Latent Variable Models for Sequential/Time-Series Data

Piyush Rai

Probabilistic Machine Learning (CS772A)

Nov 7, 2017

• Task: Given a sequence of observations, infer the latent state of each observation

• Task: Given a sequence of observations, infer the latent state of each observation

• An example: Recognizing a sequence of handwritten characters

• Task: Given a sequence of observations, infer the latent state of each observation

• An example: Recognizing a sequence of handwritten characters

• In this example, the latent state z_n at step n is a discrete value

• Task: Given a sequence of observations, infer the latent state of each observation

• An example: Recognizing a sequence of handwritten characters

- In this example, the latent state z_n at step n is a discrete value
- Another example: Given a sequence of observed noisy 2D coordinates x_n of an object, infer its latent state z_n , e.g., actual coordinates, velocity, acceleration, etc. at each step n = 1, 2, ...

• Task: Given a sequence of observations, infer the latent state of each observation

• An example: Recognizing a sequence of handwritten characters

- In this example, the latent state z_n at step n is a discrete value
- Another example: Given a sequence of observed noisy 2D coordinates x_n of an object, infer its latent state z_n , e.g., actual coordinates, velocity, acceleration, etc. at each step n = 1, 2, ...
 - In this example, the latent state z_n at step n is a continuous vector

$$z_n|z_{n-1} \sim p(z_n|z_{n-1})$$
 (first-order dependence b/w z_n 's)
 $x_n|z_n \sim p(x_n|z_n)$ (i.i.d. draws of x_n given z_n)

• For both cases (discrete/continuous z_n), the generic model can be written as follows

$$egin{array}{lll} oldsymbol{z}_n | oldsymbol{z}_{n-1} & \sim & p(oldsymbol{z}_n | oldsymbol{z}_{n-1}) & & ext{(first-order dependence b/w $oldsymbol{z}_n$'s)} \ oldsymbol{x}_n | oldsymbol{z}_n & \sim & p(oldsymbol{x}_n | oldsymbol{z}_n) & & ext{(i.i.d. draws of $oldsymbol{x}_n$ given $oldsymbol{z}_n$)} \end{array}$$

• $p(z_n|z_{n-1})$ is called <u>state-transition model</u>, $p(x_n|z_n)$ is called <u>observation/emission model</u>

$$z_n|z_{n-1} \sim p(z_n|z_{n-1})$$
 (first-order dependence b/w z_n 's)
 $x_n|z_n \sim p(x_n|z_n)$ (i.i.d. draws of x_n given z_n)

- $p(z_n|z_{n-1})$ is called state-transition model, $p(x_n|z_n)$ is called observation/emission model
 - Note: In some cases, the parameters defining these distributions may be known

$$z_n|z_{n-1} \sim p(z_n|z_{n-1})$$
 (first-order dependence b/w z_n 's)
 $x_n|z_n \sim p(x_n|z_n)$ (i.i.d. draws of x_n given z_n)

- $p(z_n|z_{n-1})$ is called state-transition model, $p(x_n|z_n)$ is called observation/emission model
 - Note: In some cases, the parameters defining these distributions may be known
- If states z_n are discrete, we get a Hidden Markov Model (HMM)

$$egin{array}{lll} oldsymbol{z}_n | oldsymbol{z}_{n-1} & \sim & p(oldsymbol{z}_n | oldsymbol{z}_{n-1}) & ext{ (first-order dependence b/w $oldsymbol{z}_n$'s)} \ oldsymbol{x}_n | oldsymbol{z}_n & \sim & p(oldsymbol{x}_n | oldsymbol{z}_n) & ext{ (i.i.d. draws of $oldsymbol{x}_n$ given $oldsymbol{z}_n$)} \end{array}$$

- $p(z_n|z_{n-1})$ is called state-transition model, $p(x_n|z_n)$ is called observation/emission model
 - Note: In some cases, the parameters defining these distributions may be known
- If states z_n are discrete, we get a Hidden Markov Model (HMM)
- If states z_n are continuous vectors, we get a State-Space Model (SSM)

$$z_n|z_{n-1} \sim p(z_n|z_{n-1})$$
 (first-order dependence b/w z_n 's)
 $x_n|z_n \sim p(x_n|z_n)$ (i.i.d. draws of x_n given z_n)

- $p(z_n|z_{n-1})$ is called state-transition model, $p(x_n|z_n)$ is called observation/emission model
 - Note: In some cases, the parameters defining these distributions may be known
- If states z_n are discrete, we get a Hidden Markov Model (HMM)
- If states z_n are continuous vectors, we get a State-Space Model (SSM)
- In both cases, observations x_n can be anything (discrete/real)

• For discrete states case (HMM), $p(z_n|z_{n-1})$ will be a discrete distribution, e.g.,

$$p(\pmb{z}_n|\pmb{z}_{n-1}=\ell)=\mathsf{multinoulli}(\pmb{\pi}_\ell)$$

• For discrete states case (HMM), $p(z_n|z_{n-1})$ will be a discrete distribution, e.g.,

$$p(z_n|z_{n-1}=\ell)=\mathsf{multinoulli}(\pi_\ell)$$

where $\pi_\ell = [\pi_{\ell,1}, \dots, \pi_{\ell,K}]$ is $K \times 1$ a transition prob. vector, s.t. $p(\mathbf{z}_n = k | \mathbf{z}_{n-1} = \ell) = \pi_{\ell,k}$

• For discrete states case (HMM), $p(z_n|z_{n-1})$ will be a discrete distribution, e.g.,

$$p(z_n|z_{n-1}=\ell)=\mathsf{multinoulli}(\pi_\ell)$$

where
$$\pi_\ell = [\pi_{\ell,1}, \dots, \pi_{\ell,K}]$$
 is $K \times 1$ a transition prob. vector, s.t. $p(\mathbf{z}_n = k | \mathbf{z}_{n-1} = \ell) = \pi_{\ell,k}$

ullet For HMM, $p(oldsymbol{z}_n|oldsymbol{z}_{n-1})$ is fully defined by a K imes K transition prob. matrix $\Pi = [oldsymbol{\pi}_1, oldsymbol{\pi}_2, \ldots, oldsymbol{\pi}_K]$

• For discrete states case (HMM), $p(z_n|z_{n-1})$ will be a discrete distribution, e.g.,

$$p(\pmb{z}_n|\pmb{z}_{n-1}=\ell)=\mathsf{multinoulli}(\pmb{\pi}_\ell)$$

where $\pi_\ell = [\pi_{\ell,1}, \dots, \pi_{\ell,K}]$ is $K \times 1$ a transition prob. vector, s.t. $p(\mathbf{z}_n = k | \mathbf{z}_{n-1} = \ell) = \pi_{\ell,k}$

- ullet For HMM, $p(oldsymbol{z}_n|oldsymbol{z}_{n-1})$ is fully defined by a K imes K transition prob. matrix $\Pi = [oldsymbol{\pi}_1, oldsymbol{\pi}_2, \ldots, oldsymbol{\pi}_K]$
- For continuous states (SSM), $p(z_n|z_{n-1})$ will be a continuous distribution, e.g., Gaussian

$$p(\boldsymbol{z}_n|\boldsymbol{z}_{n-1}) = \mathcal{N}(\boldsymbol{\mathsf{A}}\boldsymbol{z}_{n-1},\boldsymbol{\mathsf{I}}_{\mathcal{K}})$$

• For discrete states case (HMM), $p(z_n|z_{n-1})$ will be a discrete distribution, e.g.,

$$p(z_n|z_{n-1}=\ell)=\mathsf{multinoulli}(\pi_\ell)$$

where $\pi_{\ell} = [\pi_{\ell,1}, \dots, \pi_{\ell,K}]$ is $K \times 1$ a transition prob. vector, s.t. $p(\mathbf{z}_n = k | \mathbf{z}_{n-1} = \ell) = \pi_{\ell,k}$

- ullet For HMM, $p(oldsymbol{z}_n|oldsymbol{z}_{n-1})$ is fully defined by a K imes K transition prob. matrix $\Pi = [oldsymbol{\pi}_1, oldsymbol{\pi}_2, \ldots, oldsymbol{\pi}_K]$
- ullet For continuous states (SSM), $p(z_n|z_{n-1})$ will be a continuous distribution, e.g., Gaussian

$$p(\boldsymbol{z}_n|\boldsymbol{z}_{n-1}) = \mathcal{N}(\boldsymbol{\mathsf{A}}\boldsymbol{z}_{n-1},\boldsymbol{\mathsf{I}}_K)$$

ullet Note: More powerful transition models usually employ nonlinear mappings between z_{n-1} and z_n

• For discrete states case (HMM), $p(z_n|z_{n-1})$ will be a discrete distribution, e.g.,

$$p(z_n|z_{n-1}=\ell)=\mathsf{multinoulli}(\pi_\ell)$$

where $\pi_{\ell} = [\pi_{\ell,1}, \dots, \pi_{\ell,K}]$ is $K \times 1$ a transition prob. vector, s.t. $p(\mathbf{z}_n = k | \mathbf{z}_{n-1} = \ell) = \pi_{\ell,k}$

- ullet For HMM, $p(oldsymbol{z}_n|oldsymbol{z}_{n-1})$ is fully defined by a K imes K transition prob. matrix $\Pi = [oldsymbol{\pi}_1, oldsymbol{\pi}_2, \ldots, oldsymbol{\pi}_K]$
- For continuous states (SSM), $p(z_n|z_{n-1})$ will be a continuous distribution, e.g., Gaussian

$$p(\mathbf{z}_n|\mathbf{z}_{n-1}) = \mathcal{N}(\mathbf{A}\mathbf{z}_{n-1}, \mathbf{I}_K)$$

- ullet Note: More powerful transition models usually employ nonlinear mappings between z_{n-1} and z_n
- For both HMM and SSM, there is also an initial state distribution $p(z_1)$

• For discrete states case (HMM), $p(z_n|z_{n-1})$ will be a discrete distribution, e.g.,

$$p(z_n|z_{n-1}=\ell)=\mathsf{multinoulli}(\pi_\ell)$$

where $\pi_{\ell} = [\pi_{\ell,1}, \dots, \pi_{\ell,K}]$ is $K \times 1$ a transition prob. vector, s.t. $p(\mathbf{z}_n = k | \mathbf{z}_{n-1} = \ell) = \pi_{\ell,k}$

- ullet For HMM, $p(oldsymbol{z}_n|oldsymbol{z}_{n-1})$ is fully defined by a K imes K transition prob. matrix $\Pi = [oldsymbol{\pi}_1, oldsymbol{\pi}_2, \ldots, oldsymbol{\pi}_K]$
- ullet For continuous states (SSM), $p(z_n|z_{n-1})$ will be a continuous distribution, e.g., Gaussian

$$p(\boldsymbol{z}_n|\boldsymbol{z}_{n-1}) = \mathcal{N}(\boldsymbol{\mathsf{A}}\boldsymbol{z}_{n-1},\boldsymbol{\mathsf{I}}_K)$$

- ullet Note: More powerful transition models usually employ nonlinear mappings between $oldsymbol{z}_{n-1}$ and $oldsymbol{z}_n$
- For both HMM and SSM, there is also an initial state distribution $p(z_1)$, e.g.,

$$p(z_1) = \text{multinoulli}(\pi_0)$$
 (for HMM)
 $p(z_1) = \mathcal{N}(\mathbf{0}, \mathbf{I}_K)$ (for SSM)

• The type of observation model distribution $p(x_n|z_n)$ depends on the type of data

• The type of observation model distribution $p(x_n|z_n)$ depends on the type of data

• For discrete observations (e.g., words), $p(x_n|z_n)$ is a discrete distribution (e.g., multinoulli)

• The type of observation model distribution $p(x_n|z_n)$ depends on the type of data

- For discrete observations (e.g., words), $p(x_n|z_n)$ is a discrete distribution (e.g., multinoulli)
- For continuous observations (e.g., images, location of an object, etc.), $p(x_n|z_n)$ is a continuous distribution (e.g., Gaussian)

• The type of observation model distribution $p(x_n|z_n)$ depends on the type of data

- For discrete observations (e.g., words), $p(x_n|z_n)$ is a discrete distribution (e.g., multinoulli)
- For continuous observations (e.g., images, location of an object, etc.), $p(x_n|z_n)$ is a continuous distribution (e.g., Gaussian)
- ullet Note: More powerful observation models usually employ nonlinear mappings between $oldsymbol{z}_n$ and $oldsymbol{x}_n$

• What if we have i.i.d. latent states, i.e., $p(z_n|z_{n-1}) = p(z_n)$?

HMM becomes

• What if we have i.i.d. latent states, i.e., $p(z_n|z_{n-1}) = p(z_n)$?

HMM becomes a standard Mixture Model

• What if we have i.i.d. latent states, i.e., $p(z_n|z_{n-1}) = p(z_n)$?

• HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1}=\ell)=p(z_n)=$ multinoulli (π)

- HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1}=\ell)=p(z_n)=$ multinoulli (π)
- SSM becomes

- HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1}=\ell)=p(z_n)=$ multinoulli (π)
- SSM becomes PPCA/GPLVM/DLGM

- HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1}=\ell)=p(z_n)=$ multinoulli (π)
- SSM becomes PPCA/GPLVM/DLGM. Reason: $p(z_n|z_{n-1}) = p(z_n) = \mathcal{N}(\mathbf{0}, \mathbf{I}_K)$ or $\mathcal{N}(\mu, \Psi)$

- HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1}=\ell)=p(z_n)=$ multinoulli (π)
- ullet SSM becomes PPCA/GPLVM/DLGM. Reason: $p(oldsymbol{z}_n|oldsymbol{z}_{n-1})=p(oldsymbol{z}_n)=\mathcal{N}(oldsymbol{0},oldsymbol{I}_{oldsymbol{\mathsf{K}}})$ or $\mathcal{N}(\mu,\Psi)$
- Therefore, inference algorithms for HMM/SSM are often very similar to mixture models/PPCA

- HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1}=\ell)=p(z_n)=$ multinoulli (π)
- ullet SSM becomes PPCA/GPLVM/DLGM. Reason: $p(oldsymbol{z}_n|oldsymbol{z}_{n-1})=p(oldsymbol{z}_n)=\mathcal{N}(oldsymbol{0},oldsymbol{I}_{oldsymbol{\mathsf{K}}})$ or $\mathcal{N}(oldsymbol{\mu},\Psi)$
- Therefore, inference algorithms for HMM/SSM are often very similar to mixture models/PPCA
 - Only main difference is how the latent variables z_n 's are inferred (because these are no longer i.i.d.)

- HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1}=\ell)=p(z_n)=$ multinoulli (π)
- SSM becomes PPCA/GPLVM/DLGM. Reason: $p(z_n|z_{n-1}) = p(z_n) = \mathcal{N}(\mathbf{0}, \mathbf{I}_K)$ or $\mathcal{N}(\mu, \Psi)$
- Therefore, inference algorithms for HMM/SSM are often very similar to mixture models/PPCA
 - Only main difference is how the latent variables z_n 's are inferred (because these are no longer i.i.d.)
 - E.g., if using EM, only E step needs to change. Given the expectations, the M step updates are derived similarly to how it's done in mixture models and PPCA

- HMM becomes a standard Mixture Model. Reason: $p(z_n|z_{n-1}=\ell)=p(z_n)=$ multinoulli (π)
- SSM becomes PPCA/GPLVM/DLGM. Reason: $p(z_n|z_{n-1}) = p(z_n) = \mathcal{N}(\mathbf{0}, \mathbf{I}_{\mathbf{K}})$ or $\mathcal{N}(\mu, \Psi)$
- Therefore, inference algorithms for HMM/SSM are often very similar to mixture models/PPCA
 - Only main difference is how the latent variables z_n 's are inferred (because these are no longer i.i.d.)
 - E.g., if using EM, only E step needs to change. Given the expectations, the M step updates are derived similarly to how it's done in mixture models and PPCA (Bishop Chap 13 has EM for HMM and SSM)

State Space Models (SSM)

Today we will mainly focus on SSM (when the latent variables are continuous vectors)

Using 's' instead of 'z'

• Most of the details of methods we will see apply to HMMs too (but s_t will be discrete)

State Space Models (SSM)

Today we will mainly focus on SSM (when the latent variables are continuous vectors)

- Most of the details of methods we will see apply to HMMs too (but s_t will be discrete)
- In the most general form, the transition and observation models in an SSM can be expressed as

Today we will mainly focus on SSM (when the latent variables are continuous vectors)

- Most of the details of methods we will see apply to HMMs too (but s_t will be discrete)
- In the most general form, the transition and observation models in an SSM can be expressed as

$$|s_t|s_{t-1} = g_t(s_{t-1}) + \epsilon_t$$
 (must be a cont. dist. over s_t)

Today we will mainly focus on SSM (when the latent variables are continuous vectors)

- Most of the details of methods we will see apply to HMMs too (but s_t will be discrete)
- In the most general form, the transition and observation models in an SSM can be expressed as

$$m{s}_t | m{s}_{t-1} = g_t(m{s}_{t-1}) + \epsilon_t$$
 (must be a cont. dist. over $m{s}_t$)
 $m{x}_t | m{s}_t = h_t(m{s}_t) + \delta_t$ (can be any dist. over $m{x}_t$)

Today we will mainly focus on SSM (when the latent variables are continuous vectors)

- Most of the details of methods we will see apply to HMMs too (but s_t will be discrete)
- In the most general form, the transition and observation models in an SSM can be expressed as

$$m{s}_t | m{s}_{t-1} = g_t(m{s}_{t-1}) + \epsilon_t$$
 (must be a cont. dist. over $m{s}_t$)
 $m{x}_t | m{s}_t = h_t(m{s}_t) + \delta_t$ (can be any dist. over $m{x}_t$)

• Here g_t and h_t are functions (can be linear/nonlinear)

Today we will mainly focus on SSM (when the latent variables are continuous vectors)

'time-step'

- Most of the details of methods we will see apply to HMMs too (but s_t will be discrete)
- In the most general form, the transition and observation models in an SSM can be expressed as

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &= m{g}_t(m{s}_{t-1}) + \epsilon_t & ext{(must be a cont. dist. over } m{s}_t) \ m{x}_t | m{s}_t &= m{h}_t(m{s}_t) + \delta_t & ext{(can be any dist. over } m{x}_t) \end{array}$$

- Here g_t and h_t are functions (can be linear/nonlinear)
- Assuming zero-mean Gaussian noise $\epsilon_t \sim \mathcal{N}(0, \mathbf{Q}_t)$, $\delta_t \sim \mathcal{N}(0, \mathbf{R}_t)$, we get a Gaussian SSM

$$egin{array}{lll} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | m{g}_t(m{s}_{t-1}), m{Q}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | m{h}_t(m{s}_t), m{R}_t) \end{array}$$

Today we will mainly focus on SSM (when the latent variables are continuous vectors)

- Most of the details of methods we will see apply to HMMs too (but s_t will be discrete)
- In the most general form, the transition and observation models in an SSM can be expressed as

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &= m{g}_t(m{s}_{t-1}) + \epsilon_t & ext{(must be a cont. dist. over } m{s}_t) \ m{x}_t | m{s}_t &= m{h}_t(m{s}_t) + \delta_t & ext{(can be any dist. over } m{x}_t) \end{array}$$

- Here g_t and h_t are functions (can be linear/nonlinear)
- Assuming zero-mean Gaussian noise $\epsilon_t \sim \mathcal{N}(0, \mathbf{Q}_t)$, $\delta_t \sim \mathcal{N}(0, \mathbf{R}_t)$, we get a Gaussian SSM

$$egin{array}{lll} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | g_t(m{s}_{t-1}), m{Q}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | h_t(m{s}_t), m{R}_t) \end{array}$$

• Note: If $g_t, h_t, \mathbf{Q}_t, \mathbf{R}_t$ are independent of t then the model is called stationary

• A simple example of a state-space model

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &= m{s}_{t-1} + \epsilon_t \ m{x}_t | m{s}_t &= m{s}_t + \delta_t \end{array} \qquad ext{(assumes } m{x}_t ext{ and } m{s}_t ext{ to be of same size)}$$

A simple example of a state-space model

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &= m{s}_{t-1} + \epsilon_t \ m{x}_t | m{s}_t &= m{s}_t + \delta_t \end{array} \hspace{0.5cm} ext{(assumes } m{x}_t ext{ and } m{s}_t ext{ to be of same size)}$$

Another simple but more general example (latent states and observations of diff. dimensions)

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &=& m{A}_t m{s}_{t-1} + \epsilon_t & (m{A}_t ext{ is } K imes K) \ m{x}_t | m{s}_t &=& m{B}_t m{s}_t + \delta_t & (m{B}_t ext{ is } D imes K) \end{array}$$

A simple example of a state-space model

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &= m{s}_{t-1} + \epsilon_t \ m{x}_t | m{s}_t &= m{s}_t + \delta_t \end{array} \qquad ext{(assumes } m{x}_t ext{ and } m{s}_t ext{ to be of same size)}$$

Another simple but more general example (latent states and observations of diff. dimensions)

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &=& m{A}_t m{s}_{t-1} + \epsilon_t & (m{A}_t ext{ is } K imes K) \ m{x}_t | m{s}_t &=& m{B}_t m{s}_t + \delta_t & (m{B}_t ext{ is } D imes K) \end{array}$$

• The above can also be written as follows

$$egin{array}{lll} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | m{\mathsf{A}}_t m{s}_{t-1}, m{\mathsf{Q}}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | m{\mathsf{B}}_t m{s}_t, m{\mathsf{R}}_t) \end{array}$$

A simple example of a state-space model

$$egin{array}{lcl} m{s}_t | m{s}_{t-1} &= m{s}_{t-1} + \epsilon_t \ m{x}_t | m{s}_t &= m{s}_t + \delta_t \end{array} \qquad ext{(assumes } m{x}_t ext{ and } m{s}_t ext{ to be of same size)}$$

Another simple but more general example (latent states and observations of diff. dimensions)

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &=& m{A}_t m{s}_{t-1} + \epsilon_t & (m{A}_t ext{ is } K imes K) \ m{x}_t | m{s}_t &=& m{B}_t m{s}_t + \delta_t & (m{B}_t ext{ is } D imes K) \end{array}$$

• The above can also be written as follows

$$egin{array}{lll} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | m{\mathsf{A}}_t m{s}_{t-1}, m{\mathsf{Q}}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | m{\mathsf{B}}_t m{s}_t, m{\mathsf{R}}_t) \end{array}$$

• This is a Linear Gaussian SSM; also called Linear Dynamical System (LDS)

A simple example of a state-space model

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &=& m{s}_{t-1} + \epsilon_t \ m{x}_t | m{s}_t &=& m{s}_t + \delta_t \end{array} \qquad ext{(assumes } m{x}_t ext{ and } m{s}_t ext{ to be of same size)}$$

Another simple but more general example (latent states and observations of diff. dimensions)

$$egin{array}{lll} m{s}_t | m{s}_{t-1} &=& m{A}_t m{s}_{t-1} + \epsilon_t & (m{A}_t ext{ is } K imes K) \ m{x}_t | m{s}_t &=& m{B}_t m{s}_t + \delta_t & (m{B}_t ext{ is } D imes K) \end{array}$$

The above can also be written as follows

$$egin{array}{lll} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | m{\mathsf{A}}_t m{s}_{t-1}, m{\mathsf{Q}}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | m{\mathsf{B}}_t m{s}_t, m{\mathsf{R}}_t) \end{array}$$

- This is a Linear Gaussian SSM; also called Linear Dynamical System (LDS)
- Note: A_t , B_t , Q_t , R_t may be known (fixed) or may be required to be learned

• Consider the linear Gaussian SSM: $s_t|s_{t-1} = \mathbf{A}_t s_{t-1} + \epsilon_t$ and $\mathbf{x}_t|s_t = \mathbf{B}_t s_t + \delta_t$

- Consider the linear Gaussian SSM: $s_t | s_{t-1} = A_t s_{t-1} + \epsilon_t$ and $x_t | s_t = B_t s_t + \delta_t$
- ullet Suppose $oldsymbol{x}_t \in \mathbb{R}^2$ denotes the (noisy) observed 2D location of an object

- Consider the linear Gaussian SSM: $\mathbf{s}_t | \mathbf{s}_{t-1} = \mathbf{A}_t \mathbf{s}_{t-1} + \epsilon_t$ and $\mathbf{x}_t | \mathbf{s}_t = \mathbf{B}_t \mathbf{s}_t + \delta_t$
- ullet Suppose $oldsymbol{x}_t \in \mathbb{R}^2$ denotes the (noisy) observed 2D location of an object
- ullet Suppose $oldsymbol{s}_t \in \mathbb{R}^6$ denotes its "state" vector $oldsymbol{s}_t = [\mathit{pos}_1, \mathit{vel}_1, \mathit{accel}_1, \mathit{pos}_2, \mathit{vel}_2, \mathit{accel}_2]$

- Consider the linear Gaussian SSM: $\mathbf{s}_t | \mathbf{s}_{t-1} = \mathbf{A}_t \mathbf{s}_{t-1} + \epsilon_t$ and $\mathbf{x}_t | \mathbf{s}_t = \mathbf{B}_t \mathbf{s}_t + \delta_t$
- ullet Suppose $oldsymbol{x}_t \in \mathbb{R}^2$ denotes the (noisy) observed 2D location of an object
- ullet Suppose $oldsymbol{s}_t \in \mathbb{R}^6$ denotes its "state" vector $oldsymbol{s}_t = [\mathit{pos}_1, \mathit{vel}_1, \mathit{accel}_1, \mathit{pos}_2, \mathit{vel}_2, \mathit{accel}_2]$
- Assuming a pre-defined \mathbf{A}_t , \mathbf{B}_t , a possible linear Gaussian SSM to model this data will be

$$\mathbf{s}_{t} = \begin{bmatrix} \frac{1}{0} & \frac{\Delta t}{2} & \frac{1}{2} (\Delta t)^{2} & 0 & 0 & 0 \\ 0 & 1 & \Delta t & 0 & 0 & 0 \\ 0 & 0 & e^{-\alpha \Delta t} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \Delta t & \frac{1}{2} (\Delta t)^{2} \\ 0 & 0 & 0 & 0 & 1 & \Delta t \\ 0 & 0 & 0 & 0 & 0 & e^{-\alpha \Delta t} \end{bmatrix} \mathbf{s}_{t-1} + \epsilon_{t}$$

- Consider the linear Gaussian SSM: $\mathbf{s}_t | \mathbf{s}_{t-1} = \mathbf{A}_t \mathbf{s}_{t-1} + \epsilon_t$ and $\mathbf{x}_t | \mathbf{s}_t = \mathbf{B}_t \mathbf{s}_t + \delta_t$
- Suppose $\mathbf{x}_t \in \mathbb{R}^2$ denotes the (noisy) observed 2D location of an object
- ullet Suppose $oldsymbol{s}_t \in \mathbb{R}^6$ denotes its "state" vector $oldsymbol{s}_t = [\mathit{pos}_1, \mathit{vel}_1, \mathit{accel}_1, \mathit{pos}_2, \mathit{vel}_2, \mathit{accel}_2]$
- \bullet Assuming a pre-defined A_t , B_t , a possible linear Gaussian SSM to model this data will be

$$\mathbf{s}_{t} = \begin{bmatrix} \frac{1}{1} & \frac{\Delta t}{2} & \frac{1}{2} (\Delta t)^{2} & 0 & 0 & 0 \\ 0 & 1 & \Delta t & 0 & 0 & 0 \\ 0 & 0 & e^{-\alpha \Delta t} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \Delta t & \frac{1}{2} (\Delta t)^{2} \\ 0 & 0 & 0 & 0 & 1 & \Delta t \\ 0 & 0 & 0 & 0 & 0 & e^{-\alpha \Delta t} \end{bmatrix} \mathbf{s}_{t-1} + \epsilon_{t}$$

$$\mathbf{E}_{t}$$

$$\mathbf{x}_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \mathbf{s}_{t} + \delta_{t}$$

• One of the key tasks: Given sequence x_1, x_2, x_3, \ldots , infer the latent states s_1, s_2, s_3, \ldots

This is usually solves in one of the following two ways

- This is usually solves in one of the following two ways
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_t)$ given the past observations: "Filtering Problem"

- This is usually solves in one of the following two ways
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_t)$ given the past observations: "Filtering Problem"
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_T)$ given all (past/future) observations: "Smoothing Problem"

- This is usually solves in one of the following two ways
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_t)$ given the past observations: "Filtering Problem"
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_T)$ given all (past/future) observations: "Smoothing Problem"
- Other tasks we may be interested in

- This is usually solves in one of the following two ways
 - Infer the distribution $p(s_t|x_1, x_2, ..., x_t)$ given the past observations: "Filtering Problem"
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_T)$ given all (past/future) observations: "Smoothing Problem"
- Other tasks we may be interested in
 - Predicting future state(s) given observations seen thus far: $p(s_{t+h}|x_1,...,x_t)$ for $h \ge 1$

- This is usually solves in one of the following two ways
 - Infer the distribution $p(s_t|x_1, x_2, ..., x_t)$ given the past observations: "Filtering Problem"
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_T)$ given all (past/future) observations: "Smoothing Problem"
- Other tasks we may be interested in
 - ullet Predicting future state(s) given observations seen thus far: $p(s_{t+h}|x_1,\ldots,x_t)$ for $h\geq 1$
 - Predict next observation(s) given observations seen thus far: $p(x_{t+h}|x_1,\ldots,x_t)$ for $h\geq 1$

- This is usually solves in one of the following two ways
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_t)$ given the past observations: "Filtering Problem"
 - Infer the distribution $p(s_t|x_1,x_2,\ldots,x_T)$ given all (past/future) observations: "Smoothing Problem"
- Other tasks we may be interested in
 - Predicting future state(s) given observations seen thus far: $p(s_{t+h}|x_1,\ldots,x_t)$ for $h\geq 1$
 - Predict next observation(s) given observations seen thus far: $p(x_{t+h}|x_1,\ldots,x_t)$ for $h\geq 1$
- Today, we'll mainly focus on the filtering problem (solved using the Kalman Filtering algorithm)

 $\bullet \text{ Recall that } \boldsymbol{s}_t | \boldsymbol{s}_{t-1} \sim \mathcal{N}(\boldsymbol{s}_t | \boldsymbol{\mathsf{A}}_t \boldsymbol{s}_{t-1}, \boldsymbol{\mathsf{Q}}_t) \text{ and } \boldsymbol{x}_t | \boldsymbol{s}_t \sim \mathcal{N}(\boldsymbol{x}_t | \boldsymbol{\mathsf{B}}_t \boldsymbol{s}_t, \boldsymbol{\mathsf{R}}_t)$

- ullet Recall that $m{s}_t | m{s}_{t-1} \sim \mathcal{N}(m{s}_t | m{A}_t m{s}_{t-1}, m{Q}_t)$ and $m{x}_t | m{s}_t \sim \mathcal{N}(m{x}_t | m{B}_t m{s}_t, m{R}_t)$
- ullet Let's assume a stationary SSM, i.e., $oldsymbol{A}_t = oldsymbol{A}$, $oldsymbol{B}_t = oldsymbol{B}$, $oldsymbol{Q}_t = oldsymbol{Q}$, and $oldsymbol{R}_t = oldsymbol{R}$

- ullet Recall that $m{s}_t | m{s}_{t-1} \sim \mathcal{N}(m{s}_t | m{A}_t m{s}_{t-1}, m{Q}_t)$ and $m{x}_t | m{s}_t \sim \mathcal{N}(m{x}_t | m{B}_t m{s}_t, m{R}_t)$
- ullet Let's assume a stationary SSM, i.e., $oldsymbol{A}_t = oldsymbol{A}$, $oldsymbol{B}_t = oldsymbol{B}$, $oldsymbol{Q}_t = oldsymbol{Q}$, and $oldsymbol{R}_t = oldsymbol{R}$
- ullet Kalman Filtering gives an exact way to infer $p(oldsymbol{s}_t|oldsymbol{x}_1,oldsymbol{x}_2,\ldots,oldsymbol{x}_t)$ in a linear Gaussian SSM

- ullet Recall that $m{s}_t | m{s}_{t-1} \sim \mathcal{N}(m{s}_t | m{A}_t m{s}_{t-1}, m{Q}_t)$ and $m{x}_t | m{s}_t \sim \mathcal{N}(m{x}_t | m{B}_t m{s}_t, m{R}_t)$
- ullet Let's assume a stationary SSM, i.e., $oldsymbol{A}_t = oldsymbol{A}$, $oldsymbol{B}_t = oldsymbol{B}$, $oldsymbol{Q}_t = oldsymbol{Q}$, and $oldsymbol{R}_t = oldsymbol{R}$
- Kalman Filtering gives an exact way to infer $p(s_t|x_1,x_2,\ldots,x_t)$ in a linear Gaussian SSM
 - ullet Note: The "exactness" assumes we are given ullet , ullet , ullet , ullet , ullet are known (or have estimated these)

- ullet Recall that $m{s}_t | m{s}_{t-1} \sim \mathcal{N}(m{s}_t | m{A}_t m{s}_{t-1}, m{Q}_t)$ and $m{x}_t | m{s}_t \sim \mathcal{N}(m{x}_t | m{B}_t m{s}_t, m{R}_t)$
- Let's assume a stationary SSM, i.e., $\mathbf{A}_t = \mathbf{A}$, $\mathbf{B}_t = \mathbf{B}$, $\mathbf{Q}_t = \mathbf{Q}$, and $\mathbf{R}_t = \mathbf{R}$
- ullet Kalman Filtering gives an exact way to infer $p(oldsymbol{s}_t|oldsymbol{x}_1,oldsymbol{x}_2,\ldots,oldsymbol{x}_t)$ in a linear Gaussian SSM
 - Note: The "exactness" assumes we are given A, B, Q, R are known (or have estimated these)
- Using Bayes rule, our target will be

$$p(s_t|x_1,x_2,\ldots,x_t) \propto p(x_t|s_t)p(s_t|x_1,x_2,\ldots,x_{t-1})$$

- ullet Recall that $m{s}_t | m{s}_{t-1} \sim \mathcal{N}(m{s}_t | m{A}_t m{s}_{t-1}, m{Q}_t)$ and $m{x}_t | m{s}_t \sim \mathcal{N}(m{x}_t | m{B}_t m{s}_t, m{R}_t)$
- Let's assume a stationary SSM, i.e., $\mathbf{A}_t = \mathbf{A}$, $\mathbf{B}_t = \mathbf{B}$, $\mathbf{Q}_t = \mathbf{Q}$, and $\mathbf{R}_t = \mathbf{R}$
- ullet Kalman Filtering gives an exact way to infer $p(oldsymbol{s}_t|oldsymbol{x}_1,oldsymbol{x}_2,\ldots,oldsymbol{x}_t)$ in a linear Gaussian SSM
 - Note: The "exactness" assumes we are given A, B, Q, R are known (or have estimated these)
- Using Bayes rule, our target will be

$$p(s_t|x_1,x_2,\ldots,x_t) \propto p(x_t|s_t)p(s_t|x_1,x_2,\ldots,x_{t-1})$$

• The "prior" above is: $p(s_t|x_1, x_2, \dots, x_{t-1}) = \int p(s_t|s_{t-1})p(s_{t-1}|x_1, x_2, \dots, x_{t-1})ds_{t-1}$

$$p(\boldsymbol{s}_t|\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_t) \propto \underbrace{p(\boldsymbol{x}_t|\boldsymbol{s}_t)}_{\mathcal{N}(\boldsymbol{x}_t|\boldsymbol{B}\boldsymbol{s}_t,\boldsymbol{R})} \underbrace{\int \underbrace{p(\boldsymbol{s}_t|\boldsymbol{s}_{t-1})}_{\mathcal{N}(\boldsymbol{s}_t|\boldsymbol{A}\boldsymbol{s}_{t-1},\boldsymbol{Q})} p(\boldsymbol{s}_{t-1}|\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_{t-1}) d\boldsymbol{s}_{t-1}$$

• Thus the Kalman Filtering problem computes the following

$$p(s_t|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_t) \propto \underbrace{p(\mathbf{x}_t|\mathbf{s}_t)}_{\mathcal{N}(\mathbf{x}_t|\mathbf{B}\mathbf{s}_t,\mathbf{R})} \underbrace{\int \underbrace{p(\mathbf{s}_t|\mathbf{s}_{t-1})}_{\mathcal{N}(\mathbf{s}_t|\mathbf{A}\mathbf{s}_{t-1},\mathbf{Q})} p(\mathbf{s}_{t-1}|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_{t-1}) d\mathbf{s}_{t-1}$$

• Note that the LHS is the posterior on s_t , the RHS consists of a posterior on s_{t-1}

$$p(\boldsymbol{s}_t|\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_t) \propto \underbrace{p(\boldsymbol{x}_t|\boldsymbol{s}_t)}_{\mathcal{N}(\boldsymbol{x}_t|\boldsymbol{B}\boldsymbol{s}_t,\boldsymbol{R})} \underbrace{\int \underbrace{p(\boldsymbol{s}_t|\boldsymbol{s}_{t-1})}_{\mathcal{N}(\boldsymbol{s}_t|\boldsymbol{A}\boldsymbol{s}_{t-1},\boldsymbol{Q})} p(\boldsymbol{s}_{t-1}|\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_{t-1}) d\boldsymbol{s}_{t-1}$$

- Note that the LHS is the posterior on s_t , the RHS consists of a posterior on s_{t-1}
- This suggests a simple "forward algorithm" to recursively compute $p(s_t|x_1,x_2,\ldots,x_t)$

$$p(s_t|x_1,x_2,\ldots,x_t) \propto \underbrace{p(x_t|s_t)}_{\mathcal{N}(x_t|Bs_t,R)} \underbrace{\int \underbrace{p(s_t|s_{t-1})}_{\mathcal{N}(s_t|As_{t-1},Q)} p(s_{t-1}|x_1,x_2,\ldots,x_{t-1}) ds_{t-1}}_{p(s_t|s_t,x_1,x_2,\ldots,x_t)}$$

- Note that the LHS is the posterior on s_t , the RHS consists of a posterior on s_{t-1}
- This suggests a simple "forward algorithm" to recursively compute $p(s_t|x_1,x_2,\ldots,x_t)$
 - For Kalman smoothing problem $p(z_t|x_1, x_2, x_T)$, a similar recursive "forward-backward" algorithm exists (the backup slides contain an illustration for the same)

$$p(s_t|x_1,x_2,\ldots,x_t) \propto \underbrace{p(x_t|s_t)}_{\mathcal{N}(x_t|Bs_t,R)} \underbrace{\int \underbrace{p(s_t|s_{t-1})}_{\mathcal{N}(s_t|As_{t-1},Q)} p(s_{t-1}|x_1,x_2,\ldots,x_{t-1}) ds_{t-1}}_{p(s_t|s_t,x_1,x_2,\ldots,x_t)}$$

- Note that the LHS is the posterior on s_t , the RHS consists of a posterior on s_{t-1}
- This suggests a simple "forward algorithm" to recursively compute $p(s_t|x_1,x_2,\ldots,x_t)$
 - For Kalman smoothing problem $p(z_t|x_1, x_2, x_T)$, a similar recursive "forward-backward" algorithm exists (the backup slides contain an illustration for the same)
- ullet In this Linear Gaussian SSM, $p(m{s}_{t-1}|m{x}_1,m{x}_2,\ldots,m{x}_{t-1})$ would be a Gausian, say $\mathcal{N}(m{s}_{t-1}|m{\mu},m{\Sigma})$

$$p(s_t|x_1,x_2,\ldots,x_t) \propto \underbrace{p(x_t|s_t)}_{\mathcal{N}(x_t|Bs_t,R)} \underbrace{\int \underbrace{p(s_t|s_{t-1})}_{\mathcal{N}(s_t|As_{t-1},Q)} p(s_{t-1}|x_1,x_2,\ldots,x_{t-1}) ds_{t-1}}_{p(s_t|s_t,x_1,x_2,\ldots,x_t)}$$

- Note that the LHS is the posterior on s_t , the RHS consists of a posterior on s_{t-1}
- This suggests a simple "forward algorithm" to recursively compute $p(s_t|x_1,x_2,\ldots,x_t)$
 - For Kalman smoothing problem $p(z_t|x_1, x_2, x_T)$, a similar recursive "forward-backward" algorithm exists (the backup slides contain an illustration for the same)
- ullet In this Linear Gaussian SSM, $p(m{s}_{t-1}|m{x}_1,m{x}_2,\ldots,m{x}_{t-1})$ would be a Gausian, say $\mathcal{N}(m{s}_{t-1}|m{\mu},m{\Sigma})$
 - Reason: Starting with $p(s_0) = \mathcal{N}(s_0|\mathbf{0},\mathbf{I}_K)$, the posterior over s_t will be Gaussian at each step t

$$p(s_t|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_t) \propto \underbrace{p(\mathbf{x}_t|\mathbf{s}_t)}_{\mathcal{N}(\mathbf{x}_t|\mathbf{B}\mathbf{s}_t,\mathbf{R})} \underbrace{\int \underbrace{p(\mathbf{s}_t|\mathbf{s}_{t-1})}_{\mathcal{N}(\mathbf{s}_t|\mathbf{A}\mathbf{s}_{t-1},\mathbf{Q})} p(\mathbf{s}_{t-1}|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_{t-1}) d\mathbf{s}_{t-1}$$

- Note that the LHS is the posterior on s_t , the RHS consists of a posterior on s_{t-1}
- This suggests a simple "forward algorithm" to recursively compute $p(s_t|x_1,x_2,\ldots,x_t)$
 - For Kalman smoothing problem $p(z_t|x_1, x_2, x_T)$, a similar recursive "forward-backward" algorithm exists (the backup slides contain an illustration for the same)
- ullet In this Linear Gaussian SSM, $p(m{s}_{t-1}|m{x}_1,m{x}_2,\ldots,m{x}_{t-1})$ would be a Gausian, say $\mathcal{N}(m{s}_{t-1}|m{\mu},m{\Sigma})$
 - Reason: Starting with $p(s_0) = \mathcal{N}(s_0|\mathbf{0},\mathbf{1}_K)$, the posterior over s_t will be Gaussian at each step t
- Also, using Gaussian's properties, we know that

$$\int \mathcal{N}(oldsymbol{s}_t|\mathbf{A}oldsymbol{s}_{t-1},\mathbf{Q})\mathcal{N}(oldsymbol{s}_{t-1}|oldsymbol{\mu},oldsymbol{\Sigma})doldsymbol{s}_{t-1} = \mathcal{N}(oldsymbol{s}_t|\mathbf{A}oldsymbol{\mu},\mathbf{Q}+\mathbf{A}oldsymbol{\Sigma}\mathbf{A}^ op)$$

• We can now compute the desired posterior

$$p(s_t|x_1, x_2, \dots, x_t) \propto \mathcal{N}(x_t|\mathsf{B}s_t, \mathsf{R}) \times \mathcal{N}(s_t|\mathsf{A}\mu, \mathsf{Q} + \mathsf{A}\Sigma\mathsf{A}^\top)$$

We can now compute the desired posterior

$$p(s_t|x_1, x_2, \dots, x_t) \propto \mathcal{N}(x_t|\mathsf{B}s_t, \mathsf{R}) \times \mathcal{N}(s_t|\mathsf{A}\mu, \mathsf{Q} + \mathsf{A}\Sigma\mathsf{A}^\top)$$

• This again is a Gaussian (Gaussian likelihood and Gaussian prior), given by

$$ho(oldsymbol{s}_t|oldsymbol{x}_1,oldsymbol{x}_2,\ldots,oldsymbol{x}_t)=\mathcal{N}(oldsymbol{s}_t|oldsymbol{\mu}',oldsymbol{\Sigma}')$$

We can now compute the desired posterior

$$p(s_t|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_t) \quad \propto \quad \mathcal{N}(\mathbf{x}_t|\mathbf{B}s_t,\mathsf{R}) \times \mathcal{N}(s_t|\mathbf{A}\boldsymbol{\mu},\mathbf{Q}+\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})$$

This again is a Gaussian (Gaussian likelihood and Gaussian prior), given by

$$p(s_t|x_1, x_2, \dots, x_t) = \mathcal{N}(s_t|\mu', \mathbf{\Sigma}')$$

where the Gaussian posterior's covariance matrix and mean vector are given by

$$\Sigma' = [(\mathbf{Q} + \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top})^{-1} + \mathbf{B}^{\top} \mathbf{R}^{-1} \mathbf{B}]^{-1}$$

$$\mu' = \mathbf{\Sigma}' [\mathbf{B}^{\top} \mathbf{R}^{-1} \mathbf{x}_t + (\mathbf{Q} + \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top})^{-1} \mathbf{A} \mu]$$

We can now compute the desired posterior

$$p(s_t|x_1, x_2, \dots, x_t) \propto \mathcal{N}(x_t|\mathsf{B}s_t, \mathsf{R}) \times \mathcal{N}(s_t|\mathsf{A}\mu, \mathsf{Q} + \mathsf{A}\Sigma\mathsf{A}^\top)$$

This again is a Gaussian (Gaussian likelihood and Gaussian prior), given by

$$ho(oldsymbol{s}_t|oldsymbol{x}_1,oldsymbol{x}_2,\ldots,oldsymbol{x}_t) = \mathcal{N}(oldsymbol{s}_t|oldsymbol{\mu}',oldsymbol{\Sigma}')$$

where the Gaussian posterior's covariance matrix and mean vector are given by

$$\Sigma' = [(\mathbf{Q} + \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top})^{-1} + \mathbf{B}^{\top} \mathbf{R}^{-1} \mathbf{B}]^{-1}$$

$$\mu' = \mathbf{\Sigma}' [\mathbf{B}^{\top} \mathbf{R}^{-1} \mathbf{x}_t + (\mathbf{Q} + \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\top})^{-1} \mathbf{A} \mu]$$

• Thus we get closed form expressions for the parameters (Σ', μ') of $p(s_t|x_1, x_2, ..., x_t)$ in terms of the parameters (Σ, μ) of $p(s_{t-1}|x_1, x_2, ..., x_{t-1})$

ullet We saw how to compute $p(m{s}_t|m{x}_1,m{x}_2,\ldots,m{x}_t)$ which was a Gaussian $\mathcal{N}(m{s}_t|m{\mu}',m{\Sigma}')$

- ullet We saw how to compute $p(m{s}_t|m{x}_1,m{x}_2,\ldots,m{x}_t)$ which was a Gaussian $\mathcal{N}(m{s}_t|m{\mu}',m{\Sigma}')$
- Often we are also interested in predicting the future observations

$$p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_t)$$

- ullet We saw how to compute $p(m{s}_t|m{x}_1,m{x}_2,\ldots,m{x}_t)$ which was a Gaussian $\mathcal{N}(m{s}_t|m{\mu}',m{\Sigma}')$
- Often we are also interested in predicting the future observations

$$p(\boldsymbol{x}_{t+1}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_t) = \int p(\boldsymbol{x}_{t+1}|\boldsymbol{s}_{t+1}) p(\boldsymbol{s}_{t+1}|\boldsymbol{x}_1,\ldots,\boldsymbol{x}_t) d\boldsymbol{s}_{t+1}$$

- ullet We saw how to compute $p(m{s}_t|m{x}_1,m{x}_2,\ldots,m{x}_t)$ which was a Gaussian $\mathcal{N}(m{s}_t|m{\mu}',m{\Sigma}')$
- Often we are also interested in predicting the future observations

$$p(\mathbf{x}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t) = \int p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})p(\mathbf{s}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t)d\mathbf{s}_{t+1}$$
$$= \int \underbrace{p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})}_{\mathcal{N}(\mathbf{x}_{t+1}|\mathbf{B}\mathbf{s}_{t+1},\mathbf{R})}$$

- ullet We saw how to compute $p(m{s}_t|m{x}_1,m{x}_2,\ldots,m{x}_t)$ which was a Gaussian $\mathcal{N}(m{s}_t|m{\mu}',m{\Sigma}')$
- Often we are also interested in predicting the future <u>observations</u>

$$p(\mathbf{x}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t) = \int p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})p(\mathbf{s}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t)d\mathbf{s}_{t+1}$$

$$= \int \underbrace{p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})}_{\mathcal{N}(\mathbf{x}_{t+1}|\mathbf{B}\mathbf{s}_{t+1},\mathbf{R})} \underbrace{p(\mathbf{s}_{t+1}|\mathbf{s}_t)}_{\mathcal{N}(\mathbf{s}_{t+1}|\mathbf{A}\mathbf{s}_t,\mathbf{Q})}$$

- ullet We saw how to compute $p(m{s}_t|m{x}_1,m{x}_2,\ldots,m{x}_t)$ which was a Gaussian $\mathcal{N}(m{s}_t|m{\mu}',m{\Sigma}')$
- Often we are also interested in predicting the future observations

$$p(\mathbf{x}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t) = \int p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})p(\mathbf{s}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t)d\mathbf{s}_{t+1}$$

$$= \int \underbrace{p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})}_{\mathcal{N}(\mathbf{x}_{t+1}|\mathbf{B}\mathbf{s}_{t+1},\mathbf{R})} \underbrace{\int \underbrace{p(\mathbf{s}_{t+1}|\mathbf{s}_t)}_{\mathcal{N}(\mathbf{s}_{t+1}|\mathbf{A}\mathbf{s}_t,\mathbf{Q})} \underbrace{p(\mathbf{s}_t|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_t)}_{\mathcal{N}(\mathbf{s}_t|\boldsymbol{\mu}',\boldsymbol{\Sigma}')} d\mathbf{s}_t d\mathbf{s}_{t+1}$$

- ullet We saw how to compute $p(m{s}_t|m{x}_1,m{x}_2,\ldots,m{x}_t)$ which was a Gaussian $\mathcal{N}(m{s}_t|m{\mu}',m{\Sigma}')$
- Often we are also interested in predicting the future <u>observations</u>

$$p(\mathbf{x}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t) = \int p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})p(\mathbf{s}_{t+1}|\mathbf{x}_1,\ldots,\mathbf{x}_t)d\mathbf{s}_{t+1}$$

$$= \int \underbrace{p(\mathbf{x}_{t+1}|\mathbf{s}_{t+1})}_{\mathcal{N}(\mathbf{x}_{t+1}|\mathbf{B}\mathbf{s}_{t+1},\mathbf{R})} \underbrace{\int \underbrace{p(\mathbf{s}_{t+1}|\mathbf{s}_t)}_{\mathcal{N}(\mathbf{s}_{t+1}|\mathbf{A}\mathbf{s}_t,\mathbf{Q})} \underbrace{p(\mathbf{s}_t|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_t)}_{\mathcal{N}(\mathbf{s}_t|\boldsymbol{\mu}',\boldsymbol{\Sigma}')} d\mathbf{s}_t d\mathbf{s}_{t+1}$$

• This requires two integrals but the final result is again a Gaussian (expression not shown here)

$$egin{array}{lll} m{s}_t | m{s}_{t-1} & \sim & \mathcal{N}(m{s}_t | m{\mathsf{A}}_t m{s}_{t-1}, m{\mathsf{Q}}_t) \ m{x}_t | m{s}_t & \sim & \mathcal{N}(m{x}_t | m{\mathsf{B}}_t m{s}_t, m{\mathsf{R}}_t) \end{array}$$

• Note that we assumed the LDS parameters \mathbf{A}_t , \mathbf{B}_t , \mathbf{Q}_t , \mathbf{R}_t are known

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} & \sim & \mathcal{N}(oldsymbol{s}_t | oldsymbol{\mathsf{A}}_t oldsymbol{s}_{t-1}, oldsymbol{\mathsf{Q}}_t) \ oldsymbol{x}_t | oldsymbol{s}_t & \sim & \mathcal{N}(oldsymbol{x}_t | oldsymbol{\mathsf{B}}_t oldsymbol{s}_t, oldsymbol{\mathsf{R}}_t) \end{array}$$

• Usually these aren't known (unless we have some domain knowledge about the underlying system)

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} & \sim & \mathcal{N}(oldsymbol{s}_t | oldsymbol{\mathsf{A}}_t oldsymbol{s}_{t-1}, oldsymbol{\mathsf{Q}}_t) \ oldsymbol{x}_t | oldsymbol{s}_t & \sim & \mathcal{N}(oldsymbol{x}_t | oldsymbol{\mathsf{B}}_t oldsymbol{s}_t, oldsymbol{\mathsf{R}}_t) \end{array}$$

- Usually these aren't known (unless we have some domain knowledge about the underlying system)
- We can use iterative methods to estimate these parameters

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} & \sim & \mathcal{N}(oldsymbol{s}_t | oldsymbol{\mathsf{A}}_t oldsymbol{s}_{t-1}, oldsymbol{\mathsf{Q}}_t) \ oldsymbol{x}_t | oldsymbol{s}_t & \sim & \mathcal{N}(oldsymbol{x}_t | oldsymbol{\mathsf{B}}_t oldsymbol{s}_t, oldsymbol{\mathsf{R}}_t) \end{array}$$

- Usually these aren't known (unless we have some domain knowledge about the underlying system)
- We can use iterative methods to estimate these parameters
 - Basically, we can alternate between inferring the states and inferring the parameters

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} & \sim & \mathcal{N}(oldsymbol{s}_t | oldsymbol{\mathsf{A}}_t oldsymbol{s}_{t-1}, oldsymbol{\mathsf{Q}}_t) \ oldsymbol{x}_t | oldsymbol{s}_t & \sim & \mathcal{N}(oldsymbol{x}_t | oldsymbol{\mathsf{B}}_t oldsymbol{s}_t, oldsymbol{\mathsf{R}}_t) \end{array}$$

- Usually these aren't known (unless we have some domain knowledge about the underlying system)
- We can use iterative methods to estimate these parameters
 - Basically, we can alternate between inferring the states and inferring the parameters
- This can be done using approximate inference methods such as EM, MCMC, or VB

An Application: Online Dynamic Linear Regression

- Consider a dynamic linear model for regression
- ullet The underlying ("true") weight vector $oldsymbol{w}$ is not static (fixed) but can change with each observation

$$egin{array}{lll} oldsymbol{w}_t &= & oldsymbol{w}_{t-1} + \eta_t & ext{where} & \eta_t \sim \mathcal{N}(0, \mathbf{I}) \\ y_t &= & oldsymbol{x}_t^{ op} oldsymbol{w}_t + \epsilon_t & ext{where} & \epsilon_t \sim \mathcal{N}(0, \sigma^2) \end{array}$$

An Application: Online Dynamic Linear Regression

- Consider a dynamic linear model for regression
- ullet The underlying ("true") weight vector $oldsymbol{w}$ is not static (fixed) but can change with each observation

$$egin{array}{lll} oldsymbol{w}_t &= oldsymbol{w}_{t-1} + \eta_t & ext{where} & \eta_t \sim \mathcal{N}(0, \mathbf{I}) \\ y_t &= oldsymbol{x}_t^{ op} oldsymbol{w}_t + \epsilon_t & ext{where} & \epsilon_t \sim \mathcal{N}(0, \sigma^2) \end{array}$$

• Can model it as a linear dynamical system (Kalman Filtering) problem with w_1, \ldots, w_T as the states and y_1, \ldots, y_T as observations

$$p(\mathbf{w}_{t}|\mathbf{w}_{t-1}) = \mathcal{N}(\mathbf{w}_{t}|\mathbf{I}\mathbf{w}_{t-1}, \mathbf{I})$$
 (state-transition model)
$$p(y_{t}|\mathbf{x}_{t}, \mathbf{w}_{t}) = \mathcal{N}(y_{t}|\mathbf{x}_{t}^{\top}\mathbf{w}_{t}, \sigma^{2})$$
 (observation model)

An Application: Online Dynamic Linear Regression

- Consider a dynamic linear model for regression
- ullet The underlying ("true") weight vector $oldsymbol{w}$ is not static (fixed) but can change with each observation

$$egin{array}{lll} oldsymbol{w}_t &= oldsymbol{w}_{t-1} + \eta_t & ext{where} & \eta_t \sim \mathcal{N}(0, \mathbf{I}) \\ y_t &= oldsymbol{x}_t^{ op} oldsymbol{w}_t + \epsilon_t & ext{where} & \epsilon_t \sim \mathcal{N}(0, \sigma^2) \end{array}$$

• Can model it as a linear dynamical system (Kalman Filtering) problem with w_1, \ldots, w_T as the states and y_1, \ldots, y_T as observations

$$p(\mathbf{w}_{t}|\mathbf{w}_{t-1}) = \mathcal{N}(\mathbf{w}_{t}|\mathbf{I}\mathbf{w}_{t-1}, \mathbf{I})$$
 (state-transition model)
$$p(y_{t}|\mathbf{x}_{t}, \mathbf{w}_{t}) = \mathcal{N}(y_{t}|\mathbf{x}_{t}^{\top}\mathbf{w}_{t}, \sigma^{2})$$
 (observation model)

• Can now apply Kalman filtering to solve for \mathbf{w}_t and y_t at future time-steps (note: this problem is also called the "recursive least squares" problem)

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} &=& g(oldsymbol{s}_{t-1}) + \epsilon_t \ oldsymbol{x}_t | oldsymbol{s}_t &=& h(oldsymbol{s}_t) + \delta_t \end{array}$$

Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} &=& g(oldsymbol{s}_{t-1}) + \epsilon_t \ oldsymbol{x}_t | oldsymbol{s}_t &=& h(oldsymbol{s}_t) + \delta_t \end{array}$$

• The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} &=& g(oldsymbol{s}_{t-1}) + \epsilon_t \ oldsymbol{x}_t | oldsymbol{s}_t &=& h(oldsymbol{s}_t) + \delta_t \end{array}$$

- The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)
- Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} &=& g(oldsymbol{s}_{t-1}) + \epsilon_t \ oldsymbol{x}_t | oldsymbol{s}_t &=& h(oldsymbol{s}_t) + \delta_t \end{array}$$

- The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)
- Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM
 - ullet For each observation $oldsymbol{x}_t$, first draw a cluster id $c_t \in \{1,\ldots,M\}$ from a multinoulli

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} &=& g(oldsymbol{s}_{t-1}) + \epsilon_t \ oldsymbol{x}_t | oldsymbol{s}_t &=& h(oldsymbol{s}_t) + \delta_t \end{array}$$

- The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)
- Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM
 - ullet For each observation $oldsymbol{x}_t$, first draw a cluster id $c_t \in \{1,\ldots,M\}$ from a multinoulli
 - Suppose $c_t = m$. Now generate the observation x_t using the the m-th LDS/SSM

$$egin{aligned} s_t | s_{t-1}, c_t &= m & \sim & \mathcal{N}(s_t | \mathbf{A}^{(m)} s_{t-1}, \mathbf{Q}^{(m)}) \ x_t | s_t, c_t &= m & \sim & \mathcal{N}(x_t | \mathbf{B}^{(m)} s_t, \mathbf{R}^{(m)}) \end{aligned}$$

Nonlinear dynamical systems: Assume state-transition and observation models to be nonlinear

$$egin{array}{lll} oldsymbol{s}_t | oldsymbol{s}_{t-1} &=& g(oldsymbol{s}_{t-1}) + \epsilon_t \ oldsymbol{x}_t | oldsymbol{s}_t &=& h(oldsymbol{s}_t) + \delta_t \end{array}$$

- The functions g and h can be nonlinear functions, modeled using deep neural nets, or GP. Another way is to model these as linear approximations of nonlinear functions (Extended Kalman Filter)
- Switching LDS/SSM: Assumes data to be generated from a mixture of M LDS/SSM
 - ullet For each observation $oldsymbol{x}_t$, first draw a cluster id $c_t \in \{1,\ldots,M\}$ from a multinoulli
 - Suppose $c_t = m$. Now generate the observation x_t using the the m-th LDS/SSM

$$egin{aligned} s_t | s_{t-1}, c_t &= m & \sim & \mathcal{N}(s_t | \mathbf{A}^{(m)} s_{t-1}, \mathbf{Q}^{(m)}) \ x_t | s_t, c_t &= m & \sim & \mathcal{N}(x_t | \mathbf{B}^{(m)} s_t, \mathbf{R}^{(m)}) \end{aligned}$$

• It's a hybrid LDS – the "state" consists of two latent variables c_t, z_t (discrete and continuous)

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models, e.g.,
 - Non-Gaussian LDS, e.g., see Poisson-Gamma dynamical systems by Schein et al (2016)

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models, e.g.,
 - Non-Gaussian LDS, e.g., see Poisson-Gamma dynamical systems by Schein et al (2016)
 - Structured LDS (e.g., the switching LDA that we saw)

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models, e.g.,
 - Non-Gaussian LDS, e.g., see Poisson-Gamma dynamical systems by Schein et al (2016)
 - Structured LDS (e.g., the switching LDA that we saw)
 - Deep LDS (e.g., using a VAE to define z_n to x_n mapping with a recognition model)

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models, e.g.,
 - Non-Gaussian LDS, e.g., see Poisson-Gamma dynamical systems by Schein et al (2016)
 - Structured LDS (e.g., the switching LDA that we saw)
 - Deep LDS (e.g., using a VAE to define z_n to x_n mapping with a recognition model)
 - Combining SSM with recurrent neural nets or LSTM to handle variable length sequences

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models, e.g.,
 - Non-Gaussian LDS, e.g., see Poisson-Gamma dynamical systems by Schein et al (2016)
 - Structured LDS (e.g., the switching LDA that we saw)
 - Deep LDS (e.g., using a VAE to define z_n to x_n mapping with a recognition model)
 - Combining SSM with recurrent neural nets or LSTM to handle variable length sequences
- Inference for HMM is also based on similar principled (e.g., forward and forward-backward algorithm), except that the latent variables are discrete

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models, e.g.,
 - Non-Gaussian LDS, e.g., see Poisson-Gamma dynamical systems by Schein et al (2016)
 - Structured LDS (e.g., the switching LDA that we saw)
 - Deep LDS (e.g., using a VAE to define z_n to x_n mapping with a recognition model)
 - Combining SSM with recurrent neural nets or LSTM to handle variable length sequences
- Inference for HMM is also based on similar principled (e.g., forward and forward-backward algorithm), except that the latent variables are discrete
- The general principle (time-evolving latent variables) can be applied in a wide range of probabilistic models to enable them handle dynamic/time-evolving data

- SSM/LDS allows modeling non i.i.d. sequential data
- Gaussian assumption on transition/observation models helps inference considerably
- These basic models have been extended to more sophisticated models, e.g.,
 - Non-Gaussian LDS, e.g., see Poisson-Gamma dynamical systems by Schein et al (2016)
 - Structured LDS (e.g., the switching LDA that we saw)
 - Deep LDS (e.g., using a VAE to define z_n to x_n mapping with a recognition model)
 - Combining SSM with recurrent neural nets or LSTM to handle variable length sequences
- Inference for HMM is also based on similar principled (e.g., forward and forward-backward algorithm), except that the latent variables are discrete
- The general principle (time-evolving latent variables) can be applied in a wide range of probabilistic models to enable them handle dynamic/time-evolving data
 - E.g., in LDA, we can make the topic assignments of adjacent words follow a Markov relationship (results in an HMM-LDA type model)

Backup Slides: Kalman Smoothing

Goal: Infer $p(s_t|x_1,x_2,\ldots,x_T)$ given all the observations (both past and future)

Goal: Infer $p(s_t|x_1, x_2, ..., x_T)$ given all the observations (both past and future) Note that each state variable s_t separates the graph into three independent parts

Goal: Infer $p(s_t|x_1, x_2, ..., x_T)$ given all the observations (both past and future) Note that each state variable s_t separates the graph into three independent parts

Goal: Infer $p(s_t|x_1,x_2,\ldots,x_T)$ given <u>all the observations</u> (both past and future)

Note that each state variable $oldsymbol{s}_t$ separates the graph into three independent parts

$$B_t = \{\mathbf{x}_1..\mathbf{x}_{t-1}, \mathbf{s}_1..\mathbf{s}_{t-1}\}$$

$$F_t = \{\mathbf{x}_{t+1}..\mathbf{x}_T, \mathbf{s}_{t+1}..\mathbf{s}_T\}$$

Goal: Infer $p(s_t|x_1,x_2,\ldots,x_T)$ given all the observations (both past and future)

Note that each state variable s_t separates the graph into three independent parts

$$B_t = \{\mathbf{x}_1..\mathbf{x}_{t-1}, \mathbf{s}_1..\mathbf{s}_{t-1}\}$$

$$F_t = \{\mathbf{x}_{t+1}..\mathbf{x}_T, \mathbf{s}_{t+1}..\mathbf{s}_T\}$$

$$p(B_t, \mathbf{s}_t, \mathbf{x}_t, F_t) = p(B_t, \mathbf{s}_t) p(\mathbf{x}_t | \mathbf{s}_t) p(F_t | \mathbf{s}_t)$$

- ullet Goal: marginal probability $p(oldsymbol{s}_t|oldsymbol{x}_1,\ldots,oldsymbol{x}_T)$ of each state (i.e., smoothing)
- Let's look at the joint probability first:

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} \int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(B_{t}, \mathbf{s}_{t}, \mathbf{x}_{t}, F_{t})$$

$$= \left(\int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} p(B_{t}, \mathbf{s}_{t}) \right) p(\mathbf{x}_{t}|\mathbf{s}_{t}) \left(\int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(F_{t}|\mathbf{s}_{t}) \right)$$

$$= p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t}|\mathbf{s}_{t}) p(F_{t}^{x}|\mathbf{s}_{t})$$

- ullet Goal: marginal probability $p(oldsymbol{s}_t|oldsymbol{x}_1,\ldots,oldsymbol{x}_T)$ of each state (i.e., smoothing)
- Let's look at the joint probability first:

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} \int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(B_{t}, \mathbf{s}_{t}, \mathbf{x}_{t}, F_{t})$$

$$= \left(\int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} p(B_{t}, \mathbf{s}_{t}) \right) p(\mathbf{x}_{t}|\mathbf{s}_{t}) \left(\int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(F_{t}|\mathbf{s}_{t}) \right)$$

$$= p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t}|\mathbf{s}_{t}) p(F_{t}^{x}|\mathbf{s}_{t})$$

$$B_{t}^{x} = \{\mathbf{x}_{1}..\mathbf{x}_{t-1}\}$$

$$F_{t}^{x} = \{\mathbf{x}_{t+1}..\mathbf{x}_{T}\}$$

- Goal: marginal probability $p(s_t|x_1,...,x_T)$ of each state (i.e., smoothing)
- Let's look at the joint probability first:

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} \int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(B_{t}, \mathbf{s}_{t}, \mathbf{x}_{t}, F_{t})$$

$$= \left(\int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} p(B_{t}, \mathbf{s}_{t}) \right) p(\mathbf{x}_{t} | \mathbf{s}_{t}) \left(\int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(F_{t} | \mathbf{s}_{t}) \right)$$

$$= p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t} | \mathbf{s}_{t}) p(F_{t}^{x} | \mathbf{s}_{t})$$

$$B_{t}^{x} = \{ \mathbf{x}_{1}..\mathbf{x}_{t-1} \}$$

$$F_{t}^{x} = \{ \mathbf{x}_{t+1}..\mathbf{x}_{T} \}$$

$$\alpha_{t}(\mathbf{s}_{t}) = p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t} | \mathbf{s}_{t}) = p(B_{t}^{x}, \mathbf{x}_{t}, \mathbf{s}_{t})$$

$$\beta_{t}(\mathbf{s}_{t}) = p(F_{t}^{x} | \mathbf{s}_{t})$$

- Goal: marginal probability $p(s_t|x_1,...,x_T)$ of each state (i.e., smoothing)
- Let's look at the joint probability first:

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} \int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(B_{t}, \mathbf{s}_{t}, \mathbf{x}_{t}, F_{t})$$

$$= \left(\int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} p(B_{t}, \mathbf{s}_{t}) \right) p(\mathbf{x}_{t}|\mathbf{s}_{t}) \left(\int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(F_{t}|\mathbf{s}_{t}) \right)$$

$$= p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t}|\mathbf{s}_{t}) p(F_{t}^{x}|\mathbf{s}_{t})$$

$$B_{t}^{x} = \{\mathbf{x}_{1}..\mathbf{x}_{t-1}\}$$

$$F_{t}^{x} = \{\mathbf{x}_{t+1}..\mathbf{x}_{T}\}$$

$$\alpha_{t}(\mathbf{s}_{t}) = p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t}|\mathbf{s}_{t}) = p(B_{t}^{x}, \mathbf{x}_{t}, \mathbf{s}_{t})$$

$$\beta_{t}(\mathbf{s}_{t}) = p(F_{t}^{x}|\mathbf{s}_{t})$$

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \alpha_{t}(\mathbf{s}_{t}) \beta_{t}(\mathbf{s}_{t})$$

- Goal: marginal probability $p(s_t|x_1,...,x_T)$ of each state (i.e., smoothing)
- Let's look at the joint probability first:

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} \int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(B_{t}, \mathbf{s}_{t}, \mathbf{x}_{t}, F_{t})$$

$$= \left(\int_{\mathbf{s}_{1}..\mathbf{s}_{t-1}} p(B_{t}, \mathbf{s}_{t}) \right) p(\mathbf{x}_{t}|\mathbf{s}_{t}) \left(\int_{\mathbf{s}_{t+1}..\mathbf{s}_{T}} p(F_{t}|\mathbf{s}_{t}) \right)$$

$$= p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t}|\mathbf{s}_{t}) p(F_{t}^{x}|\mathbf{s}_{t})$$

$$B_{t}^{x} = \{\mathbf{x}_{1}..\mathbf{x}_{t-1}\}$$

$$F_{t}^{x} = \{\mathbf{x}_{t+1}..\mathbf{x}_{T}\}$$

$$\alpha_{t}(\mathbf{s}_{t}) = p(B_{t}^{x}, \mathbf{s}_{t}) p(\mathbf{x}_{t}|\mathbf{s}_{t}) = p(B_{t}^{x}, \mathbf{x}_{t}, \mathbf{s}_{t})$$

$$\beta_{t}(\mathbf{s}_{t}) = p(F_{t}^{x}|\mathbf{s}_{t})$$

$$p(\mathbf{s}_{t}, \mathbf{x}_{1}..\mathbf{x}_{T}) = \alpha_{t}(\mathbf{s}_{t}) \beta_{t}(\mathbf{s}_{t})$$

• From the joint, we can compute $p(\mathbf{x}_1, \dots, \mathbf{x}_T) = \sum_{\mathbf{s}_t} p(\mathbf{s}_t, \mathbf{x}_1, \dots, \mathbf{x}_T)$, and $p(\mathbf{s}_t | \mathbf{x}_1, \dots, \mathbf{x}_T)$ using Bayes rule

Denote $B_t = B_{t-1} \cup \{ oldsymbol{s}_{t-1}, oldsymbol{x}_{t-1} \}$ and $F_{t-1} = \{ oldsymbol{s}_t, oldsymbol{x}_t \} \cup F_t$

Denote
$$B_t = B_{t-1} \cup \{ oldsymbol{s}_{t-1}, oldsymbol{x}_{t-1} \}$$
 and $F_{t-1} = \{ oldsymbol{s}_t, oldsymbol{x}_t \} \cup F_t$

Denote $B_t = B_{t-1} \cup \{ m{s}_{t-1}, m{x}_{t-1} \}$ and $F_{t-1} = \{ m{s}_t, m{x}_t \} \cup F_t$

Can compute α and β recursively

Denote $B_t = B_{t-1} \cup \{ \boldsymbol{s}_{t-1}, \boldsymbol{x}_{t-1} \}$ and $F_{t-1} = \{ \boldsymbol{s}_t, \boldsymbol{x}_t \} \cup F_t$

Can compute α and β recursively

$$\alpha_t(\mathbf{s}_t) = p(\mathbf{x}_t|\mathbf{s}_t)p(B_t^x, \mathbf{s}_t) = p(\mathbf{x}_t|\mathbf{s}_t) \int_{\mathbf{z}} p(B_{t-1}^x, \mathbf{s}_{t-1} = \mathbf{z}, \mathbf{x}_{t-1}, \mathbf{s}_t)$$

$$= p(\mathbf{x}_t|\mathbf{s}_t) \int_{\mathbf{z}} p(B_{t-1}^x, \mathbf{s}_{t-1} = \mathbf{z}) p(\mathbf{x}_{t-1}|\mathbf{s}_{t-1} = \mathbf{z}) p(\mathbf{s}_t|\mathbf{s}_{t-1} = \mathbf{z})$$

$$= p(\mathbf{x}_t|\mathbf{s}_t) \int_{\mathbf{z}} p(\mathbf{s}_t|\mathbf{s}_{t-1} = \mathbf{z}) \alpha_{t-1}(\mathbf{z})$$

Forward recursion for α

Denote $B_t = B_{t-1} \cup \{ m{s}_{t-1}, m{x}_{t-1} \}$ and $F_{t-1} = \{ m{s}_t, m{x}_t \} \cup F_t$

Can compute α and β recursively

$$\alpha_{t}(\mathbf{s}_{t}) = p(\mathbf{x}_{t}|\mathbf{s}_{t})p(B_{t}^{x}, \mathbf{s}_{t}) = p(\mathbf{x}_{t}|\mathbf{s}_{t}) \int_{\mathbf{z}} p(B_{t-1}^{x}, \mathbf{s}_{t-1} = \mathbf{z}, \mathbf{x}_{t-1}, \mathbf{s}_{t})$$

$$= p(\mathbf{x}_{t}|\mathbf{s}_{t}) \int_{\mathbf{z}} p(B_{t-1}^{x}, \mathbf{s}_{t-1} = \mathbf{z}) p(\mathbf{x}_{t-1}|\mathbf{s}_{t-1} = \mathbf{z}) p(\mathbf{s}_{t}|\mathbf{s}_{t-1} = \mathbf{z})$$

$$= p(\mathbf{x}_{t}|\mathbf{s}_{t}) \int_{\mathbf{z}} p(\mathbf{s}_{t}|\mathbf{s}_{t-1} = \mathbf{z}) \alpha_{t-1}(\mathbf{z})$$

Forward recursion for α

$$\beta_{t-1}(\mathbf{s}_{t-1}) = p(F_{t-1}^x | \mathbf{s}_{t-1}) = \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z}, \mathbf{x}_t, F_t^x | \mathbf{s}_{t-1})$$

$$= \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z} | \mathbf{s}_{t-1}) p(\mathbf{x}_t | \mathbf{s}_t = \mathbf{z}) p(F_t^x | \mathbf{s}_t = \mathbf{z})$$

$$= \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z} | \mathbf{s}_{t-1}) p(\mathbf{x}_t | \mathbf{s}_t = \mathbf{z}) \beta_t(\mathbf{z})$$

Backward recursion for β

Denote $B_t = B_{t-1} \cup \{ \boldsymbol{s}_{t-1}, \boldsymbol{x}_{t-1} \}$ and $F_{t-1} = \{ \boldsymbol{s}_t, \boldsymbol{x}_t \} \cup F_t$

Can compute α and β recursively

$$\alpha_{t}(\mathbf{s}_{t}) = p(\mathbf{x}_{t}|\mathbf{s}_{t})p(B_{t}^{x}, \mathbf{s}_{t}) = p(\mathbf{x}_{t}|\mathbf{s}_{t}) \int_{\mathbf{z}} p(B_{t-1}^{x}, \mathbf{s}_{t-1} = \mathbf{z}, \mathbf{x}_{t-1}, \mathbf{s}_{t})$$

$$= p(\mathbf{x}_{t}|\mathbf{s}_{t}) \int_{\mathbf{z}} p(B_{t-1}^{x}, \mathbf{s}_{t-1} = \mathbf{z}) p(\mathbf{x}_{t-1}|\mathbf{s}_{t-1} = \mathbf{z}) p(\mathbf{s}_{t}|\mathbf{s}_{t-1} = \mathbf{z})$$

$$= p(\mathbf{x}_{t}|\mathbf{s}_{t}) \int_{\mathbf{z}} p(\mathbf{s}_{t}|\mathbf{s}_{t-1} = \mathbf{z}) \alpha_{t-1}(\mathbf{z})$$

Forward recursion for α

$$\beta_{t-1}(\mathbf{s}_{t-1}) = p(F_{t-1}^x | \mathbf{s}_{t-1}) = \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z}, \mathbf{x}_t, F_t^x | \mathbf{s}_{t-1})$$

$$= \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z} | \mathbf{s}_{t-1}) p(\mathbf{x}_t | \mathbf{s}_t = \mathbf{z}) p(F_t^x | \mathbf{s}_t = \mathbf{z})$$

$$= \int_{\mathbf{z}} p(\mathbf{s}_t = \mathbf{z} | \mathbf{s}_{t-1}) p(\mathbf{x}_t | \mathbf{s}_t = \mathbf{z}) \beta_t(\mathbf{z})$$

Backward recursion for β

Initialize as $\alpha_1(s_1) = p(s_1)p(x_1|s_1)$ and $\beta_T(s_T) = 1$

