Notes for Math 597 – Real Analysis

Yiwei Fu

WN 2022

Contents

1	1 Abstract Measure		1
	1.1	σ -Algebra	1
	1.2	Measures	2
	1.3	Outer Measures	4
	1.4	Hahn-Kolmogorov Theorem	9
	1.5	Borel Measures on $\mathbb R$	12
	1.6	Lebesgue-Stieltjes Measures on $\mathbb R$	14
	1.7	Regularity Properties of Lebesgue-Stieltjes Measures	15
2 Integration		gration	19
	2.1	Measurable Functions	19
	2.2	Integration of Nonnegative Functions	22
	2.3	Integration of Complex Functions	26
	2.4	L^1 space	29
	2.5	Riemann Integrability	30
	2.6	Modes of Convergence	31
3	3 Product Measures		34
	3.1	Product σ -algebra	34
Office hour is Mon 12:30 - 1:30, Tue 12:30 - 1:30 in person EH 5838, Th 1 - 2 online.			

Chapter 1

Abstract Measure

1.1 σ -Algebra

Definition 1.1. Let X be a set. A collection \mathcal{M} of subsets of X is called a σ -algebra on X if

- $\emptyset \in \mathcal{M}$.
- \mathcal{M} is closed under complements: $E \in \mathcal{M} \implies E^c \in \mathcal{M}$.
- \mathcal{M} is closed under <u>countable unions</u>: $E_1, E_2, \ldots \in \mathcal{M} \implies \bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$.

SIMPLE PROPERTIES:

- $X = \emptyset^c \in \mathcal{M}$.
- $\bigcap_{i=1}^{\infty} E_i = \left(\bigcup_{i=1}^n E_i^c\right)^c \in \mathcal{M}$. It is closed under countable intersections.
- $\bigcup_{i=1}^{N} E_i = E_i \cup ... \cup E_n \cup \emptyset \cup ...$ It is closed under finite unions (similarly, intersections). sigma
- $E \setminus F = E \cap F^c \in \mathcal{M}, E \triangle F = (E \cap F^c) \cup (F \cap E^c) \in \mathcal{M}.$

Example 1.2. (a) A = P(X) power algebra.

- (b) $A = {\emptyset, X}$ trivial algebra.
- (c) Let $B \subset X, B \neq \emptyset, B \neq X. A = \{\emptyset, B, B^c, X\}.$

Lemma 1.3. (An intersection of σ -algebras is a σ -algebra) Let $\mathcal{A}_{\alpha}, \alpha \in I$, be a family a σ -algebras of X. Then $\bigcap_{\alpha \in I} A_{\alpha}$ is a σ -algebra. (I can be uncountable.)

Proof. DIY

Measures Yiwei Fu

Definition 1.4. For $\mathcal{E} \subset \mathcal{P}(X)$ (not necessarily a σ -algebra), let $\langle \mathcal{E} \rangle$ be the intersection of all σ -algebras on X that contains \mathcal{E} . Call it the σ -algebra generated by \mathcal{E} .

• $\langle \mathcal{E} \rangle$ is the smallest σ -algebra containing \mathcal{E} and is unique.

•
$$\{\emptyset, B, B^c, X\} = \langle \{B\} \rangle = \langle \{B^c\} \rangle = \langle \{\emptyset, B\} \rangle$$
.

The above definition gives us (potentially) lots of examples of σ -algebra on a set X

Lemma 1.5. (a) Suppose $\mathcal{E} \subset \mathcal{P}(X)$, \mathcal{A} a σ -algebra on X. $\mathcal{E} \in \mathcal{A} \implies \langle \mathcal{E} \rangle \in \mathcal{A}$.

(b)
$$E \subset F \subset \mathcal{P}(X) \implies \langle \mathcal{E} \rangle \subset \langle \mathcal{F} \rangle$$
.

Proof.

Definition 1.6. For a topological space X, the Borel σ -algebra $\mathcal{B}(X)$ is the σ -algebra generated by the collection of open sets.

Example 1.7. $(X = \mathbb{R}) \mathcal{B}(\mathbb{R})$ contains the following collections

$$\mathcal{E}_{1} = \{(a, b) \mid a < b\}, \quad \mathcal{E}_{2} = \{[a, b] \mid a < b\},$$

$$\mathcal{E}_{3} = \{(a, b) \mid a < b\}, \quad \mathcal{E}_{4} = \{[a, b) \mid a < b\},$$

$$\mathcal{E}_{5} = \{(a, \infty) \mid a \in \mathbb{R}\}, \quad \mathcal{E}_{6} = \{[a, \infty) \mid a \in \mathbb{R}\},$$

$$\mathcal{E}_{7} = \{(-\infty, a) \mid a \in \mathbb{R}\}, \quad \mathcal{E}_{8} = \{(-\infty, a] \mid a < b\}$$

Proposition 1.8. $\mathcal{B}(\mathbb{R}) = \langle \mathcal{E}_i \rangle$ for each i = 1, ..., 8.

Proof. Use 1.5. ■

Definition 1.9. (X, A) is called a measurable space.

1.2 Measures

Definition 1.10. A measure on (X, A) is a function $\mu : A \to [0, \infty]$ s.t.

- (a) $\mu(\emptyset) = 0$
- (b) (countable additive) For $A_1, A_2, \ldots \in \mathcal{A}$ disjoint we have

$$\mu\left(\bigcup_{1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Measures Yiwei Fu

 (X, \mathcal{A}, μ) is then called a measure space.

Example 1.11. (a) For any (X, A), $\mu(A) = \#A$ counting measure.

(b) For any (X, A), let $x_0 \in X$. The Dirac measure at x_0 is

$$\mu(A) = \begin{cases} 1 & x_0 \in A, \\ 0 & x_0 \notin A. \end{cases}$$

(c) For $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, let $a_1, a_2, \ldots \in [0, \infty)$. $\mu(A) = \sum_{i \in A} a_i$ is a measure.

(X, A) measurable space

 (X, \mathcal{A}, μ) measure space

 $\mu: \mathcal{A} \to [0, \infty] \ s.t. \ \mu(\emptyset) = 0$, countable additivity.

NOTE: $A, B \in \mathcal{A}, A \subset B$, then $\mu(B \setminus A) + \mu(A) = \mu(B) \implies \mu(B \setminus A) = \mu(B) - \mu(A)$ if $\mu(A) < \infty$.

Theorem 1.13. Suppose (X, \mathcal{A}, μ) a measure space. Then

(a) (monotonicity)

$$A,B\in \mathcal{A},A\subset B\implies \mu(A)\leq \mu(B).$$

(b) (countable subadditivity)

$$A_1, A_2, \dots, \in \mathcal{A}, \implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu(A_i).$$

(c) (continuity from below/(MCT) from sets)

$$A_1, A_2, \ldots \in \mathcal{A}, A_1 \subset A_2 \subset A_3 \subset \ldots \implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n).$$

(d) (continuity from above)

$$A_1, A_2, \ldots \in \mathcal{A}, A_1 \supset A_2 \supset A_3 \supset \ldots, \mu(A_1) < \infty \implies \mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n).$$

Proof. (a), (b), DIY.

For (c), let $B_1 = A_1, B_i = A_i \setminus A_{i-1}, i \geq 2.B_i \in \mathcal{A}$ and are disjoint.

$$\bigcup_{i}^{\infty} A_{i} = \bigcup_{i}^{\infty} B_{i}$$

$$\implies \mu\left(\bigcup_{i}^{\infty} A_{i}\right) = \mu\left(\bigcup_{i}^{\infty} B_{i}\right) = \sum_{i}^{\infty} \mu(B_{i}) = \lim_{n \to \infty} \sum_{i}^{n} \mu(B_{i}) = \lim_{n \to \infty} \mu(A_{n}).$$

For (d), let $E_i = A_1 \setminus A_i$. Hence $E_i \in \mathcal{A}, E_1 \subset E_2 \subset \dots$ We have

$$\bigcup_{i=1}^{\infty} E_{i} = \bigcup_{i=1}^{\infty} (A_{1} \setminus A_{i}) = A_{1} \setminus \left(\bigcap_{1=1}^{\infty} A_{i}\right) \implies \bigcap_{1=1}^{\infty} A_{i} = A_{1} \setminus \left(\bigcup_{1=1}^{\infty} E_{i}\right).$$

Hence

$$\mu\left(\bigcap_{1}^{\infty}A_{i}\right) = \mu(A_{1}) - \mu\left(\bigcup_{1}^{\infty}E_{i}\right) = \mu(A_{1}) - \lim_{n \to \infty}\mu(E_{n}) = \mu(A_{1}) - \lim_{n \to \infty}\mu(A_{1}) - \mu(A_{n}).$$

NOTE: the condition that $\mu(A_1) < \infty$ cannot be dropped.

For example, in $(\mathbb{N}, \mathcal{P}(N), \text{counting measure})$, let $A_n = \{n, n+1, n+2\}, A_1 \supset A_2 \supset A_3 \supset \ldots$ We have $\bigcap_1^\infty = \emptyset \implies \mu\left(\bigcap_1^\infty A_i\right) = 0$.

Definition 1.14. For (X, \mathcal{A}, μ) measure space,

- $A \subset X$ is a μ -null set if $A \in \mathcal{A}$, $\mu(A) = 0$.
- $A \subset X$ is a μ -subnull set if $\exists B, \mu$ -null set $A \subset B$.
- (X, A, μ) is a complete measure space if every μ -subnull set is A-measurable.

Definition 1.15. (X, \mathcal{A}, μ) measure space. A statement $P(x), x \in X$ holds μ -almost everywhere (a.e.) if the set $\{x \in X \mid P(x) \text{ does not hold}\}$ is μ -null.

Definition 1.16. (X, \mathcal{A}, μ) measure space.

- μ is a finite measure is $\mu(X) < \infty$.
- μ is a $\underline{\sigma}$ -finite measure if $X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}, \mu(X_n) < \infty$.

HW: every measure space can be "completed."

1.3 Outer Measures

Definition 1.17. An <u>outer measure</u> on X is $\mu^* : \mathcal{P}(X) \to [0, \infty]$ s.t.

- $\mu^*(\emptyset) = 0$
- (monotonicity) $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$.
- (countable subadditivity)

$$\forall A_1, A_2, \ldots \in X, \mu^* \left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu^*(A_i).$$

Example 1.18. For $A \subset \mathbb{R}$,

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} (b_i - a_i) \mid \bigcup_{1}^{\infty} (a_i, b_i) \supset A \right\}.$$

is an outer measure due to the next proposition.

Proposition 1.19. (1.19) Let $\mathcal{E} \in \mathcal{P}(X)$ s.t. $\emptyset, X \in \mathcal{E}$. Let $\rho : \mathcal{E} \to [0, \infty]$ s.t. $\rho(\emptyset) = 0$. Then

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) \mid E_i \in \mathcal{E}, \forall i \in N, \bigcup_{i=1}^{\infty} E_i \supset A \right\}$$

is an outer measure on X.

Proof. (a) μ^* is well-defined (inf is taken over non-empty set.)

- (b) $\mu^*(\emptyset) = 0$
- (c) $A \subset B \implies \mu^*(A) \leq \mu^*(B)$.

We check the countable subadditivity.

Let $A_1, A_2, \ldots \subset X$. If one of $\mu^*(A_i) = \infty$, then the result holds. Suppose $\mu^*(A_n) < \infty, \forall n \in \mathbb{N}$.

"Give your self a room of epsilon":

Fix $\varepsilon > 0$. We will show

$$\mu^* \left(\bigcup_{1}^{\infty} A_n \right) \le \sum_{1}^{\infty} \mu^*(A_i) + \varepsilon.$$

For each $n \in \mathbb{N}$, $\exists E_{n,1}, E_{n,2}, \ldots \in \mathcal{E} \ s.t.$

$$\bigcup_{k=1}^{\infty} E_{n,k} \supset A_n \quad \text{and} \quad \mu^*(A_n) + \frac{\varepsilon}{2^n} \ge \sum_{k=1}^{\infty} \rho(E_{n,k}).$$

Then,

$$\bigcup_{1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_{n,k} = \bigcup_{(n,k) \in \mathbb{N}^2} E_{n,k}.$$

<u>RECALL:</u> Tonelli's thm for series. If $a_{ij} \in [0, \infty], \forall i, j \in \mathbb{N}$, then

$$\sum_{(i,j)\in\mathbb{N}^2} a_{ij} = \sum_{i=1}^{\infty} \sum_{j=1^{\infty}} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

Hence

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \rho(E_{k,n}) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \rho(E_{k,n}) \leq \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\varepsilon}{2^n} \right) = \sum_{n=1}^{\infty} \mu^*(A_n) + \varepsilon.$$

We have shown countable subadditivity.

Outer measure is very close to a measure. Here the textbooks diverge.

[Tao11] introduces Lebesgue measure on $\mathbb R$ using topological qualities of subsets of $\mathbb R$. [Fol99] introduces abstract method by Carathéodory and Kolmogorov.

Definition 1.20. Let μ^* be an outer measure on X. We say $A \subset X$ is Carathéodory measurable with respect to μ^* if $\forall E \subset X, \mu^*(E) = \mu^*(E \setminus A) + \mu^*(E \cap A)$.

Lemma 1.21. Let μ^* be an outer measure on X. Suppose B_1, B_2, \ldots, B_N are disjoint C-measurable sets. Then,

$$\forall E \subset X, \mu^* \left(E \cap \left(\bigcup_{i=1}^N B_i \right) \right) = \sum_{i=1}^n \mu^* (E \cap B_i)$$

Proof.

$$\mu^* \left(E \cap \left(\bigcup_{1}^N B_i \right) \right) = \mu^* (E \cap B_1) + \mu^* \left(E \cap \left(\bigcup_{1}^N B_i \right) \right)$$

because B_1 is C-measurable. Then, iterate.

Improved version:

 $B_1, B_2, \dots C$ -measurable and $\underline{\text{disjoint}} \implies \mu^* \left(E \cap \bigcup_1^\infty B_n \right) = \sum_1^\infty \mu^* \left(E \cap B_n \right), \forall E \subset X.$

Proof.

$$\sum_{1}^{\infty} \mu^{*}(E \cap B_{n}) \ge \mu^{*} \left(E \cap \bigcup_{1}^{\infty} B_{n} \right)$$

$$\ge \mu^{*} \left(E \cap \bigcup_{1}^{N} B_{n} \right) = \sum_{1}^{N} \mu^{*}(E \cap B_{n}.)$$

Take $N \to \infty$ or note that $N \in \mathbb{N}$ is arbitrary we get the result.

First big theorem:

Theorem 1.22 (Carathéodory extension theorem). Let μ^* be an outer measure on X. Let A be the collection of C-measurable sets with respect to μ^* . Then

- (a) A us a σ -algebra on X.
- (b) $\mu = \mu^*|_{\mathcal{A}}$ is a measure on (X, \mathcal{A}) .
- (c) (X, A, μ) is a complete measure space.

Proof. (a) (1) $\emptyset \in \mathcal{A}$.

- (2) A is closed under complements.
- (3) To show A closed under countable unions.
 - (finite union) $\underline{\text{CLAIM}} \ A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}.$

Figure 1.1: Venn diagram of A, B, E

Fix arbitrary $E \subset X$. We need to show

$$\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \setminus (A \cup B)).$$

i.e.

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2 \cup 3) + \mu^*(4)$$

Since A is C-measurable, we have

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)$$
$$\mu^*(1 \cup 2 \cup 3) = \mu^*(1 \cup 2) + \mu^*(3)$$

Similarly since B is C-measurable, we have

$$\mu^*(3 \cup 4) = \mu^*(3) + \mu^*(4)$$

Hence

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)$$
$$= \mu^*(1 \cup 2 \cup 3) - \mu^*(3) + \mu^*(3) + \mu^*(4)$$
$$= \mu^*(1 \cup 2 \cup 3) + \mu^*(4).$$

• (countable disjoint unions) Let $A_1, A_2, \ldots \in \mathcal{A}$ and disjoint.

Fix $E \subset X$ arbitrary. Since μ^* is countably subadditive,

$$\mu^*(E) \le \mu^* \left(E \cap \bigcup_{1}^{\infty} \right) + \mu^* \left(E \setminus \bigcup_{1}^{\infty} A_n \right)$$

Fix $n \in \mathbb{N}$.

$$\implies \bigcup_{1}^{N} A_{n} \in \mathcal{A}$$

$$\implies \mu^{*}(E) = \mu^{*} \left(E \cap \bigcup_{1}^{N} \right) + \mu^{*} \left(E \setminus \bigcup_{1}^{N} A_{n} \right)$$

$$\geq \sum_{1}^{N} \mu^{*}(E \cap A_{n}) + \mu^{*} \left(E \setminus \bigcup_{1}^{\infty} A_{n} \right) \text{ by lemma.}$$

Take $n \to \infty$.

- (countable unions) Let $A_1, A_2, \ldots \in \mathcal{A}$. Take $E_1 = A_1, E_n = A_n \setminus \left(\bigcup_1^{n-1} A_i\right)$ for $n \geq 2$. Then $\bigcup A_n = \bigcup E_n$ and E_n 's are disjoint.
- (b) Firstly we have $\mu(\emptyset) = \mu^*(\emptyset) = 0$.

Countable additivty of μ^* on \mathcal{A} follows from the improved lemma with E=X.

1.4 Hahn-Kolmogorov Theorem

<u>RECALL</u> 1.19 Let $\mathcal{E} \subset \mathcal{P}(X)$ s.t. $\emptyset, X \in \mathcal{E}$. Let $\rho : \mathcal{E} \to [0, \infty]$ s.t. $\rho(\emptyset) = 0$

$$(\mathcal{E}, \rho) \xrightarrow{1.19} (\mathcal{P}(X), \mu^*) \xrightarrow{C\text{-theorem}} (A, \mu)$$

QUESTION $\mathcal{E} \subset \mathcal{A}$ and $\mu|_{\mathcal{E}} = \rho$? No!

Definition 1.23. Let A_0 be an algebra on X. We say $\mu_0 : A_0 \to [0, \infty]$ is a pre-measure if

- (a) $\mu_0(\emptyset) = 0$.
- (b) (finite additivity)

$$\mu_0\left(\bigcup_1^N A_i 1\right) = \sum_1^N \mu_0(A_i) \text{ if } A_1, \dots, A_N \in \mathcal{A}_0 \text{ are disjoint.}$$

(c) (countable additivity within the algebra) If $A \in A_0$ and

$$A = \bigcup_{1}^{\infty} A_n, A_n \in \mathcal{A}_0$$
 and are disjoint, then $\mu_0(A) = \sum_{1}^{\infty} \mu_0(A_n)$

<u>NOTATION:</u> Folland uses \mathcal{M} for σ -algebra and \mathcal{A} for algebra. (Jinho) uses \mathcal{A} for σ -algebra and \mathcal{A}_0 for alegbra.

Example 1.24. A_0 finite disjoint unions of (a, b].

$$\mu_0\left(\bigcup_{1}^{\infty}(a_i,b_i)\right) = \sum_{1}^{\infty}(b_i - a_i) \text{ or } b_i^n - a_i^n, e^{b_i} - e^{a_i}, \text{ etc.}$$

Lemma 1.25. • $(a) + (c) \implies (b)$.

• μ_0 is monotone.

Theorem 1.26 (Hahn-Kolmogorov Theorem). Let μ_0 be a pre-measure on algebra A_0 on X. Let μ^* be the outer measure induced by (A_0, μ_0) in 1.19. Let A and μ be the Carathéodory σ -algebra and measure for $\mu^* \implies (A, \mu)$ extends (A_0, μ_0) i.e. $A \supset A_0, \mu|_{A_0} = \mu_0$.

Proof. (a) $(A \supset A_0)$ Let $A \in A_0$.

Question: $A \in \mathcal{A}$? i.e. is A C-measurable? i.e. $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \subset A$

X.

Fix $E \subset X$.

- (countable) subadditivity of $\mu^* \implies \mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^c)$.
- If $\mu^*(E) = \infty$ then $\mu^*(E) = \infty \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$.
- If $\mu^*(E) < \infty$.

Fix $\varepsilon > 0$. By the definition of $\mu^*, \exists B_1, B_2, \ldots \in \mathcal{A}_0$ s.t. $\bigcup_{1}^{\infty} B_n \supset E$ and

$$\mu^*(E) + \varepsilon \ge \sum_{1}^{\infty} \mu_0(B_n) = \sum_{1}^{\infty} (\mu_0(B_n \cap A) + \mu_0(B_n \cap A^c)).$$

Note that

$$\bigcup_{1}^{\infty} (B_n \cap A) \supset E \cap A, \quad \bigcup_{1}^{\infty} (B_n \cap A^c) \supset E \cap A^c \implies \geq$$

(b) Let $A \in \mathcal{A}_0$. We want to show that $\mu(A) = \mu_0(A)$.

By definition, $\mu(A) = \mu^*(A)$.

• Let
$$B_i = \begin{cases} A & i = 1, \\ \emptyset & i = 2 \end{cases} \in \mathcal{A}_0 \text{ and } \bigcup_{1}^{\infty} B_i \supset A.$$

Hence $\mu^*(A) \leq \sum_{1}^{\infty} \mu_0(B_i) = \mu_0(A)$.

• Let $B_i \in \mathcal{A}_0, \bigcup_1^\infty B_i \supset A$ an arbitrary collection of sets. Let $C_1 = A \cap B_1, C_i = A \cap B_i \setminus \left(\bigcup_{j=1}^{i-1} B_j\right)$. Then $A = \bigcup_1^\infty$ is a disjoint countable union. By countable additivitiy we have

$$\mu_0(A) = \sum_{1}^{\infty} \mu_0(C_i) \implies \mu_0(A) \le \sum_{1}^{\infty} \mu_0(B_i).$$

Hence we have $\mu_0(A) = \mu^*(A) = \mu(A)$. We have completed our proof.

Definition 1.27. Such (A, μ) is called the <u>Hahn-Kolmogorov extension</u> of (A_0, μ_0) , and is also called the <u>Carathéodory σ-algebra</u> for (A_0, μ_0) .

Theorem 1.28 (uniqueness of HK extension). Let A_0 be an algebra on X, μ_0 be a pre-measure on A_0 , (A, μ) be the Hahn-Kolmogorov extension of (A_0, μ_0) . And let (A', μ') be another extension of (A_0, μ_0) .

If μ_0 is σ -finite, then $\mu \mid_{A \cap A'} = \mu' \mid_{A \cap A'}$.

NOTE σ -finite means

$$\forall X, X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}_0, \mu_0(X_n) < \infty.$$

Corollary 1.29. Let μ_0 be a pre-measure on algebra A_0 on X. Suppose μ_0 is σ -finite, then \exists ! measure μ on $\langle A_0 \rangle$ that extends A_0 . Furthermore,

(a) the completion of $(X, \langle A_0 \rangle, \mu)$ is the HK extension of (A_0, μ_0) .

(b)

$$\mu(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(B_i) \mid B_i \subset A_0, \forall i \in \mathbb{N}, \bigcup_{i=1}^{\infty} B_i \supset A \right\}, \forall A \in \overline{\langle A_0 \rangle}.$$

Proof of 1.28. Let $A \in \mathcal{A} \cap \mathcal{A}'$. We need to show $\mu(A) = \mu^*(A) = \mu'(A)$.

- $\mu^*(A) \ge \mu'(A)$ (HW)
- $\mu(A) \leq \mu'(A)$:
 - (i) Assume $\mu(A) < \infty$. Fix $\varepsilon > 0$. Then $\exists B_i \in \mathcal{A}_0, \forall i \in \mathbb{N}, \bigcup_{1}^{\infty} B_i \supset A \ s.t.$

$$\mu(A) + \varepsilon = \mu^*(A) + \varepsilon \ge \sum_{1}^{\infty} \mu_0(B_i) = \sum_{1}^{\infty} \mu(B_i) \ge \mu\left(\bigcup_{1}^{\infty} B_i\right) = \mu(B)$$

Hence $\mu(B \setminus A) = \mu(B) - \mu(A) \le \varepsilon$.

On the other hand,

$$\mu(B) = \lim_{N \to \infty} \mu\left(\bigcup_{1}^{N} B_i\right) = \lim_{N \to \infty} \mu'\left(\bigcup_{1}^{N} B_i\right) = \mu'(B)$$

by continuity of measure from below.

$$\mu(A) \le \mu(B) = \mu'(B) = \mu'(A) + \mu'(B \setminus A) \le \mu'(A) = \varepsilon.$$

(ii) Assume $\mu(A) = \infty$.

Since μ_0 is σ -finite, $X = \bigcup_1^\infty X_n, X_n \in \mathcal{A}_0, \mu_0(X_0) < \infty$. Replacing X_n by $X_1 \cup \ldots \cup X_n$, we may assume $X_1 \subset X_2 \subset \ldots$

$$\forall n \in N, \mu(A \cap X_n) < \infty \implies \mu(A \cap X_n) \le \mu'(A \cap X_n).$$

Borel Measures on $\mathbb R$ Yiwei Fu

Hence

$$\mu(A) = \lim_{N \to \infty} \mu(A \cap X_n) \le \lim_{N \to \infty} \mu'(A \cap X_n) = \mu'(A).$$

1.5 Borel Measures on \mathbb{R}

Definition 1.30. $F : \mathbb{R} \to \mathbb{R}$ is an <u>increasing</u> function if $F(x) \leq F(y)$ for x < y. $F : \mathbb{R} \to \mathbb{R}$ is increasing and right-continuous $\Longrightarrow F$ is distribution function.

Example 1.31.

•
$$F(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0. \end{cases}$$

•
$$\mathbb{Q} = \{r_1, r_2, \ldots\}, F_n(x) = \begin{cases} 1 & x \ge r_n \\ 0 & x < r_n \end{cases}$$
. $F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}$ is a distribution function

NOTE If F is increasing, $F(\infty) := \lim_{x \to \infty} F(x), F(-\infty) := \lim_{x \to -\infty} F(x)$ exists in $[-\infty, \infty]$.

In probability theory, cumulative distribution function (CDF) is a distribution function with $F(\infty) = 1$ and $F(-\infty) = 0$.

There are distributions [Folland, Ch9], but these are different from <u>distribution</u> functions.

Definition 1.32. Suppose X a topological space. μ on $(X, \mathcal{B}(X))$ is called <u>locally finite</u> is $\mu(K) < \infty$ for any compact set $K \subset X$.

Lemma 1.33. Let μ be a locally finite Borel measure on $\mathbb{R} \implies$

$$F_{\mu}(x) = \begin{cases} \mu((0,x]), & x > 0\\ 0, & x = 0 \text{ is a distribution function.}\\ -\mu((x,0]), & x < 0 \end{cases}$$

Proof. DIY. Use continuity of measure.

Definition 1.34. *h*-intervals are \emptyset , (a, b], (a, ∞) , $(-\infty, b]$, (∞, ∞) .

Lemma 1.35. *Let* \mathcal{H} *be the collections of finite disjoint unions of* h-intervals. Then \mathcal{H} *is an algebra on* \mathbb{R} .

Borel Measures on $\mathbb R$ Yiwei Fu

Proposition 1.36 (Distribution function defines a pre-measure). Let $F : \mathbb{R} \to \mathbb{R}$ be a distribution function. For an h-interval I, define

$$\ell(I) = \ell_F(I) = \begin{cases} 0, & I = \emptyset \\ F(b) - F(a), & I = (a, b] \\ F(\infty) - F(a), & I = (a, \infty) \\ F(b) - F(\infty), & I = (-\infty, b] \\ F(\infty) - F(-\infty), & I = (-\infty, \infty). \end{cases}$$

Define $\mu_0 = \mu_{0,F} : \mathcal{H} \to [0,\infty]$ by

$$\mu_0(A) := \sum_{k=1}^N \ell(I_k)$$
 if $A = \bigcup_{k=1}^N I_k$, finite disjoint union of h-intervals.

Then μ_0 *is a pre-measure.*

Proof. (a) μ_0 is well-defined.

- (b) μ_0 is finite additive.
- (c) μ_0 is countable additive within \mathcal{H} .

Suppose $A \in \mathcal{H}$ and $A = \bigcup_{1}^{\infty} A_i$ a disjoint union, $A_i \in \mathcal{H}$. It is enough to consider the case A = I, $A_k = I_k$ all h-intervals. (Why?)

Focus on the case I=(a,b]: (HW: check other cases)

We have

$$(a,b] = \bigcup_{1}^{\infty} (a_n,b_n]$$
, a disjoint union.

Check

$$F(b) - F(a) \stackrel{?}{=} \sum_{1}^{\infty} (F(b_n) - F(a_n))$$

 $(a,b]\supset \bigcup_1^N(a_n,b_n]\implies F(b)-F(a)\geq \sum_1^N F(b_n)-F(a_n), \forall N\in\mathbb{N}.$ (Arranging them in decreasing order) Take $N\to\infty$ we have

$$F(b) - F(a) \ge \sum_{1}^{\infty} (F(b_n) - F(a_n)).$$

Since F is right-continuous, $\exists a' > a \ s.t. \ F(a') - F(a) < \varepsilon$. For each $n \in \mathbb{N}$, $\exists b'_n > s$

$$b_n \ s.t. \ F(b'_n) - F(b_n) < \frac{\varepsilon}{2^n}.$$

$$\implies [a', b] \subset \bigcup_{1}^{\infty} (a_n, b'_n)$$

$$\implies \exists N \in \mathbb{N} \ s.t. \ [a', b] \subset \bigcup_{1}^{n} (a_n, b'_n)$$

$$\implies F(b) - F(a') \le \sum_{1}^{N} F(b'_n) - F(a_n)$$

$$\implies F(b) - F(a) \le F(b) - F(a') + \varepsilon \le \sum_{1}^{\infty} (F(b'_n) - F(a_n)) + \varepsilon$$

$$\le \sum_{1}^{\infty} \left(F(b_n) - F(a_n) + \frac{\varepsilon}{2^n} \right) + \varepsilon$$

Once we have this pre-measure, HK theorem allows us to extended it to a measure.

Theorem 1.37 (Locally finite Borel measures on \mathbb{R}).

- (a) $F: \mathbb{R} \to \mathbb{R}$ is a distribution function $\implies \exists !$ locally finite Borel measure μ_F on \mathbb{R} satisfying $\mu_F((a,b]) = F(b) F(a), \forall a,b,a < b$.
- (b) Suppose $F, G : \mathbb{R} \to \mathbb{R}$ are distribution functions. Then, $\mu_F = \mu_G$ on $\mathcal{B}(\mathbb{R})$ if and only if F G is a constant function.

1.6 Lebesgue-Stieltjes Measures on \mathbb{R}

F distribution function $\implies \mu_F$ on Carathéodory *σ*-algebra \mathcal{A}_{μ_F} . Actually $(\mathcal{A}_{\mu_F}, \mu_F) = (\mathcal{B}(\mathbb{R}), \mu_F)$ (HW3).

Definition 1.38. • μ_F on \mathcal{A}_{μ_F} is called the Lebesgue-Stieltjes measure corresponding to F.

• Special case: $F(x) = x \implies$ Lebesgue measure (\mathcal{B}, m) .

Example 1.39.

(a) $\mu_F((a,b]) = F(b) - F(a)$. F is right-continuous and increasing $\implies F(x_-) \le F(x) = F(x_+)$. (HW) $\mu_F(\{a\}) = F(a) - F(a_-), \mu_F([a,b]) = F(b) - F(a_-), \mu_F((a,b)) = F(b_-) - F(a)$.

(b)
$$F(x) = \begin{cases} 1 & x \le 0 \\ 0 & x < 0 \end{cases} \implies \mu_F(\{0\}) = 1, \mu_F(\mathbb{R}) = 1, \mu_F(\mathbb{R} \setminus \{0\}) = 0.$$

 μ_F is the Dirac measure at 0.

(c)

$$\mathbb{Q} = \{r_1, r_2, \ldots\}, \ F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}, \ F_n(x) = \begin{cases} 1 & x \le r_n \\ 0 & x < r_n \end{cases}$$
$$\implies \mu_F(\{v\}) > 0, \forall v \in \mathbb{Q}, \ \mu_F(\mathbb{R} \setminus \mathbb{Q}) = 0.$$

- (d) If F is continuous at $a, \mu_F(\{a\}) = 0$.
- (e) $F(x) = x \implies m((a,b]) = m((a,b)) = m([a,b]) = b a$.
- (f) $F(x) = e^x$, $\implies \mu_F((a,b]) = \mu_F((a,b)) = e^b e^a$
- (a), (b) are examples of discrete measure.

Example 1.40 (Middle thirds Cantor set $C = \bigcup_{n=1}^{\infty} K_n$).

 \mathcal{C} is uncountable set with $m(\mathcal{C}) = 0$.

$$x \in \mathcal{C} \implies x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, a_n \in \{0, 2\}.$$

We are interested in the Cantor function F.

Example 1.41. Cantor function F is continuous and increasing. This defines the Cantor measure $\mu_F(\mathbb{R} \setminus \mathcal{C}) = 0, \mu_F(\mathcal{C}) = 1, \mu_F(\{a\}) = 0$. Compare with Lebesgue measure $m(\mathbb{R} \setminus \mathcal{C}) = \infty > 0, \mu(\mathcal{C}) = 0, m(\{a\}) = 0$.

1.7 Regularity Properties of Lebesgue-Stieltjes Measures

Lemma 1.42. μ is Lebesgue-Stieltjes measure on $\mathbb{R} \implies$

$$\mu(A) = \inf \left\{ \sum_{1}^{\infty} \mu((a_i, b_i]) \mid \bigcup_{1}^{\infty} (a_i, b_i] \supset A \right\}$$
$$= \inf \left\{ \sum_{1}^{\infty} \mu((a_i, b_i)) \mid \bigcup_{1}^{\infty} (a_i, b_i) \supset A \right\}$$

Proof. Using the continuity of measure.

Theorem 1.43. μ is a Lebesgue-Stieltjes measure. Then $\forall A \in \mathcal{A}_{\mu}$,

(a) (outer regularity)

$$\mu(A) = \inf{\{\mu(O) \mid open \ O \supset A\}}.$$

(b) (inner regularity)

$$\mu(A) = \sup \{ \mu(K) \mid compact \ K \subset A \}.$$

Proof. (a) Followed from 1.42.

- (b) Let $s = \sup\{\ldots\}$. Monotonicity $\implies \mu(A) \ge s$.
 - (A bounded) $\overline{A} \in \mathcal{B}(\mathbb{R}) \subset \mathcal{A}_{\mu}$, \overline{A} bounded $\Longrightarrow \mu(\overline{A}) < \infty$. Fix $\varepsilon > 0$. By 1, \exists open $O \supset \overline{A} \setminus A$, $\mu(O) - \mu(\overline{A} \setminus A) = \mu(O \setminus (\overline{A} \setminus A)) \le \varepsilon$. Let $K = \underbrace{A \setminus O}_{K \subset A} = \underbrace{\overline{A} \setminus O}_{\text{compact}}$. Show that $\mu(K) \ge \mu(A) - \varepsilon$.
 - (*A* unbounded but $\mu(A) < \infty$) We have

$$A = \bigcup_{1}^{\infty} A_n, \ A_n = A \cap [-n, n], \ A_1 \subset A_2 \subset \dots$$

Hence

$$\lim_{n\to\infty}\mu(A_n)=\mu(A)<\infty.$$

• $(\mu(A) = \infty)$

$$\lim_{n \to \infty} \mu(A_n) = \mu(A) = \infty.$$

Fix
$$L > 0$$
. $\exists N \ s.t. \ \mu(A_N) \geq L$.

Definition 1.44. Suppose *X* a topological space.

A
$$\underline{G\sigma}$$
-set is $G = \bigcup_{1}^{\infty} O_i$, O_i open. An $\underline{F\sigma}$ -set is $F = \bigcup_{1}^{\infty} F_i$, F_i closed.

Theorem 1.45. Suppose μ a LS measure. Then the following statements are equivalent:

- (a) $A \in \mathcal{A}_{\mu}$.
- (b) $A = G \setminus M$, G is a $G\sigma$ -set, and M is μ -null.
- (c) $A = F \cup N$, F is a $F\sigma$ -set, and N is μ -null.

Proof. (b) \implies (a) and (c) \implies (a) are clear.

- (a) \Longrightarrow (c)
 - (i) Assume $\mu(A) < \infty$. By inner regularity,

$$\forall n \in \mathbb{N}, \exists \text{ compact } K_n \subset A \text{ s.t. } \mu(K_n) + \frac{1}{n} \geq \mu(A).$$

Let $F = \bigcup_{1}^{\infty} K_n$. Then $N = A \setminus F$ is μ -null.

(ii) Assume $\mu(A) = \infty$. We construct

$$A = \bigcup_{k \in \mathbb{Z}} A_k, A_k = A \cap (k, k+1].$$

By (i), $\forall k \in \mathbb{Z}, A_k = F_k \cup N_k$. Hence

$$A = \underbrace{\left(\bigcup_{k} F_{k}\right)}_{F\sigma} \cup \underbrace{\left(\bigcup_{k} N_{k}\right)}_{u-\text{null}}.$$

• (a)
$$\Longrightarrow$$
 (b)
$$A^c = F \cup N, A = F^c \cup N^c = F^c \setminus N.$$

Proposition 1.46. *Suppose* μ *a LS measure,* $A \in \mathcal{A}_{\mu}$, $\mu(A) < \infty$. *Then*

$$\forall \varepsilon>0, \exists I=\bigcup_{1}^{N=N(\varepsilon)}I_i, \ \text{disjoint open intervals } s.t. \ \mu(A\triangle I)\leq \varepsilon.$$

Proof. DIY - use outer regularity.

Properties of Lebesgue measure

Theorem 1.47.

$$A \in \mathcal{L} \implies A + s \in \mathcal{L}, rA \in \mathcal{L}, \forall r, s \in \mathbb{R}.$$

In addition, m(A + r) = m(A) and m(rA) = rm(A).

Example 1.48.

(a) $\mathbb{Q} = \{r_1\}_{i=1}^{\infty}$, which is dense in \mathbb{R} . Let $\varepsilon > 0$ and

$$O = \bigcup_{i=1}^{\infty} \left(r_i - \frac{\varepsilon}{2^i}, r_i + \frac{\varepsilon}{2^i} \right).$$

O is open and dense in \mathbb{R} . We have

$$m(O) \le \sum_{i=1}^{\infty} \frac{2\varepsilon}{2^i} = 2\varepsilon, \partial O = \overline{O} \setminus O, m(O) = \infty.$$

- (b) \exists uncountable set A with m(A) = 0.
- (c) $\exists A \text{ with } m(A) > 0$, but A contains no non-empty open interval.
- (d) $\exists A \notin \mathcal{L}$ that is Vitali set.
- (e) $\exists A \in \mathcal{L} \setminus \mathcal{B}(\mathbb{R})$. We will deal with that later.

Chapter 2

Integration

2.1 Measurable Functions

Definition 2.1. Suppose (X, \mathcal{A}) , (Y, \mathcal{B}) two measurable spaces. $f: X \to Y$ is $(\mathcal{A}, \mathcal{B})$ -measurable if

$$\forall B \in \mathcal{B}, f^{-1}(B) \in \mathcal{A}.$$

Lemma 2.2. *Suppose* $\mathcal{B} = \langle \mathcal{E} \rangle$ *. Then*

$$f: X \to Y \text{ is } (A, \mathcal{B})\text{-measurable} \iff \forall E \in \mathcal{E}, f^{-1}(E) \in A.$$

Proof. \Longrightarrow clear

$$\longleftarrow$$
 Let $\mathcal{D} = \{E \subset Y \mid f^{-1}(E) \in \mathcal{A}\}$. We have $\mathcal{E} \subset \mathcal{D}$ by assumption. In addition \mathcal{D} is a σ -algebra $\implies \langle \mathcal{E} \rangle \subset \mathcal{D}$.

Definition 2.3. Suppose (X, A) a measurable space.

$$\left. \begin{array}{l} f: X \to \mathbb{R} \\ f: X \to \overline{\mathbb{R}} = [-\infty, \infty] \\ f: X \to \mathbb{C} \end{array} \right\} \text{ is \mathcal{A}-measurable if } \left\{ \begin{array}{l} f \text{ is } (\mathcal{A}, \mathcal{B}(\mathbb{R}))\text{-measurable} \\ f \text{ is } (\mathcal{A}, \mathcal{B}(\overline{\mathbb{R}}))\text{-measurable} \\ \operatorname{Re} f, \operatorname{Im} f: X \to \mathbb{R} \text{ are \mathcal{A}-measurable.} \end{array} \right.$$

Here $\mathcal{B}(\overline{\mathbb{R}}) = \{ E \subset \overline{\mathbb{R}} \mid E \cap R \in \mathcal{B}(\mathbb{R}) \}.$

Lemma 2.4. Suppose $f: X \to \mathbb{R}$. Then the followings are equivalent:

(a) f is A-measurable

Measurable Functions Yiwei Fu

- (b) $\forall a \in \mathbb{R}, f^{-1}((a, \infty)) \in \mathcal{A}.$
- (c) $\forall a \in \mathbb{R}, f^{-1}([a, \infty)) \in \mathcal{A}$.
- (d) $\forall a \in \mathbb{R}, f^{-1}((-\infty, a)) \in \mathcal{A}.$
- (e) $\forall a \in \mathbb{R}, f^{-1}((-\infty, a]) \in \mathcal{A}$.

For $f: X \to \overline{\mathbb{R}}$, change the interval to include $-\infty$ and ∞ .

Proof. By 2.2. ■

Example 2.5. $A = P(X) \implies$ every function is A measurable.

 $A = \{\emptyset, X\} \implies$ only A functions are constant functions.

<u>Properties</u> Suppose $f, g: X \to \mathbb{R}$, \mathcal{A} -measurable functions.

- (a) $\phi: \mathbb{R} \to \mathbb{R}$, $\mathcal{B}(\mathbb{R})$ measurable (i.e. Borel measurable) $\implies \phi \circ f: X \to \mathbb{R}$ is \mathcal{A} -measurable.
- (b) $-f, 3f, f^2, |f|$ are \mathcal{A} -measurable, $\frac{1}{f}$ is \mathcal{A} -measurable if $f(x) = 0, \forall x \in X$.
- (c) f + g is A-measurable

$$(f+g)^{-1}((a,\infty)) = \bigcup_{r \in \mathbb{Q}} (f^{-1}((r,\infty)) \cap g^{-1}((a-r,\infty))).$$

(d) fg is A-measurable

$$f(x)g(x) = \frac{1}{2} \left((f(x) + g(x))^2 - f(x)^2 - g(x)^2 \right).$$

- (e) $(f \wedge g)(x) = \min\{f(x), g(x)\}, (f \vee g)(x) = \max\{f(x), g(x)\}\$ are A-measurable.
- (f) $f_n: X \to \overline{\mathbb{R}}$ are a sequence of \mathcal{A} -measurable functions \Longrightarrow

$$\sup f_n, \inf f_n, \limsup_{n \to \infty} f_n, \liminf_{n \to \infty} f_n$$
 are \mathcal{A} -measurable.

(g) If $f(x) = \lim_{n \to \infty} f_n(x)$ converges for every $x \in X$, then f is measurable.

Example 2.6. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous. Then f is Borel measurable $\implies f$ is Lebesgue measurable. (Preimage of an open set of a continuous function is open.)

Definition 2.7. For $f: X \to \overline{\mathbb{R}}$, let $f^+ = f \vee 0$, $f^- = (-f) \vee 0$.

NOTE supp $f^+ \cap \text{supp } f^- = \emptyset$. $f(x) = f^+(x) - f^-(x)$. f is \mathcal{A} -measurable $\iff f^+, f^-$ measurable.

Measurable Functions Yiwei Fu

Definition 2.8. For $E \subset X$, characteristic (indicator) funtion of E

$$\chi_E(x) = 1_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \in E^c. \end{cases}$$

 1_E is \mathcal{A} -measurable $\iff E \in \mathcal{A}$.

Definition 2.9. Suppose (X, \mathcal{A}) a measurable space. A <u>simple function</u> $\phi : X \to \mathbb{C}$ that is \mathcal{A} -measurable and takes only finitely many values.

$$\phi(X) = \{c_1, \dots, c_N\}, c_i \neq \pm \infty, E_i = \phi^{-1}(c_i) \in \mathcal{A} \implies \phi = \sum_{i=1}^N c_i 1_{E_i}.$$

Theorem 2.10. Suppose (X, A) a measurable space and $f: X \to [0, \infty]$. Then the followings are equivalent:

- (a) f is A-measurable.
- (b) \exists simple functions $0 \le \phi_1(x) \le \phi_2(x) \le \ldots \le f(x)$ such that

$$\lim_{n \to \infty} \phi_n(x) = f(x), \ \forall x \in X.$$

(f is the pointwise upward limit of simple functions.)

Proof. • (b) \Longrightarrow (a) is easy: $f(x) = \sup_{n \in \mathbb{N}} \phi_n(x)$.

• (a) \implies (b): suppose f is A-measurable.

Fix $n \in \mathbb{N}$. Let $F_n = f^{-1}([2^n, \infty]) \in \mathcal{A}$. For

$$0 \le k \le 2^{2n} - 1, \ E_{n,k} = f^{-1}\left(\left\lceil \frac{k}{2^n}, \frac{k+1}{2^n} \right\rceil\right) \in \mathcal{A}.$$

Let
$$\phi_n(x) = \sum_{k=0}^{2^{2n}-1} 1_{E_{n,k}} + 2^n 1_{F_n}$$
.

We have

$$0 < \phi_1(x) < \phi_2(x) < \ldots < f(x)$$

and

$$\forall x \in X, 0 \le f(x) - \phi_n(x) \le \frac{1}{2^n}.$$

Corollary 2.11. If f is bounded on a set $A \subset \mathbb{R}$ (i.e. $\exists nL > 0$ s.t. $|f(x)| \leq L$, $\forall x \in A$) then $\phi_n \to f$ uniformly on A.

Corollary 2.12. $f: X \to \mathbb{C}$, measurable function $\iff \exists$ simple functions $\phi_n: X \to \mathbb{C}$ s.t.

2.2 Integration of Nonnegative Functions

Definition 2.13. Suppose (X, \mathcal{A}, μ) a measure space and $\phi = \sum_{i=1}^{N} c_i 1_{E_i} : X \to [0, \infty]$ a simple function. Let

$$\int \phi = \int \phi \, d\mu = \int_X \phi \, d\mu = \sum_1^N c_i \mu(E_i).$$

Proposition 2.14. *Suppose* $\phi, \psi \geq 0$ *are simple functions. Then,*

- 2.13 is well-defined.
- $\int c\phi = c \int \phi, c \in [0, \infty).$
- $\int (\phi + \psi) = \int \phi + \int \psi.$
- $\phi(x) \ge \psi(x), \ \forall x \implies \int \phi \ge \int \psi.$
- $\nu(A) = \int_A \phi \, d\mu$ is a measure on (X, A).

Proof. DIY.

Definition 2.15. Suppose $(X, \mathcal{A}, \mu), f : X \to [0, \infty]$ is \mathcal{A} -measurable.

Define

$$\int f = \int f \; \mathrm{d}\mu = \sup \left\{ \int \phi \mid 0 \leq \phi \leq f, \phi \; \mathrm{simple} \right\}.$$

Proposition 2.16.

- *If f is a simple function then two definitions are the same.*
- $\int cf = c \int f$.
- $f \ge g \ge 0 \implies \int f \ge \int g$.

•
$$\int f + g = \int f + \int g$$
. (A bit harder to check)

Theorem 2.17 (Monotone convergence theorem). *Suppose* (X, A, μ) *a measure space and*

- $f: X \to [0, \infty]$ is A-measurable, $\forall n \in \mathbb{N}$.
- $0 \le f_1(x) \le \dots$
- $\lim_{n\to\infty} f_n(x) = f(x)$.

Then

$$\int f = \lim_{n \to \infty} \int f_n.$$

Proof. TBC

Corollary 2.18. $f, g \ge 0$ measurable $\implies \int f + g = \int f + \int g$.

Corollary 2.19 (Tonelli's theorem for series and integrals). *Given* $s_n \geq 0, \forall n \in \mathbb{N}$ *measurable functions. Then*

$$\int \sum_{n=1}^{\infty} s_n = \sum_{n=1}^{\infty} \int s_n.$$

Proof. Let $f_N = \sum_{n=1}^{N} s_n, 0 \le f_1 \le f_2 \le \dots$

$$\lim_{N \to \infty} f_N(x) = \sum_{n=1}^{\infty} s_n(x)$$

By MCT, we have

$$\lim_{N \to \infty} \sum_{1}^{N} s_n = \sum_{1}^{\infty} s_n$$

Theorem 2.20 (Fatou's lemma). Suppose $f_n \ge 0$ measurable. Then

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n.$$

Recall that

$$\liminf_{n\to\infty} f_n := \lim_{k\to\infty} \inf_{n\geq k} f_n = \sup_{k\in\mathbb{N}} \inf_{n\geq k} f_n,$$

and

$$\lim_{n\to\infty} a_n \text{ exists } \iff \limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n.$$

Proof. Let $g_k = \inf_{n \geq k} f_n \implies s_k$ measurable and $0 \leq g_1 \leq g_2 \leq \dots$ By MCT, we have

$$\int \liminf_{n \to \infty} = \int \lim_{k \to \infty} s_k = \lim_{k \to \infty} \int s_k = \lim_{k \to \infty} \int \inf_{n \ge k} f_n$$

$$\inf_{n \ge k} f_n \le f_m, \forall m \ge k$$

$$\implies \int \inf_{n \ge k} f_n \le \int f_m, \forall m \ge k$$

$$\implies \int \inf_{n \ge k} f_n \le \inf_{m > k} \int f_m$$

Example 2.21. Suppose $(\mathbb{R}, \mathcal{L}, m)$

- (a) (escape to horizontal infinity) $f_n = 1_{(n,n+1)}$. We see that $f_n \to 0 = f$ pointwise and $\int f_n = 1, \forall n, \int f = 0$.
- (b) (escape to width infinity) $f_n = \frac{1}{n} 1_{(0,n)}$.
- (c) (escape to vertical infinity) $f_n = n1_{(0,1/n)}$.

Lemma 2.22 (Markov's inequality). $f \ge 0$ is measurable \Longrightarrow

$$\forall c \in (0, \infty), \ \mu\left(\left\{x \mid f(x) \ge c\right\}\right) \le \frac{1}{c} \int f.$$

Proof. Let $E = \{x \mid f(x) \ge c\}$. Then

$$f(x) \ge c1_E(x) \implies \int f \ge c \int 1_E = c\mu(E).$$

Proposition 2.23. Suppose $f \ge 0$ measurable. Then $\int f = 0 \iff f = 0$ almost everywhere (a.e.)

$$\int f d\mu = \mu(A) = 0, \ A = \{x \mid f(x) > 0\} = f^{-1}((0, \infty])$$

Proof. (a) Assume $f = \phi$ a simple function. We may assume

$$\phi = \sum_{i=1}^{N} c_i 1_{E_i}, \ c_i \in (0, \infty), \ E_i$$
's are disjoint.

$$\int \phi = \sum_{i=1}^{N} c_i \mu(E_i) = 0$$

$$\iff \mu(E_1) = \dots = \mu(E_N) = 0$$

$$\iff \mu(A) = 0, \ A = \bigcup_{i=1}^{N} E_i.$$

- (b) General $f \geq 0$.
 - (1) Assume $\mu(A)=0$ (i.e. f=0 a.e.) Let $0 \le \phi \le f, \phi$ is simple.

$$\implies \phi(x) = 0, \ \forall x \in A^c$$

$$\implies \phi = 0 \text{ a.e.}$$

$$\implies \int \phi = 0$$

Then $\int f = 0$ by the definition of $\int f$.

(2) Assume $\inf f = 0$. Let $A_n = f^{-1}\left(\left[\frac{1}{n}, \infty\right]\right)$

$$\implies A_1 \subset A_2 \subset \dots$$

$$\bigcup_{1}^{\infty} A_n = f^{-1} \left(\bigcup_{1}^{\infty} \left[\frac{1}{n}, \infty \right] \right) = f^{-1}((0, \infty)) = A$$

$$\mu(A_n) = \mu \left(\left\{ x \mid f(x) \ge \frac{1}{n} \right\} \right) \le n \int f = 0$$

$$\implies \mu(A) = \lim_{n \to \infty} \mu(A_n) = 0$$

by the continuity of measure from below.

Corollary 2.24. $f, g \ge 0$ are measurable, f = g a.e. $\implies \int f = \int g$.

Proof. Let $A = \{x \mid f(x) \geq g(x)\}$. A is measurable (why?). By assumption $\mu(A) = 0$.

Hence $f1_A = 0$ a.e.

$$\int f = \int f(1_A + 1_{A^c})$$

$$= \int f 1_A + \int f 1_{A^c}$$

$$= \int f 1_{A^c}$$

$$= \int g 1_{A^c} = \int g 1_A + \int g 1_{A^c} = \int g.$$

Corollary 2.25. $f_n \geq 0$ measurable. Then

(a)
$$0 \le f_1 \le f_2 \le \dots \le f \text{ a.e.} \\ \lim_{n \to \infty} f_n = f \text{ a.e.} \end{cases} \implies \lim_{n \to \infty} f_n = \int f.$$
(b)
$$\lim_{n \to \infty} f_n = f \text{ a.e.} \implies \int f \le \liminf_{n \to \infty} \int f_n.$$

2.3 Integration of Complex Functions

I was afraid that you are bored.

— Jinho Baik on homework

Definition 2.26. (X, \mathcal{A}, μ) measure space.

• $f:X\to\overline{\mathbb{R}}$ or $f:X\to\mathbb{C}$ measurable functions is called <u>integrable</u> if $\int |f|<\infty$. Then

$$\int f = \int f^+ - \int f^- \text{ or } \int f = \int u^+ - \int u^- + i \left(\int v^+ - \int v^- \right).$$

• Suppose $f: X \to \overline{\mathbb{R}}$. Define

$$\int f = \begin{cases} \infty & \int f^+ = \infty, \int f^- < \infty, \\ -\infty & \int f^+ < \infty, \int f^- = \infty. \end{cases}$$

Lemma 2.27. Suppose $f, g: x \to \overline{\mathbb{R}} \to \mathbb{C}$ integrable. Assume f(x) + g(x) is well-defined $\forall x \in X$. (i.e. $\infty + (-\infty), -\infty + \infty$ do not occur)

(a) f + g, cf, $c \in \mathbb{C}$ are integrable.

(b)
$$\int f + g = \int f + \int g.$$

(c)
$$\left| \int f \right| \leq \int |f|$$
. (This is essentially triangle inequality.)

Proof. Check [Fol99, p.53].

Lemma 2.28. (X, A, μ) measure space and f integrable function on X.

- (a) f is finite a.e. (i.e. $\{x \in X : |f(x)| = \infty\}$ is a null set)
- (b) The set $\{x \in X : f(x) \neq 0\}$ is σ -finite.

Proof. HW5Q8. ■

Proposition 2.29. *Suppose* (X, A, μ) *a measure space.*

(a) If h is integrable on X, then

$$\int_E h = 0, \forall E \in \mathcal{A} \iff \int |h| = 0 \iff h = 0 \text{ a.e.}$$

(b) If f, g are integrable on X then

$$\int_E f = \int_E g, \forall E \in \mathcal{A} \iff f = g \text{ a.e.}$$

Proof. (a) $\int |h| = 0 \iff h = 0$ is shown in 2.23.

$$\int |h| = 0 \implies \left| \int_E h \right| \le \int_E |h| \le \int |h| = 0.$$

On the other hand, assume $\int_E h=0, \forall E\in\mathcal{A}.\ h=u+iv=u^+-u^-+i(v^+-v^-).$ Let $B=\{x\mid u^+(x)>0\}.$

$$0 = \text{Re} \int_B h = \int_B u = \int_B u^+ = \int_B u^+ + \int_{B^c} u^+ = \int u^+ \implies u^+ = 0 \text{ a.e.}$$

Similarly, we get $u^-, v^+, v^- = 0$ a.e..

(b) follows from (a).

Theorem 2.30 (Dominated convergence theorem). *Suppose* (X, A, μ) *a measure space and*

(a) f_n integrable on X, $\forall n \in \mathbb{N}$.

- (b) $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. (pointwise)
- (c) $\exists g: X \to [0, \infty] \ s.t.$
 - g is integrable.
 - $|f_n(x)| < q(x)$ a.e., $\forall n \in \mathbb{N}$.

Then

$$\lim_{n \to \infty} \int f_n = \int f.$$

Proof. Let F be the countable union of null sets on which (a)-(c) may fail. Modifying the def of f_n , f, g on F we may assume (a)-(c) hold everywhere. (b)+(c) $\Longrightarrow f$ is integrable.

We consider $\overline{\mathbb{R}}$ -valued case only. (\mathbb{C} -valued case follows)

$$\begin{split} g+f_n \geq 0, g-f_n \geq 0 \\ & \xrightarrow{\text{Fatou}} \int g+f \leq \liminf_{n \to \inf} \int g+f_n, \quad \int g-f \leq \liminf_{n \to \inf} \int g-f_n \\ & \Longrightarrow \int g+\int f \leq \int g+\liminf_{n \to \infty} \int f_n, \quad \int g-\int f \leq \int g-\limsup_{n \to \infty} \int f_n \\ & \xrightarrow{\int g < \infty} \int f \leq \liminf_{n \to \infty} \int f_n, \quad -\int f \leq -\limsup_{n \to \infty} \int f_n. \\ & \Longrightarrow \int f \leq \liminf_{n \to \infty} \int f_n \leq \limsup_{n \to \infty} \int f_n \leq \int f \end{split}$$

So we should have

$$\int f = \liminf_{n \to \infty} \int f_n = \limsup_{n \to \infty} \int f_n.$$

Next we investigate the question:

$$\int \sum_{1}^{\infty} f_n \stackrel{?}{=} \sum_{1}^{\infty} \int f_n.$$

Tonelli: yes if $f_n \geq 0$. Fubini:

Corollary 2.31 (Fubini's theorem for series and integrals).

$$\left. \sum_{1}^{\infty} \int |f_n| < \infty \right. \right\} \implies \int \sum_{1}^{\infty} f_n = \sum_{1}^{\infty} \int f_n.$$

Proof.
$$G(x) = \sum_{1}^{\infty} |f_n(x)| \ge |F_N(x)|, F_N(x) = \sum_{1}^{N} f_n(x).$$

 L^1 space Yiwei Fu

2.4 L^1 space

Definition 2.32. Suppose V is a vector space over field \mathbb{R} or \mathbb{C} . A *seminorm* on V is $\|\cdot\|:V\to [0,\infty)\ s.t.$

- $||cv|| = |c|||v||, \forall v \in V, \forall c \text{ scalar}$
- $||v+w|| \le ||v|| + ||w||$, triangle inequality

A *norm* is a seminorm such that $||v|| \iff v = 0$.

Lemma 2.33. A normed vector space is a metric space with metric $\rho(v, w) = ||v - w||$.

Proof. (DIY)

- $\rho(v, w) = 0 \iff ||v w|| = 0 \iff v w = 0 \iff v = w$.
- $\rho(v, w) = ||v w|| = ||-1(w v)|| = |-1| ||w v|| = \rho(w, v).$
- $\rho(v,w) + \rho(w,z) = ||v-w|| + ||w-z|| \ge ||v-w+w-z|| = ||v-z|| = \rho(v,z)$.

Example 2.34.
$$\mathbb{R}^d$$
 with $\|x\|_p = \begin{cases} \left(\sum_1^d |x_i|^p\right)^{1/p} & p \in [1,\infty) \\ \max\limits_{1 \leq i \leq d} |x_i| & p = \infty \end{cases}$ is a normed vector space.

Unit ball $\{x : ||x||_p < 1\}$.

All $\|\cdot\|_p$ norm induce the same topology i.e. if U is open in p-norm then it is open in p'-norm. This implies that a sequence converging under p-norm also converges under p'-norm.

RECALL f is integrable $\implies \int |f| < \infty$. f = g a.e. $\implies \int f = \int g$.

Definition 2.35. Suppose (X, \mathcal{A}, μ) a measure space.

 $f \in L^1(X, \mathcal{A}, \mu) = L^1(X, \mu) = L^1(X) = L^1(\mu)$ means f is an integrable function on X.

Lemma 2.36. $L^1(X, \mathcal{A}, \mu)$ is a vector space with seminorm $||f||_1 = \int |f|$.

Definition 2.37. Define $f \sim g$ if f = g a.e. $L^1(X, \mathcal{A}, \mu)/_{\sim} = L^1(X, \mathcal{A}, \mu)$. " = " is just a notation for convenience!

With new definition we have $L^1(X, \mathcal{A}, \mu)$ is a normed vector space. $\rho(f, g) = \int |f - g|$. Something interesting to discuss is what are the dense subsets of L^1 .

Theorem 2.38.

- (a) { integrable simple functions } is dense in $L^1(X, \mathcal{A}, \mu)$ (with respect to L^1 metric)
- (b) $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{A}_{\mu}, \mu)$, μ is Lebesgue-Stieltjes measure \implies { integrable step functions

} is dense in $L^1(X, \mathcal{A}, \mu)$

(c) $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R}, \mathcal{L}, m)$.

Definition 2.39.

- A step function on \mathbb{R} is $\psi + \sum_{i=1}^{N} c_{i} 1_{I_{i}}$, where I_{i} is an interval.
- $C_c(\mathbb{R})$ is the collection of continuous functions with compact support supp $(f) = \overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}}$.

Proof. (a) \exists simple functions $0 \le |\phi_1| \le |\phi_2| \le \ldots \le |f|$, $\phi_n \to f$ pointwise $\Longrightarrow \lim_{n \to \infty} \int |\phi_n - f| = 0$ by DCT. $(|\phi_n - f| \le |\phi_n| + |f| \le 2|f|)$

- (b) 1_E approx by $\sum_1^N c_i 1_{I_i}$? Regularity theorem for Lebesgue-Stieltjes measure $\implies \forall \varepsilon' > 0, \exists I = \bigcup_1^N I_i \ s.t. \ \mu(E \triangle I) < \varepsilon'.$
- (c) Suppose $1_{(a,b)}$, $g \in C_c(\mathbb{R})$. $\int |1_{(a,b)} g| dm \le 1 \cdot \frac{\varepsilon}{2} + 1 \cdot \frac{\varepsilon}{2} = \varepsilon$.

2.5 Riemann Integrability

Suppose $P = \{a = t_0 < t_1 < \ldots < t_k = b\}$ a partition of [a, b]. Lower Riemann sum of f using P

$$L_P = \sum_{i=1}^{k} \left(\inf_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1})$$

and upper Riemann sum

$$U_p = \sum_{i=1}^{k} \left(\sup_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1})$$

Lower Riemann integral of $f = \underline{I} = \sup_P L_P$. Upper Riemann integral of $f = \overline{I} = \inf_P U_P$.

Definition 2.40. A *bounded* function $f:[a,b]\to\mathbb{R}$ is called Riemann (Darboux) integrable if $\underline{I}=\overline{I}$. (If so, $\underline{I}=\overline{I}=\int_a^b f(x)\,\mathrm{d}x$.)

Note

- If $P \subset P'$, then $L_P < L_{P'}, U_{P'} < U_P$.
- Recall that continuous functions on [a, b] are Riemann integrable on [a, b].

Theorem 2.41. Let $f:[a,b] \to \mathbb{R}$ be a bounded function.

(a) If f is Riemann integrable, then f is Lebesgue measurable. (thus Lebesgue integrable) and

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{[a,b]} f \, \mathrm{d}m.$$

(b) f is Riemann integrable \iff f is continuous Lebesgue a.e.

Proof. \exists partitions $P_1 \subset P_2 \subset P_3 \subset \dots \ s.t. \ L_{P_n} \nearrow \underline{I}, U_{P_n} \searrow \overline{I}.$

Define simple (step) functions

$$\phi_n = \sum_{i=1}^k \left(\inf_{[t_{i-1}, t_i]} \right) 1_{(t_{i-1}, t_i]}$$

$$\psi_n = \sum_{i=1}^k \left(\sup_{[t_{i-1}, t_i]} \right) 1_{(t_{i-1}, t_i]}$$

Define $\phi = \sup_n \phi_n$, $\psi = \inf_n \psi_n$. Then ϕ, ψ are Lebesgue measurable functions.

Note

- $\exists M > 0 \text{ s.t. } |\phi_n|, |\psi_n| \leq M1[a, b], \forall n \in \mathbb{N}.$
- $\int \phi_n \, \mathrm{d}m = L_{P_n}, \int \psi_n \, \mathrm{d}m = U_{P_n}.$

By DCT,
$$\underline{I} = \lim_{n \to \infty} \int \phi_n \, dm = \int \phi \, dm, \overline{I} = \int \psi \, dm.$$

Thus, f is Riemann integrable $\iff \int \phi = \int \psi \iff \int (\phi - \psi) = 0 \iff \phi = \psi$ Lebesgue a.e.

Recall that $\phi \leq f \leq \psi, \forall x \in (a, b]$. So $f = \phi$ a.e. Since $(\mathbb{R}, \mathcal{L}, \mu)$ is complete, f is Lebesgue measurable (see HW). The second statement hence follows.

2.6 Modes of Convergence

Suppose $f_n, f: X \to \mathbb{C}, S \subset X$.

- $f_n \to f$ pointwise on $S: \forall x \in S, \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq \mathbb{N}, |f_n(x) f(x)| < \varepsilon.$
- $f_n \to f$ uniformly on $S: \forall \varepsilon > 0, \exists N \in \mathbb{N} \ s.t. \ \forall x \in X, \forall n \geq \mathbb{N}, |f_n(x) f(x)| < \varepsilon.$

We can change $\forall \varepsilon > 0$ to $\forall k \in \mathbb{N}$ and bound the distance by $\frac{1}{k}$.

Lemma 2.42. Let $B_{n,k} = \{x \in X \mid |f_n(x) - f(x)| < \frac{1}{k}\}.$

(a)
$$f_n \to f$$
 pointwise on $S \iff S \subset \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} B_{n,k}$.

(b)
$$f_n \to f$$
 uniformly on $S \iff \exists N_1, N_2, \ldots \in \mathbb{N} \text{ s.t. } S \subset \bigcap_{k=1}^{\infty} \bigcap_{n=N_k}^{\infty} B_{n,k}$.

Definition 2.43. Suppose (X, \mathcal{A}, μ) a measure space.

- (a) $f_n \to f$ a.e means \exists null set E s.t. $f_n \to f$ pointwise on E^c .
- (b) $f_n \to f$ in L^1 means $\lim_{n \to \infty} ||f_n f|| = 0$.

Example 2.44. $(\mathbb{R}, \mathcal{L}, \mu)$. f = 0.

- (a) $f_n = 1_{(n,n+1)}, f_n = \frac{1}{n} 1_{(0,n)}, f_n = n 1_{(0,\frac{1}{n})}$. All of $f_n \to f$ pointwise but $\neq f$ in L^1 .
- (b) Typewriter functions: $f_n \to f$ in L^1 . $f_n \not\to f$ a.e.

Proposition 2.45 (Fast L^1 convergence \implies a.e. convergence). Suppose (x, \mathcal{A}, μ) measure space. f_n , f measurable function on X.

$$\sum_{1}^{\infty} \|f_n - f\|_1 < \infty \implies f_n \to f \ a.e.$$

Proof. RECALL Markov's inequality.

Let $E = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} B_{n,k}^c = \{x \mid f_n(x) \not\to f(x)\}$. By Markov we have

$$\forall k, \forall N, \mu(B_{n,k}^c) \le k \int |f_n - f|$$

$$\implies \forall k, \mu\left(\bigcap_{n=N}^{\infty} B_{n,k}^c\right) \le \sum_{n=N}^{\infty} k \|f_n - f\|_1 \to 0 \text{ as } n \to 0$$

$$\implies \forall k, \mu\left(\bigcap_{N=1}^{\infty} \bigcap_{n=N}^{\infty} B_{n,k}^c\right) = \lim_{N \to \infty} \mu\left(\bigcap_{n=N}^{\infty} B_{n,k}^c\right) = 0$$

$$\implies \mu(E) = 0.$$

Corollary 2.46. $f_n \to f$ in $L^1 \Longrightarrow \exists subsequence \ f_{n_j} \to f \ a.e.$

Proof.
$$\forall j \in \mathbb{N}, \exists n_j \in \mathbb{N} \ s.t. \ \left\| f_{n_j} - f \right\|_1 < \frac{1}{j^2}.$$
 Then $\sum_{j=1}^{\infty} \left\| f_{n_j} - f \right\|_1 < \infty.$

Definition 2.47. f_n , f measurable functions on (X, \mathcal{A}, μ) . $f_n \to f$ in measure means

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mu \left(\left\{ x \in X \mid |f_n(x) - f(x)| \ge \varepsilon \right\} \right) = 0.$$

Example 2.48. • $f_n = n 1_{(0,\frac{1}{n})}, f = 0.$

$$\forall \varepsilon > 0, \{x \mid |f_n(x) - f(x)| > \varepsilon\} = \left(0, \frac{1}{n}\right).$$

(Recall that $f_n \not\to 0$ in L^1 .)

• Typewriter function. (Recall that $f_n \not\to 0$ a.e.)

We can easily check that $f_n \to f$ in $L^1 \implies f_n \to f$ in measurable. But the converse is not true.

$$f_n \to f$$
 in measure $\implies \exists f_{n_j} \to f$ a.e. (Check [Fol99])

We have then the following diagram:

$$f_n \to f \text{ fast } L^1 \Longrightarrow f_n \to f \text{ in } L^1 \Longrightarrow f_n \to f \text{ in measure}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Definition 2.49. f_n , f measurable functions on (X, \mathcal{A}, μ) .

- (a) $f_n \to f$ uniformly a.e means \exists null set F s.t. $f_n \to f$ uniformly on F^c .
- (b) $f_n \to f$ almost uniformly means $\forall \varepsilon > 0, \exists F \in \mathcal{A}, \ s.t. \ \mu(F) < \varepsilon, f_n \to f$ uniformly on F^c .

Recall 2.42.

Theorem 2.50 (Egoroff). f_n , f measurable on (X, \mathcal{A}, μ) . Suppose $\mu(X) < \infty$. Then $f_n \to f$ a.e $\iff f_n \to f$ almost uniformly.

Proof. " $\Leftarrow=$ ": DIY

" \Longrightarrow ": Fix $\varepsilon > 0$.

$$f_n \to f \text{ a.e } \Longrightarrow \ \mu\left(\bigcup_{k=1}^\infty \bigcap_{N=1}^\infty \bigcup_{n=N}^\infty B_{n,k}^c\right) = 0 \ \Longrightarrow \ \forall k, \mu\left(\bigcap_{N=1}^\infty \bigcup_{n=N}^\infty B_{n,k}^c\right) = 0.$$

By the continuity of measure from above and since $\mu(X) < \infty$,

$$\forall k, \lim_{N \to \infty} \mu \left(\bigcup_{n=N}^{\infty} B_{n,k}^c \right) = 0 \implies \forall k, \exists N_k \in \mathbb{N}, \mu \left(\bigcup_{n=N_k}^{\infty} B_{n,k}^c \right) < \frac{\varepsilon}{2^k}.$$

Let
$$F = \bigcup_{k=1}^{\infty} \bigcup_{n=N_k}^{\infty} B_{n,k}^c \implies \mu(F) < \varepsilon, f_n \to F$$
 uniformly on F^c .

Chapter 3

Product Measures

(p.22 - 36, section 1.2 and section 2.5, 2.6 of [Fol99])

The ultimate goal is to prove Fubini's theorem. This is also related to probability in in the sense that a series of events is in product measure.

3.1 Product σ -algebra

- Product space $X = \prod_{\alpha \in I} X_{\alpha}, x = (x_{\alpha})_{\alpha \in I}$.
- Coordinate map $\pi_{\alpha}: X \to X_{\alpha}$.

Definition 3.1. $(X_{\alpha}, \mathcal{A}_{\alpha})$ measurable space. $\forall \alpha \in I$, the *product* σ -algebra on $X = \prod_{\alpha \in I} X_{\alpha}$

is

$$\bigotimes_{\alpha \in I} \mathcal{A}_{\alpha} = \left\langle \bigcup_{\alpha \in I} \pi_{\alpha}^{-1} \left(\mathcal{A}_{\alpha} \right) \right\rangle$$

where

$$\pi_{\alpha}^{-1}(A_{\alpha}) = \{\pi_{\alpha}^{-1}(E) | E \in \mathcal{A}_{\alpha}\}.$$

NOTATION

$$I = \{1, \dots, d\} \implies X = \prod_{i=1}^d X_i, x = (x_1, \dots, x_d), \bigotimes_{i=1}^d A_i = A_1 \otimes \dots \otimes A_d.$$

Lemma 3.2. *If I is countable, then*

$$\bigotimes_{\alpha \in I} \mathcal{A}_{\alpha} = \left\langle \left\{ \prod_{i=1}^{\infty} E_i \mid E_i \in \mathcal{A}_i \right\} \right\rangle$$

Bibliography

- [Fol99] G. B. Folland. *Real Analysis: Modern Techniques and Their Applications*. Pure and Applied Mathematics. Wiley, New York, 2nd ed edition, 1999. "A Wiley-Interscience publication.".
- [Tao11] Terence Tao. *An Introduction to Measure Theory*. Number v. 126 in Graduate Studies in Mathematics. American Mathematical Society, Providence, R.I., 2011.