Année Universitaire : 2022-2023 Filière : 2AP, CP2

Semestre: S4

Correction d'examen d'Algèbre IV (session normale)

(durée: 2h)

Questions de cours (5pt)

- 1. Rappeler la définition de : un idéal premier, un idéal maximal et un anneau principal.
- 2. Soit A un anneau principal. Montrer que tout idéal premier non nul de A est maximal.
- 3. On se place dans l'anneau $\mathbb{R}[X]$ des polynômes à une indéterminée à coefficients réels et soit (X^2+1) l'idéal principal de $\mathbb{R}[X]$ engendré par X^2+1 .
 - a) $\mathbb{R}[X]$ est-il principal? Justifier.
 - b) Montrer que $(X^2 + 1)$ est un idéal maximal de $\mathbb{R}[X]$.

Correction

- 1. Soit A un anneau et I un idéal **propre** de A $(I \neq A)$.
 - I est dit **premier** si pour tous $x, y \in A$, on a $xy \in I$ entraı̂ne $x \in I$ ou $y \in I$.
 - I est dit **maximal** si les seuls idéaux de A contenant I sont I et A. Ce qui est équivalent à : pour tout idéal J de A tel que $I \subset J$, on a J = I ou J = A.
 - Un anneau **intègre** A est dit **principal** si tout idéal de A est principal (i.e., engendré par un seul élément); i.e., pour tout idéal I de A, il existe $x \in A$ tel que $I = (x) := \{ax \mid a \in A\}$.
- 2. Soit A un anneau principal et $I = Ax, x \neq 0$ un idéal premier de A. On suppose que $I \subseteq J = Ay$. Donc, $x = ay \in I$ avec $a \in A$. Et comme I est premier, alors $a \in I$ ou $y \in I$. Si $y \in I$, alors $J = Ay \subseteq I$. D'où, J = I. Si maintenant $a \in I$, alors a = bx avec $b \in A$. Donc, x = xby, ce qui implique que 1 = by (car A intègre et $x \neq 0$), et donc y est inversible. Par suite J = A. En conclusion, I est maximal.
- 3. a) L'anneau $\mathbb{R}[X]$ est principal car \mathbb{R} est un corps.
 - b) Puisque $\mathbb{R}[X]$ est principal, en utilisant la question 2., il suffit de montrer que l'idéal $(X^2 + 1)$ est premier.

On a $(X^2 + 1) \neq \mathbb{R}[X]$ car $X \notin (X^2 + 1)$.

Soient $P, Q \in \mathbb{R}[X]$ tels que $P.Q \in (X^2 + 1)$. Montrons que $P \in (X^2 + 1)$ ou $Q \in (X^2 + 1)$.

On a $P.Q \in (X^2 + 1) \Rightarrow P.Q = (X^2 + 1).R, R \in \mathbb{R}[X].$

Or $X^2 + 1$ est irréductible dans $\mathbb{R}[X]$ et $X^2 + 1 \mid P.Q$

 $\Longrightarrow X^2 + 1 \mid P \text{ ou } X^2 + 1 \mid Q.$

 $\implies P = (X^2 + 1)Q_1 \text{ ou } Q = (X^2 + 1)Q_2.$

 $\implies P \in (X^2 + 1)$ ou $Q \in (X^2 + 1)$.

D'où $(X^2 + 1)$ est un idéal premier de $\mathbb{R}[X]$.

Exercice 1 (5pt)

On note $\mathbb{Z}[i\sqrt{7}]$ l'ensemble des complexes suivant : $\mathbb{Z}[i\sqrt{7}] = \{a + ib\sqrt{7} : a, b \in \mathbb{Z}\}.$

- 1. Montrer que $(\mathbb{Z}[i\sqrt{7}], +, .)$ est un anneau commutatif et unitaire.
- 2. Déterminer $\mathcal{U}(\mathbb{Z}[i\sqrt{7}])$ (\mathcal{U} désigne l'ensemble des éléments inversibles).
- 3. Montrer que les éléments 2; $1 + i\sqrt{7}$ et $1 i\sqrt{7}$ sont irréductibles dans $\mathbb{Z}[i\sqrt{7}]$.
- 4. En considérant 2^3 et $(1+i\sqrt{7})(1-i\sqrt{7})$, déduire que $\mathbb{Z}[i\sqrt{7}]$ n'est pas factoriel.

Correction

1. Il suffit de montrer que $\mathbb{Z}[i\sqrt{7}]$ est un sous-anneau de \mathbb{C} .

Soient $a + ib\sqrt{7}$ et $x + iy\sqrt{7}$ deux éléments de $\mathbb{Z}[i\sqrt{7}]$. On a :

$$(a+ib\sqrt{7})-(x+iy\sqrt{7})=(a-x)+i(b-y)\sqrt{7}\in\mathbb{Z}[i\sqrt{7}].$$

$$(a+ib\sqrt{7})(x+iy\sqrt{7}) = (ax-7by)+i(bx+ay)\sqrt{7} \in \mathbb{Z}[i\sqrt{7}].$$

 $1_{\mathbb{Z}[i\sqrt{7}]} = 1 = 1 + i.0\sqrt{7} \in \mathbb{Z}[i\sqrt{7}].$

D'où $\mathbb{Z}[i\sqrt{7}]$ est un sous-anneau de \mathbb{C} .

Par suite, $(\mathbb{Z}[i\sqrt{7}], +, .)$ est un anneau commutatif unitaire.

- 2. Soit $z=a+ib\sqrt{7}\in\mathcal{U}(\mathbb{Z}[i\sqrt{7}])$, donc $\exists z'\in\mathbb{Z}[i\sqrt{7}]$ tel que zz'=1. Par suite $|zz'|^2=|1|^2=1$, et donc $|z|^2|z'|^2=1$. Or $|z|^2=a^2+7b^2\in\mathbb{Z}^+$, on aura necéssairement $|z|^2=1$. Si $b\neq 0$, on aura $a^2+7b^2>1$. Donc b=0, et par suite $a^2=1$. Ainsi $z=\pm 1$. D'où $\mathcal{U}(\mathbb{Z}[i\sqrt{7}])\subset\{1;-1\}$. D'autre part, on a $\{1;-1\}\subset\mathcal{U}(\mathbb{Z}[i\sqrt{7}])$. Donc $\mathcal{U}(\mathbb{Z}[i\sqrt{7}])=\{1;-1\}$.
- 3. 2 est irréductible, en effet, on a 2 non nul et $2 \notin \mathcal{U}(\mathbb{Z}[i\sqrt{7}])$. Soient $z_1, z_2 \in \mathbb{Z}[i\sqrt{7}]$ tels que $2 = z_1 z_2$. Donc $|z_1|^2|z_2|^2 = 4$. Ainsi $|z_1|^2 \in \{1, 2, 4\}$. Supposons que $|z_1|^2 = 2$ ($z_1 = a + ib\sqrt{7}$), alors $a^2 + 7b^2 = 2$, ce qui est impossible car si $b \neq 0$, on aura $a^2 + 7b^2 > 2$ et si b = 0 on aura $a^2 = 2$ ce qui est impossible car $a \in \mathbb{Z}$. Donc $|z_1|^2 = 1$ ou 4. Par conséquent z_1 ou z_2 est inversible. Il en résulte que 2 est irréductible.

De même on a $1 \pm i\sqrt{7}$ est irréductible, en effet, on a $1 \pm i\sqrt{7} \neq 0$ et $1 \pm i\sqrt{7} \notin \mathcal{U}(\mathbb{Z}[i\sqrt{7}])$. Soient $z_1, z_2 \in \mathbb{Z}[i\sqrt{7}]$ tels que $1 \pm i\sqrt{7} = z_1z_2$. Donc $|z_1|^2|z_2|^2 = 8$. Ainsi $|z_1|^2 \in \{1, 2, 4, 8\}$.

- Si $|z_1|^2 = 2$, alors $a^2 + 7b^2 = 2$, ce qui est impossible.
- Si $|z_1|^2 = 4$, alors $|z_2|^2 = 2$, ce qui est impossible.

Donc $|z_1|^2 = 1$ ou 8. Par conséquent z_1 ou z_2 est inversible. Il en résulte que $1 \pm i\sqrt{7}$ est irréductible.

4. On a : $8 = 2^3 = (1 + i\sqrt{7})(1 - i\sqrt{7})$. La décomposition de 8 en facteurs irréductibles dans $\mathbb{Z}[i\sqrt{7}]$ n'est pas unique, donc $\mathbb{Z}[i\sqrt{7}]$ n'est pas factoriel.

*Autre justification :

On a : $8 = (1+i\sqrt{7})(1-i\sqrt{7})$. Donc $z = (1+i\sqrt{7}) \mid 8 = 2.2.2$, mais $z \nmid 2$ car $\frac{2}{1+i\sqrt{7}} = \frac{1-i\sqrt{7}}{4} \notin \mathbb{Z}[i\sqrt{7}]$. Il en résulte que z n'est pas un élément premier. L'élément z est irréductible mais non premier, ce qui entraı̂ne que $\mathbb{Z}[i\sqrt{7}]$ n'est pas factoriel.

Exercice 2 (5pt)

On considère l'anneau $\mathbb{R}[X]$ des polynômes à une indéterminée à coefficients réels. Soit l'application :

$$\varphi: \ \mathbb{R}[X] \ \longrightarrow \ \mathbb{C} \times \mathbb{R}$$

$$P \ \longmapsto \ \varphi(P) = (P(i), P(0)).$$

- 1. Montrer que φ est un morphisme d'anneaux.
- 2. Montrer que φ est surjectif. (Indication : pour $(z,a) \in \mathbb{C} \times \mathbb{R}$, déterminer $P \in \mathbb{R}_2[X]$ tel que $\varphi(P) = (z,a)$).
- 3. Montrer que $ker(\varphi) = (X^3 + X)$ (l'idéal principal de $\mathbb{R}[X]$ engendré par $X^3 + X$).
- 4. En déduire que $\mathbb{R}[X]/(X^3+X)\cong \mathbb{C}\times \mathbb{R}$.
- 5. L'idéal $(X^3 + X)$ est-il premier? Justifier.

Correction

1. Soient $P, Q \in \mathbb{R}[X]$, on a:

$$\begin{array}{lll} \varphi(P+Q) & = & ((P+Q)(i), (P+Q)(0)) \\ & = & (P(i)+Q(i), P(0)+Q(0)) \\ & = & (P(0), P(0)) + (Q(i), Q(0)) \\ & = & \varphi(P) + \varphi(Q). \end{array}$$

$$\varphi(P.Q) = ((P.Q)(i), (P.Q)(0))
= (P(i).Q(i), P(0).Q(0))
= (P(i), P(0)) . (Q(i), Q(0))
= \varphi(P).\varphi(Q).$$

 $\varphi(1_{\mathbb{R}[X]}) = (1_{\mathbb{R}[X]}(i), 1_{\mathbb{R}[X]}(0)) = (1, 1) = 1_{\mathbb{C} \times \mathbb{R}}.$ Donc φ est un morphisme d'anneaux..

2. Soit $(z, a) \in \mathbb{C} \times \mathbb{R}$ avec $z = \alpha + \beta i$. Cherchons $P = a_0 + a_1 X + a_2 X^2 \in \mathbb{R}_2[X]$ tel que $\varphi(P) = (z, a)$, i.e., (P(i), P(0)) = (z, a).

$$\implies a_0 + a_1 i - a_2 = \alpha + \beta i \text{ et } a_0 = a$$

$$\implies a_0 - a_2 = \alpha, a_1 = \beta \text{ et } a_0 = a$$

$$\implies a_0 = a, a_1 = \beta \text{ et } a_2 = a - \alpha$$

$$\implies P(X) = a + \beta X + (a - \alpha)X^2.$$

On a bien, $P(i) = \alpha + \beta i = z$ et P(0) = a. Ainsi φ est surjectif.

3. Soit $P \in \mathbb{R}[X]$,

$$\begin{split} P \in ker(\varphi) &\iff \varphi(P) = (0,0) \\ &\Leftrightarrow \quad (P(i),P(0)) = (0,0) \\ &\Leftrightarrow \quad P(i) = 0 \text{ et } P(0) = 0 \\ &\Leftrightarrow \quad P(X) = (X-i)(X+i)(X-0)Q(X) \text{ avec } Q \in \mathbb{R}[X] \\ &\Leftrightarrow \quad P(X) = X(X^2+1)Q(X) \\ &\Leftrightarrow \quad P \in (X^3+X). \end{split}$$

Donc $ker(\varphi) = (X^3 + X)$.

- 4. Application directe du 1^{er} théorème d'isomorphisme.
- 5. L'anneau $\mathbb{C} \times \mathbb{R}$ n'est pas intègre, donc il en est de même pour $\mathbb{R}[X]/(X^3+X)$. Ainsi l'idéal (X^3+X) n'est pas premier.

Exercice 3 (5pt)

Soit l'ensemble $\mathcal{B} = \{\frac{a}{b} \in \mathbb{Q} : a \in \mathbb{Z}, b \in \mathbb{N}^* \text{ et } b \text{ est impair}\}.$

- 1. Vérifier que $\mathcal B$ est un anneau intègre.
- 2. Vérifier que $\mathcal{U}(\mathcal{B}) = \{\frac{a}{b} \in \mathcal{B} : a \in \mathbb{Z}, b \in \mathbb{N}^*, a \text{ et } b \text{ impairs}\}$. \mathcal{B} est-il un corps?
- 3. On considère l'application $\varphi: \mathcal{B} \to \mathbb{Z}/2\mathbb{Z}$ définie par $\varphi(\frac{a}{b}) = \overline{a}$.
 - a) Vérifier que φ est bien définie et qu'elle est un morphisme d'anneaux surjectif.
 - b) Montrer que $\mathcal{B}/(2) \cong \mathbb{Z}/2\mathbb{Z}$.
 - c) Que peut-on dire de (2) dans \mathcal{B} ?

Correction

1. Il suffit de vérifier que \mathcal{B} est un sous-anneau de \mathbb{Q} .

On a: $1_{\mathbb{Q}} = 1 = \frac{1}{1} \in \mathcal{B}$. Soient $\frac{a}{b}, \frac{c}{d} \in \mathcal{B}$ (b et d sont impairs), on a $\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \in \mathcal{B}$ (le produit bd est impair). $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \in \mathcal{B}$.

2. Soit $\frac{a}{b} \in \mathcal{U}(\mathcal{B})$ où $a \in \mathbb{Z}, b \in \mathbb{N}^*$, b impair, alors $\exists \frac{c}{d} \in \mathcal{B}$ où $c \in \mathbb{Z}, d \in \mathbb{N}^*$, d impair tel que $\frac{a}{b} \cdot \frac{c}{d} = 1$, d'où ac = bd est impair et donc a est impair. D'autre part, si $\frac{a}{b} \in \mathcal{B} : a \in \mathbb{Z}, b \in \mathbb{N}^*$, a et b impairs, alors $\frac{a}{b} \cdot \frac{b}{|a|} = \pm 1$ et ainsi $\mathcal{U}(\mathcal{B}) = \{\frac{a}{b} \in \mathcal{B} : a \in \mathbb{Z}, b \in \mathbb{N}^*, a \text{ et } b \text{ impairs}\}$.

On a par exemple $4 \notin \mathcal{U}(\mathcal{B})$, ainsi $\mathcal{U}(\mathcal{B}) \neq \mathcal{B} \setminus \{0\}$, et donc \mathcal{B} n'est pas un corps.

3. a) φ est bien définie. En effet, soient $\frac{a}{b} = \frac{c}{d} \in \mathcal{B}$ où $a, c \in \mathbb{Z}, b, d \in \mathbb{N}^*$ et b, d impairs. On a ad = bc, d'où $\overline{a}.\overline{d} = \overline{b}.\overline{c}$ dans $\mathbb{Z}/2\mathbb{Z}$, et donc $\overline{a} = \overline{c}$ (car b et d sont impairs).

Soient $\frac{a}{b}, \frac{c}{d} \in \mathcal{B}$ où $a, c \in \mathbb{Z}, b, d \in \mathbb{N}^*$ et b, d impairs, on a :

$$\varphi(\frac{a}{b} + \frac{c}{d}) = \frac{ad + bc}{bd} = \overline{ad + bc} = \overline{a} + \overline{c} \operatorname{car} \overline{b} = \overline{d} = \overline{1}, \operatorname{d'où} \varphi(\frac{a}{b} + \frac{c}{d}) = \varphi(\frac{a}{b}) + \varphi(\frac{c}{d}).$$

$$\varphi(\frac{a}{b}, \frac{c}{d}) = \varphi(\frac{ac}{bd}) = \overline{ac} = \overline{a}.\overline{c} = \varphi(\frac{a}{b}).\varphi(\frac{c}{d}).$$

$$\varphi(1_{\mathcal{B}}) = \varphi(\frac{1}{1}) = \overline{1} = 1_{\mathbb{Z}/2\mathbb{Z}}.$$

$$\varphi(1_{\mathcal{B}}) = \varphi(\frac{1}{1}) = \overline{1} = 1_{\mathbb{Z}/2\mathbb{Z}}$$

Ainsi, φ est un morphisme d'anneaux.

 φ est surjectif, en effet, $\forall \overline{a} \in \mathbb{Z}/2\mathbb{Z}, \exists x = \frac{a}{1} \in \mathcal{B} : \varphi(x) = \overline{a}$.

- b) Montrons que $\ker(\varphi) = (2)$. On a $2 \in \ker(\varphi)$, donc $(2) \subset \ker(\varphi)$. D'autre part, soit $\frac{a}{b} \in \ker(\varphi)$ $(a \in \mathbb{Z}, b \in \mathbb{N}^* \text{ et } b \text{ impair}), \text{ alors, } a \in 2\mathbb{Z}, \text{ d'où } \exists k \in \mathbb{Z} \text{ tel que } \frac{a}{b} = \frac{2k}{b}, \text{ ainsi } \frac{a}{b} \in (2).$ D'après le 1^{er} théorème d'isomorphisme on a, $\mathcal{B}/(2) \cong \mathbb{Z}/2\mathbb{Z}$.
- c) Puisque $\mathbb{Z}/2\mathbb{Z}$ est un corps, alors (2) est un idéal maximal de \mathcal{B} .