Generated on 2014-11-13 20:38:12 by gEcon version 0.8.0 (2014-11-13) Model name: rbc_ic

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, L_t^s, I_t} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left((1 - L_t^s)^{1 - \mu} C_t^{\mu} \right)^{1 - \eta}$$
(1.1)

s.t.:

$$C_t + I_t = \pi_t + K_{t-1}^{s} r_t + L_t^{s} W_t - \psi K_{t-1}^{s} \left(-\delta + K_{t-1}^{s}^{-1} I_t \right)^2 \quad (\lambda_t^{c})$$
(1.2)

$$K_t^{\mathrm{s}} = I_t + K_{t-1}^{\mathrm{s}} (1 - \delta) \quad \left(\lambda_t^{\mathrm{CONSUMER}^2}\right) \tag{1.3}$$

1.2 First order conditions

$$-\lambda_{t}^{\text{CONSUMER}^{2}} + \beta \left((1 - \delta) \operatorname{E}_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{2}} \right] + \operatorname{E}_{t} \left[\lambda_{t+1}^{\text{c}} \left(r_{t+1} - \psi \left(-\delta + K_{t}^{\text{s}-1} I_{t+1} \right)^{2} + 2\psi K_{t}^{\text{s}-1} I_{t+1} \left(-\delta + K_{t}^{\text{s}-1} I_{t+1} \right) \right) \right] \right) = 0 \quad (K_{t}^{\text{s}})$$
(1.4)

$$-\lambda_t^c + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left((1 - L_t^s)^{1-\mu} C_t^{\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$\lambda_t^{c} W_t + (-1 + \mu) \left(1 - L_t^{s}\right)^{-\mu} \left(\left(1 - L_t^{s}\right)^{1 - \mu} C_t^{\mu} \right)^{-\eta} C_t^{\mu} = 0 \quad (L_t^{s})$$
(1.6)

$$\lambda_t^{\text{CONSUMER}^2} + \lambda_t^{\text{c}} \left(-1 - 2\psi \left(-\delta + K_{t-1}^{\text{s}}^{-1} I_t \right) \right) = 0 \quad (I_t)$$

$$\tag{1.7}$$

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^d, L_t^d, Y_t, \pi_t} \Pi_t = \pi_t \tag{2.1}$$

s.t.:

$$Y_t = Z_t K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{1-\alpha}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

$$\pi_t = Y_t - L_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \quad \left(\lambda_t^{\mathrm{FIRM}^2}\right) \tag{2.3}$$

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^2} r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t K_t^{\text{d}^{-1+\alpha}} L_t^{\text{d}^{1-\alpha}} = 0 \quad (K_t^{\text{d}})$$

$$(2.4)$$

$$-\lambda_t^{\text{FIRM}^2} W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) K_t^{d^{\alpha}} L_t^{d^{-\alpha}} = 0 \quad (L_t^d)$$

$$(2.5)$$

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^2} = 0 \quad (Y_t)$$
 (2.6)

$$1 - \lambda_t^{\text{FIRM}^2} = 0 \quad (\pi_t) \tag{2.7}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad (K_t^{\mathrm{d}})$$

$$\tag{2.8}$$

$$-W_t + Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$\tag{2.9}$$

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{3.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

 $^{\circ}$

4.1 Identities

$$Z_t = e^{\epsilon_t^{\mathbf{Z}} + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$-r_t + \alpha Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s^{1-\alpha}} = 0 (5.1)$$

$$-W_t + Z_t (1 - \alpha) K_{t-1}^{s} {}^{\alpha} L_t^{s-\alpha} = 0$$
(5.2)

$$-Y_t + Z_t K_{t-1}^{s} {}^{\alpha} L_t^{s1-\alpha} = 0 (5.3)$$

$$Z_t - e^{\epsilon_t^Z + \phi \log Z_{t-1}} = 0 \tag{5.4}$$

$$\beta \left(\mu \mathcal{E}_{t} \left[\left(r_{t+1} - \psi \left(-\delta + K_{t}^{s-1} I_{t+1} \right)^{2} + 2\psi K_{t}^{s-1} I_{t+1} \left(-\delta + K_{t}^{s-1} I_{t+1} \right) \right) C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right)^{-\eta} \right] - \mu \left(1 - \delta \right) \mathcal{E}_{t} \left[\left(-1 - 2\psi \left(-\delta + K_{t}^{s-1} I_{t+1} \right) \right) C_{t+1}^{-1-\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right)^{-\eta} \right] \right] - \mu \left(1 - \delta \right) \mathcal{E}_{t} \left[\left(-1 - 2\psi \left(-\delta + K_{t}^{s-1} I_{t+1} \right) \right) C_{t+1}^{-1-\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right) \right]$$

$$(5.5)$$

$$(-1+\mu)C_t^{\mu}(1-L_t^s)^{-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^s)^{1-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} = 0$$
(5.6)

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (5.7)$$

$$U_t - \beta E_t [U_{t+1}] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(5.8)

$$-C_t - I_t + Y_t - \psi K_{t-1}^s \left(-\delta + K_{t-1}^{s-1} I_t \right)^2 = 0$$
(5.9)

6 Steady state relationships (after reduction)

$$-r_{\rm ss} + \alpha Z_{\rm ss} K_{\rm ss}^{\rm s}^{-1+\alpha} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{6.1}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\rm s} {}^{\alpha} L_{\rm ss}^{\rm s} {}^{-\alpha} = 0$$
 (6.2)

$$-Y_{\rm ss} + Z_{\rm ss} K_{\rm ss}^{\rm s} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{6.3}$$

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{6.4}$$

$$\beta \left(\mu \left(r_{\rm ss} - \psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \right)^2 + 2 \psi I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \left(-\delta + I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \right) \right) C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} - \mu \left(-1 - 2 \psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \right) \right) (1 - \delta) C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} \right)$$

$$(6.5)$$

$$(-1+\mu)C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu W_{\rm ss}C_{\rm ss}^{-1+\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} = 0 \tag{6.6}$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0 \tag{6.7}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{6.8}$$

$$-C_{\rm ss} - I_{\rm ss} + Y_{\rm ss} - \psi K_{\rm ss}^{\rm s} \left(-\delta + I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \right)^2 = 0 \tag{6.9}$$

7 Calibrating equations

$$-0.36Y_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} = 0 (7.1)$$

8 Parameter settings

$\beta = 0.99$	(8.1)
$\delta = 0.025$	(8.2)
$\eta=2$	(8.3)
$\mu = 0.3$	(8.4)
$\phi = 0.95$	(8.5)
$\psi = 0.8$	(8.6)

4

9 Steady-state values

	Steady-state values
r	0.0351
C	0.7422
I	0.2559
K^{s}	10.2368
L^{s}	0.2695
U	-136.2372
W	2.3706
Y	0.9981
Z	1

10 The solution of the perturbation

10.1 P

$$\begin{array}{ccc} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ K^{\mathrm{s}} & 0.9658 & 0.0863 \\ Z & 0 & 0.95 \end{array} \right)$$

10.2 Q

$$\begin{array}{c}
\epsilon^{Z} \\
K^{s} \\
Z
\end{array}
\left(\begin{array}{c}
0.0908 \\
1
\end{array}\right)$$

10.3 R

$$\begin{array}{cccc} K_{t-1}^s & Z_{t-1} \\ r \\ C \\ C \\ I \\ -0.3661 & 3.4511 \\ L^s \\ -0.0418 & -0.0644 \\ W \\ 0.4167 & 0.7547 \\ Y \\ \end{array}$$

10.4 S

$$\begin{array}{c} \epsilon^{\rm Z} \\ r \\ C \\ I \\ L^{\rm s} \\ 0.5837 \\ 3.6328 \\ 0.5711 \\ U \\ -0.0678 \\ W \\ 0.7944 \\ Y \\ 1.3655 \\ \end{array}$$

11 Statistics of the model

11.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
r	0.0351	0.1814	0.0329	Y
C	0.7422	0.0783	0.0061	Y
I	0.2559	0.4741	0.2248	Y
K^{s}	10.2368	0.0422	0.0018	Y
$L^{\rm s}$	0.2695	0.0749	0.0056	Y
U	-136.2372	0.009	0.0001	Y
\overline{W}	2.3706	0.1047	0.011	Y
Y	0.9981	0.1781	0.0317	Y
\overline{Z}	1	0.1303	0.017	Y

11.2 Correlation matrix

	r	C	I	K^{s}	L^{s}	U	W	Y	Z
r	1	0.9082	0.9901	0.0897	0.9965	-0.9321	0.9422	0.9726	0.9851
C	0.9082	1	0.9579	0.4983	0.9402	-0.9981	0.996	0.9806	0.9667
I	0.9901	0.9579	1	0.2284	0.9984	-0.9736	0.9798	0.9956	0.9995
K^{s}	0.0897	0.4983	0.2284	1	0.1733	-0.4445	0.4184	0.3187	0.2599
$L^{\rm s}$	0.9965	0.9402	0.9984	0.1733	1	-0.9592	0.967	0.9887	0.9961
U	-0.9321	-0.9981	-0.9736	-0.4445	-0.9592	1	-0.9996	-0.9907	-0.9805
W	0.9422	0.996	0.9798	0.4184	0.967	-0.9996	1	0.9942	0.9858
Y	0.9726	0.9806	0.9956	0.3187	0.9887	-0.9907	0.9942	1	0.9981
Z	0.9851	0.9667	0.9995	0.2599	0.9961	-0.9805	0.9858	0.9981	1

11.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
r	0.7103	0.4664	0.2655	0.1042	-0.0215
C	0.7446	0.5209	0.3292	0.1686	0.0376
I	0.7115	0.4684	0.2679	0.1066	-0.0193
K^{s}	0.9598	0.8626	0.7281	0.5723	0.4082
$L^{\rm s}$	0.7098	0.4657	0.2647	0.1034	-0.0223
U	0.7346	0.505	0.3106	0.1498	0.0204
\overline{W}	0.7304	0.4983	0.3028	0.1419	0.0131
Y	0.7179	0.4786	0.2798	0.1186	-0.0083
Z	0.7133	0.4711	0.2711	0.1098	-0.0163

12 Statistics of the model

12.1 Moments relative to moments of the reference variable

	Steady-state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
r	0.0352	1.0184	1.0372	Y
C	0.7436	0.4395	0.1931	Y
I	0.2564	2.6621	7.0869	Y
K^{s}	10.2561	0.2368	0.0561	Y
L^{s}	0.27	0.4205	0.1768	Y
U	-136.4937	0.0504	0.0025	Y
\overline{W}	2.3751	0.5877	0.3453	Y
Y	1	1	1	Y
Z	1.0019	0.7319	0.5357	Y

12.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
r	0.1089	0.228	0.3727	0.5446	0.7446	0.9726	0.6308	0.3527	0.1323	-0.0369	-0.1614
C	-0.1067	0.0213	0.1894	0.4025	0.665	0.9806	0.7609	0.5644	0.3923	0.2448	0.1212
I	0.039	0.1636	0.3192	0.5084	0.7335	0.9956	0.6875	0.4309	0.222	0.0566	-0.0702
K^{s}	-0.4795	-0.4216	-0.3213	-0.1704	0.0399	0.3187	0.5039	0.6124	0.6595	0.6589	0.6227
L^{s}	0.0671	0.1898	0.3414	0.5242	0.7397	0.9887	0.6664	0.4006	0.1865	0.0192	-0.1069
U	0.0765	-0.0517	-0.2183	-0.4279	-0.6842	-0.9907	-0.7507	-0.54	-0.3589	-0.2065	-0.0814
W	-0.0621	0.066	0.2318	0.4393	0.6925	0.9942	0.7449	0.5278	0.3426	0.1881	0.0624
Y	-0.0083	0.1186	0.2798	0.4786	0.7179	1	0.7179	0.4786	0.2798	0.1186	-0.0083
Z	0.0226	0.1481	0.3058	0.4986	0.7288	0.9981	0.6988	0.4479	0.2423	0.0782	-0.0488

13 Impulse response functions

13.1 Shock ϵ^{Z}

Figure 1: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock