Uvod u temu

Jedan od najaktualnijih problema u dosad realiziranim izvedbama kvantnih bitova (qubita) jest *dekoherencija*, odnosno gubitak stanja, a time i informacije, zbog lokalnih smetnji iz okolnog svijeta. Iz tog razloga rješenje izvedbe kvantnih računala otpornih na dekoherenciju je veoma traženo, a jedno od mogućih je *topološko kvantno računalo*. Qubit takvog računala ima neuobičajena svojstva koja su u ovom projektu proučavana kroz simulacije fizikalnog sustava izvedene u Matlabu. Ali počnimo od početka...

Talijanski fizičar Ettore Majorana je još 40ih godina prošlog stoljeća predložio teoretski fermion koji je sam sebi antičestica. To opisuje česticu koja ima spin višekratnik ½, kao i običan fermion, no dvije takve čestice se međusobno anihiliraju. Općenito, u formalizmu druge kvantizacije, čestice opisujemo kao odgovarajuće operatore *anihilacije* i *kreacije*. Odnos između Majoraninih i "običnih" fermiona možemo vidjeti matematički, zapisujući jedne operatore pomoću drugih:

$$c^{\dagger} = \frac{1}{2}*(\gamma_1 + i\gamma_2)$$
 $c = \frac{1}{2}*(\gamma_1 - i\gamma_2)$
 $\gamma_1 = c + c^{\dagger}$ $\gamma_2 = i(c^{\dagger} - c),$

gdje su c† i c operatori kreacije i anihilacije fermiona, γ majorana operator, a 1/2 koristimo kao normalizacijski faktor. Primjetimo i da vrijedi očekivana relacija γ†=γ. Kako to biva, iako matematika lijepo funkcionira, takav fermion zasad nismo pronašli u prirodi, a sam Majorana je nedugo kasnije misteriozno nestao... Ipak, priču nastavlja ruski fizičar Aleksei Kitaev u svojem radu iz 2008. (*Anyons in an exactly solved model and beyond*) u kojem predstavlja Kitaevljev model, opisujući kvazičestice koje se ponašaju kao Majoranini fermioni u dvodimenzionalnom sustavu elektrona. Ovaj se projekt bavi proučavanjem svojstava jednodimenzionalne verzije Kitaevljevog modela - Kitaevljevog lanca, koji svoju primjenu pronalazi upravo u topološkom kvantnom računanju.

Kitaevljev lanac

Kitaevljev lanac je u svojoj osnovi jednodimenzionalni lanac fermiona (u praksi elektrona) bez spinskog stupnja slobode. Novost je u tome što svaku fermionsku lokaciju n opisujemo pomoću dva Majorana operatora γ_m i γ_{m+1} , na način prikazan u formulama iz uvoda.

Slika 1: lanac fermiona opisan Majoraninim operatorima

Uz ovakav postav možemo fermion opisati kao par Majorana na jednoj fermionskoj lokaciji, i sasvim normalno promatrati lanac elektrona u TB modelu. No ništa nas zapravo ne sprečava da za opisivanje fermiona koristimo dvije Majorane koje *nisu* na istoj lokaciji, u ekstremu stvarajući na rubovima dvije prostorno odvojene kvazičestice koje se ponašaju kao jedan visoko delokalizirani fermion (dok su ostale uparene sa susjedom). Situaciju u kojoj opisujemo fermion pomoću Majorana na istoj lokaciji zovemo *trivijalna faza*, dok drugu situaciju nazivamo *topološka faza* Kitaevljevog lanca.

Slika 2: trivijalna (gore) i topološka (dolje) faza Kitaevljevog lanca

Par Majorana koji se u topološkoj fazi nalaze na rubovima lanca upravo je ono što ovaj sustav čini zanimljivim. One se nazivaju *Majorana bound-states* ili *Majorana zero-modes* (MZM). Njihova je prostorna odvojenost ono što čini qubit izveden ovakvim principom otporan na dekoherenciju uzrokovanu lokalnim događajima.

Hamiltonijan

Hamiltonijan Kitaevljevog lanca (koristeći obične fermionske operatore) zapisujemo u sljedećem obliku:

$$H = -\mu \sum_{n=1}^{N} c_n^{\dagger} c_n - t \sum_{n=1}^{N-1} \left(c_{n+1}^{\dagger} c_n + \text{h.c.} \right) + \Delta \sum_{n=1}^{N-1} \left(c_n c_{n+1} + \text{h.c.} \right)$$

gdje h.c. znači hermitski konjugat. Parametar μ predstavlja kemijski potencijal (lokalnu energiju), parametar t elektronsko preskakanje između susjednih lokacija, a Δ je supravodljivi član (dakle, za postizanje svojstava o kojima ćemo kasnije govoriti, u sustavu je potrebna supravodljivost).

U numeričkom rješavanju Schrodingerove jednadžbe i ostalih problema razmatranih u ovom projektu, hamiltonijan je potrebno zapisati matrično. Kako za duljinu lanca N koristimo 2N operatora, i matrica će biti 2Nx2N, a moći ćemo razaznati 2x2 blokove koji sadrže μ na glavnoj dijagonali a iznad i ispod nje blokove sa t i Δ .

```
Em = [-mu 0; 0 mu];
Tm = [-t -D; D t];
H = kron(diag(ones(1,N)), Em)...
+ kron(diag(ones(1,N-1),1),Tm)...
+ kron(diag(ones(1,N-1),-1),Tm');
```

Ovako zapisan hamiltonijan bio je osnova za rješavanje problema u Matlabu. Provedene su simulacije spektra, disperzije, valne funkcije i transporta sa ciljem razumijevanja kako se različita svojstva Kitaevljevog lanca ponašaju kod varijacije parametara μ , t i Δ , te kakvi su iznosi parametara bliski "idealnima", odnosno kako se parametri u praksi moraju međusobno odnositi kako bi imali iskoristivu topološku fazu.

Spektar

Slika 3 prikazuje energijski spektar Kitaevljevog lanca duljine 25 fermiona u odnosu na parametar μ. Crvenom bojom je istaknuto osnovno stanje, koje se pri μ/t > 2 nalazi simetrično iznad i ispod postojećeg zabranjenog pojasa, kao što i očekujemo od nekakvog poluvodiča. Lanac je ovdje dakle u trivijalnoj fazi. Zanimljive se stvari počinju događati pri smanjenju tog omjera; primjećujemo da se dva osnovna stanja spajaju u jedno i ostaju na energiji nula, sa sve znatnijim

Slika 3: Energijski spektar Kitaevljevog lanca

odmakom od prvog pobuđenog stanja kako omjer teži u manje vrijednosti. U ovom području se onda nalazimo u topološkoj fazi govorimo o postojanju MZM, koji ime 'zero mode' dobiva iz činjenice da se oba Majoranina fermiona nalaze na energiji nula, kako u suprotnom ne bi bila očuvana simetrija elektron - šupljina. Velik razmak u energiji između MZM i prvog pobuđenog stanja donosi bitnu stabilnost, odnosno nije lako "slučajno" izgubiti stanje pobudom.

Valna funkcija

Oblik valne funkcije MZM se lako dobije računanjem svojstvenih vektora hamiltonijana (i biranjem "srednja" dva vektora dobivena funkcijom eig() u Matlabu, te njihovim zbrajanjem kako bi vidjeli obje Majorane u topološkoj fazi). Valna funkcija na slici 4 prikazuje upravo osnovno stanje na prethodnom grafu prikazano crvenom bojom, a na isti način možemo doći do bilo kojeg pobuđenog stanja, ako je potrebno.

Slika 4: oblik valne funkcije MZM za različite vrijednosti μ

Za $\mu/t=4$ poprilično je dobra lokalizacija para Majorana oko sredine lanca, i on se nalazi u čistoj trivijalnoj fazi. Kako omjer teži u nulu, prvo ćemo vidjeti delokalizaciju uniformno po cijeloj dužini lanca (kao na grafu $\mu/t=3$), a onda sve izraženiju podjelu na dvije lokacije, i to na samim rubovima lanca. U tom slučaju prepoznajemo topološku fazu.

Možemo još proučiti **disperziju**. Postavljanjem periodičkih rubnih uvjeta efektivno promatramo lanac beskonačne duljine, pa ne možemo više pričati o delokalizaciji na rubovima domene, niti iz disperzije direktno odrediti u kojoj se fazi lanac nalazi. Ranije smo definirali da smo u trivijalnoj fazi za $|\mu/t| > 2t$, pa znamo da smo u ostalim prikazanim slučajevima u topološkoj fazi.

Slika 5: disperzija lanca sa PBC za različite vrijednosti μ

Kvantni transport u kitaevljevom lancu

Simulacije transporta u Kitaevljevom lancu u ovom projektu su simulirane koristeći NEGF (non-equilibrium Green's function) formalizam, razmatrajući slučaj sa dva simetrična idealna kontakta. Kontakti u ovom slučaju nemaju direktnu poveznicu s lancem već se transport provodi tuneliranjem, tako da kontakt ne utječe na rub domene, koji je potreban za postojanje Majorane.

Retardiranu Greenovu funkciju definiramo kao:

$$\mathbf{G}^{\mathbf{R}} = [(\mathbf{E} + \mathbf{i}0^{+})\mathbf{I} - \mathbf{H} - \boldsymbol{\Sigma}_{\mathbf{L}} - \boldsymbol{\Sigma}_{\mathbf{R}}]^{-1}$$

gdje su Σ_L i Σ_R matrice lijevog i desnog kontakta, dok je *avansirana Greenova funkcija* G^A njen hermitski konjugat. Onda vjerojatnost transporta računamo kao

$$\mathbf{T} = \mathrm{Tr}(\Gamma_{\mathbf{L}} \mathbf{G}^{\mathbf{R}} \Gamma_{\mathbf{R}} \mathbf{G}^{\mathbf{A}})$$

gdje su Γ_L i Γ_R matrice proširenja $\Gamma_{L,R} = i(\Sigma_{L,R} - \Sigma_{L,R}^{\dagger}) = -2\text{Im}\{\Sigma_{L,R}\}$. Gama matrice ("elektronske" i "šupljinske") za svaki od kontakata u kodu su bile definirane na sljedeći način:

```
GammaLe = -2*imag(kontakt)*kron(diag([1 zeros(1, N-1)]), [1 0; 0 0]);

GammaLh = -2*imag(kontakt)*kron(diag([1 zeros(1, N-1)]), [0 0; 0 1]);

GammaRe = -2*imag(kontakt)*kron(diag([zeros(1, N-1) 1]), [1 0; 0 0]);

GammaRh = -2*imag(kontakt)*kron(diag([zeros(1, N-1) 1]), [0 0; 0 1]);
```

Kao što možemo vidjeti, kako je svaka fermionska lokacija u Kitaevljevom lancu definirana sa dvije Majorane, ovdje sve matrice ponovo imaju dimenziju 2Nx2N, a kod određenih tipova transporta moramo biti pažljivi u definiranju matrica kontakata. One

će biti matrice sa ne-nul elementima samo na jednom od mjesta na krajnjim dijagonalnim 2x2 blokovima. Transport je u projektu razmatran u tri oblika:

Direktan transport odnosi se na jednostavno tuneliranje elektrona kroz materijal. On ulazi kao elektron, u supravodljivoj domeni ostaje elektron, i izlazi kao elektron.

Doprinos direktnog transporta u ukupnom računa se kao

$$\mathbf{T}_{\mathrm{D}} = \mathrm{Tr}(\mathbf{\Gamma}_{\mathrm{L}}^{\mathrm{e(h)}}\mathbf{G}^{\mathrm{R}} \mathbf{\Gamma}_{\mathrm{R}}^{\mathrm{e(h)}}\mathbf{G}^{\mathrm{A}})$$

Andreevljeva refleksija: Elektron niske energije koji ulazi u supravodljivi materijal ne može postojati samostalno već mora formirati Cooperov par, pa samim time mora "izbaciti šupljinu" iz supravodiča pri ulasku.

Njen se doprinos u transportu računa kao

$$\mathbf{T}_{\mathbf{A}} = \mathrm{Tr}(\mathbf{\Gamma}_{\mathbf{L}}^{\mathbf{e}(\mathbf{h})}\mathbf{G}^{\mathbf{R}} \; \mathbf{\Gamma}_{\mathbf{L}}^{\mathbf{h}(\mathbf{e})}\mathbf{G}^{\mathbf{A}})$$

primijetimo ovdje da se pojavljuju left-left gama matrice, a ne left-right.

Ova je komponenta zaslužna za transportna svojstva MZM-a u topološkoj fazi, kao što možemo vidjeti na slici 7, što opravdava potrebu za supravodljivim faktorom u izvedbi topološkog qubita spomenutog u uvodu.

Ukrštena Andreevljeva refleksija (*Crossed Andreev reflection*): U supravodljivu domenu na ulaznom kontaktu dolazi elektron, stvara Cooperov par, a na izlaznom kontaktu izlazi šupljina.

Njen je doprinos u svim fazama lanca relativno malen, ali postojeć, a računa se kao

$$\mathbf{T}_{\mathrm{CA}} = \mathrm{Tr}(\boldsymbol{\Gamma_{\mathrm{L}}}^{\mathrm{e}(\mathrm{h})}\mathbf{G}^{\mathrm{R}} \; \boldsymbol{\Gamma_{\mathrm{R}}}^{\mathrm{h}(\mathrm{e})}\mathbf{G}^{\mathrm{A}}),$$

ovdje dakle valja primijetiti suprotne čestice na matricama proširenja lijevog i desnog kontakta.

Njihov zajednički doprinos jednostavno se računa kao

$$T = T_D + T_A + T_{CA}.$$

Moramo još uzeti u obzir da pošto računamo svaku komponentu za "elektronsku" i "šupljinsku" lokaciju, za ukupnu vjerojatnost transporta trebamo uzeti njihovu aritmetičku sredinu. Provedbu cijelog ovog procesa u kodu možemo vidjeti kroz sljedeći isječak:

```
GR = (((E(n)+zplus)*eye(2*N))-H-SigmaL-SigmaR)\eye(2*N);
GA = GR';
TDe = real(trace(GammaLe*GR*GammaRe*GA));
TAe = real(trace(GammaLe*GR*GammaLh*GA));
TCAe = real(trace(GammaLe*GR*GammaRh*GA));
TDh = real(trace(GammaLh*GR*GammaRh*GA));
TAh = real(trace(GammaLh*GR*GammaLe*GA));
TCAh = real(trace(GammaLh*GR*GammaRe*GA));
TCAh = real(trace(GammaLh*GR*GammaRe*GA));
```


Slika 6: Transport po komponentama (lijevo) i ukupni (desno) u trivijalnoj fazi

Slika 7: Transport po komponentama (lijevo) i ukupni (desno) u topološkoj fazi

Majoranine oscilacije

Za realizaciju MZM poželjno je da t i Δ budu sumjerljivi, te da je μ po apsolutnoj vrijednosti više nego dvostruko manji od t. Sve dosad promatrane simulacije bile su provedene za idealan slučaj t/ Δ = 1, odnosno za slučaj kada je *hopping* parametar jednak parametru supravodljivosti. U praksi je taj omjer često mnogo veći, i u tom se slučaju pojavljuju oscilacije u topološkoj fazi lanca.

Kada promotrimo ponašanje spektra pri povećanju omjera t/Δ najjasnije je zašto Majoranine oscilacije čine sustav neiskoristivim - s ovakvim parametrima efektivno je nemoguće 'ubosti' točku u kojoj su oba stanja točno u energiji nula.

Slika 8: spektar za različite t/Δ uz N=10

Oscilacije se očituju i u valnoj funkciji, očekivano, smanjujući lokaliziranost MZM-ova u topološkoj fazi (dok, kao što smo i prije mogli vidjeti, u trivijalnoj fazi nemaju utjecaj).

U transportu u topološkoj fazi ovaj fenomen uzrokuje gubitak središnjeg "šiljka" u Andreevljevoj komponenti refleksije u vrijednostima na μ/t osi u kojima se Majorane energijski razdvajaju, kao što možemo vidjeti na slikama 10 i 11. Ponovo zaključujemo da oscilacije poništavaju korisna svojstva Kitaevljevog lanca.

Sike 10 i 11: utjecaj Majoraninih oscilacija na transport

Potrebno je dakle naći način za poništiti oscilacije i u izvedbama u kojima nije moguće mijenjati same parametre t i Δ . Jedan od njih je produljenje samog lanca. Iz spektra možemo vidjeti da se za kompenzirati $t/\Delta = 5$ lanac mora sastojati od barem tridesetak fermiona, za $t/\Delta = 10$ oko 60, ili općenito za povećanje omjera dva puta, lanac treba

produljiti oko 3 puta. Oscilacije naravno još uvijek postoje, no razlika u energiji između Majorana postaje zanemarive amplitude i lanac je ponovo iskoristiv.

Sika 12 : utjecaj Majoraninih oscilacija na transport