

TEMA 4 Control de Acceso al Medio

Profesor: Rubén Santiago

Despacho: 332

Tutorías: MXV 10 - 12

Trasparencias y material elaborado por el Profesor Rafael Moreno Vozmediano

Parte IV: Redes Inalámbricas (WLAN)

2

- **■** Introducción
- Estándar 802.11
 - Tipos de Redes
 - Servicios 802.11
 - Control de Acceso al Medio
 - Implementaciones Físicas
 - Formato de la trama

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Č

■ Principales tecnologías de redes inalámbricas

Tecnología	Banda de frecuencias	Velocidad máxima	Organización
802.11	2.4 GHz 5 Ghz	54 Mbps	IEEE
Hiper LA N	5 GHz	54 Mbps	ETSI
Home RF	2.4 GHz	2 Mbps	HRFWG (Intel)
Bluetooth	2.4 GHz	2 Mbps	Bluetooth SIG
WiMax	< 11 GHz	70 Mbps	IEEE 802.16a

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Profesor: Rafael Moreno Vozmediano

Redes LAN inalámbricas (WLAN)

4

■ Redes WLAN

- WLAN = Wireless Local Area Network (Red de área local inalámbrica)
 - Conjunto de dispositivos que se comunican entre sí dentro de un área geográfica limitada utilizando medios de transmisión inalámbricos, sin necesidad de cables.
 - Ventajas:
 - Movilidad
 - Facilidad y rapidez de instalación
 - Reducción del coste de infraestructura y mantenimiento
 - Escalabilidad (fácil crecimiento de la red)
 - Inconvenientes:
 - Velocidad
 - Seguridad
- Principal estándar de redes WLAN
 - IEEE 802.11
 - Popularmente conocido como WiFi (Wireless Fidelity)

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

5 Redes LAN inalámbricas (WLAN) ■ El estándar 802.11 (1) ■ El estándar 802.11 define ■ Tipos de redes WLAN Con infraestructura • Sin infraestructura (ad-hoc) Conjuntos de servicios • Conjunto básico de servicios básicos (BSS, Basic Service Set) • Conjunto extendido de servicios (ESS, Extended Service Set) ■ El protocolo de control de acceso al medio • Función de coordinación distribuida (DCF, Distributed Coordination Function) ■ Basada en CSMA/CA ■ Con extensión RTS/CTS • Función de coordinación centralizada (PCF, Point Coordination Function) Basada en sondeo Las implementaciones físicas soportadas ■ 802.11 ■ 802.11a ■ 802.11b ■ 802.11g El formato de trama

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

■ Tipos de redes WLAN 802.11

■ Red WLAN con infraestructura

- Las estaciones inalámbricas se comunican a través de un punto de acceso (AP, Access Point)
 - Cada AP tiene un identificador
 - La conexión de un estación a un AP se denomina asociación
- El AP funciona como una especie de HUB inalámbrico
 - La estación emisora envía su trama de datos al AP
 - El AP retransmite la trama de datos a la estación destinataria

■ Red WLAN sin infraestructura (ad-hoc)

- Las estaciones inalámbricas se comunica directamente entre sí, sin necesidad de un AP
- Este modo de funcionamiento es similar, en cierto modo, al utilizado en redes Bluetooth

WLAN sin infraestructura (ad-hoc)

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Profesor: Rafael Moreno Vozmediano

Redes LAN inalámbricas (WLAN)

■ Conjunto de servicios de redes WLAN 802.11 (2)

■ Conjunto básico de servicios (BSS, Basic Service Set)

- Un BSS es el bloque constitutivo básico de una WLAN
 - Está formado por un conjunto de estaciones móviles y, opcionalmente, un AP
- Un BSS puede ser una red WLAN con o sin infraestructura
 - Un BSS sin infraestructura (ad-hoc) es una red aislada, que no puede comunicarse con otras redes
 - Un BSS con infraestructura se puede comunicar con otras redes a través del AP

BSS sin AP (red ad-hoc)

Station Station Station

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Profesor: Rafael Moreno Vozmediano

4

Redes LAN inalámbricas (WLAN) Conjunto de servicios de redes WLAN 802.11 (2) Conjunto extendido de servicios (ESS, Extended Service Set) Un ESS está compuesto de varios BSSs unidos a través de sus respectivos APs mediante una red de distribución La red de distribución suele ser una red cableada, y puede usar cualquier tipo de tecnología (por ejemplo, Ethernet) Un ESS puede estar formado por estaciones móviles y fijas Las estaciones móviles forman parte de algún BSS Las estaciones fijas están conectadas a la red cableada

Redes LAN inalámbricas (WLAN)

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

10

Profesor: Rafael Moreno Vozmediano

- Control de acceso al medio en redes WLAN 802.11 (1)
 - Problema de las redes WLAN
 - No es posible utilizar CSMA/CD debido a la dificultad de detectar colisiones
 - La transmisión usa señales analógicas (microondas), por tanto no es posible comparar la señal transmitida con la señal escuchada
 - El punto de acceso no utiliza puertos físicos como un HUB Ethernet, y por tanto no puede detectar colisiones de forma lógica
 - Técnicas MAC en redes WLAN 802.11
 - Función de coordinación distribuida (DFC, Distributed Coordination Function)
 - El control de acceso al medio se lleva a cabo de forma distribuida entre todas las estaciones de la red
 - Puede utilizarse en entornos con o sin infraestructura
 - Se basa en el protocolo CSMA/CA (CSMA with Collision Avoidance)
 - Existen dos modos de funcionamiento alternativos
 - DCF básico
 - DCF con extensión RTS/CTS
 - Función de coordinación centralizada (PCF, Point Coordination Function)
 - El control de acceso al medio se lleva a cabo de forma centralizada mediante el AP
 - Sólo se puede utilizar en redes con infraestructura
 - Es un protocolo basado en sondeo libre de colisiones

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

11

- Control de acceso al medio en redes WLAN 802.11 (2)
 - Técnicas MAC en redes WLAN 802.11 (cont.)
 - Parámetros temporales usados en DCF y PCF
 - El funcionamiento de DCF y PCF se basa en tres parámetros temporales
 - SIFS (short inter-frame spacing): espaciado inter-trama corto
 - PIFS (PCF inter-frame spacing): espaciado inter-trama PCF o intermedio
 - DIFS (DCF inter-frame spacing): espaciado inter-trama DCF o largo

SIFS < PIFS < DIFS

Función de coordinación	Parámetros temporales	
DCF	SIFS	
	DIFS	
PCF	SIFS	
	PIFS	

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Profesor: Rafael Moreno Vozmediano

Redes LAN inalámbricas (WLAN)

12

- Control de acceso al medio en redes WLAN 802.11 (3)
 - Función de coordinación distribuida
 - Se basa en el protocolo CSMA/CA, que tiene el siguiente funcionamiento:
 - 1. Cuando una estación quiere transmitir, primero escucha el medio
 - Si el medio está ocupado, pasa a 2
 - Si el medio está libre, la estación continúa escuchando el medio durante un intervalo DIFS. Después de este intervalo:
 - Si el medio continúa libre, la estación comienza a transmitir.
 - Si el medio está ocupado, pasa a 2
 - 2. Si el medio está ocupado
 - La estación espera a que el medio quede libre.
 - Una vez que éste queda libre, la estación NO transmite inmediatamente, sino que espera un intervalo DIFS y pasa a 3
 - 3. Una vez transcurrido el intervalo DIFS
 - Si el medio está ocupado, vuelve a 2.
 - Si el medio está libre, la estación genera un número aleatorio N, y espera N ranuras temporales (periodo de contienda) escuchando el medio
 - Si transcurrido el periodo de contienda el medio sigue libre, la estación transmite
 - Si durante el periodo de contienda otra estación ocupa el medio, la estación aborta su cuenta, espera a que el medio quede libre, luego espera un tiempo DIFS y luego continúa con la cuenta

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Redes LAN inalámbricas (WLAN) Control de acceso al medio en redes WLAN 802.11 (6) Función de coordinación distribuida (cont.) El problema de la estación oculta Supongamos la siguiente situación: Las estaciones B y C no se ven entre sí Supongamos que la estación B está transmitiendo a la estación A Area de cobertura de B La estación C quiere transmitir a A y detecta el canal libre (ya que no recibe la señal de B) La estación C transmite a la estación A y se produce una colisión Area de cobertura de B Area de cobertura de C Area de cobertura de C

17

- Control de acceso al medio en redes WLAN 802.11 (8)
 - Función de coordinación distribuida con extensión RTS/CTS (cont.)
 - Observación
 - En caso de existir una estación oculta, la trama CTS llega a todas las estaciones dentro del área de cobertura de la estación receptora:

- Problema sin resolver:
 - La estación C no puede ver la trama de datos de B →A, por tanto ¿cómo sabe la estación C cuánto tiempo debe esperar para poder ocupar el canal?
- Solución:
 - Utilizar el vector de reserva de red (NAV, Network allocation Vector)

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Profesor: Rafael Moreno Vozmediano

Redes LAN inalámbricas (WLAN)

18

- Control de acceso al medio en redes WLAN 802.11 (9)
 - Función de coordinación distribuida con extensión RTS/CTS (cont.)
 - El vector de reserva de red (NAV, Network allocation Vector)
 - El vector de reserva se usa para evitar que otras estaciones (incluidas las estaciones ocultas) intente ocupar el canal durante el periodo de transmisión
 - Cuando la estación emisora envía la trama RTS, incluye un parámetro que indica el tiempo que el canal estará ocupado (NAV-RTS)
 - NAV-RTS llega a todas las estaciones en el área de cobertura de la estación emisora
 - Cuando la estación receptora devuelve la trama CTS, también incluye el tiempo que resta por ocupar el canal (NAV-CTS)
 - NAV-CTS llega a todas las estaciones en el área de cobertura de la estación receptora

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

19

- Control de acceso al medio en redes WLAN 802.11 (10)
 - Función de coordinación centralizada
 - La función de coordinación centralizada (PCF) sólo puede usarse en redes con infraestructura
 - El punto de acceso (AP), también llamado coordinador central, se encarga de controlar el acceso al medio mediante una técnica de sondeo
 - La técnica PCF tiene prioridad sobre la DCF
 - El funcionamiento de PCF se basa en los intervalos PIFS v SIFS (SIFS < PIFS < DIFS)
 - Mientras se está realizando un ciclo de sondeos (con intervalos PIFS y SIFS), no es posible que ninguna estación consiga ocupar el medio usando DCF
 - Para evitar que la transmisión mediante PCF ocupe permanentemente el canal
 - El tiempo se divide en ranuras denominada supertramas
 - Cada supertrama comienza con el envío de una trama especial denominada beacon
 - La trama beacon (enviada por el coordinador central) contiene parámetros de funcionamiento (velocidad de transmisión, técnica de modulación empleada, información de sincronización, etc.)
 - Durante la primera parte de una supertrama (periodo PCF / libre de colisiones)
 - El coordinador central emite un ciclo de sondeos para que las estaciones asociadas al AP puedan transmitir mediante PCF
 - Durante el tiempo que resta de supertrama (periodo DCF / con posibilidad de colisión)
 - El coordinador central se mantiene inactivo, permitiendo que otras estaciones se comuniquen mediante DCF

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Profesor: Rafael Moreno Vozmediano

Redes LAN inalámbricas (WLAN)

20

- Control de acceso al medio en redes WLAN 802.11 (11)
 - Función de coordinación centralizada (cont.)
 - Funcionamiento (1)
 - Tramas heacon
 - Al comienzo de una supretrama el coordinador central espera un intervalo PIFS y transmite una trama beacon
 - Tramas de sondeo (CF-Poll o CF-Poll+Data)
 - El coordinador central envía una trama de sondeo (CF-Poll) a cada una de las estaciones asociadas al AP
 - En caso de que haya que enviar datos a la estación, las tramas de sondeo pueden ir acompañadas de datos (CF-Poll+Data)
 - Tramas de confirmación de sondeo (CF-ACK o CF-ACK+Data)
 - Cuando una estación recibe una trama de sondeo, transcurrido un intervalo SIFS, responde con una trama de confirmación de sondeo (CF-ACK), si no tiene datos para enviar
 - En caso de que la estación tenga datos para enviar, responderá con trama confirmación de sondeo + datos (CF-ACK+Data)
 - Intervalos entre sondeos
 - Si el coordinador central recibe una confirmación de la estación sondeada (CF-ACK), deja transcurrir un intervalo SIFS y pasa a sondear a la siguiente estación
 - Si no hay respuesta de la estación sondeada, el coordinador central deja transcurrir un intervalo PIFS y pasa a sondear a la siguiente estación

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Redes LAN inalámbricas (WLAN) ■ Control de acceso al medio en redes WLAN 802.11 (12) Función de coordinación centralizada (cont.) Funcionamiento (2) Trama de fin de periodo libre de colisión (CF-End) • Al finalizar el ciclo de sondeos, el coordinador central envía una trama CF-End, para indicar que ha finalizado el periodo libre de colisión Durante el tiempo que resta de supertrama, las estaciones que usen DCF puede comunicarse entre sí Ejemplo Estaciones 1, 2, 3 y 4 asociadas al AP SIFS UD4 UD1 UD2 Estaciones 1, 2, 3 y 4 NAV Resto de estacione Periodo libre de colisión (PCF) DDx = Tramas de bajada (CF-Poll o CF-Poll+Data) (DCF) UDx = Tramas de subida (CF-ACK o CF-ACK + Data)

Redes LAN inalámbricas (WLAN)

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

22

■ Implementaciones físicas de las redes WLAN 802.11 (1)

Principales implementaciones físicas

Estándar	Año	Banda de frecuencias	Técnica de transmisión	Tipo de modulación	Velocidad de transmisión
		2,4 GHz	FHSS	FSK	1 y 2 Mbps
802.11	1997	2,4 GHz	DSSS	PSK	1 y 2 Mbps
		Infrarrojos		PPM	1 y 2 Mbps
802.11a (*)	1999	5,725 GHz	OFDM	PSK y QAM	6 a 54 Mbps
802.11b	1999	2,4 GHz	DSSS	PSK	5,5 y 11 Mbps
802.11g	2002	2,4 GHz	OFDM	Otras	22 y 54 Mbps

(* Solo en EEUU)

Glosario:

FHSS = Frecuency Hop Spread Spectrum (Espectro expandido con salto de frecuencias)

DSSS = Direct Sequence Spread Spectrum (Espectro expandido de secuencia directa)

OFDM = Orthogonal frequency-division multiplexing (Multiplexación por división de la frecuencia ortogonal)

PPM = Pulse Position Modulation (Modulación por por posición de pulsos)

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

23

- Implementaciones físicas de las redes WLAN 802.11 (2)
 - Técnicas de espectro expandido
 - Consisten en enviar una señal de datos de ancho de banda B utilizando un espectro de frecuencias, B_{SS}, mucho mayor que la frecuencia de la señal original
 - Siendo B_{SS} >> B
 - Ventajas del espectro expandido
 - Reducen las interferencias con otras señales que utilicen frecuencias similares
 - Dificultan la captación de la señal por parte de usuarios no autorizados
 - Principales técnicas de espectro expandido
 - Espectro expandido con salto de frecuencias (FHSS, Frecuency Hop Spread Spectrum)
 - Espectro expandido de secuencia directa (DSSS, Direct Sequence Spread Spectrum)

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Profesor: Rafael Moreno Vozmediano

Redes LAN inalámbricas (WLAN)

24

■ Implementaciones físicas de las redes WLAN 802.11 (3)

- Espectro expandido con salto de frecuencias (FHSS)
 - Se utiliza un canal de transmisión de un ancho de banda superior al ancho de banda de la señal a transmitir
 - El canal de transmisión se divide en varios subcanales de distintas frecuencias
 - Cada bit o grupo de bits de la señal original se transmite por un subcanal distinto, cambiando (saltando) de una frecuencia a otra cada vez que se envía un nuevo bit o grupo de bits
 - El emisor y el receptor deben seguir la misma secuencia de saltos
 - Esta secuencia se suele generar de forma pseudo-aleatoria a partir de una semilla
 - El receptor debe conocer el algoritmo de generación de la secuencia y la semilla para poder recibir correctamente la señal

26

■ Implementaciones físicas de las redes WLAN 802.11 (5)

- Multiplexación por división de la frecuencia ortogonal (OFDM)
 - OFDM divide el ancho de banda del medio en varios canales, de forma similar a FDM, pero con una importante diferencia:
 - Todos los subcanales son utilizados por la misma fuente al mismo tiempo
 - Es muy parecido a la técnica de multitono discreto utilizado en ADSL
 - Funcionamiento (en 802.11a)
 - El ancho de banda disponible se divide en 52 canales de 20 MHz cada uno
 - 48 canales para transportar datos
 - 4 canales para información de control
 - En cada instante, por cada canal se envía un grupo de N bits
 - En total se envían 48 grupos de N bits en paralelo
 - El número de bits enviado por cada canal (N) varía en función de la técnica de modulación empleada
 - Pueden emplearse distintas técnicas de modulación. Las más comunes son:
 - BPSK (1 bit por baudio)
 - QPSK (2 bits por baudio)
 - 16-QAM (4 bits por baudio)
 - 64-QAM (6 bits bits por baudio)
 - Las velocidades de transmisión alcanzables dependen de la técnica de modulación
 - De 6 a 54 Mbps

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

29

- Formato de la trama 802.11 (1)
 - Campos de la trama MAC 802.11
 - Campo FC (control de trama): está compuesto de 11 subcampos:
 - Versión de protocolo: permite el funcionamiento simultáneo en una celda de dos versiones del protocolo.
 - Tipo: datos (=10), control (=01), gestión (=00).
 - Subtipo: ejemplos de subtipos, para campo tipo=10, son RTS (=1011), CTS (=1100), ACK (=1001).
 - A DS/De DS: indica si la trama se dirige o proviene de un sistema de distribución (DS).
 Se usa para determinar el papel de las cuatro direcciones de la cabecera de la trama
 - Más fragmentos: se fija a 1 en todas las tramas de datos y gestión si a continuación irá otro fragmento de la trama.
 - Reintento: se fija a 1 si la trama es la retransmisión de una trama previa.
 - Gestión de energía: se establece tras la transmisión con éxito de una trama: 1 indica que la estación se pondrá en el modo de ahorro de energía, 0 indica que la estación permanecerá activa.
 - Más datos: se pone a 1 tanto si el coordinador como la estación tienen más datos por enviar tras esta trama.
 - WEP: indica que se está haciendo uso del mecanismo estándar de seguridad WEP del 802.11.
 - Orden: si se fija a 1, las tramas recibidas deben ser procesadas en orden.

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

Profesor: Rafael Moreno Vozmediano

Redes LAN inalámbricas (WLAN)

30

- Formato de la trama 802.11 (1)
 - Campos de la trama MAC 802.11 (cont.)
 - Campo D (Duración/ID)
 - Indica -en microsegundos- cuánto tiempo ocuparán el medio la trama y su confirmación.
 - También se usa para establecer la duración del NAV.
 - Campos de Dirección 1 a 4
 - Se explica más adelante
 - Control de secuencia
 - El esquema de confirmación empleado puede provocar duplicados de tramas o fraomentos.
 - El campo de control de secuencia se usa tanto de las tramas de datos como de las ACK para mantener un número de secuencia.
 - Campo Datos:
 - Puede transportar 0-2312 bytes
 - Campo FCS
 - CRC de 48 bits.

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet.

31

- Formato de la trama 802.11 (1)
 - Campos de la trama MAC 802.11 (cont.)
 - Significado de las direcciones MAC (1)

A DS	De DS	Dirección 1	Dirección 2	Dirección 3	Dirección 4
0	0	Destino	Origen	ID de BSS	No usado
0	1	Destino	AP emisor	Origen	No usado
1	0	AP receptor	Origen	Destino	No usado
1	1	AP receptor	AP emisor	Destino	Origen

- Casos
 - Caso 1 (00)
 - La trama va de una estación origen a otra destino dentro del mismo BSS sin pasar por un sistema de distribución
 - Caso 2 (01)
 - La trama procede de un AP y va dirigida a la estación. La estación origen está en un BSS distinto (sistema de distribución por red de cable)
 - Caso 3 (10)
 - La trama procede de una estación y va dirigida a un AP. La estación destino está en un BSS distinto (sistema de distribución por red de cable)
 - Caso 4 (01)
 - La trama va de un AP a otro AP a través de un sistema de distribución inalámbrico

Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet. Profesor: Rafael Moreno Vozmedi

32 Redes LAN inalámbricas (WLAN) ■ Formato de la trama 802.11 (1) ■ Campos de la trama MAC 802.11 (cont.) Significado de las direcciones MAC (2) Sistema de distribución (red de cable) BSS BSS BSS-ID BAT b) Caso 2 a) Caso 1 Sistema de distribución (red de cable) Sistema de distribución (red inalámbrica) BSS AP2 AP2 AP1 B A AP1 BSS c) Caso 3 d) Caso 4 Tema 4. Redes de área local (LAN): las subcapas MAC y LLC; redes LAN Ethernet. Profesor: Rafael Moreno Vozmediano

