

CachePool: Many-core cluster of customizable, lightweight scalar-vector PEs for irregular L2 data-plane workloads

Integrated Systems Laboratory (ETH Zürich)

Zexin Fu, Diyou Shen zexifu, dishen@iis.ee.ethz.ch

Alessandro Vanelli-Coralli avanelli@iis.ee.ethz.ch Luca Benini lbenini@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!

Team Introduction

Zexin Fu

Education

Bachelor Electrical Engineering

Master Data Sci & Info Tech

PhD PULP

Huazhong University of Sci & Tech

Tsinghua University

ETH Zürich

- Research Experience
 - Manycore
 - Network-on-Chip
 - Cache Coherence
 - RISC-V Core
 - Fault Tolerant Cache Design

Team Introduction

Diyou Shen

Education

PhD

Bachelor Electrical Engineering University of Colorado Boulder

Master EEIT ETH Zürich

ETH Zürich

- Research Experience
 - Manycore Cluster
 - Vector Processor
 - Fault Tolerant Interconnection

PULP

Cache Design

Target Workload

Data Plane Protocol

- Data structure
 - Tasks dependency: independent between each user
 - Packet count per user: high variance.
 - Code footprint: small
 - Data footprint: large, sparse, non-contiguous (e.g., linked lists)

Performance target

- Total throughput: 10M packets/sec
- Each RLC throughput: >1k packets/sec
- Active RLC: > 1k
- TTI: 62.5 us 1ms, (typical 500 us)

Operations

- No FP requirement
- Mixed scalar & vector operations

Data-Plane Protocol Subsystem

Hardware Design Guideline

- Data structure
 - o Small code footprint -> Small Instruction Cache
 - o **Sparse**, non-contiguous data footprint -> **Data cache**
 - o Large address range for each user -> Coherence support
- Performance target
 - o High throughput -> Manycore cluster
 - o Tight TTI -> Low latency interconnect
- Operations
 - o Scalar & Vector operations

Manycore

+

Cache

+

Vector

Processing Elements

Snitch Scalar Core

- RV32IMA
- Lightweight Scalable
- Latency-tolerant
 - Out-of-order memory access
 - ROB

Processing Elements

Snitch Scalar Core

- RV32IMA
- Lightweight Scalable
- Latency-tolerant
 - Out-of-order memory access
 - ROB

Spatz Vector Core

- Based on RVV
- Configurable number of FPU/IPUs
- Latency-tolerant
 - OoO memory access
 - ROB

Our Baseline: MemPool

- MemPool Family: scalable many-core shared L1-TCDM cluster
 - Physically Feasible, scale-up to 1024 extendable tiny RISC-V cores (TeraPool-SDR)
 - We can replace the Snitch cores to Spatz core complexes to support Vector insn.
 - SPM needs to be replaced by **Cache** for sparse data pattern.

CachePool: Cache-based, Manycore, Vector-Scalar PEs

Architecture Features:

- Scalable manycore heterogeneous cluster
 - Configurable number of PEs
 - Configurable scalar-vector ratio
 - Configurable FP support
- Cache-based
 - Fitting sparse data pattern
 - Using coalescer to utilize burst BW
 - Write-through L1 to ease coherence design

CachePool: Cache-based, Manycore, Vector-Scalar PEs

Architecture Research Directions:

- Cluster configuration exploration
- L1 D-cache, or L1-less, coalescer exploration and design
- Shared L1 per tile/cc? Cache coherence intra-tile?
- Interconnection design for large-L2 cache slices.
- Scalar / Vector processing ratio

Preliminary Timeline

Open Discussion

- Discussion Points:
 - o Details: data structure, packet size, operations, data dependency, ...
 - Open-source kernel examples on Data Plane
 - Performance guideline
 - Literature suggestion
- Meeting arrangement
 - Period meeting schedule
 - Technical contacts / Communication channels

Thank you!

