2017年全国高中数学联赛一试 (A卷) 第9题。 设长, m为实数,不等式 $|x^2-kx-m| \leq |y$) 所有 $x \in [a,b]$ 成立,求证: $b-a \leq 2\sqrt{2}$

:. 又 f ∀ x ∈ [a, b], 有:-|= f (x) ≤ 1

 $:: f(a) \leq |A| f(b) \leq |A| f(\frac{a+b}{2}) \geqslant -1.$

 $\therefore a^2 - ka - m \le |\underline{A}b^2 - kb - m \le |\underline{A}\left(\frac{a+b}{2}\right)^2 - k \cdot \frac{a+b}{2} - m \ge -|\underline{A}|$ ·化简消元得:(b-a)258. (此处的在草稿纸上尝试一下).

 $|b-a| \leq 2\sqrt{2}$ $|b-a| \leq 2\sqrt{2}$ $|b-a| \leq 2\sqrt{2}$ $|b-a| \leq 2\sqrt{2}$

的方程 X2-1×-m=1的两根为: X1, X2.

 $X_1 + X_2 = k$. $X_1 \cdot X_2 = -m-1$.

 $|X_1 - X_2| = \sqrt{(X_1 - X_2)^2} = \sqrt{X_1^2 - 2X_1X_2 + X_2^2} = \sqrt{(X_1 + X_2)^2 - 4X_1X_2} = \sqrt{k^2 + 4(m+1)}$

要此让 b-a 取最大值,需要: 4(-m)-k² =-/.

 $|x_1 - x_2| = \sqrt{k^2 + 4m + y} = \sqrt{8} = 2\sqrt{2} .$

.: b-a ≤2/2.