Laboratory session 1

Implementation and linear cryptanalysis of a Feistel cipher

Nicola Laurenti, Francesco Ardizzon

November 30, 2020

Except where otherwise stated, this work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Laboratory session 1— Contents

Review of Feistel ciphers

Your tasks in this laboratory session

Appendices

Feistel ciphers

A Feistel cipher is a binary block cipher with $\mathcal{M}=\mathcal{X}=\mathbb{B}^{2\ell}$ that is based on the following n-round (S,T,L) iterated structure $E_k=LS_{k_n}\cdots TLS_{k_2}TLS_{k_1}$

- 1. First the plaintext u is split into two ℓ -bit blocks y_1 and z_1
- 2. Then at each round i the following transformation are applied

substitution $S: \mathcal{K}' \times \mathbb{B}^{2\ell} \mapsto \mathbb{B}^{3\ell}$, $S_{k_i}(y_i, z_i) = [y_i, w_i, z_i]$, $w_i = f(k_i, y_i)$ linear tf $L: \mathbb{B}^{3\ell} \mapsto \mathbb{B}^{2\ell}$, $L(y_i, w_i, z_i) = [y_i, v_i]$, with $v_i = w_i + z_i$ transposition $T: \mathbb{B}^{2\ell} \mapsto \mathbb{B}^{2\ell}$, $T(y_i, v_i) = [v_i, y_i] = [y_{i+1}, z_{i+1}]$, $i \neq n$

3. Last, y_n and v_n are concatenated to make the ciphertext x

Feistel ciphers

A Feistel cipher can be decrypted by using the same operations and in the same order, except for the inversion of the key sequence, i.e.: $D_k = LS_{k_1}TLS_{k_2}\cdots TLS_{k_n}$

- 1. Split x into y_n and v_n
- 2. Then at each round i running backwards (from n to 1)

$$\begin{split} S_{k_i}(y_i, v_i) &= [y_i, w_i, v_i] \;, \quad \text{with } w_i = f(k_i, y_i) \\ L(y_i, w_i, v_i) &= [y_i, z_i] \;, \quad \text{with } z_i = w_i + v_i \\ T(y_i, z_i) &= [z_i, y_i] = [y_{i-1}, v_{i-1}] \;, \quad i \neq 1 \end{split}$$

3. Last, y_1 and z_1 are concatenated to make the plaintext u

Example: Data Encryption Standard (DES)

- ▶ A Feistel cipher with binary keys and lengths $\ell_k = 56$, $\ell_u = \ell_x = 64$, $\ell = 32$, using n = 16rounds
- Designed by IBM in 1977 for the US NSA
- Efficient hardware implementation

Security features

- Moderately secure against brute force (key too short even then)
- \triangleright Careful design of the round function $f(\cdot,\cdot)$ avoiding linear and differential cryptanalysis (only discovered in the 90's)

Implement a simple Feistel encryptor

Task 1

Using a programming language of your choice, implement the encryptor for a Feistel cipher with the following parameters:

message length $\ell_u=\ell_x=2\ell=32$, key length $\ell_k=32$, nr. of rounds n=17

round function the j-th bit of the output block w_i in the i-th round, denoted $w_i(j)$ is

$$f: w_i(j) = \begin{cases} y_i(j) \oplus k_i(4j-3) &, 1 \le j \le \ell/2 \\ y_i(j) \oplus k_i(4j-2\ell) &, \ell/2 < j \le \ell \end{cases}$$

subkey generation the j-th bit of the subkey k_i for the i-th round, denoted $k_i(j)$ is

$$g_i: k_i(j) = k(((5i+j-1) \bmod \ell_k) + 1), \quad i = 1, \dots, n$$

Check that your implementation is correct by verifying that the encryption of u=0x80000000 = $[1,0,\ldots,0]$ with the key k=0x80000000 = $[1,0,\ldots,0]$ is x=0xD80B1A63= $[1101\,1000\,0000\,1011\,0001\,1010\,0111\,0001]$

Task 2

Implement the decryptor for this Feistel cipher

Check that your implementation is correct by verifying that by concatenating encryption and decryption with the same key k you retrieve the original plaintext u. Experiment with different (u,k) pairs

Identify the cipher vulnerability

Observe that

- \blacktriangleright the round function $f(\cdot,\cdot)$ is linear in both the message block and the subkey
- lacktriangle the subkey generation function $g_i(\cdot)$ is linear in the key

and conclude that the cipher is linear

Task 3

Identify the overall linear relationship for this Feistel cipher, that is find the binary matrices $A \in \mathbb{B}^{\ell_x \times \ell_k}$ and $B \in \mathbb{B}^{\ell_x \times \ell_u}$ such that

$$x = E(k, u) = Ak + Bu$$

with all operations in the binary field $(\mathbb{B},\oplus,\odot)=(\{0,1\}\,,\mathsf{XOR},\mathsf{AND})$ (if you do not know how to identify a linear system in a black box model, \bullet see Appendix 1)

Carry out linear cryptanalysis

Task 4

From a known plaintext/ciphertext pair (u, x), implement a linear cryptanalysis KPA against this cipher by computing $k = A^{-1}(x + Bu)$

(if you do not know how to compute A^{-1} , the binary inverse of A, \bigcirc see Appendix 2)

You will find a few plaintext/ciphertext pairs, all encrypted with the same key k in a file labeled KPApairsXxxxxx_linear.txt in the folder KPAdataXxxxxx, where Xxxxxx is your team's city name. Find the key k

"Nearly linear" Feistel cipher

Task 5

Implement the encryptor and decryptor for a Feistel cipher with the following parameters:

```
message length \ell_u=\ell_x=2\ell=32 , key length \ell_k=32 , nr. of rounds n=5
```

round function with the notation from Task 1, and $\vee =$ bitwise OR, $\wedge =$ bitwise AND

$$w_i(j) = \begin{cases} y_i(j) \oplus \{k_i(4j-3) \land [y_i(2j-1) \lor k_i(2j-1) \lor k_i(2j) \lor k_i(4j-2)]\} &, \ 1 \le j \le \ell/2 \\ y_i(j) \oplus \{k_i(4j-2\ell) \land [k_i(4j-2\ell-1) \lor k_i(2j-1) \lor k_i(2j) \lor y_i(2j-\ell)]\} &, \ \ell/2 < j \le \ell \end{cases}$$
 for $i = 1, \ldots, n$

subkey generation is the same as in Task 1

Check that your implementation is correct by verifying that the encryption of $u = 0 \times 12345678 = [0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000]$ with the key $k = 0 \times 87654321 = [1000\ 0111\ 0110\ 0101\ 0100\ 0011\ 0010\ 0001]$ is $x = 0 \times 2E823D53 = [0010\ 1110\ 1000\ 0010\ 0011\ 1101\ 0101\ 0011]$

Linear cryptanalysis of a "nearly linear" cipher

Task 6

Find a linear approximation of the cipher in Task 5, that is, find matrices A, B, C such that (it might also be C = I)

$$P[Ak \oplus Bu \oplus Cx = 0] \gg \frac{1}{2^{2\ell}}$$

From a few known plaintext/ciphertext pair (u, x), implement a linear cryptanalysis KPA against this cipher by computing

$$k = A^{-1}(Cx \oplus Bu)$$

and then explore "close" key values to find the key that encrypts u to x exactly $\underbrace{\quad \text{see Appendix 2}}$

You will find a few plaintext/ciphertext pairs, all encrypted with the same key k in a file labeled KPApairsXxxxxx_nearly_linear.txt in the folder KPAdataXxxxxx, where Xxxxxx is your team's city name

Non linear Feistel cipher

Task 7

Implement the encryptor and decryptor for a Feistel cipher with the following parameters:

message length $\ell_u = \ell_x = 2\ell = 16$. key length $\ell_h = 16$. nr. of rounds n = 13

round function with the notation from Tasks 1 and 5

$$w_i(j) = \begin{cases} [y_i(j) \land k_i(2j-1)] \lor [y_i(2j-1) \land k_i(2j)] \lor k_i(4j) &, 1 \le j \le \ell/2 \\ [y_i(j) \land k_i(2j-1)] \lor [k_i(4j-2\ell-1) \land k_i(2j)] \lor y_i(2j-\ell) &, \ell/2 < j \le \ell \end{cases}$$

subkey generation is the same as in Tasks 1 and 5

Check that your implementation is correct by verifying that the encryption of $u = 0x0000 = [0, 0, \dots, 0]$ with the key k = 0x369C = [0011011010011100] is x = 0x6A9B $= [0110\ 1010\ 1001\ 1011]$

12 / 17

Meet in the middle attack

Task 8

Implement a "meet-in-the-middle" attack (see Appendix 3) against the concatenation of two instances of the non linear Feistel cipher defined in Task 7, with different keys k_1, k_2 , respectively.

You will find a few plaintext/ciphertext pairs, all encrypted with the same pair of keys k, k' in a file labeled KPApairsXxxxxx non_linear.txt in the folder KPAdataXxxxxx, where Xxxxxx is your team's city name

What you need to turn in

Each team must turn in, through the Moodle assignment submission procedure:

- the code for your implementation (either as a single file, many separate files, or a compressed folder)
- 2. a short report (1-3 pages) in a graphics format (PDF, DJVU or PostScript are ok; Word, TEX or LATEX source are not), including:
 - 2.1 a brief description of your implementations for Tasks 1-8, explaining your choices;
 - 2.2 the results of your cryptanalysis effort:
 - 2.2.1 the matrices A and B that you used in Task 3;
 - 2.2.2 your guess \hat{k} for the key we used to encrypt the KPA pairs in Task 4
 - 2.2.3 the matrices A, B and C that you used in Task 5;
 - 2.2.4 your guess \hat{k} for the key we used to encrypt the KPA pairs in Task 6
 - 2.2.5 your guesses \hat{k}, \hat{k}' for the keys we used to encrypt the KPA pairs in Task 8

Appendix 1: identifying a linear system

A general linear system, y=Au, with input u and output y can always be identified in a black box approach, by feeding it as inputs the vectors of the standard orthonormal basis

$$e_1 = [100...0]$$
 , $e_2 = [010...0]$, \cdots , $e_{\ell} = [000...01]$

and observing the corresponding outputs.

In fact, by choosing a sequence of inputs u_1, \ldots, u_ℓ such that $u_j = e_j$, and observing the corresponding outputs y_j we obtain that $y_j = Ae_j$ is the j-th column of matrix A.

In our case there are two inputs, the plaintext and the key. By encrypting (e_1,\ldots,e_ℓ) and the all-zero vector 0 you can obtain each column a_j of the matrix A and each column b_j of matrix B, as

$$k = e_j, u = 0 \implies x = E(e_j, 0) = Ae_j + B0 = a_j, \quad j = 1, \dots, \ell_k$$

 $k = 0, u = e_j \implies x = E(0, e_j) = A0 + Be_j = b_j, \quad j = 1, \dots, \ell_u$

Appendix 2: computing the inverse of a binary matrix

The inverse of a square matrix A in the binary field $\mathbb B$ is the matrix A^{-1} is given by $A^{-1} = A^* \cdot \det(A) \bmod 2$

where A^* and $\det(A)$ are the inverse and the determinant of A in the real field \mathbb{R} , so $A^* \cdot \det(A)$ is an integer matrix. In fact

$$A \odot A^{-1} = (A \cdot A^* \cdot \det(A)) \mod 2 = (I \cdot \det(A)) \mod 2 = I$$

where \odot and \cdot denote the product between binary and between real matrices, respectively

Example

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} , \quad A^* \cdot \det(A) = \begin{bmatrix} 0 & 3 & 0 & 0 & -3 \\ -1 & -3 & 1 & 2 & 2 \\ -1 & 0 & 1 & -1 & 2 \\ 2 & 0 & 1 & -1 & -1 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix} , \quad A^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Appendix 3: "meet in the middle" attack

This is a KPA against a concatenated cipher (see slides), where $x=E_{k''}''(E_{k'}'(u))$ It consists in trying N' distinct guesses for $k'\in\mathcal{K}'$, and N'' distinct guesses for $k''\in\mathcal{K}''$, with a complexity significantly lower than the product N'N''. Given a known plaintext/ciphertext pair (u,x)

- 1. Generate $N' \leq |\mathcal{K}'|$ random guesses of k', $\hat{k}'_1, \dots \hat{k}'_{N'}$
- 2. For each guess \hat{k}_i' compute the corresponding cipher guess $\hat{x}_i' = E_{\hat{k}_i'}'(u)$
- 3. Sort the table with key and cipher guesses, according to \hat{x}_i'
- 4. Generate $N'' \leq |\mathcal{K}''|$ random guesses of k'', $\hat{k}_1'', \dots \hat{k}_{N''}''$
- 5. For each guess \hat{k}_i'' compute the corresponding plaintext guess $\hat{u}_i'' = D_{\hat{k}_i''}''(x)$
- 6. Sort the table with key and cipher guesses, according to \hat{u}_i''
- 7. Search for a match between the two sorted tables, that is a pair of guesses $(\hat{k}'_i, \hat{k}''_j)$ such that $x'_i = u'_j$. Then, $\hat{k}' = \hat{k}'_i$ and $\hat{k}'' = \hat{k}''_j$ will be your final guess

If you get several matches you can increase the attack success probability with more KPA pairs