Les fonctions cosinus et sinus.

I. Définition.

- La fonction cosinus est la fonction, qui à tout réel x, associe le réel $\cos x$.
- La fonction sinus est la fonction, qui à tout réel x, associe le réel $\sin x$.

Notation: $\cos : \mathbb{R} \to \mathbb{R}$ $\sin : \mathbb{R} \to \mathbb{R}$ $x \to \sin x$

II. Dérivabilité.

Propriété:

- La fonction cosinus est dérivable sur \mathbb{R} et sa dérivée est la fonction -sin. Pour tout $x \in \mathbb{R}$ $\cos'(x) = -\sin(x)$
- La fonction sinus est dérivable sur \mathbb{R} et sa dérivée est la fonction cos. Pour tout $x \in \mathbb{R}$ $\sin'(x) = \cos(x)$

Propriété:

Soit u une fonction dérivable sur un intervalle I de \mathbb{R}

- La fonction $\cos(u)$ est dérivable sur I et sa dérivée est la fonction $-u' \times \sin(u)$
- La fonction $\sin(u)$ est dérivable sur I et sa dérivée est la fonction $u' \times \cos(u)$.

Exemple : Déterminer les dérivées des fonctions f, g et h suivantes définies par :

$$f(x) = \cos(5x^2 + 2x + 1), x \in \mathbb{R}$$
$$g(x) = \sin\left(\frac{1}{x}\right), x \in]0; +\infty[$$

$$h(x) = \frac{\cos(5x+1)}{x}, x \in]0; +\infty[$$

III. Variations et représentation graphique.

1. Parité.

- Pour tout nombre réel t, $\cos(-t) = \cos(t)$. On dit que la fonction cosinus est paire.
- Pour tout nombre réel t, $\sin(-t) = -\sin(t)$. On dit que la fonction sinus est impaire.

Interprétation géométrique :

Le plan est muni d'un repère orthogonal (O, \vec{i} , \vec{j}).

1)

Soit $t \in \mathbb{R}$ Soit M_t (t; cost) et M' (-t; cos(-t)).

M et M' appartiennent à la représentation graphique de la fonction cos. $\cos(-t) = \cos(t)$ Donc M et M' sont symétriques par rapport à l'axe (O, \vec{j}).

D'où la représentation graphique de la fonction cosinus admet pour axe de symétrie l'axe $(0, \vec{j})$.

2)

Soit $t \in \mathbb{R}$ Soit M_t $(t; \sin t)$ et M' $(-t; \sin(-t))$.

M et M' appartiennent à la représentation graphique de la fonction sin.

 $\sin(-t) = -\sin(t)$ Donc M et M' sont symétriques par rapport à l'origine.

D'où la représentation graphique de la fonction sinus admet pour l'origine O pour centre de

symétrie.

2. Périodicité.

Pour tout nombre réel t, $\cos(t+2\pi) = \cos(t)$ et $\sin(t+2\pi) = \sin(t)$. On dit que les fonctions cosinus et sinus sont périodiques de période 2π ou 2π -périodique.

conséquence graphique:

Soit $t \in \mathbb{R}$

Soit $M(t;\cos t)$ et $M'(t+2\pi;\cos t+2\pi)$. M et M' appartiennent à la représentation graphique de la fonction cos.

$$\cos(t+2\pi) = \cos(t)$$
 Donc $\overline{MM'} = 2\pi \vec{i}$.

Il suffit donc d'étudier la fonction cosinus sur un intervalle de longueur 2π . On obtient la courbe sur \mathbb{R} par des translations de vecteurs $2k\pi i$, $k\in\mathbb{Z}$

Il en est de même pour la courbe représentative de la fonction sinus.

3. Tableaux de variations.

Les fonctions sinus et cosinus étant périodiques de période 2π , il suffit de les étudier sur un intervalle d'amplitude 2π .

On choisit l'intervalle $]-\pi;\pi]$ centré en O.

• La fonction sinus.

x	- π		$-\pi/2$		$\pi/2$		π
f'(x)		_	0	+	0	_	
6()	0			A	1		
f(x)		•	-1			*	0

• La fonction cosinus.

x	- π		0		π
f'(x)		+	0	_	
f(x)	-1	A	1	_	-1

4. Courbes représentatives.

En utilisant les propriétés de parité et de périodicité vues auparavant, on obtient dans un repère orthogonal deux sinusoïdes.

IV. Primitives.

Propriété:

- La fonction cos admet pour primitive la fonction sin sur R
- la fonction sin admet pour primitive la fonction -cos sur IR

Propriété : Soit u une fonction dérivable sur un intervalle I.

- La fonction $u'\cos(u)$, définie sur I, admet pour primitive la fonction $\cos(u)$ sur I.
- La fonction $u' \times \sin(u)$ définie sur I admet pour primitive la fonction $-\cos(u)$ sur I.

Exemple : Calculer les intégrales suivantes :

$$A = \int_{0}^{\frac{\pi}{4}} \cos(x) dx \qquad B = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(2x) dx$$

IV. Limites.

Propriétés:

- Les fonctions cosinus et sinus n'ont pas de limite en $-\infty$ et en $+\infty$.

$$-\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

$$-\lim_{x\to 0}\frac{\cos(x)-1}{x}=0$$

- V. Résolution d'équations et d'inéquations.
 - 1. Valeurs remarquables.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$					
$\sin x$					

- 2. Résolution d'équations.
 - $\cos x = \cos a$.

Les solutions de l'équation $\cos x = \cos a$ sont les réels $x = a + 2k\pi$ ou $x = -a + 2k'\pi$, $k \in \mathbb{Z}$, $k' \in \mathbb{Z}$

Exemple: Résoudre, dans \mathbb{R} l'équation (E) $\cos(x) = \frac{\sqrt{2}}{2}$.

• $\sin x = \sin a$. Les solutions de l'équation $\sin x = \sin a$ sont les réels $x = a + 2k\pi$ ou $x = \pi - a + 2k'\pi$, $k \in \mathbb{Z}, k' \in \mathbb{Z}$

Exemple: Résoudre, dans IR l'équation (E) $\sin(x) = \frac{-\sqrt{3}}{2}$.

3. Résolution d'inéquations.

Exemple : Résoudre dans $[0;2\pi]$ les inéquations suivantes :

$$\cos(x) < \frac{1}{2}$$

$$\cos(x) < \frac{1}{2}$$
$$\sin(x) > \frac{-\sqrt{2}}{2}$$