

Project-4: Hand Pose Estimation

Yujiao Shi SIST, ShanghaiTech Autumn, 2024

- What is hand pose?
 - □ 2D keypoints
 - □ 3D keypoints

11/1/2024

- ☐ Mesh representation
- How to estimate hand pose?

2D Hand Keypoints

- 0. WRIST
- 1. THUMB_CMC
- 2. THUMB_MCP
- 3. THUMB_IP
- 4. THUMB_TIP
- 5. INDEX_FINGER_MCP
- 6. INDEX_FINGER_PIP
- 7. INDEX_FINGER_DIP
- 8. INDEX_FINGER_TIP
- 9. MIDDLE_FINGER_MCP
- 10. MIDDLE_FINGER_PIP

- 11. MIDDLE_FINGER_DIP
- 12. MIDDLE_FINGER_TIP
- 13. RING_FINGER_MCP
- 14. RING_FINGER_PIP
- 15. RING_FINGER_DIP
- 16. RING_FINGER_TIP
- 17. PINKY_MCP
- 18. PINKY_PIP
- 19. PINKY_DIP
- 20. PINKY_TIP

2D Hand Keypoints

How to estimate 2D Hand Keypoints?上海科技大学 Shanghai Tech University

Input: RGB image

How to define output?

How to estimate 2D hand keypoints?上海科技大学

How will you design the network?

$$\mathcal{L}_{\mathcal{H}} = \sum_{j=1}^{J} \left\| \mathcal{H}_{j} - \hat{\mathcal{H}}_{j} \right\|_{2}^{2}$$

What are 3D Hand Keypoints?

3D Hand Keypoints

- Principal point at origin of image plane
- Camera at center of world coordinates
- Square pixels

$$(X,Y,Z)^T \mapsto (u,v)^T = \left(\frac{fX}{Z},\frac{fY}{Z}\right)^T$$

Euclidean Coordinates 3D World frame Euclidean coordinates 2D Image plane

· How to write as linear mapping? (Homogeneous coordinates)

$$\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} fX \\ fY \\ Z \end{bmatrix} = \begin{bmatrix} f & & 0 \\ & f & & 0 \\ & & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$a = \mathbf{PA}$$
Camera projection matrix

Assumptions made:

- Principal point at origin (u_0, v_0) of image plane
- Camera at center of world coordinates
- Square pixels

$$\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} fX + Zu_0 \\ fY + Zy_0 \\ Z \end{bmatrix} = \begin{bmatrix} f & \mathbf{u_0} & 0 \\ f & \mathbf{v_0} & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- Principal point at origin (u_0, v_0) of image plane
- Camera at center R, t of world coordinates
- Square pixels

How to estimate 3D hand keypoints?上海科技大学 ShanghaiTech University

- When depth map is available as input
- When depth map is not available as input during inference
 - Depth map is accessible in the training data
 - Multi-view images with relative poses are available

What is Hand Mesh?

Hand Models

- (a) Primitives approximation [Oikonomidis et al. 2011a]
- (b) Sum-of-Gaussians model [Sridhar et al. 2013],
- (c) Sphere-Meshes [Tkach et al. 2016] can be thought of as a generalization of the previous models,
- (d) Articulated TSDF for a voxelized shape-primitive hand model [Schmidt et al. 2014]
- (e) Triangular Mesh [Ballan et al. 2012; Tzionas et al. 2016]
- (f) Loop Subdivision Surface of a triangular control mesh [Khamis et al. 2015]
- (g) Convex Bodies for tracking [Melax et al. 2013]
- (h) Convex Parts of a triangular mesh for contact point detection [Tzionas et al. 2016]
- i) Learned Model using a CNN to synthesize images of a given hand pose [Oberweger et al. 2015]
- (j) MANO model.

Hand mano model

Mano Model

$$M(\boldsymbol{\beta}, \boldsymbol{\theta}) = W(T(\boldsymbol{\beta}, \boldsymbol{\theta}), J(\boldsymbol{\beta}), \boldsymbol{\theta}, \mathcal{W})$$

$$T(\boldsymbol{\beta}, \boldsymbol{\theta}) = \bar{\mathbf{T}} + \sum_{n=1}^{|\boldsymbol{\beta}|} \beta_n \mathbf{S}_n + \sum_{n=1}^{9K} (R_n(\boldsymbol{\theta}) - R_n(\boldsymbol{\theta}^*)) \mathbf{P}_n$$

$$m{V}_h, m{P}_h = \mathcal{M}(m{ heta}, m{eta}) + m{P}_{h,0}$$
 $m{P}_h \in \mathbb{R}^{21 imes 3} \; m{V}_h \in \mathbb{R}^{778 imes 3}$
 $m{P}_{h,0} \in \mathbb{R}^3$

Mano Parameters

$$oldsymbol{eta} \in \mathbb{R}^{10} \;\; oldsymbol{ heta} \in \mathbb{R}^{16 imes 3}$$

How to Estimate Hand Mesh?

3D Hand Shape and Pose from Images 海科技大学 in the Wild, CVPR 2019

$$\hat{\mathbf{x}} = s\Pi(RJ(\boldsymbol{\beta}, \boldsymbol{\theta})) + t,$$

$$\hat{\mathbf{y}} = s\Pi(RM(\boldsymbol{\beta}, \boldsymbol{\theta})) + t$$

18

Supervision

$$L = L_{2D} + \alpha_{3D}L_{3D} + \alpha_{mask}L_{mask} + \alpha_{reg}L_{reg}$$

No GT Mano Pose

$$L_{2D} = \|\hat{\mathbf{x}} - \mathbf{x}\|_{1},$$

$$L_{3D} = ||RJ(\boldsymbol{\beta}, \boldsymbol{\theta}) - \mathbf{x}_{3D}||_2^2$$

$$L_{mask} = 1 - \frac{1}{N} \sum_{i} H(\hat{\mathbf{y}}_i)$$

$$L_{reg} = \|\boldsymbol{\theta}\|_2^2 + \alpha_{\boldsymbol{\beta}} \|\boldsymbol{\beta}\|_2^2$$

3D Hand Shape and Pose Estimation 上海科技大学 from a Single RGB Image, CVPR 2019

Supervision-Synthetic Data

$$\mathcal{L}_{fully} = \lambda_{\mathcal{H}} \mathcal{L}_{\mathcal{H}} + \lambda_{\mathcal{M}} \mathcal{L}_{\mathcal{M}} + \lambda_{\mathcal{J}} \mathcal{L}_{\mathcal{J}}$$

Heat map loss: $\mathcal{L}_{\mathcal{H}} = \sum_{j=1}^{J} \left\| \mathcal{H}_{j} - \hat{\mathcal{H}}_{j} \right\|_{2}^{2}$

Mesh loss:

$$\mathcal{L}_{\mathcal{M}} = \lambda_{v} \mathcal{L}_{v} + \lambda_{n} \mathcal{L}_{n} + \lambda_{e} \mathcal{L}_{e} + \lambda_{l} \mathcal{L}_{l}$$

$$\mathcal{L}_{v} = \sum_{i=1}^{N} \left\| \boldsymbol{v}_{i}^{3D} - \hat{\boldsymbol{v}}_{i}^{3D} \right\|_{2}^{2} + \left\| \boldsymbol{v}_{i}^{2D} - \hat{\boldsymbol{v}}_{i}^{2D} \right\|_{2}^{2} \quad \text{Vertices loss}$$

$$\mathcal{L}_{n} = \sum_{t} \sum_{(i,j) \in t} \left\| \left\langle \hat{\boldsymbol{v}}_{i}^{3D} - \hat{\boldsymbol{v}}_{j}^{3D}, \boldsymbol{n}_{t} \right\rangle \right\|_{2}^{2} \quad \text{Normal loss}$$

$$\mathcal{L}_e = \sum
olimits_{i=1}^E \left(\|oldsymbol{e}_i\|_2^2 - \|\hat{oldsymbol{e}}_i\|_2^2
ight)^2$$
 Edge loss

$$\mathcal{L}_l = \sum_{i=1}^N \left\| \boldsymbol{\delta}_i - \sum_{\boldsymbol{v}_k \in \mathcal{N}(\boldsymbol{v}_i)} \boldsymbol{\delta}_k \middle/ B_i \right\|_2^2$$
 prevents the neighboring vertices from having opposite offsets

3D Pose loss:
$$\mathcal{L}_{\mathcal{J}} = \sum_{j=1}^J \left\| \boldsymbol{\phi}_j^{3D} - \hat{\boldsymbol{\phi}}_j^{3D} \right\|_2^2$$
 Joint Locations

3D Hand Shape and Pose Estimation 上海科技大学 from a Single RGB Image, CVPR 2019

Supervision - Real Data

$$\mathcal{L}_{fully} = \lambda_{\mathcal{H}} \mathcal{L}_{\mathcal{H}} + \lambda_{\mathcal{M}} \mathcal{L}_{\mathcal{M}} + \lambda_{\mathcal{J}} \mathcal{L}_{\mathcal{J}}$$

Heat map loss: $\mathcal{L}_{\mathcal{H}} = \sum_{j=1}^{J} \left\| \mathcal{H}_{j} - \hat{\mathcal{H}}_{j} \right\|_{2}^{2}$

Pseudo-GT Mesh loss:

$$\begin{split} \mathcal{L}_{\mathcal{M}} &= \frac{\lambda_v \mathcal{L}_v + \lambda_n \mathcal{L}_n}{\lambda_n \mathcal{L}_n} + \frac{\lambda_e \mathcal{L}_e}{\hat{v}_i^{3D} \|_2^2 + \|\hat{v}_i^{2D} \|_2^2} \quad \text{Vertices loss} \\ &\frac{\mathcal{L}_v = \sum_{i=1}^N \left\|\hat{v}_i^{3D} \|\hat{v}_i^{3D} \|_2^2 + \|\hat{v}_i^{2D} \|\hat{v}_i^{2D} \|_2^2}{\|\hat{v}_i^{3D} \|\hat{v}_j^{3D} \|$$

$$\mathcal{L}_l = \sum_{i=1}^N \left\| \boldsymbol{\delta}_i - \sum_{\boldsymbol{v}_k \in \mathcal{N}(\boldsymbol{v}_i)} \boldsymbol{\delta}_k \middle/ B_i \right\|_2^2$$
 prevents the neighboring vertices from having opposite offsets

Depth Map loss: $\mathcal{L}_{\mathcal{D}} = smooth_{L1}\left(D, \hat{D}\right), \ \hat{\mathcal{D}} = \mathcal{R}\left(\hat{\mathcal{M}}\right)$

ICCV 2021

Two hand relationship

Inspired by [26], we use 2D manifold representation, where the hand pose (without root rotation) of each hand is projected to 1D manifold by t-SNE [34] and used as x, y coordinates, respectively. We find that the paired hand poses show clear correlation in 2D space, but the distribution of unpaired hand poses is almost random.

Overall Framework

26

2.5D Joint keypoints heatmap estimation 海科技大学

Feature Extraction with Keypoints Attentiom科技大学

Relative Transformation

$$\mathbf{J}_{left,i}^{right} = s(\mathbf{J}_{left,i}^{left} + \Delta)$$

where $\mathbf{J}_{left,i}^{right}$ and $\mathbf{J}_{left,i}^{left}$ are the left hand joints in the right hand coordinate system and the left hand joints in the left hand coordinate system, respectively.

Overall Framework

Supervision

Two hand loss

$$\square \text{ Joint offset loss} \qquad L_o = \sum_{i=1}^{K} ||(\mathbf{J}_{right,i} - \mathbf{J}_{left,i}) - (\mathbf{J}_{right,i}^* - \mathbf{J}_{left,i}^*)||_2^2$$

Shape consistence loss $L_c = ||\beta_{right} - \beta_{left}||_2^2$

$$L_c = ||\beta_{right} - \beta_{left}||_2^2$$

Single hand loss

$$\square$$
 Joint loss $L_J = \sum_{h \in \{left, right\}} \sum_{i=1}^K ||\mathbf{J}_{h,i} - \mathbf{J}_{h,i}^*||_1$

$$\square$$
 Bone length loss $L_l = \sum_{h \in \{left, right\}} \sum_b ||\frac{l_{h,b}^*}{l_{h,ref}^*} - l_{h,b}||_2^2$

$$\square$$
 Shape loss $L_M = \sum_{h \in \{left, right\}} \mathbf{1} ||\beta_h - \beta_h^*||_2^2$

$$\square$$
 Regularizer loss $L_{reg} = \sum_{h \in \{left, right\}} \lambda_{\beta} ||\beta_h||_2^2 + ||\theta_h||_2^2$

Supervision

$$L_{total} = \lambda_o L_o + \lambda_c L_c + \lambda_J L_J + \lambda_l L_l + \lambda_M L_M + \lambda_{reg} L_{reg}$$
(10)

where $\lambda_o, \lambda_c, \lambda_J, \lambda_l, \lambda_M, \lambda_{reg}$ are the loss weights, and they are set to 1, 0.01, 10, 100, 0.1, and 0.05, respectively.

References

- Boukhayma, Adnane, Rodrigo de Bem, and Philip HS Torr. "3d hand shape and pose from images in the wild." CVPR 2019.
- Zhang, Baowen, et al. "Interacting two-hand 3d pose and shape reconstruction from single color image." ICCV 2021.
- https://github.com/iscas3dv/Two-Hand-Shape-Pose_v2
- Li, Mengcheng, et al. "Interacting attention graph for single image two-hand reconstruction." CVPR 2022
- https://mediapipe.readthedocs.io/en/latest/solutions/hands.html
- https://medium.com/@turgay2317/hand-detection-and-finger-counting-in-python-40f21719f1b6

Project Requirement (Basics)

- Take pictures (20 images) of your own or your friends' hands, with diverse perspective/viewpoint/background
 - Evaluate the trained model of [Zhang et al. ICCV 2021] on your newly collected hand images;
 - □ Visualize the estimated 2D & 3D keypoints, and mesh models (overlayed with the original image);
 - Analyze the performance, especially on failure scenarios.

上海科技大学

```
def register_heatmap(self,xyc:torch.Tensor,J:torch.Tensor,origin_size:int,output_size:int):
    xyc: shape of [B, N, 3]; N -- Joint Number; 3 -- [u,v,confidence]
    J: shape of [B, N, 3]; 3D joints coordinates
    device_run=xyc.device
    batch_size=xyc.shape[0]
    M=torch.cat([J[:,:,:2,None],torch.eye(2,device=device_run)[None,None,:,:].repeat(batch_size,J.shape[1],1,1)],dim=-1)
    wM=xyc[:,:,2,None,None]*M
    wB=xyc[:,:,2,None,None]*xyc[:,:,:2,None]
    wM=wM.reshape(batch_size,-1,3)
    wB=wB.reshape(batch_size,-1,1)
                                                            Least Square Method
    MTM=torch.bmm(wM.transpose(2,1),wM)
                                                                 Ax = b
    MTB=torch.bmm(wM.transpose(2,1),wB)
    sT=torch.bmm(torch.inverse(MTM),MTB)[:,:,0].detach()
    ratio=output_size/origin_size
    projected_xy=(J[:,:,:2]*sT[:,None,0,None]+sT[:,None,1:])*ratio
    \#sigma = cfg.sigma * 2 * max(ratio, 0.25)
    heatmap=self.generate_batch_heatmap(projected_xy,output_size, sigma: 3)
    output_heatmap=1-torch.prod(1-heatmap,dim=1)
    return output_heatmap
```

Perspective Projection

Perspective projection

Assumptions made:

- Principal point at $origin(u_0, v_0)$ of image plane
- · Camera at center of world coordinates
- Square pixels

Call for Presentations!

- Project-5
 - ☐ Multi-view Stereo for view synthesis
 - □ NeRF
 - □ 3DGS
 - □ Other view synthesis variants.
- Project-6
 - □ Latent Diffusion
 - □ LoRA
 - □ ControlNet
 - Other diffusion variants.