NS Lab 4 Answer Sheet NS3 simulator - TCP Performance Monitoring

Student Name: Sander

<u>Student Surname:</u> In 't Veld <u>Student Number:</u> 10277935

Chariklis Pittaras (c.pittaras@uva.nl)

Karel van der Veldt (<u>karel.vd.veldt@uva.nl</u>)

Koen Koning (koen.koning@gmail.com)

Lab date: Sep 19 & 23 2013

Hand-in time (submit to blackboard) by Sep 30, 2013 13:00CEST

Total points: 20 pts

Please provide your answer in the appropriate space for each question

Task 1 - Throughput of TCP client-server connection

1. Here, an Mbit is (apparently) a million bits, as opposed to a 1024^2 bits.

Latency	Measured Throughput	Calculated Throughput	Calculation
64ms	1.03Mbps	1.02 Mbps	(16384 * 8 / 10^6) / (0,064 * 2)
96ms	0.68 Mbps	0.68 Mbps	(16384 * 8 / 10^6) / (0,096 * 2)
128ms	0.51 Mbps	0.51 Mbps	(16384 * 8 / 10^6) / (0,128 * 2)

2. Yes, it inversely affects throughput. The TCP client waits to submit more than RWIN bytes until it receives an ACK; the client has to wait longer if the latency is bigger.

3. Optimal RWIN value: 51200 bytes

<u>Calculation</u>: ((3.2 * 10^ 6) * (0.064 * 2)) / 8

4. 3.10 Mbps

Task 2 - Monitoring TCP congestion window

1.

2.a.

2.b

Figure 3: Tahoe, droptail queue = 40 (from 1 until 1.85 secs)

State changes, Tahoe - from 1 until 1.85 secs							
Time	(sec,	cwnd (bytes)	New state				
accuracy	3						
decimal)							
1.000		1	(initial state)				

2.c

Figure 4: Tahoe, droptail queue = 40 (from 4 until 6 secs)

State changes, Tahoe – from 4 until 6 secs						
Time	(sec,	cwnd (bytes)	New state			
accuracy	3					
decimal)						
4.000			(initial state)			

3.a

Figure 5: Reno, droptail queue = 40

3.b

Figure 6: Reno, droptail queue = 40 (from 4 until 6 secs)

State changes, Reno - from 4 until 6 secs								
Time (sec, accuracy 3 decimal)	Current cwnd (bytes)	New cwnd (bytes)	New state	Event				
4.000			(initial state)					

Submission

You have to submit:

- Your answers to all the questions. <u>Use this provided **answer sheet** for you answers and graphs. Provide your answers in the appropriate answer field for each question</u>
- · The source codes of the two tasks.
- · The graphs and the produced data.

Attention: You have to submit one PDF file that contains all the answers and graphs; the name of the file should be lab4-<lastname_firstletter>.pdf (example: lab1-vanderveldt_k.pdf, or lab1-pittaras_c.pdf). Additionally you have to submit one zip (or rar) file containing the source codes, the graphs and the data. The name of the file should be: lab4-source-<lastname_firstletter>.zip

Any other kind of submission will not be taken into account. You must also put your full name and your student number at the top of the answer sheet.