DS $N^{\circ}2$ (le 04/10/2008)

Dans tout le problème :

E désigne un \mathbb{C} -espace vectoriel .

Si u est un endomorphisme de E, on note $u^0 = \operatorname{Id}_E$ (application identique de E), et, pour tout entier n > 0, on note u^n l'endomorphisme $u\mathbf{o}u\mathbf{o}\ldots\mathbf{o}u$ (itéré n fois).

q désigne un nombre complexe non nul tel que, pour tout entier $n>0, q^n\neq 1$.

L'objet du problème est de déterminer des triplets (w, u, v) d'endomorphismes de E satisfaisant à certaines relations de commutation.

Première partie:

Dans cette partie, on suppose E de dimension finie n, et on note $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

1°) Soit u un endomorphisme de E. Pour tout polynôme $P \in \mathbb{C}[X]$ s'écrivant sous la forme

$$P = \sum_{i=0}^d a_i X^i,$$
 on note $P(u)$ l'endomorphisme de E défini par : $P(u) = \sum_{i=0}^d a_i u^i.$

On note : I(u) l'ensemble des polynômes $P \in \mathbb{C}[X]$ tels que P(u) soit l'endomorphisme nul :

$$I(u) = \{ P \in \mathbb{C}[X], \ P(u) = 0 \}$$

a) Montrer que, si P et Q sont deux polynômes, on a

$$P(u)\mathbf{o}Q(u) = Q(u)\mathbf{o}P(u) = (PQ)(u)$$

En déduire que I(u) est un idéal de $\mathbb{K}[X]$.

- **b)** Montrer que cet idéal n'est pas réduit à $\{0\}$ (on pourra considérer, dans $\mathcal{L}(E)$, la famille $(\mathrm{Id}_E, u, u^2, \ldots, u^{n^2})$).
- c) En déduire qu'il existe un polynôme normalisé et un seul, que l'on notera Π_u , tel que I(u) soit exactement l'ensemble des multiples de Π_u dans $\mathbb{K}[X]$.
- d) Déterminer Π_u lorsque u est un projecteur, puis lorsque u est une symétrie.
- e) Soit λ une racine de Π_u dans \mathbb{C} . Démontrer que l'endomorphisme $u \lambda \mathrm{Id}_E$ n'est pas injectif.
- f) i) En déduire le résultat suivant : "si u est un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension finie E, il existe $\lambda \in \mathbb{C}$ et il existe $x \in E, \ x \neq 0$, tels que $u(x) = \lambda x$ ".
 - ii) Montrer, à l'aide d'un exemple, que ce résultat peut tomber en défaut si on ne suppose plus E de dimension finie (on pourra considérer un endomorphisme très simple de $\mathbb{C}[X]$).
 - iii) Montrer, à l'aide d'un exemple, que ce résultat peut tomber en défaut si on remplace \mathbb{C} par \mathbb{R} (on pourra considérer un endomorphisme très simple de \mathbb{R}^2).

- g) RÉCIPROQUE : Soit $\lambda \in \mathbb{C}$ tel que $u \lambda \operatorname{Id}_E$ ne soit pas injectif. Démontrer que λ est racine de Π_u (on pourra, pour x non nul appartenant au noyau de $u \lambda Id_E$, calculer $\Pi_u(u)(x)$).
- **2°)** Soit u un endomorphisme de E, tel que sa matrice dans la base \mathcal{B} soit une matrice diagonale à éléments diagonaux tous distincts.

Montrer que, si v est un endomorphisme de E qui commute avec u ($u\mathbf{o}v = v\mathbf{o}u$), alors la matrice de v dans \mathcal{B} est elle aussi diagonale.

- **3°)** Soient u_1, \ldots, u_p des endomorphismes de E.
 - a) Montrer que, si les seuls sous-espaces vectoriels de E stables par u_1, \ldots, u_p sont $\{0\}$ et E, alors tout endomorphisme v de E qui commute avec u_1, \ldots, u_p est une homothétie (on pourra, après l'avoir démontré, utiliser le fait que, si $\lambda \in \mathbb{C}$, $Ker(v \lambda Id_E)$ est stable par les u_i).
 - b) On étudie ici un exemple qui permet de montrer que la réciproque de cette propriété est fausse.
 - i) Soient (x_1, x_2, x_3) trois vecteurs de \mathbb{C}^2 deux à deux linéairement indépendants. Soient u_1, u_2 les endomorphismes de \mathbb{C}^2 définis par :

$$u_1(x_1) = 0$$
, $u_2(x_2) = 0$, $u_1(x_3) = u_2(x_3) = x_3$

Dire pourquoi il est possible de définir ainsi deux endomorphismes de \mathbb{C}^2 .

Que peut-on dire d'un endomorphisme v de \mathbb{C}^2 qui commute avec u_1 et u_2 ? (utiliser la question I.2).

Quels sont les sous-espaces vectoriels de \mathbb{C}^2 stables par u_1 et u_2 ?

ii) Conclure.

Seconde partie:

Dans cette partie également, on suppose E de dimension finie n, et on note $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

On note w_0 et v_0 les endomorphismes de E définis comme suit :

$$\forall p \in [1, n], \ w_0(e_p) = q^{n+1-2p} e_p, \ v_0(e_p) = \begin{cases} e_{p+1} & \text{si } p < n \\ 0 & \text{si } p = n \end{cases}$$

- 1°) Déterminer l'endomorphisme $w_0 \mathbf{o} v_0 q^{-2} v_0 \mathbf{o} w_0$.
- 2°) Montrer que les sous-espaces vectoriels de E stables par v_0 sont : $\{0\}$ et les sous-espaces vectoriels $\text{Vect}(\{e_k, e_{k+1}, \dots, e_n\})$ pour $1 \le k \le n$. Quels sont les sous-espaces vectoriels de E stables par w_0 et v_0 ?

On définit un troisième endomorphisme u_0 de E par :

$$\forall p \in [1, n], \ u_0(e_p) = \begin{cases} (q - q^{-1})^{-2} (q^{p-1} - q^{1-p}) (q^{n+1-p} - q^{p-n-1}) e_{p-1} & \text{si } p > 1 \\ 0 & \text{si } p = 1 \end{cases}$$

- 3°) Calculer $w_0 \mathbf{o} u_0 q^2 u_0 \mathbf{o} w 0$.
- **4°)** Vérifier la relation : $u_0 \mathbf{o} v_0 v_0 \mathbf{o} u_0 = (q q^{-1})^{-1} (w_0 w_0^{-1})$.

5°) Déterminer les sous-espaces vectoriels de E stables par u_0, v_0 et w_0 .

Troisième partie:

Dans cette partie, on désigne par w et u deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie n satisfaisant aux conditions suivantes :

- i) $w\mathbf{o}u = q^2u\mathbf{o}w$
- ii) w est inversible
- iii) u est non nul

Pour tout nombre complexe λ , on pose

$$W_{\lambda} = \operatorname{Ker}(w - \lambda \operatorname{Id}_{E})$$
 , $U_{\lambda} = \operatorname{Ker}(u - \lambda \operatorname{Id}_{E})$

1°) Vérifier les relations :

$$u(W_{\lambda}) \subset W_{q^2\lambda}$$
 , $w(U_{\lambda}) \subset U_{q^{-2}\lambda}$

- **2°)** a) Montrer que, si $\lambda_1, \ldots, \lambda_p$ sont des complexes deux à deux distincts, la somme des sousespaces vectoriels $U_{\lambda_1}, \ldots, U_{\lambda_p}$ est directe.
 - b) Déduire des deux questions précédentes que, si λ est non nul, U_{λ} est réduit à $\{0\}$.
- 3°) En déduire, à l'aide de I.1, qu'il existe un entier r>1 tel que $\Pi_u=X^r$. Que peut-on en conclure pour u?
- **4°)** A l'aide d'un résultat de la partie I que l'on précisera, montrer qu'il existe un complexe λ tel que $W_{\lambda} \cap \operatorname{Ker} u \neq \{0\}$.
- 5°) On suppose E de dimension 2, et on se propose de démontrer l'existence d'une base (e_1, e_2) de E vérifiant les propriétés suivantes :
 - (P1) $w(e_1) = \lambda e_1$ où λ est un nombre complexe convenable
 - (P2) $w(e_2) = q^{-2}\lambda e_2$
 - (P3) $u(e_1) = 0$
 - (P4) $u(e_2) = e_1$
 - a) Montrer qu'il existe un vecteur e'_1 non nul et un scalaire λ tels que l'on ait :

$$w(e_1') = \lambda e_1'$$
 et $u(e_1') = 0$

On notera e'_2 un vecteur non colinéaire à e'_1 .

- b) Montrer que le vecteur $u(e'_2)$, que l'on notera e_1 , est non nul et colinéaire à e'_1 .
- c) Montrer qu'il existe un scalaire β tel que

$$w(e_2') = \beta e_1 + q^{-2}\lambda e_2'$$

d) Trouver un scalaire α tel que les vecteurs e_1 et $e_2 = e_2' + \alpha e_1$ répondent à la question.

Quatrième partie:

Dans cette partie, on considère un \mathbb{C} -espace vectoriel E de dimension $n \geqslant 2$ et on considère un triplet (w, u, v) d'endomorphismes de E satisfaisant aux 5 conditions suivantes :

- i) w est inversible et $w^2 \neq \mathrm{Id}_E$
- ii) $w\mathbf{o}u = q^2u\mathbf{o}w$
- iii) $w\mathbf{o}v = q^{-2}v\mathbf{o}w$
- iv) $u\mathbf{o}v v\mathbf{o}u = (q q^{-1})^{-1}(w w^{-1})$
- v) les seuls sous-espaces vectoriels de E stables à la fois par u, v, w sont $\{0\}$ et E
- 1°) Vérifier que, pour tout entier m > 0, on a :

$$u\mathbf{o}v^m - v^m\mathbf{o}u = (q - q^{-1})^{-2}(q^m - q^{-m})v^{m-1}\mathbf{o}(q^{1-m}w - q^{m-1}w^{-1})$$

Dans ce qui suit, on note ν_1 un vecteur non nul de E, tel que $u(\nu_1) = 0$, et tel qu'il existe un scalaire λ tel que $w(\nu_1) = \lambda \nu_1$. Puis, pour tout entier m > 0, on pose $\nu_m = v^{m-1}(\nu_1)$.

- 2°) Justifier, à l'aide de questions précédentes que l'on citera précisément, l'existence d'un tel vecteur ν_1 et d'un tel scalaire λ .
- **3°)** Calculer $w(\nu_m)$.
- 4°) Démontrer la relation :

$$\forall m \geqslant 2 , \ u(\nu_m) = (q - q^{-1})^{-2} (q^{m-1} - q^{1-m}) (q^{2-m}\lambda - q^{m-2}\lambda^{-1}) \nu_{m-1}$$

- 5°) Démontrer les assertions suivantes :
 - a) Ceux des vecteurs ν_m qui sont non nuls sont linéairement indépendants.
 - b) Il existe $m_0 \ge 1$ tel que $\nu_m = 0$ pour tout $m > m_0$ et que ν_1, \ldots, ν_{m_0} soient linéairement indépendants.
 - c) On a $m_0 = n$.
 - **d)** On a $\lambda = \pm q^{n-1}$.
- 6°) Comparer le triplet (w, u, v) ave le triplet (w_0, u_0, v_0) de la deuxième partie.

Librement adapté et complété à partir de : X, MP, 2007