Contributions à l'apprentissage statistique dans les modèles parcimonieux

Pierre Alquier

Soutenance d'HDR Vendredi 06/12/2013 Université Paris 6

2003-2006	étudiant en thèse	Université Paris 6
	dir. : Olivier Catoni	(financé par le CREST)
2006-2007	ATER	Université Paris Dauphine
2007-2012	maître de conférences	Université Paris Diderot
2012-20XX	lecturer	University College Dublin

On observe, sur un espace $(\Omega, \mathcal{A}, \mathbb{P})$, n paires aléatoires $(X_1, Y_1), \ldots, (X_n, Y_n)$ indépendantes sous \mathbb{P} , $X_i \in \mathbb{R}^p$ et $Y_i \in \mathbb{R}$. On suppose que

$$Y_i = f(X_i) + W_i$$

pour f mesurable W_i avec $\mathbb{E}(W_i|X_i) = 0$ et $\mathbb{E}(W_i^2|X_i) \leq \sigma^2$.

On observe, sur un espace $(\Omega, \mathcal{A}, \mathbb{P})$, n paires aléatoires $(X_1, Y_1), \ldots, (X_n, Y_n)$ indépendantes sous \mathbb{P} , $X_i \in \mathbb{R}^p$ et $Y_i \in \mathbb{R}$. On suppose que

$$Y_i = f(X_i) + W_i$$

pour f mesurable W_i avec $\mathbb{E}(W_i|X_i) = 0$ et $\mathbb{E}(W_i^2|X_i) \leq \sigma^2$.

Prédicteurs linéaires

$$\forall \theta, x \in \mathbb{R}^p, \quad f_{\theta}(x) := \theta \cdot x.$$

On observe, sur un espace $(\Omega, \mathcal{A}, \mathbb{P})$, n paires aléatoires $(X_1, Y_1), \ldots, (X_n, Y_n)$ indépendantes sous \mathbb{P} , $X_i \in \mathbb{R}^p$ et $Y_i \in \mathbb{R}$. On suppose que

$$Y_i = f(X_i) + W_i$$

pour f mesurable W_i avec $\mathbb{E}(W_i|X_i) = 0$ et $\mathbb{E}(W_i^2|X_i) \leq \sigma^2$.

Prédicteurs linéaires

$$\forall \theta, x \in \mathbb{R}^p, \quad f_{\theta}(x) := \theta \cdot x.$$

Risques

$$r(\theta) := \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_{\theta}(X_i))^2$$
, $R(\theta) := \mathbb{E}[r(\theta)]$ et $\overline{R} = \inf R$.

$$\hat{\theta}_{I}^{\mathrm{MCO}} = \arg\min\{r(\theta) : \theta_{i} = 0 \text{ pour } i \notin I\}$$

$$\theta_{I} = \arg\min\{R(\theta) : \theta_{i} = 0 \text{ pour } i \notin I\}.$$

$$\hat{\theta}_I^{\text{MCO}} = \arg\min\{r(\theta) : \theta_i = 0 \text{ pour } i \notin I\}$$

 $\theta_I = \arg\min\{R(\theta) : \theta_i = 0 \text{ pour } i \notin I\}.$

A design fixe, $W_i \sim \mathcal{N}(0, \sigma^2)$,

$$\mathbb{E}\left[R(\hat{\theta}_I^{\text{MCO}}) - \overline{R}\right] \leq R(\theta_I) - \overline{R} + \frac{\sigma^2 \text{card}(I)}{n}$$

$$\hat{\theta}_{I}^{\mathrm{MCO}} = \arg\min\{r(\theta) : \theta_{i} = 0 \text{ pour } i \notin I\}$$

 $\theta_{I} = \arg\min\{R(\theta) : \theta_{i} = 0 \text{ pour } i \notin I\}.$

A design fixe, $W_i \sim \mathcal{N}(0, \sigma^2)$,

$$\mathbb{E}\left[R(\hat{\theta}_I^{\text{MCO}}) - \overline{R}\right] \leq R(\theta_I) - \overline{R} + \frac{\sigma^2 \text{card}(I)}{n}$$

Peut-on proposer $\hat{\theta}$ tel que

$$\mathbb{E}\left[R(\hat{\theta}) - \overline{R}\right] \leq \inf_{I} \left\{ \left[R(\theta_{I}) - \overline{R}\right] + \frac{\sigma^{2} \operatorname{card}(I)}{n} \right\}?$$

$$\hat{\theta}_{I}^{\mathrm{MCO}} = \arg\min\{r(\theta) : \theta_{i} = 0 \text{ pour } i \notin I\}$$

$$\theta_{I} = \arg\min\{R(\theta) : \theta_{i} = 0 \text{ pour } i \notin I\}.$$

A design fixe, $W_i \sim \mathcal{N}(0, \sigma^2)$,

$$\mathbb{E}\left[R(\hat{\theta}_I^{\text{MCO}}) - \overline{R}\right] \leq R(\theta_I) - \overline{R} + \frac{\sigma^2 \text{card}(I)}{n}$$

On peut fabriquer $\hat{\theta}$ tel que

$$\mathbb{E}\left[R(\hat{\theta}) - \overline{R}\right] \leq \inf_{I} \left\{ \left[R(\theta_{I}) - \overline{R}\right] + \frac{C}{n} \frac{\sigma^{2} \operatorname{card}(I) \log(p)}{n} \right\}$$

et c'est le mieux que l'on puisse faire...

Bunea, F., Tsybakov, A. B. and Wegkamp, M. H. (2007) Aggregation for Gaussian Regression. The Annals of Statistics 35(4), pp. 1674–1697.

	AIC,BIC	
Définition		
Inég. oracle?		
Calcul ?		

	AIC,BIC	
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	
Inég. oracle?		
Calcul ?		

	AIC,BIC	
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	
Inég. oracle?	oui	
Calcul ?		

	AIC,BIC	
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	
Inég. oracle?	oui	
Calcul?	<i>p</i> petit	

	AIC,BIC	LASSO
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	
Inég. oracle?	oui	
Calcul?	<i>p</i> petit	

	AIC,BIC	LASSO
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	$\min\{r(\theta) + \lambda \ \theta\ _1\}$
Inég. oracle?	oui	
Calcul?	<i>p</i> petit	

	AIC,BIC	LASSO
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	$\min\{r(\theta) + \lambda \ \theta\ _1\}$
Inég. oracle?	oui	
Calcul?	<i>p</i> petit	<i>p</i> grand

	AIC,BIC	LASSO
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	$\min\{r(\theta) + \lambda \ \theta\ _1\}$
Inég. oracle?	oui	hypothèses sur X_1, \ldots, X_n
Calcul?	<i>p</i> petit	<i>p</i> grand

	AIC,BIC	LASSO
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	$\min\{r(\theta) + \lambda \ \theta\ _1\}$
Inég. oracle?	oui	hypothèses sur X_1, \ldots, X_n
Calcul ?	<i>p</i> petit	<i>p</i> grand

Références pour pénalisation ℓ_0

Barron, A. R., Birgé, L. and Massart, P. (1999) Risk Bounds for Model Selection via Penalization. *Probability Theory and Related Fields* 113(3), pp. 301–413.

	AIC,BIC	LASSO
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	$\min\{r(\theta) + \lambda \ \theta\ _1\}$
Inég. oracle?	oui	hypothèses sur X_1, \ldots, X_n
Calcul?	<i>p</i> petit	p grand

Références pour pénalisation ℓ_0

Barron, A. R., Birgé, L. and Massart, P. (1999) Risk Bounds for Model Selection via Penalization. *Probability Theory and Related Fields* 113(3), pp. 301–413.

Références pour pénalisation ℓ_1

Tibshirani, R. (1996) Regression Shrinkage and Selection via the LASSO. *Journal of the Royal Statistical Society: Series B* 58(1), pp. 267–288.

Bickel, P., Ritov, Y. and Tsybakov, A. B. (2009) Simultaneous Analysis of LASSO and Dantzig Selector. *The Annals of Statistics* 37(4), pp. 1705–1732.

	AIC,BIC	LASSO
Définition	$\min\{r(\theta) + \lambda \ \theta\ _0\}$	$\min\{r(\theta) + \lambda \ \theta\ _1\}$
Inég. oracle?	oui	hypothèses sur X_1, \ldots, X_n
Calcul?	<i>p</i> petit	<i>p</i> grand

Références pour pénalisation ℓ_0

Barron, A. R., Birgé, L. and Massart, P. (1999) Risk Bounds for Model Selection via Penalization. *Probability Theory and Related Fields* 113(3), pp. 301–413.

Références pour pénalisation ℓ_1

Tibshirani, R. (1996) Regression Shrinkage and Selection via the LASSO. *Journal of the Royal Statistical Society: Series B* **58**(1), pp. 267–288.

Bickel, P., Ritov, Y. and Tsybakov, A. B. (2009) Simultaneous Analysis of LASSO and Dantzig Selector. *The Annals of Statistics* 37(4), pp. 1705–1732.

→ idée : estimateur agrégé, calculable par Monte-Carlo

Dalalyan, A. and Tsybakov, A. B. (2008) Aggregation by Exponential Weighting, Sharp PAC-Bayesian Bounds and Sparsity. *Machine Learning* 72(1-2), pp. 39–61.

Plan de la présentation

- Estimation dans un modèle linéaire parcimonieux
 - Introduction
 - Inégalités PAC-Bayésiennes
- Qénéralisation à l'autorégression
 - Prédiction de séries temporelles
 - Inégalités PAC-Bayésiennes
- 3 Au-delà du modèle linéaire
 - Modèle à direction révélatrice parcimonieux
 - Régression de faible rang
 - Modèles à complexité bornée

Premier estimateur agrégé $\hat{ heta}_{\lambda}$

$$\pi_I = \frac{\alpha^{\operatorname{card}(I)}}{\binom{p}{\operatorname{card}(I)} \sum_{j=0}^n \alpha^j}.$$

Premier estimateur agrégé $\hat{ heta}_{\lambda}$

$$\pi_I = \frac{\alpha^{\operatorname{card}(I)}}{\binom{p}{\operatorname{card}(I)} \sum_{j=0}^n \alpha^j}.$$

Définition

$$\hat{\theta}_{\lambda} = \frac{\sum_{\operatorname{card}(I) \leq n} \pi_{I} \exp\left[-\lambda \left(r(\hat{\theta}_{I}^{\text{MCO}}) + \frac{2\sigma^{2} \operatorname{card}(I)}{n}\right)\right] \hat{\theta}_{I}^{\text{MCO}}}{\sum_{\operatorname{card}(I) \leq n} \pi_{I} \exp\left[-\lambda \left(r(\hat{\theta}_{I}^{\text{MCO}}) + \frac{2\sigma^{2} \operatorname{card}(I)}{n}\right)\right]}.$$

Premier estimateur agrégé $\hat{ heta}_{\lambda}$

Théorème (A & Lounici 2011)

Les X_i déterministes et les W_i iid $\mathcal{N}(0, \sigma^2)$, $\lambda = 1/(4\sigma^2)$,

$$\mathbb{E}\left(R(\hat{\theta}_{\lambda}) - \overline{R}\right) \leq \inf_{\operatorname{card}(I) \leq n} \left\{R(\theta_{I}) - \overline{R}\right\}$$

$$+ \frac{\sigma^2 \operatorname{card}(I)}{n} \left(4 \log \left(\frac{p e}{\alpha \operatorname{card}(I)} \right) + 1 \right) + \frac{4 \sigma^2 \log \left(\frac{1}{1 - \alpha} \right)}{n} \right\}.$$

Premier estimateur agrégé $\hat{ heta}_{\lambda}^{}$

Théorème (A & Lounici 2011)

Les X_i déterministes et les W_i iid $\mathcal{N}(0, \sigma^2)$, $\lambda = 1/(4\sigma^2)$,

$$\mathbb{E}\left(R(\hat{\theta}_{\lambda}) - \overline{R}\right) \leq \inf_{\operatorname{card}(I) \leq n} \left\{R(\theta_{I}) - \overline{R}\right\}$$

$$+\frac{\sigma^2 \operatorname{card}(I)}{n} \left(4 \log \left(\frac{p e}{\alpha \operatorname{card}(I)} \right) + 1 \right) + \frac{4 \sigma^2 \log \left(\frac{1}{1 - \alpha} \right)}{n} \right\}.$$

Preuve : Lemme de Stein + méthodes PAC-Bayésiennes :

Leung, G. and Barron, A. R. (2006) Information Theory and Mixing Least-Square Regressions. *IEEE Transactions on Information Theory* 52(8), pp. 3396–3410.1.

Catoni, O. (2004) Statistical Learning Theory and Stochastic Optimization. Ecole d'Été de Probabilités de Saint-Flour XXXI - 2001. J. Picard Editor. Springer Lecture Notes in Mathematics 1851.

on suppose que $R(\overline{\theta}) = \overline{R}$ et $\|\overline{\theta}\|_1 \le K$, soit u_I probauniforme sur $\{\|\theta\|_1 \le K + 1, \theta_i = 0 \text{ pour } i \notin I\}$ et

$$\pi(\mathrm{d}\theta) = \sum_{\mathrm{card}(I) \leq n} \pi_I \mathrm{u}_I(\mathrm{d}\theta),$$

• on suppose que $R(\overline{\theta}) = \overline{R}$ et $\|\overline{\theta}\|_1 \le K$, soit u_I probauniforme sur $\{\|\theta\|_1 \le K + 1, \theta_i = 0 \text{ pour } i \notin I\}$ et

$$\pi(\mathrm{d}\theta) = \sum_{\mathrm{card}(I) \leq n} \pi_I \mathrm{u}_I(\mathrm{d}\theta),$$

 $\|f\|_{\infty} \leq L, \|X_i\|_{\infty} \leq L',$

• on suppose que $R(\overline{\theta}) = \overline{R}$ et $\|\overline{\theta}\|_1 \le K$, soit u_I probauniforme sur $\{\|\theta\|_1 \le K + 1, \theta_i = 0 \text{ pour } i \notin I\}$ et

$$\pi(\mathrm{d}\theta) = \sum_{\mathrm{card}(I) \leq n} \pi_I \mathrm{u}_I(\mathrm{d}\theta),$$

- $||f||_{\infty} \leq L, ||X_i||_{\infty} \leq L',$
- **3** W_i est sous-exponentiel (σ, ξ) , X_i peuvent être déterministes ou aléatoires.

① on suppose que $R(\overline{\theta}) = \overline{R}$ et $\|\overline{\theta}\|_1 \le K$, soit u_I proba. uniforme sur $\{\|\theta\|_1 \le K + 1, \theta_i = 0 \text{ pour } i \notin I\}$ et

$$\pi(\mathrm{d}\theta) = \sum_{\mathrm{card}(I) \leq n} \pi_I \mathrm{u}_I(\mathrm{d}\theta),$$

- $||f||_{\infty} \leq L, ||X_i||_{\infty} \leq L',$
- **3** W_i est sous-exponentiel (σ, ξ) , X_i peuvent être déterministes ou aléatoires.

Définition

$$\frac{\mathrm{d}\tilde{\rho}_{\lambda}}{\mathrm{d}\pi}(\theta) = \frac{\exp(-\lambda r(\theta))}{\int_{\Theta_{\kappa}} \exp(-\lambda r(\theta'))\pi(\mathrm{d}\theta')} \text{ et } \tilde{\theta}_{\lambda} = \int_{\Theta_{\kappa}} \theta \tilde{\rho}_{\lambda}(\mathrm{d}\theta).$$

Théorème (A & Lounici 2011)

Pour
$$C = C(\sigma, \xi, L, L', K)$$
 connu, $\lambda = n/C$, pour tout $\varepsilon > 0$,

$$\mathbb{P}\left\{R(\tilde{\theta}_{\lambda}) - R(\overline{\theta}) \leq C \inf_{I} \left[R(\theta_{I}) - R(\overline{\theta}) + \frac{\operatorname{card}(I) \log \left(\frac{\operatorname{enp}(K+1)}{\alpha \operatorname{card}(I)}\right)}{n} + \frac{\log \left(\frac{2}{\varepsilon(1-\alpha)}\right)}{n}\right]\right\} \geq 1 - \varepsilon.$$

Théorème (A & Lounici 2011)

Pour $C = C(\sigma, \xi, L, L', K)$ connu, $\lambda = n/C$, pour tout $\varepsilon > 0$,

$$\mathbb{P}\left\{R(\widetilde{\theta}_{\lambda}) - R(\overline{\theta}) \leq C \inf_{I} \left[R(\theta_{I}) - R(\overline{\theta}) + \frac{\operatorname{card}(I) \log \left(\frac{\operatorname{enp}(K+1)}{\alpha \operatorname{card}(I)}\right)}{n} + \frac{\log \left(\frac{2}{\varepsilon(1-\alpha)}\right)}{n}\right]\right\} \geq 1 - \varepsilon.$$

Preuve : inégalité de Bernstein + PAC-Bayes, suit

Catoni, O. (2004) Statistical Learning Theory and Stochastic Optimization. Ecole d'Été de Probabilités de Saint-Flour XXXI - 2001. J. Picard Editor. Springer Lecture Notes in Mathematics 1851.

Publications liées à cette thématique

Alquier, P. (2008) Iterative Feature Selection in Least Square Regression Estimation. *Annales de l'Institut Henri Poincarré, Probabilités et Statistiques* 44(1), pp. 47–88.

Alquier, P. (2008) Density Estimation with Quadratic Loss, a Confidence Intervals Method. ESAIM Probability & Statistics 12, pp. 438–463.

Alquier, P. (2008) LASSO, Iterative Feature Selection & the Correlation Selector: Oracle Inequalities & Numerical Performances. *Electronic Journal of Statistics* 2, pp. 1129–1152.

Alquier, P. & Lounici, K. (2011) PAC-Bayesian Theorems for Sparse Regression Estimation with Exponential Weights. *Electronic Journal of Statistics* 5, pp. 127–145.

Alquier, P. & Hebiri, M. (2011) Generalization of L1 Constraints for High Dimensional Regression Problems. Statistics & Probability Letters 81(12), pp. 1760–1765.

Alquier, P. & Hebiri, M. (2012) Transductive Versions of the LASSO & the Dantzig Selector. Journal of Statistical Planning & Inference 142(9), pp. 2485–2500.

Menu

- 1 Estimation dans un modèle linéaire parcimonieux
 - Introduction
 - Inégalités PAC-Bayésiennes
- 2 Généralisation à l'autorégression
 - Prédiction de séries temporelles
 - Inégalités PAC-Bayésiennes
- Au-delà du modèle linéaire
 - Modèle à direction révélatrice parcimonieux
 - Régression de faible rang
 - Modèles à complexité bornée

 $(X_t)_{t\in\mathbb{Z}}$ série temporelle à valeurs ds \mathbb{R}^p . Obs : X_1,\ldots,X_n .

 $(X_t)_{t\in\mathbb{Z}}$ série temporelle à valeurs ds \mathbb{R}^p . Obs : X_1,\ldots,X_n .

Pour
$$f_{ heta}:(\mathbb{R}^p)^k o\mathbb{R}^p$$
 on pose

$$\hat{X}_t^{\theta} = f_{\theta}(X_{t-1}, \dots, X_{t-k}).$$

 $(X_t)_{t\in\mathbb{Z}}$ série temporelle à valeurs ds \mathbb{R}^p . Obs : X_1,\ldots,X_n .

Pour $f_{\theta}:(\mathbb{R}^p)^k o \mathbb{R}^p$ on pose

$$\hat{X}_t^{\theta} = f_{\theta}(X_{t-1}, \dots, X_{t-k}).$$

Hypothèse:

$$\begin{cases} \|f_{\theta}(x_1,\ldots,x_k) - f_{\theta}(y_1,\ldots,y_k)\| \leq \sum_{j=1}^k a_j(\theta) \|x_j - y_j\|, \\ \sum_{j=1}^k a_j(\theta) \leq L. \end{cases}$$

Contexte

 $(X_t)_{t\in\mathbb{Z}}$ série temporelle à valeurs ds \mathbb{R}^p . Obs : X_1,\ldots,X_n .

Pour $f_{\theta}:(\mathbb{R}^p)^k o \mathbb{R}^p$ on pose

$$\hat{X}_t^{\theta} = f_{\theta}(X_{t-1}, \dots, X_{t-k}).$$

Hypothèse:

$$\begin{cases} \|f_{\theta}(x_1,\ldots,x_k) - f_{\theta}(y_1,\ldots,y_k)\| \leq \sum_{j=1}^k a_j(\theta) \|x_j - y_j\|, \\ \sum_{j=1}^k a_j(\theta) \leq L. \end{cases}$$

Risques - ℓ perte convexe et K-Lipshitz

$$R\left(\theta\right) = \mathbb{E}\left[\ell\left(\hat{X}_{t}^{\theta}, X_{t}\right)\right] \text{ et } r(\theta) = \frac{1}{n-k} \sum_{i=k+1}^{n} \ell\left(\hat{X}_{i}^{\theta}, X_{i}\right).$$

 ϕ -mélange pour $(W_i)_{i\in\mathbb{Z}}$ suite de v.a.

$$\varphi^{W}(r) = \sup_{A \in \sigma(W_{k}, W_{k-1}, \dots) \atop B \in \sigma(W_{k+r}) \atop k \in \mathbb{Z}} \left\{ |\mathbb{P}(B|A) - \mathbb{P}(B)| \right\}.$$

Hypothèse $\operatorname{PhiMix}(\mathcal{C}): 1 + \sum_{j=1}^{\infty} \sqrt{\varphi^{W}(j)} \leq \mathcal{C}.$

ϕ -mélange pour $(W_i)_{i\in\mathbb{Z}}$ suite de v.a.

$$\varphi^{W}(r) = \sup_{A \in \sigma(W_{k}, W_{k-1}, \dots) \atop B \in \sigma(W_{k+r}) \atop k \in \mathbb{Z}} \left\{ |\mathbb{P}(B|A) - \mathbb{P}(B)| \right\}.$$

Hypothèse $\operatorname{PhiMix}(\mathcal{C}): 1 + \sum_{j=1}^{\infty} \sqrt{\varphi^{W}(j)} \leq \mathcal{C}.$

Hypothèse $ext{CBS}(c_{\xi},(a_{j}))$

$$(\xi_i)_{i\in\mathbb{Z}}$$
 iid, $\|\xi_i\|\leq c_{\xi}$,

$$W_i = H(\xi_i, \xi_{i-1}, \xi_{i-2} \dots)$$

avec
$$\|H(v)-H(v')\|\leq \sum_{j=0}^\infty a_j\|v_j-v_j'\|$$
 et $\sum_{j=0}^\infty a_j<+\infty.$

Hypothèse ThetaDep(\mathcal{C})

Dedecker, J., Doukhan, P., Lang, G., Leon, J. R., Louhichi, S. and Prieur, C. (2007) Weak Dependance: with Examples and Applications. Springer Lecture Notes in Statistics 190.

Hypothèse ThetaDep(\mathcal{C})

Dedecker, J., Doukhan, P., Lang, G., Leon, J. R., Louhichi, S. and Prieur, C. (2007) Weak Dependance: with Examples and Applications. Springer Lecture Notes in Statistics 190.

Proposition

$$\left. \begin{array}{l} \operatorname{PhiMix}(\mathcal{C}) \\ \forall i, \ \|W_i\| \leq c_W \end{array} \right\} \Rightarrow \operatorname{ThetaDep}(c_W \mathcal{C}).$$

Hypothèse ThetaDep(\mathcal{C})

Dedecker, J., Doukhan, P., Lang, G., Leon, J. R., Louhichi, S. and Prieur, C. (2007) Weak Dependance: with Examples and Applications. Springer Lecture Notes in Statistics 190.

Proposition

$$\left. egin{aligned} \operatorname{PhiMix}(\mathcal{C}) \ orall i, & \|W_i\| \leq c_W \end{aligned}
ight.
ight.
ight. ext{ThetaDep}(c_W \mathcal{C}).$$

$$\left. \begin{array}{l} \operatorname{CBS}(c_{\xi},(a_{j})) \\ \sum_{j=0}^{\infty} j a_{j} < \infty \end{array} \right\} \Rightarrow \operatorname{ThetaDep}(2c_{\xi} \sum_{j=0}^{\infty} j a_{j}).$$

Inégalité PAC-Bayésienne

Estimateur de Gibbs pour une loi a priori π

$$\tilde{\theta}_{\lambda} = \int_{\Theta} \theta \tilde{\rho}_{\lambda}(\mathrm{d}\theta), \text{ avec } \tilde{\rho}_{\lambda}(\mathrm{d}\theta) = \frac{e^{-\lambda r(\theta)}\pi(\mathrm{d}\theta)}{\int e^{-\lambda r(\theta')}\pi(\mathrm{d}\theta')}.$$

Inégalité PAC-Bayésienne

Estimateur de Gibbs pour une loi a priori π

$$\tilde{\theta}_{\lambda} = \int_{\Theta} \theta \tilde{\rho}_{\lambda}(\mathrm{d}\theta), \text{ avec } \tilde{\rho}_{\lambda}(\mathrm{d}\theta) = \frac{e^{-\lambda r(\theta)}\pi(\mathrm{d}\theta)}{\int e^{-\lambda r(\theta')}\pi(\mathrm{d}\theta')}.$$

Théorème (A, Li & Wintenberger, 2012)

 (X_t) satisfait ThetaDep(C), $\kappa := K(1+L)(c_X+C)/\sqrt{2}$. Pour $\lambda > 0$, pour tout $\varepsilon > 0$,

$$\mathbb{P}\left(R\left(\tilde{\theta}_{\lambda}\right) \leq \inf_{\rho} \left[\int R(\theta)\rho(\mathrm{d}\theta) + \frac{2\lambda\kappa^{2}}{n\left(1 - \frac{k}{n}\right)^{2}} + \frac{2\mathcal{K}(\rho, \pi) + 2\log\left(\frac{2}{\varepsilon}\right)}{\lambda} \right] \right) \geq 1 - \varepsilon.$$

Cas
$$\theta \in \Theta$$
, card $(\Theta) = M < \infty$. Soit $\lambda = \frac{1 - k/n}{\kappa} \sqrt{n \log(M)}$.

Cas
$$\theta \in \Theta$$
, $\operatorname{card}(\Theta) = M < \infty$. Soit $\lambda = \frac{1 - k/n}{\kappa} \sqrt{n \log(M)}$.

$$R\left(\widetilde{\theta}_{\lambda}\right) \leq \overline{R} + \frac{4\kappa}{\left(1 - \frac{k}{n}\right)} \sqrt{\frac{\log\left(M\right)}{n}} + \frac{2\kappa\log\left(\frac{2}{\varepsilon}\right)}{\left(1 - \frac{k}{n}\right)\sqrt{n\log(M)}}.$$

Cas
$$\theta \in \Theta$$
, card $(\Theta) = M < \infty$. Soit $\lambda = \frac{1 - k/n}{\kappa} \sqrt{n \log(M)}$.

$$R\left(\widetilde{\theta}_{\lambda}\right) \leq \overline{R} + \frac{4\kappa}{\left(1 - \frac{k}{n}\right)} \sqrt{\frac{\log\left(M\right)}{n}} + \frac{2\kappa\log\left(\frac{2}{\varepsilon}\right)}{\left(1 - \frac{k}{n}\right)\sqrt{n\log(M)}}.$$

Vitesse optimale

Audibert, J.-Y. (2009) Fast Learning Rates in Statistical Inference Through Aggregation.

The Annals of Statistics 38(4), pp. 1591–1646.

Cas
$$\theta \in \Theta$$
, $\operatorname{card}(\Theta) = M < \infty$. Soit $\lambda = \frac{1 - k/n}{\kappa} \sqrt{n \log(M)}$.

$$R\left(\widetilde{\theta}_{\lambda}\right) \leq \overline{R} + \frac{4\kappa}{\left(1 - \frac{k}{n}\right)} \sqrt{\frac{\log\left(M\right)}{n}} + \frac{2\kappa\log\left(\frac{2}{\varepsilon}\right)}{\left(1 - \frac{k}{n}\right)\sqrt{n\log(M)}}.$$

- Vitesse optimale
 - Audibert, J.-Y. (2009) Fast Learning Rates in Statistical Inference Through Aggregation.

 The Annals of Statistics 38(4), pp. 1591–1646.
- Preuve du théorème : repose sur l'inégalité de Hoeffding pour les variables dépendantes de Rio
 - Rio, E. (2000) Inégalité de Hoeffding pour les Fonctions Lipshitziennes de Suites Dépendantes. Comptes Rendus de l'Académie des Sciences Series I Mathematics 330(10), pp. 905–908.

Cas
$$\theta \in \Theta$$
, card $(\Theta) = M < \infty$. Soit $\lambda = \frac{1 - k/n}{\kappa} \sqrt{n \log(M)}$.

$$R\left(\widetilde{\theta}_{\lambda}\right) \leq \overline{R} + \frac{4\kappa}{\left(1 - \frac{k}{n}\right)} \sqrt{\frac{\log\left(M\right)}{n}} + \frac{2\kappa\log\left(\frac{2}{\varepsilon}\right)}{\left(1 - \frac{k}{n}\right)\sqrt{n\log(M)}}.$$

- Vitesse optimale

Audibert, J.-Y. (2009) Fast Learning Rates in Statistical Inference Through Aggregation. The Annals of Statistics 38(4), pp. 1591-1646.

- Preuve du théorème : repose sur l'inégalité de Hoeffding pour les variables dépendantes de Rio
 - Rio, E. (2000) Inégalité de Hoeffding pour les Fonctions Lipshitziennes de Suites Dépendantes, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330(10), pp. 905-908.
- on ne dépassera pas les vitesses en $1/\sqrt{n}$ avec ce théorème...

Vitesses rapides

 $X_t \in \mathbb{R}$, $\theta \in \mathbb{R}^d$, même loi π que dans la première partie sur

$$f_{\theta}(X_{t-1},\ldots,X_{t-k}) = \sum_{i=1}^d \theta_j \phi_j(X_{t-1},\ldots,X_{t-k})$$
, perte quadratique.

Théorème (A, Li & Wintenberger, 2012)

$$(X_t)$$
 satisfait $\operatorname{PhiMix}(\mathcal{C})$, $R(\overline{\theta}) = \overline{R}$ et $\|\overline{\theta}\|_1 \leq L$. Pour $\mathcal{C}' = \mathcal{C}'(\mathcal{C}, L, c_X)$ connu $\lambda = \mathcal{C}'/n$, pour $\varepsilon > 0$,

$$\mathbb{P}\left(R(\tilde{\theta}_{\lambda}) - \overline{R} \leq 4 \inf_{J} \left\{ R(\overline{\theta}_{J}) - \overline{R} + C' \frac{\operatorname{card}(J) \log \left(\frac{(n-k)d}{\operatorname{card}(J)}\right) + \log \left(\frac{2}{\varepsilon}\right)}{n-k} \right\} \right) \geq 1 - \varepsilon.$$

Vitesses rapides

Théorème (A, Li & Wintenberger, 2012)

$$\begin{split} (X_t) & \text{ satisfait } \operatorname{PhiMix}(\mathcal{C}), \ R(\overline{\theta}) = \overline{R} \ \text{et } \|\overline{\theta}\|_1 \leq L. \ \text{Pour} \\ \mathcal{C}' &= \mathcal{C}'(\mathcal{C}, L, c_X) \ \text{connu} \ \lambda = \mathcal{C}'/n, \ \text{pour} \ \varepsilon > 0, \\ \mathbb{P}\Bigg(R(\widetilde{\theta}_{\lambda}) - \overline{R} \leq 4 \inf_J \Bigg\{R(\overline{\theta}_J) - \overline{R} \\ &+ \mathcal{C}' \frac{\operatorname{card}(J) \log \left(\frac{(n-k)d}{\operatorname{card}(J)}\right) + \log \left(\frac{2}{\varepsilon}\right)}{n-k} \Bigg\} \Bigg) \geq 1 - \varepsilon. \end{split}$$

Preuve du théorème : repose sur l'inégalité de Bernstein de Samson

Samson, P.-M. (2000) Concentration of Measure Inequalities for Markov Chains and Φ-Mixing Processes. *Annals of Probability* 28(1), pp. 416–461.

Publications liées à cette thématique

Alquier, P. & Doukhan, P. (2011) Sparsity Considerations for Dependent Observations. *Electronic Journal of Statistics* 5, pp. 750–774.

Alquier, P. & Wintenberger, O. (2012) Model Selection for Weakly Dependent Time Series Forecasting. *Bernoulli* 18(3), pp. 883–913.

Alquier, P. & Li, X. (2012) Prediction of Quantiles by Statistical Learning & Application to GDP Forecasting. In *Proceedings of the 15th International Conference on Discovery Science* (DS'12), J.-G. Ganascia, P. Lenca & J.-M. Petit Editors, Springer Lecture Notes in Artificial Intelligence 7569, pp. 22–36.

Alquier, P., Li, X. & Wintenberger, O. (2012) Prediction of Time Series by Statistical Learning: General Losses & Fast Rates. *Preprint arXiv*:1202.4283v1. Currently in minor revision for *Dependence Modeling*.

Menu

- 1 Estimation dans un modèle linéaire parcimonieux
 - Introduction
 - Inégalités PAC-Bayésiennes
- 2 Généralisation à l'autorégression
 - Prédiction de séries temporelles
 - Inégalités PAC-Bayésiennes
- 3 Au-delà du modèle linéaire
 - Modèle à direction révélatrice parcimonieux
 - Régression de faible rang
 - Modèles à complexité bornée

Possibles fonctions reliant $x \in \mathbb{R}^p$ et y:

• single-index parcimonieux $y = g(\beta \cdot x)$ et $\|\beta\|_0 \ll p$,

- single-index parcimonieux $y = g(\beta \cdot x)$ et $\|\beta\|_0 \ll p$,
- modèle additif $y = \sum_{j=1}^p f_j(x_j)$ et $\operatorname{card}(\{j: f_j \neq 0\}) \ll p$,

- single-index parcimonieux $y = g(\beta \cdot x)$ et $\|\beta\|_0 \ll p$,
- modèle additif $y = \sum_{j=1}^p f_j(x_j)$ et $\operatorname{card}(\{j: f_j \neq 0\}) \ll p$,
- régression de faible rang $y = Mx \in \mathbb{R}^m$, $rg(M) \ll m \wedge p$,

- single-index parcimonieux $y = g(\beta \cdot x)$ et $\|\beta\|_0 \ll p$,
- modèle additif $y = \sum_{j=1}^p f_j(x_j)$ et $\operatorname{card}(\{j : f_j \neq 0\}) \ll p$,
- régression de faible rang $y = Mx \in \mathbb{R}^m$, $\operatorname{rg}(M) \ll m \wedge p$,
- modèles en physique quantique induisant des contraintes de parcimonie ou de faible rang,

- single-index parcimonieux $y = g(\beta \cdot x)$ et $\|\beta\|_0 \ll p$,
- modèle additif $y = \sum_{j=1}^{p} f_j(x_j)$ et $\operatorname{card}(\{j : f_j \neq 0\}) \ll p$,
- régression de faible rang $y = Mx \in \mathbb{R}^m$, $\operatorname{rg}(M) \ll m \wedge p$,
- modèles en physique quantique induisant des contraintes de parcimonie ou de faible rang,
- que peut-on dire de façon générale?

- single-index parcimonieux $y = g(\theta^T x)$ et $\|\theta\|_0 \ll p$,
- modèle additif $y = \sum_{j=1}^p f_j(x_j)$ et $\operatorname{card}(\{j: f_j \neq 0\}) \ll p$,
- régression de faible rang $y = Mx \in \mathbb{R}^m$, $rg(M) \ll m \wedge p$,
- modèles en physique quantique induisant des contraintes de parcimonie ou de faible rang,
- que peut-on dire de façon générale?

Modèle à direction révélatrice parcimonieux

 $(X_i, Y_i)_{i=1}^n$ i.i.d. sous \mathbb{P} , loi commune $P, X_i \in [-1, 1]^p$,

$$Y_i = \overline{g}(\overline{\beta} \cdot X_i) + W_i, \qquad \overline{\theta} = (\overline{g}, \overline{\beta})$$

 $\mathbb{E}(W_i|X_i)=0, \ \overline{g}:\mathbb{R}\to [-C,C], \ \text{et} \ \overline{\beta}\in\mathbb{R}^p, \ \|\beta\|_0\ll p.$ Perte quadratique.

Modèle à direction révélatrice parcimonieux

 $(X_i, Y_i)_{i=1}^n$ i.i.d. sous \mathbb{P} , loi commune $P, X_i \in [-1, 1]^p$,

$$Y_i = \overline{g}(\overline{\beta} \cdot X_i) + W_i, \qquad \overline{\theta} = (\overline{g}, \overline{\beta})$$

 $\mathbb{E}(W_i|X_i) = 0$, $\overline{g}: \mathbb{R} \to [-C, C]$, et $\overline{\beta} \in \mathbb{R}^p$, $\|\beta\|_0 \ll p$. Perte quadratique.

On peut définir une loi *a priori* dans ce modèle, et un estimateur de Gibbs randomisé $\check{\theta}_{\lambda}$.

Inégalité oracle

Théorème (A & Biau, 2013)

Les W_i sont sous-exponentiels (σ, ξ) , constante connue $\Xi = \Xi(C, \xi, \sigma) > 0$, $\lambda = n/\Xi$. Pour tout $\varepsilon > 0$,

$$\begin{split} \mathbb{P} & \left\{ R(\widecheck{\theta}_{\lambda}) - \overline{R} \leq \Xi \inf_{I \subset \{1, \dots, p\}} \inf_{1 \leq M \leq n} \left[R(\overline{\theta}_{I, M}) - \overline{R} \right. \right. \\ & \left. + \frac{M \log(n) + \operatorname{card}(I) \log(pn) + \log\left(\frac{2}{\varepsilon}\right)}{n} \right] \right\} \geq 1 - \varepsilon, \end{split}$$

où $\overline{\theta}_{I,M} = (\overline{g}_M, \overline{\beta}_I)$ est la meilleure approximation I-sparse de $\overline{\beta}$ et la meilleure approximation de \overline{g} avec M fonctions d'une base.

Application : ellipsoïde de Sobolev

Sous quelques hypothèses supplémentaires, dont $\overline{g} \in \mathcal{W}\left(s, \frac{6C^2}{\pi^2}\right)$ pour $s \geq 2$, avec s inconnu :

Application : ellipsoïde de Sobolev

Sous quelques hypothèses supplémentaires, dont $\overline{g} \in \mathcal{W}\left(s, \frac{6C^2}{\pi^2}\right)$ pour $s \geq 2$, avec s inconnu :

Corollaire (A & Biau, 2013)

$$\mathbb{P}\bigg(R(\check{\theta}_{\lambda}) - \overline{R} \leq \Xi' \bigg\{ \bigg(\frac{\log(n)}{n}\bigg)^{\frac{2s}{2s+1}} + \frac{\|\overline{\beta}\|_0 \log(pn)}{n} \\ + \frac{\log\left(\frac{2}{\varepsilon}\right)}{n} \bigg\} \bigg) \geq 1 - \varepsilon.$$

Modèle de régression de faible rang

Modèle

X déterministe, $\mathbb{E}(\mathcal{E})=0$ et

$$\underline{Y}_{n\times m} = \underbrace{X}_{n\times p} \underbrace{B}_{p\times m} + \mathcal{E}, \operatorname{rg}(B) \ll \min(p, m).$$

Modèle de régression de faible rang

Modèle

X déterministe, $\mathbb{E}(\mathcal{E})=0$ et

$$\underbrace{Y}_{n\times m} = \underbrace{X}_{n\times p} \underbrace{B}_{p\times m} + \mathcal{E}, \operatorname{rg}(B) \ll \min(p, m).$$

Il faut définir une loi *a priori* pour approcher les matrices de faibles rang. Utile aussi pour d'autres modèles :

- complétion de matrice,
- régression trace...

J. Geweke (1996). Bayesian reduced rank regression in econometrics. *Journal of Econometrics* **75** 121–146.

$$k \text{ fixé, } \underbrace{B}_{p \times m} = \underbrace{M}_{p \times k} \underbrace{N^T}_{k \times m}.$$

J. Geweke (1996). Bayesian reduced rank regression in econometrics. *Journal of Econometrics* **75** 121–146.

$$k \text{ fixé, } \underbrace{B}_{p \times m} = \underbrace{M}_{p \times k} \underbrace{N^T}_{k \times m}.$$

Soit $M_{\cdot,\ell}$ la ℓ -ième colonne de M, on a

$$B = \sum_{\ell=1}^{k} M_{\cdot,\ell}(N_{\cdot,\ell})^T \quad \Rightarrow \quad \operatorname{rg}(B) \leq k.$$

J. Geweke (1996). Bayesian reduced rank regression in econometrics. *Journal of Econometrics* 75 121–146.

$$k \text{ fixé, } \underbrace{B}_{p \times m} = \underbrace{M}_{p \times k} \underbrace{N^T}_{k \times m}.$$

Soit $M_{\cdot,\ell}$ la ℓ -ième colonne de M, on a

$$B = \sum_{\ell=1}^{k} M_{\cdot,\ell}(N_{\cdot,\ell})^{T} \quad \Rightarrow \quad \operatorname{rg}(B) \leq k.$$

Loi a priori π : les $M_{\cdot,\ell}$ et $N_{\cdot,\ell}$ sont indépendants $\mathcal{N}(0,\gamma_{\ell}I)$.

J. Geweke (1996). Bayesian reduced rank regression in econometrics. *Journal of Econometrics* 75 121–146.

$$k \text{ fixé, } \underbrace{B}_{p \times m} = \underbrace{M}_{p \times k} \underbrace{N^T}_{k \times m}.$$

Soit $M_{\cdot,\ell}$ la ℓ -ième colonne de M, on a

$$B = \sum_{\ell=1}^{k} M_{\cdot,\ell}(N_{\cdot,\ell})^{T} \quad \Rightarrow \quad \operatorname{rg}(B) \leq k.$$

Loi a priori π : les $M_{\cdot,\ell}$ et $N_{\cdot,\ell}$ sont indépendants $\mathcal{N}(0,\gamma_{\ell}I)$.

R. Salakhutdinov & A. Mnih (2008). Bayesian probabilistic matrix factorization using MCMC. *Proceedings of ICML'08*.

Fixer $k = \min(m, p)$, les γ_{ℓ} sont i.i.d. $1/\gamma_{\ell} \sim \Gamma(a, b)$, calibrée de telle façon que γ_{ℓ} proche de 0.

Inégalité oracle

$$\hat{\rho}_{\lambda}(\mathrm{d}b) \propto \exp[-\lambda \|Xb - Y\|_F^2] \pi(\mathrm{d}b) \text{ et } \hat{B}_{\lambda} = \int b \hat{\rho}_{\lambda}(\mathrm{d}b).$$

Si
$$\mathcal{E}_{i,j}$$
 i.i.d. $\mathcal{N}(0, \sigma^2)$, $\lambda = \frac{1}{4\sigma^2}$, $a = 1$, $b = \frac{\sigma^2}{npk^2(m^2 + p^2)}$.

Théorème (A, 2013)

$$orall r, M ext{ et } N ext{ tq } M_{\cdot,\ell} = N_{\cdot,\ell} = 0 ext{ si } \ell > r, |M_{i,j}|, |N_{i,j}| \le c',$$

$$\mathbb{E}\left(\|X\hat{B} - XB\|_F^2\right) \le \|X(MN^T - B)\|_F^2$$

$$+ C(c,c')\left\{\sigma^2 r(m+p)\log\left(\frac{nmp}{\sigma^2}\right) + \sigma^4\right\}.$$

Inégalité oracle

$$\hat{
ho}_{\lambda}(\mathrm{d}b) \propto \exp[-\lambda \|Xb - Y\|_F^2]\pi(\mathrm{d}b) \text{ et } \hat{B}_{\lambda} = \int b\hat{
ho}_{\lambda}(\mathrm{d}b).$$

Si
$$\mathcal{E}_{i,j}$$
 i.i.d. $\mathcal{N}(0, \sigma^2)$, $\lambda = \frac{1}{4\sigma^2}$, $a = 1$, $b = \frac{\sigma^2}{npk^2(m^2 + p^2)}$.

Théorème (A, 2013)

$$\forall r, M \text{ et } N \text{ tq } M_{\cdot,\ell} = N_{\cdot,\ell} = 0 \text{ si } \ell > r, |M_{i,j}|, |N_{i,j}| \le c',$$

$$\mathbb{E}\left(\|X\hat{B} - XB\|_F^2\right) \le \|X(MN^T - B)\|_F^2$$

$$+ C(c,c')\left\{\sigma^2 r(m+p)\log\left(\frac{nmp}{\sigma^2}\right) + \sigma^4\right\}.$$

F. Bunea, Y. She & M. Wegkamp (2011). Optimal selection of reduced rank estimators of high-dimensional matrices. *The Annals of Statistics* 39 1282–1309.

A. Rohde & A. Tsybakov (2011). Estimation of high-dimensional low-rank matrices. *The Annals of Statistics* 39 887–930.

n paires i.i.d. $(X_1, Y_1), \ldots, (X_n, Y_n), (X_i, Y_i) \sim P, X_i \in \mathcal{X}, Y_i \in \mathcal{Y}.$

n paires i.i.d.
$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_i, Y_i) \sim P, X_i \in \mathcal{X}, Y_i \in \mathcal{Y}.$$

$$\left\{f_{\theta}: \mathcal{X} \to \mathcal{Y}, \theta \in \bigcup_{i \in I} \Theta_i = \Theta\right\}$$

n paires i.i.d. $(X_1, Y_1), \ldots, (X_n, Y_n), (X_i, Y_i) \sim P, X_i \in \mathcal{X}, Y_i \in \mathcal{Y}.$

$$\left\{f_{\theta}: \mathcal{X} \to \mathcal{Y}, \theta \in \bigcup_{i \in I} \Theta_i = \Theta\right\}$$

Fonction de perte $\ell: \mathcal{Y}^2 \to \mathcal{R}_+$, $\mathbb{P}(\ell(f_{\theta}(X), Y) \leq C) = 1$.

n paires i.i.d. $(X_1, Y_1), \ldots, (X_n, Y_n), (X_i, Y_i) \sim P, X_i \in \mathcal{X}, Y_i \in \mathcal{Y}.$

$$\left\{f_{\theta}: \mathcal{X} \to \mathcal{Y}, \theta \in \bigcup_{i \in I} \Theta_i = \Theta\right\}$$

Fonction de perte $\ell: \mathcal{Y}^2 \to \mathcal{R}_+$, $\mathbb{P}(\ell(f_{\theta}(X), Y) \leq C) = 1$.

$$R(\theta) = \mathbb{E}_{(X,Y)\sim P}[\ell(f_{\theta}(X),Y)], \text{ et } r(\theta) = \frac{1}{n}\sum_{i=1}^{n}\ell(f_{\theta}(X_i),Y_i).$$

n paires i.i.d. $(X_1, Y_1), \ldots, (X_n, Y_n), (X_i, Y_i) \sim P, X_i \in \mathcal{X}, Y_i \in \mathcal{Y}.$

$$\left\{f_{\theta}: \mathcal{X} \to \mathcal{Y}, \theta \in \bigcup_{i \in I} \Theta_i = \Theta\right\}$$

Fonction de perte $\ell: \mathcal{Y}^2 \to \mathcal{R}_+$, $\mathbb{P}(\ell(f_{\theta}(X), Y) \leq C) = 1$.

$$R(\theta) = \mathbb{E}_{(X,Y) \sim P}[\ell(f_{\theta}(X), Y)], \text{ et } r(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i).$$

$$\overline{\theta} \in \arg\min_{\Theta} R, \ \overline{\theta}_i \in \arg\min_{\Theta_i} R.$$

• loi a priori π_i dans chaque Θ_i ,

- loi a priori π_i dans chaque Θ_i ,
- poids $\mu_i \geq 0$ tels que $\sum_{i \in I} \mu_i = 1$,

- loi a priori π_i dans chaque Θ_i ,
- poids $\mu_i \geq 0$ tels que $\sum_{i \in I} \mu_i = 1$,
- $\tilde{\rho}_{i,\lambda}(\mathrm{d}\theta) \propto \exp(-\lambda r(\theta))\pi_i(\mathrm{d}\theta)\mathbf{1}(\theta \in \Theta_i)$,

- loi *a priori* π_i dans chaque Θ_i ,
- poids $\mu_i \geq 0$ tels que $\sum_{i \in I} \mu_i = 1$,
- $\tilde{\rho}_{i,\lambda}(\mathrm{d}\theta) \propto \exp(-\lambda r(\theta))\pi_i(\mathrm{d}\theta)\mathbf{1}(\theta \in \Theta_i)$,

- loi a priori π_i dans chaque Θ_i ,
- poids $\mu_i \geq 0$ tels que $\sum_{i \in I} \mu_i = 1$,
- $\tilde{\rho}_{i,\lambda}(\mathrm{d}\theta) \propto \exp(-\lambda r(\theta))\pi_i(\mathrm{d}\theta)\mathbf{1}(\theta \in \Theta_i)$,
- $\check{\theta}_{i,\lambda} \sim \tilde{\rho}_{i,\lambda}$,

- loi *a priori* π_i dans chaque Θ_i ,
- poids $\mu_i \geq 0$ tels que $\sum_{i \in I} \mu_i = 1$,
- $\tilde{\rho}_{i,\lambda}(\mathrm{d}\theta) \propto \exp(-\lambda r(\theta))\pi_i(\mathrm{d}\theta)\mathbf{1}(\theta \in \Theta_i)$,
- $\Lambda = \{2^0, 2^1, \dots, 2^{\left\lfloor \frac{\log(n)}{\log(2)} \right\rfloor}\}$,
- $\check{\theta}_{i,\lambda} \sim \tilde{\rho}_{i,\lambda}$,
- un niveau de confiance ε .

- loi a priori π_i dans chaque Θ_i ,
- poids $\mu_i \geq 0$ tels que $\sum_{i \in I} \mu_i = 1$,
- $\tilde{\rho}_{i,\lambda}(\mathrm{d}\theta) \propto \exp(-\lambda r(\theta))\pi_i(\mathrm{d}\theta)\mathbf{1}(\theta \in \Theta_i)$,
- $\Lambda = \{2^0, 2^1, \dots, 2^{\left\lfloor \frac{\log(n)}{\log(2)} \right\rfloor} \}$,
- $\check{\theta}_{i,\lambda} \sim \tilde{\rho}_{i,\lambda}$,
- un niveau de confiance ε .

Il existe $\tilde{B}_{\varepsilon}((i,\lambda),(i',\lambda'))$, qui ne dépend pas de P, t.q.

$$\mathbb{P}\left(\forall i, i', \lambda, \lambda', R(\check{\theta}_{i,\lambda}) - R(\check{\theta}_{i',\lambda'}) \leq \tilde{B}_{\varepsilon}((i,\lambda), (i',\lambda'))\right) \geq 1 - \varepsilon$$
$$\tilde{B}_{\varepsilon}((i,\lambda), (i',\lambda')) \leq \tilde{B}_{\varepsilon}((i,\lambda), (i'',\lambda'')) + \tilde{B}_{\varepsilon}((i'',\lambda''), (i',\lambda')),$$

et il existe une mesure de complexité $C_{\varepsilon}((i,\lambda))$.

Procédure de Lepski

On organise les paires (i, λ) par complexité croissante : $\{t_j, j \in \{1, \dots, M\}\} = I \times \Lambda$ et $C_{\varepsilon}(t_1) \leq \dots \leq C_{\varepsilon}(t_M)$.

Procédure de Lepski

On organise les paires (i, λ) par complexité croissante : $\{t_j, j \in \{1, \dots, M\}\} = I \times \Lambda$ et $C_{\varepsilon}(t_1) \leq \dots \leq C_{\varepsilon}(t_M)$.

$$s(k) = \inf\{j \in \{1, \dots, M\}, \ \tilde{B}_{\varepsilon}(t_k, t_j) > 0\},$$

par convention s(k) = 0 si pour tout j, $\tilde{B}_{\varepsilon}(t_k, t_j) \leq 0$.

Procédure de Lepski

On organise les paires (i, λ) par complexité croissante : $\{t_j, j \in \{1, \dots, M\}\} = I \times \Lambda$ et $C_{\varepsilon}(t_1) \leq \dots \leq C_{\varepsilon}(t_M)$.

$$s(k) = \inf\{j \in \{1,\ldots,M\}, \ \tilde{B}_{\varepsilon}(t_k,t_j) > 0\},$$

par convention s(k)=0 si pour tout j, $\tilde{B}_{\varepsilon}(t_k,t_j)\leq 0$. Enfin

$$\hat{k} = \min(\arg\max s)$$

et $(\hat{i}, \hat{\lambda})$ est la paire telle que $(\hat{i}, \hat{\lambda}) = t_{\hat{k}}$, finalement :

$$\check{\theta} = \check{\theta}_{\hat{i},\hat{\lambda}}.$$

Hypothèses

Hypothèse de marge pour $(\kappa,c) \in [1,+\infty[imes\mathbb{R}_+^*]$

$$V(\theta, \theta') = \mathbb{E}_{(X,Y) \sim P} \left\{ \left[\ell(f_{\theta}(X), Y) - \ell(f_{\theta'}(X), Y) \right]^{2} \right\}$$
$$V(\theta, \overline{\theta}) \leq c \left[R(\theta) - R(\overline{\theta}) \right]^{\frac{1}{\kappa}}.$$

Mammen, E. and Tsybakov, A. B. (1999) Smooth Discrimination Analysis. *The Annals of Statistics* 27(6), pp. 1808–1829.

Hypothèses

Hypothèse de marge pour $(\kappa,c) \in [1,+\infty[imes\mathbb{R}_+^*]$

$$V(\theta, \theta') = \mathbb{E}_{(X,Y) \sim P} \left\{ \left[\ell(f_{\theta}(X), Y) - \ell(f_{\theta'}(X), Y) \right]^{2} \right\}$$

$$V(\theta, \overline{\theta}) \leq c \left[R(\theta) - R(\overline{\theta}) \right]^{\frac{1}{\kappa}}.$$

Mammen, E. and Tsybakov, A. B. (1999) Smooth Discrimination Analysis. *The Annals of Statistics* 27(6), pp. 1808–1829.

Dimension

$$\sup_{\xi \in \mathbb{R}} \left\{ \xi \left[\int_{\Theta_i} R(\theta) \pi_{\exp(-\xi R)}^i (\mathrm{d}\theta) - R\left(\overline{\theta}_i\right) \right] \right\} \leq d_i, \text{ où }$$

$$\pi_{\exp(-\xi R)}^i (\mathrm{d}\theta) \propto \exp[-\xi R(\theta)] \pi_i (\mathrm{d}\theta) \mathbf{1}(\theta \in \Theta_i).$$

Catoni, O. (2007) PAC-Bayesian Supervised Classification : The Thermodnamics of Statistical Learning. Institute of Mathematical Statistics (IMS) Lecture notes - monograph series 56.

Inégalité oracle

Théorème (A, 2008)

Sous l'hypothèse de marge et l'hypothèse de dimension, il existe $\mathcal{C} = \mathcal{C}(\kappa, c, C)$ t.q.

$$\begin{split} \mathbb{P} \bigg\{ R(\widecheck{\theta}) - R(\overline{\theta}) &\leq \inf_{i \in I} \Bigg[R\Big(\overline{\theta}_i\Big) - R(\overline{\theta}\Big) \\ &+ \mathcal{C} \max \bigg\{ \bigg(\frac{\Big[R\left(\overline{\theta}_i\right) - R\left(\overline{\theta}\right) \Big]^{\frac{1}{\kappa}} \left(d_i + \log \frac{1 + \log_2(n)}{\varepsilon \mu_i} \right)}{n} \bigg)^{\frac{1}{2}}, \\ &\left(\frac{d_i + \log \frac{1 + \log_2(n)}{\varepsilon \mu(i)}}{n} \right)^{\frac{\kappa}{2\kappa - 1}} \bigg\} \Bigg] \bigg\} &\geq 1 - \varepsilon. \end{split}$$

Publications liées à cette chapitre

Alquier, P. (2008) PAC-Bayesian Bounds for R&omized Empirical Risk Minimizers. *Mathematical Methods of Statistics* 17(4), pp. 279–304.

Alquier, P. (2010) An Algorithm for Iterative Selection of Blocks of Features. In *Proceedings of the 21th International Conference on Algorithmic Learning Theory (ALT'10)*, M. Hutter, F. Stephan, V. Vovk & T. Zeugmann Editors, Springer Lecture Notes in Artificial Intelligence 6331, pp. 35–49.

Guedj, B. & Alquier, P. (2013) PAC-Bayesian Estimation & Prediction in Sparse Additive Models. *Electronic Journal of Statistics* 7, pp. 264–291.

Alquier, P. & Biau, G. (2013) Sparse Single-Index Models. *Journal of Machine Learning Research* 14, pp. 243–280.

Alquier, P., Meziani, K. & Peyré, G. (2013) Adaptive Estimation of the Density Matrix in Quantum Homodyne Tomography with Noisy Data. *Inverse Problems* 29(7), 075017.

Alquier, P., Butucea, C., Hebiri, M., Meziani, K. & Morimae, T. (2013) Rank Penalized Estimation of a Quantum System. *Physical Review A* 88(3), 032113.

Alquier, P. (2013) Bayesian Methods for Low-rank Matrix Estimation: Short Survey & Theoretical Study. In *Proceedings of the 24th International Conference on Algorithmic Learning Theory (ALT'13)*, S. Jain, R. Munos, F. Stephan & T. Zeugmann Editors, Springer Lecture Notes in Artificial Intelligence 8139, pp. 309–323.