Климатическая установка с двойным перекрестноточным теплообменником и встроенным тепловым насосом для частных бассейнов

ThermoCond 29

ОБЪЕМНЫЙ РАСХОД ВОЗДУХА 1100-3500 м³/ч

Краткая информация:

- Осушает, вентилирует и обогревает
- Коррозионно-стойкий теплообменник из полипропилена
- Встроенный тепловой насос
- Энергоэффективные вентиляторы с ЕС-двигателем
- Регулируемая заслонка нагревания рециркуляционного воздуха
- Компактная конструкция не занимает много места
- Подключение патрубков воздушных каналов любой конструкции
- Встроенная система управления и регулирования, совместимая с любыми известными системами управления умного дома
- Опционально: управление с помощью смартфона или планшета

Установки ThermoCond 29 - это многофункциональные компактные системы создания климата частных бассейнов. Все установки конструктивно и функционально соответствуют вашим требованиям. Встроенный тепловой насос увеличивает суммарный коэффициент полезного действия установки и позволяет осушать воздух в бассейне в режиме рециркуляции. Кроме того, возможно использование внешнего теплового насоса для энергоэффективного подогрева воздуха

Комбинирование высококачественных компонентов с точной системой управления и регулирования гарантирует экономичный режим работы при наиболее комфортном климате. С помощью установок Thermo-Cond обеспечиваются отопление, вентиляция и осушение воздуха в бассейнах, и наряду с хорошим климатом осуществляется идеальная защита самого здания. Дополнительное применение радиаторно-конвекторного и панельного отопления как правило не требуется.

Эксплуатационные характеристики и опции:

- фильтрация воздуха на любом режиме работы
- водяной воздухонагреватель

в помещении бассейна.

- усовершенствованные пластиковые крыльчатки вентилятора для более тихой работы установки (начиная с 29 20 01)
- индивидуально-регулируемые рабочие параметры
- готовая к эксплуатации и полностью укомплектованная установка содержит все конструктивные элементы, необходимые для создания и поддержания климата в плавательных бассейнах, включая все органы управления
- усиленный контроль качества и пробный пуск на заводе-изготовителе

Опции:

- байпасная заслонка
- совмещенное регулирование температуры воды и воздуха
- модели соответствуют нормам VDI
- конденсатор нагрева воды чаши бассейна
- подключение внешнего теплового насоса
- дистанционное техобслуживание
- и многое другое

Отопление в режиме полной рециркуляции

Если в пассивном режиме не заданы показатели температуры и влажности, то установка производит только рециркуляцию воздуха со сниженным расходом. Таким образом, обеспечивается движение воздуха в бассейне. Если возникает потребность в отоплении, то вытяжной воздух нагревается в водяном нагревателе до требуемой температуры приточного воздуха.

Осушение наружным воздухом в зимний период

В двойном перекрестноточном теплообменнике и испарителе от вытяжного воздуха отводится большая часть явной и скрытой теплоты и передается приточному воздуху. Если мощности теплового насоса недостаточно, то приточный воздух нагревается в водяном нагревателе.

Излишнее тепло может быть направлено в конденсатор нагрева воды для подогрева воды чаши бассейна (конденсатор нагрева воды в бассейне заказывается отдельно).

Осушение в режиме рециркуляции

В режиме рециркуляции воздух осушается в испарителе теплового насоса. Эффективность процесса осушения существенно увеличивается за счет подключения теплообменника. Охлажденный и осушенный воздух предварительно подогревается с помощью вытяжного воздуха из помещения бассейна. Передача теплоты влечет за собой предварительное охлаждение теплого и влажного вытяжного воздуха практически до достижения «точки росы» на другой стороне теплообменника

Затем предварительно подогретый и осушенный воздух смешивается с частью необработанного рециркуляционного воздуха, нагревается на конденсаторе теплового насоса за счет тепла, полученного от процесса осушения, и подается в качестве приточного воздуха в помещение бассейна. Расход энергии теплового насоса на осушение при этом составляет менее чем 0,25 кВтч/кг. Если мощности теплового насоса недостаточно, то приточный воздух нагревается в водяном нагревателе.

Режим эксплуатации в летний период

Если влажность наружного воздуха повышается, заслонка рециркуляции воздуха по мере необходимости постоянно закрыта. При высокой влажности наружного воздуха заслонка полностью закрывается.

При этом установка работает в прямоточном режиме со стопроцентной подачей свежего воздуха.

Режим работы с использованием внешнего теплового насоса (только у серии 29 xx 01)

Внешний тепловой насос может увеличить эффективность нагрева воздуха в помещении бассейна. Внешний тепловой насос подключается к водяному нагревателю воздуха. Обычно температура подачи от внешнего теплового насоса низкая и этого не хватает, чтобы прогреть воздух помещения бассейна, поэтому

водяной нагреватель воздуха включается перед конденсатором встроенного теплового насоса. Таким образом тепловой насос может эксплуатироваться с оптимальным СОР при неизменных температурах прямой линии. Комбинация обеих систем обеспечивает нагрев приточного воздуха до желаемой температуры.

1 Опция: конденсатор нагрева воды чаши бассейна 2 Опция: внешний 4 тепловой насос

ThermoCond 29

Размеры и вес установки

Высота ножек 100 мм Опционально: высота опорных ножек регулируется от 100 до 120 мм

Для складного шкафа управления установки: для транспортировки шкаф автоматики складывается по торцевой стороне. В связи с этим транспортировочная длина уменьшается примерно на 250 мм.

Возможно подключение каналов вытяжного и выбросного воздуха на торцевой стороне. Возможна установка в зеркальном отображении.

Тип установки	L	W 1	H ²	W1	W2	H1	А	С	D	E	Bec
29 11 01	1530	570	1590	350	200	1370	215	150	150	135	460
29 15 01	1530	730	1590	500	200	1370	215	150	150	135	500
29 20 01	1690	730	1910	500	300	1690	80	105	120	105	600
29 25 01	1690	890	1910	600	300	1690	80	105	120	105	680
29 35 01	1690	1210	1910	920	300	1690	80	105	120	105	830

Шкаф автоматики

Тип установки	H x W x D	Местоположение на установке			
29 11 01	900 x 480 x 210	Со стороны приточного оздуха			
29 15 01	900 x 480 x 210	Со стороны приточного оздуха			
29 20 01	900 x 480 x 210	Со стороны приточного оздуха			
29 25 01	900 x 480 x 210	Со стороны приточного оздуха			
29 35 01	900 x 480 x 210	Со стороны приточного оздуха			

Для обслуживания установки отступ от стены должен быть равен размеру W. Если размер В меньше одного метра, нужно оставить свободное пространство 1 м.

При расчете отступов обратите внимание на размеры корпуса, каналов воздуховода и шкафа автоматики.

Возможна разбивка установки на меньшие секции (за дополнительную плату).

Все размеры указаны в миллиметрах, вес в килограммах, включая вес шкафа автоматики

- Крепление дверок увеличивает ширину установки на 25
- мм с каждой рабочей стороны. Вкл. высоту ножек 100 мм

вкл. 120 мм патрубок воздуховода

Технические данные и характеристики

Тип установки		29 11 01	29 15 01	29 20 01	29 25 01	29 35 01		
Номинальный объемный расход воздуха	м³/ч	1,100	1,500	2,000	2,500	3,500		
Коэффициент эффективности рекуперации тепла ¹	%	76	76	79	79	80		
Осушающая способность по нормам VDI 2089	кг/ч	6.6	9.0	12.1	15.1	21.1		
Осушающая способность в режиме полной рециркуляции	кг/ч	4.0	4.9	6.4	8.2	11.8		
Коэффициент мощности теплового насоса ²	COP	4.82	5.08	4.94	5.25	5.17		
Общая потребляемая мощность ³	кВт	2.07	2.38	3.37	3.90	5.96		
Потребляемый ток ³	А	13.3	7.5	8.9	10.1	17.6		
Рабочее напряжение		3 / N / PE 400 V 50 Гц						
Аэродинамическое сопротивление								
По приточному и наружному каналу	Па	300	300	300	300	300		
По вытяжному и выбросному каналу	Па	300	300	300	300	300		
Уровень звуковой мощности ⁴								
У приточного патрубка	дБ(А)	77	78	69	66	74		
У вытяжного патрубка	дБ(А)	72	71	63	61	67		
У наружного патрубка	дБ(А)	67	66	58	56	63		
У выбросного патрубка	дБ(А)	69	70	60	57	63		
Звуковое давление на расстоянии 1 м от установки ⁴	дБ(А)	62	63	54	51	58		
Блоки вентиляторов								
Потребляемая мощность эл/двигателя вентилятора приточного воздуха 5	кВт	0.56	0.61	0.91	1.04	1.72		
Потребляемая мощность эл/двигателя вентилятора вытяжного воздуха ⁵	кВт	0.41	0.47	0.76	0.86	1.34		
Потребляемая мощность эл/двигателя вентилятора приточного воздуха в режиме полной рециркуляции ⁵	кВт	0.24	0.28	0.48	0.59	0.88		
Потребляемая мощность эл/двигателя вентилятора вытяжного воздуха в режиме полной рециркуляции ⁵	кВт	0.31	0.35	0.60	0.71	1.10		
SFP категория мощности вентилятора (приточный воздух/вытяжной воздух) в режиме полной рециркуляции		1 2	1 1	2 2	2 2	2 3		
Номинальная мощность вентиляторов в режиме «приточный воздух / вытяжной воздух»	кВт	1.0 1.0	1.0 1.0	1.2 1.2	1.2 1.2	2.4 2.4		
Встроенный тепловой насос								
Количество хладагента R407C ⁶ (без/с конденсатором нагрева воды в бассейне)	KΓ	1.8 2.5	2.0 3.5	2.3 3.5	2.5 4.0	3.5 5.0		
Коэффициент мощности теплового насоса	кВт	5.3	6.6	8.4	10.5	15.0		
Потребляемая мощность компрессора в режиме осушения с полной рециркуляцией	кВт	1.1	1.3	1.7	2.0	2.9		
Потребляемая мощность компрессора в режиме работы «наружный воздух - выбросной воздух» ⁷	кВт	1.0	1.2	1.5	1.8	2.5		
Фильтрация по нормам DIN EN 779								
Наружного воздуха		M5						
Вытяжного воздуха				M5				
Водяной нагреватель воздуха								
Мощность водяного нагревателя воздуха в режиме полной рециркуляции ⁸	кВт	6.5	8.8	11.3	14.0	20.7		
Мощность водяного нагревателя воздуха в режиме "наружный воздух – выбросной воздух" ^{7,8}	кВт	4.6	6.8	8.6	10.9	16.1		
Гидравлическое сопротивление								
Водяной нагреватель воздуха с циркуляционным насосом	м³/ч кПа	0.29 6.5	0.39 4.8	0.49 8.2	0.61 7.1	0.91 17.7		
Вентиль водяного нагревателя воздуха с циркуляционным насосом	м³/ч кПа	0.29 8.1	0.39 5.8	0.49 9.5	0.61 14.6	0.91 13.2		
Конденсатор для нагрева воды чаши бассейна ⁹ (дополнительно)								
Мощность нагрева ¹⁰	кВт	5.4	6.6	8.4	10.5	14.8		
Диапазон температуры воды чаши бассейна	K	6.6	6.3	6.6	6.5	6.4		
Объемный расход воды в чаше бассейна	м³/ч кПа	0.7	0.9	1.1	1.4	2.0		
Потеря напора воды		12.3	14.1	12.0	12.5	15.2		
Подключения								
Подключение водяного нагревателя	DN	15	15	15	20	20		
Подключение регулирующего вентиля водяного нагревателя воздуха	DN	10	10	10	10	15		
Подключение отвода конденсата	DN	20	20	20	20	20		
Подключение донного слива	DN DN	20	20	20	20	20		
Подключение конденсатора нагрева воды в бассейне 11		20	20	25	25	25		
ехнические данные приведены для номинального 3 зависит от конфигурации контрольно- = 50 °C								

Технические данные приведены для номинального пехнические данные приведены для номинального объемного расхода воздуха и состояния вытяжного воздуха 30 °С / при относительной влажности 53,7 %, и состояния наружного воздуха 15 °С/ при относительной влажности 84 %, а также высоты 0 м над уровнем моря, если не заданы другие параметры.

- в зависимости от режима работы осушение в режиме полной рециркуляции без конденсатора нагрева воды в чаше бассейна
- зависит от конфигурации контрольно-
- измерительной аппаратуры / установки 4 при средней частоте 250 Гц 5 при средней загрязненности фильтра при средней загрязненности фильтра при включенном бытовом тепловом насосе: хладагент = R134a; количество хладагента
- различное 7 тнаруж 7 — t наруж. возд. = -12 °C / при относит. влаж. 90 % и 2/3 доли наружного воздуха
- температура прямой линии = 70 °C; t приточ. возд.
- = 50 °C 9 полная или частичная отдача тепла; при температуре воды на входе 28 °C 10 осушение в режиме полной рециркуляции с конденсатором нагрева воды чаши бассейна
- 11 для установок с конденсатором нагрева воды чаши бассейна

Технические данные и характеристики необходимо подтвердить до начала проектирования.

