ASSIGNMENT-2

TECHNOLOGY: As machine learning and python

DESCRIPTION: The project is combinate of data analysis and machine learning In the project will focus on predicting heart disease using neural network

PROGRAM:

```
In [4]: df info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 303 entries, 0 to 302
        Data columns (total 14 columns):
                    303 non-null int64
        sex
                    303 non-null int64
                    303 non-null int64
        ср
        trestbps
                    303 non-null int64
        chol
                    303 non-null int64
                    303 non-null int64
        fbs
                    303 non-null int64
        restecg
        thalach
                    303 non-null int64
        exang
                    303 non-null int64
        oldpeak
                    303 non-null float64
                    303 non-null int64
        slope
                    303 non-null int64
        ca
        thal
                    303 non-null int64
        target
                    303 non-null int64
        dtypes: float64(1), int64(13)
        memory usage: 33.2 KB
```

In [6]: df.describe()

Out[6]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpe
count	303.000000	303.000000	303,000000	303.000000	303,000000	303.000000	303.000000	303.000000	303.000000	303,0000
mean	54.366337	0.683168	0.996997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.03960
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.16107
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.00000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.00000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.80000
75%	61,000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.60000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.20000
_							_			

In [11] import seaborn as sns

#get correlations of each features in dataset

corrmat = df.corr()

top_corr_features = corrmat.index

plt.figure(figsize=(20,20))

#plot heat map

g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdV1Gn")

```
In [14]: df.hist()
Out[14]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x00000017C18BE4FD0>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C18C12EF0>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C18BDB2E8>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C19D50550>],
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C1959F7B8>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C190A4A20>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C19427C88>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x00000017C1949BF28>],
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C1949BF60>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C19224400>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C1A03F668>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x00000017C18F138D0>],
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C19505B38>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C19577DA0>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C1A28A048>,
                 <matplotlib.axes. subplots.AxesSubplot object at 0x0000017C1A3B72B0>]],
               dtype=object)
```

```
In [16]: sns.set_style('whitegrid')
    sns.countplot(x='target',data=df,palette='RdBu_r')
Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x17c19761208>
```

```
In [17]: dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbt', 'restecg', 'exang', 'slope', 'ca', 'thal']]
In [18]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    standardScaler = StandardScaler()
    columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
    dataset[columns_to_scale] = standardScaler.fit_transform(dataset[columns_to_scale])
```

```
In [19]: dataset.head()
Out[19]:
         thalach
                  oldpeak target sex_0 sex_1 cp_0 cp_1 ... slope_2 ca_0 ca_1 ca_2 ca_3 ca_4 thal_0 thal_1 thal_2 thal_3
                 1.087338
         .015443
         .633471
                 2.122573
         .977514 0.310912
         .239897 -0.206705
                                                                                0
                                                                                      0
                                                                                           0
                                                                                                                      0
         .583939 -0.379244
In [24]: y = dataset['target']
          X = dataset.drop(['target'], axis = 1)
In [25]: from sklearn.model_selection import cross_val_score
```

```
In [25] from sklearn.model_selection import cross_val_score
knn_scores = []
for k in range(1,21):
    knn_classifier = KNeighborsClassifier(n_neighbors = k)
    score=cross_val_score(knn_classifier,X,y,cv=10)
    knn_scores.append(score.mean())

In [26]:

plt.plot([k for k in range(1, 21)], knn_scores, color = 'red')
for i in range(1,21):
    plt.text(i, knn scores[i-1], (i, knn scores[i-1]))

In [26]:

plt.plot([k for k in range(1, 21)], knn_scores, color = 'red')
for i in range(1,21):
    plt.text(i, knn_scores[i-1], (i, knn_scores[i-1]))
    plt.txticks([i for i in range(1, 21)])
    plt.xlabel('Number of Neighbors (k)')
    plt.ylabel('Scores')
```

plt.title('K Neighbors Classifier scores for different K values')

DIAGRAM:

Feature Selection using Recursive Feature Elimination and Cross-Validated selection method:

Figure 8: Top 10 important features supported by RFECV

CHAPTER 7: CONTRIBUTIONS

Members			
Task	Nirusha Manandhar	Sagun Lal Shrestha	Ruchi Tandukar
Data Imputation and			
Scaling			
Data Cleaning			
Exploratory Analysis			
Feature Selection			
Building Model			
Result analysis and			
Accuracy Test			
Documentation			

Table 4: Work Division

TEAM LEADER: S.AFREEN BANU

TEAM Members

- B.SANGEETHA
- K.KAVIYA
- R.GAYATHRI

TEAM ID: PNT2022TMID37943

TEAM SIZE:4

TEAM MENTORS: VIJAYAKUMARI