Project Report

AI-Powered Nutrition Analyzer for Fitness Enthusiasts

INTRODUCTION

PROJECT OVERVIEW

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control, contamination of food.

PURPOSE

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

LITERATURE SURVEY:

EXISTING PROBLEM

The biometric health devices can record the various data like metabolism rate, sleep hour, sedentary activity while being in contact with the user and this data from user can be used by physicians to recommend any changes to user's routine. Our project attempts to use the information obtained using such devices to give the detailed analysis of health of a patient/individual that can help in getting a prompt and timely advice from a doctor. Currently healthcare monitoring is extensively doctor depending .Our System is basically designed for those customers who can self-monitor their health indicators to check the progress that they are making through a diet plan change or exercise routine modification. An option will also be provided to customer to send the report to the doctor for expert advice in case the customer feels he/she is not completely satisfied by the diet routine, sleep hours or any other general habit he is acquiring

REFERENCE

Strickland, E. (2019). IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care. IEEE

Paesar, A. (2019). Machine learning and AI for healthcare (pp. 1-73). Coventry, UK: Apress.

PROBLEM STATEMENT

X1=

miro

Problem	l am	I'm trying to	But	Because	Which makes me
Statement (PS)	(Customer)				feel
PS-	An Adult	Keep my	I am Obese	I don't	Insecure,Self-Doubtand
1		Body Healthy	and	aware of	Frustrated
		and Fit	Overweight	FoodHabits	
				and	
				Nutrition	
PS-	An Adult	Lead a	I am suffering	Unaware	Sick,anxious and
2		Healthy Life	from	of Healthy	Frustraed
			Diabetes,	Foods	
			Hypertension		

IDEATION AND PROPOSED SOLUTION

EMPATHY MAP

M(1)=

AI-Powered Nutrition Analyzer For Fitness Enthusiasts

IDEATION AND BRAINSTORMING

Brainstorm & Idea Prioritization:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creativethinking process that leads to problem-solving.

Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helpingeach other developmany creative solutions.

Step-1: Team Gathering, Collaboration and Selectthe Problem Statement

X1

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

X1

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION
1.	Problem Statement (Problem to be solved)	A regular person must use cutting-edge al-based analyzing software to identify fruits and vegetables based on colour,texture and other characteristics.at the time of idntification,the user must also be aware of the nutritional content of that specific edible.
2.	Idea / Solution description	 MAIN SOLUTION Fitness analysis and maintance as per the user body conditions Provide nutritional facts based on the obtained data Clear and proper identification of the given input data Additional benefits: .Analysis of daily dietary requirements . Daily tracking of dietary consumption thoroughly
3.	Novelty / Uniqueness	The availability of fitness plans with add on bonuses Suggestion of home remedies and simple solutions for basic problems. Allowing for diet flexibility helps promote a healthy and effective eating pattern
4.	Social Impact / Customer Satisfaction	Healthy lifestyle development Constant calorie management monitoring results in a fitness mindset

5.	Business Model (Revenue Model)	Consultation with nearest trainers and nutritionist for personalized plans.
6.	Scalability of the Solution	Improving accuracy by expanding the data collection using user input data Storage requirements of a specific food. User friendly UI for everyone to use and get benefit from it

PROBLEM SOLUTION FIT

X4===

REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENT

FR No.	Functional Requirement (Epic)	Sub Requirement (Story/ Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	User Details	Registering Througha Google Form
FR-4	Server Calculation	Computing Information Eg : - Age , Height, Weight
FR-5	Notification	The server will providenotifications based on yourintakeof food and water.

NON- FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	To Evaluate all the Fooddataset for
		nutritionalContent of the item
NFR-2	Security	Information , User Healthstatus and
		NutritionalInformation about food are
		highlySecured.
NFR-3	Reliability	To provide nutritive information about
		food, imagequality is crucial.
NFR-4	Performance	It will be based ontheEnd product
		DevelopmentPhase
NFR-5	Availability	It is Available for all the People who thinks
		and worried abouttheir health and wants to
		maintain a
		fit and healthy body
NFR-6	Scalability	The product can be increase its efficiency
		by basedon the user experience and
		Feedback of the Customers

PROJECT DESIGN

DATAFLOW DIAGRAMS

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the rightamount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Flow

- User configures credentials for the Watson Natural Language Understanding service and starts the app.
- 2. User selects data file to process and load.
- Apache Tika extracts text from the data file.
- 4. Extracted text is passed to Watson NLU for enrichment.
- 5. Enriched data is visualized in the UI using the D3.js library.

Work Flow

Technical Architecture

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Through a web UI, the user can engage with the application.	HTML, CSS, JavaScript / Angular Js /ReactJs etc.
2.	Application Logic-1	It has many in built libraries which helps in machine learning	Python
3.	Application Logic-2	It helps to build machinelearning model	IBM watson jupyternotebook service
4.	Application Logic-3	It is fastand accurate	IBM Watson Assistant
5.	Database	MySQL is used to storethe user information and warehouse the food items	MySQL
6.	Cloud Database	IBM Db2 is reliable and scalable	IBM DB2
7.	File Storage	Maintain files easily	Local Filesystem
8.	External API-1	Aadhar and customer KYC verification takes a little amount of time	Aadhar API, etc.
9.	External API-2	To recognise the patterns and trend	Aadhar API, etc.
10.	Machine Learning Model	Purpose of Machine Learning Model	Sequential, Dense& LSTM Model
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Local system and IBM watson

Table-2:Application Characteristics

S.	Characteristics	Description	Technology
No			
1.	Open-Source Frameworks	Tensor flow-Implements model building and training. Flask- Can handlemultiple user requestsimultaneously. Scikit learn-Contains model for classification, regression, clustering	Tensor flow, flash,Scikit learn.
2.	Security Implementations	SHA-256 doesn't have any known vulnerabilities	SHA-256
3.	Scalable Architecture	MySQL can storehuge amount of data and it Is easily scalable	MySQL
4.	Availability	This application can be accessed from anywhere easily and it is easily scalable.	IBM Waston cloud
5.	Performance	Flask can handlemultiple user request simultaneously.	Flask

User Stories

User Type	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Priority	Relea se
	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
Customer (Mobile user)	Confirmati on	USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
	Social	USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
	Platforms	USN-4	As a user, I can register for the application through Gmail	I can register & login to the Dashboard through Gmail	Medium	Sprint-1

	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Priority	Relea se
	Login	USN-5	As a user, I can log into the application by entering email & password	I can login using Credintials along with image Captcha	High	Sprint-1
	Dashboard	USN-6	Once i Log on , I can see the Food Charts and plans to be follow according to my Body Condition	Each and Every Tasks are Enabled only after Followed the Previous Tasks	High	Sprint-1
Customer (Web user)	Membersh ip Plan	USN-7	Free Trial Sessions are available for first 45 Days for a visible changes ,then asking for membership	Free Trial is diabled after the stipulated period of 45 days and enabled for pay	Medium	Sprint-2
Customer Care Executive	Complaints and Feedback	USN-8	Feedback and Complaints has been Taken out from the customers are been processed	Only valid Complaints are Accepted	Medium	Sprint-2
Administrat or	Organizer	USN-9	Administrator records and manitains all the data stored from the user	Can Contact anny time by appointment	High	Sprint-1

Project Planning and Scheduling

Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Numb er	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data collection	Task-1	To build a Deep learning Model which begins with the process of splitting data into training and testing set.	4	Medi um	Azhagan, Karthick
Sprint-1	Data preprocessing	Task-2	We import the required libraries for preprocessing. We instantiate the ImageDataGenerator class to configure and augment different types of image data.	5	Low	Varsha Yamuna Mary
Sprint-1	Data Preprocessing	Task-3	Application of the ImgaeDataGenerator to the Train and Test Set.	7	Medi um	Azhagan Karthick
Sprint-2	Feature Extraction	Task-4	Build a CNN Model and only use it as a feature extraction by freezing the convolution blocks.	8	High	Azhagan, Karthick, Varsha, yamuna mary
Sprint-2	Building the layers	Task-5	Adding of dense layers with the aid of Keras. Addition of Optimizer, choosing loss function and the Metrics.	7	High	Azhagan ,Karthick
Sprint-2	Train, Save,Test	Task-6	To train the model with the configured neural network and save the model. Test the built model against the testing dataset.	3	High	Varsha Yamuna Mary

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3	Building HTML Pages	Task 7	Building the Home page, Classify Page and storing necessary images in a folder	9	High	Azhagan, Karthick
Sprint-3	Building prediction page	Task 8	Building Result Pages and working with API's	8	High	Karthick, Azhagan
Sprint-3	Build python code	Task-9	Import the libraries and Initialise the necessary modules	10	High	Azhagan, Karthick
Sprint-4		Task-12	Showcasing the model's prediction on UI.	1	High	Karthick, Varsha
Sprint-4	Run the application.	Task-13	Run the application in the anaconda prompt to check the application.	2	High	Varsha, Yamuna Mary
Sprint-4	Train Model On IBM	Task-15	train the model on IBM and integrate it with the flask Application.	3	High	Karthick, Azhagan, Varsha

Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint StartDate	Sprint End Date(Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	5 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprintduration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's averagevelocity (AV) per iteration unit (story pointsper day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

CODING & SOLUTIONING

Feature 1 (Model used and added Dense Layers)

```
model=Sequential()
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), acti
vation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Flatten())
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=5, activation='softmax'))
classifier.summary()
classifier.compile(optimizer='adam', loss='sparse_categori
cal_crossentropy', metrics=['accuracy'])
```

Feature 2 (WebPage Application)

```
from flask import Flask, render_template, request
import os
import numpy as np
from tensorflow.keras.models import load model
from tensorflow.keras.preprocessing import image
from flask import session
from flask import Flask, redirect, url_for
import requests
import json
import ibm_db
app = Flask(__name__, template_folder="templates")
app.secret_key = 'NutritionAnalyzer'
model = load_model('NutritionAnalyser.h5')
def connectToDB():
    try:
        connection = ibm_db.connect("DATABASE=bludb;)
        HOSTNAME=125f9f61-9715-46f9-9399-
c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud;
        PORT=30426;\
        Security=SSL; \
        SSLServerCertificate=DigiCertGlobalRootCA.crt; \
        UID=qlj81410;\
        PWD=phBPVWNuoifGiYIC; ", "", "")
```

```
print("Connected to DB!")
        return connection
    except:
        print("error while connecting ", ibm_db.conn_errormsg())
        return 0
connection = connectToDB()
@app.route('/Classify')
def index():
    return render_template('classify.html')
@app.route("/")
@app.route('/home')
def home():
    return render_template('home.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
    if request.method == 'POST':
        f = request.files['file']
        basepath = os.path.dirname('__file__')
        filepath = os.path.join(basepath, "test", f.filename)
        f.save(filepath)
        img = image.load_img(filepath, target_size=(64, 64))
        x = image.img_to_array(img)
```

```
x = np.expand_dims(x, axis=0)
        pred = np.argmax(model.predict(x), axis=1)
        index = ['APPLES', 'BANANA', 'ORANGE', 'PINEAPPLE',
'WATERMELON']
        predictedValue = str(index[pred[0]])
        result = nutrition(predictedValue)
        temp = result.json()["items"]
        items = temp[0]
        print(items)
        sugar = items["sugar_g"]
        fiber = items["fiber q"]
        sodium = items["sodium mg"]
        potassium = items["potassium_mg"]
        fat_saturated = items["fat_saturated_g"]
        fat_total = items["fat_total_g"]
        calories = items["calories"]
        cholesterol = items["cholesterol_mg"]
        protein = items["protein_g"]
        carbohydrates = items["carbohydrates_total_g"]
        return render_template("result.html", name=(predictedValue),
sugar=(sugar), fiber=(fiber), sodium=(sodium), potassium=(potassium),
fat_saturated=(fat_saturated), fat_total=(fat_total),
calories=(calories), cholesterol=(cholesterol), protein=(protein),
carbohydrates=(carbohydrates))
```

```
def nutrition(index):
    url = "https://calorieninjas.p.rapidapi.com/v1/nutrition"
    querystring = {"query": index}
    headers = {
        'x-rapidapi-key':
"5d797ab107mshe668f26bd044e64p1ffd34jsnf47bfa9a8ee4",
        'x-rapidapi-host': "calorieninjas.p.rapidapi.com"
    }
    response = requests.request(
        "GET", url, headers=headers, params=querystring)
    print("from api "+response.text)
    return response
if __name__ == "__main__":
    app.run(debug=False)
```

TESTING

Model Prediction

We tested with a Watermelon image, after mentioning the fruit names with index values, it will shows the name of predicted image

```
[ ] index=['APPLES','BANANA','ORANGE','PINEAPPLE','WATERMELON']
    result=str(index[pred[0]])
    print(result)
    WATERMELON
```

RESULTS

Chosen the Test Image

Result Page Containing the Name and Nutrient Content of the Predicted Image

ADVANTAGES

Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food.

DISADVANTAGES

- 1. Time-Consuming Food Entry Systems
- 2. Inaccurate Information
- 3. Obsessive Behavior
- 4. Unrealistic Weight Loss Goals

Counting Calories Can Change Habits

CONCLUSION

The services-based solutions evolve from careful study of customer needs and return superior results. Looking forward we will continue the process of working to increase the Efficiency of Prediction. We will transform data into actionable information to improve quality and efficiency. Finally, it will improve the Product to more User Friendly

FUTURE SCOPE

In future research, the real-time analyzing system will be available in the market. In this way, the monitoring the Food Nutrient for a Fitness Enthusiasts without a Nutrionist will be quite easy. Also, the health monitoring data of the whole remote areas population will be interlinked to the server cloud, and it can be observed by using the mobile application of this system.

APPENDIX

GitHub Link

https://github.com/IBM-EPBL/IBM-Project-33204-1660215949/tree/main