信息论与编码 作业答案

(对应曹雪虹清华版教材)

(谢正光, 2013-06-28, 于江苏南通)

第一章 绪论

1-1、

信息、消息、信号的定义是什么?三者的关系是什么?

答:信息:是指各个事物运动的状态和状态变化的方式。

消息:包含有信息的语言文字和图像等。

信号:信号时消息的物理体现。

三者关系: 信息符号化为消息, 消息物理化为信号。

#

1-2、

简述一个通信系统包括的各主要功能模块及其作用。

答: 主要模块和其作用如下:

信源: 向通信系统提供消息。

信宿:接收消息。

信道:传递消息或说物理信号。

干扰源:集中反映通信系统的干扰。

密钥源:产生密钥。

信源编码器:进行信源编码,把信源发出的消息转换成由二进制码元(或多进制码元)的代码组。

信道编码器:增加监督码元,增加检错或纠错的能力。

加密编码:提高通信系统的安全性。

#

第二章 信源与信息熵

2.1

一个马尔可夫信源有 3 个符号 $\{u_1,u_2,u_3\}$,转移概率为: $p(u_1 \mid u_1) = 1/2$, $p(u_2 \mid u_1) = 1/2$, $p(u_3 \mid u_1) = 0$, $p(u_1 \mid u_2) = 1/3$, $p(u_2 \mid u_2) = 0$, $p(u_3 \mid u_2) = 2/3$, $p(u_1 \mid u_3) = 1/3$, $p(u_2 \mid u_3) = 2/3$, $p(u_3 \mid u_3) = 0$, 画出状态图并求出各符号稳态概率。

解:(1)状态转移矩阵为:

$$p = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/3 & 0 & 2/3 \\ 1/3 & 2/3 & 0 \end{pmatrix}$$

(2) 状态图如下

(3) 从状态图可知,满足不可约性与非周期性,所以存在稳态概率。设状态 \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 稳定后的概率分别为 \mathbf{W}_1 , \mathbf{W}_2 、 \mathbf{W}_3

曲
$$\begin{cases} WP = W \\ W_1 + W_2 + W_3 = 1 \end{cases}$$
 得
$$\begin{cases} \frac{1}{2}W_1 + \frac{1}{3}W_2 + \frac{1}{3}W_3 = W_1 \\ \frac{1}{2}W_1 + \frac{2}{3}W_3 = W_2 \\ \frac{2}{3}W_2 = W_3 \\ W_1 + W_2 + W_3 = 1 \end{cases}$$
 计算可得
$$\begin{cases} W_1 = \frac{10}{25} \\ W_2 = \frac{9}{25} \\ W_3 = \frac{6}{25} \end{cases}$$

答: (略)#

由符号集 $\{0,1\}$ 组成的二阶马尔可夫链,其转移概率为: $p(0\mid 00)$ =0.8, $p(0\mid 11)$ =0.2, $p(1\mid 00)$ =0.2, $p(1\mid 11)$ =0.8, $p(0\mid 01)$ =0.5, $p(0\mid 10)$ =0.5, $p(1\mid 01)$ =0.5, $p(1\mid 10)$ =0.5。画出状态图,并计算各状态的稳态概率。解: (1) 状态转移矩阵

$$p(0 \mid 00) = p(00 \mid 00) = 0.8 \qquad p(0 \mid 01) = p(10 \mid 01) = 0.5$$

$$p(0 \mid 11) = p(10 \mid 11) = 0.2 \qquad p(0 \mid 10) = p(00 \mid 10) = 0.5$$

$$p(1 \mid 00) = p(01 \mid 00) = 0.2 \qquad p(1 \mid 01) = p(11 \mid 01) = 0.5$$

$$p(1 \mid 11) = p(11 \mid 11) = 0.8 \qquad p(1 \mid 10) = p(01 \mid 10) = 0.5$$

于是可以列出转移概率矩阵:
$$p = \begin{pmatrix} 0.8 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.2 & 0.8 \end{pmatrix}$$

(2) 状态图为:

(3)从状态图可知,满足不可约性与非周期性,所以存在稳态概率。设各状态 00,01,10,11 的稳态分布概率为 $\mathbf{W_1},\mathbf{W_2},\mathbf{W_3},\mathbf{W_4}$ 有

$$\begin{cases} WP = W \\ \sum_{i=1}^{4} W_i = 1 \end{cases} = \begin{cases} 0.8W_1 + 0.5W_3 = W_1 \\ 0.2W_1 + 0.5W_3 = W_2 \\ 0.5W_2 + 0.2W_4 = W_3 \\ 0.5W_2 + 0.8W_4 = W_4 \\ W_1 + W_2 + W_3 + W_4 = 1 \end{cases} \Rightarrow \begin{cases} W_1 = \frac{5}{14} \\ W_2 = \frac{1}{7} \\ W_3 = \frac{1}{7} \\ W_4 = \frac{5}{14} \end{cases}$$

答: (略)#

同时掷两个正常的骰子,也就是各面呈现的概率都是 1/6,求:

- (1) "3和5同时出现"事件的自信息量;
- (2)"两个1同时出现"事件的自信息量;
- (3) 两个点数的各种组合(无序对)的熵或平均信息量;
- (4) 两个点数之和(即2,3,...,12构成的子集)的熵或平均信息量;
- (5) 两个点数中至少有一个是1的自信息量。

解:设 (x_1,x_2) 表示骰子掷呈现面上的数字对,则

(1)
$$p(3,5) = p(x_1 = 3, x_2 = 5) + p(x_1 = 5, x_2 = 3) = \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{6} = \frac{1}{18}$$

$$I(3,5) = -\log(p(3,5)) \approx 4.17bit$$

(2)
$$p(1,1) = p(x_1 = 1, x_2 = 1) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

$$I(1,1) = -\log(p(1,1)) \approx 5.17bit$$

(3) (x_1, x_2) 无序对组合共有 21 种,其中相同数字的无序对有 6 种,每种出现的概率均为 1/36,不同数字的无序对组合共 15 种,每种出现的概率均为 1/18。

$$H(X_1, X_2) = 6 \times \frac{1}{36} \times \log 36 + 15 \times \frac{1}{18} \times \log 18 \approx 4.337 bit / event$$

(4) 两个点数之和(即2,3,...,12构成的子集)的概率如下表所示

和	2	3	4	5	6	7	8	9	10	11	12
组	1+1	1+2	1+3	1+4	1+5	1+6	2+6	3+6	4+6	5+6	6+6
合		2+1	3+1	4+1	5+1	6+1	6+2	6+3	6+4	6+5	
情			2+2	2+3	2+4	2+5	3+5	4+5	5+5		
况				3+2	4+2	5+2	5+3	5+4			
					3+3	3+4	4+4				
						4+3					
概率	$\frac{1}{6} \times \frac{1}{6}$	$\frac{1}{6} \times \frac{1}{6} +$	$\frac{1}{6} \times \frac{1}{6}$								
	$=\frac{1}{36}$	$\frac{1}{6} \times \frac{1}{6}$	$\frac{1}{6} \times \frac{1}{6} +$	$\frac{1}{6} \times \frac{1}{6}$	$=\frac{1}{36}$						
		$=\frac{2}{36}$	$\frac{1}{6} \times \frac{1}{6}$	$\frac{1}{6} \times \frac{1}{6} +$	$\frac{1}{6} \times \frac{1}{6}$	$=\frac{2}{36}$					
		33	$=\frac{3}{36}$	$\frac{1}{6} \times \frac{1}{6}$		$\frac{1}{6} \times \frac{1}{6} +$		$\frac{1}{6} \times \frac{1}{6}$	$=\frac{3}{36}$		
			30	$=\frac{4}{36}$	$\frac{1}{6} \times \frac{1}{6}$	$\frac{1}{6} \times \frac{1}{6} +$	$\frac{1}{6} \times \frac{1}{6}$	$=\frac{4}{36}$			
					$=\frac{5}{36}$	$\frac{1}{6} \times \frac{1}{6}$	$=\frac{5}{36}$				
						$=\frac{6}{36}$		20			

$$H(X = X_1 + X_2) = 2\{\frac{1}{36} \times \log 36 + \frac{2}{36} \times \log \frac{36}{2} + \frac{3}{36} \times \log \frac{36}{3} + \frac{4}{36} \times \log \frac{36}{4} + \frac{5}{36} \times \log \frac{36}{5}\} + \frac{6}{36} \times \log \frac{36}{6} \approx 3.274 bit / event$$

(5) 两个点数中至少有一个是 1 的概率
$$p(x) = \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6} = \frac{11}{36}$$

$$I(x) = 1b \frac{36}{11} \approx 1.7105bit$$

答:(略)#

2-4

设在一只布袋中装有100个用手角摸感觉完全相同的木球,每个球上涂有一种颜色。100个球的颜色有下列3种情况:

- (1) 红色球和白色球各 50 个;
- (2) 红色球 99 个, 白色球 1 个;
- (3) 红、黄、蓝、白色球各25个。

分别从布袋中随意取出一个球时,猜测其颜色所需要的信息量。

解:设从布袋中随意取出一个球,是指定颜色的概率为 p(x)

(1)
$$p(r) = p(w) = \frac{1}{2}, H(\frac{1}{2}, \frac{1}{2}) = 1bit / event$$

(2)
$$p(r) = \frac{99}{100}, p(w) = \frac{1}{100}, H(\frac{99}{100}, \frac{1}{100}) \approx 0.081bit/event$$

(3)
$$p(r) = \frac{1}{4}, p(y) = \frac{1}{4}, p(b) = \frac{1}{4}, p(w) = \frac{1}{4}, H(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) = 2bit / event$$

答: (略)#

2-5

(题目略)

$$\frac{25\%.75\%}{50\%} = 0.375 - \text{Log}(0.375) = 1.415$$

2-6

(题目略)

$$(1,6) (6,1) (2,5) (5,2) (3,4) (4,3) 共六种 Log $\left(\frac{36}{6}\right) = 2.585$$$

设有一离散无记忆信源,其概率空间为
$$\begin{pmatrix} X \\ P \end{pmatrix} = \begin{pmatrix} x_1 = 0 & x_2 = 1 & x_3 = 2 & x_4 = 3 \\ 3/8 & 1/4 & 1/4 & 1/8 \end{pmatrix}$$

- (1) 求每个符号的自信息量
- (2) 信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210}, 求该序列的自信息量和平均每个符号携带的信息量

解: (1)
$$I(x_1) = \log_2 \frac{1}{p(x_1)} = \log_2 \frac{8}{3} \approx 1.415bit$$
,同理可以求得 $I(x_2) = 2bit$, $I(x_3) = 2bit$, $I(x_3) = 3bit$

(2) 解法一: 该消息符号序列 x 中 0 有 14 个 1 有 13 个 2 有 12 个 3 有 6 个,

$$p(x) = (\frac{3}{8})^{14} \times (\frac{4}{4})^{13} \times (\frac{1}{4})^{12} \times (\frac{1}{8})^{6}$$

$$I(x) = -\log p(x) \approx 87.811bit$$

$$P = \left(\frac{3}{8}\right)^{14} \cdot \left(\frac{1}{4}\right)^{13} \cdot \left(\frac{1}{4}\right)^{12} \cdot \left(\frac{1}{8}\right)^{6}$$

$$I = -\text{Log}\left[\left(\frac{3}{8}\right)^{14} \cdot \left(\frac{1}{4}\right)^{13} \cdot \left(\frac{1}{4}\right)^{12} \cdot \left(\frac{1}{8}\right)^{6}\right] = 87.811$$

解法二: 因为信源无记忆, 所以此消息序列的信息量就等于该序列中各个符号的信息量之和

就有:
$$I = 14I(x_1) + 13I(x_2) + 12I(x_3) + 6I(x_4) \approx 87.81bit$$

答: (略)#

2-8

(题目略)

$$Log(2) = 1 \ Log(4) = 2 \ Log(8) = 3$$

2-9

(颗目略)

(1)
$$I(\bullet) = Log(4) = 2$$
 $I(-) = \frac{Log(\frac{4}{3})}{4} = 0.415$
(2) $H = \frac{1}{4}Log(4) + \frac{3}{4}Log(\frac{4}{3}) = 0.811$

在一个袋中放5个黑球、10个白球,以摸一个球为一次实验,摸出的球不再放进去。求:

- (1) 一次实验包含的不确定度;
- (2) 第一次实验 X 摸出的是黑球,第二次实验 Y 给出的不确定度;
- (3) 第一次实验 X 摸出的是白球,第二次实验 Y 给出的不确定度;
- (4) 第二次实验 Y 给出的不确定度。

解: (1)
$$H(X) = \frac{5}{15} \log \frac{15}{5} + \frac{10}{15} \log \frac{15}{10} \approx 0.918 bit/event$$

$$H(Y/b) = \sum_{i} p(y_i/b) I(y_i/b) = -p(b/b) \log(p(b/b)) - p(w/b) \log(p(w/b))$$
 (2)
$$= \frac{4}{14} \log \frac{14}{4} + \frac{10}{14} \log \frac{14}{10} \approx 0.516 + 0.347 \approx 0.86 bit/event$$

$$H(Y/w) = \sum_{i} p(y_{i}/w)I(y_{i}/w) = -p(b/w)\log(p(b/w)) - p(w/w)\log(p(w/w))$$

$$= \frac{5}{14}\log\frac{14}{5} + \frac{9}{14}\log\frac{14}{9} \approx 0.5305 + 0.4097 \approx 0.94bit/event$$

$$p(y=b) = p(y=b,x=b) + p(y=b,x=w) = \frac{4}{14} \times \frac{5}{15} + \frac{5}{14} \times \frac{10}{15} = \frac{1}{3}$$

$$(4) p(y=w) = p(w,b) + p(w,w) = \frac{10}{14} \times \frac{5}{15} + \frac{9}{14} \times \frac{10}{15} = \frac{2}{3}$$

$$H(Y) = H(\frac{1}{3}, \frac{2}{3}) = 0.918bit/event$$

2.11

答: (略)#

有一个可以旋转的圆盘,盘面上被均匀的分成 38 份,用 1,…,38 的数字标示,其中有两份涂绿色,18 份涂红色,18 份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。

- (1) 如果仅对颜色感兴趣,则计算平均不确定度
- (2) 如果仅对颜色和数字感兴趣,则计算平均不确定度
- (3) 如果颜色已知时,则计算条件熵

解: 令 X 表示指针指向某一数字,则 $X=\{1,2,.........38\}$

Y表示指针指向某一种颜色,则Y={绿色,红色,黑色}

Y 是 X 的函数, 由题意可知 $p(x_iy_i) = p(x_i)$

(1)
$$H(Y) = \sum_{i=1}^{3} p(y_i) \log \frac{1}{p(y_i)} = \frac{2}{38} \log \frac{38}{2} + 2 \times \frac{18}{38} \log \frac{38}{18} = 1.24 \text{ bit/event}$$

(2)
$$H(X,Y) = H(X) = \log_2 38 = 5.25 \text{ bit/符号}$$

(3)
$$H(X \mid Y) = H(X,Y) - H(Y) = H(X) - H(Y) = 5.25 - 1.24 = 4.01$$
 bit/event

答: (略)#

2.12

两个实验 X 和 Y, X={x1 x2 x3},Y={y1 y2 y3}, 联合概率 $r(x_i,y_i)=r_{ij}$ 为

$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} = \begin{pmatrix} 7/24 & 1/24 & 0 \\ 1/24 & 1/4 & 1/24 \\ 0 & 1/24 & 7/24 \end{pmatrix}$$

如果有人告诉你 X 和 Y 的实验结果, 你得到的平均信息量是多少? 如果有人告诉你 Y 的实验结果, 你得到的平均信息量是多少? 在已知 Y 实验结果的情况下, 告诉你 X 的实验结果, 你得到的平均信息量是多少?

解: 联合概率 $p(x_i, y_j)$ 为

X Y	y1	y ₂	y ₃
X ₁	7/24	1/24	0
x ₂	1/24	1/4	1/24
X ₃	0	1/24	7/24

$$H(X,Y) = \sum_{ij} p(x_i, y_j) \log_2 \frac{1}{p(x_i, y_j)}$$

$$= 2 \times \frac{7}{24} \log_2 \frac{24}{7} + 4 \times \frac{1}{24} \log_2 24 + \frac{1}{4} \log_2 4$$
=2.3bit/event

X概率分布

X	\mathbf{x}_1	\mathbf{x}_2	X ₃
P	8/24	8/24	8/24

Y概率分布是

Y	y1	y2	у3
P	8/24	8/24	8/24

$$H(Y) = 3 \times \frac{1}{3} \log_2 3 = 1.58 \text{ bit/符号}$$

$$H(X \mid Y) = H(X,Y) - H(Y) = 2.3 - 1.58 = 0.72$$
bit/符号

答:(略)#

2-13

(题目略)

(1)
$$H(X) := 1 H(Y) := 1$$

$$(1)H(X) = H((\frac{1}{8} + \frac{3}{8}), (\frac{3}{8} + \frac{1}{8})) = 1bit / event$$

$$H(Y) = H((\frac{1}{8} + \frac{3}{8}), (\frac{3}{8} + \frac{1}{8})) = 1bit / event$$

H(Z) = H	$I((\frac{1}{8} +$	$-\frac{3}{8} +$	$-\frac{3}{8}$)	$,(\frac{1}{8}))\approx$	$\approx 0.1686 + 0.375 \approx 0.54 bit / event$
----------	--------------------	------------------	------------------	--------------------------	---

ZX	0	1
0	(1/8+3/8)	3/8
1	0	1/8

$$H(X,Z) = H(\frac{4}{8}, \frac{3}{8}, 0, \frac{1}{8}) \approx 0.5 + 0.5306 + 0 + 0.375 \approx 1.41 bit / event$$

ZY	0	1
0	(1/8+3/8)	3/8
1	0	1/8

$$H(Y,Z) = H(\frac{4}{8}, \frac{3}{8}, 0, \frac{1}{8}) \approx 0.5 + 0.5306 + 0 + 0.375 \approx 1.41 bit / event$$

xyz	000	001	010	011	100	101	110	111
P(xyz)	1/8	0	3/8	0	3/8	0	0	1/8

$$H(X,Y,Z) = H(\frac{1}{8},0,\frac{3}{8},0,\frac{3}{8},0,0,\frac{1}{8}) \approx 0.375 \times 2 + 0.5306 \times 2 \approx 1.81 bit / event$$

(2)
$$H(X,Y) = H(\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}) \approx 0.375 \times 2 + 0.5306 \times 2 \approx 1.81 bit / event$$

$$H(X \mid Y) = H(X,Y) - H(Y) \approx 1.81 - 1 = 0.81 bit / event$$

$$H(Y\mid X) = H(X,Y) - H(X) \approx 1.81 - 1 = 0.81 bit / event$$

$$H(X \mid Z) = H(X, Z) - H(Z) \approx 1.41 - 0.54 = 0.87 bit / event$$

$$H(Z\mid X) = H(X,Z) - H(X) \approx 1.41 - 1 = 0.41 bit / event$$

$$H(Y\mid Z) = H(Y,Z) - H(Z) \approx 1.41 - 0.54 = 0.87 bit \, / \, event$$

$$H(Z \mid Y) = H(Y, Z) - H(Y) \approx 1.41 - 1 = 0.41 bit / event$$

$$H(X \mid Y, Z) = H(X, Y, Z) - H(Y, Z) \approx 1.81 - 1.41 = 0.4 bit / event$$

$$H(Y \mid X, Z) = H(X, Y, Z) - H(X, Z) \approx 1.81 - 1.41 = 0.4bit / event$$

$$H(Z \mid X, Y) = H(X, Y, Z) - H(X, Y) \approx 1.81 - 1.81 = 0$$

$$I(X;Y) = H(X) - H(X \mid Y) \approx 1 - 0.81 = 0.19bit / event$$
 $(3) I(X;Z) = H(X) - H(X \mid Z) \approx 1 - 0.87 = 0.13bit / event$
 $I(Y;Z) = H(Y) - H(Y \mid Z) \approx 1 - 0.87 = 0.13bit / event$
 $I(X;Y \mid Z) = H(X \mid Z) - H(X \mid Y,Z) \approx 0.87 - 0.4 = 0.47bit / event$
 $I(Y;Z \mid X) = H(Y \mid X) - H(Y \mid X,Z) \approx 0.81 - 0.4 = 0.41bit / event$
 $I(X;Z \mid Y) = H(X \mid Y) - H(X \mid Y,Z) \approx 0.81 - 0.4 = 0.41bit / event$
答: (略) #

(题目略)

解:由己知条件可知

$$p(X) = \begin{bmatrix} p(x=0) & p(x=1) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

信道转移概率矩阵为

$$p(Y \mid X) = \begin{bmatrix} p(y = 0 \mid x = 0) & p(y = 1 \mid x = 0) \\ p(y = 0 \mid x = 1) & p(y = 1 \mid x = 1) \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{8} & \frac{7}{8} \end{bmatrix}$$

联合概率矩阵为

$$p(X,Y) = \begin{bmatrix} p(y=0, x=0) & p(y=1, x=0) \\ p(y=0, x=1) & p(y=1, x=1) \end{bmatrix} = \begin{bmatrix} \frac{3}{8} & \frac{1}{8} \\ \frac{1}{16} & \frac{7}{16} \end{bmatrix}$$

所以
$$p(Y) = [p(y=0) \quad p(y=1)] = \begin{bmatrix} \frac{7}{16} & \frac{9}{16} \end{bmatrix}$$

条件概率矩阵 $p(X \mid Y)$ 为

$$p(X \mid Y) = \begin{bmatrix} p(x = 0 \mid y = 0) & p(x = 0 \mid y = 1) \\ p(x = 1 \mid y = 0) & p(x = 1 \mid y = 1) \end{bmatrix} = \begin{bmatrix} \frac{6}{7} & \frac{2}{9} \\ \frac{1}{7} & \frac{7}{9} \end{bmatrix}$$

(1) 方法 1

$$I(X; y = 0) = H(X) - H(X \mid y = 0) = 1 + [p(x = 0 \mid y = 0) \log p(x = 0 \mid y = 0) + p(x = 1 \mid y = 0) \log p(x = 1$$

方法 2:

$$I(X; y = 0) = \sum_{i} p(x_i \mid y = 0) \log \frac{p(x_i \mid y = 0)}{p(x_i)} = \frac{6}{7} \log \frac{\frac{6}{7}}{\frac{1}{2}} + \frac{1}{7} \log \frac{\frac{1}{7}}{\frac{1}{2}}$$

= 0.41bit

(2) 方法 1:

$$I(X;y=1) = H(X) - H(X \mid y=1) = 1 + [p(x=0 \mid y=1) \log p(x=0 \mid y=1) + p(x=1 \mid y=1) \log p(x=1 \mid y=1)$$

$$I(X;Y) = \sum_{j} p(y_j)I(X;y_j) = p(y=0)I(X;y=0) + p(y=1)I(X:y=1) = 0.31bit$$
 方法 2:

$$I(X;Y) = \sum_{i,j} p(y_j) p(x_i \mid y_j) \log \frac{p(x_i \mid y_j)}{p(x_i)} = 0.31bit$$

(此外还有很多其它的方法。)

答: (略)#

2-15

(题目略)

$$P(i/i) = \begin{pmatrix} 1 - \varepsilon & \varepsilon \\ \varepsilon & 1 - \varepsilon \end{pmatrix} p(b1) = p(b2) = \frac{1}{2}$$

$$p(a1/b1) = \frac{p(a1) \cdot p(b1 \cdot a1)}{p(b1)} = \frac{\frac{1}{2}(1-\epsilon)}{\frac{1}{2}} = 1 - \epsilon$$

$$I(a1;b1) = Log\left(\frac{p(a1 \cdot b1)}{p(a1)}\right) = Log\left(\frac{1-\epsilon}{\frac{1}{2}}\right) = Log[2(1-\epsilon)]$$

$$p(a1/b2) = \frac{p(a1) \cdot p(b2 \cdot a1)}{p(b2)} = \epsilon$$

$$I(a1;b2) = Log\left(\frac{p(a1 \cdot b2)}{p(a1)}\right) = log\left(\frac{\epsilon}{\frac{1}{2}}\right) = Log(2\epsilon)$$

黑白传真机的消息元只有黑色和白色两种,即 $X={\mathbb{R}, \, \triangle}$,一般气象图上,黑色的出现概率 $p(\mathbb{R})=0.3$,白色出现的概率 $p(\triangle)=0.7$ 。

- (1) 假设黑白消息视为前后无关,求信源熵 H(X),并画出该信源的香农线图
- (2) 实际上各个元素之间是有关联的,其转移概率为: $P(\triangle|\triangle)=0.9143$, $P(\mathbb{R}|\triangle)=0.0857$, $P(\triangle|\mathbb{R})=0.2$, $P(\mathbb{R}|\mathbb{R})=0.8$, 求这个一阶马尔可夫信源的信源熵,并画出该信源的香农线图。
- (3) 比较两种信源熵的大小,并说明原因。

解: (1)
$$H_1(X) = 0.3 \log_2 \frac{10}{3} + 0.7 \log_2 \frac{10}{7} = 0.8813 \text{ bit/符号}$$

(2) 方法 1:

根据题意,此一阶马尔可夫链是平稳的(P(白)=0.7 不随时间变化,P(黑)=0.3 不随时间变化)

$$\begin{split} &H_{\infty}(X) = H(X_2 \mid X_1) = \sum_{ij} p(x_i, y_j) \log_2 \frac{1}{p(x_i, y_j)} \\ &= 0.9143 \times 0.7 \log_2 \frac{1}{0.9143} + 0.0857 \times 0.7 \log_2 \frac{1}{0.0857} + 0.2 \times 0.3 \log_2 \frac{1}{0.2} \\ &+ 0.8 \times 0.3 \log_2 \frac{1}{0.8} \end{split}$$

=0.512bit/符号

方法 2:

设最后平稳概率为 W1,W2

$$P^{T} \cdot W = W$$

$$P := \begin{pmatrix} 0.9143 & 0.0857 \\ 0.2 & 0.8 \end{pmatrix} \qquad W_{1} + W_{0} = 1 \qquad \qquad \text{$\not$$$ $\#$ W_{1}=07 $$ W_{2}=0.3}$$

 $H(Y/\mathbb{H}) = -0.9143Log(0.9143) - 0.0857Log(0.0857) = 0.422$

$$H(Y/ =)= -0.2 Log(0.2) - 0.8 Log(0.8) = 0.722$$

$$H_{\infty}(X) = \sum_{i} p(s_{i})H(X\mid s_{i}) = \text{W}_{1} \text{ H(Y/$\stackrel{\square}{=}$}) + \text{W}_{2} \text{ H(Y/$\stackrel{\square}{=}$}) = 0.7 \cdot 0.422 + 0.3 \cdot 0.722 = 0.512 \text{ bit}$$

(3) $H_1(X) > H_\infty(X)$ 。因为信源符号间存在相关性,即存在冗余。

(题目略)

$$p := \frac{1}{128^{3 \cdot 10^5}}, \quad I = -Log \left(\frac{1}{128^{3 \cdot 10^5}}\right) = 3 \cdot 10^5 Log(128) = 2.1 \times 10^6$$

$$I = -Log\left(\frac{1}{10000^{1000}}\right) = 1000 Log(10000) = 1.329 \times 10^4$$

2-18

2-18 X 是一离散随机变量,f 是定义在 X 上的实函数,证明 $H(X) \geqslant H[f(X)]$ 成立,当且仅当 f 是集合 $\{x: P(X=x)>0\}$ 上一对一的函数时取等号。

证明: 设离散随机变量 X 的概率空间为

$$\begin{bmatrix} X \\ P \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ p_1 & p_2 & p_3 & \cdots & p_n \end{bmatrix}$$

则
$$H(X) = \sum_i p(x_i) \log \frac{1}{p(x_i)}$$

- (1) 若 f(x)与 x 是一一对应的,则 f(X)与 X 的概率空间相同,所以 H[f(X)]=H(X)。
- (2) 若 f(x)与 x 不是一一对应的,因为 f 是定义在 X 上的实函数,所以只可能存在多个 x 对应一个 f(x)的情况,而不可能存在多个 f(x)对应一个 x 的情况。

不失一般性, 假设 x 与 f(x)的对应关系为

$$\begin{vmatrix} X \\ P(X) \\ f(X) \\ p(f(X)) \end{vmatrix} = \begin{vmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ p_1 & p_2 & p_3 & \cdots & p_n \\ f(x_{1+2}) & & f(x_3) & \cdots & f(x_n) \\ p_1 + p_2 & & p_3 & \cdots & p_n \end{vmatrix}$$

根据 H(X)对称性,有

$$\begin{split} H(X) &= \sum_{i=1}^{n} p(x_{i}) \log \frac{1}{p(x_{i})} = p(x_{1}) \log \frac{1}{p(x_{1})} + p(x_{2}) \log \frac{1}{p(x_{2})} + \sum_{i=3}^{n} p(x_{i}) \log \frac{1}{p(x_{i})} \\ H(f(X)) &= \sum_{i=1}^{n} p(f(x_{i})) \log \frac{1}{p(f(x_{i}))} = [p(x_{1}) + p(x_{2})] \log \frac{1}{p(x_{1}) + p(x_{2})} + \sum_{i=3}^{n} p(x_{i}) \log \frac{1}{p(x_{i})} \\ & \therefore [p(x_{1}) + p(x_{2})] \log \frac{1}{p(x_{1}) + p(x_{2})} = p(x_{1}) \log \frac{1}{p(x_{1}) + p(x_{2})} + p(x_{2}) \log \frac{1}{p(x_{1}) + p(x_{2})} \\ &< p(x_{1}) \log \frac{1}{p(x_{1})} + p(x_{2}) \log \frac{1}{p(x_{2})} \\ & \therefore H(f(X)) < H(X) \end{split}$$

(3) 综上所述, $H(f(X)) \leq H(X)$

2-19 一个随机变量 x 的概率密度函数 p(x)=kx, $0 \le x \le 2V$, 试求该信源的相对熵。

解:由题,可得:

$$\begin{split} &\int_{0}^{2} p(x)dx = 1, \therefore k = \frac{1}{2} \\ &H_{C}(X) = -\int_{0}^{2} P(X) \log P(X) dx \\ &= -\int_{0}^{2} \frac{1}{2} x \log \frac{1}{2} x dx \\ &(\int x \ln ax dx = \frac{1}{2} x^{2} \ln ax - \frac{1}{4} x^{2}) \\ &= -[\frac{1}{4} x^{2} \ln \frac{1}{2} x - \frac{1}{8} x^{2}]_{0}^{2} \\ &= \frac{1}{2} nat / symbol \end{split}$$

2-20

给定语音样值 X 的概率密度函数 $p(x)=rac{1}{2}\lambda e^{-\lambda |x|}, -\infty < x < \infty$,求 $H_c(X)$,并证明它小于同样方差的正态变量的连续熵。

解:

$$\begin{split} & \operatorname{H}_{\mathcal{C}}(X) = -\int_{-\infty}^{\infty} p(x) \ln p(x) dx = -\int_{-\infty}^{\infty} \frac{1}{2} \lambda e^{-\lambda |x|} \ln(\frac{1}{2} \lambda e^{-\lambda |x|}) dx \\ & = -\int_{0}^{\infty} \lambda e^{-\lambda x} \ln(\frac{1}{2} \lambda e^{-\lambda x}) dx = \frac{2}{\lambda} \int_{0}^{\infty} \ln \frac{1}{2} \lambda e^{-\lambda x} d[\frac{1}{2} \lambda e^{-\lambda x}] \\ & (\int \ln ax dx = x \ln ax - x) \\ & = \frac{2}{\lambda} [\frac{1}{2} \lambda e^{-\lambda x} \ln \frac{1}{2} \lambda e^{-\lambda x} - \frac{1}{2} \lambda e^{-\lambda x}]_{0}^{\infty} \\ & = \frac{2}{\lambda} [0 - \frac{1}{2} \lambda \ln \frac{1}{2} \lambda + \frac{1}{2} \lambda] = -\ln \frac{1}{2} \lambda + 1 = \log \frac{2e}{\lambda} \\ & \hat{\mathcal{T}} \pm : \quad D(X) = \frac{2}{\lambda^2} \end{split}$$
具有同样方差的正态分布的连续熵

$$H_{Gaussan}(X) = \frac{1}{2}\log(2\pi e\sigma^2) = \frac{1}{2}\log(2\pi e\frac{2}{\lambda^2}) = \log\frac{2\sqrt{\pi e}}{\lambda} > \log\frac{2e}{\lambda}$$

#

2-21 (1) 随机变量 X 表示信号 x(t) 的幅度, $-3V \le x(t) \le 3V$,均匀分布,求信源熵 $H_c(X)$ 。

- (2) 若X在 $-5\sim5$ V之间均匀分布,求信源熵 $H_{c}(X)$ 。
- (3) 试解释(1)和(2)的计算结果。

解: (1) 由题, 可知片 P(X)=1/6V,故,

$$H_C(X) = -\int_{-3}^{3} \frac{1}{6} lb \frac{1}{6} dx$$

= lb6 = 2.58bit

(2) 由题, P(X)=1/10, 故,

$$H_{\rm C}(X) = lb10 = 1 + lb5 = 3.32bit$$
.

(3) 当变量的范围增大时,相对信息熵将增加。这与变量范围大,不确定度就大的结论是一致的。但仅具有相对的含义。

2-22

- 2-22 随机信号的样值 X 在 1~7V 之间均匀分布。
- (1) 计算信源熵 H_c(X),并将此结果与上题中的(1)相比较,可得到什么结论?
- (2) 计算期望值 E(X)和方差 var(X)。

解: (1) 由题,可知片 P(X)=1/6V,故,

$$H_C(X) = -\int_1^7 \frac{1}{6} lb \frac{1}{6} dx$$

= lb6 = 2.58bit

当变量的范围不变时,连续信息熵也不变。

(2)

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x, t) dx$$

$$= \int_{-\infty}^{+\infty} x \frac{1}{7 - 1} dx$$

$$= \frac{1}{7 - 1} \int_{1}^{7V} x dx$$

$$= \frac{(7 + 1)}{2} = 4$$

$$D(X) = E(X^2) - E^2(X)$$

$$=\frac{(7)^2+7+1}{3}-4^2=3$$

2-23 连续随机变量 X 和 Y 的联合概率密度为

$$p(x,y) = \frac{1}{2\pi\sqrt{SN}} \exp\left\{-\frac{1}{2N}\left[x^2\left(1 + \frac{N}{S}\right) - 2xy + y^2\right]\right\}$$

求 $H_c(X)$, $H_c(Y)$, $H_c(Y|X)$ 和 I(X;Y)。

解:由题,边缘概率

 $=\frac{1}{2}\ln(2\pi eN)$

$$P(X) = \int_{-\infty}^{+\infty} P(X,Y) dy = \frac{1}{2\pi\sqrt{SN}} e^{\frac{X^2}{2S}} \int_{-\infty}^{+\infty} e^{\frac{1}{2N}(X-Y)^2} dy$$

$$\Leftrightarrow \frac{X-Y}{\sqrt{N}} = \mathbf{t}, \text{原式} = \frac{1}{2\pi\sqrt{SN}} e^{\frac{X^2}{2S}} * (-\sqrt{N}) \int_{-\infty}^{+\infty} e^{\frac{1}{2}l^2} dt$$

$$(\int_{-\infty}^{+\infty} e^{-\frac{1}{2}l^2} dt = 1)$$

$$= -\frac{1}{\sqrt{2\pi S}} e^{\frac{X^2}{2S}}$$
所以 $H_C(X) = \frac{1}{2} \ln(2\pi e \sigma^2) = \frac{1}{2} \ln(2\pi e S)$
同理可得: $p(y) = \frac{1}{\sqrt{2\pi(N+S)}} e^{\frac{y^2}{2(N+S)}}, H_C(y) = \frac{1}{2} \ln(2\pi e \sigma^2) = \frac{1}{2} \ln[2\pi e (S+N)]$
 $H_C(x,y) = \frac{1}{2} \ln(2\pi e \sigma^2) = \ln(2\pi e \sqrt{SN})$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$= \frac{1}{2} \ln(2\pi e S) + \frac{1}{2} \ln[2\pi e (S+N)] - \ln(2\pi e \sqrt{SN})$$

$$= \frac{1}{2} \ln(1 + \frac{S}{N})$$
 $H_C(Y/X) = H(Y) - I(X;Y)$

$$= \frac{1}{2} \ln[2\pi e (S+N)] - \frac{1}{2} \ln(1 + \frac{S}{N})$$

连续随机变量X和Y的联合概率密度为

$$p(x,y) = \begin{cases} \frac{1}{\pi r^2}, x^2 + y^2 \le r^2\\ 0, others \end{cases}$$

$$Rightarrow H_C(X), H_C(Y), H_C(X,Y), I(X;Y)$$

解:

$$p(x) = \int_{Y} p(x,y)dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi r^2} dy = \frac{2\sqrt{r^2 - x^2}}{\pi r^2}, -r \le x \le r; others, p(x) = 0.$$

$$\begin{split} H_{C}(X) &= -\int_{-r}^{r} p(x) \ln p(x) dx = -\int_{-r}^{r} p(x) \ln \frac{2\sqrt{r^{2} - x^{2}}}{\pi r^{2}} dx = -\int_{-r}^{r} p(x) \ln \frac{2}{\pi r^{2}} dx - \int_{-r}^{r} p(x) \ln \sqrt{r^{2} - x^{2}} dx \\ &= \ln \frac{\pi r^{2}}{2} - \int_{-r}^{r} \frac{2\sqrt{r^{2} - x^{2}}}{\pi r^{2}} \ln \sqrt{r^{2} - x^{2}} dx = \ln \frac{\pi r^{2}}{2} - \frac{4}{\pi r^{2}} \int_{0}^{r} \sqrt{r^{2} - x^{2}} \ln \sqrt{r^{2} - x^{2}} dx \end{split}$$

$$\stackrel{let}{=} \ln \frac{\pi r^2}{2} - \frac{4}{\pi r^2} \int_{\frac{\pi}{2}}^0 r \sin \theta \ln r \sin \theta dr \cos \theta = \ln \frac{\pi r^2}{2} - \frac{4}{\pi r^2} \int_{\frac{\pi}{2}}^0 r^2 \sin^2 \theta \ln r \sin \theta d\theta$$

$$= \ln \frac{\pi r^2}{2} - \frac{4}{\pi} \int\limits_{\frac{\pi}{2}}^{0} \sin^2 \theta \ln r d\theta - \frac{4}{\pi} \int\limits_{\frac{\pi}{2}}^{0} \sin^2 \theta \ln \sin \theta d\theta = \ln \frac{\pi r^2}{2} - \frac{4 \ln r}{\pi} \int\limits_{\frac{\pi}{2}}^{0} \sin^2 \theta d\theta - \frac{4}{\pi} \int\limits_{\frac{\pi}{2}}^{0} \frac{1 - \cos 2\theta}{2} \ln \sin \theta d\theta$$

$$\left(\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a}\sin 2ax\right)$$

$$= \ln \frac{\pi r^2}{2} - \frac{4 \ln r}{\pi} \times \frac{\pi}{4} - \frac{2}{\pi} \int\limits_{\frac{\pi}{2}}^0 \ln \sin \theta d\theta + \frac{2}{\pi} \int\limits_{\frac{\pi}{2}}^0 \cos 2\theta \ln \sin \theta d\theta$$

$$\left(\int_{0}^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{2} \ln 2\right)$$

$$=\ln\frac{\pi r^2}{2}-\ln r-\frac{2}{\pi}\times\frac{\pi}{2}\ln 2+\frac{2}{\pi}\int\limits_{\frac{\pi}{2}}^{0}\cos 2\theta \ln \sin\theta d\theta=\ln \pi r+\frac{1}{\pi}\int\limits_{\frac{\pi}{2}}^{0}\ln \sin\theta d\sin 2\theta$$

$$= \ln \pi r + \frac{1}{\pi} \int_{\frac{\pi}{2}}^{0} \ln \sin \theta d \sin 2\theta = \ln \pi r + \frac{1}{\pi} \{ \sin 2\theta \ln \sin \theta |_{\frac{\pi}{2}}^{0} - \int_{\frac{\pi}{2}}^{0} \sin 2\theta d \ln \sin \theta \}$$

$$= \ln \pi r - \frac{1}{\pi} \int_{\frac{\pi}{2}}^{0} 2 \sin \theta \cos \theta \frac{\cos \theta}{\sin \theta} d\theta = \ln \pi r - \frac{2}{\pi} \int_{\frac{\pi}{2}}^{0} \cos^{2} \theta d\theta$$

$$(\int \cos^2 x dx = \frac{x}{2} + \frac{1}{2} \sin x \cos x)$$

$$= \ln \pi r - \frac{2}{\pi} \times \frac{\pi}{4} = (\ln \pi r - \frac{1}{2}) nat / symbol$$

$$\exists \exists p(y) = \int_{D} p(x, y) dx = \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{1}{\pi r^2} dx = \frac{2\sqrt{r^2 - y^2}}{\pi r^2} - r \le y \le r; others, p(y) = 0.$$

$$H_{C}(Y) = (\ln \pi r - \frac{1}{2}) nat / symbol$$

$$H_{C}(X, Y) = -\iint_{D} p(x, y) \ln p(x, y) dx dy$$

$$= -\int_{0}^{2\pi} d\theta \int_{0}^{r} \frac{1}{\pi r^2} \ln(\frac{1}{\pi r^2}) R dR = -2\pi \times \frac{1}{\pi r^2} \times \ln(\frac{1}{\pi r^2}) \times \frac{1}{2} R^2 \Big|_{0}^{r} = \ln(\pi r^2)$$

$$I(X; Y) = H(X) + H(Y) - H(X, Y) = 2 \ln \pi r - 1 - \ln(\pi r^2) = \ln \frac{\pi}{e}$$
#

某一无记忆信源的符号集为 $\{0, 1\}$, 已知 $p_0 = 1/4, p_1 = 3/4$ 。

- (1) 求符号的平均熵。
- (2) 由 100 个符号构成的序列, 求某一特定序列(例如有 m 个 0 和 100-m 个 1)的自信息量表达式。
- (3) 计算(2) 中序列的熵。

解: (1)

$$H(X) = H(1/4, 3/4) = \frac{1}{4}lb4 + \frac{3}{4}lb\frac{4}{3} = 0.5 + 0.31 = 0.81bit/symbol$$

(2)

$$\begin{split} I(X^{100}) &= -\log p(x^{100}) = -\log[(\frac{1}{4})^m(\frac{3}{4})^{100-m}] = \log[(4)^m(\frac{4}{3})^{100-m}] = \log[(4)^{100}(\frac{1}{3})^{100-m}] \\ &= \log[(4)^{100}(\frac{1}{3})^{100-m}] = [100\log 4 - (100\text{-m})\log 3] = [200\text{-}(100\text{-m}) \times 1.58] = (42+1.58\text{m}) \end{split}$$

(3)因为该序列是无记忆信源的 L 次扩展,

$$H(X^{100}) = 100 \times H(X) = 81bit / seq$$

2-26

一个信源发出二重符号序列消息(X_1,X_2),其中每一个符号 X_1 可以是 A,B,C 中的任一个,每二个符号 X_2 可以是 D,E,F,G 中的任一个。已知各个 $p(x_{1i})$ 为 p(A)=1/2,p(B)=1/3,p(C)=1/6;各个 $p(x_{2j}|x_{1i})$ 的值列成如下。求这个信源的熵(联合熵 $H(X_1,X_2)$)。

$x_{2j} x_{1i}$	A	В	C
D	1/4	3/10	1/6
Е	1/4	1/5	1/2
F	1/4	1/5	1/6
G	1/4	3/10	1/6

解:

$$p(x_{1i}, x_{2i}) = p(x_{1i})p(x_{2i} \mid x_{1i})$$

$$\begin{split} &H(X_1,X_2) \!\!=\!\! -\!\! \sum_{\mathbf{i}} \sum_{\mathbf{j}} \mathbf{p}(x_{\mathbf{i}i},x_{2j}) \log \mathbf{p}(x_{\mathbf{i}i},x_{2j}) = - \{ [4 \times (\frac{1}{2} \times \frac{1}{4}) \times \log(\frac{1}{2} \times \frac{1}{4})] + \\ &[2 \times (\frac{1}{3} \times \frac{3}{10}) \times \log(\frac{1}{3} \times \frac{3}{10}) + 2 \times (\frac{1}{3} \times \frac{1}{5}) \times \log(\frac{1}{3} \times \frac{1}{5})] + [3 \times (\frac{1}{6} \times \frac{1}{6}) \times \log(\frac{1}{6} \times \frac{1}{6}) + (\frac{1}{6} \times \frac{1}{2}) \times \log(\frac{1}{6} \times \frac{1}{2})] \} \\ &= \{ \frac{1}{2} \log 8 + [\frac{1}{5} \log 10 + \frac{2}{15} \log 15] + [\frac{1}{12} \log 36 + \frac{1}{12} \log 12] \} \\ &= 1.5 + [0.664 + 0.521] + [0.431 + 0.299] = 3.415 bit / seq \end{split}$$

2-27

2-27 X_1, X_2, X_3 是独立的随机变量, $X_1, X_1 + X_2, X_1 + X_2 + X_3$ 是一马尔可夫链,证明 $I(X_1; X_1 + X_2 + X_3) \leq I(X_1; X_1 + X_2)$ 。

证明:由题,可得,

$$I(X_1; X_1 + X_2 + X_3) = H(X_1 + X_2 + X_3) - H(X_1 + X_2 + X_3 | X_1)$$

$$= H(X_1 + X_2 + X_3) - H(X_1 + X_2 + X_3) = 0;$$

$$I(X_1; X_1 + X_2) = H(X_1 + X_2) - H(X_1 + X_2 | X_1) \ge 0;$$

$$\therefore I(X_1; X_1 + X_2) \ge I(X_1; X_1 + X_2 + X_3)$$

2-28

2-28 X, Z 是具有连续密度函数的独立随机变量, 令 Y = X + Z, 如果 $H_c(Y)$ 和 $H_c(Z)$ 存在,证明 $I(X;Y) = H_c(Y) - H_c(Z)$,且当 X, Z 是随机矢量时仍然成立。

证明: 由题,

$$\begin{split} &I(X;Y) = H_c(Y) - H_c(Y|X) = H_c(Y) - H_c(X+Z|X) \\ &H_c(X+Z|X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(x+z|x)P(x)lbP(x+z|x)dxdz = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(z)P(x)lbP(z)dxdz \\ &= \int_{-\infty}^{+\infty} P(x)dx \int_{-\infty}^{+\infty} P(z)lbP(z)dz = \int_{-\infty}^{+\infty} P(z)lbP(z)dz = H_c(Z) \end{split}$$

$$\therefore I(X;Y) = H_c(Y) - H_c(Y|X) = H_c(Y) - H_c(Z)$$

显然, 当 X, Z 是随机矢量时仍然成立。

2-29

有一个一阶平稳马尔可夫链 $X_1, X_2, \cdots, X_r, \cdots$,各 X_r 取值于集合 $A = \{a_1, a_2, a_3\}$,已知起始概率 $P(X_r)$ 为 $p_1 = 1/2, p_2 = p_3 = 1/4$,转移概率如下图所示

j	1	2	3
i			
1	1/2	1/4	1/4
2	2/3	0	1/3
3	2/3	1/3	0

- (1) 求 (X_1, X_2, X_3) 的联合熵和平均符号熵
- (2) 求这个链的极限平均符号熵
- (3) 求 H_0, H_1, H_2 和它们说对应的冗余度

解: (1)

$$H(X_1, X_2, X_3) = H(X_1) + H(X_2 \mid X_1) + H(X_3 \mid X_2, X_1)$$

$$= H(X_1) + H(X_2 \mid X_1) + H(X_3 \mid X_2)$$

$$H(X_1) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{4} \log \frac{1}{4} - \frac{1}{4} \log \frac{1}{4} = 1.5bit / 符号$$

$$p(x_1, x_2) = p(x_1)p(x_2 \mid x_1)$$

X1, X2 的联合概率分布为

$p(x_{1_i}x_{2_j})$	1	2	3
1	$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$	$\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$	$\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$
2	$\frac{1}{4} \times \frac{2}{3} = \frac{1}{6}$	$\frac{1}{4} \times 0 = 0$	$\frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$
3	$\frac{1}{4} \times \frac{2}{3} = \frac{1}{6}$	$\frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$	$\frac{1}{4} \times 0 = 0$

那么

$$H(X_2 \mid X_1) = -\sum_{i} \sum_{j} p(x_{1i}x_{2j}) \log p(x_{2j} \mid x_{1i}) = \frac{1}{4} \log 2 + \frac{1}{8} \log 4 + \frac{1}{8} \log 4 + \frac{1}{6} \log \frac{3}{2} + \frac{1}{12} \log 3 + \frac{1}{6} \log \frac{3}{2} + \frac{1}{12} \log 3 + \frac{1}{$$

=1.2092bit/符号

$$p(x_{2j}) = \sum_{i} p(x_{1i}x_{2j})$$

X2 的概率分布为

1	2	3
14/24	5/24	5/24

X2X3 的联合概率分布为

84.04 120 1 24 1024						
$p(x_{2i}x_{3j})$	1	2	3			
1	$\boxed{\frac{14}{24} \times \frac{1}{2} = \frac{7}{24}}$	$\frac{14}{24} \times \frac{1}{4} = \frac{7}{48}$	$\frac{14}{24} \times \frac{1}{4} = \frac{7}{48}$			
2	$\frac{5}{24} \times \frac{2}{3} = \frac{5}{36}$	0	$\boxed{\frac{5}{24} \times \frac{1}{3} = \frac{5}{72}}$			
3	$\boxed{\frac{5}{24} \times \frac{2}{3} = \frac{5}{36}}$	$\frac{5}{24} \times \frac{1}{3} = \frac{5}{72}$	0			

那么

$$H(X_3 \mid X_2) = \frac{7}{24} \log 2 + \frac{7}{48} \log 4 + \frac{7}{48} \log 4 + \frac{5}{36} \log \frac{3}{2} + \frac{5}{72} \log 3 + \frac{5}{36} \log \frac{3}{2} + \frac{5}{72} \log 3 = 1.2576 \text{bit/符号}$$

$$H(X_1, X_2, X_3) = 1.5 + 1.2092 + 1.2576 = 3.967bit$$
/符号

所以平均符号熵
$$H_3(X_1, X_2, X_3) = \frac{3.967}{3} = 1.322bit$$
 / 符号

(2) 设 a1,a2,a3 稳定后的概率分布分别为 W1,W2,W3,转移概率距阵为
$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{2}{3} & 0 & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & 0 \end{bmatrix}$$

满足不可约性和非周期性

由
$$\begin{cases} WP = W \\ \sum W_i = 1 \end{cases}$$
 得到
$$\begin{cases} \frac{1}{2}W_1 + \frac{2}{3}W_2 + \frac{2}{3}W_3 = 1 \\ \frac{1}{4}W_1 + \frac{1}{3}W_3 = W_2 \\ W_1 + W_2 + W_3 = 1 \end{cases}$$
 计算得到
$$\begin{cases} W_1 = \frac{4}{7} \\ W_2 = \frac{3}{14} \\ W_3 = \frac{3}{14} \end{cases}$$

$$H_{\infty}(\overrightarrow{X}) = \sum_{i=1}^{3} W_{i}H(X \mid W_{i}) = \frac{4}{7}H(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}) + 2 \times \frac{3}{14}H(\frac{2}{3}, \frac{1}{3}, 0) = 1.25bit$$
/符号

 $(3) H_0 = \log 3 = 1.58 bit$ /符号

$$p(a_1) = \sum_i p(a_1 \mid w_i) p(w_i) = \frac{1}{2} \times \frac{4}{7} + 2 \times \frac{2}{3} \times \frac{3}{14} = \frac{4}{7}$$

$$p(a_2) = \sum_i p(a_2 \mid w_i) p(w_i) = \frac{1}{4} \times \frac{4}{7} + \frac{1}{3} \times \frac{3}{14} = \frac{3}{14}$$

$$p(a_3) = \sum_i p(a_3 \mid w_i) p(w_i) = \frac{1}{4} \times \frac{4}{7} + \frac{1}{3} \times \frac{3}{14} = \frac{3}{14}$$

$$H_1 = H(p(a_1), p(a_2), p(a_3)) = H(\frac{8}{14}, \frac{3}{14}, \frac{3}{14}) = \frac{8}{14} \log \frac{14}{8} + 2 \times \frac{3}{14} \log \frac{14}{3} = 0.4163 + 0.9525 = 1.4138 bit / 655$$

$$H_2 = H_{\infty} = 1.25 bit$$
 /符号

$$\gamma_0 = 1 - \eta_0 = 1 - \frac{1.25}{1.58} = 0.21$$

$$\gamma_1 = 1 - \eta_1 = 1 - \frac{1.25}{1.4138} = 0.115$$

$$\gamma_2 = 1 - \eta_2 = 0$$

2-30

2-30 有一个马尔可夫信源,已知转移概率为 $p(s_1|s_1)=2/3$, $p(s_2|s_1)=1/3$, $p(s_1|s_2)=1$, $p(s_2|s_2)=0$ 。试画出状态转移图,并求出信源熵。

(1) 求平稳概率 $P(i/i)=\begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ 1 & 0 \end{pmatrix}$,状态转移图如下。

由状态转移图可知,满足不可约性与非周期性,所以存在稳态分布 解方程组

$$\begin{pmatrix} \frac{2}{3} & 1 \\ \frac{1}{3} & 0 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix}$$

$$W_1 + W_2 = 1$$

$$\begin{pmatrix} W_1 \\ W_2 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} \\ \frac{1}{4} \end{pmatrix}$$

得到

(2)

H(S/s1)=
$$\frac{2}{3}$$
Log $\left(\frac{3}{2}\right)$ + $\frac{1}{3}$ Log(3) = 0.918
H(S/s2)= 0

信源熵为:

$$H(S)=W_1H(S/s1)+W_2H(S/s2)=\frac{3}{4}0.918+\frac{1}{4}\cdot 0=0.688$$

2-31

2-31 设有一信源,它在开始时以 p(a)=0.6, p(b)=0.3, p(c)=0.1 的概率发出

 X_1 。如果 X_1 为 a 时 X_2 为 a,b,c 的概率为 1/3, X_1 为 b 时 X_2 为 a,b,c 的概率为 1/3, X_1 为 c 时 X_2 为 a,b 的概率为 1/2,m c 的概率是 0。而且后面发出 X_i 的概率只与 X_{i-1} 有关,又 有 $p(X_i|X_{i-1})=p(X_2|X_1)$, $i \ge 3$ 。试利用马尔可夫信源的图示法画出状态转移图,并求出转移概率矩阵和信源熵 H_∞ 。

解: 由状态转移图可知,满足不可约性与非周期性,所以存在稳态分布

$$\begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} \cdot \begin{pmatrix} W1 \\ W2 \\ W3 \end{pmatrix} = \begin{pmatrix} W1 \\ W2 \\ W3 \end{pmatrix}$$

$$P(j/i) = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix} \cdot \begin{pmatrix} W1 \\ W2 \\ W3 \end{pmatrix} = \begin{pmatrix} W1 \\ W2 \\ W3 \end{pmatrix}$$

$$\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$\text{#57844} \quad W1 + W2 + W3 = 1 \qquad \text{49 $W1 = $\frac{3}{8}$, $W2 = $\frac{3}{8}$, $W3 = $\frac{1}{4}$}$$

$$H(X2/a) = Log(3) = 1.585$$

$$H(X2/b) = Log(3) = 1.585$$

$$H(X3/c) = Log(2) = 1$$

$$H_{\infty}(X) = W_1 H(X2/a) + W_2 H(X2/b) + W_3 H(X3/c) = \frac{3}{8} \cdot Log(3) + \frac{3}{8} Log(3) + \frac{1}{4} Log(2) = 1.439$$

- 一阶马尔可夫信源的状态图如图 2-13 所示,信源 X 的符号集为(0, 1, 2)。
- (1) 求信源平稳后的概率分布 P(0),P(1),P(2)
- (2) 求此信源的熵
- (3) 近似认为此信源为无记忆时,符号的概率分布为平稳分布。求近似信源的熵 H(X)并与 H_{∞} 进行比较

图 2-13 习题 2-32图

(4)(略)

解: (1) 由状态转移图可知,满足不可约性与非周期性,所以存在稳态分布

$$\begin{pmatrix}
1-p & \frac{p}{2} & \frac{p}{2} \\
\frac{p}{2} & 1-p & \frac{p}{2} \\
\frac{p}{2} & \frac{p}{2} & 1-p
\end{pmatrix}$$
求解方程组

$$(1 - p) \cdot W1 + \frac{p}{2} \cdot W2 + \frac{p}{2}W3 = W1$$

$$\frac{p}{2}W1 + (1 - p) \cdot W2 + \frac{p}{2}W3 = W2$$

$$\frac{p}{2}W1 + \frac{p}{2}\cdot W2 + (1-p)\cdot W3 = W3$$

$$W1 + W2 + W3 = 1$$

得稳态概率为 p(0)=p(1)=p(2)= 3

(2)

$$H(X \mid 0) = H(X \mid 1) = H(X \mid 2) = -(1-p)\log(1-p) - 2 \times \frac{p}{2}\log\frac{p}{2}$$

$$H_{_{\infty}}(X) = \sum_{i} w_{i} H(X|w_{i}) = 3 \times \frac{1}{3} \times [-(1-p)\log(1-p) - 2 \times \frac{p}{2}\log\frac{p}{2}] = -(1-p)\log(1-p) - p\log\frac{p}{2}$$

(3) 近似信源的熵为 H(X)=log(3)=1.58

$$\frac{\partial H_{\infty}(\overrightarrow{X})}{\partial p} = -\left[-\log(1-p) + \frac{1-p}{1-p}(-1) + \log\frac{p}{2} + p \cdot \frac{2}{p} \cdot \frac{1}{2}\right] = -\log\frac{p}{2(1-p)}$$

$$\frac{p}{2(1-p)} = -\frac{1}{2} + \frac{1}{2(1-p)}$$

又
$$0 \leq p \leq 1$$
 所以 $\frac{p}{2(1-p)} \in [0,+\infty]$ 当 p=2/3 时 $\frac{p}{2(1-p)} = 1$

$$0 0$$

$$2/3 时 $\frac{\partial H_{\infty}(\overrightarrow{X})}{\partial p} = -\log \frac{p}{2(1-p)} < 0$$$

所以当 p=2/3 时 $H_{\infty}(\overline{X})$ 存在极大值,且 $H_{\infty}(\overline{X})$ max = 1.58bit / 符号

所以 $H_{\infty}(\overrightarrow{X}) \leq H(X^{,})$

2-33

- 2-33 一阶马尔可夫信源的状态图如图 2-14 所示,信源 X 符号集为{0,1,2}。
- (1) 求平稳后信源的概率分布;
- (2) 求信源熵 H。;
- (3) 求当 p=0 或 p=1 时信源的熵,并说明其理由。

图 2-14 习题 2-33图

(1)

$$P(j/i) = \begin{pmatrix} 1-p & 0 & p \\ p & 1-p & 0 \\ 0 & p & 1-p \end{pmatrix}$$

由状态转移图可知,满足不可约性与非周期性,所以存在稳态分布 解方程组:

$$(1 - p) \cdot W1 + p \cdot W2 = W1$$

$$(1 - p) \cdot W2 + p \cdot W3 = W2$$

$$p \cdot W1 + (1 - p) \cdot W3 = W3$$

$$W1 + W2 + W3 = 1$$

得
$$p(0)=p(1)=p(2)=\frac{1}{3}$$

(2)

$$H(X/0) = H(X/1) = H(X/2) = -(1-p) \cdot Log(1-p) - p \cdot Log(p)$$

$$H \infty(X) = \frac{1}{3} * H(X/0) + \frac{1}{3} * H(X/1) + \frac{1}{3} * H(X/2) = -(1-p) \cdot Log(1-p) - p \cdot Log(p)$$

(3)

当 p=0 或 p=1 时 信源熵为 0

第三章 信道与信道容量

3-1

3-1 设二进制对称信道的概率转移矩阵为
$$\begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$$
.

- (1) 若 $p(x_0) = 3/4$, $p(x_1) = 1/4$, 求 H(X), H(X|Y), H(Y|X)和 I(X;Y)。
- (2) 求该信道的信道容量及其达到信道容量时的输入概率分布。

(1)
$$p(x0)=3/4$$
 $p(x1)=1/4$ $H(X)=\frac{3}{4}Log(\frac{4}{3})+\frac{1}{4}Log(4)=0.811$ $P(y_j/x_i)=\begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ $P(x_iy_j)=\begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{12} & \frac{1}{6} \end{pmatrix}$ $P(y0)=\frac{1}{2}+\frac{1}{12}\to\frac{7}{12}$ $P(y1)=\frac{1}{4}+\frac{1}{6}\to\frac{5}{12}$

$$H(XY) = \frac{1}{2} Log(2) + \frac{1}{4} Log(4) + \frac{1}{12} Log(12) + \frac{1}{6} Log(6) = 1.73$$

$$H(Y) = \frac{7}{12} Log\left(\frac{12}{7}\right) + \frac{5}{12} Log\left(\frac{12}{5}\right) = 0.98$$

$$H(X/Y)=H(XY)-H(Y)=1.73-0.98=0.75$$

$$H(Y/X)=H(XY)-H(X)=1.73-0.811=0.919$$

$$I(X:Y)=H(X)-H(X/Y)=0.811-0.75=0.061$$

(2)
$$C = log(Q) + \sum p_{ij} Log(p_{ij}) = Log(2) + \frac{2}{3} Log(\frac{2}{3}) + \frac{1}{3} Log(\frac{1}{3}) = 0.082$$

 $p(x0) = p(x1) = \frac{1}{2}$

$$(\because p(y_0) = \frac{1}{2} = p(x_0)p(y_0 \mid x_0) + p(x_1)p(y_0 \mid x_1) = \frac{2}{3}p(x_0) + \frac{1}{3}p(x_1)$$
$$p(y_1) = \frac{1}{2} = p(x_0)p(y_1 \mid x_0) + p(x_1)p(y_1 \mid x_1) = \frac{1}{3}p(x_0) + \frac{2}{3}p(x_1)$$

$$\therefore p(x_0) = p(x_1) = \frac{1}{2}$$

某信源发送端有 2 个符号, x_i ,i=1,2; $p(x_i)=a$,每秒发出一个符号。接受端有 3 种符号 y_i ,j=1,2, 3, 转

移概率矩阵为
$$P = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/4 & 1/4 \end{bmatrix}$$
。

- (1) 计算接受端的平均不确定度;
- (2) 计算由于噪声产生的不确定度 $H(Y \mid X)$;
- (3) 计算信道容量。

解: (1)
$$p_{x1} := \alpha \qquad p_{x2} := 1 - \alpha$$

$$P := \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix} \qquad P(x_i y_j) = \begin{bmatrix} \frac{1}{2}\alpha & \frac{1}{2}\alpha & 0 \\ \\ \frac{1}{2}(1-\alpha) & \frac{1}{4}(1-\alpha) & \frac{1}{4}(1-\alpha) \end{bmatrix}$$

$$p(y1) = \frac{1}{2}\alpha + \frac{1}{2}(1-\alpha) \rightarrow \frac{1}{2} \qquad p(y2) = \frac{1}{2}\alpha + \frac{1}{4}(1-\alpha) \rightarrow \frac{1}{4} \cdot \alpha + \frac{1}{4} \qquad p(y3) = -\frac{1}{4}(1-\alpha)$$

接收端的不确定度为:

$$\begin{split} H(Y) &= -\frac{1}{2} \cdot \text{Log}(2) - \left(\frac{1}{4} \cdot \alpha + \frac{1}{4}\right) \cdot \text{Log}\left(\frac{1}{4} \cdot \alpha + \frac{1}{4}\right) - \frac{1}{4}(1 - \alpha) \cdot \text{Log}\left[\frac{1}{4}(1 - \alpha)\right] \\ &= -\frac{3}{2} - \frac{1 + \alpha}{4} \cdot \text{Log}(1 + \alpha) - \frac{1 - \alpha}{4} \cdot \text{Log}(1 - \alpha) \end{split}$$

$$\frac{1}{H(Y/X)} = \frac{1}{2} \alpha \log(2) + \frac{1}{2} \alpha \log(2) + 0 + \frac{1}{2} (1 - \alpha) \log(2) + \frac{1}{4} (1 - \alpha) \log(4) + \frac{1}{4} (1 - \alpha) \log(4)$$

$$\frac{3}{2} - \frac{1}{2} \alpha$$

$$I(X;Y) = H(Y) - H(Y/X) = \left(\frac{3}{2} - \frac{1+\alpha}{4} \operatorname{Log}(1+\alpha) - \frac{1-\alpha}{4} \operatorname{Log}(1-\alpha)\right) - \left(\frac{3}{2} - \frac{1}{2} \cdot \alpha\right)$$

 $C=\max I(X;Y)$

$$\mathbb{C}(\alpha) := \left(\frac{3}{2} - \frac{1+\alpha}{4} \cdot \frac{\log(1+\alpha)}{\log(2)} - \frac{1-\alpha}{4} \cdot \frac{\log(1-\alpha)}{\log(2)}\right) - \left(\frac{3}{2} - \frac{1}{2} \cdot \alpha\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}\mathrm{C}(\alpha)_{=0}$$

得到

$$\frac{1}{4} \cdot \frac{-\ln(1+\alpha) + \ln(1-\alpha) + 2 \cdot \ln(2)}{\ln(2)} = 0$$

$$C=maxI(X;Y)= C(\frac{3}{5}) = 0.161$$

戓

$$\mathbf{H} \colon P = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/4 & 1/4 \end{bmatrix}$$

联合概率 $p(x_i, y_i)$

XY	y_1	y_2	y_3
x_1	a / 2	a/2	0
x_2	(1-a)/2	(1-a)/4	(1-a)/4

则Y的概率分布为

Y	y_1	$y^{}_2$	y_3
	1/2	(1+a)/4	(1-a)/4

$$(1) H(Y) = \frac{1}{2}\log 2 + \frac{1+a}{4}\log \frac{4}{1+a} + \frac{1-a}{4}\log \frac{4}{1-a}$$

$$= \frac{1}{2}\log 2 + \frac{1}{4}\log \frac{16}{1-a^2} + \frac{a}{4}\log \frac{1-a}{1+a}$$

$$= \frac{1}{2}\log 2 + \frac{1}{4}\log 16 + \frac{1}{4}\log \frac{1}{1-a^2} + \frac{a}{4}\log \frac{1-a}{1+a}$$

$$= \frac{3}{2}\log 2 + \frac{1}{4}\log \frac{1}{1-a^2} + \frac{a}{4}\log \frac{1-a}{1+a}$$

取2为底

$$H(Y) = \left(\frac{3}{2} + \frac{1}{4}\log_2\frac{1}{1 - a^2} + \frac{a}{4}\log_2\frac{1 - a}{1 + a}\right)bit$$

$$(2) \ \ H(Y \mid X) = -\left[\frac{a}{2}\log\frac{1}{2} + \frac{a}{2}\log\frac{1}{2} + \frac{1-a}{2}\log\frac{1}{2} + \frac{1-a}{4}\log\frac{1}{4} + \frac{1-a}{4}\log\frac{1}{4}\right]$$

$$= -a \log 2 + \frac{3(1-a)}{2} \log 2$$

$$= \frac{3-a}{2} \log 2$$

取2为底

$$H(Y \mid X) = \frac{3-a}{2}bit$$

$$\therefore c = \max_{p(x_i)} I(X;Y) = \max_{p(x_i)} \left[H(Y) - H(Y \mid X) \right] = \max_{p(x_i)} \left(\frac{a}{2} \log 2 + \frac{1}{4} \log \frac{1}{1 - a^2} + \frac{a}{4} \log \frac{1 - a}{1 + a} \right) \quad \text{取} \quad \text{e} \quad \text{为 底}$$

$$\frac{\partial(\frac{a}{2}\ln 2 + \frac{1}{4}\ln\frac{1}{1-a^2} + \frac{a}{4}\ln\frac{1-a}{1+a})}{\partial a}$$

$$\begin{split} &= \frac{1}{2}\ln 2 + \frac{1}{4}\frac{2a}{1-a^2} + \frac{1}{4}\ln\frac{1-a}{1+a} + \frac{a}{4}\left(-\frac{1}{1-a} - \frac{1}{1+a}\right) \\ &= \frac{1}{2}\ln 2 + \frac{a}{2(1-a^2)} + \frac{1}{4}\ln\frac{1-a}{1+a} - \frac{a}{4}\frac{2}{1-a^2} \\ &= \frac{1}{2}\ln 2 + \frac{1}{4}\ln\frac{1-a}{1+a} \\ &= 0 \\ &\frac{1-a}{1+a} = \frac{1}{4} \\ &\therefore a = \frac{3}{5} \\ &\therefore c = \frac{1}{2} \times \frac{3}{5}\log 2 + \frac{1}{4}\log\frac{1}{1-\frac{9}{25}} + \frac{1}{4} \times \frac{3}{5}\log\frac{1}{4} \\ &= \frac{3}{10}\log 2 + \frac{1}{4}\log\frac{25}{16} + \frac{3}{20}\log\frac{1}{4} \\ &= \frac{3}{10}\log 2 + \frac{1}{2}\log\frac{5}{4} - \frac{3}{10}\log 2 \\ &= \frac{1}{2}\log\frac{5}{4} \end{split}$$

3-3 在干扰离散信道上传输符号 1 和 0,在传输过程中每 100 个符号发生一个错传的符号,已知 p(0)=1/2,p(1)=1/2,信道每秒钟内允许传输 1000 个符号,求此信道的信道容量。

$$\texttt{C = Log(Q)} + \sum_{j=1}^{2} \left(\texttt{P}_{ij} \cdot \texttt{Log}(\texttt{p}_{ij} \right) = 1 + 0.99 \, \texttt{Log}(0.99) + 0.01 \, \texttt{Log}(0.01) = 0.919$$

0919*1000=919bit/s

3.4 求图中信道的信道容量及其最佳的输入概率分布.并求当e=0 和 1/2 时的信道容量 C 的大小。

解:信道转移矩阵为

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1-\varepsilon & \varepsilon \\ 0 & \varepsilon & 1-\varepsilon \end{bmatrix}$$

设信道容量为c , $\beta_1=c+\log p(b_1); \beta_2=c+\log p(b_2); \beta_3=c+\log p(b_3)$,

根据
$$I(a_i;Y) = c = \sum_j p(b_j \mid a_i) \log \frac{p(b_j \mid a_i)}{p(b_j)}$$
 ,可得方程组

$$\sum_{j} p(b_j \mid a_i) \beta_j = \sum_{j} p(b_j \mid a_i) \log p(b_j \mid a_i)$$

$$\begin{cases} \beta_1 = 0 \\ (1-\varepsilon)\beta_2 + \varepsilon\beta_3 = H(\varepsilon) \,, \ \mbox{\boldmath β} \\ \varepsilon\beta_2 + (1-\varepsilon)\beta_3 = H(\varepsilon) \end{cases}$$

$$\begin{cases} \beta_1 = 0 \\ \beta_2 = \beta_3 = -H(\varepsilon) \end{cases}$$

$$c = \log[2^{0} + 2^{-H(\varepsilon)} + 2^{-H(\varepsilon)}] = \log(1 + 2^{1-H(\varepsilon)})$$

$$\begin{split} \log p(b_1) &= \beta_1 - c = -\log(1 + 2^{1 - H(\varepsilon)}), \therefore p(b_1) = \frac{1}{1 + 2^{1 - H(\varepsilon)}} \\ \log p(b_2) &= \beta_2 - c = -H(\varepsilon) - \log(1 + 2^{1 - H(\varepsilon)}) = -\log(2 + 2^{H(\varepsilon)}), \therefore p(b_2) = \frac{1}{2 + 2^{H(\varepsilon)}} \\ \log p(b_3) &= \beta_3 - c = -H(\varepsilon) - \log(1 + 2^{1 - H(\varepsilon)}) = -\log(2 + 2^{H(\varepsilon)}), \therefore p(b_3) = \frac{1}{2 + 2^{H(\varepsilon)}} \end{split}$$

根据 $p(b_j) = \sum_i p(a_i) p(b_j \mid a_i)$ 得方程组

$$\begin{cases} p(b_1) = p(a_1) \\ p(b_2) = p(a_2)(1-\varepsilon) + p(a_3)\varepsilon \text{ ,} \\ p(b_3) = p(a_2)\varepsilon + p(a_3)(1-\varepsilon) \end{cases}$$

$$\begin{cases} p(a_1) = p(b_1) = \frac{1}{1 + 2^{1 - H(\varepsilon)}} \\ p(a_2) = p(a_3) = p(b_2) = \frac{1}{2 + 2^{H(\varepsilon)}} \end{cases}$$

当 $\varepsilon = 0$ 时($H(\varepsilon) = 0$),此信道为一一对应信道, $c = \log 3(bit/symbol)$

此时
$$p(a_1)=p(a_2)=p(a_3)=p(b_1)=p(b_2)=p(b_3)=rac{1}{3}$$
 当 $\varepsilon=rac{1}{2}$ 时($_{H(\varepsilon)=1}$),此信道为——对应信道, $_{c}=\log 2(bit/symbol)$ 此时 $p(a_1)=p(b_1)==rac{1}{2}$, $p(a_2)=p(a_3)=p(b_2)=p(b_3)=rac{1}{4}$

3-5

3-5 求下列两个信道的容量,并加以比较。

(1)
$$\begin{bmatrix} 1-p-\epsilon & p-\epsilon & 2\epsilon \\ p-\epsilon & 1-p-\epsilon & 2\epsilon \end{bmatrix}$$
(2)
$$\begin{bmatrix} 1-p-\epsilon & p-\epsilon & 2\epsilon & 0 \\ p-\epsilon & 1-p-\epsilon & 0 & 2\epsilon \end{bmatrix}$$

C1=log2-H(1-p- ϵ , p- ϵ ,2 ϵ)-2 ϵ log4 ϵ -(1-2 ϵ)log(1-2 ϵ) C2=1-H(1-p- ϵ , p- ϵ ,2 ϵ)-2 ϵ log4 ϵ -(1-2 ϵ)log(1-2 ϵ)

因为 ε 大于等于 0 小于 1/2, 所以 c2>c1

设有扰离散信道的传输情况分别如图 3-17 所示。求出该信道的信道容量。

解:

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$C = Log(Q) + \sum_{j=1}^{2} (P_{ij} \cdot Log(p_{ij}) = Log(4) + \frac{1}{2} Log(\frac{1}{2}) + \frac{1}{2} Log(\frac{1}{2}) = 1$$

或

$$\mathbf{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

对称信道

$$C = \log m - H(Y \mid a_{\scriptscriptstyle i})$$

$$= \log 4 - \frac{1}{2} \times 2 \log 2$$

取 2 为底 C = 1 bit/符号

3-7 发送端有 3 种等概符号 (x_1,x_2,x_3) , $p(x_i)=1/3$, 接收端收到 3 种符号 (y_1,y_2,y_3) , 信道转移概率矩阵为

$$\mathbf{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.3 & 0.3 \\ 0.1 & 0.9 & 0 \end{bmatrix}$$

- (1) 接收端收到一个符号后得到信息量 H(Y);
- (2) 计算噪声熵 H(Y|X);
- (3) 计算接收端收到一个符号 y₂的错误概率;
- (4) 计算从接收端看的平均错误概率:
- (5) 计算从发送端看的平均错误概率;

解:

(1)条件概率
$$p(y \mid x) = \{p(y_j \mid x_i), i, j = 1, 2, 3\}$$

$$P_{\text{MM}} :=
 \begin{pmatrix}
 0.5 & 0.3 & 0.2 \\
 0.4 & 0.3 & 0.3 \\
 0.1 & 0.9 & 0
 \end{pmatrix}
 ,$$

联合概率
$$p(xy) = \{p(x_iy_j) = p(x_i)p(y_j \mid x_i), i, j = 1, 2, 3\}$$

$$Pij := \begin{pmatrix} \frac{1}{6} & \frac{1}{10} & \frac{1}{15} \\ \frac{2}{15} & \frac{1}{10} & \frac{1}{10} \\ \frac{1}{30} & \frac{3}{10} & 0 \end{pmatrix}$$

输出概率
$$p(y) = \{p(y_j) = \sum_i p(x_i y_j), i, j = 1, 2, 3\}$$

$$\begin{split} p(y_1) &= \frac{1}{6} + \frac{2}{15} + \frac{1}{30} = \frac{5+4+1}{30} = \frac{1}{3} \\ p(y_2) &= \frac{1}{10} + \frac{1}{10} + \frac{3}{10} = \frac{5}{10} = \frac{1}{2} \\ p(y_3) &= \frac{1}{15} + \frac{1}{10} + 0 = \frac{2+3}{30} = \frac{1}{6} \\ \mathrm{H}(\mathrm{Y}) &= \frac{1}{3} \log(3) + \frac{1}{2} \log(2) + \frac{1}{6} \log(6) = 1.459 \end{split}$$

$$\begin{aligned} &\frac{1}{6} \operatorname{Log}(2) + \frac{1}{10} \operatorname{Log}\left(\frac{10}{3}\right) + \frac{1}{15} \operatorname{Log}(5) + \frac{2}{15} \operatorname{Log}\left(\frac{5}{2}\right) \\ &+ \frac{1}{10} \operatorname{Log}\left(\frac{10}{3}\right) + \frac{1}{10} \operatorname{Log}\left(\frac{10}{3}\right) + \frac{1}{30} \operatorname{Log}(10) + \frac{3}{10} \operatorname{Log}\left(\frac{10}{9}\right) = 1.175 \end{aligned}$$

(3) 后验概率
$$p(x \mid y) = \{p(x_i \mid y_j) = \frac{p(x_i y_j)}{p(y_j)}, i, j = 1, 2, 3\}$$

$$P(i/j) = \begin{pmatrix} \frac{1}{2} & \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} & \frac{3}{5} \\ \frac{1}{10} & \frac{3}{5} & 0 \end{pmatrix}$$

当接收为 y2, 发为 x1 时正确,如果发的是 x1 和 x3 为错误,各自的概率为:

$$\frac{1}{P(x1/y2)=5}$$
, $P(x2/y2)=5$, $P(x3/y2)=5$
其中错误概率为:

Pe=P(x1/y2)+P(x3/y2)=
$$\frac{1}{5} + \frac{3}{5} = 0.8$$

(4)从发送端看,能平均正确接收到的概率为

$$p_{rs} = p(x_1)p(y_1 \mid x_1) + p(x_2)p(y_2 \mid x_2) + p(x_3)p(y_3 \mid x_3) = \frac{1}{6} + \frac{1}{10} + 0 = \frac{4}{15}$$

平均错误概率为 $\frac{11}{15} = 0.73$

$$\frac{2}{15} + \frac{1}{30} + \frac{1}{10} + \frac{3}{10} + \frac{1}{15} + \frac{1}{10} = 0.733$$

(5) 从接收端看,能平均正确接收到的概率为

$$p_{rc} = p(y_1)p(x_1 \mid y_1) + p(y_2)p(x_2 \mid y_2) + p(y_3)p(x_3 \mid y_3) = \frac{1}{6} + \frac{1}{10} + 0 = \frac{4}{15}$$
平均错误概率为 $\frac{11}{15} = 0.73$

(6) 此信道不好。原因是信源等概率分布,从转移信道来看正确发送的概率 x1-y1 的概率 0.5 有一半失真

(7)

$$H(X) = Log(3) = 1.585$$

H(X/Y)=

$$\frac{1}{6}\operatorname{Log}(2) + \frac{1}{10}\operatorname{Log}(5) + \frac{1}{15}\operatorname{Log}\left(\frac{5}{2}\right) + \frac{2}{15}\operatorname{Log}\left(\frac{5}{2}\right) + \frac{1}{10}\operatorname{Log}(5) + \frac{1}{10}\operatorname{Log}\left(\frac{5}{3}\right) + \frac{1}{30}\operatorname{Log}(10) + \frac{3}{10}\operatorname{Log}\left(\frac{5}{3}\right) = 1.301$$

3-8 具有 6.5MHz 带宽的某高斯信道,若信道中信号功率与噪声功率谱密度之比为 45.5MHz,试求其信道容量。

$$C = 6.5 \times 10^6 \log(1 + 45.5 \times 10^6 / (6.5 \times 10^6)) = 6.5 \times 10^6 \times 3 = 19.5 Mbps$$

3-9

3-9 电视图像由 30 万个像素组成,对于适当的对比度,一个像素可取 10 个可辨别的亮度电平,假设各个像素的 10 个亮度电平都以等概率出现,实时传送电视图像每秒发送 30 帧图像。为了获得满意的图像质量,要求信号与噪声的平均功率比值为 30dB,试计算在这些条件下传送电视的视频信号所需的带宽。

解:由题,根据香农公式 $C=B\log(1+SNR)$,可知,此题中 SNR=30dB,即 SNR=10^3 又 C=30*30*10^4*log10,经过计算可得,

B=3*10^6 HZ

3-10

- 一个平均功率受限制的连续信道,其通频带为1MHZ,信道上存在白色高斯噪声。
- (1) 已知信道上的信号与噪声的平均功率比值为 10, 求该信道的信道容量;
- (2) 信道上的信号与噪声的平均功率比值降至5, 要达到相同的信道容量, 信道通频带应为多大?
- (3) 若信道通频带减小为 0.5MHZ 时,要保持相同的信道容量,信道上的信号与噪声的平均功率比值应等于多大?

解: (1)
$$C = W \log_2(1 + SNR)$$

$$= 1 \times 10^6 \log_2(1 + 10)$$

$$= 3.46 Mbps$$

(2)
$$C_2 = W_2 \log_2(1+5) = 3.46 Mbps$$

$$\therefore W_2 = \frac{3.46M}{\log_2 6} = 1.34MHZ$$

(3)
$$C_3 = W_3 \log_2(1 + SNR') = 3.459 Mbps$$

$$\log_2(1 + SNR') = \frac{3.459}{0.5}$$

$$\therefore SNR = 120$$

- **3-11** 若有一信源,每秒钟发出 2.55 个信源符号。将此信源的输出符号送入某一个二元信道中进行传输(假设信道是无噪无损的),而信道每秒钟只传递 2 个二元符号。
 - (1) 试问信源不通过编码能否直接与信道连接?
 - (2) 若通过适当编码能否在此信道中进行无失真传输?
- 解:(1)、不能,信源符号必须转换成二进制码元方能在信道上传输。
- (2)、由于信源符号的分布律没有告诉,故需要进行讨论,譬如,当信源符号只有两种,并且等概率分布的时候,假设 P(X1)=1/2,P(X2)=1/2,此时其 H(X)=lb2=1,1*2.55=2.55>C=2bit,此时不能进行无失真传输;当 P(X1)=0.2,P(X2)=0.8,由于信源的概率分布不均匀,二次扩展并最优编码后,平均码长 b=0.78*2.55=1.989<2 二元符号/s,此时,能够无失真的进行传输。

X	0	1
P(x)	0.2	0.8

二次扩展后其消息序列、对应的概率、编码及码长如下:

00	1/25	111	3
01	4/25	110	3
10	4/25	10	2
11	16/25	0	1

3-12

3-12 有一个二元对称信道,其信道转移概率如图 3-21 所示。设该信道以 1500 个二元符号/s 的速度传输输入符号。现有一消息序列共有 14 000 个二元符号,并设在这消息中 p(0) = p(1) = 1/2。问从信息传输的角度来考虑,10 秒钟内能否将这消息序列无失真地传送完?

图 3-21 习题 3-12图

解: 由题,
$$P = \begin{bmatrix} 0.98 & 0.02 \\ 0.02 & 0.98 \end{bmatrix}$$
,信道容量 $C = lb2 - H(0.98, 0.02) = 1 + 0.98 lb0.98 + 0.02 lb0.02 = 1 - 0.1415 = 0.859 bit/symbol$

传输速率 R=1500symbol/s,所以 $c_t=cR=0.859bit/symbol\times1500symbol/s=1288.5bit/symbol$ 。 10s 只能传送 12885bits。而待传送的数据量为 $H(\frac{1}{2},\frac{1}{2})bit/symbol\times14000symbol=14000bits$ 。所以不能无失真地传送。

第四章 信息率失真函数

4-1

4-1 设有一个二元等概率信源 $X = \{0,1\}$, $p_0 = p_1 = 1/2$, 通过一个二进制对称信道 (BSC)。其失真函数 d_{ij} 与信道转移概率 p_{ij} 分别定义为

$$d_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}, \quad p_{ij} = \begin{cases} \varepsilon, & i \neq j \\ 1 - \varepsilon, & i = j \end{cases}$$

试求失真矩阵 d 和平均失真 \overline{D} 。

4-2

设输入符号表示为 $X=\{0,1\}$,输出符号表示为 $Y=\{0,1\}$ 。输入信号的概率分布为 P=(1/2,1/2),失真函数为 d(0,0)=d(1,1)=0,d(0,1)=1, d(1,0)=2。试求 Dmin,Dmax,R(Dmin),R(Dmax)以及相应的编码器转移概率矩阵。

解:

$$P_A = \{1/2, 1/2\}$$

$$d = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$$

$$\bar{D} = \sum_{i} \sum_{j} p(a_i) p(b_j \mid a_i) d(a_i, b_j)$$

$$= \frac{1}{2} p(b_0 \mid a_0) \times 0 + \frac{1}{2} p(b_0 \mid a_1) \times 2 + \frac{1}{2} p(b_1 \mid a_0) \times 1 + \frac{1}{2} p(b_1 \mid a_1) \times 0$$

$$= p(b_0 \mid a_1) + \frac{1}{2} p(b_1 \mid a_0)$$

如果
$$p(b_0 \mid a_1)$$
 =0 且 $p(b_1 \mid a_0)$ =0,即当转移矩阵 $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 时, $D_{\min} = 0$,此时

$$R(D_{\min}) = H(X) = 1bit \, / \, symbol$$

$$(2) \qquad D_{\max} = \min_{j=1,2} \sum_{i=1}^2 p_i d_{ij} = \min_{j=1,2} \{ p1 \times 0 + p2 \times 2, p1 \times 1 + p2 \times 0 \} = \min_{j=1,2} \{ 1,1/2 \} = 1/2 \quad \text{,} \qquad \text{ if } \quad \text{$$

$$p(b_0) = 0, p(b_1) = 1, a_0 \rightarrow b_1, a_1 \rightarrow b_1$$
,所以

$$P = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

$$R(D_{\text{max}}) = H(Y) = H(0,1) = 0$$

4-3

4-3 设输入符号表与输出符号表为 $X=Y=\{0,1,2,3\}$, 且输入信号的分布为 P(X=i)=1/4, i=0,1,2,3, 设失真矩阵为

$$\boldsymbol{d} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

求 D_{\min} , D_{\max} 和 $R(D_{\min})$, $R(D_{\max})$ 以及相应的编码器转移概率矩阵。

解: 失真

$$d = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

信源熵为 H(x) = Log(4) = 2

$$\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}$$
 Dmax =min{4, 4, 4, 4} R(Dmax)=0 Dmin=0,R(Dmin)=R(0)=H(X)=log(4)=2 相应的编码转移矩阵可以下列任一一个。

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4-4

设输入信号的概率分布 $P_A=\{1/2,1/2\}$,失真矩阵 $d=\begin{bmatrix}0&1&1/4\\1&0&1/4\end{bmatrix}$ 。试求 Dmin,Dmax,R(Dmin),R(Dmax)以及相应的编码器转移概率矩阵。解:

$$P_A = \{1/2, 1/2\}$$

$$d = \begin{bmatrix} 0 & 1 & 1/4 \\ 1 & 0 & 1/4 \end{bmatrix}$$

$$D_{\min} = \sum_{i} \sum_{j} p(a_i) p(b_j \mid a_i) d(a_i, b_j)$$

$$= \frac{1}{2} p(b_1 \mid a_1) \times 0 + \frac{1}{2} p(b_1 \mid a_2) \times 1 + \frac{1}{2} p(b_2 \mid a_1) \times 1 + \frac{1}{2} p(b_2 \mid a_2) \times 0 + \frac{1}{2} p(b_3 \mid a_1) \times 1 / 4 + \frac{1}{2} p(b_3 \mid a_2) \times 1 / 4 = 0$$

如果
$$\begin{cases} p(b_1 \mid a_2) = 0 \\ p(b_2 \mid a_1) = 0 \\ p(b_3 \mid a_1) = 0 \\ p(b_3 \mid a_2) = 0 \end{cases} , 即当转移矩阵$$

$$P = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}$$
时, $D_{ ext{min}} = 0$,此时

$$R(D_{\min}=0)=H(X)=1bit\,/\,symbol$$

$$(2) R(D_{\max}) = 0$$

$$D_{\max} = \min_{i=1,2,3} \sum_{i=1}^2 p_i d_{ij} = \min_{i=1,2,3} \{1/2 \times 0 + 1/2 \times 1, 1/2 \times 1 + 1/2 \times 0, 1/2 \times 1/4 + 1/2 \times 1/4\} = 1/4 \; , \; \; \text{it}$$

叶

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

4-5

- **4-5** 具有符号集 $U = \{u_0, u_1\}$ 的二元信源,信源发生概率为: $p(u_0) = p, p(u_1) = 1 p, 0 。 <math>Z$ 信道如图 4-7 所示,接收符号集 $V = \{v_0, v_1\}$,转移概率为: $q(v_0 | u_0) = 1, q(v_1 | u_1) = 1 q$ 。 发出符号与接收符号的失真: $d(u_0, v_0) = d(u_1, v_1) = 0, d(u_1, v_0) = d(u_0, v_1) = 1$ 。
 - (1) 计算平均失真 \overline{D} ;
- (2) 率失真函数 R(D)的最大值是什么? 当 q 为什么值时可达到该最大值? 此时平均失真 D 是多大?
- (3) 率失真函数 R(D)的最小值是什么? 当 q 为什么值时可达到该最小值? 此时平均失真 D 是多大?
 - (4) 画出 R(D)-D 的曲线。

图 4-7 习题 4-5图

解: (1)、失真矩阵
$$\mathbf{d}_{ij} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $\bar{D} = \sum_{i=0}^1 \sum_{j=0}^1 p(u_i) p(v_j \, \middle| \, u_i) d(u_i, v_j) = q(1-p)$ 。

(2)、
$$\max R(D) = H(V) = -[P\log p + (1-p)\log(1-p)]$$
, 此时,D=0,不失真,q=0.

(3)、 $\min R(D) = 0, q = 1$ 是可达最小值,D=1-p.

其中,曲线与横轴和纵轴分别相交于 1-p 和 H(V)。

4-6

4-6 已知信源的符号集合 $X = \{0,1\}$,它们以等概率出现,信宿的符号集合 $Y = \{0,1\}$,失真函数如图 4-8 所示,其中连线旁的值为失真函数,无连线表示失真函数为无限大,即 $d(0,1) = d(1,0) = \infty$ (同时有 $p(y_1|x_0) = p(y_0|x_1) = 0$),求 R(D)。

图 4-8 习题 4-6图

$$\begin{bmatrix} X \\ P \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, d = \begin{bmatrix} 0 & \infty & 1 \\ \infty & 0 & 1 \end{bmatrix}$$

$$D_{\min} = \sum_{i} p(x_i) \min_{j} \{d(x_i, y_j)\} = 0 \,, D_{\max} = \min_{j} \{\sum_{i} p(x_i) d(x_i, y_j)\} = 1, 0 \leq D \leq 1$$

解法一: 简单法

(1) D的计算

$$\therefore 0 \le D \le 1, D = \sum_{i} \sum_{j} p(x_{j}) p(y_{j} \mid x_{i}) d(x_{i}, y_{j}), \therefore p(y_{2} \mid x_{1}) = p(y_{1} \mid x_{2}) = 0$$

设
$$p = \begin{bmatrix} \overline{p} & 0 & p \\ 0 & \overline{q} & q \end{bmatrix}$$
, $(0 \le p, q \le 1)$, 则 $D = \sum_i \sum_j p(x_j) p(y_j \mid x_i) d(x_i, y_j) = \frac{p+q}{2}$

(2) I(X;Y)的计算

$$I(X;Y) = H(X) - H(X \mid Y)$$

$$p(x_1 \mid y_1) = \frac{p(x_1 y_1)}{p(y_1)} = 1, p(x_2 \mid y_1) = \frac{p(x_2 y_1)}{p(y_1)} = 0,$$

$$p(x_1 \mid y_2) = \frac{p(x_1 y_2)}{p(y_2)} = 0, p(x_2 \mid y_2) = \frac{p(x_2 y_2)}{p(y_2)} = 1,$$

$$p(x_1 \mid y_3) = \frac{p(x_1y_3)}{p(y_3)} = \frac{p}{p+q}, p(x_2 \mid y_3) = \frac{p(x_2y_3)}{p(y_3)} = \frac{q}{p+q},$$

$$p(x \mid y) = \begin{bmatrix} 1 & 0 & \frac{p}{p+q} \\ 0 & 1 & \frac{q}{p+q} \end{bmatrix}$$

$$\therefore H(X \mid Y) = -\sum_{i=2}^{2} \sum_{j=1}^{3} p(y_j) p(x_i \mid y_j) \log p(x_i \mid y_j)$$

$$= p(y_3) \{ -\sum_{i=1}^{2} p(x_i \mid y_3) \log p(x_i \mid y_3) \} = p(y_3) H(\frac{p}{p+q}, \frac{q}{p+q})$$

$$\leq p(y_3) = \frac{p+q}{2} = D$$

$$\therefore I(X;Y) = H(X) - H(X \mid Y) \ge 1 - D$$

(3)R(D)的计算

$$R(D) = \min(I(X;Y)) = 1 - D$$

解法 2: S 参数表达式法

$$\diamondsuit \ \lambda_{\mathbf{i}} = \lambda(x_{\mathbf{i}}), p_{\mathbf{i}} = p(x_{\mathbf{i}}), \omega_{\mathbf{j}} = p(y_{\mathbf{j}}), \alpha = e^{\mathbf{s}}, \mathbf{i} = 0, 1, j = 0, 1, 2$$

$$\exp[sd(x_i,y_j)] = \exp\left[\ln\alpha\begin{bmatrix}0 & \infty & 1\\ \infty & 0 & 1\end{bmatrix}\right] = \exp\left[\begin{matrix}0 & -\infty & \ln a\\ -\infty & 0 & \ln a\end{matrix}\right] = \begin{bmatrix}1 & 0 & a\\ 0 & 1 & a\end{bmatrix}$$

(1)由下列方程计算 λ

$$\sum_{\mathbf{i}} \lambda(x_{\mathbf{i}}) p(x_{\mathbf{i}}) \exp[sd(x_{\mathbf{i}}, y_{\mathbf{j}})] = 1, \\ j = 0, 1, 2 \text{ , } \\ \exists \text{ } \mathbb{R} \text{ } \text{ } \mathbb{R} \text{ } \mathbb{R}$$

$$\lambda_{\scriptscriptstyle 0}=\lambda_{\scriptscriptstyle 1}=2$$
, $lpha=rac{1}{2}$.

(2) 由下列方程计算 $p(y_i)$

$$\sum_{\mathbf{j}} p(y_j) \exp \left[sd(x_i,y_j) \right] = \frac{1}{\lambda(x_i)}, i = 0,1 \ \text{,} \label{eq:posterior}$$

写成矩阵形式为:
$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & a \end{bmatrix} \begin{bmatrix} \omega_0 \\ \omega_1 \\ \omega_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\lambda_0} \\ \frac{1}{\lambda_1} \end{bmatrix}, \ \ \mathrm{可得}, \ \ \mathrm{\it id} \ \omega_2 = \beta \,, \ \ \omega_0 = \omega_1 = \frac{1}{2} - \frac{1}{2}\beta$$

(3)根据下式可得转移概率分布

$$\mathbf{p}_{ij} = \lambda(x_i) p(y_j) \exp[sd(x_i,y_j)], i=0,1; j=0,1,2$$
 .

写成矩阵形式:

$$\mathbf{p} = \begin{bmatrix} 1 - \beta & 0 & \beta \\ 0 & 1 - \beta & \beta \end{bmatrix}$$

(4)计算 D

$$D = \sum_{ij} p_i p_{ij} d_{-ij} = p_0 p_{02} + p_1 p_{12} = \beta$$

(5)计算 R(D)

$$R(D) = SD + \sum_{\mathbf{i}} p_{\mathbf{i}} \log \lambda_{\mathbf{i}} = D \log \frac{1}{2} + 2 \times \frac{1}{2} \times \log 2 = 1 - D \; .$$

4-7

4-7 三元信源的概率分别为 p(0)=0.4, p(1)=0.4, p(2)=0.2, 失真函数 d_{ij} 为: $\exists i=j$ 时, $d_{ij}=0$; 当 $i\neq j$ 时, $d_{ij}=1$, i,j=0,1,2, 求信息率失真函数 R(D)。

解: S 参数表达式法

$$\diamondsuit \lambda_{\mathbf{i}} = \lambda(x_{\mathbf{i}}), p_{\mathbf{i}} = p(x_{\mathbf{i}}), \omega_{\mathbf{j}} = p(y_{\mathbf{j}}), \alpha = e^{s}, \mathbf{i}, \mathbf{j} = 0, 1, 2$$

$$\exp[sd(x_i,y_j)] = \exp\begin{bmatrix} \ln\alpha \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \exp\begin{bmatrix} 0 & \ln\alpha & \ln\alpha \\ \ln\alpha & 0 & \ln\alpha \\ \ln\alpha & \ln\alpha & 0 \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \alpha \\ \alpha & 1 & \alpha \\ \alpha & \alpha & 1 \end{bmatrix}$$

(1)由下列方程计算 λ

$$\sum_{\mathbf{x}} \lambda(x_{\mathbf{x}}) p(x_{\mathbf{x}}) \exp[sd(x_{\mathbf{x}},y_{\mathbf{y}})] = 1, j = 0,1,2 \ . \label{eq:local_state}$$

写成矩阵形式为:
$$\left[\lambda_0 p_0, \lambda_1 p_1, \lambda_2 p_2\right] \begin{bmatrix} 1 & \alpha & \alpha \\ \alpha & 1 & \alpha \\ \alpha & \alpha & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \ \ \exists \theta, \ \ \lambda_0 = \lambda_1 = \frac{5}{2} * \frac{1}{2\alpha + 1}, \ \ \lambda_2 = 5 * \frac{1}{2\alpha + 1}.$$

(2) 由下列方程计算 $p(y_i)$

$$\sum_{\mathbf{j}} p(y_j) \exp \left[sd(x_i,y_j)
ight] = rac{1}{\lambda(x_i)}, i=0,1,2$$
 ,

写成矩阵形式为:
$$\begin{bmatrix} 1 & \alpha & \alpha \\ \alpha & 1 & \alpha \\ \alpha & \alpha & 1 \end{bmatrix} \begin{bmatrix} \omega_0 \\ \omega_1 \\ \omega_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\lambda_0} \\ \frac{1}{\lambda_1} \\ \frac{1}{\lambda_2} \end{bmatrix}, \ \ \text{可得,}$$

$$3\alpha-1\leq 0, \alpha\leq \frac{1}{3} \, \mathbb{M} \,, \quad \omega_0=\omega_1=\frac{\alpha\text{-}2}{5(\,\alpha\text{-}1)} \,, \quad \omega_2=\frac{3\alpha\text{-}1}{5(\,\alpha\text{-}1)} \,.$$

(3)根据下式可得转移概率分布

$$\mathbf{p}_{ij} = \lambda(x_i) p(y_j) \exp[sd(x_i, y_j)], i = 0, 1, 2; j = 0, 1, 2 \ .$$

$$\mathbf{p} = \begin{bmatrix} \frac{\alpha-2}{2(\alpha\text{-}1)(2\alpha+1)} & \frac{(\alpha-2)\alpha}{2(\alpha\text{-}1)(2\alpha+1)} & \frac{(3\alpha-1)\alpha}{2(\alpha-1)(2\alpha+1)} \\ \frac{(\alpha-2)\alpha}{2(\alpha\text{-}1)(2\alpha+1)} & \frac{\alpha-2}{2(\alpha\text{-}1)(2\alpha+1)} & \frac{(3\alpha-1)\alpha}{2(\alpha-1)(2\alpha+1)} \\ \frac{(\alpha-2)\alpha}{(\alpha-1)(2\alpha+1)} & \frac{(\alpha-2)\alpha}{(\alpha-1)(2\alpha+1)} & \frac{3\alpha-1}{(\alpha-1)(2\alpha+1)} \end{bmatrix}$$

(4)计算 D

$$3\alpha - 1 \le 0, \alpha \le \frac{1}{3}$$
时

$$\begin{split} D &= \sum_{ij} p_i p_{ij} d_{ij} = p_0 p_{01} + p_0 p_{02} + p_1 p_{10} + p_1 p_{12} + p_2 p_{20} + p_2 p_{21} \\ &= \frac{2\alpha}{2\alpha + 1} \end{split}$$

可知,
$$\alpha = \frac{D}{2(1-D)}, \alpha \leq \frac{1}{3}, 0 \leq D \leq 0.4$$

(5)计算 R(D)

$$3\alpha - 1 \le 0, \alpha \le \frac{1}{3}$$
时, $0 \le D \le 0.4$ 时,

$$\begin{split} R(D) &= SD + \sum_{\mathbf{i}} p_{i} \log \lambda_{i} = D \log \frac{D}{2~(~1-D)} + 2 \times 0.4 \times \log[\frac{5}{2}(1-D)] + 0.2 \log[5(1-D)] \\ &= D \log \frac{D}{2~(~1-D)} + \log[5(1-D)] - 0.8 \log 2 \end{split}$$

(6)
$$\frac{1}{3} \leq \alpha < 1$$
,即 $0.4 \leq D \leq D_{\max}$ 时 R(D)的计算

$$D_{\max} = \min_{j} \{ \sum_{i} p_{i} d_{ij} \} = \min \{ 0.6, 0.6, 0.8 \} = 0.6$$

因为
$$\frac{1}{3} \le \alpha < 1$$
时, $p(y_2) = 0$,所以有 $p(y_2 \mid x_i) = 0, i = 0, 1, 2$ 。

且由 $0 \le D \le 0.4$ 时的转移概率矩阵

$$p(y \mid x) = \begin{bmatrix} p & \overline{p} & 0 \\ \overline{p} & p & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix}$$

$$D = \sum_{i} \sum_{j} p(x_i) p(y_j \mid x_i) d(x_i, y_j) = 0.4 \\ p(y_1 \mid x_0) + 0.4 \\ p(y_0 \mid x_1) + 0.2 \\ p(y_0 \mid x_2) + 0.2 \\ p(y_1 \mid x_2) +$$

$$=0.4\overline{p}+0.4\overline{p}+0.2=0.8\overline{p}+0.2$$

$$\overline{p} = \frac{D - 0.2}{0.8}, p = \frac{1 - D}{0.8}$$

$$p(xy) = \begin{bmatrix} 0.4p & 0.4\overline{p} & 0 \\ 0.4\overline{p} & 0.4p & 0 \\ 0.1 & 0.1 & 0 \end{bmatrix}, p(y_1) = p(y_0) = 0.5, p(y_2) = 0$$

$$p(x \mid y) = \begin{bmatrix} 0.8p & 0.8\overline{p} & 0\\ 0.8\overline{p} & 0.8p & 0\\ 0.2 & 0.2 & 0 \end{bmatrix}$$

$$H(X \mid Y) = -\sum_{i} \sum_{i} p(x_i) p(x_i \mid y_j) \log p(x_i \mid y_j)$$

$$= -\{p(y_0)[p(x_0 \mid y_0)\log p(x_0 \mid y_0) + p(x_1 \mid y_0)\log p(x_1 \mid y_0) + p(x_2 \mid y_0)\log p(x_2 \mid y_0)] +$$

$$p(y_1)[p(x_0 \mid y_1)\log p(x_0 \mid y_1) + p(x_1 \mid y_1)\log p(x_1 \mid y_1) + p(x_2 \mid y_0)\log p(x_2 \mid y_1)]\}$$

$$= -\{0.5[0.8p\log(0.8p) + 0.8\overline{p}\log(0.8\overline{p}) + 0.2\log0.2] + 0.5[0.8\overline{p}\log(0.8\overline{p}) + 0.8p\log(0.8p) + 0.2\log0.2]\}$$

$$= -[0.8p\log(0.8p) + 0.8\overline{p}\log(0.8\overline{p}) + 0.2\log0.2]$$

$$\begin{split} H(X) &= H(0.4, 0.4, 0.2) = -[0.4\log 0.4 + 0.4\log 0.4 + 0.2\log 0.2] \\ &= -0.8\log 0.4 - 0.2\log 0.2 \\ I(X;Y) &= H(X) - H(X\mid Y) \\ &= -0.8\log 0.4 - 0.2\log 0.0.2 + 0.8p\log(0.8p) + 0.8\overline{p}\log(0.8\overline{p}) + 0.2\log 0.2 \\ &= 0.8p\log(0.8p) + 0.8\overline{p}\log(0.8\overline{p}) - 0.8\log 0.4 \\ &= (1-D)\log(1-D) + (D-0.2)\log(D-0.2) - 0.8\log 0.4 \\ R(D) &= \min I(X;Y) = (1-D)\log(1-D) + (D-0.2)\log(D-0.2) - 0.8\log 0.4 \end{split}$$

综上所述
$$R(D) = \begin{cases} D \log \frac{D}{2~(~1-D)} + \log[5(1-D)] - 0.8\log 2, 0 \le D \le 0.4 \\ (1-D)\log(1-D) + (D-0.2)\log(D-0.2) - 0.8\log 0.4, 0.4 \le D \le 0.6 \\ 0, D \ge 0.6 \end{cases}$$

4-8

4-8 利用 R(D) 的性质, 画出一般 R(D) 的曲线并说明其物理意义。试问为什么 R(D) 是非负且非增的?

解: 曲线图如下:

说明了 D 和 R(D)之间的关系,即随着允许失真的幅度的变大,那么可以压缩的程度就越大,当 D 最小的时候不能压缩,当 D 最大的时候不需要发送信息就可以达到要求。同时图像中间不同的曲线是由于 p 的不同而造成的,说明了 p 越接近于 1/2,即信源的分布越均匀,信源被压缩的可能性就越小,反之就被压缩的可能性就越大。

第五章

5-1

5-1 将下表所列的某六进制信源进行二进制编码,试问:

消息	概率	C_1	C_z	C_3	C_{ϵ}	C_5	C_6
u_1	1/2	000	0	0	0	1	01
u_2	1/4	001	01	10	10	000	001
u_3	1/16	010	011	110	1101	001	100
u_4	1/16	011	0111	1110	1100	010	101
u_5	1/16	100	01111	11110	1001	110	110
u_{ϵ}	1/16	101	011111	111110	1111	110	111

- (1) 这些码中哪些是唯一可译码?
- (2) 哪些码是非延长码(即时码)?
- (3) 对所有唯一可译码求出其平均码长和编码效率。
- (1) C1,C2,C3,C6
- (2) C1,C3,C6

(3)
$$H(X) = \frac{1}{2} Log(2) + \frac{1}{4} Log(4) + 4 \frac{1}{16} Log(16) = 2$$

K1=3 R1=
$$\frac{H(X)}{K} = \frac{2}{3}$$

$$K2 = \frac{1}{2}1 + \frac{1}{4} \cdot 2 + \frac{1}{16} \cdot 3 + \frac{1}{16} \cdot 4 + \frac{1}{16} \cdot 5 + \frac{1}{16} \cdot 6 = 2.125$$
 $R2 = \frac{H(X)}{K2} = \frac{2}{2.125} = 0.941$

$$\text{K3=} \quad \frac{1}{2}1 + \frac{1}{4} \cdot 2 + \frac{1}{16} \cdot 3 + \frac{1}{16} \cdot 4 + \frac{1}{16} \cdot 5 + \frac{1}{16} \cdot 6 = 2.125 \qquad \text{R3=} \quad \frac{\text{H(X)}}{\text{K3}} = \quad \frac{2}{2.125} = 0.941$$

$$\text{K6=} \quad \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 3 + \frac{1}{16} \cdot 3 + \frac{1}{16} \cdot 3 + \frac{1}{16} \cdot 3 + \frac{1}{16} \cdot 3 = 2.5 \qquad \text{R6=} \quad \frac{\text{H(X)}}{\text{K6}} \quad = \quad \frac{2}{2.5} = 0.8$$

- 5-2 已知信源的各个消息分别为字母 A, B, C, D, 现用二进制码元对消息字母作信源编码,A \rightarrow $(x_0$, y_0),B \rightarrow $(x_0$, y_1),C \rightarrow $(x_1$, y_0),D \rightarrow $(x_1$, y_1),每个二进制码元的长度为5ms。计算:
 - (1) 若各个字母以等概率出现,计算在无扰离散信道上的平均信息传输速率。
- (2) 若各个字母出现的概率分别为 P(A) = 1/5, P(B) = 1/4, P(C) = 1/4, P(D) = 3/10, 再计算在无扰离散信道上的平均信息传输速率。
- (3) 若字母消息改用四进制码元作信源编码,码元幅度分别为 0V,1V,2V,3V,码元 长度为 10ms。重新计算(1)和(2)两种情况下的平均信息传输速率。
 - (1) 因为 A,B,C,D 四个字母,每个字母用两个码,每个码为 0.5ms, 所以每个字母用 10ms 当信源等概率分布时,信源熵为 H(X)=log(4)=2

平均信息传递速率为
$$\frac{H(X)}{10}$$
 = 0.2 bit/ms=200bit/s

(2) 信源熵为

$$\frac{1}{H(X)} = \frac{1}{5} \log(5) + \frac{1}{4} \log(4) + \frac{1}{4} \log(4) + \frac{3}{10} \log\left(\frac{10}{3}\right) = 1.985$$

$$\frac{H(X)}{10} = 0.198 \text{bit/ms} = 198 \text{bit/s}$$

(3) 相同

5-3

- 5-3 设信道的基本符号集合 $A = \{a_1, a_2, a_3, a_4, a_5\}$,其时间长度分别为 $t_1 = 1, t_2 = 2, t_3 = 3, t_4 = 4, t_5 = 5$ 个码元时间。用这样的信道基本符号编成消息序列,且不能出现 $(a_1, a_1), (a_2, a_2), (a_1, a_2), (a_2, a_1)$ 这 4 种符号相连的情况。
- (1) 若信源的消息集合 $X = \{x_1, x_2, x_3, \dots, x_7\}$,它们出现的概率分别为 $p(x_1) = 1/2$, $p(x_2) = 1/4$, $p(x_3) = 1/8$, $p(x_4) = 1/16$, $p(x_5) = 1/32$, $p(x_6) = p(x_7) = 1/64$ 。试计算按最佳编码原则利用上述信道来传输这些消息时的信息传输速率;
 - (2) 求上述信源编码的编码效率。

(1)因为不能出现 a1 和 a2 连用的情况,所以许用码集为

{a3,a4,a5,a1a3,a1a4,a1a5,a2a3,a2a4,a2a5}, 此时

$$C = \max_{\scriptscriptstyle p(x_i)}\!\!I(X,Y) = \max_{\scriptscriptstyle p(x_i)}\!\![H(X) - H(X\mid Y)] = \max_{\scriptscriptstyle p(x_i)}\!\!H(X) = \log 9 = 3.170bit\,/\,message$$

(2)根据最佳编码原则,可得

表格 1

符号	x1	x2	X3	X4	X5	X6	X7
代码	a3	a4	a1 a3	a5	a1 a4	a2a3	a1 a4
ti	3	4	4	5	5	5	6
pi	1/2	1/4	1/8	1/16	1/32	1/64	1/64

$$H(X) = \sum_{i} pi \log pi = 1.969bit / message$$

 $\overline{t} = \sum piti = 3.641co \det ime / message$

$$R_{\scriptscriptstyle t} = \frac{H(X)}{\overline{t}} = 0.541 bit \, / \, co \det ime$$

由題可知,
$$\eta = \frac{H(X)}{(\frac{1}{2} \times 1 + \frac{1}{4} \times 1 + \frac{1}{8} \times 2 + \frac{1}{16} \times 1 + \frac{1}{32} \times 2 + \frac{1}{64} \times 2 + \frac{1}{64} \times 2) \log 5} = \frac{1.969}{2.757} = 71.4\%$$

5-4

5-4 若消息符号、对应概率分布和二进制编码如下:

消息符号
$$u_0$$
 u_1 u_2 u_3 p_i 1/2 1/4 1/8 1/8 编码 0 10 110 111

试求:(1)消息符号熵;

- (2) 每个消息符号所需的平均二进制码个数;
- (3) 若各消息符号间相互独立,求编码后对应的二进制码序列中出现"0"和"1"的无

条件概率 p_0 和 p_1 ,以及码序列中的一个二进制码的熵,并求相邻码间的条件概率 p(1|1),p(0|1),p(1|0) 和 p(0|0) 。

$$H(X) = \frac{1}{2}\log 2 + \frac{1}{4}\log 4 + \frac{1}{8}\log 8 \times 2 = \frac{7}{4}$$

(2)
$$\overline{K} = \frac{1}{2} + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = \frac{7}{4}$$

(3)
$$p_0 = \frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8}}{\frac{1}{2} + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 \times 2} = \frac{\frac{7}{8}}{\frac{7}{4}} = \frac{1}{2}, p_1 = \frac{\frac{1}{4} + \frac{1}{8} \times 2 + \frac{1}{8} \times 3}{\frac{1}{2} + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 \times 2} = \frac{\frac{7}{8}}{\frac{7}{4}} = \frac{1}{2}$$

因为无条件概率 p(0) 与 p(1) 均为 0.5,所以 $p(1 \mid 0) = p(1 \mid 1) = p(1) = 0.5; p(0 \mid 1) = p(0 \mid 0) = p(0) = 0.5$

5-5

- 5-5 某信源有 8 个符号 { u₁, ···, u₈ }, 概率分别为 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/128, 试编成 000, 001, 010, 011, 100, 101, 111 的码。
 - (1) 求信源的符号熵 H(u);
 - (2) 求出现一个"1"或一个"0"的概率;
 - (3) 求这种码的编码效率;
 - (4) 求出相应的香农码和费诺码:
 - (5) 求该码的编码效率。

$$P=(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}, \frac{1}{128})$$

$$H(U)=$$

$$\frac{1}{2} \operatorname{Log}(2) + \frac{1}{4} \operatorname{Log}(4) + \frac{1}{8} \operatorname{Log}(8) + \frac{1}{16} \operatorname{Log}(16) + \frac{1}{32} \operatorname{Log}(32) + \frac{1}{64} \operatorname{Log}(64) + \frac{1}{128} \operatorname{Log}(128) + \frac{1}{128} \operatorname{Log}(128) = 1.984$$

(2) 每个信源使用 3 个二进制符号,出现 0 的次数为

$$3 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{8} + \frac{1}{16} + 2 \cdot \frac{1}{32} + \frac{1}{64} + \frac{1}{128} = 2.398$$

$$1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{8} + 2 \cdot \frac{1}{16} + 1 \cdot \frac{1}{32} + 1 \cdot \frac{1}{64} + 2 \cdot \frac{1}{128} + 3 \cdot \frac{1}{128} = 0.586$$

$$\frac{2.398}{P(0)=} = \frac{2.398}{2.398 + 0.586} = 0.804$$

$$P(0) = 2.398 + 0.586$$

$$P(1) = \frac{0.586}{2.398 + 0.586} = 0.196$$

$$\overline{K} = 3 R = \frac{H(U)}{\overline{K}} = \frac{1.984}{3} = 0.661$$

(4) 相应的香农编码

コールマラミドコ					
信源符号	符号概率	累加概率	-Logp(xi)	码长 Ki	码字
xi	pi	Pi			
x1	1/2	0	1	1	0
x2	1/4	0.5	2	2	10
x3	1/8	0.75	3	3	110
x4	1/16	0.875	4	4	1110
x5	1/32	0.938	5	5	11110
x6	1/64	0.969	6	6	111110
x7	1/128	0.984	7	7	1111110
x8	1/128	0.992	7	7	11111110

相应的费诺码

信源符	符号概	第一次	第二次	第三次	第四次	第五次	第	六	第	七	二元码
号 xi	率 pi	分组	分组	分组	分组	分组	次	分	次	分	
							组		组		
x1	1/2	0									0
x2	1/4		0								10
х3	1/8			0							110
x4	1/16				0						1110
x5	1/32					0					11110
x6	1/64	1	1				0				111110
x7	1/128		1	1	1				0		111111
					1	1	1				0
x8	1/128						1		1		111111
							i	1		10	

(5) 香农码和费诺码相同

平均码长为
$$\overline{K} = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{16} \cdot 4 + \frac{1}{32} \cdot 5 + \frac{1}{64} \cdot 6 + \frac{1}{128} \cdot 7 + \frac{1}{128} \cdot 7 = 1.984$$
 编码效率为:
$$R := \frac{H(U)}{\overline{K}} = \frac{1.984}{1.984} = 1$$

5-6

- 5-6 设无记忆二元信源,概率为 $p_0=0.005$, $p_1=0.995$,信源输出L=100的二元序列在长为L=100的信源序列中只对含有3个或小于3个"0"的各信源序列构成——对应的一组定长码。
 - (1) 求码字所需的最小长度;
 - (2) 考虑没有给予编码的信源序列出现的概率,该定长码引起的错误概率 P 是多少?
- (1)含有3个或小于3个"0"的序列共有

$$C^0_{100}+C^1_{100}+C^2_{100}+C^2_{100}+C^3_{100}=166751$$
,若用定长编码,则其码长为 $\left[\log_2 166751\right]=18bit$

(2) 指定序列出现的概率
$$P = C_{100}^0 p_0^0 p_1^{100} + C_{100}^1 p_0^1 p_1^{99} + C_{100}^2 p_0^2 p_1^{98} + C_{100}^3 p_0^3 p_1^{97} = 0.9983$$
。所以∴ $P_e = 0.0017$

5-7

- 5-7 已知符号集合 $\{x_1, x_2, x_2, \cdots\}$ 为无限离散消息集合,它们出现的概率分别为 $p(x_1)=1/2, p(x_2)=1/4, p(x_3)=1/8, p(x_i)=1/2', \cdots$ 。
 - (1) 用香农编码方法写出各个符号消息的码字。
 - (2) 计算码字的平均信息传输速率。
 - (3) 计算信源编码效率。

$$\frac{1}{(1)} \quad \sum_{p_i=2^i}^{i-1} \quad \sum_{p_i=i=0}^{i-1} p_i$$

累加概率分别为

符号	x1	x1	x2	x3	x4	x5	x6	x7	•••
概率	1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256	•••
累加 概率	0	0.5	0.75	0.875	0.938	0.969	0.984	0.992	
码长	1	2	3	4	5	6	7	8	
二元码	0	10	110	1110	11110	11111 0	1111111 0	111111 10	

(2) 信源的信息量为

$$H(X) = \frac{1}{2} Log(2) + \frac{1}{4} Log(4) + \frac{1}{8} Log(8) + \frac{1}{16} Log(16) + \dots + \frac{1}{2^{i}} Log(2^{i}) + \dots$$

平均码长为:

$$\overline{K}$$
= $\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{16} \cdot 4 + \dots + \frac{1}{2} i \cdot i + \dots$

码字的平均信息传输率为

$$R = \frac{H(X)}{\overline{K}} = 1$$

$$bit/\Theta$$

(3) 编码效率

$$R = \frac{H(X)}{\overline{K}} = 100\%$$

5-8

5-8 某信源有 6 个符号, 概率分别为 3/8, 1/6, 1/8, 1/8, 1/8 和 1/12, 试求三进制码元(0,1,2)的费诺码及其编码效率。

解:由题可得:

3/8	0		0
1/6	1	0	10
1/8		1	11
1/8	2	0	20
1/8		1	21
1/12		2	22

$$\dot{k} = \frac{3}{8} \times 1 + \frac{1}{6} \times 2 + \frac{1}{8} \times 2 + \frac{1}{8} \times 2 + \frac{1}{8} \times 2 + \frac{1}{12} \times 2 = \frac{9 + 8 + 18 + 4}{24} = \frac{39}{24} = 1.625$$
 三进制符号/信源符号

$$H(X) = \frac{3}{8}\log\frac{8}{3} + \frac{1}{6}\log6 + 3 \times \frac{1}{8}\log8 + \frac{1}{12}\log12 = \frac{31}{12} - \frac{1}{8}\log3 = 2.583 - 0.198 = 2.385bit / sourcesymbol$$

$$\eta = \frac{H(X)}{\tilde{K}\log3} = \frac{2.385}{2.576} = 92.6\%$$

5-9 若某一信源有N个符号,并且每个符号均以等概出现,对此信源用最佳哈夫曼二元编码,问当 $N=2^i$ 和 $N=2^i+1(i$ 为正整数)时,每个码字的长度等于多少? 平均码长是多少?

解: 当 $N=2^i$ 时,每个码字长度均为 i,所以平均码长 k=i.

当 $N=2^i+1$ 时, 其中 2^i-1 码字的长度均为 i , 2 个符号的码长为 i+1 ,平均码长为 : $\bar{k}=\frac{1}{N}(N-2)*i+\frac{1}{N}*2*(i+1)=i+\frac{2}{N}$ 。

5-10

- 5-10 设有离散无记忆信源 P(X)={0.37,0.25,0.18,0.10,0.07,0.03}。
- (1) 求该信源符号熵 H(X)。
- (2) 用哈夫曼编码编成二元变长码,计算其编码效率。
- (3) 要求译码错误小于 10⁻³,采用定长二元码要达到(2)中的哈夫曼编码效率,问需要多少个信源符号连在一起编?

(1) H(X)

 $H(X) = -0.37 \log 0.37 - 0.25 \log 0.25 - 0.18 \log 0.18 - 0.10 \log 0.10 - 0.07 \log 0.07 - 0.03 \log 0.03$ $\approx 0.5307 + 0.5 + 0.4453 + 0.3322 + 0.2686 + 0.1518 = 2.2286 \approx 2.23 bit / symbol$

(2)

信源符号	符号概率	编码过程	编码	码
xi	pi	洲門及往	細門	长
x1	0.37	→ 0.37 → 0.37 → 0.38 → 0.62 0 1	00	2
x2	0.25	$\rightarrow 0.25 \rightarrow 0.25 \rightarrow 0.37 \stackrel{0}{\sim} 0.38 \stackrel{1}{\sim}$	01	2
x3	0.18	→ 0.18 $0.20 \ 0.25 \ 1$	11	2
x4	0.10	→ 0.10 ± 0.18 ±	100	3
x5	0.07	0.10	1010	4
х6	0.03	1	1011	4

$$\overline{K} = 0.37 \times 2 + 0.25 \times 2 + 0.18 \times 2 + 0.10 \times 3 + 0.07 \times 4 + 0.03 \times 4$$

$$= 0.74 + 0.5 + 0.36 + 0.3 + 0.28 + 0.12 = 2.3 Binary symbol / source symbol$$

$$\eta = \frac{H(X)}{\overline{K}} = \frac{2.23}{2.3} = 96.96\%$$

5-11

信源符号 X 有 6 种字母, 概率为 0.32, 0.22, 0.18, 0.16, 0.08, 0.08, 求

- (1) 信源熵;
- (2) 用香农编码方法编成二进制变长码,并计算其编码效率;
- (3) 用费诺编码方法编成二进制变长码,并计算其编码效率;

- (4) 用哈夫曼编码方法编成二进制变长码,并计算其编码效率;
- (5) 用哈夫曼编码方法编成三进制变长码,并计算其编码效率;
- (6) 若用逐个信源符号来编定长二进制码,要求不出差错译码,求所需要的每个符号的平均信息率和编码效率;
- (7) 当译码差错小于 10E-3 的定长二进制码要达到(4) 中的哈夫曼编码效率时,估计要多少个信源符号一起编码才能办到?

解:

(1) 信源熵

$$H(X) = -0.32 \log 0.32 - 0.22 \log 0.22 - 0.18 \log 0.18 - 0.16 \log 0.16 - 0.08 \log 0.08 - 0.04 \log 0.04 \approx 2.35 bit / symbol$$

(2) 香农编码

信源符号	符号概率	累加概率	-Logp(xi)	码长 Ki	码字
xi	pi	Pi			
x1	0.32	0	1.644	2	00
x2	0.22	0.32	2.184	3	010
х3	0.18	0.54	2.474	3	100
x4	0.16	0.72	2.644	3	101
х5	0.08	0.88	3.644	4	1110
х6	0.04	0.96	4.644	5	11110

平均码长为

$$\overline{K}_{shanno} = 0.32 \times 2 + 0.22 \times 3 + 0.18 \times 3 + 0.16 \times 3 + 0.08 \times 4 + 0.04 \times 5$$
$$= 0.64 + 0.66 + 0.54 + 0.48 + 0.32 + 0.2 = 2.84$$

编码效率为

$$\eta_{\rm shanno} = \frac{H(X)}{\overline{K}_{\rm shanno}} = \frac{2.35}{2.84} = 82.7\%$$

(3) 费诺编码为

信源符 号 xi	符号概 率 pi	1	2	3	4	编码	码长
x1	0.32	0	0			00	2
x2	0.22		1			01	2
х3	0.18		0			10	2
x4	0.16	1		0		110	3
x5	0.08	1	1	1	0	1110	4
x6	0.04			1	1	1111	4

平均码长为

$$\begin{split} \overline{K}_{\textit{fano}} &= 0.32 \times 2 + 0.22 \times 2 + 0.18 \times 2 + 0.16 \times 3 + 0.08 \times 4 + 0.04 \times 4 \\ &= 0.64 + 0.44 + 0.36 + 0.48 + 0.32 + 0.16 = 2.4 \end{split}$$

编码效率:
$$\eta_{shanno} = \frac{H(X)}{\overline{K}_{fano}} = \frac{2.35}{2.4} = 97.9\%$$

(4) 哈夫曼编码

信源符号 xi	符号概率	编码过程	编码	码 长
x1	0.32	→ 0.32 4 0.38 4 0.40 0.60 0 1	01	2
x2	0.22	$\rightarrow 0.22$ $\rightarrow 0.32$ $\rightarrow 0.38$ $\stackrel{0}{\bigcirc}$ $\rightarrow 0.40$ $\stackrel{1}{\bigcirc}$	10	2
х3	0.18	$\rightarrow 0.18$ 0.22 0 0.32 1	11	2
x4	0.16	$\longrightarrow 0.16 \stackrel{\text{U}}{\stackrel{1}{\longrightarrow}} 0.18 \stackrel{\text{1}}{\stackrel{1}{\longrightarrow}}$	000	3
x5	0.08	0.12	0010	4
х6	0.04		0011	4

平均码长为

$$\begin{split} \overline{K}_{\textit{huffman}} &= 0.32 \times 2 + 0.22 \times 2 + 0.18 \times 2 + 0.16 \times 3 + 0.08 \times 4 + 0.04 \times 4 \\ &= 0.64 + 0.44 + 0.36 + 0.48 + 0.32 + 0.16 = 2.4 \end{split}$$

编码效率:
$$\eta_{huffman} = \frac{H(X)}{\overline{K}_{huffman}} = \frac{2.35}{2.4} = 97.9\%$$

(5) 哈夫曼三进制编码

对多进制 Huffman 编码,为了提高编码效率,使长码的符号数尽量短,应将信源的符号数补足至:信源符号数=(进制数减 1)X 缩减次数+ 进制数。对于三进制,信源个数应为:2n+3=5,7,9,11 等。所以下面的第二种编码方法效率高。

(a)

信源符号 xi	符号概率 pi	编码过程	编码	码长
x1	0.32	→ 0.32 √ 0.68 0	1	1
x2	0.22	0.32 0.68 0 0.28 0 0.32 1	01	2
х3	0.18	0.22 1	02	2
x4	0.16	0 0.18 2	000	3
x5	0.08	1	001	3
x6	0.04	2	002	3

编码效率:
$$R = \frac{H(X)}{(\sum_{i} p(a_i)k_i \log 3)} = \frac{2.353}{3.106} = 0.7575$$

(b) 哈夫曼三进制编码(另法)

信源符号 xi	符号概率 pi	编码过程	编码	码长
x1	0.32	→ 0.32 → 0.46 0	1	1
x2	0.22	→ 0.22 → 0.32 1	2	1
х3	0.18	→ 0.18 0 0.22 2	00	2
x4	0.16	→ 0.16 1	01	2
x5	0.08	0.12 2	020	3
х6	0.04	1	021	3
x7	0.00	2	022	3

编码效率:
$$\eta = \frac{H(X)}{(\sum_{i} p(a_i)k_i \log 3)} = \frac{2.35}{2.50} = 93.8\%$$

因此,三进制哈夫曼编码通常采用第二种编码方案。

(6) 不出差错的定长编码

$$\overline{k} = \lceil \log 6 \rceil = 3bit / symbol$$

$$\eta = \frac{2.35}{3} = 78.4\%$$

(7) 允许一定差错的定长编码

$$\varepsilon = 2.4 - 2.35 = 0.05, \delta = 10^{-3}$$

$$\begin{split} &\sigma^2(x) = D(I(x_i)) = E\{[I(x_i) - H(X)]^2\} = \\ &E\{I^2(x_i) + H^2(X) - 2I(x_i)H(X)\} = E\{I^2(x_i)\} + H^2(X) - 2H^2(X) = \sum_i p_i (\log p_i)^2 - [H(X)]^2 \\ &= 0.32(\log 0.32)^2 + 0.22(\log 0.22)^2 + 0.18(\log 0.18)^2 + 0.16(\log 0.16)^2 \\ &+ 0.08(\log 0.08)^2 + 0.04(\log 0.04)^2 - (2.35)^2 \\ &= 0.8647 + 1.0498 + 1.1017 + 1.1184 + 1.0622 + 0.8626 - 5.5225 \\ &= 6.0594 - 5.5225 = 0.5369 \end{split}$$

$$L \ge \frac{\sigma^2(x)}{\varepsilon^2 \delta} = \frac{0.5369}{0.0025 \times 10^{-3}} = 2.1476 \times 10^5$$

5-12

5-12 已知一信源包含 8 个消息符号,其出现的概率 $P(X) = \{0.1,0.18,0.4,0.05,0.06,0.1,0.07,0.04\}$,则求:

- (1) 该信源在每秒钟内发出1个符号,求该信源的熵及信息传输速率。
- (2) 对这8个符号作哈夫曼编码,写出相应码字,并求出编码效率。
- (3) 采用香农编码,写出相应码字,求出编码效率。
- (4) 进行费诺编码,写出相应码字,求出编码效率。

解

(1) 信源熵

$$H(X) + -0.1\log 0.1 - 0.18\log 0.18 - 0.4\log 0.4 - 0.05\log 0.05 - 0.06\log 0.06 - 0.1\log 0.1 - 0.07\log 0.07 - 0.04\log 0.04 = 2.55bit/symbol$$

信源 符号 xi	符号概 率 pi	编码过程	编码	码长
x1	0.4	→ 0.4 → 0.4 → 0.4 → 0.4 → 0.6 <u>0</u>	1	1
x2	0.18	→ 0.18 → 0.18 → 0.19 → 0.23 → 0.27 □ 0.4 1	001	3
x3	0.1	→ 0.1 0.13 0.18 0.19 <u>0</u> 0.23 <u>1</u>	011	3
x4	0.1	→ 0.1 \(\sqrt{0.13} \) \(\frac{0.13}{1} \) \(\frac{0.18}{1} \)	0000	4
x5	0.07	0.09 0.1 <u>0</u> 0.1 <u>1</u>	0100	4
x6	0.06	√ 0.07 <u>0</u> √ 0.09 <u>1</u>	0101	4
x7	0.05	<u>□</u>	00010	5
x8	0.04	1	00011	5

$$\overline{K} = 0.4 \cdot 1 + 0.18 \cdot 3 + 0.1 \cdot 3 + 0.1 \cdot 4 + 0.07 \cdot 4 + 0.06 \cdot 4 + 0.05 \cdot 5 + 0.04 \cdot 5 = 2.61$$

$$R = \frac{H(X)}{\overline{K}} = \frac{2.552}{2.61} = 0.978$$

(3) 香农编码

信源符号	符号概率	累加概率	-Logp(xi)	码长 Ki	码字
xi	pi	Pi			
x1	0.4	0	1.322	2	00
x2	0.18	0.4	2.474	3	011
х3	0.1	0.58	3.322	4	1001
x4	0.1	0.68	3.322	4	1010
x5	0.07	0.78	3.837	4	1100
x6	0.06	0.85	4.059	5	11011
x7	0.05	0.91	4.322	5	11101
x8	0.04	0.96	4.644	5	11110

平均码长:

$$\overline{K} = 0.4\cdot2 + 0.18\cdot3 + 0.1\cdot4 + 0.1\cdot4 + 0.07\cdot4 + 0.06\cdot5 + 0.05\cdot5 + 0.04\cdot5 = 3.17$$

$$R = \frac{H(X)}{\overline{K}} = \frac{2.552}{3.17} = 0.805$$

(4) 费诺编码:

信源符	符号概					码	码长
号 xi	率 pi					117	拘入
x1	0.4	0	0			00	2
x2	0.18	U	1			01	2
х3	0.1		0	0		100	3
x4	0.1			1		101	3
x5	0.07	1		0	0	1100	4
x6	0.06	1	1	U	1	1101	4
x7	0.05		1	1	0	1110	4
x8	0.04			1	1	1111	4

 $K = 0.4 \cdot 2 + 0.18 \cdot 2 + 0.1 \cdot 3 + 0.1 \cdot 3 + 0.07 \cdot 4 + 0.06 \cdot 4 + 0.05 \cdot 4 + 0.04 \cdot 4 = 2.64$

$$R = \frac{H(X)}{K} = \frac{2.552}{2.64} = 0.967$$

5-13

5-13 有一9个符号的信源,概率分别为 1/4,1/4,1/8,1/8,1/16,1/16,1/16,1/32,

1/32,用三进制符号(a,b,c)编码。

- (1) 编出费诺码和哈夫曼码,并求出编码效率;
- (2) 若要求符号 c 后不能紧跟另一个 c,编出一种有效码,其编码效率是多少?

解: (1)、费诺编码如下: 令 abc 分别为 012

信源符号 xi	符号概率 pi	编码过程	编码过程				
x1	1/4	0			0		
x2	1/4	1	0		10		
х3	1/8		1		11		
x4	1/8	2	0		20		
x5	1/16		1	0	210		
x6	1/16			1	211		
x7	1/16		2	0	220		
x8	1/32			1	221		
x9	1/32			2	222		

$$H(X) = 2 \times \frac{1}{4}\log 4 + 2 \times \frac{1}{8}\log 8 + 3 \times \frac{1}{16}\log 16 + 2 \times \frac{1}{32}\log 32 = \frac{45}{16}$$

$$\bar{\mathbf{k}} = 1 \times \frac{1}{4} + 2 \times \frac{1}{4} + 2 \times \frac{1}{8} \times 2 + 3 \times \frac{1}{16} \times 3 + 2 \times \frac{1}{32} \times 3 = \frac{32}{16} = 2 \ \eta = \frac{\frac{45}{16}}{2lb3} = 88.7\%$$

哈夫曼编码如下:

1/4(1)、1/4(2)、1/8 (01)、1/8 (02)、1/16 (001)、1/16 (002)、1/16 (0000)、1/32 (0001)、1/32 (0002)。

$$\bar{k} = \frac{1}{4} \times 1 \times 2 + \frac{1}{8} \times 2 \times 2 + \frac{1}{16} \times 2 \times 3 + \frac{1}{16} \times 4 + \frac{1}{32} \times 4 \times 2 = \frac{15}{8}$$

$$\eta = \frac{\frac{45}{16}}{(\frac{15}{8})lb3} = \frac{3}{2lb3} = 95\%$$

(2) 根据三叉树来寻找码字比较合理,如图 5-15(a)所示

不能两个字符 "C"紧相连的唯一可译码可能是图 5-15(b)中的节点作为码字

A) {a, ba, bb, caa, cab, cba, cbb, cbca, cbcb}, 或

{a, ba, bb, (bc 不能选,因为选了 bc,整个"c"开头的节点都不能选),caa, cab, (cac 不能选,因为如信源连续出现两个码字为"cac"的信显示目录符号,就违背了规则),cba,,cbb, cbca,cbcb},即: {a, ba, bb, caa, cab, cba, cbb, cbca,cbcb}。

依据这种方法还可能写出很多,如

- B) {a, ca, cb, baa, bab, bba, bbb, bca, bcb}, 或
- C) {c, ba, bb, aa, aba, abb, aca, acba, acbb}

其编码效率分别为 0.81; 0.84; 0.87

图 5-15 (a) 三叉满树

图 5-15 (b) 去掉连续两个 "c"的节点的三叉树

- 5-14 一信源可能发出的数字有 1,2,3,4,5,6,7,对应的概率分别为 p(1)=p(2)=1/3,p(3)=p(4)=1/9,p(5)=p(6)=p(7)=1/27,在二进制或三进制无噪信道中传输,若二进制信道中传输一个码字需要 1.8 元人民币,三进制信道中传输一个码字需要 2.7 元人民币。
 - (1) 编出二进制符号的哈夫曼码,求其编码效率;
 - (2) 编出三进制符号的费诺码,求其编码效率;
 - (3) 根据(1)和(2)的结果,确定在哪种信道中传输可得到较小的花费。

解: (1)二进制 Huffman 编码

信源符号	符号概 率 pi	编码过程	编码	码长
xi				
x1	1/3	→ 1/3 → 1/3 → 1/3 √ 2/3 <u>0</u>	00	2
x2	1/3	→ 1/3 → 1/3 → 1/3 <u>0</u> 1/3 <u>1</u>	01	2
x3	1/9	→ 1/9 → 1/9 → 2/9 · 1/3 · 1	100	3
x4	1/9	→ 1/9 1/9 <u>0</u> 1/9 <u>1</u>	101	3
x5	1/27	2/27 <u>n</u> 1/9 <u>1</u>	111	3
х6	1/27	<u>0</u> 1/27 <u>1</u>	1100	4
x7	1/27	<u>] 1 </u>	1101	4

$$\begin{split} H(X) &= 2 \times \frac{1}{3} \log 3 + 2 \times \frac{1}{9} \log 9 + 3 \times \frac{1}{27} \log 27 = 1.057 + 0.7044 + 0.5283 = 2.289 \\ \bar{K} &= \frac{1}{3} \times 2 \times 2 + \frac{1}{9} \times 3 \times 2 + \frac{1}{27} \times 3 + \frac{1}{27} \times 4 \times 2 = 2.407 \\ \eta &= \frac{H(X)}{\bar{K}} = \frac{2.289}{2.407} = 95\% \end{split}$$

(2)三进制费诺编码

信源符	符号概	编码过程	编码过程		
号 xi	率 pi				
x1	1/3	0			0
x2	1/3	1			1
x3	1/9	2	0		20
x4	1/9		1		21
x5	1/27		2	0	220
x6	1/27			1	221
x7	1/27			2	222

$$\overline{K} = \frac{1}{3} \times 1 \times 2 + \frac{1}{9} \times 2 \times 2 + \frac{1}{27} \times 3 \times 3 = \frac{13}{9}$$
$$\eta = \frac{H(X)}{\overline{K}} = \frac{2.289}{\frac{13}{9} \log 3} = 100\%$$

(3) 传输二进制 Huffman 编码花费 4.33 元,三进制费诺编码花费 3.9 元,所以后者费用少。

5-15 有二元独立序列,已知 p_0 =0.9, p_1 =0.1,求这序列的平均符号熵。当用哈夫曼编码时,以 3 个二元符号合成一个新符号,求这种符号的平均代码长度和编码效率。设输入二元符号的速率为每秒 100 个,要求 3min 内溢出和取空的概率均小于 0.01,求所需的信道码率(单位为 bit/s)和存储器容量(比特数)。若信道码率已规定为 50bit/s,存储器容量将如何选择?

解: (1)
$$H(x) = 0.9 \log \frac{10}{9} + 0.1 \log 10 = 0.136 + 0.332 = 0.47 bit / symbol$$
.

以 3 个二元符号全成一个新符号编码方法

二进制	概率	编	码过程											码字	码长
000	0.729	1	0.729	•	0.729		₩.729		0.729		•0.729		0.729	0	1
001	0.081	-	0.081	-	0.081		₩.081		0.109		0.162	0	0.271	100	3
010	0.081	-	0.081	-	0.081		1 0.081	Z	0.081	Q	0.109	1		101	3
100	0.081	-	0.081	-	0.081		7 .081	0	0.081	1				110	3
011	0.009		4 0.01	\searrow	0.018	0	0.028	1						11100	5
101	0.009		0.009	6	0.01	1								11101	5
110	0.009	10	2 .009	1										11110	5
111	0.001	1												11111	5

$$\bar{k} = (0.729 \times 1 + 0.081 \times 3 \times 3 + 0.009 \times 5 \times 3 + 0.001 \times 5) / 3$$
$$= (0.729 + 0.729 + 0.135 + 0.005) / 3 = 0.533$$
$$0.47$$

$$\eta = \frac{0.47}{0.533} = 88.2\%$$

(2) 信道码率 R=100 信道符号/秒*0.533bit/信道符号=53.3bit/s 码方差

$$\sigma^{2} = E(k_{i}^{2}) - E^{2}(k_{i}) = E(k_{i}^{2}) - (\bar{\mathbf{k}})^{2}$$

$$= \left(0.729 \times 1 + 0.081 \times 9 \times 3 + 0.009 \times 25 \times 3 + 0.001 \times 25\right) / 9 - 0.2841 \times 9 \times 1 + 0.001 \times 10^{-2} \times 1$$

$$= (0.729 + 2.187 + 0.675 + 0.025)/9 - 0.2841$$

$$= 0.4017 - 0.2841 = 0.1177$$

存储容量 $M \ge 2A\sqrt{N}\sigma = 2 \times 2.327 \times \sqrt{3 \times 60 \times 100 \times 0.1177} = 4.654 \times 45.9304 = 214bits$

(也可采用简单估算方法: $M = (3 \times 60 \times R) \times 0.02 = 191.88 = 192 bits$)

(3)若 R=50,则 3 分钟后存储器会增加 $3 \times 60 \times (53.3-50) = 594bits$,因此开始时存储器不应到半满,存储容量可略小于 214+594=808bits。

5-16 离散无记忆信源发出 A,B,C 3 种符号,其概率分布为 5/9,1/3,1/9,应用算术 编码方法对序列(C,A,B,A)进行编码,并对结果进行解码。

解: 1)编码

符号	符号概率	符号累积概率
A	5/9	0
В	1/3	5/9=0.1000111000111000111
С	1/9	8/9=0.111000111000111000

设
$$p(\Phi) = 1, P(\Phi) = 0$$

$$\Pr[\mathbb{Q}] \frac{p(\Phi \, C) = p(\Phi) p(C) = p(C) = 1 \, / \, 9}{P(\Phi \, C) = P(\Phi) + p(\Phi) P(C) = 0 + 8 \, / \, 9 = 8 \, / \, 9}$$

(2)L=2 时

$$p(CA) = p(C)p(A) = 1/9 \times 5/9 = 5/81$$

$$P(CA) = P(C) + p(C)P(A) = 8/9 + 1/9 \times 0 = 8/9$$

(3)L=3 时

$$p(CAB) = p(CA)p(B) = 5/81 \times 1/3 = 5/243$$

$$P(CAB) = P(CA) + p(CA)P(B) = 8/9 + 5/81 \times 5/9 = 673/729$$

(4)L=4 时

$$p(CABA) = p(CAB)p(A) = 5/243 \times 5/9 = 25/2187$$

$$P(CABA) = P(CAB) + p(CAB)P(A) = 673 / 729 + 5 / 243 \times 0 = 673 / 729$$

= 0.92318 = 0.1110110001b

$$\left[lb \, \frac{1}{p(CABA)} \right] = \left[lb \, \frac{2187}{25} \right] = 7$$

$$C = 1111000$$

2) 解码

(1)码长 K=7,1110001<11111000<1,所以译码为字符 C。
$$\left[lb\frac{1}{p(C)}\right]$$
=4 < K ,继续译码

(2)
$$0$$
 <0.0100111<0.10001,所以译码为字符 A。 $\left[lb \, \frac{1}{p(C)p(A)} \right] = \left[lb \, \frac{81}{5} \right] = 5 < K$,继续译码

码字
$$C = \frac{C - P(A)}{p(A)} = \frac{0.0100111 - 0}{0.1000111} = 0.1000111$$

(3)
$$0.1000111 \le 0.1000111 < 0.111000$$
,所以译码为字符 B。
$$\left[lb \, \frac{1}{p(C)p(A)p(B)} \right] = \left[lb \, \frac{243}{5} \right] = 6 < K \, , \, \,$$
继续译码

码字
$$C = \frac{C - P(B)}{p(B)} = \frac{0.1000111 - 0.1000111000111000111}{0.0101011} = 0$$

译码输出为: CABA

5-17

5-17 在电视信号中,亮度信号的黑色电平为 0,白色电平为 L。用均匀分割来量化 其样值,要求峰功率信噪比大于 50dB,求每样值所需的量化比特数。

解:设L为最大幅值,n为量化级数,则均匀量化失真 $D=\frac{L^2}{12n}$

信息率与失真的关系为 $R = \log(n) = \frac{1}{2}\log\frac{L^2}{12D}$

$$\therefore L^2 / D = 10^5$$

$$\therefore R = \frac{1}{2} \log \frac{L^2}{12D} = \frac{1}{2} \log \frac{10^5}{12} = 6.51$$

所以每样值量化比特数为[R] = 7bit

第六章

6-1

6-1 写出构成二元域上四维 4 重矢量空间的全部矢量元素,并找出其中一个两维子空间及其相应的对偶子空间。

解:由题可得,二元域上四维4重矢量空间的全部矢量元素为: (0000,0001,0010,0011,0100,0101,0111,1000,1001,1010,1011,1100,1101,1111)。 其中一个两维子空间的为(1000,0100),其对偶子空间为(0010,0001)。

6-2

6-2 若 s_1 和 s_2 是矢量空间 V 的两个子空间,证明 s_1 和 s_2 的交也是 V 的子空间。

证明: 已知子空间 $S_1 \subset V, S_2 \subset V$ 。设子空间 $S_{12} = S_1 \cap S_2$,则 $S_{12} \subset S_1, S_{12} \subset S_2$ 。所以 $S_{12} \subset V$ 。

6-3

6-3 某系统(8,4) 码,其 4 位校验位 v_i , i=0,1,…,3 与 4 位信息位 u_i , i=0,1,…,3 的关系是

$$\begin{cases} v_0 = u_{1+}u_{2+}u_3 \\ v_1 = u_{0+}u_{1+}u_2 \\ v_2 = u_{0+}u_{1+}u_3 \\ v_3 = u_{0+}u_{2+}u_3 \end{cases}$$

求该码的生成矩阵、校验矩阵及该码的最小距离,并画出该编码器硬件逻辑连接图。

解: (1) 设系统码生成矩阵 G

$$G = \begin{bmatrix} I_4 \mid P \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & p_{10} & p_{11} & p_{12} & p_{13} \\ 0 & 1 & 0 & 0 & p_{20} & p_{21} & p_{22} & p_{23} \\ 0 & 0 & 1 & 0 & p_{30} & p_{31} & p_{32} & p_{33} \\ 0 & 0 & 0 & 1 & p_{40} & p_{41} & p_{42} & p_{43} \end{bmatrix}$$

码集为

$$C = (u_{\scriptscriptstyle 0}, u_{\scriptscriptstyle 1}, u_{\scriptscriptstyle 2}, u_{\scriptscriptstyle 3}, v_{\scriptscriptstyle 0}, v_{\scriptscriptstyle 1}, v_{\scriptscriptstyle 2}, v_{\scriptscriptstyle 3})$$

$$\because C_i = U_i G, \therefore V_i = (v_0, v_1, v_2, v_3) = (u_0, u_1, u_2, u_3) P$$

由已知条件校验位与信息位的关系可知

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\therefore G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

因为校验矩阵 H 的列秩为 3, 所以该码的最小距离为 4。

设 $(u_0, u_1, u_2, u_3) = (0001), (0010), (0100), (1000)$,基底为: (00011011)、(00101101)、(01001110)、(10000111)。

生成矩阵为:
$$G = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$$
可得:

$$H = egin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \ \end{pmatrix}, \;\;$$
最小距离 $\mathbf{d}_{\min} = 4$ 。

(2) 硬件逻辑图为

6-4 将本章例 6-4 的(7,4)系统码缩短为(5,2)码,写出缩短码的生成矩阵和校验矩阵,并且列出缩短前、后的所有码字加以比较。

生成矩阵
$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

(2) 缩短 (5,2) 码校验矩阵是 (7,4) 校验矩阵 H 去掉左边的两列,所以为
$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

其生成矩阵是(7,4)生成矩阵去掉上边的两行与左边的两列,所以为 $\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$

(2) 缩短前后的码字比较

(7,4) 码信息位	(7,4) 码码字	(5,2) 码信息位	(5,2) 码码字
0000	0000 000	00	00 000
0001	0001 011	01	01 011
0010	0010 110	10	10 110
0011	0011 101	11	11 101
0100	0100 111	无效	无效
0101	0101 100		
0110	0110 001		
0111	0111 010		
1000	1000 101	无效	无效
1001	1001 110		
1010	1010 011		
1011	1011 000		
1100	1100 010	无效	无效
1101	1101 001		
1110	1110 100		
1111	1111 111		

缩短前后的码字见一表,可以看出:因为缩短了两位,所以码字只有原来的四分之一;缩短后校验位保持不变,最短小距离保持不变,纠错能力保持不变。

6-5 列出本章例 6-4 的(7,4)汉明码的标准阵列译码表。若收码 R=(0010100,0111000,1110010),由标准阵列译码表判断发码是什么?

解: (1) (7,4)汉明码的校验矩阵

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

生成矩阵

$$\mathbf{G} \! = \! \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

码集为:

F 3 / 2 / 3 ·	
信息	系统码字
0000	0000 000
0001	0001 011
0010	0010 110
0011	0011 101
0100	0100 111
0101	0101 100
0110	0110 001
0111	0111 010
1000	1000 101
1001	1001 110
1010	1010 011
1011	1011 000
1100	1100 010
1101	1101 001
1110	1110 100
1111	1111 111

$$S = EH^{T} = E \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

标准阵列译码表为

かい正げて	1/31/17	1/10/3														
S0=	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
000	000	011	110	101	111	100	001	010	101	110	011	000	010	001	100	111
	0	11	22	29	39	44	49	58	69	78	83	88	98	105	116	127
S1=	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111
101	000	011	110	101	111	100	001	010	101	110	011	000	010	001	100	111
	64	75	86	93	103	108	113	122	5	14	19	24	34	41	52	63
S2=	0100	0101	0110	0111	0000	0001	0010	0011	1100	1101	1110	1111	1000	1001	1010	1011
111	000	011	110	101	111	100	001	010	101	110	011	000	010	001	100	111
	32	43	54	61	7	12	17	26	101	110	115	120	66	73	84	95
S3=	0010	0011	0000	0001	0110	0111	0100	0101	1010	1011	1000	1001	1110	1111	1100	1101
110	000	011	110	101	111	100	001	010	101	110	011	000	010	001	100	111
	16	27	6	13	55	60	33	42	85	94	67	72	114	121	100	111
S4=	0001	0000	0011	0010	0101	0100	0111	0110	1001	1000	1011	1010	1101	1100	1111	1110
011	000	011	110	101	111	100	001	010	101	110	011	000	010	001	100	111
	8	3	30	21	47	32	57	50	77	70	91	80	106	97	124	119
S5=	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
100	100	111	010	001	011	000	101	110	001	010	111	100	110	101	000	011
	4	15	18	25	35	40	53	62	65	74	87	92	102	109	112	123
S6=	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
010	010	001	100	111	101	110	011	000	111	100	001	010	000	011	110	101
	2	9	20	31	37	46	51	56	67	76	81	90	96	107	118	125
S7=	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
001	001	010	111	100	110	101	000	011	100	111	010	001	011	000	101	110
				l .		ı	48	59		ı	1		ı	1		1

(2) 若收码 R=(0010100,0111000,1110010)

$$RH^{\scriptscriptstyle T} = \begin{bmatrix} 0010100, 0111000, 1110010 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 010, 010, 110 \end{bmatrix}$$

C = R + E = (0010100 + 0000010, 0111000 + 0000010, 1110010 + 0010000) = (0010110, 0111010, 1100010) + (0010110, 01110100, 01110100, 0111000, 0111000, 0111000, 0111000, 0111000, 0111000, 0111000, 0111000, 0111

6-6

某线性二进码的生成矩阵
$$G=egin{bmatrix}0&0&1&1&1&0&1\\0&1&0&0&1&1&1\\1&0&0&1&1&1&0 \end{bmatrix}$$
,求:

- (1) 写出 G 的系统形式;
- (2) 计算该码的校验矩阵 H;
- (3) 列出该码的伴随式;
- (4) 计算该码的最小距离;
- (5) 证明:与信息序列 101 相对应的码字正交于 H。

解:

$$(1) \ \ G = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

(2)
$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(3)

$$S = EH^{T} = E \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

伴随式表格

S	Е
S0=0000	0000000
S1=1110	1000000
S2=0111	0100000
S3=1101	0010000
S4=1000	0001000
S5=0100	0000100
S6=0010	0000010
S7=0001	0000001

(4)因 H 中任意三列相加等于另一列, 所以最小距离为 4

(5)
$$C = MG = \begin{bmatrix} 101 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1010011 \end{bmatrix}$$

$$CH^{T} = \begin{bmatrix} 1010011 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0000 \end{bmatrix}, 所以正交$$

6-7 设计一个(15,11)系统汉明码的生成矩阵 G,再设计一个由 g(x)=1+x+x生成的系统(15,11)循环汉明码的编码器。

解: (1)(15,11)系统汉明码校验矩阵

所以系统生成矩阵为

(2)编码电路

6-8

- 6-8 根据例 6-5 的数据设计一个(7,3)循环码。
- (1) 列出所有码字证明其循环性;
- (2) 写出系统形式的生成矩阵。

解 : (1) 由 题 , n-k=4 , 由 于 $x^7+1=(x^4+x^2+x+1)(x^3+x+1)$, 因 此 , $g(x)=x^4+x^2+x+1, g(x)为(10111), 又 m(x)=(001), (010), (011), (100), (101), (110), (111), (000) 由 于 ,$ C(X)=m(x)g(x),故其所有的码字为: (0010111) (0101110) (0111001) (1011100) (1001011) (1110010) (1001011) (0000000)。由码字可知它具有循环性。

(2) 由题,可得其生成矩阵为: $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$.

6-9

6-9 计算(7,4)系统循环汉明码最小重量的可纠差错图案和对应的伴随式。

解:由于汉明码是完备码,所以只有七种错误图案,e=(0000001)、(0000010)、(0000100)、(0001000)、(0010000)、(1000000)、(0000000),故可得其对应的伴随式为: $s=eH^T=(001)$ 、(010)、(100)、(011)、(110)、(111)、(101)、(000)。

6-10

6-10 证明二进制[23,12,7] Golay 码是完备码。

解:由题, $2^{23-12}=2048=1+C_{23}^1+C_{23}^2+C_{23}^3$,所以,其为能够纠正最多 3 位错误的完备码。

6-11

6-11 例 6-9 中,若八进制符号是 $\alpha^6\alpha^2\alpha^3$,生成多项式不变,则编出的八进制 RS 码及其二进制衍生码各是什么?

(1)

$$g(x) = x^{4} + \alpha^{3}x^{3} + x^{2} + \alpha x + \alpha^{3}, \qquad n - k = 4$$

$$m(x) = \alpha^{6}x^{2} + \alpha^{2}x + \alpha^{3}, \qquad k = 3$$

$$x^{n-k}m(x) = \alpha^{6}x^{6} + \alpha^{2}x^{5} + \alpha^{3}x^{4}$$

$$r(x) = x^{n-k}m(x) \mod g(x) = \alpha x^{2} + \alpha^{5}x + 1$$

$$\frac{\alpha^{6}x^{2} + \alpha^{4}}{x^{4} + \alpha^{3}x^{3} + x^{2} + \alpha x + \alpha^{3}} \frac{\lambda^{6}x^{6} + \alpha^{2}x^{5} + \alpha^{3}x^{4}}{\lambda^{6}x^{6} + \alpha^{2}x^{5} + \alpha^{6}x^{4} + x^{3} + \alpha^{2}x^{2}}$$

$$\frac{\alpha^{4}x^{4} + x^{3} + \alpha^{2}x^{2}}{\alpha^{4}x^{4} + x^{3} + \alpha^{4}x^{2} + \alpha^{5}x + 1}$$

$$\alpha x^{2} + \alpha^{5}x + 1$$

$$c(x) = x^{n-k}m(x) + r(x) = (\alpha^6 x^6 + \alpha^2 x^5 + \alpha^3 x^4) + (\alpha x^2 + \alpha^5 x + 1)$$

对应的码字为 C= $(\alpha^6, \alpha^2, \alpha^3, 0, \alpha, \alpha^5, 1)$

(2)可将上述 8 进制(7,3)RS 码的码字($\alpha^6, \alpha^2, \alpha^3, 0, \alpha, \alpha^5, 1$)按照 GF(8)扩域表映射为(21,9)二进制衍生码字(101,100,011,000,010,111,001)。

6-12

$$\begin{split} g(x) &= x^{16} + x^{12} + x^5 + 1, & n - k = 16 \\ m(x) &= x^{17} + x^{16} + x^{14} + x^{12} + x^{11} + x^7 + x^5 + x^3 + x^2, & k = 22 \\ x^{n-k}m(x) &= x^{33} + x^{32} + x^{30} + x^{28} + x^{27} + x^{23} + x^{21} + x^{19} + x^{18} \\ r(x) &= x^{n-k}m(x) & \text{mod} \quad g(x) &= x^{15} + x^{13} + x^{11} + x^9 + x^5 \end{split}$$

CRC 码为: 1010101000100000

$$x^{33} + x^{32} + x^{30} + x^{28} + x^{27} + x^{23} + x^{21} + x^{19} + x^{18}$$

$$x^{32} + x^{29} + x^{22} + x^{17}$$

$$x^{32} + x^{30} + x^{29} + x^{28} + x^{27} + x^{23} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17}$$

$$x^{32} + x^{29} + x^{28} + x^{21} + x^{16}$$

$$x^{16}$$

$$x^{30} + x^{29} + x^{27} + x^{23} + x^{22} + x^{19} + x^{18} + x^{17} + x^{16}$$

$$x^{14}$$

$$x^{29} + x^{26} + x^{19} + x^{14}$$

$$x^{29} + x^{25} + x^{18} + x^{13}$$

$$x^{27} + x^{26} + x^{25} + x^{23} + x^{22} + x^{17} + x^{16} + x^{14} + x^{13}$$

$$x^{27} + x^{23} + x^{16} + x^{11}$$

$$x^{26} + x^{25} + x^{23} + x^{16} + x^{11}$$

$$x^{26} + x^{25} + x^{25} + x^{18} + x^{10}$$

$$x^{25} + x^{17} + x^{15} + x^{14} + x^{13} + x^{11} + x^{10}$$

$$x^{25} + x^{21} + x^{14} + x^{9}$$

$$x^{21} + x^{17} + x^{15} + x^{13} + x^{11} + x^{10} + x^{9}$$

$$x^{21} + x^{17} + x^{10} + x^{5}$$

$$x^{15} + x^{13} + x^{11} + x^{9} + x^{5}$$

6-13

6-13 证明:由 CRC-ITU-T 生成多项式 $g(x) = x^{16} + x^{12} + x^5 + 1$ 生成的码字的重量一定是偶数。

证明:

设

 $p = w[u^0], p \ge 0$

$$C(x) = M(x)G(x) = (m_{k-1}x^{k-1} + \dots + m_1x + m_0)(x^{16} + x^{12} + x^5 + 1)$$

$$= (m_{k-1}x^{k-1} + \dots + m_1x + m_0)x^{16} + (m_{k-1}x^{k-1} + \dots + m_1x + m_0)x^{12} + (m_{k-1}x^{k-1} + \dots + m_1x + m_0)x^5 + (m_{k-1}x^{k-1} + \dots + m_1x + m_0)$$
设 u^0 为 $(m_{k-1}x^{k-1} + \dots + m_1x + m_0)$ 对应的'0''1'序列, u^{16}, u^{12}, u^5 分别为 $(m_{k-1}x^{k-1} + \dots + m_1x + m_0)x^{16}$, $(m_{k-1}x^{k-1} + \dots + m_1x + m_0)x^{12}$, $(m_{k-1}x^{k-1} + \dots + m_1x + m_0)x^5$ 对应的'0''1'序列。

有

然

显

 $w[u^{16}] = w[u^{12}] = w[u^{5}] = w[u^{0}] = p$

 $w(u^{^{16}}+u^{^{12}})=(p-k_{_{1612}})+(p-k_{_{1612}})=2p-2k_{_{1612}},0\leq k_{_{1612}}\leq p$,因为如果两个'1'相加变成了'0',则相当

于消失了两个'1', 重量减 2。同理有 $w(u^5+u^0)=2p-2k_{50},0\leq k_{50}\leq p$,

$$\begin{split} &w[(u^{\scriptscriptstyle 16}+u^{\scriptscriptstyle 12})+(u^{\scriptscriptstyle 5}+u^{\scriptscriptstyle 0})]=[(2p-2k_{\scriptscriptstyle 1612})-k_{\scriptscriptstyle 161250}]+[(2p-2k_{\scriptscriptstyle 50})-k_{\scriptscriptstyle 161250}],\\ &0\leq k_{\scriptscriptstyle 161250}\leq \min\{(2p-2k_{\scriptscriptstyle 1612}),(2p-2k_{\scriptscriptstyle 50})\} \end{split}$$

所以码字 C 重量为 $[(2p-2k_{1612})-k_{161250}]+[(2p-2k_{50})-k_{161250}]=4p-2k_{1612}-2k_{50}-2k_{161250}$ 即一定是偶数。

6-14

生成某(2,1,3)卷积码的转移函数矩阵是 $G(D) = [1 + D^2, 1 + D + D^2 + D^3]$,

- (1) 画出编码器结构图;
- (2) 画出编码器的状态图;
- (3) 求该码的自由距离。

解:(1)根据转移函数矩阵,可得

$$g_{00}(D) = g_{00}^0 + g_{00}^1 D + g_{00}^2 D^2 + g_{00}^3 D^3 = 1 + D^2$$

$$g_{01}(D) = g_{01}^0 + g_{01}^1 D + g_{02}^2 D^2 + g_{03}^3 D^3 = 1 + D + D^2 + D^3$$

所以,
$$g_{00}^0=1, g_{00}^1=0, g_{00}^2=1, g_{00}^3=0, \\ g_{01}^0=1, g_{01}^1=1, g_{01}^2=1, g_{01}^3=1,$$

编码器应有1行(k=1)、4列(L+1=4)的记忆阵列。根据系数可画出卷积编码器的结构为

(2)第2、3、4列是记忆信息即编码器的状态,共有8种组合决定了编码器的8个状态。

状态表

状态	$m_0^{i-1} \ m_0^{i-2} \ m_0^{i-3}$
S 0	000
S 1	001
S2	010
S 3	011
S4	100
S5	101
S 6	110
S7	111

输入和状态的组合又共同决定了编码器的输出及下一个状态

输出表

状态		m_0^i	
		0	1
S0:	000	00/000	11/100
S1:	001	01/000	10/100
S2:	010	11/001	00/101
S3:	011	10/001	01/101
S4:	100	01/010	10/110
S5:	101	00/010	11/110
S6:	110	10/011	01/111
S7:	111	11/011	00/111

其对应状态图为

(3) 自由距离

从状态图看,从 S0 经 S4,S2,S1 到 S0,距离为 2+1+2+1=6; 或从 S0 经 S4,S6,S3,S1 到 S0,距离为 2+1+1+1+1=6。所以自由距离为 6。

6-15 某码率为 1/2、约束长度 K=3 的二进制 卷积码,其编码器如图 6-58 所示。

- (1) 画出状态图和网格图。
- (2) 求转移函数 T(D),据此指出自由距离。

解: (1) 状态图

第 2、3 列是记忆信息即编码器的状态,共有 4 种组合决定了编码器 的 4 个状态。

状态	$m_0^{i-1} \ m_0^{i-2}$
S 0	00
S1	01
S2	10
S 3	11

习题 6-15 图

输入和状态的组合又共同决定了编码器的输出及下一个状态

输出表

状态	m_0^i	
	0	1
S0: 00	00/00	11/10
S1: 01	11/00	00/10
S2: 10	10/01	01/11
S3: 11	01/01	10/11

其对应状态图为

(2) 网格图(略)

(3) 转移函数

$$T(D) = \frac{D^4(\frac{D^2}{1-D} + D)}{1 - (\frac{D^2}{1-D} + D)} = \frac{D^5}{1-2D} = D^5 + 2D^6 + 4D^7 + \cdots$$

所以自由距离为5

6-16

6-16 某卷积码 $G_0 = [1 \ 0 \ 0], G_1 = [1 \ 0 \ 1], G_2 = [1 \ 1 \ 1],$

- (1) 画出该码的编码器。
- (2) 画出该码的状态图和网格图。
- (3) 求出该码的转移函数和自由距离。

解: (1) 编码电路(略)

(2) 状态图

第2、3列是记忆信息即编码器的状态,共有4种组合决定了编码器的4个状态。

状态表

	V () L. V (
)	状态	$m_0^{i-1} \ m_0^{i-2}$	
,	S0	00	
	S1	01	
,	S2	10	
,	S3	11	

输入和状态的组合又共同决定了编码器的输出及下一个状态

输出表

状态	m_0^i	
	0	1
S0: 00	000/00	100/10
S1: 01	111/00	011/10
S2: 10	101/01	001/11
S3: 11	010/01	110/11

网格图(略)

(3) 转移函数和自由距离

$$\begin{split} T(D) &= \frac{D \times \left[\frac{D^2}{1 - D^2} + D^2\right] \times D^3}{1 - \left[\frac{D^2}{1 - D^2} + D^2\right] \times D^2} = \frac{\frac{D^6(2 - D^2)}{1 - D^2}}{\frac{1 - D^2 - (2 - D^2) \times D^4}{1 - D^2}} \\ &= \frac{D^6(2 - D^2)}{1 - D^2 - (2 - D^2) \times D^4} = \frac{2D^6 - D^8}{1 - D^2 - 2D^4 + D^6} = 2D^6 + D^8 + \cdots \end{split}$$

所以自由距离为6

- 6-17 某(3,1)卷积码的框图如图 6-59 所示。
- (1) 画出该码的状态图。

图 6-59 习题 6-17图

- (2) 求转移函数 T(D)。
- (3) 求该码的自由距离 d₁,在格栅图上画出相应路径(与全 0 码字相距 d₁的路径)。
- (4) 对 4bit 信息(x_1,x_2,x_3,x_4)和紧接的 2 位 0 比特位卷积编码后,以 p=0.1 的差错概率通过 BSC 信道传送到接收端。已知接收序列是(111,111,111,111,111),试用维特比算法找出最大似然的发送数据序列。

解: (1) 状态图

第2、3列是记忆信息即编码器的状态,共有4种组合决定了编码器的4个状态。

状态表

状态	$m_0^{i-1} \ m_0^{i-2}$	
S 0	00	
S1	01	
S2	10	
S3	11	

输入和状态的组合又共同决定了编码器的输出及下一个状态

输出表

状态	m_0^i	
	0	1
S0: 00	000/00	111/10
S1: 01	110/00	001/10
S2: 10	101/01	010/11
S3: 11	011/01	100/11

(2) 转移函数

$$T(D) = \frac{D^3 \times \left[\frac{D^3}{1 - D} + D^2\right] \times D^2}{1 - \left[\frac{D^3}{1 - D} + D^2\right] \times D} = \frac{\frac{D^7}{1 - D}}{1 - D^3}$$
$$= \frac{D^7}{1 - D - D^3}$$

(3) 自由距离

自由距离为7

网格图 (略)

(4) 已知接收序列为: 111,111,111,111,111

A)设p(i,j)表示达到i状态的第j个前状态;C(i,j)为对应的输出码字。由状态图可知

$$p(0,0) = 0, C(0,0) = 000; p(0,1) = 1, C(0,1) = 110$$

$$p(1,0) = 3, C(1,0) = 011; p(1,1) = 2, C(1,1) = 101$$

$$p(2,0) = 0, C(2,0) = 111; p(2,1) = 1, C(2,1) = 001$$

$$p(3,0) = 3, C(3,0) = 100; p(3,1) = 2, C(3,1) = 010$$

初始化路径量度 $PM^{0}(0) = 0, PM^{0}(1) = PM^{0}(2) = PM^{0}(3) = \infty;$

留存路径
$$S^{0}(0) = S^{0}(1) = S^{0}(2) = S^{0}(3) = \{000, 000, 000, 000\}$$

B) l = 1

此时 $R^l = 111$, 计算分支量度

$$BM^{1}(0,0) = w[C(0,0) \oplus R^{1}] = w[000 \oplus 111] = 3; BM^{1}(0,1) = w[C(0,0) \oplus R^{1}] = w[110 \oplus 111] = 1$$

$$BM^{1}(1,0) = w[C(1,0) \oplus R^{1}] = w[011 \oplus 111] = 1; BM^{1}(1,1) = w[C(1,1) \oplus R^{1}] = w[101 \oplus 111] = 1$$

$$BM^{1}(2,0) = w[C(2,0) \oplus R^{1}] = w[111 \oplus 111] = 0; BM^{1}(2,1) = w[C(2,1) \oplus R^{1}] = w[001 \oplus 111] = 2$$

$$BM^{1}(3,0) = w[C(3,0) \oplus R^{1}] = w[100 \oplus 111] = 2; BM^{1}(3,1) = w[C(3,1) \oplus R^{1}] = w[010 \oplus 111] = 2$$

计算路径量度

$$\begin{split} PM^{1}(0) &= \min_{j} \{PM^{0}[p(0,j)] + BM^{1}(0,j)\} \\ &= \min\{PM^{0}(0) + BM^{1}(0,0), PM^{0}(1) + BM^{1}(0,1)\} = \min\{0 + 3, \infty + 1\} = 3 \\ PM^{1}(1) &= \min_{j} \{PM^{0}[p(1,j)] + BM^{1}(1,j)\} \\ &= \min\{PM^{0}(3) + BM^{1}(1,0), PM^{0}(2) + BM^{1}(1,1)\} = \min\{\infty + 1, \infty + 1\} = \infty \\ PM^{1}(2) &= \min_{j} \{PM^{0}[p(2,j)] + BM^{1}(2,j)\} \\ &= \min\{PM^{0}(0) + BM^{1}(2,0), PM^{0}(1) + BM^{1}(2,1)\} = \min\{0 + 0, \infty + 2\} = 0 \\ PM^{1}(3) &= \min_{j} \{PM^{0}[p(3,j)] + BM^{1}(3,j)\} \\ &= \min\{PM^{0}(3) + BM^{1}(3,0), PM^{0}(2) + BM^{1}(3,1)\} = \min\{\infty + 2, \infty + 2\} = \infty \\$$
译码输出及更新留存路径

因为 $PM^1(2)$ 最小,所以输出 $S^0(2)$ (= $\{000,000,000,000\}$) 的最左边三位"000" 更新留存路径

$$S^{1}(0) = \{ [\overline{S^{0}(0)}] + C(0,0) \} = \{000,000,000,000\}$$

$$S^{1}(1) = \{ [\overline{S^{0}(3)}] + C(1,0) \} = \{000,000,000,0011\}$$

$$S^{1}(2) = \{ [\overline{S^{0}(0)}] + C(2,0) \} = \{000,000,000,111\}$$

$$S^{1}(3) = \{ [\overline{S^{0}(3)}] + C(3,0) \} = \{000,000,000,100\}$$

C)
$$l = 2$$

此时 $R^l = 111$, 计算分支量度

$$BM^{1}(0,0) = w[C(0,0) \oplus R^{1}] = w[000 \oplus 111] = 3; BM^{1}(0,1) = w[C(0,0) \oplus R^{1}] = w[110 \oplus 111] = 1$$

$$BM^{1}(1,0) = w[C(1,0) \oplus R^{1}] = w[011 \oplus 111] = 1; BM^{1}(1,1) = w[C(1,1) \oplus R^{1}] = w[101 \oplus 111] = 1$$

$$BM^{1}(2,0) = w[C(2,0) \oplus R^{1}] = w[111 \oplus 111] = 0; BM^{1}(2,1) = w[C(2,1) \oplus R^{1}] = w[001 \oplus 111] = 2$$

$$BM^{1}(3,0) = w[C(3,0) \oplus R^{1}] = w[100 \oplus 111] = 2; BM^{1}(3,1) = w[C(3,1) \oplus R^{1}] = w[010 \oplus 111] = 2$$

计算路径量度

$$\begin{split} PM^{1}(0) &= \min_{j} \{PM^{0}[p(0,j)] + BM^{1}(0,j)\} \\ &= \min\{PM^{0}(0) + BM^{1}(0,0), PM^{0}(1) + BM^{1}(0,1)\} = \min\{0 + 3, \infty + 1\} = 3 \\ PM^{1}(1) &= \min_{j} \{PM^{0}[p(1,j)] + BM^{1}(1,j)\} \\ &= \min\{PM^{0}(3) + BM^{1}(1,0), PM^{0}(2) + BM^{1}(1,1)\} = \min\{\infty + 1, \infty + 1\} = \infty \\ PM^{1}(2) &= \min_{j} \{PM^{0}[p(2,j)] + BM^{1}(2,j)\} \\ &= \min\{PM^{0}(0) + BM^{1}(2,0), PM^{0}(1) + BM^{1}(2,1)\} = \min\{0 + 0, \infty + 2\} = 0 \\ PM^{1}(3) &= \min_{j} \{PM^{0}[p(3,j)] + BM^{1}(3,j)\} \\ &= \min\{PM^{0}(3) + BM^{1}(3,0), PM^{0}(2) + BM^{1}(3,1)\} = \min\{\infty + 2, \infty + 2\} = \infty \end{split}$$

译码输出及更新留存路径

因为 $PM^1(2)$ 最小,所以输出 $S^0(2)$ (= $\{000,000,000,000\}$) 的最左边三位"000" 更新留存路径

$$S^{1}(0) = \{ [S^{0}(0)] + C(0,0) \} = \{000,000,000,000 \}$$

$$S^{1}(1) = \{ [S^{0}(3)] + C(1,0) \} = \{000,000,000,011 \}$$

$$S^{1}(2) = \{ [S^{0}(0)] + C(2,0) \} = \{000,000,000,111 \}$$

$$S^{1}(3) = \{ \overleftarrow{[S^{0}(3)]} + C(3,0) \} = \{000,000,000,100 \}$$