Λύση

α) Για την υπερβολή C_1 ισχύει ότι έχει εξίσωση της μορφής $\frac{x^2}{a^2} - \frac{y^2}{\beta^2} = 1$ με $\alpha = \beta = 1$.

Av $\gamma^2 = \alpha^2 + \beta^2 = 1^2 + 1^2 = 2$, άρα $\gamma = \sqrt{2} > 0$, αφού $\gamma > \alpha = 1$,

τότε οι εστίες της θα έχουν συντεταγμένες τις $E_1(\gamma,0)$, $E'_1(-\gamma,0) \Rightarrow E_1(\sqrt{2},0)$, $E'_1(-\sqrt{2},0)$.

β) Η υπερβολή C_2 είναι ίδια με τη C_1 με τις εστίες της να βρίσκονται στον άξονα y ' y . Δηλαδή θα ισχύει ότι : $E_2(0,\gamma), E_2'(0,-\gamma) \Rightarrow E_2(0,\sqrt{2}), E_2'(0,-\sqrt{2})$.

Συνεπώς τα σημεία E_1 , E_2 , E'_1 , E'_2 , θα ισαπέχουν από την αρχή των αξόνων O(0,0) και βρίσκονται πάνω σε αυτούς, οπότε οι διαγώνιοι του τετραπλεύρου $E_1E_2E'_1E'_2$ είναι ίσες , διχοτομούνται και τέμνονται κάθετα, άρα αυτό είναι τετράγωνο.

