Fonctions continues

Chapitre V

2 novembre 2020

1 Définition et quelques équivalences

Soit D une partie non-vide de \mathbb{R} . En général, D est un intervalle, ou une réunion d'intervalles, ou $D=\mathbb{R}$.

Définition 1.1. Soit $f: D \to \mathbb{R}$ et $a \in D$. On dit que f est continue en a si

$$\forall \epsilon > 0 \ \exists \delta > 0 \ tel \ que \ \forall x \in D \ |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \epsilon.$$

On dit que f est continue en D si f est continue en a pour tout $a \in D$

Proposition 1.2. Soit $f: D \to \mathbb{R}$ et $a \in D$. Alors f est continue en a ssi. pour tout suite $(x_n)_{n \in \mathbb{N}}$ dans D on a que

$$\lim_{n \to \infty} x_n = a \Longrightarrow \lim_{n \to \infty} f(x_n) = f(a).$$

Démonstration. Supposons d'abord que f est continue en a. Soit $\epsilon > 0$ et prenons $\delta > 0$ tel que $|x-a| < \delta$ implique $|f(x)-f(a)| < \epsilon$. Soit $(x_n)_{n \in \mathbb{N}}$ une suite dans D tel que $\lim_{n \to \infty} x_n = a$. Soit $N \in \mathbb{N}$ tel que pour tout $n \ge N$ on a $|x_n - a| < \delta$. Alors pour tout $n \ge N$ on a que $|f(x_n) - f(a)| < \epsilon$. Inversement, si f n'est pas continue en a, alors il existe $\epsilon > 0$ tel que pour tout $\delta > 0$ il existe un point $x_\delta \in D$ tel que $|x_\delta - a| < \delta$ et $|f(x_\delta) - f(a)| \ge \epsilon$. Et donc, pour tout $n \ge 1$ il existe un point $x_n \in D$ tel que $|x_n - a| < 1/n$ et $|f(x_n) - f(a)| \ge \epsilon$. On a donc que la suite $(x_n)_{n \ge 1}$ tend vers a mais $\lim_{n \to \infty} f(x_n) \ne f(a)$.

Proposition 1.3. Soit $f: D \to \mathbb{R}$ et $a \in D$. Alors f est continue en a ssi. pour tout voisinage U de f(a) on a que $f^{-1}(U)$ est un voisinage de a.

Démonstration. Supposons que f est continue en a et prenons un voisinage U de f(a). Alors il existe $\epsilon>0$ tel que $|y-f(a)|<\epsilon$ implique $y\in U$. Soit $\delta>0$ te que $|x-a|<\delta\Longrightarrow |f(x)-f(a)|<\epsilon$. Alors on a que $|x-a|<\delta$ implique que $x\in f^{-1}(U)$ qui montre que $f^{-1}(U)$ est un voisinage de a. Inversement, supposons que pour tout voisinage U de f(a) on a que $f^{-1}(U)$ est un voisinage de a. Soit $\epsilon>0$. On pose $U=B(f(a),\epsilon)$. Or, comme U est un voisinage de f(a) on a que $f^{-1}(U)$ est un voisinage de f(a) est un

Corollaire 1.4. Soit $f: D \to \mathbb{R}$. Alors f est continue ssi. pour tout ouvert $U \subseteq \mathbb{R}$ on a que $f^{-1}(U)$ est ouvert.

Démonstration. Supposons que f est continue et soit U un ouvert de \mathbb{R} . Si $f^{-1}(U) = \emptyset$ alors $f^{-1}(U)$ est ouvert. Autrement, pour $a \in f^{-1}(U)$ on a que $f(a) \in U$. Or, comme U est ouvert, on a que U est un voisinage de f(a) et donc par application de la Proposition 1.3 on a que $f^{-1}(U)$ est un voisinage de $f^{-1}(U)$ est un voisinage de tout point $f^{-1}(U)$ et donc $f^{-1}(U)$ est ouvert. Pour l'autre direction, soit $f^{-1}(U)$ et $f^{-1}(U)$ est ouvert, on a que $f^{-1}(U)$ est ouvert et contient $f^{-1}(U)$ est ouvert et contient et $f^{-1}(U)$ est ouvert et contient et $f^{-1}(U)$ est ouvert et $f^{-1}(U)$ est ouvert et $f^{-1}(U)$ est ouvert et $f^{-1}(U)$ est ouvert et f

Corollaire 1.5. Soit $f: D \to \mathbb{R}$. Alors f est continue ssi. pour tout fermé V de \mathbb{R} on a que $f^{-1}(V)$ est fermé.

Démonstration. Il suffit de remarquer que $f^{-1}(V^c) = f^{-1}(V)^c$.

Theorem 1.6. Soient $f, g: D \to \mathbb{R}$ deux fonctions continues. Alors f+g, fg sont continues et si g ne s'annule pas sur D alors $\frac{f}{g}$ est continue.

Exercice 1.7. Démontrer le Théorème 1.6.

Theorem 1.8. Soit $f: D_1 \to \mathbb{R}$ et $g: D_2 \to \mathbb{R}$ deux fonctions telles que $f(D_1) \subseteq D_2$. Si f et g sont continues, alors la composition $g \circ f: D_1 \to \mathbb{R}$ est continue.

Démonstration. Soit $a \in D_1$ et $\epsilon > 0$. Alors il existe ϵ' tel que pour tout $y \in D_2$, si $|y - f(a)| < \epsilon'$ alors $|g(y) - g(f(a))| < \epsilon$. De plus, il existe $\delta > 0$ tel que pour tout $x \in D_1$, si $|x - a| < \delta$ alors $|f(x) - f(a)| < \epsilon'$. On a donc que pour tout $x \in D_1$, si $|x - a| < \delta$ alors $|g(f(x)) - g(f(a))| < \epsilon$.

2 Théorème des valeurs intermédiaires

Theorem 2.1 (Valeurs intermédiaires). Soient a et b deux réels avec a < b, et soit f: $[a,b] \to \mathbb{R}$ une fonction continue. Alors pour tout réel r compris entre f(a) et f(b) il existe $c \in [a,b]$ tel que f(c) = r.

Démonstration. Sans perte de généralité, on peut supposer que f(a) < r < f(b). Nous construisons par récurrence une suite d'intervalles $[a_k, b_k]$ de la façon suivante :

- $-- [a_0, b_0] = [a, b].$
- Supposons $[a_k, b_k]$ construit. On pose $m_k = \frac{a_k + b_k}{2}$. Si $f(m_k) = r$, on s'arrête. Sinon on pose

$$[a_{k+1}, b_{k+1}] = \begin{cases} [m_k, b_k] & \text{si } f(m_k) < r \\ [a_k, m_k] & \text{si } f(m_k) > r. \end{cases}$$

Si la suite d'intervalles ainsi construite est finie, alors on a trouvé c tel que f(c) = r. Sinon, nous avons, par construction, les propriétés suivantes pour tout k:

- 1. $f(a_k) < r < f(b_k)$
- 2. $[a_{k+1}, b_{k+1}] \subset [a_k, b_k]$
- 3. $b_k a_k = \frac{b-a}{2^k}$.

En particulier les suites $(a_k)_{k\in\mathbb{N}}$ et et $(b_k)_{k\in\mathbb{N}}$ sont adjacentes, donc convergent vers une limite commune c. Ainsi $f(a_k)$ et $f(b_k)$ convergent vers f(c). Ainsi, par passage à la limite dans l'inégalité 1., on trouve que f(c) = r.

Corollaire 2.2. *L'image d'un intervalle par une fonction continue est un intervalle.*

Démonstration. Cela découle du fait suivant : une partie I de \mathbb{R} est un intervalle ssi. pour tout $a, b \in I$ avec a < b on a que $[a, b] \subseteq I$.

Voici un cas particulier du TVI:

Theorem 2.3 (Théorème de Bolzano). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Si f(a)f(b) < 0 alors il existe $c \in]a,b[$ tel que f(c) = 0.

Démonstration. En effet, l'inégalité f(a)f(b) < 0 signifie que f(a) et f(b) sont de signes contraires, et donc que 0 est une valeur compris entre f(a) et f(b).

Exercice 2.4. Montrer que tout polynôme à coefficients réels et de degré impair admet au moins une racine réelle.

Theorem 2.5 (Théorème des bornes). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Alors f est bornée sur [a,b] et atteint ses bornes.

Démonstration. Commençons par montrer que f est majorée. Raisonnons par l'absurde : si f n'est pas majorée, alors pour tout entier $n \in \mathbb{N}$ on peut trouver un réel $x_n \in [a,b]$ tel que $f(x_n) > n$. Comme [a,b] est borné, d'après Bolzano-Weierstrass, il existe une suite extraite $(x_{n_k})_{k \in \mathbb{N}}$ de $(x_n)_{n \in \mathbb{N}}$ qui converge vers un certain x. Comme [a,b] est fermé, on a que $x \in [a,b]$. Par continuité de f on a que $(f(x_{n_k}))_{k \in \mathbb{N}}$ converge vers f(x). Mais ceci est impossible puisque $(f(x_{n_k}))_{k \in \mathbb{N}}$ n'est pas bornée. Donc f est majorée.

On pose $M=\sup f([a,b])$. Nous allons montrer que M est atteint par la fonction f. Pour tout $n\geq 1$, il existe $y_n\in [a,b]$ tel que $f(y_n)>M-\frac{1}{n}$. Comme $M\geq f(y_n)$ pour tout $n\geq 1$, on en déduit (par le théorème des gendarmes) que la suite $(f(y_n)_{n\geq 1}$ converge vers M. D'après le Théorème de Bolzano-Weierstrass, il existe une suite extraite $(y_{n_k})_{k\in \mathbb{N}}$ de la suite $(y_n)_{n\geq 1}$ qui converge vers un certain $y\in [a,b]$. Mais alors, f(y) est égal à la limite de la suite $(f(y_{n_k}))_{k\in \mathbb{N}}$ et donc f(y)=M.

3 Continuité uniforme

Définition 3.1. Soit $f: D \to \mathbb{R}$ une fonction. On dit que f est uniformément continue sur D si pour tout $\epsilon > 0$ il existe $\delta > 0$ tel que pour tout $x, y \in D$ si $|x - y| < \delta$ alors $|f(x) - f(y)| < \epsilon$.

Il est claire que si f est uniformément continue sur D alors f est continue sur D. Mais pas inversement : Par exemple, la fonction $f(x)=x^2$ définie sur $[0,+\infty[$ est continue mais n'est pas uniformément continue. En effet, pour $x,y\in[0,+\infty[$ on a que

$$|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y|.$$

Ainsi, si on prend $\epsilon>0$, même si |x-y| est très petit, il suffira de choisir x et y suffisamment grands pour que |f(x)-f(y)| soit plus grand que ϵ . Par contre, la même fonction est uniformément continue sur l'intervalle [0,1]. En effet, pour $x,y\in[0,1]$, on a que $|f(x)-f(y)|\leq 2|x-y|$. Ainsi, pour $\epsilon>0$ il suffit de prendre $\delta=\epsilon/2$.

Theorem 3.2 (Théorème de Heine). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Alors f est uniformément continue sur [a,b].

Démonstration. Supposons par l'absurde que f ne soit pas uniformément continue sur [a,b]. Alors il existe $\epsilon_0>0$ tel que pour tout $n\geq 1$ il existent $x_n,y_n\in [a,b]$ tels que $|x_n-y_n|<\frac{1}{n}$ et $|f(x_n)-f(y_n)|\geq \epsilon_0$. D'après Bolzano-Weierstrass, on peut extraire de $(x_n)_{n\geq 1}$ une sous-suite $(x_{n_k})_{k\in \mathbb{N}}$ convergente. Comme [a,b] est fermé, la limite L de la suite $(x_{n_k})_{k\in \mathbb{N}}$ appartient à [a,b]. De plus, comme $|x_{n_k}-y_{n_k}|<\frac{1}{n_k}$ on en déduit que la suite $(y_{n_k})_{k\in \mathbb{N}}$ converge aussi vers L. Mais alors, par continuité de f, les suites $(f(x_{n_k}))_{k\in \mathbb{N}}$ et $(f(y_{n_k}))_{k\in \mathbb{N}}$ convergent vers f(L), ce qui contredit le fait que $|f(x_{n_k})-f(y_{n_k})|\geq \epsilon_0$.