Markov Chain Monte Carlo II

PSYC 573

University of Southern California February 17, 2022 The original Metropolis (random walk) algorithm allows posterior sampling, without the need to solving the integral

However, it is inefficient, especially in high dimension problems (i.e., many parameters)

Data Example

Taking notes with a pen or a keyboard?

Mueller & Oppenheimer (2014, Psych Science)

R code Data Data

```
# Use haven::read_sav() to import SPSS data
nt_dat ← haven::read_sav("https://osf.io/qrs5y/download")
```

Do people write more or less words when asked to use longhand?

Normal model

Consider only the laptop group first

$$ext{wc_laptop}_i \sim N(\mu, \sigma^2)$$

Two parameters: μ (mean), σ^2 (variance)

Gibbs Sampling

Gibbs sampling is efficient by generating smart proposed values, using **conjugate** or **semiconjugate** priors

Implemented in software like BUGS and JAGS

Useful when:

 Joint posterior is intractable, but the conditional distributions are known

Another example

Conjugate priors for conditional distributions

$$egin{aligned} \mu \sim N(\mu_0, au_0^2) \ \sigma^2 \sim ext{Inv-Gamma}(
u_0/2,
u_0\sigma_0^2/2) \end{aligned}$$

- μ_0 : Prior mean, τ_0^2 ; Prior variance (i.e., uncertainty) of the mean
- ullet u_0 : Prior sample size for the variance; σ_0^2 : Prior expectation of the variance

Posterior

$$egin{aligned} \mu \mid \sigma^2, y \sim N(\mu_n, au_n^2) \ \sigma^2 \mid \mu^2 \sim ext{Inv-Gamma}(
u_n/2,
u_n \sigma_n^2[\mu]/2) \end{aligned}$$

$$\boldsymbol{\tau}_n^2 = \left(\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}\right)^{-1}; \mu_n = \tau_n^2 \left(\frac{\mu_0}{\tau_0^2} + \frac{n\bar{y}}{\sigma^2}\right)$$

$$\boldsymbol{\tau}_n = \mu_0 + n; \sigma^2(\mu) = \frac{1}{\tau_0^2} \left[\mu_0 \sigma^2 + (n-1)s^2 + \sum_{i=1}^n (\bar{\mu}_i - i)s^2 + \sum_{i=1}^n$$

•
$$u_n=
u_0+n$$
; $\sigma_n^2(\mu)=rac{1}{
u_n}ig[
u_0\sigma_0^2+(n-1)s_y^2+\sum(ar y-\mu)^2ig]$

No need for a separate proposal distribution; directly sample the conditional posterior

Thus, all draws are accepted

Posterior Summary

2 chains, 10,000 draws each, half warm-ups

$$\mu_0$$
 = 5, σ_0^2 = 1, τ_0^2 = 100, ν_0 = 1

variable	mean	median	sd	mad	q5	q95	rhat	ess_bulk	ess_tail
mu	3.1	3.10	0.213	0.211	2.753	3.45	1	9928	9936
sigma2	1.4	1.33	0.378	0.337	0.904	2.11	1	10189	10136

The ESS is almost as large as # of draws