Математический Анализ - 2

Серёжа Рахманов | telegram, website Максим Николаев | telegram

Версия от 27.10.2020 13:28

Содержание

1	Iекция 1 - 01.09.2020 - Ряды	3
	.1 Определение ряда	. 3
	.2 Необходимое условие сходимости	. 3
	.3 Критерий Коши	. 3
	.4 Положительные ряды	. 4
	.5 Признаки сравнения	. 4
	.6 Отсутствие универсального ряда сравнения	. 5
2	Іекция 2 - 08.09.2020 - Положительные ряды	6
	.1 Признак Лобачевского-Коши	
	.2 Теорема Штольца и оценка частичных сумм гармонического ряда	
	.3 Признак Даламбера и радикальный признак Коши	
	.4 Радикальный признак сильнее признака Даламбера	
	.5 Признак Гаусса	. 7
	.6 Сравнение с интегралом	. 8
	.7 Улучшение сходимости ряда	. 8
	T 0 17 00 0000 D	•
3	Іекция 3 - 15.09.2020 - Знакопеременные ряды	9
	.1 Абсолютная и условная сходимость	
	.2 Мажорантный признак Вейерштрасса	
	.3 Группировка членов ряда	
	.4 Знакочередующиеся ряды, пр-к Лейбница	
	.5 О неприменимости эквивалентности	
	.6 Признаки Дирихле и Абеля	
	.7 Влияние перестановки членов ряда на его сумму	. 11
4	І екция 4 - 22.09.2020	12
	.1 Умножение рядов	
	.2 Бесконечное произведение	
	4.2.1 Основные понятия	
	4.2.2 Сходимость бесконечного произведения	
	4.2.3 Абсолютная сходимость бесконечного произведения	
	.3 Функциональные последовательности	
	4.3.1 Поточечная и равномерная сходимость	
	4.3.2 Равномерная норма. Критерий Коши	
	4.3.3 Теорема Дини	
5	Іекция 5 - 29.09.2020 - Исследование сходимости функциональных рядов	14
	.1 Свойства равномерно сходящейся последовательности	
	.2 Равномерная сходимость функционального ряда	
	.3 Необходимое условие равномерной сходимости	
	.4 Критерий Коши равномерной сходимости	
	.5 Признаки Вейерштрасса и Даламбера	. 15
	.6 Признак Лейбница	
	.7 Признаки Дирихле и Абеля	. 15
	.8 Свойства равномерно сходящегося ряда	

6	Лек	ция 6 - 6.10.2020 - Степенные ряды	1
	6.1	Основные понятия	1
	6.2	Теорема Абеля, радиус и интервал последовательности	1
	6.3	Равномерная сходимость степенного ряда	1
	6.4	Сходимость ряда в граничных точках интервала сходимости	1
	6.5	Дифференцирование и интегрирование степенного ряда	1
	6.6	Бесконечное дифференцирование	1
	6.7	Ряд Тейлора	1
		6.7.1 Ряды Тейлора основных элементарных функций	1
7	Лек	ция 7 - 27.10.2020 - Мера Жордана	1
	7.1	Мера на кольце множеств	1
	7.2	Ограниченные полуинтервалы в \mathbb{R}^m	1
	7.3	Кольцо простых множеств	
	7.4	Внешняя т-мерная мера Жордана	
	7.5	Измеримость по Жордану	
	7.6	Интегрируемость функции по Риману и измеримость по Жордану её подграфика	

1 Лекция 1 - 01.09.2020 - Ряды

1.1 Определение ряда

Определение 1. Пусть a_n – последовательность, т.е. $\mathbb{N} \to \mathbb{R}$. Формальная бесконечная сумма: $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$

называется рядом. $S_N = \sum_{n=1}^N a_n$ – частичная сумма, сумма ряда: $S = \lim_{N \to \infty} S_N$

Возможны 3 случая:

1.
$$\exists S \in \mathbb{R}$$

2.
$$\exists S = \infty$$

В первом случае говорят, что ряд сходится, иначе – что ряд расходится.

Пример.

1.
$$\sum_{n=1}^{\infty} 0 = 0 + 0 + \dots + 0 = 0$$

2.
$$\sum_{n=1}^{\infty} 1 = 1 + 1 + \dots + 1 = \infty$$

3.
$$\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - \dots$$
 не существует

Определение 2. Если ряд сходится, т.е. $S_N \to S$ при $N \to \infty$, то $S - S_N = r_N$ – остаток ряда

$$r_N = \sum_{n=N+1}^{\infty} a_n, \, r_N o 0$$
 при $N o \infty$

1.2 Необходимое условие сходимости

Замечание. Если ряд сходится, то $a_n \to 0$

Доказательство.
$$a_n=S_n-S_{n-1}\to 0,$$
 т.к. $S_n\to S$ и $S_{n-1}\to S$

1.3 Критерий Коши

Определение 3. a_n называется фундаментальной, если $\forall \varepsilon > 0 \ \exists N : \forall n > m > N \implies |S_n - S_m| < \varepsilon$

Теорема 1.1. S_n – $cxodumcs\Leftrightarrow S_n$ – фундаментальная

Доказательство.
$$S_n - S_m = \sum_{k=m+1}^n a_k$$
 Тогда $\sum a_n$ – сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists N : \forall n > m > N \ |a_{m+1} + a_{m+2} + \dots + a_n| < \varepsilon$

Пример.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Заметим, что
$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \left(\frac{1}{n} - \frac{1}{n+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{N} - \frac{1}{N+1}\right) = 1 - \frac{1}{N+1} \rightarrow 1$$

Этот ряд сходится при $N \to \infty$: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$

2.
$$z \in \mathbb{C}, z = |z| \cdot (\cos \varphi + i \sin \varphi)$$

Рассмотрим ряд
$$\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots$$

$$S_N = 1 + z + z^2 + \dots + z^N = \frac{1 - z^{N+1}}{1 - z}$$

Ряд сходится $\Leftrightarrow |z| < 1$

$$|z| < 1 \Rightarrow z^n \to 0, S_N = \frac{1 - z^{N+1}}{1 - z} \to \frac{1}{1 - z}$$

1.4 Положительные ряды

$$\sum_{n=1}^{\infty} a_n, a_n \geqslant 0, \ S_n \uparrow, \text{ t.k. } S_{n+1} \geqslant S_n$$

Возможны 2 случая

1.
$$\exists S \in \mathbb{R}$$

2.
$$\exists S = \infty$$

Обозначение 1.
$$\sum_{n=1}^{\infty}a_n<\infty$$
 – ряд сходится, $\sum_{n=1}^{\infty}a_n=\infty$ – ряд расходится.

1.5 Признаки сравнения

1. Сравнение с помощью неравенства.

$$a_n \leqslant b_n$$
 при всех $n \geqslant n_0$

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

2. Сравнение отношений.

$$rac{a_{n+1}}{a_n}\leqslant rac{b_{n+1}}{b_n}$$
 при всех $n\geqslant n_0$

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

Доказательство.

$$a_{n_0+1} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+1}$$

$$a_{n_0+1} \qquad a_{n_0} \qquad a_{n_0} \qquad b$$

$$a_{n_0+2} \leqslant \frac{a_{n_0+1}}{b_{n_0+1}} \cdot b_{n_0+2} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+2}$$

:

$$a_{n_0+k} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+k} \implies \sum_{n=n_0}^N a_n \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot \sum_{n=n_0}^N b_n$$

3. Сравнение с помощью предела.

$$\lim_{n\to\infty}\frac{a_n}{b_n}\in(0;+\infty)\implies \text{сходимость }\sum a_n\iff \text{сходимость }\sum b_n$$

Доказательство.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n} > 0$$

$$\forall \varepsilon \ \exists n_0: \ c - \varepsilon \leqslant \frac{a_n}{b_n} \leqslant c + \varepsilon, \ \forall n \geqslant n_0$$

Возьмём
$$\varepsilon: c-\varepsilon > 0 \implies (c-\varepsilon) \cdot b_n \leqslant a_n \leqslant (c+\varepsilon) \cdot b_n$$

Сходимость следует из правой части неравенства, а расходимость из левой.

Отсутствие универсального ряда сравнения

Предложение. Не существует ряда $\sum c_n, \, c_n > 0$: 1) $\frac{a_n}{c_n} \to 0 \implies$ ряд $\sum a_n$ сходится.

1)
$$\frac{a_n}{c_n} \to 0 \implies \text{ряд } \sum a_n \text{ сходится}$$

2)
$$\frac{b_n}{c_n} \to \infty \implies \text{ряд } \sum b_n \text{ расходится.}$$

Доказательство.

1. Если ряд $\sum c_n$ расходится, то пусть $S_N = \sum_{n=1}^N c_n \to \infty, S_0 = 0$, тогда ряд $\sum_{n=1}^\infty (\underbrace{\sqrt{S_n} - \sqrt{S_{n-1}}}_{q_n})$ расходится так как:

(a)
$$\sum_{n=1}^{N} (\sqrt{S_n} - \sqrt{S_{n-1}}) = \sqrt{S_1} - \sqrt{S_0} + \sqrt{S_2} - \sqrt{S_1} + \dots + \sqrt{S_N} - \sqrt{S_{N-1}} = \sqrt{S_N} - \sqrt{S_0} = \sqrt{S_N} \to \sqrt{S_N}$$

(b)
$$\frac{\sqrt{S_n} - \sqrt{S_{n-1}}}{c_n} = \frac{\sqrt{S_n} - \sqrt{S_{n-1}}}{S_n - S_{n-1}} = \frac{1}{\sqrt{S_n} + \sqrt{S_{n-1}}} \implies \frac{a_n}{c_n} \to 0$$

Ряд расходится, но по предположению сходится, получили противоречие.

2. Если ряд $\sum_{n=1}^{\infty} c_n$ сходится, то рассмотрим r_n - его n-ный остаток, тогда ряд $\sum_{n=1}^{\infty} (\underbrace{\sqrt{r_{n-1}} - \sqrt{r_n}}), r_0 = S = \sum_{n=1}^{\infty} c_n$ сходится, так как:

(a)
$$\sum_{\substack{n=1\\r_N\to 0}}^N (\sqrt{r_{n-1}} - \sqrt{r_n}) = \sqrt{r_0} - \sqrt{r_1} + \sqrt{r_1} - \sqrt{r_2} + \dots + \sqrt{r_{N-1}} - \sqrt{r_N} = \sqrt{r_0} - \sqrt{r_N} = \sqrt{S} - \sqrt{r_N} \to \sqrt{S}, \text{ t.k.}$$

(b)
$$\frac{\sqrt{r_{n-1}} - \sqrt{r_n}}{c_n} = \frac{\sqrt{r_{n-1}} - \sqrt{r_n}}{r_{n-1} - r_n} = \frac{1}{\sqrt{r_{n-1}} + \sqrt{r_n}} \to \infty$$
, t.k. $\sqrt{r_{n-1}} \to 0$ if $\sqrt{r_n} \to 0$

Ряд сходится, но по предположению расходится, получили противоречие.

5

2 Лекция 2 - 08.09.2020 - Положительные ряды

Признак Лобачевского-Коши

Предложение. Пусть $a_n>0$ и $a_n\downarrow$ Тогда ряды $\sum a_n$ и $\sum 2^n\cdot a_{2^n}$ ведут себя одинаково

Доказательство. $a_1 + (a_2) + (a_3 + a_4) + (a_5 + \cdots + a_8) + \dots$

$$a_1 \geqslant a_2 \geqslant a_2$$

$$2a_2 \geqslant a_3 + a_4 \geqslant 2a_4$$

$$4a_4 \geqslant a_5 + \dots + a_8 \geqslant 4a_8$$

$$a_1 + \sum_{n=0}^{m-1} 2^n a_{2^n} \geqslant \sum_{n=1}^{2^m} a_n \geqslant a_1 + \frac{1}{2} \sum_{n=1}^{m} 2^n a_{2^n}$$

 Πp имер. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ — обобщённый гармонический ряд, p>0 $a_n=\frac{1}{n^p}\downarrow \qquad a_{2^n}=\frac{1}{(2^n)^p}$

$$a_n = \frac{1}{n^p} \downarrow \qquad a_{2^n} = \frac{1}{(2^n)^p}$$

$$\sum_{n=1}^{\infty} 2^n \cdot \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} \frac{1}{(2^n)^{p-1}} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{p-1}}\right)^n$$

Это сумма геометрической прогрессии со знаменателем $q=rac{1}{2^{p-1}}$

$$q < 1 \iff p > 1$$
 – ряды сходятся, например: $\sum \frac{1}{n^{1,001}}, \sum \frac{1}{n^2}$

$$q\geqslant 1\iff p\leqslant 1$$
 – ряды расходятся, например: $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}},$ $\sum_{n=1}^{\infty}\frac{1}{n}$

Пример.
$$\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln^p n}, p > 0$$

$$\frac{1}{n \cdot \ln^p n} \downarrow , a_{2^n} = \frac{1}{2^n \cdot \ln^p 2^n} = \frac{1}{2^n \cdot n^p \cdot \ln^p 2}$$

$$\frac{1}{n \cdot \ln^p n} \downarrow , a_{2^n} = \frac{1}{2^n \cdot \ln^p 2^n} = \frac{1}{2^n \cdot n^p \cdot \ln^p 2}$$
$$\sum_{n=1}^{\infty} 2^n \cdot a_{2^n} = \sum_{n=1}^{\infty} 2^n \frac{1}{2^n \cdot n^p \cdot \ln^p 2} = \frac{1}{\ln^p 2} \cdot \sum_{n=1}^{\infty} \frac{1}{n^p}$$

Теорема Штольца и оценка частичных сумм гармонического ряда

Гармонический ряд: $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

$$A_n = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} - \ln n$$

$$B_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$$

$$A_n \uparrow, B_n$$

$$B_n > A_n$$

$$B_1 > \dots > B_{n-1} > B_n > A_n > A_{n-1} > \dots > A_1, \forall n \in \mathbb{N}$$

$$B_n - A_n = \frac{1}{n} \to 0$$

 $B_n-A_n=rac{1}{n} o 0$ Значит, $\exists \lim A_n=\lim B_n=\gammapprox 0.5772\dots$ – число Эйлера-Маскерони

$$\sum_{n=1}^{N} \frac{1}{n} = 1 + \frac{1}{2} + \dots + \frac{1}{N} = \ln N + \gamma + o(1)$$

Теорема 2.1. (Штольца.) Если $p_n, q_n \to 0, q_n \downarrow u \; \exists lim \frac{p_{n+1} - p_n}{q_{n+1} - q_n}, \; mo \; lim \; \frac{p_n}{q_n} = lim \; \frac{p_{n+1} - p_n}{q_{n+1} - q_n}$

$$\lim \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n - \gamma}{\frac{1}{n}} = \lim \frac{\frac{1}{n+1} - \ln(n+1) + \ln n}{\frac{1}{n+1} - \frac{1}{n}} = \lim \frac{\frac{1}{n} \cdot \frac{1}{1 + \frac{1}{n}} - \ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n} \cdot \left(\frac{1}{1 + \frac{1}{n}} - 1\right)} \stackrel{\cong}{=}$$

$$\begin{split} &\frac{1}{1+\frac{1}{n}} = 1 - \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \\ &\ln\left(1+\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \\ &\text{Получаем, что} \stackrel{\heartsuit}{=} \lim \frac{-\frac{1}{2n^2}}{-\frac{1}{n^2}} = \frac{1}{2} \end{split}$$

$$1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln n + \gamma + \underbrace{\frac{1}{2n} + o\left(\frac{1}{n}\right)}_{o(1)}$$

Так как

$$\frac{1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n - \gamma - \frac{1}{2n}}{\frac{1}{n}} \to 0$$

Признак Даламбера и радикальный признак Коши

Теорема 2.2. Признак Дарамбера. Пусть
$$a_n > 0$$
. $\overline{\lim} \frac{a_{n+1}}{a_n} < 1 \implies pя \partial \sum a_n \ cxo \partial umcs$. $\underline{\lim} \frac{a_{n+1}}{a_n} > 1 \implies ps \partial \sum a_n \ pacxo \partial umcs$.

Теорема 2.3. Радикальный признак Коши. Пусть $a_n \geqslant 0$.

$$\begin{array}{ll} \overline{\lim} \sqrt[n]{a_n} < 1 \implies p \mathfrak{s} \partial \sum a_n \ cxo \partial um c \mathfrak{s}. \\ \underline{\lim} \sqrt[n]{a_n} > 1 \implies p \mathfrak{s} \partial \sum a_n \ pacxo \partial um c \mathfrak{s}. \end{array}$$

$$\Pi p u м e p. \sum_{n=1}^{\infty} \frac{p^n}{n!}, \quad p>0$$

$$a_n = \frac{p^n}{n!}, \quad \frac{a_{n+1}}{a_n} = \frac{p^{n+1}}{(n+1)!} \cdot \frac{n!}{p^n} = \frac{p}{n+1} \to 0 < 1 \implies \text{ряд сходится по признаку Даламбера.}$$

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{p^n}{n!}} = \frac{p}{\sqrt[n]{n!}} \to 0 < 1 \implies \text{ряд сходится по радикальному признаку Коши.} (\sqrt[n]{n!} \to \infty)$$

2.4 Радикальный признак сильнее признака Даламбера

Пусть $a_n > 0$. Тогда:

$$\varliminf \frac{\lim \frac{a_{n+1}}{a_n} \leqslant \varliminf \sqrt[n]{a_n} \leqslant \varlimsup \sqrt[n]{a_n} \leqslant \varlimsup \frac{a_{n+1}}{a_n}}{a_n} \leqslant \varlimsup \sqrt[n]{a_n} \leqslant \varlimsup \frac{a_{n+1}}{a_n}$$
 Если $\varliminf \frac{a_{n+1}}{a_n} > 1 \implies \varliminf \sqrt[n]{a_n} < 1$ Если $\varliminf \frac{a_{n+1}}{a_n} > 1 \implies \varliminf \sqrt[n]{a_n} > 1$ Если $\exists \lim \frac{a_{n+1}}{a_n}$, то $\varlimsup \frac{a_{n+1}}{a_n} = \varliminf \frac{a_{n+1}}{a_n} \Rightarrow \exists \lim \sqrt[n]{a_n} = \lim \frac{a_{n+1}}{a_n}$

2.5 Признак Гаусса

(Сравнение с
$$\sum \frac{1}{n^p}$$
)
Если $\exists \delta > 0, p: \frac{a_{n+1}}{a_n} = 1 - \frac{p}{n} + O\left(\frac{1}{n^{1+\delta}}\right)$ то:
 $p > 1 \implies \text{ряд } \sum a_n \text{ сходится.}$
 $p \leqslant 1 \implies \text{ряд } \sum a_n \text{ расходится.}$

Сравнение с интегралом

Рассмотрим
$$f(x)\downarrow$$
 при $x\geqslant n_0-1$ и ряд $\sum_{n=n_0}^{\infty}a_n$, где $a_n=f(n)$

$$f(n+t) \le a_n \le f(n-1+t), t \in [0;1]$$

$$\int_0^1 dt: \quad \int_n^{n+1} f(x)dx \leqslant a_n \leqslant \int_{n-1}^n f(x)dx$$

$$\sum_{n=n_0}^{\infty} : \int_{n_0}^{N+1} f(x) dx \leqslant \sum_{n=n_0}^{N} a_n \leqslant \int_{n_0-1}^{N} f(x) dx$$

$$\Longrightarrow \sum a_n$$
ведёт себя так же как несобственный интеграл $\int^\infty f(x) dx$

Улучшение сходимости ряда

Пример.
$$S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \approx \sum_{n=1}^{\infty} \frac{1}{n^2}$$

димости будем пользоваться рядами такого типа: $_{\infty}^{\infty}$

Для улучшения сходимости будем пользоваться р
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1, \quad \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}, \quad \dots$$

Такие ряды достаточно легко считаются, в нашем примере воспользуемся первым т.к. $\frac{1}{n(n+1)} \sim \frac{1}{n^2}$

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right) = S - 1 \implies S = 1 + \sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right)$$

$$\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} = \frac{1}{n^2} \cdot \left(\frac{1}{1 + \frac{2}{n^2}} - \frac{1}{1 + \frac{1}{n}} \right) = \frac{1}{n^2} \cdot \left(1 - \frac{2}{n^2} + o\left(\frac{1}{n^2}\right) - \left(1 - \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right) \right) = \frac{1}{n^3} + o\left(\frac{1}{n^3}\right)$$
 Слагаемые убывают быстрее, чтобы получить число с определённой точностью потребуется значительно меньше

Получили, что
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \approx 1 + \sum_{n=1}^{\infty} \frac{1}{n^3}$$

Лекция 3 - 15.09.2020 - Знакопеременные ряды 3

Абсолютная и условная сходимость

Определение 4. $\sum_{n=0}^{\infty} a_n, a_n \in \mathbb{R}$

Если $a_n \cdot a_{n+1} < 0$, то ряд называется знакочередующимся.

Пусть $\sum a_n$ сходится

Onpedenenue 5. Рассмотрим дополнительный ряд $\sum |a_n|$ (*)

Если (*) сходится, то $\sum a_n$ называется сходящимся абсолютно

Если (*) расходится, то $\sum a_n$ называется сходящимся условно

Определение 6. Введём $a_n^+ = \begin{cases} a_n, a_n > 0 \\ 0 \end{cases}$ $a_n^+ = \begin{cases} |a_n|, a_n < 0 \\ 0 \end{cases}$

Ряды $\sum a_n^+, \sum a_n^-$ называются положительной и отрицательной частью исходного ряда $\sum a_n$

$$\begin{split} S_N^+ &= \sum_{n=1}^N a_n^+, \, S_N^- = \sum_{n=1}^N a_n^- \\ a_n &= a_n^+ - a_n^-, \, |a_n| = a_n^+ + a_n^- \\ \sum_{n=1}^\infty a_n &= S_N^+ - S_N^-, \, \sum_{n=1}^\infty a_n = S_N^+ + S_N^- \end{split}$$

3амечание. Ряд $\sum a_n$ сходится абсолютно \iff оба ряда $\sum a_n^+, \sum a_n^-$ сходятся Ряд $\sum a_n$ сходится условно \implies оба ряда $\sum a_n^+, \sum a_n^-$ расходятся

Мажорантный признак Вейерштрасса

Tеорема 3.1. Eсли $|a_n|\leqslant b_n$ nри $n>n_0$ и положительный ряд $\sum b_n$ cxoдится, то $\sum a_n$ cxoдится, причём абсолютно.

$$\begin{split} & \varPi p u \mathit{меp}. \ \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}, \ p > 0 \\ & |sin(nx)| \leqslant 1 \implies \left| \frac{sin(nx)}{n^p} \right| \leqslant \frac{1}{n^p} \\ & \sum \frac{1}{n^p} \operatorname{сходится} \ (p > 1) \implies \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p} \operatorname{сходится} \ \mathsf{абсолютнo}. \end{split}$$

Группировка членов ряда

Говорят, что ряд $\sum b_k$ получен из $\sum a_n$ группировкой членов, если $\exists n_1 < n_2 < \ldots$: $b_1 = a_1 + a_2 + \cdots + a_{n_1}$ $b_2 = a_{n_1+1} + a_{n_1+2} + \cdots + a_{n_2}$

3амечание. Если $\sum a_n$ сходится, то ряд $\sum b_k$ сходится к той же сумме.

Доказательство. $\sum_{k=1}^{m} b_k = \sum_{k=1}^{n_m} a_k$

Обратное утверждение неверно: (1-1) + (1-1) + ...

Знакопеременный ряд при помощи группировки сводится к знакочередующемуся:

$$a_1 \leqslant 0, \ldots, a_{n_1} \leqslant 0; b_1 = \sum_{i=1}^{n_1} a_i \leqslant 0$$

$$a_{n_1+1} \geqslant 0, \dots, a_{n_2} \geqslant 0; b_1 = \sum_{i=n_1+1}^{n_2} a_i \leqslant 0$$

При такой группировке сходимость исходного ряда \iff сходимость $\sum b_n$

Пример.
$$\sum_{n=1}^{\infty} \frac{(-1)^{[\ln n]}}{n}$$

$$\sum_{k=0}^{\infty} b_k, \text{ где } b_k = (-1)^k$$

$$|b_k| = \sum_{n=[nk]+1}^{[e^{k+1}]} \frac{1}{n} \leqslant \frac{1}{[e^k]+1} \cdot ([e^{k+1}] - [e^k]) \approx \frac{e^{k+1} - e^k}{e^k} \to e-1 > 0$$

Знакочередующиеся ряды, пр-к Лейбница

$$\sum_{n=1}^{\infty} a_n$$
, где $a_n = (-1)^n \cdot u_n$, $u_n > 0$

Теорема 3.2. Признак Лейбница. Если $u_n \downarrow 0$, то ряд сходится, причём $|r_n| \leqslant u_{n+1}$

$$\begin{split} & \varPi p \textit{имер. } \sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}, \ p > 0 \\ & \frac{1}{n^p} \downarrow 0 \implies \text{ряд сходится (при } \forall p > 0) \\ & \Pi \text{ри этом } \sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p} - \text{сходится при } p > 1 \ \text{и расходится при } p \leqslant 1 \\ & \sum_{n=1}^{\infty} \frac{(-1)^n}{n^p} \colon p \in (0;1] - \text{сходится условно, } p \in (1;+\infty) - \text{абсолютно} \end{split}$$

3.5 О неприменимости эквивалентности

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} - (-1)^n} \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
$$\frac{(-1)^n}{\sqrt{n} - (-1)^n} \approx \frac{(-1)^n}{\sqrt{n}}$$

Рассмотрим 2 ряда:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} - (-1)^n} \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

$$\frac{(-1)^n}{\sqrt{n} - (-1)^n} \approx \frac{(-1)^n}{\sqrt{n}}$$
 При этом правый ряд сходится по признаку Лейбница, а левый – расходится:
$$\frac{(-1)^n}{\sqrt{n} - (-1)^n} - \frac{(-1)^n}{\sqrt{n}} = \frac{1}{\sqrt{n}(\sqrt{n} - (-1)^n)} \approx \frac{1}{n}$$

$$\sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n} - (-1)^n} = \sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n}} + \sum_{n=1}^{N} \frac{1}{\sqrt{n}(\sqrt{n} - (-1)^n)} \to \infty$$

Признаки Дирихле и Абеля

$$\sum_{n=1}^{\infty} a_n \cdot b_n$$

Теорема 3.3. Признак Дирихле. Если $a_n \downarrow 0$, а частичные суммы $\left| \sum_{i=1}^{N} b_n \right| \leqslant C$ ограничены, то $\sum_{i=1}^{\infty} a_n \cdot b_n$ сходится.

Теорема 3.4. Признак Абеля. Если a_n монотонна и ограничена, а ряд $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

$$a_n \to a, \ a_n = a + -\alpha_n, \ \alpha_n \downarrow 0; \ \sum_{n=1}^{\infty} a_n \cdot b_n = a \sum_{n=1}^{\infty} b_n + -\sum_{n=1}^{\infty} \alpha_n \cdot b_n$$

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}, \, p>0$$

$$a_n = \frac{1}{n^p} \downarrow 0, \, b_n = \sin nx$$

$$b_1 + b_2 + b_3 + \dots + b_N = \sin x + \sin 2x + \dots + \sin Nx = \frac{\cos \frac{x}{2} - \cos ((N+1/2)x)}{2\sin \frac{x}{2}}; \left| \sum_{n=1}^{N} b_n \right| \leqslant \frac{2}{2\sin \frac{x}{2}} = \frac{1}{\sin \frac{x}{2}}$$

Ряд сходится по признаку Дирихле

Влияние перестановки членов ряда на его сумму

Говорят, что ряд $\sum b_n$ получен из $\sum a_n$ перестановкой членов, если $b_n=a_{f(n)}$ Если ряд $\sum a_n$ сходится абсолютно, то \forall ряд, полученный из него перестановкой членов, сходится абсолютно к той же сумме.

Teopema~3.5.~ (Pumana) $Ecnu~psd~\sum a_n~cxodumcs~ycловно,~mo~dлs~ <math>\forall S\in [-\infty;+\infty]~mo~\exists~nepecmanoska~f~makas,~umo$ $\sum a_{f(n)} = S$

Лекция 4 - 22.09.2020

Умножение рядов

$$\sum_{k=1}^{\infty} a_k, \sum_{m=1}^{\infty} b_m$$

$$\left(\sum_{k=1}^{K} a_k\right) \cdot \left(\sum_{m=1}^{M} b_m\right) = \sum_{1 \leqslant k \leqslant K, 1 \leqslant m \leqslant M} a_k \cdot b_m$$

Если эта сумма имеет предел при $K, M \to \infty$, не зависящий от порядка суммирования, то говорят, что определено произведение рядов.

Tеорема 4.1. (Kowu) Eсли $\sum a_k, \sum b_m$ сходятся абсолютно, то определено их произведение.

$$\left(\sum_{k=1}^{\infty} a_k\right) \cdot \left(\sum_{m=1}^{\infty} b_m\right) = \sum_{n=1}^{\infty} a_{k_n} \cdot b_{m_n}$$

Произведение рядов по Коши:

$$c_2 = a_1 \cdot b_1$$

$$c_3 = a_2 \cdot b_1 + a_1 \cdot b_2$$

$$c_3 = a_2 \cdot b_1 + a_1 \cdot b_2$$

$$c_4 = a_3 \cdot b_1 + a_2 \cdot b_2 + a_1 \cdot b_3$$

$$\left(\sum_{k=1}^{\infty} a_k\right) \cdot \left(\sum_{m=1}^{\infty} b_m\right) = \sum_{n=2}^{\infty} c_n$$

Бесконечное произведение

4.2.1 Основные понятия

$$\prod_{n=1}^{N} a_n = a_1 \cdot a_2 \cdot \dots \cdot a_N$$
 – частичное произведение.

Бесконечным произведением называют формальную запись $\prod a_n$

Значением бесконечного произведения является предел частичного произведения:

$$\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} \prod_{n=1}^{N} a_n$$

4.2.2 Сходимость бесконечного произведения

Необходимое условие сходимости: Если
$$P_N = \prod_{n=1}^N a_n$$
 сходится, то $a_n = \frac{P_n}{P_{n-1}} \to 1$

$$\prod_{n=1}^{N} a_n = e^{\ln \prod_{n=1}^{N} a_n} = e^{\sum_{n=1}^{N} \ln a_n}$$

$$\prod_{n=1}^{\infty} a_n = P \iff \sum_{n=1}^{\infty} \ln a_n = \ln P \ (P \neq 0, a_n \to 1)$$

$$\ln a_n = (a_n - 1) + o(1), \text{ T. K. } a_n \to 1$$

Пусть
$$a_n\geqslant 1$$
. Тогда $\sum_{n=1}^{\infty}\ln a_n$ – положительный ряд $\ln a_n=(a_n-1)+o(1),$ т. к. $a_n\to 1$ $\sum_{n=1}^{\infty}\ln a_n$ сходится $\iff \sum_{n=1}^{\infty}(a_n-1)$ сходится.

4.2.3 Абсолютная сходимость бесконечного произведения

$$\prod_{n=1}^{\infty}a_n$$
 называется абсолютно сходящимся, если абсолютно сходится соответствующий ему ряд $\sum_{n=1}^{\infty}\ln a_n$

12

Замечание.
$$\prod_{n=1}^{\infty} a_n$$
 сходится абсолютно $\iff \sum_{n=1}^{\infty} (a_n - 1)$ сходится абсолютно.

 $\Pi pumep$. (Произведение Валлиса) $\prod_{n=1}^{\infty} \frac{4n^2}{4n^2-1} = \frac{\pi}{2}$ – получается из анализа интегралов $\int_0^{\frac{\pi}{2}} \sin^n x dx$

n=1 Прим. ред.: есть отличное видео с интуитивно понятным доказательством.

 $\varPi puмер.$ (Дзета-функция Римана) $\zeta(s) = \sum_{s=1}^{\infty} \frac{1}{n^s}, s>1$

Тождество Эйлера:
$$\zeta(s) = \frac{1}{\prod_{n=1}^{\infty} (1 - \frac{1}{p_n^s})},$$
где $p_1 = 2, p_2 = 3, p_3 = 5, \dots$

Функциональные последовательности 4.3

4.3.1 Поточечная и равномерная сходимость

Пусть при всех $n \in \mathbb{N}$ функции $f_n : D \to \mathbb{R}, D \subseteq \mathbb{R}$

Говорят, что $a \in D$ – точка сходимости $\{f_n(x)\}$, если последовательность $\{f_n(a)\}$ сходится.

Множество всех точек сходимости называется множеством сходимости.

Говорят, что последовательность сходится на D поточечно, если D – множество сходимости.

Говорят, что $f_n(x)$ сходится к f(x) равномерно на D, если $\sup |f_n(x) - f(x)| \to 0$

Свойства

1.
$$f_n \stackrel{D}{\Longrightarrow} f \implies f_n \stackrel{D}{\to} f$$

2. Если $D = D_1 \cup D_2$, то:

$$f_n \stackrel{D}{\rightrightarrows} f \iff (f_n \stackrel{D_1}{\rightrightarrows} f \bowtie f_n \stackrel{D_2}{\rightrightarrows} f)$$

4.3.2 Равномерная норма. Критерий Коши

Рассмотрим множество всех функций $D \to \mathbb{R}$

$$||f|| = \sup_{x \in D} |f(x)|$$

Таким образом,
$$f_n \stackrel{D}{\rightrightarrows} f \iff ||f_n - f|| \to 0$$

Теорема Дини 4.3.3

Пусть $f_n:[a,b]\to\mathbb{R}, f_n(x)$ монотонна по n при каждом $x\in[a,b],\,f_n\to f$ на [a,b]

Тогда
$$f_n \stackrel{D}{\rightrightarrows} f$$

Лекция 5 - 29.09.2020 - Исследование сходимости функциональных ря-5 дов

5.1Свойства равномерно сходящейся последовательности

1. $-\infty \leqslant a < b \leqslant +\infty$, рассмотрим D = (a; b), D = [a; b]

Пусть
$$f_n \to f, \ x \in D, \ y_n = \lim_{x \to x_0} f_n(x), \ \{y_n\}$$
 – сход., $y_n \to y$

Тогда
$$\lim_{x \to x_0} f(x) = y$$
, т.е. $\lim_{x \to x_0} (\lim_{n \to \infty} f_n(x)) = \lim_{n \to \infty} (\lim_{x \to x_0} f_n(x))$

Доказательство.
$$|y - f(x)| \le |y - y_n| + |y_n - f_n(x)| + |f_n(x) - f(x)|$$

Пусть
$$n$$
 такое, что $|y-y_n|<rac{arepsilon}{3}, ||f_n-f||<rac{arepsilon}{3},\, |x-x_0|<\delta, |f(x)-y|<rac{arepsilon}{3}$

Тогда
$$|y-f(x)| \leqslant |y-y_n| + |y_n-f_n(x)| + |f_n(x)-f(x)| < \varepsilon$$

2. $-\infty \leqslant a < b \leqslant +\infty$, рассмотрим D = (a; b), D = [a; b]

Пусть
$$f_n$$
 дифференцируемы на $D, f'_n \stackrel{D}{\rightrightarrows} g, \exists c \in D : \{f_n(c)\}$ сход

Тогда $\exists f: f_n \to f$ (причем, если D огр., то сходимость равномерная)

f – дифференцируема, f' = g.

$$(\lim_{n\to\infty} f_n(x))' = \lim_{n\to\infty} f'_n(x)$$

3. $-\infty < a < b < +\infty$, D = [a; b]

Пусть
$$f_n$$
 непрерывны на D , $f_n \stackrel{D}{\Rightarrow} f$ ($\Longrightarrow f$ непрерывна на D)

Тогда
$$\int_a^x f_n(t)dt \to^D \int_a^x f(t)dt$$

Равномерная сходимость функционального ряда

$$D \subseteq \mathbb{R}, \ a_n : D \to R$$

Функциональный ряд:
$$\sum_{n=1}^{\infty}a_{n}(x)$$

Частичные суммы:
$$S_N(x) = \sum_{i=1}^{N} a_n(x)$$

Множество абсолютной сходимости – множество всех тех значений x, при которых ряд сходится абсолютно.

Необходимое условие равномерной сходимости

Если
$$\sum_{n=1}^{\infty} a_n(x)$$
 равномерно сходится к сумме $S(x)$, то $a_n \stackrel{D}{\rightrightarrows} 0$

Доказательство.
$$S_n(x) = a_1(x) + \dots + a_n(x), \ a_n(x) = S_n(x) - S_{n-1}(x)$$

 $S_n \stackrel{D}{\rightrightarrows} S \implies a_n \stackrel{D}{\rightrightarrows} (S - S) = 0$

$$S_n \stackrel{D}{\rightrightarrows} S \implies a_n \stackrel{D}{\rightrightarrows} (S - S) = 0$$

 Π ример. $\sum_{n=0}^{\infty} \frac{x^n}{n!}, D = \mathbb{R}$ – не является сходящейся равномерно, т.к. $\frac{x^n}{n!}! \to^{\mathbb{R}} 0$

5.4 Критерий Коши равномерной сходимости

Теорема 5.1. Функциональный ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на $D \iff \forall \varepsilon > 0 \ \exists N(\varepsilon), \ \forall n \geqslant N, \ \forall m$:

$$||a_n + a_{n+1} + \dots + a_{n+m}|| < \varepsilon$$

T.e.
$$|a_n(x) + a_{n+1}(x) + \cdots + a_{n+m}(x)| < \varepsilon \ \forall x \in D$$
.

Отрицание: если $\exists \{x_n\} \subset D, \exists \{m_n\} \in \mathbb{N}, \exists \varepsilon_0$:

$$|a_n(x_n) + a_{n+1}(x_n) + \dots + a_m|(x_n)| > \varepsilon_0$$

То ряд не является сходящимся равномерно.

 Π ример. $\sum_{n=1}^{\infty} \frac{x}{x^2+n^2}, D=\mathbb{R}$ – сходится, т.к. $pprox \sum \frac{1}{n^2}$ Докажем, что сходится неравномерно. Возьмём $x_n=n,\,m_n=2n$:

$$\frac{n}{n^2 + n^2} + \frac{n}{n^2 + (n+1)^2} + \dots + \frac{n}{n^2 + (2n)^2} > \frac{n}{5n^2} \cdot n = \frac{1}{5}$$

5.5 Признаки Вейерштрасса и Даламбера

Теорема 5.2. (Признак Вейерштрасса) Если $|a_n(x)| \leq b_n$ при $\forall n \geq n_0, \ \forall x \in D, \ a \ psd \sum b_n$ сходится, то $\sum a_n(x)$ сходится на D абсолютно и равномерно.

Доказательство.
$$|a_n(x) + a_{n+1}(x) + \dots + a_{n+m}(x)| \leq b_n + b_{n+1} + \dots + b_{n+m} < \varepsilon$$

Теорема 5.3. (Признак Даламбера) Если $\exists q < 1 : |a_{n+1}(x)| \leqslant q \cdot |a_n(x)|$ при $\forall n \geqslant n_0, \ \forall x \in D,$ причём $a_{n_0}(x)$ – ограничена на D, то $\sum a_n(x)$ сходится на D абсолютно и равномерно.

$$\Pi p u мер. \sum_{n=0}^{\infty} \frac{x^n}{n!}, D = [-r; r], r > 0$$

$$\left| \frac{x^{n+1}}{(n+1)!} \right| \leqslant q \cdot \left| \frac{x^n}{n!} \right|$$

$$\left| \frac{x}{n+1} \right| \leqslant q. \text{ Пусть } n_0 : \frac{r}{n_0+1} < 1, \text{ берём } q = \frac{r}{n_0+1}. \text{ Значит, ряд абсолютно и равномерно сходится.}$$

5.6 Признак Лейбница

Знакочередующийся функциональный ряд: $\sum_{n=1}^{\infty} (-1)^n \cdot u_n(x), \ u_n(x) \geqslant 0$ на D.

Теорема 5.4. (Признак Лейбница) Если $u_n(x)\downarrow_{(n)} u\ u_n\stackrel{D}{\rightrightarrows} 0$, то ряд сходится равномерно.

Пример.
$$\sum \frac{(-1)^n}{(n+x)^p} \downarrow_{(n)}, |u_n(x)| \leqslant \frac{1}{n^p} \to 0 \implies u_n \to^0 0$$

5.7 Признаки Дирихле и Абеля

Рассмотрим ряд
$$\sum_{n=1}^{\infty} a_n(x) \cdot b_n x$$

Теорема 5.5. (Признак Дирихле) Если $a_n(x)\downarrow_{(n)} u\ a_n\stackrel{D}{\rightrightarrows} 0,\ a\ ||b_1+\cdots+b_n||\leqslant C\ \forall n,\ mo\ pяд\ равномерно\ сходится на <math>D.$

Теорема 5.6. (Признак Абеля) Если $a_n(x)$ монотонна по n ($npu \ \forall x \in D$), $u \ ||a_n|| \leqslant C$ при всех n, а ряд $\sum_{n=1}^{\infty} b_n(x)$ сходится равномерно, то ряд $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x)$ сходится равномерно.

5.8 Свойства равномерно сходящегося ряда

1.
$$-\infty \le a < b \le +\infty$$
, $D = (a; b)$, $D = [a; b]$

Пусть функциональный ряд $\sum_{n=1}^{\infty} c_n(x)$ сходится равномерно на $D, x_0 \in D, \exists \lim_{x \to x_0} c_n(x) = y_n$ и $\exists \sum_{n=1}^{\infty} y_n = y$.

Тогда
$$\lim_{x\to x_0}\sum_{n=1}^\infty c_n(x)=\sum_{n=1}^\infty\lim_{x\to x_0}c_n(x)=\sum_{n=1}^\infty y_n=y$$

2.
$$-\infty \leqslant a < b \leqslant +\infty$$
, $D = (a; b)$, $D = [a; b]$

Пусть $c_n(x)$ дифференцируемы на D и $\sum_{n=1}^{\infty} c'_n(x)$ сходится равномерно на D.

Тогда ряд $\sum_{n=1}^{\infty} c_n(x)$ сходится на D (а если D огр, то сходится равномерно), а его сумма будет дифференцируемой

функцией на
$$D$$
 и $\left(\sum_{n=1}^{\infty}c_n(x)\right)'=\sum_{n=1}^{\infty}c_n'(x)$

3.
$$-\infty < a < b < +\infty$$
, $D = (a; b)$, $D = [a; b]$

$$3. \ -\infty < a < b < +\infty, \ D=(a;b), \ D=[a;b]$$

$$\int_a^x \left(\sum_{n=1}^\infty c_n(t)\right) dt = \sum_{n=1}^\infty \int_a^x c_n(t) dt - \text{сходится равномерно на } D.$$

Лекция 6 - 6.10.2020 - Степенные ряды

Основные понятия

$$\sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n$$
 $\{c_n\}$ — числовая последовательность (коэффициенты), $x_0 \in \mathbb{R}, x \in \mathbb{R}$ $S_N(x) = \sum_{n=0}^N c_n \cdot (x-x_0)^n$ — многочлен.

Теорема Абеля, радиус и интервал последовательности

Теорема 6.1. (Абеля)

- 1. Если степенной ряд сходится в точке $x_1 \neq x_0$, то он сходится при всех $x: |x-x_0| < |x_1-x_0|$
- 2. Если степенной ряд расходится в точке $x_2 \neq x_0$, то он расходится при всех $x: |x-x_0| > |x_2-x_0|$

Доказательство. 1.
$$\left|\sum_{n=m}^{N}c_{n}(x-x_{0})^{n}\right| = \left|\sum_{n=m}^{N}c_{n}\cdot(x_{1}-x_{0})^{n}\cdot\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{n}\right| \leqslant \sum_{n=m}^{N}\left|c_{n}\cdot(x_{1}-x_{0})^{n}\right| \cdot \left|\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{n}\right| \leqslant \varepsilon(q^{m}+\dots+q^{N}) \leqslant \varepsilon\cdot q^{m}\cdot\frac{1}{1-q}\to 0$$

Пусть:

$$R_{cv} = \sup\{|x - x_0| :$$
ряд сходится $\}$

$$R_{dv} = \inf\{|x-x_0| :$$
ряд расходится $\}$ или $+\infty$, если ряд сходится всюду

$$\exists R = R_{cv} = Rdv$$
 – радиус сходимости.

$$\sum_{n=0}^{\infty} c_n \cdot (x - x_0)^n$$

Применим радикальный признак Коши:

$$\sqrt[n]{|a_n(x)|} = \sqrt[n]{|c_n|} \cdot |x - \underline{x_0}|$$

$$\overline{\lim} \sqrt[n]{|a_n(x)|} = |x - x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|}$$

Если
$$|x-x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} < 1$$
, то ряд сходится

Если
$$|x-x_0|\cdot\overline{\lim}\sqrt[n]{|c_n|}>1$$
, то ряд расходится

Если
$$|x-x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} < 1$$
, то ряд расходится $R = \frac{1}{\overline{\lim} \sqrt[n]{|c_n|}} -$ формула Коши-Адамара

Pro tip: если
$$\exists \lim \left| \frac{c_n}{c_{n+1}} \right|$$
, то $\lim \sqrt[n]{|c_n|} = \lim \left| \frac{c_n}{c_{n+1}} \right|$

Равномерная сходимость степенного ряда

Если R>0, то степенной ряд сходится равномерно при $|x-x_0|\leqslant r$, где r< R (доказательство через признак Вейерштрасса).

Сходимость ряда в граничных точках интервала сходимости

Пусть $\sum c_n R^n$ сходится. Тогда степенной ряд $\sum c_n (x-x_0)^n$ сходится равномерно на $[x_0;x_0+R]$.

Доказательство.
$$\sum_{n=0}^{\infty}c_n(x-x_0)^n=\sum_{n=0}^{\infty}(c_n\cdot R^n)\cdot\left(\frac{x-x_0}{R}\right)^n$$

$$b_n=c_n\cdot R^n,\,a_n=\left(\frac{x-x_0}{R}\right)^n$$

$$\sum_{n=0}^{\infty} b_n$$
 сходится \implies сходится равномерно.

$$a_n(x)\downarrow_{(n)}$$

Значит, ряд сходится равномерно по признаку Абеля.

Дифференцирование и интегрирование степенного ряда

$$\sum c_n(x-x_0)^n$$
, $R>0$ – его радиус сходимости.

1. Дифференцирование

При почленном дифференцировании получаем $\sum_{n=0}^{\infty} c_n \cdot n \cdot (x-x_0)^{n-1}$ Его радиус сходимости равен радиусу исходного ряда \Longrightarrow он сходится равномерно при $|x-x_0| \leqslant r < R$ Значит по теореме о почленном дифференцировании функционального ряда: $\left(\sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n\right)' = \sum_{n=0}^{\infty} c_n \cdot n \cdot (x-x_0)^{n-1} = \sum_{n=0}^{\infty} c_{n+1} (n+1) (x-x_0)^n$

2. Интегрирование

$$\int_{x_0}^{x} \left(\sum_{n=0}^{\infty} c_n (t - x_0)^n \right) dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x - x_0)^{n+1}$$

Бесконечное дифференцирование 6.6

Функция называется бесконечно дифференцируемой в точке a, если $\forall n$ она n раз дифференцируема в точке a. Сумма степенного ряда с R>0 является бесконечно дифференцируемой функцией.

6.7 Ряд Тейлора

Если функция f(x) бесконечно дифференцируема в точке x_0 , то функции f(x) можно сопоставить её ряд Тейлора:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

При этом
$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + r_N(x)$$

$$r_N(x)=rac{f^{(N+1)}(x_0+ heta)(x-x_0)}{(N+1)!}(x-x_0)^{N+1},\ heta\in(0;1)$$
 – формула Лагранжа $r_N(x)=rac{f^{(N+1)}(x_0+ heta)(x-x_0)}{N!}(1- heta)^N(x-x_0)^{N+1},\ heta\in(0;1)$ – формула Коши

$$r_N(x) = rac{f^{(N+1)}(x_0+ heta)(x-x_0)}{N!}(1- heta)^N(x-x_0)^{N+1}, \ heta \in (0;1)$$
 – формула Коши

Определение 7. Функция называется аналитической в т.х₀, если она представима в окрестности этой точки в виде степенного ряда.

Не всякая бесконечно дифференцируемая функция будет аналитической:

Пример.
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 $f(0) = f'(0) = f''(0) = \cdots = 0$, ряд Тейлора при $x_0 = 0$ равен 0

6.7.1 Ряды Тейлора основных элементарных функций

1.
$$e^x - \sum_{n=0}^{\infty} \frac{x^n}{n!}, R = \infty$$

2.
$$(1+x)^p - \sum_{n=0}^{\infty} \frac{(p)_n}{n!} x^n$$
, где $(p)_n = p(p-1) \dots (p-n+1)$, $R=1$

3.
$$\ln(1+x) - \sum_{n=0}^{\infty} \frac{(-1)^{(n+1)}x^n}{n!}$$

7 Лекция 7 - 27.10.2020 - Мера Жордана

7.1 Мера на кольце множеств

Определение 8. Пусть \mathcal{F} – некоторое семейство подмножеств множества X, т.е. $\mathcal{F} \subseteq 2^X$. Функция μ : $\mathcal{F} \to [0; +\infty)$ называется мерой на \mathcal{F} , если она обладает свойством аддитивности:

$$\mu(A \sqcup B) = \mu(A) + \mu(B)$$

Множество \mathcal{F} называется кольцом, если:

- 1. $\emptyset \in \mathcal{F}$
- 2. Если $A, B \in \mathcal{F}$, то $A \cup B$, $A \cap B$ и $A \setminus B$ содержатся в \mathcal{F}

Свойства меры на кольце:

- 1. $\mu(\emptyset) = 0$
- $2. A \subseteq B \implies \mu(A) \leqslant \mu(B)$
- 3. $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$

7.2 Ограниченные полуинтервалы в \mathbb{R}^m

 \mathbb{R} : [a;b)

 \mathbb{R}^2 : $[a;b) \times [c;d)$

 $\mathbb{R}^m: [a^1; b^1) \times [a^2; b^2) \times \cdots \times [a^m; b^m), \ a = (a^1, \dots, a^m), b = (b^1, \dots, b^m) \in \mathbb{R}^m$

 $[a;a)=\varnothing$

 \mathbb{R} :

Пересечение двух полуинтервалов – полуинтервал.

Разность двух полуинтервалов — полуинтервал или объединение двух непересекающихся полуинтервалов. \mathbb{R}^n :

Разность двух полуинтервалов есть объединение не более, чем 2m дизъюнктных полуинтервалов.

7.3 Кольцо простых множеств

Определение 9. Простым множество называется объединением конечного числа полуинтервалов:

$$E = \bigcup_{i=1}^{n} E_i = \bigcup_{i=1}^{n} [a_i; b_i)$$

Простые множества образуют кольцо:

 $\emptyset = [a; a)$ – простое.

 E_1, E_2 – простые, то: $E_1 \cup E_2$ – простое, $E_1 \cap E_2$ – простое, $E_1 \setminus E_2$ – простое.

$$E = \bigcup_{i=1}^{n} E_i = E_i \sqcup (E_2 \setminus E_1) \sqcup (E_3 \setminus E_1 \setminus E_2 \sqcup \dots)$$

E представимо в виде объединения дизъюнктных полуинтервалов: $E = \bigsqcup_{j=1}^{m} [a_j; b_j)$

$$\mu([a;b))=(b^1-a^1)\cdot(b^2-a^2)\cdot\dots\cdot(b^m-a^m)$$
, где все $b^i\geqslant a^i$ $\mu(E)=\mu(\bigsqcup[a_j;b_j))=\sum_{j=1}^m\mu([a_j;b_j))$

7.4 Внешняя *т*-мерная мера Жордана

 $A \subset \mathbb{R}^m$, A – ограниченное множество.

Внешней мерой Жордана множества A называется $\overline{\mu}(A) = \inf_{E,A\subseteq E} \mu(E)$

Свойства внешней меры:

- 1. $\overline{\mu}(\varnothing) = 0$
- $2. \ A \subseteq B \implies \overline{\mu}(A) \leqslant \overline{\mu}(B)$

Доказательство. Т.к. $\forall E, B \subseteq E \implies A \subseteq E$, т.е. при вычислении $\overline{\mu}(A)$ inf берётся по более широкому классу множеств E.

3. $\overline{\mu}(A \cup B) \leqslant \overline{\mu}(A) + \overline{\mu}(B)$

Доказательство.
$$A \subseteq E_1, B \subseteq E_2 \implies A \cup B \subseteq E_1 \cup E_2$$

 $\overline{\mu}(A \cup B) \leqslant \mu(E_1 \cup E_2) \leqslant \mu(E_1) + \mu(E_2) \leqslant \overline{\mu}(A) + \overline{\mu}(B)$

4. Внешняя мера не обладает свойством аддитивности

7.5 Измеримость по Жордану

 $Onpedenehue\ 10.$ Ограниченное множество $A\subset\mathbb{R}^m$ называется измеримым по Жордану, если $\forall \varepsilon>0\ \exists E,A\subseteq E$: $\overline{\mu}(E\setminus A)<\varepsilon$

- 1. Ø измеримо
- 2. A, B измеримы $\implies A \cup B, A \cap B, A \setminus B$ измеримы

Значит, измеримые множества образуют кольцо.

На кольце измеримых множеств внешняя мера аддитивна.

 $Onpedenehue\ 11.$ Рассмотрим теперь $E\subseteq A$, тогда $\underline{\mu}(A)=\sup_{E\subseteq A}\mu(E)$ – внутренняя мера A.

Множество A измеримо $\iff \overline{\mu}(A) = \underline{\mu}(A)$

 ∂A – граница множества A.

Если $E_1 \subseteq A \subseteq E_2$, то $\partial A \subseteq E_2 \setminus E_1$.

Если A – измеримо, то $\overline{\mu}(\partial A) = 0$

7.6 Интегрируемость функции по Риману и измеримость по Жордану её подграфика

 $f(x)\geqslant 0$ на [0;1]

$$A = \{(x,y) | 0 \le y \le f(x), x \in [0,1] \}$$
 – подграфик функции f .

Функция f интегрируема на $[0;1] \iff A$ измеримо по Жордану, причём $\mu(A) = \int_0^1 f(x) dx$