Собеседование на специализацию «Интеллектуальный анализ данных»

Киселев Никита Б05-002

14 апреля 2022 г.

Московский физико-технический институт (национальный исследовательский университет)

Тестовая задача

Задача 21

Предсказание площади лесных пожаров. На основе погодных измерений необходимо предсказать объем выгоревших лесных массивов на севере Португалии. Выборка состоит из 13 признаков и 517 объектов. Для решения задачи предлагается использовать метод наименьших квадратов с регуляризацией. Нарисовать график весов признаков и общей ошибки на кросс-валидации при изменении параметра регуляризации. Какие признаки наиболее важны для нашей задачи? Что изменится, если предварительно все признаки стандартизовать?

Распределение ответов

Распределение номинальных признаков

Корреляция количественных признаков

Линейная регрессия

- ullet Множество объектов $\mathbb{X} = \mathbb{R}^n$
- Объекту $x \in \mathbb{X}$ соответствует признаковое описание $x = (f_1(x), \dots, f_n(x))$, где $f_j : X \to D_j$
- ullet Множество ответов $\mathbb{Y}=\mathbb{R}$
- Выборка $\mathbb{D} = \{(\mathsf{x}_i, y_i) \mid \mathsf{x}_i \in \mathbb{X}, y_i \in \mathbb{Y}, i = 1, \dots m\}$
- Матрица объекты-признаки $X=(\mathsf{x}_1,\dots,\mathsf{x}_m)^T$, вектор ответов у $\in \mathbb{R}^m$
- ullet Вектор параметров модели ${\sf w} = (w_0, w_1, \dots, w_n)^T$
- ullet Ставится задача минимизации ошибки алгоритма $Q(w,X) = \|X w y\|_2^2 o \min_w$

Метод наименьших квадратов

$$Q(w, X) = ||Xw - y||_2^2 = (Xw - y)^T (Xw - y) \to \min_{w}$$

Приравняем к нулю производную по вектору w:

$$\nabla_{\mathbf{w}} Q(\mathbf{w}, X) = \nabla_{\mathbf{w}} (-y^T X \mathbf{w} + \mathbf{w}^T X^T X \mathbf{w} + y^T y - \mathbf{w}^T X^T y) =$$

$$= -X^T y + (X^T X + X^T X) \mathbf{w} + 0 - X^T y = 0$$

$$X^T X \mathbf{w} = X^T y$$

$$\mathbf{w}^* = (X^T X)^{-1} X^T y$$

L_2 регуляризация

Могут возникнуть проблемы мультиколлинеарности в случае, если матрица X^TX плохо обусловлена. Один из способов решения — добавление к этой матрице диагональной:

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \alpha \mathbf{E}_n)^{-1} \mathbf{X}^T \mathbf{y}$$

При этом значении вектора w достигается минимум функционала ошибки

$$Q(w, X, \alpha) = ||Xw - y||_2^2 + \alpha ||w||_2^2$$