CLASSIFICAZIONE CON LENET

MNIST handwritten digits recognition

 II MNIST database contiene 60.000 immagini di training e 10.000 di test di 28 x 28 pixel

Riconoscimento di MNIST con LeNet

Passi

- 1. Definizione dell'architettura LeNet;
- 2. Caricamento e preparazione dei dati MNIST;
- 3. Addestramento;
- 4. Analisi delle prestazioni.

- Consiste di due parti:
 - un blocco di strati convoluzionali (per l'estrazione delle feature)
 - un blocco di strati fully connected (per la classificazione)

image 28x28x1

image 28x28x1

image 28x28x1

image feat. map 28x28x1 28x28x6

$$F(i,j,c) = b_c + \sum_{m} \sum_{n} \sum_{k} I(i+m,j+n,k) \ w_c(m,n,k) \qquad c = 0,...,5$$

image feat. map 28x28x1 28x28x6

$$F(i,j,c) = b_c + \sum_{m} \sum_{n} \sum_{k} I(i+m,j+n,k) w_c(m,n,k) \qquad c = 0,...,5$$

156 parameters

Funzione di attivazione: sigmoide

- Una delle prime funzioni adottate
- La zona di saturazione (in rosso) causa i vanishing gradients
- L'output è in [0, 1], quindi non è centrato in zero, il che assicura un training più stabile

Vanishing gradients: durante la backpropagation i gradient si avvicinano a zero → i pesi non si aggiornano!

Questo è un problema per reti molto profonde

Funzione di attivazione: ReLU

$$\varphi(x) = \max(0, x)$$

Pros.

 Rapida convergenza (6x w.r.t. sigmoid/tanh)

Cons.

 I neuroni possono non dare alcun contributo

Durante la fase di forward, l'uscita del neurone è uguale a zero e quindi la sua derivate è pari a zero durante la fase di backward

→ Il neurone non fornisce alcun contributo e I suoi pesi non cambiano

Max pooling

before pooling

12	20	30	0
8	12	2	0
34	70	37	4
112	100	25	12

after max pooling 2x2, stride 2

20	30
112	37

Softmax

L'output è nell'intervallo [0, 1]: si interpretare come una distribuzione di probabilità

Monotona: non cambia la classe predetta

Training, validation, test

- Training set: I dati usati per addestrare la rete
- Validation set: I dati usati per settare I parametri ed evitare overfitting
- Test set: I dati usati per testare le prestazioni

Dataset split

Training (60%), validation (20%) e test (20%)

from: https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7

Se il dataset è troppo piccolo: cross-validation

Final Accuracy = Average(Round 1, Round 2, ...)

from: https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6

Dataset split

Suddivisione per MNIST

Training set : 55000 immagini

Validation set: 5000 immagini

Test set : 10000 immagini

Come settare il learning rate

- Se la loss function decresce lentamente, bisogna aumentare il learning rate
- Se la loss function non decresce, diminuisci il learning rate
- Se la loss function oscilla, diminuisci il learning rate

from https://www.jeremyjordan.me/nn-learning-rate/

Come settare il learning rate

Non è facile individuare il learning rate corretto

