General

Write the first 5 terms of the sequence whose general term is given below. Assume the sequence 1. begins with n=1.

$$a_n = \frac{2n+1}{n+3}$$

b)
$$a_n = \frac{n!}{2^n}$$

2. Write the first 5 terms of the sequence defined recursively.

a)
$$a_1 = 12, \ a_{n+1} = \frac{a_n}{2} + 1$$

b)
$$a_1 = 2$$
, $a_2 = 6$, $a_{n+2} = a_{n+1} + 2a_n$

Write a non-recursive formula for the general term, a_n , for each of these sequences. The first term 3. should correspond to n = 1.

a) 1, 4, 7, 10, 13,... b)
$$\frac{1}{4}$$
, $-\frac{2}{9}$, $\frac{3}{16}$, $-\frac{4}{25}$, $\frac{5}{36}$,... c) 1, $\frac{3}{2}$, $\frac{5}{6}$, $\frac{7}{24}$, $\frac{9}{120}$,...

c)
$$1, \frac{3}{2}, \frac{5}{6}, \frac{7}{24}, \frac{9}{120}, \dots$$

Rewrite each of these sums using sigma notation. 4.

a)
$$5+9+13+17+...+85$$

b)
$$\frac{1}{4} + \frac{2}{9} + \frac{3}{16} + \frac{4}{25} + \frac{5}{36} + \dots + \frac{12}{169}$$

c)
$$\frac{2}{3} + \frac{4}{5} + \frac{6}{7} + \frac{8}{9} + \frac{10}{11} + \dots + \frac{20}{21}$$

d)
$$\frac{1}{2} + \frac{2}{4} + \frac{6}{8} + \frac{24}{16} + \frac{120}{32} + \frac{720}{64}$$

5. Evaluate each of the following summations.

a)
$$\sum_{n=0}^{3} \left(\frac{1}{n^2 + 1} \right)$$
 b) $\sum_{i=1}^{4} 2^{3-i}$ c) $\sum_{k=1}^{\infty} 3 \left(\frac{2}{5} \right)^k$

b)
$$\sum_{i=1}^{4} 2^{3-i}$$

$$c) \qquad \sum_{k=1}^{\infty} 3 \left(\frac{2}{5}\right)^k$$

d)
$$\sum_{i=1}^{8} (i^2 - 3i + 2)$$

d)
$$\sum_{i=1}^{8} (i^2 - 3i + 2)$$
 e) $\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} \right)$

Arithmetic Sequences and Series

6. For each of these sequences, determine if it is arithmetic. If it is, find the common difference. In each case, find a formula for the general term, a_n .

b)
$$\frac{2}{3}, \frac{3}{6}, \frac{4}{9}, \frac{5}{12}, \frac{6}{15}, \dots$$

c)
$$-24, -16, -8, 0, 8, \dots$$

7. For an arithmetic sequence, $a_3 = 6$ and $a_5 = 20$. Find a_{19} .

8. For the arithmetic sequence described in #7, find S_{19} , the 19^{th} partial sum.

9. Evaluate each of these sums.

a)
$$\sum_{n=1}^{25} 5n - 2$$

b)
$$\sum_{k=7}^{32} 2k + 3$$

Geometric Sequences and Series

10. For a geometric sequence with $a_1 = 3$ and $r = \sqrt{5}$, find the 6^{th} term.

- 11. For a geometric sequence with $a_2 = 24$ and $a_5 = 3$, find:
 - a) a_{12}

b) find S_5 , the 5th partial sum,.

12. Find:

a)
$$\sum_{k=1}^{10} 2^{k-1}$$

b)
$$\sum_{k=0}^{\infty} 5 \left(\frac{1}{4}\right)^k$$

c)
$$\sum_{n=1}^{\infty} 4(0.2)^n$$

a)
$$\sum_{k=1}^{10} 2^{k-1}$$
 b) $\sum_{k=0}^{\infty} 5 \left(\frac{1}{4}\right)^k$ c) $\sum_{n=1}^{\infty} 4(0.2)^n$ e) $9+6+4+\frac{8}{3}+\dots$

- 13. Rewrite the series $192-96+48-...-\frac{3}{8}$ in summation notation.
- 14. An infinite geometric series converges to 12 and $a_1 = 3$. Find a_3 .

Express 6.434343... as a ratio of integers.

Binomial Theorem

- 16. What is the 3^{rd} term of $(2x+y^2)^6$?
- 17. Find the term containing x^6 in the expansion of $(5x^2 y^{-3})^8$.

General

18. Does the series $\sum_{i=1}^{\infty} (-1)^{i+1} = 1 - 1 + 1 - 1 + 1 - 1 + \dots$ converge? If so, to what does it converge; if not, why not?

Answers

1. a)
$$\frac{3}{4}$$
, $\frac{5}{5}$, $\frac{7}{6}$, $\frac{9}{7}$, $\frac{11}{8}$ b) $\frac{1}{2}$, $\frac{2}{4}$, $\frac{6}{8}$, $\frac{24}{16}$, $\frac{120}{32}$

2. a)
$$12, 7, \frac{9}{2}, \frac{13}{4}, \frac{21}{8}$$
 b) 2, 6, 10, 22, 42

3. a)
$$a_n = 3n - 2$$
, $n = 1, 2, 3, ...$ b) $a_n = (-1)^{n+1} \frac{n}{(n+1)^2}$, $n = 1, 2, 3, ...$ c) $a_n = \frac{2n-1}{n!}$, $n = 1, 2, 3, ...$

4. a)
$$\sum_{n=1}^{21} 4n+1$$
 b) $\sum_{n=1}^{12} \frac{n}{(n+1)^2}$ c) $\sum_{n=1}^{10} \frac{2n}{2n+1}$ d) $\sum_{n=1}^{6} \frac{n!}{2^n}$

5. a)
$$\frac{9}{5}$$
 b) $\frac{15}{2}$ c) 2 d) 112 e) 1

6. a) arithmetic,
$$d = -2$$
, $a_n = 12 - 2n$, $n = 1, 2, 3...$ b) not arithmetic, $a_n = \frac{n+1}{3n}$, $n = 1, 2, 3,...$

c) arithmetic,
$$d = 8$$
, $a_n = 8n - 32$, $n = 1, 2, 3...$

7.
$$a_5 = a_3 + 2d \Rightarrow d = 7$$
. So, $a_{19} = a_5 + 14d = 118$.

8. For the sequence in #7,
$$a_1 = -8$$
. $S_{19} = \frac{19(-8+118)}{2} = 1045$.

9. a)
$$\sum_{n=1}^{25} 5n - 2 = \frac{25(3+123)}{2} = 1575$$
 b) $\sum_{k=7}^{32} 2k + 3 = \frac{26(17+67)}{2} = 1092$

10.
$$a_6 = 3(\sqrt{5})^5 = 75\sqrt{5}$$

11. a)
$$a_5 = a_2 r^3 \Rightarrow r = \frac{1}{2}$$
. So, $a_{12} = a_5 \left(\frac{1}{2}\right)^7 = \frac{3}{128}$

b)
$$a_1 = 48$$
. $S_5 = \frac{48\left(1 - \left(\frac{1}{2}\right)^5\right)}{1 - \left(\frac{1}{2}\right)} = 93$

12. a)
$$\sum_{k=1}^{10} 2^{k-1} = \frac{1(1-2^{10})}{1-2} = 1023$$
 b) $\sum_{k=0}^{\infty} 5\left(\frac{1}{4}\right)^k = \frac{5}{1-\frac{1}{4}} = \frac{20}{3}$

c)
$$\sum_{n=1}^{\infty} 4(0.2)^n = \frac{0.8}{1 - 0.2} = 1$$
 d) $9 + 6 + 4 + \frac{8}{3} + \dots = \frac{9}{1 - \frac{2}{3}} = 27$

13.
$$\sum_{n=0}^{9} 192 \left(-\frac{1}{2}\right)^n$$

14.
$$12 = \frac{3}{1-r} \Rightarrow r = \frac{3}{4}$$
. So, $a_3 = 3\left(\frac{3}{4}\right)^2 = \frac{27}{16}$.

15.
$$6.434343... = 6 + .43 + .0043 + .000043 + ... = 6 + \frac{.43}{1 - .01} = \frac{637}{99}$$

16.
$$\binom{6}{2} (2x)^4 (y^2)^2 = 240x^4 y^4$$

17.
$$\binom{8}{5} (5x^2)^3 (-y^{-3})^5 = -7000x^6 y^{-15}$$

18. The infinite series diverges because the sequence of partial sums 1, 0, 1, 0, 1, ... diverges.