Exercise 10.4 In the circuit in Figure 10.6, the switch is closed at time t=0 and opened at t=1 second. Sketch $v_C(t)$ for all times.

Solution:

Figure 10.6:

Figure 10.7:

Assume $v_C=0$ for t<0. When the switch is closed at $t=0,\,v_C$ rises from 0 to

$$11 \cdot \frac{10k}{10k+1k} = 10$$
 Volts with $\tau_1 = [1k \mid\mid 10k] \cdot C$
$$\tau_1 = 9.09ms$$

When the switch is opened, v_C falls exponentially back to zero with $\tau_2=10k\cdot C=1\ second$

Assuming $v_C=0$ for t<0, when the switch is closed at t=0, v_C rises from 0 to 10V with $\tau_1=\tau_1=9.09ms$; When the switch is opened, v_C falls exponentially back to zero with $\tau_2=1$ second.

Exercise 10.7 For the current source shown in Figure 10.18, assume i_S consists of a single rectangular current pulse of amplitude I_0 amps and duration t_0 seconds.

- a) Find the zero-state response to i_S .
- b) Sketch the zero-state response for the cases:
 - i) $t_0 >> RC$
 - ii) $t_0 = RC$
 - iii) $t_0 \ll RC$
- c) Show that for $t_0 \ll RC$, (the case of a short pulse), the response for $t > t_0$ depends only on the area of the pulse (I_0t_0) , and not on i_0 or t_0 separately.

Solution:

a) v: final value resulting from pulse = $I_0 \cdot R$ initial value = 0 (assumed zero state)

$$0 < t < t_0 : v = I_0 \cdot R (1 - e^{-t/\tau}); \tau = RC$$

When the pulse stops (at $t_0 = t$), exponential decay occurs in v, with the initial value $= I_0 \cdot R \ (1 - e^{-t_0/RC})$ and final value = 0.

$$t > t_0 : v = I_0 \cdot R \left(1 - e^{-t_0/RC}\right) e^{-(t - t_0)/RC}$$

- b) i) $t_0 >> RC$ For $t_0 \gg RC$, v reaches max value since the pulse is sufficiently long.
 - ii) $t_0 = RC$ $t_0 = RC$: Here the pulse is not long enough for v to exponentially rise all the way to $I_0 \cdot R$. V only reaches 63% of its maximum before decaying.

Figure 10.19:

Figure 10.20:

Figure 10.21:

iii)
$$t_0 << RC$$

Here the exponential rise is very short, since the pulse is short

c) In case (iii), we see the output v for a constant pulse input is triangular, or ramped; nearly the integral of the input, i.e. proportional to the <u>area</u> under the input curve.

$$\begin{split} i &= v/R + C \, \frac{dv}{dt} \\ I_0 \cdot R &= v + RC \, \frac{dv}{dt} \\ \frac{I_0}{C} &= \frac{v}{RC} + \frac{dv}{dt} \end{split}$$

As RC becomes larger ($\gg t_0$), our equation can be approximated as

$$\frac{dv}{dt} = \frac{I_0}{C} \implies v = \int_0^{t_0} I_0/C$$

since $v/RC \rightarrow 0$ when RC is large.

ANS:: (a) For
$$0 \le t \le t_0$$
, $v = RI_0 \left(1 - e^{-t/RC}\right)$, and for $t > t_0$, $v = RI_0 \left(1 - e^{-t_0/RC}\right) e^{-(t-t_0)/RC}$

Problem 10.1 Figure 10.55a illustrates an inverter INV1 driving another inverter INV2. The corresponding equivalent circuit for the inverter pair is illustrated in Figure 10.55b. A, B, and C represent logical values, and v_A , v_B , and v_C represent voltage levels. The equivalent circuit model for an inverter based on the SRC model of the MOSFET is depicted in Figure 10.56.

Figure 10.55:

a) Write expressions for the rise and fall times of INV1 for the circuit configuration shown in Figure 10.55. Assume that the inverters satisfy the static discipline with voltage thresholds $V_{IL} = V_{OL=V_L}$ and $V_{IH} = V_{OH} = V_H$.

Hint: The rise time of INV1 is the time v_B requires to transition from the lowest voltage reached by v_B (given by the voltage divider action of R_L and R_{ON}) to V_H for a V_S to 0V step transition at the input v_A . Similarly, the fall time of INV1 is the time v_B requires to transition from the highest voltage reached by v_B (that is, V_S) to V_L for a 0V to V_S step transition at the input v_A .

b) What is the propagation delay t_{pd} of INV1 in the circuit configuration shown in Figure 10.55, for R_{ON} = 1k, R_L = 10R_{ON}, C_{GS} = 1nF, V_S = 5V, V_L = 1V, and V_H = 3V?

Solution:

Figure 10.56:

a) For v_B going from low to high:

$$v_B = V_S + \left(V_S \frac{R_{ON}}{R_{ON} + R_L} - V_S\right) e^{-t/\tau}$$

$$t_{rise} = -\tau \ln \left(\frac{V_S - V_H}{V_S - V_S \frac{R_{ON}}{R_{ON} + R_L}}\right) \quad \tau = R_L C_{GS}$$

For v_B going from high to low:

$$\begin{split} v_{B} &= V_{S} \frac{R_{ON}}{R_{ON} + R_{L}} + \left(V_{S} - V_{S} \frac{R_{ON}}{R_{ON} + R_{L}}\right) \, e^{-t/\tau} \\ t_{fall} &= -\tau \ln \left(\frac{V_{L} - V_{S}}{R_{ON} + R_{L}} \frac{R_{ON}}{R_{ON} + R_{L}}\right) \quad \tau = C_{GS} \frac{R_{ON} R_{L}}{R_{ON} + R_{L}} \\ t_{rise} &= -\tau \ln \left(\frac{V_{S} - V_{H}}{V_{S} - V_{S}} \frac{R_{ON}}{R_{ON} + R_{L}}\right) \quad \tau = R_{L} C_{GS} \, t_{fall} \, = \, -\tau \ln \left(\frac{V_{L} - V_{S}}{R_{ON} + R_{L}} \frac{R_{ON}}{R_{ON} + R_{L}}\right) \\ \tau &= C_{GS} \frac{R_{ON} R_{L}}{R_{ON} + R_{L}} \end{split}$$

b) $t_{pd} = t_{rise} = 8.2 \ \mu s$

ANS:: (a)
$$t_{rise} = -\tau \ln \left(\frac{V_S - V_H}{V_S - V_S \frac{R_{ON}}{R_{ON} + R_L}} \right)$$
 $\tau = R_L C_{GS}, t_{fall} = -\tau \ln \left(\frac{V_L - V_S \frac{R_{ON}}{R_{ON} + R_L}}{V_S - V_S \frac{R_{ON}}{R_{ON} + R_L}} \right)$ $\tau = C_{GS} \frac{R_{ON} R_L}{R_{ON} + R_L}$ (b) $t_{pd} = 8.2 \ \mu s$

Problem 10.10 As illustrated in Figure 10.80, a capacitor and resistor can be used to filter or smooth the waveforms we derived from a half-wave rectifier, to get something closer to a DC voltage at the output, for use in a power supply for example.

For simplicity, assume the voltage from source v_S is a square wave. Assume that at t=0, $v_O=0$, i.e., the circuit is at rest. Now assuming that R is small enough to make the circuit time constant much smaller than t_1 or t_2 , calculate the voltage waveforms for each half cycle of the input wave. Find the average value of the output voltage v_O for

Figure 10.80:

 $t_1 = t_2$. Sketch the waveforms carefully. For this choice of R, it should be clear that no useful smoothing has been accomplished.

Solution:

$$0 < t < t_1$$
: $v_O = V(1 - e^{-\frac{t}{RC}})$
 $t_1 < t < t_1 + t_2$: $v_O = Ve^{-\frac{(t-t_1)}{RC}}$

The average value of v_O is V/2.

See Figure 10.81.

ANS::
$$0 < t < t_1$$
: $v_O = V(1 - e^{-\frac{t}{RC}}), t_1 < t < t_1 + t_2$: $v_O = Ve^{-\frac{(t-t_1)}{RC}}$

Figure 10.81:

Problem 10.20 In the circuit shown in Figure 10.107, the switch opens at t = 0. Sketch and label $i_L(t)$ and $v_L(t)$.

$$v_1 = 5V$$
 $v_2 = 3V$, $R_1 = 2k$, $R_2 = 3k$, $L = 4mH$

Solution:

$$\begin{split} \tau &= \frac{L}{R_1 \parallel R_2} = 3.33s. \\ i_L(0^-) &= V_1/R_1 + V_2/R_2 = 2.5mA + 1mA = 3.5mA \\ i_L(t \to \infty) &= V_1/R_1 = 2.5mA \end{split}$$

Figure 10.107:

$$i_L(t) = 2.5 + e^{-t/\tau} [mA]$$

$$v_L(t) = L \frac{di_l}{dt} = -\frac{L}{\tau} e^{-\frac{t}{\tau}} = -2 e^{-t/\tau}$$

See Figure 10.108 and Figure 10.109.

Figure 10.108:

Figure 10.109:

Problem 10.22 The neon bulb in the circuit shown in Figure 10.111 has the following behavior: the bulb remains off and acts as an open circuit until the bulb voltage v reaches a threshold voltage $V_T = 65V$. Once v reaches V_T , a discharge occurs and the bulb acts like a simple resistor of value $R_N = 1k\Omega$; the discharge is maintained as long as the bulb current i remains above the value $I_S = 10mA$ needed to sustain the discharge (even if the voltage v drops below V_T). As soon as i drops below 10 mA, the bulb again becomes an open circuit.

Figure 10.111:

- a) Sketch and dimension v(t) and i(t), showing the first and second charging intervals.
- b) Estimate the flashing rate.

Solution:

a) Charging
$$(v < 60V)$$
:
$$\tau_c = RC = (1M\Omega)(10\mu F) = 10s.$$

$$v_{charging} = 90(1 - e^{-t/\tau_c})$$

Discharging (i > 10mA):

$$\tau_d = R_{eq}C = \frac{1M\Omega \cdot 1k\Omega}{1M\Omega + 1k\Omega} \ 10\mu F = 10ms$$

Note that when discharging v approaches $90\frac{1k\Omega}{1M\Omega+1k\Omega}\cong 0$. Also note that $\tau_c\gg \tau_d$ so the charging time is much longer than the discharging time.

$$v_{discharge} = 65e^{-t/\tau_d}$$

The minimum v when discharging is $v_{min} = i_{min}/R = 10mA/1k\Omega = 10V$.

b) Since the discharge time is so small in comparison to the charge time, we will only consider the charge time.

After the first charging cycle, $v_{charging}=90+(10-90)e^{-t/\tau_c}$. The charging time, t_c is the amount of time it takes for $v_{charging}$ to reach 65 V.

$$t_c = -\tau_c \ln\left(\frac{90 - 65}{80}\right) = 11.63s.$$

Therefore the flashing rate is once every 11.63 s.

ANS:: (b) 1/11.63sec