5

10

15

20

25

14

Claims

We claim the following:

1) (Currently Amended) A method of using a compound of the Formula 1 in a process,

(cation)(R'SO₄)
Formula 1

comprising the step of: employing the compound as a solvent, solvent additive, or extraction solvent; or employing the compound as a heat carrier, or heat carrier additive; or employing the compound as a phase transfer catalyst, wherein:

R' is selected from the group consisting of a linear or branched, saturated or unsaturated, aliphatic or alicyclic, functionalized or non-functionalized alkyl radical with 3-36 carbon atoms, wherein R' is optionally functionalized with one or more X groups; X is selected from the group consisting of an –OH, -OR'', -COOH, -COOR'', -NH₂, -SO₄, -F, -Cl, -Br, -I or –CN; and R'' is selected from the group consisting of a branched or linear hydrocarbon chain with 1 - 12 carbon atoms; and

the compound has a melting point of less than 100° C.

- 2) (Currently Amended) The method of claim 1, wherein the cation is a nitrogen-containing cation selected from the group consisting of a quaternary ammonium cation, an imidazolium cation, a pyridinium cation, a pyrazolium cation, a phosphonium and a triazolium cation.
- 3) (Previously Amended) The method of claim 1, wherein the cation is selected from the group consisting of:
 - a) quaternary ammonium cation with the general formula $(NR_1R_2R_3R)^+$;
 - b) phosphonium cation with the general formula $(PR_1R_2R_3R)^+$;
 - c) imidazolium cation with the general formula

in which the imidazole core is optionally substituted with at least one group selected from C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, C_1 - C_6 aminoalkyl group, C_5 - C_{12} aryl- C_1 - C_6 alkyl group;

d) pyridinium cation with the general formula

$$\mathbb{N}_{\mathbb{R}}$$

in which the pyridine core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl-C₁-C₆ alkyl group;

e) pyrazolium cation with the general formula

in which the pyrazole core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group; and

f) triazolium cation with the general formula

$$N - N + R$$

in which the triazole core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl-C₁-C₆ alkyl group; wherein

- g) the radicals R¹, R², R³ are selected independently at each occurrence from the group consisting of:
 - i) hydrogen;

20

- ii) linear or branched, saturated or unsaturated, aliphatic or alicyclic alkyl groups with 1 to 20 carbon atoms;
- iii) heteroaryl groups, heteroaryl-C₁-C₆ alkyl groups with 3 to 8 carbon atoms in the heteroaryl radical and at least one heteroatom selected from N, O and S which is

5

10

20

16

optionally substituted with at least one group selected from C₁-C₆ alkyl groups and/or halogen atoms;

- iv) aryl, aryl-C₁-C₆ alkyl groups with 5 to 12 carbon atoms in the aryl radical, which is optionally substituted with at least one C₁-C₆ alkyl group and/or a halogen atom; and
- h) the radical R is selected from the group consisting of:
 - i) linear or branched, saturated or unsaturated, aliphatic or alicyclic alkyl groups with 1 to 20 carbon atoms;
 - ii) heteroaryl-C₁-C₆ alkyl groups with 3 to 8 carbon atoms in the aryl radical and at least one heteroatom selected from N, O and S, which is optionally substituted with at least one C₁-C₆ alkyl group and/or halogen atom; and
 - iii) aryl-C₁-C₆ alkyl groups with 5 to 12 carbon atoms in the aryl radical, which is optionally substituted with at least one C₁-C₆ alkyl group and/or halogen atom.
- 4) (Previously Amended) The method of claim 1, wherein the anion has an empirical formula selected from the group consisting of C₄H₉SO₄, C₈H₁₇SO₄ or C₁₂H₂₅SO₄.
- 5) (Currently Amended) The method of claim 1, wherein the compound of the Formula 1 has a melting point of less than 75° C.
 - 6) (Currently Amended) The method of claim 1, wherein the compound of the Formula 1 has a melting point of less than 50° C.
 - 7) (Currently Amended) The method of claim 1, wherein (R'SO₄) is an alkyl sulfate ester, wherein the alkyl moiety is selected from the group consisting of butyl, octyl, 2-ethylhexyl, and dodecyl; and the method comprises the step of: employing the compound as a solvent, solvent additive, or extraction solvent; or employing the compound as a heat carrier, or heat carrier additive; or employing the compound as a phase transfer catalyst.
- 8) (Previously Amended) The method of claim 7, wherein the cation is a nitrogen containing cation selected from the group consisting of 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium butyl, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-butyl-pyridinium, trimethyldecylammonium, trioctylmethylammonium, trimethyldecylammonium, and trihexyltetradecylphosphonium.
- 9) (Currently Amended) The method of claim 1, wherein the cation is a nitrogen containing cation selected from the group consisting of 1-ethyl-3-methylimidazolium, 1-butyl-3-

5

10

15

20

25

30

17

methylimidazolium butyl, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3-methylimidazolium, 1-butyl-pyridinium, trimethyldecylammonium, trioctylmethylammonium, trimethyldecylammonium, and trihexyltetradecylphosphonium; and the method comprises the step of: employing the compound as a solvent, solvent additive, or extraction solvent; or employing the compound as a heat carrier, or heat carrier additive; or employing the compound as a phase transfer catalyst.

- 10) (Currently Amended) The method of claim 1, wherein the compound of the Formula 1 is used in a reaction catalyzed by a transition metal; and the method comprises the step of:

 employing the compound as a solvent, solvent additive, or extraction solvent; or employing the compound as a heat carrier, or heat carrier additive; or employing the compound as a phase transfer catalyst.
- 11) (Previously Amended) The method of claim 10, wherein the compound of the Formula 1 is used in a hydroformylation reaction, oligomerization reaction, esterification reaction, isomerization reaction or amide bond-forming reaction.
- 12) (Currently Amended) The method of claim 1, wherein the compound of the Formula 1 is used in a reaction catalyzed by an enzyme or biocatalyst; and the method comprises the step of: employing the compound as a solvent, solvent additive, or extraction solvent; or employing the compound as a heat carrier, or heat carrier additive; or employing the compound as a phase transfer catalyst.
- 13) (Previously Amended) The method of claim 12, wherein the compound of the Formula 1 is used in an oligomerization reaction, C-C bond-forming reaction, esterification reaction, isomerization reaction, or amide bond-forming reaction.
- 14) (Previously Amended) The method of claim 1, wherein the compound of the Formula 1 is substantially hydrolytically stable in neutral aqueous solution (pH = 7) up to 80° C.
- 15) (Currently Amended) The method of claim 1, wherein the compound of the Formula 1 has a melting point of less than 25° C.
- 16) (Currently Amended) The method of claim 1, wherein the compound is selected from the group consisting of:
- a) 1-ethyl-3-methylimidazolium butyl sulfate;
 - b) 1-ethyl-3-methylimidazolium octyl sulfate;

5

18

- c) 1-ethyl-3-methylimidazolium 2-ethylhexyl sulfate;
- d) 1-ethyl-3-methylimidazolium dodecyl sulfate;
- e) 1-butyl-3-methylimidazolium butyl sulfate;
- f) 1-butyl-3-methylimidazolium octyl sulfate;
- g) 1-butyl-3-methylimidazolium 2-ethylhexyl sulfate;
- h) 1-butyl-3-methylimidazolium dodecyl sulfate;
- i) 1-hexyl-3-methylimidazolium butyl sulfate;
- j) 1-hexyl-3-methylimidazolium octyl sulfate;
- k) 1-hexyl-3-methylimidazolium 2-ethylhexyl sulfate;
- 10 l) 1-hexyl-3-methylimidazolium dodecyl sulfate;
 - m) 1-octyl-3-methylimidazolium butyl sulfate;
 - n) 1-octyl-3-methylimidazolium octyl sulfate;
 - o) 1-octyl-3-methylimidazolium 2-ethylhexyl sulfate;
 - p) 1-octyl-3-methylimidazolium dodecyl sulfate;
- q) 1-decyl-3-methylimidazolium butyl sulfate;
 - r) 1-decyl-3-methylimidazolium octyl sulfate;
 - s) 1-decyl-3-methylimidazolium 2-ethylhexyl sulfate;
 - t) 1-decyl-3-methylimidazolium dodecyl sulfate;
 - u) 1-dodecyl-3-methylimidazolium butyl sulfate;
- v) 1-dodecyl-3-methylimidazolium octyl sulfate;
 - w) 1-dodecyl-3-methylimidazolium 2-ethylhexyl sulfate:
 - x) 1-dodecyl-3-methylimidazolium dodecyl sulfate;
 - y) 1-butyl-pyridinium butyl sulfate;
 - z) 1-butyl-pyridinium octyl sulfate;
- 25 aa) 1-butyl-pyridinium 2-ethylhexyl sulfate;
 - bb) 1-butyl-pyridinium dodecyl sulfate;
 - cc) trimethyldecylammonium butyl sulfate;
 - dd) trimethyldecylammonium 2-ethylhexyl sulfate;
 - ee) trioctylmethylammonium butyl sulfate;
- 30 ff) trioctylmethylammonium octyl sulfate;
 - gg) trioctylmethylammonium 2-ethylhexyl sulfate;

19

hh) trioctylmethylammonium dodecyl sulfate;

- ii) trimethyldecylammonium butyl sulfate;
- jj) trimethyldecylammonium octyl sulfate;

5

10

15

20

25

30

- kk) trihexyltetradecylphosphonium butyl sulfate;
- ll) trihexyltetradecylphosphonium octyl sulfate;
- mm) trihexyltetradecylphosphonium 2-ethylhexyl sulfate;
- nn) trihexyltetradecylphosphonium dodecyl sulfate; and the method comprises the step of:

 employing the compound as a solvent, solvent additive, or extraction solvent; or

 employing the compound as a heat carrier, or heat carrier additive; or employing the

 compound as a phase transfer catalyst.
- 17) (Currently Amended) A method of using a compound of the Formula 1 in a process

(cation)(R'SO₄)
Formula 1

comprising the step of: employing the compound as a solvent, solvent additive, or extraction solvent; or employing the compound as a heat carrier, or heat carrier additive; or employing the compound as a phase transfer catalyst, wherein:

R' is selected from the group consisting of a linear or branched, saturated or unsaturated, aliphatic or alicyclic, functionalized or non-functionalized alkyl radical with 3-36 carbon atoms, wherein R' is optionally functionalized with one or more X groups; X is selected from the group consisting of an –OH, -OR'', -COOH, -COOR'', -NH₂, -SO₄, -F, -Cl, -Br, -I or –CN; and R'' is selected from the group consisting of a branched or linear hydrocarbon chain with 1 - 12 carbon atoms;

the compound has a melting point of less than 100° C;

the cation is a nitrogen-containing cation selected from the group consisting of a quaternary ammonium cation, an imidazolium cation, a pyridinium cation, a pyrazolium cation, a phosphonium and a triazolium cation;

the compound of the Formula 1 is substantially hydrolytically stable in neutral aqueous solution (pH = 7) up to 80° C.

18) (Currently Amended) The method of claim 17, wherein (R'SO₄) the anion has an empirical formula selected from the group consisting of C₄H₉SO₄, C₈H₁₇SO₄ or C₁₂H₂₅SO₄, and; the method comprises the step of: employing the compound as a solvent, solvent additive, or

5

10

15

25

30

20

extraction solvent; or employing the compound as a heat carrier, or heat carrier additive; or employing the compound as a phase transfer catalyst.

19) (Currently Amended) A method of using a compound of the Formula 1 in a process

(cation)(R'SO₄)

Formula 1

comprising the step of: employing the compound as a solvent, solvent additive, or extraction solvent; employing the compound as a heat carrier, or heat carrier additive; or employing the compound as a phase transfer catalyst, wherein:

- a) (R'SO₄) is an alkyl sulfate ester, wherein the alkyl moiety is selected from the group consisting of butyl, octyl, 2-ethylhexyl, and dodecyl;
- b) the cation is a nitrogen containing cation selected from the group consisting of 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium butyl, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-butyl-pyridinium, trimethyldecylammonium, trioctylmethylammonium, trimethyldecylammonium, and trihexyltetradecylphosphonium;
- c) the compound has a melting point of less than 100° C; and
- d) the compound of the Formula 1 is substantially hydrolytically stable in neutral aqueous solution (pH = 7) up to 80° C.
- 20) (Previously Amended) The method of claim 19, wherein the process is a reaction catalyzed by a transition metal, and the reaction is a hydroformylation reaction, oligomerization reaction, esterification reaction, isomerization reaction or amide bond-forming reaction.
 - 21) (Previously Amended) The method of claim 19, wherein the process is a reaction catalyzed by an enzyme or biocatalyst, and the reaction is an oligomerization reaction, C-C bondforming reaction, esterification reaction, isomerization reaction, or amide bond-forming reaction.
 - 22) (New) The method of claim 18, wherein the cation is selected from the group consisting of:

 a) quaternary ammonium cation with the general formula (NR₁R₂R₃R)⁺;
 - b) phosphonium cation with the general formula (PR₁R₂R₃R)⁺;
 - c) imidazolium cation with the general formula

21

in which the imidazole core is optionally substituted with at least one group selected from C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, C_1 - C_6 aminoalkyl group, C_5 - C_{12} aryl group or C_5 - C_{12} -aryl- C_1 - C_6 alkyl group;

d) pyridinium cation with the general formula

$$\mathbb{N}_{-R}$$

5

10

15

20

in which the pyridine core is optionally substituted with at least one group selected from C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, C_1 - C_6 aminoalkyl group, C_5 - C_{12} aryl group or C_5 - C_{12} -aryl- C_1 - C_6 alkyl group;

e) pyrazolium cation with the general formula

in which the pyrazole core is optionally substituted with at least one group selected from C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, C_1 - C_6 aminoalkyl group, C_5 - C_{12} aryl group or C_5 - C_{12} -aryl- C_1 - C_6 alkyl group; and

f) triazolium cation with the general formula

$$N - N - R$$

in which the triazole core is optionally substituted with at least one group selected from C₁-C₆ alkyl group, C₁-C₆ alkoxy group, C₁-C₆ aminoalkyl group, C₅-C₁₂ aryl group or C₅-C₁₂-aryl-C₁-C₆ alkyl group; wherein

g) the radicals R¹, R², R³ are selected independently at each occurrence from the group

22

consisting of:

- i) hydrogen;
- ii) linear or branched, saturated or unsaturated, aliphatic or alicyclic alkyl groups with 1 to 20 carbon atoms;
- iii) heteroaryl groups, heteroaryl-C₁-C₆ alkyl groups with 3 to 8 carbon atoms in the heteroaryl radical and at least one heteroatom selected from N, O and S which is optionally substituted with at least one group selected from C₁-C₆ alkyl groups and/or halogen atoms;
- iv) aryl, aryl-C₁-C₆ alkyl groups with 5 to 12 carbon atoms in the aryl radical, which is optionally substituted with at least one C₁-C₆ alkyl group and/or a halogen atom; and h) the radical R is selected from the group consisting of:
 - i) linear or branched, saturated or unsaturated, aliphatic or alicyclic alkyl groups with 1 to 20 carbon atoms;
 - ii) heteroaryl-C₁-C₆ alkyl groups with 3 to 8 carbon atoms in the aryl radical and at least one heteroatom selected from N, O and S, which is optionally substituted with at least one C₁-C₆ alkyl group and/or halogen atom; and
 - iii) aryl- C_1 - C_6 alkyl groups with 5 to 12 carbon atoms in the aryl radical, which is optionally substituted with at least one C_1 - C_6 alkyl group and/or halogen atom.

15

5

10