



#### Here you'll get 🔰



- PPT
- NOTES
- VIDEO LECTURE
- E-BOOK
- PYQ
- EXPERIMENT
- ASSIGNMENT
- TUTORIAL



## **UNIT NO.4**

Part 1
POLY PHASE A.C. CIRCUIT

#### Generation of Single Phase voltage



#### Generation of Three Phase







$$v_R = V_{Rm} \sin(\theta)$$

$$v_{y} = V_{ym} \sin (\theta - 120^{0})$$

$$V_B = V_{Bm} \sin (\theta - 240^0)$$



#### Three Phase Load Connected to three Phase Supply



# Three Phase Star Connected Load





## Three phase star connected resistive load



#### Relation between Line and Phase Voltage



## Three phase star connected Inductive load



## Three phase star connected Capacitive load



# Three Phase Delta Connected Load





#### Three Phase Delta connected Resistive Load



#### Relation between Line and Phase Current



#### Three Phase Delta connected Inductive Load



#### Three Phase Delta connected Capacitive Load



#### Powers Related with Star and Delta load

| Star                                       | Delta                                    |
|--------------------------------------------|------------------------------------------|
| $V_L = \sqrt{3} V_{ph}$ $I_L = Iph$        | $V_L = V_{ph}$ $I_L = \sqrt{3}Iph$       |
| $P = 3V_{ph} I_{ph} Cos \phi$              | $P = 3V_{ph} I_{ph} Cos \phi$            |
| $P = 3 \frac{V_L}{\sqrt{3}} I_L \cos \phi$ | $P = 3V_L \frac{I_L}{\sqrt{3}} Cos \phi$ |
| $P = \sqrt{3} V_L I_L \cos \phi Watt$      | $P = \sqrt{3} V_L I_L Cos \phi Watt$     |
| $Q = \sqrt{3} V_L I_L Sin\phi VAr$         | $Q = \sqrt{3} V_L I_L Sin\phi VAr$       |
| $S = \sqrt{3} V_L I_L VA$                  | $S = \sqrt{3} V_L I_L VA$                |



#### UNIT-4 B SINGLE PHASE TRANSFORMER

**Single phase transformers:** principle of working, construction and types, emf equation, voltage and current ratios. Losses, definition of regulation and efficiency, determination of these by direct loading method. Descriptive treatment of autotransformers.

## Introduction

Static device (No Rotating Part )
Transfers Electric Power/Energy
By changing voltage / current
level without Changing the
Frequency
Works only on AC



## Construction and Working principle



## Types of Transformer

**Core Type** 





**Shell Type** 





## Core Type and Shell Type (Comparison)

| Sr. No. | CoreType Transformer                                            | ShellType Transformer                       |
|---------|-----------------------------------------------------------------|---------------------------------------------|
|         | Core Primary winding Flux                                       | Primary winding  Secondary winding          |
| 1.      | It has single magnetic circuit.                                 | It has double magnetic circuit.             |
| 2.      | Windings used in core type transformer are cylindrical in form. | Sandwich type windings are used.            |
| 3.      | Core is surrounded by the winding.                              | The windings are surrounded by the core.    |
| 4.      | It is easy for repair and maintenance.                          | It is difficult for repair and maintenance. |
| 5.      | Natural cooling is good.                                        | Natural cooling is poor.                    |

## **EMF** Equation



$$E_1 = 4.44 \, \mathcal{O}_m f N_1 \, \text{volt.}$$

$$E_2=4.44 \mathcal{O}_m f N_2 \text{ volt}$$

# Transformation ratio and KVA rating

$$K = \frac{E_2}{E_1} = \frac{N_2}{N_1} = \frac{V_2}{V_1} = \frac{I_1}{I_2}$$

$$KVA\ rating = \frac{V_1 I_1}{1000} = \frac{V_2 I_2}{1000}$$

It is the output given by transformer at rated voltage and rated frequency under usual service conditions without exceeding the standard limits of temperature rise.

## **Ideal Transformer**



#### Zero leakage flux:

• Fluxes produced by the primary and secondary currents are confined within the core

#### The windings have no resistance:

Induced voltages equal applied voltages

#### The core has infinite permeability

- Reluctance of the core is zero
- Negligible current is required to establish magnetic flux

#### Loss-less magnetic core

• No hysteresis or eddy currents

## **Practical Transformer**



## Losses

Iron Loss

**Copper Loss** 

#### Iron Loss

Hysteresis Loss



$$P_h = K_h B_m^{1.6} f v Watts$$

Eddy Current Loss

$$P_e = K_e B_m^2 f^2 t^2 v Watts$$

## Reduction of Iron Losses









## Copper Loss

These losses occurs in the primary and secondary windings due to resistance of primary and secondary winding.

Let  $I_1$  and  $I_2$ : the primary and secondary current.

 $R_1$  and  $R_2$ : the primary and secondary winding

resistance.

Hence, Total copper loss =  $I_1^2 R_1 + I_2^2 R_2$  Watt

## Voltage Regulation







## Efficiency

$$\eta = \frac{Output\ power}{Input\ Power} x100$$

$$\eta = \frac{Output\ power}{(Output\ Power + Losses)} x100$$

$$\eta = \frac{V_2 I_2 cos\phi_2}{(V_2 I_2 cos\phi_2 + P_i + P_{cu})} \times 100$$

$$\eta = \frac{x (VA Rating) pf}{x (VA Rating) pf + P_i + x^2 P_{cufl}}$$

x - Fraction of full load



## Direct loading Test



## **Auto Transformer**





## Advantages

Copper required in case of auto transformer is always less than the two winding transformer, it is always cheaper.

For same rating, weight of auto transformer is less than two winding transformer.

The copper losses taking place in a transformer are less.

Due to less copper loss, efficiency of the transformer is higher than that of two winding transformer.

Auto transformer has better voltage regulation than that of two winding transformer.

## Disadvantages

There is always risk of electric shock, as the primary and secondary are not electrically separated.

In case of step down auto transformer, if the common part gets opened due to any fault, the high voltage on primary side will damage the measuring instrument (typically voltmeter) connected on secondary side.

## Applications

It can be used as starter for squirrel cage induction motor.

It can be used as booster to raise the voltage in A.C. feeders.

It can be used in industry as furnace transformers for getting required voltage.

It can be used as dimmer for dimming the light.

## Dimmerstat





**Example 1.** An 80KVA, 3200/400v, 50Hz, single phase transformer has 111 turns On the secondary calculate 1) No of turns on primary 2) secondary full load current 3) e/s area of the core if the maximum flux density is 1.2 tesla.

#### **Solution:**

$$KVA = 80$$
 $E_1 = 3200 V$ 
 $E_2 = 400V$ 
 $f = 50Hz$ 
 $N_2 = 111$ 
 $K = \frac{V_2}{V_1} = \frac{N_2}{N_1} = \frac{E_2}{E_1} = \frac{I_1}{I_2}$ 

$$\frac{\frac{N_2}{N_1} = \frac{E_2}{E_1}}{\frac{111}{N_1} = \frac{400}{3200}}$$

$$N_1 = \frac{3200 \times 111}{400}$$

$$N_1 = 888$$