

NATIONAL CERTIFICATE PLATERS' THEORY N2

(11022182)

16 April 2021 (X-paper) 09:00-12:00

This question paper consists of 5 pages and 2 diagram sheets.

213Q1A2116

(11022182) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE PLATERS' THEORY N2 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Start each question on a new page.
- 5. Use only a black or blue pen.
- 6. Write neatly and legibly.

(11022182) -3-

QUESTION 1: MACHINES

- 1.1 Briefly describe the working principle of the plate bending rolls. (3)
- 1.2 Briefly describe the working principle of the radial power saw. (2)
- 1.3 FIGURE 1, DIAGRAM SHEET A (attached), shows a pedestal drilling machine.
 Label the components indicated with the letters (A–E) and write only the answer
 next to each letter (A–E) in the ANSWER BOOK.

 [10]

QUESTION 2: ROLLING AND BENDING

2.1 Calculate the length of material needed to manufacture a $45 \times 45 \times 8$ mm external angle-iron ring with a heel diameter of 8515 mm.

$$L = [D + T + (T \div 3)] \pi$$

Where: L = Length of the angle-iron

T = Thickness of the angle-iron D = Heel diameter of the ring

(5)

2.2 Briefly describe how one would go about removing a buckle from a metal plate. (Do NOT use sketches in your explanation.)

(5) **[10]**

QUESTION 3: JOINING OF STEEL PROFILES

- 3.1 Name SIX requirements to which a well-designed welding jig should comply. (6)
- 3.2 State FOUR disadvantages of a well-designed jig. (4) [10]

()

QUESTION 4: GENERAL PIPE WORK

With the aid of a freehand drawing, describe how to determine the saddle depth a T-piece of pipe of unequal diameter. [8]

QUESTION 5: STEEL STRUCTURES

FIGURE 2, DIAGRAM SHEET A (attached), shows a part of a steel roof truss. Name the parts indicated by writing only the answer next to the letter (A–F) in the ANSWER BOOK.

Copyright reserved Please turn over

[6]

(11022182) -4-

\sim 1	IECT	6. '	TEM	IDI	ATFS

6.1	State FOUR disadvantages of using a template.				(4)
6.2	Briefly discuss the use of templates made from the following materials:				
	6.2.1	Thin metal			
	6.2.2	Sheet metal		(2 × 1)	(2)

QUESTION 7: METALS

- 7.1 Briefly explain the function of Case-hardening as applied in the heat treatment process. (2)
- 7.2 Briefly explain the effect of steel when alloyed with silicon. (2)
- 7.3 Explain FOUR effects of steel when alloyed with tungsten. (4)

QUESTION 8: GAS WELDING AND CUTTING

- 8.1 Briefly describe the effect of the following on the quality of a gas-cut surface:
 - 8.1.1 Pre-heating flame too low
 - 8.1.2 Pre-heating flame too high
 - 8.1.3 Irregular torch travel
 - 8.1.4 Nozzle too far from surface
 - 8.1.5 Gas pressure too high

 $(5 \times 2) \qquad (10)$

[6]

- 8.2 Briefly explain the term *brazing*. (2)
- 8.3 Explain the use of an oxy-acetylene profile cutter. (2) [14]

(11022182) -5-

QUESTION 9: ARC WELDING

- 9.1 Briefly describe the following welding terms with the aid of sketch:
 - Heat affected zone

Reinforcement

Parent metal

Backing barWeld zone

 (5×2) (10)

9.2 Briefly explain the following terms with the aid of a free-hand drawing:

9.2.1 Stud

9.2.2 Plug

9.2.3 Fillet

 $(3 \times 1) \qquad (3)$

QUESTION 10

Reproduce the material list, TABLE 1, in your ANSWER BOOK and itemise all the components of the welded frame as shown in FIGURE 3, DIAGRAM SHEET B (attached) in the material list. Determine the total mass of the frame.

COMPONENT	QUANTITY	MATERIAL	LENGTH	Kg/m	TOTAL
			mm		MASS
Α		$50 \times 50 \times 6L$	260	4.47	
В		50 × 50 × 6L	350	4.47	
С		50 × 50 × 6L	390	4.47	
D		50 × 50 × 6L	700	4.47	
Е		$50 \times 50 \times 6L$	600	4.47	
F		50 × 50 × 6L	1000	4.47	
G		$60 \times 50 \times 6L$	600	4.95	
				TOTAL	

TABLE 1 (15)

TOTAL: 100

(11022182) -1-

DIAGRAM SHEET A

FIGURE 1

FIGURE 2

(11022182) -2-

DIAGRAM SHEET B

FIGURE 3