Modelo de Predição de Desempenho Integrado à Exploração do Espaço de Projetos

<u>Mateus Tostes dos Santos</u>, Thiago R. de Oliveira, Rhayssa Sonohata, Casio Krebs, Liana Duenha, Ricardo R. dos Santos

Trabalho em andamento no âmbito do Programa de Mestrado em Ciência da Computação - FACOM -UFMS.

Orientadora: Prof. Dra. Liana Duenha

Faculdade de Computação - FACOM - UFMS

October 3, 2018

Motivação

- Plataformas computacionais complexas
- Alto custo computacional para simulação durante o projeto

Predição de Desempenho

Preditor de desempenho baseado em SVR

Metodologia para desenvolvimento do preditor de desempenho baseado em SVR

• Kernel RBF ou Gaussiano (função K sobre vetores x_i e x_j do espaço de entradas)

$$K(x_i, x_j) = exp(-\gamma ||x_i - x_j||^2)$$

Avaliação de score:

$$Score = (1 - u/v)$$
 $u = \frac{\sum_{i=1}^{n} (resp-pred)^2}{n}, v = \frac{\sum_{i=1}^{n} (resp-media_resp)^2}{n}$

Trabalhos relacionados

- FAFSIM: Parâmetros arquiteturais e desempenho; sistema single-core;
 regressão linear;
- DVFS+DCT: OpenMP para verificar o impacto de DVFS e DCT no desempenho e consumo de sistemas multicore; análise estatística;
- Turandot: Predição de desempenho e consumo energético em sistemas single-core; Regressão polinomial com Spline;

Exploração de espaço de projeto ciente de Dark-silicon (Multiexplorer)

Exploração de espaço de projeto ciente de Dark-silicon (Multiexplorer)

Parâmetros físicos presentes no banco de dados dos núcleos com tecnologia de 32nm

Núcleo	Potência (W)	Área (mm²)	Desempenho
Smithfield	8,9	9,32	6428
Quark x1000	1,06	6,42	502,53
ARM A53	5,5	7,2	3125,68
ARM A57	12,13	13	4006,64
Atom Silvermont	2,51	5,5	648,47

- Estimativa de desempenho de um core (1/tempo de execução): baixa precisão;
- Estimativa otimista de desempenho de plataformas multicore;

Coleta de dados para treinamento do modelo

- 7.000 simulações realizadas com o SNIPER;
- Estimativa de desempenho considerando heterogeneidade: quantidade de instruções, frequência, quantidade de cores e IPC;
- Modelo de processadores: Smithfield, Atom, Quark, Arm53, Arm57;
- Aplicações: Barnes, FFT, Fluidanimate, Radix, Swaptions;

Calibração do Modelo SVR usando γ , C e Score

		Atom		Quark			
	С	Score	NMSE	С	Score	NMSE	
$\gamma = 1$	2500	0.97435	0.00157	2500	0.97571	0.00176	
	2000	0.96920	0.00183	2000	0.97117	0.00188	
	1500	0.95998	0.00213	1500	0.95970	0.00221	
	1000	0.93071	0.00266	1000	0.92216	0.00269	
	500	0.72954	0.00496	500	0.70543	0.00562	
	100	0.17874	0.10683	100	0.16592	0.11571	
$\gamma = 5$	2500	0.97435	0.00130	2500	0.97571	0.00131	
	2000	0.96920	0.00132	2000	0.97117	0.00142	
	1500	0.95998	0.00171	1500	0.95970	0.00182	
	1000	0.93071	0.00247	1000	0.92216	0.00281	
	500	0.72954	0.00657	500	0.70543	0.00819	
	100	0.17874	0.08557	100	0.16592	0.09404	
$\gamma = 10$	2500	0.97435	0.00156	2500	0.97571	0.00170	
	2000	0.96920	0.00199	2000	0.97117	0.00222	
	1500	0.95998	0.00232	1500	0.95970	0.00258	
	1000	0.93071	0.00333	1000	0.92216	0.00378	
	500	0.72954	0.01052	500	0.70543	0.01278	
	100	0.17874	0.11099	100	0.16592	0.12074	

NMSE: erro quadrático médio normalizado;

As 5 melhores soluções encontradas

Cores originais (n_o)	Cores IP (n _{ip})	Tipo do core IP (T_{ip})	Área do chip (A mm ²)	Densi- dade de Potência (dp_t)	Desempenho predito (d_t)	Desempenho original (d_o)
8	12	Quark	151.6	0.55	22086	57454
7	14	Quark	155.12	0.50	19980	52031
6	15	Quark	152.22	0.46	17968	46106
5	17	Quark	155.74	0.40	12871	40683
4	18	Quark	152.84	0.36	11093	34758

Trabalhos em andamento

- Experimentos utilizando o preditor durante todo o fluxo de DS-DSE
- Explorar Escalabilidade
 - aumentar a quantidade e tipos de cores
 - estender para plataformas many-core (GPUs, FPGAs)
- Explorar Diversidade
 - Novas técnicas de aprendizado de máquina
 - Novos algoritmos de exploração do espaço de projetos

Perguntas?

mateustostesdossantos@gmail.com