Practica 2 Tipologia y Ciclo de Vida de los Datos

Fernando Muñoz Martin y Ricardo Santos Patricio

Mayo 2021

Índice

L.	1.1.	Introducción	2
	1.2.	Importancia y problemas para responder	2
2.	2.1.	egración y selección de los datos de interés a analizar Lectura Archivo	2 2 3
3.	3.1.	Elementos vacíos	4 4 4 6 8
4.	4.1.	Selección de los grupos de datos que se quieren analizar o comparar	11 11 13 13 16
5.	Rep	presentación de los resultados a partir de tablas, gráficas y conclusiones finales.	17
3.	Exp	oortación del dataset	21
1.	Γ	Descripción del Dataset	
li li li	brary brary brary	y(dplyr) y(caret) y(nortest) y(ranger) y(rpart.plot)	

1.1. Introducción

Para el desarrollo de esta práctica se ha optado por la elección del dataset: "Titanic: Machine Learning from Disaster" que se encuentra en el link: "https://www.kaggle.com/c/titanic". Este dataset contiene información relacionada con uno de los naufragios más conocidos de la historia, donde se tienen datos relativos a sus pasajeros, como edad, sexo, clase en que viajaban y, finalmente, si consiguieron sobrevivir o no. Es un dataset cuyo uso es muy extendido para el entrenamiento de algoritmos supervisados o para árboles de decisión donde la variable objetivo es precisamente su supervivencia en función de las características propias del viajero.

Descripción de Columnas

Dicho conjunto de datos con 891 instancias no se puede considerar de un gran tamaño, sin embargo sí que está constituido por 12 columnas que hacen que la descripción de cada uno de los individuos sea razonablemente completa:

- PassengerId: id que contiene cada pasajero dentro del dataset
- Survived: variable que nos dice si el pasajero ha sobrevivido, valor 1, o si finalmente ha muerto, valor 0
- Pclass: clase en la que viajaba el pasajero
- Name: nombre del pasajero
- Sex: sexo del pasajero
- Age: edad del pasajero
- SibSp: número de hermanos y/o conyugues del pasajero a bordo;
- Parch: número de parientes y/o hijos/hijas del pasajero a bordo
- Ticket: número del ticket del pasajero
- Fare: precio pagado por el pasajero
- Cabin: cabina en la que se encontraba el pasajero
- Embarked: puerto de embarcación

1.2. Importancia y problemas para responder

A partir del análisis de este conjunto de datos, se pretende dar respuesta a una serie de preguntas que envuelven el accidente del titanic. En este caso, pretendemos determinar si, efectivamente, podemos decir que las mujeres y niños tenían una mayor probabilidad de haber sobrevivido o si el hecho de viajar en primera clase aportaba mayores posibilidades de supervivencia. Este análisis nos permitirá entender de qué forma afectaba la clase social o género del pasajero a la hora de decidir las condiciones sobre las que escapaban del conocido hundimiento de Titanic.

2. Integración y selección de los datos de interés a analizar

2.1. Lectura Archivo

El primer paso antes de poder realizar cualquier análisis consiste en la lectura del archivo o archivos de estudio. En nuestro caso, tenemos el archivo "train.csv" y leeremos sus datos a través de la función read.csv().

```
titanic_raw <- read.csv("./csv/train.csv")</pre>
```

Una vez obtenidos los datos, observamos su estructura con str() y obtenemos un resumen de los valores con summary():

```
#observamos la estructura de los datos
str(titanic_raw)
##
   'data.frame':
                     891 obs. of 12 variables:
##
    $ PassengerId: int
                           2 3 4 5 6 7 8 9 10 ...
                         1
    $ Survived
                         0 1 1 1 0 0 0 0 1 1 ...
##
                  : int
##
    $ Pclass
                  : int
                         3 1 3 1 3 3 1 3 3 2 ...
##
    $ Name
                          "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs
                    chr
                          "male" "female" "female" "female" ...
##
    $ Sex
                    chr
    $ Age
##
                         22 38 26 35 35 NA 54 2 27 14 ...
                  : num
##
    $ SibSp
                         1 1 0 1 0 0 0 3 0 1 ...
                    int
##
    $ Parch
                         0 0 0 0 0 0 0 1 2 0 ...
                    int
    $ Ticket
                         "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
##
                    chr
                         7.25 71.28 7.92 53.1 8.05 ...
##
    $ Fare
                    num
                          "" "C85" "" "C123" ...
    $ Cabin
##
                    chr
                          "S" "C" "S" "S" ...
##
    $ Embarked
                    chr
summary(titanic_raw)
##
     PassengerId
                        Survived
                                            Pclass
                                                             Name
##
            : 1.0
                                                         Length:891
    Min.
                     Min.
                             :0.0000
                                               :1.000
                                       Min.
##
    1st Qu.:223.5
                     1st Qu.:0.0000
                                       1st Qu.:2.000
                                                         Class : character
    Median :446.0
                     Median :0.0000
                                       Median :3.000
                                                              :character
##
                                                         Mode
##
    Mean
            :446.0
                     Mean
                             :0.3838
                                       Mean
                                               :2.309
    3rd Qu.:668.5
                     3rd Qu.:1.0000
                                       3rd Qu.:3.000
##
            :891.0
                             :1.0000
                                               :3.000
##
    Max.
                     Max.
                                       Max.
##
##
        Sex
                                              SibSp
                                                               Parch
                              Age
    Length:891
                        Min.
                                : 0.42
                                          Min.
                                                 :0.000
                                                           Min.
                                                                  :0.0000
##
##
    Class : character
                        1st Qu.:20.12
                                          1st Qu.:0.000
                                                           1st Qu.:0.0000
                                          Median:0.000
                                                           Median :0.0000
##
    Mode
          :character
                        Median :28.00
##
                        Mean
                                :29.70
                                          Mean
                                                 :0.523
                                                           Mean
                                                                  :0.3816
                                                           3rd Qu.:0.0000
##
                        3rd Qu.:38.00
                                          3rd Qu.:1.000
```

```
##
                         Max.
                                 :80.00
                                           Max.
                                                  :8.000
                                                            Max.
                                                                    :6.0000
##
                         NA's
                                 :177
##
       Ticket
                              Fare
                                               Cabin
                                                                   Embarked
                                    0.00
##
    Length:891
                         Min.
                                 :
                                            Length:891
                                                                 Length:891
                         1st Qu.: 7.91
                                            Class : character
##
    Class : character
                                                                 Class : character
##
    Mode
         :character
                         Median: 14.45
                                            Mode : character
                                                                 Mode :character
##
                         Mean
                                 : 32.20
                         3rd Qu.: 31.00
##
##
                                 :512.33
                         Max.
##
```

2.2. Selección de datos

El siguiente paso, consistirá en eliminar aquellas columnas que no contengan información útil para el desarrollo de esta práctica. Entre estas columnas tenemos: • Ticket: ya que no contiene información que pueda diferenciar los pasajeros; • PassangerId: al ser simplemente un identificador del pasajero

en nuestro conjunto de datos; • Cabin: ya que consiste en una variable con un gran número de valores incompletos que tampoco aporta gran información. • Name

```
#eliminamos columnas
titanic <- subset(titanic_raw, select= -c(PassengerId, Name, Cabin, Ticket))</pre>
```

Ahora, convertiremos las variables categóricas de forma a facilitar el posterior análisis. Entre las variables que convertiremos a categóricas tenemos: Survived, Pclass, Sex y Embarked. Comprobaremos taién el número de niveles existentes.

```
#covertimos variables categoricas
titanic$Survived <- as.factor(titanic$Survived)
titanic$Pclass <- as.factor(titanic$Pclass)
titanic$Sex <- as.factor(titanic$Sex)
titanic$Embarked <- as.factor(titanic$Embarked)

levels(titanic$Survived)

## [1] "0" "1"
levels(titanic$Pclass)

## [1] "1" "2" "3"
levels(titanic$Sex)

## [1] "female" "male"
levels(titanic$Embarked)</pre>
```

```
## [1] "" "C" "Q" "S"
```

Vemos que todas las columnas son normales a excepción de Embarked que presenta un nivel "" lo cual significara la presencia de valores vacíos.

3. Limpieza de los datos

3.1. Elementos vacíos

3.1.1. ¿Contienen los datos ceros o elementos vacíos?

Lo primero de lo que tenemos que hablar es de los ceros en nuestro dataset. Hay varias columnas en las que las que dicho valor tiene mucho sentido, luego no todo cero en nuestro enemigo.

- Comenzando por "Survived", un 0 es un valor FALSE indicando que no sobrevivió, luego en esta columna no queremos mirar.
- En "PClass" y en "sex" sabemos que ninguno de los valores es cero porque los hemos categorizado y podemos ver que en ninguno de los niveles aparece dicho valor, en cambio en "Embarked" sabemos que esto sí que sucede precisamente por el mismo motivo.
- Un valor 0 en "SibSp" y en "Parch" es un valor absolutamente razonable (que el pasajero no tenga hermanos o parientes a bordo), luego tampoco nos interesa buscar.
- En cambio que un ticket haya sido gratis (Fare) o que el pasajero tenga 0 años sería muy sospechoso, así que nos centraremos en estas dos columnas para la búsqueda de valores 0.

En cambio sí que queremos buscar elementos nulos en todas aquellas variables que no son categóricas, es decir en "Age", "SibSp", "Parch" y "Fare". Luego para esta segunda cuestión nos centraremos en esas.

```
### 0's
where.ceros <- function(x){
   which(x[!is.na(x)] == 0)
}
titanic.ceros <- lapply(titanic[,c("Fare", "Age")], where.ceros)
titanic.ceros
## $Fare
## [1] 180 264 272 278 303 414 467 482 598 634 675 733 807 816 823
##
## $Age
## integer(0)</pre>
```

Comenzando por los ceros, podemos ver gracias a la función creada "where.ceros", que no hay ninguna edad con dicho valor, en cambio sí que vemos que muchos tickets han sido "gratuitos" y trataremos con ellos en el siguiente epígrafe.

```
### NA
where.na <- function(x){
  which(is.na(x) == TRUE)
}
titanic.na <- lapply(titanic[, c("Age", "SibSp", "Parch", "Fare")], where.na)
titanic.na
## $Age
##
     [1]
           6
              18
                  20
                      27
                          29
                              30
                                  32
                                      33
                                           37
                                               43
                                                   46
                                                       47
                                                           48
                                                               49
                                                                    56
                                                                        65
                                                                                77
                                                                            66
##
    [19]
          78
                  88
                      96 102 108 110 122 127 129 141 155 159 160 167 169 177 181
              83
    [37] 182 186 187 197 199 202 215 224 230 236 241 242 251 257 261 265 271 275
##
    [55] 278 285 296 299 301 302 304 305 307 325 331 335 336 348 352 355 359 360
##
    [73] 365 368 369 376 385 389 410 411 412 414 416 421 426 429 432 445 452 455
##
    [91] 458 460 465 467 469 471 476 482 486 491 496 498 503 508 512 518 523 525
## [109] 528 532 534 539 548 553 558 561 564 565 569 574 579 585 590 594 597 599
## [127] 602 603 612 613 614 630 634 640 644 649 651 654 657 668 670 675 681 693
## [145] 698 710 712 719 728 733 739 740 741 761 767 769 774 777 779 784 791 793
## [163] 794 816 826 827 829 833 838 840 847 850 860 864 869 879 889
##
## $SibSp
## integer(0)
##
## $Parch
## integer(0)
##
## $Fare
## integer(0)
```

En cuanto a los valores NA, vemos que estos sólo se encuentran en la variable Age y además son extremadamente habituales, suponiendo 177 de los 891 registros de los que disponemos, algo que sin duda afectará a la decisión que decidamos tomar en el siguiente epígrafe.

Tan sólo nos queda por hablar de la variable "Embarked", que como mencionábamos presenta un nivel vacío en el que imputaremos NAs que posteriormente habrá que tratar.

3.1.2. ¿Cómo gestionar los casos?

Comenzando por los ceros, nos gustaría saber cómo se distribuyen los registros según la clase antes de tomar una decisión, así que vamos a observar dicha condición.

```
age.ceros <- unlist(titanic.ceros[1])

ceros.class <- titanic$Pclass[age.ceros]
table(ceros.class)

## ceros.class
## 1 2 3
## 5 6 4</pre>
```

Habíamos valorado la posibilidad de que el billete gratis fuera algún tipo de beneficio de alguna de las clases y que estuviéramos eliminando esta información, pero dado que se distribuyen casi homogéneamente por clase, no parece que el valor pueda ser tomado por cierto. Dado que el precio de un ticket es algo que está fuertemente marcado por la clase, procedemos a imputar el precio medio condicionado a la clase en cada uno de esos ceros.

```
fareMean.byClass <- by(titanic$Fare, titanic$Pclass, mean)

titanic$Fare[age.ceros[ceros.class==1]] <- fareMean.byClass[1]
titanic$Fare[age.ceros[ceros.class==2]] <- fareMean.byClass[2]
titanic$Fare[age.ceros[ceros.class==3]] <- fareMean.byClass[3]

lapply(titanic[,c("Fare", "Age")], where.ceros) # Comprobamos que ha funcionado

## $Fare
## integer(0)
##
## $Age
## integer(0)</pre>
```

El caso de los valores NA en edad es bastante complejo. Son demasiados registros como para eliminarlos, pero a su vez no podemos imputar un valor único dado que con semejante volumen estaríamos distorsionando los resultados de eventuales análisis. Por lo que vamos a imputar los valores mediante el paquete caret, que puede funcionar realmente bien en este tipo de conjuntos. Para realizar la imputación, vamos a considerar todas las variables de las que disponemos en la creación de un modelo que nos ayudará a predecir valores posibles para esos NA. Posteriormente podremos comprobar si los resultados son razonables a partir de una comparación de las distribuciones de los registros que presentaban NAs y aquellos que no.

```
### NA's
age.na <- unlist(titanic.na[1])</pre>
predicted_age <- train(</pre>
  Age ~ Pclass + Sex + SibSp + Parch + Fare + Embarked + SibSp + Survived,
  data = titanic[-age.na, ],
  method = "ranger",
  trControl = trainControl(
    method = "cv", number = 10, verboseIter = TRUE),
  importance = 'impurity'
)
titanic$Age[age.na] <- predict(predicted_age, titanic[age.na,])</pre>
summary(titanic$Age[age.na])
##
      Min. 1st Qu. Median
                                 Mean 3rd Qu.
                                                  Max.
##
     11.40
              25.57
                       28.70
                                29.07
                                        34.44
                                                  44.77
summary(titanic$Age[-age.na])
##
      Min. 1st Qu.
                     Median
                                 Mean 3rd Qu.
                                                  Max.
##
      0.42
              20.12
                       28.00
                                29.70
                                         38.00
                                                 80.00
En el caso de "Embarked" vamos a proceder de forma parecida al primer punto. Por lógica el valor
de la puerta de entrada va a estar fuertemente influenciado por el precio del ticket y la clase del
pasajero, así que vamos a ver a través de que puerta embarcaron aquellos con una situación similar
a los registros 62 y 830 (aquellos faltantes).
embarked.na <- which(titanic$Embarked == "")</pre>
titanic$Embarked[embarked.na] <- NA</pre>
titanic[embarked.na, c("Pclass", "Fare")]
##
       Pclass Fare
## 62
             1
                 80
## 830
                 80
             1
#filtramos por clase y puerta de embarque
titanic.C <- titanic[titanic$Embarked =="C" & titanic$Pclass =="1",]</pre>
titanic.Q <- titanic[titanic$Embarked =="Q" & titanic$Pclass =="1",]</pre>
titanic.S <- titanic[titanic$Embarked =="S" & titanic$Pclass =="1",]</pre>
median(titanic.C$Fare, na.rm = TRUE)
## [1] 78.2667
median(titanic.Q$Fare, na.rm = TRUE)
## [1] 90
```

```
median(titanic.S$Fare, na.rm = TRUE)
```

[1] 53.1

Resulta que aquellos que pagaron alrededor de 80 libras y estaban en primera clase entraron por la puerta C de forma clara, así que vamos a imputar este valor para nuestros registros faltantes y a recalcular los niveles del factor para eliminar el factor "".

```
titanic$Embarked[embarked.na] <- "C"
levels(titanic$Embarked) <- factor(titanic$Embarked)</pre>
```

3.2. Identificación y tratamiento de valores extremos

De nuevo vamos a comenzar por plantearnos qué dimensiones pueden presentar valores extremos, que en este caso sólo son las numéricas, es decir: "Age", "SibSp", "Fare" y "Parch".

Antes de proceder a una imputación debemos comprobar cualitativamente si efectivamente estos valores se pueden considerar outliers, para lo que procedemos a observar los diagramas de caja correspondientes a estas dimensiones obteniendo, además, el número de outliers en cada variable.

out.SibSp <- boxplot(titanic[,"SibSp"])\$out</pre>

out.Parch <- boxplot(titanic[,"Parch"])\$out</pre>

out.Fare <- boxplot(titanic[,"Fare"])\$out</pre>

[1] 46

length(out.Parch)

[1] 213

length(out.Fare)

[1] 121

Vemos que efectivamente el dataset presenta un gran número de outliers.

En cualquier caso no parecen outliers que haya que tratar, se podría decir que todos los valores extremos quizá a excepción de uno tienen sentido. Nos extraña que alguien ha pagado más de 500 libras por una habitación cuando el segundo valor más grande era de menos de 300.

```
billetes.caros <- which(titanic$Fare > 500)
titanic_raw$Name[billetes.caros]
```

```
## [1] "Ward, Miss. Anna" "Cardeza, Mr. Thomas Drake Martinez"
## [3] "Lesurer, Mr. Gustave J"
```

Viendo esta circunstancia y la más que segura existencia de información online, hemos hecho una pequeña investigación sobre dicha habitación y resulta que su valor es correcto dado que era una suite triple en la que Thomas Cardeza convivió con su madre y varios sirvientes. También hemos podido comprobar que en este dataset faltan instancias, en concreto la de la madre de Thomas Cardeza quien también viajaba a bordo y cuya sirvienta era Miss Anna Ward, la cual sí que está registrada en este dataset.

Debido a estas observaciones, no parece que vaya a ser necesario tratar los outliers.

4. Análisis de los datos

4.1. Selección de los grupos de datos que se quieren analizar o comparar

Todos conocemos la mítica frase "mujeres y niños primero" gracias a la película homónima, lo que no se decía tan claro en la película es que los ricos también iban primero. Está claro que una de las selecciones tiene que ser una división de supervivientes y fallecidos, la segunda tiene que ser por sexo y la tercera será por clase. Podríamos categorizar la edad para separar también por grupos, pero correríamos el riesgo de perder mucha información al establecer franjas de edad así que no lo vamos a hacer.

```
titanic.primeraClase <- titanic[titanic$Pclass == 1,]
titanic.segundaClase <- titanic[titanic$Pclass == 2,]
titanic.terceraClase <- titanic[titanic$Pclass == 3,]

titanic.mujeres <- titanic[titanic$Sex == "female",]
titanic.hombres <- titanic[titanic$Sex == "male",]

titanic.supervivientes <- titanic[titanic$Survived == 1,]
titanic.fallecidos <- titanic[titanic$Survived == 0,]</pre>
```

4.2. Comprobación de la normalidad y homogeneidad de la varianza.

Vamos a comprobar la normalidad utilizando el test de shapiro-wilk. Este test consiste en un contraste de hipótesis en el que la hipótesis nula es la distribución normal de los datos.

```
lapply(titanic[,c("Age", "SibSp", "Parch", "Fare")], shapiro.test)
```

```
## $Age
##
##
   Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.97945, p-value = 6.989e-10
##
##
## $SibSp
##
##
   Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.51297, p-value < 2.2e-16
##
##
## $Parch
##
```

```
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.53281, p-value < 2.2e-16
##
##
## $Fare
##
## Shapiro-Wilk normality test
##
## data: X[[i]]
## W = 0.52214, p-value < 2.2e-16</pre>
```

Dado que en nuestro caso los valores p resultantes del análisis para todos los conjuntos numéricos es menor que 0.05, tenemos que rechazar la hipótesis nula y por tanto no se puede confirmar la normalidad de los datos.

El siguiente paso consistirá en el estudio de la homogeneidad de varianzas usando el test de Fligner-Killeen. En este caso, estudiaremos las diferencias en la varianza en los grupos de edad de los pasajeros que han fallecido y aquellos que lograron sobrevivir.

```
fligner.test(Age ~ Survived, data = titanic)

##

## Fligner-Killeen test of homogeneity of variances

##

## data: Age by Survived

## Fligner-Killeen:med chi-squared = 4.7096, df = 1, p-value = 0.02999
```

Al obtener un valor p menor que el valor de significancia 0,05, rechazamos la hipotesis nula que presuponía homocedasticidad y concluímos que la variable Edad presenta varianzas estadisticamente diferentes en los pasajeron que fallecieron y aquellos que han logrado sobrevivir

```
boxplot(titanic.supervivientes[,"Age"])
```


boxplot(titanic.fallecidos[,"Age"])

Como decíamos, hubo un orden de evacuación claro definido según atributos de nuestro dataset, luego no estos resultados no nos extrañan. Veremos cuáles eran estos atributos en el siguiente apartado.

4.3. Aplicación de pruebas estadísticas para comparar los grupos de datos

4.3.1. Estudio de variables significativas

En primer lugar, estudiaremos las variables más significaivas a la hora de las posibilidades de supervivencia de los pasajeros. Para ello, usaremos un modelo de regresión logística que estime la probabilidad de superivencia frente a todas las variables disponibles.

```
modelo.Surv <- glm(Survived ~ Pclass + Sex + SibSp + Parch + Fare + Age + Embarked, data = ti
summary(modelo.Surv)
##
## Call:
## glm(formula = Survived ~ Pclass + Sex + SibSp + Parch + Fare +
       Age + Embarked, family = binomial(link = logit), data = titanic)
##
##
##
  Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                            Max
            -0.5941
                     -0.3899
##
  -2.7257
                               0.6148
                                         2.4944
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.2330928
                           0.4859589
                                        8.711 < 2e-16 ***
               -1.1708448
                           0.3085057
                                      -3.795 0.000148 ***
## Pclass2
## Pclass3
               -2.4323546
                           0.3121851
                                      -7.791 6.63e-15 ***
                           0.2002492 -13.571 < 2e-16 ***
## Sexmale
               -2.7175875
               -0.3807992
                                      -3.426 0.000612 ***
## SibSp
                           0.1111443
## Parch
               -0.0960295
                           0.1204676
                                      -0.797 0.425370
## Fare
                0.0008286
                           0.0023610
                                        0.351 0.725611
               -0.0478940
                           0.0082912
                                      -5.777 7.63e-09 ***
## Age
                0.3843514
                           0.2388413
## EmbarkedC
                                        1.609 0.107565
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1186.66
                               on 890
                                        degrees of freedom
## Residual deviance: 775.92
                               on 882
                                        degrees of freedom
## AIC: 793.92
```

##

Number of Fisher Scoring iterations: 5

Comenzando por los resultados esperables, se observa que el hecho de ser de clase 1 o clase 3 influía fuertemente en tus posibilidades de supervivencia y que lo siguiente que más afectaba eran el sexo y la edad. De hecho, según los resultados, el hecho de ser mujer respecto a ser hombre influía casi lo mismo que la pertenencia a primera clase (obviamente la comparación no es exacta y cada individuo posee una combinación de características). Esto viene a confirmar lo mencionado anteriormente: Mujeres y niños (y ricos) primero.

Lo que nos ha sorprendido un poco por la precisión que muestra es la comparación entre el resultado de Parch y SibSp. El tamaño de la familia no resulta relevante en cuanto si un pasajero se salvaba o no ¡en cambio sí que lo supone el número de hermanos! Parece una medida incongruente, pero posiblemente no está hablando de que las familias grandes no tienen por qué ser jóvenes (recordemos el caso de Thomas Cardoza viajando con su madre), en cambio tener muchos hermanos sí que nos puede hablar de edades tempranas y por tanto de mayores posibilidades de salvación.

Vamos a comprobar si efectivamente a mayor número de hermanos menor era el rango de edad.

Número de hermanos

Como curiosidad también nos gustaría comprobar la influencia del sexo y edad en la posibilidad de supervivencia, donde calcularemos la probabilidad de que sobrevivan 4 pasajeros: 2 hombres de edades 15 y 50, y 2 mujeres de la misma edad. Los vamos a introducir a todos en primera clase dado que esto nos permitirá aumentar las posibilidades de salvación de todos ellos y observar mejor las diferencias entre estos grupos.

```
## 1 2 3 4
## 0.9440824 0.5271599 0.7595193 0.1725672
```

Se puede observar la gran influencia que tanto la edad como el sexo tienen sobre la posibilidad de sobrevivir, pero el rango en el que esto varía dentro de la primera clase es impresionante.

4.3.2. Estudio de la relación de Survived con Age, Sex y Pclass

Para terminar el estudio de la relaciones entre variables, utilizaremos el test de chi-cuadrado para comprobar si la relación entre la variable Survived es estadísticamente significativa entre el sexo, clase y edad de los pasajeros.

```
tabla.SurvPclass <- table(titanic$Survived, titanic$Pclass)
tabla.SurvSex <- table(titanic$Survived, titanic$Sex)
chisq.test(tabla.SurvPclass)
##
##
   Pearson's Chi-squared test
##
## data: tabla.SurvPclass
## X-squared = 102.89, df = 2, p-value < 2.2e-16
chisq.test(tabla.SurvSex)
##
   Pearson's Chi-squared test with Yates' continuity correction
##
##
## data: tabla.SurvSex
## X-squared = 260.72, df = 1, p-value < 2.2e-16
chisq.test(x =titanic$Survived, y = titanic$Age )
##
##
   Pearson's Chi-squared test
##
## data: titanic$Survived and titanic$Age
## X-squared = 269.07, df = 186, p-value = 6.478e-05
```

Puesto que obtenemos en todos los tests un valor p menor que el valor de significación (0,05), podemos rechazar la hipótesis nula y admitimos que dichas variables son estadisticamente significativas con la variable Survived.

4.3.3. ¿La proporción de pasajeros fallecidos de Clase 3 es realmente mayor que la proporción de pasajeros fallecidos de clase 1?

Como última prueba estadística, se aplicará un contraste de hipótesis sobre la proporción de dos muestras para determinar si efectivamente, la proporción de pasajeros fallecidos viajando en clase 3 es mayor la proporción de pasajeros fallecidos de clase 1. Con esto las hipótesis nula y alternativa son:

H0:
$$p_{c3} = p_{c1}$$

H1: $p_{c3} > p_{c1}$

Siendo p_{c3} la proporción de pasajeros de clase 3 que no han sobrevivido y p_{c1} la proporción de pasajeros de clase 1 que no han sobrevivido.

```
(numPrimera <- length(titanic.primeraClase$Survived))</pre>
## [1] 216
(numTercera <- length(titanic.terceraClase$Survived))</pre>
## [1] 491
Para este caso, debido al teorema del limite central y que las dos muestras tienen un número alto
de registros, se asumirá la normalidad de la distribución.
(p1 <- sum(titanic.terceraClase$Survived == 0) / numTercera)</pre>
## [1] 0.7576375
(p2 <- sum(titanic.primeraClase$Survived == 0) / numPrimera)</pre>
## [1] 0.3703704
#Comprobación
success <- c(p1*numTercera,p2*numPrimera)</pre>
n <- c(numTercera,numPrimera)</pre>
prop.test( success, n, alternative="greater", correct=FALSE)
##
##
    2-sample test for equality of proportions without continuity
##
    correction
##
## data: success out of n
## X-squared = 97.566, df = 1, p-value < 2.2e-16
## alternative hypothesis: greater
## 95 percent confidence interval:
## 0.3245555 1.0000000
## sample estimates:
##
      prop 1
                 prop 2
## 0.7576375 0.3703704
```

Obtenemos un valor p menor que el nivel de significación (0,05) por lo que rechazamos la hipótesis nula y admitimos la hipótesis alternativa diciendo que efectivamente, la proporción de pasajeros fallecidos de Clase 3 es mayor que la proporción de pasajeros fallecidos de clase 1

5. Representación de los resultados a partir de tablas, gráficas y conclusiones finales.

En general nos hemos encontrado con un conjunto razonablemente limpio pero cuyos pocos problemas de limpieza eran complejos. La toma de decisiones respecto a imputar o no imputar un valor, respecto a qué considerar outlier o respecto a las estrategias de limpieza, pueden llegar a ser muy complejas y a necesitar de un conocimiento cualitativo del campo de aplicación muy alto.

Estamos bastante contentos con los resultados, hemos tratado problemas muy diversos y utilizado distintas técnicas de imputación. En el proceso también hemos ido extrayendo pequeñas conclusiones.

Por ejemplo hemos podido encontrar dos tipologías de viaje en grupo: familia joven con muchos hermanos y familias mayores. A este respecto podemos complementar la gráfica anterior en la que observábamos que a mayor número de hermanos más pequeñas eran las edades de los individuos, con otra en la que veremos cómo eso no sucede con la cantidad de miembros en la familia, de hecho en este caso parece incluso converger hacia los 40 años de edad.

Esta ha sido la mayor sorpresa que nos hemos encontrado durante el análisis, de hecho nos habría encantado poder indagar aún más en la composición de las diferentes familias a bordo del titanic mediante el estudio de las relaciones de parentesco entre pasajeros, una dimensión que desgraciadamente no se encontraba presente en este dataset.

Pero también hemos podido comprobar las conclusiones predecibles para este trabajo, estas son que la edad, el sexo y la clase social influyó altamente en las probabilidades de supervivencia. Podemos observar la interacción entre las dos primeras gracias al siguiente gráfico.

A través del gráfico podemos ver como la edad media de las mujeres que fallecieron es mucho menor que la edad media de los hombres que fallecieron. No obstante, es curioso observar que la edad media de aquellos hombres que lograron sobrevivir es menor que la edad media de aquellas mujeres que también sobrevivieron, probablemente reducida sobremanera dado que los hombres que se salvaron fueron en su mayoría niños.

Por último, podemos observar de otra forma a las ya realizadas qué variables separan mejor nuestros datos para poder clasificar si han sobrevivido o no. Ya mencionábamos al comienzo del trabajo que este dataset era muy utilizado para generar árboles de clasificación, así que realizaremos el de rigor mediante el paquete rpart y procederemos a explicar las conclusiones que de él se derivan.

Los resultados son impresionantes. Confirma lo que ya sabíamos, pero nos aporta todavía más información en cómo se hacen los cortes significativos dentro de cada variable. Comenzando por el factor que más determina, con tan sólo dos nudos ya podemos certificar con un enorme 62% las probabilidades de morir de un pasajero. Pero no sólo eso, sino que el algoritmo ha sido capaz de decirnos qué significaba eso de niños en "mujeres y niños primero" y sitúa lo que es un niño en 6.4 años de edad, un valor tremendamente bajo.

Ya sabíamos que las mujeres se salvaban si eran de primera clase en gran proporción, pero visto con esta fragmentación realmente no eran tantas la que conseguían huir. Incluyendo a la clase dos en la primera (el algoritmo funciona así, buscando cortes significativos), tan sólo sobrevivieron 1 de cada 5 según nuestro dataset.

Otro resultado curioso es que dentro de la clase 3 y aunque tu billete fuera de los más baratos, las mujeres menores de 24 años también tuvieron ciertas posibilidades de salvarse, tan sólo un 9%, pero en comparación con los varones resulta una proporción razonablemente alta.

Para el final hemos dejado la conclusión más chocante de todas: para los varones menores de 6.4 años se reducía la posibilidad de sobrevivir cuantos más hermanos tuvieras. Es un resultado realmente pasmante para el que difícilmente encontramos explicación. Podríamos pensar que a mayor número de hermanos probablemente más mayor sería el individuo en cuestión, pero es que en ese punto del análisis ya habíamos establecido que el individuo es menor de 6.4 años, luego lo único que se nos ocurre es una conclusión un poco extravagante y no comprobable, pero podría ser que la tripulación encargada de elegir quién entraba a los botes y quién no, sobreestimara la edad de un chico al verlo en compañía de otros menores que él. Sería muy interesante poder contar con un dataset más completo del que deducir qué hermanos de una familia sobrevivieron y cuáles no, una primera hipótesis nos indicaría que los hermanos mayores fallecieron con una probabilidad más alta independientemente de la edad.

Una vez más y de otra forma diferente, llegamos a la conclusión de que las variables más significativas

a la hora de detectar si el pasajero ha sobrevivido o no son el sexo, la edad y la clase en la que el pasajero viajaba.

No hemos dejado de discutir durante el proceso de escritura a qué se podría deber este orden de prioridad. Está claro que la clase podía influir de muchas formas diferentes: Estos pasajeros viajaban más cerca de la cubierta y tenían mejor acceso a los botes salvavidas, pero sin duda pudo tomar parte un factor inconsciente por parte de la tripulación que los considerara más "merecedores" de ser salvados, de hecho esta circunstancia en ningún momento fue explícita. Por otra parte resulta curioso qué definió la prelación "mujeres y niños primero", no compete a este trabajo determinar dicha decisión, pero hoy en día sería tremendamente cuestionable. No podemos olvidar que el titanic se hundió en 1912, y que las condiciones socio-políticas de la época difieren de las actuales sobremanera.

6. Exportación del dataset

```
str(titanic)
   'data.frame':
                     891 obs. of 8 variables:
    $ Survived: Factor w/ 2 levels "0", "1": 1 2 2 2 1 1 1 1 2 2 ...
              : Factor w/ 3 levels "1", "2", "3": 3 1 3 1 3 3 1 3 3 2 ...
              : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
##
   $ Sex
   $ Age
##
                      22 38 26 35 35 ...
   $ SibSp
                      1 1 0 1 0 0 0 3 0 1 ...
              : int
   $ Parch
                      0 0 0 0 0 0 0 1 2 0 ...
   $ Fare
              : num
                     7.25 71.28 7.92 53.1 8.05 ...
    $ Embarked: Factor w/ 3 levels "S", "C", "Q": 1 2 1 1 1 1 1 1 1 2 ...
titanic_raw$Survived <- titanic$Survived</pre>
titanic_raw$Pclass
                      <- titanic$Pclass
titanic_raw$Sex
                      <- titanic$Sex
titanic raw$Age
                      <- titanic$Age
titanic_raw$SibSp
                      <- titanic$SibSp
titanic raw$Parch
                      <- titanic$Parch
titanic raw$Fare
                      <- titanic$Fare
titanic_raw$Embarked <- titanic$Embarked</pre>
write.csv(titanic_raw,"./csv/Titanic_clean.csv",
          row.names=FALSE, fileEncoding = 'UTF-8')
```