Inplementación de alcormos pro

Rubén Espino San José

indice

- ¿Qué es un controlador PID?
- ¿Cómo funciona un PID?
- Ejemplos de aplicación
- Apéndices
- Referencias

- Algoritmo que se emplea para contrarrestar los efectos de las perturbaciones en un sistema lineal
- Compuesto de las siguientes partes:
 - Proporcional
 - Detecta el error proporcional
 - Corrección de posición
 - Integral
 - Detecta el error acumulado
 - Oposición a las perturbaciones
 - Derivativo
 - Detecta la variación del error proporcional
 - · Corrección de velocidad

¿cómo funciona un prop

- Proporcional = posición_objetivo posición_actual
- Integral = integral + proporcional
 - Saturar integral para no hacer inestable el algoritmo
- Derivativo = proporcional proporcional_anterior
 - Actualizar proporcional_anterior = proporcional

• Error = kp * proporcional + ki * integral + kd * derivativo

EJEMPLOS DE APLICACIÓN

- Control de motores
- Robots siguelíneas
 - Seguimiento de líneas
 - Rebufo en carreras
 - Control de velocidad lineal
- Drones
 - Control de estabilidad
 - Control de orientación
 - Control de posición
 - Control de altura

CONTROL DE MOTORES

- Control P de velocidad de un motor con lazo abierto (sin realimentación)
 - Puede no alcanzar la posición objetivo
- Control PI de velocidad de un motor con lazo cerrado (con realimentación)
 - Alcanza la posición objetivo

ROBOTS SIGUELÍNEAS: <u>SEGUIMIENTO DE LÍNEAS</u>

- Se trata de un control de velocidad angular
 velocidad_motor_izquierdo = velocidad_lineal + error
 velocidad_motor_derecho = velocidad_lineal error
- Demostración de corrección en estático
- Demostración con PID sobreamortiguado
- Demostración con PID subamortiguado
- Demostración con PID con amortiguamiento crítico
- Mi primer PID en un robot rastreador
- Desarrollo detallado del PID para el seguimiento de línea

ROBOTS SIGUELÍNEOS: REBUFO EN CARRERAS

• Para seguir al oponente es necesario incorporar un sensor de distancia frontal analógico

• Pumatrón cogiendo el rebufo

• Si la función de transferencia del sensor analógico no es lineal, hay que linealizarla

• Linealización de los sensores GP2D120 y GP2Y0A21

ROBOTS SIGUELÍNEAS: CONTROL DE VELOCIDAD LINEAL

- Se incorpora un encoder en cada motor para leer la velocidad y cerrar el lazo de realimentación
- Se emplea para que las perturbaciones como los desniveles en la pista o el descenso de tensión de la batería afecten lo mínimo posible a la velocidad del robot
- Velocidad_lineal = (V_motor_izq + V_motor_der) / 2

DRONES: CONTROL DE ESTABILIDAD

- Control de inclinación en pitch y roll con acelerómetro y giróscopo. Un PID para cada eje
- Acelerómetro: funciona como inclinómetro. Señala la dirección de la fuerza gravitatoria
- Giróscopo: da la velocidad de giro
- Se combinan para eliminar la deriva del giróscopo
- Demostración de control de estabilidad

DRONES: CONTROL DE ORIENTACIÓN

- Control de orientación (yaw) con brújula y giróscopo
- El giróscopo es más rápido calculando la orientación, pero la brújula elimina el error de deriva del giróscopo
- Similar al PID de seguimiento de líneas

DRONES: CONTROL DE POSICIÓN

- Control de posición con GPS o con visión artificial. Un PID para cada eje del plano XY
- Eliminan la deriva en la posición del dron
- Demostración de control de posición con visión artificial

DRONES: CONTROL DE ALTURA

- Con barómetro: PID para el control de presión
- Con sensor de ultrasonidos: PID para el control de distancia al suelo
- Demostración de control de altura con sensor de ultrasonidos

apéndices

• Cálculo de posición de línea para robots siguelíneas:

```
for(i = 0; i < N_sensores; i++)
{
          media += valor_sensor[i] * (i+1) * 1000;
          suma += valor_sensor[i];
}
posicion = media / suma; // Posición con el cero en el extremo
posicion_linea = posicion - (N_sensores +1)*1000/2; // Para centrar la posición</pre>
```

apéndices

- Pasos para calibrar un PID manualmente:
 - 1. Poner todas las K's a cero
 - 2. Ir aumentando poco a poco Kp
 - Cuando el robot empiece a cabecear, bajar un poco el valor de Kp y dejarlo fijo
 - 4. Realizar los pasos 2 y 3 para calibrar Kd
- Poniendo como ejemplo un robot siguelíneas, la respuesta varía si se modifica su velocidad lineal, por lo que habrá que realizar el cálculo de las K's para cada velocidad

RCFCRCNCIGS

• GitHub

- Rubén Espino: Resaj
- Javier Baliñas: supernudo
- Javier Isabel: JavierIH

- Facebook
 - @pumaprideteam
- Twitter
 - Rubén Espino: @RugidoDePuma
 - Javier Baliñas: @supernudo
 - Javier Isabel: @JavierIH
- Correo
 - puma.pride@arc-robots.org

¡¡Que los PIDs os acompañen!!