Sistemas numéricos: conceitos, simbologia e representação de base numérica. Conversão entre bases numéricas: decimal.

Eduardo Furlan Miranda 2024-08-01

Baseado em: Tangon, LG; Santos, RC. Arquitetura e organização de computadores. EDE. 2016. ISBN 978-85-8482-382-6.

Sistemas de numeração

 Sistema Decimal: Este é o mais utilizado, baseado em 10 dígitos (0-9). É usado para a maioria das contagens e cálculos diários

- Sistema Sexagesimal: Baseado no número 60, é usado para medir tempo (60 segundos em um minuto, 60 minutos em uma hora) e ângulos (360 graus em um círculo, que é 6 vezes 60)
- Sistema Duodecimal: Baseado no número 12, é frequentemente usado em contextos como a contagem de meses no ano (12 meses) e na venda de itens em dúzias

- Sistema Binário: Utilizado principalmente em computação, é baseado em 2 dígitos (0 e 1). Todos os dados digitais são processados usando este sistema1
- Sistema Romano: Ainda usado em contextos específicos, como a numeração de séculos e capítulos de livros. Utiliza letras como I, V, X, L, C, D e M para representar números

Sistema de numeração decimal (ou base 10)

Número 387

Figura 3.1 | Representação matemática de um número decimal

10 ²	10¹	10°
3	8	7

•
$$(3 \times 10^2) + (8 \times 10^1) + (7 \times 10^0) =$$

• $300 + 80 + 7 = 387_{10}$ (387 na base 10)

Numeração binária

- Computadores: 0 e 1 representando níveis de tensão
 - O = geralmente próximo a 0 V
 - 1 = próximo a 3,3V, 5V, etc.

0	100
1	101
10	110
11	111

• 00110111₂

•
$$(0 * 2^7) + (0 * 2^6) + (1 * 2^5) + (1 * 2^4) + (0 * 2^3) + (1 * 2^2) + (1 * 2^1) + (1 * 2^0) = 55$$

• 0 ou 1 também é chamado de bit (Binary Digit)

• 8 bits = 1 byte

• Internamente o computador usa apenas binário

 Octal e hexadecimal são usados pois são mais curtos e relativamente fáceis de converter de/para binário

•
$$55_{10} = 110111_2 = 67_8 = 37_{16}$$

•
$$167_8 = (1 * 8^2) + (6 * 8^1) + (7 * 8^0) = 64 + 48 + 7 = 119_{10}$$

	\
\	
Octa	41.

0	10	20
1	11	21
2	12	22
3	13	23
4	14	24
5	15	25
6	16	26
7	17	27

Hexadeximal

DECIMAL	HEXADECIMAL
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	E
15	F

•
$$2F4_{16} = 2^2 F^1 4^0 =$$

•
$$2^2 15^1 4^0 =$$

•
$$(2 * 16^2) + (15 * 16^1) +$$

 $(4 * 16^0) =$

•
$$512 + 240 + 4 = 756_{10}$$

Conversão entre bases numéricas: decimal

Decimal para binário

Coverter 33₁₀ para binário

• 8₁₀ para binário

Binário para decimal

10001₂ para decimal

$$1^5 0^4 0^3 0^2 0^1 1^0 =$$
 (passo a)

Lembre-se: Sempre a base 2 leva a potência

$$(1 * 2^5) + (0 * 2^4) + (0 * 2^3) + (0 * 2^2) + (0 * 2^1) + (1 * 2^0) =$$
 (passo b)

$$32 + 0 + 0 + 0 + 0 + 1 = 33_{10}$$
 (passo c)

$$= 33_{10}$$

$$0^7$$
 0^6 0^5 1^4 1^3 0^2 1^1 1^0 =

$$(0 * 2^7) + (0 * 2^6) + (0 * 2^5) + (1 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (1 * 2^0) =$$

Você pode cortar todas as multiplicações por 0, ficando:

$$16 + 8 + 2 + 1 = 27_{10}$$

Decimal para hexadecimal

Converter 109₁₀ para hexadecimal

 $6D_{_{16}}$

10 A 11 B 12 C 13 D 14 E 15 F

Hexadecimal para decimal

$$A6_{16} - \underline{\hspace{0.5cm}}$$
 $A^{1} 6^{0} = \hspace{0.5cm} (passo a)$
 $10^{1} 6^{0} = (10 * 16^{1}) + (6 * 16^{0}) = \hspace{0.5cm} (passo b)$
 $160 + 6 = \mathbf{166}_{10} \hspace{0.5cm} (passo c)$