Lesson Objectives

- 1. Basic terms with quadratic functions
- 2. Determine if a function is linear, quadratic, or neither
- 3. Identify (or calculate) characteristics of quadratic functions and graphs
 - a. Leading coefficient opens up or down
 - b. Vertex
 - c. Axis of symmetry
 - d. Intervals of increasing or decreasing
 - e. Domain and Range
 - f. Maximum or minimum value
- 4. Using vertex and standard form for a quadratic function

A. Basic Terms with Quadratic Functions

Quadratic – a function of one variable where the highest exponent (degree) is 2.

Quadratic comes from the Latin *quadrare*, which means "to make square."

Let a, b, and c be real numbers with $a \neq 0$. A function represented by

$$f(x) = ax^2 + bx + c$$

is a quadratic function (written in standard form).

Let a, h, and k be real numbers with $a \neq 0$. A function represented by

$$f(x) = a(x - h)^2 + k$$

is also a quadratic function (written in vertex form).

By contrast, a linear function is of the form:

$$f(x) = ax + b$$

where a and b are real numbers ($a \neq 0$).

B. Determine if a function is linear, quadratic, or neither

- 1. For both quadratic and linear, there must be NO variables in the denominator.
- **2.** Quadratic: Look for a term with x^2 in it (no higher exponents). The leading coefficient is beside the x^2 .
- 3. Linear: Look for a term with just an x (exponent 1) in it (no higher exponents).
- **EXAMPLE:** Identify $f(x) = 4 3x + 5x^2$ as being linear, quadratic, or neither. If f is quadratic, identify the leading coefficient a and evaluate f(-2). [3.1.1]

For both quadratic and linear, there must be NO variables in the denominator. (OK) Quadratic: Look for a term with x^2 in it (no higher exponents).

This function has the $+5x^2$ term (no higher exponents), so this function is

QUADRATIC. The leading coefficient (beside x^2) is $a = \frac{5}{2}$.

Evaluate: f(-2)

Given Function: $f(x) = 4 - 3 x + 5 x^2$

Plug in – 2 for x: $f(-2) = 4 - 3(-2) + 5(-2)^2$

Be very careful with these negatives here.

Your placement of PARENTHESES is critical. Respect Order of Operations, too.

$$f(-2) = 4 + 6 + 5(4)$$

= $4 + 6 + 20 = 10 + 20 = 30$

You don't have to do this by hand.

Using calculator: $f(-2) = 4 - 3(-2) + 5(-2)^2$

4-3(-2)+5(-2)² 30

You still have to use parentheses correctly on calculator this way.

But remember, you can do the "Go to the STO>" method on the calculator:

Type in: (-) 2, STO>, XTθn, ENTER

Then, type in the function formula with variables:

$$4 - 3x + 5x^2$$

• **EXAMPLE:** Identify $f(x) = \frac{2}{x^2 - 1}$ as being linear, quadratic, or neither. If f is quadratic, identify the leading coefficient a and evaluate f(-3). [3.1.3]

For both quadratic and linear, there must be NO variables in the denominator. (NO) Although there is an x^2 present, it is in the **denominator** of a fraction. Since there is a variable in the denominator, this function f(x) is **NEITHER LINEAR NOR QUADRATIC**.

• **EXAMPLE:** Identify $f(x) = \frac{1}{2} - \frac{7}{10}x$ as being linear, quadratic, or neither. If f is quadratic, identify the leading coefficient a and evaluate f(-2). [3.1.5]

For both quadratic and linear, there must be NO variables in the denominator. (OK) Quadratic: Look for a term with x^2 in it. (NO)

Linear: Look for a term with just an x (exponent 1) in it (no higher exponents).

This function has the $-\frac{7}{10}x$ term (no higher exponents), so this function is LINEAR.

C. Characteristics Quadratic Functions and Graphs

Parabola – the U-shaped graph of a quadratic function.

Leading Coefficient (a) – determines whether the parabola opens up or down.

If a > 0 (positive), the parabola opens UP.

If a < 0 (negative), the parabola opens DOWN.

Parabola $y = ax^2 + bx + c$

Vertex – the highest point on a parabola that opens downward or the lowest point on a parabola that opens downward. It's where the graph changes from decreasing to increasing or vice-versa. $ax^2 + bx + c$

Maximum value – the y-coordinate of the vertex of a parabola opening DOWN (a < 0)

Minimum value – the y-coordinate of the vertex of a parabola opening UP (a > 0)

Axis of Symmetry – the vertical line passing through the vertex. Equation is x = (x-vertex)

Increasing – graph moves UPWARD, from left to right

Decreasing – graph moves DOWNWARD, from left to right

[3.1.9]

- **EXAMPLE:** Use the graph to find the following.
 - (a) Sign of the leading coefficient
 - (b) Vertex
 - (c) Axis of Symmetry
 - (d) Intervals where f is increasing and where f is decreasing
 - (e) Domain and range

SOLUTION

- (a) The parabola opens DOWN, so the sign of the leading coefficient is NEGATIVE.
- (b) The **vertex** is located at (2,2).
- (c) The axis of symmetry (AOS) is the line x = 2. It goes through the vertex.
- (d) On the **LEFT** side of the parabola, the function *f* is **INCREASING**.

Written as inequality: x < 2

Interval Notation: $(-\infty, 2)$

(e) The **domain** of *f* is describing *x*, and it moves **left-to-right**.

(Use the x-axis to help you.)

Written as inequality: "all real numbers"

Interval Notation: $(-\infty, \infty)$

On the **RIGHT** side of the parabola, the function *f* is **DECREASING**.

Written as inequality: x > 2

Interval Notation: $(2, \infty)$

The **range** of f is describing y, and it

moves low-to-high.

(Use y-axis to help you.)

Written as inequality: $y \le 2$ Interval Notation: $(-\infty, 2]$ Always use bracket with an included value!

- **EXAMPLE:** Use the graph of f to determine the intervals where f is increasing and where f is decreasing. [1.4-28]
 - (STEP 1) x-Vertex x = 0 (the x-coordinate of the vertex)
 - (STEP 2) Write out LEFT & RIGHT sides.

LEFT side RIGHT side of the parabola

Written as Inequality:

x > 0

Interval Notation:

$$(-\infty, \mathbf{0})$$

 $(0,\infty)$

• (STEP 3) Who's Increasing or Decreasing?

Increasing

coefficient

(opens \cup or \cap)

Decreasing

ANSWER:

Increasing $(-\infty, 0)$ and Decreasing $(0, \infty)$

1. Vertex Form: $f(x) = a(x - h)^2 + k$ Vertex is (h, k)

a is the leading x^{-1}

x-Vertex is *h*

(x-coordinate of vertex is INSIDE parentheses with x)

SWITCH SIGN with *x*

y-Vertex is *k*

-8-

10-

(y-coordinate of vertex is OUTSIDE parentheses)

SAME SIGN outside – **KEEP IT**

• **EXAMPLE:** Identify the vertex of the parabola and determine whether its graph opens upward or downward. [*Hornsby 3.2.17]

$$f(x) = (x - 9)^2 - 3$$

SOLUTION

INSIDE parentheses with x, SWITCH SIGN. I see -9 with x, so x-Vertex is +9 OUTSIDE parentheses is y, SAME SIGN (keep it). y-Vertex is -3

The vertex is therefore (9, -3)

The leading coefficient a, is an understood value of 1.

That is, $f(x) = (x - 9)^2 - 3$ can rewrite as $f(x) = 1(x - 9)^2 - 3$ $\alpha = 1$

Since a = 1, that's a POSITIVE number, which opens upward.

• **EXAMPLE:** Give the largest interval where the function increases or decreases, as

 $f(x) = (x + 3)^2 + 6$; increases requested.

[*Hornsby 3.2-30]

SOLUTION

• (STEP 1)

Does the parabola open **UP** or **DOWN**?

Leading coefficient, a, is understood value of 1 (positive). It opens UP.

(STEP 2)

Make a **SKETCH** of a parabola opening **UP**.

$$f(x) = (x+3)^2 + 6$$

$$x = -3$$

(STEP 3)

x-Vertex (SWITCH SIGN)

(STEP 4)

Write out LEFT & RIGHT sides.

LEFT side of parabola

RIGHT side of parabola

Written as Inequality:

$$x < -3$$

x > -3

Interval Notation:

$$(-\infty, -3)$$

 $(-3,\infty)$

(STEP 5)

Who's INCREASING or DECREASING?

LEFT side is **DECREASING**

RIGHT side is **INCREASING**

What we're after: increases

x = -3

ANSWER is: $(-3, \infty)$

(go on to the next page)

• **EXAMPLE:** (a) Use the vertex formula to find the vertex.

[3.1.47]

(b) Find the intervals where f is increasing and where f is decreasing.

$$f(x) = 8 - x^2$$

SOLUTION

Since this function has no parentheses with x, then it's in **STANDARD** form.

The terms are not in the right order. Rewrite them highest power to lowest.

$$f(x) = 8 - x^2$$
 rewritten in correct order: $f(x) = -x^2 + 8$

It's missing the x-term, so write in a zero placeholder: $f(x) = -x^2 + 0x + 8$

(a) The vertex formula is
$$x = \frac{-b}{2a}$$
 $b = 0$, $a = -1$ $x = \frac{-0}{2 \cdot (-1)} = 0$

x-Vertex = 0 Plug in x into function (use parentheses) in order to get y.

$$f(x) = -x^2 + 8$$
 $f(0) = -(0)^2 + 8$ $0 + 8 = 8$

y-Vertex = 8 Therefore, the coordinates of the vertex are: (0,8)

(go on to the next page)

(continued from previous page)

• **EXAMPLE: (a)** Use the vertex formula to find the vertex.

[3.1.47]

(b) Find the intervals where *f* is increasing and where *f* is decreasing.

$$f(x) = 8 - x^2$$

SOLUTION

$$f(x) = 8 - x^2$$

 $f(x) = 8 - x^2$ means the same thing as $f(x) = -x^2 + 8$

$$f(x) = -x^2 + 8$$

- **(b)** To find intervals of increasing and decreasing:
- (STEP 1) Does the parabola open **UP** or **DOWN**?

Leading coefficient, a, is understood value of -1 (negative). It opens DOWN.

(STEP 2)

Make a **SKETCH** of a parabola opening **DOWN**.

$$x = 0$$

(STEP 3)

x-Vertex

(STEP 4)

Write out LEFT & RIGHT sides.

LEFT side of parabola

RIGHT side of parabola

Written as Inequality:

Interval Notation:

 $(-\infty, \mathbf{0})$

$$(\mathbf{0}, \infty)$$

(STEP 5)

Who's INCREASING or DECREASING?

LEFT side is **INCREASING**

RIGHT side is **DECREASING**

What we're after: (both)

ANSWER is: DECREASING on $(0, \infty)$ and **INCREASING** on $(-\infty, 0)$

EXAMPLE: Identify where f is increasing and where f is decreasing

$$f(x) = 280x - 70x^2$$

[1.4.79]

SOLUTION

Reorder the function into correct standard form: $f(x) = -70x^2 + 280x + 0$

Does the parabola open **UP** or **DOWN**? • (STEP 1)

Leading coefficient, a, is -70 (negative). It opens DOWN.

(STEP 2) Make a **SKETCH** of a parabola opening **DOWN**.

$$x = 2$$

(STEP 3)

x-Vertex

The vertex formula is $x = \frac{-b}{2a}$ b = 280, a = -70 $x = \frac{-280}{2(-70)} = \frac{-280}{-140} = 2$

$$x = \frac{-280}{2 \cdot (-70)} = \frac{-280}{-140} = 2$$

We don't need the y-Vertex because we're only finding intervals of increasing and decreasing. These only use x-Vertex.

(STEP 4) Write out LEFT & RIGHT sides.

LEFT side of parabola

RIGHT side of parabola

Written as Inequality:

Interval Notation:

$$(-\infty, 2)$$

 $(2,\infty)$

Who's INCREASING or DECREASING? (STEP 5)

LEFT side is **INCREASING**

RIGHT side is **DECREASING**

$$x = 2$$

Over the interval $(-\infty, 2)$ the function f is increasing. ANSWER: Over the interval $(2, \infty)$ the function f is **decreasing**.

3. Find the Maximum or Minimum Value of a Quadratic Function

That's the job of the y-coordinate of the vertex.

Max./Min...use *y*-Vertex

EXAMPLE: If a football is kicked straight up with an initial velocity of 64 ft/sec from a height of 4 feet, then its height above the earth is a function of time given by

$$h(t) = -16t^2 + 64t + 4 \ge$$

What is the maximum height reached by the ball?

[3.1.123]

SOLUTION

For convenience, let's rewrite the function

$$h(t) = -16t^2 + 64t + 4$$

$$h(t) = -16t^2 + 64t + 4$$
 as $f(x) = -16x^2 + 64x + 4$

(STEP 1) Does the parabola open **UP** or **DOWN**?

Leading coefficient, a_i is -16 (negative). It opens DOWN.

(STEP 2)

Make a **SKETCH** of a parabola opening **DOWN**.

$$f(x) = -16x^2 + 64x + 4$$

$$x = 2$$

(STEP 3)

x-Vertex

The vertex formula is $x = \frac{-b}{2a}$ b = 64, a = -16 $x = \frac{-64}{2 \cdot (-16)} = \frac{-64}{-32} = 2$

$$x = \frac{-64}{2 \cdot (-16)} = \frac{-64}{-32} = 2$$

(STEP 4)

y-Vertex

Since x-Vertex = 2 Plug in x into function (use parentheses) in order to get y.

$$f(x) = -16x^{2} + 64x + 4 \qquad f(2) = -16(2)^{2} + 64(2) + 4$$
$$= -16(4) + 128 + 4 = -64 + 132 = 68$$

The y-Vertex = 68 Therefore, the maximum height reached by the ball is 68 ft.

Sources Used:

- 1. MyLab Math for A Graphical Approach to College Algebra, 7th Edition, Hornsby, Pearson Education Inc.
- 2. MyLab Math for College Algebra with Modeling and Visualization, 6th Edition, Rockswold, Pearson Education Inc.
- 3. Number Line Inequalities (modified) from Desmos, https://www.desmos.com/calculator/evxn1e1njv, © 2019, Desmos, Inc.
- 4. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit