Autocovariance, Autocorrelation, Distance Autocovariance and Distance Autocorrelation

Exercise 1. Note that this theorem implies that whenever $\rho=0$ also $\mathcal{R}(X,Y)=0$. However in the lecture we discussed that the reason to use $\mathcal{R}(X,Y)$ is that it can be larger zero, even if $\rho=0$ and so can detect dependencies that ρ misses. How do we solve this contradiction?

Solution

The reason why $\rho=0$ for two Gaussian random variables X,Y implies $\mathcal{R}(Y,X)=0$ is because when (X,Y) are jointly Gaussian, then they are independent if and only if $\rho=0$. This is true in all examples here, as for white noise, AR(1) and MA(1), (Y_t,Y_{t+h}) will be jointly Gaussian for all t and h. This is however not true in general. For instance, as we saw in the lecture if:

$$Y_t = Y_{t-1}^2 + \varepsilon_t, \varepsilon_t \sim N(0, 1),$$

 (Y_t,Y_{t+1}) are no longer jointly Gaussian and one can show that the correlation between Y_t , Y_{t+1} is zero, while $\mathcal{R}(Y,X)>0$.

Exercise 2. Autocovariance and autocorrelation of White Noise

- Simulate a white noise process $Y_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 5^2)$ of length n = 500.
- · Plot the generated time series.
- Compute the empirical autocovariance $\hat{\gamma}(h)$ and autocorrelation $\hat{\rho}(h)$ for lags $h=0,1,\ldots n-1$ manually and using R function acf().
- Derive the theoretical autocovariance and autocorrelation function of the process.
- Compare the empirical and theoretical autocorrelation and distance autocorrelation (Hint: Use Theorem 7 in Székely, Rizzo, and Bakirov 2007 to compute the theoretical distance autocorrelation).

Solution

$$Y_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$
 (1)

Autocovariance

$$\gamma(h) = \operatorname{cov}(Y_t, Y_{t+h}) = \begin{cases} \sigma^2, & h = 0\\ 0, & h \neq 0 \end{cases}$$

Autocorrelation

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \begin{cases} 1, & h = 0\\ 0, & h \neq 0 \end{cases}$$

Distance Autocorrelation

$$\mathcal{R}(Y_t, Y_{t+h}) = f(\rho(h)) = \begin{cases} 1, & h = 0 \\ 0, & h \neq 0 \end{cases}$$

where f is described in Theorem 7 of Székely, Rizzo, and Bakirov 2007:

$$f(\rho) = \left(\frac{\rho \arcsin \rho + \sqrt{1 - \rho^2} - \rho \arcsin \rho/2 - \sqrt{4 - \rho^2} + 1}{1 + \pi/3 - \sqrt{3}}\right)^{1/2}.$$
 (2)

Exercise 3. Autocovariance and autocorrelation of an AR(1) process

Consider the AR(1) model:

$$Y_t = 0.7Y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, 2^2).$$

- Simulate a trajectory of length n=500
- · Plot the generated time series.
- Compute the empirical autocovariance $\hat{\gamma}(h)$ and autocorrelation $\hat{\rho}(h)$ for lags $h=0,1,\ldots n-1$ manually and using R function acf().
- Derive the theoretical autocovariance and autocorrelation function of the process.
- Compare the empirical and theoretical autocorrelation and distance autocorrelation (Hint: Use Theorem 7 in Székely, Rizzo, and Bakirov 2007 to compute the theoretical distance autocorrelation).

Prof. Jeffrey Näf

Solution

We first derive the variance of Y_t :

With $|\phi| < 1$, the process is (weak) stationary, hence $var(Y_t) = var(Y_{t-1}) = \gamma(0)$. Taking variance on both sides:

$$var(Y_t) = var(\phi Y_{t-1} + \varepsilon_t)$$

Since Y_{t-1} and ε_t are independent:

$$var(Y_t) = \phi^2 var(Y_{t-1}) + var(\varepsilon_t)$$

$$\gamma(0) = \phi^2 \gamma(0) + \sigma^2 \quad \Rightarrow \quad \gamma(0) = \frac{\sigma^2}{1 - \phi^2}.$$

Autocovariance

The autocovariance at lag h is

$$\gamma(h) = \operatorname{cov}(Y_t, Y_{t-h}).$$

Lag 1:

$$\gamma(1) = \text{cov}(Y_t, Y_{t-1}) = \text{cov}(\phi Y_{t-1} + \varepsilon_t, Y_{t-1}) = \phi \text{ var}(Y_{t-1}) = \phi \gamma(0).$$

Lag 2:

$$\gamma(2) = \cos(Y_t, Y_{t-2}) = \cos(\phi Y_{t-1} + \varepsilon_t, Y_{t-2})$$

= $\phi \cos(Y_{t-1}, Y_{t-2}) + \cos(\varepsilon_t, Y_{t-2}) = \phi \gamma(1) = \phi^2 \gamma(0),$

where we used that ε_t is independent of Y_{t-2} .

Recursion for general lag h:

$$\gamma(h) = \phi \gamma(h-1) = \phi^h \gamma(0).$$

Final formula:

$$\gamma(h) = \phi^{|h|}\gamma(0) = \frac{\sigma^2}{1 - \phi^2}\phi^{|h|}.$$

Autocorrelation

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \phi^{|h|}$$

Distance Autocorrelation

$$\mathcal{R}(Y_t, Y_{t+h}) = f(\phi^{|h|})$$

where f is given in (2).

Exercise 4. Autocovariance and autocorrelation of an MA(1) process

Consider the MA(1) model:

$$Y_t = \varepsilon_t + 0.5\varepsilon_{t-1}, \quad \varepsilon_t \sim \mathcal{N}(0, 2^2).$$

- Simulate a trajectory of length n=500.
- · Plot the generated time series.
- Compute the empirical autocovariance $\hat{\gamma}(h)$ and autocorrelation $\hat{\rho}(h)$ for lags $h=0,1,\ldots n-1$ manually and using R function acf().
- Derive the theoretical autocovariance and autocorrelation function of the process.
- Compare the empirical and theoretical autocorrelation and distance autocorrelation (Hint: Use Theorem 7 in Székely, Rizzo, and Bakirov 2007 to compute the theoretical distance autocorrelation).

Solution

Variance

We compute the variance of Y_t :

$$var(Y_t) = var(\varepsilon_t + \theta \varepsilon_{t-1}).$$

Since ε_t and ε_{t-1} are independent:

$$\operatorname{var}(Y_t) = \operatorname{var}(\varepsilon_t) + \theta^2 \operatorname{var}(\varepsilon_{t-1}) + 2\theta \operatorname{cov}(\varepsilon_t, \varepsilon_{t-1})$$

Because $cov(\varepsilon_t, \varepsilon_{t-1}) = 0$ (independence):

$$var(Y_t) = \sigma^2 + \theta^2 \sigma^2 = \sigma^2 (1 + \theta^2)$$

Hence,

$$\gamma(0) = \operatorname{var}(Y_t) = \sigma^2(1 + \theta^2).$$

Autocovariance The autocovariance at lag h is defined as:

$$\gamma(h) = \operatorname{cov}(Y_t, Y_{t-h})$$

$$\gamma(1) = \text{cov}(Y_t, Y_{t-1}) = \text{cov}(\varepsilon_t + \theta \varepsilon_{t-1}, \varepsilon_{t-1} + \theta \varepsilon_{t-2})$$

Expanding with bilinearity of covariance:

$$\gamma(1) = \cos(\varepsilon_t, \varepsilon_{t-1}) + \theta \cos(\varepsilon_{t-1}, \varepsilon_{t-1}) + \theta \cos(\varepsilon_t, \varepsilon_{t-2}) + \theta^2 \cos(\varepsilon_{t-1}, \varepsilon_{t-2})$$

Using independence of white noise (all covariances between different ε 's are 0):

$$\gamma(1) = \theta \operatorname{var}(\varepsilon_{t-1}) = \theta \sigma^2$$

For h>1, any covariance between ε_t and ε_{t-h} or between ε_{t-1} and ε_{t-h-1} is zero because of independence. Thus:

$$\gamma(h) = 0$$
 for $h > 1$

Autocorrelation

The autocorrelation function is

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

Lag 0:

$$\rho(0) = \frac{\gamma(0)}{\gamma(0)} = 1$$

Lag 1:

$$\rho(1) = \frac{\gamma(1)}{\gamma(0)} = \frac{\theta \sigma^2}{\sigma^2(1+\theta^2)} = \frac{\theta}{1+\theta^2}$$

Lag h > 1:

$$\rho(h) = 0 \quad \text{for } h > 1$$

Thus, the MA(1) autocorrelation function is

$$ho(0) = 1, \quad
ho(1) = \frac{\theta}{1 + \theta^2}, \quad
ho(h) = 0 \text{ for } h > 1.$$

Distance Autocorrelation Accoring to Theorem 7 of Székely, Rizzo, and Bakirov 2007, this leads to

$$\mathcal{R}(Y_t, Y_{t+h}) = \begin{cases} 1, & \text{if } h = 0\\ f(\theta/(1+\theta^2)), & \text{if } h = 1\\ 0, & \text{if } h > 1, \end{cases}$$

with f given in (2).

Fall Semester 2025
Practical 2
Lionel Voirol

References

Székely, Gábor J, Maria L Rizzo, and Nail K Bakirov (2007). "Measuring and Testing Dependence by Correlation of Distances". In: *The Annals of Statistics* 35.6, pp. 2769–2794.