2016/17 MPhil ACS / CST Part III Category Theory and Logic (L108) Exercise Sheet 4 [GRADED]

- 1. [8/45 marks] Let **V** be the category with three distinct objects L, P, R and whose only non-identity morphisms are $p: P \to L$ and $q: P \to R$.
 - (a) Complete the definition of **V** by giving the nine sets V(X,Y) of morphisms between pairs of objects $X,Y \in \{L,P,R\}$ and defining the composition operations.
 - (b) Do either of V or V^{op} have a terminal object?
 - (c) Do either of V or V^{op} have binary products? [Hint: recall that in a pre-ordered set regarded as a category, products are given by greatest lower bounds.]
- 2. [8/45 marks] Let $\Sigma = \{a, b\}$ be a two-element set $(a \neq b)$ and let $_ \oplus _ : \Sigma \times \Sigma \to \Sigma$ and $_ \otimes _ : \Sigma \times \Sigma \to \Sigma$ be binary operations on Σ defined by the following tables:

$$\begin{array}{c|ccccc} \oplus & a & b \\ \hline a & a & a \\ b & a & b \\ \end{array} \qquad \begin{array}{c|cccccc} \otimes & a & b \\ \hline a & a & b \\ b & b & a \\ \end{array}$$

(so that $a \oplus b = a$, $a \otimes b = b$, etc.)

- (a) Show that for suitable choices of elements $e_M, e_N \in \Sigma$, there are monoids $M = (\Sigma, \oplus, e_M)$ and $N = (\Sigma, \otimes, e_N)$.
- (b) Show that *M* and *N* are not isomorphic in the category **Mon** of monoids and monoid homomorphisms. [Hint: assume they are isomorphic and derive a contradiction.]
- 3. [6/45 marks] Let \mathbf{C} be a category with binary products. Given a \mathbf{C} -object X, the *diagonal* morphism $\delta_X \in \mathbf{C}(X, X \times X)$ and the *twist* morphism $\tau_X \in \mathbf{C}(X \times X, X \times X)$ are defined by:

$$\delta_X \triangleq \langle \mathrm{id}_X, \mathrm{id}_X \rangle \tag{1}$$

$$\tau_X \triangleq \langle \pi_2, \pi_1 \rangle \tag{2}$$

- (a) For each $f \in \mathbf{C}(X, Y)$, show that $\delta_Y \circ f = (f \times f) \circ \delta_X \in \mathbf{C}(X, Y \times Y)$ (where $f \times f$ denotes the product of morphisms introduced in Ex. Sh. 2, question 1b).
- (b) Show that $\tau_X \circ \delta_X = \delta_X$.
- (c) Show that $\tau_X \circ \tau_X = \mathrm{id}_{X \times X}$.
- 4. [8/45 marks] Let **C** be a category. Given **C**-objects X and Y and morphisms $f,g \in \mathbf{C}(X,Y)$, an *equalizer* for f and g is by definition a **C**-object E and a morphism $e \in \mathbf{C}(E,X)$ such that
 - $f \circ e = g \circ e \in \mathbf{C}(E, Y)$ and

• for all C-objects Z and morphisms $h \in \mathbf{C}(Z,X)$, if $f \circ h = g \circ h \in \mathbf{C}(Z,Y)$, then there exists a unique morphism $k \in \mathbf{C}(Z,E)$ satisfying $e \circ k = h$.

- (a) Show that every equalizer is a monomorphism (see Ex. Sh. 1, question 4).
- (b) Suppose that $f \in \mathbf{C}(X,Y)$ is a split monomorphism, that is, there is a morphism $g \in \mathbf{C}(Y,X)$ with $g \circ f = \mathrm{id}_X$ (see Ex. Sh. 1, question 4). Show that $f: X \to Y$ is the equalizer of the morphisms $f \circ g$ and id_Y .
- (c) Show that the category **Set** of sets and functions possesses equalizers for all parallel pairs of morphisms.
- 5. [6/45 marks] Let X be an object of a category **C**. The *slice category* **C**/X is defined by:
 - The objects of \mathbb{C}/X are pairs (A, p) where $A \in \text{obj } \mathbb{C}$ and $p \in \mathbb{C}(A, X)$.
 - Given two such objects (A, p) and (B, q), a morphism $f : (A, p) \to (B, q)$ in \mathbb{C}/X is a \mathbb{C} -morphism $f \in \mathbb{C}(A, B)$ such that $q \circ f = p$

- Composition and identities in \mathbb{C}/X are given by those in \mathbb{C} .
 - (a) Show that \mathbb{C}/X always has a terminal object.
 - (b) When $C = \mathbf{Set}$, the category of sets and functions, show that \mathbf{Set}/X has binary products. [Hint: given $(A, p), (B, q) \in \mathrm{obj}(\mathbf{Set}/X)$, consider a suitable subset of $\{(a, b) \mid a \in A \land b \in B\}$.]
- 6. [5/45 marks] Let **C** = **Set**^{op} be the opposite category of the category **Set** of sets and functions.
 - (a) State, without proof, what is the product in **C** of two objects *X* and *Y*.
 - (b) Show by example that there are objects *X* and *Y* in **C** for which there is no exponential and hence that **C** is not a cartesian closed category.
- 7. [4/45 marks] Call a term t of the Simply Typed Lambda Calculus (STLC) *pure* if it does not contain any constant symbols. Using facts about the semantics of STLC in cartesian closed categories, explain why there is no pure term t such that $\diamond \vdash t : ((G \Rightarrow G') \Rightarrow G) \Rightarrow G$ holds, where G and G' are distinct ground types. [Hint: consider the partially ordered set $(\{X \in \mathbb{R} \mid 0 \le X \le 1\}, \le)$ regarded as a cartesian closed category and recall that the exponential Y^X of two objects X and Y in this category satisfies $Y^X = 1$ if $X \le Y$ and $Y^X = Y$ if Y < X.]