Chapitre 9 : Dérivation

Dans tout ce chapitre, les fonctions sont à valeurs dans R, définies sur un intervalle de R. I et J désignent des intervalles infinis de \mathbb{R} .

I Dérivabilité en un point

A) Définition

Définition:

Soit $f: I \to \mathbb{R}$, soit $a \in I$. On dit que f est dérivable en a lorsque la fonction $p_a: I \setminus \{a\} \to \mathbb{R}$ $x \mapsto \frac{f(x) - f(a)}{x - a}$ admet une limite finie en a. Cette limite est alors appelée la

dérivée de f en a, notée f'(a).

Interprétation:

Notons C la courbe représentative de f dans le repère $\Re = (O, \vec{i}, \vec{j})$ du plan. Soient $a \in I, b \in I$ avec $a \neq b$.

Soient $A \binom{a}{f(a)}$, $B \binom{b}{f(b)}$ (points de C d'abscisses a et b respectivement). Alors $p_a(b) = \frac{f(b) - f(a)}{b - a}$ est la pente de la droite (AB) ou encore le taux

d'accroissement de f entre a et b.

Si cette pente admet une limite finie quand b tend vers a, on dit que f est dérivable en a, et cette limite est notée f'(a).

La droite passant par A de pente f'(a) est appelée la tangente à C en A / au point d'abscisse a.

Rappels:

Pour
$$A_0 \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
, $A_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$, la pente de la droite $(A_0 A_1)$ est $\frac{y_1 - y_0}{x_1 - x_0}$

Equation (dans \mathbb{R}) de la droite passant par A_0 de pente $p: y-y_0 = p \times (x-x_0)$.

Ainsi:

La droite (AB) a pour équation
$$y - f(a) = \frac{f(b) - f(a)}{b - a}(x - a)$$

La tangente à C en a a pour équation y - f(a) = f'(a)(x - a)

Définition:

(Si a n'est pas un maximum de I)

Si
$$p_a: I \setminus \{a\} \to \mathbb{R}$$
 a une limite finie à droite en a , on dit que f est $x \mapsto \frac{f(x) - f(a)}{x - a}$

dérivable à droite en a et cette limite est notée $f'_d(a)$. La tangente à droite est alors la demi-droite d'équation $\begin{cases} y - f(a) = f'(a)(x - a) \\ x \ge a \end{cases}$

On a la même définition à gauche lorsque a n'est pas un minimum de I.

Proposition:

Si $a \in \mathring{I}$, f est dérivable en a si et seulement si f est dérivable à droite et à gauche en a et si $f'_{a}(a) = f'_{g}(a)$.

Et si f est dérivable en a, f'(a) est la valeur commune de $f'_{a}(a)$ et $f'_{g}(a)$.

Démonstration:

On sait que:

 p_a a une limite en $a \Leftrightarrow p_a$ a une limite à droite et à gauche en a et qui sont égales

Enfin, si $a = \max(I)$, la notion de dérivabilité coïncide avec la notion de dérivée à gauche. De même si $a = \min(I)$.

Extension:

Soit $f: I \to \mathbb{R}$.

Si p_a admet une limite infinie en a, f n'est pas dérivable en a, cependant on dit que la courbe C admet une tangente verticale en $A \begin{pmatrix} a \\ f(a) \end{pmatrix}$.

B) Propriétés

Théorème:

Soit $f: I \to \mathbb{R}$, $a \in I$.

Si f est dérivable en a, alors il existe une fonction $\varepsilon: I \to \mathbb{R}$ telle que :

- $\varepsilon(x) \xrightarrow[x \mapsto a]{} 0$ (autrement dit ε est nulle et continue en a) (1)
- $\bullet \ \forall x \in I, f(x) = f(a) + (x a)f'(a) + (x a)\mathcal{E}(x) \tag{2}$

Démonstration :

Soit $\varepsilon: I \to \mathbb{R}$, définie par :

$$\varepsilon(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} - f'(a) & \text{si } x \neq a \\ 0 & \text{si } x = a \end{cases}$$

Alors (2) est vraie (...)

Et on a bien
$$\lim_{x \to a} \mathcal{E}(x) = 0$$
, car $\frac{f(x) - f(a)}{x - a} \xrightarrow{x \to a} f'(a)$.

Vocabulaire:

Ecrire (2), et le fait que $\mathcal{E}(x) \xrightarrow{x \mapsto a} 0$, c'est écrire le développement limité à l'ordre 1 de f en a.

Enoncé équivalent (retour à 0) :

Soit $f: I \to \mathbb{R}$, soit $a \in I$.

Si f est dérivable, alors :

Il existe une fonction η , définie sur $V = \{h \in \mathbb{R}, a+h \in I\}$ telle que :

$$\bullet \eta(x) \xrightarrow[x \mapsto 0]{} 0$$

•
$$\forall h \in V, f(a+h) = f(a) + hf'(a) + h\eta(h)$$

Réciproque:

Soit $f: I \to \mathbb{R}$, soit $a \in I$.

S'il existe un réel λ et une fonction $\varepsilon: I \to \mathbb{R}$ tels que :

$$\forall x \in I, f(x) = f(a) + (x - a)\lambda + (x - a)\varepsilon(x)$$
 et $\varepsilon(x) \xrightarrow[x \to a]{} 0$, alors f est dérivable en a et $\lambda = f'(a)$.

Démonstration :

Pour
$$x \neq a$$
, $\frac{f(x) - f(a)}{x - a} = \lambda + \varepsilon(x)$, donc $\frac{f(x) - f(a)}{x - a} \xrightarrow{x \mapsto a} \lambda$

(L'existence d'un développement limité à l'ordre 1 en a est équivalente à la dérivabilité en a)

Théorème:

Si f est dérivable en a, alors f est continue en a.

Démonstration:

Si f est dérivable en a, il existe une fonction ε tel que $\varepsilon \to 0$ et

$$\forall x \in I, f(x) = f(a) + \underbrace{(x-a)f'(a)}_{\to 0} + \underbrace{(x-a)\mathcal{E}(x)}_{\to 0}$$

Donc
$$f(x) \xrightarrow[x \mapsto a]{} f(a)$$

Remarque:

Les propriétés s'adaptent facilement pour $f_{I\cap [a,+\infty[}$, d'où les résultats :

- si f est dérivable à droite en a, il existe un développement limité d'ordre 1 à droite en a.
- Si f est dérivable à droite en a, alors f est continue à droite en a.

De même à gauche pour $f_{I\cap]-\infty,a]}$

C) Opérations sur les fonctions dérivables en un point

Théorème:

Soient f, g deux fonctions de I dans \mathbb{R} , soit $\lambda \in \mathbb{R}$.

Soit $a \in I$, on suppose que f et g sont dérivables en a. Alors :

- (1) λf est dérivable en a, et $(\lambda f)'(a) = \lambda f'(a)$
- (2) f + g est dérivable en a et (f + g)'(a) = f'(a) + g'(a)

(3) fg est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a)

(4) Si
$$g(a) \neq 0$$
, $\frac{1}{g}$ est dérivable en a , et $\left(\frac{1}{g}\right)'(a) = \frac{-g'(a)}{(g(a))^2}$

(5) Si
$$g(a) \neq 0$$
, $\frac{f}{g}$ est dérivable en a , et $\left(\frac{f}{g}\right)(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$

Démonstration (des points (3) et (4) seulement, les autres en découlant ou étant montrés selon le même principe plus facilement) :

(3) pour tout $x \in I \setminus \{a\}$, on a :

$$\frac{(fg)(x) - (fg)(a)}{x - a} = \frac{f(x)g(x) - f(a)g(a)}{x - a}$$

$$= \frac{g(x)(f(x) - f(a)) + f(a)(g(x) - g(a))}{x - a}$$

$$= \underbrace{g(x)\underbrace{f(x) - f(a)}_{\to g(a)} + f(a)\underbrace{g(x) - g(a)}_{\to g'(a)}}_{\to g'(a)}$$

(4) Déjà, g est continue en a et $g(a) \neq 0$, donc g ne s'annule pas au voisinage de a, donc déjà $\frac{1}{g}$ est bien définie au voisinage de a, disons sur V.

Alors, pour $x \in V \setminus \{a\}$:

$$\frac{(\frac{1}{g})(x) - (\frac{1}{g})(a)}{x - a} = \frac{\frac{1}{g(x)} - \frac{1}{g(a)}}{x - a} = \underbrace{\frac{1}{g(a)g(x)}}_{\text{J}}\underbrace{\frac{g(a) - g(x)}{x - a}}_{\text{J}}$$

Conséquences:

• Si $f_1, f_2, ... f_n$ sont n fonctions de I dans \mathbb{R} dérivables en a, alors $f_1 f_2 ... f_n$ est dérivable en a et :

$$(f_1 f_2 ... f_n)'(a) = f'_1(a) f_2(a) ... f_n(a) + f_1(a) f'_2(a) ... f_n(a) + ... + f_1(a) f_2(a) ... f'_n(a)$$

$$= \sum_{i=1}^n f_1(a) f_2(a) ... f'_i(a) ... f_n(a)$$

(Démonstration par récurrence, en utilisant le théorème précédent)

• Pour $n \in \mathbb{N}^*$, si f est dérivable en a, alors f^n est aussi dérivable en a et $(f^n)'(a) = nf'(a)(f(a))^{n-1}$.

(Cas particulier du précédent, ou autre démonstration par récurrence)

Théorème:

Soit $f: I \to \mathbb{R}$, et soit $g: J \to \mathbb{R}$ où J est tel que $f(I) \subset J$.

Soit $a \in I$.

Si f est dérivable en a, et si g est dérivable en f(a), alors $g \circ f$ est dérivable en a, et $(g \circ f)'(a) = f'(a) \times g'(f(a))$.

Démonstration:

Comme g est dérivable en f(a), il existe $\varepsilon: J \to \mathbb{R}$ qui tend vers 0 en f(a) telle que $\forall x \in I \setminus \{a\}, g(f(x)) - g(f(a)) = (f(x) - f(a))g'(f(a)) + (f(x) - f(a))\varepsilon(f(x))$.

Donc
$$\frac{g(f(x)) - g(f(a))}{x - a} = \underbrace{\frac{f(x) - f(a)}{x - a}}_{f'(a)} g'(f(a)) + \underbrace{\frac{f(x) - f(a)}{x - a}}_{f(a) \in \mathbb{R}} \underbrace{\frac{\mathcal{E}(f(x))}{f(a)}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)} \underbrace{\frac{\mathcal{E}(f(x))}{x - a}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)} \underbrace{\frac{\mathcal{E}(f(x))}{x - a}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)} \underbrace{\frac{\mathcal{E}(f(x))}{x - a}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)} \underbrace{\frac{\mathcal{E}(f(x))}{x - a}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)} \underbrace{\frac{\mathcal{E}(f(x))}{x - a}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)} \underbrace{\frac{\mathcal{E}(f(x))}{x - a}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)} \underbrace{\frac{\mathcal{E}(f(x))}{x - a}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)} \underbrace{\frac{\mathcal{E}(f(x))}{x - a}}_{\text{et } \mathcal{E}(a) \text{ in } f(a)}$$

Donc $\frac{g(f(x))-g(f(a))}{x-a} \xrightarrow{x\mapsto a} f'(a)g'(f(a))$, d'où la dérivabilité de $g\circ f$ en a et sa valeur.

Théorème:

Soit f continue et strictement monotone sur I.

(Alors f réalise une bijection de I sur J = f(I), et $f^{-1}: J \to I$ est continue sur J) Soit $a \in I$.

Si f est dérivable en a, et si $f'(a) \neq 0$, alors f^{-1} est dérivable en f(a), et on a :

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

(Si f est dérivable en a et que f'(a) = 0, f^{-1} n'est pas dérivable en f(a), mais la courbe de f^{-1} présente au point d'abscisse f(a) une tangente verticale).

Autre énoncé du théorème (avec les mêmes hypothèses) :

Soit $b \in J$. Si f est dérivable en $f^{-1}(b)$, et si $f'(f^{-1}(b)) \neq 0$, alors f^{-1} est dérivable en b et on a : $(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$

Démonstration:

Soit $a \in I$, posons b = f(a).

Supposons f strictement monotone sur I, f dérivable en a, et que $f'(a) \neq 0$.

Soit $x \in J \setminus \{b\}$. Alors:

$$\frac{f^{-1}(x) - f^{-1}(b)}{x - b} = \frac{f^{-1}(x) - a}{f(f^{-1}(x)) - f(a)}$$

Or, $f^{-1}(x) \xrightarrow[x \to b]{} a$, puisque f^{-1} est continue en b.

Donc par composition, $\frac{f(f^{-1}(x)) - f(a)}{f^{-1}(x) - a} \xrightarrow{x \mapsto b} f'(a)$.

Donc
$$\frac{f^{-1}(x) - a}{f(f^{-1}(x)) - f(a)} \xrightarrow{x \mapsto b} \frac{1}{f'(a)}$$
 (on a supposé $f'(a) \neq 0$)

C'est-à-dire
$$\xrightarrow{f^{-1}(x)-f^{-1}(b)} \xrightarrow{x \to b} \frac{1}{f'(a)}$$
.

Donc $(f^{-1})'(b)$ existe et vaut $\frac{1}{f'(a)}$

II Fonctions dérivées

Définition:

Soit $f: I \to \mathbb{R}$. On dit que f est dérivable (sur I) lorsque f est dérivable en tout point de I. On note alors f' la fonction : $I \to \mathbb{R}$ f'(x) f' est appelée la fonction dérivée de f.

On trouve aussi d'autres notations pour $f': f^{(1)}, \frac{df}{dx}, D(f)$.

Il résulte du I les théorèmes suivants :

Théorème:

Soit $f: I \to \mathbb{R}$. Si f est dérivable sur I, alors f est continue sur I.

Théorème:

Soient $f, g: I \to \mathbb{R}$, $\lambda \in \mathbb{R}$.

Si f et g sont dérivables, alors :

 λf est dérivable, et $(\lambda f)' = \lambda f'$

f + g est dérivable, et (f + g)' = f' + g'

fg est dérivable, et (fg)' = f'g + fg'

Si g ne s'annule pas, $\frac{1}{g}$ est dérivable, et $\left(\frac{1}{g}\right)' = \frac{-g'}{g^2}$

Et, toujours si g ne s'annule pas, $\frac{f}{g}$ est dérivable, et $\left(\frac{f}{g}\right)^{'} = \frac{f'g - fg'}{g^2}$

Théorème:

Soient $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ où J est tel que $f(I) \subset J$. Si f et g sont dérivables, alors $g \circ f$ est dérivable sur I et $(f \circ g)' = f \times (g' \circ f)$

Théorème:

Soit $f: I \to \mathbb{R}$. Si f est dérivable sur I et strictement monotone sur I, et si f' ne s'annule pas sur I, alors la réciproque f^{-1} de f, définie sur J = f(I), est dérivable sur J et $\forall x \in J, (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$, autrement dit $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$.

III Dérivées successives

A) Définition

Définition:

Soit $f: I \to \mathbb{R}$, soit $a \in I$.

Si f est dérivable au voisinage de a (c'est-à-dire sur $]a - \alpha, a + \alpha[\cap I \text{ où } \alpha > 0)$, et si f' est dérivable en a, on dit que f est deux fois dérivable en a et on note f''(a) la valeur de (f')'(a).

Si f est deux fois dérivable en tout point de I, on dit que f est deux fois dérivable (sur I), et on note f'' ou $f^{(2)}$ l'application : $I \to \mathbb{R}$. $x \mapsto f''(x)$

Plus généralement, on a la définition récurrente suivante :

Soit $f: I \to \mathbb{R}$, soit $a \in I$.

- (1) On note $f^{(0)} = f$
- (2) Soit $n \in \mathbb{N}$. Si $f^{(n)}$ est définie au voisinage de a, et si $f^{(n)}$ est dérivable en a, on dit que f est n+1 fois dérivable en a et on note $f^{(n+1)}(a) = (f^{(n)})!(a)$; si f est n+1 dérivable en tout point de I, on dit que f est n+1 dérivable sur I, et on note $f^{(n+1)}: I \to \mathbb{R}$ $x \mapsto f^{(n+1)}(x)$

Autres notations pour $f^{(n)}$: $\frac{d^n f}{dx^n}$ ou $D^n(f)$ (pour $n \ge 1$)

Définition:

Soit $n \in \mathbb{N}$.

On note $D^n(I,\mathbb{R})$ l'ensemble des fonctions n fois dérivables de I dans \mathbb{R} .

On note $C^n(I,\mathbb{R})$ l'ensemble des fonctions n fois dérivables de I dans \mathbb{R} dont la dérivée n-ième est continue (c'est-à-dire l'ensemble des fonctions de $D^n(I,\mathbb{R})$ qui sont continues)

Une fonction appartenant à $C^n(I,\mathbb{R})$ est dite de classe C^n sur I.

Ainsi,

 $C^0(I,\mathbb{R})$ est l'ensemble des fonctions continues sur I, et $D^0(I,\mathbb{R}) = \mathfrak{F}(I,\mathbb{R})$.

Proposition:

Soient $f: I \to \mathbb{R}$, et $n \ge 1$. On a les équivalences :

$$f \in D^{n}(I,\mathbb{R}) \Leftrightarrow f \in D^{n-1}(I,\mathbb{R}) \text{ et } f^{(n-1)} \in D^{1}(I,\mathbb{R})$$

 $\Leftrightarrow f \in D^{1}(I,\mathbb{R}) \text{ et } f' \in D^{n-1}(I,\mathbb{R})$

Et lorsque $f \in D^n(I, \mathbb{R})$, on a $f^{(n)} = (f^{(n-1)})' = (f')^{(n-1)}$

Démonstration:

La première équivalence et la première égalité résultent de la définition.

La deuxième équivalence et la deuxième égalité se montrent par récurrence à partir de la première.

Proposition:

Soit $n \ge 1$. On a les inclusions suivantes :

$$C^n(I,\mathbb{R}) \subset D^n(I,\mathbb{R}) \subset C^{n-1}(I,\mathbb{R}) \subset ... \subset C^0(I,\mathbb{R}) \subset \mathfrak{F}(I,\mathbb{R}).$$

En effet : la première inclusion résulte de la définition de $C^n(I,\mathbb{R})$ et $D^n(I,\mathbb{R})$. Pour la deuxième inclusion : si $f \in D^n(I,\mathbb{R})$, alors $f^{(n-1)}$ est définie et dérivable (sur I), donc $f^{(n-1)}$ est définie et continue sur I, donc $f \in C^{n-1}(I,\mathbb{R})$.

Pour les autres inclusions, reprendre l'argument pour continuer...

Remarque : les inclusions sont même strictes, par exemple :

La fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 est dans $D^1(\mathbb{R}, \mathbb{R})$, mais pas dans $C^1(\mathbb{R}, \mathbb{R})$.
$$x \mapsto \begin{cases} x^2 \sin \frac{1}{x} \sin x \neq 0 \\ 0 \sin x = 0 \end{cases}$$

En effet:

La continuité et la dérivabilité pour $x \neq 0$ ne pose pas de problème. En 0 :

Pour tout
$$x \ne 0$$
, $\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = x \sin \frac{1}{x}$. Or, $x \sin \frac{1}{x} \xrightarrow{x \to 0} 0$.

Donc f est dérivable en 0, et f'(0) = 0. (donc f est aussi continue en 0)

Donc f est dérivable sur \mathbb{R} , soit $f \in D^1(\mathbb{R}, \mathbb{R})$.

Montrons maintenant que f' n'est pas continue en 0:

$$\forall x \in \mathbb{R}, f'(x) = \begin{cases} 2x \sin\frac{1}{x} + x^2 \times \frac{-1}{x^2} \cos\frac{1}{x} \sin x \neq 0 \\ 0 \sin x = 0 \end{cases}$$

C'est-à-dire
$$\forall x \in \mathbb{R}, f'(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x} \sin x \neq 0 \\ 0 \sin x = 0 \end{cases}$$

Or, $x \mapsto \cos \frac{1}{x}$ n'a pas de limite en 0, donc f' non plus. En effet, supposons que f' a une limite l en 0. Or, $2x\sin \frac{1}{x} \xrightarrow{x \mapsto 0} 0$. Donc $\cos \frac{1}{x} = f'(x) - 2x\sin \frac{1}{x} \xrightarrow{x \mapsto 0} l$ ce qui est impossible. Donc f' n'a pas de limite en 0, donc f n'est pas continue en 0.

B) Propriétés

Théorème:

Soient $f,g:I\to\mathbb{R}$, soit $n\in\mathbb{N}$, soit $a\in I$. On suppose que f et g sont n fois dérivables en a. Alors :

- (1) Pour tout $\lambda \in \mathbb{R}$, λf est n fois dérivable en a, et $(\lambda f)^{(n)}(a) = \lambda f^{(n)}(a)$
- (2) f + g est n fois dérivable en a, et $(f + g)^{(n)}(a) = f^{(n)}(a) + g^{(n)}(a)$
- (3) fg est n fois dérivable en a, et $(fg)^{(n)}(a) = \sum_{k=0}^{n} C_n^k f^{(k)}(a) g^{(n-k)}(a)$ (Formule de Leibniz).

Démonstration:

- (1) et (2) : par récurrence, immédiat.
- (3) : Soit *I* un intervalle.

Montrons par récurrence que $\forall n \in \mathbb{N}, P(n)$, où P(n) signifie :

« pour toutes fonctions f, g définies sur I, pour tout $a \in I$, si f et g sont n fois dérivables en a, alors fg est aussi n fois dérivable en a et on a

$$(fg)^{(n)}(a) = \sum_{k=0}^{n} C_n^k f^{(k)}(a) g^{(n-k)}(a) \gg$$

Pour n = 0, n = 1 on a déjà vu le résultat.

Soit $n \in \mathbb{N}$. Supposons P(n).

Soient $f,g:I\to\mathbb{R}$, $a\in I$. On suppose f et g n+1 fois dérivables en a. Déjà, f et g sont n fois dérivables au voisinage de a, disons sur V.

En appliquant P(n), on obtient :

$$\forall x \in V, (fg)^{(n)}(x) \text{ existe, et } (fg)^{(n)}(x) = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x).$$

Mais les fonctions $f^{(k)}$ et $g^{(n-k)}$ $(k \in [0, n])$ sont toutes définies sur V et dérivables au moins une fois en a.

Donc, selon les théorèmes de dérivabilité en un point et d'opérations sur les fonctions, $(fg)^{(n)}$, définie sur V, est dérivable en a, et la dérivée en a vaut :

$$\begin{split} \left((fg)^{(n)} \right)'(a) &= \sum_{k=0}^{n} C_{n}^{k} \left(f^{(k)}(a) g^{(n+1-k)}(a) + f^{(k+1)}(a) g^{(n-k)}(a) \right) \\ &= \sum_{k=0}^{n} C_{n}^{k} f^{(k)}(a) g^{(n+1-k)}(a) + \sum_{k=0}^{n} C_{n}^{k} f^{(k+1)}(a) g^{((n+1)-(k+1))}(a) \\ &= \sum_{k=0}^{n} C_{n}^{k} f^{(k)}(a) g^{(n+1-k)}(a) + \sum_{k=1}^{n} C_{n}^{k-1} f^{(k)}(a) g^{((n+1)-k)}(a) \\ &= \underbrace{C_{n}^{0}}_{=C_{n+1}^{n}} f^{(0)}(a) g^{(n+1)}(a) + \sum_{k=1}^{n} \underbrace{(C_{n}^{k} + C_{n}^{k-1})}_{=C_{n+1}^{k}} f^{(k)}(a) g^{(n+1-k)}(a) \\ &+ \underbrace{C_{n}^{n}}_{=C_{n+1}^{n+1}} f^{(n+1)}(a) g^{(0)}(a) \\ &= \sum_{k=0}^{n+1} C_{n}^{k} f^{(k)}(a) g^{(n+1-k)}(a) \end{split}$$

Comme c'est valable pour tout f, g n+1 fois dérivables en a, on a bien P(n+1), ce qui achève la récurrence.

C) Opérations sur les fonctions de classe C^n .

Théorème 1:

Soient $f, g: I \to \mathbb{R}$, et $\lambda \in \mathbb{R}$

Si f et g sont de classe C^n sur I, alors:

- (1) λf et f + g sont de classe C^n
- (2) fg est de classe C^n
- (3) Si f ne s'annule pas sur I, $\frac{1}{f} \in C^n(I, \mathbb{R})$

Théorème 2:

Soit $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ où J est tel que $f(I) \subset J$. Si f est de classe C^n , et g est de classe C^n , alors $g \circ f \in C^n(I, \mathbb{R})$.

Théorème 3:

Soit $f: I \to \mathbb{R}$. On suppose que f est continue et strictement monotone sur I. Elle réalise donc une bijection de I dans J = f(I).

Si f est de classe C^n , avec $n \ge 1$, et si f' ne s'annule pas sur I, alors f^{-1} est de classe C^n sur J.

Démonstrations :

- Théorème 1 :
- (1) Par récurrence :

Pour n = 0, ok (la somme de deux fonction continues est continue, idem pour le produit par un scalaire)

Soit $n \in \mathbb{N}$, supposons que pour toutes fonctions f et g de classe C^n sur I et tout réel λ , $f + g \in C^n(I, \mathbb{R})$ et $\lambda f \in C^n(I, \mathbb{R})$.

Soient alors f, g de classe C^{n+1} et $\lambda \in \mathbb{R}$.

Alors f + g est dérivable (car f et g le sont au moins une fois), et (f + g)' = f' + g'.

Or, f' et g' sont de classe C^n , donc f'+g' est de classe C^n (hypothèse de récurrence), soit (f+g)' est de classe C^n . Donc f+g est de classe C^{n+1} sur I

D'autre part, λf est dérivable (même raison), et $(\lambda f)' = \lambda f'$

Or, f' est toujours de classe C^n , donc $\lambda f'$ est de classe C^n , soit $(\lambda f)'$ est de classe C^n , donc λf est de classe C^{n+1} sur I

Ce qui achève la récurrence.

(2) Par récurrence :

Pour n = 0, ok (le produit de deux fonctions continues est continu).

Pour n = 1: soient $f, g \in C^1(I, \mathbb{R})$.

On sait déjà que $fg \in D^1(I,\mathbb{R})$, et que (fg)'=f'g+fg'.

Or, f'g + fg' est continue car f, g, f', g' le sont. Donc (fg)' est de classe C^0 sur I, donc $fg \in C^1(I, \mathbb{R})$

Soit $n \in \mathbb{N}$, supposons que $\forall f, g \in C^n(I, \mathbb{R}), fg \in C^n(I, \mathbb{R})$

Soient $f, g \in C^{n+1}(I, \mathbb{R})$.

Alors $fg \in D^1(I, \mathbb{R})$ (car f et g sont dérivables), et (fg)' = f'g + fg'.

Or, $f,g,f',g'C^n(I,\mathbb{R})$. Donc, par hypothèse de récurrence, $f'g,fg' \in C^n(I,\mathbb{R})$.

Donc $f'g + fg' \in C^n(I,\mathbb{R})$. Donc $(fg)' \in C^n(I,\mathbb{R})$, soit $fg \in C^{n+1}(I,\mathbb{R})$

Ce qui achève la récurrence.

(3) Encore par récurrence :

Pour n = 0, ok puisque f ne s'annule pas sur I.

Soit $n \in \mathbb{N}$. Supposons que pour toute fonction f de classe C^n ne s'annulant par sur $I, \frac{1}{f}$ est de classe C^n .

Soit alors f de classe C^{n+1} sur I, ne s'annulant pas sur I.

Alors $\frac{1}{f}$ est dérivable (car f l'est et ne s'annule pas sur I), et $(\frac{1}{f})' = \frac{-f'}{f^2}$

Or, f' est de classe C^n sur I. De plus, f^2 est aussi de classe C^n , d'après le point précédent, et donc $\frac{1}{f^2}$ aussi par hypothèse de récurrence puisque f^2 ne s'annule pas sur

I. Donc, encore d'après les points précédents, $-f \times \frac{1}{f^2}$, soit $(\frac{1}{f})'$, est de classe C^n . Donc $\frac{1}{f}$ est de classe C^{n+1} .

Ce qui achève la récurrence.

- Théorème 2 : par récurrence.

Pour n = 0, ok (la composée de deux fonctions continues, quand elle est définie, est continue)

Soit $n \in \mathbb{N}$, supposons que pour tout f de classe C^n sur I, pour tout g de classe C^n sur J tel que $f(I) \subset J$, $g \circ f$ est de classe C^n .

Soient alors $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ où J est tel que $f(I) \subset J$ de classe C^{n+1} .

Alors, comme f et g sont dérivables, $g \circ f$ est dérivable et $(g \circ f)' = f \times g' \circ f$.

Or, f et g' sont de classe C^n (au moins), donc par hypothèse de récurrence $g' \circ f$ est de classe C^n . De plus, f' est aussi de classe C^n .

Donc $(g \circ f)' = f' \times g' \circ f$ est de classe C^n d'après le point précédent.

Donc $g \circ f$ est de classe C^{n+1} .

Ce qui achève la récurrence.

- Théorème 3 : par récurrence.

Pour n = 1:

Pour $f \in C^1(I,\mathbb{R})$ de dérivée ne s'annulant pas (donc strictement monotone puisque cette dérivée est continue), on a vu que f^{-1} est dérivable et que $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$, qui est continue car f^{-1} est continue et f' aussi.

Soit $n \ge 1$, supposons que pour toute fonction $f: I \to \mathbb{R}$ de classe C^n de dérivée ne s'annulant pas, f^{-1} est de classe C^n sur J (où J = f(I)).

Soit alors $f \in C^{n+1}(I,\mathbb{R})$, de dérivée ne s'annulant pas.

Alors
$$f^{-1}$$
 est dérivable, et $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$.

Or, $f^{-1} \in C^n(J,\mathbb{R})$ par hypothèse de récurrence, et $f' \in C^n(I,\mathbb{R})$. Donc d'après le théorème précédent, $(f^{-1})'$ est de classe C^n sur J, donc f^{-1} est de classe C^{n+1} sur J.

D) Fonctions de classe C^{∞}

Définition:

Soit $f:I\to\mathbb{R}$. On dit que f est de classe C^{∞} lorsque f admet sur I des dérivées de tout ordre.

On note $C^{\infty}(I,\mathbb{R})$ l'ensemble des fonctions de classe C^{∞} sur I.

Ainsi,
$$C^{\infty}(I,\mathbb{R}) = \bigcap_{n \in \mathbb{N}} (D^n(I,\mathbb{R})) = \bigcap_{n \in \mathbb{N}} (C^n(I,\mathbb{R}))$$
.

Justification de la deuxième égalité :

Une première inclusion vient du fait que si $f \in \bigcap_{n \in \mathbb{N}} (D^n(I, \mathbb{R}))$, alors pour tout

$$n \in \mathbb{N}$$
, $f^{(n)}$ existe, et est continue puisque $f^{(n+1)}$ existe, donc $f \in \bigcap_{n \in \mathbb{N}} (C^n(I, \mathbb{R}))$

L'autre inclusion est immédiate, puisque une fonction de classe C^n est de classe D^n pour tout n.

E) Les fonctions usuelles

- Les fonctions polynomiales, les fonctions rationnelles sont C^{∞} sur leur domaine de définition.
- Les fonctions sin, tan, cos, cotan, exp, $\ln, x \mapsto a^x$ $(a > 0), x \mapsto \log_a(x)$ (a > 0) sont aussi C^{∞} sur leur domaine.
- Les fonctions $x \mapsto x^{\alpha}, \alpha \in \mathbb{R}$ sont C^{∞} sur \mathbb{R}_{+}^{*} .

Et en plus:

Pour $\alpha \in \mathbb{N}$, elles sont C^{∞} sur \mathbb{R} .

Pour $\alpha \in \mathbb{Z}$, elles sont C^{∞} sur \mathbb{R}_{+}^{*} et \mathbb{R}_{-}^{*}

Enfin, pour $\alpha \in \mathbb{Q}^+$, elles sont prolongeable en 0, mais non dérivable en 0 en général.

Démonstration:

Par récurrence, montrer que pour tout $n \in \mathbb{N}$, la fonction est de classe C^n (dans la récurrence : supposer la fonction de classe C^{n+1} , sa dérivée est alors de classe C^n , et reconnaître la même fonction/ une autre fonction qu'on sait de classe C^{n+1} ...)