# 嵌入式 ARM 无人机的 Deep-SORT-yolov5 识别与追踪

该项目以"嵌入式 ARM 无人机 Deep-SORT-YOLOv5 识别与追踪"为主题,完成了从数据集准备、模型训练,到算法融合及嵌入式部署,期望实现对无人机目标的实时检测与多目标追踪。

| 技术层面    | 具体组件 / 工具                              | 作用                                         |
|---------|----------------------------------------|--------------------------------------------|
| 深度学习框架  | PyTorch + CUDA、 Tensorflow             | GPU 训练 YOLOv5 模型                           |
| 目标检测    | <b>Y0L0v5s</b> (以 C0C0 权重<br>为起点,迁移学习) | 训练定制化"无人机"<br>检测器                          |
| 多目标追踪   | Deep-SORT                              | 利用卡尔曼滤波 & IoU<br>关联,实现 ID 一致性<br>追踪        |
| 数据集管理   | Roboflow Universe                      | 在线检索并下载 Drone<br>数据集;配合<br>data.yaml 重映射标签 |
| 计算机视觉工具 | OpenCV, NumPy, Pandas                  | 图像/视频处理与结果分析                               |
| 嵌入式硬件   | Orange Pi 3B<br>(Rockchip RK3566)      | 部署推理; Ubuntu<br>arm64 系统                   |
| 系统与包管理  | Ubuntu 镜像烧录、pip<br>+ 清华源               | ARM 环境下依赖安装与<br>加速                         |

下面从几个方面介绍工作内容:

## 基于数据集训练了关于无人机的训练模型

通常情况下,要靠自己收集成百上千张含有无人机的图像是非常困难的,于是我们需要在网上搜取用于训练的大量图片。而 Roboflow 是一个开源的数据集平台,平台上有数据集。登录网址: <a href="https://universe.roboflow.com/">https://universe.roboflow.com/</a>
可以看到这个平台上的一些模型,搜索关键词"drones",可以看到一些和无人机相关的数据集。并可以将他们下载到本地。



修改 data.yaml 中的训练集、验证集、路径,让它符合我们本地的文件路径。

labels 中的 txt 文件包含的信息对应:类别 id、锚框 X 轴中心坐标、锚框 Y 轴中心坐标、锚框长度、锚框宽度。



在服务器上安装 CUDA,使得 python 编译环境能够调用显卡资源进行训练,当前我的 CUDA 版本为 10.1

原本的 torch 是 CPU 版本,需要将其替换为 GPU 版本。下载地址: https://download.pytorch.org/whl/torch\_stable.html

对应版本 torch1.7.1+cu101(文件较大,1.2GB)、torchvision0.8.2+cu101、torchaudio0.7.2



#### 训练指令:

python train.py --img 640 --batch 24 --epochs 15 --data

D:\code\drone\_dataset\dataset\_all\data.yaml --cfg yolov5s.yaml --weights yolov5s.pt --name custom model05

img: 图片统一为 640\*640

batch: 每个批次采用训练集的 24 张图片

epochs: 训练将完整地遍历训练集 15 次

data: 指定数据集的 yaml 文件

weights:初始权重文件,采用COCO数据集训练的yolov5s.pt

name: 模型名称



训练完毕后,通过 custom\_model05.pt 替换掉原 yolov5 默认的模型,就可以针对性的识别无人机了。



## 将 Deep-SORT 与 Yolov5 结合

Deep-SORT 是一个追踪算法,在画面中包含多个目标时,根据上一帧锚框的位置运动趋势,使用卡尔曼滤波器预测本帧位置,并将预测与本帧锚框根据 IoU 进行匹配,最终实现的效果是对每一帧的每个锚框打上 id, 实现对其追踪。开源地址: https://github.com/nwojke/deep sort

该项目的缺点是,其识别的功能是缺失的。该程序只是读取一个 txt 文件里 边的数字表示锚框的横坐标、纵坐标、长、宽、置信度等参数,这些参数对应 着固定的图像,并没有实现对视频源的实时检测。

为了实现对视频源的实时检测,我将 Deep-SORT 项目与 yolov5 相结合, 改写了 Deep-SORT 中的 def create\_detections()函数,在其中调用 yolov5 模块对 图像进行检测,替换掉原来直接读取本地 txt 文件的形式。

由于 Deep-SORT 的坐标采用 MOT 格式,与 yolo 含义不相同,因此需要人为手动进行转化:



YOLO 格式: (class\_id, Center\_X, Center\_Y, Width, Height)

MOT 格式: (frame idx, track id, x, y, width, height)

x=Px\*Center\_X-Px\*Width/2 y=Py\*Center\_Y-Py\*Height/2 width=Px\*Width height=Py\*Height

### 实际运行效果:





# 在开发板上的部署

开发板 OrangePi\_3B, Rockchip RK3566



通过工具将 ubuntu 镜像烧入 TF 卡, 插在开发板 TF 卡槽上得到显示输出:



配置 pip 使用清华镜像网站: # 建立配置文件 mkdir -p ~/.pip cat > ~/.pip/pip.conf <<'EOF' [global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple [install] trusted-host = pypi.tuna.tsinghua.edu.cn EOF

将 pip 版本更新到最新: sudo pip3 install --upgrade pip 随后指定更新后的 pip 安装依赖包,注意这里会自动替换为 arm 版本的包: /usr/local/bin/pip3 install numpy /usr/local/bin/pip3 install opency-python /usr/local/bin/pip3 install tensorflow /usr/local/bin/pip3 install pandas /usr/local/bin/pip3 install torchvision ......

cd 到 yolo 工程文件夹下,执行(模型的权重文件已经被替换,如果没有需要手动指定自定义模型):

python3 detect.py –source .data/images/screenshot\_6.png 这样就可以在开发板上实现 yolov5 对图像的识别:

