WEEK 14 IP DIMENSIONALITY REDUCTION

IYLINE CHUMO

09/09/2021

library(tinytex)

Defining The Question

To perform Dimensionality reduction on Carrefour kenya dataset that will inform inform the marketing department on the most relevant marketing strategies that will result in the highest no. of sales

Metric of success

Our project will be considered successful if we will effectively apply PCA to get the important features that can help in implementing the marketing strategies.

Experimental Design

- Problem Definition
- Loading the Data
- Checking the Data
- Data Cleaning
- Exploratory Data Analysis
- Modelling

Loading the Dataset

```
df <- read.csv('http://bit.ly/CarreFourDataset')</pre>
```

#previewing the head of the dataset

head(df) Invoice.ID Branch Customer.type Gender Product.line ## Unit.price ## 1 750-67-8428 Member Female Health and beauty Α 74.69 ## 2 226-31-3081 C Normal Female Electronic accessories 15.28 Normal ## 3 631-41-3108 Α Male Home and lifestyle 46.33 ## 4 123-19-1176 Member Male Health and beauty Α 58.22 ## 5 373-73-7910 Normal Male Sports and travel Α 86.31 Normal Male Electronic accessories ## 6 699-14-3026 C

```
85.39
     Quantity
                           Date Time
                                          Payment
##
                  Tax
                                                    cogs
gross.margin.percentage
                                          Ewallet 522.83
            7 26.1415 1/5/2019 13:08
4.761905
## 2
            5 3.8200 3/8/2019 10:29
                                             Cash 76.40
4.761905
## 3
            7 16.2155 3/3/2019 13:23 Credit card 324.31
4.761905
           8 23.2880 1/27/2019 20:33
## 4
                                          Ewallet 465.76
4.761905
## 5
           7 30.2085 2/8/2019 10:37
                                          Ewallet 604.17
4.761905
## 6
           7 29.8865 3/25/2019 18:30
                                          Ewallet 597.73
4.761905
##
    gross.income Rating
                            Total
## 1
          26.1415
                     9.1 548.9715
## 2
           3.8200
                     9.6 80.2200
## 3
                     7.4 340.5255
          16.2155
## 4
          23.2880
                     8.4 489.0480
## 5
          30.2085
                     5.3 634.3785
## 6
          29.8865
                     4.1 627.6165
```

previewing the tail of the dataset

tail(df)

```
Product.line
##
         Invoice.ID Branch Customer.type Gender
Unit.price
                        C
                                 Member Female Electronic accessories
## 995 652-49-6720
60.95
## 996 233-67-5758
                        C
                                 Normal
                                          Male
                                                    Health and beauty
40.35
## 997 303-96-2227
                        В
                                 Normal Female
                                                   Home and lifestyle
97.38
## 998 727-02-1313
                        Α
                                 Member
                                          Male
                                                    Food and beverages
31.84
## 999 347-56-2442
                        Α
                                  Normal
                                          Male
                                                   Home and lifestyle
65.82
## 1000 849-09-3807
                        Α
                                  Member Female
                                                   Fashion accessories
88.34
        Quantity
                    Tax
                             Date Time Payment
                                                   cogs
gross.margin.percentage
## 995
              1 3.0475 2/18/2019 11:40 Ewallet 60.95
4.761905
              1 2.0175 1/29/2019 13:46 Ewallet 40.35
## 996
4.761905
## 997
             10 48.6900 3/2/2019 17:16 Ewallet 973.80
4.761905
## 998
              1 1.5920 2/9/2019 13:22
                                           Cash 31.84
4.761905
```

```
## 999
             1 3.2910 2/22/2019 15:33 Cash 65.82
4.761905
## 1000
             7 30.9190 2/18/2019 13:28
                                        Cash 618.38
4.761905
##
       gross.income Rating
                             Total
## 995
             3.0475
                      5.9
                           63,9975
## 996
            2.0175
                      6.2
                           42,3675
## 997
                      4.4 1022.4900
           48.6900
## 998
                      7.7 33.4320
            1.5920
                     4.1 69.1110
## 999
            3.2910
## 1000
           30.9190
                      6.6 649.2990
```

Data Exploration

View(df)

checking the structure of the dataset

```
str(df)
## 'data.frame':
                   1000 obs. of 16 variables:
                           : chr "750-67-8428" "226-31-3081" "631-41-3108"
## $ Invoice.ID
"123-19-1176" ...
                           : chr "A" "C" "A" "A" ...
## $ Branch
                           : chr "Member" "Normal" "Normal" "Member" ...
## $ Customer.type
                           : chr "Female" "Female" "Male" ...
## $ Gender
## $ Product.line
                                  "Health and beauty" "Electronic
                           : chr
accessories" "Home and lifestyle" "Health and beauty" ...
## $ Unit.price
                           : num 74.7 15.3 46.3 58.2 86.3 ...
## $ Quantity
                           : int 75787761023...
## $ Tax
                           : num 26.14 3.82 16.22 23.29 30.21 ...
                           : chr
## $ Date
                                  "1/5/2019" "3/8/2019" "3/3/2019"
"1/27/2019" ...
                                  "13:08" "10:29" "13:23" "20:33" ...
## $ Time
                           : chr
                           : chr "Ewallet" "Cash" "Credit card" "Ewallet"
## $ Payment
. . .
                           : num 522.8 76.4 324.3 465.8 604.2 ...
## $ cogs
## $ gross.margin.percentage: num 4.76 4.76 4.76 4.76 4.76 ...
## $ gross.income
                           : num 26.14 3.82 16.22 23.29 30.21 ...
## $ Rating
                           : num 9.1 9.6 7.4 8.4 5.3 4.1 5.8 8 7.2 5.9 ...
## $ Total
                           : num 549 80.2 340.5 489 634.4 ...
```

Our dataset has 1000 rows and 16 columns. 8 of which have a character data type, one is an integer and the other 7 are numerical.

##checking the structure of our dataset

```
summary(df)
##
    Invoice.ID
                        Branch
                                       Customer.type
                                                            Gender
## Length:1000
                     Length:1000
                                       Length:1000
                                                          Length: 1000
## Class :character
                     Class :character
                                       Class :character
                                                         Class :character
                                       Mode :character
## Mode :character Mode :character
                                                         Mode :character
```

```
##
##
##
    Product.line
                         Unit.price
##
                                           Quantity
                                                              Tax
##
    Length: 1000
                               :10.08
                                              : 1.00
                                                         Min.
                                                                : 0.5085
                       Min.
                                        Min.
##
    Class :character
                       1st Qu.:32.88
                                        1st Qu.: 3.00
                                                         1st Qu.: 5.9249
##
   Mode :character
                       Median :55.23
                                        Median : 5.00
                                                         Median :12.0880
##
                               :55.67
                                               : 5.51
                                                         Mean
                                                                :15.3794
                       Mean
                                        Mean
##
                       3rd Qu.:77.94
                                        3rd Qu.: 8.00
                                                         3rd Qu.:22.4453
                               :99.96
##
                       Max.
                                        Max.
                                               :10.00
                                                         Max.
                                                                :49.6500
##
                                             Payment
        Date
                            Time
                                                                    cogs
##
    Length:1000
                       Length:1000
                                           Length:1000
                                                               Min.
                                                                      : 10.17
    Class :character
                       Class :character
                                           Class :character
                                                               1st Qu.:118.50
##
##
   Mode :character
                       Mode :character
                                           Mode :character
                                                               Median :241.76
##
                                                               Mean
                                                                      :307.59
##
                                                               3rd Qu.:448.90
##
                                                               Max.
                                                                      :993.00
##
   gross.margin.percentage gross.income
                                                                     Total
                                                   Rating
           :4.762
                                    : 0.5085
                                                      : 4.000
## Min.
                             Min.
                                               Min.
                                                                 Min.
10.68
## 1st Qu.:4.762
                             1st Qu.: 5.9249
                                               1st Qu.: 5.500
                                                                 1st Qu.:
124.42
## Median :4.762
                            Median :12.0880
                                               Median : 7.000
                                                                 Median :
253.85
## Mean
           :4.762
                                    :15.3794
                                                       : 6.973
                             Mean
                                               Mean
                                                                 Mean
322.97
## 3rd Qu.:4.762
                             3rd Qu.:22.4453
                                               3rd Qu.: 8.500
                                                                 3rd Qu.:
471.35
## Max.
           :4.762
                             Max.
                                    :49.6500
                                                       :10.000
                                               Max.
                                                                 Max.
:1042.65
```

Data cleaning

checking foe missing values

col	Sums(is.na(df))		
##	Invoice.ID	Branch	Customer.type
##	0	0	0
##	Gender	Product.line	Unit.price
##	0	0	0
##	Quantity	Tax	Date
##	0	0	0
##	Time	Payment	cogs
##	0	0	0
##	gross.margin.percentage	gross.income	Rating
##	0	0	0
##	Total		
##	0		

##We have no missing values in our dataset

checking for duplicates

```
df[duplicated(df),]
## [1] Invoice.ID
                                Branch
                                                        Customer.type
## [4] Gender
                                Product.line
                                                        Unit.price
## [7] Quantity
                                Tax
                                                        Date
## [10] Time
                                Payment
                                                        cogs
## [13] gross.margin.percentage gross.income
                                                        Rating
## [16] Total
## <0 rows> (or 0-length row.names)
```

##There are no duplicates in our dataset

Checking for outliers

Unit Price

##no oiutliers in

the unit_price column

```
boxplot(df$Quantity,
    main ="Quantity",
    col = "orange",
    border = 'brown',
```

```
horizontal = TRUE,
notch = TRUE)
```

Quantity

##no outliers in quantity column

#there a few outliers in the tax column

```
boxplot(df$cogs,
    main ="Cogs",
    col = "orange",
    border = 'brown',
    horizontal = TRUE,
    notch = TRUE)
```

Cogs

#there are a few outliers in the cogs column

Gross Income

#there are a few outliers in the gross income column

```
boxplot(df$Rating,
    main ="Rating",
    col = "orange",
    border = 'brown',
    horizontal = TRUE,
    notch = TRUE)
```

Rating

#no outliers in the rating column

Exploratory Data Analysis

Univariate Analysis

Measures of Central Tendency

#Finding the mean of the numeric columns

```
colMeans(df[sapply(df,is.numeric)])
##
                Unit.price
                                            Quantity
                                                                          Tax
##
                 55.672130
                                            5.510000
                                                                    15.379369
                       cogs gross.margin.percentage
##
                                                                 gross.income
                307.587380
                                                                    15.379369
##
                                           4.761905
##
                    Rating
                                               Total
                  6.972700
##
                                         322.966749
```

#Finding the median of the numeric columns

```
unitprice_median <- median(df$Unit.price)
qty_median <- median(df$Quantity)
tax_median <- median(df$Tax)
cogs_median <- median(df$cogs)
income_median <- median(df$gross.income)
rating_median <- median (df$Rating)</pre>
```

```
unitprice_median
## [1] 55.23
qty_median
## [1] 5
tax_median
## [1] 12.088
cogs_median
## [1] 241.76
income_median
## [1] 12.088
rating_median
## [1] 7
```

#Finding the range in our columns. The results will give us the minimum and maximum values in our numeric columns.

```
range(df$Unit.price)
## [1] 10.08 99.96
range(df$Quantity)
## [1] 1 10
range(df$Tax)
## [1] 0.5085 49.6500
range(df$cogs)
## [1] 10.17 993.00
range(df$gross.income)
## [1] 0.5085 49.6500
range(df$Rating)
## [1] 4 10
```

#Getting the quantiles in our columns.

quantile(df\$Unit.price)

```
0%
             25%
                    50%
                           75%
                                 100%
## 10.080 32.875 55.230 77.935 99.960
quantile(df$Quantity)
##
     0% 25% 50% 75% 100%
##
      1
           3
                5
                     8
quantile(df$Tax)
##
          0%
                   25%
                             50%
                                       75%
                                                100%
   0.508500 5.924875 12.088000 22.445250 49.650000
quantile(df$cogs)
         0%
                 25%
                          50%
##
                                   75%
                                           100%
##
   10.1700 118.4975 241.7600 448.9050 993.0000
quantile(df$gross.income)
##
          0%
                             50%
                                       75%
                   25%
                                                100%
## 0.508500 5.924875 12.088000 22.445250 49.650000
quantile(df$Rating)
     0% 25% 50% 75% 100%
## 4.0 5.5 7.0 8.5 10.0
```

#Finding the variance of the numeric columns. This shows how the data values are dispersed around the mean.

```
var(df$Unit.price)
## [1] 701.9653
var(df$Quantity)
## [1] 8.546446
var(df$Tax)
## [1] 137.0966
var(df$cogs)
## [1] 54838.64
var(df$gross.income)
## [1] 137.0966
var(df$Rating)
## [1] 2.953518
```

#Finding the standard deviation of our numeric columns

```
sd(df$Unit.price)
## [1] 26.49463
sd(df$Quantity)
## [1] 2.923431
sd(df$Tax)
## [1] 11.70883
sd(df$cogs)
## [1] 234.1765
sd(df$gross.income)
## [1] 11.70883
sd(df$Rating)
## [1] 1.71858
```

Histograms

hist(df\$Unit.price, col = "orange")

Histogram of df\$Unit.price

Histogram of df\$Quantity

hist(df\$Tax, col = "dark red")

Histogram of df\$Tax

Histogram of df\$cogs

hist(df\$gross.income, col= "light blue")

Histogram of df\$gross.income

Histogram of df\$Rating

Bivariate Analysis

Correlation

```
library(corrplot)

## corrplot 0.90 loaded

correlation <- cor(df[,c(6,7,8,12,14,15,16)])
 corrplot(correlation, method = "square", type = "lower", diag = TRUE)</pre>
```


Correlation matrix

#To understand the extent to which variables correlate with each other.

```
cor(df$Unit.price, df$Quantity)
## [1] 0.01077756

cor(df$Tax, df$Quantity)
## [1] 0.7055102

cor(df$cogs, df$gross.income)
## [1] 1

cor(df$Quantity, df$Rating)
## [1] -0.0158149

cor(df$Tax, df$gross.income)
## [1] 1
```

Dimensionality Reduction

t- Distributed Stochastic Neighbour Embedding(t-SNE)

library(Rtsne)

#Curating the database for analysis.

```
Labels <- df$Product.line
df$Product.line <- as.factor(df$Product.line)</pre>
```

#Plotting to see the dimensions.

```
colors = rainbow(length(unique(df$Product.line)))
names(colors) = unique(df$Product.line)
```

#Executing our algorithm on the curated data.

```
tsne <- Rtsne(df[,-5], dims = 2, perplexity=30, verbose=TRUE, max_iter = 500)
## Performing PCA
## Read the 1000 x 50 data matrix successfully!
## OpenMP is working. 1 threads.
## Using no_dims = 2, perplexity = 30.000000, and theta = 0.500000
## Computing input similarities...
## Building tree...
## Done in 0.28 seconds (sparsity = 0.101260)!
## Learning embedding...
## Iteration 50: error is 58.525000 (50 iterations in 0.20 seconds)
## Iteration 100: error is 52.218202 (50 iterations in 0.19 seconds)
## Iteration 150: error is 51.236579 (50 iterations in 0.18 seconds)
## Iteration 200: error is 50.929173 (50 iterations in 0.20 seconds)
## Iteration 250: error is 50.759808 (50 iterations in 0.21 seconds)
## Iteration 300: error is 0.566424 (50 iterations in 0.20 seconds)
## Iteration 350: error is 0.417109 (50 iterations in 0.17 seconds)
## Iteration 400: error is 0.388612 (50 iterations in 0.25 seconds)
## Iteration 450: error is 0.375971 (50 iterations in 0.18 seconds)
## Iteration 500: error is 0.366022 (50 iterations in 0.19 seconds)
## Fitting performed in 1.95 seconds.
```

#Checking the summary of our model.

```
summary(tsne)
                       Length Class Mode
##
## N
                         1
                             -none- numeric
                       2000
## Y
                              -none- numeric
## costs
                       1000
                             -none- numeric
## itercosts
                        10
                             -none- numeric
## origD
                         1
                             -none- numeric
## perplexity
                         1
                             -none- numeric
## theta
                         1
                             -none- numeric
## max iter
                         1
                             -none- numeric
## stop_lying_iter
                         1
                             -none- numeric
## mom switch iter
                         1
                             -none- numeric
## momentum
                         1
                             -none- numeric
## final momentum
                         1 -none- numeric
```

```
## eta 1 -none- numeric
## exaggeration_factor 1 -none- numeric
```

#Plotting our graph and closely examining it.

```
plot(tsne$Y, t='n', main="tsne")
text(tsne$Y, labels=df$Product.line, col=colors[df$Product.line])
```

tsne

Principal Component Analysis (PCA)

#Selecting the numerical data.

```
sales <- df[,c(6:8,12:16)]</pre>
head(sales)
##
     Unit.price Quantity
                                     cogs gross.margin.percentage gross.income
                              Tax
## 1
          74.69
                        7 26.1415 522.83
                                                          4.761905
                                                                         26.1415
## 2
          15.28
                                                          4.761905
                                                                          3.8200
                          3.8200 76.40
## 3
          46.33
                        7 16.2155 324.31
                                                                         16.2155
                                                          4.761905
## 4
          58.22
                        8 23.2880 465.76
                                                          4.761905
                                                                         23.2880
          86.31
                        7 30.2085 604.17
                                                          4.761905
                                                                         30.2085
## 5
## 6
          85.39
                        7 29.8865 597.73
                                                          4.761905
                                                                         29.8865
##
     Rating
               Total
        9.1 548.9715
## 1
## 2
        9.6 80.2200
        7.4 340.5255
## 3
## 4
        8.4 489.0480
```

```
## 5 5.3 634.3785
## 6 4.1 627.6165
```

#We then pass df to the prcomp(). We also set two arguments, center and scale, to be TRUE then preview our object with summary,

```
df.pca \leftarrow prcomp(df[,c(6,7,8,12,14,15,16)], center = TRUE, scale. = TRUE)
summary(df.pca)
## Importance of components:
                             PC1
                                    PC2
                                            PC3
                                                    PC4
                                                              PC5
                                                                        PC6
                          2.2185 1.0002 0.9939 0.30001 2.981e-16 1.493e-16
## Standard deviation
## Proportion of Variance 0.7031 0.1429 0.1411 0.01286 0.000e+00 0.000e+00
## Cumulative Proportion 0.7031 0.8460 0.9871 1.00000 1.000e+00 1.000e+00
                                PC7
## Standard deviation
                          9.831e-17
## Proportion of Variance 0.000e+00
## Cumulative Proportion 1.000e+00
```

#As a result we obtain 7 principal components, each which explain a percentate of the total variation of the dataset. Let's call str() to have a look at our pca model.

```
str(df.pca)
## List of 5
## $ sdev
              : num [1:7] 2.22 1.00 9.94e-01 3.00e-01 2.98e-16 ...
## $ rotation: num [1:7, 1:7] -0.292 -0.325 -0.45 -0.45 -0.45 ...
     ... attr(*, "dimnames")=List of 2
     ....$ : chr [1:7] "Unit.price" "Quantity" "Tax" "cogs" ...
    ....$ : chr [1:7] "PC1" "PC2" "PC3" "PC4" ...
##
    $ center : Named num [1:7] 55.67 5.51 15.38 307.59 15.38 ...
    ... attr(*, "names")= chr [1:7] "Unit.price" "Quantity" "Tax" "cogs" ...
##
            : Named num [1:7] 26.49 2.92 11.71 234.18 11.71 ...
   $ scale
    ... attr(*, "names")= chr [1:7] "Unit.price" "Quantity" "Tax" "cogs" ...
##
##
   $ x
              : num [1:1000, 1:7] -2.005 2.306 -0.186 -1.504 -2.8 ...
##
     ... attr(*, "dimnames")=List of 2
##
     .. ..$ : NULL
     ....$ : chr [1:7] "PC1" "PC2" "PC3" "PC4" ...
## - attr(*, "class")= chr "prcomp"
```

#We will now plot our pca. #Installing our ggbiplot visualization package.

```
library(devtools)

## Loading required package: usethis

install_github("vqv/ggbiplot")

## WARNING: Rtools is required to build R packages, but is not currently installed.
##
```

```
## Please download and install Rtools 4.0 from https://cran.r-
project.org/bin/windows/Rtools/.

## Skipping install of 'ggbiplot' from a github remote, the SHA1 (7325e880)
has not changed since last install.

## Use `force = TRUE` to force installation
```

#Loading our ggbiplot library

```
library(ggbiplot)
## Loading required package: ggplot2
## Loading required package: plyr
## Loading required package: scales
## Loading required package: grid
ggbiplot(df.pca)
```


#From the graph, we see that gross income, quantity,unit price and the ratings are important factors in this analysis.

#PC1 explains 70.3% of the total variance, which means that nearly two-thirds of the information in the dataset (7 variables) can be encapsulated by just that one Principal Component. PC2 explains 14.3%% of the variance. Adding more detail to the plot, we provide arguments rownames as labels.

ggbiplot(df.pca, obs.scale = 1, var.scale = 1)

#Let's now plot PC3 and PC4.

ggbiplot(df.pca,ellipse=TRUE,choices=c(3,4))

#From the graph we see that PC3 explains 14.1% of the variance while PC4 explains 1.3% of the total variance.

#Quantity, Rating, Unit Price and Gross income are the most important features in this analysis. * PCA gives better insights over t-SNE for this kind of analysis so Carrefour should implement this algorithm when performing dimensionality reduction. * When coming up with a marketing strategy, promotions, discounts or adverts, the team should take into consideration the unit price of the commodities, their quantity, the ratings given and thecustomer's gross income to come up with their business strategies.

Part 2

Feature Selection

These methods apply a metric to assign a scoring to each feature. The features would then be ranked by the score. We will use the findCorrelation function included in the caret package to create a subset of variables. This function will allow us to remove redundancy by correlation using the given dataset. Since we are working with a correlation matrix, we'll only use the numerical variables.

```
df2 <- df[,c(6,7,8,12,14,15,16)]
head(df2)
     Unit.price Quantity
                                   cogs gross.income Rating
##
                                                                Total
                             Tax
## 1
          74.69
                       7 26.1415 522.83
                                             26.1415
                                                         9.1 548.9715
## 2
          15.28
                         3.8200 76.40
                                              3.8200
                                                         9.6
                                                            80.2200
## 3
          46.33
                       7 16.2155 324.31
                                             16.2155
                                                        7.4 340.5255
```

```
## 4 58.22 8 23.2880 465.76 23.2880 8.4 489.0480
## 5 86.31 7 30.2085 604.17 30.2085 5.3 634.3785
## 6 85.39 7 29.8865 597.73 29.8865 4.1 627.6165
```

Loading the caret package

Installing the corrplot package for correlation.

Getting the correlation matrix

```
corrmatrix <- cor(df2)</pre>
corrmatrix
##
                 Unit.price
                               Quantity
                                               Tax
                                                         cogs gross.income
## Unit.price
                1.000000000 0.01077756
                                         0.6339621
                                                    0.6339621
                                                                 0.6339621
## Quantity
                0.010777564 1.00000000
                                         0.7055102
                                                    0.7055102
                                                                 0.7055102
## Tax
                0.633962089 0.70551019
                                         1.0000000
                                                    1.0000000
                                                                 1.0000000
## cogs
                0.633962089
                             0.70551019
                                         1.0000000
                                                    1.0000000
                                                                 1.0000000
## gross.income 0.633962089 0.70551019
                                         1.0000000
                                                    1.0000000
                                                                 1.0000000
                -0.008777507 -0.01581490 -0.0364417 -0.0364417
## Rating
                                                                 -0.0364417
## Total
                0.633962089 0.70551019
                                                                 1.0000000
                                         1.0000000
                                                    1.0000000
##
                                 Total
                      Rating
## Unit.price -0.008777507 0.6339621
## Quantity
               -0.015814905 0.7055102
## Tax
                -0.036441705
                             1.0000000
## cogs
               -0.036441705 1.0000000
## gross.income -0.036441705 1.0000000
                1.000000000 -0.0364417
## Rating
## Total
                -0.036441705 1.0000000
```

Finding variables that are highly correlated

```
highlyCorrelated <- findCorrelation(corrmatrix, cutoff=0.75)
highlyCorrelated
## [1] 4 7 3</pre>
```

Getting the names of the variables

```
names(df2[,highlyCorrelated])
```

```
## [1] "cogs" "Total" "Tax"
```

From our output, the cogs, total and tax columns have the highest correlations.

Removing redundant features

```
df3<-df2[-highlyCorrelated]</pre>
df3
##
        Unit.price Quantity gross.income Rating
## 1
              74.69
                                    26.1415
                                                 9.1
                             5
## 2
              15.28
                                      3.8200
                                                 9.6
                            7
              46.33
## 3
                                    16.2155
                                                 7.4
## 4
              58.22
                            8
                                    23.2880
                                                 8.4
## 5
              86.31
                            7
                                    30.2085
                                                 5.3
                            7
## 6
              85.39
                                                 4.1
                                    29.8865
## 7
              68.84
                            6
                                    20.6520
                                                 5.8
## 8
              73.56
                           10
                                                 8.0
                                    36.7800
                            2
## 9
              36.26
                                      3.6260
                                                 7.2
## 10
              54.84
                            3
                                     8.2260
                                                 5.9
## 11
              14.48
                            4
                                      2.8960
                                                4.5
## 12
              25.51
                            4
                                     5.1020
                                                 6.8
## 13
              46.95
                            5
                                    11.7375
                                                 7.1
## 14
              43.19
                           10
                                    21.5950
                                                 8.2
## 15
              71.38
                           10
                                                 5.7
                                    35.6900
## 16
              93.72
                            6
                                    28.1160
                                                4.5
                            7
## 17
              68.93
                                    24.1255
                                                4.6
              72.61
                                                 6.9
## 18
                            6
                                    21.7830
## 19
              54.67
                            3
                                     8.2005
                                                 8.6
                            2
## 20
              40.30
                                     4.0300
                                                 4.4
## 21
              86.04
                            5
                                                4.8
                                    21.5100
## 22
              87.98
                            3
                                                 5.1
                                    13.1970
                            2
## 23
              33.20
                                      3.3200
                                                 4.4
## 24
                            5
                                                 9.9
              34.56
                                     8.6400
## 25
              88.63
                            3
                                    13.2945
                                                 6.0
                            8
## 26
              52.59
                                    21.0360
                                                 8.5
              33.52
## 27
                            1
                                      1.6760
                                                 6.7
## 28
              87.67
                            2
                                     8.7670
                                                 7.7
## 29
              88.36
                             5
                                                 9.6
                                    22.0900
                            9
## 30
              24.89
                                                 7.4
                                    11.2005
## 31
              94.13
                            5
                                                 4.8
                                    23.5325
              78.07
                            9
                                                 4.5
## 32
                                    35.1315
## 33
              83.78
                            8
                                                 5.1
                                    33.5120
                            2
## 34
              96.58
                                     9.6580
                                                 5.1
              99.42
                            4
                                                 7.5
## 35
                                    19.8840
## 36
              68.12
                            1
                                      3.4060
                                                 6.8
## 37
              62.62
                            5
                                    15.6550
                                                 7.0
                            9
## 38
                                                4.7
              60.88
                                    27.3960
                            8
## 39
              54.92
                                    21.9680
                                                 7.6
                            8
## 40
              30.12
                                                 7.7
                                    12.0480
                            1
## 41
              86.72
                                     4.3360
                                                 7.9
```

##	42	56.11	2	5.6110	6.3
##	43	69.12	6	20.7360	5.6
##	44	98.70	8	39.4800	7.6
##	45	15.37	2	1.5370	7.2
##	46	93.96	4	18.7920	9.5
##	47	56.69	9	25.5105	8.4
##	48	20.01	9	9.0045	4.1
##	49	18.93	6	5.6790	8.1
##	50	82.63	10	41.3150	7.9
##		91.40	7	31.9900	9.5
##		44.59	5	11.1475	8.5
##		17.87	4	3.5740	6.5
##		15.43	1	0.7715	6.1
##		16.16	2	1.6160	6.5
##		85.98	8	34.3920	8.2
##			2	4.4340	5.8
		44.34			
##		89.60	8	35.8400	6.6
##		72.35	10	36.1750	5.4
##		30.61	6	9.1830	9.3
##		24.74	3	3.7110	10.0
##		55.73	6	16.7190	7.0
##		55.07	9	24.7815	10.0
##	64	15.81	10	7.9050	8.6
##	65	75.74	4	15.1480	7.6
##	66	15.87	10	7.9350	5.8
##	67	33.47	2	3.3470	6.7
##		97.61	6	29.2830	9.9
##		78.77	10	39.3850	6.4
##		18.33	1	0.9165	4.3
##		89.48	10	44.7400	9.6
##		62.12	10	31.0600	5.9
##		48.52	3	7.2780	4.0
##		75.91	6	22.7730	8.7
##		74.67	9	33.6015	9.4
##		41.65	10	20.8250	5.4
##		49.04	9	22.0680	8.6
##		20.01	9	9.0045	5.7
##		78.31	10	39.1550	6.6
##		20.38	5	5.0950	6.0
##	81	99.19	6	29.7570	5.5
##	82	96.68	3	14.5020	6.4
##	83	19.25	8	7.7000	6.6
##	84	80.36	4	16.0720	8.3
##		48.91	5	12.2275	6.6
##		83.06	7	29.0710	4.0
##		76.52	5	19.1300	9.9
##		49.38	7	17.2830	7.3
##		42.47	1	2.1235	5.7
##		76.99	6	23.0970	6.1
##	ЭT	47.38	4	9.4760	7.1

##	92	44.86	10	22.4300	8.2
##	93	21.98	7	7.6930	5.1
##	94	64.36	9	28.9620	8.6
##	95	89.75	1	4.4875	6.6
##	96	97.16	1	4.8580	7.2
##	97	87.87	10	43.9350	5.1
##	98	12.45	6	3.7350	4.1
##	99	52.75	3	7.9125	9.3
##	100	82.70	6	24.8100	7.4
##	101	48.71	1	2.4355	4.1
	102	78.55	9	35.3475	7.2
##	103	23.07	9	10.3815	4.9
	104	58.26	6	17.4780	9.9
	105	30.35	7	10.6225	8.0
	106	88.67	10	44.3350	7.3
	107	27.38	6	8.2140	7.9
	108	62.13	6	18.6390	7.4
	109	33.98	9	15.2910	4.2
	110	81.97	10	40.9850	9.2
	111	16.49	2	1.6490	4.6
	112	98.21	3	14.7315	7.8
	113	72.84	7	25.4940	8.4
	114	58.07	9	26.1315	4.3
	115	80.79	9	36.3555	9.5
	116	27.02	3	4.0530	7.1
	117				5.3
		21.94	5 1	5.4850	
	118	51.36	1	2.5680	5.2
	119	10.96	10	5.4800	6.0
	120	53.44	2	5.3440	4.1
	121	99.56	8	39.8240	5.2
	122	57.12	7	19.9920	6.5
	123	99.96	9	44.9820	4.2
	124	63.91	8	25.5640	4.6
	125	56.47	8	22.5880	7.3
	126	93.69	7	32.7915	4.5
##	127	32.25	5	8.0625	9.0
##	128	31.73	9	14.2785	5.9
##	129	68.54	8	27.4160	8.5
##	130	90.28	9	40.6260	7.2
##	131	39.62	7	13.8670	7.5
	132	92.13	6	27.6390	8.3
	133	34.84	4	6.9680	7.4
	134	87.45	6	26.2350	8.8
	135	81.30	6	24.3900	5.3
	136	90.22	3	13.5330	6.2
	137	26.31	5	6.5775	8.8
	138	34.42	6	10.3260	9.8
	139	51.91	10	25.9550	8.2
	140	72.50	8	29.0000	9.2
##	141	89.80	10	44.9000	5.4

					-
	142	90.50	10	45.2500	8.1
	143	68.60	10	34.3000	9.1
	144	30.41	1	1.5205	8.4
	145	77.95	6	23.3850	8.0
	146	46.26	6	13.8780	9.5
	147	30.14	10	15.0700	9.2
##	148	66.14	4	13.2280	5.6
##	149	71.86	8	28.7440	6.2
##	150	32.46	8	12.9840	4.9
##	151	91.54	4	18.3080	4.8
	152	34.56	7	12.0960	7.3
	153	83.24	9	37.4580	7.4
	154	16.48	6	4.9440	9.9
	155	80.97	8	32.3880	9.3
	156	92.29	5	23.0725	9.0
	157	72.17	1	3.6085	6.1
	158	50.28	5	12.5700	9.7
	159	97.22	9	43.7490	6.0
	160	93.39	6	28.0170	10.0
	161	43.18	8	17.2720	8.3
	162		1		6.0
		63.69	7	3.1845	
	163	45.79		16.0265	7.0
	164	76.40	2	7.6400	6.5
	165	39.90	10	19.9500	5.9
	166	42.57	8	17.0280	5.6
	167	95.58	10	47.7900	4.8
	168	98.98	10	49.4900	8.7
	169	51.28	6	15.3840	6.5
	170	69.52	7	24.3320	8.5
	171	70.01	5	17.5025	5.5
##	172	80.05	5	20.0125	9.4
##	173	20.85	8	8.3400	6.3
##	174	52.89	6	15.8670	9.8
	175	19.79	8	7.9160	8.7
	176	33.84	9	15.2280	8.8
	177	22.17	8	8.8680	9.6
	178	22.51	7	7.8785	4.8
	179	73.88	6	22.1640	4.4
	180	86.80	3	13.0200	9.9
			5 7		
	181	64.26		22.4910	5.7
	182	38.47	8	15.3880	7.7
	183	15.50	10	7.7500	8.0
	184	34.31	8	13.7240	5.7
	185	12.34	7	4.3190	6.7
	186	18.08	3	2.7120	8.0
	187	94.49	8	37.7960	7.5
	188	46.47	4	9.2940	7.0
##	189	74.07	1	3.7035	9.9
##	190	69.81	4	13.9620	5.9
##	191	77.04	3	11.5560	7.2

## 192						
## 194						
## 195						
## 196						
## 197					8.1775	
## 198	##	196	74.29		3.7145	5.0
## 199	##	197	43.70	2	4.3700	4.9
## 200	##	198	25.29	1	1.2645	6.1
## 201	##	199	41.50	4	8.3000	8.2
## 202	##	200	71.39	5	17.8475	5.5
## 202	##	201	19.15	6	5.7450	6.8
## 203	##	202				
## 204						
## 205						
## 206						
## 207						
## 208						
## 209						
## 210						
## 211						
## 212						
## 213						
## 214						
## 215						
## 216						
## 217						
## 218						
## 219 94.87 8 37.9480 8.7 ## 220 57.34 3 8.6010 7.9 ## 221 45.35 6 13.6050 6.1 ## 222 62.08 7 21.7280 5.4 ## 223 11.81 5 2.9525 9.4 ## 224 12.54 1 0.6270 8.2 ## 225 43.25 2 4.3250 6.2 ## 226 87.16 2 8.7160 9.7 ## 227 69.37 9 31.2165 4.0 ## 228 37.06 4 7.4120 9.7 ## 229 90.70 6 27.2100 5.3 ## 230 63.42 8 25.3680 7.4 ## 231 81.37 2 8.1370 6.5 ## 232 10.59 3 1.5885 8.7 ## 233 84.09 9 37.8405 8.0 ## 234 73.82 4 14.7640 6.7 ## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 220 57.34 3 8.6010 7.9 ## 221 45.35 6 13.6050 6.1 ## 222 62.08 7 21.7280 5.4 ## 223 11.81 5 2.9525 9.4 ## 224 12.54 1 0.6270 8.2 ## 225 43.25 2 4.3250 6.2 ## 227 69.37 9 31.2165 4.0 ## 228 37.06 4 7.4120 9.7 ## 229 90.70 6 27.2100 5.3 ## 230 63.42 8 25.3680 7.4 ## 231 81.37 2 8.1370 6.5 ## 232 10.59 3 1.5885 8.7 ## 233 84.09 9 37.8405 8.0 ## 234 73.82 4 14.7640 6.7 ## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 221						
## 222 62.08 7 21.7280 5.4 ## 223 11.81 5 2.9525 9.4 ## 224 12.54 1 0.6270 8.2 ## 225 43.25 2 4.3250 6.2 ## 226 87.16 2 8.7160 9.7 ## 227 69.37 9 31.2165 4.0 ## 228 37.06 4 7.4120 9.7 ## 229 90.70 6 27.2100 5.3 ## 230 63.42 8 25.3680 7.4 ## 231 81.37 2 8.1370 6.5 ## 232 10.59 3 1.5885 8.7 ## 233 84.09 9 37.8405 8.0 ## 234 73.82 4 14.7640 6.7 ## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 223						
## 224						
## 225	##	223	11.81		2.9525	9.4
## 226	##	224	12.54	1	0.6270	8.2
## 226	##	225	43.25	2	4.3250	6.2
## 227 69.37 9 31.2165 4.0 ## 228 37.06 4 7.4120 9.7 ## 229 90.70 6 27.2100 5.3 ## 230 63.42 8 25.3680 7.4 ## 231 81.37 2 8.1370 6.5 ## 232 10.59 3 1.5885 8.7 ## 233 84.09 9 37.8405 8.0 ## 234 73.82 4 14.7640 6.7 ## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9	##	226				
## 228						
## 229 90.70 6 27.2100 5.3 ## 230 63.42 8 25.3680 7.4 ## 231 81.37 2 8.1370 6.5 ## 232 10.59 3 1.5885 8.7 ## 233 84.09 9 37.8405 8.0 ## 234 73.82 4 14.7640 6.7 ## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 230 63.42 8 25.3680 7.4 ## 231 81.37 2 8.1370 6.5 ## 232 10.59 3 1.5885 8.7 ## 233 84.09 9 37.8405 8.0 ## 234 73.82 4 14.7640 6.7 ## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 231						
## 232						
## 233 84.09 9 37.8405 8.0 ## 234 73.82 4 14.7640 6.7 ## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 234 73.82 4 14.7640 6.7 ## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 235 51.94 10 25.9700 6.5 ## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 236 93.14 2 9.3140 4.1 ## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 237 17.41 5 4.3525 4.9 ## 238 44.22 5 11.0550 8.6 ## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 238						
## 239 13.22 5 3.3050 4.3 ## 240 89.69 1 4.4845 4.9						
## 240 89.69 1 4.4845 4.9						
## 241 24.94 9 11.2230 5.6						
	##	241	24.94	9	11.2230	5.6

	242	59.77	2	5.9770	5.8
	243	93.20	2	9.3200	6.0
##	244	62.65	4	12.5300	4.2
##	245	93.87	8	37.5480	8.3
##	246	47.59	8	19.0360	5.7
##	247	81.40	3	12.2100	4.8
##	248	17.94	5	4.4850	6.8
##	249	77.72	4	15.5440	8.8
##	250	73.06	7	25.5710	4.2
##	251	46.55	9	20.9475	6.4
##	252	35.19	10	17.5950	8.4
	253	14.39	2	1.4390	7.2
	254	23.75	4	4.7500	5.2
	255	58.90	8	23.5600	8.9
	256	32.62	4	6.5240	9.0
	257	66.35	1	3.3175	9.7
	258	25.91	6	7.7730	8.7
	259	32.25	4	6.4500	6.5
	260	65.94	4	13.1880	6.9
	261	75.06	9	33.7770	6.2
	262	16.45	4	3.2900	5.6
	263	38.30	4	7.6600	5.7
	264	22.24		11.1200	4.2
			10		
	265	54.45	1	2.7225	7.9
	266	98.40	7	34.4400	8.7
	267	35.47	4	7.0940	6.9
	268	74.60	10	37.3000	9.5
	269	70.74	4	14.1480	4.4
	270	35.54	10	17.7700	7.0
	271	67.43	5	16.8575	6.3
	272	21.12	2	2.1120	9.7
	273	21.54	9	9.6930	8.8
	274	12.03	2	1.2030	5.1
##	275	99.71	6	29.9130	7.9
##	276	47.97	7	16.7895	6.2
##	277	21.82	10	10.9100	7.1
##	278	95.42	4	19.0840	6.4
##	279	70.99	10	35.4950	5.7
	280	44.02	10	22.0100	9.6
	281	69.96	8	27.9840	6.4
	282	37.00	1	1.8500	7.9
	283	15.34	1	0.7670	6.5
	284	99.83	6	29.9490	8.5
	285	47.67	4	9.5340	9.1
	286	66.68	5	16.6700	7.6
	287	74.86	1	3.7430	6.9
	288		9	10.6875	9.5
		23.75			
	289	48.51	7	16.9785	5.2
	290	94.88	7	33.2080	4.2
##	291	40.30	10	20.1500	7.0

##	292	27.85	7	9.7475	6.0
##	293	62.48	1	3.1240	4.7
##	294	36.36	2	3.6360	7.1
##	295	18.11	10	9.0550	5.9
##	296	51.92	5	12.9800	7.5
##	297	28.84	4	5.7680	6.4
##	298	78.38	6	23.5140	5.8
##	299	60.01	4	12.0020	4.5
##	300	88.61	1	4.4305	7.7
##	301	99.82	2	9.9820	6.7
##	302	39.01	1	1.9505	4.7
##	303	48.61	1	2.4305	4.4
##	304	51.19	4	10.2380	4.7
##	305	14.96	8	5.9840	8.6
##	306	72.20	7	25.2700	4.3
##	307	40.23	7	14.0805	9.6
	308	88.79	8	35.5160	4.1
	309	26.48	3	3.9720	4.7
	310	81.91	2	8.1910	7.8
	311	79.93	6	23.9790	5.5
	312	69.33	2	6.9330	9.7
	313	14.23	5	3.5575	4.4
	314	15.55	9	6.9975	5.0
	315	78.13	10	39.0650	4.4
	316	99.37	2	9.9370	5.2
	317	21.08	3	3.1620	7.3
	318	74.79	5	18.6975	4.9
	319	29.67	7	10.3845	8.1
	320	44.07	4	8.8140	8.4
	321	22.93	9	10.3185	5.5
	322	39.42	1	1.9710	8.4
	323	15.26	6	4.5780	9.8
	324	61.77	5	15.4425	6.7
	325	21.52	6	6.4560	9.4
	325		4	19.5480	
		97.74			6.4
	327	99.78	5	24.9450	5.4
	328	94.26	4	18.8520	8.6
	329	51.13	4	10.2260	4.0
	330	36.36	4	7.2720	7.6
	331	22.02	9	9.9090	6.8
	332	32.90	3	4.9350	9.1
	333	77.02	5	19.2550	5.5
	334	23.48	2	2.3480	7.9
	335	14.70	5	3.6750	8.5
	336	28.45	5	7.1125	9.1
	337	76.40	9	34.3800	7.5
##	338	57.95	6	17.3850	5.2
##	339	47.65	3	7.1475	9.5
##	340	42.82	9	19.2690	8.9
##	341	48.09	3	7.2135	7.8

	342	55.97	7	19.5895	8.9
	343	76.90	7	26.9150	7.7
##	344	97.03	5	24.2575	9.3
##	345	44.65	3	6.6975	6.2
##	346	77.93	9	35.0685	7.6
##	347	71.95	1	3.5975	7.3
##	348	89.25	8	35.7000	4.7
##	349	26.02	7	9.1070	5.1
##	350	13.50	10	6.7500	4.8
	351	99.30	10	49.6500	6.6
	352	51.69	7	18.0915	5.5
	353	54.73	7	19.1555	8.5
	354	27.00	9	12.1500	4.8
	355	30.24	1	1.5120	8.4
	356	89.14	4	17.8280	7.8
	357	37.55	10	18.7750	9.3
	358	95.44	10	47.7200	5.2
	359	27.50	3	4.1250	6.5
	360	74.97	1	3.7485	5.6
	361	80.96	8	32.3840	7.4
	362	94.47	8	37.7880	9.1
	363	99.79	2	9.9790	8.0
	364	73.22	6	21.9660	7.2
	365	41.24	4	8.2480	7.1
	366	81.68	4	16.3360	9.1
	367	51.32	9	23.0940	5.6
##	368	65.94	4	13.1880	6.0
##	369	14.36	10	7.1800	5.4
##	370	21.50	9	9.6750	7.8
##	371	26.26	7	9.1910	9.9
	372	60.96	2	6.0960	4.9
	373	70.11	6	21.0330	5.2
	374	42.08	6	12.6240	8.9
	375	67.09	5	16.7725	9.1
	376	96.70	5	24.1750	7.0
	377	35.38	9	15.9210	9.6
	378	95.49	9 7	33.4215	8.7
	379	96.98	4	19.3960	9.4
	380	23.65	4	4.7300	4.0
	381	82.33	4	16.4660	7.5
	382	26.61	2	2.6610	4.2
	383	99.69	5	24.9225	9.9
	384	74.89	4	14.9780	4.2
##	385	40.94	5	10.2350	9.9
##	386	75.82	1	3.7910	5.8
##	387	46.77	6	14.0310	6.0
##	388	32.32	10	16.1600	10.0
##	389	54.07	9	24.3315	9.5
	390	18.22	7	6.3770	6.6
	391	80.48	3	12.0720	8.1

.,					
	392	37.95	10	18.9750	9.7
	393	76.82	1	3.8410	7.2
	394	52.26	10	26.1300	6.2
	395	79.74	1	3.9870	7.3
	396	77.50	5	19.3750	4.3
##	397	54.27	5	13.5675	4.6
##	398	13.59	9	6.1155	5.8
##	399	41.06	6	12.3180	8.3
##	400	19.24	9	8.6580	8.0
	401	39.43	6	11.8290	9.4
	402	46.22	4	9.2440	6.2
	403	13.98	1	0.6990	9.8
	404	39.75	5	9.9375	9.6
	405	97.79	7	34.2265	4.9
	406	67.26	4	13.4520	8.0
	407	13.79	5	3.4475	7.8
	407	68.71	4		4.1
				13.7420	
	409	56.53	4	11.3060	5.5
	410	23.82	5	5.9550	5.4
	411	34.21	10	17.1050	5.1
	412	21.87	2	2.1870	6.9
	413	20.97	5	5.2425	7.8
	414	25.84	3	3.8760	6.6
	415	50.93	8	20.3720	9.2
##	416	96.11	1	4.8055	7.8
##	417	45.38	4	9.0760	8.7
##	418	81.51	1	4.0755	9.2
##	419	57.22	2	5.7220	8.3
	420	25.22	7	8.8270	8.2
	421	38.60	3	5.7900	7.5
	422	84.05	3	12.6075	9.8
	423	97.21	10	48.6050	8.7
	424	25.42	8	10.1680	6.7
	424				
		16.28	1	0.8140	5.0
	426	40.61	9	18.2745	7.0
	427	53.17	7	18.6095	8.9
	428	20.87	3	3.1305	8.0
	429	67.27	5	16.8175	6.9
	430	90.65	10	45.3250	7.3
	431	69.08	2	6.9080	6.9
##	432	43.27	2	4.3270	5.7
##	433	23.46	6	7.0380	6.4
##	434	95.54	7	33.4390	9.6
	435	47.44	1	2.3720	6.8
	436	99.24	9	44.6580	9.0
	437	82.93	4	16.5860	9.6
	438	33.99	6	10.1970	7.7
	439	17.04	4	3.4080	7.0
	440				
		40.86	8	16.3440	6.5
##	441	17.44	5	4.3600	8.1

		00.15	_	25 252	
	442	88.43	8	35.3720	4.3
	443	89.21	9	40.1445	6.5
	444	12.78	1	0.6390	9.5
	445	19.10	7	6.6850	9.7
##	446	19.15	1	0.9575	9.5
##	447	27.66	10	13.8300	8.9
##	448	45.74	3	6.8610	6.5
##	449	27.07	1	1.3535	5.3
##	450	39.12	1	1.9560	9.6
	451	74.71	6	22.4130	6.7
	452	22.01	6	6.6030	7.6
	453	63.61	5	15.9025	4.8
	454	25.00	1	1.2500	5.5
	455	20.77	4	4.1540	4.7
	456	29.56	5	7.3900	6.9
			9		
	457 450	77.40		34.8300	4.5
	458	79.39	10	39.6950	6.2
	459	46.57	10	23.2850	7.6
	460	35.89	1	1.7945	7.9
	461	40.52	5	10.1300	4.5
	462	73.05	10	36.5250	8.7
	463	73.95	4	14.7900	6.1
	464	22.62	1	1.1310	6.4
##	465	51.34	5	12.8350	9.1
##	466	54.55	10	27.2750	7.1
##	467	37.15	7	13.0025	7.7
	468	37.02	6	11.1060	4.5
	469	21.58	1	1.0790	7.2
	470	98.84	1	4.9420	8.4
	471	83.77	6	25.1310	5.4
	472	40.05	4	8.0100	9.7
	472		10	21.5650	5.5
		43.13			
	474	72.57	8	29.0280	4.6
	475	64.44	5	16.1100	6.6
	476	65.18	3	9.7770	6.3
	477	33.26	5	8.3150	4.2
	478	84.07	4	16.8140	4.4
##	479	34.37	10	17.1850	6.7
##	480	38.60	1	1.9300	6.7
##	481	65.97	8	26.3880	8.4
##	482	32.80	10	16.4000	6.2
	483	37.14	5	9.2850	5.0
	484	60.38	10	30.1900	6.0
	485	36.98	10	18.4900	7.0
	486	49.49	4	9.8980	6.6
	487		10		
		41.09		20.5450	7.3
	488	37.15	4	7.4300	8.3
	489	22.96	1	1.1480	4.3
	490	77.68	9	34.9560	9.8
##	491	34.70	2	3.4700	8.2

	492	19.66	10	9.8300	7.2
	493	25.32	8	10.1280	8.7
	494	12.12	10	6.0600	8.4
	495	99.89	2	9.9890	7.1
	496	75.92	8	30.3680	5.5
	497	63.22	2	6.3220	8.5
##	498	90.24	6	27.0720	6.2
##	499	98.13	1	4.9065	8.9
##	500	51.52	8	20.6080	9.6
##	501	73.97	1	3.6985	5.4
##	502	31.90	1	1.5950	9.1
##	503	69.40	2	6.9400	9.0
	504	93.31	2	9.3310	6.3
	505	88.45	1	4.4225	9.5
	506	24.18	8	9.6720	9.8
	507	48.50	3	7.2750	6.7
	508	84.05	6	25.2150	7.7
	509	61.29	5	15.3225	7.0
	510	15.95	6	4.7850	5.1
	511	90.74	7	31.7590	6.2
	512	42.91	5	10.7275	6.1
	513	54.28	7	18.9980	9.3
	514	99.55	7		7.6
				34.8425	
	515 516	58.39	7	20.4365	8.2
	516	51.47	1	2.5735	8.5
	517	54.86	5	13.7150	9.8
	518	39.39	5	9.8475	8.7
	519	34.73	2	3.4730	9.7
	520	71.92	5	17.9800	4.3
	521	45.71	3	6.8565	7.7
	522	83.17	6	24.9510	7.3
	523	37.44	6	11.2320	5.9
	524	62.87	2	6.2870	5.0
	525	81.71	6	24.5130	8.0
##	526	91.41	5	22.8525	7.1
##	527	39.21	4	7.8420	9.0
##	528	59.86	2	5.9860	6.7
##	529	54.36	10	27.1800	6.1
	530	98.09	9	44.1405	9.3
	531	25.43	6	7.6290	7.0
	532	86.68	8	34.6720	7.2
	533	22.95	10	11.4750	8.2
	534	16.31	9	7.3395	8.4
	535	28.32	5	7.0800	6.2
	536	16.67	7	5.8345	7.4
	537	73.96	1	3.6980	7.4 5.0
	538	97.94	1	4.8970	6.9
	539				
		73.05	4	14.6100	4.9
	540	87.48	6	26.2440	5.1
##	541	30.68	3	4.6020	9.1

	542	75.88	1	3.7940	7.1
	543	20.18	4	4.0360	5.0
	544	18.77	6	5.6310	5.5
	545	71.20	1	3.5600	9.2
##	546	38.81	4	7.7620	4.9
##	547	29.42	10	14.7100	8.9
##	548	60.95	9	27.4275	6.0
##	549	51.54	5	12.8850	4.2
##	550	66.06	6	19.8180	7.3
	551	57.27	3	8.5905	6.5
	552	54.31	9	24.4395	8.9
	553	58.24	9	26.2080	9.7
	554	22.21	6	6.6630	8.6
	555	19.32	7	6.7620	6.9
	556	37.48	3	5.6220	7.7
	557	72.04	2	7.2040	9.5
	558	98.52	10		4.5
				49.2600	
	559	41.66	6	12.4980	5.6
	560	72.42	3	10.8630	8.2
	561	21.58	9	9.7110	7.3
	562	89.20	10	44.6000	4.4
	563	42.42	8	16.9680	5.7
	564	74.51	6	22.3530	5.0
	565	99.25	2	9.9250	9.0
##	566	81.21	10	40.6050	6.3
##	567	49.33	10	24.6650	9.4
##	568	65.74	9	29.5830	7.7
	569	79.86	7	27.9510	5.5
	570	73.98	7	25.8930	4.1
	571	82.04	5	20.5100	7.6
	572	26.67	10	13.3350	8.6
	573	10.13	7	3.5455	8.3
	574	72.39	2	7.2390	8.1
	575	85.91	5	21.4775	8.6
	576	81.31	5 7	28.4585	
					6.3
	577	60.30	4	12.0600	5.8
	578	31.77	4	6.3540	6.2
	579	64.27	4	12.8540	7.7
	580	69.51	2	6.9510	8.1
	581	27.22	3	4.0830	7.3
	582	77.68	4	15.5360	8.4
##	583	92.98	2	9.2980	8.0
##	584	18.08	4	3.6160	9.5
##	585	63.06	3	9.4590	7.0
	586	51.71	4	10.3420	9.8
	587	52.34	3	7.8510	9.2
	588	43.06	5	10.7650	7.7
	589	59.61	10	29.8050	5.3
	590	14.62	5	3.6550	4.4
			6		
##	591	46.53	Ö	13.9590	4.3

	592	24.24	7	8.4840	9.4
	593	45.58	1	2.2790	9.8
##	594	75.20	3	11.2800	4.8
##	595	96.80	3	14.5200	5.3
##	596	14.82	3	2.2230	8.7
##	597	52.20	3	7.8300	9.5
##	598	46.66	9	20.9970	5.3
##	599	36.85	5	9.2125	9.2
##	600	70.32	2	7.0320	9.6
	601	83.08	1	4.1540	6.4
	602	64.99	_ 1	3.2495	4.5
	603	77.56	10	38.7800	6.9
	604	54.51	6	16.3530	7.8
	605	51.89	7	18.1615	4.5
	606	31.75	4	6.3500	8.6
	607	53.65	7	18.7775	5.2
	608	49.79	4	9.9580	6.4
	609	30.61	1	1.5305	5.2
	610	57.89	2	5.7890	8.9
	611	28.96	1	1.4480	6.2
	612	98.97	9	44.5365	6.7
	613	93.22	3	13.9830	7.2
	614	80.93	1	4.0465	9.0
	615	67.45	10	33.7250	4.2
	616	38.72	9	17.4240	4.2
	617	72.60	6	21.7800	6.9
##	618	87.91	5	21.9775	4.4
##	619	98.53	6	29.5590	4.0
##	620	43.46	6	13.0380	8.5
##	621	71.68	3	10.7520	9.2
	622	91.61	1	4.5805	9.8
	623	94.59	7	33.1065	4.9
	624	83.25	10	41.6250	4.4
	625	91.35	1	4.5675	6.8
	626	78.88	2	7.8880	9.1
	627	60.87	2	6.0870	8.7
	628	82.58		41.2900	5.0
			10		
	629	53.30	3	7.9950	7.5
	630	12.09	1	0.6045	8.2
	631	64.19	10	32.0950	6.7
	632	78.31	3	11.7465	5.4
	633	83.77	2	8.3770	7.0
	634	99.70	3	14.9550	4.7
##	635	79.91	3	11.9865	5.0
##	636	66.47	10	33.2350	5.0
##	637	28.95	7	10.1325	6.0
##	638	46.20	1	2.3100	6.3
##	639	17.63	5	4.4075	8.5
	640	52.42	3	7.8630	7.5
	641	98.79	3	14.8185	6.4
					-

				_	
	642	88.55	8	35.4200	4.7
	643	55.67	2	5.5670	6.0
	644	72.52	8	29.0080	4.0
	645	12.05	5	3.0125	5.5
	646	19.36	9	8.7120	8.7
	647	70.21	6	21.0630	7.4
	648	33.63	1	1.6815	5.6
	649	15.49	2	1.5490	6.3
	650	24.74	10	12.3700	7.1
##	651	75.66	5	18.9150	7.8
	652	55.81	6	16.7430	9.9
##	653	72.78	10	36.3900	7.3
##	654	37.32	9	16.7940	5.1
##	655	60.18	4	12.0360	9.4
##	656	15.69	3	2.3535	5.8
##	657	99.69	1	4.9845	8.0
##	658	88.15	3	13.2225	7.9
	659	27.93	5	6.9825	5.9
	660	55.45	1	2.7725	4.9
	661	42.97	3	6.4455	9.3
	662	17.14	7	5.9990	7.9
	663	58.75	6	17.6250	5.9
	664	87.10	10	43.5500	9.9
	665	98.80	2	9.8800	7.7
	666	48.63	4	9.7260	7.6
	667	57.74	3	8.6610	7.7
	668	17.97	4	3.5940	6.4
	669	47.71	6	14.3130	4.4
	670	40.62	2	4.0620	4.1
	671	56.04	10	28.0200	4.1
	672	93.40	2	9.3400	5.5
	673	73.41	3	11.0115	4.0
	674	33.64	8	13.4560	9.3
	675	45.48	10	22.7400	4.8
	676	83.77	2	8.3770	4.6
	677	64.08	7	22.4280	7.3
	678	73.47	4	14.6940	6.0
	679	58.95	10	29.4750	8.1
	680	48.50	6	14.5500	9.4
	681	39.48	1	1.9740	6.5
##	682	34.81	1	1.7405	7.0
##	683	49.32	6	14.7960	7.1
##	684	21.48	2	2.1480	6.6
##	685	23.08	6	6.9240	4.9
	686	49.10	2	4.9100	6.4
	687	64.83	2	6.4830	8.0
	688	63.56	10	31.7800	4.3
	689	72.88	2	7.2880	6.1
	690	67.10	3	10.0650	7.5
	691	70.19	9	31.5855	6.7
пт	J _	,0.10	,	51.5055	0.7

	692	55.04	7	19.2640	5.2
	693	48.63	10	24.3150	8.8
	694	73.38	7	25.6830	9.5
	695	52.60	9	23.6700	7.6
	696	87.37	5	21.8425	6.6
	697	27.04	4	5.4080	6.9
##	698	62.19	4	12.4380	4.3
##	699	69.58	9	31.3110	7.8
##	700	97.50	10	48.7500	8.0
##	701	60.41	8	24.1640	9.6
##	702	32.32	3	4.8480	4.3
##	703	19.77	10	9.8850	5.0
	704	80.47	9	36.2115	9.2
	705	88.39	9	39.7755	6.3
	706	71.77	7	25.1195	8.9
	707	43.00	4	8.6000	7.6
	708	68.98	1	3.4490	4.8
	709	15.62	8	6.2480	9.1
	710	25.70	3	3.8550	6.1
	711	80.62	6	24.1860	9.1
	712	75.53	4	15.1060	8.3
	713	77.63	9	34.9335	7.2
	714	13.85	9	6.2325	6.0
	715	98.70	8	39.4800	8.5
	716	35.68	5	8.9200	6.6
	717	71.46	7	25.0110	4.5
	718	11.94	3	1.7910	8.1
	719	45.38	3	6.8070	7.2
	720	17.48	6	5.2440	6.1
	721	25.56	7	8.9460	7.1
	722	90.63	9	40.7835	5.1
##	723	44.12	3	6.6180	7.9
##	724	36.77	7	12.8695	7.4
##	725	23.34	4	4.6680	7.4
##	726	28.50	8	11.4000	6.6
	727	55.57	3	8.3355	5.9
	728	69.74	10	34.8700	8.9
	729	97.26	4	19.4520	6.8
	730	52.18	7	18.2630	9.3
	731	22.32	4	4.4640	4.4
	732	56.00	3	8.4000	4.8
	732 733	19.70	3 1		9.5
				0.9850	
	734	75.88	7	26.5580	8.9
	735	53.72	1	2.6860	6.4
	736	81.95	10	40.9750	6.0
	737	81.20	7	28.4200	8.1
	738	58.76	10	29.3800	9.0
	739	91.56	8	36.6240	6.0
	740	93.96	9	42.2820	9.8
##	741	55.61	7	19.4635	8.5

	742	84.83	1	4.2415	8.8
	743	71.63	2	7.1630	8.8
	744	37.69	2	3.7690	9.5
##	745	31.67	8	12.6680	5.6
##	746	38.42	1	1.9210	8.6
##	747	65.23	10	32.6150	5.2
##	748	10.53	5	2.6325	5.8
##	749	12.29	9	5.5305	8.0
##	750	81.23	7	28.4305	9.0
	751	22.32	4	4.4640	4.1
	752	27.28	5	6.8200	8.6
	753	17.42	10	8.7100	7.0
	754	73.28	5	18.3200	8.4
	755	84.87	3	12.7305	7.4
	756	97.29	8	38.9160	6.2
	757	35.74	8	14.2960	4.9
	758	96.52	6	28.9560	4.5
	759	18.85	10	9.4250	5.6
	760	55.39	4	11.0780	8.0
	761	77.20	10	38.6000	5.6
	762	72.13	10	36.0650	4.2
	763	63.88	8	25.5520	9.9
	764	10.69	5	2.6725	7.6
##	765	55.50	4	11.1000	6.6
##	766	95.46	8	38.1840	4.7
##	767	76.06	3	11.4090	9.8
##	768	13.69	6	4.1070	6.3
##	769	95.64	4	19.1280	7.9
	770	11.43	6	3.4290	7.7
	771	95.54	4	19.1080	4.5
	772	85.87	7	30.0545	8.0
	773	67.99	7	23.7965	5.7
	774	52.42	1	2.6210	6.3
	775	65.65	2	6.5650	6.0
	775 776				
		28.86	5 7	7.2150	8.0
	777	65.31	7	22.8585	4.2
	778	93.38	1	4.6690	9.6
	779	25.25	5	6.3125	6.1
	780	87.87	9	39.5415	5.6
	781	21.80	8	8.7200	8.3
	782	94.76	4	18.9520	7.8
	783	30.62	1	1.5310	4.1
##	784	44.01	8	17.6040	8.8
##	785	10.16	5	2.5400	4.1
##	786	74.58	7	26.1030	9.0
##	787	71.89	8	28.7560	5.5
	788	10.99	5	2.7475	9.3
	789	60.47	3	9.0705	5.6
	790	58.91	7	20.6185	9.7
	791	46.41	1	2.3205	4.0
ππ	/ / 1	40.41	1	2.3203	4.0

	792	68.55	4	13.7100	9.2
	793	97.37	10	48.6850	4.9
	794	92.60	7	32.4100	9.3
	795	46.61	2	4.6610	6.6
##	796	27.18	2	2.7180	4.3
##	797	60.87	1	3.0435	5.5
##	798	24.49	10	12.2450	8.1
	799	92.78	1	4.6390	9.8
	800	86.69	5	21.6725	9.4
	801	23.01	6	6.9030	7.9
	802	30.20	8	12.0800	5.1
	803	67.39	7	23.5865	6.9
	804	48.96	9	22.0320	8.0
	805	75.59	9	34.0155	8.0
	806	77.47	4	15.4940	4.2
	807	93.18	2	9.3180	8.5
	808	50.23	4	10.0460	9.0
	809	17.75	1	0.8875	8.6
	810	62.18	10	31.0900	6.0
	811	10.75	8	4.3000	6.2
	812	40.26	10	20.1300	5.0
	813	64.97	5	16.2425	6.5
##	814	95.15	1	4.7575	6.0
##	815	48.62	8	19.4480	5.0
##	816	53.21	8	21.2840	5.0
##	817	45.44	7	15.9040	9.2
##	818	33.88	8	13.5520	9.6
	819	96.16	4	19.2320	8.4
	820	47.16	5	11.7900	6.0
	821	52.89	4	10.5780	6.7
	822	47.68	2	4.7680	4.1
	823	10.17	1	0.5085	5.9
	824	68.71	3	10.3065	8.7
	825	60.08	7	21.0280	4.5
	826	22.01	4	4.4020	6.6
	827	72.11	9	32.4495	7.7
	828	41.28	3	6.1920	8.5
	829	64.95	10	32.4750	5.2
	830	74.22	10	37.1100	4.3
##	831	10.56	8	4.2240	7.6
##	832	62.57	4	12.5140	9.5
##	833	11.85	8	4.7400	4.1
##	834	91.30	1	4.5650	9.2
	835	40.73	7	14.2555	5.4
	836	52.38	1	2.6190	5.8
	837	38.54	5	9.6350	5.6
	838	44.63	6	13.3890	5.1
	839	55.87	10	27.9350	5.8
	840				
		29.22	6	8.7660	5.0
##	841	51.94	3	7.7910	7.9

	842	60.30	1	3.0150	6.0
	843	39.47	2	3.9470	5.0
	844	14.87	2	1.4870	8.9
	845	21.32	1	1.0660	5.9
##	846	93.78	3	14.0670	5.9
	847	73.26	1	3.6630	9.7
##	848	22.38	1	1.1190	8.6
##	849	72.88	9	32.7960	4.0
##	850	99.10	6	29.7300	4.2
##	851	74.10	1	3.7050	9.2
##	852	98.48	2	9.8480	9.2
##	853	53.19	7	18.6165	5.0
##	854	52.79	10	26.3950	10.0
##	855	95.95	5	23.9875	8.8
##	856	36.51	9	16.4295	4.2
	857	21.12	8	8.4480	6.3
	858	28.31	4	5.6620	8.2
	859	57.59	6	17.2770	5.1
	860	47.63	9	21.4335	5.0
	861	86.27	1	4.3135	7.0
	862	12.76	2	1.2760	7.8
	863	11.28	9	5.0760	4.3
	864	51.07	7	17.8745	7.0
	865	79.59	3	11.9385	6.6
	866	33.81	3	5.0715	7.3
	867	90.53	8	36.2120	6.5
	868	62.82	2	6.2820	4.9
	869	24.31	3	3.6465	4.3
	870	64.59	4	12.9180	9.3
	871	24.82	7	8.6870	7.1
	872	56.50	1	2.8250	9.6
	873	21.43	10	10.7150	6.2
	874	89.06	6	26.7180	9.9
	875	23.29	4	4.6580	5.9
##	876	65.26	8	26.1040	6.3
##	877	52.35	1	2.6175	4.0
##	878	39.75	1	1.9875	6.1
##	879	90.02	8	36.0080	4.5
##	880	12.10	8	4.8400	8.6
##	881	33.21	10	16.6050	6.0
	882	10.18	8	4.0720	9.5
	883	31.99	10	15.9950	9.9
	884	34.42	6	10.3260	7.5
	885	83.34	2	8.3340	7.6
	886	45.58	7	15.9530	5.0
	887	43.38 87.90	1	4.3950	6.7
	888	73.47	10	36.7350	9.5
	889		8		
		12.19		4.8760	6.8
	890	76.92	10	38.4600	5.6
##	891	83.66	5	20.9150	7.2

			_		_
	892	57.91	8	23.1640	8.1
	893	92.49	5	23.1225	8.6
	894	28.38	5	7.0950	9.4
	895	50.45	6	15.1350	8.9
	896	99.16	8	39.6640	4.2
	897	60.74	7	21.2590	5.0
##	898	47.27	6	14.1810	8.8
##	899	85.60	7	29.9600	5.3
##	900	35.04	9	15.7680	4.6
	901	44.84	9	20.1780	7.5
	902	45.97	4	9.1940	5.1
	903	27.73	5	6.9325	4.2
	904	11.53	7	4.0355	8.1
	905	58.32	2	5.8320	6.0
	906	78.38	4	15.6760	7.9
	907	84.61	10	42.3050	8.8
	908	82.88	5	20.7200	6.6
	909	79.54	2	7.9540	6.2
	910	49.01	10	24.5050	4.2
	911	29.15	3	4.3725	7.3
	912	56.13	4	11.2260	8.6
	913	93.12	8	37.2480	6.8
	914	51.34	8	20.5360	7.6
	915	99.60	3	14.9400	5.8
	916	35.49	6	10.6470	4.1
##	917	42.85	1	2.1425	9.3
##	918	94.67	4	18.9340	6.8
##	919	68.97	3	10.3455	8.7
##	920	26.26	3	3.9390	6.3
	921	35.79	9	16.1055	5.1
	922	16.37	6	4.9110	7.0
	923	12.73	2	1.2730	5.2
	924	83.14	7	29.0990	6.6
	925	35.22	6	10.5660	6.5
	926	13.78	_	2.7560	9.0
	926		4		
		88.31	1	4.4155	5.2
	928	39.62	9	17.8290	6.8
	929	88.25	9	39.7125	7.6
	930	25.31	2	2.5310	7.2
	931	99.92	6	29.9760	7.1
	932	83.35	2	8.3350	9.5
	933	74.44	10	37.2200	5.1
##	934	64.08	7	22.4280	7.6
##	935	63.15	6	18.9450	9.8
##	936	85.72	3	12.8580	5.1
##	937	78.89	7	27.6115	7.5
	938	89.48	5	22.3700	7.4
	939	92.09	3	13.8135	4.2
	940	57.29	6	17.1870	5.9
	941	66.52	4	13.3040	6.9
пπ	J- T ±	00.52	7	10.0040	0.5

	942	99.82	9	44.9190	6.6
	943	45.68	10	22.8400	5.7
	944	50.79	5	12.6975	5.3
	945	10.08	7	3.5280	4.2
##	946	93.88	7	32.8580	7.3
##	947	84.25	2	8.4250	5.3
##	948	53.78	1	2.6890	4.7
##	949	35.81	5	8.9525	7.9
##	950	26.43	8	10.5720	8.9
	951	39.91	3	5.9865	9.3
	952	21.90	3	3.2850	4.7
	953	62.85	4	12.5700	8.7
	954	21.04	4	4.2080	7.6
	955	65.91	6	19.7730	5.7
	956	42.57	7	14.8995	6.8
	957	50.49	9	22.7205	5.4
	958	46.02	6	13.8060	7.1
	959	15.80		7.9000	7.1
			10		
	960	98.66	9	44.3970	8.4
	961	91.98	1	4.5990	9.8
	962	20.89	2	2.0890	9.8
	963	15.50	1	0.7750	7.4
	964	96.82	3	14.5230	6.7
	965	33.33	2	3.3330	6.4
	966	38.27	2	3.8270	5.8
	967	33.30	9	14.9850	7.2
##	968	81.01	3	12.1515	9.3
##	969	15.80	3	2.3700	9.5
##	970	34.49	5	8.6225	9.0
##	971	84.63	10	42.3150	9.0
	972	36.91	7	12.9185	6.7
	973	87.08	7	30.4780	5.5
	974	80.08	3	12.0120	5.4
	975	86.13	2	8.6130	8.2
	976	49.92	2	4.9920	7.0
	977	74.66	4	14.9320	8.5
	978		6	7.9800	4.9
		26.60			
	979	25.45	1	1.2725	5.1
	980	67.77	1	3.3885	6.5
	981	59.59	4	11.9180	9.8
	982	58.15	4	11.6300	8.4
	983	97.48	9	43.8660	7.4
	984	99.96	7	34.9860	6.1
##	985	96.37	7	33.7295	6.0
##	986	63.71	5	15.9275	8.5
##	987	14.76	2	1.4760	4.3
##	988	62.00	8	24.8000	6.2
##	989	82.34	10	41.1700	4.3
	990	75.37	8	30.1480	8.4
	991	56.56	5	14.1400	4.5
		20.30	_		

```
76.60
                                                6.0
## 992
                           10
                                    38.3000
## 993
              58.03
                            2
                                                8.8
                                     5.8030
## 994
              17.49
                           10
                                     8.7450
                                                6.6
              60.95
                                                5.9
## 995
                            1
                                     3.0475
## 996
              40.35
                            1
                                     2.0175
                                                6.2
## 997
              97.38
                           10
                                    48.6900
                                                4.4
## 998
              31.84
                            1
                                     1.5920
                                                7.7
## 999
              65.82
                            1
                                     3.2910
                                                4.1
## 1000
              88.34
                            7
                                    30.9190
                                                6.6
```

Graphical comparison.

```
par(mfrow = c(1, 2))
corrplot(corrmatrix, order = "hclust")
corrplot(cor(df3), order = "hclust")
```


Embedded Methods

We will use the ewkm function from the wskm package. This is a weighted subspace clustering algorithm that is well suited to very high dimensional data.

Loading our wskm package.

```
library(wskm)
suppressWarnings(
   suppressMessages(if
          (!require(cluster, quietly=TRUE))
      install.packages("cluster")))
library("cluster")
#Deploying the function
set.seed(23)
model <- ewkm(df2, 3, lambda=2, maxiter=1000)</pre>
model
## K-means clustering with 3 clusters of sizes 587, 230, 183
## Cluster means:
## Unit.price Quantity
            Tax
                cogs gross.income
                         Rating
  66.22920 6.936968 22.451185 449.02370 22.451185 6.933220 471.47488
## 1
## 2
  38.24948 2.469565 3.249196 64.98391
                   3.249196 6.796087 68.23311
## 3
  43.70607 4.754098 7.941030 158.82060
                   7.941030 7.321311 166.76163
##
## Clustering vector:
  ##
1 2 1
 ##
1 3 1
##
 1 1 2
1 1 1
3 1 2
3 1 1
2 3 3
2 3 1
## [297] 1 1 1 2 1 2 2 3 3 1 1 1 2 3 1 3 2 3 1 3 2 1 1 3 1 2 2 1 3 1 1 1 3 3
1 2 1
1 3 1
1 1 2
1 1 2
1 2 1
2 1 3
```

```
1 3 3
2 1 3
3 1 3
1 2 3
1 1 1
3 3 1
1 1 2
1 1 2
1 2 1
2 1 1
1 2 2
1 2 2
## [1000] 1
##
## Within cluster sum of squares by cluster:
## [1] 53385220.1
      464864.0 342620.4
## (between SS / total SS = 53.4 %)
## Available components:
##
## [1] "cluster"
                     "withinss"
        "centers"
               "totss"
                     "iterations"
## [5] "tot.withinss"
        "betweenss"
               "size"
## [9] "total.iterations" "restarts"
               "weights"
Loading the cluster package.
suppressWarnings(
  suppressMessages(if
```

cluster plot against the 1st 2 principal components.

library("cluster")

install.packages("cluster")))

(!require(cluster, quietly=TRUE))

Cluster Analysis for Supermarket sales

These two components explain 84.6 % of the point variabili

From our plot, we see that the first 2 components explain 84.6 % of the point variability. Weights are calculated for each variable and cluster. They are a measure of the relative importance of each variable with regards to the membership of the observations to that cluster. The weights are incorporated into the distance function, typically reducing the distance for more important variables. Weights remain stored in the model and we can check them as follows:

```
round(model$weights*100,2)
     Unit.price Quantity Tax cogs gross.income Rating Total
##
## 1
                         0
                                   0
                                                    99.99
               0
                             0
                                                               0
               0
## 2
                         0
                            50
                                   0
                                                50
                                                     0.00
## 3
                            50
                                                50
                                                     0.00
```

Feature Ranking

We will use the FSelector Package. This is a package containing functions for selecting attributes from a given dataset.

Loading the required package.`

##3 Conclusion

The most important variables or features are the tax, cogs, gross income, quantity and unit price in determining the sales in the supermarket. * When coming up with a marketing strategy, promotions, discounts or adverts, the team should take into consideration the tax,

unit price of the commodities, their quantity, the ratings given and the customer's gross income to implement the strategies.