

Document Title

512K x16 bit Low Power and Low Voltage Full CMOS Static RAM

Revision History2.1

Revision No.	History		Draft Date	Remark
0.0	Initial Draft		Oct. 26, 2006	Preliminary
0.1	0.1 Revision	Production code change from EM681FV16U-45LL to EM681FV16U-45LF	Jan. 18, 2007	
0.2	0.2 Revision	Production code change from EM681FV16U-45LF to EM681FV16AU-45LF	April. 10, 2007	
0.3	0.3 Revision	Product code table update	June 15, 2007	
0.4	0.4 Revision	Fix typo error	Nov. 12, 2007	

Emerging Memory & Logic Solutions Inc.

4F Korea Construction Financial Cooperative B/D, 301-1 Yeon-Dong, Jeju-Si, Jeju-Do, Rep.of Korea $\,$ Zip Code : 690-719 Tel : +82-64-740-1712 Fax : $+82-64-740-1749\sim1750$ / Homepage : www.emlsi.com

The attached data sheets are provided by EMLSI reserve the right to change the specifications and products. EMLSI will answer to your questions about device. If you have any questions, please contact the EMLSI office.

FEATURES

Process Technology: 0.15μm Full CMOS

Organization: 512K x 16 bit
Power Supply Voltage: 2.7V ~ 3.6V
Low Data Retention Voltage: 1.5V (Min.)
Three state output and TTL Compatible

• Package Type: 44-TSOP2

GENERAL DESCRIPTION

The EM681FV16AU is fabricated by EMLSI's advanced full CMOS process technology. The families support industrial temperature range and Chip Scale Package for user flexibility of system design. The families also supports low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

Product	Operating			Power Di		
Family	Operating Temperature	Vcc Range	Speed	Standby (I _{SB1} , Typ.)	Operating (I _{CC1} .Max)	PKG Type
EM681FV16AU-45LF	Industrial (-40 ~ 85°C)	2.7V~3.6V	45ns	2 μΑ	4mA	44-TSOP2
EM681FV16AU-55LF	Industrial (-40 ~ 85°C)	2.7V~3.6V	55ns	2 μΑ	4mA	44-TSOP2
EM681FV16AU-70LF	Industrial (-40 ~ 85°C)	2.7V~3.6V	70ns	2 μΑ	4mA	44-TSOP2

PIN DESCRIPTION

44-pin TSOP 44 A5 43 A6 A3 41 OE 40 UB 39 TB 38 1/015 8 37 1/014 I/O1 1/02 🔲 9 36 1/013 1/03 | 10 Vcc 12 33 🔲 Vcc 32 1/011 1/04 🔲 13 1/05 14 31 1/010 VO6 15 VO7 16 30 | 1/09 29 | 1/08 WE 17 28 🔲 A8 27 🗀 A9 26 A10 25 A11 24 A12 A14 22 23 A13 (Top view)

44-TSOP2: Top view

Name	Function	Name	Function
cs	Chip select inputs	Vcc	Power Supply
ŌE	Output Enable input	Vss	Ground
WE	Write Enable input	UB	Upper Byte (I/O _{8~15})
A ₀ ~A ₁₈	Address Inputs	LB	Lower Byte (I/O _{0~7})
I/O ₀ ~I/O ₁₅	Data Inputs/outputs	NC	No Connected

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS *

Parameter	Symbol	Minimum	Unit
Voltage on Any Pin Relative to Vss	V_{IN}, V_{OUT}	-0.2 to 4.0V	V
Voltage on Vcc supply relative to Vss	V _{CC}	-0.2 to 4.0V	V
Power Dissipation	P _D	1.0	W
Operating Temperature	T _A	-40 to 85	°C

^{*} Stresses greater than those listed above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTIONAL DESCRIPTION

cs	OE	WE	LB	UB	I/O ₀₋₇	I/O ₈₋₁₅	Mode	Power
Н	Х	Х	Х	Х	High-Z	High-Z	Deselected	Stand by
Х	Х	Х	Н	Н	High-Z	High-Z	Deselected	Stand by
L	Н	Н	Х	Х	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Data Out	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Data Out	Upper Byte Read	Active
L	L	Н	L	L	Data Out	Data Out	Word Read	Active
L	Х	L	L	Н	Data In	High-Z	Lower Byte Write	Active
L	Х	L	Н	L	High-Z	Data In	Data In Upper Byte Write	
L	Х	L	L	L	Data In	Data In	Word Write	Active

Note: X means don't care. (Must be low or high state)

RECOMMENDED DC OPERATING CONDITIONS 1)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	2.7	3.3	3.6	V
Ground	V _{SS}	0	0	0	V
Input high voltage	V _{IH}	2.2	-	$V_{CC} + 0.2^{2)}$	V
Input low voltage	V _{IL}	-0.2 ³⁾	-	0.6	V

- 1. T_A = -40 to 85 o C, otherwise specified
- 2. Overshoot: Vcc +2.0 V in case of pulse width ≤ 20ns
- 3. Undershoot: -2.0 V in case of pulse width ≤ 20ns
- 4. Overshoot and undershoot are sampled, not 100% tested.

$\textbf{CAPACITANCE}^{1)} \hspace{0.2cm} (f = 1 MHz, T_A = 25^{o}C)$

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	C _{IN}	V _{IN} =0V	-	8	pF
Input/Ouput capacitance	C _{IO}	V _{IO} =0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input leakage current	I _{LI}	V _{IN} =V _{SS} to V _{CC}		-1	-	1	uA
Output leakage current	I _{LO}	$\overline{\text{CS}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}} \text{ or } \overline{\text{LB}} = \overline{\text{UB}} = \text{V}_{\text{IH}}$ $\text{V}_{\text{IO}} = \text{V}_{\text{SS}} \text{ to V}_{\text{CC}}$	-1	-	1	uA	
Operating power supply	I _{CC}	I_{IO} =0mA, \overline{CS} = V_{IL} , \overline{WE} = V_{IH} , V_{IN} = V_{IH} or V_{IL}		-	-	2	mA
Avorage energting current	I _{CC1}	Cycle time=1 μ s, 100% duty, I_{IO} =0mA, CS \leq 0.2V, $\overline{LB}\leq$ 0.2V or/and $\overline{UB}\leq$ 0.2V, $V_{IN}\leq$ 0.2V or $V_{IN}\geq$ V _{CC} -0.2V		-	-	4	mA
Average operating current	I _{CC2}	Cycle time = Min, I _{IO} =0mA, 100% duty, $\overline{CS}=V_{IL}, \overline{LB}=V_{IL} \text{ or/and } \overline{UB}=V_{IL},$ $V_{IN}=V_{IL} \text{ or } V_{IH}$	45ns 55ns 70ns	-	-	45 35 25	mA
Output low voltage	V _{OL}	I _{OL} = 2.1mA		-	1	0.4	V
Output high voltage	V _{OH}	I _{OH} = -1.0mA		2.2	-	-	V
Standby Current (TTL)	I _{SB}	$\overline{\overline{\text{CS}}} = \text{V}_{\text{IH}}$, Other inputs= V_{IH} or V_{IL}		-	-	0.5	mA
Standby Current (CMOS)	I _{SB1}	$\overline{\text{CS}}$ ≥V _{CC} -0.2V Other inputs=0 ~ V _{CC} (Typ. condition : V _{CC} =3.3V @ 25°C) (Max. condition : V _{CC} =3.6V @ 85°C)	LF	-	2	15	uA

AC OPERATING CONDITIONS

Test Conditions (Test Load and Test Input/Output Reference)

Input Pulse Level: 0.4 to 2.4V Input Rise and Fall Time: 5ns

Input and Output reference Voltage: 1.5V

Output Load (See right): CL¹⁾ = 100pF + 1 TTL (70nsec)

 $CL^{1)} = 30pF + 1 TTL (45ns/55ns)$

1. Including scope and Jig capacitance

2. R_1 =3070 ohm, R_2 =3150 ohm

3. V_{TM}=2.8V

4. CL = 5pF + 1 TTL (measurement with t_{LZ} , t_{HZ} , t_{OLZ} , t_{OHZ} , t_{WHZ})

READ CYCLE (V_{cc} =2.7 to 3.6V, Gnd = 0V, T_A = -40°C to +85°C)

, , , , , , , , , , , , , , , , , , ,								
Parameter	Symbol 45ns		55ns		70ns		l lmi4	
r ai ailletei	Syllibol	Min	Max	Min	Max	Min	Max	Unit
Read cycle time	t _{RC}	45	-	55	-	70	-	ns
Address access time	t _{AA}	-	45	-	55	-	70	ns
Chip select to output	t _{co}	-	45	-	55	-	70	ns
Output enable to valid output	t _{OE}	-	30	-	35	-	35	ns
UB, LB access time	t _{BA}		45		55		70	ns
Chip select to low-Z output	t _{LZ}	5	-	5	-	5	-	ns
UB, LB enable to low-Z output	t _{BLZ}	5	-	5	-	5	-	ns
Output enable to low-Z output	t _{OLZ}	5	-	5	-	5	-	ns
Chip disable to high-Z output	t _{HZ}	0	20	0	20	0	25	ns
UB, LB disable to how-Z output	t _{BHZ}	0	20	0	20	0	25	ns
Output disable to high-Z output	t _{OHZ}	0	20	0	20	0	25	ns
Output hold from address change	t _{OH}	10	-	10	-	10	-	ns

WRITE CYCLE (V_{cc} =2.7 to 3.6V, Gnd = 0V, T_A = -40°C to +85°C)

_		45	45ns		55ns		70ns		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Write cycle time	t _{WC}	45	-	55	-	70	-	ns	
Chip select to end of write	t _{CW}	45	-	45	-	60	-	ns	
Address setup time	t _{As}	0	-	0	-	0	-	ns	
Address valid to end of write	t _{AW}	45	-	45	-	60	-	ns	
UB, LB valid to end of write	t _{BW}	45	-	45	-	60	-	ns	
Write pulse width	t _{WP}	45	-	45	-	55	-	ns	
Write recovery time	t _{WR}	0	-	0	-	0	-	ns	
Write to ouput high-Z	t _{WHZ}	0	20	0	20	0	25	ns	
Data to write time overlap	t _{DW}	25		30		30		ns	
Data hold from write time	t _{DH}	0	-	0	-	0	-	ns	
End write to output low-Z	t _{OW}	5	-	5		5	-	ns	

TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1). (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, \overline{UB} or/and $\overline{LB} = V_{IL}$)

TIMING WAVEFORM OF READ CYCLE(2) $\overline{\text{WE}} = V_{\text{IH}}$

NOTES (READ CYCLE)

- 1. t_{HZ} and t_{OHZ} are defined as the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, $t_{HZ}(Max.)$ is less than $t_{LZ}(Min.)$ both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE CONTROLLED)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS CONTROLLED)

TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB CONTROLLED)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(t_{WP}) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the \overline{CS} going low to end of write.
- 3. $t_{\mbox{\scriptsize AS}}$ is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end or write to the address change. t_{WR} applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.

DATA RETENTION CHARACTERISTICS

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
V _{CC} for Data Retention	V _{DR}	I _{SB1} Test Condition (Chip Disabled) ¹⁾	1.5	-	3.6	V
Data Retention Current	I DR	V _{CC} =1.5V, I _{SB1} Test Condition (Chip Disabled) ¹⁾	-	-	4	uA
Chip Deselect to Data Retention Time	t _{SDR}	See data retention wave form	0	-	-	ns
Operation Recovery Time	t _{RDR}	See data retention wave form	t _{RC}	-	-	115

NOTES

1. See the I_{SB1} measurement condition of data sheet page 4.

DATA RETENTION WAVE FORM

PACKAGE DIMENSION

44 - TSOP2 (0.8mm pin pitch)

SRAM PART CODING SYSTEM

