Spatial occupancy models with the spOccupancy R package

Jeff Doser and Andy Finley

Michigan State University

October 3, 2022

ESA Statistical Methods Seminar Series

- Overview of occupancy modeling and spatial modeling
- spOccupancy functionality
- spOccupancy syntax and example: single-species and multi-species spatial occupancy models
- Q&A

Motivation

- Species distribution modeling
 - Where do species occur and how does this change over time?
 - What drives species distributions?
- Two key complexities when modeling species distributions
 - Imperfect detection
 - Spatial autocorrelation

Imperfect Detection

How do we account for imperfect detection?

- Occupancy modeling
- Basic idea: perform multiple surveys (i.e., visits) at each site
- Multiple visits give information on detection probability
- Allows us to separately estimate occupancy probability from detection probability

Detection-nondetection matrix

Site	Survey 1	Survey 2	Survey 3	Survey 4
1	1	0	0	1
2	0	0	0	0
3	1	1	0	NA
4	1	NA	0	NA
5	0	1	1	1
6	0	0	0	1

Occupancy model: what is it?

- Two distinct sub-models
 - Model occupancy probability as a function of site-level covariates
 - Model detection probability as a function of site and/or survey-level covariates
 - Can only detect a species if it truly occupies a site
 - Detection probability is modeled "conditional" on true occupancy

Single-species occupancy model

Occupancy (ecological) sub-model

$$j = 1, ..., J$$
 (site)
 $k = 1, ..., K_i$ (replicate)

$$z_j \sim \text{Bernoulli}(\psi_j)$$

 $\text{logit}(\psi_j) = \beta_1 + \beta_2 \cdot X_{2,j} + \dots + \beta_r \cdot X_{r,j}$

Detection (observation) sub-model

$$y_{j,k} \sim \text{Bernoulli}(p_{j,k} \cdot z_j)$$

 $\text{logit}(p_{j,k}) = \alpha_1 + \alpha_2 \cdot V_{2,j,k} + \dots + \alpha_r \cdot V_{r,j,k}$

Multi-species occupancy models

Two flavors in spOccupancy:

- Dorazio-Royle multi-species (community) occupancy models
 - Spatial and non-spatial
- Joint species distribution models with imperfect detection
 - Spatial and non-spatial
 - Account for species correlations using factor modeling (<u>Doser, Finley</u>, <u>Banerjee 2022</u>)

				S	Site Sur		/	Survey 2	Survey 3	Survey 4	
		s	Site		Survey		у	Survey	Survey 4	0	
	Site	Survey		Surve	,	Survey		Survey 4			
Site	Survey	Survey	Su	rvey	Sur	vey 4			1	1	
	1	2		3				0	01	NA	
1	1	0		0		1		0	NA	NA	
2	0	0		0		0		NA	NA	1	
3	1	1		0		NA		NA	1	0	
4	1	NA		0		NA		0	1		
5	0	Ī		1		1	ĺ	0			
6	0	0		0		1					

Spatial autocorrelation

- Things closer together in space tend to be more similar than things further apart
- What leads to spatial autocorrelation in species distributions?
 - Environmental drivers, habitat requirements
 - Biotic factors (dispersal, conspecific attraction)
- Initial approach: attempt to explain spatial variation in species distributions with covariates (e.g., forest cover, temperature, elevation)

Residual spatial autocorrelation

- Spatial correlation in data after including spatial covariates
- Often arises from missing/unavailable covariates
- Can lead to bias if unaddressed
- Account for using spatial random effects
 - Each site has a local adjustment in occupancy probability
 - The local adjustments are given a spatial structure
 - Estimated parameters: spatial variance and spatial decay
 - Caution: spatial confounding (<u>Hanks et al. 2015</u>)

Single-species spatial occupancy model

Occupancy (ecological) sub-model

$$j = 1, ..., J$$
 (site)
 $k = 1, ..., K_j$ (replicate)

$$z_j \sim \text{Bernoulli}(\psi_j)$$

 $\text{logit}(\psi_j) = \beta_1 + \beta_2 \cdot X_{2,j} + \dots + \beta_r \cdot X_{r,j} + w_j$
 $w_j \sim \text{Normal}(0, \Sigma)$

Detection (observation) sub-model

$$y_{j,k} \sim \text{Bernoulli}(p_{j,k} \cdot z_j)$$

 $\text{logit}(p_{j,k}) = \alpha_1 + \alpha_2 \cdot V_{2,j,k} + \dots + \alpha_r \cdot V_{r,j,k}$

Gaussian processes

- "Gold standard" for modeling spatial data
- Spatial correlation function determines structure
- Downside: computationally intensive for big data
- Alternative: Nearest Neighbor Gaussian Processes (<u>Datta et al. 2016</u>, <u>Doser et al. 2022</u>)

spOccupancy

- Designed to fit a variety of Bayesian occupancy models
- Efficiently accommodates spatial autocorrelation
- Workflow completely in R using standard model syntax (no Bayesian programming languages necessary)
- Key functionality:
 - Single-species models
 - Multi-species models with options to account for species correlations
 - Data integration
 - Multi-season (spatio-temporal) models

Why Bayesian for occupancy modeling?

- Interpretation
- More flexible to accommodate spatial autocorrelation
- Easy to extend to multi-species frameworks/integrate multiple data sources
- Fully propagate uncertainty in all estimates (and derived quantities)

More Resources

spOccupancy workflow

- 1. Data simulation/prep
- 2. Model fitting

- 3. Model validation
- 4. Model comparison
- 5. Posterior summaries
- 6. Prediction

Example dataset: Swiss MHB Survey

- Data from the Switzerland Breeding Bird Survey in 2014
- 266 survey locations distributed throughout Switzerland
- Single species (European Goldfinch) and multi-species models (20 species)

Additional examples

Single-species and multi-species occupancy models

Amphibian community from Ribeiro Jr et al (2018) Eco Apps

Integrated occupancy model

Bottlenose dolphin data from Lauret et al. (2021) Ecology

Multi-season occupancy model

Eastern wood pewee data from Doser et al. (2021) Eco Apps

Coming soon...

- Spatially-varying coefficient occupancy models
- Multi-species spatio-temporal occupancy models
- Multi-species integrated occupancy models

spOccupancy

- Package website
 - https://www.jeffdoser.com/files/spoccupancy-web/
- GitHub development page
 - https://github.com/doserjef/spOccupancy/
- MEE intro paper
- arXiv preprint
- 😈 @jeffdoser18
- Email: doserjef@msu.edu

Joint species distribution models with imperfect detection for high-dimensional spatial data

Jeffrey W. Doser^{1, 2}, Andrew O. Finley^{2, 3}, Sudipto Banerjee⁴

Acknowledgements

Elise Zipkin

Marc Kéry

Sudipto Banerjee

Thank you!