Sans musique la vie serait une erreur. (Nietzsche)

Pour mémoire

Soit $\sum_{n} a_n x^n$ une série entière de rayon de convergence $R_a \in \mathbb{R} \cup \{+\infty\}$. La fonction somme $S: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est définie et de classe C^{∞} sur $]-R_a, R_a[$, on peut dériver terme à terme à tout ordre et pour tout entier n on $a: a_n = \frac{S^n(0)}{n!}$.

Soit f de classe C^{∞} au voisinage de 0. f est développable en série entière (au voisinage de 0) s'il existe r > 0 tel que : $\forall x \in]-r, r[: f(x) = \sum_{n=0}^{+\infty} x^n]$. Les coefficients a_n sont uniques, donnés par $a_n = \frac{f^{(n)}(0)}{n!}$ pour tout n dans \mathbb{N} .

La somme, le produit, la dérivée et les primitives de fonctions développables en série entière le sont encore. On obtient les DSE en les ajoutant/multipliant/ dérivant ou primitivant terme à terme.

Une fonction paire/impaire n'a que des puissances paires/impaires dans son développement en série entière (DSE).

Exercice 1 On note pour x réel $u_n(x) = \frac{e^{2^n i x}}{n!}$.

- 1. Préciser pour k dans \mathbb{N} et x réel $u_n^{(k)}(x)$.
- 2. Montrer que pour tout k dans \mathbb{N} la série de fonctions $\sum_n u_n^{(k)}$ converge normalement sur \mathbb{R} .
- 3. Montrer que $S = \sum_{n=0}^{+\infty} u_n$ est définie et de classe C^{∞} sur \mathbb{R} .
- 4. Préciser la série de Taylor de S en 0 et son rayon de convergence.
- 5. S est-elle développable en série entière?

Exercice 2 On note f la fonction définie sur \mathbb{R} par :

$$f(0) = 0 \text{ et } \forall x \neq 0, f(x) = e^{-\frac{1}{x^2}}$$

- 1. Soit $P \in \mathbb{R}[X]$, préciser la limite quand $u \to +\infty$ de $P(u)e^{-u^2}$.
- 2. Montrer que f est continue en 0.
- 3. Calculer f'(x) pour x non nul, et vérifier qu'il existe un polynôme P_1 tel que $f'(x) = P_1\left(\frac{1}{x}\right) e^{-\frac{1}{x^2}}$.
- 4. Montrer que f est dérivable en 0 (on précisera f'(0)) et que f est de classe C^1 sur \mathbb{R} .
- 5. Recommencer avec f'', préciser P_2 .
- 6. Montrer alors par récurrence que pour tout n dans N il existe un polynôme P_n tel que pour tout $x \neq 0$ on ait $f^{(n)}(x) =$ $P_n\left(\frac{1}{x}\right) e^{-\frac{1}{x^2}}$.
- 7. Montrer alors que f est de classe C^{∞} en 0 et préciser la série de Taylor de f en 0.
- 8. Quel est son rayon de convergence? f est-elle développable en série entière?

Exercice 3 Montrer que $f: t \mapsto \frac{\sin t}{t}$ se prolonge en 0 en une fonction C^{∞} sur \mathbb{R} . Idem avec $t \mapsto \frac{e^t - 1}{t}$.

Exercice 4 Déterminer pour tout entier naturel n la valeur de $\arctan^{(n)}(0)$.

Exercice 5 Prouver que, pour tout $x \in \mathbb{R}$, on a $\operatorname{ch}(x) \leqslant e^{x^2/2}$.

Exercice 6 Calculer à 10^{-2} prés : $\int_0^1 \frac{dt}{t^t}$, $\int_0^1 \frac{e^t - 1}{t} dt$, $\int_0^{\pi} \frac{\sin t}{t} dt$, $\int_0^1 \frac{dt}{1 + t^{16}} dt$

Exercice 7 Pour les séries entières suivantes, donner le rayon de convergence et exprimer leur somme en termes de fonctions usuelles:

1.
$$\sum_{n>0} \frac{x^{2n}}{2n+1}$$

$$2. \quad \sum_{n\geq 0} \frac{n^3}{n!} x^n$$

1.
$$\sum_{n>0} \frac{x^{2n}}{2n+1}$$
 2. $\sum_{n>0} \frac{n^3}{n!} x^n$ 3. $\sum_{n>0} (-1)^{n+1} n x^{2n+1}$ 4. $\sum_{n>0} \frac{x^{2n}}{4n^2-1}$

4.
$$\sum_{n\geq 0} \frac{x^{2n}}{4n^2-1}$$

Exercice 8 Calculer $\sum_{n=1}^{\infty} \frac{1}{1^2+2^2+...+n^2}$ (décomposer en éléments simples $\frac{x^{2n+2}}{n(n+1)(2n+1)}$)

Exercice 9 Développer en série entière les fonctions :

$$\frac{\ln(1-x)}{x-1}, \arctan\frac{1-x^2}{1+x^2}, \frac{\cos x}{e^x}, \frac{e^{-x}}{1+x}, \frac{1}{1+x+x^2+x^3}, \left(\frac{\sin x}{x}\right)^2, \sin^3 x$$

$$(\arctan x)^2, \arctan(1+x), \frac{1}{x^2+5x+6}, \ln(x^2-3x+2), \sqrt{\frac{1-x}{1+x}}$$

Exercice 10 Soit u_n telle que $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sum_{k=0}^n u_k u_{n-k}$. On suppose que $\sum u_n t^n$ a un rayon de convergence > 0. Trouver la somme de cette série et calculer u_n . Déterminer son rayon de convergence.

Exercice 11 Soit f définie sur]-1,1[par $f(x)=\frac{\arcsin(x)}{\sqrt{1-x^2}}.$

- 1. Montrer que f est impaire. En déduire la forme de son éventuel DSE.
- 2. Déterminer une équation différentielle d'ordre 1 vérifiée par f.
- 3. Déterminer les solutions impaires développables en série entière sur]-1,1[de cette équation différentielle.
- 4. En déduire que f est DSE et donner son DSE.

Exercice 12 On désigne par N_n^p le nombre de permutations de $\{1, 2, ..., n\}$ ayant exactement p points fixes avec la convention $N_0^0 = 1$.

- 1. vérifier que $N_n^p = \binom{n}{p} N_{n-p}^0$ et que $N_n^0 + ... + N_n^p + ... + N_n^n = n!$. On considére la série entière $\sum \frac{N_n^0}{n!} x^n$
- 2. Montrez que son rayon de convergence est supérieur à 1 et que sa somme vérifie sur]-1,1[l'égalité $e^x f(x) = \frac{1}{1-x}$.

- 3. En déduire des expressions de N_n^0 et N_n^p .
- 4. la série étudiée est elle convergente pour x = 1? que dire du rayon de convergence de f?

Exercice 13 On note Γ_n^p le nombre de solutions $(k_1, ..., k_n) \in \mathbb{N}^n$ de l'équation $k_1 + ... + k_n = p$ pour $p \in \mathbb{N}$ et $n \in \mathbb{N}^*$.

- 1. Montrer que $\Gamma_n^p = \sum_{k=0}^p \Gamma_{n-1}^k$, en déduire que $\Gamma_n^p = \Gamma_{n-1}^p + \Gamma_n^{p-1}$ et que $\Gamma_n^p \leq (p+1)^n$.
- 2. On note $S_n(x) = \sum_{p=0}^{\infty} \Gamma_n^p x^p$, montrer que le RCV est non nul, trouver une relation entre S_n et S_{n-1} et en déduire Γ_n^p .

Exercice 14 On pose $a_0 = 1, b_0 = 0$ et $\forall n \ge 0 : a_{n+1} = -a_n - 2b_n, b_{n+1} = 3a_n + 4b_n$. Déterminer RCV et somme de $\sum_n \frac{a_n}{n!} z^n$ et $\sum_n \frac{b_n}{n!} z^n$.