TD1 : Nombres rationnels, nombres réels

Analyse 1

Nombres rationnels, Nombres irrationnels

Exercice 1:

- 1. Écrire les nombres suivants sous forme d'une fraction : 0, 1212; 0, 1212...; 78, 33456456....
- 2. Soit $N_n = 0, 19971997...1997$ (n fois). Donner N_n sous la forme $\frac{p}{q}$ avec $p, q \in \mathbb{N}^*$.
- 3. Soit N=0,199719971997... (une infinité de fois). Donner le rationnel dont l'écriture décimale est N.
- 4. Même question avec P = 0, 1111...+0, 2222...+0, 3333...+0.4444...+0, 5555...+0, 6666...+0, 7777...+0, 8888...+0, 9999.....

Exercice 2:

- 1. Montrer que la somme de deux rationnels est un rationnel. Montrer que le produit de deux rationnels est un rationnel. Montrer que l'inverse d'un rationnel non nul est un rationnel.
- 2. Montrer que la somme d'un nombre rationnel et d'un nombre irrationnel est irrationnelle.
- 3. Montrer que le produit d'un nombre rationnel non nul et d'un nombre irrationnel est irrationnel.
- 4. Montrer que la racine carrée d'un nombre irrationnel positif est irrationnelle.
- 5. Trouver un exemple de deux irrationnels positifs dont la somme est irrationnelle. Puis trouver un exemple de deux irrationnels positifs dont la somme est ou rationnelle.

Exercice 3

- 1. Sachant que $\sqrt{2} \notin \mathbb{Q}$, montrer que $2 3\sqrt{2} \notin \mathbb{Q}$ et $1 \frac{1}{\sqrt{2}} \notin \mathbb{Q}$.
- 2. Monter que $\frac{\sqrt{2}}{\sqrt{3}} \notin \mathbb{Q}$.
- 3. Monter que $\sqrt{5} \notin \mathbb{Q}$.
- 4. Monter que $\frac{\ln 3}{\ln 2} \notin \mathbb{Q}$.
- 5. Monter que $\log(2) \notin \mathbb{Q}$ ($\log(2)$ est le logarithme décimal de 2 définie comme le nombre réel tel que $10^{\log 2} = 2$).

Exercice 4: Soit $p(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + \dots + a_n x^n$ où tous les a_i sont des entiers.

- 1. Montrer que si p a une racine rationnelle $\frac{\alpha}{\beta}$, avec α et β premiers entre eux, alors α divise a_0 et β divise a_n .
- 2. On considère le nombre $\sqrt{2} + \sqrt{3}$. En calculant son carré, montrer que ce carré est racine d'un polynôme de degré 2. En déduire que $\sqrt{2} + \sqrt{3}$ n'est pas rationnel.

Valeur absolue, Partie entière

Exercice 5:

- 1. Soient x, y des réels. Comparer E(x + y) avec E(x) + E(y).
- 2. Soient x, y des réels. Comparer $E(x \times y)$ avec $E(x) \times E(y)$.
- 3. Soit x > 0 un réel. Encadrer $\frac{E(x)}{x}$.
- 4. On note $\{x\} = x E(x)$ la partie fractionnaire de x. Représenter les graphes des fonctions $x \to E(x)$; $x \to \{x\}$ et $x \to E(x) \{x\}$.

Exercice 6: Le maximum de deux nombres x, y est le plus grand des deux nombres et est noté $\max(x, y)$. Le minimum est le plus petit des deux nombres et est noté $\min(x, y)$.

- 1. Montrer que $\max(x,y) = \frac{x+y+|x-y|}{2}$.
- 2. Montrer que $\min(x,y) = \frac{x+y-|x-y|}{2}$.
- 3. Trouver une formule pour $\max(x, y, z)$.

Exercice 7: Résoudre les équations et inéquations suivantes.

- 1. |x| = 5.
- 2. a) |x+3| = 5. b) $|x+3| \le 5$.
- 3. a) |x+2| = 7. b) |x+2| > 7.
- 4. a) |2x-4| = |x+2|. b) $|2x-4| \le |x+2|$.
- 5. a) $|x+12| = |x^2-8|$. b) $|x+12| \le |x^2-8|$.
- 6. $|x+1|+|x-3| \le 6$ en distinguant les cas $x \ge 3; -1 \le x \le 3;$ et $x \le -1$.

Exercice 8 : On suppose que $x \ge 1$.

- 1. Montrer que x est solution de $\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1$ si et seulement si $|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1$.
- 2. Résoudre l'équation |u-2|+|u-3|=1 en distinguant les cas $u\geq 3; 2\leq u\leq 3; 0\leq u\leq 2$.
- 3. En déduire la solution x.

Intervalles, Densité

Exercice 9:

- 1. Montrer qu'une intersection d'intervalles est un intervalle.
- 2. Qu'en est-il pour une réunion d'intervalles? Trouver une condition nécessaire et suffisante afin que la réunion de deux intervalles soit un intervalle.

Exercice 10:

1. Montrer que l'ensemble des nombres décimaux, c'est à dire de la forme $\frac{p}{10^n}$, est dense dans \mathbb{R} .

- 2. Construire un rationnel compris strictement entre 123 et 123,001.
- 3. Ensuite construire un irrationnel.
- 4. Comment en construire une infinité?
- 5. Mêmes questions entre π et $\pi + 0,001$.

Bornes

Exercice 11 : Soient A et B deux parties bornées de \mathbb{R} . On note $A+B=\{a+b;a\in A \text{ et }b\in B\}$.

- 1. Montrer que $\sup A + \sup B$ est un majorant de A + B.
- 2. Montrer que $\sup(A+B) = \sup A + \sup B$.

Exercice 12: Soient A et B deux parties bornées de \mathbb{R} . Vérifier si les affirmations suivantes sont vraies ou fausses.

- 1. Si $A \subset B$, alors $\sup A \leq \sup B$.
- 2. Si $A \subset B$, alors inf $A \leq \inf B$.
- 3. $\sup(A \cup B) = \max(\sup A, \sup B)$.

Exercice 13:

- 1. Soit A une partie de \mathbb{R} . On note $-A = \{-x; x \in A\}$. Montrer que $\min A = -\max(-A)$.
- 2. Montrer que A admet un plus petit élément si et seulement si A adment une borne inférieure qui appartient à A.
- 3. Mêmes questions en remplaçant min par inf et max par sup.

Exercice 14: Déterminer, s'ils existent, le plus grand élément, le plus petit élément, les majorants, les minorants, la borne supérieure et la borne inférieure des ensembles suivants.

1.
$$A = \left\{ \frac{1}{1+x}; x \in [0, +\infty[\right] \right\}$$

2.
$$A = \{x^2 + y^2; x \in \mathbb{R}, y \in \mathbb{R} \text{ et } xy = 1\}$$

3.
$$A = \left\{ \frac{x+1}{x+2}; x \in \mathbb{R} \text{ et } x \le -3 \right\}$$

4.
$$A = \left\{ \frac{x^3}{|x^3 - 1|}; x \in]0, 1[\cup]1, +\infty[\right\}$$

5.
$$A = \left\{ \frac{x^n}{|x^n - 1|}; x \in]0, 1[\cup]1, +\infty[\right\} \text{ pour } n \in \mathbb{N}^*$$

6.
$$A = \left\{ \frac{2xy}{x^2 + y^2}; x, y \in \mathbb{R}^* \right\}$$

7.
$$A = \left\{ \frac{2^n}{2^n - 1}; n \in \mathbb{N}^* \right\}$$

8.
$$A = \left\{ \frac{1}{1 - 2^{-n}}; n \in \mathbb{N}^* \right\}$$

9.
$$A = \left\{ (-1)^n + \frac{1}{n}; n \in \mathbb{N}^* \right\}$$

10.
$$A = \left\{ \frac{(-1)^n}{n} + \frac{2}{n}; n \in \mathbb{N}^* \right\}$$

11.
$$A = \left\{ \frac{mn}{(m+n)^2}; n, m \in \mathbb{N}^* \right\}$$

12.
$$A = \left\{ \frac{2m}{2mn+3}; n, m \in \mathbb{N}^* \right\}$$