TUTORIAL PARA APLICAÇÃO DO MÉTODO PARA IDENTIFICAÇÃO DAS ÁREAS MAIS INTEGRADAS ENTRE A MICROMOBILIDADE E O TRANSPORTE PÚBLICO COLETIVO

A seguir está a apresentação das etapas para aplicar o método proposto na identificação das áreas mais integradas entre a micromobilidade e o transporte público coletivo.

1ª Etapa: Definição do Critérios

No estudo, foram definidos 6 critérios para avaliar a integração entre a micromobilidade e o transporte público coletivo, que são:

- Proximidade com as estações de bicicletas compartilhadas;
- 2. Proximidade com os bicicletários;
- 3. Proximidade com ciclovias e ciclofaixas:
- **4.** Proximidade com as estações e terminais dos diversos meios de transporte público coletivo;
- Proximidade com as paradas dos ônibus;
- 6. Proximidade com as áreas verdes (parques e praças).

2ª Etapa: Determinação do Grau de Prioridade entre os Critérios

Com base em análises e literatura, foram definidos os critérios (apresentados anteriormente) e estabelecidos os graus de prioridade de cada um, ou seja, a ordem de impacto da existência desses critérios para garantir a integração entre os meios de transporte. Essa ordem de prioridade é apresentada a seguir:

- Estações de Bicicletas Compartilhadas;
- Estações e Terminais do Transporte Público Coletivo;
- 3. Bicicletários e Paraciclos:
- 4. Paradas do Transporte Público Coletivo;
- 5. Ciclovias e Ciclofaixas:
- 6. Áreas Verdes.

3ª Etapa: Determinação dos pesos dos critérios:

Com os critérios definidos e a ordem de importância determinada, procedemos à obtenção dos pesos, conforme exemplificado a seguir.

Utilizando o site "AHP Online System", disponível no link= https://bpmsg.com/ahp/.

Acessar a ferramenta = AHP Priority Calculator

AHP Online System - AHP-OS
Language: English Deutsch Español Português Türkçe
Donation (please "Send", not "Request"): paypal.me/ahpDonation
Multi-criteria Decision Making Using the Analytic Hierarchy Process
This free web based AHP solution is a supporting tool for decision making processes. The programs can be helpful in your daily work for simple decision problems and also support complex decision making problems. Participate in a group session and try a <u>practical example</u> . Download the <u>quick reference guide</u> or the <u>AHP-OS manual</u> . For full functionality you need to login. Please <u>register</u> as new user, if you don't have an account yet. It's all free!
1. Mv AHP Proierts 2. AHP Priority Calculator 3. AHP Hierarchies 4. AHP Group Session 5. Group Consensus Cluster Analysis (experimental)
For programs 2 and 3 you can export the results as csv files (comma separated values) for further processing in excel.

Definição do número de critérios conforme determinado anteriormente e clicar em "Go".

AHP Criteria	
Select number and names of criteria, then start pairwise comparisons to calculate priorities using the Analytic Hierarchy Process.	
Select number of criteria. Input number and names (2 - 20) 6 Go OK	

Digitar os critérios na ordem, do mais importante para o menos importante, e clique em "OK".

AHP Criteria Names

Definir os pesos para cada par de critérios, onde o critério selecionado será sempre o principal (o mais importante em relação ao não selecionado), e clique em "Calcular" ou "Calculate".

Ao calcular, logo abaixo da tabela será apresentado o valor da Razão de Consistência (RC), e se estiver dentro dos padrões, abaixo de 10%, será sinalizado como "OK".

Após o cálculo, os dados podem ser baixados no formato CSV, permitindo obter os pesos a serem considerados posteriormente para o cálculo multicritério no QGIS.

A tabela gerada pela ferramenta em formato CSV contém os pesos finais a serem utilizados posteriormente para o cálculo multicritério no QGIS. Os pesos finais estão indicados na penúltima linha.

AHP priorities	2024.03.19 11:49	:29				
6						
Estações de Bicicletas Compartilhad as	Bicicletários e Paraciclos	Estações e Terminais do Transporte Público	Paradas do Transporte Público	Ciclovias e Ciclofaixas	Áreas Verdes	Critérios
1.000.000	1.000.000	1.000.000	3.000.000	3.000.000	4.000.000	
1.000.000	1.000.000	1.000.000	3.000.000	3.000.000	4.000.000	
1.000.000	1.000.000	1.000.000	3.000.000	2.000.000	4.000.000	
0.333333	0.333333	0.333333	1.000.000	2.000.000	5.000.000	
0.333333	0.333333	0.500000	0.500000	1.000.000	4.000.000	
0.250000	0.250000	0.250000	0.300000	0.250000	1 000 000	
0.249772	0.249772	0.234226	0.124271	0.098119	0.043839	Pesos a serem utilizados
6.310.982	0.049613	RC				

4ª Etapa: QGIS

No QGIS, é importante revisar todos os dados vetoriais e garantir que estejam no mesmo Sistema de Referência de Coordenadas (SRC) para a utilização do modelo e que estejam em coordenadas planas. Exemplos comuns incluem SIRGAS 2000 UTM 24S (Porto Alegre) e SIRGAS 2000 UTM 13N (Guadalajara). Certifique-se de que todos os dados estejam devidamente alinhados para uma análise precisa e consistente.

Após isso, insira o arquivo disponibilizado "Modelo Áreas Integradas" (Apêndice 32). Vá para a Caixa de Ferramentas de Processamento e clique em "Adicionar Modelo à Caixa de Ferramentas". Selecione o arquivo disponibilizado. O modelo aparecerá na Caixa de Ferramentas em "Modelos de Projeto" como "Áreas Integradas". Também é disponibilizado o *script* em Python do modelo criado (Apêndice 33).

Esse modelo automatiza a criação dos *rasters* para serem utilizados posteriormente na última etapa, que é a criação do mapa com as áreas integradas.

No Modelo Áreas Integradas

Adicionar as camadas vetorias conforme existentes para as cidades.

As camadas obrigatórias são:

- Bicicletas Compartilhadas
- Bicicletarios e Paraciclos
- Ciclovias e Ciclofaixas
- Paradas

As camadas opcionais são:

- Áreas Verdes
- Estações e Terminais (existem até 10 campos para preenchimento, pois depende da quantidade de meios de transporte público disponíveis nas cidades)

No exemplo, será utilizada a cidade de Buenos Aires.

1ºSelecionar as camadas vetorias respectivas a cada camada (critério).

2º Após selecionar as camadas vetoriais, escolha os locais para salvar cada camada raster que será criada. Após definir, clique em Executar; assim, as camadas raster serão geradas.

O resultado serão as camadas em *raster* correspondentes a cada camada vetorial inserida.

Com as camadas *rasters* prontas, o próximo passo é realizar o cálculo desses *rasters*, atribuindo os pesos inicialmente determinados.

Para isso, ir em Raster – clicar em Calculadora Raster...

Na calculadora raster, inserir a expressão:

Banda raster*peso + banda raster*peso...

Até que todas as bandas raster existentes sejam inseridas, determinar o local e o nome do arquivo de saída e clicar em OK.

Este é o resultado final após a operação na calculadora raster, apresentando o mapa das áreas mais integradas entre a micromobilidade e o transporte público coletivo. As cores mais escuras indicam os locais com maior integração entre os meios de transporte estudados, respeitando o limite inicialmente proposto de 300 metros, na geração desses locais mais integrados.

Sugere-se a mudança na simbologia, alterando as cores para uma melhor visualização, conforme as configurações da imagem a seguir. Recomenda-se a utilização de Banda Simples Falsa-Cor e a aplicação de um gradiente de cores colorido, como exemplificado no gradiente vermelho, invertendo as cores para destacar os locais mais integrados com tonalidades mais escuras.

O resultado final, após a alteração da simbologia, é apresentado na imagem abaixo. Com isso, conclui-se o tutorial para aplicação do método proposto no estudo.

