Exam Assistance Note

Let n be a **non-negative integer**, then the **factorial of n**, denoted as n! is defined to be

Let n, r be two **non-negative integes**, such that $r \le n$, then the **n choose r**, denoted by $\binom{n}{r}$, is defined to be

$$\binom{n}{r} := \frac{n!}{(r!) \times ((n-r)!)}$$

For any real number $x \in \mathbb{R}$, the exponential series e^x (or sometimes denoted as $\exp(x)$) is defined as,

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

Let $x \in \mathbb{R}$ be any real number, and $n \in \mathbb{Z}_+$ be any positive integer, then

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i$$

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n-1}x^{n-1} + \binom{n}{n}x^n$$

Let
$$x \in \mathbb{R}$$
 be such that $|p| < 1$, then
$$\sum_{i=0}^{\infty} p^i = 1 + p + p^2 + p^3 + \dots = \frac{1}{1-p}.$$

Ordered, without replacement) Let r, and n be two positive integers such that $r \le n$. An ordered arrangement of r distinct objects is called a permutation. The number of ways of ordering n distinct objects taken r at a time, denoted by the symbol ${}^{n}P_{r}$, is given as

$${}^{n}P_{r} = n(n-1)(n-2)(n-r+1) = \frac{n!}{(n-r)!}$$

Let $n \ge r$ be two non-negative integers. The number of different ways to select (/choose) r distinct objects from a list of n distinct (non-identical) objects is given as $(\sigma r^n c_r)$,

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

The number of ways of partitioning n distinct objects into k distinct groups containing n_1, n_2, \ldots , n_k objects, respectively, where each object appears exactly in one group and $\sum_{i=1}^{k} n_i = n$, is

$$\binom{n}{n_1, n_2, \dots, n_k} := \frac{n!}{(n_1!)(n_2!) \dots (n_k!)}$$

Number of ways n indistinguishable/identical objects can be organized into r different (ordered) groups is

$$\frac{(n+r-1)!}{n!(r-1)!} = \binom{n+r-1}{n}.$$

Let (\mathcal{S}, P) be a sample space along with the Probability measure. Let \overline{A} , \overline{B} be two events. Then,

- $P(\emptyset) = 0$ where \emptyset denotes the Null set.
- $P(A) \leq 1.$
- If $A \subseteq B$ then $P(A) \le P(B)$.
- $P(\overline{A}) = 1 P(A)$, where \overline{A} denotes the complementary event to A
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Let A_1, A_2, A_3 are three events. Then

$$P(A_1 \cup A_2 \cup A_3) = \left\{ P(A_1) + P(A_2) + P(A_3) \right\} \\ - \left\{ P(A_1 \cap A_2) + P(A_1 \cap A_3) + P(A_2 \cap A_3) \right\} + \left\{ P(A_1 \cap A_2 \cap A_3) \right\}$$

De-Arrangement probability with N distinct objects: $1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} + \dots + (-1)^N \frac{1}{N!}$

Let E, and F are two events such that P(F) > 0, then the conditional probability of E given F is defined to be.

$$P(E \mid F) := \frac{P(E \cap F)}{P(F)}.$$

Let E and F are two events, then $P(E \cap F) := P(E \mid F) \times P(F)$.

$$P(E) = P(E \mid F)P(F) + P(E \mid \overline{F}))(\overline{F})$$

Let E and F be two events, then

Law of Total Probability (General): Let E be an event. Assuming that the collection of sets $\{F_1, F_2, \dots, F_k\}$ forms a partition of \mathscr{S} , we have

$$P(E) = \sum_{j=1}^{k} P(E \mid F_j) P(F_j)$$

Bayes' Theorem

Let F_1, F_2, \dots, F_K be a set of mutually exclusive and exhaustive events (meaning that exactly one of these events must occur). Suppose now that E has occurred and we are interested in determining which one of the F_i also occurred. Then, we have the following theorem

$$P(F_i \mid E) = \frac{P(E \mid F_i)P(F_i)}{\sum_{j=1}^{K} P(E \mid F_j)P(F_j)}$$

Statistical Independence

Two events E and F are said to be statistically independent if $P(E \cap F) = P(E) \times P(F)$

Characterization of a pmf

Let p(x) is **probability mass function** of a discrete random variable on the support S, **if and only if** it satisfies the following conditions:

1. Positivity:
$$p(x) > 0$$
 for all $x \in S$

2. Total Probability:
$$\sum_{\{x \in \mathcal{S}\}} p(x) = 1$$
.

"CDF" of a Discrete Random Variable

Let X be a discrete random variable on the support S[X] with the corresponding probability mass function

$$P(X = x) = p_X(x)$$
 for $x \in S_X$.

Then for any $a \in \mathbb{R}$, the cumulative distribution function (cdf), denoted by $F_{\chi}(\cdot)$ is the following quantity

$$F_X(a) = P(X \le a) = \sum_{\{x \le a : x \in S[X]\}} p_X(x)$$

"Expected Value" or "Mean" of a Discrete

Random Variable

If X is a random variable with pmf $p_X(x)$ on the support S[X], then the expected value (the mean) of X denoted by E(X) (or μ_X) is given by

$$E(X) = \sum_{x \in S[X]} x p_x(x),$$

assuming the above summation/series exists /well-defined.

"Variance & Standard Deviation (SD)" of a

Random Variable

The variance of X, denoted by Var(X) is defined as $Var(X) := E(X^2) - \left(\frac{E(X)}{E(X)}\right)^2$

$$\sigma_{X} = SD(X) := \sqrt{Var(X)}$$

"Moment Generating Function (MGF)" of a

Discrete Random Variable

$$M_{X}(t) := E\left(e^{tX}\right) = \sum_{\left\{x \in \mathcal{S}_{X}\right\}} e^{tx} p_{X}(x).$$

Distribution	Support S_{X}	pmf $p_X(x)$	Mean $E(X)$	Variance Var(X)	mgf $M_{\chi}(t)$
$Binomial(n,\pi)$	$\{0,1,\ldots,n\}$	$\binom{n}{x}\pi^x(1-\pi)^{n-x}$	$n\pi$	$n\pi(1-\pi)$	$(1-\pi+\pi e^t)^n$
Poisson(λ)	{0,1,2,}	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$e^{\lambda e^t - \lambda}$
Geometric (π)	{1,2,}	$(1-\pi)^{x-1}\pi$	$\frac{1}{\pi}$	$\frac{1-\pi}{\pi}$	$\frac{\pi e^t}{1 - (1 - \pi)e^t}$
Negative-Binomial (r, π)	$\{r+1,r+2,\ldots\}$	$\binom{x-1}{r-1}(1-\pi)^{x-r}\pi^r$	$\frac{r}{\pi}$	$\frac{r(1-\pi)}{\pi}$	$\left(\frac{\pi e^t}{1 - (1 - \pi)e^t}\right)^r$

