

REPORT SUMMARY

PATIENT AND SAMPLE INFORMATION	2
VARIANT(S) WITH CLINICAL RELEVANCE	2
THERAPEUTIC IMPLICATIONS	
REPORT DETAILS	
VARIANT INTERPRETATION	5
US FDA-APPROVED DRUG(S)	7
ONGOING CLINICAL TRIALS	10
DETAILED TEST RESULTS	
HOTSPOT GENOTYPES	13
TEST DETAILS	
ACTOnco®+ GENE LIST	19
DISCLAIMER	20
APPENDIX	
SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS	22
DEFEDENCES	2.4

ACTOnco®+ Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

PATIENT AND SAMPLE INFORMATION

PATIENTSPECIMENORDERING PHYSICIANName: 李正伸Type: FFPE tissueName: 陳明晃醫師

Diagnosis: Metastatic adenocarcinoma Lab ID: AA-21-06136

D/ID: NA

VARIANT(S) WITH CLINICAL RELEVANCE

Only variant(s) with clinical significance are listed. See the "DETAILED TEST RESULTS" section for full details.

SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS

Not detected.

COPY NUMBER VARIANTS (CNVS)

Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on **45%** tumor purity.

Amplification (Copy number ≥ 8)

Ampimeation (copy number 2 0)		
Chr	Gene	Copy Number
ND	ND	ND

Homozygous deletion (Copy number=0)

Chr	Gene	
ND	ND	
Heterozygous deletion (Copy number=1)		

70	,
Chr	Gene
chr9	CDKN2A, TSC1
chr17	FLCN

ND, Not Detected

TUMOR MUTATIONAL BURDEN (TMB)

MICROSATELLITE INSTABILITY (MSI)

3.2 muts/Mb

Microsatellite stable (MSS)

Muts/Mb, mutations per megabase

Note:

TMB was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at \geq 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

Variant Analysis:

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號

Sign Off

Chaigran Chang

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 2 of 27

ACTOnco® + Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

THERAPEUTIC IMPLICATIONS **TARGETED THERAPIES Genomic Alterations Therapies** Effect Level 3B **CDKN2A** Heterozygous deletion Abemaciclib, Palbociclib, Ribociclib sensitive Level 4 **FLCN** Heterozygous deletion **Everolimus** sensitive TSC1 Heterozygous deletion sensitive Everolimus, Temsirolimus

Note: Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence.

Lev	el	Description	
1		FDA-recognized biomarker predictive of response to an FDA approved drug in this indication	
2 Standard care biomarker (recommended as standard care by the NCCN or other expert panels) predictive of response to an FDA approved drug in this indication			
3	Α	A Biomarkers that predict response or resistance to therapies approved by the FDA or professional societies for a different type tumor	
B Biomarkers that serve as inclusion criteria for clinical trials		Biomarkers that serve as inclusion criteria for clinical trials	
4	4 Biomarkers that show plausible therapeutic significance based on small studies, few case reports or preclinical studies		

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Page 3 of 27

[‡] Refer to "ONGOING CLINICAL TRIALS" section for detailed trial information.

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

IMMUNE CHECKPOINT INHIBITORS (ICI) THERAPIES

Genomic markers and alterations that are associated with response to ICI therapies

Positive Biomarker	Negative Biomarker
TMB-H: ND	EGFR aberration: ND
MSI-H: ND	MDM2/MDM4 amplification: ND
MMR biallelic inactivation: ND	STK11 biallelic inactivation: ND
PBRM1 biallelic inactivation: ND	PTEN biallelic inactivation: ND
SERPINB3/SERPINB4 mutation: ND	B2M biallelic inactivation: ND
L >	JAK1/2 biallelic inactivation: ND

MMR, mismatch repair; ND, not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

VARIANT INTERPRETATION

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein^{[1][2]}whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^[3]. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[4]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[5][6]}.

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[7][8]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[9][10][11]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[12][13][14]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[8][15][16]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[10]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[17].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[18].

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

FLCN Heterozygous deletion

Biological Impact

The FLCN gene encodes the tumor suppressor, Folliculin, a GTPase activating protein (GAP) for RagC/D GTPase proteins involved in amino acid sensing and signaling to mTORC1^[19]. FLCN has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[20][21]}. Inactivation of the FLCN gene by mutation or deletion results in the activation of the mTOR pathway and AKT signaling^{[22][23]}. Germline mutation of the FLCN gene causes the Birt-Hogg-Dubé syndrome, a rare disorder that is characterized by benign hamartomatous skin lesions and an increased risk of pneumothorax and renal tumors^[24].

Therapeutic and prognostic relevance

In a prospective Phase 2 study, four anaplastic thyroid cancer (ATC)/ poorly differentiated thyroid cancer (PDTC) patients who had PI3K/mTOR/AKT alterations, including TSC2, FLCN or NF1, showed impressive progression-free survival (PFS) of 15.2 months after receiving everolimus^[25]. mTOR inhibition via rapamycin also demonstrated potential in inhibiting the growth of renal cells deficient in FLCN in the preclinical setting^[26].

TSC1 Heterozygous deletion

Biological Impact

The tuberous sclerosis complex 1 (TSC1) gene encodes a tumor suppressor, hamartin, a key negative regulator of the mammalian target of rapamycin (mTOR) pathway^{[27][28]}. Mutations in TSC1/TSC2 tumor suppressor genes that result in inactivation of the complex are commonly found in patients with tuberous sclerosis^{[29][30][31]}, while LOH in TSC1/TSC2 has been identified in head and neck squamous cell carcinoma (HNSCC)^[32] and endometrial cancer^[33]. Loss of single TSC1 allele (haploinsufficiency) may provide a growth advantage to bladder epithelial cells, contributing to bladder cancer development^[34]. Both TSC1 and TSC2 mutations cause the autosomal dominant genetic disorder tuberous sclerosis complex (TSC), in which individuals develop a variety of benign but often progressive neoplasms^[35].

Therapeutic and prognostic relevance

Genomic alterations with activating effects of the mTOR signaling pathway (including deletion/inactivation of TSC1/TSC2) have been shown to confer sensitivity to everolimus across multiple neoplasms, such as bladder tumors^[36], gastric, sarcoma, thyroid cancer, and HNSCC^[37]. There were case reports demonstrated the efficacy of sirolimus in malignant uterine perivascular epithelioid cell tumors (PEComa) patients harboring mutations/deletions in TSC1 and TSC2 genes, and temsirolimus in PEComa patients with hyperactivated mTOR pathway. Genomic profiling analysis of GOG248, a Phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer showed that mutations in AKT1, TSC1 and TSC2 may predict clinical benefit from temsirolimus^[38]. Recent studies indicate that there are mTORC1-independent signaling pathways downstream of hamartin-tuberin, which may represent new therapeutic targets^[39].

ACTOnco®+ Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)
monarchE	HR-positive, HER2-negative
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor
	[IDFS at 36 months(%): 86.1 vs. 79.0]
	Breast cancer (Approved on 2018/02/26)
MONARCH 3 ^[40]	HR-positive, HER2-negative
NCT00246621	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole
	[PFS(M): 28.2 vs. 14.8]
	Breast cancer (Approved on 2017/09/28)
MONARCH 1 ^[41]	HR-positive, HER2-negative
NCT02102490	Abemaciclib
	[ORR(%): 19.7 vs. 17.4]
	Breast cancer (Approved on 2017/09/28)
MONARCH 2 ^[16]	HR-positive, HER2-negative
NCT02107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant
	[PFS(M): 16.4 vs. 9.3]

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

FDA Approval Summary of Everolimus (AFINITOR)

	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)	
RADIANT-4 ^[42]	-	
NCT01524783	Everolimus vs. Placebo	
	[PFS(M): 11 vs. 3.9]	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

Page 8 of 27

ACTOnco®+ Report

	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[43]	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane
	[PFS(M): 7.8 vs. 3.2]
	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[44]	-
NCT00510068	Everolimus vs. Placebo
	[PFS(M): 11 vs. 4.6]
	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
EXIST-1 ^[45]	-
NCT00789828	Everolimus vs. Placebo
	[ORR(%): 35.0]
	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[46]	. 0
NCT00410124	Everolimus vs. Placebo
	[PFS(M): 4.9 vs. 1.9]

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

FDA Approval Summary of Palbociclib (IBRANCE)

The state of the s		
	Breast cancer (Approved on 2017/03/31)	
PALOMA-2 ^[47]	ER+, HER2-	
NCT01740427	Palbociclib + letrozole vs. Placebo + letrozole	
	[PFS(M): 24.8 vs. 14.5]	
	Breast cancer (Approved on 2016/02/19)	
PALOMA-3 ^[48]	ER+, HER2-	
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant	
	[PFS(M): 9.5 vs. 4.6]	

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

FDA Approval Summary of Ribociclib (KISQALI)

	Breast cancer (Approved on 2017/03/13)	
MONALEESA-2 ^[15]	HR+, HER2-	
NCT01958021	Ribociclib vs. Letrozole	
	[PFS(M): NR vs. 14.7]	

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

FDA Approval Summary of Temsirolimus (TORISEL)

	Renal cell carcinoma (Approved on 2007/05/30)
[49]	-
NCT00065468	Temsirolimus vs. Ifn-α
	[OS(M): 10.9 vs. 7.3]

d=day; w=week; m=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 9 of 27

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

ONGOING CLINICAL TRIALS

Clinical trials shown below were selected by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

AG4-QP4001-02(05) Page 10 of 27

ACTOnco® + Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

DETAILED TEST RESULTS

SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS

Gene	Chr	Exon	Accession Number	cDNA Change	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID
ADAMTS15	11	1	NM_139055	c.287C>T	S96L	260	23.8%	-
ATRX	X	9	NM_000489	c.1007C>T	S336F	657	45.5%	-
CANX	5	>=	NM_001746	c.447-4T>C	Splice region	942	48.9%	-
EGFR	7	28	NM_005228	c.3353C>T	A1118V	1879	56.4%	COSM7293955
FAT1	4	10	NM_005245	c.5881G>A	G1961S	2635	50.5%	COSM6476268
LRP1B	2	37	NM_018557	c.5968A>G	I1990V	953	21.9%	-
MUC16	19	1	NM_024690	c.7201G>T	A2401S	1318	51.7%	-
MUC16	19	3	NM_024690	c.22216C>T	P7406S	1172	20.8%	COSM3542645

Mutations with clinical relevance are highlighted in red.

AP

Page 12 of 27

李正伸

COPY NUMBER VARIANTS (CNVS)

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

ACTOnco®+ Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

HOTSPOT GENOTYPES

Listed variants are biomarkers or hotspots that are recommended as standard care by the NCCN or other expert panels and not necessarily FDA-recognized for a particular indication. The genotypes have been manually checked to ensure sufficient coverage for each hotspot of the target gene.

Gene	Variant	Genotype Detected
BRAF	V600X	Not detected
EGFR	A763_Y764insFQEA, E709K, E709_T710delinsD, Exon 19 deletion, Exon 19 insertion, Exon 20 insertion, G719A/C/D/S, L747P, L833V, L858R, L861Q/R, S768I, T790M	Not detected
IDH2	R140Q, R172G/K/M/S	Not detected
KIT	A502_Y503dup, D419del, D579del, D816F/V/Y, D820A/E/G/Y, E554_I571del, E554_K558del, E554_V559del, Exon 11 mutation, F522C, H697Y, I563_L576del, I653T, K550_W557del, K558N, K558_E562del, K558_V559del, K558delinsNP, K642E, M552_W557del, N505I, N564_Y578del, N822H/I/K/Y, P551_M552del, P573_D579del, P577_D579del, P577_W582delinsPYD, P838L, Q556_K558del, T417_D419delinsI, T417_D419delinsRG, T574_Q575insTQLPYD, V530I, V555_L576del, V555_V559del, V559A/C/D/G, V559_V560del, V559del, V560D/G, V560del, V569_L576del, V654A, W557G/R, W557_K558del, Y553N, Y553_K558del, Y570H, Y578C	Not detected
KRAS	A146T/V/P, G12X, G13X, Q61X	Not detected
MET	D1028H/N/Y	Not detected
NRAS	G12X, G13X, Q61X	Not detected
PDGFRA	A633T, C450_K451insMIEWMI, C456_N468del, C456_R481del, D568N, D842I/V, D842_H845del, D842_M844del, D846Y, E311_K312del, G853D, H650Q, H845Y, H845_N848delinsP, I843del, N659K/R/S, N848K, P577S, Q579R, R560_V561insER, R748G, R841K, S566_E571delinsR, S584L, V469A, V536E, V544_L545insAVLVLLVIVIISLI, V561A/D, V561_I562insER, V658A, W559_R560del, Y375_K455del, Y555C, Y849C/S	Not detected
PIK3CA	C420R, E542K/V, E545A/D/G/K, H1047X, Q546E/R	Not detected

V600X= any mutation in the valine (V) at amino acid 600 being replaced by a different amino acid. G12X = any mutation in the glycine (G) at amino acid 12 being replaced by a different amino acid. G13X= any mutation in the glycine (G) at amino acid 13 being replaced by a different amino acid. Q61X = any mutation in the glutamine (Q) at amino acid 61 being replaced by a different amino acid. H1047X = any mutation in the histidine (H) at amino acid 1047 being replaced by a different amino acid.

Gene	Copy Number Detected
CDK4	2
EGFR	2
ERBB2	2
MET	2

Copy number ≥ 8 is considered amplification

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

ACTOnco® + Report

Other known alterations that are associated with sensitivity, resistance, and toxicity to therapies.

Gene	Variant	Genotype Detected
AKT1	E17K	Not detected
ALK	C1156Y, D1203N, G1202R, L1152R, S1206Y, T1151_L1152insT	Not detected
BRAF	K601E, L597V/Q/R/S	Not detected
DPYD	D949V, I560S, splice-site mutation	Not detected
EGFR	A750P, C797S/Y, S492R	Not detected
ERBB2	V659E	Not detected
ESR1	D538G, E380Q, L469V, L536H/P/Q/R, S432L, S463P, V422del, V534E, Y537C/N/S	Not detected
FGFR3	G370C, G380R, K650E/N/R/M/T/Q, R248C, S249C, S371C, Y373C	Not detected
IDH1	R132C/G/H/L/Q/S	Not detected
MAP2K1	D67N, E203K, F53L, K57E/N, P124S, Q56P, Q56_V60del, R47Q, R49L, S222D	Not detected
PTEN	R130*/fs/G/L/P/Q	Not detected
TPMT	A154T, Y240C	Not detected

Gene	Copy Number Detected	
FGFR1	2	
MDM2	2	
MDM4	2	

Copy number ≥ 8 is considered amplification

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 14 of 27

ACTOnco® + Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

TEST DETAILS

ABOUT ACTOnco®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (INDELs) (≤ 15 nucleotides) and large-scale genomic alterations like copy number variations (CNVs).

See ACTOnco®+ Gene List' Section for details of gene sequenced.

DATABASE USED

- Reference genome: human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210208)
- ACT Genomics in-house database

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using four pools of primer pairs targeting coding exons of analyzed genes. Amplicons were ligated with barcoded adaptors. Quality and quantity of amplified library were determined using the fragment analyzer (AATI) and Qubit (Invitrogen). Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system (Thermo Fisher Scientific) according to the Ion PI Hi-Q Chef Kit protocol (Thermo Fisher Scientific). Sequencing was performed on the Ion Proton or Ion S5 sequencer (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite (version 5.10). Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (INDELs) were identified using the Torrent Variant Caller plug-in (version 5.10). The coverage was down-sampled to 4000. VEP (Variant Effect Predictor) (version 100) was used to annotate every variant using databases from Clinvar (version 20210208), COSMIC v.92 and Genome Aggregation database r2.1.1. Variants with coverage \geq 25, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained.

This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \ge 85\%$ with a mean coverage $\ge 500x$.

Variants reported in Genome Aggregation database r2.1.1 with > 1% minor allele frequency (MAF) were

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number variations (CNVs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations from samples in ACT Genomics in-house database.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to \geq 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

STANDARD OPERATING PROCEDURES (SOPS)

Standard operating procedures (SOPs) are shown below:

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-03 SOP of Cancer Cell DNA and RNA Extraction
- AG3-QP16-07 SOP of Nucleic Acid Extraction with QIAsymphony SP
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-13 SOP of Library Construction and Preparation
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-22 SOP of Variant Calling
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

- AG3-QP16-35 SOP of Variant Annotation
- AG3-QP16-96 SOP of Manual Inspection for SNVIndel Variant
- AG3-QP16-95 SOP of Manual Inspection for Copy Number Variant
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

LIMITATIONS

This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.

NOTES

We do not exclude the possibility that pathogenic variants may not be reported by one or more of the tools and the parameters used.

PATHOLOGY EVALUATION

H&E-stained section No.: <u>S10938629A</u>

• Collection site: <u>Soft tissue</u>

• Examined by: Dr. Pei-Yi Chu

• Estimated neoplastic nuclei (whole sample): The percentage of viable tumor cells in total cells in the whole slide (%): 40%

The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 45%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%

Additional comment: NA

• Manual macrodissection: Performed on the highlighted region

The outline highlights the area of malignant neoplasm annotated by a pathologist.

ACTOnco® + Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

SPECIMEN PHOTO(S)

Collection date: Nov 2020

Facility retrieved: 臺北榮總

RUN QC

Panel: ACTOnco®+ Mean Depth: 857x

Target Base Coverage at 100x: 94%

AG4-QP4001-02(05)

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

Page 19 of 27

ACTOnco®+ GENE LIST

ABCB1*	AURKB	CBL	CDKN2B	E2F3	FAT1	GRIN2A	JAK2	MED12	NOTCH4	PMS1	RAD51D	SLCO1B3*	TNFRSF14
ABCC2*	AXIN1	CCNA1	CDKN2C	EGFR	FBXW7	GSK3B	JAK3	MEF2B	NPM1	PMS2	RAD52	SMAD2	TNFSF11
ABCG2*	AXIN2	CCNA2	CEBPA*	EP300	FCGR2B	GSTP1*	JUN*	MEN1	NQ01*	POLB	RAD54L	SMAD3	TOP1
ABL1	AXL	CCNB1	CHEK1	EPCAM	FGF1*	GSTT1*	KAT6A	MET	NRAS	POLD1	RAF1	SMAD4	TP53
ABL2	B2M	CCNB2	CHEK2	ЕРНА2	FGF10	HGF	KDM5A	MITF	NSD1	POLE	RARA	SMARCA4	ТРМТ*
ADAMTS1	BAP1	ССМВЗ	CIC	ЕРНАЗ	FGF14	HIF1A	крм5С	MLH1	NTRK1	PPARG	RB1	SMARCB1	TSC1
ADAMTS13	BARD1	CCND1	CREBBP	ЕРНА5	FGF19*	HIST1H1C*	KDM6A	MPL	NTRK2	PPP2R1A	RBM10	SMO	TSC2
ADAMTS15	BCL10	CCND2	CRKL	ЕРНА7	FGF23	HIST1H1E*	KDR	MRE11	NTRK3	PRDM1	RECQL4	SOCS1*	TSHR
ADAMTS16	BCL2*	CCND3	CRLF2	ЕРНВ1	FGF3	HNF1A	KEAP1	MSH2	PAK3	PRKAR1A	REL	SOX2*	TYMS
ADAMTS18	BCL2L1	CCNE1	CSF1R	ERBB2	FGF4*	HR	кіт	МЅН6	PALB2	PRKCA	RET	SOX9	U2AF1
ADAMTS6	BCL2L2*	CCNE2	CTCF	ERBB3	FGF6	HRAS*	KMT2A	MTHFR*	PARP1	PRKCB	RHOA	SPEN	UBE2A*
ADAMTS9	BCL6	CCNH	CTLA4	ERBB4	FGFR1	HSP90AA1	кмт2С	MTOR	PAX5	PRKCG	RICTOR	SPOP	UBE2K
ADAMTSL1	BCL9	CD19	CTNNA1	ERCC1	FGFR2	HSP90AB1	KMT2D	MUC16	PAX8	PRKCI	RNF43	SRC	UBR5
ADGRA2	BCOR	CD274	CTNNB1	ERCC2	FGFR3	HSPA4	KRAS	мис4	PBRM1	PRKCQ	ROS1	STAG2	UGT1A1*
ADH1C*	BIRC2	CD58	CUL3	ERCC3	FGFR4	HSPA5	LCK	мис6	PDCD1	PRKDC	RPPH1	STAT3	USH2A
AKT1	BIRC3	CD70*	CYLD	ERCC4	FH	IDH1	LIG1	митүн	PDCD1LG2	PRKN	RPTOR	STK11	VDR*
AKT2	BLM	CD79A	CYP1A1*	ERCC5	FLCN	IDH2	LIG3	МҮС	PDGFRA	PSMB8	RUNX1	SUFU	VEGFA
АКТЗ	BMPR1A	CD79B	CYP2B6*	ERG	FLT1	IFNL3*	LMO1	MYCL	PDGFRB	PSMB9	RUNX1T1	SYK	VEGFB
ALDH1A1*	BRAF	CDC73	CYP2C19*	ESR1	FLT3	IGF1	LRP1B	MYCN	PDIA3	PSME1	RXRA	SYNE1	VHL
ALK	BRCA1	CDH1	CYP2C8*	ESR2	FLT4	IGF1R	LYN	MYD88	PGF	PSME2	SDHA	TAF1	WT1
AMER1	BRCA2	CDK1	CYP2D6	ETV1	FOXL2*	IGF2	MALT1	NAT2*	PHOX2B*	PSME3	SDHB	TAP1	XIAP
APC	BRD4	CDK12	CYP2E1*	ETV4	FOXP1	IKBKB	MAP2K1	NBN	PIK3C2B	РТСН1	SDHC	TAP2	XPO1
AR	BRIP1	CDK2	CYP3A4*	EZH2	FRG1	IKBKE	MAP2K2	NEFH	PIK3C2G	PTEN	SDHD	ТАРВР	XRCC2
ARAF	BTG1*	CDK4	CYP3A5*	FAM46C	FUBP1	IKZF1	МАР2К4	NF1	РІКЗСЗ	PTGS2	SERPINB3	ТВХЗ	ZNF217
ARID1A	BTG2*	CDK5	DAXX	FANCA	GATA1	IL6	МАРЗК1	NF2	PIK3CA	PTPN11	SERPINB4	TEK	
ARID1B	ВТК	CDK6	DCUN1D1	FANCC	GATA2	IL7R	МАРЗК7	NFE2L2	РІКЗСВ	PTPRD	SETD2	TERT	
ARID2	BUB1B	CDK7	DDR2	FANCD2	GATA3	INPP4B	MAPK1	NFKB1	PIK3CD	PTPRT	SF3B1	TET1	
ASXL1	CALR	CDK8	DICER1	FANCE	GNA11	INSR	МАРКЗ	NFKBIA	PIK3CG	RAC1	SGK1	TET2	
АТМ	CANX	CDK9	DNMT3A	FANCF	GNA13	IRF4	MAX	NKX2-1*	PIK3R1	RAD50	SH2D1A*	TGFBR2	
ATR	CARD11	CDKN1A	DOT1L	FANCG	GNAQ	IRS1	MCL1	NOTCH1	PIK3R2	RAD51	SLC19A1*	TMSB4X*	
ATRX	CASP8	CDKN1B	DPYD	FANCL	GNAS	IRS2*	MDM2	NOTCH2	PIK3R3	RAD51B	SLC22A2*	TNF	
AURKA	CBFB	CDKN2A	DTX1	FAS	GREM1	JAK1	MDM4	NOTCH3	PIM1	RAD51C	SLCO1B1*	TNFAIP3	

^{*}Analysis of copy number alteration not available.

Project ID: C21-M001-01506 Report No.: AA-21-06136 ONC Date Reported: Dec 23, 2021

DISCLAIMER

Legal Statement

This test was developed by ACT Genomics and its performing characteristics were determined by ACT Genomics. This test result is to be used for clinical consultative purposes only and is not intended as a substitute for a clinical guidance of your doctor or another qualified medical practitioner. It should not be regarded as investigational or used for research.

The detection of genomic alterations does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; the detection of no genomic alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Treatment Decisions are the Responsibility of the Physician

Decisions on clinical care and treatment should be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, including physical examinations, information from other diagnostics tests and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test, or the information contained in this report.

In terms of consulting a different treating physician, the patient must file an application and fulfill the listed criteria for ACT Genomics to provide the patient's report to the assigned physician. The report may not be copied or reproduced except in its totality.

Genetic Alterations and Drugs Not Presented in Ranked Order

In this report, neither any biomarker alteration nor any drug associated with a potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Provided

Drugs with a potential clinical benefit (or potential lack of clinical benefit) are evaluated for level of published evidence with at least one clinical efficacy case report or preclinical study. We endeavor to keep the information in the report up to date. However, customers must be aware that scientific understanding and technologies change over time, and we make no warranty as to the accuracy, suitability or currency of information provided in this report at any time.

No Guarantee of Clinical Benefit

This report makes no promises or guarantees about the effectiveness of a particular drug or any treatment procedure in any disease or in any patient. This report also makes no promises or guarantees that a drug without an association of reportable genomic alteration will, in fact, provide no clinical benefit.

Liability

ACT Genomics is not affiliated with any medical facility or medical practitioner. We provide information for informational purposes only, therefore, ACT Genomics and their employees cannot be held responsible for any direct, indirect, special, incidental or consequential damages that may arise from the use of information provided in the report.

AG4-QP4001-02(05) Page 20 of 27

ACTOnco®+ Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

免責聲明

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性排標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。 本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關 專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因, 行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依 照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、 連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Page 21 of 27

ACTOnco® + Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

ACTOnco®+ Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

REFERENCES

- PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- PMID: 8521522; 1995, Cell;83(6):993-1000
 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- PMID: 9529249; 1998, Cell;92(6):725-34
 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 4. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7
 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- 5. PMID: 7550353; 1995, Nat Genet;11(2):210-2 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- 6. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8
 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 7. PMID: 27849562; 2017, Gut;66(7):1286-1296 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 8. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35
 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- 9. PMID: 28283584; 2017, Oncologist;22(4):416-421 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 10. PMID: 27217383; 2016, Cancer Discov;6(7):740-53
 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 11. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?
- 12. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 13. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 14. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.

AG4-QP4001-02(05) Page 24 of 27

Project ID: C21-M001-01506 Report No.: AA-21-06136 ONC Date Reported: Dec 23, 2021

Page 25 of 27

ACTOnco® + Report

- 15. PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 16. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 17. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 18. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- 19. PMID: 24095279; 2013, Mol Cell;52(4):495-505 The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
- 20. PMID: 26342594; 2016, Fam Cancer;15(1):127-32 Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.
- 21. PMID: 23223565; 2013, J Clin Pathol;66(3):178-86 Birt-Hogg-Dube syndrome: clinicopathological features of the lung.
- 22. PMID: 19850877; 2009, Proc Natl Acad Sci U S A;106(44):18722-7 Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2.
- PMID: 24908670; 2014, Hum Mol Genet; 23(21): 5706-19 23 Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation.
- 24. PMID: 15956655; 2005, J Natl Cancer Inst;97(12):931-5 High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors.
- PMID: 29301825; 2018, Clin Cancer Res;24(7):1546-1553 Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-refractory Thyroid Cancer: A Phase II Study.
- 26. PMID: 26418749; 2015, Oncotarget; 6(32): 32761-73 Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression.
- 27. PMID: 21157483; 2011, Nat Rev Mol Cell Biol;12(1):21-35 mTOR: from growth signal integration to cancer, diabetes and ageing.
- 28. PMID: 12271141; 2002, Proc Natl Acad Sci U S A;99(21):13571-6 Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
- 29. PMID: 9242607; 1997, Science; 277(5327):805-8 Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
- 30. PMID: 8269512; 1993, Cell;75(7):1305-15 Identification and characterization of the tuberous sclerosis gene on chromosome 16.
- 31. PMID: 1303246; 1992, Nat Genet;2(1):37-41 Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease.

AG4-QP4001-02(05)

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

ACTOnco®+ Report

32. PMID: 18538015; 2008, BMC Cancer;8():163
Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma.

- 33. PMID: 28339086; 2017, Int J Oncol;50(5):1778-1784

 Identification of novel mutations in endometrial cancer patients by whole-exome sequencing.
- 34. PMID: 20610279; 2010, Urol Oncol;28(4):409-28
 Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium.
- 35. PMID: 17005952; 2006, N Engl J Med;355(13):1345-56 The tuberous sclerosis complex.
- 36. PMID: 22923433; 2012, Science; 338(6104):221
 Genome sequencing identifies a basis for everolimus sensitivity.
- 37. PMID: 26859683; 2016, Oncotarget;7(9):10547-56

 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 38. PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8

 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- 39. PMID: 26412398; 2015, Sci Rep;5():14534
 PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 41. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224

 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer.
- 42. PMID: 26703889; 2016, Lancet;387(10022):968-977
 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- 43. PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- PMID: 21306238; 2011, N Engl J Med;364(6):514-23
 Everolimus for advanced pancreatic neuroendocrine tumors.
- 45. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 46. PMID: 18653228; 2008, Lancet; 372 (9637): 449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 47. PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936 Palbociclib and Letrozole in Advanced Breast Cancer.
- 48. PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

ACTOnco® + Report

李正伸

Project ID: C21-M001-01506 Report No.: AA-21-06136_ONC Date Reported: Dec 23, 2021

49. PMID: 17538086; 2007, N Engl J Med;356(22):2271-81 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

Project ID: C21-M001-01506 Report No.: AA-21-06136_FUSION Date Reported: Dec 23, 2021

ACTFusion[™] Report

PATIENT			
Name: 李正伸	Patient ID: 1128581		
Date of Birth: Apr 28, 1962	Gender: Male		
Diagnosis: Metastatic adenocarcinoma			
ORDERING PHYSICIAN			
Name: 陳明晃醫師	Tel: 886-228712121		
Facility: 臺北榮總			
Address: 臺北市北投區石牌路二段 201 號			
SPECIMEN			
Specimen ID: S10938629A Collection site: Soft tissue	Date received: Dec 10, 2021		
Lab ID: AA-21-06136 Type: FFPE tissue	D/ID: NA		

ABOUT ACTFusion™

The test is a next-generation sequencing (NGS) based in vitro diagnostic assay to detect fusion transcripts of 13 genes, including ALK, BRAF, EGFR, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET, and ROS1.

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 1 of 7

Project ID: C21-M001-01506 Report No.: AA-21-06136_FUSION Date Reported: Dec 23, 2021

ACTFusion[™] Report

THERAPEUTIC IMPLICATION

Not Applicable.

VARIANT INTERPRETATION

Not Applicable.

US FDA-APPROVED DRUG(S)

Not Applicable.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page **2** of **7**

Project ID: C21-M001-01506 Report No.: AA-21-06136_FUSION Date Reported: Dec 23, 2021

ACTFusion[™] Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 3 of 7

Project ID: C21-M001-01506 Report No.: AA-21-06136_FUSION Date Reported: Dec 23, 2021

ACTFusion[™] Report

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Nov 2020Facility retrieved: 臺北榮總

H&E-stained section No.: S10938629A

Collection site: Soft tissueExamined by: Dr. Pei-Yi Chu

1. The percentage of viable tumor cells in total cells in the whole slide (%): 40%

- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 45%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTFusion™
- Total reads: 796568
- Average unique RNA Start Sites per control GSP2: 94

LIMITATIONS

This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4006-04(02) page 4 of 7

Project ID: C21-M001-01506 Report No.: AA-21-06136_FUSION Date Reported: Dec 23, 2021

ACTFusion[™] Report

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX.

STANDARD OPERATING PROCEDURES (SOPs)

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-94 (01) SOP of ACTFusion v3 Library Construction and Preparation
- AG3-QP16-36(02) SOP of Fusion Gene Detection
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

DATABAES USED

- Quiver Gene Fusion Database version 5.1.18

GENE LIST

	ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1
	NTRK1	NTRK2	NTRK3	RFT	ROS1			

Variant Analysis:

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 Sign Off

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 5 of 7

Project ID: C21-M001-01506 Report No.: AA-21-06136_FUSION Date Reported: Dec 23, 2021

ACTFusion[™] Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 6 of 7

Project ID: C21-M001-01506 Report No.: AA-21-06136_FUSION Date Reported: Dec 23, 2021

ACTFusion[™] Report

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page **7** of **7**