CLAIMS

What is claimed is:

1	1. A method to detect a weight-set to process a spread spectrum channel
2	comprising:
3	determining a measurement probability for a weight-set from
4	measurements of a current time-slot;
5	determining a transition probability for the weight-set, the transition
6	probability based at least on a change from a previously requested weight-set;
7	calculating a weight-set metric for the weight-set based at least on the
8	measurement and transition probabilities and a prior weight-set metric; and
9	detecting a weight-set from a group of predetermined weight-sets based at
10	least on the weight-set metric to process the current time-slot.
1	2. The method of claim 1 further comprising using the detected weight-set
2	to combine multipath components of the current time-slot.
1	3. The method of claim 1 wherein the weight-set metric is a weight-set
2	metric for a current node of a trellis of nodes, and wherein calculating the weight-
3	set metric comprises:
4	calculating, for branches of the trellis leading to the current node, a branch
5	metric based at least on the measurement and transition probabilities;
6	calculating node metrics for the current node based at least on the branch
7	metric of a branch leading to the current node and a metric of a prior node
8	connected by the branch leading to the current node; and
9	selecting a greatest of the node metrics for the current node to correspond
10	with the weight-set metric for the current node.
1	4. The method of claim 3 wherein nodes of the trellis correspond with
2	weight-sets of the group of predetermined weight-sets.
1	5. The method of claim 3 wherein the selecting comprises selecting a node

2

from a plurality of nodes having the greatest weight-set metric, each node of the

3	plurality corresponding with one weight-set of the group of predetermined weight-
4	sets.
1	6. The method of claim 1 wherein determining the measurement
2	probability includes determining the measurement probability for each weight-set
3	of the group of predetermined weight-sets based at least on received amplitude
4	and phase measurements of the current time-slot.
1	7. The method of claim 1 wherein determining the measurement
2	probability for the weight-set further comprises estimating a probability for each
3	weight-set of the group of predetermined weight-sets for the current time-slot by
4	measuring received pilot symbols of a dedicated physical channel (DPCH) and a
5	continuous pilot channel (CPICH).
1	8. The method of claim 1 wherein the group of predetermined weight-sets
2	include at least one of the weight-sets used by a base station in transmitting the
3	current time-slot in diversity mode.
1	9. The method of claim 1 wherein the transition probability is determined
2	from a probability that a weight-set was changed from other weight-sets of the
3	group of predetermined weight-sets and based at least on feedback previously
4	provided by a receiver to a transmitter.
1	10. The method of claim 9 wherein the feedback is comprised of at least
2	one feedback bit previously transmitted by a mobile unit for use by a base station
3	in transmitting the current time-slot.
1	11. The method of claim 1 further comprising determining channel taps
2	from the selected weight-set for use in combining multipath components of a
3	channel during the current time-slot.
1	12. The method of claim 1 wherein each weight of a weight-set has a

phase and amplitude component.

2

1	13. The method of claim 1 further comprising repeating the determining of
2	the measurement and transition probabilities, calculating the weight-set metric and
3	detecting a weight-set for a next time-slot, wherein the determining of the
4	transition probability uses the weight-set metrics from the current time-slot as a
5	prior time-slot.
1	14. A processor comprising:
2	a metrics calculation element to determine a measurement probability for a
3	weight-set from measurements of a current time-slot, to determine a transition
4	probability for the weight-set, the transition probability based at least on a change
5	from a previously requested weight-set, and to calculate a weight-set metric for
6	the weight-set based at least on the measurement and transition probabilities and a
7	prior weight-set metric; and
8	a weight detection element to select a weight-set from a group of
9	predetermined weight-sets based at least on the weight-set metric to process the
10	current time-slot.
1	15. The processor of claim 14 wherein the weight-set metric is a weight-
2	set metric for a current node of a trellis of nodes, and wherein the metrics
3	calculation element calculates the weight-set metric includes:
4	calculating, for branches of the trellis leading to the current node, a branch
5	metric based at least on the measurement and transition probabilities; and
6	calculating node metrics for the current node based at least on the branch
7	metric of a branch leading to the current node and a metric of a prior node
8	connected by the branch leading to the current node,
9	and the weight detection element selects a greatest of the node metrics for
10	the current node to correspond with the weight-set metric for the current node.
1	16. The processor of claim 14 wherein the metrics calculation element
2	determines the measurement probability for each weight-set of the group of
3	predetermined weight-sets based at least on received amplitude and phase
4	measurements of the current time-slot.

1	17. The processor of claim 14 wherein the metrics calculation element
2	determines the measurement probability by estimating a probability for each
3	weight-set of the group of predetermined weight-sets for the current time-slot by
4	measuring received pilot symbols of a dedicated physical channel (DPCH) and a
5	continuous pilot channel (CPICH).
1	18. The processor of claim 14 wherein the metrics calculation element
2	determines the transition probability from a probability that a weight-set was
3	changed from other weight-sets of the group of predetermined weight-sets and
4	based at least on feedback previously provided by a receiver to a transmitter.
1	19. A machine readable medium having program instructions stored
2	thereon for performing a method of processing spread spectrum channels when
3	executed within a digital processing device, the method comprising:
4	determining a measurement probability for a weight-set from
5	measurements of a current time-slot;
6	determining a transition probability for the weight-set, the transition
7	probability based at least on a change from a previously requested weight-set;
8	calculating a weight-set metric for the weight-set based at least on the
9	measurement and transition probabilities and a prior weight-set metric; and
0	detecting a weight-set from a group of predetermined weight-sets based at
1	least on the weight-set metric to process the current time-slot.
1	20. The machine readable medium of claim 19 wherein the weight-set
2	metric is a weight-set metric for a current node of a trellis of nodes, and wherein
3	calculating the weight-set metric comprises:
4	calculating, for branches of the trellis leading to the current node, a branch
5	metric based at least on the measurement and transition probabilities;
6	calculating node metrics for the current node based at least on the branch
7	metric of a branch leading to the current node and a metric of a prior node
8	connected by the branch leading to the current node; and
9	selecting a greatest of the node metrics for the current node to correspond

10

with the weight-set metric for the current node.

1	21. The machine readable medium of claim 19 wherein determining the
2	measurement probability includes determining the measurement probability for
3	each weight-set of the group of predetermined weight-sets based at least on
4	received amplitude and phase measurements of the current time-slot.
1	22. The machine readable medium of claim 19 wherein determining the
2	measurement probability for the weight-set further comprises estimating a
3	probability for each weight-set of the group of predetermined weight-sets for the
4	current time-slot by measuring received pilot symbols of a dedicated physical
5	channel (DPCH) and a continuous pilot channel (CPICH).
1	23. The machine readable medium of claim 19 wherein the transition
2	probability is determined from a probability that a weight-set was changed from
3	other weight-sets of the group of predetermined weight-sets and based at least on
4	feedback previously provided by a receiver to a transmitter.
1	24. A code division multiple access (CDMA) receiver comprising:
2	a dedicated channel measurement element to measure characteristics of
3	current time slots of a CDMA channel;
4	a metrics calculation element to calculate metrics for weight sets estimated
5	to have been used in transmitting each of the current time slots, the metrics
6	calculated from the measured characteristics of the current time slots;
7	a weight detection element to select a weight set from a group of
8	predetermined weight sets based at least on the metrics for the weight sets; and
9	a channel tap calculator to generate channel taps from the selected weight-
10	sets.
1	25. The CDMA receiver of claim 24 wherein the metrics calculation
2	element calculates metrics for weight sets based at least on a measurement
3	probability for each weight-set from measurements of one of the current time-slot,
4	and a transition probability for the weight-set, wherein the transition probability is

5

based at least on a change from a previously requested weight-set.

1	26. The CDMA receiver of claim 24 further comprising:
2	a pilot channel measurement element to measure the a channel; and
3	a weight selection element to select a channel weight set from a pilot
4	channel measurement, wherein the weight selection element provides feedback to
5	a transmitter based at least on the selected channel weight set for use in
6	subsequent transmissions to the receiver by the transmitter.
1	27. The receiver of claim 24 further comprising:
2	despreaders to despread received spread spectrum signals with spreading
3	codes; and
4	a rake receiver to weigh and combine multipath components of the
5	received spread spectrum signals using the channel taps provided by the channel
6	tap calculator.
	•
1	28. The receiver of claim 25 wherein each weight-set metric is a weight-
2	set metric for a current node of a trellis of nodes, and wherein the metrics
3	calculation element calculates metrics for weight-set by calculating, for branches
4	of the trellis leading to the current node, a branch metric based at least on the
5	measurement and transition probabilities, and calculating node metrics for the
6	current node based at least on the branch metric of a branch leading to the current
7	node and a metric of a prior node connected by the branch leading to the current
8	node,
9	and wherein the weight detection element selects a greatest of the node
10	metrics for the current node to correspond with the weight-set metric for the
11	current node.
1	29. The receiver of claim 24 wherein the dedicated channel measurement
2	element, the metrics calculation element, the weight detection element, and the
3	channel tan calculator are functional elements of a processor.