Optimal Control

Wintersemester 2025/26

Dozent: Prof. Dr. Andrea Iannelli

$O_{\underline{I}}$	ptimal Control	$WS\ 2025/26$	
C	Contents		
0	Introduction	1	
1	Nonlinear Programming	3	

Optimal Control WS 2025/26

0 Introduction

$$\dot{x} = f(t, x, u), \quad x(t_0) = x_0, \quad t \in [t_0, t_f]$$

$$f : [t_0, t_f] \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$$

$$x = \text{state}, \quad u = \text{input}$$

Initial Value Problem (IVP)

Given $x_0, u(\cdot)$ we can compute $x(\cdot)$

<u></u> functions of time →

When is this possible? It depends on f.

Lemma 0.1

(Sufficient conditions)

Existence & Uniqueness of solutions of ODEs.

Assume that

- f is piecewise continuous in t and u
- f is globally Lipschitz in x

$$\exists k(t, u) \text{ s.t. } ||f(t, x_1, u) - f(t, x_2, u)|| \le k(t, u)||x_1 - x_2||, \ \forall x_1, x_2 \in \mathbb{R}^{n_x}$$

Then $x(\cdot)$ exists for all t and is unique.

Remarks

- Lipschitz continuous ⇒ continuous, but not the converse
- \sqrt{x} is continuous but not Lipschitz, $\dot{x} = \sqrt{x}$ does not have a unique solution
- Continously differentiable $(\mathcal{C}^1) \Rightarrow \text{locally Lipschitz continous } \forall x_1, x_2 \in \mathcal{X} \subset \mathbb{R}^{n_x}$
- Locally Lipschitz continuous x guarantees existence & uniqueness for small enough times

In this course we will assume $f \in \mathcal{C}^1$ and implicitly assume that t_f is chosen such that $x(\cdot)$ exists in $[t_0, t_f]$.

We do not need to worry about existence & uniqueness!

Goal in Optimal Control:

Design u such that

Optimal Control WS 2025/26

- 1. $u(t) \in \mathcal{U}(t), x(t) \in \mathcal{X}(t) \quad \forall t \in [t_0, t_f], \quad \mathcal{X} \subset \mathbb{R}^{n_x}, \ \mathcal{U} \subset \mathbb{R}^{n_u}$ sets defining constraints on u&x \Rightarrow Admissible input/state trajectories
- 2. The system behaves optimally according to

$$J(u) = \int_{t_0}^{t_f} \underset{\uparrow}{l}(t, x(t), u(t)) dt + \varphi(t_f, x(t_f))$$

Cost function running cost terminal cost \Rightarrow optimal behaviour

Formally, we can state the goal as follows:

Find an admissible input u^* which causes the dynamics to follow an admissible trajectory x^* which minimizes J, that is

$$\int_{t_0}^{t_f} l(t, x^*(t), u^*(t)) dt + \varphi(t_f, x^*(t_f)) \le \int_{t_0}^{t_f} l(t, x(t), u(t)) dt + \varphi(t_f, x(t_f))$$

 \forall admissible x, u

Examples of cost functions

1) Minimum-time problem

Goal: transfer the system from x_0 to a set S in the minimum time

$$J = t_f - t_0 = \int_{t_0}^{t_f} dt \qquad (l = 1, \varphi = 0)$$
$$x(t_f) \in \mathcal{S}$$

Note: t_f is also a decision variable! The unknowns are (u, t_f) .

2) Minimum control-effort problem

$$J = \int_{t_0}^{t_f} \|u(t)\|^2 dt$$
$$x(t_f) \in \mathcal{S}$$

3) Tracking problem

$$J = \int_{t_0}^{t_f} (x(t) - r(t))^T Q(x(t) - r(t)) dt$$

Optimal Control WS 2025/26

Q > 0 (positive definit matrix: symmetric & all eigenvalues positive) r(t) given signal

1 Nonlinear Programming

Nonlinear Programs (NLP) are general <u>finite-dimensional</u> optimization problems:

$$\min_{x} f(x)$$

s.t.
$$q(x) < 0$$
, $h(x) = 0$

 $f: \mathbb{R}^n \to \mathbb{R}$, objective function

 $g: \mathbb{R}^n \to \mathbb{R}^{n_g}$, inequality constraints

 $h: \mathbb{R}^n \to \mathbb{R}^{n_h}$, equality constraints

Feasible set:

$$D = \{x \in \mathbb{R}^n \mid g(x) \le 0, \ h(x) = 0\}$$

 $\overline{x} \in D$ feasible point

Definition 1.1

Global, local Minimizers

 $x^{\star} \in \mathcal{D}$ Global Minimizer of the NLP if

$$f(x^*) \le f(x) \quad \forall x \in \mathcal{D}$$

 $f(x^*)$ is the <u>Global Minimum</u> (or Minimum)

Nomenclature: x^* is also called (optimal) solution, $F(x^*)$ is optimal value x^* is a strict global minimizer if $f(x^*) < f(x) \quad \forall x \in \mathcal{D}$ $x^* \in \mathcal{D}$ Local Minimizer if

$$\exists \varepsilon > 0, \text{ s.t. } f(x^*) \leq f(x) \quad \forall x \in B_{\varepsilon}(x^*) \cap \mathcal{D}$$

$$B_{\varepsilon}(x) := \{ y \mid ||x - y|| \le \varepsilon \}$$
 $||\cdot|| : \mathbb{R}^n \to \mathbb{R}_{\ge 0}$ any norm in \mathbb{R}^n

Strict local Minimizer if inequality holds strictly

Global min $\underset{\not\leftarrow}{\rightarrow}$ local min

Solving an NLP boils down to finding global or local minimizers. Does a solution always exist? No.