J. H. Wang

Mar. 3, 2023

Outline

- Definition of Minimum Edit Distance
- Computing Minimum Edit Distance
- Backtrace for Computing Alignments
- Weighted Minimum Edit Distance
- Minimum Edit Distance in Computational Biology

Definition of Minimum Edit Distance

How similar are two strings?

- Spell correction
 - The user typed "graffe"Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Resulting alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings
- Is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution
- Needed to transform one into the other

Two strings and their alignment:

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8

Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

An alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

• Evaluating Machine Translation and speech recognition

```
R Spokesman confirms senior government adviser was appointed the Spokesman said the senior adviser was appointed to the senior adviser was applicable adviser was applicable a
```

- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - IBM profits
 - Stanford Professor Jennifer Eberhardt announced yesterday
 - for Professor Eberhardt...

How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
 - Initial state: the word we're transforming
 - Operators: insert, delete, substitute
 - Goal state: the word we're trying to get to
 - Path cost: what we want to minimize: the number of edits

Minimum Edit as Search

- But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisted states

Defining Min Edit Distance

- For two strings
 - X of length *n*
 - Y of length m
- We define D(*i,j*)
 - the edit distance between X[1..i] and Y[1..j]
 - i.e., the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(n,m)

Computing Minimum Edit Distance

Dynamic Programming for Minimum Edit Distance

- Dynamic programming: A tabular computation of D(n,m)
- Solving problems by combining solutions to subproblems.
- Bottom-up
 - We compute D(i,j) for small i,j
 - And compute larger D(i,j) based on previously computed smaller values
 - i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

Defining Min Edit Distance (Levenshtein)

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

• Termination:

D(N,M) is distance NLP & TM, Spring 2023

The Edit Distance Table

N	9									
0	8									
I	7									
Т	6									
N	5									
E	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

The Edit Distance Table

N	9																
0	8																
Ι	7	D(i	1) – mi		i-1,j) +												
Т	6	D(1)	$ D(i,j) = \min \begin{cases} D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} 2; \text{ if } S_1(i) \neq S_2(j) \\ 0; \text{ if } S_1(i) = S_2(j) $														
N	5																
Е	4		,			(4594 3-151 40-50										
Т	3																
N	2																
Ι	1	*															
#	0	1	2	3	4	5	6	7	8	9							
	#	Е	Χ	Е	С	U	Т	I	0	N							

NLP & TM, Spring 2023

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
I	7									
Т	6									
N	5									
E	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

The Edit Distance Table

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

Backtrace for Computing Alignments

Computing alignments

- Edit distance isn't sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} = \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

MinEdit with Backtrace

n	9	↓ 8	<u>/</u> ←↓9	<u>√</u> ↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	∠8	
0	8	↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	∠←↓ 11	↓ 10	↓9	√8	← 9	
i	7	↓ 6	∠ ←↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠ ←↓6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠ ←↓ 7	∠ ←↓ 8	<u> </u>	∠ ←↓ 10	∠ ←↓ 11	∠ ↓ 10	
e	4	∠ 3	← 4	√ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠←↓4	∠ ←↓ 5	∠←↓ 6	∠ ←↓ 7	∠ ←↓8	√ 7	←↓ 8	∠ ←↓9	↓8	
n	2	∠ ←↓ 3	∠ ←↓4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	↓ 7	∠←↓ 8	∠7	
i	1	∠←↓ 2	∠ ←↓ 3	∠←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

Base conditions:

$$D(i,0) = i$$

$$D(0,j) = j$$

Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

Recurrence Relation:

```
For each i = 1...M
           or each j = 1...N
D(i-1,j) + 1 \text{ deletion}
D(i,j-1) + 1 \text{ insertion}
D(i-1,j-1) + 2; \text{ if } X(i) \neq Y(j) \text{ substitution}
0; \text{ if } X(i) = Y(j)
```

NLP & TM, Spring 2023

The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

Two strings and their alignment:

Performance

•Time:

O(nm)

•Space:

O(nm)

Backtrace

O(n+m)

Weighted Minimum Edit Distance

Weighted Edit Distance

- Why would we add weights to the computation?
 - Spell Correction: some letters are more likely to be mistyped than others
 - Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

					Sì	ıb[X	X, Y] =	Sub	stitı	ıtio	n of	X	(inc	orre	ect) f	or	Y (orr	ect)						
X														rrect)				·		,						
	a	b	С	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	V	w	Х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	Õ
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	I	0	0	8	0	0	0
С	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
e	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
o	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
S	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
у	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
rin z 20	23 ()	0	0	7	0	0	0	0	0	0	0 N	JTL I /T	CSI T	0	0	0	0	2	21	3	0	0	0	0	3	0

Weighted Min Edit Distance

Initialization:

```
D(0,0) = 0

D(i,0) = D(i-1,0) + del[x(i)];   1 < i \le N

D(0,j) = D(0,j-1) + ins[y(j)];   1 < j \le M
```

Recurrence Relation:

$$D(i,j) = \min \begin{cases} D(i-1,j) & + \text{ del}[x(i)] \\ D(i,j-1) & + \text{ ins}[y(j)] \\ D(i-1,j-1) & + \text{ sub}[x(i),y(j)] \end{cases}$$

• Termination:

D(N,M) is distance

Where did the name, dynamic programming, come from?

...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research...

I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely **dynamic**... it's impossible to use the word, **dynamic**, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

NLP & TM, Spring 2023 Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.

 Minimum Edit Distance in Computational Biology

Sequence Alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Why sequence alignment?

- Comparing genes or regions from different species
 - to find important regions
 - determine function
 - uncover evolutionary forces
- Assembling fragments to sequence DNA
- Compare individuals to looking for mutations

Alignments in two fields

- In Natural Language Processing
 - We generally talk about distance (minimized)
 - And weights
- In Computational Biology
 - We generally talk about similarity (maximized)
 - And scores

The Needleman-Wunsch Algorithm

• Initialization:

$$D(i,0) = -i * d$$

 $D(0,j) = -j * d$

Recurrence Relation:

$$D(i-1,j) - d$$

$$D(i,j) = min D(i,j-1) - d$$

$$D(i-1,j-1) + s[x(i),y(j)]$$
• Termination:
$$D(N,M) \text{ is distance}$$

The Needleman-Wunsch Matrix

(Note that the origin is at the upper left.)

A variant of the basic algorithm:

 Maybe it is OK to have an unlimited # of gaps in the beginning and end:

If so, we don't want to penalize gaps at the ends

Different types of overlaps

Example:

2 overlapping"reads" from a sequencing project

Example:

Search for a mouse gene within a human chromosome

41

The Overlap Detection variant

Changes:

1. Initialization

For all i, j,

$$F(i, 0) = 0$$

 $F(0, j) = 0$

2. Termination

$$F_{OPT} = \max \begin{cases} \max_{i} F(i, N) \\ \max_{j} F(M, j) \end{cases}$$

The Local Alignment Problem

Given two strings

$$x = x_1 \dots x_M$$

$$y = y_1 \dots y_N$$

Find substrings x', y' whose similarity (optimal global alignment value) is maximum

x = aaaacccccggggtta

y = ttcccgggaaccaacc

43

NLP & TM, Spring 2023

NTUT CSIF

The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization:
$$F(0, j) = 0$$

$$F(i, 0) = 0$$

Iteration:
$$F(i, j) = \max \begin{cases} F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i, j - 1) + S(x_i, y_j) \end{cases}$$

The Smith-Waterman algorithm

Termination:

1. If we want the best local alignment...

$$F_{OPT} = max_{i,j} F(i, j)$$

Find F_{OPT} and trace back

- 2. If we want all local alignments scoring > t
 - ?? For all i, j find F(i, j) > t, and trace back?

Complicated by overlapping local alignments

```
X = ATCAT

Y = ATTATC
```

Let: m = 1 (1 point for match) d = 1 (-1 point for del/ins/sub)

			A	Т	Т	A	Т	С
		0	0	0	0	0	0	0
	A	0						
	Τ	0						
	С	0						
	A	0						
NTUT CS	T	0						46

X = ATCAT

Y = ATTATC

		A	Τ	Т	A	Τ	C
	0	0	0	0	0	0	0
A	0	1	0	0	1	0	0
Τ	0	0	2	1	0	2	0
C	0	0	1	1	0	1	3
A	0	1	0	0	2	1	2
T	0	0	2	0	1	3	2

X = ATCAT

Y = ATTATC

		A	Τ	Τ	A	Τ	C
	0	0	0	0	0	0	0
A	0	1	0	0	1	0	0
Τ	0	0	2	1	0	2	0
C	0	0	1	1	0	1	3
A	0	1	0	0	2	1	2
T	0	0	2	0	1	3	2

$$X = ATCAT$$

$$Y = ATTATC$$

		A	Τ	Τ	A	Τ	C
	0	0	0	0	0	0	0
A	0	1	0	0	1	0	0
Τ	0	0	2	1	0	2	0
C	0	0	1	1	0	1	3
A	0	1	0	0	2	1	2
T	0	0	2	0	1	3	2

Thanks for Your Attention!