Course	1014402027	Course	DISCORTE MANTIFEMANTICS FOR ENCINEERS	Course	DC	Desis	L	T	Р	С
Code	18MAB302T	Name	DISCRTE MATHEMATICS FOR ENGINEERS	Category	R2	Basic Sciences	3	1	0	4

Pre- requisite Courses	18MAB102T		Co-requisite Courses	NII	Progressive Courses	Nil
Course Offering Department		Mathematics		Data Book / Codes/Standards	Nil	

Ration	Learning ale(CLR):	The purpose of learning this course is:	Le	earn	ing			F	Prog	grar	n Le	earn	ing	Ou	tcor	nes	(PI	LO)		
CLR-1:	Apply set theory storage, commu	r, functions and relations in nication and manipulation of data	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Apply number theory concepts in computer engineering such as public key crypto system.																				
CLR-3:		tical reasoning in computer science f computer circuit, verification of																		
	Learning about grings and fields. problems on cootheory.	Solving										lity								
CLR-5:	Using graph mod shortest path pr	dels in computer network and oblems Apply graph coloring in ing scheduling and assignments	Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	owledge	sis	opment	Design, Research	sage	re	Sustainability		Individual & Team Work	_	Finance	ing			
CLR-6:	Apply mathema analysis, algebra	tical reasoning, combinatorial iic structures and graph theory in atical problems as applied to the	of Thinkir	ted Profic	ted Attai	Engineering Knowledge	Problem Analysis	Design & Development		Modern Tool Usage	ty & Culture	Environment &		dual & Te	Communication	Project Mgt. & Finance	Life Long Learning	1	2	3
Course L Outcom		At the end of this course, learners will be able to:	Level	Expec	Ехрес	Engin	Probl	Desig	Analysis,	Mode	Society &	Enviro	Ethics	Indivi	Comn	Proje	Life L	PSO - 1	PSO -	PSO -
CLO-1 :	problem solving	in sets, relations and functions.	3	85	80	М	Н	L	-	-	1	1	-	М	-	-	Н	-	-	-
CLO-2 :		is in basic counting principles, ion and number theory.	3	85	80	М	Н	-	М	М	-	ı	-	М	L	-	Н	-	-	-
CLO-3 :	theory and matl	s of mathematical logic, inference nematical induction.	3	85	80	Μ	Н	-	-	-	-	ı	-	М	-	-	Н	-	-	-
CLO-4 :		dge in groups, rings and fields. is in coding theory.	3	85	80	Μ	Н	-	M	-	-	1	-	М	L	-	Н	-	-	-
CLO-5 :	_	dge in graphs and properties. trees, minimum spanning trees	3	85	80	M	Н	L	-	_	-	-	_	М	-	_	Н	_	_	-
CLO-6 :	Learning mathe	matical reasoning, combinatorial aic structures and graph theory	3	85	80	L	L	L	Н	н	Н	L	Н	Н	Н	-	н	-	-	-

Duration (hour)	12	Learning Unit / Module 1	Proposed Date & Hour	Conducted Date & Hour
S-1		Sets and examples. Operations on sets.		
		Laws of Set theory- Proving set identities using laws of set theory.		
	SLO-1	Partition of a set - examples.		

S-2	SLO- 2	Cartesian product of sets.		
		Relations - Properties.		
	SLO- 1			
S-3	CI O. 2			
	SLO- 2	Equivalence relation and partial order relation		
S-4	SLO-1			
3-4	SLO-2	Problem solving using tutorial sheet 1		
	SLO- 1	Poset - Graphs of relations Digraphs		
S-5				
3-3	SLO- 2	Hasse diagram - problems.		
		, and a		
	SLO- 1			
S-6		Closures of relations- examples		
	SLO- 2	Transitive closure and Warshall's algorithm		
	310 2	Transitive closure and warshall's algorithm		
S-7	SLO- 1	Functions - definitions, domain and range of a function-		
	SLO- 2	examples Types of functions- one- one and onto- bijection- examples.		
6.0	SLO- 2	Durch laws and sing suring to the site lab and 2		
S-8	SLO-2	Problem solving using tutorial sheet 2		
	SLO- 1	Composition of functions -examples		
S-9				
	SLO- 2	Associatiivity of composition of functions - Identity and		
		inverse of functions		
	SLO- 1	Necessary and sufficiency of existence of inverse of a function.		
S-10	SLO- 2	Uniqueness of identity		
	SLO- 1	Inverse of composition		
S-11				
311	SLO- 2	Checking if a given function is bijection and if so, finding inverse,		
		domain and range- problems.		
S-12	SLO-1	Problem solving using tutorial sheet 3 Applications of sets, relations, functions		
	SLO- 2	Applications of sets, relations, functions		
Duration (hour)	12	Learning Unit -II/ Module 2	Proposed Date & Hour	Conducted Date & Hour
	SLO-1	Permutation and Combination		
S-1	SLO-2	Simple problems using addition and product rules.		
	SLO-1	Principle of inclusion and exclusion		
S-2	SLO-2	Problems using inclusion and exclusion principle.		
	SLO-1	Pigeon-hole principle and generalized pigeon-hole principle.		
S-3	SLO-2	Problems on pigeon-hole principle.		
			<u> </u>	

S-4	SLO-1	Problem solving using tutorial sheet 4		
		Divisibility and prime numbers.		
S-5	SLO-2	Fundamental theorem of arithmetic – problems		
	SLO-1	Finding prime factorization of a given number		
S-6	SLO-2	Some more problems using fundamental theorem of arithmetic.		
S-7	SLO-1	Division algorithm- greatest common divisor and properties- problems.		
	SLO-2	Euclid's algorithm for finding GCD(a,b)- examples		
S-8	SLO-1 SLO-2	Problem solving using tutorial sheet 5		
S-9	SLO-1	Problems using Euclid's algorithm.		
	SLO-2	Least common Multiple(LCM)- relation between LCM and GCD		
S-10	SLO-1	Problems on LCM.		
3 10	SLO-2	Finding LCM and GCD using prime factorization.		
S-11	SLO-1	Finding GCD and LCM using Euclid's algorithm		
3-11	SLO-2	More problems on GCD and LCM.		
S-12	SLO-1	Problem solving using tutorial sheet 6 Application of permutation and combinations, Pigeon-hole		
	SLO-2 principle			
Duration (hour)	12	Learning Unit -III/ Module 3	Proposed Date & Hour	Conducted Date & Hour
	SLO-1	Propositions and Logical operators		
S-1	SLO-2	Truth values and truth tables.		
	SLO-1	Propositions generated by a set-Symbolic writing using conditional and biconditional connectives.		
S-2	SLO-2	Writing converse inverse and contra positive of a given conditional.		
	SLO-1	Tautology, contradiction and contingency-examples.		
S-3	SLO-2	Proving tautology and contradiction using truth table method.		
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 7		
	SLO-1	Equivalences – truth table method to prove equivalence		
S-5	SLO-2	Implications- truth table method to prove implications.		
	SLO-1	Laws of logic and some equivalences.		
S-6	SLO-2	Proving equivalences and implications using laws of logic.		
	SLO-1	Rules of inference – Rule P, Rule T and Rule CP		
S-7	SLO-2	Direct proofs		

S-8	SLO-2	Problem solving using tutorial sheet 8		
	SLO-1	Problems using direct method.		
S-9	SLO-2	Problems using CP rule.		
	SLO-1	Inconsistency and indirect method of proof.		
S-10	SLO-2	Inconsistent premises and proof by contradiction (indirect method).		
S-11	SLO-1	Principle of mathematical induction.		
	SLO-1	Problems based on Mathematical Induction		
S-12		Problem solving using tutorial sheet 9 Application of propositional calculus in Engineering.		
Duration (hour)	12	Learning Unit -IV/ Module 4	Proposed Date & Hour	Conducted Date & Hour
6.1		Binary operation on a set- Groups and axioms of groups		
S-1	SLO-2	Properties of groups.		
S-2	SLO-1	Permutation group, equivalence classes with addition modulo m and multiplication modulo m.		
32		Cyclic groups and properties. Subgroups and necessary and sufficiency of a subset to be a		
S-3	2LO-1	subgroup		
		Group homomorphism and properties.		
S-4	SLO-1	Problem solving Tutorial sheet 10		
3-4		Rings- definition and examplesZero devisors		
S-5		Integral domain- definition , examples and properties		
		Fields – definition, examples and properties		
S-6		Coding Theory – Encoders and decoders- Hamming codes		
S-7	2LO-1	Hamming distance. Error detected by an encoding function		
		examples		
S-8	SLO-1	Problem solving using tutorial sheet 11		
		Error correction using matrices.		
S-9		Problems on error correction using matrices		
	SLO-1	Group codes-error correction in group codes-parity check		
S-10		matrix Problems on error correction in group codes.		
		Procedure for decoding group codes		
S-11		Problems on decoding group codes		
3 11		Problem solving using tutorial sheet 12		
S-12		Applications of groups and coding theory in Engineering.		
Duration		Learning Unit -V/ Module 5	Proposed Date & Hour	Conducted Date & Hour
(hour)			oposea Date & noui	Conducted Date & Hour
S-1	SLO-1	Basic concepts - Basic Definitions- degree and Hand shaking theorem.		
2-1	SLO-2	Some Special Graphs – complete, regular and bipartite graphs.		
	SLO-1	Isomorphism of graphs – necessary conditions		
S-2	SLO- 2	lsomorphism- simple examples.		

	SLO-1	Paths, cycles and circuits
S-3	SLO- 2	Connectivity in undirected graphs – connected graphs and odd degree vertices
S-4	SLO-1 SLO- 2	Problem solving using tutorial sheet 13
S-5		Eulerian and Hamiltonian graphs Necessary and sufficient condition for a graph to be Eulerian
6.6	SLO-1	Matrix representation of graphs- adjacent and incidence matrices and examples
S-6	SLO- 2	Isomorphism using adjacency.
S-7	SLO-1	Digraphs – in degree and out degree – Hand shaking theorem.
		Verification of hand shaking theorem in digraphs.
S-8	SLO-1 SLO- 2	Problem solving using tutorial sheet 14
		Graph colouring – chromatic number-examples.
S-9		Four colour theorem(statement only) and problems
	\ \ ()-1	Trees – definitions and examples. Properties.
S-10		Properties continued.
S-11		Spanning trees – examples.
		Krushkal's algorithm for minimum spanning trees.
S-12		Problem solving using tutorial sheet 15
	SLO- 2	Application of graph theory in Engineering

Prepared By
Mr M Kannan
(Course Coordinator)

HOD/MATHEMATICS

4. Hands-on Programming with R,- GarrettGrolemund

5. R for Everyone: Advanced Analytics and Graphics, Jared P. Lander

	Level of		Final Evenination (FO9/)				
	Thinking	CLAT- 1 (10%)	CLAT – 2 (15%)	CLAT – 3 (15%)	CLAT – 4 (10%) #	Final Examination (50%)	
1 1 1	Remember		20.0/	20.0/		20.0/	
Level 1	Understand	40 %	30 %	30 %	30 %	30 %	
1 1 2	Apply	40.0/	40.0/	40.0/	40.0/	40.0/	
Level 2	Analyze 40 %	40 %	40 %	40 %	40 %	40 %	
Level 3	Evaluate	20.0/	20.0/	30 %	20.0/	20.9/	
Level 3	Create	20 %	30 %	30 %	30 %	30 %	

CA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

SLO – Session Learning Outcome

Co	ourse Designers						
(a) Experts from Industry						
1	Experts From TCS						
(b) Experts from Higher Technica	l Institutions					
3	Dr.K.C.Sivakumar	IIT, Madras	kcskumar@iitm .ac.in	4	Dr.Nanjundan	Bangalore University	nanzundan@gmail com
(b) Internal Experts						
5	Dr.A.Govindarajan	SRMIST	govindarajan.a @ktr.srmuniv.a c.in	6	Dr.Srinivasan	SRMIST	srinivasan.va@srmu niv.ac.in