1. Was ist eine Metrik? Gib drei verschiedene Beispiele!

Answer: Consider E arbitrary set. The function $d: E \times E \to \mathbb{R}$ is a metric, if satisfies the following conditions:

- $\forall x, y \in E : d(x, y) = 0 \Leftrightarrow x = y$
- $\forall x, y \in E : d(x, y) = d(y, x)$
- $\forall x, y, z \in E : d(x, z) \le d(x, y) + d(y, z)$
- 2. Wie sind offene Teilmengen eines metrischen Raumes definiert, wie abgeschlossene Teilmengen?

Answer: Consider (E,d) metric space, and let $x \in E$. $\forall \varepsilon > 0$ let's define $B_{\varepsilon}(x) := \{ y \in E \mid d(x,y) < \varepsilon \}$, the open ball of radius ε centered around x. The $A \subset E$ set is open, if $\forall x \in A : \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset A$. The $B \subset E$ set is closed, if its complement $E \setminus B$ is open.

3. Sind
$$\left\{ \begin{array}{c} \text{endliche} \\ \text{abz\"{a}hlbare} \\ \text{beliebige} \end{array} \right\} \left\{ \begin{array}{c} \text{Durchschnitte} \\ \text{Vereinigungen} \end{array} \right\} \left\{ \begin{array}{c} \text{offener} \\ \text{abgeschlossener} \end{array} \right\}$$
Mengen wieder offen bzw. abgeschlossen?

Answer: Arbitrary union of open sets is open. Finite intersection of open sets is open. Arbitrary intersection of open sets is in general not open: consider \mathbb{R} with the standard metric, then $\bigcap_{n\in\mathbb{N}}(-\frac{1}{n},\frac{1}{n})=\{0\}$ closed.

Arbitrary intersection of closed sets is closed. Finite union of closed sets is closed. Arbitrary union of closed sets is in general not closed: consider \mathbb{R} with the standard metric, then $\bigcup_{n\in\mathbb{N}}\left[\frac{1}{n},1-\frac{1}{n}\right]=(0,1)$ open.

4. Wie sind Abschluss, Inneres und Rand einer Teilmenge eines metrischen Raumes definiert?

Answer: Consider (E, d) metric space, and let $A \subset E$.

The closure of A is $\overline{A} = \{x \in E \mid \forall \varepsilon > 0 \colon B_{\varepsilon}(x) \cap A \neq \emptyset\}$

The inner of A is $\mathring{A} = \{x \in A \mid \exists \varepsilon > 0 \colon B_{\varepsilon}(x) \subset A\}$

The boundary of A is $\partial A = \overline{A} \setminus \mathring{A}$

5. Was sind Abschluss, Inneres und Rand folgender Teilmengen der reellen Zahlen (mit deren Standardmetrik)?

$$\mathbb{Z}$$
 \mathbb{Q} $\bigcup_{k\in\mathbb{N}}\left(\frac{1}{k+1},\frac{1}{k}\right)$

Answer:

- $\overline{\mathbb{Z}} = \mathbb{Z}$ because \mathbb{Z} is only consist of isolated points. $\mathring{\mathbb{Z}} = \emptyset$, since $\mathring{\mathbb{Z}} = \mathbb{R} \setminus \overline{\mathbb{R} \setminus \mathbb{Z}} = \mathbb{R} \setminus \mathbb{R} = \emptyset$. $\partial \mathbb{Z} = \overline{\mathbb{Z}} \setminus \mathring{\mathbb{Z}} = \mathbb{Z}$
- \mathbb{Q} is dense in \mathbb{R} , thus $\overline{\mathbb{Q}} = \mathbb{R}$. $\mathring{\mathbb{Q}} = \mathbb{R} \setminus \overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R} \setminus \mathbb{R} = \emptyset$, since the irrationals are also dense in \mathbb{R} . $\partial \mathbb{Q} = \overline{\mathbb{Q}} \setminus \mathring{\mathbb{Q}} = \mathbb{R}$
- $A := \bigcup_{k \in \mathbb{N}} \left(\frac{1}{k+1}, \frac{1}{k}\right) = (0,1) \setminus \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$. $\overline{A} = [0,1]$, $\mathring{A} = A$ since it's an union of open sets, thus it's also open and so the interior is itself. $\partial A = \overline{A} \setminus \mathring{A} = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$
- 6. Wann ist eine Teilmenge eines metrischen Raumes dicht?

Answer: Consider (E, d) metric space and $A \subset E$. A is dense in E, if $\overline{A} = E$.

7. Wann ist ein metrischer Raum zusammenhängend?

Answer: Consider (E, d) metric space. It's connected, if $\forall A, B \subset E : A, B$ open, $A \cup B = E, A \cap B = \emptyset \Rightarrow$ either $A = \emptyset$ or $B = \emptyset$

8. Wie sind Zusammenhangskomponenten eines metrischen Raumes definiert? Wann heißt ein metrischer Raum total unzusammenhängend?

Answer: Consider (E,d) metric space. For some $x \in E$ we define the connected component of the point x as the union of all $C \subset E$ connected sets, that contain x. We denote the connected component of x with C(x). (E,d) is totally disconnected, if $\forall x \in E : C(x) = \{x\}$

9. Sind { endliche abzählbare beliebige } { Durchschnitte Vereinigungen } zusammenhängender Mengen wieder zusammenhängend?

Answer: Union of connected sets is in general not connected: consider \mathbb{R} with the standard metric, and [0,1], [2,3] connected sets. $[0,1] \cup [2,3]$ is disconnected. Arbitrary union of connected sets U_i is connected, as long as $\cap_i U_i \neq \emptyset$.

Intersection of connected sets is not necessarily connected (think in \mathbb{R}^2 about a C and a I shaped open set, intersecting each other only at the ends of the C, creating two disconnected sets).

10. Sind { endliche abzählbare beliebige ein Gegenbeispiel! } { Durchschnitte Vereinigungen } kompakter Mengen wieder kompakt? Gib gegebenfalls

Answer: TODO

11. Warum ist in einem metrischen Raum jede konvergente Folge eine Cauchy-Folge? (Beweise!)

Answer: Consider (E,d) metric space, and an $(x_n) \in E$ convergent sequence. Let $\lim_{n\to\infty} x_n = x \in E$. Since x_n converges, $\forall \varepsilon > 0 \colon \exists N \in \mathbb{N} \colon \forall n > N \colon d(x_n,x) < \frac{\varepsilon}{2}$. Now $\forall n,m > N \colon d(x_n,x_m) \le d(x_n,x) + d(x,x_m) = d(x_n,x) + d(x_m,x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$, thus (x_n) is a Cauchy sequence.

12. Wann heißt ein metrischer Raum vollständig?

Answer: Consider (E, d) metric space. E is complete, if every Cauchy sequence converges.

13. Was sind generische Mengen?

Answer: TODO

14. Wie lautet der Satz von Baire?

Answer: Consider (E, d) complete metric space and countable many $U_i \subset E$ $(i \in \mathbb{N})$ open and dense sets. Then $\cap_{i \in \mathbb{N}} U_i$ is dense in E.

15. Wann heißt ein metrischer Raum perfekt?

Answer: (E,d) is perfect, if it doesn't contain isolated points. Or equivalently: $\forall x \in E : x \in \overline{E \setminus \{x\}}$

16. Zeige, dass jeder nichtleere, vollständige, perfekte metrische Raum überabzählbar ist.

Answer: TODO

17. Was versteht man unter einer Cantor-Menge? Gib ein Beispiel an!

Answer: Let $\emptyset \neq C \subset [0,1]$. We call C a Cantor set, if C is complete, totally disconnected and perfect.

18. Wann heißt eine Folge in einem metrischen Raum konvergent? Wann heißt sie Cauchy-Folge?

Answer: Consider (E, d) metric space, and $(x_n) \in E$ sequence. The (x_n) sequence is convergent, if $\exists x \in E : \forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n > N : d(x, d_n) < \varepsilon$. We call x the limit of the (x_n) sequence and we say that (x_n) converges agains x.

The $(x_n) \in E$ sequence is a Cauchy sequence, if $\forall \varepsilon > 0 \colon \exists N \in \mathbb{N} \colon \forall m, n > N \colon d(x_n, x_m) < \varepsilon$.

19. Wann heißt eine Abbildung zwischen metrischen Räumen stetig? Gib vier verschiedene (aber natürlich äquivalente) Definitionen!

Answer: Consider (E_1, d_1) and (E_2, d_2) metric spaces. The $f: E_1 \to E_2$ function is continuous in $a \in E_1$ if $\forall \varepsilon > 0 \colon \exists \delta > 0 \colon \forall x \in E_1 \colon d_1(a,x) < \delta \colon d_2(f(a),f(x)) < \varepsilon$.

The $f: E_1 \to E_2$ is continuous if and only if one of the following equivalent characterisation holds (and if one holds, then all the other hold as well):

- (a) f is continuous in $\forall a \in E_1$
- (b) $\forall A \in E : f(\overline{A}) \subset \overline{f(A)}$
- (c) $\forall A \subset E_2$ closed: $f^{-1}(A)$ is closed
- (d) $\forall A \subset E_2$ open: $f^{-1}(A)$ is open

Answer: TODO

21. Wann heißen zwei Metriken äquivalent?

Answer:

22. Wann heißen zwei Normen äquivalent?

Answer:

23. Sei E ein metrischer Raum. Formuliere und beweise den Zwischenwertsatz für stetige Abbildungen $f: E \to \mathbb{R}$

Answer:

24. Gib drei verschiedene (aber natürlich äquivalente) Definitionen von kompakten metrischen Räumen! Gib außerdem je ein Beispiel eines kompakten und eines nicht kompakten Raumes!

Answer:

25. Sei E ein metrischer Raum. Wann heißt eine Teilmenge $A \subset E$ relativ kompakt?

Answer:

26. Wie lassen sich die kompakten Teilmengen des \mathbb{R}^n charakterisieren?

Answer:

27. Wie lautet der Satz von Arzela-Ascoli?

Answer:

28. Wann sagt man, dass eine Abbildung Lipschitz-stetig ist? Wann ist eine Lipschitzstetige Abbildung eine Kontraktion?

Answer:

29. Wie lautet der Banachsche Fixpunktsatz?

Answer:

30. Sei E ein metrischer Raum und $f \colon E \to E$ stetig. Wann sagt man, dass $\emptyset \neq A \subset E$ selbstähnlich ist? Was ist ein iterated function system?

Answer: