Introduction to Python and Programming Language Koscom Algorithm Lecture

신승우

Tuesday 4th September, 2018

Outline

- f 0 Computation and Computation Model
- Concept of Computation
 - Computation Model
 - Computability
 - Accepting Subroutines : Concept of Oracle
- ADT vs Data Structure
 - Abstraction
 - Data Structure
- Recursion
 - Analyzing Recursion
 - Dynamic Programming

Motivating Example

소인수분해 알고리즘

- 일반 컴퓨터 : O(n^k)
- 양자 컴퓨터 : O(log^k n)

왜 이런 차이가 날까요?

Concept of Computation

Computation이란?

- Initial Setting에서 시작해서
- 정해진 operation들을 유한 번 거쳐
- Output을 결정

하는 과정을 Computation이라고 한다. 여기서 Initial Setting과 정해진 operation들은 어떻게 정해질까요? 이것은 Computational Model에 의해서 정해집니다.

Computation Models

Computation Model은 정의하기에 따라 매우 다양한데, 보통 많이 쓰이는 모델들은 다음과 같습니다.

- RAM Model
- Turing Machine
- Decision Trees

우리가 일반적으로 생각하는 프로그래밍 언어들은 대부분 Turing Machine 과 같은 계산력을 가집니다. 즉, 튜링머신으로 풀 수 있는 문제는 일반 프로그래밍 언어로 풀 수 있고, 그 반대도 성립합니다.

Halting Problem

파이썬 언어로 되어있는 어떤 임의의 함수 f에 대해서, 이 함수가 멈추는지 알려주는 함수를 파이썬으로 짤 수 있을까?

Concept of Oracle

Computation Model은 종종 오라클이라는 외부 계산기기를 가지기도합니다. 이 때, computation model은 기존의 operation에 더해서, 이오라클에 input을 넣고 output을 받는 operation을 할 수 있습니다. 이오라클 내에서의 계산과정은 black box이며, 원 computation model에서는 전혀 알 수 없습니다.

이는 프로그래밍에서 subroutine의 개념과 정확히 일치합니다. 이러한 subroutine 중 많이 쓰이는 것들을 모아놓은 것이 Abstract Data Type 입니다.

Motivating Example

순서에 대해서 생각해 보자.

- Total Order : 정수 간의 순서 / 문자열 간의 순서 / ...
- Partial Order : 대학교 과목 간의 순서 / 할 일의 순서 / ...

Abstraction

개별적인 문제에서, 공통된 부분을 추출하는 것!

Abstract Data Type

많이 쓰이는 operation들을 모아놓은 것. 예를 들면,

- 선입선출되는 상황에서 많이 쓰이는 operation set : Queue
- 선입후출되는 상황에서 많이 쓰이는 operation set : Stack
- 계층구조 등을 나타낼 때 많이 쓰이는 operation set : Tree

로 생각할 수 있습니다. 여기서, operation들만 모아놓은 것이지, 어떤 식으로 그 operation을 구현할지는 전혀 언급되지 않았습니다.

Interface vs Implementation

위와 같은 operation set들은 함수들 간의 일종의 인터페이스를 제공합니다. 위 오라클 머신에서, 오라클의 계산 과정은 전혀 밝혀지지 않았음을 상기하세요. 우리가 아는 것은 함수들의 집합일 뿐입니다. 자바에서는 이와 같은 개념을 interface라 하며, C++에서는 Abstract class 라고 합니다. 파이썬에서는 abc 모듈을 이용하여 나타낼 것입니다. 현실에서 이 인터페이스를 쓰기 위해서는 이를 구현해야 합니다. 이를 어떻게 구현할지 모아 놓은 것을 데이터구조라고 합니다.

Data Structure

데이터구조의 예시에는 다음과 같은 것들이 있습니다.

- Array
- Linked List: Doubly Linked List, Cyclic Linked List, ...
- Binary Tree
- Heap : Binary Heap, Fibonacci Heap, ...

Example: Priority Queue

Priority Queue를 구현하기 위해서, 다음의 두 데이터구조를 생각해 봅시다.

- Linked List
- Sorted Linked List: 새 원소가 들어올 때, 리스트가 언제나 정렬된 상태를 유지하도록 함.

이 때, Priority Queue의 operation들의 복잡도는 어떻게 될까요?

Recursive Function Example: Fibonacci Sequence

실습 : 피보나치 수열은 f(n) = f(n-1) + f(n-2)를 만족하는 수열을 말합니다. 이 때, 피보나치 수를 계산하는 함수를 짜 보면 어떻게 될까요?

Computational Complexity: Fibonacci Sequence

이 때, 위에서 짠 알고리즘의 복잡도는 어떻게 계산할 수 있을까요?

Fibonacci Sequence Revisited

실습: 위에서 짠 알고리즘이 복잡한 이유는 같은 것을 여러 번 계산하기 때문입니다. 따라서, 이를 개선하기 위해서 기존에 계산한 것을 저장하는 리스트를 만들고, 그 리스트를 업데이트하면서 계산해 봅시다.

Fibonacci Sequence Revisited

추가 실습 : 더 빠른 방법은 없을까요? 행렬을 사용해 보세요.