Gauss law

Outline

- Demonstrate that Gauss theorem does not depend on the shape of the Gauss surface
- Complete the first Maxwell's and Poisson equations
- Demonstrate that Coulomb's law is **exactly** inversely proportional to r^2
- Demonstrate that a static charge cannot be in equilibrium in the electric field of other charges
- Concept of work Electric potential Electric potential energy
- Apply Gauss law in various circumstances

- The field lines are clearly spreading from points 6 and 7
- **BUT** they are getting shorter away from the center

Locally: Trade-off between spreading and intensity of the field

 $\vec{A} \propto (1/r^2) \vec{u}_r$ Coulomb's law Perfect compensation between **spreading** and **intensity** of the field at any point except around the source (5)

 $\vec{\nabla} \cdot \vec{A} = 0$ everywhere in space EXCEPT around the origin (source of the field)

+q emits an electric field radially with an intensity given by Coulomb's law

Coulomb's law ⇒

 \vec{E} entering the sphere from the left (blue portion) is stronger than \vec{E} exiting from the right (red portion)

By splitting the entering and exiting parts (spherical caps) we see can several things

- 1. The entering field is larger in magnitude than the exiting field according to Coulomb's law
- 2. But the entering area is smaller that the exiting area
- 3. The entering flux is negative while the exiting flux is positive (due to the orientation of the surfaces and the unit vector convention)

Therefore we may expect a compensation of the exiting flux by the entering flux

Remember that the flux is given by the scalar product $\overrightarrow{E}.\overrightarrow{A} = EAcos(\theta) = E_{\perp}.A$

Ve230: A. Mesli AMU-CNRS (FRANCE) Fall 2018 (UM-SJTU)

How to demonstrate that there is a total compensation?

Here the <u>choice</u> of the proper closed surface is <u>crucial</u>. Remember that Gauss's theorem does not specify any requirement regarding the shape of the surface.

We can easily see from previous slides that the choice of a spherical surface is not appropriate at all!

The reason is that to get the TOTAL flux from each spherical portion we need to integrate a scalar product

This operation requires to consider a <u>changing angle</u> between \vec{E} and \vec{n} while the vector field scans the whole area (blue or red)

Mathematically it is very tedious. Therefore another choice is demanded

As Gauss's theorem allows to take any <u>closed</u> surface let us consider two concentric spheres with the center located at the charge itself. These two surfaces cut a cone having its apex at the charge

The closed surface in bold is defined by a cone cut by two concentric spheres A_1 and A_2

Convention:

For a closed surface the unit vector is directed outwards

- At any point on A_1 and A_2 , \vec{E} is parallel to the unit vector
- At each point on A_1 and A_2 the magnitude $\left| \overrightarrow{E} \right|$ is constant
- On the two other sides A_3 and A_4 of the cone \vec{E} is \perp to the unit vector \Rightarrow the flux through these two areas is zero

Here the flux is positive

This makes life much easier as the scalar product $\vec{E}d\vec{A} = EdA$

$$Flux = -\int_{A_1} E_1 dA + \int_{A_2} E_2 dA$$

As E_1 and E_2 are constant along their respective areas A_1 and A_2

$$Flux = (-E_1A_1 + E_2A_2 + 0 + 0) \propto -\frac{A_1}{r_1^2} + \frac{A_2}{r_2^2}$$

What are A_1 and A_2 ?

From the solid angle of the cone

$$\Omega = \frac{A_1}{r_1^2} = \frac{A_2}{r_2^2}$$

$$A_2 = r_2^2 \frac{A_1}{r_1^2}$$

Here the flux is positive

Plugging this in the flux given above, we get

$$Flux \propto -\frac{A_1}{r_1^2} + \frac{A_2}{r_2^2} = -\frac{A_1}{r_1^2} + \frac{A_1}{r_1^2} = 0$$

Gauss's theorem $\overrightarrow{\nabla}.\overrightarrow{E}=0$

Conclusion

- Gauss's law would not be valid without Coulomb's law $(E \propto \frac{1}{r^2})$
- The flux through a closed surface not containing any charge is zero no mater the shape of that surface
- Coulomb's law would not be valid without Gauss's law

Consequence

• These two laws are in perfect agreement with the **law of energy conservation**

Energy passing through A_1 = Energy passing through A_2

Demonstrate that Cause theorem does not depend on the change of the Cause cur	face
Demonstrate that Gauss theorem does not depend on the shape of the Gauss sur	race
Ve230: A. Mesli AMU-CNRS (FRANCE) Fall 2018 (UM-SJTU)	11

Tilting the surface with respect to the field changes the flux

Tilting the surface does not change anything

$$\mathrm{d}A_1 = lL_1$$
 $\mathrm{d}A_2 = lL_2$ $\mathrm{d}A_1 = dA_2 cos \theta$ $L_1 = L_2 cos \theta$ $\vec{E}_{A2} = \vec{E}_{A1} cos \theta$

$$\vec{E}_{A1}.\,d\vec{A}_1 = \vec{E}_{A2}.\,d\vec{A}_2$$

$$=\frac{\vec{E}_{A2}}{\cos\theta}$$

$$\int \vec{E}_{A1} \cdot d\vec{A}_1 = \int \vec{E}_{A2} \cdot d\vec{A}_2$$

$$A_1 \qquad A_2$$

The flux through a closed surface does not depend on the shape of the surface

The flux of the electric field through closed surface The miracle behind the $1/r^2$ dependence

Flux
$$\Phi_E = \oiint \vec{E} d\vec{A}$$
Closed surface

Tilting the surfaces does it bring anything new?

Demonstrate that the fluxes through these two surfaces are the same

First part of the first Maxwell's equation

Applying Gradient
$$\vec{E} = -\vec{\nabla} V$$

Applying Divergence $\vec{\nabla} \cdot \vec{E} = \vec{\nabla} \cdot (-\vec{\nabla} V)$

Not complete $\vec{\nabla} \cdot \vec{E} = -\nabla^2 V$

Towards Poisson and Laplace equations

Second Maxwell's equation

$$\vec{\nabla} \times \vec{E} = \vec{0}$$

Valid in Electrostatic only!

Charge outside

Flux
$$\Phi = \oiint \vec{E} d\vec{A} = 0$$

Closed surface

Charge inside

The flux of the field produced by the charge +q through the 3 surfaces is the same

Gauss theorem

Flux $\Phi = \oiint \vec{E} \cdot d\vec{A} = \frac{\sum_{i} q_{i}}{\varepsilon_{0}}$ $\sum_{i} q_{i} = Q = \int \rho dV$

Enclosed in the volume
$$\sum_{i} q_{i} = Q = \int \rho dV$$

$$\iint \vec{E} \, d\vec{A} = \int \frac{\rho}{\epsilon_0} \, dV$$
surface Volume

Divergence theorem

$$\oint \vec{E} \, d\vec{A} = \int \vec{\nabla} \cdot \vec{E} \, dV$$
Surface Volume

$$\overrightarrow{\nabla}.\overrightarrow{E} = \frac{\rho}{\varepsilon_0}$$

Gauss Law

Electrostatic field

If
$$\frac{\partial}{\partial t} = 0$$
 no time dependence

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{E} = -\vec{\nabla}V$$

⇔ Electrostatic field is conservative

$$\vec{\nabla} \cdot \vec{E} = -\vec{\nabla} \cdot (\vec{\nabla} V) = -\nabla^2 V = \frac{\rho}{\varepsilon_0}$$

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$$

Poisson equation

$$\vec{\nabla} \times \vec{E} = 0$$

$$V = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

Is the field of a point charge exactly $1/r^2$?

$$\frac{d_1}{d_2} = \frac{2l_1}{2l_2} = \frac{r_1}{r_2} \qquad \frac{\pi l_1^2}{\pi l_2^2} = \frac{r_1^2}{r_2^2} = \frac{\Delta a_1}{\Delta a_2} = \frac{r_1^2}{r_2^2}$$

If the charge on the sphere is uniform $\frac{\Delta a_1}{\Delta a_2}$:

arge on the sphere is uniform
$$\frac{1}{\Delta a_2} = \frac{n}{\Delta q_2}$$

$$\frac{\Delta q_1}{\Delta q_2} = \frac{r_1^2}{r_2^2} \qquad \qquad \frac{\Delta q_1}{r_1^2} = \frac{\Delta q_2}{r_2^2} \qquad \qquad E_1 = E_2$$

Electric Field inside the sphere = 0 $E \propto 1/r^2$

Gauss law =
$$\oint_A \vec{E} \cdot d\vec{A} = 0$$
 $\vec{E} = \vec{0}$

Coulomb law derives from Gauss law

Problem at midterm II fall 2017

A charged balloon expands as it is blown up, increasing in size from the initial to final diameter as shown. Do the electric fields at point 1, 2 and 3 increase, decrease, or stay the same? Explain

• Draw 3 Gaussian surfaces

Point 1: Remains always inside the charged balloon. $\Phi = E_1$. $A_1 = 0$ as no charge inside Gaussian surface 1

$$E_1 = 0$$

Point 2: As long as the charged balloon <u>remains inside</u>
Gaussian surface 2 and because of symmetry argument

$$\Phi = E_2. \mathbf{A_2} = Q/\varepsilon_0 = Cte$$

$$E_2 = \frac{Q}{4\pi d_2^2 \varepsilon_0} = Cte$$

Then it drops to 0 when the balloon reaches point 2 and beyond

Point 3: The charged balloon remains inside Gaussian surface 3 all the time. $\Phi = E_3$. $A_3 = Q/\varepsilon_0 = Cte$

$$E_3 = \frac{Q}{4\pi d_3^2 \varepsilon_0} = Cte$$

Consequence of Gauss's law

A static charge **CANNOT** be in equilibrium in the electric field of other **STATIC** charges?

Mechanical equilibrium

Could a positive charge test $+q_0$ placed at P_0 be in equilibrium?

First condition fulfilled

$$\sum_{i} \vec{F}_{i}(P_{0}) = \vec{0}$$

⇒ Flux = 0 through area

Principle of superposition

$$\vec{\nabla} \cdot \vec{E} = 0$$

Could a positive charge test $+q_0$ placed at P_0 be in equilibrium?

Second condition:

The restoring forces should bring the charge back to P_0 if slightly displaced

NOT fulfilled

The electric flux must be negative around P_0 ?

BUT this is **impossible**! as there are no charges in the area

$$\vec{\nabla} \cdot \vec{E} = 0$$

Static atom cannot be in stable equilibrium. It cannot exist

Devising a system in which stable equilibrium is possible although the <u>flux of the field is zero?</u>

This charge is in stable mechanical equilibrium although $\vec{\nabla} \cdot \vec{E} = 0$

Why?

Because a mechanical constraint has been added

What is the Gauss's law made for?

Coulomb's law is the fundamental law for calculating electric field in any configuration...

But is sometimes useless

Electrostatics

- Coulomb law: superposition principle
 - o Is superposition principle an easy concept when dealing with vectors?
- Concept of work Potential Energy
- Electrostatic potential and implication: $\vec{E} = -\vec{\nabla} V$
- Electric field and potentials for various distributions of charges

Case of point charge

$$\vec{e}_{qP} = \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|}$$

 χ

$$\vec{r} - \vec{r'} = (x - x')\vec{i} + (y - y')\vec{j} + (z - z')\vec{k}$$

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\vec{r} - \vec{r'}|^2} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|} = \frac{q}{4\pi\varepsilon_0} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|^3}$$

$$\vec{e}_{qP}$$

$$\vec{E}(\vec{r}) = \vec{E}_x(x, y, z) + \vec{E}_y(x, y, z) + \vec{E}_z(x, y, z)$$

$$\vec{E}_{x}(x,y,z) = \frac{q}{4\pi\varepsilon_{0}} \frac{x - x'}{[(x - x')^{2} + (y - y')^{2} + (z - z')^{2}]^{3/2}} \vec{\iota}$$

 $\vec{E}_{\chi}(x, y, z)$ = function of 3 variables

For a single point charge simplification is possible

$$\vec{E}_{x}(x, y, z) = \frac{q}{4\pi\varepsilon_{0}} \frac{x}{[x^{2} + y^{2} + z^{2}]^{3/2}} \vec{i}$$

The same for the other components

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\varepsilon_0} \frac{1}{r^2} \vec{e}_r$$

Principle of superposition Effect of charge distribution

Provided we look far away from the distribution

Remember the dipole: A test charge close to it may feel one or the other charge, but far away it feels nothing

$$\sum q_i = 0$$

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')dV'}{|\vec{r} - \vec{r}'|^2} \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|}$$

Difficult to carry integration on vectors

Concept of work – Electrostatic Potential Energy

What does a conservative force mean and imply?

Conservative force keeps REVERSIBLE the exchange between Kinetics and Potential energies

U Minimum, *K* maximum

Conservative force conserves the total energy

$$K_1 + U_1 = K_2 + U_2$$
 \Rightarrow $\Delta K_{1\to 2} = -\Delta U_{1\to 2} \text{ or } K_2 - K_1 = -(U_2 - U_1)$

Work – energy theorem For Conservative Force (CF) \Rightarrow $W(CF)_1$

$$\Rightarrow W(CF)_{1\to 2} = -\Delta U_{1\to 2}$$

In the absence of friction, there are 3 fundamental conservative forces

• Elastic
• Flectric

If other external forces are involved ⇒ work – energy theorem says

$$\Rightarrow W(CF)_{1\to 2} + W(ext)_{1\to 2} = \Delta K_{1\to 2}$$

When the work is done slowly to keep $\Delta K_{1\rightarrow 2}=0$

$$\Rightarrow W(ext)_{1\rightarrow 2} = -W(CF)_{1\rightarrow 2}$$

External forces do work **AGAINST** conservative forces

$$W(ext)_{1\to 2} = -W(CF)_{1\to 2} = -(U_2 - U_1)$$

Lifting slowly a body Energy is injected into the system

Lowering slowly a body Energy is extracted from the system

$$W(CF)_{1\to 2} = \int_{y_1}^{y_2} \vec{F}_G d\vec{l} = -\text{mg}(y_2 - y_1) < 0$$

$$W(CF)_{2\to 1} = \int_{y_2}^{y_1} \vec{F}_G d\vec{l} = -\text{mg}(y_1 - y_2) > 0$$

Conservative mechanical force always acts naturally to push the system towards lower potential energy

In case of one dimension

$$W_{CF} = -\Delta U \Rightarrow F_{CF} \cdot dx = -dU \Rightarrow \vec{F}_{CF} = -\frac{dU}{dx}\vec{i}$$

In case of three dimensions

Nature acts to lower the potential energy

In the case of electrostatic $\Rightarrow \vec{F}_{el} = -\vec{\nabla}U \Rightarrow q\vec{E}_{el} = -\vec{\nabla}qV$ $\Rightarrow \vec{E}_{el} = -\vec{\nabla}V$

$$\Rightarrow \ \overrightarrow{F}_{eI} = -\overrightarrow{\nabla}U$$

$$\Rightarrow q\vec{E}_{el} = -\vec{\nabla}qV$$

$$\Rightarrow \overrightarrow{E}_{el} = -\overrightarrow{\nabla}V$$

Concept of work and Electric potential

In the presence of an <u>electrostatic</u> field \vec{E} , a test charge q_0 feels a conservative force \vec{F}_{el}

work – energy theorem including external force \Rightarrow $W(\vec{F}_{el})_{1\to 2} + W(\vec{F}_{ext})_{1\to 2} = \Delta K_{1\to 2}$

$$\Rightarrow W(\overrightarrow{F}_{el})_{1\to 2} = -\Delta U_{1\to 2} = -(U_2 - U_1)$$

To keep the test charge charge moving very slowly from 1 to 2

$$\Delta K_{1\to 2} = 0 \quad \Rightarrow \quad W(\vec{F}_{ext})_{1\to 2} = -W(\vec{F}_{el})$$

Work must be done against the electric force

$$W(\vec{F}_{ext})_{1\to 2} = -\int_{1}^{2} \vec{F}_{el} \cdot d\vec{r}$$

$$\Rightarrow W(\vec{F}_{el})_{1\to 2} = -\Delta U_{1\to 2} = -(U_2 - U_1)$$

 $W(\overrightarrow{F}_{el})_{1\to 2} = -\Delta U_{1\to 2} = -(U_2 - U_1)$ As external force acts against conservative force

$$\Rightarrow W(\vec{F}_{ext})_{1\to 2} = +\Delta U_{1\to 2} = +(U_2 - U_1)$$

 $+q_0$ is the charge test

Work done along a radial path

 \vec{F}_{ext} brings the test charge from: (1) to (2)

(1) Could be ∞

 $W(\overrightarrow{F}_{ext}) > 0$ because energy is <u>injected</u> into the system: Why?

If charge q_0 is released, it will be repelled (Energy is released by the system)

$$W(\vec{F}_{ext})_{\infty \to R} = \int_{\infty}^{R} \vec{F}_{ext} \cdot d\vec{r} = -\int_{\infty}^{R} \vec{F}_{el} \cdot d\vec{r} \qquad W(\vec{F}_{ext})_{\infty \to R} = \int_{R}^{\infty} \vec{F}_{el} \cdot d\vec{r} = \frac{Qq_0}{4\pi\varepsilon_0} \int_{R}^{\infty} \frac{1}{r^2} dr$$

$$W(\vec{F}_{ext})_{\infty \to R} = rac{Qq_0}{4\pi \varepsilon_0} rac{1}{R}$$
 = U Potential energy $\begin{cases} Q \text{ and } q_0 > 0 \text{ Or } Q \text{ and } q_0 < 0 \\ Q > 0 \text{ and } q_0 < 0 \text{ Or vice versa} \end{cases}$

$$Q$$
 and $q_0 > 0$ Or Q and $q_0 < 0$ $U > 0$

$$Q > 0$$
 and $q_0 < 0$ Or vice versa $U < 0$

Concept of Electric potential

Concept of **Electric field** \Rightarrow what is the effect of Q on P when there is no test charge q_0 ? \Rightarrow There is $\vec{E}(P) \Rightarrow \vec{F} = q_0 \vec{E} = m\vec{a} \Rightarrow$ Energy

Likewise we define an **Electric Potential** of doing work on a test charge q_0 once placed at P

Work done on a unit charge q_0 , $U = q_0 V$

$$W(\vec{F}_{ext})_{1\to 2}\Big|_{q_0} = \frac{W}{q_0} (\vec{F}_{ext})_{1\to 2} = (V_2 - V_1)$$

$$W(\vec{F}_{el})_{1\to 2}\Big|_{q_0} = \frac{W}{q_0} (\vec{F}_{el})_{1\to 2} = -(V_2 - V_1)$$

$$V(R) = \frac{W}{q_0} = \frac{Q}{4\pi\varepsilon_0} \frac{1}{R}$$

$$V(\infty)=0$$

Superposition principle

$$V(P) = V_{Q1} + V_{Q2}$$

If charge at P is closer to $\mathbf{Q_1}$ it will feel V_{Q1} If charge at P is closer to $\mathbf{Q_2}$ it will feel V_{Q2}

Far away it will feel $V(Q_1 + Q_2)$

V = +70 V

V = +50 V

V = +30 V

-Q \bullet +q

P

$$\vec{E}(P) = \vec{0}$$

$$V \neq 0$$

$$|Q| \neq |q|$$

Two **different** equipotentials **NEVER** cross like two electric field lines

Equipotential

Ve230: A. Mesli AMU-CNRS (FRANCE) Fall 2018 (UM-SJTU)

Summarizing

The key word is the work done by the **field**

The potential energy U=qV is zero when the charges are infinitely separated

So U is the work done on the test charge q_0 by the **field** of $Q(\sum_{i=1}^n q_i)$ when moving q_0 from r to ∞

 $W(\vec{F}_{el})_{r\to\infty}>0$ if \boldsymbol{Q} and $\boldsymbol{q_0}$ are of the same sign and U(r)>0

 $W(\vec{F}_{el})_{r\to\infty} < 0$ if Q and q_0 are of opposite sign and U(r) < 0

Electrostatic potential and implication: $\vec{E} = -\vec{\nabla} V$

Work done along an arbitrary path

The positive charge Q creates a field all around

A test charge q_0 will undergo a force (attractive or repulsive) in this field

To keep moving very slowly the charge q_0 from r_a to r_b

 $\Delta K = 0$

If $q_0 > 0$:

a repulsion takes place with increasing intensity as we approach Q:

We need to push harder and harder

If $q_0 < 0$:

an attraction takes place with increasing intensity as we approach Q:

<u>We need to retain harder and harder</u>

- ullet The opposite happens if we need to go away from $oldsymbol{Q}$
- In both cases the work is done against the electric force

$$W = -\int_{r_a}^{r_b} \vec{F}_{el} \cdot d\vec{l}$$

Does the work depend on the path from r_a to r_b ?

$$W = -\int_{r_a}^{r_b} \vec{F}_{el} \cdot d\vec{l}$$

$$W = -\int_{r_a}^{r_b} \vec{F}_{el} \cdot d\vec{l} \qquad \frac{W}{q_0} = W(unit)_{a \to b} = -\int_{r_a}^{r_b} \vec{E} \cdot d\vec{l}$$

Along the radial lines \vec{E} // $d\vec{l}$ Work = maximum

Along the curved lines $\vec{E} \perp d\vec{l}$ Work = 0

Work does not depend on the path

$$W(unit)_{a\to b} = -\int_{r_a}^{r_b} \vec{E} \cdot d\vec{l} = \int_{r_a}^{r_b} dV$$

$$W(unit)_{a\to b} = V(r_b) - V(r_a)$$

Another way of demonstrating the relation

$$\vec{E} = -\vec{\nabla}V$$

Application of vector calculus!

$$\int_{r_a}^{r_b} dV = \int_{r_a}^{r_b} \left(\frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy + \frac{\partial V}{\partial z} dz \right) = \int_{r_a}^{r_b} \left(\frac{\partial V}{\partial x} \vec{i} + \frac{\partial V}{\partial y} \vec{j} + \frac{\partial V}{\partial z} \vec{k} \right) \left(dx \vec{i} + dy \vec{j} + dz \vec{k} \right)$$

$$\int_{r_a}^{r_b} \vec{\nabla} V . d\vec{l}$$

$$\int_{r_a}^{r_b} d\mathbf{V} = \int_{r_a}^{r_b} -\vec{E} \cdot d\vec{l}$$

$$\int_{r_a}^{r_b} d\mathbf{V} = \int_{r_a}^{r_b} \vec{\nabla} \mathbf{V} \cdot d\vec{l}$$

$$\vec{E} = -\vec{\nabla}V$$

Static Electric field is conservative

Questions

Does it require any work to bring the charge -q from ∞ to point A, B and C?

If $\vec{E} \propto \frac{1}{r^n} \vec{e}_r$ with $n \neq 2$ would the work done be path independent?

For any <u>radial</u> and spherically symmetric force the work done does not depend on the path and there exist a potential. There could be any r dependence of $\vec{E} \propto \frac{1}{r^n} \vec{e}_r$. The existence of the potential and the fact that $\vec{\nabla} \times \vec{E} = \vec{0}$ is due to that only

Equipotential surface V(r)

$$\int_{a}^{b} \vec{E} \cdot d\vec{l} = 0$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

 $\Gamma = \text{equipotential path}$

From Stoke's theorem

$$\overrightarrow{\nabla}\times\overrightarrow{E}=\mathbf{0}$$

Curl-free

Applications of Coulomb and Gauss law

Electric field and potentials for various distributions of charges

Electric field and potentials for various distributions of charges

Make use of symmetry whenever possible

- Point charge
- Line of charges
- Ring of charges
- Disk of charges
- Sheet of charges
- Plane (infinite disk) of charges
- Cylindrical distribution of charges
- Spherical distribution of charges
- Rectangular distribution of charges

The field of a line charge

By Coulomb' law

Uniform linear charge density $\lambda = \frac{dq}{dy} = \frac{Q}{2a}$ $dE = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{2a} \frac{dy}{x^2 + y^2}$

$$dE = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{2a} \frac{dy}{x^2 + y^2}$$

$$dE_x = dE\cos\theta = \frac{1}{4\pi\varepsilon_0} \frac{Q}{2a} \frac{xdy}{(x^2 + y^2)^{3/2}}$$

$$E_x = \int_{-a}^{+a} dE_r = \frac{1}{4\pi\varepsilon_0} \frac{Q}{x} \frac{1}{\sqrt{(x^2 + y^2)}}$$

Why is this result trivial?

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{x} \frac{1}{\sqrt{(x^2 + a^2)}} \vec{i}$$

$$< x \mid \vec{E}$$

$$\infty$$

$$\vec{z} = \frac{1}{2\pi\varepsilon_0} \left(\frac{Q}{2a}\right) \frac{1}{x} \vec{u} = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{x} \vec{i}$$

The field of a line charge

By Gauss law

Line positively charged

Linear charge density $\lambda = \frac{Q}{l}$ Charge enclosed in Gaussian surface $Q = \lambda l$

Through areas (1) and (2
$$\vec{E}_x \perp d\vec{A}$$

Through areas (1) and (2)
$$\Phi_E = \int \vec{E}_\chi d\vec{A} - \int \vec{E}_\chi d\vec{A} = 0$$
 Area (1) Area (2)
$$0 \qquad 0$$

Through area (3) $\vec{E}_x \parallel d\vec{A}$

$$\Phi_E = \int \vec{E}_x d\vec{A} = E_x \cdot 2\pi x l = \frac{Q}{\varepsilon_0} = \frac{\lambda l}{\varepsilon_0}$$

$$E_x = \frac{\lambda}{2\pi\varepsilon_0 x}$$

$$\vec{E}_x = \frac{\lambda}{2\pi\varepsilon_0 x} \vec{i}$$

Potential at distance r from a very long line of charge

$$V_b - V_a = -\int_{r_a}^{r_b} \vec{E} \cdot d\vec{l} = -\int_{r_a}^{r_b} \frac{\lambda}{2\pi\varepsilon_0 r} dr = \frac{\lambda}{2\pi\varepsilon_0} Ln \frac{r_a}{r_b}$$

If we set
$$r_a = \infty$$
 and $V_a = 0$ $V_b = \frac{\lambda}{2\pi\varepsilon_0} Ln \frac{\infty}{r_b} = \infty$

The problem comes for the fact that
$$\vec{E}_r = \frac{\lambda}{2\pi\varepsilon_0 r} \vec{e}_r$$

Assumes that the charge distribution extents to infinity

To circumvent this difficulty we consider that $V_a = 0$ at an arbitrary radial distance r_0

$$V_r = \frac{\lambda}{2\pi\varepsilon_0} Ln \frac{r_0}{r}$$

Where V_r decreases when r increases

It is preferable to consider that the <u>linear charge density</u> has been transfered to the cylinder \Rightarrow we can still use λ

Gauss law

$$V_r = \frac{\lambda}{2\pi\varepsilon_0} Ln \frac{R}{r}$$

$$E, V = 0$$

$$\vec{E}_r = -\vec{\nabla} V_r$$
 $\vec{E}_r = \frac{\lambda}{2\pi\varepsilon_0 r} \vec{e}_r$ $r > R$

$$r < R$$
 $V_r = 0$ $\Rightarrow \vec{E}_r = 0$

The field of a charged ring

$$r = \sqrt{x^2 + a^2}$$

$$\cos\theta = \frac{x}{r} = \frac{x}{\sqrt{x^2 + a^2}}$$

$$d\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{dQ}{x^2 + a^2} \vec{e}_r = dE\cos\theta \vec{i} + dE\sin\theta \vec{j}$$
0
symmetry

$$\vec{E} = E_x \vec{i} = \frac{1}{4\pi\varepsilon_0} \int \frac{xdQ}{(x^2 + a^2)^{3/2}} \vec{i}$$

Running around the ring keeps x unchanged

$$\vec{E} = E_x \vec{i} = \frac{1}{4\pi\varepsilon_0} \frac{xQ}{(x^2 + a^2)^{3/2}} \vec{i}$$
If $x >> a$
$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{x^2} \vec{i}$$

Far away the ring appears like a point charge

At the center of the ring x = 0 $\Rightarrow \vec{E} = \vec{0}$

Why this is trivial?

What should we expect if the this ring starts rotating with an angular velocity ω ?

Charges are set into motion

Current

Wait for Magnetostatic

The potential of a charged ring

$$dV = \frac{1}{4\pi\varepsilon_0} \frac{dQ}{r}$$

$$V = \frac{1}{4\pi\varepsilon_0} \oint \frac{dQ}{r} = \frac{1}{4\pi\varepsilon_0} \frac{1}{r} \oint dQ = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\sqrt{x^2 + a^2}}$$

a
$$\frac{dQ}{x}$$
 point charge x

If
$$x >> a$$
 $V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{x}$

Far away the ring appears like a point charge

At the center of the ring x = 0 \Rightarrow $V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{a}$

Works both ways: We can find \vec{E} from V and vice versa

The field of an infinite sheet of charge: from uniformly charged disk

Charge element of the ring $dQ = \sigma 2\pi r dr$

To the disk
$$\vec{E}_{x} = \frac{1}{4\pi\varepsilon_{0}} \int_{0}^{R} \frac{x\sigma 2\pi r dr}{(x^{2} + r^{2})^{3/2}} \vec{i} = \frac{\sigma x}{2\varepsilon_{0}} \int_{0}^{R} \frac{r dr}{(x^{2} + r^{2})^{3/2}} \vec{i}$$

$$\Rightarrow \qquad 1 \quad \int_{0}^{R} x\sigma 2\pi r dr \quad \Rightarrow \quad \sigma \quad [1]$$

$$\vec{E}_{x} = \frac{1}{4\pi\varepsilon_{0}} \int_{0}^{R} \frac{x\sigma 2\pi r dr}{(x^{2} + r^{2})^{3/2}} \vec{i} = \frac{\sigma}{2\varepsilon_{0}} \left[1 - \frac{1}{\sqrt{R^{2}/_{\chi^{2}} + 1}} \right] \vec{i}$$

The field lines are not straight for a finite disk

If
$$R \gg x$$

$$\vec{E} = \frac{\sigma}{2\varepsilon_0} \vec{\iota}$$

The field of an infinite sheet of uniformly distributed charges: Using Gauss law

Main tool = symmetry argument ⇒ Gauss's surface = cylinder

$$\Phi_E = \oint \vec{E} d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$$

Total area

**Question #2:

How does the field look like very far away from the plate, Knowing that it has a finite size?

Answer to Question #2:

Decaying as $\sigma^A/_{r^2}$ as the plate looks as a point charge

***Question #3:

What kind of simple experiment can we do to prove that the field is uniform at reasonable distance from the charged plate?

Answer to Question #3:

Use charge induction concept

The angle θ remains constant for reasonable distance of the pendulum from the plate

A spherical metal initially charged by induction

 θ drops quickly when r increases

**Question #4:

How do we proceed to charge a conducting sphere by induction?

Answer to Question #4:

See slide 73

The field due to two parallel sheets of opposite charges: Superposition principle

$$\vec{E}_{+1} \cdot \vec{A}_1 + \vec{E}_{+2} \cdot \vec{A}_2 = E_{+1} \cdot A + E_{+2} \cdot A = \frac{\sigma A}{\varepsilon_0}$$

$$\vec{E}_{+} = \frac{\sigma}{2\varepsilon_0} \vec{i}$$

From positive sheet (plate)

From negative sheet (plate)

$$\vec{E} = \frac{\sigma}{\varepsilon_0} \vec{\iota}$$

One single type of charge distributed uniformly on a conducting sphere

*Question #5: How can we obtain such distribution?

Answer to *Question #5:

There are two possibilities

By friction or contact

All deposited charges will spread uniformly around the sphere as total energy must be minimized (repulsion will do the job).

Stable equilibrium*

By induction via an external field

BUT induction induces charges by **pair** to keep neutrality (conservation of charge)

Unstable equilibrium*

Stable equilibrium*

??

We have claimed several times that there is **NO** equilibrium for electrostatic charges

Other forces are acting to maintain equilibrium

- In the hollow tube above mechanical force
- In the case of the conducting sphere, forces at the surface prevent the charges from leaving the conductor

Unstable equilibrium*

??

Because if we <u>switch off</u> the external field, the charges will redistribute themselves and annihilation takes place bringing the conducting sphere to <u>neutrality</u>

But we want to induce **permanent** charge on the conducing sphere by an external field!

Step 1: Contact and induction **Step 2:** Separation of the spheres

Step 3: Switch off the <u>external</u> field

Something is **FUNDAMENTALLY WRONG** with this representation?

Answer to ***Question #6:

The field lines must bend close to the conducting spheres . Why?

See next

The field of a <u>surface</u> charged <u>conducting</u> sphere: Using Gauss law

Electric field and potential from the center of the sphere to infinity

Could be a hollow metallic sphere

$$\vec{E} = -\vec{\nabla}.V(r)$$
 $V(sphere) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R}$

The conducting sphere is an equipotential body V = cte

The hollow or solid conducting sphere is an example where

What does this mean?

The hollow or solid conducting sphere is an example where

What does this mean?

***Question #7:

Still no clue as to why this representation is **FUNDAMENTALLY WRONG**?

Answer to ***Question #7:

See chapter on conductors

That $\vec{E} = \vec{0}$ inside the conducting sphere is NOT trivial at all! "Conspiracy" principle

Every charge on the sphere creates a field inside and outside the sphere **BUT** all individual effects when added **cancel out inside**

Consequence For a hollow sphere

 $E = \frac{1}{\varepsilon_0} \frac{Q}{4\pi r^2} = \frac{\sigma}{\varepsilon_0}$ $P(r \approx R)$

$$E = \frac{\sigma}{2\varepsilon_0} \longleftrightarrow \stackrel{+}{\overset{+}{\overset{+}{\smile}}} E = \frac{\sigma}{2\varepsilon_0}$$
ereas

 σ_{+}

Whereas

See lectures on conductors

Outside the sphere nature cannot decide whether the charge is distributed uniformly over the sphere or <u>concentrated on a point at the center</u> because

Electric field $\propto 1/r^2$

Gravitational field $\propto 1/r^2$

Planet in a form of a hollow sphere

No gravitation inside

As far as we are far outside the planet with a mass uniformly distributed, we always consider in classical mechanics that the point mass approximation is valid.

- It took 20 years to Newton to prove this statement
- 100 years later Gauss's law proved it in 3 seconds

**Question #8:

How can we check experimentally that the field inside a hollow sphere is really zero? Theoretically it will be done in the next lecture

Answer to Question #8:

Using the double pendulum with two little metallic spheres and a small opening in the hollow sphere

1) Bring the double pendulum close to the hollow sphere
 ⇒ charges are induced on the double pendulum

2) Inserted into the hollow sphere no charges are induced⇒ field inside is zero

Rigorously speaking the charge distribution on the hollow sphere is no longer uniform because of the opening. There is field inside but very weak

The field of a <u>bulk</u> charged **non-**conducting sphere (<u>dielectric</u>): Using Gauss law Uniformly charged

Using a Gaussian surface inside and outside the charged sphere

$$r < R \quad \Rightarrow \quad Q = \rho\left(\frac{4\pi}{3}r^3\right), \ E(r)4\pi r^2 = \frac{Q}{\varepsilon_0},$$

$$\Rightarrow E(r) = \frac{\rho}{3\varepsilon_0}r \qquad \Rightarrow E(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3}r$$

Charge density
$$\rho = Q/(\frac{4\pi}{3}R^3)$$

$$r > R$$
 \Rightarrow $Q = \rho \left(\frac{4\pi}{3}R^3\right),$ $E(r)4\pi r^2 = \frac{Q}{\varepsilon_0}$ \Rightarrow $E(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$