# Tight-binding investigation of oxygen solute hardening in Ti.

Tigany Zarrouk\* 09.04.2019

#### Motivation

- Titanium alloys are used in highly demanding circumstances.
- Brittle oxide layer can crack.
- Solutes affect dislocation mobility, causing hardening.
- Interaction between oxygen and dislocation cores is not clear.
- Need for atomistic modelling.
- Exploration of Ti/oxide scale interface will give insights into oxygen diffusion, oxygen induces brittleness and stress corrosion cracking in Ti alloys.
- Corrosion resistance, high strength to weight ratio.
- Ti is used in commercial jet airliners

## Quantum Methods

- Density Functional Theory is not feasible.
- System size is limited due to computational cost.
- Boundaries of cell affect relaxation of core more.
- Semi-empirical method is more computationally efficient.

<sup>\*</sup>tigany.zarrouk@kcl.ac.uk

#### **Tight Binding**

- Tight binding is an approximation to DFT.
- Overlaps between atomic orbitals are key parameters.
- Parameters can be fitted to experimental data
- $\mathcal{O}(N^3)$ , but much smaller prefactor compared to DFT.

#### BOP

- BOP is a faster but less accurate  $\mathcal{O}(N)$  method of interatomic force calculation within tight-binding.
- One builds a local density of states from moments, giving detailed electronic structure information.

#### **Embedding**

- Idea is to combine speed of BOP  $(\mathcal{O}(N))$  with accuracy of tight-binding  $\mathcal{O}(N^3)$ .
- Increasing the number of atoms gives freedom to:
  - Investigate isolated dislocations.
  - Include solutes at more realistic concentrations.
  - Simulate interfaces near a surface (e.g. TiO<sub>2</sub> and bulk Ti)

Invariance theorem with green's function approaches. So good with boundary conditions.

# Parameter Optimisation

- Parameter set for TB model optimised by two evolutionary algorithms: particle swarm and covariance matrix evolution.
- Fitting targets were a mix of experimental and DFT data.

# Results of optimisation.

| Quantity                  | ТВ    | target (DFT + empirical) |
|---------------------------|-------|--------------------------|
| $a_{\alpha}$ [bohr]       | 5.585 | 5.577                    |
| $(c/a)_{\alpha}$          | 1.583 | 1.587                    |
| $C_{11}$ [GPa ]           | 171.6 | 176.1                    |
| $C_{33}$ [GPa ]           | 198.9 | 190.5                    |
| $C_{44}$ [GPa ]           | 47.4  | 50.8                     |
| $C_{12}$ [GPa ]           | 94.7  | 86.9                     |
| $C_{13}$ [GPa ]           | 61.2  | 68.3                     |
| $a_{\omega}$ [bohr]       | 8.93  | 8.73                     |
| $c_{\omega}$ [bohr]       | 5.39  | 5.32                     |
| $a_{\beta}$ [bohr]        | 6.20  | 6.18                     |
| $\Gamma$ bandwidth [Ryd ] | 3.70  | 5.87                     |

# **Energy Splittings**

| Quantity                                       | ТВ   | target |
|------------------------------------------------|------|--------|
| $\Delta E(\omega - \alpha)$ [mRyd]             | 0.53 | -0.73  |
| $\Delta E(4H - \alpha)$ [mRyd]                 | 1.58 | 3.17   |
| $\Delta E(6H - \alpha)$ [mRyd]                 | 2.48 | 3.72   |
| $\Delta E(\text{fcc} - \alpha) \text{ [mRyd]}$ | 3.78 | 4.52   |
| $\Delta E(\beta - \alpha)$ [mRyd]              | 5.35 | 7.64   |

# Phonon Spectra

# $\alpha$ phase





# All frequencies are in THz

# $\omega$ phase





# $\beta$ phase





# Free Energies

- To find predicted stability of each phase as a function of temperature, one can use the quasi-harmonic approximation.
- One finds the volume dependence of the energy, from which we can convert the Helmholtz free energy into the Gibbs free energy.

#### Gibbs Free Energy





#### Thermal Expansion



# Gamma Surfaces

 $\bullet\,$   $\gamma$  -surfaces are plots of excess energy with the movement of atoms on a fault plane.

- Stable stacking faults correspond to local minima.
- This provides insight into possible dislocation dissociations.

#### Basal gamma surfaces





Expected splitting (all models):  $\frac{1}{3}[1\bar{2}10]=\frac{1}{3}[1\bar{1}00]+\frac{1}{3}[0\bar{1}10]$ 

#### Prismatic gamma surfaces





• Expected splitting (all models):  $\frac{1}{3}[1\bar{2}10] = \frac{1}{6}[1\bar{2}10] + \frac{1}{6}[1\bar{2}10]$ 

From TB one can see that the splitting is immediately not exactly the same as that of DFT.

#### Pyramidal gamma surfaces



One can see a saddle point in the interatomic potential and the tb model. So one can assume that this is a point which relies on subtle electronic structure methods. Like the prismatic splitting above.

#### Results

| Plane     | Fault      | TB  | [DFT]                   | [TB]                      |
|-----------|------------|-----|-------------------------|---------------------------|
| Basal     | $I_2$      | 212 | 260 [1]                 | 290 [2], 110 [3]          |
| Prismatic | $\gamma_P$ | 98  | $250^{[1]} \ 233^{[4]}$ | $110^{[5]}$ , $260^{[3]}$ |
| Pyramidal | $I_1$      | 332 | 288 [6]                 | _                         |
|           | $I_2$      | 737 | $788^{[6]}$             | _                         |

- Units are in  $mJm^{-2}$ . Square brackets denote method from literature.
- [1] Benoit (2012), [2] Bere (1999), [3] Girshick (1998)
- $\bullet$   $^{[4]}$  Ackland (1992),  $^{[5]}$  Legrand (1984),  $^{[6]}$  Ready (2019),  $^{[7]}$  Chaari (2014)

#### Core structures

- Dislocation cores are sensitive to boundary conditions.
- Sufficient resolution of core structure is necessary ascertain how dislocation glide is modified.

# $\frac{1}{3}\langle 11\bar{2}0\rangle$ screw







# Formation and Dissolution energies

## Vacancy formation Energy

| $\Delta E_{ m f}^{ m vacancy}$ | [eV] |
|--------------------------------|------|
| Tight Binding                  | 2.34 |
| GGA-DFT Trinkle (2006)         | 2.03 |
| GGA-DFT Connetable (2011)      | 1.97 |
| Exp. Hashimoto (1984)          | 1.27 |

# Dissolution Energies





| $\Delta E_{\rm f}^{ m solution}({ m TetraOcta.})$ | [eV] |
|---------------------------------------------------|------|
| Tight Binding                                     | 1.60 |
| GGA-DFT Kwasniak (2013)                           | 1.23 |

#### Molecular Dynamics

#### Tight-Binding: Future Work

- Finish embedding calculations to see how core structure changes with O content.
- Calculate the Peierls barrier on prism, and  $\pi$  planes.
- Calculate secondary Peierls barrier for kink migration with and without oxygen.
- Add rutile layer. See how dislocations and oxygen interact with structure.
- Simulate high pressure Ti-H<sub>2</sub>O system.

#### **Defect Clusters**

- Increase in oxygen content in Ti-7wt.%Al causes higher number density of  $\alpha_2$  precipitates at 550° C (Felicity's results).
- $\bullet$  Oxygen acting as a defactant might stabilise defect complexes (Ti  $_{\rm v}$  + nO).
- This can cause more defects resulting in the increased number of precipitates due to more nucleation sites.
- First starting out with pure Ti and  $\alpha_2$ . Still working on extension to Ti-7wt.%Al.

#### Calculation Details

- Först *et al.* [6] calculated energetics of defect complexes with associated local force-constant matrix.
- Partial thermodynamic equilibrium imposed (thermal equilibrium for one species and not the other).
- Defect concentration plotted as a function of carbon/vacancy concentration only at 160° C.
- Extension: apply the quasiharmonic approximation/do thermodynamic integration for better accuracy at higher temperatures (550° C 950° C).

 $[6]\ Point\ Defect\ Concentrations\ in\ Metastable\ Fe-C\ Alloys,$  Först $\ et\ al,$  Phys. Rev. Lett.  $96,\,2006$ 

#### Plots in Fe-C





Ti<sub>3</sub>Al Cells



#### Ti Cells

#### Defect Clusters: Future Work

- Finish Ti and Ti<sub>3</sub>Al defect cluster calculations in DFT.
- Possibly extend to Ti-7wt%Al with SQS structures.
- See how much of an effect anharmonicity has on predictions.

#### Additional references

- Ghazisaeidi, Trinkle (2012), Core structure of a screw dislocation in Ti from density functional theory and classical potentials.
- Rodney, Ventelon (2016), Ab initio modelling of dislocation core properties in metals and semiconductors.
- Chaari, Clouet (2014), First order pyramidal slip of 1/3 screw dislocations in zirconium