Abusive behavior in social media

Albert-Ludwigs-Universität zu Freiburg SS 2017

Tarek Saier

Outline

Introduction

- Abusive behavior
- Machine learning
- Natural language processing

Abusive Yahoo! comments

Agressive Twitter accounts

Conclusion

Types

- Frequency (aggressive behavior ↔ bullying)
- Channel (physical, verbal, relational, property)

Offline

All of the above

Types

- Frequency (aggressive behavior ↔ bullying)
- Channel (physical, verbal, relational, property)

Offline

All of the above

Online

- Pysical X
- Property ?
- Relational ✓
- Verbal ✓

Types

- Frequency (aggressive behavior ↔ bullying)
- Channel (physical, verbal, relational, property)

Offline

All of the above

Online

- Pysical
- Property
- Relational
- Verbal 🗲

Machine learning

In general

- Unsupervised ↔ supervised
- Classification, regression, clustering, etc.

Our focus

Supervised classification

Example

• Classify furniture: chairs ↔ not chairs

Features

- Number of legs: <int>
- Has backrest: <bool>

Features

- Number of legs: <int>
- Has backrest: <bool>

Labels

• Is a char: <bool>

Training / Testing

- often 80/20
- train on labeled data
- predict unlabeled data

Training / Testing

- often 80/20
- train on labeled data

Training / Testing

- often 80/20
- train on labeled data

Detecting abusive behavior?

Detecting abusive behavior?

Social media users

- Activity patterns
- Connections

Textual interaction

- Profanity
- Aggressive language

Basics

- n-grams
- tf-idf

Advanced

- POS tags
- distributional semantics

n-grams

- Example: 3-grams \rightarrow Exa, xam, amp, mpl, ple
- Padded: \$\$P, \$Pa, Pad, add, dde, ded, ed\$, d\$\$

tf-idf

word importance

•
$$\#\text{term}|_{\text{Doc}}$$
 • $\log \frac{\#\text{Doc}}{\#\text{Doc}|_{\text{contains term}}}$

POS tags

- word-category disambiguation
 - noun
 - verb
 - preposition
- ambiguity problem: "The chicken is ready to eat."

distributional semantics

• "a word is characterized by the company it keeps"

Challenges for abusive language detection

- intentional obfuscation
- context dependent acceptability
- context dependent detectability
- ambiguity (sarcasm)
- language evolves

Two concrete approaches

Targets

- Abusive Yahoo! comments
- Aggressive Twitter accounts

Discussion

- Data
- Features
- Experiments

Abusive Yahoo! comments

Detect

- hate speech
- derogatory language
- profanity

In

- Comments
 - Yahoo! News
 - Yahoo! Finance

Abusive Yahoo! comments Data

Data sets

- primary (2.1 M)
- temporal (1.2 M)
- WWW15 (1 M)
- evaluation (2 K)

Labels

- Yahoo! employees
- Amazon Mechanical Turk*

Abusive Yahoo! comments | Features

Features

- n-grams
- syntactic
- linguistic
- distributional semantics

Abusive Yahoo! comments | Features

Features

- n-grams
- syntactic
- linguistic
- distributional semantics

Syntactic

inter word dependencies

Linguistic

- average word length
- hate speech words

Primary data set F-scores

• all features: 0.80 0.82

• token n-grams: 0.77 0.74

• char. n-grams: 0.73 0.77

Interpretation

n-grams alone give high quality results

WWW15 dataset

• F-score: 0.78 -

• AUC now: 0.90

• AUC '15: 0.80

Interpretation

outperforms approach from 2015

Evaluation dataset

• F-score all agree: 0.84

• majority: 0.83

• 2 of 3: 0.43

Interpretation

lanugage is hard to judge

Temporal data set

Original train(primary) predict(t)

• Each slice train(t) predict(t+1)

• Accumulated train(0..t) preditct(t+1)

Temporal data set

```
Original train(primary) predict(t)
Each slice train(t) predict(t+1)
Accumulated train(0..t) predict(t+1)
```

Interpretation

- recent training data more important than much
- reasonable predictions for small training data

Aggressive Twitter accounts

Detect

- bullying
- aggressive behaviour

In

- Twitter accounts
 - Tweets
 - profile

Aggressive Twitter accounts Data

Data sets

- baseline (1 M)
- hate related (650 K)
 - #GamerGate

Labels

CrowdFlower

Aggressive Twitter accounts Features

User

- account age
- #tweets
- #sessions*

Text

- hate score
- word embeddings

Network

- polularity
- centrality scores

Aggressive Twitter accounts | Experiments

Features

- 12 not useful
 - (session stats, hate score, word embeddings, etc.)

Classification	precision	recall	(in %)
			(

- 4-classes: 72 73
- 3-classes: 90 92

Interpretation

Actual textual content comparably not very useful

Conclusion

Central differences

- abusive content vs. behavior
- target: comments vs. users

Take-home messages

- natural language is hard
- context is valuable
- what about other languages?
- what about non-textual abusive behavior?

Discussion & Questions

"Participation in discussions [...] is also part of the final grade assigned" (no pressure)