WORKSHOP 2

2024 ALGEBRA 2

1. FACTORISATION IN A FINITE FIELD

The polynomial $f(x) = x^3 + x + 1 \in \mathbf{F}_5[x]$ is irreducible. Let $K = \mathbf{F}[t]/(f(t))$. Find the irreducible factorisation of f(x) in K[x].

1.1. Solution sketch. We know that $t \in K$ is a root of f(x). We can find the other roots by applying the Frobenius, so t^3 , and t^9 . So,

$$f(x) = (x - t)(x - t^3)(x - t^9).$$

Can you bring the roots in the "reduced form" (at most quadratics in t)?

2. Conjugates

Let $F \subset K$ be a field extension. We say that $\alpha, \beta \in K$ are *conjugates* over F if they have the same minimal polynomial over F.

Let K be a finite field of characteristic p. Let $\phi \colon K \to K$ be the Frobenius map.

- (1) Prove that the conjugates of $a \in K$ are $a, \phi(a), \phi^2(a), \cdots$
- (2) Deduce that the degree of a over \mathbf{F}_p is the smallest n such that $\phi^n(a) = a$.
- (3) More generally, let $K \subset L$ be an extension of finite fields with $|K| = p^n$. Prove that the conjugates of $a \in L$ over K are $a, \phi^n(a), \phi^{2n}(a), \ldots$
- (4) What is the analogue of (2) in this situation?

2.1. Solution sketch.

(1) Suppose $f(x) = \sum a_i x^i$ is the minimal polynomial of a, where $a_i \in \mathbf{F}_p$. By applying the Frobenius map, we see that

$$\phi(\sum a_i a^i) = \sum a_i \phi(a)^i = 0,$$

so $f(\phi(a)) = 0$. So $\phi(a)$ also has the same minimal polynomial. To see that these are *all* the conjugates, let n be the smallest such that $\phi^n(a) = a$. Then $a, \phi(a), \dots, \phi^{n-1}(a)$ are distinct. Consider

$$f(x) = (x - a) \cdots (x - \phi^{n-1}(a)) \in K[x].$$

We see that $\phi(f) = f$, so $f \in \mathbf{F}_p[x]$. In fact, this must be the minimal polynomial of a (do you see why?). So the $\phi^i(a)$ are indeed all the conjugates of a.

- (2) Follows from what we did in (1).
- (3) This is very similar. The key idea is that $a \in L$ lies in K if and only if $\phi^n(a) = a$.
- (4) The degree of $a \in L$ over K is the smallest m such that $\phi^{nm}(a) = a$.

3. FACTORISATION, ONCE AGAIN

Let $f(x) \in \mathbf{F}_p[x]$ be irreducible of degree 18. Let $\mathbf{F}_p \subset K$ be an extension of degree 4. How does f(x) factorise in K[x]?

Hint. Let $K \subset L$ be an extension of degree 9, so that $\mathbf{F}_p \subset L$ is of degree 36. First factorise f(x) in L and then "collect the conjugates" over K.

3.1. **Solution sketch.** Let $a \in L$ be a root of f(x). Then 18 is the smallest such that $\phi^{18}(a) = a$ and the factorisation of f(x) is

$$(x-a)(x-\phi(a))\cdots(x-\phi^{17}(a)).$$

The conjugates of $t \in L$ over K are $t, \phi^4(t), \phi^8(t), \cdots$. So, the 18 roots $\phi^i(a)$ split into two sets of conjugates over K, namely $\phi^i(a)$ for i even and for i odd. This means that $f(x) \in K[x]$ factorises into a degree 9 irreducible (whose roots are the first set) and another degree 9 irreducible (whose roots are the second set).