Joint Strike Fighter

David W. Nixon

Lockheed-Martin Aeronautics

5 October 2004

F-35 Variants

STOVL

Integrated STOVL Propulsion System, Flying Qualities and Performance From Hover Through Supersonic Flight

CTOL

Flying Qualities, Engine-Inlet Compatibility, and Flight Performance at Representative Mission Points

CV

Carrier Suitable Flying and Handling Qualities and Flight Performance at Representative Mission Points

X-35A/B Features

X-35A/B Features

STOVL Configuration

X-35C Features

CV Configuration

Flight Control Objectives

- Leverage Advanced Control Design Methodology
 - Maximize Commonality in Control Laws Across the Variants
 - Enable Design-to-Flying Qualities Philosophy
 - Facilitate Rapid Updates to the Control Laws Throughout the Design Cycle
- Exploit Model-Based Software Development and Automatic Code Generation Technology
 - Singular Design Reference
 - Reduce Software Defects
 - Improve Cycle Time

Dynamic Inversion Control Law Structure

Common Control Law Structure for All Aircraft Variants

What is Dynamic Inversion?

Background

- Initial Methodology Developed by Dr. Dale Enns (Honeywell Technology Center)
- Honeywell/Lockheed Teamed on Multi-variable Control Research Program That Applied Methodology to F-16, YF-22, and F-117
- Early STOVL Application During ASTOVL Program

Linear Aircraft Equations of Motion

 $\ddot{x} = Ax + Bu$ x - states

cv = Cx u - effectors

cv - control variable

A - Aircraft Dynamics Matrix

B - Control Effectiveness Matrix

C - Control Variable Matrix

Dynamic Inversion Formulation

$$cv_{des} = Cx = CAx + CBu$$

$$u = (CB)^{-1}(cv_{des} - CAx)$$

Roll Regulator Example

• Map the Pilot Commands and Feedbacks into the Desired Aircraft

Simple Dynamic Inversion Roll Control Law Provides a Classical First Order Roll Response

Model-Based S/W Development Philosophy

- Single Electronic Source for All Software Requirements, Design, and Implementation
 - Graphical Representation of Software Design No Paper Diagrams or Separate Block Diagrams
 - All Textual Documentation Embedded in Model
- Automatic Code Generation Process to Eliminate Coding Defects
 - Eliminate Errors Normally Incurred From Translating Requirements Into Design and Code
- Model Thoroughly Evaluated in Analytical and Simulation Environment
 - Code Supplied to Six DOF Simulation (ATLAS) for Dynamic Analysis and Piloted Simulator
 - Prototype Design Changes Rigorously Tested in Simulator with Test Pilots

Not Just A Higher Level Language for Programming – A Different Software Development Paradigm

Model-Based Development Process

Model-Based Software Products

- Model-Based Process Requires a Re-interpretation of Traditional Software Products
 - Software Requirements are Combination of SRS Text
 & Diagrams
 - Software Design is Combination of SDD Text & Diagrams
 - Verification is Performed with SRS Text & Graphical Model
 - Requirements-to-Design Linkage is Inherent
 - SPEs are Performed on Graphical Model Instead of Code

Where We Are

- Model-Based Design proven in CDA phase
 - Successful flight test of all variants with one OFP
 - Reduced Software Defects (Early Checkout in Engineering Simulations)
 - Overall Reduction in Manhours/SLOC of ~40%
- Fully functional UA control laws and Air Data in Simulink
 - CLAW model is very large
 - consists of root model + 266 library files
 - Root model has 421 inputs and 337 outputs
 - 16,143 blocks in 871 subsystems
 - 998 instances of reused utility subsystems
 - Real-Time Workshop® ERT code is ~47,000 logical lines of code in 750 files
 - CLAW and Air Data code is running in offline simulation, handling qualities simulator, and on target hardware on test stations
- MathWorks support has been a key element in overcoming obstacles
 - R13SP1
 - R14SP1

Challenges

- Automated testing to meet Safety-critical test requirements
 - T-VEC
 - Running ATLAS check cases in target simulator
 - LDRA static/dynamic analysis
- Design with a Large-Scale Mode
 - Configuration Management
 - Time and memory required to simulate and code

What's Next

• R14

- Model Reference is important new technology
 - Incremental code generation
- EML could be very useful for utility development
- Improvements in code generation
 - Better MISRA compliance
 - More efficient code
- Improved code customization capabilities

• R15

- More improvement needed in code efficiency
- Mapping of function interfaces from model to code
- Improvements to reusable function code
 - Work toward the goal of producing a single function

Flight Test Video

- X-35A Highlights
- X-35B Highlights
- X-35C Highlights