

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H.Э. Баумана})$

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 4 по дисциплине "Вычислительные алгоритмы"

Тема Среднеквдратичное приближение
Студент <u>Романов А.В.</u>
Группа <u>ИУ7-43Б</u>
Оценка (баллы)
Преподаватель Градов В.М.

1. Тема работы

Построение и программная реализация алгоритма наилучшего среднеквадратичного приближения.

2. Цель работы

Получение навыков построения алгоритма метода наименьших квадратов с использованием полинома заданной степени при аппроксимации табличных функций с весами.

3. Входные данные

1. Таблица функции с веми p_i с количеством узлов N.

x	y	ρ
x_i	y_i	ρ_i

2. Степень аппроксимирующего полинома – n.

4. Выходные данные

График, на котором изоброжённ аппроксимирующий полином, и точки из исходной таблицы значений.

5. Описание алгоритма

Под близостью в среднем исходной и аппроксимирующей функций будем понимать результат оценки суммы

$$I = \sum_{i=1}^{N} \rho_i [y(x_i) - \varphi(x_i)]^2$$
 (1)

y(x) - исходная функция

 $\varphi(x)$ - множество функций , принадлежащих линейному пространству функций ρ_i - вес точки

Нужно найти наилучшее приближение, т.е

$$\sum_{i=1}^{N} \rho_i [y(x_i) - \varphi(x_i)]^2 = \min$$
(2)

Разложим функцию $\varphi(x)$ по системе линейно независимых функций $\varphi_k(x)$:

$$\varphi(x) = \sum_{k=0}^{N} a_k \varphi_k(x) \tag{3}$$

Подставляя (3) в условие (2) получим:

$$((y - \varphi), (y - \varphi)) = (y, y) - 2\sum_{k=0}^{n} a_k(y, \varphi_k) + \sum_{k=0}^{n} \sum_{m=0}^{n} a_k a_m(\varphi_k, \varphi_m) = min$$
 (4)

Дифференцируя по a_k получаем:

$$\sum_{i=0}^{n} (x^k, x^m) a_m = (y, x^k)$$
 (5)

где

$$(x^k, x^m) = \sum_{i=1}^{N} \rho_i x_i^{k+m}$$

$$(y, x^k) = \sum_{i=1}^{N} \rho_i y_i x_i^k$$

Итоговый алгоритм:

- **1.** Выбирается степень полинома n < N.
- 2. Составляется система линейных алгебраических уравнений типа.
- 3. В результате решения СЛАУ находятся коэффицинты полинома.

6. Результаты работы программы

1. Веса точек равны.

Исходная таблица:

x_i	y_i	ρ_i
1	1	1
2	4	1
3	9	1
4	16	1
5	25	1
6	36	1
7	49	1
8	64	1
9	81	1
10	100	1

2. Веса точек разные.

Исходная таблица:

x_i	y_i	$ ho_i$
1	1	0.1
2	4	0.5
3	9	1
4	16	2
5	25	5
6	36	1.9
7	49	3
8	64	0.3
9	81	5
10	100	0.1

Синяя прямая - веса точек равны единице. Красная прямая - веса точек разные.

7. Ответы на вопросы для защиты ЛР

1. Что произойдет при задании степени полинома n = N - 1

Полином будет построен по всем точкам, независимо от того, какие будут веса у точек.

2. Будет ли работать Ваша программа при n >= N? Что именно в алгоритме требует отдельного анализа данного случая и может привести к аварийной остановке?

Программа работать будет. Но, по N точкам нельзя построить полином степени n, так как в данном случае определитель будет равен нулю. Программа будет работать из-за погрешностей, будут операции с действительными числами.

3. Получить формулу для коэффициента полинома a_0 при степени полинома n=0. Какой смысл имеет величина, которую представляет данный коэффициент?

Формула:

$$\frac{\sum_{i=1}^{N} y_i \rho_i}{\sum_{i=1}^{N} \rho_i}$$

Значение: математичское ожидание

4. Записать и вычислить определитель матрицы СЛАУ для нахождения коэффициентов полинома для случая, когда n=N=2.

Пусть есть таблица:

x_i	y_i	$ ho_i$
x_0	y_0	ρ_1
x_1	y_1	ρ_2

Тогда имеем СЛАУ вида:

$$\begin{cases} (\rho_0 + \rho_1)a_0 + (\rho_0 x_0 + \rho_1 x_1)a_1 + (\rho_0 x_0^2 + \rho_1 x_1^2)a_2 = \rho_0 y_0 + \rho_1 y_1 \\ (\rho_0 x_0 + \rho_1 x_1)a_0 + (\rho_0 x_0^2 + \rho_1 x_1^2)a_1 + (\rho_0 x_0^3 + \rho_1 x_1^3)a_2 = \rho_0 y_0 x_0 + \rho_1 y_1 x_1 \\ (\rho_0 x_0^2 + \rho_1 x_1^2)a_0 + (\rho_0 x_0^3 + \rho_1 x_1^3)a_1 + (\rho_0 x_0^4 + \rho_1 x_1^4)a_2 = \rho_0 y_0 x_0^2 + \rho_1 y_1 x_0^2 \end{cases}$$

$$\Delta = (\rho_0 + \rho_1)(\rho_0 x_0^2 + \rho_1 x_1^2)(\rho_0 x_0^4 + \rho_1 x_1^4) + (\rho_0 x_0 + \rho_1 x_1)(\rho_0 x_0^3 + \rho_1 x_1^3)(\rho_0 x_0^2 + \rho_1 x_1^2) + (\rho_0 x_0^2 + \rho_1 x_1^2)(\rho_0 x_0 + \rho_1 x_1)(\rho_0 x_0^3 + \rho_1 x_1^3) - (\rho_0 x_0^2 + \rho_1 x_1^2)(\rho_0 x_0^2 + \rho_1 x_1^2)(\rho_0 x_0^2 + \rho_1 x_1^2)(\rho_0 x_0^3 + \rho_1 x_1^3)(\rho_0 x_0^3 + \rho_1 x_1^3) - (\rho_0 x_0 + \rho_1 x_1)(\rho_0 x_0 + \rho_1 x_1)(\rho_0 x_0^4 + \rho_1 x_1^4) = 0$$

6

Так как $\Delta = 0$, система решений не имеет, как я и говорил в ответе на вопрос 2.

8. Код программы

```
Файл Main.hs:
import Parse
import Gauss
import Plot
import Approximation
import System.IO
printRow :: ((Double, Double), Double) -> IO ()
printRow row = putStrLn $ show (fst $ fst row) ++ "" ++ show (snd $ fst row) ++
     " "" ++ show (snd row)
main :: IO ()
main = do
    table <- openFile "table.csv" ReadMode >>= hGetContents >>= return .
        parseTable . lines
    putStrLn "X___Y__P" >> mapM_ printRow (zip (xy table) $ weight table) >>
    putStrLn "Enter_n:"
    coeffs <- fmap toInt getLine >>= return . (+ 1) >>= return .
        quadraticApproximation table
    print coeffs
    plotApproximation (f coeffs) $ xy table
Файл Gauss.hs:
module Gauss (
    gauss
) where
type Matrix = [[Double]]
type Coeffs = [Double]
subtractRow :: [Double] -> [Double] -> [Double]
subtractRow subRow row = map ( x -> fst x - snd x * (head row / head subRow) ) $
    zip row subRow
triangulation :: Matrix -> Matrix
triangulation matrix
      length matrix == 0 = matrix
      otherwise = head matrix :
         triangulation (map tail (map (subtractRow $ head matrix) $ tail matrix))
gauss :: Matrix -> Coeffs
gauss = coeffs . reverse . triangulation
    \mathbf{where} \ \ \mathsf{coeffs} \ = \ \mathbf{foldl} \ \ ( \setminus x \ y \ -> \ ( \ \mathbf{last} \ y \ - \ ( \mathbf{sum} \ \$ \ \ \mathbf{zipWith} \ \ (*) \ \ ( \ \mathbf{init} \ \$ \ \ \mathbf{tail} \ \ y) \ \ x
        )) / (head y) : x) []
Файл Approximation.hs:
module Approximation (
    quadraticApproximation,
) where
import Gauss
import Parse
type Coeffs = [Double]
type Weights = [Double]
f :: Coeffs -> Double -> Double
f coeffs x = sum  $ zipWith (*) coeffs (map (\y -> x ^ y) [0..length coeffs - 1])
```

```
mult3 :: Double -> Double -> Double
mult3 x y z = x * y * z
{\tt quadraticApproximation} \ :: \ {\tt Table} \ -\!\!\!> \ {\tt Int} \ -\!\!\!> \ {\tt Coeffs}
quadraticApproximation table n = gauss matrix
    where
        xs = map fst $ xy table
        ys = map \ snd \ $ xy table
        x coeffs =
            map (\k -> sum \ \ sipWith \ (*) \ (map \ (^k) \ xs) \ \ \ weight \ table) \ [0..n \ *]
        y\_coeffs =
            map (\k -> sum $ zipWith3 mult3 (map (^ k) xs) ys $ weight table)
                [0..n - 1]
        matrix = zipWith (x y -> x ++ [y]) (map (x -> take n $ drop x x_coeffs)
            ) [0..n - 1]) y coeffs
Файл Plot.hs:
module Plot (
    plotApproximation
) where
import Graphics. Rendering. Chart. Easy
import Graphics. Rendering. Chart. Backend. Cairo
signal :: (Double \rightarrow Double) \rightarrow [Double] \rightarrow [(Double, Double)]
signal f xs = [(x, f x) | x < -xs]
setColors [opaque blue, opaque red]
    plot (line "polynom" [signal f [-1,(-0.9)..11]])
    plot (points "points" pts)
```