Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the

application. Applicant has submitted a new complete claim set showing marked up

claims with insertions indicated by underlining and deletions indicated by strikeouts

and/or double bracketing.

Listing of Claims:

1. (Currently amended) A method of estimating selectivity of a given string predicate \underline{of}

length n in a database query, comprising:

a) estimating selectivities of <u>a plurality of</u> string predicate substrings<u>, the</u>

plurality of string predicate substrings including substrings of the given string predicate

and having each of various-substring lengthslength between q to n, where q < n;

b) categorizing each of the string predicate substrings based on length;

bc) selecting a <u>one</u> candidate substring for each <u>category of</u> substring length

based on estimated selectivities of the substrings to obtain a plurality of candidate identifying substrings, each candidate identifying substring in the plurality of identifying

substrings having a different length between g and n;

ed) combining the estimated selectivities of each of the candidate substrings in

the plurality of identifying substrings; and

 $\mbox{d}\underline{e})$ returning the combined estimated selectivities of the candidate substrings as

the estimated selectivity of the given string predicate.

2. (Original) The method of claim 1 further comprising storing selectivity information for

the database and using stored selectivity information to estimate the selectivities of the

substrings of various lengths.

Type of Response: Amendment
Application Number: 10/603.035

Attorney Docket Number: 303855.01

Filing Date: June 24, 2003

2/15

3. (Original) The method of claim 1 wherein a substring with a lowest estimated

selectivity is selected as the candidate substring at each length.

4. (Original) The method of claim 1 further comprising calculating exact selectivities of

substrings of a given maximum length and using the exact selectivities to estimate the

selectivities of the substrings of various substring lengths.

5. (Original) The method of claim 4 wherein a range of the various substring lengths

whose selectivities are estimated is between the given maximum length of the

substrings whose selectivities are calculated exactly and the length of the given string

predicate.

6. (Original) The method of claim 4 wherein the candidate substring for the length equal

to the given maximum length of the substrings whose selectivities are calculated exactly

is selected based on the exact selectivity of the substring.

7. (Original) The method of claim 1 wherein a q-gram table is constructed for substrings

of a given maximum length and is accessed to estimate selectivities of substrings of

various substring lengths.

8. (Original) The method of claim 4 wherein a markov estimator uses the exact

selectivities to estimate the selectivities of the substrings of various substring lengths.

Type of Response: Amendment Application Number: 10/603,035 Attorney Docket Number: 303855.01

Filing Date: June 24, 2003

3/15

(Original) The method of claim 1 wherein characteristics of string values in a relation of the database are used to combine the estimated selectivities of the candidate

substrings.

 $10. \ (Original) \ The \ method \ of \ claim \ 1 \ wherein \ characteristics \ of \ a \ workload \ of \ queries \ are$

used to combine the estimated selectivities of the candidate substrings.

11. (Original) The method of claim 1 wherein a model for combining the estimated

selectivities of candidate substrings is learned from guery workloads.

12. (Original) The method of claim 1 wherein said model is applied to the candidate

substrings at run time to estimate the string predicate selectivity.

13. (Original) The method of claim 1 wherein the given string predicate is a unit

predicate.

14. (Original) The method of claim 1 wherein the given string predicate includes a

wildcard character.

15. (Original) The method of claim 1 wherein the given string predicate is a range

predicates.

16. (Original) The method of claim 1 wherein weights are assigned to each length of

candidate substring to combine the selectivities of the candidate substrings.

Type of Response: Amendment Application Number: 10/603,035 Attorney Docket Number: 303855.01

 $17. \ (Original) \ The \ method \ of \ claim \ 16 \ wherein \ a \ function \ for \ assigning \ said \ weights \ is$

learned from data sets of the database.

18. (Original) The method of claim 16 wherein a function for assigning said weights is

learned from an expected query workload.

19. (Original) The method of claim 16 further comprising calculating actual selectivities

of substrings of queries from an expected workload and determining estimated

selectivities of the substrings of a queries from the expected workload to learn a

function for assigning said weights.

20. (Original) The method of claim 16 further comprising calculating for a string

predicate of a guery from an expected workload an actual selectivity of a candidate

substring having the given length, determining for the string predicate of the guery

from the expected workload an estimated selectivity of the candidate substring having

the given length, and assigning a weight to candidate substrings of a given length by

based on a relationship between the calculated actual selectivity and the determined

estimated selectivity.

21. (Original) The method of claim 1 wherein selectivities of the candidate substrings

are combined using regression trees.

22. (Original) The method of claim 20 wherein said regression trees are learned from

data sets of the database.

Type of Response: Amendment Application Number: 10/603,035

Attorney Docket Number: 303855.01 Filing Date: June 24, 2003

5/15

23. (Original) The method of claim 20 wherein said regression trees are learned from an

expected query workload.

24. (Currently amended) A computer readable medium having computer executable instructions stored thereon for performing a method of estimating selectivity of a given

string predicate of length n in a database query, the method comprising:

a) estimating selectivities of <u>a plurality of substrings</u>, the <u>plurality of string</u>

predicate substrings including substrings of the given string predicate and having each of various-substring lengthslength between a to n, where a < n:

b) categorizing each of the string predicate substrings based on length;

<u>c)</u> selecting <u>a one</u> candidate substring for each <u>category of</u> substring length

based on estimated selectivities of the substrings to obtain a plurality of candidate identifying substrings, each candidate identifying substring in the plurality of identifying

dentitying substitutes, each candidate identitying substitute in the plantate

substrings having a different length between q and n;

 $\varepsilon \underline{d})$ combining the estimated selectivities of $\underline{each\ of}$ the candidate substrings \underline{in}

the plurality of identifying substrings; and

 $heta\underline{e}$) returning the combined estimated selectivities of the candidate substrings as

the estimated selectivity of the given string predicate.

25. (Original) The computer readable medium of claim 24 wherein the method further

comprises storing selectivity information for the database and using stored selectivity

information to estimate the selectivities of the substrings of various lengths.

26. (Original) The computer readable medium of claim 24 wherein a substring with a

lowest estimated selectivity is selected as the candidate substring at each length.

Type of Response: Amendment Application Number: 10/603,035

Attorney Docket Number: 303855.01

27. (Original) The computer readable medium of claim 24 wherein the method further

comprises calculating exact selectivities of substrings of a given maximum length and

using the exact selectivities to estimate the selectivities of the substrings of various ${\sf var}$

substring lengths.

28. (Original) The computer readable medium of claim 27 wherein a range of the various

substring lengths whose selectivities are estimated is between the given maximum

length of the substrings whose selectivites are calculated exactly and the length of the

given string predicate.

29. (Original) The computer readable medium of claim 27 wherein the candidate

substring for the length equal to the given maximum length of the substrings whose

selectivities are calculated exactly is selected based on the exact selectivity of the

substring.

30. (Original) The computer readable medium of claim 24 wherein a q-gram table is

constructed for substrings of a given maximum length and is accessed to estimate

selectivities of substrings of various substrings lengths.

31. (Original) The computer readable medium of claim 28 wherein a markov estimator

uses the exact selectivities to estimate the selectivities of the substrings of various

substring lengths.

32. (Original) The computer readable medium of claim 24 wherein characteristics of

string values in a relation of the database are used to combine the estimated

selectivities of the candidate substrings.

Type of Response: Amendment
Application Number: 10/603,035

Application Number: 10/603

Attorney Docket Number: 303855.01

33. (Original) The computer readable medium of claim 24 wherein characteristics of a

workload of queries are used to combine the estimated selectivities of the candidate

substrings.

34. (Original) The computer readable medium of claim 24 wherein a model for

combining the estimated selectivities of candidate substrings is learned from query

workloads.

35. (Original) The computer readable medium of claim 24 wherein said model is applied

to the candidate substrings at run time to estimate the string predicate selectivity.

36. (Original) The computer readable medium of claim 24 wherein the given string

predicate is a unit predicate.

37. (Original) The computer readable medium of claim 24 wherein the given string

predicate includes a wildcard character.

38. (Original) The computer readable medium of claim 24 wherein the given string

predicate is a range predicates.

39. (Original) The computer readable medium of claim 24 wherein weights are assigned

to each length of candidate substring to combine the selectivities of the candidate

substrings.

Type of Response: Amendment
Application Number: 10/603,035

Attorney Docket Number: 303855.01 Filing Date: June 24, 2003

--

40. (Original) The computer readable medium of claim 39 wherein a function for

assigning said weights is learned from data sets of the database.

41. (Original) The computer readable medium of claim 39 wherein a function for

assigning said weights is learned from an expected query workload.

42. (Original) The computer readable medium of claim 39 wherein the method further

comprises calculating actual selectivities of substrings of gueries from an expected

workload and determining estimated selectivities of the substrings of a queries from the

expected workload to learn a function for assigning said weights.

43. (Original) The computer readable medium of claim 39 wherein the method further

comprises calculating for a string predicate of a guery from an expected workload an

actual selectivity of a candidate substring having the given length, determining for the

string predicate of the query from the expected workload an estimated selectivity of the

candidate substring having the given length, and assigning a weight to candidate

substrings of a given length by based on a relationship between the calculated actual

selectivity and the determined estimated selectivity.

44. (Original) The computer readable medium of claim 24 wherein selectivities of the

candidate substrings are combined using regression trees.

45. (Original) The computer readable medium of claim 44 wherein said regression trees

are learned from data sets of the database.

Type of Response: Amendment Application Number: 10/603,035 Attorney Docket Number: 303855.01

46. (Original) The computer readable medium of claim 44 wherein said regression trees are learned from an expected query workload.

Type of Response: Amendment Application Number: 10/603,035 Attorney Docket Number: 303855.01