

Computação Paralela com GPU -Aula 4 - CUDA

Agenda do Curso

- Aula 1:
 - Introducao (Nivelamento);
 - Threads;
 - Exemplos Threads.
- Aula 2:
 - OpenMP introducao;
 - OpenMP exemplos;
- Aula 3:
 - OpenCL Introducao;
 - OpenCL exemplos;
- Aula 4:
 - CUDA Introducao;
 - CUDA exemplos;

Agenda

- Introdução histórica Nvidia
 - Como Nvidia Começou
 - Nascimento CUDA
- O que é CUDA
 - Conceitos Importantes;
 - Execução de Código;
- Porque CUDA
 - Vantagens;
- Exemplos
 - Exemplos CUDA;

1. Introdução

Nvidia, como começou...

NVIDIA

- CEO e Fundador Taiwanês
 - Microchip designer na AMD
- Ano 1993
- Primeira placa NV10 em 1999
- Uma das pioneiras em hardware de processamento 3d para usuários domésticos.
- Nvidia faz o núcleo da placa de vídeo, existem outras empresas que projetam o resto.

Streaming processor

- Pensado na Stanford University
- Mudou a arquitetura de GPUs
- Stream Processing
 - Usado em GPU e FPGA;
 - Mais rápido;
 - Não se preocupa com sincronismo;

STANFORD UNIVERSITY

Daí vem CUDA...

- Compute Unified Device Architecture
 - Dá acesso direto ao conjunto de isntruções virtuais da GPU;
 - Dá acesso aos elementos de computação paralela.
- Ano 2006;
- Baseada e oferece suporte ao OpenCl.

2. O que é CUDA

Conceitos Gerais

- Arquitetura
 - Expõe o paralelismo da GPU para computação de propósito geral;
 - Mantém Performance;
- C/C++
 - Baseado no padrão C;
 - Pequenas modificações possibilitam computação heterogênea;
 - API fácil de usar e intuitiva.

Execução do Processo

- Execução de kernel
 - meukernel<<<1,1>>>();
- Gerenciar Memória da GPU
 - cudaMalloc();
 - cudaFree();
 - cudaMemcpy();
- Gerênciar comunicação e sincronização

Execução do Processo

- Execução de kernel
 - meukernel<<<1,1>>>();
- Gerenciar Memória da GPU
 - cudaMalloc();
 - cudaFree();
 - cudaMemcpy();
- Gerênciar comunicação e sincronização
 - Barreira:__syncthreads();

Fluxo de Execução

- Inicia Variáveis (Host e Device);
- Aloca espaço (Host e Device);
- Copia para o device;
- Roda o kernel;
- Copia os dados de volta para o host;
- Limpa a memória;

Tópicos importantes

- Computação Heterogênea;
- Blocos;
- Threads;
- Indexação;
- Memória Compartilhada;
- __syncthread();
- Operação Asíncrona;
- Processando Erros;
- Gerenciamento de dispositivos;

3. Porque CUDA

Agenda

- Energéticamente eficiente
 - Performance por watt;
- Tesla K20X VS Xeon
 - Em média 70% mas rápido.

4.

Exemplos

Alguns exemplos simples...

66

git clone https://github. com/gaburiero/jornada_parallel.git

Exemplos

1. CUDA samples

Bibliografia

- Wikipédia;
- CUDA Developer Zone:
 - https://developer.nvidia.com/cuda-educationtraining
 - https://developer.nvidia.com/how-to-cuda-c-cpp
- CUDA by Example: An Introduction to General-Purpose GPU Programming:
 - Book by Edward Kandrot and Jason Sanders

Obrigado!

Dúvidas?

Meu contato:

gabriel.carvalho@itec.ufpa.br

