fisher's Iris data with petal width versus sepal length
plot(irisSetosa(:,1), irisSetosa(:,4), 'or'); hold on;
plot(irisVersicolor(:,1), irisVersicolor(:,4), '>c'); hold on;
plot(irisVerginica(:,1), irisVerginica(:,4), '^b'); hold on;
axis([min([min(irisSetosa(:,1)),min(irisVersicolor(:,1)),min(irisVergi
nica(:,1)))-1 ...
max([max(irisSetosa(:,1)), max(irisVersicolor(:,1)), max(irisVerginica(:
,1))])+1 ...
min([min(irisSetosa(:,4)),min(irisVersicolor(:,4)),min(irisVerginica(:
,4))])-1 ...
    max([max(irisSetosa(:,4)),
max(irisVersicolor(:,4)), max(irisVerginica(:,4))])+1]);
title('petal width vs sepal length');
xlabel('sepal length');
ylabel('petal width');
legend('Iris Setosa', ' Iris Versicolor', 'Iris
Verginica','AutoUpdate','off');
%% plot overlap symbol (*)
x1 = table(irisSetosa(:,1),irisSetosa(:,4));
x2 = table(irisVersicolor(:,1),irisVersicolor(:,4));
x3 = table(irisVerginica(:,1),irisVerginica(:,4));
temp1 = union(intersect(x1,x2),intersect(x1,x3));
overlapingPoints = union(temp1, intersect(x2,x3));
disp(['Total overlapping data points for petal width vs sepal length
is : ' num2str(size(overlapingPoints,1))])
plot(overlapingPoints.Var1, overlapingPoints.Var2, '*k');
legend('Iris Setosa', ' Iris Versicolor', 'Iris Verginica', 'Overlap
dataPoint')
```

```
%% plot Fisher's Iris data with petal length versus sepal width
plot(irisSetosa(:,2), irisSetosa(:,3), 'or'); hold on;
plot(irisVersicolor(:,2), irisVersicolor(:,3), '>c'); hold on;
plot(irisVerginica(:,2), irisVerginica(:,3), '^b'); hold on;
axis([min([min(irisSetosa(:,2)),min(irisVersicolor(:,2)),min(irisVergi
nica(:,2))])-1 ...
max([max(irisSetosa(:,2)), max(irisVersicolor(:,2)), max(irisVerginica(:
,2))])+1 ...
min([min(irisSetosa(:,3)),min(irisVersicolor(:,3)),min(irisVerginica(:
,3))])-1 ...
   max([max(irisSetosa(:,3)),
max(irisVersicolor(:,3)), max(irisVerginica(:,3))])+1]);
title('petal length vs sepal width');
xlabel('sepal width');
ylabel('petal length');
legend('Iris Setosa', ' Iris Versicolor', 'Iris
Verginica','AutoUpdate','off');
%% plot overlap symbol (*)
x1 = table(irisSetosa(:,2),irisSetosa(:,3));
x2 = table(irisVersicolor(:,2),irisVersicolor(:,3));
x3 = table(irisVerginica(:,2),irisVerginica(:,3));
temp1 = union(intersect(x1, x2), intersect(x1, x3));
overlapingPoints = union(temp1, intersect(x2,x3));
disp(['Total overlapping data points for petal length vs sepal width
is : ' num2str(size(overlapingPoints,1))])
plot(overlapingPoints.Var1, overlapingPoints.Var2, '*k');
legend('Iris Setosa', ' Iris Versicolor', 'Iris Verginica', 'Overlap
dataPoint')
```