20.6.2023

Gil Baram Geosensornetzwerke

Aufgabe 1: Evaluation der Daten

c)

> summary(data)

time_start	pm2.5	pm10	rel_LF	temperatur
Length: 31542	Min. : 0.1925	Min. : 0.225	Min. : 4.625	Min. :-6.75
Class :character	1st Qu.: 1.6175	1st Qu.: 3.377	1st Qu.:35.133	1st Qu.:11.57
Mode :character	Median : 2.6913	Median : 5.185	Median :51.075	Median :16.45
	Mean : 4.5651	Mean : 7.187	Mean :51.779	Mean :16.55
	3rd Qu.: 5.0319	3rd Qu.: 8.467	3rd Qu.:68.146	3rd Qu.:21.37
	Max. :78.0300	Max. :98.700	Max. :99.900	Max. :38.60

The data frame has 31542 rows, with no NA values. After applying gaps filling, it adds 21020 rows.

STL decomposition

STL decomposition

There is an outlier before Apr 2023. It reached a peak 80-100 $\mu g/m^3$.

Aufgabe 2: Zeitreihen Clustering

The Euclidean distance process determines the proximity between observations by drawing a straight line between pairs of observations. Therefore, this process measures the distance between observations by looking at the length of this line between observations.

The clusters of PM2.5 and PM10 are identical. The measures during the night (hours = 1,5,23) are at same level, at this is the largest cluster.

In hierarchical clustering, the algorithm builds clusters by measuring the dissimilarities between data.

Aufgabe 3: Zeitreihen Forecasting

c) I calculated MAE for three different Forecasts for all the 4 features.

```
> fit_CV<- data_stretch |> model(MEAN(pm2.5))
> mae_display(fit_cv)
[1] 2.231458
[1] 2.288092
[1] 2.156506
> fit_CV<- data_stretch |> model(MEAN(pm10))
> mae_display(fit_cv)
[1] 2.781453
[1] 2.848204
[1] 2.72481
> fit_CV<- data_stretch |> model(MEAN(rel_LF))
> mae_display(fit_cv)
[1] 12.22813
[1] 12.10388
[1] 11.82352
> fit_CV<- data_stretch |> model(MEAN(temperatur))
> mae_display(fit_cv)
[1] 4.205818
[1] 4.133279
[1] 4.153775
```