THE UNIVERSITY OF SYDNEY

FACULTIES OF ARTS, ECONOMICS, EDUCATION, ENGINEERING AND SCIENCE

MATH1791

ADVANCED LINEAR ALGEBRA

June 1998

TIME ALLOWED: Two Hours

LECTURERS: W Gibson

R Howlett

This examination paper consists of 5 pages numbered from 1 to 5 There are 7 questions numbered from 1 to 7

Full marks may not be awarded unless sufficient working is shown.

Answers should be written in the booklets provided.

All 7 questions may be attempted.

Questions are of equal value.

Calculators will be supplied; no other electronic calculators are permitted.

1. Given the vectors

$$u = i + j - 2k$$
, $v = 2i + j - k$

find:

- (i) $\mathbf{u} \cdot \mathbf{v};$
- (ii) the cosine of the angle between u and v;
- (iii) **u** \times **v**;
- (iv) a unit vector perpendicular to both **u** and **v**;
- (v) $(3\mathbf{u} 2\mathbf{v}) \times (\mathbf{u} + 5\mathbf{v}).$
- (vi) Show that the vector projection of a vector \mathbf{p} in the direction of a vector \mathbf{q} is given by $(\mathbf{p} \cdot \mathbf{q}/|\mathbf{q}|^2)\mathbf{q}$. Hence find the projection of \mathbf{u} in the direction of \mathbf{v} .
- (vii) Find vectors a and b such that

$$\mathbf{u} = \mathbf{a} + \mathbf{b}$$

and a is parallel to v and b is perpendicular to v.

- (viii) Show that a and b given in part (vii) are unique.
- 2. (i) Let ABC be an isosceles triangle with AB = AC and let M be the midpoint of side BC. Use vector methods to prove that AM is perpendicular to BC.
 - (ii) Let ℓ_1 be the line with equation

$$\mathbf{r} - (2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) = t(\mathbf{i} - \mathbf{j} + 3\mathbf{k}),$$

where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and t is a scalar parameter. Let ℓ_2 be the line with equation

$$x - 1 = 4 - y = 2z + 8.$$

- (a) Show that ℓ_1 and ℓ_2 intersect at a point Q and find the coordinates of Q.
- (b) Find the equation of the plane containing the lines ℓ_1 and ℓ_2 . (Give the answer in cartesian form: Ax + By + Cz + D = 0.)

- 3. (i) State Euler's formula relating $e^{i\theta}$ to $\cos \theta$ and $\sin \theta$. Hence derive the expressions for $\cos \theta$ and $\sin \theta$ in terms of complex exponentials.
 - (ii) Express $1 i\sqrt{3}$ in polar form and hence find all the solutions of

$$z^3 + i\sqrt{3} = 1.$$

(iii) Given that

$$\frac{1+z}{1-z} = e^{i\alpha},$$

where α is real, show that

$$z = i \tan(\alpha/2)$$
.

Find the corresponding result if

$$\frac{1+z}{1-z} = i e^{i\alpha}.$$

4. (i) Find a reduced echelon matrix which is row equivalent to

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 3 & 3 & 4 & 4 \\ 3 & 3 & 3 & 4 & 4 & 5 & 5 \\ -3 & -3 & -3 & -1 & -1 & 1 & 1 \end{bmatrix}.$$

(ii) Using Part (i), or otherwise, find the general solution of the system of linear equations

$$u + v + w + x + y + z = 1$$

$$2u + 2v + 2w + 3x + 3y + 4z = 4$$

$$3u + 3v + 3w + 4x + 4y + 5z = 5$$

$$-3u - 3v - 3w - x - y + z = 1.$$

(iii) Suppose that M is a row echelon matrix which has five rows and nine columns, and let

$$M\mathbf{x} = \mathbf{0}$$

be the corresponding homogeneous system of five linear equations in nine unknowns.

If the general solution of this system involves six arbitrary parameters, how many zero rows does M have?

- 5. (i) What does it mean to say that a matrix C is an inverse of a matrix A?
 - (ii) Let A and B be $n \times n$ matrices, and suppose that C and D are $n \times n$ matrices such that C is an inverse of A and D is an inverse of B.

Show that DC is an inverse of AB.

(iii) Explain why a system of equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rn}x_n = 0$$

in which r, the number of equations, is less than n, the number of unknowns, must have infinitely many solutions.

(iv) Use Part (iii) to explain why the matrix

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

cannot have an inverse.

6. (i) Express the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 2 & -2 \\ 3 & 3 & 6 \end{bmatrix}$$

as a product of elementary matrices.

- (ii) Using the result of Part (i), or otherwise, find the determinant of the matrix A of Part (i).
- (iii) Let σ and ρ be the permutations of $\{1,2,3,4\}$ given by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \qquad \rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}.$$

- (a) Draw diagrams representing σ and ρ , and hence determine $sgn(\sigma)$ and $sgn(\rho)$.
- (b) Calculate the composite $\rho \circ \sigma$.

- 7. (i) Let M be an $r \times r$ matrix, \mathbf{v} an r-component column vector, and λ a scalar.
 - (a) What does it mean to say that \mathbf{v} is an eigenvector for M and λ the corresponding eigenvalue?
 - (b) Suppose that \mathbf{v} is an eigenvector for M with corresponding eigenvalue λ . Use induction on n to prove that if n is a positive integer then \mathbf{v} is an eigenvector for M^n with corresponding eigenvalue λ^n .
 - (c) Suppose that M is invertible and λ is an eigenvalue of M. Prove that $\lambda \neq 0$, and prove that $1/\lambda$ is an eigenvalue of M^{-1} .
 - (d) Let P be an $r \times r$ matrix that commutes with M. Prove that if \mathbf{v} is an eigenvector of M then $P\mathbf{v}$ is also an eigenvector of M.
 - (ii) Determine all (possibly complex) numbers which are eigenvalues of the matrix $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$
 - (iii) Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$. Find a matrix T such that $T^{-1}AT$ is diagonal. (You are not required to compute T^{-1}).