Министерство образования Республики Беларусь

Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерного проектирования Кафедра проектирования информационно-компьютерных систем

ОЦЕНКА ПАРАМЕТРОВ И ОПРЕДЕЛЕНИЕ ЗАКОНА РАСПРЕДЕЛЕНИЯ

Студент гр. 315401

Е.М. Косарева

Проверил

Г.А. Пискун

Цель работы

Произвести первичную статистическую обработку данных, проверить гипотезу о виде распределения случайной величины с помощью критерия согласия Пирсона.

Теоретические сведения

Для проверки гипотезы о виде распределения необходимо выполнить следующие шаги:

- 1 Ввести данные.
- 2 Построить вариационный ряд.
- 3 Построить статистический ряд выборки.
- 4 Построить полигоны относительных и накопленных частот.
- 5 Определить выборочные характеристики.
- 6 Проверить гипотезы о виде распределения случайной величины с помощью критерия согласия Пирсона.

Реализация решения задачи

В качестве массива данных выбрана статистика внутренних затрат на научные исследования и разработки в РБ за 2000 - 2022 года.

Массив данных представлен на рисунке 1.

		A		2000	2001	D 2002	E 2003	F 2004	G 2005	H 2006	20	07 20	08 200	2010
Внутренние разработки, г				66,00	121,70	162,30	223,60	313,70	441,50	523,70	934,	80 962,	40 883,3	1140,60
Объем выпол разработок, с млн. руб. (20	казанных на	учно-технич		000000000000000000000000000000000000000	179,80	259,50	382,50	533,50	832,70	833,70	1017,	10 1252,	50 1162,8	1427,80
2010	M 2011	N 2012	o 2013	P 2014	Q	015	R 2016	s 2017	T 201	. 1	υ 2 019	v 2020	w 2021	x 2022
2010	2011	2012	2015	2014	20	010	2010	2017	20	10 4	.019	2020	2021	2022
1140,60	2081,90	3537,80	4372,30	4073,10	4495	,40 4	75,30	617,70	739,3	30 77	7,80	807,00	813,30	919,80
1427,80	2225,60	4368,10	5651,30	4994.10	5443	.20 5	96,60	725,80	765.	10 80	5,50	878,70	926,40	1036,70

Рисунок 1 – Массив данных

Вариационны ряд представлен на рисунке 2:

ğ.	20
	66,00
	121,70
C.	162,30
	223,60
	313,70
	441,50
	475,30
	523,70
	617,70
	739,30
	777,80
	807,00
	813,30
,V.	883,30
1	919,80
	934,80
	962,40
1	140,60
2	2081,90
	3537,80
	1073,10
	1372,30
	1495,40

Рисунок 2 – Вариационный ряд

Для построения статистического ряда выборки коэффициент k был взят равным 16. Таблица статистического ряда представлена на рисунке 3.

Интервалы корзин		Закрытые слева (открытые справа)		
Корзины		k		
Таблица частот для	Показатель			
Показатель	Частота выборочного значения, пі	Кумулятивная частота	Относительная частота выборочного значения, ni/N	Накопленная относительная частота, n*/N
Om 100 ∂o 200	1,	1,	0,0435	0,0435
Om 200 ∂o 300	2,	3,	0,0870	0,1304
Om 300 ∂o 400	1,	4,	0,0435	0,1739
Om 400 ∂o 500	1,	5,	0,0435	0,2174
Om 500 ∂o 600	2,	7,	0,0870	0,3043
Om 600 ∂o 700	1,	8,	0,0435	0,3478
Om 700 ∂o 800	1,	9,	0,0435	0,3913
Om 800 до 900	2,	11,	0,0870	0,4783
Om 900 ∂o 1,000	3,	14,	0,1304	0,6087
Om 1,000 до 1,200	3,	17,	0,1304	0,7391
Om 1,200 do 2,100	1,	18,	0,0435	0,7826
Om 2,100 до 3,600	1,	19,	0,0435	0,8261
Om 3,600 ∂o 4,100	1,	20,	0,0435	0,8696
От 4,100 до 4,400	1,	21,	0,0435	0,9130
Om 4,400 до 4,500	1,	22,	0,0435	0,9565
4,500 и более	1,	23,	0,0435	1,0000

Рисунок 3 — Таблица статистического ряда

Результаты выполнения процедура «Гистограмма» представлены на рисунке 4.

Рисунок 4 – Гистограмма

Результат построения полигона относительных частот представлен на рисунке 5:

Рисунок 5 – Полигон относительных частот

Результат построения полигона накопленных частот представлен на рисунке 6:

Рисунок 6 – Полигон накопленных частот

Таблица выборочных характеристик, построенная при помощи инструмента «Описательная статистика» представлена на рисунке 7:

N	23				
Среднее	1 334,7826	Стандартная ошибка (среднего)	290,3323		
Среднее НДП 95%	732,6703	Среднее ВДП 95%	1 936,8949		
Усеченное среднее (5%)	1 227,5362	Среднее геометрическое	838,3254	Среднее гармоническое	522,2216
Медиана	900,0000	Ошибка медианы	75,8737	Мода	900
Стандартное отклонение	1 392,3847	Дисперсия	1 938 735,1779	Коэффициент вариации	1,0432
Размах	4 400,0000	Минимум	100,0000	Максимум	4 500,0000
IQR	600,0000	Процентиль 25% (Q1)	500,0000	Процентиль 75% (Q3)	1 100,0000
Среднее отклонение	1 045,7467	Абсолютное отклонение от медианы (MAD)	0,0000	Коэффициент дисперсии (COD)	0,9469
Сумма	30 700,0000	Стандартная ошибка суммы	6 677,6425		
Сумма квадратов	83 630 000,0000	Скорректированная сумма квадратов	42 652 173,9130		
Второй момент	1 854 442,3440	Третий момент	3 674 450 891,7564	Четвёртый момент	1,2308E+13
Асимметрия (Фишера)	1,5586	Асимметрия	1,4550	Стандартная ошибка асимметрии	0,4599
Эксцесс (Фишера)	1,0420	Эксцесс	3,5789	Стандартная ошибка эксцесса	0,8112

Рисунок 7 – Выборочные характеристики

Согласно рисунку 8 для выбранного уровня значимости 0,05 гипотеза о виде распределения отвергается.

U	V	W	X	Y
Показатель	Частота выборочного значения, пі	Теоретическая вероятность выборочного значения, pi	Теоретическая частота выборочного значения,	Хи 2
100.00	1,00	0		0
200,00	2,00	0		0
300,00	1,00	2,8E-257	6,5E-256	3,6E+256
400,00	1,00	4,6675E-199	1,1E-197	2,1E+198
500,00	2,00	8,5141E-152	2,0E-150	4,7E+151
600,00	1,00	2,8531E-113	6,6E-112	3,5E+112
700.00	1,00	5,18173E-82	1,2E-80	1,9E+81
800,00	2,00	5,65752E-57	1,3E-55	7,1E+56
900,00	3,00	2,24537E-37	5,2E-36	4,0E+37
1000,00	3,00	1,30971E-22	3,0E-21	6,9E+22
1200,00	1,00	1,00253E-05	2,3E-04	1,0E+05
2100,00	1,00	9,35594E-84	2,2E-82	1,1E+83
3600,00	1,00	0	0	0
4100,00	1,00	0	0	0
4400,00	1,00	0	0	0
4500.00	1,00	0	0	0
				3,6E+256
				22,36203
			ХИ2 > ХИ2кр	истина

Рисунок 8 – Проверка гипотезы о распределении Пуассона

Выводы

В ходе лабораторной работы была опровергнута гипотеза о распределении случайных величин по закону Пуассона с уровнем значимости 0,05.