Introduction to CPLEX

问题求解

数学规划模型

- 线性规划 Linear Programming
- 整数规划 Integer Programming
- 网络流模型 Network flow
- 动态规划 Dynamic Programming
- 二次规划 Quadratic Programming
- 约束规划 Constraint Programming
- 凸优化 Convex Optimization
- 非线性规划 Nonlinear Programming
-

常用优化软件

- Matlab
- Mathematica
- ILOG CPLEX
- Gurobi
-

IBM ILOG CPLEX Optimizer

- 数学优化领域最著名软件之一
- 历史
 - 2009年IBM公司买下ILOG CPLEX
 - 1997年被ILOG公司买下
 - 1988年由CPLEX Optimization Inc公司商业化
 - 最早由 Robert E. Bixby用C语言 开发, **C P**rogramming Sim**plex** Method -- CPLEX

- 适用场景
 - 线性规划 Linear Programming
 - 整数规划 Integer Programming
 - 网络流模型 Network flow
 - 二次规划 Quadratic Programming
 - 约束规划 Constraint Programming

CPLEX

- IBM ILOG CPLEX Optimization Studio
 - IDE 集成开发环境
 - OPL 建模语言
- CPLEX Callable library C语
- CPELX Concert Technology
 - 提供编程语言调用接口
 - 支持语言包括 C++、C#、 Java、Excel、Matlab
- 最新版本12.8.0

- 适用场景
 - 线性规划 Linear Programming
 - 整数规划 Integer Programming
 - 网络流模型 Network flow
 - 二次规划 Quadratic Programming
 - 约束规划 Constraint Programming

IBM ILOG CPLEX Optimization Studio


```
// declare data
...
// declare decision variables

// declare objective function and constraints
maximize
    sum (p in Products) profit[p] * production[p];
subject to {
    forall (p in Products)
        production[p] >= minProd[p];
    sum (p in Products) Atime[p] * production[p] <= Aavail;
    sum (p in Products) Ptime[p] * production[p] <= Pavail;
}</pre>
```


CPELX Concert Technology

```
Maximize x1 + 2x2 + 3x3

subject to -x1 + x2 + x3 \le 20

x1 - 3x2 + x3 \le 30

with these bounds 0 \le x1 \le 40

0 \le x2 \le +\infty

0 \le x3 \le +\infty
```

```
// Model
IloCplex cplex = new IloCplex();
double[] lb = {0.0, 0.0, 0.0};
double[] ub = {40.0, Double.MAX_VALUE, Double.MAX_VALUE};
IloNumVar[] x = cplex.numVarArray(3, lb, ub);
double[] objvals = {1.0, 2.0, 3.0};
cplex.addMaximize(cplex.scalProd(x, objvals));
cplex.addLe(cplex.sum(cplex.prod(-1.0, x[0]),
cplex.prod( 1.0, x[1]),
cplex.prod( 1.0, x[2])), 20.0);
cplex.addLe(cplex.sum(cplex.prod( 1.0, x[0]),
cplex.prod(-3.0, x[1]),
cplex.prod( 1.0, x[2])), 30.0);
// Optimize
cplex.solve();
```

通过Java调用CPLEX接口,建立数学模型,以及求解。

CPLEX Toolkit

- CPLEX allows one to work in several ways.
- An IDE that uses the OPL modeling language
- An interactive optimizer that reads MPS/LP input
- A callable library in several languages
 - C (Callable library)
 - C++ (Concert Technology)
 - Java (Concert Technology)

Concert Technology

 $\mathbb{C}++$

An IloModel object defines the optimization problem(constraints, objective function, etc.)

An IloCplex object reads a model, extracts its data, solves the problem and answers queries on solution.

Java

An IloCplex object not only defines the optimization problem but also solves the problem and answers queries on solution

No IloModel

Structure of an application

- CPLEX Java Packages
 - import ilog.concert.*
 - import ilog.cplex.*
- an IloCplex object
- Java error handling in CPLEX uses exceptions
 - Try/Catch
 - Throw exceptions

```
import ilog.concert.*;
import ilog.cplex.*;
static public class Application {
  static public main(String[] args) {
    try {
      IloCplex cplex = new IloCplex();
       // create model and solve it
    } catch (IloException e) {
        System.err.println("Concert exception caught: " + e);
```

Create the model

- An IloCplex Object implements
 - Variables
 - Objective
 - Constraints

Modeling classes	Description
IloNumVar	modeling variables
IloRange	ranged constraints of the type lb <= expr <= ub
IloObjective	optimization objective
IloNumExpr	expression using variables

Define variables

```
// e.g. define continuous variables x0 x1 x2
                                                         0 \le x_0 \le 40
IloNumVar[]x = new IloNumVar[3];
                                                         0 \le x_1 \le \infty
x[0] = cplex.numVar(0, 40, "x0");
                                                     0 < x_2 < \infty
x[1] = cplex.numVar(0, Double.MAX VALUE, "x1");
x[2] = cplex.numVar(0, Double.MAX VALUE, "x2");
                                                           x_i \in \mathbb{R}
// e.g. create four continuous variables, all with
bounds 0 and 100:
IloNumVar[] x = cplex.numVarArray(4, 0.0,
100.0);
// 整数变量 e.g. x0 是0-40间的整数变量
• x[0] = cplex.intVar(0, 40, "x0");
```

Build Expressions

```
x[0] + 2*x[1] + 3*x[2]
• // use type IloNumExpr
IloNumExpr expr = cplex.sum(x[0],cplex.prod(2.0,
x[1]), cplex.prod(3.0, x[2]));
• // use type IloLinearNumExpr
IloLinearNumExpr expr = cplex.linearNumExpr();
expr.addTerm(1.0, x[0]);
expr.addTerm(2.0, x[1]);
expr.addTerm(3.0, x[2]);
```

Objective

- cplex.addMinimize(expr)
- cplex.addMaximize(expr)

Constraints

```
cplex.addLe(expr, ub) // expr <= ub</li>cplex.addGe(expr, lb) // expr >= lb
```

```
• cplex.addEq(expr, q) // expr = q
```

输出模型

cplex.exportModel("example_1.lp");

Solve the Model

• cplex.solve()

Query the results

Query the objective value of that solution

• double objval = cplex.getObjValue();

Query solution values for all the variables

• double[] xval = cplex.getValues(x);

Write solution into files

cplex.writeSolution("example_1.xml");

Example 1

A linear program

$$\begin{array}{ll}
\max & x_0 + 2x_1 + 3x_2 \\
-x_0 + x_1 + x_2 \leq 20 \\
x_0 - 3x_1 + x_2 \leq 30 \\
0 \leq x_0 \leq 40 \\
0 \leq x_1 \leq \infty \\
0 \leq x_2 \leq \infty \\
x_i \in \mathbb{R}
\end{array}$$

Example 1

```
\begin{array}{ccc}
\max & x_0 + 2x_1 + 3x_2 \\
-x_0 + x_1 + x_2 \leq & 20 \\
x_0 - 3x_1 + x_2 \leq & 30 \\
0 \leq x_0 \leq & 40 \\
0 \leq x_1 \leq & \infty \\
0 \leq x_2 \leq & \infty \\
x_i \in \mathbb{R}
\end{array}
```

```
public static void main(String[] args) throws IloException {
    IloCplex cplex = new IloCplex();
   // define variables x0 x1 x2
   IloNumVar[] x = new IloNumVar[3];
   x[0] = cplex.numVar(0, 40, "x0");
   x[1] = cplex.numVar(0, Integer.MAX_VALUE, "x1");
   x[2] = cplex.numVar(0, Integer.MAX_VALUE, "x2");
   // objective
    IloLinearNumExpr obj = cplex.linearNumExpr();
    obj.addTerm(1, x[0]);
    obj.addTerm(2, x[1]);
    obj.addTerm(3, x[2]);
    cplex.addMaximize(obj);
   // constraints
   IloLinearNumExpr c1 = cplex.linearNumExpr();
    c1.addTerm(-1, x[0]);
    c1.addTerm(1, x[1]);
    c1.addTerm(1, x[2]);
    cplex.addLe(c1, 20, "c1");
    IloLinearNumExpr c2 = cplex.linearNumExpr();
    double[] a2 = \{1, -3, 1\};
    c2.addTerms(a2, x);
    cplex.addLe(c2, 30, "c2");
```

```
public static void main(String[] args) throws IloException {
   IloCplex cplex = new IloCplex();
   // define variables x0 x1 x2
   IloNumVar[] x = new IloNumVar[3];
   x[0] = cplex.numVar(0, 40, "x0");
   x[1] = cplex.numVar(0, Integer.MAX_VALUE, "x1");
   x[2] = cplex.numVar(0, Integer.MAX_VALUE, "x2");
   // objective
   IloLinearNumExpr obj = cplex.linearNumExpr();
   obj.addTerm(1, x[0]);
   obj.addTerm(2, x[1]);
   obj.addTerm(3, x[2]);
   cplex.addMaximize(obj);
   // constraints
   IloLinearNumExpr c1 = cplex.linearNumExpr();
   c1.addTerm(-1, x[0]);
    c1.addTerm(1, x[1]);
   c1.addTerm(1, x[2]);
    cplex.addLe(c1, 20, "c1");
   IloLinearNumExpr c2 = cplex.linearNumExpr();
   double[] a2 = \{1, -3, 1\};
   c2.addTerms(a2, x);
    cplex.addLe(c2, 30, "c2");
```

Example 1

```
// output model
cplex.exportModel("example_1.lp");
if(cplex.solve()){
    System.out.println("Status: "+cplex.getStatus());
   // get optimal objective value
    double objVal = cplex.getObjValue();
    System.out.println("objValue: "+objVal);
   // get optimal solution value
    double[] x = cplex.qetValues(x);
    System.out.println("x = "+Arrays.toString(_x));
    // write solution to file
    cplex.writeSolution("example_1.xml");
}else{
    System.err.println("Infeasible");
```

Java 编译与运行

```
MacBook-2:example naiguh$ ls
example1.java example2.java
MacBook-2:example naiquh$ javac -classpath /Users/naiquh/Applications/Cple
x127/cplex/lib/cplex.jar example1.java
MacBook-2:example naiguh$ ls
example1.class example1.java example2.java
MacBook-2:example naiguh$ java -Djava.library.path=/Users/naiguh/Applicati
ons/Cplex127/cplex/bin/x86-64_osx -classpath /Users/naiguh/Applications/Cp
lex127/cplex/lib/cplex.jar:. example1
Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve time = 0.00 sec. (0.00 \text{ ticks})
Iteration log . . .
Iteration: 1
                  Dual objective =
                                                 220.000000
Status: Optimal
obiValue: 202.5
x = [40.0, 17.5, 42.5]
MacBook-2:example naiguh$
```

编译

- javac -classpath path_to_cplex.jar Test.java
- 运行
 - java -classpath path_to_cplex.jar:. Djava.library.path=path_to_shared_library Test