LECTURE 14

SPRING 2021
APPLIED MACHINE LEARNING
CIHANG XIE

TODAY

- Introduction to Deep Neural Networks
 - TensorFlow implementation of neural networks
 - Using proper loss function
 - Mini-batch optimization

THREE STEPS FOR DEEP LEARNING

FULLY CONNECT FEEDFORWARD NETWORK

Deep means many hidden layers

SOFTMAX LAYER

Softmax layer as the output layer

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

THREE STEPS FOR DEEP LEARNING

Step I: define a set of function Step 2: goodness of function Step 3: pick the best function

LOSS

TOTAL LOSS

For all training data ...

Total Loss:

$$L = \sum_{r=1}^{R} l_r$$

As small as possible

Find <u>the network</u>

<u>parameters θ*</u> that minimize total loss L

CROSS ENTROPY VS. MSE

Assume, True probabilities = [1, 0, 0]

Case 1: Predicted probabilities = [0.8, 0.1, 0.1]

Case 2: Predicted probabilities = [0.8, 0.2, 0.0]

Case 3: Predicted probabilities = [0.81, 0.19, 0.0]

For logistic regression, MSE → non-convex optimization Cross Entropy → still convex

THREE STEPS FOR DEEP LEARNING

Step I: define a set of function Step 2: goodness of function Step 3: pick the best function

GRADIENT DESCENT

Network parameters $\theta = \{\theta_1, \theta_2, \dots\}$

Find **network parameters** θ^* that minimize total loss L

OUTLINE

Introduction of Deep Learning

"Hello World" for Deep Learning

Tips for Deep Learning

RECIPE FOR DEEP LEARNING YES NO Step 1: define a set Good Results on of function Testing Data? Overfitting! Step 2: goodness YES of function NO Good Results on Step 3: pick the Training Data? best function Neural Network

RECIPE FOR DEEP LEARNING

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

DEMO

Square Error

Binary Cross Entropy

Several alternatives: https://keras.io/losses/

CHOOSING PROPER LOSS

When using softmax output layer, choose cross entropy

Total Loss

http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

RECIPE FOR DEEP LEARNING

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

model.fit(x_train, y_train, epochs = 200, batch_size = 100)

MINI-BATCH

We do not really minimize total loss!

Mini-batch

Mini-batch

- Randomly initialize network parameters
- Pick the Ist batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once
- Until all mini-batches have been picked

one epoch

Repeat the above process

MINI-BATCH

model.fit(x_train, y_train, epochs = 200, batch_size = 100)

Mini-batch

100 examples in a mini-batch

Repeat 200 times

- Pick the Ist batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once \cdot
- Until all mini-batches have been picked

MINI-BATCH IS FASTER

Original Gradient Descent

Update after seeing all examples

With Mini-batch

If there are 20 batches, update 20 times in one epoch.

SHUFFLE EXAMPLES FOR EACH EPOCH

Epoch I

Epoch 2

Mini-batch

Don't worry. This is the default of Keras.

Mini-batch

EXERCISE

HTTPS://BIT.LY/3EK0SPH

QUESTIONSP