Spodbujevano učenje

prof. dr. Marko Robnik-Šikonja oktober 2015

Ideja

- reinforcement learning (RL), dvomljivo poimenovanje
- izhaja iz psihologije, teorija behaviorizma
- agent se v okolju uči na podlagi svojih akcij
- od okolja dobiva odziv (nagrado, kazen), ki pa ni vedno takojšen
- poskuša izdelati strategijo (policy), ki mu bi omogočila doseči cilje
- primer: igraš igro, za katero ne poznaš pravil, čez 100 potez ti soigralec sporoči: izgubil si

Reference

- R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction (tudi nekaj prosojnic)
- Kaelbling, Leslie P.; Michael L. Littman; Andrew W.
 Moore (1996). "Reinforcement Learning: A Survey".
 Journal of Artificial Intelligence Research 4: 237–285.
- Busoniu, Lucian; Robert Babuska; Bart De Schutter; Damien Ernst (2010). Reinforcement Learning and Dynamic Programming using Function Approximators. Taylor & Francis CRC Press.

Agent

- deluje v času
- neprestano se uči in načrtuje
- vpliva na okolje
- okolje je negotovo in stohastično

Kaj je RL?

- algoritem poskuša na stanja v okolju reagirati tako, da bo maksimiziral nagrado
- agent sam odkrije, katere akcije v določenem stanju prinesejo največjo nagrado
- poskuša doseči cilj: izbira med majhnimi kratkoročnimi in morebitnimi večjimi dolgoročnimi nagradami
- agent si lahko o okolju izdela svojo predstavo (model)
- Izvršene akcije vplivajo na naslednje akcije in tudi na naslednje nagrade
- ne gre za nadzorovano učenje pač pa za poskušanje, raziskovanje, povratno informacijo

Uspehi RL

- robotski nogomet
- upravljanje s premoženjem
- * dinamično prirejanje kanalov v mobilnih komunikacija
- * nadzor nad dvigali, industrijskimi kontrolerji in roboti
- roboti: navigacija, premikanje, prijemanje
- # igre: backgammon (TD-Gammon, Jellyfish)
- *...

Dilema: raziskovati ali izkoriščati

- exploration and exploitation
- ali naj agent izkorišča to kar že ve, da bi maksimiziral nagrado, ali naj preizkuša nova stanja

Komponente RL 1/2

- * Strategija: kaj narediti
 - definira agentove izbire in akcije v danem trenutku
 - x predstavljeno z npr. pravili ali tabelo
 - 🔀 lahko rezultat iskanja, načrtovanja, stohastična,...
- * Nagrada: povratna informacija iz okolja, agent jo poskuša maksimizirati

Komponente RL 2/2

- * Vrednost stanja: notranje vrednotenje stanja
 - opisuje agentovo pričakovanje, kaj lahko dolgoročno pričakuje v danem stanju
 - x implicitno vključuje tudi ocene naslednjih stanj
 - vrednosti stanj se poskušamo naučiti; z večkratnim ponavljanjem (vzorčenjem) jih agent poskuša zanesljivo oceniti
- Model: notranji model okolja
 - x neobvezna komponenta
 - model omogoča agentu, da ocenjuje vrednosti stanj in akcije, ne da bi jih dejansko izvedel

Shema agenta

Primer: križci in krožci

RL pristop

1. Tabela z ocenami stanj:

Stanje	V(s) –	- ocenjena verjet	tnost zmage
#	0.5	?	
XI H	0.5	?	2. Igraj mnogo iger
i	•		za izbiro potez poglej
<u> </u>	1	zmaga	
•	:		en korak naprej
• X O X O O	0	poraz	trenutno stanje
•			možna naslednja
0 X 0 0 X X X 0 0	0	neodločeno	stanja
			požrešno izberi naslednje stanje z največjo ocenjeno verjetnostjo zmage (maksimalni $V(s)$)

(raziskovanje)

včasih, npr. 10% izberi potezo naključno

Križci in krožci

- majhno, končno število stanj, lahko pregledamo vse
 - RL ni omejen na končno število stanj; pri neskončnem ali zelo velikem številu stanj generiramo le tista na katera naletimo in uporabimo pri rešitvi
- gledamo lahko korak vnaprej in požrešno izbiramo
- RL ni omejen na igre ali na odgovor nasprotnika

RL učenje

Popravimo vsako V(s) glede na V(s'):

$$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$$

kjer je parameter α (velikost koraka)

majhna vrednost npr. 0.1

Formalizacija RL

iterakcija z okoljem poteka v diskretnih korakih: t = 0,1,2,...

agentovo stanje v koraku $t s_t \in S$

agent v koraku t izvede akcijo: $a_t \in A(s_t)$

dobi nagrado: $r_{t+1} \in \Re$

in preide v naslednje stanje: s_{t+1}

$$S_{t} = \begin{bmatrix} r_{t+1} \\ a_{t} \end{bmatrix} \begin{bmatrix} r_{t+2} \\ a_{t+1} \end{bmatrix} \begin{bmatrix} r_{t+2} \\ a_{t+2} \end{bmatrix} \begin{bmatrix} r_{t+3} \\ a_{t+3} \end{bmatrix} \begin{bmatrix} s_{t+3} \\ a_{t+3} \end{bmatrix} \begin{bmatrix} s_{t+3} \\ s_{t+3} \end{bmatrix} \begin{bmatrix} s_{t+3} \\ s_$$

Agentova strategija

Strategija v koraku t, π_t :

preslikava iz stanja v verjetnost akcije

$$\pi_t(s, a) = \text{verjetnost}, \text{da je } a_t = a, \text{ če je } s_t = s$$

 π^* = optimalna strategija

V preslika stanje v njegovo vrednost

 $V^{\pi}(s)$ = vrednost stanja s pri strategiji π

- kako agent spreminja strategijo glede na svoje izkušnje
- cilj: dolgoročno pridobiti kar največjo nagrado

Okolje

- nedeterministično
- * stacionarno: predpostavimo, da prehode med stanji in nagrade vedno generira enaka verjetnost (to ne pomeni statično!)
- nagrada prihaja iz okolja, ker je agent ne more poljubno spreminjati
- agent ima predstavo o okolju, a ga ne more poljubno spreminjati

Stanja in akcije

- * akcije so lahko poljubne interakcije z okoljem, npr. nizkonivojske (spreminjanje napetosti motorja), ali višjenivojske (kupi delnico, premakni figuro)
- * stanja so lahko konkretne meritve na podlagi okolja ali pa abstraktne, simbolične, subjektivne (npr.izgubljen)

Nagrada

- cilj določa, kaj želimo doseči in ne kako
- agent lahko eksplicitno in večkrat izmeri svoj uspeh
- maksimiziramo kumulativno vsoto delnih nagrad
- dovolj fleksibilno

Optimalno obnašanje agenta

- kakšno je optimalno obnašanje agenta
- * nagrade od časa t naprej: r_{t+1}, r_{t+2}, r_{t+3}, ...
- * želimo maksimizirati pričakovano nagrado E(Rt)
- * tri najbolj razširjene definicije
 - končen horizont, smiselno pri epizodnih problemih (problem lahko razbijemo na epizode, npr. prehod skozi labirint, robot prenese predmet, ...)
 - meskončen horizont (delovanje agenta se ne konča, a bližnja stanja so pomembnejša kot bolj oddaljena)
 - 💥 pričakovana povprečna nagrada

Končen horizont

- v času t agenta zanima največ h stanj vnaprej
- * nagrade v tem času so r_{t+1}, r_{t+2}, r_{t+3}, ..., r_{t+h}
- $R_t = r_{t+1} + r_{t+2} + r_{t+3} + ... + r_{t+h}$
- maksimiziramo pričakovano nagrado v tem obdobju

$$\max E(R_t) = \max E(\sum_{k=1}^n r_{t+k})$$

Stategije za končen horizont

dve strategiji:

- h-koračna optimalna strategija: na 1. koraku naredi akcijo, ki je najboljša ob predpostavki, da lahko naredi še h-1 akcij, ...
- h-premično koračna strategija: na vsakem koraku naredi akcijo, ki je najboljša ob predpostavki, da lahko naredi še h akcij
- omejenost pogleda vnaprej
- primernost končnega horizonta: epizodne naloge, npr. pot skozi labirint

Neskončen horizont

- delovanje agenta nima naravnega konca, a bližnja stanja so pomembnejša od bolj odaljenih
- agenta optimizira dolgoročno zaporedje nagrad
- nagrade v prihodnosti se geometrijsko zmanjšujejo
- * nagrade: $R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4}$... za $0 < \gamma < 1$
- γ (discount factor) lahko interpretiramo kot obresti, način kako omejimo neskončno vsoto, verjetnost preživetja še enega koraka, kratkovidnost/daljnovidnost

$$\max E(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}), \quad 0 < \gamma < 1$$

Pričakovana povprečna nagrada

agenta optimizira dolgoročno povprečno nagrado

$$\lim_{h\to\infty} E(\frac{1}{h}\sum_{k=1}^h r_{t+k})$$

* slabost: ne loči med bližnjimi in bolj oddaljenimi nagradami

Primer: voziček s palico

Epizodna naloga: dokler palica ne pade nagrada = +1 za vsak korak pred padcem uspeh = število korakov pred padcem

Ponavljujoča se naloga s padajočo nagrado nagrada = -1 ob padcu, 0 sicer uspeh = γ^k za k korakov pred padcem (o < γ < 1)

Primer: klanec

Premakni se na vrh hriba, kakor hitro je mogoče

nagrada = -1 za vsak korak, ko nismo na vrhu hriba \Rightarrow uspeh = - št. korakov preden dosežemo vrh

Uspeh maksimiciramo, če minimiziramo število korakov, da pridemo na vrh hriba.

Primerjava obravnavanja nagrad

Kriteriji za uspešnost učenja

- konvergenca: nekateri algoritmi z dokazano konvergenco k optimalni rešitvi
- hitrost konvergence:
 - hitrost konvergence k skoraj optimalni rešitvi
 - x stopnja optimalnosti po določenem času
 - parameter (stopnja optimalnost ali čas)
- razlika do optimalne strategije (regret): vsota razlik med optimalno strategijo in strategijo, ki jo je našel učni algoritem

Markovski RL problem

- stanje je markovsko, če je naslednje stanje odvisno le od trenutnega
- npr. šah: trenutna pozicija vsebuje vso potrebno informacijo za nadaljevanje, ni nam potrebno poznati zgodovine potez
- koristna aproksimacija, ki poenostavi učne algoritme; celo če okolje modeliramo

$$\Pr\{s_{t+1} = s', r_{t+1} = r | s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0\} = \\ \Pr\{s_{t+1} = s', r_{t+1} = r | s_t, a_t\}$$

za vse s', r in pretekle s_t , a_t , r_t , s_{t-1} , a_{t-1} , ..., r_1 , s_0 , a_0 .

Markovski odločitveni proces

- * če velja Markovska lastnost, gre za MDP (Markov decision process)
- če je množica stanj in akcij končna, imamo končni MDP, kar predstavlja napomembnejši primer RL
- * definiramo
 - x množico stanj in akcij
 - 💥 verjetnosti prehodov za en korak

$$T(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$$
 za vse $s, s' \in S, a \in A(s)$.

x verjetnosti nagrad:

$$\mathbf{R}(s,a) = E(r_{t+1}|s_t = s, a_t = a)$$
 za vse $s \in S, a \in A(s)$.

Primer končnega MDP

Čistilni robot v parku zbira odpadle pločevinke

- na vsakem koraku se robot odločla ali naj 1) aktivno išče pločevinke 2)
 počaka, da mu kdo prinese pločevinko 3) se vrne v bazo in polni
- iskanje prinese večjo nagrado, a hitreje prazni baterijo; če mu zmanjka baterije med iskanjem, ga je treba rešiti, kar prinese veliko kazen
- odločitev glede na trenutno stanje energije: high, low.
- nagrada = število zbranih pločevink

Čistilni robot MDP

```
S = \{\text{high, low}\}\
A(\text{high}) = \{\text{search, wait}\}\
A(\text{low}) = \{\text{search, wait, recharge}\}\
```

 $\mathbf{R}^{\text{search}} = \text{expected no. of cans while searching}$ $\mathbf{R}^{\text{wait}} = \text{expected no. of cans while waiting}$ $\mathbf{R}^{\text{search}} > \mathbf{R}^{\text{wait}}$

Funkcija vrednosti za MDP

* Vrednost stanja je pričakovana nagrada, če začnemo iz danega stanja in sledimo agentovi strategiji π :

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \middle| s_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s \right\}$$

 Definiramo funkcijo Q – vrednost akcije v danem stanju in pri dani strategiji: pričakovana nagrada

$$Q^{\pi}(s,a) = E_{\pi} \left\{ R_{t} \middle| s_{t} = s, a_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s, a_{t} = a \right\}$$

Izračun V in Q

- vrednosti V^π(s) in Q^π(s,a) ocenimo na podlagi izkušenj
- teoretično v limiti konvergirajo v pravo vrednost
- agent si za vsako stanje/akcijo zapomni povprečje
- pri velikih prostorih stanja generaliziramo
- ocenimo/izračunamo jih z Monte-Carlo učnimi metodami
- lahko jih zapišemo rekurzivno

Bellmanova enačba za strategijo π

Ideja
$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} \cdots$$

$$= r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \gamma^{2} r_{t+4} \cdots)$$

$$= r_{t+1} + \gamma R_{t+1}$$

Za vrednost
$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \mid s_{t} = s \right\}$$

$$= E_{\pi} \left\{ r_{t+1} + \gamma V(s_{t+1}) \mid s_{t} = s \right\}$$

Oziroma drugače:

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} T(s, a, s') \left[\mathbf{R}(s, a) + \gamma V^{\pi}(s') \right]$$

Bellmanova enačba

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} T(s, a, s') \left[\mathbf{R}(s, a) + \gamma V^{\pi}(s') \right]$$

- Množica linearnih enačb, po ena za vsako stanje z eno samo rešitvijo.
- Dinamično programiranje

Vračanje vrednosti:

Primer: kvadratna mreža

- Akcije: S,J, V, Z
- če bi agent padel iz mreže ostane na istem mestu, z nagrado –1
- druge akcije imajo nagrado o, razen v točkah A in B

strategija: v vse smeri z enako verjetnostjo

rešitev Bellmanovih enačb za $\gamma = 0.9$

Izbor strategije pri danem modelu

- denimo, da model poznamo
- model okolja pri MDP je podan s T(s,a,s') in R(s,a)
- optimalna vrednost stanja V*(s)

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

 v nadaljevanju predpostavimo neskončen horizont zaradi lažje izpeljave

Bellmanove enačbe za optimalno strategijo

$$V^{*}(s) = \max_{a \in A(s)} Q^{\pi^{*}}(s, a)$$

$$= \max_{a \in A(s)} E \{ r_{t+1} + \gamma V^{*}(s_{t+1}) | s_{t} = s, a_{t} = a \}$$

$$= \max_{a \in A(s)} \sum_{s'} T(s, a, s') [\mathbf{R}(s, a) + \gamma V^{*}(s')]$$

$$Q^{*}(s,a) = E \Big\{ r_{t+1} + \gamma \max_{a'} Q^{*}(s_{t+1},a') \big| s_{t} = s, a_{t} = a \Big\}$$

$$= \sum_{s'} T(s,a,s') \Big[R(s,a) + \gamma \max_{a'} Q^{*}(s',a') \Big]$$

Reševanje Bellmanovih optimalnih enačb

- Če želimo najti optimalno strategijo z rešitvijo Bellmanovih enačb moramo za naš problem izpolnjevati Markovski pogoj, poznati moramo natančno dinamiko okolja ter imeti na voljo zadosti pomnilnika in časa
- zahtevnost reševanja je z dinamičnim programiranjem polinomska glede na število stanj (npr. backgammon okoli 10²⁰), osredotočimo se torej na bolj verjetna stanja, na katera naletimo med iskanjem
- za večino zanimivih problemov poskušamo najti približne rešitve
- številne RL metode so v bistvu približne metode za reševanje Bellmanovih optimalnih enačb

Iteracija vrednosti

```
void valueIteration() {
  poljubno inicializiraj vrednosti V(s)
 do{
   foreach (s \in S) {
     foreach (\alpha \in A) {
        Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V(s')
        V(s) = \max_{\alpha} Q(s, \alpha)
  } while (!zadovoljen);
```

algoritem nazaj (od končnih stanj) popravlja vrednosti

Iteracija vrednosti: konvergenca

- Izrek: če je razlika dveh zapored izračunanih vrednosti stanja manjša od ε, je vrednost požrešne strategije, ki uporablja te ocene, v vsakem stanju od optimalne manjša za največ 2ε γ/(1-γ).
- lahko uporabimo kot ustavitveni pogoj
- robusten pristop, saj lahko vrednosti stanjem prirejamo tudi asinhrono in vzporedno, konvergenca pa se ne spremeni

Iteracija strategije

```
void policyIteration() {
  izberi poljubno strategijo \pi'
  do {
       \pi=\pi'
       izračunaj vrednost strategije \pi tako, da rešiš linearne enačbe
               V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s');
       izboljšaj strategijo v vsakem stanju
           \pi'(s) = \arg\max_{a} R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V_{\pi}(s');
   } while ( \pi \neq \pi' );
```

Ko vrednost dobimo z rešitvijo linearnih enačb, preverimo ali lahko strategijo izboljšamo s spremembo prve akcije. Če ne moremo spremeniti strategije v nobenem stanju, je dobljena strategija zagotovljeno optimalna.

Uporaba optimalnih V* in Q*

S poznavanjem V* je optimalna kar požrešna strategija. Če imamo V*, nam pogled naprej za en korak da optimalne rezultate.

Primer:

Približne metode reševanja

- učenje s časovnimi razlikami (ni potreben model, inkrementalne, težavne za analizo)
- dinamično programiranje (matematično dobro podprto, zahteva popoln in natančen opis sveta)
- Monte Carlo metode (ne zahtevajo modela, konceptualno preproste, neprimerne za inkrementalen izračun, vzorčijo kompletne trajektorije v interakciji z okoljem ali modelom okolja)
- razlike glede učinkovitosti in hitrosti konvergence

Učenje s časovnimi razlikami

- nazaj na prejšnja stanja prenesemo nekaj razlike
 z naslednjimi stanji
 V(s_t) = V(s_t) + c(V(s_{t+1})-V(s_t))
- * c je parameter, ki se med učenjem postopno zmanjšuje in omogoča konvergenco

Q učenje

- * Watkins, 1989
- pogosto uporabljena varianta časovnih razlik
- za en korak naprej

$$Q(s_t, a_t) = (1-c) Q(s_t, a_t) + c(r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t))$$

$$0 <= c, \gamma <= 1$$

Q učenje

```
Initialize Q(s,a) arbitrarily
Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., \varepsilon-greedy)

Take action a, observe r, s'
Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
s \leftarrow s';
until s is terminal
```

Pregled metod

