# **Stock Price Prediction Using Deep Learning Technique**

A stock price prediction project utilizing Long Short-Term Memory model.

## **Import Library**

#### In [1]:

```
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import math
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
import warnings
warnings.filterwarnings('ignore')
```

#### **Access Data**

Enter the stock ticker, date, and the epoch times. Noted that the first 80% of the date will be used for training, and the remaining 20% will be used for validation.

Example Inputs: "googl", "2010-01-01", "2023-08-20"

#### In [2]:

```
Company = input("Ticker of the Stock:")
Date1 = input("Start(YYYY-MM-DD):")
Date2 = input("End(YYYY-MM-DD):")
```

Ticker of the Stock:googl Start(YYYY-MM-DD):2010-01-01 End(YYYY-MM-DD):2023-08-20

## **Data Exploration**

#### In [3]:

```
Data = yf.download(Company,Date1, Date2)
Data =Data.reset_index()
Data
```

[\*\*\*\*\*\*\*\*\* 100%\*\*\*\*\*\*\*\*\*\*\* 1 of 1 completed

#### Out[3]:

|      | Date           | Open       | High       | Low        | Close      | Adj Close  | Volume    |
|------|----------------|------------|------------|------------|------------|------------|-----------|
| 0    | 2010-<br>01-04 | 15.689439  | 15.753504  | 15.621622  | 15.684434  | 15.684434  | 78169752  |
| 1    | 2010-<br>01-05 | 15.695195  | 15.711712  | 15.554054  | 15.615365  | 15.615365  | 120067812 |
| 2    | 2010-<br>01-06 | 15.662162  | 15.662162  | 15.174174  | 15.221722  | 15.221722  | 158988852 |
| 3    | 2010-<br>01-07 | 15.250250  | 15.265265  | 14.831081  | 14.867367  | 14.867367  | 256315428 |
| 4    | 2010-<br>01-08 | 14.814815  | 15.096346  | 14.742492  | 15.065566  | 15.065566  | 188783028 |
|      |                |            |            |            |            |            |           |
| 3425 | 2023-<br>08-14 | 129.389999 | 131.369995 | 128.960007 | 131.330002 | 131.330002 | 24695600  |
| 3426 | 2023-<br>08-15 | 131.100006 | 131.419998 | 129.279999 | 129.779999 | 129.779999 | 19770700  |
| 3427 | 2023-<br>08-16 | 128.699997 | 130.279999 | 127.870003 | 128.699997 | 128.699997 | 25216100  |
| 3428 | 2023-<br>08-17 | 129.800003 | 131.990005 | 129.289993 | 129.919998 | 129.919998 | 33446300  |
| 3429 | 2023-<br>08-18 | 128.509995 | 129.250000 | 126.379997 | 127.459999 | 127.459999 | 30491300  |

3430 rows × 7 columns

#### In [4]:

```
Data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3430 entries, 0 to 3429
Data columns (total 7 columns):
#
    Column
               Non-Null Count Dtype
    ____
               -----
                               datetime64[ns]
0
    Date
               3430 non-null
1
    0pen
               3430 non-null
                             float64
2
    High
               3430 non-null
                               float64
 3
               3430 non-null
                               float64
    Low
4
    Close
               3430 non-null
                               float64
 5
    Adj Close 3430 non-null
                               float64
    Volume
               3430 non-null
                               int64
dtypes: datetime64[ns](1), float64(5), int64(1)
memory usage: 187.7 KB
```

#### In [5]:

```
Data.isnull().sum()
```

#### Out[5]:

Date 0
Open 0
High 0
Low 0
Close 0
Adj Close 0
Volume 0
dtype: int64

## **Data Visualization**

## **Stock Price**

#### In [6]:

```
fig, ax = plt.subplots(figsize=(16,10))
plt.title("Stock Price", fontsize="20")
ax.plot(Data["Date"], Data["Close"], color="Blue")
ax.set_ylabel("Stock Price")
plt.grid()
plt.show()
```



## **Moving Average**

#### In [7]:

```
MA60=Data.Close.rolling(60).mean()
MA250=Data.Close.rolling(250).mean()
fig, ax = plt.subplots(figsize=(16,8))
plt.title("Stock Price")
plt.plot(Data.Close, color="Blue", label="Close")
plt.plot(MA60, color = 'Red', label = "MA5")
plt.plot(MA250, color = 'Orange', label = "MA20")
plt.legend()
```

#### Out[7]:

<matplotlib.legend.Legend at 0x22be03d0fa0>



#### **Volume**

#### In [8]:

```
fig, ax = plt.subplots(figsize=(16,8))
plt.title("Volume Chart", fontsize="20")
ax.bar(Data["Date"], Data["Volume"])
ax.set_ylabel("Volumes")
plt.grid()
plt.show()
```



## **Daily Return**

#### In [9]:

```
Data["Daily Return"] = Data["Close"].pct_change(1)
Data["Daily Return"]
```

#### Out[9]:

```
0
             NaN
       -0.004404
1
2
       -0.025209
3
       -0.023280
        0.013331
          . . .
3425
        0.013662
       -0.011802
3426
3427
       -0.008322
3428
        0.009479
3429
       -0.018935
Name: Daily Return, Length: 3430, dtype: float64
```

#### In [10]:

```
fig, ax = plt.subplots(figsize=(16,8))
plt.title("Stock Price Daily Return", fontsize="20")
ax.plot(Data["Date"], Data["Daily Return"], color="Darkviolet")
ax.set_ylabel("Daily Return")
plt.grid()
plt.show()
```



#### In [11]:

```
#Distribution of Daily Return(Volatility)
Data.iloc[Data["Daily Return"].argmax()]
Data["Daily Return"].hist(bins=100, color='Darkviolet')
```

#### Out[11]:

#### <AxesSubplot:>



#### **Cumulative Return**

#### In [12]:

```
Data["Cumulative Return"] = (1+Data["Daily Return"]).cumprod()
Data["Cumulative Return"]
```

#### Out[12]:

| 0     | NaN        |         |         |       |
|-------|------------|---------|---------|-------|
| 1     | 0.995596   |         |         |       |
| 2     | 0.970499   |         |         |       |
| 3     | 0.947906   |         |         |       |
| 4     | 0.960543   |         |         |       |
|       |            |         |         |       |
| 3425  | 8.373270   |         |         |       |
| 3426  | 8.274446   |         |         |       |
| 3427  | 8.205588   |         |         |       |
| 3428  | 8.283372   |         |         |       |
| 3429  | 8.126528   |         |         |       |
| Name: | Cumulative | Return. | length. | 3430. |

Name: Cumulative Return, Length: 3430, dtype: float64

#### In [13]:

```
#Cumultative Return of the stock during the given period
fig, ax = plt.subplots(figsize=(16,8))
plt.title("Stock Cumulative Return",fontsize="20")
ax.plot(Data["Date"], Data["Cumulative Return"], color="Darkcyan")
ax.set_ylabel("Cumultative Return")
plt.grid()
plt.show()
```



## **Splitting Data into Training and Validation Sets**

```
In [14]:
```

```
Data['Date'] = pd.to_datetime(Data['Date'])
Data.set_index('Date',inplace=True)
Close = Data.filter(['Close'])
CloseValue = Close.values
TrainingDataLength = math.ceil(len(CloseValue)*.8)
TrainingDataLength
```

#### Out[14]:

2744

#### Scaling data

#### In [15]:

```
scaler = MinMaxScaler(feature_range=(0,1))
PriceData = scaler.fit_transform(CloseValue)
PriceData
## Customized the function:
# def Rank(data):
# feature_range = data.max() - data.min()
# scaled_data = (data - data.min()) / feature_range
# return scaled_data
# PriceData = Rank(CloseValue)
# Rank(CloseValue)
```

#### Out[15]:

```
In [16]:
```

```
X train, Y train = [],[]
Backcandles = 60
TrainData = PriceData[0:TrainingDataLength]
for i in range(Backcandles,len(TrainData)):
    X_train.append(TrainData[i-Backcandles:i, 0])
    Y_train.append(TrainData[i,0])
    if i<= Backcandles:</pre>
        print("X_train:",X_train,"\nY_train:",Y_train)
X_train,Y_train = np.array(X_train), np.array(Y_train)
X_train: [array([0.03434761, 0.03385045, 0.03101697, 0.02846629, 0.029
89295,
       0.02972903, 0.02781422, 0.02720357, 0.02770073, 0.02592643,
       0.02729904, 0.02600028, 0.02646323, 0.02052427, 0.01872114,
       0.01915706, 0.01909942, 0.01769259, 0.01690901, 0.01746381,
       0.01712157, 0.01886885, 0.01633979, 0.01715219, 0.01754487,
       0.01807987, 0.01772141, 0.01807266, 0.01748183, 0.01895531,
       0.0183987, 0.01930117, 0.01885804, 0.01922551, 0.01783308,
       0.01718461, 0.01627675, 0.01634339, 0.01740437, 0.01891208,
       0.01967945, 0.02134927, 0.02308214, 0.02277051, 0.02235801,
       0.02528697, 0.02613178, 0.02584357, 0.02289661, 0.02326047,
       0.02332532, 0.02347663, 0.02232379, 0.02187345, 0.02034233,
       0.02184283, 0.02284257, 0.02280834, 0.02276511, 0.02353248])]
Y_train: [0.023606326054810806]
In [17]:
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_train.shape
Out[17]:
(2684, 60, 1)
```

## LSTM Model Building, Compiling, and Training

#### In [18]:

```
Model = Sequential([
    LSTM(50, return_sequences = True, input_shape = (X_train.shape[1], 1)),
    (Dropout(0.2)),
    LSTM((50)),
    (Dropout(0.2)),
    (Dense(32)),
    (Dense(1))
])

Model.compile(optimizer="adam", loss="mean_squared_error")
Model.fit(X_train, Y_train, batch_size=32, epochs=10)
Model.summary()
```

```
Epoch 1/10
Epoch 2/10
84/84 [============ ] - 3s 35ms/step - loss: 4.9123e-
04
Epoch 3/10
84/84 [============ ] - 3s 37ms/step - loss: 4.0936e-
04
Epoch 4/10
84/84 [============= ] - 3s 36ms/step - loss: 3.6222e-
04
Epoch 5/10
84/84 [============= ] - 3s 36ms/step - loss: 2.9104e-
04
Epoch 6/10
84/84 [============= ] - 3s 37ms/step - loss: 2.7115e-
04
Epoch 7/10
84/84 [============= ] - 3s 36ms/step - loss: 2.6611e-
04
Epoch 8/10
84/84 [============= ] - 3s 37ms/step - loss: 2.6487e-
04
Epoch 9/10
84/84 [============ ] - 3s 39ms/step - loss: 2.5390e-
04
Epoch 10/10
84/84 [============= ] - 3s 37ms/step - loss: 2.5623e-
Model: "sequential"
```

| Layer (type)        | Output Shape   | Param # |
|---------------------|----------------|---------|
| lstm (LSTM)         | (None, 60, 50) | 10400   |
| dropout (Dropout)   | (None, 60, 50) | 0       |
| lstm_1 (LSTM)       | (None, 50)     | 20200   |
| dropout_1 (Dropout) | (None, 50)     | 0       |
| dense (Dense)       | (None, 32)     | 1632    |
| dense_1 (Dense)     | (None, 1)      | 33      |
|                     |                |         |

-----

Total params: 32265 (126.04 KB)
Trainable params: 32265 (126.04 KB)
Non-trainable params: 0 (0.00 Byte)

12

#### In [19]:

```
test_data= PriceData[TrainingDataLength-Backcandles:, :]
x_test, y_test = [], CloseValue[TrainingDataLength:,:]
for i in range(Backcandles,len(test_data)):
    x_test.append(test_data[i-Backcandles:i,0])
x_test = np.array(x_test)
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1],1))
x_test.shape

Out[19]:
```

```
(686, 60, 1)
```

### **Results of the Prediction**

## **Root-Mean-Square Error**

A higher RMSE value generally indicates poorer predictive performance. Hence, our training objective is to "minimize RMSE".

#### In [20]:

```
Pred = Model.predict(x_test)
Pred = scaler.inverse_transform(Pred)
RMSE = np.sqrt(np.mean(Pred - y_test)**2)
RMSE
```

```
22/22 [======] - 1s 12ms/step
Out[20]:
0.12525308236436317
```

## **Prediction Results**

#### In [21]:

```
TrainingSet,ValidationSet = Close[:TrainingDataLength],Close[TrainingDataLength:]
ValidationSet["Predictions"] = Pred
ValidationSet
```

#### Out[21]:

|            | Close      | Predictions |
|------------|------------|-------------|
| Date       |            |             |
| 2020-11-25 | 88.206497  | 88.213028   |
| 2020-11-27 | 89.350998  | 88.209053   |
| 2020-11-30 | 87.720001  | 88.331261   |
| 2020-12-01 | 89.767998  | 88.388092   |
| 2020-12-02 | 91.248497  | 88.566444   |
|            |            |             |
| 2023-08-14 | 131.330002 | 130.839859  |
| 2023-08-15 | 129.779999 | 130.923767  |
| 2023-08-16 | 128.699997 | 130.923492  |
| 2023-08-17 | 129.919998 | 130.781921  |
| 2023-08-18 | 127.459999 | 130.665894  |

686 rows × 2 columns

## **Visualization**

#### In [22]:

```
plt.figure(figsize=(16,8))
plt.title("Stock Price Prediction During the Validation Period", fontsize = 20)
plt.ylabel("Close Price")
plt.plot(ValidationSet["Close"],linewidth=1,color = "Darkviolet")
plt.plot(ValidationSet["Predictions"],linewidth=1,color = "Red")
plt.legend(["Stock Price","Predictions"])
```

#### Out[22]:

<matplotlib.legend.Legend at 0x22be02f82e0>



#### In [23]:

```
plt.figure(figsize=(16,8))
plt.title("Stock Price Prediction", fontsize=20)
plt.ylabel("Close Price" )
plt.plot(TrainingSet["Close"], color = "Darkblue")
plt.plot(ValidationSet["Close"],color = "Blue")
plt.plot(ValidationSet["Predictions"],linewidth=0.75,color = "Red")
plt.legend(["Train", "Stock Price", "Predictions"])
```

#### Out[23]:

<matplotlib.legend.Legend at 0x22be2426f40>



Please note that using LSTM with raw stock price data is impractical and using min-max scaler to scale the price data is also unreasonable, since the raw stock price data is neither stationarity nor extrpolation. You'll find out it doesn't work in real-life (The prediction results seems accurate becuase it's nothing but a delay curve :P).

When utilizing LSTM for financial data prediction, forecasting "Log Return" might be a better option. This project is better suited as a programming example for basic machine learning rather than a precise stock price prediction.