MAIN 461 HWS SULUTIONS.

Saturday 11/2/19.

$$C_2$$
: (x-1)² + (y-2)² = 2², i.e. $x^2 - 2x + 1 + y^2 - 4y + 4 = 4$

a.
$$0-2$$
 $2x-1+4y-4=-3$

b. This is the equation of the line passing through the intersection points of the two rincles.

$$x^{2}+y^{2} = (x-1)^{2}+(y-2)^{2} \longrightarrow 2x-1+4y-4=0$$

$$(2x+4y=5)$$

$$AC: x^{7} + (x+1)^{2} + (y-3)^{2} - (x+4y)^{2} = 0$$

$$(x+4y)^{2} + (y-3)^{2} - (x+6y)^{2} = 0$$

$$0+6$$
: $10y = 15$, $y = \frac{34}{2}$, $x = \frac{4y}{2} = -\frac{1}{2}$

So, and has other
$$P=(-\frac{1}{2},\frac{1}{3}\frac{1}{2})$$
 4 radius $|AP|=\sqrt{(-\frac{1}{2})^2+(\frac{1}{2})^2}=\sqrt{\frac{1}{4}}\frac{1}{7}\frac{1}{4}=\frac{1}{2}\sqrt{10}$.

3.

idation by (a,b) = (40)
retation about 1 aut P through angle 0 ccm,
6<0<20

reflection in a line L
glide reflection (reflection in a line Lifellaneal
by translation by (a, b) \$\pm\$ (a, b) \$\pm\$ (a, c) \$\pm\$

parallel to L)

Fix (7)

1R²

(onpty set)

(P)

L

Ø

A glide reflection T is a composition T= Trans, a Refle, i.e.,
replaction in a line L tollowed by translation by a rector × parallel to L.

As rated in dais, T= Trans , left = Refl o Trans (i.o., Refl A Trans y commune)

Now T?= To T = (Transy o Refl_) o (Transy o Refl_)

= (Transy o Refl_) o (Fetl_o Transy)

= Transy o (Refl_o Refl_) o Transy

= Transy o id o Transy

= Transy o Transy = Transon, tous latin by Zy. I

S. If T = idehty the T1 = id torall 1.

If T is tordahin by overlar $y \neq Q$, the T^{Λ} is tordahin by $\Lambda \cdot y$ to $T^{\Lambda} \neq id$ locall $\Lambda \in \mathbb{N}$.

If T is obtain about a paint P through angle Q (con, the T^{Λ} is obtain about P through angle $\Lambda \cdot \theta$ (con, so $T^{\Lambda} = id$ iff $\Lambda \theta = 2TI \cdot k$ for some integer k, i.e. $\theta = 2TI \cdot k$.

4 7 is a reflection the 72 id , so 71 = id if nis are A T1 = 7 ≠ id if nis add. If T is a glide reflection then, using the notation of 64, 7? = Transzy, so

$$T^{\Lambda} = (T^2)^k = Trans_{2ky} = Trans_{\Lambda y} \quad \text{if } \Lambda = 2k \text{ is even}$$

$$\Delta T^{\Lambda} = (T^2)^k \circ T = Trans_{2ky} \circ T = Trans_{2ky} \circ T = Trans_{2ky} \circ Ref_L \quad \text{a globe reflex him}$$

$$\text{if } \Lambda = 2k+1 \text{ is odd.}$$

So T' + id der all AEN.

These are all the types of isometries of IR? IS

6.
$$a_{-} T(x) = \frac{(\cos \theta - \sin \theta)}{\sin \theta - \cos \theta} \cdot \left(\frac{x}{y} - \frac{1}{z}\right) + \frac{1}{z} = \frac{1}{z}$$

$$= \frac{(-y+3)}{(-y-2)} + \frac{1}{z} = \frac{(-y+3)}{(-y-2)} \cdot \frac{1}{z} = \frac{(-y+3)}{(-y+1)} \cdot \frac{1}{z}.$$

 $y=2 \frac{1}{1+2} \frac{1}{1+2}$

$$Ret_{L}(x) = (620 \times 170)(x) = (0 - 1)(x) = (-1)(x) = ($$

More
$$T(x_{14}) = (x_{14})$$
: $\frac{1}{5}(4x+3y+2) = x$ ~ 1 (1) $-x + 3y = -2$ $\frac{1}{5}(3x-4y-6) = y$ (2) $3x - 9y = 6$

$$(2)+3\cdot():0=0.$$

=)
$$F(x)=1 = f(x,y) \in \mathbb{R}^2 \mid -x+3y = -2!$$
.
63
=) T is reflection in the $L: -x+3y = -2$
(or $y = \frac{1}{3}x - \frac{2}{3}$) \square .

Solve
$$T(x,y) = (x,y)$$
: $\frac{1}{5}(3x-9y-8) = x$ $-2x-4y = -8 \div -2$ $\frac{1}{5}(4x+7y+4) = y$ $4x-7y=-4 \div 2$

$$y = 4$$

$$z_{x-y} = 4$$

$$z_{x-y} = -2$$

$$3-2.0$$
 $-59=-10=79=7=7 = 7 = 4-29=0.$

D, by 63, Tis arctation what 10,21.

$$\frac{7(x)}{9} = \frac{1}{5} \left(\frac{3-4}{43}\right) \left(\frac{x}{9}\right) + \frac{1}{5} \left(\frac{8}{9}\right)$$

$$\left(\frac{11}{9} - \frac{1}{9}\right) \left(\frac{3-4}{9}\right) \left(\frac{8}{9}\right) + \frac{1}{5} \left(\frac{8}{9}\right)$$

$$\left(\frac{11}{9} - \frac{1}{9}\right) \left(\frac{8}{9}\right) = \frac{1}{9} - \frac{1}{9} \left(\frac{4}{13}\right), \quad ((w. \frac{1}{9}))$$

T is a retalia about (92) three angle teri (4,73) crw. II.

Solve
$$7|x_1y| = |x_1y|$$
 $y+4=x$ $y=-4$ $y+4=x$ $y=-8$ $y=-8$ So $x=1=0$.

(leady, 7 is not a franslation (because then 7/x,y/1 = (x,y/1 + |a,b) = |x + a,y + |b|)

So, by 63, T is a glide reflection.

Now, by 69, T= Transe when T= Transe o Refle.

(amparte: $7^2(x,y) = 7(y+4,x+8) = ((x+8)+4, (y+4)+8) = (x+12, y+12)$ = 12y = 112, 121, y = 16,61.

=) $Retl_{L}(x_{1}y_{1}) = T(x_{1}y_{1}) - (6,6) = (y_{1}-Z_{1}x_{1}+Z_{1})$

Su, L is the line y=x+2.

T is the glide reflection give by reflection in the line L: y = x+2 deflued by translation by y = (6,6) parallel to L. \Box .