CELL DECOMPOSITION OF RANK 2 QUIVER GRASSMANNIANS

DYLAN RUPEL AND THORSTEN WEIST

Abstract. We prove that all quiver Grassmannians for preprojective and preinjective respesentations of a generalized Kronecker quiver admit a cell decomposition. We also provide a natural combinatorial labeling for these cells using compatible pairs in a maximal Dyck path.

1. Introduction

-something about cluster algebras -something about categorification and quiver Grassmannians -something about compatible pairs and combinatorial construction of cluster variables -statement of our results acknowledgements?

2. Torus Action on Quiver Grassmannians

Definition 0.1. universal cover \hat{Q}

Lemma 0.1. how to lift exceptional representations of Q to \tilde{Q}

Lemma 0.2. $d: \tilde{Q}_0 \to \mathbb{Z}$ defines a torus action on $Gr_{\mathbf{e}}^Q(X)$ if $d(q, w\rho) - d(q, w) = c_\rho$ for all $w \in W_{\tilde{Q}_0}$

Lemma 0.3. There exists $d: \tilde{Q}_0 \to \mathbb{Z}$ such that $d(q,w) \neq d(q',w')$ for all q,q',w,w' with dim $X_{q,w} \neq 0$ and $\dim X_{q',w'} \neq 0.$

Theorem 1. $Gr_{\mathbf{e}}^{Q}(X)^{T} \cong \bigsqcup_{\tilde{\mathbf{e}}oftune\mathbf{e}} Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})$

Corollary 1.1. affine bundles over $Gr_{\tilde{\mathbf{z}}}^{\tilde{Q}}(\tilde{X})$ if $Gr_{\mathbf{z}}^{Q}(X)$ is smooth

$$\{U \in Gr_{\mathbf{e}}^{Q}(X) : \lim_{t \to 0} t \cdot U \in Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})\}$$

Question 1.1. What are the ranks of these bundles? Poincaré polynomials?

3. Quiver Grassmannians of $\widetilde{K(n)}$

Define Chebyshev polynomials u_k for $k \in \mathbb{Z}$ by the recursion $u_0 = 0$, $u_1 = 1$, $u_{k+1} = nu_k - u_{k-1}$. For $m \ge 1$, let P_m be the preprojective representation of K(n) with dimension vector (u_m, u_{m-1}) .

Let \tilde{P}_m be a fixed lift of P_m to the universal cover K(n).

Lemma 1.1. There exist lifts $\tilde{P}_{m-1,i}$ for $1 \le i \le n$ of P_{m-1} to K(n) so that:

- (1) $\operatorname{Hom}_{Q}(P_{m-1}, P_{m}) \cong \bigoplus_{i=1}^{n} \operatorname{Hom}_{\tilde{Q}}(\tilde{P}_{m-1,i}, \tilde{P}_{m});$ (2) For any proper subset $\{i_{1}, \ldots, i_{k}\} \subset \{1, \ldots, n\}$, there exists a short exact sequence

$$0 \longrightarrow \tilde{P}_{m-1,i_1} \oplus \cdots \oplus \tilde{P}_{m-1,i_k} \longrightarrow \tilde{P}_m \longrightarrow \tilde{P}_m^{i_1,\dots,i_k} \longrightarrow 0;$$

- (3) The lifts $\tilde{P}_{m-1,i}$ are pairwise orthogonal.
- (4) All nontrivial proper subrepresentations of $\tilde{P}_m^{(k)}$ are preprojective.

We will always choose the subset $\{1,\ldots,k\}$ when using Lemma 1.1.2 and thus we denote the cokernal simply by $\tilde{P}_m^{(k)}$.

Lemma 1.2. If each $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_{m-1,i})$ has a cell decomposition, then $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\bigoplus \tilde{P}_{m-1,i_j})$ has a cell decomposition.

(1) $\tilde{P}_{m}^{(n-1)} \cong \tilde{P}_{m}^{(1)}$ Lemma 1.3.

(2) The subrepresentation $\bigoplus_{i=1}^{k-1} \tilde{P}_{m-1,i} \oplus \bigoplus_{i=1}^{k} \tilde{P}_{m-2,i} \subset \bigoplus i = 1^k \tilde{P}_{m-1,i}$ is in $(\tilde{P}_m^{(k)})^{\perp}$ and $\operatorname{Ext}(\bigoplus i = 1^k \tilde{P}_{m-1,i}, \tilde{P}_m^{(k)}) \cong \operatorname{Ext}(\tilde{P}_{m-1}^{(k)}, \tilde{P}_m^{(k)})$

where $\tilde{P}_{m-1}^{(k)}$ above denotes the cokernel of the inclusion.

Corollary 1.2. observe when fibers are empty

Proposition 1.1. Consider $\psi: Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_m) \to \bigsqcup_{\tilde{\mathbf{f}}+\tilde{\mathbf{g}}=\tilde{\mathbf{e}}} Gr_{\tilde{\mathbf{f}}}^{\tilde{Q}}(\bigoplus_{i=1}^k \tilde{P}_{m-1,i}) \times Gr_{\tilde{\mathbf{g}}}^{\tilde{Q}}(\tilde{P}_m^{(k)})$. Then the following

- (1) For $V \subsetneq \tilde{P}_m^{(k)}$ and $U \subset \bigoplus_{i=1}^k \tilde{P}_{m-1,i}$, we have $\psi^{-1}(U,V) = \mathbb{A}^{\langle V, \bigoplus_{i=1}^k \tilde{P}_{m-1,i}/U \rangle}$. (2) If $V = \tilde{P}_m^{(k)}$ and the fiber is not empty, then $\psi^{-1}(U,V)$ is constant.

Proof. (1) V is preprojective but $\bigoplus_{i=1}^k \tilde{P}_{m-1,i}/U$ is not unless U=0

$$0 \longrightarrow [V, P/U] \longrightarrow [V, U]^1 \longrightarrow [V, P]^1 \longrightarrow [V, P/U]^1 \longrightarrow 0$$

and the middle map is surjective.

Theorem 2. Every quiver Grassmannian of a preprojective or preinjective representation of K(n) and K(n)has a cell decomposition.

Question 2.1. cells of $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_m)$ are in one-to-one correspondence with certain tuples of subgraphs for $smaller \; \tilde{P}^{i_1,...,i_k}_{\ell}$

4. Compatible Pairs Label Cells in $Gr_{\mathbf{e}}^Q(P_m)$