Отчёт о выполнении лабораторной работы 4.2 «Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра»

Цель работы: с помощью магнитного спектрометра исследовать энергетический спектр β -частиц при распаде ядер ^{137}Cs и определить их максимальную энергию.

Оборудование: магнитный β -спектрометр с «короткой линзой», радиоактивный источник ^{137}Cs , форвакуумный насос, вакуумметр, счетчик, высоковольтный и низковольтный выпрямители, Θ BM.

Теория

 β -распад — самопроизвольное превращения ядер, при котором массовое число остается постоянным, а заряд изменяется на единицу.

Электронный распад:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \tilde{\nu}$$

где $\tilde{\nu}$ — антинейтрино.

$$E_e - E - ck = 0 (1)$$

где E_e — максимальная эергия электрона, для которой верно

$$E = c\sqrt{p^2 + m^2c^2} - mc^2 (2)$$

а ck — энергия антинейтрино с импульсом k. Учтем (1) введением в выражение для dw — вероятности того, что при распаде электрон вылетит с импульсом $d^3\vec{p}$, а антинейтрино — с импульсом $d^3\vec{k}$ — δ -функции

$$\delta(E_e - E - ck) \tag{3}$$

(не равна нулю только при выполнении (1)). Тогда

$$dw = D\delta(E_e - E - ck)d^3\vec{p}d^3\vec{k} = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\tilde{\nu}}$$
(4)

где D — коэффициент пропорциональности, $d\Omega_e$ и $d\Omega_{\tilde{\nu}}$ — элементы телесных углов направлений вылета электрона и нейтрино.

Кроме того,

$$dN = N_0 dw (5)$$

где N_0 — общее число распадов, а dN — число таких распадов, где импульсы электрона и антинейтрино от \vec{p} до $\vec{p}+d\vec{p}$ и от \vec{k} до $\vec{k}+d\vec{k}$ соответственно. Интегрируя,

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp \tag{6}$$

Переходя к dE от dp, получим

$$dE = \frac{c^2 p}{E + mc^2} dp \tag{7}$$

откуда величина, выражающая форму β -спектра

$$N(E) = \frac{dN}{dE} = N_0 B c p (E + mc^2) (E_e - E)^2 = N_0 B \sqrt{E(E + 2mc^2)} (E_e - E)^2 (E + mc)^2$$
 (8)

где
$$B = \frac{16\pi^2}{c^4}D.$$

Переходя к нерелятивистскому приближению,

$$\frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2 \tag{9}$$

Конверсионные электроны — такие электроны, которые излучаются в процессе отдачи энергии возбужденными ядрами атомов. У приборов:

• зависимость фокусного растояния «линзы» от тока через катушку:

$$\frac{1}{f} \propto \frac{I^2}{p_e^2} \tag{10}$$

• импульс сфокусированных электронов

$$p_e = kI \tag{11}$$

где k — константа прибора.

$$N(p_e) \simeq W(p_e) \Delta p_e \tag{12}$$

где Δp_e — разрешающая способность. Дифференцируя (10),

$$\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e \tag{13}$$

Итак, окончательно,

$$N(p_e) = CW(p_e)p_e (14)$$

где C = const.

Ход работы

Измерения и наблюдения

Время одного измерения — 100 с. Фон до измерения: $2,3494\pm0,153$ частиц/с.

I, A	int, частиц/с	Примечание
0,00	2,579	
0,20	2,169	
0,40	2,599	
0,60	2,169	
0,80	2,879	
1,00	4,929	
1,20	7,298	
1,40	8,777	
1,60	9,547	
1,80	8,797	
2,00	8,198	
2,20	6,758	
2,40	$5,\!558$	
2,60	4,319	
2,80	3,479	
3,00	3,959	
3,10	5,248	
3,15	5,948	
3,20	6,078	
3,20	5,828	повторное
3,25	4,329	
3,25	4,149	повторное
3,30	2,609	
3,30	2,849	повторное
3,40	1,660	
3,40	1,849	повторное
3,50	1,380	
3,50	1,680	повторное
3,50	1,660	повторное
3,60	1,460	
3,60	1,560	повторное
3,80	3,149	
4,00	2,729	
4,20	1,809	

Фон после измерения: $2,4694\pm0,153$ частиц/с.

Обработка

Интенсивность фона в среднем: $2,4094\pm0,306$ частиц/с. Обработав, получаем:

I, A	σ_I	n, 1/c	σ_n	$n-n_b, 1/c$	σ_{n-n_b}	p , кэ $\mathrm{B/c}$	σ_p	T, кэ B	σ_T	mkFm	$\sigma_{ m mkFm}$
0,00	0,005	2,579	0,161	0,1696	0,3136	0,0	50,8	0,0	0,0	0,0	0,0
0,20	0,005	2,169	0,147	-0,2404	0,3003	63,3	46,6	3,9	5,7	0,0	0,0
0,40	0,005	2,599	0,161	0,1896	0,3142	126,6	51,0	15,4	12,4	305,7	438,1
0,60	0,005	2,169	0,147	-0,2404	0,3003	189,9	46,6	34,1	16,7	0,0	0,0
0,80	0,005	2,879	0,170	0,4696	0,3227	253,2	53,7	59,3	25,2	170,1	112,5
1,00	0,005	4,929	0,222	2,5196	0,3750	316,5	70,3	90,0	40,0	281,9	114,9
1,20	0,005	7,298	0,270	4,8886	0,4231	379,8	85,5	125,6	56,6	298,7	113,8
1,40	0,005	8,777	0,296	$6,\!3676$	0,4493	443,1	93,8	165,3	70,0	270,5	95,4
1,60	0,005	9,547	0,309	7,1376	0,4620	506,4	97,8	208,3	80,5	234,4	75,5
1,80	0,005	8,797	0,297	$6,\!3876$	0,4496	569,7	93,9	254,2	83,8	185,9	52,5
2,00	0,005	8,198	0,286	5,7886	0,4393	633,0	90,6	302,4	86,6	151,1	38,2
2,20	0,005	6,758	0,260	4,3486	0,4130	696,3	82,3	352,6	83,3	113,5	25,5
2,40	0,005	5,558	0,236	$3,\!1486$	0,3888	759,6	74,6	404,4	79,4	84,8	17,7
2,60	0,005	4,319	0,208	1,9096	0,3608	822,9	65,8	457,5	73,1	58,5	12,5
2,80	0,005	3,479	0,187	1,0696	0,3395	886,2	59,0	511,8	68,2	39,2	10,1
3,00	0,005	3,959	0,199	1,5496	0,3520	949,5	63,0	567,1	75,2	42,5	9,1
3,10	0,005	5,248	0,229	2,8386	0,3821	981,2	72,5	595,1	88,0	54,8	9,8
3,15	0,005	5,948	0,244	$3,\!5386$	0,3969	997,0	77,2	609,1	94,3	59,8	10,3
3,20	0,005	6,078	0,247	3,6686	0,3995	1012,8	78,0	623,2	96,0	59,4	10,1
3,25	0,005	4,329	0,208	1,9196	0,3611	1028,6	65,9	637,4	81,6	42,0	8,0
3,30	0,005	2,609	0,162	0,1996	0,3145	1044,5	51,1	651,6	63,8	13,2	11,4
3,50	0,005	1,380	0,117	-1,0294	0,2705	1107,8	37,2	708,7	47,6	0,0	0,0
3,60	0,005	1,460	0,121	-0,9494	0,2738	1139,4	38,2	737,5	49,5	0,0	0,0
3,80	0,005	3,149	0,177	0,7396	0,3305	1202,7	56,2	795,5	74,3	20,6	6,1
4,00	0,005	2,729	0,165	0,3196	0,3182	1266,0	52,3	854,0	70,5	12,6	7,0
4,20	0,005	1,809	0,134	-0,6004	0,2875	1329,3	42,6	912,9	58,5	0,0	0,0

Получаем графики:

Обсуждение

Выполнив данную лабораторную работу, мы измерили максимальную энергию β -спектра, она оказалась равной около 540 ± 50 кэВ. Рассмотрели зависимости интенсивности от импульса, кинетической энергии электронов и силы тока в катушке спектрометра. Построили график Ферми-Кюри.

Вывод

Максимальная энергия β -спектра равна примерно 540 ± 50 кэB, что соответствует известному значению.