MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION SUMMER-13 EXAMINATION

Model Answer

Subject &code : PCT(12299)

Important instructions to examiners:

- 1. The answers should be examined by keywords and not as word to word as given in the model answer scheme.
- 2. The model answer and the answer written by candidate may vary, but the examiner may try to assess the understanding level of the candidate.
- 3. The language errors such as grammatical, spelling errors should not given more importance.
- 4. While assessing figures, examiner may give credit for principal components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6. In case of some questions credit may be given by judgment of relevant answer based on candidates understanding.

Q	Answer	Mar	Total
No:		k	mark
			s
1.a.i	2-" A refinery is composed of a group of chemical engg.unit processes	2	4
	& unit operations used for refining certain materials or converting raw		
	material into products of value".		
	1) IPCL,Baroda - 1.0 MMTPA	2	
	2) Reliance, Hazira - 1.6 MMTPA		
1.a.ii	Desalting-Crude oil often contains water,inorganic salts,suspended	2	4
	solids & water soluble trace metals. As a first step in the refining		
	process,to reduce corrosion, plugging, & fouling of equipment & to		

		1	1
	prevent poisoning the catalyst in processing units, these contaminants		
	must be removed by desalting.		
	Electrical Desalting-The feedstock crude oil is heated between 150^{0} F	2	
	&350°F to reduce viscosity & surface tension for easier mixing &		
	separation of water . In electric desalting water & unrefined crude is		
	heated & forms emulsion. This emulsion is break through electrical		
	voltage for about 20000 to 30000 V .So the impurities in crude oil are		
	seperated.		
	Process Bectrical power		
	Unrefined crude GRAVITY SETTLER Enthuent water		
1.a.ii	Isomerization-is used to alter the arrangement of a molecule without	2	4
i	adding or removing anything from the original molecule.		
	xylene	1	
	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃		
	o-xylene p-xylene	1	
	Butyl alcohol		

1.a.i v	CH ₂ —CH ₂ —CH ₃ —CH ₃ —CH ₃ —CH ₂ —CH ₃ —OH A-butyl alcohol 1-butanol bp. 118 °C CH ₃ —CCH—CH ₃ OH CH ₂ —CH—CH ₃ OH CH ₃ —CH—CH ₃ OH 1-butyl alcohol 2-methyl-1-propanol bp. 108 °C Primary treatment is the separation of oil, water, hydrocarbon & solids from waste water in two stages. During the first stage, an API separator, a corrugated plate intercepater or other separator design is used. Wastewater moves very slowly through the separator allowing free oil to float to the surface & be skimmed off & solids to settle to the bottom & be scraped off to a sludge collecting hopper. The second stage utilizes physical or chemical method to separate emulsified oils from the waste water. Physical method may include use of series of settling ponds with a long retention time or the use of dissolved air flotation(DAF).In this air is bubbled through the	2	4
1 0 11	Dranvlana avida for Patyson 60 and 70% of all propulate avide is	2	4
1.a.v	Propylene oxide - for Between 60 and 70% of all propylene oxide is converted to polyether polyolsthe production of polyurethane plastics.	mark	4
	About 20% of propylene oxide is hydrolyzed into propylene glycol, via	each	
	a process which is accelerated by acid or base <u>catalysis</u> . Other major	for	
	products are polypropylene glycol, propylene glycol ethers, and	any	
	propylene carbonate.	two	
	Toluene -solvents-paints,rubber,plastic cements,Detergents-toluene sulfonates		
	MTBE-as afuel component in fuel for gasoline engines, as areaction		

	medium & extraction solvent to replace methylene chloride, aromatics.		
1.b.i	Crude oil is the term for unprocessed oil, the stuff that comes out of the	3	6
	ground.It is also known as petroleum.Crude oil is a fossil fuel.		
	Meaning that it was made naturally from decaying plants & animals		
	living in ancient seas millions of years ago. Crude oils vary in		
	colour, from clear to tar black, & in viscosity, from water to almost		
	solid.	3	
	Carbon -84%		
	Hydrogen -14%		
	Sulphur -1 to 3%		
	Nitrogen - < 1%		
	Oxygen - <1%		
	Metals - < 1%		
	Salts - <1%		
1.b.ii	Personal –Hearing protection, respiratory protection, safety glasses	1	6
	Vehicles – Vehicle entry is by permit only & keys are to be left in park	mark	
	vehicles	each	
	Special authorization permits –excavation, temporary electrical		
	facilities		
	Electrical precautions –All electrical tools ,cords & equipments must		
	be grounded or double insulated.		
	Emergency warning system & procedure –When an alarm sounds,		
	secure all equipments & shut down all machines.		
	Sewers –Sewers must be covered when hot work is being done in the		
	vicinity.		
2.a	Difference between petroleum refinery and petrochemical industry	4	4
	A refinery processes crude oil into different components such as		
	kerosene, gasoline, diesel, LPG (light petroleum gases), etc. A		
	1	1	

	petrochemical plant is a chemical plant that will use a petroleum based		
	feedstock, such as LPG or other products from a petroleum refinery to		
	produce a chemical product, such as plastics for example		
2.b	The crude oil distillation unit (CDU) is the first processing unit in	4	4
	virtually all petroleum refineries. The CDU distills the incoming crude		
	oil into various fractions of different boiling ranges, each of which are		
	then processed further in the other refinery processing units. Crude oil		
	contains various constituents such as diesel, petrol, asphalt, waxes etc.		
	So for efficient separation of all hydrocarbons distillation is very		
	important.		
2.c	Reforming –Catalytic reforming is an important process used to convert	4	4
	low octane napthas into high octane gasoline blending components		
	called reformates. Reforming represents the total effect of numerous		
	reactions such as cracking, polymerization, dehydrogenation &		
	isomerisation taking place simultaneously. Depending on the properties		
	of the naphtha feedstock & catalyst used ,reformates can be produce		
	with very high conc. Of toluene, benzene, xylene &other aromatics		
	useful in gasoline blending & petrochemical processing.		
2.d	In secondary treatment, dissolved oil & other organic pollutants may be	4	4
	consumed biologically by microorganisms. Biological treatment may		
	require addition of oxygen through a number of different techniques,		
	including activated sludge units, trickling filters & rotating biological		
	contactors. Secondary treatment generates biomass, waste which is		
	typically treated anaerobically, & then dewatered. These processes		
	biologically degrade and oxidize soluble organic matter by the use of		
	activated sludge, aerated lagoons.		
	•		

2.e	Methanol Water Wenthanol vapour Recycle methanol vapour Napour Na	4	4
2.f	Flash point –It is the lowest temp. at which the oil gives of enough	1	4
	vapours which ignites for a moment when small flame is brought to		
	near it.		
	Auto ignition temperature – It is the temp. at which a substance can be	1	
	brought to flames whitout any sort of external force, such as flame or		
	spark.	1	
	LEL –As a combustible gas is gradually mixed with air in increasing	1	
	proportions, a conc. Is reached at which the mixture just becomes explosive i. e. ignitable.		
	HEL –As conc. of the gas is further increased, a point is reached at	1	
	which the mixture ceases to be ignitable,& the conc. of the gas just	1	
	before this point is called higher explosive limit.		
3.a	In fractional Distillation the mixture of multi components are separated	2	4
	into their parts by means of their relative volatility and Boiling points.		
	Especially when their boiling points are 25 °C less with each other. This		
	operation is carried out in Fractional column known as Fractional		
	Distillation.		
	Examples:	2	
	1) Crude Oil Distillation		
	2) Argon is produced industrially by the <u>fractional</u>		
	<u>distillation</u> of <u>liquid air</u>		
	3) Oxygen and Nitrogen separation		

	Etc.			
3.b	i)	Naphtha	1	4
		As a feedstock for ethylene and aromatic production, for	mark	
		gasoline production by reforming or isomerisation etc	each	
	ii)	Diesel oil		
		Fuel for furnace boilers, in diesel engines		
	iii)	Jet Fuel		
		Uses in aviation turbine power plant, Sometimes in diesel		
		engines as resemble as a diesel oil		
	iv)	Asphalt		
		For road Construction as a binder, for Building construction,		
		making asphalt tires		
3.c	Emission	contains saturated HC usually in the lower molecular weight	4	4
	range. Th	ne emission come from venting excess associated gas & from		
	evaporati	ve losses in water treatment facilities, pump & storage tank. In		
	addition	there exists a higher potential for accidents, therefore an		
	increased	l possibility of spillage.		
	1) Hydro	carbon emission controls		
		This can be minimized by process changes installation of		
	control e	quipments & improved housekeeping.		
	2) Combi	ustion source controls		
		Hydrocarbon emissions from process heaters & steam		
	boilers ca	an be minimized by adjusting the fuel to air ration for optimum		
	fuel com	bustion		
	3) Storag	e & loading controls.		
	4) Loadir	ng rule controls.		
	5) Proces	ss source controls.		
	1) Incine	ration		
		In brief existing control technology for production emission		
	consist of	f the following		
	Storage f	acilities		

	Wastewater separators		
	Pump & compressor seals		
	Relief valves		
	Pipeline valves		
	Heaters & compressor engines & other losses.		
3.d	i) 1)Absolute Alcohol: The 100% alcohol which is made by	1	4
	adding ternary azeotrop like benzene or extractive distillation using		
	ethylene glycol is known as 100% alcohol or absolute alcohol.		
	2) Rectified Spirit: This is 95% ethanol taken off from rectifying	1	
	column and used a direct sale as potable, government controlled		
	alcohol known as Rectifying Spirit.		
	ii) Denatured alcohol or methylated spirits is ethanol that has additives	1	
	to make it undrinkable (poisonous, extremely bad tasting, foul smelling		
	or <u>nauseating</u>), to discourage recreational consumption.		
	e.g Methanol, Iso propyl alcohol, methyl ethyl ketone, acetone	1	
3.e	C6H6 + CH2=CH2 → C6H5CH2CH3	1	4
	C6H5CH2CH3 +H2 C6H5CHCH2	1	
	Temperature: 200 to 500 OC		
	Catalyst ALC13, Promoted Zinc, Cr, Fe or MgO on activated carbon	2	
	Uses : In the production of SBR		
	In packaging Industries, In rubber, plastic, insulation, Polymer		
4.a.i	Crude oil is a yellowish black mineral oil that is extracted from under	4	4
	the surface of earth. This oil consist of a no. of hydrocarbon compounds		
	as it is from the million of year old animal & plant .crude oil the single		
	most important commodity that holds the position of a key factor in		
	each & every economy of the world . The world richest nation are at their		
	current position fast because of the oil factor. The imp. Of oil has		
	reached such a level at which these is no country in the world.		
	Crude oil over other energy sources:		
	1)Diverse application		

4.a.ii	Hydro cracking is the two stage process combining catalytic	2	4
i	cracking & by hydrogenation where in feedstock are cracked		
	into pressure of hydrogen to produce or desirable products.		
	The process employs high pressure high temp. a catalyst &		
	hydrogen .Hydro-cracking is used for feedstock that are		
	difficult to process by either catalytic cracking are reforming.		
	Fresh gas		
		2	
	Quench Products		
	gas Products Recycle gas		
	compressor		
	1 1		
	FRACTIONATION Sector at Co.		
	separator U		
	0 0		
	Feed		
4.a.i			4
v.a.1			7
V			

	Fluid catalytic cracking:-		
	cracking 2) moving bed catalytic cracking 3) thermoform catalytic cracking.		
	The three types of catalytic cracking processes are 1) fluid catalytic		
	than in thermal cracking.		
	improved quality products under much less severe operating condition		
	Use of a catalyst in the cracking reaction increases the yield of		
	facilitate the conversion of the heavier molecules into lighter products.		
	catalytic cracking is similar to thermal cracking except that catalysts		
	compared to the free radical intermediate in thermal cracking.		
	A major difference between thermal and catalytic cracking is that reactions through catalytic cracking occur via carbonation intermediate,		
	olefin content in the liquid products.		
	Products from catalytic cracking unites are more stable due to a lower		
	octane than thermal cracking.		
	petrochemicals. catalytic cracking produces more gasoline of higher		
	produces light hydrocarbon gases, which are important feed stocks for		
	and produce higher value light and middle distillates. The process		
5.a	The principal aim of catalytic cracking is to crack lower value stocks	4	8
	3) Dimethyl terephthalate		
	2) Isophthalic Acid		
	products from Xylene: 1) phthalic Anhydride	2	
	product contain 99% benzene & 96% xylene.		
	wash water where the impurity is removed. Top as a		
	about 1-1.5% volume of feed. Remaining part is fed to		
	feed back again to extraction column as a reflux which		
	cooled and to settler. Two settler are used one settler is		

The fluid cracker consists of a catalyst section and a fractionating section that operate together as an integrated processing unit. the oil is cracked in the presence of a finely divided catalyst.

In **thermal cracking** distillate fuels and heavy oils were heated under pressure in large drums until they are cracked into smaller molecules with better antiknock characteristics. However this method produces large amounts of solid, unwanted coke. types of catalytic cracking processes are 1) visbreaking 2) steam cracking 3) coking.

Visbreaking:-

Residual from the atmospheric distillation tower is heated and mildly cracked in a heater. It is then quenched with cool gas oil to control over cracking and flashed in a distillation tower, visbreaking is used to reduce the pour point of waxy residues and reduce the viscosity of residues used for blending with lighter fule oil

4

	5. Ergonomic hazards: - these include excessive vibration and noise, eye		
	strain, repetitive motion, and heavy lifting problem, improperly		
	designed tools or work areas.		
6.a	Advantages of vacuum distillation compared to atm. Distillation are as follows:-	2	4
	Vacuum distillation is used for compounds that have high boiling points (usually above 200 °C). These compounds tend to decompose at the boiling point temp required at atmospheric pressure. Since pulling a vacuum on the flask will reduce the temperature required to have boiling you avoid decomposition.		
	Heavier fractions from the atmospheric distillation unit that cannot be distilled without cracking under its pressure and temp conditions are vacuum distilled. Vacuum distillation is simply the distillation of petroleum fractions at very low pressure to increase volatilization and separation.		
	Vacuum distillation increases the relative volatility of the key components in many applications. The higher the relative volatility, the more separable are the two components; this connotes fewer stages in a distillation column in order to effect the same separation between the overhead and bottoms products. Lower pressures increase relative volatilities in most systems.		
	Examples.	2	
	Vacuum distillation is used to recover additional distillates from long residue in petroleum refinery		
	Vacuum distillation is used in the manufacturing of phenol.		
6.b	Hydrogenation reaction of unsaturated oil:-	1	4

	G-6B $\begin{array}{c} CH_2-0-CO-C_{17}H_{33} \\ CH_2-0-CO-C_{17}H_{33} \\ CH_2-0-CO-C_{17}H_{33} + GH \longrightarrow CH-O-CO-C_{17}H_{35} \\ CH_2-0-CO-C_{17}H_{33} \\ CH_2-0-CO-C_{17}H_{35} \\ CH_2-0-CO-C_{17}H_{35} \\ CH_2-0-CO-C_{17}H_{35} \\ CH_2-0-CO-C_{17}H_{35} \\ CH_2-CO-CO-C_{17}H_{35} \\ CH_2-CO-CO-C$		
	Catalyst:- :- Nickel ,platinum, palladium, rhodium ,ruthenium 01 marks	1	
	Temperature range:- 110°C to 200°C 01 marks	1	
	Pressure:- 0.24lb 01 marks	1	
6.c	Characteristic of waste water produced in refinery from: i) Crude oil desalting – crude oil or desalted sludge(iron,rust,clay,sand,water,emulsified oil and wax, metals) ii) Coking – coked dust (carbon particles and hydrocarbons) iii) Catalytic cracking – spent catalyst iv) Heat ex changer cleaning – heat exchanger sludge (oil, metals & suspended solid) v) Storage tank – tank bottom sludge (iron,rust,clay,sand,water,emulsified oil and wax, metals)	mark each, any four	4
6.d	Chemical reaction:-	1	4
	 i) Main reaction:- C6H6 + CH3.CH=CH2 → C6H6.C3H7 [isopropyl benzene(cumene)] ii) Side reaction:- C6H6 + nCH3.CH=CH2 → C6H6-n.(C3H7)n polyisopropyl benzene 		

	Temperature: 250°C		
	Catalyst: Impregnated H3PO4	1	
	Process description:-	2	
	Propylene – propane feedstock from refinery off-gases of a naphtha	2	
	steam cracking plant is mixed with benzene and pumped at 25 atms.		
	Into the top of the reactor ,packed stage wise with H3PO4 impregnated		
	catalyst. The temp is maintained at approximately 250°C by adding cold		
	propane at each stage to absorb the heat of reaction.		
	The reaction effluent is depropanized and the propane split into quench		
	or product streams. The depropanized bottoms are separated into		
	benzene, cumene, & polycumenes in the remaining two stills.		
6.e	Flow dig:-	4	4
	(8 6 . e.)		
	Mater wash Water wash Water wash Till BE reacide The part of t		
	C ₄ feedstock		
	Melhanol		
	MTBE product		
	Fig. 4.17 : MTBE via catalytic etherification		
	Process Description :		