11-442 / 11-642: Search Engines

Best-Match Retrieval: Statistical Language Models

Jamie Callan Carnegie Mellon University callan@cs.cmu.edu

Introduction

The last lecture introduced two best match retrieval models

• The vector space model (VSM), Okapi BM25

This lecture introduces statistical language models

- A newer form of probabilistic retrieval model
- Inspired by work in speech recognition and machine translation

Very different underlying theory

- But, implemented using many of the same values used by the vector space and Okapi BM25 retrieval models
 - Different explanations, but similar effects

© 2017 Jamie

Outline

Statistical language models

- Introduction to language models
- Query likelihood
- Kullback-Leibler (KL) Divergence
- Indri

3

Statistical Language Models

A statistical language model uses a probability distribution to determine the probability of terms or term sequences

Common types of models:

• Unigrams: $p(t_i | \theta)$ $p("search" | \theta)$

• Bigrams: $p(t_i | t_{i-1}, \theta)$ $p("engines" | "search", \theta)$

• Trigrams: $p(t_i | t_{i-2}, t_{i-1}, \theta)$ $p(\text{"class"} | \text{"search"}, \text{"engines"}, \theta)$

Bigrams, trigrams, etc., haven't helped much for IR (so far)

• But they are a key idea in speech recognition

4

© 2017 Jamie Callan

Language model

Statistical Language Models

Word histogram		Unigram lan	Unigram language model _{tf.}		
Term	tf_{d}	Term	$P(t \theta_d)$	$P(t \mid d) = \frac{tf_{t,d}}{1}$	
camera	17	camera	0.09551	$length_d$	
image	13	image	0.07303		
picture	11	picture	0.06180		
up	8	up	0.04494		
movie	8	movie	0.04494		
like	7	like	0.03933		
mode	7	mode	0.03933		
software	7	software	0.03933		
red	6	red	0.03371		
digital	5	digital	0.02809		
eye	5	eye	0.02809		
shutter	5	shutter	0.02809		
sony	5	sony	0.02809		
j		5		© 2017 Jamie Callan	

A Language Model can be Created From <u>Any</u> Language Sample

Examples

- A document collection
- A document
- Also sentence, paragraph, chapter, ...
- A query

This is similar to the vector space

• A vector can be created for any sample of text

Term	$P(t \theta_d)$
camera	0.09551
image	0.07303
picture	0.06180
up	0.04494
movie	0.04494
like	0.03933
mode	0.03933
software	0.03933
red	0.03371
digital	0.02809
eye	0.02809
shutter	0.02809
sony	0.02809
	© 2017 Jamie Callan

Terminology

d: A document

 θ_d : The language model for document d

q: A query

 θ_q : The language model for query q

d and θ_d are not the same thing

- The document and the model of the document are different
- However, to simplify notation, we will often treat them as the same i.e., $p(d \mid q)$ instead of $p(d \mid \theta_q)$ or $p(\theta_d \mid \theta_q)$

© 2017 Jamie Ca

Apple

Apple

:

Campaign Obama

Retrieval Model Based Upon Statistical Language Models

A document d defines a probability distribution θ_d over index terms

• E.g., the probability of generating/observing an index term

A query q also defines a probability distribution θ_α

• A sparse distribution (more on this later)

How is a language model used to rank document d?

• Rank d by $p(d | \theta_q)$ "qu

• Rank d by the similarity of θ_d and θ_q

"query likelihood"

p (t)

0.0204

0.0001

0.0034

0.0102

"KL divergence"

© 2017 Jami

Outline

Statistical language models

- Introduction to language models
- Query likelihood
- Kullback-Leibler (KL) Divergence
- Indri

© 2017 Jamie Callan

Rank by P(d|q): The Query-Likelihood Approach

Task: Rank documents by p(d|q)

- Given a query q, what is the probability of document d?
- Problems
 - q is a very sparse language model (few terms)
 - q contains very little frequency information

Term $P(t|\theta_Q)$ digital 0.5 camera 0.5

• Solution

$$p(d | q) = \frac{p(q | d)p(d)}{p(q)}$$
 Bayes rule

$$\propto p(q | d)p(d)$$
 Drop document-independent term

Key issues

• How are p(q|d) and p(d) estimated?

10

Query-Likelihood Approach: Estimating *p(d)*

It is simple and convenient to assume that p(d) is uniform

• Later we will consider non-uniform p(d)

So...

$$p(d|q) \propto p(q|d)p(d)$$

 $\propto p(q|d)$ Drop the constant term (for now)

11

© 2017 Jamie Callan

What is p(q|d)? Simple Unigram Approach

Assume that a query is composed of independent terms

- Unjustified, but convenient
- Doesn't hurt effectiveness of other models (e.g., vector space)

Then ...

$$p(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)$$

This should look a little familiar (although the notation differs)

- The score of (q, d) is based on the scores of (q_i, d)
- Similar to what we saw with BM25 and the vector space
- How is $p(q_i,|d)$ calculated?

12

Estimating $p(q_i|d)$

Maximum likelihood estimation (MLE) is a simple approach

$$p_{MLE}(q_i \mid d) = \frac{tf_{q_i,d}}{length(d)}$$

Is this a good estimate?

- Estimates are based on small samples (a single document)
 - So, perhaps not very accurate
- $p_{MLE}(q_i|d) = 0$ if q_i isn't in document d

$$p(q \mid d) = \prod_{q_i \in q} p_{MLE}(q_i \mid d) = 0$$
 Boolean AND

q_i could be a good description of document d, even if it does not occur in document d

13

Estimating $p(q_i|d)$: Smoothing

Smoothing is used to solve two problems in the language modeling framework

- <u>Imprecise</u> probability estimates from MLE
- Probability estimates for <u>unobserved terms</u>
 - E.g., query terms that don't occur in the document

But ... there are many smoothing methods ... which to use?

© 2017 Jamie

Estimating $p(q_i|d)$: Jelinek-Mercer ("Mixture Model") Smoothing

Linear interpolation with a reference language model

$$p(q_i | d) = (1 - \lambda) p_{MLE}(q_i | d) + \lambda p_{MLE}(q_i | C)$$

Smoothing decreases as $\lambda \rightarrow 0$

What value of λ is best?

- Small λ (little smoothing) is best for short queries
- Larger λ (more smoothing) is better for <u>long</u> queries
- We will see later in the lecture why this is true

Estimating $p(q_i|d)$: Bayesian Smoothing With Dirichlet Priors

15

Method #2: Bayesian smoothing using Dirichlet priors

$$p_{MLE}(q_i | d) = \frac{tf_{q_i,d} + \mu p_{MLE}(q_i | C)}{length(d) + \mu}$$
$$p_{MLE}(q_i | C) = \frac{ctf_{q_i}}{|length_{tokens}(C)|}$$

What value of μ is best?

- μ in [1,000-10,000] seems best
 - Some people think μ is approximately related to average document length ... others disagree

Estimating $p(q_i|d)$: Smoothing

We know that tf.idf weights are effective ...how do they relate to statistical language models

tf is easy to see $p_{MLE}(q_i \mid d) = \frac{tf_{q_i,d}}{length(d)}$

idf is a little harder to see

- Jelenick-Mercer smoothing provides an idf-like effect
- Next slide...

17 © 2017 Jamie Calle

No Smoothing Example: $p(q | d) = \prod_{q_i \in q} p_{MLE}(q_i | d)$

Two query terms: p (apple $| C \rangle = 0.01$, p (ipod $| C \rangle = 0.001$ "frequent" "rare"

Document d₁

Document d₂

doclen =50, $tf_{apple} = 2$, $tf_{ipod} = 3$ **doclen =50,** $tf_{apple} = 3$, $tf_{ipod} = 2$ (2/50) × (3/50) = (2/50) =

 $0.04 \times 0.06 = 0.06 \times 0.04 =$

 $p(q|d_1) = 0.0024$ $p(q|d_2) = 0.0024$

The model does not distinguish between frequent and rare terms

Jelinek-Mercer Smoothing Example:

$$p(q \mid d) = \prod_{q_i \in q} (1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$$

Two query terms: p (apple
$$| C \rangle = 0.01$$
, p (ipod $| C \rangle = 0.001$
 $\lambda = 0.4$ "frequent" "rare"

Document d₁

Document d₂

doclen =50, tf_{apple} = **2, tf**_{ipod} = **3**

$$(0.6 \times (2/50) + 0.4 \times 0.01) \times (0.6 \times (3/50) + 0.4 \times 0.001) =$$

 $(0.6 \times (3/50) + 0.4 \times 0.001) =$
 $(0.6 \times (2/50) + 0.4 \times 0.001) =$

$$(0.6 \times 0.04 + 0.004) \times$$
 $(0.6 \times 0.06 + 0.004) \times$ $(0.6 \times 0.06 + 0.0004) =$ $(0.6 \times 0.04 + 0.0004) =$

$$(0.024+0.004)\times(0.036+0.0004)= (0.036+0.004)\times(0.024+0.0004)=$$

$$p(q|d_1) = 0.001019$$
 $p(q|d_2) = 0.000976$

The model does distinguish between frequent and rare terms

© 2017 Jamie C

Why Does Smoothing Work?

$$p(q \mid d) = \prod (1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$$

 $q_i \in q$

doclen =
$$50$$
, $tf_{apple} = 2$, $tf_{ipod} = 2$

p (apple | d) =
$$0.6 \times (2/50) + 0.4 \times 0.010 = 0.0280$$

p (ipod | d) =
$$0.6 \times (2/50) + 0.4 \times 0.001 = 0.0244$$

What is the effect of matching one additional instance of a term?

$$p_{\delta}$$
 (apple | d) = 0.6 × (1/50) = 0.012

$$p_{\delta} (ipod \mid d) = 0.6 \times (1/50) = 0.012$$

- The <u>unsmoothed</u> effect of each match is the same

The incremental value of matching a term is multiplied by the $p(q \mid d)$ of other query terms

$$- tf_{apple} = 3, tf_{ipod} = 2$$
: $p(q | d) = (0.028 + \underline{0.012}) \times 0.0244 = 0.000976$

$$- tf_{apple} = 2, tf_{ipod} = 3: p(q \mid d) = 0.028 \times (0.0244 + \underline{0.012}) = 0.001019$$

$$p(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)$$

$$= \prod_{q_i \in q} ((1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)) \qquad \textbf{J-M smoothing}$$

$$= \prod_{q_i \in q} ((1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)) \frac{\lambda p_{MLE}(q_i \mid C)}{\lambda p_{MLE}(q_i \mid C)} \qquad \textbf{Multiply by 1}$$

$$= \prod_{q_i \in q} \left(\frac{(1 - \lambda) p_{MLE}(q_i \mid d)}{\lambda p_{MLE}(q_i \mid C)} + 1 \right) \lambda p_{MLE}(q_i \mid C) \qquad \textbf{Recombine}$$

$$= \prod_{q_i \in q} \left(\frac{(1 - \lambda) p_{MLE}(q_i \mid d)}{\lambda p_{MLE}(q_i \mid C)} + 1 \right) \prod_{q_i \in q} \lambda p_{MLE}(q_i \mid C) \qquad \textbf{Recombine}$$

$$\propto \prod_{q_i \in q} \left(\frac{(1 - \lambda) p_{MLE}(q_i \mid d)}{\lambda p_{MLE}(q_i \mid C)} + 1 \right) \qquad \textbf{Top constant}$$

$$\text{Top constant}$$

Estimating p(q_i|d): Jelinek-Mercer ("Mixture Model") Smoothing

HW2 requires you to think about the effects of parameters

$$p(q_i | d) = (1 - \lambda) p_{MLE}(q_i | d) + \lambda p_{MLE}(q_i | C)$$

What happens when λ approaches 0?

• There is no smoothing (no "idf like" effect)

$$p(q_i \mid d) = (1 - \lambda) p_{MLE}(q_i \mid d)$$

© 2017 Jamie Call

Estimating $p(q_i|d)$: Jelinek-Mercer ("Mixture Model") Smoothing

HW2 requires you to think about the effects of parameters

$$p(q_i \mid d) = (1 - \lambda) p_{MLE}(q_i \mid d) + \lambda p_{MLE}(q_i \mid C)$$

How important is smoothing to queries of different lengths?

- Short queries
 - Few query terms, so (usually) every query term must match
 - "idf weighting" is less important, so small λ is best
- Long queries
 - Many query terms, so (usually) most query terms must match
 - "idf weighting" is more important
 - Give priority to the less common terms, so larger λ is best

23

Estimating $p(q_i|d)$: Bayesian Smoothing With Dirichlet Priors

HW2 requires you to think about the effects of parameters

$$p(q_i \mid d) = \frac{tf_{q_i,d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu}$$

What happens when μ approaches 0?

• There is no smoothing (maximum likelihood only)

$$p(q_i \mid d) = \frac{tf_{q_i,d}}{length(d)}$$

Estimating $p(q_i|d)$: Bayesian Smoothing With Dirichlet Priors

HW2 requires you to think about the effects of parameters

$$p(q_i \mid d) = \frac{tf_{q_i,d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu}$$

How important is smoothing to documents of different lengths?

- Short documents
 - Probabilities are more granular
 - Larger μ is more important

- Long documents
 - Probabilities are more smooth
 - Larger μ is less important

 $p(q_i|d)$

25

Estimating p(q_i|d): Two-Stage Smoothing

Mixture modeling and Bayesian smoothing with Dirichlet priors are both effective and common ... which should you use?

- They do different things
 - Mixture model: Compensate for differences in word importance
 - » "idf effects"
 - Dirichlet prior: Improves the estimate of the document model» "small sample", "unseen words"
- Two-stage smoothing gives the best effects of both methods

$$p(q_i \mid d) = (1 - \lambda) \frac{tf_{q_i,d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu} + \lambda \ p_{MLE}(q_i \mid C)$$

26

Query Likelihood With Two-Stage Smoothing: Putting it All Together

$$\begin{split} p(q \mid d) &= \prod_{q_i \in q} p(q_i \mid d) \\ &= \prod_{q_i \in q} \left((1 - \lambda) \frac{tf_{q_i, d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu} + \lambda \ p_{MLE}(q_i \mid C) \right) \\ &= \prod_{q_i \in q} \left((1 - \lambda) \frac{tf_{q_i, d} + \mu \frac{ctf(q_i)}{length(c)}}{length(d) + \mu} + \lambda \frac{ctf(q_i)}{length(c)} \right) \end{split}$$

tf_{q,d}: Term frequency of term q in document d

ctf (q): Term frequency of term q in the entire collection
length (d): Total number of word occurrences in document d
length (c): Total number of word occurrences in collection c

27 © 2017 Jamie Callan

Outline

Statistical language models

- Introduction to language models
- · Query likelihood
- Kullback-Leibler (KL) Divergence
- Indri

© 2017 Jamie Call

Retrieval Model Based Upon Statistical Language Models

How is a language model used to rank document d?

• Rank d by $p(d | \theta_a)$

"query likelihood"

- Rank d by $p(q | \theta_d)$
- Rank d by the similarity of θ_d and θ_q

"KL divergence"

In some cases, <u>some of these approaches</u> turn out to be equivalent...

29

© 2017 Jamie Callan

KL Divergence: Measuring the Similarity of Language Models

Kullback-Leibler divergence measures the relative entropy between two probability mass functions

$$KL(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

Language models are probability mass functions

- The probability of observing a term in a sample of text
- Why not use KL divergence to measure the similarity of q and d?

30

Measuring the Similarity of Statistical Language Models

Ranking by (negative) KL-divergence
$$-KL(q || d) = -\sum_{w \in V} p(w | q) \log \frac{p(w | q)}{p(w | d)}$$

$$= -\sum_{q_i \in q} p(q_i | q) \log \frac{p(q_i | q)}{p(q_i | d)} \quad P(w | q) = 0 \text{ when } w \notin q$$

$$= -\left(\sum_{q_i \in q} p(q_i | q) \log p(q_i | q) - \sum_{q_i \in q} p(q_i | q) \log p(q_i | d)\right)$$

$$\propto \sum_{q_i \in q} p(q_i | q) \log p(q_i | d) \quad Drop \text{ constant term}$$

$$\propto \sum_{q_i \in q} \frac{1}{|q|} \log p(q_i | d) \quad Uniform \text{ probabilities for query terms}$$

$$\propto \sum_{q_i \in q} \log p(q_i | d) \quad Drop \text{ constant term}$$

$$\sim \sum_{q_i \in q} \log p(q_i | d) \quad Drop \text{ constant term}$$

$$\sim \sum_{q_i \in q} \log p(q_i | d) \quad Drop \text{ constant term}$$

Two Different Paths to a Common Destination

Query likelihood ranks by
$$p(q | d) = \prod_{q_i \in q} p(q_i | d)$$

KL diverge ranks by
$$\sum_{q_i \in q} \log p(q_i \mid d)$$

These are rank equivalent
$$p(q | d) = \prod_{\substack{q_i \in q \\ q_i \in q}} p(q_i | d)$$
 $\propto \sum_{\substack{q_i \in q \\ q_i \in q}} \log p(q_i | d)$

So...the query likelihood and KL divergence approaches are equivalent (when document priors are uniform)

Outline

Statistical language models

- Introduction to language models
- Query likelihood
- Kullback-Leibler (KL) Divergence
- Indri

33

© 2017 Jamie Callan

Inference Nets + Language Models: Indri

The Indri retrieval model combines <u>statistical language models</u> with <u>Bayesian inference networks</u>

- A probabilistic retrieval model
- Structured queries
- Documents with multiple representations
- Documents with structure (a later lecture)

The theory is sophisticated, but the underlying ideas are familiar

34

2017 Jamie Callan

Inference Nets + Language Models: Indri

This isn't as complicated as it looks

- Document + smoothing parameters (α,β)
 → language model (θ)
- The language model vocabulary is defined by representation nodes (r_i)
 - Terms stored in the index
 - Query operators that <u>create index terms</u>
 - » QryIop (#SYN, #NEAR/n, #WINDOW/n, ...)
- Information needs are represented by queries
- Queries are composed of query operators that <u>combine evidence</u> » QrySop (#AND, #OR, #SUM, #WSUM, ...)

43

© 2017 Jamie Callan

 (r_2)

Inference Nets + Language Models: Indri

Indri Term Weights

Indri can use any language modeling method to estimate $p(r_i|\theta)$

- This weight is equivalent to $p(q_i|d)$ in most language models
- Dirichlet smoothing is the most common choice

$$p(q_i \mid d) = \frac{tf_{q_i,d} + \mu p_{MLE}(q_i \mid C)}{length(d) + \mu}$$

• Two-stage smoothing is also used

$$p(q_i \mid d) = (1 - \lambda) \frac{tf_{q_i, d} + \mu \ p_{MLE}(q_i \mid C)}{length(d) + \mu} + \lambda \ p_{MLE}(q_i \mid C)$$

45 © 2017 Jamie Callan

Indri Query Operators

Operators that map inverted lists to an inverted list are easy

- E.g., InvertedList+ → InvertedList
- E.g., #NEAR/n, #WINDOW/n, #SYN, ...
- To the language model these look just like ordinary terms

Operators that combine scores are somewhat less clear

- E.g., ScoreList+ → ScoreList
- E.g., #AND, #OR, ...
- How should each query operator combine evidence?

Indri Query Operators

AND is the default query operator for most language modeling systems

- Typically implemented as the product of the argument weights $p_{\it and}(q \mid d) = \prod p(q_i \mid d)$
- This is pleasing theoretically, but it has a problem
 Typically #AND (a b c d) < #AND (a b)

Indri's AND operator uses the geometric mean

$$p_{and}(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)^{\frac{1}{|q|}}$$

47

© 2017 Jamie Callan

Indri Query Operators

We may want to give different weight to different evidence

#wand (

0.7 #and (time traveler wife)

0.2 #and (#near/1 (time traveler) #near/1 (traveler wife))

0.1 #and (#window/8 (time traveler) #window/8 (traveler wife)))

Indri's WAND operator (also called WEIGHT) gives this control

• WAND: weighted AND

$$p_{wand}(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)^{\frac{w_i}{\sum w_i}}$$

48

Indri Query Operators

Indri provides a NOT operator

$$p_{not}(q \mid d) = 1 - p(q \mid d)$$

• NOT operators aren't used a lot in probabilistic systems

Indri provides an OR operator

$$p_{or}(q | d) = 1 - \prod_{q_i \in q} (1 - p(q_i | d))$$

49

© 2017 Jamie Callan

Indri Query Operators

The AND operator assumes that its arguments are estimates of independent probabilities

• E.g., #AND (buy ipod)

The WSUM operator assumes that its arguments are different ways of estimating the same probability

- E.g., the probability that this document is about "apple") #WSUM (0.3 apple.title 0.1 apple.url 0.6 apple.body)
- WSUM takes a <u>weighted average</u> of the estimates
 - It should be called WAVG the name is a historical artifact

$$p_{wsum}(q \mid d) = \sum_{q_i \in q} \frac{w_i}{\sum w_i} p(q_i \mid d)$$

50

2017 Jamie Callan

Indri Query Operators

AND, COMBINE:
$$p_{and}(q | d) = \prod_{q \in q} p(q_i | d)^{\frac{1}{q}}$$

AND, COMBINE:
$$p_{and}(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)^{\frac{1}{|q|}}$$

WAND, WEIGHT: $p_{wand}(q \mid d) = \prod_{q_i \in q} p(q_i \mid d)^{\frac{w_i}{w}}, \quad w = \sum w_i$

OR: $p_{or}(q \mid d) = 1 - \prod_{q_i \in q} (1 - p(q_i \mid d))$

WSUM: $p_{wsum}(q \mid d) = \sum_{q_i \in q} \frac{w_i}{w} p(q_i \mid d), \quad w = \sum w_i$

NOT: $p_{not}(q \mid d) = 1 - p(q \mid d)$

OR:
$$p_{or}(q | d) = 1 - \prod_{i=1}^{n-1} (1 - p(q_i | d))$$

WSUM:
$$p_{wsum}(q \mid d) = \sum_{i=1}^{\infty} \frac{w_i}{w} p(q_i \mid d), \quad w = \sum_{i=1}^{\infty} w_i$$

NOT:
$$p_{not}(q | d) = 1 - p(q | d)$$

51

Indri Implementation

Mostly the Indri query operators are easy to implement

- See the preceding slide for the score calculations
- Calculate scores only for documents that contain a query term
 - Use inverted or score lists similar to HW1
- Use document length, ctf, and corpus length for smoothing
 - Lookup from the index see the HW2 web page

But, one aspect is a little tricky to get right...

Indri Implementation

Query: #or (a #and (b c)) Document: a

Query terms b and c do not appear in this document ... what is the score of the #AND operator?

- $tf_{a,d} = 1$
- $tf_{b,d} = 0$
- $tf_{c,d} = 0$
- Do the usual Indri score calculation
 - So, only smoothing scores for b and c

This is simple conceptually, but <u>how is it implemented</u>?

• You don't want to calculate #AND scores for <u>every</u> document ... just the documents that have at least one query term

53 © 2017 Jamie Callan

Indri Implementation

Query: #or (a #and (b c)) **Document:** a

Add a new method to all QrySop operators

double getDefaultScore (RetrievalModel r, long docid)

When <u>any</u> QrySop operator calculates scores

If the ith query argument contains document d then call the ith query argument's getScore method else call the ith query argument's getDefaultScore method

Indri Implementation

Query: #or (a #and (b c)) **Document:** a

QrySopScore.getDefaultScore (RetrievalModel r, long docid)

The standard Indri SCORE calculation done with tf=0
 If r == RetrievalModel.Indri

$$p_{scoreDefault}(t \mid docid) = (1 - \lambda) \frac{0 + \mu \ p_{MLE}(t \mid C)}{length(docid) + \mu} + \lambda \ p_{MLE}(t \mid C)$$

This is the only difference. Do the usual calculation, but with tf=0.

55 © 2017 Jamie Callan

Indri Implementation

Query: #or (a #and (b c)) Document: a

QrySopAnd.getDefaultScore (RetrievalModel r, long docid)

• The standard Indri AND calculation done on the <u>default score</u> of each argument

If r == RetrievalModel.Indri

$$p_{andDefault}(q \mid d) = \prod_{q_i \in q} \overline{p_{q_i} default}(q_i \mid d)^{\frac{1}{|q|}}$$

This is the only difference.
Call the ith query argument's getDefaultScore method.

© 2017 Jamie C

Call to docIteratorHasMatch & getScore (First Time)

Call to docIteratorHasMatch & getScore (Second Time)

Default Belief Scores Are Only a Small Complication

When evaluating a query argument

- If it matches the current document
 - Ask the <u>query argument</u> to calculate the <u>document score</u> for the current document
 - Else ask the <u>query argument</u> to calculate a <u>default score</u> for the current document
 - » E.g., a SCORE operator (the example given)
 - » E.g., an OR operator (similar logic)

65

© 2017 Jamie Callan

Default Belief Scores Are Only a Small Complication

Which types of query operators calculate default scores?

- If an operator calculates scores
 - ... it also calculates default scores
- QrySop operators calculate default scores
- QryIop operators do not calculate default scores

66

2017 Jamie Callan

Call to docIteratorHasMatch & getScore (First Time)

AND Operator Evaluation

Min document is 3.

args[0] matches, so call args[0].getScore (). Suppose the result is 0.3.

args[1] does not match, so call args[1].getDefaultScore(3).

OR calls getDefaultScore(3) for all of its args and computes a score. Suppose it is 0.01.

 $Score_{AND}(3) = (0.3^{0.5} \times 0.01^{0.5})$

© 2017 Jamie Callan

Call to docIteratorHasMatch & getScore (Second Time)

AND Operator Evaluation

Min document is 4.

args[0] matches, so call args[0].getScore (). Suppose the result is 0.3.

args[1] matches, so call args[1].getScore().

Suppose the score is 0.2.

 $Score_{AND}(4) = (0.3^{0.5} \times 0.2^{0.5})$

© 2017 Jamie Callar

Using Default Belief Scores Properly Requires Two Components

Add a new method to all QrySop operators

double getDefaultScore (RetrievalModel r, long docid)

- QrySopScore.getDefaultScore <u>calculates</u> a score for a term
- QrySop <other>. getDefaultScore <u>combines</u> scores for *n* terms

When any QrySop operator calculates scores

If the i^{th} query argument contains document d then read its score from the i^{th} score list else call the i^{th} query argument's getDefaultScore method

It may sound complicated now, but actually it is very easy

69

© 2017 Jamie Callan

Outline

Statistical language models

- Introduction to language models
- Query likelihood
- Kullback-Leibler (KL) Divergence
- Indri

70

Retrieval Models Summary

We have discussed the following retrieval models

- Unranked Boolean
- Ranked Boolean, using tf scoring
- Vector Space, using Inc.ltc scoring
- Okapi BM25
- Language Models
 - Query likelihood, with two-stage smoothing
 - KL Divergence and Jensen-Shannon Divergence
 - Indri

That's a lot of material ... what's important?

71

© 2017 Jamie Callan

Retrieval Models Summary

Important differences among the models that you should know

- Boolean vs. ranked retrieval
- The kinds of statistics used by most ranking functions
 - The theories are different, but the stats are mostly the same
- How well the different models support query operators
 - Inverted-list operators vs. score operators
 - Strict Boolean vs. probabilistic Boolean
- Which models you could use (or not use) for different types of tasks

72

2017 Jamie Callan

Retrieval Models Summary

All of these retrieval models are used widely

• There must be a reason why ... you should know what it is

73