پیش گزارش آزمایش ۸

پیشگزارش آزمایش ۸

هدف از این پیش گزارش آشنایی با رفتار فرکانسی مدارهای مرتبه اوّل، نحوه تأثیر مقادیر عناصر در این رفتار، مشاهده پاسخ دامنه و پاسخ فاز، بررسی رفتار فیلتری آنها، بدست آوردن فرکانس قطع و پهنای باند آنها است.

***نکته اول: توضیحات و روابط تئوری را از بخش ابتدایی دستورکار دوره حضوری آزمایش ۸ مطالعه بفرمائید.

***نکته دوم و مهم: در این آزمایش برای اندازه گیری دادهها بسته به نیاز از اسیلوسکوپ Agilent و مولتی متر معمولی نرم افزار استفاده کنید. *** در صورت استفاده از مدل های دیگر دستگاههای موجود در نرم افزار، تکلیف نمره ای نخواهد داشت و نمره صفر برای آن منظور می گردد. همچنین استفاده از آنالیز AC نرم افزار و نیز قابلیت رسم منحنی بر حسب فرکانس اسیلوسکوپ دیجیتال مجاز نمی باشد مگر در بندها و مواردی که به صورت مستقیم به استفاده از آنها اشاره شده است. در باقی موارد تنها استفاده از عملکرد حوزه زمان و مد X-Y اسیلوسکوپ Agilent برای ثبت دادهها مجاز می باشد. ***

*اسیلوسکوپ Agilent منظور دستگاهی است که در اینجا مشاهده می کنید:

*مولتىمتر معمولى نرمافزار نيز منظور اين دستگاه است:

***نکته سوم: برای تولید موج سینوسی ورودی در هر چهار مدار این دستورکار از فانکشن ژنراتور معمولی نرمافزار که در شکل زیر مشاهده می کنید، استفاده شود و سیگنال از پایه وسطی و پایه مثبت آن گرفته شود.

◄ كيلتر بالاگذر: بررسي پاسخ فركانسي √

با استفاده از R=۶٫۸ $K\Omega$ و R=۱۰۰ بسازید. C=۱۰۰ بسازید.

الف- به کمک دستگاه فانکشن ژنراتور نرمافزار یک موج سینوسی با ولتاژ دامنه ۵ ولت به مدار اعمال نموده و برای فرکانسهای داده شده در جدول زیر، مقدار ولتاژ خروجی و اختلاف فاز موج ورودی و خروجی را اندازه گیری نمایید. دقت داشته باشید در هنگامی که فرکانس نوسانساز را تغییر میدهید، ولتاژ ورودی تغییر نکند و همواره روی دامنه ۵ ولت ثابت بماند. اختلاف فاز بین موج ورودی و خروجی را به کمک اندازه گیری فاصله زمانی بین دو قله موج ورودی و خروجی یا دو صفر آن دو به دست آورید ($\Phi = \tau \pi f \Delta t$). تصویر پنجره تنظیمات فانکشن ژنراتور نرمافزار و صفحات اسیلوسکوپ شامل شکل موج ورودی و خروجی و کلیدهای تنظیم روی پنل اسیلوسکوپ به ازای فرکانس هر خانه جدول در گزارش کار آورده شود. همچنین مقدار قاصله زمانی بین دو قله موج ورودی و خروجی را روی تصاویر اسیلوسکوپ مشخص کنید.

 φ محاسبه شده از طریق روابط تئوری را در گزارش V_0 محاسبه شده از طریق روابط تئوری را در گزارش کار تحویلی کامل کنید.

ج- منحنی دامنه و فاز بر حسب فرکانس را برای خروجی مورد نظر به کمک اعداد جدول به صورت تقریبی رسم کنید.

c- فرکانس قطع این فیلتر را به کمک c اسیلوسکوپ اندازه گرفته و با نتیجه تئوری مقایسه کنید. روش

اندازهگیری فرکانس قطع را به طور کامل شرح دهید. <mark>تصویر پنجره تنظیمات فانکشن ژنراتور نرمافزار و</mark>

تصویر صفحه اسیلوسکوپ شامل شکل موج ورودی و خروجی و کلیدهای پنل آن در فرکانس قطع ضمیمه

ئىود.

9	9	41.	14.	٩٠	۴٠	$(\mathrm{Hz})f$ فرکانس
						اندازهگیری شده $V_{\scriptscriptstyle 0}$
						اندازه گیری شده ϕ
						محاسبه شده $V_{\scriptscriptstyle 0}$
						محاسبه شده ϕ

ه- منحنی دامنه و فاز بر حسب فرکانس را با استفاده از آنالیز AC نرمافزار برای خروجی مورد نظر رسم کنید و فرکانس قطع را نیز از روی آن بدست آورید. منحنیها و فرکانس قطع را با نتایج بند ج و د مقایسه کنید.

✓ فیلتر پایین گذر: بررسی پاسخ فرکانسی RL

با استفاده از مقاومت Ω ۱۸۰ Ω و R=۱۸۰ مدار شکل (۹-۸) را که یک فیلتر پایین گذر است ببندید.

الف – یک موج سینوسی با مقدار دامنه ۵ ولت به ورودی مدار اعمال کرده و با فرکانسهایی که در جدول زیر قید شده مقدار دامنه ولتاژ خروجی و اختلاف فاز φ بین موج ورودی وخروجی را بوسیله اسیلوسکوپ یافته و یادداشت کنید. مقدار V_0 و اختلاف فاز φ بین موج ورودی و خروجی را به کمک منحنیهای لیساژو راندازه گیری کنید. (اندازه گیری کنید.

وروش اندازهگیری V_0 و اختلاف فاز $\frac{\varphi}{\alpha}$ از روی منحنی لیساژو را یکبار اینجا شرح دهید. تصویر پنجره تنظیمات فانکشن ژنراتور نرمافزار و صفحات اسیلوسکوپ شامل منحنیهای لیساژو و کلیدهای تنظیم روی پنل اسیلوسکوپ به ازای فرکانس هر خانه جدول در گزارشکار آورده شود. مقادیر دقیق $\frac{\alpha, \beta}{\alpha}$ را روی همه تصاویر اسیلوسکوپ مشخص کنید. لطفا روی شکلها ذکر شود که خروجی و ورودی مدار هر یک به کدام محور اسیلوسکوپ متصل شده است.

 φ محاسبه شده از طریق روابط تئوری را در گزارش V_0 محاسبه شده و جدول زیر سطر مربوط به V_0 محاسبه کنید. کار نهایی کامل کنید و با نتایج آزمایش مقایسه کنید.

ج- منحنی دامنه و فاز بر حسب فرکانس را برای خروجی مورد نظر به کمک اعداد جدول به صورت تقریبی رسم کنید.

د- فرکانس قطع این فیلتر را به کمک اسیلوسکوپ و منحنیهای لیساژو اندازه گرفته و با نتیجه تئوری مقایسه کنید. روش اندازه گیری فرکانس قطع از روی منحنی لیساژو را شرح دهید. تصویر پنجره تنظیمات فانکشن ژنراتور نرمافزار و تصویر صفحه اسیلوسکوپ شامل منحنی لیساژوی حاصل از ورودی و خروجی مدار در فرکانس قطع و کلیدهای تنظیم پنل اسیلوسکوپ ضمیمه شود. لطفا روی شکل ذکر شود که خروجی و

ورودی مدار هر یک به کدام محور اسیلوسکوپ متصل شده است. مقدار دامنه خروجی را روی شکل منحنی لیساژو مشخص کنید.

1+,+++	4	11	9	10+	۲٠	$(\mathrm{Hz})f$ فرکانس
						اندازه گیری شده $lpha$
						β اندازه گیری شده
						اندازهگیری شده $V_{\scriptscriptstyle 0}$
						$\varphi = Arc\sin(\frac{\alpha}{\beta})$
						محاسبه شده $V_{ m 0}$
						محاسبه شده ϕ

ه- منحنی دامنه و فاز بر حسب فرکانس را با استفاده از دستگاه Bode plotter نرمافزار برای خروجی مورد نظر رسم کنید و فرکانس قطع را با نتایج بند ج و د مقایسه کنید.

✓ ساخت فیلتر میانگذر به کمک دو فیلتر پایینگذر و بالاگذر

از ترکیب دو فیلتر پایینگذر و بالاگذر میتوان یک فیلتر میانگذر ساخت که در شکل (۱۰-۸) ملاحظه میکنید. با استفاده از $R=\Lambda, \Upsilon K\Omega$ و $R=\Lambda, \Upsilon K\Omega$ فیلتر میانگذر شکل (۱۰-۸) را شبیهسازی کنید.

الف - به کمک دستگاه فانکشن ژنراتور نرمافزار یک موج سینوسی با ولتاژ دامنه 0 ولت به مدار اعمال نموده و برای فرکانسهای داده شده در جدول زیر، مقدار ولتاژ خروجی و اختلاف فاز را اندازه گیری کنید. دقت داشته باشید هنگامی که فرکانس منبع را تغییر می دهید دامنه ولتاژ ورودی تغییر نکند و همواره بر روی

دامنه α ولت بماند. در جدول زیر سطر مربوط به V_0 محاسبه شده و φ محاسبه شده از طریق روابط تئوری را در گزارش کار تحویلی کامل کنید. مقدار V_0 و اختلاف فاز φ را با استفاده از منحنیهای لیساژو بگیرید. تصویر پنجره تنظیمات فانکشن ژنراتور نرمافزار و تصویر صفحات اسلوسکوپ شامل منحنیهای لیساژو و کلیدهای تنظیم روی پنل اسیلوسکوپ به ازای فرکانس هر خانه جدول در گزارش کار آورده شود. مقادیر دقیق α, β را روی همه تصاویر اسیلوسکوپ مشخص کنید. لطفا روی شکلها ذکر شود که خروجی و ورودی مدار هر یک به کدام محور اسیلوسکوپ متصل شده است.

- مقدار ماکزیمم دامنه خروجی، فرکانس مرکزی (f_{max})، فرکانس قطع بالا، فرکانس قطع پایین را به کمک اسیلوسکوپ اندازه گرفته و مقدار پهنای باند به دست آمده از دادههای اندازه گیری را گزارش دهید. مقادیر هر پنج داده با نتایج تئوری مقایسه شود. تصویر پنجره تظیمات فانکشن ژنراتور نرم افزار و نیز صفحات اسیلوسکوپ شامل منحنی لیساژوی حاصل از ورودی و خروجی مدار در فرکانس مرکزی (f_{max})، فرکانس قطع بالا، فرکانس قطع پایین به همراه کلیدهای تنظیم پنل اسیلوسکوپ ضمیمه شود. لطفا روی شکلها ذکر شود که خروجی و ورودی مدار هر یک به کدام محور اسیلوسکوپ متصل شده است. مقدار دامنه خروجی را روی منحنی لیساژو در هر شکل مشخص کنید.

17	9	70.	7	17+	۶٠	7+	$(\mathrm{Hz})f$ فر کانس
							اندازهگیری شده $V_{\scriptscriptstyle 0}$
							اندازه گیری شده ϕ
							محاسبه شده V_0
							محاسبه شده $arphi$

 $Bode\ plotter$ ج- منحنی دامنه و فاز بر حسب فرکانس را با استفاده از آنالیز AC نرمافزار یا دستگاه نرمافزار برای خروجی مورد نظر رسم کنید. ماکزیمم دامنه خروجی، فرکانس مرکزی، فرکانس قطع بالا و

پایین و پهنای باند را نیز روی اَن مشخص کنید. منحنیها و فرکانسهای قطع را با نتایج بند ج و د مقایسه کنید.

√ اندازهگیری فرکانس مجهول و منحنیهای لیساژو

الف - یک فانکشن ژنراتور را به عنوان منبع با فرکانس مجهول و فانکشن ژنراتور دیگری را به عنوان منبع با فرکانس معلوم در نظر بگیرید. ورودیهای دو کانال X و Y اسیلوسکوپ را مطابق شکل (۱-۸) به دو فانکشن ژنراتور مجزا متصل کنید. اسیلوسکوپ را در مد x-y قرار دهید. سعی کنید با تغییر فرکانس منبع معلوم و مشاهده منحنیهای لیساژو، فرکانس منبع مجهول را بدست آورید. بعد از رسیدن به شکل مطلوبی برای منحنی لیساژو، تصویر پنجره تظیمات هر دو فانکشن ژنراتور و تصویر صفحه اسکوپ ضمیمه گردد. از روی شکل منحنی لیساژو حاصل چگونه فرکانس منبع مجهول را اندازه گرفتید؟

y به فانکشن ژنراتور متصل به کانال y را ثابت و فرکانس فانکشن ژنراتور متصل به کانال y را به صورت ضریبی از فرکانس ثابت مفروض قرار دهید که این ضرایب شامل y و y میباشد. به ازای هر کدام از ضرایب فرکانسی y و y تصویر پنجره تظیمات هر دو فانکشن ژنراتور و تصویر صفحه اسکوپ ضمیمه گردد. y معادله منحنیهای لیساژو را در حالت ضرایب فرکانسی y و y هنگامی که به یک تابع تبدیل میشوند بدست آورید.