

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 2 Sea E un espacio vectorial, $g, f_1, f_2, \ldots, f_k, (k+1)$ funcionales lineales sobre E tales que

$$\langle f_i, x \rangle = 0 \quad \forall i = 1, \dots, k \Longrightarrow \langle g, x \rangle = 0$$

Muestre que existen constante $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tales que $g = \sum_{i=1}^k \lambda_i f_i$. Es decir, g es combinación lineal de los f_i .

Demostración. Consideremos la función

$$\begin{split} H:&E\to\mathbb{R}^{k+1}\\ &x\mapsto (g(x),f_1(x),\ldots,f_k(x)). \end{split}$$

Si R(H) es el rango de la función H, sabemos que es un subespacio de \mathbb{R}^{k+1} , ademas como este es de dimensión finita y normado, R(H) es cerrado, es decir $\overline{R(H)} = R(H)$. Luego observe que $x_0 = (1,0,\ldots,0) \in \mathbb{R}^{k+1} \setminus R(H)$, ya que en caso contrario $(1,0,\ldots,0) = (g(x),f_1(x),\ldots,f_k(x))$ para algún $x \in E$, pero esto implica que $f_i(x) = 0$ para cada $i = 1,\ldots,k$ y g(x) = 1, pero por la hipótesis g(x) = 0, una contradicción. Así si consideramos los conjuntos R(H) y $\{x_0\}$, como ambos son no vacíos, convexos, disjuntos, el primero es cerrado y el segundo compacto, por la segunda forma geométrica de Hahn-Banach existe $f \in (\mathbb{R}^{k+1})^*$ tal que $f(x_0) \neq 0$ y f(y) = 0 para todo $y \in R(H)$.

Como los funcionales de \mathbb{R}^{k+1} se identifican con el producto interno usual por un vector, sabemos que existe $\beta=(\beta_0,\beta_1,\ldots,\beta_k)\in\mathbb{R}^{k+1}$ tal que $f(y)=\langle\beta,y\rangle$. donde $y\in\mathbb{R}^{k+1}$. Note que si $y=x_0$ tenemos que $\langle\beta,x_0\rangle\neq 0$, por ser el producto interno usual esto implica que $\beta_0\neq 0$. Ahora si $y\in R(H)$, es de la forma $y=(g(x),f_1(x),\ldots,f_k(x))$, para algún $x\in E$. Luego $\langle\beta,y\rangle=0$, pero por definición de producto interno esto es

$$\beta_0 g(x) + \sum_{i=1}^k \beta_i f_i(x) = 0,$$

como $\beta_0 \neq 0$ podemos despejar g(x), tal que

$$g(x) = \sum_{i=1}^{k} \frac{\beta_i}{\beta_0} f_i(x).$$

Así como para cada $x \in E$, hay un y como el anterior, si tomamos $\lambda_i = \frac{\beta_i}{\beta_0} \in \mathbb{R}$., obtenemos que

$$g = \sum_{i=1}^{k} \lambda_i f_i$$
.

 $O^{\circ}O$

Ejercicio 9 Sea E un espacio de Banach de dimensión infinita. Muestre que cada vecindad débil ★ del origen de E* no es acotada.

Ejercicio 11 Sea K un espacio métrico compacto que no es finito. Demuestre que C(K) (con la norma del supremo $\|\cdot\|_{L^{\infty}}$) no es reflexivo.

Ejercicio 15 Sea E un espacio de Banach reflexivo. Sea $\alpha: E \times E \to \mathbb{R}$ una forma bilineal que es continua, es decir, existe M > 0 tal que $|\alpha(x,y)| \le M \|x\| \|y\|$, para todo $x,y \in E$. Asuma que a es coerciva, esto es, existe $\alpha > 0$ tal que para todo $x \in E$

$$\alpha(x,x) \ge \alpha \|x\|^2$$

- (a) Dado $x \in E$, defina $A_x(y) = \alpha(x, y)$, para todo $y \in E$. Muestre que $A_x \in E^*$, para cada $x \in E$. Además, concluya que la función $x \mapsto A(x) = A_x$ satisface $A \in \mathcal{L}(E, E^*)$.
- (b) Muestre que A como en (a) es una función sobreyectiva.
- (c) Deduzca que para cada $f \in E^*$, existe un único $x \in E$ tal que $a(x,y) = \langle f,y \rangle$, $\forall y \in E$. Esto es, la forma bilineal coerciva a representa todo funcional lineal continuo.

Ejercicio 18 Sea E un espacio de Banach

- (a) Demuestre que existe un espacio topológico compacto K y una isometría de E en $(C(K), \|\cdot\|_{\infty})$.
- (b) Asuma que E es separable. Entonces muestre que existe una isometría de E en l^{∞} (vea el Ejercicio 1/4 para la definición del espacio).