

Figure 1

Amino Acid Sequence of Duck Hepatitis B Core Protein

¹MDINASRALANVYDLPPDFFPKIDD²⁵LVRDAKDALEPYWR
⁵⁰SDSIKKHVLIATHFVDLIEDFWQTTQGMHE⁷⁵IAEALRAVI
PPTTTPVPAGYLIQHEEAEI¹⁰⁰PLGDLFHKHQEE¹²⁵RIVSFQP
DYPITART¹²⁵HAHLKAYAKTNEESLDRAARRLLWWHYNC¹⁵⁰LLW
GEANVTNYISRLRTWLST¹⁷⁵PERYRGRDAPTIEAITRPIQV
²⁰⁰AQGGGRKTSSGTRKPRGLEP²²⁵RRKVKT²⁵⁰VYGR²⁶²RRSKSRD
RRAPSPQRAGSPLPRSSSSHRRS²⁶²SPSPRK

Figure 2

Nucleic Acid Sequence of Duck Hepatitis B Core Protein

1 ATGGATATCAATGCTTCTAGGCCATTAGCCAATGTTATGATTGCCAGATGATTCTCCCC
AAAATTGATCTTGTAAAGGATGCGAACGGATGCTTTAGAACCTTATTGGAGATCAGATT
150 CAATAAAGAACATGTTTAATGCACACTTGTGGATCTTATTGAAGACTTCTGGCAA
200 ACTACTCAGGGTATGCATGAATAAGCTGAAGCCTTAAGAGCAGTTATACCACCTACTAAC
250 ACCAGTTCCCGCAGGATATCTGATTGCACCGAACGGCTGAGGAGATTCCTCTGGAGATT
300 TATTAAACATCAGGAAGAACGATAGTTAGTTCCAACGGATTATCCTATTACTGCACGA
350 ATTCAATGCACACCTGAAAGCTTACAATTGCAAAGATTAAACGGGAATCACTGGATAGGGCTAGGAG
400 450 ATTGCTTGCTGGCATTACAATTGTTACTGTGGGAGAACGCTAACGTTACTAATTATT
CTC⁵⁰⁰ GCTTCGCACCTGGCTATCACACACCTGAGAGATACAGGCCAGATGCC⁵⁵⁰ AACCAATT
GAAGCAATCACTAGACCAATCCAAGTGGCTCAGGGAGGCAGAAAACATCTTCGGGTACTAG
600 650 AAAACCTCGTGGACTCGAACCTAGAAGAAGAACGTTAAACACACAGTTCTATGGGAGAA
650 700 GACGTTCAAAGTCCAGGGATAGGAGAGGCCCTCACCCAAACGTGGGGCTCCCCCTCTCCCG
750 CGTAGTTCGAGGCCACAGAAGATCTCCCTCGCCTAGGAA 786

Figure 3

Figure 4

Figure 5

A.

B.

Figure 6

**Bone marrow-derived Dendritic Cell
IL-12 p70 Release following 24 hour
Stimulation with DHBCAg**

Figure 7

Figure 8

A

B

Figure 9

Figure 10

Figure 11

A

B

Figure 12.

1 2 3 4

Duck HBcAg

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Amino Acid Sequence of Duck Hepatitis B Core Protein Mutant 1-239

1 MDINASRALANVYDLPPDDFFPKIDDLYRDAKDALEPYWR
50 SDSIKKHLIA²⁵THEVDLIEDFWQTTQGMHEIAEALRAVI
PPTTTPVPAGYLIQHEEAEEIPLGDLFKHQERRIVSF'QP
125 DYPIТАRIHAHLKAYAKINEESLDRAARRLLWWHYNCLLW
GEANVTNYISRLRTWLSTPERYRGRAPIEAI¹⁷⁵TRPIQV
200 AQQGRKTSSGTRKPRGLEPRRRKVKT²²⁵VVYGRRRSKSRD
239 RRAPS

Figure 18

Nucleic Acid Sequence of Duck Hepatitis B Core Protein Mutant 1-239

5' ATGGATATCAATGCTTCTAGGCCATTGATTGCCAGATGTTCTTCCC
AAAATGATCTGTAAAGGATGCGAAGGATGCTTTAGAACCTATTGGAGATCAGATT
CAATAAGAACATGTTAATTGCAACTCACTTGTGGATCTATTGAAGACTTCTGGCAA
ACTACTCAGGGTATGCATGAAATAGCTGAAGCCTTAAGACCAGTTACCACTACAAC
ACCAGTTCCCGCAGGATATCTGATTCAAGCACGAAGAGGCTGAGGAGATCCTCTGGAGATT
TATTTAACATCAGGAAGAACGATAGTTAGTTCCAACCGGATTCTATTACTGCACGA
ATTCAATGCACACCTGAAAGCTTATGCAAAGATTACCGAGGAATCACTGGATAGGCTAGGAG
ATTGCTTTGGTGGCATTACAATTGTTACTGTGGGAGAACGTTAACGTACTAATTATTT
CTCGG⁵⁰TTCCGCACTGGCTATCAACACCTGAGAGATACAGAGGCCAGATGCCCAACCAATT
GAAGCAATCACTAGACCAATCCAAGGGCTCAGGGAGGAGAAACATCTCGGGTACTAG
AAAACCTCGTGGACTCGAACCTAGAAGAACGAAAGTTAACACACAGTTGTCTATGGGAGAA
GACGTTCAAGGCCAGGGTAGGAGAGGCCCTCA
700
718

Figure 19

Amino Acid Sequence of Truncated Duck Hepatitis B Core Protein

¹MDINASRALANVYDL²⁵PDDDFPKIDDIVRDAKDALEPYWR
⁵⁰SDSIKKHVLIA⁷⁵THEFVDLIEDFWQTTQGMHEIAEALRAVI
PPTTTPV¹⁰⁰PAGYLIQHEEEAERTPIGDI¹²⁵FKHQERRIVSFQP
DYPI¹⁵⁰TARIHAHLKAYAKINEESLDRAARRLLWWHYNCLLW
GEANV¹⁷⁵TNYISRRLRTWLSTPERYRG²⁰⁰RDAPTIETAITRPIQV
AQGGRK²¹⁴TSSGTRKPRGIEP

Figure 20

Nucleic Acid Sequence of Truncated Duck Hepatitis B Core Protein

1 ATGGATATCAATTGCTTAGAGCCTAGCCAATGTTATGCCAGATGTTGCC
10 AAAATTGATCTTGTAAAGGATGCGAAGGATGCTTGAACCTTATTGGAGATCAGATT
150 CAATAAGAACATGTTTAATGCAACTCACTTGTGGATCTTGAAGACTTCTGGCAA
200 ACTACTCAGGGTATGCATGAATAAGCTGAAGGAGTTATACCACCTACTAAC
250 ACCAGTTCCCGCAGGATATCTGATTTCAGCACCGAAGAGGCTGAGGAGATTCCCTCTGGAGATT
300 350 TATTTAACATCAGGAAGAACGGATAGTTAGTTCCAACACGGATTATCCTATTACTGCACGA
400 ATTCAATGCCACACCTGAAGCTTATGCAAAGATTAAACGAGGAATCACTGGATAGGCTAGGAG
450 ATTGCTTTGGTGGCATTACAATTGTTACTGTGGGAGAACGCTAACGTTACTAATTATT
500 CTCGGCTTCGCACTTGCTATCAACACACCTGAGAGATACAGAGGCCAGATGCCCAACCAT
550 600 GAAGCAATCACTAGACCAATCCAAGTGCTCAGGGAGGGAGAACACATCTCGGGTACTAG
642 AAAACCTCGTGGACTCGAACCT