Type: Lowpass Response : Butterworth

Order: 5

Number of Stages: 0

Device = AMPLIFIER_IDEAL Created = May 04 2018 10:55PM

WEBENCH® Design Report

Design: 5322186/16 AMPLIFIER_IDEAL Lowpass, Sallen_Key, Butterworth

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	A1_S1	Texas Instruments	AMPLIFIER_IDEAL	GbwTyp= 1000000.0MHz VccMin= 0.0 V VccMax= 100.0 V	1	NA	0 mm ²
2.	A1_S2	Texas Instruments	AMPLIFIER_IDEAL	GbwTyp= 1000000.0MHz VccMin= 0.0 V VccMax= 100.0 V	1	NA	0 mm ²
3.	A1_S3	Texas Instruments	AMPLIFIER_IDEAL	GbwTyp= 1000000.0MHz VccMin= 0.0 V VccMax= 100.0 V	1	NA	0 mm²
4.	C1_S1	Kemet	C0603C103F3GACTU Series= C0G/NP0	Cap= 10.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$0.44	0603 5 mm ²
5.	C1_S2	Kemet	C0603C103F3GACTU Series= C0G/NP0	Cap= 10.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$0.44	0603 5 mm ²
6.	C1_S3	Kemet	C0603C103F3GACTU Series= C0G/NP0	Cap= 10.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$0.44	0603 5 mm ²
7.	C2_S2	Kemet	C0603C153F3GACTU Series= C0G/NP0	Cap= 15.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$0.50	0603 5 mm ²
8.	C2_S3	Kemet	C1206C104F3GACTU Series= C0G/NP0	Cap= 100.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$3.12	1206 11 mm ²
9.	R1_S1	Yageo America	RC1206FR-077K87L Series= ?	Res= 7.87 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
10. R1_S2	Vishay-Dale	CRCW04025K90FKED Series= CRCWe3	Res= 5.9 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
11. R1_S3	Yageo America	RC1206FR-072K32L Series= ?	Res= 2.32 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
12. R2_S2	Vishay-Dale	CRCW06036K98FKEA Series= CRCWe3	Res= 6.98 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
13. R2_S3	Yageo America	RC1206FR-072K61L Series=?	Res= 2.61 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²

Design Inputs

Boolgh inpute									
#	Name	Value	Description						
1.	FilterType	Lowpass							
2.	FilterResponse	Butterworth							
3.	FilterOrder	5.0							
4.	FilterTopology	Sallen_Key							
5.	NumberOfStages	0.0							
6.	PassbandFrequency	2.0 k							
7.	StopbandAttenuation	-25.0							
8.	StopbandFrequency	4.0 k							
9.	Gain	1.0							
10.	SingleSupply	5.0	Power supply(s) to active chips						
11.	ResistorTolerance	E96	Resistor series - 1% Passive resistor tolerance						
12.	CapacitorTolerance	E96	Capacitor series - 1% Passive capacitance tolerance						
13.	SeedCapacitance	10.0 n	Seed Capacitance to start design of filter						

Design Assistance

1. AMPLIFIER_IDEAL Product Folder: http://www.ti.com//product/AMPLIFIER_IDEAL: contains the data sheet and other resources.

Filter Stage :1

Cutoff Frequency2.0 kHzMin GBW Reqd100.0 kHzStage Gain1.0 V/VStage Q500.0 mStage TopologySallen_Key

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	A1_S1	Texas Instruments	AMPLIFIER_IDEAL	GbwTyp= 1000000.0MHz VccMin= 0.0 V VccMax= 100.0 V	1	NA	0 mm ²
2.	C1_S1	Kemet	C0603C103F3GACTU Series= C0G/NP0	Cap= 10.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$0.44	0603 5 mm ²
3.	R1_S1	Yageo America	RC1206FR-077K87L Series=?	Res= 7.87 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²

Filter Stage :2

Cutoff Frequency2.0 kHzMin GBW Reqd123.608 kHzStage Gain1.0 V/VStage Q618.044 mStage TopologySallen_Key

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	A1_S2	Texas Instruments	AMPLIFIER_IDEAL	GbwTyp= 1000000.0MHz VccMin= 0.0 V VccMax= 100.0 V	1	NA	0 mm ²
2.	C1_S2	Kemet	C0603C103F3GACTU Series= C0G/NP0	Cap= 10.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$0.44	0603 5 mm ²
3.	C2_S2	Kemet	C0603C153F3GACTU Series= C0G/NP0	Cap= 15.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$0.50	0603 5 mm ²
4.	R1_S2	Vishay-Dale	CRCW04025K90FKED Series= CRCWe3	Res= 5.9 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
5.	R2_S2	Vishay-Dale	CRCW06036K98FKEA Series= CRCWe3	Res= 6.98 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²

Filter Stage:3

Cutoff Frequency 2.0 kHz
Min GBW Reqd 323.648 kHz
Stage Gain 1.0 V/V
Stage Q 1.618
Stage Topology Sallen_Key

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	A1_S3	Texas Instruments	AMPLIFIER_IDEAL	GbwTyp= 1000000.0MHz VccMin= 0.0 V VccMax= 100.0 V	1	NA	0 mm ²
2.	C1_S3	Kemet	C0603C103F3GACTU Series= C0G/NP0	Cap= 10.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$0.44	0603 5 mm ²
3.	C2_S3	Kemet	C1206C104F3GACTU Series= C0G/NP0	Cap= 100.0 nF VDC= 25.0 V Tolerance= 1.0 %	1	\$3.12	1206 11 mm ²
4.	R1_S3	Yageo America	RC1206FR-072K32L Series= ?	Res= 2.32 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
5.	R2_S3	Yageo America	RC1206FR-072K61L Series= ?	Res= 2.61 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.