Secrect Sharing Progress

Joan Ngure

Report

Perfect Secrecy:

- 1. Choose a prime p.
- 2. Choose randomly $a_1, \dots, a_{t-1} \in \mathbb{Z}_p$
- 3. Form $f(x) = D + \sum_{i=1}^{t-1} a_i x^i \mod p$
- 4. Choose (x_l, x_z, \dots, x_n) uniformly and randomly from among all permutations of n distinct elements from $\{1, 2, \dots, p-1\}$. Let $D_i = (x_i, d_i)$, where $d_i = f(x_i)$.

How step 4 is done:

let
$$n = 5, p = 7$$

The possible permutations will be

 $\frac{6!}{(6-5)!}$

For example:

12345 43261 51324

Let's randomly and uniformly choose 43261

$$x_1 = 4$$

 $x_2 = 3$
 $x_3 = 2$
 $x_4 = 6$

 $x_5 = 1$

If our scheme is (3,5) and the polynomial is

$$q(x_i) = 5 + 3x_i + 2x_i^2$$

Then the participants will get the following shares: $P_1(4,0), P_2(3,4), P_3(2,5), P_4(6,4), P_5(1,3)$

- 1. This scheme just like shamir's satisfys correctness. If any 3 or more participants pool their shares, they will always reconstruct the secret.
- 2. Any participants less than 3 learn nothing about the secret.
- 3. Can any 2 participants deceive participant 3? Let's assume P_1, P_2, P_3 agree to pool their shares and P_1, P_2 know the polynomial $q(x_i)$ hence know the secret. They therefore submit fabricated value $(x'_1, q(x'_1)), (x'_2, q(x'_2))$ to P_3 . Each possible secret $D' \in \{0, 1, 2, 3, 4, 5, 6\}$ defines a distinct polynomial $q_{D'}(x_i)$ of degree at most 2 passing through the point (0, D') and the fabricated points above. If $D' \neq D$, such a polynomial $q_{D'}(x_i)$ can intersect $q_D(x_i)$ in at most 2 points. Participant 3 will only reconstruct the incorrect secret if only if $q_{D'}(x_i) = q_D(x_i)$ and $D' \neq D$.

Cheaters still manage to deceive other participants although they are detected with a high probability. A simple solution to do this is to include a dummy variable say s which is never used as the real value of the secret. Thus our secret is encoded in $D^1, D^2 \cdots D^t$ where $D^i = D$ for some i uniformly and randomly chosen and $D^j = s$ for $i \neq j$. Each element of this sequence is then divided into shares using the protocol in the beginning of the report. For example:

When k participants agree to pool their secrets together, they construct $D^1, D^2 \cdots$ one at a time until some $D^j \neq s$ is obtained and the protocol terminates since cheating has occurred and the D^j is not legal.

(Probability that cheaters succeed to cheat in the ith round and obtain the secret while others get the wrong secret.)

Let i denote the round $D^i = D$. i is a random variable whose value is unknown to the cheaters.

Let e_i denote the event that the protocol does not terminate before round i and the cheaters submit fabricated shares at round i.

let
$$p(t) = Pr(e_i)$$
. Then $p(t) < (1 - e)^{-1}t^{-1}$

By induction on t:

Basis
$$(t = 1)$$
. $p(t) \le l < (1 - \epsilon)^{-1}$.

Induction (t > 1). Let P_t denote the probability with which the cheaters decide to submit fabricated shares at round 1. Let s_t denote the event that the

protocol does not terminate in round 1. Then

$$p(t) = Pr(i = 1)Pr(e_i|i = 1) + Pr(i > 1)Pr(s_1|i > 1)Pr(e_i|i > 1 \text{ and } s_1)$$

$$= t^{-1}p_1 + (t - 1)t^{-1}(p_1\epsilon + (1 - p_1))p(t - 1)$$

$$< t^{-1}(p_1 + (t - 1)(p_1\epsilon + (1 - p_1))(1 - e)^{-1}(t - 1)^{-1})$$

$$< t^{-1}(p_1 \times \frac{1 - \epsilon}{1 - \epsilon} + (p_1\epsilon + (1 - p_1))(1 - e)^{-1}) \times \frac{1 - \epsilon}{1 - \epsilon}$$

$$= (1 - \epsilon)^{-1}t^{-1}$$