Lecture notes: Intro to control and a motivating example

Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

RBE502, 2017

Table of Contents

An introduction to Control

A motivating example

The lecture is based on and adapted from

 Robotics 2, taught by Prof. Alessandro De Luca. Dipartimento di Ingegneria informatica, automatica e gestionale Antonio Ruberti (DIAG), Sapienza Universita di Roma.

The goal of control

Control has different meanings under different contexts:

- successfully complete a task or work program.
- accurate execution of a motion trajectory.
- minimizing a positioning error under disturbances.

A hierarchical view

Example

Mobile manipulator RB-1 — Robotnik

How to accomplish the task of picking a printout?

Example

design motion primitives: [Navigate | pick)
high-level: a seg of motion: Go to the printer pick my the paper Go to the user place the paper low-level: (Handover the paper Is good see: can reach the paper.
I Time optimal.
Energy pick

Evaluation of control performance

quality of execution in nominal conditions

- optimal control. task completion time.
- energy consumption.
- accuracy/repeatability (in static and dynamic terms).

robustness and safety in perturbed conditions

- repeatability despite disturbances and modeling errors.
- adapting to the changing environment, or system parameters.
- safety guarantee against external disturbances.

Example: Control performance

if you were given the task of control design, what would you like to achieve in the performance?

Hybrid = ystem.

Discrete

Continuous.

for industrial robot, accuracy and repeatability have been the key performance criteria.

Static positioning accuracy and repeatability

poor accuracy poor repeatability

poor accuracy good repeatability

good accuracy poor repeatability

good accuracy good repeatability

repeatability:

https://youtu.be/UR6YkdAP8Jk

Х

Control schemes

feedback control:

- insensitivity to mild disturbances and small variations of parameters.
- feeback control+ feedforward compensation: Tracking trajectory and insensitivity to mild disturbances.

robust control

tolerates relatively large uncertainties of known range

adaptive control

 improves performance on line, adapting the control law to a priori unknown range of uncertainties and/or large (but not too fast) parameter variation.

intelligent control

- Learning-based control, and reinforcement learning.
- self-organizing behavior in swarm robotics.

Q: Can you picture some scenarios for these control scheme to apply in the pick print out task?

Functional structure of a control unit

task program	modeling of tasks			
trajectory	geometric and kinematic models			
planning	coordinate transformations			
<u> </u>				
direct control algorithms	nonlinear methods dynamic control			
<u> </u>				
actuators ↓ robot	(electrical and mechanical) dynamic models structured and unstructured world modeling			
environment				

14 Robotics 2

Table of Contents

An introduction to Control

A motivating example

Dynamic modeling of a pendulum

Dynamic modeling of a pendulum

Kinetic Energy

$$K = \frac{1}{2} M v_1^T v_1 + \frac{1}{2} m v_2^T v_2$$

under the assumption of mass-less link.

Potential energy

$$P = mg\ell\cos(\theta)$$

The Lagrangian:

$$L = K - P$$

$$= \frac{1}{2} M v_1^T v_1 + \frac{1}{2} m v_2^T v_2 - mg\ell \cos(\theta)$$
(2)

$$= \frac{1}{2} M v_1' v_1 + \frac{1}{2} m v_2' v_2 - mg\ell \cos(\theta)$$
 (2)

$$=\frac{1}{2}(M+m)\dot{x}^2-m\ell\dot{x}\dot{\theta}\cos(\theta)+\frac{1}{2}m\ell^2\dot{\theta}^2-mg\ell\cos(\theta) \qquad (3)$$

Dynamic modeling of a pendulum

Using Eular-Lagrangian mdodeling method:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \tau.$$

which gives

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = F \tag{4}$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = 0$$

$$(M+m)\ddot{x} - m\ell\ddot{\theta}\cos(\theta) + m\ell\dot{\theta}^2\sin(\theta) = F$$
 (6)

$$\ell\ddot{\theta} - g\sin(\theta) - \ddot{x}\cos(\theta) = 0$$

(7)

(5)

State space form

The state space representation of a system replaces *n*-th order differential equations with **first order** differential equations

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$$

where \underline{x} is the **state vector**. We have vector?

- NOT UNIQUE.
- One choice: Let n be the number of the highest derivative in the generalized coordinates. Each state x(i) in the state vector x represents a variable or the k-th order derivative of that variable for some $0 \le k \le n-1$

State space form of linear system

Example:

$$\ddot{y} + a_1 \ddot{y} + a_2 \dot{y} + a_3 y = b_0 u$$

Recall: The state space form is $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$.

$$\begin{aligned}
\pi + h &: & \pi = 3 \\
\chi &= \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} & \chi_1 &= \chi \\
\chi_2 &= \dot{y} \\
\chi_3 &= \dot{y}
\end{aligned}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \end{pmatrix} & \chi_3 = \ddot{y}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_3 = \ddot{y} \end{cases}$$

$$\dot{\chi} = \begin{cases} \chi_1 \\ \chi_2 \\ \vdots \\ \chi$$

State space form of a nonlinear system

Example:

$$\ddot{y} + a_1 y \ddot{y} + a_2 \dot{y} + a_3 y^3 = b_0 u$$

Recall: The state space form is $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$.

XX

State space form of the inverted pendulum

$$(M+m)\ddot{x} - m\ell\ddot{\theta}\cos(\theta) + m\ell\dot{\theta}^{2}\sin(\theta) = F$$

$$\ell\ddot{\theta} - g\sin(\theta) - \ddot{x}\cos(\theta) = 0$$
(8)
(9)

- The highest order n = 2
- Variables and their k-th order derivatives: $k \le n 1 = 1$

$$\begin{aligned}
\xi_1 &= \chi \\
\xi_2 &= \dot{\chi}
\end{aligned}
\qquad \Rightarrow \begin{aligned}
\xi_1 &= \xi_2 \\
\xi_2 &= \dot{\chi}
\end{aligned}
\qquad \Rightarrow \begin{aligned}
\xi_3 &= \xi_4 \\
\xi_4 &= \dot{\theta}
\end{aligned}
\qquad \Rightarrow \begin{aligned}
\xi_4 &= \dot{\theta} &= \xi_4 \\
\xi_4 &= \dot{\xi}_4
\end{aligned}$$

$$\begin{aligned}
\xi_4 &= \dot{\xi}_4 \\
\xi_4 &= \dot{\xi}_4
\end{aligned}$$

$$\begin{aligned}
\xi_4 &= \dot{\xi}_4 \\
\xi_4 &= \dot{\xi}_4
\end{aligned}$$

F equilibrar:
$$F = 0$$

$$\dot{x} = f(x) \qquad f(x) = 0$$

$$\dot{x} = 0, \quad \dot{\theta} = 0$$

Using matlab: symbolic computation

```
1 % inverted pendulum control: Example
syms x theta F x_dot theta_dot x_ddot theta_ddot g
syms M m l
5 X = \text{sym} ('X', [4,1]); % create a 4 by 1 vector for state
X(1) = x;
7 \quad X(2) = x_dot;
X(3) = theta;
X(4) = theta_dot;
1 eq1 = (M+m)*x_ddot - m*l*theta_ddot*cos(theta) + m*l*theta_dot
     ^2 *sin(theta)-F;
eq2 = l*theta_ddot - g*sin(theta) - x_ddot *cos(theta);
sol = solve([eq1==0, eq2==0], [x_ddot, theta_ddot]);
s % display the solution using the following commands:
7 % sol.x_ddot
9 % ans =
                                                                 xxii
```

An informal introduction of stability

Equilibrium is a state of a system which does not change.

$$\dot{x} = f(x)$$
 $f(x_e) = 0$

Stable equilibrium: An equilibrium is considered **stable** (for simplicity we will consider asymptotic stability only) if the system **always returns to it after small disturbances**. If the system moves away from the equilibrium after small disturbances, then the equilibrium is **unstable**.

Q: What are the equilibria of the cart-pole system? Without input force F, can you identify any stable equilibrium?

From nonlinear to linear system

Linear control theory: Control design for stabilizing and trajectory tracking in linear dynamical systems.

Many nonlinear systems can be linearized.

- Simplification of dynamics: Cart-pole system
- Feedback linearization: Rigid-body dynamics, Dubins car system.
- Jacobian linearization: General nonlinear system.

Small-angle assumption

Assumption:
$$\theta \to 0$$
, $\sin(\theta) \to \theta$, and $\cos(\theta) \to 1$.

$$\dot{z}(2) = \ddot{x} = \frac{-\ell m \sin(\theta)\dot{\theta}^2 + F + gm \cos(\theta) \sin(\theta)}{M + m - m \cos(\theta)^2}$$

$$\dot{z}(4) = \ddot{\theta} = \frac{-\ell m \cos(\theta) \sin(\theta)\dot{\theta}^2 + F \cos(\theta) + gm \sin(\theta) + Mg \sin(\theta)}{\ell(M + m - m \cos(\theta)^2)}$$

equilibrium: $\sin\theta \cos\theta = 0$

$$g \sin\theta + Mg \sin\theta = 0$$

$$\cos\theta = 0$$

$$g \sin\theta + Mg \sin\theta = 0$$

$$\cos\theta = 0$$

XΧV

Feedback controller for linear system

The system after simplification is

$$\dot{x} = Ax + Bu$$

Assume (A, B) controlable, then the system can be stabilized to the origin with a controller

$$u = -Kx$$

such that A - BK has eigenvalues on the left-hand side of the complex plane.

ODE Solver

We need to validate our control design — by numerically solve ordinary differential equation (ODE):

$$\frac{dx}{dt}=f(t,x,u)$$

Under a given control input $u : [0 : T] \to R^m$, if the system is Lipchitz continuous, the solution of the ode is unique $x : [0, T] \to R^n$.

st:
$$\frac{d\chi}{dt} = \frac{\chi(t+st) - \chi(t)}{st} = f(\chi(s), t, \chi(t))$$

$$\chi(t+st) = f(\chi(t), t, \chi(t)) \cdot st + \chi(t)$$

$$\uparrow ode 45.$$

$$\downarrow ode 45.$$

ODE Solver

```
[t,y]=ode45(myode,[0,T],[y0(1);y0(2)])
Inputs:
```

- ODE function name (or anonymous function). This function takes inputs (t, y), and returns dy/dt
- Time interval [0, T]: 2-element vector specifying initial and final time
- Initial conditions [y0(1); y0(2)]: column vector with an initial condition for each ODE.

Outputs:

- t contains the time points
- *y* contains the corresponding values of the integrated variables.

Demonstration

```
function dz = ode_pendulum(t,z,K)
m = 5; M = 100; q = 9.8; l = 0.5;
dz = zeros(4,1);
z=num2cell(z);
5 [x, x_dot, theta, theta_dot] = deal(z{:});
if abs(theta)>2*pi %
7 theta = mod(theta, 2*pi); % wrap the angle to [0, 2pi]
end
F = - K*[x, x_dot, theta, theta_dot]';
dz(1) = x_dot;
ı dz(2) = (- l*m*sin(theta)*theta_dot^2 + F + g*m*cos(theta)*sin(
     theta))/(M + m - m*cos(theta)^2);
dz(3) = theta dot;
dz(4) = (-1*m*cos(theta)*sin(theta)*theta_dot^2 + F*cos(theta)
      + q*m*sin(theta) + M*q*sin(theta))/(1*(M + m - m*cos(theta))
     )^2));
end
```