SINGULAR VALUE DECOMPOSITION CONTINUED (11/11/2020)

Review:

Remember that we discussed singular value decomposition (SVD) in class yesterday. This process allows us to take any $m \times n$ matrix A with rank r, and show $A = U_r \Sigma_r V_r^T$, where U_r and V_r are orthogonal and Σ_r is diagonal, and $A = U \Sigma V^T$, where U and V are orthogonal and all elements on the diagonal of Σ are non-zero. Furthermore, the columns of U are a basis for the column space and the left nullspace, and the columns of V are a basis for the row space and the nullspace, while the columns of U_r are a basis for the column space while the columns of V_r are a basis for the row space.

Finding SVD:

So, this is a really nice idea! But how do we get it to actually work! Well, let's start with our $m \times n$ matrix A. Now, given matrices U, Σ , and V, let:

- \vec{v}_i 's are the eigenvectors or $n \times n$ matrix $A^T A$.
- \vec{u}_i 's are the eigenvectors or $m \times m$ matrix AA^T .
- σ 's in the diagonal or Σ are the square root of the eigenvalues of A^TA/AA^T .

Why does this work? Well, suppose we have $A = U\Sigma V^T$. It would follow that:

$$A = U\Sigma V^{T} \qquad \wedge \qquad A^{T} = V\Sigma^{T}U^{T}$$

$$\Rightarrow \qquad A^{T}A = V\Sigma^{T}\Sigma V^{T} \qquad \wedge \qquad AA^{T} = U\Sigma^{T}\Sigma U^{T}$$

$$\Rightarrow \qquad A^{T}A = V\Sigma^{2}V^{T} \qquad \wedge \qquad AA^{T} = U\Sigma^{2}U^{T}$$

By the spectral theorem, the eigenvalues of A^TA are the values of Σ^2 and the eigenvectors of A^TA are the columns of V, and the eigenvalues of AA^T are the values of Σ^2 and the eigenvectors of AA^T are the columns of U. So, this system of $\vec{v_i}$, $\vec{u_i}$, and σ works!

One last property we need to prove before continuing is that $N(A) = N(A^T A)$. This is a simple set equality proof that doesn't need to be included here.

Proving A Method For SVD:

So, if we have matrix A^TA , it must be positive semi-definite, so by spectral theorem, A^TA $Q\Lambda Q^T$, where Q is orthonormal and the first 1 through r (rank) values on the diagonal of Λ are the eigenvalues of A^TA , while the rest are zero. So, let $\vec{v}_i = Q_{*i}$, that is let V = Q. This will give us all the properties we want! It follows that the last r+1 through n columns must be a members of $N(A^TA)$, and thus members of N(A), while the first 1 through r columns of V must be orthogonal to $N(A^TA)$, and thus orthogonal to N(A) and thus a basis of the row space. If we simply let σ be equal to $\sqrt{\lambda}$ for each item on the diagonal of Λ , it must follow that $A\vec{v}_i = \sigma_i \vec{u}_i$, and thus $\vec{u}_i = \frac{A\vec{v}_i}{\sigma_i}$ for $1 \le i \le r$. Now, we can prove that $\vec{u}_i, \ldots, \vec{u}_r$ are orthonormal by simply showing $\vec{u}_i \vec{u}_j = 0$ if $i \neq j$, and $\vec{u}_i \vec{u}_j = 1$ if i = j. However, this will only get us U_r – it will not give us U! We still need \vec{u}_i for $r+1 \leq i \leq m$. Thus, if we want to find all the columns of U, the only way we have is to use the same spectral decomposition of AA^{T} . It would be useful to go through a few numerical examples to better understand exactly what is going on! By diagonalization of a square matrix, we were able to see the "change of basis" brought on my

our original matrix A. With singular value decomposition, we can as well!