

FPGACombinationLock

20.01.2020

GITHUB: <u>LigasN/FPGACombinationLock</u>

Norbert Ligas

Elektronika 3 rok WIET AGH

Spis Treści

Spis Treści	1
Lista Oznaczeń	1
Omówienie	1
Funkcjonalność	2
Graf stanów	3
Instrukcja	3
Uwagi!	4
Od strony technicznej	5
Diagram blokowy	5
Opis bloków	5
Wejścia i wyjścia	6
Funkcjonalności bloków	7

Lista Oznaczeń

- Switch przełącznik, który jest częścią układu fpga, przeznaczony do ustawiania hasła.
- Hasło użytkownika hasło dostępne do spersonalizowania przez użytkownika.
- Hasło serwisowe hasło nie możliwe do zmiany z zewnątrz i nie udostępniane użytkownikowi. Przeznaczone do znajomości jedynie serwisowi sprzętu i do użytku tylko w specjalnych przypadkach.
- Enter główny przycisk zatwierdzający operacje na urządzeniu.
- Diody powiadomień- trójkolorowe diody powiadamiające użytkownika o stanie systemu.
- Wyświetlacz siedmio-segmentowe 8 wyświetlaczy wyświetlające wpisywane hasło i powiadomienia.

Omówienie

System jest przeznaczony do użytku przy wszelkiego rodzaju potrzebie użycia zamka szyfrowego. Prosty w użyciu, ale nie ubogi. Posiada wyświetlacz i diody z powiadomieniami o stanie wpisywania hasła. Jest też dość bezpieczny. Wprowadzanie hasła odbywa się przez nie znany wszystkim osobom kod heksadecymalny. Oprogramowanie zostało napisane w języku VHDL na XILINX NEXYS 4 od firmy DIGILENT.

Funkcjonalność

- Wyświetlacz siedmio- segmentowy z prostymi do przeczytania powiadomieniami o stanie zamka i wyświetlający hasło podczas wprowadzania.
- Trójkolorowa dioda led oznajmiająca o stanie zamka.
 - o Niebieski tryb stand-by
 - o Czerwony błędnie wpisane hasło
 - Zielony poprawnie wpisane hasło
- Biała dioda led, której głównym zadaniem jest doświetlenie switch-y. Dodatkowo mruga, gdy zamek został otwarty, został wywołany alarm lub zmiana hasła zapisuje się.
- 15 switch-y, którymi wprowadza się hasło tj. 4 cyfry w kodzie heksadecymalnym.
- Tylko jeden przycisk, który jest odpowiedzialny za zatwierdzanie kolejnych operacji.
- 15 pojedynczych jednokolorowych ledów umieszczonych nad switch- ami, mających za zadanie jeszcze bardziej usprawnić pracę z zamkiem. Zaświecają się, gdy switch umieszczony pod nimi jest załączony.

Graf stanów

Instrukcja

- 1. Zamek szyfrowy po podłączeniu do zasilania znajduje się w stanie Power On. Aby z niego przejść do stanu Stand-by należy nacisnąć przycisk Enter.
- 2. Do trybu Stand-by zamek wraca z każdego z pozostałych stanów po przekroczeniu odpowiedniego czasu oczekiwania oprócz stanów Alert, Check, Filling new password, Power on. Opóźnienie powrotu do stanu Stand-by wynosi dla Filling 25,5 sekundy, Correct 12,7 sekundy, Saving 12,7 sekundy, Invalid 3,1 sekundy. O przebywaniu w stanie Stand-by zamek powiadamia świeceniem trójkolorowej diody na niebiesko i zgaszeniem białej oraz całkowitym wygaszeniem wyświetlaczy.

- 3. Do trybu wpisywania hasła (Filling) należy przejść z trybu Stand-by klikając Enter. Korzystając ze Switch-ów należy wprowadzić hasło. Hasło startowe użytkownika to "0000". O przebywaniu w stanie Filling zamek powiadamia poprzez świecenie białej diody i trójkolorowej na niebiesko, napisem na wyświetlaczu "PASS" wraz z 4 cyframi wpisanego Switch-ami kodu.
- 4. W przypadku wprowadzenia błędnego hasła zamek przenosi się do stanu Invalid, a następnie powrotnie do stanu Filling. Hasło, które wpisaliśmy poprzednio zostaje zapamiętane przez ułożenie Switch-y. Należy o tym szczególnie pamiętać po skończonej pracy z zamkiem, aby zmienić pozycje Switch-y ze swojego hasła. Przy wejściu w stan Invalid zaświeca się czerwona dioda, biała zostaje świecąca, a wyświetlacz pokazuje napis "INVALID".
- 5. Po trzykrotnie źle wprowadzonym haśle wywołany zostanie Alert. Powiadamia o tym mruganie diody białej połączone ze świeceniem trójkolorowej na czerwono oraz napis na wyświetlaczu "ALERT".
- 6. Do wyjścia ze stanu Alert potrzebne jest naciśnięcie przycisku Enter. Zamek przeniesie się ponownie do stanu Filling, a następnie po zatwierdzeniu poprawnego hasła przyciskiem Enter, zamek zmieni stan na Check.
- 7. Po sprawdzeniu poprawnego hasła, zamek zmienia stan na Correct powiadamiając o tym mruganiem białej diody, świeceniem trójkolorowej na zielono i napisem "CORRECT".
- 8. W celu zmienienia hasła użytkownika należy kliknąć przycisk Enter. Zamek zmieni stan na Filling new password i powiadomi o tym napisem "FILL", ciągłym świeceniem białej diody i trójkolorowej na zielono.
- 9. Po wprowadzeniu nowego hasła użytkownika należy zatwierdzić operację przyciskiem Enter. Zamek zmienia stan na Saving i powiadamia o tym mruganiem białej diody, świeceniem trójkolorowej na zielono i napisem "SAVING". Z tego stanu można powrócić do stanu Stand-by kliknięciem przycisku Enter. W innym przypadku system sam tam przejdzie po wspomnianym wcześniej już opóźnieniu.

Uwagi!

Należy pamiętać, że Switch-e nie zmieniają swojej pozycji automatycznie. Po każdym prawidłowym wpisaniu hasła należy je wyłączać.

Niezwłocznie po zamontowaniu zamka, z uwagi na poprzedni punkt, należy zmienić hasło użytkownika zgodnie z instrukcją.

Zaleca się przejście instrukcji krok po kroku jak jest przewidziane w jej opisie, co pozwala na lepsze zapoznanie się ze wszystkimi funkcjonalnościami zamka.

W przypadku zapomnienia hasła należy pamiętać, że w zamku zakodowane jest hasło serwisowe. Tylko licencjonowany serwisant może znać to hasło i w nagłych przypadkach otworzyć zamek.

Od strony technicznej

Diagram blokowy

Opis bloków

Wejścia i wyjścia

Blok	Wejścia	Opis	Wyjścia	Opis
Prescaler	CLK	Wejście na sygnał zegara układu	N_CLK	Wyjście przeskalowaneg o zegara tj. 1 Hz.
DisplayPrescaler	CLK	Wejście na sygnał zegara układu	N_CLK	Wyjście przeskalowaneg o zegara tj. 100000 Hz.
Debouncer	CLK	Wejście na sygnał preskalowanego zegara	PE	Wyjście "potwierdzoneg o" sygnału
	PUSH	Wejście na sygnał z przycisku		
CombinationLock	CLK	Wejście na przeskalowany zegar	MESSAGE(2:0)	Informacja o stanie układu
	ENTER	sygnał zatwierdzający operacje	DISPLAY(15:0)	Dane o haśle do wyświetlenia na wyświetlaczu w odpowiednich stanach
	DATA(15:0)	Dane ze switchy o wprowadzanym haśle	LEDS(15:0)	Informacja o załączonych switch-ach do ledów, które odpowiednio się zapalają
Display	CLK	Wejście na zegar układu	RGB_LEDS(5:0)	Dane do ledów trójkolowej i białej do sterowania nimi

SCLK	Wejście na preskalowany zegar (wykorzystany do sterowania 7seg)	SEV_SEG(14:0)	Dane do wyświetlacza
MESSAGE(2:0)	Informacja o stanie układu CombinatonLock		
TO_DISPLAY (15:0)	Aktualna wprowadzona wartość na switch-ach		

Funkcjonalności bloków

- Prescaler Zmienia częstotliwość zegara z wejścia na 100 000 000 razy mniejszą, co w naszym układzie daje 1Hz.
- DisplayPrescaler Zmienia częstotliwość zegara z wejścia na 100 000 000 razy mniejszą, co w naszym układzie daje 100 000Hz.
- Debouncer Niweluje niechciany sygnał z przycisku ENTER tj. wszystkie drgania styków itp.
- CombinationLock Serce projektu. Odpowiedzialny za sterowanie wyświetlaczem, operuje na stanach, zapewnia wszystkie funkcjonalności, sprawdza poprawność wprowadzanych haseł, wywołuje alarm w przypadku przekroczenia ilości prób, liczy błędne próby i nimi zarządza, odpowiedzialny za zaświecanie ledów.
- Display odpowiedzialny za wyświetlanie komunikatów i hasła na wyświetlaczu siedmio-segmentowym, ze specjalną funkcją transkodującą z wartości binarnej na 7seg, zarządza trójkolową i białą diodą w zależności od stanu głównego układu, steruje częstotliowością mrugania białej, steruje zmianą anod.