

Politecnico di Milano Fisica Sperimentale I

a.a. 2014-2015 - Scuola di Ingegneria Industriale e Informatica

III Appello - 01/09/2015

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

- 1. In un pendolo conico, ad un filo di lunghezza L=1 m è fissata una pallina di massa m=0.05 kg. Il filo forma un angolo $\phi = 45^{\circ}$ con la verticale e la pallina ruota con una velocità angolare ω . Calcolare:
 - a. la tensione T del filo;
 - la velocità angolare della pallina; b.
 - il lavoro speso per portare la pallina in tale configurazione partendo da ferma con $\phi = 0^{\circ}$. Si supponga ora che il filo venga tagliato.
 - Si determini il moto descritto dalla pallina, esplicitando la corrispondente equazione della traiettoria.

[
$$T = 0.69 \text{ N}$$
; $\omega = 3.71 \text{ rad/s}$; $W = 0.31 \text{ J}$; $y(x) = L(1 - \cos \phi) - 0.5 \text{ g } x^2 / v^2_{0x}$]

c. la velocità angolare ω del cilindro alla fine dell'intervallo di tempo Δt .

Si supponga ora che tra il cilindro e l'asta attorno cui esso ruota sia presente attrito, modellizzato da una coppia di forze, di momento costante e modulo Λ = 5 Nm, agente sul disco.

d. Si determini dopo quanto tempo Δt^* la massa trovata al punto b percorre il tratto h.

[
$$m$$
=4.47 kg; T = 38.8 N; ω =5.55 rad/s; $\Delta t^* = \sqrt{\frac{2h(m + \frac{M}{2})}{(mg - \Lambda/r)}} = 3.3$ s]

il momento angolare del razzo (modulo, direzione, verso) calcolato rispetto al centro della Terra; [4.00 · 10¹³ kg m²/s]

D

A

 V_0

- il tipo di orbita che verrà percorsa dal razzo; [ellittica]
- c. l'eventuale punto di massimo allontanamento dal pianeta. [r_a = 3.55 10^7 m]

$$[\gamma = 6.67 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2; R_T = 6.37 \cdot 10^6 \text{ m}; M_T = 5.97 \cdot 10^{24} \text{ kg}]$$

- B \rightarrow C: compressione adiabatica sino alla pressione 1.2p₀;
- $C \rightarrow D$: compressione isobara fino al volume V_0 ;
- D→A: trasformazione isocora;

Calcolare:

- il calore scambiato ed il lavoro prodotto in ogni trasformazione; a. $[Q_{AB}=L_{AB}=16 \text{ kJ}; Q_{BC}=0 \text{ J} L_{BC}=16.3 \text{ kJ}; L_{CD}=-9.1 \text{ kJ} Q_{CD}=100 \text{ J}; L_{DA}=0 \text{ J} Q_{DA}=-7.2 \text{ kJ}]$
- l'efficienza del ciclo frigorifero; [η=1.71] b.
- la variazione di entropia di ogni trasformazione. $[\Delta S_{AB}=114.1 \text{ J/K}; \Delta S_{BC}=0 \text{ J/K}; \Delta S_{CD}=-27.5 \text{ J/K}; \Delta S_{DA}=-18.9 \text{ J/K}]$

 $3V_0$

