Adopted Levels, Gammas

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017

 $Q(\beta^{-})=-17810 \text{ SY}; S(n)=16993.8 7; S(p)=4547.27 22; Q(\alpha)=-6105.12 21$ 2017Wa10 $\Delta(Q(\beta^-))=200 \text{ (syst,} 2017Wa10).$

 $S(2n)=31750 \ 40, \ S(2p)=6404.90 \ 20, \ Q(\varepsilon p)=1600.19 \ 28 \ (2017Wa10).$

First identification of ³⁸Ca nuclide was by 1966Ha32 via ⁴⁰Ca(p,t) according to 2011Am01 compilation of isotope discovery.

Additional information 1.

Mass measurement: 2011Er02, 2008Ge08, 2007Ge07, 2007Ri08, 2006Bo11.

³⁸Ca Levels

Cross Reference (XREF) Flags

 39 Ti ε p decay (28.5 ms) E 39 Sc p decay:? F 24 Mg(16 O,2n γ) G 36 Ar(3 He,n γ) ⁴⁰Ca(p,t) В C

Coulomb excitation

 36 Ar(3 He,n)

Isospin T=1 (triplet) states

38 Ar	³⁸ Ca		$\Delta E(1)$	38 K		$\Delta E(2)$
$0,0^{+}$	0,0+) ⁺ T=1		
2167,2+	2213,2+	+46	2401,2	t ⁺ T=1	+104,+58	
3377,0 ⁺	3084,0 ⁺	-293				
3810,3 ⁻	$3704,3^{-}$	-106				
3937,2 ⁺	3684,2+					
$\Delta E(1) = E(^{38}$			_		_	
$\Delta E(2) = E(^{38}$	3 K)-E(38 Ar)	130,	E(3	8 K)-E(38	³ Ca)-130	

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
0	0+	443.76 ms <i>35</i>	A CDEFG	$%ε+%β^+=100$ $T_{1/2}$: weighted average of 443.63 ms 35 (2015Bl02), 443.77 ms 36 (2011Pa38), 443.8 ms 19 (2010Bl09), 430 ms 12 (1980Wi13), 450 ms 70 (1972Zi02), 439 ms 12 (1969Ga27), and 470 ms 20 (1968Ka15). Other: 660 ms 50 (1957Cl23), based on the observation of a 3.5 MeV $γ$ which could not be confirmed in the studies afterwards.
2213.2 10	2+	0.56 ps +16-10	A CDEFG	B(E2) \uparrow =0.0096 21 XREF: D(2224). J ^{π} : L(p,t)=2 from 0 ⁺ ; Coulomb excitation from 0 ⁺ . T _{1/2} : from B(E2) \uparrow . Other: 68 fs +30–28 from DSAM in (3 He,n γ). B(E2) \uparrow from 1999Co23 in Coulomb excitation.
3083.7 12	0_{+}	19 ps +10-7	DEF	J^{π} : L(p,t)=0 from 0 ⁺ .
3683.9 5	2+	29 fs +15-9	dEfG	B(E2)↑=0.0122 30 J ^π : L(p,t)=2; L(³ He,n)=2 or 2+3 for a doublet; Coulomb excitation from 0 ⁺ . T _{1/2} : from B(E2)↑ and adopted γ-ray branching ratios. Other: <5.5 fs from DSAM in (³ He,nγ). B(E2)↑ from 1999Co23 in Coulomb excitation.
3703.5 10	(3-)	0.16 ps +7-6	dEf	J ^π : systematics of even-even nuclides; L(³ He,n)=2+3 for a doublet composed of 3684 and 3703 levels. L(p,t) also shows some evidence of presence of L=3 component.
4193.5 <i>15</i>	(5 ⁻)		EF	E(level): other: 4191 5 from (p,t). J^{π} : $L(p,t)=(5)$ from 0^{+} .

³⁸Ca Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
4383.9 11	2+	24 fs + 12 - 8	dEF	E(level): other: 4385 4 from (p,t).
				J^{π} : L(p,t)=2 from 0 ⁺ ; L(³ He,n)=2+5 for a doublet.
4412 30	(5^{-})		d	J^{π} : L(3 He,n)=2+5 for a doublet.
4748 5	0^{+}		D F	E(level): other: 4751 5 from (³ He,n).
				J^{π} : L(³ He,n)=0 from 0 ⁺ . L(p,t)=(3) is inconsistent. There may be a doublet near
				this energy, but due to tentative nature of L(p,t), the evidence for two levels is
				not sufficient.
4860 <i>40</i>	(3^{-})		D	E(level): from (³ He,n).
				J^{π} : L(³ He,n)=3,(2+4). This group may be a doublet in (³ He,n); L=(2+4) may
				correspond to 4899, 2 ⁺ level from (p,t).
4902 <i>4</i>	2+		F	J^{π} : L(p,t)=2 from 0 ⁺ .
5164 7	2+		D F	XREF: D(5140).
				E(level): other: 5140 60 from (³ He,n).
5066.4	2+		_	J^{π} : L(³ He,n)=2 from 0 ⁺ .
5266 <i>4</i>	2+		F	J^{π} : L(p,t)=2 from 0 ⁺ .
5430 <i>6</i> 5601 <i>7</i>	3-		F	VDEE, D(5540)
3001 /	3		D F	XREF: D(5560).
				E(level): other: 5560 60 from (3 He,n).
5704 <i>5</i>			T.	J^{π} : L(³ He,n)=3 from 0 ⁺ .
5816 <i>7</i>	(4^{+})		F D F	XREF: D(5790).
3610 /	(4)		DΓ	E(level): other: 5790 40 from (³ He,n).
				J^{π} : L(3 He,n)=(4) from 0 ⁺ .
6136 <i>6</i>			F	J . L(116,11)=(4) 110111 0 .
6277 3	0^{+}		F	J^{π} : L(p,t)=0 from 0 ⁺ .
6485 6	Ü		F	V + 2(p,v)
6601 <i>3</i>			F	
6704 <i>3</i>			F	
6770 <i>13</i>			D F	E(level): other: $6760 \ 50 \ \text{from} \ (^3\text{He,n}).$
6801 <i>12</i>			F	
6950 <i>5</i>			F	
7041 8			F	VIDEO (1740)
7176 <i>4</i>			d F	XREF: d(7200).
7208 15			d F	XREF: d(7200).
7480 9			D F	E(level): other: $7470 50$ from (3 He,n).
7801 <i>3</i> 8026 <i>5</i>			F F	
8189 6			F	
8322 5			F	
8507 <i>9</i>			F	
8587 <i>3</i>			F	
8672 <i>6</i>			F	
8717 8			F	
8924 9			F	
8994 9			F	
9073 9			F	
9157 8 9230 9			F	
9230 9 9296 8			F F	
9735 8			F	
9809 6			F	
10104 9			F	
10410 9			F	
10557 8			F	
10946 11			F	
11089 <i>11</i>			F	

Continued on next page (footnotes at end of table)

³⁸Ca Levels (continued)

E(level) XREF 11189 *13* 11861 *11*

γ (³⁸Ca)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
2213.2	2+	2213.13	100	0 0+	B(E2)(W.u.)=2.5 6
					E_{γ} : other: 2212.5 <i>14</i> from ³⁹ Ti ε p decay, 2206 <i>10</i> from Coulomb excitation.
3083.7	0_{+}	870.5 5	100	2213.2 2+	B(E2)(W.u.)=8 +3-5
3683.9	2+	1471 [‡]	19 <i>14</i>	$2213.2 \ 2^{+}$	E_{γ} : other: 1448 25 from Coulomb excitation.
					I_{γ} : from Coulomb excitation.
		3683.7 <i>5</i>	100 14	$0 0^{+}$	B(E2)(W.u.)=3.2 12
					E_{γ} : other: 3685 21 from Coulomb excitation.
					I_{γ} : from Coulomb excitation.
3703.5	(3^{-})	1490.22 <i>11</i>	100	$2213.2 2^{+}$	B(E1)(W.u.)=0.0011 +7-3
4193.5	(5^{-})	490		3703.5 (3	
4383.9	2+	2170.6 4	100	2213.2 2+	

 $^{^{\}dagger}$ From a least-squares fit to γ -ray energies for levels connected with γ transitions and from (p,t) for the rest, unless otherwise

noted. ‡ From DSAM in (3 He,n γ), unless otherwise noted.

 $^{^{\}dagger}$ From (3 He,n γ), unless otherwise noted. ‡ Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Adopted Levels, Gammas

```
History
                                                            Author
                                                                              Citation
                                                                                                Literature Cutoff Date
                                      Full Evaluation
                                                          Jun Chen
                                                                        NDS 140,1 (2017)
                                                                                                     30-Sep-2015
O(\beta^{-}) = -14323.0 \ 28; S(n) = 15635.0 \ 6; S(p) = 8328.17 \ 2; O(\alpha) = -7039.76 \ 3
S(2n)=28930.52 20, S(2p)=14709.51 20 (2012Wa38).
First identification of <sup>40</sup>Cl nuclide by A. J. Dempster (Phys. Rev., 20 (1922), p. 631).
Additional details of data for resonances in different reactions can be found in the following datasets:
^{36}Ar(\alpha,\gamma):resonances: 24 resonances from E\alpha(lab)=5486 to 13330 (excitation energy in ^{40}Ca=11978-19038).
^{39}K(p,\gamma): excitation energies and \gamma-decays for about 160 resonances.
^{39}K(p,p),(p,\alpha):resonances: 267 resonances from E(p)(lab)=1102-6660 (excitation energy in ^{40}Ca=9403-14680).
^{40}Ca(p,p\alpha),(p,2p):resonances: two resonances with excitation energies (in ^{40}Ca) at 11700 and 12300.
Other reactions (giant resonances, properties of compound nucleus, reaction mechanism, etc.):
<sup>12</sup>C(<sup>28</sup>Si,X) or <sup>28</sup>Si(<sup>12</sup>C,X); 2002Ro35, 1995Na09, 1986Ha33, 1983Ra26, 1979Os01, 1979Cl02, 1979Ba49, 1973Ho37; reaction
    mechanisms.
Additional information 1.
<sup>24</sup>Mg(<sup>16</sup>O,X): 1991Fo08, 1985Sa11, 1981Nu02, 1980Sa31, 1980Sa12, 1980Pa08, 1979Le02, 1979Cl02, 1973Ho37.
<sup>27</sup>Al(<sup>16</sup>O,t): 1982Aw01, 1981Aw02: reaction mechanism.
^{39}K(p,p),(p,\alpha):resonances: 1987WaZI, 1990Bu02, 1970De30: see dataset.
<sup>40</sup>Ca(<sup>40</sup>Ca,X): 1997Sc40: giant quadrupole resonance.
^{40}Ca(p,π<sup>-</sup>): 1983Sh31: E=190 MeV. Measured \sigma.
^{40}Ca(p,p\alpha),(p,2p):resonances: 2001Sc25: see dataset.
Photonuclear reactions: {}^{40}Ca(\gamma,n),(\gamma,p),(\gamma,2n),(\gamma,pn), etc: 1974Br15, 1972Br58, 1971Sh23, 1971Is06, 1968Go29, 1966An03,
^{40}Ca(γ,π): 2002Kr02: deduced Δ' resonance. Others: 1988St12, 1982Do12.
<sup>40</sup>Ca(e,X): 1976Zi02.
^{40}Ca(\mu^-, \nu): 2003Po09: photon asymmetry measured in radiative muon capture in ^{40}Ca.
^{40}Ca(\pi^+, K^+): 1991Pi07.
^{40}Ca(K,\pi^-): 1981Be17, 1989Ta16: hypernuclear production.
<sup>40</sup>Ca(p-bar,X): 2002Ha01, 2001Tr23, 2001Tr19: measured anti-protonic x-rays.
<sup>40</sup>Ca(p-bar,p-bar): 1984Ga32.
<sup>40</sup>Ca(p,np): 1984Ah04 (also 1983AhZY): deduced neutron hole states.
<sup>40</sup>Ca(pol p,pol n): 1986Wa28: deduced spin-flip probability.
^{40}Ca(^{20}Ne,^{16}O\alpha): 1986Sh30.
Hyperfine structure, isotope shifts, nuclear radius measurements: 2000Mu17, 2000Ga58, 1995Ku41, 1993Si20, 1992Ve02,
    1992Ma20, 1991As06, 1990Go10, 1984Va08, 1983Lo13, 1982Av02, 1982An15, 1980Be13, 1979Kl01, 1978Br31, 1976Ne08,
Mesic atoms: 1983Ku10, 1981Wo02, 1980Po01, 1979Ba07, 1971Ku08, 1970Ma26, 1970Ku03, 1966Co02.
Mesic atoms, in most studies, deduced isotope shifts, root-mean square radius.
1983Ku10, 1980Po01, 1979Ba07, 1970Ku03: measured pionic x rays.
1981Wo02, 1970Ma26, 1966Co02: measured muonic x rays.
1971Ku08: measured kaonic x rays.
Giant (dipole, quadrupole and octupole) resonances: see inelastic scattering datasets: {}^{40}Ca(e,e'); (\pi^+,\pi^{+\prime}),(\pi^-,\pi^{-\prime}); (p,p'),(pol p,p');
    (d,d'),(pol\ d,d');(^{3}He,^{3}He');(\alpha,\alpha');(HI,HI').
In XREF column, level population indicated by letter Z or z refers to the following level energies in different reactions:
<sup>41</sup>Ti εp decay (80.4 ms): 0, 3353.62, 3737, 3904.
^{43}Cr β3p decay (21.2 ms): 0.
<sup>44</sup>V ε\alpha decay (111 ms): 0.
<sup>14</sup>N(<sup>28</sup>Si,d): 6930, 8098.
<sup>36</sup>Ar(<sup>7</sup>Li,t): 3900, 5265, 5615, 6290, 6525, 7010.
```

³⁶Ar(¹⁶O, ¹²C): 3353, 3900, 5250, 6900, 9900, 12400.

 40 Ca(p,p α),(p,2p):resonances: 11700, 12300.

Inelastic scattering: 0, 3740, 3900, 4490, 5900, 6290, 6400, 6940, 7300. Giant resonances at 7.8, 10.7, 14.0, 17.6 and 26 MeV.

40 Ca Levels

Cross Reference (XREF) Flags

	A B C D E F G H I J K L	⁴⁰ Sc ε deca ⁴ He(³⁶ Ar,α) ³² S(¹² C,α) ³⁶ Ar(α,γ):re ³⁶ Ar(⁶ Li,d) ³⁸ Ar(³ He,n) ³⁹ K(p,γ) ³⁹ K(p,p),(p, ³⁹ K(d,n) ³⁹ K(³ He,d) ⁴⁰ Ca(γ,γ')	α):resonances	O P Q R S T U V W X Y	40 Ca(d,d' 40 Ca(3 He 40 Ca($^{\alpha}$, α' 40 Ca($^{\alpha}$, α' 41 Ca(d,t) 41 Ca(3 He 42 Ca(p,t) (HI,xny)	γ) γ)),(pol p,p')),(pol d,d') , ³ He') 'γ)	Other AA AB AC AD AE AF AG AH AI AJ AK	rs: 43 Cr β^{+} 3p decay (21.2 ms) 44 V $\varepsilon\alpha$ decay (111 ms) 14 N(28 Si,d) 36 Ar(7 Li,t) 36 Ar(16 O, 12 C) 40 Ca(p,p α),(p,2p):resonances 40 Ca(t,t),(pol t,t) 40 Ca(n,n'),(pol n,n') 40 Ca($^{\pi}$, $^{\pi^{+'}}$),($^{\pi}$ -, $^{\pi^{-'}}$) 42 Ca(16 O, 18 O) Inelastic scattering
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@	XR	EF				Comments
0.0 3352.62 ^{&} 9	0+	stable 2.17 ns 8	AB DEFGH JK M			Double β deca set on half-I $T_{1/2}$: experime (2001Be79, >5.9×10 ²¹ ; Evaluated rms Additional info XREF: Others XREF: T(?). J^{π} : $L(\alpha,\alpha')=L$ (e,e').	y (\varepsilon\varepsilon) ife from the front of the from the from the front of the	H, AI)=L(p,t)=0 from 0+; E0 excitation in
3736.69 5	3-	41 ps <i>4</i>	B D F H JKL	NOPQRS	TUVWXYZ	8 in $(p,p'\gamma)$. Additional information XREF: Others μ =+1.6 3 (20) T=0 (1972Sc1 J ^{π} : L(α , α')=L (e,e'). μ : from tiltedand recoil in	ormation: AH,	AI, AK (0.1979Ni04,1976Ja16) $(0.1919\text{L}(p,t)=3 \text{ from } 0^+; \text{E3 excitation in a perfine field IPAC in } (\alpha,\alpha')(1979\text{Ni}04)$ $(0.1919\text{Lin})(\alpha,\alpha')(1976\text{Ja}16)$. Other: 1.56 30
3904.38 & <i>3</i>	2+	35 fs 7	D FGH JKLM	NOPQR	TU XYZ	1987Ma25). T _{1/2} : from (p, Additional info XREF: Others	p'γ). ormatio : AD, A (³ He,n	

 $^{^{40}}$ Ca(t,t),(pol t,t): 0.

⁴⁰Ca(n,n'),(pol n,n'): 0, 3353, 3737, 3904, 4491.

 $^{^{40}}$ Ca(π +, π +'),(π -, π -'): 0, 3353, 3736, 3908, 4492, 6256, 6583, 6700, 11700, 13400, 17500.

 $^{^{42}}$ Ca(16 O, 18 O): 0.

E(level) [†]	Jπ‡	T _{1/2} #@	XREF	Comments
4491.43 4	5-	289 ps 8	B D F H JKL NOPQRSTUVWXY	$T_{1/2}$: weighted average of 40 fs 7 in (p, γ), 29 fs + 10 -6 in (γ , γ'), 36 fs 14 in (n,n' γ), and 33 fs 7 in (p,p' γ). Additional information 5. XREF: Others: AH, AI, AK μ =+2.6 5 (2014StZZ,1974He13) T=0 (1972Sc19) J ^{π} : L(α , α')=L(p,t)=5 from 0 ⁺ ; E5 excitation in (e,e'). $T_{1/2}$: weighted average of 295 ps 5 in (α , $\alpha'\gamma$), 272 ps 8 in (p,p' γ), and 0.38 ns 8 in (HI,xn γ). μ : IPAD method in (p,p' γ) (1974He13). Additional information 6.
5211.56 ^d 17	0+	1.02 ps <i>21</i>	D fgH KL OPQ XY	J^{π} : L(p,t)=L(6 Li,d)=0 from 0 ⁺ . $T_{1/2}$: from (p,p' γ).
5248.79 5	2+	83 fs +11-9	d fgH KLMNOPQ S U XY	XREF: Others: AD
0				J^{π} : L(p,t)=L(6 Li,d)=L(p,p')=2 from 0 ⁺ ; E2 excitation in (e,e'). $T_{1/2}$: weighted average of 0.15 ps 7 in (p, γ) and 94 fs 17 in (p,p' γ) and 79 fs +11-9 in (γ , γ').
5278.80 ^{&} 6	4+	0.21 ps 4	d FgH KL OPQ U Y	XREF: Others: AD, AE J^{π} : L(6 Li,d)=L(6 L(9)=4 from 0 $^{+}$; $\gamma(\theta)$ in (9).
5613.52 <i>3</i>	4-	0.60 mg 11	B d H JKL OPQ sT VW Y	$T_{1/2}$: weighted average of 0.19 ps 4 in $(n,n'\gamma)$, 0.225 ps 35 in $(p,p'\gamma)$, and 0.16 ps $+13-4$ in (p,γ) . XREF: Others: AD
3013.32 3	4	0.69 ps <i>11</i>	B U II JAL OF Q SI VW I	J ^{π} : spin from $\gamma(\theta)$ in (HI,xn γ) and $\gamma\gamma(\theta)$ in (p, γ); parity from L(d,n)=L(3 He,d)=3 from 3/2+ and L(d,t)=L(3 He, α)=2 from 7/2 $T_{1/2}$: from (p,p' γ). Other: 69 fs 55 in (p, γ). Additional information 7.
5629.41 ^d 6	2+	40 fs <i>15</i>	d F H MNOPQ stU XY	XREF: Others: AD XREF: N(5610). J^{π} : L(p,t)=2 from 0 ⁺ ; E2 excitation in (e,e'). $T_{1/2}$: weighted average of 42 fs 15 from (p,p' γ) and 38 fs +20-10 from (γ , γ ').
5902.63 7	1-	15.8 fs 22	D F H JKLMNOPQ U WX	XREF: Others: AK XREF: D(5900)N(5940). J ^π : L(p,t)=L(⁶ Li,d)=1 from 0 ⁺ . T _{1/2} : weighted average of 42 fs <i>14</i> from (p,p'γ) and 15.2 fs +23-18 (y,γ'). 2004To07 in (HI,xnγ) propose this as 1 ⁻ member of K ^π =0 ⁻ band, not observed by 2004To07.
6025.47 5	2-	171 fs 2 <i>1</i>	f H JKL OPQ uVWx	Additional information 8. J ^π : L(³ He,d)=3 and L(d,n)=1+3 from 3/2 ⁺ ; analyzing power in (pol p,p'). T _{1/2} : from (p,p'γ). Additional information 9.
6029.71 ^b 6	3 ⁺	0.40 ps 8	f H OP u xY	J^{π} : 780.8 γ and 2124.4 γ E2(+M1) to 2 ⁺ ; band assignment in (HI,xn γ).
6160	(3-)		N TU	$T_{1/2}$: from $(p,p'\gamma)$. XREF: T(6100).
6285.15 4	3-	0.33 ps 4	D F H JKL NOPQ STU WX	J ^{π} : L(α , α')=(3). XREF: Others: AD, AI, AK J ^{π} : L(α , α')=L(p,t)=L(6 Li,d)=3 from 0 ⁺ . T _{1/2} : weighted average of 0.27 ps 8 in (p, γ) and 0.35 ps 4 in (p,p' γ).
				- *** * **

E(level) [†]	Jπ‡	T _{1/2} #@	XREF	Comments
<u> D(level)</u>		* 1/2	TINGS	2004To07 in (HI,xn γ) propose this as (3 ⁻) member of K^{π} =0 ⁻ band, not observed by 2004To07.
6422.4 10	2+	12 fs +5-3	M Q	Additional information 10. XREF: Others: AK J ^{\pi} : from (pol p,p').
6507.87 <i>13</i>	4+	128 fs <i>21</i>	d F H OPQ U XY	$T_{1/2}$: from (γ, γ') . XREF: Others: AD J^{π} : $L(p,t)=L({}^{6}Li,d)=L(pol\ p,p')=4$ from 0^{+} . $T_{1/2}$: from $(p,p'\gamma)$.
6542.80 ^d 9	4+	121 fs <i>2I</i>	d F H OPQ Y	XREF: Others: AD XREF: O(?). J^{π} : L(6 Li,d)=4 from 0 ⁺ ; 913.3 γ stretched E2
6582.47 10	3-	0.173 fs 28	B d F H JKL NOPQ STUVWX	to 2^+ ; band assignment in (HI,xn γ). $T_{1/2}$: from $(p,p'\gamma)$. XREF: Others: AI XREF: O(?)T(6560). J^{π} : $L(\alpha,\alpha')$ = $L(p,t)$ = $L(^6Li,d)$ = $L(pol\ p,p')$ =3.
				$T_{1/2}$: from $(p,p'\gamma)$. 2004To07 in (HI,xn γ) propose this as possible (3 ⁻) member of K^{π} =0 ⁻ band, not observed by 2004To07. Additional information 11.
6750.41 7	2-	96 fs 28	F H JKL OPQ UVWX	XREF: Others: AI J^{π} : from analyzing power in (pol p,p') with L=3; L(3 He,d)=1 and L(d,n)=1+3 from 7/2+. $T_{1/2}$: from (p,p' γ).
6908.70 8	2+	2.41 fs +29-23	d F H MNOPQ X	Additional information 12. XREF: Others: AD J^{π} : L(p,t)=L(6 Li,d)=L(p,p')=2 from 0 ⁺ . $T_{1/2}$: from (γ,γ') . Others: <35 fs from (p,γ) , <10 fs from $(p,p'\gamma)$.
6930.2 ^{&} 3	6+	0.34 ps +9-17	d F 1 0 v Y	XREF: Others: AC, AD, AE, AK J^{π} : $L(^{6}Li,d)=6$; $\gamma(\theta)$ and band assignment in (HI,xn γ).
6931.29 6	3-	1.4 ps 6	d H 1 nOPQ stuvW	$T_{1/2}$: from (HI,xn γ) by DSAM. XREF: Others: AD, AK J $^{\pi}$: L(3 He, α)=2 from 7/2 $^{-}$; 2439.8 γ to 5 $^{-}$, 1301.8 γ , 1682.4 γ and 3026.8 γ to 2 $^{+}$. $T_{1/2}$: from (p, γ). Other: 104 fs 28 from (p,p' γ).
6938.0 <i>18</i>	(1 ⁻ to 5 ⁻)	0.42 fs <i>17</i>	d n P stuv	XREF: Others: AD, AK J^{π} : γ to 3 ⁻ .
6950.48 7	1-	1.01 fs 5	d GH JKLMNOPQ tuvWX	$T_{1/2}$: from $(p,p'\gamma)$. XREF: Others: AD, AK J^{π} : $L(p,t)=L(^{3}He,n)=1$ from 0^{+} . $T_{1/2}$: from (γ,γ') . Other: <10 fs from $(p,p'\gamma)$.
7100	(2+)		N	Additional information 13. XREF: Others: AD
7113.1 10	1-	55 fs 28	Н јК Р х	E(level), J^{π} : from (e,e'). XREF: Others: AD J^{π} : 1899.8 γ and 7112.9 γ to 0 ⁺ , 1485 γ and 3206.8 γ to 2 ⁺ ; L(³ He,d)=1 from 3/2 ⁺ ; L(d,n)=1(+3) from 3/2 ⁺ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@	XR	EF		Comments
7113.73 5	4-	50 fs 21	H jKL	PQ	UVWx	$T_{1/2}$: from $(p,p'\gamma)$. XREF: Others: AD XREF: $K(7117)U(7120)$.
						J ^π : L(p,p')=5 from 0 ⁺ ; L(d,t)=L(³ He,α)=0+2 from $7/2^-$. T _{1/2} : weighted average of 35 fs 21 in (p,p'γ) and 76 fs 28 in (p,γ).
7239.07 8	$(3^-,4,5^-)$	0.10 ps 5	d H	PQ		J^{π} : 3501.4 γ to 3^{-} and 2746 γ to 5^{-} . $T_{1/2}$: from $(p,p'\gamma)$.
7277.82 8	(2,3)+	49 fs <i>35</i>	d f H	PQ		XREF: Others: AK J^{π} : 3541.0 γ to 3 $^{-}$; $L(p,p')=2$ from 0 $^{+}$ for 7278+7301.
7300.67 11	0+	118 fs <i>35</i>	d f H	PQ	U X	$T_{1/2}$: from $(p,p'\gamma)$. XREF: Others: AK J^{π} : $L(\alpha,\alpha')=L(p,t)=L(^6Li,d)=0$. $T_{1/2}$: from $(p,p'\gamma)$.
7397.2 ^b 10	(5 ⁺)	0.47 ps <i>14</i>		PQ	Y	J ^{π} : γ to 4 ⁺ and band assignment in (HI,xn γ). 2004To07 in (HI,xn γ) proposed this as (5 ⁻) member of K^{π} =0 ⁻ band.
7421.9 <i>15</i>		0.20 ps <i>14</i>		PQ	X	$T_{1/2}$: from (p,p' γ). XREF: X(7433).
7446.23 6	3+,4+	0.14 ps 5	Н	PQ	X	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : $L(p,p')=4$ from 0^+ ; γ to 2^+ .
7466.35 7	2+	8 fs <i>4</i>	FΗ	PQ	TU X	$T_{1/2}$: from $(p,p'\gamma)$. XREF: $T(7500)U(?)$.
						J^{π} : L(p,t)=L(p,p')=2 from 0 ⁺ ; 4113.5 γ and 7465.6 γ to 0 ⁺ .
7481?			Н			$T_{1/2}$: from (p,γ) . Other: <10 fs in $(p,p'\gamma)$.
7532.26 5	2-	0.16 ps 4	H JKL	PQ	W	J ^π : L(³ He,d)=1 from 3/2 ⁺ ; L(³ He,α)=2; L(p,p')=3; not 3 ⁻ from (p,γ). $T_{1/2}$: weighted average of 0.22 ps 7 in (p,γ) and
7561.17 <i>7</i>	4+	0.17 ps <i>4</i>	FН	DOD	U X	0.149 ps 35 in $(p,p'\gamma)$. XREF: U(?).
7301.17 7	4	0.17 ps 4	r n	PŲK	0 A	J ^{π} : L(6 Li,d)=4. Note that L(p,t)=(2) is inconsistent and tentative. $T_{1/2}$: from (p,p' γ). Other: 0.18 ps +10-5 in (p, γ).
7623.11 8	$(2^-,3,4^+)$	0.111 ps 28	Н	PQ	X	Additional information 14. XREF: $X(7625)$. J^{π} : 1993.6 γ and 2374.2 γ to 2^{+} and 2009.5 γ to 4^{-} .
						However, $L(p,t)=0$ for a level at 7625 could indicate there may be a separate level, if this assignment is correct. $T_{1/2}$: from $(p,p'\gamma)$.
7658.23 5	4-	<10 fs	B H jKL	PQ	νWX	$T_{-1/2}$. Holin (p,p y). T=1 J^{π} : log $ft=3.3$ from 4^{-} ; analog of g.s. in 40 K (see 1966Er05, 1966An01).
7676.6 5	(6 ⁺)	0.20 ps 5	Нј	PQ	uv Y	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : 2399.2 γ (E2) to 4 ⁺ . $T_{1/2}$: from $(p,p'\gamma)$.
7694.08 <i>4</i>	3-	<6 fs	н јкі	PQ	uvW	T=1 J^{π} : L(d,n)=1 and L(3 He,d)=3 from 3/2+; 2080.6 γ to 4 ⁻ ; analog of the 29.8, 3 ⁻ level in 40 K, see 1966Er05 in (3 He,d). T _{1/2} : from (p, γ). Other: <10 fs in (p,p' γ).

E(level) [†]	Jπ‡	T _{1/2} #@	XR	EF	Comments
7701.8 <i>4</i> 7769.4 <i>10</i>	0 ⁺ (3,4,5 ⁻)	166 fs <i>35</i>	F H H	Q u X PQ X	J ^π : L(⁶ Li,d)=L(p,t)=0. XREF: X(7757). J ^π : 2155.8γ to 4 ⁻ and 4032.5γ to 3 ⁻ ; J=(3,4,5) from γ feeding in (p,γ) (1990Ki07).
7814.7 6	0+		G	PQ X	$T_{1/2}$: from $(p,p'\gamma)$. E(level): from (p,p') . J^{π} : $L(^{3}He,n)=0$.
7870 7872.18 <i>9</i>	3 ⁻ 2 ⁺	2.44 fs +24-20	F H Mi	n PQ U X	J ^{π} : L(⁶ Li,d)=3. XREF: Others: AK J ^{π} : L(p,t)=L(α , α')=2 from 0 ⁺ . T _{1/2} : from (γ , γ'). Other: <14 fs from (p,p' γ).
7928.42 10	4+	49 fs <i>35</i>	H 1	n PQ s U X	XREF: Others: AK $J^{\pi}: L(\alpha,\alpha')=L(p,p')=4 \text{ from } 0^{+}. \text{ Note that}$ $L(p,t)=(3) \text{ is inconsistent and tentative.}$ $T_{1/2}: \text{ from } (p,p'\gamma).$
7972.5	(≤3) ⁻		d J	s x	$J^{\pi}: L(d,n)=1.$
7974.4 ^d 8 7976.55 3	(6 ⁺) 2 ⁺	21 fs 2 <i>I</i>	H d	PQ s x	E(level): band assignment in (HI,xn γ). J ^{π} : 4624 γ and 7977 γ to 0 ⁺ and 2699 γ to 4 ⁺ .
8018.8 <i>10</i>	0+		d	PQ X	$T_{1/2}$: from $(p,p'\gamma)$. E(level): from $(p,p'\gamma)$. J^{π} : $L(p,t)=0$ from 0^+ .
8051.8 <i>6</i> 8091.61 <i>17</i>	2+	2.94 fs +20-18	d FGH M	Q PQ U X	E(level): from (p,p'). XREF: F(8050)G(8050). J^{π} : $L(\alpha,\alpha')=L(^{6}Li,d)=L(^{3}He,n)=L(p,p')=2$ from
					0+; E2 excitation in (γ, γ') ; but $L(p,t)=4$ from 0+ for a level at 8085 is inconsistent and it could imply that there may be a separate level if the assignment is correct. T _{1/2} : from (γ, γ') . Other: <28 fs in $(p, p'\gamma)$.
8100.1 ^a 7	8+	12.5 ps <i>17</i>	d	Y	XREF: Others: AC J^{π} : 1168.8 γ ΔJ =2, E2 to 6 ⁺ .
8113.2 5	1-	30 fs +20-9	d F j M	PQ X	$T_{1/2}$: from (HI,xn γ) by recoil-distance method. XREF: F(8150). J^{π} : spin=1 from dipole excitation in (γ, γ') ; $L(p,p')=3$ and $L(^{6}Li,d)=1$ from 0^{+} .
8134.77 10	(3-)	<28 fs	d Hj	PQ	$T_{1/2}$: from (γ, γ') . Other: <14 fs in $(p, p'\gamma)$. J^{π} : 2505.3 γ and 4229.4 γ to 2 ⁺ and 2521.2 γ to 4 ⁻ . Possible 3643.1 γ to 5 ⁻ would disfavor 2 ⁻ and 3 ⁺ . $L(d,n)$ =1+3 from 3/2 ⁺ for 8113 and 8135 doublet.
8187.5 8	(3,4,5 ⁻)	<17 fs	Нј	PQ x	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : 4451.6 γ to 3 ⁻ ; J =(3,4,5) based on γ feeding in (p,γ) (1990Ki07).
8195.9 <i>6</i> 8271 <i>1</i>	(≤3) ⁻		J L	Q x PQ U	$T_{1/2}$: from $(p,p'\gamma)$. E(level): from (p,p') . XREF: U(?). E(level): from (p,p') . J^{π} : L(d,n)=1 from 3/2+; 1315 γ and 2364 γ to 1 ⁻ . But L(6 Li,d)=4 from 0 ⁺ is suggested for a 8270 group.
8276 <i>1</i> 8323.16 <i>8</i>	0 ⁺ (1 ⁻ ,2 ⁺)	58 fs 21	FG d H	PQ X PQ	J ^{π} : L(p,t)=L(³ He,n)=L(⁶ Li,d)=0 from 0 ⁺ . J ^{π} : 8322.2 γ to 0 ⁺ , 2038.0 γ and 4586.2 γ to 3 ⁻ . T _{1/2} : weighted average of 83 fs 28 in (p, γ) and 42 fs 21 in (p,p' γ).

E(level) [†]	J^{π} ‡	T _{1/2} #@	XREF	Comments
8338.0 <i>3</i>	$(2^+,3,4)$		d H Q X	J^{π} : 1795.2 γ and 1830.1 γ to 4 ⁺ ; J=(2,3,4) based
8358.9 6	$(0,1,2)^{-}$	104 fs 21	d JL PQ	on γ feeding in (p,γ) (1990Ki07). XREF: J(8371).
00000	(0,1,2)	10.1521	u 02 14	J^{π} : L(d,n)=1 from 3/2 ⁺ ; 1405 γ to 1 ⁻ is unlikely
				to be Mult=Q, $\Delta J=2$ based on RUL.
8364 5	(3 ⁻ to 7 ⁻)		P	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : 3872 γ to 5 ⁻ .
8373.94 15	4+		F H Q U WX	XREF: F(8380).
0424 01 11	2-	.17 f.	H JEI N DOE	J^{π} : L(α,α')=L(p,t)=L(6 Li,d)=4 from 0 ⁺ .
8424.81 <i>11</i>	2-	<17 fs	H JKL N PQ VW	T=1 (1990Ki07) XREF: K(8435).
				J^{π} : $L(^{3}He,\alpha)=2$ from $7/2^{-}$, $L(p,p')=3$ from 0^{+} ,
				$L(d,n)=1+3$ from $3/2^+$; M2 excitation in (e,e');
				analog of the 800, 2^- level in 40 K, see 1966Er05 in (3 He,d).
				$T_{1/2}$: from $(p,p'\gamma)$.
8439.0 5	0^{+}		FgH PQ s X	XREF: F(8420).
0404 02 12	(1= 2= 2=)	24 5- 14	and la DO a salely	J ^π : L(p,t)=L(6 Li,d)=0 from 0 ⁺ . J ^π : 2581.3 γ to 1 ⁻ , 4747.0 γ to 3 ⁻ ; L(3 He, α)=(2)
8484.02 <i>13</i>	$(1^-, 2^-, 3^-)$	24 fs <i>14</i>	gH k PQ s vWX	from $7/2^-$. But $L(p,t)=0$ from 0^+ for a level at
				8483 is inconsistent and it is unlikely the same
				level based on RUL for the 4747.0 γ , unless L(p,t)=0 is questionable.
				$T_{1/2}$: from $(p,p'\gamma)$.
8540 <i>4</i>	1,2+	14 fs <i>14</i>	f P vw	J^{π} : 5188 γ and 8540 γ to 0 ⁺ ; M2 is ruled out by
				RUL for these transitions. $T_{1/2}$: from $(p,p'\gamma)$.
8551.1 7	5-	<17 fs	f JK N PQ v X	$T_{1/2}$. Holf (p,p,y) . $T=1$
				XREF: N(8500).
				J^{π} : L(p,t)=L(p,p')=5 from 0 ⁺ , L(d,n)=L(³ He,d)=3 from 3/2 ⁺ ; analog of the
				891, 5 ⁻ level in ⁴⁰ K, see 1966Er05 in (³ He,d).
0.570.00.0	2+	266.12.0	1 C W W DO	$T_{1/2}$: from $(p,p'\gamma)$.
8578.80 9	2+	3.6 fs + 13 - 8	dfH MPQ ux	J^{π} : L(p,p')=2 from 0 ⁺ ; E2 excitation in (γ, γ') . $T_{1/2}$: from (γ, γ') . Other: <21 fs from $(p,p'\gamma)$.
8587 2	$(2^+,3)$		d f P u x	J^{π} : 2562 γ to 2 ⁻ , 3904 γ to 2 ⁺ , 3308 γ to 4 ⁺ .
8633 6	1-		PQ	E(level): from 40 Ca(p,p' γ).
8665.3 8	1-		J PQ	XREF: P(8671). E(level): from (p,p').
				J^{π} : L(d,n)=1; 8665 γ to 0 ⁺ .
8678.29 10	4 ⁺	42 fs <i>35</i>	H P X	J^{π} : $L(p,t)=4$. $T_{1/2}$: from (p,γ) .
8701 <i>1</i>	(6-)		Y	J^{π} : suggested in (HI,xn γ); 3088 γ to 4 ⁻ and
0717 0				$4209\gamma \text{ to } 5^{-}$.
8717 <i>8</i> 8748.22 <i>9</i>	2+	5.8 fs +11-8	P fHj M PQ T	XREF: P(8756)T(8700).
07.10.22	-	2.0 15 .11 6	2 3	J^{π} : L(p,p')=2 from 0+; E2 excitation in (γ,γ') .
0761106	2-		au: n v	$T_{1/2}$: from (γ, γ') .
8764.18 <i>6</i>	3-		d Hj P X	$XREF: P(8769)X(8752).$ $J^{\pi}: L(p,t)=3.$
8810 7	2+		d f PQ U	XREF: P(8819).
8850.6 9	6-,7-,8-		J PQ X	J ^{π} : L(α,α')=2 from 0 ⁺ for a 8780 group. XREF: P(8860).
0050.0 7	0 ,7 ,0		л гу х	E(level): from (p,p') .
				J^{π} : L(p,p')=7 from 0 ⁺ . J^{π} =(0) ⁻ is proposed for a

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@	XRI	EF		Comments
8909.0 <i>9</i> 8934.81 <i>7</i>	2+		F Н ј	Q P	X	8860 group in (d,n). E(level): from (p,p'). XREF: P(8922). J^{π} : L(6 Li,d)=2 from 0+; 3722.1 γ , 5581.8 γ and 8933.7 γ to 0+, 2352.2 γ and 5197.8 γ to 3 ⁻ , 2905.0 γ to 3 ⁺ .
8935.8 ^b 9 8938.4 9	(7 ⁺) 0 ⁺		J	PQ	X X	J ^π : band assignment in (HI,xnγ). XREF: P(8949). E(level): from (p,p'). J ^π : L(p,t)=0. But L(d,n)=1 from 3/2 ⁺ is suggested for a level at 8931.
8978 6	5+,6+,7+		Н	Q	V x	XREF: H(?)V(?). E(level): from (p,p'). J^{π} : L(p,p')=6 from 0 ⁺ .
8982.5 5	2+	4.5 fs +39-14	j M	r	UV x	XREF: $U(8970)V(?)$. J^{π} : E2 excitation in (γ, γ') .
8994.50 <i>11</i>	(1-,2+)		Нј	PQr	x	$T_{1/2}$: from (γ, γ') . XREF: P(9011). J^{π} : 5641.5 γ and 8993.4 γ to 0 ⁺ , 2411.0 γ , 2709.3 γ to 3 ⁻ .
9031.9 3	4-		Н	Q	VWX	J ^{π} : L(d,t)=L(3 He, α)=0 from 7/2 $^-$, L(p,p')=5 from 0 $^+$. 2004To07 in (HI,xn γ) propose (7 $^-$) for this level, but γ 's to 3 $^-$ and 4 $^-$ states are inconsistent with this assignment.
9033? ^c 1	(7 ⁻)				Y	E(level): it is possible that this level is the same as the 9031.9 seen in other reactions and the 4542γ reported by $2004\text{To}07$ in (HI,xn γ) could correspond to 4540.2γ in (p, γ). But the most intense 3418γ from 9031.9 level is not reported by $2004\text{To}07$. J ^{π} : band assignment in (HI,xn γ).
9050.1 10				Q		E(level): from (p,p') .
9080.3 11				Q	W	E(level): from (p,p') .
9091.70 6	3-		H k	Q	W	T=(0) (1990Ki07) J ^π : 1977.9γ to 4 ⁻ and 3812.7γ to 4 ⁺ , 5187.0γ to 2 ⁺ and 3066.1γ to 2 ⁻ , 3188.9γ to 1 ⁻ .
9135.66 <i>5</i>	$2^{-},3^{-}$		f H Jk	Q	Wx	T=0 (1990Ki07) J^{π} : L(d,n)=1 from 3/2+, L(p,p')=3 from 0+.
9162.1 <i>11</i>			f k	Q	x	Additional information 15.
						E(level): from (p,p') .
9185.3 <i>12</i> 9209.77 <i>3</i>	(2,3)-		k H j	Q Q	W	E(level): from (p,p'). T=0 (1990Ki07) J ^{π} : 2096.0 γ to 4 ⁻ , 2259.2 γ and 3307.0 γ to 1 ⁻ ; L(d,n)=1 from 3/2 ⁺ .
9226.69 5	(1-,2,3-)		Нј	q	W	Additional information 16. J ^π : 2276.1 γ to 1 ⁻ and 2941.4 γ to 3 ⁻ . Possible 9225.6 γ to 0 ⁺ would disfacvor 3 ⁻ . Additional information 17.
9227.43 <i>7</i> 9246.0 <i>12</i>	(1,2 ⁺) (7) ⁻		H j F	q Q	w X	J^{π} : 5874.4 γ to 0 ⁺ and 3201.8 γ to 2 ⁻ . XREF: X(9250). E(level): from (p,p'). J^{π} : L(p,p')=7. But L(⁶ Li,d)=6 for a 9240 group.
9274.5 12				Q	X	Additional information 18. XREF: X(9263). E(level): from (p,p').

E(level)	$J^{\pi \ddagger}$	T _{1/2} #@		XRI	EF			Comments
9304 5	0+	·					X	T=1 (1972Sc19)
9305.2 & 8 9362.54 6	(8 ⁺) 3 ⁻		В	F H k		U	Y X	J ^{π} : L(p,t)=0. J ^{π} : band assignment in (HI,xn γ). T=0 (1990Ki07) XREF: U(9340). J ^{π} : log ft =5.4 from 4 $^-$; 937.7 γ to 2 $^-$, 4113.5 γ to 2 $^+$.
9377.7 2	2-,3-,4-			H k	Q		x	$\Gamma_{\alpha}/\Gamma_{\rm p}=0.0119~5~{\rm from}^{40}{\rm Sc}~\varepsilon~{\rm decay}.$ E(level): from $({\rm p},\gamma)$. ${\rm J}^{\pi}$: L(p,p')=3 from 0^+ .
9388.20 19	2+			H k				J^{π} : 2087.4 γ , 4176.3 γ and 9387.0 γ to 0 ⁺ , and 2845.3 γ , 2880.3 γ and 4109.2 γ to 4 ⁺ .
9395.6 3	2-	0.14.1.37		H jk				E(level): from (p,γ) .
9404.85 19	2-	0.14 keV		HIJk				T=1 XREF: J(9408). J ^π : 9403.7 γ to 0 ⁺ , 2822.2 γ , 3119.6 γ and 5667.7 γ to 3 ⁻ , 2291.1 γ to 4 ⁻ ; L(p,p)=1 from 3/2 ⁺ ; $\gamma\gamma(\theta)$ in (p, γ) give J=2. T _{1/2} : from (p,p),(p, α): resonances.
9406.3 6	0+			GH k			X	T=1 XREF: G(9380). E(level): from (p, γ). J ^{π} : L(³ He,n)=L(p,t)=0 from 0 ⁺ .
9412.3 2				H Jk	q			XREF: J(9408). E(level): from (p,γ) .
9418.8 2	3-		В	H Jk	q			E(level). Hold (p, y) . T=1 XREF: $J(9408)$. J^{π} : $\log ft = 5.6$ from 4^- ; 3516.0γ to 1^- .
9429.11 5	(3,4)		В	H Jk			W	T=0 (1990Ki07) XREF: J(9431).
9432.46 18	1-	0.23 keV		HIJk			W	J ^π : log ft =5.5 from 4 ⁻ ; L(³ He,α)=(0) from 7/2 ⁻ . T=1 (1990Ki07) XREF: J(9431). J ^π : L(p,p)=1 from 3/2 ⁺ ; 9431.3 γ to 0 ⁺ .
9453.95 5	3-	0.09 keV	В	HIJk	Q		W	$T_{1/2}$: from (p,p),(p, α):resonances. T=0 XREF: Q(?). J^{π} : log $ft=5.2$ from 4^{-} ; L(d,n)=1 from $3/2^{+}$.
9499.9 <i>15</i>	2+			F H		U		$T_{1/2}$: from (p,p),(p, α):resonances. E(level): from (p, γ). J^{π} : L(6 Li,d)=2 from 0 ⁺ .
9536.24 <i>16</i> 9537.8 <i>5</i>	1-	0.4 keV		H HIJ	Q			E(level): from (p,γ) . XREF: Q(?). E(level): from (p,γ) . Other: 9535.2 14 in (p,p) :resonances. $J^{\pi}, T_{1/2}$: from $(p,p), (p,\alpha)$:resonances. $L(p,p)=L(d,n)=1$
9564 <i>5</i>	(2+)			G			WX	from $3/2^+$. T=(1) XREF: G(9600). J^{π} : L(3 He,n)=2 for a 9600 group.
9603.0 <i>4</i>	3-	0.4 keV	В	НІј		T	WX	J ⁺ : L(⁺ He,n)=2 for a 9600 group. T=1 J ^π : log ft =5.6 from 4 ⁻ ; L(p,p)=1 from 3/2 ⁺ ; $\gamma\gamma(\theta)$ in (p, γ) gives J=3. T _{1/2} : from (2J+1)×Γ=3.4 keV for the 9603+9605 levels in (p,p),(p, α):resonances, and Γ=0.19 keV 5 from (γ , γ') for the 9605 level.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@			XRE	F			Comments
9604.6 <i>4</i>	1-	0.19 keV 5		HIj	M		WX	7	T=1
700 4 .0 4	1	0.19 KC V 3		1111	11		VV.A	•	$T_{1/2}$: from (γ, γ') . Other: 1.3 keV from
									$(p,p),(p,\alpha)$:resonances.
9632.7? 11				Н					$(p,p),(p,\alpha)$. resonances. E(level): from (p,γ) .
9640.89 7	2-			H				ur.	T=1
9040.89 /	Z			н			wX	X.	
									XREF: X(9620).
									J^{π} : spin from $\gamma\gamma(\theta)$ and parity from a
0655 5 0								_	resonance formation fit in (p,γ) .
9655.5 9				Н		q	WX	K.	XREF: W(9647)X(9665).
0.662.2.2								_	E(level): from (p,γ) .
9662.2 2	≤3-			Hij		q	WX	X.	XREF: W(9647)X(9665).
									E(level): from (p,γ) .
									J^{π} : L(p,p)=(d,n)=1 from 3/2 ⁺ for 9662+9669.
9668.71 8	3-			F Hij	K		WX	K	T=1
									XREF: F(9700)K(9700)W(9673)X(9665).
									J^{π} : L(⁶ Li,d)=3 from 0 ⁺ .
9779.47 <i>7</i>	3			H					T=1
									J^{π} : from $\gamma\gamma(\theta)$ in (p,γ) .
9785.3 2	$(1,2^+)$			H					J^{π} : 2484.5 γ , 6432.1 γ and 9784.0 γ to 0 ⁺ .
9802.1 7	≤3-			HI					E(level): from (p,γ) .
									J^{π} : L(p,p)=1 from 3/2 ⁺ .
9807.2? 11				H					
9811.0 2	$(3^-,4^-,5^-)$		В	H					E(level): from (p,γ) .
									J^{π} : log ft =6.1 from 4 ⁻ .
9829.43 <i>16</i>			В	H					E(level): from (p,γ) .
9834.97 19			В	H					
9853.5 ^d 8	(8^+)							Y	XREF: Others: AE
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0)								J^{π} : band assignment in (HI,xn γ).
9854.43 <i>17</i>	≤3-			HI					E(level): from (p,γ) .
, , , , , , , , , , , , , , , , , , , ,	_0								J^{π} : L(p,p)=1 from 3/2 ⁺ .
9859.6 <i>3</i>	4-,5-,6-			Н		Q			J^{π} : L(p,p')=5 from 0 ⁺ .
9865.15 <i>11</i>	1	0.100 keV 24		ef H	M				T=1
,000.10 11	-	0.100 110 / 2.							J^{π} : from $\gamma\gamma(\theta)$ in (p,γ) .
									$T_{1/2}$: from (γ, γ') .
9869.3 <i>4</i>	1+,2+	0.90 keV 21		ef H	MN	Q	U		XREF: Q(9877)U(9870).
	- ,-								J^{π} : γ' s to 0 ⁺ and 2 ⁺ ; M1 or E2 excitation in
									(e,e') . L(6 Li,d)=2 for a 9870 group and a
									doublet at 9868 suggested by 1980St17 in
									(e,e') could indicate there is a separate level
									with $J^{\pi}=2^{+}$.
									$T_{1/2}$: from (γ, γ') .
9898.5 <i>3</i>				Н					$1_{1/2}$. Hom (γ, γ) .
9921.3 2	$(3^-,4^-,5^-)$		В	f H					E(level): from (p, γ) .
))21.3 Z	(5, 7,5)		ь	1 11					J^{π} : log ft =6.3 from 4 ⁻ .
9939.7 2				f H					$J : \log Jt - 0.5 \text{ from } + 1$
9954.00 9	4+		В	f H					T=0
775 1.00 7	•		_						J^{π} : spin=4 from $\gamma\gamma(\theta)$ in (p,γ) ; observed α
									decay from this level in 40 Sc ε decay implies
									π =natural.
9977.09 <i>17</i>	(3,4,5)		В	f H					κ -natural. E(level): from (p,γ) .
9911.09 17	(3,4,3)		ь	1 11					J^{π} : log $ft=7.0$ from 4^- .
9993.6 <i>15</i>				Н					J . 105 Ji-1.0 HOIII + .
10040.54 9	$(2^-,3^-)$			н Н ј			v		T=1
10070.04 7	(2,5)			пј			٧		J^{π} : γ' s to 1 ⁻ and 4 ⁻ .
10045.6 <i>5</i>	$(3^- \text{ to } 7^-)$			Нј			v		o., oto i una i .
100 10.00	(2 (0 /)			J			•		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XRI	EF		Comments
10049.38 7	4-	,	В	н јк	q	VW	T=1
							XREF: K(?). J^{π} : log ft =6.3 from 4 ⁻ ; γ' s to 2 ⁻ and 5 ⁻ ; $L(p,p')$ =5
							from 0^+ , $L(^3\text{He},\alpha)=0$ from $7/2^-$.
10057.9 <i>3</i> 10065 <i>2</i>	$(1^-,2^+)$			f H j f I	q q	VW V	T=0
10080.6 2				f H	4	Uv	E(level): from (p,γ) .
10130.59 <i>19</i>	$(3^-,4^+)$		В	f HI		V	T=0 E(level): from (p,γ) .
10154 8	$(3^-,4^+,5^-)$		В	f			T=0
							E(level): from 40 Sc ε decay. J^{π} : log ft =7.3 from 4^{-} ; observed α decay from this
							level in 40 Sc ε decay implies π =natural.
10193 7	$(3^-,4^+,5^-)$		b				$T=0$ $I^{\pi_{+}} \log f_{+} = 7.5$ from $I^{-} = 0$ observed as decay from this
							J^{π} : log ft =7.5 from 4 ⁻ ; observed α decay from this level in ⁴⁰ Sc ε decay implies π =natural.
10199.1 <i>4</i>	1-			HI			T=0
10205.0 8				Н			E(level): from (p,γ) .
10210.5 2	3-,4-		В	H		W	E(level): from (p,γ) .
10232.7 7				Н			J^{π} : log ft =5.7 from 4 ⁻ ; L(³ He, α)=0 from 7/2 ⁻ .
10262.53 10	3-			HI			T=0+1.
							J^{π} : γ' s to 1 ⁻ , 3 ⁻ , 3 ⁺ ; $L(p,p)=1$ from 3/2 ⁺ for
10267.6 <i>5</i>	1-	0.9 keV		HI			10263+10268; π =natural from (p, α):resonances. T=0
							J^{π} , $T_{1/2}$: from (p,p),(p, α):resonances for a 10265
10274.7 3	3+,4+,5+			Н	Q		group. XREF: Q(10287).
							J^{π} : L(p,p')=4 from 0 ⁺ .
10277.8 2	(1 ⁻)	1.6 keV		HI	Q		T=0 XREF: I(10275)Q(10290).
							E(level): from (p,γ) .
10284.9 <i>3</i>	1-	1.1 keV		Hi	Q		XREF: Q(10290). E(level): from (p, γ) .
10318.8 4	1+	26 eV 7		E H MN	I Q		T=1
							XREF: Q(10328).
							J^{π} : M1 excitation in (e,e'). $T_{1/2}$: from (γ, γ') .
10333.7 5	(3)-	0.11 keV	В	HI	Q		T=0
							XREF: Q(10344). J^{π} : (1,3) ⁻ from (p,p),(p, α):resonances; log ft =7.1
10240.20	4.4						from 4^- .
10340 20	4 ⁺				Q	U	XREF: Q(10344). J^{π} : L(α , α')=4.
10358.5 <i>15</i>				F H			XREF: F(10340).
							J^{π} : L(6 Li,d)=8 for a level at 10340 could indicate there may be a different level.
10361.4 15			В	Н			T=0
10362.8 5	1-	0.60 keV		I			E(level): could be the same level as the 10361.4
10364.8 5	$(1,3)^{-}$			I			level in (p,γ) .
10376.6 5	1-	0.6 keV		HI			Т_0
10383.79 <i>16</i>	$(1^-,2^+)$			HI K			T=0 XREF: K(?).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@			XREF		Comments
10415.06 6	3			Н			T=1 J^{π} : 2853.8 γ to 4 ⁺ , 3301.2 γ to 4 ⁻ , 2948.6 γ to 2 ⁺ ,
10420.4 5	1-	0.5 keV		HI			3664.5 γ to 2 ⁻ . T=0
10430.47 19	(2 ⁺)			HI			E(level): from (p,γ) . T=0
10441.3 6				Н			E(level): from (p,γ) . E(level): from (p,γ) .
10443.8 2	2-	4.0 keV		HI			E(level): from (p,γ) . 10443.5 5 in (p,p) , (p,α) :resonances.
10447.0 5	3-	0.44 keV	В	f I			T=0 E(level): \$ from (p,p),(p, α):resonances. J ^{π} : (1,3) ⁻ in (p,p),(p, α):resonances with L(p)=1 from 3/2 ⁺ ; log ft =6.2 from 4 ⁻ .
10469.9 <i>15</i>	(3,5)		В	f H			E(level): from (p,γ) . J^{π} : log $ft=5.7$ from 4^- ; α decay of this level in 40 Sc ε decay implies π =natural.
10474 <i>2</i> 10478.6 <i>15</i>	(8-)			Н		Y	J^{π} : proposed in (HI,xn γ).
10503.0 15	(3,4,5)-		В	Н			E(level): from (p,γ) . J^{π} : log $ft=5.5$ from 4^{-} .
10514.7 <i>15</i>	(3 ⁻ ,4 ⁺ ,5 ⁻)		В	Н			XREF: B(10519). J^{π} : log ft =6.7 from 4 ⁻ ; α decay of this level in 40 Sc ε decay implies π =natural.
10516.5 5	1-	1.2 keV		I			T=0 E(level): could be the same level as the 10514.7 level in (p,γ) .
10517.4 5	1 ⁽⁺⁾	0.30 keV		I			
10529.8 5	(1 ⁺)	0.40 keV		HI			E(level): from $(p,p),(p,\alpha)$:resonances. 10527.8 <i>15</i> from (p,γ) . Additional information 19.
10541.7 5	2+	0.19 keV		HI			T=0 E(level): from (p,p),(p, α):resonances. 10540.0 <i>15</i> from (p, γ).
10552.1 <i>15</i>				H			
10582 5	(3,4,5) 3 ⁻	0.16.1	В				J^{π} : log ft =6.3 from 4 ⁻ .
10596.4 5		0.16 keV	В	FI	Ţ	J	T=0 XREF: F(10590). E(level): from (p,p),(p, α):resonances.
10598.6 5	(1^+)	0.20 keV		I			
10607.6 5	0(+)	0.20 keV		gI			
10618.8 <i>5</i> 10621.6 <i>5</i>	2 ⁻ 0 ⁺	3.5 keV 0.04 keV		I			T=0
10633.8 5	$(1,3)^-$	1.1 keV		g I HI			E(level): from (p,p),(p, α):resonances. 10632.7 2 in (p, γ).
10639.07 7	(3 ⁻ ,4,5 ⁻)			Н			$T=1$ J^{π} : 3707.6 γ and 4056.3 γ to 3 ⁻ , 6147.7 γ to 5 ⁻ .
10646.3 4	NATURAL			gHI			T=0 E(level): from (p, γ) .
10653.12 <i>16</i>				H			
10656.1 5	(1-)	0.60 keV		I			T=0
10657.6 5	2 ⁺	0.35 keV		I			T=0
10666.6 <i>5</i> 10670.3 <i>3</i>	2-	2.0 keV		I H			
10673.58 17	2-			H	N		J^{π} : M2 excitation in (e,e').
10675.6 5	1-	1.6 keV		HI			T=0

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		2	XREF			Comments
10690.9 <i>3</i> 10693.1 <i>5</i> 10699.50 <i>10</i>	1 ⁺ 3	1.1 keV	В	H I H	N			E(level): from (p,p),(p,α):resonances. 10673.69 <i>15</i> in (p,γ). XREF: Others: AK XREF: Others: AK XREF: Others: AK XREF: N(10680). J ^π : 2325.5γ to 4 ⁺ , 5085.6γ to 4 ⁻ , 2607.8γ to 2 ⁺ , 3167.1γ to 2 ⁻ .
10701.1 <i>5</i> 10720.7 <i>3</i>	0 ⁺ (3,5) ⁻	0.60 keV	В	I H				XREF: Others: AK E(level): from (p,γ) . J^{π} : log ft =5.7 from 4^{-} ; α decay of this level in 40 Sc ε decay implies π =natural.
10722.3 <i>5</i> 10737.7 <i>3</i>	1 ⁺ 1 ⁻	1.1 keV]	I F H				T=0+1 XREF: F(10700). J ^π : 10736.2γ to 0 ⁺ , 3043.4 and 4452.3γ to 3 ⁻ ; L(⁶ Li,d)=1 from 0 ⁺ .
10740.3 <i>5</i> 10747.8 <i>4</i>	1 ⁻ (4 ⁺)	2.2 keV		HI				T=0 J^{π} : (1 ⁻ ,2,3,4 ⁺) from 5118.0 γ and 6842.8 γ to 2 ⁺ , 7010.5 γ to 3 ⁻ ; J^{π} =(4 ⁺ ,5 ⁻) from (p,p),(p, α):resonances for a level at 10751.
10749.0 <i>5</i> 10753.74 <i>18</i> 10770.2 <i>3</i>	0 ⁺ (3,4,5) (1 ⁺)	0.31 keV 0.05 keV	В	I H HI				J ^{π} : log ft =6.5 from 4 ^{$-$} . XREF: I(10772.3). E(level): from (p, γ).
10776.2 <i>3</i> 10778.3 <i>5</i> 10780.7 <i>5</i>	(1 ⁻) 2 ⁺ 3 ⁻	0.18 keV 1.0 keV	В	H I HI	N			J^{π} : possible E1 excitation in (e,e') for 10776. T=0 T=0 E(level): from (p,p),(p, α):resonances. 10780.9 3 in (p, γ).
10783.2 <i>5</i> 10787.6 <i>3</i> 10799.9 <i>10</i>	(0-)	0.70 keV	:	I F H H		u u		XREF: F(?).
10802.8 <i>5</i> 10813.6 <i>5</i>	0 ⁽⁺⁾ (3 ⁻ ,4 ⁺ ,5 ⁻)	0.70 keV	В	I f H		u		T=0 T=0 J^{π} : log ft =6.3 from 4 ⁻ ; L(6 Li,d)=5 for 10800 group; α decay of this level in 40 Sc ε decay implies π =natural.
10816.4 <i>5</i> 10816.6 <i>5</i> 10829.9 <i>6</i>	2 ⁻ 3 ⁺	6.0 keV 0.50 keV		I I f H				
10833.2 5 10848.4 4 10849.3 5 10852.2 5 10861.4 5 10869.0 5	3 ⁻ (3,4,5) ⁻ 2 ⁻ 1 ⁻ 2 ⁺ 1 ⁻	0.026 keV 11 keV 2.5 keV 0.045 keV 26 keV		f I f H I I I HI				T=0 J^{π} : log ft =5.8 from 4 $^{-}$. T=0 T=0 E(level): from (p,p),(p, γ):resonances. 10868.8 4 in
10869.7 <i>5</i> 10873.9 <i>5</i> 10895 ^c <i>I</i> 10899.3 <i>5</i>	0 ⁺ 1 ⁻ (9 ⁻) 1 ⁺	0.40 keV 4.0 keV 0.41 keV		I I			Y	(p,γ) . J^{π} : band assignment in (HI,xn γ).
10899.3 3	$(3,4,5^-)$	0.41 KC V	В	f H				E(level): from (p,γ) .

E(level) [†]	Jπ‡	T _{1/2} #@		2	XREF			Comments
								J ^π : log ft =6.8 from 4 ⁻ ; 7172.6 γ to 3 ⁻ ; L(⁶ Li,d)=3 for 10900 group.
10914.8 5	1-	5.0 keV		I				T=0
10915.7 5	3 ⁺	0.70 keV		Ī				
10921.1 4	$(2^+,3,4^-)$			f H				J^{π} : 4895.3 γ to 2 ⁻ and 5641.9 γ to 4 ⁺ .
10932.7 5	1-	2.0 keV		I				T=0
10933.2 5	2-	0.10 keV		I				
10934.3 5				H_				
10946.9 5	2+	0.23 keV		I				T=0
10950.8 5	1-	7.0 keV		HI				$T=0$ $E(aval) \cdot from (n, n) (n, a) massaranass 100515 4 in$
	.(1)							E(level): from $(p,p),(p,\alpha)$:resonances. 10951.5 4 in (p,γ) .
10953.6 5	0(+)	0.22 keV		I				T=0
10956.0 <i>4</i>	3-		В	Н				E(level): from (p,γ) . J^{π} : 5676.8 γ to 4^+ , 5342.1 γ to 4^- , 5053.0 γ to 1^- .
10976.2 <i>5</i>	(3,4,5)		В	H	n			J^{π} : log ft =6.0 from 4 ⁻ .
10988.0 <i>4</i>	$(3^-,4^+)$		В	H	n			E(level): from (p,γ) .
								J ^π : log ft =7.2 from 4 ⁻ ; α decay of this level in ⁴⁰ Sc ε decay implies π =natural; 4079.1 γ ,
10988.7 5	2-	9.0 keV		I				5358.2γ to 2^+ .
10988.7 5	(1^+)	0.4 keV		I				
10994.7 <i>4</i>	$(2^+,3,4^+)$	o. i ke v		Н				J^{π} : 5715.5 γ to 4 ⁺ , 5745.3 γ to 2 ⁺ .
10995 3	(1^{-})	6.7 keV		I				0 1 0 1 1 0 1 1 1 0 1 1 1 0 2 1
10998.9 <i>5</i>	$(1,3)^{-}$	0.20 keV		I				T=0
11002.3 5				H	n			
11003.0 ^a 9	(10^{+})			_			Y	J^{π} : band assignment in (HI,xn γ).
11007.2 5	1-	5.0 keV		.I				T. 0 . 1
11011.0 4	3-			H	n			T=0+1 J^{π} : 6519.0γ to 5 ⁻ , 11009.4γ to 0 ⁺ .
11024.0 5	$(1^-,3^-)$	0.11 keV		HI				T=0
11036.3 5	$(1^+, 5^-)$	0.11 keV		I				1-0
11037 7	(3,4,5)		В					J^{π} : log ft =6.4 from 4 ⁻ .
11042.0 5	$(1^- \text{ to } 4^+)$			H				J^{π} : 7136.9 γ to 2 ⁺ and 7304.6 γ to 3 ⁻ .
11044.5 5	2+	0.50 keV		I				T=0
11070.6 4	$(3,4^+)$	0.661.17		H_				J^{π} : 5456.1 γ to 4 ⁻ , 5790.7 γ to 4 ⁺ , 5820.7 γ to 2 ⁺ .
11073.5 5	2 ⁺ 1 ⁻	0.66 keV		I				T=0
11078.4 5	1	1.2 keV		f HI				$E(\text{level})$: from(p,p),(p, α):resonances.
11083.6 <i>5</i>	(1^+)	0.35 keV		I				T=0
11089.3 5	$0^{(+)}$	0.10 keV		FI				XREF: F(11100).
11091 3	$(3^-,4^+)$		В	I				T=0
								E(level): from 1970De30 in $(p,p),(p,\alpha)$:resonance.
								11088 12 in 40 Sc ε decay.
								J^{π} : log $ft=7.1$ from 4^- ; $4+(1^-,3^-)$ for a 11901 level from 1970De30 in $(p,p),(p,\alpha)$:resonance.
11107.0 5	1-	3.9 keV		I				A 4 VA V
11112 <i>3</i>	0-	5.2 keV		I				
11117.0 5	2+	0.0463.35	b	H_				VDDE 1/(1100)
11119.0 5	2+	0.046 keV	b	I		U		XREF: U(11100).
11127.1 5	4+	0.11 1.27		H				T=0
11129.1 <i>5</i> 11142 <i>6</i>	$(3,4,5)^{-}$	0.11 keV	В	I				J^{π} : log ft =5.8 from 4 $^{-}$.
11142.0	1(-)	0.20 keV	ם	I				. 10g ji – 5.0 110111 1 .
11145.8 5	1+	0.20 keV		Ī				
				_				

E(level) [†]	Jπ‡	T _{1/2} #@		VDEE		Comments
E(level)				XREF		Comments
11157.2 <i>5</i>	2-	48 keV		I		
11161.5 <i>5</i>	$4^{(+)}$	0.040 keV		I	V	T=0
11162.9 5	2+	3.5 keV		I		
11165.2 <i>4</i>				H		
11167.4 5	4+	0.083 keV		I		T=0
11187.6 <i>5</i>	3-	1.4 keV		I k		
11202.9 5	$(3)^{-}$		В	I k	v	T=0
						E(level): from $(p,p),(p,\alpha)$:resonances.
						J^{π} : log ft =5.5 from 4 ⁻ ; α decay of this level in 40 Sc
						ε decay implies π =natural; (1,2 ⁻ ,3) from
						$(p,p),(p,\alpha)$:resonances.
11210	(0^+)			F k		J^{π} : L(⁶ Li,d)=0.
11212.6 5	3-	2.8 keV		I k		
11217 <i>3</i>	3-	25 keV	В	k	v	J^{π} : log ft =5.2 from 4 ⁻ .
11217.8 5	4+	1.4 keV		Ιk		
11231.4 5	2-	3.0 keV		I	V	
11236 <i>3</i>	1-	3.9 keV		I	V	
11246.8 5	3-	0.092 keV		I	v	T=0
11255.9 5	1+	0.30 keV		I		
11260.8 5	(0^{-})	6.0 keV		I		
11264.4 5	2+	0.34 keV		I		T=0
11284.3 5	(2^{-})	0.60 keV		I		
11289.8 <i>5</i>	1+	1.0 keV		I		
11300.3 5	1+	0.40 keV		I		
11302.5 5	(1^{-})	1.2 keV		I		
11311 4	$(3^-,4^+,5^-)$		В	F	v	J^{π} : log ft =6.2 from 4^{-} ; α decay of this level in 40 Sc
						ε decay implies π =natural.
11320.0 5	(0-)	1.8 keV		I		
11322.0 5	2+	0.52 keV		I		T=0
11329.3 5	2+			I		
11330.7 5	1-	4.0 keV		f I		T=0
11338.7 5	(1^+)	0.20 keV		I		
11342.6 5	2-	40 keV		I		
11346.4 5	4 ⁽⁺⁾	0.020 keV		I		T=0
11351.5 5	1+	0.80 keV		I		
11362.4 5	1+	1.2 keV		I		m 0
11366.0 5	2 ⁺	0.19 keV		Ī		T=0
11367.0 5	2-	4.4 keV		I		
11368.3 5	4 ⁽⁺⁾	0.021 keV		I		77 7 671 1) 7
11370	(5-)			F		J^{π} : L(⁶ Li,d)=5.
11371.4 5	2 ⁺ 2 ⁺	1.4 keV		Ī		T=0
11382.1 5	_	2.6 keV		I		T=0
11393.0 5	1(-)	0.10 keV		I		TD 0
11404.2 5	1-	3.5 keV		I		T=0
11407.0 5	1+	0.22 keV	_	Ī		T. O
11414.8 5	4 ⁺	0.10 keV	В	I		T=0
11420.3 5	3-	0.30 keV		I		T_{-0}
11432.7 5	1- 2+	0.30 keV		I		T=0 T=0
11436.8 <i>5</i>	2+	0.22 keV		I		T=0 Additional information 20
11447.2 5	1-	5.3 keV		т		Additional information 20. T=0
11447.2 5	1 1 ⁺	0.60 keV		I I		1-0
11451.4 5	3-	0.00 keV 0.060 keV	b	I	U	T=0
11733.43	3	U.UUU KE V	IJ	1	U	XREF: U(11470).
11460.4 5	2+	1.17 keV		I		T=0
11.50.15	-	1.1. RO (_		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XREF		Comments
11465.1 5	2 ⁽⁺⁾	0.13 keV	I			T=0
11468 <i>3</i>	$(3^-,4^+,5^-)$		B F			T=0
						J ^{π} : log ft =6.2 from 4 $^-$; α decay of this level in ⁴⁰ Sc ε decay implies π =natural.
11468.7 5	2-	0.40 keV	I			se e deedy implies it industrial
11479.8 5	1+	0.30 keV	I			
11486.7 5	0_{+}	0.11 keV	I			
11489.6 5	1+	0.40 keV	I			
11514.6 5	2+	0.62 keV	I			
11515.2 5	1(-)	4.23 keV	I			
11519.0 5	2+	0.70 keV	I			
11537.9 5	2-	8.0 keV	I			
11542.2 <i>5</i> 11543.7 <i>5</i>	2 ⁺ (1 ⁺)	0.62 keV 0.90 keV	I			
11545.7 5	2-	18 keV	I			
11549 6	$(3,5)^{-}$	10 KC V	В			J^{π} : log $ft=5.9$ from 4^{-} ; α decay of this level in
		21.1.37				$^{40}\mathrm{Sc}\ \varepsilon$ decay implies π =natural.
11554.5 5	1 ⁻	31 keV	I			
11559.1 <i>5</i> 11563.5 <i>5</i>	(2 ⁺) (2 ⁻)	0.40 keV 0.40 keV	I			
11503.5 5	2-	1.0 keV	I			
11578.0 5	2 ⁺	0.23 keV	Ī			
11585.6 5	$\frac{2}{2^{-}}$	0.15 keV	Ī			
11597.2 5	(2 ⁺)	0.30 keV	Ī			
11602.3 5	2+	0.30 keV	I			
11603.4 5	2+	0.28 keV	I			
11605.3 5	1-	13 keV	I			
11611.1 5	1-	0.86 keV	I			
11614.0 5	(2^{-})	0.50 keV	I			TT 1 C (2 C) 4-
11616 10	(3,4,5)	0.70 137	В	v		J^{π} : log ft =6.3 from 4 ⁻ .
11628.5 <i>5</i> 11629.1 <i>5</i>	(3 ⁺) 2 ⁺	0.70 keV 0.085 keV	I			
11629.1 5	1-	0.085 keV 0.09 keV	I			
11645.0 5	(2-)	0.60 keV	Ī			
11646.9 5	2+	0.60 keV	Ī			
11650.8 5	2 ⁽⁺⁾	0.18 keV	Ī			
11652.2 5	3-	0.10 110 .	Ī			
11653.5 5	2+	1.59 keV	I			
11661.7 5	1-	1.56 keV	I			
11663 7	$(3^-,4^+,5^-)$		В	v		T=0
						J ^{π} : log f 1=6.2 from 4 $^{-}$; α decay of this level in 40 Sc ε decay implies π =natural.
11672.8 5	(2^{-})	0.20 keV	I			
11677.1 5	2+	0.96 keV	I	U		XREF: U(11690).
11685.8 <mark>&</mark> 9	(10^+)				Y	J^{π} : from band assignment in (HI,xn γ).
11687.5 <i>5</i>	(1^+)	0.50 keV	I			
11689.2 5	(2^{-})	0.60 keV	I			
11690	7-		F			J^{π} : L(⁶ Li,d)=7.
11692.8 5	4 ⁽⁺⁾	0.021 keV	I			
11696.3 5	0(-)	0.60 keV	I			
11703.6 5	0+	4.65 keV	I			
11704.6 5	2-	3.0 keV	I			
11707.8 5	1-	0.30 keV	I			
11708.7 ^b 12	(9+)				Y	J^{π} : from band assignment in (HI,xn γ).

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	T _{1/2} #@			2	KREF		Comments
11713.6 5	1+	0.20 keV			I			
11715.7 5	2-	1.5 keV			Ι			
11721.2 5	1+	1.5 keV			Ι			
11724.1 5	3 ⁽⁻⁾	0.060 keV			Ι			
11726 5	(3,5)		В				V	XREF: Others: AI T=0
								J ^{π} : log ft =5.7 from 4 ^{$-$} ; $α$ decay of this level in ⁴⁰ Sc $ε$ decay implies $π$ =natural.
11731.0 5	$1^{(-)}$	3.6 keV			I			
11731.1 5	1+	0.40 keV			Ι			
11738.8 5	2+	3.0 keV			Ι			
11742.8 5	4+	1.07 keV			Ι			
11744.6 5	1(-)	0.55 keV			I			
11749.5 5	2 ⁻ 3 ⁻	2.57 keV			I			
11753.4 <i>5</i> 11754.0 <i>5</i>	3 1 ⁺	0.35 keV			I I			
11754.0 5	2-	0.60 keV			I			
11760 10	1 ⁺	0.00 RC V			-	N		J^{π} : M1 excitation in (e,e').
11768.0 5	2-	15 keV			Ι			0 1 111 enemation in (e,e).
11782.6 5	3(-)	0.041 keV			I			
11788.5 5	2+	2.5 keV			Ι			
11792.4 5	1+	0.46 keV			Ι			
11799.2 5	4 ⁽⁺⁾	0.18 keV	В		Ι		v	XREF: Others: AI
11804.1 5	0+	0.26 keV			Ι			
11809.0 5	(1^+)	1.1 keV			Ι			
11810.9 5	2 ⁺	1.8 keV			I			
11811.6 5	3-	0.26 keV			I I			
11820.6 <i>5</i> 11830.8 <i>5</i>	3 ⁻ 2 ⁺	3.5 keV 0.30 keV			I			
11839.2 5	0+	1.05 keV			Ī			
11841 6	$(3^-,4^+,5^-)$	1.00 110 .	В	F	_			T=0
								XREF: F(11800).
								J ^{π} : log ft =5.9 from 4 $^-$; α decay of this level in ⁴⁰ Sc ε decay implies π =natural.
11844.1 5	1+	0.78 keV			Ι			
11855.8 5	2+	0.39 keV			I			
11857.3 5	(1^+)	1.3 keV			I			
11863.3 <i>5</i> 11864.7 <i>5</i>	(3^{-}) (0^{+})	0.41 keV 1.6 keV			I I			
11868.8 5	(4^+)	0.032 keV			Ī			
11870.0 5	3-	0.040 keV			Ī			
11872.2 5	2+	0.87 keV			I			
11878.0 5	1-	0.32 keV			I			
11884.5 <i>5</i>	1+	0.80 keV			Ι			
11888.3 5	4+	0.13 keV			Ι			
11890.9 5	1-	20 keV			I			
11894.0 <i>5</i> 11901.4 <i>5</i>	(2 ⁻) 1 ⁺	1.0 keV 0.70 keV			I			
11901.4 3	3-	0.70 keV 1.0 keV			I I			
11913.9 5	2 ⁺	2.2 keV			I			
11930.0 5	4 ⁽⁺⁾	0.030 keV			Ī			
11933.3 5	i-	16.1 keV			Ī			
11935.0 5	1+	0.9 keV			Ι			
11937.3 5	2-	0.60 keV			Ι			
11940.4 5	1+	0.40 keV			Ι			

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XRE	F		Comments
11942.8 5	3-	0.48 keV		I			
11945.0 5	1-	0.40 keV		I			
11948.4 5	0+	0.31 keV		I			
11958.7 5	(2^{+})	1.0 keV		Ī		U	XREF: U(11940).
11962.9 5	0+	0.30 keV		Ī			111121 (11) (0)
11969.8 5	1+	0.80 keV		Ī			
11971.0 5	2+	0.26 keV		Ī			
11975.1 5	1-	0.055 keV	E	Ī			
11983.3 5	(2^{-})	1.0 keV	_	Ī			
11987.1 5	3-	0.38 keV	E	Ī			
11988 <i>I</i>	0+	81 eV 10	E G			X	T=2
11700 1	O	01 0 7 10					J^{π} : L(³ He,n)=0; IAR state.
							$\%\alpha=93$ 9 to 36 Ar g.s.; $\%\alpha<3\%$ to first 2 ⁺ in 36 Ar;
	_						%p<5% ro ³⁹ K g.s.
11994.0 5	0-	3.0 keV	E	I			
12000 5	$(3,5)^{-}$		В				T=0
							J ^{π} : log ft =5.4 from 4 $^{-}$; α decay of this level in ⁴⁰ Sc ε decay implies π =natural.
12001.3 5	(2^{+})	1.02 keV	E	I			, ,
12007.4 5	ì+ ´	0.55 keV		I			
12010.4 5	2-	6.0 keV		I			
12012.2 5	4+	0.010 keV		I			
12023.6 <i>5</i>	1+	0.90 keV		I			
12026.9 5	4+	0.22 keV		I			
12033.8 <i>5</i>	3-	0.31 keV		I			
12038 <i>3</i>	$(3,4,5)^{-}$		В	Н	Q		J^{π} : log $ft=5.8$ from 4 ⁻ .
12047.7 5	2+	2.65 keV	f	HI N			
12056.4 5	1-	2.0 keV	f	I			
12058.9 <i>5</i>	2+	1.11 keV		I			
12067.3 5	2+	1.15 keV		I			
12067.8 <i>5</i>	4+	1.11 keV		I			
12068 <i>3</i>	$(3,5)^{-}$		В	Н			T=0
							J^{π} : log ft=5.6 from 4 ⁻ ; α decay of this level in 40 Sc
							ε decay implies π =natural.
12076.8 5	2-	3.07 keV		HI			
12082.0 5	4 ⁽⁺⁾	0.021 keV		I			
12086.1 5	4 ⁽⁺⁾	0.011 keV		I			
12088.8 5	2-	10 keV		I			
12089.7 5	2+	24 keV	f	I			
12093.1 5	4 ⁽⁺⁾	0.060 keV		I			
12095.1 5	2+	9.4 keV	Ef :				
12106.0 5	4(+)	0.090 keV		I			
12110.7 5	2+	2.0 keV	f				
12115.1 5	3-	0.78 keV		I			
12125.9 <i>5</i>	(3^{+})			I			
12132.7 5	(4 ⁺)	0.13 keV		I			
12134.9 5	(4 ⁺)	0.10 keV		I			
12141.2 5	2+	1.24 keV		I			
12152.3 5	4+	0.36 keV		I			
12157.8 5	4(+)	0.12 keV		I			
12159.4 5	4 ⁽⁺⁾	0.083 keV		I			
12177.7 5	1(-)	0.003 ke v		I			
12177.7 5	2+	1.50 keV	F	I			XREF: F(12170).
12184.5 5	2-	2.0 keV	1	I			11.11.1 (121/0).
12107.5 5	2	2.0 KC V		1			

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XREF		Comments
12192.7 5	2+	1.24 keV	I			
12196.3 5	1 ⁽⁻⁾	0.95 keV	I			
12201.2 5	3-	2.1 keV	E HI	N		E(level): from $(p,p),(p,\alpha)$:resonances.
12201.2 3	3	2.1 KC V	L III	N		J^{π} : from $(p,p),(p,\alpha)$:resonances and E3 excitation in (e,e') .
12209.3 5	0-	1.0 keV	I			(-,-)
12211.9 5	4+	0.021 keV	Ī			
12217.7 5	1+	1.5 keV	Ī			
12224.3 5	1-	1.46 keV	Ī			
12226.4 5	2+	0.43 keV	Ī			
12237.7 5	1 ⁺	2.0 keV	Ī			
12244.0 5	4 ⁺	0.030 keV	Ī			
12245.2 5	1-	2.0 keV	Ī			
12245.2 5	1	5.5 keV	Ī			
12270 4	(2^{+})	5.8 keV	I			
	(2)		I			
12280 4		4.2 keV				
12292 <i>4</i> 12299 <i>4</i>	(2±)	4.0 keV	I			VDEE, Othoras AE
	(2^{+})	4.0 keV	I			XREF: Others: AF
12305 4	(1 ⁻) 2 ⁺	6.7 keV	I			
12331 4		7.3 keV	HI			
12334.9 ^d 10	(10^{+})				Y	XREF: Others: AE
						J^{π} : from band assignment in (HI,xn γ).
12340	5-		F			J^{π} : L(⁶ Li,d)=5.
12350 <i>10</i>	2-			N		J^{π} : M2 excitation in (e,e').
12357 <i>4</i>	$(3^-,1^-)$	5.5 keV	I			
12368 <i>4</i>		6.7 keV	I			
12376 <i>4</i>		5.9 keV	I			
12381 4		4.0 keV	I			
12399 <i>4</i>	$(2^+,1^-)$	6.7 keV	I			
12406 <i>4</i>		3.5 keV	I			
12411 <i>4</i>		4.0 keV	I			
12419 <i>4</i>		5.4 keV	HI			
12420	(1^{-})	<0.05 MeV	С			J^{π} : L(³⁶ Ar, α)=1.
12425 <i>4</i>		6.4 keV	I			
12450	(4+)		F		U	J^{π} : L(6 Li,d)=4, but L(α,α')=3 for a 12450 group is inconsistent and could indicate there may be a separate level.
12488	2-			N		J^{π} : M2 excitation in (e,e').
12490 10	1 ⁺			N		J^{π} : M1 excitation in (e,e').
12503	2-			N		J^{π} : M2 excitation in (e,e').
12530	1 ⁻	<0.03 MeV	C F			XREF: F(12520).
12330	•	(0.05 IVIC V				J^{π} : L(36 Ar, α)=1.
12580	1-	<0.03 MeV	С			J^{π} : $L(^{36}Ar,\alpha)=1$.
12591.9 <i>10</i>	(10^{+})	<0.03 Me v	C		Y	XREF: Others: AE
12391.9 10	(10)				1	J^{π} : proposed in (HI,xn γ).
12604			Н			J. proposed iii (H1,xiry).
12622	(2)		п	N		J^{π} : from (e,e').
			E 11	IN		J^{π} : $L(^{6}Li, d) = 7$.
12650	7-	0.05 34 37	FH			
12668	1-	<0.05 MeV	С Н			J^{π} : $L(^{36}Ar,\alpha)=1$.
12688	2-		_ H			VI 1 (61 : 1) 2
12720	3-		F			J^{π} : L(⁶ Li,d)=3.
12750 10	2-			N		J^{π} : M2 excitation in (e,e').
12830 10	1+,(2-)			N		J^{π} : most likely M1 excitation in (e,e').
12875	4.4		Н			17 1 (61 : 1) A
12900	4+		F			J^{π} : L(⁶ Li,d)=4.

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	T _{1/2} #@		XREI	7			Comments
12923 ^c 2	(11 ⁻)						Y	J^{π} : from band assignment in (HI,xn γ).
12965	2+	<0.04 MeV	С				_	J^{π} : L(³⁶ Ar, α)=2.
12980	_	1010 1 1110 1	ЕН					V . Z(111,0) 2.
12996			Н					
13050 10	1+			N				J^{π} : M1 excitation in (e,e').
13050	4+		F					J^{π} : L(⁶ Li,d)=4.
13086			Н					
13113			H					
13115.1 ^a 10	(12^+)						Y	J^{π} : from band assignment in (HI,xn γ).
13125	2+	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=2.
13150 10	2-			N				J^{π} : M2 excitation in (e,e').
13170	3-	<0.02 MeV	С					J^{π} : L(³⁶ Ar, α)=3.
13194			Н					
13195	(10^{-})						Y	J^{π} : proposed in (HI,xn γ).
13200	4+		F					J^{π} : $L(^{6}Li,d)=4$.
13203			Н					
13250			E					
13289			H					
13300	4+		F					J^{π} : L(6Li,d)=4.
13301	2+	<0.04 MeV	С					J^{π} : L(³⁶ Ar, α)=2.
13345	3-	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=3.
13400	0+		f			U		XREF: Others: AI
								J^{π} : $L(\alpha, \alpha')=0$.
13410	3-	<0.04 MeV	C f					J^{π} : L(36 Ar, α)=3.
13445	2-			N	q			XREF: Others: AI
					•			J^{π} : M2 excitation in (e,e').
13470	4+		F		q			XREF: Others: AI
								J^{π} : L(⁶ Li,d)=4.
13480	3-	<0.03 MeV	С					J^{π} : L(³⁶ Ar, α)=3.
13480 10	1+		E	N				XREF: Others: AI
								J^{π} : M1 excitation in (e,e').
13520	3-	<0.04 MeV	С					J^{π} : L(³⁶ Ar, α)=3.
13535.5 ^b 13	(11^{+})						Y	J^{π} : from band assignment in (HI,xn γ).
13570	3-	<0.05 MeV	С				•	J^{π} : $L(^{36}Ar,\alpha)=3$.
$13.6 \times 10^3 \ 4$	3	<0.03 IVIE V	C	N				$J \cdot L(AI, u) - S$.
13610	1+,2+,3+			IN	Q			J^{π} : L(p,p')=2 from 0 ⁺ .
13620	6 ⁺		C		Ų			J^{π} : L(6,p) = 2 from 0. J^{π} : L(6Li,d)=6.
		<0.04 MeV	C					J^{π} : L(36 Ar, α)=3.
13620	3-		C					$J^{\pi}: L(^{3}AI,\alpha)=3.$ $J^{\pi}: L(^{36}AI,\alpha)=3.$
13645 13670 <i>10</i>	3-	<0.04 MeV	С	37				
	2-	.0.02 34 37		N				J^{π} : M2 excitation in (e,e').
13710	3-	<0.03 MeV	C					J^{π} : $L(^{36}Ar,\alpha)=3$.
13720	6+		EF					J^{π} : L(⁶ Li,d)=6.
13760	3-	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=3.
13822			Н					- 6
13830	7-		F					J^{π} : L(⁶ Li,d)=7.
13830	$(1^+, 2^+, 3^+)$				Q			J^{π} : L(p,p')=(2) from 0 ⁺ .
13850	3-	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=3.
13890	$(0^+,1^+)$				Q			J^{π} : L(p,p')=(0) from 0 ⁺ .
13900	2+			N				J^{π} : E2 excitation in (e,e').
13910	3-	<0.02 MeV	C					J^{π} : L(³⁶ Ar, α)=3.
13913	4		Н					T. (0)
13921 <i>15</i>	4				QR			T=(0)
								J^{π} : $\sigma(\theta)$ in (p,p') .

E(level) [†]	Jπ‡	T _{1/2} #@	XRE	F	Comments
13952	4+		E		J^{π} : L(⁶ Li,d)=4.
13960	3-	<0.02 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
13993	3	(0.02 IVIC V	Н		5 . E(111,w) 5.
14000	4+		F		J^{π} : L(⁶ Li,d)=4.
14005	3-	<0.02 MeV	С		J^{π} : L(36 Ar, α)=3.
14020	$(2^-,3^-,4^-)$	<0.02 IVIC V	C	Q	J^{π} : L(p,p')=(3) from 0 ⁺ .
14047	3-	<0.02 MeV	С	Q	J^{π} : L(36 Ar, α)=3.
14047 14070 <i>50</i>	(0^+)	<0.02 IVIE V	C	U	$J^{\pi}: L(\alpha,\alpha')=0.$ $J^{\pi}: L(\alpha,\alpha')=0.$
14070 30	(0)		E	U	\mathbf{J} . $\mathbf{L}(u,u)=(0)$.
14100	1+,2+,3+		E	Q	J^{π} : L(p,p')=2 from 0 ⁺ .
14150	3-	<0.03 MeV	С	Q	J^{π} : $L(^{36}Ar,\alpha)=3$.
14177	3-	<0.03 MeV			J^{π} : L(AI , α)=3. J^{π} : L(36 Ar, α)=3.
	3 4 ⁺	<0.03 Me v	C		
14190	$0^+, 1^+$		F	6	J^{π} : L(6 Li,d)=4.
14200	0,1,			S	XREF: Others: AK
1.4010	(2- 2- 4-)				J^{π} : L(³ He, ³ He')=0.
14210	$(2^-,3^-,4^-)$			Q	J^{π} : L(p,p')=(3) from 0 ⁺ .
14225	3-	<0.02 MeV	C		$J^{\pi}: L(^{36}Ar,\alpha)=3.$
14232.4 <mark>&</mark> <i>10</i>	(12^{+})			Y	J^{π} : from band assignment in (HI,xn γ).
14262	3-	<0.02 MeV	C		J^{π} : $L(^{36}Ar,\alpha)=3$.
14283 <i>15</i>	(6)			Q	T=1
					J^{π} : $\sigma(\theta)$ in (p,p') .
14292	3-	<0.02 MeV	C		J^{π} : L(36 Ar, α)=3.
14312	3-	<0.02 MeV	С		J^{π} : L(³⁶ Ar, α)=3.
14320	$(2^-,3^-,4^-)$	(0.02 IVIC V		Q	J^{π} : L(p,p')=(3) from 0 ⁺ .
14335	3-	<0.02 MeV	С		J^{π} : L(³⁶ Ar, α)=3.
14370	6 ⁺	<0.02 IVIC V	FI		XREF: F(14380).
14370	O		r r		J^{π} : L(⁶ Li,d)=6.
1.4200	2-	40 02 M-M	C		J^{π} : L(36 Ar, α)=3.
14390	3-	<0.03 MeV	C	0	
14410	2-,3-,4-		E	Q	XREF: E(14420).
14419			E		J^{π} : L(p,p')=3 from 0 ⁺ .
	2-	0.02 34 37			J^{π} : L(³⁶ Ar, α)=3.
14435	3-	<0.03 MeV	C		
14460	$(2)^{+}$		I	qr	J^{π} : L(p,p')=2 for 14500 group; L(d,d')=0+2 for
1.4.400	2-	0.043637			14500 group;
14490	3-	<0.04 MeV	С		J^{π} : L(36 Ar, α)=3.
14530	(6^+)		EF I	qr	XREF: E(14509)F(14500).
					J^{π} : L(6Li,d)=6.
14540	3-	<0.03 MeV	С		J^{π} : L(³⁶ Ar, α)=3.
14600	$(1,2^+,3^-,4^+)$		I N	r	J^{π} : from (e,e').
14605	3-	<0.04 MeV	C		$J^{\pi}: L(^{36}Ar,\alpha)=3.$
14640	3-	<0.03 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14660	$1^+, 2^+, 3^+$		f	Qr	J^{π} : L(p,p')=2 from 0 ⁺ .
14680			f I	r	J^{π} : 1 ⁺ for a 15000 group in (d,d').
14690	3-	<0.03 MeV	C		J^{π} : $L(^{36}Ar,\alpha)=3$.
14725	3-	<0.05 MeV	С		J^{π} : L(³⁶ Ar, α)=3.
14750	4+		F		J^{π} : L(6Li,d)=4.
14760	3-	<0.03 MeV	C		J^{π} : L(³⁶ Ar, α)=3.
14780	1+,2+,3+	10.05 1110 1	•	Q	J^{π} : L(p,p')=2 from 0 ⁺ .
14790	3-	<0.03 MeV	С	~	J^{π} : $L(^{36}Ar,\alpha)=3$.
14835	3-	<0.03 MeV			J^{π} : L(36 Ar, α)=3.
14833 14869	3 (9 ⁻)	VU.U3 IVIE V	C EF		S^{n} : L(n Ar, α)=3. XREF: F(14850).
14007	(2)		EF		J^{π} : L(⁶ Li,d)=(9).
					$J \cdot L(LI, u) = (7).$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@			XREF		Comments
14888	3-	<0.04 MeV	С				J^{π} : L(³⁶ Ar, α)=3.
14942	3-	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15002	3-	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15080				F	Qr		. – (
15101	3-	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15140				F	r		
15150	3-	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15152.4 ^a 12	(13^{+})					Y	J^{π} : from band assignment in (HI,xn γ).
15220	3-	<0.03 MeV	C				$J^{\pi} \colon L(^{36}Ar,\alpha)=3.$
15250				F			
15260	3-	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=3.
15267.1 ^d 14	(12^{+})					Y	J^{π} : from band assignment in (HI,xn γ).
15285	4+	<0.05 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15306 ^c 2	(13^{-})					Y	J^{π} : from band assignment in (HI,xn γ).
15330				F			
15345	4+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15384	4+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15435	4+	<0.04 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
15490	4+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15525	4+	<0.02 MeV	С				J^{π} : L(36Ar, α)=4.
15550	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15580	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15600	•	10100 1110 1	Ŭ	F			V · 2(· 11,w) · ·
15620	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15670	4+	<0.02 MeV	С				J^{π} : L(³⁶ Ar, α)=4.
15700				F			
15707	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15748.1 <i>14</i>	(12^{+})					Y	J^{π} : from band assignment in (HI,xn γ).
15790	4+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15840	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15875	4+	<0.03 MeV	С				J^{π} : L(36Ar, α)=4.
15900	3-				U		J^{π} : $L(\alpha, \alpha')=3$.
15915	4+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15950	4+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
15960	4+	<0.02 MeV	С				J^{π} : L(³⁶ Ar, α)=4.
16000	5-	<0.02 MeV	С				J^{π} : L(36Ar, α)=5.
16000 <i>50</i>	3-	0.63 MeV 10			U		J^{π} : $L(\alpha, \alpha')=3$ from 0^+ .
16020	4+	<0.03 MeV	C				J^{π} : L(36 Ar, α)=4.
16065	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
16110	5-	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=5.
16120	4+	<0.03 MeV	C				J^{π} : L(36Ar, α)=4.
16160	4+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=4.
16210	4+	<0.03 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
16255	4+	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
16290	4 ⁺	<0.02 MeV	c				J^{π} : $L(^{36}Ar,\alpha)=4$.
16360	4 ⁺	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
16395	4+	<0.02 MeV	c				J^{π} : $L(^{36}Ar,\alpha)=4$.
16450	4 ⁺	<0.02 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=4$.
16510	4 ⁺	<0.02 MeV	C				J^{π} : L(36 Ar, α)=4.
16529.4 ^{&} 12	(14^{+})	10.02 1110 V				Y	J^{π} : from band assignment in (HI,xn γ).
16545	5-	<0.02 MeV	C			1	J^{π} : from band assignment in (FII,xiry). J^{π} : $L(^{36}Ar,\alpha)=5$.
10545	J	VU.UZ IVIEV	C				$J \cdot L(AI, u) = J.$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #@		XREF	7		Comments
16579.7 <mark>b</mark> 16	(13^+)					Y	J^{π} : from band assignment in (HI,xn γ).
16585	5-	<0.02 MeV	С				J^{π} : L(³⁶ Ar, α)=5.
16610	6+	<0.02 MeV	С				J^{π} : L(36Ar, α)=6.
16640	6+	<0.02 MeV	С				J^{π} : L(36Ar, α)=6.
16665	6+	<0.02 MeV	С				J^{π} : L(³⁶ Ar, α)=6.
16700	$(2^-,3^-,4^-)$	0.90 MeV 2			S		J^{π} : L(³ He, ³ He')=(3).
16735	6+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
16810	6+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
16910	6+	<0.05 MeV	С				J^{π} : L(³⁶ Ar, α)=6.
16945	6+	<0.02 MeV	С				J^{π} : L(36Ar, α)=6.
17010	6+	<0.03 MeV	С				J^{π} : L(36Ar, α)=6.
17065	6 ⁺	<0.02 MeV	С				J^{π} : L(³⁶ Ar, α)=6.
17113	6 ⁺	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17170	6 ⁺	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17210	6 ⁺	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17280	6 ⁺	<0.03 MeV	Č				J^{π} : L(36 Ar, α)=6.
17320	6 ⁺	<0.02 MeV	Č				J^{π} : L(36 Ar, α)=6.
17360	6 ⁺	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17410	6 ⁺	<0.03 MeV	C				J^{π} : L(36 Ar, α)=6.
17450	6 ⁺	<0.03 MeV	C				J^{π} : L(36 Ar, α)=6.
17513	6 ⁺	<0.05 MeV	C				J^{π} : L(36 Ar, α)=6.
17515	6 ⁺	<0.05 MeV	C				J^{π} : L(36 Ar, α)=6.
17669	O	<0.03 IVIC V	E				XREF: Others: AI, AK
17007							XREF: AI(17500).
							E(level): possibly GQR.
17670	6+	<0.05 MeV	С				J^{π} : L(³⁶ Ar, α)=6.
17698.6 <i>14</i>	(14^{+})					Y	J^{π} : from band assignment in (HI,xn γ).
17700	2+				U		J^{π} : $L(\alpha,\alpha')=2$.
17730	6+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17790	6+	<0.03 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17855	6+	<0.04 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
17859			E				
17915	6+	<0.02 MeV	C				$J^{\pi}: L(^{36}Ar,\alpha)=6.$
17950	6+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
18000 <i>50</i>	2+	2.25 MeV 20			U		J^{π} : $L(\alpha, \alpha')=2$ from 0^+ .
18010	6+	<0.02 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
18054.6 <i>14</i>	(14^{+})					Y	J^{π} : proposed in (HI,xn γ).
18077	6+	<0.05 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=6$.
18139 18146	6+	<0.05 MeV	C E				J^{π} : $L(^{36}Ar, \alpha) = 6$.
18174	6+	<0.03 MeV	c				J^{π} : L(³⁶ Ar, α)=6.
18200	2+	(0.03 IVIC V		N	RS		XREF: N(18400).
							J^{π} : L(d,d')=0+2; L(³ He, ³ He')=2(+0).
18215? ^c 2	(15^{-})					Y	J^{π} : from band assignment in (HI,xn γ).
18260 <i>5</i>	1		H				J^{π} : 18256 γ D to 0^{+} .
18260 18326	6+	<0.05 MeV	C E				$J^{\pi}: L(^{36}Ar, \alpha) = 6.$
18328	6+	<0.05 MeV	C				J^{π} : L(³⁶ Ar, α)=6.
18406	6 ⁺	<0.03 MeV	C				J^{π} : $L(^{36}Ar,\alpha)=6$.
18452	5	10.05 1.10 1	E				
18485	6+	<0.02 MeV	С				$J^{\pi}: L(^{36}Ar,\alpha)=6.$

E(level) [†]	J ^π ‡	T _{1/2} #@			XREF			Comments
18497.2 ^d 17	(14+)	·					Y	J^{π} : from band assignment in (HI,xn γ).
18547	6 ⁺	<0.03 MeV	С				-	J^{π} : L(³⁶ Ar, α)=6.
18605	6 ⁺	<0.04 MeV	Ċ					J^{π} : $L(^{36}Ar,\alpha)=6$.
18659	6 ⁺	<0.02 MeV	Ċ					J^{π} : L(36 Ar, α)=6.
18680 5	1	10.02 1110 1		Н				J^{π} : 18675 γ D to 0 ⁺ .
18705	6+	<0.02 MeV	С					J^{π} : L(36 Ar, α)=6.
18719.2 <i>17</i>	(14^{+})	10.102 1.12					Y	J^{π} : from band assignment in (HI,xn γ).
18731	,		E					(, , , , , , , , , , , , , , , , , , ,
18765	6+	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
18865	6+	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
18930	6+	<0.02 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19020	6 ⁺	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19037			E					
19070 5	1			H				J^{π} : 19065 γ D to 0 ⁺ .
19080	6+	<0.05 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19150	6 ⁺	<0.07 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
$19.18 \times 10^3 \ 37$	0^+	4.9 MeV 6				U		J^{π} : $L(\alpha, \alpha')=0$.
19195.6 ^a 16	(15^+)						Y	J^{π} : from band assignment in (HI,xn γ).
19230	6+	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19280	6+	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19385	6 ⁺	<0.03 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19450 5	1			H				J^{π} : 19445 γ D to 0 ⁺ .
19467	6 ⁺	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19525	6+	<0.02 MeV	C					J^{π} : $L(^{36}Ar,\alpha)=6$.
19597	6+	<0.02 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19667	6 ⁺	<0.04 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19780	6+	<0.06 MeV	C					J^{π} : L(³⁶ Ar, α)=6.
19850 5	1			H				J^{π} : 19845 γ D to 0 ⁺ .
20130 5				H				
20430 5	1			H				J^{π} : 19845 γ D to 0 ⁺ .
20578.6 ^{&} 15	(16^{+})						Y	J^{π} : from band assignment in (HI,xn γ).
20650 5	1			H				J^{π} : 20644 γ D to 0 ⁺ .
20940 5	1			H				J^{π} : 20934 γ D to 0 ⁺ .
21000 50						U		J^{π} : $L(\alpha,\alpha')=0+2$.
21490				H				
21690 22060				H H				
22060.4 ^d 20	(16+)			п				
23360	(16 ⁺)				M	U	Y	J^{π} : from band assignment in (HI,xn γ). XREF: Others: AK
25500	1				n	U		J ^{π} : L(α , α')=1; GDR.
$31 \times 10^3 \ 2$	2-,3-,4-				Q			$J^{\pi}: L(p,p')=3 \text{ from } 0^+.$
$35.3 \times 10^{3} 5$	4, 5, 1				N Q			J . L(p,p)—3 ΠΟΠΙ Ο .
42.0×10^3					N			
58.4×10 ³ 11					N N			
J0.4X 10° 11					IN			

[†] From (p,γ) , ⁴⁰ Sc ε decay, (γ,γ') or $(HI,xn\gamma)$ based on γ -ray energies. In other cases, a large number of excitation energies are from (p,p), (p,α) :resonances. When levels are known from transfer particle-reactions, weighted averages of available values are taken. The following reactions have imprecise excitation energies above ≈8 MeV, hence level correspondence between various reactions (as given in XREF column) is considered (by the evaluator) as tentative: resonances in (α,γ) ; (⁶Li,d); (³He,n); (d,d'), (³He,³He'); (α,α') ; (HI,HI') and (d,t).

- [‡] When no arguments are given (above 9600), the assignments are based on $J^{\pi\prime}$'s determined in 39 K(p, γ) or 39 K(p,p),(p, α):resonances. For high-spin structures (J>6), assignments are based on $\gamma(\theta)$ data and expected band associations. In particle-transfer reactions, target (39 K) J^{π} =3/2+ for (d,n) and (3 He,d) reactions; target (41 Ca) J^{π} =7/2- for (3 He, α) and (d,t) reactions. In arguments based on γ decays, RUL (for E2 and M2 transitions) is also used when level lifetimes are known. For some of the high-energy levels populated only in (e,e'), J^{π} assignments are from measurements of $\sigma(\theta)$ and deduced transition strengths in that reaction.
- [#] Lifetimes are available from DSAM in $(p,p'\gamma)$, (p,γ) and $(HI,xn\gamma)$, and measured widths in (γ,γ') . Widths are from (γ,γ') , (p,γ) and (p,p), (p,α) :resonances and for some levels, values are for Γ_p or deduced from (p,p) resonance strengths by assuming $\Gamma_p/\Gamma=1$ if spin values is firmly assigned. Consult individual data sets for corresponding resonance strengths.
- [®] Additional information 21.
- & Band(A): 4p-4h, 0^+ band. Q(transition)=0.74 14 from life-time data; corresponds to $\beta_2 \approx 0.27$.
- ^a Band(B): γ sequence based on 8⁺.
- ^b Band(C): 3⁺ band.
- ^c Band(D): $K^{\pi}=0^-$ band (2004To07) (?). This band is proposed (2004To07) as a partner of 4p-4h band based on the 3353,0⁺ state; the 1⁻, 3⁻ and 5⁻ members of this band are proposed at 5902, 1⁻; 6280, 3⁻ or 6580, 3⁻; and 7399, (5⁻), respectively. However, the 7399 level is assigned (5⁺) in another in-beam γ -ray study. Assignment of (7⁻) by 2004To07 for 9033 level is inconsistent with L(p,p')=5 for a 9029 5 group and γ 's to 3⁻ and 4⁻ states seen in (p, γ). The 7⁻ assignment is only possible if the 9033 level in 2004To07 is different from a 9032 seen in other reactions.
- ^d Band(E): SD band (2001Id01,2003Ch22). Q(transition)=1.30 *15* over the whole band; 1.81 +46-33 for high-spin states; 1.18 *14* for low-spin states (2003Ch22). Q(transition)=1.80 +39-29 (2001Id01). Q(transition) from 2001Id01 corresponds to $β_2$ =0.59 +11-7. Configuration=8p-8h defined by $π3^4ν3^4$, where superscripts are the number of protons and neutrons occupying the N=3 (f_{7/2}) intruder orbital.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f .	f^{π} Mult.#	$\delta^{\#}$	Comments
3352.62	0+	3352.6		0.0	+ E0		Decay is mainly by e^+e^- pair emission. Monopole strength: $\rho^2(E0)$ =0.0256 7 (2005Ki02, deduced from $T_{1/2}$). Other: 0.025 8
3736.69	3-	3736.5 3	100	0.0	+ E3		in (e,e') deduced from measured matrix element. B(E3)(W.u.)=31 +4-3 E _{γ} : weighted average of 3735.6 8 from ⁴⁰ Sc ε decay, 3736.8 3 from ³⁹ K(p, γ), 3737 2 from ⁴⁰ Ca(n,n' γ), 3736.7 3 from ⁴⁰ Ca(p,p' γ), and 3736.1 3 from (HI,xn γ).
3904.38	2+	551.8	<0.10	3352.62 () ⁺ [E2]		Mult.: from $\gamma(\theta)$ in $(p,p'\gamma)$, M3 ruled out by RUL. B(E2)(W.u.)<49 E _{γ} : from (p,γ) .
		3903.9 <i>1</i>	100	0.0)+ E2		I_{γ} : from (p,γ) . Others: <1.5 in $(p,p'\gamma)$. B(E2)(W.u.)=2.2 +6-4
4491.43	5-	754.8 2	100	3736.69	- E2		E _γ : weighted average of 3904.5 <i>3</i> from ³⁹ K(p,γ), 3903.8 <i>1</i> from ⁴⁰ Ca(γ,γ'), 3904.2 <i>4</i> from ⁴⁰ Ca(n,n'γ), 3904.4 <i>4</i> from ⁴⁰ Ca(p,p'γ), and 3904.0 <i>3</i> from (HI,xnγ). Mult.: Q from $\gamma(\theta)$ in (p,p'γ) and (HI,xnγ), M2 ruled out by RUL. B(E2)(W.u.)=0.98 <i>3</i> E _γ : weighted average of 755.6 <i>8</i> from ⁴⁰ Cs ε decay, 754.8 <i>3</i> from ³⁹ K(p,γ), 755 2 from ⁴⁰ Ca(n,n'γ), 754.7 2 from ⁴⁰ Ca(p,p'γ), and 754.8 2 from (HI,xnγ). Mult.: from $\gamma\gamma(\theta)$ and γ (pol) in in (p,γ).
5211.56	0+	1307.7 3	100	3904.38 2	t ⁺ [E2]		$\delta(O/Q) = -0.01 \ 2 \text{ from } (p, \gamma), +0.05 \ 5 \text{ in } (p, p' \gamma).$ B(E2)(W.u.)=17 +4-3 E _{\gamma} : from (p, p' \gamma).
5248.79	2+	1344.4 <i>3</i>	19.4 <i>12</i>	3904.38	⁺ M1+E2	+13 +6-3	$B(M1)(W.u.)=8\times10^{-5} +11-6$; $B(E2)(W.u.)=25 +8-6$
		1896.1	6.3 8	3352.62 () ⁺ (E2)		 E_γ,Mult.,δ: from (p,p'γ). I_γ: weighted average of 18.9 11 from ³⁹K(p,γ), 27 7 from ⁴⁰Ca(n,n'γ), and 25 5 from ⁴⁰Ca(p,p'γ). B(E2)(W.u.)=1.5 +6-4 E_γ: from (p,γ), 1897 2 from (n,n'γ). I_γ: weighted average of 6.4 8 from ³⁹K(p,γ), 7 4 from ⁴⁰Ca(n,n'γ), and 5.2 26 from ⁴⁰Ca(p,p'γ).
		5248.9 3	100.0 15	0.0	r+ E2		Mult.: from (p,p' γ). B(E2)(W.u.)=0.143 +35-24 E _{γ} : weighted average of 5248.9 6 from ³⁹ K(p, γ), 5247.9 6 from ⁴⁰ Ca(p,p' γ), 5249.2 3 from ⁴⁰ Ca(γ , γ'), and 5249 2 from ⁴⁰ Ca(n,n' γ). I _{γ} : from (p, γ).
5278.80	4+	787.4	3.1 15	4491.43	- [E1]		δ: from (p,p'γ). B(E1)(W.u.)=6×10 ⁻⁵ +7-5 E _γ ,I _γ : from (p,γ).
		1374.0 3	100.0 15	3904.38 2	+ E2		B(E2)(W.u.)=67 + 17 - 12 E_{γ} : unweighted average of 1374.5 4 from ³⁹ K(p, γ), 1374.0 2 from ⁴⁰ Ca(n,n' γ), 1373.1 1 from ⁴⁰ Ca(p,p' γ), and 1374.30 20 from (HI,xn γ).

γ (40Ca) (continued)

E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\#}$	Comments
5613.52	4-	1122.7 2	41.4 28	4491.43 5	M1+E2	-0.7 2	I _γ : from (p,γ). Mult.: from γγ(θ) and γ(pol) in (p,γ). $\delta(O/Q) = +0.02$ 4 from (p,p'γ), -0.02 5 from (p,γ). B(M1)(W.u.)=0.0046 +23-16; B(E2)(W.u.)=6 +4-3 E _γ : weighted average of 1126 3 from ⁴⁰ Sc ε decay, 1121.5 6 from ³⁹ K(p,γ), 1122 2 from ⁴⁰ Ca(p,p'γ).
		1877.0 2	100 3	3736.69 3-	M1+E2	-0.27 5	I _γ : weighted average of 48 8 from 40 Sc ε decay, 41.8 28 from 39 K(p,γ), and 39 4 from 40 Ca(p,p'γ). Mult.,δ: from γ (pol) in (p,γ). B(M1)(W.u.)=0.0033 +8-6; B(E2)(W.u.)=0.21 +15-9 E _γ : weighted average of 1877.8 7 from 40 Sc ε decay, 1877.0 3 from 39 K(p,γ), 1877 2 from 40 Ca(n,n'γ), and 1876.9 2 from 40 Ca(p,p'γ).
5629.41	2+	2277.0 10	14.0 10	3352.62 0+	[E2]		I _{γ} : from (p, γ). Mult., δ : from γ (pol) in (p, γ). B(E2)(W.u.)=3.3 +23-11 E _{γ} : weighted average of 2275 2 from ⁴⁰ Ca(n,n' γ) and 2277.5 10 from ⁴⁰ Ca(p,p' γ).
		5628.5 2	100.0 10	0.0 0+	E2		I _γ : weighted average of 14.0 10 from 39 K(p,γ), and 14 6 from 40 Ca(p,p'γ). Other: 48 12 from 40 Ca(n,n'γ), B(E2)(W.u.)=0.26 +15-7 E _γ : weighted average of 5628.5 2 from 40 Ca(γ,γ'), 5629 2 from 40 Ca(n,n'γ), and 5628.3 5 from 40 Ca(p,p'γ).
5902.63	1-	5902.0 2	100	0.0 0+	E1		I_{γ} : from (p, γ) . I_{γ} : from (p, γ) and RUL. I_{γ} : from (p, γ) and RUL. I_{γ} : weighted average of 5902.0 2 from 40 Ca (γ, γ') , 5903 2 from 40 Ca $(\eta, \eta' \gamma)$, and 5902.6 15 from 40 Ca $(p, p' \gamma)$. Mult.: D from (p, γ) from $(p, p' \gamma)$ polarity from level-parity change determined from
6025.47	2-	2121.0 6	23 3	3904.38 2+	[E1]		other experimental evidence. B(E1)(W.u.)= $6.1 \times 10^{-5} + 19 - 15$ E _{γ} : from (p,p' γ).
		2289.0 3	100 3	3736.69 3	M1+E2	-2.8 5	I_{γ} : from (p,γ) . B(M1)(W.u.)=0.0010 +7-4; $B(E2)(W.u.)=4.7 +11-9E_{\gamma}: from (p,p'\gamma).I_{\gamma}: from (p,\gamma).Mult.,\delta: D+Q from \gamma\gamma(\theta) in (p,p'\gamma), polarity from no level-parity change$
6029.71	3+	750.9 780.7 <i>4</i>	<1.2 20 <i>4</i>	5278.80 4 ⁺ 5248.79 2 ⁺	E2(+M1)	>2	determined from other experimental evidence. E_{γ}, I_{γ} : from (p, γ) . Other: $I_{\gamma} < 3.4$ in (p, p'_{γ}) . $B(M1)(W.u.) < 0.0037$; $B(E2)(W.u.) > 77$ E_{γ} : from (p, p'_{γ}) .

27

							y(ca) (continued)
\mathbf{J}_i^π	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^π	Mult.#	$\delta^{\#}$	Comments
3+	2124.4 3	100 4	3904.38	2+	E2(+M1)	>4	I _{γ} : weighted average of 25 4 from ³⁹ K(p, γ), 18 6 from ⁴⁰ Ca(n,n' γ), and 15 5 from ⁴⁰ Ca(p,p' γ). Mult., δ : Q(+D) from $\gamma\gamma(\theta)$ in (p,p' γ); M2(+E1) is ruled out by RUL. B(M1)(W.u.)<0.00027; B(E2)(W.u.)>3.0 E _{γ} : from (p,p' γ). I _{γ} : from (p, γ).
3-	2293.0 671.6 1793.4 2	<8 1.3 <i>3</i> 100.0 <i>11</i>	5613.52	4^{-}	E2		Mult., δ : Q(+D) from $\gamma\gamma(\theta)$ in (p,p' γ); M2(+E1) is ruled out by RUL. E $_{\gamma}$ I $_{\gamma}$: from (p, γ). Other: I γ <23 in (p,p' γ). E $_{\gamma}$ I $_{\gamma}$: from (p, γ) only. B(E2)(W.u.)=8.2 +14-13 E $_{\gamma}$: weighted average of 1793.9 6 from ³⁹ K(p, γ), 1793 2 from ⁴⁰ Ca(n,n' γ), and 1793.3 2
	2380.0 5	27.4 7	3904.38	2+	E1		from 40 Ca(p,p' γ). I_{γ} : from (p, γ). Mult.: Q(+O) from $\gamma\gamma(\theta)$ in (p,p' γ), M2 ruled out by RUL. $\delta(O/Q) = -0.03$ 17 from (p,p' γ), +0.03 2 from (p, γ). B(E1)(W.u.)=2.6×10 ⁻⁵ +5-4 E_{γ} : from (p,p' γ). I_{γ} : from (p, γ). Others: 80 33 from (n,n' γ), 30 7 from (p,p' γ), and 33 7 from (α , α ' γ). Mult.: D from $\gamma\gamma(\theta)$ in (p,p' γ), polarity from level-parity change determined from other
	2548.4 6284.6	4.4 <i>6</i> 5 8 <i>7</i>			[F3]		experimental evidence. E_{γ} , I_{γ} : from (p,γ) . Other: I_{γ} <13 in $(p,p'\gamma)$. $B(E3)(W.u.)=4.2 + 13 - 10$
2+	6420.6 9	100		0+	[E2]		E_{γ},I_{γ} : from (p,γ) . B(E2)(W.u.)=0.49 +22-12
4+	1229.0 <mark>&</mark> 1259.0	4 <i>3</i> 17 <i>4</i>			[E2]		E _{γ} : from (γ, γ') . E _{γ} , I _{γ} : from $(p, p'\gamma)$. Other: I γ <3.5 in (p, γ) . B(E2)(W.u.)=24 + I3-9 E _{γ} : from (p, γ) .
	2603.2 3	100 4	3904.38	2+	E2		I_{γ} : weighted average of 18 4 from 39 K(p, γ) and 15 4 from 40 Ca(p,p' γ). B(E2)(W.u.)=3.7 +11-8 E_{γ} : from (p,p' γ). I_{γ} : from (p, γ).
4+	913.3	32 3	5629.41	2+	E2		Mult.: $O(+Q)$ from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$, M2 ruled out by RUL. $\delta(O/Q)=-0.09$ 9 from $(p,p'\gamma)$. $B(E2)(W.u.)=1.7\times10^2 +7-5$ $E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $I_{\gamma}=17$ 4 in $(p,p'\gamma)$. Mult.: from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$ and RUL.
	1264.0 1294.0	14 <i>3</i> 24 <i>3</i>			(E2)		B(E2)(W.u.)>100 consistent with 6543, 4^+ state as a member of SD band. E_{γ} , I_{γ} : from (p,γ) . Other: $I_{\gamma}=10$ 4 in $(p,p'\gamma)$. B(E2)(W.u.)=22 +10-7
	3+ 3- 2+ 4+	3+ 2124.4 3 3- 2293.0 3- 671.6 1793.4 2 2380.0 5 2548.4 6284.6 2+ 6420.6 9 4+ 1229.0 2603.2 3 4+ 913.3	3+ 2124.4 3 100 4 3- 2293.0	3+ 2124.4 3 100 4 3904.38 3- 2293.0	3+ 2124.4 3 100 4 3904.38 2+ 2293.0	3+ 2124.4 3 100 4 3904.38 2+ E2(+M1) 3- 2293.0	3+ 2124.4 3 100 4 3904.38 2+ E2(+M1) >4 3- 2293.0

γ (40Ca) (continued)

								
E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
6542.80	4+	2638.1 3	100 3	3904.38	2+	E2(+M3)	-0.07 7	$E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $I_{\gamma}=12$ 4 in $(p,p'\gamma)$. Mult.: (Q) from (HI,xn γ), M2 ruled out by RUL. B(E2)(W.u.)=2.6 +8-6 E_{γ} : from $(p,p'\gamma)$. I_{γ} : from (p,γ) .
6582.47	3-	969.0 2091.0	26 <i>5</i> <1.1	5613.52 4491.43		[E2]		Mult.: Q(+O) from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$, M2 ruled out by RUL. $\delta(O/Q)=-0.07$ 7 from $(p,p'\gamma)$. $E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $I_{\gamma}=7.5$ 30 in $(p,p'\gamma)$. $B(E_2)(W.u.)=0.39$ +36-24
								E_{γ} : from (p,γ) . I_{γ} : from (p,γ) . Other: 7.5 30 from $(p,p'\gamma)$.
		2678.1	24.7 21	3904.38	2+	[E1]		B(E1)(W.u.)= $2.8 \times 10^{-5} + 11 - 7$ E _{γ} : from (p, γ).
		2845.1 <i>3</i>	100.0 20	3736.69	3-	M1+E2	+3.1 +26-11	I_{γ} : weighted average of 24.2 18 from ³⁹ K(p,γ), and 34 8 from ⁴⁰ Ca(p,p'γ). B(M1)(W.u.)=0.00034 +60-26; B(E2)(W.u.)=1.3 +5-4 E _γ : from (p,p'γ). I_{γ} : from (p,γ).
6750.41	2-	2848.4 & 10	<10	3904.38	2+			Mult., δ : D+Q from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$, M2 ruled out by RUL. E _{γ} : from $(p,p'\gamma)$. Other: 2845.9 from (p,γ) .
0/30.41	2	2040.4 10	<10	3904.36	2			I_{γ} : from (p, γ) . Others: 22 10 in $(n, n'\gamma)$, 18 in $(p, p'\gamma)$.
		3014.0 <i>3</i>	100	3736.69	3-	M1+E2	-0.84 <i>16</i>	B(M1)(W.u.)=0.0047 +36-17; B(E2)(W.u.)=1.1 +10-5 E _{γ} : from (p,p' γ).
6908.70	2+	6907.6 <i>1</i>	100	0.0	0+	[E2]		Mult., δ : from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$ and RUL. B(E2)(W.u.)=2.1 +5-4 E _{γ} : from (γ,γ') .
6930.2	6+	1651.8 4	100	5278.80	4+	E2		B(E2)(W.u.)=17 +17-4
								E_{γ} : weighted average of 1651.9 7 from (HI,xnγ) and 1651.7 4 from (3 He,dγ). Other: 1651 2 from (n,n'γ). Mult.: from $\gamma(\theta)$ and $\gamma(DCO)$ in (HI,xnγ) and RUL.
6931.29	3-	1301.8	7.0 4	5629.41	2+	[E1]		B(E1)(W.u.)=1.1×10 ⁻⁵ +10-4 E _{γ} , I _{γ} : from (p, γ).
		1317.7	2.4 4	5613.52	4-			$E_{\gamma}I_{\gamma}$: from (p,γ) .
		1682.4	7.4 4	5248.79		[E1]		$B(E1)(W.u.)=5.3\times10^{-6} +47-19$
		2439.8	1.7 4	4491.43	5-	[E2]		$E_{\gamma}I_{\gamma}$: from (p,γ) . B(E2)(W.u.)=0.008 + 10-4 $E_{\gamma}I_{\gamma}$: from (p,γ) .
		3026.8	2.4 6	3904.38	2+	[E1]		$B(E1)(W.u.)=3.0\times10^{-7} +37-15$ $E_{\gamma}I_{\gamma}$: from (p,γ) .
		3194.5	100.0 9	3736.69	3-			E_{γ}, I_{γ} : from (p, γ) . Other: $E_{\gamma} = 3190.0 \ 15$ in $(p, p'\gamma)$, 3193 2 in $(n, n'\gamma)$.

29

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
6938.0	$(1^- \text{ to } 5^-)$	3201.0 <i>15</i>	100	3736.69	3-		E_{γ} : from $(p,p'\gamma)$.
6950.48	1-	6949.7 8	100	0.0	0_{+}	[E1]	B(E1)(W.u.)=0.0019 +4-3
							E_{γ} : weighted average of 6949.3 7 from 40 Ca(γ,γ'), 6949 2 from 40 Ca($\eta,\eta'\gamma$), and 6952.2
							15 from 40 Ca(p,p' γ).
7113.1	1-	1485	5	5629.41	2+	[E1]	B(E1)(W.u.)=0.00010 +11-4
							E_{γ},I_{γ} : $(p,p'\gamma)$ only.
		1899.8 <i>7</i>	22	5211.56	0_{+}	[E1]	B(E1)(W.u.)=0.00022 +23-8
							E_{γ},I_{γ} : $(p,p'\gamma)$ only.
		3206.8 <i>6</i>	28	3904.38	2+	[E1]	$B(E1)(W.u.)=5.8\times10^{-5} +60-20$
							E_{γ}, I_{γ} : from $(p, p'\gamma)$. Other: $E_{\gamma} = 3208.5$ in (p, γ) .
		7112.9 <i>10</i>	100	0.0	0_{\pm}	[E1]	$B(E1)(W.u.)=1.9\times10^{-5} +20-7$
5110 50	4-	1000.0		60 05 45	2-	FF-01	E_{γ},I_{γ} : from $(p,p'\gamma)$. Other: $E_{\gamma}=7113.3$ in (p,γ) .
7113.73	4-	1088.2	1.7 5	6025.47	2	[E2]	B(E2)(W.u.)=7 +8-4
		1500.2	10 2 11	5612.50	4-		E_{γ}, I_{γ} : from (p, γ) .
		1500.2	10.3 11	5613.52		FF211	E_{γ}, I_{γ} : from (p, γ) .
		1834.9	2.6 5	5278.80	4'	[E1]	$B(E1)(W.u.)=2.1\times10^{-5} +22-9$
		2623.2 <i>3</i>	40.7 20	4491.43	5-		$E_{\gamma}I_{\gamma}$: from (p,γ) . E_{γ} : from $(p,p'\gamma)$. Other: 2622.2 in (p,γ) .
		2025.2 5	40.7 20	7771.73	5		I_{γ} : from (p, γ) . Other. 2022.2 in (p, γ) .
		3378.5 <i>3</i>	100.0 14	3736.69	3-		E_{γ} : from $(p,p'\gamma)$. Other: 3376.9 in (p,γ) .
		3370.3 3	100.0 17	3730.07	5		I_{γ} : from (p, γ) . Given $SS \neq 0.5$ in (p, γ) .
7239.07	$(3^-,4,5^-)$	1624.5 7	50	5613.52	4-		E_{γ},I_{γ} : from $(p,p'\gamma)$ only.
	, , , ,	2746	100	4491.43			$E_{\gamma}I_{\gamma}$: from $(p,p'\gamma)$ only.
		3501.4 5	100	3736.69			E_{γ}, I_{γ} : from $(p, p'\gamma)$. Other: $E_{\gamma} = 3502.2$ in (p, γ) .
7277.82	$(2,3)^+$	3541.0	100	3736.69	3-	[E1]	B(E1)(W.u.)=0.00027 +67-11
							E_{γ} : from (p,γ) .
7300.67	0_{+}	1671.3	5.3 16	5629.41	2+	[E2]	B(E2)(W.u.)=1.8 + 18-10
			1000 7	 10			$E_{\gamma}I_{\gamma}$: from (p,γ) .
		2050.3 5	100.0 <i>16</i>	5248.79	2 ⁺	[E2]	B(E2)(W.u.)=16+8-4
7207.0	(5+)	1260		(020.71	2+	(E2)	E_{γ} : from $(p,p'\gamma)$. Other: 2051.9 in (p,γ) .
7397.2	(5^+)	1369		6029.71	3	(E2)	E _y : from (HI,xny) only.
		2119.2 6		5278.80	1 +	(D)	Mult.: (Q) from (HI,xn γ), M2 ruled by RUL. E $_{\gamma}$: from (p,p' γ).
		2119.2 U		3210.00	4	(D)	E_{γ} . Holli (p,p γ). Mult.: from (HI,xn γ).
7421.9		3684.9 12	100	3736.69	3-		E_{γ} : from $(p, p'\gamma)$.
7446.23	3+,4+	1816.8	30.0 17	5629.41			E_{γ} . From (p,p,γ) . E_{γ} , I_{γ} : from (p,γ) .
,	· ,.	1831.5 10	48.5 19	5613.52		[E1]	B(E1)(W.u.)=0.00014 + 10-5
							E_{γ} : from $(p,p'\gamma)$. Other: 1832.7 in (p,γ) .
							I_{γ} : from (p,γ) .
		2167.4	56 <i>3</i>	5278.80	4+		E_{γ},I_{γ} : from (p,γ) . Other: $E_{\gamma}=2169.1$ 15 in $(p,p'\gamma)$.

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f \underline{J_f^{\pi}}$	Mult.#	Comments
7446.23	3+,4+	2198.0 <i>10</i>	100 3	5248.79 2+		E_{γ} : from $(p,p'\gamma)$. Other: 2197.4 in (p,γ) .
						I_{γ} : from (p,γ) .
7466.35	2+	2217.5	24 3	5248.79 2+		$\dot{E}_{\gamma},I_{\gamma}$: from (p,γ) .
		3561.8	36.0 25	3904.38 2+		E_{γ}, I_{γ} : from (p, γ) .
		4113.5	21.0 18	$3352.62 0^+$	[E2]	B(E2)(W.u.)=0.9 +12-4
						E_{γ},I_{γ} : from (p,γ) .
		7465.6	100 4	$0.0 0^{+}$	[E2]	B(E2)(W.u.)=0.21 +24-8
						E_{γ}, I_{γ} : from (p, γ) . Other: $E_{\gamma} = 7467.8 \ 10$ in (p, p'_{γ}) .
7481?	-	7480		$0.0 0^{+}$		
7532.26	2^{-}	1247.1	23.1 21	6285.15 3		E_{γ}, I_{γ} : from (p, γ) .
		1506.8	11.3 10	6025.47 2		E_{γ}, I_{γ} : from (p, γ) .
		1629.6	8.0 24	5902.63 1	FE 01	E_{γ}, I_{γ} : from (p, γ) .
		1917.6 <i>10</i>	57 3	5613.52 4	[E2]	B(E2)(W.u.)=4.1 + 19-12
						E_{γ} : from $(p,p'\gamma)$. Other: 1918.7 in (p,γ) .
						I_{γ} : from (p,γ) .
		3627.7	36 <i>3</i>	3904.38 2+	[E1]	$B(E1)(W.u.)=1.2\times10^{-5}+6-4$
						E_{γ}, I_{γ} : from (p, γ) .
	4.1	3795.4 <i>10</i>	100 4	3736.69 3		E_{γ}, I_{γ} : from (p, γ) .
7561.17	4+	1531.4	44 5	6029.71 3+		E_{γ}, I_{γ} : from (p, γ) .
		2312.1 <i>10</i>	100 13	5248.79 2+	[E2]	B(E2)(W.u.)=3.9 +17-11
						E_{γ} : unweighted average of 2313.0 6 from $^{39}K(p,\gamma)$ and 2311.1 3 from $^{40}Ca(p,p'\gamma)$.
						I_{γ} : from (p,γ) .
		3824.3	14 3	3736.69 3-	[E1]	$B(E1)(W.u.)=5.4\times10^{-6} +41-23$
						E_{γ},I_{γ} : from (p,γ) .
7623.11	$(2^-,3,4^+)$	1993.6	100 3	5629.41 2+		E_{γ},I_{γ} : from (p,γ) .
		2009.5 7	90 3	5613.52 4		E_{γ} : from $(p,p'\gamma)$.
						\underline{I}_{γ} : from (p,γ) .
		2374.2	31.5 20	5248.79 2+		E_{γ},I_{γ} : from (p,γ) .
5650.00	4-	3886.2	57.4 20	3736.69 3-		E_{γ}, I_{γ} : from (p, γ) .
7658.23	4-	1373.1	33 5	6285.15 3		E_{γ}, I_{γ} : from (p, γ) .
		2045.6 7	100 6	5613.52 4		E_{γ} : weighted average of 2045.8 7 from 40 Sc ε decay and 2045.0 10 from 40 Ca(p,p' γ).
						Other: 2045.6 in (p, γ) .
						I_{γ} : from 40 Sc ε decay.
		3167.9 7	52 8	4491.43 5		E_{γ} : from ⁴⁰ Sc ε decay. Other: 3166.7 in (p,γ) .
						I_{γ} : weighted average of 47 8 from 40 Sc ε decay and 56 8 from 39 K(p, γ).
		3920.0 10	59 8	3736.69 3-		E_{γ} : from ⁴⁰ Sc ε decay. Other: 3921.3 in (p, γ).
						I_{γ} : weighted average of 51 8 from ⁴⁰ Sc ε decay and 67 8 from ³⁹ K(p, γ).
7676.6	(6^+)	2399.2 5	100	5278.80 4+	(E2)	B(E2)(W.u.)=4.4 +15-9
					. ,	E_{γ} : from $(p,p'\gamma)$.
						Mult.: (Q) from $\gamma(\theta)$ in (HI,xn γ), M2 ruled out by RUL.

E_i (level)	\mathbf{r}^{π}	Б ‡	${\rm I}_{\gamma}^{ \ddagger}$	₽.	J_f^{π} Mult.	# Comments
	\mathbf{J}_i^{π}	E_{γ}^{\dagger}			J	
7694.08	3-	2080.6	10.1 13	5613.52		E_{γ},I_{γ} : from (p,γ) .
		3957.5 5	100.0 13	3736.69	3	E_{γ} : from $(p,p'\gamma)$. Other: 3957.3 in (p,γ) .
7701.0	0+	2707.2	100	2004.29	a +	I_{γ} : from (p,γ) .
7701.8 7769.4		3797.2 2155.8	100	3904.38		\dot{E}_{γ} : from (p,γ) .
7709.4	$(3,4,5^{-})$	4032.5	52 9 100 9	5613.52 4 3736.69 3		E'_{γ} , I_{γ} : from (p, γ) . E_{γ} , I_{γ} : from (p, γ) .
7814.7	0+	2565	43	5248.79		E_{γ},I_{γ} . Holii (p,γ) . E_{γ},I_{γ} : from $(p,p'\gamma)$.
7014.7	U	3908	100	3904.38		E_{γ},I_{γ} : from $(p,p'\gamma)$.
7872.18	2+	7871.1 <i>I</i>	100	0.0		B(E2)(W.u.)=0.89 +22-15
7072.10	_	7071.1 1	100	0.0	0 [L2]	E_{γ} : from (γ, γ') . Others: 7871.4 in (p, γ) , 7872.9 10 in $(p, p'\gamma)$.
						I_{γ} : 1982Mo05 in (γ, γ') report $\Gamma_0/\Gamma=0.84$ 6 without indicating the observation of other γ
						branches other than the ground transition and no other γ branches were observed in other
						studies. So this value is not considered.
7928.42	4+	2314.8	100 18	5613.52	4 ⁻ [E1]	B(E1)(W.u.)=0.00046 +151-25
						E_{γ},I_{γ} : from (p,γ) . Other: $E_{\gamma}=2313.7$ 17 in $(p,p'\gamma)$.
		3436.8	100 18	4491.43	5 ⁻ [E1]	B(E1)(W.u.)=0.00014 +46-8
						E_{γ},I_{γ} : from (p,γ) .
		4191.5	<14	3736.69	3-	E_{γ},I_{γ} : from (p,γ) . Other: $I_{\gamma}=20$ in $(p,p'\gamma)$.
7974.4	(6^{+})	1432		6542.80		E_{γ} , Mult.: from (HI,xn γ).
		2695		5278.80	()	E_{γ} , Mult.: from (HI, xn γ).
7976.55	2+	2699	20	5278.80		B(E2)(W.u.)>1.2
		4072.1 6	100	3904.38		
		4624	60	3352.62		B(E2)(W.u.)>0.24
	- 1	7977	20	0.0		B(E2)(W.u.)>0.0051
8018.8	0+	2770	100	5248.79		D. (T.) (W.) 0.70 0.7
8091.61	2+	8090.6 2	100	0.0	0^{+} [E2]	B(E2)(W.u.)=0.72 +9-7
0100.1	0+	1160.0.2	100	6020.2	(+ F2	E_{γ} : from (γ, γ') . Other: 8092.4 20 in $(p, p'\gamma)$.
8100.1	8+	1168.8 <i>3</i>	100	6930.2	6 ⁺ E2	B(E2)(W.u.)=2.6 + 4-3
						E_{γ} : from (HI,xn γ). Mult.: from $\gamma\gamma(\theta)$ and $\gamma(DCO)$ in (HI,xn γ) and RUL.
8113.2	1-	8111.0 <i>6</i>	100	0.0	0+ [E1]	Mult.: from $\gamma\gamma(\theta)$ and $\gamma(DCO)$ in (HI,xn γ) and ROL. B(E1)(W.u.)= $6.0 \times 10^{-5} + 39 - 17$
8113.2	1	0111.0 0	100	0.0	U [EI]	E_{γ} : from (γ, γ') .
8134.77	(3-)	2505.3	82 9	5629.41	2+	E_{γ} : from (γ, γ) . E_{γ} , I_{γ} : from (p, γ) .
0134.77	(3)	2521.2	24 9	5613.52		E_{γ},I_{γ} . Holii (p,γ) . E_{γ},I_{γ} : from (p,γ) .
		3643.1 &				
			<15	4491.43		$E_{\gamma}I_{\gamma}$: from (p,γ) . Other: $I_{\gamma}=100$ in $(p,p'\gamma)$.
		4229.4 10	100 30	3904.38	Ζ'	E_{γ} : from $(p,p'\gamma)$. Other: 4230.1 in (p,γ) .
8187.5	(2 / 5-)	4451.6 8	100	3736.69	2-	I_{γ} : from (p,γ) .
8187.3 8271	$(3,4,5^-)$ $(\leq 3)^-$	1321	100	6950.48		\dot{E}_{γ} : from $(p,p'\gamma)$. Other: 4450.7 in (p,γ) . E_{γ},I_{γ} : from $(p,p'\gamma)$.
04/1	(23)	2368	67	5902.63		E_{γ},I_{γ} : from $(p,p'\gamma)$. E_{γ},I_{γ} : from $(p,p'\gamma)$.
8276	0+	2646	100	5629.41		$L_{\gamma,1\gamma}$. Holli (p,p,γ) .
0270	U	2040	100	3029.71	_	

γ (40Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	J_f^{π} Mu	ult.#	Comments
8323.16	$(1^-,2^+)$	1572.7	12.5 10	6750.41 2	2-		
	, ,	2038.0	2.2 5	6285.15 3			
		2297.6	26.3 17	6025.47 2			
		2420.5	1.9 12	5902.63 1			
		3074.2	4.5 9	5248.79 2			
		4586.2	100 3	3736.69 3			
		8322.2	3.4 12	0.0			Unobserved intensity=18 3 in (p,γ) .
8338.0	$(2^+,3,4)$	1795.2	100 10	6542.80 4			
	()- / /	1830.1	42 10	6507.87 4			Unobserved intensity=25 13 in (p,γ) .
8358.9	$(0,1,2)^{-}$	1405	100	6950.48 1			E_{γ} : from $(p,p'\gamma)$.
8364	$(3^- \text{ to } 7^-)$	3872	100	4491.43 5			-/· (F)F //·
8373.94	4+	4469.3	100	3904.38 2			
8424.81	2-	2399.3	19 <i>4</i>	6025.47 2			
		2522.1	24 4	5902.63 1			
		4687.8	100 6	3736.69 3			E_{γ} : from (p,γ) . Other: 4688.2 15 in $(p,p'\gamma)$.
8439.0	0^{+}	2809.5	100	5629.41 2			
8484.02	$(1^-,2^-,3^-)$	2581.3	59 11	5902.63 1			
	(, ,- ,-	4747.0	100 11	3736.69 3			Additional information 22.
8540	1,2+	5188	67	3352.62 0			E_{γ},I_{γ} : from $(p,p'\gamma)$.
	-,-	8540 <i>4</i>	100	0.0			E_{γ},I_{γ} : from $(p,p'\gamma)$.
8551.1	5-	4060.8 15		4491.43 5			E_{γ},I_{γ} : from $(p,p'\gamma)$.
8578.80	2+	8577.7 2	100	0.0		21	B(E2)(W.u.)=0.54+7-6
						,	E{γ} : from (γ, γ') .
8587	$(2^+,3)$	2562	25	6025.47 2	2-		E_{γ},I_{γ} : from $(p,p'\gamma)$.
	()- /	3308	25	5278.80 4			E_{γ},I_{γ} : from $(p,p'\gamma)$.
		4682	17	3904.38 2			E_{γ},I_{γ} : from $(p,p'\gamma)$.
		4850	100	3736.69 3			E_{γ},I_{γ} : from $(p,p'\gamma)$.
8665.3	1-	8665	100	0.0			1, 1,
8678.29	4+	2393.1	20 8	6285.15 3		.1]	B(E1)(W.u.)=0.00017 +145-12
		4941.3	100 23	3736.69 3		-	B(E1)(W.u.)=0.00010 +53-5
						,	Unobserved intensity=34 25 in (p,γ) .
8701	(6-)	3088		5613.52 4	1-		λ A_{MM}
	. ,	4209		4491.43 5			
8748.22	2+	8748.4 2	100	0.0		21	B(E2)(W.u.)=0.26 +4-3
						,	E_{γ} : from (γ, γ') . Other: 8747.2 in (p, γ) .
8764.18	3-	2734.4	47 18	6029.71 3	3+		I = I = I = I = I = I = I = I = I = I =
		3134.6	56 21	5629.41 2			
		3485.2	100 30	5278.80 4			
		4859.5	65 18	3904.38 2			Unobserved intensity ≈ 26 in (p,γ) .
8934.81	2+	1402.5	12.2 11	7532.26 2			• A11.
		1657.0	3.5 5	7277.82 (
		1821.0	1.7 4	7113.1			

 γ (⁴⁰Ca) (continued)

B(E2)(W.u.)=0.38 +6-5

 E_{γ} : this γ may correspond to 4540.2 γ from 9031.9 level.

 E_{γ} : from (γ, γ') .

Comments

Mult.#

(Q)

(D)

[E2]

 E_{γ}^{\dagger}

1984.3

2184.3

2352.2

2905.0

2909.2

3032.1

3305.2

3685.8

3722.9

5030.1

5197.8

5581.8

8933.7

8981.4 5

1880.7

2085.7

2244.0

2411.9

2709.3

2968.9

3364.9

3782.6

5089.8

5257.4

5641.5

8993.4

1337.7

2746.6

3418.2

3752.9

4540.2

4542[&]

1397.5

1468.6

1625.3

1813.8

1852.6

1977.9

1538 2004

 E_i (level) 8934.81

8935.8

8982.5

8994.50

9031.9

9033?

9091.70

34

 (7^{+})

2+

4-

 (7^{-})

3-

 $(1^-,2^+)$

 I_{γ}^{\ddagger}

5.68

5.68

1.9 *3*

3.2 11

17.6 19

1.7 5

2.9 5

5.6 24

3.5 8

2.9 13

21.8 21

0.44 11

0.62 15

0.44 14

0.64 16

1.5 *3*

8.7 7

8.2 7

8.3 8

2.4 4

2.1 6

100.0 22

25 8

25 8

100 13

30 13

70 13

3.7 *3*

1.31 16

0.71 5

2.17 24

1.26 17

0.95 16

0.60 8

77 5

100

100 5

 E_f

6950.48 1-

6750.41 2

6582.47 3-

6029.71 3+

 $6025.47 \ 2^{-}$

5902.63 1-

5629.41 2+

5248.79 2+

5211.56 0+

3904.38 2+

3736.69 3-

3352.62 0+

6930.2 6+

7113.1 1

6908.70 2⁺

6750.41 2-

6582.47 3-

6285.15 3-

6025.47 2-

5629.41 2+

5211.56 0⁺

3904.38 2+

3736.69 3-

3352.62 0+

7694.08 3-

6285.15 3-

5613.52 4-

5278.80 4+

4491.43 5-

4491.43 5

7694.08 3-

7113.73 4-

 $7623.11 (2^-,3,4^+)$ 7466.35 2+

7239.07 (3-,4,5-)

 $7277.82 (2,3)^{+}$

 $0.0 0^{+}$

 $0.0 0^{+}$ 7397.2 (5+)

 $0.0 0^{+}$

γ (⁴⁰Ca) (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${\rm J}_f^\pi$	Mult.#
9091.70	3-	2341.2	0.98 24	6750.41 2-	9226.69	$(1^-,2,3^-)$	2941.4	27.8 15	6285.15	3-	
		2509.1	1.79 24	6582.47 3-			3323.9	< 3.0	5902.63	1-	
		2806.4	8.8 5	6285.15 3-			3977.7	<14	5248.79	2+	
		3061.9	4.3 7	6029.71 3+			5321.9	< 3.1	3904.38	2+	
		3066.1	5.0 9	6025.47 2-			5489.6	39 <i>3</i>	3736.69	3-	
		3188.9	2.6 4	5902.63 1-			9225.6	<97		0+	
		3812.7	14.6 7	5278.80 4 ⁺	9227.43	$(1,2^+)$	3201.8	35.0 <i>13</i>	6025.47		
		3842.7	7.7 4	5248.79 2+			3324.7	<1.0	5902.63		
		5187.0	16.2 7	3904.38 2 ⁺			3978.4	<4.7	5248.79		
		5354.6	100.0 <i>17</i>	3736.69 3-			5322.7	<1.0	3904.38		
9135.66	$2^{-},3^{-}$	710.8	1.72 15	8424.81 2			5874.4	100 <i>3</i>	3352.62 (
		1263.5	0.55 9	7872.18 2 ⁺			9226.3	<33		0+	
		1441.5	8.9 4	7694.08 3-	9305.2	(8+)	1628			(6 ⁺)	(Q)
		1603.4	6.3 4	7532.26 2	0060.54	2-	2375			5 ⁺	(Q)
		1857.8	0.43 7	$7277.82 (2,3)^{+}$	9362.54	3-	937.7	4.4 7		2-	
		2021.9	3.13 21	7113.73 4			1668.4	100.0 25	7694.08		
		2185.1	0.78 14	6950.48 1			1704.3	26.6 20	7658.23		
		2385.2	1.06 15	6750.41 2			1739.4	3.9	7623.11 (
		2553.0	3.5 3	6582.47 3			2412.0	3.2	6950.48		
		2850.4	23.5 7	6285.15 3			2612.0	3.7	6750.41		
		3110.1	0.43 <i>17</i> 5.1 <i>4</i>	6025.47 2			2779.9	6.3 <i>7</i> 9.5 <i>25</i>	6582.47 3 6285.15 3		
		3232.9 3522.0	0.51 <i>17</i>	5902.63 1 ⁻ 5613.52 4 ⁻			3077.3 3748.8	9.5 <i>2</i> 5 29.8 22	5613.52		
		3886.7	0.817	5248.79 2 ⁺			4113.5	10.7 20	5248.79		
		5230.9	13.6 7	3904.38 2 ⁺			5457.8	14.4 20	3904.38 2		
		5398.6	100.0 15	3736.69 3 ⁻			5625.4	8.3 15	3736.69		
9209.77	$(2,3)^{-}$	725.7	1.53 16	8484.02 (1 ⁻ ,2 ⁻ ,3 ⁻)	9388.20	2+	1694.0	7	7694.08		
9209.11	(2,3)	785.0	5.4 3	8424.81 2	9366.20	2	2087.4	2.5	7300.67		
		1515.6	7.3 3	7694.08 3 ⁻			2845.3	28	6542.80		
		2096.0	2.60 20	7113.73 4			2880.3	9	6507.87		
		2259.2	4.5 3	6950.48 1			3102.9	3.2	6285.15		
		2459.3	3.2 3	6750.41 2			3362.6	6	6025.47		
		2627.1	3.6 3	6582.47 3			3758.6	19	5629.41		
		2924.5	6.5 3	6285.15 3			4109.2	15	5278.80		
		3184.2	2.6 3	6025.47 2			4139.2	8	5248.79		
		3307.0	17.4 5	5902.63 1			4176.3	28	5211.56 (
		3580.2	3.4 3	5629.41 2 ⁺			5483.4	8	3904.38 2		
		5305.0	4.7 5	3904.38 2 ⁺			5651.1	17	3736.69		
		5472.7	100.0 16	3736.69 3			9387.0	100		O+	
9226.69	$(1^-,2,3^-)$	1694.4	100 5	7532.26 2-	9404.85	2-	1872.5	43	7532.26		
		2276.1	15.9 <i>14</i>	6950.48 1-			2127.0	2.2	7277.82 (
		2476.2	24.1 15	6750.41 2			2291.1	20	7113.73	4-	
1											

γ (40Ca) (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
9404.85	2-	2454.3	4	6950.48	1-			
,	_	2496.1	8	6908.70				
		2822.2	10	6582.47				
		3119.6	100	6285.15		M1		Mult.: $\delta(Q/D)=0.0~3$ in (p,γ) , polarity from no level-parity change determined from other experimental evidence.
		3502.1	20	5902.63	1-			
		5500.1	7	3904.38				
		5667.7	49	3736.69		M1+E2	-0.03 2	Mult.: D+Q in (p,γ) , polarity from no level-parity change determined from other experimental evidence.
		9403.7	7	0.0	0^{+}			
9418.8	3-	1724.6	10	7694.08	3-			
		1760.5	7	7658.23				
		1795.6	4		$(2^-,3,4^+)$			
		1886.5	5	7532.26				
		2305.0	62	7113.73				
		2668.3	6	6750.41				
		3133.5	100	6285.15				
		3393.2	5	6025.47				
		3516.0	12	5902.63				
		3805.1	5	5613.52				
		4169.8	4	5248.79				
		5681.7	18	3736.69				
9429.11	$(3,4)^{-}$	1734.9	21 3	7694.08				
	(- / /	1770.8	100 6	7658.23				
		1806.0	3.3 11		$(2^-,3,4^+)$			
		2315.3	3.6 8	7113.73				
		2846.5	26 5	6582.47				
		3143.8	9.4 17	6285.15				
		4937.3	81 6	4491.43				
		5692.0	33 6	3736.69				
9432.46	1-	1900.2	2.5	7532.26				
,	•	2481.9	0.8	6950.48				
		2681.9	1.0	6750.41				
		3406.8	2.3	6025.47				
		5527.7	1.1	3904.38				
		9431.3	100	0.0				
9453.95	3-	1029.1	4.9 6	8424.81				
	-	1759.8	73.2 23	7694.08				
		1795.7	23.4 20	7658.23				
		1830.8	5.9 10		$(2^-,3,4^+)$			
		1020.0	2.2 10	/023.11	(4 ,3,4)			
		1921.6	3.3 7	7532.26				

γ (40Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\#}$	Comments
9453.95	3-	2340.2	34.7 17	7113.73 4-			
		2703.4	6.9 7	6750.41 2			
		3168.7	100.0 23	6285.15 3			
		3428.3	5.9 10	6025.47 2			
		3824.3	8.3 10	5629.41 2 ⁺			
		3840.2	33.7 20	5613.52 4			
		4174.9	5	5278.80 4+			
		5549.2	16.2 20	3904.38 2+			
		5716.8	11.2 13	3736.69 3			
9603.0	3-	2489.2	61	7113.73 4			
7003.0	3	3317.7	100	6285.15 3	M1+E2	0.42 6	Mult., δ : D+Q from (p, γ), polarity form no level-parity change determined from other experimental evidence.
		5865.8	24	3736.69 3-	M1+E2	+0.18 3	Mult., δ : D+Q from (p, γ), polarity form no level-parity change determined from othe experimental evidence.
9604.6	1-	2072.3	6	7532.26 2-			1
		2654.0	1.3	6950.48 1			
		2854.1	2.0	6750.41 2-			
		3579.0	5	$6025.47 \ 2^{-}$			
		5699.8	1.0	3904.38 2 ⁺			
		6251.4	1.4	3352.62 0 ⁺			
		9603.4	100	$0.0 0^{+}$			
9640.89	2-	2174.5	16.7 6	7466.35 2+			
		2690.3	0.32 6	6950.48 1-			
		2732.1	1.06 11	6908.70 2+			
		3355.6	0.99 23	6285.15 3			
		4011.2	9.94 21	5629.41 2 ⁺			
		5736.1	100.0 11	3904.38 2 ⁺			
		5903.7	82.5 11	3736.69 3			
		9639.6	3.2	$0.0 0^{+}$			
9668.71	3-	1974.5	1.5 3	7694.08 3			
	-	2136.4	4.1 4	7532.26 2			
		2222.4	1.53 25	7446.23 3+,4+			
		2554.9	60.6 16	7113.73 4			
		2759.9	1.5 3	6908.70 2+			
		2918.2	4.6 <i>4</i>	6750.41 2			
		3383.4	100.0 14	6285.15 3			
		3643.1	6.8 7	6025.47 2			
		5176.9	6.76 23	4491.43 5			
		5763.9	8.1 5	3904.38 2+			
		5931.6	29.7 14	3736.69 3			
	_		17.1 15	8748.22 2 ⁺			
9779.47	3	1031.3	17.17.2	0/40.22 2			

γ (⁴⁰Ca) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\ddagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\!\#}$	Comments
							
9869.3	$1^+, 2^+$	2167.4	1.1	7701.8 0 ⁺			
		2568.5	3.0	7300.67 0 ⁺			
		2960.5	1.2	6908.70 2 ⁺			
		4620.2	1.1	5248.79 2 ⁺			
		4657.3	0.8	5211.56 0 ⁺			
		5964.4	7	3904.38 2 ⁺			
		6516.1	17	3352.62 0+			
0054.00	4+	9868.0	100	$0.0 0^{+}$			
9954.00	4+	1580.0	6.5 5	8373.94 4+			
		3022.6	5.2 5	6931.29 3			
		3371.3	2.1 5	6582.47 3			
		3411.1	18.2 10	6542.80 4 ⁺			
		3446.0	7.2 4	6507.87 4 ⁺			
		4340.2	8.2 7	5613.52 4 ⁻	M1 . E2	.0.04.2	Male S. farm (mal) in (mal)
		4674.9	100 3	5278.80 4 ⁺	M1+E2	+0.04 3	Mult., δ : from γ (pol) in (p, γ).
		5462.2	4.6 7	4491.43 5			
10040 54	(2- 2-)	6216.8	11.2 10	3736.69 3-			
10040.54	$(2^-,3^-)$	1276.3	10.4 14	8764.18 3			
		1556.5 1717.3	3.5 6	8484.02 (1-,2-,3-)			
		2417.4	100.0 <i>19</i> 4.4 <i>6</i>	8323.16 (1 ⁻ ,2 ⁺)			
		2508.2	1.8 4	7623.11 (2 ⁻ ,3,4 ⁺) 7532.26 2 ⁻			
		2762.6	16.1 6	7332.20 2 $7277.82 (2,3)^+$			
		2926.7	8.5 6	7113.73 4 ⁻			
		3089.9	12.8 12	6950.48 1 ⁻			
		3457.8	2.7 4	6582.47 3			
		4014.9	3.9 4	6025.47 2			
		4137.7	26.3 12	5902.63 1			
		6303.3	3.9 4	3736.69 3-			
10049.38	4-	1017.5	26.3 12	9031.9 4			
10017.50	•	1861.6	1.17 12	8187.5 (3,4,5 ⁻)			
		2279.9	5.4 3	7769.4 (3,4,5 ⁻)			
		2810.2	1.7 3	7239.07 (3-,4,5-)			
		2935.5	32.0 9	7113.73 4			
		3466.7	16.7 7	6582.47 3			
		3764.0	2.88 21	6285.15 3-			
		4023.7	2.97 23	6025.47 2			
		4435.6	2.17 21	5613.52 4			
		5557.5	37.3 9	4491.43 5			
		6312.2	100.0 <i>21</i>	3736.69 3-			
10262.53	3-	2639.3	3.9 6	$7623.11 (2^-,3,4^+)$			
		2796.1	43.3 25	7466.35 2 ⁺			
		2796.1	43.3 25	7466.35 2+			

γ (⁴⁰Ca) (continued)

E_i (level)	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{I_{\gamma}}\ddagger$	\mathbf{E}_f \mathbf{J}'	π	Mult.#	$\delta^{\#}$	Comments
10262.53	3-	2816.2	13.1 11	7446.23 3+,4	+			
10202.33	3	3148.7	3.9 8	7113.1 1				
		3679.8	11.4 8	6582.47 3				
		4232.6	45 <i>4</i>	6029.71 3+				
		4359.7	7.5 11	5902.63 1				
		4632.8	8.1 11	5629.41 2+				
		5013.4	10.0 11	5248.79 2+				
		6357.6	100 3	3904.38 2+				
		6525.3	32 <i>3</i>	3736.69 3-				
10318.8	1+	2616.9	0.86 9	7701.8 0 ⁺				
		3368.2	0.50 9	6950.48 1				
		4689.1	0.33 9	5629.41 2+				
		5106.8	0.93 7	5211.56 0+				
		6413.9	4.12 24	3904.38 2 ⁺]	M1+E2	-0.16 3	Mult., δ : D+Q from (p, γ), polarity from no level-parity change determined from other evidence.
		6965.5	14.4 5	3352.62 0 ⁺				
		10317.4	100.0 9	$0.0 0^{+}$				
10415.06	3	2720.8	2.3 12	7694.08 3				
		2791.8	96 <i>3</i>	7623.11 (2-,3	3,4 ⁺)			
		2853.8	6.5 6	7561.17 4 ⁺				
		2948.6	33.9 12	7466.35 2 ⁺				
		2968.7	100.0 23	7446.23 3+,4				
		3137.1	5.1 8	7277.82 (2,3)	,+			
		3301.2	9.0 10	7113.73 4-				
		3483.6	23.0 12	6931.29 3-				
		3506.2 3664.5	90.2 23	6908.70 2 ⁺				
		3832.3	14.4 <i>6</i> 7.7 8	6750.41 2 ⁻ 6582.47 3 ⁻				
		3907.0	5.9 9	6507.87 4+				
		4129.7	2.1 5	6285.15 3				
		4389.3	33.9 17	6025.47 2				
		4785.3	4.7 9	5629.41 2+				
		4801.2	39.7 17	5613.52 4				
		5135.9	15.5 12	5278.80 4+				
		5165.9	9.7 10	5248.79 2+				
		6510.1	20.1 17	3904.38 2+				
		6677.8	40.8 23	3736.69 3-				
10474	(8-)	1773		8701 (6 ⁻)				
10639.07	$(3^-,4,5^-)$	2504.2	3.1 5	8134.77 (3-)				
		3525.2	9.5 7	7113.73 4				
		3707.6	100 3	6931.29 3-				
		4056.3	3.8 5	6582.47 3				

40

γ (40Ca) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#
10639.07	$\overline{(3^-,4,5^-)}$	4096.1	6.89 24	6542.80	4+	
	(- , ,- ,	4131.0	9.5 5	6507.87	4+	
		5025.2	32.3 14	5613.52	4-	
		5359.9	10.5 10	5278.80	4+	
		6147.1	8.6 7	4491.43	5-	
		6901.7	53.4 24	3736.69	3-	
10699.50	3	2325.5	2.0 3	8373.94	4+	
		2607.8	1.40 18	8091.61	2+	
		3167.1	2.0 3	7532.26	2-	
		3233.0	1.8 4	7466.35	2+	
		3253.1	1.8 <i>3</i>	7446.23	$3^{+},4^{+}$	
		3790.6	5.1 4	6908.70	2+	
		4156.5	3.9 4	6542.80	4+	
		4414.1	2.7 4	6285.15	3-	
		4669.5	7.4 6	6029.71	3+	
		5069.7	10.7 6	5629.41	2+	
		5085.6	3.9 <i>4</i>	5613.52	4-	
		5420.3	17.9 <i>10</i>	5278.80	4+	
		6794.5	100 3	3904.38	2+	
		6962.2	16 <i>3</i>	3736.69	3-	
10737.7	1-	3043.4	17 3	7694.08	3-	
		3828.8	8 3	6908.70	2+	
		4452.3	14.2 24	6285.15	3-	
		10736.2	100 6	0.0	0+	
10747.8	(4^{+})	5118.0	14.8 11	5629.41	2+	
		6842.8	100.0 12	3904.38	2+	
10==0.0	445	7010.5	3.8 7	3736.69	3-	
10770.2	(1^{+})	3656.3	7.9 17	7113.1	1-	
		3861.3	14.3 17	6908.70	2+	
		5521.0	100 5	5248.79	2+	
10005	(0-)	10768.6	76 5	0.0	0+	(0)
10895	(9-)	1862	100	9033?	(7-)	(Q)
10910.0	$(3,4,5^{-})$	7172.6	100	3736.69	3-	
10921.1	$(2^+,3,4^-)$	4895.3	20	6025.47	2-	
10056.0	2-	5641.9	100	5278.80	4+	
10956.0	3-	2768.2	11	8187.5	$(3,4,5^{-})$	
		3474.8	23	7481?	1-	
		5053.0	23	5902.63 5613.52	1 ⁻ 4 ⁻	
		5342.1 5676.8	18 100	5278.80	4 4 ⁺	
		7218.6	57	3736.69	3-	
		1210.0	31	3130.09	3	

γ (⁴⁰Ca) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	J_f^π	Mult.#
10988.0	$(3^-,4^+)$	2010 <mark>&</mark>	12	8978	5+,6+,7+	
	(= , -)	4079.1	12	6908.70	2+	
		4702.6	25	6285.15	3-	
		5358.2	25	5629.41	2+	
		7083.0	100	3904.38	2+	
		7250.6	88	3736.69	3-	
10994.7	$(2^+,3,4^+)$	5715.5		5278.80	4+	
		5745.3		5248.79	2+	
		7257.3		3736.69	3-	
11003.0	(10^{+})	1698		9305.2	(8^{+})	(Q)
		2902		8100.1	8+	(Q)
11011.0	3-	2672.9	27 7	8338.0	$(2^+,3,4)$	
		3334.3	16 <i>4</i>	7676.6	(6^+)	[E3]
		6519.0	100 7	4491.43	5-	[E2]
		7273.6	29	3736.69	3-	
44048.0	445	11009.4	14	0.0	0+	[E3]
11042.0	$(1^- \text{ to } 4^+)$	7136.9		3904.38	2+	
11050 6	(2.4+)	7304.6	0	3736.69	3-	
11070.6	$(3,4^+)$	5456.1	8	5613.52	4-	
		5790.7	15	5278.80	4 ⁺	
		5820.7	15	5248.79	2 ⁺ 2 ⁺	
		7164.9	100 15	3904.38	3-	
11078.4	1-	7332.6 11078	15	3736.69 0.0	3 0 ⁺	
11078.4	(10^+)	2381		9305.2	(8 ⁺)	(Q)
11003.0	(10)	3585		8100.1	(8) 8 ⁺	
11708.7	(9 ⁺)	2773		8935.8	(7 ⁺)	(Q) (Q)
	0+	(a)	75.0		1+	(Q)
11988	0.		75 9	10318.8		
12201.2	3-	2119.5 <i>4</i> 12202	100 9	9869.3 0.0	1 ⁺ ,2 ⁺ 0 ⁺	[[2]
12201.2	3 2 ⁺	12332		0.0	0 ⁺	[E3]
12331	(10^{+})	2481		9853.5	(8^+)	(Q)
12334.9	(10)	3030		9305.2	(8 ⁺)	(Q) (Q)
12591.9	(10^+)	3287		9305.2	(8 ⁺)	(Q) (Q)
12371.7	(10)	4491		8100.1	8+	(Q)
12604		12602		0.0	0^{+}	(Q)
12668	1-	9314		3352.62	0^{+}	
12000	*	12666		0.0	0^{+}	
12688		12686		0.0	0+	
12875		9521		3352.62	0+	
		12873		0.0	0+	

$\gamma(^{40}\text{Ca})$ (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
12980 12978 0.0 0 + 12998 1308.6 0.0 0 + 12996 9642 3352.62 0 + 13111 0.0 0 + 13111.1 10.0 0 + 13111.1 10.0 0 + 13111.1 10.0 0 + 13111.1 10.0 0 + 13111.1 10.0 0 + 13119.4 9840 3352.62 0 + 13199 935 3352.62 0 + 13191 13201 0.0 0 + 131328	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
12980 12978 0.0 0+ 12996 9642 3352.62 0+ 13086 13084 0.0 0+ 13111 0.0 0+ 13115.1 (12+) 1429 11885.8 (10+) (Q) 2112 11003.0 (10+) (Q) 2112 11003.0 (10+) (Q) 2113 194 9840 3352.62 0+ 13195 (10-) 2300 10895 (9-) 13195 (10-) 2300 10895 (9-) 13203 13201 0.0 0+ 133289 9935 3352.62 0+ 133287 0.0 0+ 133822 13819 0.0 0+ 13822 13819 0.0 0+ 13993 10639 3352.62 0+ 13993 10639 3352.62 0+ 13910 0.0 0+ 13993 10639 3352.62 0+ 13994 10639 3352.62 0+ 1395 10639 3352.62 0+ 13910 10639 1362.6 0+ 13	12923	(11=)	2028	10895	(9-)		
12996 9642 3352_62 0° 13086 13084 0.0 0° 13113 9759 3352_62 0° 13115.1 (12°) 1429 1168S.8 (10°) (Q) 2112 11003.0 (10°) (Q) 13194 9840 3352_62 0° 13195 (10°) 2300 10895 (9°) 13203 13201 0.0 0° 13289 9935 3352_62 0° 13535.5 (11°) 1827 11708.7 (9°) (Q) 13822 13819 0.0 0° 13993 10639 3352_62 0° 13990 0.0 0° 14232_4 (12°) 2547 1168S.8 (10°) (Q) 151515_4 (13°) 1167 13535_5 (11°) (Q) 15267.1 (12°) 2932 123349 (10°) (Q) 15306 (13°) 2383 12923 (11°) 15748.1 (12°) 3156 1259 (10°) (Q) 15306 (13°) 2383 12923 (11°) 15748.1 (12°) 3156 1259 (10°) (Q) 16529.4 (14°) 3466 1423_2.4 (12°) (Q) 180516 (14°) 3466 1423_2.4 (12°) (Q) 180516 (14°) 3466 1423_2.4 (12°) (Q) 180517 (15°) 2909 15306 (13°) 1826 (10°) (Q) 18215? (15°) 2909 15306 (13°) 1826 (10°) (Q) 18215? (15°) 2909 15306 (13°) 320 14232.4 (12°) (Q) 18054.6 (14°) 322 1423_2.4 (12°) (Q) 18054.6 (14°) 3230 15267.1 (12°) (Q) 18054.6 (14°) 3230 15267.1 (12°) (Q) 18054.6 (14°) 3320 15267.1 (12°) (Q) 18054.6 (14°) 3320 15267.1 (12°) (Q) 18054.6 (14°) 3452 15267.1 (12°) (Q) 18054.6 (14°) 3452 15267.1 (12°) (Q)		(11)		0.0	0+		
13086 13084 0.0 0 to 13115 13115 13111 0.0 0 to 13115 13115 1429 11685.8 (10 ^t) (Q) 2112 11003.0 (10 ^t) (Q) 13194 9840 3352.62 0 to 13195 (10 ^t) 2300 1895 (9 ^t) 13203 13201 0.0 0 to 13289 9935 3352.62 0 to 13287 0.0 0 to 13822 13819 0.0 0 to 13982 13819 0.0 0 to 13993 10659 3352.62 0 to 13913 10559 3352.62 0 to 13913 10559 3352.62 0 to 13914 13915 10559 3352.62 0 to 13915 10639 3352.62 0 to 13916 1070 1070 1070 14232.4 (12 ^t) 2547 11685.8 (10 ^t) (Q) 15152.4 (13 ^t) 1617 1535.5 (11 ^t) (Q) 15267.1 (12 ^t) 2922 12334.9 (10 ^t) (Q) 15306 (13 ^t) 2383 12923 (11 ^t) 15748.1 (12 ^t) 3156 1291.9 (10 ^t) (Q) 16579.7 (13 ^t) 3044 13535.5 (11 ^t) (Q) 18054.6 (14 ^t) 3266 14232.4 (12 ^t) (Q) 18054.6 (14 ^t) 3260 15306 (13 ^t) 3452 14232.4 (12 ^t) (Q) 18215 ^t (15 ^t) 2909.8 15306 (13 ^t) 300 100 ^t (100 100				3352.62			
13113 9759 3352.62 0 [†] 13115.1 (12 [†]) 1429 11685.8 (10 [†]) (Q) 13194 9840 3352.62 0 [†] 13195 (10 [†]) 2300 10895 (97) 13203 13201 0.0 0 [†] 13287 9935 3352.62 0 [†] 13288 9935 3352.62 0 [†] 13391 10559 3352.62 0 [†] 13819 0.0 0 [†] 13822 13819 0.0 0 [†] 13891 10559 3352.62 0 [†] 13993 10639 3352.62 0 [†] 13990 0.0 0 [†] 14232.4 (12 [†]) 2547 11685.8 (10 [†]) (Q) 15152.4 (13 [†]) 1617 13355.5 (11 [†]) 1617 13355.5 (11 [†]) (Q) 15267.1 (12 [†]) 2932 12334.9 (10 [†]) (Q) 15306 (13 [†]) 2383 12923 (11 [†]) (Q) 15308 (13 [†]) 2383 12923 (11 [†]) (Q) 1579.8 (14 [†]) 346 (14 [†]) 3297 14232.4 (12 [†]) (Q) 16529.4 (14 [†]) 2297 14232.4 (12 [†]) (Q) 18515? (15 [†]) 3464 13355.5 (11 [†]) (Q) 18506 (14 [†]) 3466 (14 [†]) 322 14324.4 (12 [†]) (Q) 18215? (15 [†]) 2999 [©] 18260 1 18256 0.0 0 [†] D Mult: from y(θ) in (p,γ). 18719.2 (14 [†]) 3452 15267.1 (12 [†]) (Q) 18808.0 1 18605 0.0 0 [†] D Mult: from y(θ) in (p,γ). 18719.2 (14 [†]) 3452 15267.1 (12 [†]) (Q) 18719.2 (14 [†]) 3452 15267.1 (12 [†]) (Q) 18719.2 (14 [†]) 3452 15267.1 (12 [†]) (Q)				0.0	0+		
1311.1 0.0 0 ⁺ 1311.1 (12 ⁺) 11485.8 (10 ⁺) (Q) 13194 9840 3352.62 0 ⁺ 13192 0.0 0 ⁺ 13192 0.0 0 ⁺ 13195 (10 ⁻) 2300 10895 (9 ⁻) 13289 9935 3352.62 0 ⁺ 13289 13287 0.0 0 ⁺ 13832. 13819 0.0 0 ⁺ 13822 13819 0.0 0 ⁺ 13913 10559 3352.62 0 ⁺ 13910 0.0 0 ⁺ 13294 (12 ⁺) 2547 11685.8 (10 ⁺) (Q) 14232.4 (12 ⁺) 2547 11685.8 (10 ⁺) (Q) 15152.4 (13 ⁺) 1617 13535.5 (11 ⁺) (Q) 15267.1 (12 ⁺) 2932 12334.9 (10 ⁺) (Q) 15306 (13 ⁻) 2383 1293 (11 ⁻) 15748.1 (12 ⁺) 3156 12599 (10 ⁺) (Q) 16579.7 (13 ⁺) 3044 13535.5 (11 ⁺) (Q) 18216 (14 ⁺) 3466 (14 ⁺) 3462 (12 ⁺) (Q) 18217 (14 ⁺) 3462 (12 ⁺) (10 ⁺) (Q) 18218 (14 ⁺) 3466 (14 ⁺) 3462 (12 ⁺) (Q) 18219 (14 ⁺) 3462 (12 ⁺) (Q) 18219 (14 ⁺) 3462 (12 ⁺) (Q) 18219 (14 ⁺) 3452 (12 ⁺) (Q) 18219 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q) 18719 (14 ⁺) 3452 (12 ⁺) (Q)				3352.62			
13115.1 (12 ⁺) 1429 11685.8 (10 ⁺) (Q) 13194	10110						
13194	13115.1	(12^{+})				(O)	
13194		,					
13195	13194			3352.62			
13195 (10 ⁻) 2300 10895 (9 ⁻) 13203 13201 0.0 0 ⁺ 13289 9935 3352.62 0 ⁺ 13287 0.0 0 ⁺ 13287 0.0 0 ⁺ 13535.5 (11 ⁺) 1827 11708.7 (9 ⁺) (Q) 13822 13819 0.0 0 ⁺ 13913 10559 3352.62 0 ⁺ 13910 0.0 0 ⁺ 13993 10639 3352.62 0 ⁺ 13990 0.0 0 ⁺ 14232.4 (12 ⁺) 2547 11685.8 (10 ⁺) (Q) 15152.4 (13 ⁺) 1617 13555.5 (11 ⁺) (Q) 2037 13115.1 (12 ⁺) (D) 15267.1 (12 ⁺) 2932 12334.9 (10 ⁺) (Q) 15267.1 (12 ⁺) 2932 12334.9 (10 ⁺) (Q) 16529.4 (14 ⁺) 2297 14232.4 (12 ⁺) (Q) 16529.4 (14 ⁺) 2297 14232.4 (12 ⁺) (Q) 1679.7 (13 ⁺) 3044 13535.5 (11 ⁺) (Q) 1679.8 (14 ⁺) 3822 14232.4 (12 ⁺) (Q) 18054.6 (14 ⁺) 3822 14232.4 (12 ⁺) (Q) 182157 (15 ⁻) 2909& 15306 (13 ⁻) 2308 18650 1 18256 0.0 0 ⁺ D					0_{+}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13195	(10^{-})		10895	(9^{-})		
13289 9935 3352.62 0 ⁺ 13535.5 (11 ⁺) 1827 11708.7 (9 ⁺) (Q) 13822 13819 0.0 0 ⁺ 13913 10559 3352.62 0 ⁺ 13993 10639 3352.62 0 ⁺ 13990 0.0 0 ⁺ 14232.4 (12 ⁺) 2547 11685.8 (10 ⁺) (Q) 3229 11003.0 (10 ⁺) (Q) 15152.4 (13 ⁺) 1617 13535.5 (11 ⁺) (Q) 15267.1 (12 ⁺) 2932 12334.9 (10 ⁺) (Q) 15306 (137) 2383 12923 (117) 15748.1 (12 ⁺) 3156 12591.9 (10 ⁺) (Q) 16529.4 (14 ⁺) 2297 14232.4 (12 ⁺) (Q) 3414 13115.1 (12 ⁺) (Q) 3414 13115.1 (12 ⁺) (Q) 17698.6 (14 ⁺) 3466 14232.4 (12 ⁺) (Q) 18054.6 (14 ⁺) 3466 14232.4 (12 ⁺) (Q) 18215? (15 ⁻) 2909.	13203			0.0	0^{+}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9935	3352.62	0^{+}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(11^{+})				(Q)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13822			0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13913						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13993			3352.62	0^{+}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.5				(0)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14232.4	(12^{+})					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15150 4	(10±)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15152.4	(13^{+})					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15267 1	(12±)		13113.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						(Q)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				12923		(0)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10329.4	(17)				(Q) (O)	
17698.6 (14^{+}) 3466 14232.4 (12^{+}) (Q) 18054.6 (14^{+}) 3822 14232.4 (12^{+}) (Q) 18215? (15^{-}) 2909. 15306 (13^{-}) 18260 1 18256 0.0 0+ D Mult.: from $\gamma(\theta)$ in (p,γ) . 18497.2 (14^{+}) 3230 15267.1 (12^{+}) (Q) 18680 1 18675 0.0 0+ D 18719.2 (14^{+}) 3452 15267.1 (12^{+}) (Q)	16579 7	(13^{+})					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
18215? (15 ⁻) 2909 $^{\&}$ 15306 (13 ⁻) 18260 1 18256 0.0 0 ⁺ D Mult.: from $\gamma(\theta)$ in (p, γ). 18497.2 (14 ⁺) 3230 15267.1 (12 ⁺) (Q) 18680 1 18675 0.0 0 ⁺ D 18719.2 (14 ⁺) 3452 15267.1 (12 ⁺) (Q)	18054.6						
18260 1 18256 0.0 0 ⁺ D Mult.: from $\gamma(\theta)$ in (p,γ) . 18497.2 (14^+) 3230 15267.1 (12^+) (Q) 18680 1 18675 0.0 0 ⁺ D 18719.2 (14^+) 3452 15267.1 (12^+) (Q)						``	
18497.2 (14 ⁺) 3230 15267.1 (12 ⁺) (Q) 18680 1 18675 0.0 0 ⁺ D 18719.2 (14 ⁺) 3452 15267.1 (12 ⁺) (Q)						D	Mult: from $\gamma(\theta)$ in (\mathbf{p}, γ) .
18680 1 18675 0.0 0 ⁺ D 18719.2 (14 ⁺) 3452 15267.1 (12 ⁺) (Q)							100 100 100 100 m (P)110
$18719.2 (14^{+}) 3452 15267.1 (12^{+}) (Q)$	18680			0.0	0+		
19195.6 (15 ⁺) 4043 15152.4 (13 ⁺) (Q)							
19450 1 19445 0.0 0 ⁺ D							
19850 1 19845 0.0 0 ⁺ D				0.0			

γ (40Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	E_i (level)	J_i^π	E_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#
20130		20125	$0.0 \ 0^{+}$		21490		21484	$0.0 \ 0^{+}$	
20430	1	20424	$0.0 \ 0^{+}$	D	21690		21684	$0.0 0^{+}$	
20578.6	(16^{+})	4049	16529.4 (14 ⁺)	(Q)	22060		22053	$0.0 0^{+}$	
20650	1	20644	$0.0 0^{+}$	D	22060.4	(16^{+})	3563	18497.2 (14 ⁺)	(Q)
20940	1	20934	$0.0 0^{+}$	D					

[†] Values with uncertainties are averaged values from different γ -ray studies. A large number of values without uncertainties are from 39 K(p, γ), which are from level-energy differences since most γ -ray energies are not available. In 39 K(p, γ), many γ rays are shown with upper limits on intensities, these are not given here. See 39 K(p, γ) for details.

4

[‡] Averaged values from different γ -ray studies if available, but most values are available only from 39 K(p, γ). ‡ From $\gamma(\theta)$ in (HI,xn γ) and (p,p' γ), unless otherwise noted.

[@] Poor fit. Level-energy difference=1669.2.

[&]amp; Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain) 9135.66 9091.70 9033 9031.9 8424.81 <17 fs 7872.18 2.44 fs +24-20 3⁻ (2⁻,3,4⁺) 7694.08 <6 fs 0.111 ps 28 7623.11 $\frac{2^{-}}{2^{+}}$ $\frac{2^{+}}{(2,3)^{+}}$ $\frac{(3^{-},4,5^{-})}{(3^{-},4,5^{-})}$ 7532.26 0.16 ps 4 7466.35 8 fs 4 7277.82 7239.07 49 fs *35* 0.10 ps *5* 7113.73 50 fs 21 6950.48 1.01 fs 5 6750.41 96 fs 28 6582.47 0.173 fs 28 6285.15 0.33 ps 4 0.40 ps 8 6029.71 6025.47 171 fs 21 15.8 fs 22 5902.63 5613.52 0.69 ps 11 5278.80 5248.79 0.21 ps 4 83 fs +11-9 4491.43 289 ps 8 3904.38 35 fs 7 3736.69 41 ps 4 0^{+} 0.0 stable

 $^{40}_{20}{\rm Ca}_{20}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen[#] and Balraj Singh NDS 135, 1 (2016) 31-May-2016

 $Q(\beta^-) = -6426.10 \ 10$; $S(n) = 11480.67 \ 6$; $S(p) = 10276.67 \ 15$; $Q(\alpha) = -6257.34 \ 25$ 2012Wa38 $S(2n) = 19843.49 \ 15$, $S(2p) = 18085.29 \ 15$ (2012Wa38).

Identification of stable ⁴²Ca by F.W. Aston, Nature 133, 684 (1934) through mass spectrographic studies.

⁴²Ca(n,n): 1989Ra06: E=thermal. Measured Bragg diffraction patterns, deduced scattering lengths.

 42 Ca(3 He, 3 He): 1971Ra35: E=13.0 MeV; 1973Mo13: E=28 MeV. Measured $\sigma(\theta)$.

⁴²Ca(⁴⁸Ti, ⁴⁸Ti): 1990Vo07, 1988Br02: E=240-725 MeV. Measured $\sigma(\theta)$, DWBA analysis.

Hyperfine structure and isotope-shift measurements: 2000Mu17, 2015Go24.

Some recent theoretical structure references (levels, B(E2), etc.): 2016Wo02 (shape coexistence), 2012Ca13, 2012Ca27, 2012Ha26.

._____

```
Population of levels in decays/reactions labeled with XREF=Y
```

```
^{42}K
       \beta^{-}
                 (12.355 h): 0, 1525, 1837, 2424, 2752, 3447
       \varepsilon decay (680.79 ms): 0, 1525, 1837
         \varepsilon decay (61.7 s): 0, 1525, 2424, 2752, 3189
^{38}Ar(^{6}Li,d):
                       0, 1525, 1837, 2424, 2752, 3300, 3654, 4443, 4448, 5866, 6016+6020, 6313+6390, 6516,
6716+6720
^{40}Ar(^{3}He,n):
                       0, 1525, 1837, 2424, 3300(?), 3392, 3654, 9270,
                                                                                        10205. 14700
^{40}Ca(t,p\gamma):
                   0, 1520, 2420, 3890, 5850, 6020, 6520, 6700, 6820
^{40}Ca(\alpha, ^{2}He):
                        0, 1530, 2750, 3190, 3660, 4830, 5380, 7280, 8810, 9080, 9330, 9600, 9870, 10160
<sup>40</sup>Ca(<sup>14</sup>C, <sup>12</sup>C), (<sup>12</sup>C, <sup>10</sup>C),:
                                                 0, 1700, 2800, 3500, 4800
<sup>40</sup>Ca(<sup>96</sup>Zr, <sup>94</sup>Zr):
                               0. 5866
^{41}Ca(n,\gamma)
                 E=thermal: 0, 1524.7, 2424.2, 2752.4, 3253.9, 3446.9,
                                                                                        3954.4, 3999.7, 4690.1, 4759.7, 5017.1,
11480.7
^{42}Ca(\gamma,\gamma):
                   0, 1525
^{42}Ca(\pi^+,\pi^{+'}), (\pi^-,\pi^{-'}):
                                    0, 1520, 2420, 3440, 4104, 4680, 6300
<sup>42</sup>Ca(d,d'): 0, 1524, 1835, 2423, 2749, 3445
^{42}Ca(^{16}0,^{16}0'):
                             0, 1525, 1837, 2424, 2752, 3254, 3447, 4100, 4449, 4690, 4971
Coulomb excitation: 0, 1525
^{45}Sc(p,\alpha),(pol
                       p,\alpha): 0, 1525, 1837, 2424, 2752, 3190, 3254, 3954,
4100, 4117
^{46}Ti(d,^{6}Li):
                       0, 1525, 1837
^{96}Zr(^{40}Ca,^{42}Ca\gamma):
                                 0, 1525, 1837, 2424, 2752, 3189, 3254,
3447, 3654, 3954, 4443, 4760, 5017, 5866
```

⁴²Ca Levels

Cross Reference (XREF) Flags

Α	24 Mg(24 Mg, α 2p γ)	P	41 Ca(d,p),(pol d,p)	AD	40 Ca(t,p γ)
В	27 Al(18 O,2np γ)	Q	42 Ca(e,e')	ΑE	40 Ca(α , 2 He)
C	27 Al(19 F, $\alpha\gamma$)	R	42 Ca(p,p' γ)	AF	40 Ca(14 C, 12 C),(12 C, 10 C),
D	28 Si(16 O,2p γ)	S	42 Ca(p,p')	AG	40 Ca(96 Zr, 94 Zr)
E	30 Si(18 O, α 2n γ)	T	42 Ca (α,α')	AH	41 Ca(n, γ) E=thermal
F	38 Ar(α,γ):resonances	U	⁴³ Ca(p,d)	ΑI	42 Ca (γ,γ)
G	39 K(α ,p)	V	43 Ca(d,t)	AJ	42 Ca($\pi^+,\pi^{+\prime}$),($\pi^-,\pi^{-\prime}$)
H	39 K(α ,p γ)	W	43 Ca(3 He, α)	AK	42 Ca(d,d')
I	40 Ca(t,p)	X	⁴⁴ Ca(p,t)	AL	⁴² Ca(¹⁶ O, ¹⁶ O')
J	41 K(p, γ)	Y	42 K β^{-} decay (12.355 h)	AM	Coulomb excitation
K	41 K(p,n),(p,p):resonances	Z	⁴² Sc ε decay (680.79 ms)	AN	45 Sc(p, α),(pol p, α)
L	41 K(p, α):resonances	Other		AO	⁴⁶ Ti(d, ⁶ Li)
M	41 K(3 He,d γ)	AA	⁴² Sc ε decay (61.7 s)	AP	96 Zr(40 Ca, 42 Ca γ)
N	$^{41}\text{K}(^{3}\text{He,d})$	AB	38 Ar(6 Li,d)		•
0	41 Ca(n α) resonances	AC	40 Ar(3 He.n)		

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XREF	Comments
0.0 ^b	0+	stable	ABC E GHIJ	MN PQRSTUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL, AM, AN, AO, AP
					The rms charge radius $(\langle r^2 \rangle)^{1/2}$: 3.5081 fm 21 (2013An02 evaluation).
					J ^π : L(t,p)=L(p,t)=0 from 0 ⁺ . Adopted (1977En02) neutron-stripping spectroscopic factor=1.6 2 (L=3).
					Adopted (1977En02) neutron-pickup spectroscopic factor=0.58 <i>6</i> (L=3).
L					Adopted (1977En02) proton-stripping spectroscopic factor=3.2 4 (L=2).
1524.71 ^b 3	2+	0.83 ps <i>3</i>	ABCDE GHIJ	N PQRSTUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AH, AI, AJ, AK, AL, AM, AN, AO, AP
					μ=+0.08 12 (2003Sc21,2014StZZ) Q=-0.19 8 (1973To07,2014StZZ,2013StZZ)
					J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ .
					$T_{1/2}$: weighted average of 0.62 ps 21 $(\alpha, p\gamma)$, 0.97 ps 22 (γ, γ) , 1.11 ps 21 $(p, p'\gamma)$ and 0.825 ps 28 (coulomb excitation).
					μ: from transient field integral perturbed angular correlation (2003Sc21).
					Q: reorientation method (1973To07).
					Adopted (1977En02) neutron-stripping spectroscopic factor=0.04 2 (L=1), 0.48 12 (L=3).
					Adopted (1977En02) neutron-pickup spectroscopic factor=0.18 <i>3</i> (L=3), small (L=1).
					Adopted (1977En02) proton-stripping spectroscopic factor=0.04 <i>3</i> (L=2).
1837.31 ^c 18	0+	387 ps 6	E GHIJ	N PQRSTUVWXYZ	XREF: Others: AB, AC, AF, AK, AL, AN, AO, AP J^{π} : $L(t,p)=L(p,t)=0$ from 0^{+} .
					$T_{1/2}$: from (p,p' γ). Adopted (1977En02) neutron-stripping spectroscopic
					factor=0.18 5 (L=3).
					Adopted (1977En02) neutron-pickup spectroscopic factor=0.05 2 (L=3).
					Adopted (1977En02) proton-stripping spectroscopic factor=0.3 2 (L=2).
2424.15 ^c 4	2+	140 fs <i>40</i>	B E GH J	MN PQRSTUVWXY	XREF: Others: AA, AB, AC, AD, AF, AH, AJ, AK, AL, AN, AP
					J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ .
					$T_{1/2}$: weighted average of 114 fs 30 (α ,p γ) and 210 fs 50 (p,p $'\gamma$). Adopted (1977En02) neutron-stripping spectroscopic
					factor=0.56 14 (L=3), small (L=1).
					Adopted (1977En02) neutron-pickup spectroscopic factor=0.16 7 (L=3), (0.0) (L=1).
					Adopted (1977En02) proton-stripping spectroscopic factor=0.05 <i>5</i> (L=2).
2752.40 ^b 4	4+	2.8 ps 4	ABCDE GHIJ	M PQRSTUVWXY	XREF: Others: AA, AB, AE, AF, AH, AK, AL, AN, AP J^{π} : $L(t,p)=L(p,t)=4$ from 0^{+} .
					$T_{1/2}$: weighted average of 3.5 ps 3 (18 O,2np γ), 2.63 ps 28 (16 O,2p γ) and 1.6 ps 7 (α ,p γ).
					Adopted (1977En02) neutron-stripping spectroscopic factor= $0.03 I (L=1)$, $0.86 22 (L=3)$.
					Adopted (1977En02) neutron-pickup spectroscopic
					factor=0.59 10 (L=3), 0.01 (L=1).

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF		Comments
3189.26 ^b 10	6+	5.28 ns <i>15</i>	ABCDE GHIJ	M PRTUVW	XREF: Others: AA, AE, AN, AP μ =-2.49 9 (1975Yo02,2014StZZ) J ^{π} : L(α , He)=L(α , α')=6 from 0 ⁺ . T _{1/2} : weighted average of 5.30 ns 16 (α ,p γ) and 5.27 ns 14 (α , α'). μ : DPAD (1975Yo02). Adopted (1977En02) neutron-stripping spectroscopic factor=1.2 3 (L=3). Adopted (1977En02) neutron-pickup spectroscopic
3253.89 ^c 5	4+	123 fs 2 <i>I</i>	B E gHIJ	PRTVX	factor=0.99 18 (L=3) (L=3), 0.01 (L=1). XREF: Others: AH, AL, AN, AP J^{π} : $L(\alpha,\alpha')$ = $L(p,t)$ =4 from 0^+ . $T_{1/2}$: weighted average of 118 fs $2I$ (α ,p γ) and 210 fs $+100$ - 70 (p,p $'\gamma$). Adopted (1977En02) neutron-stripping spectroscopic factor=0.22 6 (L=3), small (L=1). Adopted (1977En02) neutron-pickup spectroscopic factor=0.08 2 (L=3), 0.00 (L=1).
3300.0 4	0_{+}	>0.9 ps	gHIJ	N RST V X	XREF: Others: AB, AC, AF
3392.01 24	2+	135 fs 40	НІЭ	P RST V X	 J^π: L(⁶Li,d)=L(p,t)=0 from 0⁺. XREF: Others: AC J^π: L(t,p)=L(α,α')=2 from 0⁺. T_{1/2}: weighted average of 118 fs 2<i>I</i> in (α,pγ) and 230 fs 50 in (p,p'γ). Adopted (1977En02) neutron-stripping spectroscopic factor=0.01 <i>I</i> (L=1), 0.01 <i>I</i> (L=3). Adopted (1977En02) neutron-pickup spectroscopic
3446.94 ^d 5	3-	0.27 ps <i>9</i>	B E GHIJ	MN PQRSTUVWXY	factor=0.01 (L=3), 0.01 I (L=1). XREF: Others: AF, AH, AJ, AK, AL, AP B(E3) \uparrow =0.0110 $I8$ (1971He08,1989It02) B(E3) from (e,e'). J**: L(t,p)=L(p,t)=3 from 0+. T _{1/2} : weighted average of 0.23 ps 7 (α ,p γ) and 0.45 ps $I4$ (p,p' γ). Adopted (1977En02) neutron-stripping spectroscopic factor=small (L=0 and L=2). Adopted (1977En02) neutron-pickup spectroscopic factor=0.26 $I7$ (L=0), 0.12 I (L=2). Adopted (1977En02) proton-stripping spectroscopic
3654.0 <i>3</i>	2+	49 fs <i>35</i>	GHIJ	P RSTUVWX	factor=0.28 4 (L=1+3). XREF: Others: AB, AC, AE, AP J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ .
3780 <i>10</i> 3885.0 <i>4</i>	(2 ⁺ ,3 ⁻) 1 ⁻		ніј	S N P RST V	$T_{1/2}$: from $(\alpha, p\gamma)$. Other: 40 fs +60-40 from $(p, p'\gamma)$. J^{π} : $L(p, p')=2$ or 3. XREF: Others: AD J^{π} : $\Delta J=1 \gamma$ to 0^+ and $L(\alpha, \alpha')=3$, $L(^3He,d)=1(+3)$.
3954.39 ^d 6	4-	3.36 ps <i>21</i>	B E GHI	MN P RS V	XREF: Others: AH, AN, AP J^{π} : $\gamma(\theta, \text{lin pol})$ in $(^{18}\text{O}, \alpha 2 \text{n} \gamma)$ and $(\alpha, \text{p} \gamma)$; $L(^{3}\text{He}, \text{d}) = 3$; $L(^{3}\text{He}, \alpha) = 0 (+2)$; $\sigma(\theta)$ and $Ay(\theta)$ in (pol p, α).
3999.66 9	4+		E HIJ	P RS	$T_{1/2}$: from $(\alpha,p\gamma)$. XREF: Others: AH J^{π} : $\gamma(\theta, \text{lin pol})$ in $(^{18}\text{O}, \alpha 2\text{n}\gamma)$ and gammas to 2^+ and 4^+ .
4047.0 <i>4</i>	3-	0.17 ps 5	GHIJ	N P RST V	and 4°. J^{π} : $L(^{3}\text{He,d})=1+3$ from $3/2^{+}$, $L(^{3}\text{He},\alpha)=0+2$; γ to 2^{+} .

T ₁ /2: from (α,py).	E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	<u> </u>	XREF	Comments
Fig. L(p,t)=L(p,p')=L(a,a')=5 from 0°; arc# and Ay(®) in (pp loa; also y(e)lin pol). Tight from 0°; arc# and Ay(®) in (pp loa; also y(e)lin pol). Tight from 0°; arc# and Ay(®) in (pp loa; also y(e)lin pol). Tight from 0°; arc# and Ay(®) in (pp loa; also y(e)lin pol). Tight from 0°; also L(a,b)=20. Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Adopted (1971; arc# along the policy of factor=0.46 9 (1=3). Additional information 1. 418.0	4099.65 ^d 11	5-		ABCDE GHIJ	MN pQRSTUVwX	· –
Tight from (α.py) Adopted (197Fin02) neutron-stripping spectroscopic factor=small (L=2).			1		• •	J^{π} : $L(p,t)=L(p,p')=L(\alpha,\alpha')=5$ from 0^+ ; $\sigma(\theta)$ and
Adopted (1977En02) neutron-stripping spectroscopic factors—small (1,=2). Adopted (1977En02) neutron-pickup spectroscopic factors—ods 3 /3 (1,=2). Adopted (1977En02) neutron-pickup spectroscopic factors—ods 9 /1.—3). Adopted (1977En02) proton-stripping spectroscopic factors—ods 9 /1.—3). Adopted (1977En02) proton-stripping spectroscopic factors—ods 9 /1.—3). Additional information 1. P; γ(θ, lin pol) in (pp'γ); σ(θ) and Ay(θ) in (ppl pol) in (pp'γ); σ(θ) and Ay(θ) in						
Adopted (1977En(2)) neutron-pickup spectroscopic factor=0.43 /3 (1.2-2). 4117.1 3 3 -						
Adopted (1977EnO2) proton-stripping spectroscopic factor=0.45 9 (L=2). Adopted (1977EnO2) proton-stripping spectroscopic factor=0.46 9 (L=3). XREF: Cothers: AR F: y(θ, lin pol) in (p, p'y); σ(θ) and Ay(θ) in (pol p.α). Adopted (1977EnO2) proton-stripping spectroscopic factor=0.46 9 (L=3). XREF: Cothers: AR F: y(θ, lin pol) in (p, p'y); σ(θ) and Ay(θ) in (pol p.α). Additional information 1. F: y(θ, lin pol) in (p, p'y); σ(θ) and Ay(θ) in (pol p.α). Additional information 1. F: y(θ, lin pol) in (α, py); (L(d, t)=2. T/1/2; from (α, py). Additional information 2. Additional information 2. Additional information 2. T/1/2; from (α, py). Additional information 1. F: y(θ, lin pol) in (α, py); (L(d, t)=2. T/1/2; from (α, py). Additional information 1. F: y(θ, lin pol) in (α, py); (L(d, t)=2. T/1/2; from (α, py). Additional information 1. F: y(θ, lin pol) in (α, py); (L(d, t)=2. T/1/2; from (α, py). Additional information 1. F: y(θ, lin pol) in (α, py); (L(d, t)=2. T/1/2; from (α, py). Additional information 1. F: y(θ, lin pol) in (α, py); (L(d, t)=2. T/1/2; from (α, py). Additional information 1. F: y(θ, lin pol) in (α, py); (L(d, t)=2. T/1/2; from (α, py). Additional information 1. F: y(θ, lin pol) in (α, py); (L(d, t)=2. T/1/2; from (α, py). Additional information 1. Find poly in (α, py); (L(d, t)=2. T/1/2; from (α, py). T/1/2;						
Adopted (1977En02) proton-stripping spectroscopic factor=0.46 9 (Leg -0.46 9 (Le						
A						
417.1 3 3 -						
180 2	4117.1 3	3-		н Ј	N p R w	
448.0 2 0					-	J^{π} : $\gamma(\theta, \text{lin pol})$ in $(p, p'\gamma)$; $\sigma(\theta)$ and $Ay(\theta)$ in
4342.3 6 (0 ⁺ to 4 ⁺)		_				
4342.3 6 (0° to 4°)						
Additional information 2. Additional information 2. J ^T : γ(θ,lin pol) in (α,pγ); L(d,t)=2. T _{1/2} : from (α,pγ). L(d,t)=2. T _{1/2} : from (α,pγ). L(d,t)=2. T _{1/2} : from (α,pγ). L(d,t)=2. L(d,t)=4. L(d,						
4354.0 5 4- 0.47 ps 7	4342.3 0	(0 104)		g 13	IS W	
4418.0 4 3 GH J MN P UVWX 4443.0 6 4 H QRST V XREF: Others: AB, AL, AP XREF: Others: AB, AP XREF: Others: AB, AB, AB, AP XREF: Others: AB,	4354.0 5	4-	0.47 ps 7	aHi	P rs Vw	
L(3He,d)=1+3 from 3/2+, XREF: Others: AB, AL, AP XREF: S(4470), J*: L(p,p*)=L(α,α*)=4 from 0+, XREF: S(4470), J*: L(p,p*)=L(α,α*)=L(\alpha,\alpha*)				3		
4443.0 6 4+ H QRST v XREF: Others: AB, AL, AP 4448.8 4 2+ HIJ p R v XREF: Others: AB, AL 4505.0 5 (2,3,4)+ HI p S JF: L(t,p)=2 from 0+; gammas to 0+ and 3 4566.9 5 (1,2+) HIJ p S JF: gammas to 0+ and 2+. 4666 10 (3,4)- i p XREF: Others: AF JF: L(d,p)=1+3 from 7/2- this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3- GHi N PQ TuVwX XREF: Others: AF JF: L(t,p)=L(p,t)=3 from 0+. 4717.53c 14 6+ 83 fs 32 A E Hi n XREF: Others: AF, AH, AH, AJ, AL JF: L(t,p)=L(p,t)=3 from 0+ XREF: Others: AF JF: L(t,p)=L(p,t)=3 from 0+. 4717.6 4 3- i n P S XREF: Others: AF 4759.71 16 2+ HIJ P T X XREF: Others: AF 4860.0 6 2+ HIJ P S T X XREF: Others: AE, AF 4897.0d 3 5- 47 fs 21 E GHi uvwX XREF: Others: AF 4904.0 5 3- HIJ N P Tuvw XREF: Others: AF J	4418.0 <i>4</i>	3-		GH J	MN P UVWX	
XREF: S(4470).						
3	4443.0 6	4+		Н	QRST v	
4448.8 4 2* 4505.0 5 (2,3,4)* HI P S J ^π : L(d,p)=2 from 0 ⁺ ; gammas to 0 ⁺ and 3 ⁻ . 4566.9 5 (1,2 ⁺) HIJ P S J ^π : L(d,p)=1+3 from 7/2 ⁻ ; and gammas to 2 ⁺ and 4 ⁺ . 4666 10 (3,4) ⁻ i P XREF: Others: AF J ^π : L(d,p)=0+2 from 7/2 ⁻ this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3 ⁻ GHi N PQ TuVwX XREF: Others: AF, AH, AJ, AL J ^π : L(t,p)=L(p,t)=3 from 0 ⁺ . 4717.53 ^c 14 6 ⁺ 83 fs 32 A E Hi n XREF: Others: AF J ^π : νγ(θ)(DCO) and γ(lin pol) in (18 O,α2nγ). 4717.6 4 3 ⁻ i n P S XREF: Others: AF J ^π : L(p,p)=0+2 from 7/2 ⁻ . 4759.71 16 2 ⁺ HIJ P T X XREF: Others: AF, AH, AP J ^π : L(t,p)=0+2 from 0 ⁺ . 4866.0 6 2 ⁺ HIJ P ST X XREF: Others: AF, AH, AP J ^π : L(t,p)=1 from 0 ⁺ . 4870.0 ^d 3 5 ⁻ 47 fs 21 E GHi uvwX XREF: Others: AF, AF J ^π : γ(θ,lin pol). 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : γ(θ,lin pol). 4712: from (α,ργ). 488F: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4897.0 ^d 3 5 ⁻ 47 fs 21 E GHi uvwX XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4897.0 ^d 3 5 ⁻ 47 fs 21 E GHi uvwX XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ . 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J ^π : L(t,p)=2 from 0 ⁺ .						XREF: $S(44/0)$. In (1, p') = I (\alpha \alpha') = 4 from 0+
Jπ : L(t,p) = 2 from 0*; gammas to 0* and 3".	4448.8 <i>4</i>	2+		нтэ	n R v	
4505.0 5 (2,3,4) ⁺ HI P S J^{π} : L(d,p)=1+3 from 7/2 ⁻ ; and gammas to 2 ⁺ and 4 ⁺ . 4566.9 5 (1,2 ⁺) HIJ P S J^{π} : gammas to 0 ⁺ and 2 ⁺ . 4666 10 (3,4) ⁻ i P XREF: Others: AF J^{π} : L(d,p)=0+2 from 7/2 ⁻ this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3 ⁻ GHi N PQ TuVwX XREF: Others: AF, AH, AJ, AL J^{π} : L(t,p)=1 from 0 ⁺ . 4717.53 ^c 14 6 ⁺ 83 fs 32 A E Hi N XREF: Others: AF J^{π} : J^{π}					P	J^{π} : L(t,p)=2 from 0 ⁺ ; gammas to 0 ⁺ and 3 ⁻ .
4566.9 5 (1,2*) 4666 10 (3,4) 467 (3,4) 468 10 (3,4) 4690.06 10 3 4690.06 10 3 4690.06 10 3 4717.53° 14 6 483 fs 32 48 E Hi n 4717.6 4 3 4717.6 4 3 4717.6 4 3 4717.6 4 3 4717.6 4 3 4717.6 5 4717.6 4 3 4717.6 5 4717.6 6 4717.6 6 4717.6 6 4717.6 7 4717.6 8 4717.6 8 4717.6 9 4717.6 9 4717.6 0 4717.	4505.0 5	$(2,3,4)^+$		HI	P S	J^{π} : L(d,p)=1+3 from 7/2 ⁻ ; and gammas to 2 ⁺ and
4666 10 (3,4) i P XRĒF: Others: AF J^{2} : $L(d,p)=0+2$ from $7/2^{-}$ this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3 GHi N PQ TuVwX XREF: Others: AF, AH, AJ, AL J^{2} : $L(t,p)=L(p,t)=3$ from 0 . 4717.53 14 6 83 fs 32 A E Hi N XREF: Others: AF J^{2} : $L(t,p)=L(p,t)=3$ from 0 . 4717.6 4 3 i N P S XREF: Others: AF J^{2} : $L(p,p')=3$ from 0 . 4717.6 4 3 J^{2} HIJ P T X XREF: Others: AF J^{2} : $L(p,p')=3$ from 0 . 4717.6 2 HIJ P ST X XREF: Others: AF, AH, AP J^{2} : $L(t,p)=L(p,t)=2$ from 0 . 4866.0 6 2 J^{2} HIJ P ST X XREF: Others: AE, AF J^{2} : $L(t,p)=L(p,t)=2$ from 0 . 4897.0 J^{2} S J^{2} HIJ N P Tuvw XREF: Others: AF J^{2} : J	15660 5	(1.2+)			D. C	
J^{π} : L(d,p)=0+2 from 7/2 ⁻ this level was not adopted by 1990En08 since the (d,p) cross section is small. 4690.06 10 3 ⁻ GHi N PQ TuVwX XREF: Others: AF, AH, AJ, AL J^{π} : L(t,p)=L(p,t)=3 from 0 ⁺ . 4717.53 ^c 14 6 ⁺ 83 fs 32 A E Hi n XREF: Others: AF J^{π} : γγ(θ)(DCO) and γ(lin pol) in (I^{8} O,α2nγ). 4717.6 4 3 ⁻ 4717.6 2 ⁺ 4759.71 16 2 ⁺ 4866.0 6 2 ⁺ HIJ P T X XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(p,t)=3 from 0 ⁺ ; L(d,p)=0+2 from 7/2 ⁻ . 4866.0 6 2 ⁺ HIJ P ST X XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ . 4897.0d 3 5 ⁻ 47 fs 21 E GHi uvwX XREF: Others: AF J^{π} : γ(θ,lin pol). 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J^{π} : γ(θ,lin pol). 4904.0 5 3 ⁻ HiJ N P Tuvw XREF: Others: AF J^{π} : L(α,α')=3. This requires E3 to g.s. is unlikely. In that case another level of J^{π} =2 ⁺ is required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4000 10	(3,4)		1	1	
4690.06 10 3 ⁻						
4717.53 ^C 14 6 ⁺ 83 fs 32 A E Hi n XREF: Others: AF J^{π} : L(t,p)=L(p,t)=3 from 0 ⁺ . XREF: Others: AF J^{π} : $\chi \gamma (\theta) (DCO)$ and $\chi (lin pol)$ in ($^{18}O, \alpha 2n \gamma)$. $T_{1/2}$: from $(\alpha, p \gamma)$. XREF: Others: AF J^{π} : L(p,p')=3 from 0 ⁺ ; L(d,p)=0+2 from 7/2 ⁻ . XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ . XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ . XREF: Others: AF, AH, AP J^{π} : L(t,p)=L(α,α')=L(p,p')=2; but L(α,2^{^{2}}He)=4. XREF: Others: AF J^{π} : $\chi (\theta, lin pol)$. $\chi (\theta, lin$						
4717.53 ^C 14 6 ⁺ 83 fs 32 A E Hi n XREF: Others: AF J^{π} : $\gamma\gamma(\theta)(DCO)$ and $\gamma(lin pol)$ in $(^{18}O,\alpha2n\gamma)$. $T_{1/2}$: from $(\alpha,p\gamma)$. XREF: Others: AF J^{π} : $(l,p)^{+}$ 3 from 0^{+} ; $(l,p)^{+}$ 3 from 0^{+} ; $(l,p)^{+}$ 3 from 0^{+} ; $(l,p)^{+}$ 4759.71 16 2 ⁺ HIJ P T X XREF: Others: AF, AH, AP J^{π} : $(l,p)^{+}$ 2 from 0^{+} . XREF: Others: AF, AH, AP J^{π} : $(l,p)^{+}$ 2 from 0^{+} . 4866.0 6 2 ⁺ HIJ P ST X XREF: Others: AE, AF J^{π} : $(l,p)^{+}$ 2 from 0^{+} . 47 fs 21 E GHi uvwX XREF: Others: AF J^{π} : $(l,p)^{+}$ 2 from $(l,p)^{+}$ 3 from $(l,p)^{+}$ 4904.0 5 3 from $(l,p)^{+}$ 3 from $(l,p)^{+}$ 3 from $(l,p)^{+}$ 4 from $(l,p)^{+}$ 4 from $(l,p)^{+}$ 4 from $(l,p)^{+}$ 4 from $(l,p)^{+}$ 5 from $(l,p)^{+}$ 5 from $(l,p)^{+}$ 5 from $(l,p)^{+}$ 6 from $(l,p)^{+}$ 7 from $(l,p)^{+}$ 8 from $(l,p)^{+}$ 9	4690.06 <i>10</i>	3-		GHi	N PQ TuVwX	
3 i n P S XREF: Others: AF J^{π} : $\chi \gamma (\theta)$ (DCO) and χ (lin pol) in (18 O, $\alpha 2$ n γ). $T_{1/2}$: from $(\alpha, p\gamma)$. XREF: Others: AF J^{π} : $L(p,p')=3$ from 0 $^+$; $L(d,p)=0+2$ from 7/2 $^-$. 4759.71 16 2 HIJ P ST X XREF: Others: AF, AH, AP J^{π} : $L(t,p)=L(p,t)=2$ from 0 $^+$. 4866.0 6 2 HIJ P ST X XREF: Others: AE, AF J^{π} : $L(t,p)=L(\alpha,\alpha')=L(p,p')=2$; but $L(\alpha,^2$ He)=4. 4897.0 3 5 47 fs 21 E GHi uvwX XREF: Others: AF J^{π} : $\chi(\theta, \text{lin pol})$.	1717 52 ^C 11	6+	92 fo 22	A E 11-		
4717.6 4 3 i n P S $XREF$: Others: AF J^{π} : $L(p,p')=3$ from 0^+ ; $L(d,p)=0+2$ from $7/2^-$. 4759.71 16 2 HIJ P T X $XREF$: Others: AF, AH, AP J^{π} : $L(t,p)=L(p,t)=2$ from 0^+ . 4866.0 6 2 HIJ P ST X $XREF$: Others: AE, AF J^{π} : $L(t,p)=L(p,p')=2$; but $L(\alpha, \alpha')=1$. 4897.0 3 5 47 fs 21 E GHi UVWX $XREF$: Others: AF J^{π} : $L(t,p)=L(\alpha,\alpha')=L(p,p')=2$; but $L(\alpha, \alpha')=1$. 4904.0 5 3 HiJ N P Tuvw $XREF$: Others: AF	4/17.33 14	O	03 18 32	А Е ПІ	п	
4717.6 4 3 - i n P S						
4759.71 16 2+ HIJ P T X XREF: Others: AF, AH, AP J^{π} : $L(t,p)=L(p,t)=2$ from 0+. 4866.0 6 2+ HIJ P ST X XREF: Others: AE, AF J^{π} : $L(t,p)=L(\alpha,\alpha')=L(p,p')=2$; but $L(\alpha,^2He)=4$. 4897.0 3 5- 47 fs 21 E GHi uvwX XREF: Others: AF J^{π} : $\gamma(\theta, \lim pol)$. 4904.0 5 3- HIJ N P Tuvw XREF: Others: AF J^{π} : $\gamma(\theta, \lim pol)$. $T_{1/2}$: from $(\alpha, p\gamma)$. XREF: Others: AF J^{π} : $\chi(\theta, \lim pol)$. $\chi(\theta, \lim pol)$. XREF: Others: AF $\chi(\theta, \lim pol)$.	4717.6 <i>4</i>	3-		i	n P S	
4866.0 6 2 ⁺ 487.0 ^d 3 5 ⁻ 47 fs 21 E GHi WWX WXEF: Others: AF, AF J ^π : L(t,p)=L(p,p')=2; but L(α,²He)=4. XREF: Others: AF J ^π : $\chi(\theta, \sin p 0)$. XREF: Others: AF J ^π : $\chi(\theta, \sin p 0)$. T _{1/2} : from (α,pγ). XREF: Others: AF J ^π : $\chi(\theta, \sin p 0)$. T _{1/2} : from (α,pγ). XREF: Others: AF J ^π : $\chi(\theta, \sin p 0)$. T _{1/2} : from (α,pγ). XREF: Others: AF J ^π : L(α,α')=3. This requires E3 to g.s. E(level): if T _{1/2} <50 fs then E3 50% to g.s. is unlikely. In that case another level of J ^π =2 ⁺ is required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						
4866.0 6 2^+ HIJ P ST X XREF: Others: AE, AF J^π : $L(t,p)=L(\alpha,\alpha')=L(p,p')=2$; but $L(\alpha,^2He)=4$. 4897.0 3 5 47 fs 21 E GHi uvwX XREF: Others: AF J^π : $\gamma(\theta, \text{lin pol})$. 4904.0 5 3 XREF: Others: AF $\gamma(\theta, \text{lin pol})$. 4904.0 5 $\gamma(\theta, \text{lin pol})$. 4904.0 5 $\gamma(\theta, \text{lin pol})$. 4904.0 6 $\gamma(\theta, \text{lin pol})$. 4904.0 7 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 4904.0 8 $\gamma(\theta, \text{lin pol})$. 4904.0 9 $\gamma(\theta, \text{lin pol})$. 500 $\gamma(\theta, \text{lin pol})$.	4759.71 <i>16</i>	2+		HIJ	P T X	XREF: Others: AF, AH, AP
4897.0 d 3 5 47 fs 21 E GHi uvwX XREF: Others: AF J^π : $\chi(\theta, \pi) = L(\rho, \rho') = 2$; but $L(\alpha, \pi') = 4$. 4897.0 d 3 5 47 fs 21 E GHi uvwX XREF: Others: AF J^π : $\chi(\theta, \pi) = 0$. 4904.0 5 3 XREF: Others: AF J^π : $\chi(\theta, \pi) = 0$. 4904.0 5 J^π : $L(\alpha, \alpha') = 3$. This requires E3 to g.s. E(level): if $T_{1/2} < 50$ fs then E3 50% to g.s. is unlikely. In that case another level of $J^\pi = 2^+$ is required. 4946.9 10 $(1,2,3)^-$ Hi N P XREF: Others: AF	1966 N 6	2+		шта	р ст v	
4897.0 d 3 5 47 fs 2 I E GHi uvwX XREF: Others: AF J^{π} : $\gamma(\theta, \text{lin pol})$. 4904.0 5 3 Hi J N P Tuvw XREF: Others: AF J^{π} : $\gamma(\theta, \text{lin pol})$. 4904.0 5 J^{π} :	4000.0 0	2		HIJ	F 31 A	· · · · · · · · · · · · · · · · · · ·
4904.0 5 3 Hi J N P Tuvw $\begin{array}{cccccccccccccccccccccccccccccccccccc$	4897 0 <mark>d</mark> 3	5-	47 fs 21	F CHi	шим	
4904.0 5 3 THIJ N P Tuvw $T_{1/2}$: from $(\alpha, p\gamma)$. XREF: Others: AF J ^{π} : $L(\alpha, \alpha') = 3$. This requires E3 to g.s. E(level): if $T_{1/2} < 50$ fs then E3 50% to g.s. is unlikely. In that case another level of $J^{\pi} = 2^+$ is required. 4946.9 10 $(1,2,3)^-$ Hi N P XREF: Others: AF	1077.0 5	3	17 13 21	L dill	avwn	
4904.0 5 3 Tuvw XREF: Others: AF J^{π} : $L(\alpha,\alpha')=3$. This requires E3 to g.s. E(level): if $T_{1/2}<50$ fs then E3 50% to g.s. is unlikely. In that case another level of $J^{\pi}=2^+$ is required. 4946.9 10 $(1,2,3)^-$ Hi N P XREF: Others: AF						
E(level): if $T_{1/2} < 50$ fs then E3 50% to g.s. is unlikely. In that case another level of $J^{\pi} = 2^{+}$ is required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF	4904.0 5	3-		HiJ	N P Tuvw	XREF: Others: AF
unlikely. In that case another level of $J^{\pi}=2^{+}$ is required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						
required. 4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						E(level): If $1_{1/2}$ <50 is then E3 50% to g.s. is
4946.9 10 (1,2,3) ⁻ Hi N P XREF: Others: AF						•
	4946.9 10	$(1,2,3)^{-}$		Hi	N P	
		•				

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡		KREF	Comments
4971.0 5	3-	· <u> </u>	GHiJ	N PQ ST X	XREF: Others: AF, AL
5017.14 <i>11</i>	4+		HI	P TVX	J^{π} : L(p,p')=L(p,t)=3 from 0^+ . XREF: Others: AF, AH, AP
					J^{π} : L(t,p)=L(p,t)=4 from 0 ⁺ .
5075.0 8	(1,2,3) ⁻ 3 ⁻		GHI	N P N T	J^{π} : L(³ He,d)=1(+3) from 3/2 ⁺ and γ to 3 ⁻ . J^{π} : L(α , α')=3 from 0 ⁺ .
5158.0 <i>7</i> 5188.0 <i>11</i>	$(2,3,4)^+$		GHI H	N T Vw	J^{π} : γ to J^{π} ; $L(d,t)=3$.
5210.3 7	(2 ⁺)		Hij	N p T Vwx	J^{π} : γ to 4^+ . $L(t,p)=L(\alpha,\alpha')=2$. It is assumed that the level at 5200 5 in (t,p) and 5205 5 in (α,α') is the same as 5210 2 in $(\alpha,p\gamma)$.
5212.98 <i>19</i>	6		E		J^{π} : from $\gamma(\theta,DCO)$ in $(^{18}O,\alpha 2n\gamma)$.
5214.1 6	(2 ⁺)		Нј	p wx	J ^π : gammas to 2 ⁺ and 4 ⁺ ; L(p,t)=2. It is assumed that the level at 5213 in (p,t) is the same as this level. See also comment for 5210 level. Additional information 3.
5320.0 5	$(3,4)^{-}$		GHI	N P RS UVw	XREF: Others: AK
					XREF: U(5340). J^{π} : L(d,p)=0(+2) and L(d,t)=0+2 from $7/2^{-}$.
5345.0 10	0+		Н	R wX	XREF: Others: AJ, AK XREF: X(5332).
525006	2+		117.1	n v	J^{π} : L(p,t)=0 and γ to 2^{+} .
5358.0 <i>6</i> 5380.0 <i>6</i>	2 ⁺ 5 ⁻		HIJ HI	P X TVX	J^{π} : γ to 0^+ and $L(d,p)=1$ from $7/2^-$. XREF: Others: AE
					J ^{π} : gammas to 4 ⁺ and 6 ⁺ ; L(d,t)=2 from 7/2 ⁻ . Inconsistent with L(α , ² He)=6.
5393.0 7	(3)-		GHi	NP tw	J^{π} : gammas to 2 ⁺ ; $L(^{3}He,d)=1(+3)$ from 3/2 ⁺ and $L(d,p)=(0+2)$.
5407 <i>4</i>	3-		i	N P t Vw	J^{π} : L(³ He,d)=1+3; L(d,p)=0.
5439.0 <i>10</i> 5466 <i>5</i>	$(3,4)^{-}$		Hi	P V	J^{π} : L(d,p)=L(d,t)=0 from 7/2 ⁻ . J^{π} : L(³ He,d)=3.
5472.0 6	$(1 \text{ to } 5)^-$ $(2,3,4)^+$		i Hi	N P V X	J^{π} : $L(He,d)=5$. J^{π} : γ to 2^{+} ; $L(d,p)=L(d,t)=1$ from $7/2^{-}$; $L(p,t)=(4)$ favors 4^{+} .
5490.77 ^d 13	6-	59 fs <i>14</i>	ABCDE GH	v x	J^{π} : from $\gamma(\theta, \text{lin pol,DCO})$.
5491.0 8	3-		Н	N Tvx	$T_{1/2}$: from $(\alpha,p\gamma)$. J^{π} : $L(\alpha,\alpha')=3$. But inconsistent with $L(d,t)=3(+1)$ for a level at 5488 5.
5510.0 8	3-		Hi	N Q T	XREF: Others: AJ, AK, AL XREF: T(5527).
					J^{π} : L(e,e')=L(α,α')=3.
5530.0 <i>7</i> 5578.0 <i>11</i>	2^+ $(0^+ \text{ to } 4^+)$		Hi HI	P X	J^{π} : L(p,t)=2 and L(d,p)=1. J^{π} : γ to 2 ⁺ .
5593.0 5	3-		GHiJ	N TVx	J^{π} : L(³ He,d)=1+3 from 3/2+; L(d,t)=0+2 from 7/2 ⁻ .
5601.0 8	(3-,4-)		Hi	Wx	J ^{π} : L(3 He, α)=(0+2) from 7/2 $^-$. It is assumed that the level at 5610 20 in (3 He, α) is the same as the level at 5601 2 in (α ,p γ).
5624.0 7	3-		GHi	N P T	J^{π} : L(³ He,d)=1(+3) from 3/2+; L(d,p)=0(+2) from 7/2 ⁻ .
5665.0 6	(3-)		gHi	n q T w	J ^{π} : L(α , α')=L(p,t)=3. It is assumed that the level at 5665 2 in (α ,p γ) is the same as 5667 5 in (α , α') and 5664 in (p,t).
5670.0 7	(3 ⁻)		gHi	Pq w	J ^{π} : gammas to 2 ⁺ and 3 ⁻ ; L(d,p)=0+2. It is assumed that the level at 5670 2 in $(\alpha,p\gamma)$ is the same as 5669 10 in (d,p).
5691.77 <i>17</i>	6+		E Hi	P T w	J^{π} : $\gamma(\theta,DCO)$ in ($^{18}O,\alpha 2n\gamma$); gammas to 4^+ and 6^+ . But $L(\alpha,\alpha')=(4,5)$ gives $(4^+,5^-)$.
5716.0 <i>10</i>	2+		Hi	n t X	J^{π} : $L(p,t)=2$.
			Contin	ued on next page (f	ootnotes at end of table)

E(level) [†]	${\sf J}^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF			Comments
5725.0 10	$(2^+ \text{ to } 6^+)$		Hi	n	t	J^{π} : γ to 4^{+} .
5738.0 5	(2 ⁺)		J		S	J^{π} : gammas to 0 ⁺ and 2 ⁺ ; L(p,p')=2,3.
5744.01 ^d 11	7-	0.42 ps 10	ABCDE GHi			J^{π} : $\Delta J=2 \gamma$ to 5 ⁻ ; γ to 6 ⁺ from $\gamma(\theta, \text{lin pol,DCO})$.
0711101 11	,	0 2 po 10	112 02 2 0112			$T_{1/2}$: from $(\alpha, p\gamma)$. Other: 10.5 ps 10 is reported in
						$(^{16}O,2p\gamma)$ using RDM. It may suggest two closely
						spaced levels.
5769.0 7	3-		Hi		Vwx	J^{π} : gammas to 2 ⁺ and 4 ⁺ ; L(d,t)=2 from 7/2 ⁻ .
5774.9 <i>7</i>	$(4,5)^+$		Hi	P	WX	J^{π} : gammas to 4 ⁺ and 6 ⁺ ; L(d,p)=1 from 7/2 ⁻ .
5797.0 6	$(1,2)^+$		HI	p	V	XREF: Others: AK, AL XREF: I(5790).
						J^{π} : gammas to 0 ⁺ and 2 ⁺ ; L(d,t)=3 from 7/2 ⁻ .
5802.0 10	3-		GH	N pQ	STUVWx	XREF: Others: AK, AL
						XREF: G(5791)N(5795)T(5794)U(5790)W(5790).
						J^{π} : $L(\alpha,\alpha')=3$.
5822.0 10	$(1,2,3)^-$		Н	N	X	J^{π} : γ to 2 ⁺ ; $L(^{3}\text{He,d})=1$ from $3/2^{+}$.
5860 <i>10</i>	0+		I			J^{π} : $L(t,p)=0$.
5866.0 8	$(1,2,3^{-})$		gH			XREF: Others: AB, AD, AG, AP
						J^{π} : gammas to 0^+ and 2^+ . If this level is the same
						as 5860 in (t,p) with L=0, then placement of 4028.5γ is incorrect as it would be E0.
5875.0 <i>7</i>	2+		gH	N	T	J^{π} : $L(\alpha,\alpha')=2$.
5924.0 5	$(3,4)^{-}$		GHI	N P	t V	XREF: Others: AJ, AK
0,20	(5,.)		0112			XREF: I(5920).
						J^{π} : gammas to 4 ⁺ , 4 ⁻ and 5 ⁻ ; L(d,p)=0+2 from 7/2 ⁻ .
5925.5 <i>3</i>	(5)		E HI		st V	XREF: Others: AJ, AK
						XREF: I(5920).
						J^{π} : $\Delta J=1$, γ to 6 ⁺ from DCO in (¹⁸ O, α 2n γ); γ
5056.10	(2.4)=			_		from 4 ⁺ .
5956 <i>10</i>	(3,4) ⁻ 3 ⁻		I	P N	UV	J^{π} : L(d,p)=0+2 from 7/2 ⁻ . XREF: Others: AK
5980 5	3		1	IN	UV	XREF: I(5980).
						J^{π} : L(³ He,d)=1 from 3/2 ⁺ ; L(d,t)=0(+2) from 7/2 ⁻ .
5994.0 8	3-		HI	P	UV	XREF: Others: AK
						XREF: I(5980).
						J^{π} : γ to 2 ⁺ ; $L(d,p)=0+2$; $L(d,t)=0+(2)$ from $7/2^{-}$.
6003.0 <i>10</i>	3-,4-		HI	p	UV	XREF: Others: AK
						XREF: I(5980).
(016.5	0+		-			J^{π} : L(d,p)=0+2 from 7/2 ⁻ .
6016 <i>5</i>	0_{+}		I	n	T	XREF: Others: AB
						J^{π} : L(t,p)=0. L(α , α')=2 is inconsistent. Additional information 4.
6020.0 7	$(4^+,5,6^-)$		Н	n		XREF: Others: AB
0020.07	(. ,0,0)					J^{π} : gammas to 4 ⁻ and 6 ⁺ ; 5 ⁻ or 6 ⁻ are supported by
						$11/2^-$ transfer in (α,p) from $3/2^+$.
						Additional information 5.
6028.0 <i>6</i>	$(3)^{-}$		Н	P	tuvw	J^{π} : L(d,p)=0+2 from 7/2 ⁻ ; γ to 2 ⁺ .
6038.0 7	$(1,2,3)^-$		Н	N	T v	XREF: Others: AD, AJ
						XREF: AD(6020).
						J^{π} : L(³ He,d)=(1+3) from 3/2+; L(d,t)=2(+0) from
						$7/2^-$; γ to 2^+ . Additional information 6.
6080	0+				X	Additional information 6. J^{π} : $L(p,t)=0$.
6093.5 8	$(3^- \text{ to } 7^-)$		Н	n q	V	J^{π} : γ to S^{-} .
6104.0 7	$(0^+ \text{ to } 4^+)$		H	n q	V	J^{π} : γ to 2^+ .
6113.0 8	4+		GHI	PQ		XREF: Others: AK
						XREF: G(6096)I(6105).

E(level) [†]	${\rm J}^{\pi \#}$	T _{1/2} ‡		XREF	Comments
					J^{π} : L(t,p)=4.
6140.8 <i>6</i>	6-	49 fs +21-14	gHi	p	J^{π} : $\gamma(\theta)$ to 6^- in $(\alpha,p\gamma)$; γ to $4^-,5^-$. $T_{1/2}$: from $(\alpha,p\gamma)$.
6144.72 ^d 14	7-	<70 fs	ABCDE gHI	р	J^{π} : from $\gamma(\theta, \text{lin pol,DCO})$.
6158 <i>5</i>	3-		i	N P T V	$T_{1/2}$: from $(\alpha, p\gamma)$. J^{π} : $L(\alpha, \alpha')=3$.
6182.0 7	$(1,2,3^{-})$		Hi	N F T V	J^{π} : E=6182 γ to 0 ⁺ .
6212.0 10	3-		Hi	P S Vw	J^{π} : L(d,p)=0+2 from 7/2 ⁻ ; L(p,p')=2 or 3 from 0 ⁺ .
6240 5	3-			NP TV	J^{π} : $L(\alpha,\alpha')=3$.
6247.9 6	$(4^+,5,6^-)$		Н	N I I V	J^{π} : gammas to 4^- and 6^+ .
6274 7	2+		I	P	J^{π} : L(t,p)=2.
6313 7	$(2 \text{ to } 5)^+$		GI	P T VW	XREF: Others: AB, AJ
	(= == =)				XREF: I(6290).
					J^{π} : L(d,p)=1 and Ay(θ).
6390 10	$(3,4)^{-}$		I	P RST	XREF: Others: AB, AJ
					XREF: I(6400)AJ(6300).
					J^{π} : L(d,p)=0 from 7/2 ⁻ ; L(π^{+} , $\pi^{+\prime}$)=(3).
6408.57 ^d 12	8-	31.0 ps 25	ABCDE GH	W	J^{π} : $\Delta J=2$ E2 γ to 6 ⁻ ; $\Delta J=1$ γ to 7 ⁻ from
					$\gamma(\theta, \text{lin pol,DCO}).$
6426 10	(2 +- 5)+		_	D	$T_{1/2}$: from ($^{16}O,2p\gamma$).
6426 <i>10</i> 6462 <i>10</i>	$(2 \text{ to } 5)^+$ $(3,4)^-$		i i	P w P	J^{π} : L(d,p)=1 from $7/2^-$. J^{π} : L(d,p)=0+2 from $7/2^-$.
6516.0 <i>6</i>	(3,4)		I	P TU W	XREF: Others: AB, AD
0310.0 0			1	P IU W	J^{π} : L(d,p)=1 from 7/2 ⁻ . L(p,d)=0+2 from 7/2 ⁻ is
					incompatible. $L(t,p)=(0)$ suggests (0^+) and
					$L(^{3}\text{He},\alpha)=(4) \text{ suggests } (4^{+}).$
6541.8 <i>6</i>	5 ⁺		Н	P	J^{π} : gammas to 5 ⁻ ,6 ⁺ , and 6 ⁻ ; L(d,p)=1 from
0311.00	3			•	$7/2^-$.
6553.72 ^d 12	9-	42 ps 3	ABCDE GH		J^{π} : $\Delta J=2$ E2 γ to 7 ⁻ ; $\Delta J=1$ γ to 8 ⁻ from
		•			$\gamma(\theta, \text{lin pol,DCO})$.
6572 15	$(2 \text{ to } 5)^+$		i	P w	J^{π} : L(d,p)=1 from 7/2 ⁻ .
6584.7 8	$(5^- \text{ to } 8^-)$		GHi	W	J^{π} : gammas to 7 ⁻ and 6 ⁻ .
6614 <i>15</i>	$(3,4)^+$		i	P T	J^{π} : $L(d,p)=1$ and analyzing power in (d,p) .
6636.30 ^c 15	8+	36 fs <i>15</i>	E HI	P RST W	XREF: Others: AK
					XREF: I(6640)P(6653)W(6660).
					J^{π} : from $\gamma(\theta,DCO)$ in ($^{18}O,\alpha 2n\gamma$).
	(44 04)				$T_{1/2}$: from $(\alpha, p\gamma)$.
6674.8 <i>10</i>	$(4^+ \text{ to } 8^+)$		Н	P T W	XREF: Others: AL
					XREF: $P(6670)W(6660)$.
6715.0.7	(4+)			P	J^{π} : γ to 6^+ . XREF: Others: AB
6715.9 <i>7</i>	(4^{+})		Н	P	J^{π} : γ to 6^+ ; γ to (2^+) ; $L(d,p)=(1+3)$ from $7/2^-$.
6718.14 <i>17</i>	7		E		J^{π} : $\Delta J = 1$ γ to 6 ; γ to (2); $L(d,p) = (1+3)$ from $\gamma/2$.
0/16.14 1/	/		E		$(^{18}\text{O},\alpha2\text{n}\gamma)$.
6720 8	0+		I		XREF: Others: AB, AD
0720 0	O .		-		XREF: AD(?).
					J^{π} : $L(t,p)=0$.
6746.5 8	4+		GHI	P T X	XREF: Others: AL
			- -		XREF: P(6760).
					J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2+3/2$ in (pol d,p);
					γ transitions to 5 ⁻ in $(\alpha, p\gamma)$. But $3/2^+$ transfer
					in (α,p) from $3/2^+$ favors 3^+ .
6781 7			GΙ	P TU W	XREF: I(6800).
6816.8 <i>10</i>	$(4,5)^+$		HI	P	XREF: Others: AD

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	X	REF	Comments
6895.8 <i>6</i>	4+		ні	P	J^{π} : γ to 6 ⁺ ; $L(d,p)=1$ from 7/2 ⁻ . J^{π} : gammas to 3 ⁻ and 6 ⁺ ; $L(d,p)=1$ from 7/2 ⁻ .
6920 4	$(3,4)^+$		I	P CT II	J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2$ in (pol d,p).
6931 7	$(2,3)^+$		GI	P ST V	XREF: \bar{I} (6940). \bar{J}^{π} : $3/2^+$ transfer in (α,p) from $3/2^+$ and $\bar{L}(d,p)=1+3$
6940.2 6	(5-,6,7-)		Hi	t	from $7/2^-$. J^{π} : gammas to 5^- and 7^- .
6961 <i>15</i> 6975.5 <i>5</i>	$(3,4)^+$ (5^+)		GH	P P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =1/2 in (pol d,p). J^{π} : gammas to 5 ⁻ , 6 ⁺ , and 6 ⁻ ; 13/2 ⁺ transfer in (α ,p)
7020 12	4 ⁺		GI	PQ s w	from 3/2 ⁺ . XREF: Others: AL
7020 12	T		9.1	IQ S W	XREF: I(7010).
					J^{π} : 11/2+ transfer in (α,p) from 3/2+; L(d,p)=1+3
7041 <i>15</i>	$(3^-,4^-)$			P s w	from $7/2^-$; $J_n=1/2+5/2$ in (pol d,p). J^{π} : $L(d,p)=(0+2)$ from $7/2^-$.
7103 7	$(1 \text{ to } 4)^-$		GI	Q	XREF: Others: AL
					XREF: I(7110).
7129.9 10	4+		Hi	P	J ^π : $5/2^-$ transfer in (α,p) from $3/2^+$. J ^π : L(d,p)=1 from $7/2^-$; J _n =1/2+3/2 in (pol d,p); γ to
7127.7 10				•	6 ⁺ .
7153 7	$(3,4)^+$		Gi	P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =1/2 in (pol d,p); 11/2 ⁺ transfer in (α,p) favors 4 ⁺ .
7180 20	2+		I		J^{π} : L(t,p)=2.
7197.9 <i>10</i>			Н	P	J^{π} : γ to 6 ⁺ , but L(d,p)=(0+2) from 7/2 ⁻ suggests (3 ⁻ ,4 ⁻).
7228 7	(3 ⁻ ,4 ⁻)		G	P	J^{π} : 5/2 ⁻ transfer in (α,p) from 3/2 ⁺ gives (1 to 4) ⁽⁻⁾ and L(d,p)=(0+2) from 7/2 ⁻ gives (3 ⁻ ,4 ⁻).
7273 7	$(3,4)^+$		GI	P	XREF: Others: AJ, AK, AL XREF: I(7257).
					J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =1/2 in (pol d,p); 3/2 ⁺ transfer in (α ,p) from 3/2 ⁺ favors 3 ⁺ .
7282.02 14	9-		A E HI	U	XREF: Others: AE, AJ, AL
					XREF: I(7280).
					J ^π : gammas to 8 ⁻ and 9 ⁻ ; $\gamma(\theta, DCO)$ in (¹⁸ O, α 2n γ). But L(α , ² He)=(5,6,7) suggest (7 ⁻).
7344.7 10	(6 ⁻ to 10 ⁻)		GI	R	XREF: Others: AJ, AL
					XREF: I(7320).
7348 15	$(3,4)^{+}$			P	J^{π} : γ to 8 ⁻ . J^{π} : $L(d,p)=1$ from $7/2^-$; $J_n=1/2$ in (pol d,p).
7360.6 10	$(5^- \text{ to } 9^-)$		Н	•	J^{π} : γ to 7^{-} .
7368.46 ^d 15	10-	1.9 ps 8	ABCDE H		J^{π} : from $\gamma(\theta, \text{lin pol,DCO})$.
					$T_{1/2}$: weighted average of 2.6 ps II in (^{18}O ,2np γ) and 1.5 ps 8 in (^{16}O ,2p γ).
7388.8 10	4+		HI	PQ S	XREF: Others: AL
					XREF: P(7401).
					J^{π} : γ to 6 ⁺ ; $L(d,p)=1$ from $7/2^-$; $J_n=1/2+3/2$ in (pol d,p).
7415.87 <i>15</i>	8+		Е Н	P S w	XREF: Others: AJ, AL
					XREF: P(7422).
7421.2 8	$(4^+ \text{ to } 8^+)$		Н	P RS U w	J ^{π} : from $\gamma(\theta, DCO)$ in (¹⁸ O, α 2n γ); γ to 6 ⁺ . XREF: Others: AL
, 121.2 0	(1 100)		11	1 10 0 W	XREF: P(7438).
					J^{π} : γ to 6^+ .
7468 <i>15</i>	$(2 \text{ to } 5)^{(+)}$ $(3,4)^+$			P	J^{π} : L(d,p)=(1+3) from 7/2 ⁻ .
7520 15	(3,4)			P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =1/2 in (pol d,p).

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡			XREF	Comments
7543.1 6	$(4^+ \text{ to } 7^-)$			Н	W	J^{π} : gammas to 5 ⁻ and 6 ⁺ .
7562.5 10	$(4^+,5^+)$			H	PQ w	XREF: Others: AK, AL
						XREF: P(7571).
						J^{π} : γ to 6^+ ; $L(d,p)=(1)$ from $7/2^-$.
7600 <i>15</i>	$(2^+ \text{ to } 5^+)$				P	J^{π} : L(d,p)=(1+3) from 7/2 ⁻ .
7634.03 <i>23</i>	$(6,8^+)$		E	H		J^{π} : γ to 6 ⁺ ; $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ).
7643 <i>15</i>	3+,4+				P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2+3/2$ in (pol d,p).
7696.8 <i>10</i>	4 ⁺			Н	P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2+3/2$ in (pol d,p); γ to
7726.5 10	$(4^+ \text{ to } 8^+)$			Н		6^+ . J^{π} : γ to 6^+ .
7750.66 17	(11)	<2.1 ps	CD			J^{π} : $\Delta J=1 \gamma$ to 10^- ; γ (lin pol).
						$T_{1/2}$: from ($^{16}O,2p\gamma$).
7758.0 <i>6</i>	$(6^-,7^-)$			H		J^{π} : gammas to 5 ⁻ , 6 ⁻ , 7 ⁻ and 8 ⁻ .
7760 15	$(3,4)^+$				P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; J_n =(1/2) in (pol d,p).
7793 <i>15</i>	$(3,4)^+$				P	J^{π} : L(d,p)=1 from 7/2 ⁻ ; $J_n=1/2$ in (pol d,p).
7800.7 <i>10</i>	$(5^- \text{ to } 9^-)$			H		J^{π} : γ to 7^{-} .
7838.9 12	$(2^+ \text{ to } 6^+)$			H		J^{π} : γ to (4^+) .
7921.2 8	$(4^+ \text{ to } 8^+)$			H		J^{π} : γ to 6^+ .
7939.8 8	$(4^+ \text{ to } 8^+)$			H		J^{π} : gammas to 6^+ .
8052.6 10	$(4^+ \text{ to } 8^+)$			H		J^{π} : γ to 6^+ .
8059.7 8	(6 ⁻ to 9 ⁻)			H		J^{π} : gammas to 7^- and 8^- .
8082.7 10	$(7^- \text{ to } 11^-)$			H		J^{π} : γ to 9 ⁻ .
8103.2 <i>8</i> 8170 <i>20</i>	$(4^+ \text{ to } 8^+)$			Н	W	J^{π} : gammas to 6^+ .
8297.46 ^d 15	11-	<1.7 ps	ABCDE	Н	TU W	XREF: Others: AJ
0297.40 13	11	<1.7 ps	ADCDE	11	10 W	XREF: W(8260).
						J^{π} : $\Delta J=1 \text{ M1 } \gamma \text{ to } 10^-; \gamma \text{ to } 9^-; \gamma(\theta, \text{pol,DCO}).$
						$T_{1/2}$: from (¹⁸ O,2npy).
8364.8 8	$(6^-,7,8^+)$			Н	R U W	XREF: W(8330).
0301.00	(0 ,7,0)			**	1. 0	J^{π} : gammas to 6^+ and 8^- .
8449.7 6	$(7,8)^{-}$			Н	QSUW	XREF: W(8410).
	(.,=)					J^{π} : gammas to 6^- and 9^- .
8450	0_{+}				X	J^{π} : L(p,t)=0 from 0 ⁺ .
8511.7 8	$(6^- \text{ to } 9^-)$				U	XREF: Others: AB, AJ, AK
	· · · · · · · · · · · · · · · · · · ·					XREF: AK(8520).
						J^{π} : gammas to 7^{-} and 8^{-} .
8517.0 <i>11</i>	(3 to 9)			H	U W	XREF: Others: AJ, AK
						XREF: W(8520).
						J^{π} : γ to (5,7).
8522.3 <i>3</i>	(10)		C		U W	XREF: Others: AJ, AK
						XREF: W(8520).
						J^{π} : $\Delta J=1 \gamma$ to $(11)^{-}$; $\gamma(\theta)$ in $(^{19}F,\alpha\gamma)$.
8580.9 12	$(2^+ \text{ to } 6^+)$			H	TU W	XREF: W(8600).
						J^{π} : γ to (4^+) .
8611.9 <i>12</i>	$(2^+ \text{ to } 6^+)$			Н	TU W	XREF: W(8600).
0615 12 15	9		77			J^{π} : γ to (4 ⁺). J^{π} : from $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ).
8615.13 <i>15</i>			E			J [*] : from $\gamma(\theta, DCO)$ in ($^{18}O, \alpha 2\pi \gamma$).
8722.30 15	9 (8 ⁻ to 12 ⁻)		E	T.T		
8744.9 <i>11</i>	(8 ⁻ to 12 ⁻)			Н	0 11	J^{π} : γ to 10^{-} .
8773.7 8	(5,6,7)			Н	Q U	XREF: Others: AE XREF: AE(8810).
						J^{π} : gammas to 6^- and 6^+ .
8847.97 ^c 20	(10^+)		Е	Н	Q U W	XREF: Others: AE
00 1 1.91 20	(10)		Ľ	11	Q UW	XREF: AE(8810).
						J^{π} : gammas to 8^+ ; $\gamma(\theta,DCO)$ in $(^{18}O,\alpha 2n\gamma)$.
						. 5 minus (0 0 , /(0,DCO) iii (0,02117).

E(level) [†]	$J^{\pi \#}$			XRE	F	Comments
8951.3 <i>11</i> 9015.01 <i>14</i> 9036.9 <i>11</i>	(6 ⁺ to 10 ⁺) 10 ⁺ (8 ⁻ to 12 ⁻)	A	H E H		UV	J^{π} : γ to 8^+ . J^{π} : from $\gamma(\theta,DCO)$ in ($^{18}O,\alpha 2n\gamma$); gammas to 8^+ , 9^- and 11^- . XREF: Others: AE
	(8 10 12)				OV.	XREF: AE(9080). J^{π} : γ to 10^{-} .
9115 <i>5</i> 9191 <i>5</i>			F F			
9205.9 8	(7 ⁻ to 9 ⁻)		Н		UV	XREF: Others: AE XREF: AE(9080). J^{π} : gammas to 7^{-} and 9^{-} .
9241.9? <i>9</i> 9270			E			J ^{π} : from $\gamma(\theta, DCO)$ in ($^{18}O, \alpha 2n\gamma$). XREF: Others: AC
9280 5	1-@		F			
9311.08 <i>16</i> 9330 <i>50</i>	$(8,10^+)$		E			J^{π} : $\Delta J=(0,2) \gamma$ to $(6,8^+)$; γ to 8^+ ; $\gamma(\theta,DCO)$ in $(^{18}O,\alpha 2n\gamma)$. XREF: Others: AE
9367 5	(5- to 0-)		F			J^{π} : γ to 7^{-} .
9377.7 <i>10</i> 9426 <i>5</i>	(5 ⁻ to 9 ⁻)		H F			\mathcal{F} : γ to γ .
9470 5			F			
9561 <i>5</i>			F			
9600 <i>50</i>	$(5^-,6^+)$					XREF: Others: AE J^{π} : $L(\alpha,^{2}\text{He})=(5,6)$.
9635 5			F			
9672 <i>5</i> 9699 <i>5</i>			F F			
9723 <i>5</i>			F			
9750 10	(2-)		-	M	Q S UVW	XREF: Others: AL T=2
						XREF: W(9740). J^{π} : M2 excitation in (e,e'); g.s. analog of 42 Ca.
9757 <i>5</i> 9759.7 <i>10</i>	(7= 4- 11=)		F			ΙΠ 4 - 0 -
9739.7 <i>10</i> 9770	$(7^- \text{ to } 11^-)$ (2^+)		Н		Q	J^{π} : γ to 9^{-} . J^{π} : E2 excitation in (e,e').
9784 <i>5</i>	(2)		F		•	5. 22 exercition in (e,e).
9786.29 <i>14</i>	(9 ⁻ ,11)	A	E			J ^{π} : from $\gamma(\theta,DCO)$ in ($^{18}O,\alpha 2n\gamma$); gammas to 9, 10^+ , 10^- and 11^- .
9841.6 <i>10</i>	(5,6)		Н		UVW	XREF: Others: AE, AL XREF: AE(9870).
0050 10	(2-)					J^{π} : γ to 7 ⁻ ; $L(p,d)=L(^{3}He,\alpha)=2$ from 7/2 ⁻ .
9850 10	(3 ⁻)			M	X	T=2 J^{π} : possible IAS of ⁴² Ca at 107 keV.
9947 <i>5</i> 10000 <i>10</i>	$(4)^{-}$		F	M	u w	T=2
10000 10				11	u w	J^{π} : possible IAS of ⁴² Ca at 258 keV; $L(^{3}He,d)=3$ from $3/2^{+}$.
10035.6 <i>10</i> 10038 <i>5</i>	(5 ⁻ to 9 ⁻)		H F		u w	J^{π} : γ to 7^{-} .
10160 50	(10.12+)		F			XREF: Others: AE
10168.69 <i>16</i> 10205 <i>5</i> 10231 <i>5</i>	$(10,12^+)$	A	E F F			J ^{π} : from $\gamma(\theta, DCO)$ in ($^{18}O, \alpha 2n\gamma$); gammas to 10^+ and 11^- . XREF: Others: AC
10282 5	1-@		F			
10314 <i>5</i> 10358 <i>5</i>	1-@		F F			
10389 5	-		F			
10450.0 <i>10</i>	(5)-			M	QRS U W	T=2

E(level) [†]	$J^{\pi \#}$		XREF		Comments
					XREF: U(10430)W(10430).
					J^{π} : possible IAS of ⁴² Ca at 699. L(³ He,d)=3 from 3/2 ⁺ .
10453 5		F			(),,,,
10500 5	1-@	F			
10510 20				W	T=2
10527 5		F			
10561 5		F			
10588 5		F			
10610 20				W	T=2
10612 <i>5</i> 10633 <i>5</i>		F			
10652 5		F F			
10673 5	1-@	F			
	@				
10700 5		F			
10726 5	1-@	F			
10783 5	1-@	F			
10805 5	1-@	F			
10842 5	1-@	F			
10884 5	1-@	F			
10905 5	1-@	F			
10916 5	1-@	F			
10968 5	1	F			
10970 20	3-	-		U WX	T=2
					J^{π} : L(p,t)=3 from 0 ⁺ and L(p,d)=0 from 7/2 ⁻ .
10985 5		F			
11013 5	1-@	F			
11048 5		F			
11076 5	1-@	F			
11108 5	1-@	F			
11149 5	1-@	F			
11165.7 9	(10,12)	E			J^{π} : $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ).
11185 5	1-@	F			0 1 7(0,2 00) iii (0,42ii/).
11103 5	1-@				
11225 5	(1 ⁺)	F	()	T=2
11233 3	(1)		•	2	J^{π} : M1 excitation in (e,e').
11279 5		F			o . Hir exertation in (e,e).
11303.7 10		F	J		
11309.5 10			J		
11319.3 <i>10</i>			J		
11326.1 10			J		
11331.0 <i>10</i>	6		J		
11335.9 10	1-@	F	J		
11343.7 10	(1.0+)		J		T7 (0) • ()
11361.3 <i>7</i> 11363.2 <i>10</i>	$(1,2^+)$		J J		J^{π} : $\gamma(\theta)$ in (p,γ) .
	1-@				
11380.8 <i>10</i> 11398.4 <i>10</i>	1	F	J 1		
11398.4 10		F	J J		
11401.3 10 11405.1 ^c 11	(12^{+})	E	J		J^{π} : $\gamma(\theta,DCO)$ in (¹⁸ O, α 2n γ).
11409.1 10	(12)	15	J		5. 1(0,DCO) iii (0,02117).
11412.0 10			j		
11416.9 10			j		

E(level) [†]	$J^{\pi \#}$	X	REF		Comments
11426.0 10		JI			
11429.6 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I			
11432.3 10		JI			
11436.1 10	$(1^-,2^+)^{\&}$ $1^{-@}$	JI			
11439.7 10	1-@	FJI			
11440 20	3-,4-	r J L		J WX	T=2
111.10 20	· , .		· ·		J^{π} : L(p,d)=L(3 He, α)=0 from $^{7}/^{2}$
11445.6 10		JI			The Control of the Co
11447.7 15	$(0^+,1^-,2^+)^{\&}$	I			
11449.0 <i>15</i>	(- , , ,	I			
11450.5 <i>15</i>		I			
11453.1 <i>15</i>		I			
11464.7 <i>15</i>		L			
11468.1 <i>15</i>	. 0-	I			
11469.3 <i>15</i>	$(1^-,2^+)^{\&}$	I			
11473.5 <i>15</i>	$(1^-,2^+)^{\&}$	I			
11475.8 <i>15</i>		I			
11477.7 15	2- 4-	I			VDEE OIL AU
(11480.64 7)	3-,4-				XREF: Others: AH
11481.77 9			0		J^{π} : s-wave capture in ⁴¹ Ca g.s. $(J^{\pi}=7/2^{-})$.
	(2 ⁺)&				
11485.20 <i>6</i> 11486.86 <i>6</i>	(2)	I	. 0		
	1-@	г .			
11488.7 <i>15</i> 11490.40 <i>9</i>	1	F L	. 0		
11493.6 15		I			
11495.41 6		-	0		
11499.0 <i>1</i>		I			
11500.20 6		I			
11503.70 <i>11</i>	0	I	. 0		
11507.10 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I			
11508.8 <i>15</i>	0	I			
11510.34 <i>16</i>	(1 [−]) ^{&}	I			
11512.5 15		L			
11514.36 <i>15</i>	Q_{τ}		0		
11516.6 15	(1 ⁻)&	I			
11519.5 3	1.87	F I			
11523.3 15	$(1^-,2^+)^{\&}$	I			
11525.4 15	(1- 2+) &	I			
11527.4 <i>15</i>	$(1^-,2^+)^{\&}$	I			
11529.3 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I I			
11530.7 3		I	. 0		
11532.6 <i>15</i> 11537.12 <i>25</i>		L	0		
11537.12 25	(1 ⁻)&				
	(1) (1) (1) (1) (1) (1) (1) (1)	I			
11542.3 <i>15</i> 11543.6 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I I			
11543.0 15	1-@	F I			
11550.0 <i>15</i> 11551.5 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	I I			
	(1 ⁻)&				
11555.4 <i>15</i> 11556.3 <i>15</i>	(1)	I I			
11000.0 10		-	-		

E(level) [†]	J ^{π#}	XREF	Comments
11558.1 <i>15</i>		L	
11562.8 <i>15</i>	0	L	
11569.2 <i>15</i>	1-&	L	
11571.7 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	L	
11572.8 <i>15</i>	$(1^-,3^-,4^+)$	L	
11575.2 <i>15</i>	$(3^-,4^+)$ &	L	
11576.2 <i>15</i>	0_	L	
11589.8 <i>15</i>	(1 ⁻)&	L	
11591.1 <i>15</i> 11592.6 <i>15</i>		L	
11592.6 15		L L	
11596.7 15	1-&	L	
11599.4 <i>15</i>	$(1^-,2^+)^{\&}$	L	
11601.8 <i>15</i>	1-&	L	
11603.5 <i>15</i>		L	
11612.5 <i>15</i>	1-&	F KL	
11614.0 <i>15</i>	0_	L	
11616.0 <i>15</i>	1-&	L	
11621.0 15	$(1^-,2^+)^{\&}$	L	
11632.8 15	(1-0+)&	L	
11634.5 15	$(1^-,2^+)^{\&}$	L	
11636.1 15	$(1^-,2^+)^{\&}$	L	
11637.4 15	(1 ⁻ ,2 ⁺)& 1 ⁻ &	L	E/L D 211 1 6 1007 1 1: 42 C
11639.4 <i>15</i> 11641.1 <i>15</i>	1 ~	KL L	E(level): possible analog of 1927 level in ⁴² Ca.
11643.5 15		Ĺ	
11644.1 <i>4</i>	$(1^-,2^+)^{\&}$	JKL	
11646.2 <i>15</i>	$(4^+)^{\&}$	L	
11651.2 <i>15</i>	$(1^-,2^+)^{\&}$	J L	
11653.4 <i>15</i>	0_	JKL	
11654.2 <i>15</i>	$(1^{-})^{\&}$	L	
11656.8 15	(1 ⁻)&	L	
11658	(1 ⁻ ,2 ⁺)&	JK	
11662.2 <i>15</i> 11664.9 <i>15</i>	(1 ,2')	F JKL L	
11670.9 4	2+&	JKL	
11674.0 5	$(1^-,2^+)^a$	JK	
11680		J	
11685	0	JK	
11689.2 15	$(1^-,2^+)^{\&}$	L	
11693.0 4	$(1^-,2^+)^a$	JK	
11695.0 <i>15</i> 11697.3 <i>15</i>	(3 ⁻)&	L J L	
11697.3 15		J L	
11707.5 4	2+&	J L	
11709.2 15	$(1^-,2^+)^{\&}$	JKL	
11710.1 <i>15</i>	· , - /	JKL	
11718.3 <i>15</i>		JKL	
11725.7 9	(8 ⁻ to 11)	E	J^{π} : γ to 9 and 10 ⁻ .

E(level) [†]	$J^{\pi \#}$	XREF
11727.1 3	2+&	JKL
11727.1 3	2	L
11729.3 15		L
11733.0 <i>15</i>		JKL
11737.4 15	$(0^+,1^-,2^+)^{\&}$	L
11738.4 4	1-&	JKL
11743.4 5	$(1^-,2^+)^a$	JKL
11748.0 <i>15</i>		L
11752.3 <i>15</i>	0	JKL
11756.6 <i>15</i>	(1 ⁻)&	JKL
11758		J
11760 11763		JK JK
11768		JK
11772.7 15	$(1^-,2^+)$ &	J L
11775.0 4	$(1^-,2^+)^a$	JK
11777.2 15	(1 ,2)	L
11778.5 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	JKL
11783.0 <i>15</i>	$(1^-,2^+)^{\&}$	L
11784.7 <i>15</i>	$(1^{-}),2^{+}$ &	L
11786.1 15	(1),2	JKL
11787.5 <i>15</i>		L
11789.8 <i>15</i>		L
11792	(1 = 2 ±) (1	j
11795.2 <i>4</i>	$(1^-,2^+)^a$	J L
11798.3 <i>15</i>	$(1^-,2^+)^{\&}$	JKL
11805.4 <i>4</i>	$(1^-,2^+)^{\&}$	JKL
11809.7 <i>15</i>	$(1^-,2^+)^{\&}$	JKL
11811.1 <i>15</i>	$(1^-,2^+)^{\&}$	L
11814		JK
11818.0 <i>15</i> 11821.1 <i>4</i>		L E
11822.4 4	(1 [−])&	JKL
11824.0 15	$(1^{-},2^{+})$ &	L
11829.0 15	$(1^-,2^+)$ &	JKL
11830.2 15	$(2^+)^{\&}$	
11830.2 13	(2)	L JKL
11836.4 15	(4 ⁺)&	JKL
11843.3 5	$(1^-,2^+)$ &	JKL
11844.9 <i>15</i>	$(1^-,2^+)$ &	
11846.8 15	(1 ,2)	L L
11850		JK
11852.6 <i>15</i>	1-&	JKL
11856.4 <i>15</i>		JKL
11865.6 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	KL
11868.0 4	$(1^{-},2^{+})^{a}$	ЈК
11871.5 4	$(1^-,2^+)^a$	JKL
11872.8 <i>15</i>	(1= 0+) (1	L
11873.7 4	$(1^-,2^+)^a$	JKL
11881	(1-,2+,3-)&	JK
11885.2 <i>15</i>	(1 ,2',3)	JKL

11887	E(level) [†]	${\sf J}^{\pi \#}$	XREF	Comments
11906.0 15			JK	
11906.3 15 (1-2+)\&	11895.3 <i>15</i>	$(1^-,2^+)^{\&}$	JKL	
11906.5 (1-2-)\(\)		$(1^-,2^+)^{\&}$		
11916		(1 ⁻ ,3 ⁻)&		
11916	11910.6 <i>15</i>	$(1^-,2^+)^{\&}$	JKL	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Q _T		
11929		$(1^-,2^+)^{\alpha}$		
11933 15		(1 ,2')		
11941 15 2+&		(1-2+)&		
11941.9 15		(1 ,2)		
11944.4 15 1-& J L 11950.1 15 JRL 11953 JR 11959.2 5 (1 ⁻) J L 11962.8 15 (1 ⁻ ,2 ⁺)& JRL 11970.2 15 1-& KL 11970.8 15 (2 ⁺) [®] L 11980.3 4 1-& JRL 11980.3 4 1-& JRL 11999.1 15 (2 ⁺ ,3 ⁻) [®] L 11999.1 15 (1 ⁻ ,2 ⁺) [®] L 12000.2 15 2 ⁺ & L 12000.2 15 2 ⁺ & L 12000.3 15 (1 ⁻ ,2 ⁺) [®] L 12012.0 15 (2 ⁺) [®] L 12012.0 15 (1 ⁻ ,2 ⁺) [®] L 12012.0 15 (1 ⁻ ,2 ⁺) [®] L 12012.3 6 15 L 12012.3 5 5 (0 ⁺ ,1 ⁻ ,2 ⁺) [®] L 12032.5 15 (0 ⁺ ,1 ⁻ ,2 ⁺) [®] L 12032.5 15 (3 ⁻) [®] L 12032.8 15 L 12042.8 15 L 12052.0 15 L 12052.0 15 (1 ⁻ ,2 ⁺) [®] L 12052.0 15 (1 ⁻ ,2 ⁺) [®] L 12053.0 15 L 12066.2 15 (1 ⁻ ,2 ⁺) [®] L 12071.4 15 L 12071.4 15 L 12071.5 (2 ⁺) [®] L 12071.7 15 (2 ⁺) [®] L 12071.1 5 (2 ⁺) [®] L 12082.8 15 L 12082.8 15 L 12082.8 15 L 12082.8 15 L 12099.9 15 L		2+&		
11950.1 15 11953 11953 118 11959.2 5 1(1^-) 11962.8 15 1(1^-,2^+)^\(\&\) 11970.2 15 1\(^-\&\) 11970.2 15 1\(^-\&\) 11980.3 4 1\(^-\&\) 11980.3 4 1\(^-\&\) 11980.3 15 1\(^-\&\) 11990.1 15 1\(^-\&\) 11990.1 15 1\(^-\&\) 12000.2 15 2\(^+\&\) 1 12000.3 15 1 12000.3 15 1 12012.0 15 (2^+)^\(\&\) 1 12013.6 15 1 12020.4 15 (1^-,2^+)^\(\&\) 1 12032.5 15 (0^+,1^-,2^+)^\(\&\) 1 12032.5 15 (0^+,1^-,2^+)^\(\&\) 1 12032.5 15 (0^+,1^-,2^+)^\(\&\) 1 12032.5 15 1 12004.8 15 1 1 12042.8 15 1 1 12052.0 15 1 12052.0 15 1 12006.2 15 (1^-,2^+)^\(\&\) 1 12071.4 15 1 12071.4 15 1 12082.8 15 1 1 12082.8 15 1 1 12082.8 15 1 1 12082.8 15 1 1 12091.9 15 1 1		1-&		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11950.1 <i>15</i>		JKL	
11962.8 15 (1-,2+)& JKL 11967 JK 11970.2 15 1-& KL 11976.8 15 (2+)& L 11980.3 4 1-& JKL 11989.0 15 (2+,3)& L 11989.1 15 (1-,2+)& L 12000.2 15 2+& L 12000.3 15 (1-,2+)& L 12000.3 15 (1-,2+)& L 12013.6 15 L 12012.0 15 (2+)& L 12020.4 15 (1-,2+)& L 12022.5 15 (3)& L 12022.5 15 (3)& L 12038.8 15 1-& L 12038.8 15 1-& L 12042.8 15 L 12050.9 15 (1-,2+)& L 12050.9 15 (1-,2+)& L 12052.0 15 L 12061.8 15 L 12061.8 15 L 12060.2 15 (1-,2+)& L 12070.1 15 (2+)& L 12082.8 15 L 12091.9 15 L		44-5		
11967 JK 11970.2 15 1-& KL 11976.8 15 (2+)& L 11980.3 4 1-& JKL 11989.0 15 (2+,3-)& L 11992.1 15 (1-,2+)& L 12000.2 15 2+& L 12005.0 15 (1-,2+)& L 12006.3 15 L 12012.0 15 (2+)& L 12013.6 15 L 12020.4 15 (1-,2+)& L 12029.5 15 (0+,1-,2+)& L 12039.8 15 1-& L 12039.8 15 1-& L 12042.8 15 L 12052.0 15 (1-,2+)& L 12052.0 15 (1-,2+)& L 12052.0 15 (1-,2+)& L 12052.0 15 L 12052.0 15 L 12052.0 15 L 12066.2 15 (1-,2+)& L 12071.4 15 L 12071.1 15 (2+)& L 12070.1 15 (2+)& L 12085.2 15 L 12091.9 15 L		(1^{-})		
11970.2 15		(1 ⁻ ,2 ⁺)		
11976.8 15 (2+)& L 11980.3 4 1-& JKL 11989.0 15 (2+,3-)& L 11992.1 15 (1-,2+)& L 12000.2 15 2+& L 12000.3 15 (1-,2+)& L 12006.3 15 L 12012.0 15 (2+)& L 12012.0 15 (2+)& L 12020.4 15 (1-,2+)& L 12020.4 15 (0+,1-2+)& L 12020.5 15 (0+,1-2+)& L 12020.5 15 (0-,1-2+)& L 12020.8 15 L 12020.8 15 L 12042.8 15 L 12052.0 15 L 12062.2 15 (1-,2+)& L 12070.1 15 (2+)& L 12082.8 15 L 12091.9 15 L		1-&		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
11989.0 15 (2+,3 ⁻)& L 11992.1 15 (1 ⁻ ,2 ⁺)& L 12000.2 15 2 ⁺ & L 12005.0 15 (1 ⁻ ,2 ⁺)& L 12006.3 15 L 12012.0 15 (2 ⁺)& L 12013.6 15 L 12020.4 15 (1 ⁻ ,2 ⁺)& L 12029.5 15 (0 ⁺ ,1 ⁻ ,2 ⁺)& L 12032.5 15 (3 ⁻)& L 12032.8 15 L 12042.8 15 L 12052.0 15 (1 ⁻ ,2 ⁺)& L 12052.0 15 L 12062.1 15 L 12062.1 15 L 12070.1 15 (2 ⁺)& L 12082.8 15 L 12082.8 15 L 12082.8 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L		1-&		
11992.1 15 (1-,2+)& L 12000.2 15 2+& L 12005.0 15 (1-,2+)& L 12006.3 15 L 12012.0 15 (2+)& L 12013.6 15 L 12020.4 15 (1-,2+)& L 12020.5 15 (0+,1-,2+)& L 12020.5 15 (3-)& L 12032.5 15 (3-)& L 12032.5 15 (3-)& L 12032.5 15 (3-)& L 12032.8 15 L 12042.8 15 L 12050.9 15 (1-,2+)& L 12050.9 15 (1-,2+)& L 12066.2 15 (1-,2+)& L 12071.4 15 L 12071.4 15 L 12082.8 15 L 12085.2 15 L				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1 - 2+) &		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2+&		
12006.3 15 12012.0 15 12013.6 15 12020.4 15 12020.4 15 12029.5 15 10+1,-2+)& L 12032.5 15 12032.5 15 12041.8 15 12042.8 15 12052.0 15 12052.0 15 12066.2 15 12066.2 15 12071.4 15 12071.4 15 12082.8 15 12082.9 15 12082.8 15				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1 ,2)	L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2 ⁺)&		
12029.5 15 $(0^+,1^-,2^+)^{\&}$ L 12032.5 15 $(3^-)^{\&}$ L 12039.8 15 $1^{-\&}$ L 12041.8 15 L 12042.8 15 L 12050.9 15 $(1^-,2^+)^{\&}$ L 12061.8 15 L 12060.2 15 $(1^-,2^+)^{\&}$ L 12070.1 15 $(2^+)^{\&}$ L 12070.4 15 L 12082.8 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L			L	
12029.5 15 $(0^+,1^-,2^+)^{\&}$ L 12032.5 15 $(3^-)^{\&}$ L 12039.8 15 $1^{-\&}$ L 12041.8 15 L 12042.8 15 L 12050.9 15 $(1^-,2^+)^{\&}$ L 12061.8 15 L 12060.2 15 $(1^-,2^+)^{\&}$ L 12070.1 15 $(2^+)^{\&}$ L 12070.4 15 L 12082.8 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L	12020.4 15	$(1^-,2^+)^{\&}$	L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12029.5 <i>15</i>	$(0^+,1^-,2^+)^{\&}$	L	
$12041.8 \ 15$ L $12042.8 \ 15$ L $12050.9 \ 15$ $(1^-,2^+)^{\&}$ $12052.0 \ 15$ L $12061.8 \ 15$ L $12066.2 \ 15$ $(1^-,2^+)^{\&}$ $12070.1 \ 15$ $(2^+)^{\&}$ $12071.4 \ 15$ L $12082.8 \ 15$ L $12081.9 \ 15$ L	12032.5 <i>15</i>	$(3^{-})^{\&}$	L	
12042.8 15		1-&		
12050.9 15 $(1^-,2^+)^{\&}$ L 12052.0 15 L 12061.8 15 L 12066.2 15 $(1^-,2^+)^{\&}$ L 12070.1 15 $(2^+)^{\&}$ L 12071.4 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L			Ļ	
12052.0 15 12061.8 15 12066.2 15 (1 ⁻ ,2 ⁺)& L 12070.1 15 (2 ⁺)& L 12071.4 15 12082.8 15 12085.2 15 12091.9 15 L		(1-0+)&		
12061.8 15		(1 ,2')	L T	
12066.2 15 (1 ⁻ ,2 ⁺) ^{&} L 12070.1 15 (2 ⁺) ^{&} L 12071.4 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L				
12070.1 15 (2 ⁺)& L 12071.4 15 L 12082.8 15 L 12085.2 15 L 12091.9 15 L		$(1^{-},2^{+})^{\&}$		
12071.4 <i>15</i> 12082.8 <i>15</i> 12085.2 <i>15</i> 12091.9 <i>15</i> L		(2 ⁺)&		
12085.2 <i>15</i> L L 12091.9 <i>15</i> L	12071.4 <i>15</i>	,		
12091.9 <i>15</i> L				
12099 L	12091.9 13		L L	
12101.3 15 $1^{-\&}$ JKL E(level): possible analog of 2356 level in 42 Ca.		1-&		E(level): possible analog of 2356 level in ⁴² Ca.
12105.1 <i>15</i> J L	12105.1 <i>15</i>			, , , , , , , , , , , , , , , , , , , ,
12109 JK		0.		
12112.2 <i>15</i> 1 ^{-&} JKL	12112.2 <i>15</i>	1-&	JKL	

E(level) [†]	$J^{\pi \#}$		XREF		Comments
12116.5 <i>15</i>	(2 ⁺)&		KL		
12123.8 <i>15</i>	$(1^-,2^+)$ &		JKL		
12127.6 <i>15</i>	. , ,		JKL		
12130			J		
12135.2 15			JKL		
12137.9 <i>15</i> 12142			L JK		
12144.7 15			JKL		
12146.8 <i>15</i>			L		
12148.5 <i>15</i>	0		J L		
12153.7 <i>15</i>	2+&		JKL		
12156	. &		J		
12158.6 <i>15</i>	1-&		KL		
12160	1-&		JK		
12163.1 <i>15</i> 12168 <i>3</i>	(1 ⁻)&		JKL		
12172.0 5	$(1,2^+)^a$		JKL JK		
12175.7 15	1-&		KL		
12173.7 13	1		JK		
12182.8 <i>15</i>	1-&		KL		
12185			JK		
12187.7 15			JKL		
12198 12198.1 <i>11</i>		E	JK		
12203.0 15	(1 ⁻ ,3 ⁻)&	L	JKL		
12203.0 13	(1 ,5)		JKL		
12207.9 <i>15</i>	$(0^+,1^-,2^+)^{\&}$		JKL		
12210.4 <i>15</i>	(- , , ,		L		
12212.2 <i>15</i>			JKL		
12216 12221.0 <i>15</i>			JK		
12221.0 13			L J L		
12226.3 15			JKL		
12230.5 15	$(1^-,2^+,3^-)$ &		JKL		
12236			JK		
12238.4 <i>15</i>	$(1^-,3^-)^{\&}$		JKL		
12239.4 <i>15</i>	. ρ.		J L		
12246.4 15	$(1^-,2^+)^{\&}$		L		
12247.6 15	(1 ⁻)&		L		
12251.8 <i>15</i> 12255	(1)		L JK		
12260.2 15	$(2^+,3^-)^{\&}$		L		
12263	(2 ,3)		JK		
12265.2 <i>15</i>	1-&		L		
12268.1 <i>15</i>	3- &		L		
12270	_		JK		
12271.8 <i>15</i>	$(1^-,2^+)^{\&}$		L		
12277.2 <i>15</i>	$(0^+,1^-,2^+,3^-,4^+)^{\&}$		JKL		
12278.7 15			JKL	v	IT. I (a. 4) 0 faces 0+
12280	0^+ $(1^-,2^+)^{\&}$		J	X	J^{π} : $L(p,t)=0$ from 0^+ .
12285.7 <i>15</i>	(1 ,2')		J L		

E(level) [†]	$\mathbf{J}^{\pi \#}$		XREF	Comments
12287.7 15			JKL	
12291.3 <i>15</i>			JKL	
12294.9 <i>15</i>			L	
12298.6 <i>15</i>	$(1^-,2^+,3^-)^{\&}$		JKL	
12300.6 <i>15</i>			JKL	
12304.9 <i>15</i>			JKL	
12308.2 <i>15</i>			KL	
12310.9 <i>15</i>			JKL	
12314			JK	
12316			J	
12320.6 <i>15</i>	$(0^+,1^-,2^+)^{\&}$		L	
12323.2 15	$(1^-,2^+)^{\&}$		JKL	
12327.0 <i>15</i>	, ,		JKL	
12330			JK	
12336			JKL	
12340			KL	
12344			JK	
12348			JKL	
12351			JKL	
12358			J L	
12362			JKL	
12369			JKL	
12374			JKL	
12377			L	
12381			JKL	
12383			L	
12386			JKL	
12390			J	
12397		Е	J L	
12701.4 <i>4</i> 12814.7 <i>8</i>		E		
		E E		
13712.8 <i>11</i> 13762.8 <i>13</i>		E		
14700 50	0^{+}	E		XREF: Others: AC
14/00/50	U			J^{π} : L(³ He,n)=0.
15251.7 <i>13</i>		E		· · · · · · · · · · · · · · · · · · ·
$17.4 \times 10^3 I$	1-		J	Γ=3.3 MeV 5 (1973Di03)
				J^{π} : GDR, T=1 (p, γ).
$20.4 \times 10^3 I$	1-		J	Γ =4.4 MeV 1 (1973Di03)
				J^{π} : GDR, T=2 (p, γ).

 $[\]dagger$ From least-squares adjustment to measured E γ data when such data are available. Otherwise weighted averages of available level energies from different reactions are taken.

 $^{^{\}ddagger}$ Primarily from $(\alpha,p\gamma)$ and $(p,p'\gamma)$ by Doppler Shift Attenuation Method (DSAM) or Recoil Distance Method (RDM), unless otherwise noted.

[#] When L-transfer arguments are used, the target spin-parity is $J^{\pi}=3/2^+$ for 41 K; $J^{\pi}=0^+$ for 40 Ca, 42 Ca and 44 Ca; $J^{\pi}=7/2^-$ for 43 Ca. When assigning J^{π} to a level based on γ transitions from this level to a level of known J^{π} , evaluators use the following rules: if E γ <4 MeV, transitions are considered to be E1, M1 or E2; if E γ >4 MeV, M2 and E3 are also considered as possible.

[@] From angular distributions of the ground-state γ -rays from resonant states in (α, γ) .

[&]amp; From comparison of experimental data of angular distributions with theoretical predictions in (p,α) :resonance.

^a From $\gamma(\theta)$ and analysis of proton-resonance data in (p,γ) .

 ^b Band(A): g.s., Yrast band.
 ^c Band(B): Excited 0⁺ band.
 ^d Band(C): Negative-parity structure.

γ (42Ca)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α#	$I_{(\gamma+ce)}$	Comments
1524.71	2+	1524.67 3	100	$0.0 0^{+}$	E2				B(E2)(W.u.)=9.5 4
1837.31	0^{+}	312.60 25	100 6	1524.71 2+	E2		0.00349		B(E2)(W.u.)=55 5
									I_{γ} : represents 97.95% 17 decay branching for level.
		1837.3		$0.0 0^{+}$	E0			2.05 17	$\rho^{2}(E0)=0.140 \ 12, \ q_{K}^{2}(E0/E2)=0.92 \ 8, \ X(E0/E2)=0.089 \ 8$
									(2005Ki02 evaluation).
									Decay takes place by pair formation. Γ (pair
									production)= 1.6×10^{-8} eV 2 from (e,e') (1978Gr02).
									$I_{(\gamma+ce)}$: from $(p,p'\gamma)$.
2424.15	2+	586.9 [@]	<1.5	1837.31 0 ⁺					V V
		899.41 <i>4</i>	100 2	1524.71 2 ⁺	M1+E2	$-0.17\ 2$			B(M1)(W.u.)=0.15 5; B(E2)(W.u.)=15 6
		2424.16 7	43 2	$0.0 0^{+}$	E2				B(E2)(W.u.)=1.75
2752.40	4+	328.2	1.0 4	2424.15 2 ⁺	[E2]				$B(E2)(W.u.)=60 \ 30$
		1227.65 <i>3</i>	100.0 4	1524.71 2+	E2				B(E2)(W.u.)=8.3 12
3189.26	6+	436.84 12	100	2752.40 4+	E2				B(E2)(W.u.)=0.777 22
3253.89	4+	501.46 <i>3</i>	64 7	2752.40 4+	[M1]				B(M1)(W.u.)=0.50 11
		829.7	18 9	2424.15 2 ⁺	[E2]				$B(E2)(W.u.)=1.3\times10^2 8$
		1729.19 5	100 7	1524.71 2+	E2(+M3)	+0.05 4			B(E2)(W.u.)=19 4
3300.0	0_{+}	875.8	100 <i>I</i>	2424.15 2+	E2				$B(E2)(W.u.) < 1.3 \times 10^2$
		1775.3	8 4	$1524.71 \ 2^{+}$	E2				B(E2)(W.u.)<0.31
3392.01	2+	967.8	45 10	2424.15 2+					
		1554.7	15 <i>3</i>	$1837.31 0^{+}$	[E2]				B(E2)(W.u.)=3.2 +14-7
		1867.3	100 4	1524.71 2+	M1+E2	+1.7 4			B(M1)(W.u.)=0.0026 +11-6; B(E2)(W.u.)=6.4 +27-15
	_	3391.9	87 8	$0.0 0^{+}$	E2				B(E2)(W.u.)=0.43 9
3446.94	3-	692.0 8	6.6 18	2752.40 4+	[E1]				B(E1)(W.u.)=0.00025 11
		1022.77 4	57 2	2424.15 2 ⁺	[E1]	. 0.02.7			B(E1)(W.u.)=0.00068 23
2654.0	2+	1922.18 7	100 3	1524.71 2 ⁺	E1(+M2)	+0.02 7			B(E1)(W.u.)=0.00018 6; B(M2)(W.u.)<0.7
3654.0	2.	1229.8 1816.7	4.2 <i>10</i> 7 <i>4</i>	2424.15 2 ⁺ 1837.31 0 ⁺	EE:01				$D(E2)/W_{12} = 4 + 19 = 2$
		2129.2	100 3	1524.71 2 ⁺	[E2] M1(+E2)	-0.06 17			B(E2)(W.u.)=4 +18-3 B(M1)(W.u.)=0.035 25; B(E2)(W.u.)<0.55
		3653.8	22.2 10	$0.0 0^{+}$	E2	-0.00 17			B(E2)(W.u.)=0.035 25, B(E2)(W.u.)<0.55 B(E2)(W.u.)=0.34 25
3885.0	1-	1460.8	4 2	2424.15 2 ⁺	L2				D(L2)(W.d.)=0.54 25
3003.0	1	2047.6	93 3	1837.31 0 ⁺	E1				
		3884.8	100 4	$0.0 0^{+}$	E1				
3954.39	4-	507.45 <i>3</i>	100 4	3446.94 3-	M1+E2	+0.11 5			B(M1)(W.u.)=0.042 4; $B(E2)(W.u.)=6 +6-4$
		1202.0	18 4	2752.40 4+	E1				$B(E1)(W.u.)=1.5\times10^{-5} 4$
3999.66	4+	1247.2	7 4	2752.40 4+					()()()()()()()()()()()()()(
		1575.5	49 5	2424.15 2 ⁺					
		2474.80 10	100 5	1524.71 2+					
4047.0	3-	600.1	22 5	3446.94 3-	M1+E2	+0.21 12			$B(M1)(W.u.)=0.07 \ 3; \ B(E2)(W.u.)=30 +70-25$
		1294.6	29 8	2752.40 4+	[E1]				B(E1)(W.u.)=0.00024 11
		1622.8	29 10	$2424.15 \ 2^{+}$	[E1]				B(E1)(W.u.)=0.00012 6
İ		2522.2	100 11	$1524.71 \ 2^{+}$	[E1]				B(E1)(W.u.)=0.00011 4

19

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
4099.65	5-	652.8		3446.94 3-			
		910.37 <i>15</i>	100 <i>3</i>	3189.26 6+	E1(+M2)	+0.04 2	B(E1)(W.u.)=0.00102 24
		1347.26 <i>14</i>	61 <i>3</i>	2752.40 4+	E1+M2	-0.094	B(E1)(W.u.)=0.00019 5
4117.1	3-	670.1	61 <i>11</i>	3446.94 3-			
		1692.8	21 6	2424.15 2 ⁺			
		2592.2	100 7	1524.71 2+			
4232.0	1	1807.8	27 5	2424.15 2 ⁺			
		4231.8	100 5	$0.0 0^{+}$			
4342.3	$(0^+ \text{ to } 4^+)$	1918.1	100	2424.15 2 ⁺			
4354.0	4-	399.6	9 2	3954.39 4-	M1+E2	>0.09	B(M1)(W.u.)<0.046; B(E2)(W.u.)>3.9 δ: also,<-0.09.
		907.0	53 9	3446.94 3-			
		1100.1	20 5	3253.89 4+	[E1]		B(E1)(W.u.)=0.00010 3
		1601.6	100 9	2752.40 4+	E1		B(E1)(W.u.)=0.00016 3
4418.0	3-	971.0	67 12	3446.94 3-			
		1993.8	25 8	2424.15 2 ⁺			
		2893.2	100 <i>13</i>	1524.71 2+			
4443.0	4+	1189.1	10 <i>3</i>	3253.89 4 ⁺			
		1690.6	100 5	2752.40 4+			
		2018.8	16 <i>4</i>	$2424.15 \ 2^{+}$			
4448.8	2+	794.8	34 6	3654.0 2 ⁺			
		1001.8	37 9	3446.94 3-			
		2611.4	49 11	$1837.31 0^{+}$			
		2924.0	100 17	1524.71 2+			
		4448.5	66 14	$0.0 0^{+}$			
4505.0	$(2,3,4)^+$	1113.0	34 6	3392.01 2+			
		1251.1	15 4	3253.89 4+			
		1752.6	64 11	$2752.40 4^{+}$			
		2980.2	100 <i>13</i>	$1524.71 \ 2^{+}$			
4566.9	$(1,2^+)$	682.0	47 9	3885.0 1			
		2142.8	100 9	2424.15 2+			
		3042.2	100 9	$1524.71 \ 2^{+}$			I_{γ} : $I_{\gamma}(3043)/I_{\gamma}(2143)=78/44$ in (p,γ) .
		4566		$0.0 0^{+}$			I_{γ} : $I_{\gamma}(4566)/I_{\gamma}(2143)=100/44$ in (p,γ) .
4690.06	3-	2265.8	22 6	2424.15 2+			
		3165.24 <i>11</i>	100 6	$1524.71 \ 2^{+}$			
4717.53	6+	1463.7 <i>3</i>	95 5	3253.89 4+	[E2]		B(E2)(W.u.)=48 +30-13
		1525.5	35 7	3189.26 6+			
	- 1	1965.2 <i>4</i>	100 3	2752.40 4+	[E2]		B(E2)(W.u.)=12 +7-3
4759.71	2+	2335.70 30	57 29	2424.15 2+			
		2922.5	43 14	1837.31 0 ⁺			
		3235.1	86 29	1524.71 2+			
10.55		4759.6	100 29	$0.0 0^{+}$			
4866.0	2+	2441.8	100 9	$2424.15 \ 2^{+}$			

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	J_f^{π} N	⁄Iult.‡	δ^{\ddagger}	Comments
4866.0	2+	3341.2	22 9	1524.71				
		4865.7	22 9		0_{+}			I_{γ} : $I_{\gamma}(4866)/I_{\gamma}(3341)=100/100$ in (p,γ) .
4897.0	5-	779.0	8 1	4117.1	3 ⁻ [H	E2]		$B(E2)(W.u.)=3.1\times10^2 \ 15$
								I_{γ} : branching most likely incorrect.
		797.8 <i>3</i>	100 4	4099.65	5- N	11+E2	+0.14 8	B(M1)(W.u.)=0.7 4; B(E2)(W.u.)=70 +230-60
		1449.0	18 <i>4</i>	3446.94	3- E	2		B(E2)(W.u.)=31 16
4904.0	3-	2151.5	36 9	2752.40				
		2479.8	45 9	2424.15				
		4903.7	100 18			E3]		
4946.9	$(1,2,3)^{-}$	2522.7	100	2424.15	2+			
4971.0	3-	1016.6	91 <i>14</i>	3954.39	4-			
		2546.7	100 17	2424.15				
		3446.1	94 <i>17</i>	1524.71	2+			E_{γ} : (p, γ) reported 1526, 2281 and 4968 γ transitions instead of the three transition given here from (α ,p γ).
5017.14	4+	1763.12 <i>12</i>	100 7	3253.89	4+			() _F ///
	•	3492.2	21 7	1524.71				
5075.0	$(1,2,3)^{-}$	657.0	47 10	4418.0				
- 3,0.0	(1,=,0)	1628.0	100 10	3446.94				
5158.0	3-	2733.7	85 17	2424.15				
0100.0		3633.1	100 17	1524.71				
5188.0	$(2,3,4)^+$	770.0	100 17	4418.0				
5210.3	(2^+)	1956.1	100 5	3253.89				
5210.5	(2)	2457.5	14 5	2752.40				
5212.98	6	1213.2 3	100 10	3999.66				
3212.70	O	1959.1 4	75 9	3253.89				
5214.1	(2^{+})	1217 3	100 8	3999.66				
221 111	(2)	2789.7	25 7	2424.15				
		3689.1	39 8	1524.71				
		5213.7 [@]	37 0					a reported in (n a) only
5220 O	(2.4)=		(1 11		0+			γ reported in (p,γ) only.
5320.0	$(3,4)^{-}$	902.0	61 11		3-			
		1220.3	61 11	4099.65				
		1273.0	26 5		3-			
		1365.6	100 13	3954.39				
5245 0	0+	2066.1	16 5	3253.89				
5345.0	0^{+}	3820.1	100	1524.71				
5358.0	2+	2933.7	33 20	2424.15				
5200 O	<i>-</i>	5357.6	100 20		0+			
5380.0	5-	2126.1	52 10	3253.89				
		2190.5	86 12	3189.26				
5202 O	(2)=	2627.5	100 14	2752.40				
5393.0	$(3)^{-}$	2968.7	33 12	2424.15				
5 4 2 C C	(2.4)=	3868.1	100 12	1524.71				
5439.0	$(3,4)^{-}$	1339.3	100	4099.65	5			

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
5472.0	$(2,3,4)^+$	2218.1	100 10	3253.89 4+			
		2719.5	43 8	2752.40 4+			
		3947.1	16 <i>10</i>	$1524.71 \ 2^{+}$			
5490.77	6-	2301.6 2	100	3189.26 6 ⁺	E1(+M2)	+0.10 8	B(E1)(W.u.)=0.00077 19
5491.0	3-	1374.0	100 <i>13</i>	4117.1 3			
		3966.1	45 13	1524.71 2+			
5510.0	3-	1463.0	47 12	4047.0 3-			
		2063.0	100 12	3446.94 3-			
5530.0	2+	3105.7	100 13	2424.15 2+			
		4005.1	43 13	1524.71 2+			
5578.0	$(0^+ \text{ to } 4^+)$	2185.9	100	3392.01 2+			
5593.0	3-	1638.6	100 15	3954.39 4			
		3168.7	56 8	2424.15 2+			
		4068.1	52 15	1524.71 2+			
		5592.6	52 15	0.0 0+	[E3]		E_{γ} : reported only in (p,γ) .
5601.0	$(3^-,4^-)$	1096.0	49 15	4505.0 (2,3,4)+			
	-	1601.3	100 15	3999.66 4+			
5624.0	3-	1624.3	100 15	3999.66 4+			
5665.0	(2-)	5623.6	60 15	$0.0 0^{+}$	[E3]		
5665.0	(3^{-})	1247.0	51 11	4418.0 3			
		1710.6	100 16	3954.39 4 ⁻			
5.670.0	(2-)	3240.7	71 13	2424.15 2 ⁺			
5670.0	(3^{-})	2223.0	100 16	3446.94 3 ⁻			
5601.77	6 ⁺	4145.1	79 16	1524.71 2 ⁺			
5691.77	θ.	974.1 2	100 13	4717.53 6 ⁺			
		2437.8 3	83 <i>13</i> 30 <i>9</i>	3253.89 4 ⁺			
5716.0	2+	2502.4 2462.0	100	3189.26 6 ⁺ 3253.89 4 ⁺			
5725.0	$(2^+ \text{ to } 6^+)$	2972.5	100	2752.40 4 ⁺			
				2424.15 2 ⁺			
5738.0	(2^{+})	3313.7 4213.1	33 <i>17</i> 33 <i>17</i>	1524.71 2 ⁺			
		5737.6	100 33	$0.0 0^{+}$			
5744.01	7-	253.3 1	2.6 2	5490.77 6 ⁻			
) / 44 .U1	/	1026.3 2	2.0 <i>2</i> 4.0 <i>4</i>	3490.77 6 4717.53 6 ⁺			
		1020.3 <i>2</i> 1644.29 <i>11</i>	100 3	4099.65 5	E2(+M3)	-0.02 3	B(E2)(W.u.)=7.2 18
		2554.75 <i>21</i>	73 3	3189.26 6 ⁺		$-0.02\ 3$ $-0.04\ 2$	B(E1)(W.u.)=7.2 To B(E1)(W.u.)=3.2×10 ⁻⁵ 8; B(M2)(W.u.)<0.12
5769.0	3-				E1+M2	-0.04 2	$D(E1)(W.U.)=3.2\times10^{-6}$ o; $D(W12)(W.U.)<0.12$
0/09.0	3	3016.5 3344.7	100 <i>11</i> 59 <i>11</i>	2752.40 4 ⁺ 2424.15 2 ⁺			
5774.9	(4.5)+	3344.7 2521.0	59 <i>11</i> 100 <i>3</i>	2424.15 2° 3253.89 4 ⁺			
) / /4.9	$(4,5)^+$	2521.0 2585.5		3189.26 6 ⁺			
5707.0	(1.2)+		12 <i>3</i> 100 <i>18</i>				
5797.0	$(1,2)^+$	3372.7		2424.15 2 ⁺			
		4272.1 5796.6	72 <i>15</i> 85 <i>18</i>	1524.71 2 ⁺ 0.0 0 ⁺			

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}_{_f}^\pi$	Mult.‡	δ^{\ddagger}	Comments
5802.0	$\frac{3}{3}$	$\frac{E_{\gamma}}{1802.3}$	$\frac{1\gamma}{100}$	3999.66		1.1016		
5822.0	$(1,2,3)^{-}$	3397.7	100	2424.15				
5866.0	(1,2,3) $(1,2,3^-)$	4028.5	122 22	1837.31				
3000.0	(1,2,3)	4341.1	100 22	1524.71				
5875.0	2+	3122.5	41 11	2752.40				
3073.0	2	3450.7	100 11	2424.15				
5924.0	$(3,4)^{-}$	1419.0	27 8	4505.0				
3721.0	(3,1)	1570.0	32 8	4354.0	4-			
		1824.2	100 14	4099.65				
		1969.6	57 11	3954.39				
		3171.5	54 11	2752.40				
5925.5	(5)	2736.2 4	100	3189.26				
5994.0	3-	1023.0	20 6	4971.0				
		3569.7	100 6	2424.15				
6003.0	3-,4-	3250.5	100	2752.40				
6020.0	$(4^+,5,6^-)$	2065.6	23 7	3954.39				
		2830.5	100 7	3189.26				
6028.0	$(3)^{-}$	2073.6	91 <i>16</i>	3954.39				
		3275.5	100 16	2752.40				
		4503.0	36 11	1524.71				
6038.0	$(1,2,3)^-$	3613.7	33 8	2424.15				Additional information 7.
6002.5	(2 5-)	4513.0	100 8	1524.71				Additional information 8.
6093.5	$(3^- \text{ to } 7^-)$	1197.0	100 8	4897.0				
(104.0	(O+ , 4+)	1993.2	47 8	4099.65				
6104.0	$(0^+ \text{ to } 4^+)$	3679.7	100 14	2424.15				
6113.0	4+	4579.0 1695.0	79 <i>14</i> 16 <i>5</i>	1524.71 4418.0				
0115.0	4			3253.89				
6140.8	6-	2859.0 649.8	100 <i>5</i> 16 <i>6</i>	5490.77		(M1+E2)	-0.25 + 25 - 10	B(M1)(W.u.)=0.16 +8-10; B(E2)(W.u.)<210
0170.0	U	1787.0	10 <i>0</i>	4354.0		(M1+E2) [E2]	0.23 +23-10	B(E2)(W.u.)=8+3-4
		2041.2 [@]	26 5	4099.65				B(M1)(W.u.)=0.009 +3-5
		2041.2	20 3	4099.03	3	[M1]		Placement possibly incorrect.
		2186.5	100 9	3954.39	<i>Δ</i> -	E2(+M3)	≈0	B(E2)(W.u.)=13 5
6144.72	7-	2955.42 20	100 9	3189.26		E2(+M3) E1(+M2)	+0.02 2	B(E2)(W.u.)=13 3 B(E1)(W.u.)>0.00031
6182.0	$(1,2,3^{-})$	4657.0	100 13	1524.71		L1(1112)	10.02 2	D(D1)(11.41.)> 0.00031
0102.0	(1,2,5)	6181.5	47 13	0.0				
6212.0	3-	3459.4	100	2752.40				
6247.9	$(4^+,5,6^-)$	2293.5	74 13	3954.39				
	(. ,0,0)	3058.4	100 15	3189.26				
		3495.4	82 13	2752.40				
6408.57	8-	263.84 8	20.3 9	6144.72		M1(+E2)	0.00 2	B(M1)(W.u.)=0.0055 6
		664.6 2	5.0 7	5744.01		` /		
		917.77 12	100 3	5490.77		E2(+M3)	+0.03 2	B(E2)(W.u.)=2.28 21

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J'	Mult.‡	δ^{\ddagger}	Comments
6408.57	8-	3219.2 3	16.3 17	3189.26 6+	M2+E3	+0.85 23	B(M2)(W.u.)=0.016 5; B(E3)(W.u.)=5.0 18
							δ : weighted average of +0.8 2 in ($^{16}\text{O},2\text{p}\gamma$) and +2.0 10 in ($\alpha,\text{p}\gamma$).
6516.0		2630.9		3885.0 1			E_{γ} : from (^{14}C , ^{12}C) only.
		4091.6		2424.15 2+			E_{ν} : from (^{14}C , ^{12}C) only.
		4991.0		1524.71 2+			E_{γ} : from (14 C, 12 C) only.
6541.8	5 ⁺	1050.8	43 7	5490.77 6			Ey. Hom (C, C) omj.
		2442.2	29 7	4099.65 5			
		3352.4	100 10	3189.26 6+			
6553.72	9-	145.12 10	36.8 17	6408.57 8	M1(+E2)	0.00 2	B(M1)(W.u.)=0.042 4
		409.1 2	3.0 5	6144.72 7	,		E_{γ} : reported only in ($^{18}O, \alpha 2n\gamma$).
		809.73 10	100 2	5744.01 7	E2(+M3)	-0.032	B(E2)(W.u.)=2.96 23
		3364.4 <i>3</i>	11 <i>I</i>	3189.26 6+	[E3]	0.03 2	B(E3)(W.u.)=4.1 5
			-		r ~1		E_{γ} : reported only in (^{18}O , $\alpha 2n\gamma$).
6584.7	(5 ⁻ to 8 ⁻)	840.7	100 11	5744.01 7			Ly. reported only in (O,u Zny).
	(= 10 0)	1093.8	85 11	5490.77 6			
6636.30	8+	1918.6 2	100 4	4717.53 6 ⁺			
0000.00		3447.1 <i>4</i>	100 3	3189.26 6+			
6674.8	$(4^+ \text{ to } 8^+)$	3485.4	100	3189.26 6+			
6715.9	(4 ⁺)	1505.0	100 13	5210.3 (2	+)		
	` /	1999.9	83 <i>13</i>	4717.53 6+	,		
		3525.4	68 <i>13</i>	3189.26 6+			
6718.14	7	1505.1 2	100 9	5212.98 6			
		2000.4 3	64 7	4717.53 6 ⁺			
		3528.8 <i>5</i>	52 5	3189.26 6+			
6746.5	4+	1850.0	100 18	4897.0 5			
		2646.2	96 18	4099.65 5			
6816.8	$(4,5)^+$	3627.4	100	3189.26 6+			
6895.8	4+	970.5	32 6	5925.5 (5))		
		1404.8	8 3	5490.77 6			
		3706.4	100 6	3189.26 6+			
6940.2	$(5^-,6,7^-)$	1195.7	43 9	5744.01 7			
		2043.9	100 13	4897.0 5			
		2840.2	74 11	4099.65 5			
6975.5	(5^+)	1483.8	36 7	5490.77 6			
		2259.9	27 7	4717.53 6+			
		2875.2	60 9	4099.65 5			
	. 1	3785.4	100 11	3189.26 6+			
7129.9	4+	3940.4	100	3189.26 6+			
7197.9	_	4008.4	100	3189.26 6+			
7282.02	9-	728.3 1	30 3	6553.72 9			
		873.5 2	100 5	6408.57 8			
7344.7	(6 ⁻ to 10 ⁻)	936.1	100	6408.57 8			
7360.6	$(5^{-} \text{ to } 9^{-})$	1215.9	100	6144.72 7			

$E_i(level)$	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
7368.46	10-	814.70 <i>19</i>	100 3	6553.72 9-	M1+E2		
		959.9 2	3.5 6	6408.57 8-	[E2]		B(E2)(W.u.)=1.4 + 10-4
7388.8	4+	4199.3	100	3189.26 6+			
7415.87	8+	779.6 2	35 <i>3</i>	6636.30 8+			
		1723.9 <i>3</i>	30 5	5691.77 6 ⁺			
		2699.9	4.0 12	4717.53 6 ⁺			
		4225.3	100 5	3189.26 6+			
7421.2	$(4^+ \text{ to } 8^+)$	2704.9	33 5	4717.53 6+			
		4230.3	100 5	3189.26 6 ⁺			
7543.1	$(4^+ \text{ to } 7^-)$	2645.9	100 <i>19</i>	4897.0 5-			
		2826.9	100 <i>19</i>	4717.53 6 ⁺			
		4352.3	63 19	3189.26 6+			
7562.5	$(4^+,5^+)$	2844.9	100	4717.53 6 ⁺			
7634.03	$(6,8^+)$	1708.5 <i>4</i>	51 9	5925.5 (5)			
		1942.2 <i>3</i>	54 9	5691.77 6 ⁺			
		2916.3 <i>3</i>	100 <i>14</i>	4717.53 6 ⁺			
		4444.3	80 11	3189.26 6+			
7696.8	4+	4507.3	100	3189.26 6+			
7726.5	$(4^+ \text{ to } 8^+)$	3008.9	100	4717.53 6 ⁺			
7750.66	$(11)^{-}$	382.20 8	100	7368.46 10	M1(+E2)	+0.02 7	
7758.0	$(6^-,7^-)$	1349.1	56 9	6408.57 8			
		2013.6	75 13	5744.01 7-			
		2266.7	100 13	5490.77 6			
		2861.9	81 <i>13</i>	4897.0 5			
7800.7	$(5^- \text{ to } 9^-)$	1655.9	100	6144.72 7			
7838.9	$(2^+ \text{ to } 6^+)$	1123.0	100	$6715.9 (4^+)$			
7921.2	$(4^+ \text{ to } 8^+)$	3204.9	100 13	4717.53 6 ⁺			
5020 0	(44 . 04)	4730.3	61 13	3189.26 6 ⁺			
7939.8	$(4^+ \text{ to } 8^+)$	2248.0	75 12	5691.77 6 ⁺			
0050 5	(4+ , 0+)	4750.3	100 12	3189.26 6+			
8052.6	$(4^+ \text{ to } 8^+)$	3334.9	100	4717.53 6 ⁺			
8059.7	(6 ⁻ to 9 ⁻)	1651.1	100 2	6408.57 8			
0000 7	(7- , 11-)	2315.6	6 2	5744.01 7			
8082.7	$(7^- \text{ to } 11^-)$	1529.0	100	6553.72 9-			
8103.2	$(4^+ \text{ to } 8^+)$	2410.0	49 8	5691.77 6 ⁺			
0007.46	1.1-	3386.9	100 8	4717.53 6 ⁺	M1 . F2	0.11.7	D(M1)/W), 0.0005 D/E0/W), 0.040
8297.46	11-	928.98 10	100 4	7368.46 10	M1+E2	$-0.11\ 5$	B(M1)(W.u.)>0.0095; B(E2)(W.u.)>0.040
0264.0	((= 7 0±)	1743.8 2	67 4	6553.72 9-	[E2]		
8364.8	$(6^-,7,8^+)$	1956.1	100 18	6408.57 8			
0.440.7	(7.0)=	5175.2	75 18	3189.26 6 ⁺			
8449.7	$(7,8)^{-}$	1896.0	69 12	6553.72 9-			
		2041.0	69 12	6408.57 8			
		2958.7	100 12	5490.77 6-			

$\gamma(^{42}\text{Ca})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.‡	δ^{\ddagger}
8511.7	(6 ⁻ to 9 ⁻)	2103.0	89 13	6408.57 8	_		
	(* ,	2767.6	100 13	5744.01 7			
8517.0	(3 to 9)	2591.4	100		5)		
8522.3	(10)	771.61 20	100	,	11) ⁻	D(+Q)	0.00 4
8580.9	(2^+) to $6^+)$	1865.0			4 ⁺)		
8611.9	$(2^+ \text{ to } 6^+)$	1896.0	100	6715.9	4 ⁺)		
8615.13	9	1199.3 <i>3</i>	34 <i>4</i>	7415.87 8	+ _		
		1896.9 2	100 8	6718.14 7			
		1978.7 <i>3</i>	54 7	6636.30 8	+		
		2061.1	9 2	6553.72 9	_		
8722.30	9	1306.4 2	90 9	7415.87 8	+		
		1440.3 <i>3</i>	30 5	7282.02 9	_		
		2004.0 <i>3</i>	86 <i>15</i>	6718.14 7			
		2085.9 2	100 10	6636.30 8	+		
		2168.6 <i>3</i>	36 <i>6</i>	6553.72 9	-		
8744.9	$(8^- \text{ to } 12^-)$	1376.4		7368.46 1	0-		
8773.7	(5,6,7)	3282.7	100 11	5490.77 6	_		
		5584.2	41 <i>11</i>	3189.26 6	+		
8847.97	(10^{+})	2211.6 2	100	6636.30 8	+		
8951.3	$(6^+ \text{ to } 10^+)$	2314.9	100	6636.30 8	+		
9015.01	10 ⁺	292.7 2	11 2	8722.30 9			
		399.9 <i>1</i>	26 2	8615.13 9			
		717.6 <i>3</i>	5 <i>1</i>		1-		
		1599.1 <i>I</i>	100 4	7415.87 8	+		
		1733.0 2	67 10	7282.02 9			
		2378.6 <i>3</i>	13 2	6636.30 8			
		2461.3 <i>3</i>	15 2	6553.72 9			
9036.9	$(8^- \text{ to } 12^-)$	1668.4	100		0_		
9205.9	$(7^- \text{ to } 9^-)$	1924.0	92 13	7282.02 9			
		3060.8	100 <i>13</i>	6144.72 7			
9241.9?		1959.9		7282.02 9			
9311.08	$(8,10^+)$	1677.0 <i>3</i>	90 <i>6</i>	`	5,8+)		
		2674.7 <i>3</i>	100 12	6636.30 8			
9377.7	$(5^- \text{ to } 9^-)$	3633.5	100	5744.01 7			
9759.7	(7 ⁻ to 11 ⁻)	3205.9	100	6553.72 9			
9786.29	$(9^-,11)$	475.2 <i>1</i>	14 <i>I</i>		$8,10^{+})$		
		771.3 <i>1</i>	100 3		0+		
		938.3 2	16 <i>I</i>		10^{+})		
		1063.9 3	24.0 14	8722.30 9			
		1171.0 2	16.0 15	8615.13 9			
		1488.8 <i>1</i>	44 2		1-		
0041	(5.6)=	2417.8 2	28 2		0_		
9841.6	$(5,6)^{-}$	3696.7	100	6144.72 7	_		

γ (⁴²Ca) (continued)

Comments	\mathbf{J}_f^{π}	E_f	I_{γ}^{\dagger}	$\mathrm{E}_{\gamma}^{\dagger}$	\mathbf{J}_i^{π}	$E_i(level)$
	7-	6144.72	100	3890.7	(5 ⁻ to 9 ⁻)	10035.6
		9786.29	100 3	382.4 1	$(10,12^+)$	10168.69
		9015.01	29 2	1153.6 3	(10,12)	10100.05
		8297.46	11 <i>I</i>	1871.2 2		
I_{γ} : represents>60% decay branching for level.		4099.65	100	6349.8	(5)	10450.0
1) represents to a dead crane ming for level		8297.46	100	2868.1 8	(10,12)	11165.7
		1524.71	100	9835.4	$(1,2^+)$	11361.3
	0+	0.0		11359.6	(1,2)	11301.3
		8847.97	100	2557.0	(12^{+})	11405.1
		5017.14	100	6462.79 <i>17</i>	3-,4-	(11480.64)
		4759.71		6720.46 <i>18</i>	5 ,.	(11100.01)
		4690.06		6790.05 <i>17</i>		
		3999.66		7480.07 18		
	<u>1</u> -	3954.39		7525.47 10		
	3-	3446.94		8033.03 18		
		3253.89		8225.86 <i>13</i>		
		2752.40		8727.42 <i>14</i>		
	2+	4448.8	6	7194.6	$(1^-,2^+)$	11644.1
	1	4232.0	50	7411.4	(1 ,2)	11011.1
	3-	4117.1	19	7526.4		
	3-	4047.0	19	7596.4		
	1-	3885.0	19	7758.3		
	2+	3654.0	19	7989.3		
		3392.01	9	8251.2		
		2424.15	16	9218.8		
		1837.31	12	9805.6		
	2+	1524.71	100	10118.1		
	0+	0.0	44	11642.4		
	2+	4448.8	38	7221.4	2+	11670.9
	3-	4117.1	34	7553.2	_	
	2+	3654.0	28	8016.1		
		3392.01	31	8278.0		
					$(1^{-}.2^{+})$	11674.0
					, ,	
					$(1^-,2^+)$	11693.0
					` ' '	
			33			
	0 ⁺ 2 ⁺ 3 ⁻ 2 ⁺ 2 ⁺ 0 ⁺ 2 ⁺ 1	2424.15 1837.31 1524.71 4117.1 3392.01 2424.15 1837.31 1524.71 4759.71 4232.0 4117.1	59 100 55 100 59 48 48 90 90 62 33	9245.6 9832.4 10144.9 7556.3 8281.1 9248.7 9835.5 10148.0 6932.5 7460.3 7575.3	(1 ⁻ ,2 ⁺)	11674.0 11693.0

E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}^\pi_{f}$	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	${\rm J}_f^\pi$
11743.4	$(1^-,2^+)$	9904.8	26	1837.31		11843.3	$(1^-,2^+)$	9418.0	29	2424.15	2+
		10217.4	100	1524.71	2+			10317.2	61	1524.71	2+
11555	(1- 0+)	11741.6	24	0.0	0+	11868.0	$(1^-,2^+)$	6963.4	87	4904.0	3-
11775.0	$(1^-,2^+)$	7207.3	33	4566.9	$(1,2^+)$			7750.2	87	4117.1	3-
		7542.3	29	4232.0	1			7820.2	87	4047.0	3-
		7657.3	19	4117.1	3-			8213.1	73	3654.0	2 ⁺
		7774.6	76 20	3999.66	1-			8475.1	87	3392.01	2 ⁺ 2 ⁺
		7889.2 8327.2	29 100	3885.0 3446.94				9442.7 10029.4	100 33	2424.15 1837.31	0+
		8382.1	62	3392.01				10029.4	53	1524.71	2 ⁺
		9349.7	76	2424.15				11866.2	60	0.0	0+
		10249.0	24	1524.71		11871.5	$(1^-,2^+)$	6133.0	59	5738.0	(2^{+})
		11773.2	29	0.0	0+	110/1.5	(1 ,2)	6513.0	59	5358.0	2+
11795.2	$(1^-,2^+)$	7677.4	50	4117.1	3-			7753.7	82	4117.1	3-
11773.2	(1 ,2)	8347.4	25	3446.94				7823.7	47	4047.0	3-
		8402.3	100	3392.01	2+			7985.7	71	3885.0	1-
		9369.9	92	2424.15				8478.6	29	3392.01	2+
		9956.6	46	1837.31	0^{+}			9446.2	100	2424.15	2+
		10269.2	33	1524.71	2+			10032.9	29	1837.31	0^{+}
		11793.4	71	0.0	0^{+}			10345.4	47	1524.71	2+
11805.4	$(1^-,2^+)$	6211.9	86	5593.0	3-			11869.7	55	0.0	0_{+}
		7355.9	38	4448.8	2+	11873.7	$(1^-,2^+)$	7641.0	100	4232.0	1
		7386.7	52	4418.0	3-			7755.9	28	4117.1	3-
		7462.4	100	4342.3	$(0^+ \text{ to } 4^+)$			7825.9	28	4047.0	3-
		7757.6	71	4047.0	3-			7987.9	34	3885.0	1-
		8357.6	24	3446.94				8480.8	19	3392.01	2+
		8412.5	52	3392.01	2+			9448.4	25	2424.15	2+
		9380.1	14	2424.15				10035.1	16	1837.31	0+
		10279.3	19	1524.71				10347.6	56	1524.71	2+
11001 1		11803.6	19	0.0	0+	11005 ((1 = 0±)	11871.9	6	0.0	0+
11821.1		1652.3 4	83 11		$(10,12^+)$	11925.6	$(1^-,2^+)$	8270.7	42	3654.0	2 ⁺ 3 ⁻
11022 4	(1-)	2034.6 <i>8</i> 7589.7	100 7 100	9786.29 4232.0	. , ,			8477.7 9500.3	53 40	3446.94 2424.15	3 2 ⁺
11822.4	(1-)	8167.5	56	3654.0	1 2 ⁺			10399.5	63	1524.71	2+ 2+
		8429.5	52	3392.01	2 ⁺			11923.8	100	0.0	0+
		9397.1	48	2424.15		11959.2	(1^{-})	8511.3	25	3446.94	3-
		9983.8	36	1837.31		11737.2	(1)	9533.9	23	2424.15	2 ⁺
		10296.3	92	1524.71	2+			10433.1	50	1524.71	2+
		11820.6	16	0.0	0^{+}			11957.4	100	0.0	0+
11843.3	$(1^-,2^+)$	6871.7	68	4971.0	3-	11980.3	1-	7530.8	23	4448.8	2+
110.0.0	(± ,=)	6976.7	100	4866.0	2+	-1700.0	-	8325.4	18	3654.0	2 ⁺
		8188.4	39	3654.0	2 ⁺			8532.4	5	3446.94	3-
		8542.4	26	3300.0	0^{+}			8587.4	8	3392.01	2+

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \underline{J_f^{\pi}}$	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$
11980.3	1-	8679.3	21	3300.0 0+	12198.1		3350.0	8847.97	(10^+)
		9555.0	21	$2424.15 \ 2^{+}$	12701.4		880.3 2	11821.1	
		10454.2	100	1524.71 2 ⁺			2533 <i>1</i>	10168.69	$(10,12^+)$
		11978.5	62	$0.0 0^{+}$	12814.7		2646.0	10168.69	$(10,12^+)$
12172.0	$(1,2^+)$	8779.0	72	3392.01 2+			4517.0	8297.46	11-
		9746.6	83	2424.15 2+	13712.8		5415.0	8297.46	11-
		10645.8	60	$1524.71 \ 2^{+}$	13762.8		2037.0	11725.7	$(8^- \text{ to } 11)$
		12170.1	100	$0.0 0^{+}$	15251.7		2436.9	12814.7	

[†] Primarily from $(\alpha, p\gamma)$, (p, γ) , $(p, p'\gamma)$ and $(^{18}O, \alpha 2n\gamma)$. Weighted averages are taken of all available values with uncertainties. Values of γ -energies without uncertainties are deduced from level-energy difference.

[‡] From $\gamma(\theta, \text{pol})$ in $(\alpha, \text{p}\gamma)$, $(\text{p}, \text{p}'\gamma)$ and $(^{19}F, \alpha\gamma)$. If $T_{1/2}$ is unknown and parity is determined not by polarization measurements, evaluators use D and Q, instead of M1 and E2, or, E1 and M2.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Legend

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

6516.0 8⁻ (4⁺,5,6⁻) 31.0 ps 25 6408.57 6247.9 3⁻ (1,2,3⁻) 7⁻ 6212.0 6182.0 6144.72 <70 fs 6140.8 49 fs +21-14 $\frac{6}{4^{+}}$ $(0^{+} \text{ to } 4^{+})$ $(3^{-} \text{ to } 7^{-})$ $(1,2,3)^{-}$ $(3)^{-}$ $(4^{+} 5,6^{-})$ 6113.0 6104.0 6093.5 6038.0 6028.0 $\frac{(3)}{(4^+,5,6^-)}$ $\frac{3^-,4^-}{3^-}$ 6020.0 6003.0 5994.0 0.42 ps 10 5744.01 5490.77 59 fs 14 4971.0 4897.0 47 fs 21 4418.0 4354.0 0.47 ps 7 4099.65 0.45 ps 10 3954.39 3.36 ps 21 3885.0 3253.89 123 fs 21 3189.26 5.28 ns 15 2752.40 2.8 ps 4 2424.15 140 fs 40 1524.71 0.83 ps *3* 0.0 stable

 $^{42}_{20}\text{Ca}_{22}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

History Author Type Citation Literature Cutoff Date Jun Chen and Balraj Singh NDS 190,1 (2023) Full Evaluation 20-Jun-2023 $O(\beta^{-}) = -3652.7$ 18; S(n) = 11131.18 23; S(p) = 12182.3 5; $O(\alpha) = -8853.7$ 3 S(2n)=19064.07 29, S(2p)=21624 6 (2021Wa16). ⁴⁴Ca identification: 1923As04, 1925As02, 1935As01, 1938Ni04 using mass-spectrographic technique. Other measurements and reactions: Mesic atoms (pionic x rays): 1970Ku03, 1970Ma26, 1979Ba07, 1980Po01, 1983Ku10. Mesic atoms (muonic x rays): 1966Co02, 1981Wo02. Mesic atoms (kaonic x rays): 1971Ku08. Isotope shifts: 2015Go24, 1976Ne08, 1978Br31, 1978Wo03, 1980Be13, 1982An15, 1982Ay02, 1983Lo13, 1984Pa12, 1986We08, 1991As06, 1992Ma20, 1998No10. 26 Mg(18 O,X) E=130 MeV: 1995Co22. 40 Ar(α ,n): 1938Fu01: resonances. Additional information 1. ²⁶Mg(¹⁸O,xn): 1995Co22. 40 Ar(α, γ): 1976Fo04,1974Fo04. ⁴²Ca(⁴⁸Ti, ⁴⁶Ti): 1986Br06,1988Br02; measured $\sigma(E,\theta)$. 1977Mu02,1993Mo10,1966Go38,1964Go13: 43 Ca(n, γ),(n,X) resonance. ≈50 43 Ca+n resonances between 11133 and 11172 keV. ⁴⁵Sc(γ ,p): 1995Is07,1993Is07,1982Ry01,1977Oi01,1975We11. ⁴⁸Ti(p,pα): 1981Ca02,1984Ca09. ⁴²Ca(⁴⁸Ti, ⁴⁶Ti) E=385 MeV: 1986Br06. ⁴⁵Sc(p,2p): 1967Ru03 (E=156 MeV); 1969Ja12 (E=385 MeV). Theoretical structure calculations: 2023Ha06: calculated levels, J^{π} using shell model with OXBASH code. 2022Wa13: calculated levels, J^{π} of the low-lying spectra in Bayesian neural network (BNN) approach. 2021Fu11: calculated energy levels, J^{π} , S(2n) using realistic shell model. 2019Wa31, 2015Wa37: calculated binding energy, S(2n), levels, J^{π} , yrast states, spectroscopic factors using shell model with CD-Bonn and Kuo-Brown (KB) interactions.

2017Va30: calculated levels, J^{π} using IBM, p-IBM and shell-model with KB3G interaction.

2016Im01: calculated low-lying levels, J^{π} using g.s. multiplets with seniority 2, 3 and 4 for pairing of nucleons in $1f_{7/2}$ shell.

2014Ho12: calculated ground-state energy in pf and pfg_{9/2} shells, levels, J^{π} , B(E2), B(M1) using Chiral two- and three-nucleon interactions, and many-body perturbation theory (MBPT).

2012Ca13: calculated levels, J^{π} , orbital occupations, quadrupole moments, B(E2), magnetic moment using shell model with realistic interactions.

2012Ca27: calculated levels, J^{π} , B(E2), B(E3), two-quasi particle components for the first 2^{+} and 3^{-} states using QRPA with iterative non-Hermitian Arnoldi diagonalization procedures.

2012Ut01: calculated energy levels, J^{π} , spectroscopic factors using large-scale shell-Model.

2010Le16: calculated levels, J^{π} , B(E2), wave function overlaps using shell Model with GXPF1A interaction.

1981Co09: calculated levels, J^{π} , spectroscopic factors using shell model with modified Kuo-Brown interaction.

1974Sk03: calculated levels, J^{π} , B(E2), spectroscopic factors, γ -branching ratios using an extended model for the mixing between 4p spherical and 6p-2h deformed configurations.

1973Ba23: calculated binding energy, levels, J^{π} , spectroscopic factors using shell model with a pairing-plus-surface-tensor interaction.

1973Mc10: calculated levels, J^{π} , spectroscopic factors, B(E2), B(M1) using shell model.

1972Fu02: calculated levels, J^{π} , B(E2), spectroscopic factors using shell model with Hamada-Johnston, and Tabakin interactions.

1970Fe06: calculated levels, J^{π} , binding energy, spectroscopic factors using shell model with effective interactions.

Theoretical calculations: about 343 primary references for structure calculations from 1970 to 2023, and six references for double- β decay can be retrieved from the NSR database at www.nndc.bnl.gov/nsr/.

44Ca Levels

Cross Reference (XREF) Flags

```
44Ca(6Li,6Li')
                            ^{44}K β<sup>-</sup> decay (22.13 min)
                                                                        ^{43}Ca(n,\gamma) E=thermal
                                                                                                                   Y
                     Α
                                                                                                                            44Ca(7Li,7Li)
                            ^{44}Sc ε decay (4.0420 h)
                                                                        ^{43}Ca(n,\gamma),(n,n):resonances
                     В
                                                                 N
                                                                                                                   Z
                            ^{44}Sc ε decay (58.61 h)
                                                                        ^{43}Ca(d,p)
                                                                                                                   Others:
                     C
                                                                 0
                            ^{27}Al(^{19}F,2p\gamma)
                                                                                                                            44Ca(9Be,9Be')
                     D
                                                                        ^{44}Ca(\gamma,\gamma'),(pol \gamma,\gamma')
                                                                 P
                                                                                                                   AA
                            ^{30}Si(^{16}O,2p\gamma)
                                                                        <sup>44</sup>Ca(e,e')
                                                                                                                            44Ca(16O,16O')
                     E
                                                                 Q
                                                                                                                   AB
                            ^{30}Si(^{18}O,2p2n\gamma)
                                                                                                                            44Ca(18O,18O')
                                                                        ^{44}Ca(\pi^+,\pi^{+\prime}),(\pi^-,\pi^{-\prime})
                     F
                                                                 R
                                                                                                                   AC
                            ^{36}S(^{14}C,\alpha 2n\gamma)
                                                                                                                            ^{45}Sc(\mu^-,n\gamma)
                                                                        ^{44}Ca(n,n'\gamma)
                     G
                                                                 S
                                                                                                                   AD
                     Н
                            ^{40}Ar(^{6}Li,d)
                                                                 T
                                                                        ^{44}Ca(p,p'),(pol p,p')
                                                                                                                   ΑE
                                                                                                                            ^{45}Sc(d,^{3}He),(pol d,^{3}He)
                                                                                                                            ^{45}Sc(t,\alpha)
                     Ι
                            ^{41}K(\alpha,p\gamma),(\alpha,p)
                                                                 U
                                                                        ^{44}Ca(p,p'\gamma)
                                                                                                                   AF
                                                                                                                            <sup>46</sup>Ti(<sup>14</sup>C, <sup>16</sup>O)
                            ^{42}Ca(t,p)
                                                                 ۷
                                                                        44Ca(d,d')
                     ٦
                                                                                                                   AG
                            ^{42}Ca(\alpha, ^{2}He)
                                                                        <sup>44</sup>Ca(<sup>3</sup>He, <sup>3</sup>He'),(pol <sup>3</sup>He, <sup>3</sup>He')
                                                                                                                            48Ti(d,6Li)
                     K
                                                                                                                   AH
                            <sup>42</sup>Ca(<sup>48</sup>Ti, <sup>46</sup>Ti)
                                                                        ^{44}Ca(\alpha,\alpha')
                                                                                                                   ΑI
                                                                                                                            Coulomb excitation
                                                                   XREF
                                                                                                                              Comments
                                                   ABCDEFGHIJK M OPQRSTUVWXYZ
                                                                                                XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH,
                                                                                                The rms charge radius \langle r^2 \rangle^{1/2} = 3.5179 fm 21
                                                                                                   (2013An02 evaluation).
                                                                                                Evaluated change in charge radius
                                                                                                   \delta < r^2 > (^{44}\text{Ca} - ^{40}\text{Ca}) = +0.283 \text{ fm}^2 6 (2013\text{An02}).
                                                                                                \delta < r^2 > (^{40}\text{Ca} - ^{44}\text{Ca}) = 0.288 \text{ fm}^2 2(\text{stat}) \delta(\text{syst})
                                                                                                   (2016Ga34), 0.2904 fm<sup>2</sup> 10 (1998No10).
                                                                                                \delta v(^{40}\text{Ca}-^{44}\text{Ca})=851.1 \text{ MHz } 6(\text{stat})21(\text{syst})
                                                                                                   (2016Ga34).
                                                                                                J^{\pi}: L(t,p)=L(\alpha,^{2}He)=L(^{6}Li,d)=L(d,^{6}Li)=0 from 0^{+}.
                                                                                                 Adopted (1977En02) spectroscopic factors S: 3.1 3
                                                                                                   (L=3) (neutron stripping); 0.50 13 (L=3) (proton
 1157.0208<sup>c</sup> 30
                                 2.94 ps 12 ABCDEFGHIJ M OPQRSTUVWXY
                                                                                                XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH,
                                                                                                   ΑI
                                                                                                \mu=+0.34 6 (2003Sc21,2020StZV)
                                                                                                Q=-0.14 7 (1973To07,2021StZZ)
                                                                                                B(E2) 1=0.0475 20
                                                                                                J^{\pi}: L(t,p)=L(^{6}Li,d)=L(\alpha,\alpha')=L(d,d')=L(p,p')=L(e,e')=2
                                                                                                   from 0^+.
                                                                                                T_{1/2}: weighted average of 3.5 ps 7 from DSAM in
                                                                                                   (\alpha,p\gamma); 2.0 ps +8-5 from DSAM in (p,p'\gamma); 3.05 ps
                                                                                                   28 from DSAM in Coul. ex. (2003Sc21); 3.19 ps 27
                                                                                                   from DSAM in Coul. ex. (1973Fi15); and 2.88 ps 12
                                                                                                   from adopted B(E2)↑=0.0475 20 in Coulomb
                                                                                                   excitation.
                                                                                                \mu: from transient field method in 2003Sc21.
                                                                                                Q: from Coulomb excitation in 1973To07.
                                                                                                B(E2)1: weighted average of 0.0550 20 (1989It02) and
                                                                                                   0.048 3 (1971He08) in (e,e'), 0.0475 36 (2016Ca17),
                                                                                                   0.0473 20 (1973To07) and 0.049 5 (1972Bi17) in
                                                                                                   Coulomb excitation.
                                                                                                 Adopted (1977En02) spectroscopic factors S: 0.41 11
                                                                                                   (L=3) and 0.08 2 (L=1) (neutron stripping); 0.18 3
                                                                                                   (L=3) (proton pickup).
                                                                                                E(level): from (pol <sup>3</sup>He, <sup>3</sup>He') only; this level is not
1570?
                       2^{+}
                                                                                                   seen in other studies.
```

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
1883.516 <i>13</i>	0+	13.9 ps 42	A HIJ M OPQR TUVWX	J ^{π} : from analyzing power in (pol 3 He, 3 He'). XREF: Others: AB, AE, AF, AG, AH XREF: J(1903)X(1890?). J ^{π} : L(6 Li,d)=L(d, 6 Li)=0 from 0 ⁺ ; p-1883 γ (θ) is isotropic in (p,p' γ). T _{1/2} : other: >1.4 ps from DSAM in (p,p' γ). Adopted (1977En02) spectroscopic factors S: 0.39 10 (L=3) (neutron stripping); 0.12 3 (L=3) (proton
2030?	2+		К	pickup). E(level): from $(\alpha,^2$ He) only; this level is not seen in other studies.
2283.119 ^c 10	4+	1.9 ps 7	A CDEFGHIJ M O QR TUV X	J ^π : L(α , ² He)=2 from 0 ⁺ . XREF: Others: AB, AD, AE, AF, AG, AH, AI J ^π : L(⁶ Li,d)=L(e,e')=L(p,p')=L(α , α')=4 from 0 ⁺ . T _{1/2} : others: 2.6 ps from B(E2)↑(from 2 ⁺ ,1157)=0.021 in (¹⁶ O, ¹⁶ O'); 16 ps 5 from RDM in (¹⁹ F,2pγ) is discrepant. Adopted (1977En02) spectroscopic factors S: 0.14 4 (L=3) and 0.01 <i>I</i> (L=1) (neutron stripping); 0.09 3
2656.509 11	2+	30 fs <i>3</i>	AB F HIJ M OPQR TUV X	(L=3) (proton pickup). XREF: Others: AB, AD, AE, AF, AG, AH, AI B(E2)↑=0.0079 7 (1989It02) XREF: AI(2657?). J ^{π} : L(6 Li,d)=L(t,p)=L(p,p')=L(α , α')=2 from 0 ⁺ . T _{1/2} : from B(E2) in (e,e') in 1989It02. B(E2)↑: from 1989It02 in (e,e'). Adopted (1977En02) spectroscopic factors S: 0.51 13 (L=3) and <0.02 (L=1) (neutron stripping); 0.19 3 (L=3) (proton pickup).
3044.292 33	4+	4.6 ps +13-10	A FGHIJ M O TU X	XREF: Others: AB, AF, AG, AH J**: $L(t,p)=L(\alpha,\alpha')=4$ from 0 ⁺ . Adopted (1977En02) spectroscopic factors S: 0.91 23 (L=3) (neutron stripping); <0.04 (L=3) (proton pickup).
3285.004 ^c 22	6+	13.3 ps <i>12</i>	CDEFG IjK M T	XREF: Others: AH XREF: j(3298)K(3290)ah(3300). J ^{π} : L(α , ² He)=6 from 0 ⁺ ; 1001.869 γ , Δ J=2 to 4 ⁺ . T _{1/2} : other: <17 ps from RDM in (¹⁹ F,2p γ), <0.76
3301.36 4	2+	35 fs <i>18</i>	AB Ij M OP TU	ns from $\gamma\gamma(t)$ in (n,γ) E=thermal. XREF: Others: AH XREF: j(3298)ah(3300).
3307.872 10	3-	0.15 ps <i>6</i>	AB F j M OPQR TUV X	J ^{π} : 3301.33 γ E2 0 ^{$+$} . XREF: Others: AB, AF, AG, AH B(E3) \uparrow =0.0072 12 XREF: j(3298)ah(3300). J ^{π} : L(e,e')=L(p,p')=L(d,d')=L(α , α')=3 from 0 ^{$+$} . T _{1/2} : from adopted B(E3) \uparrow =0.0072 12 and γ -branching ratios. Other: <0.35 ns from $\gamma\gamma$ (t) in (n, γ) E=thermal. B(E3) \uparrow : unweighted average 0.0095 9 (1989It02) and 0.00559 23 (1971He08) in (e,e'), 0.0065 9 (1969BeYW) in (α , α').

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #			XR	EF			Comments
3357.29 11	(2+,3,4+)	<28 fs	A	IJ	M	0	TU	X	XREF: Others: AE, AF XREF: AE(3370). J^{π} : 1074 γ to 4 ⁺ , 2200 γ to 2 ⁺ . L(d, ² He)=2 from 0 ⁺ for a 3370 group suggest π =-, but L(t, α)=3 from 7/2 ⁻ for a 3360 group suggests π =+.
3581.3 <i>10</i>	0+		A	Н Ј		0	TU		XREF: Others: AH XREF: J(3592). J^{π} : L(d, ${}^{6}Li$)=L(${}^{6}Li$,d)=0 ⁺ from 0 ⁺ .
3661.527 10	1-&		A	j		OP	TU	X	XREF: Others: AF XREF: $j(3671)$ af(3670). J ^{π} : 3661γ D to 0^+ ; 353.67γ to 3^- is not M2 since it would require a $T_{1/2}>0.3$ ns or width $\Gamma<1.5\times10_6$ eV which is significantly smaller than observed $\Gamma_{\gamma}=0.08$ eV in (γ,γ') . $T_{1/2}$: 5.8 fs from $\Gamma_{\gamma}=0.08$ eV in (γ,γ') , but it would require a B(E2)(W.u.)(354 γ)=3800 exceeding RUL=100, which constrains $T_{1/2}>0.22$ ps
3676.092 14	(2+)		A	j	M	0	TU		or a width Γ<0.0021 eV. XREF: Others: AF XREF: j(3671)af(3670). J ^π : 3676.7γ to 0 ⁺ , 368.2γ to 3 ⁻ ; L(p,p')=(2) from 0 ⁺ .
3691.7 <i>4</i>	₁ &	46 [@] fs +30-13				P			-(F)F / (-) ·
3711.96 ^d 9	4-	<0.42 ns	A	F	M	0	T		XREF: Others: AF XREF: O(3729). J^{π} : L(t,α)=2 from 7/2 ⁻ ; 404.26γ D, ΔJ=1 to 3 ⁻ ; 1428.67γ ΔJ=0 to to 4 ⁺ .
3776.27 11	2-	<0.69 ns	A		M	0	TU		XREF: Others: AE, AF XREF: O(3792)AF(3770?). J ^{π} : spin=2 from py(θ) in (p,p' γ); L(d, ³ He)=2 from 7/2 ⁻ .
3880 <i>10</i> 3913.80 ^e 8	5-	>2 ps		FG	M	O Q	T	X	XREF: Others: AB, AF, AH B(E5) \uparrow =0.000083 15 XREF: af(3915)ah(3920). J ^{π} : L(e,e')=L(α , α ')=5 from 0 ⁺ . T _{1/2} : from DSAM in (14 C, α 2n γ). B(E5) \uparrow : unweighted average of 0.000096 8 (1989It02) and 0.000053 5 (1971He08) in (e,e'), and 0.000101 16 (1969BeYW) in
3922.71 10	5-	<0.56 ns		F	M		T		(α,α') . XREF: Others: AF, AH XREF: F(?)af(3915)ah(3920). J ^{π} : L(p,p')=5 from 0 ⁺ ; and γ' s to 4 ⁺ and 6 ⁺ .
3934? <i>10</i> 4011.4 <i>4</i>	$(2^+,3^+,4^+,5^+)$				M	0	Т		J^{π} : L(d,p)=(1) from 7/2 ⁻ . XREF: Others: AF XREF: O(4026)AF(4022).
4092.04 13	(6+)			F	M	0		x	XREF: Others: AF XREF: o(4104)x(4091)af(4099). J^{π} : 1809 γ (Q), ΔJ =(2) to 4 ⁺ .
4093.7 4	$(2^+,3,4^+)$		A			0		x	XREF: Others: AF

E(level) [†]	$J^{\pi \ddagger}$	${T_{1/2}}^{\#}$		XREF	Comments
					XREF: o(4104)x(4091)af(4099). E(level): this level is probably different from 4092 level (see discussion in 1976Co06 in 44 K β^- decay).
4170 5	(2+)			т х	J^{π} : 1810.4 γ to 4 ⁺ , 2937.8 γ to 2 ⁺ . XREF: Others: AH XREF: X(4169?)AH(4170). E(level): from (p,p').
4196.10 22	2+	50 fs +13-8		M OP TU	J ^π : L(α,α')=(2) from 0 ⁺ . XREF: O(4207). J ^π : L(d,p)=1 from 7/2 ⁻ ; Δ J=2 to 0 ⁺ from pγ(θ) in (p,p' γ). But J=1 is expected from population in (γ,γ'), although, a 2 ⁺ level could also be populated weakly either directly or from deexcitation of a higher J=1 level. T _{1/2} : from 30 fs ⁸⁻⁵ deduced from Γ _{γ0} for J=1 in
					(γ, γ') with a correcting factor of 5/3 due to the change of spin from 1 to 2, since $(2J+1)\Gamma_{g0}$ is proportional to measured γ -ray yield (2011Is01). Other: <0.69 ns from $\gamma\gamma$ (t) in (n, γ) E=thermal.
4260.27 35	$(2^+,3)$		A		J^{π} : (2 ⁺ ,3,4 ⁺) from γ' s to 2 ⁺ and 4 ⁺ ; 4 ⁺ excluded
4315.22 <i>14</i>	(1,2,3)		A		by β -decay from 2 ⁻ . XREF: Others: AF XREF: AF(4310?). J ^{π} : from β -decay from 2 ⁻ , log ft =7.04.
4358.440 <i>30</i>	3-		A	J M Q T X	XREF: Others: AF
4399.2 5	3-		A	j MOqrT X	J ^{π} : L(α , α')=3 from 0 ⁺ . XREF: Others: AB , AF , AH XREF: j(4396)O(4410)q(4390)r(4400)ab(4399)af(440 0)ah(4400).
4409.176 <i>14</i>	(1)-		A	j qr T	J ^{π} : L(p,p')=L(α , α')=3 from 0 ⁺ . XREF: Others: AB, AF, AH XREF: j(4396)q(4390)r(4400)ab(4399)af(4400)ah(440 0).
4436.7 5	$(1,2^+)$		A		J ^{π} : allowed β-decay from 2 ⁻ , log ft =5.63; 4408.9 γ to 0 ⁺ . J ^{π} : 4437 γ to 0 ⁺ .
4479.9 <i>5</i>	2+			J M O T X	XREF: Others: AE , AF XREF: O(4491?). J^{π} : L(t,p)=L(α , α')=2 from 0 ⁺ . But 3 ⁻ ,4 ⁻ from L(d, 3 He)=0 from 7/2 ⁻ for a group at 4480 is
4552.644 23	(3)-		A	j T	inconsistent. XREF: Others: AH XREF: j(4562)ah(4550). J ^{π} : allowed β -decay from 2 ^{$-$} , log ft =5.63; 2268.5 γ
4561.8? <i>6</i> 4564.87 <i>14</i>	(5 ⁻)		A F	jK M o Q T X	to 4 ⁺ . XREF: A(?). XREF: Others: AF , AH XREF: F(?)j(4562)K(4550)o(4569)af(4565)ah(4550). J ^{π} : L(α , α ')=L(p,p')=(5) from 0 ⁺ . L(α , ² He)=7 for a
4572.6 5	(1,2,3)		A	j o	4550 group. XREF: Others: AF , AH XREF: j(4562)o(4569)af(4565)ah(4550).
4584.08 <i>18</i>	$(2^+,3,4^+)$	<3.5 ns		M O T X	J ^π : β-decay from 2 ⁻ parent, log ft =7.0 3. XREF: O(4598). J ^π : 3427.5 γ to 2 ⁺ and 1539.4 γ to 4 ⁺ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #			X	REF			Comments
4616 10		,				0			
4649.46 10	1&	7.4 [@] fs +16-11				P			XREF: Others: AF XREF: af(4660).
4650.3 4	2+		A	J	J	МО	T	X	XREF: Others: AB , AF XREF: O(4662)af(4660).
4690.0 5	$(1^-,2,3,4^+)$					МО			J^{π} : L(t,p)=L(α,α')=2 from 0 ⁺ . J^{π} : 3332.9γ to 2 ⁺ ; primary γ from 3 ⁻ ,4 ⁻ rejects 0 ⁺ , 1 ⁺ .
4803.6 4	$(1^-,2,3,4^+)$					M	T		J^{π} : 3647.2 γ to 2 ⁺ ; primary γ from 3 ⁻ ,4 ⁻ rejects 0 ⁺ , 1 ⁺ .
4824.4 <i>6</i> 4848.39 <i>20</i>	(1,2,3) 1&	17 [@] fs +5-3	A			0 P			J^{π} : β -decay from 2 ⁻ parent, log ft =6.9 +3-2.
4866.09 8	1&	$4.3^{\textcircled{0}}$ fs $+14-9$	Α			P			
4884.02 8	(1,2,3)	1.5 15 117 7	A	j	j	•	t		XREF: j(4898)t(4889). J^{π} : β-decay from 2 ⁻ parent, log ft=5.86 8.
4892.6? 8			Α						XREF: A(?).
4904.58 <i>35</i>	3-		A	j	j	M () t	X	XREF: Others: AB, AF XREF: A(?)j(4898)Q(4900)t(4889)AB(4905)A
									F(4912). J^{π} : L(α,α')=3 from 0 ⁺ ; L(t,α)=2 from 7/2 ⁻ . But 2 ⁺ from ($^{16}O,^{16}O'$) is in
4914 <i>10</i>	2+,3+,4+,5+			j	j	0			disagreement. XREF: j(4898). J^{π} : L(d,p)=1 from 7/2 ⁻ .
4930.74 ^d 16	(6-)			F					J^{π} : 1016.9 γ D, $\Delta J=1$ to 5 ⁻ and member of a 4 ⁻ band in (18 O,2p2n γ).
4992 10	2+,3+,4+,5+			J	J	0			XREF: Others: AF XREF: J(4991). E(level): from (d,p). Other: 4991 15 from
									(t,p) . J^{π} : L(d,p)=1 from 7/2 ⁻ .
5005.69 22	4+			j	j	M O	T	X	XREF: Others: AB XREF: j(5015)O(5016)T(5031)AB(5006?).
5025.73 21	3-		A	j	j		R		J^{π} : L(α , α')=4 from 0 ⁺ . XREF: Others: AF
5087.62 ^c 8	8+	0.53 ps <i>14</i>	F	EFG					XREF: j(5015). J^{π} : L(π , π')=3 from 0 ⁺ . J^{π} : 1802.59 γ E2, Δ J=2 6 ⁺ and member of
3007.02	Ü	0.55 ps 17	•	-10					g.s. band in (18 O,2p2n γ). $T_{1/2}$: from DSAM in (14 C, α 2n γ).
5096.87 <i>34</i>	3-,4-					M	T		XREF: Others: AE, AF XREF: AE(5070).
5130.22 <i>21</i>	$(2,3)^{+}$		A			МО	Т		J^{π} : L(t, α)=0 from 7/2 ⁻ . XREF: Others: AF
									XREF: O(5143)AF(5120?). J^{π} : L(d,p)=1 from 7/2 ⁻ ; β -decay from 2 ⁻ parent, log ft =6.7 +4-2.
5161.8 5	₁ &	2.6 [@] fs 3	Α			OP			XREF: O(5172).
5201.13 <i>30</i>	$(1,2,3)^{-}$	2.0 130	A	j	j	-			XREF: j(5222).
					-				J ^{π} : allowed β-decay from 2 ⁻ parent, log $ft=5.9 + 4-2$.
5210.0 5	1+&	2.0 fs +4-3			k	P	T		XREF: k(5210). $T_{1/2}$: deduced from Γ =0.228 eV 40 in
									(γ,γ') .

E(level) [†]	Jπ‡	T _{1/2} #			,	XREF			Comments
5222 5	(3-)				Jk	:	Т	X	J ^{π} : parity from 4053 γ M1+E2 to 2 ⁺ . L(α , ² He)=4+5 from 0 ⁺ for a 5210 group is inconsistent. XREF: Others: AF
									XREF: k(5210)af(5235). E(level): from (α, α') . J^{π} : $L(\alpha, \alpha')$ =(3) from 0^+ . $L(\alpha, ^2\text{He})$ =4+5 for a 5210 group.
5230.33 20	2+,3+,4+,5+	<4.2 ns			Jk	: M O	T		XREF: Others: AF XREF: J(5245)k(5210)O(5243)T(5235)af(5235)
									J^{π} : L(d,p)=1 from 7/2 ⁻ for a group at 5343 10. Other: 3 ⁻ for a group at 5235 5 in (p,p') is inconsistent.
5245.19 ^e 12	7-			F					J^{π} : 1331.3 γ ΔJ =2 to 5 $^{-}$, 1960.2 γ ΔJ =1 to 6 $^{+}$; band assignment.
5289.25 32						Мо	T		XREF: o(5296). J^{π} : L(d,p)=1 for a group at 5296 <i>10</i> , probably a doublet of 5289+5301.
5300.5 4						Мо	T		XREF: Others: AF XREF: o(5296)AF(5306).
5325.0 6	(1,2,3)		A		j				J ^{π} : see comment for 5289 level. XREF: j(5333). J ^{π} : β-decay from 2 ⁻ parent, log ft =6.5 +4-2.
5342.2 5	(2)+				j	МО		X	XREF: Others: AF XREF: j(5333)O(5351). J^{π} : L(α , α')=(2) from 0 ⁺ ; L(d,p)=1 from 7/2 ⁻ .
5367.5 7	(1,2,3)		A		j				XREF: j(5361). J ^π : β-decay from 2 ⁻ parent, log ft =5.9 +8-3.
5375.0 5	$(2,3,4)^+$				j	МО			XREF: j(5361)O(5385). J^{π} : L(d,p)=1 from 7/2 ⁻ ; 4217.9 γ to 2 ⁺ .
5406 5	3-,4-					0		X	XREF: Others: AE, AF XREF: AE(5430).
									E(level): weighted average of 5405 10 from (d,p), 5407 5 from (α,α'), and 5404 12 from (t, α). J ^{π} : L(t, α)=L(d, 3 He)=0 from 7/2 $^{-}$.
5458.9 <i>4</i> 5512.3 <i>10</i>	$(2,3,4)^+$		A			МО		X	J^{π} : L(d,p)=1 from 7/2 ⁻ ; 4301.7 γ to 2 ⁺ . XREF: Others: AF
5548.68 22 5561.0 5	(2,3,4) ⁺ 3 ⁻		A			МО			XREF: A(5512?)AF(5518). J^{π} : L(d,p)=1 from 7/2 ⁻ ; 4391.5 γ to 2 ⁺ . XREF: Others: AF XREF: AF(5579).
	. &								J ^{π} : L(t, α)=0 from 7/2 ⁻ ; allowed β feeding from spin=2 parent; 4403.6 γ to 2 ⁺ .
5611.56 28 5646.79 <i>14</i>	1& 8 ⁽⁺⁾	1.4 [@] fs +7-4		F		P			J^{π} : $\Delta J=0$ (M1) to 8 ⁺ in (¹⁸ O,2p2n γ).
5656 5	(1 to 6) ⁻			r	J	0		X	XREF: Others: AF XREF: J(5646)O(5666). E(level): weighted average of 5646 20 in (t,p), 5666 10 in (d,p), 5654 5 from (α,α') , and 5660 12 from (t,α) .
5733.30 22	$(4,5)^+$	<3.5 ns			J	МО		X	J ^π : L(t,α)=2 from 7/2 ⁻ . XREF: Others: AF J ^π : L(d,p)=1 from 7/2 ⁻ ; 1640.7γ to (6 ⁺).

E(level) [†]	J^π ‡	T _{1/2} #	XREF		Comments
5775.76 22	$(2,3,4)^+$,	МО		J^{π} : L(d,p)=1 and γ to 2^+ .
5800.61 20	1&	11 [@] fs +5-3	P		XREF: Others: AF XREF: af(5810).
5806.31 <i>10</i>	1-&	2.3 [@] fs 3	P		XREF: Others: AF XREF: af(5810). J^{π} : from γ (pol) in (γ, γ') (2016De05).
5832 <i>10</i> 5864 <i>20</i>	0+		н јк	X	XREF: X(5830). XREF: H(5850)J(5864)K(5860). E(level): from (t,p). J^{π} : L(t,p)=L(6 Li,d)=L(α , 2 He)=0 from 0 ⁺ .
5866.82 <i>30</i>	$(4^+,5^+)$		МО		XREF: O(5873?). J^{π} : L(d,p)=(1) from 7/2 ⁻ ; 1773.3 γ to 6 ⁺ .
5875.82 20	1-&	$4.2^{\textcircled{0}}$ fs $+8-5$	P	X	XREF: Others: AF XREF: X(5880)AF(5891). J^{π} : from γ (pol) in (γ, γ') (2016De05).
5911.13 20	₁ &	$1.9^{\textcircled{0}}$ fs +6-4	P	X	XREF: X(5940?).
5971.30 ^d 14	8(-)		F		J^{π} : 1040.5 γ Q, ΔJ =2 to 6 $^{-}$, 726.1 γ (M1), ΔJ =1 to 7 $^{-}$.
5975 <i>10</i> 6014 <i>20</i>			O J	X X	XREF: X(5970).
6040.0 <i>5</i>	2+,3+,4+,5+		МО	X	XREF: X(6020). XREF: O(6050).
					J^{π} : L(d,p)=1 from 7/2 ⁻ .
6082.9 4	1 ^{+&} 1 ⁻ &	$2.1^{\textcircled{0}}$ fs $+4-3$	P		TTD TE 0.1
6136.59 26	1-4	1.27 [@] fs +20–15	P		XREF: Others: AE XREF: AE(6100).
6146.14 <i>31</i> 6211.4 <i>5</i>	(4,5)+		M O K M		J^{π} : L(d,p)=1 from 7/2 ⁻ ; 2053.9 γ to (6 ⁺). XREF: K(6210). J^{π} : L(α , ² He)=2 for a 6210 group suggests π =+.
6245.48 30	1&	$9^{\text{@}}$ fs +3-2	k P		XREF: k(6210).
6422.12 <i>10</i>	1-&	0.21 [@] fs 2	J P		XREF: J(6438).
6446.5 7	1+&	$5.9^{\textcircled{0}}$ fs $+16-11$	P		
6507.1 <i>5</i> 6578 <i>20</i>	1&	3.3 [@] fs +9-6	P J		
6657.65 ^e 17	9(-)		F		J ^{π} : 1412.4 γ (E2), ΔJ=2 to 7 ⁻ , 1570 γ (E1), ΔJ=1 to 8 ⁺ .
6672.92 <i>31</i>	0_	<u> </u>	M		
6675.44 20 6744 20 6778 20 6913 20	₁ &	4.5 [@] fs +9-6	P J J		
6960.7 <i>6</i>	₁ &	5.6° fs +13-9	P		
6972.14 <i>19</i> 6996 <i>20</i>	1&	$0.47^{\text{@}} \text{ fs } +14-9$	j P J		XREF: j(6996).
7065.9 9	1&	$2.7^{\textcircled{0}}$ fs +6-4	P		
7092.76 15	(9 ⁻) 1 ^{&}	$2.8^{\textcircled{0}}$ fs +6-4	F		J^{π} : 2005.1 γ (E1), $\Delta J=1$ to 8^{+} , (E1) to 8^{+} .
7226.04 <i>30</i> 7275.2 <i>9</i>	1& 1&	2.8° is $+6-4$ 1.9° is $+4-3$	P		
7403.0 8	1& 1&	$3.7^{\text{@}}$ fs +9-6	P P		
7470.92 <i>20</i> 7556.58 <i>22</i>	(10 ⁺) (9)	J.1 13 77 ⁻⁰	F F		J ^{π} : 1824.1 γ Q, Δ J=2 to (8 ⁺). J ^{π} : 2468.9 γ D, Δ J=(1) to 8 ⁺ .
	* *				• • • • • • • • • • • • • • • • • • • •

E(level) [†]	Jπ‡	T _{1/2} #	XREF	Comments
7572.0 5	1(+)&	2.6° fs +8-5	P	
7578.90 <i>30</i>	1-&	$0.51^{\textcircled{0}}$ fs +7-6	P	
7662.1 <i>6</i>	1-&	$4.7^{\textcircled{0}}$ fs $+21-11$	P	
7783.3 10	1-&	$4.2^{\textcircled{0}}$ fs $+19-11$	P	
7808.9 <i>16</i>	1-&	$8^{\text{@}}$ fs +4-2	P	
7828.9 <i>12</i>	₁ &	$6^{\text{@}}$ fs +3-2	P	
7834.8 8	1-&	$3.0^{\text{@}}$ fs +9-6	P	
7844 20			J	
7879.97 ^d 19	(10-)		F	J^{π} : 1908.6γ Q, ΔJ =2 to 8 ⁻ , 787.2γ (M1), ΔJ =1 to (9 ⁻).
7953.1 <i>5</i>	1 &	$1.7^{\textcircled{0}}$ fs $+7-4$	P	
8050	0		K	J^{π} : L(α , ² He)=3 from 0 ⁺ suggests π =
8070.2 7	1&	$2.2^{\text{@}}$ fs +5-3	P	
8086.0 7	1&	$2.1^{\textcircled{0}}$ fs +5-3	P	
8286.28 ^e 26	(11-)		F	J^{π} : 1628.6 γ (E2), ΔJ =2 to 9 ⁻ ; band assignment.
8290	0		K	J^{π} : L(α , ² He)=5 from 0 ⁺ suggests π =
8321.5 <i>16</i>	1&	$9.5^{\textcircled{0}}$ fs +7-3	P	
8395.3 4	1&	$1.6^{\text{@}} \text{ fs } +5-3$	P	
8405.4 17	1&	$0.42^{\textcircled{0}}$ fs +7-5	P	
8556.7 8	1-&	2.4° fs +16-7	P	
8615.2 <i>12</i>	1-&	$2.3^{\textcircled{0}}$ fs $+10-5$	P	
8801.9 29	1-&	11 [@] fs +13-4	P	
8828.0 11	1-&	$0.8^{\text{@}}$ fs +3-2	P	
8851.5 7	1-&	$0.70^{\textcircled{0}}$ fs $+17-12$	P	
8860	0		K	J^{π} : L(α , ² He)=(5,6,7) from 0 ⁺ .
8908.8 7	1-&	$0.33^{\textcircled{0}}$ fs +7-5	P	
9024.1 20	1-&		P	
9148.4 <i>24</i>	1-&		P	
9273.6 8	1-&	$1.1^{\textcircled{0}}$ fs $+3-2$	P	
9317.2 10	1-&		P	
9460	0		K	J^{π} : L(α , ² He)=3 from 0 ⁺ suggests π =
9664.9 7	1-&		P	
9750			K	J^{π} : L(α , ² He)=(7,8) from 0 ⁺ .
9788.6 6	1-&		F	J^{π} : 2317.6 γ to (10 ⁺).
9814.1 <i>11</i>			P	IT 1070.5 (TO) 11.0 (10-) 1 1
9859.5 ^d 4	(12-)		F	J^{π} : 1979.5 γ (E2), ΔJ =2 to (10 ⁻); band assignment.
9898.2 10	1-&		P	TT 2001 5 O AT 2 (/11=) 1 1
10567.8 ^e 5	(13^{-})		F	J^{π} : 2281.5 γ Q, ΔJ =2 to (11 $^{-}$); band assignment.
(11131.60 12)	3-,4-		M	J ^{π} : s-wave capture in 7/2 ⁻ g.s. of ⁴³ Ca. E(level): S(n)=11131.16 23 (2021Wa16).
11132.73 30	4^{-a}	1.13 eV	N	2(10,01). 5(11) 11151.10 25 (2021 11410).
11134.44 23	+ <i>a</i>		N	
11134.52 23	$(4)^{-a}$	0.67 eV	N	
11135.49 23	4^{-a}	0.522 eV 7	N	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XI	REF		Comments
11135.72 23	+ <i>a</i>			N		
11136.33 23	3- <i>a</i>	1.23 eV 10		N		
11136.35 23	4 ^{-a}			N		
11138.07 23	3- <i>a</i>	0.69 eV 7		N		
11139.93 23	4^{-a}	0.68 eV 7		N		
11141.00 23	+ <i>a</i>	0.00 € 7		N		
11141.22 23	+ <i>a</i>			N		
11141.52 23	$(4)^{-a}$	0.76 eV 10		N		
11143.08 23	(.)	0.70 0 7 10		N		
11143.31 23				N		
11143.77 23	+ <i>a</i>			N		
11144.39 23				N		
11144.9 5	4 ^{-a}	1.0 eV 1		N		
11145.29 23	$(3)^{-a}$	0.8 eV 9		N		
11145.65 23	+a	0.0 0 1 2		N		
11146.04 23	+ <i>a</i>			N		
11146.19 23	+ <i>a</i>			N		
11147.53 23	$3^{-},4^{-a}$			N		
11149.99 24	4^{-a}	0.66 eV 7		N		
11150.62 23	+ <i>a</i>	0.00 € 7		N		
11151.10 23	$(3)^{-a}$	0.80 eV 12		N		
11151.10 23	$(3)^{-a}$	0.79 eV 10		N		
11152.71 23	$(3)^{a}$	0.7 eV		N		
11153.68 23	$(4)^{-a}$	0.57 eV 9		N		
11154.10 23	+a	0.57 CV)		N		
11154.10 23	$(2)^{+a}$	0.92 eV 12		N		
11155.07 23	$(3)^{-a}$	0.81 eV 12		N		
11155.29 23	+ <u>a</u>	0.01 CV 12		N		
11155.29 23	$(2)^{+a}$	0.74 eV 11		N		
11157.59 23	(2)	0.74 CV 11		N		
11157.71 23	$(4)^{-a}$	0.60 eV 8		N		
11157.71 23	$3^{-} \Delta^{-a}$	0.00 6 4 0		N		
11158.69 23	$3^{-},4^{-a}$			N		
11158.84 23	+ <i>a</i>			N		
11160.27 23	$(4)^{-a}$	0.66 eV 8		N		
11160.40 23	$(4)^{-a}$	0.75 eV 10		N		
11161.47 23	+a	0.75 CV 10		N		
11161.65 23	$(4)^{-a}$	0.66 eV 7		N		
11161.86 23	+a	0.00 € 7		N		
11162.06 23	$(4)^{-a}$	0.75 eV 9		N		
11162.89 23	(1)	0.75 0 7		N		
11164.00 23				N		
11165.39 23				N		
11165.91 23				N		
11166.61 23				N		
11166.74 23				N		
11167.34 23				N		
11167.58 23	$(4)^{-a}$	1.4 eV 2		N		
11170.05 23	` /			N		
11850 <i>10</i>				Q		T=3
12188.1 <i>10</i>			F	•		Additional information 2.
16.5×10 ³ <i>b</i> 15		4.9^{b} MeV $+21-24$			X	
10.07.10 10		, 1110 , 121 27				

E(level) [†]	T _{1/2} #	XREF
17.13×10 ³ <i>b</i> 11	9.40 ^b MeV <i>14</i>	X
19.5×10 ³ <i>b</i> 4	5.8 ^b MeV +9-7	X
$34.9 \times 10^{3} $ 15	16.3 ^b MeV 23	X

[†] From a least-squares fit to γ -ray energies for levels populated in γ -ray studies, and from different reactions as noted for others, unless otherwise noted.

[‡] When assigning J^{π} to a level based on γ transitions from this level to a level of known J^{π} , evaluators use the following rules: if E γ <4 MeV, transitions are only considered to be E1, M1 or E2; if E γ >4 MeV, M2 and E3 are considered to be possible.

[#] From DSAM in $(\alpha,p\gamma)$, unless otherwise stated. Values quoted in nanoseconds are from $\gamma\gamma(t)$ in (n,γ) .

[@] Deduced by the evaluators from Γ_{γ} in (γ, γ') . Actual $T_{1/2}$ could be smaller for levels from which only the g.s. transitions are reported, with the possibility that competing transitions to the low-lying 2^+ and 0^+ excited states in ⁴⁴Ca might have missed observation, making Γ_{γ} underestimated, thus $T_{1/2}$ overestimated.

[&]amp; From $\Delta J=1$ excitation and γ (linear polarization) in (γ,γ') and (polarized γ,γ').

^a From analysis of neutron resonance.

^b From (α, α') for giant resonance.

^c Band(A): Yrast g.s. band.

^d Band(B): Band based on 4^- , $\alpha=0$.

^e Band(b): Band based on 5^- , $\alpha=1$.

	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.	δ	$I_{(\gamma+ce)}$	Comments
	1157.0208	2+	1157.004 3	100	0.0	0+	E2			B(E2)(W.u.)=10.06 +42-40 E _γ : weighted average of 1157.002 3 from ⁴⁴ K β^- decay, 1157.022 15 from ⁴⁴ Sc ε decay (4.0420 h), 1157.002 15 from ⁴⁴ Sc ε decay (58.61 h), 1157 1 from (16 O,2pγ), 1157.0 2 from (18 O,2p2nγ), 1157.031 15 from (14 C, α 2nγ), 1156.89 15 from
	1883.516	0+	726.490 <i>16</i>	100	1157.0208	2+	E2			(n,γ) E=thermal, 1158 I from (p,p'γ), and 1155.9 S from (μ^- ,nγ). Mult.: ΔJ =2, Q γ from DCO in (18 O,2p2nγ); M2 rejected by RUL. B(E2)(W.u.)=22 +9- S
	1005.510	U	720.490 10	100	1137.0206	2	EZ			Mult.: Q from $p\gamma(\theta)$ in $(p,p'\gamma)$; M2 ruled out by RUL.
			(1883.47)		0.0	0+	E0		≈0.012	$I_{(\gamma+ce)}$: branching deduced by the evaluators from $q_K^2(E0/E2) = I_K(E0)/I_K(E2) = 0.54$ 9 and assuming 80% K-shell conversion of E0 transition.
										q_K^2 (E0/E2)=0.54 9, X(E0/E2)=0.23 4, $ρ^2$ (E0)=0.14 5 (2005Ki02 evaluation). Γ(pair formation)/Γ=8.8×10 ⁻⁴ 14 from (p,p') (1976Ul01); Γ(pair formation)=2.1×10 ⁻⁸ eV 3 from (e,e') (1978Gr02).
	2283.119	4+	1126.078 10	100	1157.0208	2+	E2			B(E2)(W.u.)=18 +10-5 E _γ : weighted average of 1126.076 10 from ⁴⁴ K β^- decay, 1126.084 20 from ⁴⁴ Sc ε decay (58.61 h), and 1126.092 40 from (¹⁴ C, α 2nγ). Others: 1126 1 from (¹⁶ O,2pγ), 1126.1 2 from (¹⁸ O,2p2nγ), 1126.03 15 from (n,γ) E=thermal, 1127 1 from (p,p'γ), and 1124.1 7 from (μ^- ,nγ).
										Mult., δ : δ (O/Q)= $-0.05 + 4 - 3$ from p γ (θ) in (p,p' γ); M2, M3 ruled out by RUL.
	2656.509	2+	1499.449 <i>15</i>	100.0 17	1157.0208	2+	M1+E2	-0.123 17		B(M1)(W.u.)=0.191 +22–17; B(E2)(W.u.)=3.6 +12–9 E _γ : from ⁴⁴ Sc ε decay (4.0420 h). Others: 1499.45 4 from ⁴⁴ K β ⁻ decay, 1499.4 3 from (18 O,2p2n γ), 1499.30 18 from (18 O,2p2n γ), and 1510 10 from (μ ⁻ ,n γ). I _γ : from ⁴⁴ Sc ε decay (4.0420 h). Others: 100.0 37 from ⁴⁴ K β ⁻ decay and 100.0 25 from (p,p' γ).
			2656.44 3	12.39 <i>33</i>	0.0	0+	E2			Mult., δ : δ (Q/D) is weighted average of $-0.15 + 4-9$ (1970La09) and $-0.14 \ 7$ (1966Ma31) in (p,p' γ), $-0.137 \ 17$ (1968Wa21), and $-0.07 \ 3$ (1971Ok03) in ⁴⁴ Sc ε decay (4.0420 h); E1+M2 ruled out by RUL. B(E2)(W.u.)=1.70 +20-16
I										E_{γ} : weighted average of 2656.41 3 from 44 K β^- decay, 2656.48 4

γ (44Ca) (continued)

							-		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	$\alpha^{@}$	Comments
3044.292	4+	761.12 <i>4</i>	100 5	2283.119	4+	M1+E2	-0.18 8		from ⁴⁴ Sc ε decay (4.0420 h), 2656.2 5 from (n,γ) E=thermal, and 2656 3 from (p,p'γ). I _γ : weighted average of 12.52 59 from ⁴⁴ K $β^-$ decay, 12.31 33 from ⁴⁴ Sc ε decay (4.0420 h), and 17.0 38 from (p,p'γ). Mult.: Q from pγ($θ$) in (p,p'γ); M2 ruled out by RUL. B(M1)(W.u.)=0.0055 +15-13; B(E2)(W.u.)=0.9 +10-6 E _γ : weighted average of 761.10 3 from ⁴⁴ K $β^-$ decay, 761.3 1 from (18 O,2p2nγ), and 761.19 10 from (n,γ) E=thermal. Others: 761.19 20 from (14 C,α2nγ) and 764 1 from (p,p'γ).
		1887.34 20	92.5 30	1157.0208	2+	E2			I _γ : from (14 C, α 2n γ). Others: 100 50 from 44 K β ⁻ decay, 100.0 52 from (18 O,2p2n γ), and 100.0 79 from (p,p' γ). Mult.,δ: δ (Q/D) from weighted average of -0.18 8 from (14 C, α 2n γ) and -0.25 +9 -31 from (p,p' γ); E1+M2 ruled out by RUL. B(E2)(W.u.)=0.27 +7 -6 E _γ : weighted average of 1887.21 28 from 44 K β ⁻ decay, 1887.3 2 from (18 O,2p2n γ), 1887.45 20 from (14 C, α 2n γ), and 1887.3 3 from (n, γ) E=thermal. Other: 1890 2 from (p,p' γ).
3285.004	6+	1001.869 20	100	2283.119	4+	E2			I _γ : weighted average of 100 50 from 44 K $β^-$ decay, 93.1 69 from (18 O,2p2n $γ$), 85.4 42 from (14 C, $α$ 2n $γ$), and 95.9 30 from (p,p $'$ γ). Mult.,δ: $δ$ (O/Q)=-0.08 +3-6 from (p,p $'$ γ); M2,M3 ruled out by RUL. B(E2)(W.u.)=4.57 +46-37 E _γ : weighted average of 1001.876 20 from 44 Sc $ε$ decay (58.61 h), 1001.9 I from (18 O,2p2n $γ$), and 1001.850 31 from (14 C, $α$ 2n $γ$). Others: 1001 I
3301.36	2+	2144.27 8	100 6	1157.0208	2+	[M1,E2]			from (16 O,2pγ) and 1001.85 <i>15</i> from (n,γ) E=thermal. Mult.: Q, ΔJ=2 from DCO in (18 O,2p2nγ); M2 ruled out by RUL. E _γ : weighted average of 2144.23 8 from 44 K $β$ ⁻ decay, 2144.33 <i>10</i> from 44 Sc $ε$ decay (4.0420 h), 2144.5 5 from (n,γ) E=thermal, and 2144 2 from (p,p′γ).
		3301.33 6	44 7	0.0	0+	E2			I _γ : others: 100 19 from ⁴⁴ Sc ε decay (4.0420 h) and 100.0 90 from (p,p'γ). B(M1)(W.u.)=0.044 +40-16 if M1, B(E2)(W.u.)=27 +24-10 if E2. B(E2)(W.u.)=1.4 +12-5 E _γ : weighted average of 3301.21 14 from ⁴⁴ K β ⁻ decay, 3301.35 6 from ⁴⁴ Sc ε decay (4.0420 h), 3301.5 6 from (n,γ) E=thermal, and 3304 4 from (p,p'γ). I _γ : weighted average of 42.6 70 from ⁴⁴ K β ⁻ decay, 38 11 from ⁴⁴ Sc ε decay (4.0420 h), and 49.3 75 from (p,p'γ). Mult.: Q from pγ(θ) in (p,p'γ); M2 ruled out by RUL.

γ (44Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	J_f^{π}	Mult.	α@	Comments
3307.872	3-	263.53 <i>6</i>	0.49 13	3044.292	4+	[E1]	1.13×10 ⁻³ 2	B(E1)(W.u.)=0.00068 +49-25
		651.353 <i>16</i>	13.2 8	2656.509	2+	[E1]		B(E1)(W.u.)=0.0012 +8-4
								E_{γ} : weighted average of 651.355 9 from ⁴⁴ K β^- decay, 651.07 12 from (n, γ) E=thermal, and 652 1 from (p,p' γ).
								I_{γ} : weighted average of 13.30 <i>51</i> from ⁴⁴ K β ⁻ decay and 6.8 <i>41</i> from (p,p' γ).
		1024.738 17	29.4 5	2283.119	4+	[E1]		B(E1)(W.u.)=0.00069 +44-20
								E_{γ} : others: 1024.4 3 from (^{18}O ,2p2n γ), 1024.66 20 from (n, γ) E=thermal, and 1026 1 from (p,p' γ).
		2150.805 17	100.0 21	1157.0208	2+	[E1]		I_{γ} : other: 28.4 68 from $(p,p'\gamma)$. B(E1)(W.u.)=0.00025 +16-7
								E _γ : weighted average of 2150.786 <i>17</i> from ⁴⁴ K β ⁻ decay, 2150.840 22 from ⁴⁴ Sc ε decay (4.0420 h), 2150.5 2 from (¹⁸ O,2p2nγ), 2150.9 3 from (n,γ) E=thermal, and 2150 2 from (p,p'γ).
								I_{γ} : others: 100.0 74 from (^{18}O ,2p2n γ) and 100.0 81 from (p,p' γ).
		3307.7 5	0.077 26	0.0	0_{+}	(E3)		B(E3)(W.u.)=9 +7-4
								Mult.: E3 excitation in (e,e').
3357.29	$(2^+,3,4^+)$	1074.13 [‡] <i>15</i> 2200.1 <i>3</i>	100 <i>60</i> 13 <i>13</i>	2283.119 1157.0208	4 ⁺ 2 ⁺			E_{γ} : others: 1074.1 4 from ⁴⁴ K β^- decay and 1074 1 from $(p,p'\gamma)$.
3581.3	0+	2426.2 29	100	1157.0208		(E2)		E _γ : unweighted average of 2423.3 6 from ⁴⁴ K β^- decay and 2429 2 from (p,p'γ). Mult.: (Q) from pγ(θ) in (p,p'γ); $\Delta \pi$ =no from level scheme.
3661.527	1-	353.67 25	0.29 19	3307.872	3-	[E2]	$2.18 \times 10^{-3} \ 3$	Fig. from (pol γ, γ').
3001.327	1	1005.0 9	0.48	2656.509	2 ⁺	[E2]	2.16×10 3	E_{γ} . Holli (pol γ, γ'). E_{γ} : from (pol γ, γ').
		1777.973 20	34.8 8		0+	(E1)		E _{γ} : from (pol γ, γ). Other: 1780 2 from (p,p' γ).
		17777576 20	20	1000.010		(21)		Mult.: D from $p\gamma(\theta)$ in $(p,p'\gamma)$; $\Delta\pi = yes$ from level scheme.
		2504.39 6	10.7 9	1157.0208	2+	[E1]		E_{γ} : from (pol γ, γ'). Other: 2508 3 from (p,p' γ).
		3661.363 <i>11</i>	100.0 19	0.0	0+	(E1)	$1.55 \times 10^{-3} \ 2$	E_{γ} : others: 3661.3 2 from (pol γ, γ') and 3659 4 from (p,p' γ). Mult.: D from p $\gamma(\theta)$ in (p,p' γ); $\Delta \pi$ =yes from level scheme.
3676.092	(2+)	368.208 <i>23</i>	23.2 4	3307.872	3-			E _{γ} : weighted average of 368.207 14 from ⁴⁴ K β ⁻ decay, 368.8 3 from (n, γ) E=thermal, and 367 1 from (p,p' γ).
		374.82 <i>11</i>	2.0 5	3301.36	2+			E_{γ} : weighted average of 374.85 10 from ⁴⁴ K β ⁻ decay and 374.4 4 from (n, γ) E=thermal.
		1017.5 <i>13</i>	8.7 4	2656.509	2+			E _γ : unweighted average of 1019.55 7 from ⁴⁴ K β ⁻ decay, 1017.8 7 from (n,γ) E=thermal, and 1015 I from (p,p'γ).
		2518.991 <i>18</i>	100.0 18	1157.0208	2+			E_{γ} : others: 2518.9 5 from (n,γ) E=thermal and 2520 3 from $(p,p'\gamma)$.
		3676.7 6	0.15 7	0.0	0^{+}			
3691.7	1	3691.5 4	100	0.0	0_{+}			E_{γ} : from (γ, γ') .
3711.96	4-	404.26 13	100 8	3307.872	3-	(M1)		$B(M1)(W.u.) > 5.2 \times 10^{-4}$
								E_{γ} : weighted average of 403.86 20 from 44 K β^- decay, 404.4 3 from

γ (44Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α@	Comments
3711.96	4-	1428.67 25	44 4	2283.119	4+	[E1]			(¹⁸ O,2p2nγ), and 404.34 <i>10</i> from (n,γ) E=thermal. I _γ : from (¹⁸ O,2p2nγ). Other: 100 27 from ⁴⁴ K β ⁻ decay. Mult.: D, ΔJ=1 from DCO in (¹⁸ O,2p2nγ); Δπ=no from level scheme. B(E1)(W.u.)>1.2×10 ⁻⁷ E _γ : weighted average of 1428.7 <i>4</i> from ⁴⁴ K β ⁻ decay, 1428.8 <i>3</i> from (¹⁸ O,2p2nγ), and 1428.56 <i>25</i> from (n,γ) E=thermal.
3776.27	2-	1119.7 <i>4</i>	7.9 38	2656.509	2+	[E1]			I_{γ} : from (18 O,2p2n $_{\gamma}$). Other: 36 18 from 44 K $β^-$ decay. B(E1)(W.u.)>2.1×10 ⁻⁸ I_{γ} : weighted average of 8.3 56 from 44 K $β^-$ decay and 7.7 38 from
		2619.16 <i>12</i>	100 4	1157.0208	2+	(E1+M2)	-0.62 +7-8		$(p,p'\gamma)$. $B(E1)(W.u.)>2.6\times10^{-8}$; $B(M2)(W.u.)>0.0061$ E_{γ} : others: 2619.1 5 from (n,γ) E=thermal and 2617 4 from $(p,p'\gamma)$. I_{γ} : from $(p,p'\gamma)$. Other: 100 20 from ⁴⁴ K β^- decay.
3913.80	5-	202.1 2	4.8	3711.96	4-	[M1,E2]		0.010 8	Mult.: D+Q from $(p,p'\gamma)$; $\Delta\pi$ =yes from level scheme. E_{γ},I_{γ} : from $(^{18}O,2p2n\gamma)$ require a $T_{1/2}>44$ ps. $B(M1)(W.u.)<0.041$ if M1.
		628.71 <i>11</i>	92.7 32	3285.004	6+	(E1+M2)	-0.30 14		B(E2)(W.u.)<2767 upper limit exceeds RUL=100 if E2. B(E1)(W.u.)<5.3×10 ⁻⁴ B(M2)(W.u.)<1013 upper limit exceeds RUL=3 <i>14</i> , RUL=3 would require a $T_{1/2}>0.11$ ns. E _{γ} : unweighted average of 628.9 <i>I</i> from (18 O,2p2n γ), 628.53 <i>9</i> from (14 C, α 2n γ), and 628.69 <i>10</i> from (n, γ) E=thermal. I _{γ} : weighted average of 92.1 <i>32</i> from (18 O,2p2n γ) and 100 <i>11</i> from
		869.47 <i>15</i>	100 5	3044.292	4+	(E1)			(1 ⁴ C,α2nγ). Mult.,δ: D+Q from γ(θ) in (1 ⁴ C,α2nγ); Δπ=yes from level scheme. ΔJ=1 from DCO in (1 ⁸ O,2p2nγ). B(E1)(W.u.)<2.2×10 ⁻⁴ E _γ : weighted average of 869.5 2 from (1 ⁸ O,2p2nγ) and 869.45 15 from (n,γ) E=thermal. I _γ : from (1 ⁸ O,2p2nγ). Mult.: D, ΔJ=1 from DCO in (1 ⁸ O,2p2nγ); Δπ=yes from level scheme.
3922.71	5-	637.68 12	100 [‡]	3285.004	6 ⁺	[E1]			B(E1)(W.u.)>1.5×10 ⁻⁶ E _{γ} : weighted average of 637.8 2 from (18 O,2p2n γ) and 637.63 12 from (18 O,2p2n γ) are 637.63 12
		878.25 20	91‡	3044.292	4+	[E1]			B(E1)(W.u.)>4.8×10 ⁻⁷ E_{γ} : weighted average of 878.4 2 from (18 O,2p2n γ) and 878.10 20 from (n, γ) E=thermal.
	3711.96 3776.27 3913.80	3711.96 4 ⁻ 3776.27 2 ⁻ 3913.80 5 ⁻	3711.96 4 1428.67 25 3776.27 2 1119.7 4 2619.16 12 3913.80 5 202.1 2 628.71 11 869.47 15	3711.96 4 1428.67 25 44 4 3776.27 2 1119.7 4 7.9 38 2619.16 12 100 4 3913.80 5 202.1 2 4.8 628.71 11 92.7 32 869.47 15 100 5	3711.96 4 1428.67 25 44 4 2283.119 3776.27 2 1119.7 4 7.9 38 2656.509 2619.16 12 100 4 1157.0208 3913.80 5 202.1 2 4.8 3711.96 628.71 11 92.7 32 3285.004 869.47 15 100 5 3044.292	3711.96 4- 1428.67 25 44 4 2283.119 4+ 3776.27 2- 1119.7 4 7.9 38 2656.509 2+ 2619.16 12 100 4 1157.0208 2+ 3913.80 5- 202.1 2 4.8 3711.96 4- 628.71 11 92.7 32 3285.004 6+ 869.47 15 100 5 3044.292 4+	3711.96 4- 1428.67 25 44 4 2283.119 4+ [E1] 3776.27 2- 1119.7 4 7.9 38 2656.509 2+ [E1] 2619.16 12 100 4 1157.0208 2+ (E1+M2) 3913.80 5- 202.1 2 4.8 3711.96 4- [M1,E2] 628.71 11 92.7 32 3285.004 6+ (E1+M2) 869.47 15 100 5 3044.292 4+ (E1)	3711.96 4- 1428.67 25 44 4 2283.119 4+ [E1] 3776.27 2- 1119.7 4 7.9 38 2656.509 2+ [E1] 2619.16 12 100 4 1157.0208 2+ (E1+M2) -0.62 +7-8 3913.80 5- 202.1 2 4.8 3711.96 4- [M1,E2] 628.71 11 92.7 32 3285.004 6+ (E1+M2) -0.30 14 869.47 15 100 5 3044.292 4+ (E1)	3711.96 4 1428.67 25 44 4 2283.119 4 [E1] 3776.27 2 1119.7 4 7.9 38 2656.509 2 [E1] 2619.16 12 100 4 1157.0208 2 [E1+M2] -0.62 +7-8 3913.80 5 202.1 2 4.8 3711.96 4 [M1,E2] 0.010 8 628.71 11 92.7 32 3285.004 6 (E1+M2) -0.30 14

γ (44Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
3922.71	5-	1640.7 ^{&‡} 5	<46 ^{&‡}	2283.119	4+	[E1]	
4011.4		299.5 [‡] 4	100	3711.96	4-		
4092.04	(6 ⁺)	806.95 [‡] <i>15</i>	100 11	3285.004	6 ⁺	(E2)	E_{γ} : other: 807.0 3 from (^{18}O ,2p2n γ). I_{γ} : from (^{18}O ,2p2n γ). Mult.: from DCO in (^{18}O ,2p2n γ).
		1809.0 4	53 7	2283.119	4+	(E2)	E _{γ} : weighted average of 1809.1 4 from (^{18}O ,2p2n γ) and 1808.9 5 from (n, γ) E=thermal. I _{γ} : from (^{18}O ,2p2n γ). Other: 48 from (n, γ) E=thermal.
							γ . From (*O,2p2ny). Other: 48 from (n, γ) E=merman. Mult.: from DCO in (18 O,2p2n γ).
4093.7	$(2^+,3,4^+)$	1810.4 7	100 67	2283.119	4+		Mult Holli Deo III (0,2pziry).
1075.1	(2 ,5,1)	2937.8 10	67 25	1157.0208			
4196.10	2+	3038.7‡ 4	30 7	1157.0208		[M1,E2]	E _{γ} : other: 3040 from (p,p' γ); not seen in (γ , γ '). I _{γ} : from (p,p' γ). B(M1)(W.u.)=0.0036 +9-11 if M1, B(E2)(W.u.)=1.09 +28-31 if E2.
		4196.1 3	100 4	0.0	0+	(E2)	B(M1)(W.u.)=0.0036 +9-11 if M1, B(E2)(W.u.)=1.09 +28-31 if E2. B(E2)(W.u.)=0.73 15 E _{γ} : from (γ, γ') , also seen in $(p, p'\gamma)$. but this γ is not seen in (n, γ) E=thermal. It is likely a different level is populated in (n, γ) E=thermal.
							I_{γ} : from $(p,p'\gamma)$.
							Mult.: Q from $p\gamma(\theta)$ in $(p,p'\gamma)$; $\Delta\pi$ =no from level scheme.
4260.27	$(2^+,3)$	1976.9 7	82 64	2283.119	4 ⁺		
4215 22	(1.2.2)	3103.2 4	100 36	1157.0208			
4315.22	(1,2,3)	1658.69 <i>18</i> 3158.07 <i>20</i>	100 <i>24</i> 70 <i>11</i>	2656.509 1157.0208	2 ⁺		
4358.440	3-	646.5 3	12 4	3711.96	2 4 ⁻		
7330.770	3	682.34 <i>3</i>	11 6	3676.092	(2^{+})		
		696.9 ^a	≤0.8	3661.527	1-		
		1050.60 <i>10</i> 1701.9 <i>3</i>	79 <i>12</i> 14 <i>6</i>	3307.872 2656.509	3 ⁻ 2 ⁺		E_{γ} : other: 1050.54 20 from (n,γ) E=thermal.
		3201.26 12	100 8	1157.0208			E_{γ} : weighted average of 3201.27 7 from ⁴⁴ K β^- decay and 3200.1 7 from (n,γ) E=thermal.
4399.2 4409.176	3 ⁻ (1) ⁻	3242.0 <i>6</i> 733.0 <i>4</i> 747.63 <i>3</i>	100 4.0 <i>17</i> 51.4 29	1157.0208 3676.092 3661.527	2 ⁺ (2 ⁺) 1 ⁻		E_{γ} : other: 3242.1 7 from (n,γ) E=thermal.
		1101.3 <i>5</i> 1107.98 <i>10</i> 1752.629 <i>10</i> 3252.07 <i>13</i>	0.29 29 16.4 <i>12</i> 100.0 <i>14</i> 3.9 <i>6</i>	3307.872 3301.36 2656.509 1157.0208			
4436.7	$(1,2^+)$	4408.91 <i>19</i> 3279.0 <i>7</i> 4437.0 <i>7</i>	1.31 22 100 67 40 27	0.0 1157.0208 0.0	0 ⁺ 2 ⁺ 0 ⁺		

γ (44Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	$\underline{\hspace{1cm}} \mathbf{J}^{\pi}_f$	Comments
4479.9	2+	3322.8 [‡] 6	100	1157.0208	2+	
4552.644	$(3)^{-}$	876.53 <i>3</i>	100 2	3676.092	(2^{+})	
		891.10 <i>12</i>	5.4 20	3661.527	1-	
		1195.4	2.7 24	3357.29	$(2^+,3,4^+)$	
		1244.75 5	48.0 <i>17</i>	3307.872	3-	
		1896.0 9	6.4 <i>47</i>	2656.509	2+	
		2268.5 10	1.7 <i>14</i>	2283.119	4+	
		3395.51 4	96.3 27	1157.0208		
4561.8?		3404.6 ^a 6	100	1157.0208		10
4564.87	(5^{-})	651.07 <i>12</i>	<420	3913.80	5-	E_{γ} : other: 651.0 3 from ($^{18}O,2p2n\gamma$).
						Iy: from (n,γ) E=thermal, where the 651.07 γ is a doubly placed with intensity not divided.
		2281.7 [‡] 5	100 [‡]	2283.119	4+	
		4565.1 ^a 8	98	0.0	0+	Placement of this transition in (n,γ) E=thermal is considered unlikely by evaluators from the implied high mult=E5.
4572.6	(1,2,3)	1916.0 8	100 52	2656.509	2+	
		3415.5 7	44 18	1157.0208	2+	
4584.08	$(2^+,3,4^+)$	1276.0 [‡] 8	9.2 [‡]	3307.872	3-	
		1539.40 [‡] 25	39 [‡]	3044.292	4+	
		2300.6‡ 5	40 [‡]	2283.119	4+	
		3427.5 [‡] 4	100 [‡]	1157.0208	2+	
4649.46	1	4649.2 <i>1</i>	100	0.0	0^+	E_{γ} : from (γ, γ') .
4650.3	2+	1992.8 7	100 67	2656.509	2+	E_{γ} : weighted average of 1992.4 5 from ⁴⁴ K β^- decay and 1994.2 <i>10</i> from (n, γ) E=thermal.
		4650.1 [‡] 9	12 7	0.0	0^{+}	I_{γ} : from ⁴⁴ K β^- decay. In (n,γ) , $I_{\gamma}(4651)/I_{\gamma}(1993)=1.43$.
4690.0	$(1^-,2,3,4^+)$	3532.9 [‡] 6	100	1157.0208	2+	
4803.6	$(1^-,2,3,4^+)$	3647.2 [‡] 6	100	1157.0208		
4824.4	(1,2,3)	2167.8 6	100	2656.509	2 ⁺	
4848.39	1	4848.1 2	100	0.0	0+	E_{γ} : from (γ, γ') .
4866.09	1	1285.0 ^a 10	≤10.7	3581.3	0+	
		2982.44 15	79 11	1883.516	0+	E_{γ} : weighted average of 2982.47 15 from ⁴⁴ K β^- decay and 2982.3 3 from (pol γ, γ'). I_{γ} : other: 79 27 from (pol γ, γ').
		3708.90 ^a 13	≤29	1157.0208	2+	-7 (Por 1)1).
		4865.81 15	100 4	0.0	0+	E_{γ} : other: 4865.7 4 from (pol γ, γ'). I_{γ} : other: 100 27 from (pol γ, γ').
4884.02	(1,2,3)	1222.50 8	100 10	3661.527	1-	17. odio1. 100 27 from (por 7,7).
100 1.02	(1,2,3)	1575.9 <i>3</i>	36 11	3307.872	3-	

γ (44Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α @	Comments
4892.6?		4892.3 ^a 8	100	0.0	0+				
4904.58	3-	2248.2 [‡] 5	63 [‡]	2656.509	2+				
		3747.2 [‡] 6	100 [‡]	1157.0208	2+				
4930.74	(6^{-})	1016.9 2	100 7	3913.80	5-	D			
		1218.8 <i>3</i>	48 7	3711.96	4-				
5005.69	4+	1092.2 [‡] 7	6.7 [‡]	3913.80	5-				
		1648.1 [‡] <i>5</i>	69 [‡]	3357.29	$(2^+,3,4^+)$				
		2722.4 [‡] <i>3</i>	100 [‡]	2283.119	4+				
		3848.9 [‡] 7	12.2 [‡]	1157.0208	2+				
5025.73	3-	1363.7 8	18 18	3661.527	1-				
		3868.56 22	100 27	1157.0208					
5007 60	o+	5025.4 8	2.7 18	0.0	0 ⁺	EO			$P(E2)/W_{11} = 6.1 + 22 - 12$
5087.62	8+	1802.59 8	100	3285.004	6+	E2			B(E2)(W.u.)=6.1 +22-13 E _{γ} : from (14 C, α 2n γ). Others: 1802 <i>I</i> from (16 O,2p γ)
									and 1802.6 2 from (^{18}O ,2p2n γ).
									Mult.: Q, $\Delta J=2$ from DCO in (18 O,2p2n γ); M2 ruled
									out by RUL.
5096.87	3-,4-	1183.1 [‡] 4	100	3913.80	5-				
5130.22	$(2,3)^+$	1773.3 [‡] 5	34 [‡]	3357.29	$(2^+,3,4^+)$				
3130.22	(2,5)	2846.9 3	100 [‡]	2283.119	(2 ,3,1) 4 ⁺				E_{γ} : weighted average of 2847.6 7 from 44 K β^- decay
		2040.7 3	100	2203.11)	7				and 2846.8 3 from (n,γ) E=thermal.
		3973.1 [‡] 4	83 [‡]	1157.0208	2+				(-,//) =
5161.8	1	4005	1.8 18	1157.0208					
		5161.33 <i>63</i>	100 6	0.0	0^{+}				E_{γ} : unweighted average of 5161.96 10 from ⁴⁴ K β ⁻
									decay and 5160.7 3 from (pol γ, γ').
5201.13	$(1,2,3)^{-}$	1525.0 ^a		3676.092	(2^{+})				
		1893.2 4	100 47	3307.872	3 ⁻				
5210.0	1+	4044 ^a 1909	≤2.6 33 <i>15</i>	1157.0208 3301.36	2+ 2+	[M1,E2]			E_{γ}, I_{γ} : from (γ, γ') .
3210.0	1	1 707	33 13	3301.30	<u> </u>	[WII,EZ]			$B(M1)(W.u.)=0.19 \ 8 \ \text{if } M1, \ B(E2)(W.u.)=1.4\times10^2 \ 6 \ \text{if}$
									E2.
		2553	4 4	2656.509	2+	[M1,E2]			E_{γ}, I_{γ} : from (γ, γ') .
									B(M1)(W.u.)<0.023 if M1, B(E2)(W.u.)<10 if E2.
		3326	80 2	1883.516	0^{+}	M1			B(M1)(W.u.)=0.085 + 16-15
		4053	65 2	1157.0208	- 1	M1+E2	+0.27 8	1.07×10 ⁻³ 2	E_{γ},I_{γ} ,Mult.: from (γ,γ') . B(M1)(W.u.)=0.036 7; B(E2)(W.u.)=0.44 +27-23

γ (44Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}^{π}_f	Mult.	α@	Comments
5210.0	1+	5210	100 <i>I</i>	0.0	0+	M1#	$1.41 \times 10^{-3} \ 2$	B(M1)(W.u.)=0.028 5 E_{γ} , I_{γ} : from (γ, γ') .
5230.33	2+,3+,4+,5+	1872.7 <mark>&</mark> ‡ <i>3</i>	<74 ^{&‡}	3357.29	$(2^+,3,4^+)$			
		2186.2 [‡] <i>10</i>	6.9 [‡]	3044.292	4+			
		2947.4 [‡] <i>3</i>	100‡	2283.119	4+			
5245.19	7-	1331.3 2	100 5	3913.80	5-	(E2)		E_{γ} , I_{γ} : from (18 O,2p2n γ). Mult.: ΔJ =2 from DCO in (18 O,2p2n γ).
		1960.2 2	97 <i>7</i>	3285.004	6+	(E1)		E_{γ}, I_{γ} : from ($^{18}O, 2p2n\gamma$). Mult.: $\Delta J=1$ from DCO in ($^{18}O, 2p2n\gamma$).
5289.25		3006.0 [‡] 4	100	2283.119	4+			
5300.5 5325.0	(1,2,3)	1588.7 [‡] <i>4</i> 4167.8 <i>6</i>	100 100 <i>50</i>	3711.96 1157.0208	4 ⁻ 2 ⁺			
5342.2	$(2)^{+}$	4185.6 [‡] 8	100	1157.0208	2+			
5367.5	(1,2,3)	2711 4210.1 <i>10</i>	$1.0 \times 10^2 \ 10$ 30 27	2656.509 1157.0208	2 ⁺ 2 ⁺			
5375.0	$(2,3,4)^+$	4217.9 [‡] 8	100	1157.0208	2+			
5458.9	$(2,3,4)^+$	3176.2 [‡] 7	100 [‡]	2283.119	4+			
5512.3		$4301.7^{\ddagger} 7$ 4355^{a}	50 [‡] 100	1157.0208 1157.0208				
5548.68	$(2,3,4)^+$	1872.7 <mark>&</mark> ‡ <i>3</i>	<540 & ‡	3676.092	(2^{+})			
		2891.2 ^{‡a} 6	63 [‡]	2656.509	2+			
		3265.4 [‡] 7	100‡	2283.119	4+			
		4391.5 [‡] 7	72 [‡]	1157.0208	2+			
5561.0	3-	1884.5 10	100 75	3676.092	(2 ⁺)			
		4403.6 <i>6</i> 5561.3 ^{<i>a</i>} 10	15 <i>10</i> 13 <i>10</i>	1157.0208 0.0	2 ⁺ 0 ⁺			
5611.56	1	4454.1 8	100 21	1157.0208				
2011.00	•	5611.2 3	47 21	0.0	0+			
5646.79	8(+)	559.2 2	100 11	5087.62	8+	(M1)		E_{γ} , I_{γ} : from (18 O,2p2n γ). ΔJ =0 from DCO in (18 O,2p2n γ).
		1554.7 <i>3</i>	70 <i>7</i>	4092.04	(6 ⁺)	(E2)		E_{γ} , I_{γ} : from (¹⁸ O,2p2n γ).
		2361.6 4	75 7	3285.004	6+	(E2)		E_{γ} , I_{γ} : from (¹⁸ O,2p2n γ).
5733.30	$(4,5)^+$	1640.7 <mark>&</mark> ‡ <i>5</i>	<42 ^{&‡}	4092.04	(6^+)			
		2376.1 5	16.7 [‡]	3357.29	$(2^+,3,4^+)$			
		2688.7 [‡] 5	21.3 [‡]	3044.292	4+			

γ (44Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
5733.30	$(4,5)^+$	3450.3 [‡] 4	100‡	2283.119	4+		
5775.76	$(2,3,4)^+$	2099.3 [‡] 5	49 [‡]	3676.092	(2^{+})		
		2474.9 ^{‡a} 6	24.8 [‡]	3301.36	2+		
		2730.7 [‡] 6	33 [‡]	3044.292	4+		
		3120.5 [‡] <i>a</i> 15	12.8 [‡]	2656.509	2+		
		3492.9 [‡] <i>4</i>	100‡	2283.119	4 ⁺		
		4618.0 [‡] 8	37 [‡]	1157.0208			
5800.61	1	5800.2 2	100	0.0	0_{+}		
5806.31	1-	5805.9 <i>1</i>	100	0.0	0_{+}	E1#	$B(E1)(W.u.)=1.2\times10^{-3} 2$
5866.82	$(4^+,5^+)$	1773.3 [‡] 5	100‡	4093.7	$(2^+,3,4^+)$		
		2509.2‡ 6	23.1‡	3357.29	$(2^+,3,4^+)$		
		3583.4 [‡] 6	100‡	2283.119	4+	ш	
5875.82	1-	5875.4 2	100	0.0	0+	E1#	$B(E1)(W.u.)=6.4\times10^{-4} 10$
5911.13	1 8 ⁽⁻⁾	5910.7 2	100	0.0	0 ⁺	(M1)	E_{γ} , I_{γ} : from (¹⁸ O,2p2n γ).
5971.30	8	726.1 2	100 6	5245.19	7-	(M1)	$\Delta J=1$ from DCO in (^{18}O ,2p2n γ).
		883.7 2	71 6	5087.62	8+		E_{γ} , I_{γ} : from (18 O,2p2n γ).
		1040.5 3	42.9 29	4930.74	(6-)	Q	E_{γ} , I_{γ} : from (18 O,2p2n γ).
							$\Delta J = 2$ from DCO in (^{18}O ,2p2n γ).
6040.0	2+,3+,4+,5+	2682.8 [‡] 6	100	3357.29	$(2^+,3,4^+)$		
6082.9	1+	4199.5 5	62 12	1883.516	0+	M1#	B(M1)(W.u.)=0.043 10
		4925.3 8	41 7	1157.0208		[M1,E2]	B(M1)(W.u.)=0.018 4 if M1, B(E2)(W.u.)=2.0 5 if E2.
(126.50	1-	6080.1 14	100 <i>7</i> 46 <i>7</i>	0.0	0 ⁺	M1 [#]	B(M1)(W.u.)=0.023 4
6136.59	1	4978.5 <i>5</i> 6136.4 <i>3</i>	46 / 100 <i>5</i>	1157.0208 0.0	0+	[E1] E1 [#]	B(E1)(W.u.)=0.00109 <i>19</i> B(E1)(W.u.)=0.00127 <i>18</i>
6146.14	$(4,5)^{+}$	2053.9 [‡] 5	86 [‡]	4092.04	(6 ⁺)	EI"	B(E1)(W.u.)=0.00127 16
0140.14	(4,3)	$2033.9^{+}3$ $2223.3^{\ddagger}20$	80.	3922.71	5-		
		3861.7 [‡] 7	100‡	2283.119	3 4 ⁺		
6211.4		2297.5 [‡] 6	100	3913.80	5-		
6245.48	1	6245.0 3	100	0.0	0 ⁺		
6422.12	1-	4539.9 7	5.2 7	1883.516	0+	E1#	B(E1)(W.u.)=0.0013 2
 -	•	5263.8 7	5.5 7	1157.0208		E1#	B(E1)(W.u.)=8.8×10 ⁻⁴ 14
		6421.6 <i>I</i>	100 <i>I</i>	0.0	0+	E1#	B(E1)(W.u.)=0.0088 +9-8
6446.5	1+	5288.0 17	50 14	1157.0208		[M1,E2]	B(M1)(W.u.)=0.0084 + 24-26 if M1, $B(E2)(W.u.)=0.84 + 24-26$ if E2.
		6446.3 8	100 10	0.0	0_{+}	M1#	B(M1)(W.u.)=0.0093 +24-22

γ (44Ca) (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
6507.1	1	6506.6 5	100	0.0	0^{+}		10
6657.65	9(-)	1412.4 3	59 4	5245.19	7-	(E2)	E_{γ} , I_{γ} : from (18 O,2p2n γ). ΔJ =2 from DCO in (18 O,2p2n γ).
		1570.0 2	100 6	5087.62	8+	(E1)	E_{γ} , I_{γ} : from (18 O,2p2n γ). $\Delta J=1$ from DCO in (18 O,2p2n γ).
6672.92		2088.2 [‡] 5	100‡	4584.08	$(2^+,3,4^+)$		
		2896.7 ^{‡a} 6	18.4 [‡]	3776.27	2-		
		3628.9 [‡] 7	34.5 [‡]	3044.292	4+		
6675.44	1	6674.9 2	100	0.0	0+		
6960.7	1	6960.1 <i>6</i>	100	0.0	0+		
6972.14	1	5815.0 <i>5</i>	100 15	1157.0208			
		6971.5 2	52 <i>15</i>	0.0	0^{+}		
7065.9	1	7065.3 9	100	0.0	0+		
7092.76	(9-)	435.1 <i>3</i>	39	6657.65	9(-)		E_{γ},I_{γ} : from ($^{18}O,2p2n\gamma$).
		1121.5 4	78	5971.30	8(-)		E_{γ},I_{γ} : from ($^{18}O,2p2n\gamma$).
		1445.9 3	100 11	5646.79	8(+)	D	E_{γ}, I_{γ} : from ($^{18}O, 2p2n\gamma$). $\Delta J=1$ from DCO in ($^{18}O, 2p2n\gamma$).
		2005.1 2	67 6	5087.62	8+	(E1)	E_{γ} , I_{γ} : from (18 O,2p2n γ). ΔJ =1 from DCO in (18 O,2p2n γ).
7226.04	1	7225.4 3	100	0.0	0^{+}		25 Thom 200 in (0,2p2n/).
7275.2	1	7274.5 9	100	0.0	0+		
7403.0	1	7402.3 8	100	0.0	0_{+}		
7470.92	(10^+)	1824.1 2	100 8	5646.79	8(+)	Q	$E_{\gamma}I_{\gamma}$: from (^{18}O ,2p2n γ). ΔJ =2 from DCO in (^{18}O ,2p2n γ).
		2383.2 3	55 6	5087.62	8+	Q	E_{γ} , I_{γ} : from (18 O,2p2n γ). ΔJ =2 from DCO in (18 O,2p2n γ).
7556.58	(9)	2468.9 <i>3</i>	100	5087.62	8+	(D)	E _{γ} : from (¹⁸ O,2p2n γ). $\Delta J=(1)$ from DCO in (¹⁸ O,2p2n γ).
7572.0	1(+)	7571.3 5	100	0.0	0^{+}	(M1)#	B(M1)(W.u.)=0.0205
7578.90	1-	7578.2 3	100	0.0	0+	E1#	B(E1)(W.u.)=0.0025 3
						E1 [#]	
7662.1	1-	7661.4 6	100	0.0	0+		$B(E1)(W.u.)=2.6\times10^{-4} 8$
7783.3	1-	7782.6 10	100	0.0	0+	E1#	$B(E1)(W.u.)=2.7\times10^{-4}+10-8$
7808.9	1-	7808.2 <i>16</i>	100	0.0	0+	E1#	$B(E1)(W.u.)=1.4\times10^{-4} 5$
7828.9	1	7828.1 <i>12</i>	100	0.0	0_{+}	ш	
7834.8	1-	7834.0 8	100	0.0	0^{+}	E1#	$B(E1)(W.u.)=3.8\times10^{-4}+10-9$
7879.97	(10-)	323.4 2	33.3	7556.58	(9)	D	E_{γ},I_{γ} : from ($^{18}O,2p2n\gamma$). $\Delta J=1$ from DCO in ($^{18}O,2p2n\gamma$).

γ (44Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
7879.97	(10-)	787.2 2	100 8	7092.76	(9-)	(M1)	E_{γ} , I_{γ} : from (18 O,2p2n γ). ΔJ =1 from DCO in (18 O,2p2n γ).
		1908.6 <i>3</i>	74 8	5971.30	8(-)	Q	E_{γ},I_{γ} : from ($^{18}O,2p2n\gamma$). $\Delta J=2$ from DCO in ($^{18}O,2p2n\gamma$).
7953.1	1	5293.8 <i>14</i>	100	2656.509	2+		
		7952.6 5	100	0.0	0+		
8070.2	1	8069.4 7	100	0.0	0+		
8086.0	1	8085.2 7	100	0.0	0^{+}	(F2)	E. I. C. (180.2.2.)
8286.28	(11 ⁻)	1628.6 2	100.0 63	6657.65	9(-)	(E2)	E_{γ} , I_{γ} : from (18 O,2p2n γ). ΔJ =2 from DCO in (18 O,2p2n γ).
8321.5	1	8320.7 16	100	0.0	0+		
8395.3	1	8394.4 4	100	0.0	0+		
8405.4	1	8404.5 17	100	0.0	0+	#	D(T1) (TV) 2 (10-4 15 12
8556.7	1-	8555.8 8	100	0.0	0+	E1#	B(E1)(W.u.)= $3.6 \times 10^{-4} + 15 - 13$
8615.2	1-	8614.3 <i>12</i>	100	0.0	0_{+}	E1#	$B(E1)(W.u.)=3.7\times10^{-4} II$
8801.9	1-	8800.9 29	100	0.0	0_{+}	E1#	$B(E1)(W.u.)=7.2\times10^{-5} +4-3$
8828.0	1-	6944.6 <i>18</i>	100 14	1883.516	0_{+}	E1#	B(E1)(W.u.)=0.0011 +4-3
		8826.6 <i>14</i>	89 23	0.0	0_{+}	E1#	$B(E1)(W.u.)=4.7\times10^{-4}+17-15$
8851.5	1-	7692.9 18	19 8	1157.0208	2+	E1#	$B(E1)(W.u.)=2.7\times10^{-4} 11$
		8850.7 <i>7</i>	100 6	0.0	0^{+}	E1#	$B(E1)(W.u.)=9.4\times10^{-4}+21-19$
8908.8	1-	8907.8 <i>7</i>	100	0.0	0^{+}	E1#	B(E1)(W.u.)=0.0023 4
9024.1	1-	9023.1 20	100	0.0	0^{+}	E1#	
9148.4	1-	9147.4 <i>24</i>	100	0.0	0^{+}	E1#	
9273.6	1-	9272.5 8	100	0.0	0^{+}	E1#	$B(E1)(W.u.)=6.2\times10^{-4} 14$
9317.2	1-	9316.1 <i>10</i>	100	0.0	0+	E1#	
9664.9	1-	8508.5 <i>33</i>	17 8	1157.0208			
		9663.7 <i>7</i>	100 6	0.0	0^{+}	E1#	
9788.6		2317.6 6	100	7470.92	(10^+)		E_{γ} : from ($^{18}O,2p2n\gamma$).
9814.1	1-	9812.9 <i>11</i>	100	0.0	0^{+}	E1#	
9859.5	(12-)	1979.5 <i>3</i>	100	7879.97	(10-)	(E2)	E_{γ} : from (^{18}O ,2p2n γ). ΔJ =2 from DCO in (^{18}O ,2p2n γ).
9898.2	1-	9897.0 <i>10</i>	100	0.0	0^{+}	E1#	· / 1 //
10567.8	(13^{-})	2281.5 4	100	8286.28	(11^{-})	Q	
(11131.60)	3-,4-	4457.9 [‡] 7	27.3 [‡]	6672.92		-	
	- /-	4919.9 [‡] 7	12.9 [‡]	6211.4			
		4984.4 [‡] 5	16.1	6146.14	$(4,5)^{+}$		
		1701.7 3	10.1	J1 10.17	(1,0)		

γ (44Ca) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^π
(11131.60)	3-,4-	5091.6 [‡] 8	5.7 [‡]	6040.0	2+,3+,4+,5+
,		5264.4 [‡] 5	17.1 [‡]	5866.82	$(4^+,5^+)$
		5355.7 [‡] 5	41 [‡]	5775.76	$(2,3,4)^+$
		5397.8 [‡] 5	54 [‡]	5733.30	$(4,5)^+$
		5582.4 [‡] 5	14.2‡	5548.68	$(2,3,4)^+$
		5673.0 [‡] 7	7.2‡	5458.9	$(2,3,4)^+$
		5756.3 [‡] 7	12.2 [‡]	5375.0	$(2,3,4)^+$
		5789.5 [‡] 7	5‡	5342.2	$(2)^{+}$
		5831.4 [‡] 7	14.4 [‡]	5300.5	
		5841.9 [‡] 5	16.8 [‡]	5289.25	
		5900.9 [‡] 5	100 [‡]	5230.33	2+,3+,4+,5+
		6001.3 [‡] 6	49 [‡]	5130.22	$(2,3)^+$
		6034.4 6	16.9 [‡]	5096.87	3-,4-
		6125.3‡ 6	53 [‡]	5005.69	4+
		6226.7‡ 8	12.1‡	4904.58	3-
		6328.3 6	8.5 [‡]	4803.6	$(1^-,2,3,4^+)$
		6441.1 8	5.6 [‡]	4690.0	$(1^-,2,3,4^+)$
		6480.2 [‡] 6	33‡	4650.3	2+
		6546.6 [‡] 6	33.9 [‡]	4584.08	$(2^+,3,4^+)$
		6566.4 [‡] 6	8‡	4564.87	(5-)
		6651.3‡ 8	6 [‡]	4479.9	2+
		6731.9 [‡] <i>10</i>	2.01	4399.2	3-
		6772.3 6	10.8‡	4358.440	3-
		6935.2 [‡] 6	12.6 [‡]	4196.10	2+
		7119.7‡ 10	1.15 [‡]	4011.4	
		7208.1 6	22.2‡	3922.71	5-
		7354.2‡ 8	7 [‡] .	3776.27	2-
		7418.8‡ 6	10.6 [‡]	3711.96	4-
		7454.4 10	1.15 [‡]	3676.092	(2 ⁺)
		7773.4‡ 6	44 [‡]	3357.29	$(2^+,3,4^+)$
		7822.3 [‡] 10	2.44‡	3307.872	3-
		7829.3 [‡] 8	8.6 [‡]	3301.36	2+

γ (⁴⁴Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
(11131.60)	3-,4-	8086.4 [‡] 7	9.6 [‡]	3044.292	4+	
		8474.3 [‡] <i>10</i>	1‡	2656.509	2+	
		8848.0 [‡] 7	5.3 [‡]	2283.119	4+	
		9974.3 [‡] 8	1.58 [‡]	1157.0208	2+	
12188.1		2399.5 7	100	9788.6		E_{γ} : from (^{18}O ,2p2n γ).

[†] From ⁴⁴K β^- decay up to 5561 level, and from (γ, γ') , (pol γ, γ') above that, unless otherwise noted.

From (n,γ) E=thermal.

From γ (linear polarization) in (polarized γ,γ').

@ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Multiply placed with undivided intensity.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

---- → γ Decay (Uncertain)

Band(b): Band based on 5^- , α =1

$$^{44}_{20}\mathrm{Ca}_{24}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 91.1 (2000)	15-Jul-2000

 $Q(\beta^-)=-1377.9\ 24;\ S(n)=10397.6\ 23;\ S(p)=13811.7\ 24;\ Q(\alpha)=-11141\ 7$ 2012Wa38 Note: Current evaluation has used the following Q record \$ -1376.3\ 24\ 10393.724\ 13816\ 10 1995Au04. Isotope shifts: 1993Si20.

46 Ca Levels

Cross Reference (XREF) Flags

Α	46 K β^- decay: data set #1	F	⁴⁶ Ca(e,e')	K	⁴⁸ Ca(p,t)
В	46 K β^- decay: data set #2	G	⁴⁶ Ca(p,p')	L	48 Ca(α , α 2n γ)
C	⁴⁴ Ca(t,p)	H	46 Ca(d,d')	M	⁴⁸ Ti(¹⁴ C, ¹⁶ O)
D	44 Ca(t,p γ)	I	Coulomb excitation		
E	44 Ca(α , 2 He)	J	48 Ca(p,p2n γ)		

E(level)	$J^{\pi b}$	T _{1/2}	X	KREF	·	Comments
0.0	0+	stable	ABCDE	FGHI	JKLM	
1346.0 ^a 3	2+	3.6 ps <i>3</i>	ABCDE	GHI	JKLM	J^{π} : L=2 in (t,p), (α , ² He) and (p,t). $T_{1/2}$: from Coul. ex. if B(E2)=0.0178 <i>13</i> (1975Ku17), $T_{1/2}$ >5.5 ps from (t,p γ) (1974Be28).
2423.1 8	0+	>4.5 ps	CD	G	K M	 (t,pγ) (19/4Be28). E(level): weighted average of values from (t,pγ) (Eγ plus adopted 1346.0 level), (p,p′), and (p,t). J^π: L=0 in (t,p) and (p,t). T_{1/2}: from (t,pγ) (1974Be28).
2574.7 ^a 5	4+		ACE	G	JKLM	J^{π} : L=4 in (t,p), (α , ² He) and (p,t).
2973.9 ^a 6	6 ⁺	10.4 ns 5	CE		JKLII	J^{π} : L=6 in $(\alpha, {}^{2}\text{He})$ and (p,t) .
2913.9 0	U	10.4 118 3	CE	ď	JKL	$T_{1/2}$: weighted average of 10.3 ns 10 (p,p2n γ) (1975Bi01) and 10.5 ns 6 (α , α 2n γ) (1975Ku17).
3022.6 10	2+		ABC	GH	K M	E(level): weighted average of values from 46 K β^- decay: data set #1, (t,p), (p,p'), (d,d'), and (p,t) (3020.5 21 from 46 K β^- decay: data set #1 based on E γ 's and 1346.0 3 for first excited state (evaluator)). J^{π} : L=2 in (t,p) and (p,t).
3614.0 9	3-		ABC	СН	КМ	E(level): weighted average of values from (t,p) , (p,p') , (d,d') , and (p,t) .
				GII		J^{π} : L=3 in (t,p) and (p,t).
3638.9 [@] 12	2+		C	G	K	J^{π} : L=2 in (t,p) and (p,t).
3859.7 [@] 13 3952? 2	4+		С	G G	K	J^{π} : L=4 in (p,t).
3988 [#] <i>3</i>	(3^{-})			G	K	J^{π} : L=(3) in (p,t).
4184.5 [#] <i>15</i>	5-			G	K	J^{π} : L=5 in (p,t).
4261 2			С	G		E(level): from (p,p') .
4407.0 [#] 14	3-			G	K	J^{π} : L=3 in (p,t).
4430.2 9	2+		С	GH	K	E(level): weighted average of values from (t,p), (p,p'), (d,d'), and (p,t). J^{π} : L=2 in (t,p).
4489.4 [#] <i>12</i>	(4^{+})			G	K	J^{π} : L=(4) in (p,t).
4728.8 [#] 18	5-		Е	G	K	J^{π} : L=5 in (p,t) and L=6,5 in (α , ² He).
4744.9 <mark>&</mark> 24	(4^{+})		С	G		J^{π} : L=(4) in (t,p).
4758 3	0+			•	K	J^{π} : L=0 in (p,t).
4994.7 [#] 20 5013.6 20	(4 ⁺)		С	G G	K	J^{π} : L=(2) in (t,p); L=(4) in (p,t).
5051 3	(4+)		AB	Ğ	K	E(level): weighted average of values from (p,p') and (p,t) . J^{π} : L=(4) in (p,t) .

E(level)	$J^{\pi b}$		XRE	F	Comments
5151.6 [#] 26	(4^{+})		G	K	J^{π} : L=(4) in (p,t).
5218 <i>4</i>	. ,		G	K	E(level): from (p,t) ; 5216 from (p,p') , ΔE not given.
5251.5 [#] 28	4+		G	K	J^{π} : L=4 in (p,t).
5317 [@] 3	0^{+}	С	G	K	J^{π} : L=0 in (t,p) and L=(0) in (p,t).
5379.6 [#] 24	(3-)		G	K	J^{π} : L=3 in (p,t).
5392 <mark>&</mark> 4	(-)	С	G		
5416.7 [#] 24			G	K	
5436.7 [#] 24	4+		G	K	J^{π} : L=4 in (p,t).
5474 <i>4</i>	(3-)		ď	K	J^{π} : L=(3) in (p,t).
5536.7 [@] 23	(4^{+})	С	G	K	J^{π} : L=(4) in (p,t).
5600 [‡] 4	0+	C		K	J^{π} : L=0 in (t,p).
5628 10	0+	C		K	J^{π} : L=0 in (t,p). J^{π} : L=0 in (t,p).
5638 [#] 3	O		G	K	3 · 2 · 0 · ii (i,p).
5679			G	K	
5690 <i>4</i>		C	Ğ	K	E(level): weighted average of values from (t,p) and (p,t).
5722 [#] 3			G	K	
5781.6 [@] 27		С	G	K	
5821 4			_	K	
5850.9 [@] 27		С	G	K	
5863.0 [#] 28	(6^+)		G	K	J^{π} : L=(6) in (p,t).
5958 [‡] 4	(2 ⁺)	С		K	J^{π} : L=(2) in (p,t).
5987 <i>4</i>	(6^+)			K	J^{π} : L=(6) in (p,t).
6010 [#] 4	(-)		G	K	
6036 [#] 4	(4^{+})		G	K	J^{π} : L=(4) in (p,t).
6047 15	(0^{+})	С	J	K	J^{π} : L=(0) in (t,p).
6077 5	()			K	· - (-) (-) _F)
6116 5	(2^{+})			K	J^{π} : L=(2) in (p,t).
6156 5				K	
6201 5	(4+)			K	IT I (A): (()
6252 <i>5</i>	(4 ⁺)	_		K	J^{π} : L=(4) in (p,t).
6267 [‡] 5 6309 5	2+	C		K K	J^{π} : L=2 in (t,p).
6372 15	2+	С		K	J^{π} : L=2 in (t,p).
6555 15	(0^+)	c			J^{π} : L=(0) in (t,p).
6626 15	2+	A C			J^{π} : L=2 in (t,p).
6745 <i>15</i>		C			
6836 <i>15</i>		C			
6964 <i>15</i>	(2+)	C			IT I (0) ' (,)
7025 15	(2 ⁺) 5 ⁻ ,6 ⁺	С	_	**	J^{π} : L=(2) in (t,p).
7055 <i>7</i> 7098 <i>15</i>	5 ,6		E	K	E(level): weighted average of values from (p,t) and (α , ² He).
7168 15		C C			
7233 15	(0^+)	Č			J^{π} : L=(0) in (t,p).
7267 15	(0^{+})	C			
7311 <i>15</i>		C C			
7380 <i>15</i>		C			
7438 15		С			
7490 [‡] 6	(2^{+})	C		K	J^{π} : L=(2) in (t,p) and (p,t).
7503 15	(2+ 5-\C	C	_		Edwards weighted account of colors from (c) 1 (211)
7667 14	$(2^+,5^-)^{\mathcal{C}}$	C	E		E(level): weighted average of values from (t,p) and $(\alpha,^2\text{He})$. L=2 in (t,p) and L=5 in $(\alpha,^2\text{He})$.

E(level)	$J^{\pi b}$	T _{1/2}	XRE	F	Comments
7738 <i>15</i> ≈7830 7914 8	0+		С	K	J^{π} : L=0 in (p,t). Possible doublet.
8382 <i>5</i> 8770 <i>50</i>	7 ⁻ <i>c</i> 7 ⁻ <i>c</i>		C E E		Possible doublet.
9070 <i>50</i> 9680 <i>50</i>	5 ⁻ <i>c</i> 5 ⁻ ,6 ⁺ ,8 ⁺ <i>c</i>		E E		
12660 <i>50</i> 13020 <i>40</i>	6 ⁺ ,8 ⁺ ,7 ⁻ ^c 1 ⁺	0.022 fs 7	E F		Observed and J^{π} assigned in 46 Ca(e,e'). $T_{1/2}$: from B(M1) \uparrow =2.47 77.
13130 <i>50</i> 13895 [†] <i>30</i>	6 ⁺ ,8 ⁺ ,7 ⁻		E	K	1/2 (() / · · · · · · · · · · · · · · · · ·
14488 [†] <i>30</i>	3-			K	J^{π} : L=3 in (p,t).
14610 [†] 30 14795 [†] 30	5-			K K	J^{π} : L=5 in (p,t).
15279 [†] 30 15847 [†] 30	3-			K K	J^{π} : L=3 in (p,t).
16155 [†] 30 16721 [†] 30	(0^+) (2^+)			K K	J^{π} : L=(0) in (p,t). J^{π} : L=(2) in (p,t).
≈17295 [†]				K	en e

[†] Proposed T=4 analog state from (p,t).

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	Comments
1346.0	2+	1346.0 [†] 3	100	0.0 0+	[E2]	B(E2)(W.u.)=3.63 Mult.: based on J^{π} assignment.
2423.1	0_{+}	1077.5 20	100	1346.0 2+		E_{γ} : from $(t,p\gamma)$.
2574.7	4+	1228.7 [†] <i>3</i>	100	1346.0 2+		
2973.9	6+	399.2 [†] 3	100	2574.7 4+	[E2]	B(E2)(W.u.)=0.55 Mult.: based on J, $T_{1/2}$, and decay modes in (p,p2n γ).
3022.6	2+	1675 [‡] 3 3020 ^{‡#} 3	100 [‡] 63 [‡] 29	1346.0 2 ⁺ 0.0 0 ⁺		
3614.0	3-	2274 2	100	1346.0 2+		E_{γ} : from 46 K β^- decay: data set #2; 2285 3 from 46 K β^- decay: data set #1 is inconsistent with 2268 separation of Adopted Levels levels.

[‡] Weighted average of values from (p,p') and (p,t). [#] Weighted average of values from (p,p') and (p,t).

[®] Weighted average of values from (t,p), (p,p'), and (p,t).

[&]amp; Weighted average of values from (t,p) and (p,p').

 $[^]a$ From least-squares fit to γ data.

^b From (t,p) and/or (p,t), unless otherwise specified.

^c Based on L-transfers in $(\alpha,^2\text{He})$, and a comparison of experimental cross sections with theoretical DWBA values.

[†] From $(p,p2n\gamma)$. [‡] From ⁴⁶K β ⁻ decay set #1.

[#] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021

 $Q(\beta^-)=279\ 5$; $S(n)=9951.5\ 22$; $S(p)=15801.9\ 14$; $Q(\alpha)=-13976.5\ 16$ 2021Wa16 $S(2n)=17227.9\ 22$, $S(2p)=29031.6\ 23\ (2021Wa16)$.

Mass measurements: 2016Ko45, 2014Kw04, 2013Bu12, 2012Re17, 2006Fr27.

Measurements of hyperfine structure and isotope shift: 2019Kn01, 2017Ga02, 2015Go24.

See ⁴⁸Ca(pol p,p'):GDR,GQR for information on the giant dipole, giant quadrupole, spin dipole, and spin quadrupole resonances. See ⁴⁸Ca(e,e'n):GMR,GDR,GQR,IAR for information on the giant monopole, giant dipole, and giant quadrupole resonances.

⁴⁸Ca Levels

 $B(M1)\uparrow$ given under comments are from (p,p'), unless otherwise noted.

 $\%\beta^-$, $\%2\beta^-$ of g.s.: the small β^- decay probability together with the rather large phase space available for the $2\beta^-$ process have made 48 Ca a favorite for the study of the process. See the Nuclear Science References File for theoretical studies, compilations, and reviews. See 1990Al19 for a measurement of $\sigma(\theta)$ from the 48 Ti(n,p) reaction at E=198 MeV and its possible implications for 48 Ca $2\beta^-$ decay.

Cross Reference (XREF) Flags

A B C D E	48 K β^- decay 49 K β^- n decay 46 Ca(t,p) 48 Ca(γ,γ'),(pol γ,γ') 48 Ca(e,e') 48 Ca(e,e'n):GMR,GDR,GQR,IA	H I J K L	48 Ca(p,p' γ) 48 Ca(d,d'),(48 Ca(3 He, 3 I	pol p,p') p'):GDR,GQR	O P Q R S	48 Ca(α , α'):giant resonance 48 Ca(α , $\alpha'\gamma$) 48 Ca(6 Li, 6 Li') 48 Ca(16 O, 16 O') 48 Ca(48 Ca, 48 Ca' γ)
G	48 Ca($\pi^-,\pi^{-\prime}$),($\pi^+,\pi^{+\prime}$)	N	48 Ca(α,α')			
J^{π}	$T_{1/2}$ ^d	XRI	EF			Comments
0+	2.9×10^{19} y +42-11 AB	CDE GHI	KLMN PQRS	$T_{1/2}=2.9\times10^{19} \text{ y}$	Γ _{1/2} (2 +42-	=78 +22-30 β^-)=3.7×10 ¹⁹ y +33-12 and -11. See footnote comments for T

3831.96 22	2+	36 fs 3	ABCDE GHI KLMNOPQRS	$^{8}\beta^{-}, ^{8}\beta^{-}$: From $T_{1/2}(2\beta^{-})=3.7\times10^{19} \text{ y} +33-12$ and $T_{1/2}=2.9\times10^{19} \text{ y} +42-11$. See footnote comments for $T_{1/2}$. Nuclear rms charge radius=3.4771 fm 20 (2013An02). J^{π} : 3831.4γ E2 to 0 ⁺ . $T_{1/2}$: weighted average of 35 fs 3 from $\Gamma_{\gamma 0}$ in (γ, γ') (2002Ha13), 42 fs 9 from DSAM in $(n, n'\gamma)$ (1992Va06), and 37 fs 17 from DSAM in $(p, p'\gamma)$ (1970Be39).
				B(E2) \uparrow =0.0082 5 from (e,e') (1985Wi06), but it is discrepant with 0.0140 15 from (α , α'):giant res (2011Lu07) and 0.0131 12 from (6 Li, 6 Li') (2010Kr06).
4283.56 <i>24</i>	0_{+}	223 ps 11	ABC E HIK N S	XREF: A(?).
				J^{π} : from observation of E0 e+/e- pair emission to g.s. in $(p,p'\gamma)$; $L(t,p)=0$ from 0^+ .
4503.74 24	4+	1.53 ns <i>3</i>	Ac HKM S	$T_{1/2}$: from py(t) in (p,p' γ) (1970Be39). XREF: M(?).
4303.74 24	4	1.33 118 3	AC H KM S	J^{π} : 671.8 γ E2 to 2 ⁺ ; 1226 γ from 5 ⁻ .
				$T_{1/2}$: from py(t) in (p,p' γ) (1972Ta23).
4507.05 <i>23</i>	3-	6.1 ps +38-20	A c E GHI KLMNOPQRS	J^{π} : 4507.3 γ E3 to 0 ⁺ .
				$T_{1/2}$: from DSAM in $(p,p'\gamma)$ (1970Be39). Other: 7.2 ps
				$+26-20$ from adopted B(E3) \uparrow =0.0069 10. B(E3) \uparrow =0.0069 10, unweighted average of 0.0065 10 from
				(e,e'), 0.0054 8 from (α,α') :giant res, 0.0087 8 from
				(⁶ Li, ⁶ Li').

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ ^d		XREF	ï		Comments
4612.24 23	3(+)	2.5 ps <i>14</i>	A E	HI K	N	S	XREF: N(?). J^{π} : spin=3 from $\gamma\gamma(\theta)$ in $(p,p'\gamma)$ and $\gamma(\theta)$ in $(n,n'\gamma)$; $L(p,p')=(4)$ from 0^+ . $T_{1/2}$: unweighted average of 3.7 ps +9-4 from $(n,n'\gamma)$
4695.4 <i>3</i> 5146.42 25	1 3,4,5	32.6° fs +25-22 <0.69 ns	D E	ні к	N	RS	(1992Va06) and 1.2 ps 4 from $(p,p'\gamma)$ (1972Ta23). J^{π} : from $\gamma(\theta)$ in (γ,γ') . J^{π} : D γ to 4 ⁺ . Results are discrepant in the various experiments: 3,5 from $\gamma(\theta)$ in $(n,n'\gamma)$; 5 ⁺ from DWBA fit to Coulomb form factors and RPA calculation (unnatural π state from absence of longitudinal form factor) in (e,e') ; 5 ⁻ from $L(p,p')=5$ and observance of peak in (e,e') (natural π state)
5260.81 23	4 ⁽⁻⁾	5.1 ps + <i>14</i> -8	A E	нік		S	and observance of peak in (α,α') (natural π state) (1988Fu01); (4) from comparison of $\sigma(\theta)$ and analyzing powers to those of known states in (p,p') (1984Se10),(pol p,p'); 3 ⁻ from $L(\alpha,\alpha')=3$. $T_{1/2}$: from direct timing in $(p,p'\gamma)$ (1977Lo06). XREF: A(?).
3200.01 23	·	511 ps +17 0				J	J^{π} : spin=4 from $\gamma(\theta)$ in $(n,n'\gamma)$; 4^- from DWBA fit to the Coul. form factors and RPA calc. in (e,e') (unnatural parity state from absence of longitudinal form factor). Other: (5^+) from (p,p') for a group at 5257 5 is discrepant.
5311 6	$(1)^{-a}$			ΙK	n		XREF: K(5322). Additional information 1. E(level): from (p,p') . J^{π} : $L(p,p')=1$ from 0^{+} .
5312.2 <i>3</i> 5369.90 <i>23</i> 5461 <i>7</i>	2 3 ⁻ 0 ⁺	232 fs +28–13 1.80 ps 14	A E	H HI K I	n N N		J^{π} : 5312.2 γ Q to 0 ⁺ . J^{π} : L(α , α')=3 from 0 ⁺ . XREF: N(?). E(level): weighted average of 5459 <i>10</i> from (t,p) and 5462 7 from (p,p').
5729.64 24 6105.00 23	5 ⁻ (2 ⁺)	0.90 ps +49-21 139 fs +17-28	E E		N N	S	J^{π} : L(t,p)=L(p,p')=0 from 0 ⁺ . J^{π} : L(α,α')=L(p,p')=5 from 0 ⁺ . J^{π} : L(α,α')=(2) from 0 ⁺ ; 2273.1 γ to 2 ⁺ , 1597.8 γ to 3 ⁻ . Other: 4 ⁻ from DWBA fit to Coulomb form in (e,e') (unnatural π state from absence of longitudinal form factor) and (4 ⁻) from DWBA analysis in (p,p') (unnatural π state since peak not observed in (α,α'))
6336.8 20 6345.72 24	2 ⁺ 4 ⁺	191 fs 29 180 fs +35–13	C E	H HI K	N		are discrepant. J^{π} : 6336.4 γ E2 to 0 ⁺ . XREF: K(6351). J^{π} : L(α , α')=L(p,p')=4 from 0 ⁺ .
6.48×10^3 ?	1-	1.078 6.14			N _		TT ((11 T F1) 0 h
6612.19 <i>10</i> 6648.99 <i>24</i>	1 ⁻ 4 ⁺	1.87 ^e fs 14 114 fs +42-28	A D C E	I K HI K	N P		J^{π} : 6611.7 γ E1 to 0 ⁺ . XREF: N(?). J^{π} : L(α , α')=L(p,p')=4 from 0 ⁺ .
6685.64 <i>23</i> 6755	$2^{(-)}$; 2^{+}	69 fs +56–52	A E	HI K I	N		E(level): from (p,p') . J^{π} : $L(\alpha,\alpha')=2$ from 0^+ .
6791.5 20	1	<6.9 fs	е	H			XREF: e(6796).
6805.7 3	2+	83 fs +44-38	C e	HI	n P		J^{π} : 6791.0 γ D to 0 ⁺ . XREF: C(6793)e(6796)I(6794)n(6820)P(6800). J^{π} : L(α , α')=L(p,p')=2 from 0 ⁺ .
6830.8 <i>6</i>	(3-)			HI K	n		J^{π} : L(α,α) = L(p,p) = 2 from 0. XREF: n(6820). J^{π} : (3) from $\gamma(\theta)$ in (n,n' γ); L(p,p')=(3) from 0 ⁺ .

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ ^d		XREF			Comments
6895.87 24	(2-)	55 fs +83-55	A e	H k			J ^{π} : 2,3,4 from $\gamma(\theta)$ in (n,n' γ); (2–&5 ⁺) doublet from DWBA analysis in (p,p') with unnatural π state since peak not observed in (α , α ') (1988Fu01).
6896 <i>7</i>	(5 ⁺)		Е	I			E(level): weighted average of 6893 9 from (e,e') and 6898 7 from (p,p'). J^{π} : the 5 ⁺ member of (2–&5 ⁺) doublet (see comment on J^{π} (6895.87)); $J \ge 3$ <i>I</i> from comparison of $\sigma(\theta)$ and analyzing power to those of known states in (p,p') (1984Se10);
7007.6 <i>6</i> 7019 <i>7</i>	3- <i>b</i>	69 fs +18-14	E e	HI I			J^{π} : $L(p,p')=3$ and $L(\alpha,\alpha')=(3)$ from 0^+ ; natural parity.
7032.0 6	$(3)^{-b}$		е	HI K			XREF: N(7050). J^{π} : L(p,p')=3+6 from 0+; L(α,α')=(3) from 0+; (3,5) from $\gamma(\theta)$ in (n,n' γ); natural parity.
7.16×10 ³ ? 7296.1 5	(2^{+})	<6.9 fs		Н	N		J^{π} : 7298 γ (E2) to 0 ⁺ .
7298.50 20	1-	0.201^{e} fs 14	A DE	IK	Р		J^{π} : 7297.9 γ E1 to 0 ⁺ . Other: L(p,p')=3 is discrepant.
7370.6 20	(1,2)			H			J^{π} : 7370 γ to 0 ⁺ .
7385 10	3-,(1-)			I			E(level), J^{π} : from (p,p'), with J^{π} from analysis of $\sigma(\theta)$.
7401.22 23	(2 ⁻) ^{‡#}		A E	ΙK		S	XREF: E(7397). J^{π} : (4 ⁻) from DWBA fit to the Coulomb form factors and RPA calculations in (e,e') (unnatural π state from absence of longitudinal form factor) discrepant. But L(p,p')=(3) favors (3 ⁻).
7407.3? 5	$(0,1,2,3^{-})$		A				Additional information 2. J^{π} : 793.11 γ to 1 ⁻ .
7440.6 20 7471 <i>5</i>	2,3 ⁻ 4 ⁺	177.4 fs 70	E	HI K I			J ^π : 7440 γ Q,E3 to 0 ⁺ . E(level): weighted average of 7476 7 from (e,e') and 7468 5 from (p,p'). J ^π : L(p,p')=4 from 0 ⁺ and natural parity due to
7497.5 <i>3</i>	(3-)			HI			presence in (α, α') measured by 1988Fu01 in (p,p') . J^{π} : (3) from analysis of $\sigma(\theta)$ in (p,p') (1984Se10); 1767.8 γ to 5 ⁻ .
7536.4 <i>4</i> 7568.7 <i>6</i> 7580 <i>7</i>	3-# <i>b</i>			I H I	N	S	J^{π} : $L(p,p')=3$ from 0^+ and natural parity.
7652 10	3- &		A C E				Additional information 3. E(level): from (p,p'). Other: 7658 from 48 K β^- decay, 7657 <i>10</i> from (e,e'). J^{π} : also from analysis of $\sigma(\theta)$ in (p,p').
7655.66 20	1-	1.87 ^e fs 7	cD		P		B(M1) \uparrow =0.008 5 XREF: P(7651). J ^{π} : 7655.0 γ E1 to 0 ⁺ .
7659 3	3- <i>b</i>		се	g I			E(level): from (p,p'). Others: 7650 20 from (t,p) and 7657 10 from (e,e'). J^{π} : L(p,p')=3 from 0 ⁺ and natural parity. B(E3) \uparrow ≈0.0014 from (e,e').
7696	$(1^+,2^+)^{\textcircled{@}}$		E				B(M1)↑<0.05 from (e,e'). 15 additional states reported in (p,p') by 1983Cr01 between 7.7 MeV and 12.7 MeV, seven of which appear to correspond to states observed in (e,e').
7789 <i>7</i>	3-		E	K	N		XREF: N(7760). Additional information 4.

E(level) [†]	J^π	$T_{1/2}$ ^d		XREF	7		Comments
							E(level): weighted average of 7791 7 from (e,e') and 7784 10 from (p,p'). J^{π} : $L(\alpha,\alpha')=3$ from 0^+ .
7797 8	4^{+b}			I			J^{π} : L(p,p')=4 from 0 ⁺ and natural parity.
7911 <i>7</i> 7915.4 9	3 ^{-b} 2 ⁺	22 ^e fs +4-3	D	I			J^{π} : L(p,p')=3 from 0 ⁺ and natural parity. J^{π} : 7914.7 γ E2 to 0 ⁺ .
7953? 15	$(2^-,6^-)^{\&}$		E				
7957 10	$(4)^{+a}$			ΙK			Additional information 5. E(level): from (p,p') . J^{π} : $L(p,p')=4$ from 0^+ and not clearly seen in α spectrum
8001 8			С	I			(1988Fu01). J^{π} : natural parity state from presence in α spectra by 1988Fu01 in (p,p').
8027.6 4	2+	11.4 ^e fs 12	cDe	I			J^{π} : 8026.9 γ E2 to 0 ⁺ .
8045 8	(1)		c e	ΙK			Additional information 6.
							E(level): from (p,p') . J^{π} : from analysis of $\sigma(\theta)$ in (p,p') ; γ to 0^{+} . Other: $(1^{-},2^{+})$ from (e,e') for a group at 8038 15.
8050	2		е		P		Additional information 7.
							E(level): from $(\alpha, \alpha' \gamma)$. J^{π} : from $\alpha \gamma(\theta)$ in $(\alpha, \alpha' \gamma)$.
8065 8	5 ^{-b}			I			J^{π} : L(p,p')=5 from 0 ⁺ and natural parity.
8082 <i>10</i>	3			I			J : L(p,p) = J from U and natural parity.
8116 8	1+,2+,3+		E	I			E(level): weighted average of 8113 9 from (e,e') and 8119 8 from (p,p'). J^{π} : L(p,p')=2 from 0 ⁺ .
8150	$(1^+,2^+)^{\textcircled{0}}$		T.				
8178 8	$4^{+\frac{b}{b}}$		E	I			B(M1) \uparrow <0.05 from (e,e'). J ^{π} : L(p,p')=4 from 0 ⁺ and natural parity.
8236 8	4-,5-,6-		С	I			XREF: c(8237).
0230 0				-			E(level): from (p,p'). Other: 8237 20 from (t,p). J^{π} : L(p,p')=5 from 0 ⁺ .
8248 8	4^{+}^{b}		С	ΙK			XREF: c(8237).
							Additional information 8.
							E(level): from (p,p') . J^{π} : $L(p,p')=4$ from 0^+ and natural parity.
8276?	$(1^-,2,3)$		С	K			XREF: c(8268).
	())- /						Additional information 9.
							E(level): reported by 1969Te03 as the same level at 8276 10 seen in their (p,p') measurement, however, while the level seen in thier (p,p') could correspond to the 8283 8 level with $J^{\pi}=4^+$ from 1988Fu01 in (p,p') and the level seen in (p,p' γ) by 1969Te03 with a different J^{π} could be a separate level.
	ш1.						J^{π} : 8275 γ to 0 ⁺ , 1456 γ to (3 ⁻).
8279.1 9	4 ^{+#b}		сЕ	Ι	n	S	XREF: $c(8268)n(8330)$. J^{π} : $L(p,p')=4$ from 0^{+} and natural parity.
8356 8	5- <i>b</i>			Ι	n		XREF: n(8330). J^{π} : L(p,p')=5 from 0 ⁺ and natural parity.
8385? <i>18</i> 8386 <i>8</i>	(3 ⁻) (6) ⁺		E	i	P		J^{π} : first maxima for Coul. Form factor at $\approx 1.0 \text{ fm}^{-1}$. in (e,e'). E(level): from (p,p'). J^{π} : see comment on $J^{\pi}(8386.1)$.
8386.1 <i>5</i>	1^{-a}	0.159 ^f fs 21	A D	i K	P		XREF: P(8400). J^{π} : 1-&(6) ⁺ doublet from L(p,p')=1+6 and natural π state
0427 5	3 ^{-b}			_			from presence of peak in (α, α') spectra; 8385.3 γ E1 to 0 ⁺ .
8437 5	3 -		E	Ι			E(level): weighted average of 8435 5 from (e,e'), and 8441 8

from (p,p'). J^{π} : other: (6) assigned by 1988Fu01 based on L(p,p')=(6) from 0+ and uncertain existence of this state in the (α,α') spectra in 1988Fu01. Additional information 14. E(level): from (p,p'). J^{π} : L(p,p')=3 from 0+ and natural parity. J^{π} : L(p,p')=4 from 0+ and natural parity. J^{π} : L(p,p')=5 from 0+, with L=4 more likely. J^{π} : L(p,p')=4+6 from 0+, with L=4 more likely. J^{π} : L(p,p')=5 from 0+, with L=4 more likely. J^{π} : L(p,p')=5 from 0+, with L=4 more likely. J^{π} : L(p,p')=5 from 0+, J^{π} : L(p,p')=5 from 0	E(level) [†]	$_{\tt J}^{\pi}$	$T_{1/2}^{d}$		XREF		Comments
\$8478 8 $3^{+},4^{+},5^{+}$	8467?	(1,2)		A c			J^{π} : L(p,p')=3 from 0 ⁺ and natural parity (1988Fu01). Additional information 10.
S517.9 8	8478 8	3+,4+,5+		c E	I K		J^{π} : 4635 γ to 2 ⁺ , 8466 γ to 0 ⁺ . Additional information 11. E(level): from (p,p'). Other: 8477 15 from (e,e').
8523 5 3 ^{-b}	8517.9 8	(1-,2+)		cD			J^{π} : 8517.1 γ to 0+; (1-,2+) is most likely from γ excitation. $T_{1/2}$: 4.6 fs 8 if J^{π} =1 or 11.4 fs 28 if J^{π} =2+ from $\Gamma_{\gamma 0}$ in
8531? (1,2 ⁺)	8523 5	3- <i>b</i>		c E	ΙK		Additional information 12. E(level): from (p,p'). Other: 8518 8 from (e,e').
E I E(level): weighted average of 8557 14 from (e,e'), and 8565 7 from (p,p'). J ^π : other: (6) assigned by 1988Fu01 based on L(p,p')=(6) from 0 ⁺ and uncertain existence of this state in the (α,α') spectra in 1988Fu01. Additional information 14. E(level): weighted average of 8605 6 from (e,e') and 8609 6 from (p,p'). J ^π : L(p,p')=3 from 0 ⁺ and natural parity. S J ^π : 3869 to 4 ⁺ is most likely dipole. Additional information 15. E(level): from (p,p'). E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). E(level): seging average of 8804 9 from (e,e') and 8806 5 from (p,p'). E(level): from	8531?	$(1,2^+)$		A c			Additional information 13. E(level): from 48 K β^- decay.
Section Sect	8563 7	(6 ⁻)&		E	I		E(level): weighted average of 8557 14 from (e,e'), and 8565 7 from (p,p'). J ^{π} : other: (6) assigned by 1988Fu01 based on L(p,p')=(6) from 0 ⁺ and uncertain existence of this state in the (α , α ')
8607 6 3 ^{-b} C E I E(level): weighted average of 8605 6 from (e,e') and 8609 6 from (p,p'). 8664.6 11 (3,4,5)# 8680 7 (3 ⁺) [‡] C I K Additional information 15. 8698 8 C I K Additional information 16. 8797 8 4 ⁺ &(6 ⁺) ^b I E(level): from (p,p'). 8797 8 4 ⁺ &(6 ⁺) ^b I E(level): L(p,p')=4+6 from 0 ⁺ , with L=4 more likely. 8805 5 5 ⁻ E I E(level): L(p,p')=4+6 from 0 ⁺ , with L=4 more likely. 8818 8 2 ⁻ ,3 ⁻ ,4 ⁻ I E(level): L(p,p')=5 from 0 ⁺ ; 5 ⁻ from DWBA analysis in (e,e'). 8831 8 2 ⁻ ,3 ⁻ ,4 ⁻ I J ^π : L(p,p')=5 from 0 ⁺ . 8883.3 5 1 ⁻ 0.42 ^f fs 14 De P XREF: P(8900). 8886 6 2 ^{+b} e I E(level): from (p,p').	8586? 10				ΙK		Additional information 14.
8664.6 II (3,4,5)# S J^{π} : 386 γ to 4* is most likely dipole. 8680 7 (3*) ‡ C I K Additional information 15. E(level): from (p,p'). 8698 8 C I K Additional information 16. E(level): from (p,p'). 8797 8 4*&(6*) b I E(level): L(p,p')=4+6 from 0*, with L=4 more likely. 8805 5 5 E I E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). 8831 8 2^-,3^-,4^- I J^{\pi}: L(p,p')=5 from 0*, J ^{\pi} : L(p,p')=3 from 0*. 8883.3 5 1^- 0.42^f fs II De P XREF: P(8900). J ^{\pi} : 8882.6\gamma E1 to 0*. 8886 6 2*\frac{b}{b} e I E(level): from (p,p').	8607 <i>6</i>	3- <i>b</i>		CE	I		E(level): weighted average of 8605 6 from (e,e') and 8609 6 from (p,p').
8680 7 (3 ⁺) ^{\ddagger} c I K Additional information 15. E(level): from (p,p'). 8698 8 C I K Additional information 16. E(level): from (p,p'). 8797 8 4 ⁺ &(6 ⁺) ^b I E(level): L(p,p')=4+6 from 0 ⁺ , with L=4 more likely. 8805 5 5 ⁻ E I E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). 8831 8 2 ⁻ ,3 ⁻ ,4 ⁻ I J ^{π} : L(p,p')=5 from 0 ⁺ ; 5 ⁻ from DWBA analysis in (e,e'). 8831 8 2 ⁻ ,3 ⁻ ,4 ⁻ I J ^{π} : L(p,p')=3 from 0 ⁺ . 8866 8 4 ⁻ ,5 ⁻ ,6 ⁻ I J ^{π} : L(p,p')=5 from 0 ⁺ . 8870 8 1 1 S 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 S 1 1 S 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 1 S 1 S 1 1 S 1 1 S 1 1 S 1 S 1 1 S 1 S 1 1 S 1 S 1 1 S 1 S 1 1 S 1 S 1 1 S 1 S 1 1 S 1	8664.6 11	$(3,4,5)^{\#}$				S	
8698 8 8788 8 C I K 8788 8 C I K Additional information 16. E(level): from (p,p') . 8797 8 $4^+&(6^+)^b$ I E(level): $L(p,p')=4+6$ from 0^+ , with L=4 more likely. 8805 5 5 E I E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p') . 8831 8 $2^-,3^-,4^-$ 8866 8 $4^-,5^-,6^-$ I J^π : $L(p,p')=5$ from 0^+ : $L(p,p')=5$ from 0^+ . 8883.3 5 1^- 0.42 f is 14 De P XREF: P(8900). J^π : 8882.6 γ E1 to 0^+ . 8886 6 2^{+b} e I E(level): from (p,p') .	8680 7			С	ΙK		Additional information 15.
E(level): from (p,p') . 8797 8 $4^+\&(6^+)^b$ I $E(level)$: $L(p,p')=4+6$ from 0^+ , with $L=4$ more likely. 8805 5 5^- E I $E(level)$: weighted average of 8804 9 from (e,e') and 8806 5 from (p,p') . 8831 8 $2^-,3^-,4^-$ I J^π : $L(p,p')=5$ from 0^+ ; 5^- from DWBA analysis in (e,e') . 8833 5 1^- 0.42 f fs 14 De P XREF: P(8900). 8886 6 2^{+b} e I $E(level)$: from (p,p') .	8698 8			С			2(10.01), nom (p,p).
8805 5 5 E I E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). 8831 8 2 ⁻ ,3 ⁻ ,4 ⁻ 8866 8 4 ⁻ ,5 ⁻ ,6 ⁻ 8883.3 5 1 0.42 f fs 14 De P XREF: P(8900). 8886 6 2 + b e I E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p'). E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p').	8788 8			С	ΙK		
8831 8 $2^-, 3^-, 4^-$ I J^{π} : $L(p,p')=3$ from 0^+ . 8866 8 $4^-, 5^-, 6^-$ I J^{π} : $L(p,p')=5$ from 0^+ . 8883.3 5 $1^ 0.42^f$ fs 14 De P XREF: P(8900). J^{π} : 8882.6 γ E1 to 0^+ . 8886 6 2^{+b} e I E(level): from (p,p') .				E			E(level): weighted average of 8804 9 from (e,e') and 8806 5 from (p,p').
J^{π} : 8882.6 γ E1 to 0^{+} . 8886 6 2^{+b} e I E(level): from (p,p') .		2 ⁻ ,3 ⁻ ,4 ⁻ 4 ⁻ ,5 ⁻ ,6 ⁻					J^{π} : L(p,p')=3 from 0 ⁺ .
	8883.3 5	1-	0.42 ^f fs 14	De		P	
J": $L(p,p')=2$ from U' and natural parity.	8886 <i>6</i>	2+ b		е	I		E(level): from (p,p') . J^{π} : $L(p,p')=2$ from 0^+ and natural parity.
8890.7 6 $>5^{\#}$ S J ^{π} : 3160.8 γ to 5 ⁻ . 8920 8	8920 8	>5#				S	
8947 8 8967? (1,2,3) A I Additional information 17. E(level): from 48 K β^- decay. Other: 8964 10 from (p,p'). J^{π} : 8966 γ to 0^+ .		(1,2,3)		A			E(level): from 48 K β^- decay. Other: 8964 10 from (p,p').
8982 8 3^{-b} I J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.	8982 8	3- b			I		J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
9033.9 4 1 $^-$ 0.242 f fs 14 De I J^{π} : 9033 γ E1 to 0+.	9033.9 4	-	0.242 ^f fs 14	De	I		
9047 9 2^{+b} e I J^{π} : $L(p,p')=2$ from 0^{+} and natural parity. 9050 1 e P Additional information 18.		_			I	P	

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{d}$		XREF			Comments
							E(level): from $(\alpha, \alpha' \gamma)$. J^{π} : 9050 γ D to 0 ⁺ .
9079 9				I			J : 90307 D to 0 .
9094.6 15	#			_		S	
9123.1 10	$(1^+,2^+,3^+)^{\#}$			I		S	J^{π} : L(p,p')=2+(8) for the 9123 doublet. 9138 state appears
9138 22			E				to be the high-spin member. J^{π} : (8 ⁻) from DWBA fit to the Coulomb form factors and RPA calculations in (e,e'); unnatural parity state from absence of longitudinal form factor; L(p,p')=(8), J^{π} =(7 ⁻) from comparison to DWBA in (p,p'). See also J^{π} comment for 9123 level.
9158 9	$(4)^{+a}$			I			J^{π} : L(p,p')=4 from 0 ⁺ but not clearly seen in (α,α') .
9176 9	2^{+b}			I			J^{π} : $L(p,p')=2^+$ from 0^+ and natural parity.
9211 9	3 ^{-b}			I			J^{π} : L(p,p')=3+(7) from 0 ⁺ (natural π from presence of peak in (α,α')) in (p,p') for the doublet. 9229 state appears to be the high-spin member.
9229	(7-)			I			J^{π} : $(7,8,9)$ from comparison of $\sigma(\theta)$ and analyzing power to those of known states in (p,p') , $(pol\ p,p')$; $(6^-,7^-)$ from comparison to DWBA in (p,p') , (α,α') . See comment on $J^{\pi}(9211)$.
9232 9	$(0^-,1^-,2^-)$			I			J^{π} : $L(p,p')=(1)$ from 0^+ .
9288 9	$(2^+)^{\&}$		E	I			E(level): weighted average of 9290 9 from (e,e') and 9285 10 from (p,p').
9295.3 5	1- <i>b</i>	0.236 ^e fs 14	A D	i	P		XREF: P(9300). J^{π} : 9294.3 γ E1 to 0 ⁺ . L(p,p')=1+(8) (natural π state from presence of peak in (α,α')) in (p,p') for the doublet. 9296 state appears to be the L=8 member.
9295.7 11	(8 ⁻) [#]		Е	i		S	XREF: E(9276). J^{π} : (8 ⁻) from DWBA fit to the Coulomb form factors and RPA calculations in (e,e') unnatural π state from absence of longitudinal form factor; (7,8,9) from comparison of $\sigma(\theta)$ and analyzing power to those of known states and (8 ⁻) from comparison to DWBA in (p,p'). See comment for J^{π} (9295.3).
9307	8			I			
9334 9	5± 6± 5±			I			77 T (1) (C) of
9366 9	5+,6+,7+			I			J^{π} : L(p,p')=6 from 0 ⁺ .
9383 10	(1 ⁺ ,2 ⁺) [@]		E	I			B(M1) \uparrow =0.020 2 E(level): from (p,p'). J^{π} : 1 ⁺ ,2 ⁺ also from analysis of $\sigma(\theta)$ in (p,p'). B(M1) \uparrow <0.07 from (e,e').
9430 9	2-,3-,4-			I			J^{π} : L(p,p')=3 from 0 ⁺ .
9472.8 8	1^{-b}	0.250 ^e fs 21	D	I	P		J^{π} : 9471.8 γ E1 to 0 ⁺ ; $L(p,p')=1$ from 0 ⁺ and natural parity.
9496 9				I			
9545.72 20	1-	0.139 ^e fs 7	D	I	P		J^{π} : 9544.7 γ E1 to 0 ⁺ .
9550? 20	$(3^{-})^{\&}$		E	_			TT 1 () (C) C () (c)
9568 9	$(5^+,6^+,7^+)$			I			J^{π} : L(p,p')=(6) from 0 ⁺ .
9621 9	4+b			I			J^{π} : L(p,p')=4 from 0^+ and natural parity.
9645 9 9691 9	$2^{-},3^{-},4^{-}$			I I			J^{π} : L(p,p')=3 from 0 ⁺ . J^{π} : L(p,p')=(1) from 0 ⁺ .
9728 9	$(0^-,1^-,2^-)$ $2^-,3^-,4^-$			I			J^{π} : L(p,p')=1 from 0 ⁺ . J^{π} : L(p,p')=3 from 0 ⁺ .
9765 9	$3-\frac{b}{b}$			I			J^{π} : L(p,p')=3 from 0.
7105 7	5			_			. E(p,p) = 5 from 0 and natural parity.

E(level) [†]	\mathbf{J}^{π}			XREF	Comments
9784 9	$(3^+,4^+,5^+)$			I	J^{π} : L(p,p')=4 from 0 ⁺ .
9816 9	$(1)^{-a}$			I	J^{π} : $L(p,p')=1$ from 0^+ but not clearly seen in (α,α') .
9862 9	3- <i>b</i>			I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
9885 9894 <i>7</i>	$(1^+,2^+)^{\textcircled{0}}$		E	I	$B(M1)\uparrow<0.09$ from (e,e'). J^{π} : $L(p,p')=3+(6)$ from 0^+ .
9921 9	3- <i>b</i>			I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
9942 9	2-,3-,4-		e	I	J^{π} : L(p,p')=3 from 0 ⁺ .
$9.95 \times 10^3 \ 3$	(8 [−]) ^{&}		E		
9954	$(1^+,2^+)^{\textcircled{0}}$		E		B(M1) \uparrow <0.10 from (e,e'). J ^{π} : from analysis of $\sigma(\theta)$ in (p,p').
9973 10	1+			I	$B(M1)\uparrow=0.037 \ 3$
9993 9	4+ <i>b</i>	A		I	XREF: A(9985). J^{π} : L(p,p')=4 from 0 ⁺ and natural parity.
10065 10	$(4)^{+a}$	a		I	J^{π} : L(p,p')=4 from 0 ⁺ but not clearly seen in (α,α') .
10081 <i>10</i>	$(3)^{-a}$	a		I	J^{π} : L(p,p')=3 from 0 ⁺ but not clearly seen in (α,α') .
10108 <i>10</i>	$4^{+}\frac{b}{a}$			I	J^{π} : L(p,p')=4 from 0 ⁺ and natural parity.
10126 <i>10</i>	1^{-b}	A		I	J^{π} : $L(p,p')=1$ from 0^+ and natural parity.
10138 <i>10</i>	$(1^+,2^+)^{@}$		E	I	$B(M1)\uparrow=0.148$ 13 E(level): from (p,p').
					$B(M1)\uparrow=0.12$ 3 from (e,e').
10151 <i>10</i>	3- b		e	I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
10178 <i>10</i>	3- <i>b</i>	Α		I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
10191 <i>10</i>	3- <i>b</i>			I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
10224 7	1+		E G		$B(M1)\uparrow=3.9$ 3 from (e,e') .
					E(level): weighted average of 10227 5 from (e,e') and 10211 10 from (p,p'). J^{π} : L(p,p')=0 from 0 ⁺ ; unnatural parity state from absence of peak in (α,α') .
10240?	<i></i> >	A			
10265 10	(-)	A		I	E(level): from (p,p') . J^{π} : suggested in 48 K β^- decay.
10288 10	a-h			I	B(M1)↑=0.080 8
10319 10	3 ^{-b}			I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
10330? 10	$(1^+,2^+)^{@}$		E		$B(M1)\uparrow=0.09 4 \text{ from } (e,e').$
10345 10	3- <i>b</i>			I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
10350 <i>10</i>	$(1^+,2^+)^{@}$	A	E	I	B(M1) \uparrow =0.040 13 E(level): from (p,p').
10370 10	$(2)^{+a}$	Α		т	B(M1) \uparrow =0.08 4 from (e,e'). J ^{π} : L(p,p')=2 from 0 ⁺ but not clearly seen in (α , α ').
10370 10	(2)	А		I	B(M1) \uparrow =0.023 2
10399 10	3+,4+,5+			Ī	J^{π} : L(p,p')=4 from 0 ⁺ .
10433 10	$1^+, 2^+, 3^+$			I	J^{π} : $L(p,p')=2$ from 0^+ .
10483 10	3 ^{-b}			I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
10521 10	$(2)^{+a}$			I	J^{π} : L(p,p')=2 from 0 ⁺ but not clearly seen in (α,α') .
10535 10	$(0^-,1^-,2^-)$			I	$B(M1)\uparrow=0.010 \ 3$ J^{π} : $L(p,p')=(1)$ from 0^+ .
10571 <i>10</i>				I	$B(M1)$ $\uparrow = 0.060 \ 8$ J^{π} : $L(p,p')=1,2$.
10586 <i>10</i> 10610 <i>10</i>	$(4)^{+a}$			I I	J^{π} : L(p,p')=4 from 0 ⁺ but not clearly seen in (α,α') (1988Fu01). B(M1)7=0.031 4
10611 10	3- b	Α		I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
10623 10	3			Ī	v. 2(p,p) v non v and natural painty.
10645 <i>10</i>				I	B(M1)↑=0.020 4
10648 <i>10</i>	$(3)^{-a}$	a		I	J^{π} : L(p,p')=3 from 0 ⁺ but not clearly seen in (α,α') .

E(level) [†]	J^π			XREF	Comments
10686 <i>10</i> 10708 <i>10</i>	3- <i>b</i>	a		I I	J^{π} : $L(p,p')=3$ from 0^+ and natural parity.
10708 10	2+ b			I	J^{π} : L(p,p')=2 from 0 ⁺ and natural parity.
10751 10	2			I	B(M1) \uparrow =0.059 29
10782 10	$(1^+,2^+)^{\textcircled{@}}$		E	I	E(level): from (p,p') . B(M1) \uparrow =0.12 4 from (e,e') .
10803 10	$(3^{-})^{b}$			I	J^{π} : L(p,p')=(3) from 0 ⁺ and natural parity.
10822 10	3^{-b}	Α		I	J^{π} : $L(p,p')=3$ from 0^+ and natural parity.
10857 10	2+ <i>b</i>	**		I	J^{π} : $L(p,p')=2$ from 0^+ and natural parity.
10872 10	5+,6+,7+			Ī	J^{π} : L(p,p')=6 from 0 ⁺ .
10883 10	$(2^{+})^{b}$			I	J^{π} : L(p,p')=(2) from 0 ⁺ and natural parity.
10916 10	$(3)^{-a}$	A		Ī	E(level): from (p,p') . J^{π} : $L(p,p')=3$ from 0^+ but not clearly seen in (α,α') .
10935 10	$(1^+,2^+)^{\textcircled{@}}$		e	I	$B(M1)\uparrow=0.011 \ 8$ E(level): from (p,p'). $B(M1)\uparrow=0.05 \ 2 from (e,e').$
10055 10	4+ b			-	
10955 <i>10</i> 11013 <i>11</i>	4.5	a		I i	J^{π} : $L(p,p')=4$ from 0^+ and natural parity.
11032?	(-)	A		_	J^{π} : suggested in 48 K β^- decay.
11037 <i>11</i>	$(2^{+})^{b}$			I	J^{π} : L(p,p')=(2) from 0^+ and natural parity.
11050 <i>11</i>	$(3^+,4^+,5^+)$			I	J^{π} : L(p,p')=(4) from 0 ⁺ .
11098 <i>11</i>	2+&4+b			I	J^{π} : L(p,p')=2+4 from 0 ⁺ and natural parity.
11125 <i>11</i>	3+,4+,5+			I	J^{π} : $L(p,p')=4$ from 0^{+} .
11153 <i>11</i>	1			I	
11183 <i>11</i>	$(5^{-})^{b}$			I	J^{π} : $L(p,p')=(5)$ from 0^+ and natural parity.
11219 11				I	D/M1/A 0.012.2
11227 <i>10</i> 11248 <i>11</i>	$(4)^{+a}$			I I	B(M1) \uparrow =0.012 3 J ^{π} : L(p,p')=4 from 0 ⁺ but not clearly seen in (α,α') .
11246 11	2^{+b}			I	J^{π} : L(p,p')=2 from 0 ⁺ and natural parity.
	3^{-b}				J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
11329 11	3^{-b}			I	
11376 <i>11</i> 11383 <i>10</i>	3			I I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity. B(M1)↑=0.003 2
11421 11	$(1^+,2^+)^{\textcircled{0}}$		Е	I	XREF: E(11410).
11421 11	(1 ,2)		Е	1	$B(M1)\uparrow<0.09$ from (e,e') .
11433 <i>11</i>	1+,2+,3+			I	J^{π} : L(p,p')=2 from 0 ⁺ .
11447 <i>11</i>	2-,3-,4-			I	J^{π} : L(p,p')=3 from 0 ⁺ .
11466 <i>11</i>				I	
11485 <i>11</i>	$(2^-,3^-,4^-)$			I	J^{π} : L(p,p')=(3) from 0 ⁺ .
11490	$(1^+,2^+)^{\textcircled{@}}$		E		$B(M1)\uparrow=0.15 \ 3 \ from \ (e,e').$
11508 <i>11</i> 11513 <i>10</i>	2+ <i>b</i>			I	J^{π} : L(p,p')=2 from 0 ⁺ and natural parity. B(M1) \uparrow =0.021 <i>15</i>
11530 <i>11</i>	3- b			I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
11550 <i>11</i>				I	
11563 10	0- 4- •-			I	$B(M1)\uparrow=0.0395$
11589 11	$0^{-},1^{-},2^{-}$			I	J^{π} : $L(p,p')=1$ from 0^+ .
11622 11	$(4^+)^b$			I	J^{π} : L(p,p')=(4) from 0 ⁺ and natural parity.
11639 <i>11</i> 11671 <i>11</i>	$(1^+,2^+,3^+)$ $(4^-,5^-,6^-)&(8^-)$			I I	J^{π} : $L(p,p')=2$ from 0^+ . J^{π} : $L(p,p')=(5)+(8,9)$ from 0^+ .
116/1 11	$(4,3,0) & (8) \\ 5-b$			I	J^{π} : L(p,p')=5 from 0 ⁺ and natural parity.
11695 11	5			I	$B(M1)\uparrow=0.025$ 9
11715 11	$(1^+, 2^+, 3^+)$			Ī	J^{π} : L(p,p')=(2) from 0 ⁺ .

E(level) [†]	J^{π}		XREF	Comments
11725 10	$(1^+,2^+)^{@}$	Е	I	B(M1)↑=0.014 9
11,20 10		_	_	$B(M1)\uparrow=0.12$ 4 from (e,e').
11752 <i>11</i>	$(2)^{+a}$		I	J^{π} : L(p,p')=2 from 0 ⁺ but not clearly seen in (α,α') .
11773 <i>11</i>			I	
11816 <i>11</i>	2-,3-,4-		I	J^{π} : L(p,p')=3 from 0 ⁺ .
11828 <i>11</i>			I	
11843 10			I	$B(M1)\uparrow=0.030 \ 4$
11848 11	- b		I	
11913 <i>11</i>	3^{-b}		I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
11945 11	$(0)^{+c}$ $(0)^{+c}$		I	J^{π} : L(p,p')=0 from 0 ⁺ and $\sigma(\theta)$ fitted well assuming $J^{\pi}=0^+$.
11967 11	(0)		I	J^{π} : L(p,p')=0 from 0 ⁺ and $\sigma(\theta)$ fitted well assuming J^{π} =0 ⁺ . B(M1)↑=0.047 5
11990 10	$(3^{-})^{b}$		I	
12009 12	3^{-b}		I	J^{π} : L(p,p')=(3) from 0 ⁺ and natural parity.
12029 12			I	J^{π} : L(p,p')=3 from 0 ⁺ and natural parity.
12051 12	$(0^-,1^-,2^-)$	_	I	J^{π} : L(p,p')=(1) from 0 ⁺ .
12055	$(1^+,2^+)^{\textcircled{0}}$	E	_	$B(M1)\uparrow=0.08 \ 3 \ from \ (e,e').$
12090 12	$(2^-,3^-,4^-)$		I	J^{π} : L(p,p')=(3) from 0 ⁺ .
12107 <i>12</i> 12121 <i>10</i>	4 ⁻ ,5 ⁻ ,6 ⁻ 0 ⁻ ,1 ⁻ ,2 ⁻		I I	J^{π} : L(p,p')=4 from 0 ⁺ . B(M1)↑=0.048 6
12121 10	0 ,1 ,2		1	J^{π} : L(p,p')=1 from 0 ⁺ .
12162 <i>12</i>	3 ⁺ ,4 ⁺ ,5 ⁺		I	J^{π} : L(p,p')=4 from 0 ⁺ .
12176 <i>12</i>	- , - ,-		Ī	
12216 <i>12</i>	4-,5-,6-		I	J^{π} : L(p,p')=5 from 0 ⁺ .
12271 <i>12</i>	$(3^+,4^+,5^+)$	e	I	J^{π} : $L(p,p')=(4)$ from 0^+ .
12275 10	$(1^+,2^+)^{@}$	E	I	B(M1)↑=0.035 19
				XREF: E(12270). $P(M_1)^2 = 0.10.5 \text{ from } (0.0^2)$
12318 <i>12</i>	(0) ⁺ <i>c</i>	E	I	B(M1)↑=0.10 5 from (e,e'). XREF: E(12310).
12310 12	(0)	E	1	J^{π} : (M1) transition in (e,e') is inconsistent.
				$B(M1)\uparrow=0.11$ 3 from (e,e').
12338 <i>10</i>	$(1,2)^+$		I	B(M1)↑=0.070 9
				J^{π} : L(p,p')=2 from 0 ⁺ ; (M1) transition with E2 not excluded due to weakness
				of this transition.
12369 12	$(3^+,4^+,5^+)$		I	J^{π} : L(p,p')=(4) from 0 ⁺ .
12422 12	1+,2+,3+		I	J^{π} : L(p,p')=2 from 0 ⁺ .
12441 12	2-,3-,4-		I I	J^{π} : L(p,p')=3 from 0 ⁺ .
12478 10	$(1^+,2^+)^{@}$	_		$B(M1)\uparrow=0.025$ 13
12499 <i>12</i> 12540 <i>12</i>	1+,2+,3+	E	I I	$B(M1)\uparrow=0.09 \ 4 \ from \ (e,e').$ J^{π} : $L(p,p')=2 \ from \ 0^+$.
12565 12	$(0)^{+c}$		I	J^{π} : L(p,p')=0 from 0 ⁺ .
12620 12	1+,2+,3+		Ī	J^{π} : L(p,p')=2 from 0 ⁺ .
12623 10	1 ,2 ,5		Ī	$B(M1)\uparrow=0.054\ 20$
12659 <i>10</i>			I	$B(M1)\uparrow = 0.077 6$
12667 <i>12</i>			I	
12693 <i>10</i>	$(1^+,2^+)^{\textcircled{0}}$	E	I	B(M1)↑=0.035 5
				$B(M1)\uparrow=0.10 5 \text{ from } (e,e').$
12704 12			I	
12757 12	1+,2+,3+		I	J^{π} : L(p,p')=2 from 0 ⁺ .
12798 12	$1^+, 2^+, 3^+$		I	J^{π} : L(p,p')=2 from 0 ⁺ .
12846 <i>12</i> 12869 <i>12</i>	(0 ⁺) [€]		I I	J^{π} : $L(p,p')=(0)$ from 0^+ .
12918 10	(0)		I	$B(M1)\uparrow=0.048 \ 40$
12925 12	1+,2+,3+		I	J^{π} : L(p,p')=2 from 0 ⁺ .
12968 12	$(2^-,3^-,4^-)$		Ī	J^{π} : L(p,p')=(3) from 0 ⁺ .

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ d}$	XRE	EF	Comments
13030 13	4-,5-,6-		I		J^{π} : L(p,p')=5 from 0 ⁺ .
13065 <i>13</i>	$(1^+, 2^+, 3^+)$		I		J^{π} : L(p,p')=(2) from 0 ⁺ .
13098 <i>13</i>	$1^+, 2^+, 3^+$		I		J^{π} : L(p,p')=2 from 0 ⁺ .
13169 <i>13</i>	$0^-, 1^-, 2^-$		I		J^{π} : L(p,p')=1 from 0 ⁺ .
13223 <i>13</i>			I		
13256 <i>13</i>	2-,3-,4-		I		J^{π} : L(p,p')=3 from 0 ⁺ .
13290 <i>13</i>			I		
13360 <i>13</i>	1+,2+,3+		I		J^{π} : L(p,p')=2 from 0 ⁺ .
13403 <i>13</i>	$1^+, 2^+, 3^+$		I		J^{π} : L(p,p')=2 from 0 ⁺ .
13439 13	4 + 6 + 6 +		I		77 7 (b a a a b
13475 13	$1^+, 2^+, 3^+$		I		J^{π} : L(p,p')=2 from 0 ⁺ .
13493 13			I		
$16.69 \times 10^3 19$		6.2 MeV +15-1		0	E1 resonance.
$16.79 \times 10^3 14$		6.95 MeV +11-35		0	E2 resonance.
$19.88 \times 10^3 18$		6.68 MeV + <i>31</i> - <i>36</i>		0	E0 (ISGMR) resonance.
$20.90 \times 10^3 \ 14$		9.34 MeV <i>16</i>		0	E3+E4 resonance.
24.2×10^3	(1^{-})		F		%n=100
					T=(5)
					J^{π} ,T: momentum transfer dependence favors an E1 excitation and small Γ implies an isobaric analog resonance in (e,e'n).
$37.3 \times 10^3 \ 20$		14.9 MeV +35-1		0	E1 resonance.

[†] From a least-squares fit to γ -ray energies for levels connected with γ transitions except for those from $(p,p'\gamma)$, and from (p,p') for other levels where available, unless otherwise noted. In the least-squares fit, where $\Delta E \gamma$ is not available, the following assumptions have been made: 0.05 keV for E γ quoted to 100th keV, 0.5 keV for E γ quoted to 10th keV and 1.0 keV for quoted to keV. The reduced χ^2 of the fitting is 2.65, compared to the critical χ^2 =1.83, after adjustments of $\Delta E \gamma$ for some poor-fit E γ values, as noted.

From DWBA analysis in (p,p') with unnatural parity due to peak not observed in (α,α') spectra (1988Fu01). Natural parity is distinguished from unnatural parity based on observation of one-to-one correspondences of levels in (p,p') and (α,α') spectra (1988Fu01).

[#] In (⁴⁸Ca, ⁴⁸Ca'γ), 2001Br35 suggest that these states are near yrast states with J>5 and must involve two-particle two-hole core excitations, which is manifested by their large energy separation from lower lying states.

[®] (M1) transition in (e,e') gives (1⁺); E2 giving 2⁺ may not be excluded due to the weakness of the transition.

[&]amp; From DWBA fit to the Coulomb form factors and RPA calculations in (e,e'); unnatural parity state from absence of longitudinal form factor.

^a Likely spin but not clearly observed in (α, α') spectra measured by 1988Fu01 in (p,p').

^b Natural parity state due to presence in the (α, α') spectra measured by 1988Fu01 in (p,p').

 $^{^{}c}$ $\sigma(\theta)$ in (p,p') show oscillatory patterns and are well fitted by DWBA assuming 0^{+} .

^d From DSAM in $(n,n'\gamma)$ (1992Va06), unless otherwise noted.

^e From $\Gamma_{\gamma 0}$ in (γ, γ') assuming $\Gamma_{\gamma 0}/\Gamma = 1$ (2002Ha13).

^f From $\Gamma_{\gamma 0}$ in (γ, γ') (2002Ha13) and adopted $\Gamma_{\gamma 0}/\Gamma$.

Estimated by the evaluator from the following partial $T_{1/2}$ and limits: $T_{1/2}(\beta^-) > 1.6 \times 10^{20}$ y, $> 2.5 \times 10^{20}$ y, $> 1.9 \times 10^{20}$ y for single β^- decay to g.s., 131 and 252 levels in 48 Sc, respectively (2002Bb03, 90% C.L.), $T_{1/2}(2\nu 2\beta^-) = 5.6 \times 10^{19}$ y +14-11 (2016Ar19,2000Br63,1996Ba80) and $T_{1/2}(0\nu 2\beta^-) > 5.8 \times 10^{22}$ y (2008Um05, 90% C.L.), for $2\beta^-$ to g.s. in 48 Ti, and $T_{1/2}(2\beta^-) > 1.8 \times 10^{20}$ y, $> 1.5 \times 10^{20}$ y, and $> 1.5 \times 10^{20}$ y (2002Bb03, 90% C.L.), for $(0\nu + 2\nu)2\beta^-$ to 984, 2421, and 2997 levels in 48 Ti, respectively. Estimate was obtained by taking decay constant $\lambda = \lambda_{\text{upper}}/2$ with $\Delta\lambda = \lambda$ for partial $T_{1/2}$ given as lower limit (for λ_{upper}). See the 48 Ca β^- and 48 Ca $2\beta^-$ decay datasets for experimental details.

γ (48Ca)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{v}^{\ddagger}$	$I_{\gamma}^{\#}$	$E_f = J_c^{\pi}$	Mult.	δ^{e}	$lpha^\dagger$	$I_{(\gamma+ce)}^{}$	Comments
3831.96	2+	3831.4 3	100	0.0 0+	E2		1.12×10 ⁻³ 2	(7100)	B(E2)(W.u.)=1.84 +17-14 α (K)=6.68×10 ⁻⁶ 9; α (L)=5.71×10 ⁻⁷ 8; α (M)=6.78×10 ⁻⁸ 9 α (N)=3.86×10 ⁻⁹ 5; α (IPF)=0.001111 16 E _{γ} : weighted average of 3831.3 2 from (γ , γ') and 3832.2 5 from (η , γ'). Mult.: Q from py(θ) in (p,p' γ) and M2 ruled out by RUL.
4283.56	0+	451.6 <i>1</i>	100.0 ^b 10	3831.96 2+	[E2]		0.000934 13		B(E2)(W.u.)=10.1 5 α=0.000934 13; α(K)=0.000851 12; α(L)=7.37×10 ⁻⁵ 10; α(M)=8.73×10 ⁻⁶ 12 α(N)=4.89×10 ⁻⁷ 7 E _γ : from (n,n'γ). Other: 451.9 5 from (p,p'γ). I _γ : from (p,p'γ). Other: 100 13 from ⁴⁹ K β ⁻ n
		(4283)		0.0 0+	E0			29.0 11	decay. Mult.: from observation of E0 e+/e- pair emission to g.s. $q_{K}^{2}(E0/E2)=0.95 \ 4; \ X(E0/E2)=0.0503 \ 19;$ $\rho^{2}(E0)=0.0145 \ 9 \ (2005Ki02,1970Be39).$ $\omega(E0)=4.817\times10^{10}; \ \omega(E0)(K)=1.342\times10^{8};$
4503.74	4+	671.8 4	100	3831.96 2+	E2		0.000268 4		ω(E0)(ipf)=4.817×10 ¹⁰ . B(E2)(W.u.)=0.261 5 $α$ =0.000268 4; $α$ (K)=0.0002441 34; $α$ (L)=2.106×10 ⁻⁵ 30; $α$ (M)=2.498×10 ⁻⁶ 35 $α$ (N)=1.408×10 ⁻⁷ 20 E _γ : unweighted average of 671.4 I from (n,n' $γ$) and 672.1 2 from (p,p' $γ$). Mult.: Q from $γ$ ($θ$) in (n,n' $γ$); M2 ruled out by RUL.
4507.05	3-	675.1 1	100.0 28	3831.96 2+	(E1(+M2))	0.00 3	9.18×10 ⁻⁵ <i>13</i>		B(E1)(W.u.)=0.00021 +10-8 α=9.18×10 ⁻⁵ 13; α(K)=8.37×10 ⁻⁵ 12; α(L)=7.19×10 ⁻⁶ 10; α(M)=8.53×10 ⁻⁷ 12 α(N)=4.83×10 ⁻⁸ 7 E _γ : from (n,n'γ). Other: 675.0 1 from (p,p'γ). I _γ : from (p,p'γ). Others: 100 4 from ⁴⁸ K β ⁻ decay and 100 8 from (n,n'γ). Mult.,δ: D(+Q) and δ from pγ(θ) in (p,p'γ);
		4507.3 5	28 5	0.0 0+	E3		1.05×10 ⁻³ 2		$\Delta \pi$ =yes from level scheme. B(E3)(W.u.)=8.4 +43-35 α (K)=6.86×10 ⁻⁶ 10; α (L)=5.87×10 ⁻⁷ 8; α (M)=6.97×10 ⁻⁸ 10

γ (⁴⁸Ca) (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	$I_{\gamma}^{\#}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.€	δ^e	α^{\dagger}	Comments
4612.24	3(+)	780.2 1	100	3831.96 2+	(M1)		0.0001108 <i>16</i>	$\alpha(N)=3.97\times10^{-9}$ 6; $\alpha(IPF)=0.001042$ 15 I_{γ} : unweighted average of 22 6 from ⁴⁸ K β^- decay, 25.0 28 from (n,n' γ), and 37.0 28 from (p,p' γ). I_{γ} : $I_{\gamma}(4507\gamma)/I_{\gamma}(675\gamma)=0.37$ 3 from (p,p' γ) discrepant, 0.22 6 from β^- decay consistent. Mult.: O from py(θ) in (p,p' γ); M3 ruled out by RUL. B(M1)(W.u.)=0.019 +17-7 α =0.0001108 16; α (K)=0.0001010 14; α (L)=8.68×10 ⁻⁶ 12; α (M)=1.031×10 ⁻⁶ 14 α (N)=5.85×10 ⁻⁸ 8 E _γ : weighted average of 780.1 1 from (n,n' γ) and 780.4 2 from (p,p' γ). Mult.: D from $\gamma\gamma$ (θ) in (p,p' γ) and γ (θ) in (n,n' γ); $\Delta\pi$ =(no) from level scheme.
4695.4 5146.42 5260.81	1 3,4,5 4 ⁽⁻⁾	4695.2 [@] 3 642.7 1 648.4 1	100 100 16.8 <i>17</i>	0.0 0 ⁺ 4503.74 4 ⁺ 4612.24 3 ⁽⁺⁾	D D (E1)		0.0001008 14	E _{\gamma} . Mult.: from (γ, γ') , with Mult from $\gamma(\theta)$. E _{\gamma} : other: 642.9 2 from $(p, p'\gamma)$. B(E1)(W.u.)=5.3×10 ⁻⁵ +10-12 α =0.0001008 14; α (K)=9.19×10 ⁻⁵ 13; α (L)=7.89×10 ⁻⁶ 11; α (M)=9.37×10 ⁻⁷ 13 α (N)=5.30×10 ⁻⁸ 7
		753.8 <i>1</i>	100 9	4507.05 3	(M1)		0.0001188 17	I _γ : other: I(648γ)/I(754γ)=100 20/41 20 from (p,p'γ) is discrepant. Mult.: D from $\gamma(\theta)$ in (n,n'γ); $\Delta \pi$ =(yes) from level scheme. B(M1)(W.u.)=0.0086 +16-19 α =0.0001188 17; α (K)=0.0001083 15; α (L)=9.31×10 ⁻⁶ 13; α (M)=1.106×10 ⁻⁶ 15 α (N)=6.28×10 ⁻⁸ 9
5311	(1)-	757.7 ^{ag} 804 1479	25 ^b 13 100 ^b 13	4503.74 4 ⁺ 4507.05 3 ⁻ 3831.96 2 ⁺				E _{γ} : other: 753.9 from (⁴⁸ Ca, ⁴⁸ Ca' γ). Mult.: D from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ =(no) from level scheme. E _{γ} : from (⁴⁸ Ca, ⁴⁸ Ca' γ). E _{γ} : original 810 from (p,p' γ). E _{γ} : original 1490 from (p,p' γ).
5312.2	2	803.9 ^c I 1480.2 ^d I 5312.2 5	5.7 <i>10</i> 100 <i>8</i> 15.4 <i>18</i>	4507.05 3 ⁻ 3831.96 2 ⁺ 0.0 0 ⁺	D D+Q Q	+0.7 6		E _γ : level-energy difference=805.17. Mult.: M2 or E2 both allowed by RUL.
5369.90	3-	757.5 1	29 4	4612.24 3 ⁽⁺⁾	(E1)		7.10×10 ⁻⁵ 10	B(E1)(W.u.)=0.000102 15 α =7.10×10 ⁻⁵ 10; α (K)=6.47×10 ⁻⁵ 9; α (L)=5.56×10 ⁻⁶ 8; α (M)=6.59×10 ⁻⁷ 9 α (N)=3.74×10 ⁻⁸ 5 I _{γ} : other: 6.3 4 from ⁴⁸ K β ⁻ decay is discrepant. Mult.: D from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ =yes from level scheme.

12

γ (⁴⁸Ca) (continued)

						7(00)(0	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I_{\gamma}}^{\#}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. ^e	$lpha^\dagger$	Comments
5369.90	3-	862.7 1	30 4	4507.05 3	[M1,E2]	0.000112 22	B(M1)(W.u.)=0.00308 +46-43 (if pure M1); B(E2)(W.u.)=10.3 +15-14 (if pure E2) α =0.000112 22; α (K)=0.000102 20; α (L)=8.8×10 ⁻⁶ 17; α (M)=1.04×10 ⁻⁶ 20 α (N)=5.9×10 ⁻⁸ 11
		866.9 ^d 1	26.4 32	4503.74 4+	(E1)	5.33×10 ⁻⁵ 7	I _γ : weighted average of 29 4 from 48 K β^- decay and 30 4 from (n,n'γ). Other: 67 17 from (p,p'γ) is discrepant. B(E1)(W.u.)=6.2×10 ⁻⁵ +9-8 α =5.33×10 ⁻⁵ 7; α (K)=4.86×10 ⁻⁵ 7; α (L)=4.17×10 ⁻⁶ 6; α (M)=4.95×10 ⁻⁷ 7 α (N)=2.81×10 ⁻⁸ 4 E _γ : level-energy difference=866.16.
		1537.8 <i>I</i>	100 6	3831.96 2+	(E1)	0.000312 4	L _γ : reverence y difference=800.10. I _γ : weighted average of 23 4 from ⁴⁸ K β ⁻ decay and 28.6 32 from (n,n'γ). Mult.: D from $\gamma(\theta)$ in (n,n'γ); $\Delta \pi$ =yes from level scheme. B(E1)(W.u.)=4.2×10 ⁻⁵ 4 α =0.000312 4; α (K)=1.715×10 ⁻⁵ 24; α (L)=1.468×10 ⁻⁶ 21; α (M)=1.743×10 ⁻⁷ 24 α (N)=9.91×10 ⁻⁹ 14; α (IPF)=0.000293 4
5729.64	5-	468.7 <i>I</i>	100 9	5260.81 4 ⁽⁻⁾	[M1]	0.000324 5	I _γ : from ⁴⁸ K β ⁻ decay. Others: 100 9 from (n,n' γ) and 100 17 from (p,p' γ). Mult.: D from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ =yes from level scheme. B(M1)(W.u.)=0.14 5 α =0.000324 5; α (K)=0.000295 4; α (L)=2.55×10 ⁻⁵ 4; α (M)=3.03×10 ⁻⁶ 4 α (N)=1.713×10 ⁻⁷ 24
		1226.0 <i>I</i>	65 14	4503.74 4+	[E1]	0.0001000 14	I _γ : from (n,n'γ). Other: 100 17 from (p,p'γ). Mult.: assumed based on comparions with RUL. B(E1)(W.u.)=0.00012 +4-5 α =0.0001000 14; α (K)=2.511×10 ⁻⁵ 35; α (L)=2.151×10 ⁻⁶ 30; α (M)=2.55×10 ⁻⁷ 4 α (N)=1.451×10 ⁻⁸ 20; α (IPF)=7.25×10 ⁻⁵ 10
6105.00	(2+)	1597.8 <i>1</i>	100 10	4507.05 3	[E1]	0.000359 5	I_{γ} : weighted average of 63 14 from (n,n' γ) and 67 17 from (p,p' γ). B(E1)(W.u.)=0.00079 +19-9 α =0.000359 5; α (K)=1.613×10 ⁻⁵ 23; α (L)=1.381×10 ⁻⁶ 19;
		2273.1 <i>I</i>	13.7 20	3831.96 2+	[M1,E2]	0.00042 4	$\alpha(M)=1.640\times10^{-7}$ 23 $\alpha(N)=9.32\times10^{-9}$ 13; $\alpha(IPF)=0.000341$ 5 B(M1)(W.u.)=0.0016 +5-3 (if pure M1); $B(E2)(W.u.)=0.78$ +24-14 (if pure E2) $\alpha=0.00042$ 4; $\alpha(K)=1.49\times10^{-5}$ 6; $\alpha(L)=1.28\times10^{-6}$ 5; $\alpha(M)=1.52\times10^{-7}$ 6 $\alpha(N)=8.63\times10^{-9}$ 32; $\alpha(IPF)=0.00041$ 4

$\gamma(^{48}\text{Ca})$ (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
6336.8	2+	6336.4 20	100	0.0	0+	E2		B(E2)(W.u.)=0.028 +5-4
6345.72	4+	1199.3 <i>1</i>	17 8	5146.42	3,4,5			
		1733.5 <i>1</i>	20 5	4612.24	$3^{(+)}$			
		1841.2 ^d 1	100 11	4503.74	4 ⁺			E_{γ} : level-energy difference=1841.94.
6612.19	1-	6611.7 [@] 1	100	0.0	0+	E1		B(E1)(W.u.)=0.00095 +8-7
								Mult.: $\gamma(\theta)$ and γ asymmetry in (γ, γ') .
6648.99	4+	1278 <mark>8</mark>		5369.90	3-			
		1504.0° 1	68 8	5146.42		D		E_{γ} : level-energy difference=1502.54.
		2036.8 1	51 5	4612.24	3(+)	(M1)	0.000283 4	B(M1)(W.u.)=0.0053 +19-15
								α =0.000283 4; α (K)=1.724×10 ⁻⁵ 24; α (L)=1.476×10 ⁻⁶ 21; α (M)=1.753×10 ⁻⁷ 25
								$\alpha(N)=9.98\times10^{-9} 14$; $\alpha(IPF)=0.000264 4$
								Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme.
		2145.1 <i>I</i>	100 16	4503.74	4+	(M1)	0.000327 5	B(M1)(W.u.)=0.009 3
								α =0.000327 5; α (K)=1.583×10 ⁻⁵ 22; α (L)=1.354×10 ⁻⁶ 19; α (M)=1.609×10 ⁻⁷ 23
								α (N)=9.16×10 ⁻⁹ 13; α (IPF)=0.000310 4
	()						-	Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme.
6685.64	2 ⁽⁻⁾	1315.8 <i>1</i>	100 8	5369.90	3-	[M1,E2]	7.3×10 ⁻⁵ 9	B(M1)(W.u.)=0.10 +13-5 (if pure M1); B(E2)(W.u.)= $1.5\times10^2 +19-7$ (if pure E2)
								$\alpha = 7.3 \times 10^{-5} \ 9$; $\alpha(K) = 4.1 \times 10^{-5} \ 4$; $\alpha(L) = 3.49 \times 10^{-6} \ 33$; $\alpha(M) = 4.2 \times 10^{-7} \ 4$
								$\alpha(N)=2.36\times10^{-8}$ 22; $\alpha(IPF)=2.8\times10^{-5}$ 5
		J			(.)			I_{γ} : from ⁴⁸ K β^- decay. Other: 100 10 from (n,n' γ).
		2073.9 ^d 1	17 4	4612.24	3(+)	(E1)	0.000705 10	$B(E1)(W.u.)=1.0\times10^{-4} +13-5$
								α =0.000705 10; α (K)=1.089×10 ⁻⁵ 15; α (L)=9.31×10 ⁻⁷ 13; α (M)=1.106×10 ⁻⁷ 15
								$\alpha(N)=6.29\times10^{-9}$ 9; $\alpha(IPF)=0.000693$ 10 E _y : level-energy difference=2073.35.
								I_{γ} : weighted average of 15 4 from 48 K β^- decay and 26 9 from (n,n' γ). Mult.: D from comparison to RUL; $\Delta \pi$ =yes from level scheme.
		2178.30 ^{&} g	18 ^{&} 4	4507.05	3-	[M1,E2]	0.00038 4	B(M1)(W.u.)=0.0041 +52-21 (if pure M1); B(E2)(W.u.)=2.2 +28-11 (if pure E2)
								α =0.00038 4; α (K)=1.60×10 ⁻⁵ 6; α (L)=1.37×10 ⁻⁶ 5; α (M)=1.63×10 ⁻⁷ 7 α (N)=9.3×10 ⁻⁹ 4; α (IPF)=0.00036 4
								E_{γ}, I_{γ} : from ⁴⁸ K β^- decay. γ reported in $(p, p'\gamma)$ but not seen in $(n, n'\gamma)$.
6791.5	1	6791.0 20	100		0+	D		1. 1
6805.7	2+	2301.9 <i>I</i>	100 14	4503.74	4+	[E2]	0.000478 <i>7</i>	B(E2)(W.u.)=5.9 +48-22 α =0.000478 7; α (K)=1.510×10 ⁻⁵ 21; α (L)=1.292×10 ⁻⁶ 18; α (M)=1.535×10 ⁻⁷ 21
								$\alpha(N)=8.73\times10^{-9}$ 12; $\alpha(IPF)=0.000462$ 6
		2974.8 5	72 24	3831.96	2+	[M1,E2]	0.00073 6	B(M1)(W.u.)=0.0042 +36-17 (if pure M1); $B(E2)(W.u.)=1.2 +10-5$ (if

γ (⁴⁸Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. ^e	$lpha^\dagger$	Comments
(020.0	(2-)	2000 7.5	100	2021.07.2+			pure E2) α =0.00073 6; α (K)=9.64×10 ⁻⁶ 26; α (L)=8.24×10 ⁻⁷ 22; α (M)=9.79×10 ⁻⁸ 26 α (N)=5.58×10 ⁻⁹ 15; α (IPF)=0.00072 6
6830.8 6895.87	(3 ⁻) (2 ⁻)	2998.7 <i>5</i> 1525.7 <i>1</i>	100 36 <i>6</i>	3831.96 2 ⁺ 5369.90 3 ⁻	D (M1)	0.0001032 14	B(M1)(W.u.)>0.0065
							α =0.0001032 14; α (K)=2.83×10 ⁻⁵ 4; α (L)=2.426×10 ⁻⁶ 34; α (M)=2.88×10 ⁻⁷ 4
							$\alpha(N)=1.640\times10^{-8} \ 23; \ \alpha(IPF)=7.21\times10^{-5} \ 10$ I_{γ} : from ⁴⁸ K β^- decay. Other: 35 8 from $(n,n'\gamma)$.
		2283.15 <mark>&g</mark>	23& 4	4612.24 3 ⁽⁺⁾	[E1]	0.000843 12	Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta\pi$ =(no) from level scheme. B(E1)(W.u.)>2.8×10 ⁻⁵
		2203.13	20 ,	1012.21	[21]	0.000013 12	α =0.000843 <i>12</i> ; α (K)=9.50×10 ⁻⁶ <i>13</i> ; α (L)=8.12×10 ⁻⁷ <i>11</i> ; α (M)=9.65×10 ⁻⁸ <i>14</i>
		2389.0 <i>1</i>	100 7	4507.05 3-	(M1)	0.000428 6	α (N)=5.49×10 ⁻⁹ 8; α (IPF)=0.000833 12 B(M1)(W.u.)>0.0053
		2389.0 1	100 /	4307.03 3	(WII)	0.000428 0	$\alpha = 0.000428 \ 6; \ \alpha(K) = 1.329 \times 10^{-5} \ I9; \ \alpha(L) = 1.137 \times 10^{-6} \ I6; \ \alpha(M) = 1.350 \times 10^{-7} \ I9$
							$\alpha(N)=7.69\times10^{-9}$ 11; $\alpha(IPF)=0.000413$ 6 I_{γ} : from ⁴⁸ K β^{-} decay. Other: 100 14 from $(n,n'\gamma)$.
		3063.27 & g	35 & 7	3831.96 2 ⁺			Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi = (no)$ from level scheme. E_{γ},I_{γ} : from 48 K β^- decay only.
7007.6	3-	3175.5 5	100	3831.96 2 ⁺	[E1]	$1.33 \times 10^{-3} 2$	B(E1)(W.u.)=0.00023 +6-5
							$\alpha(K)=6.12\times10^{-6} 9$; $\alpha(L)=5.23\times10^{-7} 7$; $\alpha(M)=6.21\times10^{-8} 9$ $\alpha(N)=3.54\times10^{-9} 5$; $\alpha(IPF)=0.001328 19$
7032.0	$(3)^{-}$	1771 <mark>8</mark>		5260.81 4 ⁽⁻⁾			E_{γ} : level-energy difference=1763 from $(p,p'\gamma)$.
7296.1	(2 ⁺)	2524.9 <i>5</i> 3463.9 <i>5</i>	100 100 <i>11</i>	4507.05 3 ⁻ 3831.96 2 ⁺	D+Q		δ : large.
7270.1	(2)	7298 2	21 4	$0.0 0^{+}$	(E2)		B(E2)(W.u.)>0.051
		0_	0_				Mult.: (Q) from $\gamma(\theta)$ in $(n,n'\gamma)$; M2 ruled out by RUL.
7298.50	1-	1929&	0.52	5369.90 3-			E_{γ} : 1932 from level-energy difference in 48 K $β^-$ decay.
		2686 <mark>&</mark> 7297.9 2	0.52 <mark>&</mark> 100 <i>26</i>	$\begin{array}{ccc} 4612.24 & 3^{(+)} \\ 0.0 & 0^{+} \end{array}$	E1		E_{γ} : 2689 from level-energy difference in ⁴⁸ K β^- decay. B(E1)(W.u.)=0.0065 5
							E_{γ} : from (γ, γ') . Other: 7300.9 from 48 K β^- decay. I_{γ} : from 48 K β^- decay.
7370.6	(1,2)	7370 2	100	$0.0 0^{+}$			Mult.: from $\gamma(\theta)$ and γ asymmetry in (γ, γ') .
7401.22	$(1,2)$ (2^{-})	715.61	8.2 ^{&} 24	6685.64 2 ⁽⁻⁾			
, 101.22	(2)	2031.23&	17.9 ^{&} 24	5369.90 3			
		2788.90 ^{&}	100 6	4612.24 3 ⁽⁺⁾			

15

γ (⁴⁸Ca) (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	J_f^{π}	Mult.e	α^{\dagger}	Comments
7401.22	(2^{-})	2894 <mark>&</mark>	5.3 <mark>&</mark>	4507.05	3-			
	,	3569 <mark>&</mark>	6.6 <mark>&</mark>	3831.96				
		7400 <mark>&</mark>	1.30 <mark>&</mark>	0.0				
7407.3?	$(0,1,2,3^{-})$	793.11 <mark>&g</mark> 6	100	6612.19				
7440.6	2,3	7440 2	100	0.0		Q,E3		B(E3)(W.u.)=39.7 +17-15 (if pure E3)
7497.5	(3^{-})	1767.8 <i>1</i>	100	5729.64		-		•
7536.4	3-	2389.8 ^a		5146.42				
7560.7		3032.7 ^a	100	4503.74				
7568.7	2-	3736.6 <i>5</i>	100	3831.96				
7652	3-	3146^{fg}		4503.74				E_{γ} : level-energy difference=3140 from $(p,p'\gamma)$.
		3146 ^f g 7651		4507.05 0.0	3 ⁻ 0 ⁺			E_{γ} : level-energy difference=3140 from $(p,p'\gamma)$.
7655.66	1-	7655.0 [@] 2	100	0.0	0^{+}	E1		$B(E1)(W.u.)=6.11\times10^{-4}+24-23$
								Mult.: from $\gamma(\theta)$ and α asymmetry in (γ, γ') .
7789	3-	958		6830.8	(3^{-})			E_{γ} : level-energy difference=964 from $(p,p'\gamma)$.
7915.4	2+	7914.7 [@] 9	100	0.0	0_{+}	E2		B(E2)(W.u.)=0.080 + 13-12
7957	$(4)^{+}$	1126		6830.8	(3^{-})			E_{γ} : level-energy difference=1137 from $(p,p'\gamma)$.
8027.6	2+	8026.9 [@] 4	100	0.0	0_{+}	E2		B(E2)(W.u.)=0.144 +17-14
		C						Mult.: Q from $\gamma(\theta)$ in (γ, γ') ; M2 ruled out by RUL.
8045	(1)	$3544 \frac{fg}{g}$		4503.74				E_{γ} : level-energy difference=3529 from $(p,p'\gamma)$.
		3544 <i>fg</i>		4507.05				E_{γ} : level-energy difference=3529 from $(p,p'\gamma)$.
0050	2	8044 ^g		0.0	0+			E_{γ} : level-energy difference=8040 from $(p,p'\gamma)$.
8050	2	8050		0.0	0+			
8248	4+	3740^{fg}		4503.74				E_{γ} : level-energy difference=3735 from (p,p' γ).
02769	(1= 2 2)	3740 fg		4507.05				E_{γ} : level-energy difference=3735 from $(p,p'\gamma)$.
8276?	$(1^-,2,3)$	1445		6830.8				E_{γ} : level-energy difference=1456 from $(p,p'\gamma)$.
		3770^{fg}		4507.05				E_{γ} : level-energy difference=3764 from $(p,p'\gamma)$.
		3770^{fg}		4503.74				E_{γ} : level-energy difference=3764 from $(p,p'\gamma)$.
8279.1	4+	8275 3133 ^a		0.0 5146.42				
8386.1	4 1 ⁻	1555 <mark>8</mark>		6830.8				E_{γ} : level-energy difference=1564 from $(p,p'\gamma)$.
0300.1	1	4554.2 [@] 12	9.9 [@] 3	3831.96		(E1)	$1.88 \times 10^{-3} \ 3$	B(E1)(W.u.)=0.0031 +6-4
		4554.2 12	9.9 3	3031.90	2	(E1)	1.00×10 3	$\alpha(K)=3.93\times10^{-6}$ 5; $\alpha(L)=3.35\times10^{-7}$ 5; $\alpha(M)=3.98\times10^{-8}$ 6
								$\alpha(N)=2.269\times10^{-9}$ 32; $\alpha(IPF)=0.001876$ 26
								Mult.: D from $\gamma(\theta)$ in (γ, γ') ; $\Delta \pi$ =yes from level scheme.
		8385.3 [@] 5	100 [@] 9	0.0	0^{+}	E1		B(E1)(W.u.)= $0.0050 + 8-6$
		, .	/	0.0	~			Mult.: from $\gamma(\theta)$ and γ asymmetry in (γ, γ') .
8467?	(1,2)	4635 ^{&} g	100 <mark>&</mark>	3831.96	2+			· · · · · · · · · · · · · · · · · · ·
		8466 <mark>&g</mark>	15.7 <mark>&</mark>	0.0	0^{+}			

16

γ (48Ca) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbb{E}_f	J_f^π	Mult.e	α^{\dagger}	Comments
8478	3+,4+,5+	3972^{fg}		4503.74	4+			E_{γ} : level-energy difference=3976 from $(p,p'\gamma)$.
		3972 <i>fg</i>		4507.05	3-			E_{γ} : level-energy difference=3976 from $(p,p'\gamma)$.
8517.9	$(1^-,2^+)$	8517.1 [@] 8	100	0.0	0^{+}			
8523	3-	4017^{fg}		4503.74	4+			E_{γ} : level-energy difference=4015 from $(p,p'\gamma)$.
		4017^{fg}		4507.05				E_{γ} : level-energy difference=4015 from $(p,p'\gamma)$.
8531?	$(1,2^+)$	4247 <mark>&</mark> 8	39 <mark>&</mark>	4283.56				
00011	(1,2)	4699 <mark>&g</mark>	100 <mark>&</mark>	3831.96				
		8530 <mark>&g</mark>	61 <mark>&</mark>	0.0				
8586?		4080^{fg}	01	4503.74				E_{γ} : level-energy difference=4073 from $(p,p'\gamma)$.
0300.		4080^{fg}		4507.05				E_{γ} : level-energy difference=4073 from $(p,p'\gamma)$.
8664.6	(3,4,5)	386 ^a		8279.1				E_{γ} . level-energy difference=4073 from (p,p,γ) .
8680	$(3,1,3)$ (3^+)	4174^{fg}		4503.74				E_{γ} : level-energy difference=4159 from $(p,p'\gamma)$.
0000	(5)	4174^{fg}		4507.05				E_{γ} : level-energy difference=4159 from $(p,p'\gamma)$.
8788		4282^{fg}		4503.74				E_{γ} : level-energy difference=4277 from $(p,p'\gamma)$.
0/00		4282^{fg}		4507.05				,
8883.3	1-	5050.6 9	4.0 10	3831.96		(E1)	2.04×10^{-3} 3	E_{γ} : level-energy difference=4277 from $(p,p'\gamma)$. B(E1)(W.u.)=0.00036 +30-14
0003.3	1	3030.0 9	4.0 10	3631.90	2	(E1)	2.04×10 3	$\alpha(K)=3.48\times10^{-6}$ 5; $\alpha(L)=2.97\times10^{-7}$ 4; $\alpha(M)=3.52\times10^{-8}$ 5
								$\alpha(N)=2.008\times10^{-9}$ 28; $\alpha(IPF)=0.002035$ 28
								E_{γ},I_{γ} : from (γ,γ') .
								Mult.: D from $\gamma(\theta)$ in (γ, γ') ; $\Delta \pi$ =yes from level scheme.
		8882.6 5	100 <i>30</i>	0.0	0_{+}	E1		B(E1)(W.u.)=0.0017 +9-4
0000 7	_	2160.00		5500 (4	~-			$E_{\gamma}I_{\gamma}$,Mult.: from (γ,γ') with Mult from $\gamma(\theta)$ and γ asymmetry.
8890.7	>5	3160.8 ^a	100	5729.64				
8967?	(1,2,3)	8966 ^{&} g	100	0.0				
9033.9	1-	5200.9 [@] 15	2.2 [@] 9	3831.96	2+	(E1)	$2.08 \times 10^{-3} \ 3$	B(E1)(W.u.)=0.00033 13
								$\alpha(K) = 3.36 \times 10^{-6} 5$; $\alpha(L) = 2.87 \times 10^{-7} 4$; $\alpha(M) = 3.41 \times 10^{-8} 5$
								$\alpha(N)=1.940\times10^{-9}\ 27;\ \alpha(IPF)=0.002080\ 29$ Mult.: D from $\gamma(\theta)$ in $(\gamma,\gamma');\ \Delta\pi=$ yes from level scheme.
		9033.0 [@] 4	100 [@] 4	0.0	0+	E1		
		9033.0 4	100 4	0.0	0.	EI		B(E1)(W.u.)=0.0028 2 Mult.: from $\gamma(\theta)$ and γ asymmetry in (γ, γ') .
9050	1	9050		0.0	0^{+}	D		Figure 1. From $(\alpha, \alpha' \gamma)$, with Mult from $\alpha \gamma(\theta)$.
9094.6	-	430 ^a		8664.6		-		
9123.1	$(1^+, 2^+, 3^+)$	232 ^a		8890.7	>5			
		459 ^a		8664.6	(3,4,5)			
9295.3	1-	9294.3	100	0.0	0_{+}	E1		B(E1)(W.u.)=0.00270 +17-15
								E _y : other: 9300 from $(\alpha, \alpha' \gamma)$ and ⁴⁸ K β^- decay.
9295.7	(8-)	405 ^a		8890.7	<u> </u>			Mult.: from $\gamma(\theta)$ and γ asymmetry in (γ, γ') and $\alpha \gamma(\theta)$ in $(\alpha, \alpha' \gamma)$.
9472.8	(8) 1 ⁻	9471.8 [@] 8	100	0.0	>3 0 ⁺	E1		B(E1)(W.u.)=0.00241 +22-19
9412.8	1	94/1.0 0	100	0.0	U.	C1		Mult.: from $\gamma(\theta)$ and γ asymmetry in (γ, γ') .

γ (⁴⁸Ca) (continued)

Comments E1 B(E1)(W.u.)=0.00424 +23-21

† Additional information 19.

 ‡ Values with uncertainties are from $(n,n'\gamma)$ and those without uncertainties are from level-energy differences for transitions reported in $(p,p'\gamma)$, unless otherwise noted. Note that values without uncertainties from $(p,p'\gamma)$ are deduced from E(level) values reported in 1969Te03 only, while adopted E(level) values from (p,p')are mostly from 1988Fu01 or average of all available measurements. Therefore, for those transitions, E γ values quoted here have been re-deduced by the evaluator from the adopted level energies.

Mult.: from $\gamma(\theta)$ and γ asymmetry in (γ, γ') .

- # From $(n,n'\gamma)$, unless otherwise noted.
- [@] From (γ, γ') .
- & From β^- decay.
- ^a From (48 Ca, 48 Ca' γ).
- ^b From $(p,p'\gamma)$, except as noted.
- ^c Very poor-fit and omitted in the fitting.
- ^d Poor-fit and uncertainty multiplied by a factor of 3 in the fitting.
- ^e D,Q or D+Q with δ are from $\gamma(\theta)$ in $(n,n'\gamma)$ and electric or magnetic nature is from comparison to RUL where $T_{1/2}$ is available, unless otherwise noted.
- ^f Multiply placed.
- ^g Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

	Hist	ory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

 $Q(\beta^{-})=4958\ 15$; $S(n)=6360.8\ 16$; $S(p)=17266.7\ 18$; $Q(\alpha)=-12241.2\ 19$ 2017Wa10 S(2n)=11507.2 16, S(2p)=31890 310 (2017Wa10).

Α

В C

D

 (2^{+})

 (1^{-})

4870 5

4886.35

G

Ē

Mass measurement: 2012La05 (TOF-ICR resonance frequency ratios using TITAN Penning trap spectrometer at TRIUMF-ISAC

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 125 primary references for structure calculations. Additional information 1.

 50 K β^- decay (472 ms)

 1 H(50 Ca,P' γ)

 51 K β^{-} n decay (365 ms)

 52 K β^{-} 2n decay (110 ms)

50 Ca Levels

Cross Reference (XREF) Flags

F

G

Н

Ι

 48 Ca(α ,2p) 48 Ca(238 U,X γ) 208 Pb(48 Ca,X γ)

 $^{238}U(^{48}Ca,X\gamma)$

				$Ca(t,p),(pol\ t,p)$
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{a}$	XREF	Comments
0.0	0_{+}	13.45 s 5	ABCDEFGHI	$\%\beta^{-}=100$
				$T_{1/2}$: measured by 2017Ga25 from fit to the decay curves of 1519- and 1591-keV γ transitions, 50 Ca beam produced in Ta(p,X),E=500 MeV at TRIUMF, and counted using GRIFFIN array of Ge detectors. Others: 13.9 s 6 (1970Wa29, from decay curve for 257 γ); 14 s 3 (1968Ch11, from decay curve for all γ rays); 9 s 2 (1964Sh14, decay curves for 72 γ and 258 γ).
				Nuclear rms charge radius: $\langle r^2 \rangle^{1/2} = 3.517$ fm 7 (2013An02, evaluation).
				Measured δr^2 (40 Ca, 50 Ca)=0.291 fm ² 3(stat) 12(syst) (2016Ga34, using COLLAPS at ISOLDE-CERN; see also 2017Ne04 review article on
				measurements at this facility). Previous measurement: 0.276 fm ² 34
				(1992 VeO2, online collinear laser spectroscopy).
				Measured isotope shift $\delta \nu$ (40 Ca, 50 Ca)=1969.2 MHz 9(stat) 47(syst) (2016Ga34, using COLLAPS at ISOLDE-CERN). Previous measurement: 1951 MHz 9(stat) 20(syst) (1992Ve02, online collinear laser spectroscopy).
	- 1			Measurement of isotope shift and rms radii: 1992Ve02, 2017Ne04.
1026.72 <i>10</i>	2+	66.5 ps 21	ABCDEFGHI	J^{π} : E2 1026.7 γ to 0 ⁺ ; L(t,p)=2 from 0 ⁺ .
				$T_{1/2}$: recoil-distance Doppler-shift method (2009Va06) in 208 Pb(48 Ca,X γ). Other: 68.6 ps 55 from DSAM in (50 Ca,p' γ).
3002.1 5	(2^{+})	<0.69 ps	AB DEFGH	J^{π} : L(t,p)=(2). L(t,p)=(4) and L(α ,2p)=(4) are also proposed but in the latter case L=2 does not seem ruled out in figure 32 of 1990Fi07.
3531.7 <i>4</i>	$(1,2^+)$		AB E	XREF: E(3519).
				J^{π} : 3531.7 γ to 0 ⁺ . Note that J^{π} =0 ⁺ is suggested in 1968Br01, 1967Gl08 and 1966Ve06 in theoretical analyses of (t,p) results for a 3519 level observed by 1967Bj06. It is possible two separate levels are populated near this energy.
3997.22 <i>21</i>	(3-)	<0.69 ps	DEFGHI	J^{π} : L(t,p)=(3). Inconsistent with L(α ,2p)=4, but L=3 comparison of $\sigma(\theta)$ data was not shown in figure 32 of 1990Fi07.
4035.7 <i>4</i>	$(1,2^+)$		AB D	J^{π} : 4035.6y to 0 ⁺ .
4475.8 5	(0^{+})		A E	J^{π} : L(t,p)=(0).
4515.04 <i>14</i>	(4+)	<1.04 ps	DE GHI	J^{π} : strong population in ²³⁸ U(⁴⁸ Ca,X γ) suggests yrast 4 ⁺ level. L(t,p)=(3) for a 4517 15 group is inconsistent.
4830.6 <i>3</i>	(4)	<0.69 ps	E GHI	J^{π} : L(t,p)=(4); (4 ⁻) proposed in ²³⁸ U(⁴⁸ Ca,X γ) from γ to (3 ⁻).
1070 5	(2±)	•	C	17. 4970 4- 0+ 1 1 1 13-1- 4- b1-4-1 in high rain4i

 J^{π} : 4870 γ to 0⁺. J=1 less likely to be populated in high-spin reaction.

 J^{π} : L(t,p)=(1); 4886.0 γ to 0⁺.

E(level) [†]	${\rm J}^{\pi \ddagger}$	$T_{1/2}^{a}$		XREF		Comments
4.97×10 ³ 5 5043 15 5084.56 25	(4 ⁺ &5 ⁻) [#] (1 ⁻) (4 ⁻) [@]			F E	I	J^{π} ,E(level): $L(\alpha,2p)=4+5$ for a possible doublet. J^{π} : $L(t,p)=(1)$.
5109.88 20	$(5^{-})^{@}$	<0.69 ps		DE G		
5147.34 <i>17</i> 5168 20 5281 20 5362 20 5434 20	(5+)@	۲		E E E	Ι	
5516.92 20	$(5^{-})^{\textcircled{@}}$			E	Ι	J^{π} : L(t,p)=(4), but data were insufficient to get a reliable L value.
5576 20 6519 8			Α	E		J^{π} : L(t,p)=(4), but data were insufficient to get a reliable L value. $%$ n \approx 100
	@					Additional information 2.
6869.27 <i>25</i> 7039 <i>36</i>	$(7^{-})^{@}$		A		Ι	%n≈100
7269 46			A			Additional information 3. %n≈100 Additional information 4.
7309 <i>51</i>			A			%n≈100 Additional information 5.
7619 <i>66</i>			A			%n≈100 Additional information 6.
7999 87			A			%n≈100 Additional information 7.
8249 97			A			%n≈100 Additional information 8.
$8.38 \times 10^3 5$	(7 ⁻)#			F		
$8.81 \times 10^3 \ I2$	$(0^-,1^-)^{\&}$		A			%n≈100 Additional information 9.
$8.98 \times 10^3 5$	(7 ⁻)#			F		
9239 46	(0-,1-)&		A			%n≈100 Additional information 10.
9779 72	$(0^-,1^-)^{\&}$		A			%n≈100 Additional information 11.
$9.80 \times 10^3 5$	$(6^+)^{\#}$			F		J^{π} : 8 ⁺ is not completely ruled out.
$10.33 \times 10^3 \ 5$	(8 ⁺) [#]			F		J^{π} : 6 ⁺ is not completely ruled out.
10430 36	$(0^-,1^-)$ &		A			%n≈100 Additional information 12.
1.055×10 ⁴ 11	$(0^-,1^-)^{\&}$		A			%n≈100 Additional information 13.
11059 36	(0 ⁻ ,1 ⁻)&		A			%n≈100 Additional information 14.
11479 52	(0 ⁻ ,1 ⁻)&		A			%n≈100 Additional information 15.

[†] For levels populated in γ -ray studies, values are from least-squares to γ -ray energies. For levels populated in particle-reaction studies, averages are taken when possible.

[†] From DWBA analysis of $\sigma(\theta)$ in (t,p), except as noted. See (t,p) for additional tentative J^{π} assignments. For L(t,p) and L(α ,2p) transfer reactions, target J^{π} =0⁺. Most L(t,p) are considered by the evaluators as tentative values due either to disagreements with

⁵⁰Ca Levels (continued)

other reactions or to weak populations of levels.

γ (⁵⁰Ca)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
1026.72	2+	1026.7 1	100	0.0	0+	E2	B(E2)(W.u.)=0.68 2 E _γ : weighted average of 1027.0 5 from 50 K β^- decay (472 ms), 1026.2 3 from (238 U,X γ), and 1026.7 1 from (48 Ca,X γ). Others: 1027 1 from 51 K β^- n decay (365 ms), 1027 1 from 52 K β^- 2n decay (110 ms), and 1028 2 from (50 Ca,p' γ).
3002.1	(2+)	1975.3 5	100	1026.72	2+	(D)	Mult.: $\gamma(\theta)$ and linear polarization in 208 Pb(48 Ca,X γ). E $_{\gamma}$: from β^- decay. Other: 1976 <i>I</i> from β^- n decay; 1978.2 6 in 48 Ca(238 U,X γ) is discrepant, possibly due to Doppler-shift effects. It is possible that 1978,2 γ defined a level separate from 3002, (2 ⁺), but there is no strong evidence for its existence.
3531.7	$(1,2^+)$	2504.5 8	100 13	1026.72	2+		E_{γ} : weighted average of 2504.9 5 from 50 K β^- decay (472 ms) and 2503 <i>I</i> from 51 K β^- n decay (365 ms). I_{γ} : from 50 K β^- decay . Other: 100 <i>I7</i> from β^- n decay.
		3531.7 4	92 13	0.0	0+		E _{γ} : weighted average of 3531.8 5 from ⁵⁰ K β ⁻ decay (472 ms) and 3530 2 from ⁵¹ K β ⁻ n decay (365 ms). I _{γ} : from ⁵⁰ K β ⁻ decay . Other: 133 <i>17</i> from β ⁻ n decay.
3997.22	(3 ⁻)	2970.3 3	100	1026.72	2+	D	E _γ : weighted average of 2964 8 from (50 Ca,p' $_{\gamma}$), 2971.4 6 from (238 U,X $_{\gamma}$), and 2970.2 2 from (48 Ca,X $_{\gamma}$).
4035.7	(1,2+)	3008.8 5	60 4	1026.72	2+		E _γ : weighted average of 3008.9 5 from 50 K β^- decay and 3008 2 from 51 K β^- n decay. I _γ : from 50 K β^- decay. Others: 60 20 from 51 K β^- n decay and 75 25 from (50 Ca,p' γ).
		4035.6‡ 5	100 6	0.0	0+		E _γ : weighted average of 4035.6 5 from 50 K β^- decay and 4035 2 from 51 K β^- n decay. Other: 4030 18 from (50 Ca,p' γ). I _γ : from 50 K β^- decay. Others: 100 20 from 51 K β^- n decay, and 100 25 from (50 Ca,p' γ).
4475.8 4515.04	(0^+) (4^+)	3449.0 [‡] 5 518.4 7	100 2 <i>I</i>	1026.72 3997.22			decay, and 100 25 from (Ca,p 7).
4313.04	(4)	3488.2 1	100	1026.72		(E2)	E _{γ} : others: 3482 <i>14</i> from (50 Ca,p' γ) and 3488.4 8 from (238 U,X γ).
4830.6	(4)	833.4 2	100	3997.22	(3-)	(D)	E_{γ} : weighted average of 833.9 5 from ($^{238}U,X\gamma$) and 833.3 2 from ($^{48}Ca,X\gamma$).
4870	(2^{+})	4870 5		0.0	0_{+}		E_{γ} : from (²³⁸ U,X γ) only.
4886.3	(1^{-})	4886.0 [‡] 5	100	0.0	0_{+}		
5084.56	(4-)	1087.2 3	100	3997.22		_	50 9 4 5 5 5
5109.88	(5 ⁻)	594.9 2	100 6	4515.04		D	E_{γ} : weighted average of 603 11 from (50 Ca,p' $_{\gamma}$), 595.5 3 from (238 U,X $_{\gamma}$), and 594.8 1 from (48 Ca,X $_{\gamma}$).
5147.24	(5±)	1112.6 2	6.8 14	3997.22	. ,		
5147.34	(5^+)	632.3 1	100	4515.04	(4.)		

[#] From CCBA and DWBA analyses in $(\alpha,2p)$.

[®] Tentative assignments in $^{238}\text{U}(^{48}\text{Ca},\text{X}\gamma)$ based on γ -decay pattern and possible model predictions. No supporting data are available for transition multipolarity assignments. & From allowed β transition (log ft=4.1 to 4.9) from 0⁽⁻⁾ parent state. α From RDDS method in α From RDDS m

γ (50Ca) (continued)

 $^{^{\}dagger}$ From 238 U(48 Ca,X γ), unless stated otherwise.

[‡] From β^- decay. # From $\gamma(\theta)$ in 208 Pb(48 Ca,X γ), unless otherwise stated.

Level Scheme

Intensities: Relative photon branching from each level

⁵²₂₀Ca₃₂-1

Adopted Levels, Gammas

т 1					
н	1	C.	tr.	۱r	17

Author Citation Literature Cutoff Date Full Evaluation Yang Dong, Huo Junde NDS 128, 185 (2015) 10-Jul-2015

 $Q(\beta^{-})=5.90\times10^{3}\ 14;\ S(n)=6.00\times10^{3}\ 6;\ S(p)=1.904\times10^{4}\ 6;\ Q(\alpha)=-14250\ SY$ $\Delta Q(\alpha) = 300 \ (2012Wa38).$

All data are from 52 K β^- decay, except as noted.

⁵²Ca Levels

Cross Reference (XREF) Flags

 52 K β^- decay

 53 K β^{-} n decay:30 ms 9 Be(54 Ti, 52 CaX γ) 48 Ca(238 U,X γ)

C

E(level)	${ m J}^{\pi}$	T _{1/2}	XRE
0	0_{+}	4.6 s <i>3</i>	ABCD
2563 <i>1</i>	2+		ABCD
3150 2			AB
3990 2	(3^{-})		A CD
5190 20			Α
5550 <i>30</i>			Α
5760 <i>40</i>			Α
5950 <i>40</i>			Α
5951 2			Α
6700 <i>50</i>			Α
6940 <i>80</i>			Α
7160 20			Α
7410 <i>50</i>			Α
7570 <i>35</i>			Α
8090 <i>20</i>			Α
$829 \times 10^{1} 12$			Α
8370 80			Α
8580 <i>50</i>			Α
8710 <i>80</i>			Α
895×10 ¹ 16			Α
9130 40			Α
$939 \times 10^{1} 12$			Α
963×10 ¹ 15			Α
$1014 \times 10^{1} 22$			Α
$1050 \times 10^{1} \ 15$			A
$1110 \times 10^1 52$			A
1110/10 32			

Comments

 $\%\beta^-$ =100; $\%\beta^-$ n=? T_{1/2}: from n- β (t) (1985Hu03). J^π: from systematics of even-even Ca isotopic chain.

 J^{π} : from systematics of even-even Ca isotopic chain.

γ (52Ca)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}
2563	2+	2563 <i>1</i>	100	0	0+
3150		3150 2	100	0	0_{+}
3990	(3^{-})	1427 <i>1</i>	100	2563	2+
5951		1961 <i>I</i>	100 <i>13</i>	3990	(3^{-})
		3388 2	27 4	2563	2+

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

History

Literature Cutoff Date Author Citation Full Evaluation Yang Dong, Huo Junde NDS 121, 1 (2014) 20-Jun-2014

 $Q(\beta^{-})=8820 SY; S(n)=4390 SY; S(p)=20390 SY; Q(\alpha)=-14280 SY$

 $\Delta Q(\beta^{-})$: syst=620. $\Delta S(n)$: syst=640. Δ S(p): syst=710. $\Delta Q(\alpha)$: syst=710.

Additional information 1.

⁵⁴Ca was observed by 1997Be70, Be(²³⁸U,X) E=750 MeV/nucleon, measured projectile fission fragment yield, fragment separator, tof techniques.

⁵⁴Ca Levels

Cross Reference (XREF) Flags

Α

⁹Be(⁷⁶Ge,X) Be(⁵⁵Sc,P),(⁵⁶Ti,2p)

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	0+	107 ms <i>14</i>		$\%\beta^-=100; \%\beta^-=?; \%\beta^-=? (2012Au07)$
				$T_{1/2}$: From ${}^{9}Be({}^{76}Ge,X)$.
2043 19	(2^{+})		В	,
3699 28	(3^{-})		В	

[†] From systematics of even-even nuclei.

 γ (54Ca)

<u>Level Scheme</u>

