

Análise e Síntese de Algoritmos Programação dinâmica CLRS Cap. 15

Prof. Pedro T. Monteiro

IST - Universidade de Lisboa

2024/2025

P.T. Monteiro ASA @ LEIC-T 2024/2025

1/46

, -

Resumo

Maior Sub-Sequência Comum

Realizar trocos

Maior Palíndromo

Multiplicação de cadeias de matrizes

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica [CLRS, Cap.15]
 - Algoritmos greedy [CLRS, Cap.16]
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos [CLRS, Cap.22,24-25]
 - Árvores abrangentes [CLRS, Cap.23]
 - Fluxos máximos [CLRS, Cap.26]
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais
 - Emparelhamento de Cadeias de Caracteres [CLRS, Cap.32]
 - Complexidade Computacional [CLRS, Cap.34]

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Ex 3 - Maior Sub-Sequência Comum

Definição

- Dada uma sequência $X=\langle x_1,\ldots,x_n\rangle$, uma sequência $Z=\langle z_1,\ldots,z_k\rangle$ é uma sub-sequência de X se existe uma sequência estritamente crescente $\langle i_1,\ldots,i_k\rangle$ tal que para todo o $j=1,\ldots,k,x_{i_j}=z_j$
- Dadas as sequências $X = \langle x_1, \dots, x_n \rangle$ e $Y = \langle y_1, \dots, y_m \rangle$, Z é uma sub-sequência comum se Z é sub-sequência de X e de Y Obs: $X_i = \langle x_1, \dots, x_i \rangle$

Objectivo

Encontrar sub-sequência comum de maior comprimento (LCS) entre duas sequências X e Y

Exemplo

- Um caso concreto:
 - $X = \langle abefcghd \rangle$
 - $Y = \langle eagbcfdh \rangle$
 - $-Z = \langle abcd \rangle$ é sub-sequência comum de X e Y
- Uma solução exaustiva é impraticável:
 - Considerar inclusão (ou não) de cada caracter de X e de Y
 - Total de sub-sequências em X: 2ⁿ
 - Total de sub-sequências em Y: 2^m
 - Total de casos a analisar: 2^{n+m}
 - Impraticável para valores elevados de n e m

P.T. Monteiro

ASA @ LEIC-T 2024/2025

5/46

Ex 3 - Maior Sub-Sequência Comum

Formulação

- c[i,j]: comprimento da LCS para as sequências X_i e Y_j
- Formulação:

$$c[i,j] = \begin{cases} 0 & \text{se } i = 0 \text{ ou } j = 0 \\ c[i-1,j-1]+1 & \text{se } i,j > 0 \text{ e } x_i = y_j \\ max(c[i,j-1],c[i-1,j]) & \text{se } i,j > 0 \text{ e } x_i \neq y_j \end{cases}$$

• Tempo de execução: O(n m)

Ex 3 - Maior Sub-Sequência Comum

Exemplo

- Alguns resultados formais:
 - Sejam $X=\langle x_1,\ldots,x_n\rangle$ e $Y=\langle y_1,\ldots,y_m\rangle$ duas sequências, e seja $Z=\langle z_1,\ldots,z_k\rangle$ uma LCS de X e Y
 - Se $x_n = y_m$, então $z_k = x_n = y_m$ e Z_{k-1} é LCS de X_{n-1} e Y_{m-1}
 - Se $x_n \neq y_m$, então:
 - ightharpoonup se $z_k \neq x_n$ implica que Z é LCS de X_{n-1} e Y
 - ▶ se $z_k \neq y_m$ implica que Z é LCS de X e Y_{m-1}
- Abordagem:
 - Se $x_n = y_m$, encontrar LCS W de X_{n-1} e Y_{m-1}
 - ▶ Adicionar $x_n = y_m$ a W permite obter Z
 - Se $x_n \neq y_m$, encontrar LCSs W_1 e W_2 para: X_{n-1} e Y, e para X e Y_{m-1}
 - ▶ Escolher a maior LCS $max(W_1, W_2)$

P.T. Monteir

ASA @ LEIC-T 2024/202

TÉCNICO

Ex 3 - Maior Sub-Sequência Comum

Exemplo

	-	а	b	е	f	С	g	h	d
-									
е									
а									
g									
b									
С									
f									
d									
h									

Ex 3 - Maior Sub-Sequência Comum

а

0 0

0 0

0 0 0

0 0

e a g b c f d h

е

Exemplo

	-	а	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0								
а	0								
g	0								
b	0								
С	0								
f	0								
d	0								
h	0								

P.T. Monteiro ASA @ LEIC-T 2024/2025

P.T. Monteiro

Exemplo

ASA @ LEIC-T 2024/2025

С

0

Ex 3 - Maior Sub-Sequência Comum

Exemplo

	-	а	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0							
а	0	1							
g	0								
b	0								
С	0								
f	0								
d	0								
h	0								

Ex 3 - Maior Sub-Sequência Comum

Exemplo

	-	а	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0							
а	0	1							
g	0	1							
b	0								
С	0								
f	0								
d	0								
h	0								

Ex 3 - Maior Sub-Sequência Comum

а

0 0

- 0 | e 0 | l | a 0 | l | g 0 | 1 | c 0 | 1 | f 0 | 1 | d 0 | 1 | h 0 | 1

Ex 3 - Maior Sub-Sequência Comum

е

Exemplo

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0							
а	0	1							
g	0	1							
b	0	1							
С	0								
f	0								
d	0								
h	0								

P.T. Monteiro ASA @ LEIC-T 2024/2025

P.T. Monteiro

ASA @ LEIC-T 2024/2025

С

0

Ex 3 - Maior Sub-Sequência Comum

Exemplo

	-	а	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0						
а	0	1							
g	0	1							
b	0	1							
С	0	1							
f	0	1							
d	0	1							
h	0	1							

Exemplo

Exemplo

	-	a	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0						
а	0	1	1						
g	0	1							
b	0	1							
С	0	1							
f	0	1							
d	0	1							
h	0	1							

Ex 3 - Maior Sub-Sequência Comum

Exemplo

	-	a	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0						
а	0	1	1						
g	0	1	1						
b	0	1	2						
С	0	1							
f	0	1							
d	0	1							
h	0	1							

P.T. Monteiro ASA @ LEIC-T 2024/2025

Ex 3 - Maior Sub-Sequência Comum

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1				
а	0	1	1	1	1				
g	0	1	1	1	1				
b	0	1	2	2	2				
С	0	1	2	2	2				
f	0	1	2	2					
d	0	1	2	2					
h	0	1	2	2					

Exemplo

	-	а	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1					
а	0	1	1	1					
g	0	1	1	1					
b	0	1	2	2					
С	0	1	2	2					
f	0	1	2	2					
d	0	1	2	2					
h	0	1	2	2					

Exemplo

		-	a	b	е	f	С	g	h	d
-		0	0	0	0	0	0	0	0	0
е	!	0	0	0						
a		0	1	1						
g		0	1	1						
b)	0	1	2						
C		0	1	2						
f	•	0	1	2						
d		0	1	2						
h		0	1	2						

P.T. Monteiro

Ex 3 - Maior Sub-Sequência Comum

		-	а	b	e	f	С	g	h	d
	-	0	0	0	0	0	0	0	0	0
•	е	0	0	0	1	1				
	а	0	1	1	1	1				
	g	0	1	1	1	1				
	b	0	1	2	2	2				
•	С	0	1	2	2	2				
•	f	0	1	2	2					
	d	0	1	2	2					
	h	0	1	2	2					

Ex 3 - Maior Sub-Sequência Comum

Exemplo

	-	а	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1				
а	0	1	1	1	1				
g	0	1	1	1	1				
b	0	1	2	2	2				
С	0	1	2	2	2				
f	0	1	2	2	3				
d	0	1	2	2					
h	0	1	2	2					

P.T. Monteiro ASA @ LEIC-T 2024/2025

6

Exemplo

	-	a	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1	1	1	1	1
а	0	1	1	1	1	1	1	1	1
g	0	1	1	1	1	1	2	2	2
b	0	1	2	2	2	2	2	2	2
С	0	1	2	2	2	3	3	3	3
f	0	1	2	2	3	3	3	3	3
d	0	1	2	2	3	3	3	3	4
h	0	1	2	2	3	3	3	4	4

P.T. Monteiro ASA @ LEIC-T 2024/2025 2

Ex 3 - Maior Sub-Sequência Comum

Ex 3 - Maior Sub-Sequência Comum

Exemplo

	-	а	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1	1	1	1	1
а	0	1	1	1	1	1	1	1	1
g	0	1	1	1	1	1	2	2	2
b	0	1	2	2	2	2	2	2	2
С	0	1	2	2	2	3	3	3	3
f	0	1	2	2	3	3	3	3	3
d	0	1	2	2	3	3	3	3	4
h	0	1	2	2	3	3	3	4	4

LCS: abch (de tamanho 4)

Exemplo

	-	а	b	e	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1	1	1	1	1
а	0	1	1	1	1	1	1	1	1
g	0	1	1	1	1	1	2	2	2
b	0	1	2	2	2	2	2	2	2
С	0	1	2	2	2	3	3	3	3
f	0	1	2	2	3	3	3	3	3
d	0	1	2	2	3	3	3	3	4
h	0	1	2	2	3	3	3	4	4

LCS: abcd (de tamanho 4)

P.T. Monteiro ASA @ LEIC-T 2024/2025 23/46 P.T. Monteiro ASA @ LEIC-T 2024/2025

Ex 4 - Realizar trocos

Definição

- Dado um conjunto de moedas, denominadas $1, \ldots, n$, com valores d_1, \ldots, d_n , calcular o menor número de moedas cuja soma de valores é T
 - Número ilimitado de moedas de cada denominação
- Solução greedy pode não funcionar:
 - $-d_1=1$; $d_2=5$; $d_3=20$; $d_4=25$
 - Troco de 40?!
- Solução baseada em programação dinâmica

P.T. Monteiro

ASA @ LEIC-T 2024/202

25/4

Ex 5 - Maior Sub-Sequência Palíndromo

Definição

• Dada uma sequência $X = \langle x_1, \dots, x_n \rangle$, calcular a maior sub-sequência $Z = \langle z_1, \dots, z_k \rangle$ de X tal que Z seja um palíndromo

Exemplo

- $X = \langle abcfdbca \rangle$
- $Z = \langle abdba \rangle$

Formulação

• I[i,j]: tamanho da maior sub-sequência palíndromo de X (entre os índices i e j, tal que $j \ge i$)

$$I[i,j] = \begin{cases} 1 & \text{i = j} \\ I[i+1,j-1] + 2 & \text{se } X_i = X_j \\ \max(I[i,j-1],I[i+1,j]) & \text{caso contrário} \end{cases}$$

Ex 4 - Realizar trocos

Formulação

- c[i,j]: Menor número de moedas necessárias para pagar j unidades, $0 \le j \le T$, utilizando apenas moedas com denominação entre 1 e i, $1 \le i \le n$
- Objectivo é calcular c[n, T]
- Formulação:

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{se } i > 0 \text{ e } j = 0 \\ +\infty & \text{se } i = 0 \text{ ou } j < 0 \\ \min(c[i-1,j],c[i,j-d_i]+1) & \text{caso contrário} \end{array} \right.$$

Tempo de execução: O(n T)

P.T. Monteir

ASA @ LEIC-T 2024/202

Ex 5 - Maior Sub-Sequência Palíndromo

Exemplo	i	1	2	3	4	5	6	7	8
Lxemplo	Xi	а	b	С	f	d	b	С	а

i \j	1	2	3	4	5	6	7	8
1	1							
2		1						
3			1					
4				1				
5					1			
6						1		
7							1	
8								1

$$I[i,j] = 1, \quad i = j$$

Ex 5 - Maior Sub-Sequência Palíndromo

Exemplo	i	1	2	3	4	5	6	7	8	
Exemplo	X_i	a	b	С	f	d	b	С	a	

i \j	1	2	3	4	5	6	7	8
1	1	1						
2		1						
3			1					
4				1				
5					1			
6						1		
7							1	
8								1

$$max(I[i, j-1], I[i+1, j]), X_i \neq X_j$$

T. Monteiro ASA @ LEIC-T 2024/2029

29/46

Ex 5 - Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1	1	1					
2		1	1	1				
3			1	1	1			
4				1	1	1		
5					1	1	1	
6						1	1	1
7							1	1
8								1

$$max(I[i,j-1],I[i+1,j]), \quad X_i \neq X_j$$

Ex 5 - Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1	1						
2		1	1					
3			1	1				
4				1	1			
5					1	1		
6						1	1	
7							1	1
8								1

$$max(I[i, j-1], I[i+1, j]), X_i \neq X_i$$

T. Monteiro ASA @ LEIC-T 2024/20

Ex 5 - Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1	1	1	1				
2		1	1	1	1			
3			1	1	1	1		
4				1	1	1	1	
5					1	1	1	1
6						1	1	1
7							1	1
8								1

$$max(I[i, j-1], I[i+1, j]), X_i \neq X_j$$

Ex 5 - Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1	1	1	1	1			
2		1	1	1	1	3		
3			1	1	1	1	3	
4				1	1	1	1	1
5					1	1	1	1
6						1	1	1
7							1	1
8								1

$$I[i+1, j-1]+2, X_i = X_i$$

T. Monteiro ASA @ LEIC-T 2024/2025

33/4

Ex 5 - Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1	1	1	1	1	3	3	
2		1	1	1	1	3	3	3
3			1	1	1	1	3	3
4				1	1	1	1	1
5					1	1	1	1
6						1	1	1
7							1	1
8								1

$$max(I[i, j-1], I[i+1, j]), X_i \neq X_j$$

Ex 5 - Maior Sub-Sequência Palíndromo

	i \j	1	2	3	4	5	6	7	8
	1	1	1	1	1	1	3		
	2		1	1	1	1	3	3	
	3			1	1	1	1	3	3
	4				1	1	1	1	1
-	5					1	1	1	1
	6						1	1	1
	7							1	1
	8								1

$$max(I[i, j-1], I[i+1, j]), X_i \neq X_i$$

T. Monteiro ASA @ LEIC-T 2024/20

Ex 5 - Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1	1	1	1	1	3	3	5
2		1	1	1	1	3	3	3
3			1	1	1	1	3	3
4				1	1	1	1	1
5					1	1	1	1
6						1	1	1
7							1	1
8								1

$$I[i+1, j-1]+2, X_i = X_j$$

Computer Science @CompSciFact · Nov 17

'Inside every large program is a small program trying to get out.' -- Tony Hoare

tl 9

ılı 7.3K

P.T. Monteiro

ASA @ LEIC-T 2024/2025

37/46

Ex 6 - Multiplicação de cadeias de matrizes

Exemplo

 $A(13 \times 5)$; $B(5 \times 89)$; $C(89 \times 3)$; $D(3 \times 34)$

- $(((A \times B) \times C) \times D)$:
 - $13\times5\times89+13\times89\times3+13\times3\times34=10.582$ produtos
- $((A \times B) \times (C \times D))$:
 - $-\ 13\times5\times89+89\times3\times34+13\times89\times34=54.201$ produtos
- $((A \times (B \times C)) \times D)$:
 - $-5 \times 89 \times 3 + 13 \times 5 \times 3 + 13 \times 3 \times 34 = 2.856$ produtos!
- $(A \times ((B \times C) \times D))$:
 - $-5 \times 89 \times 3 + 5 \times 3 \times 34 + 13 \times 5 \times 34 = 4.055$ produtos
- $(A \times (B \times (C \times D)))$:
 - $-89 \times 3 \times 34 + 5 \times 89 \times 34 + 13 \times 5 \times 34 = 26.418$ produtos

Ex 6 - Multiplicação de cadeias de matrizes

Definição

- A_1, A_2, \ldots, A_n tal que A_i tem dimensões $(I_i \times c_i)$
- Objectivo: colocar parêntesis na cadeia de produtos de matrizes
 A₁ × A₂ × . . . × A_n, tal que o número de multiplicações escalares é
 minimizado

Observações

- Tempo para multiplicar as n matrizes é dominado pelo tempo para realizar as multiplicações escalares necessárias
 - Para multiplicar duas matrizes $(r \times s)$ e $(s \times t)$, o número de multiplicações escalares é: $r \times s \times t$
- Número de produtos depende do modo como os produtos de matrizes são organizados
 - Colocação de parêntesis define organização da multiplicação de matrizes

P.T. Monteiro

ASA @ LEIC-T 2024/202

Ex 6 - Multiplicação de cadeias de matrizes

Observação

 Número de colocações possíveis de parêntesis cresce exponencialmente com número de matrizes:

$$P(n) = \begin{cases} 1 & \text{se } n = 1\\ \sum_{k=1}^{n-1} P(k) \ P(n-k) & \text{se } n \ge 2 \end{cases}$$

$$P(n) = C(n-1)$$

$$C(n) = \frac{C_n^{2n}}{n+1} = \Omega(4^n/n^{3/2})$$

Ex 6 - Multiplicação de cadeias de matrizes

Características da Solução Óptima

Seja $A_{1...n}$ solução com colocação óptima de parêntesis

- Admitir solução óptima com parêntesis em k, $A_{1...k}A_{k+1...n}$
- Facto:
 - Colocação de parêntesis para $A_{1...k}$ é também óptima
- Porquê?
 - Caso contrário seria possível encontrar uma melhor colocação de parêntesis para $A_{1...k}$ e portanto para $A_{1...n}$
- Conclusão:
 - Solução óptima para o problema da colocação de parêntesis é composta por soluções óptimas para os seus sub-problemas

P.T. Monteiro

ASA @ LEIC-T 2024/202

41/46

Ex 6 - Multiplicação de cadeias de matrizes

Solução Recursiva

$$m[i,j] = \begin{cases} 0 & \text{se } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$$s[i,j] = k \text{ sse } m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

Ex 6 - Multiplicação de cadeias de matrizes

Solução Recursiva

- m[i,j]: menor número de multiplicações escalares necessário para calcular multiplicação cadeias matrizes $A_{i...j}$
- Solução óptima para $A_{1...n}$ é m[1, n]
- i = j: m[i, j] = 0
- *i* < *j*:
 - Admitir que solução óptima coloca parêntesis em k:

- Mas qual é o valor de k?
 - lacktriangle certamente k tem valor entre i e j-1
 - considerar todos os valores de k possíveis
- s[i,j]: define colocação óptima de parêntesis entre i e j

Monteiro ASA @ LEIC-T 2024/2029

42/4

Ex 6 - Multiplicação de cadeias de matrizes

Cálculo dos valores de m[i,j]

- Número de sub-problemas distintos:
 - 1 para cada $1 \le i \le j \le n$
 - número de problemas: $\Theta(n^2)$
- Problema:
 - solução recursiva requer tempo exponencial
 - resolução repetida dos mesmos subproblemas
- Solução:
 - solução construtiva (bottom-up)
 - tempo de execução: $O(n^3)$

Memorização

Memorização (Memoization)

- Permite obter tempo de execução das soluções dos sub-problemas, mas utilizando abordagem recursiva (top-down)
 - É necessário memorizar resultados de sub-problemas já resolvidos
- Exemplo: caminhos mais curtos num DAG, com DFS
- Exemplo: cálculo das combinações
 - Não calcular todo o triângulo de Pascal
 - Calcular apenas as entradas necessárias
 - Calcular cada entrada apenas 1 vez

P.T. Monteiro ASA @ LEIC-T 2024/2025 45/

Questões?

Dúvidas?

P.T. Monteiro ASA @ LEIC-T 2024/2025 46/46