Introduction to Machine Learning and Data Mining

Course contents & "rules of the game"

O. (INTRODUCTORY) LECTURE

assoc. prof. Branko Kavšek

UP FAMNIT 2023/24

About the course

Course name:

Introduction to Machine Learning and Data Mining

Teacher: Branko Kavšek

Assistant: Domen Vake

Course type: elective/compulsory

Students:

Students of the study program Computer Science and Bioinformatics

 (1. level) UP FAMNIT – 2. and 3. year

Prerequisites: no prior knowledge needed

useful: basic statistics, basic programming (in Python)

e-classroom: https://e.famnit.upr.si/course/view.php?id=5620

Course contents – theory

Knowledge discovery (searching for patterns) in data using the CRISP-DM methodology:

- Problem understanding
- Data understanding
- Data preparation
- Modeling pattern discovery
- Evaluation
- Deployment

Source:

https://en.wikipedia.org/wiki/Cross Industry Standard Process for Data Mining

Course contents – practice sessions

Using data mining techniques on real data:

- "manually"
- with aid of (computer) tools:
 - Advanced text editors (gedit, Notepad++, ...)
 - Spreadsheet editors (Calc, Excel, ...)
 - Open-source data mining toolboxes (WEKA, Python, ...)

Rules of the game

The final grade is "composed" of:

- The written exam grade or 2 mid-terms (50%)
 - Condition: written exam has to be "positive" (≥ 50/100 points),
 mid-terms have to be both "positive" (≥ 40/100 points);
- The homeworks grade ~ 1 homework/week (15%)
 - Condition: at least 50% of all points achieved;
- The programming project on tutorials (30%)
 - <u>Condition</u>: submitted on time and positively graded project;
- The **oral exam** grade (5%):
 - Condition: a "satisfactory" answer to each of the 3 questions;

Detailed information in the Course Syllabus: https://e.famnit.upr.si/mod/page/view.php?id=107177

The path towards the final grade

Activity	Grade part	Condition
Written exam / mid-terms	50 %	At least half of all points achieved, not less than 40% for each mid-term.
Programming project	30 %	Working program + documentation, submitted on time = 100 % late submissions = - %.
Homeworks	15 %	At least 50% of all points achieved, submitted on-time = 100 % 1 week late = 50 % > 1 week late = 0 %.
Oral exam	5 %	At least satisfactory knowledge demonstrated at answering each of the 3 questions.
Total:	100 %	All activity conditions fulfilled

95 to **100** points = excellent (10), **85** to **94.99** points = very good (9), **75** to **84.99** points = very good (**8**), 65 to 74.99 points = good(7),**50** to **64.99** points = sufficient (6), less than 50 points = insufficient (fail)

Literature and other sources

- 1. Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. *Data Mining: Practical Machine Learning Tools and Techniques*, 4th Edition, Morgan Kaufmann, 2016.
- 2. Mohammed J. Zaki, Wagner Meira, Jr. *Data Mining and Analysis: Fundamental Concepts and Algorithms*, Cambridge University Press, 2014.
- 3. David J. Hand, Heikki Mannila and Padhraic Smyth, *Principles of Data Mining*, MIT Press, Fall 2000.
- 4. Trevor Hastie, Robert Tibshirani, Jerome Friedman, *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*, Springer Verlag, 2001.
- 5. Tom Mitchell: *Machine Learning*, McGraw Hill, 1997.
- 6. UCI ML Repository: http://archive.ics.uci.edu/ml/
- 7. Kaggle: https://www.kaggle.com/
- 8. WEKA software: http://www.cs.waikato.ac.nz/ml/weka/