PRACTICAL 1

Aim of this practical: In this first practical we are going to look at some simple models

- 1. A Gaussian model with simulated data
- 2. A Linear mixed model
- 3. A GLM model with random effects

we are going to learn:

- How to fit some commonly used models with inlabru
- · How to explore the results
- · How to get predictions for missing data points

0 Linear Model

In this practical we will:

- Simulate Gaussian data
- Learn how to fit a linear model with inlabru
- · Generate predictions from the model

Start by loading useful libraries:

```
library(dplyr)
library(INLA)
library(ggplot2)
library(patchwork)
library(inlabru)
# load some libraries to generate nice map plots
library(scico)
```

As our first example we consider a simple linear regression model with Gaussian observations

$$y_i \sim \mathcal{N}(\mu_i, \sigma^2), \qquad i = 1, \dots, N$$

where σ^2 is the observation error, and the mean parameter μ_i is linked to the linear predictor through an identity function:

$$\eta_i = \mu_i = \beta_0 + \beta_1 x_i$$

where x_i is a covariate and β_0,β_1 are parameters to be estimated. We assign β_0 and β_1 a vague Gaussian prior.

To finalize the Bayesian model we assign a $\mathrm{Gamma}(a,b)$ prior to the precision parameter $\tau=1/\sigma^2$ and two independent Gaussian priors with mean 0 and precision τ_β to the regression parameters β_0 and β_1 (we will use the default prior settings in INLA for now).

Question

What is the dimension of the hyperparameter vector and latent Gaussian field? Answer

The hyperparameter vector has dimension 1, $\pmb{\theta}=(\tau)$ while the latent Gaussian field $\pmb{u}=(\beta_0,\beta_1)$ has dimension 2, 0 mean, and sparse precision matrix:

$$oldsymbol{Q} = egin{bmatrix} au_{eta_0} & 0 \ 0 & au_{eta_1} \end{bmatrix}$$

Note that, since β_0 and β_1 are fixed effects, the precision parameters τ_{β_0} and τ_{β_1} are fixed.

Note

We can write the linear predictor vector $oldsymbol{\eta} = (\eta_1, ..., \eta_N)$ as

$$oldsymbol{\eta} = oldsymbol{A}oldsymbol{u} = oldsymbol{A}_1oldsymbol{u}_1 + oldsymbol{A}_2oldsymbol{u}_2 = egin{bmatrix} 1 \ 1 \ dots \ 1 \end{bmatrix}eta_0 + egin{bmatrix} x_1 \ x_2 \ dots \ x_N \end{bmatrix}eta_1$$

Our linear predictor consists then of two components: an intercept and a slope.

0.1.1 Simulate example data

First, we simulate data from the model

$$y_i \sim \mathcal{N}(\eta_i, 0.1^2), i = 1, \dots, 100$$

with

$$\eta_i = \beta_0 + \beta_1 x_i$$

where $\beta_0=2$, $\beta_1=0.5$ and the values of the covariate x are generated from an Uniform(0,1) distribution. The simulated response and covariate data are then saved in a data.frame object.

```
beta = c(2,0.5)
sd_error = 0.1

n = 100
x = rnorm(n)
y = beta[1] + beta[2] * x + rnorm(n, sd = sd_error)

df = data.frame(y = y, x = x)
```

0.1.2 Fitting a linear regression model with ${\tt inlabru}$

Defining model components

The model has two parameters to be estimated β_1 and β_2 . We need to define the two corresponding model components:

```
BRU
```

```
cmp = ~ Intercept(1) + beta_1(x, model = "linear")
```

The cmp object is here used to define model components. We can give them any useful names we like, in this case, Intercept and beta_1.

Note

Note that Intercept() is one of inlabru special names and it is used to define a global intercept. You should explicitly exclude automatic intercept when not using the special Intercept name, e.g.

```
cmp = ~ -1 + myIntercept(1) + beta_1(x, model = "linear")
```

Observation model construction

The next step is to construct the observation model by defining the model likelihood. The most important inputs here are the formula, the family and the data.

The formula defines how the components should be combined in order to define the model predictor.

```
formula = y ~ Intercept + beta_1
```

Note

In this case we can also use the shortcut formula $= y \sim ..$ This will tell inlarbu that the model is linear and that it is not necessary to linearize the model and assess convergence.

The likelihood is defined using the bru obs() function as follows:

Fit the model

We fit the model using the bru() functions which takes as input the components and the observation model:

```
fit.lm = bru(cmp, lik)
```

Extract results

The summary() function will give access to some basic information about model fit and estimates

```
summary(fit.lm)
## inlabru version: 2.12.0
## INLA version: 25.02.10
## Components:
## Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
## beta_1: main = linear(x), group = exchangeable(1L), replicate = iid(1L), NULL
## Likelihoods:
```



```
##
    Family: 'gaussian'
     Tag: ''
##
      Data class: 'data.frame'
##
##
      Response class: 'numeric'
      Predictor: y ~ .
      Used components: effects[Intercept, beta_1], latent[]
## Time used:
      Pre = 0.416, Running = 0.186, Post = 0.0846, Total = 0.687
## Fixed effects:
            mean sd 0.025quant 0.5quant 0.975quant mode kld
                          1.985 2.005
## Intercept 2.005 0.01
                                              2.024 2.005 0
## beta 1 0.500 0.01
                                   0.500
                          0.481
                                              0.519 0.500 0
##
## Model hyperparameters:
                                          mean
                                                  sd 0.025quant 0.5quant
## Precision for the Gaussian observations 108.02 15.27
                                                          80.20
                                                                  107.30
                                         0.975quant mode
##
## Precision for the Gaussian observations
                                            139.97 105.86
##
## Deviance Information Criterion (DIC) ...... -178.47
## Deviance Information Criterion (DIC, saturated) ....: 105.39
## Effective number of parameters ...... 3.00
##
## Watanabe-Akaike information criterion (WAIC) ...: -178.02
## Effective number of parameters ...... 3.29
##
## Marginal log-Likelihood: 69.75
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
```

We can see that both the intercept and slope and the error precision are correctly estimated.

0.1.3 Generate model predictions

Now we can take the fitted bru object and use the predict function to produce predictions for μ given a new set of values for the model covariates or the original values used for the model fit

The predict function generate samples from the fitted model. In this case we set the number of samples to 1000.

Figure 1: Data and 95% credible intervals

0 R Code

```
pred %>% ggplot() +
   geom_point(aes(x,y), alpha = 0.3) +
   geom_line(aes(x,mean)) +
   geom_line(aes(x, q0.025), linetype = "dashed")+
   geom_line(aes(x, q0.975), linetype = "dashed")+
   xlab("Covariate") + ylab("Observations")
```

Task

Generate predictions for a new observation with $x_0 = 0.45\,$

Take hint

You can create a new data frame containing the new observation x_0 and then use the predict function.

Click here to see the solution

Linear Mixed Model

Consider the a simple linear regression model except with the addition that the data that comes in groups. For each group j, we have an associated variable $v_i \sim \mathcal{N}(0, \tau_u^{-1})$.

The model is

$$y_{ij} = \beta_0 + \beta_1 x_i + u_j + \epsilon_{ij}$$
 for $i = 1, \dots, N$ and $j = 1, \dots, m$.

The model design matrix for the random effect has one row for each observation (this is equivalent to a random intercept model). The row of the design matrix associated with the ij-th observation consists of zeros except for the element associated with $v_{\it j}$, which has a one. In matrix form, the linear mixed model for the j-th group can be written as:

$$\widehat{\mathbf{y}}_{j}^{N\times 1} = \widehat{X}_{j}^{N\times 2} \underbrace{\beta}_{1\times 1} + \widehat{Z}_{j}^{n_{j}\times 1} + \underbrace{u_{j}}_{1\times 1} + \widehat{\epsilon_{j}}^{n_{j}\times 1},$$

where $\epsilon_{j} \sim \mathcal{N}(0, \tau_{\epsilon}^{-1})$ is column vector of the residuals.

0.4.1 LMM as a LGM

In a latent Gaussian model (LGM) formulation the mixed model predictor for the i-th observation can be written as:

$$\eta_i = \beta_0 + \beta_1 x_i + \sum_k^K f_k(u_j)$$

where $f_k(u_j)=u_j$ since there's only one random effect per group (i.e., a random intercept for group j). The fixed effects (β_0,β_1) are assigned Gaussian priors (e.g., $\beta \sim \mathcal{N}(0,\tau_\beta^{-1})$). The random effects $\mathbf{u}=(u_1,\ldots,u_m)^T$ follow a Gaussian density $\mathcal{N}(0,\mathbf{Q}_u^{-1})$ where $\mathbf{Q}_u= au_u\mathbf{I}_m$ is the precision matrix for the random intercepts. Then, the components for the LGM are the following:

Latent field given by

$$\begin{bmatrix} \boldsymbol{\beta} \\ \mathbf{u} \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \boldsymbol{\tau}_{\boldsymbol{\beta}}^{-1} \mathbf{I}_2 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\tau}_{\boldsymbol{u}}^{-1} \mathbf{I}_m \end{bmatrix} \right)$$

· Likelihood:

$$y_i \sim \mathcal{N}(\eta_i, \tau_\epsilon^{-1})$$

- Hyperparameters:
 - $\tau_u \sim \operatorname{Gamma}(a,b)$ $\tau_\epsilon \sim \operatorname{Gamma}(c,d)$

0.4.2 Simulate example data

```
set.seed(12)
beta = c(1.5,1)
sd_error = 1
tau_group = 1

n = 100
n.groups = 5
x = rnorm(n)
v = rnorm(n.groups, sd = tau_group^{-1/2})
y = beta[1] + beta[2] * x + rnorm(n, sd = sd_error) +
rep(v, each = 20)

df = data.frame(y = y, x = x, j = rep(1:5, each = 20))
```

Note that inlabru expects an integer indexing variable to label the groups.

```
ggplot(df) +
  geom_point(aes(x = x, colour = factor(j), y = y)) +
  theme_classic() +
  scale_colour_discrete("Group")
```


Figure 2: Data for the linear mixed model example with 5 groups

0.4.3 Fitting a LMM in inlabru

Defining model components and observational model

In order to specify this model we must use the group argument to tell inlabru which variable indexes the groups. The model = "iid" tells INLA that the groups are independent from one another.

```
# Define model components
cmp = ~ Intercept(1) + beta_1(x, model = "linear") +
  u(j, model = "iid")
```

The group variable is indexed by column j in the dataset. We have chosen to name this component v() to connect with the mathematical notation that we used above.

Fitting the model

The model can be fitted exactly as in the previous examples by using the bru function with the components and likelihood objects.

```
fit = bru(cmp, lik)
summary(fit)
## inlabru version: 2.12.0
## INLA version: 25.02.10
## Components:
## Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
## beta_1: main = linear(x), group = exchangeable(1L), replicate = iid(1L), NULL
## u: main = iid(j), group = exchangeable(1L), replicate = iid(1L), NULL
## Likelihoods:
   Family: 'gaussian'
##
##
      Tag: ''
     Data class: 'data.frame'
     Response class: 'numeric'
##
     Predictor: y \sim .
      Used components: effects[Intercept, beta_1, u], latent[]
## Time used:
     Pre = 0.277, Running = 0.227, Post = 0.121, Total = 0.625
## Fixed effects:
                    sd 0.025quant 0.5quant 0.975quant mode kld
            mean
## Intercept 2.108 0.439
                        1.228 2.108
                                              2.987 2.108
## beta_1 1.172 0.120
                           0.936
                                     1.172
                                               1.408 1.172 0
##
## Random effects:
   Name Model
     u IID model
##
## Model hyperparameters:
                                                 sd 0.025quant 0.5quant
##
                                          mean
## Precision for the Gaussian observations 0.996 0.144
                                                        0.738
                                                                  0.986
                                         1.614 1.062
## Precision for u
                                                          0.370
                                                                  1.356
##
                                         0.975quant mode
```


Question

Suppose that we are also interested in including random slopes into our model. Assuming intercept and slopes are independent, can your write down the linear predictor and the components of this model as a LGM?

Give me a hint

In general, the mixed model predictor can decomposed as:

$$\eta = X\beta + Z\mathbf{u}$$

Where X is a $n \times p$ design matrix and β the corresponding p-dimensional vector of fixed effects. Then Z is a $n \times q_J$ design matrix for the q_J random effects and J groups; ${\bf v}$ is then a $q_J \times 1$ vector of q random effects for the J groups. In a latent Gaussian model (LGM) formulation this can be written as:

$$\eta_i = \beta_0 + \sum \beta_j x_{ij} + \sum_k f(k)(u_{ij})$$

See Solution

· The linear predictor is given by

$$\eta_i = \beta_0 + \beta_1 x_i + u_{0j} + u_{1j} x_i$$

- Latent field defined by:
 - $\beta \sim \mathcal{N}(0, \tau_{\beta}^{-1})$
 - $\mathbf{u}_j = egin{bmatrix} u_{0j} \\ u_{1j} \end{bmatrix}, \mathbf{u}_j \sim \, \mathcal{N}(\mathbf{0}, \mathbf{Q}_u^{-1})$ where the precision matrix is a block-

diagonal matrix with entries
$$\mathbf{Q}_u = \begin{bmatrix} \tau_{u_0} & 0 \\ 0 & \tau_{u_1} \end{bmatrix}$$

- The hyperparameters are then:
 - $\,\tau_{u_0},\tau_{u_1} {\rm and}\, \tau_{\epsilon}$

To fit this model in inlabru we can simply modify the model components as follows:

```
cmp = ~ Intercept(1) + beta_1(x, model = "linear") +
u0(j, model = "iid") + u1(j,x, model = "iid", hyper = pcprior)
```

0 Generalized Linear Model

U delieratized Liliear Mode

• Simulate non-Gaussian data

In this practical we will:

- Learn how to fit a generalised linear model with inlabru
- Generate predictions from the model

A generalised linear model allows for the data likelihood to be non-Gaussian. In this example we have a discrete response variable which we model using a Poisson distribution. Thus, we assume that our data

$$y_i \sim \operatorname{Poisson}(\lambda_i)$$

with rate parameter λ_i which, using a log link, has associated predictor

$$\eta_i = \log \lambda_i = u_0 + u_1 x_i$$

with parameters u_0 and u_1 , and covariate x. This is identical in form to the predictor in Section 0.1. The only difference is now we must specify a different data likelihood.

0.5.1 Simulate example data

This code generates 100 samples of covariate x and data y.

```
set.seed(123)
n = 100
beta = c(1,1)
x = rnorm(n)
lambda = exp(beta[1] + beta[2] * x)
y = rpois(n, lambda = lambda)
df = data.frame(y = y, x = x)
```

0.5.2 Fitting a GLM in inlabru

Define model components and likelihood

Since the predictor is the same as Section 0.1, we can use the same component definition:

```
cmp = ~ Intercept(1) + x_effect(x, model = "linear")
```

However, when building the observation model likelihood we must now specify the Poisson likelihood using the family argument (the default link function for this family is the log link).

Fit the model

Once the likelihood object is constructed, fitting the model is exactly the same process as in Section 0.1.


```
fit_glm = bru(cmp, lik)
```

And model summaries can be viewed using

summary(fit_glm)

```
inlabru version: 2.12.0
INLA version: 25.02.10
Components:
Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
x_effect: main = linear(x), group = exchangeable(1L), replicate = iid(1L), NULL
Likelihoods:
  Family: 'poisson'
   Tag: ''
   Data class: 'data.frame'
   Response class: 'integer'
   Predictor: y ~ .
   Used components: effects[Intercept, x_effect], latent[]
Time used:
   Pre = 0.219, Running = 0.181, Post = 0.0287, Total = 0.429
Fixed effects:
          mean
                  sd 0.025quant 0.5quant 0.975quant mode kld
Intercept 0.915 0.071
                          0.775
                                   0.915
                                             1.054 0.915
x effect 1.048 0.056
                          0.938
                                   1.048
                                             1.157 1.048
                                                           0
Deviance Information Criterion (DIC) ..... 386.39
Deviance Information Criterion (DIC, saturated) ....: 120.67
Effective number of parameters ...... 2.00
Watanabe-Akaike information criterion (WAIC) ...: 387.33
Effective number of parameters ...... 2.73
Marginal log-Likelihood: -204.02
is computed
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
```

0.5.3 Generate model predictions

To generate new predictions we must provide a data frame that contains the covariate values for x at which we want to predict.

This code block generates predictions for the data we used to fit the model (contained in dfx) as well as 10 new covariate values sampled from a uniform distribution runif(10).


```
# Define predictor formula
pred_fml <- ~ exp(Intercept + x_effect)

# Generate predictions
pred_glm <- predict(fit_glm, new_data, pred_fml)</pre>
```

Since we used a log link (which is the default for family = "poisson"), we want to predict the exponential of the predictor. We specify this using a general R expression using the formula syntax.

i Note

Note that the predict function will call the component names (i.e. the "labels") that were decided when defining the model.

Since the component definition is looking for a covariate named x, all we need to provide is a data frame that contains one, and the software does the rest.

0 Plot

Figure 3: Data and 95% credible intervals

0 R Code

```
pred_glm %>% ggplot() +
  geom_point(aes(x,y), alpha = 0.3) +
  geom_line(aes(x,mean)) +
```

```
geom_ribbon(aes(x = x, ymax = q0.975, ymin = q0.025),fill = "tomato", alpha = 0.3)+
xlab("Covariate") + ylab("Observations (counts)")
```

Task

Suppose a binary response such that

```
\begin{aligned} y_i &\sim \text{Bernoulli}(\psi_i) \\ \eta_i &= \text{logit}(\psi_i) = \alpha_0 + \alpha_1 \times w_i \end{aligned}
```

Using the following simulated data, use inlabru to fit the logistic regression above. Then, plot the predictions for the data used to fit the model along with 10 new covariate values

```
set.seed(123)
n = 100
alpha = c(0.5,1.5)
w = rnorm(n)
psi = plogis(alpha[1] + alpha[2] * w)
y = rbinom(n = n, size = 1, prob = psi) # set size = 1 to draw binary observations
df_logis = data.frame(y = y, w = w)
```

Here we use the logit link function $\mathrm{logit}(x) = \log\left(\frac{x}{1-x}\right)$ (plogis() function in R) to link the linear predictor to the probabilities ψ .

Take hint

You can set family = "binomial" for binary responses and the plogis() function for computing the predicted values.

i Note

The Bernoulli distribution is equivalent to a Binomial $(1,\psi)$ pmf. If you have proportional data (e.g. no. successes/no. trials) you can specify the number of events as your response and then the number of trials via the Ntrials = n argument of the bru_obs function (where n is the known vector of trials in your data set).

Click here to see the solution


```
# Model components
cmp_logis = ~ Intercept(1) + w_effect(w, model = "linear")
# Model likelihood
lik_logis = bru_obs(formula = y ~.,
            family = "binomial",
            data = df_logis)
# fit the model
fit_logis <- bru(cmp_logis,lik_logis)</pre>
# Define data for prediction
new_data = data.frame(w = c(df_logis$w, runif(10)),
                      y = c(df_logis\$y, rep(NA, 10)))
# Define predictor formula
pred_fml <- ~ plogis(Intercept + w_effect)</pre>
# Generate predictions
pred_logis <- predict(fit_logis, new_data, pred_fml)</pre>
# Plot predictions
pred_logis %>% ggplot() +
  geom_point(aes(w,y), alpha = 0.3) +
  geom_line(aes(w,mean)) +
    geom_ribbon(aes(x = w, ymax = q0.975, ymin = q0.025), fill = "tomato", alpha = 0.3) +
  xlab("Covariate") + ylab("Observations")
```

