

Calcolo Differenziale

Eugenio Montefusco

02. I numeri reali

$$\overline{AB} = \overline{BC} = \overline{CD} = \overline{AD} = 1$$

$$\overline{AB} \perp \overline{BC}$$

$$\frac{\overline{AB}}{\overline{AB}} = \frac{\overline{BC}}{\overline{BC}} = \overline{CD} = \overline{AD} = 1$$

$$\overline{AB} \perp \overline{BC}$$

$$\overline{BD}^2 = \overline{AB}^2 + \overline{AD}^2 = 2$$

$$\frac{\overline{AB}}{\overline{AB}} = \frac{\overline{BC}}{\overline{BC}} = \overline{CD} = \overline{AD} = 1$$

$$\overline{AB} \perp \overline{BC}$$

$$\overline{BD}^2 = \overline{AB}^2 + \overline{AD}^2 = 2$$

$$\overline{BD} = \sqrt{2}$$

$$\overline{AB} = \overline{BC} = \overline{CD} = \overline{AD} = 1$$

$$\overline{AB} \perp \overline{BC}$$

$$\overline{BD}^2 = \overline{AB}^2 + \overline{AD}^2 = 2$$

$$\overline{BD} = \sqrt{2}$$

$$x^2 - 2 = 0$$
 se e solo se $x = \pm \sqrt{2}$

Per assurdo supponiamo che

$$\sqrt{2} = \frac{\rho}{q}$$
 con $\rho, q \in \mathbb{N}$

Per assurdo supponiamo che

$$\sqrt{2} = \frac{\rho}{q}$$
 con $\rho, q \in \mathbb{N}$

allora abbiamo

$$\sqrt{2}q = \rho$$

Per assurdo supponiamo che

$$\sqrt{2} = \frac{\rho}{q}$$
 con $\rho, q \in \mathbb{N}$

allora abbiamo

$$\sqrt{2}q = \rho$$

da cui

$$2q^2 = \rho^2$$

Assiomi dei reali

- i. la somma è associativa
- ii. la somma è commutativa
- iii. a + 0 = a per ogni $a \in \mathbb{R}$
- iv. $\forall a \in \mathbb{R} \exists ! (-a) \in \mathbb{R} \text{ tale che } a + (-a) = 0$
- v. il prodotto è associativo
- vi. il prodotto è commutativo
- vii. $a \cdot 1 = a$ per ogni $a \in \mathbb{R}$
- viii. $\forall a \in \mathbb{R}$, $a \neq 0$, $\exists ! (1/a) \in \mathbb{R}$ tale che $a \cdot (1/a) = 1$
 - ix. il prodotto è distributivo rispetto alla somma
 - **x.** se $a \le b$, allora $a + c \le b + c$, $\forall c$
- **xi.** se $a \le b$, allora $a \cdot c \le b \cdot c$, $\forall c \ge 0$

Assioma di Archimede

Assioma di Archimede.

Per ogni $a \in \mathbb{R}$ esiste $k \in \mathbb{N}$ tale che

k > a

Assioma di Archimede

Assioma di Archimede.

Per ogni $a \in \mathbb{R}$ esiste $k \in \mathbb{N}$ tale che

Osservazione. Se \times è un numero reale tale che

$$x \ge 0$$
 e $x < \varepsilon$ per ogni $\varepsilon > 0$

allora x = 0.

Principio di Cantor

Principio degli intervalli incapsulati (Cantor). Sia $\{I_n\}$, con $n \in IN$, una collezione di intervalli non vuoti, chiusi e limitati di IR

Principio di Cantor

Principio degli intervalli incapsulati (Cantor).

Sia $\{I_n\}$, con $n \in \mathbb{N}$, una collezione di intervalli non vuoti, chiusi e limitati di \mathbb{R} tali che $I_{n+1} \subseteq I_n$ per ogni indice n, allora

Principio degli intervalli incapsulati (Cantor).

Sia $\{I_n\}$, con $n \in \mathbb{N}$, una collezione di intervalli non vuoti, chiusi e limitati di \mathbb{R} tali che $I_{n+1} \subseteq I_n$ per ogni indice n, allora

$$\bigcap_{n\in\mathbb{N}}I_n\neq\emptyset$$

Ordinamento tra punti della retta.

$$x \le y$$
 se e solo se $y - x \ge 0$

Ordinamento tra punti della retta.

$$x \le y$$
 se e solo se $y - x \ge 0$

Distanza tra punti della retta.

$$d(x,y) = |x - y| = \begin{cases} x - y & \text{se } x \ge y \\ y - x & \text{se } x \le y \end{cases}$$

Ordinamento tra punti della retta.

$$x \le y$$
 se e solo se $y - x \ge 0$

Distanza tra punti della retta.

$$d(x,y) = |x - y| = \begin{cases} x - y & \text{se } x \ge y \\ y - x & \text{se } x \le y \end{cases}$$

Si ricordi che $|x| = \max\{x, -x\}$.

Disuguaglianza triangolare.

Per ogni $x, y \in \mathbb{R}$ vale che

$$|x - y| \le |x| + |y|$$

Intervalli chiusi e aperti

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

Intervalli chiusi e aperti

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a,b) = \{x \in IR : a \le x < b\}$$

$$(a,b] = \{x \in IR : a < x \le b\}$$

Intervalli chiusi e aperti

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{IR} : a \le x \le b\}$$

Insiemi limitati e non

$$(a, +\infty) = \{x \in \mathbb{R} : x > a\}$$

$$(-\infty, \alpha) = \{x \in \mathbb{R} : x < \alpha\}$$

$$(-\infty, \alpha] = \{x \in \mathbb{R} : x \leq \alpha\}$$

$$[a,+\infty)=\{x\in \mathbb{R}:x\geq a\}$$

$$(a,+\infty)=\{x\in \mathbf{IR}:x>a\}$$

$$(-\infty, \alpha) = \{x \in \mathbf{IR} : x < \alpha\}$$

$$(-\infty, \alpha] = \{x \in \mathbb{R} : x \le \alpha\}$$

$$[a, +\infty) = \{x \in \mathbb{R} : x \ge a\}$$

Definizione. Un insieme $A \subseteq \mathbb{R}$ si dice **limitato** se esiste M > 0 tale che per ogni $x \in A$ si ha $|x| \le M$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto chiameremo maggiorante di A un elemento $\Lambda \in \mathbb{R}$ tale che $\Lambda \geq a$ per ogni $a \in A$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto chiameremo maggiorante di A un elemento $\Lambda \in \mathbb{R}$ tale che $\Lambda \geq a$ per ogni $a \in A$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto chiameremo minorante di A un elemento $\lambda \in \mathbb{R}$ tale che $\lambda \leq a$ per ogni $a \in A$.

Estremi

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato chiameremo **estremo superiore** di A il più piccolo dei maggioranti, tale numero reale verrà indicato $\sup(A)$

Estremi

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato chiameremo **estremo superiore** di A il più piccolo dei maggioranti, tale numero reale verrà indicato $\sup(A)$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato chiameremo **estremo inferiore** di A il più grande dei minoranti, tale numero reale verrà indicato $\inf(A)$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato chiameremo **estremo superiore** di A il più piccolo dei maggioranti, tale numero reale verrà indicato $\sup(A)$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato chiameremo **estremo inferiore** di A il più grande dei minoranti, tale numero reale verrà indicato $\inf(A)$

Osservazione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato e sia $\inf(A)$ il suo estremo inferiore, allora

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato chiameremo **estremo superiore** di A il più piccolo dei maggioranti, tale numero reale verrà indicato $\sup(A)$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato chiameremo **estremo inferiore** di A il più grande dei minoranti, tale numero reale verrà indicato $\inf(A)$

Osservazione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato e sia $\inf(A)$ il suo estremo inferiore, allora

$$\forall a \in A \quad a \ge \inf(A)$$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato chiameremo **estremo superiore** di A il più piccolo dei maggioranti, tale numero reale verrà indicato $\sup(A)$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato chiameremo **estremo inferiore** di A il più grande dei minoranti, tale numero reale verrà indicato $\inf(A)$

Osservazione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato e sia $\inf(A)$ il suo estremo inferiore, allora

$$\forall a \in A \quad a \ge \inf(A)$$

 $\forall \varepsilon > 0 \quad \exists a_{\varepsilon} \in A : a_{\varepsilon} < \inf(A) + \varepsilon$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato se $\sup(A) \in A$ allora chiameremo tale numero reale massimo di A e lo indicheremo con $\max(A)$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato se $\sup(A) \in A$ allora chiameremo tale numero reale massimo di A e lo indicheremo con $\max(A)$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato se $\inf(A) \in A$ allora chiameremo tale numero reale minimo di A e lo indicheremo con $\min(A)$.

Reali, razionali e numeri macchina...

Teorema. Per ogni $a \in \mathbb{R}$ e per ogni $\varepsilon > 0$ esiste $q \in \mathbb{Q}$ tale che

$$|a-q|<\varepsilon$$

Protagonisti

Archimede di Siracusa 287-212 a.C.

Protagonisti

Georg Ferdinand Ludwig Philipp Cantor 1845 - 1918

Protagonisti

Julius Wilhelm Richard Dedekind 1831 - 1916

