Hilbert 符号

邱才颙

2023年1月25日

1

$$\mathbb{Z}_p^{\times} = \{ x \in \mathbb{Z}_p | \exists y \in \mathbb{Z}_p, xy = 1 \}$$
$$\mathbb{Q}_p^{\times} = \{ x \in \mathbb{Q}_p | \exists y \in \mathbb{Q}_p, xy = 1 \}$$

注意, $\mathbb{Q}_p^{\times} = \mathbb{Q}_p - \{0\}$, 但是 $\mathbb{Z}_p^{\times} \neq \mathbb{Z}_p - \{0\}$ 。

我们的第一个任务是,分析 \mathbb{Q}_p^{\times} 的结构。首先我们要知道,p 进数域 \mathbb{Q}_p 和 \mathbb{R} 一样,都是有理数 \mathbb{Q} 的一种完备化,因此我们先看看 \mathbb{R}^{\times} 的乘法结构,看看是否能够有所启发:

定理 1.1

任何非零实数 $x \in \mathbb{R}^{\times}$ 都可以写成

$$x = \epsilon(x)|x|$$

其中 $\epsilon(x) \in \{\pm 1\}$, 而对于后一部分 $|x| \in \mathbb{R}_{>0}$, 我们有公式

$$\ln|xy| = \ln|x| + \ln|y|$$

这个定理有许多可以解读的地方:

- 我们可以定义映射 $\epsilon: \mathbb{R}^{\times} \to \{\pm 1\}$,这个映射可以用来判断一个非零 实数是不是平方元素,这个映射是乘法群同态
- $\{\pm 1\}$ 这个集合,恰好是 $\mathbb R$ 中的所有单位根,也就是说 $\mu(\mathbb R)=\{\pm 1\}$
- ϵ 的核(kernel)就是 $\mathbb{R}_{>0}$

- ln 给出了 ℝ>0 到 (ℝ, +) 的同构
- 平方元(正实数)的附近的元素也是平方元(正实数)

我们在之前已经知道,任何 $x \in \mathbb{Q}_p^{\times}$ 都可以写成

$$x = u(x)p^{v_p(x)}$$

其中 $u(x) \in \mathbb{Z}_p^{\times}$ 被 x 唯一确定,所以 p 进数的乘法结构的关键,就是乘法 群 \mathbb{Z}_p^{\times} 的结构。

对于 \mathbb{Z}_p^{\times} 的结构,从 $\mu(\mathbb{R})$ 得到启发,首先我们来研究单位根:

引理 1.2

设 $p \neq 2$, 那么方程

$$X^{p-1} = 1$$

在 \mathbb{Z}_p 中有 p-1 个解。

证明. 考虑多项式 $f(X) = X^{p-1} - 1$,对于 $k = 1, 2, \ldots, p-1$,我们知道 f(k) 是 p 的倍数 (费马小定理),换言之, $|f(k)|_p \le \frac{1}{p}$ 。而 $f'(k) = (p-1)k^{p-2}$ 和 p 互素,因此 $|f'(k)|_p = 1$,Hensel 引理可以使用,因此每个 k 都可以提升为一个精确解。而 f(X) = 0 即便在域 \mathbb{Q}_p 中也最多有 p-1 个不同的根,证毕。

如果我们选择 k 为 $\mathbb{Z}/p\mathbb{Z}$ 的原根,那么 k 的提升 $\zeta \in \mathbb{Z}_p^{\times}$ 具有性质

$$\{x \in \mathbb{Q}_p : x^{p-1} = 1\} = \{\zeta^i : i = 1, 2, \dots, p-1\} = \mu_{p-1}(\mathbb{Z}_p^{\times})$$

并且 ζ^i 模 p 的结果取遍 $1, 2, \ldots, p-1$,或者说:

$$\mu_{p-1}(\mathbb{Z}_p^{\times}) \subset \mathbb{Z}_p^{\times} \xrightarrow{\varepsilon_1} (\mathbb{Z}/p\mathbb{Z})^{\times}$$

是同构, ε_1 (作为乘同态) 的核为 $1 + p\mathbb{Z}_p$ 。

引理 1.3

设 p=2, 那么方程

$$X^{2} = 1$$

在 \mathbb{Z}_2 中有两个解,即 ± 1 。

这里的一个技术性问题是, $\{\pm 1\} \to (\mathbb{Z}/2\mathbb{Z})^{\times}$ 并不是同构,实际上要使用 $\{\pm 1\} \xrightarrow{\varepsilon_2} (\mathbb{Z}/4\mathbb{Z})^{\times}$,而 ε_2 (作为乘同态)的核为 $1+4\mathbb{Z}_2$ 。

定理 1.4

设 $x \in \mathbb{Z}_p^{\times}$, 那么

- 若 $p \neq 2$, x 可以写成 $x = \theta y$, 其中 $\theta \in \mu_{p-1}(\mathbb{Q}_p)$ 而 $y \in 1 + p\mathbb{Z}_p$, 这个分解是唯一的
- 若 p=2, x 可以写成 $x=\theta y$, 其中 $\theta \in \mu_2(\mathbb{Q}_2)$ 而 $y \in 1+4\mathbb{Z}_2$, 这个分解是唯一的

这时候,我们就会猜想,是否有一种神奇的对数函数,使得 $1+p\mathbb{Z}_p$ 作为乘法群,同构于加法群 \mathbb{Z}_p ,而 $1+4\mathbb{Z}_2$ 作为乘法群,同构于 \mathbb{Z}_2 呢?

答案是: 是的。(使用 $f(x) = \ln(1+x)$ 的 Taylor 级数)

2 总结

• 若 $p \neq 2$, 那么 $0 \neq x \in \mathbb{Q}_p$ 可以写成

$$x = p^n y$$

而 $y \in \mathbb{Z}_p^{\times}$ 又可以写成 $y = \theta z$, 其中 $\theta \in \mu_{p-1}(\mathbb{Q}_p)$ 而 $z \in 1 + p\mathbb{Z}_p$ 。

- $x \in \mathbb{Q}_p$ 中的平方元当且仅当(I)n 是偶数,(II) θ 是本原单位根的偶数次方,(III) $\log z$ 是 \mathbb{Z}_p 中某个元素的两倍
- 上面的 (II) 可以用 Legendre 符号来计算
- 上面的(III)恒成立,不需要考虑
- 若 p=2, 那么 $0 \neq x \in \mathbb{Q}_2$ 可以写成

$$x = 2^n y$$

而 $y \in \mathbb{Z}_2^{\times}$ 又可以写成 $y = \theta z$, 其中 $\theta \in \mu_2(\mathbb{Q}_2)$ 而 $z \in 1 + 4\mathbb{Z}_2$ 。

- $x \in \mathbb{Q}_2$ 中的平方元当且仅当(I)n 是偶数,(II) θ 是 -1 的偶数次方(III)存在 $w \in \mathbb{Z}_2$ 使得 $z = (1 + 4w)^2 = 1 + 8w + 16w^2$
- (III) 告诉我们 $z \in 1 + 8\mathbb{Z}_2$, Hensel 引理说明这是充要的(留作习题)

上面的 $\theta \in \mu(\mathbb{Q}_p)$ 叫做 y 的 Teichmüller, $z = \frac{y}{\theta}$ 叫做 y 的 diamond 再总结: 提出 p 的幂之后, mod p 或者 mod 8

3 例题

3.1

证明 $X^2 + 1 = 0$ 在 \mathbb{Q}_p 中有解, 当且仅当 $p \equiv 1 \mod 4$

证明. 若 $p \neq 2$,那么 -1 可以写成 $p^0 \times (-1)$,故只需要 $\left(\frac{-1}{p}\right) = 1$ 若 p = 2,那么 -1 可以写成 $2^0 \times (-1)$,但是 -1 不满足模 $8 \, \mathop{\,\mathrm{\pounds}}\nolimits \, 1$

3.2

证明 $X^2 + 2 = 0$ 在 \mathbb{Q}_p 中有解,当且仅当 $p \equiv 1,3 \mod 8$

证明. 若 p=2,那么 -2 可以写成 $2^1 \times (-1)$,由于这里出现了 2 的奇数次幂,故 p 不能是 2,下考虑 $p \neq 2$,我们知道只需要

$$\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right) = 1$$

只需回忆并查表:

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & p \equiv 1 \bmod 4 \\ -1, & p \equiv 3 \bmod 4 \end{cases} \quad \left(\frac{2}{p}\right) = \begin{cases} 1, & p \equiv 1, 7 \bmod 8 \\ -1, & p \equiv 3, 5 \bmod 8 \end{cases}$$

3.3 课后习题

对于什么样的 p, $X^2 + 6 = 0$ 在 \mathbb{Q}_p 中有解?

4 Hilbert 符号

从现在开始,我们用 \mathbb{Q}_{∞} 代表 \mathbb{R} ,我们记 $V = \{\infty, 2, 3, 5, 7, \dots\}$ 对于 $v \in V$,定义 $\mathbb{Q}_v^v = \mathbb{Q}_v - \{0\}$,定义平方元构成的全体为

$$(\mathbb{Q}_v^\times)^2 = \{x \in \mathbb{Q}_v^\times : \exists y \in \mathbb{Q}_v^\times, x = y^2\}$$

例如 $(\mathbb{Q}_{\infty}^{\times})^2 = \mathbb{R}_{>0}$ 。 我们定义 Hilbert 符号: 若 $a, b \in \mathbb{Q}_{n}^{\times}$

$$(a,b)_v = \begin{cases} 1, &$$
 方程 $aX^2 + bY^2 = Z^2$ 存在一组 X,Y,Z 不全为零的解 $-1, &$ 方程 $aX^2 + bY^2 = Z^2$ 的解只有 $(0,0,0)$

例 4.1

对于 $v = \infty$ 的情况, $(a,b)_{\infty} = -1$ 当且仅当 a,b < 0

Hilbert 符号有许多显然的性质,可以用来简化计算:

- 对称性: $(a,b)_v = (b,a)_v$
- $(a, c^2)_v = 1$,因为可以考虑 X = 0, Y = 1, Z = c
- $(a, -a)_v = 1$, 因为可以考虑 X = Y = 1, Z = 0
- $(a, 1-a)_v = 1$,因为可以考虑 X = Y = Z = 1

定理 4.2

若 $(a,b)_v = 1$, 那么 $(aa',b)_v = (a',b)_v$

证明. 略

引理 4.3

若 $u \in \mathbb{Z}_p^{\times}$, 且 $(p,u)_p = 1$, 那么存在 $X \in \mathbb{Z}_p$, $Y,Z \in \mathbb{Z}_p^{\times}$ 使得 $pX^2 + uY^2 = Z^2$

证明. 方程 $pX^2 + uY^2 = Z^2$ 是齐次的,因此若其在 \mathbb{Q}_p 中有非平凡解,那 么就在 \mathbb{Z}_p 中有解,并且 $v_p(X), v_p(Y), v_p(Z)$ 的最小值是 0。

显然
$$v_p(Z^2 - uY^2) = v_p(pX^2) \ge 1$$
.

若
$$v_p(Z) > 0, v_p(Y) = 0$$
, 那么 $v_p(Z^2 - uY^2) = 0$, 矛盾

若
$$v_p(Y) > 0, v_p(Z) = 0$$
, 那么 $v_p(Z^2 - uY^2) = 0$, 矛盾

若 $v_p(Y), v_p(Z) > 0$,那么 $v_p(pX^2) = v_p(Z^2 - uY^2) \ge 2$,这又和题目中 $v_p(X), v_p(Y), v_p(Z)$ 的最小值是 0 的假设矛盾了。综上所述,仅有的可能性是 $v_p(Y) = v_p(Z) = 0$ 。

定理 4.4 (定理 A)

假设 $p \neq 2$ 为素数, $u \in \mathbb{Z}_p^{\times}$, 那么 $(p, u)_p = \left(\frac{u}{p}\right)$

证明. 我们考虑 u 是否是 \mathbb{Z}_p^{\times} 中的平方元:

若 u 是 \mathbb{Z}_p^{\times} 中的平方元,那么我们知道 $(\frac{u}{p})=1$,并且 (p,u)=1,此时两者相等。

若 u 不是 \mathbb{Z}_p^{\times} 中的平方元,那么我们知道 $(\frac{u}{p}) = -1$,我们还需要证明方程 $pX^2 + uY^2 = Z^2$ 在 \mathbb{Q}_p 中无平凡解,假设有,根据引理 4.3,我们可以找到一组解 (X,Y,Z) 使得 $v_p(X) \geq 0, v_p(Y) = v_p(Z) = 0$,将方程模 p,得到 $uY^2 \equiv Z^2 \bmod p$,矛盾

定理 4.5 (定理 B)

假设 $p \neq 2$ 为素数, $u, v \in \mathbb{Z}_p^{\times}$, 那么 $(u, v)_p = 1$

证明. 首先将方程模 p, 考虑有限域 \mathbb{F}_p 上的方程

$$uX^2 + vY^2 = Z^2$$

这个方程组的次数和为 2,变量为 3,符合 Chevalley-Warning 定理的适用 条件,从而解的数量是 p 的倍数,特别地,它拥有一组非平凡解 (x_0, y_0, z_0) ,把这些量看作整数,而整数又是 p 进数

换言之, x_0, y_0, z_0 之中至少有一个数不是 p 的倍数,我们就把这个变量看作主元,上面的多项式关于这个主元的导数,赋值一定是 $p^0 = 1$,因此 Hensel 引理适用,我们可以将这个主元从近似解提升到精确解

定理 4.6 (定理 C)

假设 $p \neq 2$ 为素数, $u, v \in \mathbb{Z}_p^{\times}$, 那么 $(pu, pv)_p = \left(\frac{-uv}{p}\right)$

证明. 我们知道 $(pu, -pu)_p = (u, -uv)_p = 1$, 从而

$$(pu, pv)_p = (pu, (-pu)pv)_p = (pu, -uv)_p = (p, -uv)_p$$

然后使用定理 A

例 4.7

Diophantus 在《算术》中写道 $15x^2-36=y^2$ 没有有理数解,请替他证明证明. 假设此方程有解,那么方程

$$15X^2 + (-1)Y^2 = Z^2$$

有非平凡的 3-adic 数解, 也就是说 $(15,-1)_3=1$

但是计算可得
$$(3^1 \times 5, -1)_3 = (3, -1)_3(5, -1)_3 = \left(\frac{-1}{3}\right) = -1$$

5 Hilbert 符号, 续, p=2

6 Hilbert 互反律

定理 6.1 (Hilbert 互反律)

若 a,b 是非零有理数,那么 $(a,b)_v$ 只对有限个 $v \in V$ 取 -1,并且实际上取偶数次 -1,也就是说

$$\prod_{v \in V} (a, b)_v = 1$$

Hilbert 互反律可以用来解释,二次互反律中为什么

$$(-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = 1$$

我们来计算 $(p,q)_v$, 显然当 v 不取 2,p,q 的时候, $(p,q)_v = 1$, 因此我们知道 $(p,q)_2(p,q)_p(p,q)_q = 1$, 这个式子就是二次互反律。

Hilbert 的叙述中,素数 2 不再看起来像一个障碍或者特殊情况。并且 这里的 a,b 可以取的值也不再有 Legendre 符号中的种种限制。并且 Hilbert 的叙述中,实数 \mathbb{Q}_{∞} 的情况被考虑了,且和所有的 p 进数 \mathbb{Q}_p 平等地出现。我们可以合理地认为,这种叙述更加本质。

Hilbert 互反律不仅仅是二次互反律的一种新的叙述方法,实际上 Hilbert 互反律不是一个互反律,而是一族互反律:无数个互反律。

它可以推广到任意的数域上,我们无法详细说明这一点,但是让我们继续研究 Hilbert 符号的一些事实: 我们假设 $b \in \mathbb{Q}_p^{\times}$ 不是平方元,那么我们总是可以构造一个更大的域 $L \supset \mathbb{Q}_p$ 如下:

$$L = \{(x, y) : x, y \in \mathbb{Q}_p\}$$

其上的加法和乘法的定义分别为

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$(x_1, y_1)(x_2, y_2) = (x_1x_2 + by_1y_2, x_1y_2 + x_2y_1)$$

实际上这里 $\beta=(0,1)$ 就起到了 \sqrt{b} 的作用。任何 L 中的元素都可以写成 $x+y\beta$,其中 $x,y\in\mathbb{Q}_p$ 。我们也写 $L=\mathbb{Q}_p(\sqrt{b})$ 是二次扩张。

将元素乘以 $x+y\beta$ 是从 L 到 L 的 \mathbb{Q}_p -线性映射,我们可以考虑这个线性映射的行列式 $N_b(x+y\beta)=x^2-by^2$,那么 N_b 是从 $L-\{0\}$ 到 \mathbb{Q}_p^\times 的乘法群同态,这个群同态的像 $\mathrm{Im}N_b$ 中的元素可以解读为

$$\operatorname{Im} N_b = \{ a \in \mathbb{Q}_p^{\times} : (a, b)_p = 1 \}$$

到目前为止,我们仅仅是把 Hilbert 符号的定义重写了一遍,这里的 N_b 被 叫做域扩张 L/\mathbb{Q}_p 的范,若 $a \in \mathbb{Q}_p$ 落在 N_b 的值域内我们就说 a 是扩展 L/\mathbb{Q}_p 的范元素。我们知道:

"a 是平方元,当且仅当它是 \mathbb{Q}_p 的所有二次(循环)扩张的范元素" 类似的结论可以推广到 n 次根,这里的域 \mathbb{Q}_p 可以换成局部域,在推广 的时候,Hilbert 符号的定义就要用到 $K^{\times}/(K^{\times})^n \simeq \operatorname{Gal}_K^{K(\sqrt[n]{K})}$

对于局部域的 Abelian 扩张 L/K,我们有 $\mathrm{Gal}_K^L \simeq K^\times/N_K^L(L^\times)$,因此 K^\times 的结构可以反映 K^{ab}/K 的结构,参见:Artin 互反律,局部类域论