Final Report

Customer Rating Prediction

Joo Yong Yoon – Group 5 MI 353 Dr. Cevikparmak 16 April 2023

I. Executive summary

The purpose of this project is to predict customer ratings as the growth of supermarkets in most populated cities is increasing and market competitions are also high. The dataset is one of the historical sales of supermarket company which has recorded in 3 different branches for 3 months data.

I found a supermarket sales dataset with 1000 records that came from 3 different branches within 3 months period. Data contains several information such as Branch and City of the supermarket, Customer type, Customer gender, Product line, Unit price, Quantity, Tax 5%, Total price, Date and Time of the sale, Payment type, Cost of goods (cogs), gross margin percentage, gross income, and Customer Rating (variable description is explained on III – 1.

Data Description / Variables). My goal was to predict the customer rating using other parameters. It is important to understand the factors impacting customer rating which will help with marketing campaigns. I first looked at the dataset and excluded variables that are directly related to others. For example, I selected City and excluded the branch. I selected total price and excluded tax and cogs. I found that none of the factors in the dataset are statistically significant in predicting the customer rating from the regression models I design. This means there are other unmeasured factors that can impact customer satisfaction. For example, some factors I can think of are wait time in payment queues, availability of the products, approachability, and customer service of sales associates.

II. Project motivation/background

I wanted to find the factors impacting customer rating which can lead to an increase in sales. I work as a quality assurance manager at a manufacturing facility for beauty products. And even though I am not directly related to sales, I think to understand the factors leading to an increase in sale can be a valuable information for the company I work for as our products are distributed to the national retailers such as Walmart and Target.

III. Data description

1. Variables

- Invoice id: Computer generated sales slip invoice identification number
- Branch: Branch of supercenter (3 branches are available identified by A, B and C).
- City: Location of supercenters
- Customer type: Type of customers, recorded by Members for customers using member card and Normal for without member card.
- Gender: Gender type of customer
- Product line: General item categorization groups Electronic accessories, Fashion accessories, Food and beverages, Health and beauty, Home and lifestyle, Sports and travel
- Unit price: Price of each product in \$
- Quantity: Number of products purchased by customer
- Tax: 5% tax fee for customer buying
- Total: Total price including tax
- Date: Date of purchase (Record available from January 2019 to March 2019)
- Time: Purchase time (10am to 9pm)
- Payment: Payment used by customer for purchase (3 methods are available Cash, Credit card and Ewallet)
- COGS: Cost of goods sold
- Gross margin percentage: Gross margin percentage
- Gross income: Gross income
- Rating: Customer stratification rating on their overall shopping experience (On a scale of 1 to 10)

2. Data Exploration

Variable	Summary
----------	---------

Role	Measurement Level	Frequency Count
INPUT	INTERVAL	7
INPUT	NOMINAL	7
TARGET	INTERVAL	1

Class Variable Summary Statistics (maximum 500 observations printed)

Data Role=TRAIN

Data			Number of			Mode		Mode2
Role	Variable Name	Role	Levels	Missing	Mode	Percentage	Mode2	Percentage
TRAIN	Branch	INPUT	3	0	A	34.00	В	33.20
TRAIN	City	INPUT	3	0	Yangon	34.00	Mandalay	33.20
TRAIN	Customer type	INPUT	2	0	Member	50.10	Normal	49.90
TRAIN	Gender	INPUT	2	0	Female	50.10	Male	49.90
TRAIN	Payment	INPUT	3	0	Ewallet	34.50	Cash	34.40
TRAIN	Product_line	INPUT	6	0	Fashion accessories	17.80	Food and beverages	17.40

Interval Variable Summary Statistics (maximum 500 observations printed)

Data Role=TRAIN

Variable	Role	Mean	Standard Deviation	Non Missing	Missing	Minimum	Median	Maximum	Skewness	Kurtosis
Quantity	INPUT	5.51	2.923431	1000	0	1	5	10	0.012941	-1.21555
Tax_5_	INPUT	15.37937	11.70883	1000	0	0.5085	12.08	49.65	0.89257	-0.08188
Total	INPUT	322.9667	245.8853	1000	0	10.6785	253.68	1042.65	0.89257	-0.08188
Unit_price	INPUT	55.67213	26.49463	1000	0	10.08	55.07	99.96	0.007077	-1.21859
cogs	INPUT	307.5874	234.1765	1000	0	10.17	241.6	993	0.89257	-0.08188
gross_income	INPUT	15.37937	11.70883	1000	0	0.5085	12.08	49.65	0.89257	-0.08188
Rating	TARGET	6.9727	1.71858	1000	0	4	7	10	0.00901	-1.15159

- There are no missing values detected for character and numerical columns.
- However, the skewness for Tax_5%, Total, cogs, and gross income have a slight right-skewed distribution.

Correlation Statistics (maximum 500 observations printed)

Data Role=TRAIN Type=PEARSON Target=Rating

Input Correlation

Unit_price -0.008778

Quantity -0.015815

cogs -0.036442

Total -0.036442

Tax_5_ -0.036442

gross_income -0.036442

- All continuous variables in the dataset do not correlate with the rating because the correlation value is close to 0 even though the correlation value is negative. This was a bit concerning and needed to be investigated further.
- As is obvious, quantity and gross income have very high correlation of 70%. Unit price is positively correlated to cogs with 63% correlation.

- It can be seen that the variables do not have missing values in the dataset.
- The rating distribution looks uniform and there seems to be no skewness on the left or right side of the distribution.
- There is not much difference in sales across the 3 branches.
- Dataset contained similar number of customers coming from each city/branch 33.2% from Mandalay, 32.8% from Naypyitaw and 34.0% from Yangon.
- There were similar number of males and female customers in the dataset.
- Average of total sales was 322.97 (standard deviation=245.89) and median 253.8. In general these supermarkets have received higher customer rating. Average customer rating was 7 out of 10 (standard deviation=1.7). Median rating was 7 (min=4, max=10).

IV. Data preparation activities

1. Data Transformation

• Configuration of dtata transformation node.

- Data transformation output.
- The skewness value of the new variables has a skewness value of < 0.5, means that the distribution of these variables is normal.

2. Dropping Variables

• Dropping some variables in the dataset. I considered Date, Gross Margin Percentage, Invoice ID, and Time are irrelevant.

V. EDA

I understand that EDA does not determine models on the data, but I believe it helps business owners to explore possible data analysis models that best suit the data based on the business problems and goals.

1. Payment Type based on Branch

• The most popular payment method is in fact E-wallet and surprisingly not credit cards. Cash payment is also popular.

2. Customer Type based on Gender

3. Average Rating based on Branch

4. Average Transformed Total based on Product Line

5. Average Transformed Gross Income based on Branch

Findings from EDA are:

- There is not much difference in gross income by branch at an average level.
- Gross income is similar for both male and female, though female customers spend a bit higher at the 75th percentile.
- No particular time trend is observed.
- At an overall level, 'Sports and Travel' generates the highest gross income.

VI. Model(s)/Enterprise Miner diagrams used

1. Data Preparation

• The dataset split into 70% train, 15% validation, and 15% test.

Summary Stati:	Summary Statistics for Interval Targets							
Data=DATA								
Variable	Maximum	Mean	Minimum	Number of Observations	Missing	Standard Deviation	Label	
Rating	10	6.9727	4	1000	0	1.7185802944		
Data=TEST								
Variable	Maximum	Mean	Minimum	Number of Observations	Missing	Standard Deviation	Label	
Rating	10	6.976	4	150	0	1.7285475146		
Data=TRAIN								
				Number of		Standard		
Variable	Maximum	Mean	Minimum	Observations	Missing	Deviation	Label	
Rating	10	6.97	4	700	0	1.7146386482		
Data=VALIDATE								
				Number of		Standard		
Variable	Maximum	Mean	Minimum	Observations	Missing	Deviation	Label	
Rating	10	6.982	4.1	150	0	1.7384352294		

2. Linear Regression

2-1. Standard Linear Regression

	Fit Statistic	s					
	Target=Rating	g Target Label	=' '				
	Fit Statistics	Statistics L	ahel		Train	Validation	Test
	AIC	Akaike's Inf	ormation Criteri	.on	785.15		-
	ASE	Average Squa	red Error		2.88	2.929	3.050
	AVERR	Average Erro	r Function		2.88	2.929	3.050
	DFE	Degrees of F	reedom for Error	:	678.00		
	DFM	Model Degree	s of Freedom		22.00		•
	DFT	Total Degree	s of Freedom		700.00		
	DIA	Divisor for .	ASE		700.00	150.000	150.000
	ERR	Error Functi	on		2018.01	439.414	457.438
	FPE	Final Predic			3.07		
	MAX	Maximum Abso			3.42	3.160	3.292
	MSE	Mean Square 1	Error		2.98	2.929	3.050
	NOBS	Sum of Frequ	encies		700.00	150.000	150.000
	NW	Number of Es	timate Weights		22.00		
	RASE	Root Average	Sum of Squares		1.70	1.712	1.746
	RFPE	Root Final P	rediction Error		1.75		•
	RMSE	Root Mean Sq	uared Error		1.73	1.712	1.746
	SBC	Schwarz's Bay	yesian Criterion	1	885.28		
	SSE	Sum of Squar	ed Errors		2018.01	439.414	457.438
	sumw	Sum of Case	Weights Times Fr	eq	700.00	150.000	150.000
			Analysis of	Vari	ance		
			1				
			Sum o	Ē			
So	urce	DF	Square:	В	Mean Squar	e F Value	Pr > F
Μo	del	21	37.03705	5	1.76366	9 0.59	0.9250
	ror	678	2018.01294		2.97642		
	rrected Tota		2055.05000		2.51012	_	
-	Trected Tota	11 099	2033.03000	,			
		Model Fit St	atistics				
R-	Square	0.0180	Adj R-Sq	-0.	0124		
ΑI	-	785.1518	BIC	788.			
SE		885.2756			0000		
эE	,,,	003.4730	C(p)	44.	0000		

- RMSE value for training is 1.73, for validation is 1.712, whereas the RMSE value for testing is 1.746.
- The p-value from ANOVA table is 0.9250 (> 0.05), which can be concluded that the independent variables do not exhibit a statistically significant connection with the dependent variable, or the independent variables do not predict the dependent variable dependably.
- The value of R-square is 0.0180, which means this result shows that the independent variable can be used to predict just 1.8% of the variation in ratings (dependent variable).

2-2. Forward Linear Regression

Fit Statistics

Target=Rating Target Label=' '

Fit				
Statistics	Statistics Label	Train	Validation	Test
1.T.C	Maribala Tufannarian Cuiranian	255 00		
AIC	Akaike's Information Criterion	755.88	•	•
ASE	Average Squared Error	2.94	3.002	2.968
AVERR	Average Error Function	2.94	3.002	2.968
DFE	Degrees of Freedom for Error	699.00		
DFM	Model Degrees of Freedom	1.00		
DFT	Total Degrees of Freedom	700.00		
DIA	Divisor for ASE	700.00	150.000	150.000
ERR	Error Function	2055.05	450.323	445.199
FPE	Final Prediction Error	2.94		
MAX	Maximum Absolute Error	3.03	3.030	3.030
MSE	Mean Square Error	2.94	3.002	2.968
NOBS	Sum of Frequencies	700.00	150.000	150.000
NW	Number of Estimate Weights	1.00		
RASE	Root Average Sum of Squares	1.71	1.733	1.723
RFPE	Root Final Prediction Error	1.72		
RMSE	Root Mean Squared Error	1.71	1.733	1.723
sbc	Schwarz's Bayesian Criterion	760.43		
SSE	Sum of Squared Errors	2055.05	450.323	445.199
sumw	Sum of Case Weights Times Freq	700.00	150.000	150.000

Analysis of Variance

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	0	0			
Error	699	2055.050000	2.939986		
Corrected Total	699	2055.050000			

Model Fit Statistics

R-Square	0.0000	Adj R-Sq	0.0000
AIC	755.8826	BIC	757.9099
SBC	760.4337	C(p)	-7.5565

- The RMSE value for training is 1.71, for validation is 1.733, whereas the RMSE value for testing is 1.723.
- The p-value and r-square obtained error or did not appear.

2-3. Stepwise Linear Regression

Fit Statistic	s				
Target=Rating	Target Label='	1			
Fit	0	-1	True de la	TT-1: 1-+:	W
Statistics	Statistics Lab	ieī	Train	Validation	Test
AIC	Akaike's Infor	mation Criterio	n 755.88	_	_
ASE	Average Square		2.94	3.002	2.968
AVERR	Average Error		2.94	3.002	2.968
DFE	Degrees of Fre	edom for Error	699.00		
DFM	Model Degrees	of Freedom	1.00		
DFT	Total Degrees	of Freedom	700.00		
DIV	Divisor for AS	Ε	700.00	150.000	150.000
ERR	Error Function	ı	2055.05	450.323	445.199
FPE	Final Predicti	on Error	2.94		
MAX	Maximum Absolu		3.03	3.030	3.030
MSE	Mean Square Er	ror	2.94	3.002	2.968
NOBS	Sum of Frequer	cies	700.00	150.000	150.000
NW	Number of Esti	mate Weights	1.00		•
RASE	Root Average S	um of Squares	1.71	1.733	1.723
RFPE	Root Final Pre	diction Error	1.72		
RMSE	Root Mean Squa	red Error	1.71	1.733	1.723
SBC	Schwarz's Baye	sian Criterion	760.43		•
SSE	Sum of Squared	l Errors	2055.05	450.323	445.199
sumw	Sum of Case We	ights Times Fre	q 700.00	150.000	150.000
		Analysis of	Variance		
		midifold of	, all and		
		Sum of	Ē		
Source	DF	Squares	s Mean Sq	uare F Val	ue Pr > F
Model	0	()		
Error	699	2055.050000	2.93	9986	
Corrected To	tal 699	2055.050000)		
	Model Fit St	atistics			
R-Square	0.0000	Adj R-Sq	0.0000		
AIC	755.8826	BIC	757.9099		
SBC	760.4337	C(p)	-7.5565		
220	700.4007	- (P)	7.0000		

- RMSE value for training is 1.71, for validation is 1.733, whereas the RMSE value for testing is 1.723.
- The p-value and r-square obtained error or did not appear.

2-4. Backward Linear Regression

	Summary of Back	xward Elimi	ination		
	Effect		Number		
Step	Removed	DF	In	F Value	Pr > F
1	Gender	1	14	0.00	0.9479
2	Quantity*Quantity	1	13	0.01	0.9055
3	Product_line	5	12	0.42	0.8325
4	SQRT_Tax_5_	1	11	0.12	0.7281
5	SQRT_Total	1	10	0.01	0.9184
6	Payment	2	9	0.46	0.6301
7	Quantity*SQRT_Total	1	8	0.81	0.3679
8	Unit_price	1	7	0.70	0.4017
9	Branch	2	6	1.19	0.3039
10	Quantity	1	5	1.32	0.2507
11	Quantity*SQRT_Tax_5_	1	4	0.27	0.6009
12	Quantity*Unit_price	1	3	0.54	0.4615
13	SQRT_Tax_5_*Unit_price	1	2	0.65	0.4187
14	Unit_price*Unit_price	1	1	0.83	0.3615
15	Customer_type	1	0	1.85	0.1737

The selected model is the model trained in the last step (Step 15). It consists of the following effects:

Intercept

Sum of Source DFSquares Mean Square F Value Pr > FModel 0 0 Error 699 2055.050000 2.939986 Corrected Total 699 2055.050000

Analysis of Variance

The DMREG Procedure

Model Fit Statistics							
R-Square	0.0000	Adj R-Sq	0.0000				
AIC	755.8826	BIC	757.9099				
SBC	760.4337	C(p)	-7.5565				

- RMSE value for training is 1.71, for validation is 1.733, whereas the RMSE value for testing is 1.723.
- There are 15 steps performed in this model, and based on the resulting p-value, there are no independent variables that affect the rating value (dependent variable) since the p-value is more than 0.05.
- The p-value and r-square obtained error or did not appear.

2-5. Linear Regression Summary

Selected Model	Predecess or Node	Model Node	Model Description	Target Variable	Target Label	Train: Root Mean Squared Error	Valid: Root Mean Square Error	Test: Root Mean Square Error
Υ	Reg	Reg	None Regression	Rating		1.72523	1.711556	1.746307
	Reg2	Reg2	Forward Regression	Rating		1.714639	1.732672	1.722787
	Reg3	Reg3	Backward Regression	Rating		1.714639	1.732672	1.722787
	Reg5	Reg5	Stepwise Regression	Rating		1.714639	1.732672	1.722787

2-6. Improvements

- There is no relationship between gross income and customer ratings.
- Using the correlation analysis, one interesting observation has emerged that customer ratings is not related to any variable.
- Due to the findings I mentioned above, the linear regression models are not unfortunately statistically significant. This was unexpected but could often happen with not "textbook" dataset.
- RMSE measures the average difference between values predicted by a model and the actual values. It provides an estimation of how well the model is able to predict the target value (accuracy).
- I concluded that this happens when two variables providing same/very similar information, I need to select one variable. For example I selected city and drop branch from the analysis. I selected the total sales and dropped tax, cogs. I also dropped the variable gross margin percentage since it has the same value.

2-7. Final model & Interpretation

52				Analysis	of Vari	iance
53						
54				Sun	n of	
55	Source		DF	Squa	ares	Mean Square
	F Value	Pr > F				
56						
57	Model		13	26.171	1715	2.013209
	0.68	0.7854				
58	Error		986	2924.392	2995	2.965916
59	Corrected	Total	999	2950.564	1710	
60						
61						
62		Model	Fit St	atistics		
63						
64	R-Square	0.0	089	Adj R-Sq	-0.	.0042
65	AIC	1101.0	369	BIC	1103	.4841
66	SBC	1169.7	955	C(p)	14.	.0000
67						

-					
69		Type 3 An	alysis of Eff	ects	
70					
71			Sum of		
72	Effect	DF	Squares	F Value	Pr > F
73					
74	City	2	12.1275	2.04	0.1300
75	Customer_type	1	1.2056	0.41	0.5239
76	Gender	1	0.0430	0.01	0.9041
77	Payment	2	0.6248	0.11	0.9000
78	Product_line	5	6.8063	0.46	0.8069
79	Total	1	4.3836	1.48	0.2244
80	Unit_price	1	0.9026	0.30	0.5813
81					

New variable selections as follows:

• Target/Outcome: Rating

• Predictors: City, Customer type, Gender, Product line, Unit price, Quantity, Total, Payment

Variable selection criteria didn't select any variables. Therefore, I just explored a model without any selection using the variables we thought as important. This is the final model I obtained. R-square of the model is only 0.0089 which indicates a poor fit. Only less than 1% of the variability of customer satisfaction is explained by the variables in the model. This implies that there should be other variables that impact customer satisfaction than the variables collected in the dataset. Predictors in the final model are interpreted as follows. Compared to Yangon, Mandalay city has 0.155 lower customer satisfaction when adjusted for all the other factors in the model. Even though it is not significant, when total price increase by 100 units, customer satisfaction decreases by 0.04 units adjusting for other covariates in the model.

Variable	Estimate	P-value
City		
Mandalay vs Yangon	-0.155	0.045
Naypyitaw vs Yangon	0.096	0.217
Customer_type		
Member vs Normal	-0.035	0.524
Gender		
Female vs Male	-0.007	0.904
Payment		
Cash vs Ewallet	-0.006	0.935
Credit card vs Ewallet	0.034	0.668
Product_line		
Electronic accessories vs Sports and travel	-0.048	0.692
Fashion accessories vs Sports and travel	0.052	0.666
Food and beverages vs Sports and travel	0.131	0.275
Health and beauty vs Sports and travel	0.034	0.791
Home and lifestyle vs Sports and travel	-0.127	0.307
Total	-0.0004	0.224
Unit_price	0.001	0.581

2-8. PCA

Minimizing the variable selection has proven not very successful. This might show that the linear regression model are not suitable for this dataset. Before I found the other options, I decided to try PCA (85%) and regression model accordingly.

For the original PCA model, there are 15 principal components that correspond to accumulative value of 1.0. With 85% similarity, there are 10 principal components selected. I think 7 principal components can be a reasonable number. It honestly seems that deciding the number of principal components can be subjective to the goal of the model. Lowering the number of principal components by maintaining low similarity can be a aggressive reduction, but it could also be useful if the goal if to reduce the number of principal components. On the other hand, maintaining the similarity, cumulative variance, in the data set could be another goal. I believe reducing the number of variables should be the priority for this dataset due to the results of Model 1. Additionally, principal components are not co-related to each other. Regression can be very sensitive to correlation, and reducing correlation among variables could also be effective.

			Analysis	of Va	riance				
			Su	n of					
Source		DF	Squ-	ares	Mean S	ŏquare	F V	alue	Pr > F
Model		10	20.76	4198	2.0	076420		0.70	0.7242
Error		989	2929.80	0512	2.9	962387			
Corrected	Total	999	2950.56	4710					
	Мос	del Fit St	atistics						
R-Square	(0.0070	Adj R-Sq	_	0.0030				
AIC	1096	5.9343	BIC	109	9.1788				
SBC	1150	0.9196	C(p)	1	1.0000				
	Analys	sis of Max	imum Likelil Standa:		stimates				
Parameter	DF	Estimat	e Err	or	t Value	Pr >	t		
Intercept	1	6.972	7 0.05	44	128.11	<.0	001		
PC_1	1	-0.018	2 0.02	44	-0.74	0.4	569		
PC_10	1	0.023	7 0.04	99	0.48	0.6	346		
PC_2	1	0.00023	5 0.03.	12	0.01	0.9	940		
PC_3	1	-0.064	4 0.03.	14	-2.05	0.0	406		
PC_4	1	0.019	0.03	75	0.51	0.6	130		
PC_5	1	-0.0059	3 0.03	92	-0.15	0.8	795		
PC_6	1	0.0010	6 0.04	39	0.02	0.9	808		
PC_7	1	0.041	4 0.04	51	0.92	0.3	590		
PC_8	1	0.027	3 0.04	92	0.56	0.5	790		
PC_9	1	-0.038	5 0.04	99	-0.77	0.4	401		

Unfortunately, the result of regression model using PCA was not statistically significant, similar to the ones of other regression models.

3. Clustering

Findings/Interpretation from clustering:

- Fashion accessories and food and beverages are the most sold product in Naypyitaw and these products should be focused on along with electronic accessories.
- Most of the customers buy 10 quantities and busiest time of the day is afternoon i.e. around 2 pm which records highest sales. Sales is higher on Tuesdays and Saturdays compared to the rest of the week.
- Though the rating for 'fashion accessories' and 'food and beverages' is high but the quantity purchased is low. Hence, supply for these products need to be increased.

- No matter if it is the weekdays or the weekends, majority of the customers will only spend around \$0 to \$200. On the weekends however, more customers spend \$200 to \$400 and \$400 to \$600 compared to when on the weekdays.
- The data shows that there is a trend on the number of customers at certain days and time, which provides information for business decisions such as targeted time to offer discounts.
- There is weak causal relationship observed between average sales on weekdays vs weekends.

4. Neural Network

Neural networks are a class of parametric models that can accommodate a wider variety of nonlinear relationships between a set of predictors and a target variable than can logistic regression.

3-1	Generalized Linear Model	Number of hidden units: -
		Max Iterations: 100
2.2	M. I. D	Number of hidden units: 2
3-2	Multilayer Perceptron 1	Max Iterations: 100
		Number of hidden units: 4
3-3	Multilayer Perceptron 2	Max Iterations: 200
2.4	Maltilana Parantuna 2	Number of hidden units: 8
3-4	Multilayer Perceptron 3	Max Iterations: 300

A hidden layer in an artificial neural network is a layer in between input layers and output layers, where artificial neurons take in a set of weighted inputs and produce an output through an activation function. I stopped at maximizing the number of hidden units at 8 because if I have too many hidden units, I may get low training error but still have high generalization error due to

overfitting and high variance. In addition, more iterations are almost always better, but each additional iteration provides a smaller gain. If I add more iterations, I will get better matches, but the increase in overlapping index becomes smaller and smaller. At some point, I should expect adding iterations to make no practical change in the quality of the matching. This makes sense - as the model add samples from population, the chance that any observation will be the maximum decreases over time.

3-1 Generalized Linear Model

• RMSE value for training is 1.73, for validation is 1.731, whereas the RMSE value for testing is 1.743.

- There is only one iteration with the initial RMSE train 1.739708 and ending at 1.729611
- The initial RMSE validation is 1.732672 and ends at 1.731434.

3-2 Multilayer Perceptron 1 (2 Hidden Units, Iterations 100)

Fit Statisti	CS			
Target=Ratin	g Target Label=' '			
Fit				
Statistics	Statistics Label	Train	Validation	Test
DFT	Total Degrees of Freedom	700.00		
DFE	Degrees of Freedom for Error	655.00		
DFM	Model Degrees of Freedom	45.00		
NW	Number of Estimated Weights	45.00		
AIC	Akaike's Information Criterion	841.59		
SBC	Schwarz's Bayesian Criterion	1046.39		
ASE	Average Squared Error	2.93	2.993	2.960
MAX	Maximum Absolute Error	3.13	3.021	3.150
DIV	Divisor for ASE	700.00	150.000	150.000
NOBS	Sum of Frequencies	700.00	150.000	150.000
RASE	Root Average Squared Error	1.71	1.730	1.721
SSE	Sum of Squared Errors	2048.33	448.944	444.039
SUMW	Sum of Case Weights Times Freq	700.00	150.000	150.000
FPE	Final Prediction Error	3.33		
MSE	Mean Squared Error	3.13	2.993	2.960
RFPE	Root Final Prediction Error	1.82		
RMSE	Root Mean Squared Error	1.77	1.730	1.721
AVERR	Average Error Function	2.93	2.993	2.960
ERR	Error Function	2048.33	448.944	444.039
MISC	Misclassification Rate			
WRONG	Number of Wrong Classifications	•		

- RMSE value for training is 1.77, for validation is 1.730, whereas the RMSE value for testing is 1.721.
- There were 96 iterations in this model with the initial RMSE train of 1.771294 and continued to decrease to 1.65361

- The initial RMSE validation value is 1.732672 and continues to increase to 1.893184 (overfitting).
- The best iteration is the first iteration with RMSE training, which is 1.768396, and RMSE validation is 1.730018.

3-3. Multilayer Perceptron 3 (8 Hidden Units, Iterations 300)

Target=Rating Target Label=' ' Statistics DFT Total Degrees of Freedom 700.00 DFE Degrees of Freedom for Error _DFM_ Model Degrees of Freedom 89.00 _NW_ _AIC_ Number of Estimated Weights 89.00 Akaike's Information Criterion 928.13 Schwarz's Bayesian Criterion ASE Average Squared Error 2.92 2,995 2.967 MAX 3.026 3.145 Maximum Absolute Error 3.16 Divisor for ASE 700.00 _Nobs Sum of Frequencies 700.00 150.000 150.000 RASE Root Average Squared Error 1.71 1.731 1.723 Sum of Squared Errors 449.245 445.059 _SSE_ 2044.07 SUMW Sum of Case Weights Times Freq 150.000 _FPE_ Final Prediction Error 3.77 _MSE_ 2.995 2.967 Mean Squared Error 3.35 Root Final Prediction Error 1.723 RMSE Root Mean Squared Error 1.83 1.731 AVERR 2.967 Average Error Function 2.92 2.995 Error Function 2044.07 449.245 445.059 _MISC Misclassification Rate WRONG Number of Wrong Classifications

Fit Statistics

• RMSE value for training is 1.83, for validation is 1.731, whereas the RMSE value for testing is 1.723.

- There were 146 iterations in this model with the initial RMSE train of 1.833963 and continued to decrease to 1.614349.
- The initial RMSE validation value is 1.732672 and continues to increase to 1.877191 (overfitting).
- The best iteration is the first iteration with RMSE training is 1.828181, and for RMSE validation is 1.730597.

3-4. Multilayer Perceptron 2 (4 Hidden Units, Iterations 200)

- RMSE value for training is 1.98, for validation is 1.724, whereas the RMSE value for testing is 1.725.
- There were 189 iterations in this model with the initial RMSE train of 1.982259 and continued to decrease to 1.464764.
- The initial RMSE validation value is 1.732672 and continues to increase to 2.169641.
- The best iteration is the first iteration with RMSE training, which is 1.976888 and RMSE validation, which is 1.72416.

3-5. Neural Network Summary

Selected Model	Predecess or Node	Model Node	Model Description	Target	Target Label	Train: Root Mean Squared Error	Valid: Root Mean Squared Error	Test: Root Mean Squared Error
Y	Neural4	Neural4	MLP 8H Neural Network	Rating		1.976888	1.72416	1.724924
	Neural	Neural	MLP 2H Neural Network	Rating		1.768396	1.730018	1.720541
	Neural3	Neural3	MLP 4H Neural Network	Rating		1.829058	1.730597	1.722516
	Neural2	Neural2	GLM Neural Network	Rating		1.729611	1.731434	1.742782

VII. Findings

I found that none of the factors in the dataset are statistically significant in predicting the customer rating. The final regression model's Model R-square was 0.0089 means variables included in the model are not predicting the customer satisfaction well. Even though I could not build an ideal model that suits my initial purpose, I think I found some valuable observations in the process. This could be possible, for example, because EDA and Clustering does not necessarily determine models on the data, but it helps business owners to explore possible data analysis models that best suit the data based on the business problems and goals. Below are the findings:

- Customers prefer to use cash when they bought electronic accessories items.
- Customers prefer to use their credit cards more when they bought for food and beverages items.
- Customers prefer to use e-wallet when they pay for home and lifestyle products or fashion accessories items.
- Overall, the most popular payment method is E-wallet and cash payment is also on the higher side.

- The customer rating is more or less uniform with the mean rating being around 7 and there is no relationship between gross income and customer ratings.
- Fashion accessories and food and beverages are the most sold product in Naypyitaw and these products should be focused on along with electronic accessories.
- Gross income is similar for both male and female, though female customers spend a bit higher at the 75th percentile. Females spend on 'fashion accessories' the most and for males surprisingly it is 'Health and beauty'. Females also spend more on 'Sports and travel' which generates highest income overall.
- Using the correlation analysis, one interesting observation has emerged that customer ratings is not related to any variable.

VIII. Managerial implications/conclusions

Since I didn't find any variables that are significant, I can't say much based on the regression models. This is unfortunate, but I think this is also a information and the further insights could be made. There should be other unmeasured factors that are predicting the customer rating. For example, wait time in payment queues, availability of the products, approachability and customer service of sales associates can be some of those unmeasured confounders impacting the customer rating. Besides, I believe some of the observations I found in the process of building an ideal model serves some of the initial purpose of this project. For instance, Though the rating for 'fashion accessories' and 'food and beverages' is high but the quantity purchased is low. Hence, supply for these products need to be increased.

