Discrete Mathematics Lecture 2

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 1

Divide, Divisor, Multiple, Prime, Composite

Fundamental Theorem of Arithmetic: $n = p_1^{e_1} \cdots p_r^{e_r}$

The Well-Ordering Property: $\emptyset \neq S \subseteq \mathbb{N} \Rightarrow \min S \in S$

Division Algorithm: a = bq + r; $0 \le r < b$ for unique q, r

Ideal of \mathbb{Z} : A nonempty set $I \subseteq \mathbb{Z}$ such that

• $a, b \in I \Rightarrow a + b \in I; a \in I, r \in \mathbb{Z} \Rightarrow ra \in I$

THEOREM: *I* is an ideal of $\mathbb{Z} \Leftrightarrow I = d\mathbb{Z}$

Sum of Ideals: $I_1 + I_2 = \{x + y : x \in I_1, y \in I_2\}$

THEOREM: I_1 , I_2 are ideals of $\mathbb{Z} \Rightarrow I_1 + I_2$ is an ideal of \mathbb{Z}

QUESTION: $a\mathbb{Z} + b\mathbb{Z} = ?$

Greatest Common Divisor

DEFINITION: Let $a, b \in \mathbb{Z}$ and at least one of them is nonzero.

- **common divisor**: an integer d such that d|a, d|b
- **greatest common divisor** gcd(a, b): the largest common divisor
 - relatively prime: gcd(a, b) = 1

THEOREM: Let $a, b \in \mathbb{Z}$ and at least one of them is nonzero.

Then $a\mathbb{Z} + b\mathbb{Z} = \gcd(a, b)\mathbb{Z}$.

- $\{a,b\} \neq \{0\} \Rightarrow a\mathbb{Z} + b\mathbb{Z} \neq \{0\}$
- There exists $d \in \mathbb{Z} \setminus \{0\}$ such that $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$. W.l.o.g., d > 0.

 - d is greatest: Suppose that d' is a common divisor of a, b
 - d'|a,d'|b $d' = a \cdot x + b \cdot y \Rightarrow d' = (ax + by)$
 - $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z} \Rightarrow d = as + bt$ for some integers s, t
 - d'|d and thus $d' \le d$

THEOREM: There exist $s, t \in \mathbb{Z}$ such that gcd(a, b) = as + bt.

FTA Proof

THEOREM: If $a, b, c \in \mathbb{Z}$, c | ab and gcd(c, a) = 1, then c | b.

- There exist s, t such that $1 = \gcd(a, c) = as + ct$.
 - b = bas + bct
 - $c|ab, c|ct \Rightarrow c|(bas + bct) \Rightarrow c|b$

THEOREM: If p is a prime and p|ab, then p|a or p|b.

- p|a: done
- $p \nmid a \Rightarrow \gcd(p, a) = 1$
 - $gcd(p, a) = 1 \land p|ab \Rightarrow p|b$

Fundamental Theorem of Arithmetic: proof of uniqueness

- Suppose that $n = p_1 \cdots p_r = q_1 \cdots q_s$, where p_i , q_j are all primes
 - $p_1|n \Rightarrow p_1|q_1 \cdots q_s \Rightarrow p_1|q_j \text{ for some } j \Rightarrow p_1 = q_j$
 - W.l.o.g., we suppose that j=1. Then $p_2\cdots p_r=q_2\cdots q_s$
 - The theorem is true by induction.

FTA Applications

THEOREM: Suppose that $a=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$, $b=p_1^{\beta_1}\cdots p_r^{\beta_r}$. Then $d:=p_1^{\min(\{\alpha_1,\beta_1\})}\cdots p_r^{\min(\{\alpha_r,\beta_r\})}=\gcd(a,b)$.

- *d* is a common divisor of *a*, *b*
- *d* is largest among the common divisors
 - Suppose that d' is a common divisor of a, b
 - $\bullet \quad d' = p_1^{e_1} \cdots p_r^{e_r}$
 - $d'|a \Rightarrow e_i \le \alpha_i$ for all $i \in [r]$, $d'|b \Rightarrow e_i \le \beta_i$ for all $i \in [r]$
 - $e_i \leq \min\{\alpha_i, \beta_i\}$ for all $i \in [r]$

THEOREM: There are infinitely many primes.

- Suppose there are only n primes: $p_1, ..., p_n$
- By FTA, $N = p_1 \cdots p_n + 1$ must be the product of primes
- $\exists i \in [n] \text{ such that } p_i | N$ $qcd \in N \land M \vdash i = 1$
- But $p_i \nmid N$

Equivalence Relation

A+B={(a,b) | a ∈ A, b ∈ B)

DEFINITION: Let *A*, *B* be two sets. A **binary relation** from *A* to

B is a subset $R \subseteq A \times B$. // aRb means $(a, b) \in R$

EXAMPLE: $R = \{(a, a) : a \in \mathbb{Z}^+\}$ is a binary relation from \mathbb{Z}^+ to \mathbb{Z}^+

• aRb means that a = b; R is "="

DEFINITION: Let A be a set. An **equivalence relation**

R on A is a binary relation R from A to A such that 网络红色

的二元

Reflexive: aRa for all $a \in A$

Symmetric: $aRb \Rightarrow bRa$ for all $a, b \in A$

DEFINITION: The **equivalence class** of $a \in A$ is the set

apple with $[a]_R = \{x \in A : xRa\}$ $(A) \Rightarrow (A) \Rightarrow$

Congruence

THEOREM: Let $n \in \mathbb{Z}^+$. Then $R = \{(a, b) \in \mathbb{Z}^2 : n | (a - b)\}$ is an equivalence relation on \mathbb{Z} (from \mathbb{Z} to \mathbb{Z}).

- R is a binary relation from \mathbb{Z} to \mathbb{Z}
 - Reflexive: $n|(a-a) \Rightarrow aRa$
 - Symmetric: $aRb \Rightarrow n|(a-b) \Rightarrow n|(b-a) \Rightarrow bRa$
 - Transitive: $aRb, bRc \Rightarrow n|(a-b), n|(b-c) \Rightarrow n|(a-c) \Rightarrow aRc$

DEFINITION: Let $n \in \mathbb{Z}^+$ and $R = \{(a, b) \in \mathbb{Z}^2 : n | (a - b) \}$.

- The notation $a \equiv b \pmod{n}$ means that aRb.
 - $a \equiv b \pmod{n}$ is called a **congruence**
 - Read as: a is congruent to b modulo n
 - *n* is called the **modulus** of the congruence
 - $a \not\equiv b \pmod{n}$: $(a,b) \not\in R$, or equivalently $n \nmid (a-b)$
 - Read as: *a* is not congruent to *b* modulo *n*

Congruence

- **THEOREM:** Let $n \in \mathbb{Z}^+$. For any $a \in \mathbb{Z}$, there is a unique integer r such that $0 \le r < n$ and $a \equiv r \pmod{n}$.
 - **Existence**: by division algorithm, $\exists q, r \in \mathbb{Z} \text{ s.t. } 0 \le r < n, a = qn + r$
 - $a \equiv r \pmod{n}$
 - **Uniqueness**: suppose that $0 \le r' < n$ and $a \equiv r' \pmod{n}$
 - $|r r'| < n \text{ and } r \equiv r' \pmod{n}$
 - |r r'| < n and n|(r r')
 - r = r'
- **DEFINITION:** Let $a, n \in \mathbb{Z}$ and n > 0. Then there are unique integers q, r such that $0 \le r < n$ and a = nq + r.
 - We define $a \mod n$ as r.

Residue Class

DEFINITION: Let $\alpha \in \mathbb{R}$.

- $[\alpha]$: **floor** of α , the largest integer $\leq \alpha$
- $[\alpha]$: **ceiling** of α , the smallest integer $\geq \alpha$
 - If a = bq + r, then $q = \lfloor a/b \rfloor$ and r = a bq
- **DEFINITION:** Let $a \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. We denote the equivalence class of a under the equivalence relation mod n with $[a]_n$ and call it the **residue class of** a mod n.
 - $[a]_n = a + n\mathbb{Z} = \{a + nx : x \in \mathbb{Z}\}$
 - any element of $[a]_n$ is a **representative** of $[a]_n$

EXAMPLE:
$$[0]_6 = \{0, \pm 6, \pm 12, ...\}; [1]_6 = \{..., -11, -5, 1, 7, 13, ...\}; ...$$

Residue Class

THEOREM: Let $n \in \mathbb{Z}^+$, $a, b \in \mathbb{Z}$. Then

$$[a]_n \cap [b]_n = \emptyset \text{ or } [a]_n = [b]_n.$$

- $[a]_n \cap [b]_n = \emptyset$: done
- $[a]_n \cap [b]_n \neq \emptyset$
 - $\exists c \in [a]_n \cap [b]_n$
 - $c \equiv a \pmod{n}, c \equiv b \pmod{n}$
 - $a \equiv b \pmod{n}$
 - $\exists t \in \mathbb{Z}$ such that a = b + nt

 $[a]_n = \{a + nx : x \in \mathbb{Z}\} = \{b + nt + nx : x \in \mathbb{Z}\} = [b]_n$

COROLLARY: $[a]_n = [b]_n$ iff $a \equiv b \pmod{n}$.

COROLLARY: $\{[0]_n, [1]_n, ..., [n-1]_n\}$ is a partition of \mathbb{Z} .

- $[a]_n \cap [b]_n = \emptyset$ for all $a, b \in \{0, 1, ..., n 1\}$
- $\mathbb{Z} = [0]_n \cup [1]_n \cup \cdots \cup [n-1]_n$

\mathbb{Z}_n

DEFINITION: Let n be any positive integer. We define \mathbb{Z}_n to be set of all residue classes modulo n.

- $\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$
 - $\mathbb{Z}_n = \{0,1,...,n-1\};$
- $\mathbb{Z}_n = \{[1]_n, [2]_n, \dots, [n]_n\}$
 - $\mathbb{Z}_n = \{1, 2, ..., n\}$

EXAMPLE: Two representations of the set \mathbb{Z}_6

- $\mathbb{Z}_6 = \{[0]_6, [1]_6, [2]_6, [3]_6, [4]_6, [5]_6\}$ = $\{0,1,2,3,4,5\}$
- $\mathbb{Z}_6 = \{[-3]_6, [-2]_6, [-1]_6, [0]_6, [1]_6, [2]_6\}$ = $\{-3, -2, -1, 0, 1, 2\}$

\mathbb{Z}_n

DEFINITION: Let $n \in \mathbb{Z}^+$. For all $[a]_n$, $[b]_n \in \mathbb{Z}_n$, define

- **addition**: $[a]_n + [b]_n = [a + b]_n$
- subtraction: $[a]_n [b]_n = [a b]_n$
- multiplication: $[a]_n \cdot [b]_n = [a \cdot b]_n$

Well-defined? If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then $a \pm b \equiv a' \pm b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

- Hence, $[a]_n \pm [b]_n = [a']_n \pm [b']_n$; $[a]_n \cdot [b]_n = [a']_n \cdot [b']_n$
 - $a \equiv a' \pmod{n} \Rightarrow n \mid (a a') \Rightarrow \exists x \text{ such that } a a' = nx$
 - $b \equiv b' \pmod{n} \Rightarrow n | (b b') \Rightarrow \exists y \text{ such that } b b' = ny$
 - (a+b) (a'+b') = nx + ny
 - (a-b) (a'-b') = nx ny
 - ab a'b' = a(b b') + b'(a a') = any + b'nx

\mathbb{Z}_n^*

- **DEFINITION:** Let $n \in \mathbb{Z}^+$ and $[a]_n \in \mathbb{Z}_n$. $[s]_n \in \mathbb{Z}_n$ is called an **inverse** of $[a]_n$ if $[a]_n[s]_n = [1]_n$.
 - **division**: If $[a]_n$ $[s]_n = [1]_n$, define $\frac{[b]_n}{[a]_n} = [b]_n \cdot [s]_n$
- **THEOREM**: Let $n \in \mathbb{Z}^+$. $[a]_n \in \mathbb{Z}_n$ has an inverse iff gcd(a, n) = 1.
 - Only if: $\exists s \text{ s.t. } [a]_n[s]_n \equiv [1]_n; \exists t, as -1 = nt; \gcd(a, n) = 1$
 - If: $\exists s, t \text{ s.t. } as + nt = 1$; $as \equiv 1 \pmod{n}$
- **DEFINITION**: Let $n \in \mathbb{Z}^+$. Define $\mathbb{Z}_n^* = \{[a]_n \in \mathbb{Z}_n : \gcd(a, n) = 1\}$
 - If *n* is prime, then $\mathbb{Z}_n^* = \{1, 2, ..., n-1\}$
 - If *n* is composite, then $\mathbb{Z}_n^* \subset \mathbb{Z}_n$
- **EXAMPLE:** $\mathbb{Z}_5^* = \{1,2,3,4\}; \mathbb{Z}_6^* = \{1,5\}; \mathbb{Z}_8^* = \{1,3,5,7\}$

Euler's Phi Function

QUESTION: How many elements are there in \mathbb{Z}_n^* ?

• $|\mathbb{Z}_n^*|$ is the number of integers $a \in [n]$ such that $\gcd(a, n) = 1$

DEFINITION: (Euler's Phi Function) $\phi(n) = |\mathbb{Z}_n^*|, \forall n \in \mathbb{Z}^+$.

• $\phi(n)$ is the number of integers $a \in [n]$ such that gcd(a, n) = 1

THEOREM: Let p be a prime. Then $\forall e \in \mathbb{Z}^+$, $\phi(p^e) = p^{e-1}(p-1)$.

- Let $x \in [p^e]$.
- $gcd(x, p^e) \neq 1 \text{ iff } p | x$

iff
$$x = p, 2p, ..., p^{e-1} \cdot p$$

•
$$\phi(p^e) = p^e - p^{e-1} = p^{e-1}(p-1)$$

EXAMPLE: $\phi(3^2) = 3(3-1) = 6$

•
$$\mathbb{Z}_9^* = \{1,2,3,4,5,6,7,8,9\}$$

EXAMPLE: $\phi(p) = p - 1$

•
$$\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$$

Euler's Phi Function

QUESTION: Formula of $\phi(n)$ for general integer n?

THEOREM: If $n = p_1^{e_1} \cdots p_k^{e_k}$ for distinct primes p_1, \dots, p_k and integers $e_1, \dots, e_k \ge 1$, then $\phi(n) = \phi(p_1^{e_1}) \cdots \phi(p_k^{e_k})$. Hence, $\phi(n) = n(1 - p_1^{-1}) \cdots (1 - p_k^{-1})$.

• There are many proofs. We will see in the future.

COROLLARY: If n = pq for two different primes p and q, then $\phi(n) = (p-1)(q-1)$.

EXAMPLE: $\phi(10) = (2-1)(5-1) = 4$; n = 10; p = 2, q = 5

• $\mathbb{Z}_{10}^* = \{1,2,3,4,5,6,7,8,9,10\}$

Euler's Theorem

THEOREM (Euler) Let $n \ge 1$ and $\alpha \in \mathbb{Z}_n^*$. Then $\alpha^{\phi(n)} = 1$.

- $\alpha^{\phi(n)}$, 1 are both residue classes modulo n
- Suppose that $\alpha = [a]_n$ for $a \in \mathbb{Z}$. Then $\alpha^{\phi(n)} = 1$ is $([a]_n)^{\phi(n)} = [1]_n$
- How to prove?
 - Consider the map $f: \mathbb{Z}_n^* \to \mathbb{Z}_n^*$ $[x]_n \mapsto [a]_n \cdot [x]_n$
 - We show that *f* is injective
 - $f([x]_n) = f([y]_n)$
 - $[a]_n \cdot [x]_n = [a]_n \cdot [y]_n$
 - $[ax]_n = [ay]_n$
 - n|a(x-y)
 - n|(x-y), this is because gcd(n, a) = 1
 - $[x]_n = [y]_n$

Euler's Theorem

THEOREM (Euler) Let $n \ge 1$ and $\alpha \in \mathbb{Z}_n^*$. Then $\alpha^{\phi(n)} = 1$.

- $\alpha^{\phi(n)}$, 1 are both residue classes modulo n
- Suppose that $\alpha = [a]_n$ for $a \in \mathbb{Z}$. Then $\alpha^{\phi(n)} = 1$ is $([a]_n)^{\phi(n)} = [1]_n$
- How to prove?
 - Consider the map $f: \mathbb{Z}_n^* \to \mathbb{Z}_n^*$ $[x]_n \mapsto [a]_n \cdot [x]_n$
 - Suppose that $\mathbb{Z}_n^* = \{[x_1]_n, \dots, [x_{\phi(n)}]_n\}.$
 - $f([x_1]_n)\cdots f([x_{\phi(n)}]_n) = [x_1]_n\cdots [x_{\phi(n)}]_n$
 - $[ax_1]_n \cdots [ax_{\phi(n)}]_n = [x_1]_n \cdots [x_{\phi(n)}]_n$
 - $\left[a^{\phi(n)} x_1 \cdots x_{\phi(n)} \right]_n^n = \left[x_1 \cdots x_{\phi(n)} \right]_n^n$
 - $n | (a^{\phi(n)} 1) x_1 \cdots x_{\phi(n)}$
 - $n \mid (a^{\phi(n)} 1)$, this is because $gcd(n, x_1 \cdots x_{\phi(n)}) = 1$
 - $[a^{\phi(n)}]_n = [1]_n$, i. e., $([a]_n)^{\phi(n)} = [1]_n$

Fermat's Little Theorem

EXAMPLE: Understand Euler's theorem with $\mathbb{Z}_{10}^* = \{1,3,7,9\}$.

- $n = 10, \phi(n) = 4$,
- $1^4 \equiv 1 \pmod{10} \Rightarrow ([1]_{10})^4 = [1]_{10}$
- $3^4 = 81 \equiv 1 \pmod{10} \Rightarrow ([3]_{10})^4 = [1]_{10}$
- $7^4 = 2401 \equiv 1 \pmod{10} \Rightarrow ([7]_{10})^4 = [1]_{10}$
- $9^4 = 6561 \equiv 1 \pmod{10} \Rightarrow ([9]_{10})^4 = [1]_{10}$
 - Consider the map $f: \mathbb{Z}_{10}^* \to \mathbb{Z}_{10}^* \quad [x]_n \mapsto [9]_n \cdot [x]_n$
 - $f([1]_{10}) = [9]_{10} \cdot [1]_{10} = [9]_{10}; f([3]_{10}) = [7]_{10}; f([7]_{10}) = [3]_{10}, f([9]_{10}) = [1]_{10}$
 - *f* is injective
 - $f([1]_{10})f([3]_{10})f([7]_{10})f([9]_{10}) = [9]_{10}[7]_{10}[3]_{10}[1]_{10}$

Fermat's Little Theorem: If p is a prime and $\alpha \in \mathbb{Z}_p$.

Then $\alpha^p = \alpha$.

- This is a corollary of Euler's theorem for n = p
- By Euler's theorem, $\alpha^{p-1} = 1$
 - $\alpha^p = \alpha$