Investigate Predictive AAC with Sequence to Sequence Network on Small Conversational Datasets

Yuehan Pei | Northeastern University | pei.y@northeastern.edu

An Augmentative and Alternative Communication (AAC) device is a tablet or laptop that helps someone with a speech or language impairment to communicate. Making good question-answer predictions can help accelerate the communication.

Recurrent Neural Network (RNN) is a network that operates on a sequence and uses its own output as input for subsequent steps.

A Sequence to Sequence network, or seq2seq network, or Encoder Decoder network, is a model consisting of two RNNs called the encoder and decoder. The encoder reads an input sequence and outputs a single vector, and the decoder reads that vector to produce an output sequence.

Question-Answer Encoder-Decoder

Methods

- Sequence to
 Sequence network
 (seq2seq) or
- Encoder-Decoder network

Architecture

- Long Short-TermMemory (LSTM)
- Gated Recurrent Unit (GRU)
- Recurrent Neural Network (RNN)

Language Model

Results

Conclusion

This work provides results showing Sequence to Sequence Network, especially Attention RNN, which is trained on Small Conversational Datasets, can provide promising results on AAC device's questionanswer pair predictions.

- 109 question-answer pairs
- 89 pairs train set
- 20 pairs test set
- Encoder vocabulary size: 210
- Decoder vocabulary size: 243

Datasets

Input Features

Future Work

- Make the dataset conversation more strongly related to the user, health conditions, etc.
- Use speech data instead of text
- Try different models to continue to improve prediction accuracy
- Redefine WER to handle special cases when the prediction has no same word as the correct answer but has the same meaning