Perception, Memory, and Coordination

Alexandra Paxton

paxton.alexandra@gmail.com
Institute of Cognitive and Brain Sciences
Berkeley Institute for Data Science
University of California, Berkeley

Jordan W. Suchow

suchow@berkeley.edu Social Science Matrix University of California, Berkeley

Abstract

With cognitive scientists' increasing interest in moving outside of the lab, recent advances in crowdsourcing platforms can help strike a balance between the tight experimental control of lab designs and the affordances of web-based experiments to reach beyond traditional undergraduate subject pools. By taking advantage of new tools, scientists interested in social cognition and behavior can create new designs and adapt traditional ones to deliver experiments at scale. Dallinger is one such tool, providing researchers with an open-source experiment platform that provides end-to-end automation of the experiment pipeline, from participant recruitment and consent to data de-identification and participant compensation. Here we demonstrate how Dallinger can be used to run complex experimental studies of interactive human social behavior, as a demonstration of its potential to study social cognition and behavior using designs drawn from across cognitive science.

Keywords: interpersonal interaction; human communication; crowdsourcing; Dallinger

Introduction
Method
Results
Discussion
Conclusion

Preserving what follows in case we need it.

Formalities, Footnotes, and Floats

Use standard APA citation format. Citations within the text should include the author's last name and year. If the authors' names are included in the sentence, place only the year in parentheses, as in (1972), but otherwise place the entire reference in parentheses with the authors and year separated by a comma (Newell & Simon, 1972). List multiple references alphabetically and separate them by semicolons (Chalnick & Billman, 1988; Newell & Simon, 1972). Use the et. al. construction only after listing all the authors to a publication in an earlier reference and for citations with four or more authors.

For more information on citations in R Markdown, see here.

Thomas J. H. Morgan

thomas.j.h.morgan@asu.edu School of Human Evolution and Social Change Arizona State University

Thomas L. Griffiths

tom_griffiths@berkeley.edu
Department of Psychology
University of California, Berkeley

Footnotes

Indicate footnotes with a number¹ in the text. Place the footnotes in 9 point type at the bottom of the page on which they appear. Precede the footnote with a horizontal rule.²

Figures

All artwork must be very dark for purposes of reproduction and should not be hand drawn. Number figures sequentially, placing the figure number and caption, in 10 point, after the figure with one line space above the caption and one line space below it. If necessary, leave extra white space at the bottom of the page to avoid splitting the figure and figure caption. You may float figures to the top or bottom of a column, or set wide figures across both columns.

Two-column images

You can read local images using png package for example and plot it like a regular plot using grid.raster from the grid package. With this method you have full control of the size of your image. Note: Image must be in .png file format for the readPNG function to work.

You might want to display a wide figure across both columns. To do this, you change the fig.env chunk option to figure*. To align the image in the center of the page, set fig.align option to center. To format the width of your caption text, you set the num.cols.cap option to 2.

One-column images

Single column is the default option, but if you want set it explicitly, set fig.env to figure. Notice that the num.cols option for the caption width is set to 1.

R Plots

You can use R chunks directly to plot graphs. And you can use latex floats in the fig.pos chunk option to have more control over the location of your plot on the page. For more information on latex placement specifiers see **here**

¹Sample of the first footnote.

²Sample of the second footnote.

Figure 1: R plot

Tables

Number tables consecutively; place the table number and title (in 10 point) above the table with one line space above the caption and one line space below it, as in Table 1. You may float tables to the top or bottom of a column, set wide tables across both columns.

You can use the xtable function in the xtable package.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.17	0.10	1.6	0.11
X	1.88	0.11	17.8	0.00

Table 1: This table prints across one column.

Acknowledgements

Place acknowledgments (including funding information) in a section at the end of the paper.

References

Chalnick, A., & Billman, D. (1988). Unsupervised learning of correlational structure. In *Proceedings of the tenth annual conference of the cognitive science society* (pp. 510–516). Hillsdale, NJ: Lawrence Erlbaum Associates.

Newell, A., & Simon, H. A. (1972). *Human problem solving*. Englewood Cliffs, NJ: Prentice-Hall.