

Page 1 of 93

APPLICATION CERTIFICATION On Behalf of 3SIXTY INDUSTRIES INC

Active Floorstanding Loudspeaker System Model No.: EXAT33-CR, EXAT30-BK-CR, EXAT31-BK, EXAT32-CR-BK

FCC ID: 2ADC5EXAT33-CR

Prepared for : 3SIXTY INDUSTRIES INC

Address : 1150 W. CENTRAL AVENUE BLDG C BREA,

CALIFORNIA 92821 USA

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Chan Yuan New Material Port, Keyuan

Rd. Science & Industry Park, Nan Shan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20141960
Date of Test : Oct 08-20, 2014
Date of Report : Oct 20, 2014

Report No.: ATE20141960 Page 2 of 93

TABLE OF CONTENTS

Descri	Description	
Test R	Report Certification	
	ENERAL INFORMATION	5
1.1.	Description of Device (EUT)	
1.1.	Accessory and Auxiliary Equipment	
1.2.	Description of Test Facility	
1.4.	Measurement Uncertainty	
	EASURING DEVICE AND TEST EQUIPMENT	
	PERATION OF EUT DURING TESTING	
3.1.	Operating Mode	
3.1.	Configuration and peripherals	
	EST PROCEDURES AND RESULTS	
	DDB BANDWIDTH TEST	
5.1.	Block Diagram of Test Setup	
5.2.	The Requirement For Section 15.247(a)(1) EUT Configuration on Measurement	
5.3. 5.4.	Operating Condition of EUT	
5.4. 5.5.	Test Procedure	
5.6.	Test Result	
	ARRIER FREQUENCY SEPARATION TEST	
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	
7. N	UMBER OF HOPPING FREQUENCY TEST	
7.1.	Block Diagram of Test Setup	
7.2.	The Requirement For Section 15.247(a)(1)(iii)	
7.3.	EUT Configuration on Measurement	
7.4.	Operating Condition of EUT	
7.5. 7.6.	Test Procedure Test Result	
	WELL TIME TEST	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(a)(1)(iii)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
9. M	AXIMUM PEAK OUTPUT POWER TEST	42
9.1.	Block Diagram of Test Setup	42
9.2.	The Requirement For Section 15.247(b)(1)	
9.3.	EUT Configuration on Measurement	42

Operating Condition of EUT42

9.4.9.5.

9.6.	Test Result	43
10. RA	ADIATED EMISSION TEST	49
10.1.	Block Diagram of Test Setup	
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	50
10.4.	Configuration of EUT on Measurement	50
10.5.	Test Procedure	51
10.6.	The Field Strength of Radiation Emission Measurement Results	51
11. BA	AND EDGE COMPLIANCE TEST	64
11.1.	Block Diagram of Test Setup	64
11.2.	The Requirement For Section 15.247(d)	64
11.3.	EUT Configuration on Measurement	64
11.4.	Operating Condition of EUT	64
11.5.	Test Procedure	65
11.6.	Test Result	65
12. AC	C POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.2	07(A)88
12.1.	Block Diagram of Test Setup	88
12.2.	Shielding Room Test Setup Diagram	
12.3.	The Emission Limit	
12.4.	Configuration of EUT on Measurement	89
12.5.	Operating Condition of EUT	89
12.6.	Test Procedure	
12.7.	Power Line Conducted Emission Measurement Results	89
13. AN	TENNA REQUIREMENT	93
13.1.	The Requirement	93
13.2	Antenna Construction	93

Report No.: ATE20141960 Page 4 of 93

Test Report Certification

Applicant : 3SIXTY INDUSTRIES INC

Manufacturer : 3SIXTY INDUSTRIES INC

EUT Description : Active Floorstanding Loudspeaker System

(A) MODEL NO.: EXAT33-CR, EXAT30-BK-CR, EXAT31-BK, EXAT32-CR-BK

(B) Trade Name: /

(C) POWER SUPPLY: AC 120V/60Hz

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4- 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Oct 08 - Oct 20, 2014
Prepared by :	7 in Zhang
	(Tim.zhang, Engineer)
Approved & Authorized Signer:	Lemil
	(Sean Liu, Manager)

Page 5 of 93

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Active Floorstanding Loudspeaker System
Model Number : EXAT33-CR, EXAT30-BK-CR, EXAT31-BK,

EXAT32-CR-BK

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Modulation type : GFSK, $\Pi/4$ -DQPSK, 8DPSK

Antenna Gain : 0dBi

Antenna type : PCB Antenna

Bluetooth version : Bluetooth V2.1+EDR

Power Supply : AC 120V/60Hz

Applicant : 3SIXTY INDUSTRIES INC

Address : 1150 W. CENTRAL AVENUE BLDG C BREA,

CALIFORNIA 92821 USA

Manufacturer : 3SIXTY INDUSTRIES INC

Address : 1150 W. CENTRAL AVENUE BLDG C BREA,

CALIFORNIA 92821 USA

Date of sample received: Oct 08, 2014
Date of Test: Oct 08-20, 2014

1.2. Accessory and Auxiliary Equipment

N/A

Report No.: ATE20141960

Page 6 of 93

1.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2014	Jan. 10, 2015
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2014	Jan. 10, 2015

Page 8 of 93

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

EUT

(EUT: Active Floorstanding Loudspeaker System)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Report No.: ATE20141960 Page 10 of 93

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Active Floorstanding Loudspeaker System)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20141960 Page 11 of 93

5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

	E	GFSK	∏/4-DQPSK	8DPSK	
Channel	Frequency (MHz)	20dB Bandwidth	20dB Bandwidth	20dB Bandwidth	Result
	(IVIIIZ)	(MHz)	(MHz)	(MHz)	
Low	2402	0.975	1.285	1.256	Pass
Middle	2441	0.897	1.274	1.268	Pass
High	2480	0.929	1.274	1.256	Pass

The spectrum analyzer plots are attached as below.

Mode 1: GFSK Link Mode

Middle Channel: 2441MHz Spectrum Ref Level 20.00 dBm Offset 0.50 dB • RBW 30 kHz 30 dB SWT 63.1 μs 🁄 **VBW** 100 kHz Mode Auto FFT ●1Pk Max M1[1] 1.34 dBn 2.44097680 GHz 10 dBm ndB 20.00 dB 897.300000000 kHz Bw 0 dBm-Q factor 2720.5 10 dBm **T**1 -20 dBm -30 dBm 40 dBm -50 dBm--60 dBm -70 dBm 691 pts CF 2.441 GHz Span 2.0 MHz Marker Type | Ref | Trc Stimulus Response Function **Function Result** 2.4409768 GHz 2.440534 GHz M1 T1 1.34 dBm -18.53 dBm ndB down 897.3 kHz 20.00 dB ndB 2.4414313 GHz -18.54 dBm

Mode 2: $\pi/4$ DQPSK Link Mode

Page 14 of 93

Mode 3: 8DPSK Link Mode

Page 15 of 93

Report No.: ATE20141960

Page 16 of 93

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Active Floorstanding Loudspeaker System)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20141960 Page 17 of 93

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to $100\ kHz$ and VBW to $300\ kHz.$ Adjust Span to $3\ MHz.$
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

GFSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.0058	25KHz or 20dB bandwidth	PASS
Middle	2440 2441	1.0029	25KHz or20dB bandwidth	PASS
High	2479 2480	1.0029	25KHz or 20dB bandwidth	PASS

∏/4-DQPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 2/3*20dB	PASS
Low	2403	1.0027	bandwidth	17100
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS
Middle	2441	1.0029	bandwidth	LASS
High	2479	1.0029	25KHz or 2/3*20dB	PASS
	2480	1.0029	bandwidth	rass

8DPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 2/3*20dB	PASS
Low	2403	1.0029	bandwidth	rass
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS
Middle	2441	1.0029	bandwidth	rass
High	2479	1.0029	25KHz or 2/3*20dB	PASS
	2480	1.0029	bandwidth	rass

The spectrum analyzer plots are attached as below.

Mode 1: GFSK Link Mode

Page 19 of 93

Mode 2: π /4 DQPSK Link Mode

Page 20 of 93

Page 21 of 93

Mode 3: 8DPSK Link Mode

Page 22 of 93

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Active Floorstanding Loudspeaker System)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

Report No.: ATE20141960 Page 24 of 93

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK)

Number of hopping channels ($\Pi/4$ -DQPSK)

Number of hopping channels(8DPSK)

Report No.: ATE20141960

Page 26 of 93

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Active Floorstanding Loudspeaker System)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.

ATC

Report No.: ATE20141960 Page 27 of 93

8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
	2402	0.5362	171.58	400		
DH1	2441	0.5290	169.28	400		
	2480	0.5362	171.58	400		
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(2*)	79))×31.6		
	2402	1.8261	292.18	400		
DH3	2441	1.8116	289.86	400		
	2480	1.8116	289.86	400		
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	ulse time \times (1600/(4*'	79))×31.6		
	2402	3.0725	327.73	400		
DH5	2441	3.0725	327.73	400		
	2480	3.0725	327.73	400		
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

$\Pi/4$ -DQPSK

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)			
	2402	0.5507	176.22	400			
DH1	2441	0.5507	176.22	400			
	2480	0.5435	173.92	400			
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(2*)	79))×31.6			
	2402	1.8261	292.18	400			
DH3	2441	1.8261	292.18	400			
	2480	1.8043	288.69	400			
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6			
	2402	3.0435	324.64	400			
DH5	2441	3.0652	326.95	400			
	2480	2.9783	317.69	400			
A period transr	$mit time = 0.4 \times 79 = 31.6$	5 Dwell time = pulse t	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

8DPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2402	0.5435	173.92	400
	2441	0.5435	173.92	400
	2480	0.5435	173.92	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
DH3	2402	1.8188	291.01	400
	2441	1.8188	291.01	400
	2480	1.8188	291.01	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2402	3.0797	328.50	400
	2441	3.0580	326.19	400
	2480	3.0797	328.50	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

Page 29 of 93

Page 32 of 93

FCC ID: 2ADC5EXAT33-CR

Page 33 of 93

Page 36 of 93

3DH1 Middle channel

Report No.: ATE20141960

Page 42 of 93

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Active Floorstanding Loudspeaker System)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

9.6.Test Result

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	2.31/0.0017	30 / 1.0
Middle	2441	1.65/0.0015	30 / 1.0
High	2480	-1.02/0.0008	30 / 1.0

Π /4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	1.98/0.0016	21 / 0.125
Middle	2441	1.23/0.0013	21 / 0.125
High	2480	-0.45/0.0009	21 / 0.125

8DPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	2.11/0.0016	21 / 0.125
Middle	2441	1.42/0.0014	21 / 0.125
High	2480	-0.24/0.0009	21 / 0.125

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Middle channel

FCC ID: 2ADC5EXAT33-CR

High channel

∏/4-DQPSK Mode

Low channel

Page 46 of 93

Middle channel

High channel

8DPSK Mode

Low channel

Middle channel

FCC ID: 2ADC5EXAT33-CR

Page 48 of 93

High channel

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and simulators

(EUT: Active Floorstanding Loudspeaker System)

10.1.2. Anechoic Chamber Test Setup Diagram

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^2)$
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Report No.: ATE20141960

Page 51 of 93

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4- 2009 on radiated emission measurement.

The frequency range from 30MHz to 25000MHz is checked.

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

10.6. The Field Strength of Radiation Emission Measurement Results

Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8DPSK mode and recorded the worst case data (GFSK mode) for all test mode.

2. The 18-25GHz emissions are not reported, because the levels are too low against the limit.

Report No.: ATE20141960

Page 52 of 93

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #1517

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz EXAT33-CR Model: Manufacturer: 3SIXTY

Note:

Report No.:ATE20141960

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 14/28/49

Engineer Signature: STAR

Distance: 3m

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 53 of 93

Job No.: star2014 #1518

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker

Mode: TX 2402MHz Model: EXAT33-CR Manufacturer: 3SIXTY

Report No.:ATE20141960 Note:

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 14/30/01

Engineer Signature: STAR

Distance: 3m

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 54 of 93

Job No.: star2014 #1521 Polarization: Horizontal

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/10/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 14/32/09

EUT: Active Floorstanding Loudspeaker Engineer Signature: STAR

Mode: TX 2441MHz Distance: 3m Model: EXAT33-CR

Note: Report No.:ATE20141960

Manufacturer: 3SIXTY

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	47.3688	45.72	-20.01	25.71	40.00	-14.29	QP			
2	70.9536	51.19	-21.40	29.79	40.00	-10.21	QP			
3	95.6485	54.57	-21.94	32.63	43.50	-10.87	QP			

Report No.: ATE20141960 Page 55 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #1520

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker

Mode: TX 2441MHz EXAT33-CR Model: Manufacturer: 3SIXTY

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 14/30/35

Engineer Signature: STAR

Distance: 3m

Report No.:ATE20141960 Note: 70.0 dBuV/m

40			2	3				
30	4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1		ndimak JM	4	I make	Al Control	u.W
20	- Jan			TW WWW		MM V	"Lifety war	Mythache

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	47.3688	54.56	-20.01	34.55	40.00	-5.45	QP				- 1
2	70.9536	59.36	-21.40	37.96	40.00	-2.04	QP				
3	95.6485	60.41	-21.94	38.47	43.50	-5.03	QP				

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 56 of 93

Job No.: star2014 #1522 Polarization: Horizontal

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/10/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 14/33/22

EUT: Active Floorstanding Loudspeaker Engineer Signature: STAR

Mode: TX 2480MHz Distance: 3m Model: EXAT33-CR

Note: Report No.:ATE20141960

Manufacturer: 3SIXTY

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	47.3688	45.63	-20.01	25.62	40.00	-14.38	QP		-		
2	70.9536	50.67	-21.40	29.27	40.00	-10.73	QP		-		
3	95.6485	54.93	-21.94	32.99	43.50	-10.51	QP		- 1		

Report No.: ATE20141960

Page 57 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2014 #1523

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker

Mode: TX 2480MHz Model: EXAT33-CR Manufacturer: 3SIXTY

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 14/34/11

Engineer Signature: STAR

Distance: 3m

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3722

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Horizontal
Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/28/00

Engineer Signature: Distance: 3m

Page 59 of 93

Report No.: ATE20141960

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3723

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz Model: EXAT33-CR Manufacturer: 3SIXTY

s B 3M Radiated Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/29/29 Engineer Signature:

Polarization: Vertical

Distance: 3m

Note: Report No.:ATE20141960

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Distance: 3m

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 60 of 93

Job No.: alen #3725 Polarization: Horizontal

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/10/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/31/20
EUT: Active Floorstanding Loudspeaker System Engineer Signature:

Mode: TX 2441MHz
Model: EXAT33-CR
Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Report No.: ATE20141960 Page 61 of 93

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/30/27

Engineer Signature:

Distance: 3m

Job No.: alen #3724

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2441MHz EXAT33-CR Model: Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	4859.975	49.77	-1.41	48.36	74.00	-25.64	peak				
2	11204.896	43.15	5.72	48.87	74.00	-25.13	peak				
3	13997.929	38.50	10.40	48.90	74.00	-25.10	peak				

ATC

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 62 of 93

Job No.: alen #3726

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2480MHz
Model: EXAT33-CR
Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/32/37

Engineer Signature:

Distance: 3m

® A

Report No.: ATE20141960 Page 63 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3727

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2480MHz Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/33/48 Engineer Signature:

Distance: 3m

Report No.: ATE20141960

Page 64 of 93

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Active Floorstanding Loudspeaker System)

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Frequency	Result of Band Edge	Limit of Band Edge									
(MHz)	(dBc)	(dBc)									
	GFSK										
2399.942	37.61	> 20dBc									
2484.600	55.76	> 20dBc									
	П/4-DQPSK Mode										
2399.520	39.75	> 20dBc									
2490.400	55.79	> 20dBc									
	8DPSK										
2398.920	39.62	> 20dBc									
2485.300	55.29	> 20dBc									

GFSK

∏/4-DQPSK Mode

FCC ID: 2ADC5EXAT33-CR

Report No.: ATE20141960 Page 69 of 93

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 3.All modes of operation were investigated and the worst-case emissions are reported.

Report No.: ATE20141960

Page 70 of 93

Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3604 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz(GFSK)

Model: EXAT33-CR Manufacturer: 3SIXTY Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/53/59 Engineer Signature:

Distance: 3m

Note: Report No.:ATE20141960

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2385.920	46.35	-6.80	39.55	74.00	-34.45	peak				
2	2385.920	38.87	-6.80	32.07	54.00	-21.93	peak				
3	2400.000	63.08	-6.76	56.32	74.00	-17.68	peak				- 1
4	2400.000	55.78	-6.76	49.02	54.00	-4.98	peak				- 1

Note: Average measurement with peak detection at No.2&4

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 71 of 93

Job No.: alen #3605

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz(GFSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/55/03 Engineer Signature:

Distance: 3m

74.00

54.00

-18.57

-6.19

peak

peak

Note: Average measurement with peak detection at No.2&4

-6.76

-6.76

55.43

47.81

62.19

54.57

2400.000

2400.000

3

4

B

Report No.: ATE20141960 Page 72 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3602 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2480MHz(GFSK)

Model: EXAT33-CR
Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/50/41 Engineer Signature:

Distance: 3m

Note: Average measurement with peak detection at No.2&4

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 73 of 93

Job No.: alen #3603 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2480MHz(GFSK)

Model: EXAT33-CR Manufacturer: 3SIXTY Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/52/11

Engineer Signature:

Distance: 3m

Note: Report No.:ATE20141960

2 2483.500 43.89 -6.5437.35 54.00 -16.65peak 3 2486.720 48.23 -6.53 41.70 74.00 -32.30 peak 4 2486.720 40.68 -6.5334.15 54.00 -19.85peak

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 74 of 93

Job No.: alen #3626 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz(pi/4DQPSK)

Model: EXAT33-CR
Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/05/12 Engineer Signature: Distance: 3m

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 75 of 93

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/04/05 Engineer Signature:

Distance: 3m

Job No.: alen #3625 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz(pi/4DQPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

ATC®

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 76 of 93

Job No.: alen #3627 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz
Test item: Radiation Test Date: 14/10/10/

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2480MHz(pi/4DQPSK)

Time: 9/06/39

Engineer Signature:

Distance: 3m

Mode: TX 2480MHz(pi/4DQPSK) D
Model: EXAT33-CR

Model: EXAT33-CR
Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 77 of 93

Job No.: alen #3628

Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2480MHz(pi/4DQPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 9/08/06

Engineer Signature:

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 78 of 93

Job No.: alen #3618 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz(8DPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 8/43/01

Engineer Signature:

Distance: 3m

90										
30							۸		limit1 limit2	
	10.020.000.000.000	************		111111111111111111111111111111111111111	************		1	855811851	8-18-18-X	
80			********					*******		
70								1150111	21132411	
60			-54 54						4 5 4	
50							1			
40	110000000000000000000000000000000000000	one south frame	ma amin'ny fisian'ny	1			/			
					a character of the delication					411000000000000000000000000000000000000
	Mushhamaharadhilikh	had appropriation to the second	mallandyhordun	man manufally the comment	Herrichanskarth	deand that seems	V"	hyphiliphiling	(M. Marshauth)	Manhannen
	Mysselylman yw the Hilly like I	hadaggaylan adada banacar	malinanthinim	mar natural of the state of the	Haranik menenden melan	diandikarusma	V	happelerilen	(de Marily make)	Mancher
30	modificação	hadiggarpha.adish.hac.ar	magicalapphistend	who is proposed the state of	fir grib de general fin de religi	diand Habitania	w'	hydrideliku	(dr. Novelly-southed	Mahaman
30 20	Marsh mark market have been seen as a second	kaleggia pilanan lada kangaran	waltaalife Arolow	when no great the filter of	berphensineri kunsuler	deand.Halverree	v'	hakkihilin	(dr./hardfyrmhis)	Montesoner
30 20 10.	0 2310.000	golggyddin Austria	wagi wang kanala	atra na productiva	forgeten verter for 1944	dand ikikupup	V	hytherethylun	gr _e vervilgenseks)	2440.0 MH
30 20 10.		Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	2440.0 MH
30 20 10.	2310.000 Freq.					Margin (dB)	Detector peak	Height	Degree	
30 20 10.	2310.000 Freq. (MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	F 2000	Height	Degree	
30 20 10.		goldgjorffun-Node-menen	wagturahija a vojawa	a-bod-ragma(Middla)	Haranter (de 1844)	daend <u>i</u> listiquyo	V	hattikithiliin	gr _h /2001] _b -nakhi	2440.0

Standard: FCC PK

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 79 of 93

Job No.: alen #3617 Polarization: Vertical

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2402MHz(8DPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 8/41/27

Engineer Signature:

Distance: 3m

									limit1 limit2		
90						~~~~~	Λ-		******	******	
80											
70	Contract I I desire I decree								a t e essa timo		
60											
50		********					1				
							11 1				
40	hind come 2 deling ray out	Marine	in Ministration desirabile	historical college of the community	had his harmonia	terphysphotophyspho	w/	Mighanical	Magailandini.	JON WATER WA	4
40 30	hand own 2 3 th and see forth	Mariandopharan	ish Newson desaku	hawajikish <mark>ajpi</mark> kanikisj	hadd been been and	in depropriate		Marchanicant	erioquetas tener	property and a service of the servic	
	hindrania del mariante	Minimum	ial Airmen Airbi	hisiogist is heigh placements.	i di	to definish on the control of	W	Myydianowak	Magainten tenn	POW WARE AND	-
30		phone was a significant process	ial himron teraki	hisaigishisahajhidhenndaid		in-depty-light		hypphisocount	eriariatus kuis.	PONGOLOGIA	
30 20 10.		Marine and pharmace	ind himmen de indiv	history shirts from the self-shirt connecting		ordonospropistos		Mygdannauk	ericatus breis	2440.	O MHz
30 20 10.	0	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	2440 ,	О мна
30 20 10,1	0 2310.000 Freq.	Reading		And the state of t		Margin (dB)	Detector peak	Height (cm)			О мна
30 20 10,1	0 2310.000 Freq. (MHz)	Reading (dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	Height (cm).			о мна
30 20 10,1	o 2310.000 Freq. (MHz) 2375.000	Reading (dBuV/m) 49.62	(dB) -6.83	(dBuV/m) 42.79	(dBuV/m) 74.00	(dB) -31.21	peak	Height (cm)			о мна

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 80 of 93

Job No.: alen #3619 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2480MHz(8DPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 8/44/57

Engineer Signature:

Distance: 3m

ATC

Standard: FCC PK

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 81 of 93

Job No.: alen #3620

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

Temp.(0)/Tidiff.(70) 25 07 55 70

EUT: Active Floorstanding Loudspeaker System

Mode: TX 2480MHz(8DPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 8/46/20 Engineer Signature:

Distance: 3m

Report No.: ATE20141960 Page 82 of 93

Site: 1# Chamber

Hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

n Rd, Tel:+86-0755-26503290 R.China Fax:+86-0755-26503396

Job No.: alen #3608 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz
Test item: Radiation Test Date: 14/10/10/

Temp.(C)/Hum.(%) 25 C / 55 % Time: 15/38/05
EUT: Active Floorstanding Loudspeaker System Engineer Signature:

Mode: Hopping TX(GFSK) Distance: 3m

Model: EXAT33-CR
Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2316.080	48.79	-6.97	41.82	74.00	-32.18	peak				
2	2316.080	40.35	-6.97	33.38	54.00	-20.62	peak		- 1		- 11
3	2400.000	55.37	-6.76	48.61	74.00	-25.39	peak				- 10
4	2400.000	48.65	-6.76	41.89	54.00	-12.11	peak			The second second	
5	2483.660	44.29	-6.54	37.75	74.00	-36.25	peak				
6	2483.660	37.65	-6.54	31.11	54.00	-22.89	peak				
7	2488.500	46.03	-6.52	39.51	74.00	-34.49	peak	1	+		
8	2488.500	38.87	-6.52	32.35	54.00	-21.65	peak		1		

ACCUIDATE TECUNIOLOGY CO. LTD

Report No.: ATE20141960 Page 83 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber
Tel:+86-0755-26503290
Fax:+86-0755-26503396

Job No.: alen #3607

Test item: Radiation Test

Standard: FCC PK

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: Hopping TX(GFSK)

Model: EXAT33-CR
Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 15/33/06 Engineer Signature:

Distance: 3m

Reading Factor Result Freq. Limit Margin Height Degree Detector No. Remark (cm) (deg.) (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 1 2370.420 47.96 -6.8341.13 74.00 -32.87peak 2 2370.420 40.57 -6.8333.74 54.00 -20.26peak 3 2400.000 56.11 -6.7649.35 74.00 -24.65 peak 4 48.68 41.92 54.00 2400.000 -6.76-12.08peak 5 2483.500 46.40 -6.5439.86 74.00 -34.14peak 6 2483,500 38.78 -6.54 32.24 54.00 -21.76 peak 7 2490.120 47.55 -6.5241.03 74.00 -32.97peak 8 2490.120 40.12 -6.5233,60 54.00 -20.40peak

F1, Bldg, A, Changyuan New Material Port Keyuan Rd,

Science & Industry Park, Nanshan Shenzhen, P.R. China

Report No.: ATE20141960 Page 84 of 93

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3623 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: Hopping TX(pi/4DQPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 8/59/45 Engineer Signature:

Distance: 3m

Reading Factor Result Limit Margin Freq. Height Degree Detector No. Remark (cm) (deg.) (dBuV/m) (dB) (dBuV/m) (MHz) (dBuV/m) (dB) 46.89 -6.81 1 2380.680 40.08 74.00 -33.92peak 2 2380.680 39.87 -6.8133.06 54.00 -20.94peak 3 2400.000 57.64 -6.7650.88 74.00 -23.12 peak 4 2400.000 50.24 -6.7643.48 54.00 peak -10.525 2483.500 44.55 -6.5438.01 74.00 -35.99peak 6 2483.500 37.65 -6.5431.11 54.00 -22.89 peak 7 2487.270 45.86 -6.5339.33 74.00 -34.67peak 8 2487.270 38.28 -6.5331.75 54.00 -22.25peak

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 85 of 93

Job No.: alen #3624 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/10/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/02/36 EUT: Active Floorstanding Loudspeaker System Engineer Signature: Distance: 3m

Hopping TX(pi/4DQPSK) Mode:

EXAT33-CR Model: Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2350.090	49.72	-6.89	42.83	74.00	-31.17	peak		1		-11
2	2350.090	41.58	-6.89	34.69	54.00	-19.31	peak		1		- 11
3	2400.000	63.97	-6.76	57.21	74.00	-16.79	peak		1		-11
4	2400.000	56.21	-6.76	49.45	54.00	-4.55	peak		1 = 11		-11
5	2483.500	45.38	-6.54	38.84	74.00	-35.16	peak				
6	2483.500	38.54	-6.54	32.00	54.00	-22.00	peak				-7
7	2494.300	45.90	-6.50	39.40	74.00	-34.60	peak				
8	2494.300	38.87	-6.50	32.37	54.00	-21.63	peak				

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141960

Page 86 of 93

Job No.: alen #3622 Po Standard: FCC PK Po

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: Hopping TX(8DPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 8/55/36 Engineer Signature:

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2398.920	55.67	-6.76	48.91	74.00	-25.09	peak			
2	2398.920	48.21	-6.76	41.45	54.00	-12.55	peak			
3	2400.000	49.91	-6.76	43.15	74.00	-30.85	peak			
4	2400.000	42.57	-6.76	35.81	54.00	-18.19	peak			
5	2483.500	44.18	-6.54	37.64	74.00	-36.36	peak			
6	2483.500	37.17	-6.54	30.63	54.00	-23.37	peak			
7	2490.120	45.90	-6.52	39.38	74.00	-34.62	peak			
8	2490.120	38.78	-6.52	32.26	54.00	-21.74	peak			

Report No.: ATE20141960 Page 87 of 93

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/10/ Time: 8/50/53 Engineer Signature:

Distance: 3m

Job No.: alen #3621 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Active Floorstanding Loudspeaker System

Mode: Hopping TX(8DPSK)

Model: EXAT33-CR Manufacturer: 3SIXTY

Note: Report No.:ATE20141960

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2382,390	49.51	-6.81	42.70	74.00	-31.30	peak				
2	2382,390	42.45	-6.81	35.64	54.00	-18.36	peak		1 1	1	
3	2400.000	61.24	-6.76	54.48	74.00	-19.52	peak				
4	2400.000	54.01	-6.76	47.25	54.00	-6.75	peak				
5	2483.500	45.07	-6.54	38.53	74.00	-35.47	peak				
6	2483.500	38.01	-6.54	31.47	54.00	-22.53	peak				
7	2487.080	46.52	-6.53	39.99	74.00	-34.01	peak				
8	2487.080	38.89	-6.53	32.36	54.00	-21.64	peak				

Report No.: ATE20141960 Page 88 of 93

12.AC POWER LINE CONDUCTED EMISSION FOR FCC PART

15 SECTION 15.207(A)

12.1.Block Diagram of Test Setup

(EUT: Active Floorstanding Loudspeaker System)

12.2. Shielding Room Test Setup Diagram

12.3.The Emission Limit

12.3.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit dB(μV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				

^{*} Decreases with the logarithm of the frequency.

FCC ID: 2ADC5EXAT33-CR

Report No.: ATE20141960

Page 89 of 93

12.4.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

12.5. Operating Condition of EUT

- 12.5.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.5.2. Turn on the power of all equipment.
- 12.5.3.Let the EUT work in test mode and measure it.

12.6.Test Procedure

The EUT is put on the plane 0.1m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

12.7. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode : Cha	arging&B	T Commu	ınicating)			
MEASUREMENT	RESULT	: "TSTO	07_fir	1"			
10/10/2014 2:							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.210000 0.365000	61.30 51.60 35.40	10.5 10.5 10.6	63	11.6	ÕР	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT	: "TST0	07_fin	n2"			
10/10/2014 2: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.155000 0.255000 0.390000	29.70 13.30 3.60	10.5 10.6 10.7	52	38.3	AV	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT	: "TSTO	08_fir	1"			
10/10/2014 2:							
Frequency MHz	Level dBµV		Limit dBµV	_	Detector	Line	PE
0.150000 0.215000 0.365000	61.20 50.70 35.30		63		~	N N N	GND GND GND
MEASUREMENT	RESULT	: "TST0	08_fir	n2"			
10/10/2014 2: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.215000 0.365000	30.50 21.00 15.70	10.5 10.5 10.6	56 53 49		AV	N N N	GND GND GND

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Active Floorstanding Loudspeaker System M/N:EXAT33-CR

Manufacturer: 3SIXTY

Operating Condition: BT Operation 1#Shielding Room Test Site:

Operator: star

Test Specification: N 120V/60Hz

Report No.:ATE20141960 Comment: Start of Test: 10/10/2014 / 2:11:00PM

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. ΙF Transducer

Frequency Frequency 150.0 kHz 30.0 MHz Width Time Bandw.

QuasiPeak 1.0 s NSLK8126 2008 4.5 kHz 9 kHz

Average

MEASUREMENT RESULT: "TST008 fin"

10/10/2014 2:	14PM						
Frequency			Limit	Margin	Detector	Line	PΕ
MHz	dBµV	dB	dΒμV	dB			
0 150000	C1 20	10 5		4 0	O.D.	NT.	CNID
0.150000	61.20	10.5	66	4.8	QP	N	GND
0.215000	50.70	10.5	63	12.3	QP	N	GND
0.365000	35.30	10.6	59	23.3	QP	N	GND

MEASUREMENT RESULT: "TST008 fin2"

10/10/2014 2:	14PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.150000	30.50	10.5	56	25.5	7/17	N	GND
						IA	GND
0.215000	21.00	10.5	53	32.0	AV	N	GND
0.365000	15.70	10.6	49	32.9	AV	N	GND

FCC ID: 2ADC5EXAT33-CR ACCURATE TECHNOLOGY CO. LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

Active Floorstanding Loudspeaker System M/N:EXAT33-CR

Manufacturer: 3SIXTY

Operating Condition: BT Operation Test Site: 1#Shielding Room

Operator: star

Test Specification: L 120V/60Hz

Report No.:ATE20141960 Comment: 10/10/2014 / 2:07:31PM Start of Test:

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

ΙF Detector Meas. Transducer Start Stop Step

Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "TST007 fin"

10/10/2	014 2:1	0PM						
Freq	uency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
0.1	50000	61.30	10.5	66	4.7	QP	L1	GND
0.2	10000	51.60	10.5	63	11.6	QP	L1	GND
0.3	65000	35.40	10.6	59	23.2	OP	L1	GND

MEASUREMENT RESULT: "TST007 fin2"

10/10/2014 2: Frequency MHz			Limit dBµV	Margin dB	Detector	Line	PE
0.155000 0.255000	29.70 13.30	10.5 10.6				L1 T.1	GND GND
0.390000		10.7	~ -	44 5		T.1	GND

FCC ID: 2ADC5EXAT33-CR ACCURATE TECHNOLOGY CO. LTD

13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2. Antenna Construction

The antenna is PCB Layout antenna, no consideration of replacement. Therefore, the equipment complies with the antenna requirement of Section 15.203.

