Laboratorium Podstaw Czujników Pomiarowych

Ćwiczenie 6

Wybrane zagadnienia z miernictwa optoelektronicznego

Instrukcja do ćwiczenia

Opracował:

dr hab. inż. Tomasz Osuch

Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Warszawa 2020

v.1.0

Ćwiczenie 6

Wybrane zagadnienia z miernictwa optoelektronicznego

Informacje wstępne

1. Sprawozdanie z ćwiczenia powinno się rozpoczynać poniższą, wypełnioną tabelką.

WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH	PODSTAWY CZUJNIKÓW POMIAROWYCH LABORATORIUM		
Ćwiczenie 6 – Wybrane zagadnienia z miernictwa optoelektronicznego			
lmię i Nazwisko	Numer albumu	Data	
Paweł Rawicki	283529	17.01.2021	

- 2. Przed wykonaniem zadania należy przeczytać materiały do ćwiczenia 6, dostępne na stronie przedmiotu na serwerze Studia.
- 3. Dane do realizacji ćwiczenia znajdują się w pliku **dane_lab6.xlsx**. Są one zróżnicowane ze względu na numer albumu. Dlatego w celu pobrania danych z odpowiednich zakładek, należy odczytać je z tabeli zamieszczonej w zakładce *Dataset*.
- 4. Rozwiązane zadanie należy przesłać na adres: <u>T.Osuch@elka.pw.edu.pl</u> w terminie do 17.01.2021r.

1. Wyznaczenie podstawowych parametrów światłowodowej siatki Bragga

Charakterystykę spektralną transmisyjną siatki Bragga zmierzono w układzie przedstawionym na rysunku 1.

Rys. 1. Stanowisko do pomiaru charakterystyk spektralnych transmisyjnych światłowodowych siatek Bragga (ZS – źródło szerokopasmowe, SP- światłowód (patchcord) pomiarowy, Z – złączka światłowodowa, FBG – światłowodowa siatka Bragga, AW – analizator widma optycznego).

Na podstawie danych pomiarowych dołączonych w pliku **dane_lab6.xlsx** wyznaczyć charakterystykę spektralną transmisyjną siatki Bragga $T=f(\lambda)$ oraz wyznaczyć podstawowe parametry spektralne tej siatki, tj. długość fali Bragga λ_B , szerokość spektralną FWHM oraz współczynniki transmisji T [dB] i t [%] oraz odbicia r [%].

Opisać lub zilustrować sposób wyznaczania poszczególnych parametrów, podać wzory obliczeniowe, zwrócić uwagę na jednostki.

Parametr	Wartość
λ _B [nm]	1551.68
FWHM[nm]	0.4
T [dB]	-11.97
t [%]	6.35
r [%]	93.35

Sposób wyznaczania parametrów:

- λ_B [nm] funkcja λ_B =f(min(T))-> długość fali, dla najmniejszej mocy
- FWHM odczytana z wykresu
- T-> różnica pomiędzy min(T) i T z początku okna

• t i r wyznaczone zgodnie ze wzorami zamieszczonymi przez prowadzącego:

Rys. 3. Diagram ilustrujący sposób przeliczania współczynników transmisji i odbicia siatki Bragga.

Warto zauważyć, że zebrane wartości poziomu mocy są wartościami bezwzględnymi w [dBm] uzyskanymi wprost z analizatora widma optycznego. Zakładamy również, że w mierzonym zakresie spektralnym poziom mocy źródła szerokopasmowego jest stały.

2. Badania światłowodowej siatki Bragga jako czujnika odkształcenia

Na rysunku 2 przestawiono stanowisko do pomiaru charakterystyk spektralnych transmisyjnych siatek Bragga poddawanych rozciąganiu. Siatka Bragga przytwierdzona jest w dwóch miejscach (oddalonych o L) do układu mechanicznego do precyzyjnego rozciągania światłowodu U. Efekt rozciągania realizowany jest poprzez zmianę położenia przesuwu liniowego za pomocą śruby mikrometrycznej o dystans ΔL, co w efekcie powoduje zmianę długości (rozciąganie) odcinka światłowodu z siatką Bragga o wartość ΔL. Bazowa długość światłowodu z siatką (dla zerowego naprężenia) wynosi L.

Wydłużenie włókna obliczyć można na podstawie różnicy położeń przesuwu liniowego (czyli na podstawie różnicy odczytów ze śruby mikrometrycznej) pomiędzy położeniem "zerowym" (zerowe naprężenie) L_{s,0} oraz po przesunięciu L_{s,i}, tj.

$$\Delta L_i = L_{s,0} - L_{s,i} \tag{1}$$

Istotne jest, że wraz z przesuwaniem stolika linowego w prawo (rozciąganie włókna) wartość bezwzględnego położenia (odczyt ze śruby mikrometrycznej) zmniejsza się.

Zatem, aby uzyskać dodatnią wartość aktualnego rozciągnięcia ΔL_i obliczamy je odejmując bieżące położenie $L_{S,i}$ od położenia zerowego $L_{s,0}$.

Wykorzystując stanowisko pomiarowe przedstawione na rysunku 2 zbadano wpływ działania odkształcenia (rozciągania) na charakterystykę spektralną transmisyjną siatki Bragga. A zatem wykonano serię pomiarów pozwalającą na określenie właściwości czujnikowych siatki jako sensora odkształcenia.

Rys. 2. Stanowisko do pomiaru charakterystyk spektralnych transmisyjnych siatek Bragga poddawanych rozciąganiu (U – układ do rozciągania włókna).

Na podstawie danych pomiarowych zamieszczonych w pliku dane_lab6.xlsx:

a) znając bazową długość odcinka włókna z siatką Bragga poddawanego rozciąganiu L, przeliczyć wprowadzane na skutek rozciągania zamiany długości włókna z siatką ΔL_i , na wartości odkształcenia (naprężenia) wyrażone w $\mu\epsilon$ ($\mu\epsilon$ - mikrostainy). W tym celu odszukać definicję microstraina i zastosować do obliczeń, podając ją jednocześnie w sprawozdaniu (wraz ze źródłem, z którego została zaczerpnięta).

Źródło:

https://www.omega.co.uk/literature/transactions/volume3/strain.html

Strain Units

Strain is defined as the amount of deformation per unit length of an object when a load is applied. Strain is calculated by dividing the total deformation of the original length by the original length (L):

Strain (
$$\epsilon$$
) = (Δ L)/L

Typical values for strain are less than 0.005 inch/inch and are often expressed in microstrain units:

ΔL[mm]	0	0.02	0.04	0.06	0.08	0.1
mirkostrainy	0	86.96	173.91	260.87	347.83	434.78

b) wyznaczyć rodzinę charakterystyk spektralnych transmisyjnych siatki Bragga dla różnych wartości naprężenia (na jednym wykresie),

c) wyznaczyć charakterystykę ilustrującą zmiany długości fali Bragga siatki w funkcji odkształcenia (wyrażonego w με),

d) na podstawie charakterystyki z punktu c) wyznaczyć względną i bezwzględną czułość odkształceniową siatki Bragga.

Czułość względna	8.64e-7
Czułość bezwzględna	0.0013

Opisać sposób wyznaczania poszczególnych wielkości/parametrów, podać wzory obliczeniowe, zwrócić uwagę na jednostki.

```
close all
clear all
clc
%% a
% strains definition
https://www.omega.co.uk/literature/transactions/volume3/
strain.html
dL=[0 0.02 0.04 0.06 0.08 0.1]; %dLi=Ls,0-Ls,i [mm] -
micrometer screw increment
L=230; % basic length
strains = dL./L; % calculating strains
micro strains = strains * 1e6; % calculating micro
strains
%% b
data = readmatrix('data2.txt'); % data for task2
wave lengths = data(:,1); %first column contains
wave lengths
transmission powers = data(:,2:length(data(1,:))); %
powers for transmission for diffrent scre increment
power length = length(transmission powers(1,:)); %
helping variable
figure % crating a figure
legend text = "naprezenie[\mu\epsilon]: " +
string(micro strains);
for k=1:power length
    plot(wave lengths, transmission powers(:, k))
    hold on
end
grid on
title('rodzina charakterystyk spektralnych')
xlabel('długość fali [nm]')
ylabel('P[dBm]')
legend(legend text, 'Location', 'best')
hold off
lambdas = zeros(1,power length); % pre-allocating memory
for k=1:power length % finding wave length for minimum
power
    lambdas(k) =
wave lengths(find(transmission powers(:,k)==
min(transmission powers(:,k)),1));
figure % creating a figure
```

```
plot(micro_strains, lambdas)
grid on
xlabel('odkształcenie [\mu\epsilon]')
ylabel("długość fali Bragga[nm]")
title("charakterystykę ilustrująca zmiany długości fali
Bragga siatki "+newline+"w funkcji odkształcenia")
hold off
%% d
dLambdas= lambdas(end) - lambdas(1); % lambda difference
ke = (dLambdas/lambdas(1))/micro_strains(end); %
relative sensitivity
Ke=ke*lambdas(1); % absolute sensitivity
```

3. Badania światłowodowej siatki Bragga jako czujnika temperatury

Na rysunku 3 przestawiono stanowisko do pomiaru charakterystyk spektralnych transmisyjnych siatek Bragga poddawanych zmianom temperatury. Siatka Bragga umieszczona jest w komorze termicznej KT, o precyzyjnie regulowanej temperaturze.

Zmieniając temperaturę w komorze, zmierzono rodzinę charakterystyk spektralnych transmisyjnych siatki Bragga w różnych temperaturach. A zatem wykonano serię pomiarów pozwalającą na określenie właściwości czujnikowych siatki jako sensora temperatury.

Rys. 3. Stanowisko do pomiaru charakterystyk spektralnych transmisyjnych siatek Bragga poddawanych zmianom temperatury (KT – komora termiczna).

Na podstawie danych pomiarowych zamieszczonych w pliku dane_lab6.xlsx:

a) wyznaczyć rodzinę charakterystyk spektralnych transmisyjnych siatki Bragga dla różnych temperatur (na jednym wykresie),

b) wyznaczyć charakterystykę ilustrującą zmiany długości fali Bragga siatki w funkcji temperatury,

c) na podstawie charakterystyki z punktu b) wyznaczyć względną i bezwzględną czułość temperaturową siatki Bragga.

Czułość względna	1.08e-05
Czułość bezwzględna	0.0168

Opisać sposób wyznaczania poszczególnych wielkości/parametrów, podać wzory obliczeniowe, zwrócić uwagę na jednostki.

```
close all
clear all
clc

T=[10.8 18.5 24.5 35.5 45.5 58.6 72 83.4];

%% a
data = readmatrix('data3.txt'); % data for task3
```

```
wave lengths = data(:,1); % first column contains
wave lengths
transmission powers = data(:,2:length(data(1,:))); %
powers for transmission for diffrent scre increment
power length = length(transmission powers(1,:)); %
helping variable
figure
legend text = "T[C]: " + string(T);
for k=1:power length
    plot(wave lengths, transmission powers(:, k))
    hold on
end
grid on
title('rodzina charakterystyk spektralnych')
xlabel('długość fali [nm]')
ylabel('P[dBm]')
legend(legend text, 'Location', 'best')
hold off
%% b % creating figure
lambdas = zeros(1,power length); % pre-allocating memory
for k=1:power length % finding wave length for minimum
power
    lambdas(k) =
wave lengths(find(transmission powers(:,k)==
min(transmission powers(:,k)),1));
end
figure
plot(T, lambdas)
grid on
xlabel('tempeartura [C]')
ylabel ("długość fali Bragga[nm]")
title ("charakterystykę ilustrująca zmiany długości fali
Bragga siatki "+newline+"w funkcji temperatury")
hold off
응응 C
dLambdas = lambdas (end) - lambdas (1); % lambda difference
ke = (dLambdas/lambdas(1))/(T(end)-T(1)); % relative
sensitivity
Ke=ke*lambdas(1); % absolute sensitivity
```

4. Zagadnienie pomiarowe

Przeanalizuj działanie siatki Bragga poddawanej zmianom odkształcenia i temperatury. W tym celu mając do dyspozycji siatkę Bragga o:

- długości fali Bragga wyznaczonej w zadaniu 1,
- względnej czułości odkształceniowej wyznaczonej w zadaniu 2,
- względnej czułości temperaturowej wyznaczonej w zadaniu 3,

zbadaj zmianę długości fali Bragga w przypadku gdy na siatkę działa zarówno odkształcenie jak i temperatura.

długości fali Bragga gdy na siatkę działa zarówno odkształcenie jak i temperatura.

Na tej podstawie wysnuj wnioski dotyczące możliwości i ograniczeń pracy siatki Bragga jako czujnika do pomiaru jednej z ww. wielkości fizycznych oraz jako czujnika do pomiaru obu wielkości jednocześnie.

Z wykresu widać, ze funkcja ta nie jest różnowartościowa, to znaczy taka sama długość fali Bragga jest dla różnych zestawów odkształcenia i temperatury. Widać także, że funkcja jest częściowo symetryczna (nie całkowicie). Zatem można mierzyć obie wartości na raz, w pewnych zakresach, lecz generalnie trzeba mieć na uwadze, że wynikiem może być zestaw dwóch punktów.

```
Clc
close all
clear all
lambda1=1551.68;
kl=8.639001139777177e-07;
kt= 1.083086225435473e-05;
dL=[0 0.02 0.04 0.06 0.08 0.1]; %dLi=Ls,0-Ls,i [mm] -
micrometer screw increment
L=230; % basic length
strains = dL./L; % calculating strains
micro strains = strains * 1e6; % calculating micro
strains
T=[10.8 18.5 24.5 35.5 45.5 58.6 72 83.4];
t length = length(T);
l length = length(dL);
lambdas= zeros(t length, l length);
lambdas(1,1) = lambda1;
for t = 1: t length
    for l = 1: l length
        if t == \overline{1}
             lambdas(t,l) = lambda1 + ...
            kl *micro strains(l)*lambda1;
             delta T=T(t) - T(t-1);
             lambdas(t,l) = lambdas(t-1,l) + kt*
delta T*lambda1 + ...
            kl *micro strains(l)*lambda1;
        end
    end
end
figure
surf( micro strains, T, lambdas)
xlabel('odkształcenie [\mu\epsilon]')
ylabel("temperatura [C]")
zlabel("długość fali Bragga[nm]")
title("długości fali Bragga "+ newline+" gdy na siatkę
działa zarówno odkształcenie jak i temperatura. ")
```

	Laboratorium Podstaw Czujników Pomiarowych	
5 (JAZ-1		Ct 15