Ficha 2

- 1. Calcule $|\vec{a}|^2 \sqrt{3}\langle \vec{a}, \vec{b}\rangle + 5|\vec{b}|^2$ sabendo que $|\vec{a}| = 2$, $|\vec{b}| = 1$, $\angle(\vec{a}, \vec{b}) = \pi/6$.
- 2. No plano com base canónica são dados dois vetores com coordenadas $\vec{a}(3, -2)$ e $\vec{b}(-1, 2)$. Encontre o produto escalar.
- 3. No plano com base canónica encontre o ângulo entre os vetores $\vec{a}(1,2)$ e $\vec{b}(4,2)$.
- 4. No plano com base canónica encontre a distância entre os pontos A(3,-2) e B(3,3).
- 5. No espaço com base canónica são dados dois vetores com coordenadas $\vec{a}(2,1,5)$ e $\vec{b}(7,-9,-1)$. Encontre o produto escalar.
- 6. No espaço com base canónica encontre o ângulo entre os vetores $\vec{a}(1,-1,1)$ e $\vec{b}(5,1,1)$.
- 7. No espaço com base canónica encontre a distância entre os pontos A(-3, 1, -1) e B(-1, 1, -1).
- 8. Mostre que os vetores \vec{a} e $\vec{b}\langle \vec{a}, \vec{c}\rangle \vec{c}\langle \vec{a}, \vec{b}\rangle$ são ortogonais.
- 9. Os vetores \vec{a} , \vec{b} e \vec{c} têm norma igual a um e verificam a igualdade $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Calcule $\langle \vec{a}, \vec{b} \rangle + \langle \vec{b}, \vec{c} \rangle + \langle \vec{a}, \vec{c} \rangle$.
- 10. Dado um triângulo $\triangle ABC$, escreva em termos de \overrightarrow{AB} e \overrightarrow{AC} a distância |BC|, o comprimento da mediana AM, a área do triângulo.
- 11. Considere um triângulo $\triangle ABC$ e a altura \overrightarrow{AH} . Encontre as coordenadasdo vetor \overrightarrow{AH} na base formada pelos vetores \overrightarrow{AB} e \overrightarrow{AC} .

- 12. Seja ABCDum tetraedro tal que $AB\perp CD$ e $AC\perp BD$. Mostre que $BC\perp AD.$
- 13. No espaço com base canónica encontre o produto vetorial dos vetores com coordenadas $\vec{a}(1,-1,1)$ e $\vec{b}(5,1,1)$.
- 14. Considere os vetores $\vec{a}(1,-1,1)$ e $\vec{b}(5,1,1)$. Calcule as coordenadas do vetor \vec{c} com norma um e que é ortogonal aos vetores \vec{a} e \vec{b} . Quantas soluções tem o exercício?
- 15. Seja ABCD um quadrilátero convexo. Mostre que a sua área é $\frac{1}{2}[\overrightarrow{AC}, \overrightarrow{BD}]$.
- 16. Mostre que o produto vetorial não é uma operação associativa.