Trabajo 1-equipo 43

Estudiantes

3,4

Brayan Estiven Arias Davila Juan Paulo Lemus Cano Mariana Pitalua Martinez Daniel Gonzalez Henao

Equipo

Docente

Carlos Mario Lopera

Asignatura

Estadadistica II

Sede Medellin 5 de octubre de 2023

Índice

1.	Pregur	nta 1	3
	1.1. Me	odelo de regresión	3
	1.2. Sig	gnificancia de la regresión	3
	1.3. Sig	gnificancia de los parámetros	4
	1.4. Int	terpretación de los parámetros	4
	1.5. Co	peficiente de determinación múltiple R^2	5
2.	Pregur	nta 2	5
	2.1. Pla	anteamiento pruebas de hipótesis y modelo reducido	5
	2.2. Es	stadístico de prueba y conclusión	5
3.	Pregur	nta 3	6
	3.1. Pr	rueba de hipótesis y prueba de hipótesis matricial	6
	3.2. Es	stadístico de prueba	6
4.	Pregur	ata 4	7
	4.1. Su	ipuestos del modelo	7
	4.1	1.1. Normalidad de los residuales	7
	4.1	1.2. Varianza constante	8
	4.2. Ve	erificación de las observaciones	8
	4.2	2.1. Datos atípicos	9
	4.2	2.2. Puntos de balanceo	0
	4.2	2.3. Puntos influenciales	1
	4.3 Co	onclusión	2

Índice de figuras

1.	Gráfico cuantil-cuantil y normalidad de residuales	7
2.	Gráfico residuales estudentizados vs valores ajustados	8
3.	Identificación de datos atípicos	9
4.	Identificación de puntos de balanceo	10
5.	Criterio distancias de Cook para puntos influenciales	11
6.	Criterio Dffits para puntos influenciales	12
Índi	ce de cuadros	
man	te de cuadros	
1.	Tabla de valores coeficientes del modelo	3
2.	Tabla ANOVA para el modelo	4
3.	Resumen de los coeficientes	4
4	Resumen tabla de todas las regresiones	5

2 p+

1. Pregunta 1

Teniendo en cuenta la base de datos brindada, en la cual hay 5 variables regresoras dadas por:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + \beta_5 X_{5i} + \varepsilon_i, \ \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2); \ 1 \leqslant i \leqslant 64$$

Donde ... acá dicen el nombre de las variables

- Y: Riesgo de infección
- X_1 :Duracción de la estadia
- X_2 :Rutina de cultivos
- X_3 :Número de camas
- X_4 :Censo promedio diario
- X_5 :Número de enfermeras

1.1. Modelo de regresión

Al ajustar el modelo, se obtienen los siguientes coeficientes:

Cuadro 1: Tabla de valores coeficientes del modelo

	Valor del parámetro
β_0	-0.7016
β_1	0.1575
β_2	0.0210
β_3	0.0497
β_4	0.0164
β_5	0.0007

Por lo tanto, el modelo de regresión ajustado es:

$$\hat{Y}_i = -0.7016 + 0.1575 X_{1i} + 0.021 X_{2i} + 0.0497 X_{3i} + 0.0164 X_{4i} + 7 \times 10^{-4} X_{5i} + \xi_i, \ \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2); \ 1 \leqslant i \leqslant 113$$

1.2. Significancia de la regresión

Para analizar la significancia de la regresión, se plantea el siguiente juego de hipótesis:

$$\begin{cases} H_0: \beta_1=\beta_2=\beta_3=\beta_4=\beta_5=0\\ H_a: \text{Algún } \beta_j \text{ distinto de 0 para j=1, 2,..., 5} \end{cases}$$

Cuyo estadístico de prueba es:

5p+

$$F_0 = \frac{MSR}{MSE} \stackrel{H_0}{\sim} f_{5,58} \tag{1}$$

Ahora, se presenta la tabla Anova:

Cuadro 2: Tabla ANOVA para el modelo

	Sumas de cuadrados	g.l.	Cuadrado medio	F_0	P-valor
Regresión Error	58.1899 47.3501	5 58	11.637974 0.816382	14.2556	4.28863e-09

De la tabla Anova, se observa un valor P es muy pequeño (4.28863e-09), por lo que se rechaza la hipótesis nula en la que $\beta_j = 0$ con $1 \le j \le 5$, aceptando la hipótesis alternativa en la que algún $\beta_j \ne 0$, por lo tanto la regresión es significativa.

1.3. Significancia de los parámetros

En el siguiente cuadro se presenta información de los parámetros, la cual permitirá determinar cuáles de ellos son significativos.

Cuadro 3: Resumen de los coeficientes

	$\hat{eta_j}$	$SE(\hat{\beta}_j)$	T_{0j}	P-valor
β_0	-0.7016	1.4295	-0.4908	0.6254
β_1	0.1575	0.0674	2.3367	0.0229
β_2	0.0210	0.0261	0.8058	0.4236
β_3	0.0497	0.0127	3.9265	0.0002
β_4	0.0164	0.0066	2.5027	0.0152
β_5	0.0007	0.0007	0.9401	0.3511

30+

Los P-valores presentes en la tabla permiten concluir que con un nivel de significancia $\alpha = 0.05$, los parámetros $\beta_i / \gamma \beta_j$ son significativos, pues sus P-valores son menores a α .

1.4. Interpretación de los parámetros

 $\hat{\beta}_1$:Indica que cada unidad que se aumente en la duración de la estadía el promedio del riesgo de infección aumenta en 0,1575 unidades, cuando las demás predictoras se mantienen fijas.

 $\hat{\beta}_3$:Indica que por cada unidad que aumente el numero de camas el promedio de riesgo de infección aumenta en 0,0497 unidades, cuando las demás se mantiene fijas.

 $\hat{\beta}_4$:Indica que por cada unidad que aumente el censo promedio diario, la respuesta media de riesgo de infección aumenta en 0,0164 unidades, cuando las demás predictoras se mantienen fijas.

1.5. Coeficiente de determinación múltiple R^2

Segun la información obtenidad de la tabla ANOVA del modelo ajustado y utilizando la formula para hallar $R^2 = SSR/SST$, se toma el valor del SST = SSE + SSR = (58.1899 + 47.3502) se obtiene finalmente un coeficiente de determinación de $R^2 = 0.5514$.Lo cual, significa que dicho modelo explica aproximadamente el 55.14 % de la variabilidad total de la respuesta.

2. Pregunta 2

2.1. Planteamiento pruebas de hipótesis y modelo reducido

Las covariables con el valor-P más bajo en el modelo fueron X_1, X_3, X_4 , por lo tanto a través de la tabla de todas las regresiones posibles se pretende hacer la siguiente prueba de hipótesis:

$$\begin{cases} \mathbf{H}_0: \beta_1 = \beta_3 = \beta_4 = 0 \\ \mathbf{H}_1: \text{Algún } \beta_j \text{ distinto de 0 para } j = 1, 3, 4 \end{cases}$$

Cuadro 4: Resumen tabla de todas las regresiones

	SSE	Covariables en el modelo
Modelo completo Modelo reducido		X1 X2 X3 X4 X5 X2 X5

Luego un modelo reducido para la prueba de significancia del subconjunto es:

$$Y_i = \beta_0 + \beta_2 X_{2i} + \beta_5 X_{5i} + \varepsilon$$
; $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$; $1 \leqslant i \leqslant 64$

2.2. Estadístico de prueba y conclusión

Se construye el estadístico de prueba como:

$$F_{0} = \frac{(SSE(\beta_{0}, \beta_{3})\beta_{5}) - SSE(\beta_{0}, \dots, \beta_{5}))/3}{MSE(\beta_{0}, \dots, \beta_{5})} \stackrel{H_{0}}{\sim} f_{3,58}$$

$$= \frac{(86.603 - 47.350)/3}{47.350/58}$$

$$= 16.02727$$
(2)

Ahora con un nivel de significancia de $\alpha = 0.95$ y con un cuantil $f_{0.95,3,58} = 2.7636$, se puede ver que $F_0 > f_{0.95,3,58}$ y por tanto qué se rechaza H_0 , entonces se concluye que las variables del subconjunto no se pueden retirar del modelo.

3. Pregunta 3

56+

3.1. Prueba de hipótesis y prueba de hipótesis matricial

El efecto de la duración de la estadia X_1 sobre el riesgo de infección Y_i es igual a dos veces el número de enfermeras X_5 ; por consiguiente se plantea la siguiente prueba de hipótesis: Pregunta 2: El efecto de 3 veces el número de camas sobre el riesgo de infección es igual al censo promedio diario; por lo tanto se plante la siguiente prueba de hipotesis

$$\begin{cases} H_0: \beta_1=2\beta_5; \ \beta_4=3\beta_3 \\ H_1: Alguna \ de \ las \ igualdades \ no \ se \ cumple \end{cases}$$

reescribiendo matricialmente:

$$\begin{cases} H_0 : \mathbf{L}\underline{\beta} = \underline{\mathbf{0}} \\ H_1 : \mathbf{L}\underline{\beta} \neq \underline{\mathbf{0}} \end{cases}$$

Con L dada por

$$L = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 3 & -1 & 0 \end{bmatrix}$$

El modelo reducido está dado por:

$$Y_o = \beta_o + \beta_2 X_{2i} + \beta_3 X_{3i}^* + \beta_5 X_{5i}^* + \varepsilon_i, \ \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2); \ 1 \leqslant i \leqslant 64$$
Donde $X_{3i}^* = X_{3i} + 3X_{4i} \ y \ X_{5i}^* = 2X_{1i} + X_{5i}$

3.2. Estadístico de prueba

El estadístico de prueba F_0 está dado por:

$$F_0 = \frac{(SSE(MR) - 47.350)/2}{0.8163} \stackrel{H_0}{\sim} f_{2,58}$$
(3)

191

4. Pregunta 4

13,50+

4.1. Supuestos del modelo

4.1.1. Normalidad de los residuales

Para la validación de este supuesto, se planteará la siguiente prueba de hipótesis que se realizará por medio de shapiro-wilk, acompañada de un gráfico cuantil-cuantil:

$$\begin{cases} \mathbf{H}_0 : \varepsilon_i \sim \text{Normal} \\ \mathbf{H}_1 : \varepsilon_i \nsim \text{Normal} \end{cases}$$

Normal Q-Q Plot of Residuals

Figura 1: Gráfico cuantil-cuantil y normalidad de residuales

3,561

Al ser el P-valor aproximadamente igual a 0.8014 y teniendo en cuenta que el nivel de significancia $\alpha=0.05$, el P-valor es mucho mayor y por lo tanto, no se rechazaría la hipótesis nula, es decir que los datos distribuyen normal con media 0 y varianza σ^2 . El modelo parece ser válido en términos de normalidad de los residuales y homocedasticidad de los mismos, ya que no se encontraron pruebas suficientes para rechazar estos supuestos; tambien se puede ver graficamente que los valores estan cercanos a la linea recta distribuyendo de forma normal.

Faltó más gnálisis gráfico

4.1.2. Varianza constante

Residuales Estudentizados vs Valores Ajustados

Figura 2: Gráfico residuales estudentizados vs valores ajustados

La ausencia de patrones visibles en el gráfico de "Residuales Estudentizados vs Valores Ajustados" sugiere que la varianza de los errores es constante a lo largo de los valores ajustados, lo que es consistente con el supuesto de varianza constante y fortalece la validez del modelo en términos de homocedasticidad.

4.2. Verificación de las observaciones

- 101

Tengan cuidado acá, modifiquen los límites de las gráficas para que tenga sentido con lo que observan en la tabla diagnóstica. También, consideren que en aquellos puntos extremos que identifiquen deben explicar el qué causan los mismos en el modelo.

4.2.1. Datos atípicos

Residuales estudentizados

Como se puede observar en la gráfica anterior, no hay datos atípicos en el conjunto de datos pues ningún residual estudentizado sobrepasa el criterio de $|r_{estud}| > 3$.

4.2.2. Puntos de balanceo

Gráfica de hii para las observaciones

Figura 4: Identificación de puntos de balanceo

res.stud Cooks.D hii.value Dffits ## 19 -1.5015 0.1004 0.2108 - 0.7847-2.1121 ## 0.5014 1.78970.4028 gráfica, lepoltan 6 pero -1.0586 0.0833 ## 0.3084 - 0.7076## 38 0.2401 0.6446 0.0219 0.3605 ##_ 42 0.8016 0.0266 0.1988 0.3980 0.3969 -0.0799 ## 61 -0.0993 0.0011

Al observar la gráfica de observaciones vs valores h_{ii} , donde la línea punteada roja representa el valor $h_{ii} = 2\frac{p}{n} = 0.1875$, se puede apreciar que existen 6 datos del conjunto que son puntos de balanceo que hacen referencia a las observaciones 19,21,23,38,42 y 61,según el criterio bajo el cual $h_{ii} > 0.1875$, los cuales son los presentados en la tabla.

causun?

4.2.3. Puntos influenciales

Gráfica de distancias de Cook

Figura 5: Criterio distancias de Cook para puntos influenciales

Como arrojo el analisis de distancias de Cook, no hay datos influenciales segun este criterio; sin embargo, se procede a analizar el criterio de los DFFITS para verificar o descartar la existencia de puntos influenciales.

Gráfica de observaciones vs Dffits

Figura 6: Criterio Dffits para puntos influenciales

```
##
      res.stud Cooks.D hii.value
                                   Dffits
## 19
       -1.5015
                0.1004
                           0.2108 - 0.7847
## 21
       -2.1121
                0.5014
                           0.4028 - 1.7897
## 23
       -1.0586
                0.0833
                           0.3084 - 0.7076
                                                         CquSun?
## 26
        2.4037
                0.1325
                           0.1210
                                   0.9315
        1.5731
                0.0735
## 47
                           0.1513
                                   0.6729
## 51
       -1.9282
                0.0617
                           0.0906 - 0.6235
```

Como se puede ver, las observaciones 19,21,23,26,47,51 son puntos influenciales según el criterio de Dffits, el cual dice que para cualquier punto cuyo $|D_{ffit}| > 2\sqrt{\frac{p}{n}} = 0.6124$. En sintesis, unificando los analisis de ambos criterios solo el criterio de los Dffits nos proporciona puntos influenciales, los cuales hacen referencia a las observaciones ya mencionadas.

4.3. Conclusión Pt Qfectar valide?

En conclusión el modelo es valido ya que es estadadicamente significativo y los errores cumplen con los supuestos de normalidad y homogenidad de varianza, teniendo en cuenta la presencia de valores extremos al interpretar los resultados del modelo, ya que pueden tener un efecto significativo en las estimaciones y conclusiones derivadas del mismo. El analisis de valores extremos arroja que en las observaciones [19,21,23] existen puntos de balanceo e influenciales al mismo tiempo, mientras que en las observaciones [38,42,61] son puntos de balanceo y las observaciones [26,47,51] son datos influenciales individualmente