PSALTer results panel

 $S = \iiint (\frac{1}{6} \left(6 \,\, \mathcal{A}^{\alpha\beta\chi} \,\, \sigma_{\alpha\beta\chi} + 6 \,\, f^{\alpha\beta} \,\, \tau \, (\Delta + \mathcal{K})_{\alpha\beta} + 8 \, r_{2} \, \partial_{\beta} \mathcal{A}_{\alpha_{i}\theta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\beta} \mathcal{A}_{\alpha_{\theta_{i}}} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 4 \, r_{2} \, \partial_{\beta} \mathcal{A}_{\alpha_{\theta_{i}}} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 2 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{\beta\theta}} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 2 \, r_{2} \, \partial_{\theta} \mathcal{A}_{\alpha_{\beta_{i}}} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\theta} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 2 \, r_{2} \, \partial_{\theta} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 2 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 2 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + 2 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \, \partial^{\alpha} \mathcal{A}^{\alpha\beta_{i}\beta} - 4 \, r_{2} \, \partial_{\alpha} \mathcal{A}_{\alpha_{i}\beta} \,$

Wave operator

_	[∪] . <i>3</i> ("	⁰ . f	⁰ . f [±]	⁹ . <i>9</i> 4"										
${}^{0^+}_{\cdot}\mathcal{R}^{\parallel}$ †	0	0	0	0										
^{0,+} <i>f</i> [∥] †	0	0	0	0										
${}^{0,+}_{\cdot}f^{\perp}_{}$ †	0	0	0	0										
^{0.} A∥ †	0	0	0	$k^2r.+t.$		$\overset{1^{+}}{\cdot} \mathscr{H}^{^{\perp}}{}_{\alpha\beta}$	$\frac{1}{\cdot}^+ f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	${}^1\mathcal{H}^{\scriptscriptstyle\perp}{}_{\alpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$^{1}f_{\alpha}^{\scriptscriptstyle \perp}$			
				$^{1\overset{+}{.}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	3	$\frac{\sqrt{2} t.}{3}$	$\frac{1}{3} i \sqrt{2} kt.$	0	0	0	0			
				$^{1\overset{+}{.}}\mathcal{A}^{\scriptscriptstyle\perp}\dagger^{^{lphaeta}}$	$\frac{\sqrt{2} t_{\cdot}}{3}$	t. 2 3	$\frac{ikt.}{2}$	0	0	0	0			
				$1.^+f^{\parallel}$ $\uparrow^{\alpha\beta}$	$-\frac{1}{3} i \sqrt{2} kt.$	$-\frac{1}{3} ikt.$	$\frac{k^2t}{3}$	0	0	0	0			
				$\mathcal{A}^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$^{1}\mathcal{F}^{\perp}$ \dagger^{lpha}	0	0	0	0	0	0	0			
				$f^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0	$^{2^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot}f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{H}^{\parallel}_{\alpha\beta\chi}$
				•							$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{\alpha\beta}$	0	0	0
											$\overset{2^+}{\cdot}f^{\parallel} \dagger^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{H}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0

Saturated propagator

	$0.^+\sigma^{\parallel}$	$\stackrel{0^+}{\cdot} \tau^{\parallel}$	$0.^+\tau^{\perp}$	$0^{-}\sigma^{\parallel}$											
0.⁺σ∥†				0											
$0.^{+} \tau^{\parallel} +$				0											
0. ⁺ τ [⊥] †	0	0	0	0											
⁰ σ [∥] †	0	0	0	$\frac{1}{k^2 r. + t.}$	$^{1^+}\sigma^{\parallel}_{\alpha\beta}$	$1.^+\sigma^{\perp}_{\alpha\beta}$	1^+ , $\tau^{\parallel}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{\alpha}$	1 ⁻ σ ⁻ α	$^{1}\tau^{\parallel}{}_{\alpha}$	$1 \tau_{\alpha}$	_			
				$1.^+\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{6}{(3+k^2)^2t}$	$\frac{3\sqrt{2}}{(3+k^2)^2t.}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t.}_{2}$	0	0	0	0				
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t.}$	$\frac{3}{(3+k^2)^2t}$	$\frac{3 i k}{(3+k^2)^2 t}$	0	0	0	0				
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t.}$	$-\frac{3ik}{(3+k^2)^2t.}$	$\frac{3 k^2}{(3+k^2)^2 t}$	0	0	0	0				
					0		0	0	0	0	0				
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0				
				1 τ^{\parallel} \dagger^{α}	0	0	0	0	0	0	0				
				$\frac{1}{2}\tau^{\perp} + \alpha$	0	0	0	0	0	0	0	$^{2.^{+}}\sigma^{\parallel}_{\alpha\beta}$	$^{2^{+}}\tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$	_
											$^{2.^{+}}\sigma^{\parallel}\dagger^{\alpha\beta}$	0	0	0	
											2^+ τ^{\parallel} †	0	0	0	
											$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	0	

Source constraints

Spin-parity form	Covariant form	Multiplicities				
0^+ , $\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1				
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1				
$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma_{\alpha}^{\alpha\beta} == 0$	1				
$1 \cdot \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3				
$1 r \ ^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3				
1. \sigma^{\(\alpha\)} == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}==0$	3				
$\int_{-\infty}^{\infty} d^{\alpha} = 0$	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha} == \partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$	3				
$\overline{i} k 1^{+}_{\cdot} \sigma^{\parallel^{\alpha\beta}} + 1^{+}_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} == \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} == \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} == \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} == \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + \partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\sigma}\partial^{\alpha}\sigma^{\chi\beta} + \partial_{\sigma}\partial$	3				
$1^+ \sigma^{\parallel}{}^{\alpha\beta} = 1^+ \sigma^{\perp}{}^{\alpha\beta}$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$	3				
$2 \sigma^{\parallel \alpha \beta \chi} = 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\chi} \sigma^{\delta \alpha \delta} + 4 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\chi}$	5				
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\beta\epsilon} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{\delta\alpha}_{\delta} = 3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} +$					
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\delta} \sigma^{\delta \alpha \epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\phi} \partial^$					
$2^+_{\cdot \tau} \parallel^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5				
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{}$					
$2^+_{\cdot}\sigma^{\parallel^{\alpha\beta}}=0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\ \delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\ \delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	5				
Total expected gauge generators: 36						

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot 2}} > 0$
Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 &&t. > 0