CSE 203

Class Work on Time complexity and Big-Oh notation

Answer to Problem 1:

From some given expression dominant term(s) and lowest big-Oh complexity is determined.

Expression	Dominant Term(s)	Big-Oh
5 + .001n ³ + 0.025n	0.001n ³	O (n3)
500n + 100n ^{1.5} + 50n log ₁₀ n	100n ^{1.5}	O (n ^{1.5})
0.3n + 5n ^{1.5} + 2.5n ^{1.75}	2.5n ^{1.75}	O (n ^{1.75})
$n^2log_2n + n(log_2n)^2$	n²log₂n	O (n²log ₂ n)
nlog₃n + nlog₂n	nlog₂n	O (nlog ₂ n)
$3\log_8 n + \log_2 \log_2 \log_2 n$	3log ₈ n	O (log ₈ n)
100n + .01n ²	.01n²	O (n ²)
.01n + 100n ²	100n²	O (n ²)
$2n + n^{0.5} + 0.5n^{1.25}$	0.5n ^{1.25}	O (n ^{1.25})
$0.01 \text{nlog}_2 \text{n} + \text{n(log}_2 \text{n)}^2$	n(log ₂ n) ²	$O(n(log_2n)^2)$
100nlog ₃ n + n ³ + 100n	n³	O (n ³)
$0.003\log_4 n + \log_2 \log_2 n$	0.003log ₄ n	O (log ₄ n)

Answer to Problem 2:

Some expressions are given. Truth value of the expressions are determined.

Expression	True or False	Correct Formula if False
Sum rule:	False	O (f + g) = maximum (O
O(f + g) = O(f) + O(g)		(f), O (g))
Product rule:	True	
O (f * g) = O (f) * O (g)		
Transitivity:	False	If $g = O(f)$ and $f = O(h)$
If $g = O(f)$ and $h = O(f)$		then g = O (h)
then g = O (h)		
$5n + 8n^2 + 100n^3 = O(n^4)$	True	
$5n + 8n^2 + 100n^3 = 0$	False	$5n + 8n^2 + 100n^3 = O(n^3)$
(n ² log n)		Assuming lower
		complexity

Answer to Problem 3:

Two algorithms A and B with spend time $T_A(n) = 0.1 n^2 log_{10} n$ and $T_B(n) = 2.5 n^2$ are given.

So according to the rules, complexity for each algorithm in terms of big-Oh notation is

$$C_A = O(n^2 \log_{10} n)$$

$$C_B = O(n^2)$$

Comparing this two algorithm's complexity second one is better than the first one.

To prove this, let n = 100 and by computing it is clear that first one takes time which is 2 times greater than the second one in big-Oh sense.

So, if the size of n \rightarrow 10 9 then second one will be better in big-Oh sense.

But for smaller size of n, let n = 10 then both algorithms run in same time in sense of big-Oh.

So, if the size of $n > n_0 = 10$ then the first one is much better than the other one.

But if the size of n \rightarrow 10° or > 10° then I will recommend second one to use according to big-Oh sense.

Answer to Problem 4:

According to the problem statement, randomValue takes constant number of computational steps 'c' and goodSort takes n log n. with the help of the data Big-Oh complexity is determined,

```
For (i = 0; i < n; i++) { complexity: O(n)

For (j = 0; j < n; j++) complexity: O(n)

a [j] = randomValue (i); complexity: O (1) taken total n*c steps goodSort(a); complexity: O(n) taken total n*c n log n steps

}
```

Total taken steps for the code segment:

```
n * (n * (c) + n log n)
or, n^2c + n^2 log n steps
```

So, in big-Oh sense:

Complexity: O (n² log n).

Answer to Problem 5:

For the given code segment, the most inner loops

for (int j = 1; j < n; j *= 2) takes ' $log_2(n-1) \sim log_2n$ ' steps for each time or O (log_2n)

and the other one, for (int j = 1; j < n; j += 2) takes n/2 steps for each time or O (n)

So, inner loops will take,

$$X = log_2 n + n/2$$
 steps for each time

Now, for the middle one, it will continue with total steps

as the outer one executes.

And for the outer one, for (int bound = 1; bound <= n; bound *= 2) takes log_2n steps or O (log_2n)

So, complexity in sense of big-Oh will be,

O
$$(\log_2 n * (n * (\log_2 n + n)))$$

or, O $(n^2 \log_2 n)$