K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATIONS

Numerical 1: Simulate a half wave rectifier circuit with input amplitude = 100V, f = 50Hz, $R_L = 75\Omega$. Select diode as 1N4148. Use 10:1 step down transformer. Plot the following:

- a) Primary peak Voltage
- b) Secondary peak Voltage
- c) Output voltage across Resistor
- d) Output voltage across Diode
- e) Current through the circuit

Also calculate the efficiency.

Figure 1: Circuit 1

Solution:

$$V_{m_{peak}} = 100V$$

For the secondary peak voltage, as the coils of the transformer are in ratio of 10:1

$$V_{m_{sec}} = \frac{V_m}{10} = 10V_0$$

Peak inverse voltage = $-V_m = -10V$

For the peak current,

$$I_m = \frac{V_m}{(R_S + R_L)}$$

$$I_m = \frac{10}{0.01m\Omega + 75\Omega}$$

$$I_m = 0.1333A$$

$$I_m = 133.33mA$$

AC power =
$$\left(\frac{I_m}{2}\right)^2 \times (R_S + R_L)$$

$$AC power = 0.333W$$

DC power =
$$\left(\frac{I_m}{\pi}\right)^2 \times R_L$$

DC power = 0.1358W
 $\% \eta = \frac{DCpower}{ACpower} \times 100$
 $\% \eta = \frac{0.1358}{0.333} \times 100$
 $\% \eta = 40.5280\%$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 2: Circuit Schematic and Simulated Results

Figure 3: Plots in LTSpice

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
Output Peak Value(V_m)	10V	9.1247V
Output Peak Current (I_m)	$133.33 \mathrm{mA}$	121.665 mA
AC Power	0.333W	0.27754W
DC Power	0.13508W	0.11248W
Efficiency	40.5280%	40.5284%
PIV Rating	-10V	-9.997144V

Table 1: Numerical 1

Numerical 2: Simulate a full wave rectifier circuit with input amplitude = 150V, frequency = 50Hz, $R_L = 150\Omega$.

Select the diode as 1N4148. Use 10:1 step down center tap transformer. Plot the following:

- a) Primary Peak Voltage
- b) Secondary Peak Voltage
- c) Output Voltage across the resistor
- d) Output Voltage across the diodes
- e) Current flowing through the diodes.

Figure 4: Circuit 1

Solution:

 $V_{m_{peak}} = 150 \text{V} \text{ (Primary Peak Voltage)}$

For the secondary peak voltage, as the coils of the transformer are in ratio of 10:1

$$V_{m_{sec}} = \frac{V_m}{10} = 15V$$

Peak inverse voltage = $2 \times -V_m = 2 \times -15 = -30V$

For the peak current,

$$I_m = \frac{V_m}{(R_S + R_L)}$$

 $I_m = 0.0999A$

 $I_m = 99.99mA$

AC power =
$$\left(\frac{I_m}{2}\right)^2 \times (R_S + R_L)$$

AC power = 0.7499W

DC power =
$$4 \times \left(\frac{I_m}{\pi^2}\right)^2 \times R_1$$

DC power = 0.60791 W
 $\% \ \eta = \frac{DCpower}{ACpower} \times 100$

$$\%\eta = \frac{0.6079}{0.7499} \times 100$$

 $\%\eta = 81.0654\%$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 5: Circuit Schematic and Simulated Results

Figure 6: Plots in LTSpice

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
Output Peak Value(V_m)	15V	14.149V
Output Peak Current (I_m)	$99.99 \mathrm{mA}$	94.33054 mA
AC Power	0.7499W	0.6673W
DC Power	0.6079W	0.54094W
Efficiency	81.0654%	81.0569%
PIV Rating	-30V	-29.143V

Table 2: Numerical 2

