Teoria das Distribuições

Eduardo Sodré

20/07/2023

Historinha

- Distribuições (ou funções generalizadas): expandir o conceito de funções e derivadas para resolver EDPs
- Ideia de encontrar "soluções fracas" (distribuicionais) para depois encontrar "soluções fortes" (clássicas)
- Presentes no contexto de funções de Green e problemas com valores iniciais singulares
- Dirac, Heaviside, Sobolev, Schwartz

Historinha

(b) Sergei Sobolev

Motivações: EDPs

Resolução de EDOs:

$$\dot{x}=f(t,x), \qquad x(t_0)=x_0$$

Existência e unicidade e suavidade de soluções sob condições razoáveis.

Mas e EDPs? Exemplo da equação de onda:

$$\partial_t^2 u = c^2 \partial_x^2 u,$$

$$\begin{cases} u(0,x) &= f(x) \\ u_t(0,x) &= g(x) \end{cases}$$

Substitui variáveis $\xi = x + ct$, $\eta = x - ct$.

Motivações: EDPs

$$v(\xi,\eta)=u(t,x)=u\left(\frac{\xi-\eta}{2c},\frac{\xi+\eta}{2}\right),$$

v satisfaz

$$\frac{\partial^2}{\partial \xi \partial \eta} = 0.$$

Então $v(\xi,\eta)=f_1(\xi)+f_2(\eta)$, e portanto

$$u(t,x) = f_1(x+ct) + f_2(x-ct).$$

Interpretação física: duas ondas viajando em direções opostas com velocidade |c|. E as condições iniciais?

Motivações: EDPs

$$\begin{cases} u(0,x) = f_1(x) + f_2(x) &= f(x) \\ u_t(0,x) = cf_1'(x) - cf_2'(x) &= g(x) \end{cases}$$

Resulta na fórmula de D'Alambert:

$$u(t,x) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds.$$

Se f é de classe C^2 e g de classe C^1 , u(t,x) é solução clássica do problema de valor inicial.

Mas a expressão faz sentido mesmo se f for contínua e g integrável! Ainda é solução?

Física: modelos de pulsos unitários.

Partícula P de massa m=1, força externa $F_{\varepsilon}(t)$ constante de módulo $1/\varepsilon$ em $[t_0,t_0+\varepsilon)$ no eixo x. Velocidade será

$$onumber
olimits_{arepsilon}(t) = egin{cases} 0, & t \leq t_0, \ (t-t_0)/arepsilon, & t_0 \leq t \leq t_0 + arepsilon, \ 1, & t \geq t_0 + arepsilon. \end{cases}$$

e no limite a descontinuidade

$$\lim_{arepsilon o 0} extstyle v_{arepsilon}(t) = egin{cases} 0, & t \leq t_0, \ 1, & t > t_0. \end{cases}$$

Escreve $F_{\varepsilon}(t) = D_{\varepsilon}(t - t_0)$, satisfaz as propriedades:

$$D_{\varepsilon}(t-t_0)\geq 0, \tag{1}$$

$$\int_{-\infty}^{\infty} D_{\varepsilon}(t-t_0)dt = 1, \ \forall \varepsilon > 0,$$
(2)

$$\lim_{\varepsilon \to 0^+} \int_a^b D_{\varepsilon}(t - t_0) dt = 1, \ \forall a < t_0 < b. \tag{3}$$

Ainda,

$$\lim_{arepsilon o 0}D_arepsilon(t-t_0)=egin{cases} +\infty, & t=t_0,\ 0, & t
eq t_0. \end{cases}$$

Mais geralmente, para toda h(t) contínua:

$$\lim_{\varepsilon\to 0}\int_{-\infty}^{+\infty}D_{\varepsilon}(t-t_0)h(t)dt=h(t_0).$$

Sugere existência de "função" $\delta(t-t_0)$ como limite de $D_{\varepsilon}(t-t_0)$, tal que $\delta(t-t_0)=+\infty$ se $t=t_0$ e $\delta(t-t_0)=0$ caso contrário, e

$$\int_{-\infty}^{\infty} \delta(t-t_0)h(t)dt = h(t_0), \ \forall t_0 \in \mathbb{R}.$$

 $\delta(t)$ será o delta de Dirac. Não faz sentido como função usual.

Sugestivamente temos que

$$H(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

é a função de Heaviside

$$H(t) = \begin{cases} 0, & t \leq 0, \\ 1, & t > 0. \end{cases}$$

Além de modelar distribuições pontuais de cargas e massas, vai ser muito útil na resolução de EDPs.

Funções Teste

Seja $\Omega \subseteq \mathbb{R}^n$ aberto (conexo). Dada $f:\Omega \to \mathbb{C}$, define

$$\operatorname{supp} f = \overline{\{x \in \Omega \mid f(x) \neq 0\}}$$

e $C^{\infty}(\Omega)$ o conjunto das $f:\Omega\to\mathbb{C}$ infinitamente deriváveis.

Espaço das funções teste:

$$\mathcal{D}(\Omega) = C_c^{\infty}(\Omega) \coloneqq \{ f \in C^{\infty}(\Omega) \mid \text{supp } f \text{ \'e compacto } \}.$$

Ex.: $f: \mathbb{R}^n \to \mathbb{C}$,

$$f(x) = \begin{cases} e^{-\frac{1}{1-\|x\|^2}}, & \|x\| < 1; \\ 0, & \|x\| \ge 1. \end{cases}$$

Funções Teste

Figura: Exemplo de função teste em \mathbb{R}^2 (Wikipedia).

Convergência de Funções Teste

Seja $\alpha = (\alpha_1, \dots, \alpha_n)$ multi-índice e

$$D^{\alpha}\varphi := \frac{\partial^{\alpha}\varphi}{\partial x_{1}^{\alpha_{1}}\dots\partial x_{n}^{\alpha_{n}}}.$$

Noção de convergência em $\mathcal{D}(\Omega)$: para sequência $(\varphi_k)_k \subset \mathcal{D}(\Omega)$, temos $\varphi_k \to \varphi \in \mathcal{D}(\Omega)$ se

- i Existe compacto K tal que supp $\varphi_k \subseteq K$ para todo k;
- ii Para todo multi-índice α , vale que $D^{\alpha}\varphi_{k} \rightrightarrows D^{\alpha}\varphi$ uniformemente em compactos.

(Mais geralmente, existe topologia em $\mathcal{D}(U)$ que torna espaço topológico vetorial localmente convexo.)

Distribuições e Exemplos

O espaço das distribuições $\mathcal{D}'(\Omega)$ é o dual topológico de $\mathcal{D}(\Omega)$.

Em outras palavras, para $T \in \mathcal{D}'(\Omega)$:

- $T: \mathcal{D}(\Omega) \to \mathbb{C}$ é um funcional linear;
- T é contínuo: se $\varphi_k \to \varphi$ em $\mathcal{D}(\Omega)$, então $T(\varphi_k) \to T(\varphi)$.

Notação usual é $T(\varphi) = \langle T, \varphi \rangle$.

Toda função $f \in L^1_{\operatorname{loc}}(\mathbb{R}^n)$ é distribuição $\mathcal{T}_f \in \mathcal{D}'(\mathbb{R}^n)$ por

$$\langle T_f, \varphi \rangle := \int_{\mathbb{R}^n} f(x) \varphi(x) dx.$$

Distribuições e Exemplos

Para $a=(a_1,\ldots,a_n)\in\mathbb{R}^n$, o delta de Dirac

$$\delta_{\mathsf{a}}(\varphi) = \langle \delta_{\mathsf{a}}, \varphi \rangle = \varphi(\mathsf{a})$$

é uma distribuição em $\mathcal{D}'(\mathbb{R}^n)$, em que moralmente

$$\langle \delta_{\mathsf{a}}, \varphi \rangle = \int_{\mathbb{R}^n} \delta(\mathsf{x} - \mathsf{a}) \varphi(\mathsf{x}) d\mathsf{x} = \varphi(\mathsf{a}).$$

Em \mathbb{R} , a distribuição H_t dada por

$$\langle H_t, arphi
angle = \int_{-\infty}^t arphi(au) d au = \int_{\mathbb{R}} H(t- au) arphi(au) d au$$

é translação da função de Heaviside.

Com $f: \mathbb{R} \to \mathbb{C}$ de classe C^1 e $\varphi \in C_c^{\infty}(\mathbb{R})$, supp $\varphi \subseteq [-a, a]$:

$$\langle f', \varphi \rangle = \int_{\mathbb{R}} f'(x)\varphi(x)dx = \int_{-a}^{a} f'(x)\varphi(x)dx$$
$$= f(x)\varphi(x)|_{-a}^{a} - \int_{-a}^{a} f(x)\varphi'(x)dx = \int_{\mathbb{R}} f(x)\varphi'(x)dx = -\langle f, \varphi' \rangle.$$

Pelo teorema de Stokes, vale analogamente para $f: \mathbb{R}^n \to \mathbb{C}$:

$$\langle \frac{\partial f}{\partial x_i}, \varphi \rangle = -\langle f, \frac{\partial \varphi}{\partial x_i} \rangle.$$

Usamos isto para definir derivadas de distribuições!

Dada $T \in \mathcal{D}'(\Omega)$, define a derivada parcial $\frac{\partial T}{\partial x^i}$ como a distribuição

$$\langle \frac{\partial T}{\partial x_i}, \varphi \rangle := -\langle T, \frac{\partial \varphi}{\partial x_i} \rangle,$$

e mais geralmente, para multi-índice α ,

$$\langle D^{\alpha}T,\varphi\rangle=(-1)^{|\alpha|}\langle T,D^{\alpha}\varphi\rangle.$$

Vale ainda

$$\frac{\partial^2 T}{\partial x_i \partial x_i} = \frac{\partial^2 T}{\partial x_i \partial x_i}.$$

Permite "derivar" funções que antes não tinham derivada! Mas é uma noção útil?

Derivada da função de Heaviside: $H(t) \in L^1_{loc}(\mathbb{R})$, e

$$\langle H', \varphi \rangle = -\langle H, \varphi' \rangle = -\int_{-\infty}^{\infty} H(x)\varphi'(x)dx = -\int_{0}^{\infty} \varphi'(x)dx$$
$$= -\varphi(x)|_{0}^{\infty} = \varphi(0) - \varphi(\infty) = \varphi(0) = \langle \delta, \varphi \rangle,$$

ou seja, $H' = \delta$.

Mas e EDPs? Dizemos que *u* é *solução fraca* de uma EDP se satisfaz como distribuição.

Exemplo da equação de transporte:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0, \qquad u(0, x) = f(x).$$

Solução da equação de transporte

$$(\partial_t + c\partial_x)u = 0, \qquad u(0,x) = f(x)$$

é u(t,x)=f(x-ct), "transporta" a função f ao longo do tempo com velocidade c. Fisicamente devia ser solução mesmo se f não é derivável. Mostremos que $(\partial_t + c\partial_x)u = 0$, ou seja

$$\langle (\partial_t + c\partial_x)u, \varphi \rangle = 0, \forall \varphi \in \mathcal{D}(\mathbb{R}^n).$$

Então

$$\begin{split} &\langle (\partial_t + c\partial_x) u, \varphi \rangle = -\langle u, \partial_t \varphi + c\partial_x \varphi \rangle \\ &= -\iint_{\mathbb{R}^2} u(t, x) (\varphi_t(t, x) + c\varphi_x(t, x)) dt dx \\ &= \int_{-a}^a \int_{-a}^a f(x - ct) (\varphi_t(t, x) + c\varphi_x(t, x)) dt dx. \end{split}$$

Se f é contínua, existe sequência $(f_n)_n$ de classe C^1 com f_n convergindo pra f uniformemente em [-(c+1)a,(c+1)a].

Com $u_n(t,x) = f_n(x-ct)$, temos que

$$\iint_{Q} u_n(t,x)(\varphi_t(t,x)+c\varphi_x(t,x))dtdx=0,$$

e como $u_n \rightarrow u$ uniformemente, também satisfaz.

Ideia recorrente: aproximar funções irregulares por funções regulares.

Teorema

Se $T \in \mathcal{D}'(\mathbb{R})$ é tal que T' = 0, então existe constante $c \in \mathbb{R}$ tal que T = c, no sentido que para toda $\varphi \in \mathcal{D}(\mathbb{R})$ vale

$$\langle T, \varphi \rangle = c \int_{\mathbb{R}} \varphi(x) dx.$$

Antes, tem-se que se $\varphi \in \mathcal{D}(\mathbb{R})$ e $\int_{\mathbb{R}} \varphi = 0$, existe $\psi \in \mathcal{D}(\mathbb{R})$ tal que $\psi' = \varphi$, bastando tomar $\psi(x) = \int_{-\infty}^{x} \varphi(t) dt$.

Seja $\varphi_0 \in \mathcal{D}(\mathbb{R})$ com $\int_{\mathbb{R}} \varphi_0 = 1$, e $c = \langle \mathcal{T}, \varphi_0 \rangle$.

Dada $\varphi\in\mathcal{D}(\mathbb{R})$ com integral α , $\psi=\varphi-\alpha\varphi_0$ tem integral zero, portanto é uma derivada. Então

$$0 = \langle T, \psi \rangle \implies \langle T, \varphi \rangle = \alpha \langle T, \varphi_0 \rangle = c \int_{\mathbb{R}} \varphi(x) dx.$$

Operações em Distribuições

Podemos multiplicar T por funções suaves $f \in C^{\infty}(\Omega)$:

$$\langle fT, \varphi \rangle := \langle T, f\varphi \rangle,$$

E aplicar translações: se $\tau_a f(x) = f(x - a)$,

$$\langle \tau_{\mathbf{a}} T, \varphi \rangle := \langle T, \tau_{-\mathbf{a}} \varphi \rangle.$$

Mais geralmente, para $\Phi:\mathcal{D}(\Omega)\to\mathcal{D}(\Omega)$ linear contínuo, se existe transposta Φ' tal que

$$\int_{\Omega} (\Phi \varphi) \psi = \int_{\Omega} \varphi(\Phi' \psi), \qquad \forall \varphi, \psi \in \mathcal{D}(\Omega),$$

Define Φ em distribuições:

$$\langle \Phi T, \varphi \rangle := \langle T, \Phi' \varphi \rangle.$$

Convergência de Distribuições

Dada sequência $(T_k)_k \subset \mathcal{D}'(\Omega)$, temos

$$T_k \to T \iff \forall \varphi \in \mathcal{D}(\Omega), \ \langle T_k, \varphi \rangle \to \langle T, \varphi \rangle.$$

Vemos exemplos. Se $T_k = \delta_k$, $k \in \mathbb{N}$. Então $T_k \to' 0$, pois

$$\langle T_k, \varphi \rangle = \varphi(k) \to 0.$$

Se $f_k(x) = \frac{1}{k} \operatorname{sen}(kx)$, $f_k'(x) = \cos(kx)$. $f_k \to 0$ uniformemente, mas f_k' não converge.

Teorema

Se $T_k \to' T$, então $\frac{\partial T_k}{\partial x_i} \to' \frac{\partial T}{\partial x_i}$.

Mas então no exemplo acima, $\cos(kx) \to' 0$ como distribuição! Como interpretar?

Convergência de Distribuições

$$\int_{\mathbb{R}} \cos(kx) \varphi(x) dx = \frac{\sin(kx)}{k} \varphi(x) \Big|_{-\infty}^{\infty} - \int_{\mathbb{R}} \frac{\sin(kx)}{k} \varphi(x) dx$$
$$= -\frac{1}{k} \int_{\mathbb{R}} \sin(kx) \varphi'(x) dx.$$

Então

$$\left| \int_{\mathbb{R}} \cos(kx) \varphi(x) dx \right| = \frac{1}{k} \left| \int_{\mathbb{R}} \sin(kx) \varphi'(x) dx \right| \leq \frac{1}{k} \int_{\mathbb{R}} |\varphi'(x)| dx \to 0.$$

Eduardo Sodré

Convergência de Distribuições

Teorema

Se $f_k \in L^1_{loc}$ e $f_k \to f$ uniformemente em compactos, então $f \in L^1_{loc}$ e $T_{f_{\iota}} \rightarrow' T_{f_{\iota}}$

Mais geralmente, vale um análogo do Teorema da Convergência Dominada:

Teorema

Se $f_k \in L^1_{loc}$, $f_k \to f$ pontualmente e existe $g \in L^1_{loc}$ tal que $||f_k(x)| \leq g(x)$ para todo k, então $T_{f_k} \to' T_f$.

Núcleos de Dirac

Seja $ho(x)\in L^1(\mathbb{R}^n)$ tal que $\int_{\mathbb{R}^n}
ho=1$. Constrói família

$$\rho_{\varepsilon}(x) := \varepsilon^{-n} \rho(\varepsilon^{-1} x),$$

de modo que $\int_{\mathbb{R}^n} \rho_{\varepsilon} = 1$.

Figura: Exemplo de família ρ_{ε} .

Núcleos de Dirac

Teorema

Se $\varphi: \mathbb{R}^n \to \mathbb{C}$ é contínua e limitada, então

$$\lim_{\varepsilon \to 0^+} \int_{\mathbb{R}^n} \rho_{\varepsilon}(x) \varphi(x) dx = \varphi(0).$$

$$\begin{split} \int_{\mathbb{R}^n} \rho_{\varepsilon}(x) \varphi(x) dx - \varphi(0) &= \int_{\mathbb{R}^n} \rho_{\varepsilon}(x) (\varphi(x) - \varphi(0)) dx \\ &= \int_{\mathbb{R}^n} \rho(y) (\varphi(\varepsilon y) - \varphi(0)) dy, \end{split}$$

e pelo teorema da convergência Dominada, tende a 0.

Em particular, $\rho_{\varepsilon} \rightarrow' \delta$ como distribuições!

Convoluções

Dadas $f,g:\mathbb{R}^n \to \mathbb{C}$, define convolução como

$$(f*g)(x) = \int_{\mathbb{R}^n} f(y)g(x-y)dy.$$

Vale f * g = g * f e (f * g) * h = f * (g * h).

- Motivação de probabilidade: variáveis aleatórias X e Y com densidades de probabilidade f e g. A f.d.p. de X + Y é f * g.
- Ideia de suavizar f com médias ponderadas por g.
- Convolução discreta pro matrizes: muito útil em computação gráfica.

Convoluções

Figura: Exemplo de convolução.

Convoluções

Mas quando podemos tomar convolução de f e g?

Designaldade de Young: se $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$,

$$||f * g||_r \le ||f||_p ||g||_q.$$

Em particular, $||f * g||_p \le ||f||_1 ||g||_p$, para $1 \le p \le \infty$.

Moralmente:

$$(\delta * f)(x) = \int_{\mathbb{R}^n} \delta(x - y) f(y) dy = f(x),$$

ou seja, $\delta*f=f$, identidade da convolução. Formaliza convolução por distribuições de suporte compacto ou aproximações da identidade.

Convolução com Distribuições

Se $f \in \mathcal{D}(\mathbb{R}^n)$ e $T \in \mathcal{D}'(\mathbb{R}^n)$, seja $\widetilde{f}(x) := f(-x)$.

Como, para $\varphi, \psi \in \mathcal{D}(U)$,

$$\langle f * \varphi, \psi \rangle = \int_{\mathbb{R}^n} \psi(x) \int_{\mathbb{R}^n} f(x - y) \varphi(y) dy dx = \langle \varphi, \widetilde{f} * \psi \rangle,$$

estende para distribuições:

$$\langle f * T, \psi \rangle := \langle T, \widetilde{f} * \psi \rangle.$$

Mais geralmente, pode tomar convolução de duas distribuições se uma tem suporte compacto.

Vale associatividade e

$$D^{\alpha}(S*T) = (D^{\alpha}S)*T = S*(D^{\alpha}T).$$

Aproximações da Identidade

Se $\tau_a f(x) \coloneqq f(x-a)$ é translação, temos:

Lema

Se $f \in L^p(\mathbb{R}^n)$ para $1 \leq p < \infty$, então

$$\lim_{a\to 0}\|\tau_a f-f\|_p=0.$$

Se $\rho \in L^1$, $\int_{\mathbb{R}^n} \rho = 1$, e $\rho_{\varepsilon}(x) := \varepsilon^{-n} \rho(\varepsilon^{-1} x)$ como antes, temos:

Teorema

Se $f \in L^p$ para $1 \le p < \infty$, então $\|\rho_{\varepsilon} * f - f\|_p \to 0$.

Se $f \in L^{\infty}$ e é uniformemente contínua em $V \subseteq \mathbb{R}^n$, então $\rho_{\varepsilon} * f \to f$ uniformemente em V.

Se f é de classe C^k , então $D^{\alpha}(\rho_{\varepsilon} * f) \to D^{\alpha}f$ uniformemente em compactos para $|\alpha| \leq k$.

Derivadas de Convoluções

Se $f \in L^1_{loc}$ e $\rho \in C^\infty_c(\mathbb{R}^n)$, então $\rho * f$ é bem definido. Ainda:

$$D^{\alpha}(\rho * f)(x) = \int_{\mathbb{R}^n} f(y) D^{\alpha} \rho(x - y) dy.$$

Ou seja, $D^{\alpha}(\rho * f) = (D^{\alpha}\rho) * f$. Convolução suaviza funções!

Usa isso com $f_{\varepsilon} = \rho_{\varepsilon} * f$ para produzir sequência convergindo a f em $C_c^{\infty}(\mathbb{R}^n)$.

Em particular:

Teorema

 $C_c^{\infty}(\mathbb{R}^n)$ é denso em L^p para $1 \leq p < \infty$.

Aplicações a EDPs: Soluções Fundamentais

Seja *L* operador diferencial com coeficientes constantes. Queremos resolver

$$Lu = f$$
.

Se acharmos u_0 tal que $Lu_0 = \delta$, então $u = u_0 * f$ é solução!

$$Lu = L(u_0 * f) = (Lu_0) * f = \delta * f = f.$$

Teorema (Malgrange-Ehrenpreis)

Todo operador diferencial com coeficientes constantes L tem solução N, dita a solução fundamental, tal que

$$LN = \delta$$
.

Dada $u \in C^2(\Omega)$, define

$$\Delta u := \left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right) u.$$

Teoria extensa e muitas aplicações na física:

- Equação de Laplace: $\Delta u = 0$
- Equação do calor: $(\partial_t \Delta)u = 0$
- Equação de onda: $(\partial_t^2 \Delta)u = 0$

Se $\Delta u = 0$, u é dita harmônica.

Seja $\Omega \subseteq \mathbb{R}^n$ aberto conexo, e ω_n o volume da bola unitária n-dimensional.

Teorema (Valor Médio)

Se $u \in C^2(\Omega)$ é harmônica, então

$$u(x) = \frac{1}{n\omega_n r^{n-1}} \int_{\partial B(x,r)} u(y) d\sigma(y) = \frac{1}{\omega_n r^n} \int_{B(x,r)} u(y) dy,$$

Para todo r tal que $\overline{B(x,r)} \subset \Omega$.

Ou seja:

$$u(x) = \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u(y) d\sigma(y) = \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) dy.$$

Vale recíproca do teorema do valor médio:

Teorema

Se $u \in C(\Omega)$ é tal que vale

$$u(x) = \frac{1}{\omega_n r^n} \int_{B(x,r)} u(y) dy, \quad \forall r \ tal \ que \ \overline{B(x,r)} \subset \Omega,$$

então $u \in C^{\infty}(\Omega)$ e u é harmônica.

Teorema (Princípio do Máximo)

Se Ω é limitado e $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ é harmônica, então

$$\max_{x \in \overline{\Omega}} |u(x)| = \max_{x \in \partial\Omega} |u(x)|.$$

Para $n \geq 3$, se $f: \mathbb{R}^n \to \mathbb{R}$ é radial, f(x) = f(||x||) = f(r),

$$\Delta f = \frac{d^2 f}{dr^2} + \frac{n-1}{r} \frac{df}{dr}.$$

 $f(r) = r^{2-n}$ é harmônica para $r \neq 0$.

Teorema

Se $n \ge 3$, então

$$\Delta r^{2-n} = -n(n-2)\omega_n\delta.$$

Verifica-se $r^{2-n} \in L^1_{loc}(\mathbb{R}^n)$:

$$\int_{\|x\|<1} \frac{1}{r^{n-2}} dx = c(n) \int_0^1 \frac{1}{r^{n-2}} r^{n-1} dr < \infty.$$

Então r^{2-n} define distribuição, e

$$\langle \Delta r^{2-n}, \varphi \rangle = \int_{\mathbb{R}^n} \frac{\Delta \varphi}{r^{n-2}} dx = \lim_{\varepsilon \to 0} \int_{\|x\| \ge \varepsilon} \frac{\Delta \varphi}{r^{n-2}} dx = \lim_{\varepsilon \to 0} \int_{\varepsilon \le \|x\| \le R} \frac{\Delta \varphi}{r^{n-2}} dx$$

para R grande fixo. Pela fórmula de Green com normal interior n=-r a $B_{\varepsilon}(0)$,

$$\int_{\varepsilon \le ||x|| \le R} \frac{\Delta \varphi}{r^{n-2}} dx = \int_{||x|| = \varepsilon} -\frac{1}{r^{n-2}} \frac{\partial \varphi}{\partial r} + \varphi \frac{\partial r^{2-n}}{\partial r} d\sigma$$
$$= -\frac{1}{\varepsilon^{n-2}} \int_{||x|| = \varepsilon} \frac{\partial \varphi}{\partial r} d\sigma - \frac{n-2}{\varepsilon^{n-1}} \int_{||x|| = \varepsilon} \varphi(x) d\sigma.$$

Limite da esquerda é de ordem $C\varepsilon$, tende a 0. E o da direita?

$$\frac{2-n}{\varepsilon^{n-1}}\int_{\|x\|=\varepsilon}\varphi(x)d\sigma=(2-n)\left[\int_{\|x\|=\varepsilon}\frac{\varphi(x)-\varphi(0)}{\varepsilon^{n-1}}d\sigma+n\omega_n\varphi(0)\right].$$

Trocando $x = \varepsilon y$, limite fica

$$\langle \Delta r^{2-n}, \varphi \rangle = n(n-2)\omega_n \varphi(0) = \langle -n(n-2)\omega_n \delta, \varphi \rangle.$$

Equação de Poisson: $-\Delta V = f$ (ex.: potencial elétrico).

Teorema

Se $\rho:\mathbb{R}^3 \to \mathbb{R}$ é contínua com suporte compacto, então

$$V(x) = \int_{\mathbb{R}^3} \frac{\rho(y)}{\|x - y\|} dy$$

satisfaz $-\Delta V = 4\pi\rho$ como distribuição.

Exemplo de Regularidade Elíptica

Se ρ é apenas contínua, V é C^1 , pode não ser C^2 .

Continuidade de Hölder: $0 < \alpha \leq 1$, $\rho \in C^{\alpha}(\mathbb{R}^3)$ se

$$\sup_{x\neq y}\frac{|\rho(x)-\rho(y)|}{\|x-y\|^{\alpha}}<\infty.$$

Teorema

Se $\rho \in C^{\alpha}(\mathbb{R}^3)$ com $\alpha > 0$, então $V \in C^{2+\alpha}(\mathbb{R}^3)$.

Mais geralmente:

Teorema

Seja $\Omega \subseteq \mathbb{R}^n$, $k \ge 0$, $0 < \alpha < 1$ e $f \in C^{k+\alpha}(\Omega)$. Se u é distribuição tal que $\Delta u = f$, então $u \in C^{k+2+\alpha}(\Omega)$.

Exemplo de Regularidade Elíptica

Teorema

Se $u : \mathbb{R}^n \to \mathbb{R}$ é contínua e harmônica no sentido de distribuições, então u é harmônica.

Como $\Delta u=0$ como distribuição, para toda $arphi\in\mathcal{D}(\mathbb{R}^n)$ vale

$$\int_{\mathbb{R}^n} u(x) \Delta \varphi(x) dx = 0.$$

Tomando $u_{\varepsilon} = \rho_{\varepsilon} * u$ suaves convergindo pra u, temos

$$\Delta u_{\varepsilon}(x) = \int_{\mathbb{R}^n} u(y) \Delta_x \rho_{\varepsilon}(x-y) dy = \int_{\mathbb{R}^n} u(y) \Delta_y \rho_{\varepsilon}(x-y) dy = 0.$$

Com u contínua, $u_{\varepsilon} \to u$ uniformemente em compactos; isto mostra pela recíproca do teorema do valor médio que u é harmônica.

Regularidade de EDPs

Mais geralmente, se L é operador diferencial linear com coeficientes constantes e N solução fundamental com $N \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, L é hipoelíptico se:

$$\forall u \in \mathcal{D}'(\mathbb{R}^n)$$
 tal que $Lu = f \in C^{\infty}$, então $u \in C^{\infty}$.

O Laplaciano Δ é hipoelíptico!

Teorema

Seja L operador diferencial com coeficientes constantes. São equivalentes:

- **1** Existe solução fundamental que é C^{∞} em $\mathbb{R}^n \setminus \{0\}$;
- 2 Todas as soluções fundamentais são C^{∞} em $\mathbb{R}^n \setminus \{0\}$;
- L é hipoelíptico.

Espaços de Sobolev

 $\Omega \subseteq \mathbb{R}^n$ aberto, $u \in L^1_{loc}(\Omega)$, e α multi-índice.

Dizemos que $v \in L^1_{loc}(\Omega)$ é α -derivada fraca de u se $\forall \varphi \in \mathcal{D}(\Omega)$

$$\int_{\mathbb{R}^n} u(x) D^{\alpha} \varphi(x) dx = (-1)^{|\alpha|} \int_{\mathbb{R}^n} v(x) \varphi(x) dx.$$

v representa a distribuição $D^{\alpha}u$; é única q.t.p.

Espaços de Sobolev: para $1 \leq p \leq \infty$ e $k \in \mathbb{N}$,

$$W^{k,p}(\Omega) := \{u : \Omega \to \mathbb{C} \mid D^{\alpha}u \in L^p(\Omega), \forall |\alpha| \leq k\}.$$

Ou seja, u e suas derivadas fracas até ordem k existem e são L^p .

Espaço de Banach com norma $\|u\|_{k,p} = \left(\sum_{|\alpha| \leq k} \int_{\Omega} |D^{\alpha}u|^p\right)^{\frac{1}{p}}$.

Exemplo: Continuidade Absoluta

Caso
$$n = 1$$
, $\Omega = I = (a, b)$, e $1 \le p \le \infty$.

Teorema

Se $u \in W^{1,p}(I)$, então existe $\widetilde{u} \in C(I)$ tal que $\widetilde{u} = u$ q.t.p. e, para $x < y \in (a,b)$,

$$\widetilde{u}(y) - \widetilde{u}(x) = \int_{x}^{y} u'(t)dt.$$

Ou seja, *u* tem representante contínua e vale teorema fundamental do cálculo.

Também vai coincidir com o conceito de continuidade absoluta:

 $f: I \to \mathbb{R}$ é absolutamente contínua se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que se (a_i, b_i) é conjunto finito de intervalos dois a dois disjuntos em I com $\sum_i b_i - a_i < \delta$, então $\sum_i |f(b_i) - f(a_i)| < \varepsilon$.

Espaços de Sobolev

Como entender $W^{k,p}(\Omega)$? Não são exatamente funções.

Teorema (Meyres-Serrin)

 $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ é denso em $W^{k,p}(\Omega)$.

Valores de Fronteira e Operador Traço

Resolver equação de Poisson não-homogênea com fronteira:

$$\begin{array}{rcl} \Delta u & = & f & \text{ em } \Omega, \\ u & = & g & \text{ em } \partial \Omega. \end{array}$$

Se Ω tem fronteira regular, considera $W_0^{1,p}(\Omega)$ o fecho de $C_c^{\infty}(\Omega)$ em $W^{1,p}(\Omega)$.

Núcleo do Operador traço $T:W^{1,p}(\Omega)\to L^p(\partial\Omega)$:

$$Tu = u|_{\partial\Omega}$$
 se $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$.

É contínuo, mas se p > 1, não é sobrejetor.