Analízis 7. vizsgakérdések Programtervező matematikus szak

2006-2007. tanév 1. félév

1. Adja meg paraméteres alakban az origó középpontú R sugarú gömbfelületet. **Válasz:** Vezessük be az u és a v paramétereket. (Itt ábrát is várunk!) A gömbfelület (x, y, z) Descartes-koordinátái a bevezetett paraméterekkel így fejezhető ki:

$$x = R \cdot \sin v \cdot \cos u, \quad y = R \cdot \sin v \cdot \sin u, \quad z = R \cdot \cos v,$$

 $0 \le u \le 2\pi; \ 0 \le v \le \pi.$

A gömbfelület egy paraméterezése tehát az alábbi függvény:

$$F(u,v) = \begin{bmatrix} R \cdot \sin v \cdot \cos u \\ R \cdot \sin v \cdot \sin u \\ R \cdot \cos v \end{bmatrix} \qquad ((u,v) \in [0,2\pi] \times [0,\pi]).$$

- 2. Adja meg paraméteres alakban azt a körhenger-felületet, amelynek a forgástengelye a z-tengely, az erre merőleges síkmetszet pedig egy a sugarú kör.
- 3. Definiálja az egyszerű sima felületdarabot.

Válasz: Azt mondjuk, hogy az $\mathcal{F} \subset \mathbb{R}^3$ halmaz egy egyszerű sima felületdarab (röviden: ESF), ha létezik olyan $F \in C^1(\mathbb{I}^2, \mathbb{R}^3)$ leképezés, hogy

- (i) $F: \mathbb{I}^2 \to \mathcal{F}$ bijekció és
- (ii) rang F'(w) = 2 minden $w \in \mathbb{I}^2$ pontban.

Ekkor a F függvényt az F felület egy paraméterezésének nevezzük.

4. Definiálja a felületi görbét.

Válasz: Legyen $F: \mathbb{I}^2 \to \mathbb{R}^3$ az $\mathcal{F} \subset \mathbb{R}^3$ ESF egy paraméterezése. Az \mathbb{I}^2 paramétertartományban fekvő egyszerű sima síkgörbe F által létesített képét nevezzük felületi görbének.

Formálisan: Ha $\gamma: [\alpha, \beta] \to \Gamma \subset \mathbb{I}^2$ egyszerű sima görbe, akkor a

$$\varphi := F \circ \gamma : [\alpha, \beta] \to \mathcal{F}$$

függvény értékkészlete egy felületi görbe.

5. Írja fel azt az állítást, amelynek alapján az érintősíkot értelmeztük.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab, $F: \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése, $(u_0, v_0) \in \mathbb{I}^2$ egy rögzített pont a paramétertartományban és $P_0 := F(u_0, v_0) = (x_0, y_0, z_0) \in \mathcal{F}$ a megfelelő felületi pont. Ekkor minden P_0 -on átmenő reguláris (egyszerű sima) felületi görbe érintői valamennyien egy síkban vannak. Ezt a síkot a felület P_0 pontbeli érintősíkjának nevezzük.

6. Írja fel egy egyszerű sima felület P_0 pontbeli érintősíkjának egy bázisát.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab, $F: \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése, $(u_0, v_0) \in \mathbb{I}^2$ egy rögzített pont a paramétertartományban és $P_0 := F(u_0, v_0) = (x_0, y_0, z_0) \in \mathcal{F}$ a megfelelő felületi pont. A P_0 pontbeli érintősík egy bázisa a

$$\partial_u F(u_0, v_0), \ \partial_v F(u_0, v_0) \in \mathbb{R}^3$$

vektorok. Ezek ui. egyrészt benne vannak az érintősíkban, másrészt pedig lineárisan függetlenek, mert rang $F'(u_0, v_0) = 2$.

7. Adja meg a paraméteres alakban megadott felület felületi normális egységvektorának a definícióját.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab, $F: \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése, $(u_0, v_0) \in \mathbb{I}^2$ egy rögzített pont a paramétertartományban és $P_0 := F(u_0, v_0) = (x_0, y_0, z_0) \in \mathcal{F}$ a megfelelő felületi pont. A P_0 pontbeli felületi normális egységvektor:

$$\mathbf{m}(u_0, v_0) := \frac{\partial_u F(u_0, v_0) \times \partial_v F(u_0, v_0)}{|\partial_u F(u_0, v_0) \times \partial_v F(u_0, v_0)|}.$$

- 8. Írja fel egy adott ponton átmenő, adott normálvektorú sík egyenletét.
- 9. Írja fel a paraméteres alakban megadott egyszerű sima felület P_0 pontbeli érintősíkjának az egyenletét.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab, $F: \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése, $(u_0, v_0) \in \mathbb{I}^2$ egy rögzített pont a paramétertartományban és $P_0 := F(u_0, v_0) = (x_0, y_0, z_0) \in \mathcal{F}$ a megfelelő felületi pont. Ekkor a felület P_0 pontbeli érintősíkjának egyenlete (az $\mathbf{x} := (x, y, z)$ jelöléssel):

$$0 = \langle \mathbf{x} - F(u_0, v_0), \mathbf{m}(u_0, v_0) \rangle = (\mathbf{x} - F(u_0, v_0)) \cdot \partial_u F(u_0, v_0) \cdot \partial_v F(u_0, v_0) =$$

$$= \det \begin{bmatrix} x - x_0 & y - y_0 & z - z_0 \\ \frac{\partial F_1}{\partial u} (u_0, v_0) & \frac{\partial F_2}{\partial u} (u_0, v_0) & \frac{\partial F_3}{\partial u} (u_0, v_0) \\ \frac{\partial F_1}{\partial v} (u_0, v_0) & \frac{\partial F_2}{\partial v} (u_0, v_0) & \frac{\partial F_3}{\partial v} (u_0, v_0) \end{bmatrix} = 0.$$

10. Milyen állítást ismer az *explicit alakban* megadott egyszerű sima felület érintősíkjával kapcsolatban?

Válasz: A z = g(x,y) $(g \in \mathbb{R}^2 \to \mathbb{R}^1, g \in C^1)$ explicit alakban megadott $\mathcal{F} \subset \mathbb{R}^3$ egyszerű sima felület minden $P_0 = (x_0, y_0, z_0) \in \mathcal{F}$ pontjában van érintősík. Ennek egy normálvektora:

$$\mathbf{m}(P_0) = (\partial_x g(x_0, y_0), \, \partial_y g(x_0, y_0), \, -1)$$

és egyenlete:

$$z - z_0 = \partial_x g(x_0, y_0)(x - x_0) + \partial_y g(x_0, y_0)(y - y_0).$$

11. Milyen állítást ismer az *implicit alakban* megadott egyszerű sima felület érintősíkjával kapcsolatban?

Válasz: A G(x, y, z) = 0 $(G \in \mathbb{R}^3 \to \mathbb{R}^1, G \in C^1)$ implicit alakban megadott $\mathcal{F} \subset \mathbb{R}^3$ egyszerű sima felület minden $P_0 = (x_0, y_0, z_0) \in \mathcal{F}$ pontjában van érintősík. Ennek egy normálvektora:

$$\mathbf{m}(P_0) = (\partial_x G(x_0, y_0, z_0), \, \partial_y G(x_0, y_0, z_0), \, \partial_z G(x_0, y_0, z_0))$$

és egyenlete:

$$\partial_x G(x_0, y_0, z_0)(x - x_0) + \partial_y G(x_0, y_0, z_0)(y - y_0) + \partial_z G(x_0, y_0, z_0)(z - z_0) = 0.$$

12. Írja fel a felületi görbe ívhosszára vonatkozó alapképletet.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F : \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése. Tegyük fel, hogy $\Gamma \subset \mathcal{F}$ egy sima felületi görbe és $\varphi = F \circ \gamma$: $[\alpha, \beta] \to \mathcal{F}$ ennek egy parméterezése. Mivel $\varphi : (\varphi_1, \varphi_2, \varphi_3) \in C^1([\alpha, \beta], \mathbb{R}^3)$, ezért Γ rektifikálható és az ívhossza:

$$l_{\Gamma} = \int_{0}^{\beta} |\dot{\varphi}(t)| dt = \int_{0}^{\beta} \sqrt{[\dot{\varphi}_{1}(t)]^{2} + [\dot{\varphi}_{2}(t)]^{2} + [\dot{\varphi}_{3}(t)]^{2}} dt.$$

13. Adja meg a paraméteres alakban megadott felület első Gauss-féle alapmenynyiségeinek a definícióját.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése. A $w_0 = (u_0, v_0) \in \mathbb{I}^2$ pontban az első Gauss-féle alapmenynyiségeket így értelmezzük:

$$\mathbb{E}(w_0) := \mathbb{E}(u_0, v_0) := \langle \partial_u F(u_0, v_0), \partial_u F(u_0, v_0) \rangle,$$

$$\mathbb{F}(w_0) := \mathbb{F}(u_0, v_0) := \langle \partial_u F(u_0, v_0), \partial_v F(u_0, v_0) \rangle,$$

$$\mathbb{G}(w_0) := \mathbb{G}(u_0, v_0) := \langle \partial_v F(u_0, v_0), \partial_v F(u_0, v_0) \rangle.$$

14. Hogyan lehet egy felületi görbe ívhosszát az első Gauss-féle alapmennyiségekkel kifejezni?

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése. Tegyük fel, hogy $\Gamma \subset \mathcal{F}$ egy sima felületi görbe és $\varphi = F \circ \gamma$: $[\alpha, \beta] \to \mathcal{F}$ ennek egy parméterezése. Ekkor Γ rektifikálható és az ívhossza

$$\ell_{\Gamma} = \int_{\alpha}^{\beta} \sqrt{\mathbb{E}(t) \dot{\gamma}_1^2(t) + 2\mathbb{F}(t) \dot{\gamma}_1(t) \dot{\gamma}_2(t) + \mathbb{G}(t) \dot{\gamma}_2^2(t)} dt,$$

ahol
$$\gamma = (\gamma_1, \gamma_2)$$
.

15. Adja meg a felület első alapformájának a definícióját.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése. Jelölje $\mathbb{E}(w), \mathbb{F}(w), \mathbb{G}(w)$ a $w = (u, v) \in \mathbb{I}^2$ pontban az első Gauss-féle alapmennyiségeket. A

$$G(w) := \begin{bmatrix} \mathbb{E}(w) & \mathbb{F}(w) \\ \mathbb{F}(w) & \mathbb{G}(w) \end{bmatrix} \qquad (w \in \mathbb{I}^2)$$

szimmetrikus mátrixszal képzett

$$Q(\mathbf{x}) := Q(x_1, x_2) := \langle G(w)\mathbf{x}, \mathbf{x} \rangle =$$

$$= \mathbb{E}(w) x_1^2 + 2 \mathbb{F}(w) x_1 x_2 + \mathbb{G}(w) x_2^2 \qquad (\mathbf{x} \in \mathbb{R}^2)$$

kvadratikus alakot a felület első alapformájának nevezzük

16. Definiálja az egyszerű sima felületdarab felszínét.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: T \to \mathbb{R}^3$ $(T \subset \mathbb{I}^2)$ ennek egy folytonosan deriválható paraméterezése. Ekkor \mathcal{F} felszínén az

$$S := \iint_{T} |\partial_{u} F(u, v) \times \partial_{v} F(u, v)| \ du \ dv$$

számot értjük.

17. Hogyan lehet egy egyszerű sima felület felszínét az első Gauss-féle alapmenynyiségekkel kifejezni?

Válasz: Legyen $F: T \to \mathbb{R}^3$ $(T \subset \mathbb{I}^2)$ az $\mathcal{F} \subset \mathbb{R}^3$ egyszerű sima felület egy folytonosan deriválható paraméterezése. Ekkor a felületnek van felszíne, és erre a következő képlet érvényes:

$$\mathcal{S} = \iint\limits_{T} \sqrt{\mathbb{E}(u,v) \cdot \mathbb{G}(u,v) - \mathbb{F}^{2}(u,v)} \, du \, dv.$$

18. Adja meg a paraméteres alakban megadott felület második Gauss-féle alapmenynyiségeinek a definícióját.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F : \mathbb{I}^2 \to \mathbb{R}^3$ ennek egy kétszer folytonosan deriválható paraméterezése. Jelölje $\mathbf{m}(w_0)$ a felület $w_0 = (u_0, v_0) \in \mathbb{I}^2$

paraméterű pontjában a felületi normális egységvektort (azaz az érintősík egy normálvektorát). Ekkor a felület w_0 paraméterű $P_0 := F(w_0) = F(u_0, v_0)$ pontjában a Gauss-féle második alapmennyiségeket így értelmezzük:

$$\mathbb{L}(w_0) := \mathbb{L}(u_0, v_0) := \langle \partial_{uu} F(w_0), \mathbf{m}(w_0) \rangle = \partial_{uu} F(w_0) \cdot \mathbf{m}(w_0),$$

$$\mathbb{M}(w_0) := \mathbb{M}(u_0, v_0) := \langle \partial_{uv} F(w_0), \mathbf{m}(w_0) \rangle = \partial_{uv} F(w_0) \cdot \mathbf{m}(w_0),$$

$$\mathbb{N}(w_0) := \mathbb{N}(u_0, v_0) := \langle \partial_{vv} F(w_0), \mathbf{m}(w_0) \rangle = \partial_{vv} F(w_0) \cdot \mathbf{m}(w_0).$$

- 19. Milyen képletet ismer pont és sík távolságának a meghatározására?
- 20. Adja meg a felület második alapformájának a definícióját.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: \mathbb{I}^2 \to \mathbb{R}^3$ ennek egy kétszer folytonosan deriválható paraméterezése. Jelölje $\mathbb{L}(w), \mathbb{M}(w), \mathbb{N}(w)$ a felület $w = (u, v) \in \mathbb{I}^2$ paraméterű pontjában a Gauss-féle második alapmennyiségeket. A

$$H(w) := \begin{bmatrix} \mathbb{L}(w) & \mathbb{M}(w) \\ \mathbb{M}(w) & \mathbb{N}(w) \end{bmatrix} \qquad (w \in \mathbb{I}^2)$$

szimmetrikus mátrixszal képzett

$$Q(\mathbf{x}) := Q(x_1, x_2) := \langle H(w)\mathbf{x}, \mathbf{x} \rangle =$$

$$= \mathbb{L}(w) x_1^2 + 2 \mathbb{M}(w) x_1 x_2 + \mathbb{N}(w) x_2^2 \qquad (\mathbf{x} \in \mathbb{R}^2)$$

kvadratikus alakot a felület második alapformájának nevezzük.

21. Milyen tételt ismer felületi görbék görbületével kapcsolatban?

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: \mathbb{I}^2 \to \mathbb{R}^3$ ennek egy folytonosan deriválható paraméterezése. Tegyük fel, hogy $\Gamma \subset \mathcal{F}$ egy sima felületi görbe és $\varphi = F \circ \gamma : [\alpha, \beta] \to \mathcal{F}$ ennek egy parméterezése. Tekintsük a felületnek egy olyan P_0 pontját, amelyen ez a görbe átmegy:

$$\mathcal{F} \ni P_0 = \varphi(t_0) = F(\gamma(t_0)) = F(u_0, v_0) = F(w_0).$$

Tegyük fel még azt is, hogy a felület P_0 pontbeli érintősíkja (ennek normálvektora az $\mathbf{m}(w_0)$ felületi normális egységvektor) nem egyezik meg a görbe P_0 pontbeli simulósíkjával, azaz $\mathbf{n}(P_0) \cdot \mathbf{m}(w_0) \neq 0$, ahol $\mathbf{n}(P_0)$ a görbe főnormális egységvektora. Ekkor a görbe P_0 pontjában a görbületre a következő képlet érvényes:

$$\kappa(P_0) = \frac{1}{\mathbf{n}(P_0) \cdot \mathbf{m}(w_0)} \cdot \frac{\langle H(w_0) \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle}{\langle G(w_0) \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle} =$$

$$= \frac{1}{\mathbf{n}(P_0) \cdot \mathbf{m}(w_0)} \cdot \frac{\mathbb{L} \dot{\gamma}_1^2(t_0) + 2\mathbb{M} \dot{\gamma}_1(t_0) \dot{\gamma}_2(t_0) + \mathbb{N} \dot{\gamma}_2^2(t_0)}{\mathbb{E} \dot{\gamma}_1^2(t_0) + 2\mathbb{F} \dot{\gamma}_1(t_0) \dot{\gamma}_2(t_0) + \mathbb{G} \dot{\gamma}_2^2(t_0)}.$$

22. Egy adott érintővel rendelkező felületi görbék közül melyiknek legkisebb a görbülete? Miért?

Válasz: Adott érintőjű síkmetszetek közül a normálmetszet a legkisebb görbületű az adott pontban. Ebben az esetben ui. az $\mathbf{m}(P_0)$ és az $\mathbf{n}(P_0)$ vektorok párhuzamosak, tehát $\mathbf{n}(P_0) \cdot \mathbf{m}(P_0) = \pm 1$

23. Miért elég síkmetszetek görbületét vizsgálni?

Válasz: Egy tetszőleges Γ felületi görbe P_0 pontbeli görbülete megegyezik a görbe P_0 pontjához tartozó simulósíkja által a felületből kimetszett felületi síkgörbe P_0 pontbeli görbületével. Ezért a felület P_0 pontján áthaladó görbék görbületének vizsgálatánál elegendő a síkmetszetek görbületét tekinteni.

24. Definiálja a következő fogalmakat: normálsík, normálmetszet, normálgörbület, ferdemetszet.

Válasz: A felület valamely pontjabeli érintősíkra e pontban merőleges síkokat normálsíkoknak, a normálsík által kimetszett görbét normálmetszetnek, a normálmetszet görbületét pedig normálgörbületnek nevezzük. Minden más síkmetszetet ferdemetszetnek hívunk.

25. Definiálja az előjelezett normálgörbületet.

Válasz: A normálgörbületnek előjelet is adunk: az előjel pozitív (illetve neqatív), ha görbe főnormális egységvektora a felület egységnyi normálvektorával megegyező (illetve ellen $t\acute{e}tes$ irányú). Ezt az $\mathbf{n}(P_0) \cdot \mathbf{m}(w_0)$ skaláris szorzat mutatja, amely az első esetben +1, a másodikban pedig -1. Vegyünk fel a felület P_0 pontbeli érintősíkjában egy e egyenest (ez jelöli ki az adott érintő irányát). Ekkor a $\kappa_e(P_0)$ -lal jelölt előjelezett normálgörbületet

$$\kappa_e(P_0) = \frac{\langle H(w_0) \,\dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle}{\langle G(w_0) \,\dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle} = \frac{\mathbb{L} \,\dot{\gamma}_1^2(t_0) + 2\mathbb{M} \,\dot{\gamma}_1(t_0) \,\dot{\gamma}_2(t_0) + \mathbb{N} \,\dot{\gamma}_2^2(t_0)}{\mathbb{E} \,\dot{\gamma}_1^2(t_0) + 2\mathbb{F} \,\dot{\gamma}_1(t_0) \,\dot{\gamma}_2(t_0) + \mathbb{G} \,\dot{\gamma}_2^2(t_0)}.$$

26. Mondja ki Meusnier tételét.

Válasz: Tekintsük a reguláris $\mathcal{F} \subset \mathbb{R}$ felület P_0 pontjára és az ehhez tartozó érintősík egy e egyenesére illeszkedő tetszőleges, de az érintősíktól különböző σ síkot. Legyen $\kappa(P_0)$ a σ sík által kimetszett felületi görbe görbülete és $\kappa_e(P_0)$ az e irányhoz tartozó normálmetszet előjeles görbülete. Ekkor

 $\kappa(P_0) = \frac{\kappa_e(P_0)}{\cos\alpha},$ ahol α ($\alpha \in (0,\pi) \setminus \{\frac{\pi}{2}\}$) a felület P_0 pontjában felületi normális egységvektora és a felületi görbe fönormális egységvektora által bezárt szög.

27. Fogalmazza meg azt az általános szélsőérték-feladatot, amelyet felhasználtunk a fő(normál)görbületek értelmezéséhez. Adja meg a megoldást is.

 $\mathbf{V\acute{a}lasz}$: Legyenek \mathbf{A} és \mathbf{B} $n \times n$ -es szimmetrikus mátrixok és tegyük fel még azt is, hogy B pozitív definit. Keressük az

$$f(\mathbf{x}) := \frac{\langle \, \mathbf{A} \mathbf{x}, \mathbf{x} \, \rangle}{\langle \, \mathbf{B} \mathbf{x}, \mathbf{x} \, \rangle} \qquad \big(\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\} \big),$$

függvény abszolút szélsőértékeit.

A feladat megoldása: Tekintsük az $\mathbf{A}\mathbf{B}^{-1}$ szimmetrikus mátrixot, és jelölje

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
 ennek a sajátértékeit,

$$\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n$$
 pedig a megfelelő sajátvektorokat.

Ekkor

(a) az
$$f$$
 függvénynek létezik abszolút maximuma és minimuma;
(b) min $f = \lambda_1 = f(\mathbf{B}^{-1}\mathbf{r}_1)$, $\max f = \lambda_n = f(\mathbf{B}^{-1}\mathbf{r}_n)$.

28. Mondja ki egyszerű sima felület főgörbületeire vonatkozó tételt.

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab, $F: \mathbb{I}^2 \to \mathbb{R}^3$ ennek egy kétszer folytonosan deriválható paraméterezése és $P_0 = F(w_0)$ a felület egy pontja. Ekkor az

$$f(\mathbf{x}) := \kappa_e(P_0) := \frac{\langle H(w_0)\mathbf{x}, \mathbf{x} \rangle}{\langle G(w_0)\mathbf{x}, \mathbf{x} \rangle} = \frac{\mathbb{L}(w_0)x_1^2 + 2\mathbb{M}(w_0)x_1x_2 + \mathbb{N}(w_0)x_2^2}{\mathbb{E}(w_0)x_1^2 + 2\mathbb{F}(w_0)x_1x_2 + \mathbb{G}(w_0)x_2^2}$$

$$(\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 \setminus \{\mathbf{0}\})$$

függvénynek van abszolút minimuma (κ_1) és maximuma (κ_2) . Ezeket a számokat $f\tilde{g}(nor$ *mál)görbületeknek* nevezzük.

29. Adja meg azt a mátrixot, amelyiknek a sajátértékei a fő(normál)görbületek.

Válasz: Egy adott pontban a κ_1 és κ_2 fő(normál)görbületek a $H(w_0)G^{-1}(w_0)$ mátrix sajátértékei, ahol $G(w_0)$, illetve $H(w_0)$ az adott pontban az első-, illetve a második Gaussféle alapmennyiségekből képzett szimmetrikus mátrix.

30. Írja fel azt az egyenletet, amelyiknek megoldásai a fő(normál)görbületek.

Válasz: Adott pontbeli fő(normál)görbületek a

$$\lambda^{2} - \operatorname{tr}(H(w_{0})G^{-1}(w_{0}))\lambda + \det(H(w_{0})G^{-1}(w_{0})) = 0$$

sajátérték-egyenlet megoldásai, ahol $G(w_0)$, illetve $H(w_0)$ az adott pontban az első-, illetve a második Gauss-féle alapmennyiségekből képzett szimmetrikus mátrix. Ennek a másodfokú egyenletnek csak valós gyökei vannak.

31. Hogyan lehet az összeggörbületet a Gauss-féle alapmennyiségekkel kifejezni? **Válasz:** Ha $G(w_0)$, illetve $H(w_0)$ az adott pontban az első-, illetve a második Gauss-féle alapmennyiségekből képzett szimmetrikus mátrix, akkor a fő(normál)görbületek összege

$$\mathcal{H} := \kappa_1 + \kappa_2 = \text{tr} (H(w_0)G^{-1}(w_0)).$$

32. Hogyan lehet a szorzatgörbületet a Gauss-féle alapmennyiségekkel kifejezni? Válasz: Ha $G(w_0)$ illetve $H(w_0)$ az adott portban az első- illetve a második Gauss-fél

Válasz: Ha $G(w_0)$, illetve $H(w_0)$ az adott pontban az első-, illetve a második Gauss-féle alapmennyiségekből képzett szimmetrikus mátrix, akkor a fő(normál)görbületek szorzata

$$\mathcal{K} := \kappa_1 \cdot \kappa_2 = \det(H(w_0)G^{-1}(w_0)).$$

(Ezt a számot Gauss-féle görbületnek is nevezik.)

33. Mik a főirányok?

Válasz: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab, $F: \mathbb{I}^2 \to \mathbb{R}^3$ ennek egy kétszer folytonosan deriválható paraméterezése és $P_0 = F(w_0)$ a felület egy pontja. Tekintsük ebben a pontban az előjelezett normálgörbületeket. Az érintősíkban megadható két egymásra merőleges irány (ezek a *főirányok*) úgy, hogy egyikben a legkisebb, a másikban pedig legnagyobb az előjelezett normálgörbület.

- 34. Lehet-e egy adott pontban minden irány főirány? Ha igen, akkor mikor? Válasz: Igen. Akkor, ha a pontban a főgörbületek megegyeznek.
- 35. Hogyan lehet a főirányokat meghatározni?

Válasz: Az érintősíkban a

$$\xi \partial_u F(w_0) + \eta \partial_v F(w_0)$$

képlet alapján jelöljük ki a (ξ,η) koordinátájú irányokat. A főirányokat megadó (ξ,η) értékeket a

$$\det \begin{bmatrix} \eta^2 & -\xi \eta & \xi^2 \\ \mathbb{E}(w_0) & \mathbb{F}(w_0) & \mathbb{G}(w_0) \\ \mathbb{L}(w_0) & \mathbb{M}(w_0) & \mathbb{N}(w_0) \end{bmatrix} = 0$$

másodfokú egyenlet gyökeiből határozzuk meg.

36. Mondja ki Euler tételét.

Válasz: Egy egyszerű sima felület tetszőleges pontjában bármely normálmetszet κ görbülete kifejezhető a $\kappa_1 \leq \kappa_2$ fő(normál)görbületekkel. Az összefüggés:

$$\kappa = \kappa_1 \cos^2 \vartheta + \kappa_2 \sin^2 \vartheta,$$

ahol ϑ a görbeérintő és a κ_1 -nek megfelő főgörbületi irány bezárta szög.

37. Hogyan osztályoztuk a felületi pontokat?

 $\mathbf{V\acute{a}lasz}$: Ha a felület egy pontjában a \mathcal{K} szorzatgörbület pozitív, negatív, illetve zérus, akkor azt mondjuk, hogy ez a pont a felületnek elliptikus, hiperbolikus, illetve parabolikus pontja. Ha $\kappa_1 = \kappa_2 \neq 0$, akkor a pont (amely nyilván elliptikus) szférikus pont; ha $\kappa_1 = \kappa_2 = 0$, akkor a pontot (amely nyilván parabolikus) planáris pontnak nevezzük.

A 38-51. kérdésekre a választ l. a Gyakorló feladatok 3. segédanyagot.

- 38. Hogyan értelmezzük a skalármezőket?
- 39. Adja meg a skalármező pontbeli gradiensvektorának a definícióját.
- 40. Hogyan értelmezzük a vektormezőket?
- 41. Hogyan értelmezzük egy vektormező pontbeli deriváltmátrixát?
- 42. Mit nevezünk egy vektormező divergenciájának?
- 43. Definiálja vektormező rotációját.
- 44. Írja fel a divergenciát és a rotációt a nabla szimbólum segítségével.
- 45. Definiálja a Laplace operátort.
- 46. Definiálja skalármező térfogati integrálját.

- 47. Definiálja vektormező vonalintegrálját.
- 48. Definiálja vektormező felületi integrálját.
- 49. Mondja ki a Gauss-Osztrogradszkij-tételt.
- 50. Fogalmazza meg a Stokes-tételt.
- 51. Fogalmazza meg a szimmetrikus Green-tételt.
- **52.** Mi a Riemann-integrálhatóság Lebesgue-féle kritériuma?

Válasz: Az f függvény Riemann-integrálható az [a,b] intervallumon $(f \in R[a,b]) \iff$ ha f egy Lebesgue-értelemben nullamértékű halmaz kivételével folytonos [a,b]-n $(\exists A \subset [a,b]$ Lebesgue-értelemben nullamértékű halmaz, hogy $f \in C([a,b] \setminus A)$).

53. Adjon meg Riemann-integrálható függvényeknek egy olyan sorozatát, amelynek a pontonkénti határfüggvénye Riemann-integrálható, az integrálok sorozata konvergens, de e sorozat határértéke nem egyenlő a határfüggvény integráljával.

Válasz: Legyen

$$f_n(x) := \begin{cases} 4n^2 x, & \text{ha } 0 \le x \le \frac{1}{2n} \\ 4n^2 \left(\frac{1}{n} - x\right), & \text{ha } \frac{1}{2n} \le x \le \frac{1}{n} \\ 0, & \text{ha } \frac{1}{n} \le x \le 1. \end{cases}$$

Ekkor minden $n \in \mathbb{N}$ esetén $f_n \in R[0, 1]$,

$$\int\limits_0^1 f_n = 1 \ \ \text{(a háromszög területe)}, \qquad \lim\limits_{n \to +\infty} \int\limits_0^1 f_n = 1.$$

A pontonkénti határfüggvény nyilván:

$$f(x) := \lim_{n \to +\infty} f_n(x) = 0$$
 $(x \in [0, 1]),$

tehát

$$\lim_{n \to +\infty} \int_0^1 f_n = 1 \neq \int_0^1 \lim_n (f_n) = 0.$$

- **54.** Adjon meg olyan (f_n) függvénysorozatot, amelyre a következők teljesülnek:
 - (a) $f_n \in R[0,1]$ minden $n \in \mathbb{N}$ esetén,
 - (b) az integrálok $(\int_0^1 f_n)$ sorozata nem konvergens,
 - (c) a pontonkénti határfüggvény integrálható.

Válasz: Legyen

$$f_n(x) := \begin{cases} 2n^3 x, & \text{ha } 0 \le x \le \frac{1}{2n} \\ 2n^3 \left(\frac{1}{n} - x\right), & \text{ha } \frac{1}{2n} \le x \le \frac{1}{n} \\ 0, & \text{ha } \frac{1}{n} \le x \le 1. \end{cases}$$

Ekkor minden $n \in \mathbb{N}$ esetén $f_n \in R[0, 1]$,

$$\int_{0}^{1} f_{n} = \frac{n}{2} \quad \text{(a háromszög területe)}, \qquad \lim_{n \to +\infty} \int_{0}^{1} f_{n} = +\infty.$$

Az integrálok sorozata tehát nem konvergens. A pontonkénti határfüggvény nyilván:

$$f(x) := \lim_{n \to +\infty} f_n(x) = 0$$
 $(x \in [0, 1]),$

és ez a függvény integrálható $\left(\int_0^1 f = 0\right)$.

55. Riemann-integrálható függvényeknek van-e olyan sorozata, amelynek a pontonkénti határfüggvénye nem Riemann-integrálható?

Válasz: Igen. Ilyen például a következő függvénysorozat: Jelölje (x_n) a [0,1] intervallum racionális pontjainak egy sorozatba rendezését, és legyen

$$f_n(x) := \begin{cases} 0, & \text{ha } x \in \{x_1, x_2, \dots, x_n\} \\ 1, & \text{ha } x \in [0, 1] \setminus \{x_1, x_2, \dots, x_n\}, \end{cases} \quad (n \in \mathbb{N}).$$

Mindegyik f_n függvény véges sok pont kivételével folytonos, ezért Riemann-integrálható $(\int_0^1 f_n = 1 \text{ minden } n \in \mathbb{N} \text{ eset\'en}).$

A pontonkénti határfüggvény:

$$f(x):=\lim_{n\to +\infty}f_n(x)=\begin{cases} 0, & \text{ha } x\in [0,1]\cap \mathbb{Q}\\ 1, & \text{ha } x\in [0,1]\text{-beli irracionális szám}. \end{cases}$$

Ez az f függvény nem Riemann-integrálható a [0,1] intervallumon. (Ui. az alsó közelítő összegek szuprémuma – ami nyilván 0 – nem egyezik meg a felső közelítő összegek infimumával – ez 1-gyel egyenlő.)

56. Mikor nevezzük az $\Omega \subset \mathcal{P}(X)$ halmazrendszert X-beli σ -algebrának?

Válasz: Az $\Omega \subset \mathcal{P}(X)$ halmazrendszert X-beli σ -algebrának nevezzük, ha

- (i) $X \in \Omega$,
- (ii) $\forall A \in \Omega$ esetén $X \setminus A \in \Omega$,
- (iii) tetszőleges Ω -beli $A_n \in \Omega \ (n=1,2,\ldots)$ halmazsorozatra $\bigcup_{n=1}^{+\infty} A_n \in \Omega$.
- 57. Definiálja a mérhető tér és a mérhető halmaz fogalmát.

Válasz: Legyen X egy tetszőleges nemüres halmaz és $\Omega \subset \mathcal{P}(X)$ egy X-beli σ -algebra. Az

- (X,Ω) párt mérhető térnek,
- az Ω elemeit pedig *mérhető halmazoknak* nevezzük.
- 58. Definiálja a mérték fogalmát.

Válasz: Legyen X egy nemüres halmaz és $\Omega \subset \mathcal{P}(X)$ egy X-beli σ -algebra.

A $\mu:\Omega\to\overline{\mathbb{R}}$ halmazfüggvényt az (X,Ω) mérhető téren értelmezett mértéknek nevezzük,

- (i) $\mu(\emptyset) = 0$,
- (ii) minden $A \in \Omega$ halmazra $\mu(A) \geq 0$,
- (iii) tetszőleges Ω -beli, páronként diszjunkt $(A_k, k \in \mathbb{N})$ halmazsorozat esetén fennáll a

$$\mu\left(\bigcup_{k=1}^{+\infty} A_k\right) = \sum_{k=1}^{+\infty} \mu(A_k)$$

egyenlőség. (Röviden ezt úgy fejezzük ki, hogy a μ halmazfüggvény σ -additív.) $\mu(A)$ -t az A halmaz mértékének nevezzük.

59. Mikor mondjuk azt, hogy egy μ mérték véges, illetve σ -véges?

Válasz: Tegyük fel, hogy $X \neq \emptyset$ tetszőleges halmaz, $\Omega \subset \mathcal{P}(X)$ egy X-beli σ -algebra és a $\mu:\Omega\to\overline{\mathbb{R}}$ halmazfüggvény mérték. A μ mérték $v\acute{e}ges$, ha $\mu(X)<+\infty$. A μ mérték σ -véges, ha létezik olyan Ω -beli páronként diszjunkt (A_k) halmazsorozat, amelyre a következők teljesülnek:

- $\text{(i)} \ \bigcup_{k=1}^{+\infty} A_k = X,$ $\text{(ii)} \ \forall \, k \in \mathbb{N} \ \text{eset\'en} \ \mu(A_k) < +\infty.$
- 60. Definiálja a mértéktér fogalmát.

Válasz: Legyen X egy tetszőleges nemüres halmaz, $\Omega \subset \mathcal{P}(X)$ egy X-beli σ -algebra és $\mu:\Omega\to\overline{\mathbb{R}}$ egy mérték. Az (X,Ω,μ) hármast nevezzük *mértéktérnek*.

61. Adjon meg egy triviális példát mértéktérre.

Válasz: Legyen X egy tetszőleges nemüres halmaz és $\Omega = \mathcal{P}(X)$. Vegyük az X halmaz egy ω elemét és tekintsük a

$$\mu_{\omega}(A) := \begin{cases} 1, & \text{ha } \omega \in A \\ 0, & \text{ha } \omega \not \in A \end{cases} \qquad (A \in \mathcal{P}(X))$$

halmazfüggvényt. Ekkor (X, Ω, μ) egy mértéktér.

62. Definiálja a félgyűrű fogalmát.

Válasz: Legyen X egy tetszőleges nemüres halmaz. A nemüres $\mathcal{H} \subset \mathcal{P}(X)$ halmazrendszer X-beli $f\acute{e}lgy\~ur\~u$, ha

- (i) $\emptyset \in \mathcal{H}$,
- (ii) $\forall A, B \in \mathcal{H} \Longrightarrow A \cap B \in \mathcal{H}$,
- (iii) $\forall A, B \in \mathcal{H}$ -hoz \exists véges sok páronként diszjunkt \mathcal{H} -beli Q_1, Q_2, \dots, Q_n halmaz úgy, hogy

$$A \setminus B = \bigcup_{k=1}^{n} Q_k.$$

63. Definiálja a halmazgyűrű fogalmát.

Válasz: Legyen X egy tetszőleges nemüres halmaz. A nemüres $\mathcal{G} \subset \mathcal{P}(X)$ halmazrendszer X-beli gyűrű, ha

- (i) $\forall A, B \in \mathcal{G} \Longrightarrow A \cup B \in \mathcal{G}$,
- (ii) $\forall A, B \in \mathcal{G} \Longrightarrow A \setminus B \in \mathcal{G}$.

64. Milyen állítást ismer halmazgyűrűk metszetével kapcsolatban?

Válasz: Akárhány gyűrű metszete is gyűrű.

65. Mit értünk egy halmazrendszer által generált gyűrűn?

Válasz: Legyen X egy nemüres halmaz és $Y \subset \mathcal{P}(X)$ egy tetszőleges X-beli halmazrendszer. Az Y halmazrendszer által generált gyűrűn a legszűkebb, Y-t tartalmazó X-beli gyűrűt értjük. Ez az Y-t tartalmazó X-beli gyűrűk közös része, azaz

$$\mathcal{G}(Y) = \bigcap_{\substack{Y \subset \mathcal{G} \\ \mathcal{G} \subset X \text{ gyűrű}}} \mathcal{G}.$$

66. Mondja ki a félgyűrű által generált gyűrű előállítására vonatkozó tételt.

Válasz: Legyen $\mathcal{H} \subset \mathcal{P}(X)$ egy félgyűrű. Ekkor a \mathcal{H} által generált $\mathcal{G}(\mathcal{H})$ gyűrűre a következő explicit előállítás érvényes:

$$\mathcal{G}(\mathcal{H}) = \left\{ \bigcup_{k=1}^{n} A_k \in \mathcal{P}(X) \mid A_k \in \mathcal{H}, \ k = 1, 2, \dots, n, \ n \in \mathbb{N} \right\}.$$

67. Adja meg az előmérték definícióját.

Válasz: Legyen X egy nemüres halmaz és $\mathcal{H} \subset \mathcal{P}(X)$ egy tetszőleges X-beli félgyűrű, vagy gyűrű. Az $m: \mathcal{H} \to \overline{\mathbb{R}}$ halmazfüggvényt *előmértéknek* nevezzük, ha

- (i) $m(A) \ge 0 \quad \forall A \in \mathcal{H} \text{ eset\'en},$
- (ii) $m(\emptyset) = 0$,
- (iii) m végesen additív. Ezen azt értjük, hogy minden olyan \mathcal{H} -beli, páronként diszjunkt

 A_1,A_2,\dots,A_n halmazok esetén, amelyekre $\bigcup\limits_{k=1}^nA_k\in\mathcal{H}$ is igaz, fennáll az

$$m\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} m(A_k)$$

egyenlőség.

68. Mondja ki az első kiterjesztési tételt.

Válasz: Tegyük fel, hogy:

(i) X egy tetszőleges nemüres halmaz,

- (ii) $\mathcal{H} \subset \mathcal{P}(X)$ egy tetszőleges X-beli félgyűrű,
- (iii) $m: \mathcal{H} \to \overline{\mathbb{R}}$ egy előmérték.

Ekkor m egyértelműen kiterjeszthető a $\mathcal{G}(\mathcal{H})$ gyűrűn értelmezett előmértékké.

69. Milyen fontos tulajdonságokkal rendelkezik az $\mathbb{I}^p \subset \mathcal{P}(\mathbb{R}^p)$ félgyűrűn értelmezett előmérték (azaz az intervallumok "természetes" mértéke)?

Válasz: 1. Az \mathbb{I}^p félgyűrün értelmezett előmérték egyértelműen kiterjeszthető az \mathbb{I}^p által generált $\mathcal{G}(\mathbb{I}^p)$ gyűrűn értelmezett előmértékké.

2. Á $\mathcal{G}(\mathbb{I}^p)$ gyűrűn ez az előmérték σ -additív is. Ez azt jelenti, hogy ha $(A_k, k \in \mathbb{N})$ egy olyan páronként diszjunkt $\mathcal{G}(\mathbb{I}^p)$ -beli halmazsorozat, amelynek az egyesítése is benne van $\mathcal{G}(\mathbb{I}^p)$ -ben, akkor fennáll az

$$m\left(\bigcup_{i=k}^{+\infty} A_k\right) = \sum_{k=1}^{+\infty} m(A_k)$$

egyenlőség.

70. Definiálja a kvázimérték fogalmát.

Válasz: Legyen X egy tetszőleges nemüres halmaz, $\mathcal{G} \subset \mathcal{P}(X)$ pedig egy X-beli gyűrű. A $\mu: \mathcal{G} \to \overline{\mathbb{R}}$ halmazfüggvényt kvázimértéknek nevezzük, ha az alábbiak teljesülnek:

- (i) $\forall A \in \mathcal{G}$ esetén $\mu(A) \geq 0$,
- (ii) $\mu(\emptyset) = 0$,
- (iii) μ σ -additív. Ezen azt értjük, hogy minden olyan \mathcal{G} -beli $(A_k, k \in \mathbb{N})$ halmazsorozat esetén, amelynek a tagjai páronként diszjunktak és $\cup_{k=1}^{+\infty} A_k \in \mathcal{G}$ is igaz, teljesül, hogy

$$\mu\left(\bigcup_{k=1}^{+\infty} A_k\right) = \sum_{k=1}^{+\infty} \mu(A_k).$$

71. Mondja ki a második kiterjesztési tételt.

Váľasz: Minden gyűrűn értelmezett kvázimérték kiterjeszthető mértékké. Ez azt jelenti, hogy ha

- (i) X egy tetszőleges nemüres halmaz,
- (ii) $\mathcal{G} \subset \mathcal{P}(X)$ egy tetszőleges X-beli gyűrű,
- (iii) $\tilde{\mu}: \mathcal{G} \to \overline{\mathbb{R}}$ egy kvázimérték,

akkor létezik olyan $\mathcal G$ -t tartalmazó X-beli Ω σ -algebra és olyan μ mérték Ω -n, amelyik kiterjesztése $\tilde \mu$ -nek.

72. Értelmezze a külső mértéket.

Válasz: Legyen X egy tetszőleges nemüres halmaz, \mathcal{G} egy X-beli gyűrű és $\tilde{\mu}: \mathcal{G} \to \overline{\mathbb{R}}$ egy kvázimérték. Ekkor az $A \in \mathcal{P}(X)$ halmaz külső mértékét így értelmezzük:

$$\mu^*(A) := \inf \left\{ \sum_{k=1}^{\infty} \tilde{\mu}(A_k) \mid A_k \in \mathcal{G}, \quad k \in \mathbb{N} \quad \text{és } A \subset \bigcup_{k=1}^{\infty} A_k \right\}.$$

A $\mu^*: \mathcal{P}(X) \to [0, +\infty]$ halmazfüggvényt pedig külső mértéknek nevezzzük.

73. Milyen tulajdonságai vannak a $\mu^* : \mathcal{P}(X) \to \overline{\mathbb{R}}$ külső mértéknek?

Válasz: A $\mu^* : \mathcal{P}(X) \to \overline{\mathbb{R}}$ külső mértékre a következők teljesülnek:

- (i) $\mu^*(A) \geq 0$ minden $A \in \mathcal{P}(X)$ esetén,
- (ii) $\mu^*(\emptyset) = 0$
- (iii) ha $A, B \subset X$ és $A \subset B \Longrightarrow \mu^*(A) \leq \mu^*(B)$ (a külső mérték monoton),
- (iv) σ -szubadditív; ez azt jelenti, hogy minden X-beli $(A_n, n \in \mathbb{N})$ halmazsorozat esetén fennáll a

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \mu^* (A_n)$$

egyenlőtlenség.

74. Mikor nevezünk egy $B \in \mathcal{P}(X)$ halmazt Carathèodory értelemben mérhetőnek?

Válasz: Legyen X egy tetszőleges nemüres halmaz, \mathcal{G} egy X-beli gyűrű és $\tilde{\mu}: \mathcal{G} \to \overline{\mathbb{R}}$ egy kvázimérték. Jelölje μ^* az ezek által megahtározott $\mu^*: \mathcal{P}(X) \to \overline{\mathbb{R}}$ külső mértéket. A $B \in \mathcal{P}(X)$ halmazt Carathèodory értelemben mérhetőnek nevezzük akkor, ha μ^* minden X-beli A halmazt additív módon vág szét, azaz a

$$\mu^*(A) = \mu^*(A \cap B) + \mu^*(A \setminus B)$$

egyenlőség az X halmaz minden A részhalmazára teljesül.

75. Milyen kapcsolat van a 2. kiterjesztési tételből adódó Ω σ -algebra és a \mathcal{G} által generált $\Omega(\mathcal{G})$ σ -algebra között?

Válasz: Az $\Omega(\mathcal{G}) \subset \Omega$ reláció az általános esetben is teljesül (ez triviális). Az $\Omega(\mathcal{G}) = \Omega$ egyenlőség azonban általában nem igaz, l. az \mathbb{R}^p -n értelmezett Lebesgue-mértéket.

76. Definiálja teljes mérték fogalmát.

Válasz: Legyen (X, Ω, μ) egy mértéktér. A μ mérték teljes, ha minden nullamértékű halmaz tetszőleges részhalmaza is mérhető (persze ez is nullmértékű).

77. Adjon meg a [0,1] intervallumon egy olyan halmazt, amelyik nem Lebesguemérhető.

Válasz: Értelmezzük R-en a következő relációt:

$$x, y \in \mathbb{R}$$
 esetén legyen $x \sim y : \iff x - y \in \mathbb{Q}$.

Ez egy ekvivalencia reláció, ami \mathbb{R} -nek egy osztályfelbontását indukálja. Legyen K az a halmaz, amelyik minden ekvivalenciaosztályból pontosan egy [0,1)-beli elemet tartalmaz. Ez a $K \subset [0,1]$ halmaz nem Lebesgue-mérhető.

78. Mi az alapvető különbség a Borel-mérték és a Lebesgue-mérték között?

Válasz: Legyen $p \ge 1$ rögzített természetes szám.

- (a) Az $(\mathbb{R}^p, \Omega(\mathbb{I}^p), \lambda_{|\Omega(\mathbb{I}^p)})$ Borel-féle mértéktér nem teljes.
- (b) Az $(\mathbb{R}^p,\Lambda,\lambda)$ Lebesgue-féle mértéktér teljes;ez a Borel-féle mértéktér "teljessé tétele".
- 79. Definiálja $\overline{\mathbb{R}}$ Borel-halmazait.

Válasz: $\overline{\mathbb{R}}$ Borel-halmazai a $B \cup C$ halmazok, ahol $B \in \Omega(\mathbb{I})$ és $C = \emptyset$, vagy $C = \{+\infty\}$, vagy $C = \{\pm\infty\}$.

80. Definiálja a mérhető függvény fogalmát.

Válasz: Legyen (X,Ω) egy tetszőleges mérhető tér. Az $f:X\to \overline{\mathbb{R}}$ függvény Ω -mérhető, ha

$$\forall\,A\subset\overline{\mathbb{R}}\ \ \text{Borel-halmaz eset\'en}\qquad f^{-1}[A]=\{x\in X\mid f(x)\in A\}\in\Omega.$$

Jelölés: $\mathcal{M}(X,\Omega)$ az Ω -mérhető függvények halmaza.

81. Mi a jelentése az $\{f \geq \alpha\}$ jelölésnek?

Válasz: Legyen X egy tetszőleges nemüres halmaz, $f: X \to \overline{\mathbb{R}}$ és $\alpha \in \mathbb{R}$. Ekkor:

$$\{f \ge \alpha\} := \{x \in X \mid f(x) \ge \alpha\}.$$

82. Mit jelent függvény mérhetőségének a nívóhalmazokkal való jellemzése?

Válasz: Legyen (X,Ω) egy mérhető tér és $f:X\to\overline{\mathbb{R}}$. Az f függvény akkor és csak akkor Ω -mérhető, ha

$$\forall \ \alpha \in \mathbb{R} \ \text{eset\'en} \ \{f \geq \alpha\} \in \Omega.$$

(Az állítás igaz marad akkor is, ha az $\{f \geq \alpha\}$ nívóhalmazok helyett az $\{f < \alpha\}, \ldots$ stb. nívóhalmazokat tekintjük.

83. Definiálja absztrakt halmazon a lépcsősfüggvény fogalmát.

Válasz: Legyen X egy nemüres halmaz. Az $f: X \to \overline{\mathbb{R}}$ lépcsősfüggvény, ha az $\mathcal{R}_f \subset \overline{\mathbb{R}}$ halmaz véges.

84. Fogalmazza meg a lépcsősfüggvények kanonikus előállítására vonatkozó állítást.

Válasz: Legyen X egy tetszőleges nemüres halmaz. Az $f: X \to \overline{\mathbb{R}}$ függvény akkor és csak akkor lépcsősfüggvény, ha

$$\begin{array}{l} \exists \ A_1,A_2,\ldots,A_n \subset X \ \text{diszjunkt halmazok, \'es} \\ \exists \ \alpha_1,\alpha_2,\ldots,\alpha_n \in \mathbb{R} \end{array} \right\} : f(x) = \sum_{i=1}^n \alpha_i \chi_{A_i}(x) \ \ (x \in X),$$

ahol χ_{A_i} az A_i halmaz karakterisztikus függvénye.

85. Milyen tételt ismer nemnegatív mérhető függvény lépcsősfüggvényekkel való előállításáról?

Válasz: Legyen (X,Ω) egy mérhető tér és f egy nemnegatív Ω -mérhető függvény. Ekkor létezik nemnegatív, Ω -mérhető lépcsősfüggvényeknek egy olyan monoton növekedő (f_n) sorozata, amelyik pontonként tart az f függvényhez:

$$\lim_{n \to +\infty} f_n(x) = f(x) \qquad (x \in X).$$

86. Hogyan lehet függvény mérhetőségét lépcsősfüggvény-sorozattal jellemezni? Válasz:

$$f \in \mathcal{M}(X,\Omega) \iff \exists (f_n) \subset \mathcal{M}(X,\Omega) : \lim_{n \to +\infty} f_n(x) = f(x) \quad (x \in X).$$

87. Fogalmazza meg Jegorov tételét.

Válasz: Legyen (X, Ω, μ) mértéktér. Tegyük fel, hogy $\mu(X) < +\infty$ és $f_n : X \to \mathbb{R}$ $(n \in \mathbb{R})$ $\mathbb N)$ $\Omega\text{-}\mathrm{m\acute{e}rhet\~o}$ függvényekből álló, pontonként konvergens függvénysorozat. Jelölje fa határfüggvényt: $f(x) := \lim_{n \to +\infty} f_n(x)$ $(x \in X)$. Ekkor:

- (a) $f \in \mathcal{M}(X,\Omega)$,
- (b) $\forall \varepsilon > 0: \exists X_{\varepsilon} \in \Omega$, amelyre $\mu(X \setminus X_{\varepsilon}) < \varepsilon$, és az (f_n) függvénysorozat már egyenletesen konvergál az X_{ε} halmazon az f függvényhez.
- 88. Fogalmazza meg Luzin tételét.

Válasz: Tekintsük az $(\mathbb{R}^p, \Lambda, \lambda)$ $(p \in \mathbb{N})$ Lebesgue-féle mértékteret. Legyen $A \subset \mathbb{R}^p$ véges mértékű halmaz és $f:A\to\mathbb{R}$ Lebesgue-értelemben mérhető, véges értékű függvény. Ekkor: $\forall \varepsilon > 0$ számhoz $\exists A_{\varepsilon} \subset A$ halmaz, hogy

- (a) $A_{\varepsilon} \in \Lambda$,
- (b) $\lambda(A_{\varepsilon}) < \varepsilon$,
- (c) $f_{|A\setminus A_{\varepsilon}|}$ folytonos.
- 89. Definiálja nemnegatív lépcsősfüggvény μ mérték szerinti integrálját.

Válasz: Legyen (X, Ω, μ) egy mértéktér. Tekintsük a nemnegatív f lépcsősfüggvénynek a kanonikus előállítását:

$$f(x) = \sum_{y \in \mathcal{R}_f} y \cdot \chi_{\{f = y\}} \qquad (x \in X).$$

Az f függvény μ mérték szerinti integrálján a követkető számot értjük:

$$\int_X f d\mu := \sum_{y \in R_f} y \cdot \mu(\{f = y\}).$$

90. Sorolja fel az $L_0^+(X,\Omega,\mu)$ függvényhalmazon értelmezett integrál alaptulajdonságait.

Válasz: Legyen $f, g \in L_0^+(X, \Omega, \mu)$ és $\alpha \geq 0$. Ekkor:

- (a) $\int_X \alpha \cdot f \, d\mu = \alpha \cdot \int_X f \, d\mu$ (homogén), (b) $\int_X (f+g) \, d\mu = \int_X f \, d\mu + \int_X g \, d\mu$ (additív), (c) $f \leq g \Longrightarrow \int_X f \, d\mu \leq \int_X g \, d\mu$ (az integrál az integrandusban monoton).
- 91. Definiálja az $L^+(X,\Omega,\mu)$ függvényhalmazt. Hogyan lehet más módon jellemezni a halmazhoz tartozó függvényeket?

Válasz: Legyen (X, Ω, μ) egy mértéktér. Az $L^+(X, \Omega, \mu)$ függvényhalmazhoz (definíció szerint) pontosan azok az $f: X \to [0, +\infty]$ függvények tartoznak, amelyekhez létezik olyan monoton növekedő, nemnegatív mérhető (f_n) lépcsősfüggvény-sorozat, amelyiknek a pontonkénti határfüggvénye az f függvénye.

Egy ekvivalens jellemzés: $f \in L^+(X,\Omega,\mu)$ akkor és csak akkor, ha f nemnegatív Ω mérhető függvény.

92. Definiálja az $f \in L^+(X, \Omega, \mu)$ függvény μ mérték szerinti integrálját.

Válasz: A definíció szerint f akkor és csak akkor eleme az $L^+(X,\Omega,\mu)$ függvényhalmaznak, ha létezik olyan $f_n \in L_0^+(X,\Omega,\mu)$ $(n \in \mathbb{N})$ nemnegatív lépcsősfüggvény-sorozat, amelyik monton növekedő módon tart az X halmazon pontonként az f függvényhez. Egy ilyen sorozatot véve az f függvény μ mérték szerinti integrálját így értelmezzük:

$$\int\limits_X f \, \mathrm{d}\mu := \lim\limits_n \int\limits_X f_n \, \mathrm{d}\mu.$$

93. Fogalmazza meg Beppo Levi tételét.

Válasz: Tegyük fel, hogy $f_n \in L^+(X, \Omega, \mu)$ $(n \in \mathbb{N})$ egy monoton növekedő függvénysorozat, és legyen $f := \lim_n f_n (= \sup f_n)$. Ekkor $f \in L^+(X, \Omega, \mu)$ és $\int_X f \, \mathrm{d}\mu = \lim_n \int_X f_n \, \mathrm{d}\mu$.

94. Definiálja egy függvény pozitív és negatív részét. Írja fel a három függvény közötti kapcsolatot.

Válasz: Legyen X egy nemüres halmaz és $f: X \to \mathbb{R}$. Az

 $f^+ := \max\{f, 0\}$ függvény f pozitív része.

 $f^- := -\min\{f, 0\}$ pedig f negatív része.

E három függvény közötti kapcsolat: $f = f^+ - f^-$.

95. Definiálja mérhető függvény mérték szerinti integrálját.

Válasz: Legyen (X, Ω, μ) egy mértéktér és tegyük fel, hogy $f: X \to \overline{\mathbb{R}}$ egy olyan Ω -mérhető függvény, amelyre az $\int\limits_X f^+ \, d\mu$ és az $\int\limits_X f^- \, d\mu$ integrálok közül legalább az egyik véges. Az

ilyen f függvény μ mérték szerinti integrálját így értelmezzük:

$$\int\limits_X f \, d\mu := \int\limits_X f^+ \, d\mu - \int\limits_X f^- \, d\mu.$$

96. Definiálja a Lebesgue-integrálható függvény fogalmát és az $L(X, \Omega, \mu)$ függvényhalmazt.

Válasz: Legyen (X, Ω, μ) egy mértéktér. Az Ω -mérhető $f: X \to \overline{\mathbb{R}}$ függvény Lebesgueintegrálható,ha az $\int f\,d\mu$ integrál (véges) valós szám.

$$L(X,\Omega,\mu):=\Big\{f:X\to\overline{\mathbb{R}}\ |\ f\ \Omega\text{-m\'e}\text{rhet\'o}\ \text{\'es}\ \int_X f\,d\mu\ \text{v\'eges}\Big\}.$$

97. Milyen ekvivalens állításokat ismer egy függvény Lebesgue-integrálhatóságával kapcsolatban?

Válasz: Legyen (X,Ω,μ) egy mértéktér és $f:X\to\overline{\mathbb{R}}$ egy Ω -mérhető függvény. Ekkor a következő állítások ekvivalensek:

- (a) az f függvény Lebesgue-integrálható (röviden: $f \in L$);
- (b) $f^+, f^- \in L$;
- (c) $\exists g, h \in L; g, h \geq 0 : f = g h;$
- (d) $\exists G \in L : |f| < G$ (f-nek van integrálható majoránsa);
- (e) $|f| \in L$.
- 98. Mit jelent a μ -majdnem mindenütt szóhasználat?

- **Válasz:** Legyen (X, Ω, μ) tetszőleges mértéktér. Tegyük fel, hogy T az X elemeire vonatkozó "logikai kifejezés" (tulajdonság, kijelentés), azaz $\forall x \in X$ -re T(x) vagy igaz, vagy hamis. Azt mondjuk, hogy a T tulajdonság az X-en μ -majdnem mindenütt (röviden: μ -m.m. X-en) teljesül, ha $\exists A \in \Omega, \ \mu(A) = 0$ halmaz, hogy $\forall x \in X \setminus A$ elemre a T(x)tulajdonság igaz.
- 99. Mit értünk azon, hogy a Lebesgue-integrál "érzéketlen" a μ-nullamértékű halmazokra?

Válasz:

(a) Bármely $f \in L^+$ esetén

$$\int\limits_{Y} f \, d\mu = 0 \Longleftrightarrow \mu\text{-m.m. } X\text{-en.}$$

- (b) Ha $f,g\in\mathcal{M}(X,\Omega),\,f=g$ μ -m.m. és $f\in L$, akkor $g\in L$ és $\int_X g\,d\mu=\int_X f\,d\mu$. (c) Minden L-beli f függvényre igaz, hogy $|f|<+\infty$ μ -m.m.
- 100. Fogalmazza meg a Lebesgue-integrálható függvényekre vonatkozó Beppo Levi tételt.

Válasz: Tegyük fel, hogy

- (a) $f_n \in L \ (n \in \mathbb{N}),$
- (b) az (f_n) monoton növő függvénysorozat, és $f := \lim_{n \to \infty} f_n$,
- (c) az integrálok $\int\limits_V f_n \, d\mu \ (n \in \mathbb{N})$ sorozata korlátos.

Ekkor az f függvény Lebesgue-integrálható és

$$\int_{X} f \, d\mu = \int_{X} \lim_{n} (f_n) \, d\mu = \lim_{n} \int_{X} f_n \, d\mu.$$

101. Mondja ki Fatou tételét.

Válasz:

(a) Bármely $f_n \in L^+$ $(n \in \mathbb{N})$ függvénysorozatra

$$\int_{\mathcal{X}} \left(\liminf_{n} f_{n} \right) d\mu \leq \liminf_{n} \left(\int_{\mathcal{X}} f_{n} d\mu \right).$$

(b) Ha $\exists F \in L : f_n \leq F \ (\forall n \in \mathbb{N} \ \mu\text{-m.m.} \text{ az } X\text{-en}), \text{ akkor}$

$$\limsup_{n} \left(\int_{X} f_n \, d\mu \right) \le \int_{X} (\limsup_{n} f_n) \, d\mu.$$

102. Mondja ki a függvénysorozatok tagonkénti integrálhatóságára vonatkozó Lebesguetételt.

Válasz: Legyen (X, Ω, μ) tetszőleges mértéktér, és tegyük fel, hogy

- (i) $f_n \in L \quad (n \in \mathbb{N}),$
- (ii) a függvénysorozatnak van integrálható majoránsa, azaz $\exists g \in L : |f_n| \leq g \ (n \in \mathbb{N})$ μ -m.m. X-en,
- (iii) az (f_n) függvénysorozat az X-en μ -m.m. konvergál az f függvényhez. Ekkor $f \in L(X, \Omega, \mu)$ és

$$\int\limits_X f \, d\mu = \int\limits_X \left(\lim_n f_n \right) \, d\mu = \lim\limits_n \int\limits_X f_n \, d\mu.$$