Regular Surface Exercises

Lance Remigio

April 23, 2025

Definition (Regular Surfaces). A subset $S \subseteq \mathbb{R}^3$ is a regular surface if, for each $p \in S$, there exists a neighborhood V in \mathbb{R}^3 and a map $x: U \to V \cap S$ of an open set $U \subseteq \mathbb{R}^2$ onto $V \cap S \subseteq \mathbb{R}^3$ such that

- (1) **x** is differentiable; that is, the functions x(u,v), y(u,v), and z(u,v) have continuous partial derivatives of all orders in U.
- (2) \mathbf{x} is a homeomorphism; that is, \mathbf{x} contains an inverse $\mathbf{x}^{-1}:V\cap S\to U$ which is continuous.
- (3) For each $q \in U$, the differential $d\mathbf{x}_q : \mathbb{R}^2 \to \mathbb{R}^3$ is injective.

Problem 1. Show that the cylinder $C = \{(x, y, z) : x^2 + y^2 = 1\}$ is a regular surface.

Proof. Define the following parametrization for C by $x = \cos(u)$, $y = \sin(u)$, and z = v for every $(u, v) \in U$ where $U = (a, b) \times (c, d) \subseteq \mathbb{R}^2$ is an open set. We will show that this parametrization of C satisfies properties (1) through (3) of the definition above. Indeed, we have

- (1) Clearly, we see that $\cos(u)$, $\sin(u)$, and v are functions that have derivatives of all order. Hence, $\mathbf{x}(u,v) = (\cos(u),\sin(u),v)$ contains derivatives of all order on $C \cap U$.
- (2) We can see that the component functions contain their respective inverses on $C \cap U$; that is, $\cos^{-1}(x) = u$, $\sin^{-1}(y) = v$, and z = v. Thus, \mathbf{x}^{-1} exists and is continuous (since their respective components are also continuous).
- (3) Note that

 $\frac{\partial \mathbf{x}}{\partial u} = (\cos(u), \sin(u), v)$

and

 $\frac{\partial \mathbf{x}}{\partial v} = (0, 0, 1).$

Hence, we have

$$\mathbf{dX}_{(u,v)} = \begin{pmatrix} -\sin u & 0\\ \cos u & 0\\ 0 & 1 \end{pmatrix}.$$

Notice that the matrix above has rank 2 and thus $d\mathbf{x}_{(u,v)}$ must be an injective linear map.

Since properties (1)-(3) are satisfied, it follows that C is a regular surface.