PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED U	UN.	DER THE PATENT COOPERATION	N TREATY (PCT)	
(51) International Patent Classification 6:		(1	1) International Publication Number:	WO 95/14683	
C07D 261/04, 413/12, A61K 31/42, C07D 498/10, 413/06, 413/04, C07F 9/653, 9/6571			3) International Publication Date:	1 June 1995 (01.06.95)	
(21) International Application Number: PCT/US94/13155 (22) International Filing Date: 14 November 1994 (14.11.94)			(74) Agents: FERGUSON, Blair, Q. et al.; The du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).		
08/232,961 22 April 1994 (22.04.94)	Ţ	JS	(81) Designated States: AU, BR, CA, C NO, NZ, PL, RU, SK, European DK, ES, FR, GB, GR, IE, IT, LU	patent (AT, BE, CH, DE,	
 (71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US). (72) Inventors: WITYAK, John; 127 Kelton Road, West Grove, PA 19390 (US). XUE, Chu-Biao; 11 Rivendell Court, Hockessin, DE 19707-2400 (US). SIELECKI-DZURDZ, Thais, Motria; 1113 Oakland Court, Newark, DE 19711-3450 (US). OLSON, Richard, Eric; 600 Wilverside Road, Wilmington, DE 19809-1320 (US). DeGRADO, William, Frank; 502 Bancroft Road, Moylan, PA 19063-4207 (US). CAIN, Gary, Avonn; 8 Wayne Drive, Wilmington, DE 19809 (US). 			Published With international search report. With amended claims.		
	(51) International Patent Classification 6: C07D 261/04, 413/12, A61K 31/42, C07D 498/10, 413/06, 413/04, C07F 9/653, 9/6571 (21) International Application Number: PCT/US (22) International Filing Date: 14 November 1994 ((30) Priority Data: 08/157,598 24 November 1993 (24.11.9 08/232,961 22 April 1994 (22.04.94) 08/337,920 10 November 1994 (10.11.9 08/337,920) 10 No	(51) International Patent Classification 6: C07D 261/04, 413/12, A61K 31/42, C07D 498/10, 413/06, 413/04, C07F 9/653, 9/6571 (21) International Application Number: PCT/US94/131 (22) International Filing Date: 14 November 1994 (14.11.9) (30) Priority Data: 08/157,598 24 November 1993 (24.11.93) 08/232,961 22 April 1994 (22.04.94) 08/337,920 10 November 1994 (10.11.94) 08/337,920 10 November 1994 (10.1	(51) International Patent Classification 6: C07D 261/04, 413/12, A61K 31/42, C07D 498/10, 413/06, 413/04, C07F 9/653, 9/6571 (21) International Application Number: PCT/US94/13155 (22) International Filing Date: 14 November 1994 (14.11.94) (30) Priority Data: 08/157,598 24 November 1993 (24.11.93) US 08/232,961 22 April 1994 (22.04.94) US 08/337,920 10 November 1994 (10.11.94) US (71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US). (72) Inventors: WTYAK, John; 127 Kelton Road, West Grove, PA 19390 (US). XUE, Chu-Biao; 11 Rivendell Court, Hockessin, DE 19707-2400 (US). SIELECKI-DZURDZ, Thais, Motria; 1113 Oakland Court, Newark, DE 19711-3450 (US). OLSON, Richard, Eric; 600 Wilverside Road, Wilmington, DE 19809-1320 (US). DeGRADO, William, Frank; 502 Bancroft Road, Moylan, PA 19063-4207 (US). CAIN, Gary, Avonn; 8 Wayne Drive, Wilmington, DE	C07D 261/04, 413/12, A61K 31/42, C07D 498/10, 413/06, 413/04, C07F 9/653, 9/6571 (21) International Application Number: PCT/US94/13155 (22) International Filing Date: 14 November 1994 (14.11.94) (30) Priority Data: 14 November 1993 (24.11.93) US 08/232.961 22 April 1994 (22.04.94) US 08/337.920 10 November 1994 (10.11.94) US (71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US). (72) Inventors: WITYAK, John; 127 Kelton Road, West Grove, PA 19390 (US). XUE, Chu-Biao; 11 Rivendell Court, Hockessin, DE 19707-2400 (US). SIELECKI-DZURDZ, Thais, Motria; 1113 Oakland Court, Newark, DE 19711-3450 (US). OLSON, Richard, Eric; 600 Wilverside Road, Wilmington, DE 19809-1320 (US). DeGRADO, William, Frank; 502 Bancroft Road, Moylan, PA 19063-4207 (US). CAIN, Gary, Avon; 8 Wayne Drive, Wilmington, DE	

(54) Title: NOVEL ISOXAZOLINE AND ISOXAZOLE FIBRINOGEN RECEPTOR ANTAGONISTS

(57) Abstract

This invention relates to novel isoxazolines and isoxazoles which are useful as antagonists of the platelet glycoprotein IIb/IIIa fibrinogen receptor complex, to pharmaceutical compositions containing such compounds, processes for preparing such compounds, and to methods of using these compounds, alone or in combination with other therapeutic agents, for the inhibition of platelet aggregation, as thrombolytics and/or for the treatment of thromboembolic disorders.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	Π	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Кепуа	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ.	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MOD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	MIL	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

-1-

TITLE

5

Novel Isoxazoline and Isoxazole Fibrinogen Receptor
Antagonists

Cross Reference to Earlier Filed Application

This application is a continuation-in-part of U.S.

Patent Application Serial Number 08/232,961, filed April
22, 1994 which is a continuation-in-part of U.S. Patent
Application Serial Number 08/157,598, filed November 24,
1993. The disclosures of these earlier filed
applications are hereby incorporated herein by

5 applications are hereby incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates to novel isoxazolines and isoxazoles which are useful as antagonists of the platelet glycoprotein IIb/IIIa fibrinogen receptor complex, to pharmaceutical compositions containing such compounds, processes for preparing such compounds, and to methods of using these compounds, alone or in combination with other therapeutic agents, for the inhibition of platelet aggregation, as thrombolytics, and/or for the treatment of thromboembolic disorders.

30 BACKGROUND OF THE INVENTION

Hemostasis is the normal physiological process in which bleeding from an injured blood vessel is arrested. It is a dynamic and complex process in which platelets play a key role. Within seconds of vessel injury, resting platelets become activated and are bound to the

exposed matrix of the injured area by a phenomenon called platelet adhesion. Activated platelets also bind to each other in a process called platelet aggregation to form a platelet plug. The platelet plug can stop bleeding quickly, but it must be reinforced by fibrin for long-term effectiveness, until the vessel injury can be permanently repaired.

Thrombosis may be regarded as the pathological condition wherein improper activity of the hemostatic mechanism results in intravascular thrombus formation. 10 Activation of platelets and the resulting platelet aggregation and platelet factor secretion has been associated with a variety of pathophysiological conditions including cardiovascular and cerebrovascular 15 thromboembolic disorders, for example, the thromboembolic disorders associated with unstable angina, myocardial infarction, transient ischemic attack, stroke, atherosclerosis and diabetes. contribution of platelets to these disease processes 20 stems from their ability to form aggregates, or platelet thrombi, especially in the arterial wall following injury.

Platelets are activated by a wide variety of agonists resulting in platelet shape change, secretion 25 of granular contents and aggregation. Aggregation of platelets serves to further focus clot formation by concentrating activated clotting factors at the site of injury. Several endogenous agonists including adenosine diphosphate (ADP), serotonin, arachidonic acid, 30 thrombin, and collagen, have been identified. Because of the involvement of several endogenous agonists in activating platelet function and aggregation, an inhibitor which acts against all agonists would represent a more efficacious antiplatelet agent than currently available antiplatelet drugs, which are 35 agonist-specific.

-3-

Current antiplatelet drugs are effective against only one type of agonist; these include aspirin, which acts against arachidonic acid; ticlopidine, which acts against ADP; thromboxane A_2 synthetase inhibitors or receptor antagonists, which act against thromboxane A_2 ; and hirudin, which acts against thrombin.

Recently, a common pathway for all known agonists has been identified, namely platelet glycoprotein IIb/IIIa complex (GPIIb/IIIa), which is the membrane protein mediating platelet aggregation. A recent review of GPIIb/IIIa is provided by Phillips et al. *Cell* (1991) 65: 359-362. The development of a GPIIb/IIIa antagonist represents a promising new approach for antiplatelet therapy.

10

15 GPIIb/IIIa does not bind soluble proteins on unstimulated platelets, but GPIIb/IIIa in activated platelets is known to bind four soluble adhesive proteins, namely fibrinogen, von Willebrand factor, fibronectin, and vitronectin. The binding of fibrinogen and von Willebrand factor to GPIIb/IIIa causes platelets to aggregate. The binding of fibrinogen is mediated in part by the Arg-Gly-Asp (RGD) recognition sequence which is common to the adhesive proteins that bind GPIIb/IIIa.

In addition to GPIIb/IIIa, increasing numbers of other cell surface receptors have been identified which bind to extracellular matrix ligands or other cell adhesion ligands thereby mediating cell-cell and cell-matrix adhesion processes. These receptors belong to a gene superfamily called integrins and are composed of heterodimeric transmembrane glycoproteins containing α - and β -subunits. Integrin subfamilies contain a common β -subunit combined with different α -subunits to form adhesion receptors with unique specificity. The genes for eight distinct β -subunits have been cloned and sequenced to date.

-4-

WO 95/14683

Two members of the β1 subfamily, α4/β1 and α5/β1 have been implicated in various inflammatory processes. Antibodies to α4 prevent adhesion of lymphocytes to synovial endothelial cells in vitro, a process which may be of importance in rheumatoid arthritis (VanDinther-Janssen et al., J. Immunol., 1991, 147:4207). Additional studies with monoclonal anti-α4 antibodies provide evidence that α4/β1 may additionally have a role in allergy, asthma, and autoimmune disorders (Walsh et al., J. Immunol., 1991, 146:3419; Bochner et al., J. Exp. Med., 1991 173:1553; Yednock et al., Nature, 1992, 356:63). Anti-α4 antibodies also block the migration of leukocytes to the site of inflammation (Issedutz et al.,

PCT/US94/13155

J. Immunol., 1991, 147:4178). 15 The α_v/β_3 heterodimer, commonly referred to as the vitronectin receptor, is another member of the β_3 integrin subfamily and has been described in platelets, endothelial cells, melanoma, smooth muscle cells and on the surface of osteoclasts (Horton and Davies, J. Bone 20 Min. Res. 1989, 4:803-808; Davies et al., J. Cell. Biol. 1989, 109:1817-1826; Horton, Int. J. Exp. Pathol., 1990, 71:741-759). Like GPIIb/IIIa, the vitronectin receptor binds a variety of RGD-containing adhesive proteins such as vitronectin, fibronectin, VWF, fibrinogen, 25 osteopontin, bone sialo protein II and thrombosponden in a manner mediated by the RGD sequence. Possible roles for α_v/β_3 in angiogenesis, tumor progression, and neovascularization have been proposed (Brooks et al., Science, 1994, 264:569-571). A key event in bone 30 resorption is the adhesion of osteoclasts to the matrix of bone. Studies with monoclonal antibodies have implicated the α_v/β_3 receptor in this process and suggest that a selective α_v/β_3 antagonist would have utility in

35 Res., 1993, 8:239-247; Helfrich et al., J. Bone Miner. Res., 1992, 7:335-343).

blocking bone resorption (Horton et al., J. Bone Miner.

Several RGD-peptidomimetic compounds have been reported which block fibrinogen binding and prevent the formation of platelet thrombi.

-5-

European Patent Application Publication Number 478363 relates to compounds having the general formula:

$$R^{1}-(CH_{2})_{m}$$
 X
 Y
 Z
 R^{2}
 $(CH_{2})_{n}$
 R^{2}
 $(CH_{2})_{p}$
 $(CH_{2})_{p}$
 R^{5}

European Patent Application Publication Number
478328 relates to compounds having the general formula:

$$R^{1}-(CH_{2})_{m}$$
 Y
 Z
 R^{6}
 $(CH_{2})_{n}$
 R^{2}
 $(CH_{2})_{n}$
 $(CH_{2})_{p}$
 $(CH_{2})_{p}$
 R^{5}

European Patent Application Publication Number 525629 (corresponds to Canadian Patent Application Publication Number 2,074,685) discloses compounds having the general formula:

$$X_5$$
 X_1
 X_2
 $A-B-C$
 X_4-X_3
 $D-E-F$

20

PCT Patent Application 9307867 relates to compounds having the general formula:

European Patent Application Publication Number 4512831 relates to compounds having the general formula:

$$X-(CH_2)_m-Y-(CH_2)_k-C-NH-CH-CH-Z$$

None of the above references teaches or suggests the compounds of the present invention which are described in detail below.

PCT/US94/13155

SUMMARY OF THE INVENTION

The present invention provides novel nonpeptide compounds which bind to integrin receptors thereby altering cell-matrix and cell-cell adhesion processes. The compounds of the present invention are useful for the treatment of inflammation, bone degradation, tumors, metastases, thrombosis, cell aggregation-related conditions in a mammal.

One aspect of this invention provides novel compounds of Formula I (described below) which are useful as antagonists of the platelet glycoprotein IIb/IIIa complex. The compounds of the present invention inhibit the binding of fibrinogen to platelet glycoprotein IIb/IIIa complex and inhibit the aggregation of platelets. The present invention also includes pharmaceutical compositions containing such compounds of Formula I, and methods of using such compounds for the inhibition of platelet aggregation, as thrombolytics, and/or for the treatment of thromboembolic disorders.

The present invention also includes methods of treating cardiovascular disease, thrombosis or harmful platelet aggregation, reocclusion following

25 thrombolysis, reperfusion injury, or restenosis by administering a compound of Formula I alone or in combination with one or more additional therapeutic agents selected from: anti-coagulants such as warfarin or heparin; anti-platelet agents such as aspirin,

30 piroxicam or ticlopidine; thrombin inhibitors such as boroarginine derivatives, hirudin or argatroban; or thrombolytic agents such as tissue plasminogen activator, anistreplase, urokinase or streptokinase; or combinations thereof.

The present invention also provides novel compounds, pharmaceutical compositions and methods which may be used in the treatment or prevention of diseases which involve cell adhesion processes, including, but not limited to, rheumatoid arthritis, asthma, allergies, adult respiratory distress syndrome, graft versus host disease, organ transplantation, septic shock, psoriasis, eczema, contact dermatitis, osteoporosis, osteoarthritis, atherosclerosis, metastasis, wound healing, diabetic retinopathy, inflammatory bowel disease and other autoimmune diseases.

10

15

30

35

Also included in the present invention are pharmaceutical kits comprising one or more containers containing pharmaceutical dosage units comprising a compound of Formula I, for the treatment of cell adhesion related disorders, including but not limited to thromboembolic disorders.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides novel nonpeptide compounds of Formula I (described below) which bind to integrin receptors thereby altering cell-matrix and cell-cell adhesion processes. The compounds of the present invention are useful for the treatment of inflammation, bone degradation, tumors, metastases, thrombosis, cell aggregation-related conditions in a mammal.

One aspect of this invention provides compounds of Formula I (described below) which are useful as antagonists of the platelet glycoprotein IIb/IIIa complex. The compounds of the present invention inhibit the binding of fibrinogen to the platelet glycoprotein IIb/IIIa complex and inhibit the aggregation of platelets. The present invention also includes pharmaceutical compositions containing such compounds of

PCT/US94/13155

Formula I, and methods of using such compounds for the inhibition of platelet aggregation, as thrombolytics, and/or for the treatment of thromboembolic disorders.

5 This invention relates to novel compounds of the Formula I:

$$R^{15} \stackrel{4}{\cancel{5}} \stackrel{b}{\cancel{5}} W - X \stackrel{O}{\cancel{5}} V$$

or a pharmaceutically acceptable salt or prodrug form thereof.

[1] A first embodiment of this invention provides compounds of Formula I:

15

$$R^{15} + D = 0$$
 $R^{14} + D = 0$
 $R^{1} - U - V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N = 0$
 $R^{1} - U = V + N$

or pharmaceutically acceptable salt or prodrug forms thereof wherein:

20

b is a single or double bond;

R¹ is selected from $R^2(R^3)N(CH_2)_{q^{Z^-}}$, $R^2(R^3)N(R^2N=)CN(R^2)(CH_2)_{q^{Z^-}}$, piperazinyl-(CH₂)_qZ- or

$$R^2N$$
 $\binom{n}{z}$

25

Z is selected from O, S, S(=0), or $S(=0)_2$;

 $\ensuremath{\text{R}^2}$ and $\ensuremath{\text{R}^3}$ are independently selected from: H, $\ensuremath{\text{C}_1\text{-}\text{C}_{10}}$ alkyl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C6-C10 aryl, C7-C11 arylalkyl, C2-C7 alkylcarbonyl, C6-C10 arylcarbonyl, C2-C10 5 alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ bicycloalkoxycarbonyl, C6-C10 aryloxycarbonyl, aryl(C₁-C₁₀ alkoxy) carbonyl, C₁-C₆ alkylcarbonyloxy(C1-C4 alkoxy)carbonyl, C6-C10 $arylcarbonyloxy(C_1-C_4 alkoxy) carbonyl, C_4-C_{11}$ 10 cycloalkylcarbonyloxy(C1-C4 alkoxy)carbonyl; U is selected from: a single bond (i.e., U is not present), $-(C_1-C_7 \text{ alkyl})-,$ 15 $-(C_2-C_7 \text{ alkenyl})-,$ $-(C_2-C_7 \text{ alkynyl})-,$ -(aryl) - substituted with 0-3 R^{6a} , or -(pyridyl) - substituted with 0-3 R6a; 20 V is selected from: a single bond (i.e., V is not present); $-(C_1-C_7 \text{ alkyl})-$, substituted with 0-3 groups independently selected from R⁶ or R⁷; -(C2-C7 alkenyl)-, substituted with 0-3 groups 25 independently selected from R⁶ or R⁷; -(C2-C7 alkynyl)-, substituted with 0-2 groups independently selected from R⁶ or R⁷; -(aryl)-, substituted with 0-2 groups independently selected from R⁶ or R⁷; 30 -(pyridyl)-, substituted with 0-2 groups independently selected from R⁶ or R⁷; or -(pyridazinyl)-, substituted with 0-2 groups independently selected from R⁶ or R⁷;

35. W is selected from:

-11-

a single bond (i.e., W is not present), $-(C_1-C_7 \text{ alkyl}) -(C_2-C_7 \text{ alkenyl})-,$ $-(C_2-C_7 \text{ alkynyl})-, \text{ or }$ $-(C(R^5)_2)_nC(=0)N(R^{5a})_{-};$ 5 X is selected from: a single bond (i.e., X is not present); -(C₁-C₇ alkyl)-, substituted with 0-3 groups independently selected from R4, R8 or R14; 10 -(C2-C7 alkenyl)-, substituted with 0-3 groups independently selected from R4, R8 or R14; -(C₂-C₇ alkynyl)-, substituted with 0-2 groups independently selected from R4, R8 or R14; or 15

3.2(\)n\N\),

Y is selected from hydroxy, C1 to C10 alkyloxy, C3 to C₁₁ cycloalkyloxy, C₆ to C₁₀ aryloxy, C₇ to C₁₁ 20 aralkyloxy, C₃ to C₁₀ alkylcarbonyloxyalkyloxy, C₃ to C₁₀ alkoxycarbonyloxyalkyloxy, C₂ to C₁₀ alkoxycarbonylalkyloxy, C5 to C10 cycloalkylcarbonyloxyalkyloxy, C5 to C10 cycloalkoxycarbonyloxyalkyloxy, C5 to C10 25 cycloalkoxycarbonylalkyloxy, C7 to C11 aryloxycarbonylalkyloxy, C8 to C12 aryloxycarbonyloxyalkyloxy, C8 to C12 arylcarbonyloxyalkyloxy, C5 to C10 alkoxyalkylcarbonyloxyalkyloxy, C₅ to C₁₀ (5-alkyl-30 1,3-dioxa-cyclopenten-2-one-yl)methyloxy, C10 to C14 (5-aryl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy; or $(R^2)(R^3)N-(C_1-C_{10} \text{ alkoxy})-;$

-12-

 R^4 and R^{4b} are independently selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, or $-N(R^{12})R^{13}$;

- 5 R⁵ is selected from H, C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b};
- 10 R^{5a} is selected from hydrogen, hydroxy, C₁ to C₈ alkyl,
 C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁
 cycloalkylmethyl, C₁-C₆ alkoxy, benzyloxy, C₆ to C₁₀
 aryl, heteroaryl, heteroarylalkyl, C₇ to C₁₁
 arylalkyl, adamantylmethyl or C₁-C₁₀ alkyl
 substituted with 0-2 R^{4b};
- alternately, R⁵ and R^{5a} can be taken together to be 3azabicyclononyl, 1-piperidinyl, 1-morpholinyl or 1piperazinyl, each being optionally substituted with

 C₁-C₆ alkyl, C₆-C₁₀ aryl, heteroaryl, C₇-C₁₁
 arylalkyl, C₁-C₆ alkylcarbonyl, C₃-C₇
 cycloalkylcarbonyl, C₁-C₆ alkoxycarbonyl, C₇-C₁₁
 arylalkoxycarbonyl, C₁-C₆ alkylsulfonyl or C₆-C₁₀
 arylsulfonyl;
 - R^{5b} is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;

25

30

35

 $\begin{array}{c} {\rm R}^6 \ \ {\rm is \ selected \ from \ H, \ C_1-C_{10} \ alkyl, \ hydroxy, \ C_1-C_{10} } \\ {\rm alkoxy, \ nitro, \ C_1-C_{10} \ alkylcarbonyl, \ -N\,(R^{12})\,R^{13}, } \\ {\rm cyano, \ halo, \ CF_3, \ CHO, \ CO_2R^5, \ C\,(=O)\,R^{5a}, \ CONR^5R^{5a}, } \\ {\rm OC\,(=O)\,R^{5a}, \ OC\,(=O)\,OR^{5b}, \ OR^{5a}, \ OC\,(=O)\,NR^5R^{5a}, \ OCH_2CO_2R^5, } \\ {\rm CO_2CH_2CO_2R^5, \ NO_2, \ NR^{5a}C\,(=O)\,R^{5a}, \ NR^{5a}C\,(=O)\,OR^{5b}, } \end{array}$

 $NR^{5a}C(=0)NR^{5}R^{5a}$, $NR^{5a}SO_2NR^5R^{5a}$, $NR^{5a}SO_2R^5$, $S(0)_pR^{5a}$, $SO_2NR^5R^{5a}$, C_2 to C_6 alkenyl, C_3 to C_{11} cycloalkyl, C_4 to C_{11} cycloalkylmethyl;

- 5 C_6 to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(O)_mMe$, or -NMe₂;
- C₇ to C₁₁ arylalkyl, said aryl being optionally substituted with 1-3 groups selected from halogen, C₁-C₆ alkoxy, C₁-C₆ alkyl, CF₃, S(O)_mMe, or -NMe₂;

methylenedioxy when R⁶ is a substituent on aryl; or

- a 5-10 membered heterocyclic ring containing 1-3 N,
 O, or S heteroatoms, wherein said heterocyclic
 ring may be saturated, partially saturated, or
 fully unsaturated, said heterocyclic ring
 being substituted with 0-2 R⁷;
- R^{6a} is selected from C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, CF_3 , NO_2 , or $NR^{12}R^{13}$;
- R⁷ is selected from H, C₁-C₁₀ alkyl, hydroxy, C₁-C₁₀ alkoxy, nitro, C₁-C₁₀ alkylcarbonyl, -N(R¹²)R¹³, cyano, halo, CF₃, CHO, CO₂R⁵, C(=0)R^{5a}, CONR⁵R^{5a}, OC(=0)R^{5a}, OC(=0)OR^{5b}, OR^{5a}, OC(=0)NR⁵R^{5a}, OCH₂CO₂R⁵, CO₂CH₂CO₂R⁵, NO₂, NR^{5a}C(=0)R^{5a}, NR^{5a}C(=0)OR^{5b}, NR^{5a}C(=0)NR⁵R^{5a}, NR^{5a}SO₂NR⁵R^{5a}, NR^{5a}SO₂R⁵, S(O)_PR^{5a}, SO₂NR⁵R^{5a}, C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁ cycloalkylmethyl, C₆ to C₁₀ aryl, or C₇ to C₁₁ arylalkyl;
 - R⁸ is selected from:

35 H;

R6; C_1-C_{10} alkyl, substituted with 0-3 R^6 ; C_2-C_{10} alkenyl, substituted with 0-3 R^6 ; C_2-C_{10} alkynyl, substituted with 0-3 R^6 ; 5 C3-C8 cycloalkyl, substituted with 0-3 R6; C₅-C₆ cycloalkenyl, substituted with 0-2 R⁶; aryl, substituted with $0-2 R^6$; 5-10 membered heterocyclic ring containing 1-3 N, O, or S heteroatoms, wherein said heterocyclic 10 ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with $0-2 R^6$; \mbox{R}^{12} and \mbox{R}^{13} are independently H, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ alkyl, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ 15 alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀ alkylsulfonyl, aryl(C1-C10 alkyl)sulfonyl, arylsulfonyl, aryl, C2-C6 alkenyl, C3-C11 cycloalkyl, C4-C11 cycloalkylalkyl, C7-C11 arylalkyl, C2-C7 alkylcarbonyl, C7-C11 arylcarbonyl, 20 C2-C10 alkoxycarbonyl, C4-C11 cycloalkoxycarbonyl, C7-C11 bicycloalkoxycarbonyl, C7-C11 aryloxycarbonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl or aryl(C₁-C₁₀ alkoxy)carbonyl; 25 R14 is selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C2-C10 alkynyl, C1-C10 alkoxy, aryl, heteroaryl or C_1-C_{10} alkoxycarbonyl, CO_2R^5 or $-C(=0)N(R^5)R^{5a}$; _R15 30 is selected from: H; R6;

H; R^6 ; C_1-C_{10} alkyl, substituted with 0-8 R^6 ; C_2-C_{10} alkenyl, substituted with 0-6 R^6 ; C_1-C_{10} alkoxy, substituted with 0-6 R^6 ;

-15-

aryl, substituted with 0-5 R6;

5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-5 R⁶;

 $\text{C}_1\text{--}\text{C}_{10}$ alkoxycarbonyl substituted with 0-8 $\text{R}^6;$ $\text{CO}_2\text{R}^5;$ or

 $-C (=0) N (R^5) R^{5a};$

10

5

n is 0-4;

q is 2-7;

r is 0-3;

provided that when b is a double bond, only one of R^{14} or R^{15} is present;

provided that n, q, and r are chosen such that the number of in-chain atoms between R^1 and Y is in the range of 8-18.

[2] Preferred compounds of this first embodiment are those of Formula II (where W is a single bond (i.e., absent) and U is a single bond (i.e., absent)):

25

$$R^1-V$$
 X
 Y
 R^{14}
 (II)

wherein:

30 R^1 is selected from $R^2HN(CH_2)_qO^-$, $R^2HN(R^2N=)CNH(CH_2)_qO^-$, piperazinyl-(CH₂)_qO-, or

; and/or

 R^2 is selected from H, aryl(C_1-C_{10} alkoxy)carbonyl, C_1-C_{10} alkoxycarbonyl; and/or

5

R⁸ is selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₈ cycloalkyl, C₅-C₆ cycloalkenyl, aryl, 5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated; and/or

 R^6 and R^7 are selected from H, C_1-C_{10} alkyl, hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$, cyano, or halo.

[3] Further preferred compounds of this first embodiment are those of Formula II (where W is a bond/absent and U is a bond/absent):

20

15

$$R^1-V$$
 X
 Y
 R^{14}
 (II)

wherein:

25 X is selected from:

a single bond (i.e., X is not present);
-(C₁-C₇ alkyl)-, substituted with 0-2 groups
independently selected from R⁴, R⁸ or R¹⁴;

-17-

-(C₂-C₇ alkenyl)-, substituted with 0-2 groups independently selected from R⁴, R⁸ or R¹⁴; -(C₂-C₇ alkynyl)-, substituted with 0-2 groups independently selected from R⁴, R⁸ or R¹⁴; and/or

R⁸ is selected from H, C₁-C₆ alkyl, C₂-C₆ alkenyl,
C₃-C₈ cycloalkyl, C₅-C₆ cycloalkenyl, aryl, 5-6
membered heterocyclic ring containing 1-2 N, O, or
S heteroatoms, wherein said heterocyclic ring may
be saturated, partially saturated, or fully
unsaturated.

[4] Further preferred compounds of this first embodiment are compounds of Formula I wherein:

 R^1 is

5

$$R^2N$$
 O^-

20 V is phenylene or pyridylene;

n is 1 or 2;

X is $-(C_1-C_2)$ alkyl- substituted with 0-2 R⁴

25

Y is selected from:
hydroxy;
C1 to C10 alkoxy;
methylcarbonyloxymethoxy-;
t-butylcarbonyloxymethoxy-;
cyclohexylcarbonyloxymethoxy-;
1-(methylcarbonyloxy) ethoxy-;

```
1-(ethylcarbonyloxy)ethoxy-;
           1-(t-butylcarbonyloxy)ethoxy-;
           1-(cyclohexylcarbonyloxy)ethoxy-;
           i-propyloxycarbonyloxymethoxy-;
  5
           t-butyloxycarbonyloxymethoxy-;
           1-(i-propyloxycarbonyloxy)ethoxy-;
           1-(cyclohexyloxycarbonyloxy) ethoxy-;
           1-(t-butyloxycarbonyloxy)ethoxy-;
           dimethylaminoethoxy-;
 10
           diethylaminoethoxy-;
           (5-methyl-1, 3-dioxacyclopenten-2-on-4-yl) methoxy-;
           (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
           yl) methoxy-;
           (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
15
           1-(2-(2-methoxypropyl) carbonyloxy) ethoxy-;
     R^4 is -NR^{12}R^{13};
     R^{12} is H, C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylcarbonyl, C_1-
20
           C4 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl,
           benzyl, benzoyl, phenoxycarbonyl,
           benzyloxycarbonyl, arylalkylsulfonyl,
           pyridylcarbonyl, or pyridylmethylcarbonyl;
     R^{13} is H.
25
           Specifically preferred compounds of this first
     embodiment are compounds, or pharmaceutically acceptable
     salt or prodrug forms thereof, selected from:
. 30
     5(R,S)-3-[[4-(2-piperidin-4-yl)ethoxyphenyl]isoxazolin-
           5-yl]acetic acid;
     5(R,S)-N- (butanesulfonyl)-L-\{3-[4-(2-piperidin-4-
           yl)ethoxyphenyl]isoxazolin-5-yl}qlycine;
35
     5(R,S)-N-(\alpha-\text{toluenesulfonyl})-L-\{3-[4-(2-\text{piperidin}-4-
           yl) ethoxyphenyl] isoxazolin-5-yl}qlycine;
```

20

25

- 5(R,S)-N-[(benzyloxy)carbonyl]-L-{3-[4-(2-piperidin-4-yl)ethoxyphenyl]isoxazolin-5-yl}glycine;
- 5(R,S)-N-(pentanoyl)-L-{3-[4-(2-piperidin-4-yl)ethox-yphenyl]isoxazolin-5-yl}glycine;
- 5 5(R,S)-3-{[4-(piperidin-4-yl)methoxyphenyl]isoxazolin-5-yl)propanoic acid;
 - 2(R, S) 5(R, S) N (butanesulfonyl) amino $-\{3 [4 (piperidin 4-yl) methoxyphenyl] isoxazolin <math>-5-yl\}$ propanoic acid;
- 2(R,S)-5(R,S)-N-(α-toluenesulfonyl) amino-{3-[4-(piperi-10 din-4-yl) methoxyphenyl]isoxazolin-5-yl}propanoic acid;
 - 2(R,S)-5(R,S)-N-[(benzyloxy)carbonyl]amino-{3-[4-(piperidin-4-yl)methoxyphenyl]isoxazolin-5-yl}propanoic acid;
- 2 (R, S) -5 (R, S) -N- (pentanoyl) amino- $\{3-[4-(piperidin-4-yl)methoxyphenyl]$ isoxazolin-5-yl}propanoic acid.
 - [6] A second embodiment of this invention provides a compound of Formula I:

 $R^{15} \stackrel{4}{\downarrow} \stackrel{b}{\downarrow} \stackrel{O}{\downarrow} W - X \stackrel{(I)}{\downarrow}$

or a pharmaceutically acceptable salt or prodrug form thereof wherein:

b is a single or double bond;

WO 95/14683

PCT/US94/13155

-20-

$$(CH_2)_nZ$$
 $R^{2a}N$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$

Z is selected from a bond (i.e. is absent), O, S, S(=0), S(=0)2;

 \mbox{R}^2 and \mbox{R}^3 are independently selected from: H, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ alkyl, C₃-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C6-C10 aryl, C7-C11 arylalkyl, C2-C7 10 alkylcarbonyl, C7-C11 arylcarbonyl, C2-C10 alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ bicycloalkoxycarbonyl, C7-C11 aryloxycarbonyl, $aryl(C_1-C_{10} alkoxy) carbonyl, C_1-C_6$ 15 alkylcarbonyloxy(C_1-C_4 alkoxy)carbonyl, C_6-C_{10} arylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₄-C₁₁ cycloalkylcarbonyloxy(C1-C4 alkoxy)carbonyl;;

 R^{2a} is R^2 or $R^2(R^3)N(R^2N=)C-$;

20

25

U is selected from: a single bond (i.e., U is not present), $-(C_1-C_7 \text{ alkyl})-,$ $-(C_2-C_7 \text{ alkenyl})-,$ $-(C_2-C_7 \text{ alkynyl})-,$ -(aryl) - substituted with 0-3 R6a, or

-(pyridyl) - substituted with 0-3 R^{6a};

V is selected from:

PCT/US94/13155

a single bond (i.e., V is not present); $-(C_1-C_7 \text{ alkyl})-$, substituted with 0-3 groups independently selected from R⁶ or R⁷; -(C2-C7 alkenyl)-, substituted with 0-3 groups independently selected from R⁶ or R⁷; 5 -(C2-C7 alkynyl)-, substituted with 0-3 groups independently selected from R⁶ or R⁷; -(phenyl)-Q-, said phenyl substituted with 0-2 groups independently selected from R⁶ or R⁷; -(pyridyl)-Q-, said pyridyl substituted with 0-2 10 groups independently selected from R⁶ or R⁷; or -(pyridazinyl)-Q-, said pyridazinyl substituted with 0-2 groups independently selected from R⁶ or R7, 15 Q is selected from: a single bond (i.e., Q is not present), -O-, $-S(O)_{m-}$, $-N(R^{12})-$, $-(CH_2)_{m-}$, -C(=O)-, $-N(R^{5a})C(=0)-$, $-C(=0)N(R^{5a})-$, $-CH_2O-$, $-OCH_2-$, $-CH_2N(R^{12})-$, $-N(R^{12})CH_2-$, $-CH_2C(=0)-$, $-C(=0)CH_2-$, 20 $-CH_2S(O)_m-$, or $-S(O)_mCH_2-$, provided that when b is a single bond, and R1-U-Vis a substituent on C5 of the central 5-membered ring of Formula I, then Q is not -0-, $-S(0)_{m-}$, 25 $-N(R^{12})$ -, $-C(=0)N(R^{5a})$ -, $-CH_2O$ -, $CH_2N(R^{12})$ - or $-CH_2S(O)_m-;$ is selected from: W 30 $-(C(R^4)_2)_nC(=0)N(R^{5a})-$, or $-C (=0) -N (R^{5a}) - (C (R^4)_2)_n -;$

X is selected from:
 a single bond (i.e. X is absent)

PCT/US94/13155

 $-(C(R^4)_2)_n-C(R^4)(R^8)-C(R^4)(R^{4a})-$, with the proviso that when n is 0 or 1, then at least one of R^{4a} or R^8 is other than H or methyl;

5 Y is selected from hydroxy, C1 to C10 alkyloxy, C3 to C₁₁ cycloalkyloxy, C₆ to C₁₀ aryloxy, C₇ to C₁₁ aralkyloxy, C3 to C10 alkylcarbonyloxyalkyloxy, C3 to C_{10} alkoxycarbonyloxyalkyloxy, C_2 to C_{10} alkoxycarbonylalkyloxy, C₅ to C₁₀ 10 cycloalkylcarbonyloxyalkyloxy, C5 to C10 cycloalkoxycarbonyloxyalkyloxy, C5 to C10 cycloalkoxycarbonylalkyloxy, C7 to C11 aryloxycarbonylalkyloxy, C₈ to C₁₂ aryloxycarbonyloxyalkyloxy, C8 to C12 15 arylcarbonyloxyalkyloxy, C₅ to C₁₀ alkoxyalkylcarbonyloxyalkyloxy, C5 to C10 (5-alkyl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy, C₁₀ to C₁₄ (5-aryl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy, $(R^2)(R^3)N-(C_1-C_{10} \text{ alkoxy})-;$

20

- R⁴ is selected from H, C₁-C₁₀ alkyl, C₁-C₁₀ alkylcarbonyl, aryl, arylalkyl, cycloalkyl, or cycloalkylalkyl;
- 25 alternately, two R⁴ groups on adjacent carbons may join to form a bond (i.e. a carbon-carbon double or triple bond);
- R^{4a} is selected from H, hydroxy, C_1-C_{10} alkoxy, nitro, $N(R^5)R^{5a}$, $-N(R^{12})R^{13}$, $-N(R^{16})R^{17}$, C_1-C_{10} alkyl substituted with 0-3 R^6 , aryl substituted with 0-3 R^6 , heteroaryl substituted with 0-3 R^6 or C_1-C_{10} alkylcarbonyl;

WO 95/14683

5

R^{4b} is selected from H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, C₇-C₁₄ bicycloalkyl, hydroxy, C₁-C₆ alkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, nitro, C₁-C₆ alkylcarbonyl, C₆-C₁₀ aryl, -N(R¹²)R¹³; halo, CF₃, CN, C₁-C₆ alkoxycarbonyl, carboxy, piperidinyl, morpholinyl or pyridinyl;

R⁵ is selected from H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₁

cycloalkyl, C₄-C₁₁ cycloalkylmethyl, C₆-C₁₀ aryl,

C₇-C₁₁ arylalkyl, or C₁-C₁₀ alkyl substituted with

0-2 R^{4b};

R^{5a} is selected from hydrogen, hydroxy, C₁ to C₈ alkyl,

C₃-C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁

cycloalkylmethyl, C₁-C₆ alkoxy, benzyloxy, C₆ to C₁₀

aryl, heteroaryl, heteroarylalkyl, C₇ to C₁₁

arylalkyl, adamantylmethyl, or C₁-C₁₀ alkyl

substituted with 0-2 R^{4b};

20

alternately, R⁵ and R^{5a} when both are substituents on the same nitrogen atom (as in -NR⁵R^{5a}) can be taken together with the nitrogen atom to which they are attached to form 3-azabicyclononyl, 1,2,3,4
25 tetrahydro-1-quinolinyl, 1,2,3,4-tetrahydro-2-isoquinolinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl or 1-piperazinyl, each being optionally substituted with C₁-C₆ alkyl, C₆-C₁₀ aryl, heteroaryl, C₇-C₁₁

arylalkyl, C₁-C₆ alkylcarbonyl, C₃-C₇
cycloalkylcarbonyl, C₁-C₆ alkoxycarbonyl, C₇-C₁₁
arylalkoxycarbonyl, C₁-C₆ alkylsulfonyl or C₆-C₁₀
arylsulfonyl;

 R^{5b} is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;

5

- 15 C_6 to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(0)_mMe$, or -NMe₂;
- C7 to C₁₁ arylalkyl, said aryl being optionally 20 substituted with 1-3 groups selected from halogen, C₁-C₆ alkoxy, C₁-C₆ alkyl, CF₃, S(O)_mMe, or -NMe₂;

methylenedioxy when R⁶ is a substituent on aryl; or

a 5-10 membered heterocyclic ring containing 1-3 N,
O, or S heteroatoms, wherein said heterocyclic
ring may be saturated, partially saturated, or
fully unsaturated, said heterocyclic ring
being substituted with 0-2 R⁷;

- R^{6a} is selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, CF_3 , NO_2 , or $NR^{12}R^{13}$;
- R^7 is selected from H, C_1-C_{10} alkyl, hydroxy, C_1-C_{10} 35 alkoxy, nitro, C_1-C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$,

5

cyano, halo, CF_3 , CHO, CO_2R^5 , $C(=O)R^{5a}$, $CONR^5R^{5a}$, $OC(=O)R^{5a}$, $OC(=O)R^{5a}$, $OC(=O)R^{5a}$, $OC(=O)R^{5a}$, $OC(=O)R^{5a}$, $OCH_2CO_2R^5$, $CO_2CH_2CO_2R^5$, NO_2 , $NR^{5a}C(=O)R^{5a}$, $NR^{5a}C(=O)OR^{5b}$, $NR^{5a}C(=O)NR^5R^{5a}$, $NR^{5a}SO_2NR^5R^{5a}$, $NR^{5a}SO_2R^5$, $S(O)_mR^{5a}$, $SO_2NR^5R^{5a}$, C_2 to C_6 alkenyl, C_3 to C_{11} cycloalkyl, C_4 to C_{11} cycloalkylmethyl, C_6 to C_{10} aryl, or C_7 to C_{11} arylalkyl;

R8 is selected from: 10 R6: C_1-C_{10} alkyl, substituted with 0-3 R^6 ; C2-C10 alkenyl, substituted with 0-3 R6; C2-C10 alkynyl, substituted with 0-3 R6; C3-C8 cycloalkyl, substituted with 0-3 R6; 15 C5-C6 cycloalkenyl, substituted with 0-3 R6; aryl, substituted with 0-3 R6; 5-10 membered heterocyclic ring containing 1-3 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or 20 fully unsaturated, said heterocyclic ring being substituted with 0-2 R6;

R¹² and R¹³ are independently H, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀
25 alkylsulfonyl, aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, aryl(C₂-C₁₀ alkenyl)sulfonyl, heteroarylsulfonyl, aryl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₇-C₁₁ arylalkyl, C₇-C₁₁ arylcarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ bicycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl, or aryl(C₁-C₁₀ alkoxy)carbonyl, wherein said aryls are optionally substituted with 0-3 substituents

selected from the group consisting of: C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, CF_3 , and NO_2 ;

is selected from H, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_1-C_{10} alkoxy, aryl, heteroaryl or C_1-C_{10} alkoxycarbonyl, CO_2R^5 or -C (=0)N(R^5) R^{5a} ;

 R^{15} is selected from:

H; R^6 ; $-CO_2R^5$; $-C(=O)N(R^5)R^{5a}$;

10 C_1-C_{10} alkoxycarbonyl substituted with 0-2 R⁶; C_1-C_{10} alkyl, substituted with 0-3 R⁶; C_2-C_{10} alkenyl, substituted with 0-3 R⁶; C_1-C_{10} alkoxy, substituted with 0-3 R⁶;

aryl, substituted with 0-3 R6; or

5-10 membered heterocyclic ring containing 1-3 N,
O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-2 R⁶;

20

30

provided that when b is a double bond, only one of \mathbb{R}^{14} or \mathbb{R}^{15} is present;

R¹⁶ is selected from:

25 $-C (=0) - O - R^{18a}$, $-C (=0) - R^{18b}$,

-C(-O)N(B18b) -

 $-C (=0) N (R^{18b})_2,$

-C (=0) NHSO₂R^{18a},

-C (=0) NHC (=0) R^{18b}, -C (=0) NHC (=0) OR^{18a},

 $-C (=0) NHC (=0) OR^{18b}$,

 $-C (=S) - NH - R^{18b}$

-NH-C (=O) -O-R^{18a},

 $-NH-C (=0)-R^{18b}$

 $-NH-C (=0)-NH-R^{18b}$

PCT/US94/13155

WO 95/14683

-27-

 $-SO_2-O-R^{18a}$, $-SO_2-R^{18a}$ $-SO_2-N(18^b)_2$, $-SO_2-NHC$ (=0) $O18^b$, $-P (=S) (OR^{18a})_{2}$ 5 $-P (=0) (OR^{18a})_{2}$ $-P (=S) (R^{18a})_{2}$ $-P (=0) (R^{18a})_2$, or

10

 R^{17} is selected from: H, C_1-C_{10} alkyl, C_2-C_6 alkenyl, C_3- C₁₁ cycloalkyl, C₄-C₁₅ cycloalkylalkyl, aryl, $aryl(C_1-C_{10} alkyl)-;$

15 R^{18a} is selected from:

 C_1-C_8 alkyl substituted with 0-2 R^{19} . C_2-C_8 alkenyl substituted with 0-2 R^{19} , C_2-C_8 alkynyl substituted with 0-2 R^{19} , C₃-C₈ cycloalkyl substituted with 0-2 R¹⁹, 20 aryl substituted with 0-4 R¹⁹, aryl(C1-C6 alkyl) - substituted with 0-4 R19,

a 5-10 membered heterocyclic ring system having 1-3 heteroatoms selected independently from O, S, and 25 N, said heterocyclic ring being substituted with $0-4 R^{19}$,

C₁-C₆ alkyl substituted with a 5-10 membered heterocyclic ring system having 1-3 heteroatoms 30 selected independently from O, S, and N, said heterocyclic ring being substituted with 0-4 R¹⁹;

R^{18b} is selected from R^{18a} or H;

 R^{19} is selected from H, halogen, CF_3 , CN, NO_2 , $NR^{12}R^{13}$, C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylalkyl, aryl, aryl(C_1 - C_6 alkyl)-, C_1 - C_6 alkoxy, or C_1 - C_4 alkoxycarbonyl;

5

- m is 0-2;
- n is 0-4;
- q is 1-7;
- r is 0-3;

10

provided that n, q and r are chosen such that the number of atoms connecting R^1 and Y is in the range of 8-18.

15 [7] Preferred compounds of this second embodiment are those compounds of Formula Ia:

$$R^{14}$$
 b O
 $R^{1} \cdot V \stackrel{\searrow}{\longrightarrow} W - X \stackrel{\longrightarrow}{\longrightarrow} V$
(Ia)

wherein:

- Z is selected from a bond (i.e. is absent), O, or S; and/or
 - R^2 is selected from H, aryl(C₁-C₁₀ alkoxy)carbonyl, or C₁-C₁₀ alkoxycarbonyl; and/or

- W is $-(CH_2)_nC(=0)N(R^{5a})$ -; and/or
- X is $-(C(R^4)_2)_n-C(R^4)(R^8)-CH(R^4)-$, with the proviso that when n is 0 or 1, then at least one of R^{4a} or R^8 is other than H or methyl; and/or
 - R^5 is selected from H or C_1-C_{10} alkyl substituted with 0-6 R^{4b} ; and/or

	R ⁶	is selected from H, C_1-C_{10} alkyl, hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$,
5		$-NR^5R^{5a}$, CO_2R^5 , $S(O)_mR^5$, OR^5 , cyano, halo;
		C_6 to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6
		alkyl, CF ₃ , S(O) _m Me, or -NMe ₂ ;
10		C ₇ to C ₁₁ arylalkyl, said aryl being optionally
		substituted with 1-3 groups selected from halogen, C_1-C_6 alkoxy, C_1-C_6 alkyl, CF_3 , $S(O)_mMe$, or $-NMe_2$;
15		methylenedioxy when R^6 is a substituent on aryl; or
		a 5-10 membered heterocyclic ring containing 1-3 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring
20		being substituted with 0-2 R ⁷ ; and/or
	R ⁷	is selected from selected from H, C ₁ -C ₁₀ alkyl,
		hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$, cyano, or halo; and/or
25		
	R ⁸	is selected from: -CONR ⁵ NR ^{5a} ; -CO ₂ R ⁵ ;
		C ₁ -C ₁₀ alkyl, substituted with 0-3 R ⁶ ;
20		C ₂ -C ₁₀ alkenyl, substituted with 0-3 R ⁶ ;
30		C ₂ -C ₁₀ alkynyl, substituted with 0-3 R ⁶ ,
		C ₃ -C ₈ cycloalkyl, substituted with 0-3 R ⁶ ;
		C5-C6 cycloalkenyl, substituted with 0-3 R6;
		aryl, substituted with 0-2 R ⁶ ;
25		5-10 membered heterocyclic ring containing 1-3 N,
35		O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or

fully unsaturated, said heterocyclic ring being substituted with $0-2\ R^6$; and/or

- R¹² and R¹³ are each independently selected from H,

 C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀

 alkylcarbonyl, C₁-C₁₀ alkylsulfonyl,

 aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, aryl,

 heteroarylcarbonyl, or heteroarylalkylcarbonyl,

 wherein said aryls are optionally substituted with

 0-3 substituents selected from the group consisting

 of: C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, CF₃, and NO₂.
 - [8] Further preferred compounds of this second embodiment are those compounds of Formula Ia:

 $\begin{array}{c}
R^{14} & b & O \\
R^{1} - V & O & V
\end{array}$

wherein:

20 Z is selected from a bond (i.e. is absent) or O; and/or

W is $-(CH_2)_nC(=0)N(R^{12})-$; and/or

 $X = is -C(R^4)(R^8) -C(R^4)_2 - .$

[9] Further preferred compounds of this second embodiment are compounds of Formula Ia, wherein:

 R^1 is R^2NHC (=NR²) - or R^2NHC (=NR²) NH- and V is phenylene 30 or pyridylene, or

 \mathbb{R}^1 is

-31-

30

and V is a single bond (i.e. V

```
is absent);
    n is 1 or 2;
5
    X is -CHR8CH2-;
    Y
          is selected from:
          hydroxy;
10
          C<sub>1</sub> to C<sub>10</sub> alkoxy;
          methylcarbonyloxymethoxy-;
          ethylcarbonyloxymethoxy-;
          t-butylcarbonyloxymethoxy-;
          cyclohexylcarbonyloxymethoxy-;
15
          1-(methylcarbonyloxy)ethoxy-;
          1-(ethylcarbonyloxy)ethoxy-;
          1-(t-butylcarbonyloxy) ethoxy-;
          1-(cyclohexylcarbonyloxy)ethoxy-;
          i-propyloxycarbonyloxymethoxy-;
20
          t-butyloxycarbonyloxymethoxy-;
          1-(i-propyloxycarbonyloxy)ethoxy-;
          1-(cyclohexyloxycarbonyloxy) ethoxy-;
          1-(t-butyloxycarbonyloxy)ethoxy-;
          dimethylaminoethoxy-;
25
          diethylaminoethoxy-;
          (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
          (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
          yl) methoxy-;
          (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
```

1-(2-(2-methoxypropyl) carbonyloxy) ethoxy-;

PCT/US94/13155 WO 95/14683

 R^6 is selected from H, C_1-C_4 alkyl, hydroxy, C_1-C_4 alkoxy, nitro, C_1-C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$, $-NR^5R^{5a}$, CO_2R^5 , $S(O)_mR^5$, OR^5 , cyano, halo;

5 C₆ to C₁₀ aryl optionally substituted with 1-3 groups selected from halogen, C1-C6 alkoxy, C1-C6 alkyl, CF₃, S(O)_mMe, or -NMe₂;

methylenedioxy when R⁶ is a substituent on aryl; or

-32-

10

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3Hindolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, isoxazolinyl or morpholinyl;

20

15

R8 is selected from: $-CONR^5NR^{5a}$; $-CO_2R^5$; C_1-C_{10} alkyl, substituted with 0-3 R^6 ; C_2-C_{10} alkenyl, substituted with 0-3 R^6 ; 25 C_2-C_{10} alkynyl, substituted with 0-3 R^6 , C₃-C₈ cycloalkyl, substituted with 0-3 R⁶; aryl, substituted with 0-2 R6;

a heterocyclic ring system selected from pyridinyl, 30 furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, carbazolyl, 35 pyrrolidinyl, piperidinyl, indolinyl, or

-33-

morpholinyl, said heterocyclic ring being substituted with $0-2 R^6$;

R¹² is selected from H, C₁-C₆ alkyl, C₁-C₄

alkoxycarbonyl, C₁-C₆ alkylcarbonyl, C₁-C₆

alkylsulfonyl, aryl(C₁-C₄ alkyl)sulfonyl,

arylsulfonyl, aryl, pyridylcarbonyl or

pyridylmethylcarbonyl, wherein said aryls are

optionally substituted with 0-3 substituents

selected from the group consisting of: C₁-C₄ alkyl,

C₁-C₄ alkoxy, halo, CF₃, and NO₂; and

 \mathbb{R}^{13} is H.

- 15 [10] Specifically preferred compounds of this second embodiment are compounds, or pharmaceutically acceptable salt or prodrug forms thereof, selected from:
- $3(R,S) \{5(R,S) N [3 (4-amidinophenyl) isoxazolin-5-$ 20 ylacetyl]amino}-3-phenylpropanoic acid;
 - $3(R,S)-\{5(R,S)-N-\{3-(4-amidinophenyl)isoxazolin-5-ylacetyl\}amino\}-pentanoic acid;$
 - $3(R) \{5(R, S) N [3 (4 amidinophenyl) isoxazolin 5 ylacetyl] amino} heptanoic acid;$
- 25 $3(R,S)-\{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-4-(phenylthio)butanoic acid;$
 - $3(R,S)-\{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-4-(phenylsulfonamido)butanoic acid;$
- 3(R,S)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5ylacetyl]amino}-4-(n-butylsulfonamido)butanoic acid;
 - 3(S)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-3(adamantylmethylaminocarbonyl)propanoic acid;

3(S)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5ylacetyl]amino}-3-(1azabicyclo[3.2.2]nonylcarbonyl)propanoic acid;

 $3(S)-\{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-3-(phenethylaminocarbonyl)propanoic acid.$

- $3(R)-\{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-3-(3-pyridylethyl)propanoic acid.$
- 3(R)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-3-(2-pyridylethyl)propanoic acid.
 - 3(R)-{5(R,S)-N-{3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-3-(phenylpropyl)propanoic acid.
- [11] Also preferred compounds of the second embodiment are those compounds of Formula Ic:

20 wherein:

5

10

b is a single or double bond;

is selected from $R^{2a}(R^3)N-$, $R^2(R^3)N(R^2N-)C-$, $R^{2a}(R^3)N(CH_2)_{q}Z-$, $R^2(R^3)N(R^2N-)C(CH_2)_{q}Z-$, $R^2(R^3)N(R^2N-)CN(R^2)-$,

$$R^{2a}N$$

(CH₂)_nZ

 $R^{2a}N$

or

Z is selected from a bond (i.e. is absent), O, or S;

5 R^2 and R^3 are independently selected from H, aryl(C_1 - C_{10} alkoxy)carbonyl, or C_1 - C_{10} alkoxycarbonyl;

 R^{2a} is R^2 or $R^2(R^3)N(R^2N=)C$;

- 10 U is a single bond (i.e., U is not present),
 - V is selected from:
 - a single bond (i.e., V is not present);
 - -(C₁-C₇ alkyl)-, substituted with 0-3 groups
- independently selected from R⁶ or R⁷;
 - -(C_2 - C_7 alkenyl)-, substituted with 0-3 groups independently selected from R^6 or R^7 ;
 - -(C_2 - C_7 alkynyl)-, substituted with 0-3 groups independently selected from R^6 or R^7 ;
- (phenyl) -Q-, said phenyl substituted with 0-2
 groups independently selected from R⁶ or R⁷;
 - -(pyridyl)-Q-, said pyridyl substituted with 0-2 groups independently selected from R⁶ or R⁷; or
- -(pyridazinyl)-Q-, said pyridazinyl substituted with 0-2 groups independently selected from R⁶ or R⁷,
- Q is selected from a single bond (i.e., Q is not present), $-O-, -S(O)_m-, -N(R^{12})-, -(CH_2)_m-, -C(=O)-, \\ -N(R^{5a})C(=O)-, -C(=O)N(R^{5a})-, -CH_2O-, -OCH_2-,$

 $-CH_2N(R^{12})-$, $-N(R^{12})CH_2-$, $-CH_2C(=0)-$, $-C(=0)CH_2-$, $-CH_2S(0)_m-$, or $-S(0)_mCH_2-$,

- provided that when b is a single bond, and R^1 -U-Vis a substituent on C5 of the central 5-membered
 ring in Formula I, then Q is not -O-, -S(O)_m-,
 -N(R^{12})-, -C(=O)N(R^{5a})-, -CH₂O-, CH₂N(R^{12})- or
 -CH₂S(O)_m-;
- 10 W is selected from: $-(C(R^4)_2)-C(=0)-N(R^{5a})-$, or $-C(=0)-N(R^{5a})-(C(R^4)_2)-$;
 - $X = is -C(R^4)_2 CHR^{4a}$;

- R⁴ is selected from H, C₁-C₁₀ alkyl, C₁-C₁₀ alkylcarbonyl, aryl, arylalkyl, cycloalkyl, or cycloalkylalkyl;
- 20 R^{4a} is selected from hydroxy, C₁-C₁₀ alkoxy, nitro,
 -N(R⁵)R^{5a}, -N(R¹²)R¹³, or -N(R¹⁶)R¹⁷,
 C₁-C₁₀ alkyl substituted with 0-3 R⁶,
 aryl substituted with 0-3 R⁶,
 heteroaryl substituted with 0-3 R⁶, or
 C₁-C₁₀ alkylcarbonyl;
- R^{4b} is selected from H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, hydroxy, C₁-C₆ alkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, nitro, C₁-C₆ alkylcarbonyl, C₆-C₁₀ aryl, -N(R¹²)R¹³, halo, CF₃, CN, C₁-C₆ alkoxycarbonyl, carboxy, piperidinyl, morpholinyl or pyridyl;
- R^5 is selected from H or C_1-C_{10} alkyl substituted with 35 0-6 R^{4b} ;

R^{5a} is selected from hydrogen, hydroxy, C₁ to C₈ alkyl, C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁ cycloalkylmethyl, C₁-C₆ alkoxy, benzyloxy, C₆ to C₁₀ aryl, heteroaryl, heteroarylalkyl, C₇ to C₁₁ arylalkyl, or adamantylmethyl, C₁-C₁₀ alkyl substituted with 0-2 R^{4b};

alternately, R⁵ and R^{5a} can be taken together to be 3azabicyclononyl, 1,2,3,4-tetrahydro-1-quinolinyl,
1,2,3,4-tetrahydro-2-isoquinolinyl, 1-piperidinyl,
1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl,
thiazolidinyl or 1-piperazinyl, each being
optionally substituted with C₁-C₆ alkyl, C₆-C₁₀
aryl, heteroaryl, C₇-C₁₁ arylalkyl, C₁-C₆
alkylcarbonyl, C₃-C₇ cycloalkylcarbonyl, C₁-C₆
alkoxycarbonyl or C₇-C₁₁ arylalkoxycarbonyl;

R^{5b} is selected from C₁-C₈ alkyl, C₂-C₆ alkenyl, C₃-C₁₁

cycloalkyl, C₄-C₁₁ cycloalkylmethyl, C₆-C₁₀ aryl,

C₇-C₁₁ arylalkyl, or C₁-C₁₀ alkyl substituted with

0-2 R^{4b}

Y is selected from hydroxy, C1 to C10 alkyloxy, C3 to 25 C₁₁ cycloalkyloxy, C₆ to C₁₀ aryloxy, C₇ to C₁₁ aralkyloxy, C3 to C10 alkylcarbonyloxyalkyloxy, C3 to C₁₀ alkoxycarbonyloxyalkyloxy, C₂ to C₁₀ alkoxycarbonylalkyloxy, C5 to C10 cycloalkylcarbonyloxyalkyloxy, C5 to C10 30 cycloalkoxycarbonyloxyalkyloxy, C₅ to C₁₀ cycloalkoxycarbonylalkyloxy, C7 to C11 aryloxycarbonylalkyloxy, C8 to C12 aryloxycarbonyloxyalkyloxy, C8 to C12 arylcarbonyloxyalkyloxy, C5 to C10 35 alkoxyalkylcarbonyloxyalkyloxy, C5 to C10 (5-alkyl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy, or C10 to C₁₄ (5-aryl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy;

R⁶ and R⁷ are each independently selected from H, C₁-C₁₀

alkyl, hydroxy, C₁-C₁₀ alkoxy, nitro, C₁-C₁₀

alkylcarbonyl, -N(R¹²)R¹³, cyano, or halo;

R¹² and R¹³ are each independently selected from H,

C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀

alkylcarbonyl, C₁-C₁₀ alkylsulfonyl,

aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl,

heteroarylcarbonyl, heteroarylalkylcarbonyl or

aryl, wherein said aryls are optionally substituted

with 0-3 substituents selected from the group

consisting of: C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, CF₃,

and NO₂;

is selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, C_2 R⁵ or -C (=0) N (R⁵) R^{5a};

R¹⁶ is selected from:

 $-C (=0) - O - R^{18a}$

 $-C (=0) -R^{18b}$

25 $-C (=0) N (R^{18b})_2$,

 $-SO_2-R^{18a}$, or

 $-SO_2-N(R^{18b})_2;$

 R^{17} is selected from: H or C_1-C_4 alkyl;

30

20

R^{18a} is selected from:

 C_1-C_8 alkyl substituted with 0-2 R^{19} ,

C2-C8 alkenyl substituted with 0-2 R19,

 C_2 - C_8 alkynyl substituted with 0-2 R^{19} ,

35 C_3-C_8 cycloalkyl substituted with 0-2 R^{19} ,

aryl substituted with 0-4 R^{19} , aryl(C_1 - C_6 alkyl)- substituted with 0-4 R^{19} ,

a heterocyclic ring system selected from pyridinyl,
furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl,
triazolyl, imidazolyl, benzofuranyl, indolyl,
indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl,
benzimidazolyl, piperidinyl, tetrahydrofuranyl,
pyranyl, pyrimidinyl, 3H-indolyl, carbazolyl,
pyrrolidinyl, piperidinyl, indolinyl, or
morpholinyl, said heterocyclic ring being
substituted with 0-4 R¹⁹;

C1-C6 alkyl substituted with a heterocyclic ring

system selected from pyridinyl, furanyl, thiazolyl,
thienyl, pyrrolyl, pyrazolyl, imidazolyl,
isoxazolinyl, benzofuranyl, indolyl, indolenyl,
quinolinyl, isoquinolinyl, benzimidazolyl,
piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl,
3H-indolyl, indolyl, carbazole, pyrrolidinyl,
piperidinyl, indolinyl, or morpholinyl, said
heterocyclic ring being substituted with 0-4 R¹⁹;

R^{18b} is selected from R^{18a} or H;

25

30

R¹⁹ is selected from H, halogen, CF₃, CN, NO₂, NR¹²R¹³, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, aryl, heteroaryl, aryl(C₁-C₆ alkyl)-, or C₁-C₄ alkoxycarbonyl;

- n is 0-4;
- q is 1-7;
- r is 0-3;

WO 95/14683 PCT/US94/13155

-40-

provided that n, q, and r are chosen such that the number of atoms between R^1 and Y is in the range of 8-17.

5 [12] Further preferred compounds of the second embodiment of Formula Ic are those compounds of Formula Ib:

$$R^1-V$$
 $N-O$
 $W-X-V$
 Y
 Y

wherein:

10

15 R²NH(R²N=)CNH-, R²R³N(CH₂)p*Z-, R²NH(R²N=)CNH(CH₂)p*Z- or

$$R^{2a}N$$
 $(CH_2)_nZ^ (CH_2)_nZ^ (CH_2)_nZ^ (CH_2)_nZ^-$

20

n is 0-1; p' is 4-6; p" is 2-4;

25

Z is selected from a bond (i.e. is absent) or O;

WO 95/14683 PCT/US94/13155

-41-

```
v
           is a single bond (i.e., V is not present),
           -(phenyl)- or -(pyridyl)-;
     W
           is selected from:
 5
           -(C(R^4)_2)-C(=0)-N(R^{5a})-
           -C (=0) -N (R^{5a}) -CH_2-;
     X
           is selected from:
            -CH_2-CHN(R^{16})R^{17}-, or
            -CH2-CHNR<sup>5</sup>R<sup>5a</sup>-;
10
     Y
           is selected from:
          hydroxy;
           C_1 to C_{10} alkoxy;
15
          methylcarbonyloxymethoxy-;
           ethylcarbonyloxymethoxy-;
           t-butylcarbonyloxymethoxy-;
           cyclohexylcarbonyloxymethoxy-;
           1-(methylcarbonyloxy)ethoxy-;
20
           1-(ethylcarbonyloxy)ethoxy-;
           1-(t-butylcarbonyloxy)ethoxy-;
           1-(cyclohexylcarbonyloxy) ethoxy-;
           i-propyloxycarbonyloxymethoxy-;
           t-butyloxycarbonyloxymethoxy-;
25
          1-(i-propyloxycarbonyloxy)ethoxy-;
          1-(cyclohexyloxycarbonyloxy)ethoxy-;
          1-(t-butyloxycarbonyloxy)ethoxy-;
          dimethylaminoethoxy-;
          diethylaminoethoxy-;
30
           (5-methyl-1, 3-dioxacyclopenten-2-on-4-yl) methoxy-;
           (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
          yl) methoxy-;
           (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl)methoxy-;
          1-(2-(2-methoxypropyl) carbonyloxy) ethoxy-;
35
    R<sup>16</sup> is selected from:
```

 $-C (=0) - O - R^{18a}$, $-C (=0) - R^{18b}$, $-S (=0) 2 - R^{18a}$ or $-SO_2 - N (R^{18b})_2$;

5

R¹⁷ is selected from H or C₁-C₅ alkyl;

R^{18a} is selected from:

C₁-C₈ alkyl substituted with 0-2 R¹⁹,

C₂-C₈ alkenyl substituted with 0-2 R¹⁹,

C₂-C₈ alkynyl substituted with 0-2 R¹⁹,

C₃-C₈ cycloalkyl substituted with 0-2 R¹⁹,

aryl substituted with 0-4 R¹⁹,

aryl(C₁-C₆ alkyl)- substituted with 0-4 R¹⁹,

15

20

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyrimidinyl, 3H-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-4 R¹⁹;

25

30

C1-C6 alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-4 R¹⁹.

WO 95/14683

-43-

[13] Further preferred compounds of Formula Ib are those compounds wherein:

 R^1 is $R^2NH(R^2N=)C-$ or $R^2HN(R^2N=)CNH-$ and V is phenylene or pyridylene; or

 R^1 is

and V is a single bond (i.e. V

PCT/US94/13155

is absent);

10

n is 1 or 2;

R^{18a} is selected from:

C₁-C₄ alkyl substituted with 0-2 R¹⁹,

C₂-C₄ alkenyl substituted with 0-2 R¹⁹,

C₂-C₄ alkynyl substituted with 0-2 R¹⁹,

C₃-C₇ cycloalkyl substituted with 0-2 R¹⁹,

aryl substituted with 0-4 R¹⁹,

aryl (C₁-C₄ alkyl)- substituted with 0-4 R¹⁹,

20

25

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyrimidinyl, 3H-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, isoxazolinyl or morpholinyl, said heterocyclic ring being substituted with 0-4 R¹⁹;

30

C₁-C₄ alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl,

30

isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, isoxazolinyl or morpholinyl, said heterocyclic ring being substituted with 0-4 R¹⁹.

- [14] Specifically preferred compounds of Formula Ib are compounds, or pharmaceutically acceptable salt forms thereof, selected from:
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(phenylsulfonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(4-methyl-phenyl-sulfonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-20 acetyl]-N2-(butanesulfonyl)-2,3-(S)diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(propanesulfonyl)-2,3-(S)-diaminopropanoic acid;
- 25 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(ethanesulfonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(methyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(ethyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;

- N^{3} -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}acetyl]-N2-(1-propyloxycarbonyl)-2,3-(S)diaminopropanoic acid; $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-$ 5 acetyl]-N2-(2-propyloxycarbonyl)-2,3-(S)diaminopropanoic acid; $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}$ acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)diaminopropanoic acid; 10 $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}$ acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)diaminopropanoic acid; $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}$ acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-15 diaminopropanoic acid; $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}$ acetyl]-N2-(n-butyloxycarbonyl)-2,3-(R)diaminopropanoic acid; $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}-$ 20 acetyl]-N2-(n-butyloxycarbonyl)-2,3-(R)diaminopropanoic acid; $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}$ acetyl]-N2-(2-butyloxycarbonyl)-2, 3-(S)-
- diaminopropanoic acid;
 25 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(1-(2-methyl)-propyloxycarbonyl)-2,3-

(S)-diaminopropanoic acid;

- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl}-N2-(2-(2-methyl)-propyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-acetyl]-N2-(benzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;

15

- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}-acetyl]-N2-(benzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}-acetyl]-N2-(benzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-acetyl]-N2-(4-methylbenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
- 10 $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}-$ acetyl]-N2-(4-methoxybenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(4-chlorobenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N^2-(4-bromobenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;$
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-20 acetyl]-N2-(4-fluorobenzyloxycarbonyl)-2,3-(S)diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(4-phenoxybenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
- 25 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(2-(methyloxyethyl)-oxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-acetyl]-N2-(2-pyridinylcarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-acetyl]-N2-(3-pyridinylcarbonyl)-2,3-(S)-diaminopropanoic acid;

15

- $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}-$ acetyl]-N2-(4-pyridinyl-carbonyl)-2,3-(S)- diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(2-(2-pyridinyl)-acetyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(2-(3-pyridinyl)-acetyl)-2,3-(S)-diaminopropanoic acid;
- 10 $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}-$ acetyl]-N2-(2-(4-pyridinyl)-acetyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(2-pyridyl-methyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}-$ acetyl]-N2-(3-pyridyl-methyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-20 acetyl]-N2-(4-pyridyl-methyloxycarbonyl)-2,3-(S)diaminopropanoic acid.
 - $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}-$ acetyl]-N2-(4-butyloxyphenylsulfonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(2-thienylsulfonyl)-2,3-(S)-diaminopropanoic acid;
 - $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(R,S)-diaminopropanoic acid;$
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid;

 $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}$ acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(R)diaminopropanoic acid; N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)-5 diaminopropanoic acid; N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)diaminopropanoic acid; $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl\}-$ 10 acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(R)diaminopropanoic acid; $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl\}$ acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(R)-15 diaminopropanoic acid; $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}$ acetyl]-N2-(4-iodophenylsulfonyl)-2,3-(S)diaminopropanoic acid; $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}-$ 20 acetyl]-N2-(3-trifluoromethylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid; N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl]-N2-(3-chlorophenylsulfonyl)-2,3-(S)diaminopropanoic acid; $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}-$ 25 acetyl]-N2-(3-2-methoxycarbonylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid; $N^3-\{2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}$ acetyl]-N2-(2,4,6-trimethylphenylsulfonyl)-2,3-(S)-30 diaminopropanoic acid; $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}$ acetyl]-N2-(2-chlorophenylsulfonyl)-2,3-(S)-

diaminopropanoic acid;

- N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(4-trifluoromethylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}acetyl]-N2-(2-trifluoromethylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid;
 - N^{3} -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(2-fluorophenylsulfonyl)-2,3-(S)-diaminopropanoic acid;
- 10 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl]-N2-(4-fluorophenylsulfonyl)-2,3-(S)diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(4-methoxyphenylsulfonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(2,3,5,6-tetramethylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-20 acetyl]-N2-(4-cyanophenylsulfonyl)-2,3-(S)diaminopropanoic acid;
 - $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(4-chlorophenylsulfonyl)-2,3-(S)-diaminopropanoic acid;$
- 25 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(4-propylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(2-phenylethylsulfonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(4-isopropylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid;

15

20

- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(3-phenylpropylsulfonyl)-2,3-(S)-diaminopropanoic acid;
 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(3-pyridylsulfonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(phenylaminosulfonyl)-2,3-(S)-diaminopropanoic acid;
- 10 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(benzylaminosulfonyl)-2,3-(S)-diaminopropanoic acid;
 - N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(dimethylaminosulfonyl)-2,3-(S)-diaminopropanoic acid,
 - N^3 -[2-{3-(2-fluoro-4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid,
 - N³-[2-{3-(2-formamidino-5-pyridinyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-diaminopropanoic acid,
 - $N^3-[2-\{3-(2-formamidino-5-pyridinyl)-isoxazolin-5(R,S)-yl\}-acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)-diaminopropanoic acid,$
- 25 N³-[2-{3-(3-formamidino-6-pyridinyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-diaminopropanoic acid,
 - N^3 -[2-{3-(3-formamidino-6-pyridinyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(3-methylphenylsulfonyl)-2, 3-(S)-diaminopropanoic acid,
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(phenylaminocarbonyl)-2,3-(S)-diaminopropanoic acid;

15

30

WO 95/14683 PCT/US94/13155

 $N^3-[2-(3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl)-$ acetyl]-N2-(4-fluorophenylaminocarbonyl)-2,3-(S)-diaminopropanoic acid;

-51-

- N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(1-naphthylaminocarbonyl)-2,3-(S)-diaminopropanoic acid;
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl,}-acetyl]-N2-(benzylaminocarbonyl)-2,3-(S)-diaminopropanoic acid;
- 10 $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(3-bromo-2-thienylsulfonyl)-2,3-(S)-diaminopropanoic acid;$
 - $N^3-[2-\{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl\}-$ acetyl]-N2-(3-methyl-2-benzothienylsulfonyl)-2,3-(S)-diaminopropanoic acid,
 - $N^3-[2-(3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl]$ acetyl]-N2-(isobutyloxycarbonyl)-2,3-(S)diaminopropanoic acid,
- N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}-20 acetyl]-N2-(isobutyloxycarbonyl)-2,3-(S)diaminopropanoic acid,
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}-acetyl]-N2-(isobutyloxycarbonyl)-2,3-(S)-diaminopropanoic acid,
- 25 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(2-cyclopropylethoxycarbonyl)-2,3-(S)-diaminopropanoic acid,
 - N³-{2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}-acetyl]-N2-(2-cyclopropylethoxycarbonyl)-2,3-(S)-diaminopropanoic acid, and
 - $N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}-$ acetyl]-N2-(2-cyclopropylethoxycarbonyl)-2,3-(S)-diaminopropanoic acid.

 $N^3-[2-\{3-(4-\text{quanidinophenyl})-\text{isoxazolin}-5(R,S)-yl\}-$

```
acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid.
    N^3-[2-{3-(4-guanidinophenyl)-isoxazolin-5(R)-yl}-
 5
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid.
    N^3-[2-{3-(4-guanidinophenyl)-isoxazolin-5(R)-yl}-
          acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)-
          diaminopropanoic acid.
    N^3-\{2-\{5-(4-formamidinophenyl)-isoxazolin-3(R,S)-yl\}-
10
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid;
               Also specifically preferred are prodrug esters
     [15]
15
     of the specifically preferred compounds of Formula Ib,
     said esters being chosen from the group consisting of:
          methyl;
          ethyl;
          isopropyl;
20
          methylcarbonyloxymethyl-;
          ethylcarbonyloxymethyl-;
          t-butylcarbonyloxymethyl-;
          cyclohexylcarbonyloxymethyl-;
          1- (methylcarbonyloxy) ethyl-;
25
          1-(ethylcarbonyloxy)ethyl-;
          1-(t-butylcarbonyloxy)ethyl-;
          1-(cyclohexylcarbonyloxy)ethyl-;
          i-propyloxycarbonyloxymethyl-;
          cyclohexylcarbonyloxymethyl-;
          t-butyloxycarbonyloxymethyl-;
30
          1-(i-propyloxycarbonyloxy)ethyl-;
          1-(cyclohexyloxycarbonyloxy)ethyl-;
          1-(t-butyloxycarbonyloxy)ethyl-;
          dimethylaminoethyl-;
          diethylaminoethyl-;
35
```

20

(5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methyl-;
(5-(t-butyl)-1,3-dioxacyclopenten-2-on4-yl)methyl-;
(1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl)methyl-;
1-(2-(2-methoxypropyl)carbonyloxy)ethyl-.

[16] A third embodiment of this invention provides a compound of Formula Id:

$$R^{1}-U-V = N-O = V$$
(Id)

or a pharmaceutically acceptable salt or prodrug form thereof wherein:

is selected from is selected from $R^2(R^3)N^-$, $R^2(R^3)N(R^2N=)C^-$, $R^2(R^3)N(R^2N=)C^-$, $R^2(R^3)N(CH_2)_qZ^-$, $R^2(R^3)N(R^2N=)C(CH_2)_qZ^-$, $R^2(R^3)N(R^2N=)CN(R^2)(CH_2)_qZ^-$, piperazinyl-(CH₂)_qZ-, or

Z is selected from a bond (i.e., is absent), 0, S,
S(=0), or S(=0);

25 R² and R³ are independently selected from: H, C₁-C₁₀ alkyl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₆-C₁₀ aryl, C₇-C₁₁ arylalkyl, C₂-C₇ alkylcarbonyl, C₇-C₁₁ arylcarbonyl, C₂-C₁₀ alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ bicycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl, or

aryl(C₁-C₁₀ alkoxy)carbonyl, C₁-C₆ alkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₆-C₁₀ arylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₄-C₁₁ cycloalkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl;

- U is selected from:
 a single bond (i.e., U is absent)
 C₁-C₇ alkylene,
 C₂-C₇ alkenylene,
 C₂-C₇ alkynylene,
- 10 C₂-C₇ alkynylene,
 arylene substituted with 0-3 R^{6a},, or
 pyridylene substituted with 0-3 R^{6a};
- V is selected from:

 a single bond (i.e., V is absent);

 C1-C7 alkylene substituted with 0-6 R⁶ or R⁷;

 C2-C7 alkenylene substituted with 0-4 R⁶ or R⁷;

 C2-C7 alkynylene substituted with 0-4 R⁶ or R⁷;

 phenylene substituted with 0-4 R⁶ or R⁷;

 pyridylene substituted with 0-3 R⁶ or R⁷;

 pyridazinylene substituted with 0-3 R⁶ or R⁷;
- X is selected from:
 a single bond (i.e., X is absent); $-(CH_2)_nC(=0)N(R^{12})-;$ $C_1-C_7 \text{ alkylene substituted with 0-6 R}^4, R^8 \text{ or } R^{15};$ $C_2-C_7 \text{ alkenylene substituted with 0-4 R}^4, R^8 \text{ or } R^{15};$ $C_2-C_7 \text{ alkynylene substituted with 0-4 R}^4, R^8 \text{ or } R^{15};$
- 30 Y is selected from:
 hydroxy,
 C1 to C10 alkyloxy,
 C3 to C11 cycloalkyloxy,
 C6 to C10 aryloxy,
 35 C7 to C11 aralkyloxy,

WO 95/14683

5

10

C₃ to C₁₀ alkylcarbonyloxyalkyloxy,

C₃ to C₁₀ alkoxycarbonyloxyalkyloxy,

C2 to C10 alkoxycarbonylalkyloxy,

C₅ to C₁₀ cycloalkylcarbonyloxyalkyloxy,

C₅ to C₁₀ cycloalkoxycarbonyloxyalkyloxy,

C₅ to C₁₀ cycloalkoxycarbonylalkyloxy,

C7 to C11 aryloxycarbonylalkyloxy,

C₈ to C₁₂ aryloxycarbonyloxyalkyloxy,

C8 to C12 arylcarbonyloxyalkyloxy,

 C_5 to C_{10} alkoxyalkylcarbonyloxyalkyloxy,

C₅ to C₁₀ (5-alkyl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy,

C₁₀ to C₁₄ (5-aryl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy;

15 $(R^2)(R^3)N-(C_1-C_{10} \text{ alkoxy})-;$

R¹⁴ and W are attached to the same carbon and taken together to form a spiro-fused, 5-7 membered ring structure of the formula:

- D, E, F and G are each independently selected from: C(R^{6a})₂;
- 25 carbonyl;
 - a heteroatom moiety selected from N, $N(R^{12})$, O, provided that no more than 2 of D, E, F and G are N, $N(R^{12})$, O, S, or C(=0);
- alternatively, the bond between D and E, E and F, or F

 and G in such spiro-fused ring may be a

 carbon-nitrogen double bond or a carbon-carbon

 double bond;

20

R⁴ is selected from H, C_1-C_{10} alkyl, hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10} alkylcarbonyl, or $-N(R^{12})R^{13}$;

 C_6 to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(O)_mMe$, or $-NMe_2$;

C₇ to C₁₁ arylalkyl, said aryl being optionally substituted with 1-3 groups selected from halogen, C₁-C₆ alkoxy, C₁-C₆ alkyl, CF₃, S(O)_mMe, or -NMe₂;

methylenedioxy when R⁶ is a substituent on aryl;

 R^{6a} is selected from C_1-C_4 alkyl, C_1-C_4 alkoxy, halo, CF_3 , NO_2 , or $NR^{12}R^{13}$;

R⁸ is selected from:

R6;

C1-C10 alkyl, substituted with 0-8 R⁶;

C2-C10 alkenyl, substituted with 0-6 R⁶;

C2-C10 alkynyl, substituted with 0-6 R⁶;

C3-C8 cycloalkyl, substituted with 0-6 R⁶;

C5-C6 cycloalkenyl, substituted with 0-5 R⁶;

aryl, substituted with 0-5 R⁶;

PCT/US94/13155

5

5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-5 R⁶;

R¹² and R¹³ are independently H, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀ alkylsulfonyl, aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, aryl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₇-C₁₁ arylalkyl, C₂-C₇ alkylcarbonyl, C₇-C₁₁ arylcarbonyl, C₂-C₁₀ alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ bicycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl or aryl(C₁-C₁₀ alkoxy)carbonyl, wherein said aryls or heteroaryls are optionally substituted with 0-3 substituents selected from the group consisting of: C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, CF₃, and NO₂;

20

 R^5 and R^{5a} are selected independently from H, C_1 to C_8 alkyl, C_2 to C_6 alkenyl, C_3 to C_{11} cycloalkyl, C_4 to C_{11} cycloalkylmethyl, C_6 to C_{10} aryl, C_7 to C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-8 R^4 ;

25

30

35

R¹⁵ is selected from:

H;

R6;

 C_1-C_{10} alkyl, substituted with 0-8 R^6 ; C_2-C_{10} alkenyl, substituted with 0-6 R^6 ; C_1-C_{10} alkoxy, substituted with 0-6 R^6 ;

aryl, substituted with 0-5 R⁶;

5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or

;

fully unsaturated, said heterocyclic ring
being substituted with 0-5 R⁶;
-C₁₀ alkoxycarbonyl substituted with 0-8 R⁶;

 C_1-C_{10} alkoxycarbonyl substituted with 0-8 R^6 ; CO_2R^5 ; or

5 $-C (=0) N (R^{12}) R^{13}$;

n is 0-4;

p is 1-3;

q is 1-7;

10 r is 0-3;

provided that n, p, q and r are chosen such that the number of atoms between ${\bf R}^1$ and Y is in the range of 8-17.

15 [17] Preferred compounds of this third embodiment are compounds of Formula III:

$$R^1-V$$
 (D)
 (G)
 F
 (III)

20 wherein:

25

R¹ is selected from R²HN-, H₂N(R²N=)C-, H₂N(R²N=)CNH-, R²HN(CH₂)_QO-, H₂N(R²N=)CNH(CH₂)_QO-, piperazinyl-(CH₂)_QO-,

 R^2 is selected from H, aryl(C₁-C₁₀ alkoxy)carbonyl, or C₁-C₁₀ alkoxycarbonyl;

PCT/US94/13155

```
R^4
             is selected from H, C<sub>1</sub>-C<sub>10</sub> alkyl, hydroxy, C<sub>1</sub>-C<sub>10</sub>
             alkoxy, nitro, C_1-C_{10} alkylcarbonyl, or -N(R^{12})R^{13};
             is selected from:
      V
 5
             a single bond (i.e., V is absent);
             C_1-C_7 alkylene substituted with 0-6 R^6 or R^7;
             C_2-C_7 alkenylene substituted with 0-4 R^6 or R^7;
             C2-C7 alkynylene substituted with 0-4 R6 or R7;
             phenylene substituted with 0-3 R^6 or R^7;
             pyridylene substituted with 0-3 R<sup>6</sup> or R<sup>7</sup>;
10
             pyridazinylene substituted with 0-3 R<sup>6</sup> or R<sup>7</sup>;
             is selected from -(CH_2)_nC(=O)N(R^{12})-, C_1-C_7 alkylene
      X
             substituted with 0-1 R4, C2-C7 alkenylene, or C2-C7
15
             alkynylene;
      Y
             is selected from:
             hydroxy,
             C<sub>1</sub> to C<sub>10</sub> alkyloxy,
20
             C<sub>3</sub> to C<sub>11</sub> cycloalkyloxy,
             C6 to C10 aryloxy,
             C_7 to C_{11} aralkyloxy,
             C<sub>3</sub> to C<sub>10</sub> alkylcarbonyloxyalkyloxy,
             C<sub>3</sub> to C<sub>10</sub> alkoxycarbonyloxyalkyloxy,
25
             C2 to C10 alkoxycarbonylalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> cycloalkylcarbonyloxyalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> cycloalkoxycarbonyloxyalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> cycloalkoxycarbonylalkyloxy,
             C7 to C11 aryloxycarbonylalkyloxy,
30
             C<sub>8</sub> to C<sub>12</sub> aryloxycarbonyloxyalkyloxy,
             C<sub>8</sub> to C<sub>12</sub> arylcarbonyloxyalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> alkoxyalkylcarbonyloxyalkyloxy,
```

C₅ to C₁₀ (5-alkyl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy, or

C₁₀ to C₁₄ (5-aryl-1,3-dioxa-cyclopenten-2-oneyl) methyloxy;

Z is selected from O or CH2;

5

D, E, F and G are each independently selected from: CH2;

carbonyl;

- a heteroatom moiety selected from N, NH, O, provided 10 that no more than 2 of D, E, F and G are N, NH, 0 or S;
 - alternatively, the bond between D and E, E and F, or F and G in such spiro-fused ring may be a carbon-nitrogen double bond or a carbon-carbon double bond;
 - ${\tt R}^6$ and ${\tt R}^7$ are each independently selected from H, ${\tt C}_1{\tt -C}_{10}$ alkyl, hydroxy, C₁-C₁₀ alkoxy, nitro, C₁-C₁₀ alkylcarbonyl, -N(R¹²)R¹³, cyano, or halo;

20

- ${\bf R}^{12}$ and ${\bf R}^{13}$ are each independently selected from H, C_1-C_{10} alkyl, C_1-C_{10} alkoxycarbonyl, C_1-C_{10} alkylcarbonyl, C₁-C₁₀ alkylsulfonyl, aryl(C₁-C₁₀ alkyl) sulfonyl, arylsulfonyl, heteroarylcarbonyl, heteroaryalkylcarbonyl or aryl;
- 25
 - n is 0-4;
 - p is 1-3;
 - is 1-7;
- 30 r is 0-3;
 - provided that n, p, q and r are chosen such that the number of atoms between R1 and Y is in the range of 8-17.

WO 95/14683 PCT/US94/13155

-61-

[18] Further preferred compounds of this third embodiment are compounds of Formula II wherein:

 ${\bf R}^1$ is ${\bf R}^2{\bf NHC}\,(=\!{\bf NR}^2)\,-$ and V is phenyl or pyridyl or

5

R¹ is

and V is a single bond (i.e. V

is absent);

10 n is 1 or 2;

X is C_1-C_4 alkylene substituted with 0-1 R^4 ;

15 Y is selected from:

hydroxy;

 C_1 to C_{10} alkoxy;

methylcarbonyloxymethoxy-;

ethylcarbonyloxymethoxy-;

20 t-butylcarbonyloxymethoxy-;

cyclohexylcarbonyloxymethoxy-;

1-(methylcarbonyloxy)ethoxy-;

1-(ethylcarbonyloxy)ethoxy-;

1-(t-butylcarbonyloxy)ethoxy-;

25 1-(cyclohexylcarbonyloxy)ethoxy-;

i-propyloxycarbonyloxymethoxy-;

t-butyloxycarbonyloxymethoxy-;

1-(i-propyloxycarbonyloxy)ethoxy-;

1-(cyclohexyloxycarbonyloxy)ethoxy-;

30 1-(t-butyloxycarbonyloxy) ethoxy-;

dimethylaminoethoxy-;

diethylaminoethoxy-;

(5-methyl-1, 3-dioxacyclopenten-2-on-4-yl) methoxy-;

```
(5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
(1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl)methoxy-;
1-(2-(2-methoxypropyl)carbonyloxy)ethoxy-;

R12 and R13 are each independently selected from H, C1-C6 alkyl, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 alkylsulfonyl, aryl(C1-C4 alkyl)sulfonyl, arylsulfonyl, heteroarylcarbonyl,

heteroaryalkylcarbonyl or aryl; and

R13 is H.
```

- 15 [19] Specifically preferred compounds of this third embodiment are compounds, or pharmaceutically acceptable salt or prodrug forms thereof, selected from:
- 5(R, S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-20 diazaspiro[4.4]non-2-ene-7,9-dione;
 - 5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-2,8-diazaspiro[4.4]non-2-ene-7,9-dione;
 - 5(R, S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-diazaspiro[4.4]non-2-ene-5-one;
- 25 5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-2,8-diazaspiro[4.4]non-2-ene-5-one;
 - 5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2-azaspiro[4.4]nona-2,8-diene-5-one;
 - 5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-2-azaspiro[4.4]nona-2,8-diene-5-one;
 - 5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-diazaspiro[4.4]dec-2-ene-7,9-dione;
 - 5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-2,8-diazaspiro[4.4]dec-2-ene-7,9-dione;
- 35 5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-diazaspiro[4.4]dec-2-ene-5-one;

WO 95/14683 PCT/US94/13155

```
5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
          2,8-diazaspiro[4.4]dec-2-ene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2-
          azaspiro[4.4]deca-2,8-diene-5-one;
 5
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-2-
          azaspiro[4.4]deca-2,8-diene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-
          diazaspiro[4.4]undec-2-ene-7,9-dione;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
10
          2,8-diazaspiro[4.4]undec-2-ene-7,9-dione;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-
          diazaspiro[4.4]undec-2-ene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
          2,8-diazaspiro[4.4]undec-2-ene-5-one;
15
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2-
          azaspiro[4.4]undeca-2,8-diene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-2-
          azaspiro[4.4]undeca-2,8-diene-5-one;
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-
20
          oxa-2,8-diazaspiro[4.4]non-2-ene-7,9-dione;
    5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(3-carboxypropy1)-
          1-oxa-2,8-diazaspiro[4.4]non-2-ene-7,9-dione;
    5(R,S)-3-\{2-(piperidin-4-y1)ethy1\}-8-(2-carboxyethy1)-1-
          oxa-2,8-diazaspiro[4.4]non-2-ene-5-one;
25
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-
          1-oxa-2,8-diazaspiro[4.4]non-2-ene-5-one;
    5(R, S) - 3 - [2 - (piperidin - 4 - yl) ethyl] - 8 - (2 - carboxyethyl) - 1 -
          oxa-2-azaspiro[4.4]nona-2,8-diene-5-one;
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-
30
          1-oxa-2-azaspiro[4.4]nona-2,8-diene-5-one;
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-
         oxa-2,8-diazaspiro[4.4]dec-2-ene-7,9-dione;
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-
          1-oxa-2,8-diazaspiro[4.4]dec-2-ene-5,7-dione;
35
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-
         oxa-2,8-diazaspiro[4.4]dec-2-ene-5-one;
```

PCT/US94/13155

$$5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(3-carboxypropy1)-1-oxa-2,8-diazaspiro[4.4]dec-2-ene-5-one;$$

- 5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-oxa-2-azaspiro[4.4]deca-2,8-diene-5-one;
- 5 5 (R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-1-oxa-2-azaspiro[4.4]deca-2,8-diene-5-one;
 - 5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(2-carboxyethy1)-1-oxa-2,8-diazaspiro[4.4]undec-2-ene-7,9-dione;
 - 5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(3-carboxypropy1)-1-oxa-2,8-diazaspiro[4.4]undec-2-ene-7,9-dione;
 - 5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(2-carboxyethy1)-1-oxa-2,8-diazaspiro[4.4]undec-2-ene-5-one;
 - 5 (R, S) -3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-1-oxa-2,8-diazaspiro[4.4]undec-2-ene-5-one;
- 15 5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-oxa-2-azaspiro[4.4]undeca-2,8-diene-5-one;
 - 5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-1-oxa-2-azaspiro[4.4]undeca-2,8-diene-5-one;
 - 5(R,S)-3-(4-amidinophenyl)-8-
- 20 [2-(benzyloxycarbonylamino)-2-carboxyethyl]-1-oxa-2,8-diazaspiro[4.5]dec-2-ene.
 - [20] A fourth embodiment of this invention provides compounds of Formula I:

25

10

or pharmaceutically acceptable salt or prodrug forms thereof, wherein:

30

R¹ is selected from: $R^{2}(R^{3}) N(CH_{2})_{q}Z^{-}, R^{2}(R^{3}) N(R^{2}N=) C(CH_{2})_{q}Z^{-},$ $R^{2}(R^{3}) N(R^{2}N=) CN(R^{2}) (CH_{2})_{q}Z^{-}, piperazinyl-(CH_{2})_{q}Z^{-} or$

WO 95/14683 PCT/US94/13155

-65-

Z is selected from O, S, S(=0), $S(=0)_2$;

R² and R³ are independently selected from: H, C₁-C₁₀ alkyl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₆-C₁₀ aryl, C₇-C₁₁ arylalkyl, C₂-C₇ alkylcarbonyl, C₇-C₁₁ arylcarbonyl, C₂-C₁₀ alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ bicycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl, or aryl(C₁-C₁₀ alkoxy)carbonyl, C₁-C₆ alkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₆-C₁₀ arylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₄-C₁₁ cycloalkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl;

15

- U is optionally present and is selected from C_1-C_7 alkylene, C_2-C_7 alkynylene, arylene, or pyridylene;
- V is selected from:
- a single bond (i.e., V is absent); C_1 - C_7 alkylene substituted with 0-6 R⁶ or R⁷; C_2 - C_7 alkenylene substituted with 0-4 R⁶ or R⁷; C_2 - C_7 alkynylene substituted with 0-4 R⁶ or R⁷;

 phenylene substituted with 0-4 R⁶ or R⁷;

 pyridylene substituted with 0-3 R⁶ or R⁷;
- 25 pyridylene substituted with $0-3 R^6$ or R^7 ; pyridazinylene substituted with $0-3 R^6$ or R^7 ;
 - W is $-(ary1)-Z^{1}-$, wherein said aryl is substituted with 0-6 R⁶ or R⁷;

30

 Z^1 is selected from a single bond (i.e., Z^1 is absent), -CH₂-, O or S;

- X is selected from:
 a single bond (i.e., X is absent); $C_1-C_7 \text{ alkylene substituted with } 0-6 \text{ R}^4, \text{ R}^8 \text{ or R}^{15};$ $C_2-C_7 \text{ alkenylene substituted with } 0-4 \text{ R}^4, \text{ R}^8 \text{ or R}^{15};$ $C_2-C_7 \text{ alkynylene substituted with } 0-4 \text{ R}^4, \text{ R}^8 \text{ or R}^{15};$
- Y is selected from hydroxy, C₁ to C₁₀ alkyloxy, C₃ to C₁₁ cycloalkyloxy, C₆ to C₁₀ aryloxy, C₇ to C₁₁ 10 aralkyloxy, C3 to C10 alkylcarbonyloxyalkyloxy, C3 to C₁₀ alkoxycarbonyloxyalkyloxy, C₂ to C₁₀ alkoxycarbonylalkyloxy, C5 to C10 cycloalkylcarbonyloxyalkyloxy, C_5 to C_{10} cycloalkoxycarbonyloxyalkyloxy, C5 to C10 15 cycloalkoxycarbonylalkyloxy, C7 to C11 aryloxycarbonylalkyloxy, C8 to C12 aryloxycarbonyloxyalkyloxy, C8 to C12 arylcarbonyloxyalkyloxy, C5 to C10 alkoxyalkylcarbonyloxyalkyloxy, C5 to C10 (5-alkyl-20 1,3-dioxa-cyclopenten-2-one-yl)methyloxy, C10 to C14 (5-aryl-1,3-dioxa-cyclopenten-2-one-yl) methyloxy; $(R^2) (R^3) N - (C_1 - C_{10} \text{ alkoxy}) -;$
- 125 R4 is selected from H, C_1-C_{10} alkyl, hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10} alkylcarbonyl, or $-N(R^{12})R^{13}$;

PCT/US94/13155 WO 95/14683

> C6 to C10 aryl optionally substituted with halogen, alkoxy, alkyl, -CF3, S(O)mMe, or -NMe2; or

-67-

C₇ to C₁₁ arylalkyl said aryl being optionally 5 substituted with halogen, alkoxy, alkyl, -CF3, $S(0)_mMe$, or $-NMe_2$;

R8 is selected from: H; R6; 10 C_1-C_{10} alkyl, substituted with 0-8 R^6 ; C_2 - C_{10} alkenyl, substituted with 0-6 R^6 ; C2-C10 alkynyl, substituted with 0-6 R6; C3-C8 cycloalkyl, substituted with 0-6 R6; C5-C6 cycloalkenyl, substituted with 0-5 R6; 15 aryl, substituted with 0-5 R6; 5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or 20 fully unsaturated, said heterocyclic ring being substituted with $0-5 R^6$;

 \mbox{R}^{12} and \mbox{R}^{13} are independently H, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ alkyl, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀ 25 alkylsulfonyl, aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, aryl, C2-C6 alkenyl, C3-C11 cycloalkyl, C4-C11 cycloalkylalkyl, C7-C11 arylalkyl, C2-C7 alkylcarbonyl, C7-C11 arylcarbonyl, C2-C10 alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ 30 bicycloalkoxycarbonyl, C7-C11 aryloxycarbonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl or aryl(C₁-C₁₀ alkoxy)carbonyl;

R¹⁴ is selected from H, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_1-C_{10} alkoxy, aryl, heteroaryl or C_1-C_{10} alkoxycarbonyl, CO_2R^5 or -C (=O)N(R^{12}) R^{13} ;

- R^5 and R^{5a} are selected independently from H, C_1 to C_8 alkyl, C_2 to C_6 alkenyl, C_3 to C_{11} cycloalkylmethyl, C_6 to C_{10} aryl, C_7 to C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-8 R^4 ;
- 10 R¹⁵ is selected from:

Н;

R6;

 C_1-C_{10} alkyl, substituted with 0-8 R^6 ; C_2-C_{10} alkenyl, substituted with 0-6 R^6 ;

15 C_1-C_{10} alkoxy, substituted with 0-6 R⁶; aryl, substituted with 0-5 R⁶;

5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or

20 fully unsaturated, said heterocyclic ring being substituted with 0-5 R⁶;

 C_1-C_{10} alkoxycarbonyl substituted with 0-8 R^6 ; CO_2R^5 ; or

 $-C (=0) N (R^{12}) R^{13};$

25

n is 0-4;

q is 2-7;

r is 0-3;

provided that n, q, and r are chosen such that the number of atoms between R^1 and Y is about 8-17.

[21] Preferred compounds of this fourth embodiment are those of Formula IV:

WO 95/14683 PCT/US94/13155

$$R^{14} \xrightarrow{b} \frac{1}{1!} Z^{1} - X \xrightarrow{O}$$

$$(IV)$$

-69-

wherein:

is selected from $R^2HN(CH_2)_qO^-$, $R^2HN(R^2N=C)NH(CH_2)_qO^-$, piperazinyl-(CH₂)_qO-, or

Z is O;

30

10 R^2 is selected from H, aryl(C₁-C₁₀)alkoxycarbonyl, C₁-C₁₀ alkoxycarbonyl;

V is selected from:
a single bond (i.e., V is absent);

C1-C7 alkylene substituted with 0-6 R⁶ or R⁷;

C2-C7 alkenylene substituted with 0-4 R⁶ or R⁷;

C2-C7 alkynylene substituted with 0-4 R⁶ or R⁷;

phenylene substituted with 0-3 R⁶ or R⁷;

pyridylene substituted with 0-3 R⁶ or R⁷;

pyridazinylene substituted with 0-3 R⁶ or R⁷;

 \mathbf{Z}^1 is selected from a single bond (i.e., \mathbf{Z}^1 is absent), O or S;

25 X is selected from:
a single bond (i.e., X is absent); $C_1-C_7 \text{ alkylene substituted with } 0-4 \text{ R}^4, \text{ R}^8 \text{ or R}^{15};$ $C_2-C_7 \text{ alkenylene substituted with } 0-3 \text{ R}^4, \text{ R}^8 \text{ or R}^{15};$ $C_2-C_7 \text{ alkynylene substituted with } 0-3 \text{ R}^4, \text{ R}^8 \text{ or R}^{15};$

PCT/US94/13155

- Y selected from hydroxy, C1 to C10 alkyloxy, C3 to C11 cycloalkyloxy, C6 to C10 aryloxy, C7 to C11 aralkyloxy, C₃ to C₁₀ alkylcarbonyloxyalkyloxy, C₃ to C10 alkoxycarbonyloxyalkyloxy, C2 to C10 5 alkoxycarbonylalkyloxy, C5 to C10 cycloalkylcarbonyloxyalkyloxy, C5 to C10 cycloalkoxycarbonyloxyalkyloxy, C5 to C10 cycloalkoxycarbonylalkyloxy, C7 to C11 aryloxycarbonylalkyloxy, Cg to C12 aryloxycarbonyloxyalkyloxy, C8 to C12 10 arylcarbonyloxyalkyloxy, C5 to C10 alkoxyalkylcarbonyloxyalkyloxy, C5 to C10 (5-alkyl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy, or C10 to C₁₄ (5-aryl-1, 3-dioxa-cyclopenten-2-one-15 yl) methyloxy;
 - R⁴ is selected from H, C_1-C_{10} alkyl, hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10} alkylcarbonyl, or $-N(R^{12})R^{13}$;
- 20 R^6 and R^7 are selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$, cyano, or halo;
- R⁸ is selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl,

 C₃-C₈ cycloalkyl, C₅-C₆ cycloalkenyl, aryl, 5-6

 membered heterocyclic ring containing 1-2 N, O, or

 S, where said heterocyclic ring may be saturated,

 partially saturated, or fully unsaturated;
- 30 R¹² and R¹³ are independently selected from H, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀ alkylsulfonyl, aryl(C₁-C₁₀ alkyl) sulfonyl, arylsulfonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl or aryl;

WO 95/14683 PCT/US94/13155

-71-

R¹⁴ is selected from H, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_1-C_{10} alkoxy, aryl, heteroaryl or C_1-C_{10} alkoxycarbonyl, CO_2R^5 or -C (=0) N (R^{12}) R^{13} ;

5 R^5 is selected from H or C_1-C_{10} alkyl substituted with 0-6 R^4 ;

n is 0-4;

q is 2-7;

- 10 provided that n and q are chosen such that the number of atoms between R^1 and Y is in the range of 8-17.
 - [22] Further preferred compounds of this fourth embodiment are compounds of Formula IV wherein:

R¹ is R²HN(CH₂)_GO- or

$$R^2N$$

20 V is C_1-C_3 alkylene;

 Z^1 is a single bond (i.e. Z^1 is absent) or 0;

X is C_1-C_3 alkylene substituted with 0-1 R^4 ;

25

15

Y is selected from:

hydroxy;

C₁ to C₁₀ alkoxy;

methylcarbonyloxymethoxy-;

30 ethylcarbonyloxymethoxy-;

t-butylcarbonyloxymethoxy-;

cyclohexylcarbonyloxymethoxy-;

1-(methylcarbonyloxy)ethoxy-;

1-(ethylcarbonyloxy)ethoxy-;

```
1-(t-butylcarbonyloxy) ethoxy-;
          1-(cyclohexylcarbonyloxy)ethoxy-;
          i-propyloxycarbonyloxymethoxy-;
          t-butyloxycarbonyloxymethoxy-;
          1-(i-propyloxycarbonyloxy) ethoxy-;
 5
          1-(cyclohexyloxycarbonyloxy)ethoxy-;
          1-(t-butyloxycarbonyloxy)ethoxy-;
          dimethylaminoethoxy-;
          diethylaminoethoxy-;
          (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
10
          (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
          yl) methoxy-;
          (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
          1-(2-(2-methoxypropyl) carbonyloxy) ethoxy-;
15
    R^{12} and R^{13} are independently selected from H, C_1-C_6
          alkyl, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl,
          C<sub>1</sub>-C<sub>6</sub> alkylsulfonyl, aryl(C<sub>1</sub>-C<sub>4</sub> alkyl)sulfonyl,
          arylsulfonyl, heteroarylcarbonyl,
20
          heteroarylalkylcarbonyl or aryl;
    R^{13} is H.
           Specifically preferred compounds of this fourth
    embodiment are compounds, or pharmaceutically acceptable
25
     salt or prodrug forms thereof, selected from:
     5(R,S)-4-[3-(piperidin-4-yl)oxymethylisoxazolin-5-yl]hy-
          drocinnamic acid;
     5(R,S)-4-[3-(2-aminoethoxymethyl)isoxazolin-5-yl]hydro-
30
          cinnamic acid;
     5(R,S)-4-[3-(3-aminopropyloxymethyl)isoxazolin-5-yl]hy-
          drocinnamic acid;
     5(R,S)-4-[3-(piperidin-4-yl)] oxymethylisoxazolin-5-
35
          yl]phenoxyacetic acid;
```

5(R,S)-4-[3-(2-aminoethoxymethyl)isoxazolin-5-yl]phenoxyacetic acid;

5(R,S)-4-[3-(3-aminopropyloxymethyl)isoxazolin-5-yl]phenoxyacetic acid.

5

[24] A fifth embodiment of this invention provides a compound of Formula I:

$$R^{15} \stackrel{4}{\cancel{0}} \stackrel{b}{\cancel{0}} \stackrel{O}{\cancel{0}} W - X \stackrel{O}{\cancel{0}} V$$

10

or a pharmaceutically acceptable salt or prodrug form thereof wherein:

b is a single or double bond;

15 R^1 is selected from $R^{2a}(R^3)N-$, $R^2(R^3)N(R^2N=)C-$, $R^{2a}(R^3)N(CH_2)_qZ-$, $R^2(R^3)N(R^2N=)C(CH_2)_qZ-$,

$$R^{2a}N$$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$
 $(CH_2)_nZ$

20

Z is selected from a bond (i.e. is absent), O, S, S(=0),
S(=0);

25 R² and R³ are independently selected from: H, C₁-C₁₀ alkyl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₆-C₁₀ aryl, C₇-C₁₁ arylalkyl, C₂-C₇

alkylcarbonyl, C7-C11 arylcarbonyl, C2-C10

```
alkoxycarbonyl, C<sub>4</sub>-C<sub>11</sub> cycloalkoxycarbonyl, C<sub>7</sub>-C<sub>11</sub>
            bicycloalkoxycarbonyl, C7-C11 aryloxycarbonyl,
            aryl(C1-C10 alkoxy)carbonyl,
            alkylcarbonyloxyalkoxycarbonyl, or
 5
            alkoxycarbonyloxyalkoxycarbonyl, C1-C6
            alkylcarbonyloxy(C1-C4 alkoxy)carbonyl, C6-C10
            arylcarbonyloxy(C1-C4 alkoxy)carbonyl, C4-C11
            cycloalkylcarbonyloxy(C1-C4 alkoxy)carbonyl;
10
     R^{2a} is R^2 or R^2(R^3)N(R^2N=)C;
            is selected from:
     U
             a single bond (i.e., U is not present),
15
             -(C_1-C_7 \text{ alkyl})-,
             -(C_2-C_7 \text{ alkenyl})-,
             -(C_2-C_7 \text{ alkynyl})-,
             -(aryl) - substituted with 0-3 R^{6a}, or
             -(pyridyl) - substituted with 0-3 R6a;
20
     V
            is selected from:
             a single bond (i.e., V is not present);
             -(C<sub>1</sub>-C<sub>7</sub> alkyl)-, substituted with 0-3 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
             -(C2-C7 alkenyl)-, substituted with 0-3 groups
25
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
             -(C2-C7 alkynyl)-, substituted with 0-3 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
             -(phenyl)-, substituted with 0-2 groups
30
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
             -(pyridyl)-, substituted with 0-2 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>; or
             -(pyridazinyl)-, substituted with 0-2 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
35
```

W is selected from:

X is selected from:

a single bond (i.e. X is absent) $-(C(R^4)_2)_n-C(R^4)(R^8)-C(R^4)(R^{4a})-, \text{ with the proviso}$ that when n is 0 or 1, then at least one of R^{4a} or R^8 is other than H or methyl;

 C_1 to C_{10} alkyloxy,

C₃ to C₁₁ cycloalkyloxy,

C₆ to C₁₀ aryloxy,

15 C7 to C11 aralkyloxy,

C₃ to C₁₀ alkylcarbonyloxyalkyloxy,

 C_3 to C_{10} alkoxycarbonyloxyalkyloxy,

C2 to C10 alkoxycarbonylalkyloxy,

 C_5 to C_{10} cycloalkylcarbonyloxyalkyloxy,

20 C₅ to C₁₀ cycloalkoxycarbonyloxyalkyloxy,

C5 to C10 cycloalkoxycarbonylalkyloxy,

C7 to C11 aryloxycarbonylalkyloxy,

C₈ to C₁₂ aryloxycarbonyloxyalkyloxy,

C8 to C12 arylcarbonyloxyalkyloxy,

- 5 C₅ to C₁₀ alkoxyalkylcarbonyloxyalkyloxy,
 - C₅ to C₁₀ (5-alkyl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy,
 - C₁₀ to C₁₄ (5-aryl-1,3-dioxa-cyclopenten-2-one-yl) methyloxy,
- 10 $(R^2)(R^3)N-(C_1-C_{10} \text{ alkoxy})-;$
 - z^1 is -C-, -O-, or -NR²²-;
 - Z^2 is -O-, or -NR²²-;

- R⁴ is selected from H, C₁-C₁₀ alkyl, C₁-C₁₀ alkylcarbonyl, aryl, arylalkylene cycloalkyl, or cycloalkylalkylene;
- 20 alternately, two R⁴ groups on adjacent carbons may join to form a bond (i.e. a carbon-carbon double or triple bond);
- is selected from H, hydroxy, C_1-C_{10} alkoxy, nitro, $N(R^5)R^{5a}$, $-N(R^{12})R^{13}$, $-N(R^{16})R^{17}$, C_1-C_{10} alkyl substituted with 0-3 R^6 , aryl substituted with 0-3 R^6 , or C_1-C_{10} alkylcarbonyl;
- 30 R^{4b} is selected from H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, hydroxy, C₁-C₆ alkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, nitro, C₁-C₆ alkylcarbonyl, C₆-C₁₀ aryl, -N(R¹²)R¹³; halo, CF₃, CN, C₁-C₆ alkoxycarbonyl, carboxy,
- 35 piperidinyl, or pyridyl;

30

- R^5 is selected from H, C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;
- R^{5a} is selected from hydrogen, hydroxy, C₁ to C₈ alkyl,
 C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁
 cycloalkylmethyl, C₁-C₆ alkoxy, benzyloxy, C₆ to C₁₀
 aryl, heteroaryl, C₇ to C₁₁ arylalkyl, or C₁-C₁₀
 alkyl substituted with 0-2 R^{4b};
- alternately, R^5 and R^{5a} when both are substituents on the same nitrogen atom (as in $-NR^5R^{5a}$) can be taken together with the nitrogen atom to which they are 15 attached to form 3-azabicyclononyl, 1,2,3,4tetrahydro-1-quinolinyl, 1,2,3,4-tetrahydro-2isoquinolinyl, 1-piperidinyl, 1-morpholinyl, 1pyrrolidinyl, thiamorpholinyl, thiazolidinyl or 1-20 piperazinyl, each being optionally substituted with C_1-C_6 alkyl, C_6-C_{10} aryl, heteroaryl, C_7-C_{11} arylalkyl, C₁-C₆ alkylcarbonyl, C₃-C₇ cycloalkylcarbonyl, C₁-C₆ alkoxycarbonyl, C₇-C₁₁ arylalkoxycarbonyl, C₁-C₆ alkylsulfonyl or C₆-C₁₀ 25 arylsulfonyl;
 - R^{5b} is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;
 - R^6 is selected from H, C_1-C_{10} alkyl, hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$, cyano, halo, CF_3 , CHO, CO_2R^5 , $C(=O)R^{5a}$, $CONR^5R^{5a}$, $OC(=O)R^{5a}$, $OC(=O)OR^{5b}$, OR^5 , $OC(=O)NR^5R^{5a}$, $OCH_2CO_2R^5$, OCH_2C

NR^{5a}C(=0)NR⁵R^{5a}, NR^{5a}SO₂NR⁵R^{5a}, NR^{5a}SO₂R⁵, S(O)_pR⁵, SO₂NR⁵R^{5a}, C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁ cycloalkylmethyl;

5 C₆ to C₁₀ aryl optionally substituted with 1-3 groups selected from halogen, C₁-C₆ alkoxy, C₁-C₆ alkyl, CF₃, S(O)_mMe, or -NMe₂;

C7 to C₁₁ arylalkyl, said aryl being optionally
substituted with 1-3 groups selected from halogen,
C₁-C₆ alkoxy, C₁-C₆ alkyl, CF₃, S(O)_mMe, or -NMe₂;

methylenedioxy when R⁶ is a substituent on aryl; or

a 5-6 membered heterocyclic ring containing 1-2 N,
O, or S heteroatoms, wherein said heterocyclic
ring may be saturated, partially saturated, or
fully unsaturated, said heterocyclic ring
being substituted with 0-2 R⁷;

20 $R^{6a} \text{ is selected from C_1-C_4 alkyl, C_1-C_4 alkoxy, halo,} \\ CF_3, NO_2, \text{ or } NR^{12}R^{13};$

R⁷ is selected from H, C₁-C₁₀ alkyl, hydroxy, C₁-C₁₀

alkoxy, nitro, C₁-C₁₀ alkylcarbonyl, -N(R¹²)R¹³,

cyano, halo, CF₃, CHO, CO₂R⁵, C(=O)R^{5a}, CONR⁵R^{5a},

OC(=O)R^{5a}, OC(=O)OR^{5b}, OR^{5a}, OC(=O)NR⁵R^{5a}, OCH₂CO₂R⁵,

CO₂CH₂CO₂R⁵, NO₂, NR^{5a}C(=O)R^{5a}, NR^{5a}C(=O)OR^{5b},

NR^{5a}C(=O)NR⁵R^{5a}, NR^{5a}SO₂NR⁵R^{5a}, NR^{5a}SO₂R⁵, S(O)_mR^{5a},

SO₂NR⁵R^{5a}, C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl,

C₄ to C₁₁ cycloalkylmethyl, C₆ to C₁₀ aryl, or C₇ to

C₁₁ arylalkyl;

R⁸ is selected from: R⁶;

C2-C10 alkyl, substituted with 0-3 R⁶;
C2-C10 alkenyl, substituted with 0-3 R⁶;
C2-C10 alkynyl, substituted with 0-3 R⁶;
C3-C8 cycloalkyl, substituted with 0-3 R⁶;
C5-C6 cycloalkenyl, substituted with 0-3 R⁶;
aryl, substituted with 0-3 R⁶;
5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-2 R⁶;

R¹² and R¹³ are independently H, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀ alkylsulfonyl, aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, aryl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₇-C₁₁ arylalkyl, C₇-C₁₁ arylcarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ bicycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl, or aryl(C₁-C₁₀ alkoxy)carbonyl, wherein said aryls are optionally substituted with 0-3 substituents selected from the group consisting of: C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, CF₃, and NO₂;

25 R^{14} is selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, CO_2R^5 or -C(=0)N(R^5) R^{5a} ;

R¹⁵ is selected from:

H;

R⁶;

C₁-C₁₀ alkyl, substituted with 0-3 R⁶;

C₂-C₁₀ alkenyl, substituted with 0-3 R⁶;

C₁-C₁₀ alkoxy, substituted with 0-3 R⁶;

aryl, substituted with 0-3 R⁶;

5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-2 R⁶;

C₁-C₁₀ alkoxycarbonyl substituted with 0-2 R⁶;
-CO₂R⁵; or
-C(=O)N(R¹²)R¹³;

provided that when b is a double bond, only one of R^{14} or R^{15} is present;

 R^{16} is selected from:

$$-C (=0) - 0 - R^{18a}$$

$$-C (=0) -R^{18b}$$

15
$$-C (=0) N (R^{18b})_2$$
,

$$-C (=0) NHSO2R18a,$$

$$-C (=0) NHC (=0) R^{18b}$$
,

$$-C (=0) NHC (=0) OR^{18a}$$
,

$$-C (=0) NHSO2NHR18b,$$

$$-C (=S) -NH - R^{18b}$$

$$-NH-C (=0) -O-R^{18a}$$
,

$$-NH-C (=0)-R^{18b}$$
,

$$-NH-C (=0) -NH-R^{18b}$$
,

$$-SO_2-O-R^{18a}$$
,

25
$$-SO_2-R^{18a}$$
,

$$-SO_2-N(18b)_2$$
,

$$-SO_2-NHC (=0) 018^b$$
,

$$-P (=S) (OR^{18a})_2$$

$$-P (=0) (OR^{18a})_{2}$$

30
$$-P (=S) (R^{18a})_{2}$$

$$-P (=0) (R^{18a})_2$$
, or

20

R¹⁷ is selected from: H; C₁-C₁₀ alkyl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₅ cycloalkylalkyl, aryl, aryl(C₁-C₁₀ alkyl)-;

5 R^{18a} is selected from:

C₁-C₈ alkyl substituted with 0-2 R¹⁹,

C₂-C₈ alkenyl substituted with 0-2 R¹⁹,

C₂-C₈ alkynyl substituted with 0-2 R¹⁹,

C₃-C₈ cycloalkyl substituted with 0-2 R¹⁹,

aryl substituted with 0-4 R¹⁹,

aryl (C₁-C₆ alkyl)- substituted with 0-4 R¹⁹,

a 5-10 membered heterocyclic ring system having 1-3 heteroatoms selected independently from O, S, and N, said heterocyclic ring being substituted with $0-4\ R^{19}$,

C₁-C₆ alkyl substituted with a 5-10 membered heterocyclic ring system having 1-3 heteroatoms selected independently from O, S, and N, said heterocyclic ring being substituted with 0-4 R¹⁹;

R^{18b} is selected from R^{18a} or H;

- 25 R¹⁹ is selected from H, halogen, CF₃, CN, NO₂, NR¹²R¹³,

 C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₁₁

 cycloalkyl, C₄-C₁₁ cycloalkylalkyl, aryl, aryl(C₁-C₆

 alkyl)-, C₁-C₆ alkoxy, or C₁-C₄ alkoxycarbonyl;
- 30 R^{20} and R^{21} are each independently selected from H, C_1-C_{10} alkyl, CO_2R^5 , $C(=O)R^{5a}$, $CONR^5R^{5a}$, $NR^5C(=O)R^{5a}$, $NR^{12}R^{13}$, C_2-C_6 alkenyl, C_3-C_{11} cycloalkyl, C_4-C_{11} cycloalkylmethyl, C_6-C_{10} aryl, or C_7-C_{11} arylalkyl;

Is selected from C_1-C_{10} alkyl, C_2-C_6 alkenyl, C_3-C_{11} cycloalkyl, C_4-C_{15} cycloalkylalkyl, aryl, aryl(C_1-C_{10} alkyl)-; $C(=0)R^{5a}$, CO_2R^{5b} , $-C(=0)N(R^5)R^{5a}$, or a bond to X;

5

m is 0-2;

n is 0-2;

p is 1-2;

q is 1-7;

10 r is 0-3;

provided that n, q and r are chosen such that the number of atoms connecting R^1 and Y is in the range of 8-17.

15 [25] Preferred compounds of this embodiment are those compounds of Formula Ic:

20

wherein:

Z is selected from a bond (i.e. is absent), O, or S;

- R^2 is selected from H, aryl(C₁-C₁₀ alkoxy)carbonyl, or C₁-C₁₀ alkoxycarbonyl;
 - U is a single bond (i.e., U is not present);

X is -CHR4a-;

30

 R^5 is selected from H or C_1-C_{10} alkyl substituted with 0-6 R^{4b} ;

35

 R^6 and R^7 are each independently selected from H, C_1-C_{10} alkyl, hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$, cyano, or halo;

5 R¹² and R¹³ are each independently selected from H,
C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀
alkylcarbonyl, C₁-C₁₀ alkylsulfonyl,
aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, or aryl,
wherein said aryls are optionally substituted with
0-3 substituents selected from the group consisting
of: C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, CF₃, and NO₂;

is selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, CO_2R^5 or -C (=0) N(R^5) R^{5a} ;

R¹⁶ is selected from:

-C (=0) -O-R^{18a}, -C (=0) -R^{18b}, -S (=0) 2-R^{18a};

R¹⁷ is selected from: H or C₁-C₄ alkyl;

R^{18a} is selected from:

C1-C8 alkyl substituted with 0-2 R¹⁹,

C2-C8 alkenyl substituted with 0-2 R¹⁹,

C2-C8 alkynyl substituted with 0-2 R¹⁹,

C3-C8 cycloalkyl substituted with 0-2 R¹⁹,

aryl substituted with 0-2 R¹⁹,

aryl (C1-C6 alkyl)- substituted with 0-2 R¹⁹,

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl,

10

15

benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-2 R^{19} ;

C1-C6 alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-2 R¹⁹.

[26] Further preferred compounds of this embodiment are compounds of Formula Ib:

20

wherein:

25

R¹ is selected from: $R^{2}(R^{3})N-$, $R^{2}NH(R^{2}N=)C-$, $R^{2}R^{3}N(CH_{2})_{p^{*}}Z-$, $R^{2}NH(R^{2}N=)CNH(CH_{2})_{p^{*}}Z-$,

30

n is 0-1;

```
p' is 2-4;
     p" is 4-6;
     Z is selected from a bond (i.e. is absent) or O;
 5
     R^3 is H or C_1-C_5 alkyl;
     V
           is a single bond (i.e., V is not present), or
          -(phenyl)-;
10
     X
           is selected from:
            -CH<sub>2</sub>-,
            -CHN(R^{16})R^{17}-, or
            -CHNR<sup>5</sup>R<sup>5a</sup>-;
15
     Y
           is selected from:
          hydroxy;
          C<sub>1</sub> to C<sub>10</sub> alkoxy;
          methylcarbonyloxymethoxy-;
20
          ethylcarbonyloxymethoxy-;
           t-butylcarbonyloxymethoxy-;
          cyclohexylcarbonyloxymethoxy-;
           1-(methylcarbonyloxy)ethoxy-;
           1-(ethylcarbonyloxy)ethoxy-;
25
           1-(t-butylcarbonyloxy) ethoxy-;
           1-(cyclohexylcarbonyloxy)ethoxy-;
           i-propyloxycarbonyloxymethoxy-;
          t-butyloxycarbonyloxymethoxy-;
          1-(i-propyloxycarbonyloxy)ethoxy-;
30
          1-(cyclohexyloxycarbonyloxy) ethoxy-;
          1-(t-butyloxycarbonyloxy)ethoxy-;
          dimethylaminoethoxy-;
          diethylaminoethoxy-;
           (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
35
           (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
          yl) methoxy-;
```

25

30

(1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
1-(2-(2-methoxypropyl) carbonyloxy) ethoxy-;

R^{18a} is selected from:

- C1-C4 alkyl substituted with 0-2 R¹⁹,
 C2-C4 alkenyl substituted with 0-2 R¹⁹,
 C2-C4 alkynyl substituted with 0-2 R¹⁹,
 C3-C4 cycloalkyl substituted with 0-2 R¹⁹,
 aryl substituted with 0-2 R¹⁹,
- aryl(C_1-C_4 alkyl) substituted with 0-2 R^{19} ,

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being

20 substituted with 0-2 R¹⁹;

C₁-C₆ alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-2 R¹⁹.

- [27] Further preferred compounds of this fifth embodiment are compounds of Formula Ib wherein:
- 35 R^1 is $R^2NH(R^2N=)C-$ or $R^2NH(R^2N=)CNH-$ and V is phenyl or pyridyl; or

 \mathbb{R}^1 is

, and V is a single bond (i.e. V

5 is absent)
n is 1-2;

 \mathbb{R}^3 is H or C_1 - C_5 alkyl;

- 10 X is selected from: $-CH_2-$, $-CHN(R^{16})R^{17}-$, or $-CHNR^5R^{5a}-$;
- 15 W is selected from:

m is 1-3;

Y

is selected from:

```
hydroxy;
          C<sub>1</sub> to C<sub>10</sub> alkoxy;
          methylcarbonyloxymethoxy-;
 5
          ethylcarbonyloxymethoxy-;
          t-butylcarbonyloxymethoxy-;
          cyclohexylcarbonyloxymethoxy-;
          1-(methylcarbonyloxy)ethoxy-;
          1-(ethylcarbonyloxy)ethoxy-;
10
          1-(t-butylcarbonyloxy) ethoxy-;
          1-(cyclohexylcarbonyloxy)ethoxy-;
          i-propyloxycarbonyloxymethoxy-;
          t-butyloxycarbonyloxymethoxy-;
          1-(i-propyloxycarbonyloxy)ethoxy-;
15
          1-(cyclohexyloxycarbonyloxy)ethoxy-;
          1-(t-butyloxycarbonyloxy)ethoxy-;
          dimethylaminoethoxy-;
          diethylaminoethoxy-;
          (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
20
          (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
          y1) methoxy-;
          (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
          1-(2-(2-methoxypropyl) carbonyloxy) ethoxy-;
25
     R19 is H, halogen, C1-C4 alkyl, C3-C7 cycloalkyl,
          cyclopropylmethyl, aryl, or benzyl;
     R<sup>20</sup> and R<sup>21</sup> are both H;
30
     R^{22} is H, C_1-C_4 alkyl or benzyl.
           Specifically preferred compounds of this fifth
     embodiment are compounds of Formula Ib, or
     pharmaceutically acceptable salt forms thereof, selected
35
     from:
```

- 2-(R,S)-2-carboxymethyl-1-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]piperidine;
- 2-(R,S)-2-carboxymethyl-1-{5-(R,S)-N-[3-(4amidinophenyl)isoxazolin-5-yl acetyl]azepine;
 - 2-(R,S)-2-carboxymethyl-1-(5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]pyrrolidine;
 - 3-(R,S)-carboxymethyl-4-{5-(R,S)-N-{3-(4-amidinophenyl)isoxazolin-5-yl acetyl}piperazine-2-one;
 - 6-(R,S)-carboxymethyl-1-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]piperidine-2-one;
 - 5-(R,S)-carboxymethyl-1-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]pyrrolidine-2-one;
 - 7-(R,S)-carboxymethyl-1-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]azetidine-2-one;
- 20 2-(R,S)-carboxymethyl-1-{5-(R,S)-N-[3-(4amidinophenyl)isoxazolin-5-yl acetyl]pyrazolidine;
 3-(R,S)-carboxymethyl-4-{5-(R,S)-N-[3-(4amidinophenyl)isoxazolin-5-yl acetyl]morpholine.
- In the present invention it has been discovered that the compounds of Formula I above are useful as inhibitors of cell-matrix and cell-cell adhesion processes. The present invention includes novel compounds of Formula I and methods for using such compounds for the prevention or treatment of diseases resulting from abnormal cell adhesion to the extracellular matrix which comprises administering to a host in need of such treatment a therapeutically effective amount of such compound of Formula I.
- In the present invention it has also been discovered that the compounds of Formula I above are

WO 95/14683 PCT/US94/13155 -90-

useful as inhibitors of glycoprotein IIb/IIIa (GPIIb/IIIa). The compounds of the present invention inhibit the activation and aggregation of platelets induced by all known endogenous platelet agonists.

5

30

35

The present invention also provides pharmaceutical compositions comprising a compound of Formula I and a pharmaceutically acceptable carrier.

10 The compounds of Formula I of the present invention are useful for the treatment (including prevention) of thromboembolic disorders. The term "thromboembolic disorders" as used herein includes conditions involving platelet activation and aggregation, such as arterial or venous cardiovascular or cerebrovascular thromboembolic 15 disorders, including, for example, thrombosis, unstable angina, first or recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, venous thrombosis, deep vein 20 thrombosis, thrombophlebitis, arterial embolism, coronary and cerebral arterial thrombosis, myocardial infarction, cerebral embolism, kidney embolisms, pulmonary embolisms, or such disorders associated with diabetes, comprising administering to a mammal in need 25 of such treatment a therapeutically effective amount of a compound of Formula I described above.

The compounds of Formula I of the present invention may be useful for the treatment or prevention of other diseases which involve cell adhesion processes, including, but not limited to, infammation, bone degradation, rheumatoid arthritis, asthma, allergies, adult respiratory distress syndrome, graft versus host disease, organ transplantation rejection, septic shock, psoriasis, eczema, contact dermatitis, osteoporosis, osteoarthritis, atherosclerosis, tumors, metastasis,

WO 95/14683 PCT/US94/13155

diabetic retinopathy, inflammatory bowel disease and other autoimmune diseases. The compounds of Formula I of the present invention may also be useful for wound healing.

-91-

5

10

The compounds of the present invention are useful for inhibiting the binding of fibrinogen to blood platelets, inhibiting aggregation of blood platelets, treating thrombus formation or embolus formation, or preventing thrombus or embolus formation in a mammal. The compounds of the invention may be used as a medicament for blocking fibrinogen from acting at its receptor site in a mammal.

Compounds of the invention may be administered to 15 patients where prevention of thrombosis by inhibiting binding of fibrinogen to the platelet membrane glycoprotein complex IIb/IIIa receptor is desired. are useful in surgery on peripheral arteries (arterial grafts, carotid endarterectomy) and in cardiovascular 20 surgery where manipulation of arteries and organs, and/or the interaction of platelets with artificial surfaces, leads to platelet aggregation and consumption, and where the aggregated platelets may form thrombi and thromboemboli. The compounds of the present invention 25 may be administered to these surgical patients to prevent the formation of thrombi and thromboemboli.

Extracorporeal circulation is routinely used during cardiovascular surgery in order to oxygenate blood.

30 Platelets adhere to surfaces of the extracorporeal circuit. Adhesion is dependent on the interaction between GPIIb/IIIa on the platelet membranes and fibrinogen adsorbed to the surface of the extracorporeal circuit. Platelets released from artificial surfaces

35 show impaired homeostatic function. The compounds of

the invention may be administered to prevent such ex vivo adhesion.

5

10

15

20

25

30

35

The compounds of the present invention may be used for other ex vivo applications to prevent cellular adhesion in biological samples.

Other applications of these compounds include prevention of platelet thrombosis, thromboembolism, and reocclusion during and after thrombolytic therapy and prevention of platelet thrombosis, thromboembolism and reocclusion after angioplasty of coronary and other arteries and after coronary artery bypass procedures. The compounds of the present invention may also be used to prevent myocardial infarction. The compounds of the present invention are useful as thrombolytics for the treatment of thromboembolic disorders.

The compounds of the present invention can also be administered in combination with one or more additional therapeutic agents select from: anti-coagulant or coagulation inhibitory agents, such as heparin or warfarin; anti-platelet or platelet inhibitory agents, such as aspirin, piroxicam, or ticlopidine; thrombin inhibitors such as boropeptides, hirudin or argatroban; or thrombolytic or fibrinolytic agents, such as plasminogen activators, anistreplase, urokinase, or streptokinase.

The compounds of Formula I of the present invention can be administered in combination with one or more of the foregoing additional therapeutic agents, thereby to reduce the doses of each drug required to achieve the desired therapeutic effect. Thus, the combination treatment of the present invention permits the use of lower doses of each component, with reduced adverse, toxic effects of each component. A lower dosage minimizes the potential of side effects of the compounds, thereby providing an increased margin of

WO 95/14683 PCT/US94/13155

safety relative to the margin of safety for each component when used as a single agent. Such combination therapies may be employed to achieve synergistic or additive therapeutic effects for the treatment of thromboembolic disorders.

-93-

By "therapeutically effective amount" it is meant an amount of a compound of Formula I that when administered alone or in combination with an additional therapeutic agent to a cell or mammal is effective to prevent or ameliorate the thromboembolic disease condition or the progression of the disease.

10

15

25

30

35

By "administered in combination" or "combination therapy" it is meant that the compound of Formula I and one or more additional therapeutic agents are administered concurrently to the mammal being treated. When administered in combination each component may be administered at the same time or sequentially in any order at different points in time. Thus, each component may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect.

The term anti-coagulant agents (or coagulation inhibitory agents), as used herein, denotes agents that inhibit blood coagulation. Such agents include warfarin (available as Coumadin TM) and heparin.

The term anti-platelet agents (or platelet inhibitory agents), as used herein, denotes agents that inhibit platelet function such as by inhibiting the aggregation, adhesion or granular secretion of platelets. Such agents include the various known non-steroidal anti-inflammatory drugs (NSAIDS) such as aspirin, ibuprofen, naproxen, sulindac, indomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone, and piroxicam, including pharmaceutically acceptable salts or prodrugs thereof. Of the NSAIDS, aspirin

-94-

(acetylsalicyclic acid or ASA), and piroxicam. Piroxicam is commercially available from Pfizer Inc. (New York, NY), as FeldaneTM. Other suitable antiplatelet agents include ticlopidine, including pharmaceutically acceptable salts or prodrugs thereof. Ticlopidine is also a preferred compound since it is known to be gentle on the gastro-intestinal tract in use. Still other suitable platelet inhibitory agents include thromboxane-A2-receptor antagonists and thromboxane-A2-synthetase inhibitors, as well as pharmaceutically acceptable salts or prodrugs thereof.

10

The phrase thrombin inhibitors (or anti-thrombin agents), as used herein, denotes inhibitors of the serine protease thrombin. By inhibiting thrombin, various thrombin-mediated processes, such as 15 thrombin-mediated platelet activation (that is, for example, the aggregation of platelets, and/or the granular secretion of plasminogen activator inhibitor-1 and/or serotonin) and/or fibrin formation are disrupted. Such inhibitors include boroarginine derivatives and 20 boropeptides, hirudin and argatroban, including pharmaceutically acceptable salts and prodrugs thereof. Boroarginine derivatives and boropeptides include N-acetyl and peptide derivatives of boronic acid, such as C-terminal α -aminoboronic acid derivatives of lysine, 25 ornithine, arginine, homoarginine and corresponding isothiouronium analogs thereof. The term hirudin, as used herein, includes suitable derivatives or analogs of hirudin, referred to herein as hirulogs, such as disulfatohirudin. Boropeptide thrombin inhibitors 30 include compounds described in Kettner et al., U.S. Patent No. 5,187,157 and European Patent Application Publication Number 293 881 A2, the disclosures of which are hereby incorporated herein by reference. Other suitable boroarginine derivatives and boropeptide 35 thrombin inhibitors include those disclosed in PCT

WO 95/14683 -95-

Application Publication Number 92/07869 and European Patent Application Publication Number 471 651 A2, the disclosures of which are hereby incorporated herein by reference, in their entirety.

PCT/US94/13155

5 The phrase thrombolytics (or fibrinolytic) agents (or thrombolytics or fibrinolytics), as used herein, denotes agents that lyse blood clots (thrombi). Such agents include tissue plasminogen activator, anistreplase, urokinase or streptokinase, including 10 pharmaceutically acceptable salts or prodrugs thereof. Tissue plasminogen activator (tPA) is commercially available from Genentech Inc., South San Francisco, California. The term anistreplase, as used herein, refers to anisoylated plasminogen streptokinase 15 activator complex, as described, for example, in European Patent Application No. 028,489, the disclosures of which are hereby incorporated herein by reference herein, in their entirety. Anistreplase is commercially available as EminaseTM. The term urokinase, as used 20 herein, is intended to denote both dual and single chain urokinase, the latter also being referred to herein as prourokinase.

Administration of the compounds of Formula I of the invention in combination with such additional therapeutic agent, may afford an efficacy advantage over the compounds and agents alone, and may do so while permitting the use of lower doses of each. A lower dosage minimizes the potential of side effects, thereby providing an increased margin of safety.

25

30 GPIIb/IIIa is known to be overexpressed in metastatic tumor cells. The compounds or combination products of the present invention may also be useful for the treatment, including prevention, of metastatic cancer.

The compounds of the present invention are also useful as standard or reference compounds, for example

-96-

as a quality standard or control, in tests or assays involving the binding of fibrinogen to platelet GPIIb/IIIa. Such compounds may be provided in a commercial kit, for example, for use in pharmaceutical research involving GPIIb/IIIa. The compounds of the present invention may also be used in diagnostic assays involving platelet GPIIb/IIIa.

The compounds herein described may have 10 asymmetric centers. Unless otherwise indicated, all chiral, diastereomeric and racemic forms are included in the present invention. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present 15 invention. It will be appreciated that compounds of the present invention that contain asymmetrically substituted carbon atoms may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by 20 resolution of racemic forms or by synthesis, from optically active starting materials. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific 25 stereochemistry or isomer form is specifically indicated.

When any variable (for example but not limited to, R^2 , R^4 , R^6 , R^7 , R^8 , R^{12} , and R^{14} , n, etc.) occurs more than one time in any constituent or in any formula, its definition on each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-2 R^4 , then said group may optionally be substituted with up to two R^4 and R^4 at each occurrence is selected independently from the defined list of possible R^4 . Also, by way of example, for the group $-N(R^{5a})_2$, each of

30

WO 95/14683 PCT/US94/13155

-97-

the two R^{5a} substituents on N is independently selected from the defined list of possible R^{5a} . Similarly, by way of example, for the group $-C(R^7)_2$, each of the two R^7 substituents on C is independently selected from the defined list of possible R^7 .

When a bond to a substituent is shown to cross the bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a bond joining a substituent to another group is not specifically shown or the atom in such other group to which the bond joins is not specifically shown, then such substituent may form a bond with any atom on such other group.

10

When a substituent is listed without indicating the
atom via which such substituent is bonded to the rest of
the compound of Formula I, then such substituent may be
bonded via any atom in such substituent. For example,
when the substituent is piperazinyl, piperidinyl, or
tetrazolyl, unless specified otherwise, said
piperazinyl, piperidinyl, tetrazolyl group may be bonded
to the rest of the compound of Formula I via any atom in
such piperazinyl, piperidinyl, tetrazolyl group.

Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By stable compound or stable structure it is meant herein a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

The term "substituted", as used herein, means that any one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitution is keto (i.e., =0), then 2 hydrogens on the atom are replaced.

PCT/US94/13155 WO 95/14683

As used herein, "alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon 5 atoms (for example, " C_1-C_{10} " denotes alkyl having 1 to 10 carbon atoms); "haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogen (for example $-C_vF_w$ where v = 1 to 3 and w = 1 to (2v+1); "alkoxy" 10 represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-,bi- or poly-cyclic ring systems, such as 15 cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and adamantyl; and "biycloalkyl" is intended to include saturated bicyclic ring groups such as [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), 20 [2.2.2]bicyclooctane, and so forth. "Alkenyl" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl 25 and the like; and "alkynyl" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more triple carbon-carbon bonds which may occur in any stable point along the chain, such as ethynyl, propynyl and the like.

30 The terms "alkylene", "alkenylene", "phenylene", and the like, refer to alkyl, alkenyl, and phenyl groups, respectively, which are connected by two bonds to the rest of the structure of Formula I. "alkylene", "alkenylene", "phenylene", and the like, may 35 alternatively and equivalently be denoted herein as

WO 95/14683 PCT/US94/13155

-99-

"-(alkyl)-", "-(alkyenyl)-" and "-(phenyl)-", and the like.

"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo and iodo; and "counterion" is used to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, sulfate and the like.

As used herein, "aryl" or "aromatic residue" is intended to mean phenyl or naphthyl; the term

10 "arylalkyl" represents an aryl group attached through an alkyl bridge.

As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 7
15 membered monocyclic or bicyclic or 7- to 14-membered bicyclic or tricyclic or an up to 26-membered polycyclic carbon ring, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocyles include, but are not limited to, cyclopropyl,

20 cyclopentyl, cyclohexyl, phenyl, biphenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" or "heterocyclic" is intended to mean a stable 5- to 7-25 membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which may be saturated, partially unsaturated, or aromatic, and which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O 30 and S and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The heterocyclic ring may be attached to its pendant group at any heteroatom 35 or carbon atom which results in a stable structure. The

heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. Examples of such heterocycles include, but are not limited to, pyridyl (pyridinyl), pyrimidinyl, furanyl (furyl), thiazolyl, thienyl, 5 pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, benzothiophenyl, indolyl, indolenyl, isoxazolinyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, 10 tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl or octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-thiadiazinyl, 2H,6H-1,5,2dithiazinyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathiinyl, 2H-pyrrolyl, 15 pyrrolyl, imidazolyl, pyrazolyl, isothiazolyl, isoxazolyl, oxazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, isoquinolinyl, quinolinyl, phthalazinyl, naphthyridinyl, 20 quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazole, carbazole, ß-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, phenarsazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, pyrrolidinyl, pyrrolinyl, 25 imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl or Also included are fused ring and spiro oxazolidinyl. compounds containing, for example, the above 30 heterocycles.

At used herein, the term "heteroaryl" refers to aromatic heterocyclic groups. Such heteroaryl groups are preferably 5-6 membered monocylic groups or 8-10 membered fused bicyclic groups. Examples of such

WO 95/14683 -101-

15

heteroaryl groups include, but are not limited to pyridyl (pyridinyl), pyrimidinyl, furanyl (furyl), thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, indolyl, isoxazolyl, oxazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, benzofuranyl, benzothienyl, benzimidazolyl, quinolinyl, or isoquinolinyl.

PCT/US94/13155

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein 10 the parent compound of Formula I is modified by making acid or base salts of the compound of Formula I. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

"Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug 20 according to Formula I in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the compounds of Formula I are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine 25 manipulation or in vivo, to the parent compounds. Prodrugs include compounds of Formula I wherein hydroxyl, amino, sulfhydryl, or carboxyl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, 30 amino, sulfhydryl, or carboxyl group respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of Formula I, and the like. Examples of representative carboxyl and amino prodrugs are included under the definition of R2, 35 R^3 , and Y.

WO 95/14683 PCT/US94/13155

-102-

The pharmaceutically acceptable salts of the compounds of Formula I include the conventional nontoxic salts or the quaternary ammonium salts of the compounds of Formula I formed, for example, from nontoxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, 10 propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, 15 oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the compounds of Formula I which contain a basic or acidic moiety by conventional chemical methods. Generally, the salts are prepared by reacting the free base or acid with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid or base in a suitable solvent or various combinations of solvents.

20

35

The pharmaceutically acceptable salts of the

25 acids of Formula I with an appropriate amount of a base,
such as an alkali or alkaline earth metal hydroxide e.g.
sodium, potassium, lithium, calcium, or magnesium, or an
organic base such as an amine, e.g.,
dibenzylethylenediamine, trimethylamine, piperidine,
pyrrolidine, benzylamine and the like, or a quaternary
ammonium hydroxide such as tetramethylammoinum hydroxide
and the like.

As discussed above, pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the

WO 95/14683 PCT/US94/13155

-103-

appropriate base or acid, respectively, in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

10 The disclosures of all of the references cited herein are hereby incorporated herein by reference in their entirety.

Synthesis

15

25

The compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods 20 described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. All references cited herein are hereby incorporated in their entirety herein by reference.

The following abbreviations are used herein:

	<i>β</i> −Ala	3-aminopropionic acid
30	Вос	tert-butyloxycarbonyl
	Boc ₂ O	di-tert-butyl dicarbonate
	BSTFA	N, O-bis(trimethylsilyl)trifluoromethyl-
		acetamide
	Cbz	benzyloxycarbonyl
35	DCC	1,3-dicyclohexylcarbodiimide
	DEAD	diethyl azodicarboxylate

-104-DEC 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride DIEA diisopropylethylamine DCHA dicyclohexylamine DCM 5 dichloromethane DMAP 4-dimethylaminopyridine DMF N, N-dimethylformamide EtOAc ethyl acetate EtOH ethyl alcohol 10 HOBt 1-hydroxybenzotriazole IBCF iso-butyl chloroformate LAH lithium aluminum hydride NCS *N*-chlorosuccinimide MMM N-methylmorpholine 15 PPh3 triphenylphosphine pyridine pyr TBTU 2-(1H-Benzotriazol-1-yl)-1,1,3,3tetramethyluronium tetrafluoroborate

A convenient method for the synthesis of the compounds of this invention utilizes a dipolar cycloaddition of nitrile oxides with appropriate

25 dipolarophiles to prepare the isoxazoline rings present in compounds of Formula I (for reviews of 1,3-dipolar cycloaddition chemistry, see 1,3-Dipolar Cycloaddition Chemistry (Padwa, ed.), Wiley, New York, 1984; Kanemasa and Tsuge, Heterocycles 1990, 30, 719).

trifluoroacetic acid

tetrahydrofuran

TFA

THF

20

30 Scheme I describes one synthetic sequence to the compounds of the second embodiment of this invention. An appropriately substituted hydroxylamine is treated with NCS in DMF according to the method of Liu, et al. (J. Org. Chem. 1980, 45, 3916). The resulting hydroximinoyl chloride is then dehydrohalogenated in situ using TEA to give a nitrile oxide, which undergoes

WO 95/14683 PCT/US94/13155 -105-

a 1,3-dipolar cycloaddition to a suitably substituted alkene to afford the isoxazoline. Alternatively, the oxime may be oxidatively chlorinated, dehydrochlorinated and the resulting nitrile oxide trapped by a suitable alkene under phase transfer conditions according to the method of Lee (Synthesis 1982, 508). Hydrolysis of the ester using conventional methods known to one skilled in the art of organic synthesis gives the desired acids. Intermediates containing alkali-sensitive functionality, such as nitrile, may be deesterified with excellent chemoselectivity using sodium trimethylsilanolate according to the procedure of Laganis and Ehenard (Tetrahedron Lett. 1984, 25, 5831). Coupling of the resulting acids to an appropriately substituted $\alpha-$ or β amino ester using standard coupling reagents, such as DCC/HOBt, affords a nitrile-amide. The nitrile is then converted to the amidine via the imidate or thioimidate under standard conditions followed by ester saponification (LiOH, THF/H2O).

20

5

10

Scheme I

An example of a related method of preparation for compounds within the second embodiment of the present invention is illustrated in Scheme Ia. Conversion of 3-(4-Cyanophenyl)-isoxazolin-5-ylacetic acid to the corresponding amidine, followed by protection as the Boc-derivative and saponification provides 3-(4-Boc-amidinophenyl)isoxazolin-5-ylacetic acid which is coupled with β-amino acid esters as shown. Deprotection provides the desired isoxazolinylacetyl-β-aminoalaninyl esters. Saponification as described above gives the free acids.

Scheme Ia

5

A further example of the synthesis of compounds within the second embodiment is shown in Scheme Ib.

Cycloaddition of commerically available 4-cyanostyrene and t-butylformyloxime using the method described by

Gree et al. (Bioorganic and Med. Chem. Lett., 1994, 253) provides t-butyl [5-(4-cyanophenyl)isoxazolin-3-yl]acetate. Using the procedures described above, this intermediate is converted to compounds of formula I wherein the isoxazoline ring is in the reverse orientation with respect to the compounds prepared via Schemes I and Ia.

3. TFA

5

10

Scheme Ib

Additional isoxazolinyl acetates useful as starting materials for the preparation of compounds of Formula I, wherein V is -(phenyl)-Q- and Q is other than a single bond, can be prepared by cycloaddition of a suitably substituted chloro or bromooxime with an ester of vinyl acetic acid as shown in Scheme Ic using literature methods or modifications thereof. (D. P. Curran & J. Chao, J. Org. Chem., 1988, 53, 5369-71; J. N. Kim & E. K. Ryu, Heterocycles, 1990, 31, 1693-97).

5

Scheme Ic

R = Ph or Et

The compounds of the present invention where ${\ensuremath{\mathsf{R}}}^2$ or R³ is e.g. alkoxycarbonyl may be prepared by reacting the free amidines, amines or guanidines with an activated carbonyl derivative, such as an alkyl chloroformate. In compounds of the second embodiment, 10 the conversion of the free amines, amidines and guanidines to such acyl-nitrogen groups may optionally be performed prior to coupling an isoxazoline acetic acid with e.g β -amino acids, as illustrated in Scheme Ia.

15 The compounds of the present invention wherein Y is an oxyalkoxy group, e.g. alkoxycarbonyloxyalkoxy, may be prepared by reacting a suitably protected carboxylic acid of Formula I with an e.g. an alkoxycarbonyloxyalkyl chloride in the presence of an iodide source, such as 20 tetrabutylammonium iodide or potassium iodide, and an acid scavenger, such as triethylamine or potassium

-110-

carbonate, using procedures known to those skilled in the art.

The appropriately substituted racemic β -amino acids may be purchased commercially or, as is shown in Scheme II, Method 1, prepared from the appropriate aldehyde, malonic acid and ammonium acetate according to the procedure of Johnson and Livak (J. Am. Chem. Soc. 1936, 58, 299). Racemic β-substituted-β-amino esters may be prepared through the reaction of dialkylcuprates or alkyllithiums with 4-benzoyloxy-2-azetidinone followed 10 by treatment with anhydrous ethanol (Scheme I, Method 2) or by reductive amination of β -keto esters as is described in WO9316038. (Also see Rico et al., J. Org. Chem. 1993, 58, 7948-51.) Enantiomerically pure β substituted-β-amino acids can be obtained through the 15 optical resolution of the racemic mixture or can be prepared using numerous methods, including: Arndt-Eistert homologation of the corresponding α -amino acids as shown in Scheme II, Method 3 (see Meier, and Zeller, Angew. Chem. Int. Ed. Engl. 1975, 14, 32; Rodriguez, et 20 al. Tetrahedron Lett. 1990, 31, 5153; Greenlee, J. Med. Chem. 1985, 28, 434 and references cited within); and through an enantioselective hydrogenation of a dehydroamino acid as is shown in Scheme II, Method 4 (see Asymmetric Synthesis, Vol. 5, (Morrison, ed.) 25 Academic Press, New York, 1985). A comprehensive treatise on the preparation of β -amino acid derivatives may be found in patent application WO 9307867, the disclosure of which is hereby incorporated by reference. 30

Scheme II

Method 1

Method 2

Method 3

Method 4

5

The synthesis of N^2 -substituted diaminopropionic acid derivatives can be carried out via Hoffman rearrangement of a wide variety of asparagine derivatives as described in Synthesis, 266-267, (1981).

The appropriately substituted pyrrolidine-,

piperidine- and hexahydroazepineacetic acids may be
prepared using a number of methods. The pyrrolidines
are conveniently prepared using an Arndt-Eistert
homologation of the corresponding proline as shown in
Scheme III, Method 1 (see Meier, and Zeller, Angew,

Chem. Int. Ed. Engl. 1975, 14, 32; Rodriguez, et al.

Tetrahedron Lett. 1990, 31, 5153; Greenlee, J. Med.
Chem. 1985, 28, 434 and references cited within). The
piperidines can be prepared by reduction of the
corresponding pyridine as shown in Scheme III, Method 2.

20 The hexahydroazepines are prepared by reduction of the

corresponding vinylogous amide using sodium cyanoborohydride as depicted in Scheme III, Method 3.

Scheme III

5

Method 2

Method 3

Many additional appropriately substituted heterocycles are available commercially or can be 10 readily modified by procedures known by one skilled in the art. Appropriately substituted morpholines can be prepared from amino acids via the sequence of steps depicted in Scheme IIIa, method 1 (see Brown, et. al. J. Chem. Soc. Perkin Trans I, 1987, 547.; Bettoni, et. al. Tetrahedron 1980, 36, 409. Clarke, F.H. J. Org. Chem. 15 1962, 27, 3251 and references therein.) N-ethoxycarbonylmethyl-1,2-diazaheterocyles are prepared by condensation of suitably substituted dibromides with benzylhydrazine followed by Mitsunobu reaction with ethyl hydroxyacetate and deprotection as shown in Scheme 20 IIIa, method 2 (see Kornet, et. al. J. Pharm. Sci. 1979, 68, 377.; Barcza, et. al. J. Org. Chem. 1976, 41, 1244 and references therein.)

Scheme IIIa

Method 2

A general synthetic protocol to the compounds of the first embodiment of this invention is depicted in Scheme IV. Coupling of a suitable Boc-protected amino alcohol to an appropriately substituted phenol under Mitsunobu conditions (see Mitsunobu, Synthesis 1981, 1).

10 is followed by oximation using hydroxylamine hydrochloride in 1:1 ethanol/pyridine. Isoxazoline formation, ester saponification and Boc-deprotection (33% TFA/DCM) then affords the compounds of this invention in good overall yield.

Scheme IV

5 The synthesis of the spiro-fused isoxazolinyl imides of the third embodiment of the present invention is exemplified by the general protocol depicted in Scheme V. Dipolar cycloaddition of an oximinoyl chloride with a α -methylene diester affords an 10 isoxazolinyl diester, which is deesterified using the silanolate method. Dehydration to the anhydride according to Ishihara, et al. (Chem. Pharm. Bull. 1992, 40, 1177-85) followed by imide formation using an appropriately substituted amino ester affords the 15 spirocycle. Alternatively, the imide may be prepared directly from the isoxazoline diester according to Culbertson, et al. (J. Med. Chem. 1990, 33, 2270-75). Amidine formation or Boc deprotection followed by ester saponification then affords the compounds of this invention in good overall yield. 20

Scheme V

The synthesis of the spiro-fused isoxazolinyl 5 amides of the third embodiment of the present invention is exemplified by the general protocol depicted in Scheme VI. Dipolar cycloaddition of an oximinoyl chloride with a α -methylene lactone affords the 10 isoxazolinyl lactone, which is reacted with an appropriate amino ester to afford the amide (see The Chemistry of the Amides (Zabicky, ed.), p 96, Interscience, New York, 1970; Prelog, et al., Helv. Chim. Acta 1959, 42, 1301; Inubushi, et al., J. Chem. Soc., Chem. Commun. 1972, 1252). Amidine formation or 15 Boc deprotection followed by ester saponification then affords the compounds of this invention in good overall yield.

-116-

Scheme VI

The synthesis of the spiro-fused isoxazolinyl 5 cycloalkenes of the third embodiment of the present invention is exemplified by the general protocol depicted in Scheme VII. Dipolar cycloaddition of an oximinoyl chloride with an appropriately substituted α -10 methylene lactone affords the isoxazolinyl lactone. lactone is then reacted with an appropriate lithium dimethyl alkylphosphonate, followed by PCC oxidation. The resulting diketophosphonate undergoes an intramolecular Wittig reaction in the presence of K₂CO₃/18-crown-6 according to the method described by 15 Lim and Marquez (Tetrahedron Lett. 1983, 24, 5559). Amidine formation or Boc deprotection followed by ester saponification then affords the compounds of this invention in good overall yield.

20

Scheme VII

5 The dipolarophiles used to prepare the compounds of this invention may be prepared by numerous methods. ω-alkenoic ester class of dipolarophile may be purchased commercially or prepared by oxidation of the corresponding ω -alkenols by the method of Corey and 10 Schmidt (Tetrahedron Lett. 1979, 399, Scheme VIII, Method 1). The α -methylene diester and α -methylene lactone class of dipolarophile may be purchased commercially or can be prepared by numerous methods from the corresponding diester (see Osbond, J. Chem. Soc. 15 1951, 3464; Ames and Davey, J. Chem. Soc. 1958, 1794; Vig, et al., <u>Ind. J. Chem.</u> 1968, <u>6</u>, 60; Grieco and Hiroi, J. Chem. Soc., Chem. Commun. 1972, 1317, Scheme VIII, Method 2). The 3-(styryl)propionic ester class of dipolarophile may be prepared by palladium-catalyzed 20 cross coupling of the appropriately substituted bromoor iodohydrocinnamic acid to a vinylmetal species according to methods cited within Mitchell (Synthesis

PCT/US94/13155 -118-

1992, 803) and Stille (Angew. Chem. Int. Ed. Engl. 1986, 25, 508, Scheme VIII, Method 3).

Scheme VIII

5

Method 1

Method 2

Method 3

Compounds of formula I wherein b is a double bond can be prepared using one of the routes depicted in 10 Scheme IX. Bromination followed by subsequent dehydrobromination of a suitably substituted methyl 3-(cyanophenyl) isoxazolin-5-ylacetate, prepared as described above, using the method of Elkasaby & Salem (Indian J. Chem., 1980, 19B, 571-575) provides the 15 corresponding isoxazole intermediate. Alternately, this intermediate can be obtained by 1,3-dipolar cycloaddition of a cyanophenylnitrile oxide (prepared from the corresponding chlorooxime as described in Scheme I) with an appropriate alkyne to give the 20 isoxazole directly. Hydrolysis of the ester using conventional methods known to one skilled in the art of organic synthesis gives the acetic acids. Coupling of the resulting acids to an appropriately substituted α or β -amino ester using standard coupling reagents, such 25 as TBTU, affords a nitrile-amide. The nitrile is then converted to the amidine via the imidate or thioimidate under standard conditions to give the prodrug esters. Saponification gives the acids.

5

Scheme IX

Compounds of Formula I wherein R¹ is

(R²)(R³)N(R²N=)CN(R²) - and V is phenylene are prepared as illustrated in Scheme X. Cycloaddition of an

appropriately N-protected aminophenylaldoxime with vinyl acetic acid, t-butyl ester, using the conditions described above provides t-butyl [3-(4-t-butyloxycarbonylaminophenyl)isoxazolin-5-yl]acetate. Hydrolysis of the ester with lithium hydroxide provides the free acid which can be coupled with a suitably substituted methyl 3-aminopropionate as previously described. After deprotection, the aniline is converted

-120-

to the corresponding guanidine using the method described by Kim et al. (Tetrahedron Lett., 1993, 48, 7677). A final deprotection step to remove the BOC groups provides guanidino compounds of Formula I.

5

Scheme X

10

The compounds of this invention and their preparation can be further understood by the following procedures and examples, which exemplify but do not constitute a limit of their invention.

15

Example 1

3-[4-(2-Piperidin-4-yl)ethoxyphenyll-(5R,S)-isoxazolin-5-ylacetic Acid, Trifluoroacetic Acid Salt

PCT/US94/13155 WO 95/14683

Part A. Preparation of 2-(4-N-t-Butvloxycarbonvlpiperidinvl)ethanol

This material was prepared from 4-piperidine-2-5 ethanol according to European Patent Application Publication Number 478363 A2.

Part B. 4-[(2-N-t-Butyloxycarbonylpiperidin-4-yl)ethoxylbenzaldehyde

10

20

25

To a solution of 2-(4-N-t-Butyloxycarbonylpiperidinyl)ethanol (7.71 g, 33.6 mmol), 4-hydroxybenzaldehyde (4.11 g, 33.6 mmol) and PPh₃ (8.82 g, 33.6 mmol) in THF (60 mL) at -20 °C was added a solution of DEAD (5.3 mL, 33.7 mmol) in THF (30 mL) over 2 hours. During the 15 addition, a deep red solution resulted, which changed to a golden color upon warming to room temperature overnight (18 hours). At this time the solution was concentrated and redissolved in EtOAc. It was then washed with water, 0.1M HCl, 1M NaOH, sat. NaCl and dried (MgSO₄). Concentration gave a solid (~20 g), which was purified using flash chromatography (10-20-30-40-50% EtOAc/hexanes step gradient), affording 7.82 g (70%) of the desired ether after pumping to constant weight; mp 76.4-79.7 °C; 1 H NMR (300 MHz, CDCl₃) δ 9.88 (s 1H), 7.83 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 4.10 (bd, J = 12.8 Hz, 2H), 4.04 (t, J = 6.6 Hz2H), 2.69 (bt, 2H), 1.84 (m, 2H), 1.70 (bd J = 14.3 Hz, 2H), 1.46 (s, 9H, overlapped with m, 2H), 1.10 (m, 2H).

30

Part C. 4-[(2-N-t-Butvloxycarbonvlpiperidin-4-vl)ethoxylbenzaldoxime

To a solution of 4-[(2-N-t-butyloxycarbonylpiperidin-4-yl)ethoxy]benzaldehyde (3.16 g, 9.48 mmol) in MeOH 35

PCT/US94/13155

30

35

(20 mL) was added hydroxylamine hydrochloride (1.27 g,
18.3 mmol) and 2M NaOH (7 mL, 14 mmol). The resulting
suspension was stirred overnight at room temperature (18
hours). The mixture was brought to pH 4 using 1M HCl,
followed by filtration and water wash. The crystals
were dried under vacuum over P₂O₅, affording 2.88 g
(87%); mp: 114.4-116.1 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.09
(s, 2H), 7.51 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz,
2H), 4.10 (b, 2H), 4.03 (t, J = 6.2 Hz 2H), 2.71 (bt,
10 2H), 1.73 (m, 4H), 1.46 (s, 9H), 1.19 (m, 2H).

Part D. 4-[(2-N-t-Butyloxycarbonylpiperidin-4-yl)eth-oxylbenzaldoximinoyl Chloride

To a solution of 4-[(2-N-t-butyloxycarbonylpiperidin-4-yl)ethoxy]benzaldoxime (955 mg, 2.74 mmol) in DMF (5 mL) was added NCS (366 mg, 2.74 mmol) in 3 portions. After 3 hours, the solution was diluted with EtOAc and washed with water, sat. NaCl, dried (MgSO₄) and concentrated. The resulting solid was crystallized from ether/hexanes to give 548 mg (52%) of the oximinoyl chloride; mp: 119.3-119.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.37 (bs 1H), 7.77 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 4.12 (bd, J = 13.2 Hz, 2H), 4.04 (t, J = 6.2 Hz 2H), 2.72 (bt, J = 12.1 Hz, 2H), 1.70 (m, 5H), 1.46 (s, 9H), 1.10 (m, 2H).

Part E. Methyl 3-[4-{(2-N-t-Butyloxycarbonylpiperidin-4-yl)ethoxylphenyl]-(5R.S)-isoxazolin-5-ylacetate

To a solution of 4-[(2-N-t-butyloxycarbonylpiperidin-4-yl)ethoxy]benzaldoximinoyl chloride (400 mg, 1.045 mmol) and methyl 3-butenoate (200 mg, 2.00 mmol) was added TEA (0.15 mL, 1.1 mmol). The resulting suspension was heated at reflux for 5 hours, cooled to room temperature and diluted with EtOAc. It was then washed

10

30

with 0.1M HCl, water, sat. NaCl, dried (MgSO₄) and concentrated. The resulting solid was crystallized from DCM/hexanes to give 357 mg (77%) of the isoxazoline; mp: 139.1-140.9 °C; 1 H NMR (300 MHz, CDCl₃) δ 7.59 (d, J =

-123-

8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 5.08 (m, 1H), 4.10 (bd, J = 13.2 Hz, 2H), 4.04 (t, J = 5.9 Hz 2H), 3.73 (s, 3H), 3.53 (dd, J = 16.5, 10.1 Hz, 1H), 3.10 (dd, J = 16.8, 7.1 Hz, 1H), 2.88 (dd, J = 16.1, 5.9 Hz, 1H), 2.71 (bt, J = 12.8 Hz, 2H), 2.64 (dd, J = 15.8, 7.7 Hz, 1H), 1.72 (m, 5H), 1.46 (s, 9H), 1.08 (m, 2H).

Part F. 3-14-1(2-N-t-Butyloxycarbonylpiperidin-4-

yl)ethoxylphenyll-(5R,S)-isoxazolin-5-ylacetic Acid

15 To a solution of methyl $3-[4-{(2-N-t-butyloxycar-}$ bonylpiperidin-4-yl)ethoxy)phenyl]-(5R,S)-isoxazolin-5ylacetate (47 mg, 0.105 mmol) in THF (2 mL) was added 0.5M LiOH (1 mL, 0.5 mmol). The reaction was stirred at room temperature for 5 hours, then was acidified to pH 3 20 using 0.1M HCl. The mixture was washed with DCM and the combined organic fraction dried (MgSO₄) and concentrated. The resulting solid was crystallized from EtOAc/hexanes to give 34 mg (74%) of the carboxylic acid; mp: 169.1-170.6 °C; 1 H NMR (300 MHz, CDCl₃) δ 7.60 25 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 5.10 (m, 1H), 4.08 (bd, 2H, overlapped with t, J = 5.9 Hz 2H), 3.55 (dd, J = 16.5, 10.2 Hz, 1H), 3.11 (dd, J = 16.8, 7.0 Hz, 1H), 2.93 (dd, J = 16.1, 6.2 Hz, 1H), 2.71 (m, 3H), 2.00 (m, 2H), 1.72 (m, 5H), 1.46 (s, 9H).

Part G. 3-[4-(2-Piperidin-4-yl)ethoxyphenyl]-(5R,S)isoxazolin-5-ylacetic Acid, Trifluoroacetic Acid Salt

To a solution of 3-[4-{(2-N-t-Butyloxycarbonylpi-35 peridin-4-yl)ethoxy}phenyl]-(5R,S)-isoxazolin-5-ylacetic acid (53 mg, 0.12 mmol) in DCM (2 mL) was added TFA (1

-124-

mL, 13 mmol). After 1.5 hours, the product was crystallized by the addition of ether, affording 33 mg (60%) of the amino acid; mp: 142.4-143.1 °C; ^{1}H NMR (300 MHz, CDCl₃) δ 7.59 (dd, J = 8.8, 2.6 Hz, 2H), 6.96 (dd, J = 8.8, 2.6 Hz, 2H), 5.03 (m, 1H), 4.10 (m, 2H), 3.55 (ddd, J = 16.8, 10.3, 2.2 Hz, 1H), 3.38 (bd, J = 12.4 Hz, 2H), 3.16 (ddd, J = 17.2, 7.7, 2.2 Hz, 1H), 2.98 (bt, J = 13.2 Hz, 2H), 2.69 (m, 2H), 2.01 (bd, J = 14.3 Hz, 2H), 1.91 (m, 1H), 1.80 (m, 2H), 1.46 (m, 2H).

-125-

Example 4

(2S)-(5R,S)-[3-[4-{(2-Piperidin-4-yl)ethoxylphenyl]isoxazolin-5-yl{[(benzyloxy)carbonyl]amino}]acetate, Trifluoroacetic Acid Salt

5

15

Part A. Benzyl L-2-[[(Benzyloxy)carbonyl]amino]-3-butenoate

This material was prepared from N-Cbz-L-glutamic acid \alpha-benzyl ester according to Krol, et al. (J. Org. Chem. 1991, 728).

Part B. Benzyl (2S)-(5R,S)-[3-[4-{(2-N-t-Butyloxycarbon-ylpiperidin-4-yl)ethoxy}phenyllisoxazolin-5-yl{[(benzyl-oxy)carbonyllamino}]acetate

To a solution of 4-[(2-N-t-butyloxycarbonylpiperidin-4-yl)ethoxy]benzaldoxime (852 mg, 2.44 mmol) and benzyl L-2-[[(benzyloxy)carbonyl]amino]-3-butenoate (612 20 mg, 1.88 mmol) in DCM (10 mL) was added 5% NaOCl (common household bleach, 4 mL, 2.8 mmol). The mixture was rapidly stirred at room temperature for 22 hours, after which time it was diluted with water and DCM. After separation of the layers, the aqueous was washed with 25 DCM (3x). The combined organic extracts were dried (MgSO₄) and concentrated in vacuo, giving 1.4 g. Purification using flash chromatography (10% EtOAc/hexanes - 30% EtOAc/hexanes) then afforded 886 mg (70%) of an oily product as a 2.5 : 1 mixture of the 30 erythro and threo isomers; ^{1}H NMR (400 MHz, CDCl₃) δ 7.50 (m, 2H), 7.34 (m, 5H), 7.23 (m, 5H), 6.87 (d, J = 8.8)Hz, 2H), 5.47 (bd, 1H), 5.12 (m, 5H), 4.60 (m, 1H), 4.07 (m, overlapped with 4.03 (t, J = 6.1 Hz, 4H)), 3.36 (m,2H), 2.71 (bt, J = 12.7 Hz, 2H), 1.70 (m, 5H), 1.45 (s,

9H), 1.18 (m, 2H); Anal. Calc. for C₃₈H₄₅N₃O₈: C, 67.93; H, 6.76; N, 6.26. Found: C, 67.95; H, 6.77; N, 6.17.

-126-

Part C. <u>(2S)-(5R.S)-[3-[4-{(2-N-t-Butyloxycarbonylpiper-idin-4-yl)ethoxylphenyllisoxazolin-5-yl{[(benzyloxy)carbonyllamino}lacetic Acid</u>

A solution of benzyl $(2S)-(5R,S)-[3-[4-{(2-N-t-1)^2}]$ butyloxycarbonylpiperidin-4-yl)ethoxy}phenyl]isoxazolin-10 5-yl{[(benzyl-oxy)carbonyl]amino}]acetate (875 mg, 1.302 mmol) in THF (5 mL) was saponified over 5 hours using 0.5M LiOH (3.5 mL) according to Example 1, Part F. To the crude product was added methanol, causing crystallization of one of the diastereomers. Filtration 15 and pumping to constant weight gave 295 mg (39%); mp: 216.1 °C; ¹H NMR (400 MHz, DMSO-d₆, 80 °C) δ 7.50 (d, J = 8.9 Hz, 2H), 7.23 (s, 5H), 6.96 (d, J = 8.9 Hz, 2H), 6.17 (bs, 1H), 4.99 (m, 3H), 4.07 (t, J = 6.1 Hz, 2H), 3.90 (m, 3H), 3.35 (d, J = 9.3 Hz, 2H), 2.72 (bt, J =20 12.4 Hz, 2H), 1.67 (m, 5H), 1.39 (s, 9H), 1.08 (m, 2H). The filtrate was concentrated in vacuo and pumped until constant weight was achieved, giving 200 mg (26%) of the carboxylic acids as a mixture of erythro- and threoisomers; TLC (silica gel 60, 20% MeOH/CHCl₃) $R_f = 0.23$, 25 Mass Spectrum (ESI, e/z, relative abundance) 582 (M + $H)^+$, 32%; 526 (M - C₄H₉ + H₂)⁺, 100%; 482 (M - Boc + H_2)⁺, 91%).

Part D. (2S)-(5R,S)-[3-[4-{(2-Piperidin-4-yl)ethoxylphenyllisoxazolin-5-yl{[(benzyloxy)carbonyllamino}]acetic Acid (isomer A)

(2S)-(5R,S)-[3-[4-{(2-N-t-Butyloxycarbonylpiperidin-4-yl)ethoxy}phenyl]isoxazolin-5-yl{[(benzyloxy)carbonyl]amino}]acetic acid (23 mg, 0.039 mmol) was Bocdeprotected using 33% TFA/DCM according to Example 1,

35

30

Part G, giving 15 mg (79%); mp: 302 °C (dec); ¹H NMR (400 MHz, DMSO-d₆, 60 °C) δ 7.57 (d, J = 8.8 Hz, 2H), 7.30 (s, 5H), 6.99 (d, J = 8.8 Hz, 2H), 5.05 (s, 2H, coincident with m, 1H), 4.35 (d, J = 4.9 Hz, 1H), 4.09 (t, J = 6.1 Hz, 2H), 3.52 (dd, J = 17.3, 10.7 Hz, 1H), 3.26 (m, 3H), 2.88 (dt, J = 12.7, 2.7 Hz, 2H), 1.88 (bd, J = 14.4 Hz, 2H), 1.80 (m, 1H), 1.72 (m, 2H), 1.38 (m, 2H).

- Part D'. (2S)-(5R,S)-[3-[4-{(2-Piperidin-4-yl)ethox-yphenyllisoxazolin-5-yl{[(benzyloxy)carbonyllamino}]a-cetic Acid, Trifluoroacetic Acid Salt (isomer B)
- (2S)-(5R,S)-[3-[4-{(2-N-t-Butyloxycarbonylpiperidin-4-yl)ethoxy}phenyl]isoxazolin-5-yl{[(benzyloxy)carbonyl]amino}]acetic acid (177 mg, 0.304 mmol) was Bocdeprotected using 33% TFA/DCM according to Example 1, Part G, giving 3 mg (2%) of the TFA salt; mp: >400 °C; ¹H NMR (400 MHz, DMSO-d6, 60 °C) δ 8.48 (bs, 0.5H), 8.15 20 (bs, 0.5H), 7.55 (d, J = 8.9 Hz, 2H), 7.30 (m, 5H), 6.97 (d, J = 8.9 Hz, 2H), 5.05 (s, 2H), 4.96 (m, 1H), 4.33 (m, 1H), 4.07 (t, J = 6.3 Hz, 2H), 3.38 (m, 2H), 3.26 (bd, J = 12.0 Hz, 2H), 2.87 (m, 2H), 1.86 (bd, J = 14.2 Hz, 2H), 1.78 (m, 1H), 1.70 (apparent q, J = 6.3 Hz, 25 2H), 1.36 (bq, J = 13.2 Hz, 2H).

Example 6

3-(3-[4-(Piperidin-4-ylmethoxy)phenyl]-(5R,S)-isoxazolin-5-yl)propionic Acid, Trifluoroacetic Acid Salt

Part A. <u>Ethyl N-t-Butyloxycarbonylpiperidine-4-</u> <u>carboxylate</u>

To a stirred solution of ethyl isonipecotate (20.01 g, 0.1273 mol) in EtOAc (100 mL) at 0 °C was added dropwise a solution of Boc₂O (27.76 g, 0.1272 mol) in

WO 95/14683

-128-

EtOAc (50 mL). The mixture was allowed to warm to room temperature overnight. After 20 hours, the mixture was washed with water, 0.1M HCl, sat. NaHCO₃, sat. NaCl and dried (MgSO₄). Concentration and pumping under vacuum to constant weight gave 32.54 g (99%) of the desired carbamate as a mobile oil; ¹H NMR (300 MHz, CDCl₃) δ 4.13 (q, J = 7.0 Hz, 2H), 4.03 (dm, J = 13.6 Hz 2H), 2.81 (m, 2H), 2.41 (m, 1H), 1.86 (dm, J = 13.6 Hz, 2H), 1.62 (m, 2H), 1.44 (s, 9H), 1.24 (t, J = 7.0 Hz, 3H).

PCT/US94/13155

10

Part B. N-t-Butyloxycarbonylpiperidin-4-ylmethanol

To a solution of ethyl N-t-butyloxycarbonylpiperidine-4-carboxylate (32.34 g, 0.1257 mol) in THF (100 mL)

at 0 °C was added dropwise 1M LAH in THF (87.9 mL,
0.0879 mol). After 2 hours, excess hydride was quenched by the addition of water (3.2 mL), 2M NaOH (3.2 mL) and water (10 mL). The mixture was filtered, washed with EtOAc and the filtrate washed with water, sat. NaCl,
dried (MgSO₄) and concentrated. Pumping to constant weight gave 22.72 g (84%); mp: 79.2-81.1 °C; ¹H NMR (300 MHz, CDCl₃) & 4.12 (bd, J = 12.8 Hz 2H), 3.49 (d, J = 6.2 Hz, 2H), 2.68 (dt, J = 13.2, 1.8 Hz, 2H), 1.69 (m, 3H),
1.44 (s, 9H, overlapped with m, 1H), 1.14 (m, 2H).

25

Part C. 4-(N-t-Butyloxycarbonylpiperidin-4-ylmethoxy)-benzaldehyde

To N-t-butyloxycarbonylpiperidin-4-ylmethanol (7.87 g, 36.5 mmol), p-hydroxybenzaldehyde (4.46 g, 36.5 mmol) and PPh₃ (9.59 g, 36.5 mmol) in THF (100 mL) at -20 °C was added DEAD (5.75 mL, 36.5 mmol) in THF (50 mL) according to Example 1, Part B, affording 8.14 g (70%); mp: 115.6-116.8 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.86 (s, 35 lH), 7.81 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 4.15 (bd, J = 13.2 Hz 2H), 3.87 (d, J = 6.6 Hz, 2H),

-129-

2.74 (dt, J = 12.4, 1.8 Hz, 2H), 1.97 (m, 1H), 1.81 (bd, J = 12.8 Hz, 2H), 1.45 (s, 9H), 1.27 (dq, J = 12.1, 4.0 Hz, 2H).

5 Part D. <u>4-(N-t-Butyloxycarbonylpiperidin-4-ylmethoxy)-</u> benzaldoxime

A mixture of 4-(N-t-butyloxycarbonylpiperidin-4ylmethoxy) benzaldehyde (3.16 g, 9.89 mmol) and hydroxylamine hydrochloride (1.27 g, 18.3 mmol) in 9:1 10 MeOH/pyridine (30 mL) was heated at reflux for 18 hours. The mixture was cooled to room temperature and concentrated to dryness. The residue was dissolved in EtOAc and washed with 0.1M HCl (3x), water, sat. CuSO4 15 (2x), water, sat. NaCl, dried (MgSO₄) and concentrated, giving 3.19 g (96%) of the oxime; mp: $140.1-141.8 \, ^{\circ}C; \, ^{1}H$ NMR (300 MHz, CDCl₃) δ 8.07 (s, 1H), 7.48 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.14 (bs, 2H), 3.80 (d, J= 6.2 Hz, 2H), 2.71 (bt, J = 12.4 Hz, 2H), 1.95 (m, 1H),1.80 (bd, J = 12.4 Hz, 2H), 1.45 (s, 9H), 1.26 (m, 2H). 20

Part E. 4-(N-t-Butyloxycarbonylpiperidin-4-ylmethoxy)-benzaldoximinovl Chloride

25 4-(N-t-Butyloxycarbonylpiperidin-4-ylmethoxy) benzaldoxime (3.19 g, 9.54 mmol) in DMF (10 mL) was
 reacted with NCS (1.27 g, 9.51 mmol) for 18 hours
 according to Example 1, Part D to afford the
 hydroximinoyl chloride (1.17 g, 33%); mp: 178.0-179.8
30 'C; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 9.0 Hz, 2H),
 6.86 (d, J = 9.0 Hz, 2H), 4.17 (bd, J = 12.4 Hz, 2H),
 3.80 (d, J = 6.2 Hz, 2H), 2.74 (dt, J = 12.8, 1.8 Hz,
 2H), 1.95 (m, 1H), 1.81 (bd, J = 12.1 Hz, 2H), 1.46 (s,
 9H), 1.27 (dq, J = 12.5, 4.0 Hz, 2H).

35

-130-

Part F. Methyl 3-(3-[4-(N-t-Butyloxycarbonylpiperidin-4-ylmethoxy)phenyll-(5R,S)-isoxazolin-5-yl)propionate

4-(N-t-Butyloxycarbonylpiperidin-4-ylmethoxy)benz-5 aldoximinoyl chloride (738 mg, 2.00 mmol), methyl 4pentenoate (230 mg, 2.02 mmol) and TEA (0.28 mL, 2.0 mmol) were heated at reflux for 1 hour according to Example 1, Part E. Crystallization from ether/hexanes afforded 537 mg (60%). mp: 97.9-99.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 9.0 10 Hz, 2H), 4.74 (m, 1H), 4.15 (bd, J = 13.2 Hz, 2H), 3.81(d, J = 6.2 Hz, 2H), 3.67 (s, 3H), 3.40 (dd, J = 16.5,10.2 Hz, 1H), 2.95 (dd, J = 16.5, 7.3 Hz, 1H), <math>2.73 (dt,J = 13.2, 1.1 Hz, 2H), 2.52 (t, J = 7.3 Hz, 2H), 1.98 15 (q, J = 7.0 Hz, 2H, overlapping m, 1H), 1.81 (bd, J =12.8 Hz, 2H), 1.45 (s, 9H), 1.26 (dq, J = 12.4, 3.7 Hz, 2H).

Part G. 3-(3-[4-(N-t-Butyloxycarbonylpiperidin-4-ylmeth-20 oxy)phenyll-(5R.S)-isoxazolin-5-yl)propionic Acid

Methyl 3-(3-[4-(N-t-butyloxycarbonylpiperidin-4ylmethoxy)phenyl]-(5R, S)-isoxazolin-5-yl)propionate (250
mg, 0.560 mmol) was saponified using 0.5M LiOH (2 mL, 1
mmol) in THF (2 mL). The reaction was stirred at room
temperature for 3 hours, according to Example 1, Part F.
The resulting solid was crystallized from DCM/hexanes to
give 163 mg (67%) of the carboxylic acid; mp: 146.5147.7 °C; ¹H NMR (300 MHz, CDCl3) δ 7.57 (d, J = 8.8 Hz,
30 2H), 6.88 (d, J = 8.8 Hz, 2H), 4.75 (m, 1H), 3.81 (d, J
= 6.2 Hz, 2H), 3.41 (dd, J = 16.5, 10.3 Hz, 1H), 2.95
(dd, J = 16.5, 7.3 Hz, 1H), 2.75 (bt, J = 12.4 Hz, 2H),
2.57 (t, J = 7.3 Hz, 2H), 1.97 (m, 3H), 1.81 (bd, J =
12.1 Hz, 2H), 1.45 (s, 9H), 1.24 (m, 2H).

-131-

Part H. 3-(3-[4-(Piperidin-4-ylmethoxy)phenyl]-(5R,S)-isoxazolin-5-yl)propionic Acid. Trifluoroacetic Acid Salt

3-(3-[4-(N-t-Butyloxycarbonylpiperidin-4-ylmethox-y)phenyl]-(5R,S)-isoxazolin-5-yl)propionic acid (103 mg, 0.238 mmol) was Boc-deprotected using 33% TFA/DCM according to Example 1, Part G, giving 88 mg (83%) of the TFA salt; mp: 179.1-181.8 °C; ¹H NMR (400 MHz, MeOH-10 d4) δ 7.60 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 4.73 (m, 1H), 3.94 (d, J = 6.1 Hz, 2H), 3.46 (m, 3H), 3.06 (m, 3H), 2.45 (dt, J = 7.3, 1.2 Hz, 2H), 2.16 (m, 1H), 2.08 (bd, J = 15.4 Hz, 2H), 1.94 (q, J = 6.6 Hz, 1H), 1.64 (dq, J = 14.2, 4.2 Hz, 2H).

15

Example 7

3-[4-(Piperidin-4-ylmethoxy)phenyl]-(5R,S)-isoxazolin-5-ylacetic Acid, Trifluoroacetic Acid Salt

20 Part A. Methyl 3-[4-(N-t-Butyloxycarbonylpiperidin-4-ylmethoxy)phenyl]-(5R.S)-isoxazolin-5-ylacetate

4-(N-t-Butyloxycarbonylpiperidin-4-ylmethoxy)benzaldoximinoyl chloride (412 mg, 1.12 mmol), methyl 325 butenoate (200 mg, 2.00 mmol) and TEA (0.18 mL, 1.3
mmol) were heated at reflux for 2 hours according to
Example 1, Part E. Crystallization from
chloroform/cyclohexane afforded 329 mg (68%). mp: 97.999.9 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.58 (d, J = 8.8 Hz,
30 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.04 (m, 1H), 4.15 (bd, J
= 13.2 Hz, 2H), 3.81 (d, J = 6.2 Hz, 2H), 3.71 (s, 3H),
3.54 (dd, J = 16.8, 10.3 Hz, 1H), 3.08 (dd, J = 16.8,
7.3 Hz, 1H), 2.86 (dd, J = 16.1, 5.9 Hz, 1H), 2.73 (dt,
J = 12.8, 1.8 Hz, 2H), 2.62 (dd, J = 15.8, 7.7 Hz, 1H),

1.95 (m, 1H), 1.81 (bd, J = 13.2 Hz, 2H), 1.45 (s, 9H), 1.25 (dq, J = 12.8, 4.4 Hz, 2H).

Part B. 3-[4-(N-t-Butyloxycarbonylpiperidin-4-ylmeth-oxy)phenyll-(5R.S)-isoxazolin-5-ylacetic Acid

Methyl 3-[4-(N-t-butyloxycarbonylpiperidin-4ylmethoxy) phenyl]-(5R, S)-isoxazolin-5-ylacetate (329 mg, 0.762 mmol) was saponified using 0.5M LiOH (3 mL, 1.5 10 mmol) in THF (5 mL). The reaction was stirred at reflux for 4 hours, according to Example 1, Part F to give 72 mg (22%) of the carboxylic acid; mp: 164.0-164.8 °C; 1 H NMR (300 MHz, CDCl₃) δ 7.58 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.07 (m, 1H), 4.15 (bd, J = 13.6 Hz, 2H), 3.82 (d, J = 6.2 Hz, 2H), 3.53 (dd, J = 16.8, 10.315 Hz, 1H), 3.10 (dd, J = 16.8, 7.0 Hz, 1H), 2.91 (dd, J =16.1, 5.9 Hz, 1H), 2.73 (dt, J = 14.6, 1.8 Hz, 2H), 2.68 (dd, J = 16.1, 7.3 Hz, 1H), 1.97 (m, 1H), 1.81 (bd, J =13.2 Hz, 2H), 1.45 (s, 9H), 1.26 (dq, J = 12.8, 4.4 Hz, 20 2H).

Part C. 3-[4-(Piperidin-4-ylmethoxy)phenyl]-(5R,S)isoxazolin-5-ylacetic Acid, Trifluoroacetic Acid Salt

3-[4-(N-t-Butyloxycarbonylpiperidin-4-ylmethox-y)phenyl]-(5R,S)-isoxazolin-5-ylacetic acid (72 mg, 0.172 mmol) was Boc-deprotected using 33% TFA/DCM according to Example 1, Part G, giving 64 mg (94%) of the TFA salt; mp: 220 °C (dec); ¹H NMR (300 MHz, MeOH-d4) δ 7.61 (d, J = 9.2 Hz, 2H), 6.97 (d, J = 9.2 Hz, 2H), 5.04 (m, 1H), 3.95 (d, J = 5.9 Hz, 2H), 3.56 (dd, J = 17.2, 10.2 Hz, 1H), 3.45 (bd, J = 12.8 Hz, 2H), 3.18 (dd, J = 17.2, 7.3 Hz, 1H), 3.04 (dt, J = 10.2, 2.9 Hz, 2H), 2.69 (m, 2H), 2.18 (m, 1H), 2.08 (bd, J = 14.6 Hz, 35 2H) 1.63 (bq, 2H).

Example 8

3-[4-(2-Piperidin-4-yl)ethoxyphenyl]-(5R,S)-isoxazolin-5-ylpropionic Acid, Trifluoroacetic Acid Salt

This material was prepared analogously to Example
1, giving the desired material; mp: 114.8-115.7 °C; ¹H

NMR (300 MHz, CD₃OD) δ7.59 (d, J = 8.4 Hz, 2H), 6.95 (d,
J = 8.4 Hz, 2H), 4.72 (m, 1H), 4.07 (t, J = 5.9 Hz, 2H),
3.47 (dd, J = 16.8. 10.2 Hz, 1H), 3.37 (dd, J = 16.8,
10 7.7 Hz, 1H), 2.98 (m, 2H), 2.44 (t, J = 7.3 Hz, 2H),
2.01 (bd, J = 15.0 Hz, 2H), 1.93 (m, 3H), 1.80 (m, 2H),
1.44 (m, 2H).

Example 9

25 erythro- and-threo-3-[3-[4-[(piperidin-4-yl)methoxylphenyl]isoxazolin-5-yl{[butanesulfonyl]aminolpropionate, Trifluoroacetic Acid Salt

20 Part A. <u>Dicyclohexylammonium D.L-2-[(Butanesulfonyl)-aminol-4-pentenoic acid</u>

To a suspension of D,L-2-amino-4-pentenoic acid (2.54 g, 22.06 mmol) in acetonitrile (35 mL) was added BSTFA (7.3 mL, 27.5 mmol). The suspension was heated at 25 55 °C for 2 hours, after which time a golden yellow solution resulted. To this solution was added pyridine (2.2 mL, 27.2 mmol) and n-butanesulfonyl chloride (3.0 mL, 23.1 mmol). The mixture was heated at 70 $^{\circ}\text{C}$ for 20 hours, then cooled to room temperature. Concentration 30 in vacuo afforded a brown oil, to which was added 15% $KHSO_4$ (5 mL). The mixture was stirred for 1 hour and shaken with EtOAc (3x). The combined organic extracts were washed with sat. NaCl, dried (MgSO₄), concentrated and the resulting oil dissolved in ether (5 mL). 35

WO 95/14683

PCT/US94/13155

this solution was added DCHA (4.38 mL, 22.0 mmol), causing immediate precipitation of the dicyclohexylammonium salt. The solid was collected by filtration and pumped to constant weight, giving 8.42 g (92%); mp: 207.1-208.6 °C; 1 H NMR (400 MHz, MeOH-d₄) δ 5.84 (m, 1H), 5.09 (dm, J = 17.1 Hz, 1H), 5.04 (dm, J = 10.2 Hz, 1H), 3.80 (dd, J = 7.1, 5.1 Hz, 1H), 3.18 (m, 2H), 3.02 (m, 2H), 2.49 (m, 2H), 2.06 (m, 4H), 1.78 (m, 8H), 1.55 (m, 12H), 0.94 (t, J = 7.3 Hz).

-134-

10

Part B. Methyl p.1-2-[(Butanesulfonyl)amino]-4-pentenoate

To a solution of dicyclohexylammonium D,L-2-[(butanesulfonyl)amino]-4-pentenoate (8.36 g, 20.07 15 mmol) in MeOH (50 mL) was added HCl-saturated MeOH (50 mL). The resulting suspension was stirred at room temperature for 18 hours, diluted with ether, and filtered. Concentration of the filtrate in vacuo was followed by the addition of ether, a second filtration, 20 and washing of the filtrate with 0.1M HCl, sat. NaHCO3, sat. NaCl. The solution was dried over anhydrous MgSO4, concentrated and placed under vacuum until constant weight to give 4.49 g (90%) of the desired ester as a light brown oil; ¹H NMR (300 MHz, CDCl₃) δ 5.68 (m, 1H), 25 5.19 (bd, J = 1.5 Hz, 1H), 5.15 (m, 1H), 4.78 (bd, J =8.4 Hz, 1H), 4.20 (dt, J = 8.8, 5.8 Hz, 1H), 3.77 (s, 3H), 2.99 (m, 2H), 2.54 (t, J = 6.6 Hz, 2H), 1.76 (m, 2H), 1.42 (sextuplet, J = 7.3 Hz, 2H), 0.93 (t, $J = 7.3 \cdot$ Hz, 3H).

30

Part C. Methyl erythro- and-threo-3-(3-[4-{(Butyloxycar-bonylpiperidin-4-yl)methoxylphenyl]isoxazolin-5-yl{[butanesulfonyllamino])propionate

To a solution of 4-[(N-t-butyloxycarbonylpiperi-din-4-yl)methoxylbenzaldoxime (2.680 g, 8.01 mmol),

methyl D,L-2-[(butanesulfonyl)amino]-4-pentenoate (2.000 g, 8.02 mmol) and TEA (0.11 mL, 0.79 mmol) in THF (10 mL) was added a 5% solution of NaOCl (common household bleach, 15 mL, 10.5 mmol). The resulting mixture was rapidly stirred at room temperature for 20 hours. mixture was diluted with EtOAc and water and the layers were separated. The aqueous portion was washed with EtOAc, and the combined organic fraction washed with sat. NaCl and dried over MgSO4.Concentration in vacuo 10 afforded a light brown oil (4.8 g), which was purified using flash chromatography (0-50% EtOAc/hexanes in 5 steps), giving four components. The least polar of these materials (fractions 8-11) was determined by ${}^{1}\mathrm{H}$ NMR to be the starting olefin (1.520 g, 76%). The next 15 component isolated in order of increasing polarity (fractions 12-15) was determined by ${}^{1}\mathrm{H}$ NMR to be the starting oxime (1.423 g, 53%). The next component off of the column (fraction 20) was determined to be the faster of the two diastereomers (317 mg). This material 20 had co-eluted with an impurity having a ¹H NMR profile similar to the starting oxime and appeared to be approximately 50% pure. The most polar component isolated (fractions 22-25) was assigned as the second diastereomer (395 mg, 8%); mp: 127.5-129.3 °C; ¹H NMR 25 (300 MHz, CDCl₃) δ 7.56 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 5.25 (d, J = 9.5 Hz, 1H), 4.87 (m, 1H), 4.35 (dt, J = 9.2, 3.7 Hz, 1H), 4.15 (bs, 2H), 3.81, (d, J = 6.2 Hz, 2H), 3.78 (s, 3H), 3.49 (dd, J = 16.5, 10.3)Hz, 1H), 3.05 (t, J = 7.7 Hz, 2H), 2.97 (dd, J = 16.5, 30 7.0 Hz, 1H), 2.73 (bt, J = 12.1 Hz, 2H), 2.21 (m, 1H), 1.94 (m, 2H), 1.82 (m, 4H), 1.45 (s, 9H), 1.24 (m, 3H), 0.92 (t, J = 7.3 Hz, 3H).

Part D. 3-(3-[4-{(Butyloxycarbonylpiperidin-4-yl)methoxy)phenyllisoxazolin-5-yl{[butanesulfonyllamino}]propionic Acid (More Polar Diastereomer) 20

WO 95/14683 PCT/US94/13155

A solution of methyl 3-(3-[4-{(butyloxycarbonylpiperidin-4-yl)methoxy)phenyl]isoxazolin-5-yl{[butanesulfonyl]amino])propionate more polar diastereomer (200 mg, 0.344 mmol) in THF (1 mL) was saponified using 0.5M LiOH (1 mL, 0.5 mmol) over 4 hours as per Example 1, Part F. The crude carboxylic acid was crystallized from EtOAc/hexanes, affording 77 mg (39%) of the desired material; mp: 137.3-139.0 °C; 1 H NMR (300 MHz, CDCl₃) δ 10 7.55 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.45 (d, J = 9.5 Hz, 1H), 4.92 (m, 1H), 4.37 (m, 1H), 4.15(b, 2H), 3.81, (d, J = 6.2 Hz, 2H), 3.47 (dd, J = 16.5, 9.9 Hz, 1H), 3.08 (t, J = 8.1 Hz, 2H), 3.01 (dd, J =16.5, 7.0 Hz, 1H), 2.74 (bt, J = 12.1 Hz, 2H), 2.26 (m, 15 1H), 2.01 (m, 2H), 1.81 (m, 4H), 1.45 (s, 9H, overlapped with m, 1H), 1.24 (m, 3H), 0.91 (t, J = 7.3 Hz, 3H).

Part D'. 3-(3-[4-{(Butyloxycarbonylpiperidin-4-yl)meth-oxy}phenyl]isoxazolin-5-yl{[butanesulfonyl]amino})-propionic Acid (Less Polar Diastereomer)

A solution of the impure methyl 3-(3-[4-{(butyloxycarbonylpiperidin-4-yl)methoxy}phenyl]isoxazolin-5yl{[butanesulfonyl]amino})propionate less polar 25 diastereomer (309 mg) in THF (5 mL) was saponified using 0.5M LiOH (2 mL, 1 mmol) over 6 hours as per Example 1, Part F. The crude carboxylic acid was purified using flash chromatography (CHCl₃ - 5-15% MeOH/CHCl₃ step gradient) followed by crystallization from 30 EtOAc/hexanes, affording 169 mg of the desired material; mp: 155 °C (dec); 1 H NMR (400 MHz, DMSO-d₆, 80 °C) δ 7.56 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 4.80 (m,1H), 3.96 (bd, J = 13.2 Hz, 2H), 3.90 (d, J = 6.3 Hz, 2H), 3.77 (bs, 3H), 3.52 (t, J = 7.8 Hz, 1H), 3.38 (dd, 35 J = 14.4, 10.0 Hz, 1H), 2.98 (t, J = 7.8 Hz, 2H), 2.76 (dt, J = 12.2, 1.7 Hz, 2H), 1.95 (m, 2H), 1.75 (m, 4H),

1.41 (s, 9H), 1.38 (d, J = 7.6 Hz, 1H), 1.25 (m, 4H), 0.88 (t, J = 7.3 Hz, 3H).

Part E. 3-(3-[4-{(Piperidin-4-yl)methoxy}phenyllisoxa-zolin-5-yl{[butanesulfonyl]amino})propionic Acid.

Trifluoroacetic Acid Salt (More Polar Diastereomer)

3-(3-[4-{(Butyloxycarbonylpiperidin-4-yl)methox-y)phenyl]isoxazolin-5-yl{[butanesulfonyl]amino})propion-ic acid more polar diastereomer(40 mg, 0.070 mmol) was Boc-deprotected using 33% TFA/DCM according to Example 1, Part G. Recrystallization from methanol then afforded 4 mg (10%) of the TFA salt; mp: 263.5 °C (dec).

Part E'. 3-(3-[4-{(Piperidin-4-yl)methoxy}phenyl]isoxa-zolin-5-yl{[butanesulfonyl]amino})propionic Acid.
Trifluoroacetic Acid Salt (Less Polar Diastereomer)

3-(3-[4-{(Butyloxycarbonylpiperidin-4-y1)methoxy)phenyl]isoxazolin-5-yl{[butanesulfonyl]amino})propionic acid less polar diastereomer(98 mg, 0.173 mmol) was Boc-deprotected using 33% TFA/DCM according to Example 1, Part G, giving 40 mg of the TFA salt. Recrystallization from methanol then afforded 28 mg 25 (29%) of the pure amino acid; mp: 239.4-240.7 °C.

Example 33

4-Carboxymethyl-3-[4-(2-piperidin-4-yl)ethoxyphenyll-(5R,S)-isoxazolin-5-ylacetic Acid, Trifluoroacetic Acid

30 Salt

35

This material was prepared analogously to Example 1, giving the desired material; mp: 141.4 °C (dec); 1 H NMR (400 MHz, CD₃OD, 60 °C) δ 7.60 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.84 (d, J = 17.3 Hz, 1H), 3.66 (s, 3H), 3.59 (d, J = 17.3 Hz, 1H), 3.38 (bd, J =

-138-

12.9 Hz, 1H), 3.24 (t, J = 1.7 Hz, 2H), 3.21 (dm, J = 20.3 Hz, 1H), 3.04 (d, J = 1.5 Hz, 2H), 3.00 (dt, J = 12.9, 2.9 Hz, 2H), 2.02 (bd, J = 14.4 Hz, 2H), 1.95 (m, 1H), 1.81 (m, 2H), 1.48 (m, 2H).

5

Example 43

3(R,S)-{5(R,S)-N-[3-(4-Amidinophenyl)isoxazolin-5-ylacetyl]amino}-3-phenylpropanoic Acid

10 Part A. 4-Cvanobenzaldoxime

This material was prepared from 4-cyanobenzaldehyde according to Kawase and Kikugawa (<u>J. Chem. Soc., Perkin Trans I</u> 1979, 643).

15

Part B. Methyl 3-(3-Butenoyl)amino-3-phenylpropionate

To a solution of vinylacetic acid (861 mg, 10.0 mmol), methyl 3-amino-3-phenylpropionate hydrochloride 20 (2.37 g, 11.0 mmol) and TEA (1,6 mL, 12 mmol) in DCM (20 mL) at -10 °C was added DEC (2.11 g, 11.0 mmol). The resulting mixture was stirred at -10 °C for 15 hours. The mixture was then washed with water, 0.1 M HCl, sat. NaHCO3, sat. NaCl and dried over anhydrous MgSO4. 25 Concentration in vacuo followed by pumping until constant weight was achieved gave 2.36 g (95%) of the desired amide as a golden oil of suitable purity for further reaction; ¹H NMR (300 MHz, CDCl₃) δ 7.28 (m, 5H), 6.78 (bd, J = 7.7 Hz, 1H), 5.95 (m, 1H), 5.43 (dt, J =8.4, 5.9 Hz, 1H), 5.25 (m, 2H), 3.61 (s, 3H), 3.04 (d, J 30

= 7.0 Hz, 2H), 2.88 (dq, J = 15.0, 5.9 Hz, 2H).

5

10

15

Part C. Methyl $3(R,S)-[5(R,S)-N-[3-(4-Cyanophen-yl)isoxazolin-5-ylacetyllamino}-3-phenylpropanoate$

This material was prepared from methyl 3-(3-Butenoyl) amino-3-phenylpropionate (816 mg, 3.30 mmol) and 4-cyanobenzaldoxime (438 mg, 3.00 mmol) according to Example 4, Part B. The crude product was then purified using flash chromatography (70%-EtOAc/hexanes), affording 731 mg (62%) of the desired isoxazolines as a 1:1 mixture of diastereomers; 1 H NMR (300 MHz, CDCl₃) δ 7.74 (m, 8H), 7.29 (m, 10H), 6.92 (bm, 2H), 5.42 (m, 2H), 5.16 (m, 2H), 3.64 (s, 3H), 3.60 (s, 3H), 3.48 (m, 2H), 3.26 (dd, J = 17.3, 7.7 Hz, 1H), 3.15 (dd, J = 16.8, 8.1 Hz, 1H), 2.85 (m, 2H), 2.69 (m, 2H).

Part D. Methyl 3(R,S)-(5(R,S)-N-(3-(4-Amidinophen-vl)isoxazolin-5-ylacetyllamino)-3-phenylpropanoate

Into a solution of methyl $3(R,S)-\{5(R,S)-N-\{3-(4-1)\}\}$ 20 cyanophenyl)isoxazolin-5-ylacetyl]amino}-3-phenylpropanoate (587 mg, 1.50 mmol) in 10% DCM/methanol (55 mL) was bubbled dry HCl gas for 2 hours. The mixture was stirred for 18 hours, then concentrated in vacuo. crude imidate was dissolved in methanol (20 mL) and 25 ammonium carbonate added. The resulting mixture was stirred for 18 hours, then filtered. The filtrate was concentrated in vacuo and the residue purified using flash chromatography (CHCl₃ - 20% methanol/CHCl₃). Concentration of the appropriate fractions in vacuo 30 followed by placing the residue under vacuum until constant weight was achieved afforded 193 mg (32%) of the desired amidines; Mass Spectrum (NH3-DCI, e/z, relative abundance) $409 (M + H)^+$, 100%.

-140-

Part E. $3(R,S)-\{5(R,S)-N-\{3-(4-Amidinophenyl)isoxazolin-5-ylacetyl]$ amino $\}-3-phenylpropanoic Acid. Trifluoroacetic Acid Salt$

PCT/US94/13155

Methyl 3(R,S)-{5(R,S)-N-{3-(4-amidinophen-yl)isoxa-zolin-5-ylacetyl]amino}-3-phenylpropanoate (45 mg, 0.113 mmol) was saponified using 0.5 M LiOH (0.6 mL, 0.3 mmol) according to Example 1, Part F, affording 28 mg (49%); Mass Spectrum (NH3-DCI, e/z, relative abundance) 412 (M + H)+, 100%.

Example 120a

Methyl 3(R) - (5(R,S) - N - (3 - (4-amidinophenyl)) isoxazolin-5-ylacetyllamino}-3-phenethylpropanoate

Part A. (E)-Methyl-5-phenyl-2-pentenoate

15

A solution of hydrocinnamaldehyde (13.42 g, 0.1 mol) and methyl (triphenylphosphoranylidene) acetate

20 (33.44 g, 0.1 mol) in THF was stirred at reflux for 20 hours. The reaction mixture was concentrated under vacuum and the residue was purified by flash chromatography using hexane:EtOAc::9:1. The desired product was obtained as a clear, pale yellow oil (8.0 g, 0.042 mol, 42%); ¹H NMR (300 MHz, CDCl₃) & 7.3-7.2 (m, 2H), 7.2-7.1 (m, 3H), 7.1-6.9 (m, 1H), 5.85 (d, 1H, J = 5.8 Hz), 3.75 (s, 3H), 2.8 (t, 2H, J = 7.7 Hz), 2.55 (q, 2H, J = 7.4 Hz); MS (NH₃-DCI) 191 (M+H) +.

30 Part B. Methyl 3-(R)-[N-(1-(R)-1-phenylethyl)aminol-5-phenylpentanoate

A mixture of (E)-methyl-5-phenyl-2-pentenoate (5.70 g, 0.03 mol) and R-methylbenzylamine (14.54 g, 0.12 mol)

35 was heated at 110°C over 94 hours. The cooled reaction mixture was purified by flash chromatography using

hexane:EtOAc::8:2 to afford 1.18 g (0.0038 mol, 12%) of the desired product as a clear liquid; 1 H NMR (300 MHz, CDCl₃) δ 7.4-7.0 (m, 11H), 3.9 (q, 1H, J = 6.5 Hz), 3.65 (s, 3H), 2.9-2.65 (m, 2H), 2.6-2.35 (m, 3H), 1.75-1.6

-141-

5 (m, 2H), 1.35 (d, 3H, J = 6.2 Hz); MS (NH₃-DCI) 312 (M+H)⁺.

Part C. Methyl 3-(R)-amino-5-phenylpentanoate • acetic acid salt

10

15

20

25

A mixture of methyl 3-(R)-[N-(1-(R)-1-phenylethyl)amino]-5-phenylpentanoate (0.72 g, 2.3 mmol), 20% Pd(OH) $_2$ /C (0.38 g), cyclohexene (8.2 mL), glacial HOAc (0.13 mL, 2.3 mmol), and MeOH (15 mL) was heated at reflux under N $_2$ for 20 hours. After cooling, the catalyst was removed by filtration through a Celite plug, rinsed with MeOH, and the solution concentrated under vacuum. The residue was triturated with hexane to afford 0.46 g (96%) of a white solid, mp = 73-75°C; 1 H NMR (300 MHz, DMSO) δ 8.3 (bs, 2H), 7.35-7.15 (m, 5H), 3.65 (s, 3H), 3.45-3.35 (m, 1H), 2.8-2.6 (m, 4H), 2.0-1.7 (m, 2H); $[\alpha]_D^{25}$ -12.50° (c=0.0032, MeOH).

Part D. Methyl 3(R)-[5(R,S)-N-[3-(4-cvanophenyl)isoxazolin-5-vlacetyl]amino}heptanoate

To a suspension of 3-(4-cyanophenyl)isoxazolin-5-ylacetic acid (460 mg, 2.0 mmol) in EtOAc (15 ml) was added methyl 3-(R)-amino-5-phenylpentanoate acetic acid salt (410 mg, 2.0 mmol), TBTU (640 mg, 2.0 mmol), and Et₃N (0.56 mL, 400 mg, 4.0 mmol). After stirring at room temp for 16 hours, the reaction mixture was concentrated under vacuum then purified by flash chromatography using EtOAc to afford 690 mg (83%) of a colorless oil. ¹H NMR (300 MHz, DMSO) & 8.05 (brs, 1H), 7.95-7.9 (m, 2H), 7.85-7.8 (m, 2H), 7.3-7.25 (m, 2H),

7.2-7.1 (m, 2H), 5.15-5.0 (m, 1H), 4.15-4.0 (m, 1H), 3.6 (d, 3H, J = 9.9 Hz), 3.3 (d, 2H, J = 6.9 Hz), 3.25-3.15 (m, 1H), 2.75-2.35 (m, 6H), 1.8-1.6 (m, 2H); MS (NH₃-DCI) 420 (M+H)⁺.

5

Part E Methyl 3(R)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-3-phenethylpropanoate

This material was prepared from methyl 3(R){5(R,S)-N-[3-(4-cyanophenyl)isoxazolin-5ylacetyl]amino}-3-phenethylpropanoate (670 mg, 1.6 mmol)
according to Example 43, Part D. The crude product was
triturated with cold ether to afford 272 mg (39%) of a

15 white solid of the title compound as a 1:1 mixture of
diastereomers, mp = 76-78°C; ¹H NMR (300 MHz, DMSO) δ

8.1-8.0 (m, 1H), 8.0-7.8 (m, 4H), 7.95-7.85 (m, 5H),
7.35-7.2 (m, 5H), 5.1-5.0 (m, 1H), 4.1-4.0 (m, 1H), 3.6
(s, 3H), 3.3-3.15 (m, 2H), 2.7-2.4 (m, 6H), 1.8-1.7 (m,
20 2H), 1.1-1.0 (m, 2H); Mass Spectrum (NH3-ESI,) 437 (M +
H)+.

Example 120b

Methyl $3(S) - \{5(R, S) - N - \{3 - (4 - amidinophenyl) isoxazolin - 5 - ylacetyllamino\} - 3 - phenethylpropanoate$

Part A. Methyl 3-(S)-(N-(1-(R)-1-phenylethyl)) aminol-5-phenylpentanoate

A mixture of (E)-methyl-5-phenyl-2-pentenoate (5.70 g, 0.03 mol) and R-methylbenzylamine (14.54 g, 0.12 mol) was heated at 110°C over 94 hours. The cooled reaction mixture was purified by flash chromatography using hexane:EtOAc::8:2 to afford 1.20 g (0.0039 mol, 13%) of the desired product as a clear liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.0 (m, 11H), 3.9 (q, 1H, J = 6.6 Hz),

3.65 (s, 3H), 2.95-2.8 (m, 1H), 2.75-2.5 (m, 2H), 2.45-2.35 (m, 2H), 1.9-1.65 (m, 2H), 1.3 (d, 3H, J = 6.6 Hz); MS (NH₃-DCI) 312 (M+H)⁺.

5 Part B. <u>Methyl 3-(S)-amino-5-phenylpentanoate • acetic acid salt</u>

Methyl 3-(S)-[N-benzyl-N-(1-(R)-1phenylethyl) amino]heptanoate (0.93 g, 2.9 mmol), 20% 10 $Pd(OH)_2/C$ (0.47 g), cyclohexene (10.1 mL), glacial HOAc (0.17 mL, 2.9 mmol), and MeOH (20 mL) were heated at reflux under N_2 for 48 hours. After cooling, the catalyst was removed by filtration through a Celite plug, rinsed with MeOH, and the solution concentrated 15 under vacuum. The residue was triturated with hexane to afford 0.65 g (80%) of a white solid, mp = $86-88^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.15 (m, 5H), 5.3 (brs, 2H), 3.65 (s, 3H), 3.35-3.2 (m, 1H), 2.8-2.55 (m, 3H), 2.5-2.4 (m, 1H), 2.0 (s, 3H), 1.8 (q, 2H, J = 7.4 Hz); 20 $[\alpha]_D^{25}$ +9.55° (c=0.220, MeOH).

Part C. Methyl 3(S-{5(R,S)-N-[3-(4-cvanophenyl)isoxazolin-5-vlacetyllamino}heptanoate

To a suspension of 3-(4-cyanophenyl)isoxazolin-5-ylacetic acid (700 mg, 2.6 mmol) in EtOAc (15 ml) was added methyl 3-(S)-amino-5-phenylpentanoate acetic acid salt (600 mg, 2.6 mmol), TBTU (830 mg, 2.6 mmol), and Et₃N (1.09 mL, 790 mg, 7.8 mmol). After stirring at room temp 16 hours, the reaction mixture was concentrated under vacuum then purified by flash chromatography using EtOAc to afford 420 mg (38%) of a colorless oil. ¹H NMR (300 MHz, CDCl₃) & 8.05-8.0 (m, 1H), 7.95-7.9 (m, 2H), 7.85-7.8 (m, 2H), 7.3-7.2 (m, 2H), 7.2-7.1 (m, 3H), 5.15-5.0 (m, 1H), 4.15-4.0 (m,

-144-

1H), 3.6-3.55 (m, 3H), 3.3-3.1 (m, 1H), 2.7-2.4 (m, 6H), 1.8-1.6 (m, 2H); MS (NH₃-DCI) 420 (M+H)⁺.

Part D. <u>Methyl 3(S)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyllamino}-3-phenethylpropanoate</u>

This material was prepared from methyl 3(S){5(R,S)-N-[3-(4-cyanophenyl)isoxazolin-510 ylacetyl]amino}-3-phenethylpropanoate (360 mg, 0.86
mmol) according to Example 43, Part D. The crude
product was triturated with cold ether to afford 230 mg
(62%) of an amorphous solid of the title compound as a
1:1 mixture of diastereomers, mp = 84-86°C; 1H NMR (300
15 MHz, DMSO) & 8.1-8.0 (m, 1H), 8.0-7.8 (m, 4H), 7.75-7.7
(m, 1H), 7.3-7.1 (m, 6H), 5.1-5.0 (m, 1H), 4.15-4.0 (m,
1H), 3.65 (s, 3H), 3.3-3.1 (m, 1H), 2.7-2.6 (m, 3H),
2.5-2.4 (m, 3H), 1.8-1.65 (m, 2H), 1.1-1.0 (m, 2H);
Mass Spectrum (NH3-ESI) 437 (M + H)+.

20

Example 189

5(R,S)-(2-Piperidin-4-yl)ethyl-8-(2-carboxyethyl)-1-oxa-2,8-diazaspiro[4,4]non-2-ene-7,9-dione

25

Part A. 3-(N-t-Butyloxycarbonylpiperidin-4-yl)propanal

To a suspension of PCC (11.52 g, 53.44 mmol) and sodium acetate (4.38 g, 53.4 mmol) in DCM (60 mL) was added a solution of 3-(N-t-butyloxycarbonylpiperidin-4-yl)propanol (10.00 g, 41.09 mmol) in DCM (20 mL). After 4 hours at room temperature, the mixture was diluted with ether and passed though a short column of fluorisil® using ether as an eluent. The eluate was concentrated in vacuo and placed under vacuum until constant weight was achieved, affording 8.32 g (84%) of

the desired aldehyde as a colorless oil; 1 H NMR (300 MHz, CDCl₃) δ 9.76 (t, J = 1.5 Hz, 1H), 4.05 (bs, 2H), 2.64 (bt, J = 11.7 Hz, 2H), 2.45 (dt, J = 7.3, 1.5 Hz, 2H), 1.60 (m, 3H), 1.43 (s, 9H, overlapped with m, 2H), 1.08 (dq, J = 12.1, 4.0 Hz, 2H).

5

25

Part B. (E.Z)-3-(N-t-Butyloxycarbonylpiperidin-4-yl)propanal Oxime

10 To a solution of 3-(N-t-butyloxycarbonylpiperidin-4-yl)propanal (3.905 g, 16.18 mmol) in EtOH : pyr = 1 : 1 (20 mL) was added hydroxylamine hydrochloride (1.701 g, 24.48 mmol) and the resulting solution stirred at room temperature for 20 hours. Concentration in vacuo, 15 resulted in an oil, which was dissolved in EtOAc and washed with 0.1 M HCl (3x), water, sat. CuSO₄ (2x), water and brine. The solution was dried over MgSO4, concentrated in vacuo and placed under vacuum until constant weight was achieved, affording 4.071 g (98%) of 20 a 1 : 1 mixture of the (E, Z)-oxime as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (t, J = 6.2 Hz, 0.5H), 6.70 (t, J = 5.5 Hz, 0.5H), 4.06 (bs, 2H), 2.67 (bt, J =12.8 Hz, 2H), 2.41 (m, 1H), 2.23 (m, 1H), 1.66 (b, 2H), 1.45 (s, 9H, overlapped with m, 4H), 1.08 (m, 2H).

Part C. Methyl (5R.S)-3-{[2-(N-t-Butyloxycarbonylpiperidin-4-vl)ethyll-5-carboxymethylisoxazolin-5-vl}acetate

To a solution of (E,Z)-3-(N-t-butyloxycarbonylpi30 peridin-4-yl)propanal oxime (503 mg, 1.96 mmol) and
dimethyl itaconate (620 mg, 3.92 mmol) in DCM (3 mL) was
added a 5% solution of sodium hypochlorite (common
household bleach, 3 mL, 2 mmol). The resulting mixture
was stirred overnight (19 hours) at room temperature.
35 The layers were separated and the aqueous washed with
DCM (2x). The combined DCM fraction was dried over

30

35

MgSO₄ and concentrated *in vacuo*. Purification using flash chromatography (hexanes - 10% EtOAc/hexanes - 50% EtOAc/hexanes) followed by concentration and pumping to constant weight afforded the desired isoxazoline (510 mg, 63%) as a colorless oil; 1 H NMR (300 MHz, CDCl₃) 8 4.06 (bd, J = 13.6 Hz, 2H), 3.78 (s, 3H), 3.67 (s, 3H), 3.57 (d, J = 17.6 Hz, 1H), 3.15 (d, J = 16.5 Hz), 3.06 (d, J = 17.6 Hz, 1H), 2.86 (d, J = 16.5 Hz, 1H), 2.65 (bt, J = 12.1 Hz, 2H), 2.36 (m, 2H), 1.65 (m, 2H, overlapped with H₂O, 2H), 1.43 (s, 9H), 1.07 (m, 2H).

Part D. <u>(5R.S)-3-{{2-(N-t-Butyloxycarbonylpiperidin-4-</u> yl)ethyl]-5-carboxyisoxazolin-5-yl}acetic Acid

To a solution of methyl (5R,S)-3-{[2-(N-t-butyloxy-carbonylpiperidin-4-yl)ethyl]-5-carboxymethylisoxazol-in-5-yl}acetate (380 mg, 0.921 mmol) was saponified using 0.5M LiOH (5 mL, 2.5 mmol) in THF (5 mL). The reaction was stirred at ambient temperature for 5 hours, according to Example 1, Part F to give 240 mg (68%) of the diacid; mp: 154.4-154.9 °C; ¹H NMR (300 MHz, MeOH-d4) δ 4.04 (bd, J = 13.2 Hz, 2H), 3.52 (d, J = 17.8 Hz, 1H), 3.18 (d, J = 17.8 Hz, 1H), 2.97 (AB quartet, Δ = 32.6, J = 16.8 Hz, 2H), 2.72 (b, 2H), 2.39 (m, 2H), 1.71 (bd, J = 13.2 Hz, 2H), 1.51 (m, 3H), 1.43 (s, 9H), 1.05 (m, 2H).

Part E. <u>5(R,S)-2-(N-t-Butyloxycarbonylpiperidin-4-</u> yl)ethyl-8-[(2-(1,1-dimethylethoxycarbonyl)ethyl]-1-oxa-2,8-diazaspiro[4,4]non-2-ene-7,9-dione

To a solution of $(5R,S)-3-\{[2-(N-t-butyloxycarbon-ylpiperidin-4-yl)ethyl\}-5-carboxyisoxazolin-5-yl}acetic acid (700 mg, 1.82 mmol) in THF (5 mL) was added DCC (378 mg, 1.83 mmol), and the resulting suspension was stirred for 30 min at room temperature. To this mixture$

m, 1H), 1.11 (m, 2H).

PCT/US94/13155

was added a suspension of β -alanine t-butyl ester hydrochloride (372 mg, 2.05 mmol) and TEA (300 μ L, 2.15 mmol) in THF (5 mL). The mixture was stirred overnight (18 hours) at room temperature. Following dilution with EtOAc, the mixture was filtered and the filtrate washed with 0.1M HCl, sat. NaHCO3 and sat. NaCl. It was dried over anhydrous MgSO4, concentrated and placed under vacuum until constant weight was reached, giving 430 mg (46%) of the crude amide. A portion of this material 10 (420 mg, 0.821 mmol) was dissolved in THF (4 mL). To this solution was added HOSuc (100 mg, 0.869 mmol) followed by DCC (180 mg, 0.872 mmol). The resulting suspension was stirred at room temperature for 18 hours. Following dilution with ether, the mixture was cooled to 15 0 °C and filtered. The filtrate was dried over anhydrous MgSO4, concentrated and placed under vacuum until constant weight was reached, giving 430 mg (86%) of the crude active ester. A portion of this material (402 mg, 0.660 mmol) was dissolved in DMF (5 mL) at 0 20 *C. To this solution was added NaH (16 mg, 0.66 mmol). After 3 hours at 0 °C, the reaction was quenched with HOAc. After dilution with EtOAc, the mixture was washed with water (4x), sat. NaHCO3, water, 0.1M HCl and sat. It was dried over anhydrous MgSO4, concentrated 25 and placed under vacuum until constant weight was reached, giving 230 mg (70%) of the crude imide. The crude material was purified using flash chromatography (CHCl₃ - 5% MeOH/CHCl₃), affording 149 mg (46%) of a colorless oil after concentration of the appropriate 30 fractions and pumping to constant weight; ¹H NMR (300 MHz, CDCl₃) δ 4.09 (b, 2H), 3.82 (t, J = 7.3 Hz, 2H), 3.54 (d, J = 17.2 Hz, 1H), 3.12 (d, J = 18.7 Hz, 1H), 2.98 (d, J = 17.2 Hz, 1H), 2.83 (d, J = 18.7 Hz, 1H), 2.69 (m, 2H), 2.57 (t, J = 7.3 Hz, 2H), 2.42 (m, 2H),1.68 (m, 2H), 1.57 (m, 2H), 1.45 (s, 9H, coincident with 35

-148-

Part F. 5(R.S)-(2-Piperidin-4-yl)ethyl-8-(2-carboxyethyl)-1-oxa-2.8-diazaspiro[4.4]non-2-ene-7.9-dione

5

To a solution of 5(R,S)-2-(N-t-butyloxycarbonylpiperidin-4-yl) ethyl-8-[(2-(1,1-dimethylethoxycarbonyl)ethyl]-1-oxa-2,8-diazaspiro[4.4]non-2-ene-7,9-dione (75 mg, 0.152 mmol) in DCM (1 mL) was added TFA (0.5 mL, 10 8 mmol). The reaction was stirred at room temperature for 2 hours, then was concentrated in vacuo. Excess TFA was chased by rotary evaporation with toluene (2x). Crystallization from MeOH/ether gave 10 mg (15%) of the desired amino acid after pumping to constant weight; mp: 15 178.0-179.1 °C; ¹H NMR (400 MHz, DMSO-d₆, 60 °C) δ 12.15 (bs, 1H), 8.26 (bs, 2H), 3.64 (m, 2H), 3.39 (d, J = 17.8Hz, 1H), 3.26 (m, 3H), 2.98 (AB quartet, $\Delta = 71.3$ Hz, J = 18.3 Hz, 2H), 2.85 (m, 2H), 2.50 (m, 1H, coincident with DMSO-d₅), 2.37 (t, J = 7.6 Hz, 2H), 1.84 (bd, J =20 11.7 Hz, 2H), 1.58 (m, 1H), 1.52 (t, J = 7.6 Hz, 2H), 1.29 (m, 2H).

Example 190

5(R,S)-(2-Piperidin-4-yl)ethyl-8-(3-carboxypropyl)-1-0xa-2,8-diazaspiro[4,4]non-2-ene-7,9-dione

This material was prepared using the procedures outlined in Example 189, giving the title compound; mp: 133.4-135.1 °C; 1 H NMR (400 MHz, CD₃OD, 55 °C) δ 3.59 (t, 30 J = 6.8 Hz, 2H), 3.50 (d, J = 17.7 Hz, 1H), 3.38 (bd, J = 12.9 Hz, 2H), 3.18 (d, J = 17.7 Hz, 1H), 2.98 (m, 4H), 2.85 (m, 2H), 2.50 (m, 1H, coincident with DMSO-d₅), 2.45 (m, 2H), 2.31 (t, J = 7.1 Hz, 2H), 2.00 (m, 2H), 1.98 (pentuplet, J = 7.1 Hz, 2H), 1.40 (m, 2H).

-149-

Example 275

N³-[3-(4-amidinophenyl)isoxazolin-5(R. S)-ylacetyl]-L-2.3-diaminopropinoic acid TFA salt

5 Part A. <u>3-(4-cyanophenyl)isoxazolin-5(R, S)-ylacetic</u> acid.

To a solution of 4-cyanobenzaldoxime (see Ex 43, Part A) (312 g, 2.13 mol) in tetrahydrofuran (3000 ml) at room temperature was added vinyl acetic acid (552g, The yellow solution was cooled in an ice 10 6.41 mol). bath and sodium hypochlorite solution (5200 ml) was added in a dropwise fashion over 2h. After stirring overnight at room temperature the reaction was quenched with a 5% citric acid solution and diluted with 200ml ether. The layers were separated and the aqueous acidified to pH 4 15 using citric acid. The acid layer was washed twice with 200 ml ether, the ether layers combined and extracted with saturated sodium bicarbonate solution. After acidifying the basic layer with citric acid, the product 20 was extracted into 400 ml ether. The organic phase was washed three times with 150 ml water, once with brine, dried (MgSO₄) and concentrated to give 220g of 3-(4cyanophenyl)isoxazolin-5-ylacetic acid as a white solid. Recrystallization from 25% water/ethanol yielded 165g of 25 analytically pure material. Anal. Calcd for C₁₂H₁₀N₂O₃: C, 62.61; H, 4.38; N, 12.17. Found: C, 62.37; H 4.47; N, 11.71. ¹H NMR (300MHz, CDCl₃): δ 7.77-7.76 (d, 2H, J=1.8Hz); 7.72-7.71 (d, 2H, J=1.8Hz); 5.22-5.14 (m, 1H); 3.63-3.54 (dd, 1H, J=10.6Hz, 16.8Hz); 3.19-3.11 (dd, 1H, J=7.3Hz, 16.8Hz); 3.00-2.93 (dd, 1H, J=6.2Hz, 16.5Hz); 30 2.79-2.72 (dd, 1H, J=7.3Hz, 16.5Hz). IR(KBr pellet): 3202, 2244, 1736, 1610, 1432, 1416, 1194, 1152, 928, 840, 562 cm^{-1} .

35 Part B. Methyl N2-Cbz-L-2.3-diaminopropionate HCl salt.

-150-

 N^2 -Cbz-L-2,3-diaminopropionic acid (10 mmol, 2.39 g) was dissolved in 20 mL methanol and 20 mL 4 N HCl in dioxane and the solution was stirred for 4 hours and then concentrated to give a solid. The solid was washed with ether several times to give 2.50 g (87%) product. NMR (DMSO-d₆): δ 8.38 (b, 3H); 7.96 (d, 1H); 7.38 (m, 5H); 5.05 (s, 2H); 4.44 (m, 1H); 3.66 (s, 3H); 3.14 (m, 2H).

10 Part C. Methyl N^2 -Cbz- N^3 -[3-(4-cyanophenyl)isoxazolin-5(R, S)-ylacetyl]-L-2,3-diaminopropionate.

To a solution of 3-(4-cyanophenyl)isoxazolin-5(R, S)-ylacetic acid. (19 mmol, 4.37 g), methyl N²-Cbz-L
2,3-diaminopropionate HCl salt (20 mmol, 5.76 g) and triethylamine (60 mmol, 8.36 mL) was added TBTU (20 mmol, 6.42 g) and the solution was stirred for 2 hours. Ethyl acetate was added and the solution was washed with dilute citric acid, brine, NaHCO3 and brine, dried

(MgSO4), and concentrated. Crystallization from ethyl acetate/ether gave 6.85 g (78%) product. NMR (DMSO-d6): 8.16 (t, 1H); 7.92 (d, 2H); 7.82 (d, 2H); 7.68 (d, 1H); 7.36 (m, 5H); 5.04 (m, 3H); 4.20 (m, 1H); 3.64 (s, 3H); 3.50 (m, 2H); 3.26 (m, 2H); 2.50 (m, 2H).

Part D. Methyl $N^3-[3-(4-amidinophenyl)]$ isoxazolin-5(R, S)-ylacetyll-L-2,3-diaminopropionate HCl salt.

HCl gas was bubbled into a solution of methyl N²
30 Cbz-N³-[3-(4-cyanophenyl)isoxazolin-5(R, S)-ylacetyl]-L
2,3-diaminopropionate (2.1 mmol, 1.0 g) for 1 hour and
the solution was stirred overnight and concentrated. The
residue was dissolved in 30 mL 2 M ammonia in methanol
and the solution was stirred overnight, and concentrated

35 to give 1.2 g crude product.

-151-

E. $N^3-[3-(4-amidinophenyl)isoxazolin-5(R, S)-ylacetyl]-L-2,3-diaminopropionic acid TFA salt.$

Methyl N³-[3-(4-amidinophenyl)isoxazolin-5(R, S)ylacetyl]-L-2,3-diaminopropionate HCl salt (200 mg) was
saponified with 1 mL methanol and 1 mL 1 N NaOH for 1
hour and acidified with acetic acid. Purification on
reversed phase HPLC gave 40 mg product. ESI (M+H)+:
Calcd 334.2; Found 334.2.

10

Example 276

 N^2 -Cbz-N3-[3-(4-amidinophenyl)isoxazolin-5(R, S)vlacetvll-L-2,3-diaminopropionic acid TFA salt

15 Part A. Methyl N²-Cbz-N³-[3-(4amidinophenyl)isoxazolin-5(R, S)-ylacetyl]-L-2,3diaminopropionate TFA salt.

To a solution of the compound of Ex. 275, part E

(1.0 mmol, 385 mg) and sodium bicarbonate (5.0 mmol, 400 mg) in 2 mL water, 2 mL acetonitrile and 1 mL DMF was added benzyl chloroformate (1 mmol, 143 μL) and the mixture was stirred for 2 hours at room temperature. The solution was filtered, acidified with TFA and purified on reversed phase HPLC to give 150 mg (25%) product. NMR (DMSO-d6): δ 9.40 (s, 2H); 9.20 (s, 2H); 8.18 (t, 1H); 7.86 (m, 4H); 7.68 (d, 1H); 7.35 (m, 5H); 5.02 (m, 3H); 4.20 (m, 1H); 3.64 (s, 3H); 3.52 (m, 2H); 3.26 (m, 2H); 2.50 (m, 2H).

30

Part B. $N^2-Cbz-N^3-[3-(4-amidinophenyl)isoxazolin-5(R, S)-ylacetyll-L-2,3-diaminopropionic acid TFA salt .$

Methyl N^2 -Cbz- N^3 -[3-(4-amidinophenyl)isoxazolin-35 5(R, S)-ylacetyl]-L-2,3-diaminopropionate TFA salt (0.12 mmol, 70 mg) was dissolved in 2 mL methanol and 1 mL 1 N NaOH and after 1 hour, the solution was acidified

PCT/US94/13155

WO 95/14683

with acetic acid. Purification on reversed phase HPLC gave 50 mg (74%) product. ESI (M+H)+: Calcd 468.2; Found 468.2.

-152-

Example 278

5

 N^2 -n-butvloxycarbonvl- N^3 -[3-(4-amidinophenyl)isoxazolin-5(R. S)-vlacetyll-L-2,3-diaminopropionic acid TFA salt

Methyl N2-n-butyloxycarbonyl-N3-[3-(4amidinophenyl)isoxazolin-5(R, S)-ylacetyl]-L-2,3-10 diaminopropionate TFA salt.

To a solution of the compound of Ex. 275, part E (1.0 mmol, 385 mg) and sodium bicarbonate (2.5 mmol, 200 mg) in 2 mL water, 2 mL acetonitrile and 1 mL DMF cooled 15 in an ice bath was added n-butyl chloroformate (1 mmol, 127 µL). After stirring for 1 hour, the solution was acidified with acetic acid and purified on reversed phase HPLC to give 150 mg (27%) product. NMR (DMSO-d6): 20 δ 9.40 (s, 2H); 9.20 (s, 2H); 8.16 (t, 1H); 7.86 (m, 4H); 7.47 (d, 1H); 5.02 (m, 1H); 4.16 (m, 1H); 3.94 (t, 2H); 3.62 (s, 3H); 3.50 (m, 2H); 3.26 (m, 2H); 2.50 (m, 2H); 1.52 (m, 2H); 1.32 (m, 2H); 0.88 (t, 3H). ESI (M+H)+: Calcd 448.3; Found 448.3. 25

Part B. N2-n-butyloxycarbonyl-N3-[3-(4amidinophenyl) isoxazolin-5(R. S)-ylacetyll-(S)-2.3diaminopropionic acid TFA salt.

30 Methyl N2-n-butyloxycarbonyl-N3-[3-(4amidinophenyl) isoxazolin-5(R, S)-ylacetyl]-(S)-2,3diaminopropionate TFA salt (0.107 mmol, 60 mg) was dissolved in 2 mL methanol and 2 mL 1 N NaOH and after 1 hour, the solution was acidified with acetic acid. Purification on reversed phase HPLC gave 53 mg (89%) 35 product. ESI (M+H)+: Calcd 434.3; Found 434.3.

-153-

Example 314A

Methyl N²-n-butyloxycarbonyl-N³-[3-(4-amidinophenyl)isoxazolin-5(S)-ylacetyl]-(S)-2.3-diaminopropionate TFA salt

5

Part A: Methyl N2-Cbz-N3-Boc-L-2.3-diaminopropionate.

To a solution of methyl N^2 -Cbz-(S)-2,3diaminopropionate HCl salt (16.3 mmol, 4.7 g) and di-10 tert-butyl dicarbonate (16.3 mmol, 3.56 g) in 30 mL chloroform cooled in an ice bath was added triethylamine (34 mmol, 4.7 mL) and the solution was stirred in the ice bath for 1 hour and at room temperature for 3 hours and concentrated. The residue was taken up in ethyl 15 acetate and the solution was washed with dilute citric acid, brine, NaHCO3 and brine, dried (MgSO4), and concentrated. Crystallization from ether/petroleum ether gave 5.2 g (92%) product. NMR (DMSO-d₆): δ 7.60 (d, 1H); 7.35 (m, 5H); 6.88 (t, 1H); 5.02 (s, 2H); 4.14 (m, 1H); 20 3.60 (s, 3H); 3.28 (m, 2H); 1.37 (s, 9H).

Part B: Methyl N³-Boc-(S)-2.3-diaminopropionate HCO2H
salt. A mixture of methyl N²-Cbz-N³-Boc-(S)-2,3diaminopropionate. (14 mmo, 5.0 g), formic acid (42

25 mmol, 1.6 mL) and 10% Pd/C (500 mg) in 40 mL methanol
was stirred at room temperature for 1 hour and filtered
through a celite. The filtrate was concentrated and the
residue was triturated with ether-petroleum ether to
give 3.7 g (100%) solid product. NMR (DMSO-d6): δ8.20(s,
30 lH); 6.90 (t, 1H); 5.36 (b, 3H); 3.61 9s, 3H); 3.51 (t,
1H); 3.18 (t, 2H); 1.38 (s, 9H).

Part C: Methyl N^2 -n-butyloxycarbonyl- N^3 -Boc-(S)-2.3-diaminopropionate.

35

To a mixture of methyl N_3 -Boc-(S)-2,3-diaminopropionate HCO_2H salt (14 mmol, 3.7 g) and $NaHCO_3$

PCT/US94/13155

10

25

(40 mmol, 3.4 g) in 10 mL water and 10 mL THF cooled in an ice bath was added slowly butyl chloroformate (16 mmol, 2 mL) over 15 min. After stirring for 1 hour, ethyl acetate was added and the solution was washed with dilute citric acid, brine, NaHCO₃ and brine, dried (MgSO₄), and concentrated to give 4.4 g (100%) oily product. NMR (DMSO-d₆): δ 7.37 (d, 1H); 6.84 (t, 1H); 4.10 (m, 1H); 3.96 (t, 2H); 3.60 (s, 3H); 3.26 (m, 2H); 1.52 (m, 2H); 1.38 (s, 9H); 1.36 (m, 2H); 0.88 (t, 3H).

Part D: Methyl N²-butyloxycarbonyl-(S)-2.3-diaminopropionate TFA salt.

Methyl N²-n-butyloxycarbonyl-N³-Boc-(S)-2,3
diaminopropionate (13.9 mmol, 4.4 g) was dissolved in 25 mL methylene chloride and 35 mL TFA and after 1 hour, the solution was concentrated to give an oily product. Yield 4.8 g (100%). NMR (DMSO-d₆): δ 8.02 (b, 3H); 7.68 (d, 2H); 4.38 (m, 1H); 3.99 (t, 2H); 3.68 (s, 3H); 3.22 (m, 1H); 3.06 (m, 1H); 1.55 (m, 2H); 1.34 (m, 2H); 0.89 (t, 3H).

Part E: Methyl-N²-n-butyloxycarbonyl-N³-[3-(4-cyanophenyl)isoxazolin-5(S)-ylacetyll-(S)-2.3-diaminopropionate

To a solution of 3-(4-cyanophenyl)isoxazolin-5(S)ylacetic acid (5.2 mmol, 1.2 g) [Chiral starting
material was prepared from the racemic compound of Ex.

275, Part A by resolution on a 50 X 2 cm Chiralpak AD
column using 0.1% TFA/EtOH at 10° C to give isomer A
(faster eluting) and isomer B (slower eluting).

Alternately, the isomers were resolved by
crystallization of the chinconidine salt of the 5-S
isomer of the isoxazolines from acetone, leaving the
5(R) isomer in the mother liquor. The absolute

WO 95/14683

-155-

stereochemistry of the crystalline salt was determined by X-ray crystallography to be the 5(S) isoxazoline.] and methyl N^2 -butyloxycarbonyl-(S)-2,3-diaminopropionate TFA salt (6 mmol, 1.53 g) in 20 ml DMF cooled in an ice bath was added diisopropylethylamine (20 mmol, 3.5 mL) followed by BOP (5.5 mmol, 2.43 g). After stirring at room temperature for 3 hours, ethyl acetate was added and the solution was washed with 0.5 N HCl, brine, NaHCO3 and brine, dried (MgSO4), and concentrated to 10 give 1.9 g (87%) product. NMR (DMSO-d₆): δ 8.12 (t, 1H); 7.94 (d, 2H); 7.83 (d, 2H); 7.46 (d, 1H); 5.04 (m, 1H); 4.16 (m, 1H); 3.96 (t, 2H); 3.64 (s, 3H); 3.58 (dd, 1H); 3.40 (m, 2H); 3.20 (dd, 1H); 2.56 (dd, 1H); 2.43 (dd, 1H); 1.52 (m, 2H); 1.32 (m, 2H); 0.88 (t, 3H).

15

35

Part F: Methyl- N^2 -n-butyloxycarbonyl- N^3 -[3-(4amidinophenyl)isoxazolin-5(S)-vlacetyll-(S)-2.3diaminopropionate TFA salt.

To a solution of methyl-N2-n-butyloxycarbonyl-N3-20 [3-(4-cyanophenyl) isoxazolin-5(S)-ylacetyl]-(S)-2,3diaminopropionate (4.4 mmol, 1.9 g) in 50 mL methanol was bubbled with HCl gas at 00C for 1 hour and the solution was stirred at room temperature for 5 hours and 25 concentrated. The residue was taken up in 20 mL methanol and ammonium carbonate (11 mmol, 1.1 g) was added. The mixture was stirred at room temperature overnight and concentrated. The solid was dissolved in methanol/water/TFA and purification on reversed phase HPLC gave 1.0 g (40%) product. ESI (M+H)+: Calcd 448.3; 30 Found 448.3.

Example 314B

Methyl-N²-n-butyloxycarbonyl-N³-[3-(4amidinophenvl) isoxazolin-5(R)-vlacetvl]-(S)-2.3diaminopropionate TFA salt

10

Part A: 3-(4-cyanophenyl)-5(R)-vlacetic acid

This material was resolved from 3-(45 cyanophenyl)isoxazolin-5(R,S)-ylacetic acid as described above in the procedure for Example 314A, Part E.

Part B: Methyl- N^2 -n-butyloxycarbonyl- N^3 -[3-(4-cyanophenyl)isoxazolin-5(R)-ylacetyl]-(S)-2,3-diaminopropionate.

This material was synthesized from 3-(4-cyanophenyl)-5(R)-ylacetic acid (4.3 mmol, 1.0 g),

Methyl N²-butyloxycarbonyl-(S)-2,3-diaminopropionate TFA

15 salt (5 mmol, 1.27 g), BOP (4.5 mmol, 2 g) and

diisopropylethylamine (16 mmol, 2.8 mL) using the same

procedure as for XVI. Yield 1.75 g (95%). NMR (DMSO-d6):

δ 8.12 (t, 1H); 7.94 (d, 2H); 7.83 (d, 2H); 7.46 (d,

1H); 5.04 (m, 1H); 4.16 (m, 1H); 3.96 (t, 2H); 3.64 (s,

20 3H); 3.58 (dd, 1H); 3.40 (m, 2H); 3.20 (dd, 1H); 2.56

(dd, 1H); 2.43 (dd, 1H); 1.52 (m, 2H); 1.32 (m, 2H);

0.88 (t, 3H).

Part C: Methyl-N²-n-butyloxycarbonyl-N³-[3-(4-25 amidinophenyl)isoxazolin-5(R)-ylacetyll-(S)-2,3diaminopropionate TFA salt

This compound was synthesized from Methyl-N²-n-butyloxycarbonyl-N³-[3-(4-cyanophenyl)isoxazolin-5(R)-30 ylacetyl]-(S)-2,3-diaminopropionate (4.0 mmol, 1.7 g) using the same procedure as for Example 314A, Part G. Yield 1.0 g (45%). ESI (M+H)+: Calcd 448.3; Found 448.3.

Example 344

35 Methyl 3(R)-[5(R.S)-N-[3-(4-Amidinophenyl)isoxazolin-5-ylacetyllamino}heptanoate

-157-

Part A. (E)-Methyl 2-heptenoate

To a solution of diethyl methylphosphonoacetate (19 ml, 104 mmol) in dry THF (800 ml) at -4 °C was added 64 ml of n-BuLi (1.6 M in hexane, 102 mmol) dropwise over 45 min. The resulting solution was stirred 1 h at room temp. Valeraldehyle (10.0 ml, 94 mmol) was added and stirred 3.5 h at room temp. The reaction was quenched 10 with 25 ml sat. NH₄Cl. Solvents were distilled at atmospheric pressure, and the resulting solids were taken up in EtOAc, extracted with water and brine, and dried with Na₂SO₄. The solvents were again distilled at atmospheric pressure, and the resulting yellow liquid was distilled under house vacuum to yield 7.2 g clear 15 liquid, boiling range under house vacuum 90-125 °C; HRMS, e/z Calc. for $(M+H)^+$: 143.1072. Found: 143.1070; IR(film) 1728, 1658 cm⁻¹.

20 Part B. <u>N-(1-(R)-1-Phenylethyl)benzamide</u>

A solution of benzoyl chloride (22.5 mL, 0.19 mole) in dichloromethane (10 mL) was added dropwise over 1.5 h to a 0 °C solution of (R)-(+)-α-methylbenzylamine (25 mL, 0.19 mole), triethylamine (31 mL, 0.22 mole), and 4-DMAP (100 mg), in dichloromethane (1 L). After 1.75 h at 0 °C the mixture was concentrated in vacuo, then diluted with EtOAc. This mixture was extracted with water, 1 M HCl, water, and brine, then dried (MgSO₄) and concentrated to yield 43.4 g of a colorless crystalline solid; mp 121.0-121.5 °C; IR(KBr) 3332, 1636 cm⁻¹; [α]_D25 -2.30° (c=1.002, CH₂Cl₂); Anal. Calc. for C₁₅H₁₅NO: C, 79.97; H, 6.71; N, 6.22. Found: C, 79.88; H, 6.65; N, 6.17.

35

Part C. N-(1-(R)-1-Phenylethyl)-N-benzylamine

BH3/THF (1 M in THF, 220 mL, 220 mmol) was added dropwise over 1 h to a 0 °C solution of the above benzamide (20 g, 89 mmol) in dry THF (200 mL). The ice bath was removed, and the mixture was heated to reflux A TLC analysis indicated incomplete reaction, so more BH3/THF (1 M in THF, 30 mL, 30 mmol) was added, and heating resumed for 22.5 h. After cooling, MeOH (250 mL) was added dropwise cautiously over 5 h. 10 resulting mixture was boiled for 2 h, then cooled and concentrated in vacuo. Reconcentration from MeOH (2 x 500 mL) and drying under high vacuum gave 19.3 g of an oil containing a small amount of a precipitate. crude product was stirred with hot 2 M HCl (140 mL) to 15 generate a clear solution, then slowly cooled to RT, and ultimately in an ice bath to yield a crystalline solid, as described by Simpkins (Tetrahedron 1990, 46(2), 523). The solid was collected by filtration and rinsed with a small amount of water. After air drying for 3 d, 16.35 20 g of the hydrochloride salt was obtained; mp 178.5- $[\alpha]_D^{21} + 18.9^{\circ}$ (c=4.0, EtOH). The salt was 179.5 °C; converted to the free base by extraction with Et₂O and ag. KOH, then Kugelrohr distilled, oven temp. 120-140 °C $[\alpha]_D^{21} + 61.2^{\circ}$ 25 (1.1 mm Hg) to give 12.5 g of an oil; (c=3.98, EtOH); Anal. Calc. for C₁₅H₁₇N: C, 85.26; H, 8.11; N, 6.63. Found: C, 84.93; H, 7.75; N, 6.58.

30 Part D. Methyl 3-(R)-[N-benzyl-N-(1-(R)-1-phenylethyl)aminolheptanoate

Following the asymmetric Michael addition method of Davies (*Tetrahedron:Asymmetry* **1991**, 2(3), 183), n-butyllithium (1.6 M in hexanes, 4.4 mL, 7.0 mmol) was

-159-

added dropwise over 3 min to a 0 °C solution of N-(1-(R)-1-phenylethyl)-N-benzylamine (1.5 g, 7.0 mmol) in dry THF (35 mL). After 30 min, the resulting dark pinkish-red solution was cooled to -78 °C, and a solution of methyl 2-heptenoate (0.50 g, 3.5 mmol) in THF (10 mL) was added dropwise over 10 min. After 13 min, the cold reaction was quenched with saturated NH4Cl (7 mL). After warming to RT, the mixture was extracted with Et₂O and brine, dried (MgSO₄), and concentrated in 10 The product was purified by chromatography over silica gel, eluting with 0% to 50% EtOAc in hexane. cleanest major product fractions (apart from a few mixed fractions) were concentrated in vacuo to give 0.91 g of a pale yellow oil which by NMR is a single diastereomer, 15 with the newly generated asymmetric center assigned as 3(R) by analogy with the Davies reference above; 13C NMR (300 MHz, CDCl₃) δ 173.31, 143.40, 141.78, 128.40, 128.27, 128.11, 128.00, 126.91, 126.67, 57.90, 54.22, 51.32, 50.05, 36.83, 33.28, 29.32, 22.72, 19.40, 14.12; 20 $[\alpha]_D^{25}$ +12.96° (c=0.602, MeOH).

Part E. Methyl 3-(R)-aminoheptanoate • acetic acid salt

Methyl 3-(R)-[N-benzyl-N-(1-(R)-1-

phenylethyl)amino]heptanoate (0.70 g, 2.0 mmol), 20%
Pd(OH)₂/C (0.35 g), cyclohexene (7 mL), glacial HOAc
 (0.12 mL, 2.1 mmol), and MeOH (14 mL) were heated at
 reflux under N₂ for 20.5 h. After cooling, the catalyst
 was removed by filtration thru a Celite plug, rinsed
with MeOH, and the solution concentrated in vacuo.
Drying overnight under high vacuum yielded 0.43 g of a
 viscous oil; ¹³C NMR (300 MHz, CDCl₃) δ 177.64, 171.52,
 51.97, 48.22, 37.24, 33.08, 27.50, 23.31, 22.29, 13.76;
[α]_D²⁵ -10.6° (c=0.602, MeOH).

Part F. Methyl 3(R)-{5(R,S)-N-[3-(4-cyanophenyl)isoxazolin-5-vlacetyl]amino}heptanoate

To a suspension of 3-(4-cyanophenyl)isoxazolin-5ylacetic acid (300 mg, 1.3 mmol) in EtOAc (10 ml) was
added methyl 3-(R)-aminoheptanoate acetic acid salt (287
mg, 1.3 mmol), TBTU (420 mg, 1.3 mmol), and Et₃N (600
µl, 4.3 mmol). After stirring at room temp 2.5 h, the
reaction mixture was extracted with 5% KHSO₄, sat

NaHCO₃, and brine, then dried with Na₂SO₄. Evaporation,
followed by chromatography over silica gel in 50-100%
EtOAc/hexanes yielded 245 mg colorless glass. MS (NH₃DCI) Calc. for (M+H)⁺: 372, (M+NH₄)⁺: 389. Found:
372, 389.

15

Part G. Methyl 3(R)-{5(R,S)-N-[3-(4-Amidinophenyl)isoxazolin-5-vlacetyl]amino}heptanoate

20 cyanophenyl)isoxazolin-5-ylacetyl]amino}heptanoate (179 mg, .48 mmol) in 15 ml dry MeOH at 0 °C, was added a stream of HCl gas generated from dropping two 20 ml portions of H₂SO₄ into solid NaCl over 35 min. After stirring 20 h at room temp, the solvent was removed with 25 a rapid stream of N_2 . Et₂O was added and removed with a rapid stream of N2. The resulting gummy oil was taken up in 15 ml dry MeOH, to which was added (NH₄)₂CO₃ (1.1g, 11.4 mmol). After stirring 19.5 h at room temp, the solvent was removed with a rapid stream of N2, and the 30 resulting white solid was purified by chromatography over silica gel, eluting with 0-20% MeOH/CHCl3. Purified product was taken up in 5% MeOH/CHCl3 and filtered. Concentration of the filtrate yielded 100 mg IR(KBr) 3600-2800, 1734, 1676, 1640 cm⁻¹; white solid.

-161-

HRMS, e/z Calc. for $(M+H)^+$: 389.2189. Found: 389.2192.

Example 348

5 Ethyl 3(R)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5ylacetyllamino}-5-methylhexanoate • trifluoroacetic acid salt

Part A. (E)-Ethyl 5-methyl-2-hexenoate

10

Prepared in analogous fashion to methyl 2-heptenoate, using triethyl phosphonoacetate, stirring 17h at room temp upon addition of isovaleraldehyde. Distillation under house vacuum yielded 72% clear oil, boiling range under house vacuum 80-130 °C; IR(film) 1724, 1656 cm⁻¹.

Part B. Ethyl 3-(R)-[N-benzy]-N-(1-(R)-1-benylethyl) aminol-5-methylhexanoate

20

25

35

15

Prepared in analogous fashion via the asymmetric Michael addition of Ex. 344, part D above. Yield a viscous pale yellow oil (65%); 13 C NMR (300 MHz, CDCl₃) δ 172.83, 143.56, 142.17, 128.27, 128.21, 128.15, 128.03, 126.96, 126.60, 60.10, 58.56, 52.43, 50.09, 43.23, 36.72, 24.76, 23.48, 22.13, 20.20, 14.21; $[\alpha]_D^{25}$ +5.12° (c=0.606, EtOH).

Part C. Ethyl 3-(R)-amino-5-methylhexanoate • acetic 30 acid salt

Prepared as previously described except EtOH was used as solvent. Yield a waxy solid (94%); mp 57-61 °C; HRMS, e/z Calc. for (M+H)+: 174.1494. Found: 174.1485.

-162-

Part D. Ethyl 3-(R)-amino-5-methylhexanoate • hydrochloric acid salt

The above acetic acid salt (1.1 g, 4.7 mmol) was

5 stirred 4 min in 4 M HCl/dioxane (5.0 ml). The
resulting solution was triturated with Et₂O, cooled, and
the clear liquid decanted, leaving an orange oil which
solidified to 960 mg waxy solid on high vacuum; ¹H NMR
(300 MHz, CDCl₃) & 8.49 (br, 3H), 4.20 (q, J = 7.3, 2H),

10 3.70-3.65 (m, 1H), 2.86-2.80 (m, 2H), 1.83-1.80 (m, 2H),
1.58-1.54 (m, 1H), 1.30-1.26 (t, J = 7.3, 3H), 0.99-0.91
(m, 6H).

Part E. Ethyl 3(R)-(5(R.S)-N-[3-(4-(N-t-butoxycarbonylamidino)phenyl)isoxazolin-5-ylacetyllamino}-5-methylhexanoate

To a suspension of 3-[4-(N-tbutoxycarbonylamidino)phenyl]isoxazolin-5-ylacetic acid 20 (78 mg, 0.22 mmol) in EtOAc (5 ml) was added ethyl 3-(R)-amino-5-methylhexanoate hydrochloride salt (47 mg, 0.22 mmol), TBTU (72 mg, 0.22 mmol), and Et₃N (100 μ l, 0.72 mmol). After stirring 6 h at room temp, the reaction mixture was extracted with pH 4 buffer 25 (potassium hydrogen phthalate), sat NaHCO3, and brine, then dried with Na₂SO₄. Evaporation, followed by chromatography over silica gel in 100% EtOAc yielded 33 mg colorless glass; 1H NMR (300 MHz, CDCl3) ∂ 7.90 (d, J = 8.4, 2H), 7.70 (dd, J = 8.5, J' = 1.9, 2H), 6.32-6.28(m, 1H), 5.13-5.11 (m, 1H), 4.34-4.33 (m, 1H), 4.17-4.09 30 (m, 2H), 3.56-3.47 (m, 1H), 3.25-3.17 (m, 1H), 2.71-2.46(m, 4H), 1.66-1.47 (m, 2H), 1.56 (s, 9H), 1.31-1.23 (m, 4H)4H), 0.92 (dd, J = 6.6, J' = 1.8, 3H), 0.84 (d, J = 6.6, 3H).

15

-163-

Part F. Ethyl 3(R)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyllamino}-5-methyl hexanoate • trifluoroacetic acid salt

The product from Part E above (29 mg, 0.058 mmol) was dissolved in DCM (300 μl), to which was added TFA (100 μl). The resulting solution was stirred at room temp under a CaSO₄ drying tube for 3.5 h, and triturated with Et₂O. 24 mg white solid were collected by filtration; ¹H NMR (300 MHz, CDCl₃) ∂ 9.4 (br, 1H), 9.0 (br, 1H), 7.8 (s, 4H), 5.0 (m, 1H), 4.2 (m, 1H), 4.0 (q, 2H), 3.6 (m, 1H), 3.3 (m, 2H), 2.4 (m, 3H), 1.6 (m, 1H), 1.4 (m, 1H), 1.2 (m, 4H), 0.8 (m, 6H); HRMS, e/z Calc. for (M+H) +: 403.2345. Found: 403.2363.

15

20

Example 350

Methyl 3(R,S)-{5(R,S)-N-{3-(4-amidinophenyl)isoxazolin-5-ylacetyllamino}-4-(phenylthio)butanoate • hydrochloric acid salt:

Part A. Methyl phenylthioacetoacetate

To a solution of thiophenol (5.00 ml, 48.6 mmol)

in DMF (20 ml), K₂CO₃ (10.09 g, 73 mmol) and methyl

chloroacetoacetate (5.93ml, 48.6 mmol) were added. The

reaction mixture was stirred 6 h at 50 °C, diluted with

EtOAc, and extracted with saturated Na₂SO₄, water, and

brine, then dried (Na₂SO₄) and concentrated. The

resulting oil was chromatographed with 20% EtOAc in

Hexane to yield 9.40 g yellow oil; MS (CH4-DCI) Calc.

for (M+H)+: 224. Found: 224; IR(KBr) 2954,1656,1438,

626 cm⁻¹.

35 Part B. <u>Methyl-3(R.S)-amino-4-phenylthiobutanoate</u>

PCT/US94/13155

-164-

To a solution of methyl phenylthioacetoacetate (1.00 g, 4.5 mmol) in MeOH (20 ml), ammonium formate (4.26 g, 6.75 mmol) and sodium cyanoborohydride (0.42 g, 6.7 mmol) were added. The reaction mixture was stirred at room temperature for 18 h, then diluted with EtOAc and partitioned into 1 M HCl. The aqueous layer was then basified to pH = 8.0 with NaOH. The desired product was extracted out with EtOAc, washed with water 10 and brine, dried over Na₂SO₄ and concentrated to yield 0.61 g yellow oil; MS (NH3-CI/DDIP) Calc. for (M+H)+: 226. Found: 226; ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 7, 2H), 7.32-7.26 (m, 3H), 7.22 (d, J = 10, 1H), 3.74(s, 3H), 3.39-3.31 (m, 1H), 3.13-3.07 (dd, J = 13, J' =9, 1H), 2.91-2.83 (dd, J = 12, J' = 6, 1H), 2.65-2.5815 (dd, J = 12, J' = 6, 1H), 2.46-2.38 (dd, J = 16, J' = 8,1H).

Part C. Methyl-3(R,S)-{5(R,S)-N-[3-(4-cyanophen-20 vl)isoxazolin-5- vlacetyllamino}-4-(phenylthio)butanoate

To a suspension of 3-(4-cyanophenyl)isoxazolin-5ylacetic acid (0.50 g, 2 mmol) in EtOAc (10 ml), methyl3(R,S)amino-4-(phenylthio)butanoate (0.51 g, 2 mmol),

TBTU (0.71 g, 2 mmol), and Et₃N (1.24 ml, 8.9 mmol) were
added. The reaction mixture was stirred 2 h at room
temperature, diluted with EtOAc, washed with 5% citric
acid, saturated NaHCO₃, and brine, dried over Na₂SO₄,
concentrated, and the resulting oil was chromatographed
over silica gel in 100% EtOAc to yield 0.61 g of a
yellow glass: MS (NH₃-CI/DDIP) Calc. for (M+H)⁺:
438.1. Found: 438; Anal. Calc. for C₃₂H₂₃N₃O₄S₁: C,
63.31; H, 5.30; N, .60; S, 7.33. Found: C, 62.99; H,
5.22; N, 9.53; S, 7.30.

35

WO 95/14683

10 75/14005

١.

WO 95/14683 PCT/US94/13155

-165-

Part D. Methyl 3(R.S)-[5(R.S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyllamino]-4-(phenylthio)butanoate • hydrochloric acid salt

The product from Part C above (0.30 g, 0.68 mmol) 5 was dissolved in dry MeOH (20 ml) at 0 °C. To the resulting solution, HCl gas was bubbled in from a generator as described in Example 344, Part G, over a period of 2 h. The generator was removed and the 10 reaction mixture stirred at 0 °C for 18 h, then concentrated and triturated with CHCl3. The resulting precipitate was collected by filtration and redissolved in dry MeOH (20 ml). To this solution, ammonium carbonate (0.99 g, 10 mmol) was added and the mixture 15 stirred at room temperature for 18 h. The solution was concentrated and recrystallized from DCM/MeOH to yield 0.14 g white solid; HRMS, e/z Calc. for (M+H)+: 455.1753. Found: 455.175; 1 H NMR (300 MHz, d_{6} -DMSO) δ 9.44 (br s, 1H), 9.18 (br s, 1H), 8.22 (d, J = 10, 1H), 7.86 (m, 4H), 7.41-7.25 (m, 4H), 7.2 (m, 1H), 5.03 (m, 20 1H), 4.2 (m, 1H), 3.59 (s, 3H), 3.29-3.05 (m, 4H), 2.8-2.39 (m, 4H).

Example 359

25

35

Methyl 3(R,S)-{5(R,S)-N-{3-(4-amidinophenyl)isoxazolin-5-ylacetyllamino}-4-(phenylsulfonamido)butanoate • trifluoroacetic acid salt;

30 Part A. Methyl 3-(R,S)-hydroxy-4-aminobutanoate • hydrochloric acid salt

Chlorotrimethylsilane (100 mL, 0.79 mol) was added dropwise over 1.5 h to a stirred 0 °C suspension of 4-amino-3-(R,S)-hydroxybutyric acid (25 g, 0.21 mol) in

WO 95/14683

-166-

PCT/US94/13155

MeOH (1 L). The resulting clear solution was allowed to slowly warm to room temperature overnight. The solvent was evaporated in vacuo, and the resulting residue was reconcentrated from more MeOH (2 x 500 mL). Drying under high vacuum produced 37 g of a viscous oil; 13 C NMR (300 MHz, d_6 -DMSO) δ 171.42, 90.14, 64.67, 51.89, 44.39; Anal. Calc. for C₅H₁₆ClNO₃: C, 35.41; H, 7.13; N, 8.26; Cl, 20.90. Found: C, 35.18; H, 7.09; N, 8.18; Cl, 20.77.

10

Part B. <u>Methyl 3-(R,S)-hydroxy-4-</u> (phenylsulfonamido) butanoate

A solution of benzenesulfonyl chloride (7.5 mL, 59 15 mmol) in dichloromethane (10 mL) was added dropwise over 55 min to a 0 °C solution of the Part A amine salt (10 g, 50 mmol), and Et₃N (17 mL, 120 mmol) in dichloromethane (110 mL). The mixture was allowed to slowly warm to room temperature, and stirring was 20 continued over the weekend. After solvent removal in vacuo, the mixture was diluted with EtOAc and extracted with H₂O, 0.1 M HCl, and brine. Drying (MgSO₄) and solvent removal in vacuo yielded 14.6 g of a viscous oil; ¹³C NMR (300 MHz, CDCl₃) δ 172.67, 139.79, 132.78, 25 129.22, 127.02, 66.77, 52.01, 47.72, 38.31; Anal. Calc. for $C_{11}H_{15}NO_5S$: C, 48.34; H, 5.53; N, 5.13; S, 11.73. Found: C, 48.44; H, 5.61; N, 4.90; S, 11.34.

Part C. Methyl 3-oxo-4-(phenylsulfonamido)butanoate

30

35

The Part B alcohol (2.8 g, 10 mmol) was oxidized with Jones reagent under standard conditions. The ketone was purified by chromatography on silica gel, eluting with 0% to 100% EtOAc in hexane, to yield 1.11 g of a waxy solid; mp 94.5-95.5 °C; 13 C NMR (300 MHz, CDCl₃) δ 197.08, 166.80, 139.17, 133.08, 129.29, 127.17,

-167-

52.71, 51.91, 46.15; Anal. Calc. for C₁₁H₁₃NO₅S: C, 48.70; H, 4.83; N, 5.16; S, 11.82. Found: C, 48.77; H, 4.69; N, 5.08; S, 11.88.

5 Part D. <u>Methyl 3-(R,S)-3-amino-4-</u> (phenylsulfonamido) butanoate

To a room temperature solution of the Part C ketone (0.71 g, 2.6 mmol) in MeOH (7 mL) and THF (3 mL) was 10 added ammonium formate (2.5 g, 39 mmol) and sodium cyanoborohydride (0.25 g, 3.9 mmol). After 45.5 h, solvent was evaporated, and the residue was diluted with EtOAc (70 mL). This solution was extracted with 1.0 M NaOH, H2O, and brine. After concentration, the product 15 was purified by chromatography on silica gel, eluting with 0% to 100% EtOAc in hexane, then 1% to 20% MeOH in EtOAc to yield 0.16 g of a viscous oil, which eventually solidified; ¹H NMR (300 MHz, CDCl₃) ∂ 9.79 (br, 2H), 7.84 (d, 2H, J = 8 Hz), 7.81 (br, 1H), 7.68-7.53 (m, 20 3H), 4.05-3.92 (m, 1H), 3.75 (s, 3H), 3.33-3.17 (m, 2H), 2.89-2.72 (m, 2H); HRMS, e/z Calc. for $(M+H)^+$: 273.0909. Found: 273.0916.

Part E. Methyl 3-(R.S)-(5(R.S)-N-(3-(4-(N-t-25 butoxycarbonylamidino) phenyl)isoxazolin-5-ylacetyllamino}-4-(phenylsulfonamido)butanoate

This compound was prepared analogous to Example 348, Part E, stirring 24 h in 5 ml EtOAc and 1 ml DMF.

Chromatography in 5% MeOH/CHCl₃ yielded 80% of an orange solid; IR(KBr) 3296, 2338, 1736, 1660, 1618 cm⁻¹; HRMS, e/z Calc. for (M+H)⁺: 602.2285. Found: 602.2270.

-168-

Part F. Methyl 3(R,S)-(5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyllamino)-4-(phenylsulfonamido)butanoate • trifluoroacetic acid salt

The product from Part E was deprotected analogously to Example 348, Part F, yielding 86% pink solid; IR(KBr) 3312, 3104, 1734, 1670; HRMS, e/z Calc. for (M+H)+: 502.1760. Found: 502.1761. The more active diastereomer (based on PRP assay) was isolated from the above mixture by SFC HPLC, Chiralpak AD - 2X25 cm, eluted with 0.1% TFA/25% MeOH/75% CO₂. Under these conditions, the more active diastereomer eluted last.

Example 362

15

Methyl 3(R,S)-{5(R,S)-N-[3-(4-amidinophenyl) isoxazolin-5-ylacetyl]amino}-4-(n-butylsulfonamido) butanoate • trifluoroacetic acid salt;

20 Part A. Methyl 3-(R,S)-hydroxy-4-(n-butylsulfonamido)butanoate

This compound was prepared entirely analogously to Ex.359, Part B, using n-butylsulfonylchloride instead.

25 A colorless, waxy solid of excellent purity was obtained in 65% yield without purification; mp 46-50 °C; ¹³C NMR (300 MHz, CDCl₃) δ 172.64, 67.29, 52.56, 51.99, 47.83, 38.40, 25.57, 21.52, 13.55; Anal. Calc. for C9H₁₉NO₅S: C, 42.67; H, 7.56; N, 5.53; S, 12.66.

30 Found: C, 42.69; H, 7.59; N, 5.36; S, 12.78.

Part B. Methyl 3-oxo-4-(n-butylsulfonamido)butanoate

The immediately preceding alcohol was oxidized as described for Example 359, Part C, to give a 57% yield

-169-

of a colorless solid; mp 53-55 °C; Anal. Calc. for C9H17NO5S: C, 43.02; H, 6.82; N, 5.57; S, 12.76. Found: C, 42.68; H, 7.03; N, 5.74; S, 13.06.

5 Part C. Methyl 3(R.S)-3-amino-4-(n-butylsulfonamido) butanoate

This compound was prepared analogous to Example 350, Part B, using the product from Part B above (1.20 g, 4.8 mmol) yielding 0.26 g yellow oil; 1H NMR (300 MHz, CDCl₃) § 3.70 (s, 3H), 3.38 (m, 1H), 3.24-3.13 (m, 1H), 3.02 (m, 4H), 2.58-2.52 (dd, J = 16, J' = 11, 1H), 1.79 (m, 2H), 1.24 (m, 2H), 0.95 (t, 3H); MS (NH4-DCI) Calc. for (M+H) +: 271. Found: 271.

15

١

Part D. Methyl-3(R.S)-{5(R.S)-N-[3-(4-(N-t-butoxycarbonylamidine) phenyl)isoxazolin-5-ylacetyllamino}-4-(n-butylsulfonylamido)butanoate

- To a solution 3-[4-(N-t-butoxycarbonylamidine)phenyl]isoxazolin-5-ylacetic acid (0.24 g, 0.83 mmol) in DMF (20 ml), the product from Part C above (0.29 gr, 0.83 mmol), TBTU (0.27 g, 0.83 mmol), and Et₃N (0.46 ml, 3.3 mmol) was added. After
- stirring 4 h at room temperature, the reaction mixture was diluted with EtOAc, extracted with pH 4 buffer (potassium hydrogen phthalate), saturated NaHCO3, brine, then dried (NaSO4). Concentration, followed by chromatography over silica gel in 100% EtOAc, yielded
- 30 1.17 g of a white foam; MS (NH3-DCI) Calc. for (M+H)+: 582.3. Found: 582; IR(KBr) 3312, 2338, 1620, 1144 cm⁻¹

35 <u>amidinophenyl)isoxazolin-5-ylacetyllamino}-4-(n-butylsulfonylamido)butanoate • trifluoroacetic acid</u>

To a solution of the product from Part D above (0.22 g, 0.37 mmol) in DCM (10 ml), trifluoroacetic acid (2.2 ml) was added. The reaction mixture was stirred 2 h at room temperature, triturated with Et₂O, and the resulting precipitate was chromatographed over silica gel in 20% MeOH in CHCl₃ to yield 0.20 g white solid; HRMS, e/z Calc. for $(M+H)^+$: 482.2073. Found: 482.2090; mp = 178-184 °C.

-171-

Example 365

Methyl {5(R.S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyllamino}-4-(methoxycarbonyl)butanoate • trifluoroacetic acid salt;

- Part A. <u>Dimethyl 3-aminoglutarate hydrochloric acid</u>
 salt
- This product was prepared similarly to Example 359, Part A, from β -glutamic acid to yield the diester as a colorless gum in quantitative yield; HRMS, e/z Calc. for (M+H)+: 176.0923. Found: 176.0933.
- 15 Part B. Methyl (5(R,S)-N-[3-(4-(N-t-butoxycarbonylamidino)phenyl)isoxazolin-5-ylacetyllamino)-4-(methoxycarbonyl)butanoate

5

- Prepared analogous to Example 359, Part E, to yield 32% of a white solid; IR(KBr) 3306, 2338, 1738, 1656, 1620 cm⁻¹; HRMS, e/z Calc. for (M+H)⁺: 505.2298. Found: 505.2283.
 - Part C. Methyl (5(R.S)-N-[3-(4-
- 25 <u>amidinophenyl)isoxazolin-5-ylacetyllamino}-4-</u>
 (methoxycarbonyl)butanoate trifluoroacetic acid salt

Prepared analogous to Example 348, Part F, yielding 83% white solid; IR(KBr) 3316, 3102, 2340, 1736, 1670 30 cm⁻¹; HRMS, e/z Calc. for (M+H)⁺: 405.1774. Found: 405.1775.

Example 368

Methyl 3(R,S)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyllamino}-4-(methoxycarbonyl)pentanoate • trifluoroacetic acid salt;

5 Part A. <u>Dimethyl 3-(R.S)-aminoadipate • hydrochloric</u> acid salt

This product was prepared as in Example 359, Part A, from β-aminoadipic acid to yield a colorless gum in quantitative yield; HRMS, e/z Calc. for (M+H)⁺: 190.1079. Found: 190.1080.

Part B. Methyl-3(R,S)-(5(R,S)-N-[3-(4-(N-t-butoxycarbonylamidine) phenyl) isoxzalin-5-ylacetyl]amino}-4-(methoxycarbonyl) pentanoate

15

This product was prepared similarly as in Example 362, Part D, using the product from Part B above (0.70 g, 3.1 mmol) instead to yield 1.17 g of a white foam;

20 HRMS, e/z Calc. for (M+H)+: 519.2454. Found: 519.2459; Anal. Calc. for C₂₅H₃₄N₄O₈: C, 57.90; H, 6.61; N,10.80. Found: C, 57.73; H, 6.51; N, 10.86.

Part C. Methyl-3(R,S)-{5(R,S)-N-[3-(4-25 amidinophenyl)isoxazolin-5-ylacetyl]amine}-4-(methoxyacarbonyl)pentanoate • trifluoroacetic acid salt

This product was prepared as in Example 362, Part E, using the product from Part C above (1.00 g, 1.9 mmol) to yield 0.9 g white solid; HRMS, e/z Calc. for (M+H)+: 419.1930. Found: 419.1921; mp = 214-215 °C (decomposes).

Example 375

-173-

Preparation of 2-(R,S)-2-Carboxymethyl-1-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-vl acetyl]}piperidine

Part A. Preparation of 2-(Methoxy-2-oxoethyl)piperidine

5

1

Pyridylacetic acid hydrochloride (10.00 g, 57.6 mmol) and platinum(IV) oxide (1.00 g, 4.4 mmol) were shaken in a mixture of 75 ml acetic acid, 75 ml methanol, and 10 ml conc. HCl on Parr under 60 psi hydrogen at room temperature overnight. The mixture was then filtered through Celite, and the filtrate evaporated under reduced pressure to yield 8.42 g (75.9%) of the title compound as an off-white solid. MS (NH₃-CI/DDIP): m/e 158 (M+H)⁺. ¹H NMR (300 MHz, CDCl₃): δ 1.50-1.96 (m, 6H); 2.80 (m, 2H); 3.20-3.60 (m, 3H); 3.76 (s, 3H). ¹³C NMR (60 MHz, d₆-DMSO): δ 21.94; 28.05; 37.46; 40.49; 44.12; 57.33; 52.74; 170.39.

Part B. Preparation of 2-(R,S)-2-(Methoxy-2-oxoethyl)
1-{5-(R,S)-N-[3-(4-cyanophenyl)isoxazolin-5-yl
acetyl]}piperidine

To 2.00 g (8.69 mmol) of 3-(4-cyanophenyl)isoxazolin-5-yl acetic acid in 100 ml anhydrous DMF was 25 added 1.36 g (8.69 mmol) of 2-(methoxy-2oxoethyl)piperidine, 2.80 g (8.69 mmol) of TBTU, and 6.05 ml (34.7 mmol) of diisopropylethylamine. After stirring for 6 hrs, the reaction mixture was diluted with ethyl acetate and washed with 5% aqueous citric 30 acid solution, water, 5% aqueous NaHCO3 solution, and saturated NaCl solution. The organic layer was dried over Na₂SO₄ and filtered. The filtrate was evaporated under reduced pressure to give the crude product as a yellow foam. Purification by flash column chromatography 35 on silica gel using 25-75% ethyl acetate in hexane

-174-

yielded 1.54 g (48%) of the title compound as a yellow foam. One diastereomer (racemic) was isolated from the mixture. MS (NH₃-CI/DDIP): m/e 370 (M+H)⁺. ¹H NMR (300 MHz, CDCl₃): δ 1.42-1.76 (m, 6H); 2.60 (m, 2H); 2.77-3.01 (m, 3H); 3.05-3.26 (m, 2H); 3.56-3.70 (m, 4H); 4.50 (m, 1H); 5.20 (m, 1H); 7.69 (d, J = 8.4 Hz, 2H); 7.77 (d, J = 8.4 Hz, 2H).

Part C. Preparation of 2-(Methoxy-2-oxoethyl)-1-{N-[3-10 (4-amidinophenyl)isoxazolin-5-yl acetyl]}piperidine, (racemic diastereomer A)

HCl gas was bubbled for 2 hrs through a solution of 1.02 g (2.80 mmol) of the product of part B above in 30 ml of anhydrous MeOH cooled in an ice bath. The 15 reaction flask was then sealed with Teflon tape and warmed to room temperature while stirring overnight. MeOH was evaporated under reduced pressure and then under vacuum to give the intermediate imidate as a yellow foam. MS (ESI): m/e 402 $(M+H)^+$. It was then 20 stirred with 8.07 g (84.0 mmol) of $(NH_4)_2CO_3$ in 30 ml anhydrous EtOH overnight in a sealed reaction flask. After filtering, the filtrate was evaporated under reduced pressure to give the crude product as a yellow foam, which was then purified by flash column 25 chromatography using 5-17% MeOH in CH2Cl2 to give 0.29 g (26.8%) of the title compound as a yellow solid. (ESI): m/e 387 (M+H)⁺. ¹H NMR (300 MHz, d₆-DMSO): δ 1.57-1.67 (br., 6H); 2.46-2.90 (m, 5H); 3.16 (m, 2H); 30 3.53-3.64 (m, 4H); 4.36 (br. m, 1H); 5.07 (br. m, 1H); 7.89 (m, 4H); 9.38 (br. s, 3H).

Part D. Preparation of 2-Carboxymethyl-1-{N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]}piperidine, (Racemic Isomer A)

35

To a solution of 0.08 g (0.2 mmol) of the product isolated in Part C above in 5 ml anhydrous THF at ambient temperature was added 0.5 ml (0.5 mmol) of 1.0 M solution of NaOTMS in THF. After stirring overnight,

5 solvent was evaporated under reduced pressure to give a yellow solid, which was recrystallized from MeOH and Et₂O to give 0.05 g (64.9%) of the title compound as a yellow powder. MS (ESI): m/e 373 (M+H)+. ¹H NMR (300 MHz, CD₃OD): δ 1.68 (br., 6H); 2.56 (m, 2H); 2.72 (m, 3H); 2.94 (m, 2H); 3.57 (m, 4H); 4.46 (br., 1H); 5.18 (br., 1H); 7.84 (m, 4H).

Example 377

Preparation of 2-(R,S)-2-Carboxymethyl-1-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyll}azepine

Part A. Preparation of $2-(R,S)-2-(Ethoxy-2-oxoethyl)-1-\{5-(R,S)-N-[3-(4-cyanophenyl)isoxazolin-5-yl acetyl]\}azepine$

20

35

Ť,

15

cyanophenyl)isoxazolin-5-yl acetic acid, using 0.40 g
 (2.17 mmol) of 2-(ethoxy-2-oxoethyl)azepine, 0.70 g
 (2.17 mmol) TBTU, and 1.51 ml (8.70 mmol)

25 diisopropylethylamine, 0.73 g (84.6 %) of the title
 compound was obtained following the procedure of Example
 375, Part B. MS (NH₃-CI/DDIP): m/e 398 (M+H)⁺. ¹H NMR
 (300 MHz, CDCl₃): δ 1.26 (m, 11H); 1.83 (br., 2H); 2.05
 (m, 1H); 2.18-2.65 (m, 2H); 2.76-2.85 (m, 1H); 3.04 (m,
 30 2H); 3.62 (s, 1H); 4.08 (m, 2H); 5.22 (m, 1H); 7.68 (d,

From 0.50 g (2.17 mmol) of 3-(4-

J = 8.4 Hz, 2H); 7.78 (d, J = 8.4 Hz, 2H).

Part B. Preparation of 2-(R,S)-2-(Ethoxy-2-oxoethy1)-1-(5-(R,S)-N-[3-(4-amidinopheny1)isoxazolin-5-ylacetyl])azepine

-176-

From 0.73 g (1.84 mmol) of 2-(R,S)-2-(ethoxy-2-oxoethyl)-1-{5-(R,S)-N-[3-(4-cyanophenyl)isoxazolin-5-ylacetyl]}azepine, using EtOH as the solvent, 0.42 g (61.6%) of the title compound was obtained following the procedure of Example 375, Part C. MS (NH3-CI/DDIP): m/e 415(M+H)+.

1H NMR (300 MHz, d₆-DMSO): δ 1.18 (m, 3H); 1.38 (m, 2H); 1.70 (m, 4H); 2.08 (br., 2H); 2.66 (m, 2H); 3.02-3.26 (m, 2H); 3.60 (br. m, 2H); 4.05 (m, 2H); 4.58 (m, 1H); 5.10 (m, 1H); 7.90 (m, 4H); 9.38 (br. s, 3H).

Part C. Preparation of $2-(R,S)-2-Carboxymethyl-1-\{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]}azepine$

15

20

From 0.16 g (0.35 mmol) of $2-(R,S)-2-(ethoxy-2-oxoethyl)-1-\{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]\}$ azepine and using 0.89 ml (0.89 mmol) of 1.0 M solution of NaOTMS in THF, 0.12 g (82.9%) of the title compound was obtained following the procedure of Example 375, Part D. MS (NH₃-DCI): m/e 387 (M+H)+.

Example 400

- 25 Preparation of 3-(R,S)-(Methoxy-2-oxoethyl)-4-(5-(R,S)-N-(3-(4-amidinophenyl)isoxazolin-5-yl acetyll)piperazin-2-one
- Part A. Preparation of 3-(R,S)-(Ethoxy-2-oxoethyl)-4-30 {5-(R,S)-N-[3-(4-cyanophenyl)isoxazolin-5-yl acetyl]}piperazin-2-one

From 1.00 g (4.34 mmol) of 3-(4cyanophenyl)isoxazolin-5-yl acetic acid, using 0.81 g

(4.34 mmol) of ethyl 2-piperazin-3-one acetate, 1.39 g

(4.34 mmol) TBTU, and 3.02 ml (17.40 mmol)

-177-

diisopropylethylamine, 1.08 g (62.4 %) of the title compound was obtained following the procedure of Example 375, Part B. MS (NH₃-CI/DDIP): m/e 399 (M+H)⁺. ¹H NMR (300 MHz, CDCl₃): δ 1.26 (m, 3H); 2.71-3.65 (br., 9H);

3.87 (br. m, 1H); 4.16 (m, 2H); 5.01 & 5.09 (two t, J =5.0, 5.1 Hz, 1H); 5.20 (m, 1H); 7.00 & 7.12 (two br., 1H); 7.77 (m, 4H).

Part B. Preparation of 3-(R,S)-(Methoxy-2-oxoethyl)-4- $\{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl$ 10 acetyl]}piperazin-2-one

From 1.08 g (2.71 mmol) of 3-(R,S)-(ethoxy-2 $oxoethyl)-4-\{5-(R,S)-N-\{3-(4-cyanophenyl)isoxazolin-5-yl$ 15 acetyl]}piperazin-2-one, 0.30 g (27.6%) of the title compound was obtained, following the procedure of Example 375, Part C. MS (ESI): m/e 402 (M+H)⁺. ¹H NMR (300 MHz, d_6 -DMSO): δ 2.70-3.67 (m, 12H); 3.91 (br., 1H); 4.87 & 4.64 (two m, 1H); 5.06 (m., 1H); 7.88 (m, 20 4H); 8.16 (br., 1H); 9.40 (br. s, 3H).

Example 434

Preparation of $(S)-N^{\alpha}-[3-(4-Amidinophenyl)-isoxazolin-5-$ (R,S)-ylacetyll- α -aspart-N-(2-phenylethyl) amide.

25 trifluoroacetic acid salt

Part A. Preparation of (S)-N α -(Benzyloxycarbonyl)- β -(Ot-butyl)- α -aspart-N-(2-phenylethyl)amide

- 30 To a solution of (S)-N-(Benzyloxycarbonyl)- β -(O-tbutyl)-aspartic acid (BACHEM-Bioscience Inc) (3.20 g, 9.9 mmol) in DCM (25 mL), was added phenethylamine (1.34 g, 11.1 mmol); followed by DEC (2.10 g, 10.9 mmol). The reaction mixture was stirred overnight at room temperature, affording a pale yellow solution. 35
- solution was washed with water, 1M HCl, 5% NaHCO3 and

PCT/US94/13155

sat. NaCl, dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to give 4.28 g (100%) of amide, which was of sufficient purity to be carried on to the next step; 1 H NMR (300 MHz, CDCl₃) δ 7.35 (s, 5H),

- 5 7.17-7.35 (bm, 5H), 6.52 (bs, 1H), 5.93 (bd, J = 8.1 Hz, 1H), 5.10 (s, 2H), 4.46 (bm, 1H), 3.50 (dd, J = 13.9,6.2 Hz, 2H), 2.92 (dd, J = 17.0, 4.2 Hz, 1H), 2.78 (t, J = 7.1 Hz, 2H), 2.57 (dd, J = 17.0, 6.4 Hz, 1H), 1.42 (s, 9H); Mass Spectrum (NH₃-DCI, e/z, relative abundance)
 10 444, (M+NH₄)⁺, 100%; 427, (M+H)⁺, 4%.
 - Part B. Preparation of (S)- β -(O-t-butyl)- α -aspart-N-(2-phenylethyl)amide
- 15 A solution of (S)-N-(benzyloxycarbonyl)- β -(O-t-butyl)- α -aspart-N-(2-phenylethyl)amide (4.09 g, 9.58 mmol) in ethyl alcohol (30 mL) was hydrogenated under atmospheric pressure using 10% palladium on carbon catalyst (1.0 g) for 90 minutes. The catalyst was
- filtered and the filtrate concentrated in vacuo to give 2.80 g of an amber oil, which was purified by flash chromatography (5% MeOH/DCM), affording 2.13 g (76%) of the free amine as a solid product; ^1H NMR (300 MHz, CDCl₃) δ 7.44(bs, 1H), 7.20-7.35 (m, 5H), 3.61 (dd, J =
- 25 8.4, 3.7 Hz, 1H), 3.52 (dd, J = 13.2, 7.0 Hz, 1H), 2.80-2.90 (m, 3H), 2.46 (dd, J = 16.7, 8.4 Hz, 1H), 1.58 (bs, 2H), 1.45 (s, 9H); Mass Spectrum (ESI, e/z, relative abundance) 293, (M+H)⁺, 37%; 237, (M+H-C₄H₈)⁺, 100%.
- 30 Part C. Preparation of Methyl 3-(4-methoxyiminophenyl)-(5R,S)-isoxazolin-5-ylacetate. Hydrochloride Salt

A suspension of 3-(4-cyanophenyl)-(5R,S)isoxazolin-5-ylacetic acid (23.1 g, 100 mmol) in 200 mL
of anhydrous methanol was chilled in an ice bath and dry

-179-

HCl gas was bubbled through the reaction mixture until a clear solution was obtained. The total addition time was about three hours. The reaction flask was sealed and the reaction mixture was allowed to warm to room temperature, with stirring, over a period of about 24 At this point, the methanolic solution was poured into 600 mL of anhydrous ether, precipitating the product, and the resulting slurry was chilled to -25°C for 2 1/2 hours. The slurry was then diluted with an additional 100 mL of chilled anhydrous ether. 10 precipitate was filtered, washed with two 100 mL portions of chilled anhydrous ether, and suction dried under nitrogen to afford 23.3 g (73%) of the hydrochloride salt; 1 H NMR (300 MHz, CDCl₃) δ 12.9 (bs, 1H) 12.2 (bs, 1H), 8.46 (d, J = 8.8 Hz, 2H), 7.86 (d, J15 = 8.8 Hz, 2H, 5.20 (bm, 1H), 4.59 (s, 3H), 3.74 (s,3H), 3.53 (dd, J = 16.8, 10.6 Hz, 1H), 3.15 (dd, J =16.8, 7.7 Hz, 1H), 2.90 (dd, J = 16.1, 6.2 Hz, 1H), 2.70 (dd, J = 16.1, 7.3 Hz, 1H), 1.77 (bs, 1H); Mass Spectrum(NH₃-CI/DDIP, e/z, relative abundance) 277, (M+H)⁺, 20 100%.

Part D. Preparation of methyl 3-(4-amidinophenyl)-(5R,S)-isoxazolin-5-ylacetate. Hydrochloride Salt

25

30

35

٠.

A suspension of methyl 3-(4-methoxyiminophenyl)- (5R,S)-isoxazolin-5-ylacetate hydrochloride (22.9 g, 73.0 mmol) in 500 mL of 1M ammonia in anhydrous methanol was stirred at room temperature for 14 hours during which time all solids dissolved. The solution was concentrated in vacuo to give 22.1 g (100%) of crude hydrochloride salt as a tan solid; H NMR (300 MHz, CDCl₃) δ 9.6-9,2 (b), 7.91 (d, J = 8.8, 2H), 7.87 (d, J = 8.8, 2H), 5.08 (bm, 1H), 3.64 (s, 3H), 3.3-3.1 (m, 2H), 2.8 (m, 2H); Mass Spectrum (ESI, e/z, relative abundance) 264, (M+H)+, 100%.

WO 95/14683

-180-

PCT/US94/13155

Part E. Preparation of Methyl 3-(4-N-Boc-amidinophenyl) isoxazolin-5-ylacetáte

5 To a solution of 21.6 g (72.5 mmol) of methyl 3-(4amidinophenyl) isoxazolin-5-ylacetate (prepared using the procedure of Example 434, Part D) in 350 ml DMF cooled with an ice bath was added 20.2 ml (145 mmol) of triethylamine and 17.4 g (79.8 mmol) of di-tert-butyl 10 dicarbonate. The mixture was warmed to room temperature and stirred for 16 hours. The reaction mixture was poured into 1500 ml water while stirring. A while precipitate formed and was then filtered and dried on the filter under nitrogen to give 19.6 q (74.8%) of the title compound as a white solid. MS (ESI): m/e 362 15 $(M+H)^+$; 306 $(M+H-tBu)^+$. ¹H NMR (300 MHz, d₆-DMSO): δ 1.56 (s, 9H); 2.68 (dd, J = 6.1, 6.1 Hz, 1H); 2.90 (dd, J = 6.1, 6.1 Hz, 1H); 3.14 (dd, J = 6.8, 6.8 Hz, 1H);3.56 (dd, J = 6.8, 6.8 Hz, 1H); 3.74 (s, 3H); 5.14 (m,20 1H); 7.70 (d, J = 8.4 Hz, 2H); 7.90 (d, J = 8.4 Hz, 2H). ¹³C NMR (60 MHz, d₆-DMSO): δ 28.46; 39.31; 39.58; 51.98; 77.89; 78.35; 126.91; 128.51; 132.79; 136.24; 156.86; 164.04; 165.76; 170.93.

25 Part F. Preparation of 3-(4-N-Boc-amidinophenyl) isoxazolin-5ylacetic Acid

To a solution of 18.95 g (52.4 mmol) of methyl 3(4-N-Boc-amidinophenyl)isoxazolin-5-ylacetate (prepared
using the procedure of Example 434, Part E) in 500 ml
methanol was added 2.42 g (57.7 mmol) of lithium
hydroxide monohydrate in 75 ml water at 22°C. The
mixture was stirred at 22°C for 16 hours and then
filtered; the filtrate was then evaporated under reduced
pressure to remove methanol. The residual aqueous phase
was cooled with an ice bath and acidified with 6 N and 1

N HCl to pH = 4. A white solid precipitated and it was left at -4°C overnight. The solid was filtered and dried on the filter under nitrogen to give 17.74 g (97.4%) of the title compound as an off-white powder.

5 MS (ESI): m/e 348 (M+H)+; 292 (M+H-tBu)+. ¹H NMR (300 MHz, d₆-DMSO): δ 1.50 (s, 9H); 2.68 (d, J = 7.0 Hz, 2H); 3.22 (dd, J = 7.2, 7.2 Hz, 1H); 3.62 (dd, J = 6.8, 7.2 Hz, 1H); 5.04 (m, 1H); 7.78 (d, J = 8.4 Hz, 2H); 7.94 (d, J = 8.4 Hz, 2H). ¹³C NMR (60 MHz, d₆-DMSO): δ 28.27; 10 39.30; 40.44; 78.39; 81.55; 126.87; 129.43; 132.78;

Part G. Preparation of $(S)-N^{\alpha}-[3-(4-N-Boc-15-4-N-Boc-15-15-1]$ Amidinophenyl)-isoxazolin-5-(R,S)-ylacetyl]- β -(O-t-butyl)- α -aspart-N-(2-phenylethyl)amide

133.87; 156.76; 158.61; 165.58; 171.91.

To a suspension of (S)- β -(O-t-butyl)- α -aspart-N-(2phenylethyl) amide (0.30 g, 1.0 mmol), 3-(4-N-Boc-20 amidinophenyl)-isoxazolin-5-ylacetic acid (0.35 g, 1.0 mmol), and TBTU (0.32 g, 1.0 mmol) in EtOAc (20 mL), was added triethylamine (460 µL, 0.33 g, 1.0 mmol). reaction mixture was stirred at room temperature for 4.5 It was diluted with EtOAc (20 mL), washed with pH 4 buffer, water, 5% NaHCO3 and sat. NaCl, dried over anhydrous MgSO4, filtered, and concentrated in vacuo to give 0.58 g of solid. The crude product was purified by flash chromatography (100% EtOAc), affording 0.51 g (81%); ¹H NMR (300 MHz, CDCl₃) δ 7.89 (t, J = 8.1 Hz, 2H), 7.69 (m, 2H), 7.25-7.3 (m, 3H), 7.15-7.25 (m, 4H), 30 7.04 (d, J = 8.4 Hz, 1H), 6.65-6.80 (dt, 1H), 5.10 (bm, 1H), 4.71 (bm, 1H), 3.4-3.7 (bm, 3H), 3.1-3.3 (octet, 1H), 2.75-2.95 (m, 3H), 2.5-2.65 (m, 3H), 1.56 (s, 9H), 1.44 (d, 9H); Mass Spectrum (ESI, e/z, relative abundance) 622, $(M+H)^+$, 100 %. 35

-182-

Example 435

Preparation of (S)-Nα-[3-(4-Amidinophenyl)-isoxazolin-5-(R.S)-ylacetyll-α-aspart-N-(2-phenylethyl)amide. trifluoroacetic acid salt

5

10

15

A solution of $(S)-N-[3-(4-N^{\alpha}-Boc-amidinopheny1)-isoxazolin-5-ylacety1]-\beta-(O-t-buty1)-\alpha-aspart-N-(2-phenylethy1) amide (160 mg, 0.26 mmol) in trifluoroacetic acid (10 mL) and DCM (10 mL) was stirred at room temperature for three days. The solution was concentrated in vacuo to give 150 mg of product; <math>^{1}H$ NMR (300 MHz, CDCl₃) δ 9.40 (bs, 2H), 9.26 (bs, 2H), 8.33 (t, J = 8.6, 1H), 7.85-8.0 (m, 1H), 7.88 (s, 4H), 7.3 (m, 1H), 7.28 (d, J = 7.1, 2H), 7.20 (d, J = 7.1, 2H), 5.07 (bm, 1H), 4.56 (bm, 1H), 3.5-3.6 (octet, 1H), 3.26 (bt, J = 7.0, 2H), 3.2 (m, 1H), 2.70 (bt, J = 7.0, 2H), 2.6-2.65 (bm, 2H), 2.4-2.5 (m, 2H); Mass Spectrum (ESI, e/z, relative abundance) 466, (M+H)+, 100%.

20

Examples 473A and 473B

Resolution of Methyl N²-3-methylphenylsulfonyl-N³-[3-(4-amidinophenyl)-5S-ylacetyll-S-2,3-diaminopropionate

trifluoroacetic and Methyl N²-3-methylphenylsulfonylN³-[3-(4-amidinophenyl)-5R-ylacetyll-S-2,3diaminopropionate hydrochloride

The mixture was initially purified on a Pirkle DNBPG

30 column using 10%HOAc/20%EtOH/70% hexane as the eluting solvent. The column temperature was maintained at 45°C, the flow rate at 1.5ml/min, and the detector set at 280nm. The diastereomers were then separated on a chiralcel OD-25 X 2cm column using an eluting solvent of 0.1%TFA/20%MeOH/80%CO2. The column temperature was maintained at 30°C, the flow rate at 13ml/min, the

pressure at 175 atm, and the detector was set at 280nm. Injections were made on 23mg of sample. Over the two columns a total of 300mg was injected giving 59mg of the R isomer, Ex. 473A (HRMS calc'd for C23H27N5O6S 502.176031 Found: 502.175508) and 85mg of the S isomer, Ex. 473B (HRMS calc'd for C23H27N5O6S 502.176031

isomer, Ex. 473B (HRMS calc'd for C₂₃H₂₇N₅O₆S 502.176031 Found: 502.176358).

Example 473C

10 N²-3-methylphenylsulfonyl-N³-[3-(4-amidinophenyl)-5Svlacetyll-S-2,3-diaminopropionic acid

Part A: Methyl-N²-3-methylphenylsulfonyl-N³-[3-(4-cvanophenyl)-5S-vlacetyll-S-2,3-diaminopropionate

Into a solution of 3-(4-cyanophenyl)isoxazolin-5-S-ylacetic acid (1.82g, 7.90mmol, obtained as described in Es. 314A, part F) in DMF (50ml) was added methyl-N²-3-methylphenylsulfonyl-L-2,3-diaminopropionate HCl salt (2.77g, 7.90mmol), TBTU (2.53g, 7.90mmol), and Hünigs base (2.75ml, 15.8mmol). After stirring at room

temperature for 16 hours, the reaction mixture was diluted with EtOAc (500ml) and washed one time with water (200ml), one time with sat'd NaHCO₃ (200ml), one time with 0.1N HCl (200ml), dried (MgSO₄), filtered, and

concentrated. Column chromatography on silica gel using 10% EtOAc/hexane as the eluting solvent gave 1.99g (52%) of the desired material as an off-white foam. 1 H NMR: (CDCl₃): δ 7.81-7.78 (d, 2H, J=8.4Hz); 7.16-7.67 (d, 2H, J=8.8Hz); 7.61-7.58 (m, 2H); 7.39-7.37 (d, 2H,

30 J=5.1Hz); 6.35-6.30 (m, 1H); 5.54-5.52 (d, 1H, J=7.7Hz); 5.18-5.17 (m, 1H); 4.00-3.96 (m, 1H); 3.62-3.50 (m, 3H); 3.57 (s, 3H); 3.27-3.19 (dd, 1H, J-7.7, 17.0Hz); 2.78-2.70 (dd, 1H, J=5.9,14.8Hz); 2.64-2.57 (dd, 1H, J=6.6, 14.6Hz); 2.42 (s, 3H).

-184-

Part B: Methyl-N²-3-methylphenylsulfonyl-N³-13-(4-amidinophenyl)-5S-ylacetyl]-S-2,3-diaminopropionate hydrochloride

Methyl- N^2 -3-methylphenylsulfonyl- N^3 -[3-(4-5 cyanophenyl)-5S-ylacetyl]-S-2,3-diaminopropionate was dissolved in 100ml absolute ethanol at 0°c and a stream of HCl gas was bubbled through the solution for two The reaction vessel was sealed and after sitting at room temperature for 16 hours the volatiles were removed in vacuo. The residue was then diluted with 10 100ml of absolute ethanol, ammonium carbonate (9.6g, 0.123mol) was added and after stirring for 16 hours the reaction mixture was filtered and concentrated in vacuo. Column chromatography on silica using a gradient elution 15 from 5%MeOH/CH₂Cl₂ to 20%MeOH/CH₂Cl₂ gave 0.762g (37%) of the desired amidine as a white solid. ^{1}H NMR (CDCl₃): δ 8.23-8.20 (m, 1H); 7.91-7.85 (m, 4H); 7.57-7.54 (m, 2H); 7.49-7.46 (m, 2H); 5.00-4.94 (m, 1H); 4.08-3.86 (m, 1H); 3.59-3.49 (m, 1H); 3.39 (s, 3H); 3.38-3.29 (m, 3H); 2.49 20 (s, 3H); 2.50-2.45 (m, 2H). HRMS: calc'd for $C_{23}H_{27}N_5O_6S$ 502.176031 found 502.175992. $[\alpha]_D = +48.88^{\circ}$ (c=0.180, MeOH). Part C: N^2-3 -methylphenylsulfonyl- $N^3-[3-(4-$

amidinophenyl)5(S)-yl]acetyl-S-2,3-diaminopropionic acid

The compound of Ex 473C, part B (0.077 g., 0.14 mmol) was dissolved in MeOH (4ml). To the resulting solution was added a solution of lithium hydroxide (0.0066 g., 0.158 mmol) in water (4 ml) and the mixture was stirred overnight at room temperature. The methanol was removed by evaporation in vacuo, and the product precipitated from the agreeus as a white solid (0.026)

precipitated from the aqueous as a white solid (0.026 g., 35%). HRMS calcd for C₂₂H₂₅N₅O₆S: 488.160381; found: 488.160827.

Example 473D

-185-

Methyl-N²-3-methylphenylsulfonyl-N³-[3-(4-amidinophenyl)-5R-ylacetyll-S-2,3-diaminopropionate hydrochloride

5 Part A: Methyl-N²-3-methylphenylsulfonyl-N³-[3-(4-cyanophenyl)-5R-ylacetyl]-S-2,3-diaminopropionate

10

20

This compound was synthesized from 3-(4-cyanophenyl)isoxazolin-5-(R)-ylacetic acid (3.07g, 0.011mol, obtained as described in Ex. 314B, part B) using the same procedure as for example 473C, part A. Yield 41%. Theory: C 57.02, H 4.99, N 11.56 Found: C 56.83, H 4.87, N 11.45.

Part B: Methyl-N²-3-methylphenylsulfonyl-N³-[3-(4amidinophenyl)-5R-ylacetyl]-S-2.3-diaminopropionate hydrochloride

This compound was synthesized from Methyl-N²-3-methylphenylsulfonyl-N³-[3-(4-cyanophenyl)-5R-ylacetyl]-S-2,3-diaminopropionate using the same procedure as for example 473C, part B. Yield 49%. HRMS Calc'd for C₂₃H₂₇N₅O₆S 502.176031 Found: 502.174103.

Example 496

Methyl N²-(2,2-diphenyl-1-ethenesulfonyl)-N³-[3-(4-25 amidinophenyl)isoxazolin-5-(R,S)-ylacetyl]-(S)-2,3diaminopropionate, trifluoroacetic acid salt

Part A: Methyl N^2 -(2,2-diphenyl-1-ethenesulfonyl)- N^3 -Boc-(S)-2,3-diaminopropionate.

To a mixture of methyl N³-Boc-(S)-2,3diaminopropionate (255 mg, 1.17 mmol) and 2,2diphenylethylenesulfonyl chloride (Hasegawa and Hirooka,
J. Chem. Soc. Japan 48,1513-1518 (1975); 391 mg, 1.40
mmol) in methylene chloride (10 mL) cooled in an ice

35 bath was added triethylamine (0.25 mL, 1.76 mmol).

-186-

After 22 h, the mixture was concentrated and flash chromatographed (6:4 toluene/ethyl acetate) to provide 240 mg (46%) of product. NMR (CDCl₃) δ 7.42-7.20 (10H), 6.81 (s,1H), 5.24 (bd,1H), 4.87 (bs,1H), 3.95 (q,1H), 3.72 (s,3H), 3.50-3.42 (2H), 1.44 (s,9H); mass spec (NH₃-CI) m/z 466.54 (M+NH4⁺, 100%).

Part B: Methyl N²-(2.2-diphenyl-1-ethenesulfonyl)-(S)-2.3-diaminopropionate TFA salt.

The product of Part A (210 mg, 0.468 mmol) was dissolved in 5 mL of methylene chloride and 3 mL TFA. After 1 hour, the solution was concentrated to give an oily product. (222 mg, 100%). NMR (DMSO-d₆) δ 8.02 (bs, 3H),7.40 (m, 5H),7.23 (m, 4H), 7.00 (s, 1H), 4.26 (m, 1H), 3.71 (s, 3H), 3.20 (m, 1H), 2.98 (m, 1H).

Part C: Methyl N^2 -(2.2-diphenyl-1-ethenesulfonyl)- N^3 -[3-(4-N-Boc-amidinophenyl)isoxazolin-5-(R.S)-ylacetyl]-(S)-2.3-diaminopropionate.

The product of part B (220 mg, 0.46 mmol) was reacted with 3-(4-N-Boc-amidinophenyl)-isoxazolin-5-ylacetic acid (from Example 434, part F; 160 mg, 0.46 mmol), according to the procedure of example DGB-1, Part A, to provide the title product (215 mg, 68%). NMR (CDCl₃) & 7.84 (m,2H), 7.64 (m,2H), 7.40-7.18 (10H), 6.75 (s,1H), 6.30 (m,1H), 5.30 (m,1H), 5.04 (m,1H), 4.00 (1H), 3.78 (s,3H), 3.62-3.40 (4H), 3.10 (m,1H), 2.70-2.50 (2H), 2.04 (s,1H), 1.58 (s,9H); mass spec (ESI) m/z 690.2 (M+H+, 100%).

30

35

Part D: Methyl N^2 -(2,2-diphenyl-1-ethenesulfonyl)- N^3 -(3-(4-amidinophenyl)isoxazolin-5-(R,S)-ylacetyll-(S)-2,3-diaminopropionate, trifluoroacetic acid salt

The product of part C (210 mg, 0.30 mmol) was dissolved in methylene chloride (3 mL) and treated with

-187-

trifluoroacetic acid (1 mL) according to the procedure of example DGB-1, Part B, to provide the title product (150 mg, 80%). NMR (DMSO-d₆) δ 9.39 (bs,2H), 9.05 (bs,2H), 8.22 (m,1H), 8.00 (m,1H), 7.85 (s,4H), 7.40 (m,6H), 7.20 (m,4H), 6.89 (s,1H), 5.00 (m,1H), 4.00 (m,1H), 3.70-3.18 (5H), 3.62 (2s,3H); mass spec (ESI) m/z 590.2 (M+H⁺, 100%)

1

15

20

25

Example 511.

Methyl N²-(N.N-dimethylsulfamoyl)-N³-[3-(4-amidinophenyl) isoxazolin-5-(R.S)-ylacetyll-(S)-2.3-diaminopropionate, trifluoroacetic acid salt

Part A: Methyl N^2 -(N, N-dimethyl sulfamoyl) $-N^3$ -Boc-(S)-2.3-diaminopropionate.

To a mixture of methyl N³-Boc-(S)-2,3-diaminopropionate (400 mg, 1.80 mmol) and Dimethylsulfamoyl chloride (0.24 mL, 2.20 mmol) in methylene chloride (10 mL) cooled in an ice bath was added triethylamine (0.38 mL, 2.20 mmol). After 18 h, the mixture was concentrated and flash chromatographed (6:4 toluene/ethyl acetate) to provide 283 mg (49%) of product. NMR (CDCl₃) δ 5.23 (bd,1H), 4.90(m,1H), 4.06 (m,1H), 3.80 (s,3H), 3.52 (bt,2H), 2.80 (s,6H), 1.42 (s,9H); mass spec (NH₃-CI) m/z 343.0 (M+NH₄+, 100%).

Part B: Methyl N^2 -(N,N-dimethyl sulfamoyl)-(S)-2.3-diaminopropionate TFA salt.

The Product of Part A was dissolved in 5 mL of methylene chloride and 3 mL TFA. After 1 hour, the solution was concentrated to give an oily product (294 mg, 100%). NMR (DMSO-d₆) δ 6.52 (bs,2H), 4.4-3.9 (2H), 3.8 (bs,3H), 2.93 (bs,6H).

20

25

30

Part C: Methyl N^2 -(N,N-dimethyl sulfamoyl)- N^3 -[3-(4-N-Boc-amidinophenyl)isoxazolin-5-(R,S)-ylacetyll-L-2.3-diaminopropionate.

The product of part B (200 mg, 0.61 mmol) was

5 reacted with 3-(4-N-Boc-amidinophenyl)isoxazolin-5ylacetic acid (from Example 434, part F; 212 mg, 0.61
mmol), according to the procedure of DGB-1, Part A, to
provide the title product (203 mg, 61%). NMR (CDCl₃) δ

7.78 (m,2H), 7.42 (bt,2H), 7.00 (m,1H), 5.92 (m,1H),

5.04 (m,1H), 3.80 (2s,3H), 3.64 (m,2H), 3.40 (m,1H),

3.05 (m,1H), 2.80 (2s,6H), 2.74 (m,1H), 2.60 (m,1H),

2.02 (s,3H), 1.60 (s,9H); mass spec (ESI) m/z 555.1
(M+H⁺, 100%).

15 Part D: Methyl N²-(N,N-dimethyl sulfamoyl)-N³-[3-(4-amidinophenyl)isoxazolin-5-(R,S)-ylacetyl]-L-2,3-diaminopropionate, trifluoroacetic acid salt

The product of part C (183 mg, 0.329 mmol) was dissolved in methylene chloride (3 mL) and treated with trifluoroacetic acid (1 mL) according to the procedure of example DGB-1, Part B, to provide the title product (159 mg, 85%). NMR (DMSO-d₆) δ 9.40 (bs,2H), 9.00 (bs,2H), 8.22 (m,1H), 7.82 (s,4H), 5.00 (m,1H), 3.95 (m,1H), 3.68 (2s,3H), 3.60 (m,2H), 3.20 (m,4H), 2.80 (s,6H); mass spec (ESI) m/z 455.1 (M+H⁺, 100%).

Example 512

Methyl N²-(m-toluenesulfonyl)-N³-[3-(4-amidino-2-fluorophenyl)isoxazolin-5-ylacetyll-S-2.3-diaminopropionate hydrochloric acid salt

Part A: 3-Fluoro-4-methylbenzamide

3-Fluoro-4-methylbenzoic acid (10 g, 65 mmol) was boiled in thionyl chloride (100 mL) under a drying tube for 2.5 h. The excess SOCl₂ was removed by distillation. The oily acid chloride product was

-189-

diluted with CH₂Cl₂ (100 mL) and cooled in an ice bath.

Conc. aq. NH₃ (20 mL) was added dropwise, and stirring continued at 0 °C for 0.5 h. The CH₂Cl₂ was removed in vacuo, then the residue was diluted with EtOAc. The

5 mixture was extracted with sat. aq. Na₂CO₃ (2x), H₂O, and brine, dried (MgSO₄), and concentrated to yield 9.9 g of a pale yellow solid; mp 161-163 °C; IR(KBr) 3382, 1654 cm⁻¹; Anal. Calc. for C₈H₈FNO: C, 62.74; H, 5.27; N, 9.15; F, 12.40. Found: C, 62.66; H, 5.17; N,

Part B: 3-Fluoro-4-methylbenzonitrile

A solution of trichloroacetyl chloride (7.3 mL, 65 mmol) in CH₂Cl₂ (20 mL) was added dropwise over 0.5 h to a solution/suspension of the Part A amide (9.0 g, 59 mmol) and Et₃N (17 mL, 120 mmol) in CH₂Cl₂ (80 mL) at 0 °C. After 40 min, the mixture was concentrated in vacuo, then diluted with Et₂O. This solution was extracted with 1 M HCl, sat. aq. NaHCO₃, H₂O, and brine, then dried (MgSO₄), and concentrated to yield 7.8 g of a tan solid; mp 45-47 °C; IR(KBr) 2232 cm⁻¹; HRMS, e/z Calc. for (M+H) +: 135.0484. Found: 135.0482.

Part C: 2-Fluoro-4-cyanobenzylbromide

N-Bromosuccinimide (9.6 g, 54 mmol) and the part B substrate (7.3 g, 54 mmol) were heated under reflux in CCl₄ (100 mL) under N₂ with irradiation with a high intensity visible lamp for 2 h. After cooling to ambient temp., the mixture was filtered through a Celite pad and concentrated in vacuo. The crude product was recrystallized from hot cyclohexane (4x) to yield 4.5 g of off-white needles; mp 75-77 °C; IR(KBr) 2236 cm⁻¹; HRMS, e/z Calc. for (M+H)+: 213.9668. Found: 213.9660.

35

7

•

Part D: 2-Fluoro-4-cyanobenzaldehyde

25

30

The part C benzyl bromide (3.68 g, 17 mmol), trimethylamine N-oxide dihydrate (7.6 g, 68 mmol), CH₂Cl₂ (15 mL), and DMSO (30 mL) were stirred at 0 °C for a few h, slowly warming to ambient T overnight. The mixture was diluted with water (30 mL) and brine (30 mL), and extracted with Et₂O (4x). The combined organics were washed with brine, dried (MgSO₄), and concentrated to yield 1.1 g of a yellow solid; IR(KBr) 2238, 1706 cm⁻¹; HRMS, e/z Calc. for (M+H)+:

Part E: 2-Fluoro-4-cyanobenzaldoxime

The part D aldehyde (1.1 g, 7.4 mmol), hydroxylamine hydrochloride (1.0 g, 15 mmol), K₂CO₃ (1.0 g, 7.4 mmol), water (1 mL), and MeOH (10 mL) were heated under reflux for 2.25 h. After brief cooling, the mixture was diluted with water, and the insoluble product was collected by filtration, then rinsed with more water. Drying under high vacuum provided 0.94 g of a pale yellow amorphous solid; mp 179-182 °C; IR(KBr) 3256, 2236, 1556 cm⁻¹; HRMS, e/z Calc. for (M+H) +: 165.0464. Found: 165.0455.

Part F: Methyl 3-(4-cyano-2-fluorophenyl)isoxazolin-5-ylacetate

The part E oxime was allowed to react with Clorox and methyl vinylacetate in the usual way to afford the isoxazoline as a yellow solid in 32% yield; mp 92-94 $^{\circ}$ C; IR(KBr) 2240, 1746 cm⁻¹; HRMS, e/z Calc. for (M+H)⁺: 263.0832. Found: 263.0818. Anal. Calc. for C₁₃H₁₁FN₂O₃: C, 59.54; H, 4.23; N, 10.68; F, 7.24. Found: C, 59.84; H, 4.31; N, 10.53; F, 7.26.

Part G: Methyl N²-(m-toluenesulfonyl)-N³-(3-(4-amidino-35 2-fluorophenyl)isoxazolin-5-ylacetyll-S-2.3diaminopropionate hydrochloric acid salt

-191-

The part F intermediate was converted to the title compound via the usual sequence of steps: Pinner amidine synthesis, amidine BOC protection, ester saponification, condensation with the 2,3-diaminopropionate sulfonamide ester, and BOC deprotection to provide a yellow gum; HRMS, e/z Calc.

Example 513

10 Methyl N²-(n-butyloxycarbonyl)-N³-[3-(3-amidinopyrid-6-yl) isoxazolin-5-ylacetyll-S-2,3-diaminopropionate bis hydrochloric acid salt

for (M+H) +: 520.1666. Found: 520.1675.

Prepared using methods described in Ex. 514 to provide a pale yellow powder; mp 90-110 °C (dec); HRMS, e/z Calc. for (M+H)+: 449.2149. Found: 449.2140.

Example 514

20 Methyl N²-(m-toluenesulfonyl)-N³-[3-(3-amidinopyrid-6-yl)isoxazolin-5-ylacetyl]-S-2.3-diaminopropionate bis hydrochloric acid salt

Part A: 3-cvano-6-pvridaldoxime

5-Cyano-2-picoline (25 g, 0.21 mol) and I₂ were heated under reflux in DMSO (200 mL) for 1 h. After cooling to RT, hydroxylamine hydrochloride (16 g, 0.23 mol), K₂CO₃ (29 g, 0.21 mol), and water (21 mL) were added. The resulting mixture was heated to 80 °C for 2.5 h, cooled, diluted with water (100 mL) and much acetone, and absorbed onto silica gel by concentration. Chromatography on silica gel, eluting with 0% to 50%

EtOAc in hexane, afforded 12.2 g of a tan solid; mp

204-207 °C (dec); HRMS, e/z Calc. for (M+H) +:

35 148.0511. Found: 148.0516.

PCT/US94/13155

WO 95/14683

Part B: Methyl 3-(3-cyanopyrid-6-yl)isoxazolin-5-<u>vlacetate</u>

The oxime of Ex. 514, part A was converted to the isoxazoline as described in Ex. 516, part B in 76% yield 5 as a yellow solid; mp 97-98 °C; HRMS, e/z Calc. for (M+H) +: 246.0879. Found: 246.0881. Anal. Calc. for $C_{12}H_{11}N_{3}O_{3}$: C, 58.77; H, 4.52; N, 17.13. Found: C, 58.74; H, 4.51; N, 17.11.

-192-

10 Part C: Methyl 3-(3-t-butyloxycarbonylamidinopyrid-6vl)isoxazolin-5-ylacetate

15

20

25

35

The nitrile of Ex. 514, part B was converted to the amidine as described in the method of Ex. 516, parts D & E (except that 0.6 eq. NaOMe was required), and BOC protected in standard fashion to afford, after purification, a yellow solid; mp 143 °C (gas evolves); HRMS, e/z Calc. for $(M+H)^+$: 363.1668. Found: 363.1675. Anal. Calc. for C₁₇H₂₂N₄O₅: C, 56.35; H, 6.12; N, 15.46. Found: C, 56.35; H, 6.10; N, 15.39.

Part D: Lithium 3-(3-t-butyloxycarbonylamidinopyrid-6vl)isoxazolin-5-ylacetate

The ester of Ex. 514, part C was saponified and lyophilized as described in the method of Ex. 516, part F to give a colorless amorphous solid quantitatively; mp >230 °C; HRMS, e/z Calc. for conjugate acid (M+H) +: 349.1512. Found: 349.1527.

Part E: Methyl N^2 -(m-toluenesulfonyl)- N^3 -[3-(3amidinopyrid-6-yl)isoxazolin-5-ylacetyll-S-2.3-30 diaminopropionate bis hydrochloric acid salt

The part D lithium carboxylate was converted to the title compound by treatment with HCl in MeOH to provide a yellow solid; mp 90 °C (dec); HRMS, e/z Calc. for $(M+H)^+$: 503.1713. Found: 507.1718.

-193-

Example 515

Methyl N^2 -(n-butyloxycarbonyl)- N^3 -[3-(2-amidinopyrid-5-yl)isoxazolin-5-ylacetyll-S-2, 3-diaminopropionate bis

5 <u>hydrochloric acid salt</u>

In similar fashion to the method described in Ex. 516, the compound of Ex. 514, part E was coupled with methyl N²-(n-butyloxycarbonyl)-2,3-diaminopropionate hydrochloride using conditions described above, followed by BOC deprotection with 4 M HCl/dioxane to yield a pale yellow powder; HRMS, e/z Calc. for (M+H)+: 449.2149. Found: 449.2154.

15 <u>Example 516</u>

Methyl N^2 -(m-toluenesulfonyl)- N^3 -[3-[3-[2-amidinopyrid-5-yl)isoxazolin-5-ylacetyl]-S-2, 3-diaminopropionate bis hydrochloric acid salt

20 Part A: 2-Chloro-5-pyridaldoxime

2-Chloro-5-formylpyridine (2.1 g, 15 mmol) was condensed with hydroxylamine hydrochloride in the usual way to give the oxime, 1.5 g, as a yellow crystalline solid; mp 171-175 °C (dec); HRMS, e/z Calc. for (M+H) +: 157.0169. Found: 157.0175.

Part B: <u>Methyl 3-(2-chloropyrid-5-yl)isoxazolin-5-ylacetate</u>

30

35

25

10

Clorox (20 mL) was added dropwise over 1.75 h to a mixture of the part A oxime (1.13 g, 7.2 mmol), methyl vinylacetate (70% purity, 3.0 g, 21 mmol), CH_2Cl_2 (40 mL), and DMF (4 mL) with stirring at ambient temperature. The CH_2Cl_2 was evaporated, and the mixture was diluted with EtOAc, extracted with water (5x) and

brine, then dried (MgSO₄), filtered, and concentrated. Chromatography on silica gel, eluting with 0% to 70% EtOAc in hexane, afforded 1.4 g of a solid; mp 94-96 °C; HRMS, e/z Calc. for (M+H) +: 255.0536. Found: 255.0531.

Part C: Methyl 3-(2-cyanopyrid-5-yl)isoxazolin-5-ylacetate

The part B chloropyridine (0.51 g, 2.0 mmol), zinc cyanide (0.23 g, 2.0 mmol), Pd(PPh₃)₄ (0.12 g, 0.10 mmol), and DMF (2 mL) were heated to 80 °C under N₂ for 3 days. After cooling and concentration, the mixture was preabsorbed onto silica gel by concentration from CHCl₃. Chromatography on silica gel, eluting with 0% to 90% EtOAc in hexane afforded 0.28 g of a pale yellow solid; mp 115-116 °C; HRMS, e/z Calc. for (M+H) +: 246.0879. Found: 246.0880. Anal. Calc. for C₁₂H₁₁N₃O₃: C, 58.77; H, 4.52; N, 17.13. Found: C, 58.68; H, 4.48; N, 16.90.

20

25

30

35

5

Part D: Methyl 3-(2-amidinopyrid-5-yl)isoxazolin-5-ylacetate formic acid salt

The part C cyanopyridine (0.47 g, 1.9 mmol) and sodium methoxide (prepared in situ from Na metal, 4 mg, 0.2 mmol were stirred in dry MeOH (6 mL) at ambient temperature for 16 h, after which ¹H NMR analysis of a reaction aliquot indicated complete formation of methyl imidate [note 9.25 (s, 1H) and 3.92 (s, 3H)]. Ammonium formate (0.60 g, 9.5 mmol) was added to the reaction mixture, and stirring continued for 7 h. The mixture was absorbed onto silica gel by concentration in vacuo. Chromatography on silica gel, eluting with 0% to 20% MeOH in CHCl₃, and concentration afforded 0.61 g of the amidine as an off-white solid; mp 180-182 °C (dec); HRMS, e/z Calc. for (M+H) +: 263.1144. Found: 263.1148.

10

15

25

PCT/US94/13155 WO 95/14683

-195-

Part E: Methyl 3-(2-t-butyloxycarbonylamidinopyrid-5vl)isoxazolin-5-ylacetate

The part D amidine was BOC protected in standard fashion to afford, after silica gel chromatographic purification, a 41% yield of a colorless foam; HRMS, e/z Calc. for (M+H) +: 363.1668. Found: 363.1682.

Part F: <u>Lithium 3-(2-t-butyloxycarbonylamidinopyrid-5-</u> vl)isoxazolin-5-vlacetate

The part E methyl ester (0.37 g, 1.0 mmol) was saponified by stirring with 0.5 \underline{M} LiOH in MeOH at RT. The MeOH was removed in vacuo, then the aqueous mixture was frozen and lyophilized to produce a pale yellow solid quantitatively; HRMS, e/z Calc. for conjugate acid (M+H) +: 349.1512. Found: 349.1531.

Part G: Methyl N^2 -(m-toluenesulfonyl)- N^3 -[3-(2amidinopyrid-5-yl)isoxazolin-5-ylacetyll-S-2,3-

diaminopropionate bis hydrochloric acid salt 20

The part F lithium carboxylate was condensed with methyl N^2 -(m-toluenesulfonyl)-2,3-diaminopropionate hydrochloride using conditions described above, followed by standard BOC deprotection with 4 M HCl/dioxane to yield a yellow amorphous solid; HRMS, e/z Calc. for (M+H)⁺: 503.1713. Found: 503.1707.

Example 548

Preparation of 3-bromothiophene-2-sulfonyl chloride

30 A solution of chlorosulfonic acid (14.3 g, 0.12 mol) in 35 mL of 1,2-dichloroethane was chilled to -10° C and protected from moisture, . Phosphorus pentachloride (20.8 g, 0.1 mol) was added in small portions while maintaining the temperature between -5° and -10°C. 35 resulting slurry was stirred at -10°C for 30 minutes. Then, 3-bromothiophene (16.3 g, 0.1 mol) was added

PCT/US94/13155

10

15

20

25

30

dropwise over a period of 45 minutes, maintaining the temperature between -5° and +5°C. During the addition of the 3-bromothiophene, hydrogen chloride gas was evolved; the reaction mixture became thick and pasty, and difficult to stir. Upon complete addition of the 3bromothiophene, the reaction temperature was held at 0°C for two hours. The reaction was then heated to 80°C and kept there for one hour; during which the solids dissolved, and hydrogen chloride gas was evolved once more . The reaction mixture was chilled in an ice bath, poured over 250 g crushed ice, and stirred for one hour as the ice melted. The resulting two phase system was separated and the aqueous layer washed three times with 125 mL of chloroform. The combined organic phases were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to give 24.1 g (92%) of crude product as a dark amber oil; ¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, J = 5.3, 1H), 7.73 (d, J = 5.3, 1H); Mass Spectrum (CH₄-DCI / GC-MS, e/z, relative abundance) 262.8, $(M+H)^+$, 100%; 226.9, $(M+H-HC1)^+$, 89.7%.

Example 587A

N²-3-methylphenylsulfonyl-N³-[3-(4-amidinophenyl)-5S-ylacetyl]-S-2,3-diaminopropionic acid

The compound of Example 473C, Part B (0.077g, 0.14mmol) was dissolved in MeOH (4ml), LiOH (0.0066g, 0.158mmol) in H₂O (4ml) was added and the reaction mixture left to stir overnight. After evaporation of methanol the product precipitated from the aqueous as a white solid (0.027g, 35% yield). HRMS calc'd for $C_{22}H_{25}N_5O_6S$: 488.160381 found: 488.160827.

-197-

Methyl N²-n-butyloxycarbonyl-N³-[3-(4-guanidinophenyl)isoxazolin-5-(R,S)-ylacetyl]-(S)-2,3-diaminopropionate, trifluoroacetic acid salt

Part A: [3-[(4-t-butyloxycarbonylamino)phenyl]-

- isoxazolin-5-yllacetic acid: This compound was prepared in 49% yield from 4-t-butyloxycarbonylaminobenzaldoxime and t-butyl vinyl acetate using the procedure described above for Ex. 275, Part A. ¹HNMR(CDCl₃) δ 0.99 (t, 3H), 1.35 (m, 2H), 1.50 (s, 9H), 1.61 (m, 2H), 2.60 (dd, J =
- 7.7 and 16.5 Hz, 1H) 2.84 (dd, J = 5.9 & 16Hz, 1H), 3.06
 (dd, J = 7.4 & 16.9 Hz, 1H), 3.48 (dd, J = 10.3 &
 16.5Hz, 1H), 4.10 (t, 2H), 5.03 (m, 1H), 6.60 (broad s,
 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.58 (J = 8.3Hz, 2H);
 IR(KBr): 2966, 1734, 1740, 1610, 1578, 1528, 1508, 1458,
- 15 1442, 1412, 1392, 1368 1234, 1160, 1058, 916, 878, 828, 772, 612 cm⁻¹; HRMS calcd. for C₂₀H₂₈N₂O₅: 377.207647, Found 377.207278. Standard LiOH saponification conditions then afforded the corresponding carboxylic acid compound as colorless crystals in 88% yield. mp
- 20 178-180°C; ¹HNMR (CDCl₃) δ 1.52 (s, 9H), 2.67 (dd, J = 7.8 and 16 Hz, 1H), 2.89 (dd, J = 8.3 & 16Hz, 1H), 3.06 (dd, J = 9.5 & 16.9 Hz, 1H), 3.48 (dd, J = 10.3 & 16.5z, 1H), 5.03 (m, 1H).

Part B: Methyl N²-n-butyloxycarbonyl-N³-[3-[(4-t-

- butyloxycarbonylamino)phenyllisoxazolin-5-yl acetyll-(S)-2.3-diaminopropionate: The compound of Example 602, Part A was condensed with methyl N²-tBoc-(S)-2,3diaminopropionate using the procedure described for Ex. 275, Part C above to provide the desired product. mp
- 30 80-82°C; ¹HNMR (CDCl₃) δ 1.88 (t,3H), 1.30 (m,2H), 1.47 (sm,20H), 2.50 (dd,1H), 2.61(dd, 1H), 3.07 (dd,1H), 3.40 (dd,1H), 3.63 (t,2H), 3.74 (s,3H), 4.00 (m,2H), 4.38 (m,1H), 5.00 (m,1H), 5.88 (dd,1H), 6.77 (t,1H), 7.58 (d,2H), 7.84 (d,2H), 10.4 (s,1H), 11.6 (s,1H);

•

35 IR(KBr): 3286, 2964, 1722, 1646, 1546, 1414, 1368, 1340,

-198-

1312, 1294, 1240, 1156, 1122, 1100, 1058, 1030, 844, 776 cm⁻¹. Mass spectrum (CI/NH₄) 663 (M+H,20),563(7), 549 (78), 506 (81),463(100).

Part C: Methyl N2-n-butyloxycarbonyl-N3-(3-(4quanidinophenyl)isoxazolin-5-vl acetyll-(S)-2.3diaminopropionate: The compound of Ex 602, part B was treated with TFA in dichloromethane to afford the corresponding aniline as its TFA salt. intermediate was converted to the corresponding bis-BOC 10 protected quanidino compound in 59% yield using the method of Kim et al. (Tet. Lett. 1993, 48, 7677). Deprotection under standard conditions (TFA/CH2Cl2) provided the title compound as its TFA salt (90%). ¹HNMR (DMSO-d₆) δ 1.89 (t,3H), 1.34 (m,2H), 1.57 (m,2H), 15 2.44 (dd,1H), 2.58 (t,2H), 2.64 (m,1H), 3.17 (m,1H), 3.40 (m,2H), 3.65 (m,1H), 3.70 (s,3H), 4.00 (t,2H), 4.31 (m, 1H), 5.02 (m, 1H), 6.80 (m, 1H), 7.28 (d, 2H), 7.64 (broads, 3H), 7.68 (d, 2H), 7.84 (broad, 1H); Mass

20

Example 651

spectrum(ES) m/z 463 (M+H, 100).

Methyl N²-benzyloxycarbonyl-N³-methyl-N³-[3-(4-amidinophenyl)isoxazolin-5-(R,S)-ylacetyl]-(S)-2.3-diaminopropionate, trifluoroacetic acid salt

25

Part A. Preparation of methyl N^2 -benzyloxycarbonyl- N^3 -methyl-(3-(4-N-Boc-amidinophenyl)isoxazolin-5-<math>(R,S)-vlacetyll-(S)-2,3-diaminopropionate.

isoxazolin-5-ylacetic acid (prepared according to the procedure of Example 434, part F; 189 mg, 0.54 mmol), methyl N³-methyl-N²-Cbz-L-2,3-diaminopropionate (prepared according to Sakai and Ohfune, J. Am. Chem. Soc. 114, 998 (1992); 145 mg, 0.54 mmol) and TBTU (175 mg, 0.54 mmol) in ethyl acetate (10 mL) was added

-199-

triethylamine (0.15 mL, 1.09 mmol). After stirring for 26 h, the mixture was diluted with ethyl acetate, washed with pH 4 buffer, then with saturated aqueous sodium bicarbonate, then with saturated brine. The organic phase was dried (MgSO4) and concentrated. The residue was flash chromatographed (ethyl acetate) to provide the product as a colorless glass (279 mg, 86%): NMR (CDCl₃) & 7.88 (m, 2H), 7.69 (m, 2H), 5.79 (bd, 1H), 5.09 (m, 3H), 4.58 (m, 1H), 3.86 (m, 1H), 3.77 (2s, 3H), 3.63 (m, 1H), 3.14 (dd, 1H), 3.01 (2s, 3H), 2.9 (m, 1H), 2.53 (m, 1H), 1.66 (b, 2H), 1.56 (s, 9H); mass spec (ESI) m/z 596.2 (M+H+, 100%).

Part B. Preparation of Methyl N2-benzyloxycarbonyl-N3methyl-N3-[3-(4-amidinophenyl)isoxazolin-5-(R,S)ylacetyll-(S)-2,3-diaminopropionate, trifluoroacetic
acid salt

The product of part A (226 mg, 0.38 mmol) was dissolved in dichloromethane (3 mL) and treated with trifluoroacetic acid (1 mL). After stirring at room temperature for 4 h, the mixture was diluted with ether and stirred. The resulting white solid was collected by filtration to provide the title product as a white solid (201 mg, 87%): NMR (DMSO-d₆) 8 9.39 (bs, 2H), 9.19 (bs, 2H), 7.87 (s, 4H), 7.79 (t, 1H), 7.32 (m, 5H), 5.03

25 2H), 7.87 (s, 4H), 7.79 (t, 1H), 7.32 (m, 5H), 5.03 (3H), 4.40 (m, 2H), 3.90 (m, 1H), 3.65 (2s, 3H), 2.95 and 2.82 (4s, 3H), 3.6-2.8 (4H); mass spec (ESI) m/z 496.3 (M+H+, 100%).

30

*

Example 701

Methyl N²-n-butyloxycarbonyl-N³-[3-(4-amidinophenyl)isoxazol-5-yl acetyll-L-2.3-diaminopropionate TFA salt.

35 Part A. Preparation of Methyl 3-(4-cyanophenyl)isoxazo-5-vl acetate

-200-

To a suspension of methyl 3-(4-cyanophenyl)-(5R,S)isoxazolin-5-yl acetate (5.28 g, 21.62 mmol) in chloroform (150 mL) were added N-bromosuccinimide (4.23 g, 23.78 mmol) and AIBN (100 mg) and the mixture was refluxed. Small amounts of AIBN (100 mg - 200 mg) were added at one hour intervals until TLC showed a complete reaction. Potassium acetate (17.3 g) and acetic acid (6.5 mL) were added and the reaction mixture was refluxed for 1 hour, cooled, then poured into 1N NaOH 10 (325 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The organic layers were combined and washed with sat. NaCl, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was chromatographed on silica gel 15 (15% to 35% EtOAc in Hexane) to yield 2.2 g (42%) of an off-white solid as product; 1 H NMR (300 MHz, CDCl₃) δ 7.93 (dd, 2H), 7.76 (dd, 2H), 6.67 (s, 1H), 3.92 (s, 2H), 3.8 (s, 3H).

Part B. Preparation of Methyl 3-(4-

20 methoxyiminophenyl)isoxazo-5-vl acetate HCl salt.

A suspension of methyl 3-(4-cyanophenyl) isoxazo-5yl acetate (2.19 g, 9.04 mmol) in 100 mL of anhydrous methanol was chilled in an ice bath and dry HCl gas was bubbled through the reaction mixture until a solution 25 was obtained. The total addition time was two hours. The reaction flask was sealed and the reaction mixture was allowed to warm to room temperature, with stirring, over a period of about 24 hrs. At this point, the methanolic solution was poured into 500 mL of anhydrous 30 ether, precipitating the product, and the resulting slurry was chilled to -25°C for 3 hours. precipitate was filtered, washed with two 100 mL portions of chilled anhydrous ether, and suction dried under nitrogen to afford 2.3 g (82%) of the hydrochloride salt; ¹H NMR (300 MHz, suspension in 35 CDCl₃) δ 8.52 (d, J = 8.06 Hz, 2H), 8.03 (d, J = 8.4 Hz, 2H), 6.67 (s, 1H), 4.6 (s, 3H), 3.93 (s, 2H), 3.8 (s, 3H).

Part C. Preparation of Methyl 3-(4amidinophenyl)isoxazo-5-yl acetate HCl salt.

WO 95/14683

:

•

5 A solution of methyl 3-(4methoxyiminophenyl)isoxazo-5-yl acetate HCl salt (2.3 g, 7.4 mmol) in 50 mL of anhydrous methanol was chilled in an ice bath and 2M ammonia in methanol (18.5 mL, 37 The reaction flask was sealed and the mmol) was added. 10 reaction mixture was allowed to warm to room temperature, with stirring, over a period of 24 hrs. The amber solution was then concentrated in vacuo to give 2.2 g (quant. yield) of a yellow foam; ¹H NMR (300 MHz, d_6 -DMSO) δ 9.6-9.2 (b), 8.12 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 7.14 (s, 1H), 4.15 (s, 2H), 15 3.7 (s, 3H).

Part D. Preparation of Methyl 3-(4-N-Boc-amidinophenyl) isoxazo-5-yl acetate.

To a solution of methyl 3-(4-amidinophenyl)isoxazo-5-yl acetate HCl salt (2.2 g, 7.4 mmol) in 30 mL DMF 20 cooled with an ice bath was added triethylamine (2.06 mL, 14.8 mmol) and di-tert-butyl dicarbonate (1.78 g, 8.14 mmol). The reaction mixture was warmed to room temperature and stirred for 64 hrs. The reaction mixture was then partitioned between EtOAc and water. 25 The aqueous layer was washed with EtOAc. The organic layers were combined and washed with water, sat. NaCl, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was chromatographed on silica gel (15% to 25% EtOAc in Hexane) to afford 1.45 g (54%) of product; 30 ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 6.65 (s, 1H), 3.91 (s, 2H), 3.8 (s, 2H)3H), 1.56 (s, 9H). Part E. Preparation of 3-(4-N-Boc-

35 <u>amidinophenyl)isoxazo-5-yl acetic acid.</u>

To a solution of methyl 3-(4-N-Bocamidinophenyl)isoxazo-5-yl acetate (1.45 g, 4.03 mmol) in 30 mL of methanol was added a solution of lithium hydroxide monohydrate (0.195 g, 4.64 mmol) in water (5 The mixture was stirred at room temperature for 16 The reaction mixture was then concentrated in vacuo and the residue was diluted with water and the resulting mixture was cooled using an ice bath. was slowly added to a pH of 3 - 4 and the resulting 10 acidic aqueous mixture was extracted repeatedly with The organic layers were combined and washed with sat. NaCl, dried over Na₂SO₄, filtered and concentrated in vacuo to yield 0.97 g (70%) of an off-white powdery solid as product; ^{1}H NMR (300 MHz, d_{6} -DMSO) δ 8.07 (d, J 15 = 8.79 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 7.03 (s, 1H),3.99 (s, 2H), 1.45 (s, 9H). Part F. Preparation of Methyl N2-n-butyloxycarbonyl-N3-[3-(4-N-Boc-amidinophenyl)isoxazo-5-yl acetyl]-L-2,3diaminopropionate.

20 To a solution of 3-(4-N-Boc-amidinophenyl)isoxazo-5-yl acetic acid (0.262 g, 0.76 mmol), methyl N^2 carboxy-n-butyl-L-2,3-diaminopropionate HCl salt (0.193 g, 0.76 mmol), and TBTU (0.256 g, 0.8 mmol) in DMF (15 mL) was added triethylamine (0.45 mL, 3.23 mmol) and the 25 resulting reaction mixture was allowed to stir at room temperature for 16 hours. The reaction mixture was partitioned between EtOAc and water. The water layer was washed twice with EtOAc. The organic layers were combined and washed with water, pH 4 buffer, 5% NaHCO3, and sat. NaCl, dried over Na₂SO₄, filtered, and 30 evaporated in vacuo. The residue was chromatographed on silica gel (100% EtOAc) to yield 0.315 g (76%) of a slightly amber foam; ^{1}H NMR (300 MHz, CDCl₃) δ 7.93 (d, J = 8.42 Hz, 2H), 7.83 (d, J = 8.42 Hz, 2H), 6.6 (s,35 1H), 6.57 (bm, 1H), 5.66 (bm, 1H), 4.45 (bm, 1H), 4.05

•

5

10

15

20

25

-203-

(m, 2H), 3.77 (s, 5H), 3.7 (m, 2H), 1.57 (s, 9H), 1.56 (m, 2H), 1.35 (m, 2H), 0.9 (t, J = 7.32 Hz, 3H). Part G. Preparation of Methyl N^2 -n-butyloxycarbonyl- N^3 -[3-(4-amidinophenyl)isoxazo-5-yl acetyl]-L-2, 3-diaminopropionate TFA salt.

A solution of methyl N^2 -carboxy-n-butyl- N^3 -[3-(4-N-Boc-amidinophenyl)isoxazo-5-yl acetyl]-L-2,3-diaminopropionate (0.215 g, 0.39 mmol) in 1:1 methylene chloride / trifluoroacetic acid (20 mL total) was stirred at room temperature for 16 hours. The reaction mixture was then concentrated in vacuo and the residue chromatographed on silica gel (10% to 30% methanol in chloroform) to yield 0.11 g (50%) of a white solid; 1 H NMR (300 MHz, d6-DMSO) δ 9.4 (bs, 2H), 9.15 (bs, 2H), 8.45 (t, 1H), 8.11 (d, J = 8.42 Hz, 2H), 7.94 (d, J = 8.42 Hz, 2H), 7.53 (d, J = 8.06 Hz, 1H), 7.01 (s, 1H), 4.21 (m, 1H), 3.95 (t, 2H), 3.81 (s, 2H), 3.62 (s, 3H), 3.55 (m, 1H), 3.34 (m, 1H), 1.5 (m, 2H), 1.3 (m, 2H), 0.87 (t, J = 7.32 Hz, 3H).; Mass Spectrum (ESI, e/z, relative abundance) 446.3, (M+H)+, 100%.

Example 829

Methyl N^2 -n-butyloxycarbonyl- N^3 -[5-(4-formamidinophenyl)isoxazolin-3-yl acetyl-<math>(2S)-2,3-diaminopropionate

Part A: t-Butyl [5-(4-cyanophenyl)isoxazolin-3-yllacetate:

Cycloaddition of 4-cyanophenylethylene (MP&D chemical Co.) and tert-butylformyl oxime was carried out following the procedure of Gree et. al. (Bioorganic & Medicinal Chemistry letters 1994, 253) to provide the desired isoxazoline in 72% yield. ¹HNMR (CDCl₃) δ: 1.40 (s, 9H), 3.00 (dd, J = 8.3 and 17Hz, 1H), 3.35 (dd(AB) J = 18 and 8.3 Hz, 2H), 3.48 (m, 1H), 5.60 (dd, J = 9 and 4.5 Hz, 1H), 7.47 (d, J = 8Hz, 2H), 7.65 (d, J = 8 Hz,

10

2H); IR 2235, 1718, 1610 cm⁻¹. Mass spectrum m/z 287 (M+H, 100).

Part B: [5-(4-cyanophenyl)isoxazolin-3-yll acetic acid:

Hydrolysis of the compound of Ex.829, Part A with excess TFA in dichloromethane afforded the acid in 90% yield. 1 HNMR (CDCl₃) δ 3.00 (dd, J = 8 and 17.2 Hz, 1H), 3.55 (s, 2H), 3.59 (m, 1H), 5.66 (dd, J = 8 and 11Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H); IR(KBr) 3325, 2235, 1718, 1605 cm⁻¹; Mass spectrum m/z 231 (M+H, 100).

Part C: Methyl [5-(4-Boc-amidinophenyl)isoxazolin-3-yll acetate: The compound of Ex. 829, Part B compound was then subjected to the standard Pinner reaction conditions described in Ex. 275, Part D to afford an

- amidino compound, which, without purification, was subjected to treatment with di-tert-butyldicarbonate in dioxane/water (9:1) and excess triethylamine to afford the desired compound in 28% yield. 1 HNMR(CDCl₃) δ 1.54 (s,9H), 2.98 (dd, J = 8 and 17 HZ, 1H), 3.49 (s, 2H),
- 20 3.53 (m, 1H), 3.71 (s, 3H), 5.63 (dd, J = 8 & 11.4Hz,
 1H), 7.38 (d, 8.2Hz, 2H), 7.82 ((d, 8.2Hz, 2H); Mass
 spectrum m/z 362(M+H, 8), 306(18), 262(M+H-Boc, 100).
 Part D: [5-(4-Boc-amidinophenyl)isoxazolin-3-yllacetic
 acid: Hydrolysis of the ester using standard LiOH
- 25 conditions afforded the desired acid in 5% yield. 1 HNMR(CDCl₃) δ 1.54 (s,9H), 3.00 (dd, J = 8 and 17 HZ, 1H), 3.51 (s, 2H), 3.53 (m, 1H), 5.63 (dd, J = 8 & 11.4Hz, 1H), 7.38 (d, 8.2Hz, 2H), 7.82 ((d, 8.2Hz, 2H); Mass spectrum m/z 348(M+H,12),248(M+H-Boc, 100).
- Part E: Methyl N²-n-butyloxycarbonyl-N³-[5-(4-amidino phenyl)isoxazolin-3-yl-acetyll(S)-2,3-diaminopropionate, trifluoroacetate: The compound of Ex. 829, Part D was coupled with methyl-(S)-N²-n-butyloxycarbonyl-2,3-diaminopropionate following the procedure described in Ex. 275, Part C to give the Boc protected intermediate in 80% yield. ¹HNMR(CDCl₃) δ 0.89 (t, 3H), 1.32 (m, 2H),

-205-

15 1664, 1620, 1528, 1456, 1436, 1384, 1366, 1280, 1254, 1168, 1144, 1074, 980, 882, 778 cm⁻¹; Mass spectrum(ES) m/z 448 (M+H,100)

20 Using the above methods and variations thereof known in the art of organic synthesis, the additional examples in Tables 1-2, 2A-2D, 3-5 can be prepared.

(V)

Table 1

$$R^2N$$
 $N-O$
 R^{14}
 N^{14}
 N^{14}
 N^{14}
 N^{14}

 \mathbb{R}^2 R4 R14 Ex. Y n' n No. Н 1 Н OH 2 Н 0 2 H NHSO2nC4H9 OH 2 0 Н 3 Н NHSO2CH2Ph ОН 2 0 Н 4 Н NHCO2CH2Ph 2 OH 0 Н 5 Н NHCOnC4H9 2 ОН Н 0 6 Н Н 1 1 OH Н 7 H Н 1 0 OH Н 8 Н Н OH 2 1 . Н 9 Н NHSO2nC4H9 1 ОН Н 1 10 NHSO2CH2Ph Н ОН 1 1 Н 11 Н NHCO2CH2Ph ОН 1 1 Н NHCOnC4H9 12 Н 1 OH 1 H 13 NHSO2nC4H9 2 Н 0 OMe Н 14 Н NHCO2CH2Ph OMe 2 0 Н 15 Н NHSO2nC4H9 1 OMe Н 1 16 NHCO2CH2Ph Н 1 OMe Н 1 17 Н NHSO2nC4H9 OEt 2 0 Н 18 NHCO2CH2Ph 2 Н 0 OEt Н 19 Н NHSO2nC4H9 OEt 1 Н 1 20 NHCO2CH2Ph Н OEt 1 Н 1 21 NHSO2nC4H9 2 Вос ОН 0 Н 22 Boc NHCO2CH2Ph ОН 2 0 Н 23 Boc NHSO2nC4H9 ОН 1 Н 1 24 Вос NHCO2CH2Ph ОН 1 Н 1 25 Cbz NHSO2nC4H9 ОН 2 0 Н 26 NHCO2CH2Ph ОН 2 Cbz Н 0 27 Cbz NHSO2nC4H9 ОН 1 Н 1

			-207-			
Ex.	R ²	R ⁴	Y	n	R ¹⁴	n'
No.						
28	Cbz	NHCO2CH2Ph	ОН	1	Н	1
29	Н	NHSO2nC4H9	کہ أ	2	Н	0
30	Н	NHSO2nC4H9	۰^۰ [^] ښو	2	Н	0
31	Н	NHSO2nC4H9	o Me	2	H	0
32	Н	NHSO2nC4H9	o √ BEI	2	н	0
31	Н	NHSO2nC4H9	O~~(Et) ₂	2	Н	0
33	Н	H	ОН	2	CO ₂ Me	0
34	H	Н	OMe	2	H	0
35	H	NHSO2CH2Ph	OMe	2	H	0
36	H	NHCOnC4H9	OMe	2	H	0
37	H	H	OMe	1	H	1
38	H	Н	OMe	1	H	0

OMe

OMe

OMe

OMe

PCT/US94/13155

2

1

1

2

H

Н

Н

CO₂Me

1

1

1

0

•

•

WO 95/14683

39

40

41

42

Н

Н

H

Н

H

Н

NHSO₂CH₂Ph

NHCOnC4H9

Table 2

Example Number	R ²	R ⁸	Y	MS (M+H) ⁺
43	Н	Ph он	ОН	412
44	Н		ОН	
45	н	- Br	ОН	
46	н	\rightarrow	ОН	
47	Н	~ →	ОН	
48	H	- Ō	ОН	
49	Н	OMe	ОН	
50	Н	——————————————————————————————————————	ОН	
51	Н	-C-OPh	ОН	
52	Н	→C ^{OPh}	ОН	
53	Н	-Cl	ОН	
54	Н	→ CN	ОН	
55	Н	— Съси	ОН	
56	н	⊸r cr,	ОН	
57	Н	- € }-c F ,	ОН	
58	Н	cı	ОН	
59	Н	Ci Ci	ОН	
60	Н	OMe ————————————————————————————————————	ОН	

Example Number	R ²	R8	Y	MS (M+H) ⁺
61	Н	ОМ•	ОН	
62	Н	MeO OMe	ОН	
63	н	- Ö	ОН	
64	Н	но	ОН	
65	H	-Содн	ОН	
66	Н	~	ОН	
67	H	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ОН	
68	Н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ОН	
69	Н	Et	ОН	
70	Н	n-Pr	ОН	
71	Н	-C≡CH	ОН	
72	Н	CO ₂ H	OH	
73	Н	CH ₂ Ph	ОН	
74	Н	CH ₂ CH ₂ Ph	ОН	
75	H	-C=CH ₂	ОН	
76	Н	Å,C	ОН	
80	Cbz	Ph	ОН	
81	Cbz	—	ОН	
82	Boc	Ph	ОН	
83	Вос	~	ОН	
84	Н		<u></u> پائید	
85	H .		۰^۰ ^۱ ۰۰	
86	H	~ "⊃	OH O C(CH ₃):	1
87	Н	~ <u>~</u>	o OEt	

Example Number	R ²	R8	Y	MS (M+H) ⁺
88	Н	~~>	o ✓ N(Et)₂	
89	н	Ph	OMe	
90	н	→ Он	OMe	
91	Н	-€S-Br	OMe	
92	H	\rightarrow	OMe	
93	Н	- €	OMe	
94	Н	————F OM•	OMe	
95	H		OMe	
96	Н	OEt	OMe	
97	Н	C⊃OPh OPh	OMe	
98	H	-	OMe	
99	Н	-C1	OMe	
100	H .	~ Con Con Con Con Con Con Con Co	OMe	
101	Н	-CN CF3	OMe	
102	H	− ♥	OMe	
103	H	-CF,	OMe	
104	H		OMe	
105	Н	-Ci ci	OMe	
106	H	Ом-	OMe	
Example	R ²	R ⁸	Y	MS
Number				(M+H) ⁺
107	н	OMe OMe	OMe	

			•	
108	Н	MeO OMe	OMe	
109	н		OMe	
110	Н	ноом•	OMe	
111	Н	—————————————————————————————————————	ОМе	
112	н		ОМе	
113	Н	─ ~	O M e	
114	H	Š	OMe	
115	Н	Et	OMe	361
116	Н	n-Pr	OMe	
117	Н	-C≡CH	OMe	
118	Н	CO ₂ H	OMe	
119	Н	CH ₂ Ph	OMe	423
120	Н	CH ₂ CH ₂ Ph	OMe	437
121	Н	-C=CH ₂	OMe	
122	Н	Y C	OMe	
126	Cbz	Ph	OMe	
127	Cbz	~ <u>~</u>	OMe	
128	Вос	Ph	OMe	
129	Вос	₹	ОМе	
130	Н	Ph	OEt	
131	H	— Он	OEt	
132	Н	−© −Br	OEt	
133	Н	_	OEt	
134	Н	<u> </u>	OEt	
135	Н	─	OEt	
136	Н	OM•	OEt	
137	Н	OEt	OEt	

Example Number	R ²	R ⁸	Y .	MS (M+H) ⁺
		_		
138	н	———OPh	OEt	
139	Н	− ♥	OEt	
140	Н	-Cı	OEt	
141	H	⊸CN CN	OEt	
142	н	—Ch	OEt	
143	н	cr,	OEt	
144	Н	—ССг,	OEt	
145	H	-√ 5	OEt	
		CI CI		
146	Н	—C1	OEt	
147	н	OM• 	OEt	
148	Н	OMe	OEt	
149	H	MeO OMe	OEt	
150	'H	~\$\frac{1}{2}	OEt	
151	Н	НО ОМе	OEt	
152	н	———-cо _й н	OEt	
153	Н	₹	OEt	
154	Н	- ₹	OEt	
Example	R ²	R ⁸	Y	MS
Number				(M+H) ⁺
		~~``T		
155	H .		OEt	
156	Н	Et	OEt	
157	Н	n-Pr	OEt	
158	Н	-C≡CH	OEt	

159	Н	CO ₂ H	OEt	
160	Н	CH ₂ Ph	OEt	
161	Н	CH ₂ CH ₂ Ph	OEt	
162	Н	-C=CH ₂	OEt	
163	Н		OEt	
164	H	CH ₂ N (Me) Ph	OEt	
165	H	CH ₂ NEt ₂	OEt	
166	Н	CH ₂ NMe ₂	OEt	
167	Cbz	Ph	OEt	
168	Cbz	~ □	OEt	
169	Вос	Ph	OEt	
170	Вос	~ □	OEt	
338	Н	CO ₂ Me	OMe	mp 160°
339	H	CO ₂ Me	Н	363
340	H	CONMe ₂	OMe	404
341	Н	in D	OMe	524
343	H	n-butyl	ОН	
343 344	H H	n-butyl n-butyl	OH OMe	389
		=		389
344	Н	n-butyl	OMe	389
344 345	H H	n-butyl n-butyl	OMe OEt	389 389
344 345 346	н н	n-butyl n-butyl isobutyl	OMe OEt OH	
344 345 346 347	н н н	n-butyl n-butyl isobutyl isobutyl	OMe OEt OH OMe	389
344 345 346 347 348	н н н н	n-butyl n-butyl isobutyl isobutyl isobutyl	OMe OEt OH OMe OEt	389
344 345 346 347 348 349	н н н н	n-butyl n-butyl isobutyl isobutyl isobutyl CH ₂ SPh	OMe OEt OH OMe OEt OH	389 403
344 345 346 347 348 349	н н н н н	n-butyl n-butyl isobutyl isobutyl isobutyl CH ₂ SPh CH ₂ SPh	OMe OEt OMe OEt OH OMe OEt OH	389 403
344 345 346 347 348 349 350	H H H H H	n-butyl n-butyl isobutyl isobutyl CH ₂ SPh CH ₂ SPh CH ₂ SPh	OMe OEt OMe OEt OH OMe OEt OH	389 403
344 345 346 347 348 349 350 351	H H H H H	n-butyl n-butyl isobutyl isobutyl isobutyl CH ₂ SPh CH ₂ SPh CH ₂ SPh CH ₂ OPh	OMe OEt OH OMe OEt OH OMe OEt	389 403
344 345 346 347 348 349 350 351 352 353	H H H H H H	n-butyl n-butyl isobutyl isobutyl CH ₂ SPh CH ₂ SPh CH ₂ SPh CH ₂ OPh CH ₂ OPh	OMe OEt OH OMe OEt OH OMe OEt OH OMe OEt	389 403
344 345 346 347 348 349 350 351 352 353	H H H H H H H H	n-butyl n-butyl isobutyl isobutyl CH ₂ SPh CH ₂ SPh CH ₂ SPh CH ₂ OPh CH ₂ OPh CH ₂ OPh	OMe OEt OH OMe OEt OH OMe OEt OH OMe	389 403
344 345 346 347 348 349 350 351 352 353 354	H H H H H H H	n-butyl n-butyl isobutyl isobutyl isobutyl CH ₂ SPh CH ₂ SPh CH ₂ SPh CH ₂ OPh CH ₂ OPh CH ₂ OPh CH ₂ OPh	OMe OEt OH OMe OEt OH OMe OEt OH OH	389 403

Example Number	R ²	R ⁸	Y	MS (M+H) ⁺
359	Н	CH2NHSO2Ph	OMe	502
360	н	CH ₂ NHSO ₂ Ph	OEt	
361	H	CH2NHSO2n-Bu	ОН	
362	н	CH ₂ NHSO ₂ n-Bu	OMe	482
363	Н	CH2NHSO2n-Bu	OEt	
364	Н	CH ₂ COOH	ОН	377
365	Н	CH ₂ COOMe	OMe	405
366	H	CH ₂ COOEt	OEt	
367	Н	CH ₂ CH ₂ COOH	ОН	
368	Н	CH ₂ CH ₂ COOMe	ОМе	419
369	н	CH ₂ CH ₂ COOEt	OEt	
370	н	CH ₂ NMe ₂	OH	
371	H	CH ₂ NMe ₂	OMe	390
372	H	CH ₂ NMe ₂	OEt	
434	BOC	-C (=0) NH- (CH2)2C6H5	OtBu	622
435	H	-C (=0) NH- (CH2) 2C6H5	ОН	466
439	H	$-C (=0) OC_2H_5$	OEt	419
441	Н		ОН	484
446	н	(CH ₂) ₃ Ph	OMe	
447	H	CH ₂ -(2-pyr)	OMe	
448	H	(CH ₂) ₂ -(2-pyr)	OMe	
449	H	(CH ₂) ₂ -(3-pyr)	OMe	438
450	H	(CH ₂) ₂ -(4-pyr)	OMe	438
452	н	-C (=0) NH- (CH _{2) 2} C ₆ H ₅		480
453	вос	C(O)·N N·CH₂Ph	OMe	635
454	н	C (=0) N (CH ₃) -	OMe	
	•	(CH ₂₎₂ C ₆ H ₅		
455	H	C(O)·N_N·CH₂Ph	OMe	
456	Н	i-hexyl	OEt	431

Example Number	R ²	R8	Y	MS (M+H) ⁺
457	Н	-C≡CSiMe ₃	OMe	429
458	Н	-(CH ₂) ₂ -(3-pyr)	ОН	424
459	H	-(CH ₂) ₂ -(2-pyr)	ОН	424
460	H	-(CH ₂) ₃ -C ₆ H ₅	ОН	437
461	H	-(CH2)3-C6H5	OMe	451
462	H	in D	OEt	538
463	Н	in D	ОН	510
464	Н		OMe	492
465	, н		ОМе	492
466	н		OMe	510
467	н	A CI	OMe	510
468	н	N S	OMe	462
469	H	N s	ОМе	448
587	Н	-(CH ₂) ₃ -(4-pyr)	ОН	424

WO 95/14683	-216-	PCT/US94/13155
		•

Example Number	R ²	R ⁸	Y	MS (M+H) ⁺
611	H	-CH ₂ NHSO ₂ NMe ₂	OMe	469
612	Н	-CH ₂ -N	OMe	416

-217-

Table 2A

Example	R ¹ v	_R 16	Y	MS
Number				(M+H) ⁺
275	4-amidinophenyl	н	ОН	334
276	4-amidinophenyl	benzyloxycarbonyl	ОН	468
277	4-amidinophenyl	t-butyloxycarbonyl	ОН	
278	4-amidinophenyl	n-butyloxycarbonyl	ОН	434
279	4-amidinophenyl	ethyloxycarbonyl	ОН	
280	4-amidinophenyl	methyloxycarbonyl	ОН	
290	4-amidinophenyl	phenylethylcarbonyl	ОН	510
291	4-amidinophenyl	2,2-dimethyl-	ОН	
		propylcarbonyl		
292	4-amidinophenyl	n-pentylcarbonyl	ОН	
293	4-amidinophenyl	n-butylcarbonyl	ОН	
294	4-amidinophenyl	propionyl	ОН	
295	4-amidinophenyl	acetyl	ОН	
296	4-amidinophenyl	methylsulfonyl	ОН	
297	4-amidinophenyl	ethylsulfonyl	ОН	
298	4-amidinophenyl	n-butylsulfonyl	ОН	
299	4-amidinophenyl	phenylsulfonyl	ОН	
300	4-amidinophenyl	4-methylphenyl-	ОН	488
		sulfonyl		
301	4-amidinophenyĺ	benzylsulfonyl	ОН	
302	4-amidinophenyl	2-pyridylcarbonyl	ОН	
303	4-amidinophenyl	3-pyridylcarbonyl	ОН	
304	4-amidinophenyl	4-pyridylcarbonyl	ОН	
305	4-amidinophenyl	2-pyridylmethyl-	ОН	
	•	carbonyl		
306	4-amidinophenyl	3-pyridylmethyl-	ОН	
		carbonyl		

•

-218-

Example	R ¹ -V	_R 16	Y	MS
Number				(M+H) ⁺
307	4-amidinophenyl	4-pyridylmethyl-	ОН	
		carbonyl		
308	4-amidinophenyl	2-pyridylmethoxy-	ОН	
		carbonyl		
309	4-amidinophenyl	3-pyridylmethoxy-	ОН	
		carbonyl		
310	4-amidinophenyl	4-pyridylmethoxy-	ОН	
		carbonyl		
311	4-amidinophenyl	H	OMe	
312	4-amidinophenyl	benzyloxycarbonyl	OMe	482
313	4-amidinophenyl	t-butyloxycarbonyl	OMe	
314	4-amidinophenyl	n-butyloxycarbonyl	OMe	448
315	4-amidinophenyl	ethyloxycarbonyl	OMe	
316	4-amidinophenyl	methyloxycarbonyl	OMe	
317	4-amidinophenyl	phenylethylcarbonyl	OMe	
318	4-amidinophenyl	2,2-dimethyl-	ОМе	
		propylcarbonyl		
319	4-amidinophenyl	n-pentylcarbonyl	OMe	
320	4-amidinophenyl	n-butylcarbonyl	OMe	
321	4-amidinophenyl	propionyl	OMe	
322	4-amidinophenyl	acetyl	OMe	
323	4-amidinophenyl	methylsulfonyl	OMe	426
324	4-amidinophenyl	ethylsulfonyl	OMe	440
325	4-amidinophenyl	n-butylsulfonyl	OMe	
326	4-amidinophenyl	phenylsulfonyl	OMe	488
327	4-amidinophenyl	4-methylphenyl-	OMe	502
		sulfonyl		
328	4-amidinophenyl	benzylsulfonyl	OMe	502
329	4-amidinophenyl	2-pyridylcarbonyl	OMe	
330	4-amidinophenyl	3-pyridylcarbonyl	OMe	
331	4-amidinophenyl	4-pyridylcarbonyl	OMe	

-219-

Example Number	R ¹ -V	_R 16	Y	MS (M+H) ⁺
332	4-amidinophenyl	2-pyridylmethyl- carbonyl	OMe	
333	4-amidinophenyl	3-pyridylmethyl-carbonyl	OMe	
334	4-amidinophenyl	4-pyridylmethyl-carbonyl	OMe	
335	4-amidinophenyl	2-pyridylmethoxy- carbonyl	OMe	
336	4-amidinophenyl	3-pyridylmethoxy- carbonyl	OMe	
337	4-amidinophenyl	4-pyridylmethoxy- carbonyl	OMe	
374	4-piperidinylethyl	benzylcarbonyl	OMe	475
440	4-(BOCamidino)phenyl	benzyloxycarbonyl	OMe	582
442	4-(BOCamidino)phenyl	n-butyloxycarbonyl	OMe	594
443	4-amidinophenyl	1-naphthylsulfonyl	OMe	538
444	4-amidinophenyl	2-naphthylsulfonyl	OMe	538
445	4-amidinophenyl	styrylsulfonyl	OMe	514
451	4-piperidinylethyl	n-butyloxycarbonyl	OMe	441
471	4-amidinophenyl	4-butyloxyphenyl- sulfonyl	OMe	560
472	4-amidinophenyl	2-thienylsulfonyl	OMe	494
473	4-amidinophenyl	3-methylphenyl- sulfonyl	OMe	502
474	4-amidinophenyl	4-iodophenyl	OMe	614
475	4-amidinophenyl	3-trifluoromethyl- phenylsulfonyl	OMe	556
476	4-amidinophenyl	3-chlorophenyl- sulfonyl	OMe	522
477	4-amidinophenyl	2-methoxycarbonyl- phenylsulfonyl	OMe	546

-220-

Example Number	. R ¹ -V	_R 16	Y	MS (M+H) +
				(,
478	4-amidinophenyl	2,4,6-trimethyl-	OMe	530
		phenylsulfonyl	5.55	
479	4-amidinophenyl	2-chlorophenyl-	OMe	522
		sulfonyl		
480	4-amidinophenyl	2-trifluoromethyl-	OMe	556
		phenylsulfonyl	-	
481	4-amidinophenyl	4-trifluoromethyl-	OMe	556
	•	phenylsulfonyl		
482	4-amidinophenyl	2-fluorophenyl-	OMe	506
		sulfonyl		
483	4-amidinophenyl	4-fluorophenyl-	OMe	506
		sulfonyl		
484	4-amidinophenyl	4-methoxyphenyl-	OMe	518
		sulfonyl		
485	4-amidinophenyl	2,3,5,6-tetramethyl-	OMe	544
		phenylsulfonyl		
486	4-amidinophenyl	4-cyanophenyl-	OMe	513
		sulfonyl		
487	4-amidinophenyl	4-chlorophenyl-	OMe	522
	-	sulfonyl		
488	4-amidinophenyl	- 4-ethylphenyl-	OMe	516
		sulfonyl		
489	4-amidinophenyl	4-propylphenyl-	OMe	530
		sulfonyl		
490	4-amidinophenyl	n-propylsulfonyl	OMe	454
491	4-amidinophenyl	2-phenylethyl-	OMe	516
		sulfonyl		
492	4-amidinophenyl	4-isopropylphenyl-	OMe	530
		sulfonyl		
493	4-amidinophenyl	3-phenylpropyl-	OMe	530
	- -	sulfonyl		
494	4-amidinophenyl	3-pyridylsulfonyl	ОМе	489
	- -	= = - -		

-221-

Example	R ¹ v	_R 16	Y	MS
Number				(M+H) ⁺
495	4-amidinophenyl	2-pyridylsulfonyl	OMe	489
496	4-amidinophenyl	2,2-diphenyl-1-	OMe	590
	,	ethenylsulfonyl		
497	4-amidinophenyl	2-pyrimidinyl-	OMe	
		sulfonyl		
498	4-amidinophenyl	4-methyl-2-	OMe	
		pyrimidinylsulfonyl		
499	4-amidinophenyl	4,6-dimethyl-2-	OMe	
		pyrimidinylsulfonyl		
500	4-amidinophenyl	1,2,4-triazol-3-	OMe	
		ylsulfonyl		
501	4-amidinophenyl	1-methyl-1,3,4-	OMe	
		triazol-5-ylsulfonyl	' .	
502	4-amidinophenyl	3,5-dimethyl-4-	OMe	
		pyrazolylsulfonyl		
503	4-amidinophenyl	1-phenyl-4-	OMe	
		pyrazolylsulfonyl		
504	4-amidinophenyl	n-butylaminosulfonyl	OMe	483
505	4-amidinophenyl	i-butylaminosulfonyl	OMe	483
506	4-amidinophenyl	t-butylaminosulfonyl	OMe	483
507	4-amidinophenyl	i-propylamino-	OMe	469
		sulfonyl		
508	4-amidinophenyl	cyclohexylamino-	OMe	509
		sulfonyl		
509	4-amidinophenyl	phenylaminosulfonyl	OMe	503
510	4-amidinophenyl	benzylaminosulfonyl	OMe	517
511	4-amidinophenyl	dimethylamino-	OMe	455
		sulfonyl		
512	4-amidino-2-fluoro-	3-methylphenyl-	OMe	520
	phenyl	sulfonyl		
513	2-amidino-5-pyridyl	n-butyloxycarbonyl	OMe	449

-222-

Example	R ¹ -V	_R 16	Y	MS
Number				(H+H) ⁺
		•		
514	2-amidino-5-pyridyl	3-methylphenyl-	OMe	503
		sulfonyl		
515	3-amidino-6-pyridyl	n-butyloxycarbonyl	OMe	449
516	3-amidino-6-pyridyl	3-methylphenyl-	OMe	503
		sulfonyl		
517	4-amidinophenyl	phenylaminocarbonyl	OMe	467
518	4-amidinophenyl	4-fluorophenylamino-	OMe	485
		carbonyl		
519	4-amidinophenyl	1-naphthylamino-	OMe	517
		carbonyl		
520	4-amidinophenyl	benzylaminocarbonyl	OMe	
521	4-amidinophenyl	n-butylaminocarbonyl	OMe	435
522	4-amidinophenyl	4-ethylphenyl-	OMe	480
		carbonyl		
523	4-amidinophenyl	biphenylcarbonyl	OMe	528
524	4-amidinophenyl	2-naphthylcarbonyl	OMe	502
52 5	4-amidinophenyl	(2-chlorophenyl)	OMe	516
		methoxycarbonyl		
526	4-amidinophenyl	(2-chlorophenyl)	ОН	502
		methoxycarbonyl		
527	4-amidinophenyl	(2-bromophenyl)	OMe	562
		methoxycarbonyl		
528	4-amidinophenyl	(2-bromophenyl)	ОН	548
		methoxycarbonyl		,
529	4-amidinophenyl	n-hexyloxycarbonyl	OMe	476
530	4-amidinophenyl	n-hexyloxycarbonyl	ОН	460
531	4-amidinophenyl	isobutyloxycarbonyl	OMe	448
532	4-amidinophenyl	isobutyloxycarbonyl	ОН	434
533	4-amidinophenyl	2-cyclopropylethoxy-	OMe	460
		carbonyl		
534	4-amidinophenyl	2-cyclopropylethoxy-	ОН	446
		carbonyl		

-223-

			•	
Example Number	R ¹ -v	_R 16	Y	MS (M+H) ⁺
5 35	4-amidinophenyl	2-cyclopentylethoxy- carbonyl	OMe	488
536	4-amidinophenyl	2-cyclopentylethoxy- carbonyl	ОН	474
537	4-amidinophenyl	4,4,4-trifluoro- butyloxycarbonyl	OMe	502
538	4-amidinophenyl	4,4,4-trifluoro- butyloxycarbonyl	ОН	488
539	4-amidinophenyl	n-propylsulfonyl	OMe	
540	4-amidinophenyl	2-methylphenyl- sulfonyl	OMe	
541	4-amidinophenyl	4-chloro-2,5-dimethyl-phenylsulfonyl	OMe	550
542	4-amidinophenyl	2,3-dichlorophenyl- sulfonyl	OMe	556
543	4-amidinophenyl	2-bromophenyl- sulfonyl	OMe	568
544	4-amidinophenyl	3-bromophenyl- sulfonyl	OMe	568
545	4-amidinophenyl	4-bromophenyl- sulfonyl	OMe	568
546	4-amidinophenyl	biphenylsulfonyl	OMe	564
547	4-amidinophenyl	5-chloro-1,3- dimethyl-4-pyrazolyl	OMe	540
548	4-amidinophenyl	3-bromo-2- thienylsulfonyl	OMe	574
549	4-amidinophenyl	5-bromo-2- thienylsulfonyl	OMe	574
550	4-amidinophenyl	5-[1-methyl-5- trifluoromethyl-3- pyrazolyl]-2-	OMe	642
		thienylsulfonyl		

-224-

Example Number	R ¹ V	_R 16	Y	MS (M+H) ⁺
551	4-amidinophenyl	5-(3-isoxazolyl)-2- thienylsulfonyl	OMe	561
552	4-amidinophenyl	5-(2-pyridinyl)-2- thienylsulfonyl	OMe	571
553	4-amidinophenyl	4-methyl-2- methylcarbonylamino-5-	OMe	566
554	4-amidinophenyl	thiazolylsulfonyl 2-benzothienyl- sulfonyl	OMe	628
555	4-amidinophenyl	2-benzothienyl- sulfonyl	OMe	544
556	4-amidinophenyl	3-methyl-2- benzothienylsulfonyl	OMe	558
557	4-amidinophenyl	8-quinolinylsulfonyl	OMe	
558	4-amidinophenyl	8-quinolinylsulfonyl	OH	
559	4-amidinophenyl	2,1,3-benzo- thiadiazol-4-ylsulfonyl	OMe	
560	4-amidinophenyl	2,1,3-benzo- thiadiazol-4-ylsulfonyl	ОН	
561	4-amidinophenyl	4-N,N-dimethylamino-1-naphthylsulfonyl	OMe	
562	4-amidinophenyl	4-N, N-dimethylamino-1-haphthylsulfonyl	ОН	
563	4-amidinophenyl	2,1,3-benzoxadiazol-4-ylsulfonyl	OMe	
564	4-amidinophenyl	2,1,3-benzoxadiazol-4- ylsulfonyl	ОН	
565	4-amidinophenyl	2,2,5,7,8-pentamethyl 3,4-dihydro-2Hbenzo- pyran-6-ylsulfonyl	OMe	

-225-

Example Number	R ¹ -V	_R 16	Y	MS (M+H) ⁺
566	4-amidinophenyl	2,2,5,7,8-pentamethyl 3,4-dihydro-2Hbenzo-	ОН	
567	4-N-methylamidino phenyl	<pre>pyran-6-ylsulfonyl 3-methylphenylsulfonyl</pre>	OMe	
568	4-N-ethylamidino phenyl	3-methylphenylsulfonyl	OMe	530
569	4-N-n-propylamidino phenyl	3-methylphenylsulfonyl	OMe	
570 571	4-N-n-butylamidino	yl3-methylphenylsulfonyl 3-methylphenylsulfonyl	OMe OMe	
572	phenyl 4-N-methylamidino phenyl	3-methylphenylsulfonyl	ОН	
573	4-N-ethylamidino phenyl	3-methylphenylsulfonyl	ОН	
574	4-N-n-propylamidino phenyl	3-methylphenylsulfonyl	ОН	
575	4-N-benzylamidino phenyl	3-methylphenylsulfonyl	ОН	
576	4-N-n-butylamidino phenyl	3-methylphenylsulfonyl	ОН	
577	4-N-methylamidino- phenyl	n-butyloxycarbonyl	OMe	
578	4-N-ethylamidinophenyl	n-butyloxycarbonyl	OMe	
579	4-N-npropylamidino- phenyl	n-butyloxycarbonyl	OMe	
580	4-N-n-butylamidino- phenyl	n-butyloxycarbonyl	OMe	504
581	4-N-benzylamidino- phenyl	n-butyloxycarbonyl	O <u>M</u> e	

-226-

Example	R ¹ -v	_R 16	Y	MS
Number				(M+H) ⁺
582	4-N-methylamidino-	n-butyloxycarbonyl	ОН	
	phenyl			
583	4-N-ethylamidino-	n-butyloxycarbonyl	ОН	
	phenyl			
584	4-N-n-propylamidino-	n-butyloxycarbonyl	ОН	
	phenyl			
585	4-N-n-butylamidino-	n-butyloxycarbonyl	ОН	
	phenyl			
586	4-N-benzylamidino-	n-butyloxycarbonyl	ОН	
	phenyl			
589	4-(acetoxyamidino)-	n-butyloxycarbonyl	OMe	
	phenyl			
590	4-(acetoxyamidino)-	n-butyloxycarbonyl	ОН	ı
	phenyl			
591	4-(acetoxyamidino)-	isobutyloxycarbonyl	OMe	
	phenyl			
592	4-(acetoxyamidino)-	isobutyloxycarbonyl	ОН	
	phenyl			
593	4-(acetoxyamidino)-	cyclopropylethoxy-	OMe	
	phenyl	carbonyl		
594	4-(acetoxyamidino)-	cyclopropylethoxy-	ОН	
	phenyl	carbonyl		
595	4-(acetoxyamidino)-	benzyloxycarbonyl	OMe	
	phenyl			
596	4-(acetoxyamidino)-	benzyloxycarbonyl	ОН	
	phenyl			
597	4-(acetoxyamidino)-	4-methylphenylsulfonyl	OMe	
	phenyl			
598	4-(acetoxyamidino)-	4-methylphenylsulfonyl	ОН	
	phenyl			

Example	$R^{1}-V$	_R 16	Y	MS
Number				(M+H) ⁺
599	4-(acetoxyamidino)-	3-methylphenylsulfonyl	OMe	
	phenyl			
600	4-(acetoxyamidino)-	3-methylphenylsulfonyl	ОН	
	phenyl	•		
601	4-guanidinophenyl	n-butyloxycarbonyl	ОН	
602	4-guanidinophenyl	n-butyloxycarbonyl	OMe	463
603	4-guanidinophenyl	benzyloxycarbonyl	ОН	
604	4-guanidinophenyl	benzyloxycarbonyl	OMe	
605	4-guanidinophenyl	4-methylphenylsulfonyl	ОН	
606	4-guanidinophenyl	4-methylphenylsulfonyl	OMe	
607	4-guanidinophenyl	3-methylphenylsulfonyl	ОН	
608	4-guanidinophenyl	3-methylphenylsulfonyl	OMe	
609	4-guanidinophenyl	n-butylsulfonyl	ОН	
610	4-guanidinophenyl	n-butylsulfonyl	OMe	
613	4-amidino-2-fluoro-	n-butyloxycarbonyl	OMe	466
	phenyl			
614	4-piperidinyl	n-butyloxycarbonyl	OMe	412
615	4-piperidinylmethyl	n-butyloxycarbonyl	OMe	426
616	4-piperidinylpropyl	n-butyloxycarbonyl	OMe	454
617	4-quanidinophenyl	n-butyloxycarbonyl	ОН	449
618	4-amidinophenylmethyl	benzyloxycarbonyl	OMe	
619	4-amidinophenylmethyl	benzyloxycarbonyl	ОН	
220	4-amidinophenylmethyl	n-butyloxycarbonyl	OMe	
621	4-amidinophenylmethyl	n-butyloxycarbonyl	ОН	
622	4-amidinophenylmethyl	cyclopropylethoxy	OMe	
		carbonyl		
623	4-amidinophenylmethyl	cyclopropylethoxy	ОН	
		carbonyl		
624	4-amidinophenylmethyl	4-methylphenylsulfonyl	OMe	
625	4-amidinophenylmethyl	4-methylphenylsulfonyl	ОН	
626	4-amidinophenylmethyl	3-methylphenylsulfonyl	OMe	
627	4-amidinophenylmethyl	3-methylphenylsulfonyl	ОН	

-228-

Example	R ¹ -v	_R 16	Y	MS
Number				(M+H) ⁺
628	4-amidinophenylmethyl	n-butylsulfonyl	OMe	
629	4-amidinophenylmethyl	n-butylsulfonyl	ОН	
630	4-amidinophenylmethoxy	benzyloxycarbonyl	OMe	
631	4-amidinophenylmethoxy	benzyloxycarbonyl	ОН	
632	4-amidinophenylmethoxy	n-butyloxycarbonyl	OMe	
633	4-amidinophenylmethoxy	n-butyloxycarbonyl	ОН	
634	4-amidinophenylmethoxy	cyclopropylethoxy	оме	
		carbonyl		
635	4-amidinophenylmethoxy	cyclopropylethoxy	ОН	
		carbonyl		
636	4-amidinophenylmethoxy	4-methylphenylsulfonyl	OMe	
637	4-amidinophenylmethoxy	4-methylphenylsulfonyl	ОН	
638	4-amidinophenylmethoxy	3-methylphenylsulfonyl	OMe	
639	4-amidinophenylmethoxy	3-methylphenylsulfonyl	OH	
640	4-amidinophenylmethoxy	n-butylsulfonyl	OMe	
641	4-amidinophenylmethoxy	n-butylsulfonyl	ОН	
801	4-amidinophenoxymethyl	benzyloxycarbonyl	OMe	
802	4-amidinophenoxymethyl	benzyloxycarbonyl	OH	
803	4-amidinophenoxymethyl	n-butyloxycarbonyl	OMe	
804	4-amidinophenoxymethyl	n-butyloxycarbonyl	ОН	
805	4-amidinophenoxymethyl	cyclopropylethoxy	OMe	
		carbonyl		
806	4-amidinophenoxymethyl	cyclopropylethoxy	OH	
		carbonyl		
807	4-amidinophenoxymethyl	4-methylphenylsulfonyl	OMe	
808	4-amidinophenoxymethyl	4-methylphenylsulfonyl	OH	
809	4-amidinophenoxymethyl	3-methylphenylsulfonyl	OMe	
810	4-amidinophenoxymethyl	3-methylphenylsulfonyl	OH	
811	4-amidinophenoxymethyl	n-butylsulfonyl	OMe	
812	4-amidinophenoxymethyl	n-butylsulfonyl	ОН	
813	4-amidinophenoxy	benzyloxycarbonyl	OMe	
814	4-amidinophenoxy	benzyloxycarbonyl	ОН	

-229-

Example Number	R ¹ -v	_R 16	Y	MS (M+H) ⁺
815 816	4-amidinophenoxy	n-butyloxycarbonyl	ОМе	
817	4-amidinophenoxy	n-butyloxycarbonyl	ОН	
818	4-amidinophenoxy	cyclopropylethyoxy	OHe	
	.	carbonyl	00	
819	4-amidinophenoxy	cyclopropylethoxy carbonyl	ОН	
820	4-amidinophenoxy	4-methylphenylsulfonyl	OMe	
821	4-amidinophenoxy	4-methylphenylsulfonyl	ОН	
822	4-amidinophenoxy	3-methylphenylsulfonyl	OMe	
823	4-amidinophenoxy	3-methylphenylsulfonyl	ОН	
824	4-amidinophenoxy	n-butylsulfonyl	OMe	
825	4-amidinophenoxy	n-butylsulfonyl	ОН	
826	4-amidinophenethyl	benzyloxycarbonyl	OMe	
827	4-amidinophenethyl	benzyloxycarbonyl	ОН	
828	4-amidinophenethyl	n-butyloxycarbonyl	OMe	
829	4-amidinophenethyl	n-butyloxycarbonyl	ОН	
830	4-amidinophenethyl	cyclopropylethoxy	OMe	
		carbonyl		
831	4-amidinophenethyl	cyclopropylethoxy	ОН	
		carbonyl		
832	4-amidinophenethyl	4-methylphenylsulfonyl	OMe	
833	4-amidinophenethyl	4-methylphenylsulfonyl	ОН	
834	4-amidinophenethyl	3-methylphenylsulfonyl	OMe	
835	4-amidinophenethyl	3-methylphenylsulfonyl	ОН	
836	4-amidinophenethyl	n-butylsulfonyl	OMe	
837	4-amidinophenethyl	n-butylsulfonyl	ОН	
838	N-(4-amidinophenyl)	benzyloxycarbonyl	OMe	
	aminomethyl	•		
839	N-(4-amidinophenyl)	benzyloxycarbonyl	ОН	
	aminomethyl			

-230-

methylamino

Example	R ¹ -V	_R 16	Y	MS
Number				(M+H) ⁺
840	N-(4-amidinophenyl)	n-butyloxycarbonyl	OMe	
	aminomethyl			
841	N-(4-amidinophenyl)	n-butyloxycarbonyl	ОН	
	aminomethyl			
842	N-(4-amidinophenyl)	cyclopropylethoxy	ОН	
	aminomethyl	carbonyl		
843	N-(4-amidinophenyl)	4-methylphenylsulfonyl	OMe	
	aminomethyl.			
844	N-(4-amidinophenyl)	4-methylphenylsulfonyl	ОН	
	aminomethyl			
845	N-(4-amidinophenyl)	3-methylphenylsulfonyl	OMe	
	aminomethyl			
846	N-(4-amidinophenyl)	3-methylphenylsulfonyl	ОН	
	aminomethyl			
847	N-(4-amidinophenyl)	n-butylsulfonyl	OMe	
	aminomethyl			
848	N-(4-amidinophenyl)	n-butylsulfonyl	OH	
	aminomethyl			
849	4-amidinophenyl	benzyloxycarbonyl	OMe	
	methylamino			
850	4-amidinophenyl	benzyloxycarbonyl	ОН	
	methylamino			
851	4-amidinophenyl	n-butyloxycarbonyl	OMe	
	methylamino			
852	4-amidinophenyl	n-butyloxycarbonyl	ОН	
	methylamino			
853	4-amidinophenyl	cyclopropylethoxy	OMe	
	methylamino	carbonyl		
854	4-amidinophenyl	cyclopropylethoxy	OH	
	methylamino	carbonyl		
855	4-amidinophenyl	4-methylphenylsulfonyl	OMe	

-231-

Example Number	R ¹ -V	_R 16	Y	MS (M+H) ⁺
856	4-amidinophenyl	4-methylphenylsulfonyl	ОН	
857	methylamino 4-amidinophenyl	3-methylphenylsulfonyl	OMe	
858	methylamino 4-amidinophenyl	n-butylsulfonyl	OMe	
859	methylamino 4-amidinophenyl	n-butylsulfonyl	ОН	
860	methylamino N-(4-amidinophenyl)	benzyloxycarbonyl	OMe	
861	aminocarbonyl N-(4-amidinophenyl) aminocarbonyl	benzyloxycarbonyl	ОН	
862	N-(4-amidinophenyl) aminocarbonyl	n-butyloxycarbonyl	OMe	
863	N-(4-amidinophenyl) aminocarbonyl	n-butyloxycarbonyl	ОН	
864	N-(4-amidinophenyl) aminocarbonyl	cyclopropylethoxy	OMe	
865	N-(4-amidinophenyl) aminocarbonyl	cyclopropylethoxy carbonyl	ОН	
866	N-(4-amidinophenyl) aminocarbonyl	4-methylphenylsulfonyl	OMe	
867	N-(4-amidinophenyl) aminocarbonyl	4-methylphenylsulfonyl	ОН	
868	N-(4-amidinophenyl) aminocarbonyl	3-methylphenylsulfonyl	OMe	
869	N-(4-amidinophenyl) aminocarbonyl	3-methylphenylsulfonyl	ОН	
870	N-(4-amidinophenyl) aminocarbonyl	n-butylsulfonyl	OMe	
871	N-(4-amidinophenyl) aminocarbonyl	n-butylsulfonyl	ОН	

-232-

Example	R ¹ -v	_R 16	Y	MS
Number				(M+H) ⁺
		•		
872	4-amidinophenyl	benzyloxycarbonyl	OMe	
	carbonylamino			
873	4-amidinophenyl	benzyloxycarbonyl	ОН	
	carbonylamino			
874	4-amidinophenyl	n-butyloxycarbonyl	OMe	
	carbonylamino			
875	4-amidinophenyl	n-butyloxycarbonyl	ОН	
	carbonylamino			
876	4-amidinophenyl	cyclopropylethoxy	OMe	
	carbonylamino	carbonyl		
877	4-amidinophenyl	cyclopropylethoxy	ОН	
	carbonylamino	carbonyl		
878	4-amidinophenyl	4-methylphenylsulfonyl	OMe	
	carbonylamino			
879	4-amidinophenyl	4-methylphenylsulfonyl	ОН	
	carbonylamino			
880	4-amidinophenyl	3-methylphenylsulfonyl	OMe	
	carbonylamino			
881	4-amidinophenyl	3-methylphenylsulfonyl	ОН	
	carbonylamino			
882	4-amidinophenyl	n-butylsulfonyl	OMe	
	carbonylamino			
883	4-amidinophenyl	n-butylsulfonyl	ОН	
	carbonylamino			
884	N-(4-amidinophenyl)	benzyloxycarbonyl	OMe	
	amino			
885	N-(4-amidinophenyl)	benzyloxycarbonyl	ОН	
	amino			
886	N-(4-amidinophenyl)	n-butyloxycarbonyl	OMe	
	amino			
887	N-(4-amidinophenyl)	n-butyloxycarbonyl	ОН	

amino

-233-

Example	R^1-V	R ¹⁶	Y	MS
Number				(M+H) ⁺
• • •				
888	N-(4-amidinophenyl)	cyclopropylethoxy	OMe	
•••	amino	carbonyl		
889	N-(4-amidinophenyl)	cyclopropylethoxy	OH	
	amino	carbonyl		
890	N-(4-amidinophenyl) amino	4-methylphenylsulfonyl	OMe	
891	N-(4-amidinophenyl)	4-methylphenylsulfonyl	ОН	
	amino			
892	N-(4-amidinophenyl)	3-methylphenylsulfonyl	OMe	
	amino			
893	N-(4-amidinophenyl)	3-methylphenylsulfonyl	ОН	
	amino	•		
894	N-(4-amidinophenyl)	n-butylsulfonyl	OMe	
	amino	•		
895	N-(4-amidinophenyl)	n-butylsulfonyl	ОН	
	amino			
896	N-(4-amidinophenyl)-N-	benzyloxycarbonyl	OMe	
	methylamino			
897	N-(4-amidinophenyl)-N-	benzyloxycarbonyl	ОН	
	methylamino			
898	N-(4-amidinophenyl)-N-	n-butyloxycarbonyl	OMe	
	methylamino			
899	N-(4-amidinophenyl)-N-	n-butyloxycarbonyl	ОН	
	methylamino			
900	N-(4-amidinophenyl)-N-	cyclopropylethoxy	OMe	
	methylamino	carbonyl		
901	N-(4-amidinophenyl)-N-	cyclopropylethoxy	ОН	
	methylamino	carbonyl		
902	N-(4-amidinophenyl)-N-	4-methylphenylsulfonyl	OMe	
	methylamino			
903	N-(4-amidinophenyl)-N-	4-methylphenylsulfonyl	ОН	
	methylamino			

-234-

Example	R ¹ -V	_R 16	Y	MS
Number				(M+H) ⁺
904	N-(4-amidinophenyl)-N-	3-methylphenylsulfonyl	OMe	
	methylamino			
905	N-(4-amidinophenyl)-N-	3-methylphenylsulfonyl	ОН	
	methylamino			
906	N-(4-amidinophenyl)-N-	n-butylsulfonyl	OMe	
	methylamino -			
907	N-(4-amidinophenyl)-N-	n-butylsulfonyl	ОН	
	methylamino			
908	4-amidinobenzoyl	benzyloxycarbonyl	OMe	
909	4-amidinobenzoyl	benzyloxycarbonyl	ОН	
910	4-amidinobenzoyl	n-butyloxycarbonyl	OMe	
911	4-amidinobenzoyl	n-butyloxycarbonyl	ОН	
912	4-amidinobenzoyl	cyclopropylethoxy	OMe	
		carbonyl		
913	4-amidinobenzoyl	cyclopropylethoxy	ОН	
		carbonyl		
914	4-amidinobenzoyl	4-methylphenylsulfonyl	OMe	
915	4-amidinobenzoyl	4-methylphenylsulfonyl	ОН	
916	4-amidinobenzoyl	3-methylphenylsulfonyl	OMe	
917	4-amidinobenzoyl	<pre>3-methylphenylsulfonyl</pre>	ОН	
918	4-amidinobenzoyl	n-butylsulfonyl	OMe	•
919	4-amidinobenzoyl	n-butylsulfonyl	ОН	
920	4-amidinophenyl	benzyloxycarbonyl	OMe	
	methylcarbonyl			
921	4-amidinophenyl	benzyloxycarbonyl	ОН	
	methylcarbonyl			
922	4-amidinophenyl	n-butyloxycarbonyl	OMe	
	methylcarbonyl			
923	4-amidinophenyl	n-butyloxycarbonyl	ОН	
	methylcarbonyl			•
924	4-amidinophenyl	cyclopropylethoxy	OMe	
	methylcarbonyl	carbonyl		

-235-

Example	R ¹ -V	_R 16	Y	MS
Number				(M+H) ⁺
92 5	4-amidinophenyl	cyclopropylethoxy	ОН	
	methylcarbonyl	carbonyl		
926	4-amidinophenyl	4-methylphenylsulfonyl	OMe	
	methylcarbonyl			
927	4-amidinophenyl	4-methylphenylsulfonyl	ОН	
	methylcarbonyl			
928	4-amidinophenyl	3-methylphenylsulfonyl	OMe	
	methylcarbonyl			
929	4-amidinophenyl	3-methylphenylsulfonyl	ОН	
	methylcarbonyl			
930	4-amidinophenyl	n-butylsulfonyl	OMe	
	methylcarbonyl			
931	4-amidinophenyl	n-butylsulfonyl	ОН	
	methylcarbonyl			
932	4-amidinophenyl-	benzyloxycarbonyl	OMe	
	carbonylmethyl			
933	4-amidinophenyl-	benzyloxycarbonyl	ОН	
	carbonylmethyl			
934	4-amidinophenyl-	n-butyloxycarbonyl	OMe	
	carbonylmethyl			
935	4-amidinophenyl-	n-butyloxycarbonyl	ОН	
	carbonylmethyl			
936	4-amidinophenyl-	cyclopropylethoxy	OMe	
	carbonylmethyl	carbonyl		
937	4-amidinophenyl-	cyclopropylethoxy	ОН	
	carbonylmethyl	carbonyl		
938	4-amidinophenyl-	4-methylphenylsulfonyl	OMe	
	carbonylmethyl			
939	4-amidinophenyl-	4-methylphenylsulfonyl	ОН	
	carbonylmethyl			
940	4-amidinophenyl-	3-methylphenylsulfonyl	OMe	
	carbonylmethyl			

WO 95/14683	PCT/US94/13155

-236-

Example Number	R ¹ v	_R 16	Y	MS (M+H) ⁺	
941	4-amidinophenyl- carbonylmethyl	3-methylphenylsulfonyl	ОН	•	:
942	4-amidinophenyl- carbonylmethyl	n-butylsulfonyl	OMe		•
943	4-amidinophenyl- carbonylmethyl	n-butylsulfonyl	ОН		

Table 2B

Example	R ¹ -V	R ^{5a}	_R 16	Y	MS
Number					(M+H) ⁺
651	4-amidinophenyl	methyl	benzyloxycarbony	OMe	496
652	4-amidinophenyl	methyl	n-butyloxycarbony	OMe	
653	4-amidinophenyl	methyl	3-methylphenylsulfonyl	OMe	
654	4-amidinophenyl	methyl	benzyloxycarbonyl	ОН	
655	4-amidinophenyl	methyl	n-butyloxycarbonyl	ОН	
656	4-amidinophenyl	methyl	3-methylphenylsulfonyl	ОН	
657	4-amidinophenyl	methyl	4-methylphenylsulfonyl	ОН	
658	4-amidinophenyl	methyl	4-methylphenylsulfonyl	OMe	
659	4-amidinophenyl	methyl	n-butylsulfonyl	ОН	
660	4-amidinophenyl	methyl	n-butylsulfonyl	OMe	

Table 2C

Example Number	R ¹ -V	_R 16	_R 17	Y	MS (M+H) ⁺
661	4-amidinophenyl	benzyloxycarbonyl	methyl	OMe	
662	4-amidinophenyl	benzyloxycarbonyl	methyl	OH	
663	4-amidinophenyl	n-butyloxycarbonyl	methyl	OMe	
664	4-amidinophenyl	n-butyloxycarbonyl	methyl	ОН	

-238-

665	4-amidinophenyl	3-methylphenylsulfonyl	methyl	OMe
666	4-amidinophenyl	3-methylphenylsulfonyl	methyl	ОН
667	4-amidinophenyl	4-methylphenylsulfonyl	methyl	OMe
668	4-amidinophenyl	4-methylphenylsulfonyl	methyl	ОН
669	4-amidinophenyl	n-butylsulfonyl	methyl	OMe
670	4-amidinophenyl	n-butylsulfonyl	methyl	ОН

Table 2D

Example	R ¹ -V	_R 16	Y	MS
Number				(M+H) ⁺
				•
701	4-amidinophenyl	benzyloxycarbonyl	ОН	
702	4-amidinophenyl	t-butyloxycarbonyl	ОН	
703	4-amidinophenyl	n-butyloxycarbonyl	ОН	
704	4-amidinophenyl	ethyloxycarbonyl	ОН	
705	4-amidinophenyl	methyloxycarbonyl	ОН	
706	4-amidinophenyl	phenylethylcarbonyl	ОН	
707	4-amidinophenyl	2,2-dimethyl-	ОН	
		propylcarbonyl		
708	4-amidinophenyl	n-pentylcarbonyl	ОН	
709	4-amidinophenyl	n-butylcarbonyl	ОН	
710	4-amidinophenyl	propionyl	ОН	
711	4-amidinophenyl	acetyl	ОН	
712	4-amidinophenyl	methylsulfonyl	ОН	
713	4-amidinophenyl	ethylsulfonyl	ОН	
714	4-amidinophenyl	n-butylsulfonyl	ОН	
715	4-amidinophenyl	phenylsulfonyl	ОН	
716	4-amidinophenyl	4-methylphenyl-	ОН	
		sulfonyl		
717	4-amidinophenyl	benzylsulfonyl	ОН	
718	4-amidinophenyl	2-pyridylcarbonyl	ОН	
719	4-amidinophenyl	3-pyridylcarbonyl	ОН	
720	4-amidinophenyl	4-pyridylcarbonyl	ОН	
721	4-amidinophenyl	2-pyridylmethyl-	ОН	
		carbonyl		
722	4-amidinophenyl	3-pyridylmethyl-	ОН	
		carbonyl		

-240-

Example	r ¹ -v	_R 16	Y	MS
Number				(M+H) ⁺
723	4-amidinophenyl	4-pyridylmethyl-	ОН	
		carbonyl		
724	4-amidinophenyl	2-pyridylmethoxy-	ОН	
		carbonyl		
725	4-amidinophenyl	3-pyridylmethoxy-	ОН	
		carbonyl		
726	4-amidinophenyl	4-pyridylmethoxy-	ОН	
		carbonyl		
727	4-amidinophenyl	benzyloxycarbonyl	OMe	480
728	4-amidinophenyl	t-butyloxycarbonyl	OMe	
729	4-amidinophenyl	n-butyloxycarbonyl	OMe	446
730	4-amidinophenyl	ethyloxycarbonyl	OMe	
731	4-amidinophenyl	methyloxycarbonyl	OMe	
732	4-amidinophenyl	phenylethylcarbonyl	OMe	
733	4-amidinophenyl	2,2-dimethyl-	OMe	
		propylcarbonyl		
734	4-amidinophenyl	n-pentylcarbonyl	OMe	
735	4-amidinophenyl	n-butylcarbonyl	OMe	
736	4-amidinophenyl	propionyl	OMe	
737	4-amidinophenyl	acetyl	OMe	
738	4-amidinophenyl	methylsulfonyl	OMe	
739	4-amidinophenyl	ethylsulfonyl	OMe	
740	4-amidinophenyl	n-butylsulfonyl	OMe	
741	4-amidinophenyl	phenylsulfonyl	OMe	
742	4-amidinophenyl	4-methylphenyl-	OMe	
		sulfonyl		
743	4-amidinophenyl	benzylsulfonyl	OMe	
744	4-amidinophenyl	2-pyridylcarbonyl	OMe	
745	4-amidinophenyl	3-pyridylcarbonyl	OMe	
746	4-amidinophenyl	4-pyridylcarbonyl	Оме	

-241-

Example	R ¹ -V	_R 16	Y	MS
Number		,		(M+H) ⁺
747	4-amidinophenyl	2-pyridylmethyl-	OMe	
		carbonyl		
748	4-amidinophenyl	3-pyridylmethyl-	OMe	
		carbonyl		
749	4-amidinophenyl	4-pyridylmethyl-	OMe	
		carbonyl		
750	4-amidinophenyl	2-pyridylmethoxy-	OMe	
		carbonyl		
751	4-amidinophenyl	3-pyridylmethoxy-	OMe	
		carbonyl		
752	4-amidinophenyl	4-pyridylmethoxy-	OMe	
		carbonyl		
753	4-piperidinylethyl	benzylcarbonyl	ОМе	
754	4-(BOCamidino)phenyl	benzyloxycarbonyl	OMe	
755	4-(BOCamidino)phenyl	n-butyloxycarbonyl	OMe	
756	4-amidinophenyl	1-naphthylsulfonyl	OMe	
757	4-amidinophenyl	2-naphthylsulfonyl	OMe	
758	4-piperidinylethyl	n-butyloxycarbonyl	OMe	440
759	4-amidinophenyl	2-thienylsulfonyl	OMe	
760	4-amidinophenyl	3-methylphenyl-	OMe	
		sulfonyl		
761	4-amidinophenyl	4-fluorophenyl-	OMe	
		sulfonyl		
762	4-amidinophenyl	4-methoxyphenyl-	OMe	
		sulfonyl		
763	4-amidinophenyl	n-propylsulfonyl	OMe	
764	4-amidinophenyl	2-phenylethyl-	ОМе	
		sulfonyl		
765	4-amidinophenyl	4-isopropylphenyl-	OMe	
		sulfonyl		
		<u>-</u> -		

-242-

Example	R ¹ -V	_R 16	Y	MS
Number				(M+H) ⁺
766	4-amidinophenyl	3-phenylpropyl-	OMe	
		sulfonyl		
767	4-amidinophenyl	3-pyridylsulfonyl	OMe	
768	4-amidinophenyl	2-pyridylsulfonyl	OMe	
769	4-amidinophenyl	n-butylaminosulfonyl	ОМе	
770	4-amidinophenyl	i-butylaminosulfonyl	OMe	
771	4-amidinophenyl	t-butylaminosulfonyl	OMe	
772	4-amidinophenyl	i-propylamino-	OMe	
		sulfonyl		
773	4-amidinophenyl	cyclohexylamino-	OMe	
		sulfonyl		
774	4-amidinophenyl	phenylaminosulfonyl	OMe	
775	4-amidinophenyl	benzylaminosulfonyl	OMe	
776	4-amidinophenyl	dimethylamino-	OMe	
		sulfonyl		
777	2-fluoro-4-amidino-	3-methylphenyl-	OMe	
	phenyl	sulfonyl		
778	5-amidino-2-pyridyl	n-butyloxycarbonyl	OMe	
779	5-amidino-2-pyridyl	3-methylphenyl-	OMe	
		sulfonyl		
780	6-amidino-3-pyridyl	n-butyloxycarbonyl	OMe	
781	6-amidino-3-pyridyl	3-methylphenyl-	OMe	
		sulfonyl		
782	4-amidinophenyl	phenylaminocarbonyl	OMe	
783	4-amidinophenyl	benzylaminocarbonyl	OMe	
784	4-amidinophenyl	n-butylaminocarbonyl	OMe	
785	4-amidinophenyl	n-hexyloxycarbonyl	OMe	
786	4-amidinophenyl	n-hexyloxycarbonyl	OH	
787	4-amidinophenyl	isobutyloxycarbonyl	OMe	
788	4-amidinophenyl	isobutyloxycarbonyl	ОН	
789	4-amidinophenyl	2-cyclopropylethoxy-	OMe	

carbonyl

-243-

Example	R ¹ -V	R ¹⁶	Y	MS
Number				(H+H) ⁺
790	4-amidinophenyl	2-cyclopropylethoxy- carbonyl	ОН	
791	4-amidinophenyl	2-cyclopentylethoxy-carbonyl	OMe	
792	4-amidinophenyl	2-cyclopentylethoxy-carbonyl	ОН	
793	4-amidinophenyl	n-propylsulfonyl	OMe	
794	4-amidinophenyl	2-methylphenyl- sulfonyl	OMe	
795	4-amidinophenyl	2-benzothienyl- sulfonyl	OMe	
796	4-amidinophenyl	2-benzothienyl- sulfonyl	OMe	
797	4-amidinophenyl	2,2,5,7,8-pentamethyl 3,4-dihydro-2Hbenzo- pyran-6-ylsulfonyl	ОН	
798	4-amidinophenyl	3-methylphenylsulfonyl	ОН	486

-244-

Table 2E

Example	R ¹ -V	_R 16	Y	MS
Number				(M+H) ⁺
801	4-amidinophenyl	benzyloxycarbonyl	ОН -	
802	4-amidinophenyl	t-butyloxycarbonyl	ОН	
803	4-amidinophenyl	n-butyloxycarbonyl	ОН	
804	4-amidinophenyl	ethyloxycarbonyl	ОН	
805	4-amidinophenyl	methyloxycarbonyl	ОН	
806	4-amidinophenyl	phenylethylcarbonyl	ОН	
807	4-amidinophenyl	2,2-dimethyl-	ОН	
		propylcarbonyl		
808	4-amidinophenyl	n-pentylcarbonyl	ОН	
809	4-amidinophenyl	n-butylcarbonyl	ОН	
810	4-amidinophenyl	propionyl	ОН	
811	4-amidinophenyl	acetyl	ОН	
812	4-amidinophenyl	methylsulfonyl	ОН	
813	4-amidinophenyl	ethylsulfonyl	ОН	
814	4-amidinophenyl	n-butylsulfonyl	ОН	
815	4-amidinophenyl	phenylsulfonyl	ОН	
816	4-amidinophenyl	4-methylphenyl-	ОН	
		sulfonyl		
817	4-amidinophenyl	benzylsulfonyl	ОН	
818	4-amidinophenyl	2-pyridylcarbonyl	OH	
819	4-amidinophenyl	3-pyridylcarbonyl	ОН	
820	4-amidinophenyl	4-pyridylcarbonyl	ОН	
821	4-amidinophenyl	2-pyridylmethyl-	ОН	
		carbonyl		
822	4-amidinophenyl	3-pyridylmethyl-	ОН	
		carbonyl		

-245-

Example	R ¹ V	R ¹⁶	Y	MS
Number				(M+H) ⁺
823	4-amidinophenyl	4-pyridylmethyl-	ОН	
•		carbonyl		
824	4-amidinophenyl	2-pyridylmethoxy-	ОН	
		carbonyl		
825	4-amidinophenyl	3-pyridylmethoxy-	ОН	
		carbonyl		
826	4-amidinophenyl	4-pyridylmethoxy-	ОН	
		carbonyl		
827	4-amidinophenyl	benzyloxycarbonyl	OMe	
828	4-amidinophenyl	t-butyloxycarbonyl	OMe	
829	4-amidinophenyl	n-butyloxycarbonyl	OMe	448
830	4-amidinophenyl	ethyloxycarbonyl	OMe	
831	4-amidinophenyl	methyloxycarbonyl	OMe	
832	4-amidinophenyl	phenylethylcarbonyl	OMe	
833	4-amidinophenyl	2,2-dimethyl-	OMe	
		propylcarbonyl		
834	4-amidinophenyl	n-pentylcarbonyl	OMe	
835	4-amidinophenyl	n-butylcarbonyl	OMe	
836	4-amidinophenyl	propionyl	OMe	
837	4-amidinophenyl	acetyl	OMe	
838	4-amidinophenyl	methylsulfonyl	OMe	
839	4-amidinophenyl	ethylsulfonyl	OMe	
840	4-amidinophenyl	n-butylsulfonyl	OMe	
841	4-amidinophenyl	phenylsulfonyl	OMe	
842	4-amidinophenyl	4-methylphenyl-	OMe	
		sulfonyl		
843	4-amidinophenyl	benzylsulfonyl	OMe	
844	4-amidinophenyl	2-pyridylcarbonyl	OMe	
845	4-amidinophenyl	3-pyridylcarbonyl	OMe	
846	4-amidinophenyl	4-pyridylcarbonyl	OMe	

-246-

Example	R ¹ -V	R ¹⁶	Y	MS
Number				(H+H) ⁺
847	4-amidinophenyl	2-pyridylmethyl-	OMe	
		carbonyl		
848	4-amidinophenyl	3-pyridylmethyl-	OMe	
		carbonyl		
849	4-amidinophenyl	4-pyridylmethyl-	OMe	
		carbonyl		
850	4-amidinophenyl	2-pyridylmethoxy-	OMe	
		carbonyl		
851	4-amidinophenyl	3-pyridylmethoxy-	OMe	
		carbonyl		
852	4-amidinophenyl	4-pyridylmethoxy-	OMe	
		carbonyl		
853	4-piperidinylethyl	benzylcarbonyl	OMe	
854	4-(BOCamidino)phenyl	benzyloxycarbonyl	OMe	
855	4-(BOCamidino)phenyl	n-butyloxycarbonyl	OMe	
856	4-amidinophenyl	1-naphthylsulfonyl	OMe	
857	4-amidinophenyl	2-naphthylsulfonyl	OMe	
858	4-piperidinylethyl	n-butyloxycarbonyl	OMe	
859	4-amidinophenyl	2-thienylsulfonyl	OMe	
860	4-amidinophenyl	3-methylphenyl-	OMe	
		sulfonyl		
861	4-amidinophenyl	4-fluorophenyl-	OMe	
		sulfonyl		
862	4-amidinophenyl	4-methoxyphenyl-	OMe	
		sulfonyl		
863	4-amidinophenyl	n-propylsulfonyl	OMe	
864	4-amidinophenyl	2-phenylethyl-	OMe	
		sulfonyl		
865	4-amidinophenyl	4-isopropylphenyl-	OMe	
		sulfonyl		

-247-

Example	R ¹ -V	_R 16	Y	MS
Number				(M+H) ⁺
86 6	4-amidinophenyl	3-phenylpropyl-	OMe	
		sulfonyl		
867	4-amidinophenyl	3-pyridylsulfonyl	OMe	
868	4-amidinophenyl	2-pyridylsulfonyl	OMe	
869	4-amidinophenyl	n-butylaminosulfonyl	OMe	
870	4-amidinophenyl	i-butylaminosulfonyl	OMe	
871	4-amidinophenyl	t-butylaminosulfonyl	ОМе	
872	4-amidinophenyl	i-propylamino-	OMe	
		sulfonyl		
873	4-amidinophenyl	cyclohexylamino-	OMe	
		sulfonyl		•
874	4-amidinophenyl	phenylaminosulfonyl	OMe	
87 5	4-amidinophenyl	benzylaminosulfonyl	OMe	
876	4-amidinophenyl	dimethylamino-	OMe	
		sulfonyl		
877	2-fluoro-4-amidino-	3-methylphenyl-	OMe	
	phenyl	sulfonyl		
878	5-amidino-2-pyridyl	n-butyloxycarbonyl	OMe	
879	5-amidino-2-pyridyl	3-methylphenyl-	OMe	
		sulfonyl		
880	6-amidino-3-pyridyl	n-butyloxycarbonyl	OMe	
881	6-amidino-3-pyridyl	3-methylphenyl-	OMe	
		sulfonyl		
882	4-amidinophenyl	phenylaminocarbonyl	OMe	
883	4-amidinophenyl	benzylaminocarbonyl	OMe	
884	4-amidinophenyl,	n-butylaminocarbonyl	OMe	
885	4-amidinophenyl	n-hexyloxycarbonyl	OMe	
886	4-amidinophenyl	n-hexyloxycarbonyl	ОН	
887	4-amidinophenyl	isobutyloxycarbonyl	OMe	
888	4-amidinophenyl	isobutyloxycarbonyl	ОН	
889	4-amidinophenyl	2-cyclopropylethoxy-	OMe	
		carbonyl		

-248-

Example	R ¹ -v	_R 16	Y	MS
Number				(H+H) ⁺
890	4-amidinophenyl	2-cyclopropylethoxy- carbonyl	ОН	
891	4-amidinophenyl	2-cyclopentylethoxy-carbonyl	OMe	
892	4-amidinophenyl	2-cyclopentylethoxy-carbonyl	ОН	
893	4-amidinophenyl	n-propylsulfonyl	OMe	
894	4-amidinophenyl	2-methylphenyl- sulfonyl	OMe	
895	4-amidinophenyl	2-benzothienyl- sulfonyl	OMe	
896	4-amidinophenyl	2-benzothienyl- sulfonyl	ОМе	
897	4-amidinophenyl	2,2,5,7,8-pentamethyl 3,4-dihydro-2Hbenzo- pyran-6-ylsulfonyl	ОН	

•

Table 3

$$R^2-R^1-V-V-F$$
 p
 (VII)

Ex. \mathbb{R}^2 R1-V -F-E< n ' Y p No. 171 H -C (=0) -N < 11 OH 172 Н -C (=0) -N < 12 OH 173 $-C(H_2)-N<1$ Н 1 OH 174 H $-C(H_2)-N<1$ 2 OH 175 Н -C(H)=C<11 OH 176 Н -C(H)=C<1 2 OH 177 H -C (=0) -N < 21 ОН 178 Н -C (=0) -N < 22 ОН 179 Н $-C(H_2)-N<2$ 1 OH 180 H $-C(H_2)-N<2$ 2 ОН 181 Н -C(H)=C<21 ОН 182 Н -C(H)=C<22 ОН 183 Н -C (=0) -N < 31 ОН 184 Н -C (=0) -N < 32 ОН -C (H₂)-N< 3 185 Н 1 ОН 186 $-C(H_2)-N<3$ 2 H ОН 187 -C (H)=C< H 1 ОН 188 -C(H)=C<2 Н ОН

Ex.	R ²	R ¹ -V	-F-E<	p	n' Y
No.					
189	н	-v <u>`</u>	-C (=O) -N< 1	. 1	ОН
190	н				
191	н			_	
192	Н		$-C(H_2)-N< 1$	_	
193	н	- , \(\)	$-C(H_2)-N<1$		
			-C (H) =C< 1	_	
194	H		-C (H) =C< 1		
195	H		-C (=0) -N < 2		ОН
196	H		-C (=O) -N< 2		ОН
197	H	- *	$-C(H_2)-N<2$	1	ОН
198	H	- * <u>`</u>	$-C(H_2)-N<2$	2	ОН
199	Н	- *	-C(H)=C<2	1	ОН
200	Н		-C(H)=C<2	2	ОН
201	H	- - -\	-C (=O) -N< 3	1	ОН
202	H	→	-C (=O) -N< 3	2	ОН
203	H	→ Ò-,	$-C(H_2)-N<3$	1	ОН
204	H	-√_	$-C(H_2)-N<3$	2	ОН
205	H	-√_	-C(H)=C<3	1	ОН
206	Н	→♡~_	-C(H)=C< 3	2	ОН
207	Boc	→	-C (=O) -N< 1	1	OH
208	Cbz	-	-C (=O) -N< 1	1	ОН
209	H	→○	-C (=O) -N< 1	1	<i>ڪ</i> .ڏ
210	н	- *○~_	-C (=O) -N< 1	1	۰~۰ ¹ _м ۰
211	Н	- "\\	-C (=O) -N< 1	1	O Me Me
212	Н	~	-C (=O) -N< 1	1	O O O O O O
213	Н	- *\-_	-C (=0) -N < 1	1	ON(EI)2
214	Н	-N	-C (=O) -N< 1	1	OEt

Ex. No.	R ²	R ¹ -V	-F-E<	q	n'	Y
			•			
215	Н	-N	-C (=O) -N<	1	2	OEt
216	Н	-N-C>-	-C (H ₂) -N<	1	1	OEt
217	Н	-N	-C (H ₂) -N<	1	2	OEt
218	Н	-N	-C(H)=C<	1	1	OEt
219	Н	H ₂ N	-C(H)=C<	1	2	OEt
220	Н	H ₂ N	-C (=O) -N<	2	1	OEt
221	Н	H ₂ N	-C (=O) -N<	2	2	OEt
222	Н	H ₂ N	-C (H ₂) -N<	2	1	OEt
223	Н	H, N	$-C(H_2)-N<$	2	2	OEt
224	Н	H-N-C>-	-C (H) =C<	2	1	OEt
225	Н	H ₂ N	-C (H) =C<	2	2	OEt
226	Н	H ₂ N	-C (=O) -N<	3	1	OEt
227	Н	H2N	-C (=O) -N<	3	2	OEt
228	H	H,N	-C (H ₂) -N<	3	1	OEt
229	Н	H ₂ N	-C (H ₂) -N<	3	2	OEt
230	н .	H,N - ()-	-C(H)=C<	3	1	OEt
231	H	H ₂ N	-C (H) =C<	3	2	OEt
232	Н	-1	-C (=O) -N<	1	1	OEt
233	Н	- *	-C (=O) -N<	1	2	OEt
234	H	-	$-C(H_2)-N<$	1	1	OEt
235	Н	→♡~_	$-C(H_2)-N<$	1	2	OEt
236	Н	→ ᢕ	-C (H) =C<	1	1	OEt
237	Н	-	-C (H) =C<	1	2	OEt
238	Н	\	-C (=O)-N<	2	1 .	OEt
239	Н	- ^_	-C (=O) -N<	2	2	OEt
240	Н	→\	-C (H ₂)-N<	2	1	OEt

Ex.	R ²	R ¹ -V	-F-E<	q	n'	Y
No.						
241	H	-	$-C (H_2) -N <$	2	2	OEt
242	H	-	-C (H)=C<	2	1	OEt
243	Н		-C (H) =C<	2	2	OEt
244	Н	→	-C (=O) -N<	3	1	OEt
245	Н	→О	-C (=O) -N<	3	2	OEt
246	Н	→♡~_	-C (H ₂)-N<	3	1	OEt
247	Н	→	$-C (H_2) -N <$	3	2	OEt
248	н	→	-C (H)=C<	3	1	OEt
249	Н	→	-C (H)=C<	3	2	OEt
250	Вос	→	-C (=O) -N<	1	1	OEt
251	Cbz	→○~_	-C (=O) -N<	1	1	OEt
373	Н		-C (=O) -N<	1	2	ОН

Table 4

Example	R ²	Rla	Zl	Y
Number				
252	н	-n\-	CH ₂	ОН
253	н	-NHCH ₂) ₂ -	_	
253			CH ₂	OH
	Н	-NHCH ₂) ₃ -	CH ₂	OH
255 ⁻	H	-,\	0	ОН
256	H	-NHCH ₂) ₂ -	0	ОН
257	H	-NHCH ₂) ₃ -	0	ОН
258	Вос	_ ⊢ \	CH ₂	ОН
259	Cbz		CH ₂	ОН
260	Н	-n\	CH ₂	ر الأرب
261	Н	-n <u>_</u>	CH ₂	0~0 ¹ M•
262	н	-N	CH ₂	O Me
				o You
263	Н	- N -	CH ₂	OEI
264	Н		CH ₂	ON(Et) ₂
265	H		CH ₂	OEt
266	H	-N	CH ₂	OEt
267	H	· – r	CH ₂	OEt
268	Н	-NH (CH ₂) ₂ -	CH ₂	OEt
269	Н	~NH (CH ₂) 3-	CH ₂	OEt
270	Н	-n_	0 .	OEt
271	Н	-NH (CH ₂) ₂ -	0	OEt
272	H	-NH (CH ₂) 3-	0	OEt

-254-

 z^1

Y

273 Boc -N CH₂ OEt 274 Cbz -N CH₂ OEt

 R^{la}

Example R²

Number

Table 5

$$H_2N$$
 $N=0$
 R

Example Number	. R	Y	MS (ESI) (M+H) +
375	_N \	ОН	373
376	CH ₂ C(=O)Y	ОН	
377	CH ₂ C(=O)Y	ОН	387
	_N CH ₂ C(=O)Y		
378	_n	ОН	
379	CH ₂ C(≃O)Y	ОН	
	-N		
380	O CH ₂ C(=O)Y	ОН	
	_N CH ₂ C(=0)Y		
381	-N NH	ОН	
382	YC(=0)CH ₂	ОН	
	-NN	·	
	CH ₂ C(=O)Y		

CH₂C(=O)Y

406 OMe

$$CH_2C(=O)Y$$

407 OMe

 $CH_2C(=O)Y$

408 O

 $CH_2C(=O)Y$

413 OEt

 $CH_2C(=O)Y$

414 OEt

 $CH_2C(=O)Y$

415 OEt

 $CH_2C(=O)Y$

416 O

 $CH_2C(=O)Y$

417 OEt

 $CH_2C(=O)Y$

418 O

 $CH_2C(=O)Y$

OEt

 $CH_2C(=O)Y$

OEt

 $CH_2C(=O)Y$

OEt

 $CH_2C(=O)Y$

OEt

 $CH_2C(=O)Y$

OEt

 $CH_2C(=O)Y$

OEt

 $CH_2C(=O)Y$

OEt

-259-419 OEt

•

424
$$CH_2C(=O)Y$$
 OEt

$$\begin{array}{ccc} & & \text{C\'H}_2\text{C}(=\text{O})\text{Y} \\ 432 & & -\text{NHC}\left(\text{CH}_3\right)_2 - & \text{OEt} \\ & & \text{CH}_2\text{C}\left(=\text{O}\right)\text{Y} \\ 433 & & -\text{N}\left(\text{CH}_2\text{C}_6\text{H}_5\right) - & \text{OEt} \\ \end{array}$$

(CH₂)₂C (=0) Y

436 O OEt 387 $CH_2C(=O)Y$ 437 OEt 387 -N OEt 387 $CH_2C(=O)Y$ 438 OMe 387 $CH_2C(=O)Y$

35

261

Utility

The compounds of this invention possess antiplatelet efficacy, as evidenced by their activity in standard platelet aggregation assays or platelet fibrinogen binding assays, as described below. A compound is considered to be active in these assays if it has an IC₅₀ value of less than about 1 mM. Platelet aggregation and fibrinogen binding assays which may be used to demonstrate the antiplatelet activity of the compounds of the invention are described below.

Platelet Aggregation Assay: Venous blood was obtained from the arm of a healthy human donor who was drug-free and aspirin-free for at least two weeks prior 15 to blood collection. Blood was collected into 10 mL citrated Vacutainer tubes. The blood was centrifuged for 15 minutes at 150 x g at room temperature, and platelet-rich plasma (PRP) was removed. The remaining blood was centrifuged for 15 minutes at 1500 x g at room 20 temperature, and platelet-poor plasma (PPP) was removed. Samples were assayed on a aggregometer (PAP-4 Platelet Aggregation Profiler), using PPP as the blank (100% transmittance). 200 μ L of PRP was added to each micro 25 test tube, and transmittance was set to 0%. 20 μL of various agonists (ADP, collagen, arachidonate, epinephrine, thrombin) were added to each tube, and the aggregation profiles were plotted (% transmittance versus time). The results are expressed as % inhibition 30 of agonist-induced platelet aggregation. For the IC_{50} evaluation, the test compounds were added at various concentrations prior to the activation of the platelets.

Ester prodrugs were preincubated (10⁻³ M F.C.) with 100 IU/ml Porcine liver esterase (Sigma Chemical Co., St. Louis, MO, #E-3128) for 2 hours at 37 °C. Aliquots

are then diluted in 0.1 M Tris, pH 7.4, to the desired concentrations. Aliquots of 20 μ l of the esterase pretreated prodrugs are added to 200 µl of human platelet rich plasma. Samples were placed in platelet 5 profiler (aggregometer) for 8 minutes at 37 °C, followed by the addition of 100 μM Adenosine Diphosphate, (Sigma Chemical Co., St. Louis, MO, #A-6521), to induce platelet aggregation. Platelet aggregation was allowed to proceed for 5 minutes. Percent inhibition is 10 calculated using percent aggregation in the presence of the test compound divided by percent aggregation of control, times 100. This value is subtracted from 100, yielding percent inhibition. Calculation of IC50 is performed on a Texas Instruments TI59 with an IC50 15 program.

26**2**

Purified GPIIb/IIIa-Fibrinogen Binding ELISA

The following reagents are used in the GPIIb/IIIa-fibrinogen binding ELISA: 20 purified GPIIb/IIIa (148.8 µg/mL); biotinylated fibrinogen (~ 1 mg/mL or 3000 nM); anti-biotin alkaline phosphatase conjugate (Sigma no. A7418); 25 flat-bottom, high binding, 96-well plates (Costar Cat. no. 3590); phosphatase substrate (Sigma 104) (40 mg capsules); bovine serum albumin (BSA) (Sigma no. A3294); Alkaline Phosphatase buffer - 0.1 M glycine-HCl, 1 30 mM MgCl₂.6H₂O, 1 mM ZnCl₂, pH 10.4; Binding buffer - 20 mM Tris-HCl, 150 mM NaCl, 1 mM $CaCl_2.2H_2O$, 0.02% NaN_3 , pH 7.0; Buffer A - 50 mM Tris-HCl, 100 mM NaCl, 2 mM CaCl₂.2H₂O, 0.02% NaN₃, pH 7.4; Buffer A + 3.5% BSA (Blocking buffer); 35

15

20

٠,

Buffer A + 0.1% BSA (Dilution buffer); 2N NaOH.

The following method steps are used in the GPIIb/IIIa-fibrinogen binding ELISA:

Coat plates with GPIIb/IIIa in Binding buffer (125 ng/100 μL/well) overnight at 4 °C (Leave first column uncoated for non-specific binding). Cover and freeze plates at -70 °C until used. Thaw plate 1 hour at room temperature or overnight at 4 °C. Discard coating solution and wash once with 200 µL Binding buffer per well. Block plate 2 hours at room temperature on shaker with 200 µl Buffer A + 3.5% BSA (Blocking buffer) per well. Discard Blocking buffer and wash once with 200 μL Buffer A + 0.1% BSA (Dilution buffer) per well. 11 µL of test compound (10% the concentration to be tested in Dilution buffer) into duplicate wells. Pipet 11 µl Dilution buffer into non-specific and total binding wells. Add 100 µL Biotinylated fibrinogen (1/133 in Dilution buffer, final concentration = 20 nM) to each well. Incubate plates for 3 hours at room temperature on a plate shaker. Discard assay solution and wash twice with 300 µL Binding buffer per well. Add 100 uL Anti-biotin alkaline phosphatase conjugate (1/1500 in Dilution buffer) to each well.

- 25 (1/1500 in Dilution buffer) to each well. Incubate plates for 1 hour at room temperature on plate shaker. Discard conjugate and wash twice with 300 51 Binding buffer per well. Add 100 μL Phosphatase substrate (1.5 mg/ml in Alkaline phosphatase buffer) to each well.
- Incubate plate at room temperature on shaker until color develops. Stop color development by adding 25 μ L 2N NaOH per well. Read plate at 405 nm. Blank against non-specific binding (NSB) well. % Inhibition is calculated as
- 35 100 (Test Compound Abs/Total Abs)x100.

Platelet-Fibrinogen Binding Assay: Binding of 125I-fibrinogen to platelets was performed as described by Bennett et al. (1983) Proc. Natl. Acad. Sci. USA 80: 2417-2422, with some modifications as described below. Human PRP (h-PRP) was applied to a Sepharose column for the purification of platelet fractions. Aliquots of platelets (5 X 108 cells) along with 1 mM calcium chloride were added to removable 96 well plates prior to the activation of the human gel purified platelets 10 (h-GPP). Activation of the human gel purified platelets was achieved using ADP, collagen, arachidonate, epinephrine, and/or thrombin in the presence of the ligand, ¹²⁵I-fibrinogen. The ¹²⁵I-fibrinogen bound to the activated platelets was separated from the free form 15 by centrifugation and then counted on a gamma counter. For an IC₅₀ evaluation, the test compounds were added at various concentrations prior to the activation of the platelets.

The compounds of Formula I of the present invention may also possess thrombolytic efficacy, that is, they are capable of lysing (breaking up) already formed platelet-rich fibrin blood clots, and thus are useful in treating a thrombus formation, as evidenced by their activity in the tests described below. Preferred compounds of the present invention for use in thrombolysis include those compounds having an IC50 value (that is, the molar concentration of the compound capable of achieving 50% clot lysis) of less than about 1 µM, more preferably an IC50 value of less than about 0.1 µM.

Thrombolytic Assay: Venous blood was obtained from the arm of a healthy human donor who was drug-free and aspirin free for at least two weeks prior to blood

PCT/US94/13155

collection, and placed into 10 ml citrated Vacutainer tubes. The blood was centrifuged for 15 minutes at 1500 x g at room temperature, and platelet rich plasma (PRP) was removed. To the PRP was then added 1 \times 10⁻³ M of 5 the agonist ADP, epinephrine, collagen, arachidonate, serotonin or thrombin, or a mixture thereof, and the PRP incubated for 30 minutes. The PRP was centrifuged for 12 minutes at 2500 x g at room temperature. supernatant was then poured off, and the platelets remaining in the test tube were resuspended in platelet 10 poor plasma (PPP), which served as a plasminogen source. The suspension was then assayed on a Coulter Counter (Coulter Electronics, Inc., Hialeah, FL), to determine the platelet count at the zero time point. After obtaining the zero time point, test compounds were added 15 at various concentrations. Test samples were taken at various time points and the platelets were counted using the Coulter Counter. To determine the percent of lysis, the platelet count at a time point subsequent to the 20 addition of the test compound was subtracted from the platelet count at the zero time point, and the resulting number divided by the platelet count at the zero time point. Multiplying this result by 100 yielded the percentage of clot lysis achieved by the test compound. 25 For the IC_{50} evaluation, the test compounds were added at various concentrations, and the percentage of lysis caused by the test compounds was calculated.

The compounds of Formula I of the present invention

are also useful for administration in combination with
anti-coagulant agents such as warfarin or heparin, or
antiplatelet agents such as aspirin, piroxicam or
ticlopidine, or thrombin inhibitors such as
boropeptides, hirudin or argatroban, or thrombolytic

agents such as tissue plasminogen activator,

PCT/US94/13155

266

anistreplase, urokinase or streptokinase, or combinations thereof.

The compounds of Formula I of the present invention 5 may also be useful as antagonists of other integrins such as for example, the $\alpha_{\rm V}/\beta_{\rm 3}$ or vitronectin receptor, α_4/β_1 or α_5/β_1 and as such may also have utility in the treatment and diagnosis of osteoporosis, cancer metastasis, diabetic retinopathy, rheumatoid arthritis, inflammation, and autoimmune disorders. The compounds 10 of Formula I of the present invention may be useful for the treatment or prevention of other diseases which involve cell adhesion processes, including, but not limited to, infammation, bone degradation, rheumatoid 15 arthritis, asthma, allergies, adult respiratory distress syndrome, graft versus host disease, organ transplantation, septic shock, psoriasis, eczema, contact dermatitis, osteoporosis, osteoarthritis, atherosclerosis, metastasis, wound healing, diabetic retinopathy, inflammatory bowel disease and other 20 autoimmune diseases.

Table A below sets forth the antiplatelet activity of representative compounds of the present invention. The indicated compounds were tested for their ability to inhibit platelet aggregation (using platelet rich plasma (PRP)). The IC $_{50}$ value (the concentration of antagonist which inhibits platelet aggregation by 50% relative to a control lacking the antagonist) is shown. In Table 5 the IC $_{50}$ values are expressed as: +++ = IC $_{50}$ of <10 μ M; ++ = IC $_{50}$ of 10-50 μ M; + = IC $_{50}$ of 50-100 μ M (μ M = micromolar).

267.

Table A

Example Number	<u>Platelet</u>	Platelet
	Aggregation Assay	Aggregation Assay
	IC ₅₀ (without	IC ₅₀ (with esterase)
	esterase)	
1	+++	•
4 (isomer A)	++	
4 (isomer B)	++	
6	+++	
7	>100	
8	+	
9 (isomer A)	+++	
9 (isomer B)	+++	
33	>100	
43	+++	
89		+++
115		+++
119A (3R)		+++
119B (3S)		+++
120A (3R)		+++
120B (3S)		+++
120C (3R) ††	,	+++
166		+++
189	>100	
190	+	
275		+++
276		+++
278		+++
290		+++
300		+++
312		+++
314A (2S) t		+++
314B (2S) ††	•	+++
323		+++
324		+++

WO 95/14683	•	PCT/US94/13155
	26 8	
326		+++
327 (2S)	•	+++
328 (2S)		+++
338 (3S)	+	+++
339 (3S)	+++	
340 (3S)	+	++
341 (35)	+++	
342 (25)	+++	
344 (3R)		+++
345		+++
347 (3R)††		+++
348 (3R)		+++
350		+++
359		+++
362		+++
365		+++
368		+++
373	++	
371A		+++
371B		+++
374 (2S)	+	+++
375*	+++	
377	+++	
394		+++
394A††		+++
400	+++	
413*		+++
415		+++
435		+++
436		+++
437		+++
438		+++
439		+++ ,
440		+++
441 "	+++	

WO 95/14683	PCT/US94/13155

	-	
442		+++
443 (2S)		+++
444 (2S)	•	+++
445 (2S)		+++
446		+++
449A		+++
449B		+++
450		+++
451		+++
452		+++
453		+++
454		+++
455		+++
456		++
457		+++
458A	+++	
458B	+++	
460A	+++	
460B	+++	
462		+++
463	+++	
464		+++
465		+++
466		+++
467		+++
468		+++
469		+++
470		+++
471		+++
472		+++
473		+++
473A (2S) †		+++
473B (2S) ††		+++
474		+++
475		+++

PCT/US94/13155

+++

WO 95/14683

27	1 .	•
518		+++
519		+++
520		+++
522		+++
523		+++
524		+++
525	•	+++
526	+++	
527		+++
528	+++	
529		+++
530	+++	
531		+++
532	+++	
533		+++
534	+++	
535		+++
536	+++	
537	•	+++-
538	+++	
539		+++
540		+++
541		+++
542		+++
543		+++
544		+++
545		+++
546		+++
547		+++
548		+++
549		+++
550		+++
551		+++
552		+++
553		+++

PCT/US94/13155

WO 95/14683

272

	+++
	+++
	+++
+++	
	+++
	+++
	+++
	+++
	+++
+++	
	+++
	+++
	+++
	+++
isoxazoline ring	+++
	+++ +++ r, racemic isoxazoline ring isoxazoline ring

Dosage and Formulation

5

10

15

The compounds of the present invention can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations), pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions. Likewise, they may also be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using dosage forms well known to those of ordinary skill in the pharmaceutical arts. An effective but non-toxic amount of the compound desired can be employed as an anti-aggregation agent.

The compounds of this invention can be administered

20 by any means that produces contact of the active agent
with the agent's site of action, glycoprotein IIb/IIIa

(GPIIb/IIIa), in the body of a mammal. They can be

administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents, such as a second antiplatelet agent such as aspirin or ticlopidine which are agonist-specific. They can be administered alone, but generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

10 The dosage regimen for the compounds of the present invention will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and 15 extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of administration, the renal and hepatic function of the patient, and the effect desired. An ordinarily skilled 20 physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.

By way of general guidance, the daily oral dosage of each active ingredient, when used for the indicated effects, will range between about 0.001 to 1000 mg/kg of body weight, preferably between about 0.01 to 100 mg/kg of body weight per day, and most preferably between about 1.0 to 20 mg/kg/day. Intravenously, the most preferred doses will range from about 1 to about 10 mg/kg/minute during a constant rate infusion.

Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.

10

15

The compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches wall known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittant throughout the dosage regimen.

In the methods of the present invention, the compounds herein described in detail can form the active ingredient, and are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as carrier materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.

For instance, for oral administration in the form of a tablet or capsule, the active drug component can be 20 combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl callulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol 25 and the like; for oral administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. Moreover, when desired or necessary, suitable binders, 30 lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, 35 waxes, and the like. Lubricants used in these dosage

5

10

forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.

The compounds of the present invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamallar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.

Compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include

polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethylaspartamidephenol, or polyethyleneoxidepolylysine substituted with palmitoyl residues.

Furthermore, the compounds of the present invention may
20 be coupled to a class of biodegradable polymers useful
in achieving controlled release of a drug, for example,
polylactic acid, polyglycolic acid, copolymers of
polylactic and polyglycolic acid, polyepsilon
caprolactone, polyhydroxy butyric acid, polyorthoesters,

25 polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.

Dosage forms (pharmaceutical compositions) suitable
for administration may contain from about 1 milligram to
about 100 milligrams of active ingredient per dosage
unit. In these pharmaceutical compositions the active
ingredient will ordinarily be present in an amount of
about 0.5-95% by weight based on the total weight of the
composition.

10

15

The active ingredient can be administered orally in solid dosage forms, such as capsules, tablets, and powders, or in liquid dosage forms, such as elixirs, syrups, and suspensions. It can also be administered parenterally, in sterile liquid dosage forms.

Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions.

Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents.

Also used are citric acid and its salts and sodium EDTA.

In addition, parenteral solutions can contain

preservatives, such as benzalkonium chloride, methyl- or

propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in
Remington's Pharmaceutical Sciences, Mack Publishing
Company, a standard reference text in this field.

Representative useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

Capsules

•

5

15

30

A large number of unit capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 150 milligrams of lactose, 50 milligrams of cellulose, and 6 milligrams magnesium stearate.

10 Soft Gelatin Capsules

A mixture of active ingredient in a digestable oil such as soybean oil, cottonseed oil or olive oil is prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules are washed and dried.

<u>Tablets</u>

A large number of tablets are prepared by conventional procedures so that the dosage unit was 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of lactose. Appropriate coatings may be applied to increase palatability or delay absorption.

<u>Injectable</u>

A parenteral composition suitable for administration by injection is prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution is made isotonic with sodium chloride and sterilized.

Suspension

An aqueous suspension is prepared for oral administration so that each 5 mL contain 100 mg of finely divided active ingredient, 200 mg of sodium

278

carboxymethyl cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S.P., and 0.025 mL of vanillin.

The compounds of the present invention may be administered in combination with a second therapeutic agent selected from: an anti-coagulant agent such as warfarin or heparin; an anti-platelet agent such as aspirin, piroxicam or ticlopidine; a thrombin inhibitor such as a boropeptide thrombin inhibitor, or hirudin; or a thrombolytic agent such as plasminogen activators, such as tissue plasminogen activator, anistreplase, urokinase or streptokinase. The compound of Formula I and such second therapeutic agent can be administered separately or as a physical combination in a single dosage unit, in any dosage form and by various routes of administration, as described above.

The compound of Formula I may be formulated together with the second therapeutic agent in a single dosage unit (that is, combined together in one capsule, tablet, powder, or liquid, etc.). When the compound of Formula I and the second therapeutic agent are not formulated together in a single dosage unit, the compound of Formula I and the second therapeutic agent (anti-coagulant agent, anti-platelet agent, thrombin inhibitor, and/or thrombolytic agent) may be administered essentially at the same time, or in any order; for example the compound of Formula I may be administered first, followed by administration of the second agent (anti-coagulant agent, anti-platelet agent, thrombin inhibitor, and/or thrombolytic agent). When not administered at the same time, preferably the administration of the compound of Formula I and the second therapeutic agent occurs less than about one hour apart.

5

10

15

20

25

279

10

15

20

25

30

35

A preferable route of administration of the compound of Formula I is oral. Although it is preferable that the compound of Formula I and the second therapeutic agent (anti-coagulant agent, anti-platelet agent, thrombin inhibitor, and/or thrombolytic agent) are both administered by the same route (that is, for example, both orally), if desired, they may each be administered by different routes and in different dosage forms (that is, for example, one component of the combination product may be administered orally, and another component may be administered intravenously).

The dosage of the compound of Formula I when administered alone or in combination with a second therapeutic agent may vary depending upon various factors such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration, the age, health and weight of the recipient, the nature and extent of the symptoms, the kind of concurrent treatment, the frequency of treatment, and the effect desired, as described above.

Although the proper dosage of the compound of Formula I when administered in combination with the second therapeutic agent will be readily ascertainable by a medical practitioner skilled in the art, once armed with the present disclosure, by way of general guidance, where the compounds of this invention are combined with anti-coagulant agents, for example, a daily dosage may be about 0.1 to 100 milligrams of the compound of Formula I and about 1 to 7.5 milligrams of the anti-coagulant, per kilogram of patient body weight. For a tablet dosage form, the novel compounds of this invention generally may be present in an amount of about 1 to 10 milligrams per dosage unit, and the anti-coagulant in an amount of about 1 to 5 milligrams per dosage unit.

15

30

35

WO 95/14683 PCT/US94/13155

Where the compounds of Formula I are administered in combination with a second anti-platelet agent, by way of general guidance, typically a daily dosage may be about 0.01 to 25 milligrams of the compound of Formula I and about 50 to 150 milligrams of the additional anti-platelet agent, preferably about 0.1 to 1 milligrams of the compound of Formula I and about 1 to 3 milligrams of antiplatelet agents, per kilogram of patient body weight.

Further, by way of general guidance, where the compounds of Formula I are adminstered in combination with thrombolytic agent, typically a daily dosage may be about 0.1 to 1 milligrams of the compound of Formula I, per kilogram of patient body weight and, in the case of the thrombolytic agents, the usual dosage of the thrombolyic agent when administered alone may be reduced by about 70-80% when administered with a compound of Formula I.

Where two or more of the foregoing second
therapeutic agents are administered with the compound of
Formula I, generally the amount of each component in a
typical daily dosage and typical dosage form may be
reduced relative to the usual dosage of the agent when
administered alone, in view of the additive or
synergistic effect of the therapeutic agents when
administered in combination.

Particularly when provided as a single dosage unit, the potential exists for a chemical interaction between the combined active ingredients. For this reason, when the compound of Formula I and a second therapeutic agent are combined in a single dosage unit they are formulated such that although the active ingredients are combined in a single dosage unit, the physical contact between the active ingredients is minimized (that is, reduced). For example, one active ingredient may be enteric coated. By enteric coating one of the active

20

35

281

ingredients, it is possible not only to minimize the contact between the combined active ingredients, but also, it is possible to control the release of one of these components in the gastrointestinal tract such that one of these components is not released in the stomach but rather is released in the intestines. One of the active ingredients may also be coated with a sustainedrelease material which effects a sustained-release throughout the gastrointestinal tract and also serves to minimize physical contact between the combined active ingredients. Furthermore, the sustained-released component can be additionally enteric coated such that the release of this component occurs only in the intestine. Still another approach would involve the formulation of a combination product in which the one 15 component is coated with a sustained and/or enteric release polymer, and the other component is also coated with a polymer such as a lowviscosity grade of hydroxypropyl methylcellulose (HPMC) or other appropriate materials as known in the art, in order to further separate the active components. The polymer coating serves to form an additional barrier to interaction with the other component.

These as well as other ways of minimizing contact between the components of combination products 25 of the present invention, whether administered in a single dosage form or administered in separate forms but at the same time by the same manner, will be readily apparent to those skilled in the art, once armed with 30 the present disclosure.

The present invention also includes pharmaceutical kits useful, for example, in the inhibition of platelet aggregation, the treatment of blood clots, and/or the treatment of thromboembolic disorders, which comprise one or more containers containing a pharmaceutical

composition comprising a therapeutically effective amount of a compound of Formula I. Such kits may further include, if desired, one or more of various conventional pharmaceutical kit components, such as, for 5 example, containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art. Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, may also be included in the kit.

In the present disclosure it should be understood that the specified materials and conditions are important in practicing the invention but that unspecified materials and conditions are not excluded so long as they do not prevent the benefits of the invention from being realized.

10

283

CLAIMS

5

WHAT IS CLAIMED IS:

1. A compound of Formula I:

$$R^{16} \stackrel{4}{\downarrow} \stackrel{b}{\downarrow} \stackrel{O}{\downarrow} W - X \stackrel{(T)}{\downarrow}$$

10

or pharmaceutically acceptable salt form thereof wherein:

15 b is a single or double bond;

is selected from $R^2(R^3)N(CH_2)_{q}Z^{-}$, $R^2(R^3)N(R^2N=)CN(R^2)(CH_2)_{q}Z^{-}$, piperazinyl-(CH₂)_qZ- or

20

Z is selected from O, S, S(=0), or $S(=0)_2$;

R² and R³ are independently selected from: H, C₁-C₁₀
alkyl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁
cycloalkylalkyl, C₆-C₁₀ aryl, C₇-C₁₁ arylalkyl,
C₂-C₇ alkylcarbonyl, C₆-C₁₀ arylcarbonyl, C₂-C₁₀
alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁
bicycloalkoxycarbonyl, C₆-C₁₀ aryloxycarbonyl,
aryl(C₁-C₁₀ alkoxy)carbonyl, C₁-C₆
alkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₆-C₁₀

```
arylcarbonyloxy(C_1-C_4 alkoxy) carbonyl, C_4-C_{11}
            cycloalkylcarbonyloxy(C<sub>1</sub>-C<sub>4</sub> alkoxy)carbonyl;
     U
            is selected from:
 5
              a single bond,
              -(C_1-C_7 \text{ alky1})-,
              -(C_2-C_7 \text{ alkenyl})-,
              -(C_2-C_7 \text{ alkyny1})-,
              -(aryl) - substituted with 0-3 R<sup>6a</sup>, or
10
              -(pyridyl) - substituted with 0-3 R6a;
     v
            is selected from:
              a single bond;
              -(C<sub>1</sub>-C<sub>7</sub> alkyl)-, substituted with 0-3 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
15
              -(C2-C7 alkenyl)-, substituted with 0-3 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
              -(C_2-C_7 alkynyl)-, substituted with 0-2 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
              -(aryl)-, substituted with 0-2 groups
20
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
              -(pyridyl)-, substituted with 0-2 groups
                 independently selected from R6 or R7; or
              -(pyridazinyl)-, substituted with 0-2 groups
25
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
            is selected from:
             a single bond,
              -(C_1-C_7 \text{ alkyl})-,
              -(C_2-C_7 \text{ alkenyl})-,
30
              -(C_2-C_7 \text{ alkynyl})-, or
              -(C(R^5)_2)_nC(=0)N(R^{5a})-;
     X
            is selected from:
             a single bond;
35
```

(C₁-C₇ alkyl)-, substituted with 0-3 groups independently selected from R⁴, R⁸ or R¹⁴;
 (C₂-C₇ alkenyl)-, substituted with 0-3 groups independently selected from R⁴, R⁸ or R¹⁴;
 (C₂-C₇ alkynyl)-, substituted with 0-2 groups

independently selected from R4, R8 or R14; or

is selected from hydroxy, C_1 to C_{10} alkyloxy, C_3 to 10 Y C_{11} cycloalkyloxy, C_6 to C_{10} aryloxy, C_7 to C_{11} aralkyloxy, C3 to C10 alkylcarbonyloxyalkyloxy, C3 to C_{10} alkoxycarbonyloxyalkyloxy, C_2 to C_{10} alkoxycarbonylalkyloxy, C₅ to C₁₀ cycloalkylcarbonyloxyalkyloxy, C_5 to C_{10} 15 cycloalkoxycarbonyloxyalkyloxy, C_5 to C_{10} cycloalkoxycarbonylalkyloxy, C_7 to C_{11} aryloxycarbonylalkyloxy, Cg to C12 aryloxycarbonyloxyalkyloxy, C_8 to C_{12} 20 arylcarbonyloxyalkyloxy, C₅ to C₁₀ alkoxyalkylcarbonyloxyalkyloxy, C_5 to C_{10} (5-alkyl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy, C_{10} to C_{14} (5-aryl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy; or $(R^2)(R^3)N-(C_1-C_{10} \text{ alkoxy})-;$

25

 R^4 and R^{4b} are independently selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, or -N(R^{12}) R^{13} ;

30 R^5 is selected from H, C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;

R^{5a} is selected from hydrogen, hydroxy, C₁ to C₈ alkyl,
C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁
cycloalkylmethyl, C₁-C₆ alkoxy, benzyloxy, C₆ to C₁₀
aryl, heteroaryl, heteroarylalkyl, C₇ to C₁₁
arylalkyl, adamantylmethyl or C₁-C₁₀ alkyl
substituted with 0-2 R^{4b};

alternately, R⁵ and R^{5a} can be taken together to be 3azabicyclononyl, 1-piperidinyl, 1-morpholinyl or 1piperazinyl, each being optionally substituted with
C₁-C₆ alkyl, C₆-C₁₀ aryl, heteroaryl, C₇-C₁₁
arylalkyl, C₁-C₆ alkylcarbonyl, C₃-C₇
cycloalkylcarbonyl, C₁-C₆ alkoxycarbonyl, C₇-C₁₁
arylalkoxycarbonyl, C₁-C₆ alkylsulfonyl or C₆-C₁₀
arylsulfonyl;

 R^{5b} is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;

 C_6 to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(0)_mMe$, or -NMe₂;

20

 C_7 to C_{11} arylalkyl, said aryl being optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(0)_mMe$, or -NMe₂;

5 methylenedioxy when R⁶ is a substituent on aryl; or

a 5-10 membered heterocyclic ring containing 1-3 N,
O, or S heteroatoms, wherein said heterocyclic
ring may be saturated, partially saturated, or
fully unsaturated, said heterocyclic ring
being substituted with 0-2 R⁷;

 R^{6a} is selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, CF_3 , NO_2 , or $NR^{12}R^{13}$;

15

10

25

R⁸ is selected from:

H;

R⁶;

C₁-C₁₀ alkyl, substituted with 0-3 R⁶;

C₂-C₁₀ alkenyl, substituted with 0-3 R⁶;

C₂-C₁₀ alkynyl, substituted with 0-3 R⁶;

C₃-C₈ cycloalkyl, substituted with 0-3 R⁶;

C₅-C₆ cycloalkenyl, substituted with 0-2 R⁶;

aryl, substituted with 0-2 R⁶;

5-10 membered heterocyclic ring containing 1-3 N,
0, or S heteroatoms, wherein said heterocyclic
ring may be saturated, partially saturated, or
fully unsaturated, said heterocyclic ring
being substituted with 0-2 R⁶;

R¹² and R¹³ are independently H, C₁-C₁₀ alkyl, C₁-C₁₀
alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀
alkylsulfonyl, aryl(C₁-C₁₀ alkyl)sulfonyl,
arylsulfonyl, aryl, C₂-C₆ alkenyl, C₃-C₁₁
cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₇-C₁₁
arylalkyl, C₂-C₇ alkylcarbonyl, C₇-C₁₁ arylcarbonyl,
C₂-C₁₀ alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl,
C₇-C₁₁ bicycloalkoxycarbonyl, C₇-C₁₁
aryloxycarbonyl, heteroarylcarbonyl,
heteroarylalkylcarbonyl or
aryl(C₁-C₁₀ alkoxy)carbonyl;

13 is selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, C_2 R⁵ or -C(=0)N(R⁵)R^{5a};

 \mathbb{R}^{15} is selected from:

H;

25 R⁶;

 C_1 - C_{10} alkyl, substituted with 0-8 R^6 ; C_2 - C_{10} alkenyl, substituted with 0-6 R^6 ; C_1 - C_{10} alkoxy, substituted with 0-6 R^6 ; aryl, substituted with 0-5 R^6 ;

5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-5 R⁶;

35 C_1 - C_{10} alkoxycarbonyl substituted with 0-8 R^6 ; CO_2R^5 ; or

WO 95/14683 PCT/US94/13155 289

 $-C (=0) N (R^5) R^{5a};$

provided that when b is a double bond, only one of R^{14} or R^{15} is present;

5

- n is 0-4;
- q is 2-7;
- r is 0-3;

provided that n, q, and r are chosen such that the

number of in-chain atoms between R¹ and Y is in the
range of 8-18.

2. A compound of Claim 1 of Formula II:

15

wherein:

is selected from $R^2HN(CH_2)_qO^-$, $R^2HN(R^2N=)CNH(CH_2)_qO^-$, piperazinyl-(CH₂)_qO-, or

""\\ \r

R² is selected from H, $aryl(C_1-C_{10} \text{ alkoxy})$ carbonyl, C_1-C_{10} alkoxycarbonyl;

25

R⁸ is selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₈ cycloalkyl, C₅-C₆ cycloalkenyl, aryl, 5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may

be saturated, partially saturated, or fully unsaturated;

 R^6 and R^7 are selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, $N(R^{12})R^{13}$, cyano, or halo.

3. A compound of Claim 2 wherein:

10 X is selected from:

a single bond;

- -(C₁-C₇ alky1)-, substituted with 0-2 groups independently selected from R⁴, R⁸ or R¹⁴;
- -(C_2 - C_7 alkenyl)-, substituted with 0-2 groups independently selected from R^4 , R^8 or R^{14} ;
- -(C₂-C₇ alkynyl)-, substituted with 0-2 groups independently selected from R⁴, R⁸ or R¹⁴;
- R⁸ is selected from H, C₁-C₆ alkyl, C₂-C₆ alkenyl,
 C₃-C₈ cycloalkyl, C₅-C₆ cycloalkenyl, aryl, 5-6
 membered heterocyclic ring containing 1-2 N, O, or
 S heteroatoms, wherein said heterocyclic ring may
 be saturated, partially saturated, or fully
 unsaturated.

25

15

4. A compound of Claim 2 wherein:

R1 is

$$R^2N$$
 O

30

V is phenylene or pyridylene;

n is 1 or 2;

```
X is -(C_1-C_2) alkyl- substituted with 0-2 \mathbb{R}^4
    Y
          is selected from:
 5
          hydroxy;
          C_1 to C_{10} alkoxy;
          methylcarbonyloxymethoxy-;
          ethylcarbonyloxymethoxy-;
          t-butylcarbonyloxymethoxy-;
10
          cyclohexylcarbonyloxymethoxy-;
          1-(methylcarbonyloxy)ethoxy-;
          1-(ethylcarbonyloxy)ethoxy-;
          1-(t-butylcarbonyloxy)ethoxy-;
          1-(cyclohexylcarbonyloxy)ethoxy-;
15
          i-propyloxycarbonyloxymethoxy-;
          t-butyloxycarbonyloxymethoxy-;
          1-(i-propyloxycarbonyloxy)ethoxy-;
          1-(cyclohexyloxycarbonyloxy)ethoxy-;
          1-(t-butyloxycarbonyloxy)ethoxy-;
20
          dimethylaminoethoxy-;
          diethylaminoethoxy-;
          (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
          (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
          y1) methoxy-;
25
          (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
          1-(2-(2-methoxypropyl)carbonyloxy)ethoxy-;
    R^4 is -NR^{12}R^{13};
    R^{12} is H, C_1-C_4 alkoxycarbonyl, C_1-C_4 alkylcarbonyl,
30
          C1-C4 alkylsulfonyl, arylalkylsulfonyl,
          arylsulfonyl, benzyl, benzoyl, phenoxycarbonyl,
          benzyloxycarbonyl, arylalkylsulfonyl,
          pyridylcarbonyl, or pyridylmethylcarbonyl;
35
    R^{13} is H.
```

30

- 5. A compound of Claim 1, or a pharmaceutically acceptable salt form thereof, selected from:
- 5 5(R,S)-3-[[4-(2-piperidin-4-yl)ethoxyphenyl]isoxazolin-5-yl]acetic acid;
 - 5(R,S)-N-(butanesulfonyl)-L-{3-[4-(2-piperidin-4yl)ethoxyphenyl]isoxazolin-5-yl}glycine;
 - $5(R,S)-N-(\alpha-\text{toluenesulfonyl})-L-\{3-[4-(2-\text{piperidin-4-yl})\text{ethoxyphenyl}\}\text{isoxazolin-5-yl}\}$ glycine;
 - 5(R,S)-N-[(benzyloxy)carbonyl]-L-{3-[4-(2-piperidin-4yl)ethoxyphenyl]isoxazolin-5-yl}glycine;
 - 5(R,S)-N-(pentanoy1)-L-{3-[4-(2-piperidin-4-y1)ethox-ypheny1]isoxazolin-5-y1}glycine;
- 15 5(R,S)-3-{[4-(piperidin-4-y1)methoxypheny1]isoxazolin-5yl}propanoic acid;
 - 2(R,S)-5(R,S)-N-(butanesulfonyl)amino-{3-[4-(piperidin-4-yl)methoxyphenyl}isoxazolin-5-yl}propanoic acid;
- 2(R,S)-5(R,S)-N-(α-toluenesulfonyl)amino-{3-[4-(piperi-20 din-4-yl)methoxyphenyl]isoxazolin-5-yl}propanoic acid;
 - 2(R,S)-5(R,S)-N-[(benzyloxy)carbonyl]amino-{3-[4-(piperidin-4-yl)methoxyphenyl]isoxazolin-5-yl}propanoic acid;
- 25 2(R,S)-5(R,S)-N-(pentanoyl)amino-{3-[4-(piperidin-4-yl)methoxyphenyl]isoxazolin-5-yl}propanoic acid.
 - 6. A compound of Formula I:

$$R^{15} = 0$$
 $R^{15} = 0$
 $R^{1} = 0$
 $R^$

or a pharmaceutically acceptable salt form thereof wherein:

293

b is a single or double bond;

is selected from $R^{2a}(R^3)N$ -, $R^2(R^3)N(R^2N=)C$ -, $R^{2a}(R^3)N(CH_2)_{q}Z$ -, $R^2(R^3)N(R^2N=)C(CH_2)_{q}Z$ -, $R^2(R^3)N(R^2N=)CN(R^2)$ -,

$$(CH_2)_nZ$$
 $(CH_2)_nZ$
 $(CH_2)_nZ$

Z is selected from: a bond, O, S, S(=0), $S(=0)_2$;

R² and R³ are independently selected from: H, C₁-C₁₀

alkyl, C₃-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁

cycloalkylalkyl, C₆-C₁₀ aryl, C₇-C₁₁ arylalkyl, C₂-C₇

alkylcarbonyl, C₇-C₁₁ arylcarbonyl, C₂-C₁₀

alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁

bicycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl,

aryl(C₁-C₁₀ alkoxy)carbonyl, C₁-C₆

alkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₆-C₁₀

arylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₄-C₁₁

cycloalkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl;

25 R^{2a} is R^2 or $R^2(R^3)N(R^2N=)C^{-}$;

U is selected from:
 a single bond,
 -(C₁-C₇ alkyl)-,

35 W

is selected from:

```
-(C_2-C_7 \text{ alkenyl})-,
              -(C_2-C_7 \text{ alkynyl})-,
              -(aryl) - substituted with 0-3 R6a, or
              -(pyridyl) - substituted with 0-3 R<sup>6a</sup>;
 5
            is selected from:
             a single bond;
             -(C<sub>1</sub>-C<sub>7</sub> alkyl)-, substituted with 0-3 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
             -(C2-C7 alkenyl)-, substituted with 0-3 groups
10
                independently selected from R<sup>6</sup> or R<sup>7</sup>;
             -(C2-C7 alkynyl)-, substituted with 0-3 groups
                independently selected from R<sup>6</sup> or R<sup>7</sup>;
             -(phenyl)-Q-, said phenyl substituted with 0-2
                groups independently selected from R6 or R7;
15
             -(pyridyl)-Q-, said pyridyl substituted with 0-2
                groups independently selected from R6 or R7; or
             -(pyridazinyl)-0-, said pyridazinyl substituted
                with 0-2 groups independently selected from R<sup>6</sup>
                or R7,
20
           is selected from
     Q
           a single bond,
           -O-, -S(0)<sub>m</sub>-, -N(\mathbb{R}^{12})-, -(\mathbb{C}H_2)<sub>m</sub>-, -C(=0)-,
25
           -N(R^{5a})C(=0) -, -C(=0)N(R^{5a}) -, -CH_2O -, -OCH_2 -,
           -CH_2N(R^{12}) -, -N(R^{12})CH_2 -, -CH_2C(=0) -, -C(=0)CH_2 -,
           -CH_2S(O)_{m}, or -S(O)_{m}CH_2-,
           provided that when b is a single bond, and R1-U-V-
           is a substituent on C5 of the central 5-membered
30
           ring of Formula I, then Q is not -0^-, -S(0)_{m}^-,
           -N(R^{12}) -, -C(=0)N(R^{5a}) -, -CH_2O -, CH_2N(R^{12}) - or
            -CH_2S(0)_{m}-;
```

- $(C(R^4)_2)_nC(=0)N(R^{5a})$ -, or -C(=0) -N(R^{5a}) - $(C(R^4)_2)_n$ -;

X is selected from:

- a single bond, $-(C(R^4)_2)_n-C(R^4)(R^8)-C(R^4)(R^{4a})-, \text{ with the proviso}$ that when n is 0 or 1, then at least one of R^{4a} or R^8 is other than H or methyl;
- 10 Y is selected from hydroxy, C_1 to C_{10} alkyloxy, C_3 to C_{11} cycloalkyloxy, C_6 to C_{10} aryloxy, C_7 to C_{11} aralkyloxy, C_3 to C_{10} alkylcarbonyloxyalkyloxy, C_3 to C_{10} alkoxycarbonyloxyalkyloxy, C_2 to C_{10} alkoxycarbonylalkyloxy, C_5 to C_{10}
- cycloalkylcarbonyloxyalkyloxy, C₅ to C₁₀
 cycloalkoxycarbonyloxyalkyloxy, C₅ to C₁₀
 cycloalkoxycarbonylalkyloxy, C₇ to C₁₁
 aryloxycarbonylalkyloxy, C₈ to C₁₂
 aryloxycarbonyloxyalkyloxy, C₈ to C₁₂
- arylcarbonyloxyalkyloxy, C₅ to C₁₀
 alkoxyalkylcarbonyloxyalkyloxy, C₅ to C₁₀ (5-alkyl1,3-dioxa-cyclopenten-2-one-yl)methyloxy, C₁₀ to C₁₄
 (5-aryl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy,
 (R²)(R³)N-(C₁-C₁₀ alkoxy)-;

25

R⁴ is selected from H, C₁-C₁₀ alkyl, C₁-C₁₀

alkylcarbonyl, aryl, arylalkyl, cycloalkyl, or
cycloalkylalkyl;

30 alternately, two R⁴ groups on adjacent carbon atoms may join to form a bond thereby to form a carbon-carbon double or triple bond between such adjacent carbon atoms;

- R^{4a} is selected from H, hydroxy, C_1 - C_{10} alkoxy, nitro, $N(R^5)R^{5a}$, $-N(R^{12})R^{13}$, $-N(R^{16})R^{17}$, C_1 - C_{10} alkyl substituted with 0-3 R^6 , aryl substituted with 0-3 R^6 , or C_1 - C_{10} alkylcarbonyl;
- R4b is selected from H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, C₇-C₁₄ bicycloalkyl, hydroxy, C₁-C₆ alkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, nitro, C₁-C₆ alkylcarbonyl, C₆-C₁₀ aryl, -N(R¹²)R¹³; halo, CF₃, CN, C₁-C₆ alkoxycarbonyl, carboxy, piperidinyl, morpholinyl or pyridinyl;
- 15 R⁵ is selected from H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b};
- 20 R^{5a} is selected from hydrogen, hydroxy, C_1 to C_8 alkyl, C_3 - C_6 alkenyl, C_3 to C_{11} cycloalkyl, C_4 to C_{11} cycloalkylmethyl, C_1 - C_6 alkoxy, benzyloxy, C_6 to C_{10} aryl, heteroaryl, heteroarylalkyl, C_7 to C_{11} arylalkyl, adamantylmethyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;
- alternately, R⁵ and R^{5a} when both are substituents on the same nitrogen atom (as in -NR⁵R^{5a}) can be taken together with the nitrogen atom to which they are attached to form 3-azabicyclononyl, 1,2,3,4-tetrahydro-1-quinolinyl, 1,2,3,4-tetrahydro-2-isoquinolinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl or 1-piperazinyl, each being optionally substituted with C₁-C₆ alkyl, C₆-C₁₀ aryl, heteroaryl, C₇-C₁₁

arylalkyl, C_1 - C_6 alkylcarbonyl, C_3 - C_7 cycloalkylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_7 - C_{11} arylalkoxycarbonyl, C_1 - C_6 alkylsulfonyl or C_6 - C_{10} arylsulfonyl;

5

 R^{5b} is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;

10

15

- C₆ to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(0)_mMe$, or -NMe₂;
- C₇ to C₁₁ arylalkyl, said aryl being optionally substituted with 1-3 groups selected from halogen, C₁-C₆ alkoxy, C₁-C₆ alkyl, CF₃, S(0)_mMe, or -NMe₂;

methylenedioxy when R⁶ is a substituent on aryl; or

a 5-10 membered heterocyclic ring containing 1-3 N,
O, or S heteroatoms, wherein said heterocyclic
ring may be saturated, partially saturated, or
fully unsaturated, said heterocyclic ring
being substituted with 0-2 R⁷;

35

 R^{6a} is selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, CF_3 , NO_2 , or $NR^{12}R^{13}$;

R⁷ is selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$, cyano, halo, CF₃, CHO, CO₂R⁵, C(=0)R^{5a}, CONR⁵R^{5a}, OC(=0)R^{5a}, OC(=0)OR^{5b}, OR^{5a}, OC(=0)NR⁵R^{5a}, OCH₂CO₂R⁵, CO₂CH₂CO₂R⁵, NO₂, NR^{5a}C(=0)R^{5a}, NR^{5a}C(=0)OR^{5b}, NR^{5a}C(=0)NR⁵R^{5a}, NR^{5a}SO₂NR⁵R^{5a}, NR^{5a}SO₂R⁵, S(O)_pR^{5a}, SO₂NR⁵R^{5a}, C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁ cycloalkylmethyl, C₆ to C₁₀ aryl, or C₇ to C₁₁ arylalkyl;

R8 is selected from:

15 R⁶;

C₁-C₁₀ alkyl, substituted with 0-3 R⁶;

C₂-C₁₀ alkenyl, substituted with 0-3 R⁶;

C₂-C₁₀ alkynyl, substituted with 0-3 R⁶;

C₃-C₈ cycloalkyl, substituted with 0-3 R⁶;

C₅-C₆ cycloalkenyl, substituted with 0-3 R⁶;

aryl, substituted with 0-3 R⁶;

5-10 membered heterocyclic ring containing 1-3 N,

O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-2 R⁶;

R¹² and R¹³ are independently H, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀ alkylsulfonyl, aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, aryl(C₂-C₁₀ alkenyl)sulfonyl, heteroarylsulfonyl, aryl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₇-C₁₁ arylalkyl, C₇-C₁₁ arylcarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl,

heteroarylcarbonyl, heteroarylalkylcarbonyl, or $aryl(C_1-C_{10} alkoxy)$ carbonyl, wherein said aryls are optionally substituted with 0-3 substituents selected from the group consisting of: C1-C4 alkyl, C_1-C_4 alkoxy, halo, CF_3 , and NO_2 ;

R14 is selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C2-C10 alkynyl, C1-C10 alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, CO_2R^5 or $-C(=0)N(R^5)R^{5a}$;

10

20

5

R¹⁵ is selected from: H; R^6 ; $-CO_2R^5$; $-C(=O)N(R^5)R^{5a}$; C₁-C₁₀ alkoxycarbonyl substituted with 0-2 R⁶; C₁-C₁₀ alkyl, substituted with 0-3 R⁶; 15 C_2 - C_{10} alkenyl, substituted with 0-3 R^6 ; C₁-C₁₀ alkoxy, substituted with 0-3 R⁶; aryl, substituted with 0-3 R6; or 5-10 membered heterocyclic ring containing 1-3 N,

O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-2 R6;

provided that when b is a double bond, only one of R^{14} or R15 is present; 25

R¹⁶ is selected from:

 $-C(=0)-0-R^{18a}$,

 $-C(=0)-R^{18b}$

 $-C(=0)N(R^{18b})_{2}$ 30

-C (=0) NHSO₂R^{18a},

 $-C (=0) NHC (=0) R^{18b}$

 $-C (=0) NHC (=0) OR^{18a}$

-C (=0) NHSO₂NHR^{18b},

 $-C(=S)-NH-R^{18b}$ 35

```
-NH-C(=0)-O-R<sup>18a</sup>,
-NH-C(=0)-R<sup>18b</sup>,
-NH-C(=0)-NH-R<sup>18b</sup>,
-SO<sub>2</sub>-O-R<sup>18a</sup>,
-SO<sub>2</sub>-R<sup>18a</sup>,
-SO<sub>2</sub>-N(18<sup>b</sup>)<sub>2</sub>,
-SO<sub>2</sub>-NHC(=0)O18<sup>b</sup>,
-P(=S)(OR<sup>18a</sup>)<sub>2</sub>,
-P(=O)(OR<sup>18a</sup>)<sub>2</sub>,
-P(=O)(R<sup>18a</sup>)<sub>2</sub>,
```

R¹⁷ is selected from: H, C₁-C₁₀ alkyl, C₂-C₆ alkenyl, C₃
C₁₁ cycloalkyl, C₄-C₁₅ cycloalkylalkyl, aryl,

aryl(C₁-C₁₀ alkyl)-;

R^{18a} is selected from:

C₁-C₈ alkyl substituted with 0-2 R¹⁹,

C₂-C₈ alkenyl substituted with 0-2 R¹⁹,

C₂-C₈ alkynyl substituted with 0-2 R¹⁹,

C₃-C₈ cycloalkyl substituted with 0-2 R¹⁹,

aryl substituted with 0-4 R¹⁹,

aryl(C₁-C₆ alkyl)- substituted with 0-4 R¹⁹,

25

a 5-10 membered heterocyclic ring system having 1-3 heteroatoms selected independently from 0, S, and N, said heterocyclic ring being substituted with 0-4 $\rm R^{19}$,

30

 C_1 - C_6 alkyl substituted with a 5-10 membered heterocyclic ring system having 1-3 heteroatoms selected independently from O, S, and N, said heterocyclic ring being substituted with 0-4 R^{19} ;

R18b is selected from R18a or H;

R¹⁹ is selected from H, halogen, CF₃, CN, NO₂, NR¹²R¹³,

C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₁₁

cycloalkyl, C₄-C₁₁ cycloalkylalkyl, aryl, aryl(C₁-C₆

alkyl)-, C₁-C₆ alkoxy, or C₁-C₄ alkoxycarbonyl;

n is 0-4;

10 q is 1-7;

r is 0-3;

provided that n, q and r are chosen such that the number of in-chain atoms connecting \mathbb{R}^1 and Y is in the range of 8-18.

15

5

7. A compound of Claim 6 of Formula Ia:

wherein:

20 Z is selected from a bond, O, or S;

R² is selected from H, aryl(C_1 - C_{10} alkoxy)carbonyl, or C_1 - C_{10} alkoxycarbonyl;

25 W is $-(CH_2)_nC(=0)N(R^{5a})$ -;

X is $-(C(R^4)_2)_n$ - $C(R^4)(R^8)$ - $CH(R^4)$ -, with the proviso that when n is 0 or 1, then at least one of R^{4a} or R^8 is other than H or methyl;

30

 R^5 is selected from H or $C_1\text{-}C_{10}$ alkyl substituted with 0-6 R^{4b} ;

```
\rm R^6 is selected from H, \rm C_1\text{-}C_{10} alkyl, hydroxy, \rm C_1\text{-}C_{10} alkoxy, nitro, \rm C_1\text{-}C_{10} alkylcarbonyl, -N(R<sup>12</sup>)R<sup>13</sup>, -NR<sup>5</sup>R<sup>5a</sup>, \rm CO_2R^5, S(O)_mR<sup>5</sup>, OR<sup>5</sup>, cyano, halo;
```

5 C_6 to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(0)_mMe$, or -NMe₂;

C₇ to C₁₁ arylalkyl, said aryl being optionally substituted with 1-3 groups selected from halogen, C₁-C₆ alkoxy, C₁-C₆ alkyl, CF₃, S(O)_mMe, or -NMe₂;

methylenedioxy when R⁶ is a substituent on aryl; or

a 5-10 membered heterocyclic ring containing 1-3 N,
O, or S heteroatoms, wherein said heterocyclic
ring may be saturated, partially saturated, or
fully unsaturated, said heterocyclic ring
being substituted with 0-2 R⁷;

20

- R^7 is selected from selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, -N(R^{12}) R^{13} , cyano, or halo;
- is selected from:

 -CONR⁵NR^{5a}; -CO₂R⁵;

 C₁-C₁₀ alkyl, substituted with 0-3 R⁶;

 C₂-C₁₀ alkenyl, substituted with 0-3 R⁶;

 C₂-C₁₀ alkynyl, substituted with 0-3 R⁶,

 C₃-C₈ cycloalkyl, substituted with 0-3 R⁶;

 C₅-C₆ cycloalkenyl, substituted with 0-3 R⁶;

 aryl, substituted with 0-2 R⁶;

 5-10 membered heterocyclic ring containing 1-3 N,

O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or

fully unsaturated, said heterocyclic ring being substituted with 0-2 R⁶;

- R¹² and R¹³ are each independently selected from H,

 C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀

 alkylcarbonyl, C₁-C₁₀ alkylsulfonyl,

 aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, aryl,

 heteroarylcarbonyl, or heteroarylalkylcarbonyl,

 wherein said aryls are optionally substituted with

 0-3 substituents selected from the group consisting

 of: C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, CF₃, and NO₂.
 - 8. A compound of Claim 7 wherein:
- 15 Z is selected from a bond or O;

W is
$$-(CH_2)_nC(=0)N(R^{12})$$
-;

X is
$$-C(R^4)(R^8)-C(R^4)_2$$
.

20

9. A compound of Claim 7 wherein:

 R^1 is $R^2NHC(=NR^2)$ - or $R^2NHC(=NR^2)NH$ - and V is phenylene or pyridylene, or

25

R1 is

and V is a single bond;

n is 1 or 2;

30

X is -CHR8CH₂-;

Y is selected from:

```
hydroxy;
           C_1 to C_{10} alkoxy;
           methylcarbonyloxymethoxy-;
           ethylcarbonyloxymethoxy-;
 5
           t-butylcarbonyloxymethoxy-;
           cyclohexylcarbonyloxymethoxy-;
           1-(methylcarbonyloxy)ethoxy-;
           1-(ethylcarbonyloxy)ethoxy-;
           1-(t-butylcarbonyloxy)ethoxy-;
10
           1-(cyclohexylcarbonyloxy)ethoxy-;
           i-propyloxycarbonyloxymethoxy-;
           t-butyloxycarbonyloxymethoxy-;
           1-(i-propyloxycarbonyloxy)ethoxy-;
           1-(cyclohexyloxycarbonyloxy)ethoxy-;
           1-(t-butyloxycarbonyloxy)ethoxy-;
15
           dimethylaminoethoxy-;
           diethylaminoethoxy-;
           (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
           (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
20
           yl)methoxy-;
           (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
           1-(2-(2-methoxypropyl)carbonyloxy)ethoxy-;
     R<sup>6</sup> is selected from H, C<sub>1</sub>-C<sub>4</sub> alkyl, hydroxy, C<sub>1</sub>-C<sub>4</sub>
25
           alkoxy, nitro, C_1-C_{10} alkylcarbonyl, -N(\mathbb{R}^{12}) \mathbb{R}^{13},
           -NR<sup>5</sup>R<sup>5a</sup>, CO_2R<sup>5</sup>, S(O)<sub>m</sub>R<sup>5</sup>, OR<sup>5</sup>, cyano, halo;
           C_6 to C_{10} aryl optionally substituted with 1-3
           groups selected from halogen, C1-C6 alkoxy, C1-C6
30
           alkyl, CF_3, S(0)_mMe, or -NMe_2;
           methylenedioxy when R<sup>6</sup> is a substituent on aryl; or
           a heterocyclic ring system selected from pyridinyl,
35
                 furanyl, thiazolyl, thienyl, pyrrolyl,
                 pyrazolyl, triazolyl, imidazolyl,
```

305

benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, isoxazolinyl or morpholinyl;

R⁸ is selected from: -CONR⁵NR^{5a}; -CO₂R⁵;

10 C₁-C₁₀ alkyl, substituted with 0-3 R⁶;
C₂-C₁₀ alkenyl, substituted with 0-3 R⁶;
C₂-C₁₀ alkynyl, substituted with 0-3 R⁶,
C₃-C₈ cycloalkyl, substituted with 0-3 R⁶;
aryl, substituted with 0-2 R⁶;

substituted with 0-2 R6;

15

5

ž

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being

25

20

R¹² is selected from H, C₁-C₆ alkyl, C₁-C₄
alkoxycarbonyl, C₁-C₆ alkylcarbonyl, C₁-C₆
alkylsulfonyl, aryl(C₁-C₄ alkyl)sulfonyl,
arylsulfonyl, aryl, pyridylcarbonyl or
pyridylmethylcarbonyl, wherein said aryls are
optionally substituted with 0-3 substituents
selected from the group consisting of: C₁-C₄ alkyl,
C₁-C₄ alkoxy, halo, CF₃, and NO₂; and

35 R^{13} is H.

- 10. A compound of Claim 6, or a pharmaceutically acceptable salt form thereof, selected from:
- $3(R,S) \{5(R,S) N [3 (4-amidinophenyl) isoxazolin 5 (4-amidinophenyl) isoxazolin (4$

5 ylacetyl]amino}-3-phenylpropanoic acid;

- 3 (R,S) {5 (R,S) -N- [3-(4-amidinophenyl)isoxazolin-5ylacetyl]amino} -pentanoic acid;
- 3(R) {5(R,S) N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}heptanoic acid;
- 10 $3(R,S) \{5(R,S) N \{3 (4 amidinophenyl) isoxazolin 5 ylacetyl] amino} 4 (phenylthio) butanoic acid;$
 - 3(R,S)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-4-(phenylsulfonamido)butanoic acid;
- 15 ylacetyl]amino}-4-(n-butylsulfonamido)butanoic acid;
 - 3(S) {5(R,S) -N-[3-(4-amidinophenyl)isoxazolin-5ylacetyl]amino} -3(adamantylmethylaminocarbonyl)propanoic acid;
- 3(S) $\{5(R,S)$ -N- $[3-(4-amidinophenyl) isoxazolin-5-ylacetyl] amino<math>\}$ -3- $\{1-$

25

 $3(S) - \{5(R,S) - N - [3 - (4 - amidinophenyl) isoxazolin - 5 - ylacetyl] amino} - 3 - (phenethylaminocarbonyl) propanoic acid.$

azabicyclo[3.2.2] nonylcarbonyl) propanoic acid;

- 3(R)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-3-(3-pyridylethyl)propanoic acid.
- 3(R)-{5(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-ylacetyl]amino}-3-(2-pyridylethyl)propanoic acid.
- 30 3(R) {5(R,S) -N-[3-(4-amidinophenyl) isoxazolin-5-ylacetyl]amino}-3-(phenylpropyl)propanoic acid.
 - 11. A compound of Claim 6 of Formula Ic:

wherein:

5 b is a single or double bond;

R¹ is selected from $R^{2a}(R^3)N^-$, $R^2(R^3)N(R^2N^-)C^-$, $R^{2a}(R^3)N(CH_2)_{q}Z^-$, $R^2(R^3)N(R^2N^-)C(CH_2)_{q}Z^-$, $R^2(R^3)N(R^2N^-)CN(R^2)^-$,

10

•

$$R^{2a}N$$
 r
 $R^{2a}N$
 r
 $(CH_2)_nZ$
 $(CH_2)_nZ$

15

Z is selected from a bond, O, or S;

 R^2 and R^3 are independently selected from H, aryl(C_1 - C_{10} alkoxy)carbonyl, or C_1 - C_{10} alkoxycarbonyl;

20

 R^{2a} is R^2 or $R^2(R^3)N(R^2N=)C$;

U is a single bond,

25 V is selected from: a single bond;

```
-(C<sub>1</sub>-C<sub>7</sub> alkyl)-, substituted with 0-3 groups
               independently selected from R6 or R7;
             -(C2-C7 alkenyl)-, substituted with 0-3 groups
               independently selected from R^6 or R^7;
             -(C2-C7 alkynyl)-, substituted with 0-3 groups
 5
               independently selected from R6 or R7;
             -(phenyl)-Q-, said phenyl substituted with 0-2
               groups independently selected from R6 or R7;
             -(pyridyl)-Q-, said pyridyl substituted with 0-2
               groups independently selected from R<sup>6</sup> or R<sup>7</sup>; or
10
             - (pyridazinyl) - Q-, said pyridazinyl substituted
               with 0-2 groups independently selected from R6
               or R7,
           is selected from
15
     Q
           a single bond,
           -O-, -S(O)_{m}-, -N(R^{12})-, -(CH_2)_{m}-, -C(=O)-,
           -N(R^{5a})C(=0) -, -C(=0)N(R^{5a}) -, -CH_2O -, -OCH_2 -,
           -CH_2N(R^{12}) - , -N(R^{12})CH_2 - , -CH_2C(=0) - , -C(=0)CH_2 - ,
           -CH_2S(O)_{m}-, or -S(O)_{m}CH_2-,
20
           provided that when b is a single bond, and R1-U-V-
           is a substituent on C5 of the central 5-membered
           ring of Formula Ic, then Q is not -0, -S(0)_{m},
           -N(R^{12}) -, -C(=0)N(R^{5a}) -, -CH_2O -, CH_2N(R^{12}) - or
25
           -CH<sub>2</sub>S(O)<sub>m</sub>-;
           is selected from:
           -(C(R^4)_2)-C(=0)-N(R^{5a})-, or
           -C(=0) - N(R^{5a}) - (C(R^4)_2) - ;
30
```

is $-C(R^4)_2$ -CHR^{4a}-;

X

R⁴ is selected from H, C₁-C₁₀ alkyl, C₁-C₁₀ alkylcarbonyl, aryl, arylalkyl, cycloalkyl, or cycloalkylalkyl;

is selected from hydroxy, C_1 - C_{10} alkoxy, nitro, $-N(R^5)R^{5a}$, $-N(R^{12})R^{13}$, or $-N(R^{16})R^{17}$, C_1 - C_{10} alkyl substituted with 0-3 R^6 , aryl substituted with 0-3 R^6 , or C_1 - C_{10} alkylcarbonyl;

10

15

•

R4b is selected from H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, hydroxy, C₁-C₆ alkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, nitro, C₁-C₆ alkylcarbonyl, C₆-C₁₀ aryl, -N(R¹²)R¹³, halo, CF₃, CN, C₁-C₆ alkoxycarbonyl, carboxy, piperidinyl, morpholinyl or pyridyl;

 R^5 is selected from H or C_1 - C_{10} alkyl substituted with 0-6 R^{4b} :

20

25

R^{5a} is selected from hydrogen, hydroxy, C₁ to C₈ alkyl,
C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁
cycloalkylmethyl, C₁-C₆ alkoxy, benzyloxy, C₆ to C₁₀
aryl, heteroaryl, heteroarylalkyl, C₇ to C₁₁
arylalkyl, or adamantylmethyl, C₁-C₁₀ alkyl
substituted with 0-2 R^{4b};

alternately, R⁵ and R^{5a} can be taken together to be 3-azabicyclononyl, 1,2,3,4-tetrahydro-1-quinolinyl,
1,2,3,4-tetrahydro-2-isoquinolinyl, 1-piperidinyl,
1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl,
thiazolidinyl or 1-piperazinyl, each being
optionally substituted with C₁-C₆ alkyl, C₆-C₁₀
aryl, heteroaryl, C₇-C₁₁ arylalkyl, C₁-C₆

alkylcarbonyl, C_3 - C_7 cycloalkylcarbonyl, C_1 - C_6 alkoxycarbonyl or C_7 - C_{11} arylalkoxycarbonyl;

- R^{5b} is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b}
- is selected from hydroxy, C_1 to C_{10} alkyloxy, C_3 to 10 C_{11} cycloalkyloxy, C_6 to C_{10} aryloxy, C_7 to C_{11} aralkyloxy, C₃ to C₁₀ alkylcarbonyloxyalkyloxy, C₃ to C₁₀ alkoxycarbonyloxyalkyloxy, C₂ to C₁₀ alkoxycarbonylalkyloxy, C₅ to C₁₀ cycloalkylcarbonyloxyalkyloxy, C5 to C10 15 cycloalkoxycarbonyloxyalkyloxy, C5 to C10 cycloalkoxycarbonylalkyloxy, C7 to C11 aryloxycarbonylalkyloxy, Cg to C12 aryloxycarbonyloxyalkyloxy, C8 to C12 arylcarbonyloxyalkyloxy, C5 to C10 alkoxyalkylcarbonyloxyalkyloxy, C5 to C10 (5-alkyl-20 1,3-dioxa-cyclopenten-2-one-yl)methyloxy, or C10 to C₁₄ (5-aryl-1,3-dioxa-cyclopenten-2-oneyl)methyloxy;
- 25 R^6 and R^7 are each independently selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, -N(R^{12}) R^{13} , cyano, or halo;
- R^{12} and R^{13} are each independently selected from H, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxycarbonyl, C_1 - C_{10} alkylcarbonyl, C_1 - C_{10} alkylsulfonyl, aryl(C_1 - C_{10} alkyl)sulfonyl, arylsulfonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl or aryl, wherein said aryls are optionally substituted with 0-3 substituents selected from the group

consisting of: $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy, halo, CF_3 , and NO_2 ;

Is selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, C_2 R⁵ or -C(=0)N(R⁵)R^{5a};

R¹⁶ is selected from:

-C(=0)-0-R18a,

 $-C(=0)-R^{18b}$

 $-C (=0) N (R^{18b})_2,$

 $-SO_2-R^{18a}$, or

-SO2-N(R18b)2;

15 R^{17} is selected from: H or C_1 - C_4 alkyl

R^{18a} is selected from:

C₁-C₈ alkyl substituted with 0-2 R¹⁹,

 $C_2\text{-}C_8$ alkenyl substituted with 0-2 R^{19} ,

 C_2 - C_8 alkynyl substituted with 0-2 R^{19} ,

 C_3 - C_8 cycloalkyl substituted with 0-2 R^{19} ,

aryl substituted with 0-4 R¹⁹,

 $aryl(C_1-C_6 \ alkyl)$ - substituted with 0-4 R^{19} ,

- a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl,
- pyranyl, pyrimidinyl, 3*H*-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-4 R¹⁹;

312

C₁-C₆ alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-4 R¹⁹;

10

5

R18b is selected from R18a or H;

R¹⁹ is selected from H, halogen, CF₃, CN, NO₂, NR¹²R¹³, C₁-C₈ alkyl, C₂-C₆ alkenyl, C2-C6 alkynyl, C₁-C₆ alkoxy, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, aryl, heteroaryl, aryl(C₁-C₆ alkyl)-, or C₁-C₄ alkoxycarbonyl;

n is 0-4;

20 q is 1-7;

r is 0-3;

provided that n, q, and r are chosen such that the number of in-chain atoms between R^1 and Y is in the range of 8-17.

25

12. A compound of Claim 11 of Formula Ib:

30

wherein:

R¹ is selected from: $R^{2}(R^{3})N^{-}$, $R^{2}NH(R^{2}N=)C^{-}$, $R^{2}NH(R^{2}N=)CNH^{-}$, $R^{2}R^{3}N(CH_{2})_{p^{+}}Z^{-}$, $R^{2}NH(R^{2}N=)CNH(CH_{2})_{p^{+}}Z^{-}$ or

$$R^{2a}N$$

(CH₂)_nZ-

 $R^{2a}N$

or

(CH₂)_nZ—

n is 0-1; 10 p' is 4-6; p" is 2-4;

WO 95/14683

5

Z is selected from a bond or O;

- 15 V is a single bond, -(phenyl)- or -(pyridyl)-;
 - W is selected from: $-(C(R^4)_2)-C(=0)-N(R^{5a})-,$ $-C(=0)-N(R^{5a})-CH_2-;$

20

- X is selected from: $-CH_2-CHN(R^{16})R^{17}-, \text{ or } \\ -CH_2-CHNR^5R^{5a}-;$

```
t-butylcarbonyloxymethoxy-;
           cyclohexylcarbonyloxymethoxy-;
           1-(methylcarbonyloxy)ethoxy-;
           1-(ethylcarbonyloxy)ethoxy-;
           1-(t-butylcarbonyloxy)ethoxy-;
 5
           1-(cyclohexylcarbonyloxy)ethoxy-;
           i-propyloxycarbonyloxymethoxy-;
           t-butyloxycarbonyloxymethoxy-;
           1-(i-propyloxycarbonyloxy)ethoxy-;
           1-(cyclohexyloxycarbonyloxy)ethoxy-;
10
           1-(t-butyloxycarbonyloxy)ethoxy-;
           dimethylaminoethoxy-;
           diethylaminoethoxy-;
           (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
15
           (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
           yl) methoxy-;
           (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
           1-(2-(2-methoxypropyl)carbonyloxy)ethoxy-;
20 R<sup>16</sup> is selected from:
           -C(=0) - 0 - R^{18a}
           -C(=0)-R^{18b}
           -S(=0)_2-R^{18a} or
           -SO2-N(R18b)2;
25
     R<sup>17</sup>
           is selected from H or C<sub>1</sub>-C<sub>5</sub> alkyl;
     R<sup>18a</sup> is selected from:
           C_1-C_8 alkyl substituted with 0-2 R^{19},
           C2-C8 alkenyl substituted with 0-2 R19,
30
           C2-C8 alkynyl substituted with 0-2 R19,
           C<sub>3</sub>-C<sub>8</sub> cycloalkyl substituted with 0-2 R<sup>19</sup>,
           aryl substituted with 0-4 R19,
           aryl(C<sub>1</sub>-C<sub>6</sub> alkyl) - substituted with 0-4 R<sup>19</sup>,
35
```

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyrimidinyl, 3H-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-4 R¹⁹;

10

15

5

C₁-C₆ alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3*H*-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-4 R¹⁹.

20

13. A compound of Claim 11 wherein:

 R^1 is $R^2NH(R^2N=)C$ - or $R^2HN(R^2N=)CNH$ - and V is phenylene or pyridylene, or

25

R1 is

and V is a single bond;

n is 1 or 2;

30

R^{18a} is selected from:

 $C_1\text{-}C_4$ alkyl substituted with 0-2 R^{19} , $C_2\text{-}C_4$ alkenyl substituted with 0-2 R^{19} ,

C2-C4 alkynyl substituted with 0-2 R19, C₃-C₇ cycloalkyl substituted with 0-2 R¹⁹, aryl substituted with 0-4 R19, aryl(C₁-C₄ alkyl) - substituted with 0-4 R¹⁹,

5

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyrimidinyl, 3H-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, isoxazolinyl or morpholinyl, said heterocyclic ring being substituted with 0-4 R19;

15

20

25

10

C₁-C₄ alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, isoxazolinyl or morpholinyl, said heterocyclic ring being substituted with 0-4 R19.

- 14. A compound of Claim 6, or pharmaceutically acceptable salt forms thereof, selected from:
- 30 N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl]-N2-(phenylsulfonyl)-2,3-(S)diaminopropanoic acid;
 - N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl]-N2-(4-methyl-phenyl-sulfonyl)-2,3-(S)-

35 diaminopropanoic acid; PCT/US94/13155

```
317
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl] -N2 - (butanesulfonyl) -2,3-(S) -
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
 5
          acetyl] -N2-(propanesulfonyl) -2,3-(S) -
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(ethanesulfonyl)-2,3-(S)-
          diaminopropanoic acid;
10
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl] -N2 - (methyloxycarbonyl) -2,3-(S) -
          diaminopropanoic acid:
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl] -N2 - (ethyloxycarbonyl) -2,3-(S) -
15
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(1-propyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
20
          acetyl]-N2-(2-propyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid;
25
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}-
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3 - [2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}-
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
30
         diaminopropanoic acid;
    N^3 - [2-{3 (4-formamidinophenyl) - isoxazolin-5(R)-yl}-
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(R)-
```

diaminopropanoic acid;

```
N<sup>3</sup>-[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}-acetyl]-N2-(n-butyloxycarbonyl)-2,3-(R)-diaminopropanoic acid;
```

N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*,*S*)-yl}-acetyl]-N2-(2-butyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;

5

15

20

30

- N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]- N^2 -(1-(2-methyl)-propyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
- 10 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-acetyl]-N2-(2-(2-methyl)-propyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-acetyl]-N2-(benzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}-acetyl]-N2-(benzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*S*)-yl}-acetyl]-N2-(benzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(4-methylbenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
- 25 N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-acetyl]-N2-(4-methoxybenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]- N^2 -(4-chlorobenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;
 - N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(4-bromobenzyloxycarbonyl)-2,3-(S)-diaminopropanoic acid;

```
N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(4-fluorobenzyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
 5
          acetyl]-N2-(4-phenoxybenzyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(2-(methyloxyethyl)-oxycarbonyl)-2,3-
          (S) -diaminopropanoic acid;
10
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl] -N2 - (2-pyridinylcarbonyl) -2,3-(S) -
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl] -N2-(3-pyridinylcarbonyl)-2,3-(S)-
15
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(4-pyridinyl-carbonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
20
          acetyl]-N2-(2-(2-pyridinyl)-acetyl)-2,3-(S)-
          diaminopropanoic acid:
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl] -N2-(2-(3-pyridinyl)-acetyl)-2,3-(S)-
          diaminopropanoic acid;
25
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(2-(4-pyridinyl)-acetyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(2-pyridyl-methyloxycarbonyl)-2,3-(S)-
30
          diaminopropanoic acid;
    N^3 - [2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(3-pyridyl-methyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid:
```

WO 95/14683

320

5

15

20

30

```
N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
     acetyl]-N2-(4-pyridyl-methyloxycarbonyl)-2,3-(S)-
     diaminopropanoic acid.
N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
     acetyl]-N2-(4-butyloxyphenylsulfonyl)-2,3-(S)-
```

- N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl]-N2-(2-thienylsulfonyl)-2,3-(S)diaminopropanoic acid;
- 10 N^3 - [2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl] -N2 - (3-methylphenylsulfonyl) -2,3-(R,S) diaminopropanoic acid;

diaminopropanoic acid;

- N^3 [2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)diaminopropanoic acid;
- N^3 [2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(R)diaminopropanoic acid:
- N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)diaminopropanoic acid;
- N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)diaminopropanoic acid;
- 25 N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(R)diaminopropanoic acid;
 - N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(R)diaminopropanoic acid;
 - \mathbb{N}^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl]-N2-(4-iodophenylsulfonyl)-2,3-(S)diaminopropanoic acid;

```
N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
           acetyl]-N2-(3-trifluoromethylphenylsulfonyl)-2,3-
           (S) -diaminopropanoic acid;
     N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
 5
           acetyl]-N2-(3-chlorophenylsulfonyl)-2,3-(S)-
           diaminopropanoic acid;
     \mathbb{N}^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
           acetyl]-N2-(3-2-methoxycarbonylphenylsulfonyl)-2,3-
           (S) -diaminopropanoic acid;
     \mathbb{N}^{3}-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
10
           acetyl]-N2-(2,4,6-trimethylphenylsulfonyl)-2,3-(S)-
          diaminopropanoic acid:
     \mathbb{N}^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(2-chlorophenylsulfonyl)-2,3-(S)-
15
          diaminopropanoic acid;
     \mathbb{N}^{3}-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(4-trifluoromethylphenylsulfonyl)-2,3-
           (S) -diaminopropanoic acid;
    \mathbb{N}^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
20
          acetyl]-N2-(2-trifluoromethylphenylsulfonyl)-2,3-
           (S) -diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(2-fluorophenylsulfonyl)-2,3-(S)-
          diaminopropanoic acid;
25
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(4-fluorophenylsulfonyl)-2,3-(S)-
          diaminopropanoic acid;
    \mathbb{N}^{3}-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(4-methoxyphenylsulfonyl)-2,3-(S)-
30
          diaminopropanoic acid:
    \mathbb{N}^{3}-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(2,3,5,6-tetramethylphenylsulfonyl)-2,3-
          (S) -diaminopropanoic acid;
```

```
N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(4-cyanophenylsulfonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
 5
          acetyl]-N2-(4-chlorophenylsulfonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(4-propylphenylsulfonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
10
          acetyl] -N2-(2-phenylethylsulfonyl) -2,3-(S) -
          diaminopropanoic acid:
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(4-isopropylphenylsulfonyl)-2,3-(S)-
15
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(3-phenylpropylsulfonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
20
          acetyl]-N2-(3-pyridylsulfonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl] -N2 - (phenylaminosulfonyl) -2, 3 - (S) -
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
25
          acetyl]-N2-(benzylaminosulfonyl)-2,3-(S)-
          diaminopropanoic acid;
    N^3 - [2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}-
          acetyl]-N2-(dimethylaminosulfonyl)-2,3-(S)-
30
         diaminopropanoic acid,
    N<sup>3</sup>-[2-{3-(2-fluoro-4-formamidinophenyl)-isoxazolin-
          5(R,S)-y1 -acety1]-N2-(3-methylphenylsulfonyl)-2,3-
```

(S) -diaminopropanoic acid,

ī

- N^3 -[2-{3-(2-formamidino-5-pyridinyl)-isoxazolin-5(R,S)yl}-acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)diaminopropanoic acid, \mathbb{N}^3 -[2-{3-(2-formamidino-5-pyridinyl)-isoxazolin-5(R,S)-5 yl}-acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)diaminopropanoic acid, N^3 -[2-{3-(3-formamidino-6-pyridinyl)-isoxazolin-5(R,S)yl}-acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)diaminopropanoic acid, N^3 -[2-{3-(3-formamidino-6-pyridinyl)-isoxazolin-5(R,S)-10 yl}-acetyl]-N2-(3-methylphenylsulfonyl)-2,3-(S)diaminopropanoic acid, N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl] -N2 - (phenylaminocarbonyl) -2,3-(S) -15 diaminopropanoic acid; N^3 - $\{2 - \{3 - (4 - formamidinophenyl) - isoxazolin - 5(R, S) - yl\}$ acetyl]-N2-(4-fluorophenylaminocarbonyl)-2,3-(S)diaminopropanoic acid; N^3 - [2 \cdot {3 - (4 - formamidinophenyl) - isoxazolin - 5(R, S) - yl} -20 acetyl]-N2-(1-naphthylaminocarbonyl)-2,3-(S)diaminopropanoic acid; N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R,S)-yl}acetyl]-N2-(benzylaminocarbonyl)-2,3-(S)-
- - N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-acetyl]-N2-(3-methyl-2-benzothienylsulfonyl)-2,3-(S)-diaminopropanoic acid,
 - N³-[2-{3-(4-formamidinophenyl)-isoxazolin-5(*R*, *S*)-yl}-acetyl]-N2-(isobutyloxycarbonyl)-2,3-(S)-diaminopropanoic acid,

```
N^3- [2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}-
          acetyl]-N2-(isobutyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid,
    \mathbb{N}^3- [2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}-
          acetyl]-N2-(isobutyloxycarbonyl)-2,3-(S)-
 5
          diaminopropanoic acid,
    \mathbb{N}^3- [2-{3-(4-formamidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(2-cyclopropylethoxycarbonyl)-2,3-(S)-
          diaminopropanoic acid,
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(R)-yl}-
10
          acety1]-N2-(2-cyclopropylethoxycarbony1)-2,3-(S)-
          diaminopropanoic acid, and
    \mathbb{N}^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5(S)-yl}-
          acety1]-N2-(2-cyclopropylethoxycarbonyl)-2,3-(S)-
          diaminopropanoic acid.
15
    N^3-[2-{3-(4-guanidinophenyl)-isoxazolin-5(R, S)-yl}-
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid.
    N^3-[2-{3-(4-quanidinophenyl)-isoxazolin-5(R)-yl}-
20
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid.
    N^3-[2-{3-(4-guanidinophenyl)-isoxazolin-5(R)-yl}-
         acety1]-N2-(3-methylphenylsulfonyl)-2,3-(S)-
          diaminopropanoic acid.
    \mathbb{N}^3-[2-{5-(4-formamidinophenyl)-isoxazolin-3(R,S)-yl}-
25
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-(S)-
          diaminopropanoic acid;
               A prodrug ester of a compound of Claim 14,
30
     said ester being selected from the group consisting of:
          methyl;
          ethyl;
          isopropyl;
          methylcarbonyloxymethyl-;
          ethylcarbonyloxymethyl-;
35
```

t-butylcarbonyloxymethyl-; cyclohexylcarbonyloxymethyl-; 1- (methylcarbonyloxy) ethyl-; . 1-(ethylcarbonyloxy)ethyl-; 5 1-(t-butylcarbonyloxy)ethyl-; 1-(cyclohexylcarbonyloxy)ethyl-; i-propyloxycarbonyloxymethyl-; cyclohexylcarbonyloxymethyl-; t-butyloxycarbonyloxymethyl-; 10 1-(i-propyloxycarbonyloxy)ethyl-; 1-(cyclohexyloxycarbonyloxy)ethyl-; 1-(t-butyloxycarbonyloxy)ethyl-; dimethylaminoethyl-; diethylaminoethyl-; (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methyl-; 15 (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-y1) methy1-; (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl)methyl-; 1-(2-(2-methoxypropyl)carbonyloxy)ethyl-. 20

16. A compound of Formula Id:

$$R^{14} \stackrel{R^{16}}{\longrightarrow} W - X \stackrel{O}{\longrightarrow} V$$
(Id)

or a pharmaceutically acceptable salt form thereof wherein:

is selected from is selected from $R^2(R^3)N^-$, $R^2(R^3)N(R^2N=)C^-$, $R^2(R^3)N(R^2N=)CN(R^2)^-$, $R^2(R^3)N(CH_2)_qZ^-$, $R^2(R^3)N(R^2N=)C(CH_2)_qZ^-$, $R^2(R^3)N(R^2N=)CN(R^2)(CH_2)_qZ^-$, piperazinyl-(CH₂)_qZ-, or

$$R^2N$$
 or R^2N

Z is selected from a bond, O, S, S(=0), or $S(=0)_2$;

5 R² and R³ are independently selected from: H, C₁-C₁₀
alkyl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁
cycloalkylalkyl, C₆-C₁₀ aryl, C₇-C₁₁ arylalkyl, C₂-C₇
alkylcarbonyl, C₇-C₁₁ arylcarbonyl, C₂-C₁₀
alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁
10 bicycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl, or
aryl(C₁-C₁₀ alkoxy)carbonyl, C₁-C₆
alkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₆-C₁₀
arylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₄-C₁₁
cycloalkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl;

15

U is selected from:
a single bond,
C₁-C₇ alkylene,
C₂-C₇ alkenylene,
C₂-C₇ alkynylene,
arylene substitut

arylene substituted with 0-3 R^{6a},, or pyridylene substituted with 0-3 R^{6a};

V is selected from:

a single bond;

C₁-C₇ alkylene substituted with 0-6 R⁶ or R⁷;

C₂-C₇ alkenylene substituted with 0-4 R⁶ or R⁷;

C₂-C₇ alkynylene substituted with 0-4 R⁶ or R⁷;

phenylene substituted with 0-4 R⁶ or R⁷;

pyridylene substituted with 0-3 R⁶ or R⁷;

pyridazinylene substituted with 0-3 R⁶ or R⁷;

327

```
Х
             is selected from:
             a single bond;
             -(CH_2)_nC(=0)N(R^{12})-;
             C<sub>1</sub>-C<sub>7</sub> alkylene substituted with 0-6 R<sup>4</sup>, R<sup>8</sup> or R<sup>15</sup>;
             C2-C7 alkenylene substituted with 0-4 R4, R8 or R15;
 5
             C<sub>2</sub>-C<sub>7</sub> alkynylene substituted with 0-4 R<sup>4</sup>, R<sup>8</sup> or R<sup>15</sup>;
      Y
             is selected from:
             hydroxy,
10
             C_1 to C_{10} alkyloxy,
             C_3 to C_{11} cycloalkyloxy,
             C_6 to C_{10} aryloxy,
             C_7 to C_{11} aralkyloxy,
             C_3 to C_{10} alkylcarbonyloxyalkyloxy,
15
             C_3 to C_{10} alkoxycarbonyloxyalkyloxy,
             C_2 to C_{10} alkoxycarbonylalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> cycloalkylcarbonyloxyalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> cycloalkoxycarbonyloxyalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> cycloalkoxycarbonylalkyloxy,
20
             C_7 to C_{11} aryloxycarbonylalkyloxy,
             C_8 to C_{12} aryloxycarbonyloxyalkyloxy,
             C_8 to C_{12} arylcarbonyloxyalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> alkoxyalkylcarbonyloxyalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> (5-alkyl-1,3-dioxa-cyclopenten-2-one-
25
                    yl) methyloxy,
             C<sub>10</sub> to C<sub>14</sub> (5-aryl-1,3-dioxa-cyclopenten-2-one-
                    yl) methyloxy;
             (R^2)(R^3)N-(C_1-C_{10} \text{ alkoxy})-;
```

30 R¹⁴ and W are attached to the same carbon and taken together to form a spiro-fused, 5-7 membered ring structure of the formula:

328

D, E, F and G are each independently selected from: $C(R^{6a})_2$;

5 carbonyl;

- a heteroatom moiety selected from N, $N(R^{12})$, O, provided that no more than 2 of D, E, F and G are N, $N(R^{12})$, O, S, or C(=0);
- alternatively, the bond between D and E, E and F, or F

 and G in such spiro-fused ring may be a

 carbon-nitrogen double bond or a carbon-carbon

 double bond;
- 15 Is selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, or -N(\mathbb{R}^{12}) \mathbb{R}^{13} ;
- R⁶ and R⁷ are each independently selected from H, C₁-C₁₀ alkyl, hydroxy, C₁-C₁₀ alkoxy, nitro, C₁-C₁₀ alkylcarbonyl, -N(R¹²)R¹³, cyano, halo, CF₃, CHO, CO₂R^{5a}, C(=0)R^{5a}, CONHR^{5a}, CON(R¹²)₂, OC(=0)R^{5a}, OC(=0)OR^{5a}, OC(=0)N(R¹²)₂, OCH₂CO₂R^{5a}, CO₂CH₂CO₂R^{5a}, N(R¹²)₂, NO₂, NR¹²C(=0)R^{5a}, NR¹²C(=0)OR^{5a}, NR¹²C(=0)N(R¹²)₂, NR¹²SO₂N(R¹²)₂, NR¹²SO₂R^{5a}, S(O)_pR^{5a}, SO₂N(R¹²)₂, C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁ cycloalkylmethyl;

 C_6 to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(O)_mMe$, or -NMe₂;

30

 C_7 to C_{11} arylalkyl, said aryl being optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(O)_mMe$, or -NMe₂;

5 methylenedioxy when R⁶ is a substituent on aryl;

 R^{6a} is selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, CF_3 , NO_2 , or $NR^{12}R^{13}$;

10 R8 is selected from:

Н;

20

R6;

 C_1 - C_{10} alkyl, substituted with 0-8 R^6 ;

 $C_2\text{-}C_{10}$ alkenyl, substituted with 0-6 R^6 ;

15 C_2 - C_{10} alkynyl, substituted with 0-6 R^6 ;

C₃-C₈ cycloalkyl, substituted with 0-6 R⁶;

 C_5 - C_6 cycloalkenyl, substituted with 0-5 R^6 ;

aryl, substituted with 0-5 R6;

5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-5 R⁶;

25 R¹² and R¹³ are independently H, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxycarbonyl, C₁-C₁₀ alkylcarbonyl, C₁-C₁₀ alkylsulfonyl, aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, aryl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₇-C₁₁ arylalkyl,

C2-C7 alkylcarbonyl, C_7 - C_{11} arylcarbonyl, C_2 - C_{10} alkoxycarbonyl, C_4 - C_{11} cycloalkoxycarbonyl, C_7 - C_{11} bicycloalkoxycarbonyl, C_7 - C_{11} aryloxycarbonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl or aryl(C_1 - C_{10} alkoxy)carbonyl, wherein said aryls or

heteroaryls are optionally substituted with 0-3

substituents selected from the group consisting of: C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, CF_3 , and NO_2 ;

PCT/US94/13155

R⁵ and R^{5a} are selected independently from H, C₁ to C₈

alkyl, C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁ cycloalkylmethyl, C₆ to C₁₀ aryl, C₇ to C₁₁

arylalkyl, or C₁-C₁₀ alkyl substituted with 0-8 R⁴;

R¹⁵ is selected from:

10 H; R⁶;

C₁-C₁₀ alkyl, substituted with 0-8 R⁶;

C2-C10 alkenyl, substituted with 0-6 R6;

C₁-C₁₀ alkoxy, substituted with 0-6 R⁶;

aryl, substituted with 0-5 R⁶;

5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring

20 being substituted with 0-5 R⁶;

C₁-C₁₀ alkoxycarbonyl substituted with 0-8 R⁶;

CO₂R⁵; or

 $-C(=0)N(R^{12})R^{13};$

25 n is 0-4;

p is 1-3;

q is 1-7;

r is 0-3;

provided that n, p, q and r are chosen such that the number of atoms between R^1 and Y is in the range of 8-17.

17. A compound of Claim 16 of Formula III:

$$R^1-V$$
 $(G)_{p}$
 F
 $(IIII)$

wherein:

is selected from R^2HN^- , $H_2N(R^2N=)C^-$, $H_2N(R^2N=)CNH^-$, $R^2HN(CH_2)_{Q}O^-$, $H_2N(R^2N=)CNH(CH_2)_{Q}O^-$, piperazinyl- $(CH_2)_{Q}O^-$,

$$R^2N$$
 or R^2N

10 R^2 is selected from H, aryl(C_1 - C_{10} alkoxy)carbonyl, or C_1 - C_{10} alkoxycarbonyl;

R⁴ is selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, or -N(R¹²)R¹³;

15

V is selected from: a single bond; $C_1\text{-}C_7 \text{ alkylene substituted with 0-6 R}^6 \text{ or R}^7;$ $C_2\text{-}C_7 \text{ alkenylene substituted with 0-4 R}^6 \text{ or R}^7;$ $C_2\text{-}C_7 \text{ alkynylene substituted with 0-4 R}^6 \text{ or R}^7;$

C2-C7 alkynylene substituted with 0-4 R^6 or R^7 ;

phenylene substituted with 0-3 R^6 or R^7 ;

pyridylene substituted with 0-3 R^6 or R^7 ;

pyridazinylene substituted with 0-3 R^6 or R^7 ;

- 25 X is selected from $-(CH_2)_nC(=0)N(R^{12})$ -, C_1 - C_7 alkylene substituted with 0-1 R^4 , C_2 - C_7 alkenylene, or C_2 - C_7 alkynylene;
 - Y is selected from:

```
hydroxy,
           C<sub>1</sub> to C<sub>10</sub> alkyloxy,
           C3 to C11 cycloalkyloxy,
           C6 to C10 aryloxy,
           C7 to C11 aralkyloxy,
 5
           C3 to C10 alkylcarbonyloxyalkyloxy,
           C3 to C10 alkoxycarbonyloxyalkyloxy,
           C2 to C10 alkoxycarbonylalkyloxy,
           C5 to C10 cycloalkylcarbonyloxyalkyloxy,
10
           C5 to C10 cycloalkoxycarbonyloxyalkyloxy,
           C5 to C10 cycloalkoxycarbonylalkyloxy,
           C7 to C11 aryloxycarbonylalkyloxy,
           Cg to C12 aryloxycarbonyloxyalkyloxy,
           Cg to C12 arylcarbonyloxyalkyloxy,
15 .
           C<sub>5</sub> to C<sub>10</sub> alkoxyalkylcarbonyloxyalkyloxy,
           C<sub>5</sub> to C<sub>10</sub> (5-alkyl-1,3-dioxa-cyclopenten-2-one-
                yl)methyloxy, or
           Clo to Cl4 (5-aryl-1,3-dioxa-cyclopenten-2-one-
                yl)methyloxy;
20
     Z
          is selected from O or CH2;
     D, E, F and G are each independently selected from:
        CH<sub>2</sub>;
25
        carbonyl;
        a heteroatom moiety selected from N, NH, O, provided
             that no more than 2 of D, E, F and G are N, NH,
             0 or S;
       alternatively, the bond between D and E, E and F, or F
30
             and G in such spiro-fused ring may be a
```

carbon-nitrogen double bond or a carbon-carbon double bond;

 R^6 and R^7 are each independently selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, -N(R^{12}) R^{13} , cyano, or halo;

 R^{12} and R^{13} are each independently selected from H, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxycarbonyl, C_1 - C_{10} alkylcarbonyl, C_1 - C_{10} alkylsulfonyl, aryl(C_1 - C_{10} alkyl) sulfonyl, arylsulfonyl, heteroarylcarbonyl, heteroaryalkylcarbonyl or aryl;

n is 0-4;

p is 1-3;

10 q is 1-7;

r is 0-3;

provided that n, p, q and r are chosen such that the number of atoms between R^1 and Y is in the range of 8-17.

15

18. A compound of Claim 17 wherein:

 \mathbb{R}^1 is $\mathbb{R}^2 \mathbb{N} HC (= \mathbb{N} \mathbb{R}^2)$ - and \mathbb{V} is phenyl or pyridyl or

20 R1 is

and V is a single bond;

n is 1 or 2;

- 25 X is C_1 - C_4 alkylene substituted with 0-1 R^4 ;
 - Y is selected from: hydroxy;

C₁ to C₁₀ alkoxy;

30 methylcarbonyloxymethoxy-;
ethylcarbonyloxymethoxy-;
t-butylcarbonyloxymethoxy-;

cyclohexylcarbonyloxymethoxy-;

334

```
1-(methylcarbonyloxy)ethoxy-;
          1-(ethylcarbonyloxy)ethoxy-;
          1-(t-butylcarbonyloxy)ethoxy-;
          1-(cyclohexylcarbonyloxy)ethoxy-;
 5
          i-propyloxycarbonyloxymethoxy-;
          t-butyloxycarbonyloxymethoxy-;
          1-(i-propyloxycarbonyloxy)ethoxy-;
          1-(cyclohexyloxycarbonyloxy)ethoxy-;
          1-(t-butyloxycarbonyloxy)ethoxy-;
          dimethylaminoethoxy-;
10
          diethylaminoethoxy-;
          (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
          (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
          y1) methoxy-;
15
          (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl)methoxy-;
          1-(2-(2-methoxypropyl) carbonyloxy) ethoxy-;
    {\rm R}^{12} and {\rm R}^{13} are each independently selected from H, {\rm C}_1{\rm -C}_6
          alkyl, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl,
20
          C_1-C_4 alkylsulfonyl, aryl(C_1-C_4 alkyl)sulfonyl,
          arylsulfonyl, heteroarylcarbonyl,
          heteroaryalkylcarbonyl or aryl; and
    R^{13} is H.
25
          19. A compound of Claim 16, or pharmaceutically
    acceptable salt forms thereof, selected from:
    5(R,S) - 3 - (4 - amidinopheny1) - 8 - (2 - carboxyethy1) - 1 - oxa - 2, 8 -
30
          diazaspiro[4.4]non-2-ene-7,9-dione;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
          2,8-diazaspiro[4.4]non-2-ene-7,9-dione;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-
```

diazaspiro[4.4]non-2-ene-5-one;

```
5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
          2,8-diazaspiro[4.4]non-2-ene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2-
          azaspiro[4.4]nona-2,8-diene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-2-
 5
          azaspiro[4.4] nona-2,8-diene-5-one;
    5(R,S) - 3 - (4 - amidinopheny1) - 8 - (2 - carboxyethy1) - 1 - oxa - 2, 8 -
          diazaspiro[4.4]dec-2-ene-7,9-dione;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
10
          2,8-diazaspiro[4.4]dec-2-ene-7,9-dione;
    5(R,S)-3-(4-amidinopheny1)-8-(2-carboxyethy1)-1-oxa-2,8-
          diazaspiro[4.4]dec-2-ene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
          2,8-diazaspiro[4.4]dec-2-ene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2-
15
          azaspiro[4.4]deca-2,8-diene-5-one;
    5(R,S) - 3 - (4 - amidinophenyl) - 8 - (3 - carboxypropyl) - 1 - oxa - 2 -
          azaspiro[4.4]deca-2,8-diene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-
20
          diazaspiro[4.4] undec-2-ene-7,9-dione;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
          2,8-diazaspiro[4.4]undec-2-ene-7,9-dione;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2,8-
          diazaspiro[4.4] undec-2-ene-5-one;
25
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-
          2,8-diazaspiro[4.4] undec-2-ene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(2-carboxyethyl)-1-oxa-2-
          azaspiro [4.4] undeca-2, 8-diene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-(3-carboxypropyl)-1-oxa-2-
30
          azaspiro[4.4] undeca-2,8-diene-5-one;
    5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(2-carboxyethy1)-1-
          oxa-2,8-diazaspiro[4.4]non-2-ene-7,9-dione;
    5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(3-carboxypropy1)-
          1-oxa-2,8-diazaspiro[4.4]non-2-ene-7,9-dione;
    5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(2-carboxyethy1)-1-
35
          oxa-2,8-diazaspiro[4.4]non-2-ene-5-one;
```

```
5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-
          1-oxa-2,8-diazaspiro[4.4]non-2-ene-5-one;
     5(R,S) - 3 - [2 - (piperidin - 4 - yl) ethyl] - 8 - (2 - carboxyethyl) - 1 -
          oxa-2-azaspiro[4.4] nona-2,8-diene-5-one;
     5(R,S) -3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-
 5
          1-oxa-2-azaspiro[4.4]nona-2,8-diene-5-one;
     5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-
          oxa-2,8-diazaspiro[4.4]dec-2-ene-7,9-dione;
     5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(3-carboxypropy1)-
10
          1-oxa-2,8-diazaspiro[4.4]dec-2-ene-5,7-dione;
     5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(2-carboxyethy1)-1-
          oxa-2,8-diazaspiro[4.4]dec-2-ene-5-one;
     5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(3-carboxypropy1)-
          1-oxa-2,8-diazaspiro[4.4]dec-2-ene-5-one;
15
     5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-
          oxa-2-azaspiro[4.4]deca-2,8-diene-5-one;
     5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-
          1-oxa-2-azaspiro[4.4]deca-2,8-diene-5-one;
     5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(2-carboxyethy1)-1-
20
          oxa-2,8-diazaspiro[4.4] undec-2-ene-7,9-dione;
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-
          1-oxa-2,8-diazaspiro[4.4]undec-2-ene-7,9-dione;
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-
          oxa-2,8-diazaspiro[4.4]undec-2-ene-5-one;
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(3-carboxypropyl)-
25
          1-oxa-2,8-diazaspiro[4.4]undec-2-ene-5-one;
    5(R,S)-3-[2-(piperidin-4-yl)ethyl]-8-(2-carboxyethyl)-1-
         oxa-2-azaspiro[4.4]undeca-2,8-diene-5-one;
    5(R,S)-3-[2-(piperidin-4-y1)ethy1]-8-(3-carboxypropy1)-
30
          1-oxa-2-azaspiro[4.4] undeca-2, 8-diene-5-one;
    5(R,S)-3-(4-amidinophenyl)-8-
          [2-(benzyloxycarbonylamino)-2-carboxyethyl]-1-oxa-
          2,8-diazaspiro[4.5]dec-2-ene.
         20. A compound of Formula I:
35
```

$$R^{14} = U - V = 0$$
 $R^{15} = W - X = 0$
 $R^{1} = U - V = 0$
 $R^{1} = V$
 R^{1}

or pharmaceutically acceptable salt form thereof, wherein:

5

ŗ

R¹ is selected from: $R^{2}(R^{3}) \, N \, (CH_{2})_{q} Z^{-1}, \quad R^{2}(R^{3}) \, N \, (R^{2}N=) \, C \, (CH_{2})_{q} Z^{-1},$ $R^{2}(R^{3}) \, N \, (R^{2}N=) \, CN \, (R^{2}) \, (CH_{2})_{q} Z^{-1}, \quad \text{piperazinyl-} \, (CH_{2})_{q} Z^{-1} \text{ or }$

10

Z is selected from O, S, S(=0), $S(=0)_2$;

- R² and R³ are independently selected from: H, C₁-C₁₀
 alkyl, C₂-C₆ alkenyl, C₃-C₁₁ cycloalkyl, C₄-C₁₁
 cycloalkylalkyl, C₆-C₁₀ aryl, C₇-C₁₁ arylalkyl, C₂-C₇
 alkylcarbonyl, C₇-C₁₁ arylcarbonyl, C₂-C₁₀
 alkoxycarbonyl, C₄-C₁₁ cycloalkoxycarbonyl, C₇-C₁₁
 bicycloalkoxycarbonyl, C₇-C₁₁ aryloxycarbonyl, or
 aryl(C₁-C₁₀ alkoxy)carbonyl, C₁-C₆
 alkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₆-C₁₀
 arylcarbonyloxy(C₁-C₄ alkoxy)carbonyl, C₄-C₁₁
 cycloalkylcarbonyloxy(C₁-C₄ alkoxy)carbonyl;
- U is optionally present and is selected from C₁-C₇
 alkylene, C₂-C₇ alkenylene, C₂-C₇ alkynylene,
 arylene, or pyridylene;
 - V is selected from: a single bond;

```
C_1-C_7 alkylene substituted with 0-6 R^6 or R^7; C_2-C_7 alkenylene substituted with 0-4 R^6 or R^7; C_2-C_7 alkynylene substituted with 0-4 R^6 or R^7; phenylene substituted with 0-4 R^6 or R^7; pyridylene substituted with 0-3 R^6 or R^7;
```

is -(aryl)- Z^1 -, wherein said aryl is substituted with 0-6 R^6 or R^7 ;

pyridazinylene substituted with 0-3 R6 or R7;

10

5

 Z^1 is selected from a single bond, -CH₂-, O or S;

- X is selected from: a single bond;
- 15 C_1 - C_7 alkylene substituted with 0-6 R⁴, R⁸ or R¹⁵; C_2 - C_7 alkenylene substituted with 0-4 R⁴, R⁸ or R¹⁵; C_2 - C_7 alkynylene substituted with 0-4 R⁴, R⁸ or R¹⁵;
- Y is selected from hydroxy, C₁ to C₁₀ alkyloxy, C₃ to C₁₁ cycloalkyloxy, C₆ to C₁₀ aryloxy, C₇ to C₁₁ aralkyloxy, C₃ to C₁₀ alkylcarbonyloxyalkyloxy, C₃ to C₁₀ alkoxycarbonyloxyalkyloxy, C₂ to C₁₀ alkoxycarbonylalkyloxy, C₅ to C₁₀ cycloalkylcarbonyloxyalkyloxy, C₅ to C₁₀ cycloalkoxycarbonyloxyalkyloxy, C₅ to C₁₀ cycloalkoxycarbonylalkyloxy, C₇ to C₁₁ aryloxycarbonylalkyloxy, C₈ to C₁₂
- arylcarbonyloxyalkyloxy, C₅ to C₁₀

 alkoxyalkylcarbonyloxyalkyloxy, C₅ to C₁₀ (5-alkyl1,3-dioxa-cyclopenten-2-one-yl)methyloxy, C₁₀ to C₁₄

 (5-aryl-1,3-dioxa-cyclopenten-2-one-yl)methyloxy;

 (R²) (R³) N-(C₁-C₁₀ alkoxy)-;

aryloxycarbonyloxyalkyloxy, C8 to C12

339

 \mathbb{R}^4 is selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, or $-N(R^{12})R^{13}$;

 ${\rm R}^6$ and ${\rm R}^7$ are each independently selected from H, ${\rm C}_1\text{-}{\rm C}_{10}$ 5 alkyl, hydroxy, C₁-C₁₀ alkoxy, nitro, C₁-C₁₀ alkylcarbonyl, -N(R12)R13, cyano, halo, CF3, CHO, CO_2R^{5a} , $C(=0)R^{5a}$, $CONHR^{5a}$, $CON(R^{12})_2$, $OC(=0)R^{5a}$, $OC(=0)OR^{5a}$, OR^{5a} , $OC(=0)N(R^{12})_2$, $OCH_2CO_2R^{5a}$, $CO_2CH_2CO_2R^{5a}$, $N(R^{12})_2$, NO_2 , $NR^{12}C(=0)R^{5a}$. 10 $NR^{12}C(=0)OR^{5a}$, $NR^{12}C(=0)N(R^{12})_2$, $NR^{12}SO_2N(R^{12})_2$,

 $NR^{12}SO_2R^{5a}$, $S(0)_pR^{5a}$, $SO_2N(R^{12})_2$, C_2 to C_6 alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁ cycloalkylmethyl;

C₆ to C₁₀ aryl optionally substituted with halogen, 15 alkoxy, alkyl, $-CF_3$, $S(0)_mMe$, or $-NMe_2$; or

> C₇ to C₁₁ arylalkyl said aryl being optionally substituted with halogen, alkoxy, alkyl, -CF3, $S(0)_{m}Me$, or $-NMe_{2}$;

20

R8 is selected from:

H;

R6:

C₁-C₁₀ alkyl, substituted with 0-8 R⁶;

25 C2-C10 alkenyl, substituted with 0-6 R6; C2-C10 alkynyl, substituted with 0-6 R6; C₃-C₈ cycloalkyl, substituted with 0-6 R⁶; C5-C6 cycloalkenyl, substituted with 0-5 R6;

aryl, substituted with 0-5 R6;

30 5-6 membered heterocyclic ring containing 1-2 N, O, or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-5 R6;

35

```
\mbox{R}^{12} and \mbox{R}^{13} are independently H, \mbox{C}_1\mbox{-}\mbox{C}_{10} alkyl, \mbox{C}_1\mbox{-}\mbox{C}_{10}
              alkoxycarbonyl, C_1-C_{10} alkylcarbonyl, C_1-C_{10}
              alkylsulfonyl, aryl(C_1-C_{10} alkyl)sulfonyl,
              arylsulfonyl, aryl, C2-C6 alkenyl, C3-C11
 5
              cycloalkyl, C4-C11 cycloalkylalkyl, C7-C11 arylalkyl,
              C<sub>2</sub>-C<sub>7</sub> alkylcarbonyl, C<sub>7</sub>-C<sub>11</sub> arylcarbonyl, C<sub>2</sub>-C<sub>10</sub>
              alkoxycarbonyl, C<sub>4</sub>-C<sub>11</sub> cycloalkoxycarbonyl, C<sub>7</sub>-C<sub>11</sub>
             bicycloalkoxycarbonyl, C7-C11 aryloxycarbonyl,
             heteroarylcarbonyl, heteroarylalkylcarbonyl or
10
             aryl(C_1-C_{10} alkoxy) carbonyl;
      R14
             is selected from H, C_1-C_{10} alkyl, C_2-C_{10} alkenyl,
             C_2\text{-}C_{10} alkynyl, C_1\text{-}C_{10} alkoxy, aryl, heteroaryl or
             C_1-C_{10} alkoxycarbonyl, CO_2R^5 or -C(=0)N(R^{12})R^{13};
15
      \ensuremath{\text{R}^{5}} and \ensuremath{\text{R}^{5a}} are selected independently from H, \ensuremath{\text{C}_{1}} to \ensuremath{\text{C}_{8}}
             alkyl, C_2 to C_6 alkenyl, C_3 to C_{11} cycloalkyl, C_4 to
             C_{11} cycloalkylmethyl, C_6 to C_{10} aryl, C_7 to C_{11}
             arylalkyl, or C<sub>1</sub>-C<sub>10</sub> alkyl substituted with 0-8 R<sup>4</sup>;
20
      R15
             is selected from:
             H;
             R6:
             C<sub>1</sub>-C<sub>10</sub> alkyl, substituted with 0-8 R<sup>6</sup>;
25
             C_2-C_{10} alkenyl, substituted with 0-6 R^6;
             C_1-C_{10} alkoxy, substituted with 0-6 R^6;
             aryl, substituted with 0-5 R6;
             5-6 membered heterocyclic ring containing 1-2 N, O,
                    or S heteroatoms, wherein said heterocyclic
30
                    ring may be saturated, partially saturated, or
                    fully unsaturated, said heterocyclic ring
                    being substituted with 0-5 R6;
             C_1-C_{10} alkoxycarbonyl substituted with 0-8 R^6;
             CO_2R^5; or
             -C(=0)N(R^{12})R^{13};
35
```

341

is 0-4; n

is 2-7; đ

is 0-3;

5 provided that n, q, and r are chosen such that the number of atoms between R1 and Y is about 8-17.

21. A compound of Claim 20 of Formula IV:

$$\begin{array}{c|c}
R^{14} & b & 0 \\
\hline
R^{1}-V & N-O &
\end{array}$$
(IV)

wherein:

 \mathbb{R}^1 is selected from R2HN(CH2)gO-, $R^2HN(R^2N=C)NH(CH_2)_qO$ -, piperazinyl-(CH₂)_qO-, or

$$R^2N$$
 r

15

10

Z is O;

 \mathbb{R}^2 is selected from H, aryl(C1-C10)alkoxycarbonyl, 20 C_1 - C_{10} alkoxycarbonyl;

V is selected from: a single bond;

C₁-C₇ alkylene substituted with 0-6 R⁶ or R⁷; C2-C7 alkenylene substituted with 0-4 R6 or R7;

C2-C7 alkynylene substituted with 0-4 R6 or R7; 25 phenylene substituted with 0-3 R6 or R7; pyridylene substituted with 0-3 R⁶ or R⁷; pyridazinylene substituted with 0-3 R⁶ or R⁷;

Z¹ is selected from a single bond, O or S;

- X is selected from:
 a single bond;

 C₁-C₇ alkylene substituted with 0-4 R⁴, R⁸ or R¹⁵;

 C₂-C₇ alkenylene substituted with 0-3 R⁴, R⁸ or R¹⁵;

 C₂-C₇ alkynylene substituted with 0-3 R⁴, R⁸ or R¹⁵;
- selected from hydroxy, C_1 to C_{10} alkyloxy, C_3 to C_{11} cycloalkyloxy, C_6 to C_{10} aryloxy, C_7 to C_{11} aralkyloxy, C3 to C10 alkylcarbonyloxyalkyloxy, C3 10 to C₁₀ alkoxycarbonyloxyalkyloxy, C₂ to C₁₀ alkoxycarbonylalkyloxy, C5 to C10 cycloalkylcarbonyloxyalkyloxy, C5 to C10 cycloalkoxycarbonyloxyalkyloxy, C5 to C10 15 cycloalkoxycarbonylalkyloxy, C7 to C11 aryloxycarbonylalkyloxy, C₈ to C₁₂ aryloxycarbonyloxyalkyloxy, C₈ to C₁₂ arylcarbonyloxyalkyloxy, C₅ to C₁₀ alkoxyalkylcarbonyloxyalkyloxy, C₅ to C₁₀ (5-alkyl-20 1,3-dioxa-cyclopenten-2-one-yl)methyloxy, or C_{10} to C₁₄ (5-aryl-1,3-dioxa-cyclopenten-2-oneyl) methyloxy;
- is selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, or -N(R^{12}) R^{13} ;
 - R^6 and R^7 are selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, $-N(R^{12})R^{13}$, cyano, or halo;
- 30

 R⁸ is selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl,
 C₃-C₈ cycloalkyl, C₅-C₆ cycloalkenyl, aryl, 5-6
 membered heterocyclic ring containing 1-2 N, O, or
 S, where said heterocyclic ring may be saturated,
 partially saturated, or fully unsaturated;

 \mbox{R}^{12} and \mbox{R}^{13} are independently selected from H, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ alkyl, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ alkoxycarbonyl, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ alkylsulfonyl, aryl(C $_1\mbox{-}\mbox{C}_{10}$ alkyl)sulfonyl, arylsulfonyl, heteroarylcarbonyl,

5 heteroarylalkylcarbonyl or aryl;

R¹⁴ is selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, CO_2R^5 or -C (=0) $N(R^{12})R^{13}$;

10

 R^5 is selected from H or $C_1\text{-}C_{10}$ alkyl substituted with 0-6 R^4 ;

n is 0-4;

q is 2-7;

provided that n and q are chosen such that the number of atoms between R^1 and Y is in the range of 8-17.

22. A compound of Claim 21 wherein: R^1 is $R^2HN(CH_2)_{\alpha}O$ - or

20

V is C_1 - C_3 alkylene;

25 Z^1 is a single bond or 0;

X is C₁-C₃ alkylene substituted with 0-1 R⁴;

Y is selected from:

30 hydroxy;
C₁ to C₁₀ alkoxy;

ci co cio arkoxy;

methylcarbonyloxymethoxy-;

ethylcarbonyloxymethoxy-;

t-butylcarbonyloxymethoxy-;

```
cyclohexylcarbonyloxymethoxy-;
           1-(methylcarbonyloxy)ethoxy-;
           1-(ethylcarbonyloxy)ethoxy-;
           1-(t-butylcarbonyloxy).ethoxy-;
 5
           1-(cyclohexylcarbonyloxy)ethoxy-;
           i-propyloxycarbonyloxymethoxy-;
           t-butyloxycarbonyloxymethoxy-;
           1-(i-propyloxycarbonyloxy) ethoxy-;
           1-(cyclohexyloxycarbonyloxy)ethoxy-;
           1-(t-butyloxycarbonyloxy)ethoxy-;
10
           dimethylaminoethoxy-;
           diethylaminoethoxy-;
           (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
           (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
15
           y1) methoxy-;
           (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl)methoxy-;
           1-(2-(2-methoxypropyl)carbonyloxy)ethoxy-;
     \mbox{R}^{12} and \mbox{R}^{13} are independently selected from H, \mbox{C}_1\mbox{-}\mbox{C}_6
20
           alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxycarbonyl, C<sub>1</sub>-C<sub>4</sub> alkylcarbonyl,
          C_1-C_6 alkylsulfonyl, aryl(C_1-C_4 alkyl)sulfonyl,
          arylsulfonyl, heteroarylcarbonyl,
          heteroarylalkylcarbonyl or aryl;
   R^{13} is H.
25
          23. A compound of Claim 20, or a pharmaceutically
     acceptable salt form thereof, selected from:
30
    5(R,S)-4-[3-(piperidin-4-yl)oxymethylisoxazolin-5-yl]hy-
          drocinnamic acid;
     5(R,S)-4-[3-(2-aminoethoxymethyl)isoxazolin-5-yl]hydro-
          cinnamic acid;
    5(R,S)-4-[3-(3-aminopropyloxymethyl) isoxazolin-5-yl] hy-
35
          drocinnamic acid:
```

5(R,S)-4-[3-(piperidin-4-yl)oxymethylisoxazolin-5-yl]phenoxyacetic acid;

5(R,S)-4-[3-(2-aminoethoxymethyl)isoxazolin-5-yl]phenoxyacetic acid;

5 5(R,S)-4-[3-(3-aminopropyloxymethyl)isoxazolin-5-yl]phenoxyacetic acid.

24. A compound of Formula I:

or a pharmaceutically acceptable salt form thereof wherein:

b is a single or double bond;

15

R¹ is selected from $R^{2a}(R^3)N^{-}$, $R^2(R^3)N(R^2N^{-})C^{-}$, $R^{2a}(R^3)N(CH_2)_{\mathbf{q}}Z^{-}$, $R^2(R^3)N(R^2N^{-})C(CH_2)_{\mathbf{q}}Z^{-}$,

$$R^{2a}N$$
 (CH₂)_nZ (CH₂)_nZ or

20

Z is selected from a bond, 0, S, S(=0), $S(=0)_2$;

25 R^2 and R^3 are independently selected from: H, C_1 - C_{10} alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylalkyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, C_2 - C_7

```
alkylcarbonyl, C<sub>7</sub>-C<sub>11</sub> arylcarbonyl, C<sub>2</sub>-C<sub>10</sub>
             alkoxycarbonyl, C<sub>4</sub>-C<sub>11</sub> cycloalkoxycarbonyl, C<sub>7</sub>-C<sub>11</sub>
            bicycloalkoxycarbonyl, C7-C11 aryloxycarbonyl,
             aryl(C_1-C_{10} alkoxy) carbonyl,
 5
            alkylcarbonyloxyalkoxycarbonyl, or
            alkoxycarbonyloxyalkoxycarbonyl, C1-C6
            alkylcarbonyloxy(C1-C4 alkoxy)carbonyl, C6-C10
            arylcarbonyloxy(C_1-C_4 alkoxy) carbonyl, C_4-C_{11}
            cycloalkylcarbonyloxy(C<sub>1</sub>-C<sub>4</sub> alkoxy)carbonyl;
10
      R^{2a} is R^{2} or R^{2}(R^{3})N(R^{2}N=)C;
      U
            is selected from:
              a single bond,
15
              -(C_1-C_7 \text{ alkyl})-,
              -(C_2-C_7 \text{ alkenyl})-,
              -(C_2-C_7 \text{ alkynyl})-,
              -(aryl) - substituted with 0-3 R<sup>6a</sup>, or
              -(pyridyl) - substituted with 0-3 R6a;
20
      V
            is selected from:
              a single bond;
              -(C<sub>1</sub>-C<sub>7</sub> alkyl)-, substituted with 0-3 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
              -(C_2-C_7 alkenyl)-, substituted with 0-3 groups
25
                 independently selected from R6 or R7;
              -(C2-C7 alkynyl)-, substituted with 0-3 groups
                 independently selected from R6 or R7;
              -(phenyl)-, substituted with 0-2 groups
30
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
              -(pyridyl)-, substituted with 0-2 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>; or
              -(pyridazinyl)-, substituted with 0-2 groups
                 independently selected from R<sup>6</sup> or R<sup>7</sup>;
35
```

3**47**.

is selected from:

X is selected from:

5 a single bond, $-(C(R^4)_2)_n-C(R^4)(R^8)-C(R^4)(R^{4a})$ with the proviso that when n is 0 or 1, then at least one of R4a or R8 is other than H or methyl;

10 selected from:

hydroxy,

 C_1 to C_{10} alkyloxy,

 C_3 to C_{11} cycloalkyloxy,

 C_6 to C_{10} aryloxy,

 C_7 to C_{11} aralkyloxy, 15

C₃ to C₁₀ alkylcarbonyloxyalkyloxy,

C₃ to C₁₀ alkoxycarbonyloxyalkyloxy,

 C_2 to C_{10} alkoxycarbonylalkyloxy,

C₅ to C₁₀ cycloalkylcarbonyloxyalkyloxy,

20 C₅ to C₁₀ cycloalkoxycarbonyloxyalkyloxy,

```
C<sub>5</sub> to C<sub>10</sub> cycloalkoxycarbonylalkyloxy,
             C_7 to C_{11} aryloxycarbonylalkyloxy,
             C_8 to C_{12} aryloxycarbonyloxyalkyloxy,
             C_8 to C_{12} arylcarbonyloxyalkyloxy,
 5
             C<sub>5</sub> to C<sub>10</sub> alkoxyalkylcarbonyloxyalkyloxy,
             C<sub>5</sub> to C<sub>10</sub> (5-alkyl-1,3-dioxa-cyclopenten-2-one-
                    y1) methyloxy,
             C<sub>10</sub> to C<sub>14</sub> (5-aryl-1,3-dioxa-cyclopenten-2-one-
                    yl) methyloxy,
10
             (R^2)(R^3)N-(C_1-C_{10} \text{ alkoxy})-;
      z^1
             is -C-, -O-, or -NR^{22}-;
      z^2
             is -0-, or -NR^{22}-;
15
      \mathbb{R}^4
             is selected from H, C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>1</sub>-C<sub>10</sub>
             alkylcarbonyl, aryl, arylalkylene cycloalkyl, or
             cycloalkylalkylene;
20
      alternately, two R4 groups on adjacent carbon atoms may
```

- 20 alternately, two R⁴ groups on adjacent carbon atoms may join to form a bond, thereby to form a carboncarbon double or triple bond between such adjacent carbon atoms;
- 25 R^{4a} is selected from H, hydroxy, C_1 - C_{10} alkoxy, nitro, $N(R^5)R^{5a}$, $-N(R^{12})R^{13}$, $-N(R^{16})R^{17}$, C_1 - C_{10} alkyl substituted with 0-3 R^6 , aryl substituted with 0-3 R^6 , or C_1 - C_{10} alkylcarbonyl;

halo, CF₃, CN, C₁-C₆ alkoxycarbonyl, carboxy, piperidinyl, or pyridyl;

- R^5 is selected from H, C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} ;
- R^{5a} is selected from hydrogen, hydroxy, C₁ to C₈ alkyl,

 C₂ to C₆ alkenyl, C₃ to C₁₁ cycloalkyl, C₄ to C₁₁

 cycloalkylmethyl, C₁-C₆ alkoxy, benzyloxy, C₆ to C₁₀

 aryl, heteroaryl, C₇ to C₁₁ arylalkyl, or C₁-C₁₀

 alkyl substituted with 0-2 R^{4b};
- alternately, R⁵ and R^{5a} when both are substituents on the same nitrogen atom (as in -NR⁵R^{5a}) can be taken together with the nitrogen atom to which they are attached to form 3-azabicyclononyl, 1,2,3,4-tetrahydro-1-quinolinyl, 1,2,3,4-tetrahydro-2-
- isoquinolinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl or 1-piperazinyl, each being optionally substituted with $C_1\text{-}C_6$ alkyl, $C_6\text{-}C_{10}$ aryl, heteroaryl, $C_7\text{-}C_{11}$ arylalkyl, $C_1\text{-}C_6$ alkylcarbonyl, $C_3\text{-}C_7$
- cycloalkylcarbonyl, C₁-C₆ alkoxycarbonyl, C₇-C₁₁ arylalkoxycarbonyl, C₁-C₆ alkylsulfonyl or C₆-C₁₀ arylsulfonyl;
- R^{5b} is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{11} cycloalkylmethyl, C_6 - C_{10} aryl, C_7 - C_{11} arylalkyl, or C_1 - C_{10} alkyl substituted with 0-2 R^{4b} :
- R^6 is selected from H, C_1 - C_{10} alkyl, hydroxy, C_1 - C_{10} alkoxy, nitro, C_1 - C_{10} alkylcarbonyl, -N(R^{12}) R^{13} ,

10

350

cyano, halo, CF_3 , CHO, CO_2R^5 , $C(=0)R^{5a}$, $CONR^5R^{5a}$, $OC(=0)R^{5a}$, $OC(=0)OR^{5b}$, OR^5 , $OC(=0)NR^5R^{5a}$, $OCH_2CO_2R^5$, $CO_2CH_2CO_2R^5$, NO_2 , $NR^{5a}C(=0)R^{5a}$, $NR^{5a}C(=0)OR^{5b}$, $NR^{5a}C(=0)NR^5R^{5a}$, $NR^{5a}SO_2NR^5R^{5a}$, $NR^{5a}SO_2R^5$, $S(O)_pR^5$, $SO_2NR^5R^{5a}$, C_2 to C_6 alkenyl, C_3 to C_{11} cycloalkyl, C_4 to C_{11} cycloalkylmethyl;

 C_6 to C_{10} aryl optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(0)_mMe$, or -NMe₂;

 C_7 to C_{11} arylalkyl, said aryl being optionally substituted with 1-3 groups selected from halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, CF_3 , $S(0)_mMe$, or -NMe₂;

methylenedioxy when R^6 is a substituent on aryl; or

a 5-6 membered heterocyclic ring containing 1-2 N,
O, or S heteroatoms, wherein said heterocyclic
ring may be saturated, partially saturated, or
fully unsaturated, said heterocyclic ring
being substituted with 0-2 R⁷;

 R^{6a} is selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halo, CF_3 , NO_2 , or $NR^{12}R^{13}$;

 $R^7 \text{ is selected from H, } C_1\text{-}C_{10} \text{ alkyl, hydroxy, } C_1\text{-}C_{10} \\ \text{alkoxy, nitro, } C_1\text{-}C_{10} \text{ alkylcarbonyl, } \text{-}N(R^{12})R^{13}, \\ \text{cyano, halo, } CF_3, \text{ CHO, } CO_2R^5, \text{ C(=O)}R^{5a}, \text{ CONR}^5R^{5a}, \\ \text{OC(=O)}R^{5a}, \text{ OC(=O)}OR^{5b}, \text{ OR}^{5a}, \text{ OC(=O)}NR^5R^{5a}, \text{ OCH}_2\text{CO}_2R^5, \\ \text{CO}_2\text{CH}_2\text{CO}_2R^5, \text{ NO}_2, \text{ NR}^{5a}\text{C(=O)}R^{5a}, \text{ NR}^{5a}\text{C(=O)}OR^{5b}, \\ \text{NR}^{5a}\text{C(=O)}NR^5R^{5a}, \text{ NR}^{5a}\text{SO}_2NR^5R^{5a}, \text{ NR}^{5a}\text{SO}_2R^5, \text{ S(O)}_mR^{5a}, \\ \text{SO}_2\text{NR}^5R^{5a}, \text{ } C_2 \text{ to } C_6 \text{ alkenyl, } C_3 \text{ to } C_{11} \text{ cycloalkyl, } \\ \text{C}_4 \text{ to } C_{11} \text{ cycloalkylmethyl, } C_6 \text{ to } C_{10} \text{ aryl, or } C_7 \text{ to } \\ \text{C}_{11} \text{ arylalkyl;}$

R8 is selected from: R6; C_2 - C_{10} alkyl, substituted with 0-3 R^6 ; 5 C2-C10 alkenyl, substituted with 0-3 R6; C2-C10 alkynyl, substituted with 0-3 R6; C3-C8 cycloalkyl, substituted with 0-3 R6; C5-C6 cycloalkenyl, substituted with 0-3 R6; aryl, substituted with 0-3 R6; 5-6 membered heterocyclic ring containing 1-2 N, O, 10 or S heteroatoms, wherein said heterocyclic ring may be saturated, partially saturated, or fully unsaturated, said heterocyclic ring being substituted with 0-2 R6; 15 ${\rm R}^{12}$ and ${\rm R}^{13}$ are independently H, ${\rm C}_1\text{-}{\rm C}_{10}$ alkyl, ${\rm C}_1\text{-}{\rm C}_{10}$ alkoxycarbonyl, C_1 - C_{10} alkylcarbonyl, C_1 - C_{10} alkylsulfonyl, $aryl(C_1-C_{10} alkyl)$ sulfonyl, arylsulfonyl, aryl, C2-C6 alkenyl, C3-C11 cycloalkyl, C₄-C₁₁ cycloalkylalkyl, C₇-C₁₁ arylalkyl, 20 C_7 - C_{11} arylcarbonyl, C_4 - C_{11} cycloalkoxycarbonyl, C_7 - C_{11} bicycloalkoxycarbonyl, C_7 - C_{11} aryloxycarbonyl, or $aryl(C_1-C_{10} alkoxy)$ carbonyl, wherein said aryls are optionally substituted with 0-3 substituents 25 selected from the group consisting of: C1-C4 alkyl, C_1 - C_4 alkoxy, halo, CF_3 , and NO_2 ; R14 is selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, CO_2R^5 or $-C(=0)N(R^5)R^{5a}$; 30 **R**15 is selected from: H; R6; 35 C₁-C₁₀ alkyl, substituted with 0-3 R⁶;

C2-C10 alkenyl, substituted with 0-3 R6;

```
C_1-C_{10} alkoxy, substituted with 0-3 R^6;
            aryl, substituted with 0-3 R6;
            5-6 membered heterocyclic ring containing 1-2 N, O,
                  or S heteroatoms, wherein said heterocyclic
 5
                   ring may be saturated, partially saturated, or
                   fully unsaturated, said heterocyclic ring
                   being substituted with 0-2 R6;
            C<sub>1</sub>-C<sub>10</sub> alkoxycarbonyl substituted with 0-2 R<sup>6</sup>;
            -CO_2R^5; or
            -C(=0)N(R^{12})R^{13};
10
     provided that when b is a double bond, only one of R^{14}
            or R15 is present;
     R16 is selected from:
15
            -C(=0) - 0 - R^{18a}
            -C(=0)-R^{18b},
            -C(=0)N(R^{18b})_2,
            -C(=0) NHSO<sub>2</sub>R<sup>18a</sup>,
            -C(=0) NHC(=0) R<sup>18b</sup>,
            -C(=0) NHC(=0) OR<sup>18a</sup>,
20
            -C(=0) NHSO<sub>2</sub>NHR<sup>18b</sup>,
            -C(=S)-NH-R^{18b}.
            -NH-C (=0) - O-R^{18a}
            -NH-C (=0) -R^{18b},
            -NH-C (=0) -NH-R^{18b},
25
            -SO_2-O-R^{18a},
            -SO_2-R^{18a},
            -SO_2-N(18^b)_2,
            -SO_2-NHC (=0) 018<sup>b</sup>,
            -P(=S)(OR^{18a})_{2}
30
            -P(=0) (OR^{18a})_2,
            -P(=S)(R^{18a})_2,
            -P(=0)(R^{18a})_{2}, or
```

 R^{17} is selected from: H, C_1 - C_{10} alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{15} cycloalkylalkyl, aryl, aryl(C_1 - C_{10} alkyl)-;

5

10

R18a is selected from:

 C_1 - C_8 alkyl substituted with 0-2 R^{19} , C_2 - C_8 alkenyl substituted with 0-2 R^{19} , C_2 - C_8 alkynyl substituted with 0-2 R^{19} , C_3 - C_8 cycloalkyl substituted with 0-2 R^{19} , aryl substituted with 0-4 R^{19} ,

 $aryl(C_1-C_6 \ alkyl)$ - substituted with 0-4 R^{19} ,

a 5-10 membered heterocyclic ring system having 1-3
heteroatoms selected independently from O, S, and
N, said heterocyclic ring being substituted with
0-4 R¹⁹,

C₁-C₆ alkyl substituted with a 5-10 membered
heterocyclic ring system having 1-3 heteroatoms
selected independently from O, S, and N, said
heterocyclic ring being substituted with 0-4 R¹⁹;

R18b is selected from R18a or H;

25

R¹⁹ is selected from H, halogen, CF₃, CN, NO₂, NR¹²R¹³, C_1 -C₈ alkyl, C_2 -C₆ alkenyl, C_2 -C₆ alkynyl, C_3 -C₁₁ cycloalkylalkyl, aryl, aryl(C_1 -C₆ alkyl)-, C_1 -C₆ alkoxy, or C_1 -C₄ alkoxycarbonyl;

30

 R^{20} and R^{21} are each independently selected from H, $C_1\text{-}C_{10} \text{ alkyl}, \ CO_2R^5, \ C(=0)R^{5a}, \ CONR^5R^{5a}, \ NR^5C(=0)R^{5a}, \\ NR^{12}R^{13}, \ C_2\text{-}C_6 \text{ alkenyl}, \ C_3\text{-}C_{11} \text{ cycloalkyl}, \ C_4\text{-}C_{11} \\ \text{cycloalkylmethyl}, \ C_6\text{-}C_{10} \text{ aryl}, \text{ or } C_7\text{-}C_{11} \text{ arylalkyl};$

35

R²² is selected from C_1 - C_{10} alkyl, C_2 - C_6 alkenyl, C_3 - C_{11} cycloalkyl, C_4 - C_{15} cycloalkylalkyl, aryl, aryl(C_1 - C_{10} alkyl)-; $C(=0)R^{5a}$, C_2R^{5b} , $-C(=0)N(R^5)R^{5a}$, or a bond to X;

5

m is 0-2;

n is 0-2;

p is 1-2;

q is 1-7;

10 r is 0-3;

provided that n, q and r are chosen such that the number of atoms connecting \mathbb{R}^1 and Y is in the range of 8-17.

15 25. A compound of Claim 24 of Formula Ic:

20 wherein:

Z is selected from a bond, O, or S;

R² is selected from H, aryl(C_1 - C_{10} alkoxy)carbonyl, or C_1 - C_{10} alkoxycarbonyl;

25

U is a single bond;

X is -CHR4a-;

30 R^5 is selected from H or C_1 - C_{10} alkyl substituted with 0-6 R^{4b} ;

```
{\rm R}^6 and {\rm R}^7 are each independently selected from H, {\rm C}_1\text{-}{\rm C}_{10}
       alkyl, hydroxy, C_1-C_{10} alkoxy, nitro, C_1-C_{10}
      alkylcarbonyl, -N(R12)R13, cyano, or halo;
```

 ${\tt R}^{12}$ and ${\tt R}^{13}$ are each independently selected from H, C_1 - C_{10} alkyl, C_1 - C_{10} alkoxycarbonyl, C_1 - C_{10} alkylcarbonyl, C₁-C₁₀ alkylsulfonyl, aryl(C₁-C₁₀ alkyl)sulfonyl, arylsulfonyl, or aryl, wherein said aryls are optionally substituted with 10 0-3 substituents selected from the group consisting of: C₁-C₄ alkyl, C₁-C₄ alkoxy, halo, CF₃, and NO₂;

R15 is selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, aryl, heteroaryl or C_1 - C_{10} alkoxycarbonyl, CO_2R^5 or $-C(=0)N(R^5)R^{5a}$;

R16 is selected from:

 $-C(=0) - 0 - R^{18a}$.

 $-C(=0)-R^{18b}$

20 $-S(=0)_2-R^{18a}$;

15

35

 R^{17} is selected from: H or C_1 - C_4 alky1;

R^{18a} is selected from:

25 C_1 - C_8 alkyl substituted with 0-2 R^{19} , C2-C8 alkenyl substituted with 0-2 R19, C₂-C₈ alkynyl substituted with 0-2 R¹⁹, C₃-C₈ cycloalkyl substituted with 0-2 R¹⁹, aryl substituted with 0-2 R19, 30 $aryl(C_1-C_6 \ alkyl)$ - substituted with 0-2 R^{19} ,

> a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl,

benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3*H*-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-2 R¹⁹;

C1-C6 alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-2 R¹⁹.

26. A compound of Claim 24 of Formula Ib:

20

5

wherein:

25 R^1 is selected from: $R^2(R^3)N^-$, $R^2NH(R^2N=)C^-$, $R^2R^3N(CH_2)_{D^*}Z^-$, $R^2NH(R^2N=)CNH(CH_2)_{D^*}Z^-$,

$$R^{2a}N$$

(CH₂)_nZ-

 $R^{2a}N$

(CH₂)_nZ-

 $R^{2a}N$

.30 n is 0-1; p' is 2-4;

```
p" is 4-6;
     Z is selected from a bond or O;
 5
     R^3 is H or C_1-C_5 alkyl;
     ٧
          is a single bond, or
          - (phenyl) -;
10
     X
          is selected from:
            -CH<sub>2</sub>-,
            -CHN (R^{16})R^{17}-, or
            -CHNR<sup>5</sup>R<sup>5a</sup>-;
15
     Y
          is selected from:
          hydroxy:
          C_1 to C_{10} alkoxy;
          methylcarbonyloxymethoxy-;
          ethylcarbonyloxymethoxy-;
20
          t-butylcarbonyloxymethoxy-;
          cyclohexylcarbonyloxymethoxy-;
          1- (methylcarbonyloxy) ethoxy-;
          1-(ethylcarbonyloxy)ethoxy-;
          1-(t-butylcarbonyloxy)ethoxy-;
25
          1-(cyclohexylcarbonyloxy)ethoxy-;
          i-propyloxycarbonyloxymethoxy-;
          t-butyloxycarbonyloxymethoxy-;
          1-(i-propyloxycarbonyloxy)ethoxy-;
          1-(cyclohexyloxycarbonyloxy)ethoxy-;
30
          1-(t-butyloxycarbonyloxy)ethoxy-;
          dimethylaminoethoxy-;
          diethylaminoethoxy-;
          (5-methyl-1,3-dioxacyclopenten-2-on-4-yl)methoxy-;
          (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
35
          yl)methoxy-;
         (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl)methoxy-;
```

358

1-(2-(2-methoxypropyl)carbonyloxy)ethoxy-;

R^{18a} is selected from:

 C_1 - C_4 alkyl substituted with 0-2 R^{19} ,

C2-C4 alkenyl substituted with 0-2 R19,

 C_2 - C_4 alkynyl substituted with 0-2 R^{19} ,

 C_3 - C_4 cycloalkyl substituted with 0-2 R^{19} ,

aryl substituted with $0-2 \ R^{19}$,

aryl(C₁-C₄ alkyl) - substituted with 0-2 R¹⁹,

10

5

a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, benzofuranyl, indolyl, indolinyl, quinolinyl, isoquinolinyl, isoxazolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl,

benzimidazolyl, piperidinyl, tetrahydrofurany pyranyl, pyridinyl, 3*H*-indolyl, carbazolyl, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said heterocyclic ring being substituted with 0-2 R¹⁹;

20

25

15

C₁-C₆ alkyl substituted with a heterocyclic ring system selected from pyridinyl, furanyl, thiazolyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, isoxazolinyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, tetrahydrofuranyl, pyranyl, pyridinyl, 3H-indolyl, indolyl, carbazole, pyrrolidinyl, piperidinyl, indolinyl, or morpholinyl, said

heterocyclic ring being substituted with 0-2 R19.

30

27. A compound of Claim 26 wherein:

 R^1 is $R^2NH(R^2N=)C^-$ or $R^2NH(R^2N=)CNH^-$ and V is phenyl or pyridyl; or

35

R1 is

$$R^{2a}N$$
 , and V is a single bond;

n is 1-2;

5

 R^3 is H or C_1 - C_5 alkyl;

X is selected from:

-CH₂-,

10 -CHN(R^{16}) R^{17} -, or

-CHNR⁵R^{5a}-;

W is selected from:

$$\sim$$

or

15

m is 1-3;

Y is selected from:

```
360
          hydroxy;
          C<sub>1</sub> to C<sub>10</sub> alkoxy;
          methylcarbonyloxymethoxy-;
          ethylcarbonyloxymethoxy-;
 5
           t-butylcarbonyloxymethoxy-;
          cyclohexylcarbonyloxymethoxy-;
           1-(methylcarbonyloxy)ethoxy-;
           1-(ethylcarbonyloxy)ethoxy-;
           1-(t-butylcarbonyloxy)ethoxy-;
10
          1-(cyclohexylcarbonyloxy)ethoxy-;
           i-propyloxycarbonyloxymethoxy-;
           t-butyloxycarbonyloxymethoxy-;
           1-(i-propyloxycarbonyloxy)ethoxy-;
           1-(cyclohexyloxycarbonyloxy)ethoxy-;
15
          1-(t-butyloxycarbonyloxy)ethoxy-;
          dimethylaminoethoxy-;
          diethylaminoethoxy-;
           (5-methyl-1, 3-dioxacyclopenten-2-on-4-yl) methoxy-;
           (5-(t-butyl)-1,3-dioxacyclopenten-2-on-4-
20
          yl)methoxy-;
           (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl) methoxy-;
          1-(2-(2-methoxypropyl)carbonyloxy)ethoxy-;
     R<sup>19</sup> is H, halogen, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>3</sub>-C<sub>7</sub> cycloalkyl,
25
          cyclopropylmethyl, aryl, or benzyl;
     R^{20} and R^{21} are both H;
     R^{22} is H, C_1-C_4 alkyl or benzyl.
30
          28. A compond of Claim 24, or a pharmaceutically
     acceptable salt form thereof, selected from:
     2-(R,S)-2-carboxymethyl-1-{5-(R,S)-N-[3-(4-
35
          amidinophenyl)isoxazolin-5-yl acetyl]piperidine;
```

30

- 2-(R,S)-2-carboxymethyl-1-{5-(R,S)-N-[3-(4amidinophenyl)isoxazolin-5-yl acetyl]azepine;
- 2-(R,S)-2-carboxymethyl-1-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]pyrrolidine;
- 5 3-(R,S)-carboxymethyl-4-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]piperazine-2-one;
- 7-(R,S)-carboxymethyl-1-{5-(R,S)-N-[3-(4-15 amidinophenyl)isoxazolin-5-yl acetyl]azetidine-2one;
 - 2-(R,S)-carboxymethyl-1-{5-(R,S)-N-[3-(4-amidinophenyl)isoxazolin-5-yl acetyl]pyrazolidine;
- 3-(R,S)-carboxymethyl-4-{5-(R,S)-N-[3-(4-20 amidinophenyl)isoxazolin-5-yl acetyl]morpholine.
- 29. A method for the prevention or treatment of thrombosis which comprises administering to a host in need of such treatment a therapeutically effective

 25 amount of a compound of Claim 1, 6, 11, 16, 20, or 24.
 - 30. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1, 6, 11, 16, 20, or 24 and a pharmaceutically acceptable carrier.
- 31. A method of inhibiting the aggregation of blood platelets which comprises administering to a host in need of such inhibition a therapeutically effective amount of a compound of Claim 1, 6, 11, 16, 20, or 24.

- 32. A method of treating thromboembolic disorders selected from thrombus or embolus formation, harmful platelet aggregation, reocclusion following thrombolysis, reperfusion injury, restenosis, atherosclerosis, stroke, myocardial infarction, and unstable angina, which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 6.
- 10 33. A method for the treatment of thrombosis which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 6 in combination with one or more additional therapeutic agents selected from: a

 15 thrombolytic agent, an anti-coagulant agent, or an anti-platelet agent.
- 34. A method of treating rheumatoid arthritis, asthma, allergies, adult respiratory syndrome, organ transplantation rejection, septic shock, psoriasis, contact dermatitis, osteoporosis, osteoarthritis, tumor metastasis, diabetic retinopathy, inflammatory conditions and inflammatory bowel disease, comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 6.

WO 95/14683 PCT/US94/13155

363

```
AMENDED CLAIMS
```

```
[received by the International Bureau on 29 March 1995 (29.03.95);
                new claims 35-38 added; (8 pages)]
```

- A compound of Claim 6, or enantiomeric or diasteriomeric forms thereof, or mixtures of enantiomeric or diasteriomeric forms thereof, or a pharmaceutically acceptable salt form thereof, selected from:
- N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-N2-(phenylsulfonyl)-2,3-diaminopropanoic acid;
- N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-N²· (4-methyl-phenyl-sulfonyl) -2,3-diaminopropanoic acid:
- N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-N2- (butanesulfonyl) -2, 3-diaminopropanoic acid:
- N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
- N2-(propanesulfony1)-2,3-diaminopropanoic acid; 15
 - N3-[2-{3-(4-formamidinophenyl)-isoxazclin-5-yl}-acetyl]-N2-(ethanesulfonyl)-2,3-diaminopropanoic acid;
 - N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-N2- (methyloxycarbonyl) -2,3-diaminopropanoic acid;
- 20 N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-N2-(ethyloxycarbonyl)-2,3-diaminopropanoic acid;
 - %3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
 - N2-(1-propyloxycarbonyl)-2,3-diaminopropanoic acid; N3-[2-[3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
- 25 N²-(2-propyloxycarbonyl)-2,3-diaminopropanoic acid:
 - N³-[2-{3-(4-formamidinophenyl)-isoxazclin-5-yl}-acetyl]-N2-(n-butyloxycarbonyl)-2,3-diaminopropanoic acid;
 - N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
- N^2 -(1-(2-methyl)-propyloxycarbonyl)-2,3-
- 30 diaminopropanoic acid:

10

- N3-[2-(3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]- \mathbb{N}^2 -(2-(2-methyl)-propyloxycarbonyl)-2,3diaminopropanoic acid;
- N3-{2-{3-(4-formamidinophenyl)-isoxazclin-5-yl}-acetyl}-35 N2-(benzyloxycarbonyl)-2,3-diaminopropanoic acid;

```
N^3- [2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
           N<sup>2</sup>-(4-methylbenzyloxycarbonyl)-2,3-diaminopropanoic
           acid:
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N^2-(4-methoxybenzyloxycarbonyl)-2,3-
 5
           diaminopropanoic acid;
     \mathbb{N}^3-[2-[3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N<sup>2</sup>-(4-chlorobenzyloxycarbonyl)-2,3-diaminopropanoic
          acid:
10
     N^3 - [2 - (3 - (4 - formamidinophenyl) - isoxazolin - 5 - yl) - acetyl] -
          N<sup>2</sup>- (4-bromobenzyloxycarbonyl) -2,3-diaminopropanoic
           acid:
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N2-(4-fluorobenzyloxycarbonyl)-2,3-diaminopropanoic
15
          acid;
     N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N^2- (4-phenoxybenzyloxycarbonyl) -2,3-
           diaminopropanoic acid;
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
20
          N^2 · (2 - (methyloxyethyl) - oxycarbonyl) - 2, 3 -
          diaminopropanoic acid;
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
          N2-(2-pyridinylcarbonyl)-2,3-diaminopropanoic acid;
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
25
          N2-(3-pyridinylcarbonyl)-2,3-diaminopropanoic acid;
     N3-[2-{3-(4-formamidinopheny1)-isoxazolin-5-yl}-acetyl}-
          N<sup>2</sup>- (4-pyridinyl-carbonyl)-2,3-diaminopropanoic
    N3-[2-{3-(4-formamidinopheny1)-isoxazolin-5-yl}-acetyl]-
30
          N<sup>2</sup>-(2-(2-pyridinyl)-acetyl)-2,3-diaminopropanoic
          acid:
    N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N<sup>2</sup>-(2-(3-pyridinyl)-acetyl)-2,3-diaminopropanoic
          acid:
```

```
N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
            N^2-(2-(4-pyridinyl)-acetyl)-2,3-diaminopropanoic
            acid:
       N3-[2-[3-(4-formamidinophenyl)-isoxazolin-5-yl]-acetyl]-
   5
            N2-(2-pyridyl-methyloxycarbonyl)-2,3-
            diaminopropanoic acid;
       N3-[2-{3-(4-formamidinophenyl)-iscxazolin-5-yl}-acetyl]-
            N^2-(3-pyridyl-methyloxycarbonyl)-2,3-
            diaminopropanoic acid:
      N^3-[2-(3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
  10
            N^2-(4-pyridyl-methyloxycarbonyl)-2,3-
            diaminopropanoic acid;
      \mathbb{N}^{3}-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
            N2-(4-butyloxyphenylsulfonyl)-2,3-diaminopropanoic
  15
      N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
            N^2-(2-thienylsulfonyl)-2,3-diaminopropanoic acid;
      N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
            N<sup>2</sup>-(3-methylphenylsulfonyl)-2,3-diaminopropanoic
  20
            acid:
      N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N<sup>2</sup>-(4-iodophenylsulfonyl)-2,3-diaminopropanoic
      N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
 25
           N^{2}-(3-trifluoromethylphenylsulfonyl)-2,3-
           diaminopropanoic acid;
      N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
           N2-(3-chlorophenylsulfonyl)-2,3-diaminopropanoic
           acid;
30
     N3-[2-{3-(4-formamidinophenyl) isoxazolin-5-yl}-acetyl]-
           N2-(3-2-methoxycarbonylphenylsulfonyl)-2,3-
           diaminopropanoic acid;
      N3-[2-[3-(4-formamidinophenyl)-isoxazolin-5-yl]-acetyl]-
           N^2-(2,4,6-trimethylphenylsulfonyl)-2,3-
 35
           diaminopropanoic acid:
```

```
N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N2-(2-chlorophenylsulfonyl)-2,3-diaminopropanoic
           acid;
     N^3 - [2 - {3 - (4 - formamidinophenyl) - isoxazolin - 5 - yl} - acetyl] -
  5
           N2-(4-trifluoromethylphenylsulfonyl)-2,3-
           diaminopropanoic acid;
     \mathbb{N}^3-{2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
           N2-(2-trifluoromethylphenylsulfonyl)-2,3-
           diaminopropanoic acid;
10
     N3-[2-{3-(4-formamidinopheryl)-isoxazolin-5-yl}-acetyl]-
          N2-(2-fluorophenylsulfonyl)-2,3-diaminopropanoic
           acid:
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N2-(4-fluorophenylsulfonyl)-2,3-diaminopropanoic
15
          acid:
     N3-[2-[3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N<sup>2</sup>-(4-methoxyphenylsulfonyl)-2,3-diaminopropanoic
          acid;
     N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
20
          N^2-(2,3,5,6-tetramethylphenylsulfonyl)-2,3-
          diaminopropanoic acid;
     N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N2-(4-cyanophenylsulfonyl)-2,3-diaminopropanoic
          acid;
25
    \mathbb{N}^{3}-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N2-(4-chlorophenylsulfonyl)-2,3-diaminopropanoic
          acid:
    N^3-[2-[3-(4-formamidinophenyl)-isoxazolin-5-yl]-acetyl]-
          N<sup>2</sup>-(4-propylphenylsulfonyl)-2,3-diaminopropanoic
30
          acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N<sup>2</sup>· (2-phenylethylsulfonyl) - 2, 3-diaminopropanoic
          acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N<sup>2</sup>-(4-isopropylphenylsulfonyl)-2,3-diaminopropanoic
35
          acid:
```

```
N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
           N2-(3-phenylpropylsulfonyl)-2,3-diaminopropanoic
           acid:
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N<sup>2</sup>·(3-pyridylsulfonyl)·2,3·diaminopropanoic acid;
  5
     \mathbb{R}^{3}-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N<sup>2</sup>-(phenylaminosulfonyl)-2,3-diaminopropanoic acid;
     N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N<sup>2</sup>-(benzylaminosulfonyl)-2,3-diaminopropancic acid;
 10
     N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
           N2-(dimethylaminosulfony1)-2,3-diaminopropanoic
           acid;
     N^3-[2-{3-(2-fluoro-4-formamidinophenyl)-isoxazolin-5-
          y1}-acetyl]-N^2-(3-methylphenylsulfonyl)-2,3-
15
           diaminopropanoic acid;
     N^3-{2-{3-(2-formamidino-5-pyridinyl)-isoxazolin-5-yl}-
          acety1]-N2-(n-butyloxycarbonyl)-2,3-
          diaminopropanoic acid;
     N^3-[2-{3-(2-formamidino-5-pyridiny1)-isoxazolin-5-y1}-
20
          acety1]-N2-(3-methylphenylsulfony1)-2,3-
          diaminopropanoic acid;
     N^3-[2-{3-(3-formamidino-6-pyridinyl)-isoxazolin-5-yl}-
          acetyl]-N2-(n-butyloxycarbonyl)-2,3-
          diaminopropanoic acid,
25
     N^3-[2-{3-(3-formamidino-6-pyridinyl)-isoxazolin-5-yl}-
          acety1]-N^2-(3-methylphenylsulfony1)-2,3-
          diaminopropanoic acid.
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N2-(phenylaminocarbonyl)-2,3-diaminopropanoic acid;
    N3 - [2 - [3 - (4 - formamidinophenyl) - isoxazolin - 5 - yl] - acetyl] -
30
          N^2-(4-fluorophenylaminocarbonyl)-2,3-
          diaminopropanoic acid;
    N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N^2-(1-naphthylaminocarbonyl)-2,3-diaminopropancic
35
          acid;
```

acid;

```
N^3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N2-(benzylaminocarbony1)-2,3-diaminopropanoic acid;
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N<sup>2</sup>·(3-bromo-2-thieny1sulfony1)-2,3-diaminopropanoic
 5
          acid;
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N^2-(3-methy1-2-benzothienylsulfonyl)-2.3-
          diaminopropanoic acid,
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
10
          N2-(isobutyloxycarbonyl)-2,3-diaminopropanoic acid,
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N2-(isobutyloxycarbonyl)-2,3-diaminopropanoic acid,
     N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}-
          N<sup>2</sup>-(isobutyloxycarbonyl)-2,3-diaminopropanoic acid,
     N3-[2-{3-(4-formamidinophenyl)-isoxazclin-5-yl}-acetyl]-
15
          N^2-(2-cyclopropylethoxycarbony1)-2,3-
          diaminopropanoic acid,
    N3-[2-{3-(4-guanidinophenyl)-isoxazolin-5-yl}-acetyl}-
          N2-(n-butyloxycarbonyl)-2,3-diaminopropanoic acid;
20
    N3.[2.{3-(4-guanidinophenyl)-isoxazolin-5-yl}-acetyl]-
          N<sup>2</sup>-(3-methylphenylsulfonyl)-2,3-diaminopropanoic
          acid;
    N3-[2-{5-(4-fcrmamidinophenyl)-isoxazolin-3-yl}-acetyl]-
          N<sup>2</sup>-(n-butyloxycarbony1)-2,3-diaminopropanoic acid;
25
    N3-[2-{3-(4-formamidinophenyl)-isoxazolin-5-y1}-acetyl}-
    N^2-(2-bromo-phenylsulfonyl)-2,3-diaminopropionic acid;
30
    N3-[2-[3-(4-formamidinophenyl)-isoxazolin-5-yl)-acetyl]-
    N^2-(2-methyl-phenylsulfonyl)-2,3-diaminopropionic acid;
    N^3-[2-[3-(3-formamidine-6-pyridinyl)-isoxazolin-5-v1]-
    acety1)-N2-(3-methy1pheny1sulfony1)-2,3-diaminopropionic
```

```
N^3-[2-{3-(2-formamidino-5-pyridinyl)-isoxazolin-5-yl}-acetyl]-N^2-(3-methylphenylsulfonyl)-2,3-diaminopropionic acid;
```

PCT/US94/13155

- 5 N³-[2-{3-(2-fluoro-4-formamidinophenyl)-isoxazolin-5-yl}-acetyl]-N²-(3-methylphenylsulfonyl)-2,3-diaminopropionic acid;
- N³-[2-(3-(4-formamidinophenyl)-isoxazolin-5-yl)-acetyl]-10 N²-(3-bromo-phenylsulfonyl)-2,3-diaminopropionic acid;
 - N^3 -[2-{3-(4-formamidinophenyl)-isoxazolin-5-yl}-acetyl}- N^2 -(4-bromo-phenylsulfonyl)-2,3-diaminopropionic acid;
- said enantiomeric and diasteriomeric forms being selected from:

(R,S), (R,S);

(R), (R,S);

 $\langle S \rangle$, (R,S);

20 (R), (R);

(S), (R);

(R), (S);

(S), (S).

36. A compound of Claim 35, or enantiomeric or diasteriomeric forms thereof, or mixtures of enantiomeric or diasteriomeric forms thereof, or a pharmaceutically acceptable salt form thereof, said enantiomeric and diasteriomeric form being: (R), (S).

30

37. A prodrug ester of a compound of Claim 35, said ester being selected from the group consisting of: methyl;

ethyl;

35 isopropy1;

methylcarbonyloxymethyl-;

```
ethylcarbonyloxymethyl-;
          t-butylcarbonyloxymethyl-;
          cyclohexylcarbonyloxymethyl-;
          1-(methylcarbonyloxy)ethyl-;
 5
          1-(ethylcarbonyloxy)ethyl-;
          1-(t-butylcarbonyloxy)ethyl-;
          1-(cyclohexylcarbonyloxy)ethyl-;
          i-propyloxycarbonyloxymethyl-;
          cyclohexylcarbonyloxymethyl-;
          t-butyloxycarbonyloxymethyl-;
10
          1-(i-propyloxycarbonyloxy) ethyl-;
          1-(cyclohexyloxycarbonyloxy)ethyl-;
          1 - (t-butyloxycarbonyloxy) ethyl -;
          dimethylaminoethyl-;
15
          diethylaminoethyl-;
          (5-methyl-1, 3-dioxacyclopenten-2-on-4-yl)methyl-;
          (5 · (t-butyl) -1, 3 - dioxacyclopenten - 2 · on ·
            4-y1)methy1-;
          (1,3-dioxa-5-phenyl-cyclopenten-2-on-4-yl)methyl-;
20
          1-(2-(2-methoxypropyl)carbonyloxy)ethyl-.
               A prodrug ester of a compound of Claim 36,
     said ester being selected from the group consisting of:
         methyl;
25
          ethyl;
          isopropyl.
```

Intern: Application No PCT/US 94/13155

CLASSIFICATION OF SUBJECT MATTER C 6 C07D261/04 C07D413/12 ÎPC 6 A61K31/42 C07D498/10 C07D413/06 C07F9/6571 C07D413/04 C07F9/653 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1,29-34 EP,A,O 525 629 (DR KARL THOMAE GMBH) 3 February 1993 cited in the application see page 23, line 57 - page 26, line 7; claims 1,2,7-10 1,29-34 JOURNAL OF MEDICINAL CHEMISTRY, vol.35, no.23, 13 November 1992, WASHINGTON US pages 4393 - 4407 LEO ALLIG ET AL 'Low molecular weight, non-peptide fibrinogen receptor antagonists' see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not conndered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 3. 02. 95 16 January 1995 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2220 HV Riprwijk Td. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 Henry, J

Form PCT/ISA/210 (second sheet) (July 1997)

1

Intern. al Application No PCT/US 94/13155

		PC1/US 94/13155						
	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.						
A	EP,A,O 478 328 (MERCK AND CO. INC.) 1 April 1992 cited in the application see claims	1,29-34						
A	WO,A,93 16697 (MERCK AND CO. INC.) 2 September 1993 see claims	1,29-34						
A	EP,A,O 512 831 (MERCK AND CO. INC.) 11 November 1992 cited in the application see claims	1,29-34						
•								
·								

ational application No.

PCT/US 94/13155

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This int	ternational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
	- Please see attached sheet -					
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:					
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
This Int	ternational Searching Authority found multiple inventions in this international application, as follows:					
ı. 🗆	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:					
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.					
	140 protest accompanied the payment of aixindonal search rees.					

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

Remark - Although claims 29 and 31-34 are directed to a method of treatment of the human body the search has been carried out and based on the alleged effect of the compounds.

Reason - The definition of the substituents is too general and is only partly supported by the examples. Guided by the spirit of the application the search was carried out on the bases of the examples (cf. Art.6 Guidelines Exam. Part B Chpt III 3.6, 3.7)

Claims searched completely: 5, 10, 14, 15, 19, 23, 28 Claims searched incompletely: 1-4, 6-9, 11-13, 16-18, 20-22, 24-27 Claims not searched: 29-34

Information on patent family members

Intern. al Application No PCT/US 94/13155

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A-0525629	03-02-93	DE-A- AU-B- AU-A- JP-A-	4124942 652064 2056992 5221999	28-01-93 11-08-94 28-01-93 31-08-93	
EP-A-0478328	01-04-92	AU-B- AU-A- CA-A- JP-A- US-A-	653360 8478891 2052069 5155828 5294616	29-09-94 02-04-92 28-03-92 22-06-93 15-03-94	
WO-A-9316697	02-09-93	US-A- AU-B-	5227490 3665793	13-07-93 13-09-93	
EP-A-0512831	11-11-92	AU-B- AU-A- BG-A- CN-A- JP-A- NO-A- WO-A- US-A-	647618 1611192 98194 1067883 6009525 933999 9219595 5281585	24-03-94 12-11-92 30-09-94 13-01-93 18-01-94 05-11-93 12-11-92 25-01-94	