CS720

Logical Foundations of Computer Science

Lecture 13: Program equivalence

Tiago Cogumbreiro

Summary

- Behavioral equivalence
- Properties on behavioral equivalence
- Program transformations

Program equivalence

- ullet A framework to compare "equivalent" programs, notation $P\equiv Q$
- The notion of equivalent is generic
- Program equivalence can be used to reason about correctness of algorithms
- Program equivalence can be used to reason about the correctness of program transformations

Examples:

- compilable programs
- programs that produce the same output
- programs that perform the same assignments
- programs that read the same variables

Usual equivalence properties

- Reflexive: $P \equiv P$
- Symmetric: $P \equiv Q \implies Q \equiv P$
- Transitive: $P \equiv Q \implies Q \equiv R \implies P \equiv R$
- Congruence: $P \equiv Q \implies \mathcal{C}(P) \equiv \mathcal{C}(Q)$ where $\mathcal{C}: \mathcal{P} \to \mathcal{P}$ is known as a **context**, a program with a "whole" that is filled with the input program, outputting a "complete" program; it is expected that the input occurs in the output.

Syntactic equivalence

If two programs are textually equal (are the same syntactic term), then we say that the two programs are syntactically equivalent.

Example: APlus (ANum 3) (ANum 0) is syntactically equivalent to APlus (ANum 3) (ANum 0).

Behavioral equivalence

If two programs start from an initial state and reach the same final state, then we say that the two programs are behaviorally equivalent.

Example:

```
X:=3;; WHILE 1 \le X DO Y:=Y+1;; X:=X-1 END is behaviorally equivalent to X:=0 ;; Y:=3
```

How do we formalize behavioral equivalence for

arithmetic expressions, boolean expressions, commands?

	1	

For arithmetic expressions $a_1 \equiv a_2$, e.g., $x - x \equiv 0$:

For arithmetic expressions $a_1 \equiv a_2$, e.g., $x-x \equiv 0$:

$$rac{orall s \colon \mathtt{aeval}(s, a_1) = \mathtt{aeval}(s, a_2)}{a_1 \equiv a_2}$$

For boolean expressions $b_1 \equiv b_2$, e.g., $(x-x=0) \equiv \top$:

For arithmetic expressions $a_1 \equiv a_2$, e.g., $x - x \equiv 0$:

$$rac{orall s \colon \mathtt{aeval}(s, a_1) = \mathtt{aeval}(s, a_2)}{a_1 \equiv a_2}$$

For boolean expressions $b_1 \equiv b_2$, e.g., $(x-x=0) \equiv \top$:

$$rac{orall s \colon \mathtt{beval}(s,b_1) = \mathtt{beval}(s,b_2)}{b_1 \equiv b_2}$$

For commands $c_1 \equiv c_2$:

For arithmetic expressions $a_1 \equiv a_2$, e.g., $x - x \equiv 0$:

$$rac{orall s \colon \mathtt{aeval}(s, a_1) = \mathtt{aeval}(s, a_2)}{a_1 \equiv a_2}$$

For boolean expressions $b_1 \equiv b_2$, e.g., $(x-x=0) \equiv \top$:

$$rac{orall s \colon \mathtt{beval}(s,b_1) = \mathtt{beval}(s,b_2)}{b_1 \equiv b_2}$$

For commands $c_1 \equiv c_2$:

$$rac{orall s_1, orall s_2 \colon s_1 = \mid c_1 \mid \Rightarrow s_2 \iff s_1 = \mid c_2 \mid \Rightarrow s_2}{c_1 \equiv c_2}$$

Exercise: skip

Prove that

$$\mathtt{skip}; c \equiv c$$

```
Theorem skip_left: forall c,
  cequiv <{skip; c}> c.
```

Exercise: if

If $b \equiv \top$, then **if** b **then** c_1 **else** c_2 **end** $\equiv c_1$.

```
Theorem if_true: forall b c1 c2,
  bequiv b <{true}> →
  cequiv
  <{ if b then c1 else c2 end }>
  c1.
```

What could b in $b \equiv \top$ be? For instance, the following statement holds. (By using lemmas Nat.add_0_r, Nat.eqb_ref1.)

$$(x+x=2*x)\equiv \top$$

Require Import PeanoNat.
Goal forall x, bequiv (x + x = 2 * x) BTrue.

Exercise: while

Theorem: If $b \equiv \bot$, then while b do c end \equiv skip.

Theorem: If $b \equiv \top$, then for all s and s', we have $\neg s =$ while b do c end $\Rightarrow s'$.

Theorem: while b do c end \equiv if b then c; while b do c end else skip end.

Properties of equivalences

An equivalence relation is:

- reflexive
- symmetric
- transitive

Show that aquiv, bequiv, and cequiv each is an equivalence relation.

```
Lemma refl_cequiv : forall (c : com), cequiv c c.

Lemma sym_cequiv : forall (c1 c2 : com), cequiv c1 c2 \rightarrow cequiv c2 c1.

Lemma trans_cequiv : forall (c1 c2 c3 : com), cequiv c1 c2 \rightarrow cequiv c2 c3 \rightarrow cequiv c1 c3.
```

≡ is a congruence

Generally a congruence can be described as

$$c \equiv c' \implies \mathcal{C}(c) \equiv \mathcal{C}(c')$$

For commands this corresponds to proving

$$egin{align} a &\equiv a' & c_1 &\equiv c_1' & c_2 &\equiv c_2' \ \hline (x ::= a) &\equiv (x ::= a') & \hline (c_1;;c_2) &\equiv (c_1';;c_2') \ \ b &\equiv b' & c_1 &\equiv c_1' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' & c_2 &\equiv c_2' & c_2 &\equiv c_2' \ \hline (c_1;;c_2) &\equiv c_2' & c_2 &\equiv c_2' & c_2' & c_2 &\equiv c_2' & c_2 &\equiv c_2' & c_2' & c_2 &\equiv c_2' & c_2' & c_2' & c_2 &\equiv c_2' & c_2' & c_2 &\equiv c_2' & c_2'$$

if b then c_1 else c_2 end \equiv if b' then c_1' else c_2' end

$$\frac{b \equiv b' \qquad c \equiv c'}{\text{while } b \text{ do } c \text{ end} \equiv \text{while } b' \text{ do } c' \text{ end}}$$

Congruence example

Program equivalence

```
Example congruence_example:
 cequiv
   (* Program 1: *)
   <{ X := 0;
      if (X = 0)
      then Y := 0
      else Y := 42 end }>
    (* Program 2: *)
   <{ X := 0;
      if (X = 0)
      then Y := X - X
      else Y := 42 end }>.
```

Sound transformations

- We can specify the notion of a transformation that is sound
- Example: source-to-source compiler, code optimizer.

```
Definition atrans_sound (atrans : aexp → aexp) : Prop :=
  forall (a : aexp),
    aequiv a (atrans a).

Definition btrans_sound (btrans : bexp → bexp) : Prop :=
  forall (b : bexp),
    bequiv b (btrans b).

Definition ctrans_sound (ctrans : com → com) : Prop :=
  forall (c : com),
    cequiv c (ctrans c).
```