

SEMITRANS®2

Fast IGBT4 Modules

SKM100GB12T4

Features

- IGBT4 = 4. Generation (Trench)IGBT
- VCEsat with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

Typical Applications

- · AC inverter drives
- UPS
- Electronic welders at fsw up to 20 kHz

Remarks

 Case temperature limited to Tc = 125°C max, recomm.
 Top = -40 ... +150°C, product rel. results valid for Tj = 150°

Characteristics									
Symbol	Conditions		min.	typ.	max.	Unit			
IGBT									
V _{CE(sat)}	I _C = 100 A	T _j = 25 °C		1.8	2.05	V			
	V _{GE} = 15 V chiplevel	T _j = 150 °C		2.2	2.4	V			
V _{CE0}		T _j = 25 °C		0.8	0.9	V			
		T _j = 150 °C		0.7	0.8	V			
r _{CE}	V _{GE} = 15 V	T _j = 25 °C		10.0	11.5	mΩ			
		T _j = 150 °C		15.0	16.0	mΩ			
$V_{GE(th)}$	$V_{GE}=V_{CE}$, $I_C=3.8$ mA		5	5.8	6.5	V			
] 02	T _j = 25 °C		0.1	0.3	mA			
		T _j = 150 °C				mA			
C _{ies}	V _{CE} = 25 V V _{GE} = 0 V	f = 1 MHz		6.15		nF			
C _{oes}		f = 1 MHz		0.40		nF			
C _{res}		f = 1 MHz		0.345		nF			
Q_G	V _{GE} = - 8 V+ 15 V			565		nC			
R _{Gint}	T _j = 25 °C			7.5		Ω			
t _{d(on)}	$V_{CC} = 600 \text{ V}$ $I_{C} = 100 \text{ A}$ $V_{GE} = \pm 15 \text{ V}$ $R_{G \text{ on}} = 1 \Omega$ $R_{G \text{ off}} = 1 \Omega$ $di/dt_{on} = 1800 \text{ A/µs}$ $di/dt_{off} = 1130 \text{ A/µs}$	T _j = 150 °C		165		ns			
t _r		T _j = 150 °C		47		ns			
E _{on}		T _j = 150 °C		15		mJ			
t _{d(off)}		T _j = 150 °C		400		ns			
t _f		T _j = 150 °C		75		ns			
E _{off}		T _j = 150 °C		10.2		mJ			
R _{th(j-c)}	per IGBT			0.27	K/W				

SEMITRANS®2

Fast IGBT4 Modules

SKM100GB12T4

Features

- IGBT4 = 4. Generation (Trench)IGBT
- VCEsat with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_{CNOM}
 • Soft switching 4. Generation CAL
- diode (CAL4)

Typical Applications

- · AC inverter drives
- UPS
- Electronic welders at fsw up to 20 kHz

Remarks

· Case temperature limited to Tc = 125°C max, recomm. Top = $-40 \dots +150$ °C, product rel. results valid for Tj = 150°

Characteristics										
Symbol	Conditions		min.	typ.	max.	Unit				
Inverse diode										
$V_F = V_{EC}$	I _F = 100 A	T _j = 25 °C		2.2	2.52	V				
	V _{GE} = 0 V chip	T _j = 150 °C		2.15	2.47	V				
V_{F0}		T _j = 25 °C		1.3	1.5	V				
		T _j = 150 °C		0.9	1.1	V				
r _F		T _j = 25 °C		9.0	10.2	mΩ				
		T _j = 150 °C		12.5	13.7	mΩ				
I _{RRM}	$I_F = 100 \text{ A}$ $di/dt_{off} = 1600 \text{ A/}\mu\text{s}$ $V_{GE} = \pm 15 \text{ V}$ $V_{CC} = 600 \text{ V}$	T _j = 150 °C		54		Α				
Q _{rr}		T _j = 150 °C		15.7		μC				
E _{rr}		T _j = 150 °C		5.9		mJ				
R _{th(j-c)}	per diode				0.48	K/W				
Module										
L _{CE}					30	nH				
R _{CC'+EE'}	terminal-chip	T _C = 25 °C		0.65		mΩ				
		T _C = 125 °C		1		mΩ				
R _{th(c-s)}	per module			0.04	0.05	K/W				
Ms	to heat sink M6		3		5	Nm				
Mt		to terminals M5	2.5		5	Nm				
						Nm				
w					160	g				

Fig. 1: Typ. output characteristic, inclusive $R_{CC'+\; EE'}$

Fig. 2: Rated current vs. temperature $I_C = f(T_C)$

Fig. 3: Typ. turn-on /-off energy = $f(I_C)$

Fig. 4: Typ. turn-on /-off energy = $f(R_G)$

Fig. 5: Typ. transfer characteristic

Fig. 6: Typ. gate charge characteristic

Fig. 7: Typ. switching times vs. I_C

Fig. 8: Typ. switching times vs. gate resistor R_G

Fig. 9: Transient thermal impedance

Fig. 10: CAL diode forward characteristic

Fig. 11: CAL diode peak reverse recovery current

Fig. 12: Typ. CAL diode peak reverse recovery charge

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.