Notes 6-6: Properties of Kites and Trapezoids

Objective: 1. Use properties of kites to solve problems.

2. Use properties of trapezoids to solve problems.

A _____ is a quadrilateral with exactly two pairs of congruent consecutive sides. If a quadrilateral is a kite, such as FGHJ, then it has the following properties.

Properties of Kites

The diagonals are _____.

Exactly one pair of opposite ______is congruent.

In kite WXYZ, $m \angle WXY = 104^{\circ}$, and $m \angle VYZ = 49^{\circ}$. Find each measure.

- 1. m∠VZY =
- 2. m∠VXW = _____
- 3. m∠XWZ = _____

In kite ABCD, $m\angle DAX = 32^{\circ}$, and $m\angle XDC = 64^{\circ}$. Find each measure.

- 4. m∠XDA = _____
- 5. m∠ABC = _____
- 6. m∠BCD = _____

In kite PQRS, $m \angle PQR = 78^{\circ}$, and $m \angle TRS = 59^{\circ}$. Find each measure.

- 7. m∠QRT = _____
- 8. m∠QPS = _____
- 9. m∠PSR = _____

A ______ is a quadrilateral with exactly one pair of parallel sides. If the legs of

a trapezoid are congruent, the trapezoid is an ___

trapezoid.

Isosceles Trapezoid Theorems

- In an isosceles trapezoid, each pair of base angles is ______.
- If a trapezoid has one pair of congruent base angles, then it is ______.
- A trapezoid is isosceles if and only if its _____ are congruent.

In kite ABCD, $m\angle BCD = 98^{\circ}$, and $m\angle ADE = 47^{\circ}$. Find each measure.

15. Find the value of x.

Find each value so that the trapezoid is isosceles.

16. AC = (2z + 9), BD = (4z - 3). Find the value of z.

Trapezoid Midsegment Theorem

of a trapezoid is the segment The _

- whose endpoints are the midpoints of the legs.

 The midsegment of a trapezoid is parallel to each base. $\overline{AB} \parallel \overline{MN}$ and $\overline{AB} \parallel \overline{LP}$
- The length of the midsegment is ___ the sum of the length of the bases.

$$AB = \frac{1}{2}(MN + LP)$$

Find each length.

17. KL

18. PQ

19. EF

20. WX

21. x = _____, y = _

