ECEN 325 – Electronics

Fall 2020

Lab 6: Prelab

Submitted by:

Student Name	UIN:	Section #
Michael Mengistu	12500724	508

Due: October 6th, 2020

1.)

VD (V)	ID (mA)	
-1	-1.1E-09	
-0.9	-1E-09	
-0.8	-9E-10	
-0.7	-8E-10	
-0.6	-7E-10	
-0.5	-6E-10	
-0.4	-5E-10	
-0.3	-4E-10	
-0.2	-3E-10	
-0.1	-2E-10	
-1.4E-16	-6.7E-25	
0.1	4.78E-09	
0.2	2.28E-07	
0.3	1.09E-05	
0.4	0.00051	
0.5	0.014304	
0.6	0.072298	
0.7	0.152857	
0.8	0.241028	
0.9	0.33242	
1	0.425854	

$$\mathbb{Q}$$
.

$$R_{L} = \frac{V_{o}}{I_{o,max}} \quad C = \frac{1}{2f_{i}R_{L}K_{r}} \quad \hat{V}_{s} \approx V_{o} + 0.7$$

$$\boxed{I_{o,max} = 3 \text{ mA}} \quad \boxed{V_{o} = 3 \text{ V}} \quad \boxed{f := 250 \text{ Hz}}$$

$$R_1 = \frac{3}{3m} = 1k \Lambda$$

$$R_{1} = \frac{3}{3m} = 1k \Lambda$$
 $K_{r} = 0.1$ $C = \frac{1}{2(250)(1k)0.1} = 20 MF$

$$V_s = 3 + 0.7 = 3.7$$

$$-V_{s} = -3.7 \sin(500 \pi t) V$$

Circuit (fig-5) breadboard

