152430

76SDS4269 30 SEPTEMBER 1976

(NASA-CR-152430) EVAL SYSTEM CONCEPT
DEFINITION. PARTIAL SPACELAB PAYLOAD,
APPENDICES (General Electric Co.) 99 p HC
A05/MF A01 CSCL 22B

N77-18193

Unclas G3/16 16318

EVAL SYSTEM CONCEPT DEFINITION

PARTIAL SPACELAB PAYLOAD

APPENDICES

space division

CONTRACT NAS 5-24022 AMENDMENT NO. 152

76SDS4269 30 SEPTEMBER 1976

EVAL SYSTEM CONCEPT DEFINITION

PARTIAL SPACELAB PAYLOAD APPENDICES

CONTRACT NAS 5-24022 AMENDMENT NO. 152

Valley Forge Space Center
P O Box 8555 • Philadelphia, Penna 19101

TABLE OF CONTENTS

Appendix		Page
A	EXPERIMENT SCHEMATICS	A-1
В	MISSION OPPORTUNITIES	B-1
С	MISSION TIMELINES	C-1
D	CREW TIMELINE	D-1
E	POWER PROFILE	E-1
F	VIBROACOUSTIC TEST PLAN	F-1

APPENDIX A

EXPERIMENT SCHEMATICS

APPENDIX B MISSION CPPORTUNITIES

N. ATLANTIC (WAVES)

Orbit &	Daylight	Nightime			THARAM	
Target	Pass	Pass			LEGEND	
Location	(min.)	(min.)				
OC	6.5			13 GS	երև	
1.C	7.0			72 691	<u></u>	
2C	8.0					
3FW	4.5			\	\ .	Geographic section
4NWT				/		Geographic section
13 SE	T			\		
14SE	4.0				\ ,	Orbit number
15C	6.0				7	OLDIC Hounder
16C	7.5					
17C	8.0		N	- 4	North	
18SW	8.6			·		
19FSW	2.5		S	-	South	
29FSE	2.5					
	6.5		E	-	East	
- 30SE						
31C	7.5		W		West	
32C	7.5		••		nco c	
33C	9.0		C	_	Central	
- 34SW	5.5		•	_	General	
45SET	4.5		NE	_	North East	
46C	6.5		NB	_	NOICH EAST	
47C	8.0		SW		South West	
48C	9.0		SW	-	South West	
49C	8.5		SET		Caush Dags D	4
50SWT	1.5	•	SET	-	South East T	гр
60fset			72877.7		77 37 61 . 77	
61SE	5.0		FNW	-	Far North Wes	31
62C	6.5		OCTE		0 11 3	
63C	8.0		GSET	-	Graze South 1	Sast Tip
64C	10.0		T7 z.			
65SW	6.5		Etc.			
76SET	3.5					
77C	6.5		- Ir	dicates or	cbits which we	ere
78C	8.0					
79C	8.0		se	lected for	r data taking	operations
80C	9.0					
81SW	4.5					
92SET	3.5	1.5				
93C	6.5					
94C	8.0					
- 950	10.0					
 96C	8.0					

N. PACIFIC (WAVES)

Orbit & Target Location	Pass	Nightime Pass	Orbit & Target		ass
				Pass P.	
99C	8.0	2.0			

GULF STREAM (CURRENT)

Orbit & Target Location	Daylight Pass (min.)	Nightime Pass (min.)
21C 31E	1.5	4.5
- 52N	1.5	
68S	1.5	0.5
78W		2.5
→ 99C	2.0	

SEA OF JAPAN (CURRENT)

Orbit &		Daylight	Nightime
Target		Pass	Pass
Loca	tion	(min.)	(min.)
			
	7G	4.0	
_	11NE	1.5	
_	12GSW	1.5	
	22GE	3.5	
_	27C	3.5	
	38C	4.5	
_	42NET	2.5	
	43SWT	1.0	
	58C	3.0	
	69E		4.5
	73GN	1.5	
_	74C	3.0	
	85GW	1.5	2.5
	89N	0,8	
	100GE		3.0
_	105C	3.0	

NEWFOUNDLAND BANKS (TEMP)

Orbit & Target		Pass	Nightime Pass
	ation	(min.)	(min.)
1			
	4G	2.0	
	15E	3.0	
	19NE	2.5	
	31GW	2.0	
	35W	2.0	
	46G	2.0	
	50gne	2.0	
	62C	3.0	
	66C	2.5	
	93E		3.0
_	97NE	2.5	

SPANISH SAHARA COASTAL WATERS (TEMP)

Orb	it &	Daylight	Nightime
Tar	get	Pass	Pass
Loa	c <u>tion</u>	(min.)	(min.)
	3C	2.0	
	13GW	3.0	
_	19G	2.0	
_	34NET	2.0	
	44C		4.0
	50SW	3.0	
	75E	2.0	
•	81 C	3.5	
	91GW		4.0
**	97G	2.0	

PERU COASTAL WATERS (TEMP)

	oit & get	Daylight Pass	Nightime Pass
Loc	ation	(min.)	(min.)
	7G	1.5	
	8W	4.5	
	14SE		1.0
	15GNW		2.5
	30C		4.0
	39C	7.5	
	46N		3.5
	61SE		2.5
	70E	6.0	
	77C		4.5
_	86FW	6.0	•
	92S		2.0
	93GNWT		2.5

CONUS (EM)

Orbii Targo Loca	et	Daylight Pass (min.)	Nightime Pass (min.)
_	16E	8.0	
	17C	7.5	
-	18NW	3.5	
	33W	7.0	
	48C	5.0	3.0
-	49NW	6.0	
	54GFW	2.5	
	64SW	3.5	4.0
	65NWT	3.5	
-	78SE	1.0	4.0
	79C	· 1.5	7.0
•	80SW	3.0	4.0

CONUS (MW)

Orbit & Target Location	Pass	Nightime Pass (min.)
5FE 16E	2.0 2.5	
— 21E	3.0	
— 32C	1.0	
36FNE	2.0	
47SE	2.0	1.0
52NE	3.0	
— 63E		2.0
83NE	2.5	
94E		2.5
99C	3.0	

CHILE (MINERAL)

	Orbit & Target Location	Daylight Pass (min.)	Nightime Pass (min.)
•	23N	2.5	
~~~	45N 70N	2.5	2.5
	76N 101GN	2.0	3.5

PERU (MINERAL)

Orbit &		Dayligh	t Nightime
7	larget	Pass	Pass
1	oc <u>ation</u>	(min.)	(min.)
	14S		3.5
	23C	3.5	
	30C		3.0
	54NET	5.5	
	61C		3.5
_	70W	6.0	
	77FW		2.0
	92S		2.0
_	101C	6.0	

ZAIRE (MINERAL)

Ôrbit & Target		Daylight Pass	Nightime Pass
Location		(min.) _	(min.)
	3C	2.0	
	10E		5.0
	19FW	3.0	
	26W		5.5
	33E	4.0	
	41SET		3.0
_	50W	5,0	
	57C		5.5
_	64NET	4.0	
	66GW	3,0	
	73GW	·	4.5
-	80C	6.0	
	88C		6.0
	97FW	3.0	
	104W		6.0

ZAMBIA (MINERAL)

Orbit & Target Location	Daylight Pass (min.)	Nightime Pass (min.)
3C	1.0	
10GW		2.0
19FWG	2.5	
25GE		2.5
33GE	2.0	
41C		3.5
─ 50₩	2.0	
72E		4.5
- 80C	1.5	
97FW	3.0	
103GE		3.0

#### ÇONUS (MINERAL)

Orbit & Target Location		Daylight Pass (min.)	Nightime Pass (min.)
	1.7C	3.5	
	22W	5.0	
	33W	4.0	,
	38W	4.0	
	48C	5.0	3.0
	53W	3.0	
	54GFW	2.5	
	64SW	3.5	4.0
~	69W	5.0	
	80SW	3,0	4.0
	85SW	4.5	6.5
	95SW	2,0	
	100NW	5,0	

CONUS (TIMBER)

0rl	oit &	Davlight	Nightime
	get	Pass	Pass
	ation	(min.)	(min.)
		(2222)	<u> </u>
	1C	11.0	
	2W	6.0	
	5FE	4.5	
	6C	7.5	
	7FW	3.5	
	16E	8.0	
	17C	7.5	
	18NW	3.5	
	20FNE	1.5	
	21E	7.0	
	2.2W	8.5	
	82C	6.0	1.5
	33W	7.0	
	34W	1.0	
	36FNE	2.5	
<del></del>	37C	9.5	
	38W	4.5	
	47SE	4.5	3.0
	48C	5.0	3.0
	49NW	6.0	
-	51 GNET	2.5	
	52NE	6.0	
	53W	7.5	
	63E	2.5	6.0
	64SW	3.5	4.0
	65NWT	3.5	
	67FNE	. 2.5	
	68C	8.5	
	69W	7.5	
	78SE	1.0	1.0
	79C	1.5	7.0
	80SW	3.0	4.0
	83NE	5.5	
	84NW	9.0	
	85SW	4.5	
	94E		8.5
	95SW	2.0	6.5
	96NWT	1.5	3.0
_	98FNE	2.0	
	99C	7.5	
_	100NW	9.0	

CONUS (URBAN)

	rbit & arget	Daylig Pass	ght Nightime Pass	
Lo	oc <u>ation</u>	(min.		
	1C	11.0		
	2W	6.0		
	5FE	4.5		
	6C	7.5		
	7FW	3.5		
	16E	9.0		
	17C	7.5		
	18NW	3.5		
	20FNE	1.5		
	21E	1.0		
	22W	8.5		
	32C	6.0	1.5	
	33W	7.0		
_	34NWT	1.0		
-	36FNE	2.5		
	37C	9.5		
	38W	4.5	• •	
	49SE	3.5	3.0	
	48C	5.0	3.0	
	49NW	6.0		
	5 IGNET	2.5		
_	52NE	6.0		
_	53W	7.5		
	54GSW	2.5		
	63E	2.5	6.0	
	64SW	3.5	4.0	
	65NWT	3.5		
	67FNE	2.5		
	68C	8.5		
	69W	7.5	1.0	
	78SE	1.0	1.0	
	79C	1.5	7.0	
	80SW	3.0	4.0	
	83NE	5.5		
	84NW	9.0		
_	85SW	4.5	0 5	
	94E	2 0	8.5	
	95SW	2.0	6.5	
	96NWT	1.5	3.0	
	98FNE	2.0		
	99C	7.5	4.0	
	100NW	9.0	4.0	

HAWAII (URBAN)

Targ	it & get a <u>tion</u>	Daylight Pass (min.)	Nightime Pass (min.)
	3C	0.5	0.5
	9G	2.0	
	34GE		2.0
_	56C	2.0	
	81G		2.0
_	103GW	2.0	

# APPENDIX C

MISSION TIMELINES

APPENDIX D

CREW TIMELINE







REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR









REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOP APPENDIX E

POWER PROFILE

OAGANIZATION:	MARSHALL SPACE FLIGHT CENTER	NAME
	•	PD34/G. JOHNSON
PROGRAM DEVELOPMENT	EVAL PAYLOAD STUDY	DATE
	POWER PROFILE	SEPTEMBER 1, 1976
SCH POHERCEN	TIME(HAS.) "EVAL AND ESA MISSION STUDY	

CAGANIZATION	·	MARSHALL SPACE, FLIGHT CENTER	NAMEL
	•		PD34/G. JOHNSON
PROGRAM	DEVELOPMENT	EVAL PAYLOAD STUDY POWER PROFILE	CEPTEMBER 1 1076
		POWER PROFILE	SEPTEMBER 1, 1976
	P P P P P P P P P P P P P P P P P P P	TIMECHAS. > "EVAL AND ESA MISSION STUDY	



# APPENDIX F

EVAL PAYLOAD VIBROACOUSTIC TEST PLAN EVALUATION

#### APPENDIX F

#### EVAL PAYLOAD VIBROACOUSTIC TEST PLAN EVALUATION

#### INTRODUCTION

This analysis applies the methodology being developed under Contract NAS 5-20906 for NASA-GSFC to evaluate cost effective vibroacoustic test plans for a representative EVAL Shuttle Spacelab payload. Statistical decision theory is used to quantitatively evaluate seven alternate test plans which include component, sub-assembly, or payload testing and combinations of component and assembly testing. The optimum component and assembly test levels and the expected cost of failures are determined for each test plan. By including the direct costs associated with each test plan and the probabilistic costs due to ground tests and flight failures, the test plans which minimize project cost are determined.

# THE TEST PLANS

The test plans considered under Contract NAS 5-20906 are listed in Table 1. Test Plans 1-5 were considered as a group to develop the basic methodology. A multiple mission facility type payload was utilized. The results for that group of test plans are documented in GE document No. 76SDS4223, "Vibroacoustic Test Plan Evaluation", dated June 1, 1976. Based on the results of that study, the methodology is currently being expanded and the group of Test Plans 4-9 are being evaluated. This EVAL analysis is limited to Test Plans 4-9.

In the context of this study the term subassembly implies a group of functionally related components mounted on a common substructure that is testable at that level of assembly. System implies a fully integrated payload. The component tests are considered to be random vibration, which provides a good simulation of the effects of

Table 1 . Vibroacoustic Test Plan Matrix

Test Plan No.	Component Test	Subassembly Test	System Test	Structure Test
1	M1x*	-	-	-
1A	Mix	-	-	SDM**
2	Mix	Protoflight	-	Protoflight
3	Mix	-	Protoflight	Protoflight
3A (	Mix	-	Protoflight	ŞDM
4	-	Protoflight	-	Protoflight
5	er	-	Protoflight	Protoflight
6	-	-	-	<b>-</b>
7	Protoflight	-	-	-
7B	Protoflight	-	_	Protoflight
8	Protoflight	Protoflight	· -	Protoflight
9	Protoflight	-	Protoflight	Protoflight

^{*} Prototype housekeeping components and protoflight experiment components

^{**} Prototype Structural Development Model

acoustic excitation at this level of assembly. Acoustics testing, which provides a good simulation of the flight conditions, is considered to be performed at the subassembly and system levels. Any test failure is assumed to result in redesign and retest. The test plans involve the evaluation of the change in vibroacoustic reliability of the payload as a result of one or two ground tests at the various assembly levels.

The structural design is varied on the basis of the structural test option considered. If no structural test is performed (Test Plans 6 and 7), an ultimate design safety factor of 2.0 is used. When the protoflight structure is tested (Test Plans 4, 5, 7B, 8, 9), an ultimate design safety factor of 1.5 is used. A 13 percent and a 35 percent increase in structural weight were considered for design safety factors of 1.5 and 2.0, respectively. The flight and test failure probabilities for the structure were determined from empirical data.

# THE PAYLOAD CONFIGURATIONS

A representative Earth Viewing Applications Laboratory (EVAL) payload, Figure 1 was used for this analysis. Although the physical arrangement of the payload may preclude subassembly testing, Test Plans 4-9 are considered to be applicable. As in Contract NAS 5-20906, the payload is considered to be composed of a series of house-keeping components that are grouped into three subassemblies (power, control, data handling), the experiments, and the structure. Rather than study the 18 individual experiments planned for EVAL missions, the experiments were grouped according to the number of missions expected for each experiment. Within these groups the number of components peculiar to each experiment was averaged. This resulted in four configurations used in this analysis, Table 2 The basic payload parameters used in the analysis are defined in Table 3.





Figure 1- Typical Applications Payload

Table 2 °
Payload Configurations

Configuration	NEXP	NCPE	NF	Mission	NCPE;
7	4	2	2	Multibeam Communications Bandwidth Compression Modulation Urban and Regional Planning Mineral Exploration	1 1 2 3
2	2	2	10	Geomagnetic Field Measurements Timber Inventory	1 3
	6	4	20	Electromagnetic Mapping Cloud Climatology Crustal Motions Monitoring Water Inventory Sea Surface Temperature Ocean Wayes and Currents	1 2 3 3 4 6
4	6	3	40	Ozone Sounding and Mapping Solar Energy Monitoring Troposphere Trace Constituents Coastal Zone Pollution World Crop Survey Stratospheric Pollution Mapping	1 2 3 4 5

## where

NEXP = number of experiments

NCPE = number of components (sensors) peculiar to an experiment

NF = number of flights

Table 3
Payload Parameters

	<del>                                      </del>
Total Equipment Weight	10000 pounds
Payload Length	40 feet
Number of flights .	2, 10, 20, 40
Number of Housekeeping Components	16
Number of Housekeeping Subassemblies	3
Number of Experiments per Configuration	2, 4, 6
Number of Components per Experiment	2, 3, 4
Housekeeping Components	Protoflight
Experiment Components	Protoflight

## THE RELIABILITY MODEL

The probability of achieving the flight objectives is needed to determine the expected cost of flight failures. A component flight failure does not always result in a complete loss of the mission. To determine the expected cost of a flight failure, a reliability model at the component level is used to estimate the probability of achieving a portion of the flight objectives. To estimate the probability of achieving the flight objectives the payload reliability model shown in Figure 2 is used. This model represents the payload as a series of redundant components and a group of parallel experiments. The series components represent the basic subsystems used for housekeeping functions; they are assumed to have single redundancy, except for the structure. These components are common to all experiments and are essential to the success of the flight. Each experiment contains a series of components which have no redundancy. The payload subassemblies are considered to be the experiments, the structure, and the three housekeeping subassemblies. The components in the housekeeping subassemblies are grouped as follows:

- Power subassembly 4 components
- Control subassembly 4 components
- 3. Data handling subassembly 8 components

#### THE ENVIRONMENT

For this test plan evaluation the component test environment is based on the 145 dB shuttle payload bay acoustic spectrum and is related to the flight environment by the standardized vibration variable,  $U_V$ , which is the number of standard deviations from the mean. This 145 dB environment is defined to be the mean plus two sigma acoustic level with a standard deviation of 2 dB. The component test vibration level or design



Figure 2 Reliability Model

requirement is varied from 8 to 104 g rms ( $U_V = 1.2$  to 3.2) and the assembly test acoustic level is varied from 143 dB to 157 dB.

#### THE COSTS

When a particular test plan is selected there are some direct costs which are certain to be incurred. For each test plan these direct costs are summarized in Table 4 It is noted that direct costs common to all test plans do not need to be included since they will not affect the cost differences between the test plans. A direct cost associated with an increased weight due to designing with a higher safety factor is included. It is assumed that 20 percent of the total equipment weight is structure weight. Also included in this analysis is a direct cost associated with designing hardware to margins of safety in excess of those possible with conventional spacecraft.

The probabilistic costs are those costs that result from failures during ground testing and flight. A probabilistic cost is the sum of the products of the failure costs and the associated probability of occurrence. The probabilistic costs that are associated with the various test plans are also summarized in Table 4

The values used in this EVAL analysis for the various cost parameters are summarized in Tables 5 & 6 forthe direct costs and probabilistic costs, respectively.

## TEST PLAN EVALUATION

#### Cost Optimization

The decision model for each test plan-was exercised for the four EVAL payload configurations. The payload configuration complexity was varied by considering either 2, 4, or 6 experiments, with each experiment comprised of either 2, 3, or 4 serial

Table 4
Cost Summar,

Cost	A1-B		<del></del>		st Pla			
Туре	Cost Parameter	4	5	6	7	7B	8	9
	Component Tests				Х	Х	Х	х
	Subassembly Tests	Х					Х	
ب	System Tests		Х					х
Direct	Structure Tests	Х	Х		<u> </u>	х	Х	Х
	Structural Weight	Х	x	X	Х	х	Х	Х
	Design Cost	х	Х	Х	х	х	x	χ
	Component Test Failures				Х	X	х	Х
	Subassembly Test Failures	Х	j				Х	
stic	System Test Failures		X		 			, X
bi 1 i	Structural Test Failures	Х	Х			х	Х	х
Probabilistic	Flight Failures	Х	х	Х	Х	Х	Х	х

Table 5
Direct Cost Parameter Summary

	Test Plan						
Cost Parameter	4	5	6	7	<b>7</b> B	8	9
Component Test	-	-	-	8.	8.	8.	8.
· Subassembly Test	21.	-	-	-	-	21.	-
System Test	-	199.	-	-	-	<u>.</u>	199.
Protoflight Structure Test	32.	32.	-	-	32.	32.	32.
Structural Weight (per pound)	0,21	0.21	0.21	0.21	0.21	0.21	0.21
Component Design Cost	*	*	*	*	*	*	*

* Component Design Cost = 
$$\frac{1800}{(100. - g)}$$
 - 20  $10 \le g \le 100$ 

where g is the component design/test level

 ${\tt NOTE:}$  Costs are given in thousands of dollars

Table 6
Probabilistic Cost Parameters Summary

Cos	t Parameter			Tes	t Plan			
		4	5	6	7	7B	8	9
Cos	st of Component Test Failure Redesign/Retest	1		_	15	15	15	15
Cos	st of Subassembly Test Failure Redesign/Retest	50	-	-	<b>-</b>	-	50	-
Cos	st of Flight Failure Redesign/Retest	50	50	50	50	50	50	50
Cos	st of Subassembly Functional Test	13	-	-	_	-	13	-
Sul	passembly Test Failure Cost Factor	120	-	-		_	120	-
Cos	st of Protoflight Structure Failure, Subassembly Testing	150	-	- -	-	-	150	=
Cos	st of Protoflight Structure Failure, Payload Testing	-	240	-	-	<b>-</b>	-	240
Pay	/load Test Failure Cost Factor	-	120	_	_	_	-	120
Cos	st of One Launch	17000	17000	17000	17000	17000	17000	17000
Cos	st of Additional Functional Test After Refurbishment	16	16	16	16	16	16	16

NOTE: Costs are given in thousands of dollars.

components, and each configuration being flown on either 2, 10, 20 or 40 flights. The housekeeping section of the payload was not changed; it consisted of the power, control, and data handling subassemblies having a total of 16 redundant components and the structure.

The expected cost was obtained as a function of the component vibration level and the applicable assembly acoustic test level. The vibration level has a dual meaning. For those test plans having component testing, the vibration level is the component random vibration test level. For those test plans that do not include component testing (Test Plans 4, 5, 6), it represents the component design requirement. The component strength distribution is considered to be a function of the component design/test level so that the vibration strength of the untested components continually increases as the vibration level is increased. Associated with this increase in strength as the vibration level is increased is the increase in the cost of designing the components to the higher level.

Optimum component and assembly test levels are clearly defined for all test plans for Configurations 2, 2, 10 and 6, 4, 20. For Configuration 4,2,2 the expected costs showed a continual increase as the assembly acoustic test level increased, indicating the optimum assembly test level is 143 dB or lower. For Configuration 6,3,40 the expected costs showed a continual decrease as the assembly acoustic test level increased, indicating the optimum assembly test level is 157 dB or higher. At each assembly test level for these two configurations, however, there is a clearly defined optimum component test level. It should be noted that optimums are obtainable for all test plans of this analysis because the component design cost was considered. This cost was not included in the earlier study documented in GE document 76SDS4223. These

optimums are summarized by test plan and payload configuration in Tables 7 and 8, respectively.

Comparison of the expected costs for the optimum test levels indicates that, for all of the payload configurations analyzed, minimum cost is achieved with Test Plan 4, which uses subassembly testing only, and Test Plan 5, which uses system testing only. The cost rank of the other test plans varies with the configuration. Except for Configuration 4,2,2, Test Plan 8, which uses both component and subassembly testing, ranks next, followed by Test Plan 9, which uses both component and system testing, Test Plan 7B, which uses only component testing, and either Test Plan 7, which also uses only component testing but no structure testing, or Test Plan 6, which uses no testing. For Configuration 4,2,2, Test Plan 6 ranks third, followed by Test Plans 8, 7B, 9, and 7.

The optimum test levels do not vary in the same manner as the optimum costs. However, the optimum levels for all test plans increase as the number of flights increases. The optimum expected cost also increases as the number of flights increases.

Comparison of the optimum expected costs for Test Plans 7 and 7B indicates that the protoflight tested structure is more cost effective than no structural test. The cost saving increases as the number of flights increases (\$0.2M for 2 flights; \$0.9M for 10 flights; \$1.9M for 20 flights; \$2.7M for 40 flights).

The major cost elements involved in establishing the optimum test levels are of interest. For Test Plans 4 and 5 the optimum results from combining the increasing design cost with the decreasing costs of assembly test failures and flight failures. For Test Plan 6 the increasing design cost interacts with the decreasing costs of flight failures. For Test Plans 7 and 7B the increasing design cost and costs of component test failures interact with the decreasing costs of flight failures.

Table 7
Summary of Optimums by Test Plan

Test Plan	Payload Configuration (NEXP,NCPE,NF)	Expected Cost (\$ x 10 ⁶ )	Component Vibration Level (g rms)	Assembly Acoustic Level ( dB)	Vibroacoustic Reliability	
4	4,2,2 2,2,10 6,4,20 6,3,40	0.561 1.283 2.818 4.265	22.5 29.0 29.0 37.4	143. 151. 155. 157.	0.9887 0.9975 0.9896 0.9921	
5	4,2,2 2,2,10 6,4,20 6,3,40	0.787 1.664 3.398 4.906	22.5 29.0 37.4 37.4	143. 149. 153. 157.	0.9887 0.9961 0.9855 0.9921	
6	4,2,2 2,2,10 6,4,20 6,3,40	1.354 4.539 12.472 19.106	37.4 62.4 62.4 80.6	-	0.8943 0.9672 0.8256 0.8934	
7	4,2,2 2,2,10 6,4,20 6,3,40	1.731 4.602 12.005 20.526	22.5 48.3 62.4 62.4	-	0.9457 0.9816 0.8980 0.8831	
7B	4,2,2 2,2,10 6,4,20 6,3,40	1.550 3.676 10.134 16.768	22.5 48.3 62.4 62.4	-	0.9464 0.9823 0.8986 0.8837	
8	4,2,2 2,2,10 6,4,20 6,3,40	1.361 2.112 4.148 5.513	13.5 22.5 22.5 29.0	143. 151. 155. 157.	0.9830 0.9973 0.9890 0.9919	
i 9	4,2,2 2,2,10 6,4,20 6,3,40	1.674 2.527 4.814 6.175	13.5 22.5 29.0 29.0	143. 149. 153. 157.	0.9830 0.9957 0.9849 0.9919	

Table 8
Summary of Optimums by Payload Configurations

Payload Configuration (NEXP,NCPE,NF)	Test Plan	Expected Cost (\$ x 10 ⁶ )	Component Vibration Level (g rms)	Assembly Acoustic Level (dB)	Vibroacoustic Reliability	Cost Rank	Reliability Rank
4,2,2	4 5 6 7 7B 8 9	0.561 0.787 1.354 1.731 1.550 1.361 1.674	22.5 22.5 37.4 22.5 22.5 13.5	143. 143. - - 143. 143.	0.9887 0.9887 0.8943 0.9457 0.9464 0.9830 0.9830	1 2 3 7 5 4 6	1 1 7 6 5 3
2,2,10	4 5 6 7 7B 8 9	1.283 1.664 4.539 4.602 3.676 2.112 2.527	29.0 29.0 62.4 48.3 48.3 22.5 22.5	151. 149. - - 151. 149.	0.9975 0.9961 0.9672 0.9816 0.9823 0.9973	1 2 6 7 5 3	1 3 7 6 5 2 4
6,4,20	4 5 6 7 7B 8 9	2.818 3.398 12.472 12.005 10.134 4.148 4.814	29.0 37.4 62.4 62.4 62.4 22.5 29.0	155. 153. - - 155. 153.	0.9896 0.9855 0.8256 0.8980 0.8986 0.9890 0.9849	1 2 7 6 5 3 4	1 3 7 6 5 2 4
6,3,40	4 5 6 7 7B 8 9	4.265 4.906 19.106 20.526 16.768 5.513 6.175	37.4 37.4 80.6 62.4 62.4 29.0 29.0	157. 157. - - 157. 157.	0.9921 0.9921 0.8934 0.8831 0.8837 0.9919	1 2 6 7 5 3 4	1 5 7 6 3 3

For Test Plans 8 and 9 the increasing design cost and costs of component test failures interact with the decreasing costs of assembly test failures and flight failures.

# Reliability and Cost Optimization

In Tables 7 and 8 the payload flight vibroacoustic reliabilities associated with the optimum expected costs are also indicated. In this analysis the flight vibroacoustic reliability is defined as the probability of no data loss from the payload as a result of a vibration failure of a component. For all of the payload configurations analyzed, the test plan with the minimum cost, Test Plan 4, also has the maximum reliability. Except for Configuration 6,3,40, Test Plan 6, which uses no testing, has the lowest reliability. Within these bounds the reliability rank varies with the configuration. For all test plans Configuration 2,2,10 has the highest reliability, but the configuration with the lowest reliability varies from test plan to test plan. The low flight reliability of Test Plan 6 is consistent with its being, together with Test Plan 7, the least cost effective.