

Inleiding Virtualisatie

Hoofdstuk 1

Elfde-Liniestraat 24, 3500 Hasselt, www.pxl.be

Datacenter

- In praktijk: Servers, switches, routers in beveiligde ruimtes
- Goede inrichting:
 - Racks goed plaatsen voor efficiënte koeling
 - Verlaagd plafond, verhoogde vloeren
 - Cold en hot aisles (gangpaden) ⇒ airflow
- Aggregaat voor noodstroom te genereren

Tower servers (vroeger)

- Minder goede inrichting.
- Neemt veel plaats in.
- Warboel van kabels.
- Elke server: eigen scherm en toetsenbord.
- Vroeger vaak in klein datacenter.

Datacenter

- Datacenter:
 - Duizenden servers of maar een paar ⇒ wij bespreken dit algemeen
- Backoffices:
 - Ruimtes in datacenter om machines optimaal te laten draaien:

② autorisatie ⇒ fysiek afgesloten tenzij je beheerder bent

♥ kabelmanagement

• • •

Systeembeheerder: doet onderhoud (software op afstand + hardware in datacenter)

Server ⇔ Service (rol)

- **Server**: Hardware + OS
- **Service**: "Functie" van de server (Microsoft-term "rol")
 - Database-server
 - File-server
 - Print-server
 - ...
- Services best op verschillende fysieke servers ⇒ onafhankelijk
 - ⇒ one-machine-one-function model
 - Voordelen:
 - Hinderen elkaar niet bij storing.
 - Stabieler: fixes, installaties per server doen
 - Nadelen:
 - véél meer servers nodig
 - sommige servers onderbelast (10-15% piek...)!!!

Appliance in datacenter

Appliance

- one-machine-one-function
- Gesloten kastje met serversoftware ⇒ blinkt uit in 1 service/functie
- Gesloten embedded OS.
- Firmware: bedrijfseigen mini-OS op chip of flashgeheugen
 - Van scratch geprogrammeerd of Linux/BSD-based.

Zyxel VPN50

Appliance in datacenter

Voordelen:

- Blinkt uit in 1 service.
- Geen/weinig overhead van OS.
- Snel: speciale chips met daarop service in hardware gebouwd.

Nadelen:

- Moeilijker te beheren in praktijk ⇒ extra OS naast Windows/Linux servers
- Extra vakkennis + aparte beheertools nodig.
- Voor elk merk appliances aparte onderhoudscontracten.

Opmerking: Virtual applicance

Voorbeeld: Pfsense

Praktijk: heterogene netwerken

- Verschillende hardware in netwerk
 - Hardware kan men niet altijd standaardiseren.
 - Nadelen:
 - Verouderd model niet meer leverbaar ⇒ nieuw model kiezen
 - Verschillende besturingssystemen tegelijk.
 - Windows, Linux, Unix (BSD's)
 - Dus vaak dezelfde applicaties op verschillend OS ⇒ duplicaten
 - Appliances ⇒ veel extra merken
 - Moeilijk 24/7 beschikbaar en scalable te houden ⇒ COMPLEX!

Downtime

- Datacenter van groot bedrijf ligt 1 uur plat:
 - Véél inkomsten gaan verloren.
 - Andere frustraties:
 - Overuren kloppen...
 - Wachten: vb/ internetshop ligt plat.
- ⇒ Tijdje niet beschikbaar ⇒ minder high availability

Beschikbaarheid verbeteren

- Alles dubbel of meervoudig uitvoeren.
 - Verbindingen, internetlijnen dubbel
 - Koeling + noodkoeling
 - Apparaten, ...
 - = redundantie ("dubbel" uitvoeren)
- Hot-swappable onderdelen:
 - Schakelen zichzelf uit bij probleem.
 - Redundante onderdeel werkt in de plaats.
 - ⇒ terwijl alles draait kan je onderdeel vervangen
- Twinning: inrichten van extern twin-datacenter
- Failover clustering

Beschikbaarheid verbeteren: failover clustering

Cluster bouwen

- 2 of meer identieke servers vormen 1 geheel
- Servers kunnen elkaars rol overnemen.
- Server = node van cluster

Redudantie verder verbeteren:

- Splits cluster over meerdere datacenters.
- Zelfs als 1 volledig datacenter uitvalt is applicatie dan nog bruikbaar.
- <u>Voorwaarde</u>:
 - Er is een Storage Area Network (SAN)
 - Snel centraal opslagsysteem
 - Of: mirroring van data in 2 datacenters.

Active-passive mode:

Pas als een 1ste node problemen heeft, wordt de 2de node ingeschakeld.

vb/ in Windows Server 2019

Beschikbaarheid verbeteren: failover clustering

- Voordeel:
 - High availability (hoge beschikbaarheid)
- <u>Scalability</u>: betere prestaties ⇒ load-balancing van werklast
 - · Vaak in combinatie met een failover cluster
- Nadeel:
 - Datacenter is complex.

Business continuity

- Waarom is high availability nodig?
 - Organisaties worden globaler.
 - ⇒ gebruikers/medewerkers in meerdere tijdzones ⇒ 24/7 draaien
 - Thuiswerk
 - Andere uren dan 9-to-5. Ook weekend en 's avonds.

Schaalbaarheid verbeteren: load balancing

- Schaalbaarheid:
 - Organisatie groeit
 - ⇒ meer netwerkverkeer en data nodig.
 - Moet makkelijk zijn:
 - servers vervangen en er nieuwe bijzetten.
 - Naar gelang omstandigheden: vb/ e-commerce tijdens solden periodes
 - Tijdelijk extra RAM, CPU, HDD,...
- Hoe verbeteren?
 - Load balancing

Schaalbaarheid verbeteren: Load balancing

- Load-balancing:
 - Groep identieke servers met dezelfde functionaliteit.
 - Krijgen 1 IP-adres op netwerk ⇒ 1 identiteit
 - Vormen een farm.
 - Kan je combineren met clustering.
- Werking:
 - Er komt een verzoek van gebruiker binnen.
 - Kies server in de farm die het minst druk is.
- Vanaf Windows Server 2012
- Load-balancers ook te koop als appliance!

Datacenter greening

- Datacenter "vergroenen":
 - Minder CO2-uitstoot.
 - Minder stroomverbruik.
 - Koelen per rack of apparaat i.p.v. per ruimte.
 - Verwijderen/hergebruiken van ghost-servers (aanwezige ongebruikte servers).
 - Verwijder servers bij overcapaciteit, hergebruik bij ondercapaciteit
 - Vervang servers door zuinigere
- Performance-Optimized Data Center (POD) = geleverd datacenter in container

Datacenter greening

- Datacenter "vergroenen":
 - Consolidatie:
 - Minder ICT-componenten gebruiken:
 - Netwerkcomponenten, servers, OS, applicaties,...
 - ⇒ Kleiner datacenter
 - ⇒ Efficiënter
 - ⇒ Minder koeling en energie nodig
 - ⇒ Minder beheer

Maar: behoud high availability en scalability!!!

Rack-servers voor condolidatie

Rack-server

- Horizontaal georiënteerd.
- RU of U (Rack Units)
- Cold spares:
 - Dubbele componenten die je handmatig activeert
- Hot-swappable

Rack-servers voor condolidatie

- Rack-server monitoren
 - Door fabrikant zelf

Blades

- Vooral processorkracht, geheugen, geen componenten gedeeld met andere servers.
 - Heel compact, verticaal.
 - Vorm:
 - Enclosure (omgeving) om in 19" rack te zetten
 - Hoogte van enclosure bepaalt hoeveel blade servers in rack passen.
 - Dit aantal is densiteit.
- Vaak gebruikt:
 - Compacter dan rack ⇒ schaalbaarder
 - Betere koeling, stoomvoorziening door de blade-enclosure (omhulsel)
 - Enclosure heeft zelfs eigen firmware vb/ Integrated Lights Out van HP.
 - Efficient: makkelijker te vervangen bij storing, minder stroomverbruik.
 - Nadeel: initiële kost is duurder dan rack-server
 - De lopende kosten van blades kunnen lager zijn dankzij eenvoudiger onderhoud en een lager energieverbruik

Blades

Blade-omgeving (= blade enclosure)

- Enkel interessant indien je **meer servers nodig** hebt want anders is de blade enclosure niet volledig gevuld.
- Gebruikt best externe opslag zoals fileserver of SAN (Storage Area Network)
 - Makkelijker om blades te vervangen.
 - ⇒ blade servers kunnen OS booten vanaf SAN

Nadelen:

- Servers niet uitwisselbaar onder merken ⇒ alles van 1 merk = **vendor-lock-in**
- Vendors kunnen die macht misbruiken → duurder maken dan nodig
- Vendors kunnen support stoppen.

Wil je dit niet? → rack servers

Opslagvirtualisatie

Opslagvirtualisatie

- Host Bus Adapter (HBA)
 - Om server en DAS te verbinden.

NAS

Network Attached Storage (NAS):

- Fileserver als appliance: enkel fileserverfunctie
- NAS is geen vorm van opslagvirtualisatie
 - Data centraliseren en consolideren
- Geavanceerde NAS:
 - Meer beheermogelijkheden voor (gedeelde) mappen, rechten, back-ups.

Heeft een OS

NAS

- Network Attached Storage (NAS):
 - Ondersteunt meerdere OS'en
 - Linux: NFS-protocol (Network File System)
 - Windows: CIFS (Common Internet File System)

SAN

- Storage Area Network (SAN):
 - Hardeschijven delen tussen servers over netwerk.
 - Sluit SAN aan op elke server.
 - Standaarden:
 - iSCSI
 - Fibre Channel

Opslagsystemen NAS en SAN

Kenmerken

- Consolidatie (bij elkaar)
- Centralisatie
- Supersnelle en hele grote opslagruimte
- Automatische back-ups.
- Automatisch dupliceren en gelijkhouden van meerdere opslagsystemen tussen meerdere datacenters.
- Deduplicatie:
 - Data die in meerdere bestanden zit, niet dubbel opslaan.
 - Bespaart ruimte

Back-up virtualisatie

- Virtuele tape-drives
 - Elk systeem mag ander OS hebben en schrijven naar virtuele tape-units
 - Alles komt in 1 enkele virtuele tape library
 - Geen relatie tussen logische tapes die OS ziet en fysieke tapes
- Gegevens kunnen **parallel naar meerdere tapes** worden geschreven en zelfs naar tapes in verschillende tape-drives met verschillende typen tapes.
 - hogere doorvoersnelheid of redundante back-up.
- Virtuele tapes zijn snel uit te breiden, bijvoorbeeld met tape-drives van een nieuwe technologie, doordat er op de servers niets verandert aan de logische tapeomgeving.

Virtualisatie van back-ups

https://ftp1.overlandtandberg.com/public/SB_Veeam_Tape_EMEA.pdf

Rol van beheerder in niet-gevirtualiseerde omgeving

- Serverbeheerder
 - Servers en OS'en installeren en onderhouden.
 - Onderhoudt Microsoft Domain Controllers.
 - Veel werk bij verschillende hardware ⇒ niet flexibel
- Netwerkbeheerder
 - Configureert en installeert netwerk-apparatuur
- Security engineer
 - Hebben weer een andere functie: beveilinging
- Rollen versimpelen?

Alles wordt gauw complex, niet?

- Bij one-machine-one-function model en appliances:
 - Sommige servers onderbelast (10-15% piek...) !!!
- Heterogene netwerken:
 - COMPLEX!
 - Moeilijk te scalen!
 - Moeilijk beschikbaar 24/7, downtime
 - Meer beheerdersrollen nodig:
 - serverbeheerder, netwerkbeheerder, security engineer, onderhoud,...
- Oplossingen?
 - Servervirtualisatie
 - Containers
 - Cloud

Server virtualisatie en virtuele machines

- VM's:
 - Meerdere servers als virtuele guests tegelijk draaien op 1 fysieke host server.
 - Componenten virtueel (in software) tonen aan host-OS.
 - Hardware en BIOS ook virtueel.
 - Meerdere OS-omgevingen draaien tegelijk
 - Voorbeeld:
 - host = Windows Server
 - guests = Linux.
- Server virtualisatie = belangrijkste consolidatie methode!

Rol van beheerder in gevirtualiseerde omgeving

- Andere taakverdeling:
 - Systeem-én-netwerkbeheerder + security
 - Alle taken zijn in gevirtualiseerde omgeving virtueel.
 - Virtualiseert servers op fysieke hosts.
 - Servers installeren, verplaatsen, upgraden, applicaties installeren:
 - Eenvoudiger en flexibeler!

Hypervisor

- Hypervisor of VMM (Virtual Machine Monitor)
 - Draait soms (zie volgende slides) op de host.
 - Dirigeert de guest VM's.
 - Regelt toegang tot hardware.
 - Isoleert VM's van elkaar én van host. ⇒ geen conflicten
- Host (gastheer)
 - Fysieke computer waarop de VM's draaien.
- Tegenwoordig: (aanzetten in BIOS)
 - x86 processoren hebben hardware assisted virtualization
 - Intel Virtualization Technology (VT)
 - AMD-V

Type 1 hypervisors

- Type 1 (bare metal):
 - Rechtstreeks op hardware.
 - Geen onderliggend OS
 - Weinig overhead ⇒ snel

⇒ hardware hypervisor

⇒ ondersteunende hardware nodig

- Net zoals system call naar kernel wordt gestuurd, wordt een hypercall naar de hypervisor gestuurd.
- Voorbeelden: KVM op Linux, Microsoft Hyper-V, VMware ESXi
 - Hyper-V wordt geïnstalleerd op Windows Server maar wordt toch als een type 1 hypervisor gezien

Type 1 hypervisor

Type 2 hypervisors

- **Type 2** (hosted):
 - = gehoste hypervisor
 - Draait op host OS.
 - Overhead.
 - Ondersteunt wel elke hardwareconfiguratie.
 - Voorbeelden:
 - Virtualbox, VMware Workstation, Hyper-V
- Type 1 hypervisors zijn beter dan type 2 hypervisors

⇒ software hypervisor

→ high availability & scalability.

Type 2 hypervisor

Beheersoftware (controlepaneel) voor hypervisor

Hoe wij te werk gaan...

- Resources beperken!
 - Server 2019 i.p.v. Server 2022
 - Windows 10 i.p.v. Windows 11
- Verschillende VM's met Windows Server 2019 draaien in VMware Workstation
 - Daarop Hyper-V installeren
 - In de VM's draaien OS'en
- Check jullie pc-specs:
 - 16 GB RAM (32 GB RAMis beter)
 - Minstens 250 GB SSD (intern (best) of extern)
 - Gebruik externe SSD op examen is toegelaten

Installatie VM

- Zie document op BB
 - Bijlage 1 installatie VMWare Workstation.pdf
 - Opgelet: installeer VM's van Windows Server 2019 en Windows 10 best **met BIOS** en niet met UEFI (zie verderop)

Installatie VM

• De VM waarop je Hyper-V gaat installeren stel je, na installatie, in op Hyper-V (unsupported)

Installatie VM

• Maak backups van de Vmware VM's!!!

Voordelen Server virtualisatie

• Efficient:

- One-machine-one-function model vaak onderbelast (10-15% piek...)
 - Oplossing:
 - Verwijder je onderbelaste fysieke servers.
 - Maak ze virtueel op 1 fysiek systeem.
 - Gebruikt onderliggende hardware wél efficiënter.

• Flexibel:

- Makkelijk om testomgeving te bouwen.
- Makkelijk te vervangen door andere merken hardware.
- Bij overbelasting: Voeg snel extra servers toe.

• Continuïteit:

Oude applicaties/OS'en lang laten meegaan (legacy)

Voordelen Server virtualisatie

- Snel wijzigen en terugdraaien van wijzigingen VM snapshots:
 - Staat van VM op elk moment bewaarbaar.
 - Maak eerst snapshot.
 - Dan pas patch/update/installatie testen.
 - Niet toepasbaar voor domeincontroller
- **Disaster recovery** na crash van host: (kan ook preventief)
 - Zet laatste snapshot van VM op andere host. ⇒ minder downtime
- Kosten besparen:
 - Minder: hardware, ruimte, elektriciteit, minder warmte (minder koeling)
 - Eenvoudig beheer, minder beheerrollen
 - Minder downtime
- Milieu: Minder CO2. (vergroenen van datacenter)

Nadelen Server virtualisatie

- De host neemt alle guests mee down
 - Bij crash of reboot na update => guests ook
 - Oplossing:
 - maak host redundant
 - Preventief: monitor storingen en verplaats VM's naar andere host.
- Duurdere hardware kost

⇒ maar lagere totale

- CPU's, RAM,...
- Redudantie.
- Hot-swappable componenten.
- Sneller netwerk.
- Extra laag in ICT-infrastructuur
 - Extra software, maar minder verschillende hardware of beheerders

Nadelen Server virtualisatie

- Wildgroei (VM-sprawl):
 - Makkelijker VM toevoegen dan extra hardware
 - ⇒ sneller teveel VM's en minder overzicht over wat ze doen
- Licenties
 - Elke VM heeft eigen licentie van OS nodig.
 Microsoft :(Linux :)
- Gedeelde netwerkkaart tussen VM's vraagt veel bandbreedte
- Makkelijker oude software draaien
 - Ook een nadeel ⇒ minder snel vernieuwd.
- Niet alle hardware ondersteund
 - Guests geraken niet aan hostcomponenten of randapparaten
- Niet handig voor zware applicaties: vb / databaseserver met veel transacties

Containers

- Containers ⇒ OS virtualiseren
- VM => hardware virtualiseren
- Containers
 - Maar 1 besturingssysteem en kernel:
 - op host (hardware-node)
 - Containers = Virtual Environments (VE) ipv VM
 - Delen kernel
 - ⇒ voor vergelijkbare omgevingen (webhosting)

Containers

- Voordelen:
 - Slechts 1 OS onderhouden.
 - Sneller dan VM's: maar 1 kernel
 - Minder geheugen nodig voor app/service (gedeeld).
- Nadelen:
 - Minder isolatie tussen guests van bij VM's (gedeelde kernel).
 - ⇒ Minder goed voor tests.
- Host MOET redundant gemaakt worden! ⇒ best zuiver houden
- Voor elke container is Windows-licentie nodig...

Containers in praktijk

- Docker:
 - Voor containers
 - Belangrijkste standaard in "container-tech".

- Google Kubernetes:
 - Orchestreren van meerdere containers.
 - Automatisch deployen en verdelen over computerclusters
 - High availability.
- Docker Swarm:
 - Eenvoudiger dan Kubernetes

Virtuele appliances (VA's)

- **Appliance**: ⇒ server blinkt uit in 1 service/functie
- Virtuele appliance:
 - Geen kastje nodig.
 - Ligt aan de toepassing of dit mogelijk is.

Voordelen:

- Minder verschillende hardwarecomponenten nodig.
- Minder fysieke ruimte.
- Minder energieverbruik.

Public cloud

- Public cloud:
 - Computers, servers, routers, switches
 - Die jij niet bezit!
 - Staat op:
 - Cloud provider:
 - Biedt infrastructuur aan tegen betaling.
- Voorbeeld:
 - - Datacenters van Microsoft.
 - Cloud provider.

Cloud modellen: waar wil je controle over?

• laaS: Infrastructure as a Service

⇒ Sysadmins, netwerkarchitects

• PaaS: Platform as a Service

⇒ software ontwikkelaars

• SaaS: Software as a Service

⇒ gebruikers

Tegen volgende les

- VMware Workstation draait op je laptop.
 - Zie document Bijlage 1 installatie VMWare Workstation.pdf
- Kies de Custom manier bij aanmaken VM: klassieke BIOS in plaats van UEFI!
- Gebruik MBR en niet GPT!
- portal.azure.com > Education > Software
 - Maak Windows Server 2019 VM aan: Windows Server 2019 Datacenter Engels (updated maart 2023)
 - Maak Windows 10 VM aan: Windows 10 Education Nederlands, version 22H2 DVD
- VMware Tools installeren op de Windows Server 2019 virtuele machine.