Справка о количестве источников выбросов во время их работы ООО "Био Агро Дон"

№ ИЗА	Наименование источника загрязнения	№ ИВ	Наименование источника выделения	Время ј источ выделе	ника
	атмосферы		загрязняющих веществ	в день	в год
1	2	3	4	5	6
6001	Неорганизованный	01	Работа ДВС спецтехники	1	260
		02	Работа ДВС автотранспорта	1	260

Генеральный директор А. Н. Паршин

ООО "Био Агро Дон"

р А. Н. Паршин

А. Н. Бирши

Био Агро Доны

Торованиченной обраниченной обраниченн

Справка об автотранспорте, числящемся на балансе ООО "Био Агро Дон"

№ ИЗАВ	Марка	Тип машины	Тип топли ва	Мощность	Количе ство
6001	PCM-152 «ACROS-595 Plus»	Комбайн зерноуборочны й	дт	330 л.с.	1
	PCM-152 «ACROS-595 Plus»	Комбайн зерноуборочны й	ДТ	330 л.с.	1
	БЕЛАРУС 1523.3	Трактор	ДТ	150 л.с.	1
	БЕЛАРУС 1523.3	Трактор	ДТ	150 л.с.	1
	БЕЛАРУС 1523.3	Трактор	ДТ	150 л.с.	1
	«Кировец» К-742 М Пр	Сельскохозяйст венный трактор	ДТ	420 л.с.	1
	«Кировец» К-742 М Пр	Сельскохозяйст венный трактор	ДТ	420 л.с.	1
	ГРАЗ 36136-0000011	Автотопливоза правщик	ДТ	148,9 л.с.	1
	LADA NIVA	Внедорожник	АИ-95	83 л.с.	1
	УАЗ UAZ Patriot	Внедорожник	АИ-95	150 л.с.	1

Генеральный директор А. Н. Паршин ООО "Био Агро Дон"

Справка о перспективе предприятия ООО «Био Агро Дон»

На ближайшие 7 лет (2023-2030 гг.) расширения и ввода в действие новых производств, приводящих к увеличению числа источников выбросов загрязняющих веществ, не намечается.

Генеральный директор А. Н. Паршин ООО "Био Агро Дон"

A. H. Fraquery

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕИ СРЕДЫ (РОСГИДРОМЕТ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «КРЫМСКОЕ УПРАВЛЕНИЕ ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ» (ФГБУ «КРЫМСКОЕ УГМС»)

ул. Б.Хмельницкого, 27, г. Симферополь, Республика Крым, 295034, т/ф (3652) 548-175, Email: info@simf.mecom.ru. caйт: http://meteo.crimea.ru

ОГРН 1159102042659 ИНН/КПП 9102165544/910201001

05.10.2021 г. № 55/R на № 25 от 25.09.2021 г. Заместителю генерального директора ООО «ИКТИН ГРУПП» М.Э.Чеботаревой

На Ваш запрос сообщаю климатические характеристики для разработки проектной документации по объекту ООО «Био Агро Дон», расположенному по адресу: Ростовская область, г. Ростов-на-Дону, пер. Ломоносова, 16. Данные предоставляются по наблюдениям близлежащей метеостанции МГ Евпатория.

Раздел 1. Метеорологические характеристики и коэффициенты, определяющие условия рассеивания загрязняющих веществ в атмосфере по данным наблюдений МГ Евпатория за период 1966-2019 гг.

Таблица 1.1

Наименование характеристик	Величина
Коэффициент, зависящий от стратификации атмосферы А	200
Средняя максимальная температура атмосферного воздуха наиболее жаркого месяца года, Т. °С	28,8
Средняя температура атмосферного воздуха наиболее холодного месяца, T, °C	1,2
Средняя температура атмосферного воздуха наиболее жаркого месяца, T, °C	23,7

МГ Евпатория

РАЗДЕЛ 2. ВЕТЕР Повторяемость направлений ветра (по 8 румбам) и штилей за год (%)

Таблица 2.1

по данным наблюдений МГ Евпатория за период 1974-2019 гг.

	С	CB	В	ЮВ	Ю	Ю3	3	C3	ШТ
Год	15.6	24.4	12.7	2.5	9.0	14.4	12.0	9.4	1.3

Скорость ветра, повторяемость превышения которой составляет 5 % (м/с) по данным наблюдений МГ Евпатория за период 1974-2019 гг.

Таблица 2.2

Станция	Скорость ветра, м/с
МГ Евпатория по измеренным скоростям ветра на высоте установки прибора	9.0
МГ Евпатория по скоростям ветра, пересчитанным на стандартную высоту 10м	8.3

Примечание. Расчетный период 1974-2019 гг. выбран в зависимости от начала наблюдений за характеристиками ветра по анеморумбометру (М-63М-1). За этот период высота ветроизмерительного прибора неоднократно менялась. Так с 1988 года высота установки составляет 20,7 м. В этой связи требуется дополнительный пересчет скоростей ветра на стандартную высоту 10м.

Справка используется только в целях заказчика для объекта: «ООО «Био Агро Дон» по адресу: Ростовская область, г. Ростов-на-Дону, пер. Ломоносова, 16.» и не подлежит передаче другим организациям и лицам.

Карта схема территории объекта HBOC с источниками выбросов ООО "Био Агро Дон", 125364, Ростовская область, г. Ростов-на-Дону, пер. Ломоносова, 16.

Условные обозначения

Ситуационная карта района расположения ООО" Био Агро Дон", 125364, Ростовская область, г. Ростов-на-Дону, пер. Ломоносова, 16.

Условные обозначения

ИЗАВ №6001 Неорганизованный ИВ 01 Работа ДВС спецтехники

Источниками выделений загрязняющих веществ являются двигатели дорожно-строительных машин в период работы пускового двигателя, прогрева, движения по территории предприятия и во время работы в режиме холостого хода.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), СПб., НИИ Атмосфера, 2012.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М, 1998.
- Дополнения к методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от дорожно-строительных машин, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально разовый	Годовой выброс, т/год
код	наименование	выброс, г/с	годовой выорос, тугод
301	Азота диоксид (Азот (IV) оксид)	0,03315	0,0617
304	Азот (II) оксид (Азота оксид)	0,00539	0,0100
328	Углерод (Сажа)	0,00818	0,0091
330	Сера диоксид (Ангидрид сернистый)	0,00364	0,0068
337	Углерод оксид	0,21345	0,3021
2704	Бензин (нефтяной, малосернистый)	0,01000	0,0153
2732	Керосин	0,01642	0,0208
	4447	11.12	

Расчет выполнен для стоянки дорожно-строительных машин (ДМ), хранящихся при температуре окружающей среды. Пробег ДМ при выезде составляет 0.12 км, при въезде -0.12 км. Время работы двигателя на холостом ходу при выезде с территории стоянки -1 мин, при возврате на неё -1 мин. Количество дней для расчётного периода: теплого -305, переходного -60.

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

	*	М	аксимальное кол	ичество Д	ļМ	Ско-	Элек-	Одно-
Наименование ДМ	Тип ДМ	всего	выезд/въезд в течение суток	выезд за 1 час	въезд за 1 час	рость,	тро- стар- тер	вре- мен- ность
PCM-152 «ACROS- 595 Plus»	ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)	2	2	1	1	10	79	+
БЕЛАРУС 1523.3	ДМ колесная, мощностью 101-160 кВт (137-218 л.с.)	3	3	1	1	10	7 79	+
«Кировец»К-742 М Пр	ДМ колесная, мощностью свыше 260 кВт (355 л.с. и бо- лее)	2540	2	1	1	10	38	*

	(c	M	аксимальное кол	ичество Д	ДM	Ско- тро-	Одно-	
Наименование ДМ	Тип ДМ	всего	выезд/въезд в течение суток	выезд за 1 час	въезд за 1 час	рость,	тро- стар- тер	вре- мен- ность
ΓΡΑ3 36136- 0000011	ДМ колесная, мощностью 101-160 кВт (137-218 л.с.)	1	1	1	1	10	858	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Выбросы i-го вещества одной машиной k-й группы в день при выезде с территории M'_{ik} и возврате M''_{ik} рассчитываются по формулам (1.1.1 и 1.1.2):

$$\mathbf{M'}_{ik} = \mathbf{m}_{\Pi ik} \cdot \mathbf{t}_{\Pi} + \mathbf{m}_{\Pi P ik} \cdot \mathbf{t}_{\Pi P} + \mathbf{m}_{\mathcal{A}B ik} \cdot \mathbf{t}_{\mathcal{A}B 1} + \mathbf{m}_{XX ik} \cdot \mathbf{t}_{XX 1}, z$$

$$(1.1.1)$$

$$\mathbf{M''}_{ik} = \mathbf{m}_{\mathcal{A}\mathcal{B}ik} \cdot \mathbf{t}_{\mathcal{A}\mathcal{B}2} + \mathbf{m}_{XXik} \cdot \mathbf{t}_{XX2}, z \tag{1.1.2}$$

где $m_{\Pi ik}$ — удельный выброс *i*-го вещества пусковым двигателем, ϵ/muH ;

 $m_{\Pi P ik}$ — удельный выброс *i*-го вещества при прогреве двигателя машины *k*-й группы, *г/мин*;

 $m_{\mathcal{A}B\ ik}$ — удельный выброс **i**-го вещества при движении машины **k**-й группы с условно постоянной скоростью , s/mun;

 $m_{XX\ ik}$ — удельный выброс **i**-го вещества при работе двигателя машины **k**-й группы на холостом ходу, \imath / muh ;

 $t_{\it п}, t_{\it пP}$ - время работы пускового двигателя и прогрева двигателя, мин;

 $t_{\it ДB 1}$, $t_{\it ДB 2}$ - время движения машины при выезде и возврате рассчитывается из отношения средней скорости движения и длины проезда, *мин*;

 $m{t}_{XX\,1},\,m{t}_{XX\,2}$ - время работы двигателя на холостом ходу при выезде и возврате, мин;

При расчете выбросов от ДМ, имеющих двигатель с запуском от электростартерной установки, член $\mathbf{m}_{\Pi ik} \cdot \mathbf{t}_{\Pi}$ из формулы (1.1.1) исключается.

Валовый выброс i-го вещества ДМ рассчитывается раздельно для каждого периода года по формуле (1.1.3):

$$\mathbf{M}_{i}^{j} = \sum_{k=1}^{k} (\mathbf{M'}_{ik} + \mathbf{M''}_{ik}) \cdot \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6}, \, m/200$$
 (1.1.3)

где N_k – среднее количество ДМ κ -й группы, ежедневно выходящих на линию;

 D_{P} - количество рабочих дней в расчетном периоде (холодном, теплом, переходном);

j — период года (T - теплый, П - переходный, X - холодный); для холодного периода расчет M_i выполняется с учётом температуры для каждого месяца.

Влияние холодного и переходного периодов года на выбросы загрязняющих веществ для машин, хранящихся на закрытой отапливаемой стоянке не учитывается.

Для определения общего валового выброса $\mathbf{\textit{M}}_i$ валовые выбросы одноименных веществ по периодам года суммируются (1.1.3):

$$\mathbf{M}_{i} = \mathbf{M}^{\mathsf{T}}_{i} + \mathbf{M}^{\mathsf{T}}_{i} + \mathbf{M}^{\mathsf{X}}_{i}, \, m/200$$
 (1.1.3)

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.2):

$$G_{i} = \sum_{k=1}^{k} (M'_{ik} \cdot N'_{k} + M''_{ik} \cdot N''_{k}) / 3600, c/c$$
 (1.1.2)

где N'_k , N''_k — количество машин k-й группы, выезжающих со стоянки и въезжающих на стоянку за 1 час, характеризующийся максимальной интенсивностью выезда(въезда) ДМ.

Из полученных значений \mathbf{G}_i выбирается максимальное с учетом одновременности движения ДМ разных групп.

Удельные выбросы загрязняющих веществ при работе пускового двигателя, прогреве, пробеге, на холостом ходу приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ, г/мин

				Прогрев	ig.	Į	<mark>Јвижени</mark>	ie	Холо- стой ход
Тип	Загрязняющее вещество	Пуск	Т	П	х	T.	п	х	
ДМ ко	олесная, мощностью 161-260 кВт (219-354)	n.c.)		10	0	0	₹\\\ 2.0	10.	
	Азота диоксид (Азот (IV) оксид)	3,6	1,016	1,528	1,528	5,176	5,176	5,176	1,016
	Азот (II) оксид (Азота оксид)	0,585	0,165	0,2483	0,2483	0,841	0,841	0,841	0,165
	Углерод (Сажа)	-	0,17	0,918	1,02	0,72	0,972	1,08	0,17
	Сера диоксид (Ангидрид сернистый)	0,095	0,25	0,279	0,31	0,51	0,567	0,63	0,25
	Углерод оксид	57	6,3	11,34	12,6	3,37	3,699	4,11	6,31
	Бензин (нефтяной, малосернистый)	4,7	129	121	8=8	1145	2	- 2	2
	Керосин	m.	0,79	1,845	2,05	1,14	1,233	1,37	0,79
ДМ ко	олесная, мощностью 101-160 кВт (137-218 л	n.c.)							
	Азота диоксид (Азот (IV) оксид)	2,72	0,624	0,936	0,936	3,208	3,208	3,208	0,624
	Азот (II) оксид (Азота оксид)	0,442	0,1014	0,152	0,152	0,521	0,521	0,521	0,1014
	Углерод (Сажа)	974	0,1	0,54	0,6	0,45	0,603	0,67	0,1
	Сера диоксид (Ангидрид сернистый)	0,058	0,16	0,18	0,2	0,31	0,342	0,38	0,16
	Углерод оксид	35	3,9	7,02	7,8	2,09	2,295	2,55	3,91
	Бензин (нефтяной, малосернистый)	2,9	626	18481	822	32	2	2	12
	Керосин	E2.	0,49	1,143	1,27	0,71	0,765	0,85	0,49

Азота диоксид (Азот (IV) оксид)	5,6	1,6	2,4	2,4	8,128	8,128	8,128	1,592
Азот (II) оксид (Азота оксид)	0,91	0,26	0,39	0,39	1,321	1,321	1,321	0,258
Углерод (Сажа)	1 to 1	0,26	1,404	1,56	1,13	1,53	1,7	0,26
Сера диоксид (Ангидрид сернистый)	0,15	0,26	0,288	0,32	0,8	0,882	0,98	0,39
Углерод оксид	90	9,9	16,92	18,8	5,3	5,823	6,47	9,92
Бензин (нефтяной, малосернистый)	7,5	8 <u>52</u>	2 22	2	-	2	1 2	128
Керосин	1	1,24	2,898	3,22	1,79	1,935	2,15	1,24

Время работы пускового двигателя в зависимости от расчетного периода приведено в таблице 1.1.4.

Таблица 1.1.4 - Время работы пускового двигателя, мин

Tue second established value		Время	
Тип дорожно-строительной машины	T	П	Х
ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)	1	2	4
ДМ колесная, мощностью 101-160 кВт (137-218 л.с.)	1	2	4
ДМ колесная, мощностью свыше 260 кВт (355 л.с. и более)	1	2	4

Время прогрева двигателей в зависимости от температуры воздуха и условий хранения приведено в таблице 1.1.5.

Таблица 1.1.5 - Время прогрева двигателей, мин

Tura sanayuna atnaytasi yay		Время	
Тип дорожно-строительной машины	Т	П	X
ДМ колесная, мощностью 161-260 кВт (219-354 л.с.)	2	6	12
ДМ колесная, мощностью 101-160 кВт (137-218 л.с.)	2	6	12
ДМ колесная, мощностью свыше 260 кВт (355 л.с. и более)	2	6	12

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

PCM-152 «ACROS-595 Plus»

```
\mathbf{M'}^{\mathsf{T}}_{301} = 3,6 \cdot 1 + 1,016 \cdot 2 + 5,176 \cdot 0,12 / 5 \cdot 60 + 1,016 \cdot 1 = 14,10144 \, \epsilon;
\mathbf{M''}^{\mathsf{T}}_{301} = 5,176 \cdot 0,12 / 5 \cdot 60 + 1,016 \cdot 1 = 8,46944 \, \epsilon;
\mathbf{M''}^{\mathsf{T}}_{301} = (14,10144 + 8,46944) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0137682 \, \text{m/zod};
\mathbf{G'}^{\mathsf{T}}_{301} = (14,10144 \cdot 1 + 8,46944 \cdot 1) / 3600 = 0,0062697 \, \epsilon/c;
\mathbf{M''}^{\mathsf{T}}_{301} = 3,6 \cdot 2 + 1,528 \cdot 6 + 5,176 \cdot 0,12 / 5 \cdot 60 + 1,016 \cdot 1 = 24,83744 \, \epsilon;
\mathbf{M'''}^{\mathsf{T}}_{301} = 5,176 \cdot 0,12 / 5 \cdot 60 + 1,016 \cdot 1 = 8,46944 \, \epsilon;
\mathbf{M''}^{\mathsf{T}}_{301} = (24,83744 + 8,46944) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0039968 \, \text{m/zod};
\mathbf{G''}^{\mathsf{T}}_{301} = (24,83744 \cdot 1 + 8,46944 \cdot 1) / 3600 = 0,0092519 \, \epsilon/c;
\mathbf{M} = 0,0137682 + 0,0039968 = 0,0177651 \, \text{m/zod};
\mathbf{G} = \max\{0,0062697; 0,0092519\} = 0,0092519 \, \epsilon/c.
```

```
M^{\prime T}_{304} = 0.585 \cdot 1 + 0.165 \cdot 2 + 0.841 \cdot 0.12 / 5 \cdot 60 + 0.165 \cdot 1 = 2.29104 z;
M''^{\mathsf{T}}_{304} = 0.841 \cdot 0.12 / 5 \cdot 60 + 0.165 \cdot 1 = 1.37604 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{304} = (2,29104 + 1,37604) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0022369 \, \text{m/rod};
\mathbf{G}^{\mathsf{T}}_{304} = (2,29104 \cdot 1 + 1,37604 \cdot 1) / 3600 = 0,0010186 \, \epsilon/c;
M^{\prime \Pi}_{304} = 0.585 \cdot 2 + 0.2483 \cdot 6 + 0.841 \cdot 0.12 / 5 \cdot 60 + 0.165 \cdot 1 = 4.03584 \, \epsilon;
M''^{\Pi}_{304} = 0.841 \cdot 0.12 / 5 \cdot 60 + 0.165 \cdot 1 = 1.37604 z;
\mathbf{M}^{\Pi}_{304} = (4,03584 + 1,37604) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0006494 \, \text{m/sod};
G_{304}^{\Pi} = (4,03584 \cdot 1 + 1,37604 \cdot 1) / 3600 = 0,0015033 \ z/c;
M = 0.0022369 + 0.0006494 = 0.0028863 \, \text{m/rod};
G = \max\{0,0010186; 0,0015033\} = 0,0015033 \text{ e/c.}
M'^{\mathsf{T}}_{328} = 0 \cdot 1 + 0.17 \cdot 2 + 0.72 \cdot 0.12 / 5 \cdot 60 + 0.17 \cdot 1 = 1.5468 \, \epsilon
M^{"}_{328} = 0.72 \cdot 0.12 / 5 \cdot 60 + 0.17 \cdot 1 = 1.2068 e;
\mathbf{M}_{328}^{\mathsf{T}} = (1,5468 + 1,2068) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0016797 \,\text{m/sod};
\mathbf{G}_{328}^{\mathsf{T}} = (1,5468 \cdot 1 + 1,2068 \cdot 1) / 3600 = 0,0007649 \, \epsilon/c;
M'^{\Pi}_{328} = 0 \cdot 2 + 0.918 \cdot 6 + 0.972 \cdot 0.12 / 5 \cdot 60 + 0.17 \cdot 1 = 7.07768 z;
M''^{\Pi}_{328} = 0.72 \cdot 0.12 / 5 \cdot 60 + 0.17 \cdot 1 = 1.2068 \ z:
M^{\Pi}_{328} = (7,07768 + 1,2068) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0009941 \, \text{m/rod};
```

```
G_{328}^{\Pi} = (7,07768 \cdot 1 + 1,2068 \cdot 1) / 3600 = 0,0023012 \, e/c;
M = 0.0016797 + 0.0009941 = 0.0026738 \, m/200;
G = \max\{0,0007649; 0,0023012\} = 0,0023012 \ z/c.
M'^{\mathsf{T}}_{330} = 0.095 \cdot 1 + 0.25 \cdot 2 + 0.51 \cdot 0.12 / 5 \cdot 60 + 0.25 \cdot 1 = 1.5794 \, a;
M''^{\mathsf{T}}_{330} = 0.51 \cdot 0.12 / 5 \cdot 60 + 0.25 \cdot 1 = 0.9844 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{330} = (1,5794 + 0,9844) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0015639 \, \text{m/zod};
G_{330}^{T} = (1,5794 \cdot 1 + 0,9844 \cdot 1) / 3600 = 0,0007122 \ z/c;
M^{\Pi}_{330} = 0.095 \cdot 2 + 0.279 \cdot 6 + 0.567 \cdot 0.12 / 5 \cdot 60 + 0.25 \cdot 1 = 2.93048 \, \epsilon;
M''^{\Pi}_{330} = 0.51 \cdot 0.12 / 5 \cdot 60 + 0.25 \cdot 1 = 0.9844 z;
\mathbf{M}^{\Pi}_{330} = (2.93048 + 0.9844) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0004698 \, \text{m/zod};
G^{\Pi}_{330} = (2.93048 \cdot 1 + 0.9844 \cdot 1) / 3600 = 0.0010875 \ e/c
M = 0.0015639 + 0.0004698 = 0.0020337 \, m/200;
G = \max\{0,0007122; 0,0010875\} = 0,0010875 \ \epsilon/c.
M'^{\mathsf{T}}_{337} = 57 \cdot 1 + 6.3 \cdot 2 + 3.37 \cdot 0.12 / 5 \cdot 60 + 6.31 \cdot 1 = 80.7628 \, \epsilon
M''^{\mathsf{T}}_{337} = 3,37 \cdot 0,12 / 5 \cdot 60 + 6,31 \cdot 1 = 11,1628 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{337} = (80,7628 + 11,1628) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0560746 \, \text{m/zod};
G^{T}_{337} = (80.7628 \cdot 1 + 11.1628 \cdot 1) / 3600 = 0.0255349 \, e/c;
```

```
M'^{\Pi}_{337} = 57 \cdot 2 + 11,34 \cdot 6 + 3,699 \cdot 0,12 / 5 \cdot 60 + 6,31 \cdot 1 = 193,67656 z;
M^{"}_{337} = 3.37 \cdot 0.12 / 5 \cdot 60 + 6.31 \cdot 1 = 11.1628 \ \epsilon
\mathbf{M}_{337}^{\Pi} = (193,67656 + 11,1628) \cdot |60 \cdot 2 \cdot 10^{-6} = 0,0245807 \, \text{m/zod};
G_{337}^{\Pi} = (193,67656 \cdot 1 + 11,1628 \cdot 1) / 3600 = 0,0568998 \ z/c;
M = 0.0560746 + 0.0245807 = 0.0806553 \, \text{m/rod};
G = \max\{0,0255349; 0,0568998\} = 0,0568998 \ a/c.
M^{T}_{2704} = 4.7 \cdot 1 + 0 \cdot 2 + 0 \cdot 0.12 / 5 \cdot 60 + 0 \cdot 1 = 4.7 z;
M''_{2704} = 0 \cdot 0,12 / 5 \cdot 60 + 0 \cdot 1 = 0 \epsilon;
\mathbf{M}^{\mathsf{T}}_{2704} = (4.7 + 0) \cdot 305 \cdot 2 \cdot 10^{-6} = 0.002867 \,\text{m/sod};
\mathbf{G}^{\mathsf{T}}_{2704} = (4.7 \cdot 1 + 0 \cdot 1) / 3600 = 0.0013056 \, \varepsilon/c;
M^{\prime \Pi}_{2704} = 4.7 \cdot 2 + 0 \cdot 6 + 0 \cdot 0.12 / 5 \cdot 60 + 0 \cdot 1 = 9.4 z;
M''^{\sqcap}_{2704} = 0 \cdot 0.12 / 5 \cdot 60 + 0 \cdot 1 = 0 z;
M^{\Pi}_{2704} = (9.4 + 0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.001128 \, \text{m/zod};
G_{2704}^{\Pi} = (9.4 \cdot 1 + 0 \cdot 1) / 3600 = 0.0026111 \, s/c;
M = 0.002867 + 0.001128 = 0.003995 \, m/200;
G = \max\{0,0013056; 0,0026111\} = 0,0026111 \ c/c.
M'^{T}_{2732} = 0 \cdot 1 + 0.79 \cdot 2 + 1.14 \cdot 0.12 / 5 \cdot 60 + 0.79 \cdot 1 = 4.0116 z;
M''^{T}_{2732} = 1,14 \cdot 0,12 / 5 \cdot 60 + 0,79 \cdot 1 = 2,4316 a;
\mathbf{M}^{\mathsf{T}}_{2732} = (4.0116 + 2.4316) \cdot 305 \cdot 2 \cdot 10^{-6} = 0.0039304 \, \text{m/zod};
G^{T}_{2732} = (4,0116 \cdot 1 + 2,4316 \cdot 1) / 3600 = 0,0017898 \ e/c;
```

```
M'''_{2732} = 1,14 \cdot 0,12 / 5 \cdot 60 + 0,79 \cdot 1 = 2,4316 z;
M''_{2732} = (13,63552 + 2,4316) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0019281 \, m/zod;
G''_{2732} = (13,63552 \cdot 1 + 2,4316 \cdot 1) / 3600 = 0,0044631 \, z/c;
M = 0,0039304 + 0,0019281 = 0,0058584 \, m/zod;
G = \max\{0,0017898; \, 0,0044631\} = 0,0044631 \, z/c.
EE_{A}PYC \, 1523.3
M'''_{301} = 2,72 \cdot 1 + 0,624 \cdot 2 + 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 6,90176 \, z;
M'''_{301} = 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 2,93376 \, z;
M''_{301} = (6,90176 + 2,93376) \cdot 305 \cdot 3 \cdot 10^{-6} = 0,0089995 \, m/zod;
G''_{301} = (6,90176 \cdot 1 + 2,93376 \cdot 1) / 3600 = 0,0027321 \, z/c;
M''''_{301} = 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 2,93376 \, z;
M''''_{301} = 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 2,93376 \, z;
M''''_{301} = 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 2,93376 \, z;
M''''_{301} = (13,98976 + 2,93376) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0030462 \, m/zod;
G''_{301} = (13,98976 \cdot 1 + 2,93376 \cdot 1) / 3600 = 0,004701 \, z/c;
M = 0,0089995 + 0,0030462 = 0,0120457 \, m/zod;
```

 $G = \max\{0,0027321; 0,004701\} = 0,004701 \ \epsilon/c.$

 $M'^{\Pi}_{2732} = 0 \cdot 2 + 1,845 \cdot 6 + 1,233 \cdot 0,12 / 5 \cdot 60 + 0,79 \cdot 1 = 13,63552 z;$

```
M'^{\mathsf{T}}_{304} = 0.442 \cdot 1 + 0.1014 \cdot 2 + 0.521 \cdot 0.12 / 10 \cdot 60 + 0.1014 \cdot 1 = 1.12132 \, \epsilon;
M''_{304} = |0,521 \cdot 0,12 / 10 \cdot 60 + 0,1014 \cdot 1 = 0,47652 z;
\mathbf{M}^{\mathsf{T}}_{304} = (1,12132 + 0,47652) \cdot 305 \cdot 3 \cdot 10^{-6} = 0,001462 \, \text{m/rod};
\mathbf{G}^{\mathsf{T}}_{304} = (1,12132 \cdot 1 + 0,47652 \cdot 1) / 3600 = 0,0004438 \, \mathbf{z/c};
M'^{\Pi}_{304} = 0.442 \cdot 2 + 0.152 \cdot 6 + 0.521 \cdot 0.12 / 10 \cdot 60 + 0.1014 \cdot 1 = 2.27252 \, a;
M''^{\Pi}_{304} = 0.521 \cdot 0.12 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.47652 z;
M_{304}^{\Pi} = (2,27252 + 0,47652) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0004948 \, \text{m/rod};
G_{304}^{\Pi} = (2,27252 \cdot 1 + 0,47652 \cdot 1) / 3600 = 0,0007636 \, e/c;
M = 0.001462 + 0.0004948 = 0.0019569 \, \text{m/rod};
G = \max\{0,0004438; 0,0007636\} = 0,0007636 \ c/c.
M'^{\mathsf{T}}_{328} = 0 \cdot 1 + 0.1 \cdot 2 + 0.45 \cdot 0.12 / 10 \cdot 60 + 0.1 \cdot 1 = 0.624 \, a;
M''^{\mathsf{T}}_{328} = 0.45 \cdot 0.12 / 10 \cdot 60 + 0.1 \cdot 1 = 0.424 \ \epsilon;
\mathbf{M}^{\mathsf{T}}_{328} = (0,624 + 0,424) \cdot 305 \cdot 3 \cdot 10^{-6} = 0,0009589 \, \text{m/zod};
\mathbf{G}^{\mathsf{T}}_{328} = (0.624 \cdot 1 + 0.424 \cdot 1) / 3600 = 0.0002911 \, \text{s/c};
M'^{\Pi}_{328} = 0 \cdot 2 + 0.54 \cdot 6 + 0.603 \cdot 0.12 / 10 \cdot 60 + 0.1 \cdot 1 = 3.77416 z;
M^{"}_{328} = 0.45 \cdot 0.12 / 10 \cdot 60 + 0.1 \cdot 1 = 0.424 z;
\mathbf{M}^{\Pi}_{328} = (3,77416 + 0,424) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0007557 \, \text{m/zod};
G_{328}^{\Pi} = (3,77416 \cdot 1 + 0,424 \cdot 1) / 3600 = 0,0011662 \ z/c;
M = 0.0009589 + 0.0007557 = 0.0017146 \, m/200;
G = \max\{0,0002911; 0,0011662\} = 0,0011662 \ a/c.
```

```
M_{330}^{\prime T} = 0.058 \cdot 1 + 0.16 \cdot 2 + 0.31 \cdot 0.12 / 10 \cdot 60 + 0.16 \cdot 1 = 0.7612 z;
M''^{\mathsf{T}}_{330} = 0.31 \cdot 0.12 / 10 \cdot 60 + 0.16 \cdot 1 = 0.3832 \, z;
\mathbf{M}_{330}^{\mathsf{T}} = (0.7612 + 0.3832) \cdot 305 \cdot 3 \cdot 10^{-6} = 0.0010471 \,\text{m/zod};
\mathbf{G}^{\mathsf{T}}_{330} = (0.7612 \cdot 1 + 0.3832 \cdot 1) / 3600 = 0.0003179 \, e/c;
M^{\prime \Pi}_{330} = 0.058 \cdot 2 + 0.18 \cdot 6 + 0.342 \cdot 0.12 / 10 \cdot 60 + 0.16 \cdot 1 = 1.60224 z;
M''^{\sqcap}_{330} = 0.31 \cdot 0.12 / 10 \cdot 60 + 0.16 \cdot 1 = 0.3832 z;
M_{330}^{\sqcap} = (1,60224 + 0,3832) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0003574 \, \text{m/zod};
G_{330}^{\Pi} = (1.60224 \cdot 1 + 0.3832 \cdot 1) / 3600 = 0.0005515 \ e/c;
M = 0.0010471 + 0.0003574 = 0.0014045 \text{ m/sod};
G = \max\{0,0003179; 0,0005515\} = 0,0005515 a/c.
M'^{\mathsf{T}}_{337} = 35 \cdot 1 + 3.9 \cdot 2 + 2.09 \cdot 0.12 / 10 \cdot 60 + 3.91 \cdot 1 = 48.2148 \, \epsilon;
M''^{\mathsf{T}}_{337} = 2,09 \cdot 0,12 / 10 \cdot 60 + 3,91 \cdot 1 = 5,4148 \, \epsilon;
M_{337}^T = (48.2148 + 5.4148) \cdot 305 \cdot 3 \cdot 10^{-6} = 0.0490711 \text{ m/zod};
G^{T}_{387} = (48,2148 \cdot 1 + 5,4148 \cdot 1) / 3600 = 0,0148971 \, \epsilon/c;
M^{1}_{337} = 35 \cdot 2 + 7,02 \cdot 6 + 2,295 \cdot 0,12 / 10 \cdot 60 + 3,91 \cdot 1 = 117,6824 z;
M^{"}_{337} = 2,09 \cdot 0,12 / 10 \cdot 60 + 3,91 \cdot 1 = 5,4148 \ \epsilon;
M_{337}^{\Pi} = (117,6824 + 5,4148) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,0221575 \, \text{m/sod};
G^{\Pi}_{337} = (117,6824 \cdot 1 + 5,4148 \cdot 1) / 3600 = 0,0341937 \ \epsilon/c;
M = 0.0490711 + 0.0221575 = 0.0712286 \, m/cod;
G = \max\{0.0148971; 0.0341937\} = 0.0341937 \ a/c.
```

```
M'_{2704}^{\dagger} = 2.9 \cdot 1 + 0 \cdot 2 + 0 \cdot 0.12 / 10 \cdot 60 + 0 \cdot 1 = 2.9 z;
M''^{T}_{2704} = 0 \cdot 0.12 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
\mathbf{M}^{\mathsf{T}}_{2704} = (2.9 + 0) \cdot 305 \cdot 3 \cdot 10^{-6} = 0.0026535 \, \text{m/zod};
\mathbf{G}^{\mathsf{T}}_{2704} = (2.9 \cdot 1 + 0 \cdot 1) / 3600 = 0,0008056 \, s/c;
M^{\prime \Pi}_{2704} = 2.9 \cdot 2 + 0 \cdot 6 + 0 \cdot 0.12 / 10 \cdot 60 + 0 \cdot 1 = 5.8 \text{ z};
M''^{\sqcap}_{2704} = 0 \cdot 0.12 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M^{\Pi}_{2704} = (5.8 + 0) \cdot 60 \cdot 3 \cdot 10^{-6} = 0.001044 \, \text{m/rod};
G^{\Pi}_{2704} = (5.8 \cdot 1 + 0 \cdot 1) / 3600 = 0.0016111 \, s/c;
M = 0.0026535 + 0.001044 = 0.0036975 \, \text{m/sod};
G = \max\{0,0008056; 0,0016111\} = 0,0016111 \text{ s/c}.
M^{1}_{2732} = 0.1 + 0.49 \cdot 2 + 0.71 \cdot 0.12 / 10 \cdot 60 + 0.49 \cdot 1 = 1.9812 z;
M^{T}_{2732} = 0.71 \cdot 0.12 / 10 \cdot 60 + 0.49 \cdot 1 = 1.0012 z;
\mathbf{M}^{\mathsf{T}}_{2732} = (1,9812 + 1,0012) \cdot 305 \cdot 3 \cdot 10^{-6} = 0,0027289 \, \text{m/zod};
\mathbf{G}^{\mathsf{T}}_{2732} = (1,9812 \cdot 1 + 1,0012 \cdot 1) / 3600 = 0,0008284 \, s/c;
M^{\prime \Pi}_{2732} = 0.2 + 1,143.6 + 0,765.0,12 / 10.60 + 0,49.1 = 7,8988 z;
M^{\Pi}_{2732} = 0.71 \cdot 0.12 / 10 \cdot 60 + 0.49 \cdot 1 = 1.0012 \, \epsilon;
M_{2732}^{\Pi} = (7,8988 + 1,0012) \cdot 60 \cdot 3 \cdot 10^{-6} = 0,001602 \, \text{m/sod};
G_{2732}^{\Pi} = (7.8988 \cdot 1 + 1.0012 \cdot 1) / 3600 = 0.0024722 \, z/c;
```

```
M = 0.0027289 + 0.001602 = 0.0043309  m/zo\partial; G = max\{0.0008284; 0.0024722\} = 0.0024722  z/c.
```

«Кировец»К-742 М Пр

```
M'_{301} = 5.6 \cdot 1 + 1.6 \cdot 2 + 8.128 \cdot 0.12 / 5 \cdot 60 + 1.592 \cdot 1 = 22.09632 \, s;
M''^{\mathsf{T}}_{301} = 8,128 \cdot 0,12 / 5 \cdot 60 + 1,592 \cdot 1 = 13,29632 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{301} = (22,09632 + 13,29632) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0215895 \, \text{m/rod};
\mathbf{G}_{301}^{\mathsf{T}} = (22,09632 \cdot 1 + 13,29632 \cdot 1) / 3600 = 0,0098313 \, e/c;
M^{1}_{301} = 5.6 \cdot 2 + 2.4 \cdot 6 + 8.128 \cdot 0.12 / 5 \cdot 60 + 1.592 \cdot 1 = 38.89632 z;
M''^{\Pi}_{301} = 8,128 \cdot 0,12 / 5 \cdot 60 + 1,592 \cdot 1 = 13,29632 \, \epsilon;
\mathbf{M}^{\Pi}_{301} = (38,89632 + 13,29632) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0062631 \,\text{m/zod};
\mathbf{G}_{301}^{\Pi} = (38,89632 \cdot 1 + 13,29632 \cdot 1) / 3600 = 0,014498 \, e/c;
M = 0.0215895 + 0.0062631 = 0.0278526 \,\text{m/rod};
G = \max\{0,0098313; 0,014498\} = 0,014498 \ c/c.
M'_{304}^{\mathsf{T}} = 0.91 \cdot 1 + 0.26 \cdot 2 + 1.321 \cdot 0.12 / 5 \cdot 60 + 0.2587 \cdot 1 = 3.59094 \, z;
M''^{\mathsf{T}}_{304} = 1,321 \cdot 0,12 / 5 \cdot 60 + 0,2587 \cdot 1 = 2,16094 \, \epsilon;
\mathbf{M}_{304}^{\mathsf{T}} = (3,59094 + 2,16094) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0035086 \, \text{m/sod};
\mathbf{G}^{\mathsf{T}}_{304} = (3,59094 \cdot 1 + 2,16094 \cdot 1) / 3600 = 0,0015977 \, s/c;
M'^{\Pi}_{304} = 0.91 \cdot 2 + 0.39 \cdot 6 + 1.321 \cdot 0.12 / 5 \cdot 60 + 0.2587 \cdot 1 = 6.32094 z;
M''^{\Pi}_{304} = 1,321 \cdot 0,12 / 5 \cdot 60 + 0,2587 \cdot 1 = 2,16094 \, a;
\mathbf{M}^{\Pi}_{304} = (6.32094 + 2.16094) \cdot 60 \cdot 2 \cdot 10^{-6} = 0.0010178 \,\text{m/zod};
\mathbf{G}^{\Pi}_{304} = (6,32094 \cdot 1 + 2,16094 \cdot 1) / 3600 = 0,0023561 \, \epsilon/c;
```

```
M = 0.0035086 + 0.0010178 = 0.0045265 \text{ m/sod};
G = \max\{0,0015977; 0,0023561\} = 0,0023561 \ c/c.
M'^{\mathsf{T}}_{328} = 0 \cdot 1 + 0.26 \cdot 2 + 1.13 \cdot 0.12 / 5 \cdot 60 + 0.26 \cdot 1 = 2.4072 \, s;
M''^{\mathsf{T}}_{328} = 1,13 \cdot 0,12 / 5 \cdot 60 + 0,26 \cdot 1 = 1,8872 \, \epsilon;
\mathbf{M}_{328}^{\mathsf{T}} = (2,4072 + 1,8872) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0026196 \,\text{m/sod};
\mathbf{G}^{\mathsf{T}}_{328} = (2,4072 \cdot 1 + 1,8872 \cdot 1) / 3600 = 0,0011929 \, \epsilon/c;
M^{1}_{328} = 0.2 + 1,404.6 + 1,53.0,12 / 5.60 + 0,26.1 = 10,8872 z;
M^{"}_{328} = 1,13 \cdot 0,12 / 5 \cdot 60 + 0,26 \cdot 1 = 1,8872 z;
\mathbf{M}_{328}^{\Pi} = (10,8872 + 1,8872) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0015329 \,\text{m/zod};
G_{328}^{\Pi} = (10,8872 \cdot 1 + 1,8872 \cdot 1) / 3600 = 0,0035484 \, e/c;
M = 0.0026196 + 0.0015329 = 0.0041525 \text{ m/sod};
G = \max\{0,0011929; 0,0035484\} = 0,0035484 \ c/c.
M^{1}_{330} = 0.15 \cdot 1 + 0.26 \cdot 2 + 0.8 \cdot 0.12 / 5 \cdot 60 + 0.39 \cdot 1 = 2.212 z;
M_{330}^{T} = 0.8 \cdot 0.12 / 5 \cdot 60 + 0.39 \cdot 1 = 1.542 c;
\mathbf{M}_{330}^{\mathsf{T}} = (2,212+1,542) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0022899 \, \text{m/sod};
\mathbf{G}^{\mathsf{T}}_{330} = (2,212 \cdot 1 + 1,542 \cdot 1) / 3600 = 0,0010428 \, \epsilon/c;
```

```
M'^{\Pi}_{330} = 0.15 \cdot 2 + 0.288 \cdot 6 + 0.882 \cdot 0.12 / 5 \cdot 60 + 0.39 \cdot 1 = 3.68808 \, z;
M''^{\Pi}_{330} = 0.8 \cdot 0.12 / 5 \cdot 60 + 0.39 \cdot 1 = 1.542 \, \epsilon;
\mathbf{M}_{330}^{\Pi} = (3,68808 + 1,542) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0006276 \, \text{m/zod};
G_{330}^{\Pi} = (3,68808 \cdot 1 + 1,542 \cdot 1) / 3600 = 0,0014528 \, a/c;
M = 0.0022899 + 0.0006276 = 0.0029175 \text{ m/rod};
G = \max\{0,0010428; 0,0014528\} = 0,0014528 \ \epsilon/c.
M^{\prime T}_{337} = 90 \cdot 1 + 9.9 \cdot 2 + 5.3 \cdot 0.12 / 5 \cdot 60 + 9.92 \cdot 1 = 127.352 \, a;
M''^{T}_{337} = 5.3 \cdot 0.12 / 5 \cdot 60 + 9.92 \cdot 1 = 17.552 a;
\mathbf{M}_{337}^{\mathsf{T}} = (127,352 + 17,552) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,0883914 \, \text{m/sod};
G_{337}^{T} = (127,352 \cdot 1 + 17,552 \cdot 1) / 3600 = 0,0402511 \, \epsilon/c;
M_{337}^{\prime \Pi} = 90 \cdot 2 + 16,92 \cdot 6 + 5,823 \cdot 0,12 / 5 \cdot 60 + 9,92 \cdot 1 = 299,82512 \, a;
M''^{\Pi}_{337} = 5,3 \cdot 0,12 / 5 \cdot 60 + 9,92 \cdot 1 = 17,552 a;
\mathbf{M}_{337}^{\Pi} = (299,82512 + 17,552) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0380853 \, \text{m/zod};
G_{337}^{\Pi} = (299.82512 \cdot 1 + 17.552 \cdot 1) / 3600 = 0.0881603 \ z/c;
M = 0.0883914 + 0.0380853 = 0.1264767 \, m/200;
G = \max\{0.0402511; 0.0881603\} = 0.0881603 \ z/c.
```

```
M'^{\mathsf{T}}_{2704} = 7.5 \cdot 1 + 0 \cdot 2 + 0 \cdot 0.12 / 5 \cdot 60 + 0 \cdot 1 = 7.5 \, 2;
M''^{T}_{2704} = 0.0,12 / 5.60 + 0.1 = 0.2;
\mathbf{M}^{\mathsf{T}}_{2704} = (7.5 + 0) \cdot 305 \cdot 2 \cdot 10^{-6} = 0,004575 \, \text{m/zod};
G^{T}_{2704} = (7,5 \cdot 1 + 0 \cdot 1) / 3600 = 0,0020833 \ e/c;
M'^{\Pi}_{2704} = 7.5 \cdot 2 + 0 \cdot 6 + 0 \cdot 0.12 / 5 \cdot 60 + 0 \cdot 1 = 15 z;
M''^{\sqcap}_{2704} = 0 \cdot 0,12 / 5 \cdot 60 + 0 \cdot 1 = 0 e;
M_{2704}^{\Pi} = (15 + 0) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0018 \, \text{m/zod};
G_{2704}^{\Pi} = (15 \cdot 1 + 0 \cdot 1) / 3600 = 0,0041667 \ z/c;
M = 0.004575 + 0.0018 = 0.006375 \, m/200;
G = \max\{0,0020833; 0,0041667\} = 0,0041667 \ z/c.
M'_{2732} = 0 \cdot 1 + 1,24 \cdot 2 + 1,79 \cdot 0,12 / 5 \cdot 60 + 1,24 \cdot 1 = 6,2976 z;
M''^{\mathsf{T}}_{2732} = 1,79 \cdot 0,12 / 5 \cdot 60 + 1,24 \cdot 1 = 3,8176 \, z;
\mathbf{M}^{\mathsf{T}}_{2732} = (6.2976 + 3.8176) \cdot 305 \cdot 2 \cdot 10^{-6} = 0.0061703 \, \text{m/zod};
\mathbf{G}^{\mathsf{T}}_{2732} = (6,2976 \cdot 1 + 3,8176 \cdot 1) / 3600 = 0,0028098 \, \mathrm{g/c};
M_{2732}^{\prime 0} = 0.2 + 2,898.6 + 1,935.0,12 / 5.60 + 1,24.1 = 21,4144 e;
M^{"}_{2732} = 1,79 \cdot 0,12 / 5 \cdot 60 + 1,24 \cdot 1 = 3,8176 \, a;
M_{2732}^{\Pi} = (21,4144 + 3,8176) \cdot 60 \cdot 2 \cdot 10^{-6} = 0,0030278 \, \text{m/zod};
G_{2732}^{\Pi} = (21,4144 \cdot 1 + 3,8176 \cdot 1) / 3600 = 0,0070089 \ z/c;
M = 0.0061703 + 0.0030278 = 0.0091981 \, m/200;
G = \max\{0.0028098; 0.0070089\} = 0.0070089 \ z/c.
```

ΓΡΑ3 36136-0000011

```
M'^{\mathsf{T}}_{301} = 2,72 \cdot 1 + 0,624 \cdot 2 + 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 6,90176 \, \epsilon;
M''^{\mathsf{T}}_{301} = 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 2,93376 \, z;
\mathbf{M}_{301}^{\mathsf{T}} = (6,90176 + 2,93376) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,0029998 \, \text{m/rod};
\mathbf{G}^{\mathsf{T}}_{301} = (6,90176 \cdot 1 + 2,93376 \cdot 1) / 3600 = 0,0027321 \, \text{s/c};
M'^{\Pi}_{301} = 2,72 \cdot 2 + 0,936 \cdot 6 + 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 13,98976 \, \epsilon;
M''^{\Pi}_{301} = 3,208 \cdot 0,12 / 10 \cdot 60 + 0,624 \cdot 1 = 2,93376 \, z;
\mathbf{M}_{301}^{\Pi} = (13,98976 + 2,93376) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0010154 \,\text{m/zod};
\mathbf{G}^{\Pi}_{301} = (13,98976 \cdot 1 + 2,93376 \cdot 1) / 3600 = 0,004701 \, \epsilon/c;
M = 0.0029998 + 0.0010154 = 0.0040152 \text{ m/rod};
G = \max\{0,0027321; 0,004701\} = 0,004701 \ e/c.
M'^{\mathsf{T}}_{304} = 0.442 \cdot 1 + 0.1014 \cdot 2 + 0.521 \cdot 0.12 / 10 \cdot 60 + 0.1014 \cdot 1 = 1.12132 \, \epsilon
M''_{304} = 0.521 \cdot 0.12 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.47652 z;
\mathbf{M}_{304}^{\mathsf{T}} = (1,12132 + 0,47652) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,0004873 \, \text{m/sod};
\mathbf{G}^{\mathsf{T}}_{304} = (1,12132 \cdot 1 + 0,47652 \cdot 1) / 3600 = 0,0004438 \, \epsilon/c;
M'^{\Pi}_{304} = 0.442 \cdot 2 + 0.152 \cdot 6 + 0.521 \cdot 0.12 / 10 \cdot 60 + 0.1014 \cdot 1 = 2.27252 \, z;
M''^{\Pi}_{304} = 0.521 \cdot 0.12 / 10 \cdot 60 + 0.1014 \cdot 1 = 0.47652 \, z;
\mathbf{M}_{304}^{\Pi} = (2,27252 + 0,47652) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0001649 \, \text{m/sod};
\mathbf{G}^{\Pi}_{304} = (2,27252 \cdot 1 + 0,47652 \cdot 1) / 3600 = 0,0007636 \, \epsilon/c;
M = 0.0004873 + 0.0001649 = 0.0006523 \, \text{m/rod};
G = \max\{0,0004438; 0,0007636\} = 0,0007636 \ c/c.
```

```
M'_{328}^{\mathsf{T}} = 0 \cdot 1 + 0.1 \cdot 2 + 0.45 \cdot 0.12 / 10 \cdot 60 + 0.1 \cdot 1 = 0.624 \, z;
M''^{T}_{328} = 0.45 \cdot 0.12 / 10 \cdot 60 + 0.1 \cdot 1 = 0.424 z;
\mathbf{M}^{\mathsf{T}}_{328} = (0.624 + 0.424) \cdot 305 \cdot 1 \cdot 10^{-6} = 0.0003196 \,\text{m/sod};
\mathbf{G}^{\mathsf{T}}_{328} = (0.624 \cdot 1 + 0.424 \cdot 1) / 3600 = 0.0002911 \, \text{s/c};
M'^{\Pi}_{328} = 0.2 + 0.54 \cdot 6 + 0.603 \cdot 0.12 / 10 \cdot 60 + 0.1 \cdot 1 = 3.77416 z;
M^{"}_{328} = 0.45 \cdot 0.12 / 10 \cdot 60 + 0.1 \cdot 1 = 0.424 z;
\mathbf{M}^{\Pi}_{328} = (3,77416 + 0,424) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0002519 \,\text{m/sod};
\mathbf{G}^{\Pi}_{328} = (3,77416 \cdot 1 + 0,424 \cdot 1) / 3600 = 0,0011662 \, \epsilon/c;
M = 0,0003196 + 0,0002519 = 0,0005715  m/zod;
G = \max\{0.0002911; 0.0011662\} = 0.0011662 \ c/c.
M^{\prime T}_{330} = 0.058 \cdot 1 + 0.16 \cdot 2 + 0.31 \cdot 0.12 / 10 \cdot 60 + 0.16 \cdot 1 = 0.7612 z;
M''^{\mathsf{T}}_{330} = 0.31 \cdot 0.12 / 10 \cdot 60 + 0.16 \cdot 1 = 0.3832 \, s;
\mathbf{M}^{\mathsf{T}}_{330} = (0.7612 + 0.3832) \cdot 305 \cdot 1 \cdot 10^{-6} = 0.000349 \,\text{m/zod};
\mathbf{G}^{\mathsf{T}}_{330} = (0.7612 \cdot 1 + 0.3832 \cdot 1) / 3600 = 0.0003179 \, s/c;
M_{330}^{\prime \Pi} = 0.058 \cdot 2 + 0.18 \cdot 6 + 0.342 \cdot 0.12 / 10 \cdot 60 + 0.16 \cdot 1 = 1.60224 z;
M''^{\Pi}_{330} = 0.31 \cdot 0.12 / 10 \cdot 60 + 0.16 \cdot 1 = 0.3832 \, a;
M_{330}^{\Pi} = (1,60224 + 0,3832) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0001191 \, \text{m/rod};
\mathbf{G}^{\Pi}_{330} = (1,60224 \cdot 1 + 0,3832 \cdot 1) / 3600 = 0,0005515 \, \epsilon/c;
```

```
M = 0.000349 + 0.0001191 = 0.0004682 \, \text{m/rod};
G = \max\{0,0003179; 0,0005515\} = 0,0005515 e/c.
M'^{\mathsf{T}}_{337} = 35 \cdot 1 + 3.9 \cdot 2 + 2.09 \cdot 0.12 / 10 \cdot 60 + 3.91 \cdot 1 = 48.2148 \, \epsilon;
M''^{\mathsf{T}}_{337} = 2.09 \cdot 0.12 / 10 \cdot 60 + 3.91 \cdot 1 = 5.4148 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{337} = (48,2148 + 5,4148) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,016357 \, \text{m/sod};
\mathbf{G}^{\mathsf{T}}_{337} = (48,2148 \cdot 1 + 5,4148 \cdot 1) / 3600 = 0,0148971 \, \epsilon/c;
M'^{\Pi}_{337} = 35 \cdot 2 + 7,02 \cdot 6 + 2,295 \cdot 0,12 / 10 \cdot 60 + 3,91 \cdot 1 = 117,6824 \, \epsilon;
M''^{\Pi}_{337} = 2,09 \cdot 0,12 / 10 \cdot 60 + 3,91 \cdot 1 = 5,4148 \, \epsilon;
M^{\Pi}_{337} = (117.6824 + 5.4148) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0073858 \, \text{m/zod}
G_{337}^{\Pi} = (117,6824 \cdot 1 + 5,4148 \cdot 1) / 3600 = 0,0341937 \ \epsilon/c;
M = 0.016357 + 0.0073858 = 0.0237429 \,\text{m/rod};
G = \max\{0.0148971; 0.0341937\} = 0.0341937 \ \epsilon/c.
M'^{T}_{2704} = 2.9 \cdot 1 + 0 \cdot 2 + 0 \cdot 0.12 / 10 \cdot 60 + 0 \cdot 1 = 2.9 \text{ s};
M''^{T}_{2704} = 0.0,12 / 10.60 + 0.1 = 0.2;
\mathbf{M}^{\mathsf{T}}_{2704} = (2.9 + 0) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,0008845 \,\text{m/sod};
\mathbf{G}^{\mathsf{T}}_{2704} = (2.9 \cdot 1 + 0 \cdot 1) / 3600 = 0,0008056 \, \epsilon/c;
M'^{\Pi}_{2704} = 2.9 \cdot 2 + 0 \cdot 6 + 0 \cdot 0.12 / 10 \cdot 60 + 0 \cdot 1 = 5.8 \, \epsilon;
M''^{\Pi}_{2704} = 0 \cdot 0.12 / 10 \cdot 60 + 0 \cdot 1 = 0 z;
M_{2704}^{\Pi} = (5.8 + 0) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.000348 \, \text{m/rod};
G^{\Pi}_{2704} = (5.8 \cdot 1 + 0 \cdot 1) / 3600 = 0.0016111 \, e/c;
M = 0.0008845 + 0.000348 = 0.0012325 \,\text{m/rod};
G = \max\{0,0008056; 0,0016111\} = 0,0016111 \ e/c.
M'^{\mathsf{T}}_{2732} = 0 \cdot 1 + 0.49 \cdot 2 + 0.71 \cdot 0.12 / 10 \cdot 60 + 0.49 \cdot 1 = 1.9812 \,\varepsilon
M''^{\mathsf{T}}_{2732} = 0.71 \cdot 0.12 / 10 \cdot 60 + 0.49 \cdot 1 = 1.0012 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{2732} = (1,9812 + 1,0012) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,0009096 \, \text{m/rod};
G_{2732}^{T} = (1,9812 \cdot 1 + 1,0012 \cdot 1) / 3600 = 0,0008284 \, e/c;
M'^{\Pi}_{2732} = 0.2 + 1.143.6 + 0.765.0.12 / 10.60 + 0.49.1 = 7.8988 z;
M''^{\Pi}_{2732} = 0.71 \cdot 0.12 / 10 \cdot 60 + 0.49 \cdot 1 = 1.0012 \, \epsilon;
M^{\Pi}_{2732} = (7.8988 + 1.0012) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.000534 \,\text{m/sod};
G^{\Pi}_{2732} = (7.8988 \cdot 1 + 1.0012 \cdot 1) / 3600 = 0.0024722 \, e/c;
M = 0.0009096 + 0.000534 = 0.0014436 \,\text{m/rod};
G = \max\{0,0008284; 0,0024722\} = 0,0024722 \ \epsilon/c.
```

ИВ 02 Работа ДВС автотранспорта

Источниками выделений загрязняющих веществ являются двигатели автомобилей в период прогрева, движения по территории предприятия и во время работы в режиме холостого хода.

Расчет выделений загрязняющих веществ выполнен в соответствии со следующими методическими документами:

- Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух(Дополненное и переработанное), СПб., НИИ Атмосфера, 2012.
- Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1998.
- Дополнения и изменения к Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М, 1999.

Количественные и качественные характеристики загрязняющих веществ, выделяющихся в атмосферу от автотранспортных средств, приведены в таблице 1.1.1.

Таблица 1.1.1 - Характеристика выделений загрязняющих веществ в атмосферу

Загрязняющее вещество		Максимально разовый	Foressi sulfines Trop		
код	наименование	выброс, г/с	Годовой выброс, т/год		
301	Азота диоксид (Азот (IV) оксид)	0,00004	5,79E-05		
304	Азот (II) оксид (Азота оксид)	0,00001	9,40E-06		
330	Сера диоксид (Ангидрид сернистый)	0,00002	2,25E-05		
337	Углерод оксид	0,00280	0,0036		
2704	Бензин (нефтяной, малосернистый)	0,00033	4,06E-04		

Расчет выполнен для автостоянки открытого типа, не оборудованной средствами подогрева. Пробег автотранспорта при въезде составляет 0,12 км, при выезде -0,12 км. Время работы двигателя на холостом ходу при выезде с территории стоянки -1 мин, при возврате на неё -1 мин. Количество дней для расчётного периода: теплого -305, переходного -60.

Исходные данные для расчета выделений загрязняющих веществ, приведены в таблице 1.1.2.

Таблица 1.1.2 - Исходные данные для расчета

		Максимальное количество автомобилей					Одно-
Наименование	ание Тип автотранспортного средства	всего	выезд/въезд в течение суток	выезд за 1 час	въезд за 1 час	Эко- кон- троль	вре- мен- ность
Lada Niva	Легковой, объем 1,2-1,8л, инжект., бензин	1	1	1	1	33	+
УАЗ UAZ Patriot	Легковой, объем 1,8-3,5л, инжект., бензин	1	1	1	1	22	+

Принятые условные обозначения, расчетные формулы, а также расчетные параметры и их обоснование приведены ниже.

Выбросы i-го вещества одним автомобилем k-й группы в день при выезде с территории или помещения стоянки M_{1ik} и возврате M_{2ik} рассчитываются по формулам (1.1.1 и 1.1.2):

$$\mathbf{M}_{1ik} = \mathbf{m}_{\Pi P ik} \cdot \mathbf{t}_{\Pi P} + \mathbf{m}_{L ik} \cdot \mathbf{L}_{1} + \mathbf{m}_{XX ik} \cdot \mathbf{t}_{XX 1}, z \tag{1.1.1}$$

$$\mathbf{M}_{2ik} = \mathbf{m}_{Lik} \cdot \mathbf{L}_2 + \mathbf{m}_{XXik} \cdot \mathbf{t}_{XX2}, z \tag{1.1.2}$$

где $m_{\Pi P ik}$ – удельный выброс i-го вещества при прогреве двигателя автомобиля k-й группы, ϵ/muH ; $m_{L ik}$ - пробеговый выброс i-го вещества, автомобилем k-й группы при движении со скоростью 10-20 км/час, ϵ/kM ;

 $m_{XX\;ik}$ - удельный выброс *i*-го вещества при работе двигателя автомобиля k-й группы на холостом ходу, e/muh;

 $t_{\Pi P}$ - время прогрева двигателя, мин;

 L_1 , L_2 - пробег автомобиля по территории стоянки, км;

 $t_{XX\,1},\,t_{XX\,2}$ - время работы двигателя на холостом ходу при выезде с территории стоянки и возврате на неё, мин.

При проведении экологического контроля удельные выбросы загрязняющих веществ автомобилями снижаются, поэтому должны пересчитываться по формулам (1.1.3 и 1.1.4):

$$\mathbf{m'}_{\Pi P ik} = \mathbf{m}_{\Pi P ik} \cdot \mathbf{K}_{i}, \, \mathbf{r}/\mathbf{M}\mathbf{U}\mathbf{H}$$
 (1.1.3)

$$\boldsymbol{m''}_{XX\,ik} = \boldsymbol{m}_{XX\,ik} \cdot \boldsymbol{K}_{i}, \, z/\text{MUH} \tag{1.1.4}$$

где \mathbf{K}_i — коэффициент, учитывающий снижение выброса \mathbf{i} -го загрязняющего вещества при проведении экологического контроля.

Валовый выброс i-го вещества автомобилями рассчитывается раздельно для каждого периода года по формуле (1.1.5):

$$\mathbf{M}_{j}^{i} = \sum_{k=1}^{k} \alpha_{e} (\mathbf{M}_{1ik} + \mathbf{M}_{2ik}) \mathbf{N}_{k} \cdot \mathbf{D}_{P} \cdot 10^{-6}, \, m/200$$
 (1.1.5)

где α_s - коэффициент выпуска (выезда);

 N_k — количество автомобилей k-й группы на территории или в помещении стоянки за расчетный период; D_P — количество дней работы в расчетном периоде (холодном, теплом, переходном);

j — период года (T - теплый, П - переходный, X - холодный); для холодного периода расчет M_i выполняется с учётом температуры для каждого месяца.

Влияние холодного и переходного периодов года на выбросы загрязняющих веществ учитывается только для выезжающих автомобилей, хранящихся на открытых и закрытых не отапливаемых стоянках.

Для определения общего валового выброса M_i валовые выбросы одноименных веществ по периодам года суммируются (1.1.6):

$$\mathbf{M}_{i} = \mathbf{M}^{\mathsf{T}}_{i} + \mathbf{M}^{\mathsf{T}}_{i} + \mathbf{M}^{\mathsf{X}}_{i}, \, m/200$$
 (1.1.6)

Максимально разовый выброс i-го вещества G_i рассчитывается по формуле (1.1.7):

$$G_i = \sum_{k=1}^{k} (\mathbf{M}_{1ik} \cdot \mathbf{N'}_k + \mathbf{M}_{2ik} \cdot \mathbf{N''}_k) / 3600, \epsilon/ce\kappa$$
 (1.1.7)

где N'_k , N''_k — количество автомобилей k-й группы, выезжающих со стоянки и въезжающих на стоянку за 1 час, характеризующийся максимальной интенсивностью выезда(въезда) автомобилей.

Из полученных значений \mathbf{G}_i выбирается максимальное с учетом одновременности движения автомобилей разных групп.

Удельные выбросы загрязняющих веществ при прогреве двигателей, пробеговые, на холостом ходу, коэффициент снижения выбросов при проведении экологического контроля \mathbf{K}_i , а так же коэффициент изменения выбросов при движении по пандусу приведены в таблице 1.1.3.

Таблица 1.1.3 - Удельные выбросы загрязняющих веществ

Тип	Загрязняющее вещество	Про	Прогрев, г/мин			Пробег, г/км			Эко-
		Т	п	x	T	П	x	стой ход, г/мин	кон- троль, Кі
Легко	вой, объем 1,2-1,8л, инжект., бензин	*:			•		50		
	Азота диоксид (Азот (IV) оксид)	0,016	0,024	0,024	0,136	0,136	0,136	0,016	1
	Азот (II) оксид (Азота оксид)	0,0026	0,0039	0,0039	0,0221	0,0221	0,0221	0,0026	1
	Сера диоксид (Ангидрид сернистый)	0,009	0,009	0,01	0,049	0,0549	0,061	0,008	0,95
	Углерод оксид	1,7	3,06	3,4	6,6	7,47	8,3	1,1	0,8
	Бензин (нефтяной, малосернистый)	0,14	0,189	0,21	1	1,35	1,5	0,11	0,9
Легко	вой, объем 1,8-3,5л, инжект., бензин	**		8		•	•	•	
	Азота диоксид (Азот (IV) оксид)	0,024	0,032	0,032	0,192	0,192	0,192	0,024	1
	Азот (II) оксид (Азота оксид)	0,0039	0,0052	0,0052	0,0312	0,0312	0,0312	0,0039	1
	Сера диоксид (Ангидрид сернистый)	0,011	0,0117	0,013	0,057	0,0639	0,071	0,01	0,95
	Углерод оксид	2,9	5,13	5,7	9,3	10,53	11,7	1,9	0,8
	Бензин (нефтяной, малосернистый)	0,18	0,243	0,27	1,4	1,89	2,1	0,15	0,9

Режим прогрева двигателя в расчёте не учитывается.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Lada Niva

```
\mathbf{M}_{1}^{\mathsf{T}} = 0.136 \cdot 0.12 + 0.016 \cdot 1 = 0.03232 \, z;

\mathbf{M}_{2}^{\mathsf{T}} = 0.136 \cdot 0.12 + 0.016 \cdot 1 = 0.03232 \, z;

\mathbf{M}_{301}^{\mathsf{T}} = (0.03232 + 0.03232) \cdot 305 \cdot 1 \cdot 10^{-6} = 0.0000197 \, \text{m/zod};

\mathbf{G}_{301}^{\mathsf{T}} = (0.03232 \cdot 1 + 0.03232 \cdot 1) / 3600 = 0.000018 \, z/c;

\mathbf{M}_{1}^{\mathsf{T}} = 0.136 \cdot 0.12 + 0.016 \cdot 1 = 0.03232 \, z;

\mathbf{M}_{2}^{\mathsf{T}} = 0.136 \cdot 0.12 + 0.016 \cdot 1 = 0.03232 \, z;

\mathbf{M}_{301}^{\mathsf{T}} = (0.03232 + 0.03232) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000039 \, \text{m/zod};

\mathbf{G}_{301}^{\mathsf{T}} = (0.03232 + 0.03232) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000018 \, z/c;

\mathbf{M} = 0.0000197 + 0.0000039 = 0.0000236 \, \text{m/zod};

\mathbf{G} = \max\{0.000018; 0.000018\} = 0.000018 \, z/c.

\mathbf{M}_{1}^{\mathsf{T}} = 0.0221 \cdot 0.12 + 0.0026 \cdot 1 = 0.005252 \, z;

\mathbf{M}_{2}^{\mathsf{T}} = 0.0221 \cdot 0.12 + 0.0026 \cdot 1 = 0.005252 \, z;

\mathbf{M}_{304}^{\mathsf{T}} = (0.005252 + 0.005252) \cdot 305 \cdot 1 \cdot 10^{-6} = 0.0000029 \, z/c;
```

```
M^{\Pi}_{t} = 0.0221 \cdot 0.12 + 0.0026 \cdot 1 = 0.005252 \, z;
M^{\Pi}_{2} = 0.0221 \cdot 0.12 + 0.0026 \cdot 1 = 0.005252 \, s;
\mathbf{M}_{304}^{\Pi} = (0.005252 + 0.005252) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000006 \, \text{m/rod};
\mathbf{G}^{\Pi}_{304} = (0.005252 \cdot 1 + 0.005252 \cdot 1) / 3600 = 0.0000029 \, e/c;
M = 0,0000032 + 0,0000006 = 0,0000038 \, m/sod;
G = \max\{0,0000029; 0,0000029\} = 0,00000029 \ e/c.
\mathbf{M}^{\mathsf{T}}_{1} = 0.049 \cdot 0.12 + 0.008 \cdot 1 = 0.01388 \, z;
\mathbf{M}^{\mathsf{T}}_{2} = 0.049 \cdot 0.12 + 0.008 \cdot 1 = 0.01388 \, e;
\mathbf{M}^{\mathsf{T}}_{330} = (0.01388 + 0.01388) \cdot 305 \cdot 1 \cdot 10^{-6} = 0.0000085 \, \text{m/zod};
\mathbf{G}^{\mathsf{T}}_{330} = (0.01388 \cdot 1 + 0.01388 \cdot 1) / 3600 = 0.0000077 \, \epsilon/c;
\mathbf{M}^{\sqcap}_{1} = 0.0549 \cdot 0.12 + 0.008 \cdot 1 = 0.014588 \, \epsilon;
M_2^{\sqcap} = 0.049 \cdot 0.12 + 0.008 \cdot 1 = 0.01388 \, \epsilon;
M_{330}^{\Pi} = (0.014588 + 0.01388) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000017 \, \text{m/sod};
G_{330}^{\Pi} = (0.014588 \cdot 1 + 0.01388 \cdot 1) / 3600 = 0.0000079 \ \epsilon/c;
M = 0,0000085 + 0,0000017 = 0,0000102 \, m/rod;
G = \max\{0,0000077; 0,0000079\} = 0,0000079 \ e/c.
M^{T}_{1} = 6.6 \cdot 0.12 + 1.1 \cdot 1 = 1.892 \text{ z};
\mathbf{M}^{\mathsf{T}}_{2} = 6.6 \cdot 0.12 + 1.1 \cdot 1 = 1.892 \, \epsilon;
\mathbf{M}_{337}^{\mathsf{T}} = (1,892 + 1,892) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,0011541 \, \text{m/rod};
\mathbf{G}^{\mathsf{T}}_{337} = (1,892 \cdot 1 + 1,892 \cdot 1) / 3600 = 0,0010511 \, s/c;
```

```
M^{\Pi}_{1} = 7,47 \cdot 0,12 + 1,1 \cdot 1 = 1,9964 \, \epsilon;
M_{2}^{\Pi} = 6.6 \cdot 0.12 + 1.1 \cdot 1 = 1.892 \, \epsilon;
M^{\Pi}_{337} = (1,9964 + 1,892) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0002333 \,\text{m/zod};
G_{337}^{\Pi} = (1,9964 \cdot 1 + 1,892 \cdot 1) / 3600 = 0,0010801 \, e/c;
M = 0,0011541+0,0002333 = 0,0013874 \, m/sod;
G = \max\{0.0010511; 0.0010801\} = 0.0010801 \ e/c.
\mathbf{M}_{1}^{\mathsf{T}} = 1 \cdot 0.12 + 0.11 \cdot 1 = 0.23 \, \varepsilon;
\mathbf{M}^{\mathsf{T}}_{2} = 1 \cdot 0.12 + 0.11 \cdot 1 = 0.23 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{2704} = (0.23 + 0.23) \cdot 305 \cdot 1 \cdot 10^{-6} = 0.0001403 \, \text{m/zod};
\mathbf{G}^{\mathsf{T}}_{2704} = (0.23 \cdot 1 + 0.23 \cdot 1) / 3600 = 0.0001278 \, e/c;
M^{\Pi}_{1} = 1,35 \cdot 0,12 + 0,11 \cdot 1 = 0,272 \, \epsilon;
M_{2}^{\Pi} = 1 \cdot 0.12 + 0.11 \cdot 1 = 0.23 z;
M^{\Pi}_{2704} = (0,272 + 0,23) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0000301 \, \text{m/rod};
\boldsymbol{G}^{\Pi}_{2704} = (0,272 \cdot 1 + 0,23 \cdot 1) / 3600 = 0,0001394 \, e/c;
M = 0,0001403+0,0000301 = 0,0001704 \, m/cod;
G = \max\{0,0001278; 0,0001394\} = 0,0001394 \ e/c.
```

YA3 UAZ Patriot

```
\mathbf{M}^{\mathsf{T}}_{1} = 0.192 \cdot 0.12 + 0.024 \cdot 1 = 0.04704 \, \mathrm{s};
\mathbf{M}^{\mathsf{T}}_{2} = 0.192 \cdot 0.12 + 0.024 \cdot 1 = 0.04704 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{301} = (0.04704 + 0.04704) \cdot 305 \cdot 1 \cdot 10^{-6} = 0.0000287 \, \text{m/rod};
\mathbf{G}_{301}^{\mathsf{T}} = (0.04704 \cdot 1 + 0.04704 \cdot 1) / 3600 = 0.0000261 \, e/c;
\mathbf{M}^{\sqcap}_{1} = 0.192 \cdot 0.12 + 0.024 \cdot 1 = 0.04704 \, \epsilon;
M^{\cap}_{2} = 0.192 \cdot 0.12 + 0.024 \cdot 1 = 0.04704 \, \epsilon;
\mathbf{M}^{\sqcap}_{301} = (0.04704 + 0.04704) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000056 \, \text{m/rod};
G_{301}^{\Pi} = (0.04704 \cdot 1 + 0.04704 \cdot 1) / 3600 = 0.0000261 \, e/c;
M = 0,0000287 + 0,0000056 = 0,0000343 \, m/sod;
G = \max\{0,0000261; 0,0000261\} = 0,0000261 \ \epsilon/c.
\mathbf{M}^{\mathsf{T}}_{1} = 0.0312 \cdot 0.12 + 0.0039 \cdot 1 = 0.007644 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{2} = 0.0312 \cdot 0.12 + 0.0039 \cdot 1 = 0.007644 \, \mathrm{s};
\mathbf{M}^{\mathsf{T}}_{304} = (0,007644 + 0,007644) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,0000047 \, \text{m/rod};
\mathbf{G}^{\mathsf{T}}_{304} = (0.007644 \cdot 1 + 0.007644 \cdot 1) / 3600 = 0.0000042 \, e/c;
M^{\Pi}_{1} = 0.0312 \cdot 0.12 + 0.0039 \cdot 1 = 0.007644 \, a;
M_{2}^{\Pi} = 0.0312 \cdot 0.12 + 0.0039 \cdot 1 = 0.007644 \, a;
\mathbf{M}^{\sqcap}_{304} = (0.007644 + 0.007644) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000009 \, \text{m/rod};
\mathbf{G}^{\Pi}_{304} = (0,007644 \cdot 1 + 0,007644 \cdot 1) / 3600 = 0,0000042 \, \epsilon/c;
M = 0.0000047 + 0.0000009 = 0.0000056 \, m/200;
G = \max\{0,0000042; 0,0000042\} = 0,0000042 \ \epsilon/c.
```

```
\mathbf{M}^{\mathsf{T}}_{1} = 0.057 \cdot 0.12 + 0.01 \cdot 1 = 0.01684 \, \varepsilon;
\mathbf{M}^{\mathsf{T}}_{2} = 0.057 \cdot 0.12 + 0.01 \cdot 1 = 0.01684 \, \epsilon;
\mathbf{M}^{\mathsf{T}}_{330} = (0.01684 + 0.01684) \cdot 305 \cdot 1 \cdot 10^{-6} = 0.0000103 \, \text{m/rod};
\mathbf{G}^{\mathsf{T}}_{330} = (0.01684 \cdot 1 + 0.01684 \cdot 1) / 3600 = 0.0000094 \, e/c;
\mathbf{M}^{\sqcap}_{1} = 0.0639 \cdot 0.12 + 0.01 \cdot 1 = 0.017668 \, \epsilon;
M_{2}^{\Pi} = 0.057 \cdot 0.12 + 0.01 \cdot 1 = 0.01684 \, a;
\mathbf{M}^{\Pi}_{330} = (0.017668 + 0.01684) \cdot 60 \cdot 1 \cdot 10^{-6} = 0.0000021 \,\text{m/zod};
\mathbf{G}^{\sqcap}_{330} = (0.017668 \cdot 1 + 0.01684 \cdot 1) / 3600 = 0.0000096 \, \epsilon/c;
M = 0,0000103 + 0,0000021 = 0,0000123 \, m/rod;
G = \max\{0,0000094; 0,0000096\} = 0,0000096 \ c/c.
\mathbf{M}^{\mathsf{T}}_{1} = 9.3 \cdot 0.12 + 1.9 \cdot 1 = 3.016 \, \mathsf{z};
\mathbf{M}^{\mathsf{T}}_{2} = 9.3 \cdot 0.12 + 1.9 \cdot 1 = 3.016 \, \mathrm{s};
\mathbf{M}^{\mathsf{T}}_{337} = (3,016 + 3,016) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,0018398 \, \text{m/rod};
\mathbf{G}^{\mathsf{T}}_{337} = (3,016 \cdot 1 + 3,016 \cdot 1) / 3600 = 0,0016756 \, \epsilon/c;
M_{1}^{\Pi} = 10,53 \cdot 0,12 + 1,9 \cdot 1 = 3,1636 \, \epsilon;
M^{\Pi}_{2} = 9.3 \cdot 0.12 + 1.9 \cdot 1 = 3.016 \, a;
\mathbf{M}^{\sqcap}_{337} = (3,1636 + 3,016) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0003708 \, \text{m/sod};
G_{337}^{\Pi} = (3,1636 \cdot 1 + 3,016 \cdot 1) / 3600 = 0,0017166 \, e/c;
```

```
M = 0,0018398+0,0003708 = 0,0022105 \, m/zo\partial;
G = \max\{0,0016756; 0,0017166\} = 0,0017166 \, z/c.
M_{1}^{T} = 1,4 \cdot 0,12 + 0,15 \cdot 1 = 0,318 \, z;
M_{2}^{T} = 1,4 \cdot 0,12 + 0,15 \cdot 1 = 0,318 \, z;
M_{2704}^{T} = (0,318 + 0,318) \cdot 305 \cdot 1 \cdot 10^{-6} = 0,000194 \, m/zo\partial;
G_{2704}^{T} = (0,318 \cdot 1 + 0,318 \cdot 1) / 3600 = 0,0001767 \, z/c;
M_{1}^{D} = 1,89 \cdot 0,12 + 0,15 \cdot 1 = 0,3768 \, z;
M_{2}^{D} = 1,4 \cdot 0,12 + 0,15 \cdot 1 = 0,318 \, z;
M_{2704}^{D} = (0,3768 + 0,318) \cdot 60 \cdot 1 \cdot 10^{-6} = 0,0000417 \, m/zo\partial;
G_{2704}^{D} = (0,3768 \cdot 1 + 0,318 \cdot 1) / 3600 = 0,000193 \, z/c;
M = 0,000194+0,0000417 = 0,0002357 \, m/zo\partial;
G = \max\{0,0001767; 0,000193\} = 0,000193 \, z/c.
```