Reinforcement		Learning Cheat Sheet	$_a^{s,s'}$	states an actions	$d \ \mathbf{w}, \mathbf{w}_t$	dimensionality – the number of components of d-vector of weights underlying an approximate
			$\overset{r}{\mathcal{S}}$	a reward set of all non-terminal states	$w_i,w_{t,i}$	value function the i th component of learnable wright vector ${f w}$
Summary of Notation			\mathcal{S}^+	set of all states, including terminal states	$v_{\mathbf{w}}(s)$	alternate notation for $\hat{v}(s, \mathbf{w})$
Math styles:		$egin{aligned} \mathcal{A}(s) \ \mathcal{R} \end{aligned}$	set of all actions in state s set of all possible rewards, a finite subset of $\mathbb R$	$\hat{q}(s,a,\mathbf{w})$	approximate value of state-action pair s,a given weight vector \mathbf{w}	
			\subset	subset of all possible rewards, a finite subset of \mathbb{R} subset of; $(\mathcal{R} \subset \mathbb{R})$	$\nabla \hat{v}(s,'vbw)$	column vector of partial derivatives of $\hat{v}(s, \mathbf{w})$ with
	\mathbb{P}	\mathbb{P}	€	is an element of; e.g. $(s \in \mathcal{S}, r \in \mathcal{R})$	$ abla \hat{q}(s,a,\mathbf{w})$	respect to \mathbf{w} column vector of partial derivatives of $\hat{q}(s, a, \mathbf{w})$
	P	\mathbf{P}				with respect to \mathbf{w}
	P	\mathbf{P}	t	discrete time step	$egin{aligned} \mathbf{x}(s) \ \mathbf{x}(s,a) \end{aligned}$	vector of features visible in state s
	P	\mathbf{P}	T, T(t)	final time step of an episode, or of the episode on- cluding time step t	$\mathbf{x}(s, a)$	vector of featres visible when in state s taking action s
	${\cal P}$	\mathbf{P}	$egin{array}{c} A_t \ S_t \end{array}$	action at tim et	$x_i(s), x_i(s, a)$	the <i>i</i> th component of $\mathbf{x}(s)$ or $\mathbf{x}(s,a)$
	Ŗ	\mathbf{P}	S_t	state at time t , typically due, stochastically, to S_{t-1} and A_{t-1}	$\mathbf{x}_t \\ \mathbf{w}^{\top} x$	short-hand for $\mathbf{x}(S_t)$ or $\mathbf{x}(S_t, A_t)$ inner product of vectors, $\mathbf{w}^{\top}x \stackrel{.}{=} \sum_i w_i x_i$; for
	P	\mathbf{P}	R_t	state at time t , typically due, stochastically, to S_{t-1}	** **	example $\hat{y}(s, \mathbf{w}) \doteq \mathbf{w}^{\top} x(s)$
	$ar{P}$	$\text{bar}\{P\}$	π	and A_{t-1} policy (decision-making-rule)	\mathbf{v},\mathbf{v}_t	example, $\hat{v}(s, \mathbf{w}) = \mathbf{w}^{\top} x(s)$ secondary d -vector of weights, used to learn \mathbf{w}
	\hat{P}	\hat{P}	$\pi(s)$	action taken in state s under $deterministic$ policy	$\mathbf{z}_t \\ \Theta, \ \Theta$	d-vector of eligibility traces at tim t parameter vector of target policy
	$ ilde{P}$	\tilde{P}	$\pi(a s)$	π probability of taking action a in state s under	$\pi(a s,\Theta)$	probability of taking action a in state s given parameter vector Θ
	$ec{P}$	$\operatorname{vec}\{P\}$		$stochastic$ policy π	$ abla_{\Theta} \\ abla \pi(a s,\Theta) $	policy corresponding to parameter vector Θ columb vector of partial derivatives of $\pi(a s,\Theta)$
	\overline{P}	$\operatorname{Voverline}\{P\}$	$_h^{G_t}$	return following time t		with respect to Θ
				horizon, the time step one look up to in a forward view	$J(\Theta) \ abla J(\Theta)$	performance measure for the policy π_{Θ} column vector of partial derivatives of $J(\Theta)$ with
≐		elationship that is true by definition	$G_{t:t+n}$	n-ste return from $t+1$ to $t+n$, or to h (discounted and corrected)	$h(s,a,\Theta)$	respect to Θ preference for selecting action a in state s based on
$pprox \propto$	approximately equal proportional to		$ar{G}_{t:h}$	flat return (undiscounted and uncorrected) from $t+1$ to h	b(a s)	behavior of policy used to select actions while
$\Pr\{X = x\}$	probabilit	by that a random variable X takes on	G_t^{λ}	λ -return		learning about target policy π
$X \sim p$	value x	variable X selected from distribution	G_t^{λ} G_t^{λ} $G_t^{\lambda s}$, $G_t^{\lambda a}$	truncated, corrected λ -return	$egin{matrix} b(s) \ b \end{matrix}$	a baseline function $g: \mathcal{S} \mapsto \mathbb{R}$ brnahcing factor for an MDP or search tree
	$p(x) \doteq Pr$	$r\{X=x\}$	$G_t^{\lambda s}, G_t^{\lambda a}$	λ -return, corrected by estimate state, or action, values	$ ho_{t:h}$	importance sapling ratio for time t through time h
$\mathbb{E}[X]$		value of random variable X, i.e., $\mathbb{E}[X] \doteq$		ratues	$\stackrel{ ho_t}{r_{-}}\!\!(\pi)$	importance sampling ratio for time t alone, $\rho \doteq \rho_{t:t}$ average reward (reward rate) for policy π
$\operatorname{argmax}_x f(x)$	$\sum_{x} p(x) \cdot x$ arg $\max_{x} f(x)$ x that maximizes $f(x)$		p(s',r s,a)	probability of transitioning to state s' and receiv-	\bar{R}_t	estimate of $r(\pi)$ at time t
lnx	natural lo	garithm of x		ing reward r when in state s and taking action a	$\mu(s)$	on-policy distribution over states
e^x , $exp(x)$	the base	of the natural logarithm, $e \approx 2.71828$, power x , $e^{lnx} = x$	p(s' s,a)	probability of transitioning to state s' when in state s and taking action a	$_{ v ^2_{\mu}}^{\mu}$	$ S $ -vector of the $\mu(s)$ for all $s \in S$ μ -weighted squared norm of value function v ,i.e.
\mathbb{R}	set of real	numbers	r(s,a)	expected reward when in state s and taking action	$\Pi^{\sigma}\Pi\mu$	$ v _{\mu}^{2} \doteq \sum_{s \in S} \mu(s) v(s)^{2}$
$\overline{f}:\mathcal{X} o\mathcal{Y}$	function from \mathcal{Y}	f from elements of set \mathcal{X} to elements fo	r(s,a,s')	a expected reward when in state s and taking action	$\mathop{\Pi}^{\eta(s)}$	$ v _{\mu}^2 = \sum_{s \in \mathcal{S}} \mu(s) v(s)^2$ expected number of visits to state s per episode
\leftarrow	assignment operator		I(s, u, s)	a, and transitioning to state s'	$\stackrel{\Pi}{B_{\pi}}$	projection operator for value functions Bellman operator for value functions
(a,b]					A	$d \times d \text{ matrix } \mathbf{A} \stackrel{\cdot}{=} \mathbb{E} \left[\mathbf{x} (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^{\top} \right]$
ϵ	probabilit greedy po	by of taking a random action in an ϵ -	$v_{\pi}(s)$	value of state s under policy π (expected-reward)	b	d-dimensional vector $\mathbf{b} \doteq \mathbb{E}\left[R_{t+1}\mathbf{x}_{t}\right]$
lpha,eta	step-size	parameters	$egin{aligned} v_*(s) \ q_\pi(s,a) \end{aligned}$	value of state s under the optimal policy value of state s and action a under policy π	$_{\mathbf{I}}^{\mathbf{w}_{TD}}$	TD fixed point $\mathbf{w}_{TD} = \mathbf{A}^{-1}\mathbf{b}$ (a <i>d</i> -vector) identity matrix
$\gamma \atop \lambda$	discount f	factor e parameter for eligibility traces		(expected-reward)	P	$ \mathcal{S} \times \mathcal{S} $ matrix of state transition probabilities un-
$\mathbb{1}_{predicate}$		function ($\mathbb{1}_{predicate} \doteq \mathbb{1}$ if the $predicate$	$q_*(s,a)$	value of state s and action a under the optimal policy	D	der π
	is true, els			poncy	X	$ S \times S $ diagonal matrix with μ on its diagonal $ S \times d$ matrix with the $\mathbf{x}(s)$ as its rows
In a multi-arm bandit problem: k number of actions(arms)			VV_{\bullet}	array estimates of state values function v_{π} or v_{*}	$ar{\delta}(s)$	Bellmann error (expected TD error) for $v_{\mathbf{w}}$ at state
$t \atop t$	discrete ti	ime step or play number	$_{Q,Q_t}^{V,V_t}$	array estimates of state-action values function q_{π}	$\bar{\delta}(s),BE$	s Bellmann error vector, with components $\delta_{\mathbf{w}}(s)$
$egin{array}{l} q_*(a) \ Q_t(a) \ N_t(a) \end{array}$	true value	e (expected reward) of action a	$V_t(s)$	or q_* expected approximate action value; for example,	$VE(\mathbf{w})$	mean square value error $V\bar{E}(\mathbf{w}) \doteq v_{vbw} - v_{\pi} _{\mu}^{2}$
$N_t(a)$	number if	at time t of $q_*(a)$ times action a has been selected up prior		$ar{V_t}(s) \doteq \sum_{-\pi} \pi(a a) Q_t(s,a)$	$ar{BE}(\mathbf{w})$	mean square Bellman error $\bar{BE}(\mathbf{w}) \doteq \bar{\delta}_{\mathbf{w}} _{\mu}^{2}$
	to time t		$U_t \ \delta_t$	target for estimate at time t	$Par{B}E(\mathbf{w})$	mean square projected Bellman error $PBE(\mathbf{w}) \doteq$
$H_t(a) \ \pi_t(a)$		reference for selecting action a at time t by of selecting action a at time t		temporal-difference (TD) error at t (a random varibale)	$Tar{D}E(\mathbf{w})$	$ \bar{\delta}_{\mathbf{w}} _{\mu}^{2}$ mean square temporal difference error $T\bar{D}E(\mathbf{w}) \doteq$
$egin{aligned} \pi_t(a) \ ar{R}_t \end{aligned}$		at time t of the expected reward given π_t	$egin{aligned} \delta^s_t,\delta^a_t\ n \end{aligned}$	state-and action-specific forms of the TD error	$DE(\mathbf{w})$	mean square temporal difference error $IDE(\mathbf{w}) = \bar{\delta}_{\mathbf{w}} _{\mu}^{2}$
In Markov Decision Processes:		\overline{n}	in n-step methods, n is the number of steps of bootstrapping	$ar{RE}(\mathbf{w})$	mean square return error $ar{RE}(\mathbf{w}) \doteq ar{\delta}_{\mathbf{w}} _{\mu}^2$	

1 Introduction

1.1 Recap

foo:

$$\mathbb{E}[X] = \sum_{x_i} x_i \cdot Pr\{X = x_i\}$$

foo:

$$\mathbb{E}[X|Y = y_j] = \sum_{x_i} x_i \cdot Pr\{X = x_i|Y = y_j\}$$

foo:

$$\mathbb{E}[X|Y = y_j] = \sum_{z_i} Pr\{Z = z_k | Y = y_j\} \cdot \mathbb{E}[X|Y = y_j, Z = z_k]$$
 (3)

2 Multi-armed Bandits

$$q_*(a) \doteq \text{value of action}$$

 $\mathbb{E}[T_t|A_t = a]$

3 Finite Markov Decision Process

3.1 Agent-Environment Interaction

- 4 Dynamic Programming
- 5 Monte Carlo Methods
- (1) 6 Temporal-Difference Learning
 - 7 n-step Bootstrapping
 - 8 Planning and Learning
 - 9 On Policy Prediction with Approximation
 - 10 On Policy Control with Approximation
 - 11 Off Policy Prediction with Approximation
 - 12 Eligibility Traces
 - 13 Policy Gradient Methods
 - 14 Psychology
 - 15 Neuroscience
 - 15.1 Neuroscience Basics

TODO

15.2 Reward Signals, Reinforcement Signals, Values and Prediction Errors

15.2.1 Reward Signals

In reinforcement learning reward defines the problem a reinforcement learning agent is trying to solve.

15.2.2 Reinforcement Signals

Reinforcement signals in reinforcement learning are are different from reward signals. The function of a reinforcement signal is to direct the changes a learning algorithm makes in an agent's policy, value estimates, or environment models. e.g.: TD error (TD method): $\delta_{t-1} = R_t + \gamma V(S_t) - V(S_{t-1})$

16 Application and case studies

17 Frontiers