Математическая статистика

Кафедра СМиМ

2021

План

Математическая статистика

Генеральная совокупность и выборка Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопросы

Ссылки

Outline

Математическая статистика

Генеральная совокупность и выборка

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Математическая статистика

Математическая статистика — наука, разрабатывающая математические методы систематизации и использования статистических (массовых) данных для научных и практических выводов.

Математическая статистика — наука о принятии решений в условиях неопределённости.

Математическая статистика _{Задачи}

- создание методов сбора, группировки статистических сведений
- анализ статистических данных

Признаки

Для описания изучаемых объектов используются два вида **признаков**

- Значение конкретного признака конкретного объекта можно рассматривать как значение случайной величины
- ▶ Количественные представлены числом Рост, масса, прочность, размеры, ...
- Качественные обозначают порядок или категорию место на олимпиаде, цвет, материал стен дома, конструкция крыши

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопросы

Ссылки

Проблема изучения всех объектов

- Часто невозможно изучать все объекты в силу их большого количества
 Например рост всех людей в определённой стране
- Иногда изучение объекта может быть слишком трудоёмким или затратным
- ► Изучение некоторых объектов приводит к их разрушению например испытания на прочность плит перекрытия
- ▶ Поэтому приходится изучать ограниченное число объектов, и по их свойствам делать выводы о всей совокупности

Генеральная совокупность и выборка

 Выборочная совокупность, выборка (sample) совокупность случайно отобранных объектов

Совокупность всех объектов на основе которых делаются выводы о генеральной совокупности

► Генеральная совокупность (statictical population) - совокупность объектов из которых производится выборка.

Совокупность всех объектов относительно которых делаются выводы

Объём совокупности – число объектов в этой совокупности

Генеральная совокупность и выборка

Репрезентативность

Едут по Австралии биолог, физик и математик.

И видят: на лугу пасется черная овца.

Биолог: Смотрите, в Австралии обитают черные овцы.

Физик: Нет, в Австралии обитает как минимум одна черная

овца.

Математик: Нет, господа. В Австралии обитает как минимум одна овца, и как минимум с одной стороны она черная.

Репрезентативность

- Отбор и изучение только части объектов из генеральной совокупности неизбежно приводит к неточностям в выводах
- Поэтому к выборке предъявляется требование репрезентативности
- Репрезентативность соответствии характеристик выборки характеристикам генеральной совокупности.
- У каждого объекта из генеральной совокупности должен быть один и тот же шанс попасть в выборочною совокупность
- Как правило это достигается случайным отбором

Репрезентативность

Как делать выборку?

Случайная выборка, выборка каждого n-го, случайная выборка из страт (пропорционально их размерам), выборка случайных кластеров

Ошибка выжившего

100% людей, игравших в русскую рулетку ответят вам, что они победили

Ошибка выжившего

Систематическая ошибка выжившего (survivorship bias) — разновидность систематической ошибки отбора, когда по одной группе объектов (по «выжившим») данных много, а по другой (по «погибшим») — практически нет. В результате исследователи пытаются искать общие черты среди «выживших» и упускают из вида, что не менее важная информация скрывается среди «погибших».

Ошибка выжившего

- Из старых зданий остаются только самые красивые и прочные — только потому, что остальные сносят, а не реставрируют.
- Из техники старых поколений остаются только те образцы, которые сделаны хорошо.
- Из этого не следует, что старые здания и техника сделаны лучше чем новые.
- Нобелевский лауреат (по химии) Лайнус Полинг получал множества писем от врачей, подтверждающий его гипотезу о положительном терапевтическом влиянии витамина С на частоту и длительность простудных заболеванийwikipedia

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Анализ статистических данных

Даже в простых случаях, когда у объекта может быть только один признак анализировать всё множество объектов непосредственно проблематично

Пример выборки – некоторые пассажиры Титаника. Признак – возраст.

34 47 62 27 22 14 30 26 18 21 46 23 63 47 24 35 21 27 45 55 9 21 48 50 22 22 41 50 24 33 30 18 21 25 39 41 30 45 25 45 60 36 24 27 20 28 10 35 25 36 17 32 18 22 13 18 47 31 60 24 21 29 28 35 32 55 30 24 6 67 49 27 18 2 22 27 25 25 76 29 20 33 43 27 26 16 28 21 18 41 36 18 63 18 1 36 29 12 35 28 17 22 42 24 32 53 43 24 26 26 23 40 10 33 61 28 42 31 22 30 23 60 36 13 24 29 23 42 26 7 26 41 26 48 18 22 27 23 40 15 20 54 36 64 30 37 18 27 40 21 17 40 34 12 61 8 33 6 18 23 0 47 8 25 35 24 33 25 32 17 60 38 42 57 50 30 21 22 21 53 23 40 36 14 21 21 39 20 64 20 18 48 55 45 45 41 22 42 29 1 20 27 24 32 28 19 21 36 21 29 1 30 17 46 26 20 28 40 30 22 23 1 9 2 36 24 30 53 36 26 1 30 29 32 43 24 64 30 1 55 45 18 22 37 55 17 57 19 27 22 26 25 26 33 39 23 12 46 29 21 48 39 19 27 30 32 39 25 18 32 58 16 26 38 24 31 45 25 18 49 0 50 59 30 14 24 31 27 25 22 45 29 21 31 49 44 54 45 22 21 55 5 26 19 24 24 57 21 6 23 51 13 47 29 18 24 48 22 31 30 38 22 17 43 20 23 50 3 37 28 39 38

Анализ статистических данных

Для описания совокупности значений используются подходы похожие на те, что использовались для описания СВ в теории вероятностей

- Числовые характеристики
 - Среднее значение
 - ▶ Стандартное отклонение
 - Медиана, квартили
 - Мода
 - **.**..
- Ряд распределения или эмпирическая функция распределения

Ряд распределения

- Для построения интервального ряда распределения диапазон значений выборки разбивается на равные участки
- ▶ Далее для каждого интервала подсчитывается число попавших в него значений абсолютная частота
- Вместо абсолютной частоты иногда используют относительную частоту – долю объектов попавших в диапазон

ОТ	0	7.753	15.336	22.919	30.502	38.085	45.668	53.251	60.834	68.417
до	7.753	15.336	22.919	30.502	38.085	45.668	53.251	60.834	68.417	76.0
	16	16	71	97	43	37	25	17	9	1

- Для графического представления ряда распределения используется гистограмма
- Высота столбца определяется количеством (абсолютной частотой) значений из выборки попавших в интервал, определяемый шириной столбца
- Вместо частот могут быть использованы относительные частоты или проценты - доля объектов выборки попавшая в интервал

Гистограмма человеческого роста

24 / 105

По гистограмме легко определить характер распределения

Гистограмма и диаграмма размаха

Диаграмма размаха

- Выброс (outlier) результат измерения, выделяющийся из общей выборки.
- Нижний квартиль (Q1) = первый квартиль = 0.25 квартиль
- ▶ Верхний квартиль (Q3) = третий квартиль = 0.75 квартиль
- ▶ Межквартильный размах (IQR) = Q3 Q2

Диаграмма размаха

Гистограмма и диаграмма размаха

Распределение осадков по месяцам с января 1946 по апрель 2020 для города Владивосток https://doi.org/10.1007/s00024-021-02822-у \sim 2

Выброс

BUT YOU SPEND TWIKE AS MUCH TIME WITH ME AS WITH ANYONE ELSE. I'M A CLEAR OUTUER.

Outline

Математическая статистика

Генеральная совокупность и выборка Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопросы

Ссылки

Числовых характеристики статистического распределения

- Выборочные вычисленные по данным выборки
- Генеральные вычисляются по данным генеральной совокупности, или (чаще всего) оцениваются с помощью аналогичных характеристик выборки

Оценки

Числовые характеристики выборки не описывают в точности генеральную совокупность, поэтому они являются **оценками** характеристик генеральной совокупности

Оценки делаться на две категории

- ▶ Точечные Представляется одним числом. Например – среднее выборочное. Может заметно отличатся от значения оцениваемой величины.
- Интервальные
 Представляют собой интервал, в которое в заданной вероятностью попадает оцениваемое значение

Интервальная оценка

- θ оцениваемая величина (характеризует генеральную совокупность)
- θ^* статистическая характеристика найденная по выборке Вероятность того, что оцениваемая величина будет отличатся θ от своей оценки θ^* не более чем на δ с надёжностью γ

$$P(|\theta - \theta^*| < \delta) = \gamma$$

- lacktriangleright δ половина ширины интервала
- lacktriangle $(\theta^* \delta, \theta^* + \delta)$ доверительный интервал
- $ightharpoonup \gamma$ вероятность с которой величина heta попадёт в доверительный интервал

Оценка дисперсии генеральной совокупности

- ► SD стандартное отклонение генеральной совокупности
- ▶ sd стандартное отклонение выборочной совокупности

$$sd = \sqrt{\frac{\sum n_i(x_i - \bar{x})^2}{n-1}}$$

 x_i — значения признака из выборки (в случае интервального ряда

берётся середина i-го интервала), $ar{x}$ — среднее значение признака в выборке,

Доверительный интервал для МО

Дисперсия генеральной совокупности известна

- ▶ Рассмотрим выборку объёмом п
- Пусть исследуемый признак распределён по нормальному закону с известным стандартным отклонением σ для генеральной совокупности
- Требуется получить интервальную оценку математического ожидания M(X) признака в генеральной совокупности с надёжностью γ , если известно его среднее выборочное значение \bar{x}

$$P(\bar{x} - \delta < M(X) < \bar{x} + \delta) = \gamma$$

$$\delta = z \cdot \frac{\sigma}{\sqrt{n}}$$
$$\gamma = 2\Phi(z)$$

 $\Phi(z)$ - значение функции распределения стандартного нормального распределения

Доверительный интервал для МО

Дисперсия генеральной совокупности неизвестна

- Рассмотрим выборку объёмом п
- Пусть исследуемый признак распределён по нормальному закону с неизвестным стандартным отклонением для генеральной совокупности
- Вместо стандартного ген. совокупности отклонения будем использовать аналогичную величину для выборки - sd
- Требуется получить интервальную оценку математического ожидания M(X) признака в генеральной совокупности с надёжностью γ , если известно его среднее выборочное значение \bar{x}

$$P(\bar{x} - \delta < M(X) < \bar{x} + \delta) = \gamma$$
 $\delta = t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}}; \ \gamma = 2 \int_{0}^{t_{\gamma}} S(t, n) dt$

S(t,n) — значение функции распределения Стьюдента с параметром n

Таблица распределения Стьюдента

t Table

eum. prob	t .50	t.75	t .80	t .85	t .90	t .95	t .975	t .99
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02
df								
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602

t-table.pdf

df = n - 1

Доверительный интервал для MO Пример

Оценить м.о. генеральной совокупности распределённой по нормальному закону распределения при помощи доверительного интервала с надёжностью 0.95 Известно среднее выборочное - 20.2, выборочное с.к.о. - 0.8

Доверительный интервал для МО Пример

Оценить м.о. генеральной совокупности распределённой по нормальному закону распределения при помощи доверительного интервала с надёжностью 0.95 Известно среднее выборочное - 20.2, выборочное с.к.о. - 0.8

- 1. Определим параметр df распределения Стьюдента: df = n 1
- 2. Зная значение функции веростности 0.95 по таблице распределения определим соответствующее значение t_γ
- 3. Примечание: в таблице (в строке two-tails) вместо γ приводится величина $1-\gamma$
- 4. $t_{\gamma} = 2.131$

Доверительный интервал для МО

Оценить м.о. генеральной совокупности распределённой по нормальному закону распределения при помощи доверительного интервала с надёжностью 0.95 Известно среднее выборочное - 20.2, выборочное с.к.о. - 0.8

- 1. Определим параметр df распределения Стьюдента: df = n 1
- 2. Зная значение функции веростности 0.95 по таблице распределения определим соответствующее значение t_γ
- 3. Примечание: в таблице (в строке two-tails) вместо γ приводится величина $1-\gamma$
- 4. $t_{\gamma} = 2.131$
- 5. Доверительный интервал (19.774, 20.686)

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Статистическая гипотеза — предположение о виде распределения и о свойствах случайной величины (или нескольких), которое можно опровергнуть или подтвердить применением статистических методов.

Примеры статистических гипотез:

- Математическое ожидание в генеральной совокупности равно 10
- Признак имеет нормальное распределение в генеральной совокупности
- Математические ожидания двух генеральных совокупностей равны

Зачем?

- В выборках всегда присутствует элемент случайности, поэтому их характеристики не могут в точности соответствовать характеристикам генеральной совокупности
- Нельзя безоговорочно доверять даже средним значениям репрезентативных выборок
- Поэтому все характеристики выборок (числовые характеристики, распределения) можно считать предположениями о генеральной совокупности
- ▶ Значит появляется необходимость оценивать надёжность этих предположений - статистическая проверка гипотез

На практике обычно рассматривают две гипотезы - основную и противоположную ей.

- ▶ H₀ Нулевая гипотеза основная гипотеза
- ▶ Н₁ Альтернативная гипотеза противоположна нулевой
- В результате проверки, нулевая гипотеза либо принимается либо отвергается
- Во втором случае следует автоматическое принятие альтернативной гипотезы

Например, если основная гипотеза формулируется так

 $H_0: M(X)=10,$

то альтернативная будет такой:

 $H_1: M(X) \neq 10$

Статистические критерии

- Для проверки гипотез разного вида и разных условий их применения разработаны статистические критерии
- Статистический критерий (тест) строгое
 математическое правило, по которому принимается или
 отвергается та или иная статистическая гипотеза с
 известным уровнем значимости
- ▶ Уровень значимости α допустимая вероятность отвергнуть правильную гипотезу
- Обычно уровень значимости выбирается равным 0.05 или меньше
- Каждый статистический критерий характеризуется мощностью – вероятностью отклонения основной гипотезы, когда конкурирующая (или альтернативная) гипотеза верна.

Ошибки первого и второго рода

		Верная гипотеза			
		H_0	H_1		
Результат	H_0	H_0 верно принята	H_0 неверно принята (Ошибка <i>второго</i> рода)		
применения критерия	H_1	H_0 неверно отвергнута (Ошибка <i>первого</i> рода)	H_0 верно отвергнута		

Outline

Математическая статистика

Генеральная совокупность и выборка

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей

p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Гипотеза о равенстве МО двух генеральных совокупностей

- Из двух генеральных совокупностей (X и Y) сделаны выборки объёмом n и m соответственно
- lacktriangle Известны дисперсии генеральных совокупностей D(X) и D(Y)
- Средние выборочные значения (x̄ и ȳ) этих выборок близки
- Однако эти значения могли получится близкими случайно, в силу того, что вычислены по выборкам
- Требуется определить, равны ли математические ожидания генеральных совокупностей

Гипотеза о равенстве МО двух генеральных совокупностей

1. Сформулируем гипотезы:

 $H_0: M(X) = M(Y)$ $H_1: M(X) \neq M(Y)$

2. Вычислим значение (значение критерия) Z^1 , которое будем использовать для принятия решения

$$z = \frac{\bar{x} - \bar{y}}{\sqrt{D(X)/n + D(Y)/m}}$$

3. Определим критические значения z используя заранее заданный уровень значимости ($\alpha=0.05$) из выражения $P(Z < z_k) = \Phi(z_k) = \alpha/2$

 $^{^1}$ это значение вычисляется использованием случайных величин \bar{x} и \bar{y} и само является случайной величиной. $Z \sim N(0,1)$

Гипотеза о равенстве МО двух генеральных совокупностей

4. Примем нулевую гипотезу если

$$z < -z_k$$
 или $z > +z_k$

5. Иначе, отклоним нулевую гипотезу и примем альтернативную

Проверка статистических гипотез

- значение критерия Z, по которому принимается решение о принятии или отклонении гипотезы является случайной величиной
- Для разных статистических критериев (например для сравнения дисперсий) используется своя формула для вычисления значения, но везде вычисленное значение случайная величина
- Распределение случайной величины тоже изменяется от критерия к критерию

Проверка статистических гипотез p-value

- Программные средства (и модули языков программирования) имеющие средства проверки статистических гипотез могут вместо значения критерия выдавать p-value²
- ▶ p-value вычисляется с помощью значения критерия
- ▶ Правила принятия и отклонения нулевой гипотезы: $pvalue > \alpha$ нулевая гипотеза принимается $pvalue < \alpha$ нулевая гипотеза отклоняется где α уровень значимости³

²Подробнее о смысле p-value: https://habr.com/en/company/stepic/blog/250527/
³обычно выбирается равным 0.05, 0.01, ...

Outline

Математическая статистика

Генеральная совокупность и выборка

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Проверка статистических гипотез

p-value — это вероятность получить такие или более выраженные различия при условии, что в генеральной совокупности никаких различий на самом деле нет.

Чем меньше p-value тем с большей надёжностью можно отклонять нулевую гипотезу

Проверка статистических гипотез p-value

https://xkcd.com/1478/

Проверка статистических гипотез

p-value и значение критерия

- значение критерия случайная величина
- ▶ p-value вероятность (площади на рис слева от -z и справа от +z)
- Для проверки гипотезы на равенство чего-либо (математических ожиданий между собой, коф.корреляции нулю и т.п.) p-value и значение критерия связываются следующим образом

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Зависимые и независимые выборки

Независимые выборки – выборки сделанные из разных генеральных совокупностей; объёмы выборок могут различаться

Зависимые выборки – выборки в которых можно поставить в соответствие объектам одной выборки объекты другой; объёмы выборок одинаковы;

Пример

Зависимые и независимые выборки

- Примеры не зависимых выборок: пациенты получающие лекарство и пациенты получающие плацебо, образцы бетона с примесью и без, оценки групп СУС-18 и СУС-17 по строительной механике.
- Примеры зависимых выборок: мужья и жены, пациенты до и после терапии (объекты в выборках совпадают), образцы бетона до и после воздействия воды (объекты в выборках совпадают).

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Для чего могут применяться?

- Гипотеза о равенстве мат. ожидания генеральной совокупности среднему выборочному.
 Например: Оценка прочности партии строительных материалов по испытаниям нескольких отобранных экземпляров
- Гипотеза о равенстве математических ожиданий двух генеральных совокупностей Например: проверка образцов бетона затвердевших при температуре 25° С и при температуре -15° С
- Вместо гипотезы о равенстве математических ожиданий проверяют и гипотезу о равенстве выборок, это более надёжный способ сравнения случайных величин
- Гипотеза о значимости коэффициента корреляции Пример: Действительно ли имеется зависимость между количеством добавки в смесь и прочностью бетона?

Другие статистические гипотезы

Некоторые статистические критерии.pdf

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Условие задачи:

- из нормально распределённых ген. совокупностей X и Y сделаны две выборки, объёмами n = 50 и m = 50
- ightharpoonup вычислены выборочные средние $\bar{x}=134$ и y=140
- ightharpoonup известны ген. дисперсии D(X) = 80, D(Y) = 100
- lacktriangle при уровне значимости 0.01 проверить $H_0: M(X) = M(Y),$ $H_1: M(X)
 eq M(Y)$

Выборки сделаны из норм. распределения, дисперсии ген. совокупностей известны, объём выборок большой. Значит используем Z-критерий (см. таблицу в файле Некоторые статистические критерии.pdf) Решим задачу двумя способами: 1) с вычислением наблюдаемого значения критерия; 2) с вычислением p-value.

По соответствующей формуле (см. таблицу) определим наблюдаемое значение критерия

$$z_{\text{набл}} = \frac{134 - 140}{\sqrt{80/40 + 100/50}} = -3$$

Определим критическое значение критерия. Так как гипотеза про равенство (неравенство), то критических значений должно быть два – двусторонняя критическая область.

Найдем критическое значение из равенства $\Phi_0(z_{\rm kp})=\frac{1-\alpha}{2}$, где $\Phi_0(z)=P(0< Z< z_{\rm kp})$ - вероятность попадания нормально распределённой с.в. в диапазон от 0 до $z_{\rm kp}$. Т.е. площадь под кривой нормального распределения от 0 до $z_{\rm kp}$.

Для вычисления $z_{\rm кp}$ можно воспользоваться калькулятором Probability Distributions или таблицей значений функции нормального распределения. $\alpha=0.01$ – заданный уровень значимости.

$$\Phi_0(z_{\mathsf{kp}}) = \frac{1-0.01}{2} = 0.495$$
, отсюда $z_{\mathsf{kp}} = 2.58$

Критическое и наблюдаемое значение критерия получены, сравним их и сделаем вывод: $|z|>z_{\rm kp}$, значит отклоняем нулевую гипотезу ($H_0:M(X)=M(Y)$). Принимается альтернативная гипотеза $H_1:M(X)\neq M(Y)$ — математические средние в генеральной совокупности не равны.

- 2. Решим задачу используя p-value.
 - Аналогично вычислим наблюдаемое значение критерия $z_{\text{набл}} = -3$
 - Вычислим p-value по этому значению. Так как гипотеза про равенство (неравенство), то рассматривается двусторонняя критическая область. Возьмём два значения $\pm |z_{\text{набл}}|$. p-value здесь это суммарная площадь под кривой нормального распределения: от -3 и до $-\infty$ и от 3 до $+\infty$

Площадь под кривой (0.0027) очень маленькая, она заметна слева и справа (возле чисел -3 и 3) $\stackrel{\circ}{}$

Пример

- ightharpoonup p-value = 0.0027
- lacktriangle Сравним это число с уровнем значимости lpha=0.01
- 0.0027 < 0.01, значит отклоняем нулевую гипотезу $(H_0: M(X) = M(Y))$. Принимается альтернативная гипотеза $H_1: M(X) \neq M(Y)$ математические средние в генеральной совокупности не равны.

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезь

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Отношения между величинами

Величины могут быть

- ▶ независимы друг от друга Число студентов группы СУС-15 на паре и дневная температура в Москве в этот же день
- связаны функциональной зависимостью
 Скорость и пройденный путь, нагрузка на колонну и напряжение внутри колонны
- связаны статистической зависимостью коррелировать

Корреляция - статистическая зависимость при которой изменение одной из величин ведёт к изменению *среднего* значения другой

Например количество удобрений и урожай связаны корреляционной зависимостью

Корреляцию можно представить уравнением

$$\bar{y} = f(x)$$

где f(x) - уравнение $perpeccuu^4 \bar{y}$ - среднее значение y по выборке.

 $^{^4}$ чаще всего рассматривают линейную зависимость « \bigcirc » \bigcirc »

- ▶ Рассмотрим значения двух случайных величин X и Y, такие что каждому значения X соответствует значение Y.
- ▶ Отметим эти значения как точки на графике

На рисунке просматривается линейная зависимость Y от X (или наоборот): чем больше X тем больше среднее значение Y

- На рисунке просматривается линейная зависимость Y от X (или наоборот): чем больше X тем больше среднее значение Y
- Представим такую зависимость в виде уравнения прямой:

$$y = \rho_{yx}x + b$$

Это линейное уравнение регрессии

Линейный коэффициент корреляции

- Значения случайных величин могут иметь разный разброс на графике
- Это определяет степень корреляционной зависимости величин
- Математическая мера корреляции двух СВ коэффициент корреляции r^5
- ▶ $-1 \le r \le 1$
- ightharpoonup r = 0 зависимость отсутствует
- ightharpoonup r = 1 прямая зависимость
- ightharpoonup r=-1 обратная зависимость

 $^{^{5}}$ далее будет рассмотрен только линейный коэффициент корреляции - коэффициент корреляции Пирсона

Коэффициенты корреляции

- ▶ Линейнык к.к. Пирсона r
- lacktriangle Коэффициент ранговой 6 корреляции Кендалла au
- lacktriangle Коэффициент ранговой 7 корреляции Спирмена ho
- Коэффициент корреляции знаков Фехнера

⁶пример ранга - номер места в рейтинге

⁷ранги строятся на основе кличесвенных значений \triangleright « \bigcirc \triangleright « \bigcirc \triangleright « \bigcirc » \bigcirc \bigcirc «

Линейный коэффициент корреляции

Реальные данные

Данные 2021: индекс восприятия коррупции, доля вакцинированных

Реальные данные

Реальные данные

Реальные данные

Линейный коэффициент корреляции

- Коэффициент корреляции говорит только о степени взаимосвязи величин
- Но не говорит о том, какая из величин зависит от какой
- Две случайных величины могут быть даже зависимы от третей и коэффициент корреляции об этом никакой информации
- Таким образом коэффициент корреляции ничего не говорит о причинно-следственной связи

Корреляция и причинно-следственная связь

Корреляция есть, причинно-следственной связи нет.

Коэффициент корреляции

$$r_{xy} = \frac{cov(x, y)}{\sigma_x \sigma_y}$$

где cov(x,y) - ковариация - ещё одна мера линейной зависимости случайных величин

$$cov(X,Y) = M((X - M[X]) \cdot (Y - M[Y]))$$

или

$$\text{cov}(X_{(n)},Y_{(n)}) = \tfrac{1}{n} \textstyle \sum_{t=1}^n X_t Y_t - \left(\tfrac{1}{n} \textstyle \sum_{t=1}^n X_t\right) \left(\tfrac{1}{n} \textstyle \sum_{t=1}^n Y_t\right)$$

Коэффициент корреляции

Уравнение линейно регрессии

$$y = \rho_{yx}x + b$$

- Коэффициент корреляции определяет наклон прямой линейной регресии

Уравнение линейной регрессии

- Коэффициент корреляции определяет наклон прямой линейной регрессии

Качество уравнения регрессии

Коэффициент детерминации R^2 – доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью зависимости (уравнением), то есть объясняющими переменными.

$$R^2 = 1 - \frac{D[y|x]}{D[y]} = 1 - \frac{\sigma^2}{\sigma_y^2}$$

 $D[y] = \sigma_y^2$ — дисперсия y, $D[y|x] = \sigma^2$ — дисперсия ошибки модели, вычисляется по предсказанным моделью (формулой) значениям y)

Качество уравнения регрессии

- R² универсальная мера зависимости одной случайной величины от другой или множества других.
- Чем ближе значение коэффициента к 1, тем сильнее зависимость.
- $ightharpoonup R^2 > 0.7$ достаточно хорошая зависимость
- В случае линейной зависимости R^2 квадрат множественного 8 коэффициента корреляции

⁸для зависимости одной СВ от множества других СВ → ⟨₹⟩ ⟨₹⟩ ⟨₹⟩ ⟨ ₹⟩

R^2 vs r

- r характеризует степень линейной зависимости случайных величин
- $ightharpoonup R^2$ характеризует предсказательную способность уравнения регрессии

Оценка предсказательной силы уравнения регресии

Другие способы оценить качество уравнения регрессии:

- ► $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y_i})^2$ средний квадрат ошибки
- $lackbox{MAE} = rac{\sum_{i=1}^{n}|y_i-\hat{y_i}|}{n} = rac{\sum_{i=1}^{n}|e_i|}{n}$ средняя абсолютная ошибка
- ▶ MAPE $= \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i \hat{y_i}}{y_i} \right|$ средний процент относительной ошибки
- y_i фактическое значение
- $\hat{y_i}$ предсказанное регрессией значение

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Выборочный коэффициент корреляции

- ► Когда исследование основано на выборке то ни в чём нельзя быть уверенным...
- Поэтому вычисляя коэффициент корреляции для двух величин его значения нельзя доверять в полной мере
- Чтобы определить степень доверия этому коэффициенту,
 т.е. его статистическую значимость требуется проверить соответствующую статистическую гипотезу
- ▶ Гипотеза о значимости выборочного коэффициента

Выборочный коэффициент корреляции

Проверка статистической значимости

- Проверка гипотезы о значимости выборочного коэффициента корреляции
- $H_0: r=0$ вычисленный выборочный коэффициент корреляции не значим (существенно не отличается от нуля)
- $ightharpoonup H_1: r
 eq 0$ вычисленный выборочный коэффициент корреляции значим
- Вычислим значение критерия

$$T = r \frac{\sqrt{n-2}}{\sqrt{1-r^2}}$$

• Определим p-value используя распределение Стьюдента с параметром df = n - 2 p-value = 2 F(T) где F(T) - функция распределения Стьюдента

Таблица распределения Стьюдента

значения соответствующие p-value закрашены жёлтым

t Table

eum. prob	t .50	t .75	t80	t .85	t.90	t .95	t .975	t .99
-one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02
df								
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602

Например для значения T=1.1 и параметра распределения df=11-2 (11 элементов в выборке) будет соответствовать p-value =0.3

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопрось

Ссылки

Работа с распределениями случайных величин

▶ Программа для Android - Probability Distributions

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезы

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопросы

Ссылки

Вопросы

- Что такое генеральная совокупность? Выборочная совокупность?
- Почему выборки необходимы?
- Назовите основное требование к выборке.
- Дают ли числовые характеристики выборки точные сведения о генеральной совокупности?
- Что такое интервальная оценка?
- Что такое статистическая гипотеза?
- Приведите пример статистической гипотезы
- Что такое уровень значимости?
- Что такое p-value?

Вопросы

- Как проверить статистическую гипотезу на основе p-value?
- ▶ Требуется проверить гипотезу о равенстве математических ожиданий двух выборок (сделанных из нормально распределённых величин) объёмом 25 элементов, если стандартные отклонения известны и приблизительно равны. Какой критерий следует использовать?

Outline

Математическая статистика

Генеральная совокупность и выборка

Представление данных

Числовых характеристики статистического распределения

Статистические гипотезь

Гипотеза о равенстве МО генеральных совокупностей p-value

Зависимые и независимые выборки

Другие статистические гипотезы

Пример

Корреляция

Статистическая значимость коэф. коррляции

ПО и сайты для работы с распределениями

Вопросы

Ссылки

Источники

- ▶ Теория вероятностей и математическая статистика. Гмурман В.Е. biblio-online.ru/book/teoriya-veroyatnostey-imatematicheskaya-statistika-431095
- Руководство к решению задач по теории вероятностей и математической статистике. В. Е. Гмурман. 11-е изд., Издательство Юрайт, 2019. 406 с www.biblioonline.ru/book/02E0C1D3-4EEA-43AA-AA6B-5E25C4991D0

Дополнительно:

▶ Одураченные случайностью. О скрытой роли шанса в бизнесе и в жизни (Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets), Нассим Талеб, 2007