as these vectors are from 183, they must be linearly dependent.

:. $K_1V + K_2AV + K_3A^2V + K_4A^3V = 0$ where not all K_1 , K_2 , K_3 and K_4 are O.

$$k_1 = 16k_3 + 160k_4$$
 $K_2 = -10k_3 - 89k_4$
 $k_3 = 16k_3 + 160k_4$
 $k_4 = 16k_3 + 160k_4$
 $k_5 = 176$
 $k_6 = 176$

$$(A+11)(A-9)(A-2)\overrightarrow{V}=0$$

$$(A+11)(A-8)(A-2)\overrightarrow{V}=0$$

$$\therefore \text{ eigenvalues :- } 8,2 \rightarrow -11 \text{ rejected.}$$

$$\text{repeated.}$$

Q2)
$$\rightarrow B = PAP$$
 where P nonsingular.
 $\Rightarrow QBQ = (P')BP'$ $Q = P'$
 $= PBP'$
 $= P(P'AP)P' \rightarrow A.$ B is similar to A.

(ii)
$$B = P^{-1}AP$$

$$det(B) = det(P^{-1}) \cdot det(A) \cdot det(P)$$

$$= \frac{1}{2} \cdot det(A) \cdot K \cdot \rightarrow det(A)$$

$$Q_{6}(a)(i) = \begin{bmatrix} 3 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow (3-\lambda)^{2} - 1 = 0$$

$$V_{1} = \begin{bmatrix} x & 4 \\ -1 & 1 \end{bmatrix} \rightarrow \langle x, y \rangle$$

$$= (1, 1).$$

$$V_{2} = \begin{bmatrix} x & 4 \\ 1 & 1 \end{bmatrix} = \langle x, -4 \rangle \rightarrow (1, -1)$$

$$P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, P = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \xrightarrow{\text{Arm}}$$

Qq(b) They are the eigenvectors associated with A.

Q7) A -> Symmetric

eigenvalue 1, , 1/2

 $Ax = \lambda_1 X.$ $= \sum_{multiply} with y^{T} on both sides.$ $y^{T}Ax = \lambda_1 y^{T}x \rightarrow 0$

, subtrading transpoxe

Minimary. $x^{T}Ay = \lambda_{2} \times^{T} y = 1$

BYXIK = BATX+ [

λ2 - λ, ≠0 hence x^T· y are oxthogonal.

as it was assumed that 1/2 and 1, are distinct. x,y are from different eigenspaces.

(1) False - Identity Matrix.

(ii) False.

(ii) Tone.

(iv) True.

03) Find A matrix
$$P$$
 that Diagratizes A and discurring $P^{-1}AP$

where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

$$\det(\lambda I - A) = \begin{bmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 1 & -1 \\ 0 & -1 & \lambda - 1 \end{bmatrix} = \lambda - 1 \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1) [(\lambda - 1)^{2} - 1]$$

if $\lambda_{1} = 0$ if $\lambda_{2} = 1$ if $\lambda_{3} = 2$

$$P_{2} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

i.e. $\begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}$

$$P_{2} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

i.e. $\begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix}$

Exercise set 7.1

11. By Theorem 7.1.1, the eigenvalues of *A* are 1, 1/2, 0, and 2. Thus by Theorem 7.1.3, the eigenvalues of A^9 are $1^9 = 1$, $(1/2)^9 = 1/512$, $0^9 = 0$, and $2^9 = 512$.

12

(a) (a) A =
$$\begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
 Eigen value and gases of eigenspace

Using theorem 7.1.2 d => $det(2I-A)=0$

$$|XI-A| = \begin{bmatrix} 2+1 & +2 & +2 \\ -1 & 2-1 & 1 \\ 2 & 2-1 & 2 \end{bmatrix} \Rightarrow \begin{cases} 2^3-2^2-2+1=0 \\ 2^3-1-1& 2 \\ 2^3 & 2^2-2+1=0 \end{cases}$$

If $\lambda = 1$

(AI-A) = $\begin{bmatrix} 2 & 2 & 123 \\ -1 & -1 & 23 \\ 2 & 2 & 23 \end{bmatrix}$
 $\begin{bmatrix} 2 & 2 & 2 & 23 \\ 2 & 2 & 2 & 3 \end{bmatrix}$

Let approximation $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ 2 & 2 & 3 \end{bmatrix}$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2^2 - 2 + 1 = 0$

Parametric equations

 $2^3 - 2$

Proof (a) \Rightarrow (b) Since A is assumed diagonalizable, there is an invertible matrix

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

such that $P^{-1}AP$ is diagonal, say $P^{-1}AP = D$, where

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

It follows from the formula $P^{-1}AP = D$ that AP = AD; that is,

$$AP = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 p_{11} & \lambda_2 p_{12} & \cdots & \lambda_n p_{1n} \\ \lambda_1 p_{21} & \lambda_2 p_{22} & \cdots & \lambda_n p_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda_1 p_{n1} & \lambda_2 p_{n2} & \cdots & \lambda_n p_{nn} \end{bmatrix}$$
(1)

If we now let \mathbf{p}_1 , \mathbf{p}_2 , ..., \mathbf{p}_n denote the column vectors of P, then from 1, the successive columns of AP are $\lambda_1\mathbf{p}_1$, $\lambda_2\mathbf{p}_2$, ..., $\lambda_n\mathbf{p}_n$. However, from Formula 6 of Section 1.3, the successive columns of AP are $A\mathbf{p}_1$, $A\mathbf{p}_2$,..., $A\mathbf{p}_n$. Thus we must have

$$A\mathbf{p}_1 = \lambda_1 \mathbf{p}_1, \qquad A\mathbf{p}_2 = \lambda_2 \mathbf{p}_2, ..., \qquad A\mathbf{p}_n = \lambda_n \mathbf{p}_n$$
 (2)

Since P is invertible, its column vectors are all nonzero; thus, it follows from 2 that λ_1 , λ_2 , ..., λ_n are eigenvalues of A, and \mathbf{p}_1 , \mathbf{p}_2 , ..., \mathbf{p}_n are corresponding eigenvectors. Since P is invertible, it follows from Theorem 7.1.5 that \mathbf{p}_1 , \mathbf{p}_2 , ..., \mathbf{p}_n are linearly independent. Thus A has n linearly independent eigenvectors.

(b) \Rightarrow (a) Assume that A has n linearly independent eigenvectors, \mathbf{p}_1 , \mathbf{p}_2 , ..., \mathbf{p}_n , with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, and let

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

be the matrix whose column vectors are $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n$. By Formula 6 of Section 1.3, the column vectors of the product AF are $A\mathbf{p}_1, A\mathbf{p}_2, ..., A\mathbf{p}_n$

But

$$A\mathbf{p}_1 = \lambda_1 \mathbf{p}_1, \quad A\mathbf{p}_2 = \lambda_2 \mathbf{p}_2, \dots, \quad A\mathbf{p}_n = \lambda_n \mathbf{p}_n$$

so

$$AP = \begin{bmatrix} \lambda_{1}p_{11} & \lambda_{2}p_{12} & \cdots & \lambda_{n}p_{1n} \\ \lambda_{1}p_{21} & \lambda_{2}p_{22} & \cdots & \lambda_{n}p_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda_{1}p_{n1} & \lambda_{2}p_{n2} & \cdots & \lambda_{n}p_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} = PD$$

$$(3)$$

where D is the diagonal matrix having the eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ on the main diagonal. Since the column vectors of P are linearly independent, P is invertible. Thus 3 can be rewritten as $P^{-1}AP = E$; that is, A is diagonalizable.

Question 9

- 1. (a) The characteristic equation is $\lambda(\lambda - 5) = 0$. Thus each eigenvalue is repeated once and hence each eigenspace is 1-dimensional.
 - (c) The characteristic equation is $\lambda^2(\lambda-3)=0$. Thus the eigenspace corresponding to λ = 0 is 2-dimensional and that corresponding to λ = 3 is 1-dimensional.
 - (e) The characteristic equation is $\lambda^3(\lambda 8) = 0$. Thus the eigenspace corresponding to λ = 0 is 3-dimensional and that corresponding to λ = 8 is 1-dimensional.

exercise 7.3

characteristic polynomial , det(2I-A) = 0

$$A = \begin{bmatrix} 1 & -4 & 2 \\ -4 & 1 & -2 \\ 2 & -2 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 4 & -2 \\ 4 & 2 & -1 & 2 \\ -2 & 2 & 2 & 2 \end{bmatrix} = (2 - 1)^{2} (2 - 1)^{2} (2 - 1)^{2} (1 + 1)^{2} (2 - 1)$$

det(2I-A) = 23-272-54

$$\Rightarrow \lambda r \approx (\lambda - 6)(\lambda + 3)^2 = 0$$

$$\lambda_1 = -3$$
, $\lambda_2 = 6$

d) Characteristic polynomial;

Az
$$\begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$
 $\Rightarrow (\lambda - 8)(\lambda - 2)^2 = 0$

$$\begin{array}{c} \left(\begin{array}{c} 2 \\ -1 \end{array}\right) \quad \lambda = \begin{bmatrix} 2 \\ -1 \end{array} \quad \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \quad \begin{array}{c} 0 \\ 2 \end{array} \quad \begin{array}{c} 0 \\ 0 \end{array} \quad \begin{array}{$$