The AC is a lie - ICPC Library

Contents

1	1.1	ng Algorithms String Alignment
	$\frac{1.2}{1.3}$	KMP
	1.4	Aho-Corasick
	1.5	Algoritmo de Z
	1.6	Suffix Array
2	Dat	a Structures
4	2.1	BIT - Binary Indexed Tree
	2.2	BIT 2D
	2.3	BIT 2D Comprimida
	2.4	Iterative Segment Tree
	2.5	Iterative Segment Tree with Interval Updates
	$\frac{2.6}{2.7}$	Recursive Segment Tree
	2.8	Segment Tree with Lazy Propagation
	2.9	Treap
	2.10	Sparse Table
	2.11	Policy Based Structures
	2.12	Color Updates Structure
	2.13	Centroid Decomposition
	2.14	Li Chao Tree
_	~	1 41 11
3		ph Algorithms 8
	$\frac{3.1}{3.2}$	Dinic Max Flow
	3.3	Articulation Points/Bridges/Biconnected Components
	3.4	SCC - Strongly Connected Components / 2SAT
	3.5	LCA - Lowest Common Ancestor
	3.6	Heavy Light Decomposition
	3.7	Sack
	3.8	Min Cost Max Flow
	3.9	Hungarian Algorithm - Maximum Cost Matching
4	Mat	5 h 15
•	4.1	Discrete Logarithm
	4.2	GCD - Greatest Common Divisor
	4.3	Extended Euclides
	4.4	Fast Exponentiation
	4.5	Matrix Fast Exponentiation
	4.6	FFT - Fast Fourier Transform
	4.7	FFT - Fast Fourier Transform
	$\frac{4.7}{4.8}$	FFT - Fast Fourier Transform
	4.7	FFT - Fast Fourier Transform
5	4.7 4.8 4.9	FFT - Fast Fourier Transform
5	4.7 4.8 4.9	FFT - Fast Fourier Transform
5	4.7 4.8 4.9 Geo	FFT - Fast Fourier Transform
5	4.7 4.8 4.9 Geo 5.1 5.2 5.3	FFT - Fast Fourier Transform
5	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4	FFT - Fast Fourier Transform
5	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5	FFT - Fast Fourier Transform
5	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4	FFT - Fast Fourier Transform
	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5 5.6	FFT - Fast Fourier Transform
5	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5 5.6	FFT - Fast Fourier Transform
	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5 5.6 Dyr	FFT - Fast Fourier Transform
6	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5 5.6 Dyr 6.1 6.2	FFT - Fast Fourier Transform
	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5 5.6 Dyr 6.1 6.2	FFT - Fast Fourier Transform 15
6	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5 5.6 Dyr 6.1 6.2 Mis 7.1	FFT - Fast Fourier Transform 13
6	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5 5.6 Dyr 6.1 6.2 Mis 7.1 7.2	FFT - Fast Fourier Transform 15
6	4.7 4.8 4.9 Geo 5.1 5.2 5.3 5.4 5.5 5.6 Dyr 6.1 6.2 Mis 7.1	FFT - Fast Fourier Transform 13

\mathbf{T}	eoremas e	form	ula	$\mathbf{a}\mathbf{s}$: ı	ut	ei	is												
8.1	Grafos																			
8.2	Math																			
8.3	Geometry																			
8.4	Mersenne's	Prime	es																	

1 String Algorithms

1.1 String Alignment

```
int pd[ms] [ms];
int edit_distance(string &a, string &b) {
   int n = a.size(), m = b.size();
   for(int i = 0; i <= n; i++) pd[i][0] = i;
   for(int j = 0; j <= m; j++) pd[0][j] = j;
   for(int i = 1; i <= n; i++) {
     for(int j = 1; j <= m; j++) {
        int del = pd[i][j-1] + 1;
        int ins = pd[i-1][j] + 1;
        int mod = pd[i-1][j-1] + (a[i-1] != b[j-1]);
        pd[i][j] = min(del, min(ins, mod));
     }
   return pd[n][m];
}</pre>
```

1.2 KMP

```
string p, t;
int b[ms], n, m;
void kmpPreprocess() {
  int i = 0, j = -1;
  b[0] = -1;
  while(i < m) {</pre>
    while (j \ge 0 \&\& p[i] != p[j]) j = b[j];
    b[++i] = ++j;
void kmpSearch() {
  int i = 0, j = 0, ans = 0;
  while(i < n) {</pre>
    while (j \ge 0 \&\& t[i] != p[j]) j = b[j];
    if(j == m) {
      //ocorrencia aqui comecando em i - j
      ans++;
      j = b[j];
  return ans;
```

1.3 Trie

```
int trie[ms][sigma], terminal[ms], z;
void init() {
 memset(trie[0], -1, sizeof trie[0]);
  z = 1:
int get id(char c) {
  return c - 'a';
void insert(string &p) {
  int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      memset(trie[z], -1, sizeof trie[z]);
      trie[cur][id] = z++;
    cur = trie[cur][id];
  terminal[cur]++;
int count(string &p) {
 int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
   int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      return false;
    cur = trie[cur][id];
  return terminal[cur];
```

1.4 Aho-Corasick

```
// Construa a Trie do seu dicionario com o codigo acima
int fail[ms];
queue<int> q;
void buildFailure() {
  q.push(0);
  while(!q.empty()) {
    int node = q.front();
    q.pop();
    for(int pos = 0; pos < sigma; pos++) {</pre>
      int &v = trie[node][pos];
      int f = node == 0 ? 0 : trie[fail[node]][pos];
      if(v == -1) {
        v = f;
      } else {
        fail[v] = f;
        q.push(v);
```

1.5 Algoritmo de Z

```
string s;
int fz[ms], n;

void zfunc() {
   fz[0] = n;
   for(int i = 1, 1 = 0, r = 0; i < n; i++) {
      if(l && i + fz[i-l] < r)
        fz[i] = fz[i-l];
   else {
      int j = min(l ? fz[i-l] : 0, i > r ? 0 : r - i);
      while(s[i+j] == s[j] && ++j);
      fz[i] = j; l = i; r = i + j;
   }
}
```

1.6 Suffix Array

```
namespace SA {
  typedef pair<int, int> ii;
  vector<int> buildSA(string s) {
    int n = (int) s.size();
    vector<int> ids(n), pos(n);
    vector<ii>> pairs(n);
    for(int i = 0; i < n; i++) {</pre>
     ids[i] = i;
      pairs[i] = ii(s[i], -1);
    sort(ids.begin(), ids.end(), [&](int a, int b) -> bool {
      return pairs[a] < pairs[b];</pre>
    });
    int on = 0;
    for (int i = 0; i < n; i++) {
      if (i && pairs[ids[i - 1]] != pairs[ids[i]]) on++;
      pos[ids[i]] = on;
```

```
for(int offset = 1; offset < n; offset <<= 1) {</pre>
      //ja tao ordenados pelos primeiros offset caracteres
      for (int i = 0; i < n; i++) {
        pairs[i].first = pos[i];
        if (i + offset < n) {
          pairs[i].second = pos[i + offset];
          pairs[i].second = -1;
      sort(ids.begin(), ids.end(), [&](int a, int b) -> bool {
        return pairs[a] < pairs[b];</pre>
      });
      int on = 0;
      for (int i = 0; i < n; i++) {
        if (i && pairs[ids[i - 1]] != pairs[ids[i]]) on++;
        pos[ids[i]] = on;
   return ids;
  vector<int> buildLCP(string s, vector<int> sa) {
   int n = (int) s.size();
   vector<int> pos(n), lcp(n, 0);
   for(int i = 0; i < n; i++) {</pre>
      pos[sa[i]] = i;
   int k = 0;
    for (int i = 0; i < n; i++) {
      if (pos[i] + 1 == n) {
       \mathbf{k} = 0;
        continue;
      int j = sa[pos[i] + 1];
      while(i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
      lcp[pos[i]] = k;
      k = max(k - 1, 0);
   return lcp;
} ;
```

2 Data Structures

2.1 BIT - Binary Indexed Tree

```
int bit[ms], n;

void update(int v, int idx) {
  while(idx <= n) {
    bit[idx] += v;
    idx += idx & -idx;
  }
}

int query(int idx) {</pre>
```

```
int r = 0;
while(idx > 0) {
   r += bit[idx];
   idx -= idx & -idx;
}
return r;
}
```

2.2 BIT 2D

```
int bit[ms][ms], n, m;

void update(int v, int x, int y) {
    while(x <= n) {
        while(y <= m) {
            bit[x][y] += v;
            y += y&-y;
        }
        x += x&-x;
    }
}

int query(int x, int y) {
    int r = 0;
    while(x > 0) {
        while(y > 0) {
            r += bit[x][y];
            y -= y&-y;
        }
        x -= x&-x;
}
    return r;
}
```

2.3 BIT 2D Comprimida

```
// by TFG
#include <vector>
#include <utility>
#include <algorithm>
typedef std::pair<int, int> ii;
struct Bit2D {
public:
  Bit2D(std::vector<ii> pts) {
    std::sort(pts.begin(), pts.end());
    for(auto a : pts) {
      if(ord.empty() || a.first != ord.back())
        ord.push_back(a.first);
    fw.resize(ord.size() + 1);
    coord.resize(fw.size());
    for(auto &a : pts)
      std::swap(a.first, a.second);
    std::sort(pts.begin(), pts.end());
    for(auto &a : pts) {
      std::swap(a.first, a.second);
```

```
for(int on = std::upper_bound(ord.begin(), ord.end(), a.first) -
           ord.begin(); on < fw.size(); on += on & -on) {
        if(coord[on].empty() || coord[on].back() != a.second);
          coord[on].push_back(a.second);
    for(int i = 0; i < fw.size(); i++) {</pre>
      fw[i].assign(coord[i].size() + 1, 0);
  void upd(int x, int y, int v) {
    for(int xx = std::upper_bound(ord.begin(), ord.end(), x) - ord.
        begin(); xx < fw.size(); xx += xx & -xx) {
      for(int yy = std::upper_bound(coord[xx].begin(), coord[xx].end()
          (x, y) - coord(xx).begin(); yy < fw(xx).size(); yy += yy & -yy
        fw[xx][yy] += v;
  int qry(int x, int y) {
    int ans = 0;
    for(int xx = std::upper_bound(ord.begin(), ord.end(), x) - ord.
        begin(); xx > 0; xx -= xx & -xx) {
      for(int yy = std::upper_bound(coord[xx].begin(), coord[xx].end()
          , y) - coord[xx].begin(); yy > 0; yy -= yy & -yy) {
        ans += fw[xx][yy];
    return ans;
private:
  std::vector<int> ord;
  std::vector<std::vector<int>> fw, coord;
};
```

2.4 Iterative Segment Tree

```
int n, t[2 * ms];

void build() {
   for(int i = n - 1; i > 0; --i) t[i] = t[i<<1] + t[i<<1|1]; // Merge
}

void update(int p, int value) { // set value at position p
   for(t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1]; //
        Merge
}

int query(int l, int r) {
   int res = 0;
   for(1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1) {
        if(l&l) res += t[l++]; // Merge
        if(r&l) res += t[--r]; // Merge
   }
   return res;
}
```

```
// If is non-commutative
S query(int 1, int r) {
    S resl, resr;
    for (1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1) {
        if (1&1) resl = combine(resl, t[1++]);
        if (r&1) resr = combine(t[--r], resr);
    }
    return combine(resl, resr);
}
```

2.5 Iterative Segment Tree with Interval Updates

```
int n, t[2 * ms];
void build() {
  for(int i = n - 1; i > 0; --i) t[i] = t[i << 1] + t[i << 1|1]; // Merge
void update(int v, int 1, int r) {
 for (1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1) {
    if(1&1) t[1++] += v; // Merge
    if(r&1) t[--r] += v; // Merge
int query(int p) {
  int res = 0;
  for (p += n; p > 0; p >>= 1) res += t[p]; // Merge
  return res;
void push() { // push modifications to leafs
 for (int i = 1; i < n; i++) {
    t[i<<1] += t[i]; // Merge
   t[i<<1|1] += t[i]; // Merge
    t[i] = 0;
```

2.6 Recursive Segment Tree

```
int arr[4 * ms], seg[4 * ms], n;

void build(int idx = 0, int 1 = 0, int r = n - 1) {
   int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
   if(1 == r) {
      seg[idx] = arr[1];
      return;
   }
   build(left, 1, mid); build(right, mid + 1, r);
   seg[idx] = seg[left] + seg[right]; // Merge
}

int query(int L, int R, int idx = 0, int 1 = 0, int r = n - 1) {
   int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
   if(R < 1 | | L > r) return 0; // Valor que nao atrapalhe
   if(L <= 1 && r <= R) return seg[idx];</pre>
```

2.7 Segment Tree with Lazy Propagation

```
int arr[4 * ms], seg[4 * ms], lazy[4 * ms], n;
void build(int idx = 0, int l = 0, int r = n - 1) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  lazv[idx] = 0;
  if(1 == r) {
   seq[idx] = arr[1];
   return:
 build(left, 1, mid); build(right, mid + 1, r);
  seq[idx] = seq[left] + seq[right]; // Merge
void propagate(int idx, int 1, int r) {
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  if(lazv[idx]) {
   seg[idx] += lazy[idx] * (r - 1 + 1); // Aplicar lazy no seg
   if(1 < r) {
     lazy[2*idx+1] += lazy[idx]; // Merge de lazy
      lazy[2*idx+2] += lazy[idx]; // Merge de lazy
    lazy[idx] = 0; // Limpar a lazy
int query(int L, int R, int idx = 0, int l = 0, int r = n - 1) {
 int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
 propagate(idx, l, r);
 if(R < 1 || L > r) return 0; // Valor que nao atrapalhe
  if(L <= 1 && r <= R) return seg[idx];</pre>
  return query(L, R, left, l, mid) + query(L, R, right, mid + 1, r);
      // Merge
void update(int V, int L, int R, int idx = 0, int l = 0, int r = n - 1)
  int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
  propagate(idx, l, r);
  if(1 > R | | r < L) return;
  if(L <= 1 && r <= R) {
   lazy[idx] += V; // Merge de lazy/ou so colocar
   propagate(idx, l, r);
```

```
return;
}
update(V, L, R, left, 1, mid); update(V, L, R, right, mid + 1, r);
seg[idx] = seg[left] + seg[right]; // Merge
}
```

2.8 Persistent Segment Tree

```
struct PSEGTREE{
 private:
    int z, t, sz, *tree, *L, *R, head[112345];
    void build(int 1, int r, int on, vector<int> &v) {
      if(1 == r){
        tree[on] = v[1];
        return;
      L[on] = ++z;
      int mid = (1+r) >> 1;
      _build(l, mid, L[on], v);
      R[on] = ++z;
      _build(mid+1, r, R[on], v);
     tree[on] = tree[L[on]] + tree[R[on]];
    int _upd(int ql, int qr, int val, int l, int r, int on) {
      if(1 > qr | | r < ql) return on;
      int curr = ++z;
      if(1 >= q1 && r <= qr) {</pre>
       tree[curr] = tree[on] + val;
       return curr:
      int mid = (1+r) >> 1:
      L[curr] = \_upd(ql, qr, val, l, mid, L[on]);
      R[curr] = \_upd(ql, qr, val, mid+1, r, R[on]);
      tree[curr] = tree[L[curr]] + tree[R[curr]];
      return curr;
    int guery(int gl, int gr, int l, int r, int on) {
      if(1 > qr || r < ql) return 0;
      if(1 >= ql \&\& r <= qr) {
        return tree[on];
      int mid = (1+r) >> 1;
      return _query(ql, qr, l, mid, L[on]) + _query(ql, qr, mid+1, r,
          R[on]);
 public:
   PSEGTREE (vector<int> &v) {
      tree = new int[1123456];
      L = new int[1123456]:
      R = new int[1123456];
     build(v):
    void build(vector<int> &v) {
     t = 0, z = 0;
      sz = v.size();
     head[0] = 0;
```

```
_build(0, sz-1, 0, v);
}

void upd(int pos, int val, int idx){
  head[++t] = _upd(pos, pos, val, 0, sz-1, head[idx]);
}

int query(int 1, int r, int idx){
  return _query(l, r, 0, sz-1, head[idx]);
}

};
```

2.9 Treap

```
typedef struct item * pitem;
struct item {
        int prior, value, cnt;
        bool rev;
        pitem l, r;
};
int cnt (pitem it) { return it ? it->cnt : 0; };
void upd_cnt (pitem it) {
        if (it) it->cnt = cnt(it->1) + cnt(it->r) + 1;
void push (pitem it) {
        if (it && it->rev) {
                it->rev = false;
                swap (it->1, it->r);
                if (it->1) it->l->rev ^= true;
                if (it->r) it->r->rev ^= true;
void merge (pitem & t, pitem l, pitem r) {
        push (1), push (r);
        if (!l || !r) t = l ? l : r;
        else if (l->prior > r->prior)
                merge (1->r, 1->r, r), t = 1;
                merge (r->1, 1, r->1), t = r;
        upd_cnt (t);
void split (pitem t, pitem & l, pitem & r, int key) {
        if (!t) return void( l = r = 0 );
        push (t);
        int cur_key = cnt(t->1);
        if (key <= cur_key)</pre>
                split (t->1, 1, t->1, key), r = t;
                split (t->r, t->r, r, key - (1 + cnt(t->l))), l = t;
        upd_cnt (t);
void reverse (pitem t, int l, int r) {
        pitem t1, t2, t3;
        split (t, t1, t2, 1);
```

```
split (t2, t2, t3, r-l+1);
    t2->rev ^= true;
    merge (t, t1, t2);
    merge (t, t, t3);
}

pitem unite (pitem l, pitem r) {
    if (!l || !r) return l ? l : r;
        if (l->prior < r->prior) swap (l, r);
        pitem lt, rt;
        split (r, l->key, lt, rt);
        l->l = unite (l->l, lt);
        l->r = unite (l->r, rt);
        return l;
}
```

2.10 Sparse Table

```
template < class Info_t>
class SparseTable {
private:
 vector<int> log2;
  vector<vector<Info_t>> table;
 Info_t merge(Info_t &a, Info_t &b) {
public:
  SparseTable(int n, vector<Info_t> v) {
    log2.resize(n + 1);
    log2[1] = 0;
    for (int i = 2; i <= n; i++) {</pre>
      log2[i] = log2[i >> 1] + 1;
    table.resize(n + 1);
    for (int i = 0; i < n; i++) {
      table[i].resize(log2[n] + 1);
    for (int i = 0; i < n; i++) {
      table[i][0] = v[i];
    for (int i = 0; i < log2[n]; i++) {</pre>
      for (int j = 0; j < n; j++) {
       if (j + (1 \ll i) >= n) break;
        table[j][i + 1] = merge(table[j][i], table[j + (1 << i)][i]);
  int get(int 1, int r) {
    int k = log2[r - 1 + 1];
    return merge(table[1][k], table[r - (1 << k) + 1][k]);
};
```

2.11 Policy Based Structures

2.12 Color Updates Structure

```
struct range {
  int 1, r;
  int v;
  range(int l = 0, int r = 0, int v = 0) : l(1), r(r), v(v) {}
 bool operator < (const range &a) const {</pre>
    return 1 < a.l;</pre>
set<range> ranges;
vector<range> update(int 1, int r, int v) { // [1, r)
  vector<range> ans;
  if(1 >= r) return ans;
  auto it = ranges.lower_bound(1);
  if(it != ranges.begin()) {
    it--;
    if(it->r>1) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.1, 1, cur.v));
      ranges.insert(range(l, cur.r, cur.v));
  it = ranges.lower_bound(r);
  if(it != ranges.begin()) {
    it--:
   if(it->r>r) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.1, r, cur.v));
      ranges.insert(range(r, cur.r, cur.v));
  for(it = ranges.lower_bound(1); it != ranges.end() && it->1 < r; it</pre>
      ++) {
    ans.push_back(*it);
  ranges.erase(ranges.lower_bound(1), ranges.lower_bound(r));
  ranges.insert(range(l, r, v));
  return ans;
```

```
int query(int v) { // Substituir -1 por flag para quando nao houver
    resposta
auto it = ranges.upper_bound(v);
if(it == ranges.begin()) {
    return -1;
}
it--;
return it->r >= v ? it->v : -1;
}
```

2.13 Centroid Decomposition

```
//Centroid decomposition1
void dfsSize(int v, int pa) {
  sz[v] = 1;
  for(int u : adj[v]) {
   if (u == pa || rem[u]) continue;
   dfsSize(u, v);
    sz[v] += sz[u];
int getCentroid(int v, int pa, int tam) {
  for(int u : adj[v]) {
   if (u == pa || rem[u]) continue;
   if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void decompose(int v, int pa = -1) {
  //cout << v << ' ' << pa << '\n';
 dfsSize(v, pa);
  int c = getCentroid(v, pa, sz[v]);
  //cout << c << '\n';
  par[c] = pa;
  rem[c] = 1;
  for(int u : adj[c]) {
    if (!rem[u] && u != pa) decompose(u, c);
  adj[c].clear();
//Centroid decomposition2
void dfsSize(int v, int par) {
  sz[v] = 1;
  for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   dfsSize(u, v):
   sz[v] += sz[u];
int getCentroid(int v, int par, int tam) {
  for(int u : adj[v]) {
    if (u == par || removed[u]) continue;
```

```
if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void setDis(int v, int par, int nv, int d) {
  dis[v][nv] = d;
  for(int u : adj[v]) {
    if (u == par || removed[u]) continue;
    setDis(u, v, nv, d + 1);
void decompose(int v, int par, int nv) {
  dfsSize(v, par);
  int c = getCentroid(v, par, sz[v]);
  ct[c] = par;
  removed[c] = 1;
  setDis(c, par, nv, 0);
  for(int u : adj[c]) {
    if (!removed[u]) {
      decompose(u, c, nv + 1);
```

2.14 Li Chao Tree

```
// by luucasv
typedef long long T;
const T INF = 1e18, EPS = 1;
const int BUFFER_SIZE = 1e4;
struct Line {
 T m, b;
 Line (T m = 0, T b = INF) : m(m), b(b) {}
 T apply(T x) { return x * m + b; }
};
struct Node {
 Node *left, *right;
 Line line;
 Node(): left(NULL), right(NULL) {}
} ;
struct LiChaoTree {
 Node *root, buffer[BUFFER_SIZE];
 T min_value, max_value;
  int buffer_pointer;
  LiChaoTree(T min_value, T max_value): min_value(min_value),
      max_value(max_value + 1) { clear(); }
  void clear() { buffer_pointer = 0; root = newNode(); }
  void insert_line(T m, T b) { update(root, min_value, max_value, Line
      (m, b)); }
  T eval(T x) { return query(root, min_value, max_value, x); }
  void update(Node *cur, T l, T r, Line line) {
   T m = 1 + (r - 1) / 2;
   bool left = line.apply(1) < cur->line.apply(1);
```

```
bool mid = line.apply(m) < cur->line.apply(m);
    bool right = line.apply(r) < cur->line.apply(r);
    if (mid) {
      swap(cur->line, line);
    if (r - 1 <= EPS) return;</pre>
    if (left == right) return;
    if (mid != left) {
      if (cur->left == NULL) cur->left = newNode();
      update(cur->left, 1, m, line);
      if (cur->right == NULL) cur->right = newNode();
      update(cur->right, m, r, line);
  T query(Node *cur, T l, T r, T x) {
    if (cur == NULL) return INF;
    if (r - 1 <= EPS) {
      return cur->line.apply(x);
    T m = 1 + (r - 1) / 2;
    T ans:
    if (x < m) {
      ans = query(cur->left, 1, m, x);
      ans = query(cur->right, m, r, x);
    return min(ans, cur->line.apply(x));
  Node* newNode() {
      buffer[buffer_pointer] = Node();
      return &buffer[buffer_pointer++];
};
```

3 Graph Algorithms

3.1 Dinic Max Flow

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas

int adj[ms], to[me], ant[me], wt[me], z, n;
int copy_adj[ms], fila[ms], level[ms];

void clear() { // Lembrar de chamar no main
   memset(adj, -1, sizeof adj);
   z = 0;
}

void add(int u, int v, int k) {
  to[z] = v;
   ant[z] = adj[u];
  wt[z] = k;
  adj[u] = z++;
  swap(u, v);
  to[z] = v;
  ant[z] = adj[u];
```

```
wt[z] = 0; // Lembrar de colocar = 0
  adi[u] = z++;
int bfs(int source, int sink) {
  memset(level, -1, sizeof level);
  level[source] = 0;
  int front = 0, size = 0, v;
  fila[size++] = source;
  while(front < size) {</pre>
  v = fila[front++];
  for(int i = adj[v]; i != -1; i = ant[i]) {
    if(wt[i] && level[to[i]] == -1) {
    level[to[i]] = level[v] + 1;
    fila[size++] = to[i];
  return level[sink] != -1;
int dfs(int v, int sink, int flow) {
  if(v == sink) return flow;
  for(int &i = copy_adj[v]; i != -1; i = ant[i]) {
  if(wt[i] && level[to[i]] == level[v] + 1 &&
    (f = dfs(to[i], sink, min(flow, wt[i])))) {
    wt[i] -= f;
    wt[i ^ 1] += f;
    return f;
  return 0;
int maxflow(int source, int sink) {
  int ret = 0, flow;
 while(bfs(source, sink)) {
 memcpy(copy_adj, adj, sizeof adj);
  while((flow = dfs(source, sink, 1 << 30))) {</pre>
    ret += flow;
  return ret;
```

3.2 Euler Path and Circuit

```
int pathV[me], szV, del[me], pathE, szE;
int adj[ms], to[me], ant[me], wt[me], z, n;

// Funcao de add e clear no dinic

void eulerPath(int u) {
  for(int i = adj[u]; ~i; i = ant[u]) if(!del[i]) {
    del[i] = del[i^1] = 1;
    eulerPath(to[i]);
    pathE[szE++] = i;
  }
  pathV[szV++] = u;
```

3.3 Articulation Points/Bridges/Biconnected Components

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], z, n;
int idx[ms], bc[me], ind, nbc, child, st[me], top;
// Funcao de add e clear no dinic
void generateBc(int edge) {
  while(st[--top] != edge) {
    bc[st[top]] = nbc;
  bc[edge] = nbc++;
int dfs(int v, int par = -1) {
  int low = idx[v] = ind++;
  for (int i = adj[v]; i > -1; i = ant[i]) {
    if(idx[to[i]] == -1) {
      if(par == -1) child++;
      st[top++] = i;
      int temp = dfs(to[i], v);
      if(par == -1 && child > 1 || ~par && temp >= idx[v]) generateBc(
      if(temp >= idx[v]) art[v] = true;
      if(temp > idx[v]) bridge[i] = true;
      low = min(low, temp);
    } else if(to[i] != par && idx[to[i]] < low) {</pre>
      low = idx[to[i]];
      st[top++] = i;
  return low;
void biconnected() {
  ind = 0;
 nbc = 0;
 top = -1:
  memset(idx, -1, sizeof idx);
 memset(art, 0, sizeof art);
  memset (bridge, 0, sizeof bridge);
  for (int i = 0; i < n; i++) if (idx[i] == -1) {
   child = 0:
    dfs(i);
```

3.4 SCC - Strongly Connected Components / 2SAT

```
vector<int> g[ms];
int idx[ms], low[ms], z, comp[ms], ncomp;
stack<int> st;
```

```
int dfs(int u) {
  if(~idx[u]) return idx[u] ? idx[u] : z;
  low[u] = idx[u] = z++;
  st.push(u);
  for(int v : q[u]) {
   low[u] = min(low[u], dfs(v));
  if(low[u] == idx[u]) {
    while(st.top() != u) {
      int v = st.top();
      idx[v] = 0;
      low[v] = low[u];
      comp[v] = ncomp;
      st.pop();
    idx[st.top()] = 0;
    st.pop();
    comp[u] = ncomp++;
  return low[u];
bool solveSat() {
 memset(idx, -1, sizeof idx);
  z = 1; ncomp = 0;
  for (int i = 0; i < n; i++) dfs(i);
  for(int i = 0; i < n; i++) if(comp[i] == comp[i^1]) return false;</pre>
// Operacoes comuns de 2-sat
// v = "nao v"
#define trad(v) (v<0?((~v)*2)^1:v*2)
void addImp(int a, int b) { g[trad(a)].push(trad(b)); }
void addOr(int a, int b) { addImp(~a, b); addImp(~b, a); }
void addEqual(int a, int b) { addOr(a, b); addOr(a, b); }
void addDiff(int a, int b) { addEqual(a, ~b); }
// valoracao: value[v] = comp[trad(v)] < comp[trad(~v)]</pre>
```

3.5 LCA - Lowest Common Ancestor

```
int par[ms][mlg+1], lvl[ms];
vector<int> g[ms];

void dfs(int v, int p, int 1 = 0) {
    lvl[v] = 1;
    par[v][0] = p;
    for(int u : g[v]) {
        if(u != p) dfs(u, v, 1 + 1);
    }
}

void processAncestors(int root = 0) {
    dfs(root, root);
    for(int k = 1; k <= mlg; k++) {
        for(int i = 0; i < n; i++) {
            par[i][k] = par[par[i][k-1]][k-1];
        }
    }
}</pre>
```

```
int lca(int a, int b) {
   if(lvl[b] > lvl[a]) swap(a, b);
   for(int i = mlg; i >= 0; i--) {
      if(lvl[a] - (1 << i) >= lvl[b]) a = par[a][i];
   }
   if(a == b) return a;
   for(int i = mlg; i >= 0; i--) {
      if(par[a][i] != par[b][i]) a = par[a][i], b = par[b][i];
   }
   return par[a][0];
}
```

3.6 Heavy Light Decomposition

```
// HLD + Euler Tour by adamant
int sz[ms], par[ms], h[ms];
int t, in[ms], out[ms], rin[ms], nxt[ms];
void dfs_sz(int v = 0, int p = -1) {
  sz[v] = 1;
  for(int i = 0; i < q[v].size(); i++){}
    int &u = q[v][i];
    if(u == p) continue;
    h[u] = h[v]+1, par[u] = v;
    dfs_sz(u, v);
    sz[v] += sz[u];
    if(q[v][0] == p || sz[u] > sz[q[v][0]]) {
      swap(u, g[v][0]);
void dfs_hld(int v = 0, int p = -1){
  in[v] = t++;
  rin[in[v]] = v;
  for(int i = 0; i < g[v].size(); i++){</pre>
    int &u = q[v][i];
    if(u == p) continue;
    nxt[u] = u == q[v][0] ? nxt[v] : u;
    dfs hld(u, v);
  out[v] = t;
int up(int v) {
 return (nxt[v] != v) ? nxt[v] : (~par[v] ? par[v] : v);
int getLCA(int a, int b) {
 while(nxt[a] != nxt[b]){
    if(h[a] == 0 || h[up(a)] < h[up(b)]) swap(a, b);
    a = up(a);
  return h[a] < h[b] ? a : b;
int queryUp(int a, int p = 0){
```

```
int ans = 0;
while(nxt[a] != nxt[p]) {
    ans += query(in[nxt[a]], in[a]);
    a = par[nxt[a]];
}
ans += query(in[p], in[a]);
return ans;
}

int queryPath(int u, int v) {
    int lca = getLCA(u, v);
    return queryUp(u, lca) + queryUp(v, lca) - queryUp(lca, lca);
}
```

3.7 Sack

```
void solve(int a, int p, bool f) {
  int big = -1;
  for(auto &b : adi[a]){
    if(b != p \&\& (big == -1 || en[b] - st[b] > en[big] - st[big])) {
      bia = b:
  for(auto &b : adj[a]){
    if(b == p || b == big) continue;
    solve(b, a, 0);
  if(~big) solve(big, a, 1);
  add(cnt[v[a]], -1);
  cnt[v[a]]++;
  add(cnt[v[a]], +1);
  for(auto &b : adj[a]){
    if(b == p || b == big) continue;
    for(int i = st[b]; i < en[b]; i++){</pre>
      add(cnt[ett[i]], -1);
      cnt[ett[i]]++;
      add(cnt[ett[i]], +1);
  for(auto &q : Q[a]){
    ans[q.first] = query(mx-1)-query(q.second-1);
  if(!f){
    for(int i = st[a]; i < en[a]; i++){</pre>
      add(cnt[ett[i]], -1);
      cnt[ett[i]]--;
      add(cnt[ett[i]], +1);
```

3.8 Min Cost Max Flow

```
template <class flow_t, class cost_t>
class MinCostMaxFlow {
private:
   typedef pair<cost_t, int> ii;
```

```
struct Edge {
    int to;
    flow t cap;
    cost t cost;
    Edge(int to, flow_t cap, cost_t cost) : to(to), cap(cap), cost(
        cost) {}
  };
  int n;
  vector<vector<int>> adj;
  vector<Edge> edges;
  vector<cost t> dis:
  vector<int> prev, id_prev;
        vector<int> q;
        vector<bool> ing;
  pair<flow_t, cost_t> spfa(int src, int sink) {
    fill(dis.begin(), dis.end(), int(1e9)); //cost_t inf
    fill(prev.begin(), prev.end(), -1);
    fill(ing.begin(), ing.end(), false);
    q.clear():
    q.push back(src);
    inq[src] = true;
    dis[src] = 0;
    for(int on = 0; on < (int) q.size(); on++) {</pre>
        int cur = q[on];
        ing[cur] = false;
        for(auto id : adj[cur]) {
                if (edges[id].cap == 0) continue;
                int to = edges[id].to;
                if (dis[to] > dis[cur] + edges[id].cost) {
                        prev[to] = cur;
                        id_prev[to] = id;
                        dis[to] = dis[cur] + edges[id].cost;
                        if (!ing[to]) {
                                g.push_back(to);
                                inq[to] = true;
    flow t mn = flow t(1e9):
    for(int cur = sink; prev[cur] != -1; cur = prev[cur]) {
      int id = id_prev[cur];
      mn = min(mn, edges[id].cap);
    if (mn == flow t(1e9) || mn == 0) return make pair(0, 0);
    pair<flow_t, cost_t> ans(mn, 0);
    for(int cur = sink; prev[cur] != -1; cur = prev[cur]) {
      int id = id prev[cur];
      edges[id].cap -= mn;
      edges[id ^ 1].cap += mn;
      ans.second += mn * edges[id].cost;
    return ans;
public:
  MinCostMaxFlow(int a = 0) {
    n = a:
    adj.resize(n + 2);
    edges.clear();
```

```
dis.resize(n + 2);
    prev.resize(n + 2);
    id_prev.resize(n + 2);
    inq.resize(n + 2);
  void init(int a) {
    n = a;
    adj.resize(n + 2);
    edges.clear();
    dis.resize(n + 2);
    prev.resize(n + 2);
    id_prev.resize(n + 2);
    inq.resize(n + 2);
  void add(int from, int to, flow_t cap, cost_t cost) {
    adj[from].push_back(int(edges.size()));
                edges.push_back(Edge(to, cap, cost));
                adj[to].push_back(int(edges.size()));
                edges.push_back(Edge(from, 0, -cost));
  pair<flow_t, cost_t> maxflow(int src, int sink) {
    pair<flow_t, cost_t> ans(0, 0), got;
    while((got = spfa(src, sink)).first > 0) {
      ans.first += got.first;
      ans.second += got.second;
    return ans;
};
```

3.9 Hungarian Algorithm - Maximum Cost Matching

```
const int inf = 0x3f3f3f3f3f;
int n, w[ms][ms], maxm;
int lx[ms], ly[ms], xy[ms], yx[ms];
int slack[ms], slackx[ms], prev[ms];
bool S[ms], T[ms];
void init labels() {
  memset(lx, 0, sizeof lx); memset(ly, 0, sizeof ly);
  for (int x = 0; x < n; x++) for (int y = 0; y < n; y++) {
    lx[x] = max(lx[x], cos[x][v]);
void updateLabels() {
  int delta = inf;
  for(int y = 0; y < n; y++) if(!T[y]) delta = min(delta, slack[y]);</pre>
  for (int x = 0; x < n; x++) if (S[x]) lx[x] -= delta;
  for (int y = 0; y < n; y++) if (T[y]) |y[y]| += delta;
  for (int y = 0; y < n; y++) if (!T[y]) slack[y] -= delta;
void addTree(int x, int prevx) {
 S[x] = 1; prev[x] = prevx;
  for(int y = 0; y < n; y++) if(lx[x] + ly[y] - w[x][y] < slack[y]) {
    slack[y] = lx[x] + ly[y] - cost[x][y];
    slackx[y] = x;
```

```
void augment() {
  if (maxm == n) return;
  int x, y, root;
  int q[ms], wr = 0, rd = 0;
  memset(S, 0, sizeof S); memset(T, 0, sizeof T);
  memset (prev, -1, sizeof prev);
  for (int x = 0; x < n; x++) if (xy[x] == -1) {
    q[wr++] = root = x;
    prev[x] = -2;
    S[x] = 1;
    break;
  for (int y = 0; y < n; y++) {
    slack[y] = lx[root] + ly[y] - w[root][y];
    slackx[y] = root;
  while(true) {
    while(rd < wr) {</pre>
      x = q[rd++];
      for (y = 0; y < n; y++) if (w[x][y] == 1x[x] + 1y[y] && !T[y]) {
        if(yx[y] == -1) break;
        T[v] = 1;
        q[wr++] = yx[y];
        addTree(yx[y], x);
      if(y < n) break;</pre>
    if(y < n) break;</pre>
    updateLabels();
    wr = rd = 0;
    for(y = 0; y < n; y++) if(!T[y] && !slack[y]) {
      if(yx[y] == -1)
        x = slackx[y];
        break;
      } else {
        T[y] = true;
        if(!S[yx[y]])
          q[wr++] = yx[y];
          addTree(yx[y], slackx[y]);
    if(y < n) break;
  if(y < n) {
    for (int cx = x, cy = y, ty; cx != -2; cx = prev[cx], cy = ty) {
      ty = xy[cx];
      yx[cy] = cx;
      xy[cx] = cy;
    augment();
int hungarian() {
  int ans = 0; maxm = 0;
 memset(xy, -1, sizeof xy); memset(yx, -1, sizeof yx);
  initLabels(); augment();
```

```
for(int x = 0; x < n; x++) ans += w[x][xy[x]];
return ans;
}</pre>
```

4 Math

4.1 Discrete Logarithm

```
ll discreteLog(ll a, ll b, ll m) {
  // a^ans == b mod m
  // ou -1 se nao existir
  11 \text{ cur} = a, \text{ on } = 1;
  for (int i = 0; i < 100; i++) {
    cur = cur * a % m;
  while(on * on <= m) {</pre>
    cur = cur * a % m;
    on++;
  map<ll, 11> position;
  for (ll i = 0, x = 1; i * i <= m; i++) {
    position[x] = i * on;
    x = x * cur % m;
  for(ll i = 0; i <= on + 20; i++) {</pre>
    if(position.count(b)) {
      return position[b] - i;
    b = b * a % m;
  return -1;
```

4.2 GCD - Greatest Common Divisor

```
11 gcd(11 a, 11 b) {
  while(b) a %= b, swap(a, b);
  return a;
}
```

4.3 Extended Euclides

```
// euclides estendido: acha u e v da equacao:
// u * x + v * y = gcd(x, y);
// u eh inverso modular de x no modulo y
// v eh inverso modular de y no modulo x

pair<ll, ll> euclides(ll a, ll b) {
    ll u = 0, oldu = 1, v = 1, oldv = 0;
    while(b) {
        ll q = a / b;
        oldv = oldv - v * q;
        oldu = oldu - u * q;
        a = a - b * q;
        swap(a, b);
```

```
swap(u, oldu);
swap(v, oldv);
}
return make_pair(oldu, oldv);
}
```

4.4 Fast Exponentiation

```
const ll mod = 1e9+7;

ll fExp(ll a, ll b) {
    ll ans = 1;
    while(b) {
        if(b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}
```

4.5 Matrix Fast Exponentiation

```
const 11 mod = 1e9+7;
const int m = 2; // size of matrix
struct Matrix {
  11 mat[m][m];
 Matrix operator * (const Matrix &p) {
    Matrix ans;
    for (int i = 0; i < m; i++)
      for (int j = 0; j < m; j++)
        for (int k = ans.mat[i][j] = 0; k < m; k++)
          ans.mat[i][j] = (ans.mat[i][j] + mat[i][k] * p.mat[k][j]) %
    return ans;
};
Matrix fExp(Matrix a, ll b) {
 Matrix ans:
  for (int i = 0; i < m; i++) for (int j = 0; j < m; j++)
    ans.mat[i][j] = i == j;
  while(b) {
    if(b \& 1) ans = ans * a;
    a = a * a;
   b >>= 1;
  return ans;
```

4.6 FFT - Fast Fourier Transform

```
typedef complex<double> Complex;
typedef long double ld;
typedef long long ll;
```

```
const int ms = maiortamanhoderesposta * 2;
const ld pi = acosl(-1.0);
int rbit[1 << 23];</pre>
Complex a[ms], b[ms];
void calcReversedBits(int n) {
  int lq = 0;
  while (1 << (lg + 1) < n) {
   lg++;
  for(int i = 1; i < n; i++) {</pre>
    rbit[i] = (rbit[i >> 1] >> 1) | ((i & 1) << lq);
void fft(Complex a[], int n, bool inv = false) {
  for (int i = 0; i < n; i++) {
    if(rbit[i] > i) swap(a[i], a[rbit[i]]);
  double ang = inv ? -pi : pi;
  for (int m = 1; m < n; m += m) {
    Complex d(cosl(ang/m), sinl(ang/m));
    for(int i = 0; i < n; i += m+m) {</pre>
      Complex cur = 1;
      for (int j = 0; j < m; j++) {
        Complex u = a[i + j], v = a[i + j + m] * cur;
        a[i + j] = u + v;
        a[i + j + m] = u - v;
        cur *= d;
  if(inv) {
    for(int i = 0; i < n; i++) a[i] /= n;</pre>
void multiply(ll x[], ll y[], ll ans[], int nx, int ny, int &n) {
  n = 1;
  while (n < nx+nv) n <<= 1;
  calcReversedBits(n);
  for(int i = 0; i < n; i++) {</pre>
   a[i] = Complex(x[i]);
   b[i] = Complex(y[i]);
  fft(a, n); fft(b, n);
  for (int i = 0; i < n; i++) {
   a[i] = a[i] * b[i];
  fft(a, n, true);
  for (int i = 0; i < n; i++) {
    ans[i] = ll(a[i].real() + 0.5);
  n = nx + ny;
```

```
namespace NTT {
  typedef long long int 11;
  11 fexp(ll base, ll e) {
   ll ans = 1;
    while(e > 0) {
      if (e & 1) ans = ans * base % mod;
     base = base * base % mod;
      e >>= 1;
    return ans;
  11 inv_mod(ll base) {
    return fexp(base, mod - 2);
  void ntt(vector<ll>& a, bool inv) {
    int n = (int) a.size();
    if (n == 1) return;
    for (int i = 0, j = 0; i < n; i++) {
      if (i > j) {
        swap(a[i], a[j]);
      for (int 1 = n / 2; (j ^= 1) < 1; 1 >>= 1);
    for(int sz = 1; sz < n; sz <<= 1) {</pre>
      11 delta = fexp(c_root, (mod - 1) / (2 * sz)); //delta = w_2sz
      if (inv) {
        delta = inv_mod(delta);
      for (int i = 0; i < n; i += 2 * sz) {
        11 w = 1:
        for(int j = 0; j < sz; j++) {</pre>
          11 u = a[i + j], v = w * a[i + j + sz] % mod;
          a[i + j] = (u + v + mod) % mod;
          a[i + j] = (a[i + j] + mod) % mod;
          a[i + j + sz] = (u - v + mod) % mod;
          a[i + j + sz] = (a[i + j + sz] + mod) % mod;
          w = w * delta % mod;
    if (inv) {
      11 \text{ inv } n = \text{inv } mod(n);
      for (int i = 0; i < n; i++) {
        a[i] = a[i] * inv n % mod;
    for(int i = 0; i < n; i++) {
      a[i] %= mod;
      a[i] = (a[i] + mod) % mod;
  void multiply(vector<11> &a, vector<11> &b, vector<11> &ans) {
    int lim = (int) max(a.size(), b.size());
```

long long int mod = (11911 << 23) + 1, c_root = 3;</pre>

```
int n = 1;
while(n < lim) n <<= 1;
n <<= 1;
a.resize(n);
b.resize(n);
ans.resize(n);
ntt(a, false);
ntt(b, false);
for(int i = 0; i < n; i++) {
   ans[i] = a[i] * b[i] % mod;
}
ntt(ans, true);
}
</pre>
```

4.8 Miller and Rho

```
typedef long long int 11;
bool overflow(ll a, ll b) {
  return b && (a >= (111 << 62) / b);
11 add(11 a, 11 b, 11 md) {
  return (a + b) % md;
11 mul(ll a, ll b, ll md) {
 if (!overflow(a, b)) return (a * b) % md;
 11 \text{ ans} = 0;
 while(b) {
   if (b & 1) ans = add(ans, a, md);
   a = add(a, a, md);
   b >>= 1;
  return ans;
ll fexp(ll a, ll e, ll md) {
 ll ans = 1;
  while(e) {
   if (e & 1) ans = mul(ans, a, md);
    a = mul(a, a, md);
    e >>= 1;
  return ans;
11 my_rand() {
 ll ans = rand();
 ans = (ans \ll 31) \mid rand();
 return ans;
11 gcd(ll a, ll b) {
  while(b) {
   11 t = a % b;
    a = b;
    b = t;
```

```
return a;
bool miller(ll p, int iteracao) {
  if(p < 2) return 0;
  if(p % 2 == 0) return (p == 2);
  11 s = p - 1;
  while(s % 2 == 0) s >>= 1;
  for(int i = 0; i < iteracao; i++) {</pre>
    11 a = rand() % (p - 1) + 1, temp = s;
    11 \mod = fexp(a, temp, p);
    while (temp != p - 1 && mod != 1 && mod != p - 1) {
     mod = mul(mod, mod, p);
     temp <<= 1;
    if(mod != p - 1 && temp % 2 == 0) return 0;
  return 1;
ll rho(ll n) {
  if (n == 1 || miller(n, 10)) return n;
  if (n % 2 == 0) return 2;
  while(1) {
    11 x = my_rand() % (n - 2) + 2, y = x;
    11 c = 0, cur = 1;
    while (c == 0) {
      c = my_rand() % (n - 2) + 1;
    while(cur == 1) {
     x = add(mul(x, x, n), c, n);
      y = add(mul(y, y, n), c, n);
     y = add(mul(y, y, n), c, n);
     cur = gcd((x >= y ? x - y : y - x), n);
    if (cur != n) return cur;
```

4.9 Determinant using Mod

```
// by zchao1995
// Determinante com coordenadas inteiras usando Mod

ll mat[ms][ms];

ll det (int n) {
   for (int i = 0; i < n; i++) {
      mat[i][j] %= mod;
   }
}

ll res = 1;
for (int i = 0; i < n; i++) {
   if (!mat[i][i]) {
      bool flag = false;
      for (int j = i + 1; j < n; j++) {
        if (mat[j][i]) {
            flag = true;
            for (int k = i; k < n; k++) {
      }
}</pre>
```

5 Geometry

5.1 Geometry

```
const double inf = 1e100, eps = 1e-9;
struct PT {
        double x, y;
        PT (double x = 0, double y = 0) : x(x), y(y) {}
        PT operator + (const PT &p) { return PT(x + p.x, y + p.y); }
        PT operator - (const PT &p) { return PT(x - p.x, y - p.y); }
        PT operator * (double c) { return PT(x * c, y * c); }
        PT operator / (double c) { return PT(x / c, y / c); }
        bool operator <(const PT &p) const {</pre>
                if(fabs(x - p.x) >= eps) return x < p.x;</pre>
                return fabs (y - p.v) >= eps && v < p.v;
        bool operator == (const PT &p) const {
                return fabs (x - p.x) < eps && fabs (y - p.y) < eps;
};
double dot(PT p, PT q) { return p.x * q.x + p.y * q.y; }
double dist2(PT p, PT q) { return dot(p - q, p - q); }
double dist(PT p, PT q) {return hypot(p.x-q.x, p.y-q.y); }
double cross(PT p, PT q) { return p.x * q.y - p.y * q.x; }
// Rotaciona o ponto CCW ou CW ao redor da origem
PT rotateCCW90(PT p) { return PT(-p.y, p.x); }
PT rotateCW90(PT p) { return PT(p.y, -p.x); }
PT rotateCCW(PT p, double t) {
    return PT(p.x * cos(t) - p.y * sin(t), p.x * sin(t) + p.y * cos(t)
        );
```

```
// Projeta ponto c na linha a - b assumindo a != b
PT projectPointLine(PT a, PT b, PT c) {
    return a + (b - a) * dot(c - a, b - a) / dot(b - a, b - a);
// Projeta ponto c no segmento a - b
PT projectPointSegment (PT a, PT b, PT c) {
    double r = dot(b - a, b - a);
    if(abs(r) < eps) return a;</pre>
    r = dot(c - a, b - a) / r;
   if(r < 0) return a;</pre>
    if(r > 1) return b;
    return a + (b - a) * r;
// Calcula distancia entre o ponto c e o segmento a - b
double distancePointSegment(PT a, PT b, PT c) {
    return dist(c, projectPointSegment(a, b, c));
// Determina se o ponto c esta em um segmento a - b
bool ptInSegment(PT a, PT b, PT c) {
 bool x = min(a.x, b.x) <= c.x && c.x <= max(a.x, b.x);
 bool y = min(a.y, b.y) \le c.y \le c.y \le max(a.y, b.y);
  return x && y && (cross((b-a),(c-a)) == 0); // testar com eps se for
       double
// Calcula distancia entre o ponto (x, y, z) e o plano ax + by + cz =
double distancePointPlane(double x, double y, double z, double a,
    double b, double c, double d) {
    return abs (a * x + b * v + c * z - d) / sgrt(a * a + b * b + c * c
        );
// Determina se as linhas a - b e c - d sao paralelas ou colineares
bool linesParallel(PT a, PT b, PT c, PT d) {
    return abs(cross(b - a, c - d)) < eps;</pre>
bool linesCollinear(PT a, PT b, PT c, PT d) {
    return linesParallel(a, b, c, d) && abs(cross(a - b, a - c)) < eps
         && abs(cross(c - d, c - a)) < eps;
// Determina se o segmento a - b intersecta com o segmento c - d
bool segmentsIntersect(PT a, PT b, PT c, PT d) {
    if(linesCollinear(a, b, c, d)) {
        if(dist2(a, c) < eps || dist2(a, d) < eps || dist2(b, c) < eps</pre>
             || dist2(b, d) < eps) return true;</pre>
        if(dot(c - a, c - b) > 0 && dot(d - a, d - b) > 0 && dot(c - b)
            d - b > 0 return false;
        return true:
    if(cross(d - a, b - a) * cross(c - a, b - a) > 0) return false;
    if(cross(a - c, d - c) * cross(b - c, d - c) > 0) return false;
    return true;
```

```
// Calcula a intersecao entre as retas a - b e c - d assumindo que uma
     unica intersecao existe
// Para intersecao de segmentos, cheque primeiro se os segmentos se
    intersectam e que nao paralelos
PT computeLineIntersection(PT a, PT b, PT c, PT d) {
    b = b - a; d = c - d; c = c - a;
    assert (cross (b, d) != 0); // garante que as retas nao sao
        paralelas, remover pra evitar tle
    return a + b * cross(c, d) / cross(b, d);
// Calcula centro do circulo dado tres pontos
PT computeCircleCenter(PT a, PT b, PT c) {
    b = (a + b) / 2;
    c = (a + c) / 2;
    return computeLineIntersection(b, b + rotateCW90(a - b), c, c +
        rotateCW90(a - c));
// Determina se o ponto p esta dentro do triangulo (a, b, c)
bool ptInsideTriangle(PT p, PT a, PT b, PT c) {
  if(cross(b-a, c-b) < 0) swap(a, b);
 11 x = cross(b-a, p-b);
  11 v = cross(c-b, p-c);
  11 z = cross(a-c, p-a);
  if (x > 0 \& \& y > 0 \& \& z > 0) return true;
  if(!x) return ptInSegment(a,b,p);
  if(!y) return ptInSegment(b,c,p);
  if(!z) return ptInSegment(c,a,p);
  return false;
// Determina se o ponto esta num poligono convexo em O(lqn)
bool pointInConvexPolygon(const vector<PT> &p, PT g) {
 PT pivot = p[0];
  int x = 1, y = p.size();
  while (v-x != 1) {
    int z = (x+y)/2;
    PT diagonal = pivot - p[z];
    if(cross(p[x] - pivot, q - pivot) * cross(q-pivot, p[z] - pivot)
        >= 0) v = z;
    else x = z;
  return ptInsideTriangle(q, p[x], p[y], pivot);
// Determina se o ponto esta num poligono possivelmente nao-convexo
// Retorna 1 para pontos estritamente dentro, 0 para pontos
    estritamente fora do poligno
// e 0 ou 1 para os pontos restantes
// Eh possivel converter num teste exato usando inteiros e tomando
    cuidado com a divisao
// e entao usar testes exatos para checar se esta na borda do poligno
bool pointInPolygon(const vector<PT> &p, PT g) {
  bool c = 0;
  for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    if((p[i].y \le q.y \&\& q.y < p[j].y || p[j].y \le q.y \&\& q.y < p[i].y
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y)
          i].y))
```

```
c = !c;
  return c;
// Determina se o ponto esta na borda do poligno
bool pointOnPolygon(const vector<PT> &p, PT q) {
  for(int i = 0; i < p.size(); i++)</pre>
    if(dist2(projectPointSegment(p[i], p[(i + 1) % p.size()], q), q) <</pre>
      return true;
    return false:
// Calcula intersecao da linha a - b com o circulo centrado em c com
    raio r > 0
vector<PT> circleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ans:
  b = b - a:
  a = a - c;
  double x = dot(b, b);
  double y = dot(a, b);
  double z = dot(a, a) - r * r;
  double w = v * v - x * z;
 if (w < -eps) return ans;</pre>
  ans.push_back(c + a + b \star (-y + sqrt(w + eps)) / x);
 if (w > eps)
   ans.push_back(c + a + b \star (-y - sqrt(w)) / x);
  return ans;
// Calcula interseção do circulo centrado em a com raio r e o centrado
     em b com raio R
vector<PT> circleCircleIntersection(PT a, PT b, double r, double R) {
 vector<PT> ans:
  double d = sqrt(dist2(a, b));
  if (d > r + R \mid \mid d + min(r, R) < max(r, R)) return ans;
  double x = (d * d - R * R + r * r)/(2 * d);
  double y = sqrt(r * r - x * x);
  PT v = (b - a) / d;
  ans.push_back(a + v * x + rotateCCW90(v) * y);
  if (v > 0)
    ans.push_back(a + v * x - RotateCCW90(v) * y);
  return ans;
// Calcula a area ou o centroide de um poligono (possivelmente nao-
    convexo)
// assumindo que as coordenadas estao listada em ordem horaria ou anti
// O centroide eh equivalente a o centro de massa ou centro de
    gravidade
double computeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i + 1) % p.size();
    area += p[i].x * p[j].y - p[j].x * p[i].y;
  return area / 2.0:
```

```
double computeArea(const vector<PT> &p) {
  return abs(computeSignedArea(p));
PT computeCentroid(const vector<PT> &p) {
  PT c(0,0);
  double scale = 6.0 * ComputeSignedArea(p);
  for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
  return c / scale;
// Testa se o poligno listada em ordem CW ou CCW eh simples (nenhuma
    linha se intersecta)
bool isSimple(const vector<PT> &p) {
  for(int i = 0; i < p.size(); i++) {</pre>
    for(int k = i + 1; k < p.size(); k++) {
      int j = (i + 1) % p.size();
      int 1 = (k + 1) % p.size();
      if (i == 1 \mid | j == k) continue;
      if (segmentsIntersect(p[i], p[j], p[k], p[l]))
        return false;
  return true;
```

5.2 Convex Hull

```
vector<PT> convexHull(vector<PT> p)) {
  int n = p.size(), k = 0;
  vector<PT> h(2 * n);
  sort(p.begin(), p.end());
  for(int i = 0; i < n; i++) {
    while(k >= 2 && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0)
        k--;
    h[k++] = p[i];
  }
  for(int i = n - 2, t = k + 1; i >= 0; i--) {
    while(k >= t && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0)
        k--;
    h[k++] = p[i];
  }
  h.resize(k);
  return h;
}</pre>
```

5.3 Closest Pair

```
double closestPair(vector<PT> p) {
  int n = p.size(), k = 0;
  sort(p.begin(), p.end());
  double d = inf;
  set<PT> ptsInv;
  for(int i = 0; i < n; i++) {
    while(k < i && p[k].x < p[i].x - d) {</pre>
```

```
ptsInv.erase(swapCoord(p[k++]));
}
for(auto it = ptsInv.lower_bound(PT(p[i].y - d, p[i].x - d));
   it != ptsInv.end() && it->x <= p[i].y + d; it++) {
      d = min(d, !(p[i] - swapCoord(*it)));
   }
   ptsInv.insert(swapCoord(p[i]));
}
return d;
}</pre>
```

5.4 Intersection Points

```
// Utiliza uma seg tree
int intersectionPoints(vector<pair<PT, PT>> v) {
 int n = v.size();
 vector<pair<int, int>> events, vertInt;
  for(int i = 0; i < n; i++) {
    if(v.first.x == v.second.x) { // Segmento Vertical
      int y0 = min(v.first.y, v.second.y), y1 = max(v.first.y, v.
      events.push_back({v.first.x, vertInt.size()}); // Tipo = Indice
          no arrav
      vertInt.push_back({y0, y1});
    } else { // Segmento Horizontal
      int x0 = min(v.first.x, v.second.x), x1 = max(v.first.x, v.
          second.x);
      events.push_back({x0, -1}); // Inicio de Segmento
      events.push_back({x1, inf}); // Final de Segmento
  sort(events.begin(), events.end());
  int ans = 0;
  for(int i = 0; i < events.size(); i++) {</pre>
    int t = events[i].second;
    if(t == -1) {
      segUpdate(events[i].first, 1);
    } else if(t == inf) {
      seqUpdate(events[i].first, 0);
    } else {
      ans += segQuery(vertInt[t].first, vertInt[t].second);
  return ans;
```

5.5 Delaunay Triangulation

```
typedef long long l1;

bool ge(const l1& a, const l1& b) { return a >= b; }
bool le(const l1& a, const l1& b) { return a <= b; }
bool eq(const l1& a, const l1& b) { return a == b; }
bool gt(const l1& a, const l1& b) { return a >= b; }
bool lt(const l1& a, const l1& b) { return a > b; }
bool lt(const l1& a, const l1& b) { return a < b; }
int sgn(const l1& a) { return a >= 0 ? a ? 1 : 0 : -1; }
```

```
struct pt {
   11 x, y;
    pt() { }
   pt(ll _x, ll _y) : x(_x), y(_y) { }
   pt operator-(const pt& p) const {
        return pt(x - p.x, y - p.y);
   11 cross(const pt& p) const {
        return x * p.y - y * p.x;
    11 cross(const pt& a, const pt& b) const {
        return (a - *this).cross(b - *this);
    11 dot(const pt& p) const {
        return x * p.x + y * p.y;
   11 dot(const pt& a, const pt& b) const {
        return (a - *this).dot(b - *this);
   11 sqrLength() const {
        return this->dot(*this);
   bool operator == (const pt & p) const
        return eq(x, p.x) && eq(y, p.y);
};
const pt inf_pt = pt(1e18, 1e18);
struct QuadEdge {
    pt origin;
    QuadEdge* rot = nullptr;
   QuadEdge* onext = nullptr;
   bool used = false;
    QuadEdge* rev() const {
        return rot->rot;
   QuadEdge* lnext() const {
        return rot->rev()->onext->rot;
   QuadEdge* oprev() const {
        return rot->onext->rot;
    pt dest() const {
        return rev()->origin;
};
OuadEdge* make edge(pt from, pt to) {
   QuadEdge* e1 = new QuadEdge;
    QuadEdge* e2 = new QuadEdge;
    QuadEdge* e3 = new QuadEdge;
   QuadEdge* e4 = new QuadEdge;
    e1->origin = from;
   e2->origin = to;
   e3->origin = e4->origin = inf_pt;
   e1->rot = e3;
   e2 -> rot = e4;
   e3 \rightarrow rot = e2;
   e4->rot = e1;
   e1->onext = e1;
```

```
e2 - > onext = e2;
    e3->onext = e4;
    e4->onext = e3;
    return e1;
void splice(QuadEdge* a, QuadEdge* b) {
    swap(a->onext->rot->onext, b->onext->rot->onext);
    swap(a->onext, b->onext);
void delete_edge(QuadEdge* e) {
    splice(e, e->oprev());
    splice(e->rev(), e->rev()->oprev());
    delete e->rot;
    delete e->rev()->rot;
    delete e;
    delete e->rev();
QuadEdge* connect (QuadEdge* a, QuadEdge* b) {
    OuadEdge* e = make edge(a->dest(), b->origin);
    splice(e, a->lnext());
    splice(e->rev(), b);
    return e;
bool left_of(pt p, QuadEdge* e) {
    return gt(p.cross(e->origin, e->dest()), 0);
bool right_of(pt p, QuadEdge* e) {
    return lt(p.cross(e->origin, e->dest()), 0);
template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3, T c1, T c2, T c3) {
    return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) +
           a3 * (b1 * c2 - c1 * b2);
bool in_circle(pt a, pt b, pt c, pt d) {
// If there is __int128, calculate directly.
// Otherwise, calculate angles.
#if defined(__LP64___) || defined(_WIN64)
    __int128 det = -det3<__int128>(b.x, b.y, b.sqrLength(), c.x, c.y,
                                    c.sqrLength(), d.x, d.y, d.
                                        sqrLength());
    det += det3<__int128>(a.x, a.y, a.sqrLength(), c.x, c.y, c.
        sqrLength(), d.x,
                          d.y, d.sqrLength());
    det -= det3<__int128>(a.x, a.y, a.sqrLength(), b.x, b.y, b.
        sqrLength(), d.x,
                          d.y, d.sqrLength());
    det += det3 < __int128 > (a.x, a.y, a.sqrLength(), b.x, b.y, b.
        sqrLength(), c.x,
                           c.v, c.sqrLength());
    return det > 0:
#else
    auto ang = [](pt l, pt mid, pt r) {
        11 \times = mid.dot(1, r);
```

```
ll y = mid.cross(l, r);
        long double res = atan2((long double)x, (long double)y);
        return res;
   long double kek = ang(a, b, c) + ang(c, d, a) - ang(b, c, d) - ang
        (d, a, b);
    if (kek > 1e-8)
        return true;
   else
        return false;
#endif
pair<QuadEdge*, QuadEdge*> build_tr(int 1, int r, vector<pt>& p) {
   if (r - 1 + 1 == 2) {
        QuadEdge* res = make_edge(p[1], p[r]);
        return make_pair(res, res->rev());
        QuadEdge *a = make_edge(p[1], p[1 + 1]), *b = make_edge(p[1 +
            1], p[r]);
        splice(a->rev(), b);
        int sg = sgn(p[1].cross(p[1 + 1], p[r]));
        if (sq == 0)
            return make_pair(a, b->rev());
        QuadEdge* c = connect(b, a);
        if (sq == 1)
            return make_pair(a, b->rev());
        else
            return make_pair(c->rev(), c);
    int mid = (1 + r) / 2;
    QuadEdge *ldo, *ldi, *rdo, *rdi;
    tie(ldo, ldi) = build_tr(l, mid, p);
   tie(rdi, rdo) = build_tr(mid + 1, r, p);
    while (true) {
        if (left_of(rdi->origin, ldi)) {
            ldi = ldi->lnext();
            continue;
        if (right_of(ldi->origin, rdi)) {
            rdi = rdi->rev()->onext;
            continue;
        break;
    QuadEdge* basel = connect(rdi->rev(), ldi);
    auto valid = [&basel](QuadEdge* e) { return right_of(e->dest(),
    if (ldi->origin == ldo->origin)
        ldo = basel->rev();
    if (rdi->origin == rdo->origin)
        rdo = basel;
   while (true) {
        QuadEdge* lcand = basel->rev()->onext;
        if (valid(lcand)) {
            while (in_circle(basel->dest(), basel->origin, lcand->dest
                             lcand->onext->dest())) {
                QuadEdge* t = lcand->onext;
                delete_edge(lcand);
```

```
lcand = t;
        QuadEdge* rcand = basel->oprev();
        if (valid(rcand)) {
            while (in circle(basel->dest(), basel->origin, rcand->dest
                              rcand->oprev()->dest())) {
                QuadEdge* t = rcand->oprev();
                delete_edge(rcand);
                rcand = t;
        if (!valid(lcand) && !valid(rcand))
            break:
        if (!valid(lcand) ||
            (valid(rcand) && in_circle(lcand->dest(), lcand->origin,
                                        rcand->origin, rcand->dest())))
            basel = connect(rcand, basel->rev());
        else
            basel = connect(basel->rev(), lcand->rev());
    return make_pair(ldo, rdo);
vector<tuple<pt, pt, pt>> delaunay(vector<pt> p) {
    sort(p.begin(), p.end(), [](const pt& a, const pt& b) {
        return lt(a.x, b.x) || (eq(a.x, b.x) && lt(a.y, b.y));
    });
    auto res = build_tr(0, (int)p.size() - 1, p);
    QuadEdge* e = res.first;
    vector<QuadEdge*> edges = {e};
    while (lt(e->onext->dest().cross(e->dest(), e->origin), 0))
        e = e->onext;
    auto add = [&p, &e, &edges]() {
        QuadEdge* curr = e;
            curr->used = true;
            p.push_back(curr->origin);
            edges.push_back(curr->rev());
            curr = curr->lnext();
        } while (curr != e);
    };
    add();
    p.clear();
    int kek = 0;
    while (kek < (int)edges.size()) {</pre>
        if (!(e = edges[kek++])->used)
            add();
    vector<tuple<pt, pt, pt>> ans;
    for (int i = 0; i < (int)p.size(); i += 3) {</pre>
        ans.push_back(make_tuple(p[i], p[i + 1], p[i + 2]));
    return ans;
```

5.6 Java Geometry Library

import java.util.*;

```
import java.io.*;
import java.awt.geom.*;
import java.lang.*;
//Lazy Geometry
class AWT{
  static Area makeArea(double[] pts){
   Path2D.Double p = new Path2D.Double();
   p.moveTo(pts[0], pts[1]);
    for(int i = 2; i < pts.length; i+=2) {</pre>
      p.lineTo(pts[i], pts[i+1]);
   p.closePath():
   return new Area(p);
  static double computePolygonArea(ArrayList<Point2D.Double> points) {
   Point2D.Double[] pts = points.toArray(new Point2D.Double[points.
        size()1);
    double area = 0;
    for (int i = 0; i < pts.length; i++) {</pre>
     int j = (i+1) % pts.length;
     area += pts[i].x * pts[j].y - pts[j].x * pts[i].y;
    return Math.abs(area)/2;
  static double computeArea(Area area) {
    double totArea = 0;
   PathIterator iter = area.getPathIterator(null);
   ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>()
    while (!iter.isDone()) {
      double[] buffer = new double[6];
      switch (iter.currentSegment(buffer)) {
        case PathIterator.SEG_MOVETO:
        case PathIterator.SEG_LINETO:
         points.add(new Point2D.Double(buffer[0], buffer[1]));
         break:
        case PathIterator.SEG CLOSE:
          totArea += computePolygonArea(points);
          points.clear();
          break:
      iter.next():
    return totArea;
```

6 Dynamic Programming

6.1 Convex Hull Trick

```
typedef long double double_t;
typedef long long int 11;
class HullDynamic {
public:
    const double_t inf = 1e9;
```

```
struct Line {
  11 m, b;
 double t start;
 bool is_query;
 Line() {}
 Line(ll _m, ll _b, double_t _start, bool _is_query) : m(_m), b(_b)
      , start(_start), is_query(_is_query) {}
  11 eval(l1 x) {
    return m * x + b;
  double_t intersect(const Line& 1) const {
    return (double_t) (1.b - b) / (m - 1.m);
  bool operator< (const Line& 1) const {
    if (is_query == 0) return m > 1.m;
    return (start < 1.start);</pre>
};
typedef set<Line>::iterator iterator_t;
bool has prev(iterator t it) {
  return (it != hull.begin());
bool has_next(iterator_t it) {
  return (++it != hull.end());
bool irrelevant(iterator_t it) {
  if (!has_prev(it) || !has_next(it)) return 0;
  iterator_t prev = it, next = it;
 prev--;
  return next->intersect(*prev) <= it->intersect(*prev);
void update_left(iterator_t it) {
  if (it == hull.begin()) return;
  iterator_t pos = it;
  --it;
  vector<Line> rem;
  while(has_prev(it))
    iterator t prev = it;
    if (prev->intersect(*pos) <= prev->intersect(*it)) {
      rem.push_back(*it);
    } else {
     break;
    --it:
  double_t start = pos->intersect(*it);
  Line f = *pos;
  for (Line r : rem) hull.erase(r);
 hull.erase(f):
```

```
f.start = start;
    hull.insert(f);
  void update_right(iterator_t it) {
    if (!has next(it)) return;
    iterator_t pos = it;
    ++it;
    vector<Line> rem;
    while(has_next(it)) {
      iterator_t next = it;
      ++next:
      if (next->intersect(*pos) <= pos->intersect(*it)) {
        rem.push_back(*it);
      } else {
       break:
     ++it;
    double_t start = pos->intersect(*it);
    Line f = *it:
    for (Line r : rem) hull.erase(r);
    hull.erase(f);
    f.start = start;
    hull.insert(f);
  void insert_line(ll m, ll b) {
    Line f(m, b, -inf, 0);
    iterator_t it = hull.lower_bound(f);
    if (it != hull.end() && it->m == f.m) {
      if (it->b <= f.b) {
        return:
      } else if (it->b > f.b) {
        hull.erase(it);
    hull.insert(f);
    it = hull.lower_bound(f);
    if (irrelevant(it)) {
      hull.erase(it);
      return;
    update_left(it);
    it = hull.lower_bound(f);
    update_right(it);
  ll get(ll x) {
    Line f(0, 0, x, 1);
    iterator_t it = hull.upper_bound(f);
    assert(it != hull.begin());
    --it:
    return it->m * x + it->b;
private:
  set < Line > hull;
```

6.2 Divide and Conquer

```
int n, k;
ll dpold[ms], dp[ms], c[ms][ms]; // c(i, j) pode ser funcao
void compute(int 1, int r, int opt1, int optr) {
    if(l>r) return;
    int mid = (1+r)/2;
    pair<ll, int> best = {inf, -1}; // long long inf
    for(int k = optl; k <= min(mid, optr); k++) {</pre>
        best = min(best, \{dpold[k-1] + c[k][mid], k\});
    dp[mid] = best.first;
    int opt = best.second;
    compute(l, mid-1, optl, opt);
    compute(mid+1, r, opt, optr);
ll solve() {
    dp[0] = 0;
    for(int i = 1; i <= n; i++) dp[i] = inf; // initialize row 0 of</pre>
    for(int i = 1; i <= k; i++) {</pre>
        swap(dpold, dp);
        compute(0, n, 0, n); // solve row i of the dp
    return dp[n]; // return dp[k][n]
```

7 Miscellaneous

7.1 LIS - Longest Increasing Subsequence

```
int arr[ms], lisArr[ms], n;
// int bef[ms], pos[ms];
int lis() {
  int len = 1;
  lisArr[0] = arr[0];
  // bef[0] = -1;
  for(int i = 1; i < n; i++) {</pre>
    // upper bound se non-decreasing
    int x = lower_bound(lisArr, lisArr + len, arr[i]) - lisArr;
    len = max(len, x + 1);
    lisArr[x] = arr[i];
    // pos[x] = i;
    // bef[i] = x ? pos[x-1] : -1;
  return len;
vi getLis() {
 int len = lis();
  for(int i = pos[lisArr[len - 1]]; i >= 0; i = bef[i]) {
    ans.push_back(arr[i]);
```

```
reverse(ans.begin(), ans.end());
return ans;
}
```

7.2 Ternary Search

```
// R
for (int i = 0; i < LOG; i++) {
  long double m1 = (A * 2 + B) / 3.0;
  long double m2 = (A + 2 * B) / 3.0;
  if(f(m1) > f(m2))
   A = m1:
  else
   B = m2;
ans = f(A);
1/ 7
while (B - A > 4) {
  int m1 = (A + B) / 2;
  int m2 = (A + B) / 2 + 1;
 if(f(m1) > f(m2))
   A = m1;
  else
ans = inf:
for(int i = A; i <= B; i++) ans = min(ans , f(i));</pre>
```

7.3 Random Number Generator

7.4 Submask Enumeration

```
for (int s=m; ; s=(s-1)&m) {
   ... you can use s ...
   if (s==0) break;
}
```

7.5 Java Fast I/O

```
import java.util.*;
import java.io.*;
```

```
// https://www.spoj.com/problems/INTEST/
class Main{
 public static void main(String[] args) throws Exception{
    Reader s = new Reader();
    PrintWriter out = new PrintWriter(new BufferedOutputStream(System.
        out));
    int n = s.nextInt();
    int k = s.nextInt();
    int count=0;
    while (s.hasNext()) {
     int x = s.nextInt();
     if (x%k == 0)
     count++;
   out.printf("%d\n", count);
   out.close();
   s.close();
  // fast io
  static class Reader {
    final private int BUFFER_SIZE = 1 << 16;</pre>
    private DataInputStream din;
    private byte[] buffer;
    private int bufferPointer, bytesRead;
    public Reader() {
      din = new DataInputStream(System.in);
     buffer = new byte[BUFFER_SIZE];
     bufferPointer = bytesRead = 0;
    public Reader(String file_name) throws IOException {
      din = new DataInputStream(new FileInputStream(file_name));
     buffer = new byte[BUFFER_SIZE];
     bufferPointer = bytesRead = 0;
    public String readLine() throws IOException {
     byte[] buf = new byte[64]; // line length
     int cnt = 0, c;
      while ((c = read()) != -1) {
       if (c == '\n') break:
       buf[cnt++] = (byte) c;
      return new String(buf, 0, cnt);
    public int nextInt() throws IOException {
      int ret = 0;
      byte c = read();
      while (c <= ' ') c = read();</pre>
     boolean neg = (c == '-');
      if (neg) c = read();
      do {
       ret = ret * 10 + c - '0';
      \} while ((c = read()) >= '0' && c <= '9');
      if (neg) return -ret;
      return ret;
```

```
public long nextLong() throws IOException {
  long ret = 0;
  byte c = read();
  while (c <= ' ') c = read();</pre>
  boolean neg = (c == '-');
  if (neg) c = read();
    ret = ret * 10 + c - '0';
  } while ((c = read()) >= '0' \&\& c <= '9');
  if (neg) return -ret;
  return ret;
public double nextDouble() throws IOException {
  double ret = 0, div = 1;
  bvte c = read();
  while (c <= ' ')
  c = read():
  boolean neg = (c == '-');
  if (neg) c = read();
   ret = ret * 10 + c - '0';
  if (c == '.') {
    while ((c = read()) >= '0' \&\& c <= '9')  {
     ret += (c - '0') / (div *= 10);
  if (neg) return -ret;
  return ret:
private void fillBuffer() throws IOException {
  bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
  if (bytesRead == -1) buffer[0] = -1;
public boolean hasNext() throws IOException {
  if (bufferPointer < bytesRead) return true;</pre>
  fillBuffer();
  if(buffer[0] == -1) return false;
  return true;
private byte read() throws IOException {
  if (bufferPointer == bytesRead) fillBuffer();
  return buffer[bufferPointer++];
public void close() throws IOException {
  if (din == null) return;
  din.close():
```

8 Teoremas e formulas uteis

8.1 Grafos

```
Formula de Euler: V - E + F = 2 (para grafo planar)
Handshaking: Numero par de vertices tem grau impar
Kirchhoff's Theorem: Monta matriz onde Mi, i = Grau[i] e Mi, i = -1 se
    houver aresta i-j ou O caso contrario, remove uma linha e uma
    coluna qualquer e o numero de spanning trees nesse grafo eh o det
    da matriz
Grafo contem caminho hamiltoniano se:
Dirac's theorem: Se o grau de cada vertice for pelo menos n/2
Ore's theorem: Se a soma dos graus que cada par nao-adjacente de
    vertices for pelo menos n
Tem Catalan(N) Binary trees de N vertices
Tem Catalan (N-1) Arvores enraizadas com N vertices
Calev Formula: n^(n-2) arvores em N vertices com label
Prufer code: Cada etapa voce remove a folha com menor label e o label
    do vizinho eh adicionado ao codigo ate ter 2 vertices
Flow:
Max Edge-disjoint paths: Max flow com arestas com peso 1
Max Node-disjoint paths: Faz a mesma coisa mas separa cada vertice em
    um com as arestas de chegadas e um com as arestas de saida e uma
    aresta de peso 1 conectando o vertice com aresta de chegada com
    ele mesmo com arestas de saida
Koniq's Theorem: minimum node cover = maximum matching se o grafo for
    bipartido, complemento eh o maximum independent set
Min Node disjoint path cover: formar grafo bipartido de vertices
    duplicados, onde aresta sai do vertice tipo A e chega em tipo B,
    entao o path cover eh N - matching
Min General path cover: Mesma coisa mas colocando arestas de A pra B
    sempre que houver caminho de A pra B
Dilworth's Theorem: Min General Path cover = Max Antichain (set de
    vertices tal que nao existe caminho no grafo entre vertices desse
Hall's marriage: um grafo tem um matching completo do lado X se para
    cada subconjunto W de X,
    |W| \le |vizinhosW| onde |W| eh quantos vertices tem em W
```

8.2 Math

```
Goldbach's: todo numero par n > 2 pode ser representado com n = a + b onde a e b sao primos

Twin prime: existem infinitos pares p, p + 2 onde ambos sao primos

Legendre's: sempre tem um primo entre n^2 e (n+1)^2

Lagrange's: todo numero inteiro pode ser inscrito como a soma de 4 quadrados

Zeckendorf's: todo numero pode ser representado pela soma de dois numeros de fibonnacis diferentes e nao consecutivos

Euclid's: toda tripla de pitagoras primitiva pode ser gerada com (n^2 - m^2, 2nm, n^2+m^2) onde n, m sao coprimos e um deles eh par

Wilson's: n eh primo quando (n-1)! mod n = n - 1
```

```
Mcnugget: Para dois coprimos x, y o maior inteiro que nao pode ser
    escrito como ax + by eh (x-1)(y-1)/2
Fermat: Se p eh primo entao a^(p-1) % p = 1
Se x e m tambem forem coprimos entao x^k % m = x^(k \mod(m-1)) % m
Euler's theorem: x^(phi(m)) mod m = 1 onde phi(m) eh o totiente de
Chinese remainder theorem:
Para equacoes no formato x = a1 \mod m1, ..., x = an \mod mn onde todos
      os pares m1, ..., mn sao coprimos
Deixe Xk = m1 * m2 * ... * mn/mk e Xk^-1 mod mk = inverso de Xk mod mk, entao
x = somatorio com k de 1 ate n de ak*Xk*(Xk,mk^-1 mod mk)
Para achar outra solucao so somar m1*m2*..*mn a solucao existente
Catalan number: exemplo expressoes de parenteses bem formadas
C0 = 1, Cn = somatorio de i=0 -> n-1 de <math>Ci \star C(n-1+1)
outra forma: Cn = (2n \text{ escolhe } n)/(n+1)
Bertrand's ballot theorem: p votos tipo A e q votos tipo B com p>q,
    prob de em todo ponto ter mais As do que Bs antes dele = (p-q)/(p+
Se puder empates entao prob = (p+1-q)/(p+1), para achar quantidade de
    possibilidades nos dois casos basta multiplicar por (p + q escolhe
     a)
Propriedades de Coeficientes Binomiais:
Somatorio de k = 0 \rightarrow m de (-1)^k \star (n \text{ escolhe } k) = (-1)^m \star (n -1)
    escolhe m)
(N \text{ escolhe } K) = (N \text{ escolhe } N-K)
(N \text{ escolhe } K) = N/K * (n-1 \text{ escolhe } k-1)
Somatorio de k = 0 \rightarrow n de (n escolhe k) = 2^n
Somatorio de m = 0 \rightarrow n de (m = scolhe k) = (n+1 = scolhe k + 1)
Somatorio de k = 0 \rightarrow m de (n+k) = (n+m+1) escolhe m)
Somatorio de k = 0 \rightarrow n de (n \text{ escolhe } k)^2 = (2n \text{ escolhe } n)
Somatorio de k = 0 ou 1 \rightarrow n de k * (n escolhe k) = n * 2^n(n-1)
Somatorio de k = 0 \rightarrow n de (n-k \text{ escolhe } k) = \text{Fib}(n+1)
Hockey-stick: Somatorio de i = r \rightarrow n de (i = scolhe r) = (n + 1)
    escolhe r + 1
Vandermonde: (m+n \ escolhe \ r) = somatorio \ de \ k = 0 \rightarrow r \ de \ (m \ escolhe \ k
    ) \star (n escolhe r - k)
```

```
Burnside lemma: colares diferentes nao contando rotacoes quando m =
    cores e n = comprimento
(m^n + somatorio i =1 - > n-1 de m^gcd(i, n))/n

Distribuicao uniforme a,a+1, ..., b Expected[X] = (a+b)/2
Distribuicao binomial com n tentativas de probabilidade p, X =
    sucessos:
    P(X = x) = p^x * (1-p)^(n-x) * (n escolhe x) e E[X] = p*n

Distribuicao geometrica onde continuamos ate ter sucesso, X =
    tentativas:
    P(X = x) = (1-p)^(x-1) * p e E[X] = 1/p

Linearity of expectation: Tendo duas variaveis X e Y e constantes a e
    b, o valor esperado de aX + bY = a*E[X] + b*E[X]
```

8.3 Geometry

```
Pick Theorem: Para achar pontos em coords inteiras num poligono Area = i + b/2 - 1 onde i eh o o numero de pontos dentro do poligono e b de pontos no perimetro do poligono

Two ears theorem: Todo poligono simples com mais de 3 vertices tem pelo menos 2 orelhas, vertices que podem ser removidos sem criar um crossing, remover orelhas repetidamente triangula o poligono

Incentro triangulo: (a(Xa, Ya) + b(Xb, Yb) + c(Xc, Yc))/(a+b+c) onde a = lado oposto ao vertice a, incentro eh onde cruzam as bissetrizes, eh o centro da circunferencia inscrita e eh
```

8.4 Mersenne's Primes

Formula de Euler: V - E + F = 2

equidistante aos lados

```
Primos de Mersenne 2^n - 1
Lista de Ns que resultam nos primeiros 41 primos de Mersenne:
2; 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127; 521; 607; 1.279; 2.203;
2.281; 3.217; 4.253; 4.423; 9.689; 9.941; 11.213; 19.937; 21.701;
23.209; 44.497; 86.243; 110.503; 132.049; 216.091; 756.839;
859.433; 1.257.787; 1.398.269; 2.976.221; 3.021.377; 6.972.593;
13.466.917; 20.996.011; 24.036.583;
```