Alexandria University
Faculty of Engineering
Computer and Communications Program

Due: Sunday 23/2/2020 CCE: Pattern Recognition

Sheet#1

Data Matrix

- 1. Given the Data Matrix on the right answer the following questions
 - a. What is number of dimensions?
 - b. What are the types of the attributes?
 - c. What is the distance between x1 and x3?
 - d. What is the length of x2?
 - e. What is the cos(angle) between x2 and x4?
 - f. Do we need attribute scaling?
 - g. Compute the attribute scaled data matrix after scaling each attribute linearly between 0 and 1
 - h. Repeat parts c,d,e on the scaled data matrix in part (g)
- Given the Data Matrix on the right submit your python code and its output that will do the following
 - a. Compute the norm of each instance. (5x1)
 - b. Compute the Cosine similarity matrix (5x5) matrix
 - c. Compute the Euclidean Distance matrix of the instances (5x5)

ID	a1	a2	а3	a4
1	10	60	10	90
2	20	50	40	70
3	30	50	30	40
4	20	50	20	60
5	10	60	30	10

DATA MATRIX **D**

Principal Component Analysis

- 3. Given Data matrix above. Consider a1, a2 and a4 only
 - a. Write down the new data matrix **D3** (5x3)
 - b. Plot the data using 3d scatter plots
 - c. Compute the **mean** vector (3x1)
 - d. Compute centered data matrix **Z** by subtracting mean vector from the Data Matrix. (5x3)
 - e. Compute Covariance matrix **COV** (3x3)
 - f. Use python solvers to find eigenvalues (Diagonal 3x3 matrix) and eigenvectors (3x3) matrix. **Take care of the eigenvalues order.**

- g. Verify $U^T \wedge U = COV$.
- h. Compute the explained variance by the eigenvector corresponding to the largest eigenvalue. Do you think one eigenvector is good enough?
- i. Compute the projection matrix P to go to 2-dimensions. Consider the top two eigenvectors of matrix U according to eigenvalues.(3x2)
- j. Project the instances into a 2-Dimension space. $\mathbf{x}_{n} = \mathbf{P}^{\mathsf{T}} \mathbf{x}$
- k. Plot the resulting Data matrix **D2** using scatter plots.
- 4. We have 4 data points. The following is their data matrix, on which we want to apply the PCA.

X1	X2	
6	-4	
-3	5	
-2	6	
7	-3	

- a. Compute the **mean and the covariance** of the given data matrix.
- b. Knowing that the unit eigenvectors of the covariance matrix are $(1/\sqrt{2}, 1/\sqrt{2})$ with eigenvalue = 2 and $(-1/\sqrt{2}, 1/\sqrt{2})$ with eigenvalue = 162, find the first principal component of the PCA.

Hints

- numpy.linalg.eigh(A) A is a matrix. Computes eigenvectors and eigenvalues of symmetric matrix A
- numpy.dot(A,B) A, B are matrices/vectors. Computes dot product
- numpy.mean(A, axis=0) A is matrix, axis =0 will average over the columns
- numpy.diag(A) converts vector A into a diagonal matrix.
- numpy.vstack((A,B)) expand matrices A,B into one wider matrix \rightarrow number of rows of A and B must match.
- numpy.transpose(A) will compute the transpose of a matrix/vector A.