

# Sequences and Summations

Section 2.4



## **Section Summary**

- Sequences.
  - Examples: Geometric Progression, Arithmetic Progression
- Recurrence Relations
  - Example: Fibonacci Sequence
- Summations



## Sequences

**Definition**: A *sequence* is a function from a subset of the integers (usually either the set  $\{0, 1, 2, 3, 4, ....\}$  or  $\{1, 2, 3, 4, ....\}$  ) to a set S.

• The notation  $a_n$  is used to denote the image of the integer n. We can think of  $a_n$  as the equivalent of f(n) where f is a function from  $\{0,1,2,.....\}$  to S. We call  $a_n$  a term of the sequence.



## Sequences

**Example**: Consider the sequence  $\{a_n\}$  where

$$a_n = \frac{1}{n}$$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \dots$$



## **Geometric Progression**

**Definition**: A *geometric progression (*等比数列*)* is a sequence of the form:

where the *initial term a* and the *common ratio r* are real numbers.  $a, ar, ar^2, \dots, ar^n, \dots$ 

#### **Examples:**

1. Let a = 1 and r = -1. Then:

$$\{b_n\} = \{b_0, b_1, b_2, b_3, b_4, \dots\} = \{1, -1, 1, -1, 1, \dots\}$$

2. Let a = 2 and r = 5. Then:

$$\{c_n\} = \{c_0, c_1, c_2, c_3, c_4, \dots\} = \{2, 10, 50, 250, 1250, \dots\}$$

3. Let a = 6 and r = 1/3. Then:

$$\{d_n\} = \{d_0, d_1, d_2, d_3, d_4, \dots\} = \{6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots\}$$



## **Arithmetic Progression**

**Definition**: A *arithmetic progression (等差数列)* is a sequence of the form:

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

where the *initial term a* and the *common difference d* are real numbers.

#### **Examples**:

1. Let 
$$a = -1$$
 and  $d = 4$ : -1, 3,7,11,15, ...

2. Let 
$$a = 7$$
 and  $d = -3$ : 7,4,1,-2,-5, ...



## Strings

- Sequences of characters or bits are important in computer science.
- The finite sequences are also called strings
- The *empty string* is represented by  $\lambda$ .
- The string *abcde* has *length* 5.



#### Recurrence Relations

**Definition:** A recurrence relation for the sequence  $\{a_n\}$  is an equation that expresses  $a_n$  in terms of one or more of the previous terms of the sequence, namely,  $a_0$ ,  $a_1$ , ...,  $a_{n-1}$ , for all integers n with  $n \ge n_0$ , where  $n_0$  is a nonnegative integer.

- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
- The *initial conditions* for a sequence specify the terms that precede the first term where the recurrence relation takes effect.



#### **Questions about Recurrence Relations**

**Example** 1: Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} + 3$  for n = 1,2,3,4,... and suppose that  $a_0 = 2$ . What are  $a_1$ ,  $a_2$  and  $a_3$ ? [Here  $a_0 = 2$  is the initial condition.]

**Solution**: We see from the recurrence relation that

$$a_1 = a_0 + 3 = 2 + 3 = 5$$
  
 $a_2 = 5 + 3 = 8$   
 $a_3 = 8 + 3 = 11$ 



#### **Questions about Recurrence Relations**

**Example** 2: Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} - a_{n-2}$  for n = 2,3,4,... and suppose that  $a_0 = 3$  and  $a_1 = 5$ . What are  $a_2$  and  $a_3$ ? [Here the initial conditions are  $a_0 = 3$  and  $a_1 = 5$ .]

**Solution**: We see from the recurrence relation that

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$
  
 $a_3 = a_2 - a_1 = 2 - 5 = -3$ 



## Fibonacci Sequence

**Definition**: Define the *Fibonacci sequence*,  $f_0$ ,  $f_1$ ,  $f_2$ , ..., by:

- Initial Conditions:  $f_0 = 0$ ,  $f_1 = 1$
- Recurrence Relation:  $f_n = f_{n-1} + f_{n-2}$

**Example**: Find  $f_2$ ,  $f_3$ ,  $f_4$ ,  $f_5$  and  $f_6$ .

#### **Answer:**

$$f_2 = f_1 + f_0 = 1 + 0 = 1,$$
  
 $f_3 = f_2 + f_1 = 1 + 1 = 2,$   
 $f_4 = f_3 + f_2 = 2 + 1 = 3,$   
 $f_5 = f_4 + f_3 = 3 + 2 = 5,$   
 $f_6 = f_5 + f_4 = 5 + 3 = 8.$ 



# Solving Recurrence Relations

- Finding a formula for the nth term of the sequence generated by a recurrence relation is called solving the recurrence relation.
- Such a formula is called a closed formula.
- Various methods for solving recurrence relations will be covered in Chapter 8 where recurrence relations will be studied in greater depth.
- Here we illustrate by example the method of iteration



### Iterative Solution Example

**Method** 1: Working upward, forward substitution Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} + 3$  for n = 2,3,4,... and suppose that  $a_1 = 2$ .

$$a_2 = 2 + 3$$
  
 $a_3 = (2 + 3) + 3 = 2 + 3 \cdot 2$   
 $a_4 = (2 + 2 \cdot 3) + 3 = 2 + 3 \cdot 3$ 

•

$$a_n = a_{n-1} + 3 = (2 + 3 \cdot (n - 2)) + 3 = 2 + 3(n - 2)$$



## Iterative Solution Example

**Method 2**: Working downward, backward substitution Let  $\{a_n\}$  be a sequence that satisfies the recurrence relation  $a_n = a_{n-1} + 3$  for n = 2,3,4,... and suppose that  $a_1 = 2$ .

$$a_n = a_{n-1} + 3$$
  
 $= (a_{n-2} + 3) + 3 = a_{n-2} + 3 \cdot 2$   
 $= (a_{n-3} + 3) + 3 \cdot 2 = a_{n-3} + 3 \cdot 3$   
.  
.  
 $= a_2 + 3(n-2) = (a_1 + 3) + 3(n-2) = 2 + 3(n-1)$ 



### Financial Application

**Example**: Suppose that a person deposits \$10,000.00 in a savings account at a bank yielding 11% per year with interest compounded annually. How much will be in the account after 30 years?

Let  $P_n$  denote the amount in the account after 30 years.  $P_n$  satisfies the following recurrence relation:

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11) P_{n-1}$$
 with the initial condition  $P_0 = 10,000$ 

Continued on next slide →



### **Financial Application**

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11) P_{n-1}$$
 with the initial condition  $P_0 = 10,000$ 

**Solution**: Forward Substitution

$$P_1 = (1.11)P_0$$
  
 $P_2 = (1.11)P_1 = (1.11)^2P_0$   
 $P_3 = (1.11)P_2 = (1.11)^3P_0$   
:  
 $P_n = (1.11)P_{n-1} = (1.11)^nP_0 = (1.11)^n 10,000$   
 $P_n = (1.11)^n 10,000$  (Can prove by induction, covered in Chapter 5)

$$P_{30} = (1.11)^{30} 10,000 = $228,992.97$$



# **Useful Sequences**

| TABLE 1 Some Useful Sequences. |                                                      |  |
|--------------------------------|------------------------------------------------------|--|
| nth Term                       | First 10 Terms                                       |  |
| $n^2$                          | 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,                |  |
| $n^3$                          | 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,         |  |
| $n^4$                          | 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,  |  |
| $2^{n}$                        | 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,            |  |
| 3 <sup>n</sup>                 | 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,    |  |
| n!                             | 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, |  |
| $f_n$                          | 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,                |  |



#### **Summations**

- Sum of the terms  $a_m, a_{m+1}, \ldots, a_n$  from the sequence  $\{a_n\}$
- The notation:

$$\sum_{j=m}^{n} a_j \quad \sum_{j=m}^{n} a_j \quad \sum_{m \le j \le n} a_j$$

represents

$$a_m + a_{m+1} + \dots + a_n$$

• The variable *j* is called the *index of summation*. It runs through all the integers starting with its *lower limit m* and ending with its *upper limit n*.



#### **Summations**

More generally for a set S:

$$\sum_{j \in S} a_j$$

Examples:

$$r^{0} + r^{1} + r^{2} + r^{3} + \dots + r^{n} = \sum_{0}^{n} r^{j}$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{1}^{\infty} \frac{1}{i}$$
If  $S = \{2, 5, 7, 10\}$  then  $\sum_{j \in S} a_{j} = a_{2} + a_{5} + a_{7} + a_{10}$ 



#### **Geometric Series**

#### Sums of terms of geometric progressions

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1}-a}{r-1} & r \neq 1\\ (n+1)a & r = 1 \end{cases}$$

**Proof:** Let 
$$S_n = \sum_{i=0}^n ar^i$$

Let  $S_n = \sum_{i=1}^n ar^j$  To compute  $S_n$ , first multiply both sides of the equality by r and then manipulate the resulting sum as follows:

$$rS_n = r \sum_{j=0}^n ar^j$$
 
$$= \sum_{j=0}^n ar^{j+1}$$
 Continued on next slide  $\Rightarrow$ 



#### **Geometric Series**

$$=\sum_{j=0}^n ar^{j+1} \qquad \text{From previous slide}.$$
 
$$=\sum_{k=1}^{n+1} ar^k \qquad \text{Shifting the index of summation with } k=j+1.$$
 
$$=\left(\sum_{k=0}^n ar^k\right) + (ar^{n+1}-a) \qquad \text{Removing } k=n+1 \text{ term and adding } k=0 \text{ term}.$$
 
$$=S_n + \left(ar^{n+1}-a\right) \qquad \text{Substituting $S$ for summation formula}$$

•• 
$$rS_n = S_n + (ar^{n+1} - a)$$

$$S_n = \frac{ar^{n+1} - a}{r - 1} \quad \text{if } r \neq 1$$

$$S_n = \sum_{j=0}^n ar^j = \sum_{j=0}^n a = (n+1)a \quad \text{if } r = 1$$



# Some Useful Summation Formulae

| TABLE 2 Some Useful Summation Formulae. |                                        |  |
|-----------------------------------------|----------------------------------------|--|
| Sum                                     | Closed Form                            |  |
| $\sum_{k=0}^{n} ar^k \ (r \neq 0)$      | $\frac{ar^{n+1} - a}{r - 1}, r \neq 1$ |  |
| $\sum_{k=1}^{n} k$                      | $\frac{n(n+1)}{2}$                     |  |
| $\sum_{k=1}^{n} k^2$                    | $\frac{n(n+1)(2n+1)}{6}$               |  |
| $\sum_{k=1}^{n} k^3$                    | $\frac{n^2(n+1)^2}{4}$                 |  |
| $\sum_{k=0}^{\infty} x^k,  x  < 1$      | $\frac{1}{1-x}$                        |  |
| $\sum_{k=1}^{\infty} kx^{k-1},  x  < 1$ | $\frac{1}{(1-x)^2}$                    |  |



# **Cardinality of Sets**

Section 2.5



#### Infinite set

**Definition**: A set S is infinite if and only if there is a one-to-one correspondence (*i.e.*, a bijection)  $f:S \to S$  and  $f(S) \subset S$ .

- 1.N is infinite. f(x)=2x
- 2. Z is infinite.  $f: \mathbb{Z} \to \mathbb{N}$ ,  $f(x) = \begin{cases} 2x & x \ge 0 \\ -2x-1 & x < 0 \end{cases}$
- 3. R is infinite.

$$f: \mathbf{R} \to \mathbf{R}, \quad f(x) = \begin{cases} x+1 & x \ge 0 \\ x & x < 0 \end{cases}$$



## Cardinality

**Definition**: The *cardinality* of a set *A* is equal to the cardinality of a set *B*, denoted

$$|A| = |B|$$

if and only if there is a one-to-one correspondence (i.e., a bijection) from A to B.

- If there is a one-to-one function (i.e., an injection) from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \leq |B|$ .
- When  $|A| \le |B|$  and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and write |A| < |B|.

## **Example**

The same cardinality (red line & blue line)





## Cardinality

- Definition: A set that is either finite or has the same cardinality as the set of positive integers (Z+) is called *countable*. A set that is not countable is *uncountable*.
- The set of real numbers R is an uncountable set.
- When an infinite set is countable (countably infinite) its cardinality is  $\aleph_0$  (where  $\aleph$  is aleph, the 1<sup>st</sup> letter of the Hebrew alphabet). We write  $|S| = \aleph_0$  and say that S has cardinality "aleph null."



## Showing that a Set is Countable

- An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).
- The reason for this is that a one-to-one correspondence f from the set of positive integers to a set S can be expressed in terms of a sequence  $a_1, a_2, ..., a_n, ...$  where  $a_1 = f(1), a_2 = f(2), ..., a_n = f(n), ...$



## Showing that a Set is Countable

**Example 1:** Show that the set of even positive integers *E* is countable set.

**Solution**: Let f(x) = 2x.



Then f is a bijection from  $\mathbb{N}$  to E since f is both one-to-one and onto. To show that it is one-to-one, suppose that f(n) = f(m). Then 2n = 2m, and so n = m. To see that it is onto, suppose that t is an even positive integer. Then t = 2k for some positive integer k and f(k) = t.



### Showing that a Set is Countable

**Example 2:** Show that the set of integers **Z** is countable.

**Solution**: Can list in a sequence:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

Or can define a bijection from **N** to **Z**:

– When *n* is even: f(n) = n/2

- When *n* is odd: f(n) = -(n-1)/2

# The Positive Rational Numbers

Discrete **Mathematics** 

- are Countable
- Definition: A rational number can be expressed as the ratio of two integers p and q such that  $q \neq$ ().
  - ¾ is a rational number
  - $-\sqrt{2}$  is not a rational number.

**Example 3:** Show that the positive rational numbers are countable.

**Solution**: The positive rational numbers are countable since they can be arranged in a sequence:

$$r_1, r_2, r_3, \dots$$

The next slide shows how this is done.

# The Positive Rational Numbers are Countable

Discrete Mathematics

First row q = 1. Second row q = 2. etc.

#### **Constructing the List**

First list p/q with p + q = 2. Next list p/q with p + q = 3

And so on.

Terms not circled are not listed because they repeat previously listed terms

1, ½, 2, 3, 1/3,1/4, 2/3, ....





# The Real Numbers are Uncountable (1845-1918)



crete ematics

**Example**: Show that the set of real numbers is uncountable.

**Solution**: The method is called the Cantor diagnalization argument, and is a proof by contradiction.

- 1. Suppose **R** is countable. Then the real numbers between 0 and 1 are also countable (any subset of a countable set is countable an exercise in the text).
- 2. The real numbers between 0 and 1 can be listed in order  $r_1$ ,  $r_2$ ,  $r_3$ ,...
- 3. Let the decimal representation of this listing be

```
r_1 = 0.d_{11}d_{12}d_{13}d_{14}d_{15}d_{16} \dots

r_2 = 0.d_{21}d_{22}d_{23}d_{24}d_{25}d_{26} \dots

r_3 = 0.d_{31}d_{32}d_{33}d_{34}d_{35}d_{36} \dots
```

:

4. Form a new real number with the decimal expansion  $r = .r_1r_2r_3r_4...$  where  $r_i = 3$  if  $d_{ii} \neq 3$  and  $r_i = 4$  if  $d_{ii} = 3$ 

- 5. r is not equal to any of the  $r_1$ ,  $r_2$ ,  $r_3$ ,... Because it differs from  $r_i$  in its ith position after the decimal point. Therefore there is a real number between 0 and 1 that is not on the list since every real number has a unique decimal expansion. Hence, all the real numbers between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1 is uncountable.
- 6. Since a set with an uncountable subset is uncountable (an exercise), the set of real numbers is uncountable.



#### conclusions

$$|Z| = \aleph_0 \qquad |N| = \aleph_0 \qquad |Q| = \aleph_0$$

$$|R| = \aleph_1 = C$$

- ullet  $\aleph_0$  is the smallest infinite number.
- The cardinality of a set is always less than the cardinality of its power set



#### Homework

- 2.4 ----- --3, 12, 16, 32
- 2.5 ----- 2, 10