Kapitel DB:VII (Fortsetzung)

VII. Entwurfstheorie relationaler Datenbanken

- Informelle Entwurfskriterien für Relationenschemata
- □ Funktionale Abhängigkeiten
- □ Normalformen
- Dekompositionseigenschaften von Relationen
- □ Relationale Dekomposition
- □ Relationale Synthese
- □ Mehrwertige Abhängigkeiten

DB:VII-72 Relational Theory © STEIN 2004-2018

Herangehensweisen zum Datenbankentwurf

Top-Down:

- 1. Anforderungsanalyse
- 2. Erstellung eines konzeptuellen Schemas/Modells in einem "High-Level-Modell", zum Beispiel im EER-Modell.
- 3. Abbildung des konzeptuellen Modells auf eine Menge von Relationen.
- 4. Verfeinerung des relationalen Modells.

Bottom-Up:

- 1. Festlegung einer Menge funktionaler Abhängigkeiten
- 2. Synthetisierung von Relationenschemata für die bestimmte formale Eigenschaften garantiert werden können.

DB:VII-73 Relational Theory © STEIN 2004-2018

- □ Die Top-Down-Herangehensweise wird auch als "Design by Analysis" bezeichnet.
- □ Die Bottom-Up-Herangehensweise als "Design by Synthesis" bezeichnet.

DB:VII-74 Relational Theory © STEIN 2004-2018

Unterscheidung des formalen Instrumentariums

- 1. Eigenschaften einzelner Relationen insbesondere:
 - (a) Einhaltung einer bestimmten Normalform
- 2. Dekompositionseigenschaften insbesondere:
 - (a) Abhängigkeitserhaltung (Dependency Preservation)
 - (b) verlustlose Zerlegung bzw. Verlustlosigkeit (Lossless Join Property)

DB:VII-75 Relational Theory © STEIN 2004-2018

- □ Die Theorie der Normalformen ist im Zusammenhang mit beiden Herangehensweisen zum Datenbankentwurf (Top-Down, Bottom-Up) nützlich.
- □ Wiederholung: Die Herstellung einer (hohen) Normalform ist kein hinreichendes Kriterium für ein gutes Datenbankdesign.
- In [Heuer/Saake 2013] werden
 - die Dekompositionseigenschaften als Transformationseigenschaften,
 - die Abhängigkeitserhaltung als Abhängigkeitstreue und
 - die verlustlose Zerlegung als Verbundtreue bezeichnet.

DB:VII-76 Relational Theory © STEIN 2004-2018

Universalrelation und Dekomposition

Definition 9 (Universalrelation)

Die Universalrelation – genauer: das Universalrelationenschema – zu einer Datenbank entsteht durch Zusammenfassung aller in der Datenbank vorhandenen Attribute in einem einzigen relationalen Schema \mathcal{R} .

Definition 10 (Dekomposition eines Relationenschemas)

Sei \mathcal{R} ein Relationenschema. Die Aufteilung von \mathcal{R} in eine Menge $\mathcal{R} = \{\mathcal{R}_1, \dots, \mathcal{R}_m\}$ von Relationenschemata heißt Dekomposition oder Zerlegung von \mathcal{R}_n .

Attributerhaltung:

Die Eigenschaft der Attributerhaltung einer Dekomposition \mathcal{R} von \mathcal{R} fordert, dass jedes Attribut von \mathcal{R} in mindestens einem Relationenschema \mathcal{R}_i , $\mathcal{R}_i \in \mathcal{R}$, auftaucht:

$$igcup_{i=1}^m \mathcal{R}_i = \mathcal{R}$$

(a) Abhängigkeitserhaltung

Eine Zerlegung von \mathcal{R} mit zugehörigen funktionalen Abhängigkeiten F in die Relationenschemata $\mathcal{R}_1,\ldots,\mathcal{R}_m$ sollte so sein, dass die Überprüfung jeder FD $(\alpha \to \beta) \in F$ lokal auf den \mathcal{R}_i erfolgen kann. Man muss also keinen Join durchführen, um dann – auf der verbundenen Relation – die Abhängigkeiten prüfen zu können.

Das heißt, jede FD $(\alpha \rightarrow \beta) \in F$

- \Box kommt entweder direkt in einem \mathcal{R}_i vor oder
- kann mit Hilfe der Inferenzregeln abgeleitet werden.

DB:VII-78 Relational Theory © STEIN 2004-2018

(a) Abhängigkeitserhaltung

Definition 11 (Einschränkung von FDs, Abhängigkeitserhaltung)

Sei \mathcal{R} ein Relationenschema mit zugehörigen funktionalen Abhängigkeiten F und sei $\mathcal{R}_i \subseteq \mathcal{R}$.

Die Einschränkung von F auf \mathcal{R}_i , in Zeichen: $F_{\mathcal{R}_i}$, ist die Menge von Abhängigkeiten $(\alpha \to \beta) \in F^+$ für die $(\alpha \cup \beta) \subseteq \mathcal{R}_i$ gilt.

Eine Dekomposition $\mathcal{R} = \{\mathcal{R}_1, \dots, \mathcal{R}_m\}$ von \mathcal{R} ist abhängigkeitserhaltend hinsichtlich F, wenn gilt:

$$F \equiv F_{\mathcal{R}_1} \cup \ldots \cup F_{\mathcal{R}_m}$$
 bzw. $F^+ = (F_{\mathcal{R}_1} \cup \ldots \cup F_{\mathcal{R}_m})^+$

DB:VII-79 Relational Theory © STEIN 2004-2018

(a) Abhängigkeitserhaltung

Definition 11 (Einschränkung von FDs, Abhängigkeitserhaltung)

Sei \mathcal{R} ein Relationenschema mit zugehörigen funktionalen Abhängigkeiten F und sei $\mathcal{R}_i \subseteq \mathcal{R}$.

Die Einschränkung von F auf \mathcal{R}_i , in Zeichen: $F_{\mathcal{R}_i}$, ist die Menge von Abhängigkeiten $(\alpha \to \beta) \in F^+$ für die $(\alpha \cup \beta) \subseteq \mathcal{R}_i$ gilt.

Eine Dekomposition $\mathcal{R} = \{\mathcal{R}_1, \dots, \mathcal{R}_m\}$ von \mathcal{R} ist abhängigkeitserhaltend hinsichtlich F, wenn gilt:

$$F \equiv F_{\mathcal{R}_1} \cup \ldots \cup F_{\mathcal{R}_m}$$
 bzw. $F^+ = (F_{\mathcal{R}_1} \cup \ldots \cup F_{\mathcal{R}_m})^+$

DB:VII-80 Relational Theory © STEIN 2004-2018

- Abhängigkeitserhaltung garantiert die effiziente Überprüfung von funktionalen Abhängigkeiten (nach dem Hinzufügen, Löschen oder Ändern von Tupeln), weil die Relationenschemata unabhängig voneinander analysiert werden können.
- □ Eine abhängigkeitserhaltende Dekomposition wird auch *hüllentreue* Dekomposition genannt.
- Abhängigkeitserhaltung erfordert, dass bei der Dekomposition eines Relationenschemas keine linke Seite einer FD zerschnitten wird.
- Für ein Relationenschema \mathcal{R} kann immer eine abhängigkeitserhaltende Dekomposition $\mathcal{R} = \{\mathcal{R}_1, \dots, \mathcal{R}_m\}$ gefunden werden, so dass jedes \mathcal{R}_i , $\mathcal{R}_i \in \mathcal{R}$, in 3NF ist. Es kann nicht immer eine Dekomposition gefunden werden, die alle Abhängigkeiten erhält und bei der jedes \mathcal{R}_i in BCNF ist.

DB:VII-81 Relational Theory © STEIN 2004-2018

(a) Abhängigkeitserhaltung: Beispiel

PLZverzeichnis			
Ort BLand Strasse PLZ			
Frankfurt	Hessen	Goethestrasse	60313
Frankfurt	Hessen	Schillerstrasse	60437
Frankfurt	Brandenburg	Goethestrasse	15234

DB:VII-82 Relational Theory © STEIN 2004-2018

(a) Abhängigkeitserhaltung: Beispiel

PLZverzeichnis			
Ort BLand Strasse PLZ			
Frankfurt	Hessen	Goethestrasse	60313
Frankfurt	Hessen	Schillerstrasse	60437
Frankfurt	Brandenburg	Goethestrasse	15234

Durch folgende Zerlegung geht die FD {Ort, BLand, Strasse} → {PLZ} verloren:

Orte		
Ort	BLand	PLZ
Frankfurt	Hessen	60313
Frankfurt	Hessen	60437
Frankfurt	Brandenburg	15234

Strassen	
Strasse PLZ	
Goethestrasse	60313
Schillerstrasse	60473
Goethestrasse	15234

DB:VII-83 Relational Theory © STEIN 2004-2018

(a) Abhängigkeitserhaltung: Beispiel

PLZverzeichnis			
Ort BLand Strasse PLZ			
Frankfurt	Hessen	Goethestrasse	60313
Frankfurt	Hessen	Schillerstrasse	60437
Frankfurt	Brandenburg	Goethestrasse	15234

Durch folgende Zerlegung geht die FD $\{Ort, BLand, Strasse\} \rightarrow \{PLZ\}$ verloren:

Orte		
Ort	BLand	PLZ
Frankfurt	Hessen	60313
Frankfurt	Hessen	60437
Frankfurt	Brandenburg	15234

Strassen	
Strasse PLZ	
Goethestrasse	60313
Schillerstrasse	60473
Goethestrasse	15234

Lokal konsistentes Update der Relationen:

Orte		
Ort	BLand	PLZ
Frankfurt	Hessen	60313
Frankfurt	Hessen	60437
Frankfurt	Brandenburg	15234
Frankfurt	Brandenburg	15235

Strassen		
Strasse PLZ		
Goethestrasse	60313	
Schillerstrasse	60473	
Goethestrasse	15234	
Goethestrasse	15235	

DB:VII-84 Relational Theory © STEIN 2004-2018

- □ Das Schema PLZverzeichnis ist in 3NF, aber nicht in BCNF, denn es existiert die transitive Abhängigkeit {PLZ} → {Ort, BLand} (Formulierung 2) bzw. {PLZ} ist nicht Superschlüssel (Formulierung 1).
- □ Durch Elimination der abhängigen Attributmenge {Ort, BLand} und Erstellung eines weiteren Schemas bestehend aus {Ort, BLand, PLZ} wird die BCNF hergestellt.
- □ Die Zerlegung ist nicht abhängigkeitserhaltend. Die Verletzung der FD {Ort, BLand, Strasse} → {PLZ} ist erst nach einem Join (Join-Attribut ist "PLZ") erkennbar. Obwohl {Ort, BLand, Strasse} Schlüssel sein sollte, existieren nach einem Join u.a. folgende Tupel:

(Frankfurt, Brandenburg, Goethestrasse, 15234)

 \neq

(Frankfurt, Brandenburg, Goethestrasse, 15235)

- □ Das Relationenschema "Strassen" enthält nur noch triviale Abhängigkeiten; der Schlüssel von "Strassen" besteht deshalb aus der Menge aller Attribute des Schemas.
- □ Vorgriff: Weil {PLZ} einen Schlüssel in einer der beiden neuen Relationen darstellt, ist die Zerlegung verlustlos.

DB:VII-85 Relational Theory © STEIN 2004-2018

(b) Verlustlose Zerlegung bzw. Verbundtreue

Eine Zerlegung von \mathcal{R} mit zugehörigen funktionalen Abhängigkeiten F in die Relationenschemata $\mathcal{R}_1,\ldots,\mathcal{R}_m$ sollte so sein, dass die in einer Ausprägung r des Relationenschemas \mathcal{R} enthaltene Information aus den Ausprägungen r_1,\ldots,r_m der Relationenschemata $\mathcal{R}_1,\ldots,\mathcal{R}_m$ konstruierbar ist.

Definition 12 (verlustlose Zerlegung)

Sei \mathcal{R} ein Relationenschema mit zugehörigen funktionalen Abhängigkeiten F. Eine Zerlegung $\mathcal{R} = \{\mathcal{R}_1, \dots, \mathcal{R}_m\}$ von \mathcal{R} ist verlustlos bzw. verbundtreu hinsichtlich F, wenn für jede Ausprägung r des Relationenschemas \mathcal{R} , die F erfüllt, gilt:

$$r = \pi_{\mathcal{R}_1}(r) \bowtie \ldots \bowtie \pi_{\mathcal{R}_m}(r)$$

DB:VII-86 Relational Theory © STEIN 2004-2018

- □ Eine Zerlegung ist dann nicht verlustlos, wenn nach dem Join zusätzliche (spurious) Tupel entstanden sind. Zusätzliche Tupel bedeuten einen Informationsverlust, weil durch sie eindeutige Zuordnungen verloren gegangen sind.
- Oft ist es ausreichend, sich bei der Dekomposition von \mathcal{R} auf den binären Fall zu beschränken. Es gilt nämlich: Ist $\{\mathcal{R}_1,\ldots,\mathcal{R}_m\}$ eine verlustlose Zerlegung von \mathcal{R} hinsichtlich F und ist $\{\mathcal{R}_{i_1},\ldots,\mathcal{R}_{i_k}\}$ eine verlustlose Zerlegung von \mathcal{R}_i hinsichtlich $F_{\mathcal{R}_i}$, so ist auch $\{\mathcal{R}_1,\ldots,\mathcal{R}_{i-1},\mathcal{R}_{i_1},\ldots,\mathcal{R}_{i_k},\mathcal{R}_{i+1},\ldots,\mathcal{R}_m\}$ eine verlustlose Zerlegung von \mathcal{R} hinsichtlich F.

DB:VII-87 Relational Theory © STEIN 2004-2018

(b) Verlustlose Zerlegung: Beispiel

Biertrinker		
<u>Kneipe</u>	Gast	Bier
Kowalski	Kemper	Pils
Kowalski	Eickler	Hefeweizen
Innsteg	Kemper	Hefeweizen

Zerlegung in die Relationenschemata "Besucht" und "Trinkt":

Besucht		
<u>Kneipe</u>	<u>Gast</u>	
Kowalski	Kemper	
Kowalski	Eickler	
Innsteg	Kemper	

Trinkt		
Gast Bier		
Kemper	Pils	
Eickler	Hefeweizen	
Kemper	Hefeweizen	

DB:VII-88 Relational Theory © STEIN 2004-2018

(b) Verlustlose Zerlegung: Beispiel

Biertrinker				
Kneipe	Gast	Bier		
Kowalski	Kemper	Pils		
Kowalski	Eickler	Hefeweizen		
Innsteg	Kemper	Hefeweizen		

Zerlegung in die Relationenschemata "Besucht" und "Trinkt":

Besucht			
<u>Kneipe</u>	Gast		
Kowalski	Kemper		
Kowalski	Eickler		
Innsteg	Kemper		

Trinkt		
Gast	<u>Bier</u>	
Kemper	Pils	
Eickler	Hefeweizen	
Kemper	Hefeweizen	

Die Bildung des natürlichen Verbundes zeigt, dass die Assoziation von Biersorten und Gästen relativ zur Kneipe verloren gegangen ist:

Besucht	
Kneipe	Gast
Kowalski	Kemper
Kowalski	Eickler
Innsteg	Kemper

M

Trinkt		
Gast	<u>Bier</u>	
Kemper	Pils	
Eickler	Hefeweizen	
Kemper	Hefeweizen	
[

Besucht ⋈ Trinkt			
<u>Kneipe</u>	Gast	<u>Bier</u>	
Kowalski	Kemper	Pils	
Kowalski	Kemper	Hefeweizen	7
Kowalski	Eickler	Hefeweizen	
Innsteg	Kemper	Pils	,
Innsteg	Kemper	Hefeweizen	

© STEIN 2004-2018

DB:VII-89 Relational Theory

- □ Im Beispiel gilt nur die FD {Kneipe, Gast} \rightarrow {Bier}.
- Die Existenz von einer der folgenden FDs würde Verlustlosigkeit garantieren: $\{Gast\} \rightarrow \{Bier\}, \{Gast\} \rightarrow \{Kneipe\}$

DB:VII-90 Relational Theory © STEIN 2004-2018

(b) Verlustlose Zerlegung (Fortsetzung)

Formulierung 1:

Eine Zerlegung von \mathcal{R} mit zugehörigen funktionalen Abhängigkeiten F in die Relationenschemata \mathcal{R}_1 und \mathcal{R}_2 ist verlustlos, wenn mindestens eine der folgenden Bedingungen gilt:

- $((\mathcal{R}_1 \cap \mathcal{R}_2) \to \mathcal{R}_1) \in F^+$
- $((\mathcal{R}_1 \cap \mathcal{R}_2) \to \mathcal{R}_2) \in F^+$

DB:VII-91 Relational Theory © STEIN 2004-2018

(b) Verlustlose Zerlegung (Fortsetzung)

Formulierung 1:

Eine Zerlegung von \mathcal{R} mit zugehörigen funktionalen Abhängigkeiten F in die Relationenschemata \mathcal{R}_1 und \mathcal{R}_2 ist verlustlos, wenn mindestens eine der folgenden Bedingungen gilt:

- \square $((\mathcal{R}_1 \cap \mathcal{R}_2) \to \mathcal{R}_1) \in F^+$
- $((\mathcal{R}_1 \cap \mathcal{R}_2) \to \mathcal{R}_2) \in F^+$

Formulierung 2:

Sei $\mathcal{R}=\alpha\cup\beta\cup\gamma$, $\mathcal{R}_1=\alpha\cup\beta$, und $\mathcal{R}_2=\alpha\cup\gamma$ mit paarweisen disjunkten Attributmengen α , β und γ . Eine Zerlegung von \mathcal{R} mit zugehörigen funktionalen Abhängigkeiten F in die Relationenschemata \mathcal{R}_1 und \mathcal{R}_2 ist verlustlos, wenn mindestens eine der folgenden Bedingungen gilt:

- $\neg \gamma \subseteq AttributeClosure(F, \alpha)$

Die Attributmenge im Schnitt der beiden Relationenschemata, $\mathcal{R}_1 \cap \mathcal{R}_2$, bestimmt mindestens *eines* der beiden Relationenschemata funktional, ist also (Super-)Schlüssel für eines der beiden Relationenschemata.

Das macht auch den Zusammenhang zur Verlustlosigkeit klar: Zu jeder Schlüsselausprägung gibt es höchstens *ein* Tupel, und somit besteht keine Möglichkeit, bei einem Join zusätzliche (= falsche) Tupel dazu zu kombinieren.

DB:VII-93 Relational Theory © STEIN 2004-2018

Relationale Dekomposition

Algorithm: RelDecomposition

Input: \mathcal{R} . Universal relation.

F. Menge funktionaler Abhängigkeiten für \mathcal{R} .

Output: \mathcal{R} . Verlustlose Zerlegung von \mathcal{R} mit Schemata in BCNF.

- 1. $\mathcal{R} = \{\mathcal{R}\}\$
- 2. WHILE $\exists \mathcal{R}' : (\mathcal{R}' \in \mathcal{R} \land \mathcal{R}' \text{ not in BCNF})$ DO
- 3. Find FD $(\alpha \to \beta) \in F_{\mathcal{R}'}$ that violates BCNF
- 4. Decompose \mathcal{R}' into $\mathcal{R}_1' = \mathcal{R}' \beta$ and $\mathcal{R}_2' = \alpha \cup \beta$
- 5. $\mathcal{R} = (\mathcal{R} \{\mathcal{R}'\}) \cup \{\mathcal{R}'_1, \mathcal{R}'_2\}$
- 6. ENDDO
- 7. RETURN (\mathcal{R})

Vergleiche Schritt 5 mit der Illustration der Boyce-Codd-Normalform.

DB:VII-94 Relational Theory © STEIN 2004-2018

- Schritt 3. Wie man eine BCNF-verletzende FD in der While-Schleife findet: Ist ein Relationenschema \mathcal{R}' nicht in BCNF, so existiert in \mathcal{R}' eine FD $\alpha \to \beta$ mit $\alpha \cap \beta = \emptyset$ und $\alpha \not\to \mathcal{R}'$.
- \supset Schritt 4. Die Dekomposition garantiert Verlustlosigkeit: $\mathcal R_1'\cap\mathcal R_2'=lpha$ mit $lpha o\mathcal R_2'$
- □ Eine durch den Algorithmus RelDecomposition erzeugte Dekomposition ist nicht notwendigerweise abhängigkeitserhaltend.

DB:VII-95 Relational Theory © STEIN 2004-2018

Relationale Dekomposition

Illustration der Zerlegung eines Relationenschemas \mathcal{R}' in die Schemata \mathcal{R}'_1 und \mathcal{R}'_2 entlang der funktionalen Abhängigkeit $\alpha \to \beta$:

[Kemper/Eickler 2011]

DB:VII-96 Relational Theory © STEIN 2004-2018

Relationale Dekomposition

Beispiel:

- $\label{eq:conditional_condition} \square \quad \mathcal{R}_{Grundstuecke} = \{ \underline{SteuerNr}, Landkreis, GrundstNr, GrundstGroesse, Preis, Steuersatz \}$
- \Box FD_1 : {SteuerNr} \rightarrow {Landkreis, GrundstNr, GrundstGroesse, Preis, Steuersatz}
- \Box FD_2 : {Landkreis, GrundstNr} \rightarrow {SteuerNr, GrundstGroesse, Preis, Steuersatz}
- \Box FD_3 : {Landkreis} \rightarrow {Steuersatz}
- \Box FD_4 : {GrundstGroesse} \rightarrow {Preis}

 $\sim \mathcal{TAFEL}$

DB:VII-97 Relational Theory © STEIN 2004-2018

Algorithm: RelSynthesis

Input: \mathcal{R} . Universal relation.

F. Menge funktionaler Abhängigkeiten für \mathcal{R} .

- 1. $\mathcal{R} = \emptyset$
- 2. Determine a canonical cover F_c of F
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12. RETURN(\mathcal{R})

Algorithm: RelSynthesis

Input: \mathcal{R} . Universal relation.

F. Menge funktionaler Abhängigkeiten für \mathcal{R} .

- 1. $\mathcal{R} = \emptyset$
- 2. Determine a canonical cover F_c of F
- 3. FOREACH $(\alpha \rightarrow \beta) \in F_c$ DO
- 4. Synthesize $\mathcal{R}_{\alpha}=\alpha\cup\beta$, $\mathcal{R}=\mathcal{R}\cup\{\mathcal{R}_{\alpha}\}$
- 5. $F_{\alpha} = \{ (\gamma \to \delta) \in F_c \mid (\gamma \cup \delta) \subseteq \mathcal{R}_{\alpha} \}$
- 6. ENDDO
- 7.
- 8.
- 9.
- 10.
- 11.
- 12. RETURN (\mathcal{R})

Algorithm: RelSynthesis

Input: \mathcal{R} . Universal relation.

F. Menge funktionaler Abhängigkeiten für \mathcal{R} .

- 1. $\mathcal{R} = \emptyset$
- 2. Determine a canonical cover F_c of F
- 3. FOREACH $(\alpha \rightarrow \beta) \in F_c$ DO
- 4. Synthesize $\mathcal{R}_{\alpha}=\alpha\cup\beta$, $\mathcal{R}=\mathcal{R}\cup\{\mathcal{R}_{\alpha}\}$
- 5. $F_{\alpha} = \{ (\gamma \to \delta) \in F_c \mid (\gamma \cup \delta) \subseteq \mathcal{R}_{\alpha} \}$
- 6. ENDDO
- 7. IF $\not\exists \alpha: ((\alpha \to \beta) \in F_c$ with $\alpha \to \mathcal{R}$) THEN
- 8. Determine a candidate key $\kappa \subseteq \mathcal{R}$
- 9. $\mathcal{R}_{\kappa} = \kappa$, $\mathcal{R} = \mathcal{R} \cup \{\mathcal{R}_{\kappa}\}$, $F_{\kappa} = \emptyset$
- 10. ENDIF
- 11.
- 12. RETURN(\mathcal{R})

Algorithm: RelSynthesis

Input: \mathcal{R} . Universal relation.

F. Menge funktionaler Abhängigkeiten für \mathcal{R} .

- 1. $\mathcal{R} = \emptyset$
- 2. Determine a canonical cover F_c of F
- 3. FOREACH $(\alpha \rightarrow \beta) \in F_c$ DO
- 4. Synthesize $\mathcal{R}_{\alpha}=\alpha\cup\beta$, $\mathcal{R}=\mathcal{R}\cup\{\mathcal{R}_{\alpha}\}$
- 5. $F_{\alpha} = \{ (\gamma \to \delta) \in F_c \mid (\gamma \cup \delta) \subseteq \mathcal{R}_{\alpha} \}$
- 6. ENDDO
- 7. IF $\exists \alpha : ((\alpha \to \beta) \in F_c \text{ with } \alpha \to \mathcal{R})$ THEN
- 8. Determine a candidate key $\kappa \subseteq \mathcal{R}$
- 9. $\mathcal{R}_{\kappa} = \kappa$, $\mathcal{R} = \mathcal{R} \cup \{\mathcal{R}_{\kappa}\}$, $F_{\kappa} = \emptyset$
- 10. ENDIF
- 11. FOREACH $\mathcal{R}_{\alpha},\mathcal{R}_{\alpha'}\in\mathcal{R}$ do if $\mathcal{R}_{\alpha}\subseteq\mathcal{R}_{\alpha'}$ then $\mathcal{R}=\mathcal{R}-\{\mathcal{R}_{\alpha}\}$
- 12. RETURN(\mathcal{R})

- □ Schritt 2. Bestimmung einer kanonischen Überdeckung für die Menge der funktionalen Abhängigkeiten.
- □ Schritt 3-6. Synthetisierung der Relationenschemata; diese befinden sich per Konstruktion auf Basis der kanonischen Überdeckung in 3NF.
- Schritt 7-10. Überprüfung, ob eines der generierten Relationenschemata einen Schlüssel für die Universalrelation enthält. Falls nicht, ist ein solcher Schlüssel zu bestimmen und ein aus den Schlüsselattributen bestehendes Relationenschema hinzuzunehmen.
- Schritt 11. Eliminierung von subsummierten Relationenschemata.

DB:VII-102 Relational Theory © STEIN 2004-2018

Bemerkungen: (Fortsetzung)

- □ Es stellt sich u.a. die Frage, wie wertvoll die Eigenschaft der Verlustlosigkeit ist [Heuer/Saake 2013]:
 - Muss sich die Universalrelation rekonstruieren lassen bzw. hat sie eine aus der Anwendung stammende zwingende Semantik?
 - Ist der natürliche Verbund als Rekonstruktionsoperator das Maß aller Dinge?

DB:VII-103 Relational Theory © STEIN 2004-2018

Beispiel:

- $\ \ \, \square \ \ \, \mathcal{R}_{MitarbeiterAdr} = \{\underline{PersNr}, Name, Gehaltsstufe, Raum, Ort, Strasse, PLZ, Vorwahl, BLand\}$
- \Box FD_1 : {PersNr} \rightarrow {Name, Gehaltsstufe, Raum, Ort, Strasse, PLZ, Vorwahl, BLand}
- \Box FD_2 : {Ort, BLand} \rightarrow {Vorwahl}
- \Box FD_3 : {PLZ} \rightarrow {Ort, BLand}
- \Box FD_4 : {Ort, Strasse, BLand} \rightarrow {PLZ}
- \square FD_5 : {Raum} \rightarrow {PersNr}

 \sim TAFEL

DB:VII-104 Relational Theory © STEIN 2004-2018

Mehrwertige Abhängigkeiten

Definition 13 (mehrwertig abhängig)

Sei \mathcal{R} ein relationales Schema und gelte $\alpha, \beta, \gamma \subseteq \mathcal{R}$ mit $\alpha \cup \beta \cup \gamma = \mathcal{R}$. Dann ist β mehrwertig abhängig von α , in Zeichen: $\alpha \to \beta$, wenn in jeder gültigen Ausprägung von \mathcal{R} gilt: Für jedes Paar von Tupeln, t_1, t_2 , mit $t_1(\alpha) = t_2(\alpha)$ existieren zwei weitere Tupel t_3 und t_4 mit folgenden Eigenschaften:

$$t_1(\alpha) = t_2(\alpha) = t_3(\alpha) = t_4(\alpha)$$

$$t_1(\beta) = t_3(\beta)$$

$$t_2(\beta) = t_4(\beta)$$

$$t_1(\gamma) = t_4(\gamma)$$

$$t_2(\gamma) = t_3(\gamma)$$

DB:VII-105 Relational Theory © STEIN 2004-2018

Mehrwertige Abhängigkeiten

Definition 13 (mehrwertig abhängig)

Sei \mathcal{R} ein relationales Schema und gelte $\alpha, \beta, \gamma \subseteq \mathcal{R}$ mit $\alpha \cup \beta \cup \gamma = \mathcal{R}$. Dann ist β mehrwertig abhängig von α , in Zeichen: $\alpha \to \beta$, wenn in jeder gültigen Ausprägung von \mathcal{R} gilt: Für jedes Paar von Tupeln, t_1, t_2 , mit $t_1(\alpha) = t_2(\alpha)$ existieren zwei weitere Tupel t_3 und t_4 mit folgenden Eigenschaften:

$$t_1(\alpha) = t_2(\alpha) = t_3(\alpha) = t_4(\alpha)$$

$$t_1(\beta) = t_3(\beta)$$

$$t_2(\beta) = t_4(\beta)$$

$$t_1(\gamma) = t_4(\gamma)$$

$$t_2(\gamma) = t_3(\gamma)$$

Alternative Darstellung (gleiche Farbe entspricht gleichem Wert) [Beispiel]:

$$egin{array}{lll} t_1(lpha) & t_1(eta) & t_1(oldsymbol{\gamma}) \ t_3(lpha) & t_3(eta) & t_3(oldsymbol{\gamma}) \ \hline t_4(lpha) & t_4(eta) & t_4(oldsymbol{\gamma}) \ t_2(lpha) & t_2(eta) & t_2(oldsymbol{\gamma}) \end{array}$$

DB:VII-106 Relational Theory © STEIN 2004-2018

- Ist β mehrwertig abhängig von α , so kann man in der zugehörigen Relation r bei je zwei Tupeln, die den gleichen α -Wert haben, die β -Werte vertauschen und es gilt, dass die resultierenden Tupel auch in r enthalten sind.
- Mehrwertige Abhängigkeiten (Multivalued Dependency, MVD) stellen eine Verallgemeinerung funktionaler Abhängigkeiten (FDs) dar. Die linke Seite einer MVD bestimmt für ihre rechte Seite eine Menge von Werten (Stichwort: mehrwertig). Es gilt:

$$\alpha \to \beta \implies \alpha \to \beta$$

Eine FD ist eine MVD, bei der höchstens eine Ausprägung von β mit je einer Ausprägung von α verknüpft ist.

- □ Eine MVD kann immer dann entstehen, wenn zwei unabhängige 1: N-Beziehungen in *einer* Relation kombiniert werden. Die Beziehungen können als orthogonal zueinander (= unabhängig voneinander) verstanden werden.
- □ Aus der Symmetrie der Definition folgt auch die Komplementregel:

$$\alpha \longrightarrow \beta \quad \Rightarrow \quad \alpha \longrightarrow \gamma$$

DB:VII-107 Relational Theory © STEIN 2004-2018

Beispiel:

Faehigkeiten				
PersNr	Sprache	ProgSprache		
3002	griechisch	С		
3002	lateinisch	Pascal		
3002	griechisch	Pascal		
3002	lateinisch	С		
3005	deutsch	Java		

- □ In dieser Relation gelten die MVDs {PersNr} \longrightarrow {Sprache} und {PersNr} \longrightarrow {ProgSprache}.
- □ Die Attributmenge {PersNr, Sprache, ProgSprache} bildet den Schlüssel; die Relation ist also in BCNF.

DB:VII-108 Relational Theory © STEIN 2004-2018

Sei \mathcal{R} ein relationales Schema und gelte $\alpha, \beta, \gamma \subseteq \mathcal{R}$ mit $\alpha \cup \beta \cup \gamma = \mathcal{R}$ und sei r eine Auprägung von \mathcal{R} .

Semantisch drückt eine mehrwertige Abhängigkeit die Unabhängigkeit der Attributmengen β und γ voneinander in der Relation r aus: pro α -Wert bildet das kartesische Produkt der β - und γ -Werte die Menge der $\beta\gamma$ -Werte für α :

$$\alpha \xrightarrow{} \beta$$

$$\Leftrightarrow$$

$$\forall a \in \{t(\alpha) \mid t \in r\} : \quad \pi_{\beta} \qquad \times \pi_{\gamma} \qquad = \pi_{\beta\gamma}$$

DB:VII-109 Relational Theory © STEIN 2004-2018

Sei \mathcal{R} ein relationales Schema und gelte $\alpha, \beta, \gamma \subseteq \mathcal{R}$ mit $\alpha \cup \beta \cup \gamma = \mathcal{R}$ und sei r eine Auprägung von \mathcal{R} .

Semantisch drückt eine mehrwertige Abhängigkeit die Unabhängigkeit der Attributmengen β und γ voneinander in der Relation r aus: pro α -Wert bildet das kartesische Produkt der β - und γ -Werte die Menge der $\beta\gamma$ -Werte für α :

$$\alpha \xrightarrow{} \beta$$

$$\Leftrightarrow$$

$$\forall a \in \{t(\alpha) \mid t \in r\}: \quad \pi_{\beta}(\sigma_{\alpha=a}(r)) \times \pi_{\gamma}(\sigma_{\alpha=a}(r)) \ = \ \pi_{\beta\gamma}(\sigma_{\alpha=a}(r))$$

DB:VII-110 Relational Theory © STEIN 2004-2018

Sei \mathcal{R} ein relationales Schema und gelte $\alpha, \beta, \gamma \subseteq \mathcal{R}$ mit $\alpha \cup \beta \cup \gamma = \mathcal{R}$ und sei r eine Auprägung von \mathcal{R} .

Semantisch drückt eine mehrwertige Abhängigkeit die Unabhängigkeit der Attributmengen β und γ voneinander in der Relation r aus: pro α -Wert bildet das kartesische Produkt der β - und γ -Werte die Menge der $\beta\gamma$ -Werte für α :

$$\alpha \xrightarrow{} \beta$$

$$\Leftrightarrow$$

$$\forall a \in \{t(\alpha) \mid t \in r\} : \quad \pi_{\beta}(\sigma_{\alpha=a}(r)) \times \pi_{\gamma}(\sigma_{\alpha=a}(r)) = \pi_{\beta\gamma}(\sigma_{\alpha=a}(r))$$

Alternative Formulierung für den Spezialfall $|\alpha| = |\beta| = |\gamma| = 1$:

Wenn $\{b_1, \ldots, b_k\}$ und $\{c_1, \ldots, c_l\}$ die β - bzw. γ -Werte für einen bestimmten α -Wert a in einer Relation r sind, so muss r auch die folgenden $k \cdot l$ Tripel enthalten:

$$\{a\} \times \{b_1, \ldots, b_k\} \times \{c_1, \ldots, c_l\}$$

DB:VII-111 Relational Theory © STEIN 2004-2018

Bemerkungen:

- Immer wenn zwei Tupel mit gleichem α -Wert und verschiedenem β -Wert existieren, so müssen auch Tupel existieren, die für diesen α -Wert und jeden β -Wert alle Kombinationen von γ -Werten beinhalten.
- Man nennt mehrwertige Abhängigkeiten auch "tupelgenerierende" Abhängigkeiten: eine Relationenausprägung kann bei Verletzung einer MVD durch das Einfügen zusätzlicher Tupel in einen Zustand überführt werden, der die MVD erfüllt.

DB:VII-112 Relational Theory © STEIN 2004-2018

Vierte Normalform

Definition 14 (triviale MVD)

Sei \mathcal{R} ein relationales Schema, $\alpha \cup \beta \subseteq \mathcal{R}$. Eine MVD $\alpha \longrightarrow \beta$ ist trivial hinsichtlich \mathcal{R} , falls jede mögliche Ausprägung r von \mathcal{R} diese MVD erfüllt.

DB:VII-113 Relational Theory © STEIN 2004-2018

Vierte Normalform

Definition 14 (triviale MVD)

Sei \mathcal{R} ein relationales Schema, $\alpha \cup \beta \subseteq \mathcal{R}$. Eine MVD $\alpha \longrightarrow \beta$ ist trivial hinsichtlich \mathcal{R} , falls jede mögliche Ausprägung r von \mathcal{R} diese MVD erfüllt.

Ein Relationenschema \mathcal{R} mit zugehöriger Menge F von funktionalen und mehrwertigen Abhängigkeiten ist in vierter Normalform (4NF), wenn für jede MVD $(\alpha \to \beta) \in F^+$ mindestens eine der folgenden Bedingungen erfüllt ist:

- die MVD ist trivial

DB:VII-114 Relational Theory © STEIN 2004-2018

Vierte Normalform

Definition 14 (triviale MVD)

Sei \mathcal{R} ein relationales Schema, $\alpha \cup \beta \subseteq \mathcal{R}$. Eine MVD $\alpha \longrightarrow \beta$ ist trivial hinsichtlich \mathcal{R} , falls jede mögliche Ausprägung r von \mathcal{R} diese MVD erfüllt.

Ein Relationenschema \mathcal{R} mit zugehöriger Menge F von funktionalen und mehrwertigen Abhängigkeiten ist in vierter Normalform (4NF), wenn für jede MVD $(\alpha \longrightarrow \beta) \in F^+$ mindestens eine der folgenden Bedingungen erfüllt ist:

- die MVD ist trivial
- \square α ist Superschlüssel von \mathcal{R}

Beispiel [Definition]:

Bemerkungen:

- \square Man kann zeigen, dass $\alpha \to \beta$ genau dann trivial ist, wenn $\beta \subseteq \alpha$ oder wenn $\beta = \mathcal{R} \alpha$ gilt.
- □ Bei Relationen in der vierten Normalform wird die durch mehrwertige Abhängigkeiten verursachte Redundanz ausgeschlossen: Relationen in 4NF enthalten keine zwei voneinander unabhängigen, mehrwertigen Fakten.
- □ Die vierte Normalform erreicht man durch Elimination der rechten Seite einer der beiden mehrwertigen Abhängigkeiten. Der eliminierte Teil bildet zusammen mit der linken Seite der MVD eine neue Relation.
- □ Die vierte Normalform ist eine Verschärfung der Boyce-Codd-Normalform.

DB:VII-116 Relational Theory © STEIN 2004-2018

Verlustlose Zerlegung

Eine Zerlegung von \mathcal{R} mit zugehörigen funktionalen und mehrwertigen Abhängigkeiten F in die Relationenschemata \mathcal{R}_1 und \mathcal{R}_2 ist genau dann verlustlos, wenn mindestens eine der folgenden Bedingungen gilt:

DB:VII-117 Relational Theory © STEIN 2004-2018

Verlustlose Zerlegung

Eine Zerlegung von \mathcal{R} mit zugehörigen funktionalen und mehrwertigen Abhängigkeiten F in die Relationenschemata \mathcal{R}_1 und \mathcal{R}_2 ist genau dann verlustlos, wenn mindestens eine der folgenden Bedingungen gilt:

$$\qquad \qquad \square \ ((\mathcal{R}_1 \cap \mathcal{R}_2) \longrightarrow \mathcal{R}_2) \in F^+$$

Beispiel (Fortsetzung):

Faehigkeiten				
PersNr	Sprache	ProgSprache		
3002	griechisch	С		
3002	lateinisch	Pascal		
3002	griechisch	Pascal		
3002	lateinisch	С		
3005	deutsch	Java		

Sprachen		
PersNr	Sprache	
3002	griechisch	
3002	lateinisch	
3005	deutsch	

ProgSprachen		
PersNr	ProgSprache	
3002	С	
3002	Pascal	
3005	Java	

Die Zerlegung in die Relationenschemata "Sprachen" und "ProgSprachen" ist verlustlos:

 $\mathsf{Faehigkeiten} = \pi_{\mathsf{PersNr},\mathsf{Sprache}}(\mathsf{Faehigkeiten}) \bowtie \pi_{\mathsf{PersNr},\mathsf{ProgSprache}}(\mathsf{Faehigkeiten})$

DB:VII-118 Relational Theory ©STEIN 2004-2018

Relationale Dekomposition

Algorithm: RelDecompositionMVD

Input: \mathcal{R} . Universal relation.

F. Menge funktionaler Abhängigkeiten für \mathcal{R} .

Output: \mathcal{R} . Verlustlose Zerlegung von \mathcal{R} mit Schemata in 4NF.

- 1. $\mathcal{R} = \{\mathcal{R}\}\$
- 2. WHILE $\exists \mathcal{R}' : (\mathcal{R}' \in \mathcal{R} \land \mathcal{R}' \text{ not in 4NF})$ DO
- 3. Find nontrivial MVD $(\alpha \to \beta) \in F_{\mathcal{R}'}$ that violates 4NF
- 4. Decompose \mathcal{R}' into $\mathcal{R}_1' = \mathcal{R}' \beta$ and $\mathcal{R}_2' = \alpha \cup \beta$
- 5. $\mathcal{R} = (\mathcal{R} \{\mathcal{R}'\}) \cup \{\mathcal{R}'_1, \mathcal{R}'_2\}$
- 6. ENDDO
- 7. RETURN (\mathcal{R})

Bemerkungen:

□ Der Algorithmus RelDecompostionMVD erzeugt nicht notwendigerweise eine Zerlegung, die abhängigkeitserhaltend ist. Dies folgt aus der Tatsache, das eine Relation in 4NF gleichzeitig auch immer in BCNF ist.

DB:VII-120 Relational Theory © STEIN 2004-2018

Beziehungen der Normalformen

[Kemper/Eickler 2011]

DB:VII-121 Relational Theory © STEIN 2004-2018