Дрогобицький державний педагогічний університет імені Івана Франка

3ATBEP,	джую
Проректор з науков	во-педагогічної роботи
	В.Л. Шаран
підпис	ініціали та прізвище
	20 n

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

Теоретична фізика (Класична механіка, електродинаміка)

Назва

Галузь знань	11 Математика та статистика
Спеціальність	111 Математика
Освітня програма	<u>Математика</u>
Статус дисципліни	<u>Нормативна</u>
Навчально-науковий інститут	фізики, математики, економіки та інноваційних технологій
Кафедра	<u>фізики</u>
Мова навчання	українська
Дані про вивчення дисципліни	

			.: O	Кількість годин							Bı	ид
		ď	г пліни СКТ	Аудиторні заняття					на	робота	семестрового контролю	
Форма навчання	Kypc	Семестр	Обсяг дисципліни: год / кредити ЄКТС	Разом	Лекції	Лабораторні роботи	Практичні заняття	Семінарські заняття	Самостійна робота	Курсова ро	Залік	Екзамен
Денна	III	6	150 / 5	64	32	1	32	_	86	_	+	_
Заочна	III	6	150 / 5	20	10	-	10	-	130	_	+	_

Робоча програма складена на основі освітньої програми та навчального плану підготовки бакалавра. Ступінь вищої освіти Розробники: В.Б. Гольський, кандидат фізико-математичних наук, доцент Пілпис Ініціали та прізвище викладача, науковий ступінь та вчене звання Погоджено керівником групи забезпечення освітньої програми: . Винницький Б. В., доктор фізико-математичних наук, професор Ініціали та прізвище, науковий ступінь та вчене звання Схвалено на засіданні кафедри фізики. Протокол № _____ від ____ ___ 20 ____ р. Схвалено на засіданні науково-методичної ради навчально-наукового інституту фізики, математики, економіки та інноваційних технологій. Протокол № _____ від ____ 20 ____ р. Схвалено на засіданні науково-методичної ради університету. Протокол № _____ від ____ 20 ___ р.

1. МЕТА ВИВЧЕННЯ НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

Теоретична фізика ϵ фундаментальною фізичною наукою, вона містить найбільшу кількість фізичних теорій, які охоплюють всі розділи фізики, ϵ фундаментом знань про характер процесів та явищ. Теоретична фізика відіграє вирішальну роль у завершенні підготовки спеціаліста-математика, формує науковий світогляд майбутнього вчителя, який повинен мати цілісні уявлення про сучасну фізичну картину світу, вміти розв'язувати практичні і теоретичні задачі сучасної фізики, бути підготовленим до сприймання новітніх ідей науки XXI сторіччя. Метою вивчення дисципліни ϵ формування чіткого уявлення про методи та прийоми теоретичної фізики, принципи дослідження фізичних явищ та побудову математичних моделей природних та технічних процесів.

2. ПЕРЕДУМОВИ ДЛЯ ВИВЧЕННЯ НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

Дисципліна "Теоретична фізика" вивчається після таких дисциплін: "Математичний аналіз", "Лінійна алгебра", "Алгебра і теорія чисел", "Аналітична геометрія", "Загальна фізика", "Комплексний аналіз", "Інформатика".

3. ОЧІКУВАНІ РЕЗУЛЬТАТИ НАВЧАННЯ

Відповідно до освітньої програми здобувачі вищої освіти повинні знати: основні поняття та рівняння предмету викладені у програмі курсу;

вміти: а) загальна компетентність: Здатність до аналізу та синтезу на основі логічних аргументів та перевірених фактів. Набуття гнучкого мислення, відкритість до застосування фізичних знань та компетентностей в широкому діапазоні можливих місць роботи та повсякденному житті.

- б) компетентність, що відповідає предмету:
- 1. Глибокі знання та розуміння. Здатність аналізувати фізичні явища та процеси як природного походження, так і технологічного з погляду фундаментальних фізичних принципів, законів і знань, а також на основі відповідних математичних методів та комп'ютерного моделювання.
- 2. Навички оцінювання. Здатність робити оцінки порядку величини і знаходити відповідні рішення із чітким визначенням припущень та використанням спеціальних та граничних випадків.
- 3. Розв'язання проблем. Здатність розв'язувати широке коло проблем і задач шляхом розуміння їх фундаментальних основ та використання теоретичних методів з програми фізики.
- 4. Ерудиція в області фізики. Здатність описати широке коло об'єктів та процесів (як природних, так і штучно створених), починаючи від цілісності всесвіту (включаючи його еволюцію від моменту створення до нинішніх днів)

та закінчуючи на субатомних частинках та процесах; ця здатність повинна грунтуватися на глибокому знанні та розумінні широкого кола фізичних теорій та тем.

5. Здатність до навчання. Здатність шляхом самостійного навчання освоїти нові області, використовуючи здобуті математичні і фізичні знання.

4. КРИТЕРІЇ ОЦІНЮВАННЯ РЕЗУЛЬТАТІВ НАВЧАННЯ

Оцінювання здійснюється за шкалами оцінювання: ЄКТС, стобальною і національною.

Оцінка "А" (90 – 100 балів) – оцінка "зараховано" (відмінні знання та уміння лише з незначною кількістю несуттєвих помилок): отримує студент, який виявляє глибокі системні знання програмного матеріалу та продуктивно їх використовує; виконує завдання самостійно за власним планом; здатний оцінити отриманий результат; володіє високим рівнем узагальнення та систематизації програмного матеріалу; дає точне визначення і тлумачення основних понять, законів і теорій з розділів «Теоретичної фізики»: «Класична механіка» та «Елетродинаміка»; вільно застосовує теоретичні знання для розв'язування прикладних задач та пропонує раціональний спосіб їх розв'язування; може встановити зв'язок з матеріалом інших тем даної дисципліни чи інших дисциплін; здатний розв'язувати широке коло проблем і задач шляхом розуміння їх фундаментальних основ та використання теоретичних методів з програми фізики; здатний описати широке коло об'єктів та процесів (як природних, так і штучно створених), починаючи від цілісності всесвіту (включаючи його еволюцію від моменту створення до нинішніх днів) та закінчуючи на субатомних частинках та процесах; здатний шляхом самостійного навчання освоїти нові області, використовуючи математичні і фізичні знання; виконав усі види навчальної роботи.

Оцінка "В" (82 – 89 балів) – оцінка " зараховано " (вище середнього рівня з кількома помилками): отримує студент, знання та уміння якого відповідають вимогам програми; здатний оцінити отриманий результат; який вільно володіє навчальним матеріалом з розділів «Теоретичної фізики»: «Класична механіка» та «Елетродинаміка; застосовує отримані знання на практиці, однак, допускає неточності й не завжди може застосувати знання для розв'язання принципово нової для нього задачі; будує моделі фізичних процесів; обирає раціональний спосіб розв'язання задачі, але розв'язує її з незначними помилками; здатний розв'язувати широке коло проблем і задач шляхом розуміння їх фундаментальних основ та використання теоретичних методів з програми фізики; здатний описати широке коло об'єктів та процесів (як природних, так і штучно створених), починаючи від цілісності всесвіту (включаючи його еволюцію від моменту створення до нинішніх днів) та закінчуючи субатомних частинках та процесах; **ШЛЯХОМ** самостійного навчання освоїти нові області, використовуючи здобуті математичні і фізичні знання; виконав усі види навчальної роботи.

Оцінка "C" (75 – 81 бал) — оцінка " зараховано " (в цілому трунтовні системні знання з невеликою кількістю суттєвих помилок): отримує студент, який виявив ґрунтовні й міцні знання програмного матеріалу; володіє усіма

необхідними уміннями й навичками; орієнтується в основних поняттях, законах і теоріях з розділів «Теоретичної фізики»: «Класична механіка» та «Елетродинаміка», однак, допускає суттєві неточності; в цілому самостійно застосовує теоретичні знання на практиці; робить певні узагальнення; вільно розв'язує репродуктивні задачі; однак, при розв'язуванні пошукових та творчих задач зустрічається чимало неточностей або суттєва помилка; здатний розв'язувати основну частину проблем і задач шляхом розуміння їх фундаментальних основ та використання теоретичних методів з програми фізики; здатний описати основне коло об'єктів та процесів (як природних, так і штучно створених), починаючи від цілісності всесвіту (включаючи його еволюцію від моменту створення до нинішніх днів) та закінчуючи на субатомних частинках та процесах; здатний шляхом самостійного навчання освоїти нові області, використовуючи здобуті математичні і фізичні знання; виконав усі види навчальної роботи.

Оцінка "D" (67 – 74 бали) – оцінка "зараховано" (непогано, але зі значною кількістю недоліків): отримує студент за знання і розуміння тільки основного програмного матеріалу; відтворює матеріал у спрощеній формі; продемонструвати зв'язок між окремими теоретичними може репродуктивні та розв'язує нескладні закономірностями задачі; формулювати основні висновки та робити узагальнення, але допускає при суттєві помилки і неточності; виявляє слабку обізнаність міжпредметними зв'язками даної дисципліни; в основних поняттях, законах і розділів «Теоретичної фізики»: «Класична «Елетродинаміка»; відчуває труднощі під час розв'язування задач із розглянутих розділів теоретичної фізики; здатний шляхом самостійного навчання освоїти нові області, використовуючи здобуті математичні і фізичні знання; виконав усі види навчальної роботи.

Оцінка "Е" (60 – 66 балів) – оцінка "зараховано" (знання та уміння задовільняють мінімальним критеріям): отримує студент, знання та уміння якого задовільняють мінімальним критеріям відповідно до програми; який може відтворити більше половини навчального матеріалу на репродуктивному рівні з елементами логічних зв'язків; володіє елементарними уміннями та навичками; може виконати просте репродуктивне завдання; погано орієнтується рівнянь розділів основних «Класична механіка» питаннях «Електродинаміка», допускає суттєві неточності; на низькому рівні володіє методами розв'язку задач цих розділів, допускає грубі помилки, аналізуючи модель фізичного явища; з допомогою викладача здатен інтерпретувати отримані результати та робити висновки; здатний шляхом самостійного навчання освоїти нові області, використовуючи здобуті математичні і фізичні знання; виконав усі види семестрової навчальної роботи, але зі значними недоліками.

Оцінка "FX" (35 – 59 балів) – оцінка "незараховано" (незадовільні знання з можливістю повторного складання заліку): отримує студент за поверхневе знання і розуміння основного програмного матеріалу; непослідовний виклад матеріалу з допущенням суттєвих помилок; який не вміє робити узагальнення та висновки; не вміє застосовувати теоретичні знання при

розв'язуванні прикладних задач; необізнаний в питаннях, винесених на самостійне опрацювання; не орієнтується в основних законах та рівняннях розділів «Класична механіка» та «Електродинаміка»; не вміє застосовувати методи розглянутих розділів для розв'язування задач та пояснення фізичних явищ; не виконав усіх видів навчальної роботи.

Оцінка "F" $(1-34 \, 6али)$ — оцінка "незараховано" (з обов'язковим повторним курсом): виставляється у випадку, коли студент володіє лише окремими поняттями, фрагментарними знаннями програмного матеріалу без жодного взаємозв'язку між ними; за відсутності сформованих умінь та навичок, що унеможливлює розуміння ним фізичних явищ та процесів, розв'язування прикладних задач; при цьому ж студент не виконав усіх видів навчальної роботи.

5. ЗАСОБИ ДІАГНОСТИКИ РЕЗУЛЬТАТІВ НАВЧАННЯ

- самостійні та контрольні роботи;
- захист індивідуального навчально-дослідницького завдання.

6. ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

1. Статика твердого тіла

- 1.1. Основні поняття, аксіоми й теореми статики
- 1.2. Аксіоми статики
- 1.3. Найпростіші теореми статики
- 1.4. Система збіжних сил
- 1.5. Момент сили відносно точки
- 1.6. Момент сили відносно осі
- 1.7. Зведення двох паралельних сил до рівнодійної
- 1.8. Пара сил. Момент пари сил
- 1.9. Додавання пар сил

2. Кінематика

- 2.1. Кінематика точки. Швидкість точки
- 2.2. Швидкість у декартовій системі координат
- 2.3. Швидкість у полярній системі координат
- 2.4. Секторна швидкість
- 2.5. Прискорення матеріальної точки
- 2.6. Прискорення в полярній системі координат
- 2.7. Природний спосіб задання руху
- 2.8. Швидкість матеріальної точки при природному способі задання руху
- 2.9. Прискорення точки при природному заданні руху
- 2.10. Ступені вільності твердого тіла й теорема про проекції швидкостей
- 2.11. Поступальний рух твердого тіла
- 2.12. Обертальний рух твердого тіла навколо нерухомої осі
- 2.13. Лінійна швидкість при обертовому русі
- 2.14. Лінійне прискорення при обертовому русі
- 2.15. Складний рух точки
- 2.16. Додавання прискорень точки в загальному випадку переносного руху

2.17. Плоский рух твердого тіла та його рівняння руху

3. Динаміка

- 3.1. Основні поняття та аксіоми класичної механіки
- 3.2. Диференціальні рівняння руху й основні задачі динаміки
- 3.3. Прямолінійний рух. Найпростіші випадки інтегрування диференціальних рівнянь руху матеріальних точок
- 3.4. Елементарна й повна робота
- 3.5. Кінетична енергія. Теорема про зміну кінетичної енергії точки та системи матеріальних точок
- 3.6. Потенціальне силове поле. Потенціальна енергія
- 3.7. Закон збереження механічної енергії
- 3.8. Кількість руху точки та системи матеріальних точок
- 3.9. Теорема про зміну кількості руху матеріальної точки й системи матеріальних точок
- 3.10. Момент кількості руху (кінетичний момент) точки й системи матеріальних точок
- 3.11. Теорема про зміну кінетичного моменту точки й системи матеріальних точок

4. Основи аналітичної механіки

- 4.1. Варіаційний принцип в механіці
- 4.2. Зв'язки
- 4.3. Рівняння Лагранжа в декартових координатах
- 4.4. Рівняння Лагранжа в узагальнених координатах
- 4.5. Функція Лагранжа та енергія механічної системи
- 4.6. Закони збереження. Зв'язок функції Лагранжа із законами збереження...
- 4.7. Канонічні рівняння Гамільтона

5. Основи теорії коливань

- 5.1. Визначення стійкості положення рівноваги
- 5.2 Гармонійне коливання матеріальної точки під дією сили, пропорційної зміщенню
- 5.3. Математичний маятник
- 5.4. Фізичний маятник

6. Спеціальна теорія відносності

- 6.1. Передумови виникнення теорії відносності. Постулати Айнштайна
- 6.2. Перетворення координат Лоренцо
- 6.3. Відносність довжини та проміжку часу
- 6.4. Перетворення швидкості
- 6.5. Основний закон релятивістської динаміки

7. Повна система рівнянь Максвелла-Лоренца

- 7.1. Закон Кулона. Напруженість електростатичного поля
- 7.2. Поле об'ємних, поверхневих і лінійних зарядів в однорідному середовищі
- 7.3. Теорема Остроградського-Гауса
- 7.4. Сила Лоренца і магнітне поле рухомих зарядів
- 7.5. Принцип суперпозиції магнітного поля. Закони Біо-Савара-Лапласа. Закон Ампера
- 7.6. Перші рівняння Максвела-Лоренца. Силові лінії електричного поля
- 7.7. Закон збереження заряду

- 7.8. Інтегральна й диференціальна форма рівняння для циркуляції магнітного поля з врахуванням струму зміщення
- 7.9. Соленої дальність магнітного поля
- 7.10. Закон електромагнітної індукції Фарадея

8. Електродинаміка матеріального середовища

- 8.1. Мікроскопічні та макроскопічні поля
- 8.2. Поляризація речовини в електричному полі. Вектор поляризації
- 8.3. Середнє значення густини струму. Вектор намагнічення
- 8.4. Система граничних умов. Неоднорідність середовища
- 8.5. Закон збереження енергії в електромагнітному полі
- 8.6. Закон збереження імпульсу в електромагнітному полі

9. Елементи електростатики

- 9.1. Можливість окремого розгляду електростатичних і магнітостатичних задач
- 9.2. Електростатичне поле в однорідному середовищі
- 9.3. Рівняння Лапласа й Пуассона
- 9.4. Потенціал систем зарядів на великих відстанях
- 9.5. Дипольний, квадрупольний моменти
- 9.6. Енергія системи зарядів
- 9.7. Енергія недеформовної системи зарядів у зовнішньому полі

10. Магнітостатика

- 10.1. Загальні властивості й рівняння магнітостатичного поля
- 10.2. Магнітостатичне поле в однорідному середовищі
- 10.3. Магнітне поле на великих відстанях від системи струму
- 10.4. Магнітні властивості атомних систем
- 10.5. Магнітна енергія стаціонарних струмів
- 10.6. Енергія стаціонарного струму в зовнішньому магнітному полі.
- 10.7. Електрорушійна сила
- 10.8. Електрична енергія заряджених провідників

11. Випромінювання та поширення електромагнітних хвиль

- 11.1. Загальні рівняння електромагнітних хвиль
- 11.2. Випромінювання електромагнітних хвиль
- 11.3. Поширення електромагнітних хвиль у діелектриках
- 11.4. Поляризація електромагнітних хвиль
- 11.5. Відбиття та заломлення плоских електромагнітних хвиль на границі між діелектриками

Орієнтовна тематика практичних занять

- 1. Рівновага твердого тіла, до якого прикладена збіжна система сил. Метод проекцій.
- 2. Момент сили відносно точки. Рівновага твердого тіла з однією нерухомою точкою.
- 3. Кінематика точки. Траєкторія та рівняння руху точки. Швидкість та прискорення.
- 4. Кінематика твердого тіла. Обертання твердого тіла навколо нерухомої осі. Складний рух точки.
- 5. Плоский рух твердого тіла. Обертання твердого тіла навколо нерухомої точки.

- 6. Основні форми диференціальних рівнянь динаміки матеріальної точки. Визначення сил по заданому русі. Визначення руху по заданих силах.
- 7. Коливальний рух. Диференціальні рівняння руху системи матеріальних точок.
- 8. Теорема про рух центра інерції системи матеріальних точок. Теорема про зміну головного моменту кількості руху системи матеріальних точок. Моменти інерції твердого тіла.
- 9. Теорема про зміну кінетичної енергії системи матеріальних точок.
- 10.Класифікація зв'язків. Число ступенів вільності. Принцип можливих переміщень.
- 11.Загальне рівняння динаміки системи матеріальних точок. Рівняння Лагранжа.
- 12. Принцип суперпозиції полів для напруженості та потенціалу електричного поля. Теорема Остроградського-Гауса та її застосування до розрахунку полів.
- 13. Диференціальне рівняння Пуассона та його застосування до розв'язку задач. Обернені задачі. Енергія електростатичного поля.
- 14.Поле на великій відстані від системи зарядів. Дипольний і квадрупольний моменти.
- 15. Статичне магнітне поле. Теорема Стокса. Рівняння для векторного потенціалу. Енергія магнітного поля. Магнітний момент системи.
- 16. Електромагнітні хвилі. Геометрична оптика. Спектральні розклади. Випромінювання електромагнітних хвиль. Енергія випромінювання.
- 17. Електричний і магнітний дипольні та електричні квадрупольні моменти системи зарядів, що рухаються. Дипольне електричне та магнітне квадрупольне випромінювання найпростіших систем. Антени.
- 18. Метод електричних зображень для задач електростатики провідників і діелектриків. Постійний електричний струм та квазістаціонарний струм.
- 19. Електромагнітне поле у рухомому середовищі.

Індивідуальні завдання — це частина навчального матеріалу з дисципліни, що має на меті поглибити, узагальнити та закріпити знання, отримані студентами у процесі навчання, а також застосування цих знань на практиці. Суть завдання у розв'язуванні задач поглибленої складності. Кожен студент який вирішив виконувати індивідуальне завдання отримує по 5 задач, які потрібно розв'язати і здати з два тижні до останнього заняття Кожна задача буде оцінена від 0 до 2 балів.

Тематика задач для індивідуального завдання:

- 1. Статика твердого тіла
- 2. Кінематика
- 3. Динаміка
- 4. Основи аналітичної механіки
- 5. Основи теорії коливань
- 6. Повна система рівнянь Максвелла-Лоренца
- 7. Елементи електростатики
- 8. Магнітостатика

7. ЗАВДАННЯ ДЛЯ САМОСТІЙНОЇ РОБОТИ

Самостійна робота студента з дисципліни передбачає опрацювання теоретичного матеріалу, виконання завдань згідно з переліком компетентностей у межах кожної теми робочої програми, підготовку до контрольних та самостійних робіт та захисту індивідуального навчально-дослідницького завдання.

Теми що виносяться на самостійне опрацювання:

- 1. Пара сил. Момент пари сил
- 2. Додавання пар сил
- 3. Плоский рух твердого тіла та його рівняння руху
- 4. Теорема про зміну кількості руху матеріальної точки й системи матеріальних точок
- 5. Момент кількості руху (кінетичний момент) точки й системи матеріальних точок
- 6. Теорема про зміну кінетичного моменту точки й системи матеріальних точок
- 7. Закони збереження. Зв'язок функції Лагранжа із законами збереження
- 8. Математичний маятник
- 9. Фізичний маятник
- 10.Відносність довжини та проміжку часу
- 11. Перетворення швидкості
- 12.Інтегральна й диференціальна форма рівняння для циркуляції магнітного поля з врахуванням струму зміщення
- 13. Соленої дальність магнітного поля
- 14. Закон збереження енергії в електромагнітному полі
- 15. Закон збереження імпульсу в електромагнітному полі
- 16. Дипольний, квадрупольний моменти
- 17. Енергія системи зарядів
- 18. Енергія недеформовної системи зарядів у зовнішньому полі
- 19. Магнітне поле на великих відстанях від системи струму
- 20. Енергія стаціонарного струму в зовнішньому магнітному полі.
- 21. Електрична енергія заряджених провідників
- 22.Поширення електромагнітних хвиль у діелектриках
- 23. Поляризація електромагнітних хвиль

8. ФОРМИ ПОТОЧНОГО ТА ПІДСУМКОВОГО КОНТРОЛЮ

Засвоєння студентами матеріалу з дисципліни перевіряється контрольними та самостійними роботами, виконанням індивідуального навчально-дослідницького завдання. Також студенти повинні бути готовими до експрес-контролю на лекціях (фронтальне опитування, співбесіда, письмовий тест). Поточний контроль знань здійснюється з метою перевірки рівня засвоєння ним навчального матеріалу. Результати поточного контролю (поточна успішність) є основою для виставлення заліку.

Контрольні роботи, окрім тестових завдань, обов'язково передбачають теоретичні дослідження та вміння студента застосовувати теоретичні знання для розв'язування прикладних задач. У контрольній роботі зазначається кількість балів за правильне виконання кожного з її завдань з урахуванням їх складності, обсягу та значущості в засвоєнні дисципліни.

Самостійні роботи мають на меті перевірку практичного використання знань студентами при розв'язуванні задач курсу.

Сумарна кількість балів з дисципліни визначається як сума балів з усіх видів навчальної роботи і виставляється за трьома шкалами оцінювання: стобальною, національною і ЄКТС.

Залік за талонами № 2 і К проводиться в письмовій формі з оцінюванням за стобальною шкалою. Завдання охоплюють весь програмний матеріал даної навчальної дисципліни.

10	зподы т	oo oanib	між ви	дами рооп.			
С	амостійі	le le					
Теми 1-3	Теми 4-6	Теми 7-8	Теми 9-11	Теми 1-6	Теми 7-11	ндивідуальн завлання	Сума
CP 1	CP 2	CP 3	CP 4	KP 1	KP 2	IE	

Розподіл 100 балів між видами робіт:

9. РЕКОМЕНДОВАНІ ДЖЕРЕЛА ІНФОРМАЦІЇ

25

25

10

100

Рекомендована література

Основна:

10

10

10

10

- 1. Андреєв В.О., Дущенко В.П., Федорченко А.М. Теоретична фізика. Класична механіка. К.: Вища школа. — 1984. — 224 с.
- 2. Бойчук В. І., Білинський І. В., Лешко Р. Я. Електродинаміка. Частина 2 : тексти лекцій [для студентів фізичних спеціальностей]. Дрогобич : Видавничий відділ Дрогобицького державного педагогічного університету імені Івана Франка, 2014. 96 с.
- 3. Бойчук В. І., Білинський І. В., Лешко Р. Я. Електродинаміка. Частина 3 : тексти лекцій [для студентів фізичних спеціальностей]. Дрогобич : Видавничий відділ Дрогобицького державного педагогічного університету імені Івана Франка, 2015. 71 с.
- 4. Бойчук В.І, Білинський І. В, Лешко Р. Я. Електродинаміка. Частина 1: тексти лекцій [для студентів фізичних спеціальностей]. Дрогобич : Редакційновидавничий відділ Дрогобицького державного педагогічного університету імені Івана Франка, 2013. 96 с.
- 5. Бугаєнко Г.О. Електродинаміка / Г.О. Бугаєнко, М.Е. Фонкіч. К.: Рад. Школа, 1965. 325 с.
- 6. Гаральд Іро. Класична механіка. Львів. 1999 464 с.

- 7. Гольський В.Б. Теоретична механіка (частина 1) : навчальний посібник. Дрогобич: ДДПУ, 2014. 107 с.
- 8. Гольський В.Б. Теоретична механіка (частина 2) : навчальний посібник. Дрогобич: ДДПУ, 2015. 110 с.
- 9. Добронравов В.В., Никитин Н.Н. Курс теоретической механики. М.: Высшая школа. 1983. 576 с.
- 10. Ландау Л.Д. Лифшиц. И.Н. Теоретичекая Физика: Учебное пособие. В 10-ти т. Т. І. Механика. М.: Наука, 1988. 216 с.
- 11. Ландау Л.Д. Теоретическая физика: Учеб. пособие. В 10 т. Т. VIII. Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиш. М.: Наука, 1982. 621 с.
- 12. Ландау Л.Д. Теоретическая физика: Учеб. пособие. В 10 т. Т. II. Теория поля / Л.Д. Ландау, Е.М. Лифшиш. М.: Наука, 1988. 512 с.
- 13. Матвеев А.Н. Электродинамика и теория относительности / А.Н. Матвеев. М.: Высшая школа, 1980. 383 с.
- 14. Мултановський В.В. Курс теоретической физики. Классическая электродинамика / В.В. Мултановський, А.С. Василевський. М.: Просвещение, 1990. 272 с.
- 15. Савельев И.В. Основы теоретической физики. Механика, электродинамика / И.В. Савельев М.: Наука, 1991. 264 с.
- 16. Савельев И.В. Основы теоретической физики. Т. 1. М.: Наука. 1991. 496 с.
- 17. Федорченко А.М. Теоретическая физика. Классическая электродинамика. / А.М. Федорченко К.: Высшая школа, 1988. 310 с.

Додаткова література

- 1. Бредов М.М. Классическая электродинамика / М.М. Бредов, В.В. Румянцев, И.Н. Топтыгин. М.: Наука, 1985. 400 с.
- 2. Вайнштейн Л.А. Электромагнитные волны / Л.А. Вайнштейн. М.: Радио и связь, 1988. 440 с.
- 3. Вонсовский С.В. Магнетизм / С.В. Вонсовский. M: Hayka, 1971. 1032 с.
- 4. Джексон Дж. Классическая электродинамика / Дж. Джексон. М.: Мир, 1962. 703 с.
- 5. Дуков В.М. Электродинамика (история и методология макроскопической электродинамики). Учеб. пособие для ун-тов / В.М. Дуков. М.: Высшая школа, 1975. 248 с.
- 6. Ильинский А.С. Математические модели электродинамики / А.С. Ильинский, В.В. Кравцов, А.Г. Свешников. М.: Высшая школа, 1991. 224 с.
- 7. Миролюбов Н.Н. Методы расчета электростатических полей / Н.Н. Миролюбов, М.В. Костенко, М.Л. Левинштейн. М.: Высшая школа, 1962. 416 с.
- 8. Нефёдов Е.И. Электродинамика периодических структур / Е.И. Нефёдов, А.Н. Сивов. М.: Наука, 1977. 208 с.
- 9. Пеннер Д.И. Электродинамика и специальная теория относительности / Д.И. Пеннер, В.А. Угаров М.: Просвещение, 1980. 271 с.
- 10. Тамм И.Е. Основы теории электричества: Учеб. пособие для вузов / И.Е. Тамм. М.: ФИЗМАТЛИТ, 2003. 616 с.
- 11. Федорченко А.М. Теоретична фізика. Т. 1. К.: Вища школа. 1992. 536 с.

12. Яблонский А.А., Никифорова В.М. Курс теоретической механики. — М.: Высшая школа, 1966. - 4.1. - 438 с.

Збірники задач

- 1. Алексеев А.И. Сборник задач по классической электродинамике, учебное пособие / А.И. Алексеев. М.: Наука, 1977. 319 с.
- 2. Батыгин В.В. Сборник задач по электродинамике / В.В. Батыгин, И.Н Топтыгин. М.: НИЦ «Регулярная и хаотическая динамика», 2002. 640 с.
- 3. Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. М.: Наука. 1967. Т. І. 512 с. –Т. ІІ. 664 с.
- 4. Векштейн Е.Г. Сборник задач по электродинамике / Е.Г. Векштейн. Л.: Высшая школа, 1966. 288 с.
- 5. Гильденбург В.Б. Сборник задач по электродинамике: Учебное пособие для студентов вузов, обучающихся по физическим направлениям и специальностям / В.Б. Гильденбург. М.: Физматлит, 2001. —168 с.
- 6. Гречко Л.Г. Сборник задач по теоретической физике / Л.Г. Гречко. М.: Высшая школа, 1972.
- 7. Жирнов Н.И. Задачник-практикум по электродинамике / Н.И. Жирнов. М.: Просвещение, 1970. 352 с.
- 8. Мещерский И.В. Сборник задач по теоретической механике. М.: Наук. 1985.-448 с.

Інформаційні ресурси

- 1. Електронний архів наукових та освітніх матеріалів КПІ ім. Ігоря Сікорського: http://ela.kpi.ua/
- 2. Науковий репозитарій Чернівецького національного університету імені Юрія Федьковича:
 - http://www.library.chnu.edu.ua/index.php?page=/ua/04fondy
- 3. Електронний науковий архів Науково-технічної бібліотеки Національного університету "Львівська політехніка": http://ena.lp.edu.ua:8080/
- 4. Мультидисциплінарний відкритий електронний apxiв ELibUkr-OA: http://oa.elibukr.org/
- PhET : онлайн-моделі : Фізика: https://phet.colorado.edu/uk/simulations/category/physics

Дрогобицький державний педагогічний університет імені Івана Франка

SAIBER	джую
Проректор з науков	во-педагогічної роботи
	<u>В.Л. Шаран</u>
підпис	ініціали та прізвище
	20 p.

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

Теоретична фізика (Класична механіка, електродинаміка)

Назва

Галузь знань 01 Освіта

Спеціальність <u>014 Середня освіта (Математика)</u>

Освітня програма Середня освіта (Математика, Фізика)

Статус дисципліни Вибіркова(за вибором студента)

Навчально-науковий інститут фізики, математики, економіки та інноваційних технологій

Кафедра фізики

Мова навчання <u>українська</u> Дані про вивчення дисципліни

			:: O	Кількість годин							Вид	
	ş	d.	пліни ЄКТ	Аудиторні заняття					на	а робота	семестрового контролю	
Форма навчання	Kypc	Семестр	Обсяг дисципліни: год / кредити ЄКТС	Разом	Лекції	Лабораторні роботи	Практичні заняття	Семінарські заняття	Самостійна робота	Курсова р	Залік	Екзамен
Денна	III	6	150 / 5	64	32	-	32	_	86	_	+	_
Заочна	III	6	150 / 5	20	10	-	10	-	130	_	+	_

Робоча програма складена на основі освітньої програми та навчального плану підготовки бакалавра. Ступінь вищої освіти Розробники: В.Б. Гольський, кандидат фізико-математичних наук, доцент Пілпис Ініціали та прізвище викладача, науковий ступінь та вчене звання Погоджено керівником групи забезпечення освітньої програми: Дільний В. М.,. доктор фізико-математичних наук, доцент Ініціали та прізвище, науковий ступінь та вчене звання Схвалено на засіданні кафедри фізики. Протокол N_2 _____ від _____ 20 ____ р. Р.М. Пелещак Завідувач кафедри Підпис Ініціали та прізвище Схвалено на засіданні науково-методичної ради навчально-наукового інституту фізики, математики, економіки та інноваційних технологій. Протокол № _____ від ____ 20 ___ р. Схвалено на засіданні науково-методичної ради університету.

Протокол № _____ від ____ 20 ___ р.