Apuntes de Álgebra Lineal

Jesús Ortuño Araujo

ESCOM-IPN Departamento de Formación Básica

Plan de Recuperación Académica

Índice

Transformaciines lineales.

Índice

Transformaciines lineales.

Definición. Transformación lineal.

Sean V y W dos espacioa vectoriales y sea T una función que mapea vectores de V en vectores de W, es decir, $T:V\longrightarrow W$. Decimos que T es lineal si para todo $\mathbf{u},\mathbf{v}\in V$ y $c\in\mathbb{R}$ se cumple

- $(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}).$
- $T(c\mathbf{u}) = cT(\mathbf{u})$

Teorema 4.1. Un teorema práctico.

Sea $T:V\longrightarrow W$ una función de V a W. Así, T es lineal sí y sólo sí

$$T(\mathbf{0}) = \mathbf{0}$$

Imagen y núcleo de una transformación lineal.

Sea $T:V\longrightarrow W$ una transformación lineal.

El conjunto

$$\operatorname{Im}(T) = \{ \mathbf{w} \in W \mid \mathbf{w} = T(\mathbf{v}) \text{ para algún } \mathbf{v} \in V \}$$

Es llamado *la imagen de* T.

El conjunto

$$Ker(T) = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0} \}$$

es llamado el núcleo de T o el kernel de T.

Teorema 4.2 De los espacios vectoriales asociados a una transformación lineal.

Sea $T: V \longrightarrow W$ una transformación lineal.

- () Im(T) es un subespacio de W.
- \bigcirc Ker(T) es un subespacio de V.

Definición. Dimensiones de imagen y kernel.

Sea $T: V \longrightarrow W$ una transformación lineal, donde V y W son de dimensión finita, con $\dim V = n$ y $\dim(W) = m$.

Definición de rango de T

Entonces la dimesión de la imagen de T es llamada rango de T y se denota como rango(T) o simplemente, $\rho(T)$.

Definición de nulidad de 1

La dimensión del kernel de T es llamada *nulidad de* T y se denota como $\operatorname{nulidad}(T)$ o simplemente, $\nu(T)$.

Definición. Dimensiones de imagen y kernel.

Sea $T: V \longrightarrow W$ una transformación lineal, donde V y W son de dimensión finita, con $\dim V = n$ y $\dim(W) = m$.

Definición de rango de T.

Entonces la dimesión de la imagen de T es llamada **rango de** T y se denota como rango(T) o simplemente, $\rho(T)$.

Definición de nulidad de

La dimensión del kernel de T es llamada *nulidad de* T y se denota como $\operatorname{nulidad}(T)$ o simplemente, $\nu(T)$.

Definición. Dimensiones de imagen y kernel.

Sea $T: V \longrightarrow W$ una transformación lineal, donde V y W son de dimensión finita, con $\dim V = n$ y $\dim(W) = m$.

Definición de rango de T.

Entonces la dimesión de la imagen de T es llamada rango de T y se denota como rango(T) o simplemente, $\rho(T)$.

Definición de nulidad de T.

La dimensión del kernel de T es llamada *nulidad de* T y se denota como $\operatorname{nulidad}(T)$ o simplemente, $\nu(T)$.

Teorema 4.3. De las dimensiones.

Sea $T:V\longrightarrow W$ una transformación lineal, donde V y W son de dimensión finita, con $\dim V=n$ y $\dim(W)=m$, entonces

$$rango(T) + nulidad(T) = n$$

Definición. Isomorfismo.

Sea $T:V\longrightarrow W$ una transformación lineal. Decimos que T **es un isomorfismo** si

- \bigcirc T es inyectiva (uno a uno).
- \bigcirc T es suprayectiva (sobre).