Title: LambdaNetworks: Modeling long-range Interactions without Attention

https://openreview.net/pdf?id=xTJEN-ggl1b

Authors: Under double blind review

Field: Computer Vision Submitted: Sep 28

Modelling Long-Range Interactions:

Notation: q denotes a query, **c** denotes a context.

 \boldsymbol{x} is a scalar, \mathbf{x} is a vector , \boldsymbol{X} is a tensor.

 $\dim \mathbf{q_n} = k$ (key depth, eg. embedding dim)

dim value $(y_n) = v$ (value depth, eg. embedding dim)

intra depth = u = 1 for classical transformers.

|m| is the dimensionality of a set indexed by m

 $(\mathbf{q_n}, \mathbf{c_m})$ denotes a content based relation (function or assignment)

 $(\mathbf{q_n},(\mathbf{n},\mathbf{m}))$ denotes a position based relation.

Table 1: Hyperparameter, parameters and quantities of interest describing our lambda layer.

Name	Type	Description
k , v , u	hyperparameter	key/query depth, value depth, intra-depth
$egin{aligned} oldsymbol{W}_Q &\in \mathbb{R}^{d imes k } \ oldsymbol{W}_K &\in \mathbb{R}^{d imes k imes u } \ oldsymbol{W}_V &\in \mathbb{R}^{d imes v imes u } \ oldsymbol{E}_{nm} &\in \mathbb{R}^{ k imes u } \end{aligned}$	parameter	a tensor that linearly projects the inputs a tensor that linearly projects the context a tensor that linearly projects the context a positional embedding for the relation (n, m) .
$oldsymbol{X} \in \mathbb{R}^{ n imes d} \ oldsymbol{C} \in \mathbb{R}^{ m imes d}$	input	the inputs the context
$egin{aligned} oldsymbol{Q} &= oldsymbol{X} oldsymbol{W}_Q \in \mathbb{R}^{ m imes k imes u } \ oldsymbol{K} &= oldsymbol{C} oldsymbol{W}_K \in \mathbb{R}^{ m imes v imes u } \ oldsymbol{V} &= oldsymbol{C} oldsymbol{W}_V \in \mathbb{R}^{ m imes v imes u } \ ar{oldsymbol{K}} &= \operatorname{softmax}_m(oldsymbol{K}) \end{aligned}$	activation	the queries the keys the values the normalized keys
$oldsymbol{\mu}_{m}^{c} = oldsymbol{K}_{m}oldsymbol{V}_{m}^{T} \in \mathbb{R}^{ k imes v } \ oldsymbol{\mu}_{nm}^{p} = oldsymbol{E}_{nm}oldsymbol{V}_{m}^{T} \in \mathbb{R}^{ k imes v }$		content contribution from context element m $position$ contribution from context element m
$oldsymbol{Y} \in \mathbb{R}^{ n imes d}$	outputs	the outputs

Keys:

Content based relations requires a k dimensional vector $\mathbf{k_m}$ (key) for each context Position based relations require a k dimensional embedding vector $\mathbf{e_{mn}}$ for each position (m,n).

The output $Y = \{y_n\}$ does not have a dimension of key depth v or position index m; these indices must be contracted (matrix multiply, dot product, diag(matrix) etc) away.

Classical attention contracts key and query over a common depth dimension.

Lambda layer maps each query to an output via a linear function $y_n = \lambda(C)_n(q_n)$. Each lambda function is computed once, then acts independently of the context. It is then discarded after being applied to its query.

Lambda layer:

The lambda function has both a context and position part (equivalent to position embedding) It takes the form of a k by v matrix.

$$\lambda^{c} = \sum_{m} softmax(K_{m})V_{m}$$
$$\lambda_{n}^{p} = \sum_{m} E_{nm}V_{m}$$
$$\lambda_{n} = \lambda^{c} + \lambda_{n}^{p}$$

The input is transformed to a query via a weight matrix $\mathbf{q_n} = \mathbf{W_q} \mathbf{x_n}$. Then $\mathbf{y_n} = \lambda_n \mathbf{q_n}$ via a matrix multiplication.

Translation Equivalence:

To implement translation equivalence, define a relative position embedding for each (n,m) $R_r(m,n)=E_{m,n}$ where R is a (k,|r|,u) tensor and E is a (k,|n|,|m|,u) tensor. Where r indexes relative positions only.

Lambda Convolution:

For local attention, can generate a convolution with position lambda λ_p kernel. This can be done for Conv2D given 2d context, and is highly optimized.

Lambda convolution has linear time and space complexity wrt. to input length |m|.

Complexity

Batch size b

Time O(bknmv)

Space O(bknv + kmn)

Still quadratic (mn term). Note however the space complexity has no bmn term; the quadratic term does not scale with batch size, this allows for the processing of large batches.

Multiquery lambda:

Analogous to multi-head attention. However, an important distinction; multi-head attention increases representation power and complexity, multiquery lambda decreases representation power and complexity.

Procedure: split model dimension d into hv.

Results:

Table 3: Comparison of the lambda layer and attention mechanisms on ImageNet classification with a ResNet50 architecture. The lambda layer strongly outperforms alternatives at a fraction of the parameter cost. We include the reported improvements compared to the ResNet50 baseline in subscript to account for training setups that are not directly comparable. †: Our implementation.

Layer	Params (M)	top-1
Conv (He et al., 2016) [†]	25.6	76.9+0.0
Conv + channel attention (Hu et al., 2018b) [†]	28.1	77.6+0.7
Conv + double attention (Chen et al., 2018)	33.0	77.0
Conv + efficient attention (Shen et al., 2018)	-	77.3 + 1.2
Conv + relative self-attention (Bello et al., 2019)	25.8	$77.7_{+1.3}$
Local relative self-attention (Ramachandran et al., 2019)	18.0	77.4+0.5
Local relative self-attention (Hu et al., 2019)	23.3	$77.3_{\pm 1.0}$
Local relative self-attention (Zhao et al., 2020)	20.5	$78.2_{+1.3}$
Lambda layer	15.0	78.4+1.5
Lambda layer ($ u =4$)	16.0	$78.9_{+2.0}$

Table 4: The lambda layer reaches higher accuracies while being faster and more memory-efficient than self-attention alternatives. Inference throughput is measured on 8 TPUv3 cores for a ResNet50 architecture with input resolution 224x224.

Layer	Complexity	Memory (GB)	Throughput	top-1
Global self-attention	$\Theta(blhn^2)$	120	OOM	OOM
Axial self-attention	$\Theta(blhn\sqrt{n})$	4.8	960ex/s	77.5
Local self-attention (7x7)	$\Theta(blhnm)$	-	440ex/s	77.4
Lambda layer	$\Theta(lkn^2)$	0.96	1160ex/s	78.4
Lambda layer (shared embeddings)	$\Theta(kn^2)$	0.31	1210ex/s	78.0
Lambda layer ($ k =8$)	$\Theta(lkn^2)$	0.48	1640ex/s	77.9
Lambda convolution (7x7)	$\Theta(lknm)$	-	1100ex/s	78.1

Table 5: LambdaResNets improve upon the parameter-efficiency of large EfficientNets.

Architecture	Params (M)	top-1	
EfficientNet-B6	43	84.0	
LambdaResNet152	35	84.0	
LambdaResNet200	42	84.3	

Table 6: LambdaResNets improve upon the flops-efficiency of large EfficientNets.

Architecture	Flops (G)	top-1
EfficientNet-B6	38	84.0
LambdaResNet-270	34	84.0

Figure 2: LambdaResNets are \sim 4.5x faster than EfficientNets and substantially improve the speed-accuracy tradeoff of image classification models³ across different (depth, image size) scales.

Implementation:

$$egin{aligned} oldsymbol{\lambda}^c_{bkv} &= einsum(ar{m{K}}_{bmku}, m{V}_{bmvu}) \ oldsymbol{\lambda}^p_{bnkv} &= einsum(m{E}_{knmu}, m{V}_{bmvu}) \ m{Y}^c_{bnhv} &= einsum(m{Q}_{bnhk}, m{\lambda}^c_{bkv}) \ m{Y}^p_{bnhv} &= einsum(m{Q}_{bnhk}, m{\lambda}^p_{bnkv}) \ m{Y}^p_{bnhv} &= m{Y}^c_{bnhv} + m{Y}^p_{bnhv} \end{aligned}$$

Masked Context Lambda:

Masked attention is achieved by zeroing out certain elements of the attention tensor. For lambda:

$$\begin{aligned} & \boldsymbol{\mu}^{c}_{bmkv} = einsum(\boldsymbol{K}_{bmku}, \boldsymbol{V}_{bmvu}) \\ & \boldsymbol{\lambda}^{c}_{bnkv} = einsum(\boldsymbol{P}_{nm}, \boldsymbol{\mu}_{bmkv}) \\ & \boldsymbol{\lambda}^{p}_{bnkv} = einsum(\boldsymbol{E}_{knmu} * \boldsymbol{P}_{nm}, \boldsymbol{V}_{bmvu}) \end{aligned}$$

where $p_{nm}=1[m\in\mathcal{C}_n]$ and * is a broadcasted element-wise multiplication.

 p_{mn} is a masking tensor (forward or causal) i.e. is 1 when in context, 0 when out of context(masked).