Math 321 Lecture 5

Yuchong Pan

January 11, 2019

1 Applications of Pointwise and Uniform Convergence

1.1 Weierstrass Approximation Theorem (Take 1)

Theorem 1 (Weierstrass approximation theorem). Let $a, b \in \mathbb{R}, a < b$. Every $f \in C[a, b]$ can be uniformly approximated by polynomials; i.e., given any $f : [a, b] \xrightarrow{\text{continuous}} \mathbb{R}$ or \mathbb{C} , there exists a sequence $\{p_n : n \geq 1\} \subseteq \mathcal{P}[a, b]$, where $\mathcal{P}[a, b]$ is the space of polynomials on [a, b] with coefficients in \mathbb{R} or \mathbb{C} , such that $p_n \xrightarrow{n \to \infty} f$ uniformly on [a, b].

Corollary 1. C[a, b] is separable; i.e., it has a countable dense subset.

Proof. $\mathcal{P}[a,b]$, i.e., the space of real/complex polynomials on [a,b], is dense in C[a,b] by Weierstrass approximation theorem, but not countable.

Define
$$\mathcal{P}^*[a,b] = \bigcup_{n=0}^{\infty} \mathcal{P}_n^*[a,b]$$
, where

$$\mathcal{P}_{n}^{*}[a,b] = \{ p : [a,b] \to \mathbb{R} \text{ (or } \mathbb{C}); p(x) = c_{0} + c_{1}x + c_{2}x^{2} + \ldots + c_{n}x^{n} \}$$
for some $(c_{0}, c_{1}, \ldots, c_{n}) \in \mathbb{Q}^{n+1}$ (or $(\mathbb{Q} + i\mathbb{Q})^{n+1}$)

i.e., $\mathcal{P}_n^*[a,b]$ contains polynomials on [a,b] of degree $\leq n$.

Need to show:

1. \mathcal{P}^* is countable.

It suffices to show each \mathcal{P}_n^* is countable. Fix any $n \geq 1$, and define $\varphi : \mathbb{Q}^{n+1} \to \mathcal{P}_n^*$ by

$$\varphi(c_0, c_1, \dots, c_n) = \sum_{i=0}^n c_i x^i.$$

Then φ is a bijection. Thus, card $(\mathcal{P}_n^*) = \operatorname{card}(\mathbb{Q}^{n+1})$, where \mathbb{Q}^{n+1} is countable.

2. \mathcal{P}^* is dense.

Know:
$$\mathcal{P}^* \subsetneq \mathcal{P} \overset{\text{dense}}{\subsetneq} C[a, b]$$

It suffices to show that \mathcal{P}^* is dense in \mathcal{P} (show why).

Start with any $f \in \mathcal{P}$; i.e., $f(x) = \sum_{i=0}^{n} \alpha_i x^i$, $\alpha_i \in \mathbb{R}$ or \mathbb{C} . Since \mathbb{Q} (respectively, $\mathbb{Q} + i\mathbb{Q}$) is dense in \mathbb{R} (respectively, \mathbb{C}), we can find sequences of rationals $\left\{c_i^{(k)} : k \geq 1\right\}$, $0 \leq i \leq n$ such that $c_i^{(k)} \xrightarrow{k \to \infty} \alpha_i$ for all $0 \leq i \leq n$.

1

Math 321 Lecture 5 Yuchong Pan

Define $p_k(x) = \sum_{i=0}^n c_i^{(k)} x^i \in \mathcal{P}^*$, for all $k \geq 1$. Then

$$||p_k - f||_{\infty} = \sup_{x \in [a,b]} |p_k(x) - f(x)|$$

$$= \sup_{x \in [a,b]} \left| \sum_{i=0}^n \left(c_i^{(k)} - \alpha_i \right) x^i \right|$$

$$\leq \sup_{x \in [a,b]} \sum_{i=0}^n \left| c_i^{(k)} - \alpha_i \right| |x|^i$$

$$\leq M \sum_{i=0}^n \left| c_i^{(k)} - \alpha_i \right|,$$

where $M = \max\{|x|^i : x \in [a,b], 0 \le i \le n\} < \infty$. Since $\left|c_i^{(k)} - \alpha_i\right| \to 0$ as $k \to \infty$, then $\|p_k - f\|_{\infty} \to 0$ as $k \to \infty$.

Proof of Theorem 1 (Bernstein). Start with $f \in C[0,1]$. Note that it suffices to consider C[0,1] because $[a,b] \xrightarrow{\text{bijection}} [0,1]$ by $x \mapsto \frac{x-a}{b-a}$.

Define $p_n(f)(x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) \underbrace{\binom{n}{k} x^k (1-x)^{n-k}}_{\text{binomial probabilities}}$. Then $p_n(f)$ is a polynomial of degree $\leq n$. If

we regard $\binom{n}{k}x^k(1-x)^{n-k}$ as binomial probabilities, then $p_n(f)(x) = \mathbb{E}f\left(\frac{X}{n}\right), X \sim \text{Binomial}(n,x).$

$$\frac{f\left(\frac{i}{n}\right)}{f\left(\frac{0}{n}\right)} \quad \mathbb{P}(X=i)$$

$$\frac{f\left(\frac{0}{n}\right)}{f\left(\frac{1}{n}\right)} \quad \binom{n}{0} x^0 (1-x)^{n-0}$$

$$\frac{f\left(\frac{1}{n}\right)}{i} \quad \binom{n}{1} x^1 (1-x)^{n-1}$$

$$\vdots \qquad \vdots$$

$$\frac{f\left(\frac{k}{n}\right)}{i} \quad \binom{n}{k} x^k (1-x)^{n-k}$$

Fix $\epsilon > 0$. We want to find $N \ge 1$ such that for all $n \ge N$, $||p_n - f||_{\infty} < \epsilon$. Note that

$$\sup_{x \in [0,1]} |p_n(f)(x) - f(x)| = \sup_{x \in [0,1]} \left| \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} - f(x) \cdot 1 \right|
= \sup_{x \in [0,1]} \left| \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} - f(x) \cdot \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \right|
= \sup_{x \in [0,1]} \left| \sum_{k=0}^n \left(f\left(\frac{k}{n}\right) - f(x) \right) \binom{n}{k} x^k (1-x)^{n-k} \right|.$$

Math 321 Lecture 5 Yuchong Pan

By the **uniform** convergence of f, there exists $\delta>0$ such that $|f(x)-f(y)|<\frac{\epsilon}{2}$ whenever $|x-y|<\epsilon$. Then,

$$\sup_{x \in [0,1]} |p_n(f)(x) - f(x)| \le \sup_{x \in [0,1]} \left(\underbrace{\sum_{k=0}^{n} \left[f\left(\frac{n}{k}\right) - f(x) \right] \binom{n}{k} x^k (1-x)^{n-k}}_{1} + \underbrace{\sum_{k=0}^{n} \left| f\left(\frac{n}{k}\right) - f(x) \right| \binom{n}{k} x^k (1-x)^{n-k}}_{1} \right).$$

Note that I $< \frac{\epsilon}{2}$ because $\sum_{\left|\frac{k}{n}-x\right|<\delta} \binom{n}{k} x^k (1-x)^{n-k} \le 1$.

(Proof unfinished.)