

Known honest nodes

Known sybil nodes

... Sybil Detection Algorithm

$$P(x_u = 1 \mid \mathbf{x}_V)$$

Honest region

Honest region

Why are Sybils a Problem?

Spread misinformation

Degrade trust

Influence public opinion

Modern Sybils

Al-generated

Actual photograph

Which picture is real?

As in, an image of the real world taken by a physical camera?

Structure-based Sybil Detection

- Content becoming harder to (even manually) distinguish
- Other advantages
 - Privacy concerns
 - Enhanced generalizability

Background & Related Work

SybilRank

2012

- Random Walks (RW)
- Uses only honest labels
- Computationally efficient

SybilBelief

2014

- Loopy Belief
 Propagation (LBP)
- Uses both honest and sybil labels

SybilSCAR

2019

- Local rule-based propagation
- Uses both honest and sybil labels
- Combines benefits of RW and LBP

Why use GNNs?

GNNs as a «one size fits all»?

GNNs for Sybil Detection

SybilGCN SybilRGCN SybilGAT

GNNs for Sybil Detection Approaches

With pre-training

Data

Results: Performance Comparison

Results: Social Networks Synthetization

How to synthesize attack edges?

Results: Robustness Label Noise Level

Results: Robustness Label Noise Level

Adversarial Attack

How to place attack edges in a targeted fashion?

 p_t p

Adversarial Attack

$$\boldsymbol{p} = [0.25, 0.25, 0.5] \in [0, 1]^K$$
 direct hit neighbor 2-hop neighbor

Results: Adversarial Attacks

Attack

Increasing expected number of targeted attack edges

Results: Adversarial Attacks

Conclusion

- SybilGCN and SybilGAT algorithms outperform the baselines in almost all scenarios, including real-world X/Twitter dataset
- SybilRGCN excels when attack complexity is high
- Synthesized social networks

Limitations & Future Work

- More advanced GNN architecture somewhat unexplored
- Robustness to lack of training data and label noise
- More data
- Theoretical analysis

Thank you for listening!

DITET DINFK

Stuart Heeb

stuart.heeb@inf.ethz.ch

Backup Slides

Online Social Network (OSN)

Users on a social media platform

Background & Related Work

	SybilRank (2012)	SybilBelief (2014)	SybilSCAR (2019)
Approach	Random Walks (RW)	Loopy Belief Propagation (LBP)	Local rule-based propagation
Labels (honest / Sybil)	Only honest	Both	Both
Guaranteed convergence	Yes	No	Yes
Computational complexity	O(n log n)	O(n) per iteration	O(n log n)
Main advantage	Computationally efficient	Can use both label types	Combines benefits of RW and LBP

Modern Sybils

«The Eiffel Tower is a famous landmark in Paris, France. It stands tall at 330 meters (1,083 feet) with a square base. It is named after the engineer Gustav Eiffel.» «The Eiffel Tower stands in Paris, France. It reaches a height of 330 meters (1,083 feet). The tower is named after Gustave Eiffel, the engineer whose company designed and built it.»

Claude 3.5 Sonnet

«write exactly 3 very short sentences about the eiffel tower, including its location, height and name origin»

Results: Pre-training on Small Network

Results: Pre-training on Small Network

Results: Pre-training on Small Network

Results: Robustness Data Model

Results: Robustness

Data Model

Results: Robustness

Network Size

Results: Robustness Network Size

Results: Robustness Training Set Size

Results: Robustness Training Set Size

Results: Robustness Training Set Size

Results: Robustness Label Noise Level

Adversarial Attack

Adversarial Attack

Results: Adversarial Attacks

Results: Pre-training Before Attack

