MATH 2 MINES 91

NOTATIONS

 $\mathcal{M}_n(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées d'ordre n à termes réels ; n est un entier, n > 1.

L'espace vectoriel \mathbb{R}^n sera supposé muni de la norme euclidienne ; c'est à dire, en désignant les vecteurs de \mathbb{R}^n par des matrices colonnes :

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad ||X|| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

L'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ sera muni de la norme subordonnée ; pour $A \in \mathcal{M}_n(\mathbb{R})$:

$$||A|| = \sup_{X \in \mathbb{R}^n \setminus \{0\}} \frac{||AX||}{||X||}.$$

Il sera admis que, pour tout couple de matrices A et B de $\mathcal{M}_n(\mathbb{R})$, on a l'inégalité :

$$||AB|| \le ||A||.||B||.$$

Partie I

Quelques propriétés de l'exponentielle de matrice

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$.

I.1. a. Rappeler pour quoi la série de matrices de terme général U_k définie par

$$U_0 = I_n$$
 $U_k = \frac{1}{k!} A^k, \ k = 1, 2, \dots$

est convergente. On note $\exp A$ la somme de cette série.

- **b.** Démontrer l'inégalité : $\|\exp A\| \le \exp \|A\|$.
- **c.** Établir la relation : $B \exp A = \sum_{k=0}^{+\infty} \frac{1}{k!} BA^k$.

Que penser des matrices $\exp A_1$ et $\exp A_2$ lorsque A_1 et A_2 sont semblables ? Il sera admis pour la suite que, si deux matrices A et B commutent alors

$$\exp(A+B) = \exp A. \exp B$$

I.2. On considère les trois matrices de $\mathcal{M}_3(\mathbb{R})$:

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Calculer $\exp D$, $\exp F$. On admet que $E = \exp F.D. \exp(-F)$, en déduire $\exp E$. Comparer $\exp E$ et $\exp F. \exp D$, qu'en penser ?

- **I.3.** Soit f_A la fonction de \mathbb{R} dans $\mathcal{M}_n(\mathbb{R})$ définie par : $f_A(x) = \sum_{k=0}^{+\infty} \frac{x^k}{k!} A^k$.
 - **a.** Établir que f_A est continue de \mathbb{R} dans $\mathcal{M}_n(\mathbb{R})$.

- **b.** En intégrant terme à terme la série donnant $f_A(t)$, exprimer, en fonction de $f_A(x)$ et de I_n , l'expression $A \int_0^x f_A(t) dt$ où x est un réel ; en déduire que la fonction f_A est dérivable et calculer sa dérivée. Montrer que f_A est indéfiniment dérivable.
- **I.4.** a. Soit θ un réel donné et C_{θ} la matrice de $\mathcal{M}_2(\mathbb{R})$: $C_{\theta} = \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}$. Calculer $\exp(C_{\theta})$.

(Utiliser les égalités $\sin \theta = \sum_{n=0}^{+\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$ et $\cos \theta = \sum_{n=0}^{+\infty} (-1)^n \frac{\theta^{2n}}{(2n)!}$ pour $\theta \in \mathbb{R}$.)

Est ce que l'application $A \mapsto \exp A$ de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ est injective ?

- **b.** Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$. Démontrer que la matrice $\exp(A) I_n$ peut s'écrire $A(I_n + S_A)$. Établir qu'il existe un réel $\alpha > 0$ tel que $||A|| < \alpha$ implique $||S_A|| < 1$.
- **c.** Soit T une matrice de $\mathcal{M}_n(\mathbb{R})$; établir que si ||T|| < 1, la matrice $I_n + T$ est inversible.
- **d.** Soit M une matrice appartenant à la boule ouverte $B(0, \alpha)$ de centre la matrice nulle 0 et de rayon α (où α a été défini au b.) ; établir que l'égalité entre les matrices $\exp M$ et I_n est équivalente à la nullité de M.
- **I.5.** Soient B et H deux matrices données de $\mathcal{M}_n(\mathbb{R})$ et soit k un entier, $k \geq 1$; soit g_k l'application de \mathbb{R} dans $\mathcal{M}_n(\mathbb{R})$ définie par

$$g_k(x) = (B + xH)^k$$

Les deux matrices B et H ne sont pas supposées commutables.

- **a.** Établir que la fonction g_k est continûment dérivable ; calculer les dérivées des fonctions g_1, g_2, g_3 puis de la fonction g_k .
- b. En déduire l'inégalité : $||(B+H)^k B^k|| \le k||H|| \cdot (||B|| + ||H||)^{k-1}$ on utilisera ici l'inégalité des accroissements finis pour les fonctions vectorielles :

$$||g(1) - g(0)|| \le \sup_{x \in [0,1]} ||g'(x)||.$$

I.6. Soit x un réel, x > 0; soit T(A, x) la matrice définie par la relation :

$$T(A, x) = \frac{1}{x^2} (\exp(xA) - I_n - xA).$$

a. Démontrer que la fonction $x \mapsto T(A, x)$ se prolonge par continuité en 0.

Montrer que $T(A, x) = A^2 \int_0^1 (1 - t) \exp(txA) dt$.

En déduire un majorant simple de sa norme.

b. Soit k un entier, $k \ge 1$; en démontrant et en utilisant la relation :

$$\left(I_n + \frac{1}{k}A\right)^k - \exp A = \left(\exp\left(\frac{1}{k}A\right) - \frac{1}{k^2}T\left(A, \frac{1}{k}\right)\right)^k - \left(\exp\left(\frac{1}{k}A\right)\right)^k$$

déterminer, à l'aide de l'inégalité du I.5., la limite de la suite de matrices de terme général $\left(I_n + \frac{1}{k}A\right)^k$, $k = 1, 2, \dots$

c. Démontrer que l'application $A \mapsto \det A$ est une application continue de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} .

On admet que det $\left(I_n + \frac{1}{k}A\right) = 1 + \frac{1}{k}\operatorname{Tr}(A) + O\left(\frac{1}{k^2}\right)$.

En déduire la valeur du déterminant de la matrice $\exp A$.

I.7. Soit x un réel, x > 0. Soit U(A, B; x) la matrice définie par la relation

$$U(A, B; x) = \frac{1}{x^2} (\exp(xA) \cdot \exp(xB) - I_n - x(A+B)).$$

- a. Démontrer que la fonction $x \mapsto U(A, B; x)$ se prolonge par continuité en 0 ; donner un majorant de sa norme.
- **b.** Soit k un entier, $k \ge 1$; déterminer, lorsque k tend vers $+\infty$, la limite de l'expression :

$$P_k = \left(\exp\left(\frac{1}{k}A\right) \cdot \exp\left(\frac{1}{k}B\right)\right)^k - \left(I_n + \frac{1}{k}(A+B)\right)^k.$$

c. En déduire, lorsque k tend vers $+\infty$, la limite de la suite des matrices :

$$Q_k = \left(\exp\left(\frac{1}{k}A\right) \cdot \exp\left(\frac{1}{k}B\right)\right)^k$$
.

Partie II

Groupes à un paramètre

Soit G un sous-groupe de $GL_n(\mathbb{R})$; G est dit groupe à un paramètre s'il existe un morphisme continu et surjectif du groupe additif \mathbb{R} dans G; G est muni de la distance induite par la norme de $\mathcal{M}_n(\mathbb{R})$.

Le but de cette partie est de montrer, après avoir donné l'exemple du sous-groupe $f_A(\mathbb{R})$, que tout sous-groupe à un paramètre est de ce type.

- II.1. Démontrer que, pour une matrice A donnée de $\mathcal{M}_n(\mathbb{R})$, l'application f_A est un morphisme continu du groupe additif $(\mathbb{R}, +)$ dans $\mathrm{GL}_n(\mathbb{R})$; en déduire que $f_A(\mathbb{R})$ est un groupe à un paramètre.
- II.2. Démontrer que le groupe $O^+(2)$ des matrices orthogonales de déterminant 1 est un groupe à un paramètre. Déterminer une matrice A telle que $f_A(\mathbb{R})$ soit $O^+(2)$.
- II.3. Soit α un réel strictement positif ; donner un exemple de fonction g_{α} polynomiale de degré 4 sur $[-\alpha, \alpha]$, positive continûment dérivable, définie sur \mathbb{R} , nulle en dehors de l'intervalle $[-\alpha, \alpha]$ et telle que : $\int_{-\alpha}^{\alpha} g_{\alpha}(u) du = 1$.

(On fera intervenir le polynôme $x^2-\alpha^2$ et on définira g à une constante multiplicative près que l'on ne demande pas d'évaluer.)

Vérifier brièvement que les fonctions g_{α} et g'_{α} sont uniformément continues sur toute la droite réelle.

Soit Φ un morphisme du groupe additif \mathbb{R} dans $\mathrm{GL}_n(\mathbb{R})$, continu pour la distance induite dans $\mathrm{GL}_n(\mathbb{R})$ par la norme de $\mathcal{M}_n(\mathbb{R})$. Soient M_{α} , et, pour tout réel t, $\psi(t)$ les matrices définies par les relations :

$$M_{\alpha} = \int_{-\alpha}^{\alpha} g_{\alpha}(u)\Phi(-u) du, \quad \psi(t) = \int_{t-\alpha}^{t+\alpha} g_{\alpha}(t-u)\Phi(u) du.$$

- II.4. a. Démontrer que la fonction $\psi: t \mapsto \psi(t)$, définie dans \mathbb{R} , est continûment dérivable (utiliser le fait que g est un polynôme).
 - **b.** Soit t_0 un réel donné $(t_0 > 0)$; démontrer que si $t \in [-t_0, t_0]$, on a :

$$\psi(t) = \int_{-t_0 - \alpha}^{t_0 + \alpha} g_{\alpha}(t - u) \Phi(u) du.$$

c. Établir les relations : $\psi(t) = M_{\alpha}.\Phi(t) = \Phi(t).M_{\alpha}.$

- **II.5.** a. Démontrer que la matrice M_{α} admet une limite, lorsque le réel α tend vers 0 (on utilisera l'inégalité de la norme $\left\| \int_{-\alpha}^{\alpha} F(u) du \right\| \leq \int_{-\alpha}^{\alpha} \|F(u)\| du$ pour toute fonction vectorielle et toute norme en dimension finie).
 - **b.** Montrer qu'il est possible de choisir α de façon que M_{α} soit inversible.
 - c. En déduire que le morphisme Φ , de \mathbb{R} dans $\mathrm{GL}_n(\mathbb{R})$, est continûment dérivable.
- **II.6.** a. Désignons par A la matrice $\Phi'(0)$. Calculer $\Phi'(t)$ en fonction de A et $\Phi(t)$.
 - **b.** Soit $\Omega(t) = \Phi(t) \exp(-tA)$, calculer $\Omega'(t)$, en déduire $\Phi(t)$.