Chap 22: Matrices

Soit \mathbb{K} un corps (commutatif), $n, p \in \mathbb{N}^*$

I. Espace vectoriel $\mathfrak{M}_{n,p}$ (\mathbb{K})

Ensemble des matrices à n lignes et p colonnes : $\mathfrak{M}_{n,p}(\mathbb{K}) = \{(a_{ij})_{i \in [\![1,n]\!], j \in [\![1,p]\!]} \in \mathbb{K}^{np}\}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & & & a_{2p} \\ \vdots & & & \vdots \\ a_{n1} & \cdots & a_{n(p-1)} & a_{np} \end{pmatrix} \qquad \qquad j \in \llbracket 1, p \rrbracket \quad C_j = (a_{ij})_{i \in \llbracket 1, n \rrbracket} \in \mathfrak{M}_{n1}(\mathbb{K}) \text{ la } j^{i \`{e}me} \text{ colonne de } A \\ \qquad \qquad \qquad i \in \llbracket 1, n \rrbracket \quad L_i = (a_{ij})_{j \in \llbracket 1, p \rrbracket} \in \mathfrak{M}_{1p}(\mathbb{K}) \text{ la } i^{i \`{e}me} \text{ ligne de } A$$

$$\mathfrak{M}_{n\,p}(\mathbb{K}) \text{ est muni d'une structure de } \mathbb{K} - ev : A = (a_{i\,j})_{i,j \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket}, \qquad B = (b_{i\,j})_{i,j \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket} \in \mathfrak{M}_{n\,p}(\mathbb{K})$$

$$A + B = (a_{i\,j} + b_{i\,j})_{i,j \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket} \qquad \forall \, \alpha \in \mathbb{K}, \alpha A = (\alpha a_{i\,j})_{i,j \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket}$$

Un vecteur colonne est une matrice $C = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathfrak{M}_{n\,1}(\mathbb{K})$ On l'identifie à un élément de \mathbb{K}^n

$$\varphi \in \mathfrak{L}(\mathbb{K}^p, \mathbb{K}^n) \quad (e_1...e_p) \text{ base canonique de } \mathbb{K}^p \text{, } (f_1...f_n) \text{ celle de } \mathbb{K}^n \qquad \forall j \in \llbracket 1, p \rrbracket, \varphi(e_j) = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{bmatrix} = \sum_{i=1}^n a_{ij} f_i$$

$$\text{La matrice de } \varphi \ \mathfrak{Nat}(\varphi) = (a_{i\,j})_{i,j \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket} = \begin{pmatrix} a_{11} & \cdots & a_{1\,p} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,p} \end{pmatrix} \begin{array}{c} \mathsf{Coord.} \ \mathsf{selon} f_1 \\ \mathsf{Coord.} \ \mathsf{selon} f_n \\ \varphi(e_1) & \varphi(e_p) \end{pmatrix}$$

$$\theta \begin{cases} \mathcal{\mathbb{S}}(\mathbb{K}^{p},\mathbb{K}^{n}) \to \mathfrak{M}_{n_{p}}(\mathbb{K}) \\ \varphi & \mapsto \mathfrak{M}_{\mathrm{al}}(\varphi) = (a_{i_{j}})_{i \in \llbracket 1,n \rrbracket, j \in \llbracket 1,p \rrbracket} \end{cases} \text{ est un isomorphisme de } \mathbb{K} - ev$$

$$A = (a_{ij})_{i,j \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket} \in \mathfrak{M}_{np}(\mathbb{K}), \quad B = (b_{ij})_{i,j \in \llbracket 1,p \rrbracket \times \llbracket 1,q \rrbracket} \in \mathfrak{M}_{pq}(\mathbb{K})$$

$$C = A \times B \in \mathfrak{M}_{nq}(\mathbb{K}) \text{ est défini par :}$$

$$C = (c_{ij})_{i,j \in [\![1,n]\!] \times [\![1,q]\!]} \text{ tel que } \forall (i,j) \in [\![1,n]\!] \times [\![1,q]\!], c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$$

Pour tout
$$\varphi \in \mathcal{Z}(\mathbb{K}^p, \mathbb{K}^n), \psi \in \mathcal{Z}(\mathbb{K}^q, \mathbb{K}^p)$$
 $\mathfrak{N}_{\mathrm{al}}(\varphi \circ \psi) = \mathfrak{N}_{\mathrm{al}}(\varphi) \times \mathfrak{N}_{\mathrm{al}}(\psi)$

On écrit les matrices ainsi $\binom{(B)}{(A)}$, et on fait le produit des éléments de la colonne de B par ceux de la ligne de A qui correspond à la position du c_{ij} :

$$\begin{aligned} & \text{Associativit\'e et "Distributivit\'e" } (A,B) \in \mathfrak{N}_{n_p}(\mathbb{K})^2 & (C,D) \in \mathfrak{N}_{p_q}(\mathbb{K})^2 & (\alpha,\beta) \in \mathbb{K}^2 & F \in \mathfrak{N}_{q_r}(\mathbb{K}) \\ & (A \times C) \times F = A \times (C \times F) & (\alpha A + \beta B) \times C = \alpha A \times C + \beta B \times C & A \times (\alpha C + \beta D) = \alpha A \times C + \beta A \times D \\ & I_n = (\delta_{ij})_{(i,j) \in \llbracket 1,n \rrbracket^2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathfrak{N} \text{ at } (Id_{\mathbb{K}}) \in \mathfrak{N}_{n_n}(\mathbb{K}) \\ & A \in \mathfrak{N}_{n_p}(\mathbb{K}) & B \in \mathfrak{N}_{p_n}(\mathbb{K}) & I_n \times A = A & B \times I_n = B \end{aligned}$$

On n'a en général pas commutativité

$$\forall (k,l) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket \quad \text{On d\'efinit } E_{kl} \in \mathfrak{M}_{np}(\mathbb{K}) \text{ par } : E_{kl} = (\delta_{ki}\delta_{lj})_{ij}$$

$$(E_{kl})_{(k,l) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket} \text{ est la base canonique de } \mathfrak{M}_{np}(\mathbb{K}) \qquad \qquad A = (a_{ij})_{ij} = \sum_{i=1}^n \sum_{j=1}^p a_{ij} E_{ij}$$

$$A \in \mathfrak{M}_{np}(\mathbb{K}) \qquad A = (C_1. \ \ C_p). = \begin{pmatrix} I_1 \\ \vdots \\ I_n \end{pmatrix} \qquad (E_{ij})_{ij} \text{ base canonique de } \mathfrak{M}_{nn}(\mathbb{K}), (\widetilde{E_{kl}})_{kl} \text{ celle de } \mathfrak{M}_{pp}(\mathbb{K})$$

$$E_{ij} \times A = \begin{pmatrix} 0 \\ \vdots \\ I_{j} \\ \vdots \\ 0 \end{pmatrix} \leftarrow i^{\text{eme}} \text{ position}$$

$$A \times \widetilde{E_{kl}} = \begin{pmatrix} 0 \\ \cdots \\ C_k \end{pmatrix} \cdots 0$$

 $(\mathfrak{N}_n(\mathbb{K}), +, \times, \cdot) = (\mathfrak{N}_{nn}(\mathbb{K}), +, \times, \cdot)$ est une \mathbb{K} – algèbre non commutative (si n > 1), d'élément neutre pour la lci $\times I_n$ et de dimension n^2

$$\theta \begin{cases} (\mathfrak{L}(\mathbb{K}^n),+,\circ,\cdot) & \to (\mathfrak{N}_n(\mathbb{K}),+,\times,\cdot) \\ \varphi & \mapsto \mathfrak{N}_{\mathrm{all}}(\varphi) \end{cases} \text{ est un isomorphisme de } \mathbb{K}-\text{algèbres}$$

$$\begin{split} \theta & \begin{cases} (\mathfrak{L}(\mathbb{K}^n), +, \circ, \cdot) & \to (\mathfrak{M}_n(\mathbb{K}), +, \times, \cdot) \\ \varphi & \mapsto \mathfrak{M}_{\mathrm{all}}(\varphi) \end{cases} \text{ est un isomorphisme de } \mathbb{K} - \mathrm{algèbres} \\ \varphi & \in \mathfrak{L}(\mathbb{K}^p, \mathbb{K}^n), A = \mathfrak{M}at(\varphi) \qquad v \in \mathbb{K}^p, v = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathbb{K}^p \simeq \mathfrak{M}_{p1}(\mathbb{K}) \qquad \varphi(v) = A \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \end{split}$$

II. Matrices et applications linéaires

$$\begin{split} E & \mathbb{K} - ev \text{ de dim finie } n \\ & \mathcal{B} = (e_1...e_n) \text{ base de } E \\ & \mathcal{O}^{-1} \begin{cases} E & \to \mathbb{K}^n \simeq \mathfrak{N}_{n1}(\mathbb{K}) \\ v & \mapsto_{x_n}^{x_1} \text{ tel que } v = \sum_{j=1}^n x_j e_j \end{cases} \text{ est un isomorphisme de } E \text{ dans } \mathbb{K}^n \simeq \mathfrak{N}_{n1}(\mathbb{K}) \\ & \mathfrak{N}_{\mathrm{ad}_{\mathfrak{B}}}(v) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \varphi^{-1}(v) & (v_1...v_p) \in E^p, \forall j \in \llbracket 1, p \rrbracket C_j = \mathfrak{N}_{\mathrm{ad}_{\mathfrak{B}}}(v_j) & \mathfrak{N}_{\mathrm{ad}_{\mathfrak{B}}}(v_1...v_p) = (C_1...C_p) \\ & \begin{cases} E^p & \to \mathfrak{N}_{np}(\mathbb{K}) \\ (v_1...v_p) \mapsto \mathfrak{N}_{\mathrm{ad}_{\mathfrak{B}}}(v_1...v_p) \end{cases} \text{ est un isomorphisme de } E^p \text{ dans } \mathfrak{N}_{np}(\mathbb{K}) \end{split}$$

$$E$$
 et F deux $\mathbb{K} - ev$ de dim finie. $\mathfrak{B} = (e_1...e_p)$ base de E , $\mathcal{C} = (f_1...f_n)$ base de F $\varphi \in \mathcal{L}(E,F)$

$$\mathfrak{Nal}_{\mathfrak{B},\mathcal{C}}(\varphi) = \mathfrak{Nal}_{\mathcal{C}}(\varphi(e_1)...\varphi(e_p)) = A = (a_{ij})_{ij} \qquad \forall j \in \llbracket 1,p \rrbracket, \varphi(e_j) = \sum_{i=1}^n a_{ij} f_i$$

$$\theta \begin{cases} \mathcal{Z}(E,F) \to \mathfrak{M}_{np}(\mathbb{K}) \\ \varphi & \mapsto \mathfrak{Mat}_{\mathfrak{B},\mathfrak{C}}(\mathbb{K}) \end{cases} \text{ est un isomorphisme}$$

 $E, F, G \mathbb{K} - ev$ de dim finies q, p, n $\varphi \in \mathcal{Z}(E, F), \psi \in \mathcal{Z}(F, G)$ \mathfrak{R}_0 base de G, \mathfrak{R} de F, \mathfrak{C} de E

$$A = \mathfrak{Nal}_{\mathfrak{S},\mathfrak{S}_0}(\psi) \in \mathfrak{N}_{n_p}(\mathbb{K}) \qquad B = \mathfrak{Nal}_{\mathfrak{S},\mathfrak{S}}(\varphi) \in \mathfrak{N}_{p_q}(\mathbb{K}) \qquad C = \mathfrak{Nal}_{\mathfrak{S},\mathfrak{S}_0}(\psi \circ \varphi) = A \times B$$

$$\mathfrak{Mat}_{\mathfrak{B}}(\varphi) = \mathfrak{Mat}_{\mathfrak{BB}}(\varphi)$$

A est inversible s'il existe $B \in \mathfrak{N}_n(\mathbb{K})$ tel que $AB = I_n = BA$ On note $B = A^{-1}$ $A \in \mathfrak{N}_n(\mathbb{K})$ $E, F \mathbb{K} - ev$ de dim n. \mathfrak{B} base de E, \mathfrak{C} de $F. \varphi \in \mathfrak{L}(E, F)$ $A = \mathfrak{Mal}_{\mathfrak{A}, \mathfrak{C}}(\varphi)$

A est inversible $ssi \varphi$ est un isomorphisme de E dans F $A^{-1} = \mathfrak{Mat}_{\mathcal{O},\mathfrak{P}}(\varphi^{-1})$

 $E \mathbb{K} - ev$ de dim finie n et de base $\mathfrak{B}(v_1...v_n) \in E^n$ $A = \mathfrak{Mal}_{\mathfrak{B}}(v_1...v_n) \in \mathfrak{M}_{\mathfrak{B}}(\mathbb{K})$ A est inversible $ssi(v_1...v_n)$ base de E

 $Gl_n(\mathbb{K}) = \{A \in \mathfrak{N}_n(\mathbb{K}), A \text{ inversible}\}$ $(Gl_n(\mathbb{K}),\times)$ est un groupe

Pour tout $E \ \mathbb{K} - ev$ de dim n et \mathfrak{B} base de $E, \xi \begin{cases} (Gl(E), \circ) \to (Gl_n(\mathbb{K}), \times) \\ \varphi & \mapsto \mathfrak{N}_{\mathrm{alt}_{\mathfrak{B}}}(\varphi) \end{cases}$ est un isomorphisme de groupes

III. Sous ensembles particuliers de Mn(K)

Un matrice $A = (a_{i\,j})_{i,j\in \llbracket 1,n \rrbracket^2} \in \mathfrak{N}_n(\mathbb{K})$ est diagonale si pour tout $(i,j)\in \llbracket 1,n \rrbracket^2$, $i\neq j \Rightarrow a_{i,j}=0$

Pour tout $i \in [1, n]$, on pose $\lambda_i = a_{ii}$ $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_i \end{pmatrix}$ On note alors $A = diag(\lambda_1 ... \lambda_n)$

 $\mathfrak{D}_n(\mathbb{K}) = \{A \in \mathfrak{N}_n(\mathbb{K}), A \text{ diagonale}\}\$ est une sous algèbre de $\mathfrak{N}_n(\mathbb{K})$

Si $A = diag(\lambda_1...\lambda_n)$ et $B = diag(\mu_1...\mu_n)$ et $\alpha \in \mathbb{K}$

 $A + B = diag(\lambda_1 + \mu_1...\lambda_n + \mu_n) \qquad \alpha A = diag(\alpha \lambda_1...\alpha \lambda_n) \qquad AB = diag(\lambda_1 \mu_1...\lambda_n \mu_n)$

 $A = diag(\lambda_1...\lambda_n)$ $A \text{ est inversible } ssi \text{ pour tout } j \in [1,n], \lambda_j \neq 0$

 $A^{-1} = diag\left(\frac{1}{\lambda}...\frac{1}{\lambda}\right)$

 $\dim \mathfrak{D}_n(\mathbb{K}) = n$ Base $\dim \mathfrak{D}_n(\mathbb{K}) : (E_{ii})_{i \in [1, n]}$

 $(\mathcal{Q}, +, \times, \cdot) \mathbb{K}$ – algèbre \mathcal{G} sous algèbre de dim finie sur \mathbb{K}

Si $x \in \mathcal{B}$ est inversible dans \mathcal{Q} , alors $x^{-1} \in \mathcal{B}$

Preuve : Utiliser $\eta \begin{cases} \Re \to \Re \\ y \mapsto xy \end{cases} \in \mathcal{L}(B)$ avec x inversible Montrer injectivité \Rightarrow surjectivité $\Rightarrow \eta^{-1}(1) \in \Re$

 $(A,+,\times,\cdot)$ \mathbb{K} – algèbre de dim finie A intègre \Rightarrow A corps \times est commutative sur $\mathfrak{D}_{n}(\mathbb{K})$

 $A = (a_{i,i}) \in \mathfrak{N}_n(\mathbb{K})$ *A* est :

- triangulaire supérieure $(\in \mathcal{J}_n^s(\mathbb{K}))$ si : $\forall (i,j) \in t [\![1,n]\!]^2, \qquad i > j \Rightarrow a_{ij} = 0$

- triangulaire inférieure $(\in \mathcal{J}_n^i(\mathbb{K}))$ si : $\forall (i,j) \in t [[1,n]]^2$, $i < j \Rightarrow a_{ij} = 0$

- triangulaire supérieure strictement $(\in \mathfrak{J}_n^{ss}(\mathbb{K}))$ si $\forall (i,j) \in t [1,n]^2$, $i \geq j \Rightarrow a_{i,j} = 0$

- triangulaire inférieure strictement $(\in \mathcal{J}_n^{is}(\mathbb{K}))$ si $\forall (i,j) \in t [[1,n]]^2$, $i \leq j \Rightarrow a_{i,j} = 0$

 $\mathfrak{I}_n^s(\mathbb{K})$ est une sous algèbre de $\mathfrak{N}_n(\mathbb{K})$

Aet $B \in \mathcal{J}_n^s$, pour tout $i \in [1, n]$, $(AB)_{ii} = a_{ii}b_{ii}$

$$A \in \mathcal{J}_n^s(\mathbb{K})$$
 $A \text{ est inversible } ssi \text{ pour tout } j \in [[1,n]], a_{jj} \neq 0$ $A^{-1} \in \mathcal{J}_n^s(\mathbb{K})$ $(A^{-1})_{jj} = \frac{1}{a_{jj}}$

Base de
$$\mathfrak{F}_n^s:(E_{i\,j})_{i\leq j}$$
 Base de $\mathfrak{F}_n^i:(E_{i\,j})_{i\geq j}\Rightarrow \dim\mathfrak{F}_n^s=\dim\mathfrak{F}_n^i=\frac{n(n+1)}{2}$

Base de
$$\mathfrak{J}_n^{ss}: (E_{ij})_{i < j}$$
 Base de $\mathfrak{J}_n^{is}: (E_{ij})_{i > j} \Rightarrow \dim \mathfrak{J}_n^{ss} = \dim \mathfrak{J}_n^{is} = \frac{n(n-1)}{2}$

$$A \in \mathcal{S}_n^{ss}(\mathbb{K}) \qquad \Longrightarrow \qquad A^n = 0_{\mathfrak{N}_n(\mathbb{K})}$$

$$\text{Transpos\'ee sur } \mathfrak{N}_{np}(\mathbb{K}) \colon \qquad \tau_{np} \begin{cases} \mathfrak{N}_{np}(\mathbb{K}) \to \mathfrak{N}_{pn}(\mathbb{K}) \\ A & \mapsto {}^t A = (b_{ij})_{ij} \text{ tq } \forall (i,j) \in \llbracket 1,p \rrbracket \times \llbracket 1,n \rrbracket, \, b_{ij} = a_{ji} \end{cases}$$

La transposée est un isomorphisme de $\mathfrak{N}_{np}(\mathbb{K})$ sur $\mathfrak{N}_{pn}(\mathbb{K})$, et $(\tau_{np})^{-1}=\tau_{pn}$, càd ${}^t({}^tA)=A$

$$\tau_{nn} \in Gl(\mathfrak{N}_{nn}(\mathbb{K})) \qquad \forall A \in \mathfrak{N}_{np}(\mathbb{K}), B \in \mathfrak{N}_{pq}(\mathbb{K}), {}^{t}(AB) = {}^{t}B{}^{t}A$$

On vérifie par la transposée que toutes les propriétés montrées pour \mathfrak{J}_n^s et \mathfrak{J}_n^{ss} sont valables pour \mathfrak{J}_n^i et \mathfrak{J}_n^{is}

$$\forall \in Gl_n(\mathbb{K}) \qquad ({}^tA)^{-1} = {}^t(A^{-1})$$

Une matrice $A \in \mathfrak{M}_n(\mathbb{K})$ est symétrique si ${}^tA = A$, et antisymétrique si ${}^tA = -A$

$$\mathfrak{S}_{n}(\mathbb{K}) = \{ A \in \mathfrak{N}_{n}(\mathbb{K}), {}^{t}A = A \} \qquad \qquad \mathfrak{Q}_{n}(\mathbb{K}) = \{ A \in \mathfrak{N}_{n}(\mathbb{K}), {}^{t}A = -A \}$$

$$\mathscr{Q}(\mathbb{K}) = \{A \in \mathfrak{N}(\mathbb{K}), {}^{t}A = -A\}$$

 $\mathbb{S}_n(\mathbb{K})$ et $\mathcal{Q}_n(\mathbb{K})$ sont des sous-espaces vectoriels et $\mathbb{S}_n(\mathbb{K}) \oplus \mathcal{Q}_n(\mathbb{K}) = \mathfrak{N}_n(\mathbb{K})$

$$\dim_{\mathbb{K}} \mathbb{S}_n(\mathbb{K}) = \frac{n(n+1)}{2}$$
 $\dim_{\mathbb{K}} \mathfrak{A}_n(\mathbb{K}) = \frac{n(n-1)}{2}$

Preuve :
$$A = \frac{A + {}^{t}A}{2} + \frac{A - {}^{t}A}{2}$$
: partie symétrique / antisymétrique

Si A est antisymétrique, alors $\forall j \in [1, n], a_{ij} = 0$

De manière générale, pour $(A, B) \in S_n(\mathbb{K})$, $AB \notin S_n(\mathbb{K})$

Base de
$$S_n(\mathbb{K}): \{E_{i,i}, j \in [1, n]\} \cup \{(E_{i,i} + E_{i,i}), i < j\}$$
 de $\mathfrak{A}_n(\mathbb{K}): \{(E_{i,i} + E_{i,i}), i < j\}$

$$\mathcal{J}_n^s(\mathbb{K}) \oplus \mathcal{J}_n^{is}(\mathbb{K}) = \mathfrak{N}_n(\mathbb{K})$$

$$E \mathbb{K} - ev$$
 de dimension p $\mathfrak{B} = (e_1...e_p)$ base de E

$$\theta \begin{cases} E^* = \mathcal{L}(E, \mathbb{K}) & \to \mathfrak{N}_{1_p}(\mathbb{K}) \\ \varphi & \mapsto \mathfrak{N}_{\mathrm{al}_{\mathfrak{B}}}(\varphi) = (\varphi(e_1)...\varphi(e_p)) \end{cases} \text{ est un isomorphisme}$$

Les matrices lignes représentent les familles linéaires

IV. Matrices de changement de bases

 $E \mathbb{K} - ev$ de dimension n $\mathfrak{B}_0 = (e_1...e_n)$ et $\mathfrak{B} = (w_1...w_n)$ bases de E

La matrice de changement de base de \mathfrak{B}_0 à \mathfrak{B} est $P = \mathfrak{Mat}_{\mathfrak{B}_0}(w_1...w_n) = \mathfrak{Mat}_{\mathfrak{B}_0}(\mathfrak{B})$

 $P=\mathfrak{Mat}_{\mathfrak{B}_0}(arphi)$ où arphi est l'unique application linéaire qui envoie \mathfrak{B}_0 sur \mathfrak{B}

$$P = \mathfrak{Nal}_{\mathfrak{BB}_0}(Id_{\scriptscriptstyle{E}}) \in Gl_n(\mathbb{K})$$

P la matrice de passage de \mathfrak{R}_0 à \mathfrak{R} $v \in E$ $X_0 = \mathfrak{M}_{al_{\mathfrak{R}_0}}(v)$ $X = \mathfrak{M}_{al_{\mathfrak{R}}}(v)$ $X_0 = PX$

 $extbf{\emph{P}}^{-1}$ est la matrice de changement de base de ${\mathfrak B}$ à ${\mathfrak B}_{\!\scriptscriptstyle 0}$

E et F deux $\mathbb{K} - ev$ de dim finies p et n \mathfrak{B}_0 et \mathfrak{B} bases de E, \mathfrak{C}_0 et \mathfrak{C} bases de F

 $P \in Gl_p(\mathbb{K})$ matrice de passage de \mathfrak{B}_0 à \mathfrak{B} , et $Q \in Gl_p(\mathbb{K})$ celle de \mathfrak{C}_0 à \mathfrak{C}

 $\varphi \in \mathfrak{L}(E,F)$ $A_0 = \mathfrak{Mat}_{\mathfrak{A}_0 \mathfrak{S}_0}(\varphi)$

 $A = \mathfrak{NLat}_{\mathfrak{RC}}(\varphi)$

Alors $A_0 = QAP^{-1}$

 $E \mathbb{K} - ev$ de dim n

 \mathfrak{D}_0 et \mathfrak{D} deux bases de E $\varphi \in \mathfrak{L}(E)$

 $A_0 = \mathfrak{M}at_{\mathfrak{B}_0}(\varphi), A = \mathfrak{M}at_{\mathfrak{B}}(\varphi)$

Si P est la matrice de changement de base de \mathfrak{B}_0 à \mathfrak{B} ,

 $A_0 = PAP^{-1}$

A et $B \in \mathfrak{N}_n(\mathbb{K})$ sont semblables s'il existe $P \in Gl_n(\mathbb{K})$ tel que $A = PBP^{-1}$

La similitude est une relation d'équivalence sur $\mathfrak{N}_{r}(\mathbb{K})$

Deux matrices sont semblables ssi elles représentent la même app. lin. dans deux bases différentes

V. Rang d'une matrice

$$A \in \mathfrak{M}_{np}(\mathbb{K}) \qquad A = (C_1...C_p) \text{ où pour tout } j \in \llbracket 1,p \rrbracket, C_j \in \mathfrak{M}_{n1}(\mathbb{K}) \simeq \mathbb{K}^n$$
 Le rang de $A \operatorname{rg}(A) = \operatorname{rg}_{\mathbb{K}}(C_1...C_p) = \dim_{\mathbb{K}}(\operatorname{Vect}(C_1...C_p))$

 $\operatorname{rg}(A) \leq \min(n, p)$

 $E \mathbb{K} - ev$ de dim n $\mathfrak{P}_0 = (e_1 ... e_n)$ base de $E A \in \mathfrak{M}_{np}(\mathbb{K})$

Si $A = \mathfrak{N}a_{\mathfrak{R}_n}(v_1...v_n)$ alors $rg(A) = rg(v_1...v_n)$

E et F deux $\mathbb{K} - ev$ de dim p et n \mathfrak{B} base de E, \mathfrak{C} base de F

 $\varphi \in \mathcal{Z}(E,F)$ $A = \mathfrak{N}at_{\mathfrak{R},\mathcal{C}}(\varphi) \in \mathfrak{N}_{n,n}(\mathbb{K})$

 $rg(A) = rg(\varphi)$

Si $A \in \mathfrak{N}_{n_p}(\mathbb{K})$ est la matrice de $\varphi \in \mathfrak{L}(E,F)$

 $rg(A) = n \ ssi \ \varphi$ est surjective de E dans F

 $rg(A) = p \, ssi \, \varphi$ est injective de E dans F

 $Si A = \mathfrak{N}at_{\mathfrak{B}}(v_1...v_n)$

 $rg(A) = n \ ssi \ (v_1...v_p)$ est génératrice

 $rg(A) = p \ ssi \ (v_1...v_p)$ est libre

 $(A,B) \in \mathfrak{N}_{nn}(\mathbb{K})$

A et B sont équivalentes s'il existe $\mathcal{G} \in Gl_n(\mathbb{K}), Q \in Gl_p(\mathbb{K})$ tq $A = PBQ^{-1}$

L'équivalence est une relation d'équivalence (!)

Sur $\mathfrak{M}_{n}(\mathbb{K})$, si deux matrices sont semblables, alors elles sont équivalentes (la réciproque est fausse)

A et B sont équivalentes ssi il existe $\varphi \in \mathcal{L}(E,F)$ $\mathfrak{P}_0,\mathfrak{P}_0$ bases de $E,\mathcal{P}_0,\mathcal{C}$ bases de F tq

$$A = \mathfrak{N}at_{\mathfrak{B}_{0}\mathfrak{S}_{0}}(\varphi)$$

$$B = \mathfrak{M}at_{\mathfrak{RC}}(\varphi)$$

$$A \in \mathfrak{N}_{np}(\mathbb{K})$$
 de rang $r \in [0, \min(n, p)]$

 $A \in \mathfrak{M}_{np}(\mathbb{K}) \text{ de rang } r \in \llbracket 0, \min(n, p) \rrbracket \qquad \qquad A \text{ est \'equivalente \`a } J_r^{n,p} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \quad (J_r)_{ij} = \begin{cases} 1 \text{ si } i = j \leq r \\ 0 \text{ sinon} \end{cases}$

A et $B \in \mathfrak{N}_{np}(\mathbb{K})$ sont équivalentes ssi elles ont le même rang

 $A \in \mathfrak{N}_n(\mathbb{K})$ est semblable à $J_r^n ssi\ A$ est une matrice de projecteur $(A^2 = A)$

 $A \in \mathfrak{N}_{np}(\mathbb{K}) \quad \operatorname{rg}({}^{t}A) = \operatorname{rg}(A)$

 $({}^tJ_r^{np}=J_r^{pn})$

VI. Calcul explicite de rang - Pivot de Gauss

Opération sur les colonnes : $A \in \mathfrak{M}_{np}(\mathbb{K})$ Rappel : $A \times E_{ij} = (0 \cdots C_i \cdots 0)$

Opération	Multiplication à droite	Allure de la matrice
$C_i \leftrightarrow C_j$	$A(I_p - E_{ii} - E_{jj} + E_{ij} + E_{ji})$ (envoie base sur base)	$ \begin{pmatrix} 1 & 0 & \cdots & & & \cdots & 0 \\ 0 & \ddots & \ddots & & & & \vdots \\ \vdots & \ddots & 1 & & & 0 & & & \\ & & 0 & \cdots & \cdots & 0 & 1 & 0 & & \\ & & \vdots & 1 & & 0 & & & \\ & \vdots & & \ddots & & \vdots & & \\ & & 0 & & 1 & \vdots & & \\ & & 0 & & 1 & \vdots & & \\ & & 0 & 1 & 0 & \cdots & \cdots & 0 & \ddots & \vdots \\ \vdots & & 0 & & & \ddots & 1 & 0 \\ 0 & \cdots & & & & & \cdots & 0 & \ddots & \\ & & i & & & j & & & \\ \end{pmatrix} $
$C_i \leftarrow \alpha C_i \qquad (\alpha \in \mathbb{K}^*)$	$A(I_p + (\alpha - 1)E_{ii})$ (diagonale à coef. diag. non nuls)	$\begin{pmatrix} 1 & & & 0 \\ & \ddots & & \\ & & \alpha & \\ 0 & & & 1 \end{pmatrix}$
$C_i \leftarrow C_i + \beta C_j \qquad (\beta \in \mathbb{K}, i \neq j)$	$A(I_{_p}+eta E_{_{ji}})$ (triangulaire à coef. diag. non nuls)	$\begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \beta & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ \hline i & & & & & \\ \end{pmatrix}$

Ces trois opérations reviennent à multiplier A par des matrices de $Gl_p(\mathbb{K})$: On ne change pas le rang de A

On a les mêmes opérations sur les lignes, en multipliant à gauche : $E_{ij} \times A = \begin{bmatrix} 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{bmatrix}$

$$T \in \mathfrak{N}_{np}(\mathbb{K}), T = \begin{pmatrix} \lambda_1 & * & * & * \\ 0 & \ddots & * & * \\ \vdots & \ddots & \lambda_r & * \\ 0 & \cdots & 0 & 0 \end{pmatrix} \Longrightarrow \operatorname{rg}(T) = r$$

Pivot de Gauss pour le rang : On se ramène à une matrice triangulaire avec les opérations sur les lignes et les colonnes, pour éliminer tout ce qui est en-dessous de la diagonale.

Pivot de Gauss pour l'inverse : on se ramène à I_n avec les opérations sur les lignes OU sur les colonnes (pas les 2 à la fois), en commençant par obtenir une matrice triangulaire, puis en « remontant ». On fait les mêmes opérations en partant de I_n pour avoir l'inverse.

$$\textbf{Astuce}:\ P\in (\mathfrak{M}_n(\mathbb{K}))[X]\ \text{tq}\ P(A)=0: \text{On a}\ \sum_{k=0}^n a_k A^k=0 \Leftrightarrow A\bigg(\frac{-1}{a_0}\sum_{k=n}^n a_k A^{k-1}\bigg)=I_n$$

VII. Compléments

$$\operatorname{tr} \left\{ A \xrightarrow{} \sum_{j=1}^{n} a_{jj} \in \mathfrak{L}(\mathfrak{N}_{n}(\mathbb{K}), \mathbb{K}) \text{ est la trace de } A \right\}$$

 $\forall (A,B) \in \mathfrak{N}_n(\mathbb{K})^2$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

 $\varphi\in \mathcal{Z}(E)$ $\mathrm{tr}(\mathfrak{Mak}_{\mathfrak{B}}(\varphi))$ ne dépend pas de la base choisie : on la note $\mathrm{tr}(\varphi)$

Si p est un projecteur, alors tr(p) = rg(p)

Soit $\lambda \in \mathbb{K}$. On a équivalence entre :

- $-\ker(f-\lambda Id_E) \neq \{0_E\}$
- II existe $v \in E \setminus \{0_E\}$ tel que $f(v) = \lambda v$
- Il existe X ∈ $\mathfrak{N}_{n1}(\mathbb{K})$ tel que $A_0X = \lambda X$

Un tel λ est valeur propre de f , un $v \in E \setminus \{0_E\}$ est un vecteur propre associé à la valeur propre λ $\ker(f - \lambda Id_E)$ est le sous-espace propre

f est diagonalisable ssi elle admet une base de vecteurs propres

$$\text{Si } \mathfrak{Mak}_{\mathfrak{B}}(f)\Delta = \begin{pmatrix} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{pmatrix}, A_{0} = \mathfrak{Mak}_{\mathfrak{B}_{0}}(f) = P\Delta P^{-1}$$

$$\forall p \in \mathbb{N}, A_0^p = P\Delta^p P^{-1} = P \begin{pmatrix} \lambda_1^p & 0 \\ & \ddots & \\ 0 & \lambda_n^p \end{pmatrix} P^{-1}$$

$$f$$
 est trigonalisable s'il existe $\mathfrak B$ tel que $\mathfrak M \mathfrak A_{\mathfrak B}(f) = T = \begin{pmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} = \Delta + N \in \mathfrak F_n^s$