Contents

Pretace							
In	installation 9						
No	Notation 13						
1	1.1 1.2 1.3 1.4 1.5 1.6	The Ke Kinds of Roots The Ro	vating Example	17 18 20 23 35 37 39			
2	Preli	minarie	es ·	43			
	2.1	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Getting Started	43 44 46 48 49 49			
	2.2	2.1.6 Data Pi	Conversion to Other Python Objects	50 51			
	2,2	2.2.1 2.2.2 2.2.3	Reading the Dataset	51 52 53			
	2.3	2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 2.3.10 2.3.11	Algebra Scalars Vectors Matrices Tensors Basic Properties of Tensor Arithmetic Reduction Dot Products Matrix-Vector Products Matrix-Matrix Multiplication Norms More on Linear Algebra	544 545 555 566 588 599 611 622 633 644 655			
	2.4	Calculu 2.4.1 2.4.2	Derivatives and Differentiation	67 67 71			

		2.4.3	Gradients
		2.4.4	Chain Rule
	2.5	Automa	atic Differentiation
		2.5.1	A Simple Example
		2.5.2	Backward for Non-Scalar Variables
		2.5.3	Detaching Computation
		2.5.4	Computing the Gradient of Python Control Flow
		2.5.5	Training Mode and Prediction Mode
	2.6		ility
		2.6.1	Basic Probability Theory
		2.6.2	Dealing with Multiple Random Variables
		2.6.3	Expectation and Variance
	2.7		entation
		2.7.1	Finding All the Functions and Classes in a Module 87
		2.7.2	Finding the Usage of Specific Functions and Classes 87
		2.7.3	API Documentation
3	Line	ar Neura	al Networks 89
	3.1	Linear	Regression
		3.1.1	Basic Elements of Linear Regression
		3.1.2	The Normal Distribution and Squared Loss
		3.1.3	From Linear Regression to Deep Networks
	3.2	Linear	Regression Implementation from Scratch
		3.2.1	Generating the Dataset
		3.2.2	Reading the Dataset
		3.2.3	Initializing Model Parameters
		3.2.4	Defining the Model
		3.2.5	Defining the Loss Function
		3.2.6	Defining the Optimization Algorithm
		3.2.7	Training
	3.3	Concise	e Implementation of Linear Regression
		3.3.1	Generating the Dataset
		3.3.2	Reading the Dataset
		3.3.3	Defining the Model
		3.3.4	Initializing Model Parameters
		3.3.5	Defining the Loss Function
		3.3.6	Defining the Optimization Algorithm
		3.3.7	Training
	3.4	Softmax	x Regression
		3.4.1	Classification Problems
		3.4.2	Loss Function
		3.4.3	Information Theory Basics
		3.4.4	Model Prediction and Evaluation
	3.5	The Im	age Classification Dataset (Fashion-MNIST) 117
		3.5.1	Getting the Dataset
		3.5.2	Reading a Minibatch
		3.5.3	Putting All Things Together
	3.6	Implen	nentation of Softmax Regression from Scratch
		3.6.1	Initializing Model Parameters
		3.6.2	The Softmax
		3.6.3	The Model

		3.6.4 The Loss Function
		3.6.5 Classification Accuracy
		3.6.6 Model Training
		3.6.7 Prediction
	3.7	Concise Implementation of Softmax Regression
		3.7.1 Initializing Model Parameters
		3.7.2 The Softmax
		3.7.3 Optimization Algorithm
		3.7.4 Training
4		layer Perceptrons 131
	4.1	Multilayer Perceptron
		4.1.1 Hidden Layers
		4.1.2 Activation Functions
	4.2	Implementation of Multilayer Perceptron from Scratch
		4.2.1 Initializing Model Parameters
		4.2.2 Activation Function
		4.2.3 The model
		4.2.4 The Loss Function
		4.2.5 Training
	4.3	Concise Implementation of Multilayer Perceptron
		4.3.1 The Model
	4.4	Model Selection, Underfitting and Overfitting
		4.4.1 Training Error and Generalization Error
		4.4.2 Model Selection
		4.4.3 Underfitting or Overfitting?
		4.4.4 Polynomial Regression
	4.5	Weight Decay
		4.5.1 Squared Norm Regularization
		4.5.2 High-Dimensional Linear Regression
		4.5.3 Implementation from Scratch
		4.5.4 Concise Implementation
	4.6	Dropout
		4.6.1 Overfitting Revisited
		4.6.2 Robustness through Perturbations
		4.6.3 Dropout in Practice
		4.6.4 Implementation from Scratch
	4 7	4.6.5 Concise Implementation
	4.7	Forward Propagation, Backward Propagation, and Computational Graphs 167
		4.7.1 Forward Propagation
		4.7.2 Computational Graph of Forward Propagation
		4.7.3 Backpropagation
	4.0	4.7.4 Training a Model
	4.8	Numerical Stability and Initialization
		4.8.1 Vanishing and Exploding Gradients
	4.0	4.8.2 Parameter Initialization
	4.9	Considering the Environment
		4.9.1 Distribution Shift
		4.9.2 A Taxonomy of Learning Problems
	4	4.9.3 Fairness, Accountability, and Transparency in Machine Learning 183
	4.10	Predicting House Prices on Kaggle

		4.10.1	Obtaining Data and Caching	5
		4.10.2	Kaggle	6
		4.10.3	Accessing and Reading the Dataset	7
		4.10.4	Data Preprocessing	8
		4.10.5	Training	9
		4.10.6	k-Fold Cross-Validation	0
		4.10.7	Model Selection	1
		4.10.8	Predict and Submit	
5	Deep	Learni	ng Computation 198	5
	5.1	Layers	and Blocks	5
		5.1.1	A Custom Block	8
		5.1.2	The Sequential Block	9
		5.1.3	Blocks with Code	0
		5.1.4	Compilation	1
	5.2	Parame	eter Management	2
		5.2.1	Parameter Access	3
		5.2.2	Parameter Initialization	7
		5.2.3	Tied Parameters	9
	5.3	Deferre	ed Initialization	1
		5.3.1	Instantiating a Network	1
		5.3.2	Deferred Initialization in Practice	3
		5.3.3	Forced Initialization	3
	5.4	Custon	n Layers	5
		5.4.1	Layers without Parameters	5
		5.4.2	Layers with Parameters	6
	5.5	File I/C	· ·	
		5.5.1	Loading and Saving ndarrays	
		5.5.2	Gluon Model Parameters	
	5.6	GPUs		
		5.6.1	Computing Devices	
		5.6.2	ndarray and GPUs	
		5.6.3	Gluon and GPUs	
6	Conv	olution	al Neural Networks 22	7
	6.1	From I	Dense Layers to Convolutions	8
		6.1.1	Invariances	8
		6.1.2	Constraining the MLP	9
		6.1.3	Convolutions	0
		6.1.4	Waldo Revisited	
	6.2	Convol	utions for Images	2
		6.2.1	The Cross-Correlation Operator	2
		6.2.2	Convolutional Layers	
		6.2.3	Object Edge Detection in Images	
		6.2.4	Learning a Kernel	
		6.2.5	Cross-Correlation and Convolution	
	6.3		g and Stride	
	0.0	6.3.1	Padding	
		6.3.2	Stride	
	6.4		le Input and Output Channels	
	0.1	6.4.1	Multiple Input Channels	
				_

		6.4.2	Multiple Output Channels
		6.4.3	1×1 Convolutional Layer
	6.5	Pooling	;
		6.5.1	Maximum Pooling and Average Pooling
		6.5.2	Padding and Stride
		6.5.3	Multiple Channels
	6.6	Convol	utional Neural Networks (LeNet)
	0.0	6.6.1	LeNet
		6.6.2	Data Acquisition and Training
		0.0.2	Data Acquisition and Training
7	Mod	ern Conv	volutional Neural Networks 257
	7.1		onvolutional Neural Networks (AlexNet)
		7.1.1	Learning Feature Representation
		7.1.2	AlexNet
		7.1.2	Reading the Dataset
		7.1.3	
	7.0		0
	7.2		8 ()
		7.2.1	VGG Blocks
		7.2.2	VGG Network
		7.2.3	Model Training
	7.3		k in Network (NiN)
		7.3.1	NiN Blocks
		7.3.2	NiN Model
		7.3.3	Data Acquisition and Training
	7.4	Networ	ks with Parallel Concatenations (GoogLeNet) 273
		7.4.1	Inception Blocks
		7.4.2	GoogLeNet Model
		7.4.3	Data Acquisition and Training
	7.5		Formalization
	, , ,	7.5.1	Training Deep Networks
		7.5.2	Batch Normalization Layers
		7.5.2	Implementation from Scratch
		7.5.4	
			Using a Batch Normalization LeNet
		7.5.5	Concise Implementation
		7.5.6	Controversy
	7.6		al Networks (ResNet)
		7.6.1	Function Classes
		7.6.2	Residual Blocks
		7.6.3	ResNet Model
		7.6.4	Data Acquisition and Training
	7.7	Densely	y Connected Networks (DenseNet)
		7.7.1	Function Decomposition
		7.7.2	Dense Blocks
		7.7.3	Transition Layers
		7.7.4	DenseNet Model
		7.7.5	Data Acquisition and Training
		7.7.0	Data regulation and remning
8	Recu	rrent Ne	eural Networks 299
	8.1		ce Models
		8.1.1	Statistical Tools
		8.1.2	A Toy Example
		0.1.2	II Toy Example

	8.1.3 Predictions		
8.2	Text Preprocessing	3	307
	8.2.1 Reading the Dataset	3	307
	8.2.2 Tokenization	3	308
	8.2.3 Vocabulary	3	308
	8.2.4 Putting All Things Together	3	310
8.3	Language Models and the Dataset	3	311
	8.3.1 Estimating a Language Model	3	311
	8.3.2 Markov Models and <i>n</i> -grams		312
	8.3.3 Natural Language Statistics		313
	8.3.4 Training Data Preparation		315
8.4	Recurrent Neural Networks		319
	8.4.1 Recurrent Networks Without Hidden States	3	319
	8.4.2 Recurrent Networks with Hidden States	3	320
	8.4.3 Steps in a Language Model		321
	8.4.4 Perplexity		322
8.5	Implementation of Recurrent Neural Networks from Scratch		323
	8.5.1 One-hot Encoding		324
	8.5.2 Initializing the Model Parameters		324
	8.5.3 RNN Model		325
	8.5.4 Prediction		326
	8.5.5 Gradient Clipping		326
	8.5.6 Training		327
8.6	Concise Implementation of Recurrent Neural Networks		331
	8.6.1 Defining the Model		331
	8.6.2 Training and Predicting		332
8.7	Backpropagation Through Time		334
	8.7.1 A Simplified Recurrent Network		334
	8.7.2 The Computational Graph		336
	8.7.3 BPTT in Detail		337
Mod	ern Recurrent Neural Networks	3	39
9.1	Gated Recurrent Units (GRU)		339
	9.1.1 Gating the Hidden State	3	340
	9.1.2 Implementation from Scratch	3	342
	9.1.3 Concise Implementation	3	345
9.2	Long Short Term Memory (LSTM)	3	346
	9.2.1 Gated Memory Cells	3	347
	9.2.2 Implementation from Scratch	3	350
	9.2.3 Concise Implementation	3	352
9.3	Deep Recurrent Neural Networks	3	353
	9.3.1 Functional Dependencies	3	354
	9.3.2 Concise Implementation	3	355
	9.3.3 Training		355
9.4	Bidirectional Recurrent Neural Networks	3	357
	9.4.1 Dynamic Programming	3	357
	9.4.2 Bidirectional Model	3	359
9.5	Machine Translation and the Dataset	3	362
	9.5.1 Reading and Preprocessing the Dataset	3	363
	9.5.2 Tokenization	3	364
	9.5.3 Vocabulary	3	365

9

		9.5.4	Loading the Dataset
		9.5.5	Putting All Things Together
	9.6	Encode	er-Decoder Architecture
		9.6.1	Encoder
		9.6.2	Decoder
		9.6.3	Model
	9.7		ace to Sequence
		9.7.1	Encoder
		9.7.2	Decoder
		9.7.3	The Loss Function
		9.7.4	Training
		9.7.5	Predicting
	9.8		8
	9.8		
		9.8.1	Greedy Search
		9.8.2	Exhaustive Search
		9.8.3	Beam Search
10	Attor	tion M	echanisms 381
10			echanisms on Mechanisms
	10.1		
			Dot Product Attention
	100		Multilayer Perceptron Attention
	10.2		ace to Sequence with Attention Mechanisms
			Decoder
			Training
	10.3	Transfo	
		10.3.1	Multi-Head Attention
		10.3.2	Position-wise Feed-Forward Networks
		10.3.3	Add and Norm
		10.3.4	Positional Encoding
		10.3.5	Encoder
		10.3.6	Decoder
		10.3.7	Training
11	-		n Algorithms 405
	11.1		zation and Deep Learning
			Optimization and Estimation
		11.1.2	Optimization Challenges in Deep Learning
	11.2	Convex	xity
		11.2.1	Basics
		11.2.2	Properties
		11.2.3	Constraints
	11.3	Gradie	nt Descent
		11.3.1	Gradient Descent in One Dimension
		11.3.2	Multivariate Gradient Descent
		11.3.3	Adaptive Methods
	11.4		stic Gradient Descent
		11.4.1	Stochastic Gradient Updates
		11.4.2	Dynamic Learning Rate
		11.4.3	Convergence Analysis for Convex Objectives
		11.4.4	Stochastic Gradients and Finite Samples
	11.5		atch Stochastic Gradient Descent
	11.0	IATITIDA	tion otoenastic gradient descent

		11.5.1	Vectorization and Caches
		11.5.2	Minibatches
		11.5.3	Reading the Dataset
		11.5.4	Implementation from Scratch
		11.5.5	Concise Implementation
	11.6	Momen	ntum
		11.6.1	Basics
		11.6.2	Practical Experiments
			Theoretical Analysis
	11.7		d
			Sparse Features and Learning Rates
			Preconditioning
			The Algorithm
		11.7.4	Implementation from Scratch
			Concise Implementation
	11.8		op
	11.0	11.8.1	The Algorithm
		11.8.2	Implementation from Scratch
			Concise Implementation
	11.9		ta
	11.7		The Algorithm
			Implementation
	11 10		
	11.10		The Algorithm
			Implementation
			Yogi
	11 11		ng Rate Scheduling
	11,11		Toy Problem
			Schedulers
			Policies
		11.11.0	Toncies
12	Comp	outation	nal Performance 483
	_		ers and Interpreters
			Symbolic Programming
			Hybrid Programming
			HybridSequential
	12.2		ronous Computation
		•	Asynchrony via Backend
		12.2.2	Barriers and Blockers
			Improving Computation
			Improving Memory Footprint
	12.3		atic Parallelism
			Parallel Computation on CPUs and GPUs
		12.3.2	Parallel Computation and Communication
	12.4		are
		12.4.1	Computers
		12.4.2	Memory
		12.4.3	Storage
			CPUs
		12.4.5	GPUs and other Accelerators
			Networks and Buses
		14. T.U	TICTIVOTES UNITED BUSCO

		12.4.7 More Latency Numbers	2
	12.5	Training on Multiple GPUs	.4
		12.5.1 Splitting the Problem	.4
		12.5.2 Data Parallelism	
		12.5.3 A Toy Network	.7
		12.5.4 Data Synchronization	8.
		12.5.5 Distributing Data	9
		12.5.6 Training	0.
		12.5.7 Experiment	1
	12.6	Concise Implementation for Multiple GPUs 52	2
		12.6.1 A Toy Network	:3
		12.6.2 Parameter Initialization and Logistics	:3
		12.6.3 Training	:5
		12.6.4 Experiments	:5
	12.7	Parameter Servers	7
		12.7.1 Data Parallel Training	7
		12.7.2 Ring Synchronization	0
		12.7.3 Multi-Machine Training	
		12.7.4 (key,value) Stores	4
13	_	puter Vision 53	
	13.1	Image Augmentation	
		13.1.1 Common Image Augmentation Method	
		13.1.2 Using an Image Augmentation Training Model 54	
	13.2	Fine Tuning	
		13.2.1 Hot Dog Recognition	
	13.3	Object Detection and Bounding Boxes	
		13.3.1 Bounding Box	
	13.4	Anchor Boxes	
		13.4.1 Generating Multiple Anchor Boxes	
		13.4.2 Intersection over Union	
		13.4.3 Labeling Training Set Anchor Boxes	
		13.4.4 Bounding Boxes for Prediction	
	13.5	Multiscale Object Detection	3
	13.6	The Object Detection Dataset (Pikachu)	6
		13.6.1 Downloading the Dataset	6
		13.6.2 Reading the Dataset	7
		13.6.3 Demonstration	8
	13.7	Single Shot Multibox Detection (SSD)	9
		13.7.1 Model 56	9
		13.7.2 Training	5
		13.7.3 Prediction	7
	13.8	Region-based CNNs (R-CNNs)	0
		13.8.1 R-CNNs	1
		13.8.2 Fast R-CNN	2
		13.8.3 Faster R-CNN	4
		13.8.4 Mask R-CNN	
	13.9	Semantic Segmentation and the Dataset	
		13.9.1 Image Segmentation and Instance Segmentation	
		13.9.2 The Pascal VOC2012 Semantic Segmentation Dataset	
	13.10	Transposed Convolution	2

			Basic 2D Transposed Convolution
			Padding, Strides, and Channels
		13.10.3	Analogy to Matrix Transposition
	13.11	Fully Co	onvolutional Networks (FCN)
		13.11.1	Constructing a Model
		13.11.2	Initializing the Transposed Convolution Layer
		13.11.3	Reading the Dataset
			Training
			Prediction
	13.12		Style Transfer
			Technique
			Reading the Content and Style Images 604
			Preprocessing and Postprocessing 605
			Extracting Features
			Defining the Loss Function
			Creating and Initializing the Composite Image 608
			Training
	13 13		Classification (CIFAR-10) on Kaggle
	10.10		Obtaining and Organizing the Dataset
			Image Augmentation
			Reading the Dataset
			Defining the Model
			Defining the Training Functions
			Training and Validating the Model
			Classifying the Testing Set and Submitting Results on Kaggle 619
	13 14		eed Identification (ImageNet Dogs) on Kaggle
	10.11		Obtaining and Organizing the Dataset
			Image Augmentation
			Reading the Dataset
			Defining the Model
			Defining the Training Functions
			Training and Validating the Model
			Classifying the Testing Set and Submit Results on Kaggle 625
		10.11.7	oldsbirying the resting bet and bubinit hestates on haggie
14	Natu	ral Lang	ruage Processing 627
	14.1	Word E	mbedding (word2vec)
		14.1.1	Why Not Use One-hot Vectors?
		14.1.2	The Skip-Gram Model
		14.1.3	The Continuous Bag of Words (CBOW) Model 630
	14.2		imate Training for Word2vec
		14.2.1	
		14.2.2	Hierarchical Softmax
	14.3	The Da	taset for Word2vec
		14.3.1	Reading and Preprocessing the Dataset
		14.3.2	Subsampling
			Loading the Dataset
			Putting All Things Together
	14.4		nentation of Word2vec
		14.4.1	The Skip-Gram Model
		14.4.2	Training
		14.4.3	Applying the Word Embedding Model 646

14.5	Subword Embedding (fastText)	47
14.6	Word Embedding with Global Vectors (GloVe) 6-	48
	14.6.1 The GloVe Model	49
	14.6.2 Understanding GloVe from Conditional Probability Ratios 6	50
14.7	Finding Synonyms and Analogies	
	14.7.1 Using Pre-Trained Word Vectors	
	14.7.2 Applying Pre-Trained Word Vectors	
14.8	Text Classification and the Dataset	
	14.8.1 The Text Sentiment Classification Dataset	
	14.8.2 Putting All Things Together	
14.9	Text Sentiment Classification: Using Recurrent Neural Networks	
	14.9.1 Using a Recurrent Neural Network Model	
14.10	Text Sentiment Classification: Using Convolutional Neural Networks (textCNN) 60	
11.10	14.10.1 One-Dimensional Convolutional Layer	
	14.10.2 Max-Over-Time Pooling Layer	
	14.10.3 The TextCNN Model	
	14.10.5 THE TEXTGRAIN WINDER	JJ
15 Reco	nmender Systems 65	71
	Overview of Recommender Systems	71
	15.1.1 Collaborative Filtering	72
	15.1.2 Explicit Feedback and Implicit Feedback	
	15.1.3 Recommendation Tasks	
15.2	The MovieLens Dataset	
10.2	15.2.1 Getting the Data	
	15.2.2 Statistics of the Dataset	
	15.2.3 Splitting the dataset	
	15.2.4 Loading the data	
15.3	Matrix Factorization	
13.3	15.3.1 The Matrix Factorization Model	
	1	
	15.3.3 Evaluation Measures	
1 🗆 1	15.3.4 Training and Evaluating the Model	
15.4	AutoRec: Rating Prediction with Autoencoders	
	15.4.1 Model	
	15.4.2 Implementing the Model	
		84 or
15.5		85
15.5	• • • • • • • • • • • • • • • • • • •	86
		87
15 (88
15.6		89
		90
	1	91
	σ	92
		92
		94
15.7	1	96
		96
	1	98
		99
	15.7.4 Load the MovieLens 100K dataset	00

		15.7.5	Train the Model
	15.8	Feature	-Rich Recommender Systems
			An Online Advertising Dataset
			Dataset Wrapper
	15.9		zation Machines
			2-Way Factorization Machines
			An Efficient Optimization Criterion
			Model Implementation
			Load the Advertising Dataset
			Train the Model
	15 10		actorization Machines
	10.10	-	Model Architectures
			Implementation of DeepFM
			Training and Evaluating the Model
		13.10.3	Training and Evaluating the Woder
16	Gene	rative A	dversarial Networks 713
	16.1	Genera	tive Adversarial Networks
			Generate some "real" data
			Generator
			Discriminator
			Training
	16.2		onvolutional Generative Adversarial Networks
	10.2	16.2.1	The Pokemon Dataset
		16.2.2	The Generator
			Discriminator
			Training
		10.2.1	720
17	Appe	ndix: M	athematics for Deep Learning 727
	17.1	Geome	try and Linear Algebraic Operations
			Geometry of Vectors
		17.1.2	Dot Products and Angles
			Hyperplanes
			Geometry of Linear Transformations
			Linear Dependence
			Rank
			Invertibility
		17.1.8	Determinant
		17.1.9	Tensors and Common Linear Algebra Operations
	17.2	Eigende	ecompositions
		17.2.1	Finding Eigenvalues
		17.2.2	Decomposing Matrices
		17.2.3	Operations on Eigendecompositions
			Eigendecompositions of Symmetric Matrices
		17.2.5	Gershgorin Circle Theorem
		17.2.6	A Useful Application: The Growth of Iterated Maps
		17.2.7	Conclusions
	17.3		Variable Calculus
	17.0	17.3.1	Differential Calculus
			Rules of Calculus
	17.4		riable Calculus
	17.4		Higher-Dimensional Differentiation
		T/.4.T	Tilgher-Dimensional Dimerentiation

	17.4.2	Geometry of Gradients and Gradient Descent	55
	17.4.3	A Note on Mathematical Optimization	56
	17.4.4	Multivariate Chain Rule	57
	17.4.5	The Backpropagation Algorithm	59
		Hessians	
	17.4.7	A Little Matrix Calculus	74
17.5		l Calculus	
	17.5.1	Geometric Interpretation	79
		The Fundamental Theorem of Calculus	
	17.5.3	Change of Variables	33
	17.5.4	A Comment on Sign Conventions	
	17.5.5	Multiple Integrals	
		Change of Variables in Multiple Integrals	
17.6		n Variables	
		Continuous Random Variables	
17.7		um Likelihood	
		The Maximum Likelihood Principle	
		Numerical Optimization and the Negative Log-Likelihood	
		Maximum Likelihood for Continuous Variables	
17.8		Bayes	
		Optical Character Recognition	
	17.8.2	The Probabilistic Model for Classification	
	17.8.3	The Naive Bayes Classifier	
		Training	
17.9		cs	
		Evaluating and Comparing Estimators	
		Conducting Hypothesis Tests	
		Constructing Confidence Intervals	
17.10		ation Theory	
		Information	
	17.10.2	Entropy	31
		Mutual Information	
	17.10.4	Kullback-Leibler Divergence	37
		Cross Entropy	
		ools for Deep Learning 84	
18.1	_	upyter	
		Editing and Running the Code Locally 84	
		Advanced Options	
18.2		Amazon SageMaker	
		Registering Account and Logging In 84	
		Creating an SageMaker Instance	
		Running and Stopping an Instance	
		Updating Notebooks	
18.3	_	AWS EC2 Instances	
		Creating and Running an EC2 Instance	
	18.3.2	Installing CUDA	
		Installing MXNet and Downloading the D2L Notebooks 85	
		Running Jupyter	
	18.3.5		
18.4	Using C	Google Colab	51

Bibliography			
18.7	d21 API Document	871	
	18.6.1 From Reader to Contributor in 6 Steps	867	
18.6	Contributing to This Book	867	
	18.5.2 Selecting GPUs	864	
	18.5.1 Selecting Servers	862	
18.5	Selecting Servers and GPUs	862	