Zbiory częściowo uporządkowane

- 1. Def: Relację $R \subseteq X \times X$ $(X \neq \emptyset)$ nazywamy **relacją częściowego porządku** "jeśli R jest zwrotna, przechodnia i antysymetryczna.
- 2. **Zbiór częściowo uporządkowany** jest to para (X,R) gdzie X jest niepustym zbiorem a $R\subseteq X^2$ jest relacją częściowego porządku

Przykłady:

- (a) $(\mathbb{R}, \leq), (P(X), \subseteq)$ dla niepustego X
- (b) $(\mathbb{N}, |)$ a|b a jest podzielne przez b
- (c) (\mathbb{R}^X, \preceq) $\mathbb{R}^X = \{f : f : X \to \mathbb{R}\}, f \preceq g \iff \forall_{x \in X} f(x) \leq g(x)$
- (d) (\mathbb{R}^2, \preceq) $\forall_{x_1, x_2, y_1, y_2 \in \mathbb{R}}(x_1, y_1) \preceq (x_2, y_2) \iff x_1 \leq x_2 \land y_1 \leq y_2$
- (e) (P, \preceq) zbiór częściowo uporządkowany

Definiujemy relację $\prec \subseteq P \times P$ i $\prec_{\bullet} \subseteq P \times P$ następująco

$$x \prec y \iff x \leq y \land x \neq y$$

$$x \prec_{\bullet} y \iff x \prec y \land \neg(\exists_{z \in P} x \prec z \prec y)$$

Jeśli $x \prec_{\bullet} y$ to mówimy, że **x jest poprzednikiem y**, oraz **y jest następnikiem x**

Na przykład $(\mathbb{N}, \leq), n \in \mathbb{N}, n <_{\bullet} n + 1$

3. Def: **Diagramem Hassego** zbioru częsciowo uporządkowanego (P, \preceq) nazywamy graf, którego wierzchołakmi są elementy zbioru P. Jeśli dla $x,y \in P$ zachodzi $x \prec y$, to x rysujemy niżej niż y. Ponadto dwa wierzchołki $x,y \in P$ są połączone krawędzią wtedy i tylko wtedy, gdy $x <_{\bullet} y$

- 4. Def: Niech (P, \preceq) będzie zbiorem częściowo uporządkowanym Element $a \in p$ nazywamy:
 - (a) **maksymalnym**, jeśli $\neg(\exists_{x \in P} a \prec x)$
 - (b) minimalnym, jeśli $\neg(\exists_{x \in P} x \prec a)$
 - (c) **największym**, jeśli $\forall_{x \in P} x \leq a$
 - (d) **najmniejszym**, jeśli $\forall_{x \in P} a \leq x$
 - (e) Maksymalne elementy to wierzchołki diagramu Hassego bez połączeń z góry

Minimalne - wierzchołki bez połączeń w dół

Największy \implies jedyny element maksymalny (równoważność dla skończonych zbiorów)

Najmniejszy \implies jedyny element minimalny

(f) Dowód (e): a - element najmniejszy. Pokażemy, że a jest minimalny. Załóżmy, że a nie jest minimalny. Stąd $\exists_{u \in P} y \prec a$. Wtedy nieprawdą jest, że $\forall_{x \in \mathbb{R}} a \preceq x$ (bo $y \prec a$)

Załóżmy, że w P jest inny element $b \neq a$, który jest minimalny. a- najmniejszy, $\begin{cases} a \leq b \\ a \neq b \end{cases} \implies a \prec b \implies \exists_{x \in P} x \prec b$

 $b \implies b$ nie jest minimalny

(g) W
$$(P, \preceq)$$
 istnieje co najwyżej jeden element najmniejszy D(nie wprost): a, b elemeny najmniejsze, $a \neq b$
$$\begin{cases} \forall_{x \in P} a \preceq x \implies a \preceq b \\ \forall_{x \in P} b \preceq x \implies b \preceq a \end{cases} \quad a \neq b, \text{ sprzeczność}$$

- 5. Def: (P, \preceq) zbiór częściowo uporządkowany, $X \subseteq P$ Element $a \in P$ jest **ograniczeniem górnym** zbioru X, jeśli $\forall_{x \in X} x \preceq a$ Element $a \in P$ jest **ograniczeniem dolnym** zbioru X, jeśli $\forall_{x \in X} a \preceq x$ $X^* \stackrel{\text{def.}}{=} \{a \in P : \forall_{x \in X} x \preceq a\}$ zbiór wszystkich ograniczeń górnych zbioru X $X_* \stackrel{\text{def.}}{=} \{a \in P : \forall_{x \in X} a \preceq X\}$ zbiór wszystkich ograniczeń dolnych zbioru X
- 6. Def: (P, \preceq) zbiór częsciowo uporządkoany, $X \subseteq P$ Element $a \in P$ jest **kresem górnym** zbioru X jeśli jest najmniejszym ograniczeniem górnym dla X (tzn. jest elementem najmniejszym w X^*)

Oznaczenie: $\sup X$

Element $a \in P$ jest **kresem dolnym** zbioru X jeśli jest największym ograniczeniem dolnemy dla X (tzn. jest elementem największym w X_*)

Oznaczenie: $\inf X$

7. Zbiór częściowo uporządkowany (P, \preceq) jest **kratą**, jeśli $\forall_{x,y \in P} \sup\{x,y\}$ i $\forall_{x,y \in P} \inf\{x,y\}$ istnieją