02458 Cognitive Modeling

Natural world statistics

A modest proposal

- The perceptual system is optimized to represent information relevant for survival
 - The dynamic range of neurons match the dynamic range of stimuli
 - Predators have binocular vision
 - Information is represented in an efficient way in the human brain

objects

correlation

sensors

decorrelation

representation

Joint (pixel) probabilities

- Images are parameterized as vectors of pixels
 - For each color channel
 - For now, we just look at luminance (b/w)
- How do we parameterize P(I)?
 - As a joint probability $P(I_1, I_2, ..., I_N)$
 - Pixels are not independent $P(I_1,I_2)^{\sim}=P(I_1)(I_2)$
 - How do we describe dependence?

- Variance: $E((x-\mu_x)^2) \cong E((x-\bar{x})^2)$
- Covariance: $E((x-\mu_y)(y-\mu_y)) \cong E((x-\overline{x})(y-\overline{y}))$
- For independent variables:

$$E((x-\overline{x})(y-\overline{y})) = \sum_{i,j} P(x_i,y_j)(x_i-\overline{x})(y_j-\overline{y}) =$$

$$\sum_{i,j} P(x_i)P(y_j)(x_i-\overline{x})(y_j-\overline{y}) = \sum_i P(x_i)(x_i-\overline{x})\sum_j P(y_j)(y_j-\overline{y}) =$$

$$\left(\sum_i P(x_i)x_i-\overline{x}\sum_i P(x_i)\right)\left(\sum_i P(y_i)y_i-\overline{y}\sum_i P(y_i)\right) =$$

$$(\overline{x}-\overline{x})(\overline{y}-\overline{y}) = 0$$

 Which of the below data clouds have non-zero covariance?

- When covariance -> 1
 - The two variables start becoming identical
 - The 2D representation is redundant
 - A 1D representation would be sufficient

Vector projection

- 2D vector in a 1D basis
 - Projection or least squares approximation

- If the basis vector B has length 1 then $A \cdot B = |A| B |\cos(\theta)| \Rightarrow A \cdot B = A^T B = |A| \cos(\theta)$
- And the approximation of A in B's direction is $A \approx (A^T B)B$

Vector projection

- 2D vector in a 1D basis
 - Projection or least squares approximation

- If the basis vector B has length 1 then $A \cdot B = |A|B|\cos(\theta) \Rightarrow A \cdot B = A^TB = |A|\cos(\theta)$
- And the approximation of A in B's direction is $A \approx (A^T B)B$

Vector projection

- How good is the approximation?
 - Error is $A (A^T B)B$

- Squared error is $\|A - (A^T B)B\|^2$ $|A - (A^T B)B|^2$ $|A - (A^T B)B|^2$

Maximizing the variance *along* the principal component

Degrees

A principal component for the "error"

Second principal component

- Finding principal components is iterative
 - First find one, then the next
 - Trivial for 2D but not for many dimensions

Principal component analysis (PCA)

- Find the principal components
 - N N-dimensional vectors (N-by-N matrix)
 - N is the number of measurement dimensions
 - The PC's are called the coefficients in Matlab
 - PC's are the eigenvectors of the covariance matrix
 - PC's are orthogonal forms a new rotated basis
- Project the original data-set onto the PCs
 - This gives you the "score"

Principal component analysis (PCA)

- The PC's are ordered according to their variance
 - Gives an indication of their "importance"
 - The eigenvalues of the covariance matrix

Principal component analysis (PCA)

- Mona Lisa is just a bunch of samples from image patch space
- Given an 1100x800 pixel image
 - $-110X80 = 8800 \ 10$ -by-10 patches
 - A 10-by-10 patch = 100-dimensional vector
- Enough for PCA
- How dimensions are relevant / informative?
- How many dimensions are redundant?

Sorted eigenvalues

- Shows that PC1 dominates!
 - Let's take it out to have a closer look at the others...

Sorted eigenvalues 2-100

- PC2 and PC3 also carries a lot of variance
- PC4-6 carries some variance
- But then it's just downhill

- What are these PCs?
- Let's have a look!

- The principal components look like edge filters
 - Similar to simple cell receptive fields
 - Similar to a local Fourier analysis
 - But data-driven!

- What about the rest (94) PC's
- Do we need them?
- Let's reconstruct the image from the first 6
 PCs

Who's who?

Who's who?

94 of 100 dimensions missing

The real McCoy!

Who's prettier?

94 of 100 dimensions missing

The real McCoy!

- PCA
 - Provides a prioritized list of "sensors"
 - Denoises
 - Compress images
 - Provides a superior representation of images
 - Compared to a pixel-by-pixel representation
 - A candidate for image components

Now to the exercises..