

ACM-W 5th National Hackathon - 2020

Contactless Writing Technocrats

Team Introduction

TEAM TECHNOCRATS
Sri Sivasubramaniya Nadar College of Engineering

Lakshmi Priya B

Nivedhitha D

Sakthi Sairaj

Problem Statement

17. Gesture Recognition for Human Computer Interaction

- Alternative way of effectively interacting with the system by using hand gestures for input and controls
- Simulate the functions of the keyboard alphabets, cursor and common controls like switching slides, etc using hand gesture images
- Help users interact with the computer from a considerable distance without using any device like a mouse or keyboard
- Eliminate or at least decrease the hardware requirement for effective human-computer interaction

Domains of Impact

Gesture controlled interaction has a plethora of professional, recreational and supportive applications

- In the prevailing pandemic situation, it prevents contact with surfaces, for example, billing stations and manufacturing warehouses
- It facilitates interaction with a computer from a considerable distance, for, example, changing slides while taking a presentation
- No need for extra hardware and mimics real actions, heavy machinery operations and game playing
- Support for deaf and mute people

Implementation Plan

- Plan of Action
- Technology Stack
- Current Status
- Next Steps

Plan of Action

STFP 1

Detect key points in the image and the template gesture dataset

STEP 2

Create descriptors from these keypoints

STEP 3

Match descriptors between the user image and dataset

STEP 4

Keep only the good key points from the matches

STEP 5

Match gesture from these key points

STEP 6

Perform the corresponding action like print, change slide, etc

Technology Stack

Framework, Package or tool	Components used	Purpose
Python 3.9	InterpreterRelated modules	Primary language of development of the solution
OpenCV	SIFTFLANN	 To obtain the key points and descriptors To perform fast feature matching
Numpy	Arrays and vectors	Vectorization and image representation

Current Status

Data collected and cleaned for processing from Kaggle

Gesture Detection and Matching

Testing and homography visualization

Next Steps

- Speech acknowledgment for accepted or rejected control request using gestures
- Text input and control from gestures
- Cursor control using gestures

Demo

Code and results obtained so far

Not enough matches are found - 0/20

['b/b_1.jpg', 'b/b_100.jpg']

NO MATCH

TESTING

*****CONSOLIDATED TESTING REPORT*****

Testcase 0 : PASSED: MATCH
Testcase 1 : FAILED: NO MATCH

Thank You

Any Questions?

