11 Analog-to-digital converter (ADC)

ADC2 and ADC3 are not available in STM32F411xC/E.

11.1 ADC introduction

The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 19 multiplexed channels allowing it to measure signals from 16 external sources, two internal sources, and the V_{BAT} channel. The A/D conversion of the channels can be performed in single, continuous, scan or discontinuous mode. The result of the ADC is stored into a left-or right-aligned 16-bit data register.

The analog watchdog feature allows the application to detect if the input voltage goes beyond the user-defined, higher or lower thresholds.

11.2 ADC main features

- 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
- Interrupt generation at the end of conversion, end of injected conversion, and in case of analog watchdog or overrun events
- Single and continuous conversion modes
- Scan mode for automatic conversion of channel 0 to channel 'n'
- Data alignment with in-built data coherency
- Channel-wise programmable sampling time
- External trigger option with configurable polarity for both regular and injected conversions
- Discontinuous mode
- ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at slower speed
- ADC input range: V_{REF} ≤V_{IN} ≤V_{REF}+
- DMA request generation during regular channel conversion

Figure 31 shows the block diagram of the ADC.

Note: V_{REF-} , if available (depending on package), must be tied to V_{SSA} .

11.3 ADC functional description

Figure 31 shows a single ADC block diagram and Table 39 gives the ADC pin description.

Figure 31. Single ADC block diagram Interrupt enable bits Flags DMA overrun OVR **OVRIE** End of conversion EOC **EOCIE** ADC Interrupt to NVIC End of injected conversion JEOC JEOCIE Analog watchdog event AWDIE AWD Analog watchdog Compare result Higher threshold (12 bits) Lower threshold (12 bits) Injected data registers V_{REF+} (4 x 16 bits) V_{REF-}I Regular data register V_{DDA} (16 bits) با ASSA با VSSA Analog DMA request ADCx_IN0 ADCx_IN1 **GPIO** ADCCLK up to 4 Injected Analog to digital ports channels converter up to 16 Regular ADCx_IN15 channels Temp. sensor VREFINT V_{BAT} From ADC prescaler EXTSEL[3:0] bits JEXTSEL[3:0] bits TIM1_CH4 TIM1_CH1 TIM1_TRGO JEXTEN [1:0] bits **EXTEN** TIM1_CH2 [1:0] bits TIM2_CH1 TIM1_CH3 TIM2_TRGO TIM2_CH2 TIM3_CH2 TIM2_CH3 TIM3_CH4 TIM2 CH4 TIM4_CH1 TIM2_TRGO TIM4_CH2 TIM4_CH3 TIM3_CH1 TIM3_TRGO TIM4_TRGO TIM4_CH4 Start trigger Start trigger TIM5_CH4 TIM5 CH1 (injected group) (regular group) TIM5_TRGO TIM5_CH2 - TIM5_CH3 EXTI_15 EXTI_11 MS32670V1

577

Name	Signal type	Remarks
V _{REF+}	Input, analog reference positive	The higher/positive reference voltage for the ADC, 1.8 V \leq V _{REF+} \leq V _{DDA}
V_{DDA}	Input, analog supply	Analog power supply equal to V_{DD} and 2.4 $V \le V_{DDA} \le V_{DD}$ (3.6 V) for full speed 1.8 $V \le V_{DDA} \le V_{DD}$ (3.6 V) for reduced speed
V _{REF} _	Input, analog reference negative	The lower/negative reference voltage for the ADC, $V_{REF-} = V_{SSA}$
V _{SSA}	Input, analog supply ground	Ground for analog power supply equal to V _{SS}
ADCx_IN[15:0]	Analog input signals	16 analog input channels

Table 39. ADC pins

11.3.1 ADC on-off control

The ADC is powered on by setting the ADON bit in the ADC_CR2 register. When the ADON bit is set for the first time, it wakes up the ADC from the Power-down mode.

Conversion starts when either the SWSTART or the JSWSTART bit is set.

You can stop conversion and put the ADC in power down mode by clearing the ADON bit. In this mode the ADC consumes almost no power (only a few μ A).

11.3.2 ADC clock

The ADC features two clock schemes:

- Clock for the analog circuitry: ADCCLK
 - This clock is generated from the APB2 clock divided by a programmable prescaler that allows the ADC to work at $f_{PCLK2}/2$, /4, /6 or /8. Refer to the datasheets for the maximum value of ADCCLK.
- Clock for the digital interface (used for registers read/write access)
 This clock is equal to the APB2 clock. The digital interface clock can be enabled/disabled individually for each ADC through the RCC APB2 peripheral clock enable register (RCC_APB2ENR).

11.3.3 Channel selection

There are 16 multiplexed channels. It is possible to organize the conversions in two groups: regular and injected. A group consists of a sequence of conversions that can be done on any channel and in any order. For instance, it is possible to implement the conversion sequence in the following order: ADC_IN3, ADC_IN8, ADC_IN2, ADC_IN2, ADC_IN0, ADC_IN2, ADC_IN2, ADC_IN15.

- A regular group is composed of up to 16 conversions. The regular channels and their
 order in the conversion sequence must be selected in the ADC_SQRx registers. The
 total number of conversions in the regular group must be written in the L[3:0] bits in the
 ADC_SQR1 register.
- An injected group is composed of up to 4 conversions. The injected channels and their order in the conversion sequence must be selected in the ADC JSQR register.

The total number of conversions in the injected group must be written in the L[1:0] bits in the ADC JSQR register.

If the ADC_SQRx or ADC_JSQR registers are modified during a conversion, the current conversion is reset and a new start pulse is sent to the ADC to convert the newly chosen group.

Temperature sensor, V_{REFINT} and V_{BAT} internal channels

 The temperature sensor is internally connected to ADC1_IN18 channel which is shared with VBAT. Only one conversion, temperature sensor or VBAT, must be selected at a time. When the temperature sensor and VBAT conversion are set simultaneously, only the VBAT conversion is performed.

The internal reference voltage VREFINT is connected to ADC1_IN17.

The V_{BAT} channel is connected to channel ADC1_IN18. It can also be converted as an injected or regular channel.

Note:

The temperature sensor, V_{REFINT} and the V_{BAT} channel are available only on the master ADC1 peripheral.

11.3.4 Single conversion mode

In Single conversion mode the ADC does one conversion. This mode is started with the CONT bit at 0 by either:

- setting the SWSTART bit in the ADC_CR2 register (for a regular channel only)
- setting the JSWSTART bit (for an injected channel)
- external trigger (for a regular or injected channel)

Once the conversion of the selected channel is complete:

- If a regular channel was converted:
 - The converted data are stored into the 16-bit ADC DR register
 - The EOC (end of conversion) flag is set
 - An interrupt is generated if the EOCIE bit is set
- If an injected channel was converted:
 - The converted data are stored into the 16-bit ADC_JDR1 register
 - The JEOC (end of conversion injected) flag is set
 - An interrupt is generated if the JEOCIE bit is set

Then the ADC stops.

11.3.5 Continuous conversion mode

In continuous conversion mode, the ADC starts a new conversion as soon as it finishes one. This mode is started with the CONT bit at 1 either by external trigger or by setting the SWSTRT bit in the ADC_CR2 register (for regular channels only).

After each conversion:

- If a regular group of channels was converted:
 - The last converted data are stored into the 16-bit ADC_DR register
 - The EOC (end of conversion) flag is set
 - An interrupt is generated if the EOCIE bit is set

5/

Note:

Injected channels cannot be converted continuously. The only exception is when an injected channel is configured to be converted automatically after regular channels in continuous mode (using JAUTO bit), refer to Auto-injection section).

11.3.6 Timing diagram

As shown in Figure~32, the ADC needs a stabilization time of t_{STAB} before it starts converting accurately. After the start of the ADC conversion and after 15 clock cycles, the EOC flag is set and the 16-bit ADC data register contains the result of the conversion.

Figure 32. Timing diagram

11.3.7 Analog watchdog

The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is below a lower threshold or above a higher threshold. These thresholds are programmed in the 12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can be enabled by using the AWDIE bit in the ADC_CR1 register.

The threshold value is independent of the alignment selected by the ALIGN bit in the ADC_CR2 register. The analog voltage is compared to the lower and higher thresholds before alignment.

Table 40 shows how the ADC_CR1 register should be configured to enable the analog watchdog on one or more channels.

Figure 33. Analog watchdog's guarded area

Channels guarded by the analog	ADC_CR1 register control bits (x = don't care)								
watchdog	AWDSGL bit	AWDEN bit	JAWDEN bit						
None	x	0	0						
All injected channels	0	0	1						
All regular channels	0	1	0						
All regular and injected channels	0	1	1						
Single ⁽¹⁾ injected channel	1	0	1						
Single ⁽¹⁾ regular channel	1	1	0						
Single (1) regular or injected channel	1	1	1						

Table 40. Analog watchdog channel selection

11.3.8 Scan mode

This mode is used to scan a group of analog channels.

The Scan mode is selected by setting the SCAN bit in the ADC_CR1 register. Once this bit has been set, the ADC scans all the channels selected in the ADC_SQRx registers (for regular channels) or in the ADC_JSQR register (for injected channels). A single conversion is performed for each channel of the group. After each end of conversion, the next channel in the group is converted automatically. If the CONT bit is set, regular channel conversion does not stop at the last selected channel in the group but continues again from the first selected channel.

If the DMA bit is set, the direct memory access (DMA) controller is used to transfer the data converted from the regular group of channels (stored in the ADC_DR register) to SRAM after each regular channel conversion.

The EOC bit is set in the ADC_SR register:

- At the end of each regular group sequence if the EOCS bit is cleared to 0
- At the end of each regular channel conversion if the EOCS bit is set to 1

The data converted from an injected channel are always stored into the ADC_JDRx registers.

11.3.9 Injected channel management

Triggered injection

To use triggered injection, the JAUTO bit must be cleared in the ADC_CR1 register.

- 1. Start the conversion of a group of regular channels either by external trigger or by setting the SWSTART bit in the ADC CR2 register.
- 2. If an external injected trigger occurs or if the JSWSTART bit is set during the conversion of a regular group of channels, the current conversion is reset and the injected channel sequence switches to Scan-once mode.
- 3. Then, the regular conversion of the regular group of channels is resumed from the last interrupted regular conversion.
 - If a regular event occurs during an injected conversion, the injected conversion is not

^{1.} Selected by the AWDCH[4:0] bits

interrupted but the regular sequence is executed at the end of the injected sequence. Figure 34 shows the corresponding timing diagram.

Note:

When using triggered injection, one must ensure that the interval between trigger events is longer than the injection sequence. For instance, if the sequence length is 30 ADC clock cycles (that is two conversions with a sampling time of 3 clock periods), the minimum interval between triggers must be 31 ADC clock cycles.

Auto-injection

If the JAUTO bit is set, then the channels in the injected group are automatically converted after the regular group of channels. This can be used to convert a sequence of up to 20 conversions programmed in the ADC SQRx and ADC JSQR registers.

In this mode, external trigger on injected channels must be disabled.

If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected channels are continuously converted.

Note:

It is not possible to use both the auto-injected and discontinuous modes simultaneously.

11.3.10 Discontinuous mode

Regular group

This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to convert a short sequence of n conversions (n ≤8) that is part of the sequence of conversions selected in the ADC_SQRx registers. The value of n is specified by writing to the DISCNUM[2:0] bits in the ADC_CR1 register.

When an external trigger occurs, it starts the next n conversions selected in the ADC SQRx registers until all the conversions in the sequence are done. The total sequence length is defined by the L[3:0] bits in the ADC_SQR1 register.

The maximum latency value can be found in the electrical characteristics of the STM32F411xC/E

Example:

- n = 3, channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10
- 1st trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion.
- 2nd trigger: sequence converted 3, 6, 7. An EOC event is generated at each conversion
- 3rd trigger: sequence converted 9, 10.An EOC event is generated at each conversion
- 4th trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion

Note: When a regular group is converted in discontinuous mode, no rollover occurs.

When all subgroups are converted, the next trigger starts the conversion of the first subgroup. In the example above, the 4th trigger reconverts the channels 0, 1 and 2 in the 1st subgroup.

Injected group

This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to convert the sequence selected in the ADC_JSQR register, channel by channel, after an external trigger event.

When an external trigger occurs, it starts the next channel conversions selected in the ADC_JSQR registers until all the conversions in the sequence are done. The total sequence length is defined by the JL[1:0] bits in the ADC_JSQR register.

Example:

n = 1, channels to be converted = 1, 2, 3

1st trigger: channel 1 converted 2nd trigger: channel 2 converted

3rd trigger: channel 3 converted and JEOC event generated

4th trigger: channel 1

Note:

When all injected channels are converted, the next trigger starts the conversion of the first injected channel. In the example above, the 4th trigger reconverts the 1st injected channel 1

It is not possible to use both the auto-injected and discontinuous modes simultaneously.

Discontinuous mode must not be set for regular and injected groups at the same time. Discontinuous mode must be enabled only for the conversion of one group.

11.4 Data alignment

The ALIGN bit in the ADC_CR2 register selects the alignment of the data stored after conversion. Data can be right- or left-aligned as shown in *Figure 35* and *Figure 36*.

The converted data value from the injected group of channels is decreased by the userdefined offset written in the ADC_JOFRx registers so the result can be a negative value. The SEXT bit represents the extended sign value.

For channels in a regular group, no offset is subtracted so only twelve bits are significant.

57

Figure 35. Right alignment of 12-bit data

Figure 36. Left alignment of 12-bit data

Special case: when left-aligned, the data are aligned on a half-word basis except when the resolution is set to 6-bit. in that case, the data are aligned on a byte basis as shown in *Figure 37*.

Figure 37. Left alignment of 6-bit data

11.5 Channel-wise programmable sampling time

The ADC samples the input voltage for a number of ADCCLK cycles that can be modified using the SMP[2:0] bits in the ADC_SMPR1 and ADC_SMPR2 registers. Each channel can be sampled with a different sampling time.

The total conversion time is calculated as follows:

 T_{conv} = Sampling time + 12 cycles

Example:

With ADCCLK = 30 MHz and sampling time = 3 cycles:

 T_{conv} = 3 + 12 = 15 cycles = 0.5 μ s with APB2 at 60 MHz

11.6 Conversion on external trigger and trigger polarity

Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the EXTEN[1:0] control bits (for a regular conversion) or JEXTEN[1:0] bits (for an injected conversion) are different from "0b00", then external events are able to trigger a conversion with the selected polarity. *Table 41* provides the correspondence between the EXTEN[1:0] and JEXTEN[1:0] values and the trigger polarity.

Table 41. Configuring the trigger polarity

Source	EXTEN[1:0] / JEXTEN[1:0]
Trigger detection disabled	00
Detection on the rising edge	01
Detection on the falling edge	10
Detection on both the rising and falling edges	11

Note: The polarity of the external trigger can be changed on the fly.

The EXTSEL[3:0] and JEXTSEL[3:0] control bits are used to select which out of 16 possible events can trigger conversion for the regular and injected groups.

Table 42 gives the possible external trigger for regular conversion.

Table 42. External trigger for regular channels

Source	Туре	EXTSEL[3:0]				
TIM1_CH1 event		0000				
TIM1_CH2 event		0001				
TIM1_CH3 event		0010				
TIM2_CH2 event		0011				
TIM2_CH3 event		0100				
TIM2_CH4 event		0101				
TIM2_TRGO event		0110				
TIM3_CH1 event	Internal signal from on-chip timers	0111				
TIM3_TRGO event		1000				
TIM4_CH4 event		1001				
TIM5_CH1 event		1010				
TIM5_CH2 event		1011				
TIM5_CH3 event		1100				
Reserved		1101				
Reserved		1110				
EXTI line11	External pin	1111				

Table 43 gives the possible external trigger for injected conversion.

Source	Connection type	JEXTSEL[3:0]				
TIM1_CH4 event		0000				
TIM1_TRGO event		0001				
TIM2_CH1 event		0010				
TIM2_TRGO event		0011				
TIM3_CH2 event		0100				
TIM3_CH4 event		0101				
TIM4_CH1 event		0110				
TIM4_CH2 event	Internal signal from on-chip timers	0111				
TIM4_CH3 event		1000				
TIM4_TRGO event		1001				
TIM5_CH4 event		1010				
TIM5_TRGO event		1011				
Reserved		1100				
Reserved		1101				
Reserved		1110				
EXTI line15	External pin	1111				

Table 43. External trigger for injected channels

Software source trigger events can be generated by setting SWSTART (for regular conversion) or JSWSTART (for injected conversion) in ADC_CR2.

A regular group conversion can be interrupted by an injected trigger.

Note:

The trigger selection can be changed on the fly. However, when the selection changes, there is a time frame of 1 APB clock cycle during which the trigger detection is disabled. This is to avoid spurious detection during transitions.

11.7 Fast conversion mode

It is possible to perform faster conversion by reducing the ADC resolution. The RES bits are used to select the number of bits available in the data register. The minimum conversion time for each resolution is then as follows:

12 bits: 3 + 12 = 15 ADCCLK cycles

10 bits: 3 + 10 = 13 ADCCLK cycles

• 8 bits: 3 + 8 = 11 ADCCLK cycles

• 6 bits: 3 + 6 = 9 ADCCLK cycles

11.8 Data management

11.8.1 Using the DMA

Since converted regular channel values are stored into a unique data register, it is useful to use DMA for conversion of more than one regular channel. This avoids the loss of the data already stored in the ADC_DR register.

When the DMA mode is enabled (DMA bit set to 1 in the ADC_CR2 register), after each conversion of a regular channel, a DMA request is generated. This allows the transfer of the converted data from the ADC_DR register to the destination location selected by the software.

Despite this, if data are lost (overrun), the OVR bit in the ADC_SR register is set and an interrupt is generated (if the OVRIE enable bit is set). DMA transfers are then disabled and DMA requests are no longer accepted. In this case, if a DMA request is made, the regular conversion in progress is aborted and further regular triggers are ignored. It is then necessary to clear the OVR flag and the DMAEN bit in the used DMA stream, and to reinitialize both the DMA and the ADC to have the wanted converted channel data transferred to the right memory location. Only then can the conversion be resumed and the data transfer, enabled again. Injected channel conversions are not impacted by overrun errors.

When OVR = 1 in DMA mode, the DMA requests are blocked after the last valid data have been transferred, which means that all the data transferred to the RAM can be considered as valid.

At the end of the last DMA transfer (number of transfers configured in the DMA controller's DMA_SxNTR register):

- No new DMA request is issued to the DMA controller if the DDS bit is cleared to 0 in the ADC_CR2 register (this avoids generating an overrun error). However the DMA bit is not cleared by hardware. It must be written to 0, then to 1 to start a new transfer.
- Requests can continue to be generated if the DDS bit is set to 1. This allows configuring the DMA in double-buffer circular mode.

To recover the ADC from OVR state when the DMA is used, follow the steps below:

- 1. Reinitialize the DMA (adjust destination address and NDTR counter)
- 2. Clear the ADC OVR bit in ADC SR register
- 3. Trigger the ADC to start the conversion.

11.8.2 Managing a sequence of conversions without using the DMA

If the conversions are slow enough, the conversion sequence can be handled by the software. In this case the EOCS bit must be set in the ADC_CR2 register for the EOC status bit to be set at the end of each conversion, and not only at the end of the sequence. When EOCS = 1, overrun detection is automatically enabled. Thus, each time a conversion is complete, EOC is set and the ADC_DR register can be read. The overrun management is the same as when the DMA is used.

To recover the ADC from OVR state when the EOCS is set, follow the steps below:

- Clear the ADC OVR bit in ADC SR register
- 2. Trigger the ADC to start the conversion.

11.8.3 Conversions without DMA and without overrun detection

It may be useful to let the ADC convert one or more channels without reading the data each time (if there is an analog watchdog for instance). For that, the DMA must be disabled (DMA = 0) and the EOC bit must be set at the end of a sequence only (EOCS = 0). In this configuration, overrun detection is disabled.

11.9 Temperature sensor

The temperature sensor can be used to measure the ambient temperature (T_A) of the device.

Figure 38 shows the block diagram of the temperature sensor.

When not in use, the sensor can be put in power down mode.

Note: The TSVREFE bit must be set to enable the conversion of both internal channels: the ADC1_IN16 or ADC1_IN18 (temperature sensor) and the ADC1_IN17 (VREFINT).

Main features

- Supported temperature range: –40 to 125 °C
- Precision: ±1.5 °C

Figure 38. Temperature sensor and V_{REFINT} channel block diagram

1. V_{SENSE} is input to ADC1_IN18

Reading the temperature

To use the sensor:

- 3. Select ADC1 IN16 or ADC1 IN18 input channel.
- 4. Select a sampling time greater than the minimum sampling time specified in the datasheet.
- 5. Set the TSVREFE bit in the ADC_CCR register to wake up the temperature sensor from power down mode
- 6. Start the ADC conversion by setting the SWSTART bit (or by external trigger)
- 7. Read the resulting V_{SENSE} data in the ADC data register
- 8. Calculate the temperature using the following formula:

Temperature (in °C) = $\{(V_{SENSE} - V_{25}) / Avg_Slope\} + 25$

- $V_{25} = V_{SENSE}$ value for 25° C
- Avg_Slope = average slope of the temperature vs. V_{SENSE} curve (given in mV/°C or μV/°C)

Refer to the datasheet's electrical characteristics section for the actual values of V_{25} and Avg Slope.

Note:

The sensor has a startup time after waking from power down mode before it can output V_{SENSE} at the correct level. The ADC also has a startup time after power-on, so to minimize the delay, the ADON and TSVREFE bits should be set at the same time.

The temperature sensor output voltage changes linearly with temperature. The offset of this linear function depends on each chip due to process variation (up to 45 °C from one chip to another).

The internal temperature sensor is more suited for applications that detect temperature variations instead of absolute temperatures. If accurate temperature reading is required, an external temperature sensor should be used.

11.10 Battery charge monitoring

The VBATE bit in the ADC_CCR register is used to switch to the battery voltage. As the V_{BAT} voltage could be higher than V_{DDA} , to ensure the correct operation of the ADC, the V_{BAT} pin is internally connected to a bridge divider.

When the VBATE is set, the bridge is automatically enabled to connect:

VBAT/4 to the ADC1 IN18 input channel

Note:

The VBAT and temperature sensor are connected to the same ADC internal channel (ADC1_IN18). Only one conversion, either temperature sensor or VBAT, must be selected at a time. When both conversion are enabled simultaneously, only the VBAT conversion is performed.

11.11 ADC interrupts

An interrupt can be produced on the end of conversion for regular and injected groups, when the analog watchdog status bit is set and when the overrun status bit is set. Separate interrupt enable bits are available for flexibility.

57

Two other flags are present in the ADC_SR register, but there is no interrupt associated with them:

- JSTRT (Start of conversion for channels of an injected group)
- STRT (Start of conversion for channels of a regular group)

Table 44. ADC interrupts

Interrupt event	Event flag	Enable control bit
End of conversion of a regular group	EOC	EOCIE
End of conversion of an injected group	JEOC	JEOCIE
Analog watchdog status bit is set	AWD	AWDIE
Overrun	OVR	OVRIE

11.12 ADC registers

Refer to Section 1.1 on page 33 for a list of abbreviations used in register descriptions.

The peripheral registers must be written at word level (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

11.12.1 ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Pos	served					OVR	STRT	JSTRT	JEOC	EOC	AWD
				Res	ei veu					rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bits 31:6 Reserved, must be kept at reset value.

Bit 5 OVR: Overrun

This bit is set by hardware when data are lost . It is cleared by software. Overrun detection is enabled only when DMA = 1 or EOCS = 1.

- 0: No overrun occurred
- 1: Overrun has occurred

Bit 4 STRT: Regular channel start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.

- 0: No regular channel conversion started
- 1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel start flag

This bit is set by hardware when injected group conversion starts. It is cleared by software.

- 0: No injected group conversion started
- 1: Injected group conversion has started

Bit 2 **JEOC**: Injected channel end of conversion

This bit is set by hardware at the end of the conversion of all injected channels in the group. It is cleared by software.

- 0: Conversion is not complete
- 1: Conversion complete

Bit 1 EOC: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register.

- 0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)
- 1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

Bit 0 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in the ADC_LTR and ADC_HTR registers. It is cleared by software.

- 0: No analog watchdog event occurred
- 1: Analog watchdog event occurred

11.12.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Dogony	od		OVRIE	OVRIE RES		AWDEN	JAWDEN			Door	n rod		
	Reserved					rw	rw	rw	rw	Reserved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIS	DISCNUM[2:0] JDISCE DISC N EN				JAUTO	AWDSG L	SCAN	JEOCIE	AWDIE	EOCIE	CIE AWDCH[4:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:27 Reserved, must be kept at reset value.

Bit 26 **OVRIE:** Overrun interrupt enable

This bit is set and cleared by software to enable/disable the Overrun interrupt.

0: Overrun interrupt disabled

1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.

Bits 25:24 RES[1:0]: Resolution

These bits are written by software to select the resolution of the conversion.

00: 12-bit (15 ADCCLK cycles) 01: 10-bit (13 ADCCLK cycles) 10: 8-bit (11 ADCCLK cycles) 11: 6-bit (9 ADCCLK cycles)

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set and cleared by software.

0: Analog watchdog disabled on regular channels

1: Analog watchdog enabled on regular channels

Bit 22 JAWDEN: Analog watchdog enable on injected channels

This bit is set and cleared by software.

0: Analog watchdog disabled on injected channels

1: Analog watchdog enabled on injected channels

Bits 21:16 Reserved, must be kept at reset value.

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count

These bits are written by software to define the number of regular channels to be converted in discontinuous mode, after receiving an external trigger.

000: 1 channel 001: 2 channels ...

111: 8 channels

Bit 12 JDISCEN: Discontinuous mode on injected channels

This bit is set and cleared by software to enable/disable discontinuous mode on the injected channels of a group.

0: Discontinuous mode on injected channels disabled

1: Discontinuous mode on injected channels enabled

Bit 11 **DISCEN:** Discontinuous mode on regular channels

This bit is set and cleared by software to enable/disable Discontinuous mode on regular channels.

- 0: Discontinuous mode on regular channels disabled
- 1: Discontinuous mode on regular channels enabled

Bit 10 JAUTO: Automatic injected group conversion

This bit is set and cleared by software to enable/disable automatic injected group conversion after regular group conversion.

- 0: Automatic injected group conversion disabled
- 1: Automatic injected group conversion enabled

Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode

This bit is set and cleared by software to enable/disable the analog watchdog on the channel identified by the AWDCH[4:0] bits.

- 0: Analog watchdog enabled on all channels
- 1: Analog watchdog enabled on a single channel

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable the Scan mode. In Scan mode, the inputs selected through the ADC SQRx or ADC JSQRx registers are converted.

- 0: Scan mode disabled
- 1: Scan mode enabled

Note: An EOC interrupt is generated if the EOCIE bit is set:

- At the end of each regular group sequence if the EOCS bit is cleared to 0
- At the end of each regular channel conversion if the EOCS bit is set to 1

Note: A JEOC interrupt is generated only on the end of conversion of the last channel if the JEOCIE bit is set.

Bit 7 **JEOCIE**: Interrupt enable for injected channels

This bit is set and cleared by software to enable/disable the end of conversion interrupt for injected channels.

- 0: JEOC interrupt disabled
- 1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.

Bit 6 AWDIE: Analog watchdog interrupt enable

This bit is set and cleared by software to enable/disable the analog watchdog interrupt.

- 0: Analog watchdog interrupt disabled
- 1: Analog watchdog interrupt enabled

Bit 5 **EOCIE**: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the end of conversion interrupt.

- 0: EOC interrupt disabled
- 1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits

These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog.

Note: 00000: ADC analog input Channel0 00001: ADC analog input Channel1

...

01111: ADC analog input Channel15 10000: ADC analog input Channel16

Other values reserved

57

11.12.3 ADC control register 2 (ADC_CR2)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
reserved	SWST ART	EXT	ΓΕΝ		EXTS	EL[3:0]		reserved	JSWST ART	JEXT	EN		JEXTS	EL[3:0]	
	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ALIGN E						DMA	P I						CONT	ADON
	reserved			rw	rw	rw	rw	Reserved					rw	rw	

Bit 31 Reserved, must be kept at reset value.

Bit 30 **SWSTART:** Start conversion of regular channels

This bit is set by software to start conversion and cleared by hardware as soon as the conversion starts.

0: Reset state

1: Starts conversion of regular channels

Note: This bit can be set only when ADON = 1 otherwise no conversion is launched.

Bits 29:28 **EXTEN:** External trigger enable for regular channels

These bits are set and cleared by software to select the external trigger polarity and enable the trigger of a regular group.

00: Trigger detection disabled

01: Trigger detection on the rising edge

10: Trigger detection on the falling edge

11: Trigger detection on both the rising and falling edges

Bits 27:24 EXTSEL[3:0]: External event select for regular group

These bits select the external event used to trigger the start of conversion of a regular group:

0000: Timer 1 CC1 event

0001: Timer 1 CC2 event

0010: Timer 1 CC3 event

0011: Timer 2 CC2 event

0100: Timer 2 CC3 event

0101: Timer 2 CC4 event

0110: Timer 2 TRGO event

0111: Timer 3 CC1 event 1000: Timer 3 TRGO event

1001: Timer 4 CC4 event

1010: Timer 5 CC1 event

1011: Timer 5 CC2 event

1100: Timer 5 CC3 event

1101: Reserved

1110: Reserved

1111: EXTI line11

Bit 23 Reserved, must be kept at reset value.

Bit 22 JSWSTART: Start conversion of injected channels

This bit is set by software and cleared by hardware as soon as the conversion starts.

1: Starts conversion of injected channels

Note: This bit can be set only when ADON = 1 otherwise no conversion is launched.

Bits 21:20 **JEXTEN:** External trigger enable for injected channels

These bits are set and cleared by software to select the external trigger polarity and enable the trigger of an injected group.

00: Trigger detection disabled

01: Trigger detection on the rising edge

10: Trigger detection on the falling edge

11: Trigger detection on both the rising and falling edges

Bits 19:16 JEXTSEL[3:0]: External event select for injected group

These bits select the external event used to trigger the start of conversion of an injected group.

0000: Timer 1 CC4 event

0001: Timer 1 TRGO event

0010: Timer 2 CC1 event

0011: Timer 2 TRGO event

0100: Timer 3 CC2 event

0101: Timer 3 CC4 event

0110: Timer 4 CC1 event

0111: Timer 4 CC2 event

1000: Timer 4 CC3 event

1001: Timer 4 TRGO event 1010: Timer 5 CC4 event

1011: Timer 5 TRGO event

1100: Reserved

1101: Reserved

1110: Reserved

1111: EXTI line15

Bits 15:12 Reserved, must be kept at reset value.

Bit 11 ALIGN: Data alignment

This bit is set and cleared by software. Refer to Figure 35 and Figure 36.

0: Right alignment

1: Left alignment

Bit 10 EOCS: End of conversion selection

This bit is set and cleared by software.

0: The EOC bit is set at the end of each sequence of regular conversions. Overrun detection is enabled only if DMA=1.

1: The EOC bit is set at the end of each regular conversion. Overrun detection is enabled.

Bit 9 DDS: DMA disable selection (for single ADC mode)

This bit is set and cleared by software.

0: No new DMA request is issued after the last transfer (as configured in the DMA controller)

1: DMA requests are issued as long as data are converted and DMA=1

Bit 8 **DMA:** Direct memory access mode (for single ADC mode)

This bit is set and cleared by software. Refer to the DMA controller chapter for more details.

0: DMA mode disabled

1: DMA mode enabled

Bits 7:2 Reserved, must be kept at reset value.

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared.

0: Single conversion mode1: Continuous conversion mode

Bit 0 ADON: A/D Converter ON / OFF

This bit is set and cleared by software.

Note: 0: Disable ADC conversion and go to power down mode

1: Enable ADC

11.12.4 ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					SMP18[2:0]			MP17[2:0	O] SMP16[2:			O] SMP15[2:1]		
						rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP15_0	SMP15_0 SMP14[2:0] S			MP13[2:	0]	S	MP12[2:0)]	S	MP11[2:0	0]	S	MP10[2:0)]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31: 27 Reserved, must be kept at reset value.

Bits 26:0 SMPx[2:0]: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel. During sampling cycles, the channel selection bits must remain unchanged.

Note: 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles

11.12.5 ADC sample time register 2 (ADC_SMPR2)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Pose	Reserved		SMP9[2:0]		SMP8[2:0]			SMP7[2:0]				SMP6[2:0] SMP5[2:1]			
Nese	rveu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
SMP 5_0	SMP412:01			;	SMP3[2:0	0]	;	SMP2[2:0]			SMP1[2:0]			SMP0[2:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:0 **SMPx[2:0]:** Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel. During sample cycles, the channel selection bits must remain unchanged.

Note: 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles

11.12.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4)

Address offset: 0x14-0x20 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	JOFFSETx[11:0]														
	Reserved			rw											

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 **JOFFSETx[11:0]:** Data offset for injected channel x

These bits are written by software to define the offset to be subtracted from the raw converted data when converting injected channels. The conversion result can be read from in the ADC_JDRx registers.

11.12.7 ADC watchdog higher threshold register (ADC_HTR)

Address offset: 0x24

Reset value: 0x0000 0FFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Poor	n rod							НТ[11:0]					
	15 14 13 Reserved			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 HT[11:0]: Analog watchdog higher threshold

These bits are written by software to define the higher threshold for the analog watchdog.

11.12.8 ADC watchdog lower threshold register (ADC_LTR)

Address offset: 0x28

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	nuod							LT[11:0]					
	Rese	iveu		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 LT[11:0]: Analog watchdog lower threshold

These bits are written by software to define the lower threshold for the analog watchdog.

11.12.9 ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x2C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pos	erved					L[3	5:0]			SQ1	6[4:1]	
			Kest	erveu				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ16_0		;	SQ15[4:0]				SQ14[4:0]					SQ13[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:20 L[3:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular channel conversion sequence.

0000: 1 conversion 0001: 2 conversions

1111: 16 conversions

Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 16th in the conversion sequence.

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence

Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence

11.12.10 ADC regular sequence register 2 (ADC_SQR2)

Address offset: 0x30

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Booo	nuod		;	SQ12[4:0)]				SQ11[4:0]]			SQ1	0[4:1]	
Rese	rw rw rw rw					rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ10_0			SQ9[4:0]					SQ8[4:0]					SQ7[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 12th in the sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 **SQ8[4:0]:** 8th conversion in regular sequence

Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence

11.12.11 ADC regular sequence register 3 (ADC_SQR3)

Address offset: 0x34

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	nuad			SQ6[4:0]					SQ5[4:0]				SQ4	[4:1]	,
Rese	erveu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14			10	9	8	7	6	5	4	3	2	1	0	
SQ4_0			SQ3[4:0]					SQ2[4:0]					SQ1[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 6th in the sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence

Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence

Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence

Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence

47/

11.12.12 ADC injected sequence register (ADC_JSQR)

Address offset: 0x38

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Poo	erved					JL[1:0]		JSQ.	4[4:1]	
				Res	erveu					rw	rw	rw	rw	rw	rw
15	14	13	12 11		10	9	8	7	6	5	4	3	2	1	0
JSQ4[0]		,	JSQ3[4:0]			,	JSQ2[4:0]				,	JSQ1[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:22 Reserved, must be kept at reset value.

Bits 21:20 JL[1:0]: Injected sequence length

These bits are written by software to define the total number of conversions in the injected channel conversion sequence.

00: 1 conversion 01: 2 conversions 10: 3 conversions 11: 4 conversions

Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence (when JL[1:0]=3, see note below)

These bits are written by software with the channel number (0..18) assigned as the 4th in the sequence to be converted.

Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence (when JL[1:0]=3, see note below)

Note:

When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in starting from JSQ3[4:0], and then JSQ4[4:0].

When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0] channel.

11.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4)

Address offset: 0x3C - 0x48 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							JDAT	TA[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 JDATA[15:0]: Injected data

These bits are read-only. They contain the conversion result from injected channel x. The data are left -or right-aligned as shown in *Figure 35* and *Figure 36*.

11.12.14 ADC regular data register (ADC_DR)

Address offset: 0x4C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DAT	A[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 DATA[15:0]: Regular data

These bits are read-only. They contain the conversion result from the regular channels. The data are left- or right-aligned as shown in *Figure 35* and *Figure 36*.

11.12.15 ADC common control register (ADC_CCR)

Address offset: 0x04 (this offset address is relative to ADC1 base address + 0x300)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pos	erved				TSVREFE	VBATE		Rese	nyod		ADO	CPRE
			I/C3	erveu				rw	rw		Nesc	o veu		rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							F	Reserved							

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 **TSVREFE:** Temperature sensor and V_{REFINT} enable

This bit is set and cleared by software to enable/disable the temperature sensor and the $V_{\mbox{\scriptsize REFINT}}$ channel.

0: Temperature sensor and $V_{\mbox{\scriptsize REFINT}}$ channel disabled

1: Temperature sensor and V_{REFINT} channel enabled

Note: VBATE must be disabled when TSVREFE is set. If both bits are set, only the VBAT conversion is performed.

Bit 22 VBATE: VBAT enable

This bit is set and cleared by software to enable/disable the V_{BAT} channel.

0: V_{BAT} channel disabled

1: V_{BAT} channel enabled

Bits 21:18 Reserved, must be kept at reset value.

Bits 17:16 ADCPRE: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC. .

Note: 00: PCLK2 divided by 2 01: PCLK2 divided by 4 10: PCLK2 divided by 6 11: PCLK2 divided by 8

Bits 15:0 Reserved, must be kept at reset value.

11.12.16 ADC register map

The following table summarizes the ADC registers.

Table 45. ADC global register map

Offset	Register
0x000 - 0x04C	ADC1
0x050 - 0x0FC	Reserved
0x100 - 0x14C	Reserved
0x118 - 0x1FC	Reserved
0x200 - 0x24C	Reserved
0x250 - 0x2FC	Reserved
0x300 - 0x308	Common registers

236/836

Table 46. ADC register map and reset values for each ADC

		Iab	IC 7	· · ·	700	10	9.0	ici	IIIG	P	aric		30	. •	aiue	3 10	<i>/</i>	Ju	<i>,</i> ,,		, –								
Offset	Register	30	29	28	27	25	24	23	22	20	19	18	17	16	15	13	12	11	10	6	8	7	9	2	4	က	7	_	0
0x00	ADC_SR										Res	erved	d												STRT	JSTRT	JEOC		AWD
	Reset value																							0	0	0	0	0	0
0x04	ADC_CR1	Re	eser	/ed	OVRIE	RES[1:0]		AWDEN	JAWDEN		Res	erved	t		DIS(NUM [C 2:0]	JDISCEN	DISCEN	JAUTO	AWD SGL	SCAN	JEOCIE	AWDIE	EOCIE	P	WD	CH[4:0]	
	Reset value				0	0	0	0	0						0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08		Be a se a se			EXTS		:0]			JEXTEN[1:0]		JEXT [3:	0]		Rese	erve	d		_	DDS	DMA		F	Rese	erve	d			ADON
	Reset value	0	0	0	0 0	0	0		0 0	0		0		0				0	0		0							0	0
0x0C	ADC_SMPR1	<u> </u>						,							bits SN														
	Reset value	0 0	0	0	0 0	0	0	0	0 0	0		0			0 0			0	0	0	0	0	0	0	0	0	0	0	0
0x10	ADC_SMPR2												le ti		bits SN	1Px_	<u>_</u> X												
0.10	Reset value	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x14	ADC_JOFR1						•	D	eserv	2d			•		•						J	OF	FSE	T1[11:0]			
0.114	Reset value							IX	SSCI VI	cu								0	0	0	0	0	0	0	0	0	0	0	0
040	ADC_JOFR2																				J	OF	FSE	T2[11:0]			
0x18	Reset value							R	eserv	ea								0	0	0	0	0	0	0	0	0	0	0	0
2.40	ADC_JOFR3							_													J	OF	FSE	T3[11:0]			
0x1C	Reset value							Re	eserv	ed							ŀ	0	0	0	0	0	0	0	0	0	0	0	0
	ADC_JOFR4							_											!		J	OF	FSE	T4[11:0	1			_
0x20	Reset value	-						Re	eserv	ed							ŀ	0	0	0	0	0	0	0	0	0	0	0	0
	ADC_HTR																		ŀ		l		HT[′						-
0x24	Reset value							Re	eserv						1	1	1	1	1	1	1	1	1	1	1	1			
	ADC_LTR																	•					LT[1						÷
0x28	Reset value							Re	eserv	ed								0	0	0	0	0	0	0	0	0	0	0	0
	ADC_SQR1								L[3:0]	1					Per	ular	cha									Ü	•	J	ŭ
0x2C	Reset value	-	F	Rese	rved				0 0		0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		73	_					U	0 0	U										-	U	U	U	U	U	U	U	U	-
0x30	ADC_SQR2	- Ze	-					- 1			Rec	Julai	cna	nne	l seque	ence	SQ	x_x	DIIS	1	- 1		1			-	-		_
0x30	Reset value	Reserved Reserved	0	0	0 0	0	0	0	0 0	0		0		0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
004	ADC_SQR3	Ş	<u> </u>	- 1			- 1				Reg	jular	cna	nne	l seque	ence	SQ	x_x	DITS	·			1					-	
0x34	Reset value	Rese	0	0	0 0	0	0	0	0 0			0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x38	ADC_JSQR			R	eserve	ed									Injed														
	Reset value														0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x3C	ADC_JDR1																				ATA	-							
0,100	Reset value														0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x40	ADC_JDR2																			JD	ATA	[15	:0]						
0.40	Reset value							. veu							0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x44	ADC_JDR3					P	000	rved												JD	ATA	[15	5:0]						
0.44	Reset value					ĸ	ಆತರ	veu							0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0v40	ADC_JDR4					D								JD	ATA	[15	:0]						ヿ						
0x48	Reset value		Reserved Reserved												0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.40	ADC_DR																		Re	gula	ar D	AT/	\[15	:0]					\dashv
0x4C	Reset value					R	ese	rved							0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
															(

Table 47. ADC register map and reset values (common ADC registers)

Offset	Register	31	30	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	_	0
0x04	ADC_CCR		ſ	Rese	erved	d			Щ	VBATE	R	lese	erved	t	ADCPRE[1:0]								R	lese	erve	d						
	Reset value								0	0					0	0																

Refer to Table 3 on page 41 for the register boundary addresses.

