

Introduction to High Performance Computing

Lecture 03 – Applications, Performance Increase, Top500

Holger Fröning
Institut für Technische Informatik
Universität Heidelberg

Example Applications Fields

Example application fields

- Oil and gas
 - Seismic processing
- Financial services
 - · Automated option pricing and trading
- Bioscience
 - · Genetic sequencing and chemistry
- Government
 - Searching and encryption engines
- Digital content creation
 - Movie animation
- Scientific research
 - Astrophysics, particle physics
 - · Biology: molecular dynamics
- Industry
 - Fluid dynamics
- Meterology & Climatology
- Electronic design automation
 - · Chip design
- Finite element methods
 - Crash simulations
- ...

Weather/Climate Research

A more abstract view...

- Basic operation types in HPC
 - Complex processing of regular data structures
 - Vectors
 - Arrays
 - Elements
 - High degree of parallelism
- Trivial example: Matrix addition
 - "Domain decomposition"

Simple parallelization example

Serial execution

- No communication
- Sequential processing of elements

Parallel execution

- Communication?
- Synchronization?
- Parallel processing of (blocks of) elements

Molecular dynamics

- Motivation
 - Protein Folding
 - Digital simulation instead of biochemics
 - Computationally intensive
 - Runtime of several months
 - STMV: 160 genes, 100ns/day for Petascale-class
- Goal: Calculation of the molecule's shape
 - Double precision floating point
 - Calculation of forces in between the atoms of the molecule and the surrounding
 - Forces: Electrostatic (Coulomb)
 & Van der Waal
 - Time step = 1 femto (10^{-15}) second
- "N-body problem"

wikipedia.org

Molecular dynamics: N-body

N-body problem

For each atom in a 3D system

```
Do repeat
Increase time step t
Foreach atom i
Foreach atom j (j != i)
Compute force(s) from j to i
Sum all forces on i
Next j
Compute next position of i
Next i
Repeat until stable
```


forces ~ 1/d² ~82% time ~52 FP ops

- No special treatment of borders here...
 - Approx. 60 variants

Bioscience

- Genetics related research
- String distance computation
- Using Smith-Waterman
 - Exact string matching algorithm
 - Finds optimal local alignment
 - Computes a matching score H(i,j) of two input strings S and T using a 2D matrix
- Other applications:
 - Motif discovery, data mining

$$H(i,j) = \max \left\{ \begin{matrix} 0 \\ H(i-1,j-1) + w(a_i,b_j) & \text{Match/Mismatch} \\ H(i-1,j) + w(a_i,-) & \text{Deletion} \\ H(i,j-1) + w(-,b_j) & \text{Insertion} \end{matrix} \right\}, \ 1 \leq i \leq m, 1 \leq j \leq n.$$

$$\left.\begin{array}{l}
\text{Match/Mismatch} \\
\text{Deletion} \\
\text{Insertion}
\end{array}\right\}, \ 1 \le i \le m, 1 \le j \le n.$$

Computational Fluid Dynamics (CFD)

- Numerical fluid simulations
- Lattice-Boltzmann method (LBM)
 - Simulation at particle scope
 - Discretization by grid, at microscopic level solution of mutual reaction as described by the Boltzmann equation
- Boltzmann equation in the case of large average free path lengths
 - Currents in (depleted) gases
 - Neutron distribution in atomic reactors
- Otherwise: E.g. Navier-Stokes equation
 - Much simplier
 - Current in liquids
- Rather few communication, large messages between pairs of two

Weather and Climate Research

See CFD

ucar.edu

- Examples
 - Hurricane prediction
 - Tornado simulation
 - Local weather forecast
 - Global Climate Modeling

Implementations

- Solving/Approximation of Partial Differential Equations (PDE) or CFD
- Stencil codes
 - Iterative kernels
 - Regular, invariable structure
- Finite Element Methods (FEM)
 - Irregular structures
 - For complex or variant structures
 - Different accuracies
 - Adaptive Mesh Refinement (AMR)
- Technical and scientific computing is mostly modeling
 - Based on time steps
 - Iterative solution until results are stable or simulation period is over

6-point 3D stencil, courtesy: wikipedia.org

Basics of Performance Increase

Performance Increase of Technologies and Applications

Moore vs. Amdahl

Moore's Law

Gordon Moore

- 1965: Doubling each year
- 1975: Transistor count of ICs doubling every two years
- Derived "laws"
 - CPU performance doubling every 18 months
 - Memory size four times every three years
 - Memory performance doubling every 10 years
 - At the same costs double performance every two years

Moore's Law

wikipedia.org

Moore's Law

- Industry is trying to keep the pace
 - Self-fulfilling prophecy
 - "positive feedback between belief and behavior"
- Atoms as fundamental lower bound
 - Even then, increase of die size can maintain the law
 - Intel's statements about end of Moore's law
 - 2003: 2013-2018
 - 2005: until 2015
 - 2008: until 2029
- Bernie Meyerson (IBM):
 - 7-9nm is the limit
 - Quantum mechanics effects

Speed-up

- Speed-up: "How much faster can one program be executed"
- Assumption: instead of one resource, N identical resources are available
- Naive: More resources, faster execution
- A bit more realistic: N resources yield an execution time of 1/N
 - No overhead assumed
- Reality: significant loss
 - Break-even point when execution time starts to increase again

Speed-up - Definitions

For a given algorithm:

- SerTime(n) = time of the best serial implementation for an input of size n
- ParTime(n,p) = time of the parallel implementation, using p parallel computing units
- Sanity check: SerTime(n) >= ParTime(n,1)
 - The other case is not uncommon

Speed-up:

```
Speedup(p) = SerTime(n) / ParTime(n,p)
```

Efficiency(p) = SerTime(n) / (p * ParTime(n,p))

Speed-up - Notes

- 1 <= Speedup(p) <= p</p>
- 0 <= Efficiency(p) <= 1
- Linear speed-up:Speedup(p) = p
- Superlinear speed-up:Speedup(p) > p
 - Usually not possible

Speed-up – Real experiment

Amdahl's Law

- Model to find the maximum improvement in terms of performance
 - Assumption: only a fraction of the runtime can be parallelized (parallel fraction *P*).
 - Assumption that the other fraction is the serial one: serial fraction S
 - Then: P + S = 1
 - As fraction **P** is processed in parallel, this fraction of time is reduced (**N** parallel execution units)

$$Speedup = \frac{1}{(1-P) + \frac{P}{N}}$$

- Notes:
 - Speed-up has an upper limit dependent on S, not on M!

Amdahl's Law

Amdahl's Law - Implications

Assumptions 80W & 200mm² for cores

Pollack's rule: performance increase ~ sqrt (complexity increase)

Number of Cores	4	8	32	128
Power (W) / Core	20	10	2,5	0,6
Area (mm²) / Core	50	25	6	1,5
Relative Performance R	140 %	100 %	50 %	25 %

Notes on Amdahl and his law

Amdahl himself ...

- 1. ... wanted to claim that parallel computing is not viable
 - "Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities", *AFIPS Conference Proceedings*, 1967.
- 2. ... was an **optimist**
 - Extra work is required for parallelization
 - Synchronization, communication, management, ...
 - In this regard his law is too optimistic
- 3. ... was a pessimist
 - We can (have to?) scale the problem size with N
 - Gustafson's law superlinear speedup (1988)
 - Parallel algorithms exist that reduce fraction S
 - Superlinear speed-up due to caching effects

Performance increase - Summary

- Increase of performance according to Moore's Law
 - Technology ©
- Increase of performance according to Amdahl's Law
 - Limited by serial fraction

"Everyone knows Amdahl's Law, but quickly forgets" Dr. Tom Puzak, IBM Research, 2007

- Sources for serial fraction
 - Data dependencies
 - Communication & synchronisation is costly
- ⇒Optimize these components ⊕
- ⇒Increase problem size ©
 - Increases percental fraction of P

TOP500 List

- http://www.top500.org
- Biannual list: 500 fastest computer systems world-wide
 - LinPACK benchmark
 - "Dense system of linear equations"
 - $2/3 \text{ n}^3 + O(n^2)$ double precision floating point operations
 - Highly scalable, problem size can be chosen arbitrary
- Computationally intensive, not memory-bound
 - Little requirements on memory bandwidth and capacity
- Old lists available on-line
 - History and trends

TOP500 – List of 06/2014

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
8	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301
9	DOE/NNSA/LLNL United States	Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393,216	4,293.3	5,033.2	1,972
10	Government United States	Cray XC30, Intel Xeon E5-2697v2 12C 2.7GHz, Aries interconnect Cray Inc.	225,984	3,143.5	4,881.3	

TOP500 – Architecture Share

- System with N nodes, each C cores
 - 1 node equals 1 address space
- Massively Parallel Processors (MPP)
 - N > C, N >> 1 (whatever that means)
- Cluster
 - N > C, N > 1
- Symmetric Multi-Processors (SMP)
 - N = 1
- Constellations
 - N < C, N > 1
- Single Processor
 - N = C = 1
- Others
 - Never seen

TOP500 – Performance & Power

TOP500 – Power Efficiency

TOP500 – Accelerated Systems

TOP500 - Summary

- Excellent tool for trend analysis
 - Introductions, motivating data
- Maybe too limited due to the single workload
 - No scalability worries
- Alternatives
 - Graph500: http://www.graph500.org
 - Green500: http://www.green500.org
 - HPC-Challenge: <u>http://icl.cs.utk.edu/hpcc</u>

- Exascale at 2GFLOPs/Watt (BlueGene):
 - 1,000,000,000,000,000
 Flops

 (1,000,000,000 GFlops)
 - 500,000,000 Watts (500 MWatt)
 - @50MWatt: 20GFLOPs/Watt required
- → Extreme specialization
 - What about too specialized?