Índice general

1.	Divisibilidad en los números enteros	1
	1.1. División entera. Ideales	1

Capítulo 1

Divisibilidad en los números enteros

1.1. División entera. Ideales

Designaremos por \mathbb{Z} el conjunto de los números enteros. La teoría de la divisibilidad en \mathbb{Z} es consecuencia de la siguiente importante propiedad.

Teorema 1.1 (de la división entera). Dados $a, b \in \mathbb{Z}$, $b \neq 0$, existen dos únicos números enteros q y r que cumplen a = bq + r, $0 \leq r < |b|$. Estos números q y r se llaman el cociente y el resto de la división entera de a por b.

Ejemplo 1.1.

$$-8 = 3 \cdot (-3) + 1$$
, $3 = (-8) \cdot 0 + 3$

Si el resto de la división entera de a por b es 0, se dice que a es un m'ultiplo de b (escribiremos a=b), que b es un divisor de a (escribiremos $b\mid a$), o que a es divisible por b. Indicaremos por (b) el conjunto de los m\'ultiplos de b. Observemos que (b) cumple las dos propiedades siguientes:

- es cerrado para la suma; es decir, $a, c \in (b) \Rightarrow a + c \in (b)$.
- si $a \in (b)$ y c es cualquier entero, entonces $ac \in (b)$.

Proposición 1.1. Si el subconjunto $I \subset \mathbb{Z}$ cumple

- (1) $a, b \in I \Rightarrow a + b \in I$
- (2) $a \in I, c \in \mathbb{Z} \Rightarrow ac \in I$

entonces existe un $b \in \mathbb{Z}$ tal que I = (b).

Demostración. Si $I = \{0\}$, entonces I = (0). Si I contiene un elemento no nulo a, también contiene $-a = a \cdot (-1)$, y o bien a o bien -a es positivo. Por tanto, I contiene enteros positivos. Sea b el menor de los enteros positivos contenidos en I. Por (2), I contiene todos los múltiplos de b: $(b) \subset I$. Vamos a ver que $I \subset (b)$, y por tanto, I = (b). En efecto, dado $a \in I$ cualquiera, por el teorema 1.1,

$$a = bq + r$$
, $0 \le r < |b| = b$

Por (1) y (2), $r = a - bq = a + b(-q) \in I$; pero $0 \le r < |b| = b$ y b es el menor de los enteros positivos de I; así pues, r = 0, y por tanto $a = bq \in (b)$.

Un subconjunto I que cumple las condiciones (1) y (2) de la proposición 1.1 se llama un *ideal* de \mathbb{Z} . El elemento b tal que I = (b) se denomina *base* del ideal.

Ejercicio 1.1. Demostrar que,

$$(b) = (c)$$
 si y sólo si $c = \pm b$

Obsérvese que $(a) \subset (b)$ si y sólo si $b \mid a$. Las cuestiones de divisibilidad equivalen, por tanto, a cuestiones sobre inclusiones entre ideales.