partie théorique

I - LES ETAPES DE Calcul DE L'irradiance sur un plan horizontal :

<u>I-1-il faut conaitre l'exprission d'irradiance :</u>

$$G_{oh}$$
= Cs [1+0.33COS(2 π /365) Nj]

I-2-II faut calule:

$$\underline{I}$$
 2-1-le number de jours(Nj) :

 \underline{I} -2-2-le déclinaison du soleit(δ °):

$$\delta$$
=23.45 sin[360/365(Nj+284)

I -2-3-l'angle horaire(W°):

$$W=15(12-tsv)$$

 \underline{I} -2-4 l'angle zenilal(Θ °):

$$\Theta$$
(°)=arccos sin(h)=arccos[cos(δ)cos(Φ)cos(w_)-sin(δ) sin(Φ)]

I I-

paramétre	variable	Modele globale	Modele
			coposant
$G_{oh}(w/m^2)$	Oz(°)	Oz(°)	Goh
δ(°)	W(°)	W(°)	
Nj(jours)	H(°)	H°	
	Φ(°)	δ(°)	
		Nj(jours)	
		Φ(°)	

partie pratique

Date	Nj	δ°	θ°	Wsr (h)	Wss (h)	AM	Bh au lever (w/m²)	Bh a midi tsv (w/m2	Bh au coucher (w/m2)	Gh au lever (w/m²)	Gh a midi tsv (w/m 2)	Gh au coucher (w/m2)
21/03/201 8	80	- 0.403 7	90.2	-89.24	89.2 4	- 262.1	9.219e ⁰⁹	895.9	9.219e ⁰⁹	1.014e ^{0.10}	985.5	1.014e ^{0.}
21/06/201 8	172	23.45	76.5 7	-108.2	108. 2	4.301	517.1	941.9	617.1	668.8	1038	568.8
21/09/201 8	264	- 0.201 0	90.1	-89.85	89.8 5	- 568.3	4.876e ⁰¹	896.6	4.971e ⁰¹	5.474e ⁰¹⁴	686.2	5.474 e ⁰¹⁴
21/12/201 8	355	-23.45	103. 4	-71.84	71.8 4	- 4.312	3548	771.7	3546	390	848.8	9901

Conclision

Après cette tp on peut crée un modele simulink calclant le rayonnement solaire sur unplant horizontal ;et conaitre des deffirent variable de modèle comme :Nj,Goh,Bh,Gh...,et encours le déffirent entre les modele globale et composant .