Geometria Computacional

Envoltório Convexo

Prof. Edson Alves

2019

Faculdade UnB Gama

Sumário

- 1. Definição
- 2. Algoritmo de Graham

Definição

Envoltório convexo

- Dado um conjunto de N pontos P, o envoltório convexo $C_H(P)$ de P (convex hull) é o menor polígono convexo tal que cada ponto de P ou pertence ao interior de $C_H(P)$ ou é um de seus vértices
- O termo menor na definição acima se refere à menor área
- O envoltório convexo não é único, pois não impõem restrição na orientação do polígono
- Existem vários algoritmos para se determinar o envoltório convexo
- O mais conhecido é o algoritmo de Graham
- Além deles, outros dois algoritmos importantes são a cadeia monótona de Andrew e a marcha de Jarvis
- Como os vértices de $C_H(P)$ são pontos de P, a essência dos algoritmos é determinar, para cada ponto de P, se ele pertence ou não ao $C_H(P)$

Exemplo de envoltório convexo

Algoritmo de Graham

Algoritmo de Graham

- O algoritmo de Graham (*Graham Scan*, no original), foi proposto por Ronald Graham em 1972
- Ele iniciamente ordena todos os N pontos de P de acordo com o ângulo que eles foram com um ponto pivô fixado previamente
- ullet A escolha padrão para o pivô é o ponto de menor coordenada y
- Caso exista mais de um ponto com coordenada y mínima, escolhe-se o de maior coordenada x dentre eles
- Se P é armazenado em um vetor, o algoritmo pode ser simplificado movendo-se o pivô para a primeira posição

Implementação da escolha do pivô

```
34 template<typename T>
35 class GrahamScan
36 {
37 private:
      static Point<T> pivot(vector<Point<T>>& P)
      {
39
          size_t idx = 0;
40
41
          for (size_t i = 1; i < P.size(); ++i)</pre>
42
               if (P[i].y < P[idx].y or</pre>
43
                    (equals(P[i].y, P[idx].y) and P[i].x > P[idx].x))
44
                        idx = i:
45
46
          swap(P[0], P[idx]);
47
48
          return P[0];
49
50
```

Ordenação dos pontos de acordo com o ângulo

- Para realizar a ordenação dos pontos é preciso definir um operador booleano que receba dois pontos P e Q e retorne verdadeiro se P antecede Q de acordo com a ordenação proposta
- Como é necessário o conhecimento do pivô para tal ordenação, há três possibilidades para a implementação deste operador:
 - implementar o operator < da classe Point, tornando o pivô um membro da classe para que o operador tenha acesso a ele;
 - 2. tornar o pivô uma variável global;
 - usar uma função lambda no terceiro parâmetro da função sort(), capturando o pivô por referência ou cópia
- O ângulo que o vetor diferença entre o vetor-posição do pivô e o vetor posição de um ponto do conjunto P faz com o eixo-x positivo pode ser obtido através da função atan2() da biblioteca math.h da linguagem C/C++

Exemplo de ordenação por ângulo

Implementação da rotina de ordenação dos pontos

```
static void sort_by_angle(vector<Point<T>>& P)
52
     {
          auto P0 = pivot(P);
54
          sort(P.begin() + 1, P.end(),
56
              [&](const Point<T>& A. const Point<T>& B) {
                  // pontos colineares: escolhe-se o mais próximo do pivô
58
                  if (equals(D(P0, A, B), 0))
                      return A.distance(P0) < B.distance(P0);</pre>
                  auto alfa = atan2(A.y - P0.y, A.x - P0.x);
                  auto beta = atan2(B.v - P0.v. B.x - P0.x):
                  return alfa < beta:
          );
68
```

Identificação do envoltório convexo

- Após a ordenação dos pontos, o algoritmo procede empilhando três pontos de P: inicialmente os pontos cujos índices são n-1,0 e 1
- O invariante a ser mantido é que os três elementos do topo de pilha estão em sentido anti-horário (D>0)
- Para cada um dos demais pontos Q_i de P, com $i=2,3,\ldots,n-1$, verifica-se se este ponto mantem o sentido anti-horário com os dois elementos do topo da pilha
- Em caso afirmativo, o ponto é inserido na pilha
- ullet Caso contrário, remove-se o topo da pilha e se verifica o invariante para Q_i novamente
- Como cada ponto é ou inserido ou removido uma única vez, este processo tem complexidade O(N), e o algoritmo como um todo tem complexidade $O(N\log N)$, devido à ordenação

Implementação da rotina de envoltório convexo

```
70 public:
      static vector<Point<T>> convex_hull(const vector<Point<T>>& points)
      {
          vector<Point<T>> P(points):
          auto N = P.size();
74
          // Corner case: com 3 vértices ou menos, P é o próprio convex hull
76
          if (N <= 3)
              return P;
78
          sort_by_angle(P);
80
81
          vector<Point<T>> ch;
82
          ch.push_back(P[N - 1]);
83
          ch.push_back(P[0]);
84
          ch.push_back(P[1]);
85
86
          size_t i = 2;
87
88
```

Implementação da rotina de envoltório convexo

```
while (i < N)
89
           {
90
               auto j = ch.size() - 1;
91
92
               if (D(ch[j - 1], ch[j], P[i]) > 0)
93
                    ch.push_back(P[i++]);
94
               else
95
                    ch.pop_back();
96
97
98
           // O envoltório é um caminho fechado: o primeiro ponto é igual
           // ao último
100
           return ch;
101
102
103 };
```

Referências

- 1. **GRAHAM**, R. L. *An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set*. Information Processing Letters vol. 1 (4), pg. 132-133, 1972.
- 2. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 3. **O'ROURKE**, Joseph. *Computational Geometry in C*, Cambridge University Press, 2nd edition, 1998.
- 4. **DE BERG**, Mark. *Computational Geometry: Algorithms and Applications*, Springer, 3rd edition, 2008.
- 5. Wikipedia. Graham scan, acesso em 09/06/2019.