

GCACCGCGCG AGCTTGGCTG CTTCTGGGC CTGTGTGGC CTGTGTGTCG GAAAGATGGA
GCAAGAAGCC GAGCCCGAGG GGCGGCCGCG ACCCCTCTGA CCGAGATCCT GCTGCTTTCG
CAGCCAGGAG CACCGTCCCT CCCCGGATTA GTGCGTACGA GCGCCCAGTG CCCTGGCCCG
GAGAGTGGAA TGATCCCCGA GGCCCAGGGC GTCTGCTTC CGCAGTAGTC AGTCCCCGTG
AAGGAAACTG GGGAGTCTTG AGGGACCCCC GACTCCAAGC GCGAAAACCC CGGATGGTGA
GGAGCAGGCA AATGTGCAAT ACCAACATGT CTGTACCTAC TGATGGTGT GTAACCACCT
CACAGATTCC AGCTTCGAA CAAGAGACCC TGGTTAGACC AAAGCCATTG CTTTTGAAGT
TATTAAGTC TGTTGGTGA CAAAAAGACA CTTATACTAT GAAAGAGGTT CTTTTTATC
TTGGCCAGTA TATTATGACT AAACGATTAT ATGATGAGAA GCAACAAACAT ATTGTATATT
GTTCAAATGA TCTTCTAGGA GATTGTTTG GCGTCCAAG CTTCTCTGTG AAAGAGCACA
GGAAAATATA TACCATGATC TACAGGAAC TGGTAGTAGT CAATCAGCAG GAATCATCGG
ACTCAGGTAC ATCTGTGAGT GAGAACAGGT GTCACCTGA AGGTGGGAGT GATCAAAGG
ACCTTGTACA AGAGCTTCAG GAAGAGAAC CTTCATCTTC ACATTTGGTT TCTAGACCAT
CTACCTCATC TAGAAGGAGA GCAATTAGTG AGACAGAAGA AAATTCAAGAT GAATTATCTG
GTGAACGACA AAGAAAACGC CACAAATCTG ATAGTATTTC CTTTCCTT GATGAAAGCC
TGGCTCTGTG TGTAATAAGG GAGATATGTT GTGAAAGAAG CAGTAGCAGT GAATCTACAG
GGACGCCATC GAATCCGGAT CTTGATGCTG GTGTAAGTGA ACATTCAAGGT GATTGGTTGG
ATCAGGATTG AGTTTCAGAT CAGTTAGTG TAGAATTGAA AGTTGAATCT CTCGACTCAG
AAGATTATAG CCTTAGTGAA GAAGGACAAG AACTCTCAGA TGAAGATGAT GAGGTATATC
AAGTTACTGT GTATCAGGCA GGGGAGAGTG ATACAGATTG ATTTGAAGAA GATCCTGAAA
TTTCCTTAGC TGACTATTGG AAATGCACTT CATGCAATGA AATGAATCCC CCCCTTCCAT
CACATTGCAA CAGATGTTGG GCCCTTCGTG AGAATTGGCT TCCTGAAGAT AAAGGGAAAG
ATAAAGGGGA AATCTCTGAG AAAGCCAAAC TGGAAAACTC AACACAAGCT GAAGAGGGCT
TTGATGTTCC TGATTGTAAGG AAAACTATAG TGAATGATTG CAGAGAGTCA TGTGTTGAGG
AAAATGATGA TAAAATTACA CAAGCTTCAC AATCACAAGA AAGTGAAGAC TATTCTCAGC
CATCAACTTC TAGTAGCATT ATTTATAGCA GCCAAGAAGA TGTGAAAGAG TTTGAAAGGG
AAGAAACCCA AGACAAAGAA GAGAGTGTGG AATCTAGTTT GCCCTTAAT GCCATTGAAC
CTTGTGTGAT TTGTCAGGT CGACCTAAAA ATGGTTGCAT TGTCCATGGC AAAACAGGAC
ATCTTATGGC CTGCTTACA TGTGAAAGA AGCTAAAGAA AAGGAATAAG CCCTGCCAG
TATGTAGACA ACCAATTCAA ATGATTGTGC TAACTTATT CCCCTAGTTG ACCTGTCTAT
AAGAGAATTA TATATTCTA ACTATATAAC CCTAGGAATT TAGACAACCT GAAATTATT
CACATATATC AAAGTGAGAA AATGCCTCAA TTCACATAGA TTTCTCTCT TTGACTTGA ATATGTAGCT
TGACCTACTT TGGTAGTGGA ATAGTGAATA CTTACTATAA TTTGACTTGA ATATGTAGCT
CATCCTTAC ACCAACTCCT AATTTAAAT AATTTCTACT CTGCTTAAA TGAGAAGTAC
TTGGTTTTT TTTCTTAAA TATGTATATG ACATTAAAT GTAACCTATT ATTTTTTTG
AGACCGAGTC TTGCTCTGTT ACCCAGGCTG GAGTGCAGTG GGTGATCTG GCTCACTGCA
AGCTCTGCC TCCCCGGTT CGACCATTC TCCTGCCCTCA GCCTCCCAAT TAGCTTGGCC
TACAGTCATC TGCCACCACA CCTGGCTAAAT TTTTTGACT TTTAGTAGAG ACAGGGTTTC
ACCGTGTAG CCAGGATGGT CTCGATCTCC TGACCTCGTG ATCCGCCAC CTCGGCCTCC
CAAAGTGTG GGATTACAGG CATGAGCCAC CG

FIG. 1A

GAGGAGCCGC CGCCTCTCG TCGCTGAGC TCTGGACGAC CATGGTCGCT CAGGCCCGT
CCGGGGGCC TCCGCGCTCC CCGTGAAGGG TCGGAAGATG CGCGGGAAAGT AGCAGCCGTC
TGCTGGCGA GCGGGAGACC GACCGGACAC CCCTGGGGGA CCCTCTCGGA TCACCGCGCT
TCTCCTCGGG CCTCCAGGCC AATGTGCAAT ACCAACATGT CTGTGTCTAC CGAGGGTGCT
GCAAGCACCT CACAGATTCC AGCTTCGAA CAAGAGACTC TGGTTAGACC AAAACCATTG
CTTTGAAGT TGTTAAAGTC CGTTGGAGCG CAAAACGACA CTTACACTAT GAAAGAGATT
ATATTTATA TTGGCCAGTA TATTATGACT AAGAGGTTAT ATGACGAGAA GCAGCAGCAC
ATTGTGTATT GTTCAAATGA TCTCCTAGGA GATGTGTTG GAGTCCCAGG TTTCTCTGTG
AAGGAGCACA GGAAAATATA TGCAATGATC TACAGAAATT TAGTGGCTGT AAGTCAGCAA
GAECTCTGGCA CATCGCTGAG TGAGAGCAGA CGTCAGCCTG AAGGTGGGAG TGATCTGAAG
GATCCTTGCA AAGGCCACC AGAAGAGAAA CCTTCATCTT CTGATTTAAT TTCTAGACTG
TCTACCTCAT CTAGAAGGAG ATCCATTAGT GAGACAGAAG AGAACACAGA TGAGCTACCT
GGGGAGCGGC ACCGGAAGCG CCGCAGGTCC CTGTCCTTG ATCCGAGCCT GGGTCTGTGT
GAGCTGAGGG AGATGTGCAG CGGCAGCACG AGCAGCAGTA GCAGCAGCAG CAGCAGTCC
ACAGAGACGC CCTCGCATCA GGATCTTGAC GATGGCGTAA GTGAGCATTG TGGTGATTGC
CTGGATCAGG ATTCACTTTC TGATCAGTTT AGCGTGAAT TTGAAGTTGA GTCTCTGGAC
TCGGAAGATT ACAGCCTGAG TGACGAAGGG CACGAGCTCT CAGATGAGGA TGATGAGGTC
TATCGGTCA CAGTCTATCA GACAGGAGAA AGCGATACAG ACTCTTTGA AGGAGATCCT
GAGATTCCT TAGCTGACTA TTGGAAGTGT ACCTCATGCA ATGAAATGAA TCCTCCCTT
CCATCACACT GCAAAAGATG CTGGACCCTT CGTGAGAACT GGCTTCCAGA CGATAAGGGG
AAAGATAAAAG TGGAAATCTC TGAAAAAGCC AAACCTGGAAA ACTCAGCTCA GGCGAGAACAA
GGCTTGGATG TGCCTGATGG CAAAAAGCTG ACAGAGAATG ATGCTAAAGA GCCATGTGCT
GAGGAGGACA GCGAGGAGAA GGCGAACAG ACGCCCTGT CCCAGGAGAG TGACGACTAT
TCCCAACCCT CGACTTCCAG CAGCATTGTT TATAGCAGCC AAGAAAGCGT GAAAGAGTTG
AAGGAGGAAA CGCAGCACAA AGACGAGAGT GTGGAATCTA GCTTCTCCCT GAATGCCATC
GAACCATGTG TGATCTGCCA GGGCGGCCT AAAATGGCT GCATTGTTCA CGGCAAGACT
GGACACCTCA TGTCACTGTTT CACGTGTGCA AAGAAGCTAA AAAAAAGAAA CAAGCCCTGC
CCAGTGTGCA GACAGCCAAT CCAAATGATT GTGCTAAGTT ACTTCAACTA GCTGACCTGC
TCACAAAAAT AGAATTTAT ATTTCTAACT

FIG. 1B

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 3C

FIG. 3B

FIG. 3A

FIG. 4

JAR + 200 nM AS5

FIG. 5A

JAR + 200 nM M4

FIG. 5B

615-
492-
369-
246-
123-

FIG. 6

FIG. 7C

FIG. 8A

FIG. 8B

FIG. 9A

353-TCCATGAGACACTCACTTGTCCACAGTGGAACTTCCACCCCTCACTAGTTCTGGAACATGTTCTCGAA SEQ ID NO.: 49
SEQ ID NO.: 35 **AS5-1:** TGTAGACACTCACTCTGTC **AS5:** GGAACCTCCACCCCTCACTAG SEQ ID NO.: 28
SEQ ID NO.: 36 **AS5-2:** CACTCACTCTGTCACAGT **AS5-5:** ACCCTCACTAGTTCTGG SEQ ID NO.: 39
SEQ ID NO.: 37 **AS5-3:** ACTCTTGTCACAGTGGAAC **AS5-6:** CACTAGTTCTGGAACAT SEQ ID NO.: 40
SEQ ID NO.: 38 **AS5-4:** TGTCACAGTGGAACTTCCA **AS5-7:** TTCCCTGGAACATGTTCTCGA SEQ ID NO.: 41

FIG. 9B

FIG. 9C

FIG. 10A-1 FIG. 10A-2

FIG. 10B-1

FIG. 10B-2

FIG. 10B-3

FIG. 10B-4

FIG. 12A

FIG. 12B

FIG. 13A

FIG. 13B

FIG. 14A

Control treated

HT1080

PA-1

FIG. 14B

AS5-2 treated

FIG. 14C

FIG. 14D

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 15D

FIG. 16

Anticancer Activity of Anti-MDM2 Oligonucleotides

FIG. 17

FIG. 18A

FIG. 18B

I

HCPT (nM)

II

Adriamycin (nM)

III

5-FU (μ M)

Fig. 20

Fig. 21

Fig. 23

Fig. 25