Frame Type	Definition
EAPOL-EAP	Contains an encapsulated EAP packet.
EAPOL-Start	A supplicant can issue this packet instead of waiting for a challenge from the authenticator.
EAPOL-Logoff	Used to return the state of the port to unauthorized when the supplicant is finished using the network.
EAPOL-Key	Used to exchange cryptographic keying information.

Table 5.2 Common EAPOL Frame Types

The most common EAPOL packets are listed in Table 5.2. When the supplicant first connects to the LAN, it does not know the MAC address of the authenticator. Actually it doesn't know whether there is an authenticator present at all. By sending an EAPOL-Start packet to a special group-multicast address reserved for IEEE 802.1X authenticators, a supplicant can determine whether an authenticator is present and let it know that the supplicant is ready. In many cases, the authenticator will already be notified that a new device has connected from some hardware notification. For example, a hub knows that a cable is plugged in before the device sends any data. In this case the authenticator may preempt the Start message with its own message. In either case the authenticator sends an EAP-Request Identity message encapsulated in an EAPOL-EAP packet. The EAPOL-EAP is the EAPOL frame type used for transporting EAP packets.

The authenticator uses the **EAP-Key** packet to send cryptographic keys to the supplicant once it has decided to admit it to the network. The EAP-Logoff packet type indicates that the supplicant wishes to be disconnected from the network.

The EAPOL packet format includes the following fields:

- **Protocol version:** version of EAPOL.
- **Packet type:** indicates start, EAP, key, logoff, etc.
- **Packet body length:** If the packet includes a body, this field indicates the body length.
- Packet body: The payload for this EAPOL packet. An example is an EAP packet.

Figure 5.6 shows an example of exchange using EAPOL. In Chapter 7, we examine the use of EAP and EAPOL in the context of IEEE 802.11 wireless LAN security.

CLOUD COMPUTING 5.4

There is an increasingly prominent trend in many organizations to move a substantial portion of or even all information technology (IT) operations to an Internetconnected infrastructure known as enterprise cloud computing. This section provides an overview of cloud computing. For a more detailed treatment, see [STAL16b].

Figure 5.6 Example Timing Diagram for IEEE 802.1X

Cloud Computing Elements

NIST defines cloud computing, in NIST SP 800-145 (The NIST Definition of Cloud Computing), as follows:

Cloud computing: A model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model promotes availability and is composed of five essential characteristics, three service models, and four deployment models.

The definition refers to various models and characteristics, whose relationship is illustrated in Figure 5.7. The essential characteristics of cloud computing include the following:

■ Broad network access: Capabilities are available over the network and accessed through standard mechanisms that promote use by heterogeneous

Figure 5.7 **Cloud Computing Elements**

thin or thick client platforms (e.g., mobile phones, laptops, and PDAs) as well as other traditional or cloud-based software services.

- Rapid elasticity: Cloud computing gives you the ability to expand and reduce resources according to your specific service requirement. For example, you may need a large number of server resources for the duration of a specific task. You can then release these resources upon completion of the task.
- Measured service: Cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported, providing transparency for both the provider and consumer of the utilized service.
- On-demand self-service: A consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with each service provider. Because the service is on demand, the resources are not permanent parts of your IT infrastructure.
- **Resource pooling:** The provider's computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to consumer demand. There is a degree of location independence in that the customer

generally has no control or knowledge of the exact location of the provided resources, but may be able to specify location at a higher level of abstraction (e.g., country, state, or data center). Examples of resources include storage, processing, memory, network bandwidth, and virtual machines. Even private clouds tend to pool resources between different parts of the same organization.

NIST defines three **service models**, which can be viewed as nested service alternatives:

- **Software as a service (SaaS):** The capability provided to the consumer is to use the provider's applications running on a cloud infrastructure. The applications are accessible from various client devices through a thin client interface such as a Web browser. Instead of obtaining desktop and server licenses for software products it uses, an enterprise obtains the same functions from the cloud service. SaaS saves the complexity of software installation, maintenance, upgrades, and patches. Examples of services at this level are Gmail, Google's e-mail service, and Salesforce.com, which helps firms keep track of their customers.
- Platform as a service (PaaS): The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages and tools supported by the provider. PaaS often provides middleware-style services such as database and component services for use by applications. In effect, PaaS is an operating system in the cloud.
- Infrastructure as a service (IaaS): The capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. IaaS enables customers to combine basic computing services, such as number crunching and data storage, to build highly adaptable computer systems.

NIST defines four **deployment models**:

- Public cloud: The cloud infrastructure is made available to the general public or a large industry group and is owned by an organization selling cloud services. The cloud provider is responsible both for the cloud infrastructure and for the control of data and operations within the cloud.
- Private cloud: The cloud infrastructure is operated solely for an organization. It may be managed by the organization or a third party and may exist on premise or off premise. The cloud provider (CP) is responsible only for the infrastructure and not for the control.
- Community cloud: The cloud infrastructure is shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It may be managed by the organizations or a third party and may exist on premise or off premise.
- Hybrid cloud: The cloud infrastructure is a composition of two or more clouds (private, community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load balancing between clouds).

Figure 5.8 Cloud Computing Context

Figure 5.8 illustrates the typical cloud service context. An enterprise maintains workstations within an enterprise LAN or set of LANs, which are connected by a router through a network or the Internet to the cloud service provider. The cloud service provider maintains a massive collection of servers, which it manages with a variety of network management, redundancy, and security tools. In the figure, the cloud infrastructure is shown as a collection of blade servers, which is a common architecture.

Cloud Computing Reference Architecture

NIST SP 500-292 (NIST Cloud Computing Reference Architecture) establishes a reference architecture, described as follows:

The NIST cloud computing reference architecture focuses on the requirements of "what" cloud services provide, not a "how to" design solution and implementation. The reference architecture is intended to facilitate the understanding of the operational intricacies in cloud computing. It does not represent the system architecture of a specific cloud computing system; instead it is a tool for describing, discussing, and developing a system-specific architecture using a common framework of reference.

NIST developed the reference architecture with the following objectives in mind:

- to illustrate and understand the various cloud services in the context of an overall cloud computing conceptual model
- to provide a technical reference for consumers to understand, discuss, categorize, and compare cloud services
- to facilitate the analysis of candidate standards for security, interoperability, and portability and reference implementations

The reference architecture, depicted in Figure 5.9, defines five major actors in terms of the roles and responsibilities:

- **Cloud consumer:** A person or organization that maintains a business relationship with, and uses service from, cloud providers.
- **Cloud provider:** A person, organization, or entity responsible for making a service available to interested parties.
- Cloud auditor: A party that can conduct independent assessment of cloud services, information system operations, performance, and security of the cloud implementation.
- Cloud broker: An entity that manages the use, performance, and delivery of cloud services, and negotiates relationships between CPs and cloud consumers.
- Cloud carrier: An intermediary that provides connectivity and transport of cloud services from CPs to cloud consumers.

The roles of the cloud consumer and provider have already been discussed. To summarize, a cloud provider can provide one or more of the cloud services to meet IT and business requirements of cloud consumers. For each of the three service

NIST Cloud Computing Reference Architecture

models (SaaS, PaaS, IaaS), the CP provides the storage and processing facilities needed to support that service model, together with a cloud interface for cloud service consumers. For SaaS, the CP deploys, configures, maintains, and updates the operation of the software applications on a cloud infrastructure so that the services are provisioned at the expected service levels to cloud consumers. The consumers of SaaS can be organizations that provide their members with access to software applications, end users who directly use software applications, or software application administrators who configure applications for end users.

For PaaS, the CP manages the computing infrastructure for the platform and runs the cloud software that provides the components of the platform, such as runtime software execution stack, databases, and other middleware components. Cloud consumers of PaaS can employ the tools and execution resources provided by CPs to develop, test, deploy, and manage the applications hosted in a cloud environment.

For IaaS, the CP acquires the physical computing resources underlying the service, including the servers, networks, storage, and hosting infrastructure. The IaaS cloud consumer in turn uses these computing resources, such as a virtual computer, for their fundamental computing needs.

The **cloud carrier** is a networking facility that provides connectivity and transport of cloud services between cloud consumers and CPs. Typically, a CP will set up service level agreements (SLAs) with a cloud carrier to provide services consistent with the level of SLAs offered to cloud consumers, and may require the cloud carrier to provide dedicated and secure connections between cloud consumers and CPs.

A cloud broker is useful when cloud services are too complex for a cloud consumer to easily manage. Three areas of support can be offered by a cloud broker:

- Service intermediation: These are value-added services, such as identity management, performance reporting, and enhanced security.
- Service aggregation: The broker combines multiple cloud services to meet consumer needs not specifically addressed by a single CP, or to optimize performance or minimize cost.
- Service arbitrage: This is similar to service aggregation except that the services being aggregated are not fixed. Service arbitrage means a broker has the flexibility to choose services from multiple agencies. The cloud broker, for example, can use a credit-scoring service to measure and select an agency with the best score.

A cloud auditor can evaluate the services provided by a CP in terms of security controls, privacy impact, performance, and so on. The auditor is an independent entity that can assure that the CP conforms to a set of standards.

CLOUD SECURITY RISKS AND COUNTERMEASURES

In general terms, security controls in cloud computing are similar to the security controls in any IT environment. However, because of the operational models and technologies used to enable cloud service, cloud computing may present risks that are specific to the cloud environment. The essential concept in this regard is that the enterprise loses a substantial amount of control over resources, services, and applications but must maintain accountability for security and privacy policies.

The Cloud Security Alliance [CSA10] lists the following as the top cloudspecific security threats, together with suggested countermeasures:

Abuse and nefarious use of cloud computing: For many CPs, it is relatively easy to register and begin using cloud services, some even offering free limited trial periods. This enables attackers to get inside the cloud to conduct various attacks, such as spamming, malicious code attacks, and denial of service. PaaS providers have traditionally suffered most from this kind of attacks; however, recent evidence shows that hackers have begun to target IaaS vendors as well. The burden is on the CP to protect against such attacks, but cloud service clients must monitor activity with respect to their data and resources to detect any malicious behavior.

Countermeasures include (1) stricter initial registration and validation processes; (2) enhanced credit card fraud monitoring and coordination; (3) comprehensive introspection of customer network traffic; and (4) monitoring public blacklists for one's own network blocks.

Insecure interfaces and APIs: CPs expose a set of software interfaces or APIs that customers use to manage and interact with cloud services. The security and availability of general cloud services are dependent upon the security of these basic APIs. From authentication and access control to encryption and activity monitoring, these interfaces must be designed to protect against both accidental and malicious attempts to circumvent policy.

Countermeasures include (1) analyzing the security model of CP interfaces; (2) ensuring that strong authentication and access controls are implemented in concert with encrypted transmission; and (3) understanding the dependency chain associated with the API.

Malicious insiders: Under the cloud computing paradigm, an organization relinquishes direct control over many aspects of security and, in doing so, confers an unprecedented level of trust onto the CP. One grave concern is the risk of malicious insider activity. Cloud architectures necessitate certain roles that are extremely high risk. Examples include CP system administrators and managed security service providers.

Countermeasures include the following: (1) enforce strict supply chain management and conduct a comprehensive supplier assessment; (2) specify human resource requirements as part of legal contract; (3) require transparency into overall information security and management practices, as well as compliance reporting; and (4) determine security breach notification processes.

Shared technology issues: IaaS vendors deliver their services in a scalable way by sharing infrastructure. Often, the underlying components that make up this infrastructure (CPU caches, GPUs, etc.) were not designed to offer strong isolation properties for a multi-tenant architecture. CPs typically approach this risk by the use of isolated virtual machines for individual clients. This approach is still vulnerable to attack, by both insiders and outsiders, and so can only be a part of an overall security strategy.

Countermeasures include the following: (1) implement security best practices for installation/configuration; (2) monitor environment for unauthorized changes/activity; (3) promote strong authentication and access control for administrative access and operations; (4) enforce SLAs for patching and vulnerability remediation; and (5) conduct vulnerability scanning and configuration audits.

Data loss or leakage: For many clients, the most devastating impact from a security breach is the loss or leakage of data. We address this issue in the next subsection.

Countermeasures include the following: (1) implement strong API access control; (2) encrypt and protect integrity of data in transit; (3) analyze data protection at both design and run time; and (4) implement strong key generation, storage and management, and destruction practices.

Account or service hijacking: Account or service hijacking, usually with stolen credentials, remains a top threat. With stolen credentials, attackers can often access critical areas of deployed cloud computing services, allowing them to compromise the confidentiality, integrity, and availability of those services.

Countermeasures include the following: (1) prohibit the sharing of account credentials between users and services; (2) leverage strong two-factor authentication techniques where possible; (3) employ proactive monitoring to detect unauthorized activity; and (4) understand CP security policies and SLAs.

■ Unknown risk profile: In using cloud infrastructures, the client necessarily cedes control to the CP on a number of issues that may affect security. Thus the client must pay attention to and clearly define the roles and responsibilities involved for managing risks. For example, employees may deploy applications and data resources at the CP without observing the normal policies and procedures for privacy, security, and oversight.

Countermeasures include (1) disclosure of applicable logs and data; (2) partial/full disclosure of infrastructure details (e.g., patch levels and firewalls); and (3) monitoring and alerting on necessary information.

Similar lists have been developed by the European Network and Information Security Agency [ENIS09] and NIST [JANS11].

5.6 DATA PROTECTION IN THE CLOUD

As can be seen from the previous section, there are numerous aspects to cloud security and numerous approaches to providing cloud security measures. A further example is seen in the NIST guidelines for cloud security, specified in SP-800-14 and listed in Table 5.3. Thus, the topic of cloud security is well beyond the scope of this chapter. In this section, we focus on one specific element of cloud security.

There are many ways to compromise data. Deletion or alteration of records without a backup of the original content is an obvious example. Unlinking a record from a larger context may render it unrecoverable, as can storage on unreliable media. Loss of an encoding key may result in effective destruction. Finally, unauthorized parties must be prevented from gaining access to sensitive data.

Table 5.3 NIST Guidelines on Security and Privacy Issues and Recommendations

Governance

Extend organizational practices pertaining to the policies, procedures, and standards used for application development and service provisioning in the cloud, as well as the design, implementation, testing, use, and monitoring of deployed or engaged services.

Put in place audit mechanisms and tools to ensure organizational practices are followed throughout the system life cycle.

Compliance

Understand the various types of laws and regulations that impose security and privacy obligations on the organization and potentially impact cloud computing initiatives, particularly those involving data location, privacy and security controls, records management, and electronic discovery requirements.

Review and assess the cloud provider's offerings with respect to the organizational requirements to be met and ensure that the contract terms adequately meet the requirements.

Ensure that the cloud provider's electronic discovery capabilities and processes do not compromise the privacy or security of data and applications.

Trust

Ensure that service arrangements have sufficient means to allow visibility into the security and privacy controls and processes employed by the cloud provider, and their performance over time.

Establish clear, exclusive ownership rights over data.

Institute a risk management program that is flexible enough to adapt to the constantly evolving and shifting risk landscape for the life cycle of the system.

Continuously monitor the security state of the information system to support ongoing risk management decisions.

Architecture

Understand the underlying technologies that the cloud provider uses to provision services, including the implications that the technical controls involved have on the security and privacy of the system, over the full system life cycle and across all system components.

Identity and access management

Ensure that adequate safeguards are in place to secure authentication, authorization, and other identity and access management functions, and are suitable for the organization.

Software isolation

Understand virtualization and other logical isolation techniques that the cloud provider employs in its multi-tenant software architecture, and assess the risks involved for the organization.

Data protection

Evaluate the suitability of the cloud provider's data management solutions for the organizational data concerned and the ability to control access to data, to secure data while at rest, in transit, and in use, and to sanitize data.

Take into consideration the risk of collating organizational data with those of other organizations whose threat profiles are high or whose data collectively represent significant concentrated value.

Fully understand and weigh the risks involved in cryptographic key management with the facilities available in the cloud environment and the processes established by the cloud provider.

Availability

Understand the contract provisions and procedures for availability, data backup and recovery, and disaster recovery, and ensure that they meet the organization's continuity and contingency planning requirements.

Ensure that during an intermediate or prolonged disruption or a serious disaster, critical operations can be immediately resumed, and that all operations can be eventually reinstituted in a timely and organized manner.

Incident response

Understand the contract provisions and procedures for incident response and ensure that they meet the requirements of the organization.