Sampel Acak dan Statistik

Bahan Kuliah *II2092 Probabilitas dan Statistik*

Oleh: Rinaldi Munir

Sekolah Teknik Elektro dan Informatika ITB

Populasi

- Dalam survey statistik, hasil pengamatan dicatat dalam numerik. Obyek yang diamati bisa manusia, hewan, atau benda lainnya.
- Keseluruhan pengamatan yang diteliti membentuk apa yang disebut populasi atau universum.
- Suatu populasi terdiri atas keseluruhan pengamatan yang menjadi perhatian.
- Contoh: pemilih di sebuah kota disurvey, berapa orang yang akan memilih partai tertentu. Populasinya adalah seluruh pemilih di kota tersebut.

- Ukuran populasi menyatakan banyaknya pengamatan di dalam populasi. Jika jumlah pemilih 20000 orang, maka ukuran populasinya dikatakan 20000 orang.
- Tiap pengamatan di dalam populasi merupakan nilai dari suatu peubah acak X dengan distribusi peluang f(x).
- Dalam praktek, mengamati himpunan seluruh pengamatan di dalam populasi tidak praktis atau malah tidak mungkin. Selain itu faktor biaya yang tinggi juga menjadi penyebabnya.

- Oleh karena itu, kita terpaksa menggunakan sebagian pengamatan dari populasi untuk menarik inferensi statistik tentang populasi tersebut.
- Himpunan bagian dari populasi dinamakan sampel.
- Agar inferensi dari sampel tentang populasi valid, maka sampel haruslah diambil mewakili populasi.
- Untuk mencegah timbulnya bias dalam prosedur sampling, maka sebaiknya menggunakan sampel acak.

- Sampel acak berarti pengamatan dilakukan secara bebas satu sama lain dan acak.
- Misalkan X₁, X₂,..., X_n merupakan n peubah acak bebas yang masing-masing berdistribusi peluang f(X). X₁, X₂,..., X_n didefinisikan sebagai sampel acak ukuran n dari populasi f(X) dan distribusi peluang gabungannya ditulis sebagai

$$f(X_1, X_2, ..., X_n) = f(X_1) f(X_2) ... f(X_n)$$

 Contoh: dari sebuah pabrik batere dipilih secara acak n = 8 batere yang diproduksi dengan keadaan yang sama, kemudian umurnya dicatat: x₁ adalah umur batere pertama, x₂ adalah umur batere kedua, dan seterusnya. Maka, x₁, x₂, ..., x₈ merupakan nilai sampel acak X₁, X₂, ..., X₈. Bila dianggap populasi umur batere berditsribusi normal, nilai yang mungkin untuk x_i , i = 1, 2, ..., 8, akan tetap sama dengan pada populasi semula. Dan karena itu X_i mempunyai distribusi normal yang tepat sama dengan X.

Statistik

- Apa yang dimaksud dengan statistik?
- Tujuan utama memilih sampel acak adalah untuk mendapatkan keterangan mengenai parameter populasi yang tidak diketahui.
- Misalkan kita ingin mengetahui proporsi penduduk Indonesia yang menyukai permen coklat merek ABC.
- Mutahil menanyakan kepada seluruh penduduk apakah mereka menyukai permen coklat tersebut.
- Oleh karena itu diambil sampel acak yang banyak kemudian dilakukan pengukuran parameter yang diinginkan.

- Dalam praktek, parameter p yang menggambarkan proporsi sebenarnya dihampiri dengan parameter \hat{p} pada sampel acak tersebut.
- Nilai \hat{p} ini kemudian dipakai untuk menarik kesimpulan mengenai proporsi p yang sesungguhnya.
- Jadi, \hat{p} merupakan fungsi dari nilai pengamatan dalam sampel acak.
- Karena banyak kemungkinan sampel acak yang dapat diambil dari populasi yang sama, maka tentunya \hat{p} akan berbeda sedikit antara sampel acak yang satu dengan sampel acak yang lain.
- Dengan kata lain, \hat{P} adalah nilai dari suatu peubah acak yang kita nyatakan dengan P. Peubah acak seperti ini dinamakan statistik

- Definisi. Setiap fungsi dari peubah acak yang membentuk suatu sampel acak disebut statistik.
- Dengan kata lain, statistik merupakan peubah acak yang nilainya hanya bergantung pada sampel acak yang diamati.
- Statistik yang paling sering dipakai untuk menggambarkan ukuran padanan pada suatu sampel acak adalah rataan, median, modus, jangkauan, variansi, dan simpangan baku.

Rataan (mean)

• **Definisi**. Bila X_1 , X_2 , ..., X_n menyatakan sampel acak berukuran n, maka **rataan sampel** dinyatakan oleh statistik:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

 Contoh 1. Hitung rataan dari sampel acak dari 8 orang wisudawan ITB yang dicatat umurnya, yaitu 22, 21, 24, 22, 23, 25, 24, 22.

Jawaban:

$$\overline{x} = \frac{22 + 21 + 24 + 22 + 23 + 25 + 24 + 22}{8} = 22.875$$

Median

 Definisi. Bila X₁, X₂, ..., X_n menyatakan sampel acak berukuran n, diurutkan membesar menurut besarnya, maka median sampel ditentukan sebagai statistik

$$\widetilde{X} = \begin{cases} X_{(n+1)/2} & bila \ n \ ganjil \\ \frac{X_{n/2} + X_{(n/2)+1}}{2} & bila \ n \ genap \end{cases}$$

 Contoh 2. Tentukan median dari usia wisudawan pada Contoh 1 di atas.

Jawaban: Urutkan data pengamatan terlebih dahulu:

Karena n genap, maka mediannya:
$$\tilde{x} = \frac{22 + 23}{2} = 22.5$$

Modus

- **Definisi**. Bila X_1 , X_2 , ..., X_n menyatakan sampel acak berukuran n, maka **modus** M ialah suatu nilai sampel yang paling sering muncul atau frekuensinya paling tinggi. Modus mungkin tidak ada, dana kalaupun ada mungkin tidak tunggal.
- Contoh 3. Tentukan modus dari usia wisudawan pada Contoh 1 di atas.

Jawaban: Dari data pengamatan: 22, 21, 24, 22, 23, 25, 24, 22, maka 22 adalah modusnya karena 22 muncul paling banyak yaitu 3 kali.

- Contoh 4. Bila data pengamatannya bertambah menjadi 10 orang sehingga diperoleh 22, 21, 24, 22, 23, 25, 24, 22, 24, 23, maka modunya ada 2 yaitu 22 dan 24 karena keduanya paling sering muncul. Statistik ini disebut dwimodus.
- Contoh 5. Bila pengamatan dari 8 sampel acak wisuadawan yang lain menghasilkan data pengamatan usia sebagai berikut 22, 21, 24, 23, 20, 25, 26, 27, maka modusnya tidak ada karena setiap nilai muncul satu kali.

Jangkauan

- **Definisi. Jangkauan** atau **rentangan** dari sampel acak X_1 , X_2 , ..., X_n didefinisikan sebagai statistik $X_{(n)} X_{(1)}$, bila $X_{(n)}$ dan $X_{(1)}$ masing-masing menyatakan pengamatan yang terbesar dan terkecil dari sampel.
- Contoh 6. Dari data pengamatan usia wisudawan: 22, 21, 24, 22, 23, 25, 24, 22, terlihat usia tertinggi = 25 dan usia terendah = 21, sehingga jangkauan = 25 21 = 4.

Variansi

• **Definisi**. Bila X_1 , X_2 , ..., X_n menyatakan sampel acak berukuran n, maka **variansi sampel** didefinisikan sebagai statistik:

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

 Contoh 7. Hitung variansi dari data pengamatan usia wisudawan pada Contoh 1 di atas.

Jawaban: Dari data pengamatan 22, 21, 24, 22, 23, 25, 24, 22 sudah diperoleh rataanya $\bar{x}=22.875$. Variansinya adalah

$$s^{2} = \frac{\sum_{i=1}^{8} (X_{i} - 22.875)^{2}}{8 - 1}$$

$$= (22 - 22.875)^{2} + (21 - 22.875)^{2} + \dots + (22 - 22.875)^{2} = \frac{1}{7}$$

 Untuk menghindari kesalahan akibat pembulatan, maka alternatif menghitung variansi adalah dengan rumus:

$$S^{2} = \frac{n\sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n-1)}$$

Simpangan Baku

- Simpangan baku sampel dinyatakan dengan S adalah akar positif variansi sampel.
- Contoh 8. Hitunglah variansi dari data acak 3, 4, 5, 6, 6, dan 7 yang menyatakan banyaknya ikan hasil pancingan dari sampel acak 6 pengail di sebuah sungai

Jawaban:

$$n = 6, \sum_{i=i}^{6} X_i^2 = 171, \sum_{i=1}^{6} X_i = 31$$

Jadi,
$$S^2 = \frac{(6)(171) - (31)^2}{(6)(5)} = \frac{13}{6}$$
 dan $S = \sqrt{(13/6)} = 1.47$

Karakteristik populasi

- 1. Ukuran N
- 2. Parameter
- 3. Rataan μ
- 4. Variansi σ^2
- 5. Simpangan baku σ
- 6. Populasi berhingga atau tidak berhingga

Karakteristik sampel

- 1. Ukuran n
- 2. Statistik
- 3. Rataan \overline{X}
- 4. Variansi S²
- 5. Simpangan baku S
- 6. Sampel besar atau

Distribusi Sampel

- Bidang statistika inferensi pada dasarnya berkenaan dengan perampatan dan hasil prediksi.
- Kita menghitung suatu statistik dari sampel yang dipilih dari populasi, dan dari statistik ini kita membuat pernyataan yang mungkin benar atau tidak mengenai nilai parameter populasi.
- Contoh: berdasarkan pendapat beberapa orang yang diwawancarai sebelum Pilkada di Bandung, 60% dari pemilih akan memilih calon tertentu.

- Karena statistik merupakan peubah acak yang tergantung hanya pada sampel yang diamati, maka tentulah ada distribusi peluangnya.
- **Definisi**. Distribusi peluang suatu statistik disebut **distribusi sampel**.
- Definisi. Simpangan baku distribusi sampel suatu statistik disebut galat baku dari statistik tersebut.
- Distribusi sampel suatu statistik bergantung pada ukuran populasi, ukuran sampel, dan, metode memilih sampel.

Distribusi Sampel dari Rataan

- Distribusi sampel pertama yang penting adalah distribusi sampel dari rataan.
- Contoh, misalkan kita mempunyai populasi berupa bilangan, yaitu 2, 3, 6, 8, 11. Populasi ini berukuran berhingga yaitu N = 5. Misalkan kita ambil sampel acak berukuran n = 2, tanpa pengembalian, maka kombinasi sampel yang berlainan adalah sebanyak C(5, 2) = 5!/(2!3!) = 10. Kesepuluh jenis sampel tersebut dan rataanya adalah sebagai berikut:

Sampel 1: 2 dan 3; rataan =
$$\overline{X}_1 = (2+3)/2 = 2.5$$

Sampel 2: 2 dan 6; rataan =
$$X_2 = (2+6)/2 = 4.0$$

Sampel 3: 2 dan 8; rataan =
$$\overline{X}_3 = (2+8)/2 = 5.0$$

... dst hingga sampel 10

- Perhatikanlah bahwa rataan $\overline{X}_1, \overline{X}_2, ..., \overline{X}_{10}$ mempunyai nilai yang berbeda-beda sehingga rataan $\overline{X}_1, \overline{X}_2, ..., \overline{X}_{10}$ membentuk suatu sampel acak tersendiri yaitu \overline{X} yang disebut **sampel rataan**, oleh karena itu kita bisa menentukan rataan dan simpangan baku dari sampel rataan ini.
- Sampel rataan mempunyai distribusi peluang sendiri yang dinamakan distribusi sampel rataan.
- **Definisi**. Distribusi peluang X disebut distribusi sampel dari rataan dan galat baku rataan adalah simpangan baku dari distribusi sampel \overline{X} .

- Misalkan sampel acak yang berisi n pengamatan diambil dari populasi normal dengan rataan μ dan variansi σ^2 .
- Sampel acak berukuran n diambil secara berulang-ulang, lalu rataan setiap sampel dihitung, yaitu $\overline{X}_1, \overline{X}_2, ..., \overline{X}_n$.
- Setiap pengamatan \overline{X}_i , i = 1, 2, ..., n, dari sampel acak tersebut akan berdistribusi normal yang sama dengan populasi yang diambil sampelnya.
- Jadi, dapat disimpulkan

$$\bar{X} = \frac{\bar{X}_1 + \bar{X}_2 + \dots + \bar{X}_n}{n}$$

berdistribusi normal dengan rataan $\mu_{\bar{X}} = \frac{\mu + \mu + ... + \mu}{n} = \mu$

variansi
$$\sigma_{\bar{X}}^2 = \frac{\sigma^2 + \sigma^2 + ... + \sigma^2}{n^2} = \frac{\sigma^2}{n}$$
 dan simpangan baku $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

 Contoh 9. Suatu sampel acak berukuran n = 10 diambil tanpa pengembalian dari populasi tak berhingga yang berdistribusi normal dengan rataan 5.5 dan simpangan baku 2.92, setiap sampel lalu dihitung rataannya. Tentukan rataan dan simpangan baku dari sampel rataan tersebut.

<u>Jawaban</u>: Sampel rataan tersebut mempunyai

rataan:
$$\mu_{\overline{X}} = \mu = 5.5$$

simpangan baku:
$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} = \frac{2.92}{\sqrt{10}} = 0.92$$

- Bila populasi yang disampel tidak diketahui distribusinya, maka distribusi sampel $\overline{\chi}$ masih akan berdistribusi hampir normal (mendekati distribusi normal) dengan rataan μ dan variansi σ^2/n asalkan ukuran sampelnya besar.
- Hal ini dinyatakan oleh Teorema Limit Pusat sebagai berikut:

Teorema Limit Pusat.

Bila \overline{X} rataan dari sampel acak ukuran n yang diambil dari populasi dengan rataan μ dan variansi σ^2 yang berhingga, maka bentuk limit dari distribusi

$$z=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}},$$

bila n $\rightarrow \infty$, ialah distribusi normal baku n (z; 0, 1)

- Dalam statistik, sampel dikatakan berukuran besar jika n ≥ 30.
- Hampiran normal untuk \overline{X} umumnya cukup baik jika n \geq 30, terlepas dari bentuk populasi (normal atau bukan).
- Bila n < 30, hampirannya hanya akan baik bila populasinya tidak
- jauh berbeda dengan normal.
- Bila populasinya diketahui normal, maka distribusi sampel X akan tetap berdistribusi normal terlepas dari ukuran sampelnya.
- Contoh 10. Suatu perusahaan memproduksi bola lampu yang umurnya berdistribusi hampir normal dengan rataan 800 jam dan simpangan baku 40 jam. Hitunglah peluangnya bahwa suatu sampel acak dengan 16 bola lampu akan mempunyai umur rata-rata kurang dari 775 jam.

<u>Jawaban</u>: Secara hampiran, distribusi sampel \bar{X} akan berdistribusi normal dengan $\mu_{\bar{X}} = 800$ dan $\sigma_{\bar{X}} = 40/\sqrt{16} = 10$. Peluang yang dicari diberikan oleh luas daerah yang dihitami pada gambar. Nilai z yang berpadanan dengan $\bar{X} = 775$ adalah

$$z = \frac{775 - 800}{10} = 2,5$$

sehingga

$$P(\bar{X} < 775) = P(z < -2.5)$$

= 0.0062

Gambar 1. Luas Daerah Untuk Contoh 10

 Contoh 11. Diketahui sebuah populasi berdistribusi seragam diskrit:

$$f(x) = \begin{cases} \frac{1}{4}, & x = 0,1,2,3\\ 0, & \text{lainnya} \end{cases}$$

Hitunglah peluang bahwa sampel acak berukuran 36, yang dipilih dengan pengembalian, akan menghasilkan rataan sampel lebih besar dari 1.4 tetapi lebih kecil dari 1.8 bila rataan diukur (dibulatkan) sampai persepuluhan terdekat.

<u>Jawaban</u>: Rataan dan variansi dihitung dengan rumus yang terdapat pada materi distribusi seragam diskrit, dan diperoleh

$$\mu = (0 + 1 + 2 + 3)/4 = 3/2 = 1.5$$

dan

$$\sigma^2 = \frac{(0-3/2)^2 + (1-3/2)^2 + (2-3/2)^2 + (3-3/2)^2}{4} = 5/4$$

Distribusi sampel \bar{X} dapat dihampiri dengan distribusi normal dengan rataan

$$\mu_{\bar{X}} = 3/2 \text{ dan } \sigma_{\bar{X}}^2 = \sigma^2 / n = 5/144$$

Dengan mengambil akarnya diperoleh simpangan baku

$$\sigma_{\bar{X}} = 0.186$$

Peluang yang ditanyakan adalah

$$P(1.4 < \bar{X} < 1.8) = ?$$

Luas daerah yang dimaksudkan terletak antara $\bar{x}_1 = 1.45$ dan

$$\bar{x}_2 = 1.75$$

Lakukan transformasi ke peubah z terlebih dahulu:

$$z_1 = (1.45 - 1.5)/0.186 = -0.27$$

 $z_2 = (1.75 - 1.5)/0.186 = 1.27$

Jadi,

$$P(1.4 < \bar{X} < 1.8) \cong P(-0.27 < Z < 1.34)$$

= $P(Z < 1.34) - P(Z < -0.27)$
= $0.9099 - 0.3936$
= 0.5163

Teorema (Distribusi Sampel dari Selisih Dua Rataan)

• Bila sampel bebas ukuran n_1 dan n_2 diambil secara acak dari dua populasi, diskrit maupun kontinu, masing-masing dengan rataan dan μ_1 dan μ_2 , variansi σ_1^2 dan σ_2^2 , maka distribusi sampel dari selisih rataan, $\bar{X}_1 - \bar{X}_2$, berdistribusi hampir normal, rataan dan variansi diberikan oleh

$$\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2 \text{ dan } \sigma^2_{x_1 - x_2} = \frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}$$

sehingga

$$z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{\sigma^2_1}{n_1}\right) + \left(\frac{\sigma^2_2}{n_2}\right)}}$$

secara hampiran merupakan peubah normal baku.

- Jika n_1 dan n_2 keduanya lebih besar atau sama dengan 30, hampiran normal untuk distribusi $\bar{X}_1 \bar{X}_2$ sangat baik tidak bergantung pada bentuk kedua populasi (normal atau bukan).
- Akan tetapi, bila n₁ dan n₂ keduanya kurang dari 30, hampiran normal lumayan baik kecuali bila kedua populasi jauh dari normal.
- Tentu saja jika kedua populasi normal, maka $\bar{X}_1 \bar{X}_2$ berdistribusi normal terlepas dari ukuran n_1 dan n_2 .

• Contoh 12. Suatu sampel berukuran n_1 =15 diambil secara acak dari populasi yang berdistribusi normal dengan rataan μ_1 =50 dan variansi σ_1^2 = 9, dan rataan sampel \bar{X}_1 dihitung. Sampel acak kedua berukuran n_2 = 4 diambil, bebas dari yang pertama, dari populasi lain yang juga berdistribusi normal, dengan rataan μ_2 = 40 dan variansi σ_2^2 = 4, dan rataan sampel \bar{X}_2 dihitung. Carilah P(\bar{X}_1 – \bar{X}_2 < 8,2).

Jawaban: Dari distribusi sampel $\bar{X_1} - \bar{X_2}$ kita ketahui bahwa distribusinya normal dengan rataan dan variansi

$$\mu_{X_1-X_2} = \mu_1 - \mu_2 = 50 - 40 = 10$$

$$\sigma^2_{x_1-x_2} = \frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2} = \frac{9}{5} + \frac{4}{4} = 2.8$$

Peluang yang dicari dinyatakan oleh luas daerah yang dihitami dalam gambar. Berpadanan dengan nilai $\bar{X}_1 - \bar{X}_2 = 8,2$, diperoleh $z = \frac{8,2-10}{\sqrt{2.8}} = -1,08$ sehingga

$$P(\overline{X}_1 - \overline{X}_2 < 8.2) = P(Z < -1.08)$$

= 0.1401

Gambar 2. Luas Daerah Untuk Contoh 12

• Contoh 13. tabung gambar televisi yang dibuat pabrik A mempunyai rataan umur 6.5 tahun dengan simpangan baku 0.9 tahun, sedangkan hasil dari pabrik B mempunyai rataan umur 6.0 tahun dengan simpangan baku 0.8 tahun. Berapakah peluang bahwa suatu sampel acak berukuran 36 buah tabung dari pabrik A akan mempunyai rataan umur paling sedikit satu tahun lebih lama dari rataan umur sampel 49 buah tabung dari pabrik B?

Jawaban: Diketahui data berikut:

Populasi I	Populasi II
$\mu_1 = 6.5$	$\mu_2 = 6.0$
$\sigma_1 = 0.9$	$\sigma_2 = 0.8$
$n_1 = 36$	$n_2 = 49$

Distribusi sampel $\bar{X}_1 - \bar{X}_2$ akan berdistribusi hampiran normal dan mempunyai rataan dan simpangan baku:

$$\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2 = 6.5 - 6.0 = 0.5$$

$$\sigma_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{0.81}{36} + \frac{0.64}{49}} = 0.189$$

Peluang bahwa rataan 36 buah tabung dari pabrik A paling sedikit 1 tahun lebih lama dari rataan 49 tabung dari pabrik B adalah $P(\bar{X}_1 - \bar{X}_2 \ge 1.0)$

Padanan nilai 1.0 adalah z = (1.0 - 0.5)/0.189 = 2.65Sehingga

$$P(\bar{X}_1 - \bar{X}_2 \ge 1.0) = P(Z > 2.65) = 1 - P(Z < 2.65)$$

= 1 - 0.9960 = 0.0040

 Latihan. Di sebuah universitas terdapat dua populasi, yaitu populasi mahasiswa laki-laki dan populasi mahasiswa perempuan. Diketahui rata-rata tinggi badan mahasiswa laki-laki adalah 164 cm dengan simpangan baku 5.3 cm, sedangkan rata-rata tinggi mahasiswa perempuan adalah 153 cm dengan simpangan baku 5.1 cm. Misalka n dari kedua populasi tersebut diambil sampel secara acak yang saling bebas masing-masing 150 orang, berapa peluang rata-rata tinggi mahasiswa laki-laki paling sedikit 12 cm lebihnya daripada rata-rata tinggi mahasiswa perempuan.

Jawaban: Diketahui data berikut:

Populasi I Populasi II

$$\mu_1 = 164$$
 $\mu_2 = 153$

$$\sigma_1 = 5.3$$
 $\sigma_2 = 5.1$

$$n_1 = 150$$
 $n_2 = 150$

Misalkan \overline{X}_1 dan \overline{X}_2 masing-masing menyatakan rata-rata tinggi badan mahasiswa laki-laki dan rata-rata tinggi mahasiswa perempuan.

Karena ukuran sampel cukup besar (\geq 30), maka distribusi sampel $\bar{X}_1 - \bar{X}_2$ akan berdistribusi hampiran normal dan mempunyai rataan dan simpangan baku:

$$\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2 = 164 - 158 = 11 \text{ cm}$$

$$\sigma_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{(5.3)^2}{150} + \frac{(5.1)^2}{150}} = 0.60$$

Peluang bahwa rata-rata tinggi mahasiswa laki-laki paling sedikit 12 cm lebihnya daripada rata-rata tinggi mahasiswa perempuan adalah $P(\bar{X}_1 - \bar{X}_2 \ge 12)$

Padanan nilai 12 adalah z = (12 - 11)/0.60 = 1.67Sehingga

$$P(\bar{X}_1 - \bar{X}_2 \ge 12) = P(Z > 1.67) = 1 - P(Z < 1.67)$$

= 0.0475

Distribusi Sampel dari $(n-1)S^2/\sigma^2$

• **Teorema**. Bila S^2 adalah variansi sampel acak berukuran n yang diambil dari populasi normal dengan varians i σ^2 , maka statistik

$$X^2 = \frac{(n-1)S^2}{\sigma^2}$$

berdistribusi khi-kuadrat dengan derajat kebebasan adalah v = n - 1.

Nilai peubah X² dihitung dari tiap sampel dengan rumus

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

• Peluang suatu sampel acak menghasilkan nilai χ^2 lebih besar dari nilai teretntu sama dengan luas di bawah kurva di sebelah kanan nilai tersebut. Nilai tertentu tersebut dinyatakan dengan χ^2_α

Kurva distrubusi Chi-Squared dengan bermacam-macam derajat kebebasan

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188

11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13							21.026		27.688	l I
	3.565	4.107	5.009	5.892	7.042	19.812		24.736		29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

• Contoh 14. Suatu pabrik baterai mobil menjamin bahwa baterainya akan tahan rata-rata 3 tahun dengan simpangan baku 1 tahun. Bila 5 baterainya tahan 1,9, 2,4, 3,0, 3,5, dan 4,2 tahun, apakah pembuatnya masih yakin bahwa simpangan baku baterai tersebut 1 tahun?

Jawaban:

Mula-mula dihitung variansi sampel :

$$S^2 - \frac{(5)(48,26) - (15)^2}{(5)(4)} - 0,815$$

kemudian

$$\chi^2 = \frac{(4)(0.815)}{1} = 3.26$$

merupakan suatu nilai distribusi khi-kuadrat dengan derajat kebebasan 4. Karena 95% nilai χ^2 dengan derajat kebebasan 4 terletak antara 0,484 dan 11,143, nilai perhitungan dengan menggunakan $\sigma^2 = 1$ masih wajar, sehingga tidak ada alasan bagi pembuatnya untuk mencurigai bahwa simpangan baku baterainya bukan 1 tahun.

Distribusi-t

- Variansi populasi yang sampel acaknya diambil seringkali sukar diketahui.
- Untuk ukuran sampel yang besar (n \geq 30), taksiran σ^2 yang baik dapat diperoleh dengan menghitung S^2 .
- Untuk n yang kecil, nilai S² berubah cukup besar dari sampel ke sampel lainnya dan distribusi peubah acak $Z = (\overline{X} \mu)/(\sigma/\sqrt{n})$ menyimpang cukup jauh dari distribusi normal baku.
- Untuk sampel berukuran kecil, kita berhadapan dengan distribusi suatu statistik yang dinamakan T.

T adalah peubah acak dengan

$$T - \frac{\bar{X} - \mu}{S/\sqrt{n}}$$
 , yang dalam hal ini $\sigma_{\bar{X}} = \frac{S}{\sqrt{n}}$

dan distribusi peluangnya dinamakan **distribusi** *t* (akan didefinisikan kemudian).

 Distribusi t ditemukan oleh W.S Gosset pada tahun 1908 dalam sebuah makalahnya. Gosset bekerja di sebuah pabrik di Irlandia yang melarang karyawannya menerbitkan penelitiannya. Untuk menyiasati larangan itu, dia menerbitkan karyanya secara rahasia dibawah nama "student", karena itulah distribusi t disebut distribusi student. Teorema. Misalkan Z peubah acak normal baku dan V peubah acak khi-kuadrat dengan derajat kebebasan v. Bila Z dan V bebas, maka distribusi peubah acak T, bila

$$T = \frac{Z}{\sqrt{V/v}}$$

diberikan oleh

$$h(t) = \frac{\Gamma\left\lceil \frac{(v+1)}{2}\right\rceil}{\Gamma\left(\frac{v}{2}\right)\sqrt{\pi v}} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2}, -\infty < t < \infty,$$

Ini dikenal dengan nama **distribusi–t** dengan derajat kebebasan v.

- Dalam menurunkan rumus distribusinya, Gosset mengasumsikan bahwa sampel acak diambil dari populasi normal.
- Meskipun demikian, bila sampel acak diambil dari sampel yang distribusinya tidak normal tetapi bila kurva distribusinya berbentuk lonceng, maka dapat dibuktikan bahwa distribusi statistik tersebut masih mendekati distribusi t.
- Distribusi t sangat mirip dengan distribusi normal baku Z, keduanya setangkup terhadap rataan 0, tetapi distribusi t lebih bervariasi karena nilai T sangat bergantung pada perubahan nilai \overline{X} dan S², sedangkan distribusi normal hanya bergantung pada perubahan nilai \overline{X} dari suatu sampel ke sampel yang lain.

- Distribusi t dan Z berbeda karena variansi T bergantung pada ukuran sampel n dan variansi ini selalu lebih besar dari 1.
 Hanya jika n →∞, kedua distribusi ini akan menjadi sama.
- Perhatikan rumus variansi S² yang terdahulu:

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

Faktor pembagi yang muncul, yaitu n -1, disebut derajat kebebasan, yang ditulis v = n - 1. Kurva distribusi t akan bervariasi untuk berbagai derajat kebebasan. Bila n $\to \infty$, maka $v = \infty$ sehingga distribusi t menjadi sama dengan distribusi normal baku Z.

Student's *t*-distribution

- Peluang suatu sampel acak mempunyai nilai $t = (\bar{x} \mu)/(s/\sqrt{n})$ yang terletak antara dua nilai tertentu sama dengan luas di bawah kurva distribusi t yang dibatasi oleh absis yang berpadanan dengan kedua nilai tersebut.
- Perhitungan distribusi t dilakukan dengan memakai Tabel Distribusi t. Pada tabel telah tercantum nilai-nilai t untuk derajat kebebasan v dan luas di bawah kurva (disimbolkan dengan α).
- Tabel tersebut memberikan nilai t sedemikian rupa sehingga di atasnya terdapat luas α tertentu.

Table A.4 Critical Values of the t-Distribution

1	a a									
0	0.40	0.30	0.20	0.15	0.10	0.05	0.025			
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706			
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303			
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182			
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776			
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571			
6	0.265	0.553	0.906	1.134	1.440	1.943	2,447			
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365			
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306			
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262			
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228			
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201			
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179			
13	0.259	0.537	0.870	1.079	1.350	1.771	2.160			
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145			
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131			
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120			
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110			
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101			
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093			
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086			
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080			
22	0.256	0.532	0.858	1,061	1.321	1.717	2.074			
23	0.256	0.532	0.850	1.060	1.319	1.714	- 2.069			
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064			
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060			
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056			
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052			
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048			
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045			
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042			
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021			
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000			
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980			
00	0.253	0.524	0.842	1.036	1.282	1.645	1.960			

Table A.4 (continued) Critical Values of the t-Distribution

	a									
. 1	0.02	0.015	0.01	0.0075	0.905	0.0025	0.0005			
	15.895	21,205	31.821	42,434	63.657	127.322	636,590			
1		5.643	6.965	8.073	9.925	14.089	31.50			
2	4.849 3.482	3.896	4.541	5.047	5.841	7.453	12,974			
3	2.999	3.298	3.747	4.088	4.604	5.598	8.654			
4 5	2.757	3.003	3,365	3.634	4.032	4,773	6.5ml			
6	2.612	2.829	3.143	3.372	3.707	4.317	5,950			
- To-	2.517	2.715	2.998	3.203	3.499	4.029	5,405			
7 8	2.449	2.634	2.896	3.085	3.355	3.833	5.11-1			
	2.398	2.574	2.821	2.998	3.250	3.690	4.751			
9	2.359	2.527	2.764	2.932	3.169	3.581	4.58			
11	2.328	2.491	2.718	2.879	3.106	3.497	4.43			
	2.303	2.461	2.681	2.836	3.055	3.428	4.318			
12	2.282	2.436	2.650	2.801	3.012	3.372	4.22			
55.994	2.264	2.415	2.624	2.771	2.977	3.326	4.120			
14	2.249	2.397	2.602	2.746	2.947	3.286	4.0			
16	2.235	2.382	2,583	2.724	2.921	3.252	4.015			
17	2.224	2.368	2.567	2.706	2,898	3,222	3.965			
18	2.214	2.356	2.552	2.689	2.878	3.197	3,922			
19	2.205	2.346	2.539	2.674	2.861	3.174	3.883			
20	2.197	2.336	2,528	2.661	2.845	3.153	3.8-14			
21	2.189	2.328	2.518	2.649	2.831	3.135	3.519			
22	2.183	2.320	2.508	2.639	2.819	3.119	3,792			
23	2.177	2.313	2,500	2.629	2.807	3.104	3.768			
24	2.172	2,307	2,492	2.620	2.797	3.091	3,745			
25	2.167	2.301	2.485	2.612	2.787	3.078	3,725			
26	2.162	2.296	2,479	- 2.605	2.779	3.067	3.707			
27	2.158	2.291	2.473	2.598	2.771	3.057	3.690			
28	2.154	2.286	2.467	2.592	2.763	3.047	3.674			
29	2.150	2.282	2.462	2.586	2,756	3.038	3.659			
30	2.147	2.278	2.457	2.581	2.750	3.030	3.646			
	1000	2,250	2,423	2.542	2.704	2.971	3.441			
40	2.125	2.223	2.390	2,504	2.660	2,915	3,460			
60	2.099	2.196	2.358	2.468	2.617		3.3			
120	2.076	2.170	2.326	2,432	2.576		3.291			
œ	2,054	2.170	2020		0.000	10.75				

- Notasi: t_{α} menyatakan nilai t sedemikian sehingga di sebelah kanannya terdapat luas sebesar α
- Sebagai contoh, nilai t untuk derajat kebebasan 10 sehingga luas bagian paling kanan 0.025 adalah 2.228, atau ditulis t_{0.025}
 = 2.228 untuk derajat kebebasan 10.
- Karena distribusi t setangkup terhadap rataan nol, maka

$$t_{1-\alpha} = -t_{\alpha}$$

yang artinya nilai t yang luas di sebelah kanannya $1-\alpha$ sama dengan minus nilai t yang luas bagian kanannya α (lihat Gambar 3).

Gambar 3 Sifat setangkup distribusi t

• Sebagai contoh, $t_{0.95} = -t_{0.05}$

Contoh 15. Nilai t dengan derajat kebebasan v = 14 sehingga
 luas di sebelah kirinya 0.025 (jadi luas di sebelah kanannya = 1
 - 0.025 = 0.975) adalah

$$t_{0.975} = -t_{0.025} = -2.145$$

• Contoh 16. Cari P($-t_{0,025}$ < T < $t_{0,05}$).

Jawaban:

Karena luas di sebelah kanan $t_{0,05}$ adalah 0,05 dan luas di sebelah kiri - $t_{0,025}$ adalah 0,025, maka jumlah luas antara - $t_{0,025}$ dan $t_{0,05}$ adalah

$$1 - 0.05 - 0.025 = 0.925$$

jadi P(
$$-t_{0,025}$$
< T < $t_{0,05}$) = 0,925

• Contoh 17. Untuk sampel berukuran n = 10 dan α = 0.05, tentukanlah P(T < t $_{\alpha}$) dan P(- t $_{\alpha}$ < T < t $_{\alpha}$).

<u>Jawaban</u>: Derajat kebebasan = n - 1 = 10 - 1 = 9.

$$t_{0.05} = 1.833$$

Jadi, P(T < 1.833) = 1 - 0.05 = 0.95
dan P(-1.833 < T < 1.833) = 1 - 0.05 - 0.05 = 0.90

- Perhatikan bahwa 95% dari nilai peluang suatu distribusi t dengan derajat kebebasan v = n 1 berada antara $-t_{0,025}$ dan $t_{0,025}$
- Suatu nilai t yang jatuh di bawah $-t_{0,025}$ dan $t_{0,025}$ akan cenderung memberi keyakinan pada kita bahwa suatu kejadian yang amat jarang terjadi telah terjadi atau anggapan kita mengenai μ yang kita ambil keliru.
- Jika hal ini muncul maka kita akan memilih kesimpulan yang terakhir dan menyatakan bahwa anggapan nilai μ yang kita ambil keliru.

• Contoh 18. Sebuah pabrik lampu yakin bahwa bola lampunya akan terus menyala selama 500 jam. Untuk mempertahankan nilai tersebut, tiap bulan diuji 25 bola lampu. Bila nilai t yang dihitung terletak antara $-t_{0,05}$ dan $t_{0,05}$ maka pengusaha pabrik tadi akan mempertahankan keyakinannya. Kesimpulan apakah yang seharusnya dia ambil dari sampel dengan rataan 518 jam dan simpangan baku 40 jam? Anggaplah bahwa distribusi waktu menyala, secara hampiran, normal.

<u>Jawaban</u>:

Derajat kebebasan = 25 - 1 = 24

Dari tabel t diperoleh $t_{0.05} = 1.711$.

Jadi pengusaha tadi akan puas dengan keyakinannya bila sampel 25 lampu memberikan nilai t antara -1.711 dan 1.711

Bila μ = 500, maka

$$t = \frac{518 - 500}{40 / \sqrt{25}} = 2.25$$

suatu nilai yang jauh dari 1.711 . Jadi pengusaha tadi tidak yakin karena 2.25 > 1.711.

Distribusi-F

- Statistik F didefinisikan sebagai nisbah dua peubah acak khi-kuadrat yang bebas, masing-masing dibagi dengan derajat kebebasannya.
- Jadi dapat ditulis

$$F = \frac{U/v_1}{V/v_2}$$

U dan V : peubah acak bebas.

 v_1 dan v_2 : derajat kebebasan.

• **Teorema**. Misalkan *U* dan *V* dua peubah acak bebas masing-masing berdistribusi khi-kuadrat dengan derajat kebebasan v₁ dan v₂. Maka distribusi peubah acak

$$F = \frac{U/v_1}{V/v_2}$$

$$F = \frac{U/v_1}{V/v_2}$$
 diberikan oleh
$$h(f) = \begin{cases} \Gamma\left[\frac{(v_1+v_2)}{2}\right] \left(\frac{v_1}{v_2}\right)^{\frac{v_1}{2}} & f^{v_1/2}-1\\ \Gamma\left(\frac{v_1}{2}\right) \Gamma\left(\frac{v_2}{2}\right) & (1+v_1f/v_2)^{((v_1+v_2)/2)}\\ 0 & \text{, untuk nilai lainnya} \end{cases} \quad 0 < f < \infty$$

Ini dikenal dengan nama distribusi–F dengan derajat kebebasan v₁ dan v₂.

• Distribusi F dihitung dengan menggunakan tabel Distribusi F. Nyatakanlah f dengan lambang f_{α} sehingga di sebelah kanannya terdapat luas sebesar α .

 Bentuk kurva distribusi F selain bergantung pada derajat kebebasan v₁ dan v₂ juga bergantung pada urutan keduanya ditulis.

Beberapa kurva F yang khas:

- Contoh 19. Untuk suatu distribusi–F hitunglah $f_{0,05}$ bila $v_1 = 6$ dan $v_2 = 10$.
 - Jawaban: Dengan menggunakan Tabel F, diperoleh

$$f_{0,05}$$
 = 3,22

- Jika diketahui f_{α} kita dapat menghitung $f_{1-\alpha}$ dengan teorema berikut
- **Teorema**. Tuliskan $f_{\alpha}(v_1, v_2)$ untuk f_{α} dengan derajat kebebasan v_1 dan v_2 , maka

$$f_{1-\alpha}(v_1, v_2) = \frac{1}{f_{\alpha}(v_2, v_1)}$$

 Contoh 20. Hitunglah nilai f dengan derajat kebebasan 6 dan 10 sehingga luas sebelah kanannya 0.95.

Jawaban:

$$f_{0.95}(6,10) = \frac{1}{f_{0.05}(10,6)} = \frac{1}{4.06} = 0.246$$

• **Teorema**. Bila S_1^2 dan S_2^2 adalah variansi sampel acak yang bebas berukuran n_1 dan n_2 yang diambil dari dua populasi

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2\sigma_2^2}{S_2^2\sigma_1^2}$$

berdistribusi–F dengan derajat kebebasan v_1 = n_1 - 1 dan v_2 = n_2 - 2