Princípios Gerais e Erros

Prof. Jonathan Esteban Arroyo Silva

Departamento de Ciência da Computação Universidade Federal de São João del-Rei silva.jea@ufsj.edu.br

Sumário

Introdução

Sistema de ponto flutuante

Erros

O que é Computação Científica?

 Desenvolver e analisar algoritmos para resolver, de forma numérica, problemas matemáticos que surgem na ciência e engenharia

- Michael T. Heath

Exemplos

O que é Computação Científica?

- Para que serve computação científica?
 - Simulação preditiva de fenômenos naturais
 - Prototipagem virtual de projetos de engenharia
 - Análise de dados
- Diferentes aspectos da computação científica:
 - Trabalhar com quantidades continuas que são geralmente medidas com números reais (por exemplo: tempo, distância, velocidade, temperatura, densidade, pressão)
 - Avaliar os efeitos da aproximação

O que é Cálculo numérico?

Uma disciplina introdutória para Computação científica

- Compreender como os números são representados nas calculadoras e computadores
- Apresentar os efeitos de utilizar aproximações
- Conhecer os algoritmos clássicos para resolução de problemas numéricos
- Comparação e critério na escolha da melhor opção possível

Solução Analítica × Solução Numérica

- Solução Analítica:
 - Representação numérica exata ou simbólica da solução
 - Exemplo: Fórmula de Bháskara
- Solução numérica:
 - Representação computacional ou aproximada da solução
 - Exemplo: Algoritmo de Eudoxo

Por quê estudar soluções aproximadas?

I've learned that, in the description of Nature, one has to tolerate **approximations**, and that work with approximations can be **interesting** and can sometimes be **beautiful**

- P. A. M. Dirac

Aprendi que, ao descrever a Natureza, é preciso tolerar aproximações, e que o trabalho com aproximações pode ser interessante e, por vezes, belo.

Descrevendo a Natureza

Como resolver um problema numérico?

Para resolver um problema numérico, é necessário entender bem cada uma das três etapas:

- Método matemático: uma descrição matemática sobre o processo de solução
- Algoritmo: um passo-a-passo de como executar o método (Pseudocódigo)
- Implementação: uma instanciação particular do algoritmo (utilizando alguma linguagem de programação)

Ponto flutuante

A representação de ponto flutuante é baseada na notação científica. Nessa notação um numero real não nulo x é expresso por:

$$x = \pm d \times \beta^e$$

sendo

- d representa a mantissa;
- ightharpoonup eta representa a base do sistema de numeração
- e representa o expoente

Mantissa

A mantissa é a representação de um número da seguinte forma:

$$(0.d_1d_2d_3\cdots d_t)_{\beta}$$

sendo

- Os dígitos da mantissa são $0 \le d_i \le \beta 1$, para $i = 1, \dots, t$ e com $d_1 \ne 0$
- ightharpoonup Dizemos que o número esta **normalizado** quando $d_1 \neq 0$
- ightharpoonup O expoente *e* esta no intervalo [m, M]

Sistema de ponto flutuante

Um sistema de ponto flutuante é representado da forma:

$$F(\beta, t, m, M)$$

em que:

- \triangleright β é a base do sistema
- t é o número de dígitos da mantissa ou precisão
- ▶ m é o menor valor para o expoente
- ► *M* é o maior valor para o expoente

Propriedades de um sistema de ponto flutuante

- ▶ Um sistema de ponto flutuante é finito e discreto
- Não todos os números reais são representados de forma exata
- A quantidade total de números de um sistema de ponto flutuante é dada por:

$$2(\beta-1)\beta^{t-1}(M-m+1)+1$$

- O menor número positivo normalizado é dado por: $UFL = \beta^{m-1}$
- O maior número representável é dado por: OFL = $\beta^{M}(1 \beta^{-t})$

Exemplo

Considerando o sistema de ponto flutuante F(10, 3, -3, 3), o número 12.5 será representado por:

$$0.125\times10^2$$

▶ O número de Euler, e = 2.718281..., será representado por:

$$0.271 \times 10^{1} (\text{com truncamento})$$

 $0.272 \times 10^{1} (\text{com arredontamento})$

Exemplo

- Considerando o sistema de ponto flutuante F(10,3,-3,3), todo número x tal que UFL $\leq |x| \leq$ OFL pode ser representado no sistema, sendo com arredondamento ou truncamento
- ▶ Se |x| < UFL, o número não pode ser representado no sistema, ocorrendo o erro chamado de **underflow**, (e.g., 0.517×10^{-8})
- Se |x| > OFL, o número não pode ser representado no sistema, ocorrendo o erro chamado de **overflow**, (e.g., 0.725×10^9)

Operações aritméticas em ponto flutuante

As propriedades aritméticas não são verdadeiras para todos os casos em sistemas de ponto flutuante:

Associatividade:
$$(a + b) + c = a + (b + c)$$

Distributividade: a(b+c) = ab + ac

Exemplo

Considerando o sistema de ponto flutuante F(10, 3, m, M) com arredondamento, verifique se:

- (11.4 + 3.18) + 5.05 = 11.4 + (3.18 + 5.05)
- $5.55(4.45 4.35) = 5.55 \cdot 4.45 5.55 \cdot 4.35$

Tipos de erros

Sendo \tilde{x} uma aproximação de x, definimos como:

► Erro absoluto:

$$\mathsf{EA}(\tilde{x}) = |x - \tilde{x}|$$

Erro relativo:

$$\mathsf{ER}(\tilde{x}) = \frac{|x - \tilde{x}|}{|\tilde{x}|} = \frac{\mathsf{EA}(\tilde{x})}{|\tilde{x}|}$$

desde que $\tilde{x} \neq 0$

Efeitos numéricos

Outros tipos de erros são encontrados quando se realiza as operações ariméticas nas seguintes condições:

- Soma entre dois números com ordens muito distintas
- Subtração entre dois números de magnitudes semelhantes

Exemplo

Considerando o sistema de ponto flutuante F(10, 4, m, M) com arredondamento, realize as seguintes operações e compare os resultados com sua solução exata:

- \triangleright 0.1 + 5000.0
- ► $\sqrt{37} \sqrt{36}$

Conclusão

Foram abordados os seguintes assuntos:

- Cálculo numérico como uma disciplina introdutória para Computação científica
- ► Solução analítica × Solução numérica
- Aritmética de ponto flutuante
- ▶ Tipos de erros em consequência de trabalhar com um sistema discreto e finito

