Crime Audio Event Classification

Final project for *Digital Forensics and Biometrics* **Luca Domeneghetti** (mat. 2159079)

University of Padova A.A. 2024/2025

Project description

The project required a Neural Network model to be built and trained in order to perform a **classification** task on audio samples, mostly concerning *crime events*.

In total, the model shall perform classification between 13 audio classes:

car_crash	conversation	engine_idling	gun_shot	
jambret	maling	rain	rampok	
road_traffic	scream	thunderstorm	tolong	
wind				

Datasets

- Raw audio of accident and crime detection
 - Around 1600 audio samples, each with variable duration
 - https://www.kaggle.com/datasets/afisarsy/raw-audio-of-accident-and-crime-detection
- Enhanced audio of accident and crime detection
 - More than 9000 audio samples
 - Generated by combining the raw dataset samples with noise effects (wind, thunderstorm, rain and road traffic)
 - Allows for a better generalization of audio features
 - https://www.kaggle.com/datasets/afisarsy/enhanced-audio-of-accident-and-crime-detection

Audio data preprocessing

- Chunking was adopted to split the longer audio files into smaller frames
 - o Partial overlap to avoid information loss on the frame's boundaries.
- Mel spectrogram
 - Operate on the frequency domain instead of the time domain
- Mel Frequency cepstral coefficients further enhanced the capability of the model to extract hidden features from data
 - Both the Mel spectrogram and MFCC computations were performed within the LSTM network in order to better exploit the performance of the GPU

Neural Network and Framework

- Initial approaches involved the use of Convolutional Neural Networks:
 - 1D CNN were used on a flattened vector made out of both the Mel spectrogram and the MFCC combined.
 - o **2D CNN** were used to classify spectrograms and MFCC in a "image-recognition" fashion.
 - Although they are easier to understand, CNN failed to properly grasp a fundamental aspect of audio data: time correlation and dependencies.
- For such reasons, it was chosen to abandon CNNs to use some other architectures.

Neural Network and Framework

The core of the project is a LSTM RNN

- RNN is a good choice when it comes to time-based data.
- LSTM network is efficient at solving some issues related with the vanishing/exploding of the gradient.

Initially TensorFlow

 TensorFlow simpler at handling the dataset and construction of LSTM network, but lacked the required CUDA support.

Switched to PyTorch

 PyTorch needed additional learning time, but fitted the scope of running the training process entirely on the GPU.

LSTM neuron

FC layer with activation function

Copy

Concatenate

LSTM Network

- Internal Mel/MFCC feature computation:
 - 128 Mel bands
 - 40 MFCC coefficients
- Two bidirectional LSTM with a single hidden layer of 256 units
- Combine last two hidden layers of the forward and backward layers of the LSTM
- Three dense ReLU layers with a dropout (0.5) in between the first and the last two
- Use of batch normalization
- Return logits value

Training function

- Loss: cross entropy applied on sparse categorical predictions against one-hot encoded labels
- Optimizer: AdamW with *learning rate* = 0.001 and *weight decay* = 1e−4
- Scheduler: OneCycleLR to better fit learning rate to learning conditions

First training attempt

- Use of raw dataset
- Frame size of 0.5 seconds
- **Hop size** of 0.2 seconds
- Batches of 16 audio samples
- 16 epochs
- Training on Nvidia GeForce RTX 3060 with CUDA 12.7
- Training duration: ~10 minutes

Training accuracy	Test accuracy	
87%	71%	

Final training results

- Use of enhanced dataset
- Frame size of 0.4 seconds
- **Hop size** of 0.2 seconds
- Batches of 32 audio samples
- 32 epochs
- Training on Nvidia GeForce RTX 3060 with CUDA 12.7
- Training duration: ~15 minutes

Training accuracy	Test accuracy	
95.45%	94.92%	

Training graph

Confusion Matrix

Prediction

- Similar fashion to audio pre-processing:
 - Split full sample into smaller windows with partial overlap
 - Perform prediction on each window
 - Collate predictions to form "event segments"
 - Compute start/finish instant in seconds and print
- Samples taken from online sound effect databases
 - samplefocus.com pixabay.com myinstant.com
 - Complex audio samples created by merging together simpler samples using Audacity, resampling to 44.1 kHz, converting to .wav

Bibliography

- <u>seth814/Audio-Classification</u>, for the structure of the LSTM network
- Audio Classification Starter, for the use of Datasets and DataLoaders
- Audio Classification with LSTM, for the training and testing function

