AGE BASED FASHION PREFRENCES

FASHION FUSION

Fatima Mehboob (120) Anaya Azhar (103) Ayesha Siddeeqa (130) Yumna Binte Yasir (146)

TABLE OF CONTENTS

01

BUSINESS UNDERSTANDING 02

DATA COLLECTION

03

PREPROCESSING

04

FEATURE ENGINEERING

05

MODEL APPLY

06

VISUALIZATION

07

ANOMALY DETECTION

80

CONCLUSION

09

REFRENCES

BUSINESS UNDERSTANDING

BUSINESS UNDERSTANDING

Problem statement: The role of age in evolution of fashion choices

O2 DATA COLLECTION

DATA COLLECTION

Text Messages

Age-Based Fashion Preferences

We would like to hear your thoughts on how age affects your clothing choices and shopping habits. Your input will help us gain a better understanding of fashion trends. Your responses are confidential and will only be used for research purposes. Thank you for taking part in our survey

yumna.yasir7@gmail.com Switch account

* Indicates required question

Personal Information

Not shared

1. Which age group are you in? *

Google Form

Interviews

03

OUTPUT

- Timestamp
- Designer_brands
- Style_Change
- Society_Expectation

Missing values	
Timestamp	900
1. Which age group are you in?	0
2. What is your gender?	0
4. How would you describe your style?	0
3. Where do you live?	0
5. Do you prefer Eastern or Western clothing, or both?	0
6. Pick your wardrobe essentials (Choose all that apply):	0
7. Who inspires your fashion choices?	0
8. How often do you buy new clothes?	0
9. Where do you usually buy clothes?	0
10. When do you like to shop the most?	0
11. What do you do when you have a fashion emergency?	0
12. Do you prefer designer brands for special events?	900
13. If you could choose one store to get unlimited clothes from, which would it be?	0
14. Has your style changed over age?	900
15. Do you find it easy to find clothes that suit both your style and age?	0
16. Does society expect you to dress differently as you age?	900
17. What is your average spending on clothes?	0
18. How much of your income goes to buying clothes?	0
19. On a scale from 1 to 10, how much do you follow seasonal fashion trends?	0
dtype: int64	

OUTPUT

Age Group Gender Location Clothing_Preference Shopping_Frequency Fashion_Emergency Designer Brands Favorite Store Style Change Style_Age_Fit Society_Expectations Spending Income Percentage Fashion_Trend_Scale dtype: int64

Remove Duplicate Values

Handled Missing Values

Simplified Column Names

BALANCING DATA

Before SMOTE

After SMOTE

04

FEATURE ENGINEERING

OUTPUT

```
Gender Location Clothing_Preference Shopping_Frequency \
Fashion_Emergency Designer_Brands Favorite_Store Style_Change \
Style_Age_Fit Society_Expectations Spending Income_Percentage
Fashion_Trend_Scale
```


WHY DID WE DO FEATURE ENGINEERING?

MODEL APPLY

SVM & Decision Tree

MODEL APPLY

SVM

SVM

SVM

Accuracy is 76%

SVM:

Accuracy: 0./	6			
	precision	recall	f1-score	support
0	0.86	0.88	0.87	242
1	0.05	0.07	0.06	14
2	0.54	0.43	0.48	60
accuracy			0.76	316
macro avg	0.48	0.46	0.47	316
weighted avg	0.76	0.76	0.76	316

Decision Tree Visualization Society_Expectations <= 1.5 gini = 0.667 samples = 2898 value = [966, 966, 966] class = Changed Designer_Brands <= 0.5 Designer_Brands <= 1.5 gini = 0.576 gini = 0.495 samples = 1679 value = [151, 808, 720] samples = 1219 value = [815, 158, 246] class = No Change class = Changed Fashion_Trend_Scale <= 7.5 gini = 0.435 Fashion_Trend_Scale <= 2.5 Fashion_Trend_Scale <= 4.5 Designer_Brands <= 0.5 gini = 0.612 samples = 166 gini = 0.568 samples = 1041 gini = 0.407 samples = 638 samples = 1053 value = [38.0, 456.0, 144.0] value = [113, 352, 576] value = [788, 101, 164] value = [27, 57, 82] class = No Change class = Little Change class = Changed class = Little Change gini = 0.395 gini = 0.641 gini = 0.471 gini = 0.362 gini = 0.529 gini = 0.536 gini = 0.332 gini = 0.502 samples = 601 samples = 37 samples = 179 samples = 862 samples = 98 samples = 955 samples = 66 samples = 100 value = [22, 12, 66] value = [34, 452, 115] value = [4, 4, 29] value = [19.0, 111.0, 49.0 value = [94.0, 241.0, 527.0] value = [20, 38, 40] value = [768, 63, 124] value = [5, 45, 16] class = Little Change class = No Change class = Little Change class = No Change class = Little Change class = Little Change class = Changed class = No Change

DECISION TREE

76 DECISION TREE

Decision Tree Classifier Accuracy: 0.76

Classification Report:

Classificatio	precision	recall	f1-score	support
0	0.94	0.81	0.87	242
1	0.08	0.14	0.11	14
2	0.49	0.70	0.58	60
accuracy			0.76	316
macro avg	0.51	0.55	0.52	316
weighted avg	0.82	0.76	0.78	316

Accuracy is 76%

DECISION TREE

Decision Tree Classifier Accuracy: 0.76 Classification Report: precision recall f1-score support 0.94 0.81 0.87 242 Accuracy is 76% 0.08 0.14 0.11 14 0.49 0.70 0.58 60 0.76 316 accuracy 0.55 0.52 316 macro avg 0.51 weighted avg 0.82 0.76 0.78 316

WHY IS THE ACCURACY OF BOTH APPLIED MODELS THE SAME?

VISULIZATION

VISUALIZATION

BAR PLOT

02

COMPARISON MATRIX

PREDICTED CLASS DISTRIBUTION

ANOMALY DETECTION

METHODS

Z

Z-SCORE

The Z-score tells us how far a value is from the average (mean) in terms of standard deviations

IQR

IQR

The IQR (Interquartile Range) focuses on the middle 50% of the data and checks if any value is too far outside that range.

Z Z-SCORE

- Most attributes have no anomalies detected.
- Designer_Brands: 3
 anomalies found.
- Dataset is mostly clean.

Attribute	Anomalies Found?	Details
Age_Group	No	No anomalies detected.
Gender	No	No anomalies detected.
Location	No	No anomalies detected.
Clothing_Preference	No	No anomalies detected.
Shopping_Frequency	No	No anomalies detected.
Fashion_Emergency	No	No anomalies detected.
Designer_Brands	Yes	3 anomalies found: Rows 0. 1. and 4 with
Favorite_Store	No	No anomalies detected.
Style_Change	No	No anomalies detected.
Style_Age_Fit	No	No anomalies detected.
Society_Expectations	No	No anomalies detected.
Spending	No	No anomalies detected.
Income_Percentage	No	No anomalies detected.
Fashion_Trend_Scale	No	No anomalies detected.

IQR

- Most attributes have no anomalies detected.
- Fashion_Emergency: 337
 anomalies found.
- Designer_Brands: 326
 anomalies found.
- Style_Change: 371 anomalies found.
- Dataset contains significant anomalies in three attributes.

Attribute	Anomalies Found?	Details
Age_Group	No	No anomalies detected.
Gender	No	No anomalies detected.
Location	No	No anomalies detected.
Clothing_Preference	No	No anomalies detected.
Shopping_Frequency	No	No anomalies detected.
Fashion_Emergency	Yes	337 anomalies found: Rows with extreme
Designer_Brands	Yes	326 anomalies found: Rows with extreme
Favorite_Store	No	No anomalies detected.
Style_Change	Yes	371 anomalies found: Rows with extreme
Style_Age_Fit	No	No anomalies detected.
Society_Expectations	No	No anomalies detected.
Spending	No	No anomalies detected.
Income_Percentage	No	No anomalies detected.
Fashion_Trend_Scale	No	No anomalies detected.

08

CONCLUSION

09

REFERENCE

Special thanks to Chat GPT

