

Policy Search

Machine Learning (69152)

Rubén Martínez Cantín

Dpto. Informática e Ingeniería de Sistemas Universidad de Zaragoza

Policy-Based Reinforcement Learning

• In the last lecture we approximated the value or action-value function using parameters θ ,

$$V_{ heta}(x) pprox V^{\pi}(x)$$
 $Q_{ heta}(x,a) pprox Q^{\pi}(x,a)$

- A policy was generated directly from the value function
 - e.g. using ϵ -greedy
- In this lecture we will directly parametrise the policy

$$\pi_{\theta}(x, a) = p(a|x, \theta)$$

• We will focus again on model-free reinforcement learning

Advantages of Policy-Based RL

Advantages:

- Better convergence properties in complex scenarios
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies (which can be useful in competitive scenarios: self-driving cars, games, etc.)

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Parenthesis: Probabilities and Markov chains

• Remember that for any two random variables¹:

$$p(a,b) = p(a|b)p(b)$$
 , $p(a) = \sum_{b} p(a,b)$

• And if a and b are independent:

$$p(a,b) = p(a)p(b)$$
 , $p(a|b) = p(a)$

• Also, for any function $f(\cdot)$:

$$\mathbb{E}_{x}[f(x)] = \sum_{x} f(x)p(x)$$

$$abla_{ heta} \log f(heta) = rac{
abla_{ heta} f(heta)}{f(heta)} \quad \Rightarrow \quad
abla_{ heta} f(heta) = f(heta)
abla_{ heta} \log f(heta)$$

Machine Learning (69152)

¹if b is continuous then, $\sum_b \cdot \Rightarrow \int_b \cdot db$

Parenthesis: Probabilities and Markov chains

• If we have a Markov decision process, with initial probability $p(x_0)$, transition function $p(x_{t+1}|a_t,x_t)$ and policy $\pi(a_t|x_t)$; the probability of an episode $\tau = \{x_0, a_0, x_1, a_1, \dots, x_n, a_n\}$ is:

$$p(\tau) = p(x_0)\pi(a_0|x_0)p(x_1|x_0,a_0)\dots\pi(a_{n-1}|x_{n-1})p(x_n|x_{n-1},a_{n-1})$$

• If we marginalize the actions, we get the probability of the Markov chain \mathcal{P} :

$$\mathcal{P} = p(x_{0:T}) = \sum_{a} p(x_0) \prod_{i=0}^{n} \pi(a_i|x_i) p(x_{i+1}|x_i, a_i)$$
$$= \sum_{a} \pi(a_{0:T}|x_{0:T}) p(x_0) \prod_{i=0}^{n} p(x_{i+1}|x_i, a_i)$$

Machine Learning (69152)

Objective function

- Goal: given policy $\pi_{\theta}(x, a)$ with parameters θ , find best θ
- But how do we measure the quality of a policy π_{θ} ?
- For simplicity, assume an episodic environment with horizon T and $\gamma=1$:

$$J(\theta) = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T} R(x_{t}, a_{t}, x_{t+1}) \right]$$

$$= \mathbb{E}_{p(x_{0}) \prod_{i=0}^{n} \pi(a_{i}|x_{i}) p(x_{i+1}|x_{i}, a_{i})} \left[\sum_{t=0}^{T} R(x_{t}, a_{t}, x_{t+1}) \right]$$

$$= \mathbb{E}_{\mathcal{P}} \left[\sum_{a_{0}: \tau} \left(\sum_{t=0}^{T} R(x_{t}, a_{t}, x_{t+1}) \right) \pi(a_{0:T}|x_{0:T}) \right]$$

²It can also work for continuous problems, assuming the MDP is an *aperiodic* and *irreducible* Markov chain, like in MCMC.

Policy Gradient

• Policy gradient algorithms search for a *local* maximum in $J(\theta)$ by ascending the gradient of the policy, w.r.t. parameters θ

$$\theta_{k+1} = \theta_k + \alpha \nabla_\theta J(\theta)$$

• where $\nabla_{\theta} J(\theta)$ is the policy gradient

$$abla_{ heta}J(heta) = \left(egin{array}{c} rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J(heta)}{\partial heta_n} \end{array}
ight)$$

ullet and lpha is a step-size parameter

Follow the gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\mathcal{P}} \left[\sum_{a_{0:T}} \left(\sum_{t=0}^{T} R(x_{t}, a_{t}, x_{t+1}) \right) \nabla_{\theta} \pi_{\theta}(a_{0:T} | x_{0:T}) \right]$$

$$= \mathbb{E}_{\mathcal{P}} \left[\sum_{a_{0:T}} \left(\sum_{t=0}^{T} R(x_{t}, a_{t}, x_{t+1}) \right) \pi_{\theta}(a_{0:T} | x_{0:T}) \nabla_{\theta} \log \pi_{\theta}(a_{0:T} | x_{0:T}) \right]$$

$$= \mathbb{E}_{\mathcal{P}} \left[\sum_{a_{0:T}} \left(\sum_{t=0}^{T} R(x_{t}, a_{t}, x_{t+1}) \right) \pi_{\theta}(a_{0:T} | x_{0:T}) \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | x_{t}) \right]$$

$$= \mathbb{E}_{\mathcal{P}} \left[\sum_{a_{0:T}} \pi_{\theta}(a_{0:T} | x_{0:T}) \left(\sum_{t=0}^{T} \left(\sum_{n=0}^{T} R(x_{n}, a_{n}, x_{n+1}) \right) \nabla_{\theta} \log \pi_{\theta}(a_{t} | x_{t}) \right) \right]$$

$$= \mathbb{E}_{\mathcal{T}} \left[\sum_{t=0}^{T} \left(\sum_{n=1}^{T} R(x_{n}, a_{n}, x_{n+1}) \right) \nabla_{\theta} \log \pi_{\theta}(a_{t} | x_{t}) \right]$$

$$= \mathbb{E}_{\mathcal{T}} \left[\sum_{t=0}^{T} \left(\sum_{n=1}^{T} R(x_{n}, a_{n}, x_{n+1}) \right) \nabla_{\theta} \log \pi_{\theta}(a_{t} | x_{t}) \right]$$

$$= \mathbb{E}_{\mathcal{T}} \left[\sum_{t=0}^{T} U_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t} | x_{t}) \right]$$

Machine Learning (69152)

The policy gradient

• We start with the episodic objective:

$$J(\theta) = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T} R(x_t, a_t, x_{t+1}) \right] = \mathbb{E}_{\tau} \left[U_0 \right]$$

• with the following gradient:

$$abla_{ heta} J(heta) = \mathbb{E}_{ au} \left[\sum_{t=0}^{T} U_t
abla_{ heta} \log \pi_{ heta}(a_t|x_t)
ight]$$

• which can be approximated using Monte Carlo from N episodes:

$$abla_{ heta} J(heta) pprox rac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{T} U_t^{(i)}
abla_{ heta} \log \pi_{ heta}(a_t^{(i)}|x_t^{(i)})$$

The policy gradient algorithm

Machine Learning (69152)

Softmax policy

- We will use a softmax policy as a running example
- Weight actions using linear combination of features $\sum_i \theta_i \phi_i(x, a)$, which using vector notation is $\phi(x, a)^T \theta$.
- Probability of action is proportional to exponentiated weight

$$\pi_{\theta}(a|x) = \frac{e^{\phi(x,a)^T \theta}}{\sum_{b} e^{\phi(x,b)^T \theta}}$$

The score function is

$$\nabla_{\theta} \log \pi_{\theta}(a|x) = \phi(x,a) - \sum_{b} \pi_{\theta}(b|x)\phi(x,b)$$

Gradient of the softmax

Probability of action is proportional to exponentiated weight

$$\pi_{\theta}(a|x) = \frac{e^{\phi(x,a)^T \theta}}{\sum_{b} e^{\phi(x,b)^T \theta}}$$

The score function is

$$\nabla_{\theta} \log \pi_{\theta}(a|x) = \nabla_{\theta} \log e^{\phi(x,a)^{T}\theta} - \nabla_{\theta} \log \left(\sum_{b} e^{\phi(x,b)^{T}\theta} \right)$$

$$= \nabla_{\theta} \left(\phi(x,a)^{T}\theta \right) - \frac{\nabla_{\theta} \sum_{b} e^{\phi(x,b)^{T}\theta}}{\sum_{b} e^{\phi(x,b)^{T}\theta}}$$

$$= \phi(x,a) - \frac{\sum_{b} \phi(x,b) e^{\phi(x,b)^{T}\theta}}{\sum_{b} e^{\phi(x,b)^{T}\theta}}$$

$$= \phi(x,a) - \sum_{b} \pi_{\theta}(b|x)\phi(x,b)$$

$$= \phi(x,a) - \mathbb{E}_{\pi_{\theta}}[\phi(x,\cdot)]$$

Machine Learning (69152)

REINFORCE algorithm

- Update parameters by stochastic gradient ascent
- Approximate the episode return $U_t = \sum_{n=t}^{T} R_n$ as an approximation of the expected return.

Algorithm 1 REINFORCE

Initialize θ arbitrarily.

for each episode do:

Generate episode $\tau_R \sim \{x_0, a_0, R_1, x_1, a_1, \dots x_{n-1}, a_{n-1}, R_n\}$

for each step *t* in episode **do**:

$$U_t \leftarrow \sum_{i=t+1}^{T} R_t \\ \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t|x_t) U_t$$

Stochastic gradient descent

- Remember that the objective is to follow the gradient of $\nabla_{\theta} J(\theta)$ which requires an expectation over all possible episodes $\mathbb{E}_{\tau}[F(\theta)]$.
- Instead, we compute a Monte Carlo approximation of the expectation $\widehat{\nabla_{\theta} J(\theta)}$ based on N episodes $\widehat{\nabla_{\theta} J(\theta)} \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} J_i(\theta)$.
- But we can update the policy parameters after each episode (N = 1)!
- This is a generalization of the *online least squares* method that we saw in the previous lecture, called stochastic gradient descent.

$$\theta \approx \theta - \alpha \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} J_i(\theta) \approx \theta - \alpha \nabla_{\theta} J_i(\theta)$$

• where we need to guarantee that we cycle through the values of *i*. In our case, that we use a different episode each time.

Stochastic gradient descent

Batch gradient descent:

Stochastic gradient descent

$$\theta = \theta - \alpha \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} J_i(\theta)$$

$$\theta = \theta - \alpha \nabla_{\theta} J_i(\theta)$$

Stochastic gradient descent has been one of the greatest achievements in machine learning in the past 20 years.

Credit: https://wikidocs.net/3413

Machine Learning (69152)

Searching methods

15 / 19

Alternative Policy Objective Functions

• If we are learning the Q-values, we can also include them in the objective function, using an approximation $\hat{Q}(x,a) \approx Q(x,a)$:

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{ au} \left[\sum_{t=0}^{T} oldsymbol{Q}^{\pi_{ heta}}(extbf{x}_{t}, extbf{a}_{t})
abla_{ heta} \log \pi_{ heta}(extbf{a}_{t}| extbf{x}_{t})
ight] \ &pprox \mathbb{E}_{ au} \left[\sum_{t=0}^{T} oldsymbol{\hat{Q}}^{\pi_{ heta}}(extbf{x}_{t}, extbf{a}_{t})
abla_{ heta} \log \pi_{ heta}(extbf{a}_{t}| extbf{x}_{t})
ight] \end{aligned}$$

- The approximation of $\hat{Q}(x, a)$ can be:
 - Monte Carlo approximation from multiple episodes:
 - ★ Requires perfect resets. Impractical in many cases.
 - Function approximations:
 - ***** For example: with features as we did in approximate Q-learning $Q(x, a) = \sum_i w_i \cdot f_i(x, a)$

Actor-Critic algorithm

- Policy $\pi_{\theta}(a|x) = \phi(x,a)^T \theta$
- Action-value function $Q_w(x, a) = f(x, a)^T w$
- Lower variance than Monte-Carlo policy gradient, but might have bias.

Algorithm 2 Actor-Critic

Initialize θ and w arbitrarily. Initialize x_0 . Sample $a_0 \sim \pi_{\theta}$.

for each step do:

Sample transition $x_{t+1} \sim p(x_{t+1}|a_t, x_t)$ and collect reward R_{t+1} ,

Sample action $a_{t+1} \sim \pi_{\theta}$

$$\theta = \theta + \alpha_1 \nabla_{\theta} \log \pi_{\theta}(a|x) Q_w(x, a)$$
 \triangleright Update policy

$$Qerror = (R_{t+1} + \gamma \max_{a'} Q(x_{t+1}, a')) - Q(x, a)$$

$$w = w + \alpha_2 Qerror \cdot f(x, a)$$
 \triangleright Update Q-function

Policy Optimization

- Policy search is an optimization problem
 - Find θ that maximizes $J(\theta)$
- Some approaches do not use gradient
 - ► Hill climbing / Local search
 - Evolutionary algorithms (e.g.: genetic)
 - Bayesian optimization
- Evolutionary and Bayesian approaches find global optimum.
- Gradient methods are more efficient for high dimensional problems.
 - Deep neural networks allow high dimensional parametric policies and value functions.
 - Open research to get the best of both worlds.

Global vs local optimization

Figure: Bayesian optimization

Example (Video): Resilient robot

Figure: Gradient method/local search

Figure: Evolutionary algorithm

Machine Learning (69152)

Searching methods

19 / 19