After the inference is performed for the community case, (which can be done by the script files), we perfrom various validation tests. Some of them are shown in this example notebook. All codes are available as scripts or tools.

Firstly we show tests for convergence:

```
load('./../figures/chain_combined.mat');
grand_mean = (mean_chain_1 + mean_chain_2 )/2;
%chain_1 and chain_2 are the chains.

B = N/(M-1) * ((mean_chain_1 - grand_mean).^2 + (mean_chain_2 - grand_mean).^2);

v_1 = (std(chain_1)).^2;
v_2 = (std(chain_2)).^2;

W = (1/M) * (v_1 + v_2);

R = ( (N-1)/N * W + (B/N) ) ./W;
R(24) = [];
```

Now the Gelman Rubin test plots:

```
%% plot bars
figure(1)
subplot(2,1,1)
b = bar(R, 'FaceColor', 'flat');
for i = 1:5
b.CData(i,:) = [211,23,24]./255;
end
for i = 6:14
b.CData(i,:) = [15,104,82]./255;
end
for i = 15:23
b.CData(i,:) = [211,119,46]./255;
end
for i=24:32
b.CData(i,:) = [62,137,168]./255;
end
```

```
b.CData(33,:) = [217,76,33]./255;
set(gca,'XTickLabel','');
hold on;
line([0.2, 35.8], [1.1, 1.1], 'Color', [0.1,0.1,0.1],'LineStyle','--',LineWidth=2);
set(gca,'FontSize',20);
xlim([0 35])
ylabel('R_{GR}')
ylim([0 1.2])
yticks([0 0.5 1 1.1]);
```

Now the geweke test bars

```
store = chainstats(chain_1);
```

MCMC statistics, nsimu = 10000

mean	std	MC_err	tau	geweke
0.098496	0.017004	0.0015792	106.24	0.93956
0.086781	0.022143	0.0023597	104.96	0.94899
0.018441	0.01343	0.0014589	117.86	0.90139
0.33332	0.017818	0.0025657	457.59	0.95099
0.4875	0.02225	0.002355	117.59	0.99648
285.41	0.027412	0.0036058	292.19	0.99995
316.03	0.051235	0.0067916	211.32	0.99991
426.23	0.03248	0.0038391	195.29	0.99994
261.38	0.025038	0.0031335	218.59	0.99994
86.125	0.033966	0.0034678	138.3	0.99981
172.4	0.021483	0.0030284	348.54	0.99996
395.47	0.027687	0.0034785	211.17	0.99996
143.5	0.032051	0.0039558	176.96	1
14.326	0.035882	0.0043197	160.67	0.99955
-7.5826	0.028902	0.0038293	210.42	0.99823
-7.5103	0.032121	0.003092	112.92	0.99995
-7.3538	0.029977	0.0035721	159.32	0.99872
-8.0602	0.024614	0.0032397	117.98	0.99983
-7 . 1996	0.039248	0.0041699	111.94	0.99982
-8.893	0.030788	0.0044936	311.13	0.99772
-8.0558	0.023094	0.0026061	134.64	0.99947
-7.8117	0.024538	0.0023767	88.026	0.99931
-9.0365	0.028682	0.0037894	242.88	0.99911
1.1321	0.014489	0.001683	154.98	0.99384
4.718	0.019667	0.0021243	119.2	0.99791
4.7531	0.032828	0.0042213	142.88	0.99772
5.0989	0.03667	0.0049031	407.61	0.99204
5.2102	0.049952	0.006766	263.93	0.99494
4.092	0.023801	0.0025727	158.06	0.994
8.5964	0.026447	0.0032727	189.22	0.99904
1.9219	0.021416	0.001918	116.67	0.99613
3.7174	0.016389	0.002222	270.8	0.99782
19.037	0.039097	0.0047966	162.95	0.9988
6.8283	0.028461	0.0034783	230.31	0.99714

```
R_geweke = store(:,5);
R_geweke(24) = [];
```

```
subplot(2,1,2)
b = bar(R_geweke, 'FaceColor', 'flat');
for i = 1:5
b.CData(i,:) = [211,23,24]./255;
end
for i = 6:14
b.CData(i,:) = [15,104,82]./255;
end
for i = 15:23
b.CData(i,:) = [211,119,46]./255;
end
for i=24:32
b.CData(i,:) = [62,137,168]./255;
end
b.CData(33,:) = [217,76,33]./255;
set(gca,'XTickLabel','');
hold on;
line([0.2, 38], [0.9, 0.9], 'Color', [0.1,0.1,0.1], 'LineStyle', '---', LineWidth=2 );
set(gca, 'FontSize', 20);
xlim([0 35])
ylabel('R_{geweke}')
yticks([0 0.2 0.4 0.6 0.8 0.9 1]);
set(gca, 'XTick', [3 10 19 28 33]);
set(gca, 'XTickLabel', {'r_i' '\beta_{ij} ' '\phi_{ij}' '\tau_{ij}' 'D_c'});
```


Now showing the traceplots for all the parameters inferred from the SEIVD model

Firstly for burst sizes

addpath('./figures/')

```
Warning: Name is nonexistent or not a directory: /Users/rdey33/Downloads/VIMIMO/example_notebooks/./
figures

fig1 = figure;

transient_id = 5000;

color1 = [76,132,147]./255;
```

```
color2 = [217,76,33]./255;
for i = 1:9
subplot(5,2,i)
plot(chain_1(transient_id:end,5+i),'Color',color1 );
xlim([0 5000])
hold on;
end
for i = 1:9
subplot(5,2,i)
plot(chain_2(transient_id:end,5+i),'Color',color2);
ylim([ min(min(chain_1(transient_id:end,5+i)),min(chain_2(transient_id:end,5+i)))-0.1
xlim([0 5000])
make_title(i);
end
han=axes(fig1,'visible','off');
%han.Title.Visible='on';
han.XLabel.Visible='on';
han.YLabel.Visible='on';
ylabel(han,'\beta (virions/cell)');
xlabel(han, 'steps');
%title(han, 'yourTitle');
set(gca, 'FontSize', 18)
```


For host growth rates

```
fig2 = figure;

for i = 1:5

subplot(3,2,i)
plot(chain_1(transient_id:end,i), 'Color',color1);
xlim([0 5000])
hold on;
end

for i = 1:5

subplot(3,2,i)
plot(chain_2(transient_id:end,i),'Color',color2);
```

```
ylim([ min(min(chain_1(transient_id:end,i)),min(chain_2(transient_id:end,i))), ma
xlim([0 5000])
make_title_host(i);

end

han=axes(fig2,'visible','off');
%han.Title.Visible='on';
han.XLabel.Visible='on';
han.YLabel.Visible='on';
ylabel(han,'r (cells/hr)');
xlabel(han,'steps');
%title(han,'yourTitle');
set(gca,'FontSize',18)
```


For viral adsoprtion rates

```
fig3 = figure;
```

```
for i = 1:9
subplot(5,2,i)
plot(chain_1(transient_id:end,14+i), 'Color',color1 );
xlim([0 5000])
hold on;
end
for i = 1:9
subplot(5,2,i)
plot(chain_2(transient_id:end,14+i),'Color',color2);
ylim([ min(min(chain_1(transient_id:end,14+i)),min(chain_2(transient_id:end,14+i)))-0
xlim([0 5000])
make_title(i);
end
han=axes(fig3,'visible','off');
%han.Title.Visible='on';
han.XLabel.Visible='on';
han.YLabel.Visible='on';
ylabel(han,'log_{10} \phi (ml/hr) ');
xlabel(han,'steps');
%title(han, 'yourTitle');
set(gca, 'FontSize', 18)
```


For viral latent periods

```
fig4 = figure;
for i = 1:9
subplot(5,2,i)
plot(chain_1(transient_id:end,24+i),'Color',color1);
xlim([0 5000])
hold on;
end

for i = 1:9
subplot(5,2,i)
plot(chain_2(transient_id:end,24+i),'Color',color2);
```

```
ylim([ min(min(chain_1(transient_id:end,24+i)),min(chain_2(transient_id:end,24+i)) -0
xlim([0 5000])
make_title(i);
end

han=axes(fig4,'visible','off');
%han.Title.Visible='on';
han.XLabel.Visible='on';
han.YLabel.Visible='on';
ylabel(han,'\tau (hr) ');
xlabel(han,'steps');
%title(han,'yourTitle');
set(gca,'FontSize',18)
```


steps