## PART 1

The Tate Pairing



## **The Weil Pairing**

The iconic pairing, that always helps us when we are dealing with m-torsion E[m],

$$e_m: E[m] \times E[m] \to \mu_m$$

where  $\mu_m = \{ \zeta \in \overline{\mathbb{F}_q}^* \mid \zeta^m = 1 \}$ . The m-Weil pairing is bilinear, non-degenerate, and alternating.

**Destructive** use: the MOV attack on elliptic curves, reducing elliptic-curve DLOG to  $\mathbb{F}_q^*$ -DLOG.

Constructive use\* in isogeny-based cryptography: decomposing  $K \in E[m]$  into K = [a]P + [b]Q for a given basis P, Q for E[m].

\* Many other applications are out of scope for this talk, such as their uses in identity-

based cryptography and more generally the whole field of pairing-based cryptography.

**Definition 3.** A pairing on an elliptic curve E is a bilinear map  $e: A \times B \to \mathbb{F}_a^*$ , where A and B are subgroups of E.

We say e is alternating when A = B and for every  $a \in A$  we have e(a, a) = 1.

We say e is non-degenerate when for every  $a \in A$ , there is at least one  $b \in B$  such that  $e(a,b) \neq 1$ , and vice versa.



Lefty and His Gang (1987)



Lefty and His Gang (1987)