

Отчет по лабораторной работе №1

Тема: Машина Тьюринга-Поста

Вариант 13

Выполнил студент гр. 3530901/90002		А. И. Терлецкий
	(подпись)	
Руководитель	(10 11101)	Д. С. Степанов
	(подпись)	
	· · · · · · · · · · · · · · · · · · ·	2021 г.

Санкт-Петербург

Задача:

Построить машину Тьюринга-Поста, совершающую перевод двоичного кода в код Грея. Выполнить моделирование ее работы в одном из свободно доступных симуляторов. Подготовить отчет, отвечающий предъявленным требованиям.

Алфавит:

01X

Х – зачеркнутые цифры

Алгоритм:

Перевод двоичного кода в код Грея выполнен с помощью побитового применения операции XOR к исходному числу и этому же числу, нециклически сдвинутому вправо на 1 бит. К старшему биту исходного числа применяется XOR с нулем, для остальных — с последующим битом, текущий бит при этом заменяется на X. Результат операции записывается через одну ячейку после исходного числа.

Диаграмма состояний

На диаграмме пробел обозначен буквой S, перемещение вправо R, влево L, если нужно остаться на месте - F.

Рис. 1 Диаграмма состояний

Машина начинает работу в состоянии Q1. В зависимости от того, единица или ноль в начальном положении, переходит в состояние Q2, если результат XOR бита и нуля равен нулю, и в Q3, если единице и перемещается вправо.

Состояния Q2 и Q3 двигают головку вправо до пробела, затем происходит переход в состояния Q4 (если результат XOR - 0) или Q5 (1). Здесь происходит движение вправо снова до пробела на случай, если результат был

частично посчитан, чтобы попасть в младший разряд числа результата (новое число записывается сразу после исходного числа с одним пробелом между ними). В пустой ячейке в конце числа записывается результат операции исключающего «или» (Q4 записывает 0, Q5 записывает 1) и происходит переход в состояние Q6 в обоих случаях, головка остается на месте.

Состояние Q6 двигает головку влево до символа X, затем переходит в Q7. Перехода в состояние Q1 больше никогда не происходит, так как XOR с фиксированным нулем происходит только со старшим разрядом.

Состояние Q7 как бы «запоминает» самый левый оставшийся бит исходного числа, переходя в Q8, если он равен 0 и в Q9, если он равен 1. Происходит запись в ячейку символа X (так как он больше не понадобится) и перемещение вправо.

Q8 проверяет следующий бит. Так как если машина находится в состоянии Q8, то известно, что предыдущий бит был равен нулю, а значит можно посчитать результат XOR с текущим битом и перейти в состояние Q2, если результат 0, или в Q3, если результат равен 1. Аналогично работает состояние Q9.

Если в состояниях Q8 или Q9 головка оказывается на пробеле, исходное число закончилось и было полностью заменено на символы X, программа завершает работу.

Пример выполнения программы на симуляторе

Переводим число 1110101100 в код Грея и получаем число 1001111010

Рис. 2 Начальные условия

Рис. 3 Результат работы машины

Вывод:

В данной работе я познакомился с принципом работы машины Тьюринга и общими правилами реализации алгоритмов на ней на примере перевода двоичного числа в код Грея.

Список использованных источников

http://kspt.icc.spbstu.ru/media/files/2021/lowlevelprog/euc.pdf http://kspt.icc.spbstu.ru/media/files/2021/lowlevelprog/euctm.pdf http://kpolyakov.spb.ru/prog/turing.htm