1.	Suppose you learn a word embedding for a vocabulary of 10000 wo should be 10000 dimensional, so as to capture the full range of vari	1 point	
	○ True		
	False		
2.	What is t-SNE?		1 point
	A linear transformation that allows us to solve analogies on wo	rd vectors	
	A non-linear dimensionality reduction technique		
	A supervised learning algorithm for learning word embeddings		
	An open-source sequence modeling library		
3.	Suppose you download a pre-trained word embedding which has b You then use this word embedding to train an RNN for a language t from a short snippet of text, using a small training set.		
	x (input text)	y (happy?)	
	I'm feeling wonderful today!	1	
	I'm bummed my cat is ill.	0	
	Really enjoying this!	1	
	Then even if the word "ecstatic" does not appear in your small training expected to recognize "I'm ecstatic" as deserving a label $y=1$.	ing set, your RNN might reasonably b	e

4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply)	1 point
	$ ightharpoonup e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$	
	$oxed{\Box} \ e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$	
	$igsepsilon e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$	
	$igsqcup e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$	
5.	Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?	1 point
	It is computationally wasteful.	
	\bigcirc The correct formula is E^T*o_{1234} .	
	This doesn't handle unknown words (<unk>).</unk>	
	None of the above: calling the Python snippet as described above is fine.	
6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.	1 point
	True	
	○ False	
7.	In the word2vec algorithm, you estimate $P(t\mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.	1 point
	$\bigcirc \ c$ is a sequence of several words immediately before $t.$	
	$\bigcirc \ c$ is the sequence of all the words in the sentence before $t.$	
	$\bigcirc \ c$ is the one word that comes immediately before $t.$	
	lacktriangledown c and t are chosen to be nearby words.	

8.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:	1 point	
	$P(t \mid c) = rac{e^{ heta_t^T \epsilon_c}}{\sum_{t=1}^{1000} e^{ heta_t^T \epsilon_c}}$		
	Which of these statements are correct? Check all that apply.		
	$igwedge$ $ heta_t$ and e_c are both 500 dimensional vectors.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	$lacksquare$ $ heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:	1 point	
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$		
	Which of these statements are correct? Check all that apply.		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
	$igwedge$ and e_j should be initialized randomly at the beginning of training.		
	$igwedge X_{ij}$ is the number of times word j appears in the context of word i.		
	igspace The weighting function $f(.)$ must satisfy $f(0)=0$.		
10.	. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?	1 point	
	\bigcirc $m_1 >> m_2$		
	$\bigcirc m_1 << m_2$		