#### Disciplina de Visualização de Dados para a Área de Saúde

Projeto - Análise de condições clínicas respiratórias com base em anotações médicas e áudios de tosse

Brunna Raphaelly Amaral da Silva - 144566

Carolina Vieira Campos - 263081

Gabriel Bianchin de Oliveira - 230217

Taciana Alessandra Gomes Cruz - 107132

### INTRODUÇÃO

Na primeira etapa do trabalho foi explorado o entendimento das features do dataset e foi elaborada a seleção dos dados pertinentes para a resolução da pergunta definida além do baseline do projeto.

#### **DATASET**

### INSPEÇÃO DOS DADOS

O dataset possui 20.000 tanto de registros de áudio quanto de metadados referentes aos áudios. Os áudios de tosse possuem durações diferentes entre eles e em alguns áudios é possível perceber a presença de ruídos do ambiente tais como pessoas conversando e aparelho de televisão ligados, assim como áudios sem tosse (apenas silêncio).

O dataset possui a priori as classes COVID-19, healthy, symptomatic e NaN(classe ausente). Desses, filtramos os relevantes para a nossa pergunta, sendo: COVID-19, healthy, symptomatic. A Tabela abaixo mostra a quantidade de áudios em cada uma das categorias.

| COVID-19    | 1.010 |
|-------------|-------|
| healthy     | 8.562 |
| symptomatic | 1.742 |

Os áudios sem tosse foram excluídos utilizando uma feature presente no dataset que classifica com um grau de certeza a presença de uma tosse ou não no áudio. Esta feature apresenta valores de **0.0** até **1.0**. Levando isso em consideração, excluímos das análises os áudios que possuem graus iguais ou menores de certeza de serem tosse igual a 0.5.

Outro ponto relevante de filtragem dos dados foi a identificação que alguns exemplos do dataset não possuem avaliação por médicos especialistas e outros possuem de 1 avaliação ao máximo de 3 avaliações. Dessa forma, removemos também áudios que não foram avaliados por especialistas. A avaliação do especialista se mostrou relevante para o problema que estamos tratando, pois através dela é constatada a veracidade do diagnóstico e é também anotada features extras sobre o áudio. Após a seleção dos dados a base ficou com 7.036 registros.

É possível a transformação do áudio em imagens utilizando o Sinal (amplitude quanto ao tempo) , o Spectrum (amplitude quanto a frequência) e também pelo Mel Spectrogram e do MCFF, conforme mostram as fuguras abaixo.



O dataset foi dividido entre conjunto de treinamento, validação e teste. Separou-se inicialmente o conjunto de teste com 20% exemplos e dentro os exemplos restantes separamos 80% para treino e 20% para validação, sendo assim ficando com 20% para o teste, 16% para validação e 64% para treinamento. Utilizou-se os pesos para cada classe como forma de lidar com o desbalanceamento dos dados.

Com o conjunto de treinamento já definido, elaboramos inicialmente duas vertentes de treinamento para a construção dos modelos, uma considerando apenas os dados anotados por especialistas no conjunto original de treinamento e a outra considerando dados adicionais no treinamento. Os dados adicionais agregados no conjunto de treinamento são providos da inclusão dos áudio que possuam 50% de existência de tosse avaliada pela variável *cough\_detect* e que não foram avaliados por especialistas.

Efetuamos em seguida, o mapeamento das classes que até então eram categóricas, para os valores 0, 1 e 2. Logo, a classe healthy passou a ser 0, a classe symptomatic passou a ser 1 e a classe COVID-19 passou a ser 2.

Os pesos das classes para cada uma dessas vertentes são descritos abaixo. Resolvemos utilizar os pesos para cada classe para que os modelos tivessem uma penalização maior para erros nas classes minoritárias. Calculamos os pesos a partir da divisão da classe com mais amostras pela classe em questão, de modo que o peso da classe majoritária fosse igual a 1 e as outras classes tivessem pesos maiores que 1.

| healthy - com o peso 1.3982300884955752<br>symptomatic com o peso 1.0<br>COVID-19 com o peso 1.5906040268456376 | healthy - com o peso 1.0<br>symptomatic - com o peso 5.826048171275647<br>COVID-19 - com o peso 13.807610993657505 |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Tab. 1 Pesos do treinamento com dados de especialistas                                                          | Tab. 2 Pesos com com dados de especialistas e dados adicionais                                                     |

Para o experimento utilizando apenas os dados anotados por especialistas, a distribuição no treinamento é dada pela figura abaixo. A classe mais comum é symptomatic, com mais de 40% dos dados, seguida por healthy, com 30% dos dados, e COVID-19, com 27% dos dados.



Para o experimento com dados adicionais, a distribuição muda no treinamento. A classe mais frequente é healthy, com 80% dos dados, seguido por symptomatic, com mais de 10% dos dados, e COVID-19, com pouco menos de 10% dos dados.



Já no conjunto de validação (utilizada tanto para os experimentos com apenas os dados de especialistas e dados adicionais), a distribuição segue próxima ao treinamento com os dados dos especialistas.



Já para o conjunto de teste, a distribuição segue com mais de 35% dos dados sendo da classe sympotimatic, mais de 30% de COVID-19 e cerca de 27% como healthy.



# Análise da duração do áudio e do trim considerando as duas vertentes de treinamento

O trim do áudio é muito utilizado no processamento do áudio para eliminação de silêncio. Por isso, elaboramos também uma variação do trim do áudio com 28db, 50db, e 60db para identificar a influência sobre a quantidade de informação dos áudios que foram eliminadas. Abaixo podemos observar os gráficos da quantidade de áudios pelo tempo de duração.

A partir dos gráficos abaixo podemos inferir que a vertente 2 possui mais áudios longos chegando a 19.14 segundos de duração que na vertente 1 com a maior duração sendo 10.02.

Podemos inferir também que a variação da duração dos áudios com a influência do trim (28, 50 e 60) como ponto de corte é perceptível, modificando significativamente a distribuição dos dados originais da quantidade de áudios pelo tempo de duração. Entendemos também que o ponto de corte do trim levando em consideração 28 decibéis é o mais drástico dentre os analisados, pois ele apresentou a menor média de duração dos áudios.





# CONSIDERAÇÕES SOBRE AS REDES DO IMAGENET

Fixamos todas as redes analisadas com o *early stopping* para loss de validação com patience igual a 10 épocas e com o *Reduce learning rate* com a diminuição no *learning rate* em fator igual a 0,1 após 5 épocas sem melhorias. Neste trabalho, avaliou-se todos os modelos com base na loss e na acurácia balanceada.

#### **BASELINE**

Propusemos inicialmente a execução do mesmo conjunto pré-processado sobre 21 redes diferentes da **imageNet** para avaliar seu desempenho e iremos considerar o nosso baseline, a melhor avaliada dentre elas.

As redes analisadas são:

| ResNet50<br>ResNet101<br>ResNet152<br>EfficientNetB0 | MobileNet<br>MobileNetV2<br>DenseNet121<br>DenseNet169 |
|------------------------------------------------------|--------------------------------------------------------|
| EfficientNetB1 EfficientNetB2                        | DenseNet201<br>InceptionV3                             |
| EfficientNetB3                                       | InceptionResNetV2                                      |
| EfficientNetB4 EfficientNetB5                        | Xception<br>VGG16                                      |
| EfficientNetB6<br>EfficientNetB7                     | VGG19                                                  |

## Experimento com os dados anotados por especialistas

Obtivemos como resultado que o InceptionResNetv2 obteve a melhor acurácia balanceada na validação, com 42,63%.

| Rede              | Acurácia Balanceada |
|-------------------|---------------------|
| ResNet50          | 32,74               |
| ResNet101         | 37,84               |
| ResNet152         | 37,89               |
| EfficientNetB0    | 38,52               |
| EfficientNetB1    | 36,94               |
| EfficientNetB2    | 33,01               |
| EfficientNetB3    | 38,37               |
| EfficientNetB4    | 37,87               |
| EfficientNetB5    | 33,58               |
| EfficientNetB6    | 33,71               |
| EfficientNetB7    | 35,00               |
| MobileNet         | 38,29               |
| MobileNetV2       | 32,44               |
| DenseNet121       | 34,14               |
| DenseNet169       | 34,99               |
| DenseNet201       | 35,89               |
| InceptionV3       | 38,38               |
| InceptionResNetV2 | 42,63               |
| Xception          | 33,33               |
| VGG16             | 33,33               |
| VGG19             | 33,33               |

Abaixo temos a arquitetura do InceptionResNetv2, junto com os gráficos da acurácia e da loss de treino e validação.

| Layer (type)                 | Output | Shape | Param #  |
|------------------------------|--------|-------|----------|
| inception_resnet_v2 (Functio | (None, | 1536) | 54336736 |
| dense_8 (Dense)              | (None, | 3)    | 4611     |
|                              |        |       |          |
| Total params: 54,341,347     |        |       |          |

Total params: 54,341,347 Trainable params: 54,280,803 Non-trainable params: 60,544





No gráfico da acurácia vemos que a partir da época 3 houve overfitting fazendo o conjunto de validação se distanciar do de treinamento. Quanto ao gráfico da loss a partir da época 1 a loss de treinamento e validação apresentam valores sem nenhuma diferença estatística significativa.

A figura abaixo mostra a matriz de confusão na validação obtida a partir das predições da **InceptionResNetv2**. Neste conjunto, são 88 dados da classe healthy, 107 dados da classe symptomatic e 83 dados da classe COVID-19. Os resultados foram normalizados por linha. Como resultado, podemos perceber que quase metade dos dados das classes symptomatic e COVID-19 foram classificados corretamente, enquanto apenas 33% dos dados da classe healthy foram classificados corretamente. Dentre os erros, os piores são de dados das classes symptomatic e COVID-19 classificados como healthy, onde são pacientes que possuem ou podem possuir a COVID-19 mas foram classificados como saudáveis.



### Experimento considerando os dados adicionais

Tomando como base a tabela abaixo, que sinaliza a acurácia balanceada em cada uma das redes analisadas, temos que a rede **MobileNet** obteve a melhor acurácia balanceada com 42,50%. Em segundo lugar tivemos a **EfficientNetB3** com 41,26%.

A **MobileNet** foi configurada com o *early stopping* e com o *Reduce learning rate* que reduz a taxa de aprendizado quando não tem melhora na loss da validação.

| ResNet50       36,10         ResNet101       35,30         ResNet152       32,80         EfficientNetB0       38,37         EfficientNetB1       39,75         EfficientNetB2       37,82         EfficientNetB3       41,26         EfficientNetB4       38,30         EfficientNetB5       41,01         EfficientNetB6       39,68         EfficientNetB7       36,86         MobileNet       42,50         MobileNetV2       32,60         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33         VGG19       33,33 | Rede              | Acurácia Balanceada na Validação |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| ResNet152       32,80         EfficientNetB0       38,37         EfficientNetB1       39,75         EfficientNetB2       37,82         EfficientNetB3       41,26         EfficientNetB4       38,30         EfficientNetB5       41,01         EfficientNetB6       39,68         EfficientNetB7       36,86         MobileNet       42,50         MobileNetV2       32,63         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                      | ResNet50          | 36,10                            |
| EfficientNetB0       38,37         EfficientNetB1       39,75         EfficientNetB2       37,82         EfficientNetB3       41,26         EfficientNetB4       38,30         EfficientNetB5       41,01         EfficientNetB6       39,68         EfficientNetB7       36,86         MobileNet       42,50         MobileNetV2       32,60         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                    | ResNet101         | 35,30                            |
| EfficientNetB1       39,75         EfficientNetB2       37,82         EfficientNetB3       41,26         EfficientNetB4       38,30         EfficientNetB5       41,01         EfficientNetB6       39,68         EfficientNetB7       36,86         MobileNet       42,50         MobileNetV2       32,60         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                       | ResNet152         | 32,80                            |
| EfficientNetB2       37,82         EfficientNetB3       41,26         EfficientNetB4       38,30         EfficientNetB5       41,01         EfficientNetB6       39,68         EfficientNetB7       36,86         MobileNet       42,50         MobileNetV2       32,60         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                                                          | EfficientNetB0    | 38,37                            |
| EfficientNetB3 41,26 EfficientNetB4 38,30 EfficientNetB5 41,01 EfficientNetB6 39,68 EfficientNetB7 36,86 MobileNet 42,50 MobileNetV2 32,60 DenseNet121 32,63 DenseNet169 40,78 DenseNet201 38,78 InceptionV3 33,33 InceptionResNetV2 35,17 Xception 36,97 VGG16 33,33                                                                                                                                                                                                                                                                                                                                                                                                                         | EfficientNetB1    | 39,75                            |
| EfficientNetB4       38,30         EfficientNetB5       41,01         EfficientNetB6       39,68         EfficientNetB7       36,86         MobileNet       42,50         MobileNetV2       32,60         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                                                                                                                                | EfficientNetB2    | 37,82                            |
| EfficientNetB5       41,01         EfficientNetB6       39,68         EfficientNetB7       36,86         MobileNet       42,50         MobileNetV2       32,60         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                                                                                                                                                                   | EfficientNetB3    | 41,26                            |
| EfficientNetB6 39,68 EfficientNetB7 36,86 MobileNet 42,50 MobileNetV2 32,60 DenseNet121 32,63 DenseNet169 40,78 DenseNet201 38,78 InceptionV3 33,33 InceptionResNetV2 35,17 Xception 36,97 VGG16 33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EfficientNetB4    | 38,30                            |
| EfficientNetB7       36,86         MobileNet       42,50         MobileNetV2       32,60         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                                                                                                                                                                                                                                         | EfficientNetB5    | 41,01                            |
| MobileNet       42,50         MobileNetV2       32,60         DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                                                                                                                                                                                                                                                                            | EfficientNetB6    | 39,68                            |
| MobileNetV2 32,60 DenseNet121 32,63 DenseNet169 40,78 DenseNet201 38,78 InceptionV3 33,33 InceptionResNetV2 35,17 Xception 36,97 VGG16 33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EfficientNetB7    | 36,86                            |
| DenseNet121       32,63         DenseNet169       40,78         DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MobileNet         | 42,50                            |
| DenseNet169 40,78 DenseNet201 38,78 InceptionV3 33,33 InceptionResNetV2 35,17 Xception 36,97 VGG16 33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MobileNetV2       | 32,60                            |
| DenseNet201       38,78         InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DenseNet121       | 32,63                            |
| InceptionV3       33,33         InceptionResNetV2       35,17         Xception       36,97         VGG16       33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DenseNet169       | 40,78                            |
| InceptionResNetV2         35,17           Xception         36,97           VGG16         33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DenseNet201       | 38,78                            |
| Xception         36,97           VGG16         33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | InceptionV3       | 33,33                            |
| VGG16 33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | InceptionResNetV2 | 35,17                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Xception          | 36,97                            |
| VGG19 33,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VGG16             | 33,33                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VGG19             | 33,33                            |

Abaixo temos a arquitetura do **MobileNet**, junto com os gráficos da acurácia e da loss de treino e validação.

| Layer (type)                   | Output | Shape | Param # |  |
|--------------------------------|--------|-------|---------|--|
| mobilenet_1.00_224 (Function   | (None, | 1024) | 3228864 |  |
| dense_1 (Dense) (None, 3) 3075 |        |       |         |  |

Total params: 3,231,939 Trainable params: 3,210,051 Non-trainable params: 21,888



Baseando no gráfico da loss podemos observar o comportamento claro onde a curva da loss de treinamento vai decaindo enquanto a curva da loss de validação vai aumentando caracterizando um comportamento claro de **overfitting**.

A figura abaixo mostra a matriz de confusão da **MobileNet** no conjunto de validação. A rede teve uma taxa de acerto acima de 50% para dados da classe healthy, 31% dos dados da classe symptomatic e 41% dos dados da classe COVID-19. Mesmo possuindo o melhor valor de acurácia balanceada na validação, podemos perceber muitos erros para a classificação de dados das classes symptomatic e COVID-19 para a classe healthy, sendo erros preocupantes em situações médicas, onde são pacientes que possuem ou podem possuir COVID-19 mas são diagnosticados como saudáveis. Como uma possível causa deste tipo de erro, podemos atribuir ao grande nível de desbalanceamento no conjunto de treinamento deste experimento, onde existem muitos dados da classe healthy.



# **COMPARAÇÃO DOS RESULTADOS**

Os melhores resultados levando em consideração a acurácia balanceada são descritos na tabela abaixo:

| InceptionResNetv2 obteve a melhor acurácia balanceada com 42,63% na validação | <b>MobileNet</b> obteve a melhor acurácia balanceada com 42,50% na validação |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Com anotações de especialistas                                                | Com os dados adicionais                                                      |

Ou seja, podemos perceber que a rede **InceptionResNetv2** obteve o melhor valor de acurácia balanceada com **42,63%** na validação. Dessa forma a consideramos o baseline desse projeto.

### **CONCLUSÃO**

Nesta primeira etapa exploramos a seleção das features pertinentes para responder a pergunta do projeto, além do pré-processamento e da representação do áudio em imagem pelo Mel Espectrograma, após isso definimos o baseline com base no pré-processamento inicial dos dados. O baseline definido foi a rede **InceptionResNetv2**.