Econ 330: Urban Economics

Lecture 14

John Morehouse 20 February, 2020

Lecture XIV: Housing Policy

Schedule

Today

- 1) Introduction
- 2) Two Models
- 3) Two Policies

Upcoming

- HW3 due Feb 25th (next class)
- **Reading** (Chapter 9)

Homeownership

Why is buying a home different than buying a pair of jeans? (other than the difference in price)

A house is a store of value. This value is subject to uncertainty. (This is what I mean by asset)

- Fundamentally, purchasing a home is a dynamic (forward looking) decision
- Jeans (a pure consumption good) are not really a store of value

We will focus on renters. But first lets take a look at some data

Rentals vs Homeowners

Checklist

- 1) Introduction 🔽
- 2) Two Models

3) Two Policies

Rental Market Model

Just like labor markets, each city has its own market for rental units

- Consists of suppliers (absentee landlords)
- Individuals making optimal housing demand decisions

Important: Structure of the market has big implications for policy

Competitive Model

Very similar to the competitive labor market model

- 1) No invididual landlord can influence the price of rents
- 2) Landlords decide how much housing to provide
- 3) The amount of housing they provide will again come from profit maximization

Important: Labor market model: firm was deciding how much labor to hire. Now we will model the landlord as picking a quantity of housing to provide

Competitive Model Math

Profit function given by:

$$\pi(Q) = P * Q - TC(Q)$$

- **Note**: Now cost is a function of quantity
 - Implicitly we are assuming that at any quantity, the firm will use the optimal level of labor and capital

Marginal profit equals zero, $\frac{\Delta\pi(Q)}{\Delta Q}=0$:

$$\frac{P * \Delta Q}{\Delta Q} - \frac{\Delta TC(Q)}{\Delta Q} = 0$$

$$P = \frac{\Delta TC(Q)}{\Delta Q}$$

$$P = MC(Q)$$

The Monopoly Model

Now let's consider the monopoly situation:

- 1) One seller of the good (rental units)
- 2) Ability to set prices
- 3) Still profit maximizing

Monopoly: Math

Again, the monopolist will still be a profit-maximizer

- TR is now given by: TR = P(Q)*Q
 - Quantity that the monopolist produces impacts the price
 - P(Q) is the inverse demand function (what you are used to seeing for demand)

Profit is given by

$$\pi(Q) = P(Q) * Q - TC(Q)$$

Monopoly: Profit Maxing

Profit Maximization gives us the familiar $rac{\Delta\pi(Q)}{\Delta Q}=0$

$$\frac{\Delta P(Q) * Q}{\Delta Q} - \frac{\Delta TC(Q)}{\Delta Q} = 0$$
$$MR(Q) = MC(Q)$$

Note: Now, $\frac{\Delta P(Q)*Q}{\Delta Q} \neq P$.

Monopoly Graph

Checklist

- 1) Introduction <
- 2) Two Models 🗸
 - Competitive Model
 - Monopoly Model

3) Two Policies

Two Policies

- We will focus on two policies:
- 1) Rent Control
- 2) Land-Use Restrictions (you are familiar with these already)
 - We will also look at how these could interact

Rent Control

Defn Rent Control: A *price ceiling* set on rental units

• Price Ceiling: Max allowed price on the market

Brief History (US):

- Started around WW1. Expanded during WWII
- 1970: Nixon puts 90 day freeze on prices to combat inflation
- Mostly a place based policy.
 - SF, NY, LA, Oakland, DC, Berkeley, West Hollywood
 - Oregon: first state to have .pink[state-wide rent control]

Rent Control

Rent Control in Oregon

- In 2019: Oregon passes state-wide rent control
- Limits annual rent increases to inflation + 7% (inflation is usually 2-3%)
- If tenants leave on their own accord, landlords can increase rent without limit

Question: Are the ramifications from state-wide rent-control different than local rent control? Why?

Land Use Restrictions

Land use restrictions limit what one is able to do with developable land. Examples:

- 1. Density Restrictions
- 2. Min Lot Sizes
- 3. Park Requirements
- 4. Sidewalk and street size requirements
- 5. Height Restrictions

Not all of these are bad things. But they do make developing land more expensive.

Wharton Index

Table 5: WRLURI2018 Values for CBSAs with Ten or More Observations

CBSA Name	WRLURI	# Obs	CBSA Name	WRLURI	# Obs
1. San Francisco-Oakland-Hayward, CA	1.18	18	23. Dallas-Fort Worth-Arlington, TX	0.17	49
2. New York-Newark-Jersey City, NY-NJ-PA	1.04	57	24. Hartford-West Hartford-East Hartford, CT	0.14	14
3. Providence-Warwick, RI-MA	0.93	14	25. Portland-South Portland, ME	0.13	16
4. Seattle-Tacoma-Bellevue, WA	0.73	22	26. Kansas City, MO-KS	0.13	17
5. Los Angeles-Long Beach-Anaheim, CA	0.73	48	27. San Antonio-New Braunfels, TX	0.10	10
6. Riverside-San Bernardino-Ontario, CA	0.68	18	28. Buffalo-Cheektowaga-Niagara Falls, NY	0.05	12
7. Washington-Arlington-Alexandria, DC-VA-MD-WV	0.66	16	29. Harrisburg-Carlisle, PA	0.01	15
8. Miami-Fort Lauderdale-West Palm Beach, FL	0.66	35	30. Lancaster, PA	-0.01	14
9. Phoenix-Mesa-Scottsdale, AZ	0.64	11	31. Columbus, OH	-0.01	17
10. Portland-Vancouver-Hillsboro, OR-WA	0.60	18	32. Houston-The Woodlands-Sugar Land, TX	-0.04	16
11. Madison, WI	0.60	13	33. Pittsburgh, PA	-0.06	56
12. Philadelphia-Camden-Wilmington, PA-NJ-DE-MD	0.48	49	34. Minneapolis-St. Paul-Bloomington, MN-WI	-0.10	48
13. Albany-Schenectady-Troy, NY	0.47	10	35. Chicago-Naperville-Elgin, IL-IN-WI	-0.10	94
14. Denver-Aurora-Lakewood, CO	0.41	16	36. Atlanta-Sandy Springs-Roswell, GA	-0.12	27
15. Youngstown-Warren-Boardman, OH-PA	0.32	10	37. Worcester, MA-CT	-0.23	16
16. Boston-Cambridge-Newton, MA-NH	0.30	44	38. Cleveland-Elyria, OH	-0.28	19
17. Indianapolis-Carmel-Anderson, IN	0.30	14	39. Grand Rapids-Wyoming, MI	-0.31	24
18. ScrantonWilkes-BarreHazleton, PA	0.30	10	40. Rochester, NY	-0.38	26
19. Syracuse, NY	0.25	11	41. Charlotte-Concord-Gastonia, NC-SC	-0.38	12
20. Milwaukee-Waukesha-West Allis, WI	0.24	22	42. Cincinnati, OH-KY-IN	-0.38	26
21. Allentown-Bethlehem-Easton, PA-NJ	0.22	14	43. Detroit-Warren-Dearborn, MI	-0.42	60
${\bf 22.\ Nashville-DavidsonMurfreesboroFranklin, TN}$	0.17	12	44. St. Louis, MO-IL	-0.51	37
	0.17		•		

Higher values of the wharton index \implies tighter land use restrictions

Example

A Model

Do Land-Use regs and rent control interact? Absolutely! Let's model it

$$egin{aligned} P(Q_d) &= 20 - 2 * Q_d \ P(Q_s) &= 8 + Q_s \end{aligned}$$

Compute the equilibrium. Graph it, if that is helpful

• Now suppose the government ratchets up land-use regs. New supply is given by:

$$P(Q_s^{new}) = 8 + 2 * Q_s^{new}$$

Example

Old eq:
$$Q^* = 4$$
, $P^* = 12$

New eq:
$$Q^st=3$$
, $P^st=15$

Government comes in and says the rents are too high. Rent control set at 12 per unit. Now you have:

$$12 = 8 + 2 * Q_s \implies Q_s = 2$$
 $12 = 20 - 2 * Q_d \implies Q_d = 4$

So we have a shortage of two units at the old equilibrium price. 😧

A Note

We wont have time (but it might be good practice) for you to think through what would happen if the market was a **monopoly**

- Similar to the **monopsonist**, rent control can actually lower prices in a completely monopolized housing market
- Let's take a (quick) look at some recent empirical evidence

Empirics

Empirical Evidence: Diamond et. al (2019)

- 1979: Rent control in SF put in place for all standing buildings with 5 apartments or more
 - New buildings exempt (to promote developers to continue building)
 - Small multi-family apartment buildings ("mom & pop") exempted
- 1994: Exemption for small multi-family buildings removed. All apartments **built before 1980** subject to rent control

Empirics: Findings

In this study:

- **Treatment**: Those living in small apartment complexes (5 or less) built in 1979 or before
- **Control**: Those living in small apartments complexes (5 or less) built after 1979 (not subject to rent control)

A fair comparison? Maybe concerned that those living in apartments built before or after 1979 are systematically different

- Main Findings:
- 1) Renter mobility was reduced by about 20%
- 2) Housing Supply was reduced by about 15%

So What?

Moral of the story: Yes, in SF:

- Are rent controls the best fix?
 - (In SF, probably not)
 - Other empirical evidence suggesting rent control went poorly in NY as well
 - Could possibly fix the CA housing crises by letting people build houses

Checklist

- 1) Introduction <
- 2) Two Models 🗸
 - Competitive Model
 - Monopoly Model

- 3) Two Policies **V**
 - Land-Use Regulations
 - Rent Control