

Page 1 (40)

RADIO TEST REPORT

No. 1713846STO-004, Ed. 2

RF Performance

EQUIPMENT UNDER TEST

Equipment:

Remote head

Type/Model:

DDU-700LC

Manufacturer:

Deltanode Solutions AB

Tested by request of:

Deltanode Solutions AB

SUMMARY

Referring to the emission limits, and the operating mode during the tests specified in this report, the equipment complies with the requirements according to the following standards:

47 CFR Part 2, subpart J, 47 CFR Part 27 Subpart C

RSS-131 Issue 3, RSS-130 Issue 1,

RSS-GEN Issue 4 (2014): General requirements of compliance of radio apparatus (2014).

For details, see clause 2 - 4.

Date of issue: 2018-05-22

Tested by:

Approved by:

Stefan Andersson

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marker of the saled or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Revision History

Edition	Date	Description	Changes
1	2018-01-05	First release	
2	2018-05-22	2 ^{na} release	Change of model name and error corrections

CONTENTS

		Page
1	Client Information	4
2	Equipment under test (EUT)	5 5
3	Test Specifications 3.1 Standards 3.2 Additions, deviations and exclusions from standards and accreditation 3.3 Test site	6 16 6
4	Test Summary	7
5	AGC treshold, RF output power and linearity. 5.1 Requirement. 5.2 Test set-up. 5.3 Test data. 5.4 Test equipment.	8 8 8
6	Occupied bandwidth input vs output comparison. 6.1 Requirement. 6.2 Test set-up. 6.3 Test data. 6.4 Test equipment.	12 12 12
7	Passband gain and bandwidth	17 17
8	Band edge emission and Intermodulation 8.1 Requirement 8.2 Test set-up 8.3 Test data 8.4 Test equipment	19 19 19
9	Conducted spurious emission from antenna port	22 23 23
10	Radiated spurious emission 10.1 Test set-up 10.2 Test conditions 10.3 Requirement 10.4 Test results 10.5 Test equipment	35 35 36 37
11	Measurement uncertainty	40
12	Test set up and EUT photos	40

Page 4 (40)

1 CLIENT INFORMATION

The EUT has been tested by request of

Company Deltanode Solutions AB

Hammarby fabriksväg 61 6tr

120 33 Stockholm

Sweden

Name of contact Daniel Kerek

2 EQUIPMENT UNDER TEST (EUT)

2.1 Identification of the EUT

Equipment:	Remote head	
Tested Model:	DDU-700LC	
Brand name:	Deltanode	
Serial number:	7002100	
Manufacturer:	Deltanode Solutions AB	
Transmitter frequency range:	746 - 756 MHz	
Receiver frequency range:	777 – 787 MHz	
Frequency agile or hopping:	Yes	⊠ No
Antenna:	☐ Internal antenna	
Antenna connector:	☐ None, internal antenna	⊠ Yes, N
Rating RF output power:	+46 dBm rms	
Rated gain	+68 dB	
Type of modulation:	Tested with GMSK, QPSK	
Temperature range:	☐ Category I (General): -20°C t☐ Category II (Portable equipm☐ Category III (Equipment for n☐ Other: <-30°C to +55°C	
Power rating:	120 V, 60 Hz	
Transmitter standby mode supported:	⊠ Yes	□ No

2.2 Additional information about the EUT

The EUT consists of the following hardware and firmware:

Unit	Туре
РА Туре	14:01 Multisystem DAPD 850MHz band ver. 0.0 prod. 2015W45 SN:0001-00112
PA HW-version	KS50.1 P1A 2015W45 LH00112
PA Bootloader	BF002007 0.0.0p Boot DAPD 2015-11-10 17:29:27
PA Application	AF002009 0.0.0p DAPD 2015-11-16 20:11:55
PA Loaded ver	AF002009 0.0.0p DAPD 2015-11-16 20:11:55
Available PA upgrade	AF002009 0.0.1 DAPD 2016-11-07 16:17:46
Linearizer version	HW 94.4.2, FW 4.1.03.08, band 04(Low)
Available Linearizer upgrade	Exists, 57343 bytes, CRC 8A5Bh, LRC 00h, key 5394h
VGA Type	82:09 Multisystem VGA2 700MHz band ver. 0.0 prod. 2016W47
	SN:0002-00118
VGA HW-version	KS55.30 P1A 2016W47 DH00118
VGA Bootloader	BF002008 0.0.0 Boot VGA2 2016-04-20 14:58:25
VGA Application	AF002011 0.0.0 VGA2 2016-09-29 10:19:30
VGA Loaded ver	AF002011 0.0.0 VGA2 2016-09-29 10:19:30
Available VGA upgrade	AF002011 0.0.0 VGA2 2016-09-29 10:19:30

2.3 Peripheral equipment

Peripheral equipment is equipment needed for correct operation of the EUT, but not included as part of the testing and evaluation of the EUT.

Equipment	Type / Model	Manufacturer
Fiber Optical Interface	FOI	Deltanode Solutions AB
Ethernet gateway		Deltanode Solutions AB
PC		Dell

2.4 Test signals

Continuous transmission on full power As requested in KDB 935210 D05 V01r01

Narrow band signal: GSM with GMSK modulation Wide band signals : AWGN 4.11 MHz 99% OBW

3 TEST SPECIFICATIONS

3.1 Standards

Requirements: 47 CFR Part 2, subpart J, Part 27 subpart C RSS-131 Issue 3, RSS-130 Issue 1

Test methods in:

KDB 935210 D05 Industrial booster Basic measurement

ANSI C63.26-2015 American National Standard for Compliance Testing of Transmitters Used in License Radio Services

3.2 Additions, deviations and exclusions from standards and accreditation

RSS-131 Issue 3 and RSS-130 Issue 1 are not within Intertek Semko's accreditation scope. No other additions, deviations or exclusions have been made from standards and accreditation.

3.3 Test site

Measurements were performed at:

Intertek Semko AB. Torshamnsgatan 43, P.O. Box 1103 SE-164 22 Kista

Intertek Semko AB is a FCC listed test site with site registration number 90913
Intertek Semko AB is a FCC accredited conformity assessment body with designation number SE0002
Intertek Semko AB is an Industry Canada listed test facility with IC assigned code 2042G

Measurement chambers

Measurement Chamber	Type of chamber	IC Site filing #
BJÖRK HALLEN	Semi-anechoic 3 m	2042G-1

3.4 Mode of operation during the test

The EUT was tested with 120 V, 60 Hz.

4 TEST SUMMARY

The results in this report apply only to sample tested:

Standard	Description	Result
	Emission	
§2.1046 §27.50	RF output power, AGC threshold, linearity and amplifier gain	PASS
RSS-GEN 6.12 RSS-131 5.2.3 RSS-130 4.4	The EUT complies with the limits.	
§2.1047	Modulation characteristics input versus output signal comparison	PASS
RSS-131 5.2.2 RSS-130 4.1	The EUT complies with the limits.	
§2.1049	Occupied bandwidth Out of band rejection	PASS
RSS-GEN 6.6 RSS-131 5.2.1	The EUT complies with the limits.	
§2.1051 §27.53	Spurious emissions, Intermodulation and band edge measurements at antenna terminals	PASS
RSS-GEN 6.13 RSS-130 4.6	The EUT complies with the limits.	
§2.1053 §27.53	Field strength of spurious radiation	PASS
RSS-GEN 6.13 RSS-130 4.6	The EUT complies with the limits.	
§2.1055 §27.54	Frequency stability	Not applicable
RSS-GEN 6.11 RSS-131 5.2.4 RSS-130 4.3	The EUT does not have input signal processing capability.	

5 AGC TRESHOLD, RF OUTPUT POWER AND LINEARITY

Date of test:	2017-11-02	Test location:	EMC Center
EUT Serial:	7002100	Ambient temp. °C	21°C
Tested by:	MTV	Relative humidity	43 %
Test result:	Pass	Margin:	19.8 dB

5.1 Requirement

Reference: CFR 47 §2.1049, §27.50(b), KDB 935210 D05 clauses 3.2 and 3.5

RSS-131 Clauses 5.2.3 and 6.2, RSS-130 clause 4.4

5.2 Test set-up

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to signal analyser via rf cables and a directional coupler. A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

The output power was measured with EUT amplification set to 67 dB and input signal was increased until Automatic Gain Control threshold was reached but did not affect the gain. The EUT output response was monitored when input signal level was increased and the response is linear until AGC threshold is reached.

The test was then repeated with 3 dB higher input signal level so that AGC limited the gain.

The peak power was measured using signal analyser's CCDF measurement function. The value that is exceeded less than 0.1% time is reported as a peak to average ratio.

5.3 Test data

AWS GSM

7.117.0 CCINI					
Frequency	Average power	Automatic level control	Limit EIRP	Peak to avg ratio	Peak to avg ratio limit
MHz	dBm		dBm / MHz	dB	dB
750.43	46.2	off	62	0.6	13
750.43	46.1	on	62	0.6	13

AWS WCDMA

7.000 WODIOIA					
Frequency	Average power	Automatic level control	Limit EIRP	Peak to avg ratio	Peak to avg ratio limit
MHz	dBm		dBm / MHz	dB	dB
750.43	46.1	off	62	6.8	13
750.43	46.2	on	62	6.9	13

Date: 2.NOV.2017 12:55:47

GSM AGC off

Date: 2.NOV.2017 12:56:54

GSM AGC on

Date: 2.NOV.2017 12:51:22

AWGN AGC off

Date: 2.NOV.2017 12:52:21

AWGN AGC on

5.4 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Spectrum analyser	Rohde & Schwarz	FSV	32594	7/2018
Rf-attenuator	Narda	776B-10	8337	7/2018
Rf-attenuator	Huber Suhner	5920_N-50- 010/199_N	32697	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39076	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39077	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39079	7/2018
Signal generator	Rohde & Schwarz	SMIQ03B	12792	7/2018
Signal generator	Rohde & Schwarz	SMBV100	32593	7/2018

6 OCCUPIED BANDWIDTH INPUT VS OUTPUT COMPARISON

Date of test:	2017-11-30	Test location:	EMC Center
EUT Serial:	7002100	Ambient temp. °C	21 °C
Tested by:	MTV	Relative humidity	37 %
Test result:	Pass	Margin:	

6.1 Requirement

KDB 935219 D05:

The spectral shape of the rf-output shall look similar to input for all modulations.

RSS-131 5.2.2:

The spectral growth of the 26 dB bandwidth of the output signal shall be less than 5% of the input signal spectrum.

6.2 Test set-up

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to signal analyser via rf cables and a directional coupler.

A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

The 99% occupied bandwidth was measured using spectrum analyser's occupied bandwidth function. The EUT was set to use 68 dB gain and input signal was adjusted so that Automatic Gain Control did not yet limit the output power.

The test was then repeated with higher input signal level so that AGC limited the output power. Finally occupied bandwidth of signal generator was measured and input signal output was compared to EUT outputs.

6.3 Test data

Frequency MHz	Signal type	26 dB Occupied band width Input (kHz)	26 dB Occupied band width output (kHz)	26 dB Occupied band width output with AGC (kHz)	Difference %
750.43	GSM	318.269	315.384	321.154	0.91
750.43	WCDMA	4554	4543	4521	0.00

Date: 30.NOV.2017 12:28:48

Occupied bandwidth GSM input

Date: 30.NOV.2017 11:02:46

Occupied bandwidth GSM agc off

Date: 30.NOV.2017 10:04:13

Occupied bandwidth GSM agc on

Date: 30.NOV.2017 12:16:36

Occupied bandwidth WCDMA input

Date: 30.NOV.2017 12:03:04

Occupied bandwidth WCDMA agc off

Date: 30.NOV.2017 12:12:29

Occupied bandwidth WCDMA agc on

6.4 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Spectrum analyser	Rohde & Schwarz	ESU40	13178	7/2018
Rf-attenuator	Narda	776B-10	8337	
Rf-attenuator	Huber Suhner	5920_N-50- 010/199_N	32697	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39076	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39077	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39079	7/2018
Signal generator	Rohde & Schwarz	SMIQ03B	12792	7/2018
Signal generator	Rohde & Schwarz	SMBV100	32593	7/2018

7 PASSBAND GAIN AND BANDWIDTH

Date of test:	11/2/2017	Test location:	EMC Center
EUT Serial:	7002100	Ambient temp. °C	21 °C
Tested by:	MTV	Relative humidity	37 %
Test result:	Pass	Margin:	-

7.1 Requirement

RSS-131 clause 6.1

The passband gain shall not exceed the nominal gain by more than 1.0 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer. Outside of the 20 dB bandwidth, the gain shall not exceed the gain at the 20 dB point.

7.2 Test set-up

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to spectrum analyser via rf cables and directional coupler.

The power amplifier gain was set to 68 dB

A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

7.3 Test data

Frequency MHz	Signal type	Occupied 20 dB band width (MHz)
746.71	CW	21.1

The pass band maximum gain is measured from FOI unit's rf input to EUT output. This is not same as EUT's power amplifier gain.

Frequency MHz	Gen. out (dBm)	Pathloss (dB)	Measured output (dBm)	Gain dB
750.4	-28.8	3	46.2	78.0

Date: 2.NOV.2017 12:40:25

Passband bandwidth

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Spectrum analyser	Rohde & Schwarz	FSV	32594	7/2018
Rf-attenuator	Narda	776B-10	8337	7/2018
Rf-attenuator	Huber Suhner	5920_N-50- 010/199_N	32697	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39076	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39077	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39079	7/2018
Signal generator	Rohde & Schwarz	SMIQ03B	12792	7/2018
Signal generator	Rohde & Schwarz	SMBV100	32593	7/2018

8 BAND EDGE EMISSION AND INTERMODULATION

Date of test:	2017-12-05	Test location:	Wireless centre
EUT Serial:	7002100	Ambient temp.	22 °C
Tested by:	MTV	Relative humidity	38 %
Test result:	Pass	Margin:	10.5 dB

8.1 Requirement

In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.

After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.

8.2 Test set-up

2 Signal generators were connected to power combiner who was then connected to the FOI unit. Signals were placed on two lowest adjacent channels of the band. The test was repeated on 2 highest channels.

8.3 Test data

Date: 5.DEC.2017 09:33:23

2 GSM signal on lower band edge 744 - 746 MHz AGC off

Date: 5.DEC.2017 09:34:15

2 GSM signal on lower band edge 744 - 746 MHz AGC on

Date: 5.DEC.2017 09:36:13

2 GSM signal on upper band edge 756 - 760 MHz AGC off

Date: 5.DEC.2017 09:35:22

2 GSM signal on upper band edge 756 – 760 MHz AGC on

8.4 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Spectrum analyser	Rohde & Schwarz	FSV	32594	7/2018
Rf-attenuator	Narda	776B-10	8337	7/2018
Rf-attenuator	Huber Suhner	5920_N-50- 010/199_N	32697	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39076	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39077	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39079	7/2018
Signal generator	Rohde & Schwarz	SMIQ03B	12792	7/2018
Signal generator	Rohde & Schwarz	SMBV100	32593	7/2018

9 CONDUCTED SPURIOUS EMISSION FROM ANTENNA PORT

Date of test:	2017-11-30	Test location:	Wireless centre
EUT Serial:	7002100	Ambient temp.	21°C
Tested by:	MTV	Relative humidity	37 %
Test result:	Pass	Margin:	0.6 dB

9.1 Requirement

§27.53 (c)

For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

Compliance is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

§27.53 (f)

For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

RSS-130 clause 4.6

- 4.6.1 The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 \log_{10} p (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.
- 4.6.2 In addition to the limit outlined in Section 4.6.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:
- (a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
- (i) 76 + 10 log₁₀ p (watts), dB, for base and fixed equipment, and
- (ii) $65 + 10 \log_{10} p$ (watts), dB, for mobile and portable equipment.
- (b) The e.i.r.p. in the band 1559-1610 MHz shall not exceed −70 dBW/MHz for wideband signal and −80 dBW for discrete emission with bandwidth less than 700 Hz.

9.2 Test set-up

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was connected to spectrum analyser via rf cables and band reject or high pass filter.

A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

9.3 Test data

Date: 30.NOV.2017 13:26:56

9 kHz - 746 MHz GSM low channel

Date: 30.NOV.2017 15:21:44

9 kHz - 746 MHz GSM high channel

Date: 30.NOV.2017 13:36:54

756 - 1000 MHz GSM low channel

Date: 30.NOV.2017 15:23:31

756 - 1000 MHz GSM high channel

Date: 30.NOV.2017 13:43:27

1 – 7.6 GHz GSM low channel

Date: 30.NOV.2017 15:25:11

1 – 7.6 GHz GSM high channel

Date: 30.NOV.2017 13:45:27

1559 - 1610 MHz GSM low channel

Date: 30.NOV.2017 15:26:54

1559 - 1610 MHz GSM high channel

Date: 30.NOV.2017 13:59:48

9 kHz - 740 MHz WCDMA low channel

Date: 30.NOV.2017 14:01:33

740 - 746 MHz WCDMA low channel

Date: 30.NOV.2017 14:03:12

745.9 - 746 MHz WCDMA low channel

Date: 30.NOV.2017 14:06:46

756 - 1000 MHz WCDMA low channel

Date: 30.NOV.2017 14:48:36

763 - 775 MHz WCDMA low channel

Date: 30.NOV.2017 14:14:48

1 – 7.6 GHz WCDMA low channel

Date: 30.NOV.2017 14:17:47

1559 - 1610 MHz WCDMA low channel

Date: 30.NOV.2017 14:29:07

9 kHz – 746 MHz WCDMA high channel

Date: 30.NOV.2017 14:44:00

756 - 756.1 MHz WCDMA high channel

Date: 30.NOV.2017 14:46:45

756.1 – 1000 MHz WCDMA high channel

Date: 30.NOV.2017 14:48:36

763 - 775 MHz WCDMA high channel

Date: 30.NOV.2017 14:50:25

1 – 7.6 GHz WCDMA high channel

Date: 30.NOV.2017 14:52:31

1559 – 1610 MHz WCDMA high channel

9.4 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Spectrum analyser	Rohde & Schwarz	ESU40	13178	7/2018
Rf-attenuator	Narda	776B-10	8337	7/2018
Rf-attenuator	Huber Suhner	5920_N-50-	32697	7/2018
		010/199_N		
Rf cable	Huber Suhner	Sucoflex 104PE	39076	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39077	7/2018
Rf cable	Huber Suhner	Sucoflex 104PE	39079	7/2018
Signal generator	Rohde & Schwarz	SMIQ03B	12792	7/2018
Signal generator	Rohde & Schwarz	SMBV100	32593	7/2018

10 RADIATED SPURIOUS EMISSION

Date of test:	2017-11-06	Test location:	Björk hallen
EUT Serial:	7002100	Ambient temp.	23°C
Tested by:	MTV	Relative humidity	38 %
Test result:	Pass	Margin:	> 20 dB

10.1 Test set-up

The test method is in accordance with ANSI C63.26.

The EUT was placed on an insulating support above the turntable which is part of the reference ground plane.

Overview sweeps were performed with the measurement receiver in max-hold mode and the peak detector activated. Above 1 GHz both peak and average detector is activated.

Signal generator was connected to the FOI unit which converted rf signal to optical signal. The optical signal was then fed via fibre to the EUT.

The EUT's output port was terminated to the 50 Ω terminator.

A PC was connected to FOI via Ethernet hub. The PC was then used to control the EUT.

10.2 Test conditions

Test set-up:

Test receiver set-up:

Preview test:

Peak, RBW 120 kHz, VBW 1 MHz

Final test:

Quasi-Peak, RBW 120 kHz, VBW 1 MHz

Measuring distance: 3 m

EUT height above ground plane: 0.8 m

Measuring angle: 0 – 359 □

Antenna

Height above ground plane: 1-4 m Polarisation: Vertical and Horizontal

Type: Bilog

Test set-up: 1 GHz – 22 GHz

Test receiver set-up:

Preview test: Peak, RBW 1 MHz, VBW 3 MHz

Average, RBW 1 MHz, VBW 3 MHz

Final test: Average, RBW 1 MHz, VBW 3 MHz

Peak, RBW 1 MHz, VBW 3 MHz

30 MHz to 1000 MHz

Measuring distance: 3 m

EUT height above ground plane: 1.5 m

Measuring angle: 0-359

Antenna

Height above ground plane: 1-4 m Polarisation: Vertical and Horizontal

Type: Horn

Antenna tilt: Activated

10.3 Requirement

§27.53 (c)

For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

Compliance is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

§27.53 (f)

For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

RSS-130 clause 4.6

- 4.6.1 The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 \log_{10} p (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.
- 4.6.2 In addition to the limit outlined in Section 4.6.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:
- (a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
- (i) 76 + 10 log₁₀ p (watts), dB, for base and fixed equipment, and
- (ii) 65 + 10 log₁₀ p (watts), dB, for mobile and portable equipment.
- (b) The e.i.r.p. in the band 1559-1610 MHz shall not exceed −70 dBW/MHz for wideband signal and −80 dBW for discrete emission with bandwidth less than 700 Hz.

The frequency range to be inspected is up to the tenth harmonics of the highest fundamental frequency according to 47 CFR 2.1057 and RSS-Gen Section 6.13. The field strength limit is calculated using the plane wave relation. $GP/4\pi R^2 = E^2/120\pi$

G: antenna gain P: power (W)

R: measurement distance (m)

10.4 Test results

30 MHz - 1000 MHz low channel

Full Spectrum

30 MHz - 1000 MHz high channel

1 - 8 GHz low channel

Full Spectrum

1 – 8 GHz high channel

10.5 Test equipment

Equipment type	Manufacturer	Model	Inv. No.	Cal. due date
Measurement receiver	Rohde & Schwarz	ESI 26	32291	7/2018
UltraLog antenna	Rohde & Schwarz	HL562	30711	12/2018
Horn antenna	Rohde & Schwarz	HF907	32307	7/2018
Pre amplifier	Rohde & Schwarz	TS-pre1	32306	7/2018

11 MEASUREMENT UNCERTAINTY

Measurement uncertainty for radiated disturbance

Uncertainty for the frequency range 0.09 to 30 MHz at 10 m	± 3.2 dB
Uncertainty for the frequency range 30 to 1000 MHz at 3 m	± 5.1 dB
Uncertainty for the frequency range 30 to 1000 MHz at 10 m	± 5.0 dB
Uncertainty for the frequency range 1.0 to 18 GHz at 3 m	± 4.7 dB
Uncertainty for the frequency range 18 to 26 GHz at 3 m	± 4.8 dB
Uncertainty for the frequency range 26 to 40 GHz at 3 m	± 5.7 dB

Measurement uncertainty is calculated in accordance with CISPR 16-4-2:2011.

The measurement uncertainty is given with a confidence of 95 %.

Measurement uncertainty for antenna port measurements

Uncertainty for conducted spurious emission \pm 2,5 dB Uncertainty for carrier power \pm 1,3 dB

Frequency error

Frequency to be measured	Expanded (k=1,96)	Expanded (k=1,96)
[MHz]	Measurement Uncertainty	Measurement Uncertainty
	[Hz]	[%]
25	0,34	1,36 x 10 ⁻⁸
433	3,40	7,90 x 10 ⁻⁹
868	3,40	3,91 x 10 ⁻⁹
1900	33,95	1,79 x 10 ⁻⁸
2483,5	33,96	1,37 x 10 ⁻⁸
5850	34,00	5,81 x 10 ⁻⁹

Measurement uncertainty is calculated in accordance with ETSI TS 100028. The measurement uncertainty is given with a confidence of 95 %.

12 TEST SET UP AND EUT PHOTOS

EUT photos are in separate document 1713846STO-001 Annex 1. Test set up photos are in separate document 1718386STO-01 Annex 2.