MC558 — Análise de Algoritmos II

Cid C. de Souza Cândida N. da Silva Orlando Lee

7 de março de 2023

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando I ee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - ▶ José Coelho de Pina
 - Orlando Lee
 - ▶ Paulo Feofiloff
 - ▶ Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Um grafo é uma tripla $G = (V, E, \psi)$ na qual:

- V é um conjunto de elementos chamados vértices,
- $oldsymbol{2}$ E é um conjunto disjunto de V de elementos chamados arestas e
- **3** ψ é uma função que associa cada elemento de E a um par não-ordenado de elementos de V.

Um grafo é uma tripla $G = (V, E, \psi)$ na qual:

- V é um conjunto de elementos chamados vértices,
- $oldsymbol{2}$ E é um conjunto disjunto de V de elementos chamados arestas e
- ψ é uma função que associa cada elemento de E a um par não-ordenado de elementos de V.

Exemplo:

- $V = \{u, v, w, x, y, z\},$
- $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\},\$

									<i>e</i> 9
$\psi(e)$	$\{x,y\}$	$\{x,y\}$	$\{y,z\}$	$\{z,v\}$	{ <i>v</i> , <i>y</i> }	$\{v,u\}$	$\{u,x\}$	$\{u,u\}$	$\{v,w\}$

									e 9
$\psi(e)$	$\{x,y\}$	$\{x,y\}$	$\{y,z\}$	$\{z,v\}$	$\{v,y\}$	$\{v,u\}$	$\{u,x\}$	$\{u,u\}$	$\overline{\{v,w\}}$

Figura: Desenho de um grafo G.

Desenhos de grafos s\(\tilde{a}\) convenientes para se descobrir visualmente propriedades importantes.

Figura: Desenho de um grafo G.

- Desenhos de grafos s\(\tilde{a}\) convenientes para se descobrir visualmente propriedades importantes.
- ② Obviamente, isto só funciona para grafos pequenos.

Figura: Desenho de um grafo G.

- Desenhos de grafos s\u00e3o convenientes para se descobrir visualmente propriedades importantes.
- ② Obviamente, isto só funciona para grafos pequenos.
- Usaremos bastante desenhos de grafos para ilustrar conceitos ou ideias.

Figura: Desenho de um grafo G.

Para um grafo $G = (V, E, \psi)$,

Para um grafo $G = (V, E, \psi)$,

V é chamado conjunto de vértices de G,

Para um grafo $G = (V, E, \psi)$,

- V é chamado conjunto de vértices de G,
- 2 E é chamado conjunto de arestas de G e

Para um grafo $G = (V, E, \psi)$,

- V é chamado conjunto de vértices de G,
- 2 E é chamado conjunto de arestas de G e
- $\ \ \psi$ é chamada função de incidência de G.

Para um grafo $G = (V, E, \psi)$,

- V é chamado conjunto de vértices de G,
- E é chamado conjunto de arestas de G e
- \bullet ψ é chamada função de incidência de G.

Muitas vezes, escreveremos simplesmente grafo G ficando implícito que $G = (V(G), E(G), \psi_G)$.

Para um grafo $G = (V, E, \psi)$,

- V é chamado conjunto de vértices de G,
- E é chamado conjunto de arestas de G e
- \bullet ψ é chamada função de incidência de G.

Muitas vezes, escreveremos simplesmente grafo G ficando implícito que $G = (V(G), E(G), \psi_G)$.

Observação. Neste curso suporemos que $Ve\ E$ são sempre finitos.

• Escrevemos e = uv se $\psi(e) = \{u, v\}$.

Figura: Desenho de um grafo G.

- Escrevemos e = uv se $\psi(e) = \{u, v\}$.
- Neste caso, dizemos que u e v são extremos de e e que u e v são ligados por e.

Figura: Desenho de um grafo G.

- Escrevemos e = uv se $\psi(e) = \{u, v\}$.
- Neste caso, dizemos que u e v são extremos de e e que u e v são ligados por e.
- Dizemos que dois vértices são adjacentes ou vizinhos se são extremos de uma mesma aresta.

Figura: Desenho de um grafo G.

Adjacência de arestas e incidência

Adjacência de arestas e incidência

 Dizemos que duas arestas s\u00e3o adjacentes se t\u00e9m um extremo em comum.

Figura: Desenho de um grafo G.

Adjacência de arestas e incidência

- Dizemos que duas arestas s\u00e3o adjacentes se t\u00e9m um extremo em comum.
- Se e = uv, então dizemos que u(v) é incidente a e e **vice versa**.

Figura: Desenho de um grafo G.

Laços

Laços

Uma aresta e é um laço se existe algum vértice u tal que $\psi(e) = \{u, u\}$, ou seja, tem extremos idênticos.

Figura: Desenho de um grafo G.

Arestas múltiplas/paralelas

Arestas múltiplas/paralelas

Duas arestas e e f são múltiplas ou paralelas se $\psi(e) = \psi(f)$, ou seja, têm os mesmos extremos.

Figura: Desenho de um grafo G.

lacktriangle Um grafo G é simples se não possui laços nem arestas múltiplas.

Figura: Desenho de um grafo simples G.

- ① Um grafo G é simples se não possui laços nem arestas múltiplas.
- Em um grafo simples, uma aresta é totalmente identificada por seus extremos.

Figura: Desenho de um grafo simples G.

- ① Um grafo G é simples se não possui laços nem arestas múltiplas.
- Em um grafo simples, uma aresta é totalmente identificada por seus extremos.
- Assim, é usual pensar em uma aresta de um grafo simples como um par não-ordenado de vértices.

Figura: Desenho de um grafo simples G.

Notação

Notação

• Muitas vezes definimos um grafo como um par G = (V, E) deixando implícita a função de incidência, interpretando cada aresta como um par não-ordenado de vértices.

- Muitas vezes definimos um grafo como um par G = (V, E) deixando implícita a função de incidência, interpretando cada aresta como um par não-ordenado de vértices.
- **2** Podemos então escrever $uv \in E$ significando que existe uma aresta com extremos $u \in V$ em G.

- ① Muitas vezes definimos um grafo como um par G = (V, E) deixando implícita a função de incidência, interpretando cada aresta como um par não-ordenado de vértices.
- **2** Podemos então escrever $uv \in E$ significando que existe uma aresta com extremos $u \in V$ em G.
- Isto não apresenta problemas se G é simples, mas pode causar confusão em grafos não-simples.

- Muitas vezes definimos um grafo como um par G = (V, E) deixando implícita a função de incidência, interpretando cada aresta como um par não-ordenado de vértices.
- **2** Podemos então escrever $uv \in E$ significando que existe uma aresta com extremos $u \in V$ em G.
- Sisto não apresenta problemas se G é simples, mas pode causar confusão em grafos não-simples.

Usaremos também as seguintes notações:

- ① Muitas vezes definimos um grafo como um par G = (V, E) deixando implícita a função de incidência, interpretando cada aresta como um par não-ordenado de vértices.
- 2 Podemos então escrever $uv \in E$ significando que existe uma aresta com extremos $u \in V$ em G.
- Isto não apresenta problemas se G é simples, mas pode causar confusão em grafos não-simples.

Usaremos também as seguintes notações:

• n(G) é o número de vértices de G e

- Muitas vezes definimos um grafo como um par G = (V, E) deixando implícita a função de incidência, interpretando cada aresta como um par não-ordenado de vértices.
- 2 Podemos então escrever $uv \in E$ significando que existe uma aresta com extremos $u \in V$ em G.
- Isto não apresenta problemas se G é simples, mas pode causar confusão em grafos não-simples.

Usaremos também as seguintes notações:

- \bullet n(G) é o número de vértices de G e
- $oldsymbol{0}$ m(G) é o número de arestas de G.

- Muitas vezes definimos um grafo como um par G = (V, E) deixando implícita a função de incidência, interpretando cada aresta como um par não-ordenado de vértices.
- 2 Podemos então escrever $uv \in E$ significando que existe uma aresta com extremos $u \in V$ em G.
- Isto não apresenta problemas se G é simples, mas pode causar confusão em grafos não-simples.

Usaremos também as seguintes notações:

- n(G) é o número de vértices de G e
- $oldsymbol{0}$ m(G) é o número de arestas de G.

Quando G está claro dentro do contexto, podemos escrever n e m simplesmente.

Matriz de adjacência

Matriz de adjacência

Seja G=(V,E) um grafo. A matriz de adjacência de G é a matriz $A_G=(a_{uv})$ indexada nas linhas e colunas por V na qual a_{uv} é o número de arestas ligando u e v, contando laços duas vezes.

	и	V	W	X	y	Z
и	2	1	0	1	0	0
V	1	0	0 1 0 0 0	0	1	1
w	0	1	0	0	0	0
X	1	0	0	0	2	0
y	0	1	0	2	0	1
Z	0	1	0	0	1	0

Matriz de incidência

Matriz de incidência

Seja G=(V,E) um grafo. A matriz de incidência de G é a matriz $M_G=(m_{ve})$ indexada nas linhas por V e nas colunas por E tal que m_{ve} é o número de vezes (0,1 ou 2) que v e e incidem.

	e_1	<i>e</i> ₂	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	<i>e</i> ₆	e ₇	<i>e</i> ₈	<i>e</i> 9
и	0	0	0	0	0	1	1	2	0
V	0	0	0	1	1	1	0	0	1
W	0	0	0	0	0	0	0	0	1
X	1	1	0	0	0	0	1	0	0
y	1	1	1	0	1	0	0	0	0
Z	0 0 0 1 1	0	1	1	0	0	0	0	0

1 Um grafo é nulo se não possui vértices (nem arestas).

- Um grafo é nulo se não possui vértices (nem arestas).
- ② Um grafo é vazio se não possui arestas.

- Um grafo é nulo se não possui vértices (nem arestas).
- 2 Um grafo é vazio se não possui arestas.
- **1** Um grafo é trivial se for vazio e tiver um único vértice.

- Um grafo é nulo se não possui vértices (nem arestas).
- 2 Um grafo é vazio se não possui arestas.
- Um grafo é trivial se for vazio e tiver um único vértice.
- Um grafo é não-trivial se possui pelo menos uma aresta ou pelo menos dois vértices.

Um caminho é um grafo simples cujos vértices podem ser arranjados em uma ordem linear tal que dois vértices são adjacentes se são consecutivos na ordem.

Um caminho é um grafo simples cujos vértices podem ser arranjados em uma ordem linear tal que dois vértices são adjacentes se são consecutivos na ordem.

Quantas arestas tem um caminho com *n* vértices?

Um caminho é um grafo simples cujos vértices podem ser arranjados em uma ordem linear tal que dois vértices são adjacentes se são consecutivos na ordem.

Quantas arestas tem um caminho com n vértices? n-1

Um caminho é um grafo simples cujos vértices podem ser arranjados em uma ordem linear tal que dois vértices são adjacentes se são consecutivos na ordem.

Quantas arestas tem um caminho com n vértices? n-1

Você consegue exibir uma família infinita de grafos ($n \ge 2$) com este número de arestas que não são caminhos?

Observação. Família é o mesmo que conjunto, coleção. Usamos o termo família ou coleção quando seus membros são objetos mais complexos como conjuntos ou grafos.

Um ciclo (ou circuito) com pelo menos três vértices é um grafo simples cujos vértices podem ser arranjados em uma ordem cíclica tal que dois vértices são adjacentes se são consecutivos na ordem.

- Um ciclo (ou circuito) com pelo menos três vértices é um grafo simples cujos vértices podem ser arranjados em uma ordem cíclica tal que dois vértices são adjacentes se são consecutivos na ordem.
- 2 Um ciclo com um vértice é um laço.

- Um ciclo (ou circuito) com pelo menos três vértices é um grafo simples cujos vértices podem ser arranjados em uma ordem cíclica tal que dois vértices são adjacentes se são consecutivos na ordem.
- 2 Um ciclo com um vértice é um laço.
- Um ciclo com dois vértices consiste de dois vértices ligados por duas arestas paralelas.

- Um ciclo (ou circuito) com pelo menos três vértices é um grafo simples cujos vértices podem ser arranjados em uma ordem cíclica tal que dois vértices são adjacentes se são consecutivos na ordem.
- 2 Um ciclo com um vértice é um laço.
- Um ciclo com dois vértices consiste de dois vértices ligados por duas arestas paralelas.

Quantas arestas tem um ciclo com n vértices?

- Um ciclo (ou circuito) com pelo menos três vértices é um grafo simples cujos vértices podem ser arranjados em uma ordem cíclica tal que dois vértices são adjacentes se são consecutivos na ordem.
- 2 Um ciclo com um vértice é um laço.
- Um ciclo com dois vértices consiste de dois vértices ligados por duas arestas paralelas.

Quantas arestas tem um ciclo com n vértices? n

- Um ciclo (ou circuito) com pelo menos três vértices é um grafo simples cujos vértices podem ser arranjados em uma ordem cíclica tal que dois vértices são adjacentes se são consecutivos na ordem.
- 2 Um ciclo com um vértice é um laço.
- Um ciclo com dois vértices consiste de dois vértices ligados por duas arestas paralelas.

Quantas arestas tem um ciclo com *n* vértices? *n*

Você consegue exibir uma família infinita de grafos $(n \ge 2)$ com este número de arestas que não são ciclos?

① O comprimento de um caminho ou ciclo é seu número de arestas.

- ① O comprimento de um caminho ou ciclo é seu número de arestas.
- Um caminho ou ciclo é par (ímpar) se tem comprimento par (ímpar).

- O comprimento de um caminho ou ciclo é seu número de arestas.
- ② Um caminho ou ciclo é par (ímpar) se tem comprimento par (ímpar).
- **③** Um caminho ou ciclo de comprimento ℓ é chamado ℓ -caminho ou ℓ -ciclo, respectivamente.

- ① O comprimento de um caminho ou ciclo é seu número de arestas.
- ② Um caminho ou ciclo é par (ímpar) se tem comprimento par (ímpar).
- **3** Um caminho ou ciclo de comprimento ℓ é chamado ℓ -caminho ou ℓ -ciclo, respectivamente.
- Chamamos um 3-ciclo de triângulo, um 4-ciclo de quadrado, um 5-ciclo de pentágono etc.

Um grafo é completo se for simples e quaisquer dois vértices distintos forem adjacentes.

Um grafo é completo se for simples e quaisquer dois vértices distintos forem adjacentes.

Quantas arestas tem um grafo completo com n vértices?

Um grafo é completo se for simples e quaisquer dois vértices distintos forem adjacentes.

Quantas arestas tem um grafo completo com n vértices? $\binom{n}{2} = \frac{n(n-1)}{2}$

Observação. $\binom{n}{k}$ é o número de subconjuntos de tamanho k de um conjunto de tamanho n. Cada aresta de um grafo simples pode ser vista como um subconjunto de tamanho dois do conjunto de vértices.

Um grafo G é **bipartido** se V(G) pode ser particionado em dois conjuntos X e Y tais que cada aresta tem um extremo em X e outro em Y. Uma tal partição X, Y é chamada **bipartição** de G e dizemos que X e Y são as **partes** da bipartição. Neste caso, dizemos que G é (X, Y)-**bipartido**.

Um grafo G é **bipartido** se V(G) pode ser particionado em dois conjuntos X e Y tais que cada aresta tem um extremo em X e outro em Y. Uma tal partição X, Y é chamada **bipartição** de G e dizemos que X e Y são as **partes** da bipartição. Neste caso, dizemos que G é (X, Y)-**bipartido**.

Definição alternativa: G é **bipartido** se é possível colorir os vértices de G com duas cores (por exemplo, azul e vermelho) de modo que vértices adjacentes tenham cores distintas.

Um grafo G é **bipartido** se V(G) pode ser particionado em dois conjuntos X e Y tais que cada aresta tem um extremo em X e outro em Y. Uma tal partição X, Y é chamada **bipartição** de G e dizemos que X e Y são as **partes** da bipartição. Neste caso, dizemos que G é (X, Y)-**bipartido**.

Um grafo G é **bipartido** se V(G) pode ser particionado em dois conjuntos X e Y tais que cada aresta tem um extremo em X e outro em Y. Uma tal partição X, Y é chamada **bipartição** de G e dizemos que X e Y são as **partes** da bipartição. Neste caso, dizemos que G é (X, Y)-**bipartido**.

Um subconjunto S de V(G) é independente se quaisquer dois vértices em S são **não-adjacentes** em G. Assim, G é bipartido se, e somente se, V(G) pode ser particionado em dois conjuntos independentes.

Um grafo G é **bipartido** se V(G) pode ser particionado em dois conjuntos X e Y tais que cada aresta tem um extremo em X e outro em Y. Uma tal partição X, Y é chamada **bipartição** de G e dizemos que X e Y são as **partes** da bipartição. Neste caso, dizemos que G é (X, Y)-**bipartido**.

Um grafo G é **bipartido** se V(G) pode ser particionado em dois conjuntos X e Y tais que cada aresta tem um extremo em X e outro em Y. Uma tal partição X, Y é chamada **bipartição** de G e dizemos que X e Y são as **partes** da bipartição. Neste caso, dizemos que G é (X, Y)-**bipartido**.

Você consegue exibir uma família infinita de grafos não-bipartidos?

Um grafo G é **bipartido** se V(G) pode ser particionado em dois conjuntos X e Y tais que cada aresta tem um extremo em X e outro em Y. Uma tal partição X, Y é chamada **bipartição** de G e dizemos que X e Y são as **partes** da bipartição. Neste caso, dizemos que G é (X, Y)-**bipartido**.

Você consegue exibir uma família infinita de grafos **não-bipartidos**?

Família de todos os ciclos ímpares.

Um grafo simples (X, Y)-bipartido G é bipartido completo se todo vértice de X é adjacente a todo vértice de Y.

Um grafo simples (X, Y)-bipartido G é bipartido completo se todo vértice de X é adjacente a todo vértice de Y.

Quantas arestas tem um grafo bipartido completo com partes de tamanho r e s, respectivamente?

Um grafo simples (X, Y)-bipartido G é bipartido completo se todo vértice de X é adjacente a todo vértice de Y.

Quantas arestas tem um grafo bipartido completo com partes de tamanho r e s, respectivamente? rs

Grau

Grau

O grau de um vértice v em G, denotado por $d_G(v)$, é o número de arestas incidentes a v, sendo que laços são contados duas vezes.

Figura: Desenho de um grafo G.

	и	V	W	X	у	Z
$d_G()$?	?	?	?	?	?

Grau

O grau de um vértice v em G, denotado por $d_G(v)$, é o número de arestas incidentes a v, sendo que laços são contados duas vezes.

Figura: Desenho de um grafo G.

	и	V	W	X	у	Z
$d_G()$	4	4	1	3	4	2

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Prova (Contagem dupla).

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Prova (Contagem dupla). Considere uma aresta qualquer de G, digamos e=uv. Ela é contada duas vezes no lado direito da equação. Por outro lado, ela também é contada em $d_G(u)$ e em $d_G(v)$ no lado esquerdo (lembre-se que se e é um laço, ela é contada duas vezes). Portanto, a igualdade vale.

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Prova (Contagem dupla). Considere uma aresta qualquer de G, digamos e=uv. Ela é contada duas vezes no lado direito da equação. Por outro lado, ela também é contada em $d_G(u)$ e em $d_G(v)$ no lado esquerdo (lembre-se que se e é um laço, ela é contada duas vezes). Portanto, a igualdade vale.

Este é o teorema mais importante do Universo!

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Prova (Contagem dupla). Considere uma aresta qualquer de G, digamos e=uv. Ela é contada duas vezes no lado direito da equação. Por outro lado, ela também é contada em $d_G(u)$ e em $d_G(v)$ no lado esquerdo (lembre-se que se e é um laço, ela é contada duas vezes). Portanto, a igualdade vale.

Este é o teorema mais importante do Universo!

Ok, estou exagerando para chamar sua atenção...

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Prova (Contagem dupla). Considere uma aresta qualquer de G, digamos e=uv. Ela é contada duas vezes no lado direito da equação. Por outro lado, ela também é contada em $d_G(u)$ e em $d_G(v)$ no lado esquerdo (lembre-se que se e é um laço, ela é contada duas vezes). Portanto, a igualdade vale.

Este é o teorema mais importante do Universo!

Ok, estou exagerando para chamar sua atenção...

Este é um resultado básico, mas fundamental.

Prova. Considere a matriz de incidência M_G de G.

Prova. Considere a matriz de incidência M_G de G.

Qual é a soma das entradas de uma linha v?

Prova. Considere a matriz de incidência M_G de G.

Qual é a soma das entradas de uma linha v? $d_G(v)$

Prova. Considere a matriz de incidência M_G de G.

Qual é a soma das entradas de uma linha v? $d_G(v)$

Qual é a soma das entradas de uma coluna e?

Prova. Considere a matriz de incidência M_G de G.

Qual é a soma das entradas de uma linha v? $d_G(v)$

Qual é a soma das entradas de uma coluna e? 2

Prova. Considere a matriz de incidência M_G de G.

Qual é a soma das entradas de uma linha v? $d_G(v)$

Qual é a soma das entradas de uma coluna e? 2

Portanto, $\sum d_G(v) = 2|E|$.

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Corolário. Em todo grafo G, o número de vértices de grau ímpar é par.

Por quê?

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Corolário. Em todo grafo G, o número de vértices de grau ímpar é par.

Por quê?

Este é o corolário mais importante do Universo!

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Corolário. Em todo grafo G, o número de vértices de grau ímpar é par.

Por quê?

Este é o corolário mais importante do Universo!

Ok, estou exagerando de novo...

Teorema. Para todo grafo G = (V, E) temos que

$$\sum d_G(v)=2|E|.$$

Corolário. Em todo grafo G, o número de vértices de grau ímpar é par.

Por quê?

Este é o corolário mais importante do Universo!

Ok, estou exagerando de novo...

Esta é uma observação simples, mas importante.

Adjacência/vizinhança

Adjacência/vizinhança

lacktriangle A vizinhança de um vértice u em um grafo G é definida por

$$N_G(u) := \{v \in V : uv \in E\}.$$

Adjacência/vizinhança

lacktriangle A vizinhança de um vértice u em um grafo G é definida por

$$N_G(u) := \{v \in V : uv \in E\}.$$

② Na figura, $N_G(y) = \{v, x, z\}$ e $N_G(u) = \{u, v, x\}$.

Figura: Desenho de um grafo G.

Adjacência/vizinhança

Observação. Se G é **simples**, então $d_G(u) = |N_G(u)|$ para todo $u \in V(G)$.

Figura: Desenhos de um grafo não-simples e um grafo simples.

Listas de adjacências (usada em Algoritmos em Grafos)

Seja G=(V,E) um grafo **simples**. A representação por listas de adjacências de G consiste em um vetor $\mathrm{Adj}[\]$ indexado por V tal que para cada $u\in V$, $\mathrm{Adj}[u]$ aponta para uma lista ligada contendo os vizinhos de u.

Notação para complexidade de algoritmos

- Veremos vários algoritmos em grafos neste curso.
- Quando analisarmos a complexidade de um algoritmo envolvendo um grafo G=(V,E) usaremos V e E na notação assintótica, em vez de |V| e |E|.

Notação para complexidade de algoritmos

- Veremos vários algoritmos em grafos neste curso.
- Quando analisarmos a complexidade de um algoritmo envolvendo um grafo G=(V,E) usaremos V e E na notação assintótica, em vez de |V| e |E|.

Por exemplo, escrevemos $O(E^2 \lg V)$ em vez de $O(|E|^2 \lg |V|)$.

Qual é melhor?

Qual é melhor? Depende.

• Matriz de adjacência: é possível verificar se *ij* é uma aresta de *G* em tempo constante.

- Matriz de adjacência: é possível verificar se *ij* é uma aresta de *G* em tempo constante.
- Listas de adjacência: é possível descobrir os vizinhos de um dado vértice v (ou seja, listar $\mathrm{Adj}[v]$) em tempo $O(\mathrm{Adj}[v])$.

- Matriz de adjacência: é possível verificar se *ij* é uma aresta de *G* em tempo constante.
- Listas de adjacência: é possível descobrir os vizinhos de um dado vértice v (ou seja, listar $\mathrm{Adj}[v]$) em tempo $O(\mathrm{Adj}[v])$.
- Matriz de adjacência: espaço $\Theta(V^2)$. Adequada a grafos densos ($|E| = \Theta(V^2)$).

- Matriz de adjacência: é possível verificar se ij é uma aresta de G em tempo constante.
- Listas de adjacência: é possível descobrir os vizinhos de um dado vértice v (ou seja, listar $\mathrm{Adj}[v]$) em tempo $O(\mathrm{Adj}[v])$.
- Matriz de adjacência: espaço $\Theta(V^2)$. Adequada a grafos densos ($|E| = \Theta(V^2)$).
- Lista de adjacência: espaço $\Theta(V+E)$. Adequada a grafos esparsos ($|E| = \Theta(V)$).

• Há outras alternativas para representar grafos, mas matrizes e listas de adjacência são as mais usadas.

- Há outras alternativas para representar grafos, mas matrizes e listas de adjacência são as mais usadas.
- Elas podem ser adaptadas para representar grafos ponderados, grafos com laços e arestas múltiplas, grafos com pesos nos vértices etc.

- Há outras alternativas para representar grafos, mas matrizes e listas de adjacência são as mais usadas.
- Elas podem ser adaptadas para representar grafos ponderados, grafos com laços e arestas múltiplas, grafos com pesos nos vértices etc.
- Para determinados problemas é essencial ter estruturas de dados adicionais para melhorar a eficiência dos algoritmos.

• Muitas vezes, quando estamos escrevendo ou lendo uma prova, o grafo G está claro dentro do contexto (por exemplo, não há outro grafo envolvido).

- Muitas vezes, quando estamos escrevendo ou lendo uma prova, o grafo G está claro dentro do contexto (por exemplo, não há outro grafo envolvido).
- ② Podemos então simplificar a notação e omitir o subscripto (ou similar) G de uma notação. Por exemplo, podemos escrever d(v) e N(v), em vez de $d_G(v)$ e $N_G(v)$.

- Muitas vezes, quando estamos escrevendo ou lendo uma prova, o grafo G está claro dentro do contexto (por exemplo, não há outro grafo envolvido).
- Podemos então simplificar a notação e omitir o subscripto (ou similar) G de uma notação. Por exemplo, podemos escrever d(v) e N(v), em vez de d_G(v) e N_G(v).
- Quando há outros grafos em jogo, é necessário evitar ambiguidade e assim, é preferível escrever a notação completa.

Exercício. Seja G um grafo (X, Y)-bipartido. Mostre que

$$\sum_{v \in X} d(v) = \sum_{v \in Y} d(v).$$

Exercício. Seja G um grafo (X, Y)-bipartido. Mostre que

$$\sum_{v \in X} d(v) = \sum_{v \in Y} d(v).$$

Dica: $\sum_{v \in X} d(v)$ é igual a qual parâmetro de *G*?

Exercício. Seja G um grafo (X, Y)-bipartido. Mostre que

$$\sum_{v \in X} d(v) = \sum_{v \in Y} d(v).$$

Dica: $\sum_{v \in X} d(v)$ é igual a qual parâmetro de G?

Exercício. Seja \mathcal{E} uma coleção de k-subconjuntos de um conjunto universo U. Para cada $u \in U$, denote por t(u) o número de membros de \mathcal{E} ao qual u pertence. Então

$$\sum_{u\in U}t(u)=?$$

Observação: um k-conjunto é um conjunto de cardinalidade (tamanho) k.

Exercício. Mostre que em toda festa com pelo menos seis pessoas, uma das seguintes alternativas ocorre:

- 1 há três pessoas que se conhecem, ou
- há três pessoas que não se conhecem.

Nesta questão, suponha que se A conhece B, então B também conhece A.

Exercício. Mostre que em toda festa com pelo menos seis pessoas, uma das seguintes alternativas ocorre:

- 1 há três pessoas que se conhecem, ou
- há três pessoas que não se conhecem.

Nesta questão, suponha que se A conhece B, então B também conhece A.

Exercício. Considere um grupo S de $n \ge 4$ pessoas com a seguinte propriedade:

para todo subconjunto X de S com exatamente quatro pessoas, existe uma pessoa em X que conhece as demais pessoas de X.

Mostre que existe uma pessoa em S que conhece todas as outras pessoas de S. Nesta questão, suponha que se A conhece B, então B também conhece A.

O complemento de um grafo G é o grafo \overline{G} com mesmo conjunto de vértices tal que dois vértices são adjacentes em \overline{G} se **não** são adjacentes em G.

Figura: Um grafo G e seu complemento \overline{G} .

O complemento de um grafo G é o grafo G com mesmo conjunto de vértices tal que dois vértices são adjacentes em \overline{G} se **não** são adjacentes em G.

Figura: Um grafo G e seu complemento \overline{G} .

Qual é o grau de um vértice v em \overline{G} em função de n := n(G) e $d_G(v)$? $d_{\overline{C}}(v) =$

O complemento de um grafo G é o grafo \overline{G} com mesmo conjunto de vértices tal que dois vértices são adjacentes em \overline{G} se **não** são adjacentes em G.

Figura: Um grafo G e seu complemento \overline{G} .

Qual é o grau de um vértice v em \overline{G} em função de n := n(G) e $d_G(v)$? $d_{\overline{G}}(v) = n - 1 - d_G(v)$.

1 O grau mínimo de um grafo G, denotado por $\delta(G)$, é o menor valor dos graus dos vértices de G, ou seja,

$$\delta(G) := \min\{d(v) : v \in V(G)\}.$$

1 O grau mínimo de um grafo G, denotado por $\delta(G)$, é o menor valor dos graus dos vértices de G, ou seja,

$$\delta(G) := \min\{d(v) : v \in V(G)\}.$$

2 O grau máximo de um grafo G, denotado por $\Delta(G)$, é o maior valor dos graus dos vértices de G, ou seja,

$$\Delta(G) := \max\{d(v) : v \in V(G)\}.$$

1 O grau mínimo de um grafo G, denotado por $\delta(G)$, é o menor valor dos graus dos vértices de G, ou seja,

$$\delta(G) := \min\{d(v) : v \in V(G)\}.$$

② O grau máximo de um grafo G, denotado por $\Delta(G)$, é o maior valor dos graus dos vértices de G, ou seja,

$$\Delta(G) := \max\{d(v) : v \in V(G)\}.$$

3 O grau médio (average degree) de um grafo G = (V, E) é

$$ad(G) := \sum d(v)/n = 2m/n \ (= 2|E|/|V|).$$

1 O grau mínimo de um grafo G, denotado por $\delta(G)$, é o menor valor dos graus dos vértices de G, ou seja,

$$\delta(G) := \min\{d(v) : v \in V(G)\}.$$

② O grau máximo de um grafo G, denotado por $\Delta(G)$, é o maior valor dos graus dos vértices de G, ou seja,

$$\Delta(G) := \max\{d(v) : v \in V(G)\}.$$

3 O grau médio (average degree) de um grafo G = (V, E) é

$$ad(G) := \sum d(v)/n = 2m/n (= 2|E|/|V|).$$

Proposição. Para todo grafo não-nulo G, $\delta(G) \leq \operatorname{ad}(G) \leq \Delta(G)$.

Grafos regulares

1 Um vértice é isolado se tem grau zero.

- 1 Um vértice é isolado se tem grau zero.
- ② Um grafo G é k-regular se $d_G(v) = k$ para todo $v \in V(G)$.

- 1 Um vértice é isolado se tem grau zero.
- ② Um grafo G é k-regular se $d_G(v) = k$ para todo $v \in V(G)$.
- **3** Um grafo G é regular se for k-regular para algum $k \in \mathbb{N}$.

- Um vértice é isolado se tem grau zero.
- ② Um grafo G é k-regular se $d_G(v) = k$ para todo $v \in V(G)$.
- **3** Um grafo G é regular se for k-regular para algum $k \in \mathbb{N}$.
- Um grafo cúbico é um grafo 3-regular.

- 1 Um vértice é isolado se tem grau zero.
- ② Um grafo G é k-regular se $d_G(v) = k$ para todo $v \in V(G)$.
- **3** Um grafo G é regular se for k-regular para algum $k \in \mathbb{N}$.
- Um grafo cúbico é um grafo 3-regular.

- 1 Um vértice é isolado se tem grau zero.
- **2** Um grafo G é k-regular se $d_G(v) = k$ para todo $v \in V(G)$.
- **3** Um grafo G é regular se for k-regular para algum $k \in \mathbb{N}$.
- 1 Um grafo cúbico é um grafo 3-regular.

Exercício. Descreva todos os grafos k-regulares para k=0,1,2. Note que o grafo não precisa ser conexo (veja o próximo slide).

- 1 Um vértice é isolado se tem grau zero.
- ② Um grafo G é k-regular se $d_G(v) = k$ para todo $v \in V(G)$.
- **3** Um grafo G é regular se for k-regular para algum $k \in \mathbb{N}$.
- 1 Um grafo cúbico é um grafo 3-regular.

Exercício. Descreva todos os grafos k-regulares para k=0,1,2. Note que o grafo não precisa ser conexo (veja o próximo slide).

Exercício. Desenhe todos os grafos simples cúbicos com no máximo seis vértices.

Cortes

Sejam G um grafo e $S \subseteq V(G)$. Denotamos por $\partial(S)$ o conjunto das arestas de G com um extremo em S e outro em V(G) - S. Note que $\partial(\emptyset) = \partial(V(G) = \emptyset$.

Cortes

Sejam G um grafo e $S\subseteq V(G)$. Denotamos por $\partial(S)$ o conjunto das arestas de G com um extremo em S e outro em V(G)-S. Note que $\partial(\emptyset)=\partial(V(G)=\emptyset$.

Cortes

Sejam G um grafo e $S\subseteq V(G)$. Denotamos por $\partial(S)$ o conjunto das arestas de G com um extremo em S e outro em V(G)-S. Note que $\partial(\emptyset)=\partial(V(G)=\emptyset$.

Quando S consiste de um único vértice v, dizemos que o corte é trivial e denotamos $\partial(v)$ em vez de $\partial(\{v\})$.

Grafos conexos e desconexos

Um grafo G é desconexo se existe $\emptyset \neq S \subset V(G)$ tal que $\partial(S) = \emptyset$.

Grafos conexos e desconexos

Um grafo G é desconexo se existe $\emptyset \neq S \subset V(G)$ tal que $\partial(S) = \emptyset$.

Grafos conexos e desconexos

Um grafo G é desconexo se existe $\emptyset \neq S \subset V(G)$ tal que $\partial(S) = \emptyset$.

Um grafo é conexo se não é desconexo. Depois veremos uma definição alternativa de conexidade.

Seja G um grafo.

Seja $\emptyset \neq S \subset V(G)$. É verdade que $\partial(S) = \partial(V(G) - S)$?

Seja G um grafo.

Seja $\emptyset \neq S \subset V(G)$. É verdade que $\partial(S) = \partial(V(G) - S)$? SIM.

Seja G um grafo.

Seja
$$\emptyset \neq S \subset V(G)$$
. É verdade que $\partial(S) = \partial(V(G) - S)$? SIM.

Se G é bipartido, então existe $S \subseteq V(G)$ tal que $\partial(S) = E(G)$?

Seja G um grafo.

Seja
$$\emptyset \neq S \subset V(G)$$
. É verdade que $\partial(S) = \partial(V(G) - S)$? SIM.

Se G é bipartido, então existe $S \subseteq V(G)$ tal que $\partial(S) = E(G)$? SIM.

Seja G um grafo.

Seja $\emptyset \neq S \subset V(G)$. É verdade que $\partial(S) = \partial(V(G) - S)$? SIM.

Se G é bipartido, então existe $S\subseteq V(G)$ tal que $\partial(S)=E(G)$? SIM.

Se existe $S \subseteq V(G)$ tal que $\partial(S) = E(G)$, então G é bipartido?

Seja G um grafo.

Seja $\emptyset \neq S \subset V(G)$. É verdade que $\partial(S) = \partial(V(G) - S)$? SIM.

Se G é bipartido, então existe $S \subseteq V(G)$ tal que $\partial(S) = E(G)$? SIM.

Se existe $S \subseteq V(G)$ tal que $\partial(S) = E(G)$, então G é bipartido? SIM.

A união de dois grafos G e H, denotada por $G \cup H$, é o grafo com conjunto de vértices $V(G) \cup V(H)$ e conjunto de arestas $E(G) \cup E(H)$.

A união de dois grafos G e H, denotada por $G \cup H$, é o grafo com conjunto de vértices $V(G) \cup V(H)$ e conjunto de arestas $E(G) \cup E(H)$.

A interseção de dois grafos G e H, denotada por $G \cap H$, é o grafo com conjunto de vértices $V(G) \cap V(H)$ e conjunto de arestas $E(G) \cap E(H)$.

A união de dois grafos G e H, denotada por $G \cup H$, é o grafo com conjunto de vértices $V(G) \cup V(H)$ e conjunto de arestas $E(G) \cup E(H)$.

A interseção de dois grafos G e H, denotada por $G \cap H$, é o grafo com conjunto de vértices $V(G) \cap V(H)$ e conjunto de arestas $E(G) \cap E(H)$.

Seja $\mathcal C$ uma coleção de conjuntos. O grafo interseção de $\mathcal C$ é o grafo com conjunto de vértices $\mathcal C$ tal que dois vértices (conjuntos) X e Y de $\mathcal C$ são adjacentes se $X\cap Y\neq \emptyset$.

Seja $\mathcal C$ uma coleção de conjuntos. O grafo interseção de $\mathcal C$ é o grafo com conjunto de vértices $\mathcal C$ tal que dois vértices (conjuntos) X e Y de $\mathcal C$ são adjacentes se $X\cap Y\neq \emptyset$.

Eis um exemplo famoso.

Seja $\mathcal C$ uma coleção de intervalos fechados da reta real. O grafo-interseção de $\mathcal C$ é chamado grafo intervalo de $\mathcal C$.

Seja $\mathcal C$ uma coleção de conjuntos. O grafo interseção de $\mathcal C$ é o grafo com conjunto de vértices $\mathcal C$ tal que dois vértices (conjuntos) X e Y de $\mathcal C$ são adjacentes se $X\cap Y\neq \emptyset$.

Eis um exemplo famoso.

Seja $\mathcal C$ uma coleção de intervalos fechados da reta real. O grafo-interseção de $\mathcal C$ é chamado grafo intervalo de $\mathcal C$.

Podemos combinar construções para obter novos grafos. Por exemplo, o **complemento** do grafo interseção de $\mathcal C$ é o grafo com conjunto de vértices $\mathcal C$ tal que dois vértices (conjuntos) X e Y são adjacentes se $X \cap Y = \emptyset$.

Podemos combinar construções para obter novos grafos. Por exemplo, o **complemento** do grafo interseção de $\mathcal C$ é o grafo com conjunto de vértices $\mathcal C$ tal que dois vértices (conjuntos) X e Y são adjacentes se $X \cap Y = \emptyset$.

Exemplo. Seja $\mathcal C$ a coleção de todos 2-subconjuntos de um conjunto de tamanho cinco, digamos $\{1,2,3,4,5\}$. O complemento do grafo interseção de $\mathcal C$ é chamado grafo de Petersen.

Podemos combinar construções para obter novos grafos. Por exemplo, o **complemento** do grafo interseção de $\mathcal C$ é o grafo com conjunto de vértices $\mathcal C$ tal que dois vértices (conjuntos) X e Y são adjacentes se $X \cap Y = \emptyset$.

Exemplo. Seja $\mathcal C$ a coleção de todos 2-subconjuntos de um conjunto de tamanho cinco, digamos $\{1,2,3,4,5\}$. O complemento do grafo interseção de $\mathcal C$ é chamado grafo de Petersen.

Letras usuais em grafos

- grafos: G, F, H,
- vértices: *r*, *s*, *t*, *u*, *v*, *w*, *x*, *y*, *z*,
- arestas: e, f, a,
- inteiros: i, j, k, ℓ, r, s, t ,
- n (m): número de vértices (arestas) de um grafo,
- conjuntos: R, S, T, X, Y, U, V, Z (o importante é que sejam letras maiúsculas),
- P, Q, R, W para caminhos, C, Q, R para circuitos, W para passeios (walk), T para árvores (tree),
- \bullet letras gregas: $\psi, \delta, \alpha, \chi, \omega, \lambda, \kappa, \tau, \mu$ etc. (Google: latex greek letters)

É claro que você pode usar outras letras, mas se as indicadas acima estiverem disponíveis, recomendo usá-las.

Referências

Para a preparação destes slides foram usadas as seguintes referências. BM76 e West96 são livros-texto mais básicos. BM08 é um pouco mais avançado.

- BM76 Bondy, J. A. and Murty, U. S. R., *Graph Theory with Applications*, American Elsevier, New York, 1976.
- BM08 Bondy, J. A. and Murty, U. S. R., *Graph Theory*, Springer, 2008.
- West96 West, D. B., *Introduction to Graph Theory*, Prentice Hall,1996.