第6章 图与网络分析

6.7 最小费用流问题

最小费用流问题

- ●实例: 给定有向图 G = (V, E),源顶点 $s \in V$ 和目的顶点 $t \in V$,以及流值 v。弧 $(i,j) \in E$ 上定义有容量 $c_{ij} \ge 0$ 和费用(长度) $w_{ij} \ge 0$ 。
- 询问: 求一个从 s 到 t,其流值为 v 的流,使流的费用最小。
 流 $x = \{x_{ij}\}$ 的费用定义为 $\sum_{i,j} w_{ij} x_{ij}$ 。
- ●假设: 所有的数(容量、费用、流值 v)均为整数。
- ●说明:该问题可能没有解。但通过加入一条费用为 *M*(不妨令其为原图所有边的费用之和再加 1)的边(*s*, *t*),可以将该问题转换为必定有解的问题。

最小费用流的LP

min
$$\sum_{(i,j)\in E} w_{ij} x_{ij}$$
 (LP)
s.t. $\sum_{j} (x_{js} - x_{sj}) = -v$ (1)
 $\sum_{j} (x_{jt} - x_{tj}) = v$ (2)
 $\sum_{j} (x_{ji} - x_{ij}) = 0, \quad i \in V, i \neq s, t$ (3)
 $x_{ij} \leq c_{ij}, \quad (i,j) \in E$ (4)
 $x_{ij} \geq 0, \quad (i,j) \in E$ (5)

例子(图6.7.1)

每条弧上的第一个数表示弧的长度,第二个数表示弧的容量。

图 6.7.1

	x_{12}	x_{13}	x_{23}	x_{24}	x_{34}		
	(1, 2)	(1, 3)	(2, 3)	(2, 4)	(3, 4)		
价	2	1	2	4	2	右	
v_1	-1	-1	0	0	0	-v	p_1
v_2	1	0	-1	-1	0	0	p_2
v_3	0	1	1	0	-1	0	p_3
v_4	0	0	0	1	1	v	p_4
(1, 2)	-1	0	0	0	0	-1	r_{12}
(1, 3)	0	-1	0	0	0	-3	r_{13}
(2,3)	0	0	-1	0	0	-1	r_{23}
(2, 4)	0	0	0	-1	0	-3	r_{24}
(3, 4)	0	0	0	0	-1	-1	<i>r</i> ₃₄

LP的对偶规划

max
$$p_{t}v - p_{s}v - \sum_{(i,j)\in E} c_{ij}r_{ij}$$
 (DP)
s.t. $p_{j} - p_{i} - r_{ij} \leq w_{ij}$, $(i,j)\in E$ (6)
 $r_{ij} \geq 0$, $(i,j)\in E$ (7)
 p_{i} 无限制, $i\in V$ (8)

互补松紧条件

●原始和对偶最优解的互补松紧条件为:

$$(p_j - p_i - r_{ij} - w_{ij}) x_{ij} = 0, \forall (i, j) \in E,$$
 以及
$$r_{ij} (x_{ij} - c_{ij}) = 0, \forall (i, j) \in E.$$

●该条件等价于:

$$p_{j} - p_{i} - r_{ij} < w_{ij} \Rightarrow x_{ij} = 0$$
 , $\forall (i, j) \in E$, 以及 $r_{ij} > 0 \Rightarrow x_{ij} = c_{ij}$, $\forall (i, j) \in E$ 。

• 给定一组 p_i ,定义 $r_{ij} = \max\{0, p_j - p_i - w_{ij}\}$, (6.7.3) 则 $\{p_i, r_{ij}\}$ 是对偶的一组可行解。(由 r_{ij} 的定义, r_{ij} $p_j - p_i - w_{ij}$,满足约束(6)。)

互补松紧条件

●由 r_{ii} 的定义,可以证明:

$$p_{j} - p_{i} - r_{ij} < w_{ij} \Leftrightarrow p_{j} - p_{i} < w_{ij}$$
,以及
$$r_{ij} > 0 \Leftrightarrow p_{j} - p_{i} > w_{ij}$$
。

● 因此互补松紧条件又等价于:

$$p_{j} - p_{i} < w_{ij} \Rightarrow x_{ij} = 0$$
, $\forall (i, j) \in E$, 以及 (6.7.4)
$$p_{j} - p_{i} > w_{ij} \Rightarrow x_{ij} = c_{ij}$$
, $\forall (i, j) \in E$ (6.7.5)

●因此,只要 $\{x_{ij}\}$ 、 $\{p_i, r_{ij}\}$ 满足(6.7.3~5),则它们就分别是原始规划 LP 和对偶规划 DP 的最优解。

证明

$$p_j - p_i - r_{ij} < w_{ij} \Leftrightarrow p_j - p_i < w_{ij} \bullet$$

- ●证: (⇐)。若 $p_j p_i < w_{ij}$,由于 r_{ij} 0,显然有 $p_j p_i r_{ij} < w_{ij}$ 。
- (⇒)。若 $p_j p_i r_{ij} < w_{ij}$,即 $r_{ij} > p_j p_i w_{ij}$,由于 $r_{ij} = \max\{0, p_j p_i w_{ij}\}$,可知 $r_{ij} = 0$,因此 $p_j p_i < w_{ij}$ 。

$$r_{ij} > 0 \Leftrightarrow p(j) - p(i) > w_{ij}$$

- ●证: 由定义, $r_{ij} = \max\{0, p_j p_i w_{ij}\}$ 。
- 若 $r_{ij} > 0$,则 $p_j p_i w_{ij} > 0$,即 $p_j p_i > w_i$ 。反之,若 $p_j p_i > w_i$,则 $r_{ij} = p_j p_i w_{ij} > 0$ 。

算法的基本思想

- 一个流可以分解成若干不可分流(unsplittable flow)的叠加。
- 一个流是最小费用流,当且仅当它在满足容量约束的条件下,它的每一个不可分流都是费用最小的,即"路长"最短的。
- 因此,最小费用流算法的核心思想是:总是在费用最小的 增广路上增加流值,直到流值达到 v。

如何增加流?

- $M\{p_i=0\}$ (对偶可行)和 $\{x_{ii}=0\}$ (原始不可行)开始。
- 根据 (6.7.3) 计算出 {r_{ii}}。
- 当前的 $\{p_i, r_{ii}\}$ 是对偶规划的可行解。
- 当前的 {x_{ii}} 满足约束 (3)(4)(5), 不满足 (1)(2)。
- {p_i} 和 {x_{ii}} 满足互补松弛条件 (6.7.4) 和 (6.7.5)。
- 设流 $\{x_{ij}\}$ 的值为 v'。则当前的 $\{p_i, r_{ij}\}$ 和 $\{x_{ij}\}$ 分别是对偶规划和原始规划相对于流值v'的最优解。
- 若v'<v,则需要找 s-t增广路增加 x 的流值。
- 为了保证新的解仍是增加后的流值上的最小费用流问题的 最优解,找增广路时不能违反条件(6.7.4)和(6.7.5)。

找一条增广路(1)

- 首先尝试在不改变当前{p_i}值的情形下找增广路。
- 考察互补松紧条件(6.7.4)、(6.7.5)。若 $p_j p_i < w_{ij}$,则 $x_{ij} = 0$;若 $p_j p_i > w_{ij}$,则 $x_{ij} = c_{ij}$ 。因此,若 $p_j p_i \neq w_{ij}$,则 x_{ij} 的值就是固定的,不能增加或减小。
- 所以,只能在 $p_j p_i = w_{ij}$ 的弧上找增广路。由增广路的定义,这样的弧又需要满足 $x_{ij} < c_{ij}$ (前向弧)或 $x_{ij} > 0$ (后向弧)的条件。于是,定义

$$I = \{(i,j) \mid p_j - p_i = w_{ij} \coprod x_{ij} < c_{ij} \},$$
 $R = \{(i,j) \mid p_j - p_i = w_{ij} \coprod x_{ij} > 0 \}.$
称 $I \cup R$ 为允许弧(admissible arc)的集合。

• 在不改变当前 $\{p_i\}$ 值的情形下找增广路,就是在 $I \cup R$ 中找增广路。

p_i 的解释

- p_i的直观含义是顶点i的"势",也可理解为"高度"。初始时,所有的顶点的势都为0。顶点s的势固定为0,不会改变。
- 顶点*i*所处的势是对从*s*到*i*在允许弧集合中的增广路长度 (前向弧的长度之和 – 后向弧的长度之和)的估计。当估 计不准确时,*p_i*的值做加1调整。
- 因此,若在允许弧集合中能够找到s-t增广路P,由于 p_i 每次都只增加1,路P实际上是所有的增广路中费用最小的。

找一条增广路(2)

- 若在允许弧集合中找不到 s-t增广路,表明当前网络上没有费用为 $l = p_t$ 的增广路。这时就需要对 $\{p_i\}$ 的值做出调整:将从 s 出发通过增广路不能到达的顶点的 p_i 值加 1,尝试找费用为 l+1的增广路。
- 在找到的增广路上增加流量。重复上述过程,直到 x 的流值达到 v。

Successive Shortest Path Algorithm

```
1 \forall (i,j) \in E, x_{ij} \leftarrow \mathbf{0}; v' \leftarrow \mathbf{0}; \forall i \in V, p_i \leftarrow \mathbf{0}。
2 while 流 x 的值 v' < v do
```

3 确定哪些弧可以改变流量。

$$I \leftarrow \{(i,j) | p_j - p_i = w_{ij} \coprod x_{ij} < c_{ij} \},$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \coprod x_{ij} > \mathbf{0} \}.$$

- 4 在 $I \cup R$ 上找一条从 S-t 增广路 P。
- 5 if 能找到 then
- $\delta \leftarrow \min\{\delta(P), v v'\}_{\circ}$
- 7 沿路 P 增加流量δ。
- $v' \leftarrow v' + \delta$
- 9 else

Successive Shortest Path Algorithm

(以上算法来源于[Jewell, 1958], [Iri, 1960]和[Busacker, Gowen, 1961]给出的基本定理。)

从s到t的v=3的最小费用流

	(1, 2)	(1, 3)	(2,3)	(2, 4)	(3, 4)
r _{ij}	0	0	0	0	0
I	-	-	-	-	-
R	-	-	-	-	-

$$I \leftarrow \{(i,j) | p_j - p_i = w_{ij} \pm x_{ij} < c_{ij} \}$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \pm x_{ij} > 0 \}$$

 $I = \emptyset$, $R = \emptyset$ 。在 $I \cup R$ 上找s-t增广路,不能到达t。

	(1, 2)	(1, 3)	(2, 3)	(2, 4)	(3, 4)
r _{ij}	0	0	0	0	0
I	1	-	-	-	-
R	-	-	-	-	-

$$I \leftarrow \{(i,j) | p_j - p_i = w_{ij} \pm x_{ij} < c_{ij} \}$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \pm x_{ij} > 0 \}$$

 v_2, v_3, v_4 的 p_i 值加1。绿边: I 中的边。在 $I \cup R$ 上找s-t增广路,不能到达t。

	(1, 2)	(1, 3)	(2, 3)	(2, 4)	(3, 4)
r _{ij}	0	0	0	0	0
I	1	-	1	-	-
R	-	-	-	-	-

$$I \leftarrow \{(i,j) | p_j - p_i = w_{ij} \perp x_{ij} < c_{ij}\}$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \perp x_{ij} > 0\}$$

 v_3, v_4 的 p_i 值加1。

在 $I \cup R$ 上找s-t增广路,不能到达t。

(1, 2)	(1, 3)	(2, 3)	(2, 4)	(3, 4)
0	0	0	0	0
√	-	V	-	√
-	-	-	-	-

$$I \leftarrow \{(i,j) | p_j - p_i = w_{ij} \coprod x_{ij} < c_{ij} \}$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \perp x_{ij} > 0\}$$

 v_4 的 p_i 值加1。

在 $I \cup R$ 上找s-t增广路(绿边),可以到达t, $\delta = 2$ 。

第1条增广路

	(1, 2)	(1, 3)	(2, 3)	(2, 4)	(3, 4)
r _{ij}	0	0	0	0	0
I	-	-	-	-	-
R	1	-	1	-	√

$$I \leftarrow \{(i,j) \mid p_j - p_i = w_{ij} \coprod x_{ij} < c_{ij}\}$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \perp x_{ij} > 0\}$$

红边: R 中的边。

在 $I \cup R$ 上找s-t增广路,不能到达t。

	(1, 2)	(1, 3)	(2, 3)	(2, 4)	(3, 4)
r _{ij}	1	0	0	0	0
I	-	1	-	-	-
R	-	-	1	-	√

$$I \leftarrow \{(i,j) | p_j - p_i = w_{ij} \pm x_{ij} < c_{ij} \}$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \pm x_{ij} > 0 \}$$

 v_2, v_3, v_4 的 p_i 值加1。 在 $I \cup R$ 上找s-t增广路,不能到达t。

	(1, 2)	(1, 3)	(2,3)	(2, 4)	(3, 4)
^ij	1	0	0	0	1
I	ı	1	-	1	-
R	-	-	V	-	-

$$I \leftarrow \{(i,j) | p_j - p_i = w_{ij} \perp x_{ij} < c_{ij} \}$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \perp x_{ij} > 0\}$$

 v_4 的 p_i 值加1。

在 $I \cup R$ 上找s-t增广路,可以到达t, $\delta = 1$ 。

第2条增广路

长度:
$$3-1+3=5$$

	(1, 2)	(1, 3)	(2, 3)	(2, 4)	(3, 4)
r _{ij}	1	0	0	0	1
I			1	1	
R		√	√	√	

$$I \leftarrow \{(i,j) | p_j - p_i = w_{ij} \coprod x_{ij} < c_{ij} \}$$

$$R \leftarrow \{(i,j) | p_j - p_i = w_{ij} \coprod x_{ij} > 0 \}$$

橙边: 既在I中,又在R中的边。 流值到达v=3,结束。

最小费用流的原始规划

min
$$\sum_{(i,j)\in E} w_{ij} x_{ij}$$
 (LP)
s.t.
$$-x_{12} - x_{13} = -3, \qquad i = 1$$

$$x_{24} + x_{34} = 3, \qquad i = 4$$

$$x_{12} - x_{23} - x_{24} = 0, \qquad i = 2$$

$$x_{13} + x_{23} - x_{34} = 0, \qquad i = 3$$

$$x_{ij} \le c_{ij}, \qquad (i,j) \in E$$

$$x_{ij} \ge 0, \qquad (i,j) \in E$$

	(1,2)	(1,3)	(2,3)	(2,4)	(3, 4)
x_{ij}	2	1	1	1	2
c_{ij}	2	1	2	4	2

 $r_{12} = 1 > 0$ $r_{34} = 1 > 0$

LP的对偶规划

max
$$p_4 \cdot 3 - p_1 \cdot 3 - (2r_{12} + r_{13} + 2r_{23} + 4r_{24} + 2r_{34})$$
 (DP) s.t. $p_2 - p_1 - r_{12} \le 1$ (1,2) $p_3 - p_1 - r_{13} \le 3$ (1,3) $p_3 - p_2 - r_{23} \le 1$ (2,3) $p_4 - p_2 - r_{24} \le 3$ (2,4) $p_4 - p_3 - r_{34} \le 1$ (3,4) $r_{ij} \ge 0$, $(i,j) \in E$ p_i 无限制, $i \in V$ p_i 1 2 3 4 x_{ij} 全部大于0, (DP)中的5个约束 r_{ij} 1 0 0 0 1 全部取等式。

时间复杂度

- 设网络的点数为 n,弧数为 m,弧的最大费用为 w。
- ●找允许弧需要 O(m)时间,寻找的次数为 mw,故花费在找允许 弧的时间为 $O(m^2w)$ 。
- •一个顶点的 p_i 值修正的次数最多为mw次,总共有n个顶点,因此修改所有的 p_i 值的总花费为O(nmw)。
- ●流值为v,则流增广最多进行v次,每次增广需要花费O(m)时间,所以修改 x_{ii} 的总花费为O(mv)。
- ●所以,总的计算量为 $O(m^2w+mv)$ 。

