Homework 5

Mark Petersen

Sections 8 and 9

8. PROOF BY CASES

Exercise 8.1. Let $x, y \in \mathbb{Z}$. Prove that if x and y have the same parity, then $x^2 + xy$ is even.

Proof: We directly suppose that x and y have the same parity, and prove this for the case of even and odd parity.

Case 1. Suppose x and y are even such that x=2k and y=2l for some $k,l\in\mathbb{Z}.$ Then,

$$x^{2} + xy = 4k^{2} + 4kl$$
$$= 2(2k^{2} + 2kl),$$

which is even.

Case 2. Suppose x and y are odd such that x=2k+1 and y=2l+1 for some $k,l\in\mathbb{Z}.$ Then

$$x^{2} + xy = 4k^{2} + 4k + 1 + 4kl + 2k + 2l + 1$$
$$= 2(2k^{2} + 4k + 4l + 2kl + 1),$$

which is even.

Therefore, if x and y have the same parity, then $x^2 + xy$ is even.

Exercise 8.2. Let $a, b, c \in \mathbb{Z}$. Prove that if $a \nmid bc$, then $a \nmid b$ and $a \nmid c$.

Proof: We contrapositively suppose that if $a \mid b$ or $a \mid c$ then $a \mid bc$. We break this down into two cases.

Case 1. Suppose that $a \mid b$ then by definition b = am for some $m \in \mathbb{Z}$, then bc = amc which a is a divisor of.

Case 2. Suppose that $a \mid c$. This case is similar to the first.

Since the statement $a \mid b$ or $a \mid c$ then $a \mid bc$ is true, the original statement is true.

Exercise 8.3. Prove that given $x \in \mathbb{Z}$, either $x^2 \equiv 0 \mod 4$ or $x^2 \equiv 1 \mod 4$. Using this, prove that for any integer x we have $4 \mid (x^4 - x^2)$.

Proof: The value of x can be written as 4k, 4k+1, 4k+2, or 4k+3 for some $k \in \mathbb{Z}$. We prove the statement directly by proving the following four cases.

- Case 1. Suppose x=4k, then $x^2=16k^2$. Since $4\mid 16k^2-0,\ x^2\equiv 0 \mod 4$.
- Case 2. Suppose x = 4k + 1, then $x^2 = 16k^2 + 8k + 1$. Since $4 \mid 16k^2 + 8k + 1 1$, $x^2 \equiv 1 \mod 4$.
- Case 3. Suppose x = 4k + 2, then $x^2 = 16k^2 + 16k + 4$. Since $4 \mid 16k^2 + 16k + 4 0$, $x^2 \equiv 0 \mod 4$.
- Case 4. Suppose x = 4k + 3, then $x^3 = 16k + 24k + 9$. Since $4 \mid 16k + 24k + 9 1$, $x^2 \equiv 1 \mod 4$.

Since all four cases hold, the statement is true.

The second portion of this problem is to prove that given $x \in \mathbb{Z}$, then $4 \mid (x^4 - x^2)$.

Proof: We directly suppose that $x \in \mathbb{Z}$. Using the information from the previous proof we know that either $x^2 \equiv 0 \mod 4$ or $x^2 \equiv 1 \mod 4$. This gives us two cases that we can prove separately.

- Case 1. Suppose directly that $x^2 \equiv 0 \mod 4$. This means that $4 \mid x^2$, in other words $x^2 = 4a$ for some $a \in \mathbb{Z}$. Let us simplify the expression $4 \mid (x^4 x^2)$ which can be written as $4 \mid x^2 (x^2 1)$ and is equivalent to saying $x^2 (x^2 1) = 4c$ for some $c \in \mathbb{Z}$. Using the fact that $x^2 = 4a$ we get $4a (x^2 1) = 4c$ which is true.
- Case 2. Suppose directly that $x^2 \equiv 1 \mod 4$. This indicates that $4 \mid x^2 1$, in other words $x^2 1 = 4a$ for some $a \in \mathbb{Z}$. We showed earlier that the statement $4 \mid (x^4 x^2)$ can be written as $4 \mid x^2 (x^2 1)$ and is equivalent to saying $x^2 (x^2 1) = 4c$ for some $c \in \mathbb{Z}$. Using the fact that $x^2 1 = 4a$ we get $x^2 4a = 4c$ which is true.

Since both cases are true, given $x \in \mathbb{Z}$, then $4 \mid (x^4 - x^2)$.

Exercise 8.4. Let $a, b, c, n \in \mathbb{Z}$. If $a \equiv b \mod n$ and $b \equiv c \mod n$, show that $a \equiv c \mod n$. If we know $11 \equiv -3 \mod 7$ and $-3 \equiv 4 \mod 7$, can we say that $11 \equiv 4 \mod 7$?

Proof: We suppose directly that $a \equiv b \mod n$ which implies $n \mid (a-b)$ which is equivalent to saying that a-b=ng for some $g \in \mathbb{Z}$. Solving for b we get b=a-ng. We can use this identity in the statement $b \equiv c \mod n$ by writing the equivalent form b-c=nl for some $l \in \mathbb{Z}$, and substituting in a-ng for b to get

$$b-c=nl$$

$$a-ng-c=nl$$

$$a-c=nl+ng$$

$$a-c=n\left(l+g\right),$$

which implies $n \mid a-c$ or equivalently $a \equiv c \mod n$. And of course this proof shows that the answer to the question is yes.

Exercise 8.5. Prove, for any $n \in \mathbb{Z}$, that $3 \mid n$ if and only if $3 \mid n^2$.

Proof: This is a biconditional, so we will prove both direction.

- (\Longrightarrow) : We begin by showing directly that if $3\mid n$ then $3\mid n^2$. $3\mid n$ is equivalent to saying n=3c for some $c\in\mathbb{N}$. Substituting this in for n^2 yields $n^2=3$ $(3c^2)$ which shows that $3\mid n^2$.
- (\Leftarrow) : Next we show directly by cases that if $3 \mid n^2$ then $3 \mid n$. An integer n can be written as either 3k, 3k+1, or 3k+2 for some $k \in \mathbb{N}$. Only in the case n=3k is $3 \mid n$. Thus we need to show that in the other two cases, that $3 \mid n^2$ is false.
- Case 1. Suppose n = 3k, substituting this into the statement $3 \mid n^2$ yields $3 \mid 3 (3k^2)$. Which is true.
- Case 2. Suppose n = 3k + 1, substituting this into the statement $3 \mid n^2$ yields $3 \mid (3(3k^2 + 2k) + 1)$ which is false since 3 does not divide 1.
- Case 3. Suppose n = 3k + 2, substituting this into the statement $3|n^2$ yields $3|(3(3k^2 + 4k) + 2)$ which is false since 3 does not divide 2.

Therefore if $3 \mid n^2$, then $3 \mid n$, which completes the proof.

Exercise 8.6. Prove $3 \mid (2n^2 + 1)$ if and only if $3 \nmid n$, for $n \in \mathbb{Z}$.

Proof: This is a biconditional, so we will prove both direction.

 (\Longrightarrow) : We suppose contrapositively that $3\mid n$ such that n=3a for some $a\in\mathbb{Z}$. Substituting this into $2n^2+1$ yields

$$2n^2 + 1 = 18a^2 + 1$$
$$= 3(6a^2) + 1,$$

which does not divide by 3 since 1 does not divide by 3. Therefore if $3 \mid (2n^2 + 1)$, then $3 \nmid n$.

 (\Leftarrow) : We suppose directly that $3 \nmid n$. This means that the integer n can be written as either n = 3k + 1 or 3k + 2 for some $k \in \mathbb{N}$. If the statement holds for both cases, then it is true.

Case 1. We assume that n = 3k + 1. Substituting this into $2n^2 + 1$ yields

$$2n^{2} + 1 = 2(9k^{2} + 6k + 1) + 1$$
$$= 18k^{2} + 12k + 3$$
$$= 3(6k^{2} + 4k + 1),$$

which does divide by 3.

Case 2. We assume that n = 3k + 2. Substituting the value of n into $2n^2 + 1$ yields

$$2n^{2} + 1 = 2(9k^{2} + 12k + 4) + 1$$
$$= 18k^{2} + 24k + 9$$
$$= 3(6k^{2} + 8k + 3),$$

which does divide by 3.

Since both cases hold, if $3 \nmid n$ then $3 \mid (2n^2 + 1)$.

Exercise 8.7. Let $a,b,c,d,n\in\mathbb{Z}$. If $a\equiv b\mod n$ and $c\equiv d\mod n$, prove that $ac\equiv bd\mod n$. What does this statement say if we take c=a and d=b? We know that $19\equiv 5\mod 7$. Do we then know $19^2\equiv 5^2\mod 7$. How about $19^3\equiv 5^3\mod 7$?

Proof: We suppose directly that $a\equiv b \mod n$ and $c\equiv d \mod n$, which is equivalent to supposing a-b=ng and c-d=nk for some $k,g\in\mathbb{Z}$. Solving for a and c gives us a=ng+b and c=nk+d. Multiplying a and c yields

$$ac = ngnk - dng - bnk + bd,$$

which can be written as

$$ad - bd = ngnk - dng - bnk$$

= $n (ngk - dg - bk)$.

This shows that $n \mid ad - bd$, or equivalently $ac \equiv bd \mod n$.

Under the conditions that c=a and d=b, the statement that we proves says that $a^2\equiv b^2 \mod n$. This means that if $19\equiv 5 \mod 7$ then $19^2\equiv 5^2 \mod 7$. To show that $19^3\equiv 5^3 \mod 7$, suppose a-b=ng for some $g\in\mathbb{Z}$. Then

$$a^{3} = n^{3}g^{3} + n^{2}g^{2}b + 2n^{2}g^{2}b + 2ngb^{2} + ngb^{2} + b^{3}$$
$$= n(n^{2}g^{3} + 3ng^{2}b + 3gb^{2}) + b^{3},$$

which can be written as

$$a^3 - b^3 = n \left(n^2 g^3 + 3ng^2 b + 3gb^2 \right).$$

This shows that if $a \equiv b \mod n$, then $a^3 \equiv b^3 \mod n$, thus $19^3 \equiv 5^3 \mod 7$.

Exercise 8.8. Prove Theorem 8.22 for any $x, y \in \mathbb{R}$, we have |xy| = |x||y|.

Proof: We show this directly by considering the four case.

- Case 1. Suppose that $x \ge 0$ and $y \ge 0$, then $xy \ge 0$, xy = |xy|, |x| = x, and |y| = y, thus showing that |xy| = |x| |y|.
- Case 2. Suppose that x < 0 and y < 0, then xy > 0, xy = |xy|, |x| = -x, and |y| = -y. Therefore we have

$$xy = -|x|(-|y|)$$
$$= |x||y|,$$

thus showing that |xy| = |x||y|.

- Case 3. Suppose that $x \ge 0$ and y < 0, then $xy \le 0$, xy = -|xy|, |x| = x, and |y| = -y. Therefore xy = -|x||y|, which shows that |x||y| = |xy|.
- Case 4. Suppose that x < 0 and $y \ge 0$. This case is similar to the previous one.

Since all four cases hold, we have shown that |xy| = |x||y|.

Exercise 8.9. Let $a \in \mathbb{R}$. Prove that $a^2 \le 1$ if and only if $-1 \le a \le 1$.

Proof: This is biconditional so we show both ways.

- (\Longrightarrow) : We assume directly that $a^2 \le 1$. Taking the square root of both sides gives us $|a| \le 1$. We have two cases to show.
- Case 1. Suppose that $a \ge 0$, then |a| = a and $a \le 1$.
- Case 2. Suppose that $a \le 0$, then |a| = -1 and $a \ge -1$.

Regardless of the case, $-1 \le a \le 1$. This shows that if $a^2 \le 1$, then $-1 \le a \le 1$.

- (\Leftarrow) : We assume contrapositively that if $a^2>1$, then a>1 or a<-1. Taking the square root of both side of $a^2>1$ gives us |a|>1. We have two cases to show.
- Case 1. Suppose that $a \ge 0$, then |a| = 1 and a > 1.
- Case 2. Suppose that $a \le 0$, then |a| = -1 and a < -1.

Regardless of the case, a > 1 or a < -1 if $a^2 > 1$, thus proving contrapositively that if $a^2 \le 1$, then $-1 \le a \le 1$. This completes the proof.

9. PROOF BY CONTRADICTION

Exercise 9.1. Let R and S be statements. Draw a truth table with columns labeled R, S, $\neg R$ and $(\neg R) \Longrightarrow S$. Verify that the only row where S is false and $(\neg R) \Longrightarrow S$ is true occurs when R is true.

F	2	S	$\neg R$	$\neg R \implies S$
T	`	T	F	T
T	1	F	F	T
F		T	T	T
F		F	T	F

Exercise 9.2. Prove the following statement directly, contrapositively, and by contradiction. Give $x \in \mathbb{Z}$, if 3x + 1 is even, then 5x + 2 is odd.

Before we show the main proof, we begin with the following lemma.

Lemma 9.3. If 3x + 1 is even then x is odd.

Proof: We suppose contrapositively that x is even such that x = 2k for some $k \in \mathbb{Z}$. Substituting this into 3x + 1 gives us

$$3x + 1 = 6k + 1$$
$$= 2(3k) + 1,$$

which is odd. Thus if 3x + 1 is even then x is odd.

Lemma 9.4. If 5x + 2 is even, then x is even.

Proof: We suppose contrapositively that x is odd such that x = 2k + 1 for some $k \in \mathbb{Z}$. Substituting this into 5x + 1 gives us

$$5x + 2 = 10k + 7$$
$$= 2(5k + 3) + 1,$$

which is odd. Thus if 5x + 2 is even, then x is even.

a) Directly

Proof: We suppose directly that 3x+1 is even. According to lemma 9.3, x is odd which is equivalent to saying that x=2k+1 for some $k\in\mathbb{Z}$. Substituting this into 5x+2 gives

$$5x + 2 = 5(2k + 1) + 2$$
$$= 10k + 6$$
$$= 2(5k + 3)$$

which is even.

b) Contrapositively

Proof: We suppose contrapositively that 5x+2 is even. According to lemma 9.4, x is even which is equivalent to saying that x=2k for some $k \in \mathbb{Z}$. Substituting this into 3x+1 gives

$$3x + 1 = 6k + 1$$
$$= 2(3k) + 1,$$

which is odd. Which shows that if 5x + 2 is even, then 3x + 1 is odd.

c) Contradiction

Proof: By contradiction we suppose that 3x+1 is even and 5x+2 is even. According to lemma 9.3, x is odd which is equivalent to saying that x=2k+1 for some $k\in\mathbb{Z}$. Substituting this into 3x+1 and 5x+2 give us

$$3x + 1 = 6k + 4$$

= $2(3k + 2)$,

which is even, and

$$5x + 2 = 5(2k + 1) + 2$$
$$= 10k + 7$$
$$= 2(5k + 3) + 1,$$

which is odd

 $\rightarrow \leftarrow$

Exercise 9.5. Prove, by way of contradiction, the following statement: Given $a, b, c \in \mathbb{Z}$ with $a^2 + b^2 = c^2$, then a is even or b is even.

Proof: By contradiction we suppose that $a^2 + b^2 = c^2$, a is odd and b is odd. For some $k, l \in \mathbb{Z}$, a = 2k + 1 and b = 2l + 1. Substituting these into $a^2 + b^2 = c^2$ yields

$$a^{2} + b^{2} = c^{2} = 4k^{2} + 4k + 1 + 4l^{2} + 4l + 1$$

$$= 4(k^{2} + l^{2}) + 4(k + l) + 2$$

$$= 4(k + l)^{2} - 4(k + l) + 2$$

$$= 4x^{2} - 4x + 2.$$

In order for $c^2=4x^2-4x+2$, there must exist a number (x+y), where $y\in\mathbb{Z}$, such that $(x+y)^2=x^2-x+\frac{1}{2}$. Factoring out the term $(x+y)^2$ gives us

$$(x+y)^2 = x^2 + 2xy + y^2,$$

which creates the system of equations

$$2xy = -x$$
$$y = -\frac{1}{2}$$

and

$$y^2 = \frac{1}{2}$$
$$|y| = \frac{1}{\sqrt{2}},$$

which is contradictory. Thus there is not an integer that is the square root of $4x^2-4x+2$ for all $x\in\mathbb{Z}$. In other words the statement $c^2=4x^2-4x+2$ is false. This proves that given $a,b,c\in\mathbb{Z}$ with $a^2+b^2=c^2$, then a is even or b is even.

Exercise 9.6. Prove that $\sqrt{3}$ is irrational.

Proof: We assume by contradiction that $\sqrt{3}$ is rational, and thus can be written as $\frac{a}{b}$ where $a \in \mathbb{Z}$ and $b \in \mathbb{Z} - \{0\}$. We assume that $\frac{a}{b}$ is in lowest terms. By squaring and clearing by denominators we have $a^2 = 3b^2$. Thus $3 \mid a^2$, and hence $3 \mid a$. We can write a = 3x for some $x \in \mathbb{Z}$. Plugging a = 3x into the equality $a^2 = 3b^2$ yields $9a^2 = 3b^2$, or in other words $b^2 = 3a^2$ which means that $3 \mid b^2$, and hence $3 \mid b$. However, note both a and b can be divided by a which contradicts the fact that $a \mid b$ was assumed to be in lowest terms. Hence $a \mid b$ is irrational.

Exercise 9.7. Prove that $\sqrt[3]{2}$ is irrational.

Proof: We assume by contradiction that $\sqrt[3]{2}$ is rational. And thus can be written as $\frac{a}{b}$ where $a \in \mathbb{Z}$ and $b \in \mathbb{Z} - \{0\}$. We assume that $\frac{a}{b}$ is in lowest terms. By cubing and clearing by denominators we have $a^3 = 2b^3$. Thus $2 \mid a^3$, and hence $2 \mid a$. We can write a = 2x for some $x \in \mathbb{Z}$. Plugging a = 2x into the equality $a^3 = 2b^3$ yields $8a^3 = 2b^3$, or in other words $b^3 = 2\left(2a^3\right)$ which means that $2 \mid b^3$, and hence $2 \mid b$. However, note both a and b can be divided by $a \in \mathbb{Z}$ which contradicts the fact that $a \in \mathbb{Z}$ was assumed to be in lowest terms. Hence $a \in \mathbb{Z}$ is irrational.

Exercise 9.8. Prove if $x \in \mathbb{Q}$ and $y \in \mathbb{R} - \mathbb{Q}$, then $x + y \in \mathbb{R} - \mathbb{Q}$.

Proof: We assume by contradiction that $x \in \mathbb{Q}$ and $y \in \mathbb{R} - \mathbb{Q}$ and $x + y \notin \mathbb{R} - \mathbb{Q}$. Since x is a rational number it can be written as $\frac{a}{b}$ for some $a \in \mathbb{Z}$ and

 $b \in \mathbb{Z} - \{0\}$, and since x + y is rational, it can be written as $\frac{c}{d}$ for some $c \in \mathbb{Z}$ and $d \in \mathbb{Z} - \{0\}$. We can solve for y by subtracting $\frac{a}{b}$ from $\frac{c}{d}$ which yields $\frac{cb-ad}{bd}$ which must be rational and hence $y \notin \mathbb{R} - \mathbb{Q}$.

Exercise 9.9. Prove: If we are given a nonzero rational number x and an irrational number y, then the number xy is irrational.

Proof: We assume by contradiction that $x \in \mathbb{Q} - \{0\}$, $y \in \mathbb{R} - \mathbb{Q}$ and $xy \in \mathbb{Q}$. The rational number x can be written as $\frac{a}{b}$ for some $a, b \in \mathbb{Z} - \{0\}$, and the rational number xy can be written as $\frac{c}{d}$ for some $c \in \mathbb{Z}$ and $d \in \mathbb{Z} - \{0\}$. Solving for y yields

$$y = xy/x$$

$$= \frac{c}{d} \frac{b}{a}$$

$$= \frac{cb}{da},$$

which is rational. This is contradictory since y was stated to be irrational. Therefore if $x \in \mathbb{Q}$ and $y \in \mathbb{R} - \mathbb{Q}$, then $x + y \in \mathbb{R} - \mathbb{Q}$.

Exercise 9.10. Prove there is no smallest positive irrational number.

Proof: We suppose by contradiction that there is a smallest positive irrational number z. We know from the previous proof that given a nonzero rational number x and an irrational number y, then the number xy is irrational. Thus xz must be irrational. Let $x=\frac{1}{b}$ such that $b\in\{x\in\mathbb{Z},x>1\}$, then xz>0, is still positive and an irrational number. In fact $xz=\frac{z}{b}$ which must be smaller than z. This is contradictory to our assumption that z was the smallest positive irrational number.

Example 9.11. Given $x, y \in \mathbb{Z}$, prove that $33x + 132y \neq 57$.

Proof: We suppose by contradiction that 33x + 132y = 57 which can be written 33(x + 4y) = 57 or equivalently as

$$x + 4y = \frac{19}{11}.$$

Solving for x yields $x=\frac{19}{11}-4y$ which is not an integer since $\frac{19}{11}$ is not an integer. Therefore $33x+132y\neq 57$ if x and y are integers.