# End-to-end machine learning

Lecture 02

# Common language



# independent variable

input

predictor

feature

X

# dependent variable

output

response

target

У



# **Machine Learning Process**

- 1. Define your problem, set your goal, and and how you will measure success
- 2. Get, explore, and prepare the data
- 3. Propose a hypothesis: a prospective model
- 4. Evaluate model performance and iteratively fine tune
- 5. Deploy your model

# Supervised learning in practice

### **Preprocess**

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Feature Extraction

Dimensionality reduction eliminates redundant information

### **Learning the Model**

Training

Select the "best" hypothesis function by choosing model parameters

### **Apply the Model**

Prediction

Predict a categorical (classification) or numerical (regression) target function

# **Evaluate Performance**

Cross-Validation

### **Metrics**

### Classification

Precision, Recall, F<sub>1</sub>, ROC Curves (Binary), Confusion Matrices (Multiclass)

### Regression

MSE, explained variance, R<sup>2</sup>

# Supervised learning in practice

### **Preprocess**

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Feature Extraction

Dimensionality reduction eliminates redundant information

# **Learning the Model** Training Select the "best" hypothesis function by choosing model parameters **Apply the Model** Prediction Predict a categorical (classification) or numerical (regression) target function

**Evaluate Performance** 

Cross-Validation

Metrics

Classification

Precision, Recall, F<sub>1</sub>, ROC Curves (Binary), Confusion Matrices (Multiclass)

Regression

MSE, explained variance, R<sup>2</sup>

# Always check your data

|   | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_house_value | ocean_proximity |
|---|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|--------------------|-----------------|
| 0 | -122.23   | 37.88    | 41.0               | 880.0       | 129.0          | 322.0      | 126.0      | 8.3252        | 452600.0           | NEAR BAY        |
| 1 | -122.22   | 37.86    | 21.0               | 7099.0      | 1106.0         | 2401.0     | 1138.0     | 8.3014        | 358500.0           | NEAR BAY        |
| 2 | -122.24   | 37.85    | 52.0               | 1467.0      | 190.0          | 496.0      | 177.0      | 7.2574        | 352100.0           | NEAR BAY        |
| 3 | -122.25   | 37.85    | 52.0               | 1274.0      | 235.0          | 558.0      | 219.0      | 5.6431        | 341300.0           | NEAR BAY        |
| 4 | -122.25   | 37.85    | 52.0               | 1627.0      | 280.0          | 565.0      | 259.0      | 3.8462        | 342200.0           | NEAR BAY        |
| 5 | -122.25   | 37.85    | 52.0               | 919.0       | 213.0          | 413.0      | 193.0      | 4.0368        | 269700.0           | NEAR BAY        |
| 6 | -122.25   | 37.84    | 52.0               | 2535.0      | 489.0          | 1094.0     | 514.0      | 3.6591        | 299200.0           | NEAR BAY        |
| 7 | -122.25   | 37.84    | 52.0               | 3104.0      | 687.0          | 1157.0     | 647.0      | 3.1200        | 241400.0           | NEAR BAY        |
| 8 | -122.26   | 37.84    | 42.0               | 2555.0      | 665.0          | 1206.0     | 595.0      | 2.0804        | 226700.0           | NEAR BAY        |
| 9 | -122.25   | 37.84    | 52.0               | 3549.0      | 707.0          | 1551.0     | 714.0      | 3.6912        | 261100.0           | NEAR BAY        |

The data have been scaled (potentially for anonymization purposes)

These data are categorical

Categories/counts below:

| <1H OCEAN  | 9136 |
|------------|------|
| INLAND     | 6551 |
| NEAR OCEAN | 2658 |
| NEAR BAY   | 2290 |
| ISLAND     | 5    |

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

# Summary info on the data

```
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude
                      20640 non-null float64
latitude
                      20640 non-null float64
housing_median_age
                      20640 non-null float64
total_rooms
                      20640 non-null float64
                      20433 non-null float64
total_bedrooms
population
                      20640 non-null float64
households
                      20640 non-null float64
median_income
                      20640 non-null float64
median_house_value
                      20640 non-null float64
ocean_proximity
                      20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

We're missing data from total\_bedrooms

ocean\_proximity is not numerical data

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

# Overall statistics of the data

|       | longitude    | latitude     | housing_median_age | total_rooms  | total_bedrooms | population   | households   | median_income | median_house_value |
|-------|--------------|--------------|--------------------|--------------|----------------|--------------|--------------|---------------|--------------------|
| count | 20640.000000 | 20640.000000 | 20640.000000       | 20640.000000 | 20433.000000   | 20640.000000 | 20640.000000 | 20640.000000  | 20640.000000       |
| mean  | -119.569704  | 35.631861    | 28.639486          | 2635.763081  | 537.870553     | 1425.476744  | 499.539680   | 3.870671      | 206855.816909      |
| std   | 2.003532     | 2.135952     | 12.585558          | 2181.615252  | 421.385070     | 1132.462122  | 382.329753   | 1.899822      | 115395.615874      |
| min   | -124.350000  | 32.540000    | 1.000000           | 2.000000     | 1.000000       | 3.000000     | 1.000000     | 0.499900      | 14999.000000       |
| 25%   | -121.800000  | 33.930000    | 18.000000          | 1447.750000  | 296.000000     | 787.000000   | 280.000000   | 2.563400      | 119600.000000      |
| 50%   | -118.490000  | 34.260000    | 29.000000          | 2127.000000  | 435.000000     | 1166.000000  | 409.000000   | 3.534800      | 179700.000000      |
| 75%   | -118.010000  | 37.710000    | 37.000000          | 3148.000000  | 647.000000     | 1725.000000  | 605.000000   | 4.743250      | 264725.000000      |
| max   | -114.310000  | 41.950000    | 52.000000          | 39320.000000 | 6445.000000    | 35682.000000 | 6082.000000  | 15.000100     | 500001.000000      |

Notice the data seem to be on wildly different scales

# View data distributions

Values are clipped Prevents us from making accurate predictions in those cases

Some features are heavy-tailed

Some ML techniques require normal distribution

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron



# Create training/testing data split

Ensure your training data is representative of your test data (sometimes need to use stratified sampling to avoid sampling bias)

Train Test

Do **ALL** experiments on this

Never touch this until you are done with all modeling and are ready to evaluate generalization performance

Technical note: don't create a DIFFERENT random sample of the dataset each time you run your code – this will expose your modeling to more of the data and contaminate your train/test split

# View the data spatially for further insights



Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

**Kyle Bradbury** 

\$306k

\$258k

- \$209k

+-90 9 Median House Value

- \$112k

-\$63k

\$15k

# Explore correlations in the data to begin identifying important variables

Correlation with our response variable, median\_house\_value:

| 1 | median_house_value | 1.000000  |
|---|--------------------|-----------|
| 2 | median_income      | 0.690647  |
| 3 | total_rooms        | 0.133989  |
| 4 | housing_median_age | 0.103706  |
|   | households         | 0.063714  |
|   | total_bedrooms     | 0.047980  |
|   | population         | -0.026032 |
|   | longitude          | -0.046349 |
|   | latitude           | -0.142983 |



Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

# Transform variables (feature engineering)

```
median_house_value
median income
total_rooms
housing_median_age
households
total_bedrooms
population
longitude
latitude
```

rooms\_per\_household = total\_rooms / households

bedrooms\_per\_room = total\_bedrooms / total\_rooms
population\_per\_household = population / households

median\_house\_value 1.000000 median\_income 0.690647 rooms\_per\_household 0.158485 total\_rooms 0.133989 housing\_median\_age 0.103706 households 0.063714 total bedrooms 0.047980 population per household -0.022030population -0.026032longitude -0.046349latitude -0.142983bedrooms per room -0.257419

Resulting correlations:

Adapted from from Hands-On Machine Learning with Scikit-Learn & TensorFlow by Aurélion Géron

# Scaling features

Standardization 1200

$$x^{new} = \frac{x - \overline{x}}{\sigma(x)}$$

Subtract the mean, divide by the standard deviation



# **Categorical data**

Recall ocean\_proximity has the following categories:

We need to convert this into numerical data to process it

<1H OCEAN INLAND

NEAR OCEAN

**NEAR BAY** 

ISLAND



| Original value     | New feature value | Original value | $F_1$ | F |
|--------------------|-------------------|----------------|-------|---|
| <1H OCEAN          | 0                 | <1H OCEAN      | 1     | ( |
| INLAND             | 1                 | INLAND         | 0     |   |
| NEAR OCEAN         | 2                 | NEAR OCEAN     | 0     |   |
| NEAR BAY<br>ISLAND | 3<br>1            | NEAR BAY       | O     |   |
| IOLAIND            | <del>'1</del>     | ISLAND         | 0     |   |

Create one binary feature for each category

| Original value | $F_1$ | $F_2$ | $F_3$ | $F_4$ | $F_5$ |
|----------------|-------|-------|-------|-------|-------|
| <1H OCEAN      | 1     | 0     | 0     | 0     | 0     |
| INLAND         | 0     | 1     | 0     | 0     | 0     |
| NEAR OCEAN     | 0     | 0     | 1     | 0     | 0     |
| NEAR BAY       | 0     | 0     | 0     | 1     | 0     |
| ISLAND         | 0     | 0     | 0     | 0     | 1     |

What do these numbers mean?

One-hot-encoding: create a new feature for each category

# Handling missing data

total\_bedrooms contains missing values



Feature 3 has 2 missing values

### **Options**:

- Remove samples that have missing values
- 2 Remove features that have missing values
- Fill in (impute) the missing values
  - Fill with average or median
  - Compute a value based on other features



3



v = replacement values

# Preprocessed data

- Divided our data into training and testing sets
- Viewed the data and looked for problems
- Engineered new features that have real-world meaning
- Categorical data transformed into binary features (1-hotencoding) enabling ML techniques
- Missing values replaced (imputed)
- Features standardized (now have zero mean and std of 1)

We're ready to train a machine learning model and evaluate performance

# Supervised learning in practice

### **Preprocess**

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Feature Extraction

Dimensionality reduction eliminates redundant information

### **Learning the Model**

Training

Select the "best" hypothesis function by choosing model parameters

### **Apply the Model**

Prediction

Predict a categorical (classification) or numerical (regression) target function

# **Evaluate Performance**

Cross-Validation

### **Metrics**

### Classification

Precision, Recall, F<sub>1</sub>, ROC Curves (Binary), Confusion Matrices (Multiclass)

### Regression

MSE, explained variance, R<sup>2</sup>

# **Experiment with three models**

| Model                                | Root Mean Square Error<br>RMSE (\$) | RMSE / Median Home Price * 100 (%) |
|--------------------------------------|-------------------------------------|------------------------------------|
| Linear regression                    | 68,628                              | 38.1                               |
| Random forest                        | 52,564                              | 29.2                               |
| Random forest with feature selection | 49,694                              | 27.6                               |

Once we have a model we are confident in, we can evaluate our generalization performance on our test set:

Test set performance 47

47,766

26.5

# Operationalizing the solution

Now the code needs to be run at scale

- The ML solution will need to be maintained and updated
- Continued monitoring of accuracy will be required
- How fast does it need to run? (i.e. in real-time)

# Supervised learning in practice

### **Preprocess**

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Feature Extraction

Dimensionality reduction eliminates redundant information

### **Learning the Model**

Training

Select the "best" hypothesis function by choosing model parameters

### **Apply the Model**

Prediction

Predict a categorical (classification) or numerical (regression) target function

# **Evaluate Performance**

Cross-Validation

### Metrics

### Classification

Precision, Recall, F<sub>1</sub>, ROC Curves (Binary), Confusion Matrices (Multiclass)

### Regression

MSE, explained variance, R<sup>2</sup>

# Components of supervised learning



# Supervised machine learning model

We search for the model that best fits our data



# Components of supervised learning

| Inpu | ıt |
|------|----|
|------|----|

X

**Output** 

y

**Training Data** 

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

**Target function** 

 $f(x) \rightarrow y$ 

This is unknown, but the best you could ever do

**Hypothesis set** 

$$f_i(x) \to \hat{y}$$

Functions to consider in trying to approximate f(x)

**Learning algorithm** 

Optimization technique that searches the hypothesis set for the function  $f_i$  that best approximates f (typically by choosing parameters in a model)

# **Supervised Learning**

Unobservable

# Data Generating Process

p(X,Y)

### **Target Function**

The best function predicting *y* from *x* 

$$f(x) \rightarrow y$$

Observable

### **Training Data**

$$(x_1, y_1), \dots, (x_N, y_N)$$

**Learning Algorithm** 

Chooses a hypothesis,  $\hat{f} = f_i$  based on the training data such that

$$\hat{f}(x) \approx f(x)$$

Hypothesis Functions Set

$$f_1, f_2, f_3, \dots$$

- Need to select the hypothesis functions (models to train)
- Need to select the learning algorithm (for fitting the models to the data)

**Final Hypothesis** 

predictions

 $\hat{f}(x) \to \hat{y}$ 

# **Example: linear regression**



Using any line as a hypothesis function, how many possible hypothesis functions apply here?

### **Infinitely many**

Using a the line y = wx as the family of hypothesis functions, how many possible hypothesis functions apply here?

### **Infinitely many**

Which set contains the better hypothesis? Which set has more options to consider? What is our learning algorithm?

# History



François Chollet, Deep Learning with Python, 2017

# **Next time**

Model flexibility and the bias variance tradeoff

# References

Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data. Vol. 4. New York, NY, USA:: AMLBook, 2012.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1. New York: Springer series in statistics, 2001.

Géron, Aurélion. Hands-On Machine Learning with Scikit-Learn & TensorFlow, 2017.

Moore, Cristopher, and Stephan Mertens. The nature of computation. OUP Oxford, 2011.