16 Формулы для фотоэффекта

Уравнение Эйнштейна для фотоэффекта позволяет объяснить все экспериментально установленные законы фотоэффекта:

$$h\nu = A_{\text{BMX}} + E_{\text{K, max}},\tag{1}$$

где $h\nu$ — энергия фотона, $A_{\text{вых}}$ — $paбота \ выхода^1$ (см. справочные таблицы), $E_{\text{к. max}}$ — $максимальная \ кинетическая энергия фотоэлектронов.$

Формула (1) есть закон сохранения энергии: энергия фотона идет на совершение работы по «вытаскиванию» электрона из вещества и на придание электрону кинетической энергии.

Работа выхода вычисляется через красную границу фотоэффекта²:

$$A_{\text{вых}} = h\nu_{\text{кр}}.\tag{2}$$

Минимальная частота $\nu_{\rm kp}$ («критическая частота»), при которой еще возможен фотоэффект, есть частота, при которой преломляется полученный из эксперимента график зависимости максимальной кинетической энергии $E_{\rm \kappa.\,max}$ фотоэлектронов от частоты ν света (рис. 1, слева; облучаемое вещество не меняется). Ход графика на рис. 1 (слева) объясняется формулой (1), если в ней выразить энергию $E_{\rm \kappa.\,max}$ и учесть, что энергия не может быть отрицательна.

Запирающее напряжение $(U_3 [B])$ — это минимальная величина напряжения в опыте по исследованию явления фотоэффекта, при котором фототок равен нулю (это значит, что фотоэлектроны практически достигают анода, но их скорость у анода равна нулю).

Максимальная кинетическая энергия фотоэлектронов находится через запирающее напряжение³:

$$E_{\text{K. max}} = eU_3, \tag{3}$$

где e — заряд электрона (см. таблицы).

Запирающее напряжение U_3 есть напряжение, при превышении которого появляется фототок (см. график зависимости фототока I_{Φ} от напряжения U при постоянных мощности и частоте света на рис. 1, справа; при достаточно больших положительных напряжениях ток достигает предельной величины $I_{\rm H}$, называемой током насыщения).

Рис. 1. Зависимости $E_{\kappa.\,\mathrm{max}}(\nu)$ и $I_{\Phi}(U)$ для фотоэффекта

¹Минимальная энергия, которую нужно сообщить электрону, чтобы он покинул вещество.

 $^{^2}$ Красная граница фотоэффекта ($\nu_{\rm kp}$) — термин, не связанный с цветом света! Для избежания лишних ассоциаций вместо этого термина используют термин «критическая частота».

³Фактически это запись закона изменения энергии: работа электрического поля равна изменению механической энергии тела.