Digital System Design Spring 2023 Lecture 13

Shahid Masud

Lecture 13 Topics: Binary Array Multiplier, Multiplier Delays, Sequential Multiplier, STG Control of Multipliers, Signed Multiplications

Topics

- Binary Array Multipliers
- Operation of Sequential Multiplier
- Control Circuits for Multipliers
- Reducing Registers in Sequential Multipliers
- Taking care of sign in Signed Multiplication
- Fractional Binary numbers
- QUIZ 3 Today

Decimal Multiplication using Pencil and paper

Keep shifting right

Keep shifting left

Array Multipliers – Parallel and Serial forms

$$X = \sum_{i=0}^{m-1} X_i \cdot 2^i$$

$$Y = \sum_{j=0}^{n-1} Y_j \, 2^j$$

$$P = X.Y = \sum_{i=0}^{m-1} X_i \ 2^i. \sum_{j=0}^{m-1} Y_j, 2^j$$

$$P = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (X_i Y_j) 2^{i+j}$$

$$P = \sum_{k=0}^{m+n-1} P_k 2^k$$

Complexity of Binary Array Multiplier

				X ₃	X ₂	X ₁	X _o
				Y ₃	Y ₂	Y ₁	\mathbf{Y}_{0}
				X_3Y_0	X_2Y_0	X_1Y_0	X_0Y_0
			X_3Y_1	X_2Y_1	X_1Y_1	X_0Y_1	0
		X_3Y_2	X_2Y_2	X_1Y_2	X_0Y_2	0	0
	X_3Y_3	X_2Y_3	X_1Y_3	X_0Y_3	0	0	0
Cout	P_6	P ₅	P_4	P_3	P ₂	P_1	P_0

How many AND gates?
How many Adders?
Identify longest Carry path?

Complexity and Timing

For an n-bit x n-bit multiplier; We need:

n(n-2) full adders

n half adders

n² AND Gates

Worst Case Delay is (2n+1) C Where C is the worst adder delay

An Array Multiplier Cell

				A ₃	A ₂	A_1	A_0
				B ₃	B ₂	B_1	B_0
				A_3B_0	A_2B_0	A_1B_0	A_0B_0
			A_3B_1	A_2B_1	A_1B_1	A_0B_1	0
		A_3B_2	A_2B_2	A_1B_2	A_0B_2	0	0
	A_3B_3	A_2B_3	A_1B_3	A_0B_3	0	0	0
Cout	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀

4-Bit Array Multiplier connected as AND and ADD

				A ₃	A ₂	A_1	A ₀
				B ₃	B ₂	B_1	B ₀
				A_3B_0	A_2B_0	A_1B_0	A_0B_0
			A_3B_1	A_2B_1	A_1B_1	A_0B_1	0
		A_3B_2	A_2B_2	A_1B_2	A_0B_2	0	0
	A_3B_3	A_2B_3	A_1B_3	A_0B_3	0	0	0
Cout	P_6	P ₅	P_4	P_3	P_2	P_1	P_0

Embedded Systems Lab (EESL) Array Multiplier **Circuit Delays**

Building Block B_{i} Sum_in Cout Cin Full Adder Sum_out I

 B_0

 A_1B_0

 A_2B_0

 A_3B_0

Sumin

Full

Sumous

Operation of Sequential Multiplier

Data Path Architecture of Sequential Mult

STG for a 4 Bit Sequential Binary

Sequential Multiplier with Reduced Registers

Embedded Systems Lab (EESL)

STG of Reduced Register Sequential

Multiplier

Example of a 4-bit Serial Parallel

Multiplier

Product Accumulator Register (8 + 1) bits

Shift the contents To the right after Every step

Example continued

				1	1	0	1	Multiplicand
			X	1	0	1	1	Multiplier
				1	1	0	1	
			1	1	0	1	(x)—	→ Shift Left by one
		1	0	0	1	1	1	Partial product after first step
		0	0	0	0	X	Х	Another shift left
		1	0	0	1	1	1	Partial product after second step
	1	1	0	1	X	X	Х	Another shift left
1	0	0	0	1	1	1	1	Partial product after final step
	_				_	_		

Answer = $(10001111)_2 = (143)_{10}$

Embedded Systems Lab (EESL)

Multiplier Register
Operation Initial Conte

Initial Contents of Accumulator

Multiplicand bit [0] is '1'

After Add operation

After Shift Right

Next bit M = 1 hence Add

After Add

After Shift Right

Next bit M=0, hence Skip Add operation

After Shift Right

Next bit M=1, hence Add

After Addition

After Shift Right, final answer

STG Control Diagram for this Multiplier

Flexible STG for any no. of multiplicand bits

Embedded Systems Lab (EESL)

Parallel-Serial Multiplier -

Concept Shift Reg A b2 b0 b3 b1, a2, a1, a0 Cin Cin Cin Q Clk Clk Clk Clk Clk Clk P0, P1, P2,

Clk

Multiplication of **Signed Binary Numbers**

Case I: Negative Multiplicand, Positive Multiplier

Example: -3₁₀ x 6₁₀

Sign-bit of the multiplicand must be extended to the word length of the final product before Operating on the 2's Complement words.

This sign-extended multiplicand is used when forming Partial products and accumulated sums.

The result of the multiplication is the 2's Complement of the Product. The final magnitude is found by taking 2's Complement. Bit Assignment: We assign 8 bits to both numbers.

The product will thus be 16 bits.

+3 = 0000 0011

Thus 2's Complement = -3 = 1111 1101

+6 = 0000 0110

1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
							X	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	X
1	1	1	1	1	1	1	1	1	1	1	1	0	1	X	X
1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0

Remember: Sign Extension to maximum number of bits in datapath

Multiplication of Fractions

Convert from decimal to binary $(\frac{3}{4})$

= 0.75 0.75 x 2 = 1.5, keep 1 0.5 x 2 = 1.0, keep 1 0 x 2 = 0 keep 0 And only zeros afterwards

$$= 2^{-1} + 2^{-2} + 0 + 0$$

= 0.1100; assigning four fractional bits