Mathematics Bootcamp

Department of Statistical Sciences, University of Toronto

Emma Kroell

Last updated: April 21, 2022

Contents

1	Review of proof techniques with examples from algebra and analysis	2
	1.1 Axioms of a field	2
	1.1.1 Exercises	2
2	Linear Algebra Part I	2
	2.1 Vector spaces	2
	2.1.1 Axioms of a vector space	2
	2.1.2 Subspaces	3
	2.1.3 Exercises	3
	2.2 Linear (in)dependence and bases	3
	2.3 Exercises	4
	2.4 Linear transformations	5
	2.5 Solving linear equations	5
	2.6 Determinants	5
3	Linear Algebra II	5
	3.1 Spectral theory	5
	3.2 Inner product spaces	5
	3.3 Matrix decomposition	5
4	Set theory	5
5	Metric spaces	5
6	Topology	5
7	Functions on $\mathbb R$	5
8	Multivariable calculus	5
_		_
9	Functional analysis	5
10	Complex analysis and Fourier analysis	5

1 Review of proof techniques with examples from algebra and analysis

1.1 Axioms of a field

- (A1) Commutativity in addition: x + y = y + x
- (A2) Commutativity in multiplication: $x \times y = y \times x$
- (B1) Associativity in addition: x + (y + z) = (x + y) + z
- (B2) Associativity in multiplication: $x \times (y \times z) = (x \times y) \times z$
- (C) Distributivity: $x \times (y+z) = x \times y + x \times z$
- (D1) Existence of a neutral element, addition: There exists a number 0 such that x + 0 = x for every x.
- (D2) Existence of a neutral element, multiplication: There exists a number 1 such that $x \times 1 = x$ for every x.
- (E1) Existence of an inverse, addition: For each number x, there exists a number -x such that x+(-x)=0.
- (E2) Existence of an inverse, multiplication: For each number $x \neq 0$, there exists a number 1/x such that $x \times 1/x = 1$.

1.1.1 Exercises

- 1. For any $a, b \neq 0$, $1/(ab) = 1/a \times 1/b$
- 2. For a > 0, 1/(-a) = -1/a.
- 3. For $a, b \neq 0, 1/(a/b) = b/a$

2 Linear Algebra Part I

2.1 Vector spaces

2.1.1 Axioms of a vector space

Let V be a set and let \mathbb{F} be a field. We call V a $vector\ space$ if the following hold: Addition:

- (A) Commutativity in addition: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$
- (B) Associativity in addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$
- (C) Existence of a neutral element, addition: There exists a vector $\mathbf{0}$ such that for any $\mathbf{v} \in V$, $\mathbf{0} + \mathbf{v} = \mathbf{v}$
- (D) Additive inverse: For every $\mathbf{v} \in V$, there exists another vector, which we denote $-\mathbf{v}$, such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.

Multiplication by a scalar:

- (E) Existence of a neutral element, multiplication: For any $\mathbf{v} \in V$, $1 \times \mathbf{v} = \mathbf{v}$
- (F) Associativity in multiplication: Let $\alpha, \beta \in \mathbb{F}$. For any $\mathbf{v} \in V$, $(\alpha\beta)\mathbf{v} = \alpha(\beta\mathbf{v})$

Associativity:

- (G) Let $\alpha \in \mathbb{F}$, \mathbf{u} , $\mathbf{v} \in V$. $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \beta \mathbf{v}$.
- (H) Let $\alpha, \beta \in \mathbb{F}, \mathbf{v} \in V$. $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$.

Elements of the vector space are called vectors.

Most often we will assume $\mathbb{F} = \mathbb{C}$ or \mathbb{R} .

Examples of vector spaces: \mathbb{R}^n . \mathbb{C}^n , $M_{m \times n}$ (matrices of size $m \times n$), \mathbb{P}_n (polynomials of degree n, $p(x) = a_0 + a_1 x + \ldots + a_n x^n$).

2.1.2 Subspaces

Definition 2.1 A subset U of V is called a **subspace** of of V if U is also a vector space (using the same addition and scalar multiplication as on V).

Proposition 2.2 A subset U of V is a subspace of V if and only if U satisfies the following three conditions:

- Additive identity: $\mathbf{0} \in U$
- Closed under addition: $u, w \in U$ implies $\mathbf{u} + \mathbf{v} \in U$
- Closed under scalar multiplication: $\alpha \in \mathbb{F}$ and $u \in U$ implies $\alpha \mathbf{u} \in U$

[EK: Add intersections and unions of subspaces]

Definition 2.3 Suppose $U_1, ..., U_m$ are subsets of V. The sum of $U_1, ..., U_m$, denoted $U_1 + ... + U_m$, is the set of all possible sums of elements of $U_1, ..., U_m$. More precisely,

$$U_1 + ... + U_m = \{\mathbf{u}_1 + ... + \mathbf{u}_m : \mathbf{u}_1 \in U_1, ..., \mathbf{u}_m \in U_m\}$$

Proposition 2.4 Suppose $U_1, ..., U_m$ are subspaces of V. Then $U_1 + ... + U_m$ is the smallest subspace of V containing $U_1, ..., U_m$.

2.1.3 Exercises

From Harvard Bootcamp:

Exercise: Prove that -(-v) = v for every $v \in V$.

Exercise: Suppose that $a \in \mathbf{F}, v \in V$, and av = 0. Prove that a = 0 or v = 0.

Exercise: The empty set is not a vector space because it fails to satisfy only one of the requirements listed above. Which one?

Exercise: Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R} .

Exercise: A function $f: \mathbb{R} \to \mathbb{R}$ is called periodic if there exists a positive number such that f(x) = f(x+p) for all $x \in \mathbb{R}$. Is the a set of periodic functions from \mathbb{R} to \mathbb{R} a subspace of $\mathbb{R}^{\mathbb{R}}$?

Exercise: A function $f: \mathbb{R} \to \mathbb{R}$ is called odd if

$$f(-x) = -f(x)$$

for all $x \in \mathbb{R}$. Let U_e denote the set of real-valued even functions on \mathbb{R} and let U_o denote the set of real-valued odd functions on \mathbb{R} . Show that $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$.

2.2 Linear (in)dependence and bases

Definition 2.5 A linear combination of a list $\mathbf{v}_1, ..., \mathbf{v}_n$ of vectors in V is a vector of the form

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \sum_{k=1}^n \alpha_k \mathbf{v}_k$$

where $\alpha_1, ..., \alpha_m \in \mathbb{F}$.

Definition 2.6 The set of all linear combinations of a list of vectors $v_1, ..., v_m$ in V is called the **span** of $v_1, ..., v_m$, denoted $span\{\mathbf{v}_1, ..., \mathbf{v}_n\}$. In other words,

$$span\{\mathbf{v}_1,...,\mathbf{v}_n\} = \{\alpha_1\mathbf{v}_1 + ... + \alpha_m\mathbf{v}_n : \alpha_1,...,\alpha_n \in \mathbb{F}\}$$

The span of the empty list is defined to be $\{0\}$.

Definition 2.7 A system of vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ is called a basis (for the vector space V) if any vector $\mathbf{v} \in V$ admits a unique representation as a linear combination

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n = \sum_{k=1}^n \alpha_k \mathbf{v}_k$$

Definition 2.8 The linear combination $\alpha_1 \mathbf{v}_1 + ... + \alpha_n \mathbf{v}_n$ is called trivial if $\alpha_k = 0$ for every k.

Proposition 2.9 A system of vectors $\mathbf{v}_1, \dots \mathbf{v}_n \in V$ is a basis if and only if it is linearly independent and complete (generating).

[EK: Proof done by hand]

2.3 Exercises

From Harvard: Exercise: Suppose v_1, v_2, v_3, v_4 (a) spans V and (b) is linearly independent. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

also (a) spans V and (b) is linearly independent.

Exercise: Suppose $v_1, ..., v_m$ is linearly independent in V and $w \in V$. Prove that if $v_1 + w, ..., v_m + w$ is linearly dependent, then $w \in \text{span}(v_1, ..., v_m)$.

Exercise: Suppose that $v_1, ..., v_m$ is linearly independent in V and $w \in V$. Show that $v_1, ..., v_m, w$ is linearly independent if and only if

$$w \notin \operatorname{span}(v_1, ..., v_m)$$

on Exercises Exercise: Suppose v_1, v_2, v_3, v_4 (a) spans V and (b) is linearly independent. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

also (a) spans V and (b) is linearly independent.

Exercise: Suppose $v_1, ..., v_m$ is linearly independent in V and $w \in V$. Prove that if $v_1 + w, ..., v_m + w$ is linearly dependent, then $w \in \text{span}(v_1, ..., v_m)$.

Exercise: Suppose that $v_1, ..., v_m$ is linearly independent in V and $w \in V$. Show that $v_1, ..., v_m, w$ is linearly independent if and only if

$$w \notin \operatorname{span}(v_1, ..., v_m)$$

[EK: Add a few from books]

- 2.4 Linear transformations
- 2.5 Solving linear equations
- 2.6 Determinants
- 3 Linear Algebra II
- 3.1 Spectral theory
- 3.2 Inner product spaces
- 3.3 Matrix decomposition
- 4 Set theory
- 5 Metric spaces
- 6 Topology
- 7 Functions on \mathbb{R}
- 8 Multivariable calculus
- 9 Functional analysis
- 10 Complex analysis and Fourier analysis