Apellido y Nombres:		,,,,,,,
	Padrón:	
	Año:	0 0
Correo electrónico:		

Análisis Matemático III. Examen Integrador. Tercera fecha. 25 de septiembre de 2020.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. Sabiendo que la serie trigonométrica de Fourier de f(x) = x - |x| en [-1, 1] es

$$-\frac{1}{2} + \sum_{n=1}^{\infty} \frac{4}{(2n-1)^2 \pi^2} \cos((2n-1)\pi x) + \sum_{n=1}^{\infty} \frac{2(-1)^{(n+1)}}{n\pi} \sin(n\pi x),$$

obtener el valor de las series numérica $\sum_{n=1}^{\infty}\frac{1}{(2n-1)^2}$ y determinar todos los valores x reales que cumplen

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n\pi} \operatorname{sen}(n\pi x) = \sum_{n=1}^{\infty} \frac{2}{(2n-1)^2 \pi^2} \cos((2n-1)\pi x)$$

Ejercicio 2. Considerar el problema del potencial electrostático en la banda infinita:

$$\begin{cases} u_{xx} + u_{yy} = 0 & -\infty < x < +\infty, \quad 0 < y < \frac{\pi}{3} \\ u(x,0) = -1 \mathbb{I}_{[-1,1]}(x) & -\infty < x < +\infty \\ u(x,\frac{\pi}{3}) = 1 \mathbb{I}_{[-1,1]}(x) & -\infty < x < +\infty \end{cases}$$

y resolverlo mediante transformación conforme.

Ejercicio 3. Estudiar si el problema del Ejercicio 2 también se puede resolver mediante transformada de Fourier. En caso afirmativo, resolverlo de este modo. ¿Es la solución obtenida la misma que la que se obtuvo en el ejercicio anterior?

Ejercicio 4. Resolver la siguiente ecuación diferencial ordinaria (expresando la solución en forma integral):

$$x''(t) + x(t) = f(t) \quad \forall t \geqslant 0$$

con
$$x(0) = x'(0) = 0$$
 y donde $\mathcal{L}(f)(s) = \operatorname{Log}\left(\frac{s-4}{s+7}\right)$.

Ejercicio 5. Sea f una función definida en $(0, \infty)$, seccionalmente continua y de orden exponencial. ¿ Es posible que su transformada de Laplace sea un polinomio no nulo?