Teoria gier - lista 5 termin oddania: zajęcia 13 maja

Zadanie 1 (3p) Rozpatrzmy grę kooperacyjną (N,V), gdzie $N=\{G,H,W\}$ oraz $V(\{G\})=1$, $V(\{H\})=2$, $V(\{W\})=3$, $V(\{G,H\})=8.2$, $V(\{G,W\})=6.5$, $V(\{H,W\})=8$, $V(\{G,H,W\})=11.2$. Znajdź jądro (tj. rdzeń) tej gry. Przedstaw rdzeń graficznie, jak na zajęciach.

Zadanie 2 (3p) Rozpatrzmy grę kooperacyjną (N, V), gdzie $N = \{A, B, C\}$ oraz $V(\{A\}) = V(\{B\}) = V(\{C\}) = 0$, $V(\{A, B\}) = 2$, $V(\{A, C\}) = 4$, $V(\{B, C\}) = 6$, $V(\{A, B, C\}) = 7$. Oblicz wartość Shapleya dla każdego gracza.

Zadanie 3 (4p) Rozpatrz negocjacje w schemacie arbitrażowym Nasha pomiędzy związkami zawodowymi (ZZ) oraz pracodawcą (PP). PP mają 4 propozycje: automatyzacja linii produkcyjnej (A), likwidacja przerwy na kawę (K), A i K łącznie lub pozostawienie status quo (SQ). ZZ mają także 4 propozycje: podwyżka o dolara za godzinę (P), zmiana pracowniczego programu emerytalnego (E), P i E łącznie oraz pozostawienie status quo (SQ). Wypłaty PP i ZZ opisuje tabela:

Wypłaty z łączonych propozycji są sumowane. Na wykresie przedstaw wypłaty z każdego możliwego wyniku negocjacji (kompromisu) i zakreśl zbiór negocjacyjny. Graficznie i analitycznie znajdź rozwiązanie arbitrażowe Nasha.