- There are four questions. Use *back* of sheets, and/or page 5, for scratch work. Write your final answer directly below the statement of the question.
- Justify all steps in your proofs. If you use a result from class, or from the text, provide a generic reference. E.g. "By [Artin, Ch 2], it follows that" or "The above equation follows by [Lectures on orders of elements]".
- 1. [20 pt] Prove the following theorem from Artin: A group homomorphism $f: G \to G'$ is injective if and only if $\ker(f)$ is trivial.

Suppose for in sehire. We have fier = since for a group howovershim. Hence, via injectionity figure another gee. Su was CF) - EET.

Conversely if verce) = Ees, the surequestity

Legs = fegs implies e= fegs fegs = feg'g's,

to shall g'g' & bearch. Thicklif now gives

g'g' = e = g' = g.

So L'is seen to be injective.

¹Obviously, you can't simply reference "a result from [Artin]" for this. You must provide a direct proof for full credit.

- 2. [30 pt] (a) What is the order of a cycle in S_n of the form $\sigma = (a_1 \dots a_m)$? Provide a few sentences to justify your answer. [Hint: Where does σ^r send a_j ?]
- (b) Suppose that $\sigma_1, \ldots, \sigma_l$ are disjoint cycles in S_n , with each σ_i appearing as $\sigma_i = (a(i)_1 \ldots a(i)_{m_i})$.

What is the order of the product $\sigma_1 \cdots \sigma_l$? Provide a few sentences to justify your answers.

(c) Let H be the subgroup in S_6 generated by the permutation $\omega = (135)(26)$. How many distinct H-cosets are there in S_6 ?

(a) ord (b) = m. [Reasing].

(B) arl (5, - 5) = 2 cm (m, me). [Reasoning]

(c) 156/H1 = 1501/141 = 61/2cm(3,2)

z 61/6 = 6.5.4 = 120

(= 5.4.7.2 = 1207

3. [20 pt] Consider groups G_1 and G_2 , and normal subgroups $K_i \subseteq G_i$. Reset that $K_1 \times K_2$ is a normal subgroup in $G_1 \times G_2$ and that there is an isomorphism of groups

 $f: (G_1 \times G_2)/(K_1 \times K_2) \stackrel{\sim}{\to} (G_1/K_1) \times (G_2/K_2).$

[Hint: Begin by considering a group homomorphism from $G_1 \times G_2$ to $(G_1/K_1) \times (G_2/K_2)$.]

The surjection pri: G. -> Getking giving

propert surjective group homomorphice $\varphi := G_1 \times G_2 \longrightarrow (G_1/k_1) \times (G_2/k_2)$ definally $\varphi (\times, y) := (\varphi_1(\times), \varphi_2(y))$. We have $\varphi (\times, y) := (\varphi_1(\times), \varphi_2(y)) = (\varphi_1(\times), \varphi_2(y))$ $= (\varphi_1(\times, \times), \varphi_2(y, y)) \quad [Since the <math>\varphi_1$ are hom.] $= \varphi (\times, \times), \varphi_2(y, y)$

= P((x,y)-(x/y)).

So Por in fact a group homomerphism. The board of

Por K, x K = G, x G, power p(x,y)= e of and

only if xc kerepi). and yc expe). So by the first

Ganorphon Leoven me have an induced from from the quetient

F: (Gix Giz) (KixKz) = (Giz) x (Giz).

