Basic DiD

- Notation:
 - $T = \mathbf{1}\{\text{Post Treatment Period}\}.$
 - $G = \mathbf{1}\{\text{In the Treatment Group}\}.$
 - D = GT.
- Question: Can we identify ATT?
- What is ATT: $E[Y_1 Y_0|D = 1] = E[Y_1 Y_0|T = 1, G = 1]$.
- What we can identify:
 - $E[Y_1|T=1, G=1]$
 - $E[Y_0|T=0, G=0]$
 - $E[Y_0|T=1, G=0]$
 - $E[Y_0|T=0, G=1].$
- But no $E[Y_0|T=1, G=1]$

Time Trend and Regression

- Need additional assumption to identify the ATT
- Most common one: Parallel Trend Assumption
- Time trend for G = 0: $E[Y_0|G = 0, T = 0]$ equals to time trend for G = 1: $E[Y_0|G = 1, T = 1] E[Y_0|G = 1, T = 0]$.
- Note: Only $E[Y_0|G=1, T=1]$ not directly observed. Identified with assumption.
- In regression, people regress Y on 1, G, T, GT = D.

Pre-Trend Evaluation

- To evaluate the parallel trend assumption, people look at pre-period trends
 - If in pre-period treatment and control evolve similarly
 - then the counterfactual will hopefully be the same
- Eye-ball tests are the most common
- In theory no reason to require the trend to be flat at 0
- Logically a straight trend should also be acceptable
- But in practice most people want things to be flat

Implementation

- Let post period dummy be P_t
- Let treatment group dummy be T_i
- $Y_{it} = \beta_0 + \beta_1 P_t + \beta_2 T_i + \beta_3 P_t \times T_i + \epsilon_{it}$
- Parameter of interest is β_3
- Usually people put control variables as well
- $Y_{it} = \beta_0 + \beta_1 P_t + \beta_2 T_i + \beta_3 P_t \times T_i + \gamma X_{it} + \epsilon_{it}$
- · With multiple periods, put time and individual fixed effects instead
- $Y_{it} = \delta_t + \delta_i + \beta^{DD} P_t \times T_i + \gamma X_{it} + \epsilon_{it}$

Remark

- DiD fundamentally relies on parametric assumption
- eg., Parallel trend for y and log(y) will not hold at the same time
- No pre-period trends do not guarantee the identification of ATT
- Treatment should still not be a result of selection

Extension to Multiple Treatment

- Usually multiple periods e.g., staggered difference-in-difference
- Many people used to run two-way fixed effects
 - $y_{it} = \alpha_i + \alpha_t + \beta^{DD} D_{it} + \epsilon_{it}$.
 - $y_{it} = \alpha_i + \alpha_t + \sum_r \beta_r \mathbf{1}\{R_{it} = r\} + \epsilon_{it}$ where R_{it} is relative time.
- Econometricians find problems on this around 2020

Assumptions Extensions

Parallel Trend

• If treatment had not occurred, avg. outcome for all groups would evolve in parallel

No Anticipation

Units don't act on the knowledge of future treatment dates before treatment starts

Does TWFE Work?

$$Y_{it} = \alpha_i + \alpha_t + \beta^{DD} D_{it} + u_{it}$$

- Suppose there is only heterogeneous treatment effect in time (denoted τ_s)
- i.e., the effect 1 year after v.s. 2 years after are different $(\tau_1 \neq \tau_2)$
- $\beta^{DD} = \sum_s \omega_s \tau_s$, where ω_s could be negative
- Issue: τ_s could be all positive but $\beta_{post} < 0$
- Source of problem: using the treated as control
- So TWFE does not work!

Illustrations (Baker 2019)

Illustrations continued (Baker 2019)

What is $\widehat{\boldsymbol{\beta}}^{DD}$?

$$y_{it} = \alpha_i + \alpha_t + \hat{\beta}^{DD} D_{it} + u_{it}$$

For three groups:

$$\begin{split} \hat{\beta}^{DD} &= s_{kU} \hat{\beta}^{DD}_{kU} + s_{\ell U} \hat{\beta}^{DD}_{\ell U} + \left[s_{k\ell}^{k} \hat{\beta}^{DD,k}_{k\ell} + s_{k\ell}^{\ell} \hat{\beta}^{DD,\ell}_{k\ell} \right] \\ s_{kU} &= \frac{(n_{k} + n_{U}) \left[n_{kU} (1 - n_{kU}) \overline{D}_{k} (1 - \overline{D}_{k}) \right]}{V(\overline{D}_{lt})} \\ s_{k\ell}^{k} &= \frac{((n_{k} + n_{\ell})(1 - \overline{D}_{\ell})) \left[n_{k\ell} (1 - n_{k\ell}) \frac{\overline{D}_{k} - \overline{D}_{\ell}}{1 - \overline{D}_{\ell}} \frac{1 - \overline{D}_{k}}{1 - \overline{D}_{\ell}} \right]}{V(\overline{D}_{lt})} \\ s_{k\ell}^{\ell} &= \frac{((n_{k} + n_{\ell})\overline{D}_{k}) \left[n_{k\ell} (1 - n_{k\ell}) \frac{\overline{D}_{k} - \overline{D}_{\ell}}{\overline{D}_{k}} \frac{\overline{D}_{\ell}}{\overline{D}_{k}} \frac{\overline{D}_{\ell}}{\overline{D}_{k}} \right]}{V(\overline{D}_{lt})} \end{split}$$

Illustrations continued (Baker 2019)

When things go wrong (Baker 2019)

Does Dynamic TWFE Work?

$$Y_{it} = \alpha_i + \alpha_t + \sum_{r \neq 0} \mathbf{1} \{ R_{it} = r \} \beta_r + u_{it}$$

- where R_{it} is the relative event time
- This would work if only heterogeneity in time
- But not if different cohort has different cohort effect
- Again use the treated as control
- Does not work!

What to Do?

- Two Approaches
 - Diagnosis: Check if any weights are negative
 - New Estimators: Avoid using the treated as controls

New Estimators

- Idea: we still know how to do cohort-specific simple DiD
- Pick the valid comparisons and use those only
- A never-treated group could be useful
- Can also use later-treated groups
- Many packages now available

Parallel Trends Assumptions

- Potentially you need to control for observables to make trends parallel
- Assess your pre-period trends with a plot
- The common pre-trend tests have low power though, need to be careful
- Many sensitivity methods available now