دراسة الدوال وتمثيلها المبياني

الفروع اللانهائية

تقعر منحنى ونقط الإنغطاف

$$(C_f)$$
 فإن $(x) \ge 0$ محدب ($(x) \ge 0$ محدب منحنی منحنی محدب

ہفعر
$$(C_f)$$
 فإن (C_f) فإن $(x) \le 0$ مقعر منحنی مفعر

اذا كاتت " f تنعدم و تغير إشارتها عند a فإن النقطة $I\left(a,f\left(a\right)\right)$ هي نقطة انعطاف f اذا كاتت f تنعدم و لا تغير إشارتها عند f فإن النقطة f محدب f محدب f

محور تماثل و مركز تماثل منحنى

 $\begin{cases} \forall x \in D_f: & 2a-x \in D_f \\ \forall x \in D_f: & f\left(2a-x\right)=f\left(x\right) \end{cases} \Leftrightarrow \begin{pmatrix} C_f \end{pmatrix}$ محور تماثل ل

 $\begin{cases} \forall x \in D_f: & 2a - x \in D_f \\ \forall x \in D_f: & f\left(2a - x\right) = 2b - f\left(x\right) \end{cases} \Leftrightarrow \left(C_f\right) \text{ and } \Omega(a,b) \Leftrightarrow \left(C_f\right)$ النقطة

الدالة الدورية

نقول إن
$$f$$
 دالة دورية إذا وجد عدد حقيقي T موجب قطعا بحيث :
$$\begin{cases} (\forall x \in D_f) \colon x + T \in D_f \\ (\forall x \in D_f) \colon f (x + T) = f (x) \end{cases}$$

f العدد T يسمى دور للدالة f أصغر دور موجب قطعا يسمى دور الدالة f

 $\left(orall x \in D_f
ight) \ f \left(x + kT
ight) = f \left(x
ight) : \mathbb{Z}$ من K من T دورا لدالة عددية f فإنه لكل K من K

تصميم دراسة دالة

```
: التالية دالة عددية f غالبا ما نتبع المراحل التالية
```

- f تحديد مجموعة تعريف الدالة f
- $D_{\scriptscriptstyle E}$ دراسة زوجية و دورية الدالة f ثم تحديد مجموعة الدراسة (2
 - 3) حساب نهایات f عند محدات مجموعة تعریفها
 - $D_{\scriptscriptstyle E}$ دراسة قابلية اشتقاق الدالة f على (4
- (f تغیرات الدالة f منحی تغیرات الدالة f ، دراسة اشارة f ، دراسة الشارة f ، دراسة تغیرات الدالة f منحی تغیرات الدالة f ، دراسة الشارة f ، دراسة f ، د
 - 6) دراسة الفروع للانهائية
 - (إن وجدت) دراسة الوضع النسبي ل C_f بالنسبة لمقارباته الأفقية و المائلة (ان وجدت)
 - المعلم C_f عم محوري المعلم (8) عمديد تقاطع
 - 9) تحديد معادلة المماسات في بعض النقط
 - (إن وجدت) راسة تقعر C_f و تحديد نقط انعطاف C_f
 - منظم متعامد ممنظم C_f انشاء (11)

النهايات – الإشتقاق تأويلات هندسية – دراسة الدوال

التهايات

$$\lim_{x \to \infty} x^n = \begin{cases} +\infty & \text{if } n \text{ if } n \text$$

- 2. نهایة دالة حدودیة عند $\infty +$ أو $\infty -$ هي نهایة حدها الأعلى درجة
- 3. نهاية دالة جذرية هي خارج نهاية حدها الأعلى درجة في البسط على حدها الأعلى درجة في المقام
 - 4. جداول النهايات:

lim <i>f</i>	l	l	l	+∞	-8	+∞
lim g	1'	+∞	-∞	+∞	-∞	-∞
$\lim f + g$	1+1'	+∞	-∞	+∞	∞	شکل غیر
						محدد

lim <i>f</i>	1	1>0	1>0	1<0	1<0	+∞	+∞	-∞	-∞	±∞
lim g	1'	+∞	-∞	+∞		+∞	-∞	+∞	-∞	0
$\lim f \times g$	l×l'	+∞	-∞	-∞	+∞	+∞	-∞	-∞	+∞	شكل غير
										محدد

limf	<i>l</i> ≠0	0+	0-	+∞	-∞
$\lim \frac{1}{f}$	$\frac{1}{l}$	+∞	-∞	0	0

$\lim f$	l	<i>l</i> > 0	<i>l</i> > 0	1<0	<i>l</i> < 0	l	±∞	+∞	+∞	-∞	-∞
lim g	1'≠0	0+	0-	0+	0-	±∞	±∞	0+	0-	0+	0-
$\lim \frac{f}{g}$	$\frac{l}{l}$	+∞			+∞	0	شكل غير محدد	+∞	-∞	-∞	+∞

الفروع اللانهائية

الاشتقاق و تأويلاته الهندسية

يقبل مماسا في النقطة (C_f) يقبل مماسا في النقطة $A\left(a,f\left(a\right)\right)$ $= f'(a)$ و معادلته $y = f'(a).(x-a)+f\left(a\right)$	\leftrightarrow	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l \in \mathbb{R}$ $l = f'(a)$	\leftrightarrow	a قابلة للاشتقاق في f
يقبل مماسا في النقطة (C_f) يقبل مماسا في النقطة $A\left(a,f\left(a\right)\right)$		$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = l \in \mathbb{R}$ $l = f_d'(a)$		قابلة للاشتقاق في a على اليمين اليمين
: و معادلته $l=f_d$ ' (a) $y=f_d$ ' $(a).(x-a)+f$ (a) يقبل مماسا في النقطة (C_f)	£5			f قابلة للاشتقاق في a على
معامله الموجه $A\left(a,f\left(a ight) ight)$: و معادلته $l=f_{g}\left(a ight)$		$\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = l \in \mathbb{R}$ $l = f_g'(a)$		اليسار
$y = f_g'(a).(x-a) + f(a)$ يقبل مماسا في النقطة (C_f)	ļ	على a قابلة للاشتقاق في a على اليمين	W.c	a قابلة للاشتقاق في f
$l=f$ ' (a) معامله الموجه $A\left(a,f\left(a ight) ight)$: و معادلته $y=f$ ' $(a).(x-a)+f\left(a ight)$		اليسار a قابلة للاشتقاق في a على اليسار $f_a'(a) = f_g'(a) = f'(a)$		

$$f \in \lim_{\substack{x \to a \\ x < a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$$
 عير قابلة للاشتقاق في $f \in \lim_{\substack{x \to a \\ x < a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار على في على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ على البسار $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ النقطة $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$ النقطة $f \in \lim_{\substack{x \to a \\ x > a}} \frac{f\left(x\right) - f\left(a\right)}{x - a} = +\infty$

غير قابلة للاشتقاق في $f \iff \lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = -\infty$	غير قابلة للاشتقاق في $f \Leftarrow \lim_{\substack{x \to a \ x>a}} \frac{f(x)-f(a)}{x-a} = -\infty$
a على اليسار	a على اليمين
يقبل نصف مماس عمودي موجه نحو الأعلى في (C_f)	يقبل نصف مماس عمودي موجه نحو الأسفل في (C_f)
$A\left(a,f\left(a ight) ight)$ النقطة	$A\left(a,f\left(a ight) ight)$ النقطة

مشتقات الدوال الاعتيادية

المجال 1	f ' الدالة المشتقة	f الدالة
\mathbb{R}	$x \mapsto 0$	$x \mapsto k$
\mathbb{R}	$x \mapsto nx^{n-1}$	$x \mapsto x^n n \in \mathbb{N}^*$
$I=\left]-\infty,0\right[$ أو $I=\left]0,+\infty\right[$	$x \mapsto nx^{n-1}$	$x \mapsto x^n n \in \mathbb{Z}^* \setminus \{-1\}$
$I =]0, +\infty[$	$x \mapsto rx^{r-1}$	$x \mapsto x^r r \in \mathbb{Q}^* \setminus \{-1\}$
$I =]0,+\infty[$	$x \mapsto \frac{1}{2\sqrt{x}}$	$x \mapsto \sqrt{x}$
$I =]-\infty,0[$ اأو $I =]0,+\infty[$	$x \mapsto \frac{-1}{x^2}$	$x \mapsto \frac{1}{x}$

- I اذا كانت f و g قابلتين للاشتقاق على I و $lpha\in\mathbb{R}$ فإن lpha f و lpha f و f قابلة للاشتقاق على lpha
 - I على $g \neq 0$ على المنافة إذا كاتت $g \neq 0$ على المنافة إذا كاتت $g \neq 0$ على المنافة إذا كاتت $g \neq 0$
 - I و المنتقاق على g و g قابلة للاشتقاق على g و المنتقاق على g و المنتقاق على و g و المنتقاق على المنتقاق على
 - I الشتقاق على ا و $0 \leq f$ على ا فإن \sqrt{f} قابلة للاشتقاق على ا و الاعانت f
 - I والمانت f قابلة للاشتقاق على I فإن f فإن f قابلة للاشتقاق على f

الدالة المشتقة	الدالة
αf '	αf
f '+ g '	f+g
$f \times g + f \times g'$	$f \times g$
$-\frac{g'}{g^2}$	$\frac{1}{g}$
$\frac{f'g-fg'}{g^2}$	$\frac{f}{g}$
$f^{'} \times g^{'} \circ f$	$g \circ f$
$\frac{f'}{2\sqrt{f}}$	\sqrt{f}

$$I$$
 إذا كانت $0 \leq I$ $f'(x) \geq 0$ فإن f تزايدية على I $\forall x \in I$ $f'(x) \geq 0$ إذا كانت $0 \leq I$ فإن f تناقصية على I $\forall x \in I$ $f'(x) > 0$ إذا كانت $0 \leq I$ فإن 0 تزايدية قطعا على $0 \leq I$ فإن $0 \leq I$ فإن $0 \leq I$ قان $0 \leq I$ قان

تقعر منحنى و نقط الانعطاف:

محدب (C_f) فإن $\forall x \in I \ f''(x) \ge 0$ محدب

مقعر (C_f) فإن $\forall x \in I$ $f''(x) \le 0$ مقعر

- انا كانت " f تنعدم و تغير إشارتها عند a فإن النقطة $I\left(a,f\left(a\right)\right)$ هي نقطة انعطاف \checkmark
- انت f' تنعدم و لا تغير إشارتها عند a فإن النقطة $I\left(a,f\left(a\right)\right)$ هي نقطة العطاف \checkmark

(C_f) مرکز و محور تماثل

$$\begin{cases} \forall x \in D_f: & 2a-x \in D_f \\ \forall x \in D_f: & f\left(2a-x\right)=f\left(x\right) \end{cases} \Leftrightarrow \left(C_f\right)$$
 محور تماثل ل $x=a$ محور معادلة $x=a$

$$\begin{cases} \forall x \in D_f: & 2a-x \in D_f \\ \forall x \in D_f: & f\left(2a-x\right)=2b-f\left(x\right) \end{cases} \Leftrightarrow \left(C_f\right) \text{ and } \Omega(a,b) \text{ with } \clubsuit$$