Population distribution	Parameter of the distribution	Test statistic	Distribution of the statistic under \mathcal{H}_0
Normal distribution OR Any statistical distribution if N_1 and $N_2 \geq 30$	σ_1^2 and σ_2^2 are known	$z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}}$	$z \sim \mathcal{N}(0,1)$ $Z ext{-test}$
Normal distribution AND N_1 and $N_2~\geq~30$	σ_1^2 and σ_2^2 are unknown	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}}}$	$T \ \sim \ \mathcal{T}_{N_1+N_2-2 \ df}$ Student T-test
Normal distribution AND N_1 or $N_2 \leq 30$	$\sigma_1^2=\sigma_2^2$ are unknown	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S^2 \left(\frac{1}{N_1} + \frac{1}{N_2}\right)}}$ $S^2 = \frac{(N_1 - 1)S_1^2 + (N_2 - 1)S_2^2}{N_1 + N_2 - 2}$	$T~\sim~\mathcal{T}_{N_1+N_2-2~df}$ Student T-test
Normal distribution AND N_1 or $N_2 \leq 30$	$\sigma_1^2 eq \sigma_2^2$ are unknown	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}}}$	$T~\sim~\mathcal{T}_{ u~df}$ Welch-Aspin T-test