

## TABLE OF CONTENTS

- Clustering Approaches
- Unsupervised K-Means
- U-K-Means clustering algorithm
- Implementation
- Experimental results

## CLUSTERING APPROACHES



### CLUSTERING APPROACHES

- 1. Probability model-based
  - Mixture models
- 2. Nonparametric
  - Hierarchical
  - Partitional



## UNSUPERVISED K-MEANS



### UNSUPERVISED K-MEANS

- Is K-Means algorithm a true unsupervised algorithm?
- What is the major problem of K-Means algorithm and its extension?



### UNSUPERVISED K-MEANS

- X-Means
  - an algorithm to estimate the number of clusters
- Unsupervised K-Means Clustering Algorithm (U-K-Means)
  - New proposed algorithm which finds the number of clusters automatically



#### Definitions:

- 1. Z: membership matrix  $\epsilon R^{n*c}$  where Z[i, k] is 1 if sample  $x_i$  belongs to cluster k
- 2.  $\alpha$ : a list where each element k determines the probability that a data point belongs to cluster k
- 3. a: list of current centroids
- 4. Entropy:  $\Sigma_{k=1}^{c} \alpha_k \ln \alpha_k$
- 5. β: parameter to control the competition
- 6. γ: learning parameter



Objective Function:

$$J_{U-k-means}(z, A, \alpha) = \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik} \|x_i - a_k\|^2 - \beta n \sum_{k=1}^{c} \alpha_k \ln \alpha_k$$
$$-\gamma \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik} \ln \alpha_k$$
(2)



Updating the probabilities:

$$\alpha_k^{(t+1)} = \sum_{i=1}^n z_{ik}/n + (\beta/\gamma)\alpha_k^{(t)} \left( \ln \alpha_k^{(t)} - \sum_{s=1}^c \alpha_s^{(t)} \ln \alpha_s^{(t)} \right)$$



#### U-k-means clustering algorithm

- Step 1: Fix  $\varepsilon > 0$ . Give initial  $c^{(0)} = n$ ,  $\alpha_k^{(0)} = 1/n$ ,  $a_k^{(0)} =$  $x_i$ , and initial learning rates  $\gamma^{(0)} = \beta^{(0)} = 1$ . Set t = 0.
- Step 2: Compute  $z_{ik}^{(t+1)}$  using  $a_k^{(t)}$ ,  $\alpha_k^{(t)}$ ,  $c^{(t)}$ ,  $\gamma^{(t)}$ ,  $\beta^{(t)}$  by (4). Step 3: Compute  $\gamma^{(t+1)}$  by (10). Step 4: Update  $\alpha_k^{(t+1)}$  with  $z_{ik}^{(t+1)}$  and  $\alpha_k^{(t)}$  by (6).

- Step 5: Compute  $\beta^{(t+1)}$  with  $\alpha^{(t+1)}$  and  $\alpha^{(t)}$  by (14).
- Step 6: Update  $c^{(t)}$  to  $c^{(t+1)}$  by discard those clusters with  $\alpha_k^{(t+1)} \leq 1/n$  and adjust  $\alpha_k^{(t+1)}$  and  $z_{ik}^{(t+1)}$  by (8) and (9).
  - IF  $t \ge 60$  and  $c^{(t-60)} c^{(t)} = 0$ , THEN let  $\beta^{(t+1)} =$
- Step 7: Update  $a_k^{(t+1)}$  with  $c^{(t+1)}$  and  $z_{ik}^{(t+1)}$  by (5). Step 8: Compare  $a_k^{(t+1)}$  and  $a_k^{(t)}$ .
- - $\text{IF} \max_{1 \leq k \leq c^{(t)}} \left\| a_k^{(t+1)} a_k^{(t)} \right\| < \varepsilon, \text{ THEN Stop.}$

ELSE t = t+1 and return to Step 2.

#### Notable problems of the paper:

- 1. Matrix Z will be an identity matrix on 0<sup>th</sup> iteration
- 2. Recall that it is not mentioned which  $\beta$  and  $\gamma$  should be used to update  $\alpha$
- 3. Inconsistent criteria for updating the number of clusters
- 4. Despite strictly defining that matrix Z has either value 1 or 0 but algorithm (9) makes this matrix contain other values than 0 or 1.  $I_{c(t+1)}$

$$z_{ik}^* = z_{ik}^* / \sum_{s=1}^{c^{(t+1)}} z_{is}^*$$
 (9)

Hello Shoaei. Sorry for the late reply.

I reviewed your code and paper carefully and I did simple experiment with your code.

You are right. Matrix Z on iteration 0 would be an identity matrix and it causes no updated for alpha.

Because there are no update for alpha, algorithm does not work.

## IMPLEMENTATION OF U-K-MEANS



### **IMPLEMENTATION**

The Algorithm is defined as a Python class described below



### IMPLEMENTATION

#### Methods:

```
def compute z(self, X: np.ndarray)
    "compute the matrix Z"
def update gamma (self)
    "update gamma using algorithm (10)"
def update alpha(self, X: np.ndarray)
    "update each alpha using algorithm (6)"
def update beta(self, X: np.ndarray, alpha t: np.ndarray)
    """update beta using algorithm (14).
    current alpha array must be passed"""
def update c alpha z(self, X: np.ndarray) -> np.ndarray:
    """this is step 6 of the proposed algorithm
    which updates the number of clusters"""
def update a(self, X: np.ndarray)
    "update centroids using algorithm (5)"
```

### IMPLEMENTATION

#### Methods:

```
def fit(self, X: np.ndarray)
    "main method which must be called to fit the model"
def predict(self, X: np.ndarray)
    """predict the labels of the data
    the lables will differ from the original labels
    because the algorithm is not deterministic"""
def accuracy rate(self, X: np.ndarray, y true: np.ndarray)
    """if the number of clusters is found correctly
    then this method finds the original label of each sample
```

## EXPERIMENTAL RESULTS





#### Without Noise

- Iteration = 13
- C\* = 6
- AR = 0.99

#### With Noise

- Iteration = 20
- C\* = 6
- AR = 0.968





3-variate, 14-components

- Iteration = 20
- C\* = 14
- AR = 0.99625





| Mixing proportions                                                                                    | Mean values                                                                          | covariance matrix             |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|
| $\alpha_1 = 0.2$ $\alpha_2 = 0.3$ $\alpha_3 = 0.1$ $\alpha_4 = 0.1$ $\alpha_5 = 0.2$ $\alpha_6 = 0.1$ | $\begin{array}{c} \mu_1 = \left( \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\sum_{k} = I_{[20\times20]}$ |

20-variate, 6-components 900 samples

#### Result:

- Iteration = 11
- C\* = 6
- AR = 1.0





- Iteration = 11
- $C^* = 9$
- AR = 0.996



| Dataset     | True C | C* | AR     |
|-------------|--------|----|--------|
| Iris        | 3      | 3  | 0.8866 |
| Seeds       | 3      | 3  | 0.8857 |
| Australian  | 2      | 1  | -      |
| Flowmeter D | 4      | 2  | -      |
| Sonar (*)   |        |    |        |
| Wine        | 3      | 3  | 0.6067 |
| Horse       | 2      | 1  | -      |
| Waveform V1 | 3      | 4  | -      |

<sup>\*:</sup> dataset was not found in UCI repository

| Dataset   | True C | C* | AR     |
|-----------|--------|----|--------|
| SPECT     | 2      | 2  | 0.4385 |
| PARKINSON | 2      | 2  | 0.6974 |
| WPBC      | 2      | 2  | 0.8541 |
| COLON(*)  |        |    |        |
| LUNG (*)  |        |    |        |
| Nci9(*)   |        |    |        |

<sup>\*:</sup> dataset was not found in UCI repository

- It is unclear how 135 out of 165 images were selected.
- The result in the following table are using the first 9 images of each person.
- Tweaking the number of images changed the number of clusters with a maximum 6 cluster for selecting the first 7

| Dataset         | True C | C* | AR | Paper C* |
|-----------------|--------|----|----|----------|
| Yale Face 32x32 | 15     | 2  | -  | 16       |

| Dataset  | True C | <b>C</b> * | AR | Paper C |
|----------|--------|------------|----|---------|
| CIFAR-10 | 10     | 8          | -  | 10      |

- The paper does display the sample that were chosen from the dataset
- It is stated that there are 10 image per class
- The image displaying the samples used in paper contains 11 pictures from horse class which affects the authenticity of results achieved by the paper



# EXPERIMENTAL RESULTS PERFORMANCE

| Dataset   | Time (s)  |
|-----------|-----------|
| Synthetic | : Dataset |
| Example 1 | 2.49      |
| Example 2 | 9.07      |
| Example 3 | 10.3      |
| Example 4 | 74        |

| Dataset     |  | Dataset     | Time (s) |
|-------------|--|-------------|----------|
| UCI Data    |  | UCI Dataset |          |
| Iris        |  | Iris        | 0.251    |
| Seeds       |  | Seeds       | 0.682    |
| Australian  |  | Australian  | 6.31     |
| Flowmeter D |  | Flowmeter D | 0.923    |
| Sonar(*)    |  | Sonar(*)    |          |
| Wine        |  | Wine        | 0.557    |
| Horse(*)    |  | Horse(*)    |          |
| Waveform    |  | Waveform    | 240      |
|             |  |             |          |

# EXPERIMENTAL RESULTS PERFORMANCE

| Dataset   | Time (s) |
|-----------|----------|
| Medical   | Dataset  |
| SPECT     | 0.440    |
| Parkinson | 1.08     |
| WPBC      | 5.99     |
| Colon(*)  |          |
| LUNG(*)   |          |
| Nci9(*)   |          |

| Dataset         | Time (s) |
|-----------------|----------|
| Image I         | Dataset  |
| Yale Face 32x32 | 0.349    |
| CIFAR-10        | 0.218    |