Decision_Tree_Machine_Learning

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

In [5]:

```
from sklearn.datasets import load_iris
```

In [6]:

```
iris = load_iris()
```

In [9]:

```
iris
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
```

[5., 3., 1.6, 0.2], [5., 3.4, 1.6, 0.4], [5.2, 3.5, 1.5, 0.2], [5.2, 3.4, 1.4, 0.2], [4.7, 3.2, 1.6, 0.2], [4.8, 3.1, 1.6, 0.2],

[5.4, 3.4, 1.5, 0.4], [5.2, 4.1, 1.5, 0.1], [5.5, 4.2, 1.4, 0.2], [4.9, 3.1, 1.5, 0.2], [5., 3.2, 1.2, 0.2], [5.5, 3.5, 1.3, 0.2],

[4.9, 3.6, 1.4, 0.1], [4.4, 3., 1.3, 0.2], [5.1, 3.4, 1.5, 0.2],

[5., 3.5, 1.3, 0.3],

```
In [10]:
```

```
iris.data
    [3.3, 4.2, 1.4, 0.2],
    [4.9, 3.1, 1.5, 0.2],
    [5., 3.2, 1.2, 0.2],
    [5.5, 3.5, 1.3, 0.2],
    [4.9, 3.6, 1.4, 0.1],
    [4.4, 3., 1.3, 0.2],
    [5.1, 3.4, 1.5, 0.2],
    [5., 3.5, 1.3, 0.3],
    [4.5, 2.3, 1.3, 0.3],
    [4.4, 3.2, 1.3, 0.2],
    [5., 3.5, 1.6, 0.6],
    [5.1, 3.8, 1.9, 0.4],
    [4.8, 3., 1.4, 0.3],
    [5.1, 3.8, 1.6, 0.2],
    [4.6, 3.2, 1.4, 0.2],
    [5.3, 3.7, 1.5, 0.2],
    [5., 3.3, 1.4, 0.2],
    [7., 3.2, 4.7, 1.4],
    [6.4, 3.2, 4.5, 1.5],
    [6.9, 3.1, 4.9, 1.5],
In [11]:
iris.target
Out[11]:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    In [12]:
import seaborn as sns
In [22]:
df = sns.load dataset('iris')
```

In [23]:

```
df.head()
```

Out[23]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [26]:

```
#independent feature and dependent features
X = df.iloc[:,:-1]
y = iris.target
```

In [30]:

```
Х,у
```

Out[30]:

```
sepal_length sepal_width petal_length petal_width
(
                5.1
                               3.5
                                               1.4
                                                              0.2
0
1
                4.9
                               3.0
                                               1.4
                                                              0.2
 2
                4.7
                               3.2
                                               1.3
                                                              0.2
 3
                4.6
                               3.1
                                               1.5
                                                              0.2
 4
                5.0
                               3.6
                                               1.4
                                                              0.2
                 . . .
                               . . .
                                               . . .
                                                              . . .
 145
                6.7
                               3.0
                                               5.2
                                                              2.3
                6.3
                               2.5
                                               5.0
                                                              1.9
 146
 147
                6.5
                               3.0
                                               5.2
                                                              2.0
 148
                6.2
                               3.4
                                               5.4
                                                              2.3
                5.9
                               3.0
                                               5.1
                                                              1.8
 149
```

In [34]:

```
### train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42
```

In [39]:

X_train

Out[39]:

	sepal_length	sepal_width	petal_length	petal_width
96	5.7	2.9	4.2	1.3
105	7.6	3.0	6.6	2.1
66	5.6	3.0	4.5	1.5
0	5.1	3.5	1.4	0.2
122	7.7	2.8	6.7	2.0
71	6.1	2.8	4.0	1.3
106	4.9	2.5	4.5	1.7
14	5.8	4.0	1.2	0.2
92	5.8	2.6	4.0	1.2
102	7.1	3.0	5.9	2.1

100 rows × 4 columns

In [40]:

from sklearn.tree import DecisionTreeClassifier

In [41]:

Postpruning
treemodel = DecisionTreeClassifier(max_depth=2)

In [42]:

treemodel

Out[42]:

DecisionTreeClassifier(max_depth=2)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [43]:

treemodel.fit(X_train,y_train)

Out[43]:

DecisionTreeClassifier(max_depth=2)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [47]:
```

```
from sklearn import tree
plt.figure(figsize=(15,10))
tree.plot_tree(treemodel,filled=True)
plt.show()
```

```
x[2] \le 2.45
             gini = 0.666
            samples = 100
         value = [31, 35, 34]
                        x[3] <= 1.75
   gini = 0.0
                         gini = 0.5
 samples = 31
                       samples = 69
value = [31, 0, 0]
                     value = [0, 35, 34]
             gini = 0.188
                                   gini = 0.062
            samples = 38
                                  samples = 31
           value = [0, 34, 4]
                                value = [0, 1, 30]
```

In [50]:

```
#prediction
y_pred = treemodel.predict(X_test)
```

In [51]:

y_pred

Out[51]:

```
array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 2, 1, 2])
```

In [55]:

from sklearn.metrics import accuracy_score,classification_report

In [56]:

```
score = accuracy_score(y_pred,y_test)
```

In [57]:

score

Out[57]:

0.98

In [59]:

print(classification_report(y_pred,y_test))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	19
1	1.00	0.94	0.97	16
2	0.94	1.00	0.97	15
accuracy			0.98	50
macro avg	0.98	0.98	0.98	50
weighted avg	0.98	0.98	0.98	50

In []: