

Sensor Fusion

Martin Marmsoler

Technische Universität München

Fakultät für Elektro- und Informationstechnik

Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik

München, 26. Juni 2019

Motivation

- Airborne Wind Energy System (AWES)
- Umwandlung Windenergie in el. Energie

Quelle: http://kitekraft.de/

Eingangsdaten

- Rauschen wird simuliert
 - Vorgegebene Varianzen
 - Bestimmt durch Messungen mit einer IMU

Eingangsdaten

Sensoren

- IMU (Inertial measurement unit)
 - Beschleunigungssensor
 - Winkelgeschwindigkeitssensor
 - Magnetometer
- GPS
- Barometer
- Seilwinkel Messeinheit

Gyroscope

AHRS vs. INS

Attitude Heading Reference System

Inertial Navigation System

RMSD (Root-Mean-Square-Deviation)

Maß zum Vergleich verschiedener Filter

$$rmsd(y) = \sqrt{\frac{\sum_{t=1}^{T} (\hat{y}_t - y_t)^2}{T}}$$

Zusätzliche Limitierungen: Sample Rate

Sensor / Filter	Sample Rate [Hz]
Filter	100
Gyroskop	100
Beschleunigungssensor	100
Magnetometer	100
GPS	10
Barometer	100
Seilwinkel Sensor	100

0.34

Zusätzliche Limitierungen: Sample Rate

2.70

INS MEKF

interpoliert Position

wenn Sensor nicht

verfügbar

Zusatzhere Emilierungen. Sample Rate						
Filter	Winkel [°]			Position [m]		
Filter	rmsd(Φ)	$rmsd(\Theta)$	rmsd(Ψ)	rmsd(x)	rmsd(y)	rmsd(z)
INS MEKF ohne interpolation	2.92	1.29	6.25	1.51	1.50	0.23
INS MEKF ignoriert Filterschritt wenn kein neuer Wert vorhanden ist	2.71	0.91	5.62	0.77	0.75	0.22

4.29

1.82

1.39

0.68

Zusätzliche Limitierungen: GPS Modul

• Maximale Beschleunigung: 4g

0.49

Zusätzliche Limitierungen: GPS Modul

3.60

interpoliert Position

wenn Sensor nicht

verfügbar

Zusatzliche Limitierungen. GPS Modul						
Filter	Winkel [°]			Position [m]		
riitei	rmsd(Φ)	$rmsd(\Theta)$	rmsd(Ψ)	rmsd(x)	rmsd(y)	rmsd(z)
INS MEKF ohne interpolation	8.81	3.23	12.84	3.18	5.48	0.29
INS MEKF ignoriert Filterschritt wenn kein neuer Wert vorhanden ist	2.43	0.65	4.33	0.84	0.86	0.23
INS MEKF						

1.10

4.80

4.32

3.16

Zusätzliche Limitierungen: GPS Modul

 Durch Ignorieren des Korrekturschrittes für das GPS im Kalman Filter kann die Schätzung verbessert werden, da in diesem Zeitraum die Position nur durch den Seilwinkelsensor geschätzt wird

Zusätzliche Limitierung: Seildurchhang

- Verursacht durch die Masse des Seils
- Annahme: 155m Seil bei einer direkten Distanz von 150m
- Catenary Kurve
- Parameter der Kurve durch Anfangsbedingungen und Seilwinkel bestimmt.

$$y = C2 + a\cosh\left(\frac{1}{a}x + C1\right)$$

Zusätzliche Limitierung: Seildurchhang

• Z-Position nur geringfügig Beeinflusst, da Barometer niedrigere Varianz hat

□iltor.	Winkel [°]			Position [m]		
Filter	rmsd(Φ)	rmsd(Θ)	rmsd(Ψ)	rmsd(x)	rmsd(y)	rmsd(z)
INS MEKF ohne Kompensation	5.32	3.41	14.21	124.30	60.45	0.88
INS MEKF mit Kompensation	3.10	1.14	6.54	1.52	1.19	1.94

Zusätzliche Limitierung:

Inertia velocity [m/s]: INSMEKFDST

Magnetometer Calibration

 $m_{b_{meas}} = W_{SI}(m_b - m_{HI})$

Magnetometer Calibration

Calculated Psi from different magnetometer values 100 r Magnetometer Calibration Calculated Psi from different magnetometer values [°] -100Time [s] ψ potentiometer (real) ψ without compensation ψ with hard iron compensation 10.8 10.6 11.2 11.4 Time [s] Error compared to potentiometer angle [°] 50

10.8

Time [s]

10.6

10.4

11.4 11.6

Magnetometer Calibration

Kompensation	RMSD [°]		
Ohne	11.47		
Hard-iron	6.65		
Hard- & Soft-iron	5.70		

Quellen

- F. Landis Markley Attitude Error Representations for Kalman Filtering
- U-blox NEO-6
- N. Hall Control Line Equations
- T. Ozyagcilar Calibrating an eCompass in the Presence of Hard- and Soft-Iron Interference
- G. Griffiths Least squares ellipsoid specific fitting