امتحانات الشهادة الثانوية العامة فرع: العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية

الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: خمس
الرقم:	المدة: ثلاث ساعات	

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (2 points)

Dans le tableau suivant une seule des réponses proposées à chaque question est correcte.

Écrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

No	Questions	Réponses		
312	Questions	a	b	С
1	Soit f la fonction donnée par $f(x) = \ln (x^2 - 3x)$ Le domaine de définition de f est	[0;+∞[[1;3[]-∞;0[∪]3;+∞[
2	Pour tout réel x, $ln(e^x + 2) - x$ est égale à	$\ln\left(\frac{e^x+2}{x}\right)$	ln (2)	$\ln\left(\frac{e^{x}+2}{e^{x}}\right)$
3	Soit I = $\int_{0}^{1} \frac{e^{x}}{3 + e^{x}} dx$ La valeur de I est	$\ln\left(\frac{e+3}{4}\right)$	$\ln\left(\frac{e+3}{3}\right)$	ln (e + 3)
4	On donne ci-dessous le tableau de variations d'une fonction continue f: $ \begin{array}{c cccc} x & 2 & 4 & 5 \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & & & 6 \end{array} $ L'équation $f(x) = 4$	admet une seule solution	admet deux solutions	n'admet aucune solution

II- (3 points)

Le plan complexe est rapporté à un repère orthonormé direct (0; \vec{u} \vec{v}).

On considère les points A, B et C d'affixes $z_A = -2 + 2i$, $z_B = -2i$ et $z_C = 4$.

Pour tout point M d'affixe z, on associe le point M' d'affixe z' tel que $z' = \frac{2z+4i}{iz+2+2i}$ avec $z \neq -2+2i$.

- 1) Dans le cas où z = 0, donner la forme exponentielle de z'.
- 2) Ecrire $\frac{z_A-z_B}{z_C-z_B}$ sous forme algébrique. En déduire la nature du triangle ABC.
- 3) a- Vérifier que $z' = \frac{2(z z_B)}{i(z z_A)}$
 - **b-** En déduire que $OM' = \frac{2BM}{AM}$
 - **c-** Montrer que lorsque M varie sur la médiatrice de [AB], le point M' varie sur un cercle dont on déterminera le centre et le rayon.

III- (3 points)

Une urne U contient 10 boules: 6 boules bleues et 4 boules rouges.

Partie A

On tire au hasard et simultanément deux boules de l'urne U.

On considère les évènements suivants :

A : « les deux boules tirées sont de même couleur »

B: « les deux boules tirées sont de couleurs différentes ».

- 1) Vérifier que le nombre de tirages possibles est 45.
- 2) Montrer que la probabilité $P(A) = \frac{7}{15}$ et en déduire P(B).

Partie B

Dans cette partie, on lance un dé parfait numéroté de 1 à 6.

- Si le nombre obtenu est pair, alors on tire au hasard et simultanément deux boules de U.
- Si le nombre obtenu est impair, alors on tire au hasard et successivement avec remise deux boules de U. On considère les évènements suivants :

E: « le nombre obtenu est pair »

F: « les boules tirées sont de même couleur ».

- 1) Calculer P(F / E) et vérifier que P(F \cap E) = $\frac{7}{30}$.
- 2) Vérifier que $P(F \cap \overline{E}) = \frac{13}{50}$ et en déduire P(F).
- 3) Sachant que les deux boules tirées sont de même couleur, calculer la probabilité que le nombre obtenu soit pair.

IV- (4 points)

Dans la figure suivante,

- ABCD et EDGF sont deux carrés directs.
- CD = 1 et DG = 2.

Soit S la similitude plane directe d'angle $\frac{\pi}{2}$ qui transforme B en D et transforme A en E.

- 1) Calculer le rapport k de S et montrer que S(C) = G.
- 2) On note par (T) et (T') les cercles de diamètres respectifs [BD] et [AE].
 - (T) et (T') se coupent en deux points W et A.

Montrer que W est le centre de S.

- 3) a- Montrer que l'image de la droite (BD) par S est la droite (DF).
 - **b-** Déterminer l'image de la droite (AD) par S.
 - **c-** Montrer que S(D) = F.
- 4) Soit h la transformation définie par $h = S \circ S$.
 - a- Déterminer la nature et les éléments caractéristiques de h.
 - **b-** Déterminer h(B) et en déduire que $\overrightarrow{WF} = -4\overrightarrow{WB}$.
- 5) Le plan complexe est rapporté au repère orthonormé direct (C; \overrightarrow{CD} \overrightarrow{CB}).
 - a- Déterminer la forme complexe de h.
 - **b-** Calculer l'affixe du point W.

V- (8 points)

Partie A

Soit g la fonction définie sur \mathbb{R} par $g(x) = (x + 1)e^x - 1$,

- 1) Vérifier que $\lim_{x \to -\infty} g(x) = -1$ et déterminer $\lim_{x \to +\infty} g(x)$,
- 2) Copier et compléter le tableau de variations de g :

3) Calculer g(0). Vérifier que g(x) < 0 pour tout x < 0 et que g(x) > 0 pour tout x > 0.

Partie B

Soit f la fonction définie sur \mathbb{R} par $f(x) = x(e^x - 1)$,

On désigne par (C) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

Soit (d) la droite d'équation y = -x.

- 1) a- Déterminer $\lim_{x\to -\infty} f(x)$ et montrer que la droite (d) est asymptote à (C).
 - **b-** Etudier les positions relatives de (C) et (d).
- 2) Déterminer $\lim_{x \to +\infty} f(x)$ et calculer f(2).
- 3) Vérifier que f'(x) = g(x) et dresser le tableau de variations de la fonction f.
- 4) Montrer que la courbe (C) admet un point d'inflexion I d'abscisse -2.
- **5**) Tracer (d) et (C).
- **6**) L'équation f(x) = 1 admet deux solutions réelles α et β tel que $\alpha < 0 < \beta$.
 - **a-** Montrer que $\int xe^x dx = (x-1)e^x + k$, où $k \in \mathbb{R}$,
 - **b-** Soit $A(\alpha)$ l'aire du domaine délimité par (C), (d), la droite d'équation $x = \alpha$ et y'y.

Montrer que
$$A(\alpha) = \left(1 + \alpha - \frac{1}{\alpha}\right)$$
 unités d'aire.

دورة العام ٢٠٢١ العاديّة الاثنين ٢٦ تموز ٢٠٢١	امتحانات الشهادة الثانوية العامة فرع: العلوم العامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسمية
	أسس تصحيح مسابقة الرياضيات	عدد المسائل: خمس

I	Réponses	Note
1	$f(x) = \ln(x^2 - 3x)$. $x^2 - 3x > 0$ donc $x(x - 3) > 0$ donc $x \in]-\infty$; $0[\cup]3$; $+\infty[$. Donc c	0,5
2	$\ln(e^{x} + 2) - x = \ln(e^{x} + 2) - \ln(e^{x}) = \ln\left(\frac{e^{x} + 2}{e^{x}}\right)$. Donc c	0,5
3	$\int_0^1 \frac{e^x}{3 + e^x} dx = \ln(3 + e^x) _0^1 = \ln(3 + e) - \ln 4 = \ln\left(\frac{e + 3}{4}\right).$ Donc a	1
	Sur [2; 4] f est continue et strictement décroissante de $3 < 4$ jusqu'à $-1 < 4$ donc l'équation $f(x) = 4$ n'admet aucune solution sur cet intervalle.	
4	Sur [4; 5] f est continue et strictement croissante de $-1 < 4$ jusqu'à $6 > 4$ donc l'équation $f(x) = 4$ admet une solution unique sur cet intervalle. Donc a	1

II	Réponses	Note
1	Pour z = 0, z' = $\frac{4i}{2+2i}$ = $\sqrt{2}e^{i\frac{\pi}{4}}$	1
2	$\frac{z_A - z_B}{z_C - z_B} = \frac{-2 + 2i + 2i}{4 + 2i} = i. \text{ Donc } \left \frac{z_A - z_B}{z_C - z_B} \right = 1 \text{ et arg}(\frac{z_A - z_B}{z_C - z_B}) = \frac{\pi}{2} (2\pi).$ Le triangle ABC est rectangle isocèle en B.	1
3a	$z' = \frac{2(z+2i)}{i(z+2-2i)} = \frac{2(Z-Z_B)}{i(Z-Z_A)}$	0,5
3b	$ z' = \frac{ 2 Z - Z_B }{ i Z - Z_A } = \frac{2BM}{AM}$	1
3c	AM = BM donc OM' = Z' = 2, donc M' varie sur le cercle de centre O et de rayon 2.	1

III	Réponses	Note
A1	Le nombre de tirages possibles est $C_{10}^2 = 45$	1
	$P(A) = \frac{C_6^2 + C_4^2}{C_{10}^2} = \frac{7}{15}$ $P(B) = 1 - P(A) = \frac{8}{15} \text{ or } P(B) = \frac{C_6^1 \cdot C_4^1}{C_{10}^2} = \frac{8}{15}$	1
B1	$P(F/E) = P(A) = \frac{C_6^2 + C_4^2}{C_{10}^2} = \frac{7}{15}$ $P(F \cap E) = P(F/E) \times P(E) = \frac{7}{15} \times \frac{1}{2} = \frac{7}{30}$	1
	$P(F \cap E) = P(F / E) \times P(E) = \frac{7}{15} \times \frac{1}{2} = \frac{7}{30}$	
B2	$P(F \cap \overline{E}) = P(F / \overline{E}) \times P(\overline{E}) = \left(\frac{6 \times 6}{10 \times 10} + \frac{4 \times 4}{10 \times 10}\right) \times \frac{1}{2} = \frac{52}{100} \times \frac{1}{2} = \frac{13}{50}$ $P(F) = P(F \cap E) + P(F \cap \overline{E}) = \frac{7}{30} + \frac{13}{50} = \frac{37}{75}$	1
D2	$P(F) = P(F \cap E) + P(F \cap \overline{E}) = \frac{7}{30} + \frac{13}{50} = \frac{37}{75}$	1
	$P(E / F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{7}{30}}{\frac{37}{75}} = \frac{35}{74}$	0,5

IV	Réponses	Note
	S: B \rightarrow D, A \rightarrow E donc le rapport $k = \frac{DE}{AB} = \frac{2}{1} = 2$.	
1	S: B o D, A o E donc le rapport k = $\frac{DE}{AB} = \frac{2}{1} = 2$. $(\overrightarrow{BC}; \overrightarrow{DG}) = \frac{\pi}{2} [2\pi], \frac{DG}{BC} = 2$ et S(B) = D donc S(C) = G.	
	Le centre de S appartient à (T) et (T') car $\alpha = \frac{\pi}{2}$ et S(B) = D et S(A) = E	
2	Donc le centre est W ou A.	1
	Mais $S(A) = E$ donc A n'est pas invariant par S donc W est le centre.	
3a	S(BD) est la droite passant par D et perpendiculaire à (BD) donc $S(BD) = (DF)$	0,5
3b	S(AD) est la droite passant par E et perpendiculaire à (AD) donc $S(AD) = (EF)$	0,5
3c	$\{D\} = (BD) \cap (AD) \text{ donc } \{S(D)\} = S(BD) \cap S(AD) = (DF) \cap (EF) = \{F\}. \text{ Donc } S(D) = F.$	0,5
4a	$h = S \circ S = Sim(W, 4, \pi) = hom(W, -4)$	0,5
41.	h(B) = S(S(B)) = S(D) = F	1
4b	$h(B) = F$, donc $\overrightarrow{WF} = -4\overrightarrow{WB}$	1
	C(0; 0), D(1; 0), B(0; 1) et F(3; 2).	
5a	h: $z' = az + b \text{ donc } z' = -4z + b.$	0,5
	h(B) = F donc 3 + 2i = -4(i) + b donc b = 3 + 6i donc z' = -4z + 3 + 6i	
5b	W est un point invariant, donc $z = -4z + 3 + 6i$ donc $W(\frac{3}{5}; \frac{6}{5})$	0,5

V	Réponses	Note
A1	$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} [(x+1)e^{x} - 1] = \lim_{x \to -\infty} (xe^{x} + e^{x} - 1) = 0 + 0 - 1 = -1$ $\operatorname{car} \lim_{x \to -\infty} e^{x} = 0 \text{ et } \lim_{x \to -\infty} xe^{x} = 0,$ $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} [(x+1)e^{x} - 1] = +\infty,$	1
A2	$g'(x) = e^{x} + (x+1)e^{x} = (x+2)e^{x}$ $\frac{x}{g'(x)} - 0 + \frac{1}{g(x)}$ $g(x) -1 + \infty$	1
A3	g(0) = 0. Sur $] -\infty$; $0[g(x) < 0$ car le maximum de g est plus petit que zéro. Sur $]0$; $+\infty[g(x) > 0$ car le minimum de g est plus grand que zéro.	1,5
B1a	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [x(e^x - 1)] = -\infty(0 - 1) = +\infty$ $\lim_{x \to -\infty} [f(x) + x] = \lim_{x \to -\infty} xe^x = 0$ donc (d) est une asymptote à (C) en $-\infty$,	1
B1b	$f(x) + x = xe^{x}$ Si $x \in]-\infty$; $0[f(x) + x < 0$, donc (C) est en-dessous de (d) If $x \in]0$; $+\infty[f(x) + x > 0$, donc (C) est au-dessus de (d) If $x = 0$, $f(x) + x = 0$, donc (d) et (C) se coupent au point O.	1
B2	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [x(e^x - 1)] = +\infty(+\infty + 1) = +\infty$ $f(2) = 2(e^2 - 1) = 12,77$	1

	$f'(x) = e^x - 1 + xe^x = (x+1)e^x - 1 = g(x),$	
В3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5
	$f(x) \mid^{+\infty} \longrightarrow 0$	
B4	$f''(x) = g'(x)$ donc $f''(x)$ s'annule en -2 et change son signe, donc (C) admet un point d'inflexion $I(-2; 2-2e^{-2})$.	0,5
B5	(d) -6 -4 -2 2 X	1
B6a	$[(x-1)e^x]' = e^x + (x-1)e^x = xe^x$, donc $\int xe^x dx = (x-1)e^x + k$, avec $k \in \mathbb{R}$,	1
B6b	Sur $[-2;0]$ (C) est au-dessous de (d), donc $A(\alpha)=\int_{\alpha}^{0}(-x-f(x))dx=\int_{\alpha}^{0}-xe^{x}dx=$ $[(1-x)e^{x}]_{\alpha}^{0}=1-(1-\alpha)e^{\alpha}.$ Mais $f(\alpha)=1$ donc $\alpha(e^{\alpha}-1)=1$ donc $e^{\alpha}=\frac{1}{\alpha}+1$ Alors $A(\alpha)=1-(1-\alpha)(\frac{1}{\alpha}+1)=1-\frac{1}{\alpha}-1+1+\alpha=1+\alpha-\frac{1}{\alpha}$ unités d'aire.	1,5