Redwood Lab: Exploratory Data Analysis (EDA)

February 5, 2025

Today's plan

- 1 Review: Data Cleaning
- 2 Exploratory Data Analysis

Where we started:

- Motes info + dates table + three different redwood sensor datasets (all, log, net)
 - + All = log + net but without "source" id
 - + So many problems...
- + Removed duplicates NAs in redwood sensor dataset
 - + Can remove rows with NAs without worries since entire row of sensor measurements were NAs

After some cleaning/preprocessing:

Merged into one data frame with "source" id and removed duplicates

Why do we care so much about the "source"?

- The data collection process should guide our data cleaning!
- + Revealed many issues:
 - + result_time is constant in log data
 - voltages are different between two sources
 - + lots of outliers in network data (also in log)

Why did we take the time to merge all of this data into one data frame?

- + So that all of the information is in one data frame and can be readily used for more data cleaning and EDA
 - + E.g., plot by source, mote location (height, direction), time of day, ...

Our first glance:

What could've gone wrong:

Taking a closer look at temperature:

What about the data collection makes the recorded temperatures trail off like

that?

What next? Use this new information to iteratively refine your data cleaning, e.g.,

- + Identify one issue
- + Fix the issue
- + Identify another issue
- + Fix the issue
- Do some EDA
- + Find another issue
- + Fix the issue

+

Exploratory Data Analysis (EDA)

Why do we need EDA/visualizations?

Visualizations can tell a more detailed story than numeric summaries

Remember this when reporting p-values!

"The Datasaurus Dozen" [Matejka and Fitzmaurice (2017)]

Why do we need EDA/visualizations?

Each of these has the same mean, standard deviation, variance, and correlation

"The Datasaurus Dozen" [Matejka and Fitzmaurice (2017)]

Exploratory Data Analysis (EDA): Purpose

What can we use EDA for?

- + To illuminate data oddities and inform data cleaning
- + To provide insights on the inherent data structure that can guide modeling
- + To discover substantively-meaningful patterns (e.g., unsupervised learning)
- Others?

Two modes of EDA plots

- "Scratchwork": for internal use
- "Publication-quality": for public use

"Scratchwork" Plots (for internal use)

"Scratchwork" Mode: Quantity over quality

What are some quick plots that you would make when digging into a dataset for the first time?

- + Histograms/density/boxplot of the data distribution
- + Plots to view the pairwise relationships between variables/covariates/features
 - (Clustered) correlation heatmaps [check out superheat::superheat (R) and seaborn.clustermap (Python)]
 - Scattered pair plots
 [check out GGally::ggpairs (R) and seaborn.PairGrid (Python)]
- Scatter plots
- + 3d plots [check out plotly (R and Python)]
- + Heatmaps [check out ggplot::geom_tile or superheat::superheat (R) and seaborn.heatmap (Python)]
- + Others?

"Scratchwork" Mode

Quantity over quality: Plot the same data in multiple different ways

Example: Four different ways of plotting a data distribution

+ different kernel bandwidth, number of histogram bins, etc

"Scratchwork" Mode

Quantity over quality: Plot the same data in multiple different ways

Example: Two correlation plots of the same data

"Scratchwork" Mode

Quantity over quality: Plot the same data in multiple different ways

Example: Two correlation plots of the same data

"Publication-quality" Plots (for public use)

When presenting EDA visualizations to the public...

Remember the #1 rule: First think about your main takeaway.

Then craft the plot to clearly communicate this singular message.

EDA Example: Before

Main message: Outliers generally come from the network data

EDA Example: Before

Main message: Outliers generally come from the network data

EDA Example: After

Main message: Outliers generally come from the network data

EDA Example

Spot the differences

Basic Aesthetics Checklist

- Labels should be meaningful (not variable names)
 - o E.g., plot date/time instead of epochs in redwood lab
- + Add labels and capitalize them appropriately
- + Text size should be large enough and legible (e.g., in writeups and on slides)
- Legend order matters
- Change the (ggplot) theme
- Choose colors thoughtfully
- Did I overplot?

The biggest pitfall in EDA/visualizations: Overplotting

Strategies to avoid overplotting

- Use smaller point sizes ggplot2: geom_point(size = ...) matplotlib: plot.plot(markersize = ...)
- Use transparency (alpha)
- Subsample data points
- Remember to focus on a singular message

Color matters!

Color choices can affect the way we perceive the plot

Color matters!

Color choices can affect the way we perceive the plot

Color matters!

When choosing colors, be considerate of...

- Color blind friendly
 - ~10% of all men are red-green colorblind
- Colors have inherent connotations
 - Red = bad
 - Green = good
 - Gray = ignored
 - Black = bold/draws attention to
- Discrete versus continuous color scales
- + Different shades of the same color suggest relatedness

Resources for choosing colors

Color scheme generator: https://coolors.co/

HTML color codes: https://htmlcolorcodes.com/

Encycolorpedia: https://encycolorpedia.com/

Viridis color palette

Exploratory Data Analysis (EDA) tips in a nutshell

- Start with your domain problem
- **+** Explore with "scratchwork" EDA: quantity over quality
- + Once you have identified your main finding, think before you plot
 - Your plot should clearly communicate a singular message
 - Your main EDA plot should not be a "data cleaning" plot
- Plot type should be an intentional choice
 - Line, scatter, bar, heatmap, ...
- Aesthetics matter
 - Color
 - Point size
 - Transparency
 - Labels
 - Theme
 - Be wary of overplotting
- **+** Take your time

Sprucing up your visualizations with interactivity

- + Shiny: https://shiny.posit.co/
 - R Tutorial: https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/
 - Python Tutorial: https://shiny.posit.co/py/docs/overview.html
- Plotly
 - R: https://plotly.com/r/ (also see plotly::ggplotly())
 - Python: https://plotly.com/python/

If you need inspiration for visualizations...

NY Times Data Visualizations:

https://www.nytimes.com/column/whats-going-on-in-this-graph

+ Great for finding new color schemes

Storytelling with Data: https://www.storytellingwithdata.com/

Recap + Next Time

Recap

+ Exploratory data analysis is a great way to get a feel for the data.

[chapter 5 from VDS textbook]

- "Scratchwork" EDA (internal): quantity over quality
- "Publication-quality" EDA (public): quality over quantity
 - Think then plot

https://pollev.com/tiffanytang211

Don't forget

+ Lab 1 due **Sunday 5pm** submitted to GitHub

Next Time

+ Beginning of unsupervised learning unit

