Previous Next Index

Matrices - overview

- Rectangular array of numbers written between square brackets
 - o 2D array
 - Named as capital letters (A,B,X,Y)
- Dimension of a matrix are [Rows x Columns]
 - Start at top left
 - o To bottom left
 - \circ To bottom right
 - $\circ\ R^{[r\ x\ c]}$ means a matrix which has r rows and c columns

$$A = \begin{bmatrix} 1402 & 191 \\ 1371 & 821 \\ 949 & 1437 \\ 147 & 1448 \end{bmatrix}$$

- Is a [4 x 2] matrix
- Matrix elements
 - $A_{(i,j)}$ = entry in i^{th} row and jth column

· Provides a way to organize, index and access a lot of data

Vectors - overview

- Is an n by 1 matrix
 - o Usually referred to as a lower case letter
 - o n rows
 - o 1 column
 - o e.g.

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

- Is a 4 dimensional vector
 - o Refer to this as a vector R4
- Vector elements
 - \circ $v_i = i^{th}$ element of the vector
 - o Vectors can be o-indexed (C++) or 1-indexed (MATLAB)
 - In math 1-indexed is most common
 - But in machine learning o-index is useful
 - Normally assume using 1-index vectors, but be aware sometimes these will (explicitly) be 0 index ones

Matrix manipulation

- Addition
 - Add up elements one at a time
 - o Can only add matrices of the same dimensions
 - Creates a new matrix of the same dimensions of the ones added

$ \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 0.5 \\ 2 & 5 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix} $	0.5 10 2
---	----------------

• Multiplication by scalar

- Scalar = real number
- o Multiply each element by the scalar
- o Generates a matrix of the same size as the original matrix

$$3 \times \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 3 & \emptyset \\ \zeta & 1 \zeta \\ 9 & 3 \end{bmatrix}$$

• Division by a scalar

- Same as multiplying a matrix by 1/4
- o Each element is divided by the scalar

• Combination of operands

Evaluate multiplications first

$$3 \times \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} / 3$$

• Matrix by vector multiplication

- o [3 x 2] matrix * [2 x 1] vector
 - New matrix is [3 x 1]
 - More generally if [a x b] * [b x c]
 - Then new matrix is [a x c]
 - How do you do it?
 - Take the two vector numbers and multiply them with the first row of the matrix
 - Then add results together this number is the first number in the new vector
 - The multiply second row by vector and add the results together
 - Then multiply final row by vector and add them together

- Detailed explanation
 - \circ A * x = y
 - A is m x n matrix
 - x is n x 1 matrix
 - n must match between vector and matrix
 - i.e. inner dimensions must match
 - Result is an m-dimensional vector

6/14 • Neat trick

- Say we have a data set with four values
- Say we also have a hypothesis $h_{\theta}(x) = -40 + 0.25x$
 - Create your data as a matrix which can be multiplied by a vector
 - Have the parameters in a vector which your matrix can be multiplied by
- o Means we can do
 - Prediction = Data Matrix * Parameters

- Here we add an extra column to the data with 1s this means our θ_0 values can be calculated and expressed
- The diagram above shows how this works
 - This can be far more efficient computationally than lots of for loops
 - o This is also easier and cleaner to code (assuming you have appropriate libraries to do matrix multiplication)

• Matrix-matrix multiplication

- o General idea
 - Step through the second matrix one column at a time
 - Multiply each column vector from second matrix by the entire first matrix, each time generating a vector
 - The final product is these vectors combined (not added or summed, but literally just put together)
- o Details
 - $A \times B = C$
 - $\bullet A = [m \times n]$
 - $B = [n \times o]$
 - $\mathbf{C} = [\mathbf{m} \times \mathbf{o}]$
 - With vector multiplications o = 1
 - Can only multiply matrix where columns in A match rows in B
- o Mechanism
 - Take column 1 of B, treat as a vector
 - Multiply A by that column generates an [m x 1] vector
 - Repeat for each column in B
 - There are o columns in B, so we get o columns in C
- Summary
 - The i^{th} column of matrix C is obtained by multiplying A with the i^{th} column of B
- Start with an example
- \circ AxB

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix}$$

- Initially
 - $\circ~$ Take matrix A and multiply by the first column vector from B
 - o Take the matrix A and multiply by the second column vector from B

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 11 \\ q \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 10 \\ 14 \end{bmatrix}$$

• 2 x 3 times 3 x 2 gives you a 2 x 2 matrix

Implementation/use

- House prices, but now we have three hypothesis and the same data set
- To apply all three hypothesis to all data we can do this efficiently using matrix-matrix multiplication
 - Have
 - Data matrix
 - Parameter matrix
 - o Example
 - Four houses, where we want to predict the prize
 - Three competing hypotheses
 - Because our hypothesis are one variable, to make the matrices match up we make our data (houses sizes) vector into a 4x2 matrix by adding an extra column of 1s

- · What does this mean
 - $\circ~$ Can quickly apply three hypotheses at once, making 12 predictions
 - Lots of good linear algebra libraries to do this kind of thing very efficiently

Matrix multiplication properties

- Can pack a lot into one operation
 - o However, should be careful of how you use those operations
 - Some interesting properties
- Commutativity
 - When working with raw numbers/scalars multiplication is commutative
 - **3** * 5 == 5 * 3
 - This is not true for matrix
 - $A \times B != B \times A$
 - Matrix multiplication is not commutative
- Associativity
 - \circ 3 x 5 x 2 == 3 x 10 = 15 x 2
 - Associative property
 - Matrix multiplications is associative
 - $A \times (B \times C) == (A \times B) \times C$
- Identity matrix
 - o 1 is the identity for any scalar
 - i.e. $1 \times z = z$

- $\circ~$ In matrices we have an identity matrix called I
 - Sometimes called *I*{n x n}

- · See some identity matrices above
 - o Different identity matrix for each set of dimensions
 - Has
 - 1s along the diagonals
 - os everywhere else
 - o 1x1 matrix is just "1"
- · Has the property that any matrix A which can be multiplied by an identity matrix gives you matrix A back
 - o So if A is [m x n] then
 - A * I
 - \blacksquare I = n x n
 - I * A
 - $\blacksquare I = m \times m$
 - (To make inside dimensions match to allow multiplication)
- · Identity matrix dimensions are implicit
- Remember that matrices are not commutative AB != BA
 - Except when B is the identity matrix
 - \circ Then AB == BA

<u>Inverse and transpose operations</u>

- Matrix inverse
 - How does the concept of "the inverse" relate to real numbers?
 - 1 = "identity element" (as mentioned above)
 - Each number has an inverse
 - This is the number you multiply a number by to get the identify element
 - i.e. if you have x, x * 1/x = 1
 - e.g. given the number 3
 - $3 * 3^{-1} = 1$ (the identity number/matrix)
 - In the space of real numbers not everything has an inverse
 - e.g. o does not have an inverse
 - o What is the inverse of a matrix
 - If A is an m x m matrix, then A inverse = A^{-1}
 - So $A^*A^{-1} = I$
 - Only matrices which are m x m have inverses
 - Square matrices only!
 - Example
 - 2 x 2 matrix

- How did you find the inverse
 - Turns out that you can sometimes do it by hand, although this is very hard
 - Numerical software for computing a matrices inverse
 - Lots of open source libraries
- $\circ~$ If A is all zeros then there is no inverse matrix
 - Some others don't, intuition should be matrices that don't have an inverse are a singular matrix or a degenerate matrix (i.e. when it's too close to o)
 - So if all the values of a matrix reach zero, this can be described as reaching singularity
- Matrix transpose
 - Have matrix A (which is [n x m]) how do you change it to become [m x n] while keeping the same values
 - i.e. swap rows and columns!
 - How you do it;
 - Take first row of A becomes 1st column of A^T
 - Second row of A becomes 2nd column...
 - A is an m x n matrix
 - B is a transpose of A
 - Then B is an n x m matrix

$$\bullet A_{(i,j)} = B_{(j,i)}$$

6/14

$$\underline{A} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix} \quad \underline{A}^T = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 9 \end{bmatrix}$$

6/14 04: Linear Regression with Multiple Variables

Previous Next Index

Linear regression with multiple features

New version of linear regression with multiple features

- Multiple variables = multiple features
- In original version we had
 - \circ X = house size, use this to predict
 - \circ y = house price
- If in a new scheme we have more variables (such as number of bedrooms, number floors, age of the home)
 - $\circ x_1, x_2, x_3, x_4$ are the four features
 - x₁ size (feet squared)
 - x₂ Number of bedrooms
 - x_3 Number of floors
 - x₄ Age of home (years)
 - y is the output variable (price)
- More notation
 - o n
- number of features (n = 4)
- o m
 - number of examples (i.e. number of rows in a table)
- $\circ \mathbf{x}^{i}$
- vector of the input for an example (so a vector of the four parameters for the ith input example)
- i is an index into the training set
- So
 - x is an n-dimensional feature vector
 - x^3 is, for example, the 3rd house, and contains the four features associated with that house
- 0 Xi
- The value of feature j in the ith training example
- So
 - x_2^3 is, for example, the number of bedrooms in the third house
- Now we have multiple features
 - What is the form of our hypothesis?
 - Previously our hypothesis took the form;
 - $\bullet \ h_{\theta}(x) = \theta_{0} + \theta_{1}x$
 - Here we have two parameters (theta 1 and theta 2) determined by our cost function
 - One variable x
 - Now we have multiple features
 - $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$
 - For example
 - $h_{\theta}(x) = 80 + 0.1x_1 + 0.01x_2 + 3x_3 2x_4$
 - An example of a hypothesis which is trying to predict the price of a house
 - Parameters are still determined through a cost function
 - For convenience of notation, $x_0 = 1$
 - For every example i you have an additional oth feature for each example
 - So now your **feature vector** is n + 1 dimensional feature vector indexed from 0
 - This is a column vector called x
 - Each example has a column vector associated with it
 - So let's say we have a new example called "X"
 - Parameters are also in a o indexed n+1 dimensional vector
 - This is also a column vector called θ
 - This vector is the same for each example
 - Considering this, hypothesis can be written
 - $\bullet \ h_{\theta}(x) = \theta_{0}x_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3} + \theta_{4}x_{4}$

- $h_{\theta}(x) = \theta^T X$
 - θ^T is an [1 x n+1] matrix
 - In other words, because θ is a column vector, the transposition operation transforms it into a row vector
 - So before
 - θ was a matrix $[n + 1 \times 1]$
 - Now
 - θ^T is a matrix [1 x n+1]
 - Which means the inner dimensions of θ^T and X match, so they can be multiplied together as
 - [1 x n+1] * [n+1 x 1]
 - $= h_{\theta}(x)$
 - So, in other words, the transpose of our parameter vector * an input example X gives you a predicted hypothesis which is [1 x 1] dimensions (i.e. a single value)
- This $x_0 = 1$ lets us write this like this
- o This is an example of multivariate linear regression

Gradient descent for multiple variables

- Fitting parameters for the hypothesis with gradient descent
 - \circ Parameters are θ_0 to θ_n
 - \circ Instead of thinking about this as n separate values, think about the parameters as a single vector (θ)
 - Where θ is n+1 dimensional
- Our cost function is

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Similarly, instead of thinking of J as a function of the n+1 numbers, J() is just a function of the parameter vector
 J(θ)

Repeat $\{$ • Gradient descent $\longrightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ $\}$ (simultaneously update for every $j=0,\dots,n$)

- Once again, this is
 - $\theta_i = \theta_i$ learning rate (a) times the partial derivative of J(θ) with respect to $\theta_{J(...)}$
 - We do this through a **simultaneous update** of every θ_i value
- Implementing this algorithm
 - \circ When n = 1

Repeat
$$\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right.$$

$$\left. \frac{\frac{\partial}{\partial \theta_0} J(\theta)}{\frac{\partial}{\partial \theta_0} J(\theta)} \right.$$
 $\left. \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)} \right.$ (simultaneously update θ_0, θ_1) $\left. \right\}$

- \circ Actually they're the same, except the end has a previously undefined $x_0^{(i)}$ as 1, so wasn't shown
- We now have an almost identical rule for multivariate gradient descent

New algorithm $(n \ge 1)$: Repeat $\Big\{ \sqrt{\frac{2}{a \otimes_j}} \mathcal{T}(\mathbf{S}) \Big\}$ $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \Big\}$ (simultaneously update θ_j for $j = 0, \dots, n$)

• What's going on here?

6/14

- \circ We're doing this for each j (o until n) as a simultaneous update (like when n = 1)
- \circ So, we re-set θ_i to
 - θ_i minus the learning rate (α) times the partial derivative of the θ vector with respect to θ_i
 - In non-calculus words, this means that we do
 - Learning rate
 - Times 1/m (makes the maths easier)
 - Times the sum of
 - The hypothesis taking in the variable vector, minus the actual value, times the j-th value in that variable vector for EACH example
- It's important to remember that

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} = \frac{2}{205} \text{T(b)}$$

• These algorithm are highly similar

Gradient Decent in practice: 1 Feature Scaling

- Having covered the theory, we now move on to learn about some of the practical tricks
- Feature scaling
 - If you have a problem with multiple features
 - You should make sure those features have a similar scale
 - Means gradient descent will converge more quickly
 - o e.g.
 - $x_1 = size (0 2000 feet)$
 - x2 = number of bedrooms (1-5)
 - Means the contours generated if we plot θ_1 vs. θ_2 give a very tall and thin shape due to the huge range difference
 - Running gradient descent on this kind of cost function can take a long time to find the global minimum

- So we need to rescale this input so it's more effective
- So, if you define each value from x1 and x2 by dividing by the max for each feature
- o Contours become more like circles (as scaled between 0 and 1)
- May want to get everything into -1 to +1 range (approximately)
 - o Want to avoid large ranges, small ranges or very different ranges from one another
 - Rule a thumb regarding acceptable ranges
 - -3 to +3 is generally fine any bigger bad
 - -1/3 to +1/3 is ok any smaller bad
- Can do mean normalization
 - o Take a feature xi
 - Replace it by (x_i mean)/max
 - So your values all have an average of about o

• Instead of max can also use standard deviation

Learning Rate α

- Focus on the learning rate (α)
- Topics
 - Update rule
 - Debugging
 - How to chose α

Make sure gradient descent is working

- Plot min $J(\theta)$ vs. no of iterations
 - \circ (i.e. plotting $J(\theta)$ over the course of gradient descent
- If gradient descent is working then $J(\theta)$ should decrease after every iteration
- Can also show if you're not making huge gains after a certain number
 - Can apply heuristics to reduce number of iterations if need be
 - If, for example, after 1000 iterations you reduce the parameters by nearly nothing you could chose to only run 1000 iterations in the future
 - Make sure you don't accidentally hard-code thresholds like this in and then forget about why they're their though!

- Number of iterations varies a lot
 - 30 iterations
 - 3000 iterations
 - **3000 000 iterations**
 - Very hard to tel in advance how many iterations will be needed
 - Can often make a guess based a plot like this after the first 100 or so iterations
- Automatic convergence tests
 - Check if $J(\theta)$ changes by a small threshold or less
 - Choosing this threshold is hard
 - So often easier to check for a straight line
 - Why? Because we're seeing the straightness in the context of the whole algorithm
 - Could you design an automatic checker which calculates a threshold based on the systems preceding progress?
- Checking its working
 - If you plot $J(\theta)$ vs iterations and see the value is increasing means you probably need a smaller α
 - Cause is because your minimizing a function which looks like this

o But you overshoot, so reduce learning rate so you actually reach the minimum (green line)

- So, use a smaller α
- Another problem might be if $J(\theta)$ looks like a series of waves
 - Here again, you need a smaller α
- However
 - If α is small enough, $J(\theta)$ will decrease on every iteration
 - \circ BUT, if α is too small then rate is too slow

- A less steep incline is indicative of a slow convergence, because we're decreasing by less on each iteration than a steeper slope
- Typically
 - Try a range of alpha values
 - Plot $J(\theta)$ vs number of iterations for each version of alpha
 - Go for roughly threefold increases
 - **0.001**, 0.003, 0.01, 0.03. 0.1, 0.3

Features and polynomial regression

- Choice of features and how you can get different learning algorithms by choosing appropriate features
- Polynomial regression for non-linear function
- Example
 - House price prediction
 - Two features
 - Frontage width of the plot of land along road (x₁)
 - Depth depth away from road (x₂)
 - o You don't have to use just two features
 - Can create new features
 - Might decide that an important feature is the land area
 - So, create a new feature = frontage * depth (x_2)
 - $\bullet h(x) = \theta_0 + \theta_1 x_3$
 - Area is a better indicator
 - o Often, by defining new features you may get a better model
- Polynomial regression
 - May fit the data better
 - $\theta_0 + \theta_1 x + \theta_2 x^2$ e.g. here we have a quadratic function
 - For housing data could use a quadratic function
 - But may not fit the data so well inflection point means housing prices decrease when size gets really big
 - So instead must use a cubic function

Polynomial regression

- How do we fit the model to this data
 - To map our old linear hypothesis and cost functions to these polynomial descriptions the easy thing to do
 is set
 - $\mathbf{x}_1 = \mathbf{x}$
 - $x_2 = x^2$
 - $x_3 = x^3$
 - By selecting the features like this and applying the linear regression algorithms you can do polynomial linear regression
 - Remember, feature scaling becomes even more important here
- Instead of a conventional polynomial you could do variable ^(1/something) i.e. square root, cubed root etc
- Lots of features later look at developing an algorithm to chose the best features

Normal equation

- For some linear regression problems the normal equation provides a better solution
- So far we've been using gradient descent
 - Iterative algorithm which takes steps to converse
- Normal equation solves θ analytically
 - Solve for the optimum value of theta
- Has some advantages and disadvantages

How does it work?

- Simplified cost function
 - o J(θ) = a θ ² + b θ + c
 - θ is just a real number, not a vector
 - Cost function is a quadratic function
 - How do you minimize this?
 - Do

- Take derivative of $J(\theta)$ with respect to θ
- Set that derivative equal to o
- Allows you to solve for the value of θ which minimizes $J(\theta)$
- In our more complex problems;
 - \circ Here θ is an n+1 dimensional vector of real numbers
 - Cost function is a function of the vector value
 - How do we minimize this function
 - Take the partial derivative of $J(\theta)$ with respect θ_i and set to 0 for every j
 - Do that and solve for θ_0 to θ_n
 - This would give the values of θ which minimize $J(\theta)$
 - o If you work through the calculus and the solution, the derivation is pretty complex
 - Not going to go through here
 - Instead, what do you need to know to implement this process

Example of normal equation

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

- Here
 - \circ m = 4
 - \circ n = 4
- To implement the normal equation
 - Take examples
 - Add an extra column (x₀ feature)
 - Construct a matrix (X the design matrix) which contains all the training data features in an [m x n+1] matrix
 - Do something similar for y
 - Construct a column vector y vector [m x 1] matrix
 - Using the following equation (X transpose * X) inverse times X transpose y

$$\theta = (X^T X)^{-1} X^T y$$

$$\left[\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
2104 & 1416 & 1534 & 852 \\
5 & 3 & 3 & 2 \\
1 & 2 & 2 & 1 \\
45 & 40 & 30 & 36
\end{bmatrix} X \begin{bmatrix}
1 & 2104 & 5 & 1 & 45 \\
1 & 1416 & 3 & 2 & 40 \\
1 & 1534 & 3 & 2 & 30 \\
1 & 852 & 2 & 1 & 36
\end{bmatrix} X \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
2104 & 1416 & 1534 & 852 \\
5 & 3 & 3 & 2 \\
1 & 2 & 2 & 1 \\
45 & 40 & 30 & 36
\end{bmatrix} X \begin{bmatrix}
460 \\
232 \\
315 \\
178
\end{bmatrix}$$

• If you compute this, you get the value of theta which minimize the cost function

General case

- Have m training examples and n features
 - The **design matrix** (X)
 - Each training example is a n+1 dimensional feature column vector
 - X is constructed by taking each training example, determining its transpose (i.e. column -> row) and using it for a row in the design A
 - This creates an [m x (n+1)] matrix

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{Mothan})$$

$$(\text{Mothan})$$

- Vector y
 - Used by taking all the v values into a column vector

$$\theta = (X^T X)^{-1} X^T y$$

- What is this equation?!
 - $\circ (\mathbf{X}^T * \mathbf{X})^{-1}$
 - What is this --> the inverse of the matrix $(X^T * X)$
 - i.e. $A = X^T X$
 - $A^{-1} = (X^T X)^{-1}$
- In octave and MATLAB you could do;

- X' is the notation for X transpose
- pinv is a function for the inverse of a matrix
- In a previous lecture discussed feature scaling
 - o If you're using the normal equation then no need for feature scaling

When should you use gradient descent and when should you use feature scaling?

- Gradient descent
 - Need to chose learning rate
 - Needs many iterations could make it slower
 - Works well even when *n* is massive (millions)
 - Better suited to big data

- 100 or even a 1000 is still (relativity) small
- If n is 10 000 then look at using gradient descent
- Normal equation
 - No need to chose a learning rate
 - No need to iterate, check for convergence etc.
 - Normal equation needs to compute $(X^T X)^{-1}$
 - This is the inverse of an n x n matrix
 - With most implementations computing a matrix inverse grows by O(n³)
 - So not great
 - Slow of *n* is large
 - Can be much slower

Normal equation and non-invertibility

- · Advanced concept
 - o Often asked about, but quite advanced, perhaps optional material
 - Phenomenon worth understanding, but not probably necessary
- When computing $(X^TX)^{-1} * X^T * y$
 - \circ What if $(X^T X)$ is non-invertible (singular/degenerate)
 - Only some matrices are invertible
 - This should be quite a rare problem
 - Octave can invert matrices using
 - pinv (pseudo inverse)
 - This gets the right value even if $(X^T X)$ is non-invertible
 - inv (inverse)
 - What does it mean for $(X^T X)$ to be non-invertible
 - Normally two common causes
 - Redundant features in learning model
 - e.g.
 - $x_1 = \text{size in feet}$
 - x_2 = size in meters squared
 - Too many features
 - e.g. m <= n (m is much larger than n)
 - = m = 10
 - n = 100
 - Trying to fit 101 parameters from 10 training examples
 - Sometimes work, but not always a good idea
 - Not enough data
 - Later look at why this may be too little data
 - To solve this we
 - Delete features
 - Use **regularization** (let's you use lots of features for a small training set)
 - If you find $(X^T X)$ to be non-invertible
 - Look at features --> are features linearly dependent?
 - So just delete one, will solve problem

o6: Logistic Regression

Previous Next Index

Classification

- Where y is a discrete value
 - Develop the logistic regression algorithm to determine what class a new input should fall into
- Classification problems
 - Email -> spam/not spam?
 - Online transactions -> fraudulent?
 - Tumor -> Malignant/benign
- Variable in these problems is Y
 - o Y is either o or 1
 - o = negative class (absence of something)
 - 1 = positive class (presence of something)
- Start with binary class problems
 - Later look at multiclass classification problem, although this is just an extension of binary classification
- How do we develop a classification algorithm?
 - Tumour size vs malignancy (o or 1)
 - We could use linear regression
 - Then threshold the classifier output (i.e. anything over some value is yes, else no)
 - In our example below linear regression with thresholding seems to work

- We can see above this does a reasonable job of stratifying the data points into one of two classes
 - o But what if we had a single Yes with a very small tumour
 - This would lead to classifying all the existing yeses as nos
- Another issues with linear regression
 - We know Y is o or 1
 - o Hypothesis can give values large than 1 or less than 0
- So, logistic regression generates a value where is always either 0 or 1
 - Logistic regression is a **classification algorithm** don't be confused

Hypothesis representation

- What function is used to represent our hypothesis in classification
- We want our classifier to output values between 0 and 1
 - When using linear regression we did $h_{\theta}(x) = (\theta^T x)$
 - For classification hypothesis representation we do $h_{\theta}(x) = g((\theta^T x))$
 - Where we define g(z)
 - z is a real number
 - $g(z) = 1/(1 + e^{-z})$
 - This is the **sigmoid function**, or the **logistic function**
 - If we combine these equations we can write out the hypothesis as

$$h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^{T}x}}$$

- What does the sigmoid function look like
- Crosses 0.5 at the origin, then flattens out]
 - Asymptotes at 0 and 1

• Given this we need to fit θ to our data

Interpreting hypothesis output

- When our hypothesis $(h_{\theta}(x))$ outputs a number, we treat that value as the estimated probability that y=1 on input x
 - Example
 - If X is a feature vector with $x_0 = 1$ (as always) and $x_1 = \text{tumourSize}$
 - $h_{\theta}(x) = 0.7$
 - Tells a patient they have a 70% chance of a tumor being malignant
 - We can write this using the following notation
 - $\bullet \ h_{\theta}(x) = P(y=1|x;\theta)$
 - What does this mean?
 - Probability that y=1, given x, parameterized by θ
- Since this is a binary classification task we know y = 0 or 1
 - So the following must be true
 - $P(y=1|x;\theta) + P(y=0|x;\theta) = 1$
 - $P(y=0|x;\theta) = 1 P(y=1|x;\theta)$

Decision boundary

- Gives a better sense of what the hypothesis function is computing
- Better understand of what the hypothesis function looks like
 - One way of using the sigmoid function is;
 - When the probability of y being 1 is greater than 0.5 then we can predict y = 1
 - Else we predict y = 0
 - When is it exactly that $h_{\theta}(x)$ is greater than 0.5?
 - Look at sigmoid function
 - g(z) is greater than or equal to 0.5 when z is greater than or equal to 0

- So if z is positive, g(z) is greater than 0.5
 - $\mathbf{z} = (\mathbf{\theta}^T \mathbf{x})$
- So when
 - $\theta^T x >= 0$
- Then $h_{\theta} >= 0.5$
- So what we've shown is that the hypothesis predicts y = 1 when $\theta^T x \ge 0$
 - The corollary of that when $\theta^T x \le 0$ then the hypothesis predicts y = 0
 - Let's use this to better understand how the hypothesis makes its predictions

Decision boundary

• $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$

- So, for example
 - $\theta_0 = -3$

- $\theta_1 = 1$
- $\theta_2 = 1$
- So our parameter vector is a column vector with the above values
 - So, θ^T is a row vector = [-3,1,1]
- What does this mean?
 - \circ The z here becomes $\theta^T \mathbf{x}$
 - ∘ We predict "y = 1" if
 - $-3x_0 + 1x_1 + 1x_2 >= 0$
 - $-3 + x_1 + x_2 >= 0$
- We can also re-write this as
 - If $(x_1 + x_2 >= 3)$ then we predict y = 1
 - o If we plot
 - $x_1 + x_2 = 3$ we graphically plot our **decision boundary**

- Means we have these two regions on the graph
 - \circ Blue = false
 - Magenta = true
 - Line = decision boundary
 - Concretely, the straight line is the set of points where $h_{\theta}(x) = 0.5$ exactly
 - The decision boundary is a property of the hypothesis
 - Means we can create the boundary with the hypothesis and parameters without any data
 - Later, we use the data to determine the parameter values
 - i.e. y = 1 if
 - $5 x_1 > 0$
 - $5 > x_1$

Non-linear decision boundaries

- Get logistic regression to fit a complex non-linear data set
 - Like polynomial regress add higher order terms
 - So say we have

- $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_3 x_1^2 + \theta_4 x_2^2)$
- We take the transpose of the θ vector times the input vector
 - Say θ^{T} was [-1,0,0,1,1] then we say;
 - Predict that "y = 1" *if*
 - $-1 + x_1^2 + x_2^2 >= 0$
 - or
 - $x_1^2 + x_2^2 >= 1$
 - If we plot $x_1^2 + x_2^2 = 1$
 - This gives us a circle with a radius of 1 around o

- Mean we can build more complex decision boundaries by fitting complex parameters to this (relatively) simple hypothesis
- More complex decision boundaries?
 - By using higher order polynomial terms, we can get even more complex decision boundaries

Cost function for logistic regression

- Fit θ parameters
- Define the optimization object for the cost function we use the fit the parameters
 - Training set of *m* training examples
 - Each example has is n+1 length column vector

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- This is the situation
 - Set of m training examples
 - Each example is a feature vector which is n+1 dimensional
 - $\circ x_0 = 1$
 - \circ y \in {0,1}
 - Hypothesis is based on parameters (θ)
 - Given the training set how to we chose/fit θ ?
- Linear regression uses the following function to determine θ

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

- Instead of writing the squared error term, we can write
 - If we define "cost()" as;
 - $cost(h_{\theta}(x^{i}), y) = 1/2(h_{\theta}(x^{i}) y^{i})^{2}$
 - Which evaluates to the cost for an individual example using the same measure as used in linear regression
 - We can redefine J(θ) as

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

- Which, appropriately, is the sum of all the individual costs over the training data (i.e. the same as linear regression)
- To further simplify it we can get rid of the superscripts
 - o So

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x), y)$$

• What does this actually mean?

- \circ This is the cost you want the learning algorithm to pay if the outcome is $h_{\theta}(x)$ and the actual outcome is y
- If we use this function for logistic regression this is a **non-convex function** for parameter optimization
 - Could work....
- What do we mean by non convex?
 - \circ We have some function $J(\theta)$ for determining the parameters
 - Our hypothesis function has a non-linearity (sigmoid function of $h_{\theta}(x)$)
 - This is a complicated non-linear function
 - If you take $h_{\theta}(x)$ and plug it into the Cost() function, and them plug the Cost() function into $J(\theta)$ and plot $J(\theta)$ we find many local optimum -> non convex function
 - Why is this a problem
 - Lots of local minima mean gradient descent may not find the global optimum may get stuck in a global minimum
 - We would like a convex function so if you run gradient descent you converge to a global minimum

A convex logistic regression cost function

• To get around this we need a different, convex Cost() function which means we can apply gradient descent

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

- This is our logistic regression cost function
 - This is the penalty the algorithm pays
 - Plot the function
- Plot y = 1
 - So $h_{\theta}(x)$ evaluates as $-\log(h_{\theta}(x))$

• So when we're right, cost function is o

- Else it slowly increases cost function as we become "more" wrong
- X axis is what we predict
- Y axis is the cost associated with that prediction
- This cost functions has some interesting properties
 - If y = 1 and $h_{\theta}(x) = 1$
 - If hypothesis predicts exactly 1 and thats exactly correct then that corresponds to 0 (exactly, not nearly 0)
 - As $h_{\theta}(x)$ goes to o
 - Cost goes to infinity
 - This captures the intuition that if $h_{\theta}(x) = 0$ (predict $P(y=1|x; \theta) = 0$) but y = 1 this will penalize the learning algorithm with a massive cost
- What about if y = 0
- then cost is evaluated as $-\log(1-h_{\theta}(x))$
 - Just get inverse of the other function

- Now it goes to plus infinity as $h_{\theta}(x)$ goes to 1
- With our particular cost functions $J(\theta)$ is going to be convex and avoid local minimum

Simplified cost function and gradient descent

- Define a simpler way to write the cost function and apply gradient descent to the logistic regression
 - By the end should be able to implement a fully functional logistic regression function
- Logistic regression cost function is as follows

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \underbrace{\operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})}_{i=1}$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

• This is the cost for a single example

Note: y = 0 or 1 always

- For binary classification problems y is always 0 or 1
 - Because of this, we can have a simpler way to write the cost function
 - Rather than writing cost function on two lines/two cases
 - Can compress them into one equation more efficient
- Can write cost function is
 - $cost(h_{\theta_{1}}(x),y) = -ylog(h_{\theta}(x)) (1-y)log(1-h_{\theta}(x))$
 - This equation is a more compact of the two cases above
- We know that there are only two possible cases
 - y = 1
 - Then our equation simplifies to
 - $-\log(h_{\theta}(x)) (o)\log(1 h_{\theta}(x))$
 - $-\log(h_{\theta}(x))$
 - Which is what we had before when y = 1
 - y = 0
 - Then our equation simplifies to
 - $-(0)\log(h_{\theta}(x)) (1)\log(1 h_{\theta}(x))$
 - $\bullet = -\log(1 h_{\theta}(x))$
 - Which is what we had before when y = 0
 - Clever!
- So, in summary, our cost function for the θ parameters can be defined as

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

- Why do we chose this function when other cost functions exist?
 - This cost function can be derived from statistics using the principle of maximum likelihood estimation
 - Note this does mean there's an underlying Gaussian assumption relating to the distribution of features
 - Also has the nice property that it's convex
- To fit parameters θ :
 - o Find parameters θ which minimize $J(\theta)$
 - This means we have a set of parameters to use in our model for future predictions
- Then, if we're given some new example with set of features x, we can take the θ which we generated, and output our prediction using

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- This result is
 - $p(y=1 \mid x; \theta)$
 - Probability y = 1, given x, parameterized by θ

How to minimize the logistic regression cost function

- Now we need to figure out how to minimize $J(\theta)$
 - Use gradient descent as before
 - Repeatedly update each parameter using a learning rate

Repeat $\{$ $\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ $\}$ (simultaneously update all θ_j)

- If you had *n* features, you would have an n+1 column vector for θ
- This equation is the same as the linear regression rule
 - The only difference is that our definition for the hypothesis has changed
- Previously, we spoke about how to monitor gradient descent to check it's working
 - Can do the same thing here for logistic regression
- When implementing logistic regression with gradient descent, we have to update all the θ values (θ_0 to θ_n) simultaneously
 - Could use a for loop
 - o Better would be a vectorized implementation
- Feature scaling for gradient descent for logistic regression also applies here

Advanced optimization

- Previously we looked at gradient descent for minimizing the cost function
- Here look at advanced concepts for minimizing the cost function for logistic regression
 - o Good for large machine learning problems (e.g. huge feature set)
- What is gradient descent actually doing?
 - We have some cost function $J(\theta)$, and we want to minimize it
 - \circ We need to write code which can take θ as input and compute the following
 - J(θ)
 - Partial derivative if $J(\theta)$ with respect to j (where j=0 to j = n)

$$J(\theta) \over rac{\partial}{\partial heta_j} J(\theta)$$
 (for $j=0,1,\ldots,n$)

Gradient descent repeatedly does the following update

Repeat
$$\{\,\theta_j:=\theta_j-\alpha \frac{\partial}{\partial \theta_j}J(\theta)\,\}$$

- So update each j in θ sequentially
- So, we must;
 - Supply code to compute $J(\theta)$ and the derivatives
 - Then plug these values into gradient descent
- · Alternatively, instead of gradient descent to minimize the cost function we could use
 - Conjugate gradient
 - **BFGS** (Broyden-Fletcher-Goldfarb-Shanno)
 - **L-BFGS** (Limited memory BFGS)
- These are more optimized algorithms which take that same input and minimize the cost function
- These are *very* complicated algorithms
- Some properties
 - Advantages
 - No need to manually pick alpha (learning rate)
 - Have a clever inner loop (line search algorithm) which tries a bunch of alpha values and picks a good one
 - Often faster than gradient descent
 - Do more than just pick a good learning rate
 - Can be used successfully without understanding their complexity
 - Disadvantages
 - Could make debugging more difficult
 - Should not be implemented themselves
 - Different libraries may use different implementations may hit performance

Using advanced cost minimization algorithms

- How to use algorithms
 - Say we have the following example

Example:

$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$

$$\frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)$$

- Example above
 - θ_1 and θ_2 (two parameters)

- Cost function here is $J(\theta) = (\theta_1 5)^2 + (\theta_2 5)^2$
- The derivatives of the $J(\theta)$ with respect to either θ_1 and θ_2 turns out to be the $2(\theta_i 5)$
- First we need to define our cost function, which should have the following signature

function [jval, gradent] = costFunction(THETA)

- Input for the cost function is **THETA**, which is a vector of the θ parameters
- Two return values from costFunction are
 - o jval
 - How we compute the cost function θ (the underived cost function)
 - In this case = $(\theta_1 5)^2 + (\theta_2 5)^2$
 - gradient
 - 2 by 1 vector
 - 2 elements are the two partial derivative terms
 - i.e. this is an n-dimensional vector
 - Each indexed value gives the partial derivatives for the partial derivative of $J(\theta)$ with respect to θ_i
 - Where i is the index position in the **gradient** vector
- With the cost function implemented, we can call the advanced algorithm using

```
options= optimset('GradObj', 'on', 'MaxIter', '100'); % define the
  options data structure
  initialTheta= zeros(2,1); # set the initial dimensions for theta %
  initialize the theta values
  [optTheta, funtionVal, exitFlag]= fminunc(@costFunction,
  initialTheta, options); % run the algorithm
```

- Here
 - options is a data structure giving options for the algorithm
 - o fminunc
 - function minimize the cost function (find minimum of unconstrained multivariable function)
 - @costFunction is a pointer to the costFunction function to be used
- For the octave implementation
 - o initialTheta must be a matrix of at least two dimensions
- How do we apply this to logistic regression?
 - Here we have a vector

6/14

theta =
$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$$

- Here
 - o theta is a n+1 dimensional column vector
 - o Octave indexes from 1, not 0
- Write a cost function which captures the cost function for logistic regression

Multiclass classification problems

- Getting logistic regression for multiclass classification using one vs. all
- Multiclass more than yes or no (1 or 0)
 - o Classification with multiple classes for assignment

Binary classification:

Multi-class classification:

 Use one vs. all classification make binary classification work for multiclass classification

• One vs. all classification

6/14

- o Split the training set into three separate binary classification problems
 - i.e. create a new fake training set
 - Triangle (1) vs crosses and squares (o) $h_{\theta}^{1}(x)$
 - $P(y=1 | x_1; \theta)$
 - Crosses (1) vs triangle and square (0) $h_{\theta}^{2}(x)$
 - $P(y=1 | x_2; \theta)$
 - Square (1) vs crosses and square (0) $h_{\theta}^{3}(x)$
 - $P(y=1 \mid x_3; \theta)$

• Overall

- Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y = i
- On a new input, x to make a prediction, pick the class i that maximizes the probability that $h_{\theta}^{(i)}(x) = 1$