2024年第一学期模拟期中考试(数学组)

数学科学学院学生会学术文化部

考试时间: 3 小时

- 1. (本题满分 10 分) 设 $A = \begin{pmatrix} 2 & 2 \\ 2 & a \end{pmatrix}$, $B = \begin{pmatrix} 4 & b \\ 3 & 1 \end{pmatrix}$, 其中 $a, b \in \mathbb{R}$ 。 求使得方程 AX = B 有解但是方程 BX = A 无解的 a, b 的取值范围.
- 2. (本题满分 10 分) 在欧氏空间 \mathbb{R}^3 中, 求到平面 x=0 和过点 (1,2,3), 方向向量 $\vec{n}=(3,1,0)$ 的直线距离相等的点的轨迹.
- 3. (本题满分 10 分) 证明: 在 (0,1] 上连续函数 f 一致连续的充分必要条件是 $\lim_{x\to 0^+} f(x)$ 存在.
- 4. (本题满分 10 分) 证明: 对任意给定的 n 维线性无关的向量组,都存在一n 阶方阵 A,使得它是 Ax=0 的一组基础解系.
 - 5. (本题满分 12 分) 求极限:

$$\lim_{n \to \infty} \sum_{i=1}^{n} n^{-1 + \frac{1}{i}}$$

的值。

6. (本题满分 12 分) 设 $A_1A_2A_3A_4$ 是一个四面体。 A_i 所对的面与 A_j 所对的面形成的二面角为 θ_{ij} 。 如果令 $a_{ij} = \begin{cases} \cos\theta_{ij} \text{ if } i \neq j, \\ -1 \text{ else} \end{cases}$ $(1 \leq i, j \leq 4)$. 证明: $det(a_{ij}) = 0$.

- 7. (本题满分 12 分)设 $f(x) \in C(\mathbb{R})$ 有最小正周期 1. 证明: $f(x^2)$ 不是周期函数。
- 8. (本题满分 12 分) 设集合序列 $\{D_n\}_{n=1}^{\infty}$ 满足每一个 D_i 都是由 [0,1] 中的有限个,两两没有公共点的闭子区间的并,且满足每一个 D_i 的区间长度的总和大于 $\frac{1}{2024}$.
- 论断 (a): 是否总存在开区间 $(a,b) \in [0,1]$, 使得它是无穷多个 D_i 的公共部分.
- 论断 (b): 是否总存在实数 $t \in [0,1]$, 使得它是无穷多个 D_i 的公共部分.

对于你认为正确的论断,证明之;对于你认为不正确的论断,给出反例. (当然,如果你认为两个论断都对,可以只证明(a),如果你认为两个论断都错,可以只证明(b))

9. (本题满分 12 分) 设 A 是一个 2024 阶整数对称矩阵,若 α 是一个 2024 维列向量满足 $A\alpha$ 的每一位都是整数,且 $\alpha^T A\alpha$ 也是一个整数. 证明: $det(A)\alpha_i^2$ 是整数,其中 α_i 是 α 的任何一个分量.

附加题:

10. (本题满分 12 分) 已知 $A_1, A_2, \dots A_m$ 是 2024 阶复可逆矩阵,满足对任意的 $1 \le i < j \le m$ 均有 $A_i + A_j$ 不可逆. 证明: $m \le C_{4048}^{2024}$.

特别地,任何缩小这个上界 (缩小 1 或更多)或者给出大于 2²⁰²⁴ 个矩阵的构造将会得到更多的分数和奖励.