Assignment 5 solutions

Let $\Sigma = \{0,1\}$ and assume that all languages and classes of languages considered in this assignment are over the alphabet Σ . Also assume that the word "polynomial" means "non-constant polynomial with nonnegative integer coefficients."

1. Suppose that $A \subseteq \Sigma^*$ is NP-complete, $B \subseteq \Sigma^*$ is in P, $A \cap B = \emptyset$, and $A \cup B \neq \Sigma^*$. Prove that $A \cup B$ is NP-complete.

Solution. First let us show that $A \cup B$ is in NP. Consider the following NTM. On input $x \in \Sigma^*$: if $x \in B$ (which can be checked deterministically in polynomial time), then accept; otherwise run a polynomial-time NTM for A on x and return its result. This NTM runs in polynomial-time and decides $A \cup B$.

Now it is enough to show that there is a polynomial-time mapping reduction from A to $A \cup B$, so let us do that. Choose an arbitrary $y \in \Sigma^* \setminus (A \cup B)$. Because $B \in P$, the function f defined as

$$f(x) = \begin{cases} y & \text{if } x \in B \\ x & \text{if } x \notin B \end{cases} \tag{1}$$

is polynomial-time computable. We have:

- if $x \in A$, then $x \notin B$ and $f(x) = x \in A \cup B$;
- if $x \notin A$, then
 - either $x \in B$, in which case $f(x) = y \notin A \cup B$,
 - or $x \notin B$ and thus $f(x) = x \notin A \cup B$.

Hence, $A \leq^P_m (A \cup B)$ and $A \cup B$ is NP-complete.

2. For every language $A\subseteq \Sigma^*$ and function $f:\mathbb{N}\to\mathbb{N}$ satisfying $f(n)\geq n+1$ for all $n\in\mathbb{N}$, define a new language

$$\mathrm{pad}(A,f) = \left\{ x01^{f(|x|) - |x| - 1} \, : \, x \in A \right\}.$$

The way to think about the language pad(A, f) is that it "pads" strings $x \in A$ with a tail of the form 01^m , which has the effect of artificially increasing the length of strings in the language: for each $x \in A$ there is a unique corresponding string $x01^m \in pad(A, f)$ whose length is f(|x|).

(a) Prove that for any polynomial p with $p(n) \ge n + 1$ we have

$$A \in \mathsf{DTIME}\left(2^{p(n)}\right) \quad \Leftrightarrow \quad \mathsf{pad}(A,p) \in \mathsf{DTIME}(2^n).$$

(b) Prove that for any polynomial p with $p(n) \ge n + 1$ we have

$$A \in PSPACE \Leftrightarrow pad(A, p) \in PSPACE.$$

(c) Use the time-hierarchy theorem, along with parts (a) and (b), to prove

$$PSPACE \neq \bigcup_{k \geq 1} DTIME \left(2^{k \cdot n}\right).$$

(d) Repeat (b) and (c) with NP in place of PSPACE.

Solution. Let M be a (deterministic or nondeterministic) Turing machine and let p be a polynomial with $p(n) \ge n+1$. Consider the following Turing machine $P_{M,p}$. On input $y \in \Sigma^*$:

- 1. if $y \in 1^*$, reject;
- 2. obtain $x \in \Sigma^*$ and $m \in \mathbb{N}$ such that $y = x01^m$;
- 3. compute p(|x|) and, if $|y| \neq p(|x|)$, reject;
- 4. run M on x and return the result.

One can see that, if M decides A, then $P_{M,p}$ decides pad(A,p). Also note that steps 1 through 3 take time and space polynomial in |y|. Consider another Turing machine $R_{M,p}$ which on input input $y \in \Sigma^*$ does the following:

- 1. compute m = p(|x|) |x| 1 and set $y = x01^m$;
- 2. run M on y and return the result.

If M decides pad(A, p), then $R_{M,p}$ decides A. Step 1 requires time and space polynomial in |x|.

- (a) If $A \in \text{DTIME}\left(2^{p(n)}\right)$, then there exists a DTM M_A which for every $x \in \Sigma^*$ decides if $x \in A$ in time $O(2^{p(|x|)})$. The time cost of steps 1 through 3 in the DTM $P_{M_A,p}$ is negligible, therefore for every $y \in \Sigma^*$ it decides if $y \in \text{pad}(A,p)$ in time $O(2^{p(|x|)})$, where p(|x|) = |y|, and $\text{pad}(A,p) \in \text{DTIME}(2^n)$.
 - If $\operatorname{pad}(A,p) \in \operatorname{DTIME}(2^n)$, then there exists a DTM $M_{\operatorname{pad}(A,p)}$ which for every $y \in \Sigma^*$ decides if $y \in \operatorname{pad}(A,p)$ in time $O(2^{|y|})$. Hence, for every $x \in \Sigma^*$ the DTM $R_{M_{\operatorname{pad}(A,p)},p}$ decides if $x \in A$ in time $O(2^{p(|x|)})$, and thus $A \in \operatorname{DTIME}\left(2^{p(n)}\right)$.
- (b) If $A \in PSPACE$, then there exists a DTM M_A deciding A and running in polynomial space. All the steps of the DTM $P_{M_A,p}$ require polynomial space and, because it decides pad(A,p), $pad(A,p) \in PSPACE$. In the same manner we show that $pad(A,p) \in PSPACE$ implies $A \in PSPACE$.
- (c) Suppose the contrary:

$$PSPACE = \bigcup_{k>1} DTIME \left(2^{k \cdot n}\right),$$

which also implies DTIME $(2^n) \subseteq PSPACE$. By the time-hierarchy theorem, we have

$$\bigcup_{k\geq 1}\mathsf{DTIME}\left(2^{k\cdot n}\right)\subsetneq\mathsf{DTIME}\left(2^{n^2}\right)\subsetneq\mathsf{DTIME}\left(2^{n^3}\right).$$

Choose an arbitrary language $A \in \mathsf{DTIME}\left(2^{n^3}\right) \setminus \mathsf{DTIME}\left(2^{n^2}\right)$, for which we have

$$A\notin \bigcup_{k\geq 1} \mathsf{DTIME}\left(2^{k\cdot n}\right) = \mathsf{PSPACE},$$

and let $p(n) = n^3 + 1$. Then $A \in \mathsf{DTIME}\left(2^{n^3}\right)$ implies $\mathsf{pad}(A,p) \in \mathsf{DTIME}\left(2^n\right)$ (part (a)), which implies $\mathsf{pad}(A,p) \in \mathsf{PSPACE}$ (because $\mathsf{DTIME}\left(2^n\right) \subseteq \mathsf{PSPACE}$), which then implies $A \in \mathsf{PSPACE}$ (part (b)). So we have $A \notin \mathsf{PSPACE}$ and $A \in \mathsf{PSPACE}$, which is a contradiction.

(d) We proceed exactly as in part (b). That is, if $A \in NP$, then there exists a NTM M_A deciding A and running in polynomial time. All the steps of the NTM $P_{M_A,p}$ require polynomial time and, because it decides pad(A,p), $pad(A,p) \in NP$. Similarly: $pad(A,p) \in NP \Rightarrow A \in NP$. Now when we have shown this, in the same way as in part (c) we get

$$NP \neq \bigcup_{k>1} DTIME \left(2^{k \cdot n}\right).$$

3. Prove that the following two statements are equivalent (i.e., that each one implies the other).

Statement 1: For every language $B \in P$ and every polynomial p, there exists a polynomial-time computable function $f: \Sigma^* \to \Sigma^*$ such that

$$\left(\exists y \in \Sigma^{p(|x|)}\right) \left[\langle x, y \rangle \in B\right] \quad \Leftrightarrow \quad \langle x, f(x) \rangle \in B$$

Statement 2: P = NP.

Solution. Assume Statement 1. Let A be an arbitrary language in NP, which means that there exist a polynomial p and a polynomial-time decidable language B such that

$$x \in A \quad \Leftrightarrow \quad \left(\exists y \in \Sigma^{p(|x|)}\right) \left[\langle x, y \rangle \in B\right].$$

By the equivalence above and Statement 1, there exist a polynomial-time computable function $f: \Sigma^* \to \Sigma^*$ such that

$$x \in A \quad \Leftrightarrow \quad \left(\exists y \in \Sigma^{p(|x|)}\right) \left[\langle x, y \rangle \in B\right] \quad \Leftrightarrow \quad \langle x, f(x) \rangle \in B.$$

Because $g(x) = \langle x, f(x) \rangle$ is a polynomial-time computable function, $A \leq_m^P B$, and $B \in P$ implies $A \in P$. Hence P = NP and Statement 2 holds.

Now, assume Statement 2, that is, P = NP. Let B be an arbitrary language P and p be an arbitrary polynomial. Consider the following NTM M. On input $\langle x, v \rangle \in \Sigma^* \times \Sigma^*$:

- 1. calculate p(|x|) and, if |v| > p(|x|), reject;
- 2. if there is $w \in \Sigma^{p(|x|)-|v|}$ (choose w nondeterministically) such that $\langle x, vw \rangle \in B$, then accept;
- 3. (otherwise) reject.

M runs in nondeterministic polynomial-time, therefore $L(M) \in NP = P$ and there exists a DTM M' which decides L(M) in deterministic polynomial-time. Now we define f to be a function computed by the following DTM H. On input $x \in \Sigma^*$:

- 1. if $\langle x, \varepsilon \rangle \notin L(M')$, return any $u \in \Sigma^{p(|x|)}$ (say, $u = 0^{p(|x|)}$);
- 2. initialize $y := \epsilon$;
- 3. while |y| < p(|x|) do:
 - (a) if $\langle x, y0 \rangle \in L(M')$, set y := y0;
 - (b) otherwise set y := y1;

4. return y.

Because for any string z of length polynomial in |x| we can check deterministically in polynomial time if $\langle x,z\rangle\in L(M')$, the algorithm above runs in polynomial time, and thus f is polynomial-time computable. If there is no $y\in \Sigma^{p(|x|)}$ such that $\langle x,y\rangle\in B$, then $\langle x,\varepsilon\rangle\notin L(M')$ and therefore $\langle x,f(x)\rangle\notin B$. While, if there is such y, then y gives us first such y lexicographically. That is, y constructs such y bit by bit, one bit per iteration of step 3, starting from the leftmost bit. Therefore Statement 1 holds.

4. [Bonus problem] Prove that if there exists a set $S \subseteq \mathbb{N}$ for which the language $\{1^n : n \in S\}$ is NP-complete, then P = NP. (Hint: thinking about the previous problem may help with this one.)

Solution. Suppose there exists a set S for which the language $L=\{1^n:n\in S\}$ is NP-complete. Then, there exists a polynomial-time mapping reduction f from SAT to L. Without loss of generality we can assume that $\mathrm{range}(f)\subseteq 1^*$ (either $S=\mathbb{N}$, which is a trivial case, or we can concatenate f with another polynomial-time mapping which maps all the strings in $\Sigma^*\setminus 1^*$ to a fixed $u\in 1^*\setminus L$). For any Boolean formula (in conjunctive normal form) ψ with at least one variable and $a\in\{0,1\}$ let ψ_a be a Boolean formula obtained from ψ by fixing the value of the first variable to be a. Also without loss of generality, for the encoding of ψ_a is at most as long as the encoding of ψ and this encoding can be obtained in polynomial-time (given the encoding of ψ and a).

We will use f to construct a deterministic polynomial-time algorithm solving SAT. Suppose that as an input we have a Boolean formula $\phi(x_1,\ldots,x_m)$. Consider a complete binary tree T of height m such that each its node is labeled by some Boolean formula ψ and the string $f(\psi) \in 1^*$ in the following way

- the root of T has the label $\langle \phi, f(\phi) \rangle$;
- if a node has label $\langle \text{true}, f(\text{true}) \rangle$ or $\langle \text{false}, f(\text{false}) \rangle$, then all its children has that same label;
- if $\langle \psi, f(\psi) \rangle$ is the label of a node such that ψ is a Boolean formula with at least one variable, then its children have labels $\langle \psi_0, f(\psi_0) \rangle$ and $\langle \psi_1, f(\psi_1) \rangle$.

The formula ϕ is satisfiable if and only if there is a node in T labeled by $\langle \psi, f(\psi) \rangle$ such that $f(\psi) \in L$, which is the case if and only if there is a node labeled by $\langle \text{true}, f(\text{true}) \rangle$.

The problem is that there are exponentially many nodes, and we cannot in polynomial-time traverse all of them, therefore we must somehow decide if T contains $\langle \psi, f(\psi) \rangle$ satisfying $f(\psi) \in L$ by traversing only polynomial number of nodes. Notice that for any node labeled by $\langle \psi, f(\psi) \rangle$, if $f(\psi) \notin L$, then there is no descendant of this node labeled by $\langle \xi, f(\xi) \rangle$ such that $f(\xi) \in L$.

This is where we take advantage of the fact that $\operatorname{range}(f) \subseteq 1^*$ and f is polynomial-time computable, which implies that there exists a polynomial p such that $|f(\phi)| \leq p(|\langle \phi \rangle|)$. Due to our assumption that "smaller Boolean formulas have shorter encodings", for every label $\langle \psi, f(\psi) \rangle$ of a node in T we have $f(\psi) \in \{1^n : n \in [0 ... p(|\langle \phi \rangle|)]\}$, which means that in our tree T we have at most $p(|\langle \phi \rangle|) + 1$ different values of the function f. Taking everything above into account, the algorithm M deciding SAT is as follows. On input $\langle \phi \rangle$:

- 1. initialize $A_L := \{f(\text{true})\}$ and $A_{\overline{L}} := \{f(\text{false})\}$ (the values of f known to be in L and \overline{L} , respectively);
- 2. run R on $\langle \phi \rangle$ and accept if and only if R accepts,

where we define R to be a recursive function (having access to the global variables A_L and $A_{\overline{L}}$) which on the encoding of a Boolean formula $\langle \psi \rangle$ as an input does the following:

```
if f(ψ) ∈ A<sub>L</sub>, accept;
if f(ψ) ∈ A<sub>L</sub>, reject;
run R on ⟨ψ<sub>0</sub>⟩:
    if R accepts ⟨ψ<sub>0</sub>⟩, then update A<sub>L</sub> := A<sub>L</sub> ∪ {f(ψ)} and accept;
if f(ψ) ∈ A<sub>L</sub>, reject;
run R on ⟨ψ<sub>1</sub>⟩:
    if R accepts ⟨ψ<sub>1</sub>⟩, then update A<sub>L</sub> := A<sub>L</sub> ∪ {f(ψ)} and accept;
    otherwise update A<sub>L</sub> := A<sub>L</sub> ∪ {f(ψ)} and reject.
```

It is quite easy to see that the algorithm M works correctly.

Regarding the running time, we can see that M does depth-first traversal of the tree T. If the algorithm has either just started or just updated either A_L or $A_{\overline{L}}$, then the following happens. It backs up the tree till it reaches a node $\langle \psi, f(\psi) \rangle$ such that $f(\psi) \notin A_L \cup A_{\overline{L}}$, and then proceeds to yet unvisited child of this node. One can see that from this point the algorithm will never make two consecutive moves up the tree T and, therefore, visit more than two nodes in any given depth of T before updating either A_L or $A_{\overline{L}}$. Since there are only polynomially many values the function f can take, the algorithm M will visit no more than polynomially many nodes of T, and run in polynomial time. Hence, M solves SAT, an NP-complete problem, in deterministic polynomial-time, and P = NP.

Alternate Solution. (Prepared by John Watrous.) I had in mind a slightly different solution to the bonus problem, based on the same basic idea as Ansis's solution but with different details. Suppose that p is a polynomial and $B \in P$. We will specify a polynomial-time computable function f such that

$$\left(\exists y \in \Sigma^{p(|x|)}\right) [\langle x, y \rangle \in B] \quad \Leftrightarrow \quad \langle x, f(x) \rangle \in B.$$

Given that p and B are chosen arbitrarily, this implies P = NP by problem 3.

Define a language

$$C = \{\langle x, u \rangle : \text{ there exists } v \in \Sigma^* \text{ such that } |uv| = p(|x|) \text{ and } \langle x, uv \rangle \in B\}$$

The language C is clearly in NP, so under the assumption in the problem statement we have that there exists a Karp reduction g from C to $\{1^n:n\in S\}$. We will use this reduction to "grow" a polynomial-size collection of possible candidate outputs f(x) from a given input x, and then select from this collection by testing membership in B. Consider the following DTM:

On input $x \in \Sigma^*$:

- 1. Set $Q_0 \leftarrow \{\varepsilon\}$.
- 2. For $k \leftarrow 1, \dots, p(|x|)$ do the following:
 - a. Set $Q_k \leftarrow \emptyset$.
 - b. For each string $u \in Q_{k-1}$ and each $b \in \Sigma$:

If
$$g(\langle x, ub \rangle) \in L(1^*)$$
 and $g(\langle x, ub \rangle) \neq g(\langle x, w \rangle)$ for every string $w \in Q_k$, then add ub to Q_k .

3. Search through the strings $y \in Q_{p(|x|)}$. If one is found such that $\langle x, y \rangle \in B$, then output y, and otherwise output $1^{p(|x|)}$.

Let $x \in \Sigma^*$ be a given input string, and suppose first that there exists a string $y \in \Sigma^{p(|x|)}$ such that $\langle x,y \rangle \in B$. We must argue that our function f satisfies $\langle x,f(x) \rangle \in B$. We claim that the following property holds at the end of each iteration of the loop in step 2:

If there exists a string $u \in Q_{k-1}$ such that $\langle x, u \rangle \in C$, then there must exist a string $w \in Q_k$ such that $\langle x, w \rangle \in C$.

The reason for this is simple: if $\langle x,u\rangle\in C$ and $u\in Q_{k-1}$, then it must hold that $\langle x,ub\rangle\in C$ for at least one choice of $b\in\Sigma$ (possibly both). If $\langle x,ub\rangle\in C$, then $g(\langle x,ub\rangle)\in\{1^n:n\in S\}\subseteq L(1^*)$. If we add ub to Q_k , then the claimed property is obviously satisfied. If we don't, then there must already exist a string $w\in Q_k$ such that $g(\langle x,w\rangle)=g(\langle x,ub\rangle)\in\{1^n:n\in S\}$ and therefore $\langle x,w\rangle\in C$. So, the property holds either way.

Now, given that the above property holds for each k, and given that the string $\varepsilon \in Q_0$ satisfies $\langle x, \varepsilon \rangle \in C$ (as we have assumed that there exists a string $y \in \Sigma^{p(|x|)}$ such that $\langle x, y \rangle \in B$), it follows that there must exist a string $y \in Q_{p(|x|)} \subseteq \Sigma^{p(|x|)}$ such that $\langle x, y \rangle \in C$, which is equivalent to $\langle x, y \rangle \in B$ when |y| = p(|x|). Searching through $Q_{p(|x|)}$ and testing each candidate will obviously find such a string as required.

If, on the other hand, it holds that there are no strings $y \in \Sigma^{p(|x|)}$ such that $\langle x, y \rangle \in B$, then our algorithm clearly does not find such a string: it then outputs $1^{p(|x|)}$ (or any other string of length p(|x|) would do), which satisfies $\langle x, 1^{p(|x|)} \rangle \notin B$ as required.

It remains to observe that our DTM runs in polynomial time. Given that g is polynomial-time computable, it must hold that $|g(\langle x,w\rangle)|$ is bounded by a polynomial for every choice of w with $|w| \leq p(|x|)$. There can therefore be at most polynomially many distinct outputs $g(\langle x,w\rangle) \in L(1^*)$, and therefore at most polynomially many strings in each set Q_k . This implies that our DTM runs in polynomial time as required.