Automata and Reactive Systems

Lecture No. 12

Prof. Dr. Wolfgang Thomas

thomas@informatik.rwth-aachen.de

Lehrstuhl für Informatik VII
RWTH Aachen

Deciding E- and Büchi-Recognizability

Question:

Given a Muller automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F}),$

can one decide algorithmically whether the language $L(\mathcal{A})$ is deterministic Büchi recognizable or even E-recognizable?

Recall: A deterministic automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ is called

- E-automaton if it is used with the acceptance condition "run ρ is successful iff $\rho(i) \in F$ for some i"
- Büchi automaton if it is used with the acceptance condition
 - "run ρ is successful iff $\rho(i) \in F$ for infinitely many i"

Loop Structure

By a loop we mean a nonempty subset $S \subseteq Q$ such that for all $s, s' \in S$ there is a word $w \in \Sigma^+$ with $\delta(s, w) = s'$

As sets in \mathcal{F} we only take loops.

Call \mathcal{F} closed under reachable loops iff each loop S' reachable from a loop $S \in \mathcal{F}$ also belongs to \mathcal{F}

Call \mathcal{F} closed under superloops iff each loop $S' \supseteq S$ for a loop

 $S \in \mathcal{F}$ also belongs to \mathcal{F}

Remarks

Let \mathcal{F}_1 be the set of loops reachable from the loops of \mathcal{F}

Let \mathcal{F}_2 be the set of loops $S' \supseteq S$ with $S \in \mathcal{F}$

Remark:

- **1.** \mathcal{F} is closed under reachable loops iff $\mathcal{F} = \mathcal{F}_1$
- 2. \mathcal{F} is closed superloops iff $\mathcal{F} = \mathcal{F}_2$
- 3. Each superloop of an \mathcal{F} -loop is also reachable from an \mathcal{F} -loop; so:

If \mathcal{F} is closed under reachable loops then also under

superloops.

Landweber's Theorem

6.3 Theorem: Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ be a Muller automaton.

- 1. $L(\mathcal{A})$ is E-recognizable iff \mathcal{F} is closed under reachable loops.
- 2. $L(\mathcal{A})$ is deterministic Büchi recognizable iff \mathcal{F} is closed under superloops.

Both closure conditions on the loop structure can be tested effectively.

6.4 Corollary: It is decidable whether the ω -language specified by a Muller automaton is E-recognizable, respectively deterministic Büchi recognizable.

Proof on E-Recognizability

Consider a Muller automaton $\mathcal F$ where $\mathcal F$ is closed under reachable loops.

Show that $L(\mathcal{A})$ is E-recognizable.

Define the E-automaton $\mathcal{H}' = (Q, \Sigma, q_0, \delta, \bigcup \mathcal{F})$. Then

 \mathcal{H}' E-accepts α

iff \mathcal{H}' on α reaches a state from a loop $S \in \mathcal{F}$

iff $\mathcal A$ on α finally assumes a loop reachable from a loop $S\in\mathcal F$

iff (since \mathcal{F} is closed under reachable loops) \mathcal{A} on α finally assumes a loop in \mathcal{F}

iff $\mathcal A$ accepts α

E-Recognizability: The Converse

Assume $L(\mathcal{A})$ is recognized by the E-automaton \mathcal{B}

Let $q \in S \in \mathcal{F}$. Show: Loop S' reachable from $q \Rightarrow S' \in \mathcal{F}$

Pick $u \in \Sigma^*$ with $\delta_{\mathcal{A}}(q_0, u) = q$

Continue u by $\gamma \in \Sigma^{\omega}$, to cause $\mathcal H$ to loop through S; so $u\gamma \in L(\mathcal H)$

The E-automaton \mathcal{B} on $u\gamma$ somewhere reaches a final state, say after prefix uv this has happened.

We extend uv by w, causing \mathcal{A} in loop S to return to q

Consider any loop S' reachable from q: \mathcal{A} will finally assume S' on input $uvw\gamma'$ for suitable γ'

Due to the prefix uv, \mathcal{B} E-accepts $uvw\gamma'$

So also \mathcal{A} accepts uvwy', hence $S' \in \mathcal{F}$

Proof on Büchi Recognizability

Consider a Muller automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ where \mathcal{F} is closed under superloops.

Construct a Büchi automaton \mathcal{A}' as follows, over the state set $Q \times 2^Q$

In the first component, \mathcal{A}' simulates \mathcal{A}

In the second component the visited states are accumulated until a set from $\mathcal F$ is reached or surpassed,

then the second component is reset to \emptyset (final state).

So the Büchi automaton \mathcal{A}' accepts α iff \mathcal{A} on α infinitely often passes through loops $S' \supseteq S$ for loops $S \in \mathcal{F}$

Show: The Büchi automaton \mathcal{A}' is equivalent to \mathcal{A}

\mathcal{H}' is equivalent to \mathcal{H}

 \mathcal{H}' accepts α

- iff on input α , \mathcal{A} infinitely often passes through loops $S' \supseteq S$ where $S \in \mathcal{F}$
- iff (since only finitely many such S' exist) for some $S' \supseteq S$ with $S \in \mathcal{F}$, precisely the states of S' are visited infinitely often
- iff (since \mathcal{F} is closed under superloops) for some $S \in \mathcal{F}$, precisely the states of S are visited infinitely often
- iff $\mathcal A$ accepts α

Büchi Recognizability: The Converse

Assume that the Büchi automaton $\mathcal B$ with final state set F recognizes $L(\mathcal H)$

Show for a superloop S' of loop $S \in \mathcal{F}$ that also $S' \in \mathcal{F}$

Task: Find $\alpha \in L(\mathcal{A})$ which finally lets \mathcal{A} cycle through S'

Pick $q \in S$, reached by \mathcal{A} via w. Continue w by γ such that \mathcal{A} loops through S and hence accepts.

So \mathcal{B} on $w\gamma$ infinitely often visits F, say first after wu_1

Continuation via v_1 through S leads \mathcal{A} back to q, then a travel through the superloop S' via x_1 again back to q

Repetition yields $wu_1v_1x_1u_2v_2x_2...$ such that

 ${\mathcal B}$ assumes a final state after each u_i ; so ${\mathcal H}$ accepts,

and due to the x_i , \mathcal{A} visits the S'-states again and again.

Dual version of Landweber's Theorem on Büchi recognizability

6.5 Theorem: Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ be a Muller automaton.

 $L(\mathcal{F})$ is deterministic co-Büchi recognizable iff \mathcal{F} is closed under subloops.

Proof: Exercise.

Boolean combinations

Recall:

An ω -language is regular (say recognized by a deterministic Muller automaton) iff it is a boolean combination of deterministic Büchi recognizable ω -languages.

We analyze the boolean combinations of E-recognizable ω -languages.

First aim: Characterization by an analogue of Muller automata: Staiger-Wagner automata.

Second aim: Relation to deterministic Büchi and co-Büchi recognizable ω -languages.

Staiger-Wagner automata

For a run $\rho \in Q^{\omega}$ let

$$Occ(\rho) := \{ q \in Q \mid \exists i : \rho(i) \in F \}$$

Remark: Given $F \subseteq Q$, a run ρ is

- E-accepting iff $Occ(\rho) \cap F \neq \emptyset$
- A-accepting iff $Occ(\rho) \subseteq F$

An ω -automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ with $\mathcal{F} \subseteq 2^Q$ is called Staiger-Wagner automaton if it is used with the following "Staiger-Wagner acceptance condition":

 ρ is successful if $Occ(\rho) \in \mathcal{F}$,

i.e the states which occur in ho form a set in $\mathcal F$