- 1. (10%) Please explain (a) p-type semiconductor. (b) the relation of conductivity and bandgap energy.
- 2. (10%) Consider silicon at T=300 K. Assume the hole concentration is given by $p = 10^{16} \cdot e^{-x/Lp}$ cm⁻³, where $Lp = 10^{-3}$ cm. Assume $D_p = 10$ cm²/s. Calculate the hole diffusion current density at (a) x = 0 and (b) $x = 10^{-3}$ cm.
- 3. (14%) The diode in the circuit shown in Figure 1 has a reverse-saturation current of $I_S = 10^{-13}$ A. (a) Assume the cut-in voltage of the diode is $V_{\gamma} = 0.7$ V, determine the approximate diode voltage and current using piecewise linear model (5%). (b) what is the exact numbers of diode voltage and current (9%)?
- 4. (15%) Consider the full-wave rectifier in Figure 2. Assume that turn-on voltage $V_{\gamma} = 0.7$ V, the input frequency is 60 Hz, and the output resistance is $R_L = 125 \Omega$. A filter capacitor is connected in parallel with R_L . The magnitude of the peak output voltage is to be 15 V and the ripple voltage is to be 0.3 V. (a) Determine the required amplitude of v_s . (b) Determine the required filter capacitance value. (c) What is the PIV rating of the diodes?

- 5. (21%) A voltage regulator is to have nominal output voltage of 10 V. The input power supply has a nominal output of $V_{PS} = 20$ V and can vary by ± 25 %. The output load current is to vary between $I_L = 0 \sim 20$ mA. (a) Ignore Zener resistance (r_Z) and consider the Zener diode as an ideal Zener diode with $V_Z = 10$ V. If the minimum Zener current is to be $I_Z = 5$ mA, determine the required R_i . (b) If the specified Zener diode has a rating of 1 W, has a 10 V voltage drop at $I_Z = 25$ mA, and has a Zener resistance of $r_Z = 5$ Ω . Determine the maximum variation in output voltage. (c) Determine the percent source regulation (assume minimum load current).
- 6. (15%) Consider the circuit shown in Figure 4. Assume each diode cut-in voltage is $V_{\gamma} = 0.7 \text{ V}$. (a) Determine I_{D1} , V_0 and each diode status for $R_1 = 10 \text{ k}\Omega$, and $R_2 = 5 \text{ k}\Omega$. (b) Repeat part (a) for $R_1 = 5 \text{ k}\Omega$, and $R_2 = 10 \text{ k}\Omega$.

7. (15%) Sketch the steady-state output voltage v_0 versus time for each circuit in Figure 5 with the input voltage given. Assume $V_{\gamma} = 0$ and RC time constant is large.

NO.

DATE

1. (a) P型半弯臂 (b) 誓電度和能際的關係

(ca) piecewise linear model

$$I_D = (10-0.6)/20k = 0.41mA$$

 $V_D = (10-20k \times 0.41m) = 0.6V$

VD=0.5V=) ID=0.445mA=)VD=0.5493V

VD=0.549V

Vi 3{Vs = TW

3{ - D2 X D4

	1,200
0	
DF	\lE

5.

(b) 10 = V21 + 5x125m

V2:- 9.845V

10.183-9.98=0203V

鼓 Di on Da on

$$I_{P_1} = \frac{10-0.1}{10k} = 0.91 \text{ m/s}$$

 $I_{P_2} = \frac{1.4-0.15}{5k} = 3.28 \text{ m/s}$

B&DION Do off

Vo=16V #