Biomedical Engineering Degree

2. ESTIMATION

Felipe Alonso Atienza ⊠felipe.alonso@urjc.es **У**@FelipeURJC

Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey Juan Carlos

References

- R. Bernard. Fundamentals of Biostatistics. Ed.: Thompson. Chapter 6
- 2 B. Caffo. Statistical Inference for Data Science. Leanpub. Chapter 7
- **1** D. Díez, M Cetinkaya-Rundel and CD Barr. *OpenIntro Statistics*. Chapter 5.

Outline

Introduction

- Point Estimation
 - Estimation of the mean
 - Estimation of the variance

Interval Estimation

Example

We want to measure the average height of the university students **population** in Spain. Who would you do it?

- You measure the height of each university student in Spain and then average the results.
- You measure the height of a sample of university student in Spain and then average the results.
 - ▶ How to choose this sample? How many samples would you need?
 - ▶ How close would our **estimation** be to the real value?
 - How likely would our estimate be within a certain range of values?
- § You assume that the height of university student in Spain follows a Normal distribution with mean value μ and variance σ^2
 - Does this assumption help? Is this a valid assumption?
 - ▶ How can we estimate μ ? and σ^2 ?
 - Under this assumption, can we compare the height of students from Valencia versus students from Bilbao?

Mind map

- Statistical inference: is the process and result of drawing conclusions about a population from **one or more samples**
- Point estimation: estimating the values of specific population parameters
- Interval estimation: specify a range within which the parameter values are likely to fall
- Hypothesis testing: is concerned with testing whether the value of a population parameter is equal to some specific value.

Random sample vs population

- Population, reference, or target refer the group we want to study.
- From the population, a sample is drawn at random (random sample) to select some members of the population such that each member is independently chosen.
- If we can take action on the sampling process, we must consider:
 - Building a sample big enough to have reliable data
 - Building a representative sample of the population
 - ★ Example: randomized clinical trials

Outline

Introduction

- Point Estimation
 - Estimation of the mean
 - Estimation of the variance

Interval Estimation

Point estimation

- We will study two estimators for different conditions and distributions:
 - Estimation of the mean
 - Estimation of the variance

Given a specific random sample x_1, x_2, \ldots, x_n , how can we estimate μ and σ^2 ?

- We will not study how to mathematically derived (robust) estimators using different criteria like
 - Maximum likelihood, maximum a posteriori
 - Method of moments
 - Least squares

Estimation of the mean

Given a specific random sample x_1, x_2, \ldots, x_n , how can we estimate μ ?

• Answer: use the sample mean

$$\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- But, why? Let's examine its properties ...
- ... OK, but, how can I do it? Use the sampling distribution

Sampling distribution

We must forget about our particular sample for the moment and consider the set of all possible samples of size n that could have been selected from the population

Sampling distributions are never observed, but we keep them in mind

Example

- Sorry, but I do not believe you, my estimator is better than yours:
 - a. Mine: $\hat{\mu}_1 = \frac{1}{n} \sum_{n=i}^n x_i$
 - b. Yours: $\hat{\mu}_2 = x_1$

Exercise 1: Let's run some simulations

- Represent the sampling distribution of both estimators. To do so, consider:
 - ① The population follows a Normal distribution with $\mu=2$ and $\sigma^2=2$
 - ② Use n = 10

Exercise 1 (cont.): Let's do some thinking (it is free!)

- Which is the best estimator? and why?
- ullet What if we increase/decrease n, how does it affect to our results?

Properties of an estimator

Take-home message

The estimator $\hat{\theta}$ of a distribution parameter θ is always a random variable

- Thus, properties of an estimator have to be assessed statistically:
 - Analytically, through its pdf
 - ► Computationally, through computer simulations (Monte Carlo methods)

Bias

$$b = E[\hat{\theta}] - \theta$$

where b is the **bias**. If b=0 we say that $\hat{\theta}$ is **unbiased**

Variance

$$\operatorname{Var}(\hat{\theta}) = E\left[\left(\hat{\theta} - E[\hat{\theta}]\right)^2\right]$$

Bias vs Variance

Example

Calculate the bias and variance of our estimators

- a. Mine: $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n x_i$
- b. Yours: $\hat{\mu}_2 = x_1$

Bias (example solution)

ullet As for $\hat{\mu}_1$

$$E[\hat{\mu}_1] = E\left[\frac{1}{n}\sum_{i=1}^n x_i\right] = \frac{1}{n}\sum_{i=1}^n E[x_i] = \frac{1}{n}\sum_{n=1}^n \mu = \mu$$

Thus, $\hat{\mu}_1$ is **unbiased**.

• The estimator $\hat{\mu}_2$

$$E[\hat{\mu}_2] = E[x_1] = \mu$$

is also unbiased

- In terms of bias, both estimators are equally good.
- If both are unbiased, which one should I choose?

Variance (example solution)

ullet Variance for $\hat{\mu}_1$ is

$$\operatorname{Var}(\hat{\mu}_1) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^n x_i\right) = \frac{1}{n^2}\sum_{i=1}^n \operatorname{Var}(x_i) = \frac{1}{n^2}\sum_{i=1}^n \sigma^2 = \frac{\sigma^2}{n}$$

ullet And for $\hat{\mu}_2$

$$\operatorname{Var}(\hat{\mu}_2) = \operatorname{Var}(x_1) = \sigma^2$$

ullet So, $\hat{\mu}_1$ is better than $\hat{\mu}_2$

Standard error (se) of the mean

$$se = \frac{\sigma}{\sqrt{n}}$$

Exercise 2

Let X be a r.v. that follows a $\mathcal{N}(\mu,\sigma)$ with $\mu=100$ and $\sigma=15$. What's the sampling distribution of \bar{X} for different values of n? Check your analytical solution with computer simulations.

Exercise 3

Let X be a r.v. that follows a uniform $\mathcal{U}(a,b)$ with a=150 and b=190. What's the sampling distribution of \bar{X} for different values of n? Check your analytical solution with computer simulations.

Central-Limit Theorem

• Let X_1, X_2, \ldots, X_n be a random sample from some population with mean μ and variance σ^2 .

For large n (n>30), $\bar{X}\sim\mathcal{N}(\mu,\sigma^2/n)$ even if the underlying distribution of individual observations in the population is not normal.

• If we standardized the sampling distribution then

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

follows a $\mathcal{N}(0,1)$

Estimation of the variance

Given a specific random sample x_1, x_2, \ldots, x_n , how can we estimate σ^2 ?

• Answer: use the (corrected) sample variance

$$\hat{\sigma}^2 = s_*^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the sample mean

- This constitutes an **unbiased** estimator of the variance. Proofs here and here.
- In Python, we can use np.std(x,ddof=1) for calculating the (corrected) sample standard deviation s_{\ast}

Outline

Introduction

- Point Estimation
 - Estimation of the mean
 - Estimation of the variance

Interval Estimation