

Anne Guerry, Becky Chaplin-Kramer, Bonnie Keeler NatCap Lead Scientists Annual Meeting and Training, March 2014

people

nature

people nature

improve outcomes

FOR NATURE AND PEOPLE

THEORY OF CHANGE

Advance science of ecosystem services

Create user-friendly approaches & tools

Build and tell success stories

Get information about natural capital into decisions

Make decisions with better outcomes for people and nature

THE NATCAP APPROACH

- 1. Be relevant, co-produce information
- Explore multiple benefits, trade-offs, change
- 3. People matter
- 4. Where matters
- 5. Include dynamics, uncertainty

ENVIRONMENT
UNIVERSITY OF MINNESOTA

Driven to Discover

Spatial Planning
(PES) Payment for Ecosystem Services
Climate Adaptation Planning
Development Impacts and Permitting
Restoration Planning
Corporate Risk Management

Ruckelshaus et al. 2013

0 5,000 10,000 Kilometers

Be relevant, co-produce information

Explore multiple benefits, tradeoffs, change

changes in ecosystem → changes in ecosystem services

Waves
Baseline tide
Long-term sea-level rise
Currents
Wind

Waves
Baseline tide
Long-term sea-level rise
Currents
Wind

Attenuatio

N
Biogenic habitat
Abiotic morphology
'Hard' structures

Waves
Baseline tide
Long-term sea-level rise
Currents
Wind

Attenuatio

N
Biogenic habitat
Abiotic morphology
'Hard' structures

Hydrodynamic Output

Wave height
Mean water level
Runup
Storm surge

Waves
Baseline tide
Long-term sea-level rise
Currents
Wind

Attenuatio

N
Biogenic habitat
Abiotic morphology
'Hard' structures

Hydrodynamic Output

Wave height
Mean water level
Runup
Storm surge

Erosion Flooding

Near property and people

integrated valuation of environmental services and tradeoffs

Offshore Wind Energy

Water Quality

Renewable Energy

Coastal Erosion

Aquaculture

Production

Scenic Views

Fisheries

Moon Mercury Venus Sun Mars Jupiter Saturn

Earth

Be relevant, co-produce information

Explore multiple benefits, tradeoffs, change

People matter.

Social-Ecological System

Human

Service

Human locations & Activities

Production Function

Benefit

Tallis et al BioScience 2012

serviceshed boundary

point of water access

Water

--- serviceshed boundary

point of water access

ENVIRONMENT
University of Minnesota

Driven to Discover

ENVIRONMENT

University of Minnesota

Spatial Planning
(PES) Payment for Ecosystem Services
Climate Adaptation Planning
Development Impacts and Permitting
Restoration Planning
Corporate Risk Management

Ruckelshaus et al. 2013

0 5,000 10,000 Kilometers

inputs

climate erosivity

soil r erodibility f

mgmt factors retention efficiency

slope

biophysical supply

benefit to people

sediment export to the stream (mitigated by natural capital)

(avoided) sediment in drinking water, irrigation canals, hydropower

Serviceshed impact

Increased sediment in drinking water

High (1000%)

Med (65%)

Low (15%)

∆ supply

∆ service

Can lost services be restored

to the same people?

lose service even AFTER mitigation

ENVIRONMENT

University of Minnesota

Driven to Discover

Spatial Planning
(PES) Payment for Ecosystem Services
Climate Adaptation Planning
Development Impacts and Permitting
Restoration Planning
Corporate Risk Management

Ruckelshaus et al. 2013

5,000 10,000 Kilometers

Where matters.

Where are the most cost-effective investments for natural capital?

Which activities?

Where in the watershed?

Include uncertainty, dynamics

carbon sequestration with uncertainty

The NatCap Approach

- 1. Be relevant, co-produce information
- Explore multiple benefits, trade-offs, change
- 3. People matter
- 4. Where matters
- 5. Include dynamics, uncertainty

