Breast Cancer Classification using Six Machine Learning Algorithms

1. Overview

This project focuses on detecting and classifying breast cancer using machine learning algorithms to support early diagnosis and medical decision-making. The study utilizes a labeled dataset containing various clinical and cellular attributes to classify tumors as **malignant** or **benign**.

The main goal is to analyze the performance of multiple machine learning models and determine which one yields the highest accuracy and reliability for breast cancer prediction.

2. Objectives

- To preprocess and clean the breast cancer dataset for model readiness.
- To apply and compare the performance of six machine learning algorithms.
- To evaluate the models using standard classification metrics such as accuracy, precision, recall, and F1-score.
- To identify the most effective algorithm for early breast cancer detection.

3. Methodology

a. Data Collection

- Dataset sourced from the UCI Machine Learning Repository / Kaggle Breast Cancer Wisconsin Dataset.
- The dataset contains features computed from digitized images of breast mass FNA tests, describing cell nuclei characteristics such as radius, texture, perimeter, and smoothness.

b. Data Preprocessing

- Handled missing or null values and normalized numerical attributes.
- Encoded categorical labels (Malignant = 1, Benign = 0).
- Split data into training (80%) and testing (20%) subsets.

c. Algorithms Implemented

Six classification models were trained and evaluated:

- 1. Logistic Regression
- 2. Decision Tree Classifier
- 3. Random Forest Classifier
- 4. Support Vector Machine (SVM)

- 5. K-Nearest Neighbors (KNN)
- 6. Naive Bayes Classifier

Each model was trained on the same data and evaluated based on accuracy, confusion matrix, and classification report.

d. Evaluation Metrics

- Accuracy: Measures overall correctness.
- **Precision:** Proportion of true positives among predicted positives.
- Recall (Sensitivity): Proportion of true positives among actual positives.
- **F1-Score:** Harmonic mean of precision and recall.
- Confusion Matrix: Visualization of prediction results across classes.

4. Results

Algorithm	Accuracy (%)	Precision	Recall	F1-Score
Logistic Regression	98.24	0.98	0.98	0.98
Decision Tree	95.61	0.96	0.95	0.95
Random Forest	99.12	0.99	0.99	0.99
SVM	98.68	0.98	0.98	0.98
KNN	97.89	0.97	0.97	0.97
Naive Bayes	96.50	0.96	0.96	0.96

Observation:

- The Random Forest Classifier achieved the highest accuracy of 99.12%, outperforming other algorithms in terms of precision and recall.
- Logistic Regression and SVM also provided strong and consistent results, indicating robustness on linearly separable data.

5. Conclusion

This project demonstrates the efficiency of machine learning models in classifying breast cancer with high accuracy.

Among the six algorithms tested, **Random Forest Classifier** achieved the best performance due to its ensemble nature and ability to reduce overfitting.

The results suggest that machine learning can be a powerful diagnostic tool to assist clinicians in early detection and decision-making, ultimately helping reduce mortality rates through timely intervention.

Future Scope:

- Incorporate deep learning models (e.g., CNNs) for improved performance on image-based datasets.
- Use hyperparameter optimization (Grid Search / Random Search) for fine-tuning.
- Deploy the best-performing model as a web application using Flask or Streamlit for real-time predictions.