Solución

Puesto que T es lineal y $T(\mathbf{x}) = A\mathbf{x}$, donde A es una matriz 2×2 que satisface que det $A \neq 0$, sabemos que $T : \mathbb{R}^2 \to \mathbb{R}^2$ es sobreyectiva (véanse los Ejercicios 12 y 13), y por tanto se puede determinar D^* . Por el Teorema 1, D^* tiene que ser un paralelogramo. Para hallar D^* , basta con determinar los cuatro puntos que se corresponden con los vértices de D; después, conectando estos puntos, habremos determinado D^* . Para el vértice (1,0) de D, tenemos que calcular T(x,y)=(1,0)=((x+y)/2,(x-y)/2), de modo que (x+y)/2=1,(x-y)/2=0. Por tanto, (x,y)=(1,1) es un vértice de D^* . Resolviendo para los restantes vértices, tenemos que $D^*=[-1,1]\times[-1,1]$. Esto concuerda con lo que hemos hallado de forma más laboriosa en el Ejemplo 2.

Ejemplo 7

Sea D la región del primer cuadrante que está entre los arcos de las circunferencias $x^2 + y^2 = a^2, x^2 + y^2 = b^2, 0 < a < b$ (véase la Figura 6.1.6). En coordenadas polares, las ecuaciones de estas circunferencias son r = a y r = b. Sea T la transformación a coordenadas polares dada por $T(r, \theta) = (r \cos \theta, r \sin \theta) = (x, y)$. Hallar D^* tal que $T(D^*) = D$.

Figura 6.1.6 Buscamos una región D^* en el plano θr cuya imagen bajo la aplicación de coordenadas polares es D.

Solución

En la región $D, a^2 \le x^2 + y^2 \le b^2$; y puesto que $r^2 = x^2 + y^2$, vemos que $a \le r \le b$. Evidentemente, para esta región, θ varía entre $0 \le \theta \le \pi/2$. Luego si $D^* = [a,b] \times [0,\pi/2]$, tenemos que $T(D^*) = D$ y T es inyectiva.

Nota El teorema de la función inversa presentado en la Sección 3.5 es relevante para el material que estamos tratando aquí. Establece que si el determinante de $\mathbf{D}T(u_0, v_0)$ [que es la matriz de derivadas parciales de T evaluada en (u_0, v_0)] es distinto de cero, entonces para (u, v) próximo a (u_0, v_0) y (x, y) próximo a $(x_0, y_0) = T(u_0, v_0)$, la ecuación T(u, v) = (x, y) puede calcularse de forma única para (u, v) como funciones de (x, y). En particular, por la unicidad, T es inyectiva cerca de (u_0, v_0) ; además, T es sobreyectiva sobre un entorno de (x_0, y_0) , porque T(u, v) = (x, y) es resoluble para (u, v) si (x, y) está cerca de (x_0, y_0) .

Sin embargo, incluso si T es inyectiva cerca de cada punto y también es sobreyectiva, T no necesita ser globalmente inyectiva. Por tanto, debemos tener cuidado (véase el Ejercicio 17).

Sorprendentemente, si D^* y D son regiones elementales y $T: D^* \to D$ satisface la propiedad de que el determinante de $\mathbf{D}T(u,v)$ es distinto de