.

Introduction à l'intelligence Artificielle

Machine Learning

Objectifs

Objectifs

- cerner ce qu'est le machine learning
- appréhender les différentes facettes du domaine

Machine Learning

Machine learning

Qu'est-il pour vous?

Machine learning

- pas de définition exacte
- idée transversale : éviter la programmation explicite.
- création de programmes qui utilisent des données ou des algorithmes généraux pour apprendre à réaliser leurs tâches

Points de vue

Beaucoup de façons de voir le machine learning. Basées sur :

- les paradigmes (supervisé, non supervisé, renforcement, en ligne, ...)
- les modèles (arbres, grammaires, automates, réseaux de neurones ...)
- les données (tabulaire, image, texte, vidéo, graphe, ...)
- les techniques (statistiques, symboliques, probabilistes, ...)
- les contraintes (real time, embarqué, big data, multilingue, ...)
- \rightarrow Domaine **extrêmement** vaste.

Facettes du machine learning — supervised learning

Demande beaucoup de données, parfois couteuses. Modèles performants en sortie.

Facettes du machine learning — unsupervised learning

Pas besoin d'annotation \to données moins couteuses. Limite les possibilités des modèles.

Facettes du machine learning — reinforcement learning

Paradigme de d'acquisition des données différent. Modèles potentiellement extrêmement performants.

Facettes du machine learning — bayesian networks

Très interprétable, requêtable.

Facettes du machine learning — decision trees

Assez interprétable, robuste, couteau-suisse du machine learning tabulaire.

Calculabilité vs expressivité

Un modèle facilement calculable est souvent peu expressif.

Inversement, un modèle peu calculable est souvent expressif (sinon mauvais modèle).

Choisir la bonne facette

Critères pour s'orienter dans les approches de machine learning :

- quantité de données à disposition
- qualité du signal d'apprentissage dans les données
- difficulté du problème à résoudre
- besoin d'interprétabilité
- contraintes techniques
- contraintes de délai
- ... et d'autres en fonction des domaines métiers

Conclusion

- le machine learning est un champ vaste.
- il existe sûrement un modèle/paradigme pour vos besoins
- l'important est de définir les bons critères

Discussion

- à quelles données allez-vous appliquer le machine learning? À quels besoins?
- aurez-vous besoin de modèles interprétables ou simplement très performant en prédiction?
- quelles sont vos contraintes?

