CS663: Digital Image Processing - Homework 4

Harsh | Pranav | Swayam

October 22, 2024

Homework 4 - Question 3

(a)

Let **A** be an $m \times n$ matrix. The Singular Value Decomposition (SVD) of **A** can be expressed as:

$$A = USV^T$$

where:

- **U** is an $m \times m$ orthogonal matrix,
- S is an $m \times n$ diagonal matrix with non-negative entries (singular values),
- \mathbf{V} is an $n \times n$ orthogonal matrix.

Considering the product $\mathbf{A}^T \mathbf{A}$:

$$\mathbf{A}^T\mathbf{A} = (\mathbf{U}\mathbf{S}\mathbf{V}^T)^T(\mathbf{U}\mathbf{S}\mathbf{V}^T) = \mathbf{V}\mathbf{S}^T\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T = \mathbf{V}\mathbf{S}^T\mathbf{S}\mathbf{V}^T$$

Since **V** is orthogonal, the eigenvalues of $\mathbf{A}^T \mathbf{A}$ are the diagonal entries of $\mathbf{S}^T \mathbf{S}$, which are the squares of the singular values. Thus, the non-zero singular values of **A** are the square roots of the eigenvalues of $\mathbf{A}^T \mathbf{A}$. Similarly, for $\mathbf{A} \mathbf{A}^T$:

$$\mathbf{A}\mathbf{A}^T = (\mathbf{U}\mathbf{S}\mathbf{V}^T)(\mathbf{U}\mathbf{S}\mathbf{V}^T)^T = \mathbf{U}\mathbf{S}\mathbf{V}^T\mathbf{V}\mathbf{S}^T\mathbf{U}^T = \mathbf{U}\mathbf{S}\mathbf{S}^T\mathbf{U}^T$$

The eigenvalues of $\mathbf{A}\mathbf{A}^T$ are also the diagonal entries of $\mathbf{S}\mathbf{S}^T$, confirming that the non-zero singular values correspond to the square roots of the eigenvalues of both matrices.

(b)

The Frobenius norm is defined as:

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

Thus, we have:

$$\|\mathbf{A}\|_F^2 = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2$$

From the SVD, we know:

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$

Therefore:

$$\|\mathbf{A}\|_{F}^{2} = \|\mathbf{U}\mathbf{S}\mathbf{V}^{T}\|_{F}^{2} = \|\mathbf{S}\|_{F}^{2}$$

Since both \mathbf{U} and \mathbf{V} are orthogonal matrices, they do not change the Frobenius norm. The Frobenius norm of a diagonal matrix is simply the sum of squares of its diagonal elements (the singular values):

$$\|\mathbf{S}\|_F^2 = \sum_{i=1}^r \sigma_i^2$$

Thus, we conclude that:

$$\|\mathbf{A}\|_F^2 = \sum_{i=1}^r \sigma_i^2$$

(c)

When attempting to reconstruct A from the product USV^T , the result does not match the original matrix A, causing confusion. This mismatch arises due to sign inconsistencies in the eigenvectors obtained during the eigen decomposition.

Explanation

Eigenvectors can have arbitrary signs: if **u** is an eigenvector of $\mathbf{A}\mathbf{A}^T$ with eigenvalue λ , then $c\mathbf{u}$ is also an eigenvector with the same eigenvalue. This leads to potential sign discrepancies between the left singular vectors in **U** and the right singular vectors in **V**, causing $\mathbf{A} \neq \mathbf{U}\mathbf{S}\mathbf{V}^T$.

Mathematical Formulation

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we know that the SVD of \mathbf{A} is given by:

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$

The matrices ${\bf U}$ and ${\bf V}$ are obtained via the eigen decomposition:

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{S} \mathbf{V}^T$$
 and $\mathbf{A} \mathbf{A}^T = \mathbf{U} \mathbf{S} \mathbf{U}^T$

where **S** is the diagonal matrix of eigenvalues, and the columns of **U** and **V** are the eigenvectors corresponding to $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$, respectively. Sign Inconsistency-

The issue arises because both \mathbf{u} and $-\mathbf{u}$ (similarly, \mathbf{v} and $-\mathbf{v}$) are valid eigenvectors corresponding to the same eigenvalue λ . Therefore, the numerical eigen decomposition may return eigenvectors with arbitrary signs. When constructing the SVD as $\mathbf{U}\mathbf{S}\mathbf{V}^T$, any sign discrepancy between corresponding columns of \mathbf{U} and \mathbf{V} can result in a mismatch, leading to:

$$\mathbf{A} \neq \mathbf{U}\mathbf{S}\mathbf{V}^T$$

```
Original matrix A:
   0.9572
              0.4218
                        0.6557
                                  0.6787
   0.4854
                        0.0357
              0.9157
                                  0.7577
   0.8003
              0.7922
                        0.8491
                                   0.7431
   0.1419
              0.9595
                        0.9340
                                   0.3922
Reconstructed matrix A using U * S * V^T (without fixing signs):
              1.0889
                        0.6185
                                  0.5901
   0.2611
    0.5500
              0.3692
                        1.0506
                                   0.3272
   0.6511
              1.0116
                        0.6816
                                   0.7933
   1.0089
              0.4681
                        0.2716
                                  0.8101
```

Figure 1: Incorrect SVD computation

Resolution of the Sign Inconsistency

To resolve this, for each *i*-th pair of eigenvectors \mathbf{u}_i (from $\mathbf{A}\mathbf{A}^T$) and \mathbf{v}_i (from $\mathbf{A}^T\mathbf{A}$), adjust the signs as follows:

If
$$\operatorname{sign}(\mathbf{u}_i^T \mathbf{A} \mathbf{v}_i) < 0$$
, set $\mathbf{u}_i \leftarrow -\mathbf{u}_i$

This ensures the correct reconstruction $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$.

```
Original matrix A:
                         0.7094
                                   0.6551
    0.4387
              0.1869
   0.3816
                         0.7547
                                   0.1626
              0.4898
    0.7655
              0.4456
                         0.2760
                                   0.1190
    0.7952
              0.6463
                         0.6797
                                   0.4984
Reconstructed matrix A using U * S * V^T (after fixing signs):
                                   0.6551
    0.4387
              0.1869
                        0.7094
    0.3816
              0.4898
                         0.7547
                                   0.1626
    0.7655
              0.4456
                         0.2760
                                   0.1190
   0.7952
              0.6463
                         0.6797
                                   0.4984
```

Figure 2: Corrected SVD computation

(d)

(i)

Considering there are appropriate number of elements in the vector,

$$\mathbf{y}^T \mathbf{P} \mathbf{y} = \mathbf{y}^T \mathbf{A}^T \mathbf{A} \mathbf{y} = (\mathbf{A} \mathbf{y})^T (\mathbf{A} \mathbf{y}) = \|\mathbf{A} \mathbf{y}\|^2 \ge 0$$
$$\implies \mathbf{y}^T \mathbf{P} \mathbf{y} \ge 0$$

Similarly, for the matrix \mathbf{Q} , we have:

$$\mathbf{z}^T \mathbf{Q} \mathbf{z} = \mathbf{z}^T \mathbf{A} \mathbf{A}^T \mathbf{z} = (\mathbf{A}^T \mathbf{z})^T (\mathbf{A}^T \mathbf{z}) = \|\mathbf{A}^T \mathbf{z}\|^2 \ge 0$$
$$\implies \mathbf{z}^T \mathbf{Q} \mathbf{z} > 0$$

Now, the eigenvalues of a positive semi-definite matrix are non-negative. And, since \mathbf{P} and \mathbf{Q} are positive semi-definite matrices, as shown above, the eigenvalues of \mathbf{P} and \mathbf{Q} are non-negative.

Proof: Let λ be an eigenvalue of **P** and **v** be the corresponding eigenvector. Then:

$$\mathbf{P}\mathbf{v} = \lambda \mathbf{v}$$

$$\implies \mathbf{v}^T \mathbf{P} \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v}$$

$$\implies \mathbf{v}^T \mathbf{P} \mathbf{v} = \lambda$$

Since **P** is positive semi-definite, $\mathbf{v}^T \mathbf{P} \mathbf{v} \geq 0$, which implies $\lambda \geq 0$. Thus, the eigenvalues of **P** are non-negative.

Similarly, for \mathbf{Q} , let μ be an eigenvalue of \mathbf{Q} and \mathbf{w} be the corresponding eigenvector. Then:

$$\mathbf{Q}\mathbf{w} = \mu\mathbf{w}$$

$$\implies \mathbf{w}^T \mathbf{Q} \mathbf{w} = \mu \mathbf{w}^T \mathbf{w}$$

$$\implies \mathbf{w}^T \mathbf{Q} \mathbf{w} = \mu$$

Since **Q** is positive semi-definite, $\mathbf{w}^T \mathbf{Q} \mathbf{w} \ge 0$, which implies $\mu \ge 0$. Thus, the eigenvalues of **Q** are non-negative.

(ii)

Let **u** be an eigenvector of **P** with eigenvalue λ . Then:

$$\mathbf{P}\mathbf{u} = \lambda \mathbf{u}$$

$$\therefore \mathbf{A}\mathbf{P}\mathbf{u} = \mathbf{A}(\lambda \mathbf{u}) = \lambda \mathbf{A}\mathbf{u}$$

$$\implies \lambda \mathbf{A}\mathbf{u} = \mathbf{A}\mathbf{A}^T \mathbf{A}\mathbf{u} = (\mathbf{A}\mathbf{A}^T)\mathbf{A}\mathbf{u} = \mathbf{Q}\mathbf{A}\mathbf{u}$$

Thus, $\mathbf{A}\mathbf{u}$ is an eigenvector of \mathbf{Q} with eigenvalue λ . Similarly, let \mathbf{v} be an eigenvector of \mathbf{Q} with eigenvalue μ . Then:

$$\mathbf{Q}\mathbf{v} = \mu\mathbf{v}$$

$$\therefore \mathbf{A}^T \mathbf{Q} \mathbf{v} = \mathbf{A}^T (\mu \mathbf{v}) = \mu \mathbf{A}^T \mathbf{v}$$

$$\implies \mu \mathbf{A}^T \mathbf{v} = \mathbf{A}^T \mathbf{A} \mathbf{A}^T \mathbf{v} = (\mathbf{A}^T \mathbf{A}) \mathbf{A}^T \mathbf{v} = \mathbf{P} \mathbf{A}^T \mathbf{v}$$

Thus, $\mathbf{A}^T \mathbf{v}$ is an eigenvector of \mathbf{P} with eigenvalue μ .

The number of elements in \mathbf{u} and \mathbf{v} are the same as the number of rows in \mathbf{P} and \mathbf{Q} , respectively.

(iii)

$$\mathbf{Q}\mathbf{v}_{i} = \mu_{i}\mathbf{v}_{i}$$

$$\implies \mathbf{A}\mathbf{A}^{T}\mathbf{v}_{i} = \mathbf{A}(\mathbf{A}^{T}\mathbf{v}_{i}) = \mu_{i}\mathbf{v}_{i}$$

$$\implies \mathbf{A}\mathbf{u}_{i} = \frac{\mu_{i}\mathbf{v}_{i}}{\|\mathbf{A}^{T}\mathbf{v}_{i}\|}$$

Let $\gamma_i = \frac{\mu_i}{\|\mathbf{A}^T \mathbf{v}_i\|}$. Then:

$$\mathbf{A}\mathbf{u}_i = \gamma_i \mathbf{v}_i$$

where, γ_i is non-negative because μ_i is real, non-negative and $\|\mathbf{A}^T\mathbf{v}_i\|$ is non-negative.

Thus, there exists a real, non-negative γ_i such that $\mathbf{A}\mathbf{u}_i = \gamma_i \mathbf{v}_i$.

(iv)

$$\begin{aligned} \mathbf{A}\mathbf{u}_i &= \gamma_i \mathbf{v}_i & \forall 1 \leq i \leq m \\ \mathbf{A}\mathbf{u}_i &= 0 & \forall m+1 \leq i \leq n \\ &\Longrightarrow \mathbf{A}\mathbf{V} = \mathbf{U}\mathbf{\Gamma} \end{aligned}$$

where, **V** is an $n \times n$ orthonormal matrix with columns as \mathbf{v}_i , **U** is an $m \times m$ matrix with columns as \mathbf{u}_i , and Γ is an $m \times n$ matrix with diagonal entries as γ_i and all other entries as 0.

$$\implies \mathbf{A} = \mathbf{U}\mathbf{\Gamma}\mathbf{V}^T$$

where the values in Γ are non-negative as proved above.