Lesson Objectives

- 1. The Basics of Linear Equations
- 2. Steps to solve a linear equation
- 3. How to deal with fractions
 - Find the Least Common Multiple (lcm) on calculator
- 4. Classify an equation as either conditional, identity, or contradiction
- 5. Problem Solving with Equations

A. Linear Equations – The Basics

- 1. How to **Determine** if an Equation is **Linear**
- It has only _____ variable (often x, but it could be a, m, s, etc.).
- The EXPONENT on the variable, wherever it is located, must ALWAYS be .
- 2. Basic terms associated with a linear equation
- _____ a single number or variable, or numbers and variables mixed together.
 Terms in a linear equation are separated by the ____ or ____ sign.
- **Examples** of terms:
 - In the equation:

$$-2(9-7x) - (1-x) = 2(x-7)$$

- The terms are: _____
- Within the parentheses, there are also terms:
 - Within (9 7x), the terms are ______
 - Within (1 x), the terms are ______
 - Within (x-7), the terms are
- ______ the number to the immediate LEFT of a term containing variable.
 - o The SIGN of the coefficient ______ the add or the subtract symbol.
 - o ADD means the term is .
 - SUBTRACT means the term is _______
 - If a variable has no visible coefficient, then it has an understood value of
 - o ______ a term that has NO variable. It's just a number of some kind.
 - Examples of terms (variable = V, constant = C) and their corresponding coefficients:

term	-2(9-7x)	-(1-x)	2(x-7)	9	- 7 <i>x</i>	1	- x	Х	-7
type of term	V	٧	V	С	V	С	V	٧	С
coefficient	- 2	-1	2	9	-7	1	-1	1	-7

The Property is used to "undo" or separate a coefficient not a coefficie			t next		
	to parentheses.				
	\circ – 2(9 – 7x) becomes – 2 · 9 + – 2 · – 7x, simplifying to				
	$\circ -(1-x) \text{ or } -1(1-1x) \text{ bed}$	comes $-1 \cdot 1 + -1 \cdot$	– 1x, simplifying to		
	\circ 2(x – 7) or 2(1x – 7) becor	mes $2 \cdot 1x + 2 \cdot -7$,	simplifying to		
	•terms – must cor	ntain the same type	of variable(s), and same expo	nent(s)	
			2(9 - 7x) - (1 - x) = 2(x - x)	7)	
	 After the distributive prop 	perty: -1	8 + 14x - 1 + x = 2x - 14		
	•(Add) Like Terms – only done on theSIDE of an equation.				
	 NEVER combine like terms "" an equation (from opposite sides) 				
	○ Left side: CONSTANT like terms – 18 and – 1, combine to make – 19.				
	 Left side: VARIABLE like te 	erms 14x and 1x, co	mbine to make 15x.		
	 Right side: NO like terms. 				
В.	Steps to Solve a Linear Equa	tion			
1.	**Like	Terms, if you can.			
2.	Undo , usir	ng the	Property, then ** (se	ee #1).	
	(if necessary) Clear out				
	denominator (also known as the	<u></u>	, or LCM), then ** (se	e #1).	
4.	go LEFT	use ADD or SUBT	RACT to move variable terms t	o the	
	LEFT side of the equation, then	** (see #1).			
5.	go RIGH	I T – use ADD or SUE	STRACT to move constant term	is to	
	the RIGHT side of the equation, then ** (see #1).				
6.	– last step is to	DIVIDE by the coe	fficient of your variable and si	mplify	
	o, returning to the EXAMPLE equa		7x) - (1 - x) = 2(x - 7)	[2.2.29]	
Yc	ou can't combine like terms yet, s	o after Distributive	Property:		
No	ow you can Combine Like Terms:				
Le	etters go LEFT:				
up	odates to				
Νι	umbers go RIGHT:				
up	odates to:				
La	st step, DIVIDE:	updates to	simplified: $x =$		

C. How to Deal With Fractions

EXAMPLE: Solve the equation symbolically.

$$\frac{6x-9}{2} + \frac{3x-2}{5} = \frac{3}{4}$$

A fraction means ______, so first we need use ______ to undo fractions.

You need to multiply by the ______ of all the denominators.

We want the smallest multiple that is common for 2, 5, and 4.

2, 4, 6, 8, 10, 12, 14, 16, 18, **20**, 22, 24, ... Multiples of 2:

5, 10, 15, **20**, 25, 30, ... Multiples of 5:

4, 8, 12, 16, **20**, 24, 28, ... Multiples of 4:

So is the smallest multiple found in all 3 lists (Least Common Multiple).

That process can sometimes take a long time, so here's how it's done on calculator:

- Find Least Common Multiple (lcm) on Calculator.
 - Can only do 2 numbers at a time.
 - No negative numbers.
 - No variables.

If more than 2, "chain" together.

Just ignore the negative temporarily.

Calculator can only do constants.

We need to find the Least Common Multiple (lcm) of 2, 5, and 4.

STEP 1: Press , move **right** to **NUM**, select : **lcm**(

STEP 2: Enter first number, comma, second number, close parentheses, ENTER.

STEP 3: If more than 2 numbers, take the answer and do lcm(again with 3rd number, etc.

Returning to the example problem – here it is written again:

• **EXAMPLE:** Solve the equation symbolically.

[2.2-12]

$$\frac{6x-9}{2} + \frac{3x-2}{5} = \frac{3}{4}$$

The least common multiple (lcm) of 2, 5, and 4 is 20, so we need to multiply both sides of nied the ______ Property of Equality. $20 \cdot \left(\frac{6x - 9}{2} + \frac{3x - 2}{5}\right) = 20 \cdot \left(\frac{3}{4}\right)$ the equation by 20. This is called the

$$20 \cdot \left(\frac{6x - 9}{2} + \frac{3x - 2}{5}\right) = 20 \cdot \left(\frac{3}{4}\right)$$

Use the Property next.

Simplify – _____ out common factors.

Use the **Distributive Property** again.

Simplify.

Combine like terms.

Numbers go right. (Addition Property of Equality)

Combine like terms.

Divide by the coefficient.

Simplify (reduce fraction, if you can, or convert to decimal and round, if needed).

Refer to embedded videos to help you with fractions – you NEED to know how to do these!

D. Classify an Equation as Conditional, Identity, or Contradiction

	Conditional	Identity	Contradiction	
What happens:	Solve "regular" equation,	Variables will drop out,	Variables will drop out, leaving	
what happens:	like normal	leaving a equation.	a equation	
Finished equation looks like: (examples)	x =	0 = 0 or 7 = 7 (etc.) Both sides are	0 = -3 or 5 = 14 (etc.) Each side is	
Solution (answer)	x = a			
format:	where <i>a</i> is a real number	or (−∞,∞)		

•	EXAMPLE: Solve the equation symbolically. Cla	assify the equation as a contradiction, an
	identity, or a conditional equation.	[2.2.51]

$$\frac{1-2x}{4} = \frac{5x-2.5}{10}$$

Clear out fractions. The least common multiple of 4 and 10 is _____.

Simplify – **Divide out Common Factors**.

Use the **Distributive Property**.

Simplify

Letters go LEFT.

You have a ______ equation. This is an ______. The solution is

(go on to the next page)

• EXAMPLE: Classify the equation as a contradic $-12s + 96 + 4(3s - 22)$					
Use the Distributive Property to undo parenthese					
Simplify.					
Combine Like Terms.					
Simplify.					
This is a equation, so this	s is a				
This has SOLUTION.					
E. Problem Solving with Equations					
EXAMPLE: A store is discounting all regularly p	riced items by 75%. [2.2-29]				
(i) Find a function f that computes the sale price	of an item having a regular price of <i>x</i> .				
(ii) If an item normally costs \$109.45, what is its sa	ale price? Round to the nearest cent.				
(solution)					
(i) First, we need to identify our variables: $f(x) =$	x =				
Next, when something is <i>discounted</i> , it isfrom the regular price (x).					
Discounted 75% means discounted 75% of the reg	gular price =				
To find a function f that computes the sale price of an item having a regular price of x :					
Sale price = Regular price					
The function is:					
(ii) If an item that normally costs \$109.45, t	hat means				
Use the function f to find the sale price:	f(x) = x - 0.75x				
Evaluate (plug in) the function for $x = 109.45$:	<i>f</i> (109.45) =				
	=				

Sources Used:

- 1. Math is fun website: https://www.mathsisfun.com/definitions/term.html
- 2. Pearson MyLab Math College Algebra with Modeling and Visualization, 6th Edition, Rockswold
- 3. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit