CMS Analyse I

Semestre d'automne

2018-2019

Table des matières

1	Alg	èbre élémentaire	4
	1.1	Les ensembles numériques	4
	1.2	Inégalités sur les réels	4
	1.3	Valeur absolue et fonction signe	5
		1.3.1 Valeur absolue	5
		1.3.2 Equations avec valeur absolue	5
		1.3.3 Inéquations avec valeur absolue	5
		1.3.4 Fonction signe	7
	1.4	Trinôme du 2 ^e degré	7
		1.4.1 Signe du trinôme	7
		1.4.2 Représentation graphique et formules de Viète	8
	1.5	Puissances et racines	8
		1.5.1 Puissances à exposants entiers	8
		1.5.2 Racines positives (ou arithmétiques)	9
		1.5.3 Racines réelles	9
		1.5.4 Equations irrationnelles	0
		1.5.5 Inéquations irrationnelles	0
	1.6	Rinôme de Newton	n

1 Algèbre élémentaire

1.1 Les ensembles numériques

Définition 1.1. L'ensemble des entiers naturels

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

 $\mathbb{N}^* = \mathbb{N} \setminus \{0\} = \{1, 2, \ldots\}.$

Définition 1.2. L'ensemble des entiers relatifs

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

$$\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}.$$

Définition 1.3. L'ensemble des nombres rationnels

$$\mathbb{Q} = \left\{ q = \frac{a}{b} \,\middle|\, a \in \mathbb{Z}, b \in \mathbb{N}^*, \operatorname{pgcd}(a, b) = 1 \right\}.$$

Définition 1.4. L'ensemble des nombres réels : il n'y a pas de correspondance biunivoque entre $\mathbb Q$ et la droite numérique (il y des "trous"). La complétion donne l'ensemble des nombres réels $\mathbb R$.

1.2 Inégalités sur les réels

Définition 1.5. Soit $a \in \mathbb{R}$ a est négatif ssi a < 0 a est positif ssi a > 0.

Définition 1.6. Soient $a, b \in \mathbb{R}$. a < b ssi a - b < 0. a > b ssi a - b > 0.

Définition 1.7. Soient $a, b \in \mathbb{R}$. $a \le b$ ssi a - b est négatif ou nul. $a \ge b$ ssi a - b positif ou nul.

Définition 1.8. $\mathbb{R}_+ = \{a \in \mathbb{R} \mid a \ge 0\}$. $\mathbb{R}_- = \{a \in \mathbb{R} \mid a \le 0\}$.

Axiome 1.9. $\forall a, b \in \mathbb{R}_+, a+b \in \mathbb{R}_+$.

Axiome 1.10. $\forall a, b \in \mathbb{R}_{-}, a + b \in \mathbb{R}_{-}$.

Propriétés.

- 1. Soient $a, b, c \in \mathbb{R}$. a < b et $b < c \implies a < c$.
- 2. Soient $x, y, a \in \mathbb{R}$. $x \le y \implies x + a \le y + a$.
- 3. Soient $x, y, a, b \in \mathbb{R}$. $x \le y$ et $a \le b \implies x + a \le y + b$.

Axiome 1.11. $\forall a, b \in \mathbb{R}_+, ab \in \mathbb{R}_+$.

Propriétés.

- 4. Soient $x, y, a \in \mathbb{R}$. $x \ge y$ et $a \ge 0 \implies ax \ge ay$.
- 5. Soient $x, y, a \in \mathbb{R}$. $x \ge y$ et $a \le 0 \implies ax \le ay$.

1.3 Valeur absolue et fonction signe

1.3.1 Valeur absolue

Définition 1.12. Soit $x \in \mathbb{R}$. La valeur absolue de x, notée |x|, est le réel positif ou nul

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0. \end{cases}$$

Propriétés. Soit $x \in \mathbb{R}$.

- 1. $|x| \ge 0$.
- $2. |x| = 0 \iff x = 0.$
- 3. $|x|^2 = x^2$.
- 4. |x| = |-x|.
- 5. $x \le |x|$.
- 6. $|x+y| \le |x| + |y|$.

1.3.2 Equations avec valeur absolue

Théorème 1.1.

Soit $a \in \mathbb{R}$. On a l'équivalence

$$|x| = a \iff a \ge 0 \text{ et } \begin{cases} x = a \\ ou \\ x = -a \end{cases}$$

Théorème 1.2.

Soient f et g deux fonctions réelles. On a l'équivalence

$$|f(x)| = g(x) \iff g(x) \ge 0 \text{ et } \begin{cases} f(x) = g(x) \\ ou \\ f(x) = -g(x) \end{cases}$$

1.3.3 Inéquations avec valeur absolue

Théorème 1.3.

Soit $a \in \mathbb{R}$. On a l'équivalence

$$|x| \le a \iff \begin{cases} x \le a \\ et \\ x \ge -a \end{cases}.$$

Théorème 1.4.

Soient f et g deux fonctions réelles. On a l'équivalence

$$|f(x)| \le g(x) \iff \begin{cases} f(x) \le g(x) \\ et \\ f(x) \ge -g(x) \end{cases}$$

Théorème 1.5.

Soit $a \in \mathbb{R}$. On a l'équivalence

$$|x| \ge a \iff \begin{cases} x \ge a \\ ou \\ x \le -a \end{cases}$$

Théorème 1.6.

Soient f et g deux fonctions réelles. On a l'équivalence

$$|f(x)| \ge g(x) \iff \begin{cases} f(x) \ge g(x) \\ ou \\ f(x) \le -g(x) \end{cases}$$

1.3.4 Fonction signe

Définition 1.13. Soit $x \in \mathbb{R}^*$. Le signe de x, noté $\operatorname{sgn}(x)$, est le nombre

$$\operatorname{sgn}(x) = \left\{ \begin{array}{ll} +1 & \operatorname{si} \ x > 0 \\ -1 & \operatorname{si} \ x < 0 \, . \end{array} \right.$$

Propriétés. Soient $a, b \in \mathbb{R}^*$.

- 1. $|a| = a \operatorname{sgn}(a)$. $a = |a| \operatorname{sgn}(a)$.
- 2. $\operatorname{sgn}(ab) = \operatorname{sgn}(a)\operatorname{sgn}(b)$.
- 3. |ab| = |a| |b|.
- 4. $\operatorname{sgn}\left(\frac{a}{b}\right) = \operatorname{sgn}(ab)$.

1.4 Trinôme du 2^e degré

Définition 1.14. $p(x) = ax^2 + bx + c$, $a, b, c \in \mathbb{R}$, $a \neq 0$ est un trinôme du 2^e degré en x.

Définition 1.15. $\Delta = b^2 - 4ac$ est appelé le discriminant du trinôme $p(x) = ax^2 + bx + c$, $a, b, c \in \mathbb{R}, a \neq 0$.

Définition 1.16. Si b = 2b', $\Delta' = b'^2 - ac$ est appelé le discriminant réduit du trinôme $p(x) = ax^2 + 2b'x + c$, $a, b', c \in \mathbb{R}$, $a \neq 0$.

1.4.1 Signe du trinôme

• $\Delta > 0$: les deux racines distinctes de $p(x) = ax^2 + bx + c$ sont (b = 2b')

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-b' \pm \sqrt{\Delta'}}{a}.$$

Signe de p(x):

$$\operatorname{sgn} p(x) = \operatorname{sgn}(a)\operatorname{sgn}(x - x_1)\operatorname{sgn}(x - x_2) \quad \text{si } x \neq x_1, x_2.$$

• $\Delta = 0$: les deux racines de $p(x) = ax^2 + bx + c$ sont confondues

$$x_{1,2} = -\frac{b}{2a}.$$

Signe de p(x):

$$\operatorname{sgn} p(x) = \operatorname{sgn}(a) \quad \text{si } x \neq -\frac{b}{2a}.$$

• $\Delta < 0$: $p(x) = ax^2 + bx + c$ n'a pas de racine réelle. Signe de p(x) :

$$\operatorname{sgn} p(x) = \operatorname{sgn}(a).$$

1.4.2 Représentation graphique et formules de Viète

Les points (x, y) du plan vérifiant $y = ax^2 + bx + c$ se trouvent sur la parabole d'équation

$$y + \frac{\Delta}{4a} = a\left(x + \frac{b}{2a}\right)^2.$$

Propriétés.

1. $Si \ a > 0$:

2. $Si \ a < 0$:

3. Si x_1 et x_2 sont les deux racines distinctes ou confondues du trinôme $p(x)=ax^2+bx+c$, alors (formules de Viète)

$$x_1 + x_2 = -\frac{b}{a}$$
$$x_1 x_2 = \frac{c}{a}.$$

1.5 Puissances et racines

1.5.1 Puissances à exposants entiers

Définition 1.17. Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$. La puissance n^{e} de a, notée a^n , est le nombre

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ facteurs}}.$$

8

Propriétés. Soient $a, b \in \mathbb{R}$, $m, n \in \mathbb{N}^*$.

1.
$$a^m a^n = a^{m+n}$$
.

2.
$$(a^m)^n = a^{mn}$$
.

3.
$$Si \ a \neq 0$$
,

$$sgn(a^n) = \begin{cases} sgn(a) & si \ n \ impair \\ 1 & si \ n \ pair. \end{cases}$$

$$4. (ab)^n = a^n b^n.$$

Définition 1.18. Soient $a \in \mathbb{R}^*$ et $n \in \mathbb{Z}$. Alors

$$a^{-n} = \frac{1}{a^n}$$
 $a^0 = 1$.

Remarque. 0^0 n'est pas défini.

Remarque. Les propriétés 1 à 4 restent valables.

1.5.2 Racines positives (ou arithmétiques)

Définition 1.19. Soient $a \in \mathbb{R}_+$ et $n \in \mathbb{N}^*$. Un nombre $x \in \mathbb{R}_+$ est la racine n^e positive de a ssi $x^n = a$. On note alors $x = \sqrt[n]{a}$.

Propriétés. Soient $a, b \in \mathbb{R}_+$, $m, n \in \mathbb{N}$.

5.
$$(\sqrt[n]{a})^n = a$$
.

6.
$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$
.

7.
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$
.

8.
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$
.

Remarque. Les propriétés 1, 2 et 4 restent valables en posant

$$\sqrt[q]{a^p} = a^{\frac{p}{q}} \quad a \in \mathbb{R}_+^*, p, q \in \mathbb{Z}, q \neq 0.$$

1.5.3 Racines réelles

Définition 1.20. Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Un nombre $x \in \mathbb{R}$ est une racine n^{e} réelle de a si x vérifie $x^n = a$.

Conséquences.

• Soit $a \in \mathbb{R}^*$. Alors

$$\sqrt[n]{a^n} = \begin{cases} a & si \ n \ impair \\ |a| & si \ n \ pair. \end{cases}$$

• Soient $a, b \in \mathbb{R}$, n impair. Alors

$$a = b \iff a^n = b^n$$

$$a \le b \iff a^n \le b^n.$$

• Soient $a, b \in \mathbb{R}_+$ (condition de positivité), $n \in \mathbb{N}^*$. Alors

$$a = b \iff a^n = b^n$$

9

$$a \le b \iff a^n \le b^n$$
.

1.5.4 Equations irrationnelles

Théorème 1.7.

Soient f et g deux fonctions réelles. $\forall x \in \mathbb{R}$ t.q. $f(x) \geq 0$, on a l'équivalence

$$\sqrt{f(x)} = g(x) \iff g(x) \ge 0 \text{ et } f(x) = g^2(x).$$

1.5.5 Inéquations irrationnelles

Théorème 1.8.

Soient f et g deux fonctions réelles. $\forall x \in \mathbb{R}$ t.q. $f(x) \geq 0$, on a les équivalences

$$\sqrt{f(x)} \le g(x) \iff g(x) \ge 0 \text{ et } f(x) \le g^2(x)$$
$$\sqrt{f(x)} < g(x) \iff g(x) \ge 0 \text{ et } f(x) < g^2(x).$$

Théorème 1.9.

Soient f et g deux fonctions réelles. $\forall x \in \mathbb{R}$ t.q. $f(x) \geq 0$, on a les équivalences

$$\sqrt{f(x)} \ge g(x) \iff \begin{cases} g(x) < 0 \\ ou \\ g(x) \ge 0 \text{ et } f(x) \ge g^2(x) \end{cases}$$

$$\sqrt{f(x)} > g(x) \iff \begin{cases} g(x) < 0 \\ ou \\ g(x) \ge 0 \text{ et } f(x) > g^2(x) \end{cases}$$

1.6 Binôme de Newton

Définition 1.21. Le polynôme en x

$$P_n(x) = (x+a)^n, \quad a \in \mathbb{R}, n \in \mathbb{N}$$

est appelé binôme de Newton (x + a : binôme).

Corolaire 1.10.

Le développement du binôme de Newton donne

$$(x+a)^n = C_n^0 a^0 x^n + C_n^1 a^1 x^{n-1} + \dots + C_n^k a^k x^{n-k} + \dots + C_n^{n-1} a^{n-1} x^1 + C_n^n a^n x^0$$
$$= \sum_{k=0}^n C_n^k a^k x^{n-k} .$$