Solving Probabilistic
Maximal Covering
Location-Allocation
Problem Using Artificial
Bee Colony Algorithm with
Local Refinement

Subhrajit Das

Supervisors: Dr. Priya Ranjan Sinha Mahapatra Dr. Soumen Atta

Department of Computer Science and Engineering University of Kalyani

Introduction to the problem

- Introduced by Marianov and Serra [1998], the probabilistic maximal covering locationallocation problem (PMCLAP) is a renowned NP-hard problem in operations research which is a modified and constraints imposed on the maximal covering location problem (MCLP) proposed by Church and ReVelle [1974]. The application of this problem is enormous for example locating places for first aid centres, hospitals, fire stations, locating electric vehicle (EV) charging stations, stores of fast food chains, placing ATMs, etc.
- This problem can be simply defined as:
 - Suppose in a country with many cities with respective population, we directed to open k facilities in distinct k cities such that
 - Each facility in a city has a circular service radius of r serving other cities within the radius
 - One city can only be served by only one facility at max
 - There will be max waiting time of T in each facility or, There will be a waiting queue of length of max b clients
 - We have to maximize the total population served (Objective)

Mathematical Formulation

To model the PMCLAP, we define two sets of binary variables: one of location and the other for one for allocation decisions. Variables y_j are equal to one if and only if location $j \in N$ is opened, and variables x_{ij} are equal to one if and only if the demand of node i is associated with facility j, $i,j \in N$. The problem can be formulated as follows:

$$maximize \sum_{i \in N} \sum_{j \in N_i} d_i x_{ij} \tag{1}$$

subject to

$$\sum_{j \in N_i} x_{ij} \le 1, \quad i \in N \tag{2}$$

$$\sum_{i \in N} y_j = p \tag{3}$$

$$x_{ij} \le y_j, \quad i \in \mathbb{N}, \ j \in \mathbb{N}$$
 (4)

$$\sum_{i \in N} f_i x_{ij} \le \mu \sqrt[b+2]{1-\alpha} \quad j \in N$$
 (5)

$$\sum_{i \in N} f_i x_{ij} \le \mu + \frac{1}{\tau} \ln(1 - \alpha), \quad j \in N$$
 (6)

$$y_j, x_{ij} \in \{0, 1\}, i \in N, j \in N$$
 (7)

Solving using Artificial Bee Colony Algorithm with Local Refinement Initialization Phase REPEAT

Employed Bees Phase

Onlooker Bees Phase

Scout Bees Phase

Local Refinement

Allocate Customers to Facilities

Elitism

UNTIL (Max Fitness Value Converged for last 100 generations)

. Software used

- Matlab R2021a
 - Machine Configuration->i5 7th Gen, 8GB Ram

. Experimental Results

	ANLS			MS_H	euristic	CS			GRASP			CPLEX		ABC WITH LOCAL REFINEMENT						
Instance	Best	Average	Time	Best	Time	Best	Average	Time	Best	Average	Time	Best	Time	Best	Average	Standard Deviation	Current Gap (%)	Earlier Gap (%)	Earlier Gap(%)	Time(s)
30_2_0_0_85	3700	3700	12.333	3700	0.000	3700	3700	0.009	3700	3700	0.007	3700	0	3700	3700	0	0	0	0	16.72
30_2_0_1_85	5100	5100	9.000	4630	0.000	5090	5090	0.018	5090	5090	0.016	5100	0	5090	5075	15	0.19	0.19	0.19	17.30
30_2_0_2_85	5210	5210	4.667	4780	0.000	5210	5210	0.016	5210	5210	0.015	5210	0	5210	5201	21	0	0	0	20.76
30_2_0_2_95	4520	4520	11.333	4470	0.000	4520	4520	0.015	4520	4520	0.013	4520	0	4520	4520	0	0	0	0	18.44
30_3_0_0_85	5390	5390	5.000	5210	0.000	5390	5390	0.025	5390	5390	0.025	5390	0	5390	5377	26.09	0	0	0	28.55
30_3_0_1_85	5390	5390	3.000	5210	0.000	5390	5390	0.024	5390	5390	0.024	5390	0	5390	5390	0	0	0	0	28.60
30_3_0_1_95	5270	5270	44.667	5080	0.000	5240	5240	0.024	5240	5240	0.024	5270	6	5260	5251	11.5	0.18	0.18	0.56	25.85
30_3_0_2_85	5390	5390	3.667	5210	0.000	5390	5390	0.023	5390	5390	0.022	5390	1	5390	5390	0	0	0	0	29.35
30_3_0_2_95	5390	5390	3.667	5230	0.000	5390	5390	0.027	5390	5390	0.023	5390	0	5390	5390	0	0	0	0	29.32
30_4_0_1_95	5390	5390	8.333	5260	0.000	5390	5390	0.026	5390	5390	0.022	5390	0	5390	5390	0	0	0	0	35.31
30_5_0_0_95	5330	5330	288.667	5210	0.000	5330	5317.6	0.041	5330	5312.8	0.032	5330	13	5330	5330	0	0	0	0.56	40.61
30_6_0_0_95	5410	5410	62.333	5390	0.000	5410	5391	0.037	5390	5390	0.029	5410	1	5400	5391	3	<mark>0.18</mark>	0.36	0.36	49.87
Type of fitness	Type of fitness evaluation												Number of times called (aggregated)				Pei	Percentage(%) Used		
Allocating to Least Congested Facility												41460253					~98			
Allocating to Random Facility												845822				~2	~2			
Allocating to Nearest Facility												16				~0	~0			
Allocating as pe	Allocating as per Max Demand/Distance												383	383 ~0						

. Experimental Results

	ANLS			MS_He	uristic	CS			GRASP			CPLEX		ABC WITH LOCAL REFINEMENT							
Instance	Best	Average	Time	Best	Time	Best	Average	Time	Best	Average	Time	Best	Time	Best	Average	Standard Deviation	Current Gap (%)	Earlier Gap (%)	Earlier Gap(%)	Time(s)	
324_10_0_0_85	37180	37180	1255.333	37081	0.220	37173	37163.2	3.460	37157	37155.8	2.24	37180	13	37160	37094.70	61.50	0.02	0.08	1.02	323.01	
324_10_0_0_95	21460	21460	865.667	21386	0.140	21455	21447.2	3.160	21446	21441.2	2.05	21460	9	21441	21381.70	64.40	0.08	0.14	1.56	346.67	
324_10_0_1_85	51000	51000	1435.000	50750	0.200	50948	50946.3	3.410	50948	50946.3	2.30	51000	22	50928	50722	126.37	0.14	0.245	2.08	335.87	
324_10_0_1_95	35360	35360	857.000	35250	0.160	35359	35354.6	3.170	35339	35336.5	2.06	35360	14	35351	35322.40	18.42	0.02	0.05	0.67	379.19	
324_10_0_2_85	59740	59740	987.667	59598	0.200	59693	59688.5	3.330	59693	59688.5	2.24	59740	22	59628	59453	144.98	0.18	0.17	1.92	336.81	
324_20_0_0_85	74360	74357.7	6191.667	73981	0.830	74165	74106.7	9.710	74165	74106.0	4.80	74360	198	73752	73452.90	160.62	0.81	0.94	2.93	811.24	
324_20_0_0_95	42920	42919.7	3936.333	42714	0.730	42840	42804.9	9.370	42813	42792.2	4.24	42920	22	42738	42608.60	124.73	0.42	0.35	4.48	819.53	
324_20_0_1_85	101978	101974	7212.667	100628	1.020	101374	101177.4	9.070	101374	101177.4	4.88	102000	612	99771	99079.50	511.43	<mark>2.16</mark>	2.41	2.94	787.73	
324_20_0_1_95	70720	70720	4417.333	70368	0.740	70656	70628.2	9.060	70561	70529.8	4.43	70720	55	70536	70456.60	63.84	0.26	0.31	2.12	700.33	
324_20_0_2_85	119455	119447.3	6388.000	118451	0.770	118771	118613.6	8.990	118771	118613.6	4.86	119740	10804	117455	116917.70	496.44	1.67	1.81	4.91	505.41*	
324_20_0_2_95	90780	90780	6667.333	90424	0.810	90556	90521.2	9.400	90550	90518.9	4.64	90780	74	90084	89620.90	232.61	<mark>0.76</mark>	0.80	3.29	528.46	
Type of fitness eva	Type of fitness evaluation												Number of times called (aggregated)				Per	Percentage(%) Used			
Allocating to Least Congested Facility												16,85,47,219				~97	~97				
Allocating to Rand	Allocating to Random Facility													50,16,308				~2.8	~2.88		
Allocating to Near	Allocating to Nearest Facility													884				~0	~0		
Allocating as per N	Max Demar	nd/Distance												343,55				~0.3	~0.12		

. Conclusion

- It proposed an approach to solve the Probabilistic Maximal Coverage Location-Allocation Problem using the Artificial Bee Colony algorithm with local refinement strategy. Three allocation subproblems were solved using different strategies, resulting in promising results for the 30 node dataset.
- However, for larger datasets of 324 and 818 nodes, the benchmark results were missed by a small margin.
- Future work will focus on making appropriate changes to achieve benchmark results while maintaining faster computational time. Overall, this study provides insights into solving the PMCLAP problem and opens up avenues for further research in this area