swisspor GREEN System ekstensywny o układzie

odwróconym

swisspor DREN dach

Warstwy	Grubość [mm]	Współczynnik przewodzenia ciepła λ [W/m·K]
1. substrat + roślinność *	80	-
2. geowłóknina filtracyjna	-	-
3. swisspor AKUMULATOR wody	53	0,058
4. mata dyfuzyjna DELTA VENT S PLUS	-	-
5. styropian DREN dach	dowolna	0,038
6. warstwa separacyjna folia PE 02	0,2	-
7.swisspor BIKUTOP EP4 WF flam	4,0	0,18
8.swisspor BIKUTOP podkładowa 200	4,0	0,18
9. blacha trapezowa zagruntowana		
gruntem swisspor PRIMER	1,0	50

^{*} substrat do zazielenienia ekstensywnego, roślinność typu SEDUM

Warunki i wymagania dla:

dachów, stropodachów i stropów pod nieogrzewanymi poddaszami lub nad przejazdami

wg "Warunków technicznych" - DzU z 2009 r. nr 56, poz. 461

należy spełnić warunek $U \le U_{(max)} [W/m2 \cdot K]$

Rodzaj budynku	Δti ≤ 8°C	U _(max) [W/m2·K] 8°C < ti ≤ 16°C	ti > 16°C
mieszkalny i zamieszkania zbiorowego		0,25	0,50
użyteczności publicznej		0,25	0,50
produkcyjny , magazynowy i gospodarczy	0,70	0,25	0,50

Podstawowe wzory

· custancine necry		
Opór cieplny przegrody wielowarstwowej	Opór całkowity R:	Obliczenie współczynnika
[m2K/W]	Opol Calkowity K.	przenikania ciepła [W/(m²•K)]
Rp = di/ λi	R = Rse + Rp+ Rsi	U = 1/ (Rse + Rp+ Rsi)

opory przejmowania ciepła po stronie wewnętrznej Rsi=0,10 i zewnętrznej Rse=0,04

Grubość izolacji mm	Opór cieplny przegrody wielowarstwowej Rp	Opór całkowity R	Współczynnik przenikania ciepła U
90/100	3,327	3,467	0,288
160/170	5,169	5,309	0,188
180/190	5,695	5,835	0,177
200/210	6,221	6,361	0,157
220/230	6,748	6,888	0.145

UWAGA!

W obliczeniach nie uwzględniono dodatku na mostki liniowe Δutb" Do obliczeń przyjęto warunki średniowilgotne

Dokładne parametry techniczne produktów firmy Swisspor dostępne na stronie internetowej www.swisspor.pl