Aircraft Control Devices and Systems

Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2014

Learning Objectives

- · Control surfaces
- Control mechanisms
- Powered control
- Flight control systems
- Fly-by-wire control
- Nonlinear dynamics and aero/ mechanical instability

Reading:

Flight Dynamics 214-234

Airplane Stability and Control
Sections 5.1 to 5.19

Copyright 2014 by Robert Stengel. All rights reserved. For educational use only.

http://www.princeton.edu/~stengel/FlightDynamics.html

Managing Control Forces

Chapter 5, Airplane Stability and Control, Abzug and Larrabee

- What are the principal subject and scope of the chapter?
- What technical ideas are needed to understand the chapter?
- During what time period did the events covered in the chapter take place?
- What are the three main "takeaway" points or conclusions from the reading?
- What are the three most surprising or remarkable facts that you found in the reading?

Cessna Citation Mustang 510 Flight Control Surfaces

Design for Control

- Elevator/stabilator: pitch control
- Rudder: yaw control
- Ailerons: roll control
- Trailing-edge flaps: low-angle lift control
- Leading-edge flaps/slats: High-angle
 - lift control
- · Spoilers: Roll, lift, and drag control
- Thrust: speed/altitude control

Control Surface Types

5

Elevator

- · Pitch control
 - Flap in the wake of the wing
 - Pitch up moment associated with horizontal tail down force

Principal effect is to change the angle of attack

Canard

- Pitch control
 - Ahead of wing downwash
 - High angle of attack effectiveness
 - Desirable flying qualities effect (TBD)

7

Downsprings and Bobweights

- Adjustment of
 - Stick-free pitch trim moment
 - Stick-force sensitivity to airspeed*
- Downspring
 - Mechanical spring with low spring constant
 - Exerts a ~constant trailing-edge down moment on the elevator
- Bobweight
 - Similar effect to that of the downspring
 - Weight on control column that affects feel or basic stability
 - Mechanical stability augmentation (weight is sensitive to aircraft's angular rotation)

* See pp. 541-545, Section 5.5, Flight Dynamics

Ailerons

- Roll control
- · When one aileron goes up, the other goes down
 - Average hinge moment affects stick force

Principal effect is to change the roll rate

9

Adverse Yaw of Ailerons

Compensating Ailerons

- Frise aileron
 - Asymmetric contour, with hinge line at or below lower aerodynamic surface
 - Reduces hinge moment
- Cross-coupling effects can be adverse or favorable,
 e.g. yaw rate with roll
 - Up travel of one > down travel of other to control yaw effect

11

Spoilers

- Spoiler reduces lift, increases drag
 - Speed control
- Hinged flap has high hinge moment
- Differential spoilers
 - Roll control
 - Avoid twist produced by outboard ailerons on long, slender wings
 - free trailing edge for larger high-lift flaps
- Plug-slot spoiler on P-61 Black Widow: low control force

Business Jet Plan View

- · Ailerons insensitive at high-speed cruise
- · Differential spoilers provide more effective roll control

Elevons

- Combined pitch and roll control using symmetric and asymmetric surface deflection
- · Principally used on
 - Delta-wing configurations
 - Swing-wing aircraft

Rudder

- Rudder provides yaw control
 - Turn coordination
 - Countering adverse yaw
 - Crosswind correction
 - Countering yaw due to engine loss

Principal effect is to change sideslip angle

15

Rudder

- Strong rolling effect, particularly at high α
- Only control surface whose nominal aerodynamic angle is zero
- Possible nonlinear effect at low deflection angle
- Insensitivity of flap-type rudder at high supersonic speed (Bell X-2)
- Wedge shape, <u>all-moving rudder</u> on North American X-15

V (Butterfly) Tail and Pitch-Yaw Control

17

Yaw Control of Tailless Configurations

- Typically unstable in pitch and yaw
- Dependent on flight control system for stability
- Split ailerons or differential drag flaps produce yawing moment

All-Moving Control Surfaces

- Particularly effective at supersonic speed (Boeing Bomarc wing tips, North American X-15 horizontal and vertical tails, Grumman F-14 horizontal tail)
- SB.4's "aero-isoclinic" wing
- Sometimes used for trim only (e.g., Lockheed L-1011 horizontal tail)
- Hinge moment variations with flight condition

19

Side Force Generators on Princeton's Variable-Response Research Aircraft (*VRA*)

F-15 Power-Boosted Mechanical Linkages

Critical Issues for Control

- Effect of control surface deflections on aircraft motions
 - Generation of control forces and rigid-body moments on the aircraft
 - Rigid-body dynamics of the aircraft
 - δE is an input for longitudinal motion

Critical Issues for Control

- Command and control of the control surfaces
 - Displacements, forces, and hinge moments of the control mechanisms
 - Dynamics of control linkages included in model
 - δE is a state for mechanical dynamics

23

Control Surface Aerodynamics

Aerodynamic and Mechanical Moments on Control Surfaces

- Increasing size and speed of aircraft leads to increased hinge moments and cockpit control forces
- This leads to need for mechanical or aerodynamic reduction of hinge moments
- · Elevator hinge moment

$$H_{elevator} = C_{H_{elevator}} \frac{1}{2} \rho V^2 S \overline{c}$$

25

Aerodynamic and Mechanical Moments on Control Surfaces

Hinge-moment coefficient, C_H Linear model of dynamic effects

$$H_{surface} = C_{H_{surface}} \frac{1}{2} \rho V^2 S \overline{c}$$
 or $C_{H_{surface}} \frac{1}{2} \rho V^2 S b$

$$C_{{H_{\textit{surface}}}} = C_{{H_{\dot{\delta}}}} \dot{\delta} + C_{{H_{\delta}}} \delta + C_{{H_{\alpha}}} \alpha + C_{{H_{\textit{command}}}}$$

 $C_{H_{\delta}}$: aerodynamic/mechanical damping moment

 C_{H_s} : aerodynamic/mechanical spring moment

 $C_{H_{\alpha}}$: floating tendency

 $C_{H_{command}}$: pilot or autopilot input

Angle of Attack and Control Surface Deflection

 Horizontal tail with elevator control surface

 Horizontal tail at positive angle of attack

 Horizontal tail with positive elevator deflection

27

Floating and Restoring Moments on a Control Surface

- Positive angle of attack produces negative moment on the elevator
- With "stick free", i.e., no opposing torques, elevator "floats" up due to negative H_{δ}

Positive elevator deflection produces a negative ("restoring")
moment, H_o on elevator due to aerodynamic or mechanical spring

Elevator Horn Balance

Horn Balance

Stick-free case

Control surface free to "float"

$$C_{H} \approx C_{H_{\alpha}} \alpha + C_{H_{\delta E}} \delta E$$

Normally

 C_{H_a} < 0 : reduces short-period stability

 $C_{H_{\delta F}}$ < 0 : required for mechanical stability

29

NACA TR-927, 1948

Horn Balance

- Inertial and aerodynamic effects
- Control surface in front of hinge line
 - Increasing elevator $C_{H_{\alpha}}$ improves pitch stability, to a point
- Too much horn area
 - Degrades restoring moment
 - Increases possibility of mechanical instability
 - Increases possibility of destabilizing coupling to shortperiod mode

Overhang or Leading-Edge Balance

- Area in front of the hinge line
- Effect is similar to that of horn balance
- Varying gap and protrusion into airstream with deflection angle

$$C_{H} \approx C_{H_{\alpha}} \alpha + C_{H_{\delta}} \delta + C_{H_{pilot input}}$$

NACA TR-927, 1948

31

Trailing-Edge Bevel Balance

- Bevel has strong effect on aerodynamic hinge moments
- See discussion in Abzug and Larrabee

$$C_{H} \approx C_{H_{\alpha}} \alpha + C_{H_{\delta}} \delta + C_{H_{pilot input}}$$

B-52 application

- Control-surface fin with flexible seal moves within an internal cavity in the main surface
- Differential pressures reduce control hinge moment

$$C_{H} \approx C_{H_{\alpha}} \alpha + C_{H_{\delta}} \delta + C_{H_{pilot input}}$$

Internally Balanced Control Surface

Control Tabs

Balancing or geared tabs

 Tab is linked to the main surface in opposition to control motion, reducing the hinge moment with little change in control effect

Flying tabs

 Pilot's controls affect only the tab, whose hinge moment moves the control surface

Linked tabs

 divide pilot's input between tab and main surface

Spring tabs

put a spring in the link to the main surface

Control Mechanization Effects

35

Dynamic Model of a Control Surface Mechanism

Stability and control derivatives of the control mechanism

$$\delta \ddot{E} = (H_{aero} + H_{control}) / (Mechanical Inertia)$$

$$I_{elevator} = \text{effective inertia of surface, linkages, etc.}$$

$$H_{\dot{\delta}E} = \frac{\partial \left(H_{elevator}/I_{elevator}\right)}{\partial \dot{\delta}}; \quad H_{\delta E} = \frac{\partial \left(H_{elevator}/I_{elevator}\right)}{\partial \delta}$$

$$H_{\alpha} = \frac{\partial \left(H_{elevator}/I_{elevator}\right)}{\partial \alpha}$$

Control Mechanization Effects

- Fabric-covered control surfaces (e.g., DC-3, Spitfire) subject to distortion under air loads, changing stability and control characteristics
- Control cable stretching
- Elasticity of the airframe changes cable/pushrod geometry
- Nonlinear control effects
 - friction
 - breakout forces
 - backlash

37

Nonlinear Control Mechanism Effects

- Friction
- Deadzone

Control Mechanization Effects

- Breakout force
- Force threshold

Rudder Lock

- Rudder deflected to stops at high sideslip; aircraft trims at high β
- 3 necessary ingredients
 - Low directional stability at high sideslip due to stalling of fin
 - High (positive) hinge momentdue-to-sideslip at high sideslip (e.g., B-26)
 - Negative rudder yawing moment
- Problematical if rudder is unpowered and requires high foot-pedal force ("rudder float" of large WWII aircraft)
- Solutions
 - Increase high-sideslip directional stability by adding a dorsal fin (e.g., B-737-100 (before), B-737-400 (after))
 - Hydraulically powered rudder

Yaw Damping

41

Boeing B-47 Yaw Damper

Yaw rate washout to reduce opposition to steady turns (TBD)

- Yaw rate gyro drives rudder to increase Dutch roll damping
- Comment: "The plane wouldn't need this contraption if it had been designed right in the first place."
- However, mode characteristics -especially damping -- vary greatly with altitude, and most jet aircraft have yaw dampers

B-52 Mechanical Yaw Damper

- Combined stable rudder tab, low-friction bearings, small bobweight, and eddy-current damper for B-52
- Advantages
 - Requires no power, sensors, actuators, or computers
 - May involve simple mechanical components
- Problems
 - Misalignment, need for high precision
 - Friction and wear over time
 - Jamming, galling, and fouling
 - High sensitivity to operating conditions, design difficulty

43

Flight Control Systems

Mechanical and Augmented Control Systems

- Mechanical system
 - Push rods, bellcranks, cables, pulleys
- Power boost
 - Pilot's input augmented by hydraulic servo that lowers manual force
- Fully powered (*irreversible*) system
 - No direct mechanical path from pilot to controls
 - Mechanical linkages from cockpit controls to servo actuators

45

Stability Augmentation for Northrop YB-35/49 Flying Wing Bombers

- Northrop B-35/49 flying wing bombers motivated significant SAS development
- Complications for early systems
 - Pneumatic/hydraulic logic
 - Primitive electronic analog computation
 - No digital computation
 - Unreliable and inaccurate sensors and actuators ("servo-actuators")
 - Limited math models of system components
 - Non-analytical approach to design and implementation
- Northrop among first to take systematic approach to SAS design

Advanced Control Systems

Artificial-feel system

- Restores control forces to those of an "honest" airplane
- "q-feel" modifies force gradient
- Variation with trim stabilizer angle
- Bobweight responds to gravity and to normal acceleration

Fly-by-wire/light system

- Minimal mechanical runs
- Command input and feedback signals drive servo actuators
- Fully powered systems
- Move from hydraulic to electric power

47

Next Time: Linearized Equations and Modes of Motion

Reading:

Flight Dynamics

234-242, 255-266, 274-297, 321-325, 329-330

SUPPLEMENTARY MATERIAL

49

Control-Configured Vehicles

- · Command/stability augmentation
- · Lateral-directional response
 - Bank without turn
 - Turn without bank
 - Yaw without lateral translation
 - Lateral translation without yaw
 - Velocity-axis roll (i.e., bank)
- Longitudinal response
 - Pitch without heave
 - Heave without pitch
 - Normal load factor
 - Pitch-command/attitude-hold
 - Flight path angle

B-52 Control Compromises to Minimize Required Control Power

- Limited-authority rudder, allowed by
 - Low maneuvering requirement
 - Reduced engine-out requirement (1 of 8 engines)
 - Crosswind landing gear
- Limited-authority elevator, allowed by
 - Low maneuvering requirement
 - Movable stabilator for trim
 - Fuel pumping to shift center of mass
- Small manually controlled "feeler" ailerons with spring tabs
 - Primary roll control from powered spoilers, minimizing wing twist

51

B-52 Rudder Control Linkages

Instabilities Due To Control Mechanization

- Aileron buzz (aero-mechanical instability; P-80)
- Rudder snaking (Dutch roll/mechanical coupling; Meteor, He-162)
- Aeroelastic coupling (B-47, Boeing 707 yaw dampers)

53

Rudder Snaking

- Control-free dynamics
 - Nominally symmetric control position
 - Internal friction
 - Aerodynamic imbalance
- Coupling of mechanical motion with Dutch roll mode

- Solutions
 - Trailing-edge bevel
 - Flat-sided surfaces
 - Fully powered controls

Roll/Spiral Limit Cycle Due to Aileron Imbalance

3 Time, s

3 Time, s 0.2

-0.2

-0.4

-0.6

-0.8

0

-0.1

-0.5

rad 0.5

Aileron, 1

- **Unstable nonlinear** oscillation grows until it reaches a steady state
- This is called a limit cycle

55

Control Surface Buzz

- At transonic speed, normal shocks may occur on control surface
 - With deflection, shocks move differentially
 - Possibility of self-sustained nonlinear oscillation (limit cycle)
- **Solutions**
 - Splitter-plate rudder fixes shock location for small deflections
 - Blunt trailing edge
 - Fully powered controls with actuators at the surfaces

The Unpowered *F4D* Rudder

- · Rudder not a problem under normal flight conditions
 - Single-engine, delta-wing aircraft requiring small rudder inputs
- Not a factor for upright spin
 - Rudder was ineffectual, shielded from flow by the large delta wing
- · However, in an inverted spin
 - rudder effectiveness was high
 - floating tendency deflected rudder in a pro-spin direction
 - 300 lb of pedal force to neutralize the rudder
- Fortunately, the test aircraft had a spin chute

57

Powered Flight Control Systems

- Early powered systems had a single powered channel, with mechanical backup
 - Pilot-initiated reversion to "conventional" manual controls
 - Flying qualities with manual control often unacceptable
- Reversion typically could not be undone
 - Gearing change between control stick and control to produce acceptable pilot load
 - Flying qualities changed during a highstress event
- Hydraulic system failure was common
 - Redundancy was needed
- Alternative to eject in military aircraft

"Classical" Lateral Control Logic for a Fighter Aircraft (c.1970)

MIL-DTL-9490E, Flight Control Systems - Design, Installation and Test of Piloted Aircraft, General Specification for, 22 April 2008

Superseded for new designs on same date by SAE-AS94900

http://www.sae.org/servlets/works/documentHome.do?comtID=TEAA6A3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS949000&inputPage=dOcDeTalISAGA3&docID=AS949000&inputPage=dOcDeTalISAGA3&docID=AS949000&inputPage=dOcDeTalISAGA3&docID=AS949000&inputPage=dOcDeTalISAGA3&docID=AS949000&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&docID=AS94900&inputPage=dOcDeTalISAGA3&AS040&inputPage=dOcDeTalISAGA3&AS040&inputPage=dOcDeTalISAGA3&AS040&inputPage=dOcDeTalISAGA3&AS040&inputPage=dOcDeTalISAGA3&AS040&inputPage=dOcDeTalISAGA3&AS040&inputPage=dOcDeTalISAGA3&AS040&inputPage=dOcDeTalISAGA3&AS

Boeing 767 Elevator Control System

Abzug & Larrabee, 2002

Boeing 777 Fly-By-Wire Control System

61

Direct Lift and Propulsion Control

Direct-Lift Control-Approach Power Compensation

- F-8 Crusader
 - Variable-incidence wing, better pilot visibility
 - Flight path control at low approach speeds
 - · requires throttle use
 - could not be accomplished with pitch control alone
 - Engine response time is slow
 - Flight test of direct lift control (DLC), using ailerons as flaps
- Approach power compensation for A-7 Corsair II and direct lift control studied using Princeton's Variable-Response Research Aircraft

63

Direct-Lift/Drag Control

- Direct-lift control on S-3A Viking
 - Implemented with spoilers
 - Rigged "up" during landing to allow ± lift.
- Speed brakes on T-45A
 Goshawk make up for slow
 spool-up time of jet engine
 - BAE Hawk's speed brake moved to sides for carrier landing
 - Idle speed increased from 55% to 78% to allow more effective modulation via speed brakes

United Flight 232, DC-10 Sioux City, IA, 1989

 Uncontained engine failure damaged all three flight control hydraulic systems (http://en.wikipedia.org/wiki/United_Airlines_Flight_232)

65

United Flight 232, DC-10 Sioux City, IA, 1989

- Pilot maneuvered on differential control of engines to make a runway approach
- · 101 people died
- 185 survived

Propulsion Controlled Aircraft

- Proposed backup attitude control in event of flight control system failure
- Differential throttling of engines to produce control moments
- · Requires feedback control for satisfactory flying qualities

Proposed retrofit to McDonnell-Douglas (Boeing) C-17

NASA MD-11 PCA Flight Test

NASA F-15 PCA Flight Test