Converting Floating Point

How to Convert Float form Decimal to Binary

소프트웨어 꼰대 강의

노기섭 교수

(kafa46@gmail.com)

Course Overview

Торіс	Contents
01. Orientation	Course introduction, motivations, final objectives
오리엔테이션	과정 소개, 동기부여, 최종 목표
02. Converting floating point	How to convert float from decimal to binary
실수 변환	어떻게 십진수를 <mark>이진수로 변환</mark> 하는가?
03. Fixed-point Representation	How to represent float in fixed representation
고정 소수점 방식	어떻게 고정 소수점 방식으로 실수를 표현하는가?
04. Floating-point Representation	How to represent float in floating representation
부동 소수점 방식	어떻게 부동 소수점 방식으로 실수를 표현하는가?
05. Handling Negative Numbers	Complement, Radix, n-ary System, etc.
음수 처리	보수, 기수, 진법 등

Number System

Real Numbers (실수)

\mathbb{R} (Real Numbers)

$$= \{x_i \mid -1, 0, 0.7, \sqrt{3}, \pi, e, \cdots\}$$

여기서 잠깐!

진법에 대해 먼저 알아야 합니다.

10진법 (Decimal System)

2진법 (Binary System)

16진법 (Hexadecimal System)

n진법 (Base-n System)

10진법 (Decimal System) vs. 2진법 (Binary System)

5진법 (Decimal System) vs. 8진법 (Binary System)

16진법 (Hexadecimal System)

다시 쓰면?

$$4 \times 16^{2} + A \times 16^{1} + F \times 16^{0}$$

$$= 4 \cdot 256 + A \cdot 16 + F \cdot 1$$

$$= 4 \cdot 256 + 10 \cdot 16 + 15 \cdot 1$$

$$= 1,024 + 160 + 15$$

$$= 1,199$$

진법 변환 (10진수 → 10진수)

10진수 → 10진수 표현하기?

10진 정수부 진법 변환 (10진수 → 2진수)

10진수 → 2진수 표현하기?

실수의 소수부 표현 (Fractional Representation of Real Numbers)

10진 소수부 진법 변환 (10진수 → 2진수)

Unlimited Fractional Representation

Step-by-step: 0.12 → 2진수

단계	Number × 2	Integer Part	Fractional part (input for next step)
1	$0.12 \times 2 = 0.24$	0	0.24
2	$0.24 \times 2 = 0.48$	0	0.48
3	$0.48 \times 2 = 0.96$	0	0.96
4	$0.96 \times 2 = 1.92$	1	0.92
5	$0.92 \times 2 = 1.84$	1	0.84
6	$0.84 \times 2 = 1.68$	1	0.68
7	$0.68 \times 2 = 1.36$	1	0.36
:	Infinite Process	:	

무한히 계속된다! (안 끝남 ㅠㅠ)

0.0001111

Finite vs. Infinite Binary Fraction

유한한 이진 소수(finite binary fraction)

분모가 2ⁿ 꼴의 유리수 집합 (Q)

Examples:
$$\frac{1}{2}$$
, $\frac{3}{8}$, $\frac{7}{16}$, ...

무한한 이진 소수(Infinite binary fraction)

A number that cannot be exactly expressed with a finite number of binary digits.

분모가 2^n 꼴이 아닌 모든 유리수 (\mathbb{Q}) + 무리수 집합 $(\mathbb{R}\setminus\mathbb{Q})$

$$\frac{1}{3} = 0.010101 \dots {}_{2}$$
 $\frac{1}{5} = 0.00110011 \dots {}_{2}$

유리수가 많을까? 무리수가 많을까?

항목	설명
유리수 집합 ℚ	분수 형태로 표현 가능 (예: $\frac{1}{2}$, $-\frac{7}{3}$, 5.0, ···) 가산 무한 집합 (countably infinite)
무리수 집합 ℝ \ℚ	분수로 표현 불가능한 실수 (예: $\sqrt{2},\pi,e,\cdots$) 비가산 무한 집합 (uncountably infinite)
실수 집합 ℝ	유리수 + 무리수 포함

비가산 무한집합의 원소가 가산 무한 집합의 원소보다 많다.

증명: Cantor's Diagonal Argument

German-Russian (1845~1918)

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

십진 소수부를 이진 변환하는 특성

이처럼 10진수의 세계에서 2진수의 세계로 소수점을 변환하는 것은 많은 경우 정확한 변환이 불가능하다.

정확한 유한 표현이 불가능하다

 $\mathbb{R}\setminus\mathbb{Q}$ (Irretional Numbers) $\{\pi,e,\sqrt{2},\cdots\}$

컴퓨터가 이진수로 표현하는 대부분의 실수는 정확한 변환이 불가능하다!!

수고하셨습니다 ..^^..