Introduction to Machine Learning

What is Machine Learning?

"Computers that learn without being explicitly programmed"
"Using algorithms to understand patterns in data"

Machine Learning in Data Science Echosystem....

Scripting, SQL Python, R Scala Data Pipelines Big Data/ Apache Spark

Data Science Projects Require multiple Skills

Machine Learning = Artificial Intelligence???

Data + Algorithms = Scored Al Models

Understanding AI, ML & DL Relationship...

Methodology to create Machine Learning Model

Introducing IBM Watson Machine Learning Accelerating Digital Deployments in Cloud...

Data Access:

- Easily connect to Behind-the-Firewall and Public Cloud Data
- Catalogued and Governed Controls through Watson Data Platform

Creating Models:

- Single UI and API for creating ML Models on various Runtimes
- Auto-Modelling and Hyperparameter Optimization

Web Service:

- Real-time,
 Streaming, and
 Batch Deployment
- Continuous
 Monitoring and
 Feedback Loop

Intelligent Apps:

- Integrate ML models with apps, websites, etc.
- Continuously Improve and Adapt with Self-Learning

IBM Watson Machine Learning in Data Science Experience

APIs for Jupyter Notebooks

Open Beta

■Data Scientist

Open

WML GUI - Train multiple models at same ting System tells you best model...

IBM Watson Machine Learning in Data Science Experience

Flows

Open Beta

Create Advanced Models without coding

Advanced Model Visualization: Easy to understand their performance

IBM Watson Machine Learning in Data Science Experience

Streaming Pipelines

Data centric view of methodology

Categories of Machine Learning

Supervised learning

- The program is "trained" on a pre-defined set of "training examples", which then facilitate its ability to reach an accurate conclusion when given new data
- The algorithm is presented with example inputs and their desired outputs (correct results)
- The goal is to learn a general rule that maps inputs to outputs

Unsupervised learning

- No labels are given to the learning algorithm, leaving it on its own to find structure (patterns and relationships) in its input
- Unsupervised learning can be a goal in itself (discovering hidden patterns in data) or a means towards an end (feature learning)

Categories of Machine Learning

	Discrete Output	Continuous Output
Supervised Learning (require Ground-Truth)	 Classification (outcome is discrete) Binary Classification Linear Models (Logistic Regression) Decision Trees Naïve Bayes Multi class Classification Decision Trees Naïve Bayes K-NN 	 Regression LinearRidgeLasso Decision Trees Random ForestGradient Boosted Trees
Unsupervised Learning (no Ground-Truth data required)	Clustering - k-meansFP-Growth	 Clustering k-meansGaussian Mixture Dimensionality Reduction PCASVD

Supervised vs. Unsupervised Learning

Supervised Learning

x_2 x_2 x_2 x_1

Unsupervised Learning

Modeling

Training, testing, & validation sets

Evaluation

- During the model development process, supervised learning techniques employ training and testing sets and sometimes a validation set.
 - Historical data with known outcome (target, class, response, or dependent variable)
 - Source data randomly split or sampled... mutually exclusive records

Why?

- Training set → build the model (iterative)
- Testing set → tune the parameters & variables during model building (iterative)
 - Assess model quality during training process
 - Avoid overfitting the model to the training set
- Validation set → estimate accuracy or error rate of model (once)
 - Assess model's expected performance when applied to new data

Machine Learning – A more formal definition

Tom Mitchell of Carnegie Mellon University provides a widely quoted, more formal definition of machine learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E"

Q & A

