Dimensionality Reduction: Principal Component Analysis

CSCI-P556 Applied Machine Learning Lecture 24

D.S. Williamson

Agenda and Learning Outcomes

Today's Topics

• Topics:

 Dimensionality Reduction using Principal Components Analysis (PCA)

Announcements:

- HW#4, Due?
- No HW #5
- Quiz #3 Next ?
- Project presentation schedule posted shortly

	Thursday, April 8	Gaussian Mixture Models	
13	Tuesday, April 13	Dimensionality Reduction	
	Thursday, April 15	Quiz#3 and/or Reinforcement Learning (?)	
14	Tuesday, April 20	Quiz#3 or Review or No Class (?)	
	Thursday, April 22	No Class	Wellness Day
15	Tuesday, April 27	Project Presentations I	
	Thursday, April 29	Project Presentations II	

MNIST Example

Handwritten Digits

- Each image has 28 x 28 = 784 dimensions (features/attributes)
- All the dimensions are not important (e.g. border pixels)
- Downsampling to 14 x 14 = 196 dimensions preserves information
 - Compute average of adjacent pixels along rows and columns
 - Can still tell that it's a zero

Why Dimension Reduction?

- High Dimensionality: Large number of features/ attributes
 - Documents represented by thousands of words
 - Images represented by hundreds (or thousands) of pixels
- Redundant and irrelevant features (not all words are relevant for classifying/clustering documents)
- **Difficult to interpret and visualize**. How do you visually compare samples that have more than 3 dimensions? Think housing data that had 10 dimensions.
- Curse of dimensionality

```
In [6]: housing.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20640 entries, 0 to 20639
        Data columns (total 10 columns):
                                 Non-Null Count Dtype
             Column
             longitude
                                  20640 non-null float64
                                  20640 non-null float64
             latitude
             housing_median_age
                                 20640 non-null
                                                  float64
             total_rooms
                                  20640 non-null float64
             total_bedrooms
                                  20433 non-null float64
             population
                                  20640 non-null float64
             households
                                 20640 non-null float64
             median_income
                                 20640 non-null
                                                  float64
             median_house_value 20640 non-null float64
             ocean_proximity
                                 20640 non-null object
        dtypes: float64(9), object(1)
        memory usage:
                                                                            400000
                                                                            300000
                                                                            200000
                             -124
                                     -122
                                             -120
                                                    -118
```

longitude

Curse of Dimensionality

Data comparison and amount of data becomes more challenging

• In theory, the <u>curse of dimensionality</u> describes the phenomenon where the <u>features space becomes increasingly sparse</u> as the number of dimensions increases.

Curse of Dimensionality

- In practice, the <u>curse of dimensionality</u> means that, for a given sample size, there is <u>a</u>
 maximum number of features above which the performance of our classifier will
 degrade rather than improve
 - In most cases, the additional information that is lost by discarding some features is (more than) compensated by a more accurate mapping in the lower dimensional space

Curse of Dimensionality

- How do we beat the curse of dimensionality?
 - By incorporating prior knowledge (e.g., expert opinion)
 - By providing increasing smoothness of the target function
 - By reducing the dimensionality

Unsupervised Dimensionality Reduction

- Consider a collection of data points in a high-dimensional feature space (e.g., 500-d)
 - Try to find a more compact data representation
 - Create new features defined as functions over all of the original features

Why?

- Visualization: need to display low-dimensional version of a data set for visual inspection
- **Preprocessing**: learning algorithms (supervised and unsupervised) often work better with smaller numbers of features, both in terms of runtime and accuracy (why?)

Principal Component Analysis (PCA)

How to preserve information?

- Suppose we have two features, and we can only keep one:
 - For one of the features, most examples have similar value
 - For the other, most examples differ from each other
- Which one should we keep?
 - The second, because it retains information about the data items

Principal Component Analysis (PCA)

A Classic Dimensionality Reduction Technique

- It linearly projects n-dimensional data onto a k-dimensional space while preserving information (k < n)
 - e.g., project space of 10k words onto a 3d space
- Basic idea for PCA:
 - Find a linear projection that retains the most variance in data
 - i.e. the projection that retains most amount of information
 - Find a line such that when the data is projected onto that line, it has the maximum variance

First, what is a linear projection

- 1. A linear projection defines a new axis which is the result of rotating existing ones
- 2. It is often used with the operation of translation moving the origin of the coordination system.

Projection

Why Project?

- Training samples are not uniform across all dimensions (e.g. they bunch)
- Many features are nearly constant or highly correlated with others
- Hence, training examples are bunched in a lower-dimensional subspace, within the higher-dimensional space

Projection from 3D to 2D: A Visual Example

- Three-Dimensional data actually (mostly) lies within a 2-D subspace
- We can project every example down to the 2-D subspace
- Hence, dimensionality reduction

PCA Algorithm

The Most Popular Approach

- Create data matrix, X, with one row vector x_n per data point
- Compute and subtract mean $\mu_{\mathbf{X}}$ from each row vector \mathbf{x}_{n} in \mathbf{X}
- ullet Find eigenvectors and eigenvalues of X
- Principal Components (PCs) are the M eigenvectors with largest eigenvalues

Eigenvectors and Eigenvalues

- An <u>eigenvector</u> is a vector that is <u>scaled by a linear transformation</u>, but not moved
 - Think of it as an arrow whose magnitude is changed, but it direction is not changed
 - It may stretch (or shrink) as it is transformed, but it points in the same direction
- The scaling factor of an eigenvector is called its eigenvalue.
- Key idea: Transform in such a way that the first PC has as high variance as possible and successively find PCs with highest variance such that the orthogonal constraint is satisfied

2d Data: Finding Principal Components

Find vectors along data with highest variance

2d Data: Finding Principal Components

- Find vectors along data with highest variance
 - Vector, C1, is the axis with the largest amount of variance

2d Data: Finding Principal Components

- Find vectors along data with highest variance
 - Vector, C1, is the axis with the largest amount of variance.
 - Vector, C2, is another option, but its variance is smaller.
- Principal vectors are orthogonal

Computing Eigenvectors and Eigenvalues

- Singular Value Decomposition is one way to find Eigenvectors and Eigenvalues. It is a matrix factorization approach
 - E.g. Factor a given matrix as the product of multiple matrices
- For instance, a given matrix ${\bf S}$, can be factored into ${\bf U}{\bf \Sigma}{\bf V}^T$ (e.g. ${\bf S} pprox {\bf U}{\bf \Sigma}{\bf V}^T$)
 - The columns of ${\bf V}$ contain the Eigenvectors (e.g. principal components) that we are interested in
 - The scalars along the diagonal of Σ contain the Eigenvalues
 - U also has Eigenvectors, but we aren't interested in these.

$$\mathbf{V} = \begin{pmatrix} | & | & | \\ \mathbf{c_1} & \mathbf{c_2} & \cdots & \mathbf{c_n} \\ | & | & | \end{pmatrix}$$

SVD in Python

• The data must be centered around 0, before performing SVD

```
X_centered = X - X.mean(axis=0)
U, s, Vt = np.linalg.svd(X_centered)
c1 = Vt.T[:, 0]
c2 = Vt.T[:, 1]
```

PCA for Dimensionality Reduction

- After principal components (e.g. eigenvectors) have been identified, dimensionality reduction is accomplished as follows:
 - Assume the desired new dimension is d, where d < N (the original dimension)
 - Project original dataset onto the hyperplane using the first d principal components
 - Compute the matrix multiplication of the dataset and a Eigenvector matrix that only contains the first d columns, \mathbf{W}_d
 - $\mathbf{X}_{d-proj} = \mathbf{X}\mathbf{W}_d$

$$\mathbf{W}_d = \begin{bmatrix} \mathbf{l} & \mathbf{l} & \cdots & \mathbf{l} \\ \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_d \\ \mathbf{l} & \mathbf{l} & \cdots & \mathbf{l} \end{bmatrix}$$

PCA in Scikit-Learn. Do NOT need to center data first.

Example

$\mathbf{X}_{reduced} = (\mathbf{X} - \mu_{\mathbf{X}})\mathbf{W}_d$

1D Data after PCA, $X_{reduced}$

 $\mathbf{X}_{recovered} = \mathbf{X}_{reduced} \mathbf{W}_{d}^{T}$

Data Recovered Back

to 2D, $X_{recovered}$ 1.0

X 1

Original Data, X

PCA: Things to Consider

- PC is sensitive to noise. Direction of new PCs may change if training set is perturbed by noise.
- Number of dimensions, d
 - Choose value for d, so that a large portion of variance is maintained (see PCA in scikit-learn; set n_components to value between 0 and 1 desired explained variance ratio).
 - Or, reduce down to 2 or 3 dimensions for visualization
- Stochastic and Incremental versions of PCA exist. Hence, do not require the entire dataset at once. Computationally more efficient
- Kernel PCA for nonlinear projections.

Example: Face Recognition

PCA for Supervised Learning

- A typical image of size 256 x 128 is described by n = 256x128 = 32768 dimensions — each dimension described by a grayscale value
- Each face image lies somewhere in this high-dimensional space
- Images of faces are generally similar in overall configuration, thus
 - They should be randomly distributed in this space
 - We should be able to describe them in a much lower dimensional space

PCA for Face Images: Eigen-faces

- Database of 128 carefully-aligned faces.
- Here are the mean and the first 15 eigenvectors.
- Each eigenvector (32768-d vector) can be shown as an image — each element is a pixel on the image
- These images are face-like, thus called Eigen-faces

Face Recognition in Eigenface Space

Turk and Pentland 1991

- Nearest Neighbor classifier in the eigenface space
- Training set always contains 16 face images of 16 people, all taken under the same set of conditions of lighting, head orientation and image size

Accuracy:

- Variation in lighting: 96%
- Variation in orientation: 85%
- Variation in image size: 64%

Face Image Retrieval

- Left-top image is the query image
- Return 15 nearest neighbors in the eigenface space
- Able to find the same person despite:
 - Different expressions
 - Variations such as glasses

Next Class: