

PATENT APPLICATION

OF

Ralph Craig Even

For

AQUEOUS ACRYLIC EMULSION POLYMER COMPOSITION

DN A01087B

RDB/sd

Express Mail Label No. EF385421543US

1

AQUEOUS ACRYLIC EMULSION POLYMER COMPOSITION

This is a Continuation-in-part of copending nonprovisional Application No. 09/882,024 filed June 18, 2001, which is a nonprovisional application of prior provisional application 60/234,917 filed September 25, 2000.

*Spur
6/27/03
now abandoned,
A*

5 This invention relates to an aqueous acrylic emulsion polymer suitable for providing dry coatings having improved scrub resistance. More particularly, this invention relates to an aqueous acrylic emulsion polymer including, as copolymerized units, 70 to 99.5% by weight, based on dry polymer weight, monoethylenically unsaturated nonionic (meth)acrylic monomer and from 0.3 to 10% by weight, based on dry polymer weight, monoethylenically unsaturated acid monomer, wherein at least 40% by weight, based on dry polymer weight, of the emulsion polymer is formed by redox polymerization in the presence of 0.001 to 0.05 moles chain transfer agent per kg dry polymer weight. The invention also relates to an aqueous coating composition including the acrylic emulsion polymer and to a method for improving the scrub resistance of a dry coating including applying the aqueous coating composition to a substrate; and drying, or allowing to dry, the aqueous coating composition.

10
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285

In a first aspect of the present invention there is provided an aqueous acrylic emulsion polymer including, as copolymerized units, 70 to 99.5% by weight, based on dry polymer weight, monoethylenically unsaturated nonionic (meth)acrylic monomer and from 0.3 to 10% by weight, based on dry polymer weight, monoethylenically unsaturated acid monomer, 5 wherein at least 40% by weight, based on dry polymer weight, of the emulsion polymer is formed by redox polymerization in the presence of 0.001 to 0.05, preferably 0.0025 to 0.025 moles chain transfer agent per kg dry polymer weight.

In a second aspect of the present invention there is provided an aqueous coating composition including an aqueous acrylic emulsion polymer, the polymer including, as copolymerized units, 70 to 99.5% by weight, based on dry polymer weight, monoethylenically unsaturated nonionic (meth)acrylic monomer and from 0.3 to 10% by weight, based on dry polymer weight, monoethylenically unsaturated acid monomer, wherein at least 40% by weight, based on dry polymer weight, of the emulsion polymer is formed by redox polymerization in the presence of 0.001 to 0.05, preferably 0.0025 to 0.025 moles chain transfer agent per kg dry polymer weight.

10
15
20
25

20
25

In a third aspect of the present invention there is provided a method for improving the scrub resistance of a dry coating including a) forming an aqueous coating composition including an aqueous acrylic emulsion polymer, the polymer including, as copolymerized units, 70 to 99.5% by weight, based on dry polymer weight, monoethylenically unsaturated nonionic (meth)acrylic monomer and from 0.3 to 10% by weight, based on dry polymer weight, monoethylenically unsaturated acid monomer, wherein at least 40% by weight, based on dry polymer weight, of the emulsion polymer is formed by redox polymerization in the presence of 0.001 to 0.05, preferably 0.0025 to 0.025 moles chain transfer agent per kg dry polymer weight; b) applying the coating composition to a substrate; and c) drying, or allowing to dry, the applied coating composition.

In other aspects of the present invention there are provided a method for improving the adhesion of a dry coating and a method for improving the adhesion of a coating to an alkyd substrate

The aqueous acrylic emulsion polymer contains, as copolymerized units, 70 to 30 99.5% by weight, based on dry polymer weight, monoethylenically-unsaturated nonionic (meth)acrylic monomer including esters, amides, and nitriles of (meth)acrylic acid, such as, for example, (meth)acrylic ester monomer including methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, stearyl acrylate, methyl

methacrylate, butyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, aminoalkyl (meth)acrylate, N-alkyl aminoalkyl (meth)acrylate, N,N-dialkyl aminoalkyl (meth)acrylate; ureido (meth)acrylate; (meth)acrylonitrile and (meth)acrylamide. The use of the term "(meth)" followed by another term such as acrylate, acrylonitrile, or acrylamide, as used throughout the disclosure, refers to both acrylate, acrylonitrile, or acrylamide and methacrylate, methacrylonitrile, and methacrylamide, respectively. By "nonionic monomer" herein is meant that the copolymerized monomer residue does not bear an ionic charge between pH=1-14.

The aqueous emulsion polymer contains, as copolymerized units, from 0.3 to 10% by weight, based on dry polymer weight, monoethylenically-unsaturated acid monomer such as, for example, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, sulfoethyl methacrylate, phosphoethyl methacrylate, fumaric acid, maleic acid, monomethyl itaconate, monomethyl fumarate, monobutyl fumarate, and maleic anhydride. Preferably, the emulsion polymer contains, as copolymerized units, from 0.3 to 2.5% by weight, based on dry polymer weight, (meth)acrylic acid.

The aqueous emulsion polymer further contains, as copolymerized units, from 0 to 29.5% by weight, based on dry polymer weight, of optional monomers which are neither nonionic monoethylenically-unsaturated nonionic (meth)acrylic monomers nor monoethylenically-unsaturated acid monomers. Optional monomers may include, for example, styrene or alkyl-substituted styrenes; butadiene; vinyl acetate, vinyl propionate, or other vinyl esters; vinyl monomers such as vinyl chloride, vinylidene chloride, and N-vinyl pyrrolidone; allyl methacrylate, vinyl toluene, vinyl benzophenone, diallyl phthalate, 1,3-butylene glycol dimethacrylate, 1,6-hexanedioldiacrylate, and divinyl benzene.

The emulsion polymer used in this invention is substantially uncrosslinked, when it is applied to a substrate in the method of this invention, although low levels of deliberate or adventitious crosslinking may be present. When low levels of precrosslinking or gel content are desired low levels of optional nonionic multi-ethylenically unsaturated monomers such as, for example, 0.1% - 5%, by weight based on the dry polymer weight, may be used. It is important, however, that the quality of the film formation is not materially impaired.

The polymerization techniques used to prepare the acrylic emulsion polymer of this invention are well known in the art. Conventional surfactants may be used such as, for example, anionic and/or nonionic emulsifiers such as, for example, alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates, sulfonates or phosphates; alkyl sulfonic acids;

sulfosuccinate salts; fatty acids; ethylenically unsaturated surfactant monomers; and ethoxylated alcohols or phenols. The amount of surfactant used is usually 0.1% to 6% by weight, based on the weight of monomer. A redox initiation process is used. The reaction temperature is maintained at a temperature lower than 100 °C throughout the course of the reaction. Preferred is a reaction temperature between 30 °C and 95 °C, more preferably between 50 °C and 90 °C. The monomer mixture may be added neat or as an emulsion in water. The monomer mixture may be added in one or more additions or continuously, linearly or not, over the reaction period, or combinations thereof. The redox system includes an oxidant and a reductant. One or more oxidants such as, for example, hydrogen peroxide, sodium peroxide, potassium peroxide, t-butyl hydroperoxide, t-amyl hydroperoxide, cumene hydroperoxide, ammonium and/or alkali metal persulfates, sodium perborate, perphosphoric acid and salts thereof, potassium permanganate, and ammonium or alkali metal salts of peroxydisulfuric acid, typically at a level of 0.01% to 3.0% by weight, based on dry polymer weight, are used. At least one suitable reductant such as, for example, sodium sulfoxylate formaldehyde, alkali metal and ammonium salts of sulfur-containing acids, such as sodium sulfite, bisulfite, thiosulfate, hydrosulfite, sulfide, hydrosulfide or dithionite, formadinesulfinic acid, hydroxymethanesulfonic acid, acetone bisulfite, amines such as ethanolamine, glycolic acid, glyoxylic acid hydrate, ascorbic acid, isoascorbic acid, lactic acid, glyceric acid, malic acid, 2-hydroxy-2-sulfinatoacetic acid, tartaric acid and salts of the preceding acids typically at a level of 0.01% to 3.0% by weight, based on dry polymer weight, is used. Redox reaction catalyzing metal salts of iron, copper, manganese, silver, platinum, vanadium, nickel, chromium, palladium, or cobalt may optionally be used. The oxidant and reductant are typically added to the reaction mixture in separate streams, preferably concurrently with the monomer mixture. The polymerization is preferably carried out at pH of 4 to 8.

Further, a chain transfer agent such as, for example, isopropanol, halogenated compounds, n-butyl mercaptan, n-amyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, alkyl thioglycolate, mercaptopropionic acid, and alkyl mercaptoalkanoate in an amount of 0.001 to 0.05, preferably 0.0025 to 0.05 moles per kg dry polymer weight, is used. Linear or branched C₄-C₂₂ alkyl mercaptans such as n-dodecyl mercaptan and t-dodecyl mercaptan are preferred. Chain transfer agent(s) may be added in one or more additions or continuously, linearly or not, over most or all of the entire reaction period or during limited

portion(s) of the reaction period such as, for example, in the kettle charge and in the reduction of residual monomer stage.

However, at least 40% by weight, preferably at least 75% by weight, more preferably at least 95% by weight, based on dry polymer weight, of the emulsion polymer is formed by redox polymerization in the presence of 0.001 to 0.05 moles chain transfer agent per kg dry polymer weight. By "at least 40% by weight, based on dry polymer weight, of the emulsion polymer is formed by redox polymerization in the presence of 0.001 to 0.05 moles chain transfer agent per kg dry polymer weight" is meant herein that at least 40% by weight, based on dry polymer weight, of the emulsion polymer is formed by redox emulsion polymerization and that this polymerization is effected contemporaneously with the prior presence and/or addition of a total of 0.001 to 0.05 moles chain transfer agent per kg dry polymer weight. The emulsion polymerization is contemplated to include embodiments where some of the polymer is introduced by a polymer seed, formed in situ or not, or formed during hold periods or formed during periods wherein the monomer feed has ended and residual monomer is being converted to polymer.

In another aspect of the present invention the emulsion polymer may be prepared by a multistage emulsion polymerization process, in which at least two stages differing in composition are polymerized in sequential fashion. Such a process usually results in the formation of at least two mutually incompatible polymer compositions, thereby resulting in the formation of at least two phases within the polymer particles. Such particles are composed of two or more phases of various geometries such as, for example, core/shell or core/sheath particles, core/shell particles with shell phases incompletely encapsulating the core, core/shell particles with a multiplicity of cores, and interpenetrating network particles. In all of these cases the majority of the surface area of the particle will be occupied by at least one outer phase and the interior of the particle will be occupied by at least one inner phase. Each of the stages of the multi-staged emulsion polymer may contain the same monomers, surfactants, redox initiation system, chain transfer agents, etc. as disclosed herein-above for the emulsion polymer. In the case of a multi-staged polymer particle the Tg for the purpose of this invention is to be calculated by the Fox equation as detailed herein using the overall composition of the emulsion polymer without regard for the number of stages or phases therein. Similarly, compositional quantities for a multi-staged polymer particle such as, for example, the amount of nonionic monomer and acid monomer shall be determined from the overall composition of the emulsion polymer without regard for the number of stages or

phases therein. The polymerization techniques used to prepare such multistage emulsion polymers are well known in the art such as, for example, US Patents No. 4,325,856; 4,654,397; and 4,814,373. It is also envisioned that the emulsion polymer of this invention whether prepared by a single-stage or multi-staged process may be used as either or both 5 component(s) of a hard/soft emulsion polymer blend.

The emulsion polymer has an average particle diameter from 20 to 1000 nanometers, preferably from 70 to 300 nanometers. Particle sizes herein are those determined using a Brookhaven Model BI-90 particle sizer manufactured by Brookhaven Instruments Corporation, Holtsville NY, reported as "effective diameter". Also contemplated are 10 multimodal particle size emulsion polymers wherein two or more distinct particle sizes or very broad distributions are provided as is taught in US Patents No. 5,340,858; 5,350,787; 5,352,720; 4,539,361; and 4,456,726.

The glass transition temperature ("Tg") of the emulsion polymer is typically from -20 °C to 100 °C, preferably from -20 C to 50 C, the monomers and amounts of the monomers selected to achieve the desired polymer Tg range are well known in the art. Tgs used herein are those calculated by using the Fox equation (T.G. Fox, Bull. Am. Physics Soc., Volume 1, Issue No. 3, page 123(1956)). that is, for calculating the Tg of a copolymer of monomers M1 and M2,

$$1/Tg(\text{calc.}) = w(M1)/Tg(M1) + w(M2)/Tg(M2)$$

20 , wherein

Tg(calc.) is the glass transition temperature calculated for the copolymer

w(M1) is the weight fraction of monomer M1 in the copolymer

w(M2) is the weight fraction of monomer M2 in the copolymer

Tg(M1) is the glass transition temperature of the homopolymer of M1

25 Tg(M2) is the glass transition temperature of the homopolymer of M2,
all temperatures being in °K.

The glass transition temperatures of homopolymers may be found, for example, in "Polymer Handbook", edited by J. Brandrup and E.H. Immergut, Interscience Publishers.

In one aspect of the present invention a method for improving the adhesion of a dry 30 coating including: a) forming an aqueous coating composition including an aqueous acrylic emulsion polymer, the polymer including, as copolymerized units, 70 to 99.5% by weight, based on dry polymer weight, monoethylenically unsaturated nonionic (meth)acrylic monomer, 0.1 to 12.5% by weight, based on dry polymer weight, aldehyde reactive group-

containing monomer, and from 0.3 to 10% by weight, based on dry polymer weight, monoethylenically unsaturated acid monomer, wherein at least 40% by weight, based on dry polymer weight, of the emulsion polymer is formed by redox polymerization in the presence of 0.001 to 0.05 moles chain transfer agent per kg dry polymer weight; b) applying the
5 coating composition to a substrate; and c) drying, or allowing to dry, the applied coating composition. By "aldehyde reactive group-containing monomer" is meant herein a monomer which, in a homogeneous solution containing 20% by weight of the monomer and an equimolar amount of formaldehyde at any pH from 1 to 14, will exhibit greater than 10% extent of reaction between the monomer and formaldehyde on a molar basis in one day at 25
10 °C. Included as ethylenically-unsaturated aldehyde reactive group-containing monomers are, for example, vinyl acetoacetate, acetoacetoxyethyl (meth)acrylate, acetoacetoxypropyl (meth)acrylate, allyl acetoacetate, acetoacetoxybutyl (meth)acrylate, 2,3-di(acetoacetoxy)propyl (meth)acrylate, vinyl acetoacetamide, acetoacetoxyethyl (meth)acrylamide, 3-(2-vinyloxyethylamino)-propionamide, N-(2-(meth)acryloxyethyl)-morpholinone-2, 2-methyl-1-vinyl-2-imidazoline, 2-phenyl-1-vinyl-2-imidazoline, 2-(3-Oxazolidinyl)ethyl (meth)acrylate, N-(2-vinoxyethyl)-2-methyloxazolidine, 4,4-dimethyl-2-isopropenyloxazoline, 3-(4-pyridyl)propyl (meth)acrylate, 2-methyl-5-vinyl-pyridine, 2-vinoxyethylamine, 2-vinoxyethylethylene-diamine, 3-aminopropyl vinyl ether, 2-amino-2-methylpropyl vinyl ether, 2-aminobutyl vinyl ether, tert-butylaminoethyl (meth)acrylate, 2-
20 (meth)acryloxyethyldimethyl-β-propiobetaine, diethanolamine monovinyl ether, o-aniline vinyl thioether, (meth)acryloxyacetamido-ethylethyleneurea, ethyleneureidoethyl (meth)acrylate, (meth)acrylamidoethyl-ethyleneurea, (meth)acrylamidoethyl-ethylenethiourea, N-((meth)acrylamidoethyl)-N¹-hydroxymethylethyleneurea, N-((meth)acrylamidoethyl)-N¹-methoxymethylethyleneurea, N-formamidoethyl-N¹-vinylethyleneurea, N-vinyl-N¹-
25 aminoethyl-ethyleneurea, N-(ethyleneureidoethyl)-4-pentenamide, N-(ethylenethiouidoethyl)-10-undecenamide, butyl ethyleneureido-ethyl fumarate, methyl ethyleneureido-ethyl fumarate, benzyl N-(ethyleneureido-ethyl) fumarate, benzyl N-(ethyleneureido-ethyl) maleamate, N-vinoxyethylethylene-urea, N-(ethyleneureidoethyl)-crotonamide, ureidopentyl vinyl ether, 2-ureidoethyl (meth)acrylate, N-2-(allylcarbamato)aminoethyl imidazolidinone,
30 1-(2-((20hydroxy-3-(2-propenoxy)propyl)amino)ethyl)-2-imidazolidinone, hydrogen ethyleneureidoethyl itaconamide, ethyleneureidoethyl hydrogen itaconate, bis-ethyleneureidoethyl itaconate, ethyleneureidoethyl undecylenate, ethyleneureidoethyl undecylenamide, 2-(3-methylolimidazolidone-2-yl-1)ethyl acrylate, N-acryloxyalkyl

oxazolidines, acylamidoalkyl vinyl alkyleneureas, aldehyde-reactive amino group-containing monomers as dimethyaminoethyl methacrylate, and ethylenically unsaturated monomers containing aziridene functionality. Preferred is 0.25% to 5%, by weight based on total monomer weight, of a copolymerized ethylenically-unsaturated aldehyde reactive group-containing monomer, based on the weight of the polymer.

In an alternative embodiment polymers containing a sufficient amount of copolymerized monomer(s) having reactive functionality, which is not reactive with aldehydes, to provide, after reaction during or after the emulsion polymerization, 0.1-12.5 %, by weight based on the total weight of the emulsion polymer, copolymerized aldehyde-reactive monomer equivalent are also contemplated. By "copolymerized monomer equivalent" is meant herein the copolymerized monomer which would have led to the copolymer even though the polymer was formed by a post-polymerization reaction rather than directly formed by the copolymerization of that monomer. In this embodiment, for example, the reaction product of polymers containing carboxylic acid functionality with compounds consisting of or containing an aziridine (ethyleneimine) ring or rings may be formed. Substitution on the ring may be on the nitrogen and /or either or both carbons such as, for example, ethyleneimine, propyleneimine, N-(2-hydroxyethyl) ethyleneimine, trimethylolpropane-tris-(β -(N-aziridinyl) propionate), and pentaerythritol trimethylolpropane-tris-(β -(N-aziridinyl) propionate). Also, polymers containing β -aminoester and/ or β -hydroxyamide functionality may be formed by post-polymerization processes.

In another aspect of this invention a method for improving the adhesion of a dry coating to an alkyd substrate, particularly to an aged or weathered alkyd substrate, the aqueous coating composition including an emulsion polymer which provides a coating with inferior adhesion such as, for example, a colloidally-stabilized emulsion polymer, is provided. By "colloidally-stabilized" emulsion polymer herein is meant an emulsion polymer prepared, at least in part, in the presence of a nonionic colloidal stabilizer. Without being bound by theory, it is believed that such a process results in the grafting of at least part of the colloidal stabilizer on the emulsion polymer with beneficial effect on the rheology of coatings prepared therefrom. The method of this invention includes forming an aqueous coating composition including (1) a first aqueous emulsion polymer including 0-2%, by weight based on the total weight of the first polymer, ethylenically unsaturated aldehyde reactive group-containing monomer, the first polymer having a glass transition temperature from -60 °C to 80 °C and a particle diameter of 200 to 1000 nanometers, prepared, at least in part, in the presence of

0.001 -6%, by weight based on the dry weight of said first emulsion polymer, of a colloidal stabilizer selected from the group consisting of hydroxyethyl cellulose, N-vinyl pyrrolidone, polyvinyl alcohol, partially acetylated polyvinyl alcohol, carboxymethyl cellulose, gum arabic, and mixtures thereof, and (2) a second aqueous emulsion polymer, the second polymer
5 having a glass transition temperature (Tg) from -60 °C to 80 °C and a particle diameter of 30 to 200 nanometers, formed by the free radical polymerization of at least one ethylenically unsaturated nonionic acrylic monomer, 0.1-12.5%, preferably 0.25-7.5%, by weight based on the total weight of the second polymer, ethylenically unsaturated aldehyde reactive group-containing monomer, and 0-7.5%, by weight based on the total weight of the polymer,
10 ethylenically unsaturated acid monomer wherein at least 40% by weight, based on dry polymer weight, of said second emulsion polymer is formed by redox polymerization in the presence of 0.001 to 0.05, preferably 0.0025 to 0.025, moles chain transfer agent per kg dry polymer weight; wherein the dry weight ratio of the second polymer to the first polymer is from 1:99 to 1:1; applying the aqueous coating composition to the alkyd substrate; and
15 drying, or allowing to dry, the aqueous composition. The method provides adhesion improved relative to that engendered when a colloidally-stabilized emulsion polymer is used without the second emulsion polymer (the aqueous emulsion polymer used in this invention) in a corresponding aqueous coating composition. Blending of the first emulsion polymer and the second emulsion polymer may be effected prior to or while formulating the binders in an
20 aqueous coating composition.

The amount of pigment and extender in the aqueous coating composition may vary from a pigment volume concentration (PVC) of 0 to 85 and thereby encompass coatings otherwise described in the art, for example, as clear coatings, flat coatings, satin coatings, semi-gloss coatings, gloss coatings, primers, textured coatings, and the like. The pigment
25 volume concentration is calculated by the following formula:

$$\text{PVC (\%)} = \frac{\text{volume of pigment(s), + volume extender(s)}}{\text{total dry volume of paint}} \times 100.$$

The typical PVC of different optional sheen levels are set out below.

Sheen of Dry Coating	PVC (%)
gloss	15-30
semi-gloss	23-30
eggshell, satin, or low lustre	30-38
flat	38-85

The aqueous coating composition is prepared by techniques which are well known in the coatings art. First, if the coating composition is to be pigmented, at least one pigment may be well dispersed in an aqueous medium under high shear such as is afforded by a COWLES® mixer or, in the alternative, at least one predispersed pigment may be used. Then the acrylic emulsion polymer may be added under low shear stirring along with other coatings adjuvants as desired. Alternatively, the emulsion polymer may be present during the pigment dispersion step. The aqueous coating composition may contain conventional coatings adjuvants such as, for example, emulsifiers, buffers, neutralizers, coalescents, thickeners or rheology modifiers, freeze-thaw additives, wet-edge aids, humectants, wetting agents, biocides, antifoaming agents, UV absorbers such as benzophenone, substituted benzophenones, and substituted acetophenones, colorants, waxes, and anti-oxidants. The aqueous coating composition may contain up to 50%, by weight based on the total dry weight of the polymer, of an emulsion polymer not meeting the limitations of the emulsion polymer of the present invention, including a film-forming and/or a non-film-forming emulsion polymer.

Preferably the aqueous coating composition contains less than 5% VOC by weight based on the total weight of the coating composition; more preferably the aqueous coating composition contains less than 3% VOC by weight based on the total weight of the coating composition; even more preferably the aqueous coating composition contains less than 1.7% VOC by weight based on the total weight of the coating composition. A volatile organic compound (“VOC”) is defined herein as a carbon containing compound that has a boiling point below 280°C at atmospheric pressure, compounds such as water and ammonia being excluded from VOCs.

A “low VOC” coating composition herein is a coating composition which contains less than 5% VOC by weight based on the total weight of the coating composition; preferably

it contains between 1. 7% and 0.01% by weight based on the total weight of the coating composition.

Frequently a VOC is deliberately added to a paint or coating to improve the film properties or to aid in coatings application properties. Examples are glycol ethers, organic esters, aromatic compounds, ethylene and propylene glycol, and aliphatic hydrocarbons. It is preferred that the coating composition contains less than than 5% by weight based on the total weight of the coating composition of the added VOCs and more preferably less than 1. 7% by weight based on the total weight of the coating composition of the added VOCs.

Additionally, the low VOC coating composition may contain coalescing agents which are not VOCs. A coalescing agent is a compound that is added to a water-borne emulsion polymer, paint or coating and which reduces the minimum film forming temperature (MFPT) of the emulsion polymer, paint or coating by at least 1°C. The MFPT is measured using ASTM test method D2354. Examples of a coalescing aid which is not a VOC include a plasticizer, low molecular weight polymer, and surfactants. That is, a non-VOC coalescing agent is a coalescing agent which has a boiling point above 280°C at atmospheric pressure.

Typical methods of paint or coating preparation may introduce adventitious VOCs from the emulsion polymer, biocides, defoamers, soaps, dispersants, and thickeners. These typically account for 0.1% VOC by weight based on the total weight of the coating composition. Additional methods such as steam stripping and choice of low VOC containing additives like biocides, defoamers, soaps, dispersants, and thickeners, can be used to further reduce the paint or coating to less than 0.01% VOC by weight based on the total weight of the coating composition.

In a preferred embodiment the aqueous coating composition has a PVC of 15 to 38 and has less than 5% VOC by weight based on the total weight of the coating composition. In another preferred embodiment the aqueous coating composition has a PVC of greater than 38 and has less than 3% VOC by weight based on the total weight of the coating composition. In an additional embodiment the aqueous coating composition has a PVC of 15 to 85 and has less than 1.6% VOC by weight based on the total weight of the coating composition

The solids content of the aqueous coating composition may be from 25% to 60% by volume. The viscosity of the aqueous polymeric composition may be from 50 KU (Krebs Units) to 120 KU as measured using a Brookfield Digital viscometer KU-1; the viscosities appropriate for different application methods vary considerably.

Conventional coatings application methods such as, for example, brushing, rolling, and spraying methods such as, for example, air-atomized spray, air-assisted spray, airless spray, high volume low pressure spray, and air-assisted airless spray may be used in the method of this invention. The aqueous coating composition may be advantageously applied to substrates such as, for example, plastic, wood, metal, primed surfaces, previously painted surfaces, weathered painted surfaces and cementitious substrates. Drying is typically allowed to proceed under ambient conditions such as, for example, at 0 °C to 35 °C.

The following examples are presented to illustrate the invention and the results obtained by the test procedures.

Test Procedures

Scrub Resistance: A coating composition and a comparative composition with the same volume solids as the coating composition were drawn down on a single black vinyl chart. The compositions were drawn in such a way that the two compositions were placed side by side and drawn together by a single drawing with a 0.0762 mm (3 mil) Bird film applicator 152.4 mm (6 inch) in width. Each composition formed a 7.5 cm (3 inch) wide coating on a single chart, and the two compositions had the same coating thickness. The sample was allowed to dry at 23 °C (73 °F) and 50% relative humidity for 7 days. Abrasive scrub resistance was measured with a scrub machine (Gardner Abrasive Tester) using 10 g scrub medium and 5 ml water. A piece of 0.0254 mm (1-mil) thick and 76.2 mm (3 inch) wide vinyl shim was placed underneath the sample vinyl chart. The two side edges of the shim were in the center of each coating. The number of cycles at the first spot of each coating removed was recorded. The scrub resistance was reported as a percentage of number of cycles of the coating composition verses the comparative composition.

Alkali Resistance - Gloss Loss Sample preparation and drying/conditioning was as for the scrub resistance test above. Both the 20 degree and 60 degree gloss were measured for each sample by using a Glossmeter (BYK-Gardner). The sample panel was then scrubbed with a scrub machine (Gardner Abrasive Tester) by using a specially prepared 454 g (1 pound) abrasion boat. The abrasion boat was wrapped with a cheesecloth pad that had initial

dimensions of 230 mm x 150 mm (9 inch x 6 inch), and was than folded twice to form a 57 mm x 150 mm (2.3 inch x 6 inch) pad. The cheesecloth pad was saturated with 1% Tide detergent solution. The sample panel was first scrubbed 250 cycles; then the pad was re-saturated with 1% Tide solution and the panel scrubbed for an additional 250 cycles. The 5 sample panel was rinsed thoroughly and dried for 24 hours at room temperature. Both the 20 degree and 60 degree gloss were again measured for the sample panel. The gloss loss was determined by the percentage gloss change before and after the Tide solution treatment.

Hydrolytic Stability: Sample preparation and drying/conditioning was as for the scrub resistance test above. The chart bearing each composition was cut into 25.4 mm x 50.8 mm (1 inch x 2 inch) strips and weighed. A sample strip was placed into a 60 ml (2 oz) glass jar containing 25 g of 0.5 N NaOH solution. Approximately half of the sample strip was immersed in the NaOH solution. After 48 hours, the sample strip was removed and rinsed thoroughly with water. The sample strip was dried for 24 hours and weighed again. The percentage of weight loss of the sample strip was recorded. A visual assessment of the sample was also made.

The abbreviations listed below are used throughout the examples.

MAA	= Methacrylic Acid
BA	= Butyl Acrylate
MMA	= Methyl Methacrylate
VA	= Vinyl Acetate
n-DDM	= n-Dodecyl Mercaptan
SLS	= Sodium lauryl sulfate (28% active)
APS	= Ammonium persulfate
DI water	= Deionized water

COMPARATIVE EXAMPLES A-D. Preparation of emulsion polymers.

The monomers for each example (Table CE-1) were combined with 455 g DI water, 6.9 g sodium carbonate and 30.5 g SLS and emulsified with stirring. 5.2 g SLS and 400 g DI water were charged to a 3 L multi-neck flask fitted with mechanical stirring. The flask contents were heated to 85 °C under nitrogen. To the stirred kettle contents were added 35 g monomer emulsion followed by 3.5 g APS in 10 g DI water. 30 g of a 50% solution of ureido 20

methacrylate was added to the remainder of the monomer emulsion and gradual addition of the monomer emulsion was subsequently initiated. Total addition time for monomer emulsion was 90-100 minutes. Reactor temperature was maintained at 83 °C throughout the polymerization. 20 g DI water was used to rinse the emulsion feed line to the reactor. After completion of the monomer emulsion addition the reactor was cooled to 60 °C. 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide and 0.5 g D-Isoascorbic acid in aqueous solutions were added. The polymer emulsion was neutralized to pH 9-10 with ammonium hydroxide.

Table CE-1. Monomer Charges for Comparative Examples A-D.

EXAMPLE	BA	MAA	MMA	n-DDM
Comp. A	480 g	20 g	485 g	0
Comp. B	480 g	20 g	485 g	1.25 g
Comp. C	480 g	20 g	485 g	2.5 g
Comp. D	480 g	20 g	485 g	5 g

Table CE-2. Physical Properties for Comparative Examples A-D.

EXAMPLE	SOLIDS (%)	PARTICLE SIZE (nm)	pH	VISCOSITY (cps)
Comp. A	50.1	127	9.7	1284
Comp. B	50.4	119	10.0	1464
Comp. C	50.3	128	9.7	1440
Comp. D	49.2	129	9.8	1308

Notes: Particle Size determined by Brookhaven Instruments BI-90 Particle Sizer

Total Solids determined by weight loss after 30-45 minutes at 150 °C

Viscosity determined using Brookfield LVTD Viscometer @ 60 rpm

EXAMPLES 1-3 and COMPARATIVE EXAMPLE E. Preparation of acrylic emulsion polymers

The monomers for each example (Table 1-1) were combined with 400 g DI water, 6.9 g sodium carbonate and 30.5 g SLS and emulsified with stirring. 5.2 g SLS and 380 g DI water were charged to a 3 L multi-neck flask fitted with mechanical stirring. The flask contents were heated to 65 °C under nitrogen. To the stirred kettle contents were added 35 g monomer emulsion followed by 0.02 g ferrous sulfate heptahydrate and 0.02 g tetrasodium salt of ethylenediamine-tetraacetic acid in 15.6 g DI water. Polymerization was initiated by

the addition of 0.54 g APS in 8 g DI water followed by 0.27 g sodium hydrosulfite in 8 g DI water. 30 grams of a 50% solution of ureido methacrylate was added to the remainder of the monomer emulsion and gradual addition of the monomer emulsion was subsequently initiated. Separate solutions of 2.9 g APS in 50 g DI water and 1 g of D-Isoascorbic acid in 50 g DI water were fed concurrently with the monomer emulsion. Total addition time for the three feeds was 90-100 minutes. Reactor temperature was maintained at 65 °C throughout the polymerization. 20 g DI water was used to rinse the emulsion feed line to the reactor. After completion of the monomer emulsion addition the reactor was cooled to 60 °C. 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide and 0.5 g D-Isoascorbic acid in aqueous solutions were added. The polymer emulsion was neutralized to pH 9-10 with ammonium hydroxide.

Table 1-1. Monomer Charges for Examples 1-3 and Comp. E

EXAMPLE	BA	MAA	MMA	n-DDM
Comp. E	480 g	20 g	485 g	0
1	480 g	20 g	485 g	1.25 g
2	480 g	20 g	485 g	2.5 g
3	480 g	20 g	485 g	5 g

Table 1-2. Physical Properties for Examples 1-3 and Comp. E

EXAMPLE	SOLIDS (%)	PARTICLE SIZE (nm)	pH	VISCOSITY (cps)
Comp. E	49.6	164	9.3	314
1	49.4	145	9.9	207
2	49.8	162	9.5	390
3	49.5	158	9.6	428

Notes: Particle Size determined by Brookhaven Instruments BI-90 Particle Sizer

Total Solids determined by weight loss after 30-45 minutes at 150 °C

Viscosity determined using Brookfield LVTD Viscometer @ 60 rpm

Comparative Examples BA to BF are made as was Comparative Example B with the exception that the 30.5 g SLS is used in the make-up of the monomer emulsion and the 5.2 g SLS added to the reaction vessel is replaced with the surfactant charges listed in TABLE 1

TABLE 1: Comparative Examples

COMPARATIVE EXAMPLE	SURFACTANT	KETTLE SURFACTANT CHARGE	MOMOMER EMULSION SURFACTANT CHARGE
BA	Ammonium nonylphenoxy polyethoxy sulfate , 60% active (Polystep™ B-1)	2.4 g	14.2 g
BB	Sodium dodecylbenzene sulfonate, 23% active	6.3 g	37 g
BC	Polyethylene glycol lauryl ether sodium sulfate, 28% active (Steol™ 4N)	5.2 g	30.5 g
BD	Mono(nonyl)phenoxy poly(ethyleneoxy)ethyl phosphate ammonium salt, 50% active (Wayfos™ M-60)	2.9 g	17 g
BE	Octylphenoxy polyethoxyethanol , 70% active (Triton™ X-405)	2.1 g	12.2 g
BF	Disodium ethoxylated nonylphenol, half ester of sulfosuccinic acid, 33% active (Aerosol™ A-103)	4.4 g	25.8 g

5 Examples 1A to 1F are made as was Example 1 with the exception that the 30.5 g SLS used in the make-up of the monomer emulsion and the 5.2 g SLS added to the reaction vessel are replaced with the surfactant charges listed in TABLE 2.

EXAMPLE	SURFACTANT	KETTLE SURFACTANT CHARGE	MOMOMER EMULSION SURFACTANT CHARGE
1A	Ammonium nonylphenoxy polyethoxy sulfate , 60% active (POLYSTEP™ B-1)	2.4 g	14.2 g
1B	Sodium dodecylbenzene sulfonate, 23% active	6.3 g	37 g
1C	Polyethylene glycol lauryl ether sodium sulfate, 28% active (STEOL™ 4N)	5.2 g	30.5 g
1D	Mono(nonyl)phenoxy poly(ethyleneoxy)ethyl phosphate ammonium salt, 50% active	2.9 g	17 g

	(WAYFOS™ M-60)		
1E	Octylphenoxypropoxyethanol , 70% active	2.1 g	12.2 g
	(TRITON™ X-405)		
1F	Disodium ethoxylated nonylphenol, half ester of sulfosuccinic acid, 33% active (AEROSOL™ A-103)	4.4 g	25.8 g

POLYSTEP and STEOL are Trademarks of the Stepan Company

TRITON is a Trademark of the Dow Chemical Company

AEROSOL is a Trademark of Cytec Industries Inc.

WAYFOS is a Trademark of BASF Corporation

5

EXAMPLE 4. Formation of Aqueous Coating Compositions

All aqueous coating compositions were made using the following formulation:

<u>Material</u>	<u>Grams</u>
Propylene Glycol	18.2
Pigment Dispersant (TAMOL™ 731)	6.45
Defoamer (FOAMASTER™ VL)	0.5
Titanium dioxide (TI-PURE™ R-900)	126.50
Water	31.0

The preceding ingredients were mixed in a high shear Cowles mixer and then the following ingredients were added with low shear mixing

Emulsion Polymer	232.29
Opaque Polymer (ROPAQUE™ ULTRA)	14.40
Coalescent (TEXANOL™)	4.83
Defoamer (FOAMASTER™ VL)	0.5
Rheology modifier (ACRYSOL™ RM-1020)	14.2
Rheology modifier (ACRYSOL™ RM-825)	0.25
Water	77.79

20

Note: TAMOL, ROPAQUE and ACRYSOL are trademarks of Rohm and Haas Company.
FOAMASTER is a trademark of Henkel Corp. TI-PURE is a trademark of EI DuPont de Nemours. Co. TEXANOL is a trade mark of Eastman Chemical Co.

These aqueous coating compositions contain 4.4% VOC by weight based on the total weight of the coating composition.

EXAMPLE 5. Evaluation of scrub resistance of dry coatings

Aqueous coating compositions according to Example 4 were prepared as with the emulsion polymers of Examples 1-3 and Comparative Examples A-E. The dry film of each aqueous coating composition was evaluated for scrub resistance; results are presented in

5 Table 5-1. Scrub resistance results

Emulsion Sample	Comp. A	Comp.B	Comp. C	Comp. D	Comp. E	1	2	3
Polymer Process	thermal	thermal	thermal	thermal	redox	redox	redox	redox
CTA Level	0.00%	0.125%	0.25%	0.50%	0.00%	0.125%	0.25%	0.50%
Scrub Resistance (as % of Comp. A)	100	123	94	95	123	155	167	117

The dry film of the aqueous coating composition containing the emulsion polymer of Example 1 of this invention provides scrub resistance superior to that of the corresponding composition containing the emulsion polymer of Comparative Example B. The dry film of the aqueous coating composition containing the emulsion polymer of Example 2 of this invention provides scrub resistance superior to that of the corresponding composition of Comparative Example C. The dry film of aqueous coating composition containing the emulsion polymer of Example 3 of this invention provides scrub resistance superior to that of the corresponding composition of Comparative Example D. Dry films of preferred aqueous coating compositions containing the emulsion polymer of Examples 1 and 2 of this invention provide scrub resistance substantially superior to that of compositions of Comparative Examples A-E.

EXAMPLE 6. Evaluation of Alkali Resistance - Gloss Loss

Aqueous coating compositions were prepared according to Example 4 incorporating the aqueous emulsion polymers of Examples 1 and 2, and Comparative Example F, a p(74.8 VA/24.8 BA/0.4 acid) emulsion polymer. A dry film of the three compositions was prepared on a single black vinyl chart and the Alkali Resistance - Gloss Loss of the film was determined. Results are presented in Table 6-1.

Table 6.1 Evaluation of alkali resistance

Sample	20° Gloss			60° Gloss		
	Before Tide Treatment	After Tide Treatment	Gloss Change (%)	Before Tide Treatment	After Tide Treatment	Gloss Change (%)
Comp. Ex. F	29.6	25.5	-13.9	68.5	64.0	-6.6
Example 1	28.0	28.9	3.2	66.1	67.7	2.4
Example 2	27.9	29.3	5.0	66.4	68.1	2.6

The dry films of aqueous coating compositions containing aqueous acrylic emulsion polymers of Examples 1 and 2 of this invention exhibit no gloss loss and thereby pass the test.

EXAMPLE 7. Evaluation of Hydrolytic Stability

Aqueous coating compositions were prepared according to Example 4 incorporating the aqueous emulsion polymers of Examples 1 and 2, and Comparative Example F, a p(74.8 VA/24.8 BA/0.4 acid) emulsion polymer. A dry film of the three compositions was prepared on a single black vinyl chart and the Hydrolytic Stability was determined. Results are presented in Table 7-1.

Table 7.1 Evaluation of hydrolytic stability

Sample	Weight Loss of Whole Sample Strip			Visual Assessment of the Coating Immersed in NaOH
	Before NaOH Treatment (g)	After NaOH Treatment (g)	Weight Loss (%)	
Comp. Ex. F	0.61	0.51	16%	Completely Dissolved
Example 1	0.63	0.63	0%	Unchanged
Example 2	0.58	0.58	0%	Unchanged

The dry films of aqueous coating compositions containing aqueous acrylic emulsion polymers of Examples 1 and 2 of this invention exhibit no dissolution and thereby pass the test.

EXAMPLE 8. Evaluation of adhesion of dry coatings.

Aqueous coating compositions are prepared according to Example 4 incorporating the aqueous emulsion polymers of Examples 1-3 and 1A-1F and Comparative Examples B-D and BA-BF. The aqueous coating compositions are applied to a coating of Duron Superior 5 House & Trim Exterior Alkyd House Paint - Forest Green Color (Manufactured by Duron, Inc., Beltsville, MD) which has been painted onto a substrate and allowed to air dry and cure at room temperature for a period of 4 months. Adhesion to the alkyd substrate is measured by the method of ASTM 4541.

The alkyd adhesion of the aqueous coating composition containing the emulsion polymer of Example 1 is superior to that of Comparative Example B, that of Example 2 is superior to that of Comparative Example C, that of Example 3 is superior to that of Comparative Example D, that of Example 1A is superior to that of Comparative Example BA, that of Example 1B is superior to that of Comparative Example BB, that of Example 1C is superior to that of Comparative Example BC, that of Example 1D is superior to that of Comparative Example BD, that of Example 1E is superior to that of Comparative Example BE, and that of Example 1F is superior to that of Comparative Example BF.

EXAMPLE 9 and COMPARATIVE EXAMPLE G. Preparation of acrylic emulsion polymers.

The monomers for Comp. Ex. G (Table 9-1) were combined with 455 g DI water, 6.9 g sodium carbonate and 30.5 g SLS and emulsified with stirring. 5.2 g SLS and 400 g DI water were charged to a 3 L multi-neck flask fitted with mechanical stirring. The flask contents were heated to 85° C under nitrogen. To the stirred kettle contents were added 35 g monomer emulsion followed by 3.5 g APS in 10 g DI water. 30 g of a 50% solution of ureido methacrylate was added to the remainder of the monomer emulsion and gradual addition of the monomer emulsion was subsequently initiated. Total addition time for monomer emulsion was 90-100 minutes. Reactor temperature was maintained at 83°C throughout the polymerization. 20 g DI water was used to rinse the emulsion feed line to the reactor. After completion of the monomer emulsion addition the reactor was cooled 25 to 60°C. 10 ppm ferrous sulfate, 1 g t-butyl hydroperoxide and 0.5 g D-Isoascorbic acid in aqueous solutions were added. The polymer emulsion was neutralized to pH 9-10 with ammonium hydroxide.

The monomers for Example 9 (Table 9-1) were combined with 400 g DI water, 6.9 g sodium carbonate and 30.5 g SLS and emulsified with stirring. 5.2 g SLS and 380 g DI water were charged to a 3 L multi-neck flask fitted with mechanical stirring. The flask contents were heated to 65° C under nitrogen. To the stirred kettle contents were added 5 35 g monomer emulsion followed by 0.02 g ferrous sulfate heptahydrate and 0.02 g tetrasodium salt of ethylenediamine-tetraacetic acid in 15.6 g DI water. Polymerization was initiated by the addition of 0.54 g APS in 8 g DI water followed by 0.27 g sodium hydrosulfite in 8 g DI water. 30 g of a 50% solution of ureido methacrylate was added to the remainder of the monomer emulsion and gradual addition of the monomer emulsion 10 was subsequently initiated. Separate solutions of 2.9 g APS in 50 g DI water and 1 g of D-Isoascorbic acid in 50 g DI water were fed concurrently with the monomer emulsion. Total addition time for the three feeds was 90-100 minutes. Reactor temperature was maintained at 65°C throughout the polymerization. 20 g DI water was used to rinse the emulsion feed line to the reactor. After completion of the monomer emulsion addition the reactor was cooled to 60°C. 10ppm ferrous sulfate, 1 g t-butyl hydroperoxide and 0.5g D-Isoascorbic acid in aqueous solutions were added. The polymer emulsion was neutralized 15 to pH 9-10 with ammonium hydroxide.

Table 9-1. Monomer Charges

Emulsion Polymer	BA	MMA	MAA	n-DDM
Comp. Ex. G	600 g	365 g	20 g	0
Example 9	600 g	365 g	20 g	1.25

20 EXAMPLE 10. Formation of Aqueous Coating Compositions

The Grind Premix was made using ingredients in the ratios in Table 10.1 and mixed on a high speed Cowles disperser for 20 minutes. A portion of the Grind Premix that contained the ingredients in the amounts listed in Table 1 was transferred to another container for each paint and the Let Down ingredients were added under low speed mixing in the order given. The final pigment volume concentration for each paint was 19% and the volume solids 25 was 36%. The VOC of the aqueous coating compositions is 0.1% by weight based on the total weight of the coating composition.

Table 10.1. Aqueous coating composition

<u>Material</u>	<u>Comp. Example H</u>	<u>Example 10</u>
<u>Weight (g)</u>	<u>Weight (g)</u>	
<u>Grind Premix</u>		
TAMOL™ 731A	6.04	6.04
TEGO™ Foamex 810	0.49	0.49
SURFYNOL™ CT-111	0.97	0.97
TI-PURE™ R-706	114.19	114.19
Water	26.89	26.89
<u>Let Down</u>		
Water	10	10
Emul. Pol. Comp.G (50.2% Solids)	269.03	0
Emul. Pol. Ex.9 (49.5% Solids)	0	275.57
SURFYNOL™ CT-111	.5	.5
ACRYSOL™ RM-2020NPR	14.2	11.5
ACRYSOL™ RM-8W	1.9	2.70
Water	73.11	68.18

Note: SURFYNOL is a trademark of Air Products and Chemicals Inc; TEGO is a trademark of Tego Chemie Service.

A scrub test was run on two specimens of each example following the procedure outlined in ASTM test method D2486-00 with the following exceptions: a Bird 3 mil film applicator was used to draw down the paints, and the test specimens were held down on each side of the shim midway between the shim and the end of the specimen directly by clamping rather than by means of a gasketed frame as outlined in ASTM D2486. Method A of the test method was otherwise followed. The data obtained is given in Table 9.2.

Table 10.2 – Scrub Resistance Test Results, Cycles to Fail

Coating	Average of 2 Specimens
Comparative Example H	474
Example 10	1860

The dry film of the aqueous coating composition containing the emulsion polymer of Example 10 of this invention provided scrub resistance superior to that of the corresponding composition containing the emulsion polymer of Comparative Example H.

5 EXAMPLE 11 and COMPARATIVES J-K. Preparation of aqueous emulsion polymers and evaluation of adhesion of blends to alkyds.

Preparation of Example 11. This polymer is made according to the process of Example 1A with the exception that the 485 g MMA used in the making of the monomer emulsion is reduced to 450 g and 100 g 50% solution of ureido methacrylate is charged to the monomer emulsion at the point where 30 g 50% solution of ureido methacrylate iss charged in Example 1A.

Preparation of Comparative Example J. This polymer is made according to the process of Comparative Example BA with the exception that the 485 g MMA used in the making of the monomer emulsion is reduced to 450 g and 100 g 50% solution of ureido methacrylate is charged to the monomer emulsion at the point where 30 g 50% solution of ureido methacrylate is charged in Comparative Example BA.

Preparation of Comparative Example K. To a three liter flask is charged 340 g DI water which is heated to 85 °C. Then 11.0 g 45% solids 100nm acrylic emulsion, rinsed with 5 g DI water, 3.6 g ammonium persulfate dissolved in 10 g DI water and 0.5 g (29%) aqueous ammonium hydroxide dissolved in 10 g DI water are added. A monomer emulsion consisting of 310 g deionized water, 2.4 g (23% active) sodium dodecylbenzenesulfonate, 416 g BA, 523.8 g MMA, and 12.3 g MAA is prepared. A 94% by weight portion of the monomer emulsion is then fed to the flask over a period of two hours. The reaction to prepare the emulsion polymer is carried out at 85 °C. The flask contents are then cooled gradually to 60 °C over a period of one hour. 15 g of a 0.1 % iron sulfate heptahydrate solution is mixed with 1.5 g 1.0 % Versene solution and added to the flask. This is followed by feeding of three separate mixtures beginning at the same time. The first mixture is 1.9% by weight, based on the weight of the emulsion polymer, hydroxyethyl cellulose (as a 7.4 % solution of CELLOSIZE® Hydroxyethyl Cellulose QP3L (Union Carbide)) mixed with 6.0 % of the monomer emulsion (described above) which is fed over 17 minutes. The second mixture is a solution of 1.4 g of ammonium persulfate dissolved in 25 g DI water. The third mixture is a solution of 0.3 g sodium sulfoxylate formaldehyde dissolved in 25 g DI water which is fed over 20 minutes. The reaction mixture is held at 60 °C for 20 minutes then 9.7 g (29%)

aqueous ammonium hydroxide dissolved in 10 g DI water is added. A solution of 0.35 g (70%) t-butyl hydroperoxide dissolved in 5 g DI water and a solution of 0.17 g isoascorbic acid dissolved in 7.5 g DI water are added. The polymer is expected to have a particle size of approximately 550 nm, and a total solids content of 49.3.

5 Preparation of polymer blends. Blend 1. 15 parts emulsion polymer Example 11 is added to 100 parts emulsion polymer Comp. K with mechanical stirring. Comp. Blend A. 15 parts emulsion polymer Comp. J is added to 100 parts emulsion polymer Comp. K with mechanical stirring.

Preparation of aqueous coating composition. A white paint is prepared by forming a dispersion containing 72g propylene glycol, 13.6g TAMOL™ 731 (25.0%)pigment dispersant, 1.48g FOAMASTER™ VL(defoamer), and 267.64g titanium dioxide (Ti-Pure™ R-900) using a COWLES disperser, followed by the addition of the emulsion polymer blend, TEXANOL™ coalescent, and NATROSOL™ 250 MR thickener solution and water to provide an aqueous coating with PVC (pigment volume concentration)=23.65 and VS(volume solids)=34.

Evaluation of adhesion to alkyd. The aqueous coating compositions are applied to a coating of Duron Superior House & Trim Exterior Alkyd House Paint - Forest Green Color (Maunfactured by Duron,Inc., Beltsville, MD) which has been painted onto a substrate and allowed to air dry and cure at room temperature for a period of 4 months. Adhesion to the alkyd substrate is measured by the method of ASTM 4541.

The alkyd adhesion of the aqueous coating composition containing the emulsion polymer Blend 1 is superior to that of Comparative Blend A.