Class 14

Samson A16867000

```
countData <- read.csv("GSE37704_featurecounts.csv", row.names=1)
colData <- read.csv("GSE37704_metadata.csv")</pre>
```

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212

SRR493371
ENSG00000186092 0
ENSG00000279928 0
ENSG00000279457 46
ENSG00000278566 0
ENSG00000273547 0
ENSG00000187634 258

head(colData)

	id	condition
1	SRR493366	control_sirna
2	SRR493367	control_sirna
3	SRR493368	control_sirna
4	SRR493369	hoxa1_kd
5	SRR493370	hoxa1_kd
6	SRR493371	hoxa1_kd

metadata\$id

. Complete the code below to remove the troublesome first column from countData

countData <- as.matrix(countData[,-1])
head(countData)</pre>

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

countData = countData[rowSums(countData) > 0,]
head(countData)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.4.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

```
The following objects are masked from 'package:matrixStats': anyMissing, rowMedians
```

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

dds

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371

colData names(3): id condition sizeFactor

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

. Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res, alpha=0.1)
```

out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>

plot(res\$log2FoldChange, -log(res\$padj))

. Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-dabline(v=c(-2,2), col="gray", lty=2)
abline(h=-log(0.1), col="gray", lty=2)</pre>
```


. Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

```
[1] "ACCNUM"
                    "ALIAS"
                                  "ENSEMBL"
                                                  "ENSEMBLPROT"
                                                                 "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                  "EVIDENCE"
                                                 "EVIDENCEALL"
                                                                "GENENAME"
[11] "GENETYPE"
                    "GO"
                                  "GOALL"
                                                 "IPI"
                                                                "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                  "ONTOLOGYALL" "PATH"
                                                                "PFAM"
[21] "PMID"
                    "PROSITE"
                                  "REFSEQ"
                                                 "SYMBOL"
                                                                "UCSCKG"
[26] "UNIPROT"
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSF	E stat pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre>> <numeric> <numeric></numeric></numeric></pre>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863 5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350 2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	5 -12.630158 1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326 3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237 8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	3 1.040744 2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970 1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	3 2.505522 1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304 7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614 8.47261e-01
	padj	symbol	entrez	name
	<numeric></numeric>	<character> <cl< td=""><td>haracter></td><td><character></character></td></cl<></character>	haracter>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

. Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$padj),] # Order by adjusted p-value (padj)
write.csv(res, file="deseq_results.csv")
```

library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                                             "1549"
                                 "10941"
                                          "151531" "1548"
                                                                       "1551"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                    "1890"
                                                             "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                             "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                          "54657"
                                                    "54658"
                                                             "54659"
                                                                       "54963"
[33] "574537" "64816"
                       "7083"
                                 "7084"
                                           "7172"
                                                    "7363"
                                                             "7364"
                                                                       "7365"
[41] "7366"
              "7367"
                        "7371"
                                 "7372"
                                           "7378"
                                                    "7498"
                                                             "79799"
                                                                       "83549"
[49] "8824"
                                 "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201"
                         "10606"
                                  "10621"
                                            "10622"
                                                     "10623"
                                                               "107"
                                                                        "10714"
  [9] "108"
               "10846"
                         "109"
                                  "111"
                                                                        "113"
                                            "11128"
                                                     "11164"
                                                              "112"
 [17] "114"
               "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
                                                                        "159"
 [25] "1633"
               "171568" "1716"
                                  "196883" "203"
                                                     "204"
                                                              "205"
                                                                        "221823"
 [33] "2272"
               "22978"
                         "23649"
                                  "246721" "25885"
                                                     "2618"
                                                               "26289"
                                                                        "270"
                         "272"
                                  "2766"
 [41] "271"
               "27115"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                        "2984"
               "2987"
                                  "3000"
 [49] "2986"
                         "29922"
                                            "30833"
                                                     "30834"
                                                              "318"
                                                                        "3251"
 [57] "353"
               "3614"
                         "3615"
                                  "3704"
                                            "377841" "471"
                                                               "4830"
                                                                        "4831"
```

```
[65] "4832"
                                                    "4907"
                                                             "50484"
               "4833"
                        "4860"
                                 "4881"
                                           "4882"
                                                                       "50940"
 [73] "51082"
               "51251"
                        "51292"
                                 "5136"
                                           "5137"
                                                    "5138"
                                                             "5139"
                                                                       "5140"
 [81] "5141"
               "5142"
                        "5143"
                                 "5144"
                                           "5145"
                                                    "5146"
                                                             "5147"
                                                                       "5148"
 [89] "5149"
               "5150"
                        "5151"
                                 "5152"
                                           "5153"
                                                    "5158"
                                                             "5167"
                                                                       "5169"
[97] "51728" "5198"
                        "5236"
                                                             "54107"
                                 "5313"
                                           "5315"
                                                    "53343"
                                                                      "5422"
[105] "5424"
               "5425"
                        "5426"
                                 "5427"
                                           "5430"
                                                    "5431"
                                                             "5432"
                                                                       "5433"
[113] "5434"
               "5435"
                        "5436"
                                 "5437"
                                           "5438"
                                                    "5439"
                                                             "5440"
                                                                       "5441"
[121] "5471"
               "548644" "55276"
                                  "5557"
                                           "5558"
                                                    "55703"
                                                             "55811"
                                                                       "55821"
[129] "5631"
               "5634"
                        "56655"
                                  "56953"
                                           "56985"
                                                    "57804"
                                                             "58497"
                                                                       "6240"
[137] "6241"
               "64425"
                        "646625" "654364"
                                           "661"
                                                    "7498"
                                                             "8382"
                                                                       "84172"
[145] "84265"
               "84284"
                        "84618"
                                 "8622"
                                           "8654"
                                                    "87178"
                                                             "8833"
                                                                       "9060"
[153] "9061"
               "93034"
                        "953"
                                 "9533"
                                           "954"
                                                    "955"
                                                             "956"
                                                                       "957"
[161] "9583"
               "9615"
```

foldchanges = res\$log2FoldChange
names(foldchanges) = res\$entrez
head(foldchanges)

1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792

keggres = gage(foldchanges, gsets=kegg.sets.hs)

attributes(keggres)

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	${\tt stat.mean}$	p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.375901e-03	-3.028500	1.375901e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val s	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	.995727e-06
hsa03030	DNA replication	0.007586381	36 9	.424076e-05

hsa03013	RNA transport	0.073840037	144	1.375901e-03
hsa03440	Homologous recombination	0.121861535	28	3.066756e-03
hsa04114	Oocyte meiosis	0.121861535	102	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	0.212222694	53	8.961413e-03

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/saleu/Desktop/BIMM 143/Class 14

Info: Writing image file hsa04110.pathview.png

pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

[,1] [,2] [1,] "9" "300"

[2,] "9" "306"

Info: Working in directory C:/Users/saleu/Desktop/BIMM 143/Class 14

Info: Writing image file hsa04110.pathview.pdf

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

- [1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
 - . Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/saleu/Desktop/BIMM 143/Class 14

Info: Writing image file hsa04640.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/saleu/Desktop/BIMM 143/Class 14

Info: Writing image file hsa04630.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/saleu/Desktop/BIMM 143/Class 14

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/saleu/Desktop/BIMM 143/Class 14

Info: Writing image file hsa04142.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/saleu/Desktop/BIMM 143/Class 14

Info: Writing image file hsa04330.pathview.png


```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis
                                         5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                         424 1.432451e-04
```

GO:0007610 behavior	0.1967577	426 1.925222e-04
GO:0060562 epithelial tube morphogenesis	0.3565320	257 5.932837e-04
GO:0035295 tube development	0.3565320	391 5.953254e-04

\$less

		p.geomean	stat.mean	p.val
GO:0048285 organelle fission		1.536227e-15	-8.063910	1.536227e-15
GO:0000280 nuclear division		4.286961e-15	-7.939217	4.286961e-15
GO:0007067 mitosis		4.286961e-15	-7.939217	4.286961e-15
GO:0000087 M phase of mitotic cell	L cycle	1.169934e-14	-7.797496	1.169934e-14
GO:0007059 chromosome segregation		2.028624e-11	-6.878340	2.028624e-11
GO:0000236 mitotic prometaphase		1.729553e-10	-6.695966	1.729553e-10
		q.val	set.size	exp1
GO:0048285 organelle fission		5.841698e-12	376	1.536227e-15
GO:0000280 nuclear division		5.841698e-12	352	4.286961e-15
GO:0007067 mitosis		5.841698e-12	352	4.286961e-15
GO:0000087 M phase of mitotic cell	l cycle	1.195672e-11	362	1.169934e-14
GO:0007059 chromosome segregation	-	1.658603e-08	142	2.028624e-11
GO:0000236 mitotic prometaphase		1.178402e-07	84	1.729553e-10

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GD:0007610	behavior	3.565432	3.565432
GD:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665