

1. Sea la matriz
$$A = \begin{pmatrix} n^2 & 2 & 1 & 8 \\ 0 & n^{-2} & 0 & 3 \\ 0 & 0 & n & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. Mostrar que $\text{cond}_1(A) \ge n^4$ si $n \ge 4$. Concluir que $\text{cond}_1(A) \to +\infty$ cuando $n \to +\infty$.

Elementos de Cálculo Numérico - Cálculo Numérico Primer Cuatrimestre de 2020 Entrega n°5 - Resolución del ejercicio

1. Si bien $\operatorname{cond}_1(A) = ||A||_1 ||A^{-1}||_1$, antes de calcular la inversa de una matriz conviene recordar el resultado de la Práctica 4 (Ejercicio 6) que nos indica que

$$\operatorname{cond}_1(A) \ge \frac{\|A\|_1}{\|A - B\|_1},$$

para cualquier matriz B singular del tamaño correspondiente.

Tomemos, por ejemplo, $B = \begin{pmatrix} n^2 & 2 & 1 & 8 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & n & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. B es singular porque la segunda fila

es 3 veces la cuarta. (Notemos, además que cuando n es grande, la segunda fila de A es muy "parecida" a la de B.)

Por otro lado, $\|A\|_1 = \max\{n^2, 2+n^{-2}, n+1, 14\} = n^2$ si $n \ge 4$ (que es el caso que nos interesa). Por lo que

$$cond_1(A) \ge \frac{n^2}{n^{-2}} = n^4 \underset{n \to +\infty}{\longrightarrow} +\infty,$$

como queríamos probar.