Статистика и анализ данных

Лекция 5. Тестирование гипотез

(15.10.2022)

Тестирование гипотез

Примеры гипотез

Нулевая гипотеза

Средний объем легких у курящих и не курящих людей не различается

Альтернативная гипотеза

Односторонняя Двусторонняя

Объем легких у курящих людей меньше/больше, чем у некурящих

Объем легких у курящих и не курящих людей различается

Сравнение средних. z-критерий∤

Формулировка:

$$Vo: \overline{Y} = \mu$$

$$H_1: \overline{X} \neq \mu$$

Сравнение средних. z-критерий

Распределение статистики:

p-value

Вероятность получить более экстремальное значение статистики, когда нулевая гипотеза верна

Заблуждения о p-value

- 1. p-value вероятность того, что верна сама H_0 нет, расчет производится при условии, что H_0 верна
- 2. p-value это вероятность получить такое значение статистики при справедливой H_0 такое или более экстремальное
- 3. р > 0.05, то различий между группами на самом деле нет (у нас просто нет оснований отклонить нулевую гипотезу)

Ошибки при тестировании гипотез

Какая ошибка хуже?...Зависит от ситуации.

В науке считается, что ошибка І рода опаснее, так как нарушает бритву Оккама "не плодить сущности сверх необходимого".

Но в медицине обе ошибки могут стоить очень дорого.

Мощность теста

Мощность теста

7-60st grob.

No: X = M; Hp = X#

_			
- 1)	മറ	-10	ion
	C	13	1011

Accept H₀ Reject H₀

Correct Type I Error

"Confidence Level" "False Positive"

Type II Error

Probability = 1- α

Null Hypothesis (H₀)

"False Negative"

Probability = β

Probability = α

Correct

"Statistical Power"

Probability = 1-β

Мощность теста

При увеличении выборки — возрастает

Ошибки при тестировании гипотез

Анализ мощности

A priori

- какой нужен объем выборки, чтобы найти различия с разумной долей уверенности?
- различия какой величины мы можем найти, если известен объем выборки?

 смогли бы мы найти различия при помощи нашего эксперимента (α,n), если бы величина эффекта была X?

Анализ *a priori*

тест	t-критерий	
уровень значимости	alpha=0.05	
желаемая мощность теста	0.8	
ожидаемая величина	??? ~~	

Величина эффекта

Коэффициент Коэна

$$d = \frac{\mu_1 - \mu_2}{\sigma}$$

$$d = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{s_1^2 + s_2^2}{2}}}$$

Effect size	d
Very small	0.01
small	0.20
Medium	0.50
Large	0.80
Very large	1.20
Huge	2.0

Как оценить ожидаемую величину эффекта

- Пилотные исследования
- Литература
- Общебиологические знания
- Технические требования

t-тест

t-критерий Стьюдента (одновыборочный)

Смоделируем ситуацию:

В статье показано, что в среднем программист пишет 100 строчек кода в день. Мы провели собственное исследование и мы получили среднее = 110 строк, s = 5.1 (N = 21)

Продуктивнее ли наши программисты?

 H_0 — Наши программисты работают также как и все программисты в мире

Н_А — Наши программисты продуктивнее обычных программистов

t-критерий Стьюдента (одновыборочный)

Подставляем значения в формулу и получаем t значение = 8.84

Много это или мало?

$$\overline{X} - m$$

$$\overline{SX} \sqrt{n}$$

Критерии данных для t-test

- Наблюдения в выборке должны быть независимы друг от друга.
- Объем выборки достаточно велик или величины нормально распределены.

t-критерий Стьюдента (двухвыборочный)

 H_0 : $\mu_1 - \mu_2 = 0$ — средние значения не различаются в двух группах

 H_A : $\mu_1 - \mu_2 \neq 0$ — средние значения различаются

Нас интересует **разность выборочных средних**, которая будет равна 0 при верной нулевой гипотезе.

— 1 вестрия у — 2 вестрия — 2 вестрия

JAR.

Наблюдаемая~величина - Ожидаемое~значение

Стандартная~ошибка

5x2 5y2 Nx Ny VF=(nx+152)

Критерии данных для двухвыборочного t-test

- Наблюдения независимы друг от друга
- Выборки независимы друг от друга
- Объем выборки достаточно велик или величины нормально распределены

Разновидности t-test

Двухвыборочный t-тест используется для проверки значимости различий между средними

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{SE_{\bar{x}_1 - \bar{x}_2}} = \frac{\bar{x}_1 - \bar{x}_2}{SE_{\bar{x}_1 - \bar{x}_2}}$$

стандартная ошибка разности двух средних, может рассчитываться по-разному

- t-тест Стьюдента если считать, что дисперсии в группах равны
- t-тест Уэлча если считать, что дисперсии могут быть разными

Разновидности t-test

 $\begin{array}{c} \chi & contro \\ \begin{pmatrix} \chi \\ \chi 2 \end{pmatrix} & \underbrace{effed}_{\chi_{2}} \begin{pmatrix} \chi \\ \chi_{3} \end{pmatrix} \end{array}$

Однако, если выборки у вас связанные, то необходимо использовать парный t-test. Это необходимо использовать в случае, если наблюдения в выборках взаимосвязаны:

- прием сначала одного, а затем второго препарата
- сравнение групп до и после воздействия