

Point forecasts: means of the sample paths.

Point forecasts: means of the sample paths.

Prediction intervals: middle 80% of the sample paths at each forecast horizon.

Point forecasts: means of the sample paths.

Prediction intervals: middle 80% of the sample paths at each forecast horizon.

Quantile forecasts: Quantiles of the sample paths at each forecast horizon.

Quantile forecasts

Blue: Deciles for the ETS forecasts for the Australian monthly café turnover.

Quantile forecasts

Blue: Deciles for the ETS forecasts for the Australian monthly café turnover. **Black:** Observed values.

 $f_{p,t}$ = quantile forecast with prob. p at time t. y_t = observation at time t

 $f_{p,t}$ = quantile forecast with prob. p at time t. y_t = observation at time t

Quantile score

$$Q_{p,t} = \begin{cases} 2(1-p)|y_t - f_{p,t}|, & \text{if } y_t < f_{p,t} \\ 2p|y_t - f_{p,t}|, & \text{if } y_t \ge f_{p,t} \end{cases}$$

 $f_{p,t}$ = quantile forecast with prob. p at time t. y_t = observation at time t

Quantile score

$$Q_{p,t} = \begin{cases} 2(1-p)|y_t - f_{p,t}|, & \text{if } y_t < f_{p,t} \\ 2p|y_t - f_{p,t}|, & \text{if } y_t \ge f_{p,t} \end{cases}$$

 $f_{p,t}$ = quantile forecast with prob. p at time t. y_t = observation at time t

Quantile score

$$Q_{p,t} = \begin{cases} 2(1-p)|y_t - f_{p,t}|, & \text{if } y_t < f_{p,t} \\ 2p|y_t - f_{p,t}|, & \text{if } y_t \ge f_{p,t} \end{cases}$$

- Low Q_p is good
- Multiplier of 2 often omitted, but useful for interpretation
- lacksquare Q_p like absolute error (weighted to account for likely exceedance)
- Average Q_p = CRPS (Continuous Rank Probability Score)

9 2006 Sep

... with 134 more rows

10 2006 Oct

##

2039.

2113.

```
cafe %>%
 filter(year(date) <= 2017)
## # A tsibble: 144 x 2 [1M]
##
         date turnover
                 <dbl>
##
        <mth>
##
    1 2006 Jan 1914.
   2 2006 Feb 1750.
##
   3 2006 Mar
              1984.
##
    4 2006 Apr
                1966.
##
    5 2006 May
                 2005.
##
   6 2006 Jun
                 1944.
##
   7 2006 Jul
                 2019.
##
   8 2006 Aug
                 2043.
##
```

```
cafe %>%
  filter(year(date) <= 2017) %>%
  model(
   ETS = ETS(turnover),
   ARIMA = ARIMA(turnover ~ pdq(d=1) + PDQ(D=1))
)

## # A mable: 1 x 2
```

```
## # A mable: 1 x 2
## ETS ARIMA
## <model> <model>
## 1 <ETS(M,A,M)> <ARIMA(0,1,1)(0,1,1)[12]>
```

```
cafe %>%
 filter(year(date) <= 2017) %>%
  model (
    ETS = ETS(turnover).
    ARIMA = ARIMA(turnover \sim pdq(d=1) + PDQ(D=1))
  ) %>%
 forecast(h = "2 years")
## # A fable: 48 x 4 [1M]
## # Key: .model [2]
```

```
.model date turnover .mean
##
## <chr> <mth> <dist> <dbl>
           2018 Jan N(3749, 4324) 3749.
## 1 ETS
   2 ETS
           2018 Feb N(3432, 4943) 3432.
##
   3 ETS
           2018 Mar N(3799, 7766) 3799.
##
           2018 Apr N(3731, 9229) 3731.
## 4 ETS
##
   5 ETS
           2018 May N(3782, 11359) 3782.
## 6 ETS
           2018 Jun N(3663 12505) 3663
```

```
cafe %>%
 filter(year(date) <= 2017) %>%
  model (
   ETS = ETS(turnover),
    ARIMA = ARIMA(turnover \sim pdq(d=1) + PDQ(D=1))
  ) %>%
 forecast(h = "2 vears") %>%
  accuracy(cafe, measures = list(CRPS = CRPS))
## # A tibble: 2 x 3
```

```
## .model .type CRPS
## <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr>
```

Ensemble forecasting involves combining the forecast distributions from multiple models.

- "All models are wrong, but some are useful" (George Box, 1976)
- Allows diverse models to be included, while reducing impact of any specific model.
- Allows uncertainty of model selection to be incorporated.

##

##

4 ETS

6 ETS

5 ETS

7 FTS

```
cafe %>% filter(year(date) <= 2017) %>%
 model(
   ETS = ETS(turnover),
   ARIMA = ARIMA(turnover \sim pdq(d=1) + PDQ(D=1))
 ) %>%
 forecast(h = "2 years")
## # A fable: 48 x 4 [1M]
## # Key: .model [2]
##
    .model date
                    turnover .mean
## <chr> <mth>
                         <dist> <dbl>
## 1 ETS
           2018 Jan N(3749, 4324) 3749.
           2018 Feb N(3432, 4943) 3432.
## 2 ETS
   3 ETS
           2018 Mar N(3799, 7766) 3799.
##
```

2018 Apr N(3731, 9229) 3731.

2018 May N(3782, 11359) 3782.

2018 Jun N(3663, 12505) 3663.

2018 Inl N(3876 16166) 3876

##

##

4 ETS

6 ETS

5 ETS

7 FTS

```
cafe %>% filter(year(date) <= 2017) %>%
 model(
   ETS = ETS(turnover),
   ARIMA = ARIMA(turnover \sim pdq(d=1) + PDQ(D=1))
 ) %>%
 forecast(h = "2 years") -> fc
## # A fable: 48 x 4 [1M]
## # Key: .model [2]
##
    .model date turnover .mean
## <chr> <mth>
                        <dist> <dbl>
## 1 ETS
           2018 Jan N(3749, 4324) 3749.
           2018 Feb N(3432, 4943) 3432.
## 2 ETS
   3 ETS
           2018 Mar N(3799, 7766) 3799.
##
```

2018 Apr N(3731, 9229) 3731.

2018 May N(3782, 11359) 3782.

2018 Jun N(3663, 12505) 3663.

2018 Inl N(3876 16166) 3876

```
fc %>%
summarise(
  turnover = dist_mixture(turnover[1], turnover[2], weights=c(0.5,0.5)),
  .mean = mean(turnover)
) %>%
as_fable(response = "turnover", distribution = turnover)
```

```
## # A fable: 24 x 3 [1M]
##
         date turnover .mean
##
        <mth> <dist> <dbl>
    1 2018 Jan mixture(n=2) 3770.
##
   2 2018 Feb mixture(n=2) 3457.
##
   3 2018 Mar mixture(n=2) 3799.
##
   4 2018 Apr mixture(n=2) 3743.
##
   5 2018 May mixture(n=2) 3782.
##
   6 2018 Jun mixture(n=2) 3681.
##
##
   7 2018 Jul mixture(n=2) 3884.
## 8 2018 Aug mixture(n=2) 3923
```

19

8 2018 Aug mixture(n=2) 3923

```
fc %>%
summarise(
  turnover = dist_mixture(turnover[1], turnover[2], weights=c(0.5,0.5)),
  .mean = mean(turnover)
) %>%
as_fable(response = "turnover", distribution = turnover) -> ensemble
```

```
## # A fable: 24 x 3 [1M]
##
         date turnover .mean
##
        <mth> <dist> <dbl>
    1 2018 Jan mixture(n=2) 3770.
##
   2 2018 Feb mixture(n=2) 3457.
##
   3 2018 Mar mixture(n=2) 3799.
##
   4 2018 Apr mixture(n=2) 3743.
##
   5 2018 May mixture(n=2) 3782.
##
   6 2018 Jun mixture(n=2) 3681.
##
   7 2018 Jul mixture(n=2) 3884.
```

```
ensemble %>%
accuracy(cafe, measures = list(CRPS = CRPS))
```

```
## # A tibble: 1 x 2
## .type CRPS
## <chr> <dbl>
## 1 Test 59.8
```

■ In this case, the ensemble forecasts are slightly worse than the ETS forecasts.

Combination forecasting

Combination forecasting is a related idea that is more widely used in the general forecasting community. This involves taking a weighted average of the forecasts produced from the component models. Often a simple average is used. For more than 50 years we have known that combination forecasting improves forecast accuracy [@Bates1969-dp:@Clemen1989-fz]. One of the reasons for this is that the combination decreases the variance of the forecasts [@Hibon2005-cv] by reducing the uncertainty associated with selecting a particular model.

Combinations are almost always used to produce point forecasts, not 22

Conclusions

I have described several tools for forecasting that are likely to be increasingly used in business forecasting in the future.

- Simulated future sample paths allow us to study how the future might evolve, and allow us to answer more complicated forecasting questions than is possible with analytical methods.
- Quantile forecasts can be produced from these simulated future sample paths and provide a way of quantifying the forecast distributions.
- Quantile scores allow us to evaluate quantile forecasts.
 Averaging quantile scores gives the CRPS which allows us to

Supplements

All the forecasts and calculations produced in this chapter were obtained with the fable package for R. The code used is available at https://github.com/robjhyndman/quantile_ensembles.