Contents

1. The Chernoff-Cramer method	2
1.1. The Chernoff bound and Cramer transform	2
1.2. Hoeffding's and related inequalities	7
2. The variance method	9
2.1. The Efron-Stein inequality	g

Question: toss a fair coin n = 10000 times. How many heads?

$$X = \sum_{i=1}^{n}, \ X_i \sim \text{Bern}(1/2). \ \mathbb{E}[X] = 5000. \ \text{But} \ \mathbb{P}(X = 5000) = \left(\begin{smallmatrix} 10^4 \\ 5000 \end{smallmatrix} \right) \cdot 2^{-10^4} \approx 0.008.$$
 By WLLN, $\mathbb{P}(X \in [5000 - n\varepsilon, 5000 + n\varepsilon]) \approx 1.$

Theorem 0.1 (Central Limit Theorem) Let $X_1,...,X_n$ be IID RVs with mean $\mathbb{E}[X_1]=\mu$. Let $\mathrm{Var}(X_1)=\sigma^2<\infty$. Then $\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n(X_i-\mu)\underset{D}{\to}N(0,1)$, i.e.

$$\mathbb{P}\Bigg(\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n(X_i-\mu)\in A\Bigg)\to \int_A\frac{1}{\sqrt{2n}}e^{-x^2/2}\,\mathrm{d}x$$

for all A.

So $\mathbb{P}\left(X \in \left[\frac{n}{2} - \frac{\sqrt{n}}{2}Q^{-1}(\delta), \frac{n}{2} + \frac{\sqrt{n}}{2}Q^{-1}(\delta)\right]\right) \ge 1 - \delta$, for n large enough, where $Q(\delta) = \int_{\delta}^{\infty} \frac{1}{\sqrt{2n}} e^{-x^2/2d} \, \mathrm{d}x$. We have $Q^{-1}(x) \propto \sqrt{\log \frac{1}{x}}$. So interval has length $\propto \sqrt{n} \sqrt{\log \frac{1}{\delta}}$.

 $\textbf{Theorem 0.2} \text{ (Chebyshev's Inequality)} \ \ \mathbb{P}(|X-\mu| \geq \varepsilon) \leq \frac{\mathrm{Var}(X)}{\varepsilon^2} \text{ for all } \varepsilon > 0.$

Corollary 0.3 $\mathbb{P}\left(\left|\sum_{i=1}^{n}(X_i)-\frac{n}{2}\right|\geq t\right)\leq \frac{\operatorname{Var}\left(\sum_{i=1}^{n}X_i\right)}{t^2}=n\frac{\sigma^2}{t^2}\leq \delta \text{ where }t=\sqrt{n}\sigma/\sqrt{\delta}.$ So $\mathbb{P}\left(X\in\left[\frac{n}{2}-,\frac{n}{2}\right]\right)\geq 1-\delta.$

Question 2: we have N coupons. Each day receive one uniformly at random independent of the past. How many days until all coupons received?

We have $X = \sum_{i=1}^n X_i$, $X_i \sim \text{Geom}(\frac{i}{n})$. $\mathbb{E}[X] = \sum_i \mathbb{E}[X_i] \approx n \log n$ (verify this).

Question 3: Let $(X_1,...,X_n),(Y_1,...,Y_n)$ be IID. What is the longest common subsequence, i.e. $f(X_1,...,X_n,Y_1,...,Y_n)=\max\{k:\exists i_1,...,i_k,j_1,...,j_k \text{ s.t. } X_{i_j}=Y_{i_j} \ \forall j\in [k]\}$. Computing f is NP-hard. f is smooth.

Principle: a smooth function of many independent random variables concentrates around its mean.

Theorem 0.4 (Law of Total Expectation) We have $\mathbb{E}_Y[\mathbb{E}_X[X \mid Y]] = \mathbb{E}_X[X]$.

Theorem 0.5 (Tower Property of Conditional Expectation) We have $\mathbb{E}[\mathbb{E}[Z \mid X, Y] \mid Y] = \mathbb{E}[Z \mid Y].$

Theorem 0.6 We have $\mathbb{E}[f(Y)X \mid Y] = f(Y)\mathbb{E}[X \mid Y]$.

Theorem 0.7 (Holder's Inequality) Let $p \ge 1$ and 1/p + 1/q = 1. Then

$$\mathbb{E}[XY] \leq \mathbb{E}[|X|^p]^{1/p} \cdot \mathbb{E}[|X|^q]^{1/q}.$$

Definition 0.8 The **conditional variance** of Y given X is the random variable

$$\mathrm{Var}(Y\mid X)\coloneqq \mathbb{E}\big[(Y-\mathbb{E}[Y\mid X])^2\mid X\big].$$

1. The Chernoff-Cramer method

1.1. The Chernoff bound and Cramer transform

Theorem 1.1 (Weak Law of Large Numbers) Let $X_1, ..., X_n$ be IID RVs with mean $\mathbb{E}[X_1] = \mu$. Then, for all $\varepsilon > 0$,

$$\mathbb{P}\Bigg(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| > \varepsilon\Bigg) \to 0 \quad \text{as } n \to \infty.$$

Theorem 1.2 (Markov's Inequality) Let Y be a non-negative RV. For any $t \geq 0$,

$$\mathbb{P}(Y \ge t) \le \frac{\mathbb{E}[Y]}{t}.$$

 $Proof\ (Hints)$. Split Y using indicator variables.

Proof. We have $Y = Y \cdot \mathbb{I}_{\{Y \geq t\}} + Y \cdot \mathbb{I}_{\{Y < t\}} \geq t \cdot \mathbb{I}_{\{Y \geq t\}}$. Taking expectations gives the result.

Corollary 1.3 Let $\varphi : \mathbb{R} \to \mathbb{R}_+$ be non-decreasing, then

$$\mathbb{P}(Y \geq t) \leq \mathbb{P}(\varphi(Y) \geq \varphi(t)) \leq \frac{\mathbb{E}[\varphi(Y)]}{\varphi(t)}.$$

For $\varphi(t) = t^2$, we can use $\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i)$.

Corollary 1.4 (Chebyshev's Inequality) For any RV Y and t > 0,

$$\mathbb{P}(|Y - \mathbb{E}[Y]| \ge t) \le \frac{\mathrm{Var}(Y)}{t^2}.$$

Proof (Hints). Straightforward.

Proof. Take $Z = |Y - \mathbb{E}[Y]|$ and use Corollary 1.3 with $\varphi(t) = t^2$.

Exercise 1.5 Prove WLLN, assuming that $\operatorname{Var}(X_1) < \infty$, using Chebyshev's inequality.

Remark 1.6 If higher moments exist, we can use them in a similar way: let $\varphi(t) = t^q$ for q > 0, then for all t > 0,

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) \le \frac{\mathbb{E}[|Z - \mathbb{E}[Z]|^q]}{t^q}.$$

We can then optimise over q to pick the lowest bound on $\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t)$. Note that Chebyshev's Inequality is the most popular form of this bound due to the additivity of variance.

Definition 1.7 The moment generating function (MGF) of F is

$$F(\lambda) \coloneqq \mathbb{E}\big[e^{\lambda Z}\big] = \sum_{k=0}^{\infty} \frac{\lambda^k \mathbb{E}\big[Z^k\big]}{k!}.$$

Definition 1.8 The log-MGF of Z is $\psi_Z(\lambda) = \log F(\lambda)$.

Note that $\psi_Z(\lambda)$ is additive: if $Z = \sum_{i=1}^n Z_i$, with $Z_1, ..., Z_n$ independent, then

$$\psi_Z(\lambda) = \log \left(\mathbb{E} \big[e^{\lambda Z} \big] \right) = \sum_{i=1}^n \log \mathbb{E} \big[e^{\lambda Z_i} \big] = \sum_{i=1}^n \psi_{Z_i}(\lambda).$$

Definition 1.9 The Cramer transform of Z is

$$\psi_Z^*(t) = \sup\{\lambda t - \psi_Z(\lambda) : \lambda > 0\}.$$

Proposition 1.10 (Chernoff Bound) Let Z be an RV. For all t > 0,

$$\mathbb{P}(Z \ge t) \le e^{-\psi_Z^*(t)}.$$

Proof. By Corollary 1.3, we have

$$\mathbb{P}(Z \geq t) \leq \frac{\mathbb{E}\big[e^{\lambda Z}\big]}{e^{\lambda t}} = e^{-(\lambda t - \psi_Z(\lambda))}.$$

Taking the infimum over all $\lambda > 0$ gives $\mathbb{P}(Z \ge t) \le \inf\{e^{-(\lambda t - \psi_Z(\lambda))} : \lambda > 0\}$, which gives the result.

Remark 1.11 Our goal is to obtain an upper bound on $\psi_Z(\lambda)$, as this will give exponential concentration. The function $\psi_{Z-\mathbb{E}[Z]}(\lambda)$ gives upper bounds on $\mathbb{P}(Z-\mathbb{E}[Z] \geq t)$, the function $\psi_{-Z+\mathbb{E}[Z]}(\lambda)$ gives upper bounds on $\mathbb{P}(Z-\mathbb{E}[Z] \leq -t)$.

Proposition 1.12

- 1. $\psi_Z(\lambda)$ is convex and infinitely differentiable on (0,b), where $b=\sup_{\lambda>0}\{\mathbb{E}[e^{\lambda Z}]<\infty\}$.
- 2. $\psi_Z^*(t)$ is non-negative and convex.
- 3. If $t > \mathbb{E}[Z]$, then $\psi_Z^*(t) = \sup_{\lambda \in \mathbb{R}} \{\lambda t \psi_Z(\lambda)\}$, the **Fenchel-Legendre** dual.

 $Proof\ (Hints).$

- 1. Differentiability proof omitted. For convexity, use Holder's Inequality.
- 2. Straightforward (note that each $t \mapsto \lambda t \psi_Z(\lambda)$ is linear).
- 3. Straightforward.

Proof.

- $\begin{array}{l} 1. \ \psi_Z(\alpha\lambda_1+(1-\alpha)\lambda_2) = \log \mathbb{E}\big[e^{\alpha\lambda_1Z}\cdot e^{(1-\alpha)\lambda_2Z}\big] \leq \alpha\log \mathbb{E}\big[e^{\lambda_1Z}\big] + (1-\alpha)\log \mathbb{E}\big[e^{\lambda_2Z}\big] \ \ \text{by Holder's inequality. The differentiability proof is omitted.} \end{array}$
- 2. $\lambda t \psi_Z(\lambda)|_{\lambda=0} = 0$, so $\psi_Z^*(t) \ge 0$ by definition. Convexity follows since it is a supremum of linear functions.

3. By convexity and Jensen's inequality, $\mathbb{E}[e^{\lambda Z}] \geq e^{\lambda \mathbb{E}[Z]}$. So for $\lambda < 0$, $\lambda t - \psi_Z(\lambda) \leq \lambda (t - \mathbb{E}[Z]) < 0 = \lambda t - \psi_Z(\lambda)|_{\lambda=0}$.

Example 1.13 Let $Z \sim N(0, \sigma^2)$. Then the MGF of Z is

$$\begin{split} \mathbb{E}[e^{\lambda Z}] &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2} e^{\lambda x} \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x^2-2\lambda\sigma^2x+\lambda^2\sigma^4)/2\sigma^2} e^{\lambda^2\frac{\sigma^2}{2}} \, \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\lambda\sigma^2)^2/2\sigma^2} e^{\lambda^2\frac{\sigma^2}{2}} \, \mathrm{d}x \\ &= e^{\lambda^2\sigma^2/2}. \end{split}$$

By Proposition 1.12, for $t > 0 = \mathbb{E}[Z]$, the Cramer transform is

$$\psi_Z^*(t) = \sup_{\lambda \in \mathbb{R}} \bigl\{ \lambda t - \lambda^2 \sigma^2 / 2 \bigr\} =: \sup_{\lambda \in \mathbb{R}} g(\lambda).$$

We have $g'(\lambda) = t - \lambda \sigma^2 = 0$ iff $\lambda = t/\sigma^2$. So $\psi_Z^*(t) = t^2/\sigma^2 - \sigma^2 t^2/2\sigma^4 = t^2/2\sigma^2$. So Chernoff Bound gives

$$\mathbb{P}(Z \ge t) \le e^{-t^2/2\sigma^2}.$$

Definition 1.14 Let X be an RV with $\mathbb{E}[X] = 0$. X is **sub-Gaussian** with variance parameter ν if

$$\psi_X(\lambda) \le \frac{\lambda^2 \nu}{2} \quad \forall \lambda \in \mathbb{R}.$$

The set of all such variables is denoted $\mathcal{G}(\nu)$.

Proposition 1.15 For any sub-Gaussian RV X,

- 1. If $X \in \mathcal{G}(\nu)$, then $\mathbb{P}(X \ge t)$, $\mathbb{P}(X \le -t) \le e^{-t^2/2\nu}$ for all t > 0.
- 2. If $X_1,...,X_n$ are independent with each $X_i \in \mathcal{G}(\nu_i)$ then $\sum_{i=1}^n X_i \in \mathcal{G}(\sum_{i=1}^n \nu_i)$.
- 3. If $X \in \mathcal{G}(\nu)$, then $Var(X) \leq \nu$.

Proof. Exercise.

Definition 1.16 The **Gamma function** is defined as

$$\Gamma(z) \coloneqq \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t.$$

Theorem 1.17 Let $\mathbb{E}[X] = 0$. TFAE for suitable choices of ν, b, c, d :

- 1. $X \in \mathcal{G}(\nu)$.
- $2. \ \mathbb{P}(X \geq t), \mathbb{P}(X \leq -t) \leq e^{-t^2/2b} \text{ for all } t > 0.$
- 3. $\mathbb{E}[X^{2q}] \leq q! c^q$ for all $q \geq \mathbb{N}$.
- 4. $\mathbb{E}\left[e^{dX^2}\right] \leq 2$.

Proof (Hints).

- $(1 \Rightarrow 2)$: straightforward.
- $(2 \Rightarrow 3)$: Explain why we can assume b = 1. Use that $\mathbb{E}[Y] = \int_0^\infty \mathbb{P}(Y > t) \, dt$ for $Y \ge 0$, and the Γ function.

• $(3 \Rightarrow 1)$: show that $\mathbb{E}[e^{\lambda X}] \leq \mathbb{E}[e^{\lambda(X-X')}]$ where X' is an IID copy of X. Show that $\mathbb{E}[(X-X')^{2q}] \leq \mathbb{E}[X^{2q}]$. Expand $\mathbb{E}[e^{\lambda(X-X')}]$ as a series. Conclude that $X \in \mathcal{G}(4c)$.

• $(3 \Leftrightarrow 4)$: exercise.

Proof. $(1 \Rightarrow 2)$ instantly follows (with $b = \nu$) by Proposition 1.15.

 $(2 \Rightarrow 3)$: WLOG, b = 1. Otherwise consider $\widetilde{X} = X/\sqrt{b}$. Recall that for $Y \geq 0$, $\mathbb{E}[Y] = \int_0^\infty \mathbb{P}(Y > t) \, \mathrm{d}t$. Now

$$\mathbb{E}[X^{2q}] = \int_0^\infty \mathbb{P}(X^{2q} > t) \, \mathrm{d}t = \int_0^\infty \mathbb{P}(|X| > t^{1/2q}) \, \mathrm{d}t$$

$$\leq 2 \int_0^\infty e^{-t^{1/q}/2} \, \mathrm{d}t$$

$$= 2 \cdot 2^q \cdot q \int_0^\infty u^{q-1} e^{-u} \, \mathrm{d}u$$

$$= 2 \cdot 2^q \cdot q \cdot \Gamma(q)$$

$$= 2^{q+1} \cdot q! \leq c^q q!$$

for some constant c, where we use the substitution $t^{1/q}/2 = u$, so $t = (2u)^q$, so $dt = 2^q q u^{q-1} du$.

 $(3 \Rightarrow 1)$: $\mathbb{E}[e^{-\lambda X}] \cdot \mathbb{E}[e^{\lambda X}] = \mathbb{E}[e^{\lambda(X-X')}]$, where X' is an IID copy of X. By Jensen's inequality, $\mathbb{E}[e^{-\lambda X}] \geq e^{-\lambda \mathbb{E}[X]} = 1$. So

$$\mathbb{E}\big[e^{\lambda X}\big] \leq \mathbb{E}\big[e^{\lambda(X-X')}\big] = \sum_{q=0}^{\infty} \frac{\lambda^{2q} \mathbb{E}\big[(X-X')^{2q}\big]}{(2q)!}$$

(we can ignore odd powers since X - X' is a symmetric RV: X - X' has the same distribution as X' - X). Now

$$\mathbb{E}[(X-X')^{2q}] = \sum_{k=0}^{2q} \binom{2q}{k} \mathbb{E}[X^k] \mathbb{E}\big[(X')^{2q-k}\big] \leq \sum_{k=0}^{2q} \binom{2q}{k} \mathbb{E}[X^{2q}] = 2^{2q} \cdot \mathbb{E}[X^{2q}],$$

by Holder's inequality with p=2q/k and q=2q/(2q-k) for each k. Thus,

$$\begin{split} \mathbb{E}[e^{\lambda X}] & \leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} \mathbb{E}[X^{2q}] \cdot 2^{2q}}{(2q)!} \\ & \leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} c^q q! 2^{2q}}{(2q)!} \\ & \leq \sum_{q=0}^{\infty} \frac{\lambda^{2q} \cdot c^q 2^q}{q!} = \sum_{q=0}^{\infty} \frac{\left(\lambda^2 \cdot 2c\right)^q}{q!} = e^{2\lambda^2 c}, \end{split}$$

where we used that $(2q)!/q! = \prod_{j=1}^q (q+1)! \ge 2^q \cdot q!$. Hence $\psi_X(\lambda) = 2\lambda^2 c = \frac{\lambda^2 \cdot 4c}{2}$, hence $X \in \mathcal{G}(4c)$.

 $(3 \Leftrightarrow 4)$: exercise.

1.2. Hoeffding's and related inequalities

Lemma 1.18 (Hoeffding's Lemma) Let Y be a RV with $\mathbb{E}[Y] = 0$ and $Y \in [a, b]$ almost surely. Then $\psi_Y''(\lambda) \leq (b-a)^2/4$ and $Y \in \mathcal{G}((b-a)^2/4)$.

Proof (Hints).

- Define a new distribution based on λ , which should be obvious after expanding $\psi'_{V}(\lambda)$.
- To conclude the result, use a Taylor expansion at 0 of $\psi_Y(\lambda)$.

Proof. Let Y have distribution P. We have

$$\psi_Y'(\lambda) = \frac{\mathbb{E}_{Y \sim P}\big[Ye^{\lambda Y}\big]}{\mathbb{E}_{Y \sim P}\big[e^{\lambda Y}\big]} = \mathbb{E}_{Y \sim P}\left[Y \cdot \frac{e^{\lambda Y}}{\mathbb{E}[e^{\lambda Y}]}\right] = \mathbb{E}_{Y \sim P_{\lambda}}[Y],$$

where if P is discrete, then P_{λ} is the discrete distribution with PMF

$$P_{\lambda}(y) = \frac{e^{\lambda y} P(y)}{\sum_{z} P(z) e^{\lambda z}},$$

and if P is continuous with PDF f, then P_{λ} is the continuous distribution with PDF

$$f_{\lambda}(y) = \frac{e^{\lambda y} f(y)}{\int_{-\infty}^{\infty} f(z) e^{\lambda z} \, \mathrm{d}z}.$$

Now

$$\begin{split} \psi_Y''(\lambda) &= \frac{\mathbb{E}_{Y \sim P} \big[Y^2 e^{\lambda Y} \big] \cdot \mathbb{E}_{Y \sim P} \big[e^{\lambda Y} \big] - \mathbb{E}_{Y \sim P} \big[Y e^{\lambda Y} \big]^2}{\mathbb{E}_{Y \sim P} \big[e^{\lambda Y} \big]^2} \\ &= \mathbb{E}_{Y \sim P} \left[Y^2 \frac{e^{\lambda Y}}{\mathbb{E}_{Y \sim P} [e^{\lambda Y}]} \right] - \mathbb{E} \left[Y \frac{e^{\lambda Y}}{\mathbb{E}_{Y \sim P} [e^{\lambda Y}]} \right]^2 \\ &= \mathbb{E}_{Y \sim P_\lambda} \big[Y^2 \big] - \mathbb{E}_{Y \sim P_\lambda} \big[Y \big]^2 = \mathrm{Var}_{Y \sim P_\lambda} (Y). \end{split}$$

Note that if $Y \in [a, b]$, then $\left| Y - \frac{b-a}{2} \right|^2 \le (b-a)^2/4$. So we have

$$\operatorname{Var}_{Y \sim P_{\lambda}}(Y) = \operatorname{Var}_{Y \sim P_{\lambda}}(Y - (b - a)/2) \leq \mathbb{E}_{Y \sim P_{\lambda}}\left[\left(Y - \frac{b - a}{2}\right)^2\right] \leq \frac{(b - a)^2}{4}.$$

Finally, using a Taylor expansion at 0, we obtain

$$\psi_Y(\lambda) = \psi_Y(0) + \lambda_Y'(0)\lambda + \psi_Y''(\xi)\frac{\lambda^2}{2} = \psi_Y''(\xi)\frac{\lambda^2}{2} \le \lambda^2 \frac{(b-a)^2}{8},$$

for some $\xi \in [0, \lambda]$, since $\mathbb{E}_{Y \sim P}[Y] = \mathbb{E}_{Y \sim P_0}[Y] = 0$.

Remark 1.19 The distribution P_{λ} in the above proof is called the **exponentially tilted** distribution.

Theorem 1.20 (Hoeffding's Inequality) Let $X_1,...,X_n$ be independent RVs where each X_i takes values in $[a_i, b_i]$. Then for all $t \geq 0$,

$$\mathbb{P}\Biggl(\sum_{i=1}^n (X_i - \mathbb{E}[X_i]) \geq t\Biggr) \leq \exp\Biggl(-\frac{2t^2}{\sum_{i=1}^n \left(b_i - a_i\right)^2}\Biggr).$$

Proof (Hints). Straightforward.

Proof. By Hoeffding's Lemma, $X_i - \mathbb{E}[X_i] \in \mathcal{G}((b_i - a_i^2)/4)$ for all i. By Proposition 1.15 (part 2), we have

$$\sum_{i=1}^n (X_i - \mathbb{E}[X_i]) \in \mathcal{G}\Bigg(\frac{1}{4}\sum_{i=1}^n \left(b_i - a_i\right)^2\Bigg).$$

Hence, by Proposition 1.15 (part 1), we are done.

Remark 1.21 A drawback of Hoeffding's Inequality is that the bound does not involve $\operatorname{Var}(X_i)$ the variance could be much smaller than the upper bound of $(b_i - a_i)^2/4$. This is addressed by Bennett's inequality:

Theorem 1.22 (Bennett's Inequality) Let $X_1, ..., X_n$ be independent RVs with $\mathbb{E}[X_i] =$ 0 and $|X_i| \le c$ for all i. Let $\nu = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n)$. Then for all $t \ge 0$,

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left(-\frac{\nu}{c^2} \cdot h_1\left(\frac{ct}{\nu}\right)\right),$$

where $h_1(x) = (1+x)\log(1+x) - x$ for x > 0.

 $Proof\ (Hints).$

- $\begin{array}{l} \bullet \ \ \text{Show that} \ \mathbb{E}[e^{\lambda X_i}] = 1 + \frac{\mathrm{Var}(X_i)}{c^2} \big(e^{\lambda c} \lambda c 1\big). \\ \bullet \ \ \text{Deduce that} \ \psi_{\sum_i X_i} \leq \nu_c^2 \big(e^{\lambda c} \lambda c 1\big). \end{array}$
- Find an upper lower for $\psi^*_{\sum_i X_i}(t)$.

Proof. Denote $\sigma_i^2 = \operatorname{Var}(X_i) = \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2 = \mathbb{E}[X_i]^2$. The MGF of X_i is

$$\begin{split} \mathbb{E}[e^{\lambda X_i}] &= \sum_{k=0}^\infty \frac{\lambda^k}{k!} \mathbb{E}\left[X_i^k\right] = 1 + \sum_{k=2}^\infty \frac{\lambda^k}{k!} \mathbb{E}\left[X_i^{k-2} X_i^2\right] \\ &\leq 1 + c^{k-2} \sum_{k=2}^\infty \frac{\lambda^k}{k!} \mathbb{E}\left[X_i^2\right] = 1 + \frac{\sigma_i^2}{c^2} \sum_{k=2}^\infty \frac{\lambda^k c^k}{k!} \\ &= 1 + \frac{\sigma_i^2}{c^2} \left(\sum_{k=0}^\infty \frac{\lambda^k c^k}{k!} - \lambda c - 1\right) \\ &= 1 + \frac{\sigma_i^2}{c^2} \left(e^{\lambda c} - \lambda c - 1\right). \end{split}$$

So $\psi_{X_i}(\lambda) = \log \left(1 + \frac{\sigma_i^2}{c^2} \left(e^{\lambda c} - \lambda c - 1\right)\right) \le \frac{\sigma_i^2}{c^2} \left(e^{\lambda c} - \lambda c - 1\right)$. So by additivity of ψ , we have

$$\psi_{\sum_{i=1}^n X_i}(\lambda) \leq \frac{\nu}{c^2} e^{\lambda c} - \frac{\nu}{c^2} \lambda c - \frac{\nu}{c^2}.$$

So for $t \ge 0 = \mathbb{E}\left[\sum_{i} X_{i}\right]$, by Proposition 1.12,

$$\psi_{\sum_i X_i}^*(t) \geq \sup_{\lambda \in \mathbb{R}} \Bigl\{ \lambda t - \frac{\nu}{c^2} e^{\lambda c} + \frac{\nu}{c} \lambda + \frac{\nu}{c^2} \Bigr\} =: \sup_{\lambda \in \mathbb{R}} \{g(\lambda)\}$$

We have $g'(\lambda) = t - \frac{\nu}{c}e^{\lambda c} + \frac{\nu}{c}$ which is 0 iff $t + \frac{\nu}{c} = \frac{\nu}{c}e^{\lambda c}$, i.e. iff $\lambda = \frac{1}{c}\log(1 + t\frac{c}{v}) = \lambda^*$. So

$$\begin{split} \psi_{\sum X_i}^*(t) &\geq \frac{1}{c}t\log\left(1+\frac{tc}{\nu}\right) - \frac{\nu}{c^2}\left(1+\frac{tc}{\nu}\right) + \frac{\nu}{c^2}\log\left(1+\frac{tc}{\nu}\right) + \frac{\nu}{c^2}\\ &= \frac{\nu}{c^2}\bigg(\bigg(1+\frac{tc}{\nu}\bigg)\log\bigg(1+\frac{tc}{\nu}\bigg) - \frac{tc}{\nu}\bigg)\\ &= \frac{\nu}{c^2}h_1\bigg(\frac{tc}{\nu}\bigg). \end{split}$$

So we are done by the Chernoff Bound.

Remark 1.23 We can show that $h_1(x) \ge \frac{x^2}{2(x/3+1)}$ for $x \ge 0$. So by Bennett's Inequality, we obtain

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge t\right) \le \exp\left(-\frac{t^2}{2(ct/3 + \nu)}\right),$$

which is **Bernstein's inequality**. If $\nu \gg ct$, then this yields a sub-Gaussian tail bound, and if $\nu \ll ct$, then this yields an exponential bound. So Bernstein misses a log factor.

Remark 1.24 If $Z \sim \text{Pois}(\lambda)$, then $\psi_{Z-\nu}(\lambda) = \nu (e^{\lambda} - \lambda - 1)$.

2. The variance method

2.1. The Efron-Stein inequality

Notation 2.1 Denote $X^{(i)} = (X_{1:(i-1)}, X_{(i+1):n})$ and for i < j, denote $X_{i:j} = (X_i, ..., X_j)$.

 $\begin{array}{lll} \textbf{Notation} & \textbf{2.2} & \text{Denote} & E_iZ = \mathbb{E}[Z \mid X_{1:i}], & E_0Z = \mathbb{E}[Z], & E^{(i)} = \mathbb{E}\left[Z \mid X^{(i)}\right], & \text{and} & \text{Var}^{(i)}(Z) = \text{Var}\left(Z \mid X^{(i)}\right). \end{array}$

We want to study the concentration of $Z = f(X_1, ..., X_n)$ for independent X_i . If $Z = \sum_i X_i$, then $\operatorname{Var}\left(\sum_i X_i\right) = \sum_i \operatorname{Var}(X_i)$ if $\mathbb{E}\left[X_i X_j\right] = 0$ for all $i \neq j$, which holds if the X_i are independent.

Theorem 2.3 (Efron-Stein Inequality) Let $X_1,...,X_n$ be independent and let $Z=f(X_1,...,X_n)$. Then

$$\mathrm{Var}(Z) \leq \sum_{i=1}^n \mathbb{E}\Big[\big(Z - E^{(i)}Z\big)^2 \Big] = \mathbb{E}\left[\sum_{i=1}^n \mathrm{Var}^{(i)}(Z) \right].$$

Proof (Hints).

- The Law of Total Expectation and Tower Property of Conditional Expectation will come in handy a lot...
- Let $\Delta_i = E_i Z E_{i-1} Z$. Show that $\mathbb{E}[\Delta_i] = 0$.
- Show that the Δ_i are uncorrelated, i.e. $\mathbb{E}\left[\Delta_i\Delta_j\right]=\mathbb{E}[\Delta_i]\mathbb{E}\left[\Delta_j\right]$.
- Show that $\Delta_i = E_i(Z E^{(i)}Z)$.

Proof. Let $\Delta_i = E_i Z - E_{i-1} Z$. By the Law of Total Expectation, we have

$$\mathbb{E}[\Delta_i] = \mathbb{E}[\mathbb{E}[Z \mid X_{1:i}]] - \mathbb{E}\left[\mathbb{E}\left[Z \mid X_{1:(i-1)}\right]\right] = \mathbb{E}[Z] - \mathbb{E}[Z] = 0.$$

Also, note that $Z - \mathbb{E}[Z] = \mathbb{E}[Z \mid X_{1:n}] - \mathbb{E}[Z] = \sum_{i=1}^{n} \Delta_i$. We claim that the Δ_i are uncorrelated, i.e. $\mathbb{E}\left[\Delta_i \Delta_j\right] = \mathbb{E}[\Delta_i] \mathbb{E}\left[\Delta_j\right] = 0$ for $i \neq j$. Indeed, for i < j, by the Law of Total Expectation, we can write

$$\mathbb{E}\left[\Delta_i \Delta_j\right] = \mathbb{E}\left[\mathbb{E}\left[\Delta_i \Delta_j \mid X_{1:i}\right]\right] = \mathbb{E}\left[\Delta_i \mathbb{E}\left[\Delta_j \mid X_{1:i}\right]\right],$$

since Δ_i is a function of $X_{1:i}$. But

$$\begin{split} \mathbb{E}\left[\Delta_{j}\mid X_{1:i}\right] &= \mathbb{E}\big(E_{j}Z - E_{j-1}Z\mid X_{1:i}\big) \\ &= \mathbb{E}\big[\mathbb{E}\left[Z\mid X_{1:j}\right]\mid X_{1:i}\big] - \mathbb{E}\big[\mathbb{E}\left[Z\mid X_{1:(j-1)}\right]\mid X_{1:i}\big] \\ &= \mathbb{E}[Z\mid X_{1:i}] - \mathbb{E}[Z\mid X_{1:i}] = E_{i}Z - E_{i}Z = 0, \end{split}$$

where on the third line we used the Tower Property of Conditional Expectation. Hence, the Δ_i are uncorrelated, which implies

$$\mathrm{Var}(Z) = \mathrm{Var}(Z - \mathbb{E}[Z]) = \sum_{i=1}^n \mathrm{Var}(\Delta_i) = \sum_{i=1}^n \mathbb{E}\big[\Delta_i^2\big] - \mathbb{E}[\Delta_i]^2 = \sum_{i=1}^n \mathbb{E}\big[\Delta_i^2\big].$$

Now

$$\begin{split} E_i \big(E^{(i)} Z \big) &= \mathbb{E} \big[E^{(i)} Z \mid X_{1:i} \big] \\ &= \mathbb{E} \big[E^{(i)} Z \mid X_{1:(i-1)}, X_i \big] \\ &= \mathbb{E} \big[\mathbb{E} \big[Z \mid X^{(i)} \big] \mid X_{1:(i-1)} \big] \\ &= \mathbb{E} \big[Z \mid X_{1:(i-1)} \big] \\ &= E_{i-1} Z, \end{split}$$

where on the third line we used that X_i and $X^{(i)}$ are independent, and on the fourth line we used the Tower Property of Conditional Expectation. So we can rewrite $\Delta_i = E_i Z - E_{i-1} Z = E_i \left(Z - E^{(i)} Z \right)$, and so by Jensen's inequality

$$\begin{split} \Delta_i^2 &= \left(E_i \big(Z - E^{(i)}Z\big)\right)^2 = \mathbb{E}\big[Z - E^{(i)}Z \mid X_{1:i}\big]^2 \\ &\leq \mathbb{E}\Big[\big(Z - E^{(i)}Z\big)^2 \mid X_{1:i}\Big] = E_i \Big(\big(Z - E^{(i)}Z\big)^2\Big). \end{split}$$

Hence, by the Law of Total Expectation,

$$\begin{split} \operatorname{Var}(Z) &= \sum_{i=1}^n \mathbb{E} \big[\Delta_i^2 \big] \leq \sum_{i=1}^n \mathbb{E} \Big[E_i \Big(\big(Z - E^{(i)} Z \big)^2 \Big) \Big] \\ &= \sum_{i=1}^n \mathbb{E} \Big[\mathbb{E} \Big[\big(Z - E^{(i)} Z \big)^2 \mid X_{1:i} \Big] \Big] = \sum_{i=1}^n \mathbb{E} \Big[\big(Z - E^{(i)} Z \big)^2 \Big]. \end{split}$$

Finally, we have $\mathbb{E}\left[E^{(i)}(Z-E^{(i)}Z)^2\right] = \mathbb{E}\left[\operatorname{Var}(Z\mid X^{(i)})\right] = \mathbb{E}\left[\operatorname{Var}^{(i)}(Z)\right]$, which gives the equality in the theorem statement.

Theorem 2.4 Let $X_1,...,X_n$ be independent and f be square integrable. Let $Z=f(X_1,...,X_n)$. Then

$$\operatorname{Var}(Z) \le \mathbb{E}\left[\sum_{i=1}^n \left(Z - E^{(i)}Z\right)^2\right] =: \nu.$$

Moreover, if $X_1',...,X_n'$ are IID copies of $X_1,...,X_n$, and $Z_i'=f\left(X_{1:(i-1)},X_i',X_{(i+1):n}\right)$, then

$$\nu = \frac{1}{2}\mathbb{E}\left[\sum_{i=1}^n\left(Z-Z_i'\right)^2\right] = \mathbb{E}\left[\sum_{i=1}^n\left(Z-Z_i'\right)_+^2\right] = \mathbb{E}\left[\sum_{i=1}^n\left(Z-Z_i'\right)_-^2\right],$$

where $X_+ = \max\{0, X\}$ and $X_- = \max\{-X, 0\}$. Moreover,

$$\nu = \sum_{i=1}^{n} \inf_{Z_i} \mathbb{E}\left[(Z - Z_i)^2 \right],$$

where the infimum is over all $X^{(i)}$ -measurable and square-integrable RVs Z_i .

Proof (Hints).

- First part is straightforward.
- For second part, show that $\operatorname{Var}^{(i)}(Z) = \frac{1}{2} \operatorname{Var}^{(i)}(Z Z_i')$.
- For last part, use that $\operatorname{Var}(X) = \inf_a \mathbb{E}[(X a)^2]$.

Proof. The first part follows instantly from the Efron-Stein Inequality by linearity of expectation. Now $Var(X) = \frac{1}{2} Var(X - Y)$, if X and Y are IID. Conditional on $X^{(i)}$, Z and Z'_i are independent. Hence, since $\mathbb{E}[Z] = \mathbb{E}[Z'_i]$,

$$\mathrm{Var}^{(i)}(Z) = \frac{1}{2}\,\mathrm{Var}^{(i)}(Z-Z_i') = \frac{1}{2}\mathbb{E}\big[(Z-Z_i')^2\big].$$

Thus we have

11

$$\nu = \frac{1}{2} \sum_{i=1}^n \mathbb{E} \left[\left(Z - Z_i' \right)^2 \right].$$

Finally, recall that $\operatorname{Var}(X) = \inf_a \mathbb{E}[(X-a)^2]$, with equality if $a = \mathbb{E}[X]$. So $\operatorname{Var}^{(i)}(Z) = \inf_{Z_i} E^{(i)} \left((Z-Z_i)^2 \right)$, with equality if $Z_i = E^{(i)}Z$. Taking expectations and summing completes the proof.