接合トランジスタによる論理回路

- Transistor-transistor logic (TTL)
 - ■接合トランジスタを組合せて作られる論理回路
 - ◆接合トランジスタによる論理回路の方式としては、もっとも普及
- ●簡易的な回路の例

接合トランジスタによる論理回路簡易的な回路

単純な回路の問題点

- ●抵抗値が比較的大きい
 - ■数KΩ
 - (出力インピーダンスが高いという)
- ●出力がHighのとき,回路を接続すると, 電圧の低下が大きい

トーテムポール出力を用いた回路(NAND)

トーテムポール出力を用いた回路(NAND)

• 入力が両方 5V high 0.9V Off 2.1V IN1 3.7V 0.7V 1<u>.4V</u> 3.7V IN2 On 0.2V On

マルチバイブレータ multivibrator

- ●2個の増幅用素子(トランジスタなど)で構成される,2状態を遷移する回路
- ●種類
 - 非安定 (無安定, astable)
 - ◆安定せず2状態を行き来して発振
 - 単安定(monostable)
 - ◆外部イベントで非安定状態に遷移
 - ◆一定時間たつと安定状態に遷移
 - 双安定(bistable)
 - ◆外部イベントで,異なる安定状態に遷移
 - Flip-flop
 - □1ビットを保存できる回路

非安定マルチバイブレータ

非安定マルチバイブレータの展開図

非安定マルチバイブレータの動作

Tr2がOnする場合の動作

*v_{B2}*が0をすこし超えてB2に電流が 流れだす状況を考える

Tr2がOnする場合の動作

- *v_{B2}*が0をすこし超えてB2に電流が流れだす状況を考える
- ・以下のような連鎖が発生
 - i_{B2} 増 $\rightarrow i_{C2}$ 増 $\rightarrow v_{C2}$ 減 $\rightarrow v_{B1}$ 減 $\rightarrow i_{B1}$ 減 $\rightarrow i_{C1}$ 減 $\rightarrow v_{C1}$ 増 $\rightarrow v_{B2}$ 増 $\rightarrow i_{B2}$ 増 $\rightarrow i_{B2}$ 出 . .
 - 正帰還 (positive feedback)
 - ◆出力の一部を入力に加算するシステムのこと
- *V_{B2}, V_{C2}*は急速に飽和電圧(V_{BES}, V_{BES}) になる
 - Tr2→On, Tr1→Off

Tr2がOnする場合の動作

- V_{B1}の変化について考える
 - *v_{B1}*: Tr1がOnのとき V_{BES}
 - $V_{C2}: V_{CC} \rightarrow V_{CES}$
 - C₂の電荷はすぐには変わらない
 - V_{B1}はV_{CC}-V_{CES}分降下
 - $\bullet V_{B1}: V_{BES} \rightarrow V_{BES} (V_{CC} V_{CES})$

発振周期

- ●飽和電圧 V_{BES}=0, V_{CES}=0として簡易的に計算
- ●周期: T1 + T2
 - T1: C₂の放電時間
 - T2: C₁の放電時間
 - ◆キャパシタの電圧変化: -Vcc → 0
- ●まずT2を考える
 - キャパシタの電圧 v(t)をもとめる

発振周期

- ●定常解: *v* = *V_{CC}*
- 過渡解: $v = Ae^{-\frac{1}{R_1C_1}t}$
- 一般解: $v = Ae^{-\frac{1}{R_1C_1}t} + V_{CC}$
- $v(0) = -V_{CC}$ より, $A = -2V_{CC}$ よって $v = V_{CC}(1 - 2e^{-\frac{1}{R_1C_1}t})$

発振周期

● T2をもとめる

$$v = V_{CC}(1 - 2e^{-\frac{1}{R_1C_1}t})$$

$$v(T2) = 0$$

$$e^{-\frac{T2}{R_1C_1}} = \frac{1}{2}$$

$$e^{\frac{T_2}{R_1C_1}} = 2 \quad (逆数をとる)$$

$$\bullet \frac{T2}{R_1 C_1} = \log_e 2$$

- $T2 = R_1 C_1 \log_e 2$
 - 同様に, $T1 = R_2C_2 \log_e 2$
- 周期: *T*1 + *T*2

