```
109550118 孫宜君 HW3 #46. #48~50
46.
   8k = 2 \times 2 = 2^{10}
   Pecoder: one 13 x 213 decoder
   # AND gates = 2 (8192)
  # inputs = 13
  1' A single 13×2'3 line decoder > 8192 AND gates with 13 inputs in each.
(b)
   8k \times 4 = 32k \cdot bits = 2^{15}bits = 2^{15} \times 2^{8}
                             = 2^{1} \times (2 \times 4)
                   row selection column selection.
   Decoder = one 1x2 decoder & 6x2 decoder
   #AND gates & # Input = 2° 9-Inputs AND gates & 26 6-Inputs AND gates.
48(a)
(ii). 3 4 Z A B C D
0 0 0 1 1 0 0
                                    (ii)
                                       2 × 4=8×4 ROM
                                    (illi)
```

B= y' 1.8 x 3 ROM

8×3

ROM

48(b)

(ii)
$$A \ge A_1 A_0 = F_2 F_1 F_0 = (\lambda \lambda)^3 = 8 \times 3 ROM$$
 $0 0 0 0 0 0 0 0 0$
 $0 0 1 0 0 1 = F_2 = A_2 = \lambda^3 = 8 \times 2 ROM$
 $0 1 0 0 1 1 = A_2 =$

49(0)

$$A(X,Y,Z)$$
 $A(X,Y,Z)$
 $A(X,Y,Z)$

$$A = \chi'y + \chi'z' + yz' + \chi y'z$$

$$A = \chi y'z' + \chi y'z + \chi yz$$

$$B = 7y' + 7z + y'z$$

 $B' = 7'y + 7'z' + yz'$

(i)i)
$$A = x'y + x'z' + yz' + xy'z$$
 (4) $A = xy' + xz' + yz'$
 $A' = xy'z' + xy'z' + xyz'$ $A' = x'y' + x'z' + yz'$

1,3×4×2 PLA

(iiii)

PLA Programing table:

			Outputs		
	ĨI	nputs	T	C	
Product terms	7	y	Z	A	В
x'y	0	1	-		1
N'Z	0	-	1	1	12
yz'	1	1	0	1	
Xy'Z	1	0	1	1	-

49(b) (i)

A(W.X. Y.Z)

J.	-)			
COX YZ	00	01		10
00	0 0	U,	13	
01	0 4	0 5	0,	0
1)	17 12	13	015	11
10	1	119	0,	10

 $A = \omega y' + \omega z' + \omega' x' y$ A'=W'X+W'Y'+WYZ

B(W, X, y, Z)

B=W'y'+WZ+X'y'Z' B = WX + YZ + WZ + WY

(iii)
$$A-B\Rightarrow (6)$$
 $A'-B\Rightarrow (5)$

$$A-B\Rightarrow (9)$$
 $A-B\Rightarrow (9)$

$$A-B\Rightarrow (1)$$

(iiii)

			Outputs			
		Inpu	0	T		
Product terms	W	X	y	Z	A	В
wx	0	-	-	_	1	_
w'y'	0		0	-	1	
WYZ	1	-	1		1	1
W'Z'	0	-	-	0	-	1
X'Y'Z'	_	0	0	0	-	

50(a) $\begin{array}{c} 3v(x) \\ (\lambda) \\ A(X,Y,Z) \\ 2v(X,Y,Z) \\ 2v(X,Y,Z)$

B(X, y, Z)

B= xy'+ xz+ y'z.

(NUN) Let $C = \chi y' Z + \chi' y \Rightarrow A = \chi' Z' + y Z' + C$

A=72+74+42+742

Product	AN	D Tr	Durnite		
terms	T	y	Z	C	Outputs
- 1	0	_	0	-	A=XZ
2	_		0	-	+ 42
3	-	_	_		+ C
4	1	0	-	-	B=75'
5	1	-	1	-	+ 7/2
6	-	0	1	-	+ 42
2	1	0	1	-	C=XYZ
8	0	1	-	-	+ X'Y
9	-	-	-	-	

(NN)

	= =, \ X.					
	Product	AN	ID 1	0		
	terms	W	X	9	Z	Dutputs
1	1	J	_	D	F=	A= wy
-	2	1	-	_	-0	t WZ'
	3	0	0]		+ wxy
•	4	0	_	0	_	B= WY
	5	0	_	_	0	+ W'Z'
-	6	_	D	0	0	+ X 'Y'Z'
-		-				