Analisi Matematica 1 A.A. 2021-22 Prima prova 10 Novembre 2021 Compito A	Docente: Cipriani-Frigeri-Migliavacca	Numero iscrizione appello
Cognome:	Nome:	Codice persona:

Istruzioni: I fogli di brutta non devono essere consegnati.

1. Quiz. Quesiti a risposta multipla, una sola affermazione e' corretta.

- 1. Punti 1. Per quale $\alpha \in \mathbb{R}$ si ha $\sqrt{x} \left(1 \cos\left(\frac{1}{x^2}\right)\right) \sim x^{\alpha}$ per $x \to +\infty$?
 - \Box a) $\alpha = 1$
 - \Box b) $\alpha = -\frac{7}{2}$
 - \Box c) $\alpha = \frac{3}{2}$
 - \Box d) $\alpha = 2$
 - ullet \Box e) Nessuna delle altre affermazioni e' corretta.

Soluzione: poiche' $1 - \cos y \sim y^2/2$ per $y \to 0$ e $y := 1/x^2 \to 0$ per $x \to +\infty$, abbiamo che

$$\sqrt{x}\left(1-\cos\left(\frac{1}{x^2}\right)\right) \sim x^{1/2} \cdot \frac{1}{2x^4} = \frac{1}{2}x^{-7/2}.$$

La risposta corretta e' quindi la e). Nel modulo Forms x^{α} e' sostituito da $x^{\alpha}/2$ e la corrispondente risposta corretta e' quindi la b) $\alpha = -7/2$.

- 2. Punti 1. Se z := i 1 allora il numero complesso z^{25}
 - $\bullet \square a$) ha lo stesso argomento di z
 - □ b) appartiene al primo quadrante
 - \Box c) e' immaginario puro
 - □ d) e' reale
 - ullet \Box e) Nessuna delle altre affermazioni e' corretta.

 $Soluzione: \ |z| = |-i+i| = \sqrt{2}, \ z = -1 + i = \sqrt{2} \frac{-1+i}{\sqrt{2}}, \ \operatorname{Arg}(z) = \frac{3}{4}\pi, \ z = \sqrt{2}(\cos(3\pi/4) + i\sin(3\pi/4)). \ Perland \ prima \ formula \ di \ de \ Moivre \ \operatorname{Arg}(z^{25}) = 25 \cdot \operatorname{Arg}(z) = 25 \cdot \frac{3}{4}\pi = \frac{75}{4}\pi = 18\pi + \frac{3}{4}\pi. \ Poiche' \ 18\pi \ e' \ multiplo \ intero \ di \ 2\pi \ abbiamo \ \operatorname{Arg}(z^{25}) = \operatorname{Arg}(z) = \frac{3}{4}\pi.$

- 3. Punti 2. Sia $A := \{x \in \mathbb{R} : \sqrt{1-x} < x\}$. Allora
 - \Box a) inf $A = -\infty$ $e \sup A = +\infty$
 - \Box b) inf A = 0 e sup $A = +\infty$
 - $\Box c$) inf A = 0 $e \sup A = \frac{-1 + \sqrt{5}}{2}$
 - \Box d) inf $A = \frac{-1+\sqrt{5}}{2} e \max A = 1$
 - □ e) Nessuna delle altre affermazioni e' corretta.

Soluzione: se $x \in A$ allora $1-x \ge 0$ e $x > \sqrt{1-x} \ge 0$ cosi' $A \subseteq (0,1]$. Quindi $x \in A$ se e solo se $x \in (0,1]$ e $(\sqrt{1-x})^2 < x^2$ cioe' se e solo se $x \in (0,1]$ e $x^2+x-1>0$ cioe' se e solo se $x \in (x_+,1]$ dove $x_{\pm} := (-1 \pm \sqrt{5})/2$ sono gli zeri del polinomio x^2+x-1 . Quindi $A = (x_+,1]$ e inf $A = x_+$, max A = 1.

- 4. Punti 2. Il limite $\lim_{x\to +\infty} \frac{x^4 \cdot \sin x + x^5 2x^3}{e^{-x} + x^3 (\ln x)^{10} 3x^5}$ e' pari a
 - $\bullet \square a) \frac{2}{3}$
 - \Box b) $+\infty$
 - $\bullet \Box c) 0$
 - \Box d) non esiste

$$\bullet \square e) -\frac{1}{3}$$
.

Soluzione: $\lim_{x \to +\infty} \frac{x^4 \cdot \sin x + x^5 - 2x^3}{e^{-x} + x^3 (\ln x)^{10} - 3x^5} = \lim_{x \to +\infty} \frac{(\sin x)/x + 1 - 2x^{-2}}{x^{-5} \cdot e^{-x} + x^{-5} \cdot (\ln x)^{10} - 3} = -\frac{1}{3}$.

5. Punti 1. Si consideri una funzione $f:(a,b)\to\mathbb{R}$ e $x_0\in(a,b)$. Allora

- \square a) se f e' continua in x_0 risulta che f e' derivabile in x_0
- \square b) se f e' derivabile in x_0 risulta che f e' continua in x_0
- \Box c) se f e' derivabile in x_0 risulta $f'(x_0) = 0$
- \Box d) se f^2 e' derivabile in x_0 risulta che f e' derivabile in x_0
- ullet \Box e) Nessuna delle altre affermazioni e' corretta.

Soluzione: b). Infatti a) non e' poiche' la funzione modulo e' continua ma non derivabile in x = 0, c) non e' poiche' la funzione identita' e' derivabile in x = 0 ma la sua derivata non si annulla e d) non e' poiche' la funzione $f(x) := x^{3/5}$ non e' derivabile in x = 0 ma $f(x)^2 = x^{6/5}$ lo e'.

6. Parte Carta e Penna: 3 punti per ogni esercizio, 9 punti in totale.

- 6a) Enunciare e dimostrare il Lemma di Fermat.
- 6b) Determinare le soluzioni nel campo complesso dell'equazione

$$|z|^2 \cdot z = -2i\overline{z}.$$

Soluzione: chiaramente $z_3:=0$ e' soluzione. Per $z\neq 0$, moltiplicando entrambi i membri per z otteniamo l'equazione $|z|^2 \cdot z^2 = -2i|z|^2$ cioe' $|z|^2(z^2+2i)=0$ equivalente a $z^2=-2i$. Le soluzioni non nulle sono quindi le 2 radici quadrate di $-2i=2 \cdot e^{-i\pi/2}$: $z_0:=\sqrt{2}(\cos(-\pi/4)+i\sin(-\pi/4))=1-i$, $z_1:=\sqrt{2}(\cos(3\pi/4)+i\sin(3\pi/4))=-1+i$.

6c) Determinare la monotonia e gli estremi locali della funzione

$$f(x) := x^{2/3} \cdot e^{-x}$$
.

Soluzione: poiche' $f(x) \ge 0$ per ogni $x \in \mathbb{R}$ e f(0) = 0, x = 0 e' un punto di minimo assoluto. Per altro, per il Teorema di derivazione composta, esiste

$$f'(x) = \frac{2}{3}x^{-1/3}e^{-x} - x^{2/3}e^{-x} = \frac{1}{3}x^{-1/3}e^{-x}(2 - 3x) \qquad x \neq 0$$

ma non esiste f'(0) $(x=0\ e'\ singolare)$ $(f(x)\sim x^{2/3}\ per\ x\to 0)$. L'unico punto critico $e'\ x_0=2/3$. Per il test di monotonia, essendo f'(x)>0 per $x\in (0,2/3)$ e f'(x)<0 per $x\in (-\infty,0)\cup (2/2,+\infty)$, x_0 e' un punto di massimo.