DengAl - Predicting Disease Spread

CS4622 - Machine Learning

Group 16

Viraj Gamage (140173T)

Gathika Ratnayaka (140528M)

Thejan Rupasinghe (140536K)

Menuka Warushavithana (140650E)

Introduction

- Competition hosted by DrivenData [drivendata]
- Predicting dengue cases is helpful for health officials
 - To know disease outbreak times beforehand

Methodology

Preprocessing

- Data visualization
- Data cleaning
 - Handling missing values
 - Data integration
- Data normalization

Data Visualization

reanalysis_dew_point_tem	reanalysis_avg_temp_k	reanalysis_air_temp_k	precipitation_amt_mm	ndvi_sw	ndvi_se	ndvi_nw	ndvi_ne	
1446.000	1446.000000	1446.000000	1443.000000	1434.000000	1434.000000	1404.000000	1262.000000	count
295.246	299.225578	298.701852	45.760388	0.202305	0.203783	0.130553	0.142294	mean
1.527	1.261715	1.362420	43.715537	0.083903	0.073860	0.119999	0.140531	std
289.642	294.892857	294.635714	0.000000	-0.063457	-0.015533	-0.456100	-0.406250	min
294.1189	298.257143	297.658929	9.800000	0.144209	0.155087	0.049217	0.044950	25%
295.640	299.289286	298.646429	38.340000	0.189450	0.196050	0.121429	0.128817	50%
296.460	300.207143	299.833571	70.235000	0.246982	0.248846	0.216600	0.248483	75%
298.450	302.928571	302.200000	390.600000	0.546017	0.538314	0.454429	0.508357	max

Description of Features

Null Values a Percentage for each Feature

Data Modeling

- Correlation between features
- Feature selection
- Engineering new features

Feature-Feature Correlation for San Juan (left) and Iquitos (right)

Correlation between total_cases and other features for San Juan

Correlation between total_cases and other features for Iquitos

Total cases vs. Week of the year for San Juan

Total cases vs. Week of the year for **Iquitos**

Feature Selection

- For San Juan, 'week of the year' has the highest correlation with the total number of cases.
- It must be due to climatic changes that happens in relation to the period of the year (week number)
- We plotted graphs of climatic factors against the week number.
- A pattern existing between these climatic factors and total number of cases in relation to week number could be identified.

Dew Point Temp vs Week Number

Specific Humidity vs Week Number

Temperature vs Week Number

Engineering New Features

- reanalysis_dew_point_temp_k
- reanalysis_specific_humidity_g_per_kg
- reanalysis_precip_amt_kg_per_m2

Results and Analysis

Comparing Different Models

Model	MAE for San Juan	MAE for Iquitos
Linear Regression	26.987	6.539
Support Vector Regression (kernel='linear')	22.792	5.686
Support Vector Regression (kernel='rbf')	21.810	5.617
Gradient Boosting	19.491	5.726
K-Nearest Neighbour Regression	26.482	6.521
Random Forest regression	19.800	6.385

Comparison of Models Contd...

- Gradient Boosting model and Random Forests models show the best results for the data set of San Juan
- Gradient Boosting and Support Vector Regression Model with linear kernel and rbf (radial basis function) kernel outperforms all other models for the data set of Iquitos
- KNN regression model's score and linear regression model's score is around that of baseline model's
- Further processing with the selected models

Tuning Hyper-parameters with Grid Search

Using sklearn.model_selection.GridSearchCV

Model	MAE for San Juan
Gradient Boosting	16.101
Random Forests	16.728

Model	MAE for Iquitos
Gradient Boosting	5.623
SVR (kernel='linear')	4.872
SVR (kernel=rbf')	5.252

Conclusion

Conclusion

- Importance of Preprocessing
 - Filling missing values
- Feature Engineering
 - Using plotted graphs for features
 - Using the trend of a feature
- Model Selection
 - Decision Trees are the best model at all

Thank You!