In the Claims:

Please amend the Claims as shown:

CLAIMS

- 1. (Original) An aglycosylated IgG antibody having a binding affinity for the CD3 antigen complex.
- 2. (Original) An aglycosylated antibody according to Claim 1, which has a binding affinity for the human CD3 antigen complex.
- 3. (Currently Amended) An aglycosylated antibody according to Claim
- 2, in which at least one CDR is selected from the amino acid sequence:
- (a) Ser-Phe-Pro-Met-Ala (SEQ ID NO: 1),
- (b) Thr-Ile-Ser-Thr-Ser-Gly-Gly-Arg-Thr-Tyr-Tyr-Arg-Asp-Ser-Val-Lys-
- Gly (SEQ ID NO: 2),
- (c) Phe-Arg-Gln-Tyr-Ser-Gly-Gly-Phe-Asp-Tyr (SEQ ID NO: 3),
- (d) Thr-Leu-Ser-Ser-Gly-Asn-Ile-Glu-Asn-Asn-Tyr-Val-His (SEQ ID NO: 4),
- (e) Asp-Asp-Asp-Lys-Arg-Pro-Asp (SEQ ID NO: 5),
- (f) His-Ser-Tyr-Val-Ser-Ser-Phe-Asn-Val (SEQ ID NO: 6), and conservatively modified variants thereof.
- 4. (Currently Amended) An aglycosylated antibody according to Claim
- 2, which has a heavy chain with at least one CDR selected from the amino acid sequences:
- (a) Ser-Phe-Pro-met-Ala (SEQ ID NO: 1),
- (b) Thr-Ile-Ser-Thr-Ser-Gly-Gly-Arg-Thr-Tyr-Arg-Asp-Ser-Val-Lys-
- Gly (SEQ ID NO: 2),
- (c) Phe-Arg-Gln-Tyr-Ser-Gly-Gly-Phe-Asp-Tyr (SEQ ID NO: 3), and conservatively modified variants thereof, and/or a light chain with at least one CDR selected from the amino acid sequences:
- (d) Thr-Leu-Ser-Gly-Asn-Ile Glu-Asn-Asn-Tyr-Val-His (SEQ ID NO: 4),

- (e) Asp-Asp-Asp-Lys-Arg-Pro-Asp (SEQ ID NO: 5),
- (f) His-Ser-Tyr-Val-Ser-Ser-Phe-Asn-Val (SEQ ID NO: 6), and conservatively modified variants thereof.
- 5. (Currently Amended) An aglycosylated antibody according to Claim
- 2, which has a heavy chain with three CDRs comprising the amino acid sequences:
- (a) Ser-Phe-Pro-met-Ala (SEQ ID NO: 1),
- (b) Thr-Ile-Ser-Thr-Ser-Gly-Gly-Arg-Thr-Tyr-Tyr-Arg-Asp-Ser-Val-Lys-
- Gly (SEQ ID NO: 2),
- (c) Phe-Arg-Gln-Tyr-Ser-Gly-Gly-Phe-Asp-Tyr (SEQ ID NO: 3), or conservatively modified variants thereof, and a light chain with three CDRs comprising the amino acid sequences:
- (d) Thr-Leu-Ser-Ser-Gly-Asn-Ile Glu-Asn-Asn-Tyr-Val-His (SEQ ID NO: 4),
- (e) Asp-Asp-Asp-Lys-Arg-Pro-Asp (SEQ ID NO: 5),
- (f) His-Ser-Tyr-Val-Ser-Ser-Phe-Asn-Val <u>(SEQ ID NO: 6)</u>, or conservatively modified variants thereof, the heavy chain CDRs being arranged in the order (a), (b), (c) in the leader \rightarrow constant domain direction and the light chain CDRs being arranged in the order (d), (e), (f) in the leader \rightarrow constant domain direction.
- 6. (Previously Presented) An aglycosylated antibody according to Claim 1, in which the variable domain framework regions are of or are derived from those of rat or mouse origin.
- 7. (Previously Presented) An aglycosylated antibody according to Claim 1, in which the CDRs are of different origin to the variable framework region.
- 8. (Original) An aglycosylated antibody according to Claim 7, in which the variable domain framework regions are of or are derived from those of human origin.

- 9. (Currently Amended) An aglycosylated antibody according to Claim 8, in which the heavy chain variable domain framework region reading from in the leader → constant domain direction comprises Glu-Val-Gln-Leu-Leu-Glu-Ser-Gly-Gly-Gly-Leu-Val-Gln-Pro-Gly-Gly-Ser-Leu-Arg-Leu-Ser-Cys-Ala-Ala-Ser-Gly-Phe-Thr-Phe-Ser-/CDR/-Trp-Val-Arg-Gln-Ala-Pro-Gly-Lys-Gly-Leu-Glu-Trp-Val-Ser-/CDR/-Arg-Phe-Thr-Ile-Ser-Arg-Asp-Asn-Ser-Lys-Asn-Thr-Leu-Tyr-Leu-Gln-Met-Asn-Ser-Leu-Arg-Ala-Glu-Asp-Thr-Ala-Val-Tyr-Tyr-Cys-Ala-Lys-/CDR/-Trp-Gly-Gln-Gly-Thr-Leu-Val-Thr-Val-Ser-Ser, (SEQ ID NO: 7/CDR/SEQ ID NO: 8/CDR/SEQ ID NO: 9/CDR/SEQ ID NO: 10), CDR indicating the presence of a CDR of which at least one is (a), (b) or (c) or a conservatively modified variant thereof.
- 10. (Currently Amended) An aglycosylated antibody according to Claim 8, in which the light chain variable domain framework region reading in the leader → constant domain direction comprises

 Asp-Phe-Met-Leu-Thr-Gln-Pro-His-Ser-Val-Ser-Glu-Ser-Pro-Gly-LysThr-Val-Ile-Ile-Ser-Cys-/CDR/-Trp-Tyr-Gln-Gln-Arg-Pro-Gly-Arg-Ala-Pro-ThrThr-Val-Ile-Phe-/CDR/-Gly-Val-Pro-Asp-Arg-Phe-Ser-Gly-Ser-Ile-Asp-Arg-SerSer-Asn-Ser-Ala-Ser-Leu-Thr-Ile-Ser-Gly-Leu-Gln-Thr-Glu-Asp-Glu-Ala-AspTyr-Tyr-Cys-/CDR/-Phe-Gly-Gly-Gly-Thr-Lys-Leu-Thr-Val-Leu-Gly-Gln-Pro-LysAla-Ala-Pro-Ser-Val-Thr-Leu-Phe-Pro-Pro-Ser-Ser-Glu-Glu-Leu-Gln (SEQ ID NO: 12/CDR/SEQ ID NO: 13/CDR/SEQ ID NO: 14/CDR/SEQ ID NO: 26), CDR indicating the presence of a CDR of which at least one is (d), (e) or (f) or a conservatively modified variant thereof.
- 11. (Currently Amended) An aglycosylated antibody according to Claim 9 having a heavy chain variable domain which comprises Glu-Val-Gln-Leu-Leu-Glu-Ser-Gly-Gly-Gly-Leu-Val-Gln-Pro-Gly-Gly-Ser-Leu-Arg-Leu-Ser-Cys-Ala-Ala-Ser-Gly-Phe-Thr-Phe-Ser-Ser-Phe-Pro-Met-Ala-Trp-Val-Arg-Gln-Ala-Pro-Gly-Lys-Gly-Leu-Glu-Trp-Val-Ser-Thr-Ile-Ser-Thr-Ser-Gly-Gly-Arg-Thr-Tyr-Arg-Asp-Ser-Val-Lys-Gly-Arg-Phe-Thr-Ile-Ser-Arg-Asp-Asn-Ser-Lys-Asn-Thr-Leu-Tyr-Leu-Gln-Met-Asn-Ser-Leu-Arg-Ala-Glu-Asp-Thr-Ala-Val-Tyr-Tyr-Cys-Ala-Lys-Phe-Arg-Gln-Tyr-Ser-Gly-Gly-Phe-Asp-Tyr-Trp-Gly-Gln-Gly-Thr-Leu-Val-Thr-Val-Ser-Ser (SEQ ID NO: 11).
- 12. (Currently Amended) An aglycosylated antibody according to Claim 8 having a light chain variable domain which comprises

Asp-Phe-Met-Leu-Thr-Gln-Pro-His-Ser-Val-Ser-Glu-Ser-Pro-Gly-Lys-Thr-Val-Ile-Ile-Ser-Cys-Thr-Leu-Ser-Ser-Gly-Asn-Ile-Glu-Asn-Asn-Tyr-Val-His-Trp-Tyr-Gln-Gln-Arg-Pro-Gly-Arg-Ala-Pro-Thr-Thr-Val-Ile-Phe-Asp-Asp-Asp-Lys-Arg-Pro-Asp-Gly-Val-Pro-Asp-Arg-Phe-Ser-Gly-Ser-Ile-Asp-Arg-Ser-Ser-Asn-Ser-Ala-Ser-Leu-Thr-Ile-Ser-Gly-Leu-Gln-Thr-Glu-Asp-Glu-Ala-Asp-Tyr-Tyr-Cys-His-Ser-Tyr-Val-Ser-Ser-Phe-Asn-Val-Phe-Gly-Gly-Gly-Thr-Lys-Leu-Thr-Val-Leu-Gly-Gln-Pro-Lys-Ala-Ala-Pro-Ser-Val-Thr-Leu-Phe-Pro-Pro-Ser-Ser-Glu-Glu-Leu-Gln (SEQ ID NO: 25).

- 13. (Previously Presented) An aglycosylated antibody according to Claim 1, in which the constant domains are of or are derived from those of rat or mouse origin.
- 14. (Previously Presented) An aglycosylated antibody according to Claim 1, in which the CDRs are of different origin to the constant region.
- 15. (Previously Presented) An aglycosylated antibody according to Claim 1, in which the constant domains are of or are derived from those of human origin.
- 16. (Previously Presented) An aglycosylated antibody according to Claim 1, in which the constant region is of an IgG isotype.
- 17. (Original) An aglycosylated antibody according to Claim 15, in which the constant region is of an IgG1 isotype.
- 18. (Previously Presented) An aglycosylated antibody according to Claim 15, in which asparagine residue at position 297 of each constant region heavy chain is replaced by an alternative amino acid residue.
- 19. (Original) An aglycosylated antibody according to Claim 18, in which the asparagine residue is replaced by an alanine residue.
- 20. (Previously Presented) An aglycosylated antibody according to Claim 1, in which only one of the arms thereof has an affinity for the CD3 antigen.
- 21. (Original) An aglycosylated antibody according to Claim 20 which is monovalent.

- 22. (Original) An aglycosylated antibody according the Claim 21, in which one half of the antibody consists of a complete heavy chain and light chain and the other half consists of a similar but truncated heavy chain lacking the binding site for the light chain.
- 23. (Previously Presented) An aglycosylated antibody according to Claim 1 in the form of a pharmaceutical composition comprising a physiologically acceptable diluent or carrier.
- 24. (Previously Presented) An aglycosylated antibody according to Claim 1, for use in therapy.
- 25. (Previously Presented) The use of an aglycosylated antibody according to Claim 1 for the manufacture of a medicament for use in immunosuppression.
- 26. (Original) The use according to Claim 25, in which the medicament is for use in the treatment of recipients of a transplant.
- 27. (Previously Presented) A method of treating a patient having cancer or requiring immunosuppression which comprises administering to said patient a therapeutically effective amount of a ligand or an antibody or fragment thereof according to Claim 1.