2021 AMC 12A Problems/Problem 17

The following problem is from both the 2021 AMC 10A #17 and 2021 AMC 12A #17, so both problems redirect to this page.

Contents

- 1 Problem
- 2 Diagram
- 3 Solution 1 (Similar Triangles and Pythagorean Theorem)
- 4 Solution 2 (Similar Triangles, Areas, Pythagorean Theorem)
- 5 Solution 3 (Short)
- 6 Solution 4 (Extending the Line)
- 7 Solution 5
- 8 Solution 6 (Coordinate Bash)
- 9 Video Solution (Using Similar Triangles, Pythagorean Theorem)
- 10 Video Solution by Punxsutawney Phil
- 11 Video Solution by Mathematical Dexterity
- 12 See also

Problem

Trapezoid \overline{ABCD} has $\overline{AB} \parallel \overline{CD}$, BC = CD = 43, and $\overline{AD} \perp \overline{BD}$. Let Q be the intersection of the diagonals \overline{AC} and \overline{BD} , and let P be the midpoint of \overline{BD} . Given that OP = 11, the length of \overline{AD} can be written in the form $m\sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. What is m+n?

(A) 65

(B) 132

(C) 157

(D) 194

(E) 215

Diagram

~MRENTHUSIASM

Solution 1 (Similar Triangles and Pythagorean Theorem)

Angle chasing* reveals that $\overline{\triangle}BPC\sim\overline{\triangle}BDA$, therefore

$$2 = \frac{BD}{AB} = \frac{\overline{AB}}{AB} = \frac{AB}{AB}$$

or AB = 86.

Additional angle chasing shows that $\triangle ABO \sim \triangle CDO$, therefore

$$2 = \frac{\overline{AB}}{CD} = \frac{\overline{BO}}{\overline{OD}} = \frac{\overline{BP} + \overline{11}}{\overline{BP} - \overline{11}},$$

or BP=33 and BD=66.

Since $\triangle ADB$ is right, the Pythagorean theorem implies that

$$AD = \sqrt{86^2 - 66^2} = 4\sqrt{190}$$

The answer is $4 + 190 = \boxed{(\mathbf{D}) \ 194}$

• Angle Chasing: If we set $\overline{ZDBC} = \alpha$, then we know that $\angle DCB = 180^{\circ} - 2\alpha$ because $\triangle DBC$ is isosceles. And because $\overline{AB} \parallel \overline{DC}$, we conclude that $\angle ABD = \alpha$ too. Lastly, because $\triangle BPC$ and $\triangle BDA$ are both right triangles, they are similar by AA.

~mn28407 (Solution)

~mm (Angle Chasing Remark)

~eagleye ~MRENTHUSIASM (Minor Edits)

Solution 2 (Similar Triangles, Areas, Pythagorean Theorem)

Since $\overline{\triangle BCD}$ is isosceles with base \overline{BD} , it follows that median \overline{CP} is also an altitude. Let OD=x and CP=h, so PB=x+11.

Since $\overline{ZAOD}=\overline{ZCOP}$ by vertical angles, we conclude that $\overline{\Delta AOD}\sim\overline{\Delta COP}$ by AA, from which $\frac{AD}{CP}=\frac{OD}{OP},$ or

$$AD = CP \cdot \frac{OD}{OP} = h \cdot \frac{x}{11}.$$

Let the brackets denote areas. Notice that [AOD] = [BOC] (By the same base and height, we deduce that [ACD] = [BDC]. Subtracting [OCD] from both sides gives [AOD] = [BOC]). Doubling both sides produces

$$2[AOD] = 2[BOC]$$

$$OD \cdot AD = OB \cdot CP$$

$$x\left(\frac{hx}{11}\right) = (x+22)h$$

$$x^2 = 11(x+22).$$

Rearranging and factoring result in (x-22)(x+11)=0, from which x=22.

Applying the Pythagorean Theorem to right $\triangle CPB$, we have

$$h = \sqrt{43^2 - 33^2} = \sqrt{(43 + 33)(43 - 33)} = \sqrt{760} = 2\sqrt{190}.$$

Finally, we get

$$AD = h \cdot \frac{x}{11} = 4\sqrt{190},$$

so the answer is 4+190= (D) 194

~MRENTHUSIASM

Solution 3 (Short)

Let CP=y. CP a is perpendicular bisector of DB. Then, let DO=x, thus DP=PB=11+x.

(1)
$$\triangle CPO \sim \triangle ADO$$
 , so we get $\frac{AD}{x} = \frac{y}{11}$, or $AD = \frac{xy}{11}$.

- (2) Applying Pythagorean Theorem on $\triangle CDP$ gives $(11+x)^2+y^2=43^2$.
- (3) $\overline{\triangle}BPC\sim \overline{\triangle}B\overline{D}A$ with ratio 1:2, so AD=2y using the fact that P is the midpoint of BD.

Thus,
$$\frac{xy}{11} = 2y$$
, or $x = 22$. And $y = \sqrt{43^2 - 33^2} = 2\sqrt{190}$, so $AD = 4\sqrt{190}$ and the answer is $4 + 190 =$ (D) 194 .

~ ccx09

Solution 4 (Extending the Line)

Observe that $\overline{\triangle}BPC$ is congruent to $\overline{\triangle}DPC$; both are similar to $\overline{\triangle}BDA$. Let's extend \overline{AD} and \overline{BC} past points D and C respectively, such that they intersect at a point E. Observe that $\angle BDE$ is 90 degrees, and that $\angle DBE\cong \angle PBC\cong \angle DBA\implies \angle DBE\cong \angle DBA$. Thus, by ASA, we know that $\overline{\triangle}ABD\cong \overline{\triangle}EBD$, thus, $\overline{AD}=\overline{ED}$, meaning D is the midpoint of \overline{AE} . Let \overline{M} be the midpoint of \overline{DE} . Note that $\overline{\triangle}C\overline{ME}$ is congruent to $\overline{\triangle}BPC$, thus $\overline{BC}=CE$, meaning C is the midpoint of \overline{BE} .

Therefore, \overline{AC} and \overline{BD} are both medians of $\overline{\triangle ABE}$. This means that Q is the centroid of $\overline{\triangle ABE}$; therefore, because the centroid divides the median in a 2:1 ratio, $\frac{BO}{2}=DO=\frac{BD}{3}$. Recall that P is the midpoint of BD; $DP=\frac{BD}{2}$. The question tells us that OP=11; DP-DO=11; we can write this in terms of DB; $\frac{DB}{2}-\frac{DB}{3}=\frac{DB}{6}=11 \implies DB=66$.

We are almost finished. Each side length of $\triangle ABD$ is twice as long as the corresponding side length $\triangle CBP$ or $\triangle CPD$, since those triangles are similar; this means that $AB=2\cdot 43=86$. Now, by Pythagorean theorem on $\triangle ABD$, $AB^2-BD^2=AD^2\implies 86^2-66^2=AD^2\implies AD=\sqrt{3040}\implies AD=4\sqrt{190}$.

The answer is 4+190= (D) 194

~ ihatemath123

Solution 5

Since P is the midpoint of isosceles triangle BCD, it would be pretty easy to see that $CP \perp BD$. Since $AD \perp BD$ as well, $AD \parallel CP$. Connecting AP, it's obvious that [ADC] = [ADP]. Since DP = BP, [APB] = [ADC].

Since P is the midpoint of BD, the height of $\triangle APB$ on side AB is half that of $\triangle ADC$ on CD. Since [APB]=[ADC], $AB=\bar{2}CD$.

As a basic property of a trapezoid, $\triangle AOB \sim \triangle COD$, so $\frac{OB}{OD} = \frac{AB}{CD} = 2$, or OB = 2OD. Letting OD = x, then PB = DP = 11 + x, and OB = 22 + x. Hence 22 + x = 2x and x = 22.

Since
$$\overline{\triangle AOD} \sim \overline{\triangle COP}$$
, $\frac{AD}{PC} = \frac{OD}{OP} = 2$. Since $PD = 11 + 22 = 33$, $PC = \sqrt{43^2 - 33^2} = \sqrt{760}$. So, $AD = 2\sqrt{760} = 4\sqrt{190}$. The correct answer is $\fbox{(D)}\ 194$

Solution 6 (Coordinate Bash)

Let D be the origin of the cartesian coordinate plane, B lie on the positive x axis, and A lie on the negative y axis. Then let the coordinates of B=(2a,0), A=(0,-2b). Then the slope of AB is $\frac{b}{a}$. Since $AB \parallel CD$ the slope of CD is the same. Note that as $\overline{\triangle}D\bar{C}B$ is isosceles C lies on x=a. Thus since CD has equation $y=\frac{b}{a}x$ (D is the origin), C=(a,b). Therefore $A\bar{C}$ has equation $y=\frac{3b}{a}x-2b$ and intersects BD(x axis) at $O=(\frac{2}{3}a,0)$. The midpoint of BD is P=(a,0) thus $OP=\frac{a}{3}=11 \implies a=33$. Then by Pythagorean theorem on $\overline{\triangle}DP\bar{C}$ ($\overline{\triangle}DB\bar{C}$ is isosceles) we have $b=\sqrt{44^2-33^2}=4\sqrt{190} \implies \boxed{\bf (D)}$ 194 $\boxed{\bf (D)}$.

~Aaryabhatta1

Video Solution (Using Similar Triangles, Pythagorean Theorem)

https://youtu.be/gjeSGJy_ld4

~ pi_is_3.14

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=rtdovluzgQs

Video Solution by Mathematical Dexterity

https://www.youtube.com/watch?v=QzAVdsgBBqg

See also

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Mathematics Competitions (http://amc.maa.org).

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_AMC_12A_Problems/Problem_17&oldid=169362"

Copyright © 2022 Art of Problem Solving