Introduction à la Cryptographie

Par Pierre-Alexandre Lacaze - pa.lacaze1@gmail.com

Qu'est ce que Cryptographie ?

Qu'est ce que la Cryptographie?

Définition : La cryptographie est l'art de protéger les informations en les transformant pour qu'elles soient illisibles pour des tiers non autorisés

• Confidentialité : Seuls les destinataires autorisés peuvent lire les données

• Authentification : Garantir l'identité de l'émetteur et du destinataire

• Intégrité : Vérifier que les données n'ont pas été modifiées pendant la transmission

• Non-répudiation : Empêcher un acteur de nier une action qu'il a réalisée

Historique de la Cryptographie

Les notions de cryptographie existent depuis l'antiquité!

Grèce antique

La scytale

Empire Romain

Le code de César

Renaissance Française Française de Vigenère

Le Principe de Kerckhoffs

Les points fondamentaux de la cryptographie

- 1. Le système doit être matériellement, sinon mathématiquement indéchiffrable
- 2. Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi
- 3. La clef doit pouvoir être communiquée et retenue sans le secours de notes écrites, et être changée ou modifiée au gré des correspondants
- 4. Il faut qu'il soit applicable à la correspondance télégraphique
- 5. Il faut qu'il soit portatif et que son maniement ou son fonctionnement n'exige pas le concours de plusieurs personnes
- 6. Il faut que le système soit d'un usage facile

Les protocoles de chiffrement

Les protocoles SSL et TLS

SSL

: Secure Sockets Layer

TLS: Transport Layer Security

- **SSL**: Développé par Netscape en 1995
 - Sécurité des connexions internet entre deux systèmes, protège les données par chiffrement
- TLS: Développé par l'IETF (Internet Engineering Task Force) en 1999
 - Version améliorée du SSL, règle les problèmes de faille de sécurités telles que le middle-man
 - Le TLS implémente la notion d'identification des deux parties par des certificats numériques

 Lorsque l'on parle basiquement des protocoles SSL, on parle en réalité d'un mix de ces deux protocoles

Le concept du Handshake

Le protocole HTTP/HTTPS

HTTPS

HyperText Transfer Protocol Secure

- C'est une extension sécurisée de HTTP
- HTTPS indique que notre site utilise des chiffrements sécurisés SSL/TLS
- C'est à activer simplement sur l'hébergement

La manipulation avec OpenSSL

Qu'est ce que OpenSSL?

OpenSSL: Bibliothèque open source et outil de ligne de commande pour mettre en place des protocoles de cryptographie

Principaux rôles:

- Chiffrement et déchiffrement
- Génération de clés
- Certificats
- Hachage

Les suites cryptographique

Suites Cryptographique

suites ci yptograpinqu .

Ensemble de méthodes ou algorithmes utilisés conjointement pour assurer la sécurité des communications

Composants d'une suite cryptographique :

- Algorithme d'échange de clés (RSA, DH, ECDH)
- Algorithme de chiffrement (AES, ECIES)
- Fonction de hachage (SHA-256, MD5)
- MAC (Message Authentication Code)

Le chiffrement symétrique

Une seule clé utilisée pour le chiffrement et le déchiffrement

Le chiffrement asymétrique

Utilise une paire de clé, une publique pour chiffrer, une privée pour déchiffrer

Le hachage

Transformation unidirectionnelle des données

Exemples de manipulation

• En lignes de commande :

- Affichage de version OpenSSL:
- Liste des algorithmes utilisables : openssl list -cipher-algorithms
- Encoder un fichier: openssl enc -e -algorithme -in fichieracrypter -out fichierensortie
- Décoder un fichier : openssl enc -d -algorithme -in fichiercrypt -out fichierclairensortie
- Création d'une clé symétrique : openss1 enc -aes-256-cbc -k "ma_clé_secrète" -nosalt -out ma_clé.bin

Exemples de manipulation

En PHP via les fonctions openssl intégrées :

```
// Génération d'une paire de clés RSA de 2048 bits
$result = openssl pkey new(
        "private key bits" => 2048,
        "private key type" => OPENSSL KEYTYPE RSA
// Exportation de la clé privée au format PEM
openssl pkey export($result, $private key);
file put contents('ma cle privee.pem', $private key);
// Exportation de la clé publique au format PEM
$public key = openssl pkey get public($result);
openss1 pkey export($public key, $public key pem);
file put contents('ma cle publique.pem', $public key pem);
// Chiffrement et déchiffrement
$data = "Message à chiffrer";
openssl public encrypt($data, $crypted, file get_contents("ma_cle_publique.pem"));
echo base64 encode($crypted);
$crypted = base64 decode("le message chiffre en base64");
openssl private decrypt($crypted, $decrypted, file get contents("ma cle privee.pem"));
echo $decrypted;
```

Les modes de chiffrement

ECB - Electronic CodeBook

Les modes de chiffrement

CBC - Cipher Block Chaining

La somme de contrôle - checksum

Permet de vérifier si un fichier n'a pas été altéré entre le client et le serveur

Les signatures numériques

Permet de vérifier l'authenticité et l'intégrité d'un document numérique

Les certificats

Permet de vérifier l'identité d'un système et prouver son "innocence"

Séparation des responsabilités

Responsabilité de l'hébergeur / Ops Team

- Gestion des certificats SSL/TLS
- Mise en place du HTTPS
- Chiffrement des connexions
- Stockage des données chiffrés au niveau matériel
- Sécurisation des clés privés

Responsabilité du développeur

- Chiffrement des données sensibles
- Hachage des passwords
- Stockage sécurisé des clés
- Choix des algorithmes

Ce que l'on retient

Les principes

- Confidentialité
- Intégrité
- Authentification

Les outils courants

- Chiffrement symétrique
- Chiffrement asymétrique
- Hachage

La responsabilité partagée

- Le serveur configure correctement les certificats
- Le développeur implémente correctement les outils de sécurité

Merci!

Introduction à la Cryptographie

Pierre-Alexandre Lacaze pa.lacaze1@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

