

(51) Int. Cl.6:

(19) BUNDESREPUBLIK DEUTSCHLAND

nl gungsschrift 196 20 419 A 1 _® DE

G 01 B 11/00 G 01 B 11/16 G 01 P 3/36

G 01 J 1/00

DEUTSCHES PATENTAMT

196 20 419.4 Aktenz ich n: 21. 5.96 Anmeldetag: Offenlegungstag: 27.11.97

(71) Anmelder:

Dr. Ettemeyer GmbH & Co. Meß- und Prüftechnik, 89231 Neu-Ulm, DE

(74) Vertreter:

PAe Reinhard, Skuhra, Weise & Partner, 80801 München

(72) Erfinder:

Ettemeyer, Andreas, Dr.-Ing., 89231 Neu-Ulm, DE

66) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DE 38 19 085 C1 DE 36 32 336 C2 DE 27 10 795 B2 DE 41 05 270 A1 38 21 734 A1 DE

9 73 466 GB 01 29 242 A1 EP 07-0 04 928 A JΡ

Meßtechnik. In: Chemie-Ing.-Techn., 43.Jg., 1971,

S.A1347,A1349;

ARZT, R., RINGELHAU, H.: Optische Sensoren zur berührungslosen und schlupffreien Weg- und Geschwindigkeits-Messung an Landfahrzeugen. In: F&M Feinwerktechnik & Messtechnik, 86, 1978, 2, S.69-71;

Prüfungsantrag gem. § 44 PatG ist gestellt

- Verfahren zur berührungslosen und markierungsfreien Messung von Verschiebungen
- Die Erfindung betrifft ein Verfahren zur berührungslosen und markierungsfreien Messung von Oberflächen-Verschiebungen, bei dem die zu messende Oberfläche mit einem Laserlichtbündel beleuchtet wird, das Bild eines beleuchteten Punktes mittels einer geeigneten Optik auf einen oder mehrere Sensorelemente abgebildet wird, wobei die Lichtintensität der einzelnen Sensorelemente registriert wird und bei einer Veränderung der Absoluthelligkeit des Einzelsensorelements oder der Absoluthelligkeiten der Sensorelemente oder der relativen Helligkeitsdifferenzen zwischen den einzelnen Sensorelementen Laserbeleuchtung und Sensorelement(e) so mechanisch verfahren werden, daß die Ausgangshelligkeitswerte oder -differenzen wieder erreicht werden, wobei der mechanische Verfahrweg von Laserbeleuchtung und Sensorelement(en) ein Maß für die Verschiebung des beobachteten Oberflächenpunktes ist.

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 20 419 A1 G 01 B 11/00 27. November 1997

BEST AVAILABLE COPY

Aufbau des Meßsystems

Nummer: Int. Cl.⁶: DE 196 20 419 A1 G 01 B 11/00

Offenlegungstag:

27. November 1997

Ablauf der Messung mit 3 Sensoren (Beispiel)

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 197 39 679 A1 G 01 J 1/42**1. Oktober 1998

Fig. 3

Beschreibung

In der Materialprüfung werden für viele Anwendungen mechanische Kennwerte über das statische und dynamische Dehnungsverhalten von Werkstoffen und Bauteilen benötigt. Dazu werden die Verschiebungen zwischen zwei in definiertem Abstand zueinander befindlichen Oberflächenpunkten mit mechanischen oder optischen Aufnehmern gemessen.

Die derzeit zur Verfügung stehenden Meßaufnehmer 10 lassen sich technologisch in zwei Gruppen aufteilen:

- 1. Punktaufnehmer, die die Bewegung an nur einem oder wenigen Objektpunkten registrieren;
- kompletten Fläche erfassen.

Eine für die automatische Prüfung und speziell für empfindliche Werkstoffe geforderte Prüfaufgabe ist die berührungslose Messung ohne das vorherige Aufbrin- 20 gen von Markierungen auf der Probenoberfläche.

Die klassischen Punktsensoren messen mechanisch mittels Ansetzaufnehmern oder optisch durch Verfolgung von auf dem Objekt aufgebrachten Meßmarkie-

Neuere Entwicklungen erlauben die flächenhafte, berührungslose und markierungsfreie Messung mittels Speckle-Interferometrie oder mittels Speckle-Korrelationstechniken. Diese Verfahren haben jeweils gemeinsam, daß sie aufgrund der sehr hohen zu verarbeitenden 30 Datenmengen und der Datenerfassung mit Videotechnik relativ langsam sind. Für dynamische Messungen und zur Maschinenregelung können diese Verfahren daher nicht herangezogen werden.

Ziel dieser Erfindung ist es, die berührungslose und 35 markierungsfreie Messung von Verschiebungen nur weniger Punkte mit großer Geschwindigkeit zu ermögli-

Bei der Speckle-Korrelationstechnik wird eine Fläche mit Laserlicht beleuchtet und das Bild der Oberfläche 40 mit einer Videokamera aufgenommen. Bei einer Bewegung der Probe verändert sich das Specklemuster. Durch den Vergleich der in beiden Zuständen aufgenommenen Specklemuster und Korrelationsrechnungen kann die Bewegung der Probenoberfläche an jedem 45 Punkt ermittelt werden. Dieser Rechenvorgang ist sehr zeitaufwendig. Um eine ausreichend großen Meßbereich und hohe Empfindlichkeit zu erzielen, muß die Anzahl der aufgenommen Bildpunkte möglichst groß sein, so daß eine signifikante Geschwindigkeitssteige- 50 rung unmöglich ist.

Der Lösungsvorschlag basiert auf dem Speckle-Effekt. Die Oberfläche des Prüflings (1) wird von einem Laser (2) und einer Optik (3) mit Laserlicht beleuchtet und mittels einer Abbildungsoptik (4) auf einem oder 55 mehreren lichtempfindlichen Sensorelementen (5) abgebildet. Im Gegensatz zu den o.g. flächenhaften Meßverfahren Verfahren wird allerdings lediglich ein kleiner Oberflächenbereich betrachtet. Dies bewirkt, daß sich das Specklemuster bei einer Dehnung des Bauteils 60 kaum ändert, sondern im wesentlichen nur mit der Probenoberfläche verschoben wird. Die Abbildungsoptik (4) wird so eingestellt, daß der oder die Sensorelemente (5) möglichst nur einen oder wenige Speckles (6) erfassen. Verschiebt sich die Oberfläche (1), so verschiebt 65 sich mit ihr die Position des Speckles (6) und die Helligkeit an jedem Sensorelement (5) ändert sich. Wenn Laserbeleuchtung, Abbildungsoptik und Sensorelement

(im folgenden als Punktsensor (7) bezeichnet) um den gleichen Betrag mitbewegt werden, ändert sich die Helligkeit an jedem Sensorelement nicht oder nur unwesentlich (so lange, bis sich durch lokale Dehnungen das Specklemuster ändert). Der Betrag, um den der Punktsensor bewegt werden muß ist das Maß für die Verschiebung des betrachteten Objektpunktes.

Die Verschiebevorrichtung des Punktsensors wird somit mittels eines (analogen oder digitalen) Prozessors (8) und einer Verfahreinrichtung (9) immer so geregelt, daß die Sensorelemente möglichst konstante Helligkeitswerte bzw. konstante Helligkeitsdifferenzen zwischen den Elementen aufweisen.

Im beschriebenen Verfahren wird daher im Gegen- Flächenaufnehmer, die die Bewegung auf einer 15 satz zur den Specklekorrelationsverfahren nicht die Bewegung der Speckle auf einer Sensormatrix ermittelt, sondern ein Speckle durch mechanisches Nachführen festgehalten. Da nun nur noch ein oder wenige Sensorelemente eingesetzt werden müssen und die Auswertung sowohl digital als auch analog durchgeführt werden kann, kann die Messung wesentlich schneller als die bekannten Verfahren erfolgen und auch für die Maschinenregelung eingesetzt werden.

Falls nur ein Sensorelement eingesetzt wird, kann aus 25 der Helligkeitsänderung nicht die Richtung der Verschiebung erkannt werden. Daher muß in diesem Fall der Punktsensor um das Optimum oszillieren, um auf diese Weise die Speckleposition nicht zu verlieren.

Patentansprüche

1. Verfahren zur berührungslosen und markierungsfreien Messung von Oberflächen-Verschiebungen,

bei dem die zu messende Oberfläche mit einem Laserlichtbündel beleuchtet wird,

das Bild eines beleuchteten Punktes mittels einer geeigneten Optik auf einen oder mehrere Sensorelemente abgebildet wird, wobei

die Lichtintensität der einzelnen Sensorelemente registriert wird und bei einer Veränderung der Absoluthelligkeit des Einzelsensorelements oder der Absoluthelligkeiten der Sensorelemente oder der relativen Helligkeitsdifferenzen zwischen den einzelnen Sensorelementen Laserbeleuchtung und Sensorelement(e) so mechanisch verfahren werden, daß die Ausgangshelligkeitswerte oder -differenzen wieder erreicht werden,

wobei der mechanische Verfahrweg von Laserbeleuchtung und Sensorelement(en) ein Maß für die Verschiebung des beobachteten Oberflächenpunk-

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die vom Laser beleuchtete Fläche sehr klein ist.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die, Sensorelemente in einer CCD-Zeile oder in einer CCD-Matrix angeordnet sind.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Sensorelement ein Analogsensor verwendet wird.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Bestimmung der Verschiebung des Sensors das Vorzeichen der Helligkeitsänderung zwischen den einzelnen Sensorelementen ver-
- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Nachfahren des Sensors durch ein

piezoelektrisches Element, einen Schrittmotorantrieb oder einen anderen elektrischen Antrieb erfolgt.

- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Laserquelle eine Laserdiode verwendet wird
- 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Sensor gleichzeitig in zwei oder drei Raumachsen verschoben wird kann und die Bestimmung des 2- oder 3-achsigen Verschiebe- 10 vektors erlaubt.
- 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch die Ausbildung der Abbildungsoptik die Speckleform so eingestellt wird, daß sie in einer Vorzugsrichtung kleiner sind als in den 15 anderen Raumrichtungen.
- 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Laserbeleuchtungs- und Abbildungsoptik so eingestellt werden kann, daß ein Speckle optimal von den Sensorelementen erfaßt 20 wird.
- 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß lediglich ein Sensorelement verwendet wird.
- 12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Verfolgung des Speckles durch schnelles oszillieren des Sensors um den Optimalpunkt erreicht wird.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das Verfahren des Sensors durch ein 30 mehrstufiges System erfolgt, wobei mindestens eines zur Oszillation, mindestens ein anderes zum Nachführen dient.
- 14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß zwei oder mehr 35 Punktsensoren an mehreren Punkten angeordnet werden und aus den Relativ-Verschiebungen zwischen den einzelnen Punkten Dehnungen ermittelt werden.
- 15. Vorrichtung zur Durchführung des Verfahrens 40 nach Anspruch 1, bestehend aus einem Laser mit Kollimatoroptik, einem oder mehreren lichtempfindlichen Sensoren mit Abbildungsoptik, einem Prozessor und einer Nachführvorrichtung, wobei die Nachführvorrichtung mit den lichtempfindlichen Sensorelementen und dem Prozessor einen Regelkreis bilden, der zu konstanten Helligkeitsverteilungen bzw. Helligkeitsdifferenzen auf den Sensoren führt und wobei die Nachführgröße als Maß für die Oberflächenverschiebung verwendet 50 wird.
- 16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß es sich bei den lichtempfindlichen Sensoren um eine CCD-Zeile oder -Matrix handelt.
- 17. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß der Punktsensor durch die Nachführvorrichtung in zwei oder mehr Raumachsen verschoben werden kann.
- 18. Vorrichtung nach Anspruch 15, dadurch ge- 60 kennzeichnet, daß die Nachführvorrichtung aus mehr als einem Verfahrelement besteht, wobei eines die größeren Gesamtwegamplituden durchführt und mindestens ein weiteres Element kleinere Weg-Oszillationen durchführt.

Hierzu 2 Seite(n) Zeichnungen

4