Machine Learning

Hernán Aguirre

Universidad San Franciso de Quito

Universidad de Shinshu, Japón

Contenido del Curso

- 1. Introducción
- 2. Aprendizaje estadístico
- 3. Regresión lineal
- 4. Clasificación
- 5. Métodos de remuestreo
- 6. Selección y regularización de modelos lineales
- 7. Más allá de la linealidad

- 8. Métodos basados en árboles
- 9. Máquinas de vectores de soporte
- 10. Aprendizaje profundo
- Análisis de supervivencia y datos censurados
- 12. Aprendizaje sin supervisión
- 13. Pruebas múltiples

5 Métodos de Remuestreo

- 1. Validación Cruzada
- 2. Bootstrap (Arranque?)
- 3. Laboratorio: Validación Cruzada y Bootstrap
- 4. Ejercicios

Que Implican?

- Extraer repetidamente muestras de un conjunto de entrenamiento y
- Reajustar un modelo de interés en cada muestra para obtener información adicional sobre el modelo ajustado
- Herramientas importantes en la aplicación práctica de muchos procedimientos de aprendizaje estadístico

Para que Sirven?

Validación cruzada

- Se usa para estimar el error de prueba asociado con un método de aprendizaje estadístico determinado
 - Evaluar su desempeño (evaluación de modelo) o
 - Seleccionar el nivel apropiado de flexibilidad (selección de modelo)

Bootstrap

 Comúnmente se usa para proporcionar una medida de precisión de una estimación de un parámetro o de un método de aprendizaje estadístico determinado

Validación Cruzada

- El Enfoque del Conjunto de Validación
- Validación Cruzada dejar-uno-fuera
- Validación Cruzada k-veces
- Canje sesgo-varianza de la Validación Cruzada k-veces
- Validación Cruzada en Problemas de Clasificación

El Problema

- La tasa de *error de entrenamiento* a menudo es bastante diferente de la tasa de *error de prueba*
- La tasa de error de entrenamiento puede subestimar drásticamente la tasa de error de prueba

El Enfoque del Conjunto de Validación

El método de validación se aplica una vez, i.e. una sola división de los datos en conjuntos de entrenamiento y validación El método de validación se repitió diez veces, cada vez con una división aleatoria diferente de los datos en conjuntos de entrenamiento y validación

Dos Posibles Inconvenientes

- La estimación de la tasa de error de prueba puede ser muy variable
 - Depende de qué observaciones se incluyen en el conjunto de entrenamiento y qué observaciones en el de validación
- Sólo se utiliza un subconjunto de observaciones para ajustar el modelo
 - Los métodos estadísticos tienden a funcionar peor cuando se entrenan con menos observaciones
 - → la tasa de error del conjunto de validación puede tender a sobreestimar la tasa de error de prueba para el ajuste del modelo en todo el conjunto de datos

Validación Cruzada dejar-uno-fuera (LOOCV)

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

= $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

- LOOCV es un método muy general y se puede utilizar con cualquier tipo de modelado predictivo
- Por ejemplo, podríamos usarlo con regresión logística o análisis discriminante lineal, o cualquiera de los métodos discutidos en capítulos posteriores

Ventajas de LOOCV

- 1. Tiene mucho menos sesgo
 - LOOCV ajusta repetidamente el método de aprendizaje con n-1 observaciones, casi todo el conjunto de datos
 - El enfoque del Conjunto de Validación el ajuste se hace con una fracción de las observaciones, usualmente n/2
 - LOOCV sobreestima menos la tasa de error de prueba
- 2. No hay aleatoriedad
 - El enfoque de Validación produce resultados diferentes cuando se aplica repetidamente: aleatoriedad en las divisiones del conjunto de entrenamiento/validación

Desventaja de LOOCV

- LOOCV tiene el potencial de ser costoso de implementar,
 ya que el modelo debe ajustarse n veces
- Esto puede llevar mucho tiempo si n es grande y si cada modelo individual tarda en ajustarse.

Validación Cruzada en Datos de Autos

Validación Cruzada k-veces (k-veces CV)

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

$$= \frac{1}{k} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_{ij})^2$$

- Alternativa a LOOCV
- Dividir aleatoriamente las n observaciones en k grupos, de aproximadamente el mismo tamaño n_i $(i=1,\cdots,k)$
- El primer grupo se trata como un conjunto de validación y el método se ajusta a los k-1 grupos restantes

LOOCV y k-veces CV

- LOOCV es un caso especial de k-veces CV, k = n
- En la práctica,
 - Se realiza k-veces CV usando k = 5 o k = 10
- ¿Cuál es la ventaja de usar k < n?
 - La ventaja más obvia es computacional
 - Otras ventajas que implican el equilibrio entre sesgo y varianza.

MSE de Prueba Verdadero y Estimados por CV Splin

Datos simulados Splines suavizadas

- MSE de prueba verdadero y estimado por LOOCV y 10-veces CV.
 Las cruces indican el mínimo de cada una de las curvas MSE
- Las curvas CV se acercan a identificar el nivel correcto de flexibilidad, correspondiente al MSE de prueba más pequeño

Canje Sesgo-Varianza k-veces Validación Cruzada

- Conjunto de Validación → sobreestimaciones del EP
 - \forall CE: n/2 observaciones
- LOOCV → estimaciones casi insesgadas del EP
 - \forall *CE* : n-1 observaciones
- k-veces CV, k = 5 o $10 \rightarrow nivel$ intermedio de sesgo

•
$$\forall$$
 CE: $\frac{n}{2} \ll \frac{(k-1)}{k}n < n-1$ observaciones

 Desde la perspectiva de la reducción del sesgo, se debe preferir LOOCV a k-veces CV

EP : error de prueba

CE : conjunto de entrenamiento

Canje Sesgo-Varianza k-veces Validación Cruzada

- LOOCV
 - promedia resultados de n modelos ajustados en conjuntos casi idénticos de observaciones → resultados altamente correlacionados (+) entre sí
- k-veces CV, k < n
 - promedia resultados de k modelos ajustados en conjuntos de entrenamiento menos superpuestos → resultados menos correlacionados entre sí
- La media de muchas cantidades altamente correlacionadas tiene una varianza mayor que la media de muchas cantidades que no están tan correlacionadas
- La estimación del EP resultante de LOOCV tiende a tener una varianza mayor que la estimación del EP resultante de k-veces CV

Resumen

- k-veces CV a menudo proporciona estimaciones más precisas del EP que LOOCV
- Existe un canje entre sesgo y varianza asociada con la elección de k en k-veces CV
- Por lo general, se realiza k-veces CV usando k=5 o 10
 - producen estimaciones del EP que no sufren ni un sesgo excesivamente alto ni una varianza muy alta

Validación Cruzada en Problemas de Clasificación

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} Err_i$$
$$= \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} Err_i$$

$$= \frac{1}{k} \sum_{i=1}^{k} \sum_{j=1}^{n_i} I(y_{ij} \neq \hat{y}_{ij})$$

error de prueba 0.133

$$log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Error de prueba 0.201

Degree=2

$$log\left(\frac{p}{1-p}\right) = \\ \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 \\ + \beta_3 x_2 + \beta_4 x_2^2$$

Error de prueba 0.160

Degree=3

Degree=4

Error de prueba 0.162

$$log\left(\frac{p}{1-p}\right) =$$

$$\beta_0$$

$$+\beta_1 x_1 + \dots + \beta_4 x_1^4$$

$$+\beta_5 x_2 + \dots + \beta_8 x_2^4$$

Validación Cruzada para Seleccionar Modelos

Regresión logística utilizando funciones polinómicas de los predictores

El clasificador KNN con diferentes valores del número de vecinos K

Error de prueba, error de entrenamiento y error 10-veces CV

Bootstrap

- Se usa para cuantificar la incertidumbre asociada con un determinado estimador o método de aprendizaje estadístico
 - Ejemplo, estimar los errores estándar de los coeficientes a partir de un ajuste de regresión lineal

Ejemplo

- Deseamos invertir una suma fija de dinero en dos activos financieros que producen rendimientos de X e Y, dos cantidades aleatorias
- Invertimos una fracción α del dinero en X y el resto $1-\alpha$ en Y
- Existe una variabilidad asociada con los rendimientos de estos dos activos. Por lo tanto, deseamos elegir α para minimizar el riesgo total, o varianza, de la inversión.
 - Minimizar $Var(\alpha X + (1 \alpha)Y)$.

Minimizar Riesgo

 Se puede demostrar que el valor que minimiza el riesgo está dado por

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

- $\sigma_X^2 = Var(X)$, $\sigma_Y^2 = Var(Y)$ y $\sigma_{XY} = Cov(X, Y)$
- Varianzas y covarianzas de los datos son desconocidas
 - → Hay que estimarlas

Estimando α con Datos Simulados

A partir de los datos de X e Y se estiman $\sigma_X^2, \sigma_Y^2, \sigma_{XY}^2$, y de ellos se estima α

Para cuantificar la precisión de la estimación de α , repetimos 1000 veces el proceso de simular 100 observaciones pareadas de X e Y y estimar α

$$\sigma_X^2 = 1$$
, $\sigma_Y^2 = 1.25$, $\sigma_{XY} = 0.5$, $\alpha = 0.6$

Cada panel muestra 100 rendimientos simulados para las inversiones X e Y

Valores Estimados

Método Bootstrap

- Se obteniene conjuntos de datos distintos muestreando repetidamente del conjunto de datos original
 - En lugar de obtener repetidamente conjuntos de datos independientes de la población

Lab: Validación Cruzada y Bootstrap

- El enfoque del Conjunto de Validación
- Validación Cruzada
- Bootstrap (El arranque?)

Ejercicios