

FIG 1

FIG. 2

FIG. 3

				. 50		
Rat	ATRCCGG	30 regecegeAG	40 AGCTGGGC	- 50 CAGACGCT	60 PAGCAGGGCC	70 EGGCTCTGCCGAC
Human						CT-CTCCTCGGTC
	10	20		40	50	60
	80	90	100	110	120	130
Rat Human						CCCAAGGCCGCG
поман	7		10 91			120
	140	150	160	170	160	190
Rat						CTTCTGCAGCTGT
Human	13				160	TGCTGCAGCTGC 170
	200	210	220	230	240	250
Rat						CTGATCCGGCAGA
Human						CAGCTCCGGCAGA
	180 260	190 270	200 280	210 290	220 300	230 310
Rat						GGAGTTCCTGGTC
Human						GAGTGCCTGGTC
	240	250	260	270	280	290
Rat	320 CCGNTG(330	340	350 ****************	360 accessare	370 CAGGTCGGGATG
Human						CCAGGTCGGGATG
	300	310	320	330	340	350
	380	390	400	410	420	430
Rat						CCTGGACCCCAA
Human	360	370	380	390	400	410
	440	450	460	470	480	490
Rat						GGAAAATTGCGG
Human				TGAATTATGG 450	CATAGATCTT(460	GGAAAATTGCGG 470
	420 500	430 510	440 520	530	540	550
Rat						TCAGTGGCTCGC
Human						TCAGTGGCTCAC
	480	490 570	500 580	510 590	520 600	530 610
Rat	560					TTAATGGAGCTG
Human						TCAATGGAGCTG
	540	550	560	570	580	590
0.5	620	630	640 (CCC2 TTC2 A C	650	660 660	670
Rat Human						GAAGCCCTGAGT GAAGCCCTGAAA
	600	610	620	630	640	650
	680	690	700	710	720	730
Rat Human						GTGAAGGGATTG GTGAAGGAATTG
numan	660	670	680	690	700	710
	740	750	760	770	780	790
Rat						ACCCCAAAGGAG
Human	720	ATTAGTGGAT 730	GTTGCTATCT 740	GGGTTGGCACT 750	TGTTCAGATT 760	ACCCAAAAGGAG 770
	800	810	820	830	840	850
Rat						TACCAAAA TAA A
Human						TACCAAAATAAA
	780 860	790 870	800 880	810 890	820 900	830 910
Rat						TCTGGATGGGTC
Human				TTTTTTT		TTGGAATGGTTC
	840 920	850 930	860 940	950	870 960	880 970
Rat						AGCAAAGTTAAA
Human						-GCAAAGCTAAA
	890	900	910	920	930	940
0.0+	980	990	1000	1010 ACACTTTA		1030 TTATCCATTTA
Rat Human						TTATTCATTTTG
	950	960	970	980	990	1000
_	1040				108	
Rat Human						TTTG TCTTCATAGTCA
Human	1010	1020	1030	1040	1050	1060
		1090	1100	1110	1120	1130
Rat						CCTACT-GTTGA
Human	CATTCTC	TCAACCTATA 1080	ATTTGGAATA 1090	TTGTTGTGGTC 1100	TTTTGTTTTT 1110	TCTCTTAGTATA 1120
	10.0		1150	1160	1170	1120
Rat	~CATTTT	GAAACATA	TAAAAGTTAT	GTCTTTGTA	AGAGCTGTAT	AGAATT
Human	GCATTTT	TAAAAAAATA	TAAAAGCTAC	CAATCTTTGTA	CAATTTGTAA	ATGTTAAGAATT
	1130	1140 1190	1150 1200	1160 1210	1170	1180
Rat	ATTTT		1200 ATAAATG	-		
Human			ATAAAAATTA			
	1190	1200	1210	1220		

Figure 4A

Rat:	1	MHPQGRAASPQLLLGLFLVLLLLLQLSAPSSASENPKVKQKALIRQREVVDLYNGMCLQG	50		
		M+PQG+AASPQ+L+GL+++LLLLLQL+APSSASE+PK+KQKA++RQREVVDLYNGMCLQG			
Human:	1	MRPQGPAASPQRLRGLLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQG	58		
Rat:	61	PAGVPGRDGSPGANGIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGI	120		
		PAGVPGRDGSPGANGIFGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGI			
Human:	59	PAGVPGRDGSPGANGIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGI	118		
Rat:	121	DLGKIAECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYL	180		
		DLGKIAECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYL			
Human:	119	DLGKIAECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYL	178		
Rat:	181	, DQGSPELNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIII	240		
		DOGSPE+NSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIII			
Human:	179	DQGSPEMNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIII	238		
Rat:	241	EELPK 245			
		EELPK			
Human:	239	EELPK 243			

MRPAAELGQTLSRAGLCRPLCLLLCASQLPHTMHPQGRAASPQLLLGLFLVLLLLLQL SAPSSASENPKVKQKALIRQREVVDLYNGMCLQGPAGVPGRDGSPGANGIPGTPGIPG RDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTKMRSNSALRVL FSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPELNSTINIHRTSSVE GLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

FIG. 4C

Figure 5

Luciferase activity (relative units)

Figure 8

Figure 9

ATG GCCCCAAGG CCGCGCCGC TCCCCACAGC TGCTGCTCGG CCTCTTCCTT GTGCTACTGC
TGCTTCTGCA GCTGTCCGCG CCGTCCAGCG CCTCTGAGAA TCCCAAGGTG AAGCAAAAAG
CGCTGATCCG GCAGAGGGAA GTGGTAGACC TGTATAATGG GATGTGCCTA CAAGGACCAG
CAGGAGTTCC TGGTCGCGAT GGGAGCCCTG GGGCCAATGG CATTCCTGGC ACACCGGGAA
TCCCAGGTCG GGATGGATTC AAAGGAGAGA AAGGGGAGTG CTTAAGGGAA AGCTTTGAGG
AATCCTGGAC CCCAAACTAC AAGCAGTGTT CATGGAGTTC ACTTAATTAT GGCATAGATC
TTGGGAAAAT TGCGGAATGT ACATTCACAA AGATGCTGT CAACAGCGCT CTTCGAGTTC
TGTTCAGTGG CTCGCTTCGG CTCAAATGCA GGAATGCTTG CTGTCAACGC TGGTATTTTA
CCTTTAATGG AGCTGAATGT TCAGGACCTC TTCCCATTGA AGCTATCATC TATCTGGACC
AAGGAAGCCC TGAGTTAAAT TCAACTATTA ATATTCATCG TACTTCCTCC GTGGAAGGAC
TCTGTGAAGG GATTGGTGCT GGACTGGTAG ACGTGGCCAT CTGGGTCGGC ACCTGTTCAG
ATTACCCCAA AGGAGACGCT TCTACTGGGT GGAATTCTGT GTCCCCATC ATCATTGAAG
AACTACCAAA A

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

.....

ele contratamentalis i

Figure 18

Figure 19

a transfer the constitution of the state of