Muc luc

LCStrace		 	 	 	 	 	 					1
$GOLDtrace \dots$		 	 	 	 	 	 					2
$\label{eq:MARBLE} \mathbf{MARBLE} \mathbf{trace} . .$		 	 	 	 	 	 					3
Xếp hàng — LQUE	CUE	 	 	 	 	 	 					5
Giao hàng — SHIP	COUNT .	 	 	 	 	 	 				•	7
Điểm bán lẻ — RE	TOUT	 	 	 	 	 	 					8

Nộp bài tại: scoss.soict.ai/cmslogin/NAN

Username/Password: nick codeforces

Bài 1. LCStrace

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1 giây

Dãy con của một dãy là dãy thu được khi xóa đi một vài phần tử của dãy ban đầu và giữ nguyên thứ tự của các phần tử còn lại (có thể không xóa phần tử nào). Cho hai dãy a và b. Tìm dãy c vừa là dãy con của a, vừa là dãy con của b và có độ dài lớn nhất có thể.

Dữ liệu vào

- Dòng đầu chứa số phần tử của dãy a: n $(1 \le n \le 1000)$.
- Dòng tiếp theo chứa dãy $a: a_1 \ a_2 \dots a_n \ (1 \le a_i \le 10^9)$.
- Dòng tiếp theo chứa số phần tử của dãy b: $m \ (1 \le m \le 1000)$
- Dòng tiếp theo chứa dãy b: b_1 b_2 ... b_m $(1 \le b_i \le 10^9)$.

Có 50% test với $n \leq 20$

Kết quả

- ullet Dòng đầu chứa một số nguyên là độ dài dãy c
- $\bullet\,$ Dòng thứ hai chứa giá trị các phần tử trong dãy c theo thứ tự trên dãy.

Ví dụ

stdin	stdout
7	5
3 7 2 5 1 4 9	3 2 1 4 9
10	
4 3 2 3 6 1 5 4 9 7	

Hạn chế

- $n \le 10^5$. $1 \le a_i \le 10^5$
- 30% test với $n \leq 20$
- 30% test với 20 < $n \leq 1000$

Bài 2. GOLDtrace

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1 giây

Vương quốc ALPHA có n kho vàng nằm trên một đường thẳng và được đánh số $1, 2, \ldots, n$. Kho thứ i có số vàng là a_i (a_i là số nguyên không âm) và được đặt tại tọa độ i ($\forall i = 1, \ldots, n$). Vua của ALPHA muốn tìm một tập hợp các kho vàng có tổng số vàng lớn nhất với điều kiện khoảng cách giữa hai kho được chọn phải lớn hơn hoặc bằng L_1 và nhỏ hơn hoặc bằng L_2 .

Dữ liệu vào

- Dòng đầu chứa: n, L_1 , and L_2 $(1 \le n \le 100000, 1 \le L_1 \le L_2 \le n)$.
- Dòng 2 chứa: a_1, a_2, \ldots, a_n .

Kết quả

- ullet Dòng đầu chứa hai số nguyên: M k là tổng số vàng lớn nhất tìm được và số kho vàng trong cách chọn.
- $\bullet\,$ Dòng thứ 2 chứa k số nguyên là chỉ số của các kho hàng được chọn.

Nếu có nhiều cách chọn đều tốt nhất, in ra cách chọn bất kỳ trong số đó.

Ví du

stdin	stdout
6 2 3	19 3
3 5 9 6 7 4	1 3 5

Bài 3. MARBLEtrace

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1 giây

Phong là một nhà điều khắc, ông có một tấm đá cẩm thạch hình chữ nhật kích thước $W \times H$. Ông ta muốn cắt tấm đá thành các miếng hình chữ nhật kích thước $W_1 \times H_1, W_2 \times H_2, \ldots, W_N \times H_N$. Ông ta muốn cắt đến tối đa các mẫu kích thước có thể. Tấm đá có những vân đá cho nên không thể xoay khi sử dụng, có nghĩa là không thể cắt ra miếng $B \times A$ thay cho miếng $A \times B$ trừ khi A = B. Các miếng phải được cắt tại các điểm nguyên trên hàng cột và mỗi nhát cắt phải cắt đến hết hàng hoặc hết cột. Sau khi cắt sẽ còn lại những mẩu đá còn thừa bỏ đi, nghĩa là những mẩu đá không thể cắt thành miếng kích thước cho trước nào.

Yêu cầu: Hãy tìm cách cắt sao cho còn ít nhất diện tích đá thừa bỏ đi.

Hình dưới minh họa cách cắt các phiến đá trong ví dụ với diện tích thừa ít nhất tìm được là 10.

10×4			1	.0×4
6 × 2		6 × 2		6 × 2
7 × 5	7	× 5		7 × 5

Dữ liệu vào

Dòng đầu tiên chứa hai số nguyên: W và H.

Dòng thứ hai chứa một số nguyên N. N dòng tiếp theo mỗi dòng chứa hai số nguyên W_i và H_i .

Kết quả

Dòng đầu chứa hai số nguyên là diện tích thừa và số lần cắt

Các dòng tiếp theo mỗi dòng mô tả một lát cắt: x y t k có nghĩa là cắt hình chữ nhật $x \times y$, t = 0 nghĩa là cắt cạnh bằng x thành k và x - k, t = 1 nghĩa là cắt cạnh y thành k và y - k

Chỉ cần đưa ra một phương án cắt tốt nhất tùy ý.

Hạn chế

- $1 < W < 600, 1 < H < 600, 0 < N < 200, 1 < W_i < W$, and $1 < H_i < H$.
- Có 50% số test ứng với $W \leq 20, H \leq 20$ và $N \leq 5.$

Ví dụ

stdin	stdout
21 11	10 17
4	21 11 1 2
10 4	21 9 1 4
6 2	21 5 0 7
7 5	14 5 0 7
15 10	21 4 0 1
	20 4 0 10
	1 4 1 1
	1 3 1 1
	1 2 1 1
	21 2 0 1
	20 2 0 1
	19 2 0 1
	18 2 0 6
	12 2 0 6
	1 2 1 1
	1 2 1 1
	1 2 1 1

Bài 4. Xếp hàng — LQUEUE

An là nhân viên bảo vệ ngân hàng. Hôm nay công việc khá nhàn rỗi nên An bắt đầu quan sát hàng những người đang đứng đợi trước quầy phục vụ. Ban đầu trong hàng chỉ có n người. An đánh số những người trong hàng theo thứ tự bắt đầu từ 0. Như vậy số thứ tự của mỗi người chính bằng số người đứng trước họ trong hàng đợi.

An có khả năng đánh giá tâm trạng người khác rất tốt. Tâm trạng của người thứ i được An mô tả bởi số nguyên không âm a_i . An cho rằng tâm trạng của người này tốt nếu $a_i \geq x$. Ngược lại, nếu $a_i < x$ thì tâm trạng của người này không tốt.

Hàng đợi thường có người mới tới xếp hàng và có người rời khỏi hàng sau khi được phục vụ xong. Nếu có người mới tới, An sẽ ngay lập tức đánh giá tâm trạng của người đó và tâm trạng của người này không thay đổi theo thời gian.

An đặt ra câu hỏi thú vị: tại thời điểm nào đó, An chọn một người trong hàng đợi và muốn đếm xem có bao nhiêu người có tâm trạng tốt hiện đang đứng trước anh ta trong hàng đợi.

Hãy giúp An!

Dữ liêu vào

Dòng đầu tiên chứa hai số nguyên $n,\,x$ (1 $\leq n \leq 100\,000, 0 \leq x \leq 10^9).$

Dòng tiếp theo chứa n số nguyên a_i mô tả tâm trạng của n người trong hàng đợi $(0 \le a_i \le 10^9)$.

Dòng thứ ba chứa số nguyên m $(1 \le m \le 100\,000)$ là số sự kiện xảy ra đối với hàng đợi.

Trong m dòng tiếp theo mô tả các sự kiện xảy ra đối với hàng đợi. Mỗi sự kiện được mô tả bởi 1 trong 3 trường hợp sau:

- 1 a $(0 \le a \le 10^9)$ có người vừa tới xếp cuối hàng với tâm trạng là a.
- 2 người đầu hàng (có số thứ tự là 0) rời khỏi hàng. Khi đó An sẽ giảm số thứ tự của tất cả những người trong hàng xuống 1 đơn vị.
- 3i An muốn biết, tại thời điểm này có bao nhiều người có trạng thái tốt đứng trước người thứ i.

Đảm bảo rằng các mô tả sự kiện đều chính xác: nếu hàng đợi rỗng thì sự kiện dạng 2 không được thực hiện; số người trong hàng đợi luốn lớn hơn i trong các sự kiện dạng 3.

Kết quả

Đối với mỗi sự kiện dạng 3, hãy ghi ra một dòng chứa số lượng người có tâm trạng tốt hiện đang đứng trước người được chỉ định số thứ tự trong sự kiện.

Ví dụ

test	answer
1 2	0
3	1
5	2
1 2	
1 1	
3 0	
3 1	
3 2	
2 2	0
1 2	0
7	0
3 0	0
3 1	1
2	
3 0	
1 3	
3 0	
3 1	

Bài 5. Giao hàng — SHIPCOUNT

Tại kho hàng (điểm 0), điều phối viên phải lập lộ trình vận chuyển hàng hoá cho K xe khác nhau đến N khách hàng (điểm $1,\ldots,N$). Lộ trình của mỗi xe sẽ xuất phát từ kho và đi đến 1 số khách hàng nào đó (mỗi khách hàng đúng 1 lần) và quay về kho. Mỗi khách hàng chỉ thuộc về đúng 1 lộ trình của 1 xe nào đó. Thứ tự các khách hàng trên mỗi lộ trình là quan trọng, ví dụ lộ trình $0 \to 1 \to 3 \to 0$ và lộ trình $0 \to 1 \to 0$ là hai lộ trình khác nhau. Có thể có xe không được sử dụng (không được lập lộ trình). Để tìm ra phương án tối ưu, điều phối viên quyết định dùng phương pháp liệt kê hết tất cả các phương án. Tuy nhiên, sau một hồi ngẫm nghĩ và thử, điều phối viên cảm thấy số lượng phương án có vẻ là rất lớn.

Yêu cầu: Hãy giúp điều phối viên tính số lượng phương án có thể có.

Dữ liệu vào

Dữ liệu đầu vào bao gồm 1 dòng chứa 2 số nguyên dương K và N

Kết quả

Ghi ra một số nguyên là số dư trong phép chia số lượng phương án cho $10^9 + 7$.

Ví dụ

test	answer
2 2	6

Giải thích

Có tất cả 6 phương án lộ trình được liệt kê trong Bảng 1

Phương án 1	$xe 1: 0 \to 1 \to 2 \to 0$	xe 2: 0
Phương án 2	$xe 1: 0 \to 2 \to 1 \to 0$	xe 2: 0
Phương án 3	$xe 1: 0 \to 1 \to 0$	$xe 2: 0 \to 2 \to 0$
Phương án 4	$xe 1: 0 \to 2 \to 0$	$xe 2: 0 \to 1 \to 0$
Phương án 5	xe 1: 0	$xe 2: 0 \to 1 \to 2 \to 0$
Phương án 6	xe 1: 0	$xe 2: 0 \to 2 \to 1 \to 0$

Bảng 1: Các phương án lộ trình với 2 xe và 2 khách hàng

Hạn chế

• Subtask 1: $K, N \leq 10$

• Subtask 2: $K, N \leq 200$

• Subtask 3: $K, N \le 2000$

Bài 6. Điểm bán lẻ — RETOUT

Một công ty phân phối phân phối hàng hóa đến M điểm bán lẻ 1, 2, ..., M. Có N chi nhánh 1, 2, ..., N, chi nhánh i có a_i nhân viên bán hàng. Công ty phải giao M điểm bán lẻ cho N chi nhánh sao cho mỗi chi nhánh chịu trách nhiệm phân phối hàng hoá cho một số điểm bán lẻ, mỗi điểm bán lẻ do đúng một chi nhánh phân phối. Để cân bằng giữa các nhân viên bán hàng, số điểm bán lẻ được giao cho mỗi chi nhánh i phải là số dương và chia hết cho a_i .

Yêu cầu: Hãy tính tổng số Q các cách gán như vậy.

Ví dụ, N = 2, M = 20, $a_1 = 3$, $a_2 = 2$. Có 3 cách:

- Chi nhánh 1 được chỉ định cho 6 điểm bán lẻ, chi nhánh 2 được chỉ định cho 14 điểm
- Chi nhánh 1 được chỉ định cho 12 điểm bán lẻ, chi nhánh 2 được chỉ định cho 8 điểm
- Chi nhánh 1 được chỉ định cho 18 điểm bán lẻ, chi nhánh 2 được chỉ định cho 2 điểm

Dữ liệu vào

- $\bullet\,$ Dòng 1: N và M
- Dòng 2: N số nguyên dương a_1, \ldots, a_N

Kết quả

Ghi ra duy nhất một số nguyên Q là phần dư của số cách tìm được trong phép chia cho $(10^9 + 7)$

Ví dụ

test	answer
2 20	3
3 2	

Hạn chế

- Subtask 1: $N \le 100, M \le 500$
- Subtask 2: $N \le 10^6, M \le 10^{18}, a_i = 1, \forall i$
- Subtask 3: $N \le 1000, M \le 5000$.