Memoria Practica 2 FISE

Daniel Vilardell

$\mathbf{\acute{I}ndex}$

1	Sessió 1	1
2	Sessió 2	3

1 Sessió 1

Per a aquesta practica s'ha montat i soldat es el seguent.

Figura 1: Circuit practica 2

En la primera sessió es va montar i comprobar del seu bon funcionament la primera etapa del amplificador, que te la seguent forma.

Figura 2: Primera fase del circuit

Qüestió 1: La tensió continua mesurada als tres nodes amb continua es la meitat de la alimentació ja que es va agafar $R_3 = R_4$ i per tant la tensió a la pota no inversora del amplificador es de $\frac{V_{cc}}{2}$, que es la mateixa que a la pota inversora gracies al çurteiteuit virtual" dels amplificadors. Finalment la tensió de sortida del V_o es la mateixa a la pota on inversora ja que el condensador C_1 elimina el corrent dins de la conexió entre els nodes, i per tant la corrent no varia.

Qüestió 2: El senyal a la entrada de la etapa amplificadora es el que posem nosaltres al generador de funcions, que en el nostre cas es una ona a 40kHz de 20mV. A la sortida del amplificador la amplitud de la senyal es de 4V.

Figura 3: Sortida per una entrada sinusoidal de 40kHz

Qüestió 3:

Freqüència	100Hz	1kHz	10kHz	25kHz	40kHz	75kHz	100kHz	500kHz	1MHz
V_{i1}	20mV	20mV	20mV	20mV	20mV	20mV	20mV	20mV	20mV
V_{o1}	0V	50mV	0.4V	1.7V	4V	1V	0.6	45mV	0
Guany	0	2.5	20	85	200	50	30	2.25	0
Guany (dB)	_	7.9	26	38	46	33	29.5	7	_

Al fer la segona etapa es va haver de reduir el quocient $\frac{R_2}{R_1}$ per a evitar que l'amplificació fos tan gran i aixi obtenir la amplificació de 200 demanada

2 Sessió 2

Qüestió 4: Per la mateixa raó que al exericici 1 les tensions mesurades a tots els nodes en continua son $\frac{V_{cc}}{2}$ Qüestió 5: El guany mesurat a cada etapa havent fet els canvis necessaris per fer el quocient $\frac{R_2}{R_1}$ mes petit i tenint una entrada de 10mV son:

- A la primera etapa la amplificació es de 400mV i per tant el guany es de 40.
- A la segona etapa el guany es de 4V i per tant el guany es de 10.

El guany total despres de passar per les 2 etapes es de 400.

Figura 4: Entrada i sortida de la primera etapa amplificadora

Figura 5: Entrada i sortida del circuit total

Qüestió 6:

Freqüència	100Hz	1kHz	10kHz	25kHz	40kHz	75kHz	100kHz	500kHz	1MHz
V_{i1}	20mV	20mV	20mV	20mV	20mV	20mV	20mV	20mV	20mV
V_{o1}	0V	50mV	0.2V	1.4V	4V	5.6V	6V	400mV	0
Guany	0	2.5	10	70	200	280	300	20	0
Guany (dB)	_	7.9	20	36.9	46	48	49.5	26	_

Qüestió 7: La tensió d'entrada per la que no hi ha distorció es 30mV ja que si fem $0.03\cdot 400=12\approx V_{sat}.$

Qüestió 8: Podem veure a les seguents imatges que el slew rate es igual a $SR=\frac{4-(-4)}{(250-(-500))\cdot 10^{-9}}=10.6\frac{V}{\mu s}$

Figura 6: Sortida del circuit amb entrada tensió elevada

Figura 7: Sortida del circuit amb entrada tensió elevada