Lecture 3: Introduction to Lexical Analysis

(from last lecture) Lexical Analysis:

reads characters and produces sequences of tokens.

Today's lecture:

Towards automated Lexical Analysis.

The Big Picture

First step in any translation: determine whether the text to be translated is well constructed in terms of the input language. Syntax is specified with parts of speech - syntax checking matches parts of speech against a grammar.

In <u>natural languages</u>, mapping words to part of speech is idiosyncratic.

In <u>formal languages</u>, mapping words to part of speech is syntactic:

- based on denotation
- makes this a matter of syntax
- reserved keywords are important

What does lexical analysis do?

Recognises the language's parts of speech.

Some Definitions

- A vocabulary (alphabet) is a finite set of symbols.
- A string is any finite sequence of symbols from a vocabulary.
- A <u>language</u> is any set of strings over a fixed vocabulary.
- A grammar is a finite way of describing a language.
- A context-free grammar, G, is a 4-tuple, G=(S,N,T,P), where:

S: starting symbol

N: set of non-terminal symbols

T: set of terminal symbols

P: set of production rules

- A language is the set of all terminal productions of G.
- Example (thanks to Keith Cooper for inspiration):

```
S=CatWord; N={CatWord}; T={miau}; P={CatWord \rightarrow CatWord miau | miau}
```

Example

(A simplified version from Lecture2, Slide 6):

$$S=E; N=\{E,T,F\}; T=\{+,*,(,),x\}$$

$$P=\{E \rightarrow T | E+T, T \rightarrow F | T*F, F \rightarrow (E) | x\}$$

By repeated substitution we derive sentential forms:

$$\underline{E} \Rightarrow \underline{E} + T \Rightarrow \underline{T} + T \Rightarrow \underline{F} + T \Rightarrow x + \underline{T} \Rightarrow x + \underline{T} *F \Rightarrow x + \underline{F} *F$$
$$\Rightarrow x + x *\underline{F} \Rightarrow x + x *x$$

This is an example of a *leftmost derivation* (at each step the leftmost non-terminal is expanded).

To recognise a valid sentence we reverse this process.

• Exercise: what language is generated by the (non-context free) grammar: S=S; $N=\{A,B,S\}$; $T=\{a,b,c\}$;

 $P = \{S \rightarrow abc | aAbc, Ab \rightarrow bA, Ac \rightarrow Bbcc, bB \rightarrow Bb, aB \rightarrow aa | aaA\}$

(for the curious: read about Chomsky's Hierarchy)

Why all this?

- Why study lexical analysis?
 - To avoid writing lexical analysers (scanners) by hand.
 - To simplify specification and implementation.
 - To understand the underlying techniques and technologies.
- We want to specify **lexical patterns** (to derive tokens):
 - Some parts are easy:
 - WhiteSpace \rightarrow blank | tab | WhiteSpace blank | WhiteSpace tab
 - Keywords and operators (if, then, =, +)
 - Comments (/* followed by */ in C, // in C++, % in latex, ...)
 - Some parts are more complex:
 - Identifiers (letter followed by up to *n* alphanumerics...)
 - Numbers

We need a notation that could lead to an implementation!

Regular Expressions

Patterns form a regular language. A regular expression is a way of specifying a regular language. It is a formula that describes a possibly infinite set of strings.

(Have you ever tried ls [x-z]*?)

Regular Expression (RE) (over a vocabulary V):

- ε is a RE denoting the empty set $\{\varepsilon\}$.
- If $a \in V$ then a is a RE denoting $\{a\}$.
- If r_1 , r_2 are REs then:
 - $-r_1^*$ denotes zero or more occurrences of r_1 ;
 - $-r_1r_2$ denotes concatenation;
 - $-r_1 | r_2$ denotes either r_1 or r_2 ;
- Shorthands: [a-d] for $a \mid b \mid c \mid d$; r^+ for rr^* ; r? for $r \mid \varepsilon$

Describe the languages denoted by the following REs $a; a \mid b; a^*; (a \mid b)^*; (a \mid b)(a \mid b); (a^*b^*)^*; (a \mid b)^*baa;$ (What about ls [x-z]* above? Hmm... not a good example?)
29-May-18 COMP36512 Lecture 3

Examples

- $integer \to (+ | | \varepsilon) (0 | 1 | 2 | ... | 9) +$
- $integer \rightarrow (+ | | \varepsilon) (0 | (1 | 2 | ... | 9) (0 | 1 | 2 | ... | 9)*)$
- $decimal \rightarrow integer.(0 \mid 1 \mid 2 \mid ... \mid 9)*$
- $identifier \rightarrow [a-zA-Z] [a-zA-Z0-9]*$
- Real-life application (perl regular expressions):
 - [+-]?(\d+\.\d+\.|\.\d+)
 - [+-]?(\d+\.\d+\.|\.\d+|\d+) ([eE][+-]?\d+)?
 (for more information read: % man perlre)

(Not all languages can be described by regular expressions. But, we don't care for now).

Building a Lexical Analyser by hand

Based on the specifications of tokens through regular expressions we can write a lexical analyser. One approach is to check case by case and split into smaller problems that can be solved *ad hoc*. Example:

```
void get next token() {
  c=input char();
  if (is eof(c)) { token \leftarrow (EOF, "eof"); return}
  if (is letter(c)) {recognise id()}
  else if (is digit(c)) {recognise number()}
       else if (is operator(c)) | | is separator(c))
             \{token \leftarrow (c,c)\} //single char assumed
             else {token \leftarrow (ERROR,c)}
  return;
do {
  get next token();
  print(token.class, token.attribute);
} while (token.class != EOF);
```

Can be efficient; but requires a lot of work and may be difficult to modify!

Building Lexical Analysers "automatically"

<u>Idea</u>: try the regular expressions one by one and find the longest match:

```
set (token.class, token.length) \leftarrow (NULL, 0)
// first
find max length such that input matches T_1 \rightarrow RE_1
  if max length > token.length
       set (token.class, token.length) \leftarrow (T<sub>1</sub>, max length)
// second
find max length such that input matches T_2 \rightarrow RE_2
  if max length > token.length
       set (token.class, token.length) \leftarrow (T<sub>2</sub>, max length)
// n-th
find max length such that input matches T_n \rightarrow RE_n
  if max length > token.length
       set (token.class, token.length) \leftarrow (T_n, max length)
// error
if (token.class == NULL) { handle no match }
```

Disadvantage: linearly dependent on number of token classes and requires restarting the search for each regular expression.

We study REs to automate scanner construction!

Consider the problem of recognising register names starting with r and requiring at least one digit:

 $Register \rightarrow r \ (0|1|2|...|9) \ (0|1|2|...|9)* (or, Register \rightarrow r \ Digit \ Digit*)$

The RE corresponds to a **transition diagram**:

Depicts the actions that take place in the scanner.

- A circle represents a state; S0: start state; S2: final state (double circle)
- An arrow represents a transition; the label specifies the cause of the transition.
- A string is accepted if, going through the transitions, ends in a final state (for example, r345, r0, r29, as opposed to a, r, rab)

Towards Automation (finally!)

An easy (computerised) implementation of a transition diagram is a **transition table**: a column for each input symbol and a row for each state. An entry is a set of states that can be reached from a state on some input symbol. E.g.:

state	\r'	digit
0	1	_
1	_	2
2(final)	-	2

If we know the transition table and the final state(s) we can build directly a recogniser that detects acceptance:

```
char=input_char();
state=0;    // starting state
while (char != EOF) {
    state ← table(state,char);
    if (state == '-') return failure;
    word=word+char;
    char=input_char();
}
if (state == FINAL) return acceptance; else return failure;
```

The Full Story!

The generalised transition diagram is a **finite automaton**. It can be:

- **Deterministic**, DFA; as in the example
- Non-Deterministic, NFA; more than 1 transition out of a state may be possible on the same input symbol: think about: $(a \mid b)*abb$

Every regular expression can be converted to a DFA!

Summary: an introduction to lexical analysis was given.

Next time: More on finite automata and conversions.

Exercise: Produce the DFA for the RE (Q: what is it for?):

Register $\rightarrow r ((0|1|2) (Digit|\varepsilon) | (4|5|6|7|8|9) | (3|30|31))$

Reading: Aho2, Sections 2.2, 3.1-3.4. Aho1, pp. 25-29; 84-87; 92-105. Hunter,

Chapter 2 (too detailed); Sec. 3.1 -3.3 (too condensed). Grune 1.9; 2.1-2.5. Cooper,

Sections 2.1-2.3