

SAR Compliance Test Report

Date of Report Number of pages: 14/06/2018 28 Client's Contact person:

Gordon Smith

Responsible Test engineer:

Kirsi Kyllönen

Testing laboratory:

Verkotan OyElektroniikkatie 17
90590 Oulu
Finland

Client:

7HUGS LABS29 bd Romain Rolland
92120 Montrouge
France

Tested device

Sevenhugs Smart Remote

Related reports:

Testing has been carried out in accordance with: 47CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC published RF exposure KDB procedures

IEEE 1528 - 2013

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Technique

RSS-102

Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

Documentation:

The test report must always be reproduced in full; reproduction of an excerpt only is subject

to written approval of the testing laboratory

Test Results:

The EUT complies with the requirements in respect of all parameters subject to the

The test results relate only to devices specified in this document

Date and signatures:

14.06.2018

For the contents:

Laboratory Manager

TABLE OF CONTENTS

1.	SUM	MARY OF SAR TEST REPORT	4
	L.1 T	EST DETAILS	4
:	L.2 N	MAXIMUM RESULTS	4
	1.2.1	Standalone SAR	
	1.2.2	Power density	
	1.2.3	Maximum Drift	
	1.2.4	Measurement Uncertainty	
2.	DESC	RIPTION OF THE DEVICE UNDER TEST (DUT)	6
2	2.1	SUPPORTED FREQUENCY BANDS AND OPERATIONAL MODES	6
2	2.2	SAR TEST EXCLUSIONS	6
	2.2.1	IEEE802.15.4 UWB positioning	6
3.	OUTP	UT POWER	8
3	3.1 N	MAXIMUM OUTPUT POWER	8
3	3.2 1	ESTED CONDUCTED POWER	8
4.	TEST	EQUIPMENT	9
_	1.1 7	EST EQUIPMENT LIST	c
	4.1.1	Isotropic E-field Probe Type EX3DV4	
(UCTION	
		PHANTOMS	_
		lar Flat Phantom (MFP)	
4	1.3 1	TSSUE SIMULANTS	10
4	1.4	YSTEM VALIDATION STATUS	11
4	1.5 S	YSTEM CHECK	
	4.5.1	Tissue Simulant Verification	11
5.	TEST	PROCEDURE	12
	5.1.1	Body-worn Configuration, 5 mm separation distance	12
į	5.2	CAN PROCEDURES	12
	5.3	SAR AVERAGING METHODS	12
6.	MEAS	SUREMENT UNCERTAINTY	13
7.	TEST	RESULTS	14
-	7.1 E	BODY-WORN CONFIGURATION 2.4GHZ WLAN, 5 MM SEPARATION DISTANCE	14
		SODY-WORN CONFIGURATION BLUETOOTH, 5 MM SEPARATION DISTANCE	
-		IMB CONFIGURATION CHECKS, 0 MM SEPARATION DISTANCE	
7	7.4	SIMULTANEOUS TRANSMISSION EVALUATION	15
ΑP	PENDI	(A: PHOTOS OF THE DUT	16
ΑP	PENDIX	B: SYSTEM CHECK SCAN	19
ΑP	PENDIX	C: MEASUREMENT SCAN	20
ΑP	PENDIX	D: RELEVANT PAGES FROM PROBE CALIBRATION REPORTS	22
ΔΡ	PENDIX	F. RELEVANT PAGES FROM DIPOLE CALIBRATION REPORTS	25

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Device under Test (DUT):

Product:	Sevenhugs Smart Remote	
Manufacturer:	7HUGS LABS	
Serial Number:	908E614AB4FE620139, C07C604AB4FE620139, D07C604AB4FE620139	
FCC ID Number:	2AEVC-SR1A	
IC ID Number:	20292-SR1A	
Model:	SR1A	
DUT Number:	22901, 22899, 22900	
Battery Type used in testing:	Integrated battery	
Portable/ Mobile device	Portable	
State of the Sample	Production sample	

Testing information:

Testing Performed:	6.6.2018
Notes:	-
Document ID:	FCC SAR report_Sevenhugs_ID2850_ 140618 .docx
Temperature °C	22±2 / Controlled
Humidity RH%	20±20 / Controlled
Measurement performed by:	Kirsi Kyllönen

1.2 Maximum Results

1.2.1 Standalone SAR

The maximum reported* SAR value for Body-worn configuration with 5 mm separation distance for transmitting systems are shown in a table below. The device conforms to the requirements of the standards when the maximum reported SAR value is less than or equal to the limit. The SAR limit specified in FCC 47 CFR part 2 (2.1093) and RSS-102 for Body is SAR_{1g} 1.6 W/kg.

Modes of Operation	Equipment Class	Highest Reported* SAR _{1g} (W/kg) in Body-Worn Condition, 5mm separation	Result
2.4 GHz WLAN	DTS	0.46	PASS
BT/BLE	DTS	0.07	PASS

 $[\]ensuremath{^{\star}}$ Reported SAR Values are scaled to maximum theoretical output power.

1.2.2 Power density

The device conforms the radiofrequency radiation exposure limits when the calculated power density value is less than or equal to the limit.

Modes of Operation	Power Density, S [mW/cm2]	FCC Power Density Limit [mW/cm²]	Result
IEEE802.15.4 UWB positioning 6489 MHz 6489 MHz	0.0004	1.0	Pass

Modes of Operation	Power Density, S [mW/m²]	ISED Power Density Limit [W/m²]	Result
IEEE802.15.4 UWB positioning 6489 MHz 6489 MHz	0.0044	10	Pass

1.2.1 Simultaneous Transmission

Highest Simultaneous Transmission SAR	Highest Reported SAR _{1g} (W/kg) in Body-Worn Condition, 5mm separation	Result
2.4 GHz WLAN + Bluetooth + UWB positioning at 3494 MHz	0.47	PASS

Simultaneous Transmission Evaluation, UWB positioning at 6489 MHz	Highest SUM	Result
(2.4 GHz WLAN SAR/ SAR requirement) + (Bluetooth SAR/ SAR requirement) + (UWB positioning 6489 MHz Power density/ Power density requirement)	0.29	PASS

1.2.3 Maximum Drift

Maximum Drift During Measurements	0.89 dB*

^{*}Drifts >5% have been considered in the scaling factor

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95 %	23.4%
	•

2. DESCRIPTION OF THE DEVICE UNDER TEST (DUT)

Device under testing is an smart remote controller. It can be used as hand-held device or held close to body.

Device Category	Portable
Exposure Environment	Uncontrolled

2.1 Supported Frequency Bands and Operational Modes

TX Frequency bands	Modes of Operation	Transmitter Frequency Range (MHz)
	2.4 GHz WLAN	2412-2472
	BT/BLE	2402-2480
	IEEE802.15.4-2011 UWB positioning	3494, 6489

All transmitter can operate simultaneously.

2.2 SAR test Exclusions

Due to the size and form factor of the DUT it can be body-worn or hand-held similarly to a mobile phone. Thus, based on footnote 26 in KDB447798, extremity SAR was not fully tested. Worst case verifications were made at 0 mm separation to verify extremity compliance.

2.2.1 IEEE802.15.4 UWB positioning

Standalone SAR test exclusion consideration for UWB transmitter at 3494 MHz frequency has been made to according to RSS-102, table 1 and KDB 447498 D01 General RF Exposure Guidance v06, section 4.3.1, for test separation distances <=50mm.

The maximum power of the transmitter is 0.1259 mW which is < 2mW i.e. below RSS-102 power exemption limit.

FCC SAR test exclusion was defined according to equation

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$, for separation distances <=50mm)

Frequency [GHz]	Max power (including tune-up tolerance)	Max Power [mW]	Antenna to edge distance [mm]	Result (4.3.1 a)	SAR test required (<=3.0)
3.494	-9	0.1259	5	0.05	NO

Standalone SAR estimation for the UWB transmitter at 3494 MHz is needed for simultaneous transmission evaluation of the DUT according to KDB 447498 D01 General RF Exposure Guidance v06, section 4.3.2.

It was defined according to equation:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg, for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR

Frequency [GHz]	Max power (including tune-up tolerance)	Max Power [mW]	Antenna to edge distance [mm]	Estimated SAR Result (4.3.2 b))
3.494	-9	0.1259	5	0.006

According to 47CFR §2.1093 Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

Power Density is calculated by equation:

$$S = \frac{P \cdot G}{4 \cdot \pi \cdot R^2}$$

Where,

S = Power Density

P = Power Input to Antenna

G = Gain of Antenna

R = Distance from transmitting Antenna

Modes of Operation	Frequency [MHz]	Distance, R [cm]	Maximum power input to Antenna, P [dBm]	Power Input to Antenna, P [mW]	Power Gain of Antenna, G [dBi]	Power Density, S [mW/cm²]
IEEE802.15.	6489	5	-9	0.126	0.44	0.00044

3. OUTPUT POWER

3.1 Maximum Output Power

From a Customer;

WLAN: Maximum defined output power, including tolerance of ±1.5 dBm.

	Standard Transmission mode	Modulation		Output power [dBm]		
Standard			Data rate [MBPS]	CH 1	CH 6	CH 11
802.11b	DSSS	BPSK	1	10.5	10.5	10.5
802.11b	DSSS	BPSK	2	12.5	12.5	12.5
802.11b	DSSS	BPSK	5.5	15.5	15.5	15.5
802.11b	DSSS	BPSK	11	15.5	15.5	15.5

Maximum tuning power defined for 802.11g/n mode is 14 dBm ± 1.5 dBm thus 802.11b is selected for SAR testing.

Bluetooth: Maximum defined output power.

Standard	Output power [dBm]			
Standard	2402 MHz	2441 MHz	2480 MHz	
Bluetooth	8.0	8.0	8.0	

UWB, Maximum defined output power

Transmission mode	Output power		
	[dBm]		
IEEE802.15.4	-9		

3.2 Tested conducted power

Conducted output power;

WLAN:

Standard	Transmission mode	Modulation	Data rate [MBPS]	Modulation Data rate [MBPS] Output power [dBm]			
Standard		Modulation		CH 1	CH 6	CH 11	
802.11b	DSSS	BPSK	5.5	13.25	12.66	11.95	

Bluetooth:

Standard	Output power [dBm]			
Standard	2402 MHz	2441 MHz	2480 MHz	
Bluetooth	4.92	6.93	8.0	

4. TEST EQUIPMENT

Dasy52 near field scanning systems, manufactured by SPEAG were used for SAR testing. The test system consists of high precision robotics system (Staubli), robot controller, computer, near-field probe, probe alignment sensor, and a phantom containing the tissue equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location of maximum electromagnetic field.

Figure 1 Schematic Laboratory Picture

4.1 Test Equipment List

Main used test system components are listed below. For full equipment list and calibration intervals, please contact the testing laboratory.

Test Equipment	Model	Serial Number	Calibration Date
DAE	DAE4	756	03.2018
Probe	EX3DV4	7447	03.2018
Dipole	D2450V2	729	07.2017
DASY5 Software	52.8.8.1258	-	NA
Signal Generator	SMIQ06B	835136042	NA
Amplifier	AR	320421	NA
Power meter	NRP-Z81	100218	12.2017

4.1.1 Isotropic E-field Probe Type EX3DV4

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Calibration certificate in Appendix D

Frequency	10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis)
	± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	$10 \mu\text{W/g}$ to > 100mW/g , Linearity: $\pm 0.2 \text{dB}$
Dimensions	Overall length: 330 mm Tip length: 10 mm Body diameter: 12 mm Tip diameter: 2.5 mm Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 6 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

Modular Flat Phantom (MFP)

The Triple Modular Phantom consists of three identical modules that can be installed and removed separately without emptying the liquid. It is used for compliance testing of small wireless devices in body-worn configurations.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 and FCC published RF Exposure KDB Procedures. The dielectric parameters of the used tissue simulants were within $\pm 10\%$ of the recommended values in all frequencies used. A liquid compensation algorithm was used in DASY5 with which measured peak average SAR values were corrected for the deviation of used liquid. Depth of the tissue simulant was at least 15.0 cm from the inner surface of the flat phantom.

Body 600-6000 MHz tissue simulant liquid Ingredients	
Deionized Water, tween, salt	

4.4 System Validation Status

					DAE	Dielectric	Conductivity σ	Validation Done
Frequency [MHz]	Test System	Dipole Type / SN	Probe Type / SN	Calibrated Signal Type	Unit / SN	Constant [ɛ] Body tissue simulant	[S/m] Body tissue simulant	Body tissue simulant
2450	SAR 2	D2450V2- SN:729	EX3DV4 - SN: 7447	CW	DAE 4 / 756	52.9	1.89	04.2018

4.5 System Check

Date	Tissue Type	Tissue Temp. [°C]	Frequency [MHz]	Input Power	Measured SAR _{1g} [W/kg]	1 W Target SAR _{1g} [W/kg]	1 W Normalized SAR _{1g} [W/kg]	Deviation 1g (%)	Plot #
6.6.2018	M600-6000	22±2	2450	250mW	12.2	53.7	48.8	-9.1	1

4.5.1 Tissue Simulant Verification

				Targe	et	Meas	ured		
Date	Tissue Type	Tissue Temp. [°C]	Frequency [MHz]	Conductivity, σ [S/m]	Dielectric Constant [ε]	Conductivity σ [S/m]	Dielectric Constant [ε]	Deviation σ (%)	Deviatio n ε (%)
6.6.2018	M600-	22	2450	1.95	52.7	1.98	50.4	1.7	-4.4
	6000		2412	1.91	52.8	1.95	50.4	2.0	-4.4
			2480	1.99	52.7	2.0	50.4	0.6	-4.4

5. TEST PROCEDURE

The DUT was set to transmit continuously at a maximum power level using a manufacturer specified software.

5.1.1 Body-worn Configuration, 5 mm separation distance

The DUT was placed below the flat phantom using a SPEAG device holder. The DUT was lifted towards the phantom until 5mm separation distance was reached.

Photos of the test positions are presented in appendix A.

5.2 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan with 7x7x7 points covering a volume of 30x30x30mm was performed around the highest E-field value to determine the averaged SAR value. Power drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.3 SAR Averaging Methods

The maximum SAR value is averaged over a cube of tissue using interpolation and extrapolation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy47 are all based on the modified Quadratic Shepard's method (Robert J. Renka," Multivariate Interpolation of Large Sets of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

6. MEASUREMENT UNCERTAINTY

Uncertainty Budget IEEE 1528-2013

	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	V _{eff}
Measurement System								
Probe Calibration	±6.0 %	N	1	1	1	±6.0 %	±6.0 %	∞
Axial Isotropy	±4.7 %	R		0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	R	1.73	0.7	0.7	±3.9 %	±3.9 %	∞
Boundary Effects	±1.0 %	R	1.73	1	1	±0.6 %	±0.6 %	∞
Linearity	±4.7 %	R	1.73	1	1	±2.7 %	±2.7 %	∞
System Detection Limits	±1.0 %	R	1.73	1	1	±0.6 %	±0.6 %	∞
Modulation Response ^m	±2.4 %	R	1.73	1	1	±1.4 %	±1.4 %	∞
Readout Electronics	±0.3 %	N	1	1	1	±0.3 %	±0.3 %	∞
Response Time	±0.8 %	R	1.73	1	1	±0.5 %	±0.5 %	∞
Integration Time	±2.6 %	R	1.73	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise	±3.0 %	R	1.73	1	1	±1.7 %	±1.7 %	∞
RF Ambient Reflections	±3.0 %	R	1.73	1	1	±1.7 %	±1.7 %	∞
Probe Positioner	±0.4 %	R	1.73	1	1	±0.2 %	±0.2 %	∞
Probe Positioning	±2.9 %	R	1.73	1	1	±1.7 %	±1.7 %	∞
Max. SAR Eval.	±2.0 %	R	1.73	1	1	±1.2 %	±1.2 %	∞
Test Sample Related								
Device Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0 %	R	1.73	1	1	±2.9 %	±2.9 %	∞
Power Scaling	±6%	R	1.73	1	1	±3.5 %	± 3.5%	∞
Phantom and Setup								
Phantom Uncertainty	±6.1 %	R	1.73	1	1	±3.5 %	±3.5 %	∞
SAR correction	±1.9 %	R	1.73	1	0.84	±1.1 %	±0.9 %	∞
Liquid Conductivity (mea.)	±2.5 %	R	1.73	0.78	0.71	±1.1 %	±1.0 %	∞
Liquid Permittivity (mea.)	±2.5 %	R	1.73	0.26	0.26	±0.3 %	±0.4 %	∞
Temp. unc Conductivity	±3.4 %	R	1.73	0.78	0.71	±1.5 %	±1.4 %	∞
Temp. unc Permittivity	±0.4 %	R	1.73	0.23	0.26	±0.1 %	±0.1 %	∞
Combined Std. Uncertainty						±11.7 %	±11.6 %	361
Expanded STD Uncertainty						±23.4 %	±23.3 %	

7. TEST RESULTS

7.1 Body-Worn Configuration 2.4GHz WLAN, 5 mm separation distance

Band	Channel	Test Position**	Maximun Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Dudy Cycle	Measured SAR _{1g} [mW/g]	Scaling Factor	Reported SAR _{1g} [mW/g]	Plot #
802.11b	1	Left side	15.5	13.25	-0.22*	1	0.26	1.77	0.46	2
802.11b	1	Right side	15.5	13.25	-0.11	1	0.0723	1.68	0.12	
802.11b	1	Top side	15.5	13.25	0.2	1	0.0309	1.68	0.05	
802.11b	1	Bottom side	15.5	13.25	-0.2	1	0.0124	1.68	0.02	
802.11b	1	Front	15.5	13.25	-0.03	1	0.132	1.68	0.22	
802.11b	1	Back	15.5	13.25	0.08	1	0.179	1.68	0.30	

^{*}Drift considered in the scaling factor

7.2 Body-Worn Configuration Bluetooth, 5 mm separation distance

Band	Channel	Test Position**	Maximun Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Dudy Cycle	Measured SAR ₁₉ [mW/g]	Scaling Factor	Reported SAR _{1g} [mW/g]	Plot #
2.45	78	Left side	8	8.0	-0.54*	1	0.0009	1.13	0.001	
2.45	78	Right side	8	8.0	0.17	1	0.06	1.00	0.060	
2.45	78	Top side	8	8.0	NA***	1	0.0019	1.00	0.002	
2.45	78	Bottom side	8	8.0	NA***	1	0.00034	1.00	0.0003	
2.45	78	Front	8	8.0	0.32*	1	0.035	1.08	0.038	
2.45	78	Back	8	8.0	0.89*	1	0.058	1.23	0.072	3

^{*}Drift considered in the scaling factor

^{**}Picture of the test position is presented in appendix A.

^{**}The picture of the test position is presented in appendix A.

^{***} Due to low e-field generated by DUT at the location of drift measurement, the measurements are not applicable.

7.3 Limb Configuration checks, 0 mm separation distance

Band	Channel	Test Position**	Maximun Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Dudy Cycle	Measured SAR _{10g} [mW/g]	Scaling Factor	Reported SAR _{10g} [mW/g]	Plot #
WLAN 2.4	1	Left side	15.5	13.25	-0.11	1	0.328	1.68	0.55	
BT 2.45	78	Back side	8	8.0	0.49	1	0.0768	1.12	0.086	

7.4 Simultaneous transmission evaluation

Exposure Condition			Body SAR	_{1g} [mW/g]		
Test Position	Left	Right	Тор	Bottom	Front	Back
WLAN 2.4 GHZ	0.46	0.12	0.05	0.02	0.22	0.3
Bluetooth 2.45 GHZ	0.001	0.060	0.002	0.0003	0.038	0.072
UWB positioning 3.5 GHz	0.006	0.006	0.006	0.006	0.006	0.006
SAR Summation	0.47	0.19	0.06	0.03	0.26	0.38

Exposure Condition		Body SAR ₁	g [mW/g] or Po	wer density /	requirement	
Test Position	Left	Right	Тор	Bottom	Front	Back
WLAN 2.4GHZ	0.2875	0.0750	0.0313	0.0125	0.1375	0.1875
Bluetooth 2.45GHZ	0.001	0.060	0.002	0.0003	0.038	0.072
UWB positioning 6.4G	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
Summation	0.29	0.14	0.03	0.01	0.18	0.26
Simultaneous exposure evaluation	SUM<1	SUM<1	SUM<1	SUM<1	SUM<1	SUM<1

APPENDIX A: PHOTOS OF THE DUT

Size of the DUT is: 135 x 40 x 10 mm

Back of the DUT toward the phantom.

Front of the DUT toward the phantom.

Right side of the DUT toward the phantom.

Left side of the DUT toward the phantom.

Bottom side of the DUT toward the phantom.

Top side of the DUT toward the phantom.

APPENDIX B: SYSTEM CHECK SCAN

Plot 1

Date/Time: 6.6.2018 9:29:26

Test Laboratory: Verkotan Oy

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:729

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; σ = 1.983 S/m; ϵ_r = 50.391; ρ = 1000 kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY Configuration:

- Probe: EX3DV4 SN7447; ConvF(7.68, 7.68, 7.68); Calibrated: 20.3.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 31.0
- Electronics: DAE4 Sn756; Calibrated: 8.3.2018
- Phantom: SAR2_Phantom 1_triple flat; Type: QD 000 P51 Cx; Serial: 03_May_2017
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Pin=250 mW/Zoom Scan (7x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.44 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 24.8 W/kg

SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.72 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 18.8 W/kg

Pin=250 mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 20.1 W/kg

APPENDIX C: MEASUREMENT SCAN

Plot 2

Date/Time: 6.6.2018 11:22:27

Test Laboratory: Verkotan Oy

DUT: 7Hugs

Communication System: UID 0, WLAN 2.4 (0); Communication System Band: WLAN2.4GHz; Frequency: 2412 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): f = 2412 MHz; σ = 1.951 S/m; ϵ_r = 50.445; ρ = 1000 kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC)

DASY Configuration:

- Probe: EX3DV4 SN7447; ConvF(7.68, 7.68, 7.68); Calibrated: 20.3.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = -4.0, 31.0
- Electronics: DAE4 Sn756; Calibrated: 8.3.2018
- Phantom: SAR2_Phantom 1_triple flat; Type: QD 000 P51 Cx; Serial: 03_May_2017
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/DUT 3 Left side/Area Scan (131x41x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.392 W/kg

Configuration/DUT 3 Left side/Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 9.672 V/m; Power Drift = -0.22 dB Peak SAR (extrapolated) = 0.591 W/kg SAR(1 g) = 0.260 W/kg; SAR(10 g) = 0.106 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 0.450 W/kg

Plot 3

Date/Time: 6.6.2018 13:43:18

Test Laboratory: Verkotan Oy

DUT: 7Hugs

Communication System: UID 0, Bluetooth (0); Communication System Band: Bluetooth; Frequency: 2480 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2480 MHz; σ = 2.005 S/m; ϵ_r = 50.358; ρ = 1000 kg/m³

Phantom section: Center Section

DASY Configuration:

- Probe: EX3DV4 SN7447; ConvF(7.68, 7.68, 7.68); Calibrated: 20.3.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = -4.0, 31.0
- Electronics: DAE4 Sn756; Calibrated: 8.3.2018
- Phantom: SAR2_Phantom 1_triple flat; Type: QD 000 P51 Cx; Serial: 03_May_2017
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration 2/DUT 2 Back side 2 2/Zoom Scan 2 (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 1.835 V/m; Power Drift = 0.89 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.058 W/kg; SAR(10 g) = 0.025 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 0.0931 W/kg

APPENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORTS

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Verkotan

Accreditation No.: SCS 0108

Certificate No: EX3-7447_Mar18

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:7447

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: March 20, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID.	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-15)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Certificate No: EX3-7447_Mar18

Page 1 of 11

EX3DV4- SN:7447

March 20, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7447

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^a (mm)	Unc (k=2)
750	41.9	0.89	10.35	10.35	10.35	0.50	0.80	± 12.0 %
900	41.5	0.97	9.63	9.63	9.63	0.43	0.89	± 12.0 %
1750	40.1	1.37	8.68	8.68	8.68	0.35	0.85	± 12.0 %
1950	40.0	1.40	8.76	8.76	8.76	0.32	0.85	± 12.0 %
2150	39.7	1.53	8.65	8.65	8.65	0.29	0.85	± 12.0 %
2300	39.5	1.67	8.21	8.21	8.21	0.31	0.88	± 12.0 %
2450	39.2	1.80	7.77	7.77	7,77	0.34	0.85	± 12.0 %
2600	39.0	1.96	7.46	7.46	7.46	0.39	0.85	± 12.0 %
5250	35.9	4.71	5.17	5.17	5.17	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.46	4.46	4.46	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.68	4.68	4.68	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at celibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 54, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-7447_Mar18

Page 5 of 11

EX3DV4-SN:7447 March 20, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7447

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.20	10.20	10.20	0.56	0.80	± 12.0 %
900	55.0	1.05	9.89	9.89	9.89	0.41	0.96	± 12.0 %
1750	53.4	1.49	8.25	8.25	8.25	0.36	0.87	± 12.0 %
1950	53.3	1.52	8.12	8.12	8.12	0.35	0.85	± 12.0 %
2450	52.7	1.95	7.68	7.68	7.68	0.39	0.90	± 12.0 %
2600	52.5	2.16	7.48	7.48	7.48	0.25	1.05	± 12.0 %
5250	48.9	5.36	4.36	4.36	4.36	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.74	3.74	3.74	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.05	4.05	4.05	0.50	1.90	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (s and or) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and or) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

diameter from the boundary.

Certificate No: EX3-7447_Mar18

APPENDIX E: RELEVANT PAGES FROM DIPOLE CALIBRATION REPORTS

SAR Reference Dipole Calibration Report

Ref: ACR.165.32.17.SATU.A

VERKOTAN LTD.

ELEKTRONIIKKATIE 17 90590, OULU, FINLAND

SAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ

SERIAL NO.: D2450V2-729

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/14/17

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.165.32.17.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	6/14/2017	JES
Checked by:	Jérôme LUC	Product Manager	6/14/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/14/2017	them Authousti

	Customer Name
Distribution:	Verkotan Ltd.

Issue	Date	Modifications
A	6/14/2017	Initial release

Page: 2/11

Ref: ACR.165.32.17.SATU.A

1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 37.5 sigma: 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	

Page: 8/11

Ref: ACR.165.32.17.SATU.A

2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.43 (5.34)	24	24.05 (2.41)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	

Page: 9/11

Ref: ACR.165.32.17.SATU.A

3500	51.3 ±5 %	3.31 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 53.2 sigma : 1.89
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	53.69 (5.37)	24.72 (2.47)

Page: 10/11