Student Performance Analysis

Data Cleaning, Statistics,
Visualization, and Modeling
Parts A–D

Part A: Data Review

- Dataset: 500 rows, 6 columns
- No missing values or duplicates
- Categorical check
 - 'Sex' contains only Male & Female. Looks clean.
- Score anomalies:
 - Max scores (e.g., Test_1_Scores =118.2,
 Test_3_Score =119.4) might suggest some scaling or outliers, as 100 is a typical max.

Part B: Summary Statistics

University exam score by gender

Gender	Mean	Median	Std Dev
Female	71.525	69.9	16.84
Male	79.76	79.2	12.67

Male students had a higher average university
 Exam score of 79.76

Part B: Summary Statistics

Correlation Matrix

	Test_1_Score	Test_3_Score	University_Exam_Score
Test_1_Score	1.000000	0.193338	0.061521
Test_3_Score	0.193338	1.000000	0.047381
University_Exam_Score	0.061521	0.047381	1.000000

- Test_1_Scores and Test_2_Scores correlated by 0.193
- Still a weak correlation, but relatively the strongest among the three.

Boxplot: Exam score by Sex

- Male students have a higher median university exam score.
- Female students show greater variation in the central 50% (wider box) and at the extremes (lower minimums, more outliers).
- Both groups have high-end outliers, but females also show low-end outliers (some below 40).

Histogram of Test_3_Scores

- Most students scored between 60 and 90 on Test_3.
- The shape is slightly right-skewed:
 - A long tail stretches toward higher values.
 - This suggests that while most students performed around the middle range, a few scored unusually high.

Scatter Plot – Test 1 vs. University Exam

- The scatter plot shows a weak positive relationship between Test_1_Score and University_Exam_Score.
 - Generally, students with higher Test_1_scores tend to have higher university exam scores, but it's not a strong trend, as confirmed by the low correlation (0.06).
- Both Male and Female students are spread across the range, but:

- Both Male and Female students are spread across the range, but:
 - Male students appear to dominate the higher score region of the university exam axis.
 - Female students are more concentrated in the lower to mid-range of university exam scores.
 - This aligns with earlier findings where males had a higher average university exam score.

Linearity

 There's no clear linear trend, confirming that Test_1_Score alone is not a strong predictor of final exam performance.

Part D: Modeling

- Outliers removed (scores >100)
- Model Equation:

UES=57.23+0.086(Test_1_Score)+0.156(Test_3_Score).

- $R^2 = 0.0076 \rightarrow$ weak predictive power
 - (Most of the variation in exam scores is caused by other factors not included in the model.)
- RMSE ≈ 13 → average prediction error
 - For exam scores that range from 33 to 100, an error of 13 is relatively high.

Part D: Modeling

Thank you!