Fundamentals-LinearSearch and Binary Search

COMPSCI 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Fall 2024

Is Contains a good algorithm?

Contains is correct and has a runtime complexity of $\Theta(|L|) \longrightarrow \text{Sounds good to me!}$

Is Contains a good algorithm?

Contains is correct and has a runtime complexity of $\Theta(|L|)$ — Sounds good to me!

Critique: Contains is *too specialized* \longrightarrow .

We cannot use Contains for anything else than the contains problem!

Example

- Searching in only part of the list?
- Finding where *v* is in the list?

Critique: Contains is *too specialized* \longrightarrow .

We cannot use Contains for anything else than the contains problem!

Algorithm LinearSearch(L, v, o):

Input: *L* is an *array*, *v* a value, $0 \le o \le |L|$.

1: r := o.

/* invariant: " $o \le r \le |L|$ and $v \notin L[o, r)$ ", bound function: |L| - r */

2: while $r \neq |L|$ and also $L[r] \neq v$ do

3: r := r + 1.

4: return r.

Result: return the first offset r, $o \le r < |L|$, with L[r] = v or, if no such offset exists, r = |L|.

Critique: Contains is *too specialized* \longrightarrow .

We cannot use Contains for anything else than the contains problem!

Algorithm LinearSearch(L, v, o):

Input: *L* is an *array*, *v* a value, $0 \le o \le |L|$.

1: r := o.

/* invariant: " $o \le r \le |L|$ and $v \notin L[o, r)$ ", bound function: |L| - r */

2: while $r \neq |L|$ and also $L[r] \neq v$ do

3: r := r + 1.

4: return r.

Result: return the first offset r, $o \le r < |L|$, with L[r] = v or, if no such offset exists, r = |L|.

Algorithm LSContains(L, v):

1: **return** LinearSearch(L, v, 0) $\neq |L|$.

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */2:
while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.

Result: return the first offset r, o \le r < |L|, with L[r] = v or,
```

What is the runtime complexity of LINEARSEARCH?

if no such offset exists, r = |L|.

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */2:
while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.
```

Result: return the first offset r, $o \le r < |L|$, with L[r] = v or, if no such offset exists, r = |L|.

What is the runtime complexity of LinearSearch?

▶ With respect to worst case inputs $(v \notin L)$: $\Theta(|L|)$.

Algorithm LINEARSEARCH(L, v, o): Input: L is an array, v a value, $0 \le o \le |L|$. 1: r := o. /* invariant: " $o \le r \le |L|$ and $v \notin L[o, r)$ ", bound function: |L| - r */2: while $r \ne |L|$ and also $L[r] \ne v$ do 3: r := r + 1. 4: return r.

What is the runtime complexity of LinearSearch?

if no such offset exists, r = |L|.

Result: return the first offset r, $o \le r < |L|$, with L[r] = v or,

- ▶ With respect to worst case inputs $(v \notin L)$: $\Theta(|L|)$.
- ▶ With respect to best case inputs (v = L[o]): $\Theta(1)$.

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */2:
while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.

Result: return the first offset r, o \le r < |L|, with L[r] = v or,
```

What is the runtime complexity of LinearSearch?

if no such offset exists, r = |L|.

- ▶ With respect to worst case inputs $(v \notin L)$: $\Theta(|L|)$.
- ▶ With respect to best case inputs (v = L[o]): $\Theta(1)$.

Problem: Modeling runtime complexity in terms of *only the input* limits us!

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */2:
while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.

Result: return the first offset r, o \le r < |L|, with L[r] = v or,
```

What is the runtime complexity of LinearSearch? *Problem*: Modeling runtime complexity in terms of *only the input* limits us!

Assume: L[i] = v and i is the first offset after o equivalent to v. The runtime complexity of LinearSearch is $\Theta(i - o)$.

if no such offset exists, r = |L|.

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */2:
while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.

Result: return the first offset r, o \le r < |L|, with L[r] = v or,
```

if no such offset exists, r = |L|.

What is the runtime complexity of LinearSearch? *Problem*: Modeling runtime complexity in terms of *only the input* limits us!

Assume: L[i] = v and i is the first offset after o equivalent to v. The runtime complexity of LinearSearch is $\Theta(i - o)$ with i = LinearSearch(L, v, o). Problem: What if we search often?

LINEARSEARCH(L, v, o) can read all of array L: potentially-high cost.

Can we do better?

Problem: What if we search often?

LINEARSEARCH(L, v, o) can read all of array L: potentially-high cost.

Can we do better?

No: We do not know anything about *L* to help us!

 \longrightarrow we have to look at all elements in *L*.

Problem: What if we search often?

LINEARSEARCH(L, v, o) can read all of array L: potentially-high cost.

Can we do better?

No: We do not know anything about *L* to help us!

 \longrightarrow we have to look at all elements in *L*.

Maybe: If we know more about *L*.

An example of a list

Consider a list enrolled with schema

enrolled(*dept*, *code*, *sid*, *date*)

that models a list of all students enrolled for a course.

What if...

We add enrollment data to the end of the list.

Question: What do we know about enrolled?

An example of a list

Consider a list enrolled with schema

enrolled(*dept*, *code*, *sid*, *date*)

that models a list of all students enrolled for a course.

What if...

We add enrollment data to the end of the list.

Question: What do we know about enrolled? → enrolled is ordered on date!

Conclusion of comparing L[i] and v?

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v. $\longrightarrow v \in L$ if and only if $v \in L[i+1, |L|)$.

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v.

 $\longrightarrow v \in L$ if and only if $v \in L[i+1, |L|)$.

L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v.

 $\longrightarrow v \in L$ if and only if $v \in L[0, i)$.

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v. $\longrightarrow v \in L$ if and only if $v \in L[i+1, |L|)$.

L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v. $\longrightarrow v \in L$ if and only if $v \in L[0, i)$.

L[i] = v We found v!

Conclusion of comparing L[i] and v?

L[i] < v As the list L is ordered, every value in L[0, i] is smaller than v. $\longrightarrow v \in L$ if and only if $v \in L[i+1, |L|)$.

L[i] > v As the list L is ordered, every value in L[i, |L|) is larger than v. $\longrightarrow v \in L$ if and only if $v \in L[0, i)$.

L[i] = v We found v!

One comparison can remove a large portion of the array.

Conclusion of comparing L[i] and v?

$$L[i] < v$$
 As the list L is ordered, every value in $L[0, i]$ is smaller than v .
 $\longrightarrow v \in L$ if and only if $v \in L[i+1, |L|)$.

$$L[i] > v$$
 As the list L is ordered, every value in $L[i, |L|)$ is larger than v . $\longrightarrow v \in L$ if and only if $v \in L[0, i)$.

$$L[i] = v$$
 We found $v!$

One comparison can remove a large portion of the array.

Binary Search: *Maximize potential* by comparing *v* with the middle of *L*.

The recursive Binary Search algorithm

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*): **Input:** L is an ordered array, v a value, and $0 \le begin \le end \le |L|$. 1: **if** begin = end **then** return begin. 3: else mid := (begin + end) div 2.if L[mid] < v then 5: **return** LowerBoundRec(L, v, mid + 1, end). 6: else $L[mid] \geq v$ **return** LowerBoundRec(*L*, *v*, *begin*, *mid*). 8: **Result:** return the first offset r, begin $\leq r < end$, with L[r] = v or, if no such offset exists, r = end.

- Is LowerBoundRec correct?
- ▶ What is the runtime and memory complexity of LowerBoundRec?

else $L[mid] \ge v$

7:

8:

```
Algorithm LOWERBOUNDREC(L, v, begin, end):

1: if begin = end then

2: return begin.

3: else

4: mid := (begin + end) div 2.

5: if L[mid] < v then

6: return LOWERBOUNDREC(L, v, mid + 1, end).
```

return LowerBoundRec(*L*, *v*, *begin*, *mid*).

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
    if begin = end then
    return begin.
    else
    mid := (begin + end) div 2.
    if L[mid] < v then</li>
    return LOWERBOUNDREC(L, v, mid + 1, end).
    else L[mid] ≥ v
    return LOWERBOUNDREC(L, v, begin, mid).
```

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
    if begin = end then
    return begin.
    else
    mid := (begin + end) div 2.
    if L[mid] < v then</li>
    return LOWERBOUNDREC(L, v, mid + 1, end).
    else L[mid] ≥ v
    return LOWERBOUNDREC(L, v, begin, mid).
```

Induction Hypothesis

```
For any L', v', and 0 \le begin' \le end' \le |L'| with 0 \le end' - begin' < m, LOWERBOUNDREC(L', v', begin', end') returns the correct result.
```

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
1: if begin = end then
2: return begin.
3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LOWERBOUNDRec(L, v, mid + 1, end).
7: else L[mid] \ge v
8: return LOWERBOUNDRec(L, v, begin, mid).
Base case:
Inspecting end - begin = 0 elements.

Recursive case:
Inspecting end - begin > 0 elements.
```

Induction Hypothesis

```
For any L', v', and 0 \le begin' \le end' \le |L'| with 0 \le end' - begin' < m, LOWERBOUNDREC(L', v', begin', end') returns the correct result.
```

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
1: if begin = end then
2: return begin. begin ≤ mid < end</li>
3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then</li>
6: return LOWERBOUNDREC(L, v, mid + 1, end).
7: else L[mid] ≥ v
8: return LOWERBOUNDREC(L, v, begin, mid).
```

Induction Hypothesis

For any L', v', and $0 \le begin' \le end' \le |L'|$ with $0 \le end' - begin' < m$, LOWERBOUNDREC(L', v', begin', end') returns the correct result.

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
    if begin = end then
    return begin. begin ≤ mid < end</li>
    else
    mid := (begin + end) div 2. Induction Hypothesis
    if L[mid] < v then</li>
    return LOWERBOUNDREC(L, v, mid + 1, end).
    else L[mid] ≥ v
    return LOWERBOUNDREC(L, v, begin, mid).
```

Induction Hypothesis

Induction Hypothesis

For any L', v', and $0 \le begin' \le end' \le |L'|$ with $0 \le end' - begin' < m$, LOWERBOUNDREC(L', v', begin', end') returns the correct result.

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
    if begin = end then
    return begin.
    else
    mid := (begin + end) div 2.
    if L[mid] < v then</li>
    return LOWERBOUNDREC(L, v, mid + 1, end).
    else L[mid] ≥ v
    return LOWERBOUNDREC(L, v, begin, mid).
```

Termination

Bound function: *end* – *begin*.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
    if begin = end then
    return begin.
    else
    mid := (begin + end) div 2.
    if L[mid] < v then</li>
    return LOWERBOUNDREC(L, v, mid + 1, end).
    else L[mid] ≥ v
    return LOWERBOUNDREC(L, v, begin, mid).
```

Complexity of LowerBoundRec with n = end - begin

$$T(n) =$$

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

```
1: if begin = end then
2: return begin.
3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LOWERBOUNDRec(L, v, mid + 1, end).
7: else L[mid] \ge v
8: return LOWERBOUNDRec(L, v, begin, mid).
```

Complexity of LowerBoundRec with n = end - begin

$$T(n) = \begin{cases} 1 & \text{if } n = 0; \end{cases}$$

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

```
1: if begin = end then
2: return begin.
3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v, mid + 1, end).
7: else L[mid] \ge v
8: return LowerBoundRec(L, v, begin, mid).
Base case:
1 operation.
1 operation and 1 recursive call.
```

Complexity of LowerBoundRec with n = end - begin

$$T(n) = \begin{cases} 1 & \text{if } n = 0; \\ 1 \cdot T(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n \ge 1. \end{cases}$$

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

```
    if begin = end then
    return begin.
    else
    mid := (begin + end) div 2.
    if L[mid] < v then</li>
    return LOWERBOUNDREC(L, v, mid + 1, end).
    else L[mid] ≥ v
    return LOWERBOUNDREC(L, v, begin, mid).
```

Complexity of LowerBoundRec with n = end - begin

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

Complexity of LowerBoundRec with n = end - begin (assume: $n = 2^x$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

$$work = 1$$

$$n=2^x$$

Complexity of LowerBoundRec with n = end - begin (assume: $n = 2^x$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

$$\text{work} = 1$$

$$n = 2^{x} \quad \text{work} = 1$$

$$\frac{n}{2} = 2^{x-1} \quad \text{work}$$

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

$$work = 1$$

$$n = 2^{x} \quad \text{work} = 1$$

$$\frac{n}{2} = 2^{x-1} \quad \text{work} = 1$$

$$\frac{n}{4} = 2^{x-2} \quad \text{work} = 1$$

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

$$work = 1$$

$$n = 2^{x} \quad work = 1$$

$$\frac{n}{2} = 2^{x-1} \quad work = 1$$

$$\frac{n}{4} = 2^{x-2} \quad work = 1$$

$$1 = 2^{x-x} \quad work = 1$$

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

$$work = 1$$

$$n = 2^{x} \quad \text{work} = 1$$

$$\frac{n}{2} = 2^{x-1} \quad \text{work} = 1$$

$$\frac{n}{4} = 2^{x-2} \quad \text{work} = 1$$

$$1 = 2^{x-x} \quad \text{work} = 1$$

$$0 \quad \text{work} = 1$$

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1.$$

Complexity of LowerBoundRec with n = end - begin (assume: $n = 2^x$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1 = \Theta(\log_2(n)).$$

$$x + 2 = \log_2(n) + 2 \text{ levels}$$

$$\begin{cases}
 n = 2^x & \text{work} = 1 \\
 \frac{n}{2} = 2^{x-1} & \text{work} = 1 \\
 \frac{n}{4} = 2^{x-2} & \text{work} = 1 \\
 1 = 2^{x-x} & \text{work} = 1 \\
 0 & \text{work} = 1
\end{cases}$$

Each function call cost memory! (e.g., to store local variables).

The recursive Binary Search algorithm

```
Algorithm LowerBoundRec(L, v, begin, end):
Input: L is an ordered array, v a value, and 0 \le begin \le end \le |L|.
 1: if begin = end then
      return begin.
 3: else
      mid := (begin + end) div 2.
      if L[mid] < v then
 5:
         return LowerBoundRec(L, v, mid + 1, end).
 6:
      else L[mid] \ge v
 7:
         return LowerBoundRec(L, v, begin, mid).
 8:
Result: return the first offset r, begin \leq r < end, with L[r] = v or,
         if no such offset exists, r = end.
```

Theorem

LOWERBOUNDREC is correct and has a runtime and memory complexity of $\Theta(\log_2(|L|))$.

The non-recursive Binary Search algorithm

Algorithm LowerBound(L, v, begin, end):

Input: *L* is an ordered *array*, *v* a value, and $0 \le begin \le end \le |L|$.

```
    while begin ≠ end do
    mid := (begin + end) div 2.
    if L[mid] < v then</li>
```

4:
$$begin := mid + 1$$
.

6:
$$end := mid$$
.

7: return begin.

Result: return the first offset r, $begin \le r < end$, with L[r] = v or, if no such offset exists, r = end.

The non-recursive Binary Search algorithm

Algorithm LowerBound(L, v, begin, end):

Input: *L* is an ordered *array*, *v* a value, and $0 \le begin \le end \le |L|$.

```
1: while begin ≠ end do
```

```
2: mid := (begin + end) div 2.
```

3: **if**
$$L[mid] < v$$
 then

4:
$$begin := mid + 1$$
.

6:
$$end := mid$$
.

7: return begin.

Result: return the first offset r, $begin \le r < end$, with L[r] = v or, if no such offset exists, r = end.

Theorem

LOWERBOUND is correct, has a runtime complexity of $\Theta(\log_2(|L|))$, and a memory complexity of $\Theta(1)$.

Comparing the complexity of searching

Theoretical complexity

Comparing the complexity of searching

Comparing the complexity of searching

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Example

Consider a list *enrolled* with schema enrolled(*dept*, *code*, *sid*, *date*).

Query: All students enrolled in 2023

Range query on *enrolled* with [(',',',-1,2023), (',',',-1,2024)].

2/1

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Example

Consider a list *enrolled* with schema enrolled(*dept*, *code*, *sid*, *date*).

Query: All students enrolled in 2023

Range query on enrolled with [(',',',-1,2023), (',',',-1,2024)].

We add enrollment data to the end of the list \longrightarrow enrolled is ordered on date!

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Algorithm RangeQuery(L, [v, w]):

Input: *L* is an ordered *array*, v, w are values, and $v \le w$.

- 1: i := LowerBound(L, v, 0, |L|).
- 2: j := i.
- 3: while $j \leq |L|$ and also $L[j] \leq w$ do
- 4: j := j + 1.
- 5: **return** L[i, j).

Result: return the list L[m, n), $0 \le m \le n \le |L|$, such that L[m, n) is the list of all values $e \in L$ with $v \le e \le w$.

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Algorithm RangeQuery(L, [v, w]):

Input: *L* is an ordered *array*, v, w are values, and $v \le w$.

- 1: i := LowerBound(L, v, 0, |L|).
- 2: j := i.
- 3: while $j \leq |L|$ and also $L[j] \leq w$ do
- 4: j := j + 1.
- 5: **return** L[i, j).

Result: return the list L[m, n), $0 \le m \le n \le |L|$, such that L[m, n) is the list of all values $e \in L$ with $v \le e \le w$.

Theorem

Range Query is correct and has worst case runtime complexity $\Theta(|L|)$.

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Algorithm RangeQuery(L, [v, w]):

Input: *L* is an ordered *array*, v, w are values, and $v \le w$.

- 1: i := LowerBound(L, v, 0, |L|).
- 2: j := i.
- 3: while $j \leq |L|$ and also $L[j] \leq w$ do
- 4: j := j + 1.
- 5: **return** L[i, j).

Result: return the list L[m, n), $0 \le m \le n \le |L|$, such that L[m, n) is the list of all values $e \in L$ with $v \le e \le w$.

Theorem

RANGEQUERY is correct and has all case runtime complexity $\Theta(\log_2(|L|) + |result|)$.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Example

$$Inspect(L, 0) = true$$

$$Inspect(L, 2) = true$$

$$Inspect(L, 1) = true$$

Inspect(
$$L$$
, 3) = false.

13/15

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Solving the list-length problem

We have ordered list $0, 1, \ldots$ of possible values for |L|.

Conclusion of Inspect(L, i)?

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Solving the list-length problem

We have ordered list $0, 1, \ldots$ of possible values for |L|.

Conclusion of Inspect(L, i)?

INSPECT(L, i) = true |L| > i (list L has more than i values).

INSPECT(L, i) = false $|L| \le i$ (list L has at-most i values).

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Solving the list-length problem

We have ordered list $0, 1, \ldots$ of possible values for |L|.

Conclusion of Inspect(L, i)?

INSPECT(L, i) = true |L| > i (list L has more than i values).

 $INSPECT(L, i) = false |L| \le i$ (list L has at-most i values).

Issue: no upper bound on the ordered list 0, 1, . . . of possible values for |L|

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Issue: no upper bound on the ordered list $0, 1, \ldots$ of possible values for |L| Guess repeatedly with exponentially-growing guesses.

Algorithm ListLengthUB(L):

Input: *L* is an *array* of unknown length.

- 1: n := 1.
- 2: **while** INSPECT(L, n) **do**
- 3: $n := 2 \cdot n$.
- 4: **return** *n*.

Result: return N, $|L| \le N = 1$ or $|L| \le N < 2|L|$.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

```
Algorithm LBListLength(L, N) with N := ListLengthUB(<math>L):
```

- 1: begin, end := 0, N.
- 2: **while** begin ≠ end **do**
- mid := (begin + end) div 2.
- 4: **if** INSPECT(L, mid) **then**
- 5: begin := mid + 1.
- 6: else
- end := mid.
- 8: return begin.

Result: return the length |L| of array L.

Definition

A join of two lists L and M results in a list A in which each list value is computed from a combination of values $u \in L$ and $v \in M$ according to some *join condition*.

Example (Return pairs (p, r) of product name p and related category r)

products		categories		
name	category		category	related
Apple	Fruit		Fruit	Food
Bok choy	Vegetable		Fruit	Produce
Canelé	Pastry		Pastry	Food
Donut	Pastry		Vegetable	Food
		•	Vegetable	Produce

Definition

A join of two lists L and M results in a list A in which each list value is computed from a combination of values $u \in L$ and $v \in M$ according to some *join condition*.

Example (Return pairs (p, r) of product name p and related category r)

ory	category	related
it	Fruit	Food
able	Fruit	Produce
ry	Pastry	Food
ry	Vegetable	Food
	Vegetable	Produce
	able ry	able Fruit ry Pastry ry Vegetable

Join Result				
name	related			
Apple	Food			
Apple	Produce			
Bok choy	Food			
Bok choy	Produce			
Canelé	Food			
Donut	Food			

Algorithm Nested Loop PC (products, categories):

Input: relations products(*name*, *category*) and categories(*category*, *related*).

```
    output := ∅.
    for (p.n, p.c) ∈ products do
    for (c.c, c.r) ∈ categories do
    if p.c = c.c then
    add (p.n, c.r) to output.
```

Result: return $\{(p.n, c.r) \mid ((p.n, p.c) \in \text{products}) \land ((c.c, c.r) \in \text{categories})\}.$

Algorithm Nested Loop PC (products, categories):

```
Input: relations products(name, category) and categories(category, related).
```

```
1: output := \emptyset.

2: \mathbf{for}\ (p.n, p.c) \in \text{products } \mathbf{do}

3: \mathbf{for}\ (c.c, c.r) \in \text{categories } \mathbf{do}

4: \mathbf{if}\ p.c = c.c\ \mathbf{then}

5: \mathrm{add}\ (p.n, c.r)\ \mathrm{to}\ output. \Theta(|categories|).

Result: \mathrm{return}\ \{(p.n, c.r)\ |\ ((p.n, p.c) \in \text{products}) \land ((c.c, c.r) \in \text{categories})\}.
```

14/1

Algorithm Nested Loop PC (products, categories):

Input: relations products(name, category) and categories(category, related).

```
1: output := \emptyset.
  2: for (p.n, p.c) \in \text{products } \mathbf{do}
      for (p.n, p.c) \in \text{products do}

for (c.c, c.r) \in \text{categories do}

if p.c = c.c then

add (p.n, c.r) to output.
\Theta(|\text{categories}|).
Result: return \{(p.n, c.r) \mid ((p.n, p.c) \in \text{products}) \land ((c.c, c.r') \in \text{categories})\}.
```

Theorem

The NESTEDLOOPPC algorithm is correct and has a runtime complexity of $\Theta(|product| \cdot |categories|)$.

Algorithm NestedBinaryPC(products, categories):

Input: relations products(*name*, *category*) and categories(*category*, *related*), relation categories ordered.

```
    output := ∅.
    for (p.n, p.c) ∈ products do
    i := LOWERBOUND(categories, (p.c, ''), 0, |categories|).
    while i < |categories| and also categories[i].category = p.c do</li>
    add (p.n, categories[i].related) to output.
    i := i + 1.
    Result: return {(p.n, c.r) | ((p.n, p.c) ∈ products) ∧ ((c.c, c.r) ∈ categories)}.
```

Theorem

The NestedBinaryPC algorithm is correct and has a runtime complexity of $\Theta(|product| \cdot \log_2(|categories|) + |result|)$.

Contains, LinearSearch, and LowerBound in practice

Algorithm	C++	Java
Contains	std::ranges::contains	collection.contains ^a
LinearSearch LinearPredSearch	std::find std::find_if	<pre>collection.indexOfa java.util.stream::filterb</pre>
LowerBound	std::lower_bound std::upper_bound ^d	java.util.Arrays:: ^c binarySearch
Related libraries	<algorithm>, <ranges></ranges></algorithm>	java.util.Arrays, java.util.ArrayList,

 $[^]a\mathrm{Here},\ collection$ is a standard Java data collection such as <code>java.util.ArrayList</code>.

^bUsing the stream library supported by standard Java data collections.

 $^{^{\}mathrm{c}}\mathrm{Does}$ not guarantee to return the offset of the first occurrence of a value.

^dReturns the offset of the first element in the list that is strictly larger than the searched-for value.

Print-friendly summary slides

The following slides are the "final" pages of each slide (with intermediate animation steps removed).

Is Contains a good algorithm?

Contains is correct and has a runtime complexity of $\Theta(|L|)$ — Sounds good to me!

Critique: Contains is *too specialized* \longrightarrow .

We cannot use Contains for anything else than the contains problem!

Example

- Searching in only part of the list?
- Finding where *v* is in the list?

Critique: Contains is *too specialized* \longrightarrow .

We cannot use Contains for anything else than the contains problem!

Algorithm LinearSearch(L, v, o):

Input: *L* is an *array*, *v* a value, $0 \le o \le |L|$.

1: r := o.

/* invariant: " $o \le r \le |L|$ and $v \notin L[o, r)$ ", bound function: |L| - r */

2: while $r \neq |L|$ and also $L[r] \neq v$ do

3: r := r + 1.

4: return r.

Result: return the first offset r, $o \le r < |L|$, with L[r] = v or, if no such offset exists, r = |L|.

Algorithm LSContains(L, v):

1: **return** LinearSearch(L, v, 0) $\neq |L|$.

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */2:
while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.

Result: return the first offset r, o \le r < |L|, with L[r] = v or,
```

What is the runtime complexity of LINEARSEARCH?

if no such offset exists, r = |L|.

- ▶ With respect to worst case inputs $(v \notin L)$: $\Theta(|L|)$.
- ▶ With respect to best case inputs (v = L[o]): $\Theta(1)$.

Problem: Modeling runtime complexity in terms of *only the input* limits us!

```
Algorithm LINEARSEARCH(L, v, o):
Input: L is an array, v a value, 0 \le o \le |L|.

1: r := o.

/* invariant: "o \le r \le |L| and v \notin L[o, r)", bound function: |L| - r */2:
while r \ne |L| and also L[r] \ne v do

3: r := r + 1.

4: return r.

Result: return the first offset r, o \le r < |L|, with L[r] = v or,
```

What is the runtime complexity of LinearSearch?

Problem: Modeling runtime complexity in terms of only the input limits us!

if no such offset exists, r = |L|.

Assume: L[i] = v and i is the first offset after o equivalent to v. The runtime complexity of LinearSearch is $\Theta(i - o)$ with i = LinearSearch(L, v, o).

Problem: What if we search often?

LINEARSEARCH(L, v, o) can read all of array L: potentially-high cost.

Can we do better?

No: We do not know anything about *L* to help us!

 \longrightarrow we have to look at all elements in *L*.

Maybe: If we know more about *L*.

An example of a list

Consider a list enrolled with schema

enrolled(*dept*, *code*, *sid*, *date*)

that models a list of all students enrolled for a course.

What if...

We add enrollment data to the end of the list.

Question: What do we know about enrolled? —→ enrolled is *ordered* on *date*!

Searching in an ordered list

Conclusion of comparing L[i] and v?

$$L[i] < v$$
 As the list L is ordered, every value in $L[0, i]$ is smaller than v .
 $\longrightarrow v \in L$ if and only if $v \in L[i+1, |L|)$.

$$L[i] > v$$
 As the list L is ordered, every value in $L[i, |L|)$ is larger than v.

$$\longrightarrow v \in L$$
 if and only if $v \in L[0, i)$.

$$L[i] = v$$
 We found $v!$

One comparison can remove a large portion of the array.

Binary Search: *Maximize potential* by comparing *v* with the middle of *L*.

20/15

The recursive Binary Search algorithm

```
Algorithm LowerBoundRec(L, v, begin, end):
Input: L is an ordered array, v a value, and 0 \le begin \le end \le |L|.
 1: if begin = end then
      return begin.
 3: else
      mid := (begin + end) div 2.
      if L[mid] < v then
 5:
         return LowerBoundRec(L, v, mid + 1, end).
 6:
      else L[mid] \geq v
         return LowerBoundRec(L, v, begin, mid).
 8:
Result: return the first offset r, begin \leq r < end, with L[r] = v or,
         if no such offset exists, r = end.
```

- ► Is LowerBoundRec correct?
- ▶ What is the runtime and memory complexity of LowerBoundRec?

Correctness of LowerBoundRec

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
1: if begin = end then
2: return begin.
3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LOWERBOUNDRec(L, v, mid + 1, end).
7: else L[mid] \ge v
8: return LOWERBOUNDRec(L, v, begin, mid).
Base case:
Inspecting end - begin = 0 elements.

Recursive case:
Inspecting end - begin > 0 elements.
```

Induction Hypothesis

```
For any L', v', and 0 \le begin' \le end' \le |L'| with 0 \le end' - begin' < m, LOWERBOUNDREC(L', v', begin', end') returns the correct result.
```

Correctness of LowerBoundRec

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
    if begin = end then
    return begin. begin ≤ mid < end</li>
    else
    mid := (begin + end) div 2. Induction Hypothesis
    if L[mid] < v then</li>
    return LOWERBOUNDREC(L, v, mid + 1, end).
    else L[mid] ≥ v
    return LOWERBOUNDREC(L, v, begin, mid).
```

Induction Hypothesis

Induction Hypothesis

For any L', v', and $0 \le begin' \le end' \le |L'|$ with $0 \le end' - begin' < m$, LOWERBOUNDREC(L', v', begin', end') returns the correct result.

Correctness of LowerBoundRec

Recursion is repetition \longrightarrow induction.

```
Algorithm LowerBoundRec(L, v, begin, end):
```

```
    if begin = end then
    return begin.
    else
    mid := (begin + end) div 2.
    if L[mid] < v then</li>
    return LOWERBOUNDREC(L, v, mid + 1, end).
    else L[mid] ≥ v
    return LOWERBOUNDREC(L, v, begin, mid).
```

Termination

Bound function: *end* – *begin*.

Intermezzo: Runtime complexity of LowerBoundRec

Algorithm LowerBoundRec(*L*, *v*, *begin*, *end*):

```
1: if begin = end then
2: return begin.
3: else
4: mid := (begin + end) div 2.
5: if L[mid] < v then
6: return LowerBoundRec(L, v, mid + 1, end).
7: else L[mid] \ge v
8: return LowerBoundRec(L, v, begin, mid).
Base case:
1 operation.
1 operation and 1 recursive call.
```

Complexity of LowerBoundRec with n = end - begin

$$T(n) = \begin{cases} 1 & \text{if } n = 0; \\ 1 \cdot T(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n \ge 1. \end{cases}$$

Intermezzo: Runtime complexity of LowerBoundRec

Complexity of LowerBoundRec with n = end - begin (assume: $n = 2^x$)

$$T(n) = 1 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1 = \Theta(\log_2(n)).$$

Each function call cost memory! (e.g., to store local variables).

The recursive Binary Search algorithm

```
Algorithm LowerBoundRec(L, v, begin, end):
Input: L is an ordered array, v a value, and 0 \le begin \le end \le |L|.
 1: if begin = end then
      return begin.
 3: else
      mid := (begin + end) div 2.
      if L[mid] < v then
 5:
         return LowerBoundRec(L, v, mid + 1, end).
 6:
      else L[mid] \geq v
 7:
         return LowerBoundRec(L, v, begin, mid).
 8:
Result: return the first offset r, begin \leq r < end, with L[r] = v or,
         if no such offset exists, r = end.
```

Theorem

LOWERBOUNDREC is correct and has a runtime and memory complexity of $\Theta(\log_2(|L|))$.

The non-recursive Binary Search algorithm

Algorithm LowerBound(L, v, begin, end):

```
Input: L is an ordered array, v a value, and 0 \le begin \le end \le |L|.
```

- while begin ≠ end do
 mid := (begin + end) div 2.
- 3: **if** L[mid] < v **then**
- 4: begin := mid + 1.
- 5: **else**
- 6: end := mid.
- 7: return begin.

Result: return the first offset r, $begin \le r < end$, with L[r] = v or, if no such offset exists, r = end.

Theorem

LOWERBOUND is correct, has a runtime complexity of $\Theta(\log_2(|L|))$, and a memory complexity of $\Theta(1)$.

Comparing the complexity of searching

26/15

Using Binary Search as a building block

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Example

Consider a list *enrolled* with schema enrolled(*dept*, *code*, *sid*, *date*).

Query: All students enrolled in 2023

Range query on enrolled with [(',',',-1,2023), (',',',-1,2024)].

We add enrollment data to the end of the list → enrolled is ordered on date!

Using Binary Search as a building block

Problem

Let L be a list and [v, w] be a range query with $v \le w$. The solution of the range query problem for L and [v, w] is the list of all values $e \in L$ with $v \le e \le w$.

Algorithm RangeQuery(L, [v, w]):

Input: *L* is an ordered *array*, v, w are values, and $v \le w$.

- 1: i := LowerBound(L, v, 0, |L|).
- 2: j := i.
- 3: while $j \leq |L|$ and also $L[j] \leq w$ do
- 4: j := j + 1.
- 5: **return** L[i, j).

Result: return the list L[m, n), $0 \le m \le n \le |L|$, such that L[m, n) is the list of all values $e \in L$ with $v \le e \le w$.

Theorem

RangeQuery is correct and has all case runtime complexity $\Theta(\log_2(|L|) + |result|)$.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Example

Inspect(
$$L$$
, 0) = true

$$Inspect(L, 1) = true$$

$$Inspect(L, 2) = true$$

$$Inspect(L, 3) = false.$$

28/15

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Solving the list-length problem

We have ordered list $0, 1, \ldots$ of possible values for |L|.

Conclusion of Inspect(L, i)?

INSPECT(L, i) = true |L| > i (list L has more than i values).

INSPECT(L, i) = false $|L| \le i$ (list L has at-most i values).

Issue: no upper bound on the ordered list 0, 1, . . . of possible values for |L|

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

Issue: no upper bound on the ordered list $0, 1, \ldots$ of possible values for |L| Guess repeatedly with exponentially-growing guesses.

Algorithm ListLengthUB(L):

Input: *L* is an *array* of unknown length.

- 1: n := 1.
- 2: **while** INSPECT(L, n) **do**
- 3: $n := 2 \cdot n$.
- 4: **return** *n*.

Result: return N, $|L| \le N = 1$ or $|L| \le N < 2|L|$.

Problem

Let L be list of values of unknown length and assume we have a function INSPECT(L, i) that returns true if the list has an i-th value and returns false otherwise.

The list-length problem is the problem of finding the length of list L.

```
Algorithm LBListLength(L, N) with N := ListLengthUB(<math>L):
```

- 1: begin, end := 0, N.
- 2: **while** *begin* ≠ *end* **do**
- $mid := (begin + end) \operatorname{div} 2.$
- 4: **if** INSPECT(*L*, *mid*) **then**
- 5: begin := mid + 1.
- 6: else
- end := mid.
- 8: return begin.

Result: return the length |L| of array L.

Optimizing joins using range queries

Definition

A join of two lists L and M results in a list A in which each list value is computed from a combination of values $u \in L$ and $v \in M$ according to some *join condition*.

Example (Return pairs (p, r) of product name p and related category r)

products		categories	
name	category	category	related
Apple	Fruit	Fruit	Food
Bok choy	Vegetable	Fruit	Produce
Canelé	Pastry	Pastry	Food
Donut	Pastry	Vegetable	Food
		Vegetable	Produce

Join Result				
name	related			
Apple	Food			
Apple	Produce			
Bok choy	Food			
Bok choy	Produce			
Canelé	Food			
Donut	Food			

Optimizing joins using range queries

Algorithm Nested Loop PC (products, categories):

Input: relations products(*name*, *category*) and categories(*category*, *related*).

```
1: output := \emptyset.

2: \mathbf{for}\ (p.n, p.c) \in \text{products } \mathbf{do}

3: \mathbf{for}\ (c.c, c.r) \in \text{categories } \mathbf{do}

4: \mathbf{if}\ p.c = c.c\ \mathbf{then}

5: add\ (p.n, c.r)\ \mathbf{to}\ output. \Theta(|categories|). |products|\ times.

Result: P(p.n, c.r) \mid ((p.n, p.c) \in \text{products}) \land ((c.c, c.r) \in \text{categories}).
```

Theorem

The Nested LoopPC algorithm is correct and has a runtime complexity of $\Theta(|product| \cdot |categories|)$.

Optimizing joins using range queries

Algorithm NestedBinaryPC(products, categories):

Input: relations products(*name*, *category*) and categories(*category*, *related*), relation categories ordered.

```
    output := ∅.
    for (p.n, p.c) ∈ products do
    i := LOWERBOUND(categories, (p.c, ''), 0, |categories|).
    while i < |categories| and also categories[i].category = p.c do</li>
    add (p.n, categories[i].related) to output.
    i := i + 1.
    Result: return {(p.n, c.r) | ((p.n, p.c) ∈ products) ∧ ((c.c, c.r) ∈ categories)}.
```

Theorem

The NestedBinaryPC algorithm is correct and has a runtime complexity of $\Theta(|product| \cdot \log_2(|categories|) + |result|)$.

Contains, LinearSearch, and LowerBound in practice

Algorithm	C++	Java
Contains	std::ranges::contains	collection.contains ^a
LinearSearch LinearPredSearch	std::find std::find_if	<pre>collection.indexOfa java.util.stream::filterb</pre>
LowerBound	std::lower_bound std::upper_bound ^d	java.util.Arrays:: ^c binarySearch
Related libraries	<algorithm>, <ranges></ranges></algorithm>	java.util.Arrays, java.util.ArrayList,

 $[^]a\mathrm{Here},\,collection\,$ is a standard Java data collection such as java.util.ArrayList.

 $[^]b$ Using the stream library supported by standard Java data collections.

 $^{^{}c}$ Does not guarantee to return the offset of the first occurrence of a value.

^dReturns the offset of the first element in the list that is strictly larger than the searched-for value.

Contains, LinearSearch, and LowerBound in practice

Algorithm	C++	Java
Contains	std::ranges::contains	collection.contains ^a
LinearSearch LinearPredSearch	std::find std::find_if	<pre>collection.indexOfa java.util.stream::filterb</pre>
LowerBound	std::lower_bound std::upper_bound ^d	java.util.Arrays:: ^c binarySearch
Related libraries	<algorithm>, <ranges></ranges></algorithm>	java.util.Arrays, java.util.ArrayList,

 $[^]a\mathrm{Here},\,collection\,$ is a standard Java data collection such as java.util.ArrayList.

 $[^]b$ Using the stream library supported by standard Java data collections.

 $^{^{}c}$ Does not guarantee to return the offset of the first occurrence of a value.

^dReturns the offset of the first element in the list that is strictly larger than the searched-for value.

Contains, LinearSearch, and LowerBound in practice

Algorithm	C++	Java
Contains	std::ranges::contains	collection.contains ^a
LinearSearch LinearPredSearch	std::find std::find_if	<pre>collection.indexOf^a java.util.stream::filter^b</pre>
LowerBound	std::lower_bound std::upper_bound ^d	java.util.Arrays:: ^c binarySearch
Related libraries	<algorithm>, <ranges></ranges></algorithm>	java.util.Arrays, java.util.ArrayList,

 $[^]a$ Here, collection is a standard Java data collection such as java.util.ArrayList.

 $[^]b$ Using the stream library supported by standard Java data collections.

^cDoes not guarantee to return the offset of the *first* occurrence of a value.

^dReturns the offset of the first element in the list that is strictly larger than the searched-for value.