《微积分A2》第八讲

教师 杨利军

清华大学数学科学系

2020年03月11日

极值理论应用:线性代数方程组回顾

考虑线性代数方程组 Ax = b, 其中 A 为 $m \times n$ 矩阵, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. 当 m > n 时,方程组的形状如下

即方程的个数大于变量的个数. 因此方程组可能无解. 回忆方程组 Ax = b 有解, 当且仅当右端向量 b 可以表为矩阵 A 的 n 个列向量 $A_i \in \mathbb{R}^m$ 的线性组合, 即 $b = \sum_{i=1}^n x_i A_i$.

最小二乘问题 (the least square problem)

假设方程组 Ax = b 无解, 即 $\|Ax - b\| > 0$, $\forall x \in \mathbb{R}^n$, 这里 $\|Ax - b\|$ 代表向量 $b \in \mathbb{R}^m$ 与向量 Ax 的距离. 因此我们可以 寻求向量 $x^* \in \mathbb{R}^n$, 使得 $\|Ax^* - b\|$ 尽可能地小.

Definition

我们称 $x^* \in \mathbb{R}^n$ 是线性代数方程组 Ax = b 的最小二乘解, 如果 $x = x^*$ 是函数 $\|Ax - b\|$ 在全空间 \mathbb{R}^n 上的最小值点, 即

$$\|\mathbf{A}\mathbf{x}^* - \mathbf{b}\| = \inf(\min)\{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|, \mathbf{x} \in \mathbb{IR}^n\}$$

来自线性代数的结论

Theorem

<u>定理</u>: 向量 $x^* \in \mathbb{R}^n$ 是线性代数方程组 Ax = b 的最小二乘解, 当且仅当 x^* 是方程组 $A^TAx^* = A^Tb$ 的解.

定理的一个代数证明,可参见《线性代数与几何》(下),第二版,俞正光,鲁子群,林润亮编著,清华大学出版社,2015,page 65-67. 稍后我们将利用极值理论给出上述定理的一个分析证明.

注: 方程组 $A^TAx^* = A^Tb$ 常称作 Ax = b 的正规方程组.

正规方程组恒有解

Lemma

对任意 $m \times n$ 实矩阵 A 和任意m 维向量 $b \in \mathbb{R}^m$, 正规方程组 $A^TAx = A^Tb$ 恒有解.

证明: 方程组 $A^TAx = A^Tb$ 有解, 当且仅当 $rank(A^TA) = rank(A^TA|A^Tb)$. 显然 $rank(A^TA) \le rank(A^TA|A^Tb)$. 相反的不等式则由 $rank(A^TA|A^Tb) = rank[A^T(A|b)] \le rank(A^T)$ = $rank(A^TA)$ 得到. 证毕.

 \underline{i} : 等式 $\mathrm{rank}(\mathbf{A}^\mathsf{T}) = \mathrm{rank}(\mathbf{A}^\mathsf{T}\mathbf{A})$ 由如下一般结论得到: 对于任意矩阵 B, 线性代数方程组 $\mathrm{Bx} = 0$ 与 $\mathrm{B}^\mathsf{T}\mathrm{Bx} = 0$ 同解.

最小二乘定理的分析证明

证明: $\Diamond f(x) \stackrel{\triangle}{=} ||Ax - b||^2, x \in \mathbb{R}^n$. 以下我们证明函数 f(x)在 \mathbb{R}^n 上存在全局最小值点 $x^* \in \mathbb{R}^n$. 并且全局最小值点 x^* 由 正规方程组 $\Delta^T \Delta x = \Delta^T h$ 所确定 Step 1°: 注意 $f(x) = (Ax - b, Ax - b) = (Ax - b)^T(Ax - b)$ $= (\mathbf{x}^\mathsf{T} \mathbf{A}^\mathsf{T} - \mathbf{b}^\mathsf{T})(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^\mathsf{T} \mathbf{A}^\mathsf{T} \mathbf{A}\mathbf{x} - \mathbf{x}^\mathsf{T} \mathbf{A}^\mathsf{T} \mathbf{b} - \mathbf{b}^\mathsf{T} \mathbf{A}\mathbf{x} + \mathbf{b}^\mathsf{T} \mathbf{b}$ $= x^\mathsf{T} A^\mathsf{T} A x - 2 x^\mathsf{T} A b + b^\mathsf{T} b = \textstyle \sum_{i.i=1}^n b_{ij} x_i x_j - 2 \textstyle \sum_{k=1}^n c_k x_k + d,$ 这里 B = $[b_{ii}] \stackrel{\triangle}{=} A^T A$, C = $(c_1, \dots, c_n)^T \stackrel{\triangle}{=} Ab$, $d \stackrel{\triangle}{=} b^T b$.

证明续一

Step 2°: 求 f(x) 的临界点. 令

$$\frac{\partial f}{\partial x_p} = \frac{\partial}{\partial x_p} \bigg[\sum_{i,j=1}^n b_{ij} x_i x_j - 2 \sum_{j=1}^n c_j x_j + d \bigg] = 2 \sum_{j=1}^n b_{pj} x_j - 2 c_p = 0,$$

其中 $p = 1, \dots, n$, 即 $2(Bx - C) = 2(A^TAx - A^Tb) = 0$. 这表明 x^* 是 f(x) 的临界点, 当且仅当 $A^TAx^* = A^Tb$.

$$\underline{\dot{z}}$$
: 关于求导公式 $\frac{\partial}{\partial x_p}\sum_{i,j=1}^n b_{ij}x_ix_j=2\sum_{j=1}^n b_{pj}x_j$ 的证明:

$$\begin{split} & \frac{\partial}{\partial x_p} \sum_{i,j=1}^n b_{ij} x_i x_j = \frac{\partial}{\partial x_p} \sum_{i=1}^n x_i \sum_{j=1}^n b_{ij} x_j = \sum_{i=1}^n \frac{\partial}{\partial x_p} \left[x_i \sum_{j=1}^n b_{ij} x_j \right] \\ & = \sum_{i=1}^n b_{pi} x_i + \sum_{i=1}^n b_{ip} x_i = 2 \sum_{i=1}^n b_{pi} x_j. \end{split}$$

证明续二

Step 3° :证明每个临界点都是全局最小点.设 x^* 是 f(x)的临界点,即 $A^TAx^*=A^Tb$.由多元函数的二阶 Taylor 公式得

$$f(x) - f(x^*) = \nabla f(x^*)(x - x^*) + \frac{1}{2}(x - x^*)^\mathsf{T} H(\xi)(x - x^*),$$

这里H(x) 记f(x) 的Hesse 矩阵. 由前页的注可知

$$\frac{\partial}{\partial x_p} \sum_{i,j=1}^n b_{ij} x_i x_j = 2 \sum_{j=1}^n b_{pj} x_j.$$

由此得

$$\frac{\partial^2}{\partial x_q \partial x_p} \sum_{i,i=1}^n b_{ij} x_i x_j = \frac{\partial}{\partial x_q} \Big[2 \sum_{i=1}^n b_{pj} x_j \Big] = 2 b_{pq}.$$

证明续三

因此 f(x) 的 Hesse 矩阵为常数矩阵,即 $H(x)=2B=2A^TA$. 再注意到 $\nabla f(x^*)=0$,故对 $\forall x\in IR^n$

$$f(x) - f(x^*) = (x - x^*)^\mathsf{T} A^\mathsf{T} A (x - x^*) = \|A(x - x^*)\|^2 \ge 0.$$

这就证明了每个临界点都是f(x) 的全局最小点. 证毕. □

 \underline{i} : \underline{j} : \underline{j} rank(\underline{A}) = \underline{n} (此时 $\underline{m} \geq \underline{n}$) 时, \underline{n} 阶矩阵 $\underline{A}^T \underline{A}$ 满秩. 于是方程组

 $A^{T}Ax = A^{T}b$ 有唯一解. 从而线性方程组 Ax = b 有唯一一个最小二乘解.

例子

例:设已知一组观测数据如下

x	1	2	3	4
у	1.3	1.8	2.2	2.9

在最小二乘的意义下, 求最佳直线拟合方程, 即求一个线性函数 y = kx + b, 使得误差的平方和最小.

例子续一

解:设y=kx+b为所求的直线方程.我们考虑如下线性代数 方程组

$$\begin{cases} k+b=1.3 \\ 2k+b=1.8 \\ 3k+b=2.2 \\ 4k+b=2.9 \end{cases} \text{ or } \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} k \\ b \end{bmatrix} = \begin{bmatrix} 1.3 \\ 1.8 \\ 2.2 \\ 2.9 \end{bmatrix}$$

的最小二乘解. 记上述线性方程组的系数矩阵为 A, 记右端向量为 b. 根据最小二乘定理可知, 为求所需线性函数, 只需求解正规方程组 $A^TAx = A^Tb$. 简单计算得

例子续二

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 30 & 10 \\ 10 & 4 \end{bmatrix}$$

$$\mathbf{A}^{\mathsf{T}}\mathbf{b} = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{array}\right] \left[\begin{array}{c} 1.3 \\ 1.8 \\ 2.2 \\ 2.9 \end{array}\right] = \left[\begin{array}{c} 23.1 \\ 7.2 \end{array}\right].$$

例子续三

根据上述计算结果得

$$\begin{bmatrix} k \\ b \end{bmatrix} = (A^T A)^{-1} A^T b$$

$$= \begin{bmatrix} 30 & 10 \\ 10 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 23.1 \\ 7.2 \end{bmatrix} = \begin{bmatrix} 0.52 \\ 0.75 \end{bmatrix}.$$

于是所求直线为 y = 0.52x + 0.75. 解答完毕.

条件极值(带约束的极值)问题

考虑条件极值问题

$$\left\{ \begin{array}{ll} \mbox{min(max)} & f(x_1, \cdot \cdot \cdot, x_n), \\ \\ \mbox{s.t.} & \mbox{g}(x_1, \cdot \cdot \cdot, x_n) = k. \end{array} \right.$$

这里 s.t.= subject to 意为: 受限制于, 函数 $f,g:\Omega\subset \mathbb{R}^n\to\mathbb{R}$ 均假设为 C^1 的, Ω 开. 先考虑情形 n=2. 此时上述问题可写作

$$\label{eq:final_continuous} \left\{ \begin{array}{ll} \mbox{min(max)} & \mbox{f(x,y)}, \\ \\ \mbox{s.t.} & \mbox{g(x,y)} = \mbox{k}, \end{array} \right.$$

函数 $f,g:\Omega\subset \mathbb{R}^2\to\mathbb{R}$ 均为 \mathbb{C}^1 的, Ω 开.

条件极值的必要条件

考虑极值的必要条件.设 (x_0,y_0) 是问题的解,则 $g(x_0,y_0)=k$.假设 $\nabla g(x_0,y_0)\neq (0,0)$.不妨设 $g_y(x_0,y_0)\neq 0$,则由 IFT 知,在点 (x_0,y_0) 附近曲线 g(x,y)=k 可表为 $y=\xi(x)$, $x\in J_\delta$,其中 $J_\delta=(x_0-\delta,x_0+\delta)$, $\xi(x_0)=y_0$, $g(x,\xi(x))\equiv k$,且函数 $\xi(\cdot)$ 是 C^1 的.记 $\hat{f}(x)\stackrel{\triangle}{=} f(x,\xi(x))$,则一元函数 $\hat{f}(x)$ 在 x_0 处有极值.故 $\hat{f}'(x_0)=0$,即

$$f_x(x_0, y_0) + f_y(x_0, y_0)\xi'(x_0) = 0.$$
 (*)

再对恒等式 $g(x,\xi(x)) \equiv k$ 求导得

$$g_x(x_0,y_0) + g_y(x_0,y_0) \xi'(x_0) = 0. \quad (**)$$

必要条件及其几何解释

比较等式 (*) 和 (**) 可知 $\nabla f(x_0,y_0) \parallel \nabla g(x_0,y_0)$. 故存在常数 λ_0 , 使得 $\nabla f(x_0,y_0) = \lambda_0 \nabla g(x_0,y_0)$. 因为已设 $\nabla g(x_0,y_0)$ $\neq (0,0)$. 以下考察必要条件 $\nabla f(x_0) = \lambda_0 \nabla g(x_0)$ 的几何意义. 二维条件极值问题

$$\label{eq:force_eq} \left\{ \begin{array}{ll} \mbox{min(max)} & f(x,y), \\ \\ \mbox{s.t.} & g(x,y) = k, \end{array} \right.$$

可看作求函数 f(x,y) 在水平线 g(x,y)=k 上的极值, 比方说极大值. 故问题就是要求尽可能大的 c, 使得水平线 f(x,y)=c 与 g(x,y)=k 相交.

必要条件的几何解释,图示

如果在交点处, 两条水平线不相切, 那么适当增加 c 的值, 还可以使得这两条水平线相交. 因此如果参数 c 是一个极大值, 使得水平线 f(x,y)=c 与 g(x,y)=k 相交, 那么在交点处两条水平线必相切. 因此交点处的法方向必平行, 即 $\nabla f \parallel \nabla g$. 如图.

一般n维条件极值的必要条件

上述二维条件极值的分析过程对一般 n 维的条件极值问题同样适用. 由此我们有如下定理, 其证明思想同二维情形.

Theorem

定理: 考虑条件极值问题

$$\left\{ \begin{array}{ll} \mbox{min(max)} & f(x_1, \cdot \cdot \cdot, x_n), \\ \\ \mbox{s.t.} & \mbox{g}(x_1, \cdot \cdot \cdot, x_n) = k, \end{array} \right.$$

其中 $f,g:\Omega\subset \mathbb{R}^n\to\mathbb{R}$ 均为 C^1 函数, Ω 开, 并设当 g(x)=k时, $\nabla g(x)\neq 0$. 若点 $x_0\in\Omega$ 是问题的解, 则存在常数 λ_0 , 使得 $\nabla f(x_0)=\lambda_0\nabla g(x_0)$.

Lagrange 函数, Lagrange 乘子

由于条件极值问题

$$\label{eq:final_state} \left\{ \begin{array}{ll} \min(\max) & f(x), \\ \\ \text{s.t.} & g(x) = k, \end{array} \right.$$

的解 x_0 满足必要条件 $\nabla f(x_0) = \lambda_0 \nabla g(x_0)$, 受此启发, 我们定义函数

$$L(x,\lambda) \stackrel{\triangle}{=} f(x) - \lambda [g(x) - k],$$

并称之为 Lagrange 函数, 称 λ 为 Lagrange 乘子 (Lagrange multipliers).

条件极值的解法: Lagrange 乘子法

于是求解原条件极值问题 min(max)f(x), s.t. g(x) = k, 可转化为求解无约束极值问题

$$(*) \quad \min(\max) \, \mathsf{L}(\mathsf{x},\lambda), \quad \mathsf{x} \in \Omega, \, \lambda \in \mathsf{IR}.$$

因为条件极值每个解 $x_0\in\Omega$, 对应着无约束问题 (*) 的一个临界点 (x_0,λ_0) , 其中 $\nabla f(x_0)=\lambda_0\nabla g(x_0)$. 故函数 $L(x,\lambda)$ 的临界点方程 $L_x=0$, $L_\lambda=0$, 即

$$\label{eq:def_potential} \left\{ \begin{array}{l} \nabla f(\mathbf{x}) = \lambda \nabla \mathbf{g}(\mathbf{x}), \\ \\ \mathbf{g}(\mathbf{x}) = \mathbf{k} \end{array} \right.$$

可用来来求解条件极值问题. 这种方法称为Lagrange 乘子法.

条件极值例一: 盒子问题

问题: 假设我们有 12m² 的铁皮, 要做成一个无盖的长方体的盒子, 问怎样确定长方体的尺寸, 可使得盒子的体积最大.

解: 设待求长方体的长宽高分别为 x, y, z, 则盒子的体积为 xyz. 所用的材料为 2xz + 2yz + xy = 12. 如图.

盒子问题,续一

因此盒子问题是一个条件极值问题

$$\left\{ \begin{array}{ll} & \text{max} \quad xyz, \\ \\ \text{s.t.} \quad 2xz+2yz+xy=12. \end{array} \right.$$

以下用 Lagrange 乘子法来求解. 为此记 $L(x,y,z,\lambda)=xyz$ $-\lambda(2xz+2yz+xy-12)$,考虑函数 L 的临界点方程组

$$\left\{ \begin{array}{l} L_x=yz-\lambda(2z+y)=0,\\ \\ L_y=xz-\lambda(2z+x)=0,\\ \\ L_z=xy-\lambda(2x+2y)=0,\\ \\ L_\lambda=-(2xz+2yz+xy-12)=0. \end{array} \right.$$

盒子问题, 续二

方程组可写为

$$\begin{cases} yz = \lambda(2z+y), \\ xz = \lambda(2z+x), \\ xy = \lambda(2x+2y), \\ 2xz+2yz+xy = 12. \end{cases}$$

以x,y,z 分别依次乘以前三个方程得

$$\left\{ \begin{array}{l} {\mathsf{xyz}} = \lambda (2\mathsf{xz} + \mathsf{xy}), \\ \\ {\mathsf{xyz}} = \lambda (2\mathsf{yz} + \mathsf{xy}), \\ \\ {\mathsf{xyz}} = \lambda (2\mathsf{xz} + 2\mathsf{yz}). \end{array} \right.$$

盒子问题, 续三

由此得 2xz + xy = 2yz + xy = 2xz + 2yz. 根据问题的实际背 景, x, v, z > 0. 由此不难解得 x = y = 2z. 将其带入约束方程 2xz + 2yz + xy = 12, 可解得 z = 1, x = y = 2, 且 $\lambda = 1/2$. 这是极值问题唯一一个可能的解, 根据问题的实际背景可知问 题的解存在. 因此可以断言 (x,y,z) = (2,2,1) 时, 盒子的体积 最大. 其最大体积为 $V = 2 \cdot 2 \cdot 1 = 4$. 后面我们还将证明这是 一个极大值点。

盒子问题的另一解法: 化为无约束极值问题

我们也可以将盒子问题, 即条件极值问题

$$\label{eq:max_xyz} \left\{ \begin{array}{ll} & \text{max} & \text{xyz}, \\ \\ \text{s.t.} & 2\text{xz} + 2\text{yz} + \text{xy} = 12. \end{array} \right.$$

化为无约束极值问题. 由约束条件 2xz + 2yz + xy = 12 可解出 $z = \frac{12-xy}{2(x+y)}$. 将其带入目标函数 V 得

$$V = xyz = \frac{(12 - xy)xy}{2(x + y)}.$$

计算 V(x,y) 偏导数得

另解续

$$V_x = \frac{y^2(12-2xy-x^2)}{2(x+y)^2}, \quad V_y = \frac{x^2(12-2xy-y^2)}{2(x+y)^2}.$$

解方程组 $V_x = V_y = 0$ 可得 $x^2 = y^2$. 由问题的实际背景可知 x,y>0. 于是解得 x=y. 再由方程 $12-2xy-y^2=0$ 可知 x=y=2. 最后由 $z=\frac{12-xy}{2(x+y)}$ 求得 z=1, 从而得到一个临界点 (2,2,1), 对应的体积为 V(2,2,1)=4. 进一步我们可以计算函数 V(x,y) 的 Hesse 矩阵 H(x,y) 在点 (2,2) 处是一个负定矩阵. 因此临界点 (2,2) 是函数 V(x,y) 的极大值点. 解答完毕.

条件极值, 例二

例: 求 $f(x,y) = x^2 + 2y^2$ 在单位圆周 $x^2 + y^2 = 1$ 上的最大值和最小值.

解:用 Lagrange 乘子法来求解.令

$$L(x, y, \lambda) = x^2 + 2y^2 - \lambda(x^2 + y^2 - 1).$$

其临界点方程组为

$$\label{eq:continuous} \left\{ \begin{array}{l} 2x=2\lambda x,\\ 4y=2\lambda y,\\ x^2+y^2=1. \end{array} \right.$$

不难求得临界点 $(x,y,\lambda) = (0,\pm 1,1)$, $(\pm 1,0,1)$.

例子续

由此得函数 f 可能的极值点为 $(x,y)=(0,\pm 1)$ 和 $(\pm 1,0)$. 计算 f(x,y) 在这四个点上值可得 $f(0,\pm 1)=2$, $f(\pm 1,0)=1$. 于是可断言函数 f(x,y) 在单位圆周 $x^2+y^2=1$ 上的最大值为 2, 且最大值点为 $(0,\pm 1)$; 最小值为 1, 且最小值点为 $(\pm 1,0)$. 解答完毕.

注: 对于上述条件极值问题, 我们很容易通过消元解除约束, 将条件极值问题化为无约束极值. 由 $x^2+y^2=1$ 可知 $f(x,y)=x^2+2y^2=1+y^2$. 由此可知在单位圆周 $x^2+y^2=1$ 上, 函数 f 的最大值为 2, 最小值为 1.

图示

闭域上连续函数的最值, 例子

例: 求 $f(x,y) = x^2 + 2y^2$ 在闭单位圆盘 $x^2 + y^2 \le 1$ 上的最大值和最小值.

解:对于这类问题的求解通常分为两步.第一步求函数在开圆盘上的极值点.这是无约束极值问题.第二步求函数在区域边界的极值问题,这是求解条件极值问题.

例子续

我们来求解上述例题. 先求函数 $f(x,y)=x^2+2y^2$ 的临界点. 令 $f_x=f_y=0$, 即 2x=4y=0. 由此得 f 唯一一个临界点原点 (0,0), 且 f(0,0)=0. 比较函数 f 在单位圆周 $x^2+y^2=1$ 上的最大值和最小值可知, 函数 $f(x,y)=x^2+2y^2$ 在闭单位圆盘 $x^2+y^2\leq 1$ 上的最大值为 $f(0,\pm 1)=2$, 最小值为 f(0,0)=0. 解答完毕.

作业

<u>习题1.9</u> (page 93-95): 4(2), 7(2)(4), 8, 9(1)(3), 10(2),(4), 11, 13.

补充习题:证明讲义第33页中的引理.

选作题: 设 $P=(p_1,\cdots,p_n)$: $IR^n\to IR^n$ 为一个二次多项式映射,也就是说,映射 P 的每个分量 $p_i=p_i(x_1,\cdots,x_n)$ 均为变量 x_1,\cdots,x_n 的二次多项式, $i=1,\cdots,n$. 若映射 P 的 Jacobi 矩阵 $JP(x)=[\frac{\partial p_i}{\partial x_j}(x)]$ 在全空间 IR^n 上处处非奇,即 det $JP(x)\neq 0$, $\forall x\in IR^n$,证明映射 $P(\cdot)$ 是单射 (injective),即 $P(x)\neq P(y)$, $\forall x,y\in IR^n$, $x\neq y$.

选作题注记

注一:实际上,我们还可以证明结论:多项式映射 (不必是二次的) $P(\cdot)$,如果它是单射的话,那它一定是满射的,即对任意 $y \in \mathbb{IR}^n$,存在 $x \in \mathbb{IR}^n$,使得 P(x) = y.这个结论现有的证明需要用到比较高深的代数几何知识.不知是 否存在比较初等的证明.有兴趣的同学可以尝试一下.初等的意思是只使用 微积分和线性代数.

注二:上述结论看起来似乎很特别,但却是一个很重要的结论.如果将上述结论再往前推进一步,即当映射 $P(\cdot)$ 为三次多项式映射,并且满足如下条件时,

$$\label{eq:detJP} \det JP(x) = \det \left[\frac{\partial p_i}{\partial x_j} \right](x) \equiv 1, \quad \forall x \in IR^n.$$

能够证明映射 $P(\cdot)$ 为单射,那么也就证明了著名的 Jacobian conjecture (雅可比猜想)成立.关于这个猜想的详细情况,建议有兴趣的同学在网上搜一搜.