

Shenzhen Huatongwei International Inspection Co., Ltd.

Keji S,12th, Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China http://www.szhtw.com.cn

Phone: 86-755-26748099

Fax:86-755-26748089

yuchao.wang Wemliogh

FCC PART 90 TEST REPORT

FCC Part 90

Report Reference No..... TRE1312008201 R/C: 26433

YAMRD62XVHF FCC ID.....

Compiled by

(position+printed name+signature)..: File administrators Jerome Luo

Supervised by

(position+printed name+signature)... Test Engineer Yuchao Wang

Approved by

(position+printed name+signature)... Manager Wenliang Li

Date of issue.....: Jan 11, 2014

Shenzhen Huatongwei International Inspection Co., Ltd Testing Laboratory Name

Address..... Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China

Applicant's name..... **Hytera Communications Corporation Ltd.**

HYT Tower, Hi-Tech Industrial Park North, Nanshan Address....:

District, Shenzhen China. 518057

Test specification::

Standard FCC Part 90/FCC Part 2/ FCC Part 15B

TRF Originator...... Shenzhen Huatongwei International Inspection CO., Ltd

Master TRF.....: Dated 2006-06

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Digital Wall-mounted Repeater

Trade Mark: Hytera

Manufacturer: **Hytera Communications Corporation Ltd.**

Model/Type reference....: RD622 VHF

Listed Models RD620 VHF,RD625 VHF,RD626 VHF,RD628 VHF

Ratings....: DC 13.6V/AC 120V/60Hz

Modulation: FM&4FSK

Channel Separation..... 12.5KHz

Rated Power 25 Watts(43.98dBm)/1Watts(30.00dBm)

Operation Frequency Range From 136 MHz to 174 MHz

Result....: **PASS**

TEST REPORT

Test Report No. :	TRE1312008201	Jan 11, 2014
	IKE 1312006201	Date of issue

Equipment under Test : Digital Wall-mounted Repeater

Model /Type : RD622 VHF

Listed Models : RD620 VHF,RD625 VHF,RD626 VHF,RD628 VHF

Applicant : Hytera Communications Corporation Ltd.

Address : HYT Tower, Hi-Tech Industrial Park North, Nanshan

District, Shenzhen China. 518057

Manufacturer : Hytera Communications Corporation Ltd.

Address : HYT Tower, Hi-Tech Industrial Park North, Nanshan

District, Shenzhen China. 518057

Test Result	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u> </u>	IEST STANDARDS	4
2.	SUMMARY	5
	<u> </u>	
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment under Test	5
2.4.	Short description of the Equipment under Test (EUT)	6
2.5.	EUT Configuration	6
2.6.	EUT operation mode	6
2.7.	EUT configuration	6
2.8.	Related Submittal(s) / Grant (s)	6
2.9.	Modifications	6
2.10.	Note	7
<u>3.</u>	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	9
3.4.	Configuration of Tested System	9
3.5.	Statement of the measurement uncertainty	9
3.6.	Test Description	9
3.7.	Equipments Used during the Test	10
<u>4.</u>	TEST CONDITIONS AND RESULTS	12
4.1.	Conducted Emissions Test	12
4.2.	Occupied Bandwidth and Emission Mask Test	18
4.3.	Transmitter Radiated Spurious Emssion	32
4.4.	Spurious Emssion on Antenna Port	37
4.5.	Modulation Charcateristics	69
4.6.	Frequency Stability Test	74
4.7.	Maximum Transmitter Power	77
4.8.	Transmitter Frequency Behavior	90
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	94
6.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	96

Report No.: TRE1312008201 Page 4 of 106 Issued:2014-01-11

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 90:2012: PRIVATE LAND MOBILE RADIO SERVICES.

47 CFR FCC Part 15 Subpart B:2012 - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

TIA/EIA 603 D:June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

Report No.: TRE1312008201 Page 5 of 106 Issued:2014-01-11

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Dec 20, 2013
Testing commenced on		Dec 22, 2013
Testing concluded on	:	Jan 11, 2014

2.2. Product Description

The **Hytera Communications Corporation Ltd.**'s Model: RD622 VHF or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Digital Wall-mounted Repeater			
Model Number	RD620 VHF, RD622 VHF, RD625 VHF, RD626 VHF, RD628 VHF			
FCC ID	YAMRD62XVHF			
Rated Output Power	25 Watts(43.98dBm)	/1 Watts(30.00dBm)		
Support data rate	9.6kbps			
	FM for Analog Voice			
	4FSK for Digital Voice	e/Digital Data		
Modilation Type	4FSK for Digital Data			
Modifation Type	Analog	11K0F3E for 12.5KHz Channel Separation		
	Digital	7K60FXD for Digital Data only		
		7K60FXW for Digital Data & Digital Voice		
	Analog Voice	12.5KHz		
Channel Separation	Digital Voice/Data	12.5KHz		
	Digital Data	12.5KHz		
Antenna Type	External			
Frequency Range	From 136 MHz to 174 MHz			
Maximum Transmitter Power	Analog	29.58W for 12.5 KHz Channel Separation		
Maximum Hansimiller Fower	Digital	29.79W for 12.5 KHz Channel Separation		

Note: The product has the same digital working characters when operating in both two digitized voice/data mode (7K60FXD and 7K60FXW). So only one set of test results for digital modulation modes are provided in this test report.

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 13.60V/AC 120V/60Hz

Test frequency list

Modulation Type	Test Channel	Channel Separation	Test Frequency (MHz)
	Ch1		138.5000 MHz
Analog/FM	Ch2	12.5KHz	155.5000 MHz
_	Ch3		173.5000 MHz
Digital/4FSK	Ch5		138.5000 MHz
	Ch6	12.5KHz	155.5000 MHz
	Ch7		173.5000 MHz

Report No.: TRE1312008201 Page 6 of 106 Issued:2014-01-11

2.4. Short description of the Equipment under Test (EUT)

136-174 MHz V frequency band Digital Wall-mounted Repeater.

For more details, refer to the user's manual of the EUT.

2.5. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.6. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

EUT operation mode no.	Description of operation mode	Additional information
Op 1	FM+BW12.5KHz+TX	The equipment is set with FM modulation and 12.5KHz bandwidth for transmitter at maximum rated power,powered by AC 120V/60Hz
Op 2	FM+BW12.5KHz+TX	The equipment is set with FM modulation and 12.5KHz bandwidth at maximum rated power for transmitter, powered by DC 13.60V
Op 3	FM+BW12.5KHz+TX	The equipment is set with FM modulation and 12.5KHz bandwidth for transmitter at minimum rated power,powered by AC 120V/60Hz
Op 4	FM+BW12.5KHz+TX	The equipment is set with FM modulation and 12.5KHz bandwidth at minimum rated power for transmitter, powered by DC 13.60V
Op 5	4FSK+BW12.5KHz+TX	The equipment is set with 4FSK modulation and 12.5KHz bandwidth at maximum rated power for transmitter, powered by AC 120V/60Hz
Op 6	4FSK+BW12.5KHz+TX	The equipment is set with 4FSK modulation and 12.5KHz bandwidth at maximum rated power for transmitter,powered by DC 13.60V
Op 7	4FSK+BW12.5KHz+TX	The equipment is set with 4FSK modulation and 12.5KHz bandwidth at minimum rated power for transmitter,powered by AC 120V/60Hz
Op 8	4FSK+BW12.5KHz+TX	The equipment is set with 4FSK modulation and 12.5KHz bandwidth at minimum rated power for transmitter, powered by DC 13.60V
Op 9	Standby	Standby Mode, powered by AC 120V/60Hz
Op 10	Standby	Standby Mode, powered by DC 13.60V

2.7. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- $\ensuremath{\bigcirc}$ supplied by the lab

	Power Cable	Length (m):	3.00
		Shield :	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer:	/
		Model No.:	/

2.8. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: YAMRD62XVHF** filing to comply with FCC Part 90 &FCC Part 2&FCC Part 15B Rules.

2.9. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1312008201 Page 7 of 106 Issued:2014-01-11

2.10. Note

1. The EUT is a V frequency band (136-174MHz) Digital Wall-mounted Repeater, The functions of the EUT listed as below:

	Test Standards	Reference Report
Radio	FCC Part 90	TRE1312008201
MPE	Oet 65	TRE1312008202

Report No.: TRE1312008201 Page 8 of 106 Issued:2014-01-11

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar. 01, 2012. Valid time is until Feb. 28, 2015.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept. 30, 2015.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date Jul. 01, 2009, valid time is until Jun. 30, 2015.

IC-Registration No.: 5377A

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-anechoic chamber $(12.2m\times7.95m\times6.7m)$ and Shielded Room $(8m\times4m\times3m)$ of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2010. Valid time is until May 06, 2013.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.65 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.6. Test Description

Test specification clause	Test case	Verdict
FCC Part 15.107	Conducted Emission	PASS
FCC Part 90.205	Maximum Transmitter Power	PASS
FCC Part 90.207	Modulation Characteristic	PASS
FCC Part 90.209	Occupied Bandwidth	PASS
FCC Part 90.210	Emission Mask	PASS
FCC Part 90.213	Frequency Stability	PASS
FCC Part 90.214	Transmitter Frequency Behavior	PASS

Report No.: TRE1312008201 Page 10 of 106 Issued:2014-01-11

FCC Part 90.210	Transmitter Radiated Spurious Emssion	PASS
FCC Part 90.210	Spurious Emssion On Antenna Port	PASS
FCC Part 15.109	Receiver Radiated Spurious Emssion	N/A ^[2]
FCC Part 15.109	Receiver Conducted Spurious Emssion	N/A ^[2]

- Remark:1.The product was continuous transmitter after receive signal to activate transmitter;
 2.The product can not state only receiver mode and the product was continuous transmitter after receive signal to activate transmitter;
 - 3. The measurement uncertainty is not included in the test result.

3.7. Equipments Used during the Test

AC Power Conducted E	AC Power Conducted Emission								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	10/26/2014					
EMI Test Receiver	Rohde&Schwarz	ESCS 30	100038	10/26/2014					
Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	10/26/2014					
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A					
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/26/2014					

DC Power Conducted E	mission			
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Artificial Mains	Rohde&Schwarz	ESH2-Z6	100210	10/26/2014
Artificial Mains	Rohde&Schwarz	ESH2-Z6	100211	10/26/2014
EMI Test Receiver	Rohde&Schwarz	ESCS 30	100038	10/26/2014
Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	10/26/2014
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/26/2014

Modulation Characteristic							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/26/2014			

Frequency Stability								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/26/2014				
Signal Generator	Rohde&Schwarz	SMT03	100059	10/26/2014				
Climate Chamber	ESPEC	EL-10KA	05107008	10/26/2014				

Maximum Transmitter Power & Spurious Emssion On Antenna Port & Occupied Bandwidth & Emission Mask							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Receiver	Rohde&Schwarz	ESI 26	100009	10/26/2014			
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/26/2014			
High-Pass Filter	Anritsu	MP526B	6220875256	10/26/2014			
High-Pass Filter	Anritsu	MP526D	6220878392	10/26/2014			
Spectrum Analzyer	Aglient	E4407B	MY44210775	10/26/2014			
Spectrum Analzyer	Rohde&Schwarz	FSP40	1164.4391.40	10/26/2014			

Transient Frequency Be	Transient Frequency Behavior								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Signal Generator	Rohde&Schwarz	SMT03	100059	10/26/2014					
Storage Oscilloscope	Tektronix	TDS3054B	B033027	10/26/2014					
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/26/2014					

Transmitter Radiated Sp	ourious Emssion			
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Ultra-Broadband Antenna	Rohde&Schwarz	HL562	100015	10/26/2014
EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	10/26/2014
RF Test Panel	Rohde&Schwarz	TS / RSP	335015/0017	N/A
HORN ANTENNA	Rohde&Schwarz	HF906	100039	10/26/2014
Turntable	ETS	2088	2149	N/A
Antenna Mast	ETS	2075	2346	N/A
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/26/2014
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	10/26/2014
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	10/26/2014
HORN ANTENNA	ShwarzBeck	9120D	1012	10/26/2014
HORN ANTENNA	ShwarzBeck	9120D	1011	10/26/2014
TURNTABLE	MATURO	TT2.0		N/A
ANTENNA MAST	MATURO	TAM-4.0-P		N/A

The calibration interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

TEST APPLICABLE

The EUT was tested according to ANSI C63.4 - 2009. The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 u Henry as specified by section 5.1 of ANSI C63.4 - 2009. Cables and peripherals were moved to find the maximum emission levels for each frequency.

TEST CONFIGURATION

For AC Power

For DC Power

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 If a EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

- 5 If a EUT received DC 13.60V power through a Impedance Stabilization Network (ISN) which supplied power source and was grounded to the ground plane.
- 6 All support equipments received AC power from a second LISN, if any.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 8 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 9 During the above scans, the emissions were maximized by cable manipulation.

Conducted Power Line Emission Limit

For intentional device, according to § 15.207(a) and RSS-Gen Section 7.2.4 for AC Power Conducted Emission Limits is as following:

Eraguanav	Maximum RF Line Voltage (dBμV)						
Frequency (MHz)	CLA	SS A	CLASS B				
(IVITIZ)	Q.P.	Ave.	Q.P.	Ave.			
0.15 - 0.50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	56	46			
5.00 - 30.0	73	60	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Remark: we tested all Op 1 to Op 10, recorded worst case at Op 1, Op 2, Op 5 and Op 6.

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

70 E		,,					,,			
60 -							l 			
50 -	- 4 - 4					4		1 1 1 1	1	
	11/1/24 11	Alkhi Mu i			i			- 1 1 1 1	į	
40		/\××/\	MANAGE A	A	A I I I	أربائيهمال المتلاور				
30 ₩										
		u 11 11 11 11 11 11 11 11 11 11 11 11 11			AL AND A	Are .	والأرافق الماري	All Land	Lucia Manual Maria	Mark Street
20	A-7 /A-V/	W W	Mary !		i l atilitation or		WAR THE STATE OF T	All Land	San Jan	must be
	~~/ \ _\ √~\\		Markal .					And the second	March March Constitution of the Constitution o	aliting and
20	Λ -Λ \ Λ -ΛΛ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					March Constitution	A COLUMN TO A COLU	Physical Property of the Parket	Algrange and
20 d 10 - 0 -	4~- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	300k 400k	600k	800k 1M	2M	3M 4	M 5M 6N	4 8M 10M	M 20N	1 30

MEASUREMENT RESULT: "HTW140113319_fin"

1	/13/2014 8:0	5PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.202000	44.30	11.8	64	19.2	QP	L1	GND
	0.306000	41.70	10.8	60	18.4	QP	L1	GND
	0.354000	35.10	10.7	59	23.8	QP	L1	GND
	0.370000	35.50	10.6	59	23.0	QP	L1	GND
	0.394000	40.20	10.6	58	17.8	OP	T.1	GND

MEASUREMENT RESULT: "HTW140113319_fin2"

1/13/2014 8:0	5PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.398000	39.50	10.6	48	8.4	AV	L1	GND
0.462000	38.00	10.4	47	8.7	AV	L1	GND
0.662000	37.60	10.4	46	8.4	AV	L1	GND
0.926000	36.80	10.5	46	9.2	AV	L1	GND
2.310000	37.30	10.5	46	8.7	AV	L1	GND
4.754000	37.30	10.5	46	8.7	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW140113320_fin"

1/13/2014 8:0	9PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.202000	43.30	11.8	64	20.2	QP	N	GND
0.266000	45.60	11.1	61	15.6	QP	N	GND
0.286000	46.20	10.9	61	14.4	QP	N	GND
0.318000	38.40	10.7	60	21.4	QP	N	GND
0.398000	42.20	10.6	58	15.7	OP	N	GND

MEASUREMENT RESULT: "HTW140113320 fin2"

1/13/2014 8:0	9PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
3.958000	42.50	10.5	46	3.5	AV	N	GND
4.222000	42.80	10.5	46	3.2	AV	N	GND
4.486000	43.10	10.5	46	2.9	AV	N	GND
4.550000	41.50	10.5	46	4.5	AV	N	GND
4.750000	43.20	10.5	46	2.8	AV	N	GND
4.818000	41.20	10.5	46	4.8	AV	N	GND

SCAN TABLE: "Voltage (9K-30M) FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW140113326_fin"

1/13/2014 8:3	29PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.282000	54.10	11.0	61	6.7	QP	L1	GND
0.538000	45.90	10.4	56	10.1	QP	L1	GND
0.790000	41.00	10.4	56	15.0	QP	L1	GND
1.450000	38.30	10.5	56	17.7	QP	L1	GND
1.978000	38.30	10.5	56	17.7	QP	L1	GND
4.742000	40.90	10.5	56	15.1	QP	L1	GND

MEASUREMENT RESULT: "HTW140113326_fin2"

1/13/2014 8:2	9PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.286000	46.50	10.9	51	4.1	AV	L1	GND
0.658000	39.00	10.4	46	7.0	AV	L1	GND
4.214000	39.40	10.5	46	6.6	AV	L1	GND
4.478000	40.30	10.5	46	5.7	AV	L1	GND
4.742000	40.90	10.5	46	5.1	AV	L1	GND
4.810000	38.90	10.5	46	7.1	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW140113327_fin"

1/13/2014 8:	:32PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.282000	54.00	11.0	61	6.8	QP	L1	GND
0.530000	46.00	10.3	56	10.0	QP	L1	GND
0.790000	40.80	10.4	56	15.2	QP	L1	GND
1.450000	38.00	10.5	56	18.0	QP	L1	GND
1.974000	38.50	10.5	56	17.5	QP	L1	GND
2.566000	36.60	10.5	56	19.4	QP	L1	GND

MEASUREMENT RESULT: "HTW140113327_fin2"

1/13/2014	8:32PM						
Frequenc MH		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.28600	0 46.40	10.9	51	4.2	AV	L1	GND
0.65800	0 39.00	10.4	46	7.0	AV	Ll	GND
4.21800	0 39.10	10.5	46	6.9	AV	L1	GND
4.47800	0 39.70	10.5	46	6.3	AV	L1	GND
4.74200	0 40.60	10.5	46	5.4	AV	Ll	GND
4.81000	0 39.80	10.5	46	6.2	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

Level [dBµV] 80 70 40 30 20 10 0 8M 10M 20M 30M 150k 300k 400k 600k 800k 1M 2M 3M 4M 5M 6M Frequency [Hz] x x x MES HTW140113323_fin

MEASUREMENT RESULT: "HTW140113323_fin"

13/2014 8:1	7PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.186000	40.30	12.2	64	23.9	QP	L1	GND
0.254000	42.50	11.2	62	19.1	QP	L1	GND
0.398000	39.60	10.6	58	18.3	QP	L1	GND
0.402000	34.50	10.6	58	23.3	QP	L1	GND
2.834000	37.20	10.5	56	18.8	QP	L1	GND
	Frequency MHz 0.186000 0.254000 0.398000 0.402000	Frequency MHz dBµV 0.186000 40.30 0.254000 42.50 0.398000 39.60 0.402000 34.50	Frequency MHz Level Transd dBuV dB 0.186000 40.30 12.2 0.254000 42.50 11.2 0.398000 39.60 10.6 0.402000 34.50 10.6	Frequency MHz dBµV dB dBµV 0.186000 40.30 12.2 64 0.254000 42.50 11.2 62 0.398000 39.60 10.6 58 0.402000 34.50 10.6 58	Frequency MHz dBμV dB Limit dBμV dB 0.186000 40.30 12.2 64 23.9 0.254000 42.50 11.2 62 19.1 0.398000 39.60 10.6 58 18.3 0.402000 34.50 10.6 58 23.3	Frequency MHz Level Transd dB Limit dB Margin dB Detector dB V 0.186000 40.30 12.2 64 23.9 QP 0.254000 42.50 11.2 62 19.1 QP 0.398000 39.60 10.6 58 18.3 QP 0.402000 34.50 10.6 58 23.3 QP	Frequency MHz Level dBμV Transd dB dBμV Limit dBμV Margin dB Detector Line dB 0.186000 40.30 12.2 64 23.9 QP L1 0.254000 42.50 11.2 62 19.1 QP L1 0.398000 39.60 10.6 58 18.3 QP L1 0.402000 34.50 10.6 58 23.3 QP L1

MEASUREMENT RESULT: "HTW140113323_fin2"

1/13/2014 8:1	7PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.394000	39.90	10.6	48	8.1	AV	L1	GND
0.462000	38.10	10.4	47	8.6	AV	L1	GND
0.658000	38.50	10.4	46	7.5	AV	L1	GND
0.922000	38.00	10.5	46	8.0	AV	L1	GND
0.990000	37.50	10.5	46	8.5	AV	L1	GND
4.550000	37.20	10.5	46	8.8	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

0 L	-T	F F	1 1	-T-I-T		- T	T	-T	T-T	T T			
0		 	+ <u>+</u> -+	-+- -+-		+	+	-+		- + - + -	+		
0			- + +	- + - - + -		+	+	-+		1 1	1	1	
0			- - 	-++-		-	i	-i					
0 1		Marythal	ME	- 10	atanta	lichidi	it.ititut	11.11					
0	hun	سالسالما	الألسا			vasmalinti	Dieneliji	(MANAGAM)		orthophylosophia	inal particular design	PHA TOTAL STREET	
0	L	LL_	1 1	MMMMM				Build has Lit	and a history	Marine Land	A Section .	Maganita	
			1 1			13.0	i	į.	1 1	1 1		-	
0 150k	30	0k 400k	600k	800k 1M		2M equency [3M Hz]	4M	5M 6M	8M	10M	20M	1 3

MEASUREMENT RESULT: "HTW140113324_fin"

1	/13/2014 8:2	OPM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.262000	46.10	11.2	61	15.3	QP	N	GND
	0.266000	46.90	11.1	61	14.3	QP	N	GND
	0.278000	46.30	11.0	61	14.6	QP	N	GND
	0.538000	36.90	10.4	56	19.1	QP	N	GND
	3.494000	40.10	10.5	56	15.9	OP	N	GND
	4.814000	44.00	10.5	56	12.0	QP	N	GND

MEASUREMENT RESULT: "HTW140113324_fin2"

1/13/2014	8:20PM						
Frequenc M		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
4.21800	00 42.50	10.5	46	3.5	AV	N	GND
4.28600	00 42.10	10.5	46	3.9	AV	N	GND
4.48200	00 42.90	10.5	46	3.1	AV	N	GND
4.55000	00 43.00	10.5	46	3.0	AV	N	GND
4.74600	00 43.20	10.5	46	2.8	AV	N	GND
4.81400	00 43.70	10.5	46	2.3	AV	N	GND

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW140113330_fin"

1/13/2014 8:4	41PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.282000	54.00	11.0	61	6.8	QP	L1	GND
0.530000	46.00	10.3	56	10.0	QP	L1	GND
0.790000	40.90	10.4	56	15.1	QP	L1	GND
1.978000	39.10	10.5	56	16.9	QP	L1	GND
2.570000	38.70	10.5	56	17.3	QP	L1	GND
4.746000	41.10	10.5	56	14.9	QP	L1	GND

MEASUREMENT RESULT: "HTW140113330_fin2"

1/13/2014 8:4	1PM							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.282000	47.30	11.0	51	3.5	AV	L1	GND	
3.954000	39.60	10.5	46	6.4	AV	L1	GND	
4.218000	40.30	10.5	46	5.7	AV	L1	GND	
4.482000	40.80	10.5	46	5.2	AV	L1	GND	
4.746000	41.10	10.5	46	4.9	AV	L1	GND	
4.810000	39.90	10.5	46	6.1	AV	L1	GND	

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW140113329_fin"

1/13/2014 8:	38PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.282000	55.70	11.0	61	5.1	QP	N	GND
0.558000	48.80	10.4	56	7.2	QP	N	GND
0.790000	45.00	10.4	56	11.0	QP	N	GND
1.118000	44.10	10.6	56	11.9	QP	N	GND
1.450000	40.80	10.5	56	15.2	QP	N	GND
1.714000	42.40	10.5	56	13.6	QP	N	GND

MEASUREMENT RESULT: "HTW140113329_fin2"

1/13/2014 8	:38PM						
Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.286000	48.10	10.9	51	2.5	AV	N	GND
3.690000	43.00	10.5	46	3.0	AV	N	GND
3.954000	43.50	10.5	46	2.5	AV	N	GND
4.218000	43.80	10.5	46	2.2	AV	N	GND
4.482000	43.90	10.5	46	2.1	AV	N	GND
4.746000	43.90	10.5	46	2.1	AV	N	GND

4.2. Occupied Bandwidth and Emission Mask Test

TEST APPLICABLE

- (a). Occupied Bandwidth: The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.
- (b). Emission Mask B: For transmitters that are equipped with an audio low-pass filter pursuant to §90.211(a), the power of any emission must be below the unmodulated carrier power (P) as follows:
 - (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
 - (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
 - (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.
- (c). Emission Mask D, 12.5 kHz channel bandwidth equipment: For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
 - (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
 - (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd -2.88 kHz) dB.
 - (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

TEST CONFIGURATION

TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- The EUT was modulated by 2.5 KHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing) and 5 kHz (25 kHz channel spacing).
- 3 Set EUT as normal operation.
- 4 Set SPA Center Frequency = fundamental frequency, RBW=300Hz, VBW= 3 KHz, span =50 KHz.
- 5 Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.
- 6 Set SPA Center Frequency=fundamental frequency, set =300Hz, VBW=1 KHz, span=50 KHz for 12.5 channel spacing.

TEST RESULTS

Remark: We tested Op 1 to Op 10, reocrded worst case at Op 1, Op 2, Op 5 and Op 6.

4.2.1 Occupied Bandwidth

Modulation	Channel Sparation	Operation Mode	Test Channel	Test Frequency (MHz)	Occupied Bandwidth (KHz)				
Туре	Sparation	Wiode	Onamici	(1411 12)	99%	26dB			
			Ch1	138.5	5.70	10.30			
		Op 1	Ch2	155.5	5.70	10.40			
Analog/EM	12.5KHz		Ch3	173.5	9.70	10.50			
Analog/FM	12.5KHZ	Op 2	Ch1	138.5	5.70	10.40			
			Ch2	155.5	5.70	10.40			
			Ch3	173.5	9.50	10.50			
			Ch7	138.5	7.60	9.60			
		Op 5	Ch8	155.5	7.60	9.50			
Digital/4FCV	12.5KHz		Ch9	173.5	7.60	9.50			
Digital/4FSK	12.5KHZ		Ch7	138.5	7.60	9.80			
		Op6	Ch8	155.5	7.60	10.00			
			Ch9	173.5	7.60	9.50			
	Limit			KHz for 12.5KHz CI	hannel Separt	tion			
	Test Results			PASS					

Plots of 99% and 26dB Bandwidth Measurement

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency	Occi Bandwid	ipied Ith (KHz)	Limit (KHz)	Results
rype	Separation	Wiode	Chamilei	(MHz)	99%	26dB	(KHZ)	
FM	12.5 KHz	Op 1	Ch1	138.5	5.70	10.30	11.25	PASS

Date: 3.JAN.2014 17:04:39

Report No.: TRE1312008201 Page 20 of 106 Issued:2014-01-11

Modulation	Channel Separation	<u> </u>	Test Channel	Test Frequency	Occupied Bandwidth (KHz)		Limit	Results
Туре	Separation	Wode	Channel	(MHz)	99%	26dB	(KHz)	
FM	12.5 KHz	Op 1	Ch2	155.5	5.70	10.40	11.25	PASS

Date: 3.JAN.2014 17:06:48

Modulation Type	Channel Separation	Operation Mode	eration Test Frequency Band			ıpied Ith (KHz)	Limit (KHz)	Results	
rype	Separation	Wode	Chamilei	(MHz)	99%	26dB	(KHZ)		l
FM	12.5 KHz	Op 1	Ch3	173.5	9.70	10.50	11.25	PASS	!

Date: 3.JAN.2014 17:08:52

Report No.: TRE1312008201 Page 21 of 106 Issued:2014-01-11

Modulation	Channel Separation	Operation Mode	Test Channel	Test Frequency	Occupied Bandwidth (KHz)		Limit	Results
Туре	Separation	Wode	Channel	(MHz)	99%	26dB	(KHz)	
FM	12.5 KHz	Op 2	Ch1	138.5	5.70	10.40	11.25	PASS

Date: 3.JAN.2014 14:18:12

Modulation Type	Channel Separation	Operation Test Frequency		Occupied Bandwidth (KHz)		Limit (KHz)	Results		
ı ype	Separation	Wiode	Chamilei	(MHz)	99%	26dB	(KHZ)		
FM	12.5 KHz	Op 2	Ch2	155.5	5.70	10.40	11.25	PASS	l

Date: 3.JAN.2014 14:23:27

Report No.: TRE1312008201 Page 22 of 106 Issued:2014-01-11

	Modulation Type	Channel		Test Channel	Test Frequency	Occupied Bandwidth (KHz)		Limit	Results
	rype	Separation	Mode	Channel	(MHz)	99%	26dB	(KHz)	
ſ	FM	12.5 KHz	Op 2	Ch3	173.5	9.50	10.50	11.25	PASS

Date: 3.JAN.2014 14:27:38

Modulation Type	Channel Separation	Operation Mode	Frequency Bandwidt			Limit (KHz)	Results		
rype	Separation	Wode	Chamilei	(MHz)	99%	26dB	(KHZ)		
4FSk	12.5 KHz	Op 5	Ch4	138.5	7.60	9.60	11.25	PASS	

Date: 3.JAN.2014 17:20:48

Report No.: TRE1312008201 Page 23 of 106 Issued:2014-01-11

Modulation	Channel Separation	Operation Mode	Test Channel	Test Frequency		ipied Ith (KHz)	Limit (KHz)	Results
Туре	Separation	Wode	Channel	(MHz)	99%	26dB	(KHZ)	
4FSK	12.5 KHz	Op 5	Ch5	155.5	7.60	9.50	11.25	PASS

Date: 3.JAN.2014 17:24:23

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency		ıpied Ith (KHz)	Limit (KHz)	Results	
rype	Separation	Wode	Chamilei	(MHz)	99%	26dB	(KHZ)		
4FSK	12.5 KHz	Op 5	Ch6	173.5	7.60	9.50	11.25	PASS	

Date: 3.JAN.2014 17:28:53

Report No.: TRE1312008201 Page 24 of 106 Issued:2014-01-11

	Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency	Occu Bandwid	ipied Ith (KHz)	Limit (KHz)	Results
	rype	Separation	Mode	Channel	(MHz)	99%	26dB	(KHZ)	
ĺ	4FSk	12.5 KHz	Op 6	Ch4	138.5	7.60	9.80	11.25	PASS

Date: 3.JAN.2014 14:55:44

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency		ıpied lth (KHz)	Limit (KHz)	Results	
rype	Separation	Wode	Chamilei	(MHz)	99%	26dB	(KHZ)		
4FSK	12.5 KHz	Op 6	Ch6	155.5	7.60	10.0	11.25	PASS	

Report No.: TRE1312008201 Page 25 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency		ipied Ith (KHz)	Limit (KHz)	Results
i ype	Separation	Wode	Channel	(MHz)	99%	26dB	(KHZ)	
4FSK	12.5 KHz	Op 6	Ch7	173.5	7.60	9.50	11.25	PASS

Date: 3.JAN.2014 15:04:41

4.2.2 Emission Mask

Modulation Type	Channel Sparation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)		
			Ch1	138.5	D	300		
		Op 1	Ch2	155.5	D	300		
Analog/EM	12.5 KHz	-	Ch3	173.5	D	300		
Analog/FM	12.5 KHZ		Ch1	138.5	D	300		
		Op 2	Ch2	155.5	D	300		
	·		Ch3	173.5	D	300		
			Ch7	138.5	D	300		
		Op 5	Ch8	155.5	D	300		
Digital/4FSK	12.5 KHz		Ch9	173.5	D	300		
Digital/4F3K	12.3 KHZ		Ch7	138.5	D	300		
	Op 6	Ch8	155.5	D	300			
			Ch9	173.5	D	300		
	Test Results		PASS					

Plots of Emission Mask Measurement

Referred as the attached plot hereinafter

Note: The Black curve represents unmodulated signal.

The Blue curve represents modulated signal.

Report No.: TRE1312008201 Page 26 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
FM	12.5KHz	Op 1	Ch1	138.5	D	300	2.5	PASS

Date: 3.JAN.2014 17:05:13

	Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
I	FM	12.5KHz	Op 1	Ch2	155.5	D	300	2.5	PASS

Date: 3.JAN.2014 17:06:16

Report No.: TRE1312008201 Page 27 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
FM	12.5KHz	Op 1	Ch3	173.5	D	300	2.5	PASS

Date: 3.JAN.2014 17:09:26

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
FM	12.5KHz	Op 2	Ch1	138.5	D	300	2.5	PASS

Date: 3.JAN.2014 14:39:47

Report No.: TRE1312008201 Page 28 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
FM	12.5KHz	Op 2	Ch2	155.5	D	300	2.5	PASS

Date: 3.JAN.2014 14:41:07

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
FM	12.5KHz	Op 2	Ch3	173.5	D	300	2.5	PASS

Date: 3.JAN.2014 14:42:22

Report No.: TRE1312008201 Page 29 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
4FSK	12.5KHz	Op 5	Ch4	138.5	D	300	/	PASS

Date: 3.JAN.2014 17:22:23

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
4FSK	12.5KHz	Op 5	Ch5	155.5	D	300	/	PASS

Date: 3.JAN.2014 17:26:07

Report No.: TRE1312008201 Page 30 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
4FSK	12.5KHz	Op 5	Ch6	173.5	D	300	/	PASS

Date: 3.JAN.2014 17:28:09

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
4FSK	12.5KHz	Op 6	Ch4	138.5	D	300	/	PASS

Report No.: TRE1312008201 Page 31 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
4FSK	12.5KHz	Op 6	Ch5	155.5	D	300	/	PASS

Date: 3.JAN.2014 15:02:44

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Applicable Mask	RBW (Hz)	Audio Freq. (KHz)	Results
4FSK	12.5KHz	Op 6	Ch6	173.5	D	300	/	PASS

Date: 3.JAN.2014 15:07:10

4.3. Transmitter Radiated Spurious Emssion

TEST APPLICABLE

According to the TIA/EIA 603 test method, and according to Section 90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with 12.5 KHz channel bandwidth:

- 1 On any frequency removed from the center of the authorized bandwidth fo to 5.625 KHz removed from fo: Zero dB
- On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) fo of more than 5.625 KHz but no more than 12.5 KHz: At least 7.27dB
- 3 On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) fo of more than 12.5 KHz: At least 50+10 log (P) dB or 70 dB, which ever is lesser attenuation. For transmitters designed to transmit with 25 KHz channel separation and equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as following:
- 1 On any frequency removed from the assigned frequency by more than 50 percent, but no more than 100 percent of the authorized bandwidth: At least 25 dB.
- 2 On any frequency removed from the assigned frequency by more than 100 percent, but no more than 250 percent of the authorized bandwidth: At least 35 dB.
- 3 On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43+10Log (P) dB.

TEST CONFIGURATION

Report No.: TRE1312008201 Page 33 of 106 Issued:2014-01-11

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100KHz,VBW=300KHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=P_{Mea}- P_{Aq} - P_{cl} - G_a

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: $Power(EIRP) = P_{Mea} - P_{cl} - G_{a}$

- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

LIMIT

Modulation Type: FM

FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 11 (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (28.12) = 64.49 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (29.85) = 64.75 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 43.98 dBm.

Limit (dBm) = $43.98-50-10\log 10 (29.85) = -20 dBm$

Modulation Type: 4FSK

FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 11 (12.5 kHz Bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (28.58) = 54.56 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (29.85) = 64.75 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 43.98 dBm.

Limit (dBm) = $43.98-50-10\log 10 (29.85) = -20 dBm$

Note: 1. In general, the worse case attenuation requirement shown above was applied.

- 2. The measurement frequency range from 30 MHz to 5 GHz.
- 3. *** means that the emission level is too low to be measured or at least 20 dB down than the limit.

TEST RESULTS

Remark:We tested Op 1 to Op 8,reocrded worst case at at Op 1,Op 2,Op 5, and Op 6.

	Modulation Type:FM										
	Operation I	Mode: Op 1		Channel Separation:12.5KHz							
	Test Chai	nnel: Ch1			Test Frequei	ncy:138.5MH	Z				
Frequency	P_{Mea}	Path	Antenna	Correction	Peak	Limit	Polarization				
(MHz)	(dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Polarization				
277.00	-50.36	0.87	6.42	2.15	-46.96	-20.00	Н				
415.50	-46.57	1.02	7.35	2.15	-42.39	-20.00	Н				
692.50	-58.34	1.10	8.26	2.15	-53.33	-20.00	Н				
•••	•••	•••	•••	•••	•••	•••	Н				
277.00	-52.67	0.87	6.42	2.15	-49.27	-20.00	V				
415.50	-47.39	1.02	7.35	2.15	-43.21	-20.00	V				
692.50	-59.16	1.10	8.26	2.15	-54.15	-20.00	V				
•••	•••	•••	•••	•••	•••	•••	V				

	Modulation Type:FM										
	Operation I	Mode: Op 1		Channel Separation:12.5KHz							
	Test Chai	nnel: Ch2			Test Frequer	ncy: 155.5MH	z				
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization				
311.00	-51.48	0.92	6.80	2.15	-47.75	-20.00	Н				
466.50	-45.40	1.06	7.89	2.15	-40.72	-20.00	Н				
777.50	-59.18	1.12	8.12	2.15	-54.33	-20.00	Н				
•••	•••	•••	•••	•••	•••	•••	Н				
311.00	-52.46	0.92	6.80	2.15	-48.73	-20.00	V				
466.50	-43.79	1.06	7.89	2.15	-39.11	-20.00	V				
777.50	-60.61	1.12	8.12	2.15	-55.76	-20.00	V				
•••	•••	•••	•••	•••	•••	•••	V				

			Modulation	on Type:FM			
	Operation I	Mode: Op 1			Channel Sepa	ration:12.5Kl	Hz
	Test Chai	nnel: Ch3			Test Frequer	ncy: 173.5MH	Z
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization
347.00	-50.94	0.95	6.80	2.15	-47.24	-20.00	Н
520.50	-45.25	1.10	7.91	2.15	-40.59	-20.00	Н
867.50	-58.15	1.21	8.25	2.15	-53.26	-20.00	Н
•••	•••	•••	•••	•••	•••	•••	Н
347.00	-53.97	0.95	6.80	2.15	-50.27	-20.00	V
520.50	-44.46	1.10	7.91	2.15	-39.80	-20.00	V
867.50	-59.84	1.21	8.25	2.15	-54.95	-20.00	V
•••	•••	•••	•••	•••	•••	•••	V

			Modulation	on Type:FM				
	Operation I	Mode: Op 2		Channel Separation:12.5KHz				
	Test Chai	nnel: Ch1			Test Frequer	ncy:138.5MH	z	
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Polarization			
277.00	-49.38	0.87	6.42	2.15	-45.98	-20.00	Н	
415.50	-45.26	1.02	7.35	2.15	-41.08	-20.00	Н	
692.50	-59.47	1.10	8.26	2.15	-54.46	-20.00	Н	
•••	•••	•••	•••	•••	•••	•••	Н	
277.00	-51.75	0.87	6.42	2.15	-48.35	-20.00	V	
415.50	-44.38	1.02	7.35	2.15	-40.20	-20.00	V	
692.50	-58.92	1.10	8.26	2.15	-53.91	-20.00	V	
•••	•••	•••	•••	•••	•••	•••	V	

	Modulation Type:FM									
	Operation I	Mode: Op 2		Channel Separation:12.5KHz						
	Test Chai	nnel: Ch2			Test Frequer	ncy: 155.5MH	z			
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization			
311.00	-50.75	0.92	6.80	2.15	-47.02	-20.00	Н			
466.50	-46.47	1.06	7.89	2.15	-41.79	-20.00	Н			
777.50	-58.69	1.12	8.12	2.15	-53.84	-20.00	Н			
•••	•••	•••	•••	•••	•••	•••	Н			
311.00	-51.65	0.92	6.80	2.15	-47.92	-20.00	V			
466.50	-44.25	1.06	7.89	2.15	-39.57	-20.00	V			
777.50	-59.37	1.12	8.12	2.15	-54.52	-20.00	V			
•••	•••	•••	•••	•••	•••	•••	V			

	Modulation Type:FM										
	Operation I	Mode: Op 2		(Channel Sepa	ration:12.5Kl	Hz				
	Test Chai	nnel: Ch3			Test Frequer	ncy: 173.5MH	Z				
Frequency	P _{Mea}	Path	Antenna	Correction	Peak	Limit	Polarization				
(MHz)	(dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Folarization				
347.00	-51.57	0.95	6.80	2.15	-47.87	-20.00	Н				
520.50	-46.34	1.10	7.91	2.15	-41.68	-20.00	Н				
867.50	-59.15	1.21	8.25	2.15	-54.26	-20.00	Н				
•••	•••	•••	•••	•••	•••	•••	Н				
347.00	-54.67	0.95	6.80	2.15	-50.97	-20.00	V				
520.50	-45.48	1.10	7.91	2.15	-40.82	-20.00	V				
867.50	-60.38	1.21	8.25	2.15	-55.49	-20.00	V				
•••	•••	•••	•••	•••	•••	•••	V				

Modulation Type:4FSK									
	Operation I	Mode: Op 5		Channel Separation:12.5KHz					
	Test Chai	nnel: Ch4		Test Frequency:138.5MHz					
Frequency (MHz)				Correction (dB)	Peak ERP(dBm)	Limit (dBm)	Polarization		
277.00	-50.26	0.87	6.42	2.15	-46.86	-20.00	Н		
415.50	-44.69	1.02	7.35	2.15	-40.51	-20.00	Н		
692.50	-58.65	1.10	8.26	2.15	-53.64	-20.00	Н		
•••	•••	•••	•••	•••	•••	•••	Н		
277.00	-50.34	0.87	6.42	2.15	-46.94	-20.00	V		
415.50	-44.05	1.02	7.35	2.15	-39.87	-20.00	V		
692.50	-59.25	1.10	8.26	2.15	-54.24	-20.00	V		
•••	•••	•••	•••	•••	•••	•••	V		

Modulation Type: 4FSK								
	Operation I	Mode: Op 5		Channel Separation:12.5KHz				
	Test Chai	nnel: Ch5		Test Frequency: 155.5MHz				
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Polarization			
311.00	-51.68	0.92	6.80	2.15	-47.95	-20.00	Н	
466.50	-45.31	1.06	7.89	2.15	-40.63	-20.00	Н	
777.50	-59.61	1.12	8.12	2.15	-54.76	-20.00	Н	
•••	•••	•••	•••	•••	•••	•••	Н	
311.00	-50.35	0.92	6.80	2.15	-46.62	-20.00	V	
466.50	-45.18	1.06	7.89	2.15	-40.50	-20.00	V	
777.50	-58.64	1.12	8.12	2.15	-53.79	-20.00	V	
•••	•••	•••	•••	•••	•••	•••	V	

Modulation Type: 4FSK									
	Operation I	Mode: Op 5		Channel Separation:12.5KHz					
	Test Chai	nnel: Ch6		Test Frequency: 173.5MHz					
Frequency P _{Mea} Path Antenna				Correction	Peak	Limit	Polarization		
(MHz)	(dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	Folarization		
347.00	-52.64	0.95	6.80	2.15	-48.94	-20.00	Н		
520.50	-45.01	1.10	7.91	2.15	-40.35	-20.00	Н		
867.50	-58.18	1.21	8.25	2.15	-53.29	-20.00	Н		
•••	•••	•••	•••	•••	•••	•••	Н		
347.00	-55.38	0.95	6.80	2.15	-51.68	-20.00	V		
520.50	-44.75	1.10	7.91	2.15	-40.09	-20.00	V		
867.50	-59.18	1.21	8.25	2.15	-54.29	-20.00	V		
•••	•••	•••	•••	•••	•••	•••	V		

Modulation Type:4FSK									
	Operation I	Mode: Op 6		(Channel Separation:12.5KHz				
	Test Char	nnel: Ch4			Test Frequency:138.5MHz				
Frequency	P _{Mea}	Path	Antenna	Correction	Peak	Limit	Polarization		
(MHz)	(dBm)	Loss	Gain	(dB)	ERP(dBm)	(dBm)	i Giarization		
277.00	-51.68	0.87	6.42	2.15	-48.28	-20.00	Н		
415.50	-45.67	1.02	7.35	2.15	-41.49	-20.00	Н		
692.50	-59.64	1.10	8.26	2.15	-54.63	-20.00	Н		
•••	•••	•••	•••	•••		•••	Н		
277.00	-51.45	0.87	6.42	2.15	-48.05	-20.00	V		
415.50	-44.26	1.02	7.35	2.15	-40.08	-20.00	V		
692.50	-58.46	1.10	8.26	2.15	-53.45	-20.00	V		
•••	•••	•••	•••	•••	•••	•••	V		

Modulation Type: 4FSK									
	Operation I	Mode: Op 6			Channel Separation:12.5KHz				
	Test Chai	nnel: Ch5		Test Frequency: 155.5MHz					
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction Peak Limit Pola					
311.00	-52.76	0.92	6.80	2.15	-49.03	-20.00	Н		
466.50	-44.20	1.06	7.89	2.15	-39.52	-20.00	Н		
777.50	-58.64	1.12	8.12	2.15	-53.79	-20.00	Н		
•••	•••	•••	•••	•••	•••	•••	H		
311.00	-51.35	0.92	6.80	2.15	-47.62	-20.00	V		
466.50	-44.78	1.06	7.89	2.15	-40.10	-20.00	V		
777.50	-59.62	1.12	8.12	2.15	-54.77	-20.00	V		
•••	•••	•••	•••	•••	•••	•••	V		

Modulation Type: 4FSK								
	Operation I	Mode: Op 6		Channel Separation:12.5KHz				
	Test Chai	nnel: Ch6		Test Frequency: 173.5MHz				
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction Peak Limit (dB) ERP(dBm) (dBm)				
347.00	-51.75	0.95	6.80	2.15	-48.05	-20.00	Н	
520.50	-45.46	1.10	7.91	2.15	-40.80	-20.00	Н	
867.50	-58.52	1.21	8.25	2.15	-53.63	-20.00	Н	
•••	•••	•••	•••	•••	•••	•••	Н	
347.00	-57.68	0.95	6.80	2.15	-53.98	-20.00	V	
520.50	-44.25	1.10	7.91	2.15	-39.59	-20.00	V	
867.50	-60.06	1.21	8.25	2.15	-55.17	-20.00	V	
•••	•••	•••	•••	•••	•••	•••	V	

Report No.: TRE1312008201 Page 37 of 106 Issued:2014-01-11

4.4. Spurious Emssion on Antenna Port

TEST APPLICABLE

The same as Section 4.3

TEST PROCEDURE

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set to 100 kHz. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range. Set RBW 100 kHz, VBW 300 kHz in the frequency band 30MHz to 1GHz, while set RBW=1MHz.VBW=3MHz from the 1GHz to 10th Harmonic.

The audio input was set to 0 to get the unmodulated carrier, the resulting picture is print out for each channel separation.

TEST CONFIGURATION

LIMIT

Modulation Type: FM

FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 11 (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (28.12) = 64.49 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (29.85) = 64.75 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 43.98 dBm.

Limit (dBm) = $43.98-50-10\log 10$ (29.85) = -20 dBm

Modulation Type: 4FSK

FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 11 (12.5 kHz Bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (28.58) = 54.56 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (29.85) = 64.75 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 43.98 dBm. Limit (dBm) =43.98-50-10log10 (29.85) = -20 dBm

Note: 1. In general, the worse case attenuation requirement shown above was applied.

2. The measurement frequency range from 30 MHz to 5GHz.

TEST RESULTS

Operation	Test	Test		Conducted ons Below 1GHz		nducted Spurious s Above 1GHz			
Mode	Channel	Frequency (MHz)	Frequency (MHz)	Datum (dBm)	Frequency (MHz)	Datum (dBm)			
	Ch1	138.5	214.80	-22.91	3248.00	-43.98			
Op 1	Ch2	155.5	115.36	-22.74	3280.00	-44.16			
	Ch3	173.5	127.68	-22.92	3704.00	-44.72			
	Ch1	138.5	90.28	-22.93	3136.00	-44.65			
Op 2	Ch2	155.5	121.52	-23.20	3592.00	-43.98			
	Ch3	173.5	77.52	-22.85	3200.00	-44.40			
	Ch1	138.5	654.68	-35.78	3144.00	-43.40			
Op 3	Ch2	155.5	311.30	-33.90	3136.00	-43.60			
	Ch3	173.5	346.22	-31.61	3176.00	-44.47			
	Ch1	138.5	276.38	-35.87	3192.00	-44.41			
Op 4	Ch2	155.5	311.30	-33.89	3672.00	-44.90			
	Ch3	173.5	346.22	-30.51	3208.00	-44.52			
	Ch4	138.5	170.36	-22.81	3288.00	-44.12			
Op 5	Ch5	155.5	216.56	-22.94	3160.00	-44.84			
	Ch6	173.5	107.00	-22.92	3144.00	-44.28			
	Ch4	138.5	98.64	-22.90	3128.00	-43.49			
Op 6	Ch5	155.5	195.00	-22.75	3272.00	-44.11			
	Ch6	173.5	147.04	-22.31	3192.00	-44.31			
	Ch4	138.5	482.02	-35.04	3256.00	-44.54			
Op 7	Ch5	155.5	311.30	-33.39	3096.00	-44.11			
-	Ch6	173.5	346.22	-31.11	3352.00	-44.57			
	Ch4	138.5	49.40	-35.55	3184.00	-44.66			
Op 8	Ch5	155.5	311.30	-33.59	3144.00	-43.29			
-	Ch6	173.5	346.22	-31.33	3152.00	-43.95			
	Limit		-20dBm for 12.5KHz Channel Separtion						
1	Test Result	S		PAS	PASS				

Plots of Spurious Emission on Antenna Port Measurement

Report No.: TRE1312008201 Page 39 of 106 Issued:2014-01-11

ſ			Test	Maximum Conduc	cted Spurious	Maximum Con	ducted Spurious	
	Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
	Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
	Op 1	Ch1	138.5	214.80	-22.91	3248.00	-43.98	-20.00

Date: 3.JAN.2014 19:58:58

Date: 3.JAN.2014 20:00:34

Operation	Test	Test	Maximum Conduc Emissions Be			ducted Spurious Above1GHz	Limit
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		(IVITZ)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 1	Ch2	155.5	115.36	-22.74	3280.00	-44.16	-20.00

Date: 3.JAN.2014 20:01:49

Date: 3.JAN.2014 20:01:25

Report No.: TRE1312008201 Page 42 of 106 Issued:2014-01-11

		Test	Maximum Conduc	cted Spurious	Maximum Con	ducted Spurious	
Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
		(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 1	Ch3	173.5	127.68	-22.92	3704.00	-44.72	-20.00

Date: 3.JAN.2014 20:04:11

Date: 3.JAN.2014 20:05:52

Operation	Test	Test	Maximum Conduc Emissions Be			ducted Spurious Above1GHz	Limit
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		(1011 12)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 2	Ch1	138.5	90.28	-22.93	3136.00	-44.65	-20.00

Date: 3.JAN.2014 15:17:45

Date: 3.JAN.2014 15:17:18

Report No.: TRE1312008201 Page 45 of 106 Issued:2014-01-11

		Test	Maximum Conduc	cted Spurious	Maximum Con	ducted Spurious	
Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
		(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 2	Ch2	155.5	121.52	-23.20	3592.00	-43.98	-20.00

Date: 3.JAN.2014 15:20:38

Date: 3.JAN.2014 15:22:51

Operation	Test	Test	Maximum Conduc Emissions Be			ducted Spurious Above1GHz	Limit
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		(1011 12)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 2	Ch3	173.5	77.52	-22.86	3200.00	-44.40	-20.00

Date: 3.JAN.2014 15:14:26

Date: 3.JAN.2014 15:15:28

Report No.: TRE1312008201 Page 48 of 106 Issued:2014-01-11

Ī			Test	Maximum Conduc	cted Spurious	Maximum Con	ducted Spurious	
	Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
	Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
Ī	Op 3	Ch1	138.5	654.68	-35.78	3144.00	-43.40	-20.00

Date: 3.JAN.2014 20:26:58

Report No.: TRE1312008201 Page 49 of 106 Issued:2014-01-11

Operation	Test	Test	Maximum Conducted Spurious Emissions Below 1GHz			Maximum Conducted Spurious Emissions Above1GHz	
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		(1411 12)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 3	Ch2	155.5	311.30	-33.90	3136.00	-43.60	-20.00

Date: 3.JAN.2014 20:28:55

Report No.: TRE1312008201 Page 50 of 106 Issued:2014-01-11

		Test	Maximum Conduc	cted Spurious	Maximum Con	ducted Spurious	
Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
		(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 3	Ch3	173.5	346.22	-31.61	3176.00	-44.47	-20.00

Date: 3.JAN.2014 20:29:58

Report No.: TRE1312008201 Page 51 of 106 Issued:2014-01-11

Operation	Test	Test	Maximum Conducted Spurious Emissions Below 1GHz			ducted Spurious Above1GHz	Limit
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		(IVITZ)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 4	Ch1	138.5	276.38	-35.87	3192.00	-44.41	-20.00

Date: 3.JAN.2014 16:07:20

Report No.: TRE1312008201 Page 52 of 106 Issued:2014-01-11

		Test	Maximum Conduc	cted Spurious	Maximum Con	ducted Spurious	
Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
		(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 4	Ch2	155.5	311.30	-33.89	3672.00	-44.90	-20.00

Date: 3.JAN.2014 16:08:09

Report No.: TRE1312008201 Page 53 of 106 Issued:2014-01-11

Operation	tion Lest _	Test	Maximum Conducted Spurious Emissions Below 1GHz		Maximum Con Emissions	Limit	
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		(IVITZ)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 4	Ch3	173.5	346.22	-30.51	3208.00	-44.52	-20.00

Date: 3.JAN.2014 16:12:14

Report No.: TRE1312008201 Page 54 of 106 Issued:2014-01-11

		Test	Maximum Conducted Spurious		Maximum Conducted Spurious			
C	peration	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
	Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
	Op 5	Ch4	138.5	170.36	-22.81	3288.00	-44.12	-20.00

Date: 3.JAN.2014 20:08:47

Date: 3.JAN.2014 20:07:05

Operation	Test	Test		Maximum Conducted Spurious Emissions Below 1GHz		Maximum Conducted Spurious Emissions Above1GHz	
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		(1011 12)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 5	Ch5	155.5	216.56	-22.94	3160.00	-44.84	-20.00

Date: 3.JAN.2014 20:09:41

Stop 1 GHz

75 MHz/

Date: 3.JAN.2014 20:10:34

Start 250 MHz

Date: 3.JAN.2014 20:11:14

Report No.: TRE1312008201 Page 57 of 106 Issued:2014-01-11

		Test	Maximum Conducted Spurious		Maximum Conducted Spurious		
Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		(IVITZ)	(MHz)	(dBm)	(MHz)	(dBm)	
Op 5	Ch6	173.5	107.00	-22.92	3144.00	-44.28	-20.00

Date: 3.JAN.2014 20:13:49

Date: 3.JAN.2014 20:12:21

Operation	Test	Test	Maximum Conducted Spurious Emissions Below 1GHz		Maximum Conducted Spurious Emissions Above1GHz		Limit
Mode	Channel	Frequency (MHz)	Frequency (MHz)	Datum (dBm)	Frequency (MHz)	Datum (dBm)	(dBm)
Op 6	Ch4	138.5	98.64	-22.90	3128.00	-43.49	-20.00

75 MHz/

Stop 1 GHz

Date: 3.JAN.2014 15:37:50

Start 250 MHz

Date: 3.JAN.2014 15:38:40

Report No.: TRE1312008201 Page 60 of 106 Issued:2014-01-11

		Test	Maximum Conducted Spurious		Maximum Conducted Spurious			
	Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
	Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
Ī	Op 6	Ch5	155.5	195.00	-22.75	3272.00	-44.11	-20.00

Date: 3.JAN.2014 15:41:30

Date: 3.JAN.2014 15:40:00

Operation	Test	Test	Maximum Conducted Spurious Emissions Below 1GHz		Maximum Conducted Spurious Emissions Above1GHz		Limit
Mode	Channel	Frequency (MHz)	Frequency (MHz)	Datum (dBm)	Frequency (MHz)	Datum (dBm)	(dBm)
Op 6	Ch6	173.5	147.04	-22.31	3192.00	-44.31	-20.00

Date: 3.JAN.2014 15:43:53

Date: 3.JAN.2014 15:44:20

Report No.: TRE1312008201 Page 63 of 106 Issued:2014-01-11

		Test	Maximum Conducted Spurious		Maximum Conducted Spurious			
	Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
	Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
	Op 7	Ch4	138.5	482.02	-35.04	3256.00	-44.54	-20.00

Date: 3.JAN.2014 20:37:07

Date: 3.JAN.2014 20:37:57

Report No.: TRE1312008201 Page 64 of 106 Issued:2014-01-11

Operation	Test	Test	Maximum Conducted Spurious Emissions Below 1GHz		Maximum Conducted Spurious Emissions Above1GHz		Limit
Mode	Channel	Frequency (MHz)	Frequency	Datum	Frequency	Datum	(dBm)
		, ,	(MHz)	(dBm)	(MHz)	(dBm)	
Op 7	Ch5	155.5	311.30	-33.39	3096.00	-44.11	-20.00

Date: 3.JAN.2014 20:39:28

Report No.: TRE1312008201 Page 65 of 106 Issued:2014-01-11

		Test	Maximum Conducted Spurious		Maximum Conducted Spurious			
	Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
	Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
	Op 7	Ch6	173.5	346.22	-31.11	3352.00	-44.57	-20.00

Date: 3.JAN.2014 20:40:26

Report No.: TRE1312008201 Page 66 of 106 Issued:2014-01-11

		Test	Maximum Conducted Spurious		Maximum Conducted Spurious			
	Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
	Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
	Op 8	Ch4	138.5	49.40	-35.55	3184.00	-44.66	-20.00

Date: 3.JAN.2014 15:49:16

Report No.: TRE1312008201 Page 67 of 106 Issued:2014-01-11

		Test	Maximum Conducted Spurious		Maximum Conducted Spurious			
	Operation	Test	_	Emissions Be	low 1GHz	Emissions	Above1GHz	Limit
	Mode	Channel	Frequency	Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
	Op 8	Ch5	155.5	311.30	-33.59	3144.00	-43.29	-20.00

Date: 3.JAN.2014 15:51:18

Report No.: TRE1312008201 Page 68 of 106 Issued:2014-01-11

ſ	Operation	Test Channel	Test Frequency	Maximum Conducted Spurious		Maximum Conducted Spurious		
				Emissions Below 1GHz		Emissions Above1GHz		Limit
	Mode			Frequency	Datum	Frequency	Datum	(dBm)
			(MHz)	(MHz)	(dBm)	(MHz)	(dBm)	
	Op 8	Ch6	173.5	346.22	-31.33	315.52	-43.95	-20.00

Date: 3.JAN.2014 15:54:24

4.5. Modulation Charcateristics

TEST APPLICABLE

According to CFR47 section 2.1047(a), for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

TEST PROCEDURE

Modulation Limit

- 1 Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1 KHz using this level as a reference (0dB) and vary the input level from –20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- 2 Repeat step 1 with input frequency changing to 300, 1004, 1500 and 2500Hz in sequence.

Audio Frequency Response

- 1 Configure the EUT as shown in figure 1.
- 2 Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0dB).
- 3 Vary the Audio frequency from 100 Hz to 3 KHz and record the frequency deviation.
- 4 Audio Frequency Response =20log10 (Deviation of test frequency/Deviation of 1 KHz reference).

TEST CONFIGURATION

TEST RESULTS

Remark: We tested Op 1 to Op 4 recorded worst case at Op 1 and Op 2.

Modulation Type: FM

12.5 KHz Channel Separation Op1

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz (KHz)	Peak Freq. Deviation At 1004 Hz (KHz)	Peak Freq. Deviation At 1500 Hz (KHz)	Peak Freq. Deviation At 2500 Hz (KHz)
-20	0.08	0.19	0.26	0.40
-15	0.11	0.30	0.44	0.68
-10	0.18	0.51	0.76	1.19
-5	0.29	0.88	1.33	1.77
0	0.48	1.52	1.87	1.90
+5	0.74	1.83	1.95	1.92
+10	0.79	1.85	1.96	1.94
+15	0.80	1.85	1.97	1.94
+20	0.87	1.86	1.98	1.94

Report No.: TRE1312008201 Page 70 of 106 Issued:2014-01-11

12.5 KHz Channel Separation Op2

Modulation Level (dB)	Peak Freq. Deviation At 300 Hz (KHz)	Peak Freq. Deviation At 1004 Hz (KHz)	Peak Freq. Deviation At 1500 Hz (KHz)	Peak Freq. Deviation At 2500 Hz (KHz)
-20	0.10	0.21	0.30	0.43
-15	0.12	0.32	0.38	0.57
-10	0.20	0.48	0.68	1.30
-5	0.35	0.76	1.24	1.66
0	0.45	1.69	1.77	1.86
+5	0.69	1.78	1.85	1.95
+10	0.70	1.80	1.98	1.95
+15	0.75	1.84	1.97	1.95
+20	0.86	1.86	1.98	1.95

Report No.: TRE1312008201 Page 71 of 106 Issued:2014-01-11

Modulation type: 4FSK

Channel bandwidth: 12.5 kHz

It is not applicable for devices which operate with the digitized voice/data modulation type.

b). Audio Frequency Response:

Rule Part No.: Part 2.1407(a) (b)

Method of Measurement:

The audio frequency response was measured in accordance with TIA/EIA Specification 603 with no exception. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 300-3000Hz shall be submitted and Audio Post Limiter Low Pass Filter Response from 3.0 KHz to 50KHz. However, the audio frequency response should test from 100Hz to 5.0 KHz according to FCC Part 90.

Modulation Type: FM

The audio frequency response curve is show below.and

Test Audio Level (1 KHz and 20% maximum deviation) for 12.5 KHz channel separation is 2.81mv.

Note:

- 1. Not applicable to new standard. However, tests are conducted under FCC's recommendation.
- 2. The Audio Frequency Response is identical for 12.5 KHz channel separation

12.5 KHz Channel Separation Op1

Frequency	Frequency Deviation	1KHz Refenerce Deviation	Audio Frequency Response
(KHz)	(KHz)	(KHz)	(dB)
0.1	0.06	0.55	-19.24
0.2	0.06	0.55	-19.24
0.3	0.15	0.55	-11.29
0.4	0.15	0.55	-11.29
0.5	0.22	0.55	-7.96
0.6	0.27	0.55	-6.18
0.7	0.38	0.55	-3.21
0.8	0.42	0.55	-2.34
0.9	0.43	0.55	-2.14
1.0	0.55	0.55	0.00
1.2	0.58	0.55	0.46
1.4	0.6	0.55	0.76
1.6	0.74	0.55	2.58
1.8	0.81	0.55	3.36
2.0	0.84	0.55	3.68
2.2	1.05	0.55	5.62
2.4	1.07	0.55	5.78
2.6	1.1	0.55	6.02
2.7	1.17	0.55	6.56
2.8	1.2	0.55	6.78
3.0	1.25	0.55	7.13
3.5	1.25	0.55	7.13
4.0	0.06	0.55	-19.24
4.5	0.06	0.55	-19.24
5.0	0.06	0.55	-19.24

12.5 KHz Channel Separation Op2

12.5 KHZ Channel Separation Op2							
Frequency	Frequency Deviation	1KHz Refenerce Deviation	Audio Frequency Response				
(KHz)	(KHz)	(KHz)	(dB)				
0.1	0.06	0.54	-19.24				
0.2	0.06	0.54	-19.24				
0.3	0.16	0.54	-11.29				
0.4	0.15	0.54	-11.29				
0.5	0.25	0.54	-7.96				
0.6	0.28	0.54	-6.18				
0.7	0.35	0.54	-3.21				
0.8	0.38	0.54	-2.34				
0.9	0.42	0.54	-2.14				
1.0	0.54	0.54	0.00				
1.2	0.56	0.54	0.46				
1.4	0.62	0.54	0.76				
1.6	0.71	0.54	2.58				
1.8	0.80	0.54	3.36				
2.0	0.83	0.54	3.68				
2.2	1.04	0.54	5.62				
2.4	1.05	0.54	5.78				
2.6	1.12	0.54	6.02				
2.7	1.15	0.54	6.56				
2.8	1.22	0.54	6.78				
3.0	1.26	0.54	7.13				
3.5	1.25	0.54	7.13				
4.0	0.06	0.54	-19.24				
4.5	0.06	0.54	-19.24				
5.0	0.06	0.54	-19.24				

Report No.: TRE1312008201 Page 73 of 106 Issued:2014-01-11

Modulation type: 4FSK

Channel bandwidth: 12.5 kHz

It is not applicable for devices which operate with the digitized voice/data modulation type.

4.6. Frequency Stability Test

TEST APPLICABLE

- 1 According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30℃ to +60℃ centigrade.
- According to FCC Part 2 Section 2.1055 (e) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- Wary primary supply voltage from 85 to 115 percent of the nominal value.
- 4 According to §90.213, the frequency stability limit is 5.0 ppm for 12.5KHz channel separation

TEST PROCEDURE

The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer ESI 26. The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.

TEST CONFIGURATION

TEST LIMITS

According to 90.213, Transmitters used must have minimum frequency stability as specified in the following table.

_		Frequenc	cy Tolerance (ppn	1)
Frequency Range (MHz)	Channel Bandwidth (KHz)	Fixed and Base Stations	Mobil	e Stations
(11112)	(13112)	Fixed and base Stations	> 2 W	<u><</u> 2 W
150-174 MHz	6.25	1.0	2.0	2.0
	12.5	2.5	5.0	5.0
	25	5.0	5.0	50.0*
421-512 MHz	6.25	0.5	1.0	1.0
	12.5	1.5	2.5	2.5
	25	2.5	5.0	5.0

- Stations operating in the 154.45 to 154.49 MHz or the 173.2 to 173.4 MHz bands must have a frequency stability of 5 ppm.
- Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the 150-174 MHz band and 2.5 ppm in the 421-512 MHz band.

TEST RESULTS

Remark:We tested Op 1 to Op 8,recorded worst case at Op 1,Op 2, Op 5,and Op 6.

Operation	Channel	Test cond	ditions	Freque	ency error (p	opm)	
Mode	Separation	Voltage(V)	Temp(℃)	138.5	155.5	173.5	
			-30	1.03	1.05	1.11	
			-20	0.55	0.76	0.99	
			-10	0.77	0.80	0.87	
		120V	0	0.65	0.82	0.81	
	12.5KHz		10	0.80	0.76	0.75	
Op 1			20	0.60	0.65	0.71	
			30	0.72	0.70	0.65	
			40	0.53	0.52	0.45	
			50	0.64	0.60	0.55	
		11.56 (85% Rated)	20	0.72	0.61	0.63	
		15.64(115% Rated)	20	0.78	0.72	0.70	
	Limit		5.0 ppm				
	Test Resu	Its	PASS				

Operation	Channel	Test cond	ditions	Freque	ency error (opm)
Mode	Separation	Voltage(V)	Temp(℃)	138.5	155.5	173.5
			-30	1.05	1.10	1.07
			-20	0.75	0.76	0.75
			-10	0.80	0.76	0.78
	12.5KHz	13.6V	0	0.79	0.65	0.65
			10	0.68	0.75	0.73
Op2			20	0.55	0.61	0.58
			30	0.87	0.83	0.81
			40	0.69	0.66	0.68
			50	0.95	0.92	0.91
		11.56 (85% Rated)	20	0.81	0.86	0.82
		15.64(115% Rated)	20	0.74	0.75	0.79
	Limit			5.0 ppm		
	Test Results			PASS		

Operation	Channel	Test cond	ditions	Freque	ency error (_l	ppm)		
Mode	Separation	Voltage(V)	Temp(℃)	138.5	155.5	173.5		
			-30	1.02	1.03	1.01		
		120 V	-20	0.75	0.75	0.83		
			-10	0.80	0.80	0.78		
			0	0.88	0.83	0.83		
			10	0.83	0.76	0.80		
Op5	12.5KHz		20	0.66	0.68	0.69		
			30	0.75	0.74	0.79		
			40	0.86	0.84	0.84		
			50	1.01	1.02	1.01		
		11.56 (85% Rated)	20	0.86	0.90	0.87		
		15.64(115% Rated)	20	0.79	0.81	0.78		
	Limit			5.0 ppm				
_	Test Resu	lts	PASS					

Report No.: TRE1312008201 Page 76 of 106 Issued:2014-01-11

Operation	Channel	Test cond	litions	Freque	ency error (ppm)
Mode	Separation	Voltage(V)	Temp(℃)	138.5	155.5	173.5
			-30	1.05	1.01	1.00
			-20	0.84	0.82	0.87
			-10	0.79	0.78	0.80
		13.6 V	0	0.78	0.75	0.79
			10	0.79	0.79	0.74
Op6	12.5KHz		20	0.72	0.55	0.65
			30	0.88	0.87	0.65
			40	0.94	0.84	0.84
			50	1.00	1.02	1.05
		11.56 (85% Rated)	20	0.94	0.86	0.97
		15.64(115% Rated)	20	0.79	0.81	0.80
	Limit			5.0 ppm		
	Test Results			PASS		

Report No.: TRE1312008201 Page 77 of 106 Issued:2014-01-11

4.7. Maximum Transmitter Power

TEST APPLICABLE

Per FCC Part 2.1046 and Part 90.205: Maximum ERP is dependent upon the station's antenna HAAT and required service area.

Per RSS-119 Section 5.4 and 5.4.1: The output power shall be within ±1.0 dB of the manufacturer's rated power. Typical transmitter output powers are 110 watts for base and/or fixed stations (paging transmitters excepted), and 30 watts for mobile stations. Higher powers may be certified, but it should be noted that mobile stations are normally only licensed up to 30 watts. See the SRSP relevant to the operating frequency for equipment power limits.

TEST PROCEDURE

Measurements shall be made to establish the radio frequency power delivered by the transmitter the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted bellow:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels. The EUT connect to the Receiver through 20 dB attenuator.

Measurement with Spectrum Analyzer FSP40 conducted, external power supply with 13.60 V or AC 120V/60Hz stabilized supply voltage.

TEST CONFIGURATION

EUT	Attenuator	Spectrum Analyzer/Receiver
		,

The EUT was directly connected to a RF Communication Test set by a 20 dB attenuator

TEST RESULTS

Modulation Type	Channel Sparation	Operation Mode	Test Channel	Test Frequency (MHz)	Test Results (dBm)		
			Ch1	138.5	44.62		
		Op 1	Ch2	155.5	44.56		
			Ch3	173.5	44.71		
			Ch1	138.5	44.64		
		Op 2	Ch2	155.5	44.45		
Analog/EM	12.5KHz	·	Ch3	173.5	44.60		
Analog/FM	12.3NHZ	Op 3	Ch1	138.5	30.42		
			Ch2	155.5	30.15		
			Ch3	173.5	30.48		
			Ch1	138.5	30.73		
		Op 4	Ch2	155.5	30.26		
			Ch3	173.5	30.74		
		Op 5	Ch7	138.5	44.55		
			Ch8	155.5	44.45		
			Ch9	173.5	44.66		
			Ch7	138.5	44.61		
		Op 6	Ch8	155.5	44.72		
Digital	12.5KHz		Ch9	173.5	44.74		
Digital	12.3NHZ		Ch7	138.5	30.42		
		Op 7	Ch8	155.5	30.15		
			Ch9	173.5	30.48		
			Ch7	138.5	30.56		
		Op 8	Ch8	155.5	30.22		
			Ch9	173.5	30.28		
Limit	The limit is dep	pendent upon the station's antenna HAAT and required service area.					
Test R	esults	PASS					

Plots of Transmitter Power Measurement

ľ	Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
	FM	12.5KHz	Op 1	Ch1	138.5	25	44.62	Varies	PASS

Date: 3.JAN.2014 16:41:41

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 1	Ch2	155.5	25	44.52	Varies	PASS

Report No.: TRE1312008201 Page 79 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 1	Ch3	173.5	25	44.71	Varies	PASS

Date: 3.JAN.2014 16:44:44

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 2	Ch1	138.5	25	44.64	Varies	PASS

Report No.: TRE1312008201 Page 80 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 2	Ch2	155.5	25	44.45	Varies	PASS

Date: 2.JAN.2014 10:35:28

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 2	Ch3	173.5	25	44.60	Varies	PASS

Date: 2.JAN.2014 10:38:33

Report No.: TRE1312008201 Page 81 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 3	Ch1	138.5	1	30.42	Varies	PASS

Date: 3.JAN.2014 16:53:23

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 3	Ch2	155.5	1	30.15	Varies	PASS

Report No.: TRE1312008201 Page 82 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 3	Ch3	173.5	1	30.48	Varies	PASS

Date: 3.JAN.2014 16:57:39

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 4	Ch1	138.5	1	30.73	Varies	PASS

Report No.: TRE1312008201 Page 83 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 4	Ch2	155.5	1	30.26	Varies	PASS

Date: 2.JAN.2014 10:43:44

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
FM	12.5KHz	Op 4	Ch3	173.5	1	30.74	Varies	PASS

Report No.: TRE1312008201 Page 84 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 5	Ch4	406.5	25	44.55	Varies	PASS

Date: 3.JAN.2014 16:53:47

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 5	Ch5	435.0	25	44.45	Varies	PASS

Report No.: TRE1312008201 Page 85 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 5	Ch6	469.5	25	44.66	Varies	PASS

Date: 3.JAN.2014 16:58:10

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 6	Ch4	406.5	25	44.61	Varies	PASS

Report No.: TRE1312008201 Page 86 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 6	Ch5	435.0	25	44.72	Varies	PASS

Date: 2.JAN.2014 11:09:03

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 6	Ch6	469.5	25	44.74	Varies	PASS

Report No.: TRE1312008201 Page 87 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 7	Ch4	406.5	1	30.42	Varies	PASS

Date: 3.JAN.2014 16:53:23

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 7	Ch5	435.0	1	30.15	Varies	PASS

Report No.: TRE1312008201 Page 88 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 7	Ch6	469.5	1	30.48	Varies	PASS

Date: 3.JAN.2014 16:57:39

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 8	Ch4	406.5	1	30.56	Varies	PASS

Date: 3.JAN.2014 16:33:09

Report No.: TRE1312008201 Page 89 of 106 Issued:2014-01-11

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	Op 8	Ch5	435.0	1	30.22	Varies	PASS

Date: 3.JAN.2014 16:34:52

Modulation Type	Channel Separation	Operation Mode	Test Channel	Test Frequency (MHz)	Rated Power (Watt)	Measurement (dBm)	Limit	Results
4FSK	12.5KHz	8 qO	Ch6	469.5	1	30.28	Varies	PASS

4.8. Transmitter Frequency Behavior

TEST APPLICABLE

Section 90.214

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

Time intervals 1, 2	Maximum frequency	All equipment				
Time intervals	difference 3	150 to 174 MHz	421 to 512MHz			
Transient Frequer	ncy Behavior for Equipment I	Designed to Operate on :	25 KHz Channels			
t ₁ 4	± 25.0 KHz	5.0 ms	10.0 ms			
t ₂	± 12.5 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
Transient Frequence	by Behavior for Equipment D	esigned to Operate on 1	2.5 KHz Channels			
t ₁ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
t ₂	± 6.25 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
Transient Frequence	by Behavior for Equipment D	esigned to Operate on 6	.25 KHz Channels			
t ₁ ⁴	±6.25 KHz	5.0 ms	10.0 ms			
t ₂	±3.125 KHz	20.0 ms	25.0 ms			
ta ⁴	±6.25 KHz	5.0 ms	10.0 ms			
A description of the second of						

- 1. ton is the instant when a 1 KHz test signal is completely suppressed, including any capture time due to phasing.
 - t_1 is the time period immediately following t_0 . t_2 is the time period immediately following t_1 .

 - t₃ is the time period from the instant when the transmitter is turned off until tott.
 - toff is the instant when the 1 KHz test signal starts to rise
- 2. During the time from the end of to the beginning of to, the frequency difference must not exceed the limits specified in § 90.213.
- Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

TEST CONFIGURATION

TEST PROCEDURE

According to TIA/EIA-603 2.2.19 requirement. As for the product different from PTT, we use test steps as follows:

- Use Digital portable radio which manufactured by VictelGlobal Communications Corporation Limited which uses same protocol as the DUT connect to RX antenna by 20Att in order to avoid damaging DUT;
- Connect DUT into Test discriminator and Storage Oscilloscope and keep DUT stats ON;
- Inut 1KHz signal into digital portable radio;

Issued:2014-01-11

- 4. Set the modulation domain analyzer to trigger on the rising edge of the waveform in order to capture a single-shot turn-on of the transmitter signals;
- 5. Keep the digital protable radio in OFF state and Key the PTT of digital portable radio;
- 6. Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the periods t₁ and t₂, and shall also remain within limits following t₂;
- 7. Adjust the modulation domain analyzer to trigger on the falling edge of the transmitter waveform in order to capture a single-shot turn-off transmitter of the transmitter signal.
- 8. Keep the digital portable radio in ON state and Unkey the PTT of digital portable radio;
- 9. Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the period t₃.

TEST RESULTS

Please refer to the following plots.

Report No.: TRE1312008201

Modulation Type: FM

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation-----Off – On

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation-----On - Off

Report No.: TRE1312008201 Page 93 of 10

Modulation Type: 4FSK

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation-----Off – On

Transmitter Frequency Behaviour @ 12.5 KHz Channel Separation-----On - Off

5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

External photos of the EUT

Internal photos of the EUT

Report No.: TRE1312008201 Page 106 of 106 Issued:2014-01-11

.....End of Report.....