Математический анализ. Практика

Александр Сергеев

1 Урок 05.09.2022

Пусть есть функция f(x)

Определение

f(x) - Инъекция, если $\forall x_0 \ \overline{\exists x: f(x) = f(x_0)}$

Определение

f(x) - Сюръекция, если $\forall y_0 \; \exists x : f(x) = y_0$

Определение

f(x) - Биекция, если $\forall y_0 \; \exists ! x : f(x) = y_0$ (Сюръекция+Инъекция)

Биекция из A в $B \Leftrightarrow |A| = |B|$

Сравним мощности групп чисел:

1)
$$|\mathbb{Z}| = |\mathbb{N}|$$

Доказательство

Получим биекцию, сопоставив значениям 2k из $\mathbb N$ значения k из $\mathbb Z$, а значениям 2k+1 из $\mathbb N$ значения -(1+k) из $\mathbb Z$. Ч.т.д.

$$2) |\mathbb{Q}| = |\mathbb{N}|$$

Доказательство

Представим числа из \mathbb{Q} как $\frac{p}{q}$, где p - целое, q - положительное. Составим таблицу, отложив по горизонтали p, а по вертикали q:

	0	1	-1	2	-2	3
1	1	2	3	5	8	11
2		4	6			
3		7	9			
4		10				
5						

Мы получили бесконечную таблицу всех значений \mathbb{Q} . Пронумеруем ее по диагонали в направлении сверху вниз справа налево, пропуская повторяющиеся значения. Мы получили биекцию из \mathbb{N} в \mathbb{Q} . Отсюда два множества равномощны, ч.т.д.

$$3)|\mathbb{R}| = |\mathbb{N}|$$

Доказательство

Выберем X = [0; 1), где все числа $x \in X$ содержат в своей записи только 0 и 1.

Пусть $|X| = |\mathbb{N}|$.

Сопоставим каждому числу из \mathbb{N} число из X.

Мы получили биекцию:

Возьмем число $0, \overline{r_{11}} \ \overline{r_{22}} \ \overline{r_{33}} \ \overline{r_{44}} \dots$, где $\overline{x} = 1-x$. Это число отличается как минимум одной цифрой от каждого числа в таблице. При этом в нем нет (9), что гарантирует, что каждое число в X может быть представлено единственным способом. Тогда мы получили число, не содержащееся в таблице. Отсюда $|X| > |\mathbb{N}| \Rightarrow |\mathbb{R}| > |\mathbb{N}|$, ч.т.д.

Свойства мощности:

1.
$$|A| = \infty \Rightarrow |A^2| = |A|$$

- 2. $|2^A| > |A|$, где 2^A булеан множество всех подмножеств A.
- 3. Существует инъекция из A в B Существует инъекция из B в A $\} \Rightarrow |A| = |B|$

2 Урок 12.09.2022

Последовательности

Методы нахождения пределов:

- 1. Теорема о двух городовых
- 2. Линейность:

$$x_n \to A, y_n \to B, \alpha, \beta \in \mathbb{R} \Rightarrow \alpha x_n + \beta y_n \to \alpha A + \beta B$$
 $\$x_n \to A, y_n \to B \Rightarrow x_n y_n \to AB$ $\$x_n \to A, y_n \to B \Rightarrow \frac{x_n}{y_n} \to \frac{A}{B},$ если $B \neq 0 \land \exists \, N: \, \, \forall \, n > N \, \, y_n \neq 0$

3. Доказательство существование предела: Пусть x_n монотонно возрастающая(убывающая) последовательность, ограниченная сверху(снизу). Тогда x_n сходится.

$$\lim_{n \to +\infty} \frac{\ln n}{n} = 0$$

3 Урок 19.09.2022

Частичный предел

Определение

$$x_n \sim y_n \Leftrightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = 1$$
 x_n, y_n - эквивалентные последовательности

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 - первый замечательный предел

Правило Лопиталя:

$$f(x), g(x) \to \infty \Rightarrow \lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$$

Определение

Подпоследовательность - упорядоченное подмножество с индуцированным порядком (т.е. если в последовательности элемента стояли в определенном порядке, то те элементы, которые попали в подпоследовательность, стоят в ней в том же порядке)

Определение

Пусть x_{n_k} - подпоследовательность x_n . Тогда $x_{n_k} \xrightarrow[n_k \to \infty]{} a$ - частичный $npe \partial e \Lambda x_n$

Определение

 $\sup A$ - наименьшая верхняя граница A $\inf A$ - наибольшая нижняя граница A $\sup A, \inf A \in \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ $\sup A$, inf A всегда существуют.

 $\sup\{$ частичные пределы $x_n\}$ - верхний предел $\inf\{$ частичные пределы $x_n\}$ - нижние предел

Урок 17.10.2022 Предел функии

 $\forall \varepsilon > 0 \; \exists \delta \; \forall x : \; 0 < \rho(x, a) < \delta \quad \rho(f(x), A) < 0$ f(x) - непрерывна в a, если $\lim f(x) = f(a)$ Для непрерывной f(x) $\forall \varepsilon > 0$ $\exists \delta \ \forall x: \ \rho(x,a) < \delta \quad \rho(f(x),A) < 0$ (в том числе при x = a)

Если F непрерывна, то $\lim_{x\to a} F(f(x)) = F(\lim_{x\to a} f(x))$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$$

Пусть a:a - предельная в D_f и не содержится там Тогда а - особая точка

а - устранимая, если существует предел в точке а. Тогда определим

$$f(x) = \begin{cases} f(x), & x \neq a \\ \lim_{x \to a} f(x), & x = a \end{cases}$$
 - устранение особенностей

$$f'(x) = \lim_{\partial x \to 0} \frac{f(x + \partial x) - f(x)}{\partial x}$$

$$f'(x) = \lim_{\partial x \to 0} \frac{f(x + \partial x) - f(x)}{\partial x}$$
$$f(x + h) = f(x) + hf'(x) + g(h), \text{ где } g(h) = f(x + h) - f(x) - hf'(x)$$

$$\lim_{h\to 0} \frac{g(h)}{h} = 0 \Leftrightarrow g(h) = o(h)$$
(на самом деле $g(h) \in o(h)$, но так не пишут)

Тогда
$$\exists f'(x) \to f(x+h) = f(x) + hf'(x) + o(h)$$

Отсюда $e^{x+h} = e^x + he^x + o(h)$
 $e^h = 1 + h + o(h)$

$$\sin h = \sin(0+h) = \sin 0 + h \sin' x + o(x) = x + o(x) \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x + o(x)}{x} = 1$$

5 Урок 24.10.2022

1.
$$o(x) + o(x) = o(x)$$

2.
$$o(o(x)) = o(x)$$

3.
$$xo(x) = o(x^2)$$

4.
$$o(1) = \{f : f \to 0\}$$

5.
$$o(x^3) = o(x)$$
, но не наоборот

6.
$$\frac{1+o(1)}{1+o(1)} = 1+o(1)$$

7.
$$o(x) + o(x^2) = o(x)$$

$$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Если функция дифференцируема:

$$f(x) = f(a) + f'(a)(x-a) + o(x-a)$$
, где $o(x-a) = f(x) - f(a) - f'(a)(x-a)$

6 Урок 14.11.2022

Определение

Функция f называется $\partial u \phi \phi$ еренцируемой в точке x, если $f(x+\delta x)-f(x)=A\delta x+o(\delta x)$, где A - константа

Если f дифференцируема, то A = f'(x)

 $A\delta x$ - $\partial u\phi\phi$ еренциал в точке x

Свойства дифференциала dx

1.
$$d(\alpha f + \beta g) = \alpha df + \beta dg$$

2.
$$d(fg) = f dg + g df$$
 - Формула Лейбница

3.
$$d1 = d1 \cdot 1 = 1 d1 + 1 d1$$

 $d1 = 0$

4.
$$d(dx) = 0$$

$$\mathrm{d}(\mathrm{d}\,f)=\mathrm{d}^2\,f=\mathrm{d}(f'(x)\,\mathrm{d}\,x)=(\mathrm{d}\,x)\,\mathrm{d}\,f'(x)+f'(x)\,\mathrm{d}(\mathrm{d}\,x)=f''(x)(\mathrm{d}\,x)^2$$
 Определение

f - гладкая, если она дифференцируема до бесконечности (на практике - дифференцируема столько, сколько нужно)

Урок 5.12.2022 7

Функция возрастает в x_* , если в некоторой выколотой окрестности x_* $\frac{f(x) - f(x_*)}{x - x_*} \ge 0$

$$x - x_*$$
 Тогда $f'(x_*) \ge 0$

Если $f'(x_*) > 0$, то функция возрастает