Decision Tree Regression: Tutorial

Análise com dados de vendas de sorvetes em João Pessoa (PB)

Resumo

Este documento apresenta a construção formal de uma Árvore de Decisão Regressora aplicada à previsão de **vendas de sorvetes** com base em duas variáveis explicativas: **Temperatura** e **Domingo**. A medida de impureza adotada é o **desviopadrão**, que quantifica a dispersão dos valores em cada nó. O estudo descreve o cálculo da impureza inicial, a avaliação dos possíveis splits e a montagem da árvore final. O resultado é interpretado de forma gerencial, evidenciando as vantagens do modelo em termos de interpretabilidade e segmentação de mercado. Nota didática \odot : a utilização de σ ou σ^2 (variância) leva à mesma ordenação de splits.

1. Conceito de Árvores de Regressão

Uma árvore de regressão é um modelo que segmenta os dados em regiões homogêneas quanto à variável dependente Y. Em cada nó, o critério de divisão busca minimizar a variabilidade dos valores de Y nos nós filhos. A previsão em cada folha corresponde à média dos valores da variável alvo naquela região.

2. Medida de Impureza: Desvio-Padrão

O desvio-padrão (σ) expressa a dispersão dos valores em torno da média. Numa árvore de regressão:

$$\sigma_{\text{pós}} = \sum_{k=1}^{K} \frac{n_k}{n} \, \sigma(S_k), \qquad \Delta = \sigma(S) - \sigma_{\text{pós}},$$

onde Δ representa o ganho de pureza. Quanto maior Δ , maior a redução da incerteza na previsão.

3. Base Empírica

Foram coletados 13 dias de vendas (Y) com duas variáveis explicativas:

- Temperatura: quente, ameno ou frio;
- **Domingo**: sim ou não.

4. Impureza no Nó Raiz

Considerando os 13 dias:

$$\bar{y}_{\rm raiz} \approx 221.9, \qquad \sigma_{\rm raiz} \approx 52.35.$$

Tabela 1: Observações de Temperatura, Domingo e Vendas

Dia	Temperatura	Domingo	Vendas
1	quente	\sin	286
2	frio	não	147
3	ameno	não	169
4	frio	\sin	172
5	ameno	não	176
6	quente	não	253
7	quente	não	238
8	frio	não	151
9	frio	\sin	168
10	quente	não	264
11	ameno	\sin	207
12	quente	\sin	309
13	quente	não	245

5. Avaliação de Splits

5.1. Temperatura

Grupo	n	\bar{y}	σ
quente	6	265,8	24,63
frio	4	159,5	10,69
ameno	3	184,0	16,51

$$\sigma_{\rm pós} \approx 18,47, \quad \Delta \approx 33,88.$$

5.2. Domingo

Grupo	\overline{n}	\bar{y}	σ
sim	5	228,4	58,48
não	8	218,6	45,95

$$\sigma_{\rm pós} \approx 50,77, \quad \Delta \approx 1,58.$$

Conclusão: Temperatura é a variável de maior poder explicativo no nó raiz.

6. Refinamentos

6.1. Temperatura = quente

 σ cai de 24,63 para $\approx 10,28$ ao dividir por Domingo (sim: $\hat{y} \approx 297,5$; não: $\hat{y} \approx 250,0$).

6.2. Temperatura = frio

Domingo distingue vendas médias de 170 (sim) e 149 (não), ambas com $\sigma = 2$.

6.3. Temperatura = ameno

Divisão por Domingo gera folhas puras ou quase puras: sim $(\hat{y} = 207)$; não $(\hat{y} = 172,5)$.

7. Árvore Final

Figura 1: Árvore de Decisão Regressora final (Temperatura e Domingo).

8. Discussão Acadêmica

Os resultados confirmam que:

- Temperatura é o principal fator, responsável pela maior redução da dispersão $(\Delta \approx 33.9)$;
- **Domingo** apresenta efeitos condicionais: relevante em dias quentes, marginal em dias frios;
- o modelo fornece regras interpretáveis, facilitando comunicação com gestores.

9. Comparação com Regressão Linear

Enquanto a regressão linear impõe forma funcional única, a árvore adapta-se a interações não lineares e categorias múltiplas, com regras intuitivas. É particularmente vantajosa em contextos de decisão gerencial, onde transparência e explicabilidade são fundamentais.

10. Conclusão

O critério baseado em σ permite identificar divisões que reduzem significativamente a incerteza preditiva. A árvore obtida mostra-se robusta, interpretável e aplicável à gestão de vendas de sorvetes, ilustrando o potencial das árvores de regressão em contextos práticos de negócios.