Final Project: Milestone 2

Mourad Askar, Gerardo Palacios, Joe Paszkiewicz, Ramoskaite, Evelina^{1,2}

 1 DSC 425 - Time Series Analysis and Forecasting 2 DePaul University

MILESTONE 2

Final Project: Milestone 2

Crypto-Currency and Stock Data

##	Index		data	
##	Min.	:2016-10-01	Min.	: 6.822
##	1st Qu.	:2017-12-31	1st Qu	.: 158.418
##	Median	:2019-04-01	Median	: 255.537
##	Mean	:2019-04-01	Mean	: 589.463
##	3rd Qu.	:2020-06-30	3rd Qu	.: 557.063
##	Max.	:2021-09-30	Max.	:4168.701
##			NA's	:4

Graphing the Time Series

Figure 1 shows the time series for Ethereum over the past 5 years. It appears to be a multiplicative, non-stationary time series with an exponential positive trend that has exploded most recently in 2021.

autoplot(data)

Figure 1

Figure 2, we can see the time series with a log transformation. It has transformed the exponential behavior into something more linear. There still remains a general increasing trend, and appears to be more additive.

MILESTONE 2 3

autoplot(log(data))

Figure 2

Figure 3, we can see the log returns. The plot shows general white noise with a few outliers in 2017 and 2020.

autoplot(diff(log(data)))

MILESTONE 2 4

 $Figure \ 3$

Auto-correlation

Figure 4 is the ACF plot. Auto-correlation has a strong presence in this time series. The ACF gradually decreases indicating a non-stationary series.

```
acf(log(data), na.action = na.pass)
```

MILESTONE 2 5

Series log(data)

Figure 4

Ljung Box Test

This can be further confirmed by performing the Ljung Box test. At lag 1, the Ljung-Box p-value is close to zero. This indicates that at the 99% confidence, the null hypothesis is rejected and one can conclude that the series is not independently distributed and exhibit serial correlation.

```
Box.test(log(data), lag = 1, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: log(data)
## X-squared = 1819.9, df = 1, p-value < 2.2e-16</pre>
```