Report of predictive model of WIF data

Yige Wang

2024-04-03

Introduction

Dataset

The data comes form experiments (provided by Karl, my collaborator). Here shows original data.

#	A tibble:	6 x 5			
	cell_line	${\tt treatment}$	name	conc	<pre>gene_expression</pre>
	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Wild-type	Placebo	${\tt GL-XIb}$	0	5.05
2	Wild-type	Placebo	${\tt GL-cDZ}$	0	5.92
3	Wild-type	Placebo	${\tt GL-XIb}$	1	4.15
4	Wild-type	Placebo	${\tt GL-cDZ}$	1	3.34
5	Wild-type	Placebo	${\tt GL-XIb}$	2	6.67
6	Wild-type	Placebo	${\tt GL-cDZ}$	2	5.54

The meaning of column names is shown in Table 1

Table 1: Meaning of column name

Name	Meaning
cell_line	cell type
treatment	treatment to sample, placebo or using
	Activating Factor
name	name of each sample
conc	concentration of Activating Factor or saline
gene_expression	rate of gene expression

Research question

The report is about how to analyze the effect of a new treatment on gene expression, specifically looking at how the treatment influences the effect of a growth factor on gene expression and how to build a predictive model of gene expression.

Methods

Clean Data

First of all I clean the data by correct the name of category variables, because there is same Letter capitalization error. I also add a column called "case" which is combination of variable "cell line" and variable "treatment"

#	A tibble:	6 x 6				
	cell_line	treatment	name	conc	<pre>gene_expression</pre>	case
	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
1	Wild-Type	Placebo	${\tt Gl-Xib}$	0	5.05	Wild-Type&Placebo
2	Wild-Type	Placebo	${\tt Gl-Cdz}$	0	5.92	Wild-Type&Placebo
3	Wild-Type	Placebo	${\tt Gl-Xib}$	1	4.15	Wild-Type&Placebo
4	Wild-Type	Placebo	${\tt Gl-Cdz}$	1	3.34	Wild-Type&Placebo
5	Wild-Type	Placebo	${\tt Gl-Xib}$	2	6.67	Wild-Type&Placebo
6	Wild-Type	Placebo	Gl-Cdz	2	5.54	Wild-Type&Placebo

Analysis

First of all, to build a predictive model, I draw plots to have a overview of the relationship between variables.

The difference among groups

Here I use t-test and Analysis of Variance to find the main relationship of variables.

term	df	sumsq	meansq	statistic	p.value
cell_line	1.00	104.53	104.53	2.84	9.59×10^{-2}
treatment	1.00	2,141.69	2,141.69	58.16	4.35×10^{-11}
name	5.00	3,088.32	617.66	16.77	2.65×10^{-11}
Residuals	80.00	2,946.05	36.83	NA	NA

Figure 1: The linear relationship between concentration and gene expression grouped by cell line

It shows cell_line is not significant factor while other variables have a significant effort on the gene expression.

Maybe that is because we add "name" as a factor, which may reduce the influence of $\operatorname{cell_line}$.

term	df	sumsq	meansq	statistic	p.value
treatment		2,141.69	,		4.05×10^{-7}
$\operatorname{cell_line}$	1.00	104.53	104.53	1.47	2.28×10^{-1}
Residuals	85.00	6,034.38	70.99	NA	NA

The cell_line is totally not significant at all.

To double verify it, I built a linear regression model

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept)	8.27	2.52	3.27	1.54×10^{-3}
conc	1.43	0.43	3.34	1.24×10^{-3}
$\operatorname{cell_lineWild-Type}$	-0.63	3.57	-0.18	8.61×10^{-1}

conc:cell_lineWild-Type	-0.31	0.60	-0.51	6.08×10^{-1}
-------------------------	-------	------	-------	-----------------------

Here I find the name is related to the treatment and cell_line, which means it is redundancy to analyse total three column. Hence, there just needs to analyse the treatment, cell_line and the combined, so I did not get linear model for that.

term	estimate	std.error	statistic	p.value
(Intercept)	9.86	2.31	4.26	5.52×10^{-5}
conc	1.36	0.39	3.47	8.42×10^{-4}
caseCell-Type 101&Placebo	-3.18	3.27	-0.97	3.34×10^{-1}
caseWild-Type&Activating Factor 42	0.13	3.27	0.04	9.68×10^{-1}
caseWild-Type&Placebo	-4.56	3.27	-1.39	1.67×10^{-1}
conc:caseCell-Type 101&Placebo	0.14	0.55	0.25	8.00×10^{-1}
conc:caseWild-Type&Activating Factor 42	1.02	0.55	1.84	6.98×10^{-2}
conc: case Wild-Type & Place bo	-1.50	0.55	-2.71	8.29×10^{-3}

Hence cell_line is not significant. Just like the figure Figure 1 shows, they are close lines.

According to the relationship, I build a linear model with formula:

gene_expression \sim conc + case + case * conc.

Building model

Split data into train data and test data

Split data into train data, test data and use train data to generate the Cross-Validation for model training.

V-fold cross-validation is a robust method for assessing the performance of a statistical model.

Modeling

According to the formula:

gene_expression \sim conc + case + case * conc,

I build the model.

Figure 2: The linear relationship between concentration and gene expression grouped by treatment

Figure 3: The linear relationship between concentration and gene expression grouped by case

```
## Workflow ## Preprocessor: Recipe
## Model: linear_reg()

-- Preprocessor ## Preprocess
```

Tune the model

Computational engine: glmnet

```
# A tibble: 100 x 7
   penalty .metric .estimator mean
                                      n std_err .config
     <dbl> <chr>
                  <chr>
                             <dbl> <int> <dbl> <chr>
      e-10 rmse
                  standard
                             6.11
                                     10 0.839 Preprocessor1_Model01
2 1
      e-10 rsq
                  standard 0.666
                                     10 0.0824 Preprocessor1_Model01
3 1.60e-10 rmse
                  standard
                             6.11
                                     10 0.839 Preprocessor1_Model02
4 1.60e-10 rsq
                  standard
                            0.666
                                     10 0.0824 Preprocessor1_Model02
5 2.56e-10 rmse
                  standard
                                     10 0.839 Preprocessor1_Model03
                             6.11
6 2.56e-10 rsq
                  standard
                             0.666
                                     10 0.0824 Preprocessor1_Model03
7 4.09e-10 rmse
                  standard
                             6.11
                                     10 0.839 Preprocessor1_Model04
8 4.09e-10 rsq
                  standard
                             0.666
                                     10 0.0824 Preprocessor1_Model04
9 6.55e-10 rmse
                  standard
                             6.11
                                     10 0.839 Preprocessor1_Model05
10 6.55e-10 rsq
                  standard
                             0.666
                                     10 0.0824 Preprocessor1_Model05
# i 90 more rows
```


Find best model we get

```
# A tibble: 5 x 7
 penalty .metric .estimator mean
                                      n std_err .config
    <dbl> <chr>
                 <chr>
                                           <dbl> <chr>
                             <dbl> <int>
1 0.153 rmse
                 standard
                             6.09
                                          0.796 Preprocessor1_Model46
                                      10
2 0.244 rmse
                 standard
                             6.09
                                          0.769 Preprocessor1_Model47
                                      10
3 0.391 rmse
                              6.10
                                          0.736 Preprocessor1_Model48
                 standard
                                      10
4 0.0954 rmse
                 standard
                              6.10
                                      10
                                          0.814 Preprocessor1_Model45
5 0.0596 rmse
                 standard
                              6.11
                                      10
                                           0.826 Preprocessor1_Model44
```

A tibble: 1 x 2
 penalty .config
 <dbl> <chr>

1 0.153 Preprocessor1_Model46

Fit final model

Preprocessor: Recipe
Model: linear_reg()

```
-- Preprocessor -----
```

5 Recipe Steps

- * step_dummy()
- * step_normalize()
- * step_interact()
- * step_interact()
- * step_interact()

-- Model -----

Linear Regression Model Specification (regression)

Main Arguments:

penalty = 0.152641796717524

mixture = 1

Computational engine: glmnet

Result of fitting:

Results

Relationship between variables

Figure 4: The linear relationship between concentration and gene expression

As the plot Figure 4 shown, obviously there is a linear relation between concentration and gene expression.

According to Figure 1 Figure 2 Figure 3, I find:

- The treatment only effects on the slope of gene expression.
- The Activating Factor will amplify the effort of concentration on gene expression.
- The Activating Factor (one of treatment) has significant influence on the Wild-Type while it does not work significantly on the Cell-Type 101.

Predictive model

The parameter of the best linear model I got are

Warning: `pull_workflow_fit()` was deprecated in workflows 0.2.3. i Please use `extract_fit_parsnip()` instead.

```
# A tibble: 8 x 3
  t.erm
                                               estimate penalty
  <chr>
                                                   <dbl>
                                                           <dbl>
1 (Intercept)
                                                  14.1
                                                           0.153
2 conc
                                                   3.91
                                                           0.153
3 case_Cell.Type.101.Placebo
                                                  -0.684
                                                           0.153
4 case Wild. Type. Activating. Factor. 42
                                                   1.75
                                                           0.153
5 case_Wild.Type.Placebo
                                                  -5.02
                                                           0.153
6 conc_x_case_Cell.Type.101.Placebo
                                                   0.385
                                                           0.153
7 conc_x_case_Wild.Type.Activating.Factor.42
                                                   1.53
                                                           0.153
8 conc_x_case_Wild.Type.Placebo
                                                  -1.77
                                                           0.153
```

Here "conc_x_case_Cell.Type.101.Placebo" means the interactive term.

And the rmse and rsq of the model are

Discussion

As the results shows, the root mean square error (RMSE) indicates the average deviation of the predicted gene expression values from the actual values. The R-squared value suggests that approximately 70% of the variability in gene expression is explained by the model, which is a reasonable fit given the complexity of biological data.

I just consider one linear model as predictive model there are some point could make the model better in the future:

- Including More Variables: Incorporating additional variables such as time points, different cell lines, and other treatment types could provide a more comprehensive understanding.
- Non-linear Models: Exploring non-linear models or machine learning techniques may capture more complex relationships in the data.
- Validation: Applying the model to an independent dataset to validate its predictive capability and generalizability.

Appendix

```
pacman::p load(tidyverse, tidymodels, textrecipes, targets, showtext, readxl)
## Add font
  font_add(
    family = "times",
    regular = here::here(
      "template", "Times New Roman.ttf"
  )
  showtext_auto()
tar_load(WIF_file)
head(read_excel(WIF_file))
tar_load(WIF_data)
tar_load(point_plots)
tar_load(analysis_tabs)
head(WIF_data)
point_plots$GroupByCell_line
point_plots$GroupByTreatment
point_plots$GroupByCase
analysis_tabs$avo_totalGroup
analysis_tabs$avo_treatment_cell_line
analysis_tabs$lm_conc_cell_line
analysis_tabs$lm_conc_case
set.seed(114514)
WIF_data_modeling <-
  WIF data |>
  dplyr::select(gene_expression, conc, case)
WIF_split <- initial_split(WIF_data_modeling, strata = gene_expression)</pre>
WIF_train <- training(WIF_split)</pre>
WIF_test <- testing(WIF_split)</pre>
WIF_cv <- vfold_cv(WIF_train)</pre>
WIF_recipe <-
recipe(gene_expression ~ conc + case, data = WIF_train) |>
    step_dummy(all_nominal()) |>
    step_normalize(all_numeric(), -all_outcomes()) |>
    step_interact(terms = ~ conc:case_Cell.Type.101.Placebo) |>
    step_interact(terms = ~ conc:case_Wild.Type.Activating.Factor.42) |>
    step_interact(terms = ~ conc:case_Wild.Type.Placebo)
```

```
WIF_model <- linear_reg(penalty = tune(), mixture = 1) |>
  set_mode("regression") |>
  set_engine("glmnet")
WIF_wf <- workflow(WIF_recipe, WIF_model)</pre>
WIF_wf
WIF_grid <- grid_regular(penalty(), levels = 50)</pre>
WIF_tune <- tune_grid(</pre>
  WIF_wf,
  resamples = WIF_cv,
  grid = WIF_grid
collect_metrics(WIF_tune)
WIF_tune |> autoplot()
show_best(WIF_tune, metric = "rmse")
penalty <- select_best(WIF_tune, metric = "rmse")</pre>
penalty
WIF_wf <- WIF_wf |>
  finalize_workflow(penalty)
{\tt WIF\_wf}
WIF_fit <- WIF_wf |> fit(WIF_train)
WIF_fit |> extract_fit_engine() |> autoplot()
tar_read(conference_plot)
WIF_fit |>
 pull_workflow_fit() |>
 tidy()
last_fit(WIF_wf, WIF_split) |> collect_metrics()
pacman::p_load(tidyverse, targets, lubridate, gt)
theme_set(theme_bw())
"IMRaD_Report.qmd"
```