Primal problem

$$\underset{x}{\text{minimize}} \|x\|_{\infty}
\text{subject to } Ax = y.$$
(1)

Basis of the kernel of the matrix a^1, \ldots, a^K is they are linearly independent and if $Aa^k = 0$ for all $k = 1, \ldots, K$. Particular solution x^0 is any solution with $Ax^0 = y$. Then all solutions can be written by

$$\{x \mid Ax = y\} = \{x^0 + s^1 a^1 + \dots s^K a^K \mid s^1, \dots, s^K \in \mathbb{R}\}.$$

Idea

- Find a_1, \ldots, a_K offline.
- For given y find a single particular solution x^0
- Solve the equivalent problem

$$\underset{s}{\text{minimize}} \|x^0 + \sum_{k=1}^K s^k a^k\|_{\infty}. \tag{2}$$

1 Solve the previous using ADMM

Create matrix $B = [a^1, \dots, a^K]$ and vector $s = [s^1; \dots; s^K]$. Then

$$\sum_{k=1}^{K} s^k a^k = Bs.$$

Problem (2) is equivalent to

minimize
$$||z||_{\infty}$$

subject to $x^0 + Bs - z = 0$. (3)

Scaled augmented Lagrangian

$$L(s, z; \mu) = \|z\|_{\infty} + \frac{\rho}{2} \|x^0 + Bs - z + \mu\|^2$$

ADMM [1, Equations 3.5-3.7] is the iterative procedure

$$\begin{aligned} s^{k+1} &\leftarrow \operatorname*{argmin}_{s} L(\cdot, z^{k}; \mu^{k}) \\ z^{k+1} &\leftarrow \operatorname*{argmin}_{z} L(s^{k+1}, \cdot; \mu^{k}) \\ \mu^{k+1} &\leftarrow \mu^{k} + x^{0} + Bs^{k+1} - z^{k+1}. \end{aligned}$$

1.1 Update for s

Minimizing L with respect to s is equivalent to minimizing

$$L(s, z; \mu) = \frac{1}{2} ||x^0 + Bs - z^k + \mu^k||^2,$$

which is the standard quadratic regression with the closed-form solution

$$s^{k+1} = (B^{\top}B)^{-1}B^{\top}(z^k - x^0 + \mu^k).$$

Matrix $C := (B^{\top}B)^{-1}B^{\top}$ can be precomputed online.

1.2 Update for z

Define

$$c := x^0 + Bs^{k+1} - \mu^k.$$

Then we need to solve

$$\text{minimize } ||z||_{\infty} + \frac{\rho}{2} ||z^k - c||^2 \tag{4}$$

Theorem 1.1. Find the unique solution z_{max} of the equation

$$\sum_{i=1}^{n} \max\{|c_i| - z_{\max}, 0\} = \frac{1}{\rho}.$$

Then the solution of (4) equals to

$$z_i^{k+1} = \begin{cases} \operatorname{sign}(c_i) z_{\max} & \text{if } |c_i| > z_{\max}, \\ c_i & \text{if } |c_i| \le z_{\max}. \end{cases}$$

Proof. It is quite complicated.

1.3 Update for μ

Already in a closed form.

References

[1] S. Boyd, N. Parikh, and E. Chu. Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc, 2011.