Combinatorics

Thomas Fleming

October 4, 2021

Contents

Quasi-Random Graphs

 $\mathbf{2}$

Lecture 17: Semi-circle Law

Fri 01 Oct 2021 10:20

Recall that for eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ we have $\lambda_1 = \frac{n}{2} + \sqrt{n \log(n)} = o(n)$. Additionally, we know $\sigma_1 = \lambda_1$ and $\sigma_2, \sigma_3, \dots, \sigma_n$ correspond to $|\lambda_2|, |\lambda_3|, \dots, |\lambda_n|$. Further, it is known by Furedi and Kowlos that $\sigma_2 = O(\sqrt{n})$.

Theorem 0.1. For a randomly chosen graph of order n, with eigenvalues Theorem 6.1. For a random, chosen graph of order x_i , the algebraic $\lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_n$. Define $W_n(x): \mathbb{R} \to \mathbb{Z}^+$ to be the number of eigenvalues λ_i , such that $\frac{\lambda_i}{\sqrt{n}} \leq x$, divided by n. Then, we find the function which $W_n(x)$ tends to pointwise, W(x) has $W(x) = \begin{cases} \frac{2}{\pi}\sqrt{1-x^2}, & |x| \leq 1\\ 0, & |x| > 1 \end{cases}$

$$W_n\left(x\right)$$
 tends to pointwise, $W\left(x\right)$ has $W\left(x\right) = \begin{cases} \frac{2}{\pi}\sqrt{1-x^2}, & |x| \leq 1\\ 0, & |x| > 1 \end{cases}$

Here recall that $\sqrt{1-x^2}$ is an upper half semicircle of radius 1 and the factor $\frac{2}{x^2}$ compresses it into an ellipse. This fact essentially characterizes the distribution of eigenvalues of a random graph. That is, plurality of eigenvalues will be 0 and we find the number of eigenvalues of a given magnitude decreases as $\lambda \to \sqrt{n}$. We note that the leading $\frac{2}{\pi}$ is to normalize the area such that this is a probability density function. Then, we note $E\left[x^2W\left(x\right)\right] = \int_{-1}^{1} \frac{2}{\pi}x^2\sqrt{1-x^2}dx = \frac{1}{4}$. Hence, we find $\frac{1}{n^2} \sum_{i=2}^n \lambda_i^2 \approx \frac{1}{4}$.

It is a well known result that $\sum_{i=1}^{n} |\lambda_i| = \sum_{i=1}^{\infty} \sigma_i \leq \frac{1}{2} n^{\frac{3}{2}} \leq 2(n-1)$. Applying our integral formula from earlier yields $\sum_{i=1}^{\infty} |\lambda_i| = \int_{-1}^{1} |x| \sqrt{1-x^2} = 1$ $2\int_0^1 x\sqrt{1-x^2}$.

At this point, Runze found a contradiction in the argument and we ended class early.

Lecture 18: Semi-Circle Law Corrections and Quasi-Random Graphs

Mon 04 Oct 2021 10:21

Let G be a random graph of order n and denote $N\left(x\right)$ to be the number of eigenvalues λ such that $\frac{\lambda}{\sqrt{n}} \leq xW_n\left(x\right) = \frac{1}{n}N\left(x\right)$. Then, we find the sequesnce

of functions approaches

$$W(x) = \begin{cases} 0, & x \le -1 \\ \frac{2}{\pi} \int_{-1}^{x} \sqrt{1 - x^2} dx, & -1 < x < 1 \\ 1, & x \ge 1 \end{cases}.$$

Furthermore, we even find W to be continuous in the hole real line and $W_h(x)$ converges to W(x) earlier.

1 Quasi-Random Graphs

Definition 1.1. Let G be a graph of order n with M being an arbitrary subgraph of K_n . We define $N_G^*(M)$ to be the number of labeled induced copies of M in G. Equivalently,

$$N_G^*(M) = |\{\alpha : \alpha : V(M) \rightarrow V(G)\}|$$

with each α preserving adjacenc and $\alpha(V(M))$ being isomorphic to M.

Example. $N_G^*(K_2 = 2e(G))$. $N_G^*(C_4) = \frac{1}{64}n^4 + o(n^4)$. This is because every copy of K_4 in G has 8 copies isomorphic to C_4 . Furthermore there are 3 symmetries of a K_4 copy, so altogether we get $\frac{1}{24} \binom{n}{4} \cdot \frac{1}{2^6} = \frac{n^4}{64} + o(n^4)$.

Definition 1.2 (Graph Properties). The following are equivalent:

- We define an infinite family of graphs with arbitrary orders $\mathscr G$ to have property $P_1(s)$ or **property** I with power s if for all graphs M of order s, we find $N_G^*(M) = \frac{n^s}{2\binom{n}{2}} + o(n^s)$ for each $G \in \mathcal{G}$ having order
- A family \mathscr{G} has property P_2 or **property II** if $e(G) \geq \frac{n^2}{4} + o(n^2)$ and the number of closed walks of order 4, $CW_4(G) \leq \frac{n^4}{16} + o(n^4)$ for each $G \in \mathcal{G}$ of order n.
- A family \mathscr{G} has property P_3 or **property III** if $\lambda_1(G) = \frac{n}{2} + o(n)$ and $\sigma_2(G) = o(n)$ for all $G \in \mathcal{G}$ of order n.
- A family \mathscr{G} has property P_4 or **property IV** if for all sets S we have $\left|e\left(S\right)-\frac{1}{4}^{\left|S\right|^2}\right|=o\left(n^2\right)$ for all $G\in\mathscr{G}$ of order n.
- A family $\mathcal G$ has property P_5 or **property V** if for all sets S of order $\left|\frac{n}{2}\right|$ we find $\left|e\left(S\right) - \frac{1}{16}n^2\right| = o\left(n^2\right)$ for all $G \in \mathscr{G}$ of order n.
- A family \mathscr{G} has property P_7 or **property VII** if $\sum_{1 < i,j < i,n} \left| \hat{d}(v_i, v_j) \left| \frac{n}{4} \right| \right| = 0$ $o\left(n^{3}\right)$ for $G \in \mathscr{G}$ of order n and $v_{i}, v_{j} \in V\left(G\right) >$

We find

$$P_2 \Rightarrow P_1(s) \Rightarrow P_3 \Rightarrow P_4 \Rightarrow P_5 \Rightarrow P_7 \Rightarrow P_2.$$

Example. It is trivial to find that in order for G to be $P_1(2)$ it must have $e(G) = \frac{n^2}{4} + o(n^2)$. We see if $|S| = \frac{1}{2}n$ we obtain P_5 from P_4 . Random graphs and Payley graphs are P_5 .