1. Draw the graphs of $y = \frac{x}{2} + 1$ and y = |x - 1| on the grid below. Hence or otherwis solve $\frac{x}{2} + 1 = |x - 1|$.

the intersects have coordinate: (0,1), (4,3)

i. the two solutions to
$$\frac{x}{2} + 1 = |x-1|$$
 are

2. The function $f: x \mapsto x^2 + 6x - 5$ has domain $[m, \infty[$. Find the least value of m for which f is one-to-one.

$$=(x+3)^2-14$$

3. Given that θ is an obtuse angle measured in radians and that $\sin \theta = k$, find in terms of k expressions for

(a)
$$\sin(\theta + 2\pi)$$
;

$$\sqrt{}$$

(b)
$$\sin(\theta + \pi)$$
;

(c)
$$\sin(\theta + \frac{\pi}{2})$$
.

4. The line y = 3x + c is tangent to the parabola $y = x^2 - x + 3$. Find the value of c.

$$\begin{cases} y = 3x + c \\ y = x^{2} - x + 3 \end{cases}$$

$$\therefore x^{2} - 4x + 3 - c = 0$$

$$= 16 - 4(3 - c)$$

$$= 4 + 4c$$

- 5. The coefficients of x^2 and x^3 in the expansion of $\left(1+\frac{x}{3}\right)^n$ are equal. Find the value of n.

$$\begin{vmatrix} \frac{1}{4} \cdot \left(\frac{1}{3}\right)^2 \cdot {\binom{n}{2}} &= \frac{1}{27} \cdot \frac{n(n-1)(n-2)}{6}$$

①
$$n=0$$
 (inadmissable, $n \ge 3$)

6. The graph of $y = a\sin(b(x+c)) + d$ is shown below. Find the values of a, b, c and d.

$$a = \frac{4 - (-1)}{2} = 3$$

$$b = \frac{2\pi}{2} = \pi$$

$$C = -\left(-\frac{1}{2}\right) = \frac{1}{2}$$

7. How many subsets of size five chosen from $\{n \in \mathbb{Z} \mid 1 \leq n < 12\}$ contain at least two even numbers $\mathbb{Z} \mid 1 \leq n < 12$

all subsets:
$$\binom{12}{5} = \frac{5\times 11\times 12\times 9\times 8}{5\times 9\times 3\times 2\times 1} = 792$$
 $\binom{6}{2} \cdot \binom{10}{3}$.

one even:
$$6 \times (96) = 6x(2) = 6 \times \frac{6x5}{2x1} = 90$$

8. Part of the periodic function f is graphed below. Draw the graph of y = 2f(x-1) + 3 on the same grid.

$$\frac{y-3}{2} = \left\{ \left(\frac{x-1}{1} \right). \right.$$

9. If the codomain of the piecewise function $f: [-1,4] \to \mathbb{R}$ with rule

$$f(x) = \begin{cases} 3x - 2 & \text{for } -1 \le x \le 1, \\ 4/(5 - x) & \text{for } 1 < x \le 4. \end{cases}$$

is suitably restricted a bijection results. Find the restriction and give the consequent full function definition for f^{-1} .

10. Two circles each of unit radius overlap. If the area of the overlapping region is $\frac{\pi}{2}$ how far apart are the centres?

$$A_{\overline{A^0,B}} = \pi \cdot 1^2 \cdot \frac{\theta}{2\pi} = \frac{\theta}{2}$$

$$\frac{\partial}{\partial s} + A_{circled} = \frac{\partial}{\partial s} + A_{circled} = \frac{\partial}{\partial s} + \frac{\partial}{\partial s} - s = 0$$

$$= \frac{\partial}{\partial s} + \frac{\partial}{\partial s} - s = 0$$

$$= \frac{\partial}{\partial s} + \frac{\partial}{\partial s} - s = 0$$

* sin I is half of the one circle's area,
the two centers have to be inside the
overlapping region.

$$= 0.808$$

Solutions to HL1 Test #5

- 1. From the graph we read x = 0 or x = 4.
- 2. Since $f(x) = (x+3)^2 14$, we conclude m = -3.
- 3. (a) k (b) -k (c) $-\sqrt{1-k^2}$
- 4. Solving $x^2 x 3 = 3x + c$ gives $x^2 4k + (3 c) = 0$. Next we have $\Delta = 16 4(3 c)$. We want $\Delta = 0$, whence c = 1.
- 5. We want $\frac{1}{2}n(n-1)\cdot\frac{1}{9}=\frac{1}{6}n(n-1)(n-2)\cdot\frac{1}{27}$, whence n=11.
- 6. $a = 3, b = \pi, c = \frac{1}{2}, d = 1.$
- 7. Let A be the event of obtaining at least two even numbers. Then A' is the complementary event of obtaining at most one even number and this is easier to count. Next $n(A') = \binom{6}{5} + \binom{6}{4}\binom{5}{1} = 81$. So $n(A) = \binom{11}{5} 81 = 381$.
- 8. The graph should show a periodic function with minima at (0,1) and (6,1), and a maximum at (3,9).
- 9. The required codomain restriction for the function f is [-5,4]. The full function definition for f^{-1} is $f^{-1}: [-5,4] \to [-1,4]$ with rule

$$f^{-1}(x) = \begin{cases} (x+2)/3 & \text{for } -5 \le x < 1, \\ 5 - 4/x & \text{for } 1 \le x \le 4. \end{cases}$$

10. The overlapping area consists of two segments each of area $\frac{1}{2} \cdot 1^2(\theta - \sin \theta)$ where θ is the central angle for the segment measured in radians. Hence we must solve the equation

$$\theta - \sin \theta = \frac{\pi}{2}.$$

Using the CDC we find $\theta = 2.31$ to 3 significant figures. The distance between the centres is therefore $2\cos\frac{\theta}{2} = 0.808$ to 3 significant figures.