

Занятие 4. Бинарная классификация

Колмагоров Евгений ml.hse.dpo@yandex.ru

План лекции

- 1. Постановка задачи классификации
- 2. Бинарная классификация
- 3. Линейные методы классификации
- 4. Функционал ошибки
- 5. Метрики качества

Вспомним предыдущий материал

Прежде чем начать попробуем ответить на следующие, вопросы:

- В чём заключается задача классификации?
- Какие виды бывают?
- В чём ключевое отличие задачи классификации от регресии?

Напоминание. Классификация

Задача классификации - определить к какому из ограниченного набора классов принадлежит рассматриваемый объект

Напоминание. Виды задач классификации

В случае если множество допустимых значений у \subseteq N - это натуральные числа, то решается задача классификации:

- Если $y = \{0, 1\}$ бинарная классификация
- Если у = {1, ..., M} многоклассовая классификация на М непересекающихся классов
- Если у= $\{0,1\}^M$ многоклассовая классификация с М пересекающимися классами. Например, объект с Y= $\{0,1,1,0,1\}$, относится ко 2, 3 и 5 классу

Построение решения для задачи классификации

При построении решения для задачи классификации необходимо ответить на те же самые вопросы, которые возникают при решении задачи регрессии (да и вообще любой задачи МО):

- Как будет выглядеть алгоритм?
- Какой будет функционал ошибки?
- Какие использовать метрики качества для его оценки?

Бинарная классификация

Начнём знакомство с простейшего вида классификации - бинарной, где метки классов Y состоит всего из двух видов:

- положительных (+)
- отрицательных (-)

Несмотря на свою простоту, множество задач сводится к данному виду классификации:

- Определение болезни?
- Содержание неприемлемого контента?
- Допуск к секретным данным?
- И ещё множество других задач.....

Можно ли с помощью линейной модели построить алгоритм бинарной классификации?

Правильный ответ

Да, с помощью модели линейной регрессии можно решать задачу бинарной классификации если *данные могут быть* линейно разделимы и в алгоритм добавить следующие изменения

- 1. Изменить функцию ответа модели a(x, w) на бинарную +1/-1
- 2. При обучении использовать другой функционал ошибки Q(a, X)

Линейная разделяемость данных

Определение: Данные линейно отделимы друг от друга, если можно построить гиперплоскость A в пространстве признаков X так, что первый класс лежит по одну сторону от плоскости, а второй класс по другую

Замечание: В реальной жизни редко, когда можно встретить данные, которые могут быть идеально поделены линейной гиперплоскостью

Бинаризация ответов

Как можно в линейной регрессии перейти к бинарному ответу +1 и -1?

Функция Sign

Вспомним как выглядит функция sign(x):

$$sign(x) = \left\{egin{array}{ll} 1, \; x \geq 0 \ -1, \; x < -1 \end{array}
ight.$$

Теперь добавим к ответам линейной регрессии функцию sign:

$$a(x,w) = sign(\sum_{i=0}^d w_i x_i)$$

Бинарная классификация

Модель линейного классификатора:

$$a(x,w) = sign(\sum_{i=0}^d w_i x_i)$$

- Если $\sum_{i=0}^d w_i x_i > 0$, то $sign(\sum_{i=0}^d w_i x_i) = +1$, то объект отнесён к положительному классу;
- ullet Если $\sum_{i=0}^d w_i x_i < 0$, то $sign(\sum_{i=0}^d w_i x_i) = -1$, то объект относён к отрицательному классу;
- Если $\sum_{i=0}^d w_i x_i = 0$, то объект лежит на самой разделяющей гиперплоскости. Так как сумма задаёт уравнение гиперплоскости в d+1 мерном пространстве

Геометрическая интерпретация

Так как веса $w = (w_0, w_1, ..., w_d)$ задаёт гиперплоскость вместе со смещением $w_0(b)$, то вектор $w^n = (w_1, ..., w_d)$ задаёт вектор нормали к разделяющей поверхности. Те объекты, которые лежат в стороне w^n , имеют положительное значение суммы $\sum_{i=0}^d w_i x_i$, а те которые лежат в противоположной стороне имеют отрицательное значение

Как обучать линейную классификацию?

Основное свойство функционала ошибки

Как и любому алгоритму машинного обучения для поиска оптимальных весов w^* , необходим функционал ошибки Q(a, X), который удовлетворял бы следующему свойству - функционал Q тем меньше, чем лучше качество решения задачи на обучающем множестве X

$$w^* = argmin_w Q(a,X)$$

Ошибка на одном объекте

Введём ошибку классификации на одном объекте:

$$err_i = I[a(x_i,w)
eq y_i]$$

I - индикаторная функция того, что ответ алгоритма отличается от целевой переменной у

Ошибка на всём обучающем множестве

Тогда средняя ошибка на всём тренировочном множестве Х:

$$Q(a,X) = rac{1}{N} \sum_{i=0}^d err_i = rac{1}{N} \sum_{i=0}^N I[a(x_i,w)
eq y_i]
ightarrow min_w$$

Вопрос: можно ли напрямую проводить минимизацию функционала Q?

Ошибка на всём обучающем множестве

Тогда средняя ошибка на всём тренировочном множестве Х:

$$Q(a,X) = rac{1}{N} \sum_{i=0}^d err_i = rac{1}{N} \sum_{i=0}^N I[a(x_i,w)
eq y_i]
ightarrow min_w$$

Вопрос: можно ли напрямую проводить минимизацию функционала Q?

Ответ: Проводить минимизацию не дифференцируемого функционала Q сложная задача и стандартными методами она не решается.

Решение: Попробуем придумать другой функционал Q^* , который был бы гладкой аппроксимацией Q.

Функция отступа

Введём функцию отступа (margin) для объекта x_i с меткой y_i :

$$M_i = y_i \cdot a(x_i,w) = y_i \cdot (w,x_i)$$

Утверждение: Решение задачи:

$$Q(a,X) = rac{1}{N} \sum_{i}^{N} I[a(x_i,w)
eq y_i]
ightarrow min_w$$

эквивалентно задаче:

$$Q(a,X) = rac{1}{N} \sum_{i=0}^{N} I[M_i < 0]
ightarrow min_w$$

Доказательство эквивалентности

Функция отступа принимает отрицательные значения только тогда, когда метка y_i на объекте x_i не совпадает с ответом алгоритма.

$$I[a(x_i)
eq y_i] = I[M_i < 0] = I[y_i \cdot a(x_i,w) < 0]$$

Рассмотрим всевозможные варианты ответа алгоритма и целевой переменной у

- $y_i = 1$, $a(x_i) = 1$: $I[M_i < 0] = 0$
- $y_i = -1$, $a(x_i) = 1$: $I[M_i < 0] = 1$
- $y_i = 1$, $a(x_i) = -1$: $I[M_i < 0] = 1$
- $y_i = -1$, $a(x_i) = -1$: $I[M_i < 0] = 0$

Таким образом знак отступа M_i говорит о корректности классификации на i-ом объекте

Абсолютное значение отступа

Абсолютная величина отступа M_i обозначает степень уверенности классификатора $a(x_i, w)$ в своём ответе. Чем ближе M_i к нулю, тем меньше уверенности в ответе.

Ранжирование объектов по возрастанию отступа

Дифференцируемость функционала

Вопрос: Дифференцируема ли функция отступа M_i ? Дифференцируем ли функционал Q с порогом M?

$$Q(a,X) = rac{1}{N} \sum_{i=0}^{N} I[M_i < 0]
ightarrow min_w$$

Дифференцируемость функционала

Вопрос: Дифференцируема ли функция отступа M_i ? Дифференцируем ли функционал Q с порогом M?

$$Q(a,X) = rac{1}{N} \sum_{i=0}^{N} I[M_i < 0]
ightarrow min_w$$

Ответ: Функция $I[M_i < 0]$ не является дифференцируемой в нуле, следовательно и сумма индикаторов тоже не дифференцируемая функция

Верхняя оценка функции потерь

Для оптимизации функционала Q(a, X) будем использовать верхние оценки для индикаторной функции $I[M_i < 0]$.

Определение: Функция $L(x_i)$ является верхней оценкой функции $F(x_i)$, если для любого объекта x_i выполнено неравенство: $F(x_i) \leq L(x_i)$

В качестве верхней оценки будем использовать дифференцируемую функцию.

Вопрос: Почему оптимизация функционала будет приводить к оптимизации исходного функционала Q?

$$\hat{Q}(a,X) = rac{1}{N} \sum_{i=0}^{N} L(x_i,y_i)
ightarrow min_w$$

Оптимизация верхней оценки

Поскольку между каждым элементом суммы выполняется нестрогое неравенство $I[M_i < 0] \le L(x_i, y_i)$, то выполняется неравенство между функционалами

$$Q(a,X) = rac{1}{N} \sum_{i=0}^{N} I[M_i < 0] \leq rac{1}{N} \sum_{i=0}^{N} L(x_i,y_i) = \hat{Q}(a,X)$$

Поэтому минимизация $\hat{Q}(a,X) o min_w$, будет приводить к минимизации $extbf{\emph{Q}}(a,X)$

Примеры верхних оценок

Примеры верхних оценок:

- $L(M) = log(1 + e^{-M})$ логистическая функция потерь (logistic)
- $V(M) = (1 M)_{+} = max(0, 1 M)$ кусочно-линейная функция со сдвигом (hinge)
- $H(M) = (-M)_{+} = max(0, -M)$ кусочно-линейная функция потерь
- $E(M) = e^{-M}$ экспоненциальная функция потерь (exponential)
- I[M < 0] пороговая функция потерь (zero-one)
- $S(M) = 2/(1 + e^{-M})$ сигмоидная функция

Напомнинание: отступ $M = y_i(w, x_i)$

Гладкие аппроксимации

Гладкие аппроксимации

Каждая из введённых аппроксимаций при оптимизации своего функционала ошибки будет давать различные результаты. Поэтому разные функции потерь определяют различные классификаторы.

Сегодня будет рассматриваться логистическая регрессия, в которой в качестве верхней оценки используется логистическая функция потерь:

$$L(x_i,y_i) = log(1+e^{-y_i\cdot(w,x_i)})$$

Вопрос: Как будем оптимизировать?

$$\hat{Q}(a,X) = rac{1}{N} \sum_{i=0}^{N} L(x_i,y_i) = rac{1}{N} \sum_{i=0}^{N} log(1+e^{-y_i\cdot(w,x_i)})
ightarrow min_w$$

Градиентный спуск

После того как есть гладкий функционал Q(a, X) алгоритм обучения в задаче классификации не отличается от обучения задачи регрессии.

Используем оптимизацию гладких функционалов градиентным спуском:

$$w^k = w^{k-1} - \eta \cdot
abla_w \hat{Q}(a,X)$$

Метрики качества?

Как измерять качество обученного алгоритма?

Самая простая метрика — доля правильных ответов модели (Accuracy):

$$Accuracy(a,X) = rac{1}{N} \sum_{i=0}^{N} I[a(x_i) = y_i]$$

Вопрос: Чем плоха и хороша данная метрика?

Пример. Классификация больных

Предположим, что некоторое заболевание встречается 3 раза на 1000 человек. Задача классификатора состоит в том, чтобы по анализам найти тех, кто болен, а кто нет

Bonpoc: Чему будет равно Ассигасу константного классификатора, который говорит всем, что все здоровы?

Пример. Классификация больных

Предположим, что некоторое заболевание встречается 3 раза на 1000 человек. Задача классификатора состоит в том, чтобы по анализам найти тех, кто болен, а кто нет

Bonpoc: Чему будет равно Ассигасу константного классификатора, который говорит всем, что все здоровы?

Ответ: Качество работы такого классификатора будет 0.997, что в целом очень хорошо и близко к 1. Но все ли классы для нас равнозначны?

Матрица ошибок

Так как в бинарной классификации множества ответов это две метки +/- и множество предсказаний те же самые две метки +/-, то множество ответов состоит из 4 возможных вариантов.

False Positive & False Negative

Из 4-х возможных вариантов пар предсказание-ответ 2 являются ошибочными.

В статистике такие ошибки называют ошибками первого и второго рода.

В зависимости от решаемой задачи необходимо понимать какая из ошибок более критична.

Вопрос: Какая из ошибок более критична для предыдущего примера?

Сравнение моделей по матрице ошибок

Предположим, что есть 2 модели кредитного скоринга со следующими матрицами ошибок. Какая из моделей решает задачу лучше?

	y = 1 Могут вернуть	$oldsymbol{y} = -1$ Не могут вернуть
a (x) = 1 Получили кредит	80	20
a(x) = -1 Не получили кредит	20	80

	y = 1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	48	2
a (x) = - 1 Не получили кредит	52	98

Модель 1

Модель 2

Метрики качества классификации: Precision & Recall

Precision (точность):

$$Precision(a, X) = \frac{TP}{TP + FP}$$

Показывает, то насколько можно доверять классификатору при a(x)=+1

Сравнение по точности

Модель 1:

Precision $(a_1, X) = 0.8$

v.	y = 1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	80	20
a(x) = -1 Не получили кредит	20	80

Модель 2:

Precision(a_2 , X) = 0.96

	y = 1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	48	2
a(x) = -1 Не получили кредит	52	98

Модель 1

Модель 2

Метрики качества классификации: Precision & Recall

Precision (точность):

$$Precision(a, X) = \frac{TP}{TP + FP}$$

Показывает, то насколько можно доверять классификатору при a(x)=+1

Recall (полнота):

$$Recall(a,X) = rac{TP}{TP+FN}$$

Показывает, как много объектов положительного класса находит классификатор

Сравнение по полноте

Модель 1:

Precision $(a_1, X) = 0.8$

y=1 y=-1Могут Не могут вернуть вернуть a(x) = 180 20 Получили кредит a(x)= -180 20 He получили кредит

Модель 2:

Precision(a_2 , X) = 0.48

	y = 1 Могут вернуть	$egin{aligned} y = -1 \ & ext{He могут} \ & ext{вернуть} \end{aligned}$
a(x) = 1 Получили кредит	48	2
a(x) = -1 Не получили кредит	52	98

Модель 1

Модель 2

Точность и полнота

How many retrieved items are relevant?

How many relevant items are retrieved?

Ошибки классификации F₁-мера

У precision и recall есть один существенный недостаток - это парные многомерные метрики, качество которых нужно сравнивать в совокупности.

Поэтому возникает вопрос, что лучше иметь в модели:

- 0.8 precision и 0.6 recall
- Или 0.6 precision и 0.8 recall

Для того, чтобы свести качество решения задачи в одно число удобное для сравнения применяют различные способы усреднения

Ошибки классификации F₁-мера

 ${\rm F_1}$ - мера как среднее гармоническое точности и полноты:

$$F_1(a,X) = rac{2}{rac{1}{Precision} + rac{1}{Recall}} = rac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Ошибки классификации F₁-мера

Почему используется F-мера

Настройка точности и полноты

В зависимости от вида задачи можно варьировать точность и полноту.

Вспомним, что отступ M_i ещё несёт смысл уверенности модели

Можно увеличить уверенность модели, добавив порог δ :

$$a_{\delta}(x,w) = sign((\sum_{i=0}^d w_i x_i) - \delta)$$

Разделяющие гиперплоскости при различных значениях порога

Настройка точности и полноты

При увеличении порога δ происходит увеличение точности за счёт уменьшения полноты.

Так как **каждое значение порога** определяет **свой классификатор**, то у каждого из них будет своё качество работы

Вопрос: Какая из моделей лучше a_1 с порогом δ_1 или a_2 с порогом δ_2

Пример зависимости точности и полноты от значения порога

Измерение качества работы на все возможны

Будем измерять качество всего семейства классификаторов независимо от выбранного порога δ.

Как делать: будем варьировать порог от $(-\infty, +\infty)$ на валидации и смотреть на значения нормированные значения TP и FP.

True Positive Rate & False Positive Rate

True Positive Rate (доля верно принятых объектов положительного класса):

$$TPR = rac{TP}{TP + FN}$$

False Positive Rate (доля неверно принятых объектов отрицательного класса):

$$FPR = rac{FP}{FP + TN}$$

ROC - кривая

ROC – кривая, состоящая из точек с координатами (FPR, TPR) для всевозможных порогов

• Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

**1 шаг:
$$\delta$$
 = 0.7**, то есть $a(x) = I[b(x) > 0.7]$

$$TPR = rac{TP}{TP + FN}$$

$$FPR = rac{FP}{FP + TN}$$

• Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

1 шаг:
$$\pmb{\delta}$$
 = 0.7, то есть $a(x) = I[b(x) > 0.7]$ $TPR = \frac{0}{0+3} = 0$ $FPR = \frac{0}{0+2} = 0$

• Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

$$2$$
 шаг: δ = 0.4, то есть $a(x) = I[b(x) > 0.4]$ $TPR = \frac{1}{1+2} = \frac{1}{3}$ $FPR = \frac{0}{0+2} = 0$

• Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

3 шаг:
$$\pmb{\delta} = \pmb{0.2}$$
, то есть $a(x) = I[b(x) > 0.2]$ $TPR = \frac{2}{2+1} = \frac{2}{3}$ $FPR = \frac{0}{0+2} = 0$

• Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

4 шаг:
$$\delta$$
 = 0.1, то есть $a(x) = I[b(x) > 0.1]$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$

$$FPR = \frac{1}{1+1} = \frac{1}{2}$$

• Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

**5 шаг:
$$\delta$$
 = 0.05**, то есть $a(x) = I[b(x) > 0.05]$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$

$$FPR = \frac{2}{2+0} = 1$$

• Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

$$oldsymbol{6}$$
 шаг: $oldsymbol{\delta}$ = $oldsymbol{0}$, то есть $a(x)=I[b(x)>0]$

$$TPR = \frac{3}{3+0} = 1$$

$$FPR = \frac{2}{2+0} = 1$$

ROC AUC

Как правило при классификации первичен вопрос не того, какую именно форму имеет кривая ROC, а какую площадь она имеет под собой.

AUC (area under curve) - площадь под ROC кривой.

$$AUC \in [0,1]$$

Чему равен ROC AUC константного классификатора?

Чему равен ROC AUC идеального классификатора?

ROC-AUC из примера

Precision-Recall кривая

Аналогично ROC AUC можно построить кривую в координатах Precision/Recall.

Precision-Recall example: AUC=0.79

AUC PR

Precision-Recall example: AUC=0.79

Также можно считать площадь под PR кривой

