▼ 7.0 - Logica proposizionale classica

▼ 7.1 - Sintassi della logica proposizionale

Sintassi

Sintassi: descrizione dell'insieme di tutte le connotazioni alle quali associamo una denotazione.

Formule

$$F ::= \bot |\top|A|B|...|\neg F|F \land F|F \lor F|F \Rightarrow F$$

Semantica intuitiva:

- ⊥: denota la falsità.
- ⊤: denota la verità.
- A, B, ...: denotano un valore di verità sconosciuto/non determinato (dipende dal mondo).
- $\neg F$: negazione di F.
- $F_1 \wedge F_2$: congiunzione di due formule.
- $F_1 \vee F_2$: disgiunzione inclusiva di due formule.
- $F_1 \Rightarrow F_2$: implicazione materiale di due formule.

Precedenza e associatività

• Precedenze: $\neg > \land > \lor > \Rightarrow$

Esempio:
$$\neg A \land B \lor \top \Rightarrow C$$
 si legge $(((\neg A) \land B) \lor \top) \Rightarrow C$

• Associatività: a destra per tutti gli operatori

Esempio:
$$A \Rightarrow B \Rightarrow C$$
 si legge $A \Rightarrow (B \Rightarrow C)$

Formalizzazione

Con **formalizzazione** di una frase in linguaggio naturale si intende trovare una formula logica che meglio approssima la frase.

Esempio:

- "Oggi piove ma non ho preso l'ombrello".
 - Formalizzazione in logica proposizionale: $A \wedge B$, dove A sta per "oggi piove" e B per "non ho preso l'ombrello". È una buona rappresentazione della frase ma approssimativa, in quanto "ma" ed "e" non hanno lo stesso identico significato nel linguaggio naturale.

Difficoltà nella formalizzazione

• Possono esistere diverse connotazioni per gli stessi connettivi.

Esempio:

- \circ "Se A allora B", "A implica B", "A è condizione sufficiente per B" ecc. vengono tutte formalizzate in $A\Rightarrow B$.
 - In questo caso tutte le connotazioni hanno lo stesso significato.
- \circ "A e B", "A ma B", "A nonostante B" vengono formalizzate in $A\wedge B$.
 - In questo caso però queste connotazioni non hanno lo stesso identico significato nel linguaggio naturale.

 Nel linguaggio naturale esistono sinonimi e contrari che devono essere identificati al fine di formalizzare in maniera corretta.

Esempio:

• "Se Mario è acculturato allora oggi c'è bel tempo", "oggi splende il sole e Mario è ignorante" devono essere formalizzate in questo modo: $M \Rightarrow B, B \land \neg M$.

▼ 7.2 - Semantica classica della logica proposizionale

Semantica: descrive ciò che viene associato alle connotazioni descritte dalla sintassi. Quello che viene associato sono le denotazioni, le quali vengono prese all'interno di un **dominio di interpretazione** scelto (insiemi, numeri, figure geometriche ecc.).

La semantica dunque descrive l'insieme di tutti i significati che diamo alle connotazioni descritte tramite la sintassi. Queste ovviamente variano a seconda del dominio di interpretazione che prendiamo in considerazione (1 > 0 è una proposizione che possiamo valutare prendendo in considerazione il dominio dei numeri, valutando 1 e 0 come numeri, o anche delle figure geometriche, valutando 1 e 0 come due figure geometriche).

Funzione semantica: funzione che associa ad una connotazione una denotazione derivante dal dominio di interpretazione fissato.

É possibile dare semantiche totalmente diverse allo stesso linguaggio. In genere esiste una **semantica intesa**, la quale corrisponde a quella semantica che viene attribuita ad un linguaggio nel caso in cui la semantica non viene definita in modo rigoroso.

Logica classica

La **logica classica** prevede una visione platonica, la quale vede il mondo come qualcosa di immutabile e non creato dall'uomo, ma preesistente prima dell'esistenza dell'uomo, il quale può solo osservare le sue leggi senza poterle modificare.

Secondo logica classica, in ogni mondo:

- Ogni enunciato è vero o falso, e non può essere vero o falso allo stesso tempo.
- Staticità: il valore di verità non muta (se qualcosa è vero/falso lo sarà per sempre).
- Determinatezza: il valore di verità di un enunciato è sempre determinato.

Utilizzeremo i naturali **0** e **1** per indicare le denotazioni di verità e falsità.

Funzione di interpretazione o **mondo**: funzione matematica che associa alle variabili proposizionali i valori di verità. $\{A, B, ...\} \rightarrow \{0, 1\}$ (Dominio \rightarrow Immagine).

Da qui in avanti indicheremo le funzioni di interpretazione con V, V', V_1, V_2 ecc.

Semantica classica

Nella **semantica classica** la semantica di \bot , \top e dei connettivi è già fissata, mentre varia in base al mondo quella delle variabili proposizionali A, B, ecc.

Data una funzione di interpretazione, definiamo la semantica classica $\llbracket.\rrbracket^V:F\to\{0,1\}$ tramite induzione strutturale nel seguente modo:

- $\llbracket \bot \rrbracket^V = 0$
- $\llbracket \top \rrbracket^V = 1$
- $\llbracket A \rrbracket^V = V(A)$

•
$$\llbracket \neg F \rrbracket^V = 1 - \llbracket F \rrbracket^V$$

•
$$\llbracket F_1 \wedge F_2
rbracket^V = min\{\llbracket F_1
rbracket^V . \llbracket F_2
rbracket^V \}$$

$$ullet \ \left \llbracket F_1 ee F_2
ight
Vert^V = max \{ \left \llbracket F_1
ight
Vert^V . \left \llbracket F_2
Vert^V
ight \}$$

•
$$\llbracket F_1 \Rightarrow F_2
rbracket^V = max\{1-\llbracket F_1
rbracket^V.\llbracket F_2
rbracket^V\}$$

Tabelle di verità

Top & Bottom.

$\llbracket F rbracket^v$	$ \llbracket \neg F \rrbracket^v $
0	1
1	0

Not.

$\llbracket F_1 rbracket^v$	$\llbracket F_2 rbracket^v$	$\llbracket F_1 \wedge F_2 rbracket^v$
0	0	0
0	1	0
1	0	0
1	1	1

And.

$\llbracket F_1 \rrbracket^v$	$\llbracket F_2 \rrbracket^v$	$\llbracket F_1 \vee F_2 \rrbracket^v$
0	0	0
0	1	1
1	0	1
1	1	1

Bottom.

$\llbracket F_1 \rrbracket^v$	$\llbracket F_2 rbracket^v$	$\llbracket F_1 \Rightarrow F_2 rbracket^v$
0	0	1
0	1	1
1	0	0
1	1	1

Se, allora.

Il **se, allora** ha un significato differente rispetto al pensiero comune in quanto quest'ultimo non comprende il caso $0\ 0\to 1$, il quale sta a significare che il falso implica qualunque cosa (es. [se 2+2=5, allora gli asini volano] $^V=1$).

▼ 7.3 - Conseguenza ed equivalenza logica in logica proposizionale classica

Conseguenza logica

F è **conseguenza logica** di Γ ($\Gamma \Vdash F$) quando per ogni mondo V si ha che, se $\llbracket G \rrbracket^V = 1$ per ogni $G \in \Gamma$, allora $\llbracket F \rrbracket^V = 1$.

Equivalenza logica

$$F$$
 è logicamente equivalente a G ($F\equiv G$) quando per ogni mondo V , ${\llbracket F\rrbracket}^V={\llbracket G\rrbracket}^V.$

A livello di tabella di verità, due formule sono logicamente equivalenti se le loro tabelle di verità coincidono.

Tautologie

F è una **tautologia** quando $\vdash F$, ovvero F è conseguenza logica dell'insieme vuoto di formule.

Ciò sta a significare che F è una verità assoluta, ovvero per ogni mondo si ha $\llbracket F \rrbracket^V = 1.$ Esempio:

- $\top=1$ è una tautologia, e di conseguenza anche $[\![\top]\!]^V\wedge[\![\top]\!]^V=1$ è una tautologia, in quanto vera in tutti i mondi.
- $\llbracket A \rrbracket^V \Rightarrow \llbracket A \rrbracket^V = 1$ è una tautologia, in quanto la sua tabella di verità è la seguente.

V(A)	$\llbracket A \Rightarrow A \rrbracket^{v}$
0	1
1	1

Soddisfacibilità e insoddisfacibilità

F è **soddisfatta** in un mondo V ($V \Vdash F$) se V(F) = 1.

F è **soddisfacibile** se esiste un mondo V in cui $V \Vdash F$.

La tabella di verità corrispondente ha almeno un 1.

F è **tautologica** quando per ogni mondo Vsi ha $V \Vdash F$.

La tabella di verità corrispondente ha tutti 1.

F è **insoddisfacibile** quando non esiste un mondo Vper cui $V \Vdash F$

La tabella di verità corrispondente ha tutti 0, infatti insoddisfacibile è il contrario di tautologica. Una formula ${\cal F}$ può dunque essere di 3 tipologie:

- Tautologica (tutti 1).
- Soddisfacibile ma non tautologica (sia 0 che 1).
- Insoddisfacibile (tutti 0).

▼ 7.4 - Teorema di invarianza per sostituzione nella logica proposizionale classica

Prima di definire in maniera rigorosa il **teorema di invarianza per sostituzione** nella logica proposizionale occorre definire il concetto di **contesto**, che nella logica proposizionale viene definito come una formula che contiene uno o più **buchi**. A sua volta un buco in logica proposizionale corrisponde a una variabile proposizionale, e riempire il buco corrisponde a rimpiazzare la variabile con una formula.

Esempi di sostituzione di una formula G al posto della variabile A nella formula/contesto F (scritto F[G/A]) sono i seguenti (avvengono per ricorsione strutturale su F):

- $\perp [G/A] = \perp$
- A[G/A] = G
- B[G/A] = B
- $(\neg F)[G/A] = \neg F[G/A]$
- $(F_1 \wedge F_2)[G/A] = F_1[G/A] \wedge F_2[G/A]$ (analogo ai casi \vee e \Rightarrow)

Dopo aver definito il concetto di contesto in logica proposizionale è possibile definire il teorema di invarianza per sostituzione:

Si ha **invarianza sostitutiva** se per tutte le formule F,G_1,G_2 e per A, se $G_1\equiv G_2$, allora $F[G_1/A]=F[G_2/A]$.

Esempi di dimostrazione dell'induzione strutturale:

- Caso $\perp : \perp [G_1/A] = \perp \equiv \perp = \perp [G_2/A].$
- Caso A: $A[G_1/A] = G_1 \equiv G_2 = A[G_2/A]$.
- Caso $B: B[G_1/A] = B \equiv B = B[G_2/A].$
- Caso $F_1 \wedge F_2$ (analogo ai casi \vee e \Rightarrow):
 - Dobbiamo dimostrare: $(F_1 \wedge F_2)[G_1/A] \equiv (F_1 \wedge F_2)[G_2/A]$
 - \circ Per ipotesi induttiva sappiamo: $\llbracket F_1[G_1/A] \rrbracket^V \equiv \llbracket F_1[G_2/A] \rrbracket^V$ e $\llbracket F_1[G_1/A] \rrbracket^V \equiv \llbracket F_1[G_2/A] \rrbracket^V$.
 - Dimostrazione:

$$\begin{split} & \llbracket (F_1 \wedge F_2)[G_1/A] \rrbracket^V \\ &= \llbracket F_1[G_1/A] \wedge F_2[G_1/A] \rrbracket^V \\ &= min \{ \llbracket F_1[G_1/A] \rrbracket^V . \llbracket F_2[G_1/A] \rrbracket^V \} \\ &= min \{ \llbracket F_1[G_2/A] \rrbracket^V . \llbracket F_2[G_2/A] \rrbracket^V \} \\ &= \llbracket F_1[G_1/A] \wedge F_2[G_1/A] \rrbracket^V \\ &= \llbracket (F_1 \wedge F_2)[G_2/A] \rrbracket^V \end{split}$$

▼ 7.5 - Connettivi e tabelle di verità

Ogni **connettivo n-ario** è una funzione $f:\{0,1\}^n \to \{0,1\}$ e viene definito da una tabella di verità con 2^n **righe**.

Inoltre n valori in input sono in grado di descrivere 2^{2^n} connettivi differenti. Solo per alcuni di questi è stata però data una connotazione.

Connettivi 0-ari

Connettivi 0-ari.

Tutti i $2^{2^0}=2^1=2$ connettivi 0-ari hanno una connotazione (\perp e \top).

Connettivi 1-ari

<i>v</i> (<i>F</i>)			$\llbracket \neg F rbracket^v$	
0	0	0	1	1
1	0	1	0	1

Connettivi 1-ari

Dei $2^{2^1}=2^2=4$ connettivi 1-ari solo il \neg ha una connotazione, in quanto gli altri non sono particolarmente utili.

Connettivi 2-ari

F_1	$ F_2 $		\wedge					\oplus	V	V	\iff				\Rightarrow	Ñ	
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Connettivi 2-ari.

Dei $2^{2^2}=2^4=16$ connettivi 2-ari solo alcuni hanno una connotazione.

Riduzione fra connettivi

Spesso è possibile esprimere un connettivo utilizzandone altri e l'equivalenza logica, in questi casi si dice che il connettivo è **riducibile** ad altri.

Esempi:

- $A \Rightarrow B \equiv \neg A \lor B$
- $\neg A \equiv A \Rightarrow \bot$

Ridondante

Un insieme di connettivi è **ridondante** se contiene almeno un connettivo riducibile ai restanti.

Funzionalmente completo

Un insieme di connettivi è **funzionalmente completo** se ogni altro connettivo è riducibile a questi.

Notazione: Siano S e T due insiemi di connettivi, si scrive $S \rhd T$ se ogni connettivo di S è riducibile ai connettivi di T.

Teorema:

Se S è funzionalmente completo e $S\rhd T$, allora anche T è funzionalmente completo.

Perchè i connettivi della logica proposizionale classica?

 $\{\lor,\land,\bot,\top,\neg\}$ è l'insieme dei connettivi scelto dalla logica proposizionale classica. Questo insieme è funzionalmente completo ma anche ridondante, ed è stato scelto per via di un compromesso fra l'esigenza di considerare un insieme **piccolo** e **funzionalmente completo**, e un insieme che permetta di esprimere in modo semplice ragionamenti effettuati tramite il **linguaggio naturale**.

Inoltre la riduzione fra i vari connettivi dipende dalla semantica utilizzata, e l'insieme dei connettivi scelto è funzionalmente completo in quasi **tutte le semantiche** utilizzate.

Infine sono stati scelti questi connettivi per via delle loro rilevanza sia in ambito **matematico** che **informatico**.

Equivalenze logiche notevoli

Nota: le equivalenze in rosso valgono solo in logica proposizionale classica)

Commutatività

$$A \vee B \equiv B \vee A$$
, $A \wedge B \equiv B \wedge A$

Associatività

$$A \lor (B \lor C) \equiv (A \lor B) \lor C, A \land (B \land C) \equiv (A \land B) \land C$$

Idempotenza

$$A \lor A \equiv A$$
, $A \land A \equiv A$

Distributività

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C), A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

Assorbimento

$$A \lor (A \land B) \equiv A, A \land (A \lor B) \equiv A$$

Elemento neutro

$$A \lor \bot \equiv A, A \land \top \equiv A$$

Annichilamento

$$A \lor \top \equiv \top$$
, $A \land \bot \equiv \bot$

Doppia negazione

$$\neg \neg A \equiv A$$

De morgan

$$\neg (A \lor B) \equiv \neg A \land \neg B, \neg (A \land B) \equiv \neg A \lor \neg B$$

Implicazione

$$A \Rightarrow \equiv \neg A \lor B$$

Equivalenze logiche aggiuntive

Modus barbara: $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Regola di deduzione:

- $\neg A \lor B, A \Vdash B$
- $\neg A \lor B, A \lor B \Vdash B \lor C$

Teorema di completezza

Siano P e Q due formule della logica proposizionale, $P\equiv Q$ se e se solo se posso dimostrarlo tramite le equivalenze logiche notevoli appena presentate.

▼ 7.6 - Deduzione sintattica

Vediamo ora una serie di teoremi che permettono di chiarire i rapporti che esistono tra alcuni connettivi $(\Rightarrow, \Leftrightarrow, \neg, \bot, \top)$ e le nozioni di conseguenza ed equivalenza logica.

Nota: le dimostrazioni dei seguenti teoremi si trovano nelle slide, sono da imparare a memoria.

Teorema di deduzione semantica

Lemma

Per ogni formula F e G si ha $\Gamma \Vdash F \Rightarrow G$ se e solo se $\Gamma, F \Vdash G$.

Teorema

Per tutte le formula
$$F_1,...,F_n,G$$
 si ha $F_1,...,F_n \Vdash G$ se e solo se $\Vdash F_1 \Rightarrow ... \Rightarrow F_n \Rightarrow G.$

Il teorema di deduzione semantica è molto importante in quanto ci dice che il concetto di **conseguenza logica** è riducibile al concetto di **tautologia** e viceversa.

Altri teoremi

Teorema

$$\Vdash F$$
 se e solo se $F \Rightarrow op$.

Teorema

$$\Vdash F$$
 se e solo se $\neg F$ è insoddisfacibile.

Teorema

 $\Gamma \Vdash F$ se e solo se l'insieme $\Gamma, \lnot F$ è insoddisfacibile.

Teorema

 Γ è insoddisfacibile se e solo se $\Gamma \Vdash \bot$.

Teorema

 Γ è **soddisfacibile** se e solo se $\Gamma \not \Vdash \bot$.