## **Our Results**

 Main question: Can we obtain space optimal streaming algorithms with fast update times?

Yes! For many problems.



• **Theorem**: For p>2, there is an algorithm using  $\tilde{O}(n^{1-2/p})$  space and an update time of O(1) to approximate  $F_n(x)$  up to constant factors

• Improves on  $poly(\log n)$  update time of earlier works such as [Andoni, Krauthgamer, Onak '10]

 $\frac{1}{2} |x[i]|^p$ 

 $F_p(x) =$ 

## **Our Results**

- Main question: Can we obtain space optimal streaming algorithms with fast update times?
  - Yes! For many problems.

$$F_p(x) = \sum_{i} |x[i]|^p$$

- **Theorem**: For p>2, there is an algorithm using  $\tilde{O}(n^{1-2/p})$  space and an update time of O(1) to approximate  $F_p(x)$  up to constant factors
  - Improves on  $poly(\log n)$  update time of earlier works such as [Andoni, Krauthgamer, Onak '10]

## Our Results