

Support Vector Machines

Machine Learning 2023-24

UML book chapter 15

Slides P. Zanuttigh (derived from F. Vandin slides)

SVM: Agenda

- 1. Classification margin
- Hard-SVM (linearly separable data and linear model)
- 3. Soft-SVM (not linearly separable data, still a linear model)
- 4. Kernel Methods for SVM (non-linear classification)
- 5. Examples and exercises
- 6. LAB2 on SVM

Classification Margin

- Consider a classification problem with two classes:
- Training data: $S = ((x_1, y_1), ..., (x_m, y_m))$
- $x_i \in \mathbb{R}^d$ (\mathbb{R}^2 in the visual example for simplicity)
- Label set $y = \{-1,1\}$
- Hypothesis set \mathcal{H} = halfspaces

- → there exist a halfspace that perfectly classify the training set
- Find a solution: there are multiple separating hyperplanes that correctly classify the training set: which one is the best?

Classification Margin: Example

- Margin: minimum distance from an example in the training set
- Idea: best separating hyperplane is the one with the largest margin
 - Can tolerate more "noise"

Classification Margin: Video Example

Linearly Separable Training Set

Linearly Separable Training Set

- A training set $S = ((x_1, y_1), ..., (x_m, y_m))$ is linearly separable if there exists a halfspace (\mathbf{w}, \mathbf{b}) such that $y_i = sign(\langle \mathbf{w}, \mathbf{x_i} \rangle + b) \ \forall i = 1, ..., m$
 - i.e., it perfectly separates all samples in the training set
 - or, equivalently $\forall i : y_i (< w, x_i > +b) > 0$

Margin

• Given a separating hyperplane defined by $L = \{v: < v, w > +b = 0\}$ and given a sample x, the distance of x to L is

$$d(\mathbf{x}, L) = \min\{\|\mathbf{x} - \mathbf{v}\| : \mathbf{v} \in L\}$$

Theorem

If
$$||w|| = 1$$
 then $d(x, L) = |< w, x > +b|$

In this case the margin is $\min_{i} | \langle w, x_i \rangle + b|, x_i \in S$

• The closest examples are called *support vectors*

Demonstration

Theorem

If
$$||w|| = 1$$
 then $d(x, L) = |\langle w, x \rangle + b|$

$$\min\{\|\boldsymbol{x} - \boldsymbol{z}\|, \boldsymbol{z}: \langle \boldsymbol{w}, \boldsymbol{z} \rangle + b = 0\}$$

- 2. Define point $v = x (\langle w, x \rangle + b)w$ (*)
 - a) It lies on the hyperplane:

$$\langle \mathbf{w}, \mathbf{v} \rangle + \mathbf{b} = \langle \mathbf{w}, \mathbf{x} \rangle - (\langle \mathbf{w}, \mathbf{x} \rangle + b) \|\mathbf{w}\|^2 + b = 0 \to \langle \mathbf{w}, \mathbf{v} \rangle = -\mathbf{b} \quad (**)$$

- b) The distance between v and x is d(x,v)=|< w,x>+b| $||x-v||=||x-x+(\langle w,x\rangle+b)||w||=|\langle w,x\rangle+b|||w||=|\langle w,x\rangle+b||$
- 3. Since $m{v}$ lies on the hyperplane o the distance is at most the one of $m{v}$: to prove that no other point is closer, take a generic point $m{u}$ on hyperplane:

$$||x - u||^{2} = ||(x - v) + (v - u)||^{2} =$$

$$= ||x - v||^{2} + ||v - u||^{2} + 2\langle x - v, v - u \rangle$$

$$from (*) and norm \ge 0$$

$$\ge ||x - v||^{2} + 2\langle x - x + (\langle w, x \rangle + b)w, v - u \rangle$$

$$green = 0 from (**) and < w, u > = -b$$

$$= ||x - v||^{2} + 2(\langle w, x \rangle + b)\langle w, v - u \rangle = ||x - v||^{2}$$

Support Vector Machines (Hard-SVM)

Hard-SVM: seek for the separating hyperplane with largest margin (works only for linearly separable data)

Computational problem:

Recall previous theorem: If ||w|| = 1 then the margin is $|\langle w, x \rangle + b|$

$$\underset{(w,b):||w||=1}{\operatorname{argmax}} \quad \underset{i}{\min} \mid < w, x_i > +b \mid$$

$$\underset{\text{Need to correctly classify all samples}}{\underbrace{\text{Need to correctly classify all samples}}}$$

subject to
$$\forall i: y_i (< w, x_i > +b) > 0$$

Equivalent formulation (in the case of separable data):

For correct classification $y_i (< w, x_i > +b) > 0$

$$\underset{(w,b):||w||=1}{\operatorname{argmax}} \min_{i} y_{i} (< w, x_{i} > +b)$$

Quadratic Programming Formulation

- Input: $S = ((x_1, y_1), ..., (x_m, y_m))$
- Solve:

$$(\mathbf{w}_0, b_0) = argmin_{(\mathbf{w}, b)} ||\mathbf{w}||^2$$

subject to $\forall i : y_i (< \mathbf{w}, \mathbf{x}_i > +b) \ge 1$

• Output:
$$\widehat{m{w}} = rac{m{w}_0}{\|m{w}_0\|}$$
 , $\widehat{b} = rac{m{b}_0}{\|m{w}_0\|}$

The objective is a convex quadratic function, constraints are linear inequalities: can be solved with quadratic programming solvers

Notice: it is equivalent to Hard-SVM

Instead of maximizing margin \rightarrow fix margin to 1 by scaling its unit of measure with $\mathbf{w} \rightarrow$ search for max margin equals to search for minimum norm scaling factor \mathbf{w}

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Demonstration:

Hard-SVM ↔ Quadratic Programming

```
Hard-SVM: \underset{(\boldsymbol{w},b):||\boldsymbol{w}||=1}{\operatorname{argmax}} \min_{i} y_i (<\boldsymbol{w}, \boldsymbol{x_i}>+b)
```

QP:
$$(w_0, b_0) = \underset{\|w_0\|}{argmin_{(w,b)}} \|w\|^2$$
 subject to $\forall i: y_i (< w, x_i > +b) \ge 1$
Output: $\widehat{w} = \frac{w_0}{\|w_0\|}$, $\widehat{b} = \frac{b_0}{\|w_0\|}$

- Let (w*,b*) be a solution of Hard-SVM
- 2. Define $\gamma^* = \min_{i \in [m]} y_i (\langle w^*, x_i \rangle + b^*)$, i.e., margin of (w^*, b^*)
- 3. $\forall i: y_i(<\mathbf{w}^*, \mathbf{x_i} > +b^*) \ge \gamma^* \to y_i\left(<\frac{\mathbf{w}^*}{\gamma^*}, \mathbf{x_i} > +\frac{b^*}{\gamma^*}\right) \ge 1$
- 4. The pair $\left(\frac{w^*}{\gamma^*}, \frac{b^*}{\gamma^*}\right)$ satisfies QP constraint: it is a solution. Since w_0 is the one of minimum norm $\to \|w_0\| \le \left\|\frac{w^*}{\gamma^*}\right\| = \frac{1}{\gamma^*} \quad (\|w^*\| = 1)$
- 5. $\forall i: y_i (< \widehat{w}, x_i > + \widehat{b}) = \frac{1}{\|w_0\|} y_i (< w_0, x_i > + b_0) \ge \frac{1}{\|w_0\|} \ge \gamma^*$ (apply definition of \widehat{w} , then first inequality from purple condition, second from 4)
- 6. Since $\|\widehat{w}\| = 1$ and $(\widehat{w}, \widehat{b})$ has a margin $\geq \gamma^* \rightarrow (\widehat{w}, \widehat{b})$ is an optimal solution of Hard-SVM

Homogeneous Representation

Formulation with homogeneous halfspaces:

 \square Assume first component of $x \in \mathcal{X}$ is 1 (homog. representation), then

$$\mathbf{w_0} = \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\|^2 \quad \text{subject to } \forall i: \ \ y_i < \mathbf{w}, x_i > \geq 1$$

- Notice that this constraint is similar but not exactly the same as the non-homogeneous one
 - the bias now also goes inside the regularization
- ☐ However, in practice there is no big difference

Theorem (Support Vectors)

The Support Vectors are the vectors at minimum distance from $oldsymbol{w}_0$

They are the only training vectors that matter for defining w_0 !

Hypothesis:

- w_0 defined as before: $w_0 = \min_{w} ||w||^2$ subject to $\forall i: y_i \langle w, x_i \rangle \ge 1$
- $I = \{i: |\langle w_0, x_i \rangle| = 1\}$ (indexes of support vectors)

Thesis:

There exist coefficients $\alpha_1, \ldots, \alpha_m$ such that $\mathbf{w_0} = \sum_{i \in I} \alpha_i \mathbf{x_i}$

- x_i for $i \in I$ are the "Support Vectors"
- Note: Solving Hard-SVM is equivalent to find α_i for the support vectors ($\alpha_i \neq 0$ only for support vectors)
- Demonstration not part of the course

The hard-SVM minimization

$$\mathbf{w_0} = \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\|^2 \text{ subject to } \forall i : y_i \langle \mathbf{w}, \mathbf{x_i} \rangle \ge 1$$

Can be rewritten as a maximization problem:

$$\max_{\alpha \in \mathbb{R}^m: \alpha \geq 0} \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

- It is called the "dual" problem
- Key property: only requires the inner product between instances $\langle x_i, x_j \rangle$ but not the direct access to instances x
 - Will be very useful for the "kernel trick"

Key issue: Hard-SVM needs the data to be linearly separable

Almost never true in practical problems

We need an approach that can work also with non-linearly separable data $\rightarrow Soft-SVM$

Soft-SVM: Relax the constraints of Hard-SVM but take into account the violations of the separation into the objective function

Soft SVM: How it works

Relax the constraint:

- Introduce slack variables: $\xi = (\xi_1, ..., \xi_m), \ \xi_i \ge 0$
- for each i = 1, ..., m: $y_i(< w, x_i > +b) \ge 1 \xi_i$
- ξ_i : how much the constraint is violated

Soft-SVM jointly minimizes

- 1. the norm of $\mathbf{w} (\rightarrow)$ maximize margin)
- 2. the average of ξ_i (\rightarrow minimize constraint violations)

The tradeoff between the two objectives is controlled by a parameter $\lambda > 0$

Optimization Problem

- Input: $(x_1, y_1), \dots, (x_m, y_m)$, parameter $\lambda > 0$
- Solve:

$$\min_{\substack{w,b,\xi}} \left(\lambda ||w||^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)$$
 subject to $\forall i \colon y_i (< w, x_i > +b) \ge 1 - \xi_i$ and $\xi_i \ge 0$

- Output **w**, b
- Large λ : focus on margin ($\lambda \rightarrow \infty$: Hard-SVM)
- Small λ : focus on avoiding errors

Reformulate with Hinge Loss

Hinge Loss:

$$\ell^{hinge}((\pmb{w},b),(\pmb{x},y)) = \max\{0,1-y(< w,x>+b)\}$$

The problem can be reformulated with the Hinge loss:

$$\min_{\boldsymbol{w},b} \left(\lambda \|\boldsymbol{w}\|^2 + \frac{1}{m} \sum_{i=1}^{m} \ell^{hinge}((\boldsymbol{w},b),(\boldsymbol{x}_i,y_i)) \right)$$

$$L_s^{hinge}(\boldsymbol{w},b)$$

The Two Formulations Are Equivalent

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \left(\lambda \|\boldsymbol{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \boldsymbol{\xi_i} \right) \text{ subject to } \forall i : y_i (<\boldsymbol{w},\boldsymbol{x_i}>+b) \geq 1 - \xi_i \text{ and } \xi_i \geq 0$$

2.
$$\min_{\mathbf{w},b} \left(\lambda \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \ell^{hinge}((\mathbf{w},b),(\mathbf{x}_i,y_i)) \right)$$

Demonstration:

- 1. Fix \mathbf{w}, b and consider minimization over ξ in (1)
- 2. $\xi_i \ge 0 \to \text{the best assignment is 0 if } y_i(\langle w, x_i \rangle + b) \ge 1 \text{ or } 1 y_i(\langle w, x_i \rangle + b) \text{ otherwise}$
- 3. This corresponds to $\xi_i = \ell^{hinge}((\boldsymbol{w}, b), (\boldsymbol{x}_i, y_i)) \ \forall i$
- → Soft SVM falls into regularized loss minimization (RLM) paradigm

Examples

Two situations require $\xi_i > 0$

- Wrong classification ($\xi_i > 1$)
- Correct classification but violating margin ($0 < \xi_i \le 1$)

Practical SVM: The λ Parameter

Training Set

$$\min_{\boldsymbol{w}} \left(\lambda \|\boldsymbol{w}\|^2 + L_S^{hinge}(\boldsymbol{w}) \right)$$

Examples on 2 different test sets

The parameter λ controls the trade-off between a solution with a large margin that makes some errors or one with a lower margin but with less errors

(the parameter $C = 1/\lambda$ in sklearn, libsym and other ML tools has the same role but weights the loss term, i.e., works in the opposite direction)

Homogeneous Version (Soft SVM)

Rewrite with homogeneous coordinates

$$\min_{\boldsymbol{w}} \left(\lambda \|\boldsymbol{w}\|^2 + L_S^{hinge}(\boldsymbol{w}) \right)$$

■ The Hinge loss is given by

$$L_S^{hinge}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i < \mathbf{w}, \mathbf{x}_i > \}$$

Approaches to solve the problem:

- Use standard solvers for optimization problems
- Use Stochastic Gradient Descent (see SGD lecture!)