Control of a Single-Stage Three-Phase Buck-Boost Power Factor Correction Rectifier

BRYAN FAULKNER

ELECTRICAL ENGINEERING MAJOR

THE BRADLEY DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING, VIRGINIA TECH

Background

- Novel control strategy proposed for <u>More Electric Aircraft</u>
 - Three-phase Buck-Boost Rectifier
 - Capable of tight and fast regulation of output voltage
 - Achieves unity input power factor
 - One Proportional-Integral (PI) Controller
- Existing control strategies must implement PI compensators in both voltage and current loops
 - Greater complexity
 - Less Reliable
 - Slower

More Electric Aircraft (MEA)

- The Boeing 777 and 787 electric power generation and distribution systems were reviewed and analyzed
- No-Bleed Architecture on the 787 is capable of generating twice as much electricity as previous Boeing airplane models
 - Achieves fuel savings of about 3%¹
 - Extracts as much as 35% less power from the aircraft's engines¹

Literature Review

Comparison of Single-Phase vs Three-Phase Waveforms

Principles of Space Vector Pulse-Width Modulation(SVPWM)

- SVPWM techniques approximate the reference voltage vector (V*)
 - $_{\circ}$ Combine switching states: $d_0+d_1+d_2=1$ $d_1\cdot V_1+d_2\cdot V_2=V^*$

Buck-Boost AC/DC Rectifier

- Resembles a Buck-Type Rectifier at the input voltage
- Similar to a DC/DC Buck-Boost converter towards output
- Basic DC/DC converter relationship
 - Implies perfect PFC:

$$i_{1,avg}(t) = \frac{D^2 T_s}{2L} \cdot v_1(t)$$

$$s = \frac{V_{DC} (1-D) + V_{MN} (D-1)}{I \cdot L_{DC}}$$

Control Strategy

- Control strategy successfully implemented
 - One PI-controller
- State-space averaging methods control rectification process
- SVPWM implemented to generate switching pulses

Simulation Results

- 700V (boost-mode)
- 400V (buck-mode)
- Total Harmonic Distortion (THD) of 2.3%
- Unity Power Factor Achieved

$$THD = \sqrt{\sum_{h=2}^{h=h_{\text{max}}} \left(\frac{I_h}{I_1}\right)^2} \cdot 100\%$$

$$\lambda = \frac{P}{S} = \frac{I_1 \cos(\varphi)}{I_{rms}} = \frac{\cos(\varphi)}{\sqrt{1 + THD^2}}$$

(a) DC output reference voltage; (b) DC link voltage (V) with our proposed control and PI compensator; (c) Phase 'A' current (A) with our proposed control and PI compensator (d) Phase 'A' input voltage.

Future Work & Acknowledgements

Future Work:

- Expand upon modeling and simulation efforts to successfully implement the Buck-Boost control strategy in physical hardware
- Improve upon the dynamic response of the closed loop system by implementing a nonlinear control method

Acknowledgements

- Dr. Alireza Khaligh
 - Research Advisor
 - REU Director
- Ayan Mallik, M.S.
 - Graduate Research Mentor
- This work has been supported through the National Science Foundation grant number EEC 1263063, REU Site: Summer Engineering Research Experiences in Transportation Electrification, which is gratefully acknowledged.