### Lab 37

## Classroom Activity: Getting started with Azure ML Designer

#### What is Azure ML Designer?

- Azure ML Designer is a visual interface for building, testing, and deploying machine learning models on Azure.
- It's designed for data scientists, analysts, and developers to collaborate and create ML pipelines without writing code.
- With a drag-and-drop interface, it simplifies the ML workflow and accelerates model development.

#### **Key Features**

- Drag-and-Drop Interface: Easily connect and configure modules using a visual interface.
- Data Integration: Connect to various data sources, preprocess data, and explore it.
- Model Building: Build, train, and evaluate machine learning models.

#### **Steps**

- Step 1: Access Azure ML Studio: Log in ml.azure.com
- Step 2: Create a New Workspace: Create an Azure Machine Learning workspace by clicking on Create workspace.



 Step 3: Open Azure ML Designer: In your workspace, navigate to Azure ML Designer from the left pane.



• Step 4: Create a New Pipeline: Start building your ML pipeline.



• Step 5: Create a Classification model using prebuilt components:



• Step 6: Upload your dataset or use an existing dataset.

To upload a local dataset, click on Data Tab and then +.



Provide the respective details. Click on next.



#### Select From local files. Click Next.



Select default workspaceblobstore.

#### Create data asset Data type Select a datastore Choose a storage type and a datastore to upload your data to in the Ø Data source Datastore type \* Destination storage type Azure Blob Storage ① Create new datastore File or folder selection Settings Q Search datastore 6 Schema Storag Review 0 workspaceblobstore mayar workspaceartifactstore mayar

#### Click on Upload. Select your file and click next.



After Uploading the file next screen looks like this.



#### Select usable columns. Click Next.



Review and click on Create.



 Step 7: Search components from search bar and develop a model as follows:



• Step 8: Click on Configure & Submit.



Fill up the required details.



In the Runtime settings. Fill up the required details. Click on **Review + submit** and then **Submit**. If you don't have any Compute instance then create one. Steps are provided in the last.



After successful submission. Pipeline job will be submitted. Click on **View Details.** 



Once the run is successful, you can see the evaluation results by right-click on **Evaluate Model -> Preview Data -> Evaluation Results**.



#### Evaluation Results will be shown.



# To create a compute instance. Select Compute.



Select appropriate details. For our implementation, we will use a Memory optimized CPU: **Standard\_E4ds\_v4 4 cores, 32GB RAM, 150GB storage** 

#### Click on Create.

Now, provision will take a couple of minutes.