15-462 Computer Graphics I Lecture 22

Non-Photorealistic Rendering

Pen-and-Ink Illustrations
Painterly Rendering
Cartoon Shading
Technical Illustrations

Acknowledgment: Steve Lin

April 17, 2003

Frank Pfenning

Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Goals of Computer Graphics

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization [Lecture 20]

Non-Photorealistic Rendering

"A means of creating imagery that does not aspire to realism" - Stuart Green

Cassidy Curtis 1998

David Gainey

Some NPR Categories

- Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art,etc.
- Painterly rendering
 - Styles: impressionist, expressionist, pointilist, etc.
- Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- Scientific visualization
 - Methods: splatting, hedgehogs, etc.

Emergence of NPR

2D Paint (Pixel Oriented) Bitmap paint systems

2D Paint (Brush Oriented)

2D/2.5D Paint Post-Processing **Automatically generated from** User intervention

augmented images **3D Photorealistic Renderers** Traditional Computer

Graphics

5

3D Renderers Automatically generated based on 3D data

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Pen-and-Ink Illustrations

Strokes

Curved lines of varying thickness and density

Texture

Character conveyed by collection of strokes

Tone

Perceived gray level across image or segment

Outline

Boundary lines that disambiguate structure

Pen-and-Ink Examples

Winkenbach and Salesin 1994

Rendering Polygonal Surfaces

Strokes and Stroke Textures

- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures

Stroke Texture Examples

Winkenbach and Salesin 1994

Prioritized Stroke Textures

- Technique for limiting human intervention
- Collection of strokes with associated priority
- When rendering
 - First draw highest priority only
 - If too light, draw next highest priority, etc.
 - Stop if proper tone is achieved
- Procedural stroke textures
- Support scaling
- Also applies to non-procedural stroke textures

Stroke Texture Operations

Scaling

Changing Viewing Direction (Anisotropic)

Indication

- Selective addition of detail
- Difficult to automate
- User places detail segments interactively

Indication Example

Bold strokes indicate detail segments

With indication

Without indication

Outlines

- Boundary or interior outlines
- Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction

Rendering Parametric Surfaces

- Stroke orientation and density
 - Place strokes along isoparameter lines
 - Choose density for desired tone
 - tone = width / spacing

Stroke Width

Adjust stroke width retain uniform tone

Winkenbach and Salesin 1996

Parametric Surface Example

Constant-density hatching

Smooth shading with single light

Longer smoother strokes for glass

Environment mapping

Update reflection coefficient

Standard rendering techniques are still important!

Parametric Surface Example

Winkenbach and Salesin 1996

Orientable Textures

- Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

Salisbury et al. 1997

Orientable Stroke Texture Example

Salisbury et al. 1997

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering

- Physical simulation
 - User applies brushstrokes
 - Computer simulates media
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes
- Subject to controversy

Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field

Simulated effects

Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity

Discretize and use cellular automata

Interactive Painting

Automatic Painting Example

Hertzmann 1997

Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controled by parameters

Layered Painting

Blurring

Adding detail with smaller strokes

31

Brush Strokes

- Start at point of maximal error
 - Calculate difference between original image and image painted so far
- Direction perpendicular to gradient
 - Stroke tends to follow equally shaded area
- Stopping criteria
 - Difference between brush color and original image color exceeds threshold
 - Maximal stroke length reached

32

Longer Brush Strokes

- For longer, curved brush strokes
 - Repeat straight line algorithm
 - Stop, again on length or difference threshold
- Use anti-aliased cubic B-spline

Painting Styles

- Style determined by parameters
 - Approximation threshold
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- Encapsulate parameter settings as style

Some Styles

- "Impressionist"
 - No random color, $4 \le \text{stroke length} \le 16$
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, $10 \le \text{stroke length} \le 16$
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointilist"
 - Random factor ~0.75, $0 \le \text{stroke length} \le 0$
 - Brush sizes 4, 2; approximation threshold 100
- Not convincing to artists

Style Examples

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Cartoon Shading

- Shading model in 2D cartoon
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Developing real-time techniques for games

Cartoon Shading as Texture Map

Apply shading as 1D texture map

Shading Variations

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details

Ruppel 1995

Do not represent reality

Photo

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used

Technical Illustration Example

Phong shading

Metal shading (anisotropic)

Edge lines

Tone shading (cool to warm shift)

The Future

- Smart graphics
 - Design from the user's perspective
 - HCI, AI, Perception
- Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

Movies

- Baxter et al, DAB: Interactive Haptic Painting with 3D Virtual Brushes, SIGGRAPH'01
- Kowalski et al., Art-based Rendering of Fur, Grass and Trees, SIGGRAPH'99

Summary

- Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- Use all traditional computer graphics tools
- Employ them in novel ways
- Have fun!

Preview

- Assignment 7 due next Thursday
- Assignment 8 out today, due in 2 weeks
- No late days on Assignment 8
- Tuesday: TBA
- Thursday: Advanced Global Illumination
- Tuesday: Guest Lecture/Games [Kuffner]
- Thursday: Final Review