Numerical Analysis: Midterm

(30 marks, only the 3 best questions count)

Urbain Vaes

October 20, 2024

Question 1 (Floating point arithmetic, 10 marks). True or false?

- 1. Let $(\bullet)_2$ denote binary representation. It holds that $(0.1011)_2 + (0.0101)_2 = 1$.
- **2.** Let $(\bullet)_3$ denote base 3 representation. It holds that $(1000)_3 \times (0.002)_3 = 2$.
- **3.** A natural number with binary representation $(b_4b_3b_2b_1b_0)_2$ is even if and only if $b_0 = 0$.
- 4. In Julia, Float64(.4) == Float32(.4) evaluates to true.
- **5.** Machine addition $\widehat{+}$ is a commutative operation. More precisely, given any two double-precision floating point numbers $x \in \mathbf{F}_{64}$ and $y \in \mathbf{F}_{64}$, it holds that x + y = y + x.
- **6.** Let \mathbf{F}_{32} and \mathbf{F}_{64} denote respectively the sets of single and double precision floating point numbers. It holds that $\mathbf{F}_{32} \subset \mathbf{F}_{64}$.
- 7. In Julia, eps(Float16) returns the smallest strictly positive number that can be represented exactly in the Float16 format.
- 8. Let \mathbf{F}_{64} denote the set of double precision floating point numbers. For any $x \in \mathbf{R}$ such that $x \in \mathbf{F}_{64}$, it holds that $x + 1 \in \mathbf{F}_{64}$.
- **9.** Let $x \in \mathbf{R}$ and $y \in \mathbf{R}$ be two numbers that are exactly representable in the Float64 format. Then x + y = x + y: machine addition is exact in this case.
- **10.** It holds that $(0.\overline{2200})_3 = (0.9)_{10}$.

Question 2 (Interpolation and approximation, 10 marks). Throughout this exercise, we use the notation $x_i^n = i/n$ and assume that $u \colon \mathbf{R} \to \mathbf{R}$ is a smooth function. The notation $\mathbf{P}(n)$ denotes the set of polynomials of degree less than or equal to n. We proved in class that, for all $n \ge 0$, there exists a unique polynomial $p_n \in \mathbf{P}(n)$ such that

$$\forall i \in \{0, \dots, n\}, \qquad p_n(x_i^n) = u(x_i^n). \tag{1}$$

Are the following assertions true or false?

- **1.** If u is not the zero function, then the degree of p_n is exactly n.
- **2.** If u(x) = 2x + 1, then $p_n = u$ for all $n \in \{1, 2, 3, \dots\}$.
- **3.** Fix $u(x) = 1 + \sin(57\pi x)$. Then $p_3(x) = 1$.
- **4.** Fix $u(x) = (2x 1)^3$. Then $p_2(x) = 2x 1$.
- **5.** For all u that is smooth, it holds that

$$\max_{x \in [0,1]} |u(x) - p_n(x)| \xrightarrow[n \to \infty]{} 0.$$

6. Fix $u(x) = \cos(2x)$. Then

$$\max_{x \in [0,1]} |u(x) - p_n(x)| \xrightarrow[n \to \infty]{} 0.$$

7. Fix $u(x) = \sin(x)$. Then

$$\max_{x \in \mathbf{R}} |u(x) - p_n(x)| \xrightarrow[n \to \infty]{} 0.$$

- **8.** Suppose that $p(x) \in \mathbf{P}(n)$ and let q(x) = p(x+1) p(x). Then $q \in \mathbf{P}(n-1)$.
- **9.** Let $(f_0, f_1, f_2, \dots) = (1, 1, 2, \dots)$ denote the Fibonacci sequence. There exists a polynomial p such that

$$\forall n \in \mathbf{N}, \qquad f_n = p(n).$$

10. For any matrix $A \in \mathbf{R}^{20 \times 10}$, the linear system

$$A^T A \alpha = A^T \alpha$$

admits a unique solution.

1. There exists a unique polynomial $p \in \mathbf{P}(n+1)$ such that

$$\forall i \in \{0, \dots, n\}, \qquad p(x_i) = u(x_i). \tag{2}$$

2. Assume that $p \in \mathbf{P}(n)$ is such that (2) is satisfied. Then there is a constant $K \in \mathbf{R}$ independent of x such that

$$\forall x \in \mathbf{R}, \quad u(x) - p(x) = K(x - x_0) \dots (x - x_n).$$

- **3.** Assume that $p \in \mathbf{P}(n)$ is such that (2) is satisfied. Then p is of degree exactly n.
- **4.** If x_0, \ldots, x_n are the roots of the Chebyshev polynomial of degree n, then

$$\sup_{x \in \mathbf{R}} \left| (x - x_0) \dots (x - x_n) \right| \leqslant \frac{\pi}{2^n}.$$

5. The function $S \colon \mathbf{N} \to \mathbf{R}$ given by

$$S(n) = \sum_{i=1}^{n} (i + i^{2} + i^{3} + i^{4})$$

is a polynomial of degree 5. (More precisely, there exists a polynomial of degree 5, say q, such that S(n) = q(n) for all $n \in \mathbb{N}$.)

6. Assume that $p \in \mathbf{P}(n)$ is such that (2) is satisfied. It holds that

$$\sup_{x \in \mathbf{R}} |u(x) - p(x)| \le \pi^2 / n.$$

7. For $i \in \{0, ..., n\}$, let $u_i = u(x_i)$, and let $m \leq n$ be a given natural number. We wish to fit the data $(x_0, u_0), ..., (x_n, u_n)$ with a function $\widehat{u} \colon \mathbf{R} \to \mathbf{R}$ of the form

$$\widehat{u}(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_m x^m$$

Specifically, we wish to find coefficients $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_m)^T$ such that the error

$$J(\alpha) := \frac{1}{2} \sum_{i=0}^{n} |u_i - \widehat{u}(x_i)|^2$$

is minimized. Throughout this exercise, we use the notations

$$A \begin{pmatrix} 1 & x_0 & \dots & x_0^m \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \dots & x_n^m \end{pmatrix}, \qquad \boldsymbol{b} := \begin{pmatrix} u_0 \\ \vdots \\ u_n \end{pmatrix}$$

• (3 marks) Show that $J(\alpha)$ may be rewritten as

$$J(\boldsymbol{\alpha}) = \frac{1}{2} (\mathsf{A}\boldsymbol{\alpha} - \boldsymbol{b})^T (\mathsf{A}\boldsymbol{\alpha} - \boldsymbol{b}).$$

• (2 marks) Prove that if $\alpha_* \in \mathbf{R}^{m+1}$ is a minimizer of J, then

$$A^T A \alpha_* = A^T b. \tag{3}$$

• (1 mark) Find a solution to (3) in terms of u_0, \ldots, u_n and n when m = 0. Explain.

Solution.

• Notice that

$$\mathbf{A}\boldsymbol{\alpha} = \begin{pmatrix} \alpha_0 + \alpha_1 x_0 + \dots + \alpha_m x_0^m \\ \vdots \\ \alpha_0 + \alpha_1 x_n + \dots + \alpha_m x_n^m \end{pmatrix} = \begin{pmatrix} \widehat{u}(x_0) \\ \vdots \\ \widehat{u}(x_n) \end{pmatrix}.$$

Therefore

$$\frac{1}{2}\sum_{i=1}^{n}\left|\widehat{u}(x_i)-u_i\right|^2=\frac{1}{2}\sum_{i=1}^{n}\left|(\mathsf{A}\boldsymbol{\alpha}-\boldsymbol{b})_i\right|^2=\frac{1}{2}(\mathsf{A}\boldsymbol{\alpha}-\boldsymbol{b})^T(\mathsf{A}\boldsymbol{\alpha}-\boldsymbol{b})$$

• A necessary condition is that $\nabla J(\alpha_*) = 0$. We calculate that

$$\frac{\partial}{\partial_{x_i}} \left(\boldsymbol{b}^T \boldsymbol{x} \right) = \frac{\partial}{\partial_{x_i}} \left(\sum_{j=1}^n b_j x_j \right) = \sum_{j=1}^n b_j \delta_{ij} = b_i.$$

Similarly, for any matrix $M \in \mathbf{R}^{n \times n}$, it holds that

$$\frac{\partial}{\partial x_i} \left(\boldsymbol{x}^T \mathsf{M} \boldsymbol{x} \right) = \frac{\partial}{\partial x_i} \left(\sum_{j=1}^n \sum_{k=1}^n m_{jk} x_j x_k \right) = \sum_{j=1}^n \sum_{k=1}^n m_{jk} \frac{\partial}{\partial x_i} (x_j x_k).$$

Applying the formula for the derivative of a product, we obtain

$$\frac{\partial}{\partial x_i} (\boldsymbol{x}^T \mathsf{M} \boldsymbol{x}) = \sum_{j=1}^n \sum_{k=1}^n m_{jk} \delta_{ij} x_k + m_{jk} x_j \delta_{ik}$$
$$= \sum_{k=1}^n m_{ik} x_k + \sum_{j=1}^n m_{ji} x_j = (\mathsf{M} \boldsymbol{x} + \mathsf{M}^T \boldsymbol{x})_i.$$

Employing these formulae, we calculate that (representing the gradient with a

column vector)

$$\nabla_{\alpha} (b^T \alpha) = b, \qquad \nabla_{\alpha} (\alpha^T A^T A \alpha) = 2A^T A \alpha.$$

It is then simple to conclude.

• In this case $\mathsf{A}^T\mathsf{A}=n+1$ and α_* is a scalar. The solution is given by

$$\alpha_* = \frac{u_0 + \dots + u_n}{n+1},$$

which is the average of the values u_0, \ldots, u_{n+1} .

 \triangle

Question 3 (Numerical integration, 10 marks). The Gauss–Legendre quadrature formula with n nodes is an approximate integration formula of the form

$$I(u) := \int_{-1}^{1} u(x) dx \approx \sum_{i=1}^{n} w_i u(x_i) =: \widehat{I}_n(u),$$
(4)

which is exact when u is a polynomial of degree less than or equal to 2n-1. (Note that the nodes are here numbered starting from 1.)

1. (5 marks) Find the nodes and weights of the Gauss-Legendre rule with n=3 nodes.

Solution. A necessary and sufficient condition in order for (4) to be satisfied for any polynomial $p \in \mathbf{P}(5)$ is that

$$\int_{-1}^{1} x^{d} dx = \sum_{i=1}^{n} w_{i} x_{i}^{d}, \quad \text{for all } d \in \{0, 1, 2, 3, 4, 5\}.$$

This leads to the following system of equations

$$\begin{cases} 2 = w_1 + w_2 + w_3, \\ 0 = w_1 x_1 + w_2 x_2 + w_3 x_3, \\ \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2 + w_3 x_3^2, \\ 0 = w_1 x_1^3 + w_2 x_2^3 + w_3 x_3^3, \\ \frac{2}{5} = w_1 x_1^4 + w_2 x_2^4 + w_3 x_3^4, \\ 0 = w_1 x_1^5 + w_2 x_2^5 + w_3 x_3^5. \end{cases}$$

Given the symmetry of the problem, it is reasonable to look for a solution of the form

$$(x_1, x_2, x_3, w_1, w_2, w_3) = (-x, 0, x, w_1, w_2, w_1),$$

where only 3 unknown parameters remain. For such a set of parameters, the second, fourth and sixth equations are satisfied, and the other three equations give

$$\begin{cases} 2 = 2w_1 + w_2, \\ \frac{2}{3} = 2w_1 x^2, \\ \frac{2}{5} = 2w_1 x^4. \end{cases}$$

Dividing the third equation by the second, we obtain $x^2 = 3/5$ and so $x = \pm \sqrt{\frac{3}{5}}$ (both values lead to the same integration rule in the end). It is then simple to deduce

that $w_1 = \frac{5}{9}$ and $w_2 = \frac{8}{9}$. We have thus derived the formula

$$\int_{-1}^{1} u(x) \approx \frac{5}{9}u\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}u\left(0\right) + \frac{5}{9}u\left(\sqrt{\frac{3}{5}}\right).$$

Δ

2. (2 marks) Let $\{L_0, L_1, \dots\}$ denote orthogonal polynomials for the inner product

$$\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x$$

which, in addition, satisfy the following two conditions:

- For all $i \in \mathbb{N}$, the polynomial L_i is of degree i.
- The leading coefficient of L_i , which multiplies x^i , is equal to 1.

Calculate L_0 , L_1 , L_2 and L_3 . What is the connection between L_3 and the rule found in the first item?

Solution. Clearly $L_0 = 1$. Then $L_1 = x + a_1$ and the requirement that $\langle L_1, L_0 \rangle = 0$ implies that $a_1 = 0$. We then use the ansatz $L_2 = x^2 + b_2 x + a_2$ for L_2 . The requirement that $\langle L_2, L_1 \rangle$ leads to $b_2 = 0$, and then

$$\langle L_2, L_0 \rangle = \frac{2}{3} + 2a_2,$$

and so $L_2(x) = x^2 - \frac{1}{3}$. Finally, for L_3 , we use the ansatz $L_3 = x^3 + c_3x^2 + b_3x + a_3$. We calculate

$$\langle L_3, 1 \rangle = \frac{2}{3}c_3 + 2a_3,$$

 $\langle L_3, x \rangle = \frac{2}{5} + \frac{2}{3}b_3,$
 $\langle L_3, x^2 \rangle = \frac{2}{5}c_3 + \frac{2}{3}a_3.$

The second equation gives $b_3 = -\frac{3}{5}$, and the other two equations lead to $c_3 = a_3 = 0$. We conclude that $L_3(x) = x^3 - \frac{3}{5}x$. The roots of L_3 are given by $\left\{-\sqrt{\frac{3}{5}}, 0, \sqrt{\frac{3}{5}}\right\}$, and they coincide with the nodes of the Gauss–Legendre quadrature with 3 nodes. \triangle

- **3.** Assume that x_1, \ldots, x_n and w_1, \ldots, w_n are such that (4) is satisfied for all $u \in \mathbf{P}(2n-1)$.
 - (2 marks) Show that the weights are given by

$$\forall i \in \{1, ..., n\}, \qquad w_i = \int_{-1}^1 \ell_i(x) \, \mathrm{d}x,$$

where ℓ_i is the Lagrange polynomial

$$\ell_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

• (1 marks) Show that the weights are all positive: $w_i > 0$ for all i.

Solution. Since (4) holds true for all $u \in \mathbf{P}(2n-1)$, it holds true in particular for the function $u = \ell_i \in \mathbf{P}(2n-1)$, which implies that

$$\int_{-1}^{1} \ell_i(x) \, \mathrm{d}x = \sum_{i=1}^{n} w_i \ell_i(x_j) = w_i.$$

Similarly, since (4) holds true also for $u \in \ell_i^2 \in \mathbf{P}(2n-1)$, we deduce that

$$\int_{-1}^{1} (\ell_i(x))^2 dx = \sum_{i=1}^{n} w_j (\ell_i(x_j))^2 = w_i.$$

Since the left-hand side is positive, we deduce that $w_i > 0$.

4. (Bonus +2) Prove the following error estimate: if u is a smooth function, then

$$|I(u) - \widehat{I}_n(u)| \le \frac{C_{2n}}{(2n)!} \int_{-1}^1 (L_n(x))^2 dx, \qquad C_{2n} := \sup_{\xi \in [-1,1]} |u^{(2n)}(\xi)|.$$

Hint: You may find it useful to proceed as follows:

• First show that

$$I(u) - \widehat{I}_n(u) = \int_{-1}^1 u(x) - p(x) \, \mathrm{d}x,\tag{5}$$

 \triangle

for any polynomial $p \in \mathbf{P}(2n-1)$ such that

$$\forall i \in \{1, \dots, n\}, \qquad p(x_i) = u(x_i). \tag{6}$$

• Notice that equation (5) is true in particular when p is the Hermite interpolation of u at the nodes x_1, \ldots, x_n . Finally, conclude by using the formula for the interpolation error proved in class: if p is the Hermite interpolant of u at the nodes x_1, \ldots, x_n , then

$$\forall x \in \mathbf{R}, \quad u(x) - p(x) = \frac{u^{(2n)}(\xi(x))}{(2n)!} (x - x_1)^2 \dots (x - x_n)^2.$$

Solution. Assume that $p \in \mathbf{P}(2n-1)$ is such that (6) is satisfied. Then by (4) we deduce that

$$\int_{-1}^{1} p(x) dx = \sum_{i=1}^{n} w_i p(x_i) = \sum_{i=1}^{n} w_i u(x_i) = \widehat{I}_n(u).$$

Consequently, we obtain that

$$I(u) - \widehat{I}_n(u) = \int_{-1}^1 u(x) \, dx - \int_{-1}^1 p(x) \, dx = \int_{-1}^1 u(x) - p(x) \, dx.$$

This equation holds true in particular with p being the Hermite interpolation of u at the nodes x_1, \ldots, x_n . Then, using the formula for the interpolation error, we obtain

$$u(x) - u(x) = \frac{u^{(2n)}(\xi(x))}{(2n)!}(x - x_1)^2 \dots (x - x_n)^2 = \frac{u^{(2n)}(\xi(x))}{(2n)!}(L_n(x))^2.$$

Indeed, as shown in class, L_n is a polynomial of degree n with single roots at x_1, \ldots, x_n . Now we conclude by noting that

$$\left| I(u) - \widehat{I}_n(u) \right| = \left| \int_{-1}^1 u(x) - p(x) \, \mathrm{d}x \right| \leqslant \int_{-1}^1 |u(x) - p(x)| \, \mathrm{d}x \leqslant \int_{-1}^1 \frac{C_{2n}}{(2n)!} \left(L_n(x) \right)^2 \, \mathrm{d}x,$$

 \triangle

which concludes the exercise.