

Thermal management for S-NUCA Many-Cores via Synchronous Thread Rotations

Presenter: Yixian Shen

Cooperator: Sobhan Niknam

Co-supervisor : Anuj Pathania

Supervisor: Andy D Pimentel

Outline

- Research background
- A motivational example
- The key designs of our approach
- Experimental results
- Conclusion

Research background→**S-NUCA architecture**

Static Non-uniform Cache Architecture

Research background→S-NUCA architecture

- Characteristics of S-NUCA
 - ☐ Logically-shared yet physically-distributed.

A. Pathania and J. Henkel, "Task scheduling for many-cores with S-NUCA caches," 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018, pp. 557-562, doi: 10.23919/DATE.2018.8342069

Dark Silicon in S-NUCA many-cores

Shafique, Muhammad, et al. "Dark silicon as a challenge for hardware/software co-design: Invited special session paper." Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis. 2014..

Research background →R-C thermal model

Thermal behavior is dual to electronic circuit.

Research background →R-C thermal model

Thermal behavior is dual to electronic circuit.

$$AT' + BT = P + T_{amb}G$$

Outline

- Research background
- A motivational example
- The key designs of our approach
- Experimental results
- Conclusion.

A motivational example

- Experimental platform: simulated 16-core S-NUCA processors
- Experimental configuration
- Thermal threshold 70(°C)

	Benchmark	Thread	DTM method	Execute at
Case 1	blackscholes	1 master, 1 slave	No	Core 5,10
Case 2	blackscholes	1 master, 1 slave	TSP	Core 5,10
Case 3	blackscholes	1 master, 1 slave	Task rotation	Core 5,6,9,10

A motivational example

	Benchmark	Thread	DTM method	Execute at
Case 1	blackscholes	1 master, 1 slave	No	Core 5,10
Case 2	blackscholes	1 master, 1 slave	TSP	Core 5,10
Case 3	blackscholes	1 master, 1 slave	Task rotation	Core 5,6,9,10

A motivational example---Case 1

- Peak temperature 80.03(°C)
- Execution time 67.97(ms)

A motivational example---Case 2

> Peak temperature 67.94(°C)

Execution time 84.49(ms)

A motivational example---Case 3

Peak temperature 69.32(°C)

Execution time 74.47(ms)

A motivational example

(c) Synchronous Thread Rotation at Peak Frequency

	Benchmark	Thread	DTM method	Execute at
Case 1	blackscholes	1 master, 1 slave	No	Core 5,10
Case 2	blackscholes	1 master, 1 slave	TSP	Core 5,10
Case 3	blackscholes	1 master, 1 slave	Task rotation	Core 5,6,9,10

	Case 1	Case 2	Case 3
Peak temp(°C)	80.03	67.94	69.32
Exec time(ms)	67.97	84.49	74.47
Penalty(%)		19.55	8.72

Case 3 is **10.83% faster** than Case 2 Rotation penalty < DVFS-based penalty

Outline

- Research background
- A motivational example
- The key designs of our approach
- Experimental results
- Conclusion.

- > Thermal regulations
 - ☐ A theoretical one-shot peak temperature calculation

- > Architecture-aware task scheduling
 - ☐ *Hotpotato* thermal-aware scheduler.

- > Thermal regulations
 - ☐ A theoretical one-shot peak temperature calculation

$$\begin{split} &\mathbf{T}_{(d\delta+1)\tau} = \mathbf{V} \cdot \mathbf{diag}(\frac{1}{1 - e^{\delta\lambda_1\tau}}, \frac{1}{1 - e^{\delta\lambda_2\tau}}, \cdots, \frac{1}{1 - e^{\delta\lambda_N\tau}}) \cdot \mathbf{V}^{-1}\mathbf{w}\mathbf{P}_{\tau} \\ &+ \mathbf{V} \cdot \mathbf{diag}(\frac{e^{(\delta-1)\lambda_1\tau}}{1 - e^{\delta\lambda_1\tau}}, \frac{e^{(\delta-1)\lambda_2\tau}}{1 - e^{\delta\lambda_2\tau}}, \cdots, \frac{e^{(\delta-1)\lambda_N\tau}}{1 - e^{\delta\lambda_N\tau}}) \cdot \mathbf{V}^{-1}\mathbf{w}\mathbf{P}_{2\tau} + \cdots \\ &+ \mathbf{V} \cdot \mathbf{diag}(\frac{e^{\lambda_1\tau}}{1 - e^{\delta\lambda_1\tau}}, \frac{e^{\lambda_2\tau}}{1 - e^{\delta\lambda_2\tau}}, \cdots, \frac{e^{\lambda_N\tau}}{1 - e^{\delta\lambda_N\tau}}) \cdot \mathbf{V}^{-1}\mathbf{w}\mathbf{P}_{\delta\tau} \end{split} \tag{10}$$

- > Thermal regulations
 - ☐ A theoretical one-shot peak temperature calculation

- > Thermal regulations
 - ☐ A theoretical one-shot peak temperature calculation

➤ The inherent heterogeneity of S-NUCA

- ☐ Access cache latencyRing1 < Ring2 < Ring3
- ☐ Thermal dissipation condition

 Ring1 < Ring2 < Ring3

Fig. 3: Abstraction for concentric AMD-based rotation rings.

- > maximizing the performance under thermal threshold
 - ☐ Keep peak temperature T_{peak} close to thermal threshold T_{DTM}
 - Migrate to the thread to lower ring close to the center ring

- Minimize the task rotation penalty
 - Slow down the rotation speed

- New threads enter S-NUCA
 - Attempt to assign thread to the lowest ring
 - 2 Calculate the T_{peak}

 - **4** Else, attempt to L+1 rings until $T_{peak} < T_{DTM}$
 - S Reach R_{max}, still not managed, speed up the rotation speed

- Thermal violation during runtime
 - Rank the threads by CPI(cycle per instruction)
 - Select the thread with lowest CPI
 - 3 Migrate thread to the L+1 rings
 - \bullet If $T_{peak} < T_{DTM}$, rotate at that ring
 - **5** Else, attempt to L+1 rings until $T_{peak} < T_{DTM}$
 - Reach R_{max}, still not managed, speed up the rotation speed

- Headroom not exploited
 - Rank the threads by CPI(cycle per instruction)
 - Select the thread with highest CPI
 - 3 Migrate thread to the L-1 rings
 - **4** If T_{DTM} $T_{peak} < \Delta$, rotate at that ring
 - **S** Else, attempt to L-1 rings until T_{DTM} $T_{peak} < \Delta$
 - Reach R_{min}, still not managed, slow down the rotation speed

Outline

- Research background
- A motivational example
- The key designs of our approach
- Experimental results
- Conclusion.

The experimental configuration

Core Parameter		
Number of Cores	64	
Core Model	x86, 4.0 GHz, 14 nm, out-of-order	
L1 I/D cache	16/16 KB, 8/8-way,64B-block	
LLC	128 KB per core, 16-way, 64B-block	
NoC Latency	1.5ns per hop	
Noc link width	256 Bit	
The area of core	$0.81 \ mm^2$	

The experimental results

> Full loaded system

The experimental results

- Open system
- The arrival time follow Poisson distribution.

Outline

- Research background
- A motivational example
- The key designs of our approach
- Experimental results
- Conclusion.

The conclusion.

- We are the first to use synchronous thread rotations for thermal management.
- We propose a one-shot peak temperature calculation approach based on the RC thermal model.
- We present a hotpotato scheduling for task scheduling to speed up the performance.
- We implement our hotpotato scheduler in the state-of-the-art thermal simulator hotsniper

Thanks for your attention

y.shen@uva.nl
Questions

The hotpotato scheduling Thermal emergency may happen Thermal input Calculate T_{peak} No $T_{peak} < T_{DTM}$ $\Delta < T_{DTM}$ - T_{peak} No Migrate Γ with lowest CPI Migrate Γ with highest CPI value to outer AMD R_i value to inside AMD R_i Calculate T_{peak} Calculate T_{peak} Calculate T_{peak} Yes Yes_ $R_i \ll R_{\min}$ $R_i < R_{\max}$ **↓** No No Rotate slowdown $\delta\downarrow$ Rotate speedup $\delta \uparrow$

Thermal headroom not exploited Thermal input Calculate T_{peak} Yes No $T_{peak} < T_{DTM}$ $\Delta < T_{DTM}$ - T_{peak} No Migrate Γ with lowest CPI Migrate Γ with highest CPI value to outer AMD R_i value to inside AMD R_i Calculate T_{peak} Calculate T_{peak} Calculate T_{peak} Yes Yes $R_i \ll R_{\min}$ $R_i < R_{\max}$ No No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 No
 Rotate slowdown $\delta\downarrow$ Rotate speedup $\delta \uparrow$

The limitations of this work.

- Only suitable for the system with LLC.
- The heuristic of hotpotato is a little bit straightforward.
- Not sure if the data congestion crashes the system when executing on more core systems.

> Bohr's model

