Name:	A. A
Section:	
Signature:	

Bilkent University Department of Electrical and Electronics Engineering

EEE 313 Electronic Circuit Design

Midterm Examination 2

(7 Questions, 140 minutes)

- This is a closed book, closed notes exam.
- All cell-phones should be completely turned off.
- Use a calculator for numerical computations. Carry at least 3 significant digits. Double check your numerical calculations.
- Be sure to write the **units** for all numerical results.
- Show all your work clearly and systematically.
- Please put your final answer for each part inside a box for easy identification.
- Do not remove the **staple** from the exam sheets or separate the pages of the exam. All extra pages will be stapled to your exam.
- You may leave the exam room when you are done.

 However, please do not leave during the last five minutes of the exam.
- At the end of the exam, please stay seated until all exam papers are collected.

FET equations:

$$\begin{split} &i_D = K_n (v_{GS} - V_{Th})^2 & \text{SAT} \\ &i_D = K_n [2(v_{GS} - V_{Th})v_{DS} - v_{DS}^2] & \text{NON-SAT} \end{split} \right\} \text{ n-channel MOSFET} \\ &i_D = K_p (v_{SG} + V_{Th})^2 & \text{SAT} \\ &i_D = K_p [2(v_{SG} + V_{Th})v_{SD} - v_{SD}^2] & \text{NON-SAT} \end{split} \right\} \text{ p-channel MOSFET}$$

Please do not write below this line.

1.	10 pts.	
2.	10 pts.	
3.	10 pts.	
4.	10 pts.	
5.	10 pts.	
6.	25 pts.	
7.	25 pts.	
Total	100 pts.	

1. Consider the circuit shown in the figure. The BJT has $\beta=120$, $\beta_R=5$, $V_{BE(ON)}=0.6$ V, and $V_{CE(SAT)}=0.2$ V. The p-channel enhancement-mode MOSFET has $\kappa_p=0.1$ mA/V² and $|V_{th}|=5$ V. For $t\leq 0$, the capacitor voltage is $v_C(t)=0$. The zener voltage of the zener diode is $V_Z=4.2$ V. A switch is closed at t=0 as shown in the figure. Determine and plot the output voltage $v_o(t)$ for t>0. Label all critical points on your plot clearly.

(10 pts.)

SOLUTION !

For t>0, the switch is closed. Assume that BJT is in Saturation. $I_{B} = \frac{12-0.6}{100} = 0.114 \text{ mA}, \quad I_{C} = \frac{12-0.2}{2} = 5.9 \text{ mA}, \quad V_{CE} = 0.2 \text{ V}$

Since I >0 and Ic < BIB, our assumption is correct.

Initially, 4 (0) = 0

Since V₆ = 0.2 V, V₅₆ = (1.8 V

Assume that MOSFET & biased in the saturation region

$$I_{b} = K_{p} (v_{s6} + v_{th})^{2} = (0.1)(11.8 - 5)^{2} + 4.624 \text{ mA}$$

$$V_{SD} = 12 - I_D R_D - V_O \implies V_{SD} = 12 - (4.624)(0.1) = 11.54 V$$
 at $t = 0$

VSD > VSG + Vth => MOSFET is in saturation

Capacitor is charged with a constant current of 4.624 mA until its voltage reaches a value of 4.2V and then the Zener diode will be on and capacitor voltage will remain constant at 4.2V after this point

$$\dot{L}_{c} = C \frac{dVc}{dE} = 4.624 \text{ MA}$$

$$\frac{dVc}{dt} = \frac{4.624 \text{ mA}}{1 \text{ mF}} = 4624 \text{ V/s}$$

2. Consider the circuit shown in the figure. The n-channel enhancement-mode MOSFET has $\kappa_n = 0.5 \text{ mA/V}^2$ and $V_{th} = 2.3 \text{ V}$. Determine the transistor state, the drain current, and the drain-source voltage. (10 pts.)

SOLUTION:

Since $V_{DS} = V_{GS} > V_{GS} - V_{Hh}$, Mosfet is in the Saturation region $I_{D} = K_{D} \left(V_{GS} - V_{Hh} \right)^{2} = 10 \text{ mA}$ $V_{GS} = \sqrt{\frac{I_{D}}{K_{D}}} + V_{Hh} = \sqrt{\frac{10}{0.5}} + 2.3$ $V_{GS} = 6.772 \text{ V} \implies V_{DS} = 6.772 \text{ V}$

3. Consider the circuit shown in the figure. The BJT has $\beta = 80$, $\beta_R = 3$, $V_{BE(ON)} = 0.7$ V, and $V_{CE(SAT)} = 0.2$ V. The p-channel enhancement-mode MOSFET has $\kappa_p = 1.0$ mA/V² and $|V_{th}| = 2$ V. Determine the states of the transistors, the drain current, the collector current, the source-drain voltage and the collector-emitter voltage.

SOLUTION:

Since VSD = VSG > VSG + Vth, MOSFET is in the saturation region. Let's assume that the BIT is biased in the forward-active region IE = ID = Kp (VsG + Vth) where Vth = -2V.

Apply KUL around the B-E loop.

$$12 = K_P \left(R_E + \frac{R_B}{B+1} \right) \left(V_{SG} + V_{Th} \right)^2 + 0.7 + V_{SG}$$

$$13 = \frac{(181)}{81} \left(v_{sg}^2 - 4v_{sg} + 4 \right) + v_{sg} = 0$$

$$2 = \frac{(181)}{81} \left(v_{sg}^2 - 4v_{sg} + 4 \right) + v_{sg} = 0$$

$$V_{SG} = \frac{3.5525 \pm \sqrt{16.8483}}{2}$$

$$V_{SG_2} = 3.829 \text{ V}$$

$$V_{SG_2} = 3.829 \text{ V}$$

$$V_{SG_2} = -0.276 \text{ V}$$

$$V_{SG} = 3.829V \Rightarrow I_{D} = (1)(1.829)^{2} = [3.345 \text{ mA}] \text{ and } [V_{SD} = 3.829V]$$

$$I_{c} = \propto I_{b} = \frac{(80)}{(81)}(3.345) = 3.304 \text{ mA}$$

$$V_{CE} = 24 - 2(3.304) - (1)(3.345) - 3.829$$

$$V_{CE} = 10.218V$$
 > $V_{CE}(sat)$ Therefore our assumption is correct $I_R > 0$

4. Consider the circuit shown in the figure. The n-channel depletion-mode MOSFET has $\kappa_n = 2.0 \text{ mA/V}^2$ and $V_{th} = -1.0 \text{ V}$. Determine the transistor state, the drain current, the gate-source voltage and the drain-source voltage. (10 pts.)

SOLUTION:

Assume that the MOSFET is in saturation region Applying KUL around the G-Sloop, we have

$$V_{65} + (2)(V_{65} + 1)^2 = 0 \implies 2V_{65}^2 + 5V_{65} + 2 = 0$$

$$V_{GS} = -5 \pm \sqrt{9}$$
 $V_{GS} = -0.5V$ valid solution
 $V_{GS} = -2V < V_{HA}$ (not valid)

$$I_{D} = (2)(-0.5+1)^{2}$$

$$I_{D} = 0.5 \text{ MA}$$

$$V_{bS} = 12 - I_{b}(R_{b} + R_{S}) = 12 - (0.5)(3)$$

$$V_{DS} = 10.5 V$$

Since Vos > Vos - Uth, our initial assumption is correct.

5. Consider the circuit shown in the figure. The n-channel enhancement-mode MOSFET has $\kappa_n = 0.6 \text{ mA/V}^2$ and $V_{th} = 2.0 \text{ V}$. What should be the value of V_{GG} to place the transistor at the transition point between SAT state and NON-SAT state? (10 pts.)

SOLUTION:

At the transition point between the SAT state and NON-SAT state; VDS = VGS - Vth must be satisfied.

Thus

$$V_{DS} = 24 - I_{D}R_{D} = V_{GS} - V_{HA}$$

$$24 - K_{\Lambda}R_{D}(V_{GS} - V_{HA})^{2} = V_{GS} - V_{HA} \Rightarrow 1.44(V_{GS} - V_{HA})^{2} + (V_{GS} - V_{HA}) - 24 = 0$$
Then V_{GS} $V_{HA} = 3.75V$ or $V_{GS} - V_{HA} = -4.444$

$$\frac{V_{GS}}{V_{GS}} = 24 \quad V_{GS} + V_{GS} = 0$$

$$24 - I_{D}R_{D} = 24 \quad K_{\Lambda}R_{D}V_{DS}^{2} \Rightarrow 0.44V_{DS}^{2} + V_{DS}^{2} = 0$$

$$V_{DS} = 3.75V$$

$$=V_{GJ}-V_{H}$$
 $\Longrightarrow V_{GJ}=V_{DJ}+V_{H}$ 3.75+2
 $V_{GJ}=5.75V$

Since
$$I_6 = 0$$
, $V_{GG} = 5.75V$ at the transition point

6. (25 points)

For the circuit given above, $\beta = 100$ and $V_{BE(on)} = 0.7$ Volts. Please answer the following:

- a) (5 points) Find the state and the D.C. voltages and currents of the transistor.
- b) (10. points) Assuming that the capacitors are short for the frequency range of interest, find the voltage gain of the amplifier expressed in dB's and defined as $A_V = v_0/v_{in}$.
- c) (10 points) Again assuming that the capacitors are short for the frequency range of interest, find the peak-to-peak undistorted voltage swing at the output.

SOLUTION:

$$V_{TH} = \left(\frac{R_2}{R_1 + R_2}\right)(12) = 4.235 V$$
, $R_{TH} = R_1 || R_2 = 7.765 k$

Assume that the transistor is in the forward-active mode.

$$I_{BA} - \frac{V_{TH} - V_{BE}(on)}{R_{TH} + (\beta H)RE} = 86.02 \text{ MA} \Rightarrow I_{CA} = \beta I_{BA} = 8.602 \text{ MA}$$

$$V_{CEQ} = 12 - I_{CQ} (R_c + \frac{101}{100} R_E) = 5.778 V$$

Since VCER > VCE (sat), our assumption is correct.

(b) AC analysis (capacitors are short circuit)

$$\Gamma_{\text{II}} = \frac{V_T}{I_{RA}} = 302.3 \Omega$$
, $S_m = \frac{I_{CA}}{V_T} = 330.85 \text{ mA/V}^2$ $C_0 = \infty$

R= is shorted by CE

Small-signal equivalent circuit

$$= R_{1}||R_{2}||\Gamma_{\pi} = 0.291k\Omega$$

$$S_{m}V_{\pi}(R_{c}||R_{L}) \text{ where } V_{\pi} = \left(\frac{R_{c}}{R_{c}+R_{s}}\right)V_{in}$$

$$= \frac{V_{o}}{V_{in}} - S_{m}(R_{c}||R_{L})\left(-\frac{R_{c}}{R_{c}}\right)$$

$$A_V = -25.54$$

Voltage gain in dB is 2010plAv = [28.14 dB]

(c)
$$V_{c} = 12 - I_{c} \left(R_{c} + \left(\frac{\beta + 1}{\beta} \right) R_{E} \right)$$

VCE 2-(0.7233) Ic : dc load line equation

Ve - (RellRL) Le

Ve= (0.2364) ie : ac load line equation

The maximum peak-to-peak undistorted voltage swing at the output $2(7.812-5.778) = (4.07 \vee)$

7. (25 points)

For the following circuit, let $\beta = 120$, $V_A = \infty$ and $V_{EE(on)} = 0.7$ Volts:

- a) (5 points) Determine the Q-point values of I_{CQ} and V_{ECQ} .
- b) (0 points) Find the small-signal parameters, r_{π} , g_{m} and r_{o} .
- c) (10 points) Find the input resistance R_i and output resistance R_o
- d) (10 points) Find the small-signal voltage gain, $A_v = v_o/v_s$.

SOLUTION:

(a) DC analysis
$$R_{TH} = R_{I} || R_{2} \quad 24kQ \quad , V_{TH} = \left(\frac{R_{2}}{R_{I} + R_{2}}\right) (V^{+}V^{-}) \quad V^{-} - 1V$$

$$I_{BA} \quad \frac{V^{+} - V_{TH} - V_{EB}(on)}{R_{TH} + (\beta + 1) R_{E}} = 9.92 \, \mu A \implies I_{CA} = \beta I_{BA} = 2.391 \, mA$$

$$V_{EGA} = 10 - (2)(2.410) = 5.18V$$

Since VEER > VEE (sat) and IBA>O, the transistor s biased in forward-active mode.

(b)
$$r_{TT} = \frac{V_{T}}{I_{BB}} = 1.305 \text{ k} \Omega$$
, $s_{m} = \frac{I_{CA}}{V_{T}} = 91.96 \text{ mA/V}$, $r_{o} = \frac{V_{A}}{I_{CA}} = \infty$

Small-signal equivalent circuit

In order to find Ro we set 19 =0

In order to
$$+$$
 and R_o we set $\frac{1}{2}$

$$R = \frac{1}{2}$$

$$I_X = \frac{1}{2} + (R+1)I_L$$

$$I_X = \frac{1}{2} + (R+1)I_L$$

where $I_b = \frac{1}{2}$

$$I_A = \frac{1}{2} + (R+1)I_L$$

$$I_$$

$$I_{x} = \frac{1}{R_{E}} + (R+1)I_{L}$$

$$R = \left(\frac{1}{R_{E}} + \frac{R+1}{1 + R_{1} ||R_{2}||R_{3}}\right) \qquad R_{E} \left\| \frac{C_{T} + R_{1} ||R_{2}||R_{3}}{R+1} \right)$$

$$R_{E} = \left(\frac{r_{H} + R_{1} || R_{2} || R_{3}}{\beta + 1} \right)$$

$$(R)(R_{e}|R_{e})\left(\frac{1}{R_{ib}}\right)\left(\frac{R_{i}}{R_{i}+R_{J}}\right)U$$