

Course > Week 5 > Proble... > Traject...

Trajectory Optimization

Trajectory Optimization

0.0/20.0 points (graded)

Suppose we have a trajectory optimization program for the Cart-Pole (so $x \in \mathbb{R}^4$ and $u \in \mathbb{R}$). For this problem, we will examine both shooting and direct transcription methods examined in class. We will suppose that both methods use forward Euler integration, that is:

$$x_{k+1} = x_k + hf(x_k, u_k)$$

for some fixed time step h. The programs will both be created as follows:

- The initial state, x_0 is fixed (and not a decision parameter).
- The final state, x_{20} is constrained to be in some goal region, that is $f_g\left(x_{20}
 ight)\geq 0$, where f_g is scalar valued.
- There is an obstacle which the states cannot penetrate, that is, $f_o\left(x_k\right) \geq 0$, where f_o is scalar valued.
- It is possible that the goal and obstacle regions have a non-empty intersection
- ullet The final time and time step $oldsymbol{h}$ are fixed.
- ullet There are no torque limits, but the total cost is $\sum_k u_k^2$.
- Numbers of "decision variables" are counted as scalars. So if x_{10} were included in the decision variables, it would count as four.

Decision Variables

(a) How many decision variables does the *shooting* approach have?

(b) How many decision variab	oles does the direct transcription approach have?
_	es the <i>shooting</i> approach have? Convert vector-valued r-valued constraints to count them.
_	es the <i>direct transcription</i> approach have? Convert vectorees scalar-valued constraints to count them.
optimization approaches, it is cost with respect to the decis	ed to the goal region, $f_g\left(x_{20} ight)\geq 0$. For most numerical simportant to calculate the gradient of the constraints and sion variables. That is, if z is the list of all decision variables, , which will be a vector of length $\dim\left(z\right)$.
02	, how many non-zero entries are there in this gradient
(f) For the <i>direct transcription</i> gradient vector?	approach, how many non-zero entries are there in this
	nt of all constraints as a matrix $m{G}$, where the $m{j}$ th element of
list of constraints $m{h_i}$ by the ti of $m{G}$ greatly affects the efficient Generating Speech Output $m{\phi}$ tion ar	here h_i is the i th constraint. Order both the z vector and the me index k which they most directly relate to. The structure ency and accuracy of various optimization approaches. The e graphical representations of the sparsity patterns, where ntries and blue the zero entries.

(g) For the *shooting* approach, what, if any, structure will G have? Note that G will not generally be square, so we use some of these terms loosely here. In particular, the "diagonal" here refers to the elements of G corresponding to the variables and constraints directly related to the same time index.

Oupper Triangular: entries below the "diagonal" are all (or nearly all) zero

Lower Triangular: entries above the "diagonal" are all (or nearly all) zero

Block Diagonal: entries away from the diagonal are all (or nearly all) zero

(h) For the *direct transcription* approach, what, if any, structure will $m{G}$ have?

Dense: many non-zero entries with no particular structure

Upper Triangular: entries below the "diagonal" are all (or nearly all) zero

Lower Triangular: entries above the "diagonal" are all (or nearly all) zero

Block Diagonal: entries away from the diagonal are all (or nearly all) zero

Submit

You have used 0 of 1 attempt

© All Rights Reserved