CS 303 Logic & Digital System Design

Ömer Ceylan

Chapter 5 Synchronous Sequential Logic Part II

State Reduction and Assignment

- In the design process of sequential circuits, certain techniques are useful in reducing the circuit complexity
 - state reduction
 - state assignment
- State reduction
 - Fewer states → fewer number of flip-flops
 - m flip-flops → 2^m states
 - Example: $m = 5 \rightarrow 2^m = 32$
 - If we reduce the number of states to 21, do we reduce the number of flip-flops?

Example: State Reduction

State Reduction Technique 1/7

Step 1: get a state table

0/0

present state	next	state	Οι	utput
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	С	d	0	0
С	С	f	0	0
d	е	f	0	1
е	а	f	0	1
f	g	f	0	1
g	а	f	0	1

State Reduction Technique 2/7

- Step 2: Inspect the state table for equivalent states
 - Equivalent states: Two states,
 - 1. that produce exactly the same output
 - 2. whose next states are identical
 - for each input combination

State Reduction Technique 3/7

present state	next	state	Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	С	d	0	0
С	С	f	0	0
d	е	f	0	1
е	а	f	0	1
f	g	f	0	1
g	а	f	0	1

- States "e" and "g" are equivalent
- One of them can be removed

State Reduction Technique 4/7

present state	next	state	Output		
	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	f	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	е	f	0	1	

We keep looking for equivalent states

State Reduction Technique 5/7

present state	next	state	Output		
	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	С	d	0	0	
С	С	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

We keep looking for equivalent states

State Reduction Technique 6/7

present state	next state		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	b	d	0	0
d	е	d	0	1
е	а	d	0	1

We stop when there are no equivalent states

State Reduction Technique 7/7

presen	next	state	Output		
t state	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	b	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

We need two flip-flops

state	а	а	b	b	d	е	d	d	е	а	а	
input	0	1	0	1	0	1	1	0	0	0	0	
output	0	0	0	0	0	1	1	0	0	0		

State Assignments 1/4

- We have to assign binary values to each state
- If we have m states, then we need a code with minimum n bits, where n = log₂m
- There are different ways of encoding
- Example: Eight states: S₀, S₁, S₂, S₃, S₄, S₅, S₆, S₇

State	Binary	Gray	One-hot
S ₀	000	000	0000001
S ₁	001	001	0000010
S ₂	010	011	00000100
S_3	011	010	00001000
S ₄	100	110	00010000
S ₅	101	111	00100000
S ₆	110	101	01000000
S ₇	111	100	10000000

*

State Assignments 2/4

- The circuit complexity depends on the state encoding (assignment) scheme
- Previous example: binary state encoding

present state	next state		Output	
	x = 0	x = 1	x = 0	x = 1
(a) 00	00	01	0	0
(b) 01	01	10	0	0
(d) 10	11	10	0	1
(e) 11	00	10	0	1

State Assignments 3/4

Gray encoding

present state	next state		Output	
	x = 0	x = 1	x = 0	x = 1
(a) 00	00	01	0	0
(b) 01	01	11	0	0
(d) 11	10	11	0	1
(e) 10	00	11	0	1

State Assignments 4/4

One-hot encoding

present state	next	state	Output		
	x = 0 $x = 1$		x = 0	x = 1	
(a) 0001	0001	0010	0	0	
(b) 0010	0010	0100	0	0	
(d) 0100	1000	0100	0	1	
(e) 1000	0001	0100	0	1	

*

Designing Sequential Circuits

- Combinational circuits
 - can be designed given a truth table
- Sequential circuits
 - We need,
 - state diagram or
 - state table
 - Two parts
 - flip-flops: number of flip-flops is determined by the number of states
 - combinational part:
 - output equations
 - flip-flop input equations

Design Process

- Once we know the <u>number</u> of flip-flops, design process is reduced to design process of combinational circuits
- Therefore, we can apply the techniques of combinational circuit design
- The design steps
- Given a verbal description of desired operation, derive state diagram
- Reduce the number of states if necessary and possible
- 3. State assignment

Design Steps (cont.)

- Obtain the encoded state table
- 5. Derive the simplified flip-flop input equations
- 6. Derive the simplified output equations
- 7. Draw the logic diagram
- <u>Example</u>: Verbal description
 - "we want a (sequential) circuit that detects three or more consecutive 1's in a string of bits"
 - Input: string of bits of any length
 - Output:
 - "1" if the circuit detects the pattern in the string
 - "0" otherwise

Example: State Diagram

Step 1: Derive the state diagram

Synthesis with D Flip-Flops 1/5

- The number of flip-flops
 - Four states
 - 2 or 4 flip-flops
- State reduction
 - not possible in this case
- State Assignment
 - Use binary encoding
 - \bullet s₀ \rightarrow 00
 - $s_1 \rightarrow 01$
 - \bullet s₂ \rightarrow 10
 - $s_3 \rightarrow 11$

Synthesis with D Flip-Flops 2/5

■ Step 4: Obtain the state table

Preser	Present state		Next state		Output
Α	В	Х	А	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Synthesis with D Flip-Flops 3/5

- Step 5: Choose the flip-flops
 - D flip-flops
- Step 6: Derive the simplified flip-flop input equations
 - Boolean expressions for D_A and D_B

Preser	Present state		Next state		Output
Α	В	Х	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$D_A = Ax + Bx$$

Synthesis with D Flip-Flops 3/5

Preser	nt state	Input	Next state		Output
Α	В	Х	А	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$D_B = Ax + B'x$$

$$y = AB$$

Synthesis with D Flip-Flops 5/5

Step 8: Draw the logic diagram

$$D_A = Ax + Bx$$
 $D_B = Ax + B'x$ $y = AB$

Synthesis with T Flip-Flops 1/4

Example: 3-bit binary counter with T flip-flops

$$\bullet$$
 0 \rightarrow 1 \rightarrow 2 \rightarrow ... \rightarrow 7 \rightarrow 0 \rightarrow 1 \rightarrow 2

How many flip-flops?

State assignments:

- $S_0 \to 000$
- $S_1 \to 001$
- $S_2 \to 010$
- ...
- $S_7 \rightarrow 111$

Synthesis with T Flip-Flops 2/4

State Table

pr	present state		next state			FF inputs		
A ₂	A ₁	A_0	A ₂	A ₁	A_0	T ₂	T ₁	T ₀
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Synthesis with T Flip-Flops 3/4

Pre	sent st	ate	FF inputs			
A_2	A ₁	A_0	T ₂	T ₁	T ₀	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	0	0	0	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	1	0	1	1	
1	1	0	0	0	1	
1	1	1	1	1	1	

Flip-Flop input equations

$$T_0 = 1$$

Synthesis with T Flip-Flops 4/4

Circuit

$$\mathsf{T}_2 = \mathsf{A}_1 \mathsf{A}_0$$

$$T_1 = A_0$$

$$T_0 = 1$$

clock

reset

Synthesis with JK Flip-Flops 1/4

$$Q(t+1) = JQ' + K'Q$$

J	K	Q(t+1)
0	0	Q
0	1	0
1	0	1
1	1	Q'

State Table & JK FF Inputs

Preser	nt state	Input	next	state	Flip-flop inputs			
Α	В	X	Α	В	J _A	K_A	J_B	K_B
0	0	0	0	0	0	Х	0	X
0	0	1	0	1	О	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Synthesis with JK Flip-Flops 2/4

Optimize the flip-flop input equations

					Flip-flop inputs			
А	В	х	A(t+1)	B(t+1)	J_A	K_A	J_B	K_B
0	0	0	0	0	0	Х	0	Χ
0	0	1	0	1	0	X	1	Χ
0	1	0	1	0	1	X	Χ	1
0	1	1	0	1	0	Χ	Χ	0
1	0	0	1	0	Х	0	0	Х
1	0	1	1	1	Х	0	1	Х
1	1	0	1	1	Χ	0	Χ	0
1	1	1	0	0	Χ	1	Χ	1

$$J_A = Bx'$$

$$J_B = X$$

Synthesis with JK Flip-Flops 3/4

					Flip-flop inputs			
Α	В	×	A(†+1)	B(†+1)	J_A	K_A	${\tt J}_{\tt B}$	K_B
0	0	0	0	0	0	X	0	Χ
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

$$K_A = Bx$$

$$K_B = (A \oplus x)'$$

Synthesis with JK Flip-Flops 4/4

Logic diagram

Unused States

Modulo-5 counter

Present State			Next State			
А	В	С	Α	В	С	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	

Example: Unused States 1/4

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

	ВС				
Α		00	01	11	10
	0	0	0	1	0
	1	0	X	X	X
	A(t+´	I) = B(C		

$$B(t+1) = B'C + BC'$$

$$C(t+1) = A'C'$$

Example: Unused States 2/4

Present State			Next State			
Α	В	C	Α	В	С	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	0	1	0	
1	1	0	0	1	0	
1	1	1	1	0	0	

$$A(t+1) = BC$$

$$B(t+1) = B \oplus C$$

$$C(t+1) = A'C'$$

Example: Unused States 3/4

Not using don't care conditions

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

BC	;			
A	00	01	11	10
C	0	0	1	0
1	0	0	0	0

$$A(t+1) = A'BC$$

$$B(t+1) = A'B'C + A'BC'$$
$$= A'(B \oplus C)$$

$$C(t+1) = A'C'$$

Example: Unused States 4/4

Present State			Next State		
Α	В	С	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	0	0

$$A(t+1) = A'BC$$

$$B(t+1) = A'(B \oplus C)$$

$$C(t+1) = A'C'$$

Sequential Circuit Timing 1/3

- It is important to analyze the timing behavior of a sequential circuit
 - Ultimate goal is to determine the maximum clock frequency

*

Sequential Circuit Timing 2/3

X Se

Sequential Circuit Timing 2/3

Sequential Circuit Timing 3/3

Minimum clock period (or maximum clock frequency)

Example: Counter

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{s} = 1.0 \text{ ns}$$

$$t_p = t_{p,FF} + t_{p,XOR} + t_s = 2.0 + 2.0 + 1.0 = 5.0 \text{ ns}$$

$$f_{\text{max}} = 1/t_p = 1/(5.0 \times 10^{-9}) \approx 200 \text{ MHz}$$

Binary encoding

Example: One-Hot-Encoding

$$S_0 \rightarrow 0001$$

 $S_1 \rightarrow 0010$
 $S_2 \rightarrow 0100$
 $S_3 \rightarrow 1000$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{s} = 1.0 \text{ ns}$$

$$t_p = t_{p,FF} + t_s = 2.0 + 1.0 = 3.0 \text{ ns}$$

$$f_{max} = 1/t_p = 1/(3.0 \times 10^{-9}) \approx 333 \text{ MHz}$$

Example: Sequential Circuit Timing

$$t_{p,NOT} = 0.5 \text{ ns}$$

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p,FF} = 2.0 \text{ ns}$$

$$t_{p,AND} = t_s = 1.0 \text{ ns}$$

$$t_h = 0.25 \text{ ns}$$

Find the longest path delay from positive clock edge to the flip-flop input

$$t_{p,FF} + t_{p,AND} + t_{p,XOR} + t_{p,NOT}$$

= 2.0 + 1.0 + 2.0 + 0.5 = 5.5 ns

Example: Sequential Circuit Timing

$$t_{p,NOT} = 0.5 \text{ ns}$$

$$t_{p,XOR} = 2.0 \text{ ns}$$

$$t_{p.FF} = 2.0 \text{ ns}$$

$$t_{p,AND} = t_s = 1.0 \text{ ns}$$

$$t_h = 0.25 \text{ ns}$$

Determine the maximum frequency of operation of the circuit in megahertz

$$t_p = t_{p,FF} + t_{p,AND} + t_{p,XOR} + t_{p,NOT} + ?$$

= 2.0 + 1.0 + 2.0 + 0.5 + 1.0 = 6.5 ns

$$f_{max} = 1/t_p = 1/(6.5 \times 10^{-9}) \approx 154 \text{ MHz}$$