Introduction to Operating Systems and Processes

HPPS

David Marchant

Based on slides by:

Randal E. Bryant and David R. O'Hallaron with modifications by Troels Henriksen

Why study operating systems?

- They are where the magic happens
- For inspiration
 - One of the most potent engineering abstractions in computing
 - Each program thinks it has an entire machine to itself
 - Controlled communication between programs.
 - Abstracts over hardware differences

Practical skills

- Performance characteristics of the abstraction
- What is fundamentally possible?

Unix

What is Unix?

- Unix is an operating system developed in the 1970s by
 Ken Thompson and Dennis Ritchie
- Most modern operating systems heavily influenced by Unix (even Windows)
- Many operating systems are direct descendants: Linux, iOS, macOS, the *BSDs, etc

Why Unix?

- Unix is simple and representative of modern systems
- We will use Unix designs for all examples

Processes

- Definition: A process is an instance of a running program.
 - One of the most profound ideas in computer science
 - Not the same as "program" or "processor"
- Process provides each program with two key abstractions:
 - Logical control flow
 - Each program seems to have exclusive use of the CPU
 - Provided by kernel mechanism called context switching
 - Private address space
 - Each program seems to have exclusive use of main memory.
 - Provided by kernel mechanism called virtual memory

Multiprocessing: The Illusion

- Computer runs many processes simultaneously
 - Applications for one or more users
 - Web browsers, email clients, editors, ...
 - Background tasks
 - Monitoring network & I/O devices

Multiprocessing Example

```
000
                                          X xterm
 Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads
                                                                                    11:47:07
 Load Avg: 1.03, 1.13, 1.14 CPU usage: 3.27% user, 5.15% sys, 91.56% idle
 SharedLibs: 576K resident, OB data, OB linkedit.
 MemRegions: 27958 total, 1127M resident, 35M private, 494M shared.
 PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free.
 VM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts.
 Networks: packets: 41046228/11G in, 66083096/77G out.
 Disks: 17874391/349G read, 12847373/594G written.
 PID
        COMMAND
                                  #TH
                                             #PORT #MREG RPRVT
                                                                RSHRD
                                                                       RSIZE
                                                                              VPRVT
                                                                                    VSIZE
                    %CPU TIME
                                        #WQ
 99217- Microsoft Of 0.0 02:28.34 4
                                             202
                                                   418
                                                         21M
                                                                24M
                                                                       21M
                                                                              66M
                                                                                     763M
 99051
       usbmuxd
                    0.0 00:04.10 3
                                             47
                                                   66
                                                         436K
                                                                216K
                                                                       480K
                                                                              60M
                                                                                    2422M
                                             55
                                                   78
 99006
        iTunesHelper 0.0 00:01.23 2
                                                         728K
                                                                3124K
                                                                       1124K
                                                                              43M
                                                                                    2429M
 84286
                                                   24
                                                         224K
                                                                              17M
                    0.0 00:00.11 1
                                                                732K
                                                                       484K
                                                                                    2378M
        bash
                                             32
 84285
       xterm
                    0.0 00:00.83 1
                                                   73
                                                         656K
                                                                872K
                                                                       692K
                                                                              9728K
                                                                                    2382M
 55939- Microsoft Ex 0.3 21:58.97 10
                                             360
                                                   954
                                                                65M
                                                                       46M
                                                                              114M
                                                                                    1057M
                                                         16M
 54751
        sleep
                    0.0 00:00.00 1
                                             17
                                                   20
                                                         92K
                                                                212K
                                                                       360K
                                                                              9632K
                                                                                    2370M
                                             33
                                                   50
                                                                       1736K
 54739
        launchdadd 0.0 00:00.00 2
                                                         488K
                                                                220K
                                                                              48M
                                                                                    2409M
                                             30
 54737
                    6.5 00:02.53 1/1
                                                         1416K
                                                                216K
                                                                       2124K
                                                                              17M
                                                                                    2378M
        top
                    0.0 00:00.02 7
                                             53
                                                   64
 54719
        automountd
                                                         860K
                                                                216K
                                                                       2184K
                                                                              53M
                                                                                    2413M
 54701
                    0.0 00:00.05 4
                                             61
                                                         1268K
                                                                2644K
                                                                       3132K
                                                                              50M
                                                                                    2426M
        ocspd
 54661
                    0.6 00:02.75 6
                                                   389+
                                                         15M+
        Grab
                                                                26M+
                                                                       40M+
                                                                              75M+
                                                                                    2556M+
 54659
                    0.0 00:00.15 2
                                             40
                                                   61
                                                         3316K
                                                                224K
                                                                       4088K
                                                                                    2411M
        cookied
                                                                              42M
 53818
        mdworker
                    0.0 00:01.67 4
                                             52
                                                   91
                                                         7628K
                                                                7419K
                                                                                     2438M
                                                                       16M
                                                                              48M
Running program "top" on Mac
                                                         2464K
                                                                6148K
                                                                              44M
                                                                                    2434M
                                                         280K
                                                                872K
                                                                       532K
                                                                              9700K
    System has 123 processes, 5 of which are active
                                                                       88K
                                                                              18M
```

Identified by Process ID (PID)

- Single processor executes multiple processes concurrently
 - Process executions interleaved (multitasking)
 - Address spaces managed by virtual memory system (later in course)
 - Register values for non-executing (suspended) processes saved in memory

Save current registers in memory

Schedule next process for execution

Load saved registers and switch address space (context switch)

Multiprocessing: The (Modern) Reality

Scheduling of processors onto

cores done by kernel

Concurrent Processes

- Each process is a logical control flow.
- Two processes run concurrently (are concurrent) if their flows overlap in time
- Otherwise, they are sequential
- Examples (running on single core):
 - Concurrent: A & B, A & C
 - Sequential: B & C

User View of Concurrent Processes

- Control flows for concurrent processes are physically disjoint in time
- However, we can think of concurrent processes as running in parallel with each other

Context Switching

- Processes are managed by a shared chunk of memoryresident OS code called the kernel
 - Important: the kernel is not a separate process, but rather runs as part of some existing process.
- Control flow passes from one process to another via a context switch

System Calls

- Systems calls ask the operating system to perform a task on behalf of the process.
- Each x86-64 system call has a unique ID number
- Examples:

Number	Name	Description
0	read	Read file
1	write	Write file
2	open	Open file
3	close	Close file
4	stat	Get info about file
57	fork	Create process
59	execve	Execute a program
60	_exit	Terminate process
62	kill	Send signal to process

System Call Example: Opening File

- User calls: open(filename, options)
- Calls __open function, which invokes system call instruction syscall

```
00000000000e5d70 <__open>:
e5d79:
         b8 02 00 00 00
                                   $0x2, %eax # open is syscall #2
                              mov
                                               # Return value in %rax
e5d7e:
         0f 05
                              syscall
e5d80:
         48 3d 01 f0 ff ff
                                   $0xffffffffffff001, %rax
                              cmp
e5dfa:
         c3
                              retq
```


- %rax contains syscall number
- Other arguments in %rdi, %rsi, %rdx, %r10, %r8, %r9
- Return value in %rax
- Negative value is an error corresponding to negative errno

Summary

Processes

- At any given time, system has multiple active processes
- Only one can execute at a time on a single core, though
- Each process appears to have total control of processor + private memory space

A System Using Physical Addressing

Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

A System Using Virtual Addressing

- Used in all modern servers, laptops, and smart phones
- One of the great ideas in computer science

Address Spaces

Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots\}$$

- Virtual address space: Set of N = 2ⁿ virtual addresses {0, 1, 2, 3, ..., N-1}
- Physical address space: Set of $M = 2^m$ physical addresses $\{0, 1, 2, 3, ..., M-1\}$

Why Virtual Memory (VM)?

- Uses main memory efficiently
 - Use DRAM as a cache for parts of a virtual address space
- Simplifies memory management
 - Each process gets the same uniform linear address space
- Isolates address spaces
 - One process can't interfere with another's memory
 - User program cannot access privileged kernel information and code

VM as a Tool for Caching

- Conceptually, virtual memory is an array of N contiguous bytes stored on disk (from a caching perspective!)
- The contents of the array on disk are cached in physical memory (DRAM cache)
 - These cache blocks are called pages (size is P = 2^p bytes)

DRAM Cache Organization

- DRAM cache organization driven by the enormous miss penalty
 - DRAM is about 10x slower than SRAM (CPU cache)
 - Disk is about 10,000x slower than DRAM

Consequences

- Large page (block) size: typically 4 KB, sometimes 4 MB
- Fully associative
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
- Write-back rather than write-through

Enabling Data Structure: Page Table

- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 - Per-process kernel data structure in DRAM

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

Page Fault

Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Locality to the Rescue Again!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- If (working set size < main memory size)</p>
 - Good performance for one process after compulsory misses
- If (SUM(working set sizes) > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

VM as a Tool for Memory Management

- Key idea: each process has its own virtual address space
 - It can view memory as a simple linear array
 - Mapping function scatters addresses through physical memory
 - Well-chosen mappings can improve locality

VM as a Tool for Memory Management

- Simplifying memory allocation
 - Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times
- Sharing code and data among processes
 - Map virtual pages to the same physical page (here: PP 6)

VM as a Tool for Memory Protection

- Extend PTEs with permission bits
- MMU checks these bits on each access

VM Address Translation

- Virtual Address Space
 - $V = \{0, 1, ..., N-1\}$
- Physical Address Space
 - $P = \{0, 1, ..., M-1\}$
- Address Translation

MAP:
$$V \rightarrow P \cup \{\emptyset\}$$

- For virtual address a:
 - MAP(a) = a' if data at virtual address a is at physical address a' in P
 - MAP(a) = Ø if data at virtual address a is not in physical memory
 Either invalid or stored on disk

Summary of Address Translation Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- $P = 2^p$: Page size (bytes)

Components of the virtual address (VA)

- **TLBI**: TLB index
- **TLBT**: TLB tag
- VPO: Virtual page offset
- VPN: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number

Address Translation With a Page Table

Address Translation: Page Hit

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) MMU sends physical address to cache/memory
- 5) Cache/memory sends data word to processor

Address Translation: Page Fault

- 1) Processor sends virtual address to MMU
- 2-3) MMU fetches PTE from page table in memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction

Integrating VM and Cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Speeding up Translation with a TLB

- Page table entries (PTEs) are cached in L1 like any other memory word
 - PTEs may be evicted by other data references
 - PTE hit still requires a small L1 delay
- Solution: Translation Lookaside Buffer (TLB)
 - Small set-associative hardware cache in MMU
 - Maps virtual page numbers to physical page numbers
 - Contains complete page table entries for small number of pages

Accessing the TLB

MMU uses the VPN portion of the virtual address to access the TLB:

TLB Hit

A TLB hit eliminates a memory access

TLB Miss

A TLB miss incurs an additional memory access (the PTE)

Fortunately, TLB misses are rare. Why?

Multi-Level Page Tables

- Suppose:
 - 4KB (2¹²) page size, 48-bit address space, 8-byte PTE
- Problem:
 - Would need a 512 GB page table!
 - $^{\bullet}$ 2⁴⁸ * 2⁻¹² * 2³ = 2³⁹ bytes
- Common solution: Multi-level page table
- Example: 2-level page table
 - Level 1 table: each PTE points to a page table (always memory resident)
 - Level 2 table: each PTE points to a page (paged in and out like any other data)

A Two-Level Page Table Hierarchy

Translating with a k-level Page Table

Summary

Programmer's view of virtual memory

- Each process has its own private linear address space
- Cannot be corrupted by other processes

System view of virtual memory

- Uses memory efficiently by caching virtual memory pages
 - Efficient only because of locality
- Simplifies memory management and programming
- Simplifies protection by providing a convenient interpositioning point to check permissions

Review of Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- $M = 2^m$: Number of addresses in physical address space
- P = 2^p : Page size (bytes)

Components of the virtual address (VA)

- TLBI: TLB index
- **TLBT**: TLB tag
- VPO: Virtual page offset
- VPN: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number
- **CO**: Byte offset within cache line
- **CI:** Cache index
- CT: Cache tag

Simple Memory System Example

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

1. Simple Memory System TLB

- 16 entries
- 4-way associative

Set	Tag	PPN	Valid									
0	03	-	0	09	0D	1	00	-	0	07	02	1
1	03	2D	1	02	-	0	04	-	0	0A	-	0
2	02	-	0	08	-	0	06	-	0	03	-	0
3	07	-	0	03	0D	1	0A	34	1	02	-	0

2. Simple Memory System Page Table

Only show first 16 entries (out of 256)

VPN	PPN	Valid
00	28	1
01	-	0
02	33	1
03	02	1
04	-	0
05	16	1
06	-	0
07	_	0

VPN	PPN	Valid
08	13	1
09	17	1
OA	09	1
ОВ	ı	0
ОС	-	0
0D	2D	1
0E	11	1
OF	0D	1

3. Simple Memory System Cache

- 16 lines, 4-byte block size
- Physically addressed
- Direct mapped

Idx	Tag	Valid	ВО	B1	B2	В3
0	19	1	99	11	23	11
1	15	0	-	-	-	-
2	1B	1	00	02	04	08
3	36	0	-	-	-	-
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0				-
7	16	1	11	C2	DF	03

Idx	Tag	Valid	ВО	B1	B2	В3
8	24	1	3 A	00	51	89
9	2D	0	-	-	-	-
Α	2D	1	93	15	DA	3B
В	0B	0	-	-	-	-
С	12	0	-	-	-	-
D	16	1	04	96	34	15
Е	13	1	83	77	1B	D3
F	14	0	-	-	-	_

Virtual Address: 0x03D4

Physical Address

CO ___ CI__ CT ___ Hit? __ Byte: ___

Virtual Address: **0x03D4** = 00001111010100

VPN= 0x0f TLBI= 0x03 TLBT=0x03 TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO ___ CI__ CT ___ Hit? __ Byte: ___

Virtual Address: **0x03D4** = 00001111010100

VPN= 0x0f TLBI= 0x03 TLBT=0x03 TLB Hit= Yes Page Fault= No PPN: 0x0D

Physical Address

CT ____ Hit? __ Byte: ____

Virtual Address: **0x03D4** = 00001111010100

VPN= 0x0f TLBI= 0x03 TLBT=0x03 TLB Hit= Yes Page Fault= No PPN: 0x0D

Physical Address

0x0D = 001101

Virtual Address: 0x03D4 = 00001111010100

VPN= 0x0f TLBI= 0x03 TLBT=0x03 TLB Hit= Yes Page Fault= No

PPN: 0x0D

Physical Address

 $0 \times 0 D = 001101$

CO = 0x0CI=0x05 CT=0x0D

Hit= Yes

Byte: 0x36

Virtual Address: 0x0020

Physical Address

