

## **Announcements, Goals, and Reading**

## **Announcements:**

- HW01 due Tuesday Sep 20<sup>th</sup>, 11:59 pm on Mastering Physics
- HW00 grace period ends tonight
- Help Resources: See next page

## **Goals for Today:**

Motion in 1-Dimension: Uniform Motion, Piecewise motion

## Reading (Physics for Scientists and Engineers 4/e by Knight)

Chapter 2: Kinematics in One Dimension

Help Resources



- Very important! These are opportunities for 1:1 instruction and tutoring that you can't always get in these big lectures.
- Remember, receiving help is good! It is a skill and habit exercised by successful and smart people.
- Some resources/people may be more helpful for you than others.
   If you don't feel sufficiently helped by one person/resource, try another.
   This is your learning, so you should take a level of responsibility for it.

## Drop in help in the Physics Help Room in Hasbrouck 115

| Help available for any 100-level Physics course from ANY GRADUATE TA |                               |                                |                               |                     |                   | 1pm - 2pm   |                                |                             |                                          |                      |                |
|----------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------------|---------------------|-------------------|-------------|--------------------------------|-----------------------------|------------------------------------------|----------------------|----------------|
| However, if you a                                                    | are looking for specific he   | elp, the course for which e    | each TA is affiliated is list | ed                  |                   |             | Ed van Bruggen 151             | Hannah Peltz Smalley<br>118 | Justin Fagnoni 132                       | Ajit Kumar 131       | Chenan Wei 131 |
|                                                                      | Monday                        | Tuesday                        | Wednesday                     | Thursday            | Friday            |             | Tanvir Ahmed Masum<br>131/597Q | Mingyuan Wang               | Ajit Kumar 131                           | Ryosuki Shiina 152   | Hanzhe Xi 131  |
|                                                                      | Muldrow Etheredge<br>100      | Esther Kalemba 131             | Matthew Maroun 151            | Sizhe Cheng 131     | Robert Keane 151  | 2pm - 3pm   | Andrew Toler 151/281           | Vivek Chakrabhavi 131       | Justin Fagoni 132                        | Ajit Kumar 131       | Joanna Wuko 15 |
| 9am - 10am                                                           |                               |                                | Siao-Fong Li 132              | Nick Yazbek 131     | Joanna Wuko 131   | - 3pm - 4pm | Chetan Yadav 131               | Mingyuan Wang 131           |                                          | Ed Van Bruggen 152   | 32             |
|                                                                      | T 111 404                     | 11.75 0.454                    |                               | 0:1 01 101          | D 1 114 151       |             | Hanzhe Xi 181                  | Aidan Morehouse 131         |                                          | Owen Drescher 131    |                |
| 10am - 11am                                                          | Tao Wang 131                  | Jhih-Ying Su 151               | Matthew Maroun 151            | Sizhe Cheng 131     | Robert Keane 151  |             | Aditya Kulkarni 131            | Aiden Khelil 151            | CLOSED FOR<br>DEPARTMENTAL<br>COLLOQUIUM | Zhiyu Yang 151       |                |
|                                                                      | Shani Perera 151              | Nick Pittman 152               | Siao-Fong Li 132              | Baji Jadhav 131/151 | Sili Wu 151/131   | 4pm - 5pm   | Chetan Yadav 131               | Kripa Anand 132             |                                          | Kripa Anand 132      |                |
|                                                                      |                               | Nick Pittman 152               | Yating Zhang 131              | Esther Kalemba 131  | Thisura 151       | 5pm - 6pm   | Oluwafemi Akomolafe<br>132     | Aiden Khelil 151            |                                          | Arsh Chakraborty 132 |                |
| 11am - Noon                                                          |                               | Anthony David 422              | In al Dames 424/404           | Danas Maria 404     | Duland Winner 424 | opin - opin |                                |                             |                                          | Dang Tran 131        |                |
|                                                                      |                               | Anthony Raykh 132              | Joel Ponce 131/181            | Prasanna More 181   | Ryland Yurow 131  |             |                                | Oluwafemi Akomolafe<br>132  | Sofia Corba 181/132                      | Arsh Chakraborty 132 |                |
|                                                                      | Joel Ponce 131/181            | Tanvir Ahmed Masum<br>131/597Q | Prasanna More 152             | Joanna Wuko 131     | Thisura 151       | 6 pm - 7pm  |                                |                             | Aman Aman 131                            | Ryosuke Shiina 131   |                |
|                                                                      | Catherine McCarthy<br>131/281 | Catherine McCarthy<br>131/281  | Shani Perera 151              | Sili Wu 151/131     |                   | 7pm - 8pm   |                                | Sofia Corba 181/132         | Kerry O'Brien 151                        | Ryosuke Shiina 131   |                |
|                                                                      |                               |                                |                               |                     |                   | . p opiii   |                                |                             | Pronay Dutta 131                         | Dang Tran 131        |                |
|                                                                      |                               |                                |                               |                     |                   |             |                                | Sofia Corba 181/132         | Charlie Veihmeyer 131                    |                      |                |
|                                                                      |                               |                                |                               |                     |                   | 8pm - 9pm   |                                |                             |                                          |                      |                |

- Lots of Physics PhD students (<u>experts</u> in this material) available to help you all day, every weekday!
- Our TAs will be there
- This is a great opportunity that you should take advantage of.

## **Kinematics in One Dimension**

<u>Kinematics</u> – *Mathematical* study of motion without reference to forces that cause it

Motion described by position as function of time, e,g, x(t)

- Car moves forward then reverses
- Positions shown are at 10s intervals





- -Plot of car's motion contains more info than motion diagram
- -Shows position at all times 0s <t <50s

## **Uniform Motion in 1D**

Don't need full vector notation

Plot of x(t) (position vs time) for motion with constant speed and velocity>0



Plot of x(t) (position vs time) for motion with constant speed and velocity < 0



## **Constant velocity: Motion Diagram vs graphical representation**

Motion diagram



Position vs Time graph



What about velocity vs time?

## Direction of motion indicated by sign of velocity

Motion to left v negative

Motion to right v positive



For example, an object has **speed** 5 m/s

Can have two possible velocities

$$v = +5m/s$$

or

$$v = -5m/s$$

## Constant velocity motion is straight line motion on plot of position vs. time

$$x(t) = x_0 + vt$$





Initial position

$$t=0 \implies x(0) = x_0$$

Compute average velocity between times t<sub>1</sub> and t<sub>2</sub>

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

## **Computing Average Velocity**

$$x(t) = x_0 + vt$$

Compute average velocity between times  $t_1$  and  $t_2$ 

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

$$= \frac{(x_0' + vt_2) - (x_0' + vt_1)}{t_2 - t_1}$$

$$= \frac{vt_2 - vt_1}{t_2 - t_1} = \frac{v(t_2 - t_1)}{t_2 - t_1}$$

$$= v \checkmark$$



- (1) Velocity is constant here (choice of t₂ and t₁ doesn't matter)
- (2) Average velocity equals slope v

## Alternative form for line equation



$$x(t) = x_0 + v (t-t_0)$$

Equation is in Point-Slope form Goes through point  $(t_0,x_0)$  with slope v Most general equation to remember

#### Example...

Straight line distance from New York City to Washington DC is d=200 miles. Alice drives straight from NYC to DC at 50 miles/hour. Bob leaves 2 hours after Alice and drives along the same route at 75 miles/hour

PENNSYLVANIA

Allentown

Harrisburge

Harrisburge

Tyork

Allentown

New York

New York

New York

NEW JERSEY

Atlantic City

Wash rig (on

DELAWARE

- Will Bob catch up with Alice before she reaches DC?
- If so, at what time?
- At what distance from NYC?

First step: Make formulas for Alice and Bob's position vs time  $x(t) = x_0 + v(t-t_0)$ 

#### Example...

Straight line distance from New York City to Washington DC is d=200 miles. Alice drives straight from NYC to DC at 50 miles/hour. Bob leaves 2 hours after Alice and drives along the same route at 75 miles/hour



- Will Bob catch up with Alice before she reaches DC?
- If so, at what time?
- At what distance from NYC?

<u>Applications:</u> defend Earth from planet-killing asteroids, missile defense, car collision avoidance systems, ....

Start by writing formulas for Alice's and Bob's motions  $X = X_0 + V(t-t_0)$ 

$$x_A = v_A t$$

$$x_{B}(t) = v_{B}(t - t_{0})$$

- Let x be distance from NYC;  $x_0 = 0$
- Assume Alice starts at t=0; for Alice t<sub>0</sub> =0
- For Bob  $t_0 = 2$  hour

#### Example...

- Will their paths cross before Alice reaches DC?
- If so, then at what time?
- And at what distance from NYC?

$$x_A = v_A t$$
  $x_B (t) = v_B (t - t_0)$ 



When will Alice get to DC?

$$v_A t = d$$
  $\rightarrow$   $t = d / v_A = 200mi / 50 mph = 4 hours$ 

d=200 miles  $v_A = 50$ mph  $v_B = 75$ mph

Assume A's & B's paths  $X_A(T) = X_B(T)$  cross at time t=T

$$\mathbf{v}_{A} T = \mathbf{v}_{B} (T - \mathbf{t}_{0})$$

$$(v_B - v_A) T = v_B t_0$$
  $\rightarrow$   $T = (75/25) t_0 = 6 hours$ 

But Alice has already reached Washington DC by then!

If they kept going, they would meet at  $x_A(T) = v_A T = 300$  miles

## **Another Example...**

- Initial straight line distance *L* from Dio (left) to Jotaro (right) is 100m.
- $\bullet$  At  $t_0=0s$  , Jotaro approaches Dio at  $v_{\it J}=-1\frac{m}{s}$
- $v_D$   $v_J$   $v_J$   $v_J$   $v_J$



- Dio walks briskly rightward toward Jotaro 10 seconds after Jotaro and approaches at  $v_D=+2\frac{m}{s}$  until they collide for a friendly handshake.
  - Who will travel more distance by the time they collide?
  - How long will this take?

Start by writing formulas for Jotaro's and Dio's motions

$$x_{J}(t) = L + v_{J}t = 100m + \left(-1\frac{m}{s}\right) * t$$
  
 $x_{D}(t) = v_{D}(t - 10s) = 2\frac{m}{s}(t - 10s)$   
[when  $t >= 10s$ ]

$$x(t) = x_0 + v(t-t_0)$$

#### Notes...

- Let x be distance from Dio's starting position
- Jotaro starts from  $x_0=L=100m$  at  $t_0=0$
- Dio starts from  $x_1=0$  at  $t_1=10$ s

15

$$v_D$$
  $v_J$ 

$$x_{J}(t) = L + v_{J}t = 100m + \left(-1\frac{m}{s}\right) * t$$

$$x_D(t) = v_{D(t-10s)} = 2\frac{m}{s} (t - 10s)$$

[when t >= 10s]



- Who will travel more distance by the time they collide?
- How long will this take?

The time of collision  $t_c$  is where  $x_I(t_c) = x_D(t_c)$ : the time where they inhabit the same spatial position.\*

$$x_{J(t_c)} = xD_{(t_c)} \Rightarrow L + v_J t_c = vD_{(t_c - t_1)}$$
Step 2: Solve for  $t_c$ 

$$\Rightarrow t_c = \frac{L + vDt_1}{v_D - vJ} = \frac{100m + 2\frac{m}{s} * 10s}{2\frac{m}{s} - (-1\frac{m}{s})} = \frac{120m}{3 \ m/s} = 40s$$

Step 3: Find the position at  $t = t_c = 40s$   $x_{J}(40s) = 100m - 40m = 60m$ 

Dio will have traveled more distance from his initial position when they collide.







## Slightly more complicated motion...

Consider trips made up of multiple constant velocity segments

#### For example

A car drives for time  $t_1$  with velocity  $v_1$  then speeds up to velocity  $v_2$  until it stops at time  $t_2$ 

Note: A car can't speed up instantaneously.

This is an idealization of a very short, but finite acceleration period

Looks innocent/innocuous

But leads to surprisingly tricky physics problems!

What is the average velocity for this trip?

$$v_{avg} = rac{\Delta x_{ ext{total}}}{\Delta t_{ ext{total}}}$$



**Example:** A car travels for time T/2 at velocity  $v_1$  and then for time T/2 at velocity  $v_2$ . What is the average velocity?

$$\Delta t_1 = \Delta t_2 = T/2$$
  $v_{avg} = \frac{v_1 T/2 + v_2 T/2}{T} = \frac{v_1 + v_2}{2}$ 

Simple average of two velocities

## Trips with multiple constant velocity segments

Compute average velocity for trip?

$$v_{avg} = \frac{\Delta x}{\Delta t}$$



**Harder example:** A car makes a trip of total distance D.

For the first D/2, it travels at  $v_1$  and for the second D/2 it travels at  $v_2$ 

$$\Delta x = D$$
 No problem! But what is  $\Delta t$ ?  $ext{velocity} = rac{ ext{distance}}{ ext{time}} \longleftrightarrow ext{time} = rac{ ext{distance}}{ ext{velocity}}$ 

$$\Delta t_1 = \frac{D/2}{v_1} \quad \text{and} \quad \Delta t_2 = \frac{D/2}{v_2}$$

Here 
$$\Delta t$$
=sum of  $(\Delta t_1 + \Delta t_2)$   $v_{avg} = \frac{\Delta x}{\Delta t}$ 

$$\Delta t = \frac{D}{2} \left( \frac{1}{v_1} + \frac{1}{v_2} \right) = \frac{D}{2} \frac{v_1 + v_2}{v_1 v_2} \implies v_{avg} = \frac{2v_1 v_2}{v_1 + v_2}$$

$$v_{avg} = \frac{2v_1v_2}{v_1 + v_2}$$

A car makes a trip of total distance D. For the first D/2, it travels at  $v_1$  and for the second D/2 it travels at  $v_2$ 

$$v_{avg} = \frac{2v_1v_2}{v_1 + v_2}$$

Check to see that it makes sense.

A scientist has to check a complicated answer whether it makes sense in simple limited cases!

What if  $v_1 = v_2 = v$ . We expect the final answer to be v as well. Plugging into our results gives...



$$v_{avg} = v$$



A car makes a trip of total distance D. For the first D/2, it travels at  $v_1$  and for the second D/2 it travels at  $v_2$ 

$$v_{avg} = \frac{2v_1v_2}{v_1 + v_2}$$

Check to see that it makes sense.

A scientist has to check a complicated answer whether it makes sense in simple limited cases!

What if v<sub>1</sub> goes to zero? It will never get to halfway point.

Expect 
$$\lim_{v_1 \to 0} v_{avg} = 0$$

$$\lim_{v_1 \to 0} \Delta t = \infty$$

Both easily checked from results!

$$v_{avg} = \frac{2v_1v_2}{v_1 + v_2}$$

## Position vs. time plots (not every plot is legitimate!)

Which of these graphs might represent the motion of a real object (e.g. a bike)?



**1D** motion non-constant velocity → Instantaneous

velocity

## Constant velocity motion

- Straight line motion diagram
- Velocity equals slope of line

#### More generally

- Velocity changes with time
- Instantaneous velocity is slope of line tangent to curve
- Can compute this slope by taking limit of average velocity over shorter and shorter time intervals
- Velocity is the **derivative** of the position curve





# 1D motion with non-constant velocity

Before "instantaneous velocity" return to... Average velocity vs. Average speed

The relationship becomes more important when you can back up...
Cover more distance, without necessarily getting anywhere

Is the velocity zero anywhere? How can you tell?
Where is the velocity the greatest?
How can you tell?



## Average Velocity: based on...

Displacement = **Net distance** traveled

| Position of the Car at<br>Various Times |      |                 |  |  |  |
|-----------------------------------------|------|-----------------|--|--|--|
| Position                                | t(s) | $x(\mathbf{m})$ |  |  |  |
| A                                       | 0    | 30              |  |  |  |
| B                                       | 10   | 52              |  |  |  |
| ©                                       | 20   | 38              |  |  |  |
| <b>(D)</b>                              | 30   | 0               |  |  |  |
| E                                       | 40   | -37             |  |  |  |
| F                                       | 50   | -53             |  |  |  |



$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x(t_f) - x(t_i)}{t_f - t_i} = \frac{-53m - 30\frac{\Delta t}{m}}{50s - 0s} = -1.7m/s$$

Magnitude is 1.7 m/s; direction is -x

## **Average Speed:**

#### Based on total distance travelled

| Position of the Car at<br>Various Times |                 |                 |  |  |  |
|-----------------------------------------|-----------------|-----------------|--|--|--|
| Position                                | $t(\mathbf{s})$ | $x(\mathbf{m})$ |  |  |  |
| A                                       | 0               | 30              |  |  |  |
| B                                       | 10              | 52              |  |  |  |
| ©                                       | 20              | 38              |  |  |  |
| (D)                                     | 30              | 0               |  |  |  |
| E                                       | 40              | -37             |  |  |  |
| (F)                                     | 50              | -53             |  |  |  |



$$s_{avg} = \frac{\text{total distance}}{\text{total time}} = \frac{22m + 105m}{50s} = \frac{\Delta t}{2.5m/s}$$

No direction and no sign associated with speed. Never negative, or smaller than |v|.