

Carlingford High School

2020 YEAR 12 ASSESSMENT TASK 2

Mathematics Advanced

STUDENT NUMBER:

Feacher: (Please Circle)	12MAA A (Ms Bennett)	12MAAB (Mr Wilson)	
12MAA_1 (Ms Strilakos) 12MAA_2 (Mr Gong)	12MAA_3 (Mr Cheng)	12MAA_4 (Ms Blakeley)
		A.	

General Instructions

- Working time 50 minutes
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total marks:

50

Section I - 10 marks (pages 2 - 4)

- Attempt Questions 1 10
- Allow about 10 minutes for this section

Section II – 40 marks (pages 5 – 12)

- Attempt Questions 11 21
- Allow about 40 minutes for this section

TOPIC	MARKS	
Graphing Techniques Questions: 1 – 4, 11 – 14	/18	
Trigonometric Functions and Graphs Questions: 5 – 8, 15 – 18	/17	
Differential Calculus Questions: 9 – 10, 19 – 21	/15	
TOTAL	/50	

%

Use the multiple-choice answer sheet for Questions 1 - 10.

1. Which graph represents $y = (x - 2)^2$?

Α

В

С

D

- 2. The function $y = e^x$ is dilated to $y = \frac{e^x}{7}$, then which of the following is true?
 - A dilated by a factor of 7 with respect to the x-axis
 - B dilated by a factor of $\frac{1}{7}$ with respect to the x-axis
 - C dilated by a factor of 7 with respect to the *y*-axis
 - D dilated by a factor of $\frac{1}{7}$ with respect to the y-axis

3. Which inequality defines the shaded region?

A
$$2y + x - 2 > 0$$

B
$$2y + x - 2 < 0$$

C
$$2y - x + 2 > 0$$

D
$$2y - x + 2 < 0$$

4. Find the coordinates of the image of (x, y) when the function y = f(x) is transformed to y = -2f(x+1) + 4.

A
$$(x+1,-2y-4)$$

B
$$(x+1,-2y+4)$$

C
$$(x-1,-2y+4)$$

D
$$(-x+1,2y+4)$$

- 5. The function $y = 2\sin(3x) + 5$ has:
 - A amplitude 2, period 3 and centre 5
 - B amplitude 5, period $\frac{1}{3}$ and centre 2
 - C amplitude 2, period $\frac{2\pi}{3}$ and centre 5
 - D amplitude 2, period $\frac{2\pi}{3}$ and centre -5
- 6. The equation of a function with phase π units to the left is:

A
$$y = \tan(x + \pi)$$

B
$$y = \tan(\pi x)$$

C
$$y = \tan x + \pi$$

$$D \quad y = \tan(x - \pi)$$

7. The solution of $\cos 2x = 1$ in the domain $[0, 2\pi]$ is:

A
$$x = 0, 2\pi$$

B
$$x = 0, \pi, 2\pi$$

$$C \qquad x = \frac{\pi}{2}, \frac{3\pi}{2}$$

D
$$x = \pi$$

8. Which graph could be used to solve the equation $\cos x = x - 1$?

9. The derivative of $\cos^2(5t)$ is:

A
$$-10\sin 5t\cos 5t$$

B
$$-10\cos 5t$$

C
$$-5 \sin 5t \cos 5t$$

D
$$-2\sin 5t\cos 5t$$

10. The derivative of $y = \sqrt[3]{\tan x}$ is:

$$A \frac{dy}{dx} = \frac{2}{3\sqrt[3]{\tan^2 x}}$$

$$B \qquad \frac{dy}{dx} = \frac{2\sqrt[3]{\tan^2 x}}{3\sec^2 x}$$

$$C \frac{dy}{dx} = 2 \sec x \sqrt[3]{\tan^2 x}$$

$$D \frac{dy}{dx} = \frac{\sec^2 x}{3\sqrt[3]{\tan^2 x}}$$

Section II

40 marks

Attempt Questions 11 - 21.

Allow about 40 minutes for this section.

- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (3 marks)

Find the equation for each transformed function.

(a) $y = 2^x$ translated 2 units to the right

1

(b) f(x) = |2x| - 2 translated 2 units to the left

1

(c) $f(x) = \ln x$ dilated vertically with factor 5 and reflected in the y – axis

1

Question 12 (4 marks)

(a) From the graph of y = f(x) shown, draw the graph of y = 2f(x + 1).

-

Question 12 continues on page 6

Question 12 (continued)

(b) From the graph of y = f(x) shown, draw the graph of y = -f(x) + 2.

Question 13 (2 marks)

The parabola $y=x^2$ meets the line y=-x+2 at the points (-2,4) and (1,1). **DO NOT** prove this. By first sketching the graphs of $y=x^2$ and y=-x+2, shade the region which simultaneously satisfies the inequalities $y \ge x^2$ and $y \ge -x+2$.

2

Question 14 (5 marks)

		2x - 5		1		_
(a)	Show that	${x-3}$	=	${x-3}$	+	2

2

 	 	• • • • • • • • • • • • • • • • • • • •	

2

1

(c) Hence solve $\frac{2x-5}{x-3} > 2$

Question 15 (6 marks)

Find all the solutions for the following equations where $0 \le x \le 2\pi$.

(a)	$\sqrt{2}\sin x = 1$	1
(b)	$2\cos\left(x-\frac{\pi}{3}\right)=\sqrt{3}$	2
•		
(c)	$2\sin^2 x + \cos x - 2 = 0$	3

Question 16 (2 marks)

The sketch below shows part of a trigonometric function for the given domain $0 \le x \le 2\pi$. Determine the equation of the function.

***************************************	• • • • • • • • • • • • • • • • • • • •

	· · · · · · · · · · · · · · · · · · ·

Question 17 (2 marks)

By drawing appropriate graphs, determine the **number of solutions** to the equation $3\cos 2x = e^x$ in the domain $-\pi \le x \le \pi$.

	,			 ,		
		/	<u> </u>	 		
			V	 		
		_	J			
		4		 		
		_				
		······ <u>-</u>		 		
		0				
					i	
			41.44			
				l		W.
						X
			-	 		
	TT			 T		
· ···· · · · · · · · · · · · · · · · ·	π			 τ		
	π			 τ		
	Π			 τ		
	π			 τ		
	π			 τ		
	π			Ţ		
				 τ		
		=1		 T		
		=1		 Ţ		
		-1 -2		 T		
		-1		 Ţ		
		-1 -2				
		-1 -2 -3				
		1				
		=2 =3				
		2			***************************************	
		=2 =3			***************************************	
		2			***************************************	

	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••••	••••••		• • • • • • • • • • • • • • • • • • • •
•••••			
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••			
••••••	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

Question 18 (4 marks)

A vertical spring is pulled down and then let go. It bounces back up and down again according to the equation $h = 12\cos t + 15$ where h is the height of the spring in cm and t is the time in seconds.

	Describe the significance of the 15 in the equation	
۷	What are the maximum and minimum heights of the spring?	
 V	What is the height of the spring after π seconds?	
μ.	At what time will the spring first be at its minimum height?	
•••		
•		

Question 19 (9 marks)

Differentiate the following with respect to) x:
---	------

(a)	$\tan(5x-\pi)$	1
(b)	$\cot^2(2x)$	2
(c)	$e^{x\sin x}$	2
(d)	$\ln \sqrt{x}$	2
(e)	$\ln\left(\frac{x^3+1}{x}\right)$	2
	(<i>x</i>)	

Question 20 (2 marks)		
If $f(x) = \cos x$ find the exact value of x if $f'(x)$	$=\frac{\sqrt{3}}{2}$ for the domain $0 \le x \le 2\pi$.	
		••••
······································		••••
Question 21 (2 marks)		
Find the equation of the tangent to the curve $y =$	$2 + e^{3x}$ at the point $x = 0$.	
	$2 + e^{3x}$ at the point $x = 0$.	••••
		••••
		••••
		••••
		••••
		••••
		••••

END OF PAPER

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

$$l = \frac{\theta}{360} \times 2\pi r$$

Area

$$A = \frac{\theta}{360} \times \pi r^2$$

$$A = \frac{h}{2}(a+b)$$

Surface area

$$A = 2\pi r^2 + 2\pi rh$$

$$A = 4\pi r^2$$

Volume

$$V = \frac{1}{3}Ah$$

$$V = \frac{4}{3}\pi r^3$$

Functions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$ax^3 + bx^2 + cx + d = 0$$
:

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$

Relations

$$(x-h)^2 + (y-k)^2 = r^2$$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} (a+l)$$

$$T = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$$

$$S = \frac{a}{1 - r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_a a^x = x = a^{\log_a x}$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$a^x = e^{x \ln a}$$

Trigonometric Functions

$$\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$
$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^2\theta$$

2 30° √3

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \cos A \neq 0$$

$$\csc A = \frac{1}{\sin A}, \sin A \neq 0$$

$$\cot A = \frac{\cos A}{\sin A}, \sin A \neq 0$$

$$\cos^2 x + \sin^2 x = 1$$

Compound angles

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$cos(A + B) = cos A cos B - sin A sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

If
$$t = \tan \frac{A}{2}$$
 then $\sin A = \frac{2t}{1+t^2}$

$$\cos A = \frac{1-t^2}{1+t^2}$$

$$\tan A = \frac{2t}{1+t^2}$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$$

$$\sin A \cos B = \frac{1}{2} \left[\sin(A + B) + \sin(A - B) \right]$$

$$\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$$

$$\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$$

$$\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$

An outlier is a score less than $Q_1 - 1.5 \times IQR$ or more than $Q_3 + 1.5 \times IQR$

Normal distribution

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between –2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = u$$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le r) = \int_{a}^{r} f(x) dx$$

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X=r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$$

$$X \sim \text{Bin}(n, p)$$

$$\Rightarrow P(X=x)$$

$$= \binom{n}{x} p^{x} (1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

Differential Calculus

Function

$$v = f(x)^n$$

$$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$$

$$y = uv$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = g(u)$$
 where $u = f(x)$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$y = \frac{u}{v}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$y = \sin f(x)$$

$$\frac{dy}{dx} = f'(x)\cos f(x)$$

$$y = \cos f(x)$$

$$\frac{dy}{dx} = -f'(x)\sin f(x)$$

$$y = \tan f(x)$$

$$\frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$v = e^{f(x)}$$

$$\frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

$$y = a^{f(x)}$$

$$\frac{dy}{dx} = (\ln a)f'(x)a^f$$

$$y = \log_a f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{(\ln a) f(x)}$$

$$y = \sin^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$$

$$y = \cos^{-1} f(x)$$

$$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}} \qquad \int_a^b f(x) dx$$

$$y = \tan^{-1} f(x)$$

$$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$$

Integral Calculus

Derivative
$$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$$
where $n \neq -1$

$$\int f'(x)\sin f(x) dx = -\cos f(x) + c$$

$$\int f'(x)\sin f(x)dx = -\cos f(x) + c$$

$$\int f'(x)\cos f(x)dx = \sin f(x) + c$$

$$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$$

$$\int f'(x)e^{f(x)}dx = e^{f(x)} + e^{f(x)}$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + \epsilon$$

$$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} +$$

$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} +$$

$$y = uv \qquad \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$y = g(u) \text{ where } u = f(x) \qquad \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$y = \frac{u}{v} \qquad \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$y = \sin f(x) \qquad \frac{dy}{dx} = f'(x)\cos f(x)$$

$$y = \cos f(x) \qquad \frac{dy}{dx} = f'(x)\sin f(x)$$

$$y = \tan f(x) \qquad \frac{dy}{dx} = f'(x)\sec^2 f(x)$$

$$y = e^{f(x)} \qquad \frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x) \qquad \frac{dy}{dx} = f'(x)e^{f(x)}$$

$$y = \ln f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{f(x)}$$

$$y = \log_a f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$y = \sin^{-1} f(x) \qquad \frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int_{a}^{b} f(x)dx$$

$$\approx \frac{b-a}{2n} \left\{ f(a) + f(b) + 2 \left[f(x_1) + \dots + f(x_{n-1}) \right] \right\}$$

Combinatorics

$$^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {^nC_r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^n = x^n + \binom{n}{1} x^{n-1} a + \dots + \binom{n}{r} x^{n-r} a^r + \dots + a^n$$

Vectors

$$|\underline{u}| = |x\underline{i} + y\underline{j}| = \sqrt{x^2 + y^2}$$

$$u \cdot y = |u| |y| \cos \theta = x_1 x_2 + y_1 y_2,$$

where
$$\underline{u} = x_1 \underline{i} + y_1 \underline{j}$$

and
$$y = x_2 \underline{i} + y_2 \underline{j}$$

$$r = a + \lambda b$$

Complex Numbers

$$z = a + ib = r(\cos\theta + i\sin\theta)$$
$$= re^{i\theta}$$

$$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$$
$$= r^n e^{in\theta}$$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

$$x = a\cos(nt + \alpha) + c$$

$$x = a\sin(nt + \alpha) + c$$

$$\ddot{x} = -n^2(x - c)$$

STUDENT NUMBER:	

Carlingford High School

2020 YEAR 12 ASSESSMENT TASK 2

Mathematics Advanced

Section I – Multiple Choice Answer Sheet

Allow about 10 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9 A O B O C O D O

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A B B C O D O

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

C O DO $A \bigcirc$ \circ $D \bigcirc$ 1. В 2. $A \bigcirc$ В $C \bigcirc$ $D \bigcirc$ $\mathsf{A} \bigcirc$ $\mathsf{B} \bigcirc$ \circ $D \bigcirc$ 3. 4. $\mathsf{A} \bigcirc$ В $\mathsf{C} \bigcirc$ $\mathsf{D} \bigcirc$ $\mathsf{A} \bigcirc$ $\mathsf{B} \bigcirc$ \circ $D \bigcirc$ 5. $\mathsf{A} \bigcirc$ В $c \bigcirc$ $D \bigcirc$ 6. $A \bigcirc$ $\mathsf{B} \bigcirc$ $\mathsf{C} \bigcirc$ $D \bigcirc$ 7. $A \bigcirc$ $\mathsf{B} \bigcirc$ $\mathsf{c} \bigcirc$ $D \bigcirc$ 8. $\mathsf{A} \bigcirc$ В c \bigcirc $D \bigcirc$ 9. 10. $A \bigcirc$ $\mathsf{B} \bigcirc$ $\mathsf{c} \bigcirc$ $D \bigcirc$