EET 109 Autumn 2025 EED, IIT Roorkee

EET 109 Handout #1

Instructor: Parikshit Pareek

Power Flow Equation Representations

1. Rectangular Form:

$$\mathbf{Y} = \mathbf{G} + j\mathbf{B},$$
$$V = V_d + jV_q$$

$$P_{i} = \sum_{k=1}^{n} \left[V_{di} \left(G_{ik} V_{dk} - B_{ik} V_{qk} \right) + V_{qi} \left(B_{ik} V_{dk} + G_{ik} V_{qk} \right) \right]$$

$$Q_{i} = \sum_{k=1}^{n} \left[V_{di} \left(-B_{ik} V_{dk} - G_{ik} V_{qk} \right) + V_{qi} \left(G_{ik} V_{dk} - B_{ik} V_{qk} \right) \right]$$

2. Polar Form with Conductance and Susceptance:

$$\mathbf{Y} = \mathbf{G} + j\mathbf{B},$$
$$V = |V|e^{j\theta}$$

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| (G_{ik} \cos(\theta_{i} - \theta_{k}) + B_{ik} \sin(\theta_{i} - \theta_{k}))$$

$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| (G_{ik} \sin(\theta_{i} - \theta_{k}) - B_{ik} \cos(\theta_{i} - \theta_{k}))$$

3. Polar Form with Magnitude and Phase of Y:

$$\mathbf{Y} = |\mathbf{Y}|e^{j\psi},$$
$$V = |V|e^{j\theta}$$

$$P_i = |V_i| \sum_{k=1}^n |V_k| |\mathbf{Y}_{ik}| \cos(\theta_i - \theta_k - \psi_{ik})$$
$$Q_i = |V_i| \sum_{k=1}^n |V_k| |\mathbf{Y}_{ik}| \sin(\theta_i - \theta_k - \psi_{ik})$$

EET 109 Autumn 2025 EED, IIT Roorkee

Power Flow Space

Figure 1: A Three Bus Network

Figure 2: Power Flow Feasible Space on Generator Dispatch Plane

The feasible space figure is adapted from A. Hiskens and R. J. Davy, Exploring the power flow solution space boundary, IEEE Transactions on Power Systems, vol. 16, no. 3, pp. 389395, 2001.