RANGKAIAN ELEKTRONIKA II

Penguat Diferensial

Mifta Nur Farid, S.T., M.T. miftanurfarid@lecturer.itk.ac.id

Teknik Elektro Institut Teknologi Kalimantan Balikpapan, Indonesia

Februari 22, 2021

- Istilah Operational amplifier (op-amp) merujuk kepada sebuah amplifier/penguat yang menjalankan suatu operasi matematika.
- Dalam sejarahnya, op-amp pertama digunakan di dalam komputer analog untuk melakukan operasi penjumlahan, perkalian dan lainnya.
- Op-amp dibuat sebagai sirkuit diskrit \rightarrow sekarang kebanyakan op-amp adalah sirkuit terintegrasi/ integrated circuits (IC).

Pengantar

Brief History of Op-Amp

Vacuum Tube Op-Amps (1930's-1940's) Dual-supply voltage of +300/-300 V Output swing +/- 50 volts Open-loop voltage gain of 15,000 to 20,000, Slew rate of +/- 12 volts/µsecond Maximum output current of 1 mA George Philbrick

Solid State Discrete Op-Amps (1960's)

Dual-supply voltage of +15/-15 V Output swing +/- 11 volts Open-loop voltage gain of 40,000, Slew rate of +/- 1.5 volts/µsecond Maximum output current of 2.2 mA

Monolithic IC Op-Amp

- First created in 1963 μA702 by Fairchild Semiconductor
- µA741 created in 1968, became widely used due to its ease of use 8 pin, dual in-line package (DIP)
- Further advancements include use of field effects transistors (FET), greater precision, faster response, and smaller packaging

- lacktriangledown Op-amp ightarrow penguat DC/DC amplifier dengan voltage gain/penguatan tegangan yang sangat besar, impendansi input yang sangat besar, dan impedansi output yang sangat kecil.
- Frekuensi unity gain dari 1 hingga lebih dari 20 Mhz.
- IC op-amp adalah sebuah blok fungsional yang lengkap dengan pin eksternal.
- Hanya dengan menghubungkan pin tersebut ke suplai tegangan dan beberapa komponen, kita dapat dengan cepat membuat segala jenis rangkaian yang berguna.

Pengantar

- Rangkaian input yang paling banyak digunakan di op-amp adalah sebuah penguat diferensial/ differential amplifier.
- Konfigurasi dari penguat ini memberikan banyak karakteristik input di IC.
- Penguat diferensial juga dapat dikonfigurasi dalam bentuk diskrit untuk digunakan dalam komunikasi, instrumentasi, dan rangkaian kontrol industri.
- Kita akan fokus pada penguat diferensial yang digunakan dalam IC.

Pengantar

- Sub-CPMK:
 - □ Mahasiswa mampu menganalisis rangkaian penguat diferensial (C4, P3, A3)
- Bahan Kajian
 - 1. Konsep dasar penguat diferensial;
 - 2. Analisis DC dari penguat diferensial;
 - 3. Analisis AC dari penguat diferensial;
 - 4. Common-mode gain;

Penguat Diferensial

- 1. Transistor, dioda, dan resistor adalah komponen-komponen praktis yang ada di dalam IC.
- 2. Kapasitor mungkin dapat digunakan, tapi ukurannya sangat kecil, < 50 pF.
- 3. Sehingga tidak bisa menggunakan kapasitor kopling dan kapasistor bypass seperti pada rangkaian diskret.
- 4. Harus menggunakan kopling langsung antara stage-nya + menghilangkan kapasitor bypass emitter.
- 5. Solusinya? \rightarrow penguat diferensial
- 6. Penguat diferensial \rightarrow menghilangkan kebutuhan terhadap kapasitor bypass emitter
- 7. Penguat diferensial ← banyak digunakan sebagai input stage hampir di setiap IC op-amp

Difderential Input dan Output

- Ada 2 CE stage yang paralel terhadap resistor *common emitter* R_E
- Meskipun ada 2 tegangan *input* (v_1, v_2) dan 2 tegangan *collector* (v_{c1}, v_{c2}) , keseluruhan rangkaian dianggap 1 stage.
- Tidak ada kapasitor kopling dan bypass
 → tidak ada lower cutoff frequency

■ Tegangan output AC :

$$V_{out} = v_{c2} - v_{c1} (1)$$

- V_{out} = differential output, karena menggabungkan 2 tegangan collector.
- Transistor yang identik + resistor collector yang sama → ideal
- $v_1 = v_2 \to v_{out} = 0$
- $v_1 > v_2 \rightarrow v_{out}$ memiliki polaritas seperti gambar di samping.
- $v_1 < v_2 \rightarrow v_{out}$ inverted + polaritas yang berkebalikan

Diferential Input dan Output

- $v_1 =$ **noninverting input** karena v_{out} memiliki fasa yang sama dengan v_1
- $v_2 =$ **inverting input** karena v_{out} memiliki fasa yang berbeda 180 $^{\circ}$ dengan v_2
- Terkadang, noninverting input yang digunakan dan inverting input di-grounding, terkadang juga sebaliknya.

■ Jika kedua input-nya ada, input totalnya disebut differential input karena tegangan output sama dengan penguatan tegangan (voltage gain) × selisih dari kedua tegangan input.

$$v_{out} = A_{\nu}(v_1 - v_2) \tag{2}$$

• A_v = penguatan tegangan/ voltage gain

Institut Teknologi Kalimantai

Single-Ended Output

- Differential output (gambar sebelumnya) membutuhkan floating load, karena kedua ujung dari load tidak ke ground.
- Umumnya, load/ beban adalah single-ended, salah satu ujungnya ke ground. Seperti pada gambar (a).
- $V_{out} = A_v(v_1 v_2)$, tapi voltage gain (A_v) hanya setengah
- Blok-diagram, gambar (b), sama dengan op-amp

- Konfigurasi ini memiliki
 - □ Noninverting input
 - □ Differential output
- Karena $v_2 = 0$, maka

$$v_{out} = A_v(v_1) \tag{3}$$

- Konfigurasi ini memiliki
 - □ Noninverting input
 - □ Single-ended output
- Karena v_{out} adalah tegangan output AC, maka v_{out} tetap sama seperti sebelumnya yaitu $v_{out} = A_v(v_1)$
- Tapi A_{ν} akan bernilai setengahnya karena output hanya diambil dari satu sisi dari diff-amp

• v_2 adalah active input dan v_1 adalah grounded input, maka

$$v_{out} = -A_v(v_2) \tag{4}$$

 Tanda minus (-) menunjukkan fasa yang berkebalikan

■ Tegangan output juga sama dengan sebelumnya, yaitu $v_{out} = -A_v(v_2)$

Summary Table 15-1		Diff-Amp Configurations	
Input	Output	V _{in}	$v_{ m out}$
Differential	Differential	$v_1 - v_2$	$v_{c2} - v_{c1}$
Differential	Single-ended	$v_1 - v_2$	V _{c2}
Single-ended	Differential	v ₁ or v ₂	$v_{c2} - v_{c1}$
Single-ended	Single-ended	<i>v</i> ₁ or <i>v</i> ₂	V _{c2}

Analisis DC dari Diff Amp

- Rangkaian ekivalen DC dari diff amp.
- Pada pembahasan berikutnya, kita akan mengasumsikan transistornya identik dan resistor collectornya sama.
- Kita asumsikan juga kedua base di-grounded

Analisis Ideal

- Diff amp disebut juga long-tail pair karena kedua transistor saling berbagi satu common resistor R_E .
- Arus yang mengalir melalui common resistor ini disebut tail current.
- Jika kita mengabaikan V_{BE} drop sepanjang dioda emitter, maka di atas emitter resistor idealnya adalah sebuah titik ground DC.

Analisis Ideal

• Sehingga semua V_{EE} ada di seberang R_E dan arus tail bernilai

$$I_T = \frac{V_{EE}}{R_E} \tag{5}$$

 Ketika keduanya benar-benar sama, maka arus tail akan terbagi sama, sehingga tiap transistor memiliki arus emitter sebesar

$$I_{EE} = \frac{I_T}{2} \tag{6}$$

Analisis Ideal

Tegangan DC pada kedua collector sebesar

$$V_C = V_{CC} - I_C R_C \tag{7}$$

 Kita bisa meningkatkan analisis DC dengan cara menyertakan V_{BE} drop di setiap dioda emitter

$$I_T = \frac{V_{EE} - V_{BE}}{R_F} \tag{8}$$

dimana $V_{BE} = 0.7 \text{ V}$ untuk transistor silikon.

- Pertanyaan:
 - Berapa arus dan tegangan ideal dari gambar di samping?
- Jawaban:
 - □ Berdasarkan persamaan 5, arus tail adalah:

$$I_T = \frac{V_{EE}}{R_F} = \frac{15 \text{ v}}{7.5 \text{ m}\Omega} = 2 \text{ mA}$$

□ Tiap arus emitter adalah separuh dari arus tail:

$$I_E = \frac{I_T}{2} = \frac{2 \text{ mA}}{2} = 1 \text{ mA}$$

Jawaban:

□ Setiap tegangan collectornya adalah:

$$V_C = V_{CC} - I_C R_C$$

= 15 V - (1 mA)(5 k Ω)
= 10 V

- Pertanyaan:
 - $\hfill\Box$ Berapa arus dan tegangan ideal jika $R_E=5\ \mbox{k}\Omega$
- Jawaban: ??
 - □ Silakan dikerjakan

Pertanyaan:

Dengan menggunakan metode kedua, berapa arus dan tegangan ideal dari gambar di samping?

■ Jawaban:

□ Arus tail-nya adalah:

$$I_T = rac{V_{EE} - V_{BE}}{R_E} = rac{15 \text{ V} - 0.7 \text{ V}}{7.5 \text{ k}\Omega}$$

$$= 1.91 \text{ mA}$$

Jawaban:

Setiap arus emitternya adalah setengah dari arus tailnya:

$$I_E = \frac{I_T}{2} = \frac{1.91 \text{ mA}}{2} = 0.955 \text{ mA}$$

□ Tegangan collectornya sebesar:

$$V_C = V_{CC} - I_C R_C$$

= 15 V - (0.955 mA)(5 k Ω)
= 10.2 V

■ Pertanyaan:

- $\hfill\Box$ Dengan menggunakan metode kedua, berapa arus dan teganan ideal jika $R_E=5~\mbox{k}\Omega$
- Jawaban:
 - □ Silakan dikerjakan

- Pertanyaan:
 - Berapa arus dan tegangan di dalam rangkaian single-ended output di samping
- Jawaban:
 - □ Idealnya, arus tail:

$$I_T = \frac{V_{EE}}{R_E} = \frac{12 \text{ V}}{5 \text{ kV}} = 2.4 \text{ mA}$$

 Setiap arus emitter adalah setengah dari arus tailnya:

$$I_E = \frac{I_T}{2} = \frac{2.4 \text{ mA}}{2} = 1.2 \text{ mA}$$

Jawaban:

□ Tegangan collector yang sebelah kanan adalah:

$$V_C = V_{CC} - I_C R_C$$

= 12 V - (1.2 mA)(3 k Ω)
= 8.4 V

 Sedangkan tegangan collector sebelah kiri adalah 12 V.

■ Jawaban:

 Jika kita gunakan metode yang kedua, kita dapatkan:

$$I_T = \frac{V_{EE} - V_{BE}}{R_E}$$
$$= \frac{12 \text{ V} - 0.7 \text{ V}}{5 \text{ k}\Omega}$$
$$= 2.26 \text{ mA}$$

$$I_E = \frac{I_T}{2} = \frac{2.26 \text{ mA}}{2} = 1.13 \text{ mA}$$

■ Jawaban:

$$V_C = V_{CC} - I_C R_C$$

= 12 V - (1.13 mA)(3 k Ω)
= 8.61 V

■ Pertanyaan:

□ Jika $R_E = 3 \text{ k}\Omega$, tentukan arus dan tegangan dengan menggunakan metode kedua.

Analisis AC dari Diff Amp

- Pada bagian ini, kita akan menurunkan persamaan untuk penguatan tegangan (voltage gain) dari diff amp.
- Kita mulai dengan konfigurasi yang paling sederhana, noninverting input dan single-ended output.
- Setelah menurunkan penguatan tegangan, kita akan kembangkan hasilnya ke konfigurasi yang lain.

Teori Operasi

- Gambar di samping adalah noninverting input dan single-ended output.
- Dengan R_E yang besar, arus tail hampir konstan saat ada sinyal AC yang kecil.
- Jika arus emitter di Q_1 meningkat maka arus emitter di Q_2 menurun, dan sebaliknya.

Teori Operasi

- Transistor Q_1 bertindak seperti emitter follower yang menghasilkan tegangan AC di seberang resistor emitter.
- Tegangan AC ini bernilai setengah dari tegangan input v_1
- Pada setengah siklus positif daru tegangan input, arus emitter Q_1 meningkat, arus emitter Q_2 menurun, dan tegangan collector Q_2 meningkat.

Teori Operasi

- Sama halnya pada setengah siklus negatif dari tegangan input, arus emitter Q_1 menurun, arus emitter Q_2 meningkat, dan tegangan collector Q_2 menurun.
- Hal ini yang menyebabkan gelombang sinus yang dikuatkan memiliki fasa yang sama dengan noninverting input.

Single-ended output gain

- Gambar di samping adalah rangkaian ekivalennya
- Setiap transistor memiliki r'_e
- R_E paralel dengan r'_e pada transistor kanan karena base dari Q_2 di-grounding.
- Karena R_E jauh lebih besar dariada r'_e maka R_E bisa diabaikan.
- Sehingga kita dapat rangkaian yang lebih sederhana sebagai berikut:

Single-ended output gain

- lacktriangle Tegangan input v_1 sepanjang kedua r_e'
- Karena kedua r'_e bernilai sama, maka tegangan pada r'_e adalah setengah dari tegangan inputnya.
- Ini lah mengapa tegangan AC sepanjang resistor tail adalah setengah dari tegangan input.

■ Tegangan output AC:

$$v_{out} = i_C R_C$$

■ Tegangan input AC:

$$v_{in} = i_e r'_e + i_e r'_e = 2i_e r'_e$$

Penguatan tegangan (voltage gain), yaitu v_{out} dibagi $v_i n$, sehingga

single-ended output:
$$A_v = \frac{R_C}{2r'_e}$$
 (9)

- Gambar di samping adalah rangkaian ekivalen dari noninverting input & differential output.
- Analisis mirip dengan sebelumnya, kecuali tegangan outputnya adalah dua kalinya karena terdapat 2 resistor collector.

$$v_{out} = v_{C2} - v_{C1} = i_C R_C - (-i_C R_C)$$

= $2i_C R_C$

■ Tanda negatif \rightarrow sinyal v_{C1} memiliki beda fasa sebesar π

■ Tegangan input AC nya masih sama

$$v_{in}=2i_er'_e$$

Voltage gain :

Differential output :
$$A_v = \frac{R_C}{r'e}$$
 (10)

Konfigurasi inverting-input

- Gambar di samping adalah inverting input dan single-ended output
- Analisis AC hampir sama dengan analisis noninverting
- Inverting input v₂ menghasilkan tegangan output yang diperkuat dan terbalik
- r'_e masih bagian dari pembagi tegangan \rightarrow tegangan di seberang R_E setengah dari tegangan inverting input
- Jika menggunakan differential output, voltage gainnya adalah bernilai dua kalinya

Konfigurasi differential-input

- lacktriangle Pada konfigurasi differential-input ightarrow kedua inputnya aktif secara bersamaan
- Analisis AC dengan menggunakan teorema superposisi
- Tegangan output untuk noninverting input adalah

$$v_{out} = A_v(v_1)$$

dan tegangan output untuk inverting input adalah

$$v_{out} = -A_v(v_2)$$

Gabungkan keduanya,

$$v_{out} = A_v(v_1 - v_2)$$

Impedansi input

■ Pada CE stage, impedansi input dari base adalah

$$z_{in} = \beta r'_e$$

Pada diff amp, impedansi input dari salah satu base adalah dua kalinya

$$z_{in} = 2\beta r_e' \tag{11}$$

lacktriangle Karena terdapat 2 resistor emitter AC r_e' di dalam rangkaian ekivalennya

Summary Table 15-2		Diff-Amp Voltage Gains		
Input	Output		A_{ν}	V _{out}
Differential	Differential		$R_C/r_{ m e'}$	$A_{\nu}(v_1 - v_2)$
Differential	Single-ended		$R_C/2r_e'$	$A_{\nu}(v_1-v_2)$
Single-ended	Differential		R_C/r_e'	$A_{\nu}v_1$ or $-A_{\nu}v_2$
Single-ended	Single-ended		$R_C/2r_e'$	$A_{\nu}v_1$ or $-A_{\nu}v_2$

Pertanyaan:

 $\ \square$ Berdasarkan gambar di samping, berapa tegangan output AC? Jika $\beta=300$, berapa impedansi input dari diff amp tersebut ?

Jawaban:

 Idealnya, 15 V di seberang resistor emitter, menghasilkan arus tail sebesar 2 mA, yang artinya arus emitter DC pada masing masing transistor sebesar

$$I_E = 1 \text{ mA}$$

□ Lalu kita hitung resistansi emitternya

$$r'_{\rm e} = rac{25 \text{ mV}}{I_E} = rac{25 \text{ mV}}{1 \text{ mA}} = 25 \Omega$$

Jawaban:

□ Voltage gain:

$$A_{v} = \frac{R_{C}}{r_{e}'} = \frac{5 \text{ k}\Omega}{25 \Omega} = 200$$

□ Tegangan keluaran AC

$$v_{out} = A_v v_1 = 200(1 \text{ mV}) = 100 \text{ mV}$$

□ Impedansi input

$$z_{in(base)} = 2\beta r'_e = 2(300)(25\Omega) = 15 \text{ k}\Omega$$

Latihan Soal 4

Pertanyaan:

□ Berdasarkan gambar di samping, jika $R_E = 5$ kΩ, berapa tegangan output AC? Jika β = 300, berapa impedansi input dari diff amp tersebut ?

■ Jawaban:

□ Silakan dikerjakan

Pertanyaan:

 \Box Berdasarkan gambar di samping, jika menggunakan metode ke 2, berapa tegangan output AC? Jika $\beta=300$, berapa impedansi input dari diff amp tersebut ?

Jawaban:

□ Tentukan arus tail

$$I_T = rac{V_{EE} - V_{BE}}{R_E} = rac{15 \text{ V} - 0.7 \text{ V}}{7.5 \text{ k}\Omega}$$

$$= 1.91 \text{ mA}$$

□ Arus emitter DC

$$I_E = \frac{I_T}{2} = \frac{1.91}{2} = 0.955 \text{ mA}$$

□ Resistansi emitter AC

$$r'_e = \frac{25 \text{ mV}}{I_E} = \frac{25 \text{ mV}}{0.955 \text{ mA}} = 26.2 \Omega$$

Jawaban:

□ Voltage gain

$$A_{v} = \frac{R_{C}}{r_{e}'} = \frac{5 \text{ k}\Omega}{26.2 \Omega} = 191$$

□ Tegangan keluaran AC

$$v_{out} = A_v v_1 = 191(1 \text{ mV}) = 191 \text{ mV}$$

□ Impedansi input

$$z_{in(base)} = 2\beta r'_e = 2(300)(26.2\Omega) = 15.7 \text{ k}\Omega$$

Pertanyaan:

 \Box Berdasarkan gambar di samping, jika $\beta=300$, berapa impedansi input dari diff amp tersebut ?

Jawaban:

 Idealnya sebesar 15 V pada emitter resistor, sehingga arus tailnya:

$$I_T = rac{V_{EE}}{R_E} = rac{15 \text{ V}}{1 \text{ M}\Omega} = 15 \ \mu \text{A}$$

Karena arus emitter di setiap transistornya adalah separuh dari arus tail, maka resistansi dari emitternya adalah:

$$r'_e = \frac{25 \text{ mV}}{I_F} = \frac{25 \text{ mV}}{7.5 \mu \text{ A}} = 3.33 \text{ k}\Omega$$

Jawaban:

□ Voltage gain

$$A_{v} = \frac{R_{C}}{2r'_{e}} = \frac{1 \text{ M}\Omega}{2(3.33 \text{ k}\Omega)} = 150$$

□ Tegangan keluaran AC

$$v_{out} = A_v v_1 = 150(7 \text{ mV}) = 1.05 \text{ V}$$

□ Impedansi input

$$z_{in(base)} = 2\beta r'_e = 2(300)(3.33 \text{ k}\Omega)$$

= 2 M\O

Latihan Soal 7

Pertanyaan:

□ Berdasarkan gambar di samping, jika β = 300 dan $R_E = 500$ kΩ, berapa impedansi input dari diff amp tersebut ?