WP3: ctDNA enrichment strategies

This WP is focused on innovative microfluidic-based strategy for processing of patient samples.

Our approach is to combine microfluidic technology with molecular biology to select and enrich ctDNA materials

TaskT3.1: Optimization of ctDNA selective capturing on magnetic beads in serum (Curie, M1-M24): (D3.1)

- Streptavin-biotin system for capture oligo functionalization
- Capture through DNA-DNA interaction
- Improvement of pretreatment throughput and capture efficiency
- Control of hybridation T°C

TaskT3.2 : Optimization of a ligase-based assay for the selective enrichment of ctDNA targets (Curie, FORTH, M1-M30)

- Oligonucleotides sequence composition and length
- Number of cycles and temperatures
- Use of single-base 3' overhangs
 5' phosphorylation of oligos
 Introduction of non-complementary tails
- Use of cycling conditions near the oligos Tm.

TaskT3.3: Optimized protocol for ctDNA isolation and enrichment (Curie, FORTH, M1-M36)

- Combination of tasks 3.2 and 3.3 outcomes
- Two strategy direct LCR or DNA release + LCR

Task T3.1: Optimization of ctDNA selective capturing on magnetic beads in serum (Curie, M1-M24): (D3.1)

Lucile Alexandre, Manh Louis Nguyen, Laura Trapiella-Alfonso, Jean-Louis Viovy and Stéphanie Descroix

THE CATCH-U TECHNOLOGY: MICROFLUIDIC FLUIDIZED BED

OSimplicity of fabrication and operation

MICROFLUIDIC FLUIDIZED BED

- OSimplicity of fabrication and operation
- Well controlled particle recirculation and bead density

For Catch-U the beads will be functionalized to extract DNA from patients samples

Task T3.1: ctDNA CAPTURE WITH THE FLUIDIZED BED TECHNOLOGY

Main objectives

I/ Improvement of the fluidized bed technology

✓Ongoing – 2nd generation

2/ ctDNA capture: two strategies

- ✓ non specific capture: proof of concept achieved
- ✓ specific hybridization : ongoing

Fluidized bed 2.0

Main objective: increase the analytical throughput

Objective I: Ongoing work

To improve the fluidized bed throughput:

- o Development of the Fluidized bed 2.0
 - \rightarrow 5 to 20 x Flow rates
 - → Compatible with larger sample volumes
- Homogenization strategies currently investigated : bimodal beads distribution, vibration, chaotic mixing and sequential onf/off state
- o Improvement achieved with bimodal sizes of beads and vibration
 - → Capture efficiency streptavidin/biotin model > 90%

Objective 2: ctDNA CAPTURE WITH THE FLUIDIZED BED TECHNOLOGY

- ctDNA capture : two strategies
- ✓ non specific capture: proof of concept achieved
- ✓ specific hybridization: ongoing

NON SPECIFIC DNA EXTRACTION

ChargeSwitch® Technology (Invitrogen)

DNA capture based on electrostatic interactions

NON SPECIFIC EXTRACTION OF FRAGMENTED DNA (100-1000 bp)

All DNA fragments extracted with same efficiency Potential use for ctDNA

ON-CHIP EXTRACTION EFFICIENCY

200 bp dsDNA

DNA in PBS

DNA in human serum

High capture efficiency of the system despite an important screening effect of serum proteins

DOWNSTREAM ANALYSIS BY DIGITAL PCR

Conclusion and Perspectives

Technology

- Development of fluidized 2.0 able to accommodate large volume
- Development of different strategies to improve the bed homogeneity

DNA capture

- Demonstration of non specific DNA capture on chip with artificial samples and patients samples
- Preliminary results on specific DNA capture

DNA capture combined with LCR

- Preliminary results on DNA release
- Strategy for LCR on chip Exchange of PhD in July with FORTH