Deep Learning with Keras3:: CHEATSHEET

Intro

Keras is a high-level neural networks API developed with a focus on enabling fast experimentation. It supports multiple back-ends, including TensorFlow, Jax and Torch.

Backends like TensorFlow are lower level mathematical libraries for building deep neural network architectures. The keras3 R package

https://keras.posit.co

makes it easy to use Keras with any backend in R. https://www.manning.com/books/deep-learning-with-r-second-edition

The "Hello, World!" of deep learning

INSTALLATION

The keras3 R package uses the Python Keras library. You can install all the prerequisites directly from R.

See ?keras3::install keras for details and options.

library(keras3) reticulate::install_python() install keras()

This installs the required libraries in virtual environment named 'r-keras'. It will automatically detect if a GPU is available.

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA

Working with Keras Models

DEFINE A MODEL

Functional API: keras input() and keras model() Define a Functional Model with inputs and outputs. inputs <- keras_input(<input-shape >) outputs <- inputs I> layer_dense() l> layer model <- keras model (inputs, outputs)

Sequential API: keras_model_sequential()

Define a Sequential Model composed of a linear stack of lavers

model <-

keras model sequential(<input-shape>) |> layer_dense() l> layer_...

Subclassing API: Model()

Subclass the base Model class

COMPILE A MODEL

compile(object, optimizer, loss, metrics, ...) Configure a Keras model for training

FIT A MODEL

fit(object, x = NULL, y = NULL, batch_size = NULL, epochs = 10, verbose = 1, callbacks = NULL, ...) Train a Keras model for a fixed number of epochs (iterations)

Customize training:

- Provide callbacks to fit():
- Define a custom Callback().
- Call train_on_batch() in a custom training loop.
- Subclass Model() and implement a custom **train_step** method.
- Write a fully custom training loop. Update weights with model\$optimizer\$apply(gradients, weights)

INSPECT A MODEL

print(model) Print a summary of a Keras model

plot(model, show_shapes = FALSE, show_dtype = FALSE, show layer names = FALSE, ...) Plot a Keras model

EVALUATE A MODEL

evaluate(object, x = NULL, y = NULL, batch size = **NULL)** Evaluate a Keras model

PREDICT

predict() Generate predictions from a Keras model

predict on batch() Returns predictions for a single batch of samples.

SAVE/LOAD A MODEL

save model(); load model()

Save/Load models using the ".keras" file format.

save model weights(); load model weights() Save/load model weights to/from ".h5" files.

save_model_config(); load_model_config() Save/load model architecture to/from a ".ison" file.

Deploy

Export just the forward pass of the trained model for inference serving.

export_savedmodel(model, "my-saved-model/1") Save a TF SavedModel for inference.

rsconnect::deployTFModel("my-saved-model") Deploy a TF SavedModel to Connect for inference.

CORE LAYERS

layer_dense() Add a denselyconnected NN layer to an output

layer_einsum_dense() Add a dense layer with arbitrary dimensionality

layer_activation() Apply an activation function to an output

layer_dropout() Applies Dropout to the input

layer reshape() Reshapes an output to a certain shape

layer_permute() Permute the dimensions of an input according to a given pattern

layer_repeat_vector() Repeats the input n times

layer_lambda(object, f) Wraps arbitrary expression as a layer

layer_activity_regularization() Layer that applies an update to the cost function based input activity

layer_masking() Masks a sequence by using a mask value to skip timesteps

layer flatten() Flattens an input

input layer: use MNIST images

mnist <- dataset_mnist() $x_{train} <- mnist$train$x; y_train <- mnist$trainy x_test <- mnist\$test\$x; y_test <- mnist\$test\$y

reshape and rescale

x_train <- array_reshape(x_train, c(nrow(x_train), 784)) x_test <- array_reshape(x_test, c(nrow(x_test), 784)) x_train <- x_train / 255; x_test <- x_test / 255

y train <- to categorical(y train. 10) y_test <- to_categorical(y_test, 10)

defining the model and layers

keras_model_sequential(input_shape = c(28, 28, 1)) layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu") |> layer_max_pooling_2d(pool_size = c(2, 2)) l> layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") l> layer_max_pooling_2d(pool_size = c(2, 2)) l> laver flatten() |> layer_dropout(rate = 0.5) l> layer_dense(units = num_classes, activation = "softmax")

View the model summary summary(model)

compile (define loss and optimizer)

model I> compiler loss = 'categorical_crossentropy', optimizer = optimizer_rmsprop() metrics = c('accuracy')

train (fit) model I> fit(

x_train, y_train, epochs = 30, batch_size = 128, validation_split = 0.2 model |> evaluate(x test, v test) model l> predict(x_test)

save the full model

save_model(model, "mnist-classifier.keras")

deploy for serving inference. dir.create("serving-mnist-classifier")

export_savedmodel(modek, "serving-mnist-classifier/1") rsconnect::deployTFModel("serving-mnist-classifier")

More layers

CONVOLUTIONAL LAYERS

layer_conv_1d() 1D, e.g. temporal convolution

layer_conv_2d_transpose()
Transposed 2D (deconvolution)

layer_conv_2d() 2D, e.g. spatial convolution over images

layer_conv_3d_transpose()
Transposed 3D (deconvolution)
layer_conv_3d() 3D, e.g. spatial
convolution over volumes

layer_conv_lstm_2d()
Convolutional LSTM

layer_separable_conv_2d() Depthwise separable 2D

layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() Zero-padding layer

layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() Cropping layer

POOLING LAYERS

layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
Maximum pooling for 1D to 3D

layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
Average pooling for 1D to 3D

layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
Global maximum pooling

layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
Global average pooling

Preprocessing

IMAGE PREPROCESSING Load Images

image_dataset_from_directory()

Create a TF Dataset from image files in a directory.

image_load(), image_from_array(),
image_to_array(), image_array_save()
Work with PIL Image instances

Transform Images

op_image_crop()

op_image_extract_patches()

op_image_pad()

op_image_resize()

op_image_affine_transform()

op_image_map_coordinates()

op_image_rgb_to_grayscale()

Operations that transform image tensors in deterministic ways.

image_smart_resize()

Resize images without aspect ratio distortion.

Image Layers

Builtin image preprocessing layers. Note, any image operation function can also be used as a layer in a Model, or used in layer_lambda().

Image Preprocessing Layers
layer_resizing()

layer_rescaling()

layer center crop()

Image Augmentation Layers

Preprocessing layers that randomly augment image inputs during training.

layer_random_crop()

layer random flip()

layer_random_translation()

layer_random_rotation()

layer random zoom()

layer random contrast()

layer random brightness()

SEOUENCE PREPROCESSING

timeseries_dataset_from_array()

Generate a TF Dataset of sliding windows over a timeseries provided as array.

audio_dataset_from_directory()
Generate a TF Dataset from audio files.

pad sequences()

Pad sequences to the same length

Preprocessing

TEXT PREPROCESSING

text_dataset_from_directory()

Generate a TF Dataset from text files in a directory.

layer_text_vectorization(), get_vocabulary(), set_vocabulary() Map text to integer sequences.

NUMERICAL FEATURES PREPROCESSING

layer_normalization()

Normalizes continuous features.

layer_discretization()

Buckets continuous features by ranges.

CATEGORICAL FEATURES PREPROCESSING

layer_category_encoding()

Encode integer features.

layer_hashing()

Hash and bin categorical features.

layer_hashed_crossing()

Cross features using the "hashing trick".

layer_string_lookup()

Map strings to (possibly encoded) indices.

layer_integer_lookup()

Map integers to (possibly encoded) indices.

TABULAR DATA

One-stop utility for preprocessing and encoding structured data. Define a feature space from a list of table columns (features).

feature_space <-

layer_feature_space(features = list(<features>))

Adapt the feature space to a dataset adapt(feature_space, dataset)

Use the adapted **feature_space** preprocessing layer as a layer in a Keras Model, or in the data input pipeline with **tfdatasets::dataset_map()**

Available features:

feature_float()

feature_float_rescaled()
feature_float_normalized()

feature float discretized()

feature_integer_categorical()
feature integer hashed()

feature_string_categorical()
feature string hashed()

feature_cross()
feature_custom()

Pre-trained models

Keras applications are deep learning models that are made available with pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

application_mobilenet_v3_large()
application_mobilenet_v3_small()
MobileNetV3 Model, pre-trained on ImageNet

application_efficientnet_v2s()
application_efficientnet_v2m()
application_efficientnet_v2l()

EfficientNetV2 Model, pre-trained on ImageNet

application_inception_resnet_v2()
application_inception_v3()

Inception-ResNet v2 and v3 model, with weights trained on ImageNet

application_vgg16(); application_vgg19()
VGG16 and VGG19 models

application resnet50() ResNet50 model

application_nasnet_large()
application_nasnet_mobile()
NASNet model architecture

IM GENET

<u>ImageNet</u> is a large database of images with labels, extensively used for deep learning

application_preprocess_inputs()
application_decode_predictions()

Preprocesses a tensor encoding a batch of images for an application, and decodes predictions from an application

Callbacks

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.

callback_early_stopping() Stop training when
a monitored quantity has stopped improving
callback_learning_rate_scheduler() Learning
rate scheduler

callback_tensorboard() TensorBoard basic
visualizations