Today

- Tidy data
 - reshaping with tidyr
 - data manipulation with dplyr
- Ants GLM, Bayesian
 - ulam: equations, incl priors
 - working with posterior samples
- Model matrix

Independent project

- Homework: ideas submitted today
- I'll look at your ideas tomorrow
- Questions?
- Also chat after class

Tidy data

pivot_longer() - tidy a variable that is in multiple columns pivot_wider() - tidy an observation that is in multiple rows

Base R: reshape(), stack(), unstack(), strsplit(), paste()

dplyr - working with data

```
filter() - pick observations by their values
select() - pick columns by name
arrange() - reorder rows
mutate() - create new variables from existing variables
summarize() - collapse values to a summary statistic
group_by() - all the above split by group
```

> pipe to combine (or %>%)

Base R: subset(), order(), sort(), table(), aggregate(), |>

tibbles (tables with NZ accent)

Data frame; optimized printing for large datasets. You probably spent a lot of time collecting data. Wouldn't you want to spend a few minutes to inspect each row and column? That's how you catch errors.

Convert to dataframe

```
my_tibble |> data.frame()
Keep tibble, but print all the data by default
options(tibble.width=Inf)
options(tibble.print_max=Inf)
options(max.print=1500)
?print.tbl - see options
Other ways to inspect tibbles
View(my_tibble) - only works in Rstudio
glimpse(my_tibble) - summary
```

dplyr vs base

How many trees with known mortality status are missing a diameter in 2013?

```
tree_dat |>
    filter(year == 2013) |>
    filter(!is.na(mortality)) |>
    mutate(diam_missing=is.na(diam)) |>
    summarize(sum(diam_missing))

sum(is.na(subset(tree_dat, year == 2013 & !is.na(mortality))$diam))
```

dlpyr, complex queries

How many species observed per habitat fragment in each year per treatment?

Most common models

Normal

+

Identity link

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

$$\mu_i = \beta_0 + \beta_1 x_i$$

Poisson

+

Log link

$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i$$

Binomial

+

Logit link

$$y_i \sim \text{Binomial}(\mu_i, n)$$

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \beta_0 + \beta_1 x_i$$

Key properties:

y: -∞ to ∞, continuous

 μ : -\infty to \infty, continuous

y: 0 to ∞, discrete, integer

 μ : 0 to ∞ , continuous

y: 0, 1, discrete, binary

 μ : 0 to 1, probability

Which makes the most sense?

Write the full linear predictor

Poisson
+
Log link
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i + ...$$

$$\eta_i = \beta_0 + \beta_1 x_i + ...$$

$$\mu_i = e^{\eta_i}$$

$$\eta_i = \beta_0 + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$$

Model matrix (design matrix)

Data

habitat	latitude	richness
forest	42	16
forest	42.56	10
forest	43.33	7
forest	44.76	6
bog	42.17	8
bog	42.57	4
bog	44.06	3
bog	44.95	5

$$\eta_i = \beta_0 + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$$

Model matrix (design matrix)

Bayesian GLM: Priors?

Poisson
+
Log link
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \eta_i$$

$$\eta_i = \beta_0 + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$$

Bayesian GLM: Code

Poisson
$$+ \\ \text{Log link}$$

$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \eta_i$$

 $\eta_i = \beta_0 + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$

Write the code for ulam()