MA2102: LINEAR ALGEBRA

Lecture 6: Linear Independence

28th August 2020

As observed in previous examples, we may eliminate an element from a linearly dependent set without changing the span.

Observation Let S be a linearly dependent subset of a vector space V. Then there exists $v \in S$ such that $\operatorname{span}(S) = \operatorname{span}(S - \{v\})$.

Proof.

If $0 \in S$, then $\operatorname{span}(S) = \operatorname{span}(S - \{0\})$. Now suppose that $0 \notin S$. As S is linearly dependent, there exists $v_1, \dots, v_k \in S$ and scalars c_i 's, not all zero, such that

$$c_1v_1+\cdots+c_kv_k=0.$$

By rearranging the indices, we may assume that $c_1 \neq 0$. Then

$$v_1 = -\frac{c_2}{c_1}v_2 - \cdots - \frac{c_k}{c_1}v_k.$$

Now it follows that $span(S) = span(S - \{v_1\})$.

The observation implies that if S is a set such that no proper subset of it spans span(S), then S is linearly independent. Note that a subset S is linearly independent if and only if there is no non-trivial linear combination of elements in S that equal 0.

Show that if *S* is a linearly independent set, then any proper subset *T* of *S* will span a strictly smaller subspace of span(*S*), i.e., span(*T*) \subset span(*S*).

Convention Recall that we had defined span(\emptyset) = {0}.

- (i) The empty set \emptyset is linearly independent, as linearly dependent sets are necessarily non-empty.
 - (ii) If we put $S_1 = \emptyset$ in

$$\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$$

which was proved for non-empty sets, then we get

$$\operatorname{span}(S_2) = \operatorname{span}(\emptyset) + \operatorname{span}(S_2)$$

implying span(\emptyset) = {0}.

(iii) If we want span(S) to be a subspace, then $0 \in \text{span}(S)$.

Theorem Let S be a linearly independent subset of a vector space V. Given $v \in V - S$, the set $S \cup \{v\}$ is linearly independent if and only if $v \notin \text{span}(S)$.

Proof.

Assume that $S \cup \{v\}$ is linearly independent. If $v \in \text{span}(S)$, then write

$$v = a_1 v_1 + \dots + a_k v_k$$

with scalars a_i and $v_i \in S$. Thus,

$$a_1v_1 + \dots + a_kv_k + (-1)v = 0$$

expresses zero as a non-trivial linear combination of elements in $S \cup \{v\}$, contradicting linear independence of $S \cup \{v\}$. This implies that $v \notin \text{span}(S)$.

Assume that $v \notin \text{span}(S)$. If $S \cup \{v\}$ is linearly dependent, then

$$a_1v_1 + \dots + a_kv_k + \lambda v = 0$$

for $v_i \in S$ and the scalars a_i , λ cannot all be zero. If $\lambda = 0$, then we can represent zero as a non-trivial linear combination of elements in S, contradicting linear independence of S. If $\lambda \neq 0$, then rewrite

$$v = -\frac{a_1}{\lambda}v_1 - \frac{a_2}{\lambda}v_2 - \dots - \frac{a_k}{\lambda}v_k$$

whence $v \in \text{span}(S)$, a contradiction.

We may either start with a set that spans V and keep removing elements from it until it fails to span V, or we may start with a linearly independent set and keep adding elements to it, increasing the span until it spans V. Both these process lead to the following notion.

Definition [Basis] A basis β of a vector space V is a subset such that β is linearly independent and spans V.

Examples (1) The vector space $\{0\}$ has \emptyset as a basis.

- (2) The vector space \mathbb{R} (over \mathbb{R}) has any non-zero real number as a basis.
- (3) The vector space \mathbb{R}^n (over \mathbb{R}) has $\{e_1, \dots, e_n\}$ as a basis. It is called the *standard basis*.

Show that $\{e_1, e_1 + e_2, e_1 + e_2 + e_3, \dots, e_1 + \dots + e_n\}$ is a basis for \mathbb{R}^n .

(4) The vector space $M_2(\mathbb{R})$ (over \mathbb{R}) has

$$\left\{\left(\begin{array}{ccc}1&0\\0&-1\end{array}\right),\left(\begin{array}{ccc}1&0\\0&1\end{array}\right),\left(\begin{array}{ccc}0&1\\-1&0\end{array}\right),\left(\begin{array}{ccc}0&1\\1&0\end{array}\right)\right\}$$

as a basis (exercise).

(5) The vector space $P(\mathbb{R})$ (over \mathbb{R}) has $\beta = \{1, x, x^2, ...\}$ as a basis. Any polynomial is in the span of β . If β is linearly dependent, then for some x^{k_1}, \dots, x^{k_n} we must have

$$a_1 x^{k_1} + \dots + a_n x^{k_n} = 0$$

where 0 stands for the zero polynomial. Any real number is the root of the zero polynomial while if at least some of the a_i 's are non-zero, then the left hand side is a non-zero polynomial, which has finitely many roots, a contradiction. Thus, β is linearly independent.

Lemma Let $\beta = \{v_1, ..., v_n\}$ be a basis for V. Then every vector $v \in V$ can be expressed uniquely as $v = a_1v_1 + \cdots + a_nv_n$ for scalars a_i .

Proof.

As a basis spans V, every v can be written as claimed. If $v = c_1 v_1 + \cdots + c_n v_n$ is another expression, then

$$a_1v_1 + \dots + a_nv_n = v = c_1v_1 + \dots + c_nv_n.$$

Therefore, $(a_1 - c_1)v_1 + \cdots + (a_n - c_n)v_n = 0$ coupled with linear independence of β , implies that $a_i = c_i$.

Proposition Let V be a vector space that admits a finite subset S that spans V. Then there exists a subset $\beta \subseteq S$ which is a basis for V.

Remark The space $P(\mathbb{R})$ does not have a finite spanning set. If it did, let $S = \{p_1, \dots, p_k\}$ be such a set. Let $n_k = \deg(p_k)$ and $N = \max\{n_1, \dots, n_k\}$. Then any linear combination of p_j 's will result in a polynomial of degree at most N. Thus, x^{N+1} will not be in the span.