

Professional, Applied and Continuing Education

INTRODUCTION TO MACHINE LEARNING

DIT 45100

Professional, Applied and Continuing Education

Module 1 Introduction

Agenda

- Fundamentals of machine learning
- Tools and frameworks

Professional, Applied and Continuing Education

Fundamentals of Machine Learning

Fundamentals of ML

- Polynomial Curve Fitting
- Probability Theory
- Decision Theory
- Information Theory

Polynomial Curve Fitting

 $y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum w_j x^j$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Professional, Applied and Continuing Education

Effect of Data Set Size

Data Set Size: N = 15

9th Order Polynomial

Data Set Size: N = 100

9th Order Polynomial

Professional, Applied and Continuing Education

Regularization

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Regularization: $\ln \lambda = -18$

Regularization: $\ln \lambda = 0$

Regularization: E_{RMS} VS. In λ

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

What Should I Know?

- Linear Algebra
- Derivatives
- Statistics
- Probability Theory
- Decision Theory
- Information Theory

Probability Theory

Apples and Oranges

Probability Theory

Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}.$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Probability Theory

Sum Rule

$$\begin{cases} r_j & p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij} \\ = \sum_{j=1}^{L} p(X = x_i, Y = y_j) \end{cases}$$

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior ∞ likelihood × prior

Probability Densities

Expectations

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

Conditional Expectation (discrete)

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Approximate Expectation (discrete and continuous)

Variances and Covariances

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^{2}\right] = \mathbb{E}[f(x)^{2}] - \mathbb{E}[f(x)]^{2}$$

$$cov[x, y] = \mathbb{E}_{x,y} [\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\}]$$
$$= \mathbb{E}_{x,y} [xy] - \mathbb{E}[x]\mathbb{E}[y]$$

$$cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\{\mathbf{x} - \mathbb{E}[\mathbf{x}]\} \{\mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}]\}]$$
$$= \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}]$$

The Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Gaussian Mean and Variance

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 dx = \mu^2 + \sigma^2$$

$$var[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Gaussian Parameter Estimation

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}\left(x_n|\mu,\sigma^2\right)$$

Decision Theory

- Inference step
 - Determine either $p(t|\mathbf{x})$ or $p(\mathbf{x},t)$

- Decision step
 - For given x, determine optimal t.

Minimum Misclassification Rate

$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}.$$

Reject Option

Information Theory: Entropy

$$H[x] = -\sum_{x} p(x) \log_2 p(x)$$

Important quantity in

- coding theory
- statistical physics
- machine learning

Entropy

- Coding theory: x discrete with 8 possible states; how many bits to transmit the state of x?
- All states equally likely

$$H[x] = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3 \text{ bits.}$$

Professional, Applied and Continuing Education

Supervised Learning Workflow

Model Selection

Cross-Validation

Hold-out Sampling

(b) A 40:20:40 split

Figure: Hold-out sampling can divide the full data into training, validation, and test sets.

Workflow with Hold-out Sampling

Hold-out Sampling

Figure: Using a validation set to avoid overfitting in iterative machine learning algorithms.

Cross Validation

Workflow with Cross-Validation

Professional, Applied and Continuing Education

Feature Selection

 A data preprocessing activity usually performed before learning a model.

Curse of Dimensionality

Curse of Dimensionality

Figure: A set of scatter plots illustrating the curse of dimensionality. Across figures (a), (b) and (c) the density of the marked unit hypercubes decreases as the number of dimensions increases.

Curse of Dimensionality

Figures (d) and (e) illustrate the cost we must incur if we wish to maintain the density of the instances in the feature space as the dimensionality of the feature space increases.

Feature Selection

- During our discussion of feature selection approaches it will be useful to distinguish between different classes of descriptive features:
 - Predictive
 - Interacting
 - Redundant
 - Irrelevant

Feature Selection

- The search can move through the search space in a number of ways:
 - Forward sequential selection
 - Backward sequential selection

Professional, Applied and Continuing Education

Machine Learning Tools & Frameworks

Machine Learning Tools & Frameworks

- Python Framework
 - NumPy for numeric computations
 - Pandas for data processing & analysis
 - Matplotlib/Seaborn for visualizations
 - Scikit-learn machine learning library
 - SciPy for scientific computations
 - Anaconda distribution for data driven projects
 - Jupyter notebook
 - VSCode / PyCharm / Spyder (optional)

- Software Packages
 - Knime
 - H2O
 - Node-red
 - ...

Introduction to scikit-learn

https://scikit-learn.org/stable/index.html