Reinforcement Learning

Deep Q-Network

Dr. Alireza Aghamohammadi

Deep Q-Network (DQN)

- $\ \, \ \,$ The goal of the Deep Q-Network (DQN) is to approximate the optimal action-value function q(s,a).
- ❖ The DQN architecture uses a neural network with:
 - ☐ An input layer with the same size as the state space.
 - An output layer with the same size as the action space.
- **The Bellman optimality equation for** q(s, a) is given as:

$$q(s_t, a_t) = r(s_t, a_t) + \gamma \cdot \max_{a} q(s_{t+1}, a),$$

where:

- \Box $r(s_t, a_t)$ is the reward for taking action a_t in state s_t .
- \square γ is the discount factor,
- \square and $\max_a q(s_{t+1}, a)$ is the maximum expected future reward.
- The Bellman equation assumes that the policy π has converged to the optimal policy π^* .
- In practice, the difference between the predicted $q(s_t, a_t)$ and the target value is known as the temporal difference error δ .
- To minimize this error, we optimize the following loss function:

$$\mathcal{L}(\phi) = \left[r(s_t, a_t) + \gamma \cdot \max_{a} q(s_{t+1}, a; \phi) - q(s_t, a_t; \phi) \right]^2,$$

where ϕ represents the parameters of the neural network.