Analyzing and composing music with algorithms and machine learning

Author: Dimo Chanev

Supervisiors: Emil Kelevedjiev

Zornitsa Dzhenkova

August 15, 2018

Outline

- Tuning
 - Pythagorean tunning
 - Equal temperment and 12-TET
- MIDI
 - Header chunk
 - Track chunks
- Markov chains
- Tested algorithms
 - Common
 - Different
 - Results

Tuning

Pythagorean tuning

Pythagorean fractions:

$$f = \frac{i+1}{i}$$
; $i = 1, 2, ..., n$

The Pythagorean string separation:

Equal temperment and 12-TET

Name	12-TET	Pythagorean scale
Unision (C)	$2^{\frac{0}{12}} = 1$	$\frac{1}{1} = 1$
Minor second $(C\sharp/D\flat)$	$2^{\frac{1}{12}} \approx 1.05946$	$\frac{16}{15} \approx 1.06666$
Major second (D)	$2^{\frac{2}{12}} \approx 1.12246$	$\frac{9}{8} = 1.125$
Minor third $(D\sharp/E\flat)$	$2^{\frac{3}{12}} \approx 1.18920$	$\frac{6}{5} = 1.2$
Major third (E)	$2^{\frac{4}{12}} \approx 1.25992$	$\frac{5}{4} = 1.25$
Perfect fourth (F)	$2^{\frac{5}{12}} \approx 1.33484$	$\frac{4}{3} \approx 1.33333$
Tritone $(F\sharp/G\flat)$	$2^{\frac{6}{12}} \approx 1.41421$	$\frac{7}{5} = 1.4*$
Perfect fifth (G)	$2^{\frac{7}{12}} \approx 1.49830$	$\frac{3}{2} = 1.5$
Minor sixth $(G\sharp/A\flat)$	$2^{\frac{8}{12}} \approx 1.58740$	$\frac{8}{5} = 1.6*$
Major sixth (A)	$2^{\frac{9}{12}} \approx 1.68179$	$\frac{5}{3} \approx 1.66666*$
Minor seventh $(A\sharp/B\flat)$	$2^{\frac{10}{12}} \approx 1.78179$	$\frac{16}{9} \approx 1.77777*$
Major seventh (B)	$2^{\frac{11}{12}} \approx 1.88774$	$\frac{15}{8} = 1.875*$
Octave (C)	$2^{\frac{12}{12}} = 2$	$\frac{2}{1} = 2$

Note: the values with * can't be represented like Pythagorean fractions with decent accuracy but the human ear can't differentiate this (in the most cases)

MIDI

MIDI is an acronym to "Musical Instrument Digital Interface". It:

- Developed by MIDI Manufacturers Association
- Targets compact representation
- Splited into chunks

This makes MIDI a perfect way to store musical data in form of notes that enables easy manipulation

Header chunk

- Contains data about the file
- Always one

$$(M)(T)(h)(d) (0)(0)(0)(6) (0)(f) (n)(n) (d)(d)$$

f - the file type nn - the number of track chunks dd - the way of division of the time

Track chunks

Each track chunk is built up by events (messages). Each event has delta time and data bytes. The most important events are:

- NOTE_ON start playing a note
- NOTE_OFF stop playing a note

The events described above have common structure: (type;channel) (note number) (velocity)

note number =
$$69 + 12 \log_2 \frac{f}{440}$$
 where f is the frequency

Markov chains

Markov chain diagram

Andrey Markov

Markov chains

	Next event				
	Α	В	С		
Α	33%	22%	45%		
В	81%	9%	10%		
С	30%	60%	10%		

		Next event			
		Α	В	С	
Α	Α	16%	16%	68%	
Α	В	100%	0%	0%	
Α	С	12%	75%	13%	
В	Α	37%	25%	38%	
В	В	0%	0%	100%	
В	С	100%	0%	0%	
С	Α	33%	33%	34%	
С	В	83%	17%	0%	
С	С	100%	0%	0%	

Example Markov chains for the string

"AABAACBABACBABACCACAACBAAACBACBBCABAACBA"

Common block diagram

Diffrences between the algorithms

- First algorithm uses only the pitch of the previous note for constructing Markov chain table
- Second algorithm uses the pitch and the length of the previous note for constructing Markov chain table
- Third algorithm uses only the pitch of the previous two notes for constructing Markov chain table

Results

Future development

Questions

Thank you for the attention!