

ceived vaccine and 6012 received a saline placebo. In the first 3 years after vaccination 303 people died—170 placebo and 133 vaccine. This represents a 22% difference in mortality and a crude difference of almost 2 deaths per 1000 persons. The difference was largely due to fewer deaths from respiratory causes (table iv). The most significant difference was in deaths from pneumonia uncomplicated by chronic lung disease—41 placebo and 23 vaccine. This represents a 42% difference in mortality which is significant at the $P<0.05$ level, χ^2 test. There was far less protection given to persons suffering from chronic lung disease (table v).

During an epidemic of influenza in early 1976 there were 25 deaths due to respiratory causes—16 placebo and 9 vaccine. The difference is not significant but does suggest a protection rate of 40% which is consistent with other results.

Discussion

The vaccine reduced the alveolar multiplication of pneumococci and their invasion of the bloodstream, but had little effect on their invasion of the lower respiratory tract. The severity rather than the incidence of pneumonia was affected, and mortality-rates were reduced accordingly.

These results differ in some ways from those reported by MacLeod et al. in 1945,⁸ and more recently by Austrian et al.⁹ Both these trials of pneumococcal polysaccharide vaccine dealt with large populations of young men: U.S. Army recruits and South African mine workers respectively. The incidence of pneumonia was high, and this could largely be attributed to the exposure of healthy recruits to respiratory pathogens with which they had no previous contact. Immunisation not only reduced the incidence of pneumonia and of blood-borne pneumococcal invasion, but also reduced sputum and nasopharyngeal isolation rates of the organisms.

The susceptibility of the Huli people to pneumonia has several causes. They live in poorly ventilated, smoky huts and are often exposed to a cold wet climate; chronic lung disease with associated damage to respiratory defences and bacterial contamination of the respiratory tract is common. This, together with the comparatively high pre-immunisation levels of antibody, may explain why the vaccine had no effect on sputum and nasopharyngeal isolation of the pneumococcus.

Two important facts emerge from this study: the vaccine has reduced mortality from pneumonia, and the reduction occurred steadily over 3 years. The steady decline is consistent with earlier findings that the level of antibodies to pneumococcal polysaccharide remains at half its maximum value 5 years after immunisation.¹⁰ The reduction in mortality is clearly important to health care in the underdeveloped world. The vaccine is a useful adjunct to primary health-care services. It may alleviate the crippling effects of influenza on Highlands communities.

The trial was supported by the Department of Public Health, Papua New Guinea, and by a grant from Merck, Sharp and Dohme Limited, who also provided the vaccine. Serum-antibody estimations were performed by Dr M. D. Bonner in the laboratories of Prof. R. Austrian. Field work was carried out by B. Iwais, K. Kipusin, J. Borwick, P. Tagajau, D. Kane, D. Holliday, and many others. We gratefully acknowledge the encouragement of Dr R. F. R. Scragg and of Professor Austrian.

Requests for reprints should be addressed to I.D.R., 2 Albany Crescent, East Killara, N.S.W. 2071, Australia.

References at foot of next column

COMPARISON OF ORAL 25-HYDROXYCHOLECALCIFEROL, VITAMIN D, AND ULTRAVIOLET LIGHT AS DETERMINANTS OF CIRCULATING 25-HYDROXYVITAMIN D

T. C. B. STAMP

J. G. HADDAD

C. A. TWIGG

*Royal National Orthopaedic Hospital and Middlesex Hospital,
London, and Jewish Hospital of St. Louis, U.S.A.*

Summary Circulating concentrations of 25-hydroxyvitamin D (25-OHD) were measured during short-term and long-term oral treatment with 25-hydroxycholecalciferol (25-OHD₃, 25-H.C.C.) or with vitamin D in over 200 subjects over a period of 5 years. Ten times more vitamin D than 25-OHD₃ was required to produce equivalent plasma-25-OHD concentrations. Plasma-25-OHD was a power function of dosage with both compounds. These data indirectly measure the superior therapeutic potency of 25-OHD₃, show that dose-response relations with both compounds may be useful in diagnosis, and indicate that there are pronounced constraints on 25-hydroxylation of vitamin D. Together with the effects of ultraviolet light, now shown to be equivalent to oral vitamin D in doses of 8000–10 000 i.u. daily, these constraints may protect against vitamin-D deficiency in winter.

Introduction

PLASMA-25-HYDROXYVITAMIN-D (25-OHD) is often measured as an index of response to various forms of vitamin-D treatment. Although preliminary data have been obtained during pharmacological oral dosage,¹ analysis of plasma-25-OHD as a function of dosage is lacking. 25-hydroxycholecalciferol (25-OHD₃, 25-H.C.C.) is several times more potent than the parent vitamin, but reports of its therapeutic efficacy have not included systematic measurement of plasma concentrations.²⁻⁵ Vitamin D is a pro-hormone⁶ which only becomes active on transformation to its 25-hydroxy derivative, a process that is subject to pronounced but poorly understood constraints.⁷⁻⁹

Comprehensive comparison of plasma-25-OHD concentrations during treatment with the two compounds should both clarify the extent of these constraints in man and indirectly measure the relative therapeutic potencies of the two compounds. As a further result, previous data on natural¹⁰ and artificial^{11,12} ultraviolet light could be more critically evaluated.

DR RILEY AND OTHERS: REFERENCES

1. Riley, I. *Papua N.G. med. J.* 1973, **16**, 9.
2. *Lancet*, 1969, ii, 1187.
3. Devitt, L., Douglas, R. *Med. J. Aust.* 1973, i, 49.
4. Hansman, D., Glasgow, H., Sturt, J., Devitt, L., Douglas, R. *New Engl. J. Med.* 1971, **284**, 175.
5. Hansman, D., Devitt, L., Miles, H., Riley, I. *Med. J. Aust.* 1974, ii, 353.
6. Woollock, A., Blackburn, C. *Australas. Ann. Med.* 1967, **1**, 11.
7. Schiffman, G., Austrian, R. *Fedn. Proc.* 1971, **30**, 658.
8. MacLeod, C., Hodges, R., Heidelberger, M., Bernhard, W., *J. Exp. Med.* 1945, **82**, 445.
9. Austrian, R., Douglas, R., Schiffman, G., Coetzee, A., Koornhoff, H., Hayden Smith, S., Reid, R. *Trans. Ass. Am. Physns.* 1976, **89**, 184.
10. Heidelberger, M., deLapi, M., Walker, A. *J. Immun.* 1950, **65**, 535.

Subjects and Methods

Most of the data came from patients requiring treatment with vitamin D for various conditions including classic deficiency, X-linked hypophosphatemic ("vitamin-D resistant") rickets or osteomalacia, osteoporosis, and hypoparathyroidism. Patients with disorders expected to interfere with intestinal vitamin-D absorption or with hepatic 25-hydroxylation were not included; patients were also excluded if their compliance with treatment was in doubt. Some healthy adult volunteers were also studied. Long-term solar irradiation and daily whole-body artificial ultraviolet light (U.V.L.) were studied as reported elsewhere.^{10,12} Plasma-25-OHD was measured in triplicate by a radio-competitive assay.¹⁰ Supplies of 25-OHD₃ for treatment were a gift from Dr J. C. Babcock of the Upjohn Company. Vitamin D was given either as ergocalciferol or as cholecalciferol.

Results

Steady-state concentrations of 25-OHD in 128 subjects receiving long-term (\geq four months) treatment with vitamin D₂ or D₃, and among subjects receiving 25-OHD₃ (for at least six weeks) are shown in fig. 1.

Fig. 1—Plasma-25-OHD in 164 subjects receiving daily long-term treatment with vitamin D₂ or D₃ (●) and with 25-OHD₃ (○) in different doses.

Regression lines (with 95% confidence limits) are given for each form of treatment. Mean value (\pm s.d.) in 8 lifeguards in midsummer was 64.4 ± 8.7 ng/ml.¹⁰

Although plasma-25-OHD varied widely for any given dose, there was a clear log/log relation between plasma-25-OHD (ng/ml) and vitamin-D dosage in μg ($r=0.94$) given by the equation:

$$\log y = 0.178 + 0.701 \log x.$$

During treatment with 25-OHD₃ itself, plasma-25-OHD was also a power function of dosage ($r=0.86$), the relation in 36 subjects being given by the equation;

$$\log y = 0.285 + 1.039 \log x.$$

Thus the potency of 25-OHD₃ relative to vitamin D increased steadily with dosage—e.g., on a molar basis 9 and 12 times more vitamin D was required to produce mean plasma-25-OHD concentrations of 250 and 500 nmol/l (100 and 200 ng/ml), respectively, and 25-OHD₃ in daily dosage of 50 and 100 μg produced mean 25-OHD concentrations which were respectively 5 and 6 times higher than with vitamin D.

Fig. 2 shows changes in plasma-25-OHD during

Fig. 2—Mean plasma-25-OHD in 60 subjects during short-term treatment with vitamin D₂ or D₃ (●) or with 25-OHD₃.

(○) in different daily doses (as shown). ▲ = mean 25-OHD in 7 subjects receiving daily artificial U.V.L.¹² Bars indicate S.E.M.

short-term treatment with vitamin D or 25-OHD₃ in 60 subjects; the mean change in 7 subjects who receive artificial U.V.L. is also shown. A number of "weekly" values were derived by extrapolation of levels obtained up to three to four days on either side of the week in question. 25-OHD₃ again showed the same order of superior potency over vitamin D in increasing circulating 25-OHD. Changes with U.V.L. again were similar to those in patients receiving oral vitamin D 10 000 i.u. daily.

Discussion

Experimental studies indicate that 25-hydroxylation of vitamin D is product-inhibited as well as being subject to other pronounced but poorly understood constraints; together these effects produce a "bottleneck".^{7,9} In the present short-term and long-term studies the administered dose of vitamin D needed to be ten times larger than the dose of 25-OHD₃ to have the same effect on plasma-25-OHD. This indicated the extent of the constraints on 25-hydroxylation. Muscle and adipose tissue stores of vitamin D are said to be large;¹³ preferential uptake of the parent vitamin(s) in these tissues could additionally limit their availability for 25-hydroxylation. The mathematical relation between vitamin-D dosage and plasma-25-OHD is similar to that previously reported between dosage and circulating antigenic activity measured by bioassay.¹⁴ Since patients were included in the present study if they had a disease expected to interfere with intestinal absorption or hepatic 25-hydroxylation or if their compliance with treatment was in doubt, our data may be of some value in assessing these disturbances in others.

25-OHD₃ is rapidly absorbed from the gastrointestinal tract¹⁵ and we were unable in the present study to control the time interval between ingestion and sampling. Nevertheless constant daily dosage seemed to increase circulating concentrations at a rate similar to

achieved times as six weeks treatment this time was physiologically established.

Changes in irradiation been pre shows induced by in the intake of acceptability thesis, aogenous further thesis of summer subsequent aga

The Free

1. The
2. The
3. The
4. The
5. The
6. The
7. The
8. The
9. The
10. The
11. The
12. The
13. The
14. The
15. The
16. The
17. The
18. The
19. The
20. The
21. The
22. The
23. The
24. The
25. The
26. The
27. The
28. The
29. The
30. The
31. The
32. The
33. The
34. The
35. The
36. The
37. The
38. The
39. The
40. The
41. The
42. The
43. The
44. The
45. The
46. The
47. The
48. The
49. The
50. The
51. The
52. The
53. The
54. The
55. The
56. The
57. The
58. The
59. The
60. The
61. The
62. The
63. The
64. The
65. The
66. The
67. The
68. The
69. The
70. The
71. The
72. The
73. The
74. The
75. The
76. The
77. The
78. The
79. The
80. The
81. The
82. The
83. The
84. The
85. The
86. The
87. The
88. The
89. The
90. The
91. The
92. The
93. The
94. The
95. The
96. The
97. The
98. The
99. The
100. The
101. The
102. The
103. The
104. The
105. The
106. The
107. The
108. The
109. The
110. The
111. The
112. The
113. The
114. The
115. The
116. The
117. The
118. The
119. The
120. The
121. The
122. The
123. The
124. The
125. The
126. The
127. The
128. The
129. The
130. The
131. The
132. The
133. The
134. The
135. The
136. The
137. The
138. The
139. The
140. The
141. The
142. The
143. The
144. The
145. The
146. The
147. The
148. The
149. The
150. The
151. The
152. The
153. The
154. The
155. The
156. The
157. The
158. The
159. The
160. The
161. The
162. The
163. The
164. The
165. The
166. The
167. The
168. The
169. The
170. The
171. The
172. The
173. The
174. The
175. The
176. The
177. The
178. The
179. The
180. The
181. The
182. The
183. The
184. The
185. The
186. The
187. The
188. The
189. The
190. The
191. The
192. The
193. The
194. The
195. The
196. The
197. The
198. The
199. The
200. The
201. The
202. The
203. The
204. The
205. The
206. The
207. The
208. The
209. The
210. The
211. The
212. The
213. The
214. The
215. The
216. The
217. The
218. The
219. The
220. The
221. The
222. The
223. The
224. The
225. The
226. The
227. The
228. The
229. The
230. The
231. The
232. The
233. The
234. The
235. The
236. The
237. The
238. The
239. The
240. The
241. The
242. The
243. The
244. The
245. The
246. The
247. The
248. The
249. The
250. The
251. The
252. The
253. The
254. The
255. The
256. The
257. The
258. The
259. The
260. The
261. The
262. The
263. The
264. The
265. The
266. The
267. The
268. The
269. The
270. The
271. The
272. The
273. The
274. The
275. The
276. The
277. The
278. The
279. The
280. The
281. The
282. The
283. The
284. The
285. The
286. The
287. The
288. The
289. The
290. The
291. The
292. The
293. The
294. The
295. The
296. The
297. The
298. The
299. The
300. The
301. The
302. The
303. The
304. The
305. The
306. The
307. The
308. The
309. The
310. The
311. The
312. The
313. The
314. The
315. The
316. The
317. The
318. The
319. The
320. The
321. The
322. The
323. The
324. The
325. The
326. The
327. The
328. The
329. The
330. The
331. The
332. The
333. The
334. The
335. The
336. The
337. The
338. The
339. The
340. The
341. The
342. The
343. The
344. The
345. The
346. The
347. The
348. The
349. The
350. The
351. The
352. The
353. The
354. The
355. The
356. The
357. The
358. The
359. The
360. The
361. The
362. The
363. The
364. The
365. The
366. The
367. The
368. The
369. The
370. The
371. The
372. The
373. The
374. The
375. The
376. The
377. The
378. The
379. The
380. The
381. The
382. The
383. The
384. The
385. The
386. The
387. The
388. The
389. The
390. The
391. The
392. The
393. The
394. The
395. The
396. The
397. The
398. The
399. The
400. The
401. The
402. The
403. The
404. The
405. The
406. The
407. The
408. The
409. The
410. The
411. The
412. The
413. The
414. The
415. The
416. The
417. The
418. The
419. The
420. The
421. The
422. The
423. The
424. The
425. The
426. The
427. The
428. The
429. The
430. The
431. The
432. The
433. The
434. The
435. The
436. The
437. The
438. The
439. The
440. The
441. The
442. The
443. The
444. The
445. The
446. The
447. The
448. The
449. The
450. The
451. The
452. The
453. The
454. The
455. The
456. The
457. The
458. The
459. The
460. The
461. The
462. The
463. The
464. The
465. The
466. The
467. The
468. The
469. The
470. The
471. The
472. The
473. The
474. The
475. The
476. The
477. The
478. The
479. The
480. The
481. The
482. The
483. The
484. The
485. The
486. The
487. The
488. The
489. The
490. The
491. The
492. The
493. The
494. The
495. The
496. The
497. The
498. The
499. The
500. The
501. The
502. The
503. The
504. The
505. The
506. The
507. The
508. The
509. The
510. The
511. The
512. The
513. The
514. The
515. The
516. The
517. The
518. The
519. The
520. The
521. The
522. The
523. The
524. The
525. The
526. The
527. The
528. The
529. The
530. The
531. The
532. The
533. The
534. The
535. The
536. The
537. The
538. The
539. The
540. The
541. The
542. The
543. The
544. The
545. The
546. The
547. The
548. The
549. The
550. The
551. The
552. The
553. The
554. The
555. The
556. The
557. The
558. The
559. The
560. The
561. The
562. The
563. The
564. The
565. The
566. The
567. The
568. The
569. The
570. The
571. The
572. The
573. The
574. The
575. The
576. The
577. The
578. The
579. The
580. The
581. The
582. The
583. The
584. The
585. The
586. The
587. The
588. The
589. The
590. The
591. The
592. The
593. The
594. The
595. The
596. The
597. The
598. The
599. The
600. The
601. The
602. The
603. The
604. The
605. The
606. The
607. The
608. The
609. The
610. The
611. The
612. The
613. The
614. The
615. The
616. The
617. The
618. The
619. The
620. The
621. The
622. The
623. The
624. The
625. The
626. The
627. The
628. The
629. The
630. The
631. The
632. The
633. The
634. The
635. The
636. The
637. The
638. The
639. The
640. The
641. The
642. The
643. The
644. The
645. The
646. The
647. The
648. The
649. The
650. The
651. The
652. The
653. The
654. The
655. The
656. The
657. The
658. The
659. The
660. The
661. The
662. The
663. The
664. The
665. The
666. The
667. The
668. The
669. The
670. The
671. The
672. The
673. The
674. The
675. The
676. The
677. The
678. The
679. The
680. The
681. The
682. The
683. The
684. The
685. The
686. The
687. The
688. The
689. The
690. The
691. The
692. The
693. The
694. The
695. The
696. The
697. The
698. The
699. The
700. The
701. The
702. The
703. The
704. The
705. The
706. The
707. The
708. The
709. The
710. The
711. The
712. The
713. The
714. The
715. The
716. The
717. The
718. The
719. The
720. The
721. The
722. The
723. The
724. The
725. The
726. The
727. The
728. The
729. The
730. The
731. The
732. The
733. The
734. The
735. The
736. The
737. The
738. The
739. The
740. The
741. The
742. The
743. The
744. The
745. The
746. The
747. The
748. The
749. The
750. The
751. The
752. The
753. The
754. The
755. The
756. The
757. The
758. The
759. The
760. The
761. The
762. The
763. The
764. The
765. The
766. The
767. The
768. The
769. The
770. The
771. The
772. The
773. The
774. The
775. The
776. The
777. The
778. The
779. The
780. The
781. The
782. The
783. The
784. The
785. The
786. The
787. The
788. The
789. The
790. The
791. The
792. The
793. The
794. The
795. The
796. The
797. The
798. The
799. The
800. The
801. The
802. The
803. The
804. The
805. The
806. The
807. The
808. The
809. The
810. The
811. The
812. The
813. The
814. The
815. The
816. The
817. The
818. The
819. The
820. The
821. The
822. The
823. The
824. The
825. The
826. The
827. The
828. The
829. The
830. The
831. The
832. The
833. The
834. The
835. The
836. The
837. The
838. The
839. The
840. The
841. The
842. The
843. The
844. The
845. The
846. The
847. The
848. The
849. The
850. The
851. The
852. The
853. The
854. The
855. The
856. The
857. The
858. The
859. The
860. The
861. The
862. The
863. The
864. The
865. The
866. The
867. The
868. The
869. The
870. The
871. The
872. The
873. The
874. The
875. The
876. The
877. The
878. The
879. The
880. The
881. The
882. The
883. The
884. The
885. The
886. The
887. The
888. The
889. The
890. The
891. The
892. The
893. The
894. The
895. The
896. The
897. The
898. The
899. The
900. The
901. The
902. The
903. The
904. The
905. The
906. The
907. The
908. The
909. The
910. The
911. The
912. The
913. The
914. The
915. The
916. The
917. The
918. The
919. The
920. The
921. The
922. The
923. The
924. The
925. The
926. The
927. The
928. The
929. The
930. The
931. The
932. The
933. The
934. The
935. The
936. The
937. The
938. The
939. The
940. The
941. The
942. The
943. The
944. The
945. The
946. The
947. The
948. The
949. The
950. The
951. The
952. The
953. The
954. The
955. The
956. The
957. The
958. The
959. The
960. The
961. The
962. The
963. The
964. The
965. The
966. The
967. The
968. The
969. The
970. The
971. The
972. The
973. The
974. The
975. The
976. The
977. The
978. The
979. The
980. The
981. The
982. The
983. The
984. The
985. The
986. The
987. The
988. The
989. The
990. The
991. The
992. The
993. The
994. The
995. The
996. The
997. The
998. The
999. The
1000. The
1001. The
1002. The
1003. The
1004. The
1005. The
1006. The
1007. The
1008. The
1009. The
1010. The
1011. The
1012. The
1013. The
1014. The
1015. The
1016. The
1017. The
1018. The
1019. The
1020. The
1021. The
1022. The
1023. The
1024. The
1025. The
1026. The
1027. The
1028. The
1029. The
1030. The
1031. The
1032. The
1033. The
1034. The
1035. The
1036. The
1037. The
1038. The
1039. The
1040. The
1041. The
1042. The
1043. The
1044. The
1045. The
1046. The
1047. The
1048. The
1049. The
1050. The
1051. The
1052. The
1053. The
1054. The
1055. The
1056. The
1057. The
1058. The
1059. The
1060. The
1061. The
1062. The
1063. The
1064. The
1065. The
1066. The
1067. The
1068. The
1069. The
1070. The
1071. The
1072. The
1073. The
1074. The
1075. The
1076. The
1077. The
1078. The
1079. The
1080. The
1081. The
1082. The
1083. The
1084. The
1085. The
1086. The
1087. The
1088. The
1089. The
1090. The
1091. The
1092. The
1093. The
1094. The
1095. The
1096. The
1097. The
1098. The
1099. The
1100. The
1101. The
1102. The
1103. The
1104. The
1105. The
1106. The
1107. The
1108. The
1109. The
1110. The
1111. The
1112. The
1113. The
1114. The
1115. The
1116. The
1117. The
1118. The
1119. The
1120. The
1121. The
1122. The
1123. The
1124. The
1125. The
1126. The
1127. The
1128. The
1129. The
1130. The
1131. The
1132. The
1133. The
1134. The
1135. The
1136. The
1137. The
1138. The
1139. The
1140. The
1141. The
1142. The
1143. The
1144. The
1145. The
1146. The
1147. The
1148. The
1149. The
1150. The
1151. The
1152. The
1153. The
1154. The
1155. The
1156. The
1157. The
1158. The
1159. The
1160. The
1161. The
1162. The
1163. The
1164. The
1165. The
1166. The
1167. The
1168. The
1169. The
1170. The
1171. The
1172. The
1173. The
1174. The
1175. The
1176. The
1177. The
1178. The
1179. The
1180. The
1181. The
1182. The
1183. The
1184. The
1185. The
1186. The
1187. The
1188. The
1189. The
1190. The
1191. The
1192. The
1193. The
1194. The
1195. The
1196. The
1197. The
1198. The
1199. The
1200. The
1201. The
1202. The
1203. The
1204. The
1205. The
1206. The
1207. The
1208. The
1209. The
1210. The
1211. The
1212. The
1213. The
1214. The
1215. The
1216. The
1217. The
1218. The
1219. The
1220. The
1221. The
1222. The
1223. The
1224. The
1225. The
1226. The
1227. The
1228. The
1229. The
1230. The
1231. The
1232. The
1233. The
1234. The
1235. The
1236. The
1237. The
1238. The
1239. The
1240. The
1241. The
1242. The
1243. The
1244. The
1245. The
1246. The
1247. The
1248. The
1249. The
1250. The
1251

achieved by a dose of vitamin D that was at least ten times greater. Plateau concentrations were achieved in six weeks with 25-OHD₃, whereas with vitamin-D treatment this could take four months, and similar periods of time were required for concentrations to return to the physiological range on stopping treatment (unpublished).

Changes in plasma-25-OHD during long-term solar irradiation¹⁰ or short-term ultraviolet therapy^{11,12} have been previously reported. The present comparison now shows that these changes are equivalent to those produced by a daily dose of 10 000 i.u. oral vitamin D in—i.e., 100 times the recommended daily adult dietary intake.¹⁶ While there are several reservations against accepting this figure as representing endogenous synthesis, including the relative availability to liver of endogenous and exogenous vitamin D, our data raise a further aspect of vitamin-D economy, namely that synthesis of considerable amounts of the pro-hormone⁶ in summer coupled with the pronounced constraints on its subsequent 25-hydroxylation may provide some protection against deficiency in winter.

Reviews of Books

The Treatment of Venous Disorders

Edited by JOHN T. HOBBS, St Mary's Hospital, London. Lancaster: M.T.P. 1977. Pp. 438. £12.50.

COMING during a spate of publications on the pathology and surgery of the venous system, this book might easily have been repetitive. That it is not is a credit to its editor. By collecting an international panel of experts he has filled in many gaps not covered in British textbooks and has expanded many aspects of the subject which have already been dealt with. The title is misleading, for a good deal more than treatment is dealt with. There are contributions on aetiology, prevention, and radiological investigation, isotope screening, and venous-pressure measurements in the investigation of peripheral venous disorders. The seven contributions on the treatment of varicose veins are especially good: seven authors from seven countries vary widely, if predictably, in their use of surgery and injection sclerotherapy. K. Sigg from Switzerland is the chief advocate for sclerotherapy, while R. A. Nabatoff from the U.S.A. condemns all but operative surgery. F. Bezzouni of Russia has an approach similar to that of most surgeons in Britain—sclerotherapy for small, below-knee varices and high ligation and stripping for gross main-stem incompetence. Mr Hobbs' own controlled trial with similar conclusions constitute the bulk of his contribution on the subject. It is a pity that the prevention and treatment of deep-vein thrombosis could not similarly have been dealt with by a series of authors, but the subject is now so large and opinion so divided that a most unwieldy volume would doubtless have resulted. A. N. Nicolaidis, I. Gordon-Smith, and J. D. Lewis deal clearly with these subjects. Although low-dose subcutaneous heparin is preferred in prophylaxis, other methods are fully described and given fair coverage, but not everyone will agree that compression bags and dextran give rise to logistic problems or circulatory overloading. Vascular surgeons will be mostly interested in the second half of the book. Here the difficult subjects of major vein replacement in venous trauma and in the postphlebitic syndrome are dealt with by J. Vollmar of Germany, A. V. Pokrovsky and L. I. Klioner of Russia, E. A. Hushi from Ohio, and R. W. Hobson, H. M. Rich, and C. B. Wright from Washington, U.S.A. These subjects have not previously been dealt with in depth in any English language textbook and certainly not by a similarly distinguished international panel of experts.

We thank Dr H. N. Fearnley for statistical help and the Wellcome Trust and the National Institutes of Health (grant AM-14570) for financial support.

Requests for reprints should be addressed to T. C. B. S., Royal National Orthopaedic Hospital, 234 Great Portland Street, London W1N 6AD.

REFERENCES

- Haddad, J. G., Stamp, T. C. B. *Am. J. Med.* 1974, **57**, 57.
- Balsan, S., Garabedian, M. *J. clin. Invest.* 1972, **51**, 749.
- Stamp, T. C. B., Round, J. M., Rowe, D. D. F., Haddad, J. G. *Br. med. J.* 1972, iii, 9.
- Rutherford, W. E., Blondin, J., Hruska, K., Kopelman, R., Klahr, S., Slatorpolsky, E. *Kidney Int.* 1975, **8**, 320.
- Teitelbaum, S. L., Bone, J. M., Stein, P. M., Gilden, J. J., Bates, M., Boisseau, V., Avioli, L. V. *J. Am. med. Ass.* 1976, **235**, 164.
- Omdahl, J. L., DeLuca, H. F. *Physiol. Rev.* 1973, **53**, 327.
- Bhattacharyya, M. H., DeLuca, H. F. *J. biol. Chem.* 1973, **248**, 2969.
- Bhattacharyya, M. H., DeLuca, H. F. *ibid.* 1973, **248**, 2974.
- DeLuca, H. F. *Am. J. Med.* 1974, **57**, 1.
- Haddad, J. G., Chyu, K. J. *clin. Endocr. Metab.* 1971, **33**, 992.
- Dent, C. E., Round, J. M., Rowe, D. J. F., Stamp, T. C. B. *Lancet*, 1973, i, 1282.
- Stamp, T. C. B. *Proc. Nutr. Soc.* 1975, **34**, 119.
- Mawer, E. B., Backhouse, J., Holman, C. A., Lumb, G. A., Stanbury, S. W. *Clin. Sci.* 1972, **43**, 413.
- Lumb, G. A., Mawer, E. B., Stanbury, S. W. *Am. J. Med.* 1971, **50**, 421.
- Stamp, T. C. B. *Lancet*, 1974, ii, 121.
- F. A. O. Nutrition Meetings Report Series no. 41. *Tecn. Rep. Ser. Wld Hlth Org.* 1970, **452**, 34.

The result is most stimulating for those with a special interest in these difficult problems. Parsons of St. Mary's Hospital contributes an elegant chapter on the history of venous transplantation. The book is well produced and well illustrated, and its editor and publishers are to be congratulated.

Quality Control in Clinical Chemistry

T. P. WHITEHEAD, PH.D. department of clinical chemistry, Queen Elizabeth Medical Centre, Birmingham. London and New York: Wiley. 1977. Pp. 130. £11, \$18.50.

THIS is a personal account of some important aspects of quality control, based on experience gained from the work of hospital routine clinical-chemistry laboratories, but with the message clearly intended also to influence the practice of clinical research laboratories. The book is easy to read, but in parts it is surprisingly insubstantial, especially considering its price. To profit from it, readers must be prepared to accept Professor Whitehead's dogmatic, colloquial, and sometimes repetitious style; they must also be on the look out for the many proofreading errors, mostly minor but occasionally liable to mislead seriously. Readers must also accept the author's decision to attach a new meaning to the term "variance", different from the meaning that is well established in statistical usage; variability or unreliability would have served his purpose equally well. Fundamental concepts that could have been better explained include accuracy and imprecision, and the difference (if there is one) between true results and correct values is not made clear. In this area terminology is important; for clarity of communication, the author should have adhered closely to internationally recommended definitions. The subdivision of techniques of quality control into five stages, each clearly explained, is the most valuable contribution of this book to future improvements in the reliability of clinical chemistry—indeed, the first four stages can be applied to other laboratory disciplines. The other feature to commend especially is the comprehensive account of the U. K. National Quality Control Scheme, as an example of the fifth stage of quality control. The U. K. scheme is a system of interlaboratory (external) quality control that is associated with Professor Whitehead, and one in which clinical chemistry has given an important lead to other laboratory disciplines. The chapters on the national scheme bring together, and add to, accounts that have been published in journals. These are the aspects for which the book can be particularly commended, since the subjects described fill important gaps in the already voluminous literature on quality control.