软考资料免费获取

- 1、最新软考题库
- 2、软考备考资料
- 3、考前压轴题

命 微信扫一扫,立马获取

6W+免费题库

免费备考资料

PC版题库: ruankaodaren.com

常用公式

一. 可靠度(可用性)计算机

串联 R=R1*R2 对应失效率: 入1+入2

并联 R=1-(1-R1) (1-R2)

二、 香农定理(有噪声)数据速率:

在一条带宽为W(HZ), 信噪比为S/N的有噪声极限数据速率

Vmax=W log2(1+S/N) 单位(b/s)

分贝与信噪比的关系为:

dB=101og10S/N dB 的单位分贝

例:设信道带宽为 4kHz,信噪比为 30dB,

按照香农定理,信道的最大数据传输速率约等于?

解: 1, 例出香农定理算式:

Vmax=Wlog2(1+S/N)

2, 例出信噪比关系: dB=10log10S/N

3, 计算 30dB=101og10S/N 则 S/N=1000

4, Vmax=4Khz log2(1+1000)=4000x10 =40kb/s

注意: 此处单位换算 1 kb/S=1000b/s

三、 尼奎斯特定理(无噪声)

若信道带宽为W(HZ),

则最大码元速率 (波特率)

B=2W (baud)

由尼奎斯特定理可得:

Vmax=B long2N=2 w log2N 单位 (b/s)

例:设信道带宽为 3400Hz,调制为 4 种不同的码元,

根据 Nyquist 定理, 理想信道的数据速率为?

解: 1,根据题意例出尼奎斯特定理算式: Vmax=2 W long 2N

2, 直接套入数字: Vmax=2x3400xlog2(2次方)

3, Vmax=2x3400x2=13600b/S=13.6kb/s

注意: 此处出现单位换算一次, 13600b/s=13.6kb/2

例 1: 设信道采用 2DPSK 调制,

码元速率为300波特,则最大数据速率为

解: Vmax=B long2N=300x1=300b/s

例 2: 在异步通信中,每个字符包含 1 位起始位,7 位数据位,

1 位奇偶效验位和两位终止位,若每秒传送 100 个字符, 采用 4DPSK 调制,则码元速率为?有效数据速率为?

解: 1,根据题意计算数据速率为 (1+7+1+2)*100=1100b/s

2, 由尼奎斯特定理得出, 1100b/s=B*log2⁴

3, B=1100/2=550baud

4, 有效数据速率,即单位时间内传输的数据位,即 7*100=700b/S

四、 数据传输延迟

总延迟 T=发送延迟 T1+传输延迟 T2

注意: 电信号在电缆上传播的速度为光速的 2/3, 即 20wkm/s 卫星传送信号的延迟恒定为 270ms 与地面距离无关

例:在相隔 2000km 的两地间通过电缆以 4800b/s 的速率传送

3000 比特长的数据包,从开始发生到接收数据需要的时间是?

如果用 50Kb/s 的卫星信道传送,则需要的时间是?

解:

对于电缆:

传输延迟 T1=2000km/(20km/ms)=10ms

发送延迟 T2=3000b/(4800b/s)=625ms

T=T1+T2=625ms+10ms=635ms

对于卫星:

传输延迟 T1=270ms

发送延迟 T2=3000 b/(50kb/s)=60ms

T=T1+T2=270ms+60ms=330ms

注意:卫星传输数据时与地面相隔距离无关。

最小帧长计算, 先求往时间, 再用时间*数据速率

例如: 一个运行 C S M A / C D 协议的以太网,数据速率为 1 G b/s,网段长 1km, 信号速率为为 20000km/s,则最小帧长是多少?单程传播时间为 1km/200000=5us,往返要 10us,最小帧为 1 G b/s*10us=10000bit

五、 PCM 计算问题

PCM 主要经过3个过程: 采样,量化和编码。

 $f=1/T \ge 2fmax$

f 为采样频率, T 为采样周期, fmax 为信号的最高频率。

例:设信道带宽为 3400HZ,采用 PCM 编码,采样周期为 125 μs,

每个样本量化为128个等级,则信道的数据速率为?

解: f=1s/125us=8000Hz

8000Hz>3400Hz*2

128=2 的 7 次方

则: 数据速率=8000Hz*7=56000b/S=56kb/s

六、求蕊片数计算必考

假设有一个存储器存储容量为 M*N 位, 若使用 m*n 的芯片,

则需要(M/m)*(N/n)个存储芯片(注:单位要换成一致)

● 若内存地址区间为 4000H~43FFH,每个存储单位可存储 16 位二进制数,该内存区域由 4 片存储器芯片构成,则构成该内存所用的存储器芯片的容量是 (4)。

(4) A. $512\times16\mathrm{bit}$ B. $256\times8\mathrm{bit}$ C. $256\times16\mathrm{bit}$ D. $1024\times8\mathrm{bit}$

试题解析:

总存储单位= (43FFH - 4000H + 1H) = 400H = 1024 (H 代表 16 进制)

每个存储器芯片的容量为: 1024 × 16 / 4 = 4096。

由于每个存储单位可存储 16 位二进制数, 所以可以采用 256×16bit

七、流水线计算

流水线周期值等于最慢的那个指令周期(最大值)

流水线执行时间=首条指令的全部时间+(指令总数-1)*周期值

流水线吞吐率=任务数/完成时间

流水线加速比=不采用流水线的执行时间/采用流水线的执行时间

流水线的总时间=(指令总数+2)*周期值

例:若每一条指令为取指、分析和执行。已知取指时间 a,分析时间 b, 执行时间 c (最大)。按串行方式执行完 100 条指令需要 多少时间? 按照流水方式执行,执行完100条指令需要多少时间。 流水线周期为 C, 即最大值。

100 条指令的串行方式时间是(a+b+c)*100

100 条指令的流水方式时间是(a+b+c)+c*99

流水线吞吐率为 100/(a+b+c)+c*99

八、Cache: 又称高速缓存存储器

命中率:访问信息的概率

假如执行过程中对 Cache 的访问次数为 N1 和对主存访问为 N2,

则 Cache 命中率为 H=N1/(N1+N2)

平均存取时间:可用 Cache 和主存的访问周期 T1、T2 和命中率 H表示

即: T=H*T1+ (1-H) T2

九、CRC,海明码计算

奇偶校验码添加1位校验码, 其码距变为2。

海明码:利用奇偶性来检错和校验的方法。假设有 m 位信息码,加入 k 位校验码,则满足 $m+k+1 \leq 2^{\kappa}$

- 一个码组内有 e 个误码,则最小码距 $d \geq e+1$
- 一个码组能够纠正n个误码,则最小码距 $d \geq 2n+1$

求信息 1011 的海明码

解:由 $m+k+1 \le 2^{\kappa}$ 求得 k=3, 即校验码为 3 位

校验码放在 2^n 位上

a7	a6	a5	a4	a3	a2	al	位数
1	0	1		1			信息位
			r3		r2	r1	校验位

由上图得到监督关系式

r3=a5+a6+a7

r2=a3+a6+a7

r1=a3+a5+a7

将表中数值带入经异或运算得:

r3=a5+a6+a7=1+0+1=0

r2=a3+a6+a7=1+0+1=0

r1=a3+a5+a7=1+1+1=1

由此求得校验码为001,填入表中得到海明码为1010101

	r3	r2	r1
	0	0	0
a1	0	0	1
a2	0	1	0
a3	0	1	1
a4	1	0	0
a5	1	0	1
a6	1	1	0
a7	1	1	1

1+1=0 1+0=1 0+0=0 0+1=1

偶数个1异或为0

奇数个1异或为1

必背理论知道

七层协议功能

7、应用层 处理网络应用 6、表示成 数据表示,数据压缩

互联主机通信 5、会话层

4、传输层 端到端应带,分组排序,流量控制

分组传输和路由选择 3、网络层 传送以帧为单位的信息 2、链路层 1、物理层 二进制数据传输

应用层	HTTP 、FTP、	SNMP, DNS, DHCP	
	telnet、SMTP		
	POP, DNS	TFTP	
传输层	TCP	UDP	
网络层	IP、ICMP、ARP	RARP	
通信子网	电话网, 局域网, 无线网		
层	(111/7)		

二、 特殊 IP 地址

私网地址

10.0.0.0-10.255.255.255 (1个) 172. 16. 0. 0—172. 31. 255. 255(16 个) 192.168.0.0-192.168.255.255 (256 个) 127. 0. 0. 1 是 IPV4 的回环地址,用于回路测试 169. 254. 0. 0-169. 254. 255. 255 是自动专用 IP 地址, 在网络故障找不到 DHCP 或 DHCP 服务器失效时使用

IPV6 中 0. 0. 0. 0. 0. 0. 0. 0. 表示不确定地址,不分配给任何节点 0.0.0.0.0.0.0.1 是 IPV6 回环地址,向自身发送 IPV6 分组

三、 常见协议端口

FTP 数据 20 控制 21 Telnet 23 smtp 25 TFTP 69 DNS 53(TCP和UDP都可调用) HTML 80 SNMP 161 DHCP 67, 68 pop3 110 https/ssl 443 SQL services 118 SQL server 156

四、IEEE802.3ae 10Gb/s 以太网

IEEE802.3ab/z 1000Mb/s 以太网 IEEE802.3au 100Mb/s 以太网

IEEE 802.3au

 100BASE-TX
 5 类非屏蔽双绞线
 2 对跳线

 100BASE-FX
 62. 5/125 多模光纤
 2 对用于收发

 距离 100m 距离 400m 100BASE-T4 3 类非屏蔽双绞线 4 对用于收发

多模与单模区别:

多模使用发光二极管,单模使用激光二极管。

多模允许多束光纤穿过,单模比多模采用的波长长。

单模只允许一束光线穿过,单模传输频带宽,多模传输频带窄。

EE802.11	标准	速度	技术
802.11	2.4GHZ, ISM 频段	1mb/s, 2mb/s	扩频通信技术
802.11b	2.4GHZ, ISM 频段	11mb/s	Cck 技术
802. 11a	5GHZ, U-NII 频段	54mb/s	OFDM 调制技术
802.11g	2.4GHZ, ISM 频段	54mb/s	OFDM 调制技术
802. 11n	智能无线技术	300mb/s →	MIMO 与 OFDM 技
		600mb/s	术

E1 由 32 个子信道组成, 30 个传送话音数据,2 个子信道 CH0 和 CH16 用于传送控制命令,该基本帧的传送时间为 125us。 在 E1 中,每个子信道的数据速率是 64Kb/s, E1 控制开销占 6.25% E1 信道的数据速率是 2. 048Mb/s T1 每个信道的数据速率为 64kb/s, T1 总数据速率是 1.544Mb/s

E3 数据速率是 34. 368Mb/s , T3 数据速率为 44. 736Mb/s

六、关键路径

哪个路径中值最大, 就为关键路径。 最早开始时间:从头往后算,有两个取大的 最晚开始时间: 从后往前算, 减去所用时间, 两个取小的 节点推迟时间:两个路径相减+1

七、不发生死锁的资源数 R

M 个进程 ,每个进程要 N 个资源,不发生死锁: 公式: M*(N-1)+1

八、CSMA/CD(载波监听多路访问/冲突检测):

CSMA/CD 采用二进制后退算法,保证系统的稳定性,有效分解冲突。CSMA/CD,不适于所有802.3以太网,在10千兆位忽略了CSMA/CD。非坚持:忙等待再侦听;不忙立即发送;减少冲突,信道利用率低:I坚持:忙继续侦听;不忙立即发送;提高信道利用率,增大冲突:p坚持:线路忙继续侦听;不忙时,根据p概率进行发送,另外的1-p概率为继续侦听;有效平衡,但复杂:

CSMA/CA: 不带有冲突

CSMA/CA 协议适用于突发性业务。

各个发送站在两次帧间间隔(IFS)之间进行竞争发送。

九、路由协议

RIP 每 30 秒, IGRP 每 90 秒, 发布路由更新。

OSPF 不论是否网络拓扑发生改变,每 10 秒发送一次 hello 数据包,

OSPF 如果 40 秒没有收到 hello 分组,就认为对方不存在。

IGRP 内部网关路由协议,是一种动态距离向量路由协议,由思科设计使用组合用户配置尺度,包括带宽,延迟,可靠性和最大传输单元(MTU)。

IGRP 协议的路由度量一般情况下可以简化为跳步数。

默认 IGRP 每隔 90 秒发送一次路由更新广播,在 3 个更新周期(270 秒),没有从路由中的第一个路由器接收到更新,则宣布路由不可访问。 IGRP 配置为:

Router(config)#router igrp 10

Router(config)-router)#network 192.168.20.0

IGRP 不支持可变长子网掩码

十、交换机

交换机三种方式:存储转发交换,直通交换,碎片过滤式交换。

STP: 生成树协议,STP 要求每个网桥分配一个唯一的标识(BID),BID 通常由优先级(2 bytes)和网桥 MAC 地址(6bytes)构成。交换机优先级以4096 为块大小递增或递减,默认值为32768。规则:选择较优先级小的交换机,优先级相同时最小的 MAC 为根交换机。IEEE802.1d 协议,就是生成树协议,所有网桥有5种状态功能。阻塞:不转发器,不学习

1. 监听: 识别根桥,可区分根端口,指定端口,不能学习接收帧的地址。

2. 学习: MAC 端口能够学习接收帧的 MAC 地址, 但不转发。

3. 转发: MAC 端口可以学习接收帧地址,并可以转发口。

4. 禁用: MAC 端口不参与生成树算法。

VTP (VLAN 中继协议) 交换机的运行模式分 3 种:

1. 服务器模式(server): 可以创建添加删除和修改 VLAN 配置

并从中继端口发出 VTP 组播帧,把配置信息分发到所有交换机。

2. 客户机模式: 不允许创建修改删除 VLAN, 但可监听并修改自己的 VLAN。

3. 透明模式:可进行 VLAN 配置,但信息不传播至其他交换机。

十一、讲程

1表示进程被选中,2时间片用完

3 等待某个事件 4 等待的事件已获得

十二、计算机组成

程序计数器 (PC): 用于存储指令的地址,程序员可以访问指令寄存器 (IR): 用于暂存内存中取出的,正在运行的指令。程序员不能访问,操作和地址码都存入 IR 中。

算术逻辑单元 (ALU): 用于+一*/等运算

累加寄存器 (AC): 用来保存操作数和运算结果等信息

十三、软件开发模型

瀑布模型,自顶到下的线性模型,后期测试阶段才能发现问题,

增加了开发的风险,不适合开发需求不明确的场合。

V 模型: 强调测试贯穿于整个过程中。

增量模型, 先开发核心模块, 其他构件逐步附加

螺旋模型,适合于大型复杂项目

喷泉模型,面向对象的典型开发模型

十四、数据编码

双相码: 抗干扰性好, 实现自同步。 曼彻斯特:用于以太网编码,效率为50% 差分曼彻斯特:用于令牌环网,效率为50%。

十五、IP 协议相关

全0为本机地址,全1广播地址,其它为本机地址

1. IP 头部固定长 20 个字节

ARP 协议(报文封装在以太网帧中传送)网络层协议,由 IP 找 MAC。 RARP(反向地址解析)由 MAC 找 IP

ICMP 报文控制协议(报文封装在 IP 数据部分传送)属于网络层协议

2. BGP 边界网关协议, 三张表: 邻居表、BGP 转发表、路由表

BGP 四种报文:

Open 报文: 用于建立邻居关系

Update 报文: 用于发送新的路由信息

Keepalive: 对 open 的应答和周期性的确认邻居关系

通告报文:用于报告检测到的错误

3. DHCP 动态主机配置协议

服务过程:工作在 UDP 应用层,采用 C/S 模式, 服务器使用 UDP 端口 67, 客户端使用 UDP 端口 68 当租约50%时,重新发送数据包,当87.5%时,停止租约。

4. RIP 距离向量路由协议(rip 基于 Bellman-Ford 算法)

RIP 通过广播方式周期性 (30s) 的通告路由表,最大跳数为 15 跳。 RIP 有两个版本分别为 RIPv1 和 RIPv2。区别在:

- (1) RIPv1 不支持可变长度子网掩码 (VLSM), 而 RIPv2 支持 VLSM;
- (2) RIPv2 支持明文和 MD5 密文认证; (3) RIPv1 采用广播方式, RIPv2 采用组播方式, 组播地址 224.0.0.9;
- (4) RIPv2 采用触发更新方式来加速路由收敛。
- (5) RIPv2 采用水平分割方法来消除路由循环。
- (6) RIPv2 支持路由汇总 CIDR

5. IGRP 是动态距离矢量路由协议,由 cisco 公司设计,每 90s 更新广播,

270s 没有收到更新,则认为路由不可访问,630s 后清除该路由。 IGRP 采用带宽、延迟、可靠性和负载作为度量标准, 量度最小的做最佳路径,不支持 VLSM 和不连续子网。 基本配置命令

Router igrp 109 //109 自治系统号 Network network-number //发布直连网段 Bandwidth 带宽 单位为 Kbps

Clock rate 时钟

EIGRP 是 cisco 在 IGRP 基础上的一种新的改进型协议,其度量值有: 带宽、延迟、可靠性、负载、最大传输单元。支持 VLSM 和 CIDR

7. 常见路由协议管理距离

RIP 管理距离 120, IGRP 为 100, EIGRP 为 90, OSPF 为 110, 直连网络为 0

6. OSPF 开放式最短路径优先协议,是一种链路状态路由协议

OSPF 原理与配置命令 (ospf 基于 Dijkstra 算法)

OSPF 主要优点

- (1) OSPF 没有跳数限制。
- (2) OSPF 支持 VLSM 和 CIDR
- (3) OSPF 采用触发更新,收敛速度快
- 三张表: 邻居表 拓扑表 路由表

OSPF 网络划分为两个逻辑的级别:骨干区域记为 area0,非骨干区域

在 OSPF 中, 定时发出 Hello 分组与特定的邻居进行联系,

默认情况下 40s 没收到该分组就认为对方不存在了。

TCP 进行流量控制的方法是采用可变大小的滑动窗口协议

RIP 支持 CIDR 和 VLSM,最大跳为 15,广播时间为 30S 更新 IGRP 不支持 CIDR 和 VLSM, 90S 更新, 270S 没收到,则认为不可达, 630S 清除路由。 EIGRP 支持 CIDR 和 VLSM, 度量值有: 带宽、延迟、可靠性、负载、最大传输单元 OSPF 无跳数限制,支持 CIDR 和 VLSM,定时发 hello 与邻居进行联系,40S 没收到认为对方不存在。区域号 1-65535,用的是反掩码。

EIGRP :network 192.168.1.0 0.0.0.255 OSPF: network 192.168.1.0 0.0.0.255 area 0

ISIS: network 49.0001.1111.1111.1111.00 RIP V2: network 192.168.1.0 BGP: neighbor 192.168.1.1 remote-as 64512 network 192.168.1.0 mask 255.255.255.0 ACL: access-list 10 permit 192.168.1.0 0.0.0.255

注: EIGRP, OSPF, ACL 后面要接子网掩码

7. ISDN 综合业务数字网

ISDN 包括基本速率接口 (2B+D) B 的速率 64kps, D 为 16dps 主要速率接口(30B+D)B和D的速率是64kps

十六、网络设备

中断器:工作物理层,起放大比特流作用

网桥:工作链路层,按要求选择 MAC 地址 路由器:工作网络层,路由选择,数据分组,计费等 网关:工作高层,执行不同的协议,将不同协义转换。

十七、数据加密

DES: 速度快,适用于加密大量数据场合。密钥长度 56 三重 DES: 使用两个密钥,执行三次 DES 算法,强度更高,长度 112/168 IDEA: 国际加密算法,长度 128 位密钥。
AES 支持 128、192 和 256 三种密钥长度。速度快,安全级别高。加密密钥公开称为公钥,解密密钥隐藏在个体中称为私钥。私钥带个人特性,可以解决数据的签名验证问题。公钥用于加密和认证,私钥用于解密和签名

十八、报文摘要(MD)

报文摘要采用哈希算法,方法有 MD5 和 SHA 使用最广的方法 MD5, MD5 为 64 位, SHA 为 160 位

十九、网络管理

管理功能分为:管理站和代理两部分 网络管理系统分为:集中式、分布式、分层式 集成式:适合小型网络,分布式:适合大型网络。 网络管理功能:计费、安全、性能、配置、故障管理 计费、性能、故障属于监视,安全和配置属于控制功能。

二十、 IEEE802 标准

IEEE802. 1d 生成树协议 W 快速生成树协议 X 基于端口访问,增加了安全性 IEEE802. 1q 虚拟局域网 IEEE802. 1a 局域网体系结构 IEEE802. 2 逻辑链路控制协议 IEEE802. 3 CSMA/CD 与物理层规范 IEEE802. 3u 快速以太网 IEEE802. 3z 千兆以太网 IEEE802. 3ae 万兆以太网

IEEE802.4 令牌总线标准 taken bus IEEE802.5 令牌环标准 taken ring IEEE802.10 局域网安全机制

IEEE802.10 局域M安全机制 IEEE802.11 无线局域网标准

数据链路层分为两个子层:目的是将与硬件相关和与硬件无关的部分分开。逻辑链路控制子层(LLC)介质访问控制(MAC):

网络工程师交换机和路由器基本配置总结

交换机的基本配置:

1、配置 enable 口令和主机名

Switch> 用户执行模式提示符

Switch>enable 进入特权模式

Switch# 特权模式提示符

Switch#config terminal 进入配置模式

Switch(config)# 配置模式提示符

Switch(config)#enable password cisio 设置 enable password 为 cisio

Switch(config)#enable secret cisco1 设置 enable secret 为 cisio

Switch(config)#hostname C2950 设置主机名为 C2950

C2950(config)#end 退回到特权模式

C2950#

2、配置交换机 IP 地址、默认网关,域名、域名服务器

C2950(config)#ip address 192.168.1.1 255.255.255.0 设置交换机 IP 地址

C2950(config)#ip default-gateway 192.168.1.254 设置默认网关

C2950(config)#ip domain-name cisio.com 设置域名

C2950(config)#ip domain-server 200.0.0.1 设置域名服务器

C2950(config)#end

3、设置交换机的端口属性

C2950(config)#interface fastethernet0/1 进入接口 0/1 的配置模式

C2950(config-if)# speed ? 查看 speed 命令的子命令

.....(省略)

C2950(config-if)#speed 100 设置该端口速率为 100Mbps

C2950(config-if)#deplex ? 查看 deplex 命令的子命令

.....(省略)

C2950(config-if)#deplex full 设置端口为全双工

C2950(config-if)#description TO_PC1 设置端口描述为 TO_PC1

C2950(config-if)#end (或^Z) 返回特权模式

C2950#show interface fastethernet0/1 查看端口 0/1 的配置结果

C2950#show interface fastethernet0/1 status 查看端口 0/1 的状态

4、配置和查看 MAC 地址表

C2950(config)#mac-address-table ? 查看 mac-address-table 的子命令

.....(省略)

C2950(config)#mac-address-table aging-time 100

设置超时时间为 100s

C2950(config)#mac-address-table permanent 0000.0c01.bbcc f0/3

加入永久地址

C2950(config)#mac-address-table restricted static 0000.0c02.bbcc f0/6 f0/7 加入静态地址

C2950(config)#end

C2950#show mac-address-table

查看整个 MAC 地址表

.....

C2950#clear mac-address-table restricted static 清除限制性地址

5、配置 VTP 协议(VLAN Trunking Protocal)

配置 2950A 交换机为服务器模式

Switch>enable 进入特权模式

Switch#config terminal 进入配置子模式

Switch(config)#hostname 2950A 修改主机名为 2950A

2950A(config)#end

2950A#

2950A#vlan dataBase 进入 VLAN 配置子模式

2950A(vlan)#vtp ? 查看和 VTP 配合使用的命令

2950A(vlan)#vtp server 配置本交换机为 Server 模式

Setting device to VTP SERVER mode

2950A(vlan)#vtp domain vtpserver 设置域名

Changing VTP domain name fron NULL to vtpserver

2950A(vlan)#vtp pruning 启动修剪模式

Pruning switched ON

2950A(vlan)#exit 退出 VLAN 配置模式

APPLY completed

Exiting.....

2950A#show vtp status

.....(其他信息省略)

VTP Operating Mode : Server

VTP Domain Name : vtpserver

VTP Pruning Mode : Enable

.....

2950A#

配置 2950B 交换机为客户端模式,则他会从服务器(2950A)那里学习到 VTP 的其他信息及 VLAN 信息

Switch#config terminal 进入配置子模式

Switch(config)#hostname 2950B

2950B(config)#end

2950B#vlan dataBase

2950B(vlan)#vtp client

Setting device to VTP CLIENT mode

2950B(vlan)#exit

Switch#config

Switch(config)#interface f0/24

Switch(config-if)#switchport mode trunk

Switch(config-if)#switchport trunk allowed vlan all

Switch(config-if)#exit Switch(config)#exit

Switch#

6、创建 VLAN

2950A#vlan dataBase

2950A(vlan)#vlan 2

创建一个 VLAN2

VLAN2 added:

Name: VLAN0002

系统自动命名

2950A(vlan)#vlan 3 name vlan3

创建一个 VLAN3,并命名为 vlan3

VLAN added:

Name:vlan3

7、将端口加入到某个 VLAN 中

Switch#config termianl

Switch(config)#interface f0/9

设置端口为静态 VLAN 访问模式

进入端口9的配置模式

Switch(config-if)#switchport mode access
Switch(config-if)#switchport access vlan2

把端口 9 分配给相信的 VLAN2

进入端口 24 配置模式

设置当前端口为 Trunk 模式

设置允许从该端口交换数据的 VLAN

Switch(config-if)#exit

Switch(config)#interface f0/10

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan3

8

软考达人: 软考专业备考平台, 免费提供6w+软考题库, 1TB免费专业备考资料

Switch(config-if)#exit

Switch(config)#exit

Switch#show vlan 查看 VLAN 配置信息

...

Switch#

8、配置 STP 权值

Switch1#config terminal

Switch1(config)#interface f0/23

Switch1(config-if)#spanning-tree vlan 1 port-priority 10

Switch1(config-if)#spanning-tree vlan 2 port-priority 10

Switch1(config-if)#exit

Switch1(config)#interface f0/24

SWitch1(config-if)#spanning-tree vlan 3 port-priority 10

SWitch1(config-if)#spanning-tree vlan 4 port-priority 10

SWitch1(config-if)#spanning-tree vlan 5 port-priority 10

Switch1(config-if)#end

Switch1#copy running-config start-config

进入端口 23 配置模式,Trunk1

将 VLAN1 的端口权值设置为 10

将 VLAN2 的端口权值设置为 10

进入端口 24 配置模式,Trunk2

将 VLAN3 的端口权值设置为 10

将 VLAN4 的端口权值设置为 10

将 VLAN5 的端口权值设置为 10

保存配置文件

9、配置 STP 路径值的负载均衡

Switch1#config terminal

Switch1(config)#interface f0/23

Switch1(config-if)#spanning-tree vlan 3 cost 30

Switch1(config-if)#spanning-tree vlan 4 cost 30

Switch1(config-if)#spanning-tree vlan 5 cost 30

Switch1(config-if)#exit

Switch1(config)#interface f0/24

Switch1(config-if)#spanning-tree vlan 1 cost 30

Switch1(config-if)#spanning-tree vlan 2 cost 30

Switch1(config-if)#end

Switch1#

进入端口 23 配置模式,Trunk1

设置 VLAN3 生成树路径值为 30

设置 VLAN4 生成树路径值为 30

设置 VLAN5 生成树路径值为 30

进入端口 24 配置模式,Trunk2

设置 VLAN1 生成树路径值为 30

设置 VLAN2 生成树路径值为 30

路由器基本配置

1、配置以太网

Router>enable 进入特权执行模式

Router#config t 进入全局配置模式

Router(config)#interface fastethernet0/1 进入接口 F0/1 配置模式

Router(config-if)#ip address 192.168.1.11 255.255.255.0 设置接口 IP 地址

Router(config-if)#no shutdown 激活接口

• • •

Router(config-if)#end 退回到特权模式

Router#show running-config 查看配置结果

2、配置终端服务器

服务器配置清单略。。。

设置两个路由器的主机名

Term_Server#

Term_Server#router1 访问主机表中的 router1 路由器

Trying router1(10.1.1.1,2001)...Open

Router>enable

Router#config t

...

Router(config)#hostname router1 设置

设置路由器 1 的主机名

Router1(config)#end

Router1#

Term_Server#

Term_Server#router2

Trying router2(10.1.1.1,2002)...Open

Router>enable

Router#config t

...

Router(config)#hostname router2

Router2(config)#end

Router2#

Term_Server#show sessions 查看终端服务器的会话

•••

Term_Server#disconnect2 断开会话 2

Term_Server#show line 1 查看线路 1 的状态

Term_Server#clear line 2 清除线路 2

3、配置静态路由

R2#show ip router 查看路由情况

10.0.0.0/24 issubnetted,1 subnets

C 10.1.1.0 is directly connected, Ethernet0 直接相连的网段 10.1.1.0、24 在路由表内 C表示连接

在 R2 路由表中加入静态路由

R2#config t

R2(config)#ip router 192.168.1.0 255.255.255.0 10.1.1.1 5.0 下一跳 10.1.1.1 即 R1 的 E0 接口地址

加入静态路由 网段地址 192.168.1.0 255.255.25

R2(config)#end

R2#show ip router 查看路由情况

192.168.0.0is subnwtted,1 subnets

S 192.168.1.0 [1/0] via 10.1.1.1 S表示 Static

10.0.0.0/24 issubnetted,1 subnets

10

10.1.1.0 is directly connected, Ethernet0 直接相连的网段 10.1.1.0、24 在路由表内 C表示连接

4、配置 RIP 协议(路由选择信息协议)

C

命令 router rip 指定 rip 协议

show ip route 查看路由表信息

show ip route rip 查看 RIP 协议路由信息

network network 指定网络

version {1|2} 指定 rip 版本

R1#config t

R1(config)#no logging console

R1(config)#interface fastethernet0/1

R1(config-if)#ip address 192.168.1.1 255.255.255.0

R1(config-if)#no shutdown

R1(config-if)#exit

R1(config)#interface serial 0

R1(config-if)#ip address 192.168.65.1 255.255.255.0

R1(config-if)#no shutdown

R1(config-if)#exit

R1(config)#interface serial 1

R1(config-if)#ip address 192.168.67.1 255.255.255.0

R1(config-if)#no shutdown

R1#show ip route

192.168.0.0/24 is subnetted,3 sub nets

C 192.168.1.0 is directly connected, Ethernet0

C 192.168.65.0 is directly connected, SerialO

C 192.168.67.0 is directly connected, Serial1

R1(config)#ip routing

R1(config)#router rip

进入 RIP 协议配置子模式

R1(config)#network 192.168.1.0 声明网络 192.168.1.0/24

R1(config)#network 192.168.65.0

R1(config)#network 192.168.67.0

R1(config)#version 2

设置 RIP 协议版本 2

R1(config)#exit

R3#show ip route

...//C-Connected,S-Static,I-IGRP,R-RIP,B-BGP,O-OSPF,E-EGP,D-EIGRP...//

192.168.0.0/24 is subnetted,6 sub nets

C 192.168.1.0 is directly connected, Ethernet0 --此三行感觉有误是 R1

C 192.168.65.0 is directly connected, Serial0

C 192.168.67.0 is directly connected, Serial1

R 192.168.65.0 [120/1] via 192.168.67.1 ,00:00:15,Serial

[120/1] via 192.168.69.1,00:00:24,Serial0

R 192.168.1.0 [120/1] via 192.168.67.1 ,00:00:15, Serial

R 192.168.3.0 [120/1] via 192.168.69.1 ,00:00:24,Serial0 Serial0 表示该路由使用的接口

5、配置 IGRP 协议(内部网关路由协议)

命令 show ip route

show ip route igrp

network network

6、配置 OSPF 协议(最短开放路径协议)

命令 router ospf process-id 指定使用 ospf 协议

如: router ospf 100

network address wildcard-mask area area-id 指定与该路由器相连的网络

如: network 192.200.10.4 0.0.0.3 area 0

show ip route 查看路由表信息

show ip route ospf 查看 OSPF 协议路由信息

7、配置 EIGRP 协议

命令 router eigrp process-id

network address wildcard-mask 指定与该路由器相连的网络

如: network 192.200.10.0 0.0.0.3

8、配置 ISDN

isdn switch-type switch-type 设置 ISDN 交换类型

如: isdn switch-type basic-net3

interface bri 0 接口 BRI 设置 encapsulation ppp 设置 ppp 封装

dialer map protocol next-hop-address [name hostname][broadcast][dial-string] 设置协议地址与电话号码的映

乨

ppp multilink 启动 PPP 多连接

dialer load-threshold load 设置启动另一个 B 通道的阈值

show isdn {active|history|memory|services|satus[dsl|interface-type number]|timers}査看 isdn 信息

ppp authentication {chap|...} 设置认证方法

dialer 拨号的意思

9、配置帧中继

encapsulation frame-relay[ietf] 设置 frame-relay 封装

frame-relay lmi-type {ansi | cisco | q933a} 设置 frame-relay LMI 类型

interface interface-type interface-number subinterface-number [multipoint | point-to-point]设置子接口

frame-relay map protocol protocol-address dlci[broadcast] 映射协议地址与 DLCI

frame-relay interface-dlci dlci[broadcast] 设置 FR DLCI 编号

10、配置 IPSec

IKE 和 isakmp 是同义词

isakmp enable 启用或关闭 IKE isakmp policy 创建 IKE 策略 isakmp key 配置预共享密钥

show isakmp [policy] 验证 IKE 的配置

access list acl-name {permit|deny} protocol src_addr src_mask [operator port[port]] dest_addr dest_mask [operator port[port]] access-list 命令配置加密用访问列表

show 和 debug 用来测试和验证

11、ACL 配置

 $Router(config) \#access-list\ ACL_\#\ permit|deny\ conditions$

如: access-list 10 permit host 172.16.1.0 0.0.0.255

access-list 10 deny host 172.16.1.1

