Copula Theory Fundamentals

Outline

Copula

2 Special Copulas

Motivation

- Modeling dependence is crucial for risk aggregation and portfolio management.
- Correlation is limited; copulas provide a more general framework.
- Copulas allow separate modeling of marginals and dependence structure.

Definition: Copula

• **Definition:** An *n*-dimensional copula is a function $C:[0,1]^n \to [0,1]$ that is a joint cumulative distribution function (cdf) with uniform [0,1] marginals.

Characterization of Copulas

- C is a copula if and only if
 - $C(u_1, \ldots, u_n) = 0$ if at least one $u_i = 0$;
 - For all i, $C(1, ..., 1, u_i, 1, ..., 1) = u_i$,
 - (rectangular inequality) C is n-increasing, i.e. For all $a=(a_1,\ldots,a_n), b=(b_1,\ldots,b_n)\in [0,1]^n$ with $a\leq b$ (component-wise), the probability assigned by C to the rectangle [a,b] is non-negative.

Sklar's Theorem (Rigorous Statement)

• Theorem (Sklar, 1959): Let F be an n-dimensional joint cdf with marginals F_1, \ldots, F_n . Then there exists a copula C such that

$$F(x_1,\ldots,x_n)=C(F_1(x_1),\ldots,F_n(x_n))$$

for all $x_i \in \mathbb{R}$.

- If F_1, \ldots, F_n are continuous, C is unique; otherwise, C is uniquely determined on Ran $F_1 \times \cdots \times \text{Ran } F_n$.
- Conversely, if C is a copula and F_i are cdfs, then F defined as above is a joint cdf with marginals F_i .

Proof of Sklar's Theorem (Sketch)

- **Existence:** Define $C(u_1, ..., u_n) = F(F_1^{-1}(u_1), ..., F_n^{-1}(u_n))$
- For continuous marginals, this is well-defined and gives the unique copula.

Copula of F

• If $X \sim F$ with continuous marginal distributions F_1, \ldots, F_d , then the copula of F is the joint distribution of $(F_1(X_1), \ldots, F_d(X_d))$.

Example: Non-uniqueness of Copula (Discrete Case)

• Let (X, Y) have joint distribution:

$$P(X = 0, Y = 0) = P(X = 1, Y = 1) = 0.5$$

• Find two different copulas C_1 , C_2 compatible with this joint law.

Solution: Non-uniqueness of Copula (Discrete Case)

• Marginals:
$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.5 & \text{if } 0 \le x < 1; \text{ similarly for } Y. \\ 1 & \text{if } x \ge 1 \end{cases}$$

• Joint distribution:
$$F(x,y) = \begin{cases} 0 & \text{if } x \land y < 0 \\ 0.5 & \text{if } 0 \le x \land y < 1 \\ 1 & \text{if } x \land y \ge 1 \end{cases}$$

• By Sklar's theorem, any copula C such that C(0.5, 0.5) = 0.5 is a copula for this joint distribution.

Invariance of Copulas

• If X_1, \ldots, X_n are random variables with continuous margins and copula C, then for any strictly increasing functions g_1, \ldots, g_n :

$$(g_1(X_1),\ldots,g_n(X_n))$$
 has copula C .

Proof: Invariance of Copulas

- Let $Y_i = g_i(X_i)$
- The marginal cdf of Y_i is $G_i(y) = P(Y_i \le y) = P(g_i(X_i) \le y) = P(X_i \le g_i^{-1}(y)) = F_i(g_i^{-1}(y)).$
- For the joint distribution:

$$P(Y_1 \leq y_1, \dots, Y_d \leq y_d) = P(g_1(X_1) \leq y_1, \dots, g_d(X_d) \leq y_d)$$

$$= P(X_1 \leq g_1^{-1}(y_1), \dots, X_d \leq g_d^{-1}(y_d))$$

$$= C(F_1(g_1^{-1}(y_1)), \dots, F_d(g_d^{-1}(y_d)))$$

$$= C(G_1(y_1), \dots, G_d(y_d))$$

• Therefore, (Y_1, \ldots, Y_d) has the same copula C.

Fréchet-Hoeffding Bounds

• For any *n*-copula C and $\mathbf{u} \in [0,1]^n$:

$$W(\mathbf{u}) \leq C(\mathbf{u}) \leq M(\mathbf{u})$$

where

$$M(\mathbf{u}) = \min\{u_1, \dots, u_n\}, \quad W(\mathbf{u}) = \max\left\{\sum_{i=1}^n u_i - n + 1, 0\right\}$$

- *M* is the comonotonic copula (upper bound),
- W is the countermonotonic copula (lower bound) if n = 2.

Proof: Fréchet-Hoeffding Bounds (Bivariate Case)

- Let C be any bivariate copula, $u, v \in [0, 1]$.
- Let U, V be uniform random variables on [0, 1] with copula C.
- Upper bound:

$$C(u, v) = \mathbb{P}(U \le u, V \le v)$$

$$\le \mathbb{P}(U \le u) \land \mathbb{P}(V \le v)$$

$$= u \land v$$

Lower bound:

$$C(u,v) = \mathbb{P}(U \le u, V \le v)$$

$$= \mathbb{P}(U \le u) + \mathbb{P}(V \le v) - \mathbb{P}(U \le u \text{ or } V \le v)$$

$$\ge u + v - 1$$

Independence Copula

- **Definition:** $\Pi(\mathbf{u}) = \prod_{i=1}^n u_i = u_1 \cdot u_2 \cdots u_n$
- Represents complete independence between random variables: $\Pi(\mathbf{u}) = F_{\mathbf{U}}(\mathbf{u})$, where $\mathbf{U} = (U_1, \dots, U_n)$ is independent uniform random variables on $[0, 1]^n$.
- Properties:
 - All variables are mutually independent
 - No linear or nonlinear dependence
 - Knowledge of one variable provides no information about others
- Most commonly assumed in classical finance models

Comonotonic Copula (Perfect Positive Dependence)

- **Definition:** $M(\mathbf{u}) = \min\{u_1, u_2, ..., u_n\}$
- Represents perfect positive dependence (upper Fréchet bound): $M(\mathbf{u}) = F_{\mathbf{U}}(\mathbf{u})$ where $\mathbf{U} = (U, U, \dots, U)$ and $U \sim U(0,1)$.
- Properties:
 - Variables move in the same direction
 - If one variable increases, all others increase
 - Strongest possible positive dependence
- Interpretation: There exists a random variable $U \sim \text{Uniform}[0,1]$ such that all marginals can be written as increasing functions of U
- Risk management: Worst-case scenario for portfolio diversification

Countermonotonic Copula (Perfect Negative Dependence)

- **Definition:** $W(u_1, u_2) = \max\{u_1 + u_2 1, 0\}$ (only exists for n = 2)
- Represents perfect negative dependence (lower Fréchet bound): $W(u_1,u_2)=F_{\bf U}(u_1,u_2)$ where ${\bf U}=(U,1-U)$ and $U\sim U(0,1)$.
- Properties:
 - Variables move in opposite directions
 - If one variable increases, the other decreases
 - Strongest possible negative dependence
- Interpretation: $Y = F_Y^{-1}(1 F_X(X))$ for some strictly increasing functions
- Risk management: Perfect hedge ideal for portfolio diversification
- **Note:** For n > 2, perfect negative dependence among all pairs is impossible

Example: Independence/Comonotonic/Countermonotonic Copulas

Let U and V be independent uniform random variables on [0,1].

- **Independence:** Find the copula C_1 for the joint distribution of (U, V).
- **Countermonotonic:** Find the copula C_2 for the joint distribution of (U, 1 U).
- **Comonotonic:** Find the copula C_3 for the joint distribution of (U, U).

Gaussian Copula

- **Definition:** If $Y \sim N_d(\mu, \Sigma)$, then its copula is called the Gaussian copula.
- The correlation matrix: $R = D^{-1/2} \Sigma D^{-1/2}$, where $D = \operatorname{diag}(\Sigma)$.
- If $\Sigma_{ii} = 1$ for all i, then $R = \Sigma$.

Standardization

- Standardization: Let $X = D^{-1/2}(Y \mu)$, then $X \sim N(0, R)$.
- **Invariance:** The copula of X and Y is the same. (why?)
- The copula of Y is given by:

$$C_{\Sigma}(u_1,\ldots,u_n) = \Phi_R(\Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_n))$$

where Φ is the standard normal cdf and Φ_R is the multivariate normal cdf with correlation matrix R.

Simulation with Gaussian Copula

- To generate random variables with marginal distributions F_1, \ldots, F_n and a Gaussian copula C_R :
 - Generate $(Z_1,\ldots,Z_n) \sim N(0,R)$,
 - set $U_i = \Phi(Z_i)$.
 - Transform each U_i using the inverse of the desired marginal distribution F_i^{-1} :

$$X_i = F_i^{-1}(U_i), \quad i = 1, ..., n$$

• **Limitation:** The Gaussian copula does not capture tail dependence (joint extreme events are underestimated).