Please copy the following tables to your answer papers and replace the ?? with your answers.

A. Key generation

Key Generation

Item	Alice	Bob	
Assumption	d = 7, G=5	d = 3, G=5	
Public Key	Step 1-B	Step 1-A	
	PU _{Alice} = ??	PU _{Bob} = ??	
Private Key	Step 1-B	Step 1-A	
	PR _{Alice} = ??	PR _{Bob} = ??	

Questions related to Key Generation

- o Does Eve know
 - Bob's public key P_{Bob}? ??
 - Bob's private key S_{Bob}? ??
 - Alice's public key P_{Alice}? ??
 - Alice's private key S_{Alice}? ??
- o Does Alice know
 - Bob's public key P_{Bob}? ??
 - Bob's private key S_{Bob}? ??
- o Does Bob know
 - Alice's public key P_{Alice}? ??
 - Alice's private key S_{Alice}? ??
- How many keys are required for N people to communicate using Asymmetric Key Cryptography? ??

B. Confidentiality & Authentication

Confidentiality

Alice sends the message (the number 11) to Bob

Alice	Bob
,	Step 4-A: Bob uses his private key PR_{Bob} (i.e, secret key S_{Bob}) to <u>decrypt</u> the cipher text and retrieve the message (the number 11).
Question:	Questrion?
• What are the values of C1 and C2?	O What is the value of msg'?
??	??

==> Proof
??
Instead of msg, why would Bob receive msg'? ??
Can Eve read the original message on Step 3-A. ??
Can Confidentiality gurantee that Bob receives the original message sent from Alice? ??
Can Confidentiality gurantee that Bob knows that someone has modified Alice's message? ??

Authentication

Alice	Bob
1. Step 2-B1: Alice calculates the	1. Step 4-B: Bob finds HASH' from msg'
HASH of the message (the	 Again, assuming the MD function
number 11).	is
 Assuming the MD 	message mod 3 = msg % 3
function is	
	• Questrion?
message mod 3 =	o What is the value of
msg % 3	HASH'? ??
• Questrion?	2. Step 4-C: Bob decrypts the digital
o What is the value	signature with Alice's public key
of HASH? ??	P _{Alice} and find HASH.
	• Questrion?

- Can Eve find the message from theHASH? ??
- Step 2-B2: Alice calculates the digital signature
 by encrypting the HASH with her private key PR_{Alice} (= secret key S_{Alice}).

Question:

• What are the values of C1 and C2?

??

Can Eve find the HASH
 from {HASH}S_{Alice} on Step
 3-B? ??

What is the value of HASH?

??

- 3. Step 4-D: Compare HASH and HASH'
 - Questrion?
 - o Does HASH=HASH'? ??
 - What conclusion can be reached if
 - HASH = HAHS' ??
 - HASH != HAHS' ??
 - Can Authentication
 gurantee that Bob
 receives the original
 message sent from
 Alice? ??
 - Can Authentication
 gurantee that Bob knows
 that someone has
 modified Alice's
 message? ??

Can Authentication &
 Confidentiality gurantee
 that Bob receives the
 message sent from
 Alice? ??

Can Authentication &
 Confidentiality gurantee
 that Bob knows that
 someone has modified
 Alice's message? ??

Key Generation

Item	Alice	Bob	
Assumption	d = 7, G=5	d = 3, G=5	
Public Key	Step 1-B	Step 1-A	
	PU _{Alice} = 35	PU _{Bob} = 15	
Private Key	Step 1-B	Step 1-A	
	PR _{Alice} = 7	$PR_{Bob} = 3$	

Questions related to Key Generation

- o Does Eve know
 - Bob's public key P_{Bob}? yes
 - Bob's private key S_{Bob}? no
 - Alice's public key P_{Alice}? yes
 - Alice's private key S_{Alice}? no
- o Does Alice know
 - Bob's public key P_{Bob}? yes
 - Bob's private key S_{Bob}? no
- o Does Bob know
 - Alice's public key P_{Alice}? yes
 - Alice's private key S_{Alice}? no
- How many keys are required for N people to communicate using Asymmetric Key
 Cryptography? 2N keys are required

Confidentiality

Alice sends the message (the number 11) to Bob

Alice	Bob	
Step 2-A: Alice uses Bob's public key	Step 4-A: Bob uses his private key PR _{Bob} (i.e, secret key S _{Bob}) to decrypt the cipher text and	
P _{Bob} to <u>encrypt</u> the message:	retrieve the message (the number 11).	
Question:	Questrion?	
What are the values of C1 and C2?	What is the value of msg' ?	
	msg' = C2-d*C1 = 116-3*35=11	
C1 = K*G=7*5=35		
	==> Proof	
C2= M+K*Q= 11+7*15=116		

msg'=msg

- Instead of msg, why would Bob receive msg'? because Bob uses his Private Key to decrypting and get msg
- Can Eve read the original message on Step 3-A. no, because this step need Bob's
 Private Key to decrypting, Alice don't have Bob's Private Key
- Can Confidentiality gurantee that Bob receives the original message sent from Alice? Yes
- Can Confidentiality gurantee that Bob knows that someone has modified Alice's message? No

Authentication

Alice	Bob
3. Step 2-B1: Alice calculates the HASH of the	4. Step 4-B: Bob finds HASH' from msg'
message (the number 11).	 Again, assuming the MD function is
 Assuming the MD function is 	message mod 3 = msg % 3
message mod 3 = msg % 3	• Questrion?
• Questrion?	What is the value of HASH'? HASH'=2
o What is the value of	5. Step 4-C: Bob decrypts the digital signature with
HASH? HASH=11%3=2	Alice's public key P _{Alice} and find HASH.
o Can Eve find the message	• Questrion?
from the HASH? No,	o What is the value of HASH?
because the HASH is one	HASH=2
way	TIASTI-2

4. Step 2-B2: Alice calculates the digital signature by encrypting the HASH with her private key PR_{Alice} (= secret key S_{Alice}).

Question:

• What are the values of C1 and C2?

$$C1=7*5=35$$

 Can Eve find the HASH from {HASH}S_{Alice} on Step 3-B? Yes, because she know the Alice' s Public Key

- 6. Step 4-D: Compare HASH and HASH'
 - Questrion?
 - o Does HASH=HASH'? yes
 - What conclusion can be reached if
 - HASH = HAHS' If Hash =
 Hash', then means there is no one modified the original message and can be sure
 message was sent from Alice.
 - HASH != HAHS' If Hash !=
 Hash', then means someone
 may modified the original
 message or this message may
 not sent from Alice
 - Can Authentication gurantee that Bob receives the original message sent from Alice? Yes
 - Can Authentication gurantee that Bob knows that someone has modified
 Alice's message? no

- Can Authentication & Confidentiality
 gurantee that Bob receives the
 message sent from Alice? yes
 - Can Authentication & Confidentiality
 gurantee that Bob knows that someone
 has modified Alice's message? yes