Exercice 1 : NP-complétude de Set Cover

Étant donné un ensemble E et un ensemble $S = \{S_1, ..., S_m\} \subset \mathcal{P}(E)$ de sous-ensembles de E, un ensemble couvrant $C = \{c_1, ..., c_k\}$ de (E, S) est un sous-ensemble de E tel que pour tout $i \in \{1, ..., m\}$ il existe $j \in \{1, ..., k\}$ tel que $c_j \in S_i$. Le problème SET COVER est le suivant :

Set Cover

Instance: Un ensemble d'éléments E, un ensemble S de sous-ensembles de E et un entier k Question: Existe-t-il un ensemble couvrant de (E, S) de cardinal au plus k?

Prouver que le problème SET COVER est NP-complet en utilisant une réduction depuis le problème 3-SAT. Indice : Si S contient un ensemble de cardinal 2 alors tout ensemble couvrant doit contenir au moins un des deux éléments de cet ensemble.

Exercice 2 : NP-complétude de Vertex Cover

Une couverture par sommet des arêtes d'un graphe G=(V,E) est un sous ensemble de sommets $S\subset V$ tel que toute arête de E est incidente à au moins un sommet de S. Le problème de décision associé à la minimisation d'ensemble couvrant est le suivant :

Vertex Cover

Instance: Un graphe G = (V, E) et un entier k

Question: Existe-t-il un ensemble couvrant de (E, S) de cardinal au plus k?

Prouver que ce problème est NP-complet.

On pourra utiliser une réduction depuis SAT en représentant les clauses par des triangles et les variables par des chemins sur deux sommets :

Exercice 3 : NP-complétude de Subset Sum

Le problème Subset Sum est le suivant :

Subset Sum

Instance: Un ensemble d'entiers $S = \{w_1, ..., w_n\}$ et un objectif $W \in N$ Question: Existe-t-il un sous-ensemble S' de S tel que $\sum_{w_i \in S'} w_i = W$?

1. Prouver que ce problème est dans NP.

On peut prouver que ce problème est NP-complet en utilisant la réduction suivante depuis 3-SAT : Soit $x_1, ..., x_n$ des variables binaires et $C_1, ..., C_m$ des clauses sur ces variables contenant exactement trois littéraux. On construit une instance de Subset Sum associée à l'instance de SAT de la façon suivante.

L'ensemble S contient 2n + 2m entier appelés $x_1, \overline{x_1}, ..., x_n, \overline{x_n}, y_1, z_1, ..., y_m, z_m$. La valeur des entiers y_i et z_i est défini comme $y_i = z_i = 10^{i-1}$ et les entier x_i et $\overline{x_i}$ comme

$$x_i = 10^{m+i-1} + \sum_{C_j \ni x_i} 10^{j-1}$$

$$\overline{x_i} = 10^{m+i-1} + \sum_{C_i \ni \overline{x_i}} 10^{j-1}$$

 $\overline{x_i}=10^{m+i-1}+\sum_{C_j\ni\overline{x_i}}10^{j-1}$ L'objectif W a pour valeur $W=\sum_{i=1}^n10^{m+i-1}+\sum_{j=1}^m3\times10^{j-1}.$

Le tableau suivant récapitule toutes ces valeurs :

	n			 2	1	C_m	C_{m-1}	 C_2	C_1
x_1	0	0	0	0	1	1	0	0	0
$\overline{x_1}$	0	0	0	0	1	0	0	1	1
x_2	0	0	0	1	0	0	0	0	1
$\overline{x_2}$	0	0	0	1	0	0	1	0	0
:									
x_n	1	0	0	0	0	0	1	1	0
$\overline{x_n}$	1	0	0	0	0	1	0	0	0
y_1	0	0	0	0	0	0	0	0	1
z_1	0	0	0	0	0	0	0	0	1
y_2	0	0	0	0	0	0	0	1	0
z_2	0	0	0	0	0	0	0	1	0
:									
y_m	0	0	0	0	0	1	0	0	0
z_m	0	0	0	0	0	1	0	0	0
W	1	1	1	 1	1	3	3	 3	3

- 2. Vérifier que la réduction est bien polynomiale.
- 3. Prouver que la réduction fonctionne.