CSE 201: Data Structures

Lecture 10: Graphs Dr. Vidhya Balasubramanian

Minimum Spanning Tree

- Given a weighted undirected graph G, goal is to find a tree T such that
 - T contains all vertices in G
 - Sum of weights of edges in T is minimum

https://encryptedtbn0.gstatic.com/images? q=tbn:ANd9GcR0WC7jxovpohGVu 8VtcB_uGiCnlv3sDAl8zgGZ7NMJg O2QpkrS

CSE 201: Data Structures and Algorithms

Algorithms

- First algorithm to find MST was by a Czech scientist Baruvka
 - Baruvka's algorithm
 - Uses greedy approach
- Other greedy approaches
 - Prim's algorithm
 - Kruskal's algorithm

Kruskal's Algorithm

- Greedy Algorithm
- The algorithm maintains a forest of trees
- An edge is accepted it if connects distinct trees
 - The edge is chosen such that its weight is minimum amongst the edges connecting the two trees
 - The trees are also known as clusters or clouds

Kruskal's Algorithm

- Let every node in G be a cluster C(v)
- Initialize a priority queue Q with all edges in G using weights as keys
- Take the minimum weight edge in Q and if C(u)
 <> C(v)
 - add the edge to MST T
 - Merge the clusters C(u) and C(v)
- Repeat till there are no more clusters to merge

CSE 201: Data Structures and Algorithms

CSE 201: Data Structures and Algorithms

Exercise

 Find the MST for the following graph using Kruskal's algorithm

CSE 201: Data Structures and Algorithms

Prim's Algorithm

- Similar to Dijkstra
- Pick any vertex v of G
- Initialize for all u not v, d[u] to infinity and d[v]=0
- Remove from Q u with minimum d[u]
 - Add u and edge (u,v) to T
 - For all neighbors z of u, do relaxation by finding d[z] = w(u,z), and update Q
 - If d[z] > d(u,z), d[z] = d(u,z)

CSE 201: Data Structures and Algorithms

CSE 201: Data Structures and Algorithms

Exercise

CSE 201: Data Structures and Algorithms

Baruvka's Algorithm

- Like Kruskal's this grows many clouds at once
- Initially every vertex is a component C_i
- For each Ci find the smallest weight edge (v,u) in E and add to C_i such that
 - v is in C_i, u is not in C_i
 - Add e to T
- Each iteration reduces the number of components by half

Baruvka's Algorithm

Algorithm BaruvkaMST(G)

```
T ← V {just the vertices of G}
```

while T has fewer than n-1 edges do

for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.

if e is not already in T then

Add edge e to T

return T

Example

CSE 201: Data Structures and Algorithms

Example

CSE 201: Data Structures and Algorithms

Amrita Vishwa Vidyapeetham

Properties of MSTs

- There may be multiple minimum spanning trees of same weight having minimum number of edges
- If each edge has a distinct weight then there will be only one, unique minimum spanning tree.
- For any cycle C in the graph, if the weight of an edge e of C is larger than the weights of all other edges of C, then this edge cannot belong to an MST.

Shortest Paths

- Single Source Single Destination Shortest Path
 - Given a source and destination find the path between source and destination with minimum cost
- Single Source Shortest Path
 - Find the shortest paths from a given source to all other nodes

Dijkstra's Algorithm

- Similar to Prim's
- Let v be the source node
- Initialize for all u not v, d[u] to infinity and d[v]=0
- Remove from Q u with minimum d[u]
 - Add u and edge (u,v) to T
 - For all neighbors z of u, do relaxation by finding d[z] = d[u]+w(u,z), and update Q
 - d[z] = min(d[z],d(u,z)+d[u])
- Terminate when Q empty

Shortest Paths

- Single Source Single Destination Shortest Path
 - Given a source and destination find the path between source and destination with minimum cost
- Single Source Shortest Path
 - Find the shortest paths from a given source to all other nodes

Dijkstra's Algorithm

- Complexity
 - O(|E|+|V|log|V|)
 - Cost of maintaining priority queue plays a major role
- Does not work if there are negative weighted cycles

Exercise

Find the shortest path from A to all other nodes

