

DTE-2501 AI Methods and Applications

Linear methods of classification and regression

Lecture 1/2 – Stochastic gradient descent

Tatiana Kravetc Førsteamanuensis

Office: D2240

Email: tatiana.kravetc@uit.no

Overview

I Linear model

II Numerical minimization

- a) Gradient descent
- b) Stochastic gradient
- c) Extensions and their comparison

I Linear model

Regression

Training sample

$$X^l = (x_i, y_i)_{i=1}^l, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$$

• Linear model. $\langle \cdot, \cdot \rangle$ is a scalar product $a(x, w) = \langle x, w \rangle = \sum_{i=1}^{n} w_i f_i(x), \ w \in \mathbb{R}^n$

• Quadratic loss function

$$\varepsilon(a, y) = (a(x, w) - y(x))^2$$

• Training phase. Learning method is a *least squares* method. Q is an $empirical\ risk$

$$Q(w) = \sum_{i=1}^{l} (a(x_i, w) - y_i)^2 \to \min_{w}$$

• Testing phase. Test sample $X^k = (\widetilde{x_i}, \widetilde{y_i})_{i=1}^k$

$$\widetilde{Q}(w) = \frac{1}{k} \sum_{i=1}^{k} (a(\widetilde{x}_i, w) - \widetilde{y}_i)^2$$

Classification

Training sample

$$X^{l} = (x_{i}, y_{i})_{i=1}^{l}, x_{i} \in \mathbb{R}^{n}, y_{i} \in \{-1, +1\}$$

Linear model

$$a(x, w) = \operatorname{sign}\langle x, w \rangle = \operatorname{sign} \sum_{j=1}^{n} w_j f_j(x)$$

- Binary loss function, or its approximation $\varepsilon(a,y) = [a(x,w)y(x) < 0] = [\langle x,w \rangle y < 0] \le \varepsilon(\langle x,w \rangle y)$
- Training phase. Learning method is a minimization of the empirical risk

$$Q(w) = \sum_{i=1}^{l} [a(x_i, w)y_i < 0] = \sum_{i=1}^{l} \varepsilon(\langle x_i, w \rangle y_i) \to \min_{w}$$

• Testing phase. Test sample $X^k = (\widetilde{x_i}, \widetilde{y_i})_{i=1}^k$

$$\widetilde{Q}(w) = \frac{1}{k} \sum_{i=1}^{k} [\langle \widetilde{x}_i, w \rangle \widetilde{y}_i < 0]$$

Margin

Classifier $a(x, w) = \operatorname{sign}\langle x, w \rangle$

- $\langle x, w \rangle = 0$ is a separating hyperplane equation
- $M_i = \langle x_i, w \rangle y_i$ is a margin of the object x_i
- $M_i < 0$ means an error of the algorithm a(x, w) on the object x_i

separating hyperplane

Continuous approximations of the threshold function

- [M < 0] the unit step (zero-one loss)
- $(1 M)_+$ piecewise linear (SVM)
- $(1-M)^2$ quadratic loss
- $\log_2(1 + e^{-M})$ logarithmic
- $2(1+e^M)^{-1}$ sigmoid
- e^{-M} exponential

II Numerical minimization

Gradient descent

Empirical risk minimization

$$Q(w) = \sum_{i=1}^{l} \varepsilon_i(w) \to \min_{w}$$

Numerical minimization using a gradient descent method: $w^{(0)}$ is an initial guess

$$w^{(t+1)} \coloneqq w^{(t)} - h \cdot \nabla Q(w^{(t)}), \quad \nabla Q(w) = \left(\frac{\partial Q(w)}{\partial w_j}\right)_{j=0}^n$$

where h is a gradient step, which is also called a *learning rate*.

$$w^{(t+1)} \coloneqq w^{(t)} - h \sum_{i=1}^{l} \nabla \varepsilon_i (w^{(t)})$$

Stochastic gradient

Input: dataset X^l , learning rate h, parameter λ

Output: weights w

Initialization

Set all the weights w_j , $j=0,\ldots,n$ to small random numbers Evaluate the objective function $Q=\frac{1}{l}\sum_{i=1}^{l}\varepsilon_i(w)$

do

```
pick randomly x_i from X^l compute the loss function \varepsilon_i(w) perform the gradient step w\coloneqq w-h\nabla\varepsilon_i(w) update the objective function Q\coloneqq\lambda\varepsilon_i+(1-\lambda)Q until Q and/or w converges
```

Extensions

Stochastic average gradient (SAG)

The algorithm records an average of its parameter vector over time

Momentum

The algorithm updates the weights as a linear combination of the gradient and the previous update

RMSProp (running mean square propagation)

The learning rate is adapted for each of the parameters

AdaGrad (adaptive gradient)

The algorithm increases the learning rate for sparser parameters and decreases for ones that are less sparse

etc...

Comparison of optimization algorithms

Alec Radford's animation for optimization algorithms:

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

III Practical example

Objective function $Q = x \sin x$ on [-8,8]

Derivative of the objective function $Q' = \sin x + x \cos x$

```
def obj(x):
    return x * sin(x)
def derv(x):
    return sin(x) + x * cos(x)
def gradient_descent(objective, derivative, bounds, n_iter, step_size):
    solution = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])
    for i in range(n_iter):
        gradient = derivative(solution)
        solution = solution - step_size * gradient
    solution_eval = objective(solution)
    return [solution, solution_eval]
bound = asarray([[-8.0, 8.0]])
sol, sol_eval = gradient_descent(obj, derv, bound, n, h)
```

Result: Local minima depends on starting point

random initialization

$$x \coloneqq x - hQ'(x)$$

Not optimal step size (h = 0.4)

