Lecture 9

Laplace's Equation

; is valid when some space has no charge.

In 1-D

$$\frac{d^2\phi}{dx^2} = 0$$

General solution is $\phi(x) = mx + c$

Fixed by boundary conditions.

Almost trivial observation: $\phi(z) = \frac{1}{2} \left[\phi(x+a) + \phi(x-a) \right]$

This seemingly trivial observation translates to profound insight in 2 and 3 D.

In 2D

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

$$\phi(x,y) = \frac{1}{2\pi R} \oint \Phi d\ell$$
 around (21,y)

Method of relexation lends itself to computer simulations

In 3D

$$\frac{\partial^2 \underline{\Phi}}{\partial x^2} + \frac{\partial^2 \underline{\Phi}}{\partial y^2} + \frac{\partial^2 \underline{\Phi}}{\partial z^2} = 0$$

Does our insight still hold?

Pavg (R) =
$$\frac{1}{4\pi R^2} \oint \overline{\Phi}(\vec{r}) dA$$

Now, $dA = R^2 \sin\theta d\theta d\phi$
 $\oint_{avg} (R) = \frac{1}{4\pi R^2} \oint \overline{\Phi}(R, \theta, \phi) R^2 \sin\theta d\theta d\phi$

So, dans 1 & at (RO, 0) sint dod at

Bo,
$$\frac{d\Phi_{avg}}{dR} = \frac{1}{4\pi} \oint (\nabla \Phi) \cdot \hat{h} \sin\theta d\theta d\Phi$$

$$= \frac{1}{4\pi R^2} \oint (\nabla \Phi) \cdot \hat{R}^2 \sin\theta d\theta d\Phi$$

$$= \frac{1}{4\pi R^2} \oint (\nabla \Phi) \cdot d\hat{A}$$

$$= \frac{1}{4\pi R^2} \int \nabla^2 \Phi dV$$
But, $\nabla^2 \Phi = 0$; $\nabla \cdot \vec{E} = 0$ for a charge-less region
$$\frac{d\Phi_{avg}}{dR} = 0$$

So,
$$\frac{d\Phi_{avg}}{dR} = 0$$

This means Φ_{avg} has not dependence on R
So, $\Phi_{avg}(R=0) = \Phi_{avg}(R)$