同倫類型論

JoJo

jojoid@duck.com

目录

1 λ 演算	4
1.1 項	4
1.2 自由和綁定變量	4
1.3 α 等價	5
1.4 代入	5
2 類型論	7
2.1 λ 演算	7
2.2 語境	7
2.3 結構規則	7
2.4 類型宇宙	7
2.5 依賴函數類型(Ⅱ-類型)	8
2.6 依賴序偶類型(Σ-類型)	8
2.7 餘積類型	9
2.8 空類型 0	10
2.9 單元類型 1	10
2.10 boolean 類型	10
2.11 自然數類型	10
2.12 恆等類型	11
2.13 定義	11
3 同倫類型論	
3.1 類型是高維羣胚	
3.2 函數是函子	
3.3 類型族是纖維化	15
3.4 同倫和等價	
3.5 ∑-類型	
3.6 單元類型	
3.7 Ⅱ-類型	
3.8 宇宙和泛等公理	
3.9 恆等類型	
3.10 餘積	
3.11 自然數	21
3.12 泛性質	22
4 集合和邏輯	23
4.1 集合和 n-類型	23
4.2 命題	23
4.3 子集	24
4.4 命題截斷	24

	.5 可縮性	
5	筝價	. 27
,	.1 半伴隨等價	. 27
,	.2 雙可逆映射	. 29
,	.3 可縮纖維	. 30
	.4 閉包性質	
	.5 對象分類器	
	.6 函數外延性	. 32
6	范疇論	. 35
(3.1 範疇和預範疇	. 35
	5.2 函子和自然變換	
(3.3 伴隨	. 39

1 入演算

1.1 項

定義 1.1 項

所有項的集合 Λ 的遞歸定義如下

- 1. (變量) / 中有無窮個變量;
- 2. (抽象)如果u是一個變量且 $M \in \Lambda$,則 $(u.M) \in \Lambda$;
- 3. (應用)如果 $M,N \in \Lambda$,則 $(MN) \in \Lambda$.

更簡短的表述是

$$\varLambda \coloneqq V \mid (V.\varLambda) \mid (\varLambda\varLambda)$$

或

$$M \coloneqq u \mid (u.M) \mid (MN)$$

其中 V 是變量集.

定義 1.2 子項

項M的所有子項的集合定義爲Sub(M), Sub的遞歸定義如下

- 1. (基礎)對於任何變量x, $Sub(x) := \{x\}$;
- 2. (抽象) $Sub(x.M) := Sub(M) \cup \{(x.M)\};$
- 3. (應用) $Sub(MN) \coloneqq Sub(M) \cup Sub(N) \cup \{(MN)\}.$

引理 1.1 1. (自反性) 對於任何項 M, 有 $M \in Sub(M)$;

2. (傳遞性) 如果 $L \in Sub(M)$ 且 $M \in Sub(N)$, 則 $L \in Sub(N)$.

引理 1.2 項可以以樹表示給出,如下圖中的例子

(y(x.(xz))) 的樹表示

項的子項對應於項的樹表示的子樹.

慣例 1.1 1. 最外層括號可以省略;

- 2. (抽象是右結合的) x.y.M 是 x.(y.M) 的一個縮寫;
- 3. (應用是左結合的) MNL 是 ((MN)L) 的一個縮寫;
- 4. (應用優先於抽象) x.MN 是 x.(MN) 的一個縮寫.

1.2 自由和綁定變量

定義 1.3 自由變量

項M的所有自由變量的集合定義爲FV(M),FV的遞歸定義如下

- 1. (變量) $FV(x) := \{x\};$
- 2. (抽象) $FV(x.M) := FV(M) \setminus \{x\};$
- 3. (應用) $FV(MN) := FV(M) \cup FV(N)$.

例子 1.1 (y(x.(xz))) 的樹表示如下圖所示

 $FV(y(x.(xz))) = \{y, z\}.$

定義 1.4 閉項

一個項 M 是**閉**的 : $\Leftrightarrow FV(M) = \emptyset$.

所有閉項的集合記爲 Λ^0 .

1.3 α 等價

定義 1.5 重命名

將項 M 中 x 的每個自由出現都替換爲 y, 結果記爲 $M^{x\to y}$.

定義 1.6 α 等價

定義 α 等價 = α 爲符合如下性質的關係

- 1. (重命名)如果 y 不在 M 中出現,則 $x.M =_{\alpha} y.M^{x \to y}$;
- 2. (兼容性) 如果 M = N, 則 ML = NL, LM = LN 且對於任何變量 z 有 z.M = Z.N;
- 3. (自反性) $M =_{\alpha} M$;
- 4. (對稱性)如果 $M =_{\alpha} N$,則 $N =_{\alpha} M$;
- 5. (傳遞性) 如果 $L =_{\alpha} M$ 且 $M =_{\alpha} N$, 則 $L =_{\alpha} N$.

1.4 代人

定義 1.7 代人

 $(1a) \ x[N/x] := N;$

- (1b) 如果 $x \neq y$,則 $y[N/x] \coloneqq y$;
- (2) (PQ)[N/x] := (P[N/x])(Q[N/x]);
- $(3) 如果 z.P^{y \rightarrow z} =_{\alpha} y.P 且 z \notin FV(N), 則 (y.P)[N/x] \coloneqq z.(P^{y \rightarrow z}[N/x]).$

引理 1.3 | 設 $x \neq y$ 且 $x \notin FV(N)$,則L[M, N/x, y] = L[N, M[N/y]/x, y].

定義 1.8 同時代人

 $M[N_1,...,N_n/x_1,...,x_n]$ 表示把項 $N_1,...,N_n$ 同時代人到變量 $x_1,...,x_n$.

2 類型論

2.1 λ 演算

慣例 2.1 **入演算**

一些概念沿用自入演算,具體是哪些,則在本筆記後續內容中自然展現.

2.2 語境

定義 2.1 語境

一個語境是一個列表

$$x_1:A_1,x_2:A_2,...,x_n:A_n\\$$

其中 $x_1,...,x_n$ 是不同的變量,它們分別擁有類型 $A_1,...,A_n$. 我們用 Γ,Δ 等字母來縮寫語境.

定義 2.2 語境規則

 Γ ctx 是一個判斷,表示" Γ 是良構的語境."有如下規則

$$\frac{}{\cdot ctx}$$
 ctx-EMP

$$\frac{x_1:A_1,x_2:A_2,...,x_{n-1}:A_{n-1}\vdash A_n:\mathcal{U}_i}{(x_1:A_1,...,x_n:A_n)\ ctx}\ ctx\text{-}EXT$$

其中,變量 x_n 與變量 $x_1,...,x_n$ 中的任何一個都不同.

2.3 結構規則

定義 2.3 Vble 規則

$$\frac{(x_1:A_1,...,x_n:A_n)\ ctx}{x_1:A_1,...,x_n:A_n\vdash x_i:A_i}\ Vble$$

定義 2.4 判斷相等

如果
$$a =_{\alpha} b$$
, 則 $a \equiv b$.

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \equiv a : A}$$

$$\frac{\varGamma \vdash a \equiv b : A}{\varGamma \vdash b \equiv a : A}$$

$$\frac{\varGamma \vdash a \equiv b : A \quad \varGamma \vdash b \equiv c : A}{\varGamma \vdash a \equiv c : A}$$

$$\frac{\varGamma \vdash a : A \quad \varGamma \vdash A \equiv B : \mathcal{U}_i}{\varGamma \vdash a : B}$$

$$\frac{\varGamma \vdash a \equiv b : A \quad \varGamma \vdash A \equiv B : \mathcal{U}_i}{\varGamma \vdash a \equiv b : B}$$

2.4 類型宇宙

定義 2.5 類型宇宙層級

有如下規則

$$\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\dots$$

$$\begin{tabular}{ll} \hline Γ & ctx \\ \hline $\Gamma \vdash \mathcal{U}_i : \mathcal{U}_{i+1}$ & \mathcal{U}-INTRO \\ \hline $\frac{\Gamma \vdash A : \mathcal{U}_i}{\Gamma \vdash A : \mathcal{U}_{i+1}$} & \mathcal{U}-CUMUL \\ \hline \end{tabular}$$

2.5 依賴函數類型(Π-類型)

定義 2.6 依賴函數類型(Ⅱ-類型)

$$\frac{\Gamma \vdash A : \mathcal{U}_{i} \quad \Gamma, x : A \vdash B : \mathcal{U}_{i}}{\Gamma \vdash (x : A) \rightarrow B : \mathcal{U}_{i}} \quad \Pi\text{-}FORM$$

$$\frac{\Gamma \vdash A_{1} \equiv A_{2} : \mathcal{U}_{i} \quad \Gamma, x : A_{1} \vdash B_{1} \equiv B_{2} : \mathcal{U}_{i}}{\Gamma \vdash (x : A_{1}) \rightarrow B_{1} \equiv (x : A_{2}) \rightarrow B_{2} : \mathcal{U}_{i}} \quad \Pi\text{-}FORM\text{-}EQ$$

$$\frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash (x : A) \mapsto b : (x : A) \rightarrow B} \quad \Pi\text{-}INTRO$$

$$\frac{\Gamma, x : A \vdash b_{1} \equiv b_{2} : B}{\Gamma \vdash (x : A) \mapsto b_{1} \equiv (x : A) \mapsto b_{2} : (x : A) \rightarrow B} \quad \Pi\text{-}INTRO\text{-}EQ$$

$$\frac{\Gamma \vdash f : (x : A) \rightarrow B \quad \Gamma \vdash a : A}{\Gamma \vdash f(a) : B[a/x]} \quad \Pi\text{-}ELIM$$

$$\frac{\Gamma \vdash f_{1} \equiv f_{2} : (x : A) \rightarrow B \quad \Gamma \vdash a : A}{\Gamma \vdash f_{1}(a) \equiv f_{2}(a) : B[a/x]} \quad \Pi\text{-}ELIM\text{-}EQ$$

$$\frac{\Gamma, x : A \vdash b : B \quad \Gamma \vdash a : A}{\Gamma \vdash ((x : A) \mapsto b)(a) \equiv b[a/x] : B[a/x]} \quad \Pi\text{-}COMP$$

$$\frac{\Gamma \vdash f : (x : A) \rightarrow B}{\Gamma \vdash f \equiv (x \mapsto f(x)) : (x : A) \rightarrow B} \quad \Pi\text{-}UNIQ$$

定義 2.7 函數類型

設 $B: \mathcal{U}, x \mapsto B: A \to \mathcal{U}$. 我們定義函數類型

$$A \to B :\equiv (x : A) \to B.$$

2.6 依賴序偶類型 (Σ-類型)

定義 2.8 依賴序偶類型(Σ-類型)

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma, x : A \vdash B : \mathcal{U}_i}{\varGamma \vdash (x : A) \times B : \mathcal{U}_i} \ \varSigma \text{-}FORM$$

$$\frac{\varGamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \varGamma, x : A_1 \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\varGamma \vdash (x : A_1) \times B_1 \equiv (x : A_2) \times B_2 : \mathcal{U}_i} \ \varSigma\text{-FORM-EQ}$$

構造子 (引入規則): $\langle _, _ \rangle$: $\{B: A \to \mathcal{U}\} \to (a:A) \to b: B(a) \to (x:A) \times B$

$$\frac{\varGamma, x : A \vdash B : \mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2 : A \quad \varGamma \vdash b_1 \equiv b_2 : B[a/x]}{\varGamma \vdash (a_1, b_1) \equiv (a_2, b_2) : (x : A) \times B} \ \varSigma\text{-INTRO-EQ}$$

消除器 (消除規則): $ind_{(x:A)\times B}:[C:((x:A)\times B(x))\to\mathcal{U}]\to[(a:A)\to(b:B(a))\to C(\langle a,b\rangle)]\to[p:(x:A)\times B(x)]\to C(p)$

$$\frac{\varGamma,z:(x:A)\times B\vdash C:\mathcal{U}_i \quad \varGamma,x:A,y:B\vdash g:C[(x,y)/z] \quad \varGamma\vdash p_1\equiv p_2:(x:A)\times B}{\varGamma\vdash ind_{(x:A)\times B}(z.C,x.y.g,p_1)\equiv ind_{(x:A)\times B}(z.C,x.y.g,p_2):C[p_1/z]\equiv C[p_2/z]} \ \varSigma\text{-}ELIM\text{-}EQ$$

計算規則: $ind_{(x:A)\times B}(C, g, \langle a, b \rangle) :\equiv g(a)(b)$

定義 2.9 cartesian 類型

設 $B: \mathcal{U}, x \mapsto B: A \to \mathcal{U}$. 我們定義 cartesian 類型

$$A\times B:\equiv (x:A)\times B.$$

引理 2.1 投影函數

對於任何 Σ -類型 $(x:A) \times B(x)$, 我們有函數

$$\boldsymbol{pr_1}: ((x:A) \times B(x)) \rightarrow A, \boldsymbol{pr_1}(\langle a,b \rangle) :\equiv a$$

和

$$pr_2: (p:(x:A) \times B(x)) \rightarrow B(pr_1(p)), pr_2(\langle a,b \rangle) :\equiv b.$$

Proof. 略.

2.7 餘積類型

定義 2.10 餘積類型

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma \vdash B : \mathcal{U}_i}{\varGamma \vdash A + B : \mathcal{U}_i} + FORM$$

$$\frac{\Gamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \Gamma \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\Gamma \vdash A_1 + B_1 \equiv A_2 + B_2 : \mathcal{U}_i} + FORM-EQ$$

П

構造子 1: $inl: \{A, B: \mathcal{U}\} \rightarrow A \rightarrow A+B$

構造子 2: $inl: \{A, B: \mathcal{U}\} \rightarrow B \rightarrow A+B$

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma \vdash B : \mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2 : A}{\varGamma \vdash inl(a_1) \equiv inl(a_2) : A + B} + -INTRO_1 - EQ$$

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma \vdash B : \mathcal{U}_i \quad \varGamma \vdash b_1 \equiv b_2 : B}{\varGamma \vdash inr(b_1) \equiv inr(b_2) : A + B} + -INTRO_2 - EQ$$

消除器: $ind_{A+B}: [C:(A+B) \rightarrow \mathcal{U}] \rightarrow [(a:A) \rightarrow C(inl(a))] \rightarrow [(b:B) \rightarrow C(inr(b))] \rightarrow (e:A+B) \rightarrow C(e)$

$$\frac{\varGamma,z:(A+B) \vdash C:\mathcal{U}_i \quad \varGamma,x:A \vdash c:C[inl(x)/z] \quad \varGamma,y:B \vdash d:C[inr(y)/z] \quad \varGamma \vdash e_1 \equiv e_2:(A+B)}{\varGamma \vdash ind_{A+B}(z.C,x.c,y.d,e_1) \equiv ind_{A+B}(z.C,x.c,y.d,e_2):C[e_1/z] \equiv C[e_2/z]} + -ELIM-EQ$$

計算規則 1: $ind_{A+B}(C, g_0, g_1, inl(a)) :\equiv g_0(a)$

計算規則 2: $ind_{A+B}(C, g_0, g_1, inr(b)) :\equiv g_1(b)$

2.8 空類型 0

定義 2.11 空類型 0

$$\frac{\varGamma \ ctx}{\varGamma \vdash \mathbf{0} : \mathcal{U}_i} \ \mathbf{0}\text{-}FORM$$

消除器: $ind_{\mathbf{0}}: (C: \mathbf{0} \to \mathcal{U}) \to (a: \mathbf{0}) \to C(a)$

$$\frac{\varGamma,x:\mathbf{0} \vdash C:\mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2:\mathbf{0}}{\varGamma \vdash ind_{\mathbf{0}}(x.C,a_1) \equiv ind_{\mathbf{0}}(x.C,a_2):C[a_1/x] \equiv C[a_2/x]} \ \mathbf{0}\text{-}ELIM\text{-}EQ$$

2.9 單元類型 1

定義 2.12 單元類型 1

$$\frac{\Gamma \ ctx}{\Gamma \vdash \mathbf{1} : \mathcal{U}_i} \mathbf{1}\text{-}FORM$$

構造子: ★:1

消除器: $ind_1: (C: \mathbf{1} \to \mathcal{U}) \to C(\star) \to (x: \mathbf{1}) \to C(x)$

$$\frac{\varGamma,x:\mathbf{1}\vdash\varGamma:\mathcal{U}_i\quad\varGamma\vdash c:\varGamma[\;\star/x]\quad\varGamma\vdash a_1\equiv a_2:\mathbf{1}}{\varGamma\vdash ind_\mathbf{1}(x.C,c,a_1)\equiv ind_\mathbf{1}(x.C,c,a_2):\varGamma[a_1/x]\equiv \varGamma[a_2/x]}\;\mathbf{1}\text{-}ELIM\text{-}EQ$$

計算規則: $ind_1(C, c, \star) :\equiv c$

2.10 boolean 類型

定義 2.13 boolean 類型

$$\frac{\Gamma \ ctx}{\Gamma \vdash \mathbf{2} : \mathcal{U}_i} \ \mathbf{2}\text{-}FORM$$

構造子1: 0₂:2

構造子 2: 12:2

消除器: $ind_{\mathbf{2}}: (C: \mathbf{2} \to \mathcal{U}) \to C(0_{\mathbf{2}}) \to C(1_{\mathbf{2}}) \to (x: \mathbf{2}) \to C(x)$

$$\frac{\varGamma, x: \mathbf{2} \vdash \varGamma: \mathcal{U}_i \quad \varGamma \vdash c_0: \varGamma[0_{\mathbf{2}}/x] \quad \varGamma \vdash c_1: \varGamma[1_{\mathbf{2}}/x] \quad \varGamma \vdash a_1 \equiv a_2: \mathbf{2}}{\varGamma \vdash ind_{\mathbf{2}}(x.\varGamma, c_0, c_1, a_1) \equiv ind_{\mathbf{2}}(x.\varGamma, c_0, c_1, a_2): \varGamma[a_1/x] \equiv \varGamma[a_2/x]} \mathbf{2}\text{-}ELIM\text{-}EQ$$

計算規則 1: $ind_2(C, c_0, c_1, 0_2) :\equiv c_0$

計算規則 2: $ind_{\mathbf{2}}(C, c_0, c_1, 1_{\mathbf{2}}) :\equiv c_1$

2.11 自然數類型

定義 2.14 自然數類型

$$\frac{\Gamma \ ctx}{\Gamma \vdash \mathbb{N} : \mathcal{U}_i} \ \mathbb{N}\text{-}FORM$$

構造子1:0:№

構造子 2: $succ: \mathbb{N} \to \mathbb{N}$

$$\frac{\varGamma \vdash n_1 \equiv n_2 : \mathbb{N}}{\varGamma \vdash succ(n_1) \equiv succ(n_2) : \mathbb{N}} \ \mathbb{N}\text{-}INTRO_2\text{-}EQ$$

消除器: $ind_{\mathbb{N}}: (C:\mathbb{N} \to \mathcal{U}) \to C(0) \to [(n:N) \to C(n) \to C(succ(n))] \to (n:\mathbb{N}) \to C(n)$

$$\frac{\varGamma,x:\mathbb{N} \vdash C:\mathcal{U}_i \quad \varGamma \vdash c_0:C[0/x] \quad \varGamma,x:\mathbb{N},y:C \vdash c_s:C[succ(x)/x] \quad \varGamma \vdash n_1 \equiv n_2:\mathbb{N}}{\varGamma \vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n_1) \equiv ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n_2):C[n_1/x] \equiv C[n_2/x]} \; \mathbb{N}\text{-}ELIM\text{-}EQ$$

計算規則 1: $ind_{\mathbb{N}}(C, c_0, c_s, 0) := c_0$

計算規則 2: $ind_{\mathbb{N}}(C, c_0, c_s, succ(n)) :\equiv c_s(n, ind_{\mathbb{N}}(C, c_0, c_s, n))$

2.12 恆等類型

定義 2.15 恆等類型

$$\frac{\Gamma \vdash A : \mathcal{U}_{i} \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A}{\Gamma \vdash a = {}_{A} b : \mathcal{U}_{i}} = -FORM$$

$$\frac{\varGamma \vdash A: \mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2: A \quad \varGamma \vdash b_1 \equiv b_2: A}{\varGamma \vdash a_1 =_A \ b_1 \equiv a_2 =_A \ b_2: \mathcal{U}_i} = \textit{-FORM-EQ}$$

構造子: $refl: \{A: \mathcal{U}\} \rightarrow (a:A) \rightarrow (a=a)$

$$\frac{\varGamma \vdash A: \mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2: A}{\varGamma \vdash refl_{a_1} \equiv refl_{a_2}: a_1 =_A a_1 \equiv a_2 =_A a_2} \ = \textit{-INTRO-EQ}$$

消除器: $ind_{=_A}: [C:(x,y:A) \rightarrow (x=y) \rightarrow \mathcal{U}] \rightarrow [(x:A) \rightarrow C(x,x,refl_x)] \rightarrow (x,y:A) \rightarrow (p:x=y) \rightarrow C(x,y,p)$

$$\frac{\Gamma, x: A, y: A, p: x =_A y \vdash C: \mathcal{U}_i \quad \Gamma, z: A \vdash c: C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a: A \quad \Gamma \vdash b: A \quad \Gamma \vdash q_1 \equiv q_2: a =_A b}{\Gamma \vdash ind_{=_A}(x.y.p.C, z.c, a, b, q_1) \equiv ind_{=_A}(x.y.p.C, z.c, a, b, q_2): C[a, b, q_1/x, y, p] \equiv C[a, b, q_2/x, y, p]} = -ELIM-EQ$$

計算規則: $ind_{=_A}(C, c, x, x, refl_x) :\equiv c(x)$

恆等類型的項稱爲道路; 恆等類型的消除規則稱爲道路歸納.

2.13 定義

例子 2.1 函數的合成

 $\circ :\equiv (A:\mathcal{U}_i) \mapsto (B:\mathcal{U}_i) \mapsto (C:\mathcal{U}_i) \mapsto (g:B \to C) \mapsto (f:A \to B) \mapsto (x:A) \mapsto g(f(x)).$

3 同倫類型論

3.1 類型是高維羣胚

引理 3.1 對於任何 $A:\mathcal{U}_i,x,y:A$,都能構造一個函數 $_{-}^{-1}:(x=_Ay) \to (y=_Ax)$ 使得 $(refl_x)^{-1}\equiv refl_x.$

 p^{-1} 稱爲 p 的**逆**.

Proof. 第一種證明

設 $A: \mathcal{U}_i, D: (x,y:A) \to (x=Ay) \to \mathcal{U}_i, D(x,y,p) :\equiv (y=Ax).$

隨即我們就能構造一個函數 $d := x \mapsto \operatorname{refl}_x : (x : A) \to D(x, x, \operatorname{refl}_x)$.

然後根據恆等類型的消除規則我們有,對於任何 $x,y:A,p:(x=_Ay)$, 可以構造項 $\operatorname{ind}_{=,\cdot}(D,d,x,y,p):(y=_Ax)$.

現在對於任何 x,y:A 我們可以定義期望得到的函數 $_^{-1}:\equiv p\mapsto \mathrm{ind}_{=_4}(D,d,x,y,p).$

由恆等類型的計算規則, $(\operatorname{refl}_x)^{-1} \equiv \operatorname{refl}_x$.

Proof. 第二種證明

對於每個 x,y:A 和 p:x=y,我們想要構造一個項 $p^{-1}:y=x$. 根據 p 的道路歸納,我們只需要給出 y 是 x 且 p 是 refl_x 時的構造. 在該情况下, refl_x 和 refl_x^{-1} 的類型都是 x=x. 因此我們可以簡單地定義 $\mathrm{refl}_x^{-1}:\equiv \mathrm{refl}_x$. 於是根據道路歸納,我們完成了構造.

引理 3.2 對於任何 $A: \mathcal{U}_i, x, y, z: A$,都能構造一個函數 • : $(x =_A y) \to (y =_A z) \to (x =_A z)$ 使得 $refl_x$ • $refl_x:\equiv refl_x$.

p•q稱爲p和q的連接.

Proof. 第一種證明

期望得到的函數擁有類型 $(x,y,z:A) \rightarrow (x=_A y) \rightarrow (y=_A z) \rightarrow (x=_A z).$

我們將改爲定義一個函數, 擁有和預期等價的類型 $(x,y:A) \to (x=_A y) \to (z:A) \to (y=_A z) \to (x=_A z)$, 這允許我們使用兩次恆等類型的消除規則.

設 $D:(x,y:A)\to (x=_A y)\to \mathcal{U}_i, D(x,y,p):\equiv (z:A)\to (q:y=_A z)\to (x=_A z).$

然後,爲了對 D 應用恆等類型的消除規則,我們需要類型爲 $(x:A) \to D(x,x,\mathrm{refl}_x)$ 的函數,也就是類型爲 $(x,z:A) \to (q:x=_Az) \to (x=_Az)$.

現在設 $E:(x,z:A) \rightarrow (q:x=_Az) \rightarrow \mathcal{U}_i, E(x,z,q):\equiv (x=_Az).$

隨即我們能構造函數 $e := x \mapsto \operatorname{refl}_r : (x : A) \to E(x, x, \operatorname{refl}_r)$.

對 E 應用恆等類型的消除規則,我們得到函數 $d:(x,z:A) \to (q:x=_Az) \to E(x,z,q), x \mapsto z \mapsto q \mapsto \operatorname{ind}_{=+}(E,e,x,z,q).$

因爲 $E(x,z,q)\equiv(x=_Az)$,所以 $d:(x:A)\to D(x,x,\mathrm{refl}_x)$.

然後對 D 應用恆等類型的消除規則我們有,對於任何 $x,y:A,p:(x=_Ay)$,可以構造項 $\operatorname{ind}_{=_A}(D,d,x,y,p) \equiv \operatorname{ind}_{=_A}(D,(x,z:A) \mapsto (q:y=_Az) \mapsto \operatorname{ind}_{=_A}(E,e,x,z,q), x,y,p):(z:A) \to (q:y=_Az) \to (x=_Az).$

於是我們有

$$(x,y:A) \mapsto (p:x=_A y) \mapsto \operatorname{ind}_{=_A} \left(D, (x,z:A) \mapsto (q:y=_A z) \mapsto \operatorname{ind}_{=_A} (E,e,x,z,q), x,y,p\right):$$

$$(x,y:A) \rightarrow (x=_A y) \rightarrow (z:A) \rightarrow (y=_A z) \rightarrow (x=_A z)$$

現在對於任何 a,b,c:A 我們可以定義期望得到的函數

$$\bullet : \equiv (p:a=_Ab) \mapsto \operatorname{ind}_{=_A} \left(D, (x:A) \mapsto (q:b=_Ac) \mapsto \operatorname{ind}_{=_A} (E,e,x,c,q), a,b,p \right) :$$

$$(a,b,c:A) \rightarrow (a =_A b) \rightarrow (b =_A c) \rightarrow (a =_A c).$$

由恆等映射的計算規則,得

$$\operatorname{refl}_a \bullet \operatorname{refl}_a \equiv \operatorname{ind}_{=_A} \left(D, (x:A) \mapsto \operatorname{ind}_{=_A} (E,e,x,a,\operatorname{refl}_a), a,a,\operatorname{refl}_a \right) \equiv \operatorname{ind}_{=_A} (E,e,a,a,\operatorname{refl}_a) \equiv e(a) \equiv \operatorname{refl}_a.$$

Proof. 第二種證明

對於每個 x,y,z:A, p:x=y 和 q:y=z, 我們想要構造一個項 $p \cdot q:x=z$. 根據 p 的道路歸納, 我們只需要給出 $y \in \mathbb{R}$ 水 且 $p \in \mathbb{R}$ 時的構造,即對於每個 x,z:A 和 q:x=z, 構造一個項 $\operatorname{refl}_x \cdot q:x=z$. 根據 q 的道路歸納,只需給出 $z \in \mathbb{R}$ 水 且 $q \in \mathbb{R}$ 時的構造,即對於每個 x:A,構造一個項 $\operatorname{refl}_x \cdot \operatorname{refl}_x : x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x \cdot \operatorname{refl}_x : x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x \cdot \operatorname{refl}_x : x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x \cdot \operatorname{refl}_x : x=x$.

引理 3.3 設 $A: \mathcal{U}_i$, x, y, z, w: A, p: x = y, q: y = z 且 r: z = w. 我們有以下結論:

1. $p = p \cdot refl_u \perp p = refl_x \cdot p$;

 $2. \ p \bullet p^{-1} = refl_x \ \mathbb{L} \ p^{-1} \bullet p = refl_y;$

3. $(p^{-1})^{-1} = p$;

4. $p \cdot (q \cdot r) = (p \cdot q) \cdot r$.

Proof. 所有證明都使用道路歸納.

 $1. \ \text{第一種證明:} \ \text{設} \ D: (x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D(x,y,p) :\equiv \left(p = p \cdot \operatorname{refl}_y\right). \ \text{那麼} \ D(x,x,\operatorname{refl}_x) \ \text{是 refl}_x = \operatorname{refl}_x \cdot \operatorname{refl}_x. \ \text{因爲 refl}_x \equiv \operatorname{refl}_x, \ \text{我們有} \ D(x,x,\operatorname{refl}_1) \equiv \left(\operatorname{refl}_x = \operatorname{refl}_x\right). \ \text{因此可以構造函數} \ d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \rightarrow D(x,x,\operatorname{refl}_1). \ \text{根據道路歸納, 對於每個} \ x,y:A \ \text{和} \ p:x=y, \ \text{我們有項} \ \operatorname{ind}_{=_A}(D,d,x,y,p) : p = p \cdot \operatorname{refl}_y.$

本書後面將把 $\operatorname{ind}_{=_A} \left((x,y,p) \mapsto \left(p = p \cdot \operatorname{refl}_y \right), x \mapsto \operatorname{refl}_{\operatorname{refl}_x}, x, y, p \right)$ 記爲 $\operatorname{\mathbf{ru}}_{\boldsymbol{p}}$,把 $\operatorname{ind}_{=_A} \left((x,y,p) \mapsto \left(p = \operatorname{refl}_y \cdot p \right), x \mapsto \operatorname{refl}_{\operatorname{refl}_x}, x, y, p \right)$ 記爲 $\operatorname{\mathbf{lu}}_{\boldsymbol{p}}$. 第二種證明:根據 p 的道路歸納,只需要假設 y 是 x 且 p 是 refl_x . 在該情況下, $p \cdot \operatorname{refl}_y \equiv \operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x$. 因此只需證明 $\operatorname{refl}_x = \operatorname{refl}_x$, 這是簡單的,即 $\operatorname{refl}_{\operatorname{refl}_x} = \operatorname{refl}_x$.

2. 第一種證明: 設 $D:(x,y:A) \to (p:x=y) \to \mathcal{U}, D(x,y,p) \coloneqq (p \bullet p^{-1} = \operatorname{refl}_x)$. 那麼 $D(x,x,\operatorname{refl}_x)$ 是 $\operatorname{refl}_x \bullet \operatorname{refl}_x^{-1} = \operatorname{refl}_x$. 因爲 $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$ 且 $\operatorname{refl}_x \bullet \operatorname{refl}_x = \operatorname{refl}_x$,我們有 $D(x,x,\operatorname{refl}_x) \equiv (\operatorname{refl}_x = \operatorname{refl}_x)$. 因此可以構造函數 $d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \to D(x,x,\operatorname{refl}_x)$. 根據道路歸納,對於每個 x,y:A 和 p:x=y,我們有項 $\operatorname{ind}_{\equiv_x}(D,d,x,y,p):p \bullet p^{-1} = \operatorname{refl}_x$.

第二種證明:根據 p 的道路歸納,只需要假設 y 是 x 且 p 是 refl_x. 在該情況下, p • p⁻¹ ≡ refl_x • refl⁻¹ ≡ refl_x.

3. 第一種證明: 設 $D:(x,y:A) \to (p:x=y) \to \mathcal{U}, D(x,y,p) :\equiv \left(p^{-1}\right)^{-1} = p$. 那麼 D(x,x,p) 是 $\left(\operatorname{refl}_x^{-1}\right)^{-1} = \operatorname{refl}_x$. 因爲 $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$,所以 $\left(\operatorname{refl}_x^{-1}\right)^{-1} \equiv \operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$,那麼 $D(x,x,\operatorname{refl}_x) \equiv \left(\operatorname{refl}_x = \operatorname{refl}_x\right)$. 因此我們能構造函數 $d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \to D(x,x,\operatorname{refl}_x)$. 根據道路歸納,對於每個 x,y:A 和 p:x=y,我們有項 $\operatorname{ind}_{=_x}(D,d,x,y,p) : \left(p^{-1}\right)^{-1} = p$.

第二種證明: 根據 p 的道路歸納, 只需要假設 $y \in x$ 且 $p \in refl_x$. 在該情況下, $(p^{-1})^{-1} \equiv (refl_x^{-1})^{-1} \equiv refl_x$.

4. 我們想要構造的函數的類型是 $(x,y,z,w:A) \rightarrow (p:x=y) \rightarrow (q:y=z) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r)$, 我們改爲證明 $(x,y:A) \rightarrow (p:x=y) \rightarrow (z:A) \rightarrow (q:y=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r)$.

設 $D_1:(x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D_1(x,y,p):\equiv (z:A) \rightarrow (q:y=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r).$ 根據 p 的道路歸納,只需要構造類型爲 $(x:A) \rightarrow D_1(x,x,\mathrm{refl}_x) \equiv (x,z:A) \rightarrow (q:x=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (\mathrm{refl}_x \bullet (q \bullet r) = (\mathrm{refl}_x \bullet q) \bullet r)$ 的函數.

爲了構造這個類型的函數,我們設 $D_2:(x,z:A) \to (q:x=z) \to \mathcal{U}, D_2(x,z,q):\equiv (w:A) \to (r:z=w) \to (\mathrm{refl}_x \bullet (q \bullet r) = (\mathrm{refl}_x \bullet q) \bullet r).$ 根據 q 的 道路歸納,只需要構造類型爲 $(x:A) \to D(x,x,\mathrm{refl}_r) \equiv (x,w:A) \to (r:x=w) \to (\mathrm{refl}_r \bullet (\mathrm{refl}_r \bullet r) = (\mathrm{refl}_r \bullet r) \bullet r)$ 的函數.

爲了構造這個類型的函數,我們設 $D_3:(x,w:A) \to (r:x=w) \to \mathcal{U}, D_3(x,w,r) :\equiv (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet r) = (\mathrm{refl}_x \bullet \mathrm{refl}_x) \bullet r).$ 根據 r 的道路歸納,只需要構造類型爲 $(x:A) \to D_3(x,x,\mathrm{refl}_x) \equiv (x:A) \to (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet \mathrm{refl}_x) = (\mathrm{refl}_x \bullet \mathrm{refl}_x) \bullet \mathrm{refl}_x) \equiv (x:A) \to \mathrm{refl}_x = \mathrm{refl}_x$ 的函數. 這是簡單的,即 $\mathrm{refl}_{\mathrm{refl}_x}$.

因此,應用3此道路歸納,我們就得到了想要的類型的函數.

引理 3.4 加鬚

- 1. 對於任何 a,b,c:A,p,q:a=b,我們可以構造函數 $_\bullet_r=(p=q)\to (r:b=c)\to (p\bullet r=q\bullet r), \alpha\bullet_r refl_b:\equiv ru_n^{-1}\bullet\alpha\bullet ru_a;$
- 2. 對於任何 a,b,c:A,r,s:b=c,我們可以構造函數 $_{-\mathbf{l}_{-}}:(p:a=b) \rightarrow (r=s) \rightarrow (p \bullet r=p \bullet s), refl_{b} \bullet_{l} \beta :\equiv lu_{r}^{-1} \bullet \beta \bullet lu_{s}.$

Proof. 略.

引理 3.5 横合成

對於任何 a,b,c:A, p,q:a=b, r,s:b=c, 我們可以構造函數 $_ \bullet _ : (p=q) \to (r=s) \to (p \bullet r = q \bullet s).$

Proof. 略.

引理 3.6 剪鬚

- 1. 對於任何 a,b,c:A,p,q:a=b, 我們可以構造函數 $(r:b=c) \rightarrow (p \cdot r=q \cdot r) \rightarrow (p=q)$;
- 2. 對於任何 a,b,c:A,r,s:b=c,我們可以構造函數 $(p:a=b) \to (p \bullet r=p \bullet s) \to (r=s)$.

Proof. 略.

引理 3.7 對於任何 $a,b,c:A,p,q:a=b,r,s:b=c,\alpha:p=q,\beta:r=s$, 我們有 $(\alpha \bullet_r r) \bullet (q \bullet_l \beta) = (p \bullet_l \beta) \bullet (\alpha \bullet_r s)$.

Proof. 略.

定理 3.1 Eckmann-Hilton

 $(\alpha, \beta : \Omega^2(A, a)) \to (\alpha \cdot \beta = \beta \cdot \alpha)$

Proof. 略.

定義 3.1 有點類型

設 $A:\mathcal{U},a:A$. 序偶 $(A,a):(A:\mathcal{U})\times A$ 稱爲一個有點類型, a 稱爲它的基點. 類型 $(A:\mathcal{U})\times A$ 記爲 \mathcal{U}_{\bullet} .

定義 3.2 迴路空間

對於 $n: \mathbb{N}$, 一個有點類型 (A,a) 的 n 重迭代迴路空間 $\Omega^n(A,a)$ 遞歸地定義爲

$$\Omega^0(A,a) :\equiv (A,a)$$
,

$$\Omega^1(A,a) :\equiv ((a =_A a), refl_a),$$

$$\Omega^{n+1}(A,a) :\equiv \Omega^n(\Omega(A,a))$$
 ,

它的一個項稱爲點a的一個n維迴路.

慣例 3.1 設 $\Omega^n(A,a) \equiv (B,b)$. 則 $x:\Omega^n(A,a)$ 表示 x:B.

3.2 函數是函子

引理 3.8 對於任何 $A,B:\mathcal{U},f:A\to B,x,y:A$,都能構造函數 $\mathbf{ap}_f:(x=_Ay)\to (f(x)=_Bf(y)),\mathbf{ap}_f(refl_x)\equiv refl_{f(x)}.$

Proof. 第一種證明: 設 $D:(x,y:A) \to (x=_Ay) \to \mathcal{U}, D(x,y,p) \coloneqq (f(x)=_Bf(y)).$ 那麼我們有 $d:\equiv (x:A) \mapsto \operatorname{refl}_{f(x)}:(x:A) \to (f(x)=_Bf(y)).$ 根據 p 的道路歸納,我們得到函數 $\operatorname{ap}_f:(x=_Ay) \to (f(x)=_Bf(y)).$ 根據恆等類型的計算規則,對於任何 x:A,有 $\operatorname{ap}_f(\operatorname{refl}_x) \equiv \operatorname{refl}_{f(x)}.$ 第二種證明:爲了對任何 p:x=y 定義 $\operatorname{ap}_f(p)$,根據 p 的道路歸納,只需要構造 p 是 refl_x 的情况。在該情况下,我們定義 $\operatorname{ap}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}:f(x)=f(x).$

慣例 3.2 | 我們將經常將 $ap_f(p)$ 簡寫爲 f(p).

引理 3.9 對於任何函數 $f:A\to B, g:B\to C$ 和道路 $p:x=_Ay, q:y=_Az$,我們有:

- 1. $ap_f(p \cdot q) = ap_f(p) \cdot ap_f(q)$;
- $2. \ ap_f(p^{-1}) = \left(ap_f(p)\right)^{-1};$
- 3. $ap_{q}(ap_{f}(p)) = ap_{q \circ f}(p);$
- $4.\ ap_{id_A}(p)=p.$

 $Proof.\ 1.\ 根據的道路歸納,\ 只需要證明\ \mathrm{ap}_f(\mathrm{refl}_xullet\cdot\mathrm{refl}_x) = \mathrm{ap}_f(\mathrm{refl}_x)ullet\,\mathrm{ap}_f(\mathrm{refl}_x),\ ict to the constant of the$

- 2. 根據道路歸納,只需要證明 $\operatorname{ap}_f(\operatorname{refl}_x^{-1}) = (\operatorname{ap}_f(\operatorname{refl}_x))^{-1}$,略.
- 3. 根據道路歸納,只需證明 $\operatorname{ap}_q(\operatorname{ap}_f(\operatorname{refl}_x)) = \operatorname{ap}_{g \circ f}(\operatorname{refl}_x)$,即 $\operatorname{ap}_q(\operatorname{refl}_{f(x)}) = \operatorname{refl}_{g \circ f}$,略.
- 4. 根據道路歸納,只需證明 $\operatorname{ap}_{\operatorname{id}_A}(\operatorname{refl}_x) = \operatorname{refl}_x$,略.

3.3 類型族是纖維化

定義 3.3 纖維化

我們把類型族 $P: A \to \mathcal{U}$ 視爲一個纖維化,A 稱爲它的底空間,P(x) 稱爲 x 上的纖維, $(x:A) \times P(x)$ 稱爲它的全空間,如果存在函數 $f: (x:A) \to P(x)$,則稱該函數爲 P 的一個截面.

有時也稱全空間爲 A 上的纖維化.

引理 3.10 傳送

設 $B: A \to \mathcal{U}, x, y: A$, 則存在函數 $transport^B(_,_): (x =_A y) \to B(x) \to B(y), transport^B(refl_x,_) \equiv id_{B(x)}.$

Proof. 第一種證明: 設 $D:(x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D(x,y,p) \coloneqq B(x) \rightarrow B(y).$ 那麼我們有函數 $d:\equiv (x:A) \mapsto \operatorname{id}_{B(x)}: D(x,x,\operatorname{refl}_x).$ 根據道路歸納,對於任何 x,y:A,p:x=y,我們有函數 $\operatorname{ind}_{=_A}(D,d,x,y,p):B(x) \rightarrow B(y).$ 於是我們可以定義,對於任何 p:x=y,函數 $\operatorname{transport}^B(p,_) \coloneqq \operatorname{ind}_{=_A}(D,d,x,y,p).$ 根據計算規則, $\operatorname{transport}^B(\operatorname{refl}_x,_) \equiv \operatorname{id}_{B(x)}.$

第二種證明:根據道路歸納,只需假設 p 是 refl_x. 在該情況下,對於任何 b: B(x),我們定義 transport $B(refl_x, b) :\equiv b$.

引理 3.11 道路提升

設 $P:A \rightarrow \mathcal{U}, x,y:A$. 則對於任何 u:P(x),p:x=y,我們有 $\pmb{lift}(u,p):(x,u)=_{(x:A)\times P(x)}(y,transport^P(p,u)), \pmb{lift}(u,refl_x)\equiv refl_{(x,u)}$.

Proof. 根據道路歸納,只需證明 $(x,u) = (x, \mathrm{id}_{P(x)}(u))$,略.

引理 3.12 依賴映射

設 $B: A \to \mathcal{U}, f: (x:A) \to B(x), x,y:A.$ 我們有映射 $\operatorname{\boldsymbol{apd}}_f: (p:x=_A y) \to \left(\operatorname{transport}^B(p,f(x)) =_{B(y)} f(y)\right), \operatorname{\boldsymbol{apd}}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}.$

Proof. 第 一 種 證 明 : 設 $D:(x,y:A) \to (x=y) \to \mathcal{U}, D(x,y,p) :\equiv \operatorname{transport}^B(p,f(x)) =_{B(y)} f(y).$ 於 是 我 們 有 函 數 $d:\equiv (x:A) \mapsto \operatorname{refl}_{f(x)}:(x:A) \to D(x,x,\operatorname{refl}_x).$ 根 據 道 路 歸 納 , 對 於 任 何 x,y:A,p:x=y, 我 們 有 函 數 $\operatorname{ind}_{=_A}(D,d,x,y,p) : \operatorname{transport}^B(p,f(x)) =_{B(y)} f(y).$ 於是我們可以定義,對於任何 p:x=y,函數 $\operatorname{apd}_f(p) :\equiv \operatorname{ind}_{=_A}(D,d,x,y,p).$ 根據計算規則, $\operatorname{apd}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}.$

第二種證明:根據道路歸納,只需假設 p 是 refl_x . 在該情況下,我們定義 $\operatorname{apd}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}$: $\operatorname{transport}^B(\operatorname{refl}_x, f(x)) = {}_{B(x)} f(x)$.

引理 3.13 設 $B:A\to\mathcal{U}, B(x):\equiv B, x,y:A$. 則能構造函數 $transportconst^B(_,_):(p:x=y)\to b:B\to b=transport^B(p,b)$.

Proof. 根據道路歸納,只需證明 $(b:B) \to b = \operatorname{transport}^B(\operatorname{refl}_r, b)$,即 $(b:B) \to b = b$. 顯然只需定義 $\operatorname{transportconst}^B(\operatorname{refl}_r, b) := \operatorname{refl}_b$.

引理 3.14 設 $f:A\to B, x,y:A$. 則對於任何道路 p:x=y,我們有類型爲 $ap_f(p)=transportconst^B(p,f(x)) \bullet apd_f(p)$ 的道路.

Proof. 根據道路歸納,只需證明 $\operatorname{ap}_f(\operatorname{refl}_x) = \operatorname{transportconst}^B(\operatorname{refl}_x, f(x)) \cdot \operatorname{apd}_f(\operatorname{refl}_x)$,即 $\operatorname{refl}_{f(x)} = \operatorname{refl}_{f(x)} \cdot \operatorname{refl}_{f(x)}$,這是顯然的.

 $(P:A \rightarrow \mathcal{U}) \rightarrow (x,y:A) \rightarrow (p:x=y) \rightarrow (q:y=z) \rightarrow (u:P(x)) \rightarrow transport^{P}(q,transport^{P}(p,u)) = transport^{P}(p \bullet q,u).$

Proof. 咯.

引起 3.16 $(f:A\rightarrow B)\rightarrow (P:B\rightarrow \mathcal{U})\rightarrow (x,y:A)\rightarrow (p:x=y)\rightarrow (u:P(f(x)))\rightarrow transport^{P\circ f}(p,u)=transport^{P}(ap_{f}(p),u).$

Proof. 略.

引理 3.17

 $(P,Q:A\rightarrow \mathcal{U})\rightarrow (f:(x:A)\rightarrow P(x)\rightarrow Q(x))\rightarrow (x,y:A)\rightarrow (p:x=y)\rightarrow (u:P(x))\rightarrow transport^Q(p,f_x(u))=_{Q(u)}f_y(transport^P(p,u)).$

Proof. 略.

3.4 同倫和等價

定義 3.4 同倫

設 $P:A \rightarrow \mathcal{U}, f,g:(x:A) \rightarrow P(x)$. 從 f 到 g 的一個**同倫**定義爲一個類型爲 $(f \sim g) :\equiv (x:A) \rightarrow f(x) = g(x)$ 的函數.

引理 3.18 | 設 $f: A \to B$. 則 $(x:A) \mapsto refl_{f(x)}: f \sim f$.

Proof. 略.

引理 3.19 | 設 $P: A \rightarrow \mathcal{U}$. 我們有:

1. $(f:(x:A)\to P(x))\to (f\sim f)$;

2. $(f,g:(x:A) \rightarrow P(x)) \rightarrow (f \sim g) \rightarrow (g \sim f)$;

 $3.\; (f,g,h:(x:A)\to P(x))\to (f\sim g)\to (g\sim h)\to (f\sim h).$

Proof. 略.

引理 3.20 設 $f,g:A\to B,H:f\sim g$. 則對於任何 x,y:A,p:x=y 我們有 $H(x)\bullet g(p)=f(p)\bullet H(y)$,即下圖交換

Proof. 略.

推論 3.1 設 $f: A \to A, H: f \sim id_A$. 則對於任何 x: A 我們有 H(f(x)) = f(H(x)).

Proof. 根據 H 的自然性, 我們有 $f(Hx) \cdot Hx = H(fx) \cdot Hx$, 即下圖交換

我們可以用 $(Hx)^{-1}$ 加鬚來消除 Hx, 得到 $f(Hx) = f(Hx) \cdot Hx \cdot (Hx)^{-1} = H(fx) \cdot Hx \cdot (Hx)^{-1} = H(fx)$.

定義 3.5 擬逆

對於一個函數 $f:A \to B$,它的一個擬進是一個三元組 $(g,\alpha,\beta): \mathbf{qinv}(f) :\equiv (g:B \to A) \times [(g \circ f \sim id_A) \times (f \circ g \sim id_B)].$

定義 3.6 等價

對 於 任 何 函 數 $f:A \to B$, 定 義 $isequiv(f) :\equiv [(g:B \to A) \times (g \circ f \sim id_A)] \times [(h:B \to A) \times (f \circ h \sim id_B)]$, $(A \simeq B) :\equiv (f:A \to B) \times isequiv(f)$.

引理 3.21 1. 對於任何 $f: A \to B$, 存在函數 $qinv(f) \to isequiv(f)$;

2. 對於任何 $f: A \to B$,存在函數 $isequiv(f) \to qinv(f)$.

Proof. 1. 略.

2. 给 定 四 元 組 (g,α,h,β) : isequiv(f), 我 們 有 $\alpha:(x:A)\to (g\circ f)(x)=x,\beta:(y:B)\to (f\circ h)(y)=y$, 那 麼 我 們 有 同 倫 $g\circ \beta^{-1}:(y:B)\to g(y)=(g\circ f\circ h)(y)\equiv g\sim (g\circ f\circ h)$ 和 $\alpha\circ h:(y:B)\to (g\circ f\circ h)(y)=h(y)\equiv (g\circ f\circ h)\sim h$. 於 是 我 們 可 以 定 義 同 倫 $\gamma:\equiv (g\circ \beta^{-1})\bullet(\alpha\circ h):g\sim h\equiv (y:B)\to g(y)=h(y)$. 那 麼 $f\circ \gamma:(y:B)\to (f\circ g)(y)=(f\circ h)(y)\equiv (f\circ g)\sim (f\circ h)$. 於 是 有 $(f\circ \gamma)\bullet\beta:(f\circ g)\sim \mathrm{id}_B$. 所以有 $(g,\alpha,(f\circ \gamma)\bullet\beta):\mathrm{qinv}(f)$.

引理 3.22 1. 對於任何類型 $A: \mathcal{U}$, 我們有 $isequiv(id_A)$, 即 $A \simeq A$;

- 2. 對於任何函數 $f: A \to B$ 使得 isequiv(f), 即 $A \simeq B$, 我們有一個函數 $f^{-1}: B \to A$ 使得 $isequiv(f^{-1})$, 即 $B \simeq A$;
- 3. 對於任何函數 $f:A \to B$ 使得 isequiv(f) ($PA \simeq B$) 和 $g:B \to C$ 使得 isequiv(g) ($PA \simeq C$), 我們有 $isequiv(g \circ f)$ ($PA \simeq C$).

Proof. 1. 我們要證明對於任何類型 $A: \mathcal{U}$ 有 $[(g:B \to A) \times (g \circ \mathrm{id}_A \sim \mathrm{id}_A)] \times [(h:B \to A) \times (\mathrm{id}_A \circ h \sim \mathrm{id}_B)]$, 略.

2. f 的擬逆.

 $3. f^{-1} \circ g^{-1}$ 是 $g \circ f$ 的一個擬逆.

3.5 Σ-類型

定理 3.2 設 $B: A \rightarrow \mathcal{U}, \ w, w': (x:A) \times B(x).$

則我們有一個等價 $(w = w') \simeq (p : pr_1(w) = pr_1(w')) \times (transport^B(p, pr_2(w)) = pr_2(w')).$

Proof. 略.

推論 3.2 設 $B: A \to \mathcal{U}$. 則對於任何 $w: (x:A) \times B(x)$, 我們有 $w = \langle pr_1(w), pr_2(w) \rangle$.

Proof. 略.

引理 3.23 設 $B:A \to \mathcal{U}$, $C:(x:A) \times (B(x) \to \mathcal{U})$. 則我們有 $[(x:A) \times (y:B(x)) \times C(\langle x,y \rangle)] \simeq [(p:(x:A) \times B(x)) \times C(p)]$.

Proof. 略.

3.6 單元類型

定理 3.3

$$(x, y : 1) \to ((x = y) \simeq 1).$$

Proof. 根據單元類型和恆等類型的歸納原理,我們只需要證明 (* = *) \simeq 1. 設函數 f: (* = *) \to 1, $x \mapsto$ * 和 g: 1 \to (* = *), $x \mapsto$ refl $_*$. 那麼我們只需證明對於任何 x: * = * 有 $(g \circ f)(x) = \mathrm{id}_{*=*}(x)$ 和對於任何 x: 1 有 $(f \circ g)(x) = \mathrm{id}_{1}(x)$. 根據單元類型和恆等類型的歸納原理,我們只需要證明 $(g \circ f)(\mathrm{refl}_{*}) = \mathrm{id}_{*=*}(\mathrm{refl}_{*})$ 和 $(f \circ g)(*) = \mathrm{id}_{1}(*)$,略.

定理 3.4

$$(x, y : \mathbf{1}) \rightarrow (x = y).$$

Proof. 略.

3.7 Ⅱ-類型

引理 3.24 happly

對於任何函數 $f, g: (x:A) \to B(x)$, 我們有函數

$$\boldsymbol{happly}(f,g):(f=g)\to (x:A)\to (f(x)=g(x)),$$

 $\boldsymbol{happly}\big(f,g,refl_f\big) :\equiv (x:A) \mapsto refl_{f(x)}.$

Proof. 略.

定義 3.7 $(A \rightarrow B)$

給定類型 X, 類型族 $A, B: X \to \mathcal{U}$. 定義函數:

$$(\mathbf{A} \to \mathbf{B}) : X \to \mathcal{U}, (\mathbf{A} \to \mathbf{B})(x) :\equiv A(x) \to B(x).$$

引理 3.25 | 給定類型 X, 一個路徑 $p: x_1 =_X x_2$, 類型族 $A, B: X \to \mathcal{U}$, 一個函數 $f: A(x_1) \to B(x_1)$. 則我們有:

 $transport^{A \to B}(p,f) =_{A(x_2) \to B(x_2)} x \mapsto transport^B \big(p, f \big(transport^A \big(p^{-1}, x \big) \big) \big).$

Proof. 根據 p 的道路歸納,我們只需證明 $\operatorname{transport}^{A \to B} \left(\operatorname{refl}_{x_1}, f \right) =_{A(x_1) \to B(x_1)} x \mapsto \operatorname{transport}^B \left(\operatorname{refl}_{x_1}, f \left(\operatorname{transport}^A \left(\operatorname{refl}_{x_1}, x \right) \right) \right)$,即 $f =_{A(x_1) \to B(x_1)} x \mapsto f(x)$,證畢.

3.8 宇宙和泛等公理

引理 3.26 對於任何類型 $A,B:\mathcal{U}$,我們有一個函數 $idtoeqv_{A,B}:(A=_{\mathcal{U}}B) \to (A\simeq B)$.

Proof. 函數 $\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(_,_): (A =_{\mathcal{U}} B) \to A \to B$. 我們要證明 $(p: A =_{\mathcal{U}} B) \to \operatorname{isequiv}(\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(p,_))$. 根據 p 的道路歸納,只需證明 $\operatorname{isequiv}(\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(\operatorname{refl}_A,_))$,即證明 $\operatorname{isequiv}(\operatorname{id}_A)$,略.

定義 $idtoeqv_{A,B}(p) := (transport^{id_{\mathcal{U}}}(p,_), a) : A \simeq B$, 其中 $a : isequiv(transport^{id_{\mathcal{U}}}(p,_))$.

引理 3.27 $(id_A, a) = idtoeqv_{A,B}(refl_A)$, 其中 $a: isequiv(id_A)$.

Proof. 略.

引理 3.28 對於任何 $x,y:A,p:x=y,B:A\to\mathcal{U},u:B(x)$, 我們有 $transport^B(p,u)=transport^{id_u}(ap_B(p),u)=pr_1(idtoeqv(ap_B(p)))(u)$.

Proof. 根據歸納原理,只需證明 $transport^B(refl_x, u) = transport^{id_{\mathcal{U}}}(ap_B(refl_x), u) = pr_1(idtoeqv(ap_B(refl_x)))(u)$,略.

定義 3.8 泛等公理(不常用)

$$\frac{\varGamma \vdash A: \mathcal{U}_i \quad \varGamma \vdash B: \mathcal{U}_i}{\varGamma \vdash \boldsymbol{univalence}(A,B): isequiv\big(idtoeqv_{A,B}\big)} \; \mathcal{U}_i\text{-}UNIV$$

```
(idtoeqv_{AB}, univalence(A, B)) : (A =_{\mathcal{H}} B) \simeq (A \simeq B).
Proof. 略.
                                                                                                                                                                                                                                            定義 3.9 泛等公理(常用)
 1. 對於任何類型 A, B: \mathcal{U}, 我們有一個函數 ua: (A \simeq B) \to (A =_{\mathcal{U}} B);
 2. 對於任何 (f,a): A \simeq B, 我們有 idtoeqv_{A,B}(\boldsymbol{ua}(f,a)) = (f,a);
 3. 對於任何 p: A =_{\mathcal{U}} B, 我們有 p = ua(idtoeqv_{AB}(p)).
 引理 3.30 1. 對於任何類型 A:\mathcal{U},我們有 refl_A=ua(id_A,a),其中 a:isequiv(id_A);
 2. 對於任何 (f,a):A\simeq B,(g,b):B\simeq C, 我們有 ua(f,a)\bullet ua(g,b)=ua(g\circ f,c).
 3. 對於任何 (f,a): A \simeq B 和它的一個擬逆 (f^{-1},b), 我們有 (ua(f,a))^{-1} = ua(f^{-1},b).
Proof. 略.
                                                                                                                                                                                                                                            3.9 恆等類型
                     如果 (f,a):A\simeq B,則對於任何 x,x':A,函數 ap_f:(x=x')	o (f(x)=f(x')) 也是一個等價.
Proof.
                                                                                                                                                             組
                                                                                                                                                                                     (g, \gamma, h, \delta): isequiv(ap<sub>f</sub>),
g:(f(x)=f(x'))\rightarrow (x=x'), \gamma:(p:x=x')\rightarrow \left(g\left(\operatorname{ap}_f(p)\right)=p\right), h:(f(x)=f(x'))\rightarrow (x=x'), \delta:(q:f(x)=f(x'))\rightarrow \left(\operatorname{ap}_f(g(q))\right).
 \mbox{$\not$$} \mbox{$\not$$} \mbox{$(f^{-1},\alpha,\beta): {\rm qinv}(f)$, $$ $\mbox{$\not$$} \mbox{$\not$$} \mbox{$f^{-1}:B \to A$, $\alpha:(x:A) \to (f^{-1}(f(x))=x)$, $\beta:(y:B) \to (f(f^{-1}(y))=y)$.} 
那麼對於任何 x, x': A,我們有 \operatorname{ap}_{f^{-1}}: (f(x) = f(x')) \to (f^{-1}(f(x))) = f^{-1}(f(x'))).
於是對於任何 p: x = x', 我們有
\alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}}(\operatorname{ap}_f(p)) \cdot \alpha_{x'}
=\alpha_x^{-1} \bullet \operatorname{ap}_{f^{-1} \circ f}(p) \bullet \alpha_{x'}
=\mathrm{ap}_{\mathrm{id}_A}(p)
= p.
且對於任何 q: f(x) = f(x'), 我們有
\operatorname{ap}_f(\alpha_x^{-1} \bullet \operatorname{ap}_{f^{-1}}(q) \bullet \alpha_{x'})
=\beta_{f(x)}^{-1} \bullet \beta_{f(x)} \bullet \operatorname{ap}_f (\alpha_x^{-1} \bullet \operatorname{ap}_{f^{-1}}(q) \bullet \alpha_{x'}) \bullet \beta_{f(x')}^{-1} \bullet \beta_{f(x')}
= \beta_{f(x)}^{-1} \cdot \operatorname{ap}_f \left( \operatorname{ap}_f^{-1} \left( \operatorname{ap}_f \left( \alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}}(q) \cdot \alpha_{x'} \right) \right) \right) \cdot \beta_{f(x')}
=\beta_{f(x)}^{-1} \bullet \operatorname{ap}_f (\alpha_x \bullet \alpha_x^{-1} \bullet \operatorname{ap}_{f^{-1}}(q) \bullet \alpha_{x'} \bullet \alpha_{x'}^{-1}) \bullet \beta_{f(x')}
=\beta_{f(x)}^{-1} \bullet \mathrm{ap}_f \big( \mathrm{ap}_{f^{-1}}(q) \big) \bullet \beta_{f(x')}
= q.
```

引理 3.31 對於任何 $a, x_1, x_2 : A$ 和 $p : x_1 = x_2$,我們有

 $1. \; (q:a=x_1) \rightarrow transport^{x \mapsto (a=x)}(p,q) = q \bullet p ;$

 $2.\ (q:x_1=a) \rightarrow transport^{x \mapsto (x=a)}(p,q) = p^{-1} \bullet q;$

 $3. \ (q:x_1=x_2) \rightarrow transport^{x \mapsto (x=x)}(p,q) = p^{-1} \bullet q \bullet p.$

Proof. 略.

3.10 餘積

定義 3.10 code ("固定 $a_0: A$ "的版本)

給定 $A, B: \mathcal{U}, a_0: A$.

定義函數

 $code: A + B \rightarrow \mathcal{U}$,

模式匹配

$$\boldsymbol{code}(inl(\underline{\ \ })):\equiv a_0=\underline{\ \ }:A\to \mathcal{U}$$

 $\boldsymbol{code}(inr(_)) :\equiv b \mapsto \mathbf{0} : B \to \mathcal{U}.$

定理 3.6 對於任何 x:A+B, 我們有 $(inl(a_0)=x)\simeq code(x)$.

Proof. 定義函數

$$\mathbf{encode}: (x:A+B) \to (\mathrm{inl}(a_0)=x) \to \mathrm{code}(x),$$

 $\mathbf{encode}(x,p) :\equiv \mathrm{transport}^{\mathrm{code}} \Big(p, \mathrm{refl}_{a_0} \Big).$

和函數

$$\mathbf{decode}: (x:A+B) \to \operatorname{code}(x) \to (\operatorname{inl}(a_0) = x),$$

模式匹配

$$\mathbf{decode}(\mathrm{inl}(a), c) :\equiv \mathrm{ap_{inl}}(c)$$

$$\mathbf{decode}(\operatorname{inr}(b), c) :\equiv \operatorname{ind}_{\mathbf{0}}((x : \mathbf{0}) \mapsto (\operatorname{inl}(a_0) = \operatorname{inr}(b)), c)$$

接下來我們需要證明對於任何 x:A+B 有 $\operatorname{encode}(x,_)$ 和 $\operatorname{decode}(x,_)$ 互爲擬逆.

在其中一個方向,我們要證明對於任何 $p: \operatorname{inl}(a_0) = x$ 有 $\operatorname{decode}(x, \operatorname{encode}(x, p)) = p$. 根據 p 的道路歸納,我們只需證明 $x \equiv \operatorname{inl}(a_0)$, $p \equiv \operatorname{refl}_{\operatorname{inl}(a_0)}$ 的情况:

$$\begin{split} \operatorname{decode} \left(&\operatorname{inl}(a_0), \operatorname{encode} \left(&\operatorname{inl}(a_0), \operatorname{refl}_{\operatorname{inl}(a_0)} \right) \right) \\ & \equiv \operatorname{decode} \left(&\operatorname{inl}(a_0), \operatorname{transport}^{\operatorname{code}} \left(\operatorname{refl}_{\operatorname{inl}(a_0)}, \operatorname{refl}_{a_0} \right) \right) \\ & \equiv \operatorname{decode} \left(&\operatorname{inl}(a_0), \operatorname{refl}_{a_0} \right) \\ & \equiv \operatorname{ap}_{\operatorname{inl}} \left(\operatorname{refl}_{a_0} \right) \\ & \equiv \operatorname{refl}_{\operatorname{inl}(a_0)} \\ & \equiv p. \end{split}$$

在另一個方向, 我們要證明對於任何 c: code(x) 有 encode(x, decode(x, c)) = c:

當 $x \equiv \text{inl}(a)$ 時, $c: a_0 = a$:

$$\equiv \operatorname{encode}(\operatorname{inl}(a), \operatorname{ap}_{\operatorname{inl}}(c))$$

$$\equiv \text{transport}^{\text{code}}(\text{ap}_{\text{inl}}(c), \text{refl}_{a_0})$$

$$\equiv \operatorname{transport}^{a \mapsto (a_0 = a)} \left(c, \operatorname{refl}_{a_0} \right)$$

$$\equiv \operatorname{refl}_{a_0} \bullet c$$

 $\equiv c$.

當
$$x \equiv inr(b)$$
 時, $c: \mathbf{0}$, 略.

推論 3.3

$$\begin{split} encode(inl(a),_): (inl(a_0)=inl(a)) \rightarrow (a_0=a) \text{;} \\ encode(inr(b),_): (inl(a_0)=inr(b)) \rightarrow \textbf{0}. \end{split}$$

Proof. 略.

Proof. 略.

引理 3.32 $2 \simeq 1 + 1$.

推論 3.4 $0_2 \neq 1_2$.

Proof. 咯.

定義 3.11 (A+B)

給定一個類型 X, 類型族 $A,B:X\to \mathcal{U}$, 定義類型族:

 $(\boldsymbol{A}+\boldsymbol{B}):X\to\mathcal{U},(\boldsymbol{A}+\boldsymbol{B})(x):\equiv A(x)+B(x).$

引理 3.33 | 給定一個類型 X,一個道路 $p: x_1 =_X x_2$,類型族 $A, B: X \to \mathcal{U}$,則我們有:

 $transport^{A+B}(p,inl(a))=inl\big(transport^{A}(p,a)\big);$

 $transport^{A+B}(p,inr(b)) = inr \big(transport^A(p,b)\big).$

Proof. 略.

3.11 自然數

定義 3.12 code

定義函數

 $code: \mathbb{N} \to \mathbb{N} \to \mathcal{U}$,

模式匹配

 $\boldsymbol{code}(0,0) :\equiv \mathbf{1}$

 $\boldsymbol{code}(succ(m),0) :\equiv \mathbf{0}$

 ${\boldsymbol{code}}(0,succ(n)):\equiv {\bf 0}$

 $code(succ(m), succ(n)) :\equiv code(m, n).$

定義 3.13 r

定義函數

 $\pmb{r}:(n:\mathbb{N})\to code(n,n)$

模式匹配

 $r(0) := \star$

 $\boldsymbol{r}(succ(n)) :\equiv \boldsymbol{r}(n).$

定理 3.7 對於任何 $m, n : \mathbb{N}$ 我們有 $(m = n) \simeq code(m, n)$.

Proof. 定義函數

encode: $(m, n : \mathbb{N}) \to (m = n) \to \operatorname{code}(m, n),$

 $encode(m, n, p) := transport^{code(m, p)}(p, r(m)),$

和函數

decode: $(m, n : \mathbb{N}) \to \operatorname{code}(m, n) \to (m = n),$

模式匹配

$$\begin{aligned} \mathbf{decode}(0,0,\,\star\,\,) &:\equiv \mathrm{refl}_0 \\ \mathbf{decode}(\mathrm{succ}(m),0,c) &:\equiv \mathrm{ind}_{\mathbf{0}}((x:\mathbf{0}) \mapsto (m=n),c) \\ \mathbf{decode}(0,\mathrm{succ}(n),c) &:\equiv \mathrm{ind}_{\mathbf{0}}((x:\mathbf{0}) \mapsto (m=n),c) \end{aligned}$$

 $\mathbf{decode}(\operatorname{succ}(m), \operatorname{succ}(n), c) :\equiv \operatorname{ap}_{\operatorname{succ}} \circ \mathbf{decode}(m, n, c).$

接下來我們要證明對於任何 $m, n: \mathbb{N}$ 有 $encode(m, n, _)$ 和 $decode(m, n, _)$ 互爲擬逆.

我們先證明對於任何 p:m=n 有 $\operatorname{decode}(m,n,\operatorname{encode}(m,n,p))=p$. 根據 p 的道路歸納,只需證明 $\operatorname{decode}(m,m,\operatorname{encode}(m,m,\operatorname{refl}_m))=\operatorname{refl}_m$,即 $\operatorname{decode}(m,m,r(m))=\operatorname{refl}_m$.對 m 使 用 歸 納 法 ,如果 $m\equiv 0$,那麼 $\operatorname{decode}(0,0,r(0))=\operatorname{decode}(0,0,\star)=\operatorname{refl}_0$; 設 $x:\mathbb{N},y:\operatorname{decode}(x,x,r(x))=\operatorname{refl}_x$,則 $\operatorname{decode}(\operatorname{succ}(x),\operatorname{succ}(x),r(\operatorname{succ}(x)))=\operatorname{ap}_{\operatorname{succ}}(\operatorname{decode}(x,x,r(x)))=\operatorname{ap}_{\operatorname{succ}}(\operatorname{refl}_x)=\operatorname{refl}_{\operatorname{succ}(x)}$.

然 後 我 們 證 明 對 於 任 何 $c: \operatorname{code}(m,n)$ 有 $\operatorname{encode}(m,n,\operatorname{decode}(m,n,c)) = c$. 我 們 對 m,n 進 行 雙 歸 納 . 如 果 都 是 0, 那 麼 $\operatorname{encode}(0,0,\operatorname{decode}(0,0,c)) = \operatorname{encode}(0,0,\operatorname{decode}(0,0,\operatorname{refl}_0)) = r(0) = \star = c$; 如果 m 是 0 且 n 是一個後繼,或反之,那麼有 c:0; 最後是兩個後繼的情況,根據歸納假設我們有

$$\begin{split} &\operatorname{encode}(\operatorname{succ}(m),\operatorname{succ}(n),\operatorname{decode}(\operatorname{succ}(m),\operatorname{succ}(n),c))\\ &=\operatorname{encode}(\operatorname{succ}(m),\operatorname{succ}(n),\operatorname{ap}_{\operatorname{succ}}(\operatorname{decode}(m,n,c)))\\ &=\operatorname{transport}^{\operatorname{code}(\operatorname{succ}(m),_)}(\operatorname{ap}_{\operatorname{succ}}(\operatorname{decode}(m,n,c)),r(\operatorname{succ}(m)))\\ &=\operatorname{transport}^{\operatorname{code}(\operatorname{succ}(m),\operatorname{succ}(_))}(\operatorname{decode}(m,n,c),r(\operatorname{succ}(m)))\\ &=\operatorname{transport}^{\operatorname{code}(m,_)}(\operatorname{decode}(m,n,c),r(m))\\ &=\operatorname{encode}(m,n,\operatorname{decode}(m,n,c))\\ &=c \end{split}$$

推論 3.5 1. 對於任何 $m: \mathbb{N}$, 我們有 $encode(succ(m), 0, _): (succ(m) = 0) \to \mathbf{0}$;

2. 對於任何 $m,n:\mathbb{N}$, 我們有 $encode(succ(m),succ(n),decode(succ(m),succ(n),_)):(succ(m)=succ(n))\to (m=n).$

Proof. 略.

3.12 泛性質

定理 3.8 設 $A:X\to\mathcal{U}$, $P:(x:X)\to A(x)\to\mathcal{U}$. 則有等價: $[(x:X)\to(a:A(x))\times P(x,a)]\simeq [(g:(x:X)\to A(x))\times ((x:X)\to P(x,g(x)))]$

 $Proof. 定義函數 \ \varphi: [(x:X) \rightarrow (a:A(x)) \times P(x,a)] \rightarrow [(g:(x:X) \rightarrow A(x)) \times ((x:X) \rightarrow P(x,g(x)))], \\ \varphi(f) \coloneqq \langle x \mapsto \operatorname{pr}_1(f(x)), x \mapsto \operatorname{pr}_2(f(x)) \rangle \\ \psi: [(g:(x:X) \rightarrow A(x)) \times ((x:X) \rightarrow P(x,g(x)))] \rightarrow [(x:X) \rightarrow (a:A(x)) \times P(x,a)], \\ \psi(\langle g,h \rangle) \coloneqq x \mapsto \langle g(x),h(x) \rangle.$ 剩餘證明略.

4 集合和邏輯

4.1 集合和 n-類型

定義 4.1 集合(0-類型)

設 A: U.

$$isSet(A) :\equiv (x,y:A) \rightarrow (p,q:x=y) \rightarrow (p=q).$$

例子 4.1 類型 1 是一個集合.

例子 4.2 類型 **0** 是一個集合.

例子 4.3 自然數類型 № 是一個集合.

定義 4.2 1-類型

一個類型 A 是一個 1-類型 如果 $(x, y : A) \rightarrow (p, q : x = y) \rightarrow (\alpha, \beta : p = q) \rightarrow (\alpha = \beta)$.

引理 4.1 如果 A 是一個集合,則 A 是一個 1-類型.

Proof. 我們想證明 $[(x,y:A) \rightarrow (p,q:x=y) \rightarrow (p=q)] \rightarrow (x,y:A) \rightarrow (p,q:x=y) \rightarrow (\alpha,\beta:p=q) \rightarrow (\alpha=\beta).$

設 f: isSet(A). 那麼對於任何 x,y:A 和 p,q:x=y 我們有 p=q. 給定 x,y 和 p,定義 $g:(q:x=y) \rightarrow (p=q), g:\equiv f(x,y,p,_)$. 那麼對於任何 q,q':x=y 和 $\alpha:q=q'$,我們有 $apd_q(\alpha): transport^{q\mapsto (p=q)}(\alpha,g(q))=g(q')$,也就有 $g(q)\bullet \alpha=g(q')$.

因此對於任何 $x,y:A,p,q:x=y,\alpha,\beta:p=q$,我們有 $g(p) \bullet \alpha = g(q)$ 且 $g(p) \bullet \beta = g(q)$,也就有 $g(p) \bullet \alpha = g(p) \bullet \beta$,也就有 $\alpha = \beta$.

例子 4.4 宇宙 21 不是一個集合.

 $\mathit{Proof.}$ 設 $f:\mathbf{2}\to\mathbf{2}, f(0_{\mathbf{2}}):\equiv 0_{\mathbf{2}}, f(1_{\mathbf{2}}):\equiv 0_{\mathbf{2}}.$ 顯然 f 是一個等價. 因此,根據泛等,由 f 可以導出一個道路 p:A=A.

如果 $p = refl_A$, 那麼有 $f = id_A$, 矛盾, 證畢.

4.2 命題

定義 4.3 命題(-1-類型)

設 A:U.

$$isProp(A) :\equiv (x, y : A) \rightarrow (x = y).$$

引理 4.2 如果 P 是一個命題且 $x_0: P$,則 $P \simeq 1$.

Proof. 略.

引理 4.3 如果 P 和 Q 是命題,且有 P \rightarrow Q 和 Q \rightarrow P,則我們有 P \simeq Q.

Proof. 設 $f:P \to Q, \ g:Q \to P.$ 那麼由於 P 是命題,則對於任何 x:P 我們有 g(f(x))=x. 同理,對於任何 y:Q 我們有 f(g(y))=y. 因此 f 和 g 互爲擬逆.

引理 4.4 每個命題都是一個集合.

Proof. 我們想證明 $[(x,y:A) \rightarrow (x=y)] \rightarrow (x,y:A) \rightarrow (p,q:x=y) \rightarrow (p=q).$

設 f: isProp(A). 那麼對於任何 x,y:A 我們有 f(x,y):x=y. 給定 x,定義 $g:(y:A)\to x=y,g:\equiv f(x,_)$. 那麼對於任何 y,z:A 和 p:y=z,我們有 $apd_g(p): transport^{y\mapsto x=y}(p,g(y))=g(z)$,也就有 $g(y)\bullet p=g(z)$,也就有 $p=(g(y))^{-1}\bullet g(z)$.

因此對於任何 x, y : A, p, q : x = y, 我們有 $p = (g(x))^{-1} \cdot g(y) = q$.

4.3 子集

引理 4.5 設 $P:A\to\mathcal{U}$ 且對於任何 x:A,P(x) 是一個命題. 則對於任何 $u,v:(x:A)\times P(x)$,若 $pr_1(u)=pr_1(v)$,則有 u=v.

Proof. 設 $p:\operatorname{pr}_1(u)=\operatorname{pr}_1(v)$. 則爲了證明 u=v,我們只需證明 $\operatorname{transport}^P(p,\operatorname{pr}_2(u))=\operatorname{pr}_2(v)$. 因爲 $\operatorname{transport}^P(p,\operatorname{pr}_2(u)),\operatorname{pr}_2(v):P(\operatorname{pr}_1(v))$ 且該類型是一個命題,所以證畢.

定義 4.4 子類型,子集

設 $P: A \to \mathcal{U}$ 是一個命題族 (即每個 P(x) 是一個命題) .

$$\{x:A\mid P(x)\}:\equiv (x:A)\times P(x);$$

$$a \in \{x : A \mid P(x)\} :\equiv P(a).$$

 $\{x:A\mid P(x)\}$ 稱爲 A 的一個子類型; 如果 A 是集合,則 $\{x:A\mid P(x)\}$ 稱爲 A 的一個子集.

定義 4.5 Set₁₁

定義 21 的一個"子宇宙":

$$Set_{\mathcal{U}} := \{A : \mathcal{U} \mid isSet(A)\}.$$

定義 4.6 Propu

$$\textbf{\textit{Prop}}_{\mathcal{U}} :\equiv \{A: \mathcal{U} \mid isProp(A)\}.$$

定義 4.7 關係

一個關係是一個命題族 $R: A \times A \rightarrow Prop$, 其中 A 是集合.

4.4 命題截斷

定義 4.8 命題截斷 (-1-截斷)

命題截斷系如下資料:

- 1. 類型形成器: $\| \cdot \| : \mathcal{U} \to \mathcal{U};$
- 2. 構造子 1: | _ |: A → ||A||;
- 3. 構造子 2: 對於任何 x, y: ||A||, 我們有 x = y;
- 4. 消除器: 如果有 isProp(B), 則有 $rec_{\| \ \|}:(A \to B) \to \|A\| \to B$;
- 5. 計算規則: $rec_{\parallel \parallel}(f)(|a|) :\equiv f(a)$

定義 4.9 傳統邏輯記號

給定類型 A 和 B.

A和B 是邏輯等價的 $(A iff B) := (A \rightarrow B) \times (B \rightarrow A)$

給定命題P和Q.

4.5 可縮性

定義 4.10 可縮的

 $isContr(A) :\equiv (a : A) \times ((x : A) \rightarrow (a = x)).$

引理 4.6 對於任何類型 A, 以下類型是邏輯等價的:

- 1. isContr(A);
- 2. $A \times isProp(A)$;
- 3. $A \simeq 1$.

Proof. 略.

引理 4.7 對於任何類型 A, 類型 isContr(A) 是命題.

Proof. №.

引理 4.8 如果類型 A 等價於 B 且 A 可縮, 則 B 可縮.

Proof. 略.

定義 4.11 收縮,截面,收縮核

稱函數 $r:A\to B$ 是一個收縮,如果存在一個函數 $s:B\to A$,稱爲它的一個截面,和一個同倫 $r\circ s\sim id_B$. 我們稱 B 爲 A 的一個收縮核.

引理 4.9 如果 B 是 A 的一個收縮核,且 A 是可縮的,則 B 是可縮的.

Proof. 令 $r:A \to B$ 是一個收縮, $s:B \to A$ 是它的一個截面, $\varepsilon:r \circ s \sim \mathrm{id}_B$, $a_0:A$, $\mathrm{contr}_{s(b)}:a_0=s(b)$, $b_0:\equiv r(a_0),b:B$. 那麼我們有 $r\big(\mathrm{contr}_{s(b)}\big) \bullet \varepsilon(b):b_0=b$,證畢.

引理 4.10 對於任何類型 A 和 a:A,類型 $(x:A) \times (a=x)$ 是可縮的.

 ${\it Proof.}$ 我們要證明 $(\langle x,p \rangle: (x:A) \times (a=x)) \to \langle a, {\rm refl}_a \rangle = \langle x,p \rangle$,略.

引理 4.11 設 $B: A \rightarrow \mathcal{U}$. 則有:

1. $[(x:A) \rightarrow isContr(B(x))] \rightarrow [((x:A) \times B(x)) \simeq A];$

 $2.\ (a:A)\times [((x:A)\to (a=x))\to (((x:A)\times B(x))\simeq B(a))].$

Proof. 略.

5 等價

5.1 半伴隨等價

回 颜 5、 對 於 任 何 函 數 $f:A \to B$, 定 義 $isequiv(f) :\equiv [(g:B \to A) \times (gf \sim id_A)] \times [(h:B \to A) \times (fh \sim id_B)]$, $(A \simeq B) :\equiv (f:A \to B) \times isequiv(f)$.

對於一個函數 $f: A \to B$, 它的一個擬遊是一個三元組 $(g, \alpha, \beta): qinv(f) :\equiv (g: B \to A) \times (gf \sim id_A) \times (fg \sim id_B)$.

定義 5.1 半伴隨等價

$$\begin{split} \textbf{ishae}(f) &:\equiv (g:B \to A) \times (\eta:g\,f \sim id_A) \times (\varepsilon:f\,g \sim id_B) \times (f\,\eta \sim \varepsilon\,f);\\ \textbf{ishae}'(f) &:\equiv (g:B \to A) \times (\eta:g\,f \sim id_A) \times (\varepsilon:f\,g \sim id_B) \times (g\,\varepsilon \sim \eta\,g). \end{split}$$

引理 5.1 ishae(f) 和 ishae'(f) 是邏輯等價的.

Proof. 我們先證明 $ishae(f) \rightarrow ishae'(f)$.

設 (g,η,ε, au) : ishae(f). 我們要構造一個四元組 $(g',\eta',\varepsilon', au')$: ishae'(f). 設 $g':\equiv g,\ \eta':\equiv \eta,\ \varepsilon':\equiv \varepsilon$.

由 $g\varepsilon$ 的自然性, 我們有路徑的交換圖如下:

從而有:

從而有:

根據 η 的自然性, 我們有:

所以我們有 $g \in y = \eta g y$, 證畢.

反方向類似, 略.

定理 5.1 對於任何 $f: A \to B$, 我們有 ishae(f) iff qinv(f).

Proof. 正方向顯然, 我們來證明反方向.

設 (g,η,ε) : qinv(f). 我們要構造一個四元組 $(g',\eta',\varepsilon',\tau)$: ishae(f). 設 $g':\equiv g$, $\eta':\equiv \eta$. 我們要構造合適的 ε' 的定義,使得對於任何 a:A 有 f $\eta a = \varepsilon' f a$.

根據 ε 的自然性, 我們有如下交換圖:

所以有 $(fgf\eta a) \bullet (\varepsilon fa) = (\varepsilon fgfa) \bullet (f\eta a)$, 於是有 $(\varepsilon fgfa)^{-1} \bullet (f\eta gfa) \bullet (\varepsilon fa) = f\eta a$.

於是我們可以定義 $\varepsilon'b := (\varepsilon f g b)^{-1} \cdot (f \eta g b) \cdot (\varepsilon b)$, 證畢.

定義 5.2 同倫纖維

一個函數 $f: A \to B$ 在一個點 y: B 的一個**同倫纖維**定義爲:

$$fib_f(y) :\equiv (x : A) \times (f(x) = y).$$

引理 5.2 對於任何 $f: A \to B, y: B$ 和 $(x,p), (x',p'): fib_n$. 我們有 $((x,p)=(x',p')) \simeq ((\gamma:x=x') \times (p=f(\gamma) \bullet p'))$.

Proof. 略.

定理 5.2 如果 $f:A \to B$ 是一個半伴隨等價,則對於任何 g:B,同倫纖維 $fib_f(y)$ 是可縮的.

Proof. 設 $(g, \eta, \varepsilon, \tau)$: ishae(f), y : B. 那麼有 $(gy, \varepsilon y)$: $fib_f(y)$. 設 (x, p): fib_f , 我們要構造從 $(gy, \varepsilon y)$ 到 (x, p) 的一條道路. 我們只需給出路徑 $\gamma : gy = x$ 使得 $\varepsilon y = f(\gamma) \cdot p$.

根據 ε 的自然性, 我們有:

也就有:

令 $\gamma := (gp)^{-1}$, 證畢.

定義 5.3 左逆和右逆

給定 $f: A \rightarrow B$, 我們定義 f 的左逆和右逆的類型爲

$$linv(f) :\equiv (g : B \rightarrow A) \times (g f \sim id_A);$$

$$rinv(f) :\equiv (g : B \to A) \times (f g \sim id_B).$$

引理 5.3 如果 $f:A\to B$ 有一個擬逆 $g:B\to A$,那麼函數 $(f\circ_):(C\to A)\to (C\to B)$ 和 $(_\circ f):(B\to C)\to (A\to C)$ 也有擬逆.

Proof. $(g \circ _) : (C \to B) \to (C \to A); (_ \circ g) : (A \to C) \to (B \to C).$

$$(f\circ _)\circ (g\circ _)\equiv f\circ g\circ _;\ (_\circ g)\circ (_\circ f)\equiv _\circ f\circ g.$$

定義 5.4 給定 $f: A \to B$, $\langle g, \eta \rangle : linv(f)$, $\langle g, \varepsilon \rangle : rinv(f)$. 我們定義:

$$\operatorname{lcoh}_f(\langle g, \eta \rangle) :\equiv (\varepsilon : f \circ g \sim id_B) \times (g \varepsilon \sim \eta g);$$

$$\operatorname{rcoh}_f(\langle g, \varepsilon \rangle) :\equiv (\eta : g \circ f \sim id_A) \times (f \eta \sim \varepsilon f).$$

引理 5.4 對於任何 $f: A \to B$, $\langle g, \eta \rangle : linv(f)$, $\langle g, \varepsilon \rangle : rinv(f)$, 我們有:

$$lcoh_f(\langle g, \eta \rangle) \simeq (y:B) \to \left[\langle f g y, \eta g y \rangle = \langle y, refl_{gy} \rangle \right];$$

$$rcoh_f(\langle g, \varepsilon \rangle) \simeq (x : A) \to [\langle g f x, \varepsilon f x \rangle = \langle x, refl_{fx} \rangle].$$

Proof. 略.

引理 5.5 如果 $f: A \to B$ 是一個半伴隨等價,則對於任何 $\langle g, \varepsilon \rangle: rinv(f)$,我們有 $rcoh_f(\langle g, \varepsilon \rangle)$ 是可縮的.

Proof. 我們只需證明對於任何 x:A, $\langle gfx, \varepsilon fx \rangle = \langle x, \operatorname{refl}_{fx} \rangle$ 是可縮的.

我們已經知道 ${
m fib}_f(fx)$ 是可縮的,又因爲可縮空間的道路空間是可縮的,證畢.

5.2 雙可逆映射

定義 5.5 雙可逆映射

我們將之前定義的 isequiv 重命名爲 biinv:

 $biinv(f) :\equiv linv \times rinv$.

定理 5.3 對於任何 $f: A \to B$, 我們有 biinv(f) iff ishae(f).

Proof. 略.

5.3 可縮纖維

定義 5.6 可縮映射

設 $f: A \to B$. 我們定義:

 $isContr(f) :\equiv (y : B) \rightarrow isContr(fib_f(y)).$

定理 5.4 對於任何 $f: A \to B$, 我們有 ishae(f) iff isContr(f).

Proof. 正方向我們已經證明過了, 現在我們來證明反方向.

設 $P: \mathrm{isContr}(f) \equiv (y:B) \to \mathrm{isContr}(\mathrm{fib}_f(y)) \equiv (y:B) \to \left[a: \mathrm{fib}_f(y)\right] \times \left[\left(b: \mathrm{fib}_f(y)\right) \to (a=b)\right] \equiv (y:B) \to \left[a: (x:A) \times (f(x)=y)\right] \times \left[\left(b: (x:A) \times (f(x)=y)\right) \to (a=b)\right].$ 設 函 數 $g:B \to A, gy \coloneqq \mathrm{pr}_1 \, \mathrm{pr}_1 \, Py$,函数 $\varepsilon: fg \sim \mathrm{id}_B, \varepsilon y \coloneqq \mathrm{pr}_2 \, \mathrm{pr}_1 \, Py$,函数 $\alpha: (y:B) \to \left[\left(b: (x:A) \times (f(x)=y)\right) \to ((\mathrm{pr}_1 \, Py)=b)\right], \alpha y \coloneqq \mathrm{pr}_2 \, Py.$

我們要構造四元組 $\langle g', \varepsilon', \eta, \tau \rangle$: ishae(f). 令 $g' :\equiv g$, $\varepsilon' :\equiv \varepsilon$.

還剩 η 和 τ 需要構造,這其實相當於構造 $\mathrm{rcoh}_f(g,\varepsilon)$ 的一個項,也就相當於構造 $(x:A) \to \left[\langle g\,f\,x,\varepsilon\,f\,x \rangle = \langle x,\mathrm{refl}_{f\,x} \rangle\right]$ 的一個項,略. \square

定理 5.5 對於任何 $f: A \to B$, 我們有 qinv(f) iff isContr(f) iff ishae(f) iff biinv(f).

5.4 閉包性質

定義 5.7 收縮核

稱函數 $g: A \to B$ 是函數 $f: X \to Y$ 的一個收縮核,如果:

1. 存在如下一個圖:

使得有如下存在:

- (i) 一個同倫 $R: r \circ s \sim id_A$;
- (ii) 一個同倫 $R': r' \circ s' \sim id_B$;
- (iii) 一個同倫 $L: f \circ s \sim s' \circ q$;
- (iv) 一個同倫 $K: g \circ r \sim r' \circ f$.
- 2. 對於任何 a:A, 我們有一條道路 H(a) 見證下圖的交換:

回顧 5.2 纖維化

我們把類型族 $P: A \to \mathcal{U}$ 視爲一個纖維化, A 稱爲它的底空間, P(x) 稱爲 x 上的纖維, $(x:A) \times P(x)$ 稱爲它的全空間,如果存在函數 $f: (x:A) \to P(x)$,則稱該函數爲 P 的一個截面.

有時也稱全空間爲 A 上的纖維化.

定義 5.8 逐纖維變換

給定 $P,Q:A\to\mathcal{U}$, 我們稱一個函數 $f:(x:A)\to P(x)\to Q(x)$ 爲一個逐纖維變換.

定義 5.9 total

給定 $P,Q:A\to\mathcal{U}$ 和一個逐纖維變換 $f:(x:A)\to P(x)\to Q(x)$, 我們定義函數

 $\boldsymbol{total}(f) :\equiv (w : (x : A) \times P(x)) \mapsto \langle pr_1 \, w, f(pr_1 \, w, pr_2 \, w) \rangle : [(x : A) \times P(x)] \rightarrow (x : A) \times Q(x).$

定理 5.6 設 $f:(x:A)\to P(x)\to Q(x)$ 是一個逐纖維變換, $x:A,\ v:Q(x)$. 那麼我們有一個雙可逆映射

 $fib_{total(f)}(\langle x, v \rangle) \simeq fib_{f(x)}(v).$

Proof. 略.

定義 5.10 逐纖維等價

我們稱一個逐纖維變換 $f:(x:A)\to P(x)\to Q(x)$ 是一個逐纖維等價,如果 $(x:A)\to ishae(f(x))$.

定理 5.7 設 $f:(x:A) \to P(x) \to Q(x)$ 是一個逐纖維變換. 那麼,"f 是一個逐纖維等價"iff "total(f) 是一個雙可逆映射".

Proof. f 是一個逐纖維等價

iff $(x:A) \to ishae(f(x))$

iff $(x:A) \to isContr(f(x))$

iff $(x:A) \to (v:Q(x)) \to isContr(fib_{f(x)}(v))$

iff $(w:(x:A)\times Q(x))\to \mathrm{isContr}\big(\mathrm{fib}_{\mathrm{total}(f)}(w)\big)$

iff isContr(total(f))

iff total(f) 是一個雙可逆映射.

5.5 對象分類器

引理 5.6 設 $B:A \to \mathcal{U}$,a:A, $pr_1:((x:A) \times B(x)) \to A$ 是投影函數. 則我們有一個雙可逆映射 $fib_{pr_1}(a) \simeq B(a)$.

Proof. 略.

5.6 函數外延性

定義 5.11 弱函數外延性原理(WFE)

弱函數外延性原理斷言:對於任何 $P: A \to \mathcal{U}$,存在一個函數

 $[(x:A) \rightarrow isContr(P(x))] \rightarrow isContr[(x:A) \rightarrow P(x)].$

引理 5.7 設有類型 $A,B,X:\mathcal{U}$ 和一個雙可逆映射 $e\equiv\langle f_e,\alpha\rangle:A\simeq B$. 那麼存在一個雙可逆映射 $f_e\circ_:(X\to A)\simeq(X\to B)$.

Proof. 根據泛等, 我們可以令 e = idtoeqv(p) 其中 p: A = B. 根據 p 的道路歸納, 我們只需假設 $p \equiv refl_A$, 那麼我們有 $e = id_A$. 剩餘證明略. □

推論 5.1 設 $B: A \to \mathcal{U}$, $(x:A) \to isContr(B(x))$. 那麼我們有:

1. 投影 $pr_1:((x:A)\to B(x))\to A$ 是一個雙可逆映射;

2. 存在一個雙可逆映射 $pr_1 \circ _ : [A \to ((x:A) \times B(x))] \simeq (A \to A)$.

 $Proof.\ 1.$ 對於任何 x:A,我們有一個雙可逆映射 $\mathrm{fib}_{\mathrm{pr}_1}(x)\simeq B(x)$. 因爲 B(x) 是可縮的,所以 $\mathrm{fib}_{\mathrm{pr}_1}(x)$ 是可縮的,所以 pr_1 是可縮的,所以 pr_1 是一個雙可逆映射.

2. 略.

定理 5.8 設 $B:A \to \mathcal{U}$, $(x:A) \to isContr(B(x))$, $\alpha:=pr_1\circ_:[A \to ((x:A) \times B(x))] \simeq (A \to A)$. 那麼我們有:

 $1.(x:A) \rightarrow B(x)$ 是 $fib_{\alpha}(id_A)$ 的一個收縮核;

 $2.(x:A) \rightarrow B(x)$ 是可縮的 (弱函數外延性原理).

顯然, $\psi \varphi \sim \mathrm{id}_{(x:A) \to B(x)}$.

2. 我們只需證明 $\mathrm{fib}_{\alpha}(\mathrm{id}_A)$ 是可縮的,而這可以通過證明 α 是可縮的來證明,略.

引理 5.8 設 $f: A \rightarrow B$. 如果 A, B 是可縮的, 那麼 f 是一個雙可逆映射.

那麼有 p:b=f(a), 對於任何 y:B 有 $q_y :\equiv (\operatorname{pr}_2\beta)y:b=y$

我們要證明對於任何 y: B, $fib_f(y)$ 是可縮的.

現在讓我們固定 y:B. 定義 $p_y :\equiv p^{-1} \bullet q_y: f(a) = y$. 因此 $\langle a,p_y \rangle: \mathrm{fib}_f(y)$.

我們只需證明對於任何 $\langle a',p' \rangle$: $\mathrm{fib}_f(y)$ 有 k:a=a' 和 $\mathrm{transport^{fib}}_f(y)(k,p_y)=p'$.

我們有 $(\operatorname{pr}_2 \alpha) a' : a = a'$.

根據道路歸納,我們只需要證明 transport $^{\mathrm{fib}_f(y)}(\mathrm{refl}_a, p_y) = p'$, 即 $p_y = p'$.

根據道路歸納,只需證明 $p_{f(a)}=p'$,即 $\operatorname{refl}_{f(a)}=\operatorname{refl}_{f(a)}$.

定理 5.9 函數外延性原理

對於任何 $B: A \to \mathcal{U}, f: (x:A) \to B(x), g: (x:A) \to B(x),$ 我們有如下結論:

函數

$$happly(f,g):(f=g)\to [(x:A)\to f(x)=g(x)]$$

是一個雙可逆映射.

Proof. 我們只需證明 happly $(f,_-):(g:(x:A)\to B(x))\to (f=g)\to (f\sim g)$ 是一個逐纖維等價,而這只需要證明 total(happly $(f,_-)):[(g:(x:A)\to B(x))\times (f=g)]\to (g:(x:A)\to B(x))\times (f\sim g)$ 是一個雙可逆映射. 我們已經知道 $(g:(x:A)\to B(x))\times (f=g)$ 是可縮的,所以只需要證明 $(g:(x:A)\to B(x))\times (f\sim g)$ 是可縮的.

我們有 $(g:(x:A) \to B(x)) \times (f \sim g)$ 是 $(x:A) \to (u:B(x)) \times (f(x)=u)$ 的一個收縮核,所以只需證明 $(x:A) \to (u:B(x)) \times (f(x)=u)$ 是可縮的.

根據 WFE, 我們只需證明對於任何 x: A 有 $(u: B(x)) \times (f(x) = u)$ 是可縮的, 證畢.

推論 5.2 funext

對於任何 $B:A \to \mathcal{U}, \ f:(x:A) \to B(x), \ g:(x:A) \to B(x), \$ 函數 $happly(f,g):(f=g) \to [(x:A) \to f(x) = g(x)]$ 有一個擬逆:

 $funext: [(x:A) \rightarrow f(x) = g(x)] \rightarrow (f = g).$

Proof. 略.

引理 5.9 對於任何類型 A,我們有 isProp(A) 和 isSet(A) 是命題.

Proof. funext. \Box

引理 5.10 $isProp(A) \simeq (A \rightarrow isContr(A)).$

Proof. 我們只需證明 isProp(A) iff $(A \rightarrow isContr(A))$, 略.

引理 5.11 如果 $f: A \to B$ 有一個擬逆, 那麼 linv(f) 和 rinv(f) 是可縮的.

Proof. 根據函數外延性,我們有 $linv(f) \simeq (g: B \to A) \times (gf = id_A)$,即 $linv(f) \simeq fib_{_of}(id_A)$. 因爲 $fib_{_of}(id_A)$ 是可縮的,所以 linv(f) 是可縮的. 類似地,可以證明 rinv(f) 是可縮的.

定理 5.10 對於任何 $f: A \rightarrow B$, ishae(f) 是一個命題.

Proof. 我們只需假設 f 是一個半伴隨等價,並證明 ishae(f) 是可縮的,即證明 $(g:B \to A) \times (\varepsilon:fg \sim id_B) \times (\eta:gf \sim id_A) \times (f\eta \sim \varepsilon f)$ 是可縮的,即證明 $(u:(g:B \to A) \times (fg \sim id_B)) \times (\eta:(pr_1u)f \sim id_A) \times (f\eta \sim (pr_2u)f)$ 是可縮的,即證明 $(u:rinv(f)) \times rcoh(\langle pr_1(u), pr_2(u) \rangle)$ 是可缩的,剩餘證明略.

定理 5.11 對於任何 $f: A \to B$, biinv(f) 是一個命題.

Proof. 略.

引理 5.12 設 A 是類型, $B:A\to\mathcal{U}$ 且對於任何 x:A 有 B(x) 是一個命題. 則 $(x:A)\to B(x)$ 是一個命題.

Proof. funext.

定理 5.12 對於任何 $f: A \to B$, isContr(f) 是一個命題.

Proof. 略.

定理 5.13 對於任何 $f: A \to B$, 我們有 $isContr(f) \simeq ishae(f) \simeq biinv(f)$.

Proof. 略.

回顧 5.3 半伴隨等價

 $\boldsymbol{ishae}(f) :\equiv (g:B \to A) \times (\eta:g\,f \sim id_A) \times (\varepsilon:f\,g \sim id_B) \times (f\,\eta \sim \varepsilon\,f).$

定義 5.12 等價

Proof. 略.

對於任何函數 $f: A \to B$, 我們定義 $isequiv(f) :\equiv ishae(f)$.

引理 5.13 對於任何函數 $f, g: A \to B$, 有 $(f = g) \to (isequiv(f) = isequiv(g))$.

慣例 5.1 對於任何等價 f, 以後如無必要, 我們不區分 f 和 $\langle f,e \rangle$ (其中 e:isequiv(f)).

定理 5.14 ¬DNE_∞

 $\neg((A:\mathcal{U})\to\neg\neg A\to A)$

Proof. 我們只需假設 $f:(A:\mathcal{U})\to \neg \neg A\to A$, 並構造 **0** 的一個項.

設 $e:\mathbf{2}\simeq\mathbf{2}, e(1_{\mathbf{2}}):\equiv 0_{\mathbf{2}}, e(0_{\mathbf{2}}):\equiv 1_{\mathbf{2}}$ 是一個等價. 設 $p:\equiv\mathrm{ua}(e):\mathbf{2}=\mathbf{2}.$

那麼我們有 $f(2): \neg \neg 2 \rightarrow 2$ 和

 $\operatorname{apd}_f(p):\operatorname{transport}^{A\mapsto \neg\neg A\to A}(p,f(\mathbf{2}))=f(\mathbf{2}).$

因此對於任何 $u: \neg \neg \mathbf{2}$, 我們有 happly $(\operatorname{apd}_f(p), u): \operatorname{transport}^{A \mapsto \neg \neg A \to A}(p, f(\mathbf{2}))(u) = f(\mathbf{2})(u)$.

那麼對於任何 $u: \neg \neg \mathbf{2}$, 我們有 transport $A \mapsto \neg \neg A \mapsto A(p, f(\mathbf{2}))(u) = \operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(p, f(\mathbf{2})(\operatorname{transport}^{A \mapsto \neg \neg A}(p^{-1}, u)))$.

根據 funext, 對於任何 $u,v: \neg \neg \mathbf{2}$ 有 u=v. 因此我們有 $\operatorname{transport}^{A \mapsto \neg \neg A}(p^{-1},u)=u$. 所以我們有 $\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(\operatorname{ua}(e),f(\mathbf{2})(u))=f(\mathbf{2})(u)$. 根據泛等, 我們有

 $e(f(\mathbf{2})(u)) = f(\mathbf{2})(u).$

又因爲我們可以證明 $(x:2) \rightarrow \neg (e(x)=x)$, 所以推出矛盾, 證畢.

6 範疇論

6.1 範疇和預範疇

定義 6.1 預範疇

- 一個預範疇 A 系如下資料:
- 1. 一個類型 A_0 , 它的項稱爲對象;
- 2. 一個函數 $hom_A: (A_0 \times A_0) \rightarrow Set.$ 集合 $hom_A(a,b)$ 的元素稱爲態射;
- 3. 一個函數 $1:(a:A_0) \to hom_A(a,a)$, 1_a 稱爲恆等態射;
- 4. 一個函數 $_\circ_: hom_A(b,c) \to hom_A(a,b) \to hom_A(a,c)$ 稱爲**合成**;
- 5. 對於任何 $a,b:A_0$ 和 $f:hom_A(a,b)$, 我們有 $f=1_b\circ f$ 且 $f=f\circ 1_a$;
- 6. 對於任何 a,b,c,d:A 和 $f:hom_A(a,b),g:hom_A(b,c),h:hom_A(c,d)$,我們有 $h\circ (g\circ f)=(h\circ g)\circ f.$

定義 6.2 同構

一個態射 $f: hom_A(a,b)$ 是一個同構, 如果存在一個態射 $g: hom_A(b,a)$ 使得 $g \circ f = 1_a$ 且 $f \circ g = 1_b$.

 $\textbf{\textit{isIso}}(f) :\equiv (g: hom_A(b,a)) \times (g \circ f = 1_a) \times (f \circ g = 1_b),$

 $a \cong b :\equiv (f : hom_A(a, b)) \times isIso(f).$

引理 6.1 對於任何態射 $f:hom_A(a,b)$, isIso(f) 是一個命題. 因此 $a \cong b$ 是一個集合.

Proof. 只需證明 g = g', 略.

我們以後將同構 $f:a \cong b$ 的**逆**記作 f^{-1} .

引理 6.2 idtoiso

如果 A 是一個預範疇且 a,b 是它的對象,則有 $idtoiso_{a,b}: (a=b) \rightarrow (a \cong b)$.

Proof. 略.

引理 6.3 設 A 是類型, $B:A\to\mathcal{U}$ 且對於任何 x:A 有 B(x) 是一個集合. 則 $(x:A)\to B(x)$ 是一個集合.

Proof. funext.

例子 6.1 預範疇 Set

- 1. 對象類型爲 Set;
- $2.\ hom_{\mathcal{Set}}(a,b) :\equiv a \rightarrow b;$
- $3. 1_a :\equiv id_a$;
- 4. 態射合成定義爲函數的合成.

定義 6.3 範疇

稱一個預範疇 A 是一個範疇,如果對於它的任何對象 a,b 有 $idtoiso_{a,b}$ 是一個等價.

引理 6.4 在一個範疇中,對於任何它的對象 a,b,我們有 $isotoid_{a,b}: (a \cong b) \rightarrow (a = b)$.

Proof. 略.

例子 6.2 Set 是一個範疇.

Proof. ua.

引理 6.5 在一個範疇中,所有對象組成的類型是一個 1-類型.

Proof. 只需證明 a = b 是集合, 略.

Proof. 根據道路歸納。我們可以假設 $p \equiv \text{refl}_a$, $q \equiv \text{refl}_b$. 那麼引理中等式左邊就是 f, 右邊是 $1_b \circ f \circ 1_a$, 等於 f, 證畢.

引理 6.7 1. $idtoiso(p^{-1}) = (idtoiso(p))^{-1}$;

- 2. $idtoiso(p \cdot q) = idtoiso(q) \circ idtoiso(p)$;
- $3.\ isotoid(f\circ e)=isotoid(e) \bullet isotoid(f).$

Proof. 略.

Proof. 略.

例子 6.3 預序

一個預範疇 A,如果它的每個集合 $hom_A(a,b)$ 都是命題,則它等價於一個配備了一個自反且傳遞的關係的類型 A_0 . 我們稱這是一個預序.

引理 6.8 / 在一個預序 A 中,如果我們有 $f: a \le b$ 和 $g: b \le a$,則我們有 $a \cong b$,且 $a \cong b$ 是一個命題.

例子 6.4 偏序集

稱一個預序A是一個偏序 Φ ,如果它是一個範疇,即如果 Φ 0是一個集合且 Φ 2是反對稱的.

例子 6.5 羣胚

對於任何 1-類型 X, 存在一個範疇, 它的對象類型是 X, 且 $hom(x,y) :\cong x = y$, 我們稱之爲一個墅IK.

6.2 函子和自然變換

定義 6.4 函子

設 $A \rightarrow B$ 是預範疇. 一個**函子** $F: A \rightarrow B$ 系如下資料:

- 1. 一個函數 $F_0: A_0 \to B_0$;
- 2. 對於每對 $a,b:A_0$, 一個函數 $F_{a,b}:hom_A(a,b)\to hom_A(F_0\,a,F_0\,b)$;
- 3. 對於每個 $a:A_0$,我們有 $F_{a,a}(1_a)=1_{F_0a}$;
- 4. 對於每組 $a,b,c:A_0$ 和 $f:hom_A(a,b)$ 和 $g:hom_A(b,c)$,我們有 $F_{a,c}(g\circ f)=F_{b,c}\,g\circ F_{a,b}\,f$.

例子 6.6 恆等函子

設 A 是一個預範疇. **恆等函子** $1_A: A \to A$ 系如下資料:

- 1. 恆等函數 $id_{A_0}: A_0 \to A_0$;
- 2. 對於每對 $a,b:A_0$,一個恆等函數 $id_{hom_A(a,b)}:hom_A(a,b)\to hom_A(a,b).$

定義 6.5 自然變換

給定函子 $F,G:A\to B$, 一個自然變換 $\gamma:F\to G$ 系如下資料:

- 1. 對於每個 $a:A_0$, 一個態射 $\gamma_a:hom_B(F_0a,G_0a)$;
- 2. (自然公理) 對於每組 $a,b:A_0$ 和 $f:hom_A(a,b)$, 我們有 $G_{a,b}f\circ\gamma_a=\gamma_b\circ F_{a,b}f$, 如下面的交換圖所示:

引理 6.9 | 給定函子 $F,G:A \rightarrow B$, 從 F 到 G 的自然變換的類型是一個集合.

Proof. 咯.

定義 6.6 函子預範疇,自然同構

給定預範疇 A,B,存在一個預範疇 $\mathbf{B}^{\mathbf{A}}$,稱爲 \mathbf{M} 子預範疇,定義爲:

- $1.(B^A)_0$ 是從 A 到 B 的函子的類型;
- $2. hom_{B^A}(F,G)$ 是從 F 到 G 的自然變換的集合;
- $3. (\mathbf{1}_{F})_{a}$ 定義爲 $1_{F_{0}a}$;
- 4. 態射(自然變換)的合成 $(\delta \circ \gamma)_a$ 定義爲 $\delta_a \circ \gamma_a$.

 B^A 中的同構稱爲函子間的自然同構.

引理 6.10 一個自然變換 $\gamma:F o G$ 是 B^A 中的一個同構 $i\!f\!f$ 任何 γ_a 是 B 中的一個同構.

Proof. 略.

定理 6.1 如果 B 是一個範疇,則 B^A 是一個範疇.

Proof. 略.

引理 6.11 設 B^A 是一個範疇. 如果 B^A 中的兩個對象 F,G 是自然同構的, 則 F=G.

Proof. 略.

定義 6.7 函子範疇

設 B^A 是一個函子預範疇. 稱 B^A 是一個函子範疇, 如果 A 和 B 是範疇.

定義 6.8 函子的合成

給定函子 $F: A \to B$ 和 $G: B \to C$, 它們的**合成**是函子 $G \circ F: A \to C$, 定義爲如下資料:

- 1. $(\mathbf{G} \circ \mathbf{F})_{\mathbf{0}} : A_0 \to C_0$ 定義為 $G_0 \circ F_0 : A_0 \to C_0$;
- $2. \ (\textbf{\textit{G}} \circ \textbf{\textit{F}})_{a,b} : hom_{A}(a,b) \to hom_{C}(G_{0} \, F_{0} \, a, G_{0} \, F_{0} \, b) \, 定義為 \left(G_{F_{0} \, a, F_{0} \, b} \circ F_{a,b}\right) : hom_{A}(a,b) \to hom_{C}(G_{0} \, F_{0} \, a, G_{0} \, F_{0} \, b).$

定義 6.9 函子和自然映射的合成

給定函子 $F:A\to B$ 和 $G,H:B\to C$ 和自然變換 $\gamma:G\to H$,如下如所示:

F 和 γ 的**合成** 是自然變換 $\gamma F: GF \rightarrow HF$, 定義爲如下資料:

對於每個 a:A,一個態射 $(\gamma F)_a:hom_C(G_0F_0a,H_0F_0a)$,定義爲 $\gamma_{F_0a}:hom_C(G_0F_0a,H_0F_0a)$.

定義 6.10 自然映射和函子的合成

給定函子 $F,G:A\to B$ 和 $H:B\to C$ 和自然變換 $\gamma:F\to G$, 如下如所示:

 γ 和 H 的**合成** 是自然變換 $H\gamma: HF \to HG$, 定義爲如下資料:

對於每個 a:A,一個態射 $(\boldsymbol{H}\,\boldsymbol{\gamma})_{\boldsymbol{a}}: hom_{C} \left(H_{F_{0}\,a,\,G_{0}\,a}\,F_{0}\,a,H_{F_{0}\,a,\,G_{0}\,a}\,G_{0}\,a\right)$,定義爲 $H\,\gamma_{a}: hom_{C} \left(H_{F_{0}\,a,\,G_{0}\,a}\,F_{0}\,a,H_{F_{0}\,a,\,G_{0}\,a}\,G_{0}\,a\right)$.

引理 6.12 給定函子 $F,G:A\to B$ 和 $H,K:B\to C$ 和自然變換 $\gamma:F\to G$ 和 $\delta:H\to K$,如下圖所示:

那麼我們有 $(\delta G)(H \gamma) = (K \gamma)(\delta F)$.

Proof. 略.

引理 6.13 函子的合成是結合的: H(GF) = (HG)F.

Proof. 略.

6.3 伴隨

定義 6.11 左伴隨

一個函子 $F: A \rightarrow B$ 是一個左伴隨,如果有如下資料:

- 1. 一個函子 $G: B \to A$;
- 2. (單位) 一個自然變換 $\eta: 1_A \to GF$;
- 3. (**餘單位**) 一個自然變換 $\varepsilon: FG \to 1_B$;
- 4. $(\varepsilon F)(F \eta) = 1_F$;
- $5.\; (G\,\varepsilon)(\eta\,G)=1_G.$