EARLY DETECTION OF FOREST FIRE USING DEEP LEARNING

MODEL BUILDING

SAVE THE MODEL

Team ID	PNT2022TMID11704
Project Name	Project-Early detection of forest fire using deep
	learning

SAVE THE MODEL

Your model is to be saved for future purposes. This saved model also is integrated with an android application or web application in order to predict something

IMPORT LIBRARIES:

11/7/22, 12:35 AM

Untitled8.ipynb - Colaboratory

Importing Keras libraries

import keras

Importing ImageDataGenerator from Keras

from keras.preprocessing.image import ImageDataGenerator

IMPORT ImageDataGenerator FROM KERAS:

•	lm	porting Keras libraries
✓ 35	[1]	import keras
•	lm	porting ImageDataGenerator from Keras
*	[13]	from matplotlib import pyplot as plt from keras.preprocessing.image import ImageDataGenerator
•	De	fining the Parameters
	0	train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rotation_range=180,zoom_range=0.2,horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)
	C	<pre><keras.preprocessing.image.imagedatagenerator 0x7fb7448ac110="" at=""></keras.preprocessing.image.imagedatagenerator></pre>

APPLYING ImageDataGenerator to train dataset:

APPLYING ImageDataGenerator to test datasets

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Applying the **flow from directory ()** methodfortest folder.

[17] x_train=train_datagen.flow_from_directory('/content/drive/MyOrive/IBM PROJECT/dataset/Data SET/archive/Dataset/Dataset/Train_set',target_size=(128,128),batch_size=32,class_mode='bin

IMPORTING MODEL BUILDING LIBRARIES.

11/8/22, 1:16 AM

[10] from google.colab import drive
 drive.mount('<u>/content/drive</u>')

Found 436 images belonging to 2 classes.

Main code - Colaboratory

Importing Model Building Libraries

#to define the linear Initialisation import sequential
from keras.models import Sequential
#to add layers import Dense
from keras.layers import Dense
#to create Convolutional kernel import convolution2D
from keras.layers import Convolution2D
#import Maxpooling layer
from keras.layers import MaxPooling2D
#import flatten layer
from keras.layers import Flatten
import warnings
warnings.filterwarnings('ignore')

INITIALIZING THE MODEL:

Initializing the model

```
model=Sequential()
```

ADDING CNN LAYERS:

Adding CNN Layers

```
model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))
#add maxpooling layers
model.add(MaxPooling2D(pool_size=(2,2)))
#add faltten layer
model.add(Flatten())
```

ADDING DENSE LAYERS:

Add Dense layers

```
#add hidden layers
model.add(Dense(150,activation='relu'))
#add output layer
model.add(Dense(1,activation='sigmoid'))
```

CONFIGURING THE LEARNING PROCESS:

configuring the learning process

```
model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["accuracy"])
```

TRAINING THE MODEL:

Training the model

```
model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation_data=x_test,validation_
  Epoch 1/10
  Epoch 2/10
  Epoch 3/10
  Epoch 4/10
  Epoch 5/10
  Epoch 6/10
  14/14 [============== ] - 30s 2s/step - loss: 0.1971 - accuracy: 0.926
  Epoch 7/10
  Epoch 8/10
  14/14 [==================== ] - 30s 2s/step - loss: 0.1796 - accuracy: 0.924
  Epoch 9/10
  14/14 [============= ] - 31s 2s/step - loss: 0.2306 - accuracy: 0.896
  Epoch 10/10
  14/14 [============== ] - 27s 2s/step - loss: 0.2593 - accuracy: 0.889
  <keras.callbacks.History at 0x7fd537101390>
```

SAVE THE MODEL:

Save the model

```
model.save("forest.h5")
```