

Économétrie 1 Régression Linéaire: Propriétés asymptotiques de l'estimateur des moindres carrés

Michal W. Urdanivia*

*Université de Grenoble Alpes, Faculté d'Économie, GAEL, e-mail: michal.wong-urdanivia@univ-grenoble-alpes.fr

8 novembre 2020

1. Le modèle

- 1. Le modèle
- 2. Convergence

- 1. Le modèle
- 2. Convergence
- 3. Distribution asymptotique

- 1. Le modèle
- 2. Convergence
- 3. Distribution asymptotique
- 4. Estimation de la matrice des variances-covariances

- 1. Le modèle
- 2. Convergence
- 3. Distribution asymptotique
- 4. Estimation de la matrice des variances-covariances
- 5. Inférence

- 1. Le modèle
- 2. Convergence
- 3. Distribution asymptotique
- 4. Estimation de la matrice des variances-covariances
- 5. Inférence

Le modèle

Conditions

Condition C1

Les données $\{(Y_i, X_i), i = 1, ..., n\}$ sont un échantillon i.i.d.

Condition C2

 Y_i et X_i vérifient,

$$Y_i = X_i^{\top} \beta + U_i \quad i = 1, ..., n$$

où U_i est une variable inobservée(ou terme d'erreur) vérifiant $\mathsf{E}(U_i)=0$.

Condition C3

 X_i est (faiblement)exogène par rapport à U_i ,

$$E(X_iU_i)=0$$

Condition C4

La matrice $E(X_iX_i^{\top})$ est finie et définie positive.

Condition C5

 $\mathsf{E}(X_{i\,k}^4)<\infty$, pour tout k=1,...,K.

Conditions

Condition C6 $E(U_i^4) < \infty$

Condition C7 $E(U_i^2 X_i X_i^\top)$ est définie positive.

Convergence

Convergence de l'estimateur des MCO

Propriété P1

(Convergence de l'estimateur des moindres carrés) Sous les hypothèses C1 - C4, $\widehat{\beta}_{n} \stackrel{p}{\longrightarrow} \beta$.

Distribution asymptotique

Distribution asymptotique de l'estimateur des MCO

Propriété P2

(Normalité asymptotique) Sous les hypothèses C1-C7,

$$n^{1/2}(\widehat{\beta}_n - \beta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V)$$

οù

$$V = Q^{-1}\Omega Q^{-1}, \quad Q = \mathsf{E}(X_i X_i^\top), \quad \Omega = \mathsf{E}(U_i^2 X_i X_i^\top)$$

Estimation de la matrice des variances-covariances

Estimation de la variance V

A partir d'un estimateur de β , nous pouvons construire les résidus $\widehat{U}_i = Y_i - X_i^{\top} \widehat{\beta}_n$.

Considérons l'estimateur suivant de ${\it V}$ obtenu par application du principe d'analogie,

$$\widehat{V}_n = \widehat{Q}_n^{-1} \widehat{\Omega}_n \widehat{Q}_n^{-1}$$

où,

$$\widehat{Q}_n = n^{-1} \sum_{i=1}^n X_i X_i^{\top} , \ \widehat{\Omega}_n = n^{-1} \sum_{i=1}^n \widehat{U}_i^2 X_i X_i^{\top}$$

On peut alors montrer que cet estimateur est convergent pour V(voir notes de cours).

Inférence

Intervalles de confiance et tests

Voir notes de cours.