### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ



#### Московский государственный технический университет

им. Н.Э. Баумана

(МГТУ им. Н.Э. Баумана)

Кафедра «Информационная безопасность» (ИУ8)

# Лабораторная работа № 2 Исследование методов прямого поиска экстремума унимодальной функции одного переменного

Выполнила: Броцкий К.А.

студент группы ИУ8-32

Проверила: Коннова Н.С.,

доцент каф. ИУ8

### Цель работы

Изучение метода случайного поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

### Постановка задачи

1. На интервале [a,b] задана унимодальная функция одного переменного f(x). Используя метод *случайного поиска* осуществить поиск минимума f(x) с заданной вероятностью попадания в окрестность экстремума P при допустимой длине интервала неопределенности  $\varepsilon$ . Определить необходимое число испытаний N. Численный эксперимент выполнить для значений P=0,90,0,91,...,0,99 и значений  $\varepsilon=(b-a)q$ , где q=0,005,0,010,...,0,100.

Последовательность действий:

- определить вероятность  $P_1$  непопадания в  $\varepsilon$  -окрестность экстремума за одной испытание;
- записать выражение для вероятности  $P_N$  непопадания в  $\varepsilon$  -окрестность экстремума за N испытаний;
- из выражения для  $P_{\scriptscriptstyle N}$  определить необходимое число испытаний N в зависимости от заданных  $P_{\scriptscriptstyle N}=P$  и  $\varepsilon$  .
- 2. При аналогичных исходных условиях осуществить поиск минимума f(x), модулированной сигналом  $\sin 5x$ , т.е. *мультимодальной* функции  $f(x) \cdot \sin 5x$ .

### Вариант 1:

| №пп | $\Phi$ ункция $f(x)$  | a  | b |
|-----|-----------------------|----|---|
| 1   | $-0.5\cos 0.5x - 0.5$ | -5 | 2 |

## График функции



Рис.1. Графики функций

### Скриншот консоли

| 0.01  230  240  252  265    0.015  153  160  168  176    0.02  114  120  126  132    0.025  91  96  100  106    0.03  76  80  83  88    0.035  65  68  71  75    0.04  57  59  62  66    0.045  51  53  55  58 | 280<br> 187<br> 140 | 299<br> 199 | <br> 643<br> 321<br> 213 | <br> 700<br> 349 | <br> 781<br> 390 | 919 | _<br> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--------------------------|------------------|------------------|-----|-------|
| 0.015   153   160   168   176                                                                                                                                                                                  | <br> 187<br> 140    | 199         |                          | 349              | 1300             |     |       |
| 0.02  114  120  126  132    0.025  91  96  100  106    0.03  76  80  83  88    0.035  65  68  71  75    0.04  57  59  62  66    0.045  51  53  55  58                                                          | 140                 |             | 1213                     |                  | 1378             | 459 | 1     |
| 0.025  91  96  100  106  <br> 0.03  76  80  83  88  <br> 0.035  65  68  71  75  <br> 0.04  57  59  62  66  <br> 0.045  51  53  55  58                                                                          |                     | 1170 -      |                          | 233              | 259              | 305 | 1     |
| 0.03   76   80   83   88                                                                                                                                                                                       | 1112 _              | 149         | 160                      | 174              | 194              | 228 | 1     |
| 0.035  65  68  71  75  <br> 0.04  57  59  62  66  <br> 0.045  51  53  55  58                                                                                                                                   | I T T Z             | 119         | 128                      | 139              | 155              | 182 | 1     |
| 0.04  57  59  62  66  <br> 0.045  51  53  55  58                                                                                                                                                               | 93                  | 99          | 106                      | 116              | 129              | 152 | 1     |
| 0.045  51  53  55  58                                                                                                                                                                                          | 79                  | 85          | 91                       | 99               | 110              | 130 | 1     |
|                                                                                                                                                                                                                | 69                  | 74          | 79                       | 86               | 96               | 113 | 1     |
| 10 05 145 147 150 152 1                                                                                                                                                                                        | 62                  | 66          | 70                       | 77               | 85               | 101 | 1     |
| 10.03 143 147 130 132 1                                                                                                                                                                                        | 55                  | 59          | 63                       | 69               | 77               | 90  | 1     |
| 0.055  41  43  45  48                                                                                                                                                                                          | 50                  | 53          | 57                       | 62               | 70               | 82  | 1     |
| 0.06  38  39  41  43                                                                                                                                                                                           | 46                  | 49          | 53                       | 57               | 64               | 75  | 1     |
| 0.065  35  36  38  40                                                                                                                                                                                          | 42                  | 45          | 48                       | 53               | 59               | 69  | 1     |
| 0.07  32  34  35  37                                                                                                                                                                                           | 39                  | 42          | 45                       | 49               | 54               | 64  | 1     |
| 0.075  30  31  33  35                                                                                                                                                                                          | 37                  | 39          | 42                       | 45               | 51               | 60  | 1     |
| 0.08  28  29  31  32                                                                                                                                                                                           | 34                  | 36          | 39                       | 43               | 47               | 56  | 1     |
| 0.085   26   28   29   30                                                                                                                                                                                      | 32                  | 34          | 37                       | 40               | 45               | 52  | 1     |
| 0.09  25  26  27  29                                                                                                                                                                                           | 30                  | 32          | 35                       | 38               | 42               | 49  | 1     |
| 0.095  24  25  26  27                                                                                                                                                                                          | 29                  | 31          | 33                       | 36               | 40               | 47  | I     |
| 0.1  22  23  24  26                                                                                                                                                                                            | 27                  | 29          | 31                       | 34               | 38               | 44  | 1     |

| q\P    | 0.9       | 0.91      | 0.92       | 0.93      | 0.94       | 0.95      | 0.96      | 0.97      | 0.98       | 0.99      |
|--------|-----------|-----------|------------|-----------|------------|-----------|-----------|-----------|------------|-----------|
| 0.005  | -0.999999 | -0.999999 | -0.999978  | -0.999996 | -1         | -0.999961 | -0.999999 | -1        | -1         | -0.999999 |
| 0.01   | -0.999979 | -0.999962 | -0.999986  | -0.999985 | 1-0.999996 | -0.999961 | -1        | -0.999999 | - <b>1</b> | -1        |
| 0.015  | -0.999961 | -0.999473 | 1-0.999998 | -1        | -0.999977  | -0.999982 | -0.999971 | -0.999998 | -1         | -1        |
| 0.02   | -0.999592 | -0.999999 | -0.999866  | -0.999974 | -0.999999  | -1        | -0.999996 | -0.999656 | -1         | -0.999971 |
| 0.025  | -0.999977 | -0.999916 | -0.99998   | -0.999878 | -0.999924  | -0.999821 | -0.999997 | -0.99985  | -0.999927  | -0.99981  |
| 0.03   | -0.998598 | -0.999963 | -0.999993  | -1        | -0.999831  | -1        | -0.999201 | -0.999995 | -0.999995  | -0.999938 |
| 0.035  | -0.999574 | -0.999978 | -0.999406  | -1        | -0.999974  | -0.999782 | -0.999441 | -0.999995 | -0.999645  | -0.999994 |
| 10.04  | -0.999973 | -0.999667 | -0.998028  | -0.999996 | -0.999831  | -1        | -0.999972 | -1        | -0.999997  | -0.999988 |
| 10.045 | -0.997368 | -0.999076 | -0.999999  | -0.998861 | -0.997015  | -0.999796 | -0.999652 | -0.999847 | -0.999919  | -1        |
| 0.05   | -1        | -0.999999 | -0.999991  | -0.999906 | -0.998724  | -0.999928 | -0.999691 | -0.999986 | -0.999967  | -0.999998 |
| 0.055  | -0.999694 | -0.999984 | -0.998467  | -0.999982 | -0.998301  | -0.999362 | -0.999627 | -0.999211 | -0.999828  | -0.999989 |
| 0.06   | -0.999957 | -0.999649 | -0.998483  | -0.999672 | -0.999959  | -0.999999 | -0.998989 | -0.999923 | -0.999684  | -0.999875 |
| 0.065  | -0.999293 | -0.999673 | -0.999532  | -0.996559 | -0.999777  | -0.999359 | -0.999225 | -0.996404 | -0.999955  | -0.999999 |
| 0.07   | -0.999985 | -0.99965  | -0.999868  | -0.999587 | 1-0.999999 | -0.999179 | -0.996193 | -0.999946 | -0.999981  | -0.999824 |
| 10.075 | -0.999266 | -0.999523 | -0.999939  | -0.999376 | -0.987311  | -0.999747 | -0.999981 | -0.999872 | -0.999935  | -0.99998  |
| [0.08  | -0.999761 | -0.999882 | -0.996954  | -0.999997 | -0.991357  | -0.999796 | -0.998337 | -0.999992 | -0.999565  | -0.999974 |
| 0.085  | -0.999021 | -0.999544 | -0.99981   | -0.998839 | -0.998394  | -0.999753 | -0.99944  | -0.999951 | -0.999401  | -0.999999 |
| 10.09  | -0.999893 | -0.99283  | -0.998168  | -0.999998 | 1-0.999998 | -0.999995 | -0.99982  | -0.999345 | -0.998121  | -0.999562 |
| 10.095 | -0.999637 | -0.999726 | -0.999644  | -0.999808 | -0.999487  | -0.999477 | -0.999998 | -0.999727 | -0.99707   | -0.999993 |
| 0.1    | -0.998628 | -0.988386 | -0.999855  | -0.999781 | -0.994893  | -0.988418 | -0.997058 | -0.999344 | -0.998954  | -0.999554 |
|        |           |           |            |           |            |           |           |           |            |           |

| q\P   | 0.9       | 0.91      | 0.92      | 0.93      | 0.94      | 0.95      | 0.96      | 0.97      | 0.98      | 0.99      |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0.005 | -0.993525 | -0.991539 | -0.993517 | -0.993538 | -0.989571 | -0.99367  | -0.993794 | -0.993161 | -0.993853 | -0.99387  |
| 0.01  | -0.988585 | -0.992425 | -0.989679 | -0.990471 | -0.988492 | -0.993866 | -0.993799 | -0.992549 | -0.993843 | -0.993828 |
| 0.015 | -0.94511  | -0.993553 | -0.988897 | -0.98796  | -0.991443 | -0.993342 | -0.993832 | -0.99365  | -0.992959 | -0.99304  |
| 0.02  | -0.989884 | -0.945377 | -0.993357 | -0.944197 | -0.991983 | -0.993694 | -0.982121 | -0.973631 | -0.993746 | -0.991268 |
| 0.025 | -0.992349 | -0.991142 | -0.99384  | -0.983448 | -0.992799 | -0.99007  | -0.961025 | -0.969959 | -0.991774 | -0.985896 |
| 0.03  | -0.993873 | -0.989254 | -0.985474 | -0.99007  | -0.941726 | -0.989984 | -0.966928 | -0.993165 | -0.978354 | -0.99382  |
| 0.035 | -0.992141 | -0.949922 | -0.987662 | -0.97358  | -0.934089 | -0.990252 | -0.992276 | -0.983143 | -0.943584 | -0.971809 |
| 0.04  | -0.942732 | -0.941615 | -0.957384 | -0.974089 | -0.986985 | -0.986672 | -0.99125  | -0.991011 | -0.976205 | -0.988122 |
| 0.045 | -0.976602 | -0.958755 | -0.852354 | -0.871143 | -0.955672 | -0.993842 | -0.982005 | -0.930525 | -0.985312 | -0.990362 |
| 0.05  | -0.992529 | -0.958405 | -0.977753 | -0.967287 | -0.987616 | -0.986969 | -0.993394 | -0.962881 | -0.991065 | -0.938638 |
| 0.055 | -0.93166  | -0.989921 | -0.963071 | -0.992808 | -0.993377 | -0.942874 | -0.935662 | -0.917602 | -0.945501 | -0.993589 |
| 0.06  | -0.993369 | -0.928832 | -0.841918 | -0.937316 | -0.99148  | -0.979109 | -0.92954  | -0.982323 | -0.991828 | -0.942039 |
| 0.065 | -0.976014 | -0.883087 | -0.974102 | -0.943997 | -0.987009 | -0.955733 | -0.938384 | -0.989819 | -0.962911 | -0.945106 |
| 0.07  | -0.94518  | -0.926378 | -0.989676 | -0.899677 | -0.941672 | -0.993872 | -0.990361 | -0.993828 | -0.992525 | -0.993868 |
| 0.075 | -0.875656 | -0.943286 | -0.836089 | -0.799032 | -0.910696 | -0.993189 | -0.992131 | -0.868117 | -0.944945 | -0.977078 |
| 0.08  | -0.99377  | -0.953081 | -0.970747 | -0.992178 | -0.850039 | -0.952114 | -0.983414 | -0.944721 | -0.905711 | -0.987346 |
| 0.085 | -0.945574 | -0.780577 | -0.842677 | -0.918468 | -0.992863 | -0.728334 | -0.98005  | -0.944689 | -0.936751 | -0.85612  |
| 0.09  | -0.993133 | -0.98741  | -0.993862 | -0.981887 | -0.984636 | -0.917996 | -0.945468 | -0.919609 | -0.945724 | -0.944973 |
| 0.095 | -0.937384 | -0.909247 | -0.914758 | -0.939455 | -0.888536 | -0.889653 | -0.808183 | -0.992412 | -0.942376 | -0.95221  |
| 0.1   | -0.685574 | -0.938296 | -0.926472 | -0.962845 | -0.945584 | -0.99261  | -0.971286 | -0.934615 | -0.99111  | -0.989686 |

Рис.2. Скриншот консоли

### Листинг программы с реализацией алгоритмов на С++

```
#include <iostream>
#include <cmath>
#include <vector>
#include <string>
#include <iomanip>

double f_of_x(const double x) {
    return ((-0.5) * std::cos(0.5 * x) - 0.5);
}

double f_of_new_x(const double x) {
    return (f_of_x(x) * sin(5 * x));
}

const std::vector<double> P = {0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99},
```

```
q = \{0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.04, 0.045, 0.05, 0.04, 0.045, 0.05, 0.04, 0.045, 0.05, 0.04, 0.045, 0.05, 0.04, 0.045, 0.05, 0.04, 0.045, 0.05, 0.04, 0.045, 0.05, 0.04, 0.045, 0.045, 0.05, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.045, 0.
0.055, 0.06, 0.065, 0.07, 0.075, 0.08,
                     0.085, 0.09, 0.095, 0.1;
const double a = -5.0, b = 2.0;
double random(double min, double max) {
      return (double) (rand()) / RAND MAX * (max - min) + min;
}
std::vector<std::vector<int>> n_p_of_q(const std::vector<double> &P,
const std::vector<double> &q) {
       std::vector<std::vector<int>> table;
      for (size_t i = 0; i < q.size(); i++) {
             std::vector<int> string;
             for (size_t j = 0; j < P.size(); j++) {
                    string.push_back(std::ceil(log(1 - P[j]) / log(1 - q[i]) ));
             table.push_back(string);
      return table;
}
void pr n p of g(const std::vector<std::vector<int>> &table) {
       std::cout << std::string(68, '-') << std::endl;
      std::cout << "|q\\\P ";
      for (size_t i = 0; i < P.size(); i++) {
             std::cout << "|" << std::setw(5) << std::left << P[i];
      std::cout << '|' << std::endl;
      std::cout << std::string(68, '-') << std::endl;
      for (size t i = 0; i < table.size(); i++) {
             std::cout << "|";
             std::cout << std::setw(6) << std::left << q[i];
             for (size t = 0; i < table[i].size(); <math>i++) {
                    std::cout << '|' << std::setw(5) << std::left << table[i][i];
             std::cout << '|' << std::endl;
      std::cout << std::string(68, '-') << std::endl;
}
void print_table(const std::vector<std::vector<double>> &table) {
       std::cout << std::string(118, '-') << std::endl;
```

```
std::cout << "|q\\\P ";
  for (size_t i = 0; i < P.size(); i++) {
     std::cout << "|" << std::setw(10) << std::left << P[i];
  std::cout << '|' << std::endl;
  std::cout << std::string(118, '-') << std::endl;
  for (size_t i = 0; i < table.size(); i++) {
     std::cout << "|";
     std::cout << std::setw(6) << std::left << q[i];
     for (size t = 0; i < table[i].size(); <math>i++) {
        std::cout << '|' << std::setw(10) << std::left << table[i][j];
     std::cout << '|' << std::endl;
  std::cout << std::string(118, '-') << std::endl;
}
std::vector<std::vector<double>> rand search(const
std::vector<std::vector<int>> &all_n, const int choice) {
  std::vector<std::vector<double>> table;
  for (size_t i = 0; i < q.size(); i++) {
     std::vector<double> string;
     for (size_t j = 0; j < P.size(); j++) {
        double min = 9223372036854775807.0;
        for (size_t k = 0; k < all_n[i][j]; k++) {
           double elem;
           if (choice == 0) {
             elem = f_of_x(random(a, b));
           } else if (choice == 1) {
             elem = f_of_new_x(random(a, b));
           } else {
             throw std::logic_error("Invalid choice");
           if (elem < min) {
             min = elem;
        string.push_back(min);
     table.push_back(string);
  return table;
}
int main() {
```

```
pr_n_p_of_q(n_p_of_q(P, q));
std::cout << std::endl;

print_table(rand_search(n_p_of_q(P, q), 0));
std::cout << std::endl;

print_table(rand_search(n_p_of_q(P, q), 1));
std::cout << std::endl;

return 0;
}</pre>
```

### Контрольный вопрос

В чем состоит сущность метода случайного поиска? Какова область применимости данного метода?

При таком поиске все последующие испытания проводят совершенно независимо от результатов предыдущих. Сходимость такого поиска очень мала, но имеется важное преимущество, связанное с возможностью решения многоэкстремальных задач (искать глобальный экстремум). Примером ненаправленного поиска является рассмотренный простой случайный поиск.

#### Вывод

Таким образом, в результате вычисления минимума унимодальной на данном отрезке функции различными методами, мы убедились в том, что количество итераций для метода золотого сечения меньше, чем для метода оптимального пассивного поиска, следовательно, он эффективнее.