Curs 6

2021-2022 Fundamentele Limbajelor de Programare

Cuprins

Clauze propoziţionale definite

2 Puncte fixe. Teorema Knaster-Tarski

Problema satisfiabilității

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- \square În cazul în care programul și ținta conțin n atomi diferiți, tabelul de adevăr rezultat o să aibă 2^n rânduri.
- □ Această metodă este extrem costisitoare computațional (timp exponențial).

Cum salvăm situația?

Problema satisfiabilității

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- \square În cazul în care programul și ținta conțin n atomi diferiți, tabelul de adevăr rezultat o să aibă 2^n rânduri.
- □ Această metodă este extrem costisitoare computațional (timp exponențial).

Cum salvăm situația?

- Folosirea metodelor sintactice pentru a stabili problema consecinței logice (proof search)
- 2 Restricționarea formulelor din "programele logice" (clauze definite)

- O clauză propozițională definită este o formulă care poate avea una din formele:
 - 1 q
 - $p_1 \wedge \ldots \wedge p_k \rightarrow q$

unde q, p_1, \ldots, p_n sunt variabile propoziționale

□ O clauză propozițională definită este o formulă care poate avea una din formele:

```
1 q (un fapt în Prolog q.)
2 p_1 \wedge \ldots \wedge p_k \to q (o regulă în Prolog q :- p_1, \ldots, p_k)
```

unde q, p_1, \ldots, p_n sunt variabile propoziționale

□ O clauză propozițională definită este o formulă care poate avea una din formele:

```
1 q (un fapt în Prolog q.)
2 p_1 \wedge ... \wedge p_k \rightarrow q (o regulă în Prolog q := p_1,...,p_k)
unde q, p_1,...,p_n sunt variabile propoziționale
```

Numim variabilele propoziţionale atomi.

☐ O clauză propozițională definită este o formulă care poate avea una din formele:

```
1 q (un fapt în Prolog q.)
2 p_1 \wedge ... \wedge p_k \rightarrow q (o regulă în Prolog q:-p_1,...,p_k)
unde q,p_1,...,p_n sunt variabile propoziționale
```

□ Numim variabilele propoziționale atomi.

Programare logică – cazul logicii propoziționale

 \square Un "program logic" este o listă Cd_1, \ldots, Cd_n de clauze definite.

□ O clauză propozițională definită este o formulă care poate avea una din formele:

```
1 q (un fapt în Prolog q.)
2 p_1 \wedge \ldots \wedge p_k \to q (o regulă în Prolog q:-p_1,\ldots,p_k)
unde q,p_1,\ldots,p_n sunt variabile propoziționale
```

□ Numim variabilele propoziționale atomi.

Programare logică – cazul logicii propoziționale

- \square Un "program logic" este o listă Cd_1, \ldots, Cd_n de clauze definite.
- \square O întrebare este o listă q_1, \ldots, q_m de atomi.

- □ O clauză propozițională definită este o formulă care poate avea una din formele:
 - 1 q (un fapt în Prolog q.) 2 $p_1 \wedge ... \wedge p_k \rightarrow q$ (o regulă în Prolog q :- $p_1,...,p_k$)

unde q, p_1, \ldots, p_n sunt variabile propoziționale

Numim variabilele propoziţionale atomi.

Programare logică – cazul logicii propoziționale

- \square Un "program logic" este o listă Cd_1, \ldots, Cd_n de clauze definite.
- \square O întrebare este o listă q_1, \ldots, q_m de atomi.
- ☐ Sarcina sistemului este să stabilească:

$$Cd_1,\ldots,Cd_n\models q_1\wedge\ldots\wedge q_m.$$

- O clauză propozițională definită este o formulă care poate avea una din formele:
 - 1 q (un fapt în Prolog q.) 2 $p_1 \wedge ... \wedge p_k \rightarrow q$ (o regulă în Prolog q :- $p_1,...,p_k$)

unde q, p_1, \ldots, p_n sunt variabile propoziționale

Numim variabilele propoziţionale atomi.

Programare logică – cazul logicii propoziționale

- \square Un "program logic" este o listă Cd_1, \ldots, Cd_n de clauze definite.
- \square O întrebare este o listă q_1, \ldots, q_m de atomi.
- ☐ Sarcina sistemului este să stabilească:

$$Cd_1, \ldots, Cd_n \models q_1 \wedge \ldots \wedge q_m$$
.

Vom studia metode sintactice pentru a rezolva această problemă!

Sistem de deducție CDP pentru clauze definite propoziționale

Pentru o mulțime ${\mathcal S}$ de clauze definite propoziționale, avem

Sistem de deducție CDP pentru clauze definite propoziționale

Pentru o mulțime ${\mathcal S}$ de clauze definite propoziționale, avem

 \square Axiome (premise): orice clauză din $\mathcal S$

Sistem de deducție CDP pentru clauze definite propoziționale

Pentru o mulțime ${\mathcal S}$ de clauze definite propoziționale, avem

- \square Axiome (premise): orice clauză din $\mathcal S$
- □ Reguli de deducție:

$$rac{P \quad P
ightarrow Q}{Q} \; (MP) \qquad \qquad rac{P \quad Q}{P \wedge Q} \; (and I)$$

- Aceste reguli ne permit să deducem formula de sub linie din formulele de deasupra liniei.
- □ Sunt regulile $(\rightarrow e)$ și $(\land i)$ din deducția naturală pentru logica propozițională.

$$rac{P \quad P
ightarrow Q}{Q} \; (MP) \qquad \qquad rac{P \quad Q}{P \wedge Q} \; (and I)$$

Exemplu

```
\begin{array}{ccc} & \text{oslo} & \rightarrow & \text{windy} \\ & \text{oslo} & \rightarrow & \text{norway} \\ & \text{norway} & \rightarrow & \text{cold} \\ & \text{cold} \, \land \, \text{windy} & \rightarrow & \text{winterIsComing} \\ & & & \text{oslo} \end{array}
```

$$rac{P \quad P
ightarrow Q}{Q} \ \ (MP) \qquad \qquad rac{P \quad Q}{P \wedge Q} \ \ (and I)$$

Exemplu

$$rac{P \quad P
ightarrow Q}{Q} \; (MP) \qquad \qquad rac{P \quad Q}{P \wedge Q} \; (andI)$$

Exemplu

$$\frac{P \quad P \rightarrow Q}{Q} \ \ (MP) \qquad \qquad \frac{P \quad Q}{P \wedge Q} \ \ (and I)$$

Exemplu

 $\begin{array}{ccc} & \text{oslo} & \rightarrow & \text{windy} \\ & \text{oslo} & \rightarrow & \text{norway} \\ & \text{norway} & \rightarrow & \text{cold} \\ & \text{cold} \ \land \ \text{windy} & \rightarrow & \text{winterIsComing} \\ & & & \text{oslo} \end{array}$

- $1. \ \textit{oslo} \rightarrow \textit{windy}$
- $2. \ \textit{oslo} \rightarrow \textit{norway}$
- 3. $norway \rightarrow cold$
- 4. $cold \land windy \rightarrow winterIsComing$
- 5. oslo

- 6. norway (MP 5,2) 7. cold (MP 6,3) 8. windy (MP 5,1) 9. cold ∧ windy (andl 7,8)
 - 10. winterlsComing (MP 9,4)

O formulă Q se poate deduce din $\mathcal S$ în sistemul de deducție CDP, notat

$$S \vdash Q$$
,

dacă există o secvență de formule Q_1, \ldots, Q_n astfel încât $Q_n = Q$ și fiecare Q_i :

- \square fie aparține lui S
- \square fie se poate deduce din Q_1, \ldots, Q_{i-1} folosind regulile de deducție (MP) și (andl)

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

- □ Atomii $p_i \in \mathcal{S}$ care sunt fapte sunt deductibili.
 - Sunt deduşi ca axiome.

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

- \square Atomii $p_i \in \mathcal{S}$ care sunt fapte sunt deductibili.
 - Sunt deduşi ca axiome.
- ☐ Un atom r este deductibil dacă
 - p_1, \ldots, p_n sunt deductibili, și
 - \square $p_1 \wedge \ldots \wedge p_n \rightarrow r$ este în S.
 - O astfel de derivare folosește de n-1 ori (andI) și o data (MP).

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

- \square Atomii $p_i \in \mathcal{S}$ care sunt fapte sunt deductibili.
 - Sunt deduşi ca axiome.
- ☐ Un atom r este deductibil dacă
 - p_1, \ldots, p_n sunt deductibili, și
 - \square $p_1 \wedge \ldots \wedge p_n \rightarrow r$ este în S.

O astfel de derivare folosește de n-1 ori (andI) și o data (MP).

Deci putem construi mulțimi din ce în ce mai mari de atomi care sunt consecințe logice din S, și pentru care există derivări din S.

Putem folosi sistemul de deducție CDP pentru a deduce alți atomi:

- \square Atomii $p_i \in \mathcal{S}$ care sunt fapte sunt deductibili.
 - Sunt deduşi ca axiome.
- \square Un atom r este deductibil dacă
 - p_1, \ldots, p_n sunt deductibili, și
 - \square $p_1 \wedge \ldots \wedge p_n \rightarrow r$ este în S.

O astfel de derivare folosește de n-1 ori (andI) și o data (MP).

Deci putem construi mulțimi din ce în ce mai mari de atomi care sunt consecințe logice din S, și pentru care există derivări din S.

Observăm că (andI) și (MP) pot fi înlocuite cu următoarea regulă derivată:

$$\frac{P_1,\ldots,P_n\quad P_1\wedge\cdots\wedge P_n\to Q}{Q} \ (\textit{GMP})$$

- Se poate demonstra că aceste reguli sunt corecte, folosind tabelele de adevăr.
 - Dacă formulele de deasupra liniei sunt adevărate, atunci și formula de sub linie este adevărată.

- Se poate demonstra că aceste reguli sunt corecte, folosind tabelele de adevăr.
 - Dacă formulele de deasupra liniei sunt adevărate, atunci și formula de sub linie este adevărată.
- ☐ Mai mult, sistemul de deducție este și complet, adică dacă $\mathcal{S} \models q$, atunci $\mathcal{S} \vdash q$.
 - Dacă q este o consecință logică a lui S, atunci există o derivare a sa din S folosind sistemul de deductie CDP

- Se poate demonstra că aceste reguli sunt corecte, folosind tabelele de adevăr.
 - Dacă formulele de deasupra liniei sunt adevărate, atunci și formula de sub linie este adevărată.
- ☐ Mai mult, sistemul de deducție este și complet, adică dacă $\mathcal{S} \models q$, atunci $\mathcal{S} \vdash q$.
 - Dacă q este o consecință logică a lui S, atunci există o derivare a sa din S folosind sistemul de deductie CDP
- □ Pentru a demonstra completitudinea vom folosi teorema Knaster-Tarski.

Puncte fixe. Teorema Knaster-Tarski

Mulțimi parțial ordonate

- \square O multime partial ordonată (mpo) este o pereche (M, \le) unde $\le \subseteq M \times M$ este o relație de ordine.
 - relație de ordine: reflexivă, antisimetrică, tranzitivă

Mulțimi parțial ordonate

- □ O mulțime parțial ordonată (mpo) este o pereche (M, \leq) unde $\leq \subseteq M \times M$ este o relație de ordine.
 - relație de ordine: reflexivă, antisimetrică, tranzitivă
- □ O mpo (L, \leq) se numește lanț dacă este total ordonată, adică $x \leq y$ sau $y \leq x$ pentru orice $x, y \in L$. Vom considera lanțuri numărabile:

$$x_1 \le x_2 \le x_3 \le \dots$$

Mulțimi parțial ordonate complete

- O mpo (C, \leq) este completă (cpo) dacă:
 - \Box *C* are prim element \bot ($\bot \le x$ oricare $x \in C$),
 - $\square \bigvee_n x_n$ există în C pentru orice lanț $x_1 \le x_2 \le x_3 \le \dots$

Mulțimi parțial ordonate complete

- O mpo (C, \leq) este completă (cpo) dacă:
 - \Box C are prim element \bot ($\bot \le x$ oricare $x \in C$),
 - $\square \bigvee_n x_n$ există în C pentru orice lanț $x_1 \le x_2 \le x_3 \le \dots$

Exempli

Fie X o mulțime și $\mathcal{P}(X)$ mulțimea submulțimilor lui X.

 $(\mathcal{P}(X),\subseteq)$ este o cpo:

- $\square \subseteq$ este o relație de ordine
- \square \emptyset este prim element $(\emptyset \subseteq Q \text{ pentru orice } Q \in \mathcal{P}(X))$
- \square pentru orice șir (numărabil) de submulțimi ale lui X $Q_1 \subseteq Q_2 \subseteq \ldots$ evident $\bigcup_n Q_n \in \mathcal{P}(X)$

Funcție monotonă

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Funcție monotonă

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

$$\square f_1(Y) = Y \cup \{1\}$$

Funcție monotonă

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

- \square $f_1(Y) = Y \cup \{1\}$ este monotonă.

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate. O funcție $f: A \to B$ este monotonă (crescătoare) dacă $a_1 \leq_A a_2$ implică $f(a_1) \leq_B f(a_2)$ oricare $a_1, a_2 \in A$.

Exemplu

□ Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete. O funcție $f: A \to B$ este continuă dacă $f(\bigvee_n a_n) = \bigvee_n f(a_n)$ pentru orice lanț $\{a_n\}_n$ din A.

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.
 - O funcție $f: A \rightarrow B$ este continuă dacă

$$f(\bigvee_n a_n) = \bigvee_n f(a_n)$$
 pentru orice lant $\{a_n\}_n$ din A .

□ Observăm că orice funcție continuă este crescătoare.

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.
 - O funcție $f:A \to B$ este continuă dacă

$$f(\bigvee_n a_n) = \bigvee_n f(a_n)$$
 pentru orice lanț $\{a_n\}_n$ din A .

□ Observăm că orice funcție continuă este crescătoare.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

 \Box $f_1(Y) = Y \cup \{1\}$ este continuă.

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.
 - O funcție $f: A \to B$ este continuă dacă $f(\bigvee_n a_n) = \bigvee_n f(a_n)$ pentru orice lanț $\{a_n\}_n$ din A.

Observăm că orice funcție continuă este crescătoare.

Exemplu

- \Box $f_1(Y) = Y \cup \{1\}$ este continuă.

- \square Fie (A, \leq_A) și (B, \leq_B) mulțimi parțial ordonate complete.
 - O funcție $f: A \rightarrow B$ este continuă dacă

$$f(\bigvee_n a_n) = \bigvee_n f(a_n)$$
 pentru orice lanț $\{a_n\}_n$ din A .

☐ Observăm că orice funcție continuă este crescătoare.

Exemplu

Fie următoarele funcții $f_i: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ cu $i \in \{1,2,3\}$

- \Box $f_1(Y) = Y \cup \{1\}$ este continuă.

De exemplu, consideram lantul $\emptyset \subseteq \{1\}$.

Avem $\emptyset \cup \{1\} = \{1\}$ și $f_3(\{1\}) = \emptyset$.

$$\mathsf{Dar}\ f_3(\emptyset) = \{1\},\ f_3(\{1\}) = \emptyset\ \mathsf{si}\ f_3(\emptyset) \cup f_3(\{1\}) = \{1\}.$$

Teorema de punct fix

□ Un element $a \in C$ este punct fix al unei funcții $f : C \to C$ dacă f(a) = a.

Teorema de punct fix

□ Un element $a \in C$ este punct fix al unei funcții $f : C \to C$ dacă f(a) = a.

Teorema Knaster-Tarski pentru CPO

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\perp)$$

este cel mai mic punct fix al funcției **F**.

Teorema de punct fix

□ Un element $a \in C$ este punct fix al unei funcții $f : C \to C$ dacă f(a) = a.

Teorema Knaster-Tarski pentru CPO

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă. Atunci

$$a = \bigvee_{n} \mathbf{F}^{n}(\perp)$$

este cel mai mic punct fix al funcției F.

□ Observăm că în ipotezele ultimei teoreme secvența

$$\mathbf{F}^0(\perp) = \perp \leq \mathbf{F}(\perp) \leq \mathbf{F}^2(\perp) \leq \cdots \leq \mathbf{F}^n(\perp) \leq \cdots$$

este un lanţ, deci $\bigvee_n \mathbf{F}^n(\bot)$ există.

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

$$F(a) = F(\bigvee_n F^n(\bot))$$

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

$$F(a) = F(\bigvee_n F^n(\bot))$$

= $\bigvee_n F(F^n(\bot))$ din continuitate

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

$$\mathbf{F}(a) = \mathbf{F}(\bigvee_{n} \mathbf{F}^{n}(\bot))$$

$$= \bigvee_{n} \mathbf{F}(\mathbf{F}^{n}(\bot)) \text{ din continuitate}$$

$$= \bigvee_{n} \mathbf{F}^{n+1}(\bot)$$

Demonstrație

Fie (C, \leq) o mulțime parțial ordonată completă și $\mathbf{F}: C \to C$ o funcție continuă.

$$\mathbf{F}(a) = \mathbf{F}(\bigvee_{n} \mathbf{F}^{n}(\bot))$$

$$= \bigvee_{n} \mathbf{F}(\mathbf{F}^{n}(\bot)) \text{ din continuitate}$$

$$= \bigvee_{n} \mathbf{F}^{n+1}(\bot)$$

$$= \bigvee_{n} \mathbf{F}^{n}(\bot) = a$$

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. F(b) = b.

Demonstrăm prin inducție după $n \ge 1$ că $\mathbf{F}^n(\bot) \le b$.

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. F(b) = b.

Demonstrăm prin inducție după $n \geq 1$ că $\mathbf{F}^n(\perp) \leq b$.

Pentru n=0, $\mathbf{F}^0(\bot)=\bot\leq b$ deoarece \bot este prim element.

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b) = b$.

Demonstrăm prin inducție după $n \geq 1$ că $\mathbf{F}^n(\perp) \leq b$.

Pentru n=0, $\mathbf{F}^0(\bot)=\bot\le b$ deoarece \bot este prim element.

Dacă $\mathbf{F}^n(\perp) \leq b$, atunci $\mathbf{F}^{n+1}(\perp) \leq \mathbf{F}(b)$, deoarece \mathbf{F} este crescătoare. Deoarece $\mathbf{F}(b) = b$ rezultă $\mathbf{F}^{n+1}(\bot) \leq b$.

19 / 34

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b) = b$.

Demonstrăm prin inducție după $n \geq 1$ că $\mathbf{F}^n(\perp) \leq b$.

Pentru n=0, $\mathbf{F}^0(\bot)=\bot\le b$ deoarece \bot este prim element.

Dacă $\mathbf{F}^n(\perp) \leq b$, atunci $\mathbf{F}^{n+1}(\perp) \leq \mathbf{F}(b)$, deoarece \mathbf{F} este crescătoare. Deoarece $\mathbf{F}(b) = b$ rezultă $\mathbf{F}^{n+1}(\perp) < b$.

Ştim $\mathbf{F}^n(\bot) \le b$ oricare $n \ge 1$, deci $a = \bigvee_n \mathbf{F}^n(\bot) \le b$.

Demonstrație (cont.)

☐ Arătăm că a este cel mai mic punct fix.

Fie b un alt punct fix, i.e. $\mathbf{F}(b) = b$.

Demonstrăm prin inducție după $n \geq 1$ că $\mathbf{F}^n(\bot) \leq b$.

Pentru n=0, $\mathbf{F}^0(\bot)=\bot\le b$ deoarece \bot este prim element.

Dacă $\mathbf{F}^n(\bot) \le b$, atunci $\mathbf{F}^{n+1}(\bot) \le \mathbf{F}(b)$, deoarece \mathbf{F} este crescătoare. Deoarece $\mathbf{F}(b) = b$ rezultă $\mathbf{F}^{n+1}(\bot) \le b$.

Ştim $\mathbf{F}^n(\perp) \leq b$ oricare $n \geq 1$, deci $a = \bigvee_n \mathbf{F}^n(\perp) \leq b$.

Am arătat că a este cel mai mic punct fix al funcției F.

Completitudinea sistemului de deducție CDP

Fie At mulțimea variabilelor propozitionale (atomilor) p_1, p_2, \ldots care apar în \mathcal{S} .

Fie At mulțimea variabilelor propozitionale (atomilor) p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in \mathcal{S}\}$ multimea faptelor din \mathcal{S} .

Fie At mulțimea variabilelor propozitionale (atomilor) p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in \mathcal{S}\}$ mulţimea faptelor din \mathcal{S} .

Exemplu

Fie At mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in \mathcal{S}\}$ mulţimea atomilor care apar în faptele din \mathcal{S} .

Definim funcția $f_{\mathcal{S}}: \mathcal{P}(At) \to \mathcal{P}(At)$ prin

$$f_{\mathcal{S}}(Y) = Y \cup \textit{Baza}$$
 $\cup \{a \in \textit{At} \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } \mathcal{S}, \ s_1 \in Y, \ldots, s_n \in Y\}$

Fie At mulțimea atomilor p_1, p_2, \ldots care apar în S.

Fie $Baza = \{p_i \mid p_i \in \mathcal{S}\}$ mulțimea atomilor care apar în faptele din \mathcal{S} .

Definim funcția $f_{\mathcal{S}}: \mathcal{P}(At) \to \mathcal{P}(At)$ prin

$$f_{\mathcal{S}}(Y) = Y \cup \textit{Baza}$$

$$\cup \ \{ \textit{a} \in \textit{At} \mid (\textit{s}_1 \wedge \ldots \wedge \textit{s}_n \rightarrow \textit{a}) \ \text{este în } \mathcal{S}, \\ \textit{s}_1 \in Y, \ldots, \textit{s}_n \in Y \}$$

Exercițiu. Arătați că funcția f_S este monotonă.

Fie At mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_{\mathcal{S}}: \mathcal{P}(At) o \mathcal{P}(At)$ este continuă.

Fie At mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_{\mathcal{S}}: \mathcal{P}(At) \to \mathcal{P}(At)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \dots$ atunci $f_{\mathcal{S}}(\bigcup_k Y_k) = \bigcup_k f_{\mathcal{S}}(Y_k)$.

Fie At multimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_{\mathcal{S}}: \mathcal{P}(At) \to \mathcal{P}(At)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \dots$ atunci $f_{\mathcal{S}}(\bigcup_k Y_k) = \bigcup_k f_{\mathcal{S}}(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Fie At mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_{\mathcal{S}}: \mathcal{P}(At) \to \mathcal{P}(At)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \ldots$ atunci $f_{\mathcal{S}}(\bigcup_k Y_k) = \bigcup_k f_{\mathcal{S}}(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Demonstrăm în continuare că $f_S(\bigcup_k Y_k) \subseteq \bigcup_k f_S(Y_k)$. Fie $a \in f_S(\bigcup_n Y_k)$. Sunt posibile trei cazuri

Fie At mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_{\mathcal{S}}: \mathcal{P}(At) \to \mathcal{P}(At)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \dots$ atunci $f_{\mathcal{S}}(\bigcup_k Y_k) = \bigcup_k f_{\mathcal{S}}(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Demonstrăm în continuare că $f_S(\bigcup_k Y_k) \subseteq \bigcup_k f_S(Y_k)$. Fie $a \in f_S(\bigcup_n Y_k)$. Sunt posibile trei cazuri

 \Box $a \in \bigcup_k Y_k$ Există un $k \ge 1$ astfel încât $a \in Y_k$, deci $a \in f_{\mathcal{S}}(Y_k) \subseteq \bigcup_k f_{\mathcal{S}}(Y_k)$.

Fie At mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_{\mathcal{S}}: \mathcal{P}(At) \to \mathcal{P}(At)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \dots$ atunci $f_{\mathcal{S}}(\bigcup_k Y_k) = \bigcup_k f_{\mathcal{S}}(Y_k)$.

Din faptul că f_S este crescătoare rezultă $f_S(\bigcup_k Y_k) \supseteq \bigcup_k f_S(Y_k)$

Demonstrăm în continuare că $f_S(\bigcup_k Y_k) \subseteq \bigcup_k f_S(Y_k)$. Fie $a \in f_S(\bigcup_n Y_k)$. Sunt posibile trei cazuri

- \square $a \in Baza \subseteq \bigcup_k f_{\mathcal{S}}(Y_k)$

Fie At mulțimea atomilor p_1, p_2, \ldots care apar în S.

Propoziție

Funcția $f_{\mathcal{S}}: \mathcal{P}(At) o \mathcal{P}(At)$ este continuă.

Demonstrație

Arătăm că dacă $Y_1 \subseteq Y_2 \subseteq Y_3 \subseteq \ldots$ atunci $f_{\mathcal{S}}(\bigcup_k Y_k) = \bigcup_k f_{\mathcal{S}}(Y_k)$.

Din faptul că $f_{\mathcal{S}}$ este crescătoare rezultă $f_{\mathcal{S}}(\bigcup_k Y_k) \supseteq \bigcup_k f_{\mathcal{S}}(Y_k)$

Demonstrăm în continuare că $f_{\mathcal{S}}(\bigcup_k Y_k) \subseteq \bigcup_k f_{\mathcal{S}}(Y_k)$. Fie $a \in f_{\mathcal{S}}(\bigcup_n Y_k)$. Sunt posibile trei cazuri

- $\square \ a \in \bigcup_k Y_k$ Există un $k \ge 1$ astfel încât $a \in Y_k$, deci $a \in f_{\mathcal{S}}(Y_k) \subseteq \bigcup_k f_{\mathcal{S}}(Y_k)$.
- \square $a \in Baza \subseteq \bigcup_k f_{\mathcal{S}}(Y_k)$
- \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S.

Demonstrație (cont.)

 \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S.

Demonstrație (cont.)

 \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în \mathcal{S} . Pentru fiecare $i \in \{1, \ldots, n\}$ există $k_i \in \mathbb{N}$ astfel încât $s_i \in Y_{k_i}$.

Demonstrație (cont.)

Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în \mathcal{S} . Pentru fiecare $i \in \{1, \ldots, n\}$ există $k_i \in \mathbb{N}$ astfel încât $s_i \in Y_{k_i}$. Dacă $k_0 = \max\{k_1, \ldots, k_n\}$ atunci $Y_{k_i} \subset Y_{k_0}$ pentru orice

Dacă $k_0 = \max\{k_1, \dots, k_n\}$ atunci $Y_{k_i} \subseteq Y_{k_0}$ pentru orice $i \in \{1, \dots, n\}$.

Demonstrație (cont.)

 \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S.

Pentru fiecare $i \in \{1,\ldots,n\}$ există $k_i \in \mathbb{N}$ astfel încât $s_i \in Y_{k_i}$.

Dacă $k_0 = \max\{k_1, \ldots, k_n\}$ atunci $Y_{k_i} \subseteq Y_{k_0}$ pentru orice $i \in \{1, \ldots, n\}$.

Rezultă că $s_1, \ldots, s_n \in Y_{k_0}$, deci $a \in f_{\mathcal{S}}(Y_{k_0}) \subseteq \bigcup_k f_{\mathcal{S}}(Y_k)$.

Demonstrație (cont.)

 \square Există s_1, \ldots, s_n în $\bigcup_k Y_k$ astfel încât $(s_1 \wedge \ldots \wedge s_n \to a)$ este în S.

Pentru fiecare $i \in \{1,\ldots,n\}$ există $k_i \in \mathbb{N}$ astfel încât $s_i \in Y_{k_i}$.

Dacă $k_0 = \max\{k_1, \ldots, k_n\}$ atunci $Y_{k_i} \subseteq Y_{k_0}$ pentru orice $i \in \{1, \ldots, n\}$.

Rezultă că $s_1,\ldots,s_n\in Y_{k_0}$, deci $a\in f_{\mathcal{S}}(Y_{k_0})\subseteq\bigcup_k f_{\mathcal{S}}(Y_k)$.

Am demonstrat că f_S este continuă.

Pentru funcția continuă $f_{\mathcal{S}}: \mathcal{P}(At)
ightarrow \mathcal{P}(At)$

$$f_{\mathcal{S}}(Y) = Y \cup \textit{Baza}$$
 $\cup \{a \in \textit{At} \mid (s_1 \wedge \ldots \wedge s_n \rightarrow a) \text{ este în } \mathcal{S}, \ s_1 \in Y, \ldots, s_n \in Y\}$

aplicând Teorema Knaster-Tarski pentru CPO, obținem că

$$\bigcup_n f_{\mathcal{S}}^n(\emptyset)$$

este cel mai mic punct fix al lui f_S .

☐ Analizați ce se întamplă când considerăm succesiv

$$\emptyset$$
, $f_{\mathcal{S}}(\emptyset)$, $f_{\mathcal{S}}(f_{\mathcal{S}}(\emptyset))$, $f_{\mathcal{S}}(f_{\mathcal{S}}(f_{\mathcal{S}}(\emptyset)))$, . . .

La fiecare a lui $f_{\mathcal{S}}$, rezultatul fie se mărește, fie rămâne neschimbat.

Analizați ce se întamplă când considerăm succesiv

$$\emptyset$$
, $f_{\mathcal{S}}(\emptyset)$, $f_{\mathcal{S}}(f_{\mathcal{S}}(\emptyset))$, $f_{\mathcal{S}}(f_{\mathcal{S}}(f_{\mathcal{S}}(\emptyset)))$,...

La fiecare aplicare a lui f_S , rezultatul fie se mărește, fie rămâne neschimbat.

 \square Să presupunem că în $\mathcal S$ avem k atomi. Atunci după k+1 aplicări ale lui $f_{\mathcal S}$, trebuie să existe un punct în șirul de mulțimi obținute de unde o nouă aplicare a lui $f_{\mathcal S}$ nu mai schimbă rezultatul (punct fix):

$$f_{\mathcal{S}}(X) = X$$

Analizați ce se întamplă când considerăm succesiv

$$\emptyset$$
, $f_{\mathcal{S}}(\emptyset)$, $f_{\mathcal{S}}(f_{\mathcal{S}}(\emptyset))$, $f_{\mathcal{S}}(f_{\mathcal{S}}(f_{\mathcal{S}}(\emptyset)))$, . . .

La fiecare a lui f_S , rezultatul fie se mărește, fie rămâne neschimbat.

 \square Să presupunem că în $\mathcal S$ avem k atomi. Atunci după k+1 aplicări ale lui $f_{\mathcal S}$, trebuie să existe un punct în șirul de mulțimi obținute de unde o nouă aplicare a lui $f_{\mathcal S}$ nu mai schimbă rezultatul (punct fix):

$$f_{\mathcal{S}}(X) = X$$

Dacă aplicăm f_S succesiv ca mai devreme până găsim un X cu proprietatea $f_S(X) = X$, atunci găsim cel mai mic punct fix al lui f_S .

Cel mai mic punct fix

$$\begin{array}{ccc} \textit{cold} & \rightarrow & \textit{wet} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}$$

Se observă că
$$f_{\mathcal{S}}(\emptyset) =$$

$$\begin{split} &f_{\mathcal{S}}(Y) = Y \cup \textit{Baza} \\ &\cup \{a \in \textit{At} \mid (s_1 \wedge \ldots \wedge s_n \rightarrow \textit{a}) \text{ este în } \mathcal{S}, \\ &s_1 \in Y, \ldots, s_n \in Y\} \end{split}$$

Cel mai mic punct fix

Exemplu

$$egin{array}{lll} {\it cold} &
ightarrow & {\it wet} \ {\it wet} \wedge {\it cold} &
ightarrow & {\it scotland} \ \end{array}$$

$$f_{\mathcal{S}}(Y) = Y \cup \textit{Baza}$$

 $\cup \{ a \in \textit{At} \mid (s_1 \land \ldots \land s_n \rightarrow a) \text{ este în } \mathcal{S}, \ s_1 \in Y, \ldots, s_n \in Y \}$

Se observă că $f_S(\emptyset) = \emptyset$, deci \emptyset este cel mai mic punct fix.

De aici deducem că niciun atom nu este consecință logică a formulelor de mai sus.

```
\begin{array}{ccc} \textit{cold} & & \\ \textit{cold} & \rightarrow & \textit{wet} \\ \textit{windy} & \rightarrow & \textit{dry} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}
```

$$\begin{split} &f_{\mathcal{S}}(Y) = Y \cup \textit{Baza} \\ &\cup \{ a \in \textit{At} \mid (s_1 \wedge \ldots \wedge s_n \rightarrow \textit{a}) \text{ este în } \textit{S}, \\ &s_1 \in Y, \ldots, s_n \in Y \} \end{split}$$

```
\begin{array}{ccc} \textit{cold} & & \\ \textit{cold} & \rightarrow & \textit{wet} \\ \textit{windy} & \rightarrow & \textit{dry} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}
```

```
\begin{split} &f_{\mathcal{S}}(Y) = Y \cup \textit{Baza} \\ &\cup \{a \in \textit{At} \mid (s_1 \land \ldots \land s_n \rightarrow \textit{a}) \text{ este în } \textit{S}, \\ &s_1 \in Y, \ldots, s_n \in Y\} \end{split}
```

$$f_{\mathcal{S}}(\emptyset) = \{ cold \}$$

```
\begin{array}{ccc} \textit{cold} & & \\ \textit{cold} & \rightarrow & \textit{wet} \\ \textit{windy} & \rightarrow & \textit{dry} \\ \textit{wet} \land \textit{cold} & \rightarrow & \textit{scotland} \end{array}
```

```
f_{\mathcal{S}}(Y) = Y \cup \textit{Baza}

\cup \{ a \in At \mid (s_1 \land \ldots \land s_n \to a) \text{ este în } S,

s_1 \in Y, \ldots, s_n \in Y \}
```

$$f_{\mathcal{S}}(\emptyset) = \{ cold \}$$

 $f_{\mathcal{S}}(\{ cold \}) = \{ cold, wet \}$

```
cold
                                               f_{\mathcal{S}}(Y) = Y \cup Baza
         cold \rightarrow wet
                                               \cup \{a \in At \mid (s_1 \wedge ... \wedge s_n \rightarrow a) \text{ este în } S,
      windy \rightarrow dry
                                              s_1 \in Y, \ldots, s_n \in Y
wet \land cold \rightarrow scotland
                                         f_{\mathcal{S}}(\emptyset) = \{ cold \}
                               f_{\mathcal{S}}(\{ cold \}) = \{ cold, wet \}
                        f_S(\{ cold, wet \}) = \{ cold, wet, scotland \}
          f_{\mathcal{S}}(\{ cold, wet, scotland \}) = \{ cold, wet, scotland \}
```

Exemplu

Deci cel mai mic punct fix este { cold, wet, scotland }.

Teoremă

Fie X este cel mai mic punct fix al funcției f_S . Atunci

$$q \in X$$
 ddacă $S \models q$.

Intuiție: Cel mai mic punct fix al funcției f_S este mulțimea tuturor atomilor care sunt consecințe logice ale programului.

Funcția $f_{\mathcal{S}}: \mathcal{P}(At) o \mathcal{P}(At)$ este definită prin

$$\begin{split} f_{\mathcal{S}}(Y) &= Y \cup \textit{Baza} \\ & \cup \{ \textit{a} \in \textit{At} \mid (\textit{s}_1 \land \ldots \land \textit{s}_n \rightarrow \textit{a}) \text{ este în } \mathcal{S}, \textit{s}_1 \in Y, \ldots, \textit{s}_n \in Y \} \end{split}$$

unde At este mulțimea atomilor din S și $Baza = \{p_i \mid p_i \in S\}$ este mulțimea atomilor care apar în faptele din S.

Demonstrație

- $(\Rightarrow) q \in X \Rightarrow S \models q.$
 - \square Funcția f_S conservă atomii adevărați.
 - Deci, dacă fiecare clauză unitate din S este adevărată, după fiecare aplicare a funcției f_S obținem o mulțime adevărată de atomi.

Demonstrație

- $(\Rightarrow) q \in X \Rightarrow S \models q$.
 - \square Funcția f_S conservă atomii adevărați.
 - Deci, dacă fiecare clauză unitate din $\mathcal S$ este adevărată, după fiecare aplicare a funcției $f_{\mathcal S}$ obținem o mulțime adevărată de atomi.
- $(\Leftarrow) \mathcal{S} \models q \Rightarrow q \in X.$
 - \square Fie $\mathcal{S} \models q$. Presupunem prin absurd că $q \notin X$.
 - \square Căutăm o evaluare e care face fiecare clauză din $\mathcal S$ adevărată, dar q falsă.

Demonstrație (cont.)

☐ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac}\ a \neq X \ 0, & \mathsf{altfel} \end{cases}$$

Demonstrație (cont.)

☐ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac}\ a \neq X \ 0, & \mathsf{altfel} \end{cases}$$

□ Evident, această interpretare face q falsă.

Demonstrație (cont.)

□ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac} \ a \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in\mathcal{S}$.

Demonstrație (cont.)

□ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac}\ a \neq X \ 0, & \mathsf{altfel} \end{cases}$$

- \square Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in\mathcal{S}$.
- \square Fie $P \in \mathcal{S}$. Avem două cazuri:

Demonstrație (cont.)

☐ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac}\ a \neq X \ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in\mathcal{S}$.
- \square Fie $P \in \mathcal{S}$. Avem două cazuri:
 - 1 P este un fapt. Atunci $P \in X$, deci e(P) = 1.

Demonstrație (cont.)

□ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac} \ a \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in\mathcal{S}$.
- \square Fie $P \in \mathcal{S}$. Avem două cazuri:
 - 1 P este un fapt. Atunci $P \in X$, deci e(P) = 1.
 - 2 P este de forma $p_1 \wedge \ldots \wedge p_n \rightarrow r$. Atunci avem două cazuri:

Demonstrație (cont.)

☐ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac} \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in\mathcal{S}$.
- \square Fie $P \in \mathcal{S}$. Avem două cazuri:
 - 1 P este un fapt. Atunci $P \in X$, deci e(P) = 1.
 - 2 P este de forma $p_1 \wedge \ldots \wedge p_n \to r$. Atunci avem două cazuri: • există un p_i , $i=1,\ldots,n$, care nu este în X. Deci $e^+(P)=1$.

Demonstrație (cont.)

□ Fie evaluarea

$$e(p) = egin{cases} 1, & \mathsf{dac} \ p \in X \ 0, & \mathsf{altfel} \end{cases}$$

- Evident, această interpretare face q falsă.
- \square Arătăm că $e^+(P)=1$, pentru orice clauză $P\in\mathcal{S}$.
- \square Fie $P \in \mathcal{S}$. Avem două cazuri:
 - 1 P este un fapt. Atunci $P \in X$, deci e(P) = 1.
 - 2 P este de forma $p_1 \wedge \ldots \wedge p_n \rightarrow r$. Atunci avem două cazuri:
 - există un p_i , i = 1, ..., n, care nu este în X. Deci $e^+(P) = 1$.
 - toți p_i , i = 1, ..., n, sunt în X. Atunci $r \in f_S(X) = X$, deci e(r) = 1. În concluzie $e^+(P) = 1$.

Sistemul de deducție

Corolar

Sistemul de deducție pentru clauze definite propoziționale este complet pentru a arăta clauze unitate:

dacă
$$\mathcal{S} \models q$$
, atunci $\mathcal{S} \vdash q$.

Sistemul de deducție

Corolar

Sistemul de deducție pentru clauze definite propoziționale este complet pentru a arăta clauze unitate:

dacă
$$S \models q$$
, atunci $S \vdash q$.

Demonstrație

- \square Presupunem $\mathcal{S} \models q$.
- \square Atunci $q \in X$, unde X este cel mai mic punct fix al funcției $f_{\mathcal{S}}$.
- \square Fiecare aplicare a funcției f_S produce o mulțime demonstrabilă de atomi.
- \square Cum cel mai mic punct fix este atins după un număr finit de aplicări ale lui f_S , orice $a \in X$ are o derivare.

Bibliografie

- J.W. Lloyd, Foundations of Logic Programming, Second Edition, Springer, 1987
- R.J. Brachman, H.J.Levesque, Knowledge Representation and Reasoning, Morgan Kaufmann Publishers, San Francisco, CA, 2004
- Logic Programming, The University of Edinburgh, https://www.inf.ed.ac.uk/teaching/courses/lp/

Pe săptămâna viitoare!