Universal Turing Machines and Undecidability

Nabil Mustafa

Computational Complexity

A Turing machine **TM** is a tuple $M = (\Gamma, Q, \delta)$ where

 \bullet $\Gamma :$ set of symbols that TM 's tapes can contain.

A Turing machine **TM** is a tuple $M = (\Gamma, Q, \delta)$ where

- Γ: set of symbols that TM 's tapes can contain.
- Q: possible states TM can be in.
 - $ightharpoonup q_{start}$: the **TM** starts in this state
 - $ightharpoonup q_{halt}$: the **TM** halts when this state is reached

A Turing machine **TM** is a tuple $M = (\Gamma, Q, \delta)$ where

- Γ: set of symbols that TM 's tapes can contain.
- Q: possible states **TM** can be in.
 - $ightharpoonup q_{start}$: the **TM** starts in this state
 - $ightharpoonup q_{halt}$: the **TM** halts when this state is reached

Storage for TM:

A special register stores the current state.

A Turing machine **TM** is a tuple $M = (\Gamma, Q, \delta)$ where

- Γ: set of symbols that TM 's tapes can contain.
- Q: possible states **TM** can be in.
 - $ightharpoonup q_{start}$: the **TM** starts in this state
 - $ightharpoonup q_{halt}$: the **TM** halts when this state is reached

Storage for TM:

- A special register stores the current state.
- 1 input tape, 1 output tape and 1 work tape

• Many details of our TM quite arbitrary

- Many details of our TM quite arbitrary
- Does restricting the alphabet Γ to $\{0, 1, \square, \triangleright\}$ matter?

- Many details of our TM quite arbitrary
- Does restricting the alphabet Γ to $\{0,1,\Box,\rhd\}$ matter?

No!

If function f is computable by a **TM** using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** using the alphabet $\{0,1,\square,\rhd\}$.

- Many details of our TM quite arbitrary
- Does restricting the alphabet Γ to $\{0,1,\Box,\rhd\}$ matter?

No!

If function f is computable by a **TM** using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** using the alphabet $\{0,1,\square,\rhd\}$.

Does using more work tapes make everything much faster?

- Many details of our TM quite arbitrary
- Does restricting the alphabet Γ to $\{0,1,\Box,\rhd\}$ matter?

No!

If function f is computable by a **TM** using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** using the alphabet $\{0,1,\square,\rhd\}$.

Does using more work tapes make everything much faster?

No!

If function f is computable by a **TM** using k tapes, then it is computable in time $5kT(n)^2$ by a **TM** using a single work tape.

- Many details of our TM quite arbitrary
- Does restricting the alphabet Γ to $\{0, 1, \square, \triangleright\}$ matter?

No!

If function f is computable by a **TM** using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** using the alphabet $\{0,1,\square,\rhd\}$.

• Does using more work tapes make everything much faster?

No!

If function f is computable by a TM using k tapes, then it is computable in time $5kT(n)^2$ by a TM using a single work tape.

Church-Turing Hypothesis

Every physically realizable computation device can be simulated by a $\ensuremath{\mathsf{TM}}$.

Claim

If function f is computable by a TM M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a TM M' using the alphabet $\{0,1,\square,\rhd\}$.

Claim

If function f is computable by a **TM** M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** M' using the alphabet $\{0,1,\square,\rhd\}$.

Have to decide:

• How to represent each symbol of Γ using $\{0,1,\square,\rhd\}$.

Claim

If function f is computable by a **TM** M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** M' using the alphabet $\{0,1,\square,\rhd\}$.

Have to decide:

• How to represent each symbol of Γ using $\{0, 1, \square, \triangleright\}$.

• How to simulate each step of *M*.

Claim

If function f is computable by a **TM** M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** M' using the alphabet $\{0,1,\square,\rhd\}$.

- How to represent each symbol of Γ using $\{0, 1, \square, \triangleright\}$.
 - Use binary encoding. Each symbol encoded by bits.
- How to simulate each step of M.

Claim

If function f is computable by a **TM** M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** M' using the alphabet $\{0,1,\square,\rhd\}$.

- How to represent each symbol of Γ using $\{0, 1, \square, \triangleright\}$.
 - ▶ Use binary encoding. Each symbol encoded by $\log |\Gamma|$ bits.
- How to simulate each step of M.

Claim

If function f is computable by a **TM** M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** M' using the alphabet $\{0,1,\square,\rhd\}$.

- How to represent each symbol of Γ using $\{0, 1, \square, \triangleright\}$.
 - ▶ Use binary encoding. Each symbol encoded by $\log |\Gamma|$ bits.
- How to simulate each step of M.
 - ▶ Read the encoded symbol via $\log |\Gamma|$ bits.

Claim

If function f is computable by a **TM** M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** M' using the alphabet $\{0,1,\square,\rhd\}$.

- How to represent each symbol of Γ using $\{0, 1, \square, \triangleright\}$.
 - ▶ Use binary encoding. Each symbol encoded by $\log |\Gamma|$ bits.
- How to simulate each step of M.
 - ▶ Read the encoded symbol via $\log |\Gamma|$ bits. Problem: remember the bits read.

Claim

If function f is computable by a **TM** M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** M' using the alphabet $\{0,1,\square,\rhd\}$.

- How to represent each symbol of Γ using $\{0, 1, \square, \triangleright\}$.
 - ▶ Use binary encoding. Each symbol encoded by $\log |\Gamma|$ bits.
- How to simulate each step of M.
 - ▶ Read the encoded symbol via $\log |\Gamma|$ bits. Problem: remember the bits read.
 - Modify the transition table appropriately

Claim

If function f is computable by a **TM** M using alphabet Γ , then it is computable in time $4 \log |\Gamma| \cdot T(n)$ by a **TM** M' using the alphabet $\{0,1,\square,\rhd\}$.

- How to represent each symbol of Γ using $\{0, 1, \square, \triangleright\}$.
 - ▶ Use binary encoding. Each symbol encoded by $\log |\Gamma|$ bits.
- How to simulate each step of M.
 - ▶ Read the encoded symbol via $\log |\Gamma|$ bits. Problem: remember the bits read.
 - Modify the transition table appropriately
 - Lookup the (remembered) read bits in the (modified) table

Q	Γ	Q	Γ	{L,R,S}
q	i	q'	j	R

Q	Γ	Q	Γ	{L,R,S}
q	i	q'	j	R

Q	Γ	Q	Γ	{L,R,S}
q	i	q'	j	R

Q	Γ	Q	Γ	{L,R,S}
q	i	q'	j	R

q	0	$q_{_{0}}$	0	R
$q_{_{0}}$	1	q_{01}	1	R

Q	Γ	Q	Γ	{L,R,S}
q	i	q'	j	R
			T .	-

q	0	$q_{_{0}}$	0	R
$q_{_{0}}$	1	q_{01}	1	R
$\boxed{q_{_{01}}}$	0	$q_{010}^{}$	0	R

Problem: How to remember the bits read?

j

3

b

Q	Γ	Q	Γ	{L,R,S}
q	i	q'	j	R
q	0	q_0	0	R
q_0	1	q_{01}	1	R
q_{01}	0	$q_{010}^{}$	0	R
$\boxed{q_{010}}$	0	q_{0100}	0	R
q_{0100}	1	q'	1	R

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	Q	Γ	Q	Γ	$\{L,S,R\}$
a ₀ 1 a ₀₁ 1 R	q	0	q_0	0	R
70 - 701 -	9 0	1	<i>q</i> ₀₁	1	R

Q	F	Q	Г	$\{L,S,R\}$
q	0	<i>q</i> ₀	0	R
<i>q</i> ₀	1	<i>q</i> ₀₁	1	R
<i>9</i> 01	0	9 010	0	R

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	90	0	R
q 0	1	901	1	R
q 01	0	<i>q</i> ₀₁₀	0	R
9 010	0	9 0100	0	R

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R
q 0	1	<i>q</i> ₀₁	1	R
901	0	9 010	0	R
9 010	0	9 0100	0	R
9 0100	1	$qb_{1.01001}$	1	L

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R
q 0	1	<i>q</i> ₀₁	1	R
<i>q</i> ₀₁	0	9 010	0	R
9 010	0	9 0100	0	R
<i>9</i> 0100	1	$qb_{1.01001}$	1	L
$qb_{1.01001}$	_	$qb_{2.01001}$	-	L
		"		

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R
q 0	1	<i>q</i> ₀₁	1	R
<i>q</i> ₀₁	0	q 010	0	R
9 010	0	9 0100	0	R
<i>9</i> 0100	1	$qb_{1.01001}$	1	L
$qb_{1.01001}$	_	qb _{2.01001}	_	L
$qb_{2.01001}$	_	qb _{3.01001}	_	L

Lets say that $i \rightarrow 01001$ and $j \rightarrow 01010$. Then,

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R
q 0	1	<i>q</i> ₀₁	1	R
901	0	q 010	0	R
9 010	0	9 0100	0	R
9 0100	1	$qb_{1.01001}$	1	L
$qb_{1.01001}$	_	$qb_{2.01001}$	_	L
$qb_{2.01001}$	_	$qb_{3.01001}$	_	Ĺ
qb _{3.01001}	_	qb _{4.01001}	_	L
	_		_	L

Lets say that $i \rightarrow 01001$ and $j \rightarrow 01010$. Then,

Γ	Q	Γ	$\{L,S,R\}$
0	<i>q</i> ₀	0	R
1	<i>q</i> ₀₁	1	R
0	<i>q</i> ₀₁₀	0	R
0	<i>q</i> ₀₁₀₀	0	R
1	$qb_{1.01001}$	1	L
_	$qb_{2.01001}$	_	L
_	$qb_{3.01001}$	_	L
_	$qb_{4.01001}$	_	L
_	<i>qw</i> _{1.01001}	_	S
	1 0 0	$ \begin{array}{c c} 0 & q_0 \\ 1 & q_{01} \\ 0 & q_{010} \\ 0 & q_{0100} \\ 1 & qb_{1.01001} \\ - & qb_{2.01001} \\ - & qb_{3.01001} \\ - & qb_{4.01001} \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Lets say that $i \rightarrow 01001$ and $j \rightarrow 01010$. Then,

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R
q 0	1	901	1	R
q 01	0	<i>q</i> ₀₁₀	0	R
9 010	0	<i>q</i> ₀₁₀₀	0	R
9 0100	1	$qb_{1.01001}$	1	L
$qb_{1.01001}$	_	$qb_{2.01001}$	_	L
$qb_{2.01001}$	_	$qb_{3.01001}$	_	L
$qb_{3.01001}$	_	$qb_{4.01001}$	-	L
$qb_{4.01001}$	_	<i>qw</i> _{1.01001}	_	S
qw _{1.01001}	_	<i>qw</i> _{2.01001}	0	R
<i>qw</i> _{1.01001}	_	<i>qw</i> _{2.01001}	0	R

Lets say that $i \rightarrow 01001$ and $j \rightarrow 01010$. Then,

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R
90	1	<i>q</i> ₀₁	1	R
901	0	9 010	0	R
9 010	0	9 0100	0	R
<i>q</i> ₀₁₀₀	1	$qb_{1.01001}$	1	L
$qb_{1.01001}$	_	$qb_{2.01001}$	_	L
$qb_{2.01001}$	_	qb _{3.01001}	_	L
$qb_{3.01001}$	_	$qb_{4.01001}$	-	L
$qb_{4.01001}$	_	<i>qw</i> _{1.01001}	_	S
qw _{1.01001}	_	<i>qw</i> _{2.01001}	0	R
qw _{2.01001}	_	<i>qw</i> _{3.01001}	1	R
	_		1	R

Lets say that $i \rightarrow 01001$ and $j \rightarrow 01010$. Then,

R R R
R
_
R
L
L
L
L
S
R
R
-

Lets say that $i \rightarrow 01001$ and $j \rightarrow 01010$. Then,

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R
q_0	1	901	1	R
<i>q</i> ₀₁	0	<i>q</i> ₀₁₀	0	R
<i>q</i> ₀₁₀	0	<i>q</i> ₀₁₀₀	0	R
9 0100	1	$qb_{1.01001}$	1	L
$qb_{1.01001}$	_	$qb_{2.01001}$	_	L
$qb_{2.01001}$	_	$qb_{3.01001}$	_	L
$qb_{3.01001}$	_	$qb_{4.01001}$	-	L
$qb_{4.01001}$	_	<i>qw</i> _{1.01001}	_	S
<i>qw</i> _{1.01001}	_	<i>qw</i> _{2.01001}	0	R
<i>qw</i> _{2.01001}	_	qw _{3.01001}	1	R
qw _{3.01001}	_	qw _{4.01001}	0	R
<i>qw</i> _{4.01001}	_	<i>qw</i> _{5.01001}	1	R

Lets say that $i \rightarrow 01001$ and $j \rightarrow 01010$. Then,

Q	Γ	Q	Γ	$\{L,S,R\}$
q	0	q_0	0	R
90	1	<i>q</i> ₀₁	1	R
901	0	<i>q</i> ₀₁₀	0	R
<i>q</i> ₀₁₀	0	<i>9</i> 0100	0	R
<i>q</i> ₀₁₀₀	1	$qb_{1.01001}$	1	L
$qb_{1.01001}$	_	$qb_{2.01001}$	_	L
$qb_{2.01001}$	_	qb _{3.01001}	_	L
qb _{3.01001}	_	$qb_{4.01001}$	_	L
$qb_{4.01001}$	_	<i>qw</i> _{1.01001}	_	S
<i>qw</i> _{1.01001}	_	<i>qw</i> _{2.01001}	0	R
<i>qw</i> _{2.01001}	_	qw _{3.01001}	1	R
qw _{3.01001}	_	qw _{4.01001}	0	R
qw _{4.01001}	_	<i>qw</i> _{5.01001}	1	R
<i>qw</i> _{5.01001}	_	q'	0	R

Note: need to move back $2 \log |\Gamma|$ steps as well!

What is the number of states in M'?

• Each line in the transition table of M creates $4 \log |\Gamma|$ states.

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to go back to the start of the symbol encoding.

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to go back to the start of the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to write the new symbol encoding.

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to go back to the start of the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to write the new symbol encoding.
 - ▶ $2 \log |\Gamma|$ in case the tape-head moves to the left.

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to go back to the start of the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to write the new symbol encoding.
 - ▶ $2 \log |\Gamma|$ in case the tape-head moves to the left.
- What is the size of the old transition table?

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to go back to the start of the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to write the new symbol encoding.
 - ▶ $2 \log |\Gamma|$ in case the tape-head moves to the left.
- What is the size of the old transition table?
 - $|Q| \cdot |\Gamma|$

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to go back to the start of the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to write the new symbol encoding.
 - ▶ $2 \log |\Gamma|$ in case the tape-head moves to the left.
- What is the size of the old transition table?
 - **▶** |Q| · |Γ|
- Total number of new states required: $|Q||\Gamma|4 \log |\Gamma|$.

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to go back to the start of the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to write the new symbol encoding.
 - ▶ $2 \log |\Gamma|$ in case the tape-head moves to the left.
- What is the size of the old transition table?
 - **▶** |Q| · |Γ|
- Total number of new states required: $|Q||\Gamma|4\log|\Gamma|$.
- Each step of M requires $5 \log |\Gamma|$ steps of M'.

- Each line in the transition table of M creates $4 \log |\Gamma|$ states.
 - ▶ $\log |\Gamma|$ steps to read the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to go back to the start of the symbol encoding.
 - ▶ $\log |\Gamma|$ steps to write the new symbol encoding.
 - ▶ $2 \log |\Gamma|$ in case the tape-head moves to the left.
- What is the size of the old transition table?
 - **▶** |Q| · |Γ|
- Total number of new states required: $|Q||\Gamma|4 \log |\Gamma|$.
- Each step of M requires $5 \log |\Gamma|$ steps of M'.
- Total time taken: $5 \log |\Gamma| T(n)$ steps.

More work tapes do not make much difference

Claim

If a function f is computable by a TM M using k tapes, then its computable in time $5kT(n)^2$ by a TM using a single work tape.

More work tapes do not make much difference

Claim

If a function f is computable by a TM M using k tapes, then its computable in time $5kT(n)^2$ by a TM using a single work tape.

Proof

- Lets consider that a TM M computes the function f and has k tapes (plus additional input and output tapes)
- ullet Next we consider a single work tape Turing machine \hat{M}
- \hat{M} encodes the k tapes of M on a single tape by using locations $1, k+1, 2k+1, \ldots$ to encode the first tape, locations $2, k+2, 2k+2, \ldots$ to encode the second tape etc.
- For every symbol a in M's alphabet, \hat{M} will contain both the symbol a and the symbol \hat{a} . In the encoding of each tape, exactly one symbol will be of the ' $\hat{}$ type', indicating that the corresponding head of M is positioned in that location.

More work tapes do not make much difference

Proof Cont'd

- To simulate one step of M, the machine makes two passes of its work tape: first it traverses the tape in the left-to-right direction and records (via additional states) the k symbols of the form \hat{a}
- ullet Then \hat{M} uses M's transition function to determine the new state, symbols, and head movements and sweeps the tape back in the right-to-left direction to update the encoding accordingly.
- \hat{M} will never reach more than location kT(n) of its work tape, meaning that for each of the at most T(n) steps of M, \hat{M} performs at most 5kT(n) work (sweeping back and forth requires about 2T(n) steps, and some additional steps needed for updating head movement and book keeping).

• So far, constructed Turing machines for a specific task.

- So far, constructed Turing machines for a specific task.
 - ▶ a primitive computer that only performs one task.

- So far, constructed Turing machines for a specific task.
 - ▶ a primitive computer that only performs one task.
- Not very useful, since there are many things we want to do.

- So far, constructed Turing machines for a specific task.
 - a primitive computer that only performs one task.
- Not very useful, since there are many things we want to do.
- Question: does there exist a TM that does many things?

- So far, constructed Turing machines for a specific task.
 - ▶ a primitive computer that only performs one task.
- Not very useful, since there are many things we want to do.
- Question: does there exist a TM that does many things?
 - ▶ Given a 'program' P and an input x for P, run P on x.

- So far, constructed Turing machines for a specific task.
 - a primitive computer that only performs one task.
- Not very useful, since there are many things we want to do.
- Question: does there exist a TM that does many things?
 - Given a 'program' P and an input x for P, run P on x.
 - Note that a program is just an algorithm for doing something, i.e., its a Turing machine.

- So far, constructed Turing machines for a specific task.
 - ▶ a primitive computer that only performs one task.
- Not very useful, since there are many things we want to do.
- Question: does there exist a TM that does many things?
 - ▶ Given a 'program' P and an input x for P, run P on x.
 - ▶ Note that a program is just an algorithm for doing something, i.e., its a Turing machine.
- So ... given any TM M and x, does there exist a TM UTM that will run M on x

- So far, constructed Turing machines for a specific task.
 - ▶ a primitive computer that only performs one task.
- Not very useful, since there are many things we want to do.
- Question: does there exist a TM that does many things?
 - ▶ Given a 'program' P and an input x for P, run P on x.
 - ▶ Note that a program is just an algorithm for doing something, i.e., its a Turing machine.
- So ... given any TM M and x, does there exist a TM UTM that will run M on x
 - ▶ How to give *M* to *UTM*? Since *M* is a machine.

- So far, constructed Turing machines for a specific task.
 - ▶ a primitive computer that only performs one task.
- Not very useful, since there are many things we want to do.
- Question: does there exist a TM that does many things?
 - ▶ Given a 'program' P and an input x for P, run P on x.
 - ▶ Note that a program is just an algorithm for doing something, i.e., its a Turing machine.
- So ... given any TM M and x, does there exist a TM UTM that will run M on x
 - ► How to give *M* to *UTM*? Since *M* is a machine.
 - ▶ How can there be a fixed machine *UTM* that will run *any* other **TM** ?

• Observe that the TM s are not all that different

- Observe that the TM s are not all that different
 - ▶ Can assume all have 1 input tape, 1 output tape, 1 work tape.

- Observe that the TM s are not all that different
 - ▶ Can assume all have 1 input tape, 1 output tape, 1 work tape.
 - $\qquad \qquad \qquad \Gamma = \{0,1,\square,\rhd\}$

- Observe that the TM s are not all that different
 - ► Can assume all have 1 input tape, 1 output tape, 1 work tape.
 - Can assume $\Gamma = \{0, 1, \square, \triangleright\}$
- The only thing different between different Turing machines is the transition table

- Observe that the TM s are not all that different
 - ► Can assume all have 1 input tape, 1 output tape, 1 work tape.
 - Can assume $\Gamma = \{0, 1, \square, \triangleright\}$
- The only thing different between different Turing machines is the transition table
- But the transition table can be written up as a string of bits!

- Observe that the TM s are not all that different
 - ► Can assume all have 1 input tape, 1 output tape, 1 work tape.
 - Can assume $\Gamma = \{0, 1, \square, \triangleright\}$
- The only thing different between different Turing machines is the transition table
- But the transition table can be written up as a string of bits!
- M_{α} : **TM** represented by string of bits α

What is a Turing machine really

- Observe that the TM s are not all that different
 - ► Can assume all have 1 input tape, 1 output tape, 1 work tape.
 - Can assume $\Gamma = \{0, 1, \square, \triangleright\}$
- The only thing different between different Turing machines is the transition table
- But the transition table can be written up as a string of bits!
- M_{α} : **TM** represented by string of bits α
- $\lfloor M \rfloor \in \{0,1\}^*$: string of bits representing M

What is a Turing machine really

- Observe that the TM s are not all that different
 - ► Can assume all have 1 input tape, 1 output tape, 1 work tape.
 - Can assume $\Gamma = \{0, 1, \square, \triangleright\}$
- The only thing different between different Turing machines is the transition table
- But the transition table can be written up as a string of bits!
- M_{α} : TM represented by string of bits α
- $\lfloor M \rfloor \in \{0,1\}^*$: string of bits representing M
- So UTM takes α and x, and simulates M_{α} on x.

How can a fixed Turing machine *UTM* run *any* other **TM** ?

• Basic idea: Running a TM is also just an algorithm!

- Basic idea: Running a TM is also just an algorithm!
- For example, we ran the **TM** for PAL(x) by hand.

- Basic idea: Running a TM is also just an algorithm!
- For example, we ran the **TM** for PAL(x) by hand.
- We just have to follow some rules, i.e., there is a simple algorithm for running a TM M:

- Basic idea: Running a TM is also just an algorithm!
- For example, we ran the **TM** for PAL(x) by hand.
- We just have to follow some rules, i.e., there is a simple algorithm for running a TM M:
 - ▶ Read the symbol of the input *x* at the tape-head.

- Basic idea: Running a TM is also just an algorithm!
- For example, we ran the **TM** for PAL(x) by hand.
- We just have to follow some rules, i.e., there is a simple algorithm for running a TM M:
 - Read the symbol of the input x at the tape-head.
 - Scan the transition table to find a rule which applies.

- Basic idea: Running a TM is also just an algorithm!
- For example, we ran the **TM** for PAL(x) by hand.
- We just have to follow some rules, i.e., there is a simple algorithm for running a TM M:
 - ▶ Read the symbol of the input *x* at the tape-head.
 - Scan the transition table to find a rule which applies.
 - Apply this rule to write new symbol and move the tape head.

- Basic idea: Running a TM is also just an algorithm!
- For example, we ran the **TM** for PAL(x) by hand.
- We just have to follow some rules, i.e., there is a simple algorithm for running a TM M:
 - ▶ Read the symbol of the input *x* at the tape-head.
 - Scan the transition table to find a rule which applies.
 - Apply this rule to write new symbol and move the tape head.
 - Store the new state of M

- Basic idea: Running a TM is also just an algorithm!
- For example, we ran the **TM** for PAL(x) by hand.
- We just have to follow some rules, i.e., there is a simple algorithm for running a TM M:
 - ▶ Read the symbol of the input *x* at the tape-head.
 - Scan the transition table to find a rule which applies.
 - ▶ Apply this rule to write new symbol and move the tape head.
 - Store the new state of M
- So we just have to design a TM that can run the above algorithm.

Storage:

• T_1 : input tape containing α, x .

- T_1 : input tape containing α, x .
- T_2 : output tape

- T_1 : input tape containing α, x .
- T_2 : output tape
- Three work tapes:

- T_1 : input tape containing α, x .
- T_2 : output tape
- Three work tapes:
 - ▶ T_3 contains the current state of M_{α}

- T_1 : input tape containing α, x .
- T₂: output tape
- Three work tapes:
 - T_3 contains the current state of M_{α}
 - ▶ T_4 is used the same way as M_{α} 's work-tape.

- T_1 : input tape containing α, x .
- T₂: output tape
- Three work tapes:
 - T_3 contains the current state of M_{α}
 - ▶ T_4 is used the same way as M_{α} 's work-tape.
 - ▶ T_5 contains the transition function.

Storage:

- T_1 : input tape containing α, x .
- T₂: output tape
- Three work tapes:
 - T_3 contains the current state of M_{α}
 - T_4 is used the same way as M_{α} 's work-tape.
 - $ightharpoonup T_5$ contains the transition function.

Storage:

- T_1 : input tape containing α, x .
- T₂: output tape
- Three work tapes:
 - T_3 contains the current state of M_{α}
 - ▶ T_4 is used the same way as M_{α} 's work-tape.
 - $ightharpoonup T_5$ contains the transition function.

Transition function of *UTM*:

• Scan T_5 to find a match of the state with T_3

Storage:

- T_1 : input tape containing α, x .
- T₂: output tape
- Three work tapes:
 - T_3 contains the current state of M_{α}
 - ▶ T_4 is used the same way as M_{α} 's work-tape.
 - $ightharpoonup T_5$ contains the transition function.

- Scan T_5 to find a match of the state with T_3
- Scan T_5 to find a match of symbol with T_1 and T_4 .

Storage:

- T_1 : input tape containing α, x .
- T₂: output tape
- Three work tapes:
 - T_3 contains the current state of M_{α}
 - ▶ T_4 is used the same way as M_{α} 's work-tape.
 - $ightharpoonup T_5$ contains the transition function.

- Scan T_5 to find a match of the state with T_3
- Scan T_5 to find a match of symbol with T_1 and T_4 .
- Copy new state to T_3

Storage:

- T_1 : input tape containing α, x .
- T₂: output tape
- Three work tapes:
 - T_3 contains the current state of M_{α}
 - T_4 is used the same way as M_{α} 's work-tape.
 - $ightharpoonup T_5$ contains the transition function.

- Scan T_5 to find a match of the state with T_3
- Scan T_5 to find a match of symbol with T_1 and T_4 .
- Copy new state to T_3
- Copy new symbol to T_4 and move heads of T_1 and T_3 .

Simulating M_{α}

A Quote

"If we were so clever that we could understand our brain, our brain would be so complex that we couldn't understand it."

• f is computable by a **TM** M if $M(x) = f(x) \ \forall x$

- f is computable by a **TM** M if $M(x) = f(x) \ \forall x$
- It would seem that any function $f:\{0,1\}^* \to \{0,1\}$ can be computed by a Turing machine.

- f is computable by a **TM** M if $M(x) = f(x) \ \forall x$
- It would seem that any function $f: \{0,1\}^* \to \{0,1\}$ can be computed by a Turing machine.
 - ▶ We don't care *how* much time is taken

- f is computable by a **TM** M if $M(x) = f(x) \ \forall x$
- It would seem that any function $f:\{0,1\}^* \to \{0,1\}$ can be computed by a Turing machine.
 - ▶ We don't care *how* much time is taken
 - So just spend as much time till the computation of the function finishes.

- f is computable by a **TM** M if $M(x) = f(x) \ \forall x$
- It would seem that any function $f:\{0,1\}^* \to \{0,1\}$ can be computed by a Turing machine.
 - ▶ We don't care *how* much time is taken
 - So just spend as much time till the computation of the function finishes.

Uncomputable functions exist

There exists $UC:\{0,1\}^* \to \{0,1\}$ not computable by any TM .

- f is computable by a **TM** M if $M(x) = f(x) \ \forall x$
- It would seem that any function $f:\{0,1\}^* \to \{0,1\}$ can be computed by a Turing machine.
 - ▶ We don't care *how* much time is taken
 - So just spend as much time till the computation of the function finishes.

Uncomputable functions exist

There exists $UC:\{0,1\}^* \to \{0,1\}$ not computable by any TM .

• HALT(P, x): Given program P and x, does P halt on x?

- f is computable by a **TM** M if $M(x) = f(x) \ \forall x$
- It would seem that any function $f:\{0,1\}^* \to \{0,1\}$ can be computed by a Turing machine.
 - ▶ We don't care *how* much time is taken
 - So just spend as much time till the computation of the function finishes.

Uncomputable functions exist

There exists $UC:\{0,1\}^* \to \{0,1\}$ not computable by any TM .

• HALT(P, x): Given program P and x, does P halt on x?

Halting function

 $\operatorname{\textbf{HALT}}$ is not computable by any $\operatorname{\textbf{TM}}$.

ullet Let $S=\{s_1,\ldots,s_n\}$ and $P=\{p_1,\ldots,p_m\}$ be two finite sets

- Let $S = \{s_1, \ldots, s_n\}$ and $P = \{p_1, \ldots, p_m\}$ be two finite sets
- Question: When does a bijection between S and P exist?

- Let $S = \{s_1, \ldots, s_n\}$ and $P = \{p_1, \ldots, p_m\}$ be two finite sets
- Question: When does a bijection between S and P exist?
 - ▶ Answer: \exists a bijection $f: S \rightarrow P$ **iff** |S| = |P|

- Let $S = \{s_1, \ldots, s_n\}$ and $P = \{p_1, \ldots, p_m\}$ be two finite sets
- Question: When does a bijection between S and P exist?
 - ▶ Answer: \exists a bijection $f: S \rightarrow P$ **iff** |S| = |P|

- Let $S = \{s_1, \dots, s_n\}$ and $P = \{p_1, \dots, p_m\}$ be two finite sets
- Question: When does a bijection between S and P exist?
 - ▶ Answer: \exists a bijection $f: S \rightarrow P$ **iff** |S| = |P|

• What if S and P are infinite sets?

- Let $S = \{s_1, \dots, s_n\}$ and $P = \{p_1, \dots, p_m\}$ be two finite sets
- Question: When does a bijection between S and P exist?
 - ▶ Answer: \exists a bijection $f: S \rightarrow P$ **iff** |S| = |P|

- What if S and P are infinite sets?
- Any bijection between $S = \{1, 2, ...\}$ and $P = \{2, 3, ...\}$?

- Let $S = \{s_1, \ldots, s_n\}$ and $P = \{p_1, \ldots, p_m\}$ be two finite sets
- Question: When does a bijection between S and P exist?
 - ▶ Answer: \exists a bijection $f: S \rightarrow P$ **iff** |S| = |P|

- What if S and P are infinite sets?
- Any bijection between $S = \{1, 2, \ldots\}$ and $P = \{2, 3, \ldots\}$?
 - $f: S \rightarrow P$ defined as: f(a) = a + 1.

- Let $S = \{s_1, \ldots, s_n\}$ and $P = \{p_1, \ldots, p_m\}$ be two finite sets
- Question: When does a bijection between S and P exist?
 - ▶ Answer: \exists a bijection $f: S \rightarrow P$ **iff** |S| = |P|

- What if S and P are infinite sets?
- Any bijection between $S = \{1, 2, \ldots\}$ and $P = \{2, 3, \ldots\}$?
 - $f: S \rightarrow P$ defined as: f(a) = a + 1.
 - ▶ $1 \leftrightarrow 2$, $2 \leftrightarrow 3$, $3 \leftrightarrow 4$ and so on.

• Bijection between $S = \{1, 2, 3, \ldots\}$ and $P = \{2, 4, 6, \ldots\}$?

- Bijection between $S = \{1, 2, 3, ...\}$ and $P = \{2, 4, 6, ...\}$?
 - $f: S \rightarrow P$ defined as: f(a) = 2a.

- Bijection between $S = \{1, 2, 3, ...\}$ and $P = \{2, 4, 6, ...\}$?
 - $f: S \rightarrow P$ defined as: f(a) = 2a.
 - ▶ $1 \leftrightarrow 2$, $2 \leftrightarrow 4$, $3 \leftrightarrow 6$ and so on.

- Bijection between $S = \{1, 2, 3, ...\}$ and $P = \{2, 4, 6, ...\}$?
 - $f: S \rightarrow P$ defined as: f(a) = 2a.
 - ▶ $1 \leftrightarrow 2$, $2 \leftrightarrow 4$, $3 \leftrightarrow 6$ and so on.
 - ▶ Looks weird, but make sure you completely understand this.

- Bijection between $S = \{1, 2, 3, ...\}$ and $P = \{2, 4, 6, ...\}$?
 - $f: S \rightarrow P$ defined as: f(a) = 2a.
 - ▶ $1 \leftrightarrow 2$, $2 \leftrightarrow 4$, $3 \leftrightarrow 6$ and so on.
 - Looks weird, but make sure you completely understand this.

Theorem

A bijection exists between natural numbers $\mathbb N$ and rationals $\mathbb Q$.

- Bijection between $S = \{1, 2, 3, ...\}$ and $P = \{2, 4, 6, ...\}$?
 - $f: S \rightarrow P$ defined as: f(a) = 2a.
 - ▶ $1 \leftrightarrow 2$, $2 \leftrightarrow 4$, $3 \leftrightarrow 6$ and so on.
 - Looks weird, but make sure you completely understand this.

Theorem

A bijection exists between natural numbers $\mathbb N$ and rationals $\mathbb Q$.

Theorem

No bijection exists between natural numbers \mathbb{N} and reals \mathbb{R} .

- Bijection between $S = \{1, 2, 3, ...\}$ and $P = \{2, 4, 6, ...\}$?
 - $f: S \rightarrow P$ defined as: f(a) = 2a.
 - ▶ $1 \leftrightarrow 2$, $2 \leftrightarrow 4$, $3 \leftrightarrow 6$ and so on.
 - Looks weird, but make sure you completely understand this.

Theorem

A bijection exists between natural numbers $\mathbb N$ and rationals $\mathbb Q$.

Theorem

No bijection exists between natural numbers \mathbb{N} and reals \mathbb{R} .

Question: What about an infinite set, and its power set?

Claim

There does not exist bijection between infinite set and its power set

Claim

There does not exist bijection between infinite set and its power set

Proof

ullet Consider an infinite set S and its corresponding power set P

Claim

There does not exist bijection between infinite set and its power set

Proof

- Consider an infinite set S and its corresponding power set P
- We show a contradiction if \exists bijection $f: S \rightarrow P$

Claim

There does not exist bijection between infinite set and its power set

Proof

- Consider an infinite set S and its corresponding power set P
- We show a contradiction if \exists bijection $f: S \rightarrow P$
- Let i be any element of S and A be any element of P

Claim

There does not exist bijection between infinite set and its power set

Proof

- Consider an infinite set S and its corresponding power set P
- We show a contradiction if \exists bijection $f: S \rightarrow P$
- Let i be any element of S and A be any element of P
- If bijection exists, every $A \in P$ is mapped to by some $i \in S$

Claim

There does not exist bijection between infinite set and its power set

Proof

- Consider an infinite set S and its corresponding power set P
- We show a contradiction if \exists bijection $f: S \rightarrow P$
- Let i be any element of S and A be any element of P
- If bijection exists, every $A \in P$ is mapped to by some $i \in S$
- Consider the following set $A' \in P$:

$$A' = \{i \in S : i \notin f(i)\}$$

• A': All i which are not present in the set f(i)

• Now lets look at A' more closely

- Now lets look at A' more closely
- Since f is a bijection, $\exists j$ such that f(j) = A'

- Now lets look at A' more closely
- Since f is a bijection, $\exists j$ such that f(j) = A'
- Here is the fatal question: Is $j \in A'$?

- Now lets look at A' more closely
- Since f is a bijection, $\exists j$ such that f(j) = A'
- Here is the fatal question: Is $j \in A'$?
- If the answer is 'Yes':

- Now lets look at A' more closely
- Since f is a bijection, $\exists j$ such that f(j) = A'
- Here is the fatal question: Is $j \in A'$?
- If the answer is 'Yes':
 - If $j \in A'$, then by definition of A', j maps to a set which does not contain j
 - Contradiction!

- Now lets look at A' more closely
- Since f is a bijection, $\exists j$ such that f(j) = A'
- Here is the fatal question: Is $j \in A'$?
- If the answer is 'Yes':
 - If $j \in A'$, then by definition of A', j maps to a set which does not contain j
 - Contradiction!
- If the answer is 'No':

- Now lets look at A' more closely
- Since f is a bijection, $\exists j$ such that f(j) = A'
- Here is the fatal question: Is $j \in A'$?
- If the answer is 'Yes':
 - If $j \in A'$, then by definition of A', j maps to a set which does not contain j
 - Contradiction!
- If the answer is 'No':
 - If $j \notin A'$, then j is mapping to a set (A') which doesn't contain j. So by definition of A', j should be in A'.
 - Contradiction!

- Now lets look at A' more closely
- Since f is a bijection, $\exists j$ such that f(j) = A'
- Here is the fatal question: Is $j \in A'$?
- If the answer is 'Yes':
 - If $j \in A'$, then by definition of A', j maps to a set which does not contain j
 - Contradiction!
- If the answer is 'No':
 - If $j \notin A'$, then j is mapping to a set (A') which doesn't contain j. So by definition of A', j should be in A'.
 - Contradiction!

Important Corollary

Given any function $f: S \to P$, there always exists a $p_j \in P$ such that **no** $s_i \in S$ maps to p_j .

A Quote

"It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do?" -Bertrand Russell.

Claim: Uncomputable functions exist

Claim: Uncomputable functions exist

S: Infinite set of all binary strings, P: Power-set of S

• Each $s_i \in S$ is a binary string

Claim: Uncomputable functions exist

- Each $s_i \in S$ is a binary string
 - A Turing Machine can be represented by a string

Claim: Uncomputable functions exist

- Each $s_i \in S$ is a binary string
 - ▶ A Turing Machine can be represented by a string
 - ▶ Interpret each s_i to represent some **TM** M_{s_i}

Claim: Uncomputable functions exist

- Each $s_i \in S$ is a binary string
 - ▶ A Turing Machine can be represented by a string
 - ▶ Interpret each s_i to represent some **TM** M_{s_i}
- Each $p_j \in P$ is a *set* of binary strings

Claim: Uncomputable functions exist

- Each $s_i \in S$ is a binary string
 - ► A Turing Machine can be represented by a string
 - ▶ Interpret each s_i to represent some **TM** M_{s_i}
- Each $p_j \in P$ is a *set* of binary strings
 - A language is just a set of strings

Claim: Uncomputable functions exist

- Each $s_i \in S$ is a binary string
 - A Turing Machine can be represented by a string
 - ▶ Interpret each s_i to represent some **TM** M_{s_i}
- Each $p_i \in P$ is a *set* of binary strings
 - A language is just a set of strings
 - ▶ Interpret each p_j to represent a language, say, L_j

- S: Infinite set of all binary strings, P: Power-set of S
 - Each $s_i \in S$ is a binary string
 - A Turing Machine can be represented by a string
 - ▶ Interpret each s_i to represent some **TM** M_{s_i}
 - Each $p_j \in P$ is a *set* of binary strings
 - A language is just a set of strings
 - ▶ Interpret each p_j to represent a language, say, L_j
 - Now, each **TM** M_{s_i} decides some language L_j

- S: Infinite set of all binary strings, P: Power-set of S
 - Each $s_i \in S$ is a binary string
 - A Turing Machine can be represented by a string
 - ▶ Interpret each s_i to represent some **TM** M_{s_i}
 - Each $p_i \in P$ is a *set* of binary strings
 - A language is just a set of strings
 - ▶ Interpret each p_j to represent a language, say, L_j
 - Now, each **TM** M_{s_i} decides some language L_j
 - ▶ This defines $f(\cdot)$: $f(s_i) = p_j$, where M_{s_i} decides L_j

- S: Infinite set of all binary strings, P: Power-set of S
 - Each $s_i \in S$ is a binary string
 - A Turing Machine can be represented by a string
 - ▶ Interpret each s_i to represent some **TM** M_{s_i}
 - Each $p_j \in P$ is a *set* of binary strings
 - A language is just a set of strings
 - ▶ Interpret each p_j to represent a language, say, L_j
 - Now, each **TM** M_{s_i} decides some language L_j
 - ▶ This defines $f(\cdot)$: $f(s_i) = p_j$, where M_{s_i} decides L_j
 - By previous corollary, $\exists p_k \in P$ s.t. no s_i maps to p_k

Uncountable Sets and Uncomputable functions

Claim: Uncomputable functions exist

- S: Infinite set of all binary strings, P: Power-set of S
 - Each $s_i \in S$ is a binary string
 - A Turing Machine can be represented by a string
 - ▶ Interpret each s_i to represent some **TM** M_{s_i}
 - Each $p_i \in P$ is a *set* of binary strings
 - A language is just a set of strings
 - ▶ Interpret each p_j to represent a language, say, L_j
 - Now, each **TM** M_{s_i} decides some language L_i
 - ▶ This defines $f(\cdot)$: $f(s_i) = p_j$, where M_{s_i} decides L_j
 - By previous corollary, $\exists p_k \in P$ s.t. no s_i maps to p_k
 - ▶ Then there is no **TM** that decides the language L_k !

Halting function

HALT is not computable by any **TM**

Halting function

HALT is not computable by any **TM**

Proof.

• Assume a **TM** M_H computes **HALT**

Halting function

HALT is not computable by any TM

- Assume a TM M_H computes HALT
 - $\sim M_H$ takes as input a **TM** M (as a string) and M's input x

Halting function

HALT is not computable by any TM

- Assume a TM M_H computes HALT
 - M_H takes as input a **TM** M (as a string) and M's input X
 - $M_H(\lfloor M \rfloor; x) = 1$ if M halts on input x, 0 otherwise

Halting function

HALT is not computable by any **TM**

- Assume a TM M_H computes HALT
 - M_H takes as input a **TM** M (as a string) and M's input X
 - $M_H(\lfloor M \rfloor; x) = 1$ if M halts on input x, 0 otherwise
 - Note that M_H always halts

Halting function

HALT is not computable by any **TM**

- Assume a TM M_H computes HALT
 - M_H takes as input a **TM** M (as a string) and M's input X
 - $M_H(\lfloor M \rfloor; x) = 1$ if M halts on input x, 0 otherwise
 - Note that M_H always halts
- Consider the case when $x = \lfloor M \rfloor$: $M_H(\lfloor M \rfloor; \lfloor M \rfloor)$

Halting function

HALT is not computable by any **TM**

- Assume a TM M_H computes HALT
 - M_H takes as input a **TM** M (as a string) and M's input X
 - $M_H(\lfloor M \rfloor;x)=1$ if M halts on input x, 0 otherwise
 - Note that M_H always halts
- Consider the case when $x = \lfloor M \rfloor$: $M_H(\lfloor M \rfloor; \lfloor M \rfloor)$
- If M_H exists, then there also exists a **TM** D s.t.

Halting function

HALT is not computable by any **TM**

- Assume a TM M_H computes HALT
 - M_H takes as input a **TM** M (as a string) and M's input X
 - $M_H(\lfloor M \rfloor; x) = 1$ if M halts on input x, 0 otherwise
 - Note that M_H always halts
- Consider the case when $x = \lfloor M \rfloor$: $M_H(\lfloor M \rfloor; \lfloor M \rfloor)$
- If M_H exists, then there also exists a **TM** D s.t.
 - D takes as input a TM M

Halting function

HALT is not computable by any **TM**

- Assume a TM M_H computes HALT
 - M_H takes as input a **TM** M (as a string) and M's input X
 - $M_H(\lfloor M \rfloor; x) = 1$ if M halts on input x, 0 otherwise
 - Note that M_H always halts
- Consider the case when $x = \lfloor M \rfloor$: $M_H(\lfloor M \rfloor; \lfloor M \rfloor)$
- If M_H exists, then there also exists a **TM** D s.t.
 - D takes as input a TM M
 - D works the same way as M_H . However, when M_H is about to halt with a **'yes'**, D goes into an infinite loop.

Halting function

HALT is not computable by any **TM**

- Assume a TM M_H computes HALT
 - \sim M_H takes as input a **TM** M (as a string) and M's input x
 - $M_H(\lfloor M \rfloor; x) = 1$ if M halts on input x, 0 otherwise
 - Note that M_H always halts
- Consider the case when $x = \lfloor M \rfloor$: $M_H(\lfloor M \rfloor; \lfloor M \rfloor)$
- If M_H exists, then there also exists a **TM** D s.t.
 - D takes as input a TM M
 - D works the same way as M_H . However, when M_H is about to halt with a 'yes', D goes into an infinite loop.
 - When M_H would halt with a 'No', D also halts.

Proof Cont'd

• So far: if M_H exists, then there also exists D:

- So far: if M_H exists, then there also exists D:
 - $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$

- So far: if M_H exists, then there also exists D:
 - ► $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - ▶ $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$

- So far: if M_H exists, then there also exists D:
 - $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$
- Fatal question: Does $D(\lfloor D \rfloor)$ halt?

- So far: if M_H exists, then there also exists D:
 - $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$
- Fatal question: Does $D(\lfloor D \rfloor)$ halt?
- If $D(\lfloor D \rfloor)$ halts:

- So far: if M_H exists, then there also exists D:
 - $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - ▶ $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$
- Fatal question: Does D(⌊D⌋) halt?
- If $D(\lfloor D \rfloor)$ halts:
 - $D(\lfloor D \rfloor)$ halts $\implies D$ does not halt on input $\lfloor D \rfloor$

- So far: if M_H exists, then there also exists D:
 - $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$
- Fatal question: Does D(⌊D⌋) halt?
- If $D(\lfloor D \rfloor)$ halts:
 - $ho \ D(\lfloor D
 floor)$ halts $\implies D$ does not halt on input $\lfloor D
 floor$
 - Contradiction!

- So far: if M_H exists, then there also exists D:
 - $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - ▶ $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$
- Fatal question: Does $D(\lfloor D \rfloor)$ halt?
- If $D(\lfloor D \rfloor)$ halts:
 - $D(\lfloor D \rfloor)$ halts $\implies D$ does not halt on input $\lfloor D \rfloor$
 - Contradiction!
- If $D(\lfloor D \rfloor)$ does not halt:

- So far: if M_H exists, then there also exists D:
 - ▶ $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - ▶ $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$
- Fatal question: Does D(\[D\]) halt?
- If $D(\lfloor D \rfloor)$ halts:
 - $D(\lfloor D \rfloor)$ halts $\implies D$ does not halt on input $\lfloor D \rfloor$
 - Contradiction!
- If $D(\lfloor D \rfloor)$ does not halt:
 - ▶ $D(\lfloor D \rfloor)$ does not halt $\implies D$ halts on input $\lfloor D \rfloor$

- So far: if M_H exists, then there also exists D:
 - ▶ $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - ▶ $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$
- Fatal question: Does $D(\lfloor D \rfloor)$ halt?
- If $D(\lfloor D \rfloor)$ halts:
 - $D(\lfloor D \rfloor)$ halts $\implies D$ does not halt on input $\lfloor D \rfloor$
 - Contradiction!
- If $D(\lfloor D \rfloor)$ does not halt:
 - $ho \ D(\lfloor D
 floor)$ does not halt $\implies D$ halts on input $\lfloor D
 floor$
 - Contradiction!

- So far: if M_H exists, then there also exists D:
 - $D(\lfloor M \rfloor)$ does not halt if M halts on input $\lfloor M \rfloor$
 - ▶ $D(\lfloor M \rfloor)$ halts if M does not halt on input $\lfloor M \rfloor$
- Fatal question: Does D(\[D\]) halt?
- If $D(\lfloor D \rfloor)$ halts:
 - $ho \ D(\lfloor D
 floor)$ halts $\implies D$ does not halt on input $\lfloor D
 floor$
 - Contradiction!
- If $D(\lfloor D \rfloor)$ does not halt:
 - $D(\lfloor D \rfloor)$ does not halt $\implies D$ halts on input $\lfloor D \rfloor$
 - Contradiction!
- This type of argument is called a diagonalization argument.

Using reductions, can show many problems to be undecidable

Using reductions, can show many problems to be undecidable

• Goal: show that the problem A is undecidable

Using reductions, can show many problems to be undecidable

- Goal: show that the problem A is undecidable
- Establish that, if there were an algorithm for problem A, then there would be an algorithm for **HALT**

Using reductions, can show many problems to be undecidable

- Goal: show that the problem A is undecidable
- Establish that, if there were an algorithm for problem A, then there
 would be an algorithm for HALT
- HALT doesn't have an algorithm, hence so doesn't A

Using reductions, can show many problems to be undecidable

- Goal: show that the problem A is undecidable
- Establish that, if there were an algorithm for problem A, then there
 would be an algorithm for HALT
- HALT doesn't have an algorithm, hence so doesn't A

Claim: This is undecidable: $\{M: M \text{ halts on all inputs}\}$

Using reductions, can show many problems to be undecidable

- Goal: show that the problem A is undecidable
- Establish that, if there were an algorithm for problem A, then there would be an algorithm for HALT
- HALT doesn't have an algorithm, hence so doesn't A

Claim: This is undecidable: {M: M halts on all inputs}

Reduce HALT to this problem

Using reductions, can show many problems to be undecidable

- Goal: show that the problem A is undecidable
- Establish that, if there were an algorithm for problem A, then there would be an algorithm for **HALT**
- HALT doesn't have an algorithm, hence so doesn't A

Claim: This is undecidable: $\{M: M \text{ halts on all inputs}\}$

- Reduce HALT to this problem
- Given M; x construct the following machine M': M'(y) = M(x) if y = x, M'(y) = 0 otherwise

Using reductions, can show many problems to be undecidable

- Goal: show that the problem A is undecidable
- Establish that, if there were an algorithm for problem A, then there would be an algorithm for **HALT**
- HALT doesn't have an algorithm, hence so doesn't A

Claim: This is undecidable: {M: M halts on all inputs}

- Reduce HALT to this problem
- Given M; x construct the following machine M': M'(y) = M(x) if y = x, M'(y) = 0 otherwise
- M' halts on all inputs if and only if M halts on x