Neural Network Abduction Jun 13, 2025

Preprin	t · June 2025	
DOI: 10.131	40/RG.2.2.18506.07360/1	
CITATIONS	5	READ
0		6
1 autho	r:	
	Gary Nan Tie	
	Mu Risk LLC	
	91 PUBLICATIONS 27 CITATIONS	
	SEE PROFILE	

Neural Network Abduction

Gary Nan Tie, June 13, 2025

Abstract

For hypotheses whose effect is manifested by observations, abduction seeks to explain a given observation by finding a hypothesis whose effect is that observation. Abductive reasoning has a fibration semantics that can be implemented by neural networks; a step towards artificial general intelligence.

A natural application is in making a medical diagnosis. Fibration structure and properties enable coherency and consistency in this process. Moreover being machine learnable, can help physicians uncover diagnostic insights in large datasets.

Welcome Sher-bot Holmes!

An arrow P I in a category is said to be a <u>Fibration</u> with respect to a class of arrows m when For any m & M and solid commutative diagram:

there exists dotted lifting om, f,g: Q -> K
such that POD = g and DOM = f.

Liftings are said to be compatible if for any solid commutative diagram:

D
$$\xrightarrow{j}$$
 B \xrightarrow{f} K

P a Fibration wt M

n, m \in M

 $C \xrightarrow{j}$ Q \xrightarrow{g} V

 $D = D_{n, foj, gok}$
 $T = D_{m, f, g}$

we have Tok = 5.

and
$$M \in M$$
 $\int_{Q} \int_{S} V$ commutes.

If gom & M then

- i) lifting to satisfies pot = g and tom = f
- ii) lifting I satisfies po I = 1, and To(gom) = f
- iii) and by compatibility Tog = 0.

Upshot: Suppose effect p: K -> V is a fibration wit M

and B (fig) K

IP is an attention 2-cell for analogy m.

If gomem then pot = 1v

that is I is an abduction for effect p.

Neural Network Abduction

For effect p: K -> V with analogy m: B -> Q
suppose we have finite data from K, V, B and Q.

- 1. learn or define effect p from { (K,V)}
- 2. learn or define analogy in from {(b,q)}
- 3. learn or define attention 2-cell (f,g),

from {(b,k)} For f and from {(q,v)} For g

such that pof & gom

- 4. -learn lifting o from {(q, x)}
 such that poor ≈ g and oom ≈ f
- 5. learn abduction T from $\{(g(q), T(q))\}$ such that $T \circ g \approx T$, then $(p \circ T) \circ g \approx g$. When g is invertible, $p \circ T = 1_V$.

References

'Fibrations explain all you need!'
- Fibrations, Abduction and Attention
Gary Nan Tie, Mar 4, 2025
ResearchGate **DOI:** 10.13140/RG.2.2.35984.52488