

Curs 05

Protocolul IP

Obiective

- Nivelul rețea
- Protocolul IPv4
- ARP

Nivelul rețea

- Funcții
- Protocoale

Necesitatea unei adresări globale

- Problemă: Adresele MAC sunt ineficiente pentru rețele mari:
 - Folosesc o schemă de adresare plată ce nu scalează
- Consecință: adresele MAC sunt folosite doar cu vizibilitate locală (în domeniul local de broadcast)
- Soluție: Este necesară folosirea unui alt set de adrese pentru adresare globală
 - Aceste adrese trebuie să fie organizate ierarhic pentru a putea fi gestionate de echipamentele de rețea

Exemplu de adresare ierarhică

Codul poștal:

Stradă + număr: Splaiul Independenței, Nr. 313

Funcțiile nivelului rețea

Adresare globală

- ✓ Introduce un protocol cu adresare ierarhică numit IP (Internet Protocol)
- ✓ Fiecare dispozitiv este identificat în mod unic la nivel global prin adresa sa IP

Comunicație end-to-end

- ✓ Protocoalele nivelului rețea sunt de tip best-effort și nu stabilesc conexiuni
- ✓ Stabilirea conexiunilor este responsabilitatea protocoalelor de nivel superior

Rutare (dirijare)

 Dispozitive intermediare numite rutere iau decizii de dirijare a traficului în funcție de destinație

Protocoale de nivel rețea

IPv4

- Funcții
- Antet
- Adresa IPv4
- Procesul de subnetare
- VLSM

Funcțiile IPv4

- IPv4: Internet Protocol, versiunea 4
- Definit în RFC791, în anul 1981
- IPv4 oferă fiecărui dispozitiv din Internet o adresă unică:
 adresa IP
- IPv4 adaugă informația de adresare prin încapsulare
- PDU-ul (Protocol Data Unit) rezultat ca urmare a încapsulării
 IP poartă numele de pachet
- Pe baza informației de adresare conținută în antetul IP se realizează dirijarea traficului în Internet

Transmisii IPv4

Unicast

Broadcast

Multicast

IANA

Formatul antetului

Version	Header length	Type of service	Total length				
Identification			Flags Fragment Offset				
Time t	o live	Protocol	Header Checksum				
Source IP Address							
Destination IP Address							
Options							
Data							

Asdresa IPv4

- Adresa IPv4 este formată din 4 octeți
- Formatul cel mai folosit este zecimal cu punct:

141 . 85 . 241 . 139

• Utilă pentru calcule mai este reprezentarea adresei în format **binar**:

10001101 . 01010101 . 11110001 . 10001011

Transformări binar \(\operage\) zecimal

10000000	128
01000000	64
00100000	32
00010000	16
00001000	8
00000100	4
00000010	2
00000001	1

Adresa IPv4

- Adresa IPv4 este compusă din două părți:
 - Partea de rețea
 - Partea de host
- Dispozitivele ce au partea de rețea comună sunt situate în aceeași rețea și pot comunica fără să aibă nevoie de un ruter
- Părțile de rețea și de host se determină folosind masca de rețea (Subnet mask)
- Masca de rețea este o adresă IP specială ce este formată dintr-un șir continuu de 1 urmat de un șir continuu de 0:

```
1111111.11111111.1111111.00000000 = 255.255.255.0
```


Masca de rețea

• Deoarece notația zecimală a unei măști de rețea este dificil de utilizat s-a introdus o notație specială:

- /24 poartă numele de prefixul rețelei și reprezintă numărul de 1 din masca rețelei
- O reprezentare completă a unui IP de stație împreună cu rețeaua din care face parte devine:

141.85.241.139/24

Adresa de rețea

• Prin aplicarea operației de AND pe biți între mască și adresa IP se obține adresa de rețea:

Partea de rețea					Partea de host		
141	•	85	•	241	•	139	
10001101	•	01010101	•	11110001	•	10001011 AND	
11111111	•	11111111	•	11111111	•	00000000 AND	
10001101	•	01010101	•	11110001	•	00000000	
141	•	85	•	241	•	0	

- Adresele de rețea au toți biții din partea de host setați pe 0
- Adresa de rețea este folosită de stații pentru a determina dacă să trimită direct destinației sau gateway-ului pachetul

Adresa de broadcast

• Prin aplicarea operației de **OR** pe biți între inversa măștii și adresa IP se obține **adresa de broadcast** a rețelei:

Partea de rețea						Partea de host		
141	•	85	•	241	Υ •	139		
10001101	•	01010101	•	11110001	•	10001011 OR		
0000000	•	0000000	•	00000000	•	11111111		
10001101	•	01010101	•	11110001	•	11111111		
141	•	85	•	241	•	255		

- Adresele de broadcast au toți biții din partea de host setați pe 1
- Adresa de broadcast este folosită ca adresă destinație în pachete ce vrem să ajungă la toate dispozitivele din respectiva rețea

Adresa de loopback

- O interfață specială a dispozitivelor de rețea este interfața de loopback
- Interfața de loopback este virtuală și nu are asociată vreo interfață fizică
- Interfața de loopback este caracterizată prin adresa IP de loopback:

127.0.0.1

• Prin folosirea acestei interfețe se poate testa integritatea stivei de protocoale de pe un sistem

Topologia exemplu

Exercițiul 1: Verificarea configurației

• Stațiile sunt configurate cu IP-urile și măștile din figură. Există vreo problemă cu această configurație?

Exercițiul 1: Verificarea configurației

- Stațiile sunt configurate cu IP-urile și măștile din figură. Există vreo problemă cu această configurație?
 - R: Da; A are configurată o adresă de rețea și C are configurată o adresă de broadcast; în plus, C are o mască de rețea diferită de A și B

Exercițiul 2: Broadcast A

 Adresele IP greșite au fost corectate. A dă un broadcast. Ce adrese IP sursă și destinație vor fi incluse în antetul IP?

Care este adresa de reţea a lui A?

Exercițiul 2: Broadcast A

- Adresele IP greșite au fost corectate. A dă un broadcast. Ce adrese IP sursă și destinație vor fi incluse în antetul IP?
 - R: Sursă: **192.168.17.1**; destinație: **192.168.17.63**
- Care este adresa de reţea a lui A?
 - R: 192.168.17.0

Clase de adrese

- Adresele IP au fost istoric clasificate în 5 clase de adrese (A, B, C, D și E), fiecare cu o mască specifică
- Inițial dispozitivele luau în considerare aceste clase pentru a determina masca rețelei
- IANA atribuia unei organizații un întreg bloc classful de adrese, însă cele de clasa **A** erau deseori prea mari și cele de clasa **C** prea mici
- În rețelele moderne clasele de adrese nu mai sunt relevante

Clase de adrese

• Clasele sunt identificate după primii biți ai primului octet

Clasă	Primul octet	Gama de adrese	Mască	Scop
А	0	0.0.0.0 – 127.255.255.255	/8	-
В	10	128.0.0.0 – 191.255.255.255	/16	-
С	110	192.0.0.0 – 223.255.255.255	/24	-
D	1110	224.0.0.0 – 239.255.255.255	-	Multicast
Е	1111	240.0.0.0 – 255.255.255.255	-	Experimental

Adrese publice și private

- Pentru a economisi adrese, RFC1918 a alocat trei spații de adrese pentru rețele private:
 - 10.0.0.0/8 10.255.255.255/8
 - 172.16.0.0/12 172.31.255.255/12
 - 192.168.0.0/16 192.168.255.255/16
- Adresele private nu pot fi atribuite unei organizații și nu pot fi folosite în Internet
- Pentru a conecta o stație cu adresă privată la Internet aceasta trebuie translatată la o adresă publică, proces numit NAT (Network Address Translation)

• Istoric, un **subnet** reprezenta o rețea obținută prin deplasarea la dreapta a unei măști de rețea classful:

• Rețelele actuale au abandonat ideea de rețele classful și folosesc **VLSM** (Variable Length Subnet Mask); în acestea un subnet nu este cu nimic diferit de o rețea.

• O definiție actuală pentru subnet ar putea fi orice rețea ce face parte din spațiul de adresă a unei rețele mai mari

 Procesul de subnetare (subnetting) constă în a împărți o rețea mai mare în mai multe rețele ce respectă un set de

cerințe

- Înțelegerea procesului de subnetare ne ajută să răspundem la întrebările:
 - Este blocul de adrese cumpărat suficient pentru cerințele organizației?
 - Putem organiza rețelele astfel încât să fim pregătiți pentru extinderea numărului de stații?
 - Este necesară o atribuire optimă a spațiilor de adresă sau este suficientă împărțirea egală între departamente?
 - Putem optimiza tabelele de rutare dacă avem o rețea mare?
- Există două tipuri de subnetare:
 - În subnet-uri egale
 - Optimă (cu pierdere minimă de adrese)

- Exemplu: Să se subneteze spațiul de adrese 192.168.10.0/24 pentru a acomoda trei rețele având 60, 30 respectiv 15 stații. Subrețelele obținute să fie egale ca dimensiune.
 - Avem nevoie de 3 subrețele deci trebuie împrumutați 2 biți pentru partea de subrețea a adresei IP

```
Rețeaua de subnetat: 192 . 168 . 10 . 0 /24
```

Primul subnet: 11000000.10101000.00001010.00000000/26

Al doilea subnet: 11000000.10101000.00001010.01000000 / 26

Al treilea subnet: 11000000.10101000.00001010.10000000 / 26

Rețeaua de subnetat: 192 . 168 . 10 . 0 /24

Primul subnet: 11000000.10101000.00001010.00000000 / 26

Al doilea subnet: 11000000.10101000.00001010.01000000 / 26

Al treilea subnet: 11000000.10101000.00001010.10000000 / 26

- Cerințele de subrețele erau de 60, 30 și 15 stații. Sunt suficient de mari subrețelele obținute?
 - R: Da. Necesarul este de 6, 5, respectiv 5 biți de stație. De ce sunt 5 biți necesari pentru ultima subrețea?
- Cât de multe adrese IP de stații au fost pierdute?
 - R: 62 60 = 2; 62 30 = 32; 62 15 = 47; Total: 81

VLSM

- Putem reduce pierderea de adrese folosind subnetare bazată pe VLSM
- VLSM permite creare de subnet-uri ce nu mai au măști de aceeași lungime

- Reluăm exemplul anterior: Să se subneteze spațiul de adrese
 192.168.10.0/24 pentru a acomoda trei rețele având 60, 30 respectiv 15 stații. Subnetarea să risipească un număr minim de adrese.
 - Se observă că pentru cele trei rețele avem nevoie de 6, 5 respectiv 5 biți de host
 - Putem reprezenta arborescent divizarea ierarhică a ultimului octet:

- Cât de multe adrese IP de stații au fost risipite?
 - R: 62 60 = 2; 30 30 = 0; 30 15 = 15; Total: 17

Exercițiu

- Să se subneteze optim spațiul de adrese **172.18.240.0/23** astfel încât să fie acomodate cerințele:
 - O rețea cu 200 de host-uri
 - O rețea cu 90 de host-uri
 - Două rețele cu 20 de host-uri
 - O rețea cu 6 host-uri
 - Trei rețele cu 4 host-uri

Exercițiu

• Cerințe: 200; 90; 20; 20; 6; 4; 4; 4

Exercițiu

- R:
 - 172.18.240.0/24
 - 172.18.241.0/25
 - 172.18.241.128/27
 - 172.18.241.160/27
 - 172.18.241.192/29
 - 172.18.241.200/29
 - 172.18.241.208/29
 - 172.18.241.216/29

Dezavantaje IPv4

Adrese insuficiente pentru a face față creșterii numărului de dispozitive cu acces la Internet

Antet complicat

Nu suportă pachete de dimensiuni foarte mari

Suport redus pentru Multicast și IPsec

NAT introduce multe probleme

ARP

Antet Proxy ARP

ARP

- Când o stație vrea să trimită un pachet într-o rețea Ethernet, aceasta dispune de adresa IP dar nu și de adresa MAC
- Pentru a putea transmite cadrul și a fi acceptat la destinație este necesară determinarea acestei adrese
- Protocolul care determină adresa MAC pornind de la adresa IP poartă numele de ARP (Address Resolution Protocol)

10/11/23

Formatul cadrului

Hardware Type	
Protocol Type	
Protocol Address Length	Hardware Address Length
Operation (1 = request; 2 = reply)	
Sender Hardware Address (48 bits)	
Sender Protocol Address (32 bits)	
Target Hardware Address (48 bits)	
Target Protocol Address (32 bits)	

Exemplu ARP

• Doar stația cu IP-ul respectiv va răspunde, restul vor ignora

mesajul

Proxy ARP

- Tehnică de ARP
- Ruterul răspunde cu propria sa adresă MAC pentru o adresă
 IP aflată în afara rețelei emițătorului

Default gateway

- Stația sursă verifică dacă destinația se află în aceeași rețea
- Dacă da, cererea ARP va conține adresa IP destinație
- Dacă nu, cererea ARP va conţine adresa IP a default gateway-ului
- Ce se întâmplă în cazul în care sursa nu știe adresa default gateway-ului?
 - R: Va trimite un cadrul ARP de broadcast la care îi va răspunde ruter-ul de la ieşirea din reţea doar dacă are serviciul de proxy ARP activat.

Tabele ARP

- Un ruter va avea câte o tabelă ARP pe fiecare interfață multiacces activă.
- Câte tabele ARP are un switch? De ce?
 - R: 0

ARP - Exemplu

DHCP

- Funcționare
- DHCP Relay

10/11/23 48

DHCP

- Dynamic Host Configuration Protocol
- Folosit de o stație pentru a-și determina automat adresa IP
- Este necesar un server DHCP
 - Acesta poate fi un ruter sau un calculator dedicat din rețea
- De ce este util DHCP?

DHCP

DHCP - 1. Discovery

1. Discovery

2. Offer

3. Request

- Clientul trimite un broadcast UDP pe rețeaua locală
- Serverele DHCP din rețea au configurate DHCP pools care reprezintă de fapt seturi de adrese ce pot fi asignate clienților
- La primirea unui **DHCP discover**, fiecare server rezervă pentru clientul respectiv o adresă IP
- Pe un server pot fi configurate mai multe **DHCP pools**; rețeaua din care va fi alocată adresa este aleasă în funcție de IP-ul interfeței pe care sa primit cererea

DHCP - 2. Offer

1. Discovery

2. Offer

3. Request

- După rezervarea IP-ului, serverul trimite un răspuns unicast clientului
- Răspunsul trebuie să conțină următoarele câmpuri:
 - Adresa MAC a clientului
 - Adresa oferită de server
 - Masca de rețea a adresei
 - Durata lease-ului
 - Adresa serverului de DHCP
- Lease-ul reprezintă durata de timp pentru care adresa IP este rezervată clientului

DHCP - 3. Request

1. Discovery

2. Offer

3. Request

- Clientul trimite un broadcast pentru a spune dacă oferta este acceptată
- Clientul știe adresa IP a serverului. De ce este necesar un mesaj de broadcast?
 - R: Pot exista multiple servere DHCP în rețea. Toate trebuie informate de alegerea clientului pentru a putea elibera adresele rezervate în primele două faze.

DHCP – 4. Acknowledgment

1. Discovery

2. Offer

3. Request

- Serverul îi transmite clientului că procesul s-a încheiat și adresa i-a fost atribuită pe durata lease-ului
- Dacă lease-ul se apropie de expirare, clientul poate cere o prelungire
- Există posibilitatea ca la expirare clientul să ceară adresa pe care a avut-o înainte
 - De ce este utilă păstrarea adresei?
- În Ack pot fi trimise și alte informatii cerute de client:
 - Default gateway
 - Servere DNS

DHCP relay

- Există situații în care serverul DHCP nu este în rețeaua locală
- Deoarece mesajul este un broadcast către 255.255.255.255 acesta nu poate fi transmis în alte rețele
- Redirectarea unei cereri DHCP se poate face prin configurarea DHCP Relay pe ruterul din rețeaua locală
- Cererea DHCP va fi redirectată către IP-ul serverului de DHCP din altă rețea

10/11/23