Efficient Automated Adaptive Computation of Protein-Ligand Absolute Binding Free Energies

Finlay Clark¹; Graeme Robb²; Daniel Cole³; Julien Michel¹

¹EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom ²Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom

³School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

Corresponding author: finlay.clark@ed.ac.uk

Alchemical absolute binding free energy calculations must become more efficient

- We implement and test an open-source fully-automated adaptive workflow for efficient ABFE calculations
- Based on BioSimSpace (system preparation) and SOMD (Sire/ OpenMM, free energy calculations)

PDBs: C) Adaptive Allocation of Simulation Time • Receptor Repeat for all stages • Ligand • Crystal Waters σ_0^2 σ_1^2 σ_2^2 σ_3^2 σ_4^2 For each λ : System Preparation σ_J^2 -based condition met? Parameterisation Solvation Minimisation Heating Short Equilibration X Equilibrated? Apply to all N replicas replicas A) Restraint B) λ Schedule Selection ΔG Equilibration Selection Default **○ ○ ○ ○ ○** D) Equilibration Detection Optimised Estimate ΔG^{O}_{Bind} Indepedent replicate runs of Workflow component λ window MD-based protocols github.com/michellab/a3fe

A) Restraints are selected to mimic strong receptor-ligand interactions

Algorithm

- Candidate sets of anchor points selected from simulation of receptor-ligand complex¹
- Force constants fit to fluctuations observed
- Pick the stable restraints² which most strongly restrict the configurational volume accessible to the ligand once decoupled³

Ensures only two windows required to introduce restraints and free energy cost of introduction is always ~ 1.2 kcal mol⁻¹

B) Lambda windows are spaced based on the standard deviation of the free energy change^{4,5}

Standard deviation of $\partial H/\partial \lambda$ as a function of λ estimated from very short initial simulations

C) Sampling time is allocated to minimise inter-replicate uncertainty

Accelerates convergence if the sampling issues occur on a timescale comparable to the simulation duration

 $\Delta G)_{\mathrm{Current},\lambda}$

Pre-specified

constant

D) Equilibration is detected based on an ensemble of replicates

Algorithm For each replicate run: Free energy change Calculate free energy change Equil. time (paired *t*) Equil. time Chodera (per run)

- using first 10 % and last 50 % of data
- Perform a paired t-test on the paired differences between the first and last portions of data
- If p < 0.05:
- Not equilibrated. Discard data from start of runs and repeat
- Else:
 - Assume equilibrated

Paired nature of test increases sensitivity to ensemble trend by ignoring systematic differences between replicas

Overall protocol accelerates equilibration

Current

simulation time

Free energy changes shown for the Lennard-Jones term removal stage, which dominates overall cost and equilibration:

Adaptive protocol:

Predicted optimal

simulation time

- Produces equivalent results to non-adaptive protocol
- Often produces faster convergence to long-time result, likely mainly due to wide spacing of λ windows

Overall protocol is robust

Current uncertainty

of per- $\lambda \Delta G$

- Non-adaptive ΔG_{Bind}^{o} / kcal mol⁻¹
- Adaptive protocol: 1/3 less compute time Adaptive r^2 to experiment: 0.75 [0.37, 0.91]
 - Non-adaptive r^2 : 0.81 [0.46, 0.94]

Conclusions

- Restraint selection, window spacing, and equilibration detection algorithms are simple but robust
- Allocating sampling time according to inter-replicate uncertainty only rarely provides an advantage
- Overall workflow is fully automated, robust and can accelerate equilibration

References

- [1] I. Alibay, IAlibay/MDRestraintsGenerator (version 0.1.0) Zenodo 2021.
- [2] S. Boresch et al., J. Phys. Chem. B, 2003, 107, 9535–9551.
- [3] F. Clark, G. Robb, D. J. Cole and J. Michel, J. Chem. Theory Comput., 2023, **19**, 3686–3704.
- [4] D. D. L. Minh, J. Comp. Chem., 2020, **41**, 715–730.
- [5] A. Rizzi, Ph.D. Thesis, Weill Medical College of Cornell University, 2020.
- [6] I. Alibay et al., Commun. Chem., 2022, **5**, 105.