Name:	
J#:	Dr. Clontz
Date:	

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 1 & 5 \\ 3 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix}$$

Standard E2.

Mark:

Find RREF A, where

$$A = \begin{bmatrix} 3 & -2 & 1 & 8 & | & -5 \\ 2 & 2 & 0 & 6 & | & -2 \\ -1 & 1 & 1 & -4 & | & 6 \end{bmatrix}$$

Solution:

$$RREF A = \begin{bmatrix} 1 & 0 & 0 & 3 & | & -2 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & -1 & | & 3 \end{bmatrix}$$

Standard E3.

Mark:

Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\ 3-21a\\ -7a\\ 12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

Standard E4.

Mark:

Find a basis for the solution set to the homogeneous system of equations

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 0$$
$$-2x_3 - 4x_4 = 0$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = 0$$

Solution: Let $A = \begin{bmatrix} 4 & 4 & 3 & -6 & 0 \\ 0 & 0 & -2 & -4 & 0 \\ 2 & 2 & 1 & -4 & 0 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}$.

Standard V1.

Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1, y_1) \oplus c \odot (x_2, y_2).$
- (b) Determine if V is a vector space or not. Justify your answer.

Mark:

Solution: Let $(x_1, y_1), (x_2, y_2) \in V$ and let $c \in \mathbb{R}$.

$$c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1 + x_2, y_1 + y_2)$$

$$= (c^2(x_1 + x_2), c^3(y_1 + y_2))$$

$$= (c^2x_1, c^3y_1) \oplus (c^2x_2, c^3y_2)$$

$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

However, V is not a vector space, as the other distributive law fails:

Mark:

$$(c+d)\odot(x_1,y_1)=((c+d)^2x_1,(c+d)^3y_1)\neq((c^2+d^2)x_1,(c^3+d^3)y_1)=c\odot(x_1,y_1)\oplus d\odot(x_1,y_1).$$

Standard V2.

Determine if $\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ belongs to the span of the set $\left\{ \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$.

Solution: Since

RREF
$$\left(\begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & -2 \\ -3 & -6 & 0 & 4 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

contains the contradiction 0 = 1, $\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ is not a linear combination of the three vectors.

Standard V3.

Determine if the vectors $\begin{bmatrix} 8\\21\\-7 \end{bmatrix}$, $\begin{bmatrix} -3\\-8\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\-3\\2 \end{bmatrix}$, and $\begin{bmatrix} 4\\11\\-5 \end{bmatrix}$ span \mathbb{R}^3 .

Solution:

RREF
$$\begin{pmatrix} 8 & -3 & -1 & 4 \\ 21 & -8 & -3 & 11 \\ -7 & 3 & 2 & -5 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the rank is less than 3, they do not span \mathbb{R}^3 .

Mark:

Standard V4.

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x + y + z = 1 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Solution: No, because **0** does not belong to W.

Mark:

Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 1 & 3 \\ -1 & 2 & -8 \\ 0 & -2 & 6 \\ 4 & 1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has a nonpivot column, the vectors are linearly dependent.

Standard S2.

Mark:

Determine if the set $\{x^3 - 3x^2 + 2x + 2, -x^3 + 4x^2 - x + 1, -x^3 + 2x + 1, 3x^2 + 3x + 9\}$ is a basis of \mathcal{P}^3 or not.

Solution:

RREF
$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ -3 & 4 & 0 & 3 \\ 2 & -1 & 2 & 3 \\ 2 & 1 & 1 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Standard S3.

war.

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$$
. Find a basis for W .

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute RREF $(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\left\{ \begin{bmatrix} -3\\-8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$ is a basis for W.

Standard S4.
$$\begin{bmatrix} & & & & \\ & &$$

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.