M7. Regularization

Overfitting 방지하기

- Early stopping
- Augmentation
- L2 Regularization
- Dropout
- Batch normalization

Regularization 정의 및 목적

Generalization error를 감소시키려는 모든 노력

(※Training error 감소가 목적이 아님)

즉, overfitting 방지를 위함

Learning curve 해석하기: MNIST 예제에서의 Overfitting

Approach 1: Model capacity 조젇

Weight decay

아키텍처는 그대도, 단 붇필요한 weight를 0근처도 유도함으도서 Capacity를 줄이는 것과 유사한 효과!

주 이용 방법: Cost 뒤 L1 또는 L2 penalty를 부여

L1 Regularization

$$C = C_0 + rac{\lambda}{n} \sum_w |w|.$$

2 Regularization

$$C = C_0 + rac{\lambda}{2n} \sum_w w^2$$

λ: Regularization 정도를 조절하는 hyperparameter

Early stopping

Validation set의 Cost 및 성능은 모니터팅, Overfitting의 조짐이 보이면 그 지점에서 학습 중단!

만일 우측과 같은 학습 양상이 보이는 경우, 280 epoch까지만 학습된 모델은 이용

Approach 2 : 더 많은 데이터 확보 (Data Augmentation)

Approach 3 : 서토 다른 여러 모델 이용하기 (Ensemble)

머신러닝의 집단지성 : 일반적으로 여러 모델은 결합할수독 성능이 좋아진다!

다든 architecture

서도다든 아키텍처른 가진 모델 학습, 학습된 모델의 추돈 결과를 앙상블

다든 training step

한 모델은 학습하는 과정 중 서도 다든 training step에 저장된 모델은 가져와 추돈 결과를 앙상븓

다든 Hyperparameter

서도 다든 hyper parameter 세딩으도 학습한 모델의 추돈 결과를 앙상븓

다른 initialization

동일한 아키텍처의 parameter를 다든 방식으로 초기화하여 모델 학습, 학습된 모델의 추돈 결과 앙상븓

.. 이외 다양한 방법 가능

Approach 4 : Dropout 이용하기

Approach 5: Batch Normalization 이용하기

Gradient Vanishing / Gradient Exploding의 이유를 '*Internal Covariance Shift'도 판단하여 이른 해

*Internal Covariance Shift: Network의 각 층이나 Activation 마다 input의 distribution이 달라지는 현상

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

// mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

// mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

// normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// scale and shift

[설명]

네트워크 학습 시 mini-batch 단위로 데이터 학습,

- → Layer마다 mini-batch의 feature가 output으로 계산,
- → Feature의 평균과 표준편차를 구하여 normalize 해주고, → scale factor와 shift factor를 이용하여 새도운 값을 만들어준다.

[장점]

- 학습 속도 개선
- Weight initialization 의존성감소 (학습은 할 때마다 춛력값은 정규화하기 때문)
- Overfitting 위험감소 (Dropout 대체 가능)
- Gradient Vanishing 문제 해결