#### Statistique

- Variable aléatoire X
- Cette variable suit une loi donnée. Par exemple :
  - Essai binomial : P(X = 0) = p et P(X = 1) = 1 p
  - Loi de Poisson :  $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$
  - Loi normale :  $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$
  - Distribution uniforme f(x) = 1/I si  $x \in [\mu I/2, \mu + I/2]$
- $\bullet$  Pour chaque loi, il y a un ou plusieurs paramètre. On les appelle  $\theta$
- Soit *x<sub>i</sub> N* réalisations de cette variable aléatoire.
- L'objectif de la statistique est d'estimer les paramètres de la loi à partir des  $x_i$ .



## Exemple

- Distribution uniforme f(x) = 1/I si  $x \in [\mu I/2, \mu + I/2]$
- $\bullet$  On souhaite estimer le centre (ou moyenne)  $\mu$  de cette distribution.
  - Solution A : on prend la moyenne.  $\mu_A = \frac{1}{N} \sum x_i$
  - Solution B :  $\mu_B = x_0$
  - Solution C :  $\mu_C = \frac{1}{2}(\min(x_i) + \max(x_i))$
- Ces estimateurs sont non biaisé (en moyenne  $\mu_A$ ,  $\mu_B$  et  $\mu_C$  valent  $\mu$ )
- Lequel est le meilleur ?



### Exemple



 ${\it N}=100.$  Histogramme avec 10000 réalisations.

### Code python

```
data = np.random.rand(10000, 100)

sol1 = data.mean(axis=1)
sol2 = (data.max(axis=1) + data.min(axis=1))/2

subplot(2, 1, 1)
hist(sol1, bins=51, range=(.4, .6), label='Moyenne')
subplot(2, 1, 2)
hist(sol2, bins=51, range=(.4, .6), label='(max + min)/2')
```

#### Fonction de vraissemblance

Comment trouver un bon estimateur ?

- Quels sont les paramètres pour lesquels il est le plus probable d'avoir les  $x_i$  que l'on a mesuré.
- Fonction de vraissemblance :

$$L(\theta) = \prod_{i} f(x_i | \theta)$$

• valeur de  $\theta$  qui maximise L : estimateur du maximum de vraisemblance de  $\theta$  noté  $\hat{\theta}$ .

Exemple : valeur moyenne d'une distribution gaussienne. Variance de l'estimateur.



# Ajustement d'un courbe

- $y_i = f(x_i, \theta) + \epsilon_i$
- $\epsilon_i$  est le bruit de ma mesure. On suppose que le bruit est uniforme et qu'il est gaussien centré en 0 (pas de biais dans mon bruit).
- Maximum de vraissemblance sera obtenu pour la maximisation de  $\prod e^{-\epsilon_i^2/\sigma^2}$ , i.e. pour la minimisation de  $\sum \epsilon_i^2$

C'est la méthode des moindres carrés

