Package 'MTest'

October 6, 2023

Type Pac	kage
Title A P	rocedure for Multicollinearity Testing using Bootstrap
Version 1	1.0.2
Date 202	3-10-06
Maintain	er Víctor Morales-Oñate <victor.morales@uv.cl></victor.morales@uv.cl>
moi tion	ctions for detecting multicollinearity. This test gives statistical support to two of the most fasts methods for detecting multicollinearity in applied work: Klein's rule and Variance Infla-Factor (VIF). See the URL for the papers associated with this package, as for ince, Morales-Oñate and Morales-Oñate (2015) <doi:10.33333 rp.vol51n2.05="">.</doi:10.33333>
Depends	R (>= 4.1.0)
License (GPL (>= 3)
Encoding	UTF-8
Imports	car, ggplot2,plotly
Repositor	y CRAN
URL htt	ps://github.com/vmoprojs/MTest
BugRepo	rts https://github.com/vmoprojs/MTest/issues
LazyData	true
NeedsCo	npilation no
(<	Victor Morales-Oñate [aut, cre] https://orcid.org/0000-0003-1922-6571>), ivar Morales-Oñate [aut] (<https: 0000-0003-4980-8759="" orcid.org="">)</https:>
Date/Pub	lication 2023-10-06 13:10:02 UTC
R topi	cs documented:
]]	MTest 2 pairwiseKStest 3 plot.MTest 5 simDataMTest 5
Index	7

MTest MTest

Description

MTest is a nonparametric test based on bootstrap for detecting multicollinearity. This test gives statistical support to two of the most famous methods for detecting multicollinearity in applied work: Klein's rule and Variance Inflation Factor (VIF for essential multicollinearity).

Usage

Arguments

object	an object representing a model of an appropriate class (mainly "lm"). This is used as the model in MTest.
nboot	Numeric; number of bootstrap iterations to obtain the probability distribution of R squared (global and auxiliar).
nsam	Numeric; sample size for bootstrap samples.
trace	Logical; prints iteration process.
seed	Numeric; seed value for the bootstrap in nboot parameter.
valor_vif	Numeric; value to be compared in kleins rule.

Details

MTest generates a bootstrap distribution for the coefficient of determination which lets the researcher assess multicollinearity by setting a statistical significance α , or more precisely, an achieved significance level (ASL) for a given threshold.

Consider the regression model

$$Y_i = \beta_0 X_{0i} + \beta_1 X_{1i} + \dots + \beta_p X_{pi} + u_i$$

where i = 1, ..., n, $X_{j,i}$ are the predictors with j = 1, ..., p, $X_0 = 1$ for all i and u_i is the gaussian error term.

In order to describe Klein's rule and VIF methods, we need to define *auxiliary regressions* associated to model. An example of an auxiliary regressions is:

$$X_{2i} = \gamma_1 X_{1i} + \gamma_3 X_{3i} + \dots + \gamma_p X_{pi} + u_i.$$

In general, there are p auxiliary regressions and the dependent variable is omitted in each auxiliary regression. Let R_g^2 be the coefficient of determination of the model and R_j^2 the jth coefficient of determination of the jth auxiliary regression.

pairwiseKStest 3

Value

Returns an object of class MTest. An object of class MTest is a list containing at most the following components:

 $\begin{array}{ll} {\rm pval_vif} & {\rm p\ values\ for\ vif\ test;} \\ {\rm pval_klein} & {\rm p\ values\ for\ klein\ test;} \\ {\rm Bvals} & {\rm A\ }nboot\times(p+1)\ {\rm matrix\ where\ rows\ are\ the\ number\ of\ bootstap\ samples\ and\ } \\ & {\rm the\ columns\ are\ } R_{g_{boot}}^2\ {\rm and\ } R_{j_{boot}}^2\ {\rm which\ are\ estimates\ of\ estimates\ of\ } \\ R.\ {\rm tot} & {\rm Observed\ } R_g^2\ {\rm and\ } R_j^2\ {\rm values;} \\ \end{array}$

sample size used in bootstrap procedure.

Author(s)

nsam

```
Víctor Morales Oñate, <victor.morales@uv.cl>, https://sites.google.com/site/moralesonatevictor/,https://www.linkedin.com/in/vmoralesonate/Bolívar Morales Oñate, <bmoralesonate@gmail.com>, https://sites.google.com/site/moralesonatevictor/
```

References

Morales-Oñate, V., and Morales-Oñate, B. (2023). *MTest: a Bootstrap Test for Multicollinearity*. Revista Politécnica, 51(2), 53–62. doi:10.33333/rp.vol51n2.05

Examples

```
library(MTest)
data(simDataMTest)
m1 <- lm(y~.,data = simDataMTest)

boot.sol <- MTest(m1,trace=FALSE,seed = 1,nboot = 50)
boot.sol$pval_vif
boot.sol$pval_klein
head(boot.sol$Bvals)
print(boot.sol)</pre>
```

pairwiseKStest pairwiseKStest

Description

Returns the p-value of the columns of X (pairwisely).

Usage

```
pairwiseKStest(X,alternative="greater")
```

4 pairwiseKStest

Arguments

X Numeric; a matrix (Bvals output from MTest function) whose columns are to

be compared.

alternative String; letter of the value, but the argument name must be given in full. See

'ks.test' for the meanings of the possible values.

Details

Using a pairwise Kolmogorov-Smirnov (KS) test of a given matrix X. In particular, if X is the Bvals output from MTest function, pairwiseKStest establishes a guide for an educated removal of variables that are causing multicolli-nearity.

Note that the matrix $B_{n_{boot} \times (p+1)}$ (which is Bvals output from MTest function) allow us to inspect results in detail and make further tests such as boxplots, pariwise Kolmogorov-Smirnov (KS) of the predictors and so on.

Value

Returns an object of class pairwiseKStest. An object of class pairwiseKStest is a list containing at most the following components:

KSpwMatrix *p*-values matrix of pairwise KS testing;

alternative Character; indicates the alternative hypothesis.

Suggestion Character; indicates row sums (or col sums) of KSpwMatrix suggesting the re-

moval order in case that is the strategy for dealing with multicollinearity.

Author(s)

```
Víctor Morales Oñate, <victor.morales@uv.cl>, https://sites.google.com/site/moralesonatevictor/,https://www.linkedin.com/in/vmoralesonate/Bolívar Morales Oñate, <bmoralesonate@gmail.com>, https://sites.google.com/site/moralesonatevictor/
```

References

Morales-Oñate, V., and Morales-Oñate, B. (2023). *MTest: a Bootstrap Test for Multicollinearity*. Revista Politécnica, 51(2), 53–62. doi:10.33333/rp.vol51n2.05

Examples

```
library(MTest)
data(simDataMTest)
pairwiseKStest(X=simDataMTest)
```

plot.MTest 5

plot.	MTest

Plot density or empirical cumulative distribution from MTest

Description

Plot density or empirical cumulative distribution from Bvals in MTest output.

Usage

```
## S3 method for class 'MTest'
plot(x, type=1,plotly = FALSE,...)
```

Arguments

x an object of the class "MTest

type Numeric; 1 if density, 2 if ecdf plot is returned plotly Logical; if FALSE, a ggplotly plot is returned

... other arguments to be passed to the function ggplot

Details

This function plots density or empirical cumulative distribution function from MTest bootstrap replications.

Value

Produces a plot. No values are returned.

See Also

MTest for procedure and examples.

simDataMTest

Simulated data for MTest

Description

This data set helps testing functions in MTest package, the generating process is documented in the reference.

Usage

simDataMTest

6 simDataMTest

Format

A dataframe containing 10000 observations and four columns.

References

Morales-Oñate, V., and Morales-Oñate, B. (2023). *MTest: a Bootstrap Test for Multicollinearity*. Revista Politécnica, 51(2), 53–62. doi:10.33333/rp.vol51n2.05

Index

```
* KS
    pairwiseKStest, 3

* MTest
    plot.MTest, 5

* Multicollinearity
    MTest, 2

* datasets
    simDataMTest, 5

ggplot, 5

MTest, 2, 5

pairwiseKStest, 3
plot.MTest, 5

simDataMTest, 5
```