Семинар 15

1 Повторение

Эквивалентное определение группы. Примеры групп: симметрическая группа, общая линейная группа. Абелева группа.

Подгруппа. Собственная подгруппа. Пример: специальная линейная подгруппа. Критерий подгруппы с доказательством.

Гомоморфизм. Примеры гомоморфизма: детерминант, логарифм. Эпиморфизм и мономорфизм. Изоморфизм групп. Примеры.

Таблица Кэли. Порядок элемента. Примеры.

Циклическая группа. Примеры циклических групп: целые числа по сложению и группа вычетов по модулю n. Таблица Кэли для вычетов по модулю 4.

2 Задачи

Бинарные операции. 4 аксиомы для бинарной операции $\mu: X \times X \to X$: ассоциативность, существование нейтрального элемента, существование обратного и коммутативность. Примеры множеств с бинарной операцией, удовлетворяющих только некоторым аксиомам:

$$(GL_n(\mathbb{R}), \cdot), (\mathbb{N}, \cdot), \{1, x, y \mid xy = x^2 = y^2 = 1\}.$$

Группоид, не удовлетворяющий ни одной аксиоме:

$$(\mathbb{R}^3, [\cdot, \cdot]).$$

Задача 1. Ассоциативна ли операция * на множестве M, если

- 1. $M = \mathbb{N}, x * y = x^y$;
- 2. $M = \mathbb{N}, x * y = \gcd(x, y);$
- 3. $M = \mathbb{Z}, x * y = x y;$
- 4. $M = \mathbb{R}, x * y = \sin x \cdot \sin y$?

Подгруппоиды, подполугруппы, подмоноиды, подгруппы. Подгруппа в моноиде: $\mathrm{GL}_n(\mathbb{R}) \subset \mathrm{Mat}_n(\mathbb{R})$.

Задача 2. В моноиде $\mathrm{Mat}_2(\mathbb{R})$ найти подполугруппу, которая является моноидом с другим нейтральным элементом.

Левые и правые нейтральные элементы. Элементы, обратимые слева или справа.

Задача 3. Пусть S – полугруппа матриц вида $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$, где $x, y \in \mathbb{R}$ с операцией умножения. Найти в этой полугруппе левые и правые нейтральные элементы, а также элементы, обратимые слева или справа относительно этих нейтральных.

Задача 4. На множестве M определена операция \circ по правилу $x \circ y = x$. Доказать, что (M, \circ) – полугруппа. Что можно сказать о нейтральных и обратимых элементах этой полугруппы? В каких случаях она является группой?

Задача 5. Доказать, что естественное определение операции на произведении группоидов сохраняет свойства ассоциативности, коммутативности, и т. д.

Обозначения \mathbb{Q}^{\times} , \mathbb{R}^{\times} , \mathbb{C}^{\times} (или \mathbb{Q}^{*}). Композиция отображений как операция.

Задача 6. Какие из указанных множеств с операциями являются группами:

- 1. (A, +), где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
- 2. (A, \cdot) , где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
- 3. (A_0, \cdot) , где A одно из множеств \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , а $A_0 = A \setminus \{0\}$;
- 4. $(n\mathbb{Z}, +)$, где n натуральное число;
- 5. множество степеней данного вещественного числа $a \neq 0$ с целыми показателями относительно умножения;
- 6. множество всех комплексных корней фиксированной степени n из 1 относительно умножения;
- 7. множество всех непрерывных отображений $\phi:[0,1]\to [0,1],$ для которых $\phi(0)=0,$ $\phi(1)=1,$ и $x< y\implies \phi(x)<\phi(y),$ относительно суперпозиции?

Задача 7. Какие из указанных ниже совокупностей отображений множества $M = \{1, 2, \dots, n\}$ в себя образуют группу относительно умножения:

- 1. множество всех отображений;
- 2. множество всех сюръективных отображений;

- 3. множество всех нечётных перестановок;
- 4. множество всех перестановок, оставляющих неподвижными элементы некоторого подмножества $S\subseteq M$?

Задача 8. Какие из указанных множеств квадратных вещественных матриц фиксированного порядка образуют группу:

- 1. множество симметрических (кососимметрических) матриц относительно сложения;
- 2. множество матриц с фиксированным определителем d относительно умножения;
- 3. множество диагональных матриц относительно сложения;
- 4. множество верхних нильтреугольных матриц относительно умножения?

Задача 9. Пусть $f: X \to Y$ — отображение. Отображение $g: Y \to X$ называется *левым* обратным для f, если $g \circ f = 1_X$. Доказать, что отображение f инъективно тогда и только тогда, когда оно обладает левым обратным.

Задача 10. Пусть |X| = m, |Y| = n. Найти число:

- 1. отображений;
- 2. инъективных отображений $X \to Y$.