Package 'saebnocov'

October 14, 2022

Title Small Area Estimation using Empirical Bayes without Auxiliary Variable

Version 0.1.0

Description Estimates the parameter of small area in binary data without auxiliary variable using Empirical Bayes technique, mainly from Rao and Molina (2015,ISBN:9781118735787) with book entitled "Small Area Estimation Second Edition".

This package provides another option of direct estimation using weight.

This package also features alpha and beta parameter estimation on calculating process of small area.

Those methods are Newton-

Raphson and Moment which based on Wilcox (1979) <doi:10.1177/001316447903900302> and Kleinman (1973) <doi:10.1080/01621459.1973.10481332>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

Imports descr, dplyr, rlang, stats

Depends R (>= 3.5.0)

LazyData true

NeedsCompilation no

Author Siti Rafika Fiandasari [aut, cre], Margaretha Ari Anggorowati [aut], Bahrul Ilmi Nasution [aut]

Maintainer Siti Rafika Fiandasari <fikafianda@gmail.com>

Repository CRAN

Date/Publication 2022-09-05 07:20:05 UTC

2 alphabetaEB

R topics documented:

alphabetaEB	2
bootstrapEB	3
dataEB	4
EBnaive	5
estEBnaive	
jackknifeEB	7
matrixClaire	8
matrixRao	9
momentClaire	10
momentRao	
newtonRaphsonC	11
newtonRaphsonR	12
pcapdir	13
vectorClaire	14
vectorRao	14
	16

alphabetaEB

Estimates alpha and beta parameter to obtain EB estimator

Description

Estimates alpha and beta parameter to obtain EB estimator

Usage

Index

```
alphabetaEB(data.dir, pcap, method, opt, maxiter, tol)
```

Arguments

data.dir	Direct estimates of the data from function pcapdir
рсар	weighted sample mean and variance from function pcapdir
method	Method to estimate alpha and beta parameter according to person(rao or claire)
opt	Method to estimate alpha and beta parameter according to the way of calculation (moment or nr)
maxiter	the Maximum iteration value
tol	Tolerance error value at iteration

Value

This function returns a data frame with following objects:

alpha_cap an alpha estimator by user's choice method beta_cap an beta estimator by user's choice method

bootstrapEB 3

Examples

```
## load dataset with no weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])
## estimates alpha and beta parameter
## in EB estimate with Moment method by J.N.K.Rao
alphabetaEB(data.dir = temp$direst ,pcap = temp$pcap,
method = "rao", opt = "moment",maxiter = 100,tol = 0.00001)

##load dataset with weight value
data(dataEB)
temp = pcapdir(dataEB)
## estimates alpha and beta parameter
## in EB estimate with Moment method by Claire E.B.O.
alphabetaEB(data.dir = temp$direst ,pcap = temp$pcap,
method = "claire", opt = "moment",maxiter = 100,tol = 0.00001)
```

bootstrapEB

Small Area Estimation method with Empirical Bayes and its RRMSE value by Bootstrap Method

Description

Small Area Estimation method with Empirical Bayes and its RRMSE value by Bootstrap Method

Usage

```
bootstrapEB(data, method, opt, seed = NA, maxiter = 25, tol = 1e-05, B = 50)
```

Arguments

data	the data must contain two or three columns: code, y, and weight data if exist.
method	Method to estimate alpha and beta parameter according to person(rao or claire)
opt	Method to estimate alpha and beta parameter according to the way of calculation (moment or nr)
seed	Setting a seed in set.seed() function to initialize a pseudorandom number generator with default number $\boldsymbol{0}$
maxiter	the Maximum iteration value with default 100
tol	Tolerance error value at iteration with default 0.00001
В	The number of iteration of bootstrap resampling with default 200

4 dataEB

Value

This function returns a list with following objects:

finalres an information about direct estimator and EB estimator in each area with its

RRMSE value obtained by bootstrap method

eb.estimation an information about EB estimator in each area with its RRMSE value obtained

by Naive method

References

Rao J, Peralta IM (2015). *Small Area Estimation Second Edition*. John Wiley & Sons, Inc., Hoboken, New Jersey, Canada. ISBN 978-1-118-73578-7.

Examples

```
## load dataset with no weight value
data(dataEB)
## Calculates EB estimator with its
## RRMSE value by Bootstrap method.
## Its alpha and beta estimator obtained
## by Moment method by J.N.K.Rao
bootstrapEB(data = dataEB[,-c(3)], method = "rao",
opt = "moment", maxiter = 20, tol = 1e-5,B=20,seed=0)
##load dataset with weight value
data(dataEB)
## Calculates EB estimator with its
## RRMSE value by Bootstrap method.
## Its alpha and beta estimator obtained
## by Moment method by Claire E.B.O.
bootstrapEB(data = dataEB, method = "rao",
opt = "moment", maxiter = 20, tol = 1e-5,B=20,seed=0)
```

dataEB

Sample Data for Practice

Description

An example data for trying and testing in saebnocov package

Usage

dataEB

EBnaive 5

Format

A sample data has 3 column, which are:

code code of each area

y status "success" or not in each unit sample of each area weight a weight value in each unit sample of each area

Examples

data(dataEB)

EBnaive Small Area Estimation method with Empirical Bayes and its RRMSE

value by Naive Method

Description

Small Area Estimation method with Empirical Bayes and its RRMSE value by Naive Method

Usage

```
EBnaive(data, method, opt, maxiter = 100, tol = 1e-05)
```

Arguments

the data must contain two or three columns: code, y, and weight data if exist.

Method to estimate alpha and beta parameter according to person(rao or claire)

Method to estimate alpha and beta parameter according to the way of calculation (moment or nr)

maxiter the Maximum iteration value with default 100

tol Tolerance error value at iteration with default 0.00001

Value

This function returns a list with following objects:

finalres an information about direct estimation and EB estimator in each area

estimation an information about EB estimator and its RRMSE value obtained by Naive

method

parameter Alpha and beta estimator

pcap pcap (the weighted sample mean), vardir (the weighted sample variance), yt (the

total number of the "success" category from each area), and nt (the total number

of sample from each area)

dir.est an information about direct estimator

6 estEBnaive

Examples

```
## load dataset with no weight value
data(dataEB)
## Calculates EB estimator
## with its RRMSE value by Naive method.
## Its alpha and beta estimator obtained
## by Moment method by J.N.K.Rao
EBnaive(data = dataEB[,-c(3)],method = "rao",opt = "moment", maxiter = 100, tol = 1e-5)
##load dataset with weight value
data(dataEB)
## Calculates EB estimator
## with its RRMSE value by Naive method.
## Its alpha and beta estimator obtained
## by Moment method by Claire E.B.O.
EBnaive(data = dataEB, method = "claire",opt = "moment", maxiter = 100, tol = 1e-5)
```

estEBnaive

Small Area Estimation method with Empirical Bayes and its RRMSE value by Naive Method

Description

Small Area Estimation method with Empirical Bayes and its RRMSE value by Naive Method

Usage

```
estEBnaive(data.dir, pcap, param)
```

Arguments

data.dir direct estimator information from function direct.est

pcap (the weighted sample mean), vardir (the weighted sample variance), yt (the

total number of the "success" category from each area), and nt (the total number

of sample from each area)

param Alpha and Beta estimator

Value

This function returns a list with following objects:

eb.est EB estimator in each area

mse MSE of EB estimator obtained by Naive method

rrmse RRMSE of EB estimator obtained by Naive method

jackknifeEB 7

Examples

jackknifeEB

Small Area Estimation method with Empirical Bayes and its RRMSE value by Jackknife Method

Description

Small Area Estimation method with Empirical Bayes and its RRMSE value by Jackknife Method

Usage

```
jackknifeEB(data, method, opt, maxiter = 100, tol = 1e-05)
```

Arguments

data	the data must contain two or three columns: code, y, and weight data if exist.
method	Method to estimate alpha and beta parameter according to person(rao or claire)
opt	Method to estimate alpha and beta parameter according to the way of calculation (moment or nr)
maxiter	the Maximum iteration value with default 100
tol	Tolerance error value at iteration with default 0.00001

Value

This function returns a list with following objects:

finalres an information about direct estimator and EB estimator in each area with its

RRMSE value obtained by jackknife method

eb.estimation an information about EB estimator in each area with its RRMSE value obtained

by Naive method

8 matrixClaire

Examples

```
## load dataset with no weight value
data(dataEB)
## Calculates EB estimator with
## its RRMSE value by Jackknife method.
## Its alpha and beta estimator obtained
## by Moment method by J.N.K.Rao
jackknifeEB(data = dataEB[,-c(3)], method = "rao",
 opt = "moment", maxiter = 20, tol = 1e-5)
##load dataset with weight value
data(dataEB)
## Calculates EB estimator with
## its RRMSE value by Jackknife method.
## Its alpha and beta estimator obtained
## by Moment method by Claire E.B.O.
jackknifeEB(data = dataEB, method = "rao",
 opt = "moment", maxiter = 20, tol = 1e-5)
```

matrixClaire

Matrix G in Newton Raphson method by Claire E.B.O.

Description

Matrix G in Newton Raphson method by Claire E.B.O.

Usage

```
matrixClaire(alpha, beta)
```

Arguments

alpha An alpha estimate value on iterating process beta A beta estimate value on iterating process

Value

This function returns a value of matrix G.

```
## load dataset with no weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])

## estimates alpha and beta parameter
## in EB estimate with Moment method by J.N.K.Rao
temp1 = alphabetaEB(data.dir = temp$direst ,pcap = temp$pcap,
```

matrixRao 9

matrixRao

Matrix G in Newton Raphson method by J.N.K.Rao

Description

Matrix G in Newton Raphson method by J.N.K.Rao

Usage

```
matrixRao(alpha, beta, ni, yi)
```

Arguments

alpha	An alpha estimate value on iterating process
beta	A beta estimate value on iterating process
ni	The number of sample in each area
vi	The number of "success" value in each area

Value

This function returns a value of matrix G.

10 momentRao

momentClaire	Estimates alpha and beta parameter with Moment method by Claire
	E.B.O.

Description

Estimates alpha and beta parameter with Moment method by Claire E.B.O.

Usage

```
momentClaire(data.dir, pcap)
```

Arguments

data.dir Direct estimates of the data from function pcapdir

pcap weighted sample mean and variance from function pcapdir

Value

This function returns a data frame with following objects:

alpha_cap an alpha estimator by Moment method of Claire E.B.O. beta_cap a beta estimator by Moment method of Claire E.B.O.

Examples

```
## load dataset with no weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])
momentClaire(data.dir = temp$direst, pcap = temp$pcap)
##load dataset with weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])
momentClaire(data.dir = temp$direst, pcap = temp$pcap)
```

momentRao Estimates alpha and beta parameter with Moment method by J.N.K.Rao

Description

Estimates alpha and beta parameter with Moment method by J.N.K.Rao

newtonRaphsonC 11

Usage

```
momentRao(data.dir, pcap)
```

Arguments

data.dir Direct estimates of the data from function pcapdir

pcap weighted sample mean and variance from function pcapdir

Value

This function returns a data frame with following objects:

alpha_cap an alpha estimator by Moment method of Claire E.B.O. beta_cap an beta estimator by Moment method of Claire E.B.O.

Examples

```
## load dataset with no weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])
momentRao(data.dir = temp$direst, pcap = temp$pcap)

##load dataset with weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])
momentRao(data.dir = temp$direst, pcap = temp$pcap)
```

newtonRaphsonC

Estimates alpha and beta parameter with Newton Raphson method by Claire E.B.O.

Description

Estimates alpha and beta parameter with Newton Raphson method by Claire E.B.O.

Usage

```
newtonRaphsonC(data.dir, pcap, maxiter, tol)
```

Arguments

data.dir Direct estimates of the data from function pcapdir

pcap weighted sample mean and variance from function pcapdir

maxiter the Maximum iteration value tol Tolerance error value in iteration

12 newtonRaphsonR

Value

This function returns a data frame with following objects:

alpha_cap an alpha estimator by Newton Raphson method of Claire E.B.O. beta_cap an beta estimator by Newton Raphson method of Claire E.B.O.

Examples

```
## load dataset with no weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])
newtonRaphsonC(data.dir = temp$direst, pcap = temp$pcap,
maxiter = 100, tol = 0.00001)

##load dataset with weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])
newtonRaphsonC(data.dir = temp$direst, pcap = temp$pcap,
maxiter = 100, tol = 0.00001)
```

newtonRaphsonR

Estimates alpha and beta parameter with Newton Raphson method by

J.N.K. Rao

Description

Estimates alpha and beta parameter with Newton Raphson method by J.N.K. Rao

Usage

```
newtonRaphsonR(data.dir, pcap, maxiter, tol)
```

Arguments

data.dir Direct estimates of the data from function pcapdir

pcap weighted sample mean and variance from function pcapdir

maxiter the Maximum iteration value
tol Tolerance error value in iteration

Value

This function returns a data frame with following objects:

alpha_cap an alpha estimator by Newton Raphson method of J.N.K.Rao beta_cap an beta estimator by Newton Raphson method of J.N.K.Rao

pcapdir 13

Examples

```
## load dataset with no weight value
data(dataEB)
temp = pcapdir(dataEB[,-c(3)])
newtonRaphsonR(data.dir = temp$direst, pcap = temp$pcap,
    maxiter = 100, tol = 0.00001)

##load dataset with weight value
data(dataEB)
temp = pcapdir(dataEB)
newtonRaphsonR(data.dir = temp$direst, pcap = temp$pcap,
    maxiter = 100, tol = 0.00001)
```

pcapdir

Weighted Sample Mean and Variance

Description

Weighted Sample Mean and Variance

Usage

```
pcapdir(data)
```

Arguments

data

the data must contain two or three columns: code, y, and weight data if exist.

Value

This function returns a list with following objects:

direst an information about direct estimatior in each area

pcap pcap (the weighted sample mean), vardir (the weighted sample variance), yt (the

total number of the "success" category from each area), and nt (the total number

of sample from each area)

```
## load dataset with no weight value
data(dataEB)
pcapdir(dataEB[,-c(3)])

##load dataset with weight value
data(dataEB)
pcapdir(dataEB)
```

14 vectorRao

vectorClaire

Vector g in Newton Raphson Method by Claire E.B.O.

Description

Vector g in Newton Raphson Method by Claire E.B.O.

Usage

```
vectorClaire(alpha, beta, p)
```

Arguments

alpha An alpha estimate value on iterating process
beta A beta estimate value on iterating process
p direct estimator or proportion value

Value

This function returns a value of vector g.

Examples

vectorRao

Vector g in Newton Raphson Method by J.N.K.Rao

Description

Vector g in Newton Raphson Method by J.N.K.Rao

Usage

```
vectorRao(alpha, beta, ni, yi)
```

vectorRao 15

Arguments

alpha	An alpha estimate value on iterating process
beta	A beta estimate value on iterating process
ni	The number of sample in each area
yi	The number of "success" value in each area

Value

This function returns a value of vector g.

Index

```
\ast datasets
     dataEB, 4
{\tt alphabetaEB}, {\tt 2}
\verb|bootstrapEB|, 3
dataEB, 4
EBnaive, 5
\verb"estEB naive", 6
jackknifeEB, 7
{\tt matrixClaire}, \textcolor{red}{8}
matrixRao,9
momentClaire, 10
momentRao, 10
{\it newtonRaphsonC}, \\ 11
newtonRaphsonR, 12
pcapdir, 13
vectorClaire, 14
vectorRao, 14
```