Raspberry pi

Raspberry pi vs Arduino

Raspberry Pi

Mini Computer

Microprocessor
GPIOS
No Analog Inputs
Only 5V
Builtin Wifi Bluetooth
Difficult Sensor Interface
Easy for Computer Vision

Arduino

Controller

Microcontroller
GPIOS
Analog Inputs
5 to 12 V
External Wifi Bluetooth
Simple Sensor Interface
Hard for Computer Vision

Raspberry pi screen

GPIO header

3V3	3.3 volts power	A permanently-on source of 3.3 V power, the same voltage Raspberry Pi runs at internally	
5V	5 volts power	A permanently-on source of 5 V power, the same voltage as Raspberry Pi takes in at the micro USB power connector	
Ground (GND)	0 volts ground	A ground connection, used to complete a circuit connected to power source	
GPIO XX	General-purpose input/output pin number 'XX'	The GPIO pins available for your programs, identified by a number from 2 to 27	
ID EEPROM	Reserved special- purpose pins	Pins reserved for use with Hardware Attached on Top (HAT) and other accessories	

	1st/2nd Band	Multiplier	Tolerance
Black	0	×10°	-
Brown	1	×10¹	±1%
Red	2	×10²	±2%
Orange	3	×10³	-
Yellow	4	×10 ⁴	-
Green	5	×10 ⁵	±0.5%
Blue	6	×10 ⁶	±0.25%
Violet	7	×10 ⁷	±0.1%
Grey	8	×10 ⁸	±0.05%
White	9	×10°	
Gold	-	×10 ⁼¹	±5%
Silver	-	×10 ⁻²	±10%
None	-	-	±20%

Να αναβοσβήνει ένα led ανά ένα sec.


```
from gpiozero import LED
from time import sleep
led = LED(25)
while True:
    led.on()
    sleep(1)
    led.off()
    sleep(1)
```

''' led.toggle() // to switch between states

Democritus University of Thrace

Όταν πατάμε ένα κουμπάκι να τυπώνεται Button Pressed, αλλιώς να τυπώνεται Button Not Pressed.


```
from gpiozero import Button
button = Button(2)
while True:
    if button.is_pressed:
        print("Button Pressed")
    else:
        print("Button Not Pressed")
```


Other Commands

These don't block the flow of the program

button.when_pressed = led.on

button.when_released = led.off

These block the flow of the program

button.wait_for_press()

button.wait_for_release()

Να ανοιγοκλείνει ένα buzzer ανά ένα sec.


```
from gpiozero import Buzzer
from time import sleep
buzzer = Buzzer (15)
while True:
    buzzer.on()
    sleep(1)
    buzzer.off()
    sleep(1)
```


Να ελέγχουμε ένα κινητήρα.

Ο κινητήρας να κινείται για 1 sec με τη μέγιστη ταχύτητα και να σταματάει για 1 sec.

Στη συνέχεια να αλλάζει κατεύθυνση περιστροφής και μετά από 1 sec να σταματάει.


```
import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings (False)
class motor():
     def init (self,Ena,In1,In2):
          self.Ena = Ena
          self.In1 = In1
          self.In2 = In2
          GPIO.setup(self.Ena,GPIO.OUT)
          GPIO.setup(self.In1,GPIO.OUT)
          GPIO.setup(self.In2,GPIO.OUT)
           self.pwm = GPIO.PWM(self.Ena, 100)
           self.pwm.start(0)
```



```
def moveF(self,x):
     self.pwm.ChangeDutyCycle(x)
     GPIO.output(self.In1,GPIO.HIGH)
     GPIO.output (self.In2,GPIO.LOW)
def moveB(self,x):
     self.pwm.ChangeDutyCycle(x)
     GPIO.output (self.In1,GPIO.LOW)
     GPIO.output(self.In2,GPIO.HIGH)
def stop(self):
     self.pwm.ChangeDutyCycle(0)
```


Να ελέγχουμε το αυτοκινητάκι μέσω συναρτήσεων.

CAR	forward	back	stop
Left wheel	Forward	back	stop
Right wheel	Forward	back	stop

CAR	Turn left	Turn right	stop
Left wheel	back	Forward	Stop
Right wheel	forward	back	stop

Next time

Έλεγχος αυτοκινήτου, μέσω πληκτρολογίου και joystick.

