Beginner's Guide to Vector Databases

AI by Hand L

Prof. Tom Yeh

Hosted by:

Roadmap

Database

Beginner's Guide to Vector Databases - AI by Hand 🚣

Fun fact

There are _____ millions dogs in the world!

How to create a table?

```
CREATE TABLE animals
SQL:
      name VARCHAR (10),
      size IN
      pop IN
```

id	name	size	pop

How to insert a record?

SQL:

id	name	size	pop
1	dog	2	900

Vector Database

Beginner's Guide to Vector Databases - AI by Hand 🚣

How to create a vector database?

```
SQL:
        CREATE TABLE animals
        (id INT,
         name VARCHAR(10),
         size INT,
         pop INT,
         emb VECTOR(3) not null)
```

id	name	size	pop	emb

How to insert a record with a vector? SQL:

INSERT INTO animals

VAUES (1, dog, 2, 900, ________)

id	name	size	pop	emb
1	dog	2	900	210

Retrieval

Beginner's Guide to Vector Databases - AI by Hand 🚣

Which record is relevant to the query "cat"?

Query

cat

1 2 0

id	name	size	pop	emb
1	dog	2	900	2 1 0
2	bat	1	10000	0 1 2

Draw distance vs similarity

distancé

similarity

Distance vs similarity on a scale of 1 to 5

How to retrieve by similarity? (dot product) to descending

SELECT name, emb< >[1,2,0] AS score

FROM animals

ORDER BY Score ASC | DESC ;I

How to retrieve by distance? (Euclidean) 62

-> minus

SELECT name, emb< >[1, 2, 0] AS score

FROM animals

ORDER BY score DESC; ASC

Dot Product

Beginner's Guide to Vector Databases - AI by Hand 🚣

How to compute dot product?

Example:

$$\beta$$
 2 2 0 $= = \sum_{0}^{2} 2$ 4 0 6

dog
$$\begin{bmatrix} 2 & 1 & 0 \\ * & * & * \end{bmatrix}$$

cat $\begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$

$$= = = \sum_{2} \sum_{3} \sum_{4} \sum_{3} \sum_{4} \sum_{5} \sum_{4} \sum_{5} \sum_{4} \sum_{5} \sum_{5} \sum_{4} \sum_{5} \sum_{5$$

Al by Hand ≤ 2024 © Tom Yeh

How to compute dot product using matrix multiplication? scalable

Example:

1

2

3

2 2 0 6

dog

2

1

0

cat | 1 | 2 |

4

How to compute dot product with multiple vectors?

Example:

1	1
2	1
3	1

2	2	0	6	4

dog k	oat
-------	-----

2	0
1	1
0	2

cat 1 2 0

4 2

Word Embedding

Beginner's Guide to Vector Databases - AI by Hand 🚄

Where are dog, <u>cat</u> and <u>bat</u> in the "name" space?

cat

log

Where are dog, cat and bat in the "name" space?

col Jozep bat

space

Which embedding is better?

Embedding 1

dog	cat	bat
2	1	0
1	2	1
0	0	2

Embedding 2

dog	cat	bat
2	0	1
1	1	0
0	2	2

Which embedding is better?

Desired dot product similarity

dog	cat	bat
2	1	0
1	2	1
0	0	2

Embedding 1

dog	cat	bat
2	1	0
1	2	1
0	0	2

Embedding 2

dog	cat	bat
2	0	1
1	1	0
0	2	2

dog	2	1	0
cat	1	2	0
bat	0	1	2

	(\pm)) L
Н		Г
L	L	

dog	2	1	0
cat	1	2	0
bat	0	1	2

	4	1
4		2
1	2	

dog	2	1	0
cat	0	1	2
bat	1	0	2

	1	2
1		4
2	4	

we want

H => high

=> low

3×3 matrix

Yellow is better 24

Sentence Embedding

Beginner's Guide to Vector Databases - AI by Hand 🗢

How to embed sentences?

id	comment	user	emb
1	How are you?	John	••
2	Who are you?	Mary	?

"How are you" -> word embedding vectors

1	0	0
0	1	
V		0
0	0	0

Word vectors >> Sentence vector

Method 1: Concatenate

ŀ	now	are	you	
	1	0	0	
	0	1	1	
	1	1	0	
	0	0	0	

-
O
1
0
0
1
0
0
l
0
0

Jhs might not be scalable

Word vectors > Sentence vector

Method 2: Average

ŀ	now	are	you	
	1	0	0	2/3
	0	1	1	2/3
	1	1	0	2/3
	0	0	0	0/3

Vec	tor (4)

id	comment	user	emb
1	How are you?	John	[1/3, 2/3, 2/3,0/3]
2	Who are you?	Mary	

"Who are you" > word embedding vectors

а	an	the	how	why	who	what	are	is	am	be	was	you	we	Ι	they	she	he	she	me	him	her
0	-1	0	1	0	1	0	0	-1	1	0	0	0	3	1	0	-1	0	0	0	-1	0
2	0	2	0	0	0	-1	1	0	0	0	2	1	0	2	0	2	0	0	2	0	0
-1	0	-1	1	2	0	0	1	0	1	-1	0	0	-1	0	3	0	0	-1	0	2	-1
0	1	0	0	1	0	1	0	1	0	1	-2	0	0	0	1	0	1	0	1	0	1

1	0	0
0	1	1
0	1	0
0	0	0

Word vectors > Sentence vector

Method 2: Average

V	vho	are	you	ı	
	1	0	0		1/3
	0	1	1		2/3
	0	1	0		1/3
	0	0	0		0/3

id	comment	user	emb
1	How are you?	John	[1/3, 2/3, 2/3, 0]
2	Who are you?	Mary	[13,2/3,1/3,0]

How to query by SQL?

det product/similarity

SELECT comment, emb< $\times > [\frac{2}{3}, \frac{1}{3}, \frac{3}{3}, \frac{4}{3}]$ AS score

FROM posts

ORDER BY <u>500re</u> ASC | DESC;

How to query using a high-level API?

Source: Superlinked.com 📎

Search

Beginner's Guide to Vector Databases - AI by Hand 🚣

K-Nearest Neighbor, K=3, Dot-Product

K-Nearest Neighbor, K=3, L2 - Endedon Dist (-)

* 20m records ⇒ this process will be Slow Al by Hand \$2024 © Tom Yeh * ANN ⇒ retrieval is faster

Transformer

Beginner's Guide to Vector Databases - AI by Hand 🚣

How to use a Transformer to get a sentence embedding vector?

Word Embedding Vectors

1	0	0
0	1	1
1	1	0
0	0	0

Sentence Embedding Vector

How to combine across positions?

How to combine across positions?

How to combine across positions?

How to combine across features?

How to combine across features?

Al by Hand ≤ 2024 © Tom Yeh

How to combine across positions and

How to use a Transformer to get a sentence embedding

vector?

Word Embedding Vectors

1	0	0
0	1	0
1	1	1

1	0	0
0	1	1
1	1	0
0	0	0

1	0	0
1	2	1
4	1	0
0	0	0
1	1	1
		A

Sentence Embedding Vector

1	0	-1	0	1
0	1	1	0	0
0	0	0	1	1
0	0	1	1	0

2/3 6/3 3/3 2/3

Beginner's Guide to Vector Databases - AI by Hand 🚣

