

 $T_{V\!+\!O}$ Rate response to visual AND optogenetic stimulus

 $\Delta r = r_{\!\!V\!+\!O} - r_{\!\!V}$ Optogenetic response

Weak Reshuffling

- Opto stim to E cells causes net excitation: $(\mathrm{E}\left[\Delta r\right]>0)$
- However, typical opto responses are
 - \circ Much larger than mean opto response: $(\operatorname{Std}[\Delta r] \gg \operatorname{E}[\Delta r])$
 - $^{\circ}$ Large, comparable to typical visual responses: $(\operatorname{Std}\left[\Delta r\right] pprox \operatorname{Std}\left[r_{V}\right])$

Strong Reshuffling

- Opto stim to E cells causes no net excitation: $(\operatorname{E}\left[\Delta r\right]\approx0)$
- Does not change firing rate distribution
 - However, typical opto responses are
 Large, comparable to typical visual
 - responses: $(\operatorname{Std}\left[\Delta r\right] \approx \operatorname{Std}\left[r_{V}\right])$

Weak Coupling

No Reshuffling

- Opto stim is purely excitatory
 Positive correlation between v
- Positive correlation between visual response r_V and opto response Δr

Moderate Coupling

Weak Reshuffling

• No correlation between visual response r_V and opto response Δr

Strong Coupling

Strong Reshuffling

• Negative correlation between visual response r_V and opto response Δr

The strong coupling required for strong reshuffling can be more biologically plausible (weaker) with structured connectivity than with random connectivity