Carbon Status of North American Tidal Wetlands

Patrick Megonigal Smithsonian Environmental Research Center

State of the North American Carbon Cycle

The First State of the Carbon Cycle Report (SOCCR)

The North American Carbon Budget and Implications for the Global Carbon Cycle

Wetlands

Lead Author: Scott D. Bridgham, Univ. Oreg.

Contributing Authors: J. Patrick Megonigal, Smithsonian
Environmental Research Center; Jason K. Keller, Smithsonian
Environmental Research Center; Norman B. Bliss, SAIC, USGS
Center for Earth Resources Observation and Science; Carl Trettin,
USDA Forest Service

Wetland Carbon Budget Components

Wetland Types

Freshwater

Saltwater

Mineral Soils

freshwater mineral soils (FWMS)

estuarine

Organic Soils

peatlands

estuarine

North American Wetland Carbon Pool

total pool = 223 Pg C 43% of global wetland pool

Slow Peatland Decomposition

North American Tidal Wetlands Area

North American Tidal Wetlands Area

North American Tidal Wetlands Loss in Atlantic & Gulf Coasts 1998-2004

North American Tidal Wetlands Carbon Pools

North American Tidal Wetlands Carbon Sequestration

Wetland Soils Sequester Carbon In Sediments

North American Tidal Wetlands Carbon Pools Versus Fluxes

Net GHG Effect of Historical Disturbance

Conclusions

Protecting FWMS wetlands for carbon sequestration is questionable.

 Protecting peatlands and estuarine wetlands for carbon sequestration is more promising.

