UNIWERSYTET RZESZOWSKI

WYDZIAŁ NAUK ŚCISŁYCH I TECHNICZNYCH INSTYTUT INFORMATYKI

Mikołaj Kopacz 134926

Informatyka

Projekt i implementacja systemu automatu z napojami z wykorzystaniem języka Java i bazy danych SQLite

Praca projektowa

Praca wykonana pod kierunkiem mgr inż. Ewa Żesławska

Spis treści

0.1.	Streszo	zenie	6	
	0.1.1.	Streszczenie w języku polskim	6	
	0.1.2.	Summary in English	6	
0.2.	Opis za	ałożeń projektu	6	
	0.2.1.	Cel projektu	6	
	0.2.2.	Wymagania funkcjonalne	6	
	0.2.3.	Wymagania niefunkcjonalne	7	
0.3.	Opis st	ruktury projektu	7	
	0.3.1.	Architektura systemu	7	
	0.3.2.	Diagram klas	8	
	0.3.3.	Hierarchia dziedziczenia	8	
	0.3.4.	Baza danych	10	
0.4.	Harmo	nogram realizacji projektu	11	
0.5.	Prezen	tacja warstwy użytkowej projektu	12	
	0.5.1.	Interfejs użytkownika	12	
	0.5.2.	Przepływ użytkownika	12	
	0.5.3.	Panel administratora	13	
0.6.	Testow	anie systemu	13	
	0.6.1.	Strategia testowania	13	
	0.6.2.	Przykładowe scenariusze testowe	13	
	0.6.3.	Wyniki testów wydajnościowych	14	
0.7.	Podsur	nowanie	14	
	0.7.1.	Osiągnięte cele	14	
	0.7.2.	Problemy napotkane podczas realizacji	14	
	0.7.3.	Kierunki rozwoju	14	
	0.7.4.	Wnioski	14	
Bibli	iografia		15	
Spis	rysunk	ów	16	
Spis	Spis listingów			
Ośw	Oświadczenie studenta o samodzielności pracy			

6 0.1. Streszczenie

0.1. Streszczenie

0.1.1. Streszczenie w języku polskim

System automatu z napojami to kompleksowe rozwiązanie umożliwiające symulację działania fizycznego automatu vendingowego. Aplikacja została zaimplementowana w języku Java z wykorzystaniem technologii Swing dla interfejsu użytkownika oraz bazy danych SQLite do przechowywania informacji o produktach i transakcjach. W projekcie wykorzystano technologie opisane w [2] oraz [3], a także klasę BigDecimal[1] dla lepszej jakości obliczeń. System oferuje dwie główne ścieżki interakcji: dla klientów (przeglądanie asortymentu, składanie zamówień, płatności) oraz dla administratorów (zarządzanie stanem magazynowym, monitoring transakcji, analiza finansowa).

0.1.2. Summary in English

The beverage vending machine system is a comprehensive solution simulating the operation of a physical vending machine. The application was implemented in Java using Swing for the user interface and SQLite database for storing product and transaction information. The project utilizes technologies described in [2] and [3], as well as BigDecimal class[1], for better quality calculations. The system offers two main interaction paths: for customers (browsing products, placing orders, payments) and for administrators (inventory management, transaction monitoring, financial analysis).

0.2. Opis założeń projektu

0.2.1. Cel projektu

Głównym celem projektu było stworzenie wirtualnego automatu z napojami, który:

- Symuluje rzeczywiste zachowanie automatu vendingowego
- Umożliwia łatwe zarządzanie produktami przez administratora
- · Zapewnia intuicyjny interfejs dla użytkowników
- Rejestruje historię transakcji
- Generuje raporty finansowe

0.2.2. Wymagania funkcjonalne

- Przeglądanie dostępnych produktów z podziałem na kategorie
- System koszyka zakupowego
- · Obsługa płatności gotówką i kartą
- Panel administracyjny z autentykacją
- · Zarządzanie stanem magazynowym
- Generowanie raportów transakcji
- Kalkulacja zysków

0.2.3. Wymagania niefunkcjonalne

• Wydajność: czas reakcji < 1s dla podstawowych operacji
Bezpieczeństwo: ochrona danych transakcji
Kompatybilność: Java 8+, Windows/Linux/MacOS
Użyteczność: intuicyjny interfejs graficzny
Niezawodność: odporność na błędy użytkownika
0.3. Opis struktury projektu
0.3.1. Architektura systemu
System został zbudowany w oparciu o wzorzec MVC (Model-Widok-Kontroler):
• Model: Baza danych SQLite + klasy dziedziny (Produkt, Transakcja itp.)
Widok: Interfejs użytkownika zrealizowany w Swing
Kontroler: Logika biznesowa aplikacji

0.3.2. Diagram klas

Rysunek 1. Diagram głównych klas systemu

0.3.3. Hierarchia dziedziczenia

System wykorzystuje mechanizm dziedziczenia do modelowania różnych typów produktów. Główna hierarchia klas przedstawia się następująco:

Rysunek 2. Hierarchia dziedziczenia klas produktów

Klasa bazowa Produkt

Klasa abstrakcyjna Produkt stanowi podstawę hierarchii:

```
public abstract class Produkt {
    protected int id;
    protected String nazwa;
    protected BigDecimal cena;

public abstract String getSzczegolowyOpis();
}
```

Klasa Napoj

Klasa Napoj dziedziczy po Produkt, rozszerzając ją o specyficzne dla napojów właściwości:

```
public abstract class Napoj extends Produkt {
    protected int pojemnoscMl;

public Napoj(int id, String nazwa, BigDecimal cena, int pojemnoscMl) {
    super(id, nazwa, cena);
    this.pojemnoscMl = pojemnoscMl;
}
```

Klasy konkretne

Specyficzne typy napojów dziedziczą po klasie Napoj, implementując własne wersje metody getSzczegolowyOpis():

• NapojGazowany - dodaje informację o słodzeniu

```
8  }
```

- Sok dodaje informację o rodzaju owocu
- Woda podstawowa implementacja dla wody

Zalety zastosowanego podejścia

- Reużywalność kodu: Wspólne właściwości są zdefiniowane w klasach nadrzędnych
- Polimorfizm: Możliwość traktowania różnych typów produktów jednolicie
- Rozszerzalność: Łatwe dodawanie nowych typów produktów

Przykład wykorzystania polimorfizmu w klasie BazaDanych:

```
public static List<Produkt> pobierzWszystkieProdukty() {
    List<Produkt> produkty = new ArrayList<>();
    // ...
    switch (typProduktu) {
        case "GAZOWANY":
            produkty.add(new NapojGazowany(...));
            break;
        case "SOK":
            produkty.add(new Sok(...));
            break;
            // ...
            produkty.add(new Sok(...));
            break;
            return produkty;
}
```

Kluczowe klasy systemu:

- MainFrame: Główne okno aplikacji
- **Produkt**: Klasa abstrakcyjna reprezentująca produkt
- Napoj, NapojGazowany, Woda, Sok: Hierarchia klas produktów
- KoszykFrame: Obsługa koszyka zakupowego
- ZaplacFrame: Logika płatności
- BazaDanych: Warstwa dostępu do danych

0.3.4. Baza danych

System wykorzystuje lekką bazę danych SQLite z następującymi tabelami:

- produkty (id, nazwa, cena, typ, ilość)
- detale_napoje (id_produktu, pojemność_ml)
- transakcje (id, data, produkty, kwota, metoda_płatności)

Rysunek 3. Diagram ERD bazy danych

0.4. Harmonogram realizacji projektu

Projekt był realizowany według następującego harmonogramu:

Rysunek 4. Diagram Ganta realizacji projektu

Główne etapy realizacji:

- Analiza wymagań (1 tydzień)
- Projekt interfejsu użytkownika (1 tydzień)
- Implementacja podstawowej funkcjonalności (1 tydzień)
- Testowanie i debugowanie (1 tydzień)
- Przygotowanie dokumentacji (1 tydzień)

Kod źródłowy projektu jest dostępny w repozytorium GitHub: https://github.com/mikolaj-kopacz/ System-Automat-Z-Napojami

0.5. Prezentacja warstwy użytkowej projektu

0.5.1. Interfejs użytkownika

System oferuje dwa główne interfejsy:

- Interfejs klienta do składania zamówień
- Panel administratora do zarządzania systemem

(a) Ekran główny - wybór produktów

(b) Ekran płatności

Rysunek 5. Podstawowe ekrany systemu

0.5.2. Przepływ użytkownika

Typowy scenariusz użycia:

- 1. Użytkownik przegląda dostępne produkty
- 2. Wybiera produkty i dodaje je do koszyka
- 3. Przechodzi do podsumowania zamówienia
- 4. Wybiera metodę płatności (gotówka/karta)
- 5. Otrzymuje potwierdzenie transakcji

0.6. Testowanie systemu 13

0.5.3. Panel administratora

Rysunek 6. Panel administracyjny systemu

Funkcjonalności panelu admina:

- Zarządzanie produktami (dodawanie, edycja, usuwanie)
- Przegląd historii transakcji
- Generowanie raportów finansowych
- Zarządzanie stanem magazynowym

0.6. Testowanie systemu

0.6.1. Strategia testowania

System został przetestowany na trzech poziomach:

- Testy jednostkowe (JUnit) poszczególne metody
- Testy integracyjne współdziałanie komponentów
- Testy systemowe cała aplikacja

0.6.2. Przykładowe scenariusze testowe

Tabela 1. Przykładowe przypadki testowe

Scenariusz	Oczekiwany wynik	Status
Dodanie produktu do koszyka	Koszyk zawiera 1 produkt	PASS
Płatność niewystarczającą kwotą	Komunikat o błędzie	PASS
Logowanie admina poprawnymi danymi	Dostęp do panelu	PASS

14 0.7. Podsumowanie

0.6.3. Wyniki testów wydajnościowych

- Średni czas ładowania ekranu: 0.3s
- Maksymalna liczba równoległych transakcji: 15
- Średni czas przetwarzania płatności: 0.5s

0.7. Podsumowanie

0.7.1. Osiągnięte cele

Projekt został zrealizowany zgodnie z założeniami. Wszystkie wymagania funkcjonalne i niefunkcjonalne zostały spełnione. System działa stabilnie i oferuje wszystkie zaplanowane funkcje.

0.7.2. Problemy napotkane podczas realizacji

- Problemy z synchronizacją dostępu do bazy danych
- Wyzwania związane z responsywnością interfejsu
- Optymalizacja wydajności przy dużych zbiorach transakcji

0.7.3. Kierunki rozwoju

Możliwe rozszerzenia systemu:

- Integracja z systemami płatności online
- Aplikacja mobilna dla administratorów
- Zaawansowane raporty i analizy sprzedaży
- Wsparcie dla większej liczby typów produktów

0.7.4. Wnioski

Projekt udowodnił, że Java w połączeniu z SQLite stanowią skuteczne narzędzie do budowy systemów vendingowych. Wykonana implementacja może stanowić podstawę dla bardziej zaawansowanych rozwiązań w tej dziedzinie.

Bibliografia

- [1] docs.oracle.com. Bigdecimal documentation. https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html. Dostęp: 2023-10-15.
- [2] docs.oracle.com. Oracle java documentation. https://docs.oracle.com/en/java/. Dostęp: 2023-10-15.
- [3] sqlite.org. Sqlite documentation. https://www.sqlite.org/docs.html. Dostęp: 2023-10-15.

Spis rysunków

1	Diagram głównych klas systemu	8
2	Hierarchia dziedziczenia klas produktów	9
3	Diagram ERD bazy danych	11
4	Diagram Ganta realizacji projektu	11
5	Podstawowe ekrany systemu	12
6	Panel administracyjny systemu	13

Spis listingów

Załącznik nr 2 do Zarządzenia nr 228/2021 Rektora Uniwersytetu Rzeszowskiego z dnia 1 grudnia 2021 roku w sprawie ustalenia procedury antyplagiatowej w Uniwersytecie Rzeszowskim

OŚWIADCZENIE STUDENTA O SAMODZIELNOŚCI PRACY

mię (imiona) i nazwisko studenta
Vydział Nauk Ścisłych i Technicznych
Informatyka Iazwa kierunku
134926 Jumer albumu
1. Oświadczam, że moja praca projektowa pt.: Projekt i implementacja systemu automatu z napojami z wykorzystaniem języka Java i bazy danych SQLite
1) została przygotowana przeze mnie samodzielnie*,
 nie narusza praw autorskich w rozumieniu ustawy z dnia 4 lutego 1994 roku o prawie autor- skim i prawach pokrewnych (t.j. Dz.U. z 2021 r., poz. 1062) oraz dóbr osobistych chronionych prawem cywilnym,
3) nie zawiera danych i informacji, które uzyskałem/am w sposób niedozwolony,
4) nie była podstawą otrzymania oceny z innego przedmiotu na uczelni wyższej ani mnie, ani innej osobie.
2. Jednocześnie wyrażam zgodę/nie wyrażam zgody** na udostępnienie mojej pracy projektowej do celów naukowo-badawczych z poszanowaniem przepisów ustawy o prawie autorskim i prawach pokrewnych.
(miejscowość, data) (czytelny podpis studenta)

* Uwzględniając merytoryczny wkład prowadzącego przedmiot

Mikołaj Kopacz

^{** –} niepotrzebne skreślić