

Mecânica e Campo Eletromagnético

Aula 7

Cap. 3 – Carga eléctrica. Lei de Coulomb. Campo eléctrico. Diferença de potencial

Exemplos

Isabel Malaquias imalaquias@ua.pt Gab. 13.3.16

Cap. 3 – Carga eléctrica. Lei de Coulomb. Campo eléctrico. Diferença de potencial

Noção de carga eléctrica

MCE_IM_2024-2025

Cap. 3 – Carga eléctrica. Lei de Coulomb. Campo eléctrico. Diferença de potencial

Propriedades importantes da carga eléctrica:

CONSERVAÇÃO DA CARGA - não é possível criar ou destruir carga eléctrica, apenas transferi-la. Num sistema isolado, <u>a carga total permanece constante</u>.

É possível criar ouu destruir partículas em colisões com energias muito altas, mas, sempre que se cria ou destrói uma partícula com carga, também se cria ou destrói a sua <u>antipartícula</u>, com carga igual e oposta.

QUANTIFICAÇÃO DA CARGA – qualquer carga eléctrica é sempre um <u>múltiplo inteiro da carga</u> elementar *e*:

$$e = 1,602.10^{-19} \text{ C (coulomb)}$$

INVARIÂNCIA DA CARGA – <u>o valor da carga é o mesmo</u> quer esteja em repouso quer esteja em movimento

PRINCÍPIO DA SOBREPOSIÇÃO - a acção de um conjunto de cargas é igual à soma da acção individual de cada uma das cargas

MCE_IM_2024-2025

2

Lei de Coulomb

Força electrostática ou de Coulomb entre 2 cargas eléctricas estacionárias q_1 e q_2

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \, \hat{r}$$

 ε_0 = 8,854.10⁻¹² farad/metro (F.m⁻¹)

é a **PERMITIVIDADE** no vazio

Para **n** cargas no espaços, a força resultante sobre a carga Q será o resultado de somar todos os valores, i. é,

$$\vec{F} = \frac{Q}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{q_i}{r^2} \,\hat{r}$$

MCE IM 2024-2025

.

Campo eléctrico \vec{E}

Uma carga eléctrica Q modifica o espaço à sua volta, produzindo um CAMPO ELÉCTRICO \vec{E} à sua volta.

O campo eléctrico \overrightarrow{E} produzido pela carga Q no ponto P define-se como a força que actua na carga de prova, dividida pelo valor da carga de prova

$$\frac{\vec{F}}{\mathsf{q}_0} = \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r}$$

O campo eléctrico em qualquer ponto P **pode ser medido** por meio de uma **carga de prova**, **q**₀ (positiva) colocada nas suas imediações.

O campo eléctrico resultante de um conjunto **n** de cargas, num ponto do espaço, será dado por

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{q_i}{r^2} \, \hat{r}$$

Para uma DISTRIBUIÇÃO CONTÍNUA DE CARGA, tem-se

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r^2} \ \hat{r}$$

MCE_IM_2024-2025

$$\sigma = \frac{dQ}{dS}$$

dS é um elemento de superfície

$$dS = 2\pi r dr$$

$$Q = \int_0^R \sigma \ 2\pi r \ dr$$

 $Q = 2\pi R^3$ coulomb (C)

$$Q = \int_0^R 3 \ r \ 2\pi r \ dr$$

MCE IM 2024-2025

6

Uma coroa esférica de raios r₁ e r₂ (r₁<r₂) tem uma densidade de carga que é inversamente proporcional ao raio. Sabendo que a carga total da coroa é Q, obtenha uma expressão para a densidade de carga.

$$\rho$$
 =constante. $\frac{1}{r}$ $\rho = k \frac{1}{r}$

$$\rho = k \frac{1}{r}$$

$$Q = \int_{\mathbf{r_1}}^{\mathbf{r_2}} k \frac{1}{r} 4 \pi r^2 dr \qquad Q = 2 \pi k (r_2^2 - r_1^2)$$

$$Q = 2 \pi k (r_2^2 - r_1^2)$$

$$k = \frac{Q}{2 \pi (r_2^2 - r_1^2)}$$

$$k = \frac{Q}{2 \pi (r_2^2 - r_1^2)}$$

$$\rho = \frac{Q}{2 \pi (r_2^2 - r_1^2)} \cdot \frac{1}{r}$$
 (S.I.)

MCE_IM_2024-2025

- 5. Quatro cargas +q,+q, -q,-q estão colocadas nos vértices dum quadrado de lado a.
- a) Determine, para os dois casos de distribuição das cargas, o campo elétrico e o potencial no centro do quadrado.

$$\overrightarrow{E_{total}} \neq 0$$

$$\overrightarrow{E_{total}} = -\frac{q\sqrt{2}}{\pi\varepsilon_0 a^2}\hat{j}$$

MCE IM 2024-2025

6. Duas cargas iguais e de sinais contrários, com uma distância constante entre si

DIPOLO

ELÉCTRICO

- a) Mostre que o campo elétrico em S é paralelo ao vetor a, e em T tem o sentido contrário.
 - b) Determine o campo elétrico em ${\bf T}$ e em ${\bf S}$, fazendo aproximações adequadas (${\it d>>a}$). Introduza no resultado o vector momento dipolar elétrico, $\vec{P}={\it q}\,\vec{a}$
 - c) Mostre que um dipolo colocado num campo elétrico uniforme \vec{E} fica sujeito a um binário cujo momento é dado por $\vec{M}=\vec{P}\times\vec{E}$.

exemplo de BINÁRIO DE FORÇAS que origina rotação

9