FUNCTIONS

A function is a relation that map each element **x** of a set **A** with only one element **y** of set **B**

Function $f: A \rightarrow B$ is given as y = f(x)

Types Of Functions

(1) One to one function/Injective

 $f: A \rightarrow B$ is one to one if every element of A has distinct image in B.

(3) Onto function/ Surjective

f: $A \rightarrow B$ is onto if every element of **B** is related to at least one element of **A**

(2) Many to one function

f: $A \rightarrow B$ is many to one if two or more elements of **A** have same image in **B**

(4) One-one and onto function / Bijective

f: A→B is one-one and onto if it satisfies both the condition for one-one and onto

Invertible functions

 $\begin{array}{ccc}
A & \xrightarrow{f} & B
\end{array}$

Then

For a function to be invertible it needs to be both one-one and onto function

Composite functions

f: $A \rightarrow B$ and **g:** $B \rightarrow C$ can be composed to form a function which maps from **A** to **C**.

A composite function is denoted by (gof)(x): g(f(x))

RELATIONS

Relation **R** from set **A** to set **B** is a subset of the cartesian product **A X B** and is derived by describing a relationship between first and second element of the ordered pair **A X B**

Representation Of Relation

For $A=\{9, 16, 25\}$ $B=\{5, 4, 3, -3, -4, -5\}$ Here, relation is that elements of A are square of elements of B

(1) Set buider form

 $R = \{ (x,y), x \text{ is square of } y, x \in A \text{ and } y \in B \}$

(2) In roster form

 $R = \{ (9, 3), (9, -3), (16, 4), (16, -4), (25, 5), (25, -5) \}$

Number Of Relations

If **A** has h elements and **B** has **k** elements then number of relations from **A** to **B** are 2^{hk.}

Terminologies related to Relations

Domain = Collection of elements of **A**= {5, 6, 7, 8, 9}
Co-domain = Collection of elements of **B**= {7, 8, 9, 10, 11,12}

Range = Collection of elements of B related to A = {7, 8, 9, 10, 11}

Types Of Relation

(1) Universal Relation

Each element of **A** is related to every element of **A** i.e, **R**= **A X A**

(2) Identity Relations/Reflexive

Each element of A is related to itself i.e, $R = \{ (a,a) \ a \in A \}$

(3) Inverse Relation

R is a relation from A to B then R^{-1} is inverse relation from B to A

(4) Symmetric Relation

For a relation R, if $(a,b) \in R$ then $(b,a) \in R$; $\forall a,b \in A$

(5) Transitive Relation

For a relation R, if $(a,b) \in R$, $(b,c) \in R$ then $(a,c) \in R$; $\forall a,b,c \in R$

(6) Equivalence Relation

A transitive, symmetric and reflexive relation is an equivalence relation.