21.12.2004

日本国特許庁 JAPAN PATENT OFFICE

REC'D 1 3 JAN 2005

WIPO

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月26日

出 願 番 号 Application Number:

特願2003-433425

[ST. 10/C]:

[JP2003-433425]

出 願 人
Applicant(s):

パイオニア株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 8月17日

(i) (ii)

【書類名】

特許願

【整理番号】

58P0516

【提出日】

平成15年12月26日

【あて先】

特許庁長官殿

【国際特許分類】

G09G 3/30

H01L 51/00

【発明者】

【住所又は居所】

埼玉県鶴ヶ島市富士見6丁目1番1号 パイオニア株式会社 総

合研究所内

【氏名】

中村 健二

【発明者】

【住所又は居所】

千葉県千葉市中央区宮崎町727-7-310

【氏名】

工藤 一浩

【特許出願人】

【識別番号】

000005016

【氏名又は名称】

パイオニア株式会社

【代理人】

【識別番号】

100079119

【弁理士】

【氏名又は名称】

藤村 元彦

【手数料の表示】

【予納台帳番号】

016469

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9006557

【書類名】特許請求の範囲

【請求項1】

第1電極、第2電極、及び前記第1及び第2電極間に設けられた発光層を有する有機EL 発光素子であって、

前記第1電極と前記発光層との間に設けられ、前記発光層の発光波長帯域内に吸収帯域 を有する有機半導体層と、

前記有機半導体層に電気的に接続されている制御電極と、を有することを特徴とする有機半導体発光素子。

【請求項2】

前記有機半導体層は前記吸収帯域を有する光吸収層を有し、前記制御電極は前記光吸収層 に接していることを特徴とする請求項1に記載の有機半導体発光素子。

【請求項3】

前記有機半導体層は前記吸収帯域を有する光吸収層を有し、前記制御電極は前記光吸収層 内に埋設されていることを特徴とする請求項1に記載の有機半導体発光素子。

【請求項4】

前記光吸収層は前記制御電極と前記第1電極との間に形成されていることを特徴とする請求項2に記載の有機半導体発光素子。

【請求項5】

前記発光層及び前記有機半導体層の少なくとも一方は前記有機半導体層の光吸収率が所定 範囲内であるようにドーパントが添加されていることを特徴とする請求項1に記載の有機 半導体発光素子。

【請求項6】

前記制御電極への印加電圧変化に対する前記第1及び第2電極間の電流電圧特性は、前記 発光層の発光及び消光に応じて変化するサイリスタ特性を有することを特徴とする請求項 1に記載の有機半導体発光素子。

【請求項7】

前記第1電極及び前記第2電極はそれぞれアノード及びカソードであり、前記第1電極及び前記発光層間に配された正孔輸送層をさらに有することを特徴とする請求項1に記載の 有機半導体発光素子。

【請求項8】

「記第1電極及び前記第2電極はそれぞれアノード及びカソードであり、前記第2電極及び前記発光層間に配された電子輸送層をさらに有することを特徴とする請求項1に記載の有機半導体発光素子。

【書類名】明細書

【発明の名称】有機半導体発光素子

【技術分野】

[0001]

本発明は、有機半導体発光素子、特に、スイッチング機能を備えた有機半導体発光素子等に関する。

【背景技術】

[0002]

有機エレクトロルミネセンス素子(以下、有機EL素子ともいう。)は自発光型の素子であり、応答速度が非常に速く、高輝度である種々の利点を有し、その研究開発が進められてきた。また、スイッチング機能を備えた有機EL素子が提案されている(例えば、特許文献 1 参照)。

[0003]

また、かかる有機EL素子をマトリクス状に配置して構成される発光表示ディスプレイは、視野角が広く、薄型で消費電力も小さい表示装置として、注目され、広く開発が進められている。

[0004]

従来のEL素子は、受動型のデバイスであり、アクティブ駆動するためには1つのEL素子に少なくとも2つ以上のTFT等のスイッチング素子、及び、少なくとも1つ以上のキャパシタを必要としていた。従って、有機EL素子を用いてアクティブ駆動ディスプレイを構成する場合に、1つの画素内にTFT等のスイッチング素子やキャパシタを形成することによって画素の開口率が低下し、結果として、十分な輝度を得るために電力消費が大きくなるという問題があった。また、有機EL素子の発光寿命が短くなる等の問題があった。

[0005]

また、さらに高輝度で、視認性に優れた高性能かつ低価格のディスプレイの実現に適した有機EL素子が望まれている。

【特許文献1】特開2003-187983号公報(第3頁、図1)

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は、上述した点に鑑みなされたものであり、その目的とするところは、スイッチング機能を備え、高輝度で高性能な有機半導体発光素子等を提供することにある。本発明が解決しようとする課題には、上記した問題が1例として挙げられる。

【課題を解決するための手段】

[0007]

本発明による有機半導体発光素子は、第1電極、第2電極、及び第1及び第2電極間に 設けられた発光層を有する有機EL発光素子であって、第1電極と発光層との間に設けら れ、発光層の発光波長帯域内に吸収帯域を有する有機半導体層と、上記有機半導体層に電 気的に接続されている制御電極と、を有することを特徴としている。

【発明を実施するための最良の形態】

[0008]

以下、本発明の実施例について図面を参照しつつ詳細に説明する。なお、以下に示す実施例において、等価な構成要素には同一の参照符を付している。

【実施例1】

[0009]

図1は、本発明の実施例1である光サイリスタ型の有機EL素子10の構成を模式的に 示す断面図である。

$[0\ 0\ 1\ 0]$

有機EL素子10は、第1電極としてのソース電極(S)11、第2電極としてのドレ 出証特2004-3073838

イン電極 (D) 12を有するとともに、当該ソース電極 (S) 11、ドレイン電極 (D) 12の間に制御電極としてのゲート電極 (G) 13を有する。さらに、ソース電極 (S) 11及びゲート電極 (G) 13の間には第1有機半導体層 (ORG1) 21が、ゲート電極 (G) 13及びドレイン電極 (D) 12の間には第2有機半導体層 (ORG2) 22及び発光層 (EMI) 25が形成されている。

[0011]

上記ソース電極(S) 11、ドレイン電極(D) 12、及びゲート電極(G) 13には金、白金、パラジウム、銀、鉛、錫、アルミニウム、カルシウム、インジウム、クロム、リチウム、などのアルカリ金属や、マグネシウムなどのアルカリ土類金属、あるいはこれらの合金を用いることができる。また、アルカリ金属化合物、アルカリ土類金属化合物、インジウム錫酸化物(ITO)、酸化錫、インジウム亜鉛酸化物、亜鉛酸化物やこれらの合金を用いることができる。あるいは、セレン、ヨウ化銅、ニッケルなどを用いることができる。また、ポリ(3-メチルチオフェン)、ポリフェニレンスフィド、ポリアニリンなどの導電性高分子を用いることも可能である。これらは単独で、あるいは、例えばITO(インジウム錫酸化物)上にポリアニリンを成膜したもののように、複数の膜を積層したものを用いることもできる。

$[0\ 0\ 1\ 2\]$

第1有機半導体層(ORG1)21、第2有機半導体層(ORG2)22には、シアニン、ポルフィリン、フタロシアニン等の有機色素分子とその誘導体、トリフェニルアミン誘導体、ペンタセン等のポリアセン系分子とその誘導体、カルバゾール誘導体、トリフェニルジアミン誘導体、トリアゾール誘導体等を用いることができるが、これらに限られない。これらは単独で、あるいは、2種以上の材料の混合層であってもよい。

[0013]

発光層(EMI)25には、アルミニウムキノリノール、カルバゾール誘導体等を用いることができるが、これらに発光効率の高い蛍光材料又は燐光材料が添加されたものがより好ましい。

$[0\ 0\ 1\ 4\]$

以下に、有機EL素子10の形成方法について具体的に説明する。まず、スパッタリングによってITOを約100nm(ナノメートル)の厚さで成膜してソース電極11を形成している。次に、 1×10^{-5} Pa(パスカル)程度の高真空下で第1有機半導体層21として銅フタロシアニン(CuPc)を、ゲート電極13としてアルミニウム(A1)を、第2有機半導体層22として銅フタロシアニン(CuPc)を蒸着して形成している。

[0015]

第1有機半導体層 21及び第2有機半導体層 22は、層厚が約50nmとなるように形成している。また、ゲート電極13は、第1有機半導体層21上にアルミニウムの層厚が約30nmとなるように蒸着したが、第1有機半導体層21の表面の全面が被覆されているのではなく、ゲート電極13の面内に空孔13Aが形成されるような成膜条件によって形成している。この場合、空孔はランダムに形成されている。すなわち、ゲート電極13上への第2有機半導体層22の成膜により、当該空孔内にも第2有機半導体(銅フタロシアニン)が形成され、第1有機半導体層21と第2有機半導体層22が当該空孔(すなわち、貫通部)13Aにおいて接している。

[0016]

なお、ゲート電極13は、第1有機半導体層21と第2有機半導体層22が接するような形状に形成されていればよい。すなわち、ゲート電極13は、例えば、プロセスマスクを用いてメッシュ状、ストライプ状等の種々の形状に形成されていてもよい。例えば、ゲート電極13がメッシュ形状を有するようにゲート電極13を形成した場合の、積層方向に垂直な面内におけるゲート電極13の一部平面図(すなわち、図1のW方向から見た一部断面図)を図2に示す。あるいは、ゲート電極13は、櫛状に形成されていてもよい。

[0017]

また、図3に示すように、ゲート電極13は、1つの有機半導体層(ORG)23内に 出証特2004-3073838

埋設されて形成されていてもよい。なお、この場合、ゲート電極13は、当該1つの有機 半導体層23内に形成されていればよく、どの位置に形成されていてもよい。

[0018]

第2有機半導体層22上には、発光層(EMI)25が、アルミニウムキノリノール(Alq3)とナイルレッドを100:5の比で共蒸着して形成されている。

[0019]

発光層 (EMI) 25上には、ドレイン電極12が、マグネシウムと銀を100:5の比で共蒸着して形成されている。

[0020]

図4は、発光層25のEL発光スペクトル(一点鎖線で示す)と第1及び第2有機半導体層21、22に用いた銅フタロシアニン(CuPc)の吸収スペクトル(実線で示す)を示している。上述したように、発光層25のアルミニウムキノリノールには、蛍光材料のナイルレッドを添加している。これにより、発光層25の実際の発光スペクトルはアルミニウムキノリノール(A1q3)の発光スペクトルよりも長波長側にシフトしている。なお、蛍光材料を適度に添加することにより発光効率は増加するが、あまり多く添加すると発光効率は低下する。

[0021]

従って、発光層25からの発光のうち一部の波長帯の光は第1及び第2有機半導体層2 1、22により吸収されるように構成されている。

[0022]

以下に、上記した有機EL素子10の動作について図を参照しつつ詳細に説明する。

[0023]

図5は、有機EL素子10の基本的な動作を確認するための光サイリスタ素子10Aの 構成を示す断面図である。この光サイリスタ素子10Aは、有機EL素子10の発光層2 5が形成されていない点を除いて、有機EL素子10と同様の構成を有している。

[0024]

なお、ここでいう光サイリスタとは、ソース電極とドレイン電極との間にゲート電極を 有しており、その電流一電圧特性は静電誘導型トランジスタ(SIT)と同じ特性を示す が、特定の波長が含まれた光を照射することによりゲート電極の制御性が変化する素子で ある。

[0025]

[0026]

図7は、光サイリスタ素子10Aに外部光を照射した場合の、ドレイン・ソース電圧(V_{DS})に対するドレイン・ソース電流(I_{DS})を示している。ゲート電圧(V_G)がゼロのとき、光サイリスタ素子10Aは導通(ON)状態であり、ゲート電圧を1Vまで増加させても導通(ON)状態は維持された。さらに、ゲート電圧を1. 5Vまで増加させると非導通(OFF)状態に変化した。

[0027]

図6,7に示すように、外部光の照射の有無により、ゲート電圧による光サイリスタ素子10Aのサイリスタ特性が変化することが確認された。

[0028]

次に、図5に示す有機EL素子10の動作について説明する。ゲート電極13に電圧を印加しない状態 $(V_G=0\ V)$ で、ソース電極11とドレイン電極12との間に10VのDC電圧を印加したところ、有機EL素子10は発光し、約78カンデラの発光強度が確認された。次に、ソース電極11とゲート電極13との間に1Vの電圧を印加したところ

、消光した。また、ソース電極11及びゲート電極13間の電圧を0Vに戻したところ、再び78カンデラの発光強度で発光することが確認された。

[0029]

かかる有機EL素子10の動作については以下のように理解される。すなわち、ゲート電極13への電圧印加により、ゲートポテンシャルが上昇し、発光層25を流れる電流も減少して発光強度が低下する。また、この際、発光層25から放出された光が第1及び第2有機半導体層21、22により吸収されることによって生成されたホールによってさらにゲートポテンシャルは上昇する。このようなメカニズムにより発光層25からの発光は停止して消光するが、ゲート電圧の印加からマイクロ秒(μ sec)オーダー以下の時間で、ゲート電圧を印加しないときの発光強度に比べて十分小さな強度まで発光強度は低下する。

[0030]

なお、本実施例において、第1及び第2有機半導体層21、22が発光層25からの放出光を吸収する場合について説明したが、第1及び第2有機半導体層21、22の一方のみが放出光を吸収する光吸収層であるように構成してもよい。この場合、第1有機半導体層21のみが放出光を吸収するように構成するのが好ましい。また、上記においては、発光層へのドーパント添加により発光層の発光効率、及び/又は発光スペクトルのシフトを調整する場合を説明したが、当該光吸収層へドーパントを添加してもよい。すなわち、発光層へのドーパント添加、及び/又は当該光吸収層へのドーパント添加により、当該光吸収層による光吸収率が所定値又は所定範囲内となるように調整する構成としてもよい。

【実施例2】

[0031]

本発明の実施例2である光サイリスタ型の有機EL素子10について説明する。

[0032]

本実施例の層構造は上記した実施例1と同様であるが、第1及び第2有機半導体層21、22はメロシアニン(MC)を蒸着して形成している。ゲート電極(G)13にはマグネシウムを用いている。また、発光層25は、アルミニウムキノリノール(A1q3)とクマリン6を100:3の比で共蒸着して形成されている。さらに、ドレイン電極12は、アルミニウムとリチウムを共蒸着して形成されている。

[0033]

図8は、発光層25のEL発光スペクトル(一点鎖線)と第1及び第2有機半導体層21、22に用いたアルミニウムキノリノール(Alq3)の吸収スペクトル(実線)を示している。上述したように、発光層25のアルミニウムキノリノールには、蛍光材料のクマリン6が添加されている。これにより、発光層25の発光効率は増加するが、発光スペクトルのシフトは小さい。

[0034]

本実施例の有機EL素子10の動作を確認したところ、上記した実施例1の場合と同様に、ゲート電極13への電圧印加によって消光することが確認された。また、ゲート電極13への印加電圧を0Vとすることによって再び発光することが確認された。

【実施例3】

[0035]

図9は、本発明の実施例3である光サイリスタ型の有機EL素子10の構成を模式的に示す断面図である。

[0036]

上記した実施例1と異なる点は、第2有機半導体層22と発光層25との間に正孔輸送層(HT)31を、また、発光層25上に正孔ブロック層(HB)32を、正孔輸送層32上に電子輸送層(ET)33を設けていることである。

[0037]

第1及び第2有機半導体層21、22は、p型有機半導体層である。従って、この有機 EL素子10は、発光素子としての機能に加えて、ゲート電極13への電圧印加に応じて

制御可能なp型SITとしての機能を併有している。

[0038]

なお、第2有機半導体層22、正孔輸送層31、正孔ブロック層32、電子輸送層33 は、必要に応じて適宜設ければよい。あるいは、ソース電極11と第1有機半導体層21 の間に正孔注入層を設けてもよい。

[0039]

本実施例の有機EL素子10においても、ソース電極(陽極)11及びドレイン電極(陰極)12間に10 Vの電圧を印加し、ゲート電圧(V_G)の印加に応じて発光制御を行うことができることが確認された。

【実施例4】

[0040]

図10は、本発明の実施例4である光サイリスタ型の有機EL素子10の構成を模式的に示す断面図である。

[0041]

上記した実施例3と異なる点は、有機EL素子10を、発光素子としての機能に加えて、ゲート電極13への電圧印加に応じて制御可能なn型SITとしての機能を併有するように構成していることである。

[0042]

具体的には、ソース電極11上に、正孔輸送層31、発光層25、正孔ブロック層32、電子輸送層33、第1有機半導体層21、ゲート電極13、第2有機半導体層22、及びドレイン電極12を順次積層して形成されている。ここで、第1及び第2有機半導体層21、22は、n型有機半導体層である。従って、この有機EL素子10は、発光素子としての機能に加えて、ゲート電極13への電圧印加に応じて制御可能なn型SITとしての機能を併有している。

[0043]

以上、詳細に説明したように、本発明によれば、サイリスタ特性を有する能動的有機EL素子を提供することができる。従って、例えば、当該有機EL素子を用いてディスプレイ装置を構成することにより、各画素内に設けるトランジスタの数を低減することができる。従って、消費電力が小さく、高輝度で低コストのアクティブ駆動ディスプレイを実現することができる。また、寿命が長く、高信頼度、高性能なディスプレイを実現することができる。

【図面の簡単な説明】

[0044]

【図1】本発明の実施例1である光サイリスタ型の有機EL素子の構成を模式的に示す断面図である。

【図2】ゲート電極の一例を示す図であり、積層方向に垂直な面内におけるゲート電極の一部平面図である。

【図3】ゲート電極の一例を示す図であり、ゲート電極が有機半導体層内に埋め込まれるように形成されている場合の有機EL素子の断面図である。

【図4】発光層25のEL発光スペクトル(一点鎖線)及び第1及び第2有機半導体層の吸収スペクトル(実線)を示す図である。

【図5】図1に示す有機EL素子の基本的な動作を確認するための光サイリスタ素子の構成を示す断面図である。

【図 6 】図 5 に示す光サイリスタ素子に外部光を照射しない場合の、ドレイン・ソース電圧 (V_{DS}) に対するドレイン・ソース電流 (I_{DS}) を示す図である。

【図7】図5に示す光サイリスタ素子に外部光を照射した場合の、ドレイン・ソース電圧 (V_{DS}) に対するドレイン・ソース電流 (I_{DS}) を示す図である。

【図8】実施例2の有機EL素子における、発光層のEL発光スペクトル (一点鎖線) と第1及び第2有機半導体層の吸収スペクトル (実線) を示す図である。

【図9】本発明の実施例3である光サイリスタ型有機EL素子の構成を模式的に示す

断面図である。

【図10】本発明の実施例4である光サイリスタ型有機EL素子の構成を模式的に示す断面図である。

【符号の説明】

[0045]

- 10 光サイリスタ型有機EL素子
- 11 ソース電極
- 12 ドレイン電極
- 13 ゲート電極
- 13A 貫通部
- 21 第1有機半導体層
- 22 第2有機半導体層
- 23 有機半導体層
- 2 5 発光層
- 3 1 正孔輸送層
- 32 正孔ブロック層
- 3 3 電子輸送層

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

ILLUMINATED

【図9】

【図10】

【要約】

【目的】 スイッチング機能を備え、高輝度で高性能な有機半導体発光素子を提供する。 【解決手段】 第1電極と発光層との間に設けられ、発光層の発光波長帯域内に吸収帯域 を有する有機半導体層と、上記有機半導体層に電気的に接続されている制御電極と、を有 することを特徴としている。

【選択図】 図1

特願2003-433425

出願人履歴情報

識別番号

[000005016]

1. 変更年月日 [変更理由]

住所氏名

1990年 8月31日

新規登録

東京都目黒区目黒1丁目4番1号

パイオニア株式会社