

5.2.5 参比电极

天津大学 邱海霞

标准氢电极

参比电极

- ◆制备、使用和维护比较方便
- ◆电极电势已精确知晓而且又十分稳定的电极

甘汞电极

$$K_{\rm sp}^{\Theta}({\rm Hg_2Cl_2}) = 1.43 \times 10^{-18}$$

电极反应

$$Hg_2Cl_2(s) + 2e^- \Longrightarrow 2Hg(1) + 2C1^-$$

甘汞

组成: Hg, Hg₂Cl₂, KCl溶液

KCl浓度	E(Hg ₂ Cl ₂ /Hg)/V
饱和	0.2412
1mol·L ⁻¹	0.2682
0.1mol·L ⁻¹	0.3337

甘汞电极

优点

制备容易性能稳定

缺点

高温稳定性差

电极符号 甘汞电极

Pt Hg (l) $Hg_2Cl_2(s)$ $Cl^-(2.8mol \cdot L^{-1})$

Ag-AgCI电极

电极反应

$$AgCl + e^{-} \longrightarrow Ag + Cl^{-}$$

KCI浓度	E(AgCl/Ag)/V
饱和	0.2223
1mol·L ⁻¹	0.199
0.1mol·L ⁻¹	0.2880

Ag-AgCI电极

优点

高温稳定性好

电极符号
Ag AgCl(s) Cl-(c)