On Writing Alloy Models: Metrics and a new Dataset

Soaibuzzaman, Salar Kalantari, and Jan Oliver Ringert

Bauhaus-Universität Weimar

Alloy Language and Alloy Analyzer

- Alloy: Specification language based on relational first-order logic
 - Everything is a relation
- Alloy Analyzer: explore models and instances, check assertions
 - Quick feedback
 - Interactive specification development
- Applications: software design models, API design, protocol and security analyses, software synthesis, ...

Alloy4Fun & A4F Dataset

- A web application for writing and analyzing Alloy models intended for teaching Alloy
- Offers automated assessment and feedback by predefined predicates
- Dataset captures fine-grained editing histories.
- Focuses on predicate completion, not the full spectrum of Alloy modeling (signatures, fields, facts, commands).
- Publicly available dataset

Alloy4Fun

```
abstract sig Light {
    var color : one Color,
    var car : lone Car
} 
always (some car implies eventually color = GREEN)
} 
sig Car {} 
enum Color {GREEN, RED}

// concrete traffic lights in the scenario
one sig LightA, LightB extends Light {}

ped crash {
    LightA.color = GREEN and LightB.color = GREEN
} 
fact initiallyBothRed {
    Light.color = RED
} 
assert neverCrash {always not crash}

check neverCrash
}

check neverCrash
```


Counter-example found. check neverCrash is invalid.

FM Playground & FMPals Dataset

- A web app for writing and analyzing models in various modeling and specification languages
- Provides different visualizations, i.e., graph, table, text, and an alloy evaluator.
- Offers storage of permalinks, histories etc.
- Try it at: https://play.formal-methods.net

Our Contribution

- FMPals Dataset: A new, complementary dataset from the Formal Methods Playground.
 - More diverse: Users develop signatures, fields, facts, commands.
 - Often starts from a blank canvas
- Comparative Analysis: Compared model evolution and metrics across FMPals and Alloy4Fun.
- Halstead Metrics for Alloy: Defined and applied a Halstead-based difficulty metric.
 - Quantify model complexity

Meet the Datasets: A4F vs. FMPals

Alloy4Fun

- 96,397 models (after filtering)
- 5,268 unique edit paths (sequences of user submissions)
- Derived from 19 distinct starter models with multiple tasks
- A4FpT (per Task): Partitioned A4F paths for task-specific analysis (24,592 paths)

FMPals (FM Playground Alloy)

- 8,219 Alloy models. (~22,000 now)
- 747 unique edit paths
- 392 unique initial models (many start from scratch)

RQ1: Dataset Characteristics - Errors & Similarity

Error Types & Location

Dataset		Type	Syntax	sig	pred	fact	assert	fun	run	check
A4F	#	13657	13734	72	27202	26	1	52	22	11
	%	49.9	50.1	0.002	99.3	≈0	≈0	≈0.001	≈0	≈0
FMPals	#	566	1962	376	625	769	101	97	378	87
	%	22.4	77.6	15.5	25.7	31.6	4.2	4	15.5	3.6

- Insight: FMPals shows users struggle with a broader range of Alloy constructs.
- Submission Similarity

	A4FpT		FMPals			
	#	%	#	%		
Syntactically Unique Models	57777	59.9	3513	42.7		
Syntactically Correct Models (in unique models)	37024	64.1	1880	53.5		
Syntax Errors (in unique models)	20753	35.9	1633	46.5		
Models within single edit paths:						
Consecutive Identical Models	4664	4.64	3174	25.58		
Non-Consecutive Identical Models	5758	5.73	667	5.38		

RQ1: Dataset Characteristics - Fixing Errors

Error Presence in Edit Paths:

	A4FpT	FMPals
Edit Paths (#)	24592	747
With Invalid Models (%)	39.24	54.08
Without Valid Models (%)	3.8	6.55
Edit Path Length ≥ 5 (%)	25.93	64.79
Max Edit Path Length	107	211

Edit Paths Example

Halstead Metrics for Alloy

```
D = \frac{\eta_1}{2} \times \frac{N_2}{\eta_2}, \frac{\# unique \ operators}{2} \times \frac{\# occurrences \ of \ operands}{\# unique \ operands}
Difficulty, D = \frac{5}{2} \times \frac{11}{7} = 3.93
Sig \ File \ \{ \ link : set \ File \ \}
Sig \ Trash \ in \ File \ \{ \}
Sig \ Protected \ in \ File \ \{ \}
pred \ inv1 \ \{ \ /* \ The \ trash \ is \ empty. \ */ \ no \ Trash \ pred \ inv2 \ \{ \ /* \ All \ files \ are \ deleted. \ */ \ \}
pred \ inv3 \ \{ \ /* \ Some \ file \ is \ deleted. \ */ \ \}
```

Operator	Count	Operand	Count
sig	3	inv1	1
no	1	inv2	1
set	1	inv3	1
in	2	Protected	1
pred	3	File	4
		link	1
		Trash	2
Total	10	Total	11

Our Counting Strategy for Alloy:

- Operators: Keywords (sig, pred, run), multiplicity (some, all), logical/arithmetic operators.
- Operands: Names of modules, signatures, fields, variables, literals.

RQ2: Halstead Difficulty Comparison

- Baseline: Alloy Analyzer Sample Models
 - "Book" examples: Median Difficulty ~27.
 - "Case Studies": Much higher, Median Difficulty ~141.
- Comparing Datasets Final Submissions
 - A4FpT Median: ~16
 - FMPals Median: ~20

RQ3: How Does Difficulty Evolve?

- A4FpT (Alloy4Fun per Task)
 - 8 clusters of Halstead difficulty evolution.
 - Most clusters show low standard deviation (consistent difficulty within cluster).
 - Insight: Many clusters show a decrease in difficulty towards the end of edit paths.

RQ3: How Does Difficulty Evolve?

- FMPals (Formal Methods Playground Alloy)
 - 3 main clusters.
 - Cluster 1 (largest): Broad range of difficulty, increasing or stable. Reflects iterative development.
 - Cluster 2 (small, high difficulty): Mostly auto-generated models (student project).
 - Cluster 3 (diverse): Wide spectrum of complexity.
 - Insight: FMPals often shows more iterative growth in complexity, as users build from scratch.

RQ4: Halstead Difficulty, Errors & Fixing Times

- Correlation: Difficulty vs. Time to Fix Errors:
 - A4FpT: Weak negative correlation (-0.032).
 - FMPals: Weak positive correlation (0.236).
- Correlation: Difficulty vs. Error Occurrence (Logistic Regression):
 - A4FpT: Weak negative correlation.
 - FMPals: Weak positive correlation.
- **Key Takeaway:** Halstead difficulty shows only weak correlations with error occurrence or fixing times. Other factors (user expertise, error nature) are likely more dominant.

RQ5: Edit Sizes - Levenshtein & Difficulty Delta

- Levenshtein Distance (character changes between edits)
 - A4FpT: Smaller edits (Median: 10 chars).
 - FMPals: Larger edits (Median: 25 chars).
- Halstead Difficulty Delta (difficulty change between edits):
 - Both: More than 25% of edits decrease difficulty.
 - FMPals: Larger median changes in difficulty.
- **Insight**: Users on FMPals make larger changes per edit step.

Key Findings & Implications

- FMPals is a valuable, complementary dataset:
 - Shows challenges beyond predicate writing
 - Supports evaluation for various purposes: model repair, incremental solving, teaching materials
- Different Evolution Patterns:
 - FMPals: More iterative growth, larger edits.
 - A4FpT: Often ends with simplification/refinement, smaller, focused edits.
- Halstead Difficulty:
 - Weak correlation with error rates/fixing times not a sole indicator of "difficulty to get right."
- Tool Interaction: Repeated analyses in FMPals might suggest different user interaction s with instances or tool features.

Conclusion & Future Work

- Presented FMPals dataset, highlighting its unique characteristics.
- Analyzed model evolution using Halstead difficulty, revealing distinct patterns.
- Halstead difficulty is descriptive but not strongly predictive of error-fixing effort.
- Future Work:
 - Updates to FMPals as usage grows.
 - Deeper analysis of error types and fixing strategies.
 - Investigating user interaction with Alloy Analyzer instances.
- Data availability:
 - Formal Methods Playground (public, open source)
 - Dataset updated on Zenodo

Questions?