Année : 2024/2025	mini DS	2bac sm
M. Ouikrim	Fkih Ben Salh	biranzarane

Soit
$$n \in \mathbb{N}^*$$
 et $f_n(x) = x^{2n+1} - x^{n+1} - 1$ définie sur \mathbb{R}_+ .

- 1. Montrer que l'équation $f_n(x)=0$ admet une solution unique α_n dans \mathbb{R}_+ . Vérifier que $\alpha_n>1$.
- 2. Montrer que $f_{n+1}(\alpha_n)=(\alpha_n-1)(\alpha_n^{2n+2}+1)$.
- 3. Établir la monotonie de (α_n) et en déduire qu'elle est convergente. On posera dans la suite $\lim_{n\to+\infty} \alpha_n = l$.
- 4. Vérifier que $l \geq 1$.
- 5. Montrer que $l>1 \implies \lim_{n\to +\infty} \alpha_n^{n+1}(\alpha_n^n-1)=+\infty.$
- 6. En déduire que $\lim_{n\to+\infty} \alpha_n = 1$.
- 7. Soit h(x)=x(x-1) définie sur $[1,+\infty[$. On pose $U_n=\alpha_n^n.$ On admet que h est bijective sur $[1,+\infty[$

 - a Montrer que $h(U_n)=\frac{1}{\alpha_n}.$ b montrer que $\lim_{n\to +\infty}U_n=\frac{1+\sqrt{5}}{2}.$