

Chapter Topics

- Types of Regression Models
- Determining the Simple Linear Regression Equation
- Measures of Variation
- Assumptions of Regression and Correlation
- Residual Analysis
- Measuring Autocorrelation
- Inferences about the Slope © 2003 Prentice-Hall, Inc.

Chapter Topics

(continued)

- Correlation Measuring the Strength of the Association
- Estimation of Mean Values and Prediction of Individual Values
- Pitfalls in Regression and Ethical Issues

Purpose of Regression Analysis

- Regression Analysis is Used Primarily to Model Causality and Provide Prediction
 - Predict the values of a dependent (response) variable based on values of at least one independent (explanatory) variable
 - Explain the effect of the independent variables on the dependent variable

Types of Regression Models

Positive Linear Relationship

Negative Linear Relationship

Relationship NOT Linear

No Relationship

Simple Linear Regression Model

- Relationship Between Variables is Described by a Linear Function
- The Change of One Variable Causes the Other Variable to Change
- A Dependency of One Variable on the Other

Simple Linear Regression Model

(continued)

Population regression line is a straight line that describes the dependence of the average value (conditional mean) of one variable on the other

Simple Linear Regression Model

(continued)

Linear Regression Equation

Sample regression line provides an *estimate* of the population regression line as well as a predicted value of Y

Sample Sample Slope Y Intercept
$$Y_i = b_0 + b_1 X_i + e_i$$
 Residual

$$\hat{Y} = b_0 + b_1 X = \frac{\text{Simple Regression Equation}}{\text{(Fitted Regression Line, Predicted Value)}}$$

Cnap 10-9

Linear Regression Equation

(continued)

• b_0 and b_1 are obtained by finding the values of b_0 at b_1 at minimizes the sum of the squared residuals

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} e_i^2$$

- b_0 provides an *estimate* of β_0
- b_1 provides and *estimate* of $oldsymbol{eta}_1$ © 2003 Prentice-Hall, Inc.

Linear Regression Equation

(continued)

$$Y_{i} = b_{0} + b_{1}X_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \varepsilon_{i}$$

$$P_{i}$$

$$P_$$

© 2003 Prentice-Hall, In¢.
Observed Value

Interpretation of the Slope and Intercept

- $\beta_0 = \mu_{Y|X=0}$ is the average value of Y when the value of X is zero.
- $\beta_1 = \frac{\Delta \mu_{Y|X}}{\Delta X}$ measures the change in the average value of Y as a result of a one-unit change in X.
- © 2003 Prentice-Hall, Inc.

Interpretation of the Slope and Intercept (continued)

• $b_0 = \hat{\mu}_{Y|X=0}$ is the *estimated* average value of Y when the value of X is zero.

• $b_1 = \frac{\Delta \hat{\mu}_{Y|X}}{\Delta X}$ is the *estimated* change in the average value of Y as a result of a one-unit change in X.

Simple Linear Regression: Example

You wish to examine the linear dependency of the annual sales of produce stores on their sizes in square footage. Sample data for 7 stores were obtained. Find the equation of the straight line that fits the data best.

Store	Square Feet	Annual Sales (\$1000)
1	1,726	3,681
2	1,542	3,395
3	2,816	6,653
4	5,555	9,543
5	1,292	3,318
6	2,208	5,563
7	1,313	3,760

 \bigcirc

Scatter Diagram: Example

Simple Linear Regression Equation: Example

$$\hat{Y}_i = b_0 + b_1 X_i$$
= 1636.415 + 1.487 X_i

From Excel Printout:

	Coefficients		
Intercept	1636.414726		
X Variable	1.486633657		

Graph of the Simple Linear Regression Equation: Example

Interpretation of Results: Example

$$\hat{Y}_i = 1636.415 + 1.487X_i$$

The slope of 1.487 means that each increase of one unit in X, we predict the average of Y to increase by an estimated 1.487 units.

The equation estimates that for each increase of 1 square foot in the size of the store, the expected annual sales are predicted to increase by \$1487. © 2003 Prentice-Hall, Inc.

Simple Linear Regression in PHStat

- In Excel, use PHStat | Regression | Simple Linear Regression ...
- EXCEL Spreadsheet of Regression Sales on Footage

Measures of Variation: The Sum of Squares

Measures of Variation: The Sum of Squares

(continued)

- SST = Total Sum of Squares
 - Measures the variation of the Y_i values around their mean, Y
- SSR = Regression Sum of Squares
 - Explained variation attributable to the relationship between X and Y
- SSE = Error Sum of Squares
- Variation attributable to factors other than the relationship between X and Y © 2003 Prentice-Hall, Inc.

Measures of Variation: The Sum of Squares

(continued)

The ANOVA Table in Excel

ANOVA					
	df	SS	MS	F	Significanc e F
Regressio n	k	SSR	MSR =SSR/k	MSR/MSE	P-value of the F Test
Residuals	n-k-1	SSE	MSE =SSE/(n-k-1)		
Total	n-1	SST			

^{© 2003} Prentice-Hall, Inc.

Measures of Variation The Sum of Squares: Example

Excel Output for Produce Stores

Degrees of freedom

ANOVA					
	df	SS	MS	F	Significance F
Regression	₇ 1	30380456.12	30380456	81.17909	0.000281201
Residual	1 5	1871199.595	374239.92		
Total	6	32251655.71			

Regression (explained) df

SSE

SST

© 20030Prenesideumblyfing.

Total df

SSR

Chap 10-24

The Coefficient of Determination

•
$$r^2 = \frac{SSR}{SST} = \frac{\text{Regression Sum of Squares}}{\text{Total Sum of Squares}}$$

• Measures the proportion of variation in Y that is explained by the independent variable X in the regression model

Coefficients of Determination (r²) and Correlation (r)

Standard Error of Estimate

$$S_{YX} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (Y - \hat{Y}_i)^2}{n-2}}$$

- The standard deviation of the variation of observations around the regression equation
- © 2003 Prentice-Hall, Inc.

Measures of Variation: Produce Store Example

Excel Output for Produce Stores

Regression Statistics				
Multiple R	0.9705572			
R Square	0.94198129			
Adjusted R Square	0.93037754			
Standard Error	611.751517			
Observations	7			

 $r^2 = .94$

 S_{yx}

© 2003 Prent

94% of the variation in annual sales can be explained by the variability in the size of the store as measured by square footage

Linear Regression Assumptions

- Normality
 - Y values are normally distributed for each X
 - Probability distribution of error is normal
- 2. Homoscedasticity (Constant Variance)
- 3. Independence of Errors

Variation of Errors Around the Regression Line

Residual Analysis

- Purposes
 - Examine linearity
 - Evaluate violations of assumptions
- Graphical Analysis of Residuals
 - Plot residuals vs. X and time

Residual Analysis for Linearity

Residual Analysis for Homoscedasticity

Residual Analysis: Excel Output for Produce Stores Example

Excel Output

Observation	Predicted Y	Residuals
1	4202.344417	-521.3444173
2	3928.803824	-533.8038245
3	5822.775103	830.2248971
4	9894.664688	-351.6646882
5	3557.14541	-239.1454103
6	4918.90184	644.0981603
7	3588.364717	171.6352829

Residual Plot

Residual Analysis for Independence

- The Durbin-Watson Statistic
 - Used when data is collected over time to detect autocorrelation (residuals in one time period are related to residuals in another period)
 - Measures violation of independence assumption

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=2}^{n} e_i^2}$$

Should be close to 2.

If not, examine the model for autocorrelation.

Durbin-Watson Statistic in PHStat

- PHStat | Regression | Simple Linear Regression ...
 - Check the box for Durbin-Watson Statistic

Obtaining the Critical Values of Durbin-Watson Statistic

Table 13.4 Finding critical values of Durbin-Watson Statistic

	$\alpha = .05$					
			k=1	k=2		
	n	d_L	d_U	d_L	d_U	
	15	1.08	1.36	.95	1.54	
© 2003	Pletice-	Hal 1, J1(1)	1.37	.98	1.54	

Using the Durbin-Watson Statistic

 H_0 : No autocorrelation (error terms are independent)

 H_1 : There is autocorrelation (error terms are not independent)

Residual Analysis for Independence

Graphical Approach

Residual Is Plotted Against Time to Detect Any Autocorrelation

Inference about the Slope: t Test

- t Test for a Population Slope
 - Is there a linear dependency of Y on X?
- Null and Alternative Hypotheses
 - H_0 : $\beta_1 = 0$ (No Linear Dependency)
 - H_1 : $\beta_1 \neq 0$ (Linear Dependency)
- Test Statistic

$$t = \frac{b_1 - \beta_1}{S_{b_1}} \text{ where } S_{b_1} = \frac{S_{YX}}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2}}$$

© 2003 Prentice-Hall, Inc. d. f = n-2

Example: Produce Store

Data for 7 Stores:

Store	Square Feet	Annual Sales (\$000)
1	1,726	3,681
2	1,542	3,395
3	2,816	6,653
4	5,555	9,543
5	1,292	3,318
6	2,208	5,563
© 2 7 003 P	ren ti&B Iall	. In 3.760

Estimated Regression Equation:

$$\hat{Y} = 1636.415 + 1.487X_i$$

The slope of this model is 1.487.

Does Square Footage Affect Annual Sales?

Chap 10-41

Inferences about the Slope: t Test Example

H_0 : $\beta_1 = 0$

$$H_1$$
: $\beta_1 \neq 0$

$$\alpha = .05$$

$$df = 7 - 2 = 5$$

Critical Value(s):

Test Statistic:

From	Excel Prir	ntout	b_1	b_1	t
	Coefficients	Standa	rd Error	t Stat	P-value
Intercept	1636.4147	4	51.4953	3.6244	0.01515
Footage	1.4866	(0.1650	9.0099	0.00028

Decision:

Reject H₀

Conclusion:

There is evidence that square footage affects annual sales. Chap 10

~

Inferences about the Slope: Confidence Interval Example

Confidence Interval Estimate of the Slope:

$$b_1 \pm t_{n-2} S_{b_1}$$

Excel Printout for Produce Stores

	Lower 95%	Upper 95%
Intercept	475.810926	2797.01853
X Variable	1.06249037	1.91077694

At 95% level of confidence the confidence interval for the slope is (1.062, 1.911). Does not include 0.

Conclusion: There is a significant linear dependency of annual sales on the size of the store.

Inferences about the Slope: *F* Test

- F Test for a Population Slope
 - Is there a linear dependency of Y on X?
- Null and Alternative Hypotheses
 - H_0 : $\beta_1 = 0$ (No Linear Dependency)
 - H_1 : $\beta_1 \neq 0$ (Linear Dependency)
- Test Statistic

■ Numerator *d.f.=1*, denominator *d.f.=n-*②hap 10-44

Relationship between a t Test and an F Test

- Null and Alternative Hypotheses
 - H_0 : $\beta_1 = 0$ (No Linear Dependency)
 - H_1 : $\beta_1 \neq 0$ (Linear Dependency)

$$\left(t_{n-2}\right)^2 = F_{1,n-2}$$

© 2003 Prentice-Hall, Inc.

Inferences about the Slope: *F* Test Example

 $H_0: \beta_1 = 0$

 H_1 : $\beta_1 \neq 0$

 $\alpha = .05$

numerator

df = 1

ANOVA

Test Statistic:

From Excel Printout

	df	SS	MS	F	Significance F
Regression	1	30380456.12	30380456.12	81.179	0.000281
Residual	5	1871199.595	374239.919		
Total	6	32251655.71			

denominator

Decision: Reject H₀

Conclusion:

There is evidence that square footage affects annual sales.

Purpose of Correlation Analysis

- Correlation Analysis is Used to Measure Strength of Association (Linear Relationship)
 Between 2 Numerical Variables
 - Only Strength of the Relationship is Concerned
 - No Causal Effect is Implied

Purpose of Correlation Analysis

(continued)

- Population Correlation Coefficient ρ (Rho) is Used to Measure the Strength between the Variables
- Sample Correlation Coefficient *r* is an Estimate of *ρ* and is Used to Measure the Strength of the Linear Relationship in the Sample Observations

© 2003 Prentice-Hall, Inc.

Sample of Observations from Various *r* Values

Features of ρ and r

- Unit Free
- Range between -1 and 1
- The Closer to -1, the Stronger the Negative Linear Relationship
- The Closer to 1, the Stronger the Positive Linear Relationship
- The Closer to 0, the Weaker the Linear Relationship
- © 2003 Prentice-Hall, Inc.

t Test for Correlation

Hypotheses

- H_0 : ρ = 0 (No Correlation)
- H_1 : $\rho \neq 0$ (Correlation)

Test Statistic

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} \quad \text{where}$$

© 2003 Prentice-Hall, Inc.
$$\sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)$$

$$\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 \sum_{i=1}^{n} \left(Y_i - \overline{Y} \right)^2$$

Example: Produce Stores

Is there any evidence of linear relationship between Annual Sales of a store and its Square Footage at .05 level of significance?

© 2003 Prentice-Hall, Inc.

From Excel Printout				
Regression Statistics				
Multiple R	0.970	5572		
R Square	0.9419	8129		
Adjusted R Square	0.9303	7754		
Standard Error	611.75	1517		
Observations		7		

$$H_0$$
: ρ = 0 (No association)

$$H_1$$
: $\rho \neq 0$ (Association)

$$\alpha$$
 = .05

$$df = 7 - 2 = 5$$
 Chap 10-52

Example: Produce Stores Solution

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.9706}{\sqrt{\frac{1 - .9420}{5}}} = 9.0099$$

Critical Value(s):

Decision:

Reject H₀

Conclusion:

There is evidence of a linear relationship at 5% level of significance

The value of the t statistic is exactly the same as the t statistic value for test on the slope coefficient

Estimation of Mean Values

Confidence Interval Estimate for $\mu_{Y|X=X_i}$:

The Mean of Y given a particular X_i

Standard error of the estimate

 $\hat{Y}_{i} \pm t_{n-2} \hat{S}_{YX}$

t value from table with df=n-2

Inc.

Size of interval vary according to distance away from mean, $\ \overline{X}$

$$\sqrt{\frac{1}{n} + \frac{(X_i - \bar{X})^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2}}$$

Prediction of Individual Values

Prediction Interval for Individual Response Y_i at a Particular X_i

Addition of 1 increases width of interval from that for the mean of Y

$$\hat{Y}_{i} \pm t_{n-2} S_{YX} = \frac{1}{n} + \frac{(X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$
The strice-Hall, Inc.

© 2003 Prentice-Hall, Inc.

Interval Estimates for Different Values of X

Example: Produce Stores

Data for 7 Stores:

Store	Square Feet	Annual Sales (\$000)
1	1,726	3,681
2	1,542	3,395
3	2,816	6,653
4	5,555	9,543
5	1,292	3,318
6	2,208	5,563
© 2 7 003	Prenti34Blall,	In 3,760

Consider a store with 2000 square feet.

Regression Equation Obtained:

$$\hat{Y} = 1636.415 + 1.487X_{i}$$

Estimation of Mean Values: Example

Confidence Interval Estimate for $\mu_{Y|X=X_i}$

Find the 95% confidence interval for the average annual sales for stores of 2,000 square feet

Predicted Sales
$$\hat{Y} = 1636.415 + 1.487X_i = 4610.45(\$000)$$

$$\overline{X} = 2350.29$$
 $S_{YX} = 611.75$ $t_{n-2} = t_5 = 2.5706$

$$\hat{Y}_{i} \pm t_{n-2} S_{YX} = \frac{1}{n} + \frac{(X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = 4610.45 \pm 612.66$$
© 2003 Prentice-Hall, $\ln \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$

Prediction Interval for *Y*: Example

Prediction Interval for Individuat $X_{X=X_i}$

Find the 95% prediction interval for annual sales of one particular store of 2,000 square feet

Predicted Sales)
$$\hat{Y} = 1636.415 + 1.487X_i = 4610.45(\$000)$$

$$\overline{X} = 2350.29$$
 $S_{YX} = 611.75$ $t_{n-2} = t_5 = 2.5706$

$$\hat{Y}_{i} \pm t_{n-2} S_{YX} = 1 + \frac{1}{n} + \frac{(X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = 4610.45 \pm 1687.68$$
© 2003 Prentice-Hall, Inc.
$$\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Estimation of Mean Values and Prediction of Individual Values in PHStat

- In Excel, use PHStat | Regression | Simple Linear Regression ...
 - Check the "Confidence and Prediction Interval for X=" box
- EXCEL Spreadsheet of Regression Sales on Footage

© 2003 Prentice Hall Inc Worksheet

Pitfalls of Regression Analysis

- Lacking an Awareness of the Assumptions Underlining Least-squares Regression
- Not Knowing How to Evaluate the Assumptions
- Not Knowing What the Alternatives to Leastsquares Regression are if a Particular Assumption is Violated
- Using a Regression Model Without Knowledge of the Subject Matter
- © 2003 Prentice-Hall, Inc.

Strategy for Avoiding the Pitfalls of Regression

- Start with a scatter plot of X on Y to observe possible relationship
- Perform residual analysis to check the assumptions
- Use a histogram, stem-and-leaf display, boxand-whisker plot, or normal probability plot of the residuals to uncover possible nonnormality
- © 2003 Prentice-Hall, Inc.

Strategy for Avoiding the Pitfalls of Regression

(continued)

- If there is violation of any assumption, use alternative methods (e.g., least absolute deviation regression or least median of squares regression) to least-squares regression or alternative least-squares models (e.g., curvilinear or multiple regression)
- If there is no evidence of assumption violation, then test for the significance of the regression coefficients and construct confidence intervals
- © 2003 and predidtion intervals

Chapter Summary

- Introduced Types of Regression Models
- Discussed Determining the Simple Linear Regression Equation
- Described Measures of Variation
- Addressed Assumptions of Regression and Correlation
- Discussed Residual Analysis
- Addressed Measuring Autocorrelation
- © 2003 Prentice-Hall, Inc.

Chapter Summary

(continued)

- Described Inference about the Slope
- Discussed Correlation Measuring the Strength of the Association
- Addressed Estimation of Mean Values and Prediction of Individual Values
- Discussed Pitfalls in Regression and Ethical Issues

© 2003 Prentice-Hall, Inc.