Lab 5 5-Stage Pipeline Processor

TA-黃威淳

s094398.cs10@nycu.edu.tw

Notice

- <u>Lab 5 討論區</u>
- Lab 5 is **team work**

Overview

- Implement the datapath of 5-Stage Pipeline Processor as below
- You can refer to lab4 for additional details (mux, control signals, etc)
 - Appendix

Attached file

TODO

Lab5Code

- Validate the correction of your implementation
 - Please follow the readme.txt (Lab5 need to run in UNIX-like operating system)
- Testcase
 - Lab5Answer/testcase_for_compile.txt

Pipeline register

- Pipeline stage
 - IF: Instruction fetch from memory
 - ID: Instruction decode & register read
 - EX: Execute operation or calculate address
 - MEM: Access memory operand
 - WB: Write result back to register

To hold information produced in previous cycle

Pipeline register

```
Hint: (Clock Positive triggered)
always@(posedge clk_i) begin
.
. // Code HERE
.
end
```

Forwarding unit

- Solving data dependency
 - Dependency detection and control
- You need to implement forwarding unit to follow the Data Forwarding

Control Conditions

Hazard detection unit

- Solving Load-Use data hazard
- You need to implement Hazard detection unit to follow the condition

Branch Hazard

- Move branch decision from MEM to ID
- You also need to implement flush

NOP instruction

NOP Instruction

31		20 19	15 14	12 11		7 6	0
im	m[11:0]	rs1	fur	nct3	rd	opcode	
	12	5		3	5	7	
	0	0	AI	DDI	0	OP-IMM	
			Č	000		001001	

The NOP instruction does not change any architecturally visible state, except for advancing the pc and incrementing any applicable performance counters. NOP is encoded as ADDI $x\theta$, $x\theta$, θ .

Testcase

- Lab5Answer/testcase_for_compile.txt
- In all case, initially
 - o mem[16] = 2
 - All registers = 0

Case 8 : (medium)

addi x2,x2,6 addi x0,x0,0 slli x2,x2,1

result: x2 = 12

Case 11 : (Advanced)

lw x1,16(x2) add x3,x2,x1

result:

x1 = 2, x3 = 2

Case 1 : (Basic)

addi x1, x0,50 4 nop addi x2, x0, 18 4 nop sub x3, x1, x2 4 nop add x4, x1, x3 4 nop or x5, x1, x4 4 nop and x6, x2, x4 4 nop

result:

x1 = 50; x2 = 18; x3 = 32; x4 = 82; x5 = 114; x6 = 18;

Testbench

- This script cannot run in Windows
- Put your .v file in Lab5Code

\$ chmod +x ./lab5TestScript.sh && ./lab5TestScript.sh

```
testcase 1 pass
testcase 2 pass
testcase 3 pass
testcase 4 pass
testcase 5 pass
testcase 6 pass
testcase 7 pass
testcase 8 pass
testcase 9 pass
testcase 10 pass
testcase 11 pass
testcase 12 pass
testcase 13 pass
Basic Score:30
Medium Score: 40
Advanced Score:30
Total Score: 100
```

************* se 13 Answer : = 132		*******					
ta Memory =	θ.	θ,	θ,	Θ,	2,	θ,	0, 6
ta Memory =		0,	o,	0,	ō,	ø,	0,
ta Memory =		Θ,	0,	Θ,	0,	0,	0, 6
ta Memory = gisters		θ,	θ,	Θ,	θ,	Θ,	Θ, 6
= 0, , R7 =		4, R2 =	0, R3 =		5, R4 =	0, R5 =	0, R6 =
= 0, , R15 =	R9 = 0	0, R10 =	0, R11 =		0, R12 =	0, R13 =	0, R14 =
	R17 = 0	0, R18 =	0, R19 =		0, R20 =	0, R21 =	0, R22 =
4 = 0, , R31 =		0, R26 =	0, R27 =		0, R28 =	0, R29 =	0, R30 =
ur :							
= X							
ta Memory =		Θ,	0,	0,	2,	0,	0,
ta Memory =		θ,	0,	0,	0,	Θ,	θ,
ta Memory =		Θ,	Θ,	Θ,	Θ,	Θ,	Θ,
ta Memory = gisters	θ,	θ,	θ,	Θ,	Θ,	θ,	0,
		x, R2 =	x, R3 =		x, R4 =	x, R5 =	x, R6 =
N/ =		x, R10 =	x, R11 =		x, R12 =	x, R13 =	x, R14 =
	x				x, R20 =	x, R21 =	x, R22 =
= x, R15 = x,		x, R18 =	x, R19 =		X, N20 =		
= x, , R15 = 6 = x, , R23 =	x R17 = x R25 =	x, R18 = x, R26 =					

Appendix

• Lab4 datapath

