¿Qué es un logaritmo?

Definición: Un logaritmo es el exponente al que está elevado un número positivo b llamado base, donde $0 < b \neq 1$.

$$b^{x} = 3 \qquad \times = \log_{0}(3)$$

Ejemplo:

> 30 = 7^x : significa que x es el logaritmo en base 7 de 30, sin embargo, en este caso necesitamos usar una calculadora para poder saber el valor de x.

$$30 = 7^x \Leftrightarrow x = \log_7(30) = \frac{\sqrt{75}}{\sqrt{15}}$$

Conclusión:

$$y = \log_b(x) \Leftrightarrow x = b^y$$

Donde:

- \blacktriangleright b: se llama base y es $0 < b \neq 1$
- \succ x: es un número real positivo, es decir x > 0

Leyes de los logaritmos

- ✓ Si b = 10, denotaremos el logaritmo de la siguiente manera: $y = \log(x)$
- ✓ Si b = e, denotaremos el logaritmo como: $y = \ln(x)$ y lo llamaremos **logaritmo natural**.
- $\sqrt{\log_h(1)} = 0$ Por ejemplo: $\log_3(1) = \log(1) = \ln(1) = 0$
- $\sqrt{\log_b(b)} = 1 \text{ Por ejemplo: } \log_5(5) = \log(10) = \ln(e) = 1$
- $\checkmark \log_b(b^x) = b^{\log_b(x)} = x$

Para las siguientes propiedades consideremos A,B,c números reales con A>0 y B>0

- ✓ Regla del producto: $\log_b(A \cdot B) = \log_b(A) + \log_b(B)$
- ✓ Regla del cociente: $\log_b(\frac{A}{B}) = \log_b(A) \log_b(B)$
- ✓ Regla de la potencia: $\log_b(A^c) = c \cdot \log_b(A)$

Una ecuación logarítmica es aquella en la cual la variable está en el argumento del logaritmo (este argumento debe ser siempre positivo). Por ejemplo

$$\log_3(x - 2) + 5 = 6$$

Determine el conjunto de valores admisibles y el conjunto solución de las siguientes ecuaciones:

a.
$$3^{2x-1} - 2^x = 0$$

$$\log(3)(3^{2\times-1}) = \log_3(2^{\times})$$

$$2\times -1 = \times .\log_3(2)$$

$$2x - \log_3(2) \cdot x = 1$$

$$[2 - \log_3(2)].x = 1$$

$$X = \frac{1}{[2 - \log_3(2)]}$$

$$X = \frac{1}{[2 - \log_3(2)]}$$

$$X = 0.73$$

b.
$$3^x + 6(3^{-x}) = 5$$

②
$$3^{x} + \frac{6}{3^{x}} = 5 \Rightarrow 3^{x} \cdot 3^{x} + 3^{x} \cdot \frac{6}{3^{x}} = 5.3^{x}$$

3^= -x

$$3^{2x} + 6 = 5.3^{x}$$

$$3^{2\times} - 9.3^{\times} + 6 = 0$$

$$-0$$
 $(a-2)(a-3) = 0$

$$x = 1 \cup x = \log_3(2)$$

1. Determine el conjunto de valores admisibles y el conjunto solución de las siguientes ecuaciones:

C.V.
$$A = \frac{7}{4};13[$$

$$\log_{5}(4x-1) + \log_{5}(12+x) = \log_{5}(-x+13)$$

$$\log_5[(4x-1), (12+x)] = \log_5[(-x+13)]$$

$$(4x-1)(12+x) = (-x+13)$$

$$48x+4x^2-12-x=-x+13$$

$$4x^2+48x-25=0$$

$$4x^{2}+48x^{-25}$$

 $x=\frac{1}{2}$ $\forall x=-\frac{25}{2} \notin C.V.A$ 00 $C.S=\frac{1}{2}$

Motivación

Las funciones exponenciales y logarítmicas tienen aplicaciones en todos los campos del quehacer humano. Son particularmente útiles en el estudio de la química, la física, la biología y la ingeniería para describir la forma en que varían las cantidades. Por ejemplo:

En SIDERPERU el proceso de laminación en caliente se inicia en el horno de precalentamiento en donde las palanquillas de acero son llevadas a una cámara que opera a cierta temperatura para la elaboración de sus productos terminados de perfiles de acero y varillas de construcción. La temperatura a la cual se enfrían las palanquillas cuando son sacadas del horno puede ser modelada por una función exponencial, para ser más específicos por la ley de enfriamiento de Newton:

$$T(t) = T_m + Ce^{kt}, \qquad t \ge 0$$

Dónde:

T(t): Es la temperatura (en °C) del material en el tiempo t.

 T_m : Es la temperatura (en °C) del medio ambiente.

t : Es el tiempo transcurrido (en minutos) en el proceso de enfriamiento.

C: Es la constante del proceso. (en °C)

k: Constante que define el ritmo de enfriamiento.

Función exponencial

Una función exponencial f es aquella cuya regla de correspondencia es de la forma:

$$f(x) = a \cdot b^x$$
 ; $Dom(f) = \mathbb{R}$

Donde $a \neq 0$, b > 0, $b \neq 1$, se llama función exponencial con base by valor inicial f(0) = a.

Gráfica de funciones exponenciales

Propiedades:

Dominio:
$${\cal R}$$

Propiedades:
$$2^{\chi-4} = 1$$
Dominio: \mathbb{R} $\chi-4 = \log(1)$

Ecuación de su asíntota:

$$\lambda = 0$$

¿Es creciente o decreciente?

¿Dónde es positiva?

¿Es inyectiva?

Gráfica de funciones exponenciales

Caso II: Si
$$0 < b < 1$$
, $f(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$

Propiedades:

Dominio: \mathcal{R}

Rango: 30, +&L

Ecuación de su asíntota:

¿Es creciente o decreciente?

¿Dónde es positiva?

¿Es inyectiva?

Función exponencial natural

Definición: La función f definida con regla de correspondencia $f(x) = e^x$; $x \in \mathbb{R}$,

$$f(x) = e^x$$
; $x \in \mathbb{R}$,

con base e se llama función exponencial natural.

El número e se define como el valor al que se aproxima $\left(1+\frac{1}{n}\right)^n$ cuando n se vuelve grande. El cálculo de esta idea se hace más preciso por el concepto de límite. Se define:

$$e = 2,71828182845904523536...$$

NOTA: Observe que este número se encuentra en todas las calculadoras y lo usaremos en adelante

- 2. Trace la gráfica de las siguientes funciones exponenciales calculando e indicando los puntos de corte con los ejes coordenados. Además, escriba la ecuación de la asíntota, indicando si es vertical u horizontal.
 - a. $f(x) = e^x 2$

tabolación (KX) asíntota 4=ex-2

Corte con el eje
$$X(Y=0)$$
 $0 = e^{X} - 2$
 $2 = e^{X}$
 $\log(2) = X$
 $\ln(2) = X - D$ 0, 693

Corte con el eje $Y \in CX = 0$
 $Y = f(0) = -1$
 $D B(0) = 1$

2. Trace la gráfica de las siguientes funciones exponenciales calculando e indicando los puntos de corte con los ejes coordenados. Además, escriba la ecuación de la asíntota, indicando si es vertical u horizontal.

3. Dada la función f con regla de correspondencia $f(x) = \begin{cases} -2 + 3^x & \text{if } x \leq 1 \\ -\sqrt{x-1} & \text{if } 1 < x \end{cases}$. Trace su gráfica y determine analíticamente los puntos de corte con los ejes coordenados e indíquelos como pares ordenados en su gráfica. Además, escriba la ecuación de la asíntota, indicando si esta es vertical u horizontal.

Nota: La gráfica se considera correcta, si pasa por lo menos por tres puntos de referencia.

Conte con el eje
$$V(X=0)$$

c. $6^x - 6^{1-x} = 1$ a. $4^{x+2} - 7^{x-1} = 0$ d. $e^{2x} - 2e^x - 15 = 0$ b. $e^{2x} + 4e^x - 21 = 0$ Determine el conjunto de valores admisibles (CVA) y conjunto solución (CS) de las siguientes

1. Determine el conjunto de valores admisibles (CVA) y conjunto de solución (CS) de las siguientes ecuaciones:

ecuaciones. a. $\log_3 2x - 2\log_3 x = 15$ c. $\ln(x+1) - \ln(x) + \ln 2 = \ln(x+3)$

b. $\log_9(x-5) + \log_9(x+3) = 1$ d. $\ln(x) - \ln(6-x) = \ln(7-x)$ Trace la gráfica de las siguientes funciones exponenciales calculando e indicando los puntos de corte con los ejes coordenados. Además, escriba la ecuación de la asíntota, indicando si es vertical

u ho izontal. a.
$$f(x) = e^x - 4$$
 b. $h(x) = 4 - 2^x$

a.
$$f(x) = e^x - 4$$

b. $h(x) = 4 - 2^x$
4. Dada la función f con regla de correspondencia $f(x) = \begin{cases} e^{x+1} - 2, & \text{si } x < 0 \\ |x-3| - 1, & \text{si } x \ge 0 \end{cases}$. Trace su gráfica,

calcule e indique las coordenadas de los puntos de corte con los ejes. Además, escriba la ecuación de la asíntota, indicando si es vertical u horizontal.

de la asíntota, indicando si es vertical u horizontal. Dada la función r con regla de correspondencia $r(x) = \begin{cases} e^{x+1} - 3 &; & x < -1 \\ -2^{x-2} + 1 &; & -1 \le x < 3 \end{cases}$. Trace su $(x-3)^2 - 4; & x > 3$ gráfica, calcule e indique las coordenadas de los puntos de corte con los ejes. Además, escriba la ecuación de la asíntota, indicando si es vertical u horizontal.

Pregunta 1. El conjunto de valores admisibles (CVA) en esta pregunta es todos los números reales.

a. $CS = \{8,43 ...\}$ **b.** $CS = \{1,09 ...\}$ **c.** $CS = \{0,61 ...\}$ **d.** $CS = \{1,61 ...\}$

Pregunta 2. a. $CVA =]0; +\infty[yCS = {\frac{2}{3^{15}}} b. CVA = [5; +\infty[yCS = {6}]$ c. $CVA =]0; +\infty[yCS = {1}]$

d. $CVA =]0; 6[y CS = \{4,35 ... \}$

Pregunta 3.

Pregunta 4.

Pregunta 5.