Noah Casey

MATH 4720

Homework 3

1 For the group \mathbb{Z}_{225} , using bar notation, e.g. $\bar{5}$ for the element in \mathbb{Z}_{225} :

a Draw a subgroup diagram. Cite the theorem that allows for this to be done easily.

The theorem that allows for easy diagramming of subgroups (particularly in \mathbb{Z}_{225}) is Theorem G9 (ii), which states that for a cyclic group of order n, there is a one-to-one correspondence between the positive divisors of n and the set of subgroups. Hence, the positive divisors of 225 correspond to the subgroups of \mathbb{Z}_{225} as the group is cyclic and of order 225.

b How many subgroups of order 15 are there? Explain briefly.

By Theorem G9 (ii), if k is a divisor of 225, then there is a unique subgroup of order $\frac{225}{k}$. If k = 15, then the order of the subgroup generated by k is 15. Thus, there is a single subgroup that has order 15.

c Find all of the elements that generate a subgroup of order 15.

By Theorem G9 (i), ka (additive notaion) is a generator of a group of order

n if and only if gcd(k, n) = 1. Hence, the k-values that generate a subgroup of order 15 must be relatively prime to 15. These are $k = \{1, 2, 3, 4, 7, 8, 11, 13, 14\}$,

hence, as (we know a=15 as $\bar{15}isagenerator of the subgroup of order 15 from <math>(b)$, k15={15,30,45,60,105,120,165} from (b) and (b) is a subgroup of order 15

2 Let G be a group with $a \in G$. Show that $o(a) = o(a^{-1})$:

Let *G* be finite, then o(a) = n if and only if $a^n = e$, so $(a^{-1})^n = a^{-n} = (a^n)^{-1} = e^{-1} = e$ and $o(a^{-1}) = n$.

Now let G be an infinite group. Note that $o(a) = \infty$, so $a^n \neq e$ for any $n \in \mathbb{N}$. Now assume that $o(a^{-1}) = n$ for some $n \in \mathbb{N}$. This may be the case only if $a^n = e$ or $a^{-1} = e$. We know that the former is false as $o(a) = \infty$, so for the statement to be true, it must be the case that $a^{-1} = e$. However, ae = a, so this is false. Hence, $o(a^{-1}) = \infty$.

3 Show that $S_n = \langle (1\ 2), (1\ 3), ..., (1\ n) \rangle$.

We proceed by induction on arbitrary m-cycles.

Base Cases: let m = 2 such that we have the cycle $(a_1 \ a_2)$, then this can be written as $(1 \ a_1)(1 \ a_2(1 \ a_1))$. Now let m = 3, then some cycle $(a_1 \ a_2 \ a_3)$ may be written as $(1 \ a_3)(1 \ a_2(1 \ a_1)(1 \ a_3))$. Both of these cases give cycles as products of transpositions of the form desired.

Induction step: Now assume that some m-cycle may be written as

$$(1 \ a_m)(1 \ a_{m-1}) \dots (1 \ a_2)(1 \ a_1)(1 \ a_m).$$

It remains to show that some m + 1-cycle can be written in a similar fashion. All we need to do is extend the m-cycle to account for this extra a_{m+1} . We know that a_{m+1} must be mapped to a_1 , so we can replace the rightmost a_m with a_{m+1} . Now, we need a_m to map to a_{m+1} , so we append an a_{m+1} to the left of a_m in the cycle. The rest of the mappings are uncahnging between the two cycles, so the m + 1-cycle may be written as

$$(1 \ a_{m+1})(1 \ a_m)(1 \ a_{m-1}) \dots (1 \ a_2)(1 \ a_1)(1 \ a_{m+1}).$$

4 Let $\tau = (a_1 \ a_2 \dots a_k)$ be a k-cycle in S_n .

a Prove that if σ is any permutation in S_n , then $\sigma\tau\sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \dots \sigma(a_k))$. Set $\{\sigma(a_1), \sigma(a_2), \dots, \sigma(a_k)\} \in \{1, \dots, n\}$. Then

$$\sigma \tau \sigma^{-1}(\sigma(a_1)) = \sigma \tau(a_1) = \sigma(a_2).$$

Now take some $a_i \in \{a_1, a_2, ..., a_k\}$. We have that

$$\sigma \tau \sigma^{-1}(\sigma(a_i)) = \sigma \tau(a_i) = \sigma(a_{i+1}).$$

If i = k, then i + 1 = 1 as τ maps a_k to a_1 . Now take some $m \notin \{a_1, a_2, ..., a_k\}$. Note that $\sigma \tau \sigma^{-1}(\sigma(m)) = \sigma \tau(m) = \sigma(m)$ as τ fixes m, so $\sigma \tau \sigma^{-1}$ fixes $\sigma(m)$.

b Let μ be a k-cycle. Prove that there is a permutation σ such that $\sigma\tau\sigma^{-1} = \mu$. Assume that $\mu = (\mu_1 \ \mu_2 \ ... \ \mu_k)$ where $\{\mu_1, \mu_2, ..., \mu_k\} \in \{1, ..., n\}$. As we know from (a), $\sigma\tau\sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ ... \ \sigma(a_k))$; thus if we set $\sigma(a_i) = \mu_i$ and fix all letters not in $\{a_1, ..., a_k\}$, then we have found a σ that satisfies the condition.

More precisely, we may set $\sigma = (a_1 \ \mu_1)(a_2 \ \mu_2)\dots(a_k \ \mu_k)$. This function takes any a_i and maps it to μ_i . We now handle the case in which we have cycles in the product of the form $(a_i = \mu_j \ \mu_i)\dots(a_j \ \mu_j)$. Note that if this is the case, then a_j is sent to μ_i , which is undesirable. However, if we flip the order of these transpositions to $(a_j \ \mu_j)\dots(a_i = \mu_j \ \mu_i)$, then we see that a_i is mapped to μ_i and a_j is mapped to μ_j as desired. Flipping the order of any cycles of this form gives the desired σ as

$$\mu(\sigma(a_i)) = \mu(\mu_i) = \mu_{i+1}$$

and

$$\sigma \tau \sigma^{-1}(\sigma(a_i)) = \sigma \tau(a_i) = \sigma(a_{i+1}) = \mu_{i+1}.$$

5 Find all of the left and right cosets of $H = \langle (1\ 2\ 3) \rangle$ in S_4 .

If you had to find the left and right cosets in S_5 , how many of each would there be?

We see that $H = \{(1\ 2\ 3), (1\ 3\ 2), id\}$, so the cosets are as follows.

Left cosets idH = H $(1\ 2)H = \{(1\ 2), (2\ 3), (1\ 3)\}$ $H(1\ 2) = \{(1\ 2), (2\ 3), (1\ 3)\}$ $H(1\ 2) = \{(1\ 2), (2\ 3), (1\ 3)\}$ $H(1\ 4) = \{(1\ 4), (1\ 4\ 2\ 3), (1\ 3\ 4\ 2)\}$ $H(2\ 4) = \{(2\ 4), (1\ 2\ 4\ 3), (1\ 3\ 4\ 2)\}$ $H(3\ 4) = \{(2\ 4), (1\ 2\ 4\ 3), (1\ 3\ 4\ 2)\}$ $H(3\ 4) = \{(3\ 4), (1\ 2\ 3\ 4), (1\ 3\ 4\ 2)\}$ $H(1\ 2\ 4) = \{(1\ 2\ 4), (1\ 3\ 4\ 2)\}$ $H(1\ 2\ 4) = \{(1\ 2\ 4), (1\ 3\ 4\ 2)\}$ $H(1\ 2\ 4) = \{(1\ 2\ 4), (1\ 3\ 4\ 2)\}$ $H(1\ 4\ 2) = \{(1\ 4\ 2), (1\ 4\ 3), (1\ 4\ 2)\}$ $H(1\ 4\ 2) = \{(1\ 4\ 2), (1\ 4\ 3), (1\ 4\ 2)\}$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (2\ 3\ 4), (1\ 2)(3\ 4)\}$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (1\ 2)(3\ 4)\}$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (1\ 2)(3\ 4), (1\ 2)(3\ 4)$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (1\ 2\ 4), (1\ 2)(3\ 4)\}$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (1\ 3\ 4), (1\ 2)(3\ 4)\}$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (1\ 3\ 4), (1\ 3\ 4)$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (1\ 3\ 4), (1\ 3\ 4)$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (1\ 3\ 4), (1\ 3\ 4)$ $H(1\ 3\ 4) = \{(1\ 3\ 4), (1\ 3\ 4), (1\ 3\ 4)$ $H(1\ 3\ 4)$

may be relabeled using any of the elements in the set. In S_5 , there are 5! elements. Each coset of H has a size of 3, and as cosets

are equivalence relations, they parition the set. Hence, there will be $\frac{5!}{3} = 40$ left cosets of H in S_5 ; likewise, there will be 40 right cosets.

6 Do the computations without need for a calculator

a Use FLT to "primality test" the number 35 for primeness

Note that 35 does not divide 6, so we may use a=6 as specified in Fermat's Little theorem. If 35 is a candidate for a prime number, then $6^{34} \equiv 1 \pmod{35}$. We see that $6^2=36\equiv 1 \pmod{35}$, so $6^{34}\equiv (6^2)^{17}\equiv 1^{17}\equiv 1 \pmod{35}$. Thus, we cannot claim that 35 is not prime based on FLT. However, the implication only claims that if 35 is prime, then $6^{34}\equiv 1 \pmod{35}$, but the implication doesn't go the other way, so we cannot say with certainty that 35 is prime (in fact, one can see that it is not).

b Verify that Euler's theorem holds for n = 35 and a = 2

Clearly, $\gcd(35,2)=1$ as 2 does not divide 35. Thus, by Euler's theorem, $2^{\varphi(35)}\equiv 1\pmod{35}$. We verify this by first determining $\varphi(35)$. Recall that the Euler-phi function with n=35 is defined as $\varphi(35)=|\{k|\gcd(k,35)=0\}|$ where $1\leq k<35$. The set of numbers less than 35 that are relatively prime with 35 are $\{1,2,3,4,6,8,9,11,12,13,16,17,18,19,22,23,24,26,27,29,31,32,33,34\}$ and the size of this set is 24. Thus, $\varphi(35)=24$ and it must be the case that $2^{24}\equiv 1\pmod{35}$. We verify this by noting that $2^{24}\equiv (2^3)^8\equiv (8)^8\equiv (8^2)^4\equiv 64^4\equiv 29^4\equiv (-6)^4\equiv 36^2\equiv 1^2\equiv 1\pmod{35}$. Thus, Euler's theorem holds for n=35 and a=2.

7 Let G be a finite group. Suppose G has subgroups of order 8, 90, and 220. What can you say about the order of G?

By Corollary G14 (Lagrange's Theorem), the order of subgroup H of G divides the order of G. So, we can say that |G| is a multiple of 8, 90, and 220. Furthermore, we may find the minimum order of G. Let |G| = n. As 90|n, $n \geq 90$. However, $8 \nmid 90$, but 8 and 90 both divide 180, and this is the smallest number that both divide. Now since 220|n, $n \geq 220$, but $180 \nmid 220$. Thus, we find the smalles number that both divide; note that both divide (18)(22)(10) as 180|(180)(22) and 220|(18)(220). Thus, |G| = (k18)(l22)(n10) for some $k, l, n \in \mathbb{N}$.

Sources

- Python: for confirming numerical computations.
- Stack Exchange: understanding why a permutation can be written as a product of transpositions.