

ACADGILD

Session 9: Statistical Inference

Assignment 1

Data Analytics

Table of Contents

1. Introduction	.3
2. Objective	.3
3. Prerequisites	.3
4. Associated Data Files	3
5. Problem Statement	3
6. Expected Output	3
7. Approximate Time to Complete Task	3

1. Introduction

This assignment will help you understand the concepts learnt in the session.

2. Objective

This assignment will test your skills on theorems and tests in R.

3. Prerequisites

Not applicable.

4. Associated Data Files

Not applicable.

5. Problem Statement

1. If Z is norm (mean = 0, sd = 1) find

```
P(Z > 2.64)
```

ANS: pnorm(-2.64, mean = 0, sd = 1)

```
> pnorm(-2.64, mean= 0, sd = 1)
[1] 0.004145301
> |
```

find P(|Z| > 1.39)

ANS:

```
#we can find by pnorm function too
pnorm(1.39)
#0.9177356
pnorm(-1.39)
#0.08226444
#1-(pnorm(1.39)-pnorm(-1.39))
#1-(0.9177356-0.08226444)
#1-0.8354712
#0.1645288 -ANSWER
```

Data Analytics 2. Suppose p = the proportion of students who are admitted to the graduate school of the University of California at Berkeley, and suppose that a public relation officer boasts that UCB has historically had a 40% acceptance rate for its graduate school. Consider the data stored in the table UCBAdmissions from 1973. Assuming these observations constituted a simple random sample, are they consistent with the officerâ..s claim, or do they provide evidence that the acceptance rate was significantly less than 40%? Use an $\hat{l} = 0.01$ significance level. ANS: #to check for wheather there is consistency with the officers claim or do they provide evidence #that the acceptance rate was significantly less than 40% #thus defining the null hypo as Ho:p is equal to 0.40 #and Ha:p less than 0.40 #Ho: p = 0.4#Ha: p < 0.4#alpha = 0.01#Thus to find we use gnorm() function #-2.326348

-qnorm(0.99)

#Now to find out our test statistic newucb_data <- as.data.frame(UCBAdmissions)</pre> View(newucb data) dim(newucb data) summary(newucb_data\$Admit) phat < -12/(24)t < -(phat-0.4)/sqrt(0.4*0.6/(24))

#by calculations it is clear that our test statistic is not less than -2.326348 #So we accept our null hypothesis Ho #hence we say that the observed data are consistent with the officer's claim at alpha = 0.01(Level of Significance)