# Вычислительная филогенетика Филогенетические деревья

С.А.Спирин

sspirin@hse.ru 11 сентября 2019

# Древо жизни



В наше время выяснять детали происхождения видов помогают последовательности ДНК и белков

### Гены и белки

Геном

3·10<sup>9</sup> букв у человека, ~ 10<sup>6</sup> букв у бактерий

Кодирующие — участки

<2% генома у человека,

~ 90% у бактерий

кодируют

Белки

~ 25 000 у человека, 600 – 6000 у бактерий

Генетический код

|      | T(U)    | С       | Α               | G        |
|------|---------|---------|-----------------|----------|
| T(U) | TTT Phe | TCT Ser | m v m m r r r r |          |
| 1(0) |         |         | TAT Tyr         | TGT Cys  |
|      | TTC Phe | TCC Ser | TAC Tyr         | TGC Cys  |
|      | TTA Leu | TCA Ser | TAA Stop        | TGA Stop |
|      | TTG Leu | TCG Ser | TAG Stop        | TGG Trp  |
| С    | CTT Leu | CCT Pro | CAT His         | CGT Arg  |
|      | CTC Leu | CCC Pro | CAC His         | CGC Arg  |
|      | CTA Leu | CCA Pro | CAA Gln         | CGA Arg  |
|      | CTG Leu | CCG Pro | CAG Gln         | CGG Arg  |
| Α    | ATT Ile | ACT Thr | AAT Asn         | AGT Ser  |
|      | ATC Ile | ACC Thr | AAC Asn         | AGC Ser  |
|      | ATA Ile | ACA Thr | AAA Lys         | AGA Arg  |
|      | ATG Met | ACG Thr | AAG Lys         | AGG Arg  |
| G    | GTT Val | GCT Ala | GAT Asp         | GGT Gly  |
|      | GTC Val | GCC Ala | GAC Asp         | GGC Gly  |
|      | GTA Val | GCA Ala | GAA Glu         | GGA Gly  |
|      | GTG Val | GCG Ala | GAG Glu         | GGG Gly  |

содержит

#### **Аминокислоты**

A Ala Alanine Аланин

R Arg Arginine Аргинин

N Asn Asparagine Аспарагин

D Asp Aspartic Acid Аспарагиновая кислота

C Cys Cysteine Цистеин

Q Gln Glutamine Глютамин

E Glu Glutamic Acid Глутаминовая кислота

G Gly Glycine Глицин

H His Histidine Гистидин

I Ile Isoleucine Изолейцин

L Leu Leucine Лейцин

K Lys Lysine Лизин

M Met Methionine Метионин

F Phe Phenylalanine Фенилаланин

P Pro Proline Пролин

S Ser Serine Серин

T Thr Threonine Треонин

W Trp Thryptophan Триптофан

Y Tyr Tyrosine Тирозин

V Val Valine Валин

"Stop" в таблице кода означает

стоп-кодон - сигнал окончания трансляции.

## Мутации

gatcaacactacttgacttcaa**g**acttaccataaagaaaac

точечная замена

gatcaacactacttgacttcaa**a**acttaccataaagaaaac

gatcaacactacttgacttcaa**ga**cttaccataaagaaaac



делеция

gatcaacactacttgacttcaacttaccataaagaaaac

gatcaacactacttgacttcaagacttaccataaagaaaac



инсерция (вставка)

### Мутации (точечные замены) в гене

```
AATCCGTCAAGTCTA...
                                  Leu
       Asn
                    Ser
                            Ser
              Pro
1) "молчащая" (синонимическая) мутация
      AATCCGTCGAGTCTA...
                     Ser
                            Ser
                                  Leu
       Asn
               Pro
2) замена остатка на близкий по свойствам
      AATCCG<mark>A</mark>CAAGTCTA
               Pro
                     Thr
                            Ser
        Asn
                                  Leu
3) замена остатка на остаток с иными свойствами
      AAT,CCG,TCA,AG<mark>A</mark>,CTA
       Asn
               Pro
                     Ser
                            Arg
                                  Leu
```

## Эволюция белков

Мутации возникают случайно.

#### Конкретная мутация может быть:

- · летальной;
- вредной;
- · слабовредной;
- нейтральной;
- · полезной.

# Мутация порождает полиморфизм данного белка в популяции.

Доля каждого варианта подвержена случайным изменением (модель: «случайное блуждание с поглощением»). За исторически короткое время один из вариантов (старый или новый) исчезает. Во втором случае говорят, что мутация закрепилась.

#### Мы видим лишь закрепившиеся мутации

#### А шанс закрепиться есть лишь у безвредных мутаций...

| CYB5_CHICK | 1   | MVGSSEAGGEAWRGRYYRLEEVQKHNNSQSTWIIVHHRIYDITKFLDEHP .:       .:        | 50  |
|------------|-----|-----------------------------------------------------------------------|-----|
| CYB5_HUMAN | 1   | MAEQSDEAVKYYTLEEIQKHNHSKSTWLILHHKVYDLTKFLEEHP                         | 45  |
| CYB5_CHICK | 51  | GGEEVLREQAGGDATENFEDVGHSTDARALSETFIIGELHPDDRPKLQKP                    | 100 |
| CYB5_HUMAN | 46  | GGEEVLREQAGGDATENFEDVGHSTDAREMSKTFIIGELHPDDRPKLNKP                    | 95  |
| CYB5_CHICK | 101 | AETLITTVQSNSSSWSNWVIPAIAAIIVALMYRSYMSE- 138 .     :. :  . :      : :. |     |
| CYB5 HUMAN | 96  | PETLITTIDSSSSWWTNWVIPAISAVAVALMYRLYMAED 134                           |     |

# История белка

Приближённая картина: один белок – это конкретный белок в конкретный момент времени у конкретного вида живых организмов.

Можно (теоретически) проследить историю данного белка во времени. С течением времени последовательность белка меняется. Это и называется **эволюцией** белка.

# При разделении вида на два все белки этих видов начинают эволюционировать независимо

Кроме того, нередко случается дупликация гена в геноме; после дупликации соответствующие белки также эволюционируют независимо



### Эволюция видов и эволюция белков

Когда виды разделяются, то разделяются пути эволюции всех их белков...

В результате большинству белков одного вида соответствует **ортолог** в другом виде.

#### Ho:

- 1) Бывают дупликации белков без разделения видов: два родственных белка существуют в одном геноме и эволюционируют (почти) независимо такие белки называются паралогами
- 2) Бывают потери генов. Если в двух видах потерялись по одному белку из пары паралогов, то получается, что общий предок белков, которые выглядят как ортологи, «жил» существенно раньше, чем общий предок видов.
- 3) Бывают горизонтальные переносы генов.
- 4) Бывает, что два белка объединяются в один многодоменный, и наоборот.

  Поэтому правильнее говорить об эволюции белковых доменов.

# Дерево видов и дерево белков



## Путь эволюции



## Филогенетическое дерево



Слева — угловой вид, любая точка — последовательность, линии расходятся там, где разошлись пути эволюции.

Справа — прямоугольный вид, моментам расхождения отвечают не точки, а целые вертикальные линии.

# «Молекулярные часы»: всегда идут, но иногда неточно



Когда хотят отразить разное число мутаций, произошедших на пути от общего предка, рисуют что-нибудь подобное.

### Филогенетическое дерево (терминология)

- <u>Узел (node)</u> точка разделения предковой последовательности. Соответствует внутренней вершине графа, изображающего эволюцию.
- · <u>Лист (leaf)</u> реальный (современный) объект; внешняя вершина графа.
- · Ветвь (branch) связь между узлами или между узлом и листом; ребро графа.
- · **Корень (root)** гипотетический общий предок всех рассматриваемых объектов.
- · <u>Кла́да</u> (clade) группа всех потомков некоторого ранее существовавшего объекта.



# Длины ветвей дерева

Каждая точка дерева — некоторая последовательность, существовавшая в некоторый момент времени (в прошлом, если эта точка — не лист).

#### Длины ветвей могут иметь двоякий смысл:

- 1) интервал времени между моментами существования двух последовательностей;
- 2) число мутаций, случившихся на пути от одной последовательности до другой.

# Небинарное дерево



Часто вместо «небинарное» (non-binary) говорят «неразрешённое» (not resolved) дерево: некоторые узлы не разрешены до бинарных узлов.

# Небинарное дерево следует понимать как множество возможных «разрешений»



# Неукоренённое дерево



# Неукоренённое дерево следует понимать как множество возможных укоренений



# Длины ветвей и расстояния по дереву между листьями



D(MOUSE, CAEEL) = 6+31+92 = 129

# Длины ветвей и расстояния по дереву между листьями



D(MOUSE, CAEEL) = 6+31+92 = 129

Дерево с заданными длинами ветвей порождает метрическое пространство, элементами которого являются листья

### Ультраметрические деревья

Дерево называется ультраметрическим, если на нём есть точка, расстояния от которой до всех листьев одинаковы.

В этом случае множество листьев является ультраметрическим пространством: для любых трёх листьев a,b,c верно  $d(a,b) \le \max (d(a,c),d(b,c))$ .

Если все листья представляют **современные** последовательности, а длины ветвей имеют смысл **времени**, то дерево ультраметрическое.

## Молекулярные часы

Гипотеза молекулярных часов: за одинаковое время происходит в среднем одинаковое число мутаций

Если гипотеза верна, то можно оценивать эволюционное время между современными последовательностями и на основании этих оценок строить укоренённое ультраметрическое дерево.

Но гипотеза МЧ часто не выполняется.

# Расстояние как число мутаций

Расстояние между последовательностями ультраметрично, если его понимать как эволюционное время...

Но если неверно предположение о «молекулярных часах», то удобнее понимать расстояние как числа произошедших мутаций. Такое расстояние не обязательно ультраметрично.

Для расстояний по дереву выполняется свойство, названное **«аддитивность»:** для любых четырёх листьев A,B,C,D из трёх сумм 1) d(A,B) + d(C,D) 2) d(A,C) + d(B,D) 3) d(A,D) + d(B,C) две равны между собой и больше третьей.



### Топология дерева



#### Топология дерева

Каждая ветвь разбивает множество листьев на два.

В каждом дереве есть **тривиальные** ветви (отделяющие один лист от всех остальных), они не зависят от топологии.

Топологию (неукоренённого) дерева можно однозначно записать набором нетривиальных разбиений. Например:

{HUMAN, MOUSE} vs {CAEEL, PROWI, MARPO, BRANA, VICFA} {HUMAN, MOUSE, CAEEL} vs {PROWI, MARPO, BRANA, VICFA} {HUMAN, MOUSE, CAEEL, PROWI} vs {MARPO, BRANA, VICFA} {HUMAN, MOUSE, CAEEL, PROWI, MARPO} vs {BRANA, VICFA}



| HUMAN | MOUSE | CAEEL | VICFA | BRANA | MARPO | PROWI |
|-------|-------|-------|-------|-------|-------|-------|
| +     | +     | -     | -     | -     | -     | -     |
| +     | +     | +     | _     | -     | _     | -     |
| +     | +     | +     | _     | -     | _     | +     |
| +     | +     | +     | _     | _     | +     | +     |

Представление топологии дерева разбиениями позволяет отождествлять ветви разных деревьев с одним и тем же множеством листьев.

В частности, если имеются две реконструкции эволюции по одним и тем же данным, то можно сказать, в каких ветвях они согласуются, а в каких – расходятся.



### Скобочная формула (формат Newick)



#### **Newick Standard:**

((((VICFA:3, BRANA:3):3, MARPO:6):2, PROWI:8):7, ((MOUSE:3, HUMAN:3):3, CAEEL:6):15);

«The reason for the name is that the second and final session of the committee met at Newick's restaurant in

Dover, and we enjoyed the meal of lobsters.»

#### Программы работы с деревьями

MEGA

http://www.megasoftware.com/ Визуализация и построение деревьев (оконный интерфейс)

Пакет PHYLIP

http://evolution.genetics.washington.edu/phylip.html Построение и визуализация деревьев (интерактивный интерфейс с запуском из командной строки).

FigTree

http://tree.bio.ed.ac.uk/software/figtree/Визуализация деревьев

iTol

https://itol.embl.de/

Визуализация деревьев online