2022年《数值计算方法与 Matlab》复习题

第一章 引论

 _	填空题:

1. 设 π = 3.14159265 358979 ..., 则 4π 的近似值 12.566370 具有______位有效数字, 其绝对误差限

2.在科学与工程计算中,不可避免地要遇到各种误差中,其中数值计算方法可以处理的误差是_____。

3、为了使近似计算结果更加准确,函数式 $\frac{1-\cos 2x}{x}$ 当x=0.001时应该改写为

第二章 线性方程组的数值解法

一. 填空题:

1.设
$$A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$
, 则求解 $Ax = b$ 的 Jacobi 迭代矩阵 $M = 1$

2. 已知求解三阶线性方程组 Ax = b 的 Jacobi 迭代格式为

$$\begin{cases} x_1^{(k+1)} = \frac{1}{4} (-3x_2^{(k)} + 24), \\ x_2^{(k+1)} = \frac{1}{4} (-3x_1^{(k)} + x_3^{(k)} + 30), & k = 0, 1, 2, \dots, \\ x_3^{(k+1)} = \frac{1}{4} (x_2^{(k)} - 24), \end{cases}$$

则求解此方程组的 Seidel 迭代格式为______

- 3. 若将 Ax = b 的系数矩阵分裂为 A = D L U(其中 D, L, U 如教材所規定),则 Seidel 迭代矩阵 $M = ____$.

5. 设
$$A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$
,则 $\operatorname{cond}_{1} A = _____$.
6. $A = \begin{bmatrix} 10 & 7 & 8 \\ 7 & 5 & 6 \end{bmatrix}$,则 A 的 Doolittle 分解为 $A = _____$.

- 7、设 SOR 迭代法收敛,则松弛因子 $\omega \in$ _____。
- 8.线性方程组 $Ax = b(b \neq 0)$ 中的 b 的扰动 δb 引起的解 x 的相对 误差 $\frac{\|\delta x\|}{\|x\|} \leq \underline{\qquad}$

$$10$$
.设 $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, 则 $cond_{\infty}(A) =$ ______ 。当 b 有误差 $\delta b = \begin{pmatrix} \varepsilon^2 \\ \varepsilon \end{pmatrix}$ 时,

其中 $0 < \varepsilon < 1$,引起解向量x的为误差 δx ,则 $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}}$ 的上界为_____。

- 12、设矩阵 A 的 Doolittle 分解为 A = LU ,则矩阵 L 的对角线元素

$$l_{ii} = \underline{}_{\circ}$$

- 二. 判断题:

1.求解 n 阶线性方程组 Ax = b 的 Jacobi 迭代格式收敛	的充罗	秦
件是 $\rho(A) < 1$.	()
2.若 A ∈ ℝ"*"严格对角占优,则求解 Ax = b 的 Jacobi 迭	代格式	【和
Seidel 迭代格式都收敛.	()
3.若 A∈ № ** ** 对称正定,则求解 Ax = b 的 Jacobi 迭代格	式一定	图收
敛.	()
4.若求解线性方程组 $Ax = b$ 的 Jacobi 迭代格式收敛,则	則其 Se	idel
迭代格式也收敛.	()
5. 若求解线性方程组 $Ax = b$ 的 Seidel 迭代格式收敛, 则	月其 Jac	cobi
迭代格式也收敛.	()
6. 设 M 是求解线性方程组 $Ax = b$ 的 Seidel 迭代矩阵, 则	Seidel	迭
代格式收敛的充要条件是 M _ < 1.	()
7. 若求解线性方程组 $Ax = b$ 的 Seidel 迭代格式收敛,则		
$\lim A^k = 0.$	()
8. 若求解线性方程组 Ax = b 的迭代格式收敛, M 是迭代	始陈	Md.
$\lim_{k \to \infty} \ \mathbf{M}^k \ _2 = 0.$	(ACP ())
k + ∞	`` •-!!- .~	
9. 改变方程组中方程的排列顺序,不可能改变迭代格式的	火蚁	Ξ.
10 W AC CORN A EL THE RECENT BU	()
10. 设 A ∈ C ^{a×} ^a 是非奇异矩阵,则 cond A ≥ 1.	()
11.若 SOR 选代格式收敛,则松弛因子 ω∈ (0,2).	()
12.设 M 是求解线性方程组 Ax = b 的 Jacobi 迭代矩阵, 表	A P	格
列对角占优,则 $\ \mathbf{M}\ _1 < 1$.	()
13. A的 Doolittle 分解中,矩阵 L的对角线元素一定是 1.	()
14.设求解线性方程组 Ax = b 的迭代格式为 x(k+1) =		
$(k=0,1,2,\cdots),x^*$ 是 $Ax=b$ 的解,则对任意初始向量 $x^{(0)}$	'∈ JR".	, 当
∥ M ∥。<1 时,有误差估计式		
$\ x^{(k)} - x^*\ _{\infty} \leq \frac{\ M\ _{\infty}}{1 - \ M\ _{\infty}} \ x^{(k)} - x^{(k-1)}\ _{\infty}.$	()
15.若 A ∈ ℝ"×"是非奇异矩阵,则 A 存在唯一的 Doolittle	分解的	充
要条件是:A 的各阶顺序主子式均大于零.	()

16. 用顺序 Gauss 消去法解线性方程组 Ax = b 时,只要 A 非奇异, 其消元过程就能进行到底.

17.用列主元素 Gauss 消去法解线性方程组 Ax = b 时,只要 A 非 奇异,其消元过程就能进行到底. ()

第三章 函数的插值

一. 填空题:

2.填写下表:

x	f(x)	阶差商	二阶差离	三阶差商
4	8			
5	12			
6	18			
8	28			

3.利用第 2 题的差商表,选节点 $x_0 = 4$, $x_1 = 5$, $x_2 = 6$, 求得 $f(5.8) \approx N_2(5.8) = 16.640$,则

$$f(5.8) \approx N_3(5.8) = 16.640 + __ = __ = __ ...$$

4.满足插值条件

$$p(0) = f(0) = 1, p(1) = f(1) = 2, p(2) = f(2) = 1,$$

 $p'(1) = f'(1) = 0, p'(2) - f'(2) = -1$

的四次插值多项式 p(x)=

5.三次样条插值的第三种边界条件为

$$S(x_0) = S(x_n), \quad S'(x_0 + 0) = S'(x_n - 0), \quad \dots$$

$$0 \le x \le 1,$$

6.根据样条函数的定义,区间[a,b]上的 m 次样条函数 S(x)除了满足在每一

5.设 $f(x)$ 在[a,b]上有三阶导数, $S(x)$ 是 $f(x)$ 的三次样函数,则在插值节点处有	条插	值
$S''(x_k) = f''(x_k)(k=0,1,2,\dots,n).$	()
6. 设 $\{l_i(x)\}_{k=0}^n$ 是区间 $[a,b]$ 上以 $a \le x_0 < x_1 < \dots < x_n \le l$ 的 Lagrange 插值基函数,则	り为节	i点
$\sum_{k=0}^{n} l_k(x)(x_k^{vm} - 1) = x^{vm} - 1(m \in \mathbb{N} \mid 1 \mid m \leq n).$	()
7.设 $f \in C^{2n+1}[a,b]$ 目 $f^{(2n+2)}(x)$ 在 (a,b) 内存在 H_{2n} $f(x)$ 在 $[a,b]$ 上的以 x_0,x_1,\cdots,x_n 为节点的 Hermite 插值		
$\omega(x) = \prod_{i=0}^{n} (x - x_i), \text{ plates } \hat{q}$ $R(x) = f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \omega(x),$		
其中 $\xi \in (a,b)$ 且与 x 有关.	()
第四章 函数的数值逼近		
一. 填空题:		
1、设 $p_4(x)$ 是 4 阶 Legendre 多项式,则 $\int_{-1}^{1} (2x^3 + 3x^2 + 4x + 1) p_4(x) dx =$		0
2. 设 $\{g_k(x)\}_{k=0}^{\infty}$ 是区间 $[0,1]$ 上权 $\rho(x)=e^{-x}$ 的最高次项系数为 1 的正	E交多	项式
序列,则 $g_1(x) = $, $\int_0^1 e^{-x} \cdot g_k(x) dx = $		_·
3. 若 $S_n^*(x)$ 为 $f \in C[a,b]$ 在子空间 $\Phi = \text{span}\{\varphi_0,\varphi_1,,\varphi_n\}$ 中的最佳平方	方逼近	,则
从几何角度上看, $S_n^*(x)$ 是 $f(x)$ 在 Φ 中的。		
4. 若用线性最小二乘法拟合数学模型 $y = \frac{t}{at+b}$,其中 a,b 是待定参数 何将其线性化:	数,那 。	么如
	-	

5、只要作变换 x =_______,也可利用 Legendre 多项式系求出 f(x) 在 [a, b]

上的n 次最佳平方逼近 $s_n(x)$ 。

第五章 数值积分与数值微分

一. 填空题:

1.设
$$C_k^{(n)}$$
 是 Cotes 系数,则 $\sum_{k=0}^{n} C_k^{(n)} =$ _____.

2.已知 Newton-Cotes 公式
$$\int_a^b f(x) dx \approx (b-a) \sum_{k=0}^3 C_k^{(3)} f(x_k)$$
 中的 $C_0^{(3)} = \frac{1}{8}$,则 $C_1^{(3)} = \underline{\qquad}$, $C_2^{(3)} \approx \underline{\qquad}$, $C_3^{(3)} = \underline{\qquad}$.

3. 数值积分的复化梯形公式和复化 Cotes 公式的收敛阶分别是

4. 已知 Gauss 型求积公式
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) dx \approx \sum_{k=0}^{n} A_k f(x_k)$$
的 $n+1$ 个系数 $A_k (k=0,1,\cdots,n)$ 均相等,则 $A_k =$ ______.

6. 当我们使用 Romberg 算法计算积分 $\int_{1}^{3} g(x) dx$ 时,得到变步长梯形序列 $T_{2^{k}}$ (见下表),请继续使用该算法,填写下表对角线上的空格(保留 4 位小数).

		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
k	T_{2^k}	$S_{2^{k-1}}$	$C_{2^{k-2}}$	$R_{2^{k-3}}$
0	5.1218	******	******	*****
1	9.2798		******	*****
2	10.5206	******		******
3	10.8420	******	******	

7. 已矢	阳函数 $f(x)$ 在 $x = 2.5$, 2.7 和 2.9 处的函数	(值分别为 12.1825,	14.8797
和 18.1741。	若用三点数值微分公	式计算,则在 <i>x</i> =2.7	, 处的函数一阶和二	阶导数
的近似值分别]为	和	(保留5位有效数	字)。

	8.利用三点 Gauss-Legendre 求积公式证	十算积分∫ ₁ ²xe	-x dx 的数值计算公式
为		0	

3.若 f(x,y)在域 $D=|(x,y)|x\in[a,b],y\in\mathbb{Z}$ | 上连续且关于 y | 满足 Lipschits 条件,则解初值问题 $\begin{cases} y'=f(x,y),a < x \leq b, \\ y(a)=y_0 \end{cases}$ 的二阶和四阶 Runge-Kutta 方法是收敛的.

4. 对于实验方程 $y' = \lambda y (\lambda < 0$ 为常数), 对任意步长 h > 0. Euler 方法都是绝对稳定的.