A flexible Object-Oriented First Order 3-D Finite-Difference algorithm Chorin-Temam based solver for Brinkman Equation Generated by Doxygen 1.9.1

1 Finite Differences Navier-Stokes Solver
1.1 Requirements
1.2 < strong > Installation < /strong >
2 Namespace Index
2.1 Namespace List
3 Class Index
3.1 Class List
4 File Index
4.1 File List
5 Namespace Documentation
5.1 problem_setting Namespace Reference
5.1.1 Function Documentation
5.1.1.1 pRef()
5.1.1.2 uxRef()
5.1.1.3 uyRef()
5.1.1.4 uzRef()
5.1.2 Variable Documentation
5.1.2.1 a
5.1.2.2 base_path
5.1.2.3 brinkman
5.1.2.4 check_convergence
5.1.2.5 d
5.1.2.6 dt
5.1.2.7 iter
5.1.2.8 Lx
5.1.2.9 Lx_0
5.1.2.10 Ly
5.1.2.11 Ly_0
5.1.2.12 Lz
5.1.2.13 Lz 0
5.1.2.14 monitor_convergence
5.1.2.15 nx
5.1.2.16 ny
5.1.2.17 nz
5.1.2.18 problem_type
5.1.2.19 Re
5.1.2.20 theta
6 Class Documentation 15
6.1 advection Class Reference

6.1.1 Detailed Description	15
6.2 advection_diffusion_problem Class Reference	15
6.2.1 Constructor & Destructor Documentation	17
6.2.1.1 advection_diffusion_problem() [1/2]	17
6.2.1.2 advection_diffusion_problem() [2/2]	18
6.2.1.3 ∼advection_diffusion_problem()	18
6.2.2 Member Function Documentation	18
6.2.2.1 assemble_magnitude()	18
6.2.2.2 compute_magnitude()	18
6.2.2.3 exodus()	18
6.2.2.4 solve()	18
6.2.2.5 update_velocity()	19
6.2.3 Member Data Documentation	19
6.2.3.1 dmGrid_cent_rich	19
6.2.3.2 dmGrid_centered	19
6.2.3.3 dmGrid_shift_transp	19
6.2.3.4 dmGrid_stag_transp	19
6.2.3.5 dmGrid_staggered_x	19
6.2.3.6 dmGrid_staggered_y	19
6.2.3.7 dmGrid_staggered_z	19
6.2.3.8 Magnitude	20
6.2.3.9 mask_U	20
6.2.3.10 mask_V	20
6.2.3.11 mask_W	20
6.2.3.12 U_up	20
6.2.3.13 V_up	20
6.2.3.14 W_up	20
6.3 euler_problem Class Reference	20
6.3.1 Detailed Description	22
6.3.2 Constructor & Destructor Documentation	23
6.3.2.1 euler_problem() [1/2]	23
6.3.2.2 euler_problem() [2/2]	23
6.3.2.3 ~euler_problem()	23
6.3.3 Member Function Documentation	23
6.3.3.1 assemble_magnitude()	23
6.3.3.2 compute_magnitude()	23
6.3.3.3 exodus()	24
6.3.3.4 solve()	
6.3.3.5 update_velocity()	
6.3.4 Member Data Documentation	
6.3.4.1 dmGrid_cent_rich	
6.3.4.2 dmGrid_centered	

6.3.4.3 dmGrid_shift_transp	 24
6.3.4.4 dmGrid_stag_transp	 24
6.3.4.5 dmGrid_staggered_x	 24
6.3.4.6 dmGrid_staggered_y	 25
6.3.4.7 dmGrid_staggered_z	 25
6.3.4.8 Magnitude	 25
6.3.4.9 mask_U	 25
6.3.4.10 mask_V	 25
6.3.4.11 mask_W	 25
6.3.4.12 P	 25
6.3.4.13 P_x	 25
6.3.4.14 P_y	 25
6.3.4.15 P_z	 25
6.3.4.16 U_up	 26
6.3.4.17 V_up	 26
6.3.4.18 W_up	 26
6.4 navier_stokes_problem Class Reference	 26
6.4.1 Detailed Description	 28
6.4.2 Constructor & Destructor Documentation	 29
6.4.2.1 navier_stokes_problem() [1/2]	 29
6.4.2.2 navier_stokes_problem() [2/2]	 29
6.4.2.3 ∼navier_stokes_problem()	 29
6.4.3 Member Function Documentation	 29
6.4.3.1 assemble_magnitude()	 29
6.4.3.2 compute_magnitude()	 29
6.4.3.3 exodus()	 30
6.4.3.4 solve()	 30
6.4.3.5 update_velocity()	 30
6.4.4 Member Data Documentation	 30
6.4.4.1 dmGrid_cent_rich	 30
6.4.4.2 dmGrid_centered	 30
6.4.4.3 dmGrid_shift_transp	 30
6.4.4.4 dmGrid_stag_transp	 30
6.4.4.5 dmGrid_staggered_x	 30
6.4.4.6 dmGrid_staggered_y	 31
6.4.4.7 dmGrid_staggered_z	 31
6.4.4.8 Magnitude	 31
6.4.4.9 mask_U	 31
6.4.4.10 mask_V	 31
6.4.4.11 mask_W	 31
6.4.4.12 P	 31
6.4.4.13 P_x	 31

6.4.4.14 P_y	. 	31
6.4.4.15 P_z		31
6.4.4.16 U_up		32
6.4.4.17 V_up		32
6.4.4.18 W_up		32
6.5 parabolic_problem_x Class Reference		32
6.5.1 Detailed Description		33
6.5.2 Constructor & Destructor Documentation		33
6.5.2.1 parabolic_problem_x() [1/2]		34
6.5.2.2 parabolic_problem_x() [2/2]		34
6.5.2.3 ~parabolic_problem_x()		34
6.5.3 Member Function Documentation		34
6.5.3.1 assemble_lhs()		34
6.5.3.2 assemble_rhs()		34
6.5.3.3 exodus()		34
6.5.3.4 get_U()		34
6.5.3.5 set_U()		34
6.5.3.6 solve()		35
6.5.3.7 solve_step()		35
6.5.4 Member Data Documentation		35
6.5.4.1 A		35
6.5.4.2 dmGrid		35
6.5.4.3 mask_U		35
6.5.4.4 rhs		35
6.5.4.5 U_up		35
6.6 parabolic_problem_y Class Reference		35
6.6.1 Detailed Description		37
6.6.2 Constructor & Destructor Documentation		37
6.6.2.1 parabolic_problem_y() [1/2]		37
6.6.2.2 parabolic_problem_y() [2/2]		37
6.6.2.3 ∼parabolic_problem_y()		37
6.6.3 Member Function Documentation		38
6.6.3.1 assemble_lhs()		38
6.6.3.2 assemble_rhs()		38
6.6.3.3 exodus()		38
6.6.3.4 get_V()		38
6.6.3.5 set_V()		38
6.6.3.6 solve()		38
6.6.3.7 solve_step()		38
6.6.4 Member Data Documentation		38
6.6.4.1 A		38
6.6.4.2 dmGrid		39

6.6.4.3 mask_V	39
6.6.4.4 rhs	39
6.6.4.5 V_up	39
6.7 parabolic_problem_z Class Reference	39
6.7.1 Detailed Description	41
6.7.2 Constructor & Destructor Documentation	41
6.7.2.1 parabolic_problem_z() [1/2]	41
6.7.2.2 parabolic_problem_z() [2/2]	41
6.7.2.3 ~parabolic_problem_z()	41
6.7.3 Member Function Documentation	42
6.7.3.1 assemble_lhs()	42
6.7.3.2 assemble_rhs()	42
6.7.3.3 exodus()	42
6.7.3.4 get_W()	42
6.7.3.5 set_W()	42
6.7.3.6 solve()	42
6.7.3.7 solve_step()	42
6.7.4 Member Data Documentation	42
6.7.4.1 A	42
6.7.4.2 dmGrid	43
6.7.4.3 mask_W	43
6.7.4.4 rhs	43
6.7.4.5 W_up	43
6.8 poisson_problem Class Reference	43
6.8.1 Detailed Description	46
6.8.2 Constructor & Destructor Documentation	46
6.8.2.1 poisson_problem() [1/2]	46
6.8.2.2 poisson_problem() [2/2]	46
6.8.2.3 ~poisson_problem()	46
6.8.3 Member Function Documentation	46
6.8.3.1 assemble_divergence()	46
6.8.3.2 assemble_lhs()	47
6.8.3.3 compute_divergence()	47
6.8.3.4 derive_x_P()	47
6.8.3.5 derive_y_P()	47
6.8.3.6 derive_z_P()	48
6.8.3.7 exodus()	48
6.8.3.8 manage_pressure()	48
6.8.3.9 manage_pressure_x()	48
6.8.3.10 manage_pressure_y()	49
6.8.3.11 manage_pressure_z()	49
6.8.4 Member Data Documentation	49

6.8.4.1 A	49
6.8.4.2 dmGrid_cent_rich	49
6.8.4.3 dmGrid_centered	49
6.8.4.4 dmGrid_staggered_x	49
6.8.4.5 dmGrid_staggered_y	50
6.8.4.6 dmGrid_staggered_z	50
6.8.4.7 P	50
6.8.4.8 P_x	50
6.8.4.9 P_y	50
6.8.4.10 P_z	50
6.8.4.11 U_up	50
6.8.4.12 V_up	50
6.8.4.13 W_up	50
6.9 stokes_problem Class Reference	51
6.9.1 Detailed Description	52
6.9.2 Constructor & Destructor Documentation	53
6.9.2.1 stokes_problem() [1/2]	53
6.9.2.2 stokes_problem() [2/2]	53
6.9.2.3 ~stokes_problem()	53
6.9.3 Member Function Documentation	53
6.9.3.1 assemble_magnitude()	53
6.9.3.2 compute_magnitude()	53
6.9.3.3 exodus()	54
6.9.3.4 solve()	54
6.9.3.5 update_velocity()	54
6.9.4 Member Data Documentation	54
6.9.4.1 dmGrid_cent_rich	54
6.9.4.2 dmGrid_centered	54
6.9.4.3 dmGrid_staggered_x	54
6.9.4.4 dmGrid_staggered_y	54
6.9.4.5 dmGrid_staggered_z	54
6.9.4.6 Magnitude	54
6.9.4.7 mask_U	55
6.9.4.8 mask_V	55
6.9.4.9 mask_W	55
6.9.4.10 P	55
6.9.4.11 P_x	55
6.9.4.12 P_y	55
6.9.4.13 P_z	55
6.9.4.14 U_up	55
6.9.4.15 V_up	55
6.9.4.16 W_up	55

6.10 transport_problem_x Class Reference	56
6.10.1 Detailed Description	57
6.10.2 Constructor & Destructor Documentation	57
6.10.2.1 transport_problem_x() [1/2]	58
6.10.2.2 transport_problem_x() [2/2]	58
6.10.2.3 ∼transport_problem_x()	58
6.10.3 Member Function Documentation	58
6.10.3.1 CenterU()	58
6.10.3.2 Derive_x()	58
6.10.3.3 FirstDerive_y()	58
6.10.3.4 FirstDerive_z()	58
6.10.3.5 FirstShiftU_y()	59
6.10.3.6 FirstShiftU_z()	59
6.10.3.7 FirstShiftV_y()	59
6.10.3.8 FirstShiftW_z()	59
6.10.3.9 solve_step_x()	59
6.10.4 Member Data Documentation	59
6.10.4.1 dmGrid_Centered	59
6.10.4.2 dmGrid_Shifted	60
6.10.4.3 dmGrid_Staggered	60
6.10.4.4 mask_U	60
6.10.4.5 mask_V	60
6.10.4.6 mask_W	60
6.10.4.7 U_n	60
6.10.4.8 V_n	60
6.10.4.9 W_n	60
6.11 transport_problem_y Class Reference	60
6.11.1 Detailed Description	62
6.11.2 Constructor & Destructor Documentation	62
6.11.2.1 transport_problem_y() [1/2]	62
6.11.2.2 transport_problem_y() [2/2]	63
6.11.2.3 ∼transport_problem_y()	63
6.11.3 Member Function Documentation	63
6.11.3.1 CenterV()	63
6.11.3.2 Derive_y()	63
6.11.3.3 FirstShiftU_y()	63
6.11.3.4 FirstShiftV_y()	63
6.11.3.5 SecondDerive_x()	63
6.11.3.6 SecondDerive_z()	64
6.11.3.7 SecondShiftV_z()	64
6.11.3.8 SecondShiftW_z()	64
6.11.3.9 solve_step_y()	64

7

6.11.4 Member Data Documentation	64
6.11.4.1 dmGrid_Centered	64
6.11.4.2 dmGrid_Shifted	64
6.11.4.3 dmGrid_Staggered	64
6.11.4.4 mask_U	65
6.11.4.5 mask_V	65
6.11.4.6 mask_W	65
6.11.4.7 U_n	65
6.11.4.8 V_n	65
6.11.4.9 W_n	65
6.12 transport_problem_z Class Reference	65
6.12.1 Detailed Description	67
6.12.2 Constructor & Destructor Documentation	67
6.12.2.1 transport_problem_z() [1/2]	67
6.12.2.2 transport_problem_z() [2/2]	68
6.12.2.3 ∼transport_problem_z()	68
6.12.3 Member Function Documentation	68
6.12.3.1 CenterW()	68
6.12.3.2 Derive_z()	68
6.12.3.3 FirstShiftU_z()	68
6.12.3.4 FirstShiftW_z()	68
6.12.3.5 SecondShiftV_z()	68
6.12.3.6 SecondShiftW_z()	69
6.12.3.7 solve_step_z()	69
6.12.3.8 ThirdDerive_x()	69
6.12.3.9 ThirdDerive_y()	69
6.12.4 Member Data Documentation	69
6.12.4.1 dmGrid_Centered	69
6.12.4.2 dmGrid_Shifted	69
6.12.4.3 dmGrid_Staggered	69
6.12.4.4 mask_U	70
6.12.4.5 mask_V	70
6.12.4.6 mask_W	70
6.12.4.7 U_n	70
6.12.4.8 V_n	70
6.12.4.9 W_n	70
File Documentation	71
7.1 config_problem.hpp File Reference	71
7.1.1 Detailed Description	72
7.2 include/advection_diffusion.hpp File Reference	73
7.2.1 Macro Definition Documentation	73

7.2.1.1 ADVECTION_DIFFUSION_PROBLEM_HPP
7.3 include/inviscid_euler.hpp File Reference
7.3.1 Macro Definition Documentation
7.3.1.1 EULER_PROBLEM_HPP
7.4 include/macros.hpp File Reference
7.4.1 Macro Definition Documentation
7.4.1.1 BACK
7.4.1.2 BACK_DOWN
7.4.1.3 BACK_LEFT
7.4.1.4 BACK_RIGHT
7.4.1.5 BACK_UP
7.4.1.6 DOWN
7.4.1.7 DOWN_LEFT
7.4.1.8 DOWN_RIGHT
7.4.1.9 ELEMENT
7.4.1.10 FRONT
7.4.1.11 FRONT_DOWN
7.4.1.12 FRONT_LEFT
7.4.1.13 FRONT_RIGHT
7.4.1.14 FRONT_UP
7.4.1.15 LEFT
7.4.1.16 RIGHT
7.4.1.17 UP
7.4.1.18 UP_LEFT
7.4.1.19 UP_RIGHT
7.4.2 Variable Documentation
7.4.2.1 eps
7.4.2.2 pi
7.5 include/navier_stokes.hpp File Reference
7.6 include/parabolic.hpp File Reference
7.6.1 Macro Definition Documentation
7.6.1.1 PARABOLIC_PROBLEM_Y_HPP
7.6.1.2 PARABOLIC_PROBLEM_Z_HPP
7.7 include/poisson.hpp File Reference
7.8 include/stokes.hpp File Reference
7.9 include/transport.hpp File Reference
7.9.1 Macro Definition Documentation
7.9.1.1 TRANSPORT_PROBLEM_Y_HPP
7.9.1.2 TRANSPORT_PROBLEM_Z_HPP
7.10 include/utils.hpp File Reference
7.10.1 Detailed Description
7.10.2 Function Documentation

7.10.2.1 CheckSolution()	84
7.10.2.2 CreateAnalyticalP()	85
7.10.2.3 CreateAnalyticalU()	85
7.10.2.4 CreateAnalyticalV()	85
7.10.2.5 CreateAnalyticalW()	85
7.10.2.6 CreateGrid()	85
7.10.2.7 createMaskU()	86
7.10.2.8 createMaskV()	86
7.10.2.9 createMaskW()	86
7.10.2.10 isPointInsideMesh()	87
7.10.2.11 PrintSimulationParameters()	87
7.10.2.12 rayIntersectsTriangle()	87
7.10.2.13 reader()	88
7.10.3 Variable Documentation	88
7.10.3.1 D_x	88
7.10.3.2 D_y	88
7.10.3.3 D_z	88
7.10.3.4 faces	88
7.10.3.5 filename	88
7.10.3.6 vertices	88
7.11 README.md File Reference	89
7.12 src/advection_diffusion.cpp File Reference	89
7.13 src/inviscid_euler.cpp File Reference	89
7.14 src/main.cpp File Reference	89
7.14.1 Function Documentation	90
7.14.1.1 main()	90
7.15 src/navier_stokes.cpp File Reference	91
7.16 src/parabolic.cpp File Reference	91
7.17 src/poisson.cpp File Reference	92
7.18 src/stokes.cpp File Reference	92
7.19 src/transport.cpp File Reference	93
7.20 src/utils.cpp File Reference	93
7.20.1 Function Documentation	94
7.20.1.1 CheckSolution()	94
7.20.1.2 CreateAnalyticalP()	94
7.20.1.3 CreateAnalyticalU()	94
7.20.1.4 CreateAnalyticalV()	95
7.20.1.5 CreateAnalyticalW()	95
7.20.1.6 CreateGrid()	95
7.20.1.7 createMaskU()	96
7.20.1.8 createMaskV()	96
7.20.1.9 createMaskW()	96

		Хİ
	7.20.1.10 isPointInsideMesh()	96
	7.20.1.11 PrintSimulationParameters()	97
	7.20.1.12 rayIntersectsTriangle()	97
	7.20.1.13 reader()	97
Index		99

Finite Differences Navier-Stokes Solver

This project implements a solver based on finite differences for the Navier-Stokes equations. The solver can be used both on a default cubic domain as well as on an input original mesh which exploits the brinkman penalization method.

1.1 Requirements

To compile and run the project, make sure you have the following tools and libraries installed and configured:

- Compiler: GCC with C++20 support
- · Libraries:
 - PETSc
 - VTK
 - Eigen

1.2 Installation

1. Load the required modules:

Before compiling or running the program, load the necessary modules. Ensure that your environment is correctly set up by running:

```
source /u/sw/etc/bash.bashrc
module load gcc-glibc
module load vtk
module load vtk
module load petsc
2. **Compile the project**:
   After loading the modules, compile the project by running:
   "'bash
   make
3. **Usage**
   To run the solver, execute the following command:
   "'bash
   ./bin/main
```

For the brinkman solver the name of the .stl has to be indicated. An Example one is given, to run the solver on the example mesh execute the following command: ```bash ./bin/main caroitd.stl ``` The program will compute the solution and store the results in the results directory

Namespace Index

2.1 Namespace L	_ist
-----------------	------

Here is a list of all namespaces with brief descriptions:	
problem_setting	ç

4 Namespace Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions: advection	
Solves the Advection Diffusion evolutionary incompressible equations. It consists of a transport problem for each velocity component and a parabolic problem for each velocity component. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method	15 15
euler problem	
Solves the Euler evolutionary incompressible equations, applying a first order Chorin-Temam algorithm. It consists of a transport problem for each velocity component and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation DOES NOT ALLOW for Brinkamn penalty method	20
navier_stokes_problem	
Solves the Navier-Stokes evolutionary incompressible Navier-Stokes equations, applying a first order Chorin-Temam algorithm. It consists of a transport problem for each velocity component, a parabolic problem for each velocity component, and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method	26
parabolic_problem_x	20
Represents a parabolic problem in the x-direction	32
parabolic problem y	
Represents a parabolic problem in the y-direction	35
parabolic_problem_z	
Represents a parabolic problem in the z-direction	39
poisson_problem	
Represents a Poisson equation solver for pressure correction in fluid simulations	43
stokes_problem	
Solves the Stokes evolutionary incompressible Stokes equations, applying a first order Chorin-Temam algorithm. It consists of a parabolic problem for each velocity component, and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method	51
transport_problem_x	
Represents a transport problem in the x-direction	56
transport_problem_y	
Represents a transport problem in the y-direction	60
transport_problem_z	05
Represents a transport problem in the z-direction	65

6 Class Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:	
config_problem.hpp	
Configuration file for setting up problem parameters	
include/advection_diffusion.hpp	73
include/inviscid_euler.hpp	74
include/macros.hpp	75
include/navier_stokes.hpp	78
include/parabolic.hpp	78
include/poisson.hpp	80
	80
	81
include/utils.hpp	
Utility functions for grid creation, analytical solutions, and geometric operations	83
src/advection_diffusion.cpp	89
src/inviscid_euler.cpp	89
	89
	91
	91
	92
	92
• • • • • • • • • • • • • • • • • • • •	93

8 File Index

Namespace Documentation

5.1 problem setting Namespace Reference

Functions

constexpr PetscReal uxRef (PetscReal const &x, PetscReal const &y, PetscReal const &z, PetscReal const &theta)

Computes the reference solution for the problem in the x-direction.

constexpr PetscReal uyRef (PetscReal const &x, PetscReal const &y, PetscReal const &z, PetscReal const &theta)

Computes the reference solution for the problem in the y-direction.

constexpr PetscReal uzRef (PetscReal const &x, PetscReal const &y, PetscReal const &z, PetscReal const &theta)

Computes the reference solution for the problem in the z-direction.

constexpr PetscReal pRef (PetscReal const &x, PetscReal const &y, PetscReal const &z, PetscReal const &theta)

Variables

constexpr const char * problem_type = "navier_stokes"

Set the problem type. Possible values are "navier_stokes", "stokes", "euler", "advection_diffusion", "parabolic_x", "parabolic_y", "parabolic_z", "transport_x", "transport_y", "transport_z".

constexpr const char * base_path = "results/"

Set this as base path to store results. Default is "results/".

• constexpr bool brinkman {false}

Set flag to (dis)able brinkman penalization. Required for complex geometry handling.

• constexpr bool monitor_convergence {true}

Set flag to (dis)able convergence error of KSP solver.

constexpr bool check_convergence {true}

Set flag to (dis)able convergence error of variable. Only implemented for NAvier-Stokes and parabolic problems.

• constexpr PetscInt nx {32}

Set the number of elements in x-direction.

constexpr PetscInt ny {32}

Set the number of elements in y-direction.

constexpr PetscInt nz {32}

Set the number of elements in z-direction.

• constexpr PetscReal Lx_0 {-0.5}

Set the domain limits in x, y and z directions.

- constexpr PetscReal Ly 0 {-0.5}
- constexpr PetscReal Lz_0 {-0.5}
- constexpr PetscReal Lx {0.5}

```
• constexpr PetscReal Ly {0.5}
```

- constexpr PetscReal Lz {0.5}
- constexpr PetscReal dt {0.00625/2}

Set time-step.

constexpr PetscReal iter {32}

Set final time.

· PetscReal theta

Set starting time.

constexpr PetscReal Re {1}

Set Reynolds number. For non advective problems, set mu = 1/Re (adimensional framework)

• constexpr PetscReal a = pi / 4

Set flow parameters. You can declare as many constexpr variables as you need.

• constexpr PetscReal d = 1.5 * pi

5.1.1 Function Documentation

5.1.1.1 pRef()

```
constexpr PetscReal problem_setting::pRef (
          PetscReal const & x,
          PetscReal const & y,
          PetscReal const & z,
          PetscReal const & theta ) [constexpr]
```

5.1.1.2 uxRef()

```
constexpr PetscReal problem_setting::uxRef (
    PetscReal const & x,
    PetscReal const & y,
    PetscReal const & z,
    PetscReal const & theta ) [constexpr]
```

Computes the reference solution for the problem in the x-direction.

This function provides an analytical reference solution for the given problem in the x-direction. It is time-dependent and useful for benchmarking numerical methods.

Parameters

X	X-coordinate.
У	Y-coordinate.
Z	Z-coordinate.
theta	Time-dependent parameter.

Returns

Computed reference solution in the x-direction.

5.1.1.3 uyRef()

```
PetscReal const & z,
PetscReal const & theta) [constexpr]
```

Computes the reference solution for the problem in the y-direction.

This function provides an analytical reference solution for the given problem in the y-direction. It is used for validation and testing of numerical simulations.

Parameters

X	X-coordinate.
У	Y-coordinate.
Z	Z-coordinate.
theta	Time-dependent parameter.

Returns

Computed reference solution in the y-direction.

5.1.1.4 uzRef()

```
constexpr PetscReal problem_setting::uzRef (
    PetscReal const & x,
    PetscReal const & y,
    PetscReal const & z,
    PetscReal const & theta ) [constexpr]
```

Computes the reference solution for the problem in the z-direction.

This function provides an analytical reference solution for the given problem in the z-direction. It is useful for testing the consistency of numerical solvers.

Parameters

Χ	X-coordinate.
У	Y-coordinate.
Z	Z-coordinate.
theta	Time-dependent parameter.

Returns

Computed reference solution in the z-direction.

5.1.2 Variable Documentation

5.1.2.1 a

```
constexpr PetscReal problem_setting::a = pi / 4 [constexpr]
```

Set flow parameters. You can declare as many constexpr variables as you need.

5.1.2.2 base_path

```
constexpr const char* problem_setting::base_path = "results/" [constexpr]
Set this as base path to store results. Default is "results/".
```

5.1.2.3 brinkman

```
constexpr bool problem_setting::brinkman {false} [constexpr]
Set flag to (dis)able brinkman penalization. Required for complex geometry handling.
```

5.1.2.4 check_convergence

```
constexpr bool problem_setting::check_convergence {true} [constexpr]
Set flag to (dis)able convergence error of variable. Only implemented for NAvier-Stokes and parabolic problems.
```

5.1.2.5 d

```
constexpr PetscReal problem_setting::d = 1.5 * pi [constexpr]
```

5.1.2.6 dt

```
constexpr PetscReal problem_setting::dt \{0.00625/2\} [constexpr] Set time-step.
```

5.1.2.7 iter

```
constexpr PetscReal problem_setting::iter {32} [constexpr]
Set final time.
```

5.1.2.8 Lx

```
constexpr PetscReal problem_setting::Lx {0.5} [constexpr]
```

5.1.2.9 Lx_0

```
constexpr PetscReal problem_setting::Lx_0 \{-0.5\} [constexpr] Set the domain limits in x, y and z directions.
```

5.1.2.10 Ly

```
constexpr PetscReal problem_setting::Ly {0.5} [constexpr]
```

5.1.2.11 Ly_0

```
constexpr PetscReal problem_setting::Ly_0 {-0.5} [constexpr]
```

5.1.2.12 Lz

```
constexpr PetscReal problem_setting::Lz {0.5} [constexpr]
```

5.1.2.13 Lz_0

```
constexpr PetscReal problem_setting::Lz_0 {-0.5} [constexpr]
```

5.1.2.14 monitor_convergence

constexpr bool problem_setting::monitor_convergence {true} [constexpr] Set flag to (dis)able convergence error of KSP solver.

5.1.2.15 nx

constexpr PetscInt problem_setting::nx {32} [constexpr]
Set the number of elements in x-direction.

5.1.2.16 ny

constexpr PetscInt problem_setting::ny {32} [constexpr]
Set the number of elements in y-direction.

5.1.2.17 nz

constexpr PetscInt problem_setting::nz {32} [constexpr]
Set the number of elements in z-direction.

5.1.2.18 problem_type

```
constexpr const char* problem_setting::problem_type = "navier_stokes" [constexpr]
Set the problem type. Possible values are "navier_stokes", "stokes", "euler", "advection_diffusion", "parabolic_x",
"parabolic_y", "parabolic_z", "transport_x", "transport_y", "transport_z".
```

5.1.2.19 Re

```
constexpr PetscReal problem_setting::Re {1} [constexpr]
Set Reynolds number. For non advective problems, set mu = 1/Re (adimensional framework)
```

5.1.2.20 theta

PetscReal problem_setting::theta [inline]
Set starting time.

Class Documentation

6.1 advection Class Reference

Solves the Advection Diffusion evolutionary incompressible equations. It consists of a transport problem for each velocity component and a parabolic problem for each velocity component. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method.

Collaboration diagram for advection:

6.1.1 Detailed Description

Solves the Advection Diffusion evolutionary incompressible equations. It consists of a transport problem for each velocity component and a parabolic problem for each velocity component. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method.

The documentation for this class was generated from the following file:

• include/advection diffusion.hpp

6.2 advection_diffusion_problem Class Reference

#include <advection_diffusion.hpp>

16 Class Documentation

Collaboration diagram for advection_diffusion_problem:

Public Member Functions

advection_diffusion_problem (DM const &dmGrid_staggered_x, DM const &dmGrid_staggered_y, DM const &dmGrid_staggered_z, DM const &dmGrid_centered, DM const &dmGrid_cent_rich, DM const &dmGrid_stag_transp, DM const dmGrid_shift_transp, Vec const &U_up, Vec const &V_up, Vec const W_up)

Constructor that initializes the Advection-Diffusion problem with given grids and velocity fields. This costructor has been defined for consistency and if future implementations will require solving Advection-Diffusion in a broader context. For our applications only a stand-alone constructor is used.

• advection diffusion problem ()

Default constructor that initializes stand-alone Advection-Diffusion problem with automatically created grids.

• PetscErrorCode exodus (size_t i)

Exports simulation in .vtk format for visualization of x,y,z-componets, pressure and magnitude.

• PetscErrorCode const solve ()

Solves the Advection-Diffusion equations leveraging parabolic_problem_x, y, z, transport_problem_x, y, z, and poisson_problem classes.

• \sim advection_diffusion_problem ()

Destructor to clean up allocated resources. Automatically calls sub-problems destructors. After destruction, a message is printed.

Private Member Functions

• PetscErrorCode const update_velocity (PetscReal const &theta)

Updates the velocity field, opearating final pressure correction for CT scheme.

PetscErrorCode const assemble_magnitude (Vec &Magnitude_Shifted, Vec const &U, Vec const &V, Vec const &W)

Post-processing function: assembles the magnitude of velocity vectors, locating a new vector in the cell-centers.

PetscErrorCode const compute magnitude ()

Final assembly of magnitude vector on cell-centers.

Private Attributes

• DM dmGrid_staggered_x

Discretized grid for the staggered x-direction.

· DM dmGrid_staggered_y

Discretized grid for the staggered y-direction.

• DM dmGrid staggered z

Discretized grid for the staggered z-direction.

• DM dmGrid_centered

Discretized grid for magnitude.

· DM dmGrid cent rich

Discretized grid for shifted quantities.

• DM dmGrid_stag_transp

Staggered grid for transport equations.

· DM dmGrid shift transp

Shifted grid for transport computations.

Vec Magnitude

Magnitude of velocity vectors.

- Vec U up
- Vec V_up
- Vec W_up

Velocity fields in the x, y, and z directions.

- Vec mask_U
- Vec mask_V
- Vec mask_W

Mask vectors for boundary conditions.

6.2.1 Constructor & Destructor Documentation

6.2.1.1 advection_diffusion_problem() [1/2]

18 Class Documentation

```
Vec const & U_up,
Vec const & V_up,
Vec const W_up ) [inline]
```

Constructor that initializes the Advection-Diffusion problem with given grids and velocity fields. This costructor has been defined for consistency and if future implementations will require solving Advection-Diffusion in a broader context. For our applications only a stand-alone constructor is used.

6.2.1.2 advection_diffusion_problem() [2/2]

```
advection_diffusion_problem::advection_diffusion_problem ( ) [inline]
```

Default constructor that initializes stand-alone Advection-Diffusion problem with automatically created grids.

6.2.1.3 ∼advection diffusion problem()

```
advection_diffusion_problem::~advection_diffusion_problem ( ) [inline]
```

Destructor to clean up allocated resources. Automatically calls sub-problems destructors. After destruction, a message is printed.

6.2.2 Member Function Documentation

6.2.2.1 assemble_magnitude()

Post-processing function: assembles the magnitude of velocity vectors, locating a new vector in the cell-centers.

Parameters

Magnitude_Shifted	Output shifted magnitude vector on dmGrid_cent_rich (dofs on faces and cell=centers.)
U	Velocity component in the x-direction.
V	Velocity component in the y-direction.
W	Velocity component in the z-direction.

6.2.2.2 compute_magnitude()

```
PetscErrorCode const advection_diffusion_problem::compute_magnitude ( ) [private] Final assembly of magnitude vector on cell-centers.
```

6.2.2.3 exodus()

```
\label{lem:problem:exodus} \mbox{PetscErrorCode advection\_diffusion\_problem::exodus (} \\ \mbox{size\_t $i$ )}
```

Exports simulation in .vtk format format for visualization of x,y,z-componets, pressure and magnitude.

6.2.2.4 solve()

```
PetscErrorCode const advection_diffusion_problem::solve ( )
```

Solves the Advection-Diffusion equations leveraging parabolic_problem_x, y, z, transport_problem_x, y, z, and poisson_problem classes.

6.2.2.5 update_velocity()

6.2.3 Member Data Documentation

6.2.3.1 dmGrid cent rich

DM advection_diffusion_problem::dmGrid_cent_rich [private] Discretized grid for shifted quantities.

6.2.3.2 dmGrid centered

DM advection_diffusion_problem::dmGrid_centered [private] Discretized grid for magnitude.

6.2.3.3 dmGrid_shift_transp

DM advection_diffusion_problem::dmGrid_shift_transp [private] Shifted grid for transport computations.

6.2.3.4 dmGrid_stag_transp

DM advection_diffusion_problem::dmGrid_stag_transp [private] Staggered grid for transport equations.

6.2.3.5 dmGrid_staggered_x

DM advection_diffusion_problem::dmGrid_staggered_x [private] Discretized grid for the staggered x-direction.

6.2.3.6 dmGrid_staggered_y

DM advection_diffusion_problem::dmGrid_staggered_y [private] Discretized grid for the staggered y-direction.

6.2.3.7 dmGrid_staggered_z

DM advection_diffusion_problem::dmGrid_staggered_z [private] Discretized grid for the staggered z-direction.

20 Class Documentation

6.2.3.8 Magnitude

Vec advection_diffusion_problem::Magnitude [private] Magnitude of velocity vectors.

6.2.3.9 mask_U

Vec advection_diffusion_problem::mask_U [private]

6.2.3.10 mask_V

Vec advection_diffusion_problem::mask_V [private]

6.2.3.11 mask W

Vec advection_diffusion_problem::mask_W [private] Mask vectors for boundary conditions.

6.2.3.12 U_up

Vec advection_diffusion_problem::U_up [private]

6.2.3.13 V up

Vec advection_diffusion_problem::V_up [private]

6.2.3.14 W_up

Vec advection_diffusion_problem::W_up [private]

Velocity fields in the x, y, and z directions.

The documentation for this class was generated from the following files:

- include/advection diffusion.hpp
- src/advection_diffusion.cpp

6.3 euler_problem Class Reference

Solves the Euler evolutionary incompressible equations, applying a first order Chorin-Temam algorithm. It consists of a transport problem for each velocity component and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation DOES NOT ALLOW for Brinkamn penalty method.

#include <inviscid_euler.hpp>

Collaboration diagram for euler_problem:

Public Member Functions

 euler_problem (DM const &dmGrid_staggered_x, DM const &dmGrid_staggered_y, DM const &dmGrid_staggered_z, DM const &dmGrid_centered, DM const &dmGrid_cent_rich, DM const &dmGrid_stag_transp, DM const dmGrid_shift_transp, Vec const &U_up, Vec const &V_up, Vec const W_up)

Constructor that initializes the Euler problem with given grids and velocity fields. This costructor has been defined for consistency and if future implementations will require solving Euler in a broader context. For our applications only a stand-alone constructor is used.

• euler_problem ()

Default constructor that initializes stand-alone Euler problem with automatically created grids.

• PetscErrorCode exodus (size_t i)

Exports simulation in .vtk format format for visualization of x,y,z-componets, pressure and magnitude.

• PetscErrorCode const solve ()

Solves the Euler equations leveraging parabolic_problem_x, y, z, transport_problem_x, y, z, and poisson_problem classes

~euler_problem ()

Destructor to clean up allocated resources. Automatically calls sub-problems destructors. After destruction, a message is printed.

22 Class Documentation

Private Member Functions

• PetscErrorCode const update_velocity (PetscReal const &theta)

Updates the velocity field, opearating final pressure correction for CT scheme.

PetscErrorCode const assemble_magnitude (Vec &Magnitude_Shifted, Vec const &U, Vec const &V, Vec const &W)

Post-processing function: assembles the magnitude of velocity vectors, locating a new vector in the cell-centers.

PetscErrorCode const compute magnitude ()

Final assembly of magnitude vector on cell-centers.

Private Attributes

· DM dmGrid staggered x

Discretized grid for the staggered x-direction.

• DM dmGrid_staggered_y

Discretized grid for the staggered y-direction.

• DM dmGrid_staggered_z

Discretized grid for the staggered z-direction.

· DM dmGrid centered

Discretized grid for the centered formulation.

· DM dmGrid cent rich

Refined centered grid for pressure computation.

DM dmGrid stag transp

Staggered grid for transport equations.

DM dmGrid_shift_transp

Shifted grid for transport computations.

Vec P

Pressure field.

Vec P_x

Pressure derivative in the x-direction.

Vec P_y

Pressure derivative in the y-direction.

Vec P_z

Pressure derivative in the z-direction.

Vec Magnitude

Magnitude of velocity vectors.

- Vec U_up
- Vec V_up
- Vec W_up

Velocity fields in the x, y, and z directions.

- Vec mask_U
- Vec mask V
- Vec mask W

Mask vectors for boundary conditions.

6.3.1 Detailed Description

Solves the Euler evolutionary incompressible equations, applying a first order Chorin-Temam algorithm. It consists of a transport problem for each velocity component and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation DOES NOT ALLOW for Brinkamn penalty method.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 euler_problem() [1/2]

Constructor that initializes the Euler problem with given grids and velocity fields. This costructor has been defined for consistency and if future implementations will require solving Euler in a broader context. For our applications only a stand-alone constructor is used.

6.3.2.2 euler_problem() [2/2]

```
euler_problem::euler_problem ( ) [inline]
```

Default constructor that initializes stand-alone Euler problem with automatically created grids.

6.3.2.3 ∼euler_problem()

```
euler_problem::~euler_problem ( ) [inline]
```

Destructor to clean up allocated resources. Automatically calls sub-problems destructors. After destruction, a message is printed.

6.3.3 Member Function Documentation

6.3.3.1 assemble_magnitude()

Post-processing function: assembles the magnitude of velocity vectors, locating a new vector in the cell-centers.

Parameters

Magnitude_Shifted	Output shifted magnitude vector on dmGrid_cent_rich (dofs on faces and cell=centers.)
U	Velocity component in the x-direction.
V	Velocity component in the y-direction.
W	Velocity component in the z-direction.

6.3.3.2 compute_magnitude()

```
PetscErrorCode const euler_problem::compute_magnitude ( ) [private]
```

Final assembly of magnitude vector on cell-centers.

6.3.3.3 exodus()

Exports simulation in .vtk format for visualization of x,y,z-componets, pressure and magnitude.

6.3.3.4 solve()

```
PetscErrorCode const euler_problem::solve ( )
```

Solves the Euler equations leveraging parabolic_problem_x, y, z, transport_problem_x, y, z, and poisson_problem classes.

6.3.3.5 update_velocity()

Updates the velocity field, opearating final pressure correction for CT scheme.

6.3.4 Member Data Documentation

6.3.4.1 dmGrid_cent_rich

```
DM euler_problem::dmGrid_cent_rich [private] Refined centered grid for pressure computation.
```

6.3.4.2 dmGrid_centered

```
DM euler_problem::dmGrid_centered [private] Discretized grid for the centered formulation.
```

6.3.4.3 dmGrid_shift_transp

```
DM euler_problem::dmGrid_shift_transp [private] Shifted grid for transport computations.
```

6.3.4.4 dmGrid_stag_transp

```
DM euler_problem::dmGrid_stag_transp [private] Staggered grid for transport equations.
```

6.3.4.5 dmGrid_staggered_x

```
DM euler_problem::dmGrid_staggered_x [private] Discretized grid for the staggered x-direction.
```

6.3.4.6 dmGrid_staggered_y

DM euler_problem::dmGrid_staggered_y [private] Discretized grid for the staggered y-direction.

6.3.4.7 dmGrid_staggered_z

DM euler_problem::dmGrid_staggered_z [private] Discretized grid for the staggered z-direction.

6.3.4.8 Magnitude

Vec euler_problem::Magnitude [private]
Magnitude of velocity vectors.

6.3.4.9 mask_U

Vec euler_problem::mask_U [private]

6.3.4.10 mask_V

Vec euler_problem::mask_V [private]

6.3.4.11 mask_W

Vec euler_problem::mask_W [private] Mask vectors for boundary conditions.

6.3.4.12 P

Vec euler_problem::P [private]
Pressure field.

6.3.4.13 P x

Vec euler_problem::P_x [private] Pressure derivative in the x-direction.

6.3.4.14 P_y

Vec euler_problem::P_y [private] Pressure derivative in the y-direction.

6.3.4.15 P z

Vec euler_problem::P_z [private] Pressure derivative in the z-direction.

6.3.4.16 U_up

Vec euler_problem::U_up [private]

6.3.4.17 V_up

Vec euler_problem::V_up [private]

6.3.4.18 W_up

Vec euler_problem::W_up [private]

Velocity fields in the x, y, and z directions.

The documentation for this class was generated from the following files:

- include/inviscid_euler.hpp
- src/inviscid_euler.cpp

6.4 navier_stokes_problem Class Reference

Solves the Navier-Stokes evolutionary incompressible Navier-Stokes equations, applying a first order Chorin- \leftarrow Temam algorithm. It consists of a transport problem for each velocity component, a parabolic problem for each velocity component, and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method.

```
#include <navier_stokes.hpp>
```

Collaboration diagram for navier_stokes_problem:

Public Member Functions

navier_stokes_problem (DM const &dmGrid_staggered_x, DM const &dmGrid_staggered_y, DM const &dmGrid_staggered_z, DM const &dmGrid_centered, DM const &dmGrid_cent_rich, DM const &dmGrid_stag_transp, DM const dmGrid_shift_transp, Vec const &U_up, Vec const &V_up, Vec const W_up)

Constructor that initializes the Navier-Stokes problem with given grids and velocity fields. This costructor has been defined for consistency and if future implementations will require solving Navier-Stokes in a broader context. For our applications only a stand-alone constructor is used.

• navier stokes problem ()

Default constructor that initializes stand-alone Navier-Stokes problem with automatically created grids.

• PetscErrorCode exodus (size_t i)

Exports simulation in .vtk format for visualization of x,y,z-componets, pressure and magnitude.

• PetscErrorCode const solve ()

Solves the Navier-Stokes equations leveraging parabolic_problem_x, y, z, transport_problem_x, y, z, and poisson_problem classes.

~navier_stokes_problem ()

Destructor to clean up allocated resources. Automatically calls sub-problems destructors. After destruction, a message is printed.

Private Member Functions

• PetscErrorCode const update_velocity (PetscReal const &theta)

Updates the velocity field, opearating final pressure correction for CT scheme.

PetscErrorCode const assemble_magnitude (Vec &Magnitude_Shifted, Vec const &U, Vec const &V, Vec const &W)

Post-processing function: assembles the magnitude of velocity vectors, locating a new vector in the cell-centers.

PetscErrorCode const compute_magnitude ()

Final assembly of magnitude vector on cell-centers.

Private Attributes

· DM dmGrid staggered x

Discretized grid for the staggered x-direction.

• DM dmGrid_staggered_y

Discretized grid for the staggered y-direction.

· DM dmGrid staggered z

Discretized grid for the staggered z-direction.

· DM dmGrid centered

Discretized grid for the centered formulation.

· DM dmGrid cent rich

Refined centered grid for pressure computation.

• DM dmGrid_stag_transp

Staggered grid for transport equations.

DM dmGrid_shift_transp

Shifted grid for transport computations.

Vec P

Pressure field.

Vec P_x

Pressure derivative in the x-direction.

Vec P_y

Pressure derivative in the y-direction.

Vec P_z

Pressure derivative in the z-direction.

Vec Magnitude

Magnitude of velocity vectors.

- Vec U_up
- Vec V_up
- Vec W_up

Velocity fields in the x, y, and z directions.

- Vec mask_U
- Vec mask_V
- Vec mask_W

Mask vectors for boundary conditions.

6.4.1 Detailed Description

Solves the Navier-Stokes evolutionary incompressible Navier-Stokes equations, applying a first order Chorin-← Temam algorithm. It consists of a transport problem for each velocity component, a parabolic problem for each velocity component, and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method.

6.4.2 Constructor & Destructor Documentation

6.4.2.1 navier_stokes_problem() [1/2]

Constructor that initializes the Navier-Stokes problem with given grids and velocity fields. This costructor has been defined for consistency and if future implementations will require solving Navier-Stokes in a broader context. For our applications only a stand-alone constructor is used.

6.4.2.2 navier_stokes_problem() [2/2]

```
navier_stokes_problem::navier_stokes_problem ( ) [inline]
```

Default constructor that initializes stand-alone Navier-Stokes problem with automatically created grids.

6.4.2.3 ∼navier_stokes_problem()

```
navier_stokes_problem::~navier_stokes_problem ( ) [inline]
```

Destructor to clean up allocated resources. Automatically calls sub-problems destructors. After destruction, a message is printed.

6.4.3 Member Function Documentation

6.4.3.1 assemble_magnitude()

Post-processing function: assembles the magnitude of velocity vectors, locating a new vector in the cell-centers.

Parameters

Magnitude_Shifted	Output shifted magnitude vector on dmGrid_cent_rich (dofs on faces and cell=centers.)
U	Velocity component in the x-direction.
V	Velocity component in the y-direction.
W	Velocity component in the z-direction.

6.4.3.2 compute_magnitude()

```
PetscErrorCode const navier_stokes_problem::compute_magnitude ( ) [private]
```

Final assembly of magnitude vector on cell-centers.

6.4.3.3 exodus()

Exports simulation in .vtk format for visualization of x,y,z-componets, pressure and magnitude.

6.4.3.4 solve()

```
PetscErrorCode const navier_stokes_problem::solve ( )
Solves the Navier-Stokes equations leveraging parabolic_problem_x, y, z, transport_problem_x, y, z, and poisson problem classes.
```

6.4.3.5 update_velocity()

Updates the velocity field, opearating final pressure correction for CT scheme.

6.4.4 Member Data Documentation

6.4.4.1 dmGrid_cent_rich

```
DM navier_stokes_problem::dmGrid_cent_rich [private] Refined centered grid for pressure computation.
```

6.4.4.2 dmGrid_centered

```
\begin{tabular}{ll} $\tt DM navier\_stokes\_problem::dmGrid\_centered & [private] \\ \hline \textbf{Discretized grid for the centered formulation}. \end{tabular}
```

6.4.4.3 dmGrid_shift_transp

6.4.4.4 dmGrid_stag_transp

```
DM navier_stokes_problem::dmGrid_stag_transp [private] Staggered grid for transport equations.
```

6.4.4.5 dmGrid_staggered_x

```
DM navier_stokes_problem::dmGrid_staggered_x [private] Discretized grid for the staggered x-direction.
```

6.4.4.6 dmGrid_staggered_y

DM navier_stokes_problem::dmGrid_staggered_y [private] Discretized grid for the staggered y-direction.

6.4.4.7 dmGrid_staggered_z

DM navier_stokes_problem::dmGrid_staggered_z [private] Discretized grid for the staggered z-direction.

6.4.4.8 Magnitude

Vec navier_stokes_problem::Magnitude [private] Magnitude of velocity vectors.

6.4.4.9 mask_U

Vec navier_stokes_problem::mask_U [private]

6.4.4.10 mask_V

Vec navier_stokes_problem::mask_V [private]

6.4.4.11 mask_W

Vec navier_stokes_problem::mask_W [private] Mask vectors for boundary conditions.

6.4.4.12 P

Vec navier_stokes_problem::P [private]
Pressure field.

6.4.4.13 P x

Vec navier_stokes_problem::P_x [private]
Pressure derivative in the x-direction.

6.4.4.14 P_y

Vec navier_stokes_problem::P_y [private] Pressure derivative in the y-direction.

6.4.4.15 P z

Vec navier_stokes_problem::P_z [private] Pressure derivative in the z-direction.

6.4.4.16 U_up

Vec navier_stokes_problem::U_up [private]

6.4.4.17 V_up

Vec navier_stokes_problem::V_up [private]

6.4.4.18 W_up

Vec navier_stokes_problem::W_up [private]

Velocity fields in the x, y, and z directions.

The documentation for this class was generated from the following files:

- include/navier_stokes.hpp
- src/navier_stokes.cpp

6.5 parabolic_problem_x Class Reference

Represents a parabolic problem in the x-direction.

#include <parabolic.hpp>

Collaboration diagram for parabolic_problem_x:

Public Member Functions

parabolic_problem_x (DM const &dmGrid)

Constructor that initializes the problem with a given grid. Use when parabolic problem is just a step of a bigger problem, like in Chorin-Temam method.

parabolic_problem_x ()

Default constructor for stand-alone problem.

- Vec get U ()
- void set U (Vec const &U)
- PetscErrorCode assemble_lhs ()

Assembles the left-hand side (LHS) matrix.

PetscErrorCode solve_step (PetscReal const &theta, std::optional < std::reference_wrapper < Vec >> U_←
up_opt=std::nullopt)

Performs a single time step of the numerical solution.

• PetscErrorCode solve ()

Solves the entire parabolic problem in the x-direction.

~parabolic_problem_x ()

Destructor to clean up allocated resources. Fundamental in PETSc implementation lo avoid leaks and unexpected RAM overhead.

Private Member Functions

const PetscErrorCode assemble rhs (PetscReal const &theta, Vec const &U up)

Assembles the right-hand side (RHS) vector.

• PetscErrorCode exodus (size_t const &i)

Exports results in .vtk format for post-processing.

Private Attributes

• DM dmGrid

Discretized grid for the problem.

Mat A

Matrix representing the left-hand side of the system.

• Vec rhs

Right-hand side vector.

Vec U up

Solution vector for the x-direction. If not provided, it must be passed as reference in solve_step(...)

Vec mask_U

Mask vector used for Brinkman flow.

6.5.1 Detailed Description

Represents a parabolic problem in the x-direction.

This class solves a generic evolutionary diffusive problem in the x-direction with fully Dirichlet bc's. Boundary conditions are imposed by means of a reference solution. Discretization is performed on a staggered grid and in x-direction only, meaning that variables are located in position LEFT and RIGHT. Linear problem is solved by means of a PETSc KSP solver, with GMRES and Jacobi preconditioner.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 parabolic_problem_x() [1/2]

Constructor that initializes the problem with a given grid. Use when parabolic problem is just a step of a bigger problem, like in Chorin-Temam method.

Parameters

```
dmGrid staggered grid petsc-object must be already be defined.
```

6.5.2.2 parabolic_problem_x() [2/2]

```
parabolic_problem_x::parabolic_problem_x ( ) [inline]
Default constructor for stand-alone problem.
```

6.5.2.3 ∼parabolic_problem_x()

```
parabolic_problem_x::~parabolic_problem_x ( ) [inline]
```

Destructor to clean up allocated resources. Fundamental in PETSc implementation lo avoid leaks and unexpected RAM overhead.

6.5.3 Member Function Documentation

6.5.3.1 assemble_lhs()

6.5.3.2 assemble_rhs()

Assembles the right-hand side (RHS) vector.

6.5.3.3 exodus()

Exports results in .vtk format for post-processing.

6.5.3.4 get_U()

```
Vec parabolic_problem_x::get_U ( )
```

6.5.3.5 set_U()

```
void parabolic_problem_x::set_U (  \mbox{ Vec const \& $U$ ) }
```

6.5.3.6 solve()

```
PetscErrorCode parabolic_problem_x::solve ( ) Solves the entire parabolic problem in the x-direction.
```

6.5.3.7 solve_step()

6.5.4 Member Data Documentation

6.5.4.1 A

```
Mat parabolic_problem_x::A [private]

Matrix representing the left-hand side of the system.
```

6.5.4.2 dmGrid

```
DM parabolic_problem_x::dmGrid [private]
Discretized grid for the problem.
```

6.5.4.3 mask_U

```
Vec parabolic_problem_x::mask_U [private]
Mask vector used for Brinkman flow.
```

6.5.4.4 rhs

```
Vec parabolic_problem_x::rhs [private]
Right-hand side vector.
```

6.5.4.5 U_up

```
Vec parabolic_problem_x::U_up [private]
```

Solution vector for the x-direction. If not provided, it must be passed as reference in solve_step(...) The documentation for this class was generated from the following files:

- include/parabolic.hpp
- src/parabolic.cpp

6.6 parabolic_problem_y Class Reference

Represents a parabolic problem in the y-direction.

```
#include <parabolic.hpp>
```

Collaboration diagram for parabolic_problem_y:

Public Member Functions

parabolic_problem_y (DM const &dmGrid)

Constructor that initializes the problem with a given grid. Use when parabolic problem is just a step of a bigger problem, like in Chorin-Temam method.

• parabolic_problem_y ()

Default constructor for stand-alone problem.

- Vec get_V ()
- void set_V (Vec const &V)
- PetscErrorCode assemble_lhs ()

Assembles the left-hand side (LHS) matrix.

PetscErrorCode solve_step (PetscReal const &theta, std::optional < std::reference_wrapper < Vec >> V_← up_opt=std::nullopt)

Performs a single time step of the numerical solution.

• PetscErrorCode solve ()

Solves the entire parabolic problem in the Y-direction.

~parabolic_problem_y ()

Destructor to clean up allocated resources. Fundamental in PETSc implementation lo avoid leaks and unexpected RAM overhead.

Private Member Functions

- const PetscErrorCode assemble_rhs (PetscReal const &theta, Vec const &V_up)
 - Assembles the right-hand side (RHS) vector.
- PetscErrorCode exodus (size_t const &i)

Exports results in .vtk format for post-processing.

Private Attributes

DM dmGrid

Discretized grid for the problem.

Mat A

Matrix representing the left-hand side of the system.

Vec rhs

Right-hand side vector.

Vec V up

Solution vector for the y-direction. If not provided, it must be passed as reference in solve step(...)

Vec mask V

Mask vector used for Brinkman flow.

6.6.1 Detailed Description

Represents a parabolic problem in the y-direction.

This class solves a generic evolutionary diffusive problem in the y-direction with fully Dirichlet bc's. Boundary conditions are imposed by means of a reference solution. Discretization is performed on a staggered grid and in x-direction only, meaning that variables are located in position DOWN and UP. Linear problem is solved by means of a PETSc KSP solver, with GMRES and Jacobi preconditioner.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 parabolic_problem_y() [1/2]

Constructor that initializes the problem with a given grid. Use when parabolic problem is just a step of a bigger problem, like in Chorin-Temam method.

Parameters

dmGrid staggered grid petsc-object must be already be defined.

6.6.2.2 parabolic_problem_y() [2/2]

```
parabolic_problem_y::parabolic_problem_y ( ) [inline]
Default constructor for stand-alone problem.
```

6.6.2.3 ∼parabolic_problem_y()

```
parabolic_problem_y::~parabolic_problem_y ( ) [inline]
```

Destructor to clean up allocated resources. Fundamental in PETSc implementation lo avoid leaks and unexpected RAM overhead.

6.6.3 Member Function Documentation

6.6.3.1 assemble_lhs()

```
\label{lem:problem_y::assemble_lhs} PetscErrorCode\ parabolic\_problem\_y::assemble\_lhs\ (\ ) \\ Assembles\ the\ left-hand\ side\ (LHS)\ matrix.
```

6.6.3.2 assemble_rhs()

Assembles the right-hand side (RHS) vector.

6.6.3.3 exodus()

Exports results in .vtk format for post-processing.

6.6.3.4 get_V()

```
Vec parabolic_problem_y::get_V ( )
```

6.6.3.5 set_V()

6.6.3.6 solve()

```
PetscErrorCode parabolic_problem_y::solve ( )
```

Solves the entire parabolic problem in the Y-direction.

6.6.3.7 solve_step()

```
PetscErrorCode parabolic_problem_y::solve_step (
          PetscReal const & theta,
          std::optional< std::reference_wrapper< Vec >> V_up_opt = std::nullopt )
```

Performs a single time step of the numerical solution.

6.6.4 Member Data Documentation

6.6.4.1 A

```
Mat parabolic_problem_y::A [private]

Matrix representing the left-hand side of the system.
```

6.6.4.2 dmGrid

DM parabolic_problem_y::dmGrid [private]
Discretized grid for the problem.

6.6.4.3 mask_V

Vec parabolic_problem_y::mask_V [private]
Mask vector used for Brinkman flow.

6.6.4.4 rhs

Vec parabolic_problem_y::rhs [private]
Right-hand side vector.

6.6.4.5 V_up

Vec parabolic_problem_y::V_up [private]

Solution vector for the y-direction. If not provided, it must be passed as reference in solve_step(...) The documentation for this class was generated from the following files:

- include/parabolic.hpp
- src/parabolic.cpp

6.7 parabolic_problem_z Class Reference

Represents a parabolic problem in the z-direction.

#include <parabolic.hpp>

Collaboration diagram for parabolic_problem_z:

Public Member Functions

parabolic_problem_z (DM const &dmGrid)

Constructor that initializes the problem with a given grid. Use when parabolic problem is just a step of a bigger problem, like in Chorin-Temam method.

• parabolic_problem_z ()

Default constructor for stand-alone problem.

- Vec get_W ()
- void set_W (Vec const &W)
- PetscErrorCode assemble_lhs ()

Assembles the left-hand side (LHS) matrix.

PetscErrorCode solve_step (PetscReal const &theta, std::optional < std::reference_wrapper < Vec >> W_← up_opt=std::nullopt)

Performs a single time step of the numerical solution.

• PetscErrorCode solve ()

Solves the entire parabolic problem in the Z-direction.

~parabolic_problem_z ()

Destructor to clean up allocated resources. Fundamental in PETSc implementation lo avoid leaks and unexpected RAM overhead.

Private Member Functions

- PetscErrorCode const assemble_rhs (PetscReal const &theta, Vec const &W_up)
 - Assembles the right-hand side (RHS) vector.
- PetscErrorCode exodus (size_t const &i)

Exports results in .vtk format for post-processing.

Private Attributes

DM dmGrid

Discretized grid for the problem.

Mat A

Matrix representing the left-hand side of the system.

Vec rhs

Right-hand side vector.

Vec W_up

Solution vector for the x-direction. If not provided, it must be passed as reference in solve step(...)

· Vec mask W

Mask vector used for Brinkman flow.

6.7.1 Detailed Description

Represents a parabolic problem in the z-direction.

This class solves a generic evolutionary diffusive problem in the z-direction with fully Dirichlet bc's. Boundary conditions are imposed by means of a reference solution. Discretization is performed on a staggered grid and in x-direction only, meaning that variables are located in position BACK and FRONT. Linear problem is solved by means of a PETSc KSP solver, with GMRES and Jacobi preconditioner.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 parabolic_problem_z() [1/2]

Constructor that initializes the problem with a given grid. Use when parabolic problem is just a step of a bigger problem, like in Chorin-Temam method.

Parameters

dmGrid staggered grid petsc-object must be already be defined.

6.7.2.2 parabolic_problem_z() [2/2]

```
parabolic_problem_z::parabolic_problem_z ( ) [inline]
Default constructor for stand-alone problem.
```

6.7.2.3 ∼parabolic_problem_z()

```
parabolic_problem_z::~parabolic_problem_z ( ) [inline]
```

Destructor to clean up allocated resources. Fundamental in PETSc implementation lo avoid leaks and unexpected RAM overhead.

6.7.3 Member Function Documentation

6.7.3.1 assemble_lhs()

```
\label{lem:problem_z::assemble_lhs} PetscErrorCode\ parabolic\_problem\_z::assemble\_lhs\ (\ ) \\ Assembles\ the\ left-hand\ side\ (LHS)\ matrix.
```

6.7.3.2 assemble_rhs()

```
PetscErrorCode const parabolic_problem_z::assemble_rhs (
          PetscReal const & theta,
          Vec const & W_up ) [private]
```

Assembles the right-hand side (RHS) vector.

6.7.3.3 exodus()

```
\label{lem:problem_z::exodus} \begin{tabular}{ll} PetscErrorCode parabolic\_problem\_z::exodus ( \\ size\_t const & i ) & [private] \end{tabular}
```

Exports results in .vtk format for post-processing.

6.7.3.4 get_W()

```
Vec parabolic_problem_z::get_W ( )
```

6.7.3.5 set_W()

6.7.3.6 solve()

```
PetscErrorCode parabolic_problem_z::solve ( )
```

Solves the entire parabolic problem in the Z-direction.

6.7.3.7 solve_step()

```
PetscErrorCode parabolic_problem_z::solve_step (
         PetscReal const & theta,
         std::optional< std::reference_wrapper< Vec >> W_up_opt = std::nullopt )
```

Performs a single time step of the numerical solution.

6.7.4 Member Data Documentation

6.7.4.1 A

```
Mat parabolic_problem_z::A [private]

Matrix representing the left-hand side of the system.
```

6.7.4.2 dmGrid

DM parabolic_problem_z::dmGrid [private]
Discretized grid for the problem.

6.7.4.3 mask_W

 $\label{thm:constraint} \begin{tabular}{ll} Wec $parabolic_problem_z::mask_W & [private] \\ \begin{tabular}{ll} Mask vector used for Brinkman flow. \\ \end{tabular}$

6.7.4.4 rhs

Vec parabolic_problem_z::rhs [private]
Right-hand side vector.

6.7.4.5 W_up

Vec parabolic_problem_z::W_up [private]

Solution vector for the x-direction. If not provided, it must be passed as reference in solve_step(...) The documentation for this class was generated from the following files:

- include/parabolic.hpp
- src/parabolic.cpp

6.8 poisson_problem Class Reference

Represents a Poisson equation solver for pressure correction in fluid simulations.

#include <poisson.hpp>

Collaboration diagram for poisson_problem:

Public Member Functions

poisson_problem (DM const &dmGrid_staggered_x, DM const &dmGrid_staggered_y, DM const &dmGrid staggered z, DM const &dmGrid centered, DM const &dmGrid cent rich)

Constructor to initialize the Poisson problem with pre-allocated grids.

- poisson problem ()
- PetscErrorCode const exodus (size_t i)

Exports simulation results in .vtk format for visualization.

• PetscErrorCode const manage_pressure (std::optional< std::reference_wrapper< Vec >> U_opt=std↔ ::nullopt, std::optional< std::reference_wrapper< Vec >> V_up_opt=std::nullopt, std::optional< std↔ ::reference_wrapper< Vec >> W_up_opt=std::nullopt, std::optional< std::reference_wrapper< Vec >> P_opt=std::nullopt)

Solves the elliptic Poisson equation with GMRES and multigrid preconditioner.

• PetscErrorCode const manage_pressure_x (std::optional< std::reference_wrapper< Vec >> P_opt=std ::nullopt, std::optional< std::reference_wrapper< Vec >> P_x_opt=std::nullopt)

Assembles the pressure derivative in the x-direction on the staggered grid.

PetscErrorCode const manage_pressure_y (std::optional< std::reference_wrapper< Vec >> P_opt=std
 ::nullopt, std::optional< std::reference_wrapper< Vec >> P_y_opt=std::nullopt)

Assembles the pressure derivative in the y-direction on the staggered grid.

PetscErrorCode const manage_pressure_z (std::optional< std::reference_wrapper< Vec >> P_opt=std
 ::nullopt, std::optional< std::reference_wrapper< Vec >> P_z_opt=std::nullopt)

Assembles the pressure derivative in the z-direction on the staggered grid.

~poisson_problem ()

Destructor to clean up allocated resources. required by PETSc management of native objects.

Private Member Functions

PetscErrorCode const assemble_lhs ()

Assembles the left-hand side (LHS) matrix for the Poisson problem.

PetscErrorCode const assemble_divergence (Vec &div, Vec const &U, Vec const &V, Vec const &W)

Computes the divergence term for velocity fields and outputs on dmGrid centered rich grid.

PetscErrorCode const compute_divergence (Vec &div, Vec const &U_n, Vec const &V_n, Vec const &W_n)

Assemble routines for a previously found divergence of the given velocity field and migrates it on the correct dm← Grid centered grid.

PetscErrorCode const derive_x_P (Vec &P_x_shifted, Vec const &vec)

Computes the derivative of the pressure field in the x-direction and outputes on dmGrid_centered_rich grid.

PetscErrorCode const derive_y_P (Vec &P_y_shifted, Vec const &vec)

Computes the derivative of the pressure field in the y-direction and outputes on dmGrid_centered_rich grid.

PetscErrorCode const derive_z_P (Vec &P_z_shifted, Vec const &vec)

Computes the derivative of the pressure field in the z-direction and outputes on dmGrid_centered_rich grid.

Private Attributes

DM dmGrid_staggered_x

Discretized grid for staggered x-direction.

· DM dmGrid staggered y

Discretized grid for staggered y-direction.

DM dmGrid_staggered_z

Discretized grid for staggered z-direction.

• DM dmGrid_centered

Discretized grid for centered formulation.

DM dmGrid cent rich

Refined centered grid for pressure computation.

Vec P

Pressure field.

Vec P_x

Pressure derivative in x-direction.

Vec P_y

Pressure derivative in y-direction.

Vec P z

Pressure derivative in z-direction.

Vec U_up

Velocity component in the x-direction.

Vec V_up

Velocity component in the y-direction.

Vec W_up

Velocity component in the z-direction.

Mat A

Matrix for the discretized Poisson equation.

6.8.1 Detailed Description

Represents a Poisson equation solver for pressure correction in fluid simulations.

This class solves the Poisson equation for a variabble like pressure, with homogeneous Neumann boundary conditions. It manages the assembly of matrices, calculation of divergence. In our framework, it is used to solve the pressure correction in the Navier-Stokes equations. For our purposes, enforcing compatibility condition was not required. Beware that for a stand-alone problem, compatible-to-null-bc's source must be provided.

6.8.2 Constructor & Destructor Documentation

6.8.2.1 poisson_problem() [1/2]

Constructor to initialize the Poisson problem with pre-allocated grids.

Parameters

dmGrid_staggered←	Grid for staggered x-direction.
_X	
dmGrid_staggered←	Grid for staggered y-direction.
_y	
dmGrid_staggered↔	Grid for staggered z-direction.
_Z	
dmGrid_centered	Grid for centered formulation.
dmGrid_cent_rich	Grid for refined pressure computation.

6.8.2.2 poisson_problem() [2/2]

```
poisson_problem::poisson_problem ( ) [inline]
```

6.8.2.3 ∼poisson_problem()

```
\verb"poisson_problem":: \sim \verb"poisson_problem" ( ) \quad [inline]
```

Destructor to clean up allocated resources. required by PETSc management of native objects.

6.8.3 Member Function Documentation

6.8.3.1 assemble_divergence()

Computes the divergence term for velocity fields and outputs on dmGrid_centered_rich grid.

Parameters

div	Output divergence vector.
U	Velocity component in the x-direction.
V	Velocity component in the y-direction.
W	Velocity component in the z-direction.

6.8.3.2 assemble_lhs()

6.8.3.3 compute_divergence()

Assemble routines for a previously found divergence of the given velocity field and migrates it on the correct dm← Grid_centered grid.

Parameters

	div	Output divergence vector.
	U	Velocity component in the x-direction.
	V	Velocity component in the y-direction.
ĺ	W	Velocity component in the z-direction.

6.8.3.4 derive_x_P()

```
PetscErrorCode const poisson_problem::derive_x_P (  \begin{tabular}{ll} Vec & $P\_x\_shifted,$\\ Vec const & $vec$ ) [private] \end{tabular}
```

Computes the derivative of the pressure field in the x-direction and outputes on dmGrid_centered_rich grid.

Parameters

P_x_shifted	Output shifted pressure derivative.
vec	Input pressure field.

6.8.3.5 derive_y_P()

Computes the derivative of the pressure field in the y-direction and outputes on dmGrid_centered_rich grid.

Parameters

P_y_shifted	Output shifted pressure derivative.
vec	Input pressure field.

6.8.3.6 derive_z_P()

Computes the derivative of the pressure field in the z-direction and outputes on dmGrid_centered_rich grid.

Parameters

P_z_shifted	Output shifted pressure derivative.
vec	Input vector.

6.8.3.7 exodus()

Exports simulation results in .vtk format for visualization.

6.8.3.8 manage_pressure()

```
PetscErrorCode const poisson_problem::manage_pressure (
    std::optional< std::reference_wrapper< Vec >> U_opt = std::nullopt,
    std::optional< std::reference_wrapper< Vec >> V_up_opt = std::nullopt,
    std::optional< std::reference_wrapper< Vec >> W_up_opt = std::nullopt,
    std::optional< std::reference_wrapper< Vec >> P_opt = std::nullopt)
```

Solves the elliptic Poisson equation with GMRES and multigrid preconditioner.

Parameters

U_up	Velocity field in the x-direction.
V_up	Velocity field in the y-direction.
W_up	Velocity field in the z-direction.
P	Pressure field.

6.8.3.9 manage_pressure_x()

Assembles the pressure derivative in the x-direction on the staggered grid.

Parameters

Р	Pressure field.
P⊷	Updated pressure derivative in the x-direction.
_x	

6.8.3.10 manage_pressure_y()

Assembles the pressure derivative in the y-direction on the staggered grid.

Parameters

Р	Pressure field.
P↔	Updated pressure derivative in the y-direction.
_y	

6.8.3.11 manage_pressure_z()

```
PetscErrorCode const poisson_problem::manage_pressure_z ( std::optional < std::reference\_wrapper < Vec >> P\_opt = std::nullopt, \\ std::optional < std::reference\_wrapper < Vec >> P\_z\_opt = std::nullopt )
```

Assembles the pressure derivative in the z-direction on the staggered grid.

Parameters

Р	Pressure field.
₽⊷	Updated pressure derivative in the z-direction.
_Z	

6.8.4 Member Data Documentation

6.8.4.1 A

Mat poisson_problem::A [private]

Matrix for the discretized Poisson equation.

6.8.4.2 dmGrid_cent_rich

DM poisson_problem::dmGrid_cent_rich [private] Refined centered grid for pressure computation.

6.8.4.3 dmGrid_centered

DM poisson_problem::dmGrid_centered [private] Discretized grid for centered formulation.

6.8.4.4 dmGrid staggered x

DM poisson_problem::dmGrid_staggered_x [private] Discretized grid for staggered x-direction.

6.8.4.5 dmGrid_staggered_y

DM poisson_problem::dmGrid_staggered_y [private] Discretized grid for staggered y-direction.

6.8.4.6 dmGrid_staggered_z

DM poisson_problem::dmGrid_staggered_z [private] Discretized grid for staggered z-direction.

6.8.4.7 P

Vec poisson_problem::P [private]
Pressure field.

6.8.4.8 P_x

Vec poisson_problem::P_x [private]
Pressure derivative in x-direction.

6.8.4.9 P_y

Vec poisson_problem::P_y [private]
Pressure derivative in y-direction.

6.8.4.10 P_z

Vec poisson_problem::P_z [private] Pressure derivative in z-direction.

6.8.4.11 U_up

 $\label{thm:conproblem::u_up} \mbox{ $\tt [private]$} \\ \mbox{ Velocity component in the x-direction.} \\$

6.8.4.12 V_up

Vec poisson_problem::V_up [private]
Velocity component in the y-direction.

6.8.4.13 W_up

Vec poisson_problem::W_up [private]

Velocity component in the z-direction.

The documentation for this class was generated from the following files:

- include/poisson.hpp
- src/poisson.cpp

6.9 stokes problem Class Reference

Solves the Stokes evolutionary incompressible Stokes equations, applying a first order Chorin-Temam algorithm. It consists of a parabolic problem for each velocity component, and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method.

#include <stokes.hpp>

Collaboration diagram for stokes problem:

Public Member Functions

• stokes_problem (DM const &dmGrid_staggered_x, DM const &dmGrid_staggered_y, DM const &dmGrid_staggered_z, DM const &dmGrid_centered, DM const &dmGrid_cent_rich, Vec const &U_up, Vec const &V_up, Vec const W_up)

Constructor that initializes the Stokes problem with given grids and velocity fields. This costructor has been defined for consistency and if future implementations will require solving Stokes in a broader context. For our applications only a stand-alone constructor is used.

• stokes_problem ()

Default constructor that initializes stand-alone Stokes problem with automatically created grids.

• PetscErrorCode exodus (size ti)

Exports simulation in .vtk format format for visualization of x,y,z-componets, pressure and magnitude.

PetscErrorCode const solve ()

Solves the Stokes equations leveraging parabolic_problem_x, y, z, transport_problem_x, y, z, and poisson_problem classes.

∼stokes problem ()

Destructor to clean up allocated resources. Automatically calls sub-problems destructors. After destruction, a message is printed.

Private Member Functions

• PetscErrorCode const update_velocity (PetscReal const &theta)

Updates the velocity field, opearating final pressure correction for CT scheme.

PetscErrorCode const assemble_magnitude (Vec &Magnitude_Shifted, Vec const &U, Vec const &V, Vec const &W)

Post-processing function: assembles the magnitude of velocity vectors, locating a new vector in the cell-centers.

• PetscErrorCode const compute_magnitude ()

Final assembly of magnitude vector on cell-centers.

Private Attributes

· DM dmGrid staggered x

Discretized grid for the staggered x-direction.

DM dmGrid_staggered_y

Discretized grid for the staggered y-direction.

DM dmGrid staggered z

Discretized grid for the staggered z-direction.

· DM dmGrid centered

Discretized grid for the centered formulation.

· DM dmGrid cent rich

Refined centered grid for pressure computation.

Vec P

Pressure field.

Vec P x

Pressure derivative in the x-direction.

Vec P_y

Pressure derivative in the y-direction.

Vec P_z

Pressure derivative in the z-direction.

Vec Magnitude

Magnitude of velocity vectors.

- Vec U_up
- Vec V_up
- Vec W up

Velocity fields in the x, y, and z directions.

- Vec mask U
- Vec mask V
- Vec mask_W

Mask vectors for boundary conditions.

6.9.1 Detailed Description

Solves the Stokes evolutionary incompressible Stokes equations, applying a first order Chorin-Temam algorithm. It consists of a parabolic problem for each velocity component, and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method.

6.9.2 Constructor & Destructor Documentation

6.9.2.1 stokes_problem() [1/2]

```
stokes_problem::stokes_problem (

DM const & dmGrid_staggered_x,

DM const & dmGrid_staggered_y,

DM const & dmGrid_staggered_z,

DM const & dmGrid_centered,

DM const & dmGrid_cent_rich,

Vec const & U_up,

Vec const & V_up,

Vec const W_up) [inline]
```

Constructor that initializes the Stokes problem with given grids and velocity fields. This costructor has been defined for consistency and if future implementations will require solving Stokes in a broader context. For our applications only a stand-alone constructor is used.

6.9.2.2 stokes problem() [2/2]

```
stokes_problem::stokes_problem ( ) [inline]
```

Default constructor that initializes stand-alone Stokes problem with automatically created grids.

6.9.2.3 ∼stokes_problem()

```
stokes_problem::~stokes_problem ( ) [inline]
```

Destructor to clean up allocated resources. Automatically calls sub-problems destructors. After destruction, a message is printed.

6.9.3 Member Function Documentation

6.9.3.1 assemble_magnitude()

Post-processing function: assembles the magnitude of velocity vectors, locating a new vector in the cell-centers.

Parameters

Magnitude_Shifted	Output shifted magnitude vector on dmGrid_cent_rich (dofs on faces and cell=centers.)
U	Velocity component in the x-direction.
V	Velocity component in the y-direction.
W	Velocity component in the z-direction.

6.9.3.2 compute_magnitude()

```
PetscErrorCode const stokes_problem::compute_magnitude ( ) [private] Final assembly of magnitude vector on cell-centers.
```

6.9.3.3 exodus()

Exports simulation in .vtk format for visualization of x,y,z-componets, pressure and magnitude.

6.9.3.4 solve()

```
PetscErrorCode const stokes_problem::solve ( )
```

Solves the Stokes equations leveraging parabolic_problem_x, y, z, transport_problem_x, y, z, and poisson_problem classes.

6.9.3.5 update_velocity()

Updates the velocity field, opearating final pressure correction for CT scheme.

6.9.4 Member Data Documentation

6.9.4.1 dmGrid_cent_rich

```
DM stokes_problem::dmGrid_cent_rich [private]
```

Refined centered grid for pressure computation.

6.9.4.2 dmGrid_centered

```
DM stokes_problem::dmGrid_centered [private] Discretized grid for the centered formulation.
```

6.9.4.3 dmGrid_staggered_x

```
DM stokes_problem::dmGrid_staggered_x [private] Discretized grid for the staggered x-direction.
```

6.9.4.4 dmGrid_staggered_y

```
DM stokes_problem::dmGrid_staggered_y [private] Discretized grid for the staggered y-direction.
```

6.9.4.5 dmGrid_staggered_z

```
\begin{tabular}{ll} $\tt DM$ stokes\_problem::dmGrid\_staggered\_z & [private] \\ \hline \textbf{Discretized grid for the staggered z-direction}. \\ \end{tabular}
```

6.9.4.6 Magnitude

```
Vec stokes_problem::Magnitude [private]
Magnitude of velocity vectors.
```

6.9.4.7 mask_U

Vec stokes_problem::mask_U [private]

6.9.4.8 mask_V

Vec stokes_problem::mask_V [private]

6.9.4.9 mask W

Vec stokes_problem::mask_W [private]
Mask vectors for boundary conditions.

6.9.4.10 P

Vec stokes_problem::P [private]
Pressure field.

6.9.4.11 P_x

Vec stokes_problem::P_x [private] Pressure derivative in the x-direction.

6.9.4.12 P_y

Vec stokes_problem::P_y [private] Pressure derivative in the y-direction.

6.9.4.13 P_z

Vec stokes_problem::P_z [private] Pressure derivative in the z-direction.

6.9.4.14 U_up

Vec stokes_problem::U_up [private]

6.9.4.15 V_up

Vec stokes_problem::V_up [private]

6.9.4.16 W_up

 $\label{thm:w_up} \mbox{ Vec stokes_problem::} \mbox{\mathbb{W}_up $ [private]$}$

Velocity fields in the x, y, and z directions.

The documentation for this class was generated from the following files:

- include/stokes.hpp
- src/stokes.cpp

6.10 transport problem x Class Reference

Represents a transport problem in the x-direction.

#include <transport.hpp>

Collaboration diagram for transport_problem_x:

Public Member Functions

- transport_problem_x (DM const &dmGrid_Shifted, DM const &dmGrid_Staggered, DM const &dmGrid_Centered)

 Constructor initializing the transport problem with given grids.
- transport problem x ()

Default constructor for stand-alone transport problem.

• PetscErrorCode const solve_step_x (PetscScalar const &theta, std::optional< std::reference_wrapper< Vec >> U_n_opt=std::nullopt, std::optional< std::reference_wrapper< Vec >> V_n_opt=std::nullopt, std⇔ ::optional< std::reference_wrapper< Vec >> W_n_opt=std::nullopt)

Performs a single time step for solving the transport equation.

~transport_problem_x ()

Destructor to clean up allocated resources.

Protected Member Functions

• PetscErrorCode FirstShiftU_y (Vec &UShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for x-component in a 3D transport non-linear problem in the y-direction. Interpolates velocity component on edges.

PetscErrorCode FirstShiftU_z (Vec &UShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for x-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

PetscErrorCode FirstShiftV_y (Vec &VShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for y-component in a 3D transport non-linear problem in the y-direction. Interpolates velocity component on edges.

PetscErrorCode FirstShiftW_z (Vec &WShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for z-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

PetscErrorCode FirstDerive y (Vec &AB y, Vec const &AB)

Computes the first derivative in the y-direction, placing the result on faces.

PetscErrorCode FirstDerive z (Vec &AB z, Vec const &AB)

Computes the first derivative in the z-direction, placing the result on faces.

PetscErrorCode CenterU (Vec &UCenter, Vec const &vec, PetscReal const &theta)

Centers the x-velocity component in cell-centers.

PetscErrorCode Derive_x (Vec &U2_x, Vec const &vec, PetscReal const &theta)

Computes the first derivative in the x-direction, placing the result on faces.

Protected Attributes

· DM dmGrid Shifted

DMGrid with dofs on faces and edges.

DM dmGrid_Staggered

DMGrid with dofs of faces.

· DM dmGrid Centered

DMGrid with dofs of faces and centers.

- Vec U n
- Vec V_n
- Vec W_n

Velocity fields at the current time step.

- Vec mask U
- Vec mask V
- Vec mask_W

Mask vectors for boundary conditions.

6.10.1 Detailed Description

Represents a transport problem in the x-direction.

This class solves an advection-transport problem in the x-direction using 2nd order centered differences and a fully explicit approach.

6.10.2 Constructor & Destructor Documentation

6.10.2.1 transport_problem_x() [1/2]

Constructor initializing the transport problem with given grids.

6.10.2.2 transport_problem_x() [2/2]

```
transport_problem_x::transport_problem_x () [inline]
Default constructor for stand-alone transport problem.
```

6.10.2.3 ∼transport_problem_x()

```
\label{transport_problem_x:=} $$\operatorname{Destructor} \ to \ clean \ up \ allocated \ resources.
```

6.10.3 Member Function Documentation

6.10.3.1 CenterU()

Centers the x-velocity component in cell-centers.

6.10.3.2 Derive_x()

Computes the first derivative in the x-direction, placing the result on faces.

6.10.3.3 FirstDerive_y()

Computes the first derivative in the y-direction, placing the result on faces.

6.10.3.4 FirstDerive_z()

Computes the first derivative in the z-direction, placing the result on faces.

6.10.3.5 FirstShiftU_y()

Performs the shift for x-component in a 3D transport non-linear problem in the y-direction. Interpolates velocity component on edges.

6.10.3.6 FirstShiftU_z()

Performs the shift for x-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

6.10.3.7 FirstShiftV y()

Performs the shift for y-component in a 3D transport non-linear problem in the y-direction. Interpolates velocity component on edges.

6.10.3.8 FirstShiftW_z()

Performs the shift for z-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

6.10.3.9 solve_step_x()

Performs a single time step for solving the transport equation.

6.10.4 Member Data Documentation

6.10.4.1 dmGrid_Centered

```
DM transport_problem_x::dmGrid_Centered [protected] DMGrid with dofs of faces and centers.
```

60 Class Documentation

6.10.4.2 dmGrid_Shifted

DM transport_problem_x::dmGrid_Shifted [protected] DMGrid with dofs on faces and edges.

6.10.4.3 dmGrid_Staggered

DM transport_problem_x::dmGrid_Staggered [protected] DMGrid with dofs of faces.

6.10.4.4 mask_U

Vec transport_problem_x::mask_U [protected]

6.10.4.5 mask_V

Vec transport_problem_x::mask_V [protected]

6.10.4.6 mask_W

Vec transport_problem_x::mask_W [protected] Mask vectors for boundary conditions.

6.10.4.7 U_n

Vec transport_problem_x::U_n [protected]

6.10.4.8 V_n

Vec transport_problem_x::V_n [protected]

6.10.4.9 W_n

 $\label{temport_problem_x::W_n} \mbox{ [protected]}$

Velocity fields at the current time step.

The documentation for this class was generated from the following files:

- · include/transport.hpp
- src/transport.cpp

6.11 transport_problem_y Class Reference

Represents a transport problem in the y-direction.

#include <transport.hpp>

Collaboration diagram for transport_problem_y:

Public Member Functions

- transport_problem_y (DM const &dmGrid_Shifted, DM const &dmGrid_Staggered, DM const &dmGrid_Centered)

 Constructor initializing the transport problem with given grids.
- transport_problem_y ()

Default constructor for stand-alone transport problem.

PetscErrorCode const solve_step_y (PetscScalar const &theta, std::optional< std::reference_wrapper
 Vec >> U_n_opt=std::nullopt, std::optional< std::reference_wrapper
 Vec >> V_n_opt=std::nullopt, std
 ::optional< std::reference wrapper
 Vec >> W n opt=std::nullopt)

Performs a single time step for solving the transport equation.

∼transport_problem_y ()

Destructor to clean up allocated resources.

Protected Member Functions

• PetscErrorCode FirstShiftU_y (Vec &UShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for x-component in a 3D transport non-linear problem in the y-direction. Interpolates velocity component on edges.

62 Class Documentation

• PetscErrorCode FirstShiftV_y (Vec &VShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for y-component in a 3D transport non-linear problem in the y-direction. Interpolates velocity component on edges.

• PetscErrorCode SecondShiftV z (Vec &VShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for y-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

• PetscErrorCode SecondShiftW z (Vec &WShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for z-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

PetscErrorCode SecondDerive x (Vec &AB x, Vec const &AB)

Computes the first derivative in the x-direction, placing the result on faces.

PetscErrorCode SecondDerive_z (Vec &AB_z, Vec const &AB)

Computes the first derivative in the z-direction, placing the result on faces.

PetscErrorCode CenterV (Vec &VCenter, Vec const &vec, PetscReal const &theta)

Centers the y-velocity component in cell-centers.

• PetscErrorCode Derive_y (Vec &V2_y, Vec const &vec, PetscReal const &theta)

Computes the first derivative in the y-direction, placing the result on faces.

Protected Attributes

· DM dmGrid_Shifted

DMGrid with dofs on faces and edges.

· DM dmGrid_Staggered

DMGrid with dofs of faces.

· DM dmGrid Centered

DMGrid with dofs of faces and centers.

- Vec U n
- Vec V n
- Vec W n

Velocity fields at the current time step.

- Vec mask U
- Vec mask V
- · Vec mask W

Mask vectors for boundary conditions.

6.11.1 Detailed Description

Represents a transport problem in the y-direction.

This class solves an advection-transport problem in the y-direction using 2nd order centered differences and a fully explicit approach.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 transport_problem_y() [1/2]

Constructor initializing the transport problem with given grids.

6.11.2.2 transport_problem_y() [2/2]

```
transport_problem_y::transport_problem_y () [inline]
Default constructor for stand-alone transport problem.
```

6.11.2.3 ∼transport_problem_y()

```
\label{transport_problem_y::} $$\operatorname{Destructor} \ to \ clean \ up \ allocated \ resources.
```

6.11.3 Member Function Documentation

6.11.3.1 CenterV()

Centers the y-velocity component in cell-centers.

6.11.3.2 Derive_y()

Computes the first derivative in the y-direction, placing the result on faces.

6.11.3.3 FirstShiftU_y()

Performs the shift for x-component in a 3D transport non-linear problem in the y-direction. Interpolates velocity component on edges.

6.11.3.4 FirstShiftV_y()

Performs the shift for y-component in a 3D transport non-linear problem in the y-direction. Interpolates velocity component on edges.

6.11.3.5 SecondDerive_x()

Computes the first derivative in the x-direction, placing the result on faces.

64 Class Documentation

6.11.3.6 SecondDerive_z()

Computes the first derivative in the z-direction, placing the result on faces.

6.11.3.7 SecondShiftV z()

Performs the shift for y-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

6.11.3.8 SecondShiftW_z()

Performs the shift for z-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

6.11.3.9 solve_step_y()

```
PetscErrorCode const transport_problem_y::solve_step_y (

PetscScalar const & theta,

std::optional< std::reference_wrapper< Vec >> U_n_opt = std::nullopt,

std::optional< std::reference_wrapper< Vec >> V_n_opt = std::nullopt,

std::optional< std::reference_wrapper< Vec >> W_n_opt = std::nullopt)
```

Performs a single time step for solving the transport equation.

6.11.4 Member Data Documentation

6.11.4.1 dmGrid_Centered

```
DM transport_problem_y::dmGrid_Centered [protected] DMGrid with dofs of faces and centers.
```

6.11.4.2 dmGrid Shifted

```
DM transport_problem_y::dmGrid_Shifted [protected] DMGrid with dofs on faces and edges.
```

6.11.4.3 dmGrid_Staggered

```
DM transport_problem_y::dmGrid_Staggered [protected] DMGrid with dofs of faces.
```

6.11.4.4 mask_U

Vec transport_problem_y::mask_U [protected]

6.11.4.5 mask_V

Vec transport_problem_y::mask_V [protected]

6.11.4.6 mask_W

Vec transport_problem_y::mask_W [protected] Mask vectors for boundary conditions.

6.11.4.7 U_n

Vec transport_problem_y::U_n [protected]

6.11.4.8 V_n

Vec transport_problem_y::V_n [protected]

6.11.4.9 W_n

 $\label{temport_problem_y::W_n} \mbox{ [protected]}$

Velocity fields at the current time step.

The documentation for this class was generated from the following files:

- include/transport.hpp
- src/transport.cpp

6.12 transport_problem_z Class Reference

Represents a transport problem in the z-direction.

#include <transport.hpp>

66 Class Documentation

Collaboration diagram for transport_problem_z:

Public Member Functions

- transport_problem_z (DM const &dmGrid_Shifted, DM const &dmGrid_Staggered, DM const &dmGrid_Centered)

 Constructor initializing the transport problem with given grids.
- transport_problem_z ()

Default constructor for stand-alone transport problem.

PetscErrorCode const solve_step_z (PetscScalar const &theta, std::optional< std::reference_wrapper
 Vec >> U_n_opt=std::nullopt, std::optional< std::reference_wrapper
 Vec >> V_n_opt=std::nullopt, std
 ::optional< std::reference wrapper
 Vec >> W n opt=std::nullopt)

Performs a single time step for solving the transport equation.

∼transport_problem_z ()

Destructor to clean up allocated resources.

Protected Member Functions

• PetscErrorCode FirstShiftU_z (Vec &UShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for x-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

• PetscErrorCode FirstShiftW_z (Vec &WShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for z-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

• PetscErrorCode SecondShiftV z (Vec &VShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for y-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

• PetscErrorCode SecondShiftW_z (Vec &WShifted, Vec const &vec, PetscScalar const &theta)

Performs the shift for z-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

• PetscErrorCode ThirdDerive x (Vec &AB x, Vec const &AB)

Computes the first derivative in the x-direction, placing the result on faces.

PetscErrorCode ThirdDerive_y (Vec &AB_y, Vec const &AB)

Computes the first derivative in the y-direction, placing the result on faces.

PetscErrorCode CenterW (Vec &WCenter, Vec const &vec, PetscReal const &theta)

Centers the z-velocity component in cell-centers.

• PetscErrorCode Derive_z (Vec &W2_z, Vec const &vec, PetscReal const &theta)

Computes the first derivative in the z-direction, placing the result on faces.

Protected Attributes

· DM dmGrid_Shifted

DMGrid with dofs on faces and edges.

· DM dmGrid_Staggered

DMGrid with dofs of faces.

DM dmGrid Centered

DMGrid with dofs of faces and centers.

- Vec U n
- Vec V n
- Vec W n

Velocity fields at the current time step.

- Vec mask U
- Vec mask V
- · Vec mask W

Mask vectors for boundary conditions.

6.12.1 Detailed Description

Represents a transport problem in the z-direction.

This class solves an advection-transport problem in the z-direction using 2nd order centered differences and a fully explicit approach.

6.12.2 Constructor & Destructor Documentation

6.12.2.1 transport_problem_z() [1/2]

Constructor initializing the transport problem with given grids.

68 Class Documentation

6.12.2.2 transport_problem_z() [2/2]

```
transport_problem_z::transport_problem_z ( ) [inline]
Default constructor for stand-alone transport problem.
```

6.12.2.3 ∼transport_problem_z()

```
\label{transport_problem_z:=} $$\operatorname{Destructor} \ to \ clean \ up \ allocated \ resources.
```

6.12.3 Member Function Documentation

6.12.3.1 CenterW()

Centers the z-velocity component in cell-centers.

6.12.3.2 Derive z()

Computes the first derivative in the z-direction, placing the result on faces.

6.12.3.3 FirstShiftU_z()

Performs the shift for x-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

6.12.3.4 FirstShiftW_z()

Performs the shift for z-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

6.12.3.5 SecondShiftV_z()

Performs the shift for y-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

6.12.3.6 SecondShiftW_z()

Performs the shift for z-component in a 3D transport non-linear problem in the z-direction. Interpolates velocity component on edges.

6.12.3.7 solve_step_z()

```
PetscErrorCode const transport_problem_z::solve_step_z (

PetscScalar const & theta,

std::optional < std::reference_wrapper < Vec >> U_n_opt = std::nullopt,

std::optional < std::reference_wrapper < Vec >> V_n_opt = std::nullopt,

std::optional < std::reference_wrapper < Vec >> W_n_opt = std::nullopt)
```

Performs a single time step for solving the transport equation.

6.12.3.8 ThirdDerive_x()

Computes the first derivative in the x-direction, placing the result on faces.

6.12.3.9 ThirdDerive_y()

Computes the first derivative in the y-direction, placing the result on faces.

6.12.4 Member Data Documentation

6.12.4.1 dmGrid Centered

```
DM transport_problem_z::dmGrid_Centered [protected] DMGrid with dofs of faces and centers.
```

6.12.4.2 dmGrid Shifted

```
DM transport_problem_z::dmGrid_Shifted [protected] DMGrid with dofs on faces and edges.
```

6.12.4.3 dmGrid_Staggered

```
DM transport_problem_z::dmGrid_Staggered [protected] DMGrid with dofs of faces.
```

70 Class Documentation

6.12.4.4 mask_U

Vec transport_problem_z::mask_U [protected]

6.12.4.5 mask_V

Vec transport_problem_z::mask_V [protected]

6.12.4.6 mask_W

Vec transport_problem_z::mask_W [protected] Mask vectors for boundary conditions.

6.12.4.7 U_n

Vec transport_problem_z::U_n [protected]

6.12.4.8 V_n

 $\label{lem_z::V_n} \mbox{Vec transport_problem_z::V_n} \quad [\mbox{protected}]$

6.12.4.9 W_n

 $\label{lem_z::w_n} \mbox{Vec transport_problem_z::} \mbox{\mathbb{W}_n$} \quad [\mbox{protected}]$

Velocity fields at the current time step.

The documentation for this class was generated from the following files:

- include/transport.hpp
- src/transport.cpp

Chapter 7

File Documentation

7.1 config problem.hpp File Reference

Configuration file for setting up problem parameters.

#include "macros.hpp"

Include dependency graph for config_problem.hpp:

This graph shows which files directly or indirectly include this file:

Namespaces

· problem_setting

Functions

• constexpr PetscReal problem_setting::uxRef (PetscReal const &x, PetscReal const &y, PetscReal const &z, PetscReal const &theta)

Computes the reference solution for the problem in the x-direction.

• constexpr PetscReal problem_setting::uyRef (PetscReal const &x, PetscReal const &y, PetscReal const &z, PetscReal const &theta)

Computes the reference solution for the problem in the y-direction.

 constexpr PetscReal problem_setting::uzRef (PetscReal const &x, PetscReal const &y, PetscReal const &z, PetscReal const &theta)

Computes the reference solution for the problem in the z-direction.

 constexpr PetscReal problem_setting::pRef (PetscReal const &x, PetscReal const &y, PetscReal const &z, PetscReal const &theta)

Variables

constexpr const char * problem_setting::problem_type = "navier_stokes"

Set the problem type. Possible values are "navier_stokes", "stokes", "euler", "advection_diffusion", "parabolic_x", "parabolic_y", "parabolic_z", "transport_x", "transport_y", "transport_z".

constexpr const char * problem setting::base path = "results/"

Set this as base path to store results. Default is "results/".

constexpr bool problem_setting::brinkman {false}

Set flag to (dis)able brinkman penalization. Required for complex geometry handling.

constexpr bool problem_setting::monitor_convergence {true}

Set flag to (dis)able convergence error of KSP solver.

constexpr bool problem_setting::check_convergence {true}

Set flag to (dis)able convergence error of variable. Only implemented for NAvier-Stokes and parabolic problems.

constexpr PetscInt problem_setting::nx {32}

Set the number of elements in x-direction.

constexpr PetscInt problem_setting::ny {32}

Set the number of elements in y-direction.

constexpr PetscInt problem setting::nz {32}

Set the number of elements in z-direction.

constexpr PetscReal problem_setting::Lx_0 {-0.5}

Set the domain limits in x, y and z directions.

- constexpr PetscReal problem_setting::Ly_0 {-0.5}
- constexpr PetscReal problem_setting::Lz_0 {-0.5}
- constexpr PetscReal problem_setting::Lx {0.5}
- constexpr PetscReal problem_setting::Ly {0.5}
- constexpr PetscReal problem_setting::Lz {0.5}
- constexpr PetscReal problem_setting::dt {0.00625/2}

Set time-step.

constexpr PetscReal problem_setting::iter {32}

Set final time.

PetscReal problem_setting::theta

Set starting time.

• constexpr PetscReal problem_setting::Re {1}

Set Reynolds number. For non advective problems, set mu = 1/Re (adimensional framework)

constexpr PetscReal problem_setting::a = pi / 4

Set flow parameters. You can declare as many constexpr variables as you need.

constexpr PetscReal problem_setting::d = 1.5 * pi

7.1.1 Detailed Description

Configuration file for setting up problem parameters.

This file defines the parameters for simulations. Before starting any simulation, careful consideration of the parameters is required. It is recommended to work in a dimensionless framework.

7.2 include/advection_diffusion.hpp File Reference

#include "parabolic.hpp"
#include "transport.hpp"

Include dependency graph for advection_diffusion.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class advection_diffusion_problem

Macros

• #define ADVECTION DIFFUSION PROBLEM HPP

7.2.1 Macro Definition Documentation

7.2.1.1 ADVECTION_DIFFUSION_PROBLEM_HPP

#define ADVECTION_DIFFUSION_PROBLEM_HPP

7.3 include/inviscid_euler.hpp File Reference

#include "transport.hpp"
#include "poisson.hpp"

Include dependency graph for inviscid_euler.hpp:

This graph shows which files directly or indirectly include this file:

Classes

· class euler_problem

Solves the Euler evolutionary incompressible equations, applying a first order Chorin-Temam algorithm. It consists of a transport problem for each velocity component and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation DOES NOT ALLOW for Brinkamn penalty method.

Macros

• #define EULER PROBLEM HPP

7.3.1 Macro Definition Documentation

7.3.1.1 EULER_PROBLEM_HPP

#define EULER_PROBLEM_HPP

7.4 include/macros.hpp File Reference

```
#include <chrono>
#include <iostream>
#include <limits>
#include <optional>
#include <petscdmstag.h>
#include <petscksp.h>
#include <petscmat.h>
#include <vtkSTLReader.h>
Include dependency graph for macros.hpp:
```


This graph shows which files directly or indirectly include this file:

Macros

- #define BACK_DOWN DMSTAG_BACK_DOWN
- #define BACK LEFT DMSTAG BACK LEFT
- #define BACK DMSTAG_BACK
- #define BACK_RIGHT DMSTAG_BACK_RIGHT
- #define BACK_UP DMSTAG_BACK_UP
- #define DOWN_LEFT DMSTAG_DOWN_LEFT
- #define DOWN DMSTAG_DOWN
- #define DOWN_RIGHT DMSTAG_DOWN_RIGHT
- #define LEFT DMSTAG LEFT
- #define **ELEMENT** DMSTAG_ELEMENT
- #define RIGHT DMSTAG_RIGHT
- #define UP_LEFT DMSTAG_UP_LEFT
- #define UP DMSTAG_UP
- #define UP_RIGHT DMSTAG_UP_RIGHT
- #define FRONT_DOWN DMSTAG_FRONT_DOWN
- #define FRONT_LEFT DMSTAG_FRONT_LEFT
- #define FRONT DMSTAG_FRONT
- #define FRONT_RIGHT DMSTAG_FRONT_RIGHT
- #define FRONT_UP DMSTAG_FRONT_UP

Variables

• constexpr PetscReal pi = 3.14159265358979323846

The mathematical constant pi.

• constexpr PetscReal eps =1e6

A large numerical value used as an approximation for Brinkman flow penalization parameter.

7.4.1 Macro Definition Documentation

7.4.1.1 BACK

#define BACK DMSTAG_BACK

7.4.1.2 BACK DOWN

#define BACK_DOWN DMSTAG_BACK_DOWN

7.4.1.3 BACK_LEFT

#define BACK_LEFT DMSTAG_BACK_LEFT

7.4.1.4 BACK_RIGHT

#define BACK_RIGHT DMSTAG_BACK_RIGHT

7.4.1.5 BACK_UP

#define BACK_UP DMSTAG_BACK_UP

7.4.1.6 DOWN

#define DOWN DMSTAG_DOWN

7.4.1.7 DOWN_LEFT

#define DOWN_LEFT DMSTAG_DOWN_LEFT

7.4.1.8 DOWN_RIGHT

#define DOWN_RIGHT DMSTAG_DOWN_RIGHT

7.4.1.9 **ELEMENT**

#define ELEMENT DMSTAG_ELEMENT

7.4.1.10 FRONT

#define FRONT DMSTAG_FRONT

7.4.1.11 FRONT_DOWN

#define FRONT_DOWN DMSTAG_FRONT_DOWN

7.4.1.12 FRONT_LEFT

#define FRONT_LEFT DMSTAG_FRONT_LEFT

7.4.1.13 FRONT_RIGHT

#define FRONT_RIGHT DMSTAG_FRONT_RIGHT

7.4.1.14 FRONT_UP

#define FRONT_UP DMSTAG_FRONT_UP

7.4.1.15 LEFT

#define LEFT DMSTAG_LEFT

7.4.1.16 RIGHT

#define RIGHT DMSTAG_RIGHT

7.4.1.17 UP

#define UP DMSTAG_UP

7.4.1.18 UP_LEFT

#define UP_LEFT DMSTAG_UP_LEFT

7.4.1.19 UP_RIGHT

#define UP_RIGHT DMSTAG_UP_RIGHT

7.4.2 Variable Documentation

7.4.2.1 eps

constexpr PetscReal eps =1e6 [constexpr]

A large numerical value used as an approximation for Brinkman flow penalization parameter.

7.4.2.2 pi

constexpr PetscReal pi = 3.14159265358979323846 [constexpr]

The mathematical constant pi.

7.5 include/navier stokes.hpp File Reference

```
#include "parabolic.hpp"
#include "transport.hpp"
#include "poisson.hpp"
```

Include dependency graph for navier_stokes.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class navier_stokes_problem

Solves the Navier-Stokes evolutionary incompressible Navier-Stokes equations, applying a first order Chorin-Temam algorithm. It consists of a transport problem for each velocity component, a parabolic problem for each velocity component, and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method.

7.6 include/parabolic.hpp File Reference

#include "utils.hpp"

Include dependency graph for parabolic.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class parabolic_problem_x

Represents a parabolic problem in the x-direction.

class parabolic_problem_y

Represents a parabolic problem in the y-direction.

• class parabolic_problem_z

Represents a parabolic problem in the z-direction.

Macros

- #define PARABOLIC_PROBLEM_Y_HPP
- #define PARABOLIC_PROBLEM_Z_HPP

7.6.1 Macro Definition Documentation

7.6.1.1 PARABOLIC_PROBLEM_Y_HPP

#define PARABOLIC_PROBLEM_Y_HPP

7.6.1.2 PARABOLIC_PROBLEM_Z_HPP

#define PARABOLIC_PROBLEM_Z_HPP

7.7 include/poisson.hpp File Reference

#include "utils.hpp"
Include dependency graph for poisson.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class poisson_problem

Represents a Poisson equation solver for pressure correction in fluid simulations.

7.8 include/stokes.hpp File Reference

#include "parabolic.hpp"
#include "poisson.hpp"

Include dependency graph for stokes.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class stokes_problem

Solves the Stokes evolutionary incompressible Stokes equations, applying a first order Chorin-Temam algorithm. It consists of a parabolic problem for each velocity component, and a Poisson problem for the pressure. Current implementation allows Dirichlet bc's only. Boundary conditions are accessed from reference solution, which is a function of space and time. Current implementation allows for Brinkamn penalty method.

7.9 include/transport.hpp File Reference

#include "utils.hpp"

Include dependency graph for transport.hpp:

This graph shows which files directly or indirectly include this file:

Classes

- · class transport problem x
 - Represents a transport problem in the x-direction.
- class transport_problem_y
 - Represents a transport problem in the y-direction.
- · class transport problem z

Represents a transport problem in the z-direction.

Macros

- #define TRANSPORT_PROBLEM_Y_HPP
- #define TRANSPORT PROBLEM Z HPP

7.9.1 Macro Definition Documentation

7.9.1.1 TRANSPORT_PROBLEM_Y_HPP

#define TRANSPORT_PROBLEM_Y_HPP

7.9.1.2 TRANSPORT_PROBLEM_Z_HPP

#define TRANSPORT_PROBLEM_Z_HPP

7.10 include/utils.hpp File Reference

Utility functions for grid creation, analytical solutions, and geometric operations.

#include "config_problem.hpp"

Include dependency graph for utils.hpp:

This graph shows which files directly or indirectly include this file:

Functions

- PetscErrorCode CheckSolution (Vec const &sol, Vec const &solRef, std::string const &comp)
 - Checks the difference between a computed solution and a reference solution and evaulates L2-norm.
- PetscErrorCode CreateAnalyticalU (DM const &dmGrid, Vec &vec, PetscReal const &theta)
 - Creates an analytical solution on a staggered grid in the x-direction (dofs in position LEFT and RIGHT)
- PetscErrorCode CreateAnalyticalV (DM const &dmGrid, Vec &vec, PetscReal const &theta)
 - Creates an analytical solution on a staggered grid in the y-direction (dofs in position DOWN and UP)
- PetscErrorCode CreateAnalyticalW (DM const &dmGrid, Vec &vec, PetscReal const &theta)
 - Creates an analytical solution on a staggered grid in the z-direction (dofs in position BACK and FRONT)
- PetscErrorCode CreateGrid (DM *const dmGrid, PetscInt const &dof1, PetscInt const &dof2, PetscInt const &dof3)

Creates a computational grid for simulation. Allows to specify dofs ONLY on edges, faces and cell-cenetrs. Pass 0 to not allow dofs in some position, 1 allocate dofs.

- PetscErrorCode CreateAnalyticalP (DM const &dmGrid, Vec &vec, PetscReal const &theta)
- void PrintSimulationParameters ()

Prints the simulation parameters to the console.

bool rayIntersectsTriangle (const std::array< double, 3 > &rayOrigin, const std::array< double, 3 > &ray←
 Vector, const std::array< double, 3 > &v1, const std::array< double, 3 > &v2)

Checks if a ray intersects with a triangle in 3D space (part of ray-casting algorithm to create Brinkman masks)

bool isPointInsideMesh (const std::array< double, 3 > &point, const std::vector< std::array< double, 3 >> &vertices, const std::vector< std::array< int, 3 >> &faces)

Determines if a point is inside a 3D mesh.

Reads a mesh file and extracts vertices and faces.

PetscErrorCode createMaskU (DM const &dmGrid, Vec &vec_stag, std::vector< std::array< double, 3 >> const &vertices, std::vector< std::array< int, 3 >> const &faces)

Creates a mask for the x-component component.

PetscErrorCode createMaskV (DM const &dmGrid, Vec &vec_stag, std::vector< std::array< double, 3 >> const &vertices, std::vector< std::array< int, 3 >> const &faces)

Creates a mask for the y-component component.

PetscErrorCode createMaskW (DM const &dmGrid, Vec &vec_stag, std::vector< std::array< double, 3 >> const &vertices, std::vector< std::array< int, 3 >> const &faces)

Creates a mask for the z-component component.

Variables

```
    constexpr PetscReal D_x {Lx - Lx_0}
```

Domain length in the x-direction.

constexpr PetscReal D_y {Ly - Ly_0}

Domain length in the y-direction.

• constexpr PetscReal D_z {Lz - Lz_0}

Domain length in the z-direction.

std::vector< std::array< double, 3 >> vertices

List of mesh vertices.

• std::vector< std::array< int, 3 >> faces

List of mesh faces.

std::string filename

Filename of the geometry file.

7.10.1 Detailed Description

Utility functions for grid creation, analytical solutions, and geometric operations. This file contains various utility functions used in numerical simulations, including:

- · Functions for generating analytical velocity solutions.
- · Grid creation and setup.
- Mesh operations such as point-in-mesh checks and ray-triangle intersections.
- · Functions for creating Brinkman masks.

7.10.2 Function Documentation

7.10.2.1 CheckSolution()

```
PetscErrorCode CheckSolution (

Vec const & sol,

Vec const & solRef,

std::string const & comp)
```

Checks the difference between a computed solution and a reference solution and evaulates L2-norm.

Parameters

sol	Computed solution vector.
solRef	Reference solution vector.

7.10.2.2 CreateAnalyticalP()

```
PetscErrorCode CreateAnalyticalP (

DM const & dmGrid,

Vec & vec,

PetscReal const & theta)
```

7.10.2.3 CreateAnalyticalU()

```
PetscErrorCode CreateAnalyticalU (

DM const & dmGrid,

Vec & vec,

PetscReal const & theta)
```

Creates an analytical solution on a staggered grid in the x-direction (dofs in position LEFT and RIGHT)

Parameters

dmGrid	Discretized grid.
vec	Output velocity field.

7.10.2.4 CreateAnalyticalV()

Creates an analytical solution on a staggered grid in the y-direction (dofs in position DOWN and UP)

Parameters

dmGrid	Discretized grid.
vec	Output velocity field.

7.10.2.5 CreateAnalyticalW()

```
PetscErrorCode CreateAnalyticalW (

DM const & dmGrid,

Vec & vec,

PetscReal const & theta)
```

Creates an analytical solution on a staggered grid in the z-direction (dofs in position BACK and FRONT)

Parameters

dmGrid	Discretized grid.
vec	Output velocity field.

7.10.2.6 CreateGrid()

```
PetscInt const & dof2,
PetscInt const & dof3)
```

Creates a computational grid for simulation. Allows to specify dofs ONLY on edges, faces and cell-cenetrs. Pass 0 to not allow dofs in some position, 1 allocate dofs.

Parameters

dmGrid	Pointer to the grid.
dof1	Degrees of freedom on edges.
dof2	Degrees of freedom of faces.
dof3	Degrees of freedom at cell-ceneters.

7.10.2.7 createMaskU()

```
PetscErrorCode createMaskU (
          DM const & dmGrid,
          Vec & vec_stag,
          std::vector< std::array< double, 3 >> const & vertices,
          std::vector< std::array< int, 3 >> const & faces )
```

Creates a mask for the x-component component.

Parameters

dmGrid	Discretized grid.
vec_stag	Output mask vector.
vertices	List of mesh vertices.
faces	List of mesh faces.

7.10.2.8 createMaskV()

```
PetscErrorCode createMaskV (
          DM const & dmGrid,
          Vec & vec_stag,
          std::vector< std::array< double, 3 >> const & vertices,
          std::vector< std::array< int, 3 >> const & faces )
```

Creates a mask for the y-component component.

Parameters

dmGrid	Discretized grid.
vec_stag	Output mask vector.
vertices	List of mesh vertices.
faces	List of mesh faces.

7.10.2.9 createMaskW()

```
PetscErrorCode createMaskW (
          DM const & dmGrid,
          Vec & vec_stag,
          std::vector< std::array< double, 3 >> const & vertices,
```

```
std::vector< std::array< int, 3 >> const & faces )
```

Creates a mask for the z-component component.

Parameters

dmGrid	Discretized grid.
vec_stag	Output mask vector.
vertices	List of mesh vertices.
faces	List of mesh faces.

7.10.2.10 isPointInsideMesh()

Determines if a point is inside a 3D mesh.

Parameters

point	The point to be checked.
vertices	List of vertices of the mesh.
faces	List of faces of the mesh.

Returns

True if the point is inside the mesh, false otherwise.

7.10.2.11 PrintSimulationParameters()

```
void PrintSimulationParameters ( )
```

Prints the simulation parameters to the console.

7.10.2.12 rayIntersectsTriangle()

Checks if a ray intersects with a triangle in 3D space (part of ray-casting algorithm to create Brinkman masks)

Parameters

rayOrigin	Starting point of the ray.
rayVector	Direction of the ray.
v0	First vertex of the triangle.
v1	Second vertex of the triangle.
v2	Third vertex of the triangle.

Returns

True if the ray intersects the triangle, false otherwise.

7.10.2.13 reader()

Reads a mesh file and extracts vertices and faces.

Parameters

filename	The name of the mesh file.
vertices	Output list of vertices.
faces	Output list of faces.

7.10.3 Variable Documentation

7.10.3.1 D_x

```
\label{local_constexpr} \mbox{ Constexpr PetscReal D_x {Lx - Lx_0} [constexpr] } \mbox{ Domain length in the x-direction.}
```

7.10.3.2 D_y

```
\label{local_constexpr} \mbox{ Constexpr PetscReal D_y {Ly - Ly_0} [constexpr] } \mbox{ Domain length in the y-direction.}
```

7.10.3.3 D_z

```
\label{local_constexpr} \mbox{ Constexpr PetscReal D_z \{Lz - Lz\_0\} } \mbox{ [constexpr]} \\ \mbox{ Domain length in the z-direction.}
```

7.10.3.4 faces

```
std::vector<std::array<int, 3> > faces [inline]
List of mesh faces.
```

7.10.3.5 filename

```
std::string filename [inline]
Filename of the geometry file.
```

7.10.3.6 vertices

```
std::vector<std::array<double, 3> > vertices [inline]
List of mesh vertices.
```

7.11 README.md File Reference

7.12 src/advection_diffusion.cpp File Reference

#include "advection_diffusion.hpp"
Include dependency graph for advection_diffusion.cpp:

7.13 src/inviscid_euler.cpp File Reference

#include "inviscid_euler.hpp"
Include dependency graph for inviscid_euler.cpp:

7.14 src/main.cpp File Reference

#include "navier_stokes.hpp"
#include "inviscid_euler.hpp"
#include "stokes.hpp"

#include "advection_diffusion.hpp"
Include dependency graph for main.cpp:

Functions

• int main (int argc, char **argv)

7.14.1 Function Documentation

7.14.1.1 main()

```
int main (
          int argc,
          char ** argv )
```

7.15 src/navier_stokes.cpp File Reference

#include "navier_stokes.hpp"
Include dependency graph for navier_stokes.cpp:

7.16 src/parabolic.cpp File Reference

#include "parabolic.hpp"
Include dependency graph for parabolic.cpp:

7.17 src/poisson.cpp File Reference

#include "poisson.hpp"
Include dependency graph for poisson.cpp:

7.18 src/stokes.cpp File Reference

#include "stokes.hpp"
Include dependency graph for stokes.cpp:

7.19 src/transport.cpp File Reference

#include "transport.hpp"
Include dependency graph for transport.cpp:

7.20 src/utils.cpp File Reference

#include "utils.hpp"
Include dependency graph for utils.cpp:

Functions

- PetscErrorCode CheckSolution (Vec const &sol, Vec const &solRef, std::string const &comp)
 Checks the difference between a computed solution and a reference solution and evaulates L2-norm.
- PetscErrorCode CreateAnalyticalU (DM const &dmGrid, Vec &vec, PetscReal const &theta)
 Creates an analytical solution on a staggered grid in the x-direction (dofs in position LEFT and RIGHT)
- PetscErrorCode CreateAnalyticalV (DM const &dmGrid, Vec &vec, PetscReal const &theta)
 Creates an analytical solution on a staggered grid in the y-direction (dofs in position DOWN and UP)
- PetscErrorCode CreateAnalyticalW (DM const &dmGrid, Vec &vec, PetscReal const &theta)
 Creates an analytical solution on a staggered grid in the z-direction (dofs in position BACK and FRONT)
- PetscErrorCode CreateAnalyticalP (DM const &dmGrid, Vec &vec, PetscReal const &theta)
- PetscErrorCode CreateGrid (DM *const dmGrid, PetscInt const &dof1, PetscInt const &dof2, PetscInt const &dof3)

Creates a computational grid for simulation. Allows to specify dofs ONLY on edges, faces and cell-cenetrs. Pass 0 to not allow dofs in some position, 1 allocate dofs.

void PrintSimulationParameters ()

Prints the simulation parameters to the console.

bool rayIntersectsTriangle (const std::array< double, 3 > &rayOrigin, const std::array< double, 3 > &ray↔
 Vector, const std::array< double, 3 > &v1, const std::array< double, 3 > &v2)

Checks if a ray intersects with a triangle in 3D space (part of ray-casting algorithm to create Brinkman masks)

bool isPointInsideMesh (const std::array< double, 3 > &point, const std::vector< std::array< double, 3 >> &vertices, const std::vector< std::array< int, 3 >> &faces)

Determines if a point is inside a 3D mesh.

void reader (const std::string &filename, std::vector< std::array< double, 3 >> &vertices, std::vector< std
 ::array< int, 3 >> &faces)

Reads a mesh file and extracts vertices and faces.

PetscErrorCode createMaskU (DM const &dmGrid, Vec &vec_stag, std::vector< std::array< double, 3 >> const &vertices, std::vector< std::array< int, 3 >> const &faces)

Creates a mask for the x-component component.

PetscErrorCode createMaskV (DM const &dmGrid, Vec &vec_stag, std::vector< std::array< double, 3 >> const &vertices, std::vector< std::array< int, 3 >> const &faces)

Creates a mask for the y-component component.

PetscErrorCode createMaskW (DM const &dmGrid, Vec &vec_stag, std::vector< std::array< double, 3 >> const &vertices, std::vector< std::array< int, 3 >> const &faces)

Creates a mask for the z-component component.

7.20.1 Function Documentation

7.20.1.1 CheckSolution()

```
PetscErrorCode CheckSolution (

Vec const & sol,

Vec const & solRef,

std::string const & comp)
```

Checks the difference between a computed solution and a reference solution and evaulates L2-norm.

Parameters

sol	Computed solution vector.
solRef	Reference solution vector.

7.20.1.2 CreateAnalyticalP()

```
PetscErrorCode CreateAnalyticalP (

DM const & dmGrid,

Vec & vec,

PetscReal const & theta)
```

7.20.1.3 CreateAnalyticalU()

```
PetscErrorCode CreateAnalyticalU (

DM const & dmGrid,

Vec & vec,

PetscReal const & theta)
```

Creates an analytical solution on a staggered grid in the x-direction (dofs in position LEFT and RIGHT)

Parameters

dmGrid	Discretized grid.
vec	Output velocity field.

7.20.1.4 CreateAnalyticalV()

```
PetscErrorCode CreateAnalyticalV (

DM const & dmGrid,

Vec & vec,

PetscReal const & theta)
```

Creates an analytical solution on a staggered grid in the y-direction (dofs in position DOWN and UP)

Parameters

dmGrid	Discretized grid.
vec	Output velocity field.

7.20.1.5 CreateAnalyticalW()

Creates an analytical solution on a staggered grid in the z-direction (dofs in position BACK and FRONT)

Parameters

dmGrid	Discretized grid.
vec	Output velocity field.

7.20.1.6 CreateGrid()

```
PetscErrorCode CreateGrid (

DM *const dmGrid,

PetscInt const & dof1,

PetscInt const & dof2,

PetscInt const & dof3)
```

Creates a computational grid for simulation. Allows to specify dofs ONLY on edges, faces and cell-cenetrs. Pass 0 to not allow dofs in some position, 1 allocate dofs.

Parameters

	dmGrid	Pointer to the grid.
	dof1	Degrees of freedom on edges.
	dof2	Degrees of freedom of faces.
Ì	dof3	Degrees of freedom at cell-ceneters.

96 File Documentation

7.20.1.7 createMaskU()

```
PetscErrorCode createMaskU (
          DM const & dmGrid,
          Vec & vec_stag,
          std::vector< std::array< double, 3 >> const & vertices,
          std::vector< std::array< int, 3 >> const & faces )
```

Creates a mask for the x-component component.

Parameters

dmGrid	Discretized grid.
vec_stag	Output mask vector.
vertices	List of mesh vertices.
faces	List of mesh faces.

7.20.1.8 createMaskV()

```
PetscErrorCode createMaskV (
          DM const & dmGrid,
          Vec & vec_stag,
          std::vector< std::array< double, 3 >> const & vertices,
          std::vector< std::array< int, 3 >> const & faces )
```

Creates a mask for the y-component component.

Parameters

dmGrid	Discretized grid.
vec_stag	Output mask vector.
vertices	List of mesh vertices.
faces	List of mesh faces.

7.20.1.9 createMaskW()

```
PetscErrorCode createMaskW (
          DM const & dmGrid,
          Vec & vec_stag,
          std::vector< std::array< double, 3 >> const & vertices,
          std::vector< std::array< int, 3 >> const & faces )
```

Creates a mask for the z-component component.

Parameters

dmGrid	Discretized grid.
vec_stag	Output mask vector.
vertices	List of mesh vertices.
faces	List of mesh faces.

7.20.1.10 isPointInsideMesh()

```
bool isPointInsideMesh (
```

```
const std::array< double, 3 > & point, const std::vector< std::array< double, 3 >> & vertices, const std::vector< std::array< int, 3 >> & faces )
```

Determines if a point is inside a 3D mesh.

Parameters

point	The point to be checked.
vertices	List of vertices of the mesh.
faces	List of faces of the mesh.

Returns

True if the point is inside the mesh, false otherwise.

7.20.1.11 PrintSimulationParameters()

```
void PrintSimulationParameters ( )
```

Prints the simulation parameters to the console.

7.20.1.12 rayIntersectsTriangle()

Checks if a ray intersects with a triangle in 3D space (part of ray-casting algorithm to create Brinkman masks)

Parameters

rayOrigin	Starting point of the ray.
rayVector	Direction of the ray.
v0	First vertex of the triangle.
v1	Second vertex of the triangle.
v2	Third vertex of the triangle.

Returns

True if the ray intersects the triangle, false otherwise.

7.20.1.13 reader()

Reads a mesh file and extracts vertices and faces.

Parameters

filename	The name of the mesh file.
----------	----------------------------

98 File Documentation

Parameters

vertices	Output list of vertices.
faces	Output list of faces.

Index

```
\simadvection_diffusion_problem
                                                          solve, 18
    advection_diffusion_problem, 18
                                                          U up, 20
~euler problem
                                                          update velocity, 19
    euler problem, 23
                                                          V up, 20
\simnavier_stokes_problem
                                                          W_up, 20
    navier_stokes_problem, 29
                                                      ADVECTION DIFFUSION PROBLEM HPP
~parabolic problem x
                                                          advection diffusion.hpp, 73
    parabolic_problem_x, 34
                                                      assemble divergence
\simparabolic_problem_y
                                                          poisson_problem, 46
    parabolic problem y, 37
                                                      assemble lhs
~parabolic problem z
                                                          parabolic problem x, 34
    parabolic problem z, 41
                                                          parabolic problem y, 38
                                                          parabolic_problem_z, 42
\simpoisson_problem
    poisson_problem, 46
                                                          poisson_problem, 47
\simstokes problem
                                                      assemble magnitude
    stokes problem, 53
                                                          advection_diffusion_problem, 18
\simtransport_problem_x
                                                          euler_problem, 23
    transport_problem_x, 58
                                                          navier_stokes_problem, 29
~transport_problem_y
                                                          stokes_problem, 53
    transport_problem_y, 63
                                                      assemble rhs
~transport problem z
                                                          parabolic_problem_x, 34
    transport problem z, 68
                                                          parabolic problem y, 38
                                                          parabolic problem z, 42
Α
    parabolic problem x, 35
                                                      BACK
    parabolic problem y, 38
                                                          macros.hpp, 76
    parabolic_problem_z, 42
                                                      BACK DOWN
    poisson_problem, 49
                                                          macros.hpp, 76
                                                      BACK LEFT
    problem setting, 11
                                                          macros.hpp, 76
advection, 15
                                                      BACK_RIGHT
advection_diffusion.hpp
                                                          macros.hpp, 76
    ADVECTION DIFFUSION PROBLEM HPP, 73
                                                      BACK UP
advection diffusion problem, 15
                                                          macros.hpp, 76
    ~advection diffusion problem, 18
                                                      base path
    advection diffusion problem, 17, 18
                                                          problem setting, 11
    assemble magnitude, 18
                                                      brinkman
    compute_magnitude, 18
                                                          problem_setting, 11
    dmGrid_cent_rich, 19
                                                      CenterU
    dmGrid_centered, 19
                                                          transport_problem_x, 58
    dmGrid shift transp, 19
    dmGrid_stag_transp, 19
                                                      CenterV
                                                          transport problem y, 63
    dmGrid_staggered_x, 19
                                                      CenterW
    dmGrid staggered y, 19
                                                          transport_problem_z, 68
    dmGrid staggered z, 19
                                                      check convergence
    exodus, 18
                                                          problem setting, 12
    Magnitude, 19
                                                      CheckSolution
    mask U, 20
                                                          utils.cpp, 94
    mask_V, 20
                                                          utils.hpp, 84
    mask_W, 20
```

compute_divergence	euler_problem, 24
poisson_problem, 47	navier_stokes_problem, 30
compute_magnitude	poisson_problem, 49
advection_diffusion_problem, 18	stokes_problem, 54
euler problem, 23	dmGrid_Centered
navier stokes problem, 29	transport_problem_x, 59
stokes_problem, 53	transport_problem_y, 64
config_problem.hpp, 71	transport_problem_z, 69
CreateAnalyticalP	dmGrid_centered
utils.cpp, 94	advection_diffusion_problem, 19
utils.hpp, 84	euler_problem, 24
CreateAnalyticalU	navier_stokes_problem, 30
utils.cpp, 94	poisson_problem, 49
utils.hpp, 85	stokes_problem, 54
CreateAnalyticalV	dmGrid_shift_transp
utils.cpp, 95	advection_diffusion_problem, 19
utils.hpp, 85	euler_problem, 24
CreateAnalyticalW	navier_stokes_problem, 30
utils.cpp, 95	dmGrid_Shifted
utils.hpp, 85	transport problem x, 59
CreateGrid	transport_problem_y, 64
utils.cpp, 95	transport_problem_z, 69
utils.hpp, 85	dmGrid_stag_transp
createMaskU	advection diffusion problem, 19
	,
utils.cpp, 95	euler_problem, 24
utils.hpp, 86	navier_stokes_problem, 30
createMaskV	dmGrid_Staggered
utils.cpp, 96	transport_problem_x, 60
utils.hpp, 86	transport_problem_y, 64
createMaskW	transport_problem_z, 69
utils.cpp, 96	dmGrid_staggered_x
utils.hpp, 86	advection_diffusion_problem, 19
	euler_problem, 24
d	navier_stokes_problem, 30
problem_setting, 12	poisson_problem, 49
D_x	stokes problem, 54
utils.hpp, 88	dmGrid_staggered_y
D_y	advection_diffusion_problem, 19
utils.hpp, 88	euler_problem, 24
D_z	navier_stokes_problem, 30
utils.hpp, 88	poisson_problem, 49
Derive_x	stokes problem, 54
transport_problem_x, 58	_ ·
derive x P	dmGrid_staggered_z
poisson_problem, 47	advection_diffusion_problem, 19
Derive_y	euler_problem, 25
	navier_stokes_problem, 31
transport_problem_y, 63	poisson_problem, 50
derive_y_P	stokes_problem, 54
poisson_problem, 47	DOWN
Derive_z	macros.hpp, 76
transport_problem_z, 68	DOWN_LEFT
derive_z_P	macros.hpp, 76
poisson_problem, 48	DOWN_RIGHT
dmGrid	macros.hpp, 76
parabolic_problem_x, 35	dt
parabolic_problem_y, 38	problem_setting, 12
parabolic_problem_z, 42	problem_setting, 12
dmGrid_cent_rich	ELEMENT
advection_diffusion_problem, 19	macros.hpp, 76
·· · · · · · · · · · · · · · · · · · ·	

eps	transport_problem_z, 68
macros.hpp, 77	FRONT
euler_problem, 20	macros.hpp, 76
\sim euler problem, 23	FRONT DOWN
assemble_magnitude, 23	macros.hpp, 76
compute_magnitude, 23	FRONT LEFT
dmGrid_cent_rich, 24	macros.hpp, 77
dmGrid_centered, 24	FRONT RIGHT
dmGrid_shift_transp, 24	macros.hpp, 77
dmGrid_stag_transp, 24	FRONT UP
dmGrid_staggered_x, 24	macros.hpp, 77
dmGrid_staggered_x, 24 dmGrid_staggered_y, 24	macros.npp, 77
	get_U
dmGrid_staggered_z, 25	parabolic_problem_x, 34
euler_problem, 23	get_V
exodus, 24	parabolic problem y, 38
Magnitude, 25	get_W
mask_U, 25	parabolic problem z, 42
mask_V, 25	parabolic_problem_z, 42
mask_W, 25	include/advection diffusion.hpp, 73
P, 25	include/inviscid_euler.hpp, 74
P_x, 25	include/macros.hpp, 75
P_y, 25	include/macros.npp, 75 include/navier stokes.hpp, 78
P_z, 25	
solve, 24	include/parabolic.hpp, 78
U_up, 25	include/poisson.hpp, 80
update_velocity, 24	include/stokes.hpp, 80
V_up, 26	include/transport.hpp, 81
W_up, 26	include/utils.hpp, 83
EULER_PROBLEM_HPP	inviscid_euler.hpp
inviscid_euler.hpp, 74	EULER_PROBLEM_HPP, 74
exodus	isPointInsideMesh
advection_diffusion_problem, 18	utils.cpp, 96
euler_problem, 24	utils.hpp, 87
navier_stokes_problem, 30	iter
parabolic problem x, 34	problem_setting, 12
parabolic_problem_y, 38	
parabolic_problem_z, 42	LEFT
poisson_problem, 48	macros.hpp, 77
stokes_problem, 53	Lx
Stores_problem, 50	problem_setting, 12
faces	Lx_0
utils.hpp, 88	problem_setting, 12
filename	Ly
utils.hpp, 88	problem_setting, 12
FirstDerive_y	Ly_0
transport_problem_x, 58	problem_setting, 12
FirstDerive z	Lz
transport problem x, 58	problem_setting, 12
FirstShiftU_y	Lz_0
transport_problem_x, 58	problem_setting, 12
transport_problem_y, 63	
FirstShiftU z	macros.hpp
-	BACK, 76
transport_problem_x, 59	BACK_DOWN, 76
transport_problem_z, 68	BACK LEFT, 76
FirstShiftV_y	BACK RIGHT, 76
transport_problem_x, 59	BACK UP, 76
transport_problem_y, 63	DOWN, 76
FirstShiftW_z	DOWN_LEFT, 76
transport_problem_x, 59	,

DOWN_RIGHT, 76	monitor_convergence
ELEMENT, 76	problem_setting, 12
eps, 77	mardan atalaa maaldana 00
FRONT, 76	navier_stokes_problem, 26
FRONT_DOWN, 76	\sim navier_stokes_problem, 29
FRONT_LEFT, 77	assemble_magnitude, 29
FRONT_RIGHT, 77	compute_magnitude, 29
FRONT_UP, 77	dmGrid_cent_rich, 30
LEFT, 77	dmGrid_centered, 30
pi, 77	dmGrid_shift_transp, 30
RIGHT, 77	dmGrid_stag_transp, 30
UP, 77	dmGrid_staggered_x, 30
UP_LEFT, 77	dmGrid_staggered_y, 30
UP_RIGHT, 77	dmGrid_staggered_z, 31
Magnitude	exodus, 30
advection_diffusion_problem, 19	Magnitude, 31
euler_problem, 25	mask U, 31
navier_stokes_problem, 31	mask_V, 31
	mask_W, 31
stokes_problem, 54	navier_stokes_problem, 29
main	P, 31
main.cpp, 90	P_x, 31
main.cpp	
main, 90	P_y, 31
manage_pressure	P_z, 31
poisson_problem, 48	solve, 30
manage_pressure_x	U_up, 31
poisson_problem, 48	update_velocity, 30
manage_pressure_y	V_up, 32
poisson_problem, 49	W_up, 32
manage_pressure_z	nx
poisson_problem, 49	problem_setting, 13
mask_U	ny
advection_diffusion_problem, 20	problem_setting, 13
euler problem, 25	nz
navier_stokes_problem, 31	problem_setting, 13
parabolic_problem_x, 35	
stokes problem, 54	Р
transport_problem_x, 60	euler_problem, 25
transport_problem_y, 64	navier_stokes_problem, 31
transport_problem_z, 69	poisson problem, 50
mask V	stokes_problem, 55
advection_diffusion_problem, 20	P_x
	euler problem, 25
euler_problem, 25	navier_stokes_problem, 31
navier_stokes_problem, 31	poisson_problem, 50
parabolic_problem_y, 39	stokes_problem, 55
stokes_problem, 55	P_y
transport_problem_x, 60	euler_problem, 25
transport_problem_y, 65	navier stokes problem, 31
transport_problem_z, 70	
mask_W	poisson_problem, 50
advection_diffusion_problem, 20	stokes_problem, 55
euler_problem, 25	P_z
navier_stokes_problem, 31	euler_problem, 25
parabolic_problem_z, 43	navier_stokes_problem, 31
stokes_problem, 55	poisson_problem, 50
transport_problem_x, 60	stokes_problem, 55
transport_problem_y, 65	parabolic.hpp
transport_problem_z, 70	PARABOLIC_PROBLEM_Y_HPP, 79
	PARABOLIC_PROBLEM_Z_HPP, 79

parabolic_problem_x, 32	derive_y_P, 47
\sim parabolic_problem_x, 34	derive_z_P, 48
A, 35	dmGrid_cent_rich, 49
assemble_lhs, 34	dmGrid_centered, 49
assemble_rhs, 34	dmGrid_staggered_x, 49
dmGrid, 35	dmGrid_staggered_y, 49
exodus, 34	dmGrid_staggered_z, 50
get U, 34	exodus, 48
mask U, 35	manage_pressure, 48
parabolic_problem_x, 33, 34	manage_pressure_x, 48
rhs, 35	manage_pressure_y, 49
set_U, 34	manage_pressure_z, 49
solve, 34	P, 50
solve_step, 35	P_x, 50
U_up, 35	P_y, 50
parabolic_problem_y, 35	P z, 50
~parabolic_problem_y, 37	poisson_problem, 46
A, 38	U_up, 50
assemble_lhs, 38	V up, 50
	— · ·
assemble_rhs, 38	W_up, 50
dmGrid, 38	pRef
exodus, 38	problem_setting, 10
get_V, 38	PrintSimulationParameters
mask_V, 39	utils.cpp, 97
parabolic_problem_y, 37	utils.hpp, 87
rhs, 39	problem_setting, 9
set_V, 38	a, 11
solve, 38	base_path, 11
solve_step, 38	brinkman, 11
V_up, 39	check_convergence, 12
PARABOLIC_PROBLEM_Y_HPP	d, 12
parabolic.hpp, 79	dt, 12
parabolic.hpp, 79 parabolic_problem_z, 39	
parabolic.hpp, 79	dt, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42	dt, 12 iter, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41	dt, 12 iter, 12 Lx, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz_12 Lz_0, 12 monitor_convergence, 12 nx, 13
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43	dt, 12 iter, 12 Lx, 12 Lx, 0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve_step, 42	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43	dt, 12 iter, 12 Lx, 12 Lx, 0, 12 Ly, 12 Ly, 12 Lz, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP	dt, 12 iter, 12 Lx, 12 Lx, 0, 12 Ly, 12 Ly, 0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79	dt, 12 iter, 12 Lx, 12 Lx, 0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi	dt, 12 iter, 12 Lx, 12 Lx, 0, 12 Ly, 12 Ly, 0, 12 Lz, 12 Lz, 0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi macros.hpp, 77	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11 problem_type
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi macros.hpp, 77 poisson_problem, 43	dt, 12 iter, 12 Lx, 12 Lx, 0, 12 Ly, 12 Ly, 0, 12 Lz, 12 Lz, 0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi macros.hpp, 77 poisson_problem, 43 ~poisson_problem, 46	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11 problem_type
parabolic.hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi macros.hpp, 77 poisson_problem, 43 ~poisson_problem, 46 A, 49	dt, 12 iter, 12 Lx, 12 Lx_0, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11 problem_type problem_setting, 13
parabolic_hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi macros.hpp, 77 poisson_problem, 43 ~poisson_problem, 46 A, 49 assemble_divergence, 46	dt, 12 iter, 12 Lx, 12 Lx, 12 Ly, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11 problem_type problem_setting, 13 rayIntersectsTriangle utils.cpp, 97
parabolic_hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi macros.hpp, 77 poisson_problem, 43 ~poisson_problem, 46 A, 49 assemble_divergence, 46 assemble_lhs, 47	dt, 12 iter, 12 Lx, 12 Lx, 12 Ly, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11 problem_type problem_setting, 13 rayIntersectsTriangle
parabolic_hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi macros.hpp, 77 poisson_problem, 43 ~poisson_problem, 46 A, 49 assemble_divergence, 46 assemble_lhs, 47 compute_divergence, 47	dt, 12 iter, 12 Lx, 12 Lx, 12 Ly, 12 Ly, 12 Ly_0, 12 Lz, 12 Lz_0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11 problem_type problem_setting, 13 rayIntersectsTriangle utils.cpp, 97 utils.hpp, 87 Re
parabolic_hpp, 79 parabolic_problem_z, 39 ~parabolic_problem_z, 41 A, 42 assemble_lhs, 42 assemble_rhs, 42 dmGrid, 42 exodus, 42 get_W, 42 mask_W, 43 parabolic_problem_z, 41 rhs, 43 set_W, 42 solve_step, 42 W_up, 43 PARABOLIC_PROBLEM_Z_HPP parabolic.hpp, 79 pi macros.hpp, 77 poisson_problem, 43 ~poisson_problem, 46 A, 49 assemble_divergence, 46 assemble_lhs, 47	dt, 12 iter, 12 Lx, 12 Lx, 0, 12 Ly, 12 Ly, 0, 12 Lz, 12 Lz, 0, 12 monitor_convergence, 12 nx, 13 ny, 13 nz, 13 pRef, 10 problem_type, 13 Re, 13 theta, 13 uxRef, 10 uyRef, 10 uzRef, 11 problem_type problem_setting, 13 rayIntersectsTriangle utils.cpp, 97 utils.hpp, 87

utils.cpp, 97	dmGrid_staggered_x, 54
utils.hpp, 88	dmGrid_staggered_y, 54
README.md, 89	dmGrid_staggered_z, 54
rhs	exodus, 53
parabolic_problem_x, 35	Magnitude, 54
parabolic_problem_y, 39	mask_U, 54
parabolic_problem_z, 43	mask_V, 55
RIGHT	mask_W, 55
macros.hpp, 77	P, 55
	P_x, 55
SecondDerive_x	P_y, 55
transport_problem_y, 63	P_z, 55
SecondDerive_z	solve, 54
transport_problem_y, 63	stokes_problem, 53
SecondShiftV_z	U_up, 55
transport_problem_y, 64	update velocity, 54
transport_problem_z, 68	V_up, 55
SecondShiftW_z	W_up, 55
transport_problem_y, 64	_ 1 /
transport_problem_z, 69	theta
set_U	problem_setting, 13
parabolic_problem_x, 34	ThirdDerive_x
set_V	transport_problem_z, 69
parabolic_problem_y, 38	ThirdDerive_y
set_W	transport_problem_z, 69
parabolic_problem_z, 42	transport.hpp
solve	TRANSPORT_PROBLEM_Y_HPP, 82
advection_diffusion_problem, 18	TRANSPORT_PROBLEM_Z_HPP, 82
euler_problem, 24	transport_problem_x, 56
navier_stokes_problem, 30	~transport_problem_x, 58
parabolic_problem_x, 34	CenterU, 58
parabolic_problem_y, 38	Derive_x, 58
parabolic_problem_z, 42	dmGrid_Centered, 59
stokes_problem, 54	dmGrid_Shifted, 59
solve_step	dmGrid_Staggered, 60
parabolic_problem_x, 35	FirstDerive y, 58
parabolic_problem_y, 38	FirstDerive z, 58
parabolic problem z, 42	FirstShiftU_y, 58
solve_step_x	FirstShiftU_z, 59
transport_problem_x, 59	FirstShiftV y, 59
solve_step_y	FirstShiftW_z, 59
transport_problem_y, 64	mask_U, 60
solve step z	mask_V, 60
transport_problem_z, 69	mask_W, 60
src/advection diffusion.cpp, 89	solve_step_x, 59
src/inviscid_euler.cpp, 89	transport_problem_x, 57, 58
src/main.cpp, 89	U_n, 60
src/navier_stokes.cpp, 91	V_n, 60
src/parabolic.cpp, 91	W_n, 60
src/poisson.cpp, 92	transport_problem_y, 60
src/stokes.cpp, 92	∼transport_problem_y, 63
src/transport.cpp, 93	
·	CenterV, 63
src/utils.cpp, 93	Derive_y, 63
stokes_problem, 51	dmGrid_Centered, 64
~stokes_problem, 53	dmGrid_Shifted, 64
assemble_magnitude, 53	dmGrid_Staggered, 64
compute_magnitude, 53	FirstShiftU_y, 63
dmGrid_cent_rich, 54	FirstShiftV_y, 63
dmGrid_centered, 54	mask_U, 64

mask_V, 65	utils.cpp
mask_W, 65	CheckSolution, 94
SecondDerive_x, 63	CreateAnalyticalP, 94
SecondDerive_z, 63	CreateAnalyticalU, 94
SecondShiftV_z, 64	CreateAnalyticalV, 95
SecondShiftW_z, 64	CreateAnalyticalW, 95
solve_step_y, 64	CreateGrid, 95
transport_problem_y, 62	createMaskU, 95
U_n, 65	createMaskV, 96
V n, 65	createMaskW, 96
W_n, 65	isPointInsideMesh, 96
TRANSPORT_PROBLEM_Y_HPP	PrintSimulationParameters, 97
transport.hpp, 82	rayIntersectsTriangle, 97
transport_problem_z, 65	reader, 97
~transport_problem_z, 68	utils.hpp
CenterW, 68	• •
,	CheckSolution, 84
Derive_z, 68	Create Analytical II, 85
dmGrid_Centered, 69	CreateAnalyticalU, 85
dmGrid_Shifted, 69	CreateAnalyticalV, 85
dmGrid_Staggered, 69	CreateAnalyticalW, 85
FirstShiftU_z, 68	CreateGrid, 85
FirstShiftW_z, 68	createMaskU, 86
mask_U, 69	createMaskV, 86
mask_V, 70	createMaskW, 86
mask_W, 70	D_x, 88
SecondShiftV_z, 68	D_y, <mark>88</mark>
SecondShiftW_z, 69	D_z, <mark>88</mark>
solve_step_z, 69	faces, 88
ThirdDerive_x, 69	filename, 88
ThirdDerive_y, 69	isPointInsideMesh, 87
transport_problem_z, 67	PrintSimulationParameters, 87
U_n, 70	rayIntersectsTriangle, 87
V_n, 70	reader, 88
W_n, 70	vertices, 88
TRANSPORT_PROBLEM_Z_HPP	uxRef
transport.hpp, 82	problem_setting, 10
	uyRef
U_n	problem setting, 10
transport_problem_x, 60	uzRef
transport_problem_y, 65	problem setting, 11
transport_problem_z, 70	prosioni_soming, rr
U_up	V_n
advection_diffusion_problem, 20	transport_problem_x, 60
euler_problem, 25	transport_problem_y, 65
navier_stokes_problem, 31	transport problem z, 70
parabolic_problem_x, 35	V_up
poisson problem, 50	advection_diffusion_problem, 20
stokes_problem, 55	euler_problem, 26
UP	navier_stokes_problem, 32
macros.hpp, 77	
UP LEFT	parabolic_problem_y, 39 poisson_problem, 50
macros.hpp, 77	
• •	stokes_problem, 55
UP_RIGHT macros.hpp, 77	vertices
• •	utils.hpp, 88
update_velocity	W n
advection_diffusion_problem, 19	W_n
euler_problem, 24	transport_problem_x, 60
navier_stokes_problem, 30	transport_problem_y, 65
stokes_problem, 54	transport_problem_z, 70

W_up advection_diffusion_problem, 20 euler_problem, 26 navier_stokes_problem, 32 parabolic_problem_z, 43 poisson_problem, 50 stokes_problem, 55