

Ensuring Schedulability in the Weapon Target Assignment Problem

Debbie Pederson June 12, 2008

76th MORS Symposium WG-4, Air and Missile Defense

A Systems Engineering
Company Providing
Analytical Solutions To
Complex Problems

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 JUN 2008		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER			
Ensuring Schedulability in the Weapon Target Assignment Problem				5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER		
		5e. TASK NUMBER				
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Decisive Analytics				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	OTES 27. Military Operat ne 10-12, 2008, The				New London,	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 33	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

- The Weapon-Target Assignment Problem
- Deployment Related Issues
- Separability
- Conclusion

Weapon Target Assignment (WTA)

Given a set of weapon batteries and a set of incoming targets, what is the assignment of interceptors to targets that will maximize the value of targets killed?

- Difficult problem to solve optimally for large numbers of weapons/targets.
- May need to be re-solved repeatedly as battlespace evolves.
- Need good, quick solution method

Previous Work

- Maximum Marginal Return (denBroeder et al, 1958)
 - Greedy algorithm makes assignments to maximize marginal contribution
 - Optimal in some instances
- Network Flow (Castanon et al, 1987)
- Genetic Algorithms (Grant et al, 1993)

These approaches will solve the allocation problem, but do not consider the schedulability of the results

The Weapon-Target Assignment Problem

- Deployment Related Issues
- Separability
- Conclusion

Schedulability

- Individual weapon site's scheduling system could invalidate allocation
 - Default schedule might conflict with other site's default schedule
 - Allocated more than are launchable
 - Required time between intercepts

- Benefits from coordination
 - Inter-site Shoot-Look-Shoot

Scheduling Constraints

- Inter-site coordination introduces a different set of problems
 - Inter-intercept requirements
 - Communication of kill assessment
- Other constraints include
 - Inter-launch requirements
 - Maximum number of interceptors in air at a time
 - Maximum number of distinct threats targeted

Weapon Allocation + Scheduling

Maximize expected value of threats intercepted

 $\sum_{j=1}^{n} V_{j} \left[1 - \prod_{i=1}^{m} \left(1 - p_{ij} \right)^{x_{ij}} \right]$

- Inventory
- Min/max allocation limits
- Inter-launch timing
- Inter-intercept timing
- Max in the air at a time
- Max # distinct threats engaged

- The Weapon-Target Assignment Problem
- Deployment Related Issues

- Separability
- Conclusion

Solution Approach

- Goal: Compute a schedulable allocation of interceptors to threats within a relatively short amount of time
- Adding scheduling to the WTA problem drastically expands the problem size
- Propose problem separation
 - Solve WTA
 - Attempt to schedule this allocation
 - If not all scheduled, constrain the WTA problem and repeat
- WTA/Scheduling share objective function; both working toward same goal

Benefits

- Separability makes it possible to solve allocation and scheduling problem separately in a reasonable time
 - Implemented in Matlab, meets given run time specification
- Could implement different (related) goals for allocation/scheduling portions. For example:
 - Allocation module uses tactics (coordinated interceptor plans from multiple sites)
 - Scheduling is done interceptor by interceptor, addressing highest valued threat first
- Modular algorithm improvements
 - Replace Allocation or Scheduling section without affecting the other

Modular Development Example

- Problem: Operators want to be able to ensure all threats are engaged
- Previously had been solving allocation problem with tactics-based MMR, which tended to lead to overengagement of high valued threats
- Solution: Implement two-pass allocation algorithm
 - First pass: Constraint programming inspired solution ensures operator's goal is met
 - Second pass: MMR-like improvement

- The Weapon-Target Assignment Problem
- Deployment Related Issues
- Separability

Conclusion

Improvements & Future Work

Allocation

 Incorporate MHMMR to improve responsiveness to changing mission value functions

Scheduling

- Develop a less rudimentary heuristic
- Incorporate time-varying success probabilities

Conclusion

- Classic WTA solutions are not concerned with the schedulability of the allocations
- Any deployed coordination system must take the scheduling of interceptors into account
- To maintain reasonable run-time, we have implemented a allocate/schedule cycle. Each part solves a small problem quickly
- This also provides a good basis for quickly incorporating improved algorithms

Backup

References

- denBroeder, G.G., Ellison, R.E. and Emerling, L., "On Optimum Target Assignments", Operations Research, Vol.7, pp. 322-326, 1959.
- Lloyd, S.P. and Witsenhausen, H.S., "Weapons Allocation is NP-Complete", Proceedings of 1986 Summer Conference on Simulation, Reno, Nevada, July 1986.

Maximum Marginal Return

- Greedy heuristic for solving the WTA problem
- MMR procedure
 - Calculate the marginal value that would result for all possible interceptor/target pairings
 - Find the maximum contribution, assign that interceptor to the target
 - Recalculate the marginal values, repeat until all available interceptors have been assigned

Graphical example assigning two interceptors:

Maximum Marginal Return

- Greedy heuristic for solving the WTA problem
- MMR procedure
 - Calculate the marginal value that would result for all possible interceptor/target pairings
 - Find the maximum contribution, assign that interceptor to the target
 - Recalculate the marginal values, repeat until all available interceptors have been assigned

Graphical example assigning two interceptors:

Maximum Marginal Return

- Greedy heuristic for solving the WTA problem
- MMR procedure
 - Calculate the marginal value that would result for all possible interceptor/target pairings
 - Find the maximum contribution, assign that interceptor to the target
 - Recalculate the marginal values, repeat until all available interceptors have been assigned

Graphical example assigning two interceptors:

Assign the second interceptor

Adapting MMR

Pros

- Very fast: Run-time proportional to inventory
- Good solution: Guaranteed optimal for target-based mission value if kill probabilities are equal between sites

Cons

- Limited scope: Unable to solve asset-based WTA because only considers single interceptor assignments
- Not optimal in general: Susceptible to localized maxima

Goal: Adapt MMR to make a more flexible algorithm to use when final form of mission value is uncertain.

Maximum Marginal Return (MMR)

- Multi-Hypothesis MMR
- Results
- Conclusion

Multi-Hypothesis MMR

Goals

- Better -- Improve on MMR solution
- Fast -- Maintain run-time
- Flexible -- applicable to more possible Mission Value functions
- Quick development of algorithm
- Enumeration provides optimal solution, but quickly becomes intractable as # targets or inventory grows
- Other methods may give optimal solution for particular Mission Value functions

MHMMR combines search properties of Enumeration and speed of MMR to provide good, fast solution for variety of objectives

MHMMR - Branch

Procedure for Multi-Hypothesis MMR

MHMMR

- Marginal mission value arrays are calculated for each candidate allocation
- Branch: create b
 hypotheses for each
 candidate allocation

MMR

- One Marginal Mission Value array is calculated
- Assign interceptor to site/ threat combo that maximizes marginal MV

MHMMR - Prune

MHMMR

 Prune: maintain the p best hypotheses as candidate allocations

MMR

- One Marginal Mission Value array is calculated
- Assign interceptor to site/ threat combo that maximizes marginal MV

MHMMR – Branch and Prune

MHMMR – Conclusions

Implementation details

- Branching needs to be independent of specific mission value function used. Maintain modularity.
- Pruning needs to give distinct candidate allocations. If same hypothesis arises from two different candidates, include it at most once in next set of candidates.

Branch/Prune parameters

- Since all marginal mission values are calculated to determine branching, low additional computation cost required to maintain large number of branches.
- Using only 1 branch reduces MHMMR to classic MMR. Since MHMMR contains MMR, MHMMR is guaranteed to outperform (or at least equal) MMR.

Quick to implement

- Maximum Marginal Return (MMR)
- Multi-Hypothesis MMR

- Results
- Conclusion

Target-Based Mission Value

 Goal: Maximize the total expected value of targets (incoming threats) destroyed

- 3 targets with values 10, 10 and 40
- 2 sites, both with 3 interceptors.
- pK = [.99 .9 .5 .5 .01 .4]

	MMR Results	MHMMR Results		
Allocation	1 0 2 0 0 3	1 1 1 0 0 3		
Mission Value	47.74	54.58 (optimal!)		
Run-time	0.01 sec	0.015 sec		

Mission Value Function

$$\sum_{j=1}^{n} V_{j} \left[1 - \prod_{i=1}^{m} \left(1 - p_{ij} \right)^{x_{ij}} \right]$$

Asset-Based Mission Value

Goal: Maximize the total expected value of assets

protected

3 targets with values 10, 10 and 40

2 sites, both with 3 interceptors.

• pK = [.99 .9 .5 .5 .01 .4]

	MMR Results	MHMMR Results		
Allocation	0 0 3 0 3	1 1 0 0 3		
Mission Value	38.92	44.59 (optimal!)		
Run-time	0.01 sec	0.05 sec		

MHMMR Performance

- Adjusting branching and pruning parameters changes behavior:
 - If one branch is kept and one branch is created, MHMMR is equivalent to MMR
 - If no branches are pruned and all branches are created, MHMMR is equiv. to enumeration

 Increasing the number of branches may increase expected mission value

- Maximum Marginal Return (MMR)
- Multi-Hypothesis MMR
- Results

Conclusion

Conclusions

- MHMMR is a fast algorithm that is appropriate for solving the WTA problem for a wide variety of MV functions
 - Demonstrated optimal performance on specific scenario with targetbased and asset-based MV.
- It may be possible to develop better approaches for any particular MV function, but MHMMR provides a quick check that is better than the classic MMR
 - Classic MMR is unable to solve asset-based MV. MHMMR could with no modifications to underlying algorithm
- Does not require much labor to implement; low risk development