数学分析习题课讲义上册习题

weiyuan

2022年5月21日

1 引论

1.1 关于习题课教案的组织

1.2 书中常用记号

- 1. N₊: 所有正整数组成的集合.
- 2. **R**: 所有实数组成的集合 (同时也用于表示无限区间 $(-\infty,\infty)$).
- 3. Q: 所有有理数组成的集合.
- 4. C: 所有复数组成的集合.
- 5. \iff 是等价关系的记号. $A \iff B$ 表示 A 和 B 等价. 例如, A 代表 x > 3, B 代表 x 3 > 0, 则 $x > 3 \iff x 3 > 0$.
- 6. [x] 是实数 x 的整数部分,即不超过 x 的最大整数. 例如, $[\sqrt{2}] = 1$, $[-\sqrt{2}] = -2$. 关于 [x] 的基本不等式是: [x] < x < [x] + 1, 或 x 1 < [x] < x
- 7. □表示一个证明或解的结束.
- 8. $\binom{n}{k} = C_n^k = \frac{n(n-1)\cdots(n-k+1)}{k!}$.
- 9. 记号 \approx 表示近似值. 例如 $\sqrt{2} \approx 1.4$.
- 10. 复合函数 f(g(x)) 也写成 $(f \circ g)(x)$ 或 $f \circ g$.
- 11. 若 A 和 B 为两个集合,则用记号 A B 或 $A \setminus B$ 表示 A 与 B 的差集,也就是集合 $\{x | x \in A \exists x \notin B\}$.
- 12. 用 $O_{\delta}(a)$ 表示以 a 为中心,以 $\delta > 0$ 为半径的邻域. 它就是开区间 $(a \delta, a + \delta)$ (也可以用 $U_{\delta}(a)$ 等记号). 如不必指出半径,则可简记为 O(a) (或 U(a)).

1.3 几个常用的初等不等式

1.3.1 几个初等不等式的证明

A.G 不等式 a_1, a_2, \cdots, a_n , n 个非负实数

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdots a_n} \tag{1}$$

 \geq in inequation became $=\iff a_1=a_2=\cdots=a_n$

证明. method 1. induction method

$$k = 1 a_1 = a_1$$

$$k = 2 \frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2}$$

$$k = n \text{suppose} \frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \dots a_n}$$

$$k = n + 1$$

$$\frac{a_1 + a_2 + \dots + a_{n+1}}{n+1} - \frac{a_1 + a_2 + \dots + a_n}{n}$$

$$= \frac{n(a_1 + a_2 + \dots + a_{n+1}) - (n+1)(a_1 + a_2 + \dots + a_n)}{n(n+1)}$$

$$= \frac{na_{n+1} - (a_1 + a_2 + \dots + a_n)}{n(n+1)}$$

Set
$$A = \frac{a_1 + a_2 + \dots + a_n}{n}$$
, $B = \frac{na_{n+1} - (a_1 + a_2 \dots + a_n)}{n(n+1)}$
$$(\frac{a_1 + a_2 + \dots + a_{n+1}}{n+1})^{n+1} = (A+B)^{n+1}$$

$$A > 0, B \ge 0$$

$$(A+B)^{n+1} \ge A^{n+1} + (n+1)A^nB$$

$$A^{n+1} + (n+1)A^nB = A^n(A + (n+1)B)$$

$$A^n = \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^n \ge a_1 a_2 \dots a_n$$

$$A + (n+1)B = \frac{a_1 + a_2 + \dots + a_n}{n} + \frac{na_{n+1} - (a_1 + a_2 + \dots + a_n)}{n} = a_{n+1}$$

$$\therefore (A+B)^{n+1} \ge A^n(A + (n+1)B) \ge a_1 a_2 \dots a_n \cdot a_{n+1}$$

$$\therefore \frac{a_1 + a_2 + \dots + a_{n+1}}{n+1} \ge \frac{a_1 + a_2 + \dots + a_{n+1}}{n+1}$$

使用二项式展开定理的条件

在归纳法第二步,将 $a_1, a_2, \cdots, a_{n+1}$ 重编号,使得 n+1 为其中最大的数 (之一),这使得分解式右边第二项 $(na_{n+1}-(a_1+a_2+\cdots+a_n))/n(n+1)$ 一定 是非负数。

method 2. Forward and Backward (Cauchy, 1897)

Forward part

$$k = 2 \cdot \frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2}.$$

$$k = 4 \cdot \frac{a_1 + a_2 + a_3 + a_4}{4} \ge \sqrt{\left(\frac{a_1 + a_2}{2}\right) \cdot \left(\frac{a_3 + a_4}{2}\right)}.$$

$$\ge \sqrt{\sqrt{a_1 a_2} \sqrt{a_3 a_4}} = \sqrt[4]{a_1 a_2 a_3 a_4}.$$

$$k = 2^n \cdot \text{Suppose} \quad \frac{a_1 + a_2 + \dots + a_{2^n}}{2^n} \ge \sqrt[2^n]{a_1 a_2 \dots a_{2^n}}$$

$$k = 2^{n+1}.$$

$$\frac{a_1 + a_2 + \dots + a_{2^n} + \dots + a_{2^{n+1}}}{2^{n+1}} \ge \sqrt{\left(\frac{a_1 + a_2 + \dots + a_2^n}{2^n}\right) \cdot \left(\frac{a_{2^n + 1} + a_{2^n + 2} + \dots + a_2^{n+1}}{2^n}\right)}$$

$$I \ge \sqrt{\sqrt[2^n]{a_1 a_2 \dots a_{2^n}} \sqrt[2^n]{a_{2^n + 1} a_{2^n + 2} \dots a_{2^{n+1}}}} = \sqrt[2^{n+1}]{a_1 a_2 \dots a_{2^{n+1}}}$$

Backward part suppose A.G inequality is valid when k=n, Consider k=n-1.

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i = \frac{1}{n} \left(\frac{n}{n-1}\right) \sum_{i=1}^{n-1} a_i$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i = \frac{1}{n} \left(\sum_{i=1}^{n-1} a_i + \frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i \ge \sqrt[n]{\left(\prod_{i=1}^{n-1} a_i\right) \left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)}$$

$$\left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)^n \ge \left(\prod_{i=1}^{n-1} a_i\right) \left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)$$

$$\left(\frac{1}{n-1} \sum_{i=1}^{n-1} a_i\right)^{n-1} \ge \left(\prod_{i=1}^{n-1} a_i\right)$$

$$\frac{1}{n-1} \sum_{i=1}^{n-1} a_i \ge \sqrt[n-1]{\prod_{i=1}^{n-1} a_i}$$

命题 1 (1.3.5). 柯西-施瓦茨不等式对 a_1, a_2, \cdots, a_n 和 b_1, b_2, \cdots, b_n , 成立

$$\left|\sum_{i=1}^{n} a_i b_i \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2} \right|$$

证明.

$$0 \le \sum_{i=1}^{n} (a_i - \lambda b_i)^2 = \sum_{i=1}^{n} a_i^2 - 2\lambda \sum_{i=1}^{n} a_i b_i + \lambda^2 \sum_{i=1}^{n} b_i^2$$

由韦达定理 (视 λ 为未知数). 原方程无解或只有唯一解。

$$\Delta = b^2 - 4ac \le 0$$

$$(-2\sum_{i=1}^n a_i b_i)^2 - 4\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2 \le 0$$

$$(\sum_{i=1}^n a_i b_i)^2 \le \sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2$$

$$\sum_{i=1}^n a_i b_i \le \sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2}$$

1.3.2 练习题

例 1. 关于 Bernoulli 不等式的推广:

(1) 证明: 当 $-2 \le h \le -1$ 时 Bernoulli 不等式 $(1+h)^n \ge 1 + nh$ 仍成立;

(2) 证明: 当 $h \ge 0$ 时成立不等式 $(1+h)^n \ge \frac{n(n-1)h^2}{2}$, 并推广之;

(3) 证明: 若 $a_i > -1 (i = 1, 2, ..., n)$ 且同号,则成立不等式

$$\prod_{i=1}^{n} (1 + a_i) \ge 1 + \sum_{i=1}^{n} a_i$$

证明. (1)

$$-2 \le h \le -1$$

$$-1 \le 1 + h \le 0$$

$$-2n \le nh \le -n$$

$$-1 \le (1+h)^n \le 0$$

$$1 - 2n \le 1 + nh \le 1 - n$$

$$n = 0.$$

$$n = 0.$$

$$(1+h)^0 = 1 = 1 + 0 \times h$$

$$1 + h = 1 + h$$

$$n \ge 2.$$

$$1 - n \le -2$$

$$0 \ge (1+h)^n \ge -1 \ge -2 \ge 1 - n \ge 1 + nh \ge 1 - 2n$$

$$(1+h)^n \ge 1 + nh$$

(2)

$$h \ge 0$$

 $(1+h)^n = 1 + nh + \frac{n(n-1)}{2}h^2 + \dots \ge \frac{n(n-1)}{2}h^2$

推广:

$$(1+h)^n \ge \binom{n}{3}h^3, \binom{n}{4}h^4, \dots, \binom{n}{k}h^k, 0 \le k \le n$$

(3) k=1 时显然成立. 使用归纳法证明. 假设 k=n 时不等式 $\prod_{i=1}^n (1+a_i) \geq 1 + \sum_{i=1}^n a_i$ 成立, 证明 k=n+1 时 $\prod_{i=1}^{n+1} (1+a_i) \geq 1 + \sum_{i=1}^{n+1} a_i$ 成立.

$$k = n + 1 \qquad \prod_{i=1}^{n+1} (1 + a_i) = \prod_{i=1}^{n} (1 + a_i)(1 + a_{n+1})$$

$$\therefore \prod_{i=1}^{n} (1 + a_i) \ge 1 + \sum_{i=1}^{n} a_i$$

$$\prod_{i=1}^{n} (1 + a_i)(1 + a_{n+1}) \ge (1 + \sum_{i=1}^{n} a_i)(1 + a_{n+1})$$

$$(1 + \sum_{i=1}^{n} a_i)(1 + a_{n+1}) = 1 + \sum_{i=1}^{n} a_i + a_{n+1} + a_{n+1} \sum_{i=1}^{n} a_i$$
$$= 1 + \sum_{i=1}^{n+1} a_i + a_{n+1} \sum_{i=1}^{n} a_i$$
$$\ge 1 + \sum_{i=1}^{n+1} a_i$$

例 2. 利用 A.G. 不等式求解:

- (1). $n! \leq (\frac{n+1}{2})^n$, while n > 1
- (2). $(n!)^2 = (n \cdot 1)[(n-1) \cdot 2] \dots (1 \cdots n)$. 证明: 当 n > 1 时成立

$$n! < (\frac{n+2}{6})^n$$

- (3). 比较上述两个不等式的优劣
- (4). 证明: 对任意实数 r 成立:

$$(n!)^r \le \frac{1}{n^n} (\sum_{k=1}^n k^r)^n \tag{2}$$

$$n > 1$$
 $n! = 1 \times 2 \times \dots \times n < (\frac{1+2+\dots+n}{n})^n = (\frac{(1+n)n}{2n})^n = (\frac{n+1}{2})^n$

 $\therefore 1 \neq 2 \neq \cdots n$, 所以不会有等号出现的情况

(2). n > 1

$$(n!)^2 = (n \cdot 1)[(n-1) \cdot 2] \dots (1 \dots n)$$

 $< (\frac{n \times 1 + (n-1) \times 2 + \dots + 1 \times n}{n})^n$

Consider this equation

$$\left(\frac{n \times 1 + (n-1) \times 2 + \dots + 1 \times n}{n}\right)^{n}$$

$$\sum_{k=1}^{n} (n-k+1)k = (n+1) \sum_{k=1}^{n} k - \sum_{k=1} k^{2}$$

$$= (n+1) \frac{(n+1)n}{2} - \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n(n+1)}{6} (3(n+1) - (2n+1))$$

$$= \frac{n(n+1)(n+2)}{6}$$

$$(n!)^{2} < \left(\frac{n \times 1 + (n-1) \times 2 + \dots + 1 \times n}{n}\right)^{n}$$

$$= \left(\frac{(n+1)(n+2)}{6}\right)^{n}$$

$$\therefore n+1 < n+2, \therefore n! < (\frac{n+2}{\sqrt{6}})^n$$

(3).
$$n > 3$$
 时, $\frac{n+2}{\sqrt{6}} < \frac{n+1}{2}$ (2) 的结果较好.

 $(4).\forall r \in \mathbb{R}$, prove formula 2

$$\frac{1}{n} \sum_{k=1}^{n} k^{r} \ge \sqrt[n]{\prod_{k=1}^{n} k^{r}}$$
$$(n!)^{r} = \prod_{k=1}^{n} k^{r} \le (\frac{1}{n} \sum_{k=1}^{n} k^{r})^{n} = \frac{1}{n^{n}} (\sum_{k=1}^{n} k^{r})^{n}$$

my answer

$$\forall r \in \mathbb{R}, \qquad (\sum_{k=1}^{n} k^{r})^{n} \ge n^{n} (n!)^{r}$$

$$(n!)^{r} = \sum_{k=1}^{n} k^{r} \le (\frac{1^{r} + 2^{r} + \dots + n^{r}}{n})^{n} = \frac{1}{n^{n}} (\sum_{k=1}^{n} k^{r})^{n}$$

$$\therefore \quad (\sum_{k=1}^{n} k^{r})^{n} \ge n^{n} (n!)^{r}$$

例 3. $a_k > 0, k = 1, 2, ..., n$ 证明几何-调和平均值不等式

$$(\prod_{k=1}^{n} a_k)^{\frac{1}{n}} \ge \frac{n}{\sum_{k=1}^{n} \frac{1}{a_k}}$$

证明. from A.G inequality

$$\frac{\sum_{k=1}^{n} \frac{1}{a_k}}{n} \ge \sqrt[n]{\prod_{k=1}^{n} \frac{1}{a_k}} = \frac{1}{\sqrt[n]{\prod_{k=1}^{n} a_k}}$$
$$a_k > 0, \quad \sqrt[n]{\prod_{k=1}^{n} a_k} \ge \frac{n}{\sum_{k=1}^{n} \frac{1}{a_k}}$$

例 4. $a,b,c \geq 0$. $prove \sqrt[3]{abc} \leq \sqrt{\frac{ab+bc+ca}{3}} \leq \frac{a+b+c}{3}$. 并推广到 n 个非负数的情况.

证明. 1. $\sqrt[3]{abc} = \sqrt{\sqrt[3]{ab \cdot bc \cdot ca}} \le \sqrt{\frac{ab+bc+ca}{3}}$.

$$\begin{split} \sqrt{\frac{ab+bc+ca}{3}} & \leq \sqrt{\frac{(\frac{a+b}{2})^2 + (\frac{b+c}{2})^2 + (\frac{c+a}{2})^2}{3}} \\ & = \sqrt{\frac{2(a^2+b^2+c^2) + 2(ab+bc+ca)}{12}} \\ & = \sqrt{\frac{a^2+b^2+c^2+ab+bc+ca}{6}} \end{split}$$

 $a,b,c \ge 0$,希望证明

$$\sqrt{\frac{ab+bc+ca}{3}} \le \frac{a+b+c}{3}$$

$$\frac{ab+bc+ca}{3} \le \frac{a^2+b^2+c^2}{6} + \frac{ab+bc+ca}{6}$$

$$\frac{ab+bc+ca}{2} \le \frac{a^2+b^2+c^2}{6} + 2\frac{ab+bc+ca}{6} \qquad (add \frac{ab+bc+ca}{6})$$

$$\frac{ab+bc+ca}{3} \le \frac{ab+bc+ca}{2} \le (\frac{a+b+c}{3})^2$$

$$\sqrt{\frac{ab+bc+ca}{3}} \le \frac{a+b+c}{3}$$

推广至n个

$$[l]n = 2 \qquad \sqrt{ab} \le \frac{a+b}{2}$$

$$n = 3 \qquad \sqrt[3]{abc} \le \sqrt{\frac{ab+bc+ca}{3}} \le \frac{a+b+c}{3}$$

$$n = 4 \qquad \sqrt[4]{abcd} \le \sqrt[3]{\frac{abc+bcd+cda+dab}{4}} \le \sqrt{\frac{a+b+c}{3}} \le \frac{a+b+c+d}{4}$$

$$k = n \qquad \sqrt[n]{a_1 a_2 \dots a_n} \le \sqrt{\frac{a_1 + a_2 + \dots + a_n}{n}} \le \frac{a_1 + a_2 + \dots + a_n}{n}$$

This is

$$\sqrt[n]{\sum_{k=1}^{n} a_k} \le \sqrt{\frac{\sum_{k=1}^{n} a_k}{k}} \le \frac{\sum_{k=1}^{n} a_k}{k}$$

1.
$$\sqrt[n]{a_1 a_2 \dots a_n} = \sqrt[n]{\sqrt[n]{a_1^2 a_2^2 \dots a_n^2}} \le \sqrt{\frac{a_1 a_2 + a_2 a_3 + \dots + a_n a_1}{n}}$$
2. $\sqrt{\frac{a_1 a_2 + a_2 a_3 + \dots + a_n a_1}{n}} \le \sqrt{\frac{a_1 + a_2 + \dots + a_n}{n}}$?

例 5. (1)
$$|\alpha + \beta| \le |\alpha| + |\beta|$$

证明. let $\alpha = a - b$, $\beta = b$, the identity became $|(a - b) + b| \le |a - b| + |b|$. This is $|a - b| \ge |a| - |b|$.

$$||a| - |b|| = \begin{cases} |a| - |b|, & a \ge b \\ |b| - |a|, & a < b \end{cases}$$

When $a \ge b$, ||a| - |b|| = |a| - |b|. There is $|a - b| \ge |a| - |b| = ||a| - |b||$ When a < b, $|a - b| = |b - a| \ge |b| - |a| = ||a| - |b||$. \therefore , We have $|a - b| \ge ||a| - |b||$

$$(2) \sum |a_k| \ge |\sum a_k|$$

证明. We can prove this statement by induction.

$$k = 2, |a_1| + |a_2| \ge |a_1 + a_2|$$

$$k = 3, |a_1| + |a_2| + |a_3| \ge |a_1 + a_2 + a_3|$$
Suppose $k = n, \sum_{k=1}^{n} |a_k| \ge |\sum_{k=1}^{n} a_k|$

$$k = n + 1, \text{prove } \sum_{k=1}^{n+1} |a_k| \ge |\sum_{k=1}^{n+1} a_k|$$

$$\sum_{k=1}^{n+1} |a_k| = \sum_{k=1}^{n} |a_k| + |a_{n+1}|$$

$$\geq |\sum_{k=1}^{n} a_k| + |a_{n+1}|$$

$$\geq |\sum_{k=1}^{n+1} a_k|$$

$$k = 2, |a_1| - |a_2| \le |a_1 - a_2|$$
Suppose $k = n, |a_1| - \sum_{k=2}^{n} |a_k| \le |\sum_{k=1}^{n} a_k|$

$$k = n+1, \text{prove} |a_1| - \sum_{k=2}^{n+1} |a_k| \le |\sum_{k=1}^{n+1} a_k|$$

$$|a_1| - \sum_{k=2}^{n+1} |a_k| = |a_1| - \sum_{k=2}^{n} |a_k| - |a_{n+1}|$$

$$\leq |\sum_{k=1}^{n} a_k| - |a_{n+1}|$$

$$\leq |\sum_{k=1}^{n+1} a_k|$$

Can left side became $||a_1| - \sum_{k=2}^{n} |a_k||$?

$$\left| |a_1| - \sum_{k=2}^n |a_k| \right| = |a_1| - \sum_{k=2}^n |a_k| \qquad |a_1| \ge \sum_{k=2}^n a_k \tag{4}$$

$$\left| |a_1| - \sum_{k=2}^n |a_k| \right| = \sum_{k=2}^n |a_k| - |a_1| \qquad |a_1| \ge \sum_{k=2}^n a_k \tag{5}$$

in eq4, the inequality is still vaild. However in eq5, $\sum_{k=2}^{n} |a_k| - |a_1|$ and $|a_1|$

(3).
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$

证明.

$$\begin{split} \frac{|a+b|}{1+|a+b|} \leq & \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|} \\ \frac{|a+b|}{1+|a+b|} \leq & \frac{|a|+|b|+2|a||b|}{(1+|a|)(1+|b|)} \\ 1 - \frac{|a+b|}{1+|a+b|} \geq & 1 - \frac{|a|+|b|+2|a||b|}{(1+|a|)(1+|b|)} \\ \frac{1}{1+|a+b|} \geq & \frac{1-|a||b|}{(1+|a|)(1+|b|)} \\ 1 + |a|+|b|+|a||b| \geq & 1 + |a+b|-|a||b|-|a||b||a+b| \\ |a|+|b|+2|a||b|+|a||b||a+b| > & 0, \text{Since } + 2|a||b|+|a||b||a+b| \geq |a+b| \end{split}$$

Therefore
$$\frac{|a+b|}{1+|a+b|} \leq \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$
 \Box

例 6.
$$(4).|(a+b)^n-a^n| \leq (|a|+|b|)^n-|a|^n$$

$$(a+b)^n - a^n = \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^0b^n$$
$$(|a|+|b|)^n - |a|^n = \binom{n}{1}|a|^{n-1}|b|^1 + \binom{n}{2}|a|^{n-2}|b|^2 + \dots + \binom{n}{n}|a|^0|b|^n$$

$$|(a+b)^n - a^n| = \begin{cases} (a+b)^n - a^n, & a+b \ge a; b \ge 0\\ a^n - (a+b)^n, & a+b < a; b < 0 \end{cases}$$

$$|(a+b)^n - a^n| \le (|a|+|b|)^n - |a|^n. \tag{6}$$

命题 2. 1.3.5(Cauchy inequality)

For a_1, a_2, \ldots, a_n . and b_1, b_2, \ldots, b_n . $a_i, b_i \in \mathbb{R}$, There is

$$\left|\sum_{i=1}^{n} a_i b_i\right| \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$
 (7)

证明. Let's prove eq7

First way on book:

Use variable λ , change the inequality into nonnegative binomial.

$$0 \le \sum_{i=1}^{n} (a_i - \lambda b_i)^2$$

$$= \sum_{i=1}^{n} a_i^2 - 2\lambda \sum_{i=1}^{n} a_i b_i + \lambda^2 \sum_{i=1}^{n} \Delta = B^2 - 4AC$$

$$= (-2\sum_{i=1}^{n} a_i b_i)^2 - 4(\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2) \le 0$$

$$(\sum_{i=1}^{n} a_i b_i)^2 \le (\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2)$$

sqrt on both side of the inequality above, we can get

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$

6. Cauchy 不等式的不同证明

(1). 数学归纳法.

$$k = 1, \quad |ab| = \sqrt{a^2} \sqrt{b^2}$$

$$k = 1, \quad |a_1b_1 + a_2b_2| = \sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_1^2}$$
Suppose $k = n$,
$$|\sum_{i=1}^n a_i b_i| = \sqrt{\sum_{i=1}^n a_i} \sqrt{\sum_{i=1}^n b_i}$$

$$k = n + 1, \quad |\sum_{i=1}^{n+1} a_i b_i| = |\sum_{i=1}^n a_i b_i + a_{n+1} b_{n+1}|$$

$$|\sum_{i=1}^{n+1} a_i b_i| = |\sum_{i=1}^n a_i b_i + a_{n+1} b_{n+1}|$$

 $\leq \left| \sqrt{\sum_{i=1}^{n} a_i} \sqrt{\sum_{i=1}^{n} b_i + a_{n+1} b_{n+1}} \right|$

Note that
$$A = \sqrt{\sum_{i=1}^n a_i}$$
, $B = \sqrt{\sum_{i=1}^n b_i}$

$$|\sum_{i=1}^{n+1} a_i b_i| \le |AB + a_{n+1} b_{n+1}|$$

$$\le \sqrt{A^2 + a_{n+1}^2} \sqrt{B^2 + b_{n+1}^2}$$

$$= \sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2}$$

(2) Lagrange 恒等式

$$\sum_{i=1}^{n} a_k^2 \sum_{i=1}^{n} b_k^2 - \left(\sum_{i=1}^{n} |a_k b_k|\right) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} (|a_k| |b_i| - |a_i| |b_k|)^2$$
 (8)

$$= a_k^2 b_i^2 + b_k^2 a_i^2 - 2|a_i a_k b_i b_k|$$

$$\sum_{i=1}^n \sum_{k=1}^n (|a_k||b_i| - |a_i||b_k|)^2 = 2\sum_{i=1}^n a_i^2 \sum_{k=1}^n b_k^2 - 2\sum_{i=1}^n \sum_{k=1}^n |a_i a_k b_i b_k|$$

 $(|a_k||b_i| - |a_i||b_k|)^2 = |a_k|^2|b_i|^2 - 2|a_i||a_k||b_i||b_k| + |b_k|^2|a_i|^2$

$$\sum_{i=1}^{n} a_k^2 \sum_{i=1}^{n} b_k^2 - (\sum_{i=1}^{n} |a_k b_k|) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} (|a_k| |b_i| - |a_i| |b_k|)^2 \ge 0$$

$$\therefore (\sum_{i=1}^{n} |a_{i}b_{i}|)^{2} \leq \sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}$$

$$\therefore |\sum_{i=1}^{n} a_{i}b_{i}| \leq \sum_{i=1}^{n} |a_{i}b_{i}|$$

$$\therefore (|\sum_{i=1}^{n} a_{i}b_{i}|)^{2} \leq (\sum_{i=1}^{n} |a_{i}b_{i}|)^{2}$$

$$\therefore (|\sum_{i=1}^{n} a_{i}b_{i}|)^{2} \leq \sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}$$

不等式两边开平方,得到:

$$\left|\sum_{i=1}^{n} a_i b_i\right| \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$

(3). 用不等式 $|AB| \leq \frac{A^2 + B^2}{2}$

$$|a_{i}b_{i}| \leq \frac{a_{i}^{2} + b_{i}^{2}}{2}$$

$$|\sum_{i=1}^{n} a_{i}b_{i}| \leq \sum_{i=1}^{n} |a_{i}b_{i}| \leq \frac{\sum_{i=1}^{n} a_{i}^{2} + \sum_{i=1}^{n} b_{i}^{2}}{2}$$

$$\frac{\sum_{i=1}^{n} a_{i}^{2} + \sum_{i=1}^{n} b_{i}^{2}}{2} \geq \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}$$
???

如何用均值不等式证明 Cauchy 不等式? 由切比雪夫不等式,有

$$\frac{a_1b_1 + a_2b_2 + \dots + a_nb_n}{n} \le \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)\left(\frac{b_1 + b_2 + \dots + b_n}{n}\right) \tag{9}$$

由均值不等式,有

$$\frac{a_1 + a_2 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}$$
$$\frac{b_1 + b_2 + \dots + b_n}{n} \le \sqrt{\frac{b_1^2 + b_2^2 + \dots + b_n^2}{n}}$$

$$\frac{a_1b_1 + a_2b_2 + \dots + a_nb_n}{n} \le \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \left(\frac{b_1 + b_2 + \dots + b_n}{n}\right)$$

$$\le \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}} \sqrt{\frac{b_1^2 + b_2^2 + \dots + b_n^2}{n}}$$

$$= \frac{1}{n} \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} \sqrt{b_1^2 + b_2^2 + \dots + b_n^2}$$

This is

$$\sum_{i=1}^{n} a_i b_i \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$

Square on both side of the inequality, The calculate square root. We can get eq9:

(4). 构造复的辅助数列

$$c_k = a_k^2 - b_k^2 + 2|a_k b_k|, \qquad k = 1, 2, \dots, n$$

Then we use

$$\left|\sum_{k=1}^{n} c_k\right| \le \sum_{k=1}^{n} |c_k|$$

解 1.

$$c_k = (|a_k| + |b_k|)^2 = a_k^2 + b_k^2 + 2|a_k b_k|$$

$$\sum_{k=1}^n c_k = \sum_{k=1}^n a_k^2 + \sum_{k=1}^n b_k^2 + 2\sum_{k=1}^n |a_k b_k|$$

$$|c_k| = \sqrt{\Re^2 c_k + \Im^2 c_k} = \sqrt{(a_k^2 - b_k^2)^2 + (2a_k b_k)^2} = a_k^2 + b_k^2$$

$$\begin{split} & \therefore \left| \sum_{k=1}^{n} a_{k}^{2} + \sum_{k=1}^{n} b_{k}^{2} + 2 \sum_{k=1}^{n} |a_{k}b_{k}| \right| = \sqrt{\Re^{2} \sum_{k=1}^{n} c_{k} + \Im^{2} \sum_{k=1}^{n} c_{k}} \\ & = \sqrt{(\sum_{k=1}^{n} (a_{k}^{2} - b_{k}^{2}))^{2} + \sum_{k=1}^{n} (2a_{k}b_{k})^{2}} \\ & = \sqrt{(\sum_{k=1}^{n} a_{k}^{2})^{2} + (\sum_{k=1}^{n} a_{k}^{2})^{2} - 2(\sum_{k=1}^{n} a_{k}^{2})(\sum_{k=1}^{n} a_{k}^{2}) + 4 \sum_{k=1}^{n} (a_{k}b_{k})^{2}} \\ & \therefore \left| \sum_{k=1}^{n} c_{k} \right| \leq \sum_{k=1}^{n} |c_{k}| \\ & \therefore (\sum_{k=1}^{n} a_{k}^{2})^{2} + (\sum_{k=1}^{n} a_{k}^{2})^{2} - 2(\sum_{k=1}^{n} a_{k}^{2})(\sum_{k=1}^{n} a_{k}^{2}) + 4 \sum_{k=1}^{n} (a_{k}b_{k})^{2} \leq (\sum_{k=1}^{n} a_{k}^{2} + \sum_{k=1}^{n} b_{k}^{2})^{2} \\ & \therefore 4(\sum_{k=1}^{n} a_{k}b_{k})^{2} \leq 4(\sum_{k=1}^{n} a_{k}^{2})(\sum_{k=1}^{n} b_{k}^{2}) \\ & extracting \ both \ side: \left| \sum_{k=1}^{n} a_{k}b_{k} \right| \leq \sqrt{\sum_{k=1}^{n} a_{k}^{2}} \sqrt{\sum_{k=1}^{n} b_{k}^{2}} \end{split}$$

例 7. 7. Suppose $0 < x_i \le \frac{1}{2}, i = 1, 2, ..., n$, then

$$\frac{\prod_{i=1}^{n} x_i}{(\sum_{i=1}^{n} x_i)^n} \le \frac{\prod_{i=1}^{n} (1 - x_i)}{(\sum_{i=1}^{n} (1 - x_i))^n}$$
(10)

证明. Let's prove eq10 by induction method.

$$n = 2,$$

$$\frac{x_1 x_2}{(x_1 + x_2)^2} \le \frac{(1 - x_1)(1 - x_2)}{((1 - x_1) + (1 - x_2))^2}$$

$$\frac{(x_1x_2)}{(x_1^2 + 2x_1x_2 + x_2^2)} \le \frac{1 - x_1 - x_2 + x_1x_2}{(1 - x_1)^2 + 2(1 - x_1)(1 - x_2) + (1 - x_2)^2}$$

$$\frac{(x_1 + x_2)^2}{(x_1x_2)} \ge \frac{((1 - x_1)(1 - x_2))^2}{1 - x_1 - x_2 + x_1x_2}$$

$$\frac{x_1}{x_2} + 2 + \frac{x_2}{x_1} \ge \frac{1 - x_1}{1 - x_2} + 2\frac{1 - x_2}{1 - x_1}$$

$$\frac{x_1}{x_2} - \frac{1 - x_1}{1 - x_2} \ge \frac{1 - x_2}{1 - x_1} - \frac{x_2}{x_1}$$

$$\frac{x_1(1 - x_2) - x_2(1 - x_1)}{x_2(1 - x_2)} \ge \frac{x_1(1 - x_2) - x_2(1 - x_1)}{x_1(1 - x_1)}$$

$$\frac{x_1 - x_2}{x_2(1 - x_2)} \ge \frac{x_1 - x_2}{x_1(1 - x_1)}$$

$$\begin{split} f(x) &= x - x^2, f'(x) = 1 - 2x > 0, \text{ while } x \in (0, \frac{1}{2}) \\ \text{When } x_1 &> x_2, 0 < x_2 < x_1 \leq \frac{1}{2}, x_1 - x_1^2 \geq x_2 - x_2^2, x_1 - x_2 > 0 \\ \text{When } x_1 &< x_2, 0 < x_1 < x_2 \leq \frac{1}{2}, x_1 - x_1^2 \leq x_2 - x_2^2, x_1 - x_2 < 0 \end{split}$$

$$\frac{x_1 - x_2}{x_2(1 - x_2)} \ge \frac{x_1 - x_2}{x_1(1 - x_1)}$$

$$k = 2, \frac{x_1 x_2}{(x_1 + x_2)^2} \le \frac{(1 - x_1)(1 - x_2)}{((1 - x_1) + (1 - x_2))^2}$$

$$k = 4, \frac{x_1 x_2 x_3 x_4}{(x_1 + x_2 + x_3 + x_4)^2} \le \frac{(1 - x_1)(1 - x_2)(1 - x_3)(1 - x_4)}{((1 - x_1) + (1 - x_2) + (1 - x_3) + (1 - x_4))^2}$$

Use Cauchy's forward and backward method, We can prove this equation

Suppose
$$k = n$$
, $\frac{\prod_{i=1}^{n} x_i}{(\sum_{i=1}^{n} x_i)^2} \le \frac{\prod_{i=1}^{n} (1 - x_i)}{(\sum_{i=1}^{n} (1 - x_i))^2}$
 $k = n - 1$, prove $\frac{\prod_{i=1}^{n-1} x_i}{(\sum_{i=1}^{n-1} x_i)^2} \le \frac{\prod_{i=1}^{n-1} (1 - x_i)}{(\sum_{i=1}^{n-1} (1 - x_i))^2}$

todo! need to complete!

We already know that

$$\frac{\sum_{i=1}^{n-1} x_i}{n-1} = \frac{1}{n} \left(\sum_{i=1}^{n-1} x_i + \frac{1}{n-1} \sum_{i=1}^{n-1} x_i \right)$$

This trick always use in (n-1) terms transfer to (n) terms

When the inequality holds for n > 2, for k = n, we have:

$$\frac{\prod_{i=1}^{n} x_i}{(\sum_{i=1}^{n} x_i)^n} \le \frac{\prod_{i=1}^{n} (1 - x_i)}{(\sum_{i=1}^{n} (1 - x_i))^n}$$
$$\frac{(\sum_{i=1}^{n} (1 - x_i))^n}{(\sum_{i=1}^{n} x_i)^n} \le \frac{\prod_{i=1}^{n} (1 - x_i)}{\prod_{i=1}^{n} x_i}$$
$$\left(\frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} (1 - x_i)}\right)^n \ge \frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} (1 - x_i)}$$

for k = n - 1, Let $M = x_n = \frac{\sum_{i=1}^{n-1} x_i}{n-1}$. The inequality 10 left side:

$$\left(\frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} (1 - x_{i})}\right)^{n}$$

$$= \left(\frac{x_{1} + \dots + x_{n}}{(1 - x_{1}) + \dots + (1 - x_{n})}\right)^{n}$$

$$= \left(\frac{x_{1} + \dots + x_{n-1} + M}{(1 - x_{1}) + \dots + (1 - x_{n-1}) + (1 - M)}\right)^{n}$$

$$= \left(\frac{x_{1} + \dots + x_{n-1} + \frac{\sum_{i=1}^{n-1} x_{i}}{n-1}}{(1 - x_{1}) + \dots + (1 - x_{n-1}) + (1 - \frac{\sum_{i=1}^{n-1} x_{i}}{n-1})}\right)^{n}$$

$$= \left(\frac{\frac{n}{n-1}(x_{1} + \dots + x_{n-1})}{\frac{n}{n-1}((1 - x_{1}) + \dots + (1 - x_{n-1}))}\right)^{n}$$

$$= \left(\frac{M}{1 - M}\right)^{n}$$

while the right side become

$$\frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} (1 - x_i)}$$

$$= \frac{\prod_{i=1}^{n-1} x_i \cdot M}{\prod_{i=1}^{n-1} (1 - x_i) \cdot (1 - M)}$$

$$= \frac{\prod_{i=1}^{n-1} x_i}{\prod_{i=1}^{n-1} (1 - x_i)} \frac{M}{1 - M}$$

$$\left(\frac{M}{1-M}\right)^{n} \ge \frac{\prod_{i=1}^{n-1} x_{i}}{\prod_{i=1}^{n-1} (1-x_{i})} \frac{M}{1-M}$$
$$\left(\frac{M}{1-M}\right)^{n-1} \ge \frac{\prod_{i=1}^{n-1} x_{i}}{\prod_{i=1}^{n-1} (1-x_{i})}$$