Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Modelo de insumo-produto via Python para Previsão de Demanda

Diomara Damasceno Moraes¹
Universidade Federal de Juiz de Fora - UFJF
Alex Sander de Moura²
Departamento de Economia - Universidade Federal de Juiz de Fora - UFJF
Werley Gomes Facco³
Instituto Federal do Espirito Santo - IFES

Resumo. Neste trabalho queremos aplicar o modelo de insumo-produto criado por Wassily Leontief, com o intuito de obter soluções a partir de um conjunto de sistemas lineares ou matriz Input-Output.

Palavras-chave. Matriz insumo-produto, Leontief, Python, algoritmos.

Neste artigo será investigado o impacto que um setor tem para a economia para poder fazer previsões a respeito de projeções de emprego, produtividade, exportação e importação entre outros, podendo antecipar ou até mesmo planejar decisões. Será aplicado o modelo de insumo-produto criado por Wassily Leontief [3], esse método induz uma resolução de um conjunto de sistemas lineares onde os dados utilizados são extraídos de um setor da economia no qual é objeto de estudo, esses sistemas descrevem a interdependência entre os setores e suas características estruturais.

Por exemplo em 2014 os preços do petróleo caíram drasticamente, essa queda foi resultado do aumento da produção de óleo de xisto nos Estados Unidos e da redução da demanda global. A queda dos preços do petróleo faz parte de um fenômeno global de deflação. Ser capaz de prever a demanda é imprescindível para todos os setores de uma economia. Portanto, neste artigo, apresentaremos o modelo Leontief e examinaremos o quão preciso ele pode ser na previsão da demanda usando dados históricos da BEA (Bureau Of Economic Analysis), e tentaremos estender estes resultados para este ano de 2020.

O algoritmo utilizado obedecerá as seguintes etapas: Leitura do problema e pelo carregamento dos dados, construção da matriz de insumo-produto, construção da matriz de coeficiente técnicos e resolução do sistema linear.

A descrição da economia começa com uma coleção de dados definida como uma tabela **input-output** para uma economia [3]. Esta tabela lista os valores dos bens produzidos por cada setor e quanto desta produção é usada pelos demais setores.

¹diomara.dm@gmail.com

 $^{^2}$ alex.moura@ufjf.edu.br

³werleyfacco@ifes.edu.br

2

Digamos que uma economia produz bens e serviços, e esses bens e serviços também consomem outros bens e serviços (chamaremos isso de demanda intermediária). O restante dos bens e serviços produzidos vai para os consumidores (chamaremos isso de demanda final). Podemos representar esse relacionamento com uma equação.

$$\Gamma = \mathbf{M}\Gamma + \Delta \tag{1}$$

onde Γ é um vetor que contém a quantidade total de unidades produzidas, por setor; $\mathbf{M}\Gamma$ é a demanda intermediária e Δ é a demanda final.

Agriculture	Mining	Utilities	Construction	Manufacturing	Wholesale trade	Retail trade	Transportation and warehousing	Information	Finance	Professional and business services	Educational	Arts	Other services	Government
94325	160	0	1939	275162	1584	3193	92	1	49	2030	1094	7517	81	2663
2473	54705	33987	10292	568596	50	57	2015	301	4060	1341	457	1163	454	18612
4168	3563	2191	2192	55702	4641	10797	5912	4326	68779	9216	25255	10772	3593	29092
2657	5770	3257	154	14645	1491	3000	4502	2699	125430	1858	2887	2330	3353	67644
83010	48039	23886	269116	1948788	42100	53835	182284	102113	52529	146138	182905	142084	50845	383791
24367	7729	4214	45363	286372	39730	26436	34180	26605	13307	24492	37515	23004	8580	46384
185	210	305	77143	12983	765	7369	5196	418	6303	2466	1730	7389	4995	596
12661	12321	14884	19355	147606	61656	69156	105987	18489	24931	46749	24495	14748	5512	65677
453	973	1025	4177	24178	15933	19604	5111	225790	53703	69226	28993	9577	8223	76332
19250	17337	8346	30172	83235	97777	151892	69952	69692	815346	230589	317400	94461	75651	137787
5351	37507	13926	44182	414385	191284	166368	58895	151424	401060	507621	248020	137186	38875	268699
431	0	97	18	65	965	7053	60	820	38	726	24929	1936	2213	32838
512	982	1879	2277	21147	8474	6273	3012	34270	41939	62648	31806	27913	3565	34370
1041	732	525	4804	16656	17681	12132	4803	10725	29521	31065	35959	11781	6252	27677
43	6	336	26	5464	10036	6693	13035	2427	14963	8685	7037	6374	1672	9392

Figura 1: Economia a ser analisada para prever demanda diante da queda do petróleo em 2014.

Diante do exposto, a partir dos cálculos feitos via programação Python com os dados da economia representados na Figura 1 e sabendo que a matriz inversa de Leontief obtida demonstra as relações intersetoriais da economia quando ocorre um acréscimo de \$ 1,00 na demanda final de cada setor, podemos observar que (através do multiplicador setorial) o setor que teve maior impacto com um aumento de \$ 1,00 na demanda final foi o de serviços (0,86) e com menor impacto (negativo) o de manufaturas (-2,56). Sendo assim, para diminuir a produção dessa economia poderia ter sido estimulada a demanda do setor com menor multiplicador setorial.

Dessa forma, neste artigo foi desenvolvido um framework onde o algoritmo foi implementado na linguagem Python, para a resolução de modelos de insumo produto. Para trabalhos futuros a metodologia será ampliada para diversos problemas atuais.

Referências

- [1] Guihoto, J, Sesso Filho, U. A. Estimação da matriz insumo-produto a partir de dados preliminares das contas nacionais. Economia Aplicada, v. 9, n. 2, abr.-jun., 2005.
- [2] Leonief, W., Strout, A. Multiregional Input-Output Analysis in Structural Interdependence and Economic Development. T. Barna. New York: St. Martin's Press, 1963,
- [3] Leontief, W., Input-Output Economics, Scientific American, October 1951.