Übungen zur Vorlesung Numerik I Sommersemester 2024

Prof. Dr. L'ubomír Baňas

Übungsblatt 1

Abgabe: Freitag, 19.04.2024, 10:00 Uhr

Mo. 14-16 Uhr: Paul Niessner, paul.niessner@uni-bielefeld.de, Büro N7-119 (in deutsch) Do. 14-16 Uhr: Ehsan Abedi, ehsan.abedi@math.uni-bielefeld.de, Büro V4-228 (in english) Fr. 14-16 Uhr: Lisa Henetmayr, lisa.henetmayr@uni-bielefeld.de, Büro V4-200 (in deutsch)

Abgabe der Aufgaben online im Moodle-Kurs des Tutoriums.

Aufgabe 1: (Gleitkommaarithmetik)

Widerlegen Sie für die Gleitkommaoperationen \oplus , \odot , und $\widetilde{\exp}$ jeweils anhand eines Beispiels die folgenden Eigenschaften

(a)
$$(t \oplus s) \oplus r = t \oplus (s \oplus r)$$
,

(b)
$$t \odot (s \oplus r) = (t \odot s) \oplus (t \odot r),$$

(c)
$$\widetilde{\exp}(t \oplus s) = \widetilde{\exp}(t) \odot \widetilde{\exp}(s)$$
.

Verwenden Sie dazu $t,s,r\in A(10,2,1)$, wobei A(10,2,1) die Menge aller Gleitkommazahlen mit Mantissenlänge 2 und Exponentenlänge 1 zur Basis 10 bezeichnet, sowie die übliche Rundungsvorschrift $\mathrm{rd}:\mathbb{R}\to A(10,2,1)$. Werten Sie dabei jede einzelne Operationen auf genügend viele Stellen nach dem Komma aus, runden Sie danach und geben Sie das Zwischenergebnis an.

(6 Punkte)

Aufgabe 2: (Programmieraufgabe, Rundungsfehler bei Addition) Bekanntlich gilt

$$S_{\infty} := \lim_{n \to \infty} S(n) = \frac{\pi^2}{6}, \quad \text{für} \quad S(n) = \sum_{k=1}^n \frac{1}{k^2}$$

Berechnen Sie durch Vorwärts- bzw. Rückwärts-Summation jeweils eine numerische Approximation $\tilde{S}(n)$ der Partialsumme S(n) für $n=2^j$ und $j=1,\ldots,30$ und zeichnen Sie die Abweichung

$$\varepsilon_n = \left| \tilde{S}(n) - S_{\infty} \right|$$

mit logarithmischen Maßstab auf beiden Achsen (in Matlab loglog). Begründen Sie abschließend Ihre Beobachtungen.

(**Hinweis**: Für $n=2^{30}$ wird das Programm eine lange Laufzeit aufweisen. Schicken Sie deshalb zusätzlich zum Programm den Plot an Ihren Tutor.)

(6 Punkte)

Aufgabe 3: (Programmieraufgabe, Rundungsfehler bei Iterationen) Betrachten Sie die Iterationsvorschrift

$$x^{(n)} = f_{a,b}\left(x^{(n-1)}\right), \quad n \in \mathbb{N},$$

zur Funktion

$$f_{a,b}: \mathbb{R}^2 \to \mathbb{R}^2, \quad f_{a,b} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} ax_1 \\ (b-a^2)x_1^2 + bx_2 \end{array} \right)$$

mit den Parametern 0 < a < 1, b > 1 und dem Startwert $x^{(0)} \in \mathbb{R}^2$.

(a) Leiten Sie zum Anfangswert

$$x^{(0)} = \begin{pmatrix} c \\ c^2 \end{pmatrix}, \quad c \in \mathbb{R},$$

eine Darstellung von $x^{(n)}$ her und zeigen Sie $\lim_{n \to \infty} \left\| x^{(n)} \right\|_2 = 0.$

(b) Implementieren Sie die gegebene Iteration zum Anfangswert $x^{(0)}$ mit den Parametern $a=\frac{9}{10},\ b=10$ und $c=\frac{1}{100}$. Zeichnen Sie die ersten 25 Iterationswerte $\tilde{x}^{(n)}$ in ein (x_1,x_2) -Diagramm und plotten Sie

$$\|\tilde{x}^{(n)}\|_2$$
 gegen $n = 0, \dots, 25$,

indem Sie die y-Achse logarithmisch skalieren (in Matlab semilogy). Kommentieren Sie das Ergebnis.

(6 Punkte)