CS 188: Artificial Intelligence Fall 2010

Lecture 21: Speech / ML 11/9/2010

Dan Klein - UC Berkeley

Announcements

- Assignments:
 - Project 2: In glookup
 - Project 4: Due 11/17
 - Written 3: Out later this week
- Contest out now!
- Reminder: surveys (results next lecture)

Contest!

Today

- HMMs: Most likely explanation queries
- Speech recognition
 - A massive HMM!
 - Details of this section not required
- Start machine learning

Speech and Language

- Speech technologies
 - Automatic speech recognition (ASR)
 Text-to-speech synthesis (TTS)

 - Dialog systems

- Information extraction
- Web search, question answeringText classification, spam filtering, etc...

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distr: $P(X_1)$
 - Transitions: $P(X|X_{-1})$ Emissions: P(E|X)

• Query: most likely explanation:

 $\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$

State Path Trellis

• State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is the seq's probability
- Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph

Acoustic Feature Sequence

 Time slices are translated into acoustic feature vectors (~39 real numbers per slice)

 These are the observations, now we need the hidden states X

13

State Space

- P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- P(X|X') encodes how sounds can be strung together
- We will have one state for each sound in each word
- From some state x, can only:
 - Stay in the same state (e.g. speaking slowly)
 - Move to the next position in the word
 - At the end of the word, move to the start of the next word
- We build a little state graph for each word and chain them together to form our state space X

14

Decoding

- While there are some practical issues, finding the words given the acoustics is an HMM inference problem
- We want to know which state sequence $x_{1:T}$ is most likely given the evidence $e_{1:T}$:

$$\begin{split} x_{1:T}^* &= \mathop{\arg\max}_{x_{1:T}} P(x_{1:T}|e_{1:T}) \\ &= \mathop{\arg\max}_{x_{1:T}} P(x_{1:T},e_{1:T}) \end{split}$$

• From the sequence x, we can simply read off the words

End of Part II!

- Now we're done with our unit on probabilistic reasoning
- Last part of class: machine learning

18

Machine Learning

- Up until now: how to reason in a model and how to make optimal decisions
- Machine learning: how to acquire a model on the basis of data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)

Parameter Estimation

- Estimating the distribution of a random variable
- Elicitation: ask a human (why is this hard?)
- Empirically: use training data (learning!)
 - E.g.: for each outcome x, look at the *empirical rate* of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total \; samples}}$$

• This is the estimate that maximizes the likelihood of the data

$$L(x,\theta) = \prod_{i} P_{\theta}(x_i)$$

Estimation: Smoothing

• Relative frequencies are the maximum likelihood estimates

$$\begin{array}{ll} \theta_{ML} = \arg\max_{\theta} P(\mathbf{X}|\theta) \\ = \arg\max_{\theta} \prod P_{\theta}(X_i) \end{array} \qquad \Longrightarrow \quad P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total \ samples}} \\ \end{array}$$

In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution

Estimation: Laplace Smoothing

- Laplace's estimate:
 - Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$
$$= \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$

$$P_{ML}(X) =$$

$$P_{LAP}(X) =$$

 Can derive this as a MAP estimate with Dirichlet priors (see

Estimation: Laplace Smoothing

- Laplace's estimate (extended):
 - Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- $P_{LAP.0}(X) =$
- What's Laplace with k = 0? • k is the strength of the prior
- $P_{LAP.1}(X) =$

 $P_{LAP,100}(X) =$

- Laplace for conditionals:
 - Smooth each condition

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$