Segmentacion de imágenes

Segmentación de imágenes

• Subdivisión de la imagen en zonas o clases disyuntas para identificar estructuras u objetos presentes en la imagen

- Zonas de interés en la imagen
- Identificadas por similitud/discontinuidad

Definición formal de Segmentación

 Operación de mapeo desde una imagen o conjunto de NxM píxeles hacia un conjunto finito de clases C

S:
$$NxM \rightarrow C$$

 $C=\{1,2,...,k\}$

Determinado por:

- Dominio del problema
- Meta de operación de la segmentación

Formulación básica

- Sea *R*: representación de la región completa de una imagen
- Segmentación = proceso que divide R en n subregiones $R_1, R_2, ..., R_n$ de tal forma que:
 - $-\bigcup_{i=1}^{n} R_i = R$: la segmentación debe ser completa (cada píxel pertenece a una región)
 - $-R_i$ es una región conexa, i = 1, ...n
 - $=R_i \cap R_j = \emptyset \quad \forall i, j, i \neq j$: las regiones son disyuntas
 - $-P(R_i) = VERDADERO, i = 1, ..n$
 - $P(R_i \cup R_j)$ = FALSO, para $i \neq j$

Formulación básica

- Sea *R*: representación de la región completa de una imagen
- Segmentación = proceso que divide R en n subregiones $R_1, R_2, ..., R_n$ de tal forma que:
 - $-\bigcup_{i=1}^{n} R_i = R$: la segmentación debe ser completa (cada píxel pertenece a una región)
 - $-R_i$ es una región conexa, i = 1, ...n
 - $R_i \cap R_j = \emptyset \quad \forall i, j, i \neq j$: las regiones son disyuntas
 - $-P(R_i) = VERDADERO, i = 1, ..n$
 - $P(R_i \cup R_j)$ = FALSO, para $i \neq j$

 $P(R_i)$: predicado lógico sobre los puntos de R_i . Propiedades que deben satisfacer los píxeles de una región segmentada

Características de una buena Segmentación

- Regiones resultantes
 - Uniformes y homogéneas con respecto a alguna característica de la imagen
 - nivel de gris
 - textura
- Regiones adyacentes
 - Valores significativamente diferentes con respecto a la característica de uniformidad
- Fronteras/límites
 - lo más simples posibles
 - sin dentados o irregularidades

Dos enfoques

- Segmetación por contornos
 - Búsqueda de discontinuidades en la intensidad de los niveles de gris de la imagen

- Segmentación por regiones
 - Búsqueda de las áreas homogéneas

Ejemplos de segmentación

FIGURE 10.1 (a) Image containing a region of constant intensity. (b) Image showing the boundary of the inner region, obtained from intensity discontinuities. (c) Result of segmenting the image into two regions. (d) Image containing a textured region. (e) Result of edge computations. Note the large number of small edges that are connected to the original boundary, making it difficult to find a unique boundary using only edge information. (f) Result of segmentation based on region properties.