

THERAPY MACHINE WITH ELECTRODE

Patent Number: JP9266954

Publication date: 1997-10-14

Inventor(s): INOMATA TAKESHI;; SAKAMOTO TAIJI

Applicant(s): MEIWA SHOJI KK;; KYOTO CONTACT LENS KK

Requested Patent: JP9266954

Application Number: JP19960081464 19960403

Priority Number(s):

IPC Classification: A61N1/30; A61F9/007

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a therapy machine to enable to penetrate low concentration drug solution into an affected part in a short time, by equipping an electrode for penetrating drug solution into the affected part onto a main body of the therapy machine with the electrode to penetrate drug solution into the affected part by aligning the electrode to the affected part and charging a potential.

SOLUTION: This therapy machine with an electrode for operation of glaucoma comprises a main body 1 laid on a bulb of eye E of the affected part and an electrode part 2, and the main body is integrally formed with a transparent lens part 3 at the bottom and a column part 4 to hold the lens part 3 and commonly used as the baphaelostal. A suction hole 5 to suck the main body 1 to the bulb of eye E so as not to be shifted is formed on the column part 4. The electrode part 2 is equipped on the lens part 3, and an electrode 6 comprising a positive electrode 6a and a negative electrode 6b is attached on the eye front side. A retaining member 9 is set between electrodes 6a and 6b and pulses are applied to the electrode 6 to penetrate drug solution into a cell after retaining drug solution to a retaining material 9.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-266954

(43)公開日 平成9年(1997)10月14日

(51)Int.Cl*	識別記号	序内整理番号	F 1	技術表示箇所
A 6 1 N 1/30			A 6 1 N 1/30	
A 6 1 F 9/007			A 6 1 K 45/00	A BL
// A 6 1 K 45/00	ABL			ADU
	ADU		A 6 1 F 9/00	5 5 0

審査請求 未請求 請求項の数9 O L (全5頁)

(21)出願番号 特願平8-81464	(71)出願人 596040059 笠和商事株式会社 大阪市住吉区千林2丁目4番25号
(22)出願日 平成8年(1996)4月3日	(71)出願人 591255575 京都コンタクトレンズ株式会社 京都府京都市上京区寺之内通堀川西入東西 町417番地

(72)発明者 猪俣 直 福岡市中央区馬門7-15-703
(72)発明者 坂本 駿二 福岡市早良区原4-3-3-3-204
(74)代理人 弁理士 朝日来 宗太 (外2名)

(54)【発明の名称】電極付治療器具

(57)【要約】

【課題】患部に低濃度の薬液を短時間で浸透させることができる電極付治療器具を提供する。

【解決手段】薬液を患部に浸透させるための電極6が前記患部に載置される本体1に取り付けられている。

【特許請求の範囲】

【請求項1】 薬液を患部に浸透させるための電極が前記患部に載置される本体に取り付けられてなることを特徴とする電極付治療器具。

【請求項2】 前記電極により電圧が印加される請求項1記載の器具。

【請求項3】 前記電圧の波形がパルスである請求項3記載の器具。

【請求項4】 前記薬液を保持する保持材が設けられてなる請求項1、2または3記載の器具。

【請求項5】 前記薬液を患部に投与するための注入孔が形成されてなる請求項1、2、3または4記載の器具。

【請求項6】 前記本体に吸引口が形成されてなる請求項1、2、3、4または5記載の器具。

【請求項7】 眼の手術に用いられる請求項1、2、3、4、5または6記載の器具。

【請求項8】 前記眼の手術が経内障手術である請求項7記載の器具。

【請求項9】 前記本体が透明なプラスチックレンズである請求項1、2、3、4、5、6、7または8記載の器具。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は電極付治療器具に関する。さらに詳しくは、患部に電極を合わせ、電圧を印加することにより薬液を患部に浸透させやすくなる電極付治療器具に関する。

【0002】

【従来の技術】 現在、経内障の手術療法として線維柱帶切開術がひらくおこなわれている。これは、約3×4mmの強角膜切開口を介して眼内の房水を眼外へ涙過することにより、減圧をはかる方法であるが、術後の創傷治癒により強角膜切開部陥没し、涙過腔が形成されないことがしばしば認められる。これは結膜テノン嚢下の線維芽細胞が増殖するためであることが知られており、これを防護するため種々の線維芽細胞増殖阻害薬の投与が試みられている。たとえば、ラーフォロウラシルの術後結膜下注射やマイトマイシンC(約400mg/m²)の強角膜切開への術中投与などである。

【0003】

【発明が解決しようとする課題】 しかし、上記薬剤は細胞透過性が強く、またその細胞毒性のために周辺正常組織への影響が危惧されており、また将来的なその組織への影響は不明である。

【0004】 本発明は、以上の事情に鑑み、患部に医薬液の薬液を短時間で浸透させることができる電極付治療器具を提供することを目的とする。

【0005】

【課題を解決するための手段】 本発明の電極付治療器具

は、薬液を幹部に浸透させるための電極が前記患部に載置される本体に取り付けられてなることを特徴としている。

【0006】

【発明の実施の形態】 以下、添付図面に基づいて本発明の電極付治療器具を説明する。

【0007】 図1は本発明の電極付治療器具の一実施例を示す断面図、図2は図1における電極付治療器具の斜視図、図3は図1における電極部の底面図、図4は図1における本体の他の実施例を示す斜視図、図5は図1における本体のさらに他の実施例を示す斜視図、図6は薬液保持の他の実施例を示す平面図、図7は図3における電極の他の実施例を示す平面図、図8は図3における電極のさらに他の実施例を示す平面図、図9は図3における電極のさらなる他の実施例を示す平面図、図10は図1における電極の取付構造の一実施例を示す部分断面図、図11は図1における電極の取付構造の他の実施例を示す部分断面図、図12は図1における電極の取付構造のさらに他の実施例を示す部分断面図、図13は図1における電極の取付構造のさらなる他の実施例を示す部分断面図、図14は図1における電極の取付構造のさらなる他の実施例を示す部分断面図である。

【0008】 本発明の電極付治療器具は、とくに眼の疾患である眼内障の手術に好適に用いられ、図1～3に示すように、患部である眼球E上に載置される本体1と、該本体1に設けられた電極部2とから構成されている。

【0009】 前記本体1は、その内表面が眼表面に沿うように形成された、いわゆるコンタクトレンズの形状を呈しており、裙部の透明レンズ部3と該レンズ部3を保持し、手術中の開閉器を兼ねた円柱部4とが一体成形されている。また該円柱部4には、本体1を眼球E上に載置したのち、手術中に嵌まないように眼瞼Eに吸着させるための吸引孔5が形成されている場合もある。前記電極部2は、前記透明レンズ部3に設けられ、眼表面間に正(+)-電極6aと負(-)電極6bとからなる電極6らが取り付けられている。かかる電極6には、パルス電圧が印加されるようによかれている。この電圧の波形は、方形、台形、のこぎり形または三角形などである。

【0010】 電極6としては、金、白金、銀もしくはこれららの合金、またはこれらをメッキ処理したものを使いことができる。該電極6から引き出された電極リード線7は、絶縁チューブ8内を通して外部電源(図示せず)に接続されている。一対の±電極6a、6bのあいだには、薬液を保持する保持材9が設けられているとともに、切開位置を決めるためのマーキングを行なうためのマーキング孔10が貫通している。また、電極部2には、薬液を熱浴する眼瞼Eの位置に投与するための注入孔11が形成され、軟質材、たとえばシリコーンゴム製またはテフロン製などの注入パイプ12が差し込められている。注入孔11は、一対の±電極6a、6bの

あいだの中間位置に形成されているが、いずれか一方の電極の近傍に形成するか、もしくはいずれか一方の電極を貫通形成させるか、または2個以上の注入孔を設けるようにしてよい。また注入孔11は電極部2内を縦方向に形成されているが、電極部2の側面から形成してもよい。注入孔を側面に形成するとともに、電極リード線を電極部の側面から引き出すようにすることにより、切開位置のマーキングを注入パイプおよび絶縁チューブに邪魔されることなく、容易に行なうことができる。前記本体1および電極部2の材質としては、アクリル系樹脂やシリコーン系樹脂など、またはこれらの共重合体で人体に悪影響を及ぼさないプラスチックまたはガラスを用いることができる。

【0011】なお、本実施例では、本体がコンタクトレンズの形状を呈するようにされているが、本発明においては、これに限定されるものではなく、たとえば図4に示すような丸いシート21もしくは角形シートなどのシートタイプとするか、または図5に示すように、本体と電極部を一体成形した丸棒31などのスティックタイプとすることもできる。本体が前記シートタイプのはあい、材質としてプラスチックフィルムのシリコーンフィルム、ポリエチレンフィルムまたはテフロソルフィルムなどを用いることができる。また本体が前記スティックタイプのはあい、材質としてアクリル、ペーパーライトなどのプラスチックや金属などを用いることができる。

【0012】前記保持材9は、吸水性のある樹脂であつて、たとえば含水性プラスチック、スポンジ、ペーパー、または繊維などを用いることができる。この保持材は、図1に示すように、薬液注入により吸水させるか、または予め薬液を浸み込ませておくこともできる。このようにして予め薬液を浸み込ませておくばあい、前記注入孔11を省くことができる。また図6に示すように、電極6を団子のようにリング状の枠12を設けて薬液の漏れを防止することもできる。

【0013】つぎに本発明における電極について説明する。

【0014】前記電極6は、図3に示すように、矩形の一対の+電極6aと-電極6bとから構成されているが、これに限定されるものではなく、図7に示すように、2対の+電極26a、36aと-電極26b、36bとから構成してもよいし、さらには図8~9に示すように、図3および図7における電極を環状に取り付けた構成としてもよい。また電極の取付構造としては、図10に示すように、内表面1aに面上に電極を埋め込んだり埋込型したり、図11に示すように、内表面1aから電極の先端部を突出させて埋め込んだ凸型したり、図12に示すように、内表面1a内に埋め込んだ凹型したり、図13に示すように、図11における電極の先端側面を絶縁した絶縁凸型としたり、図14に示すよう、内表面1aに直接貼り付ける貼付型もしくは焼き付

ける焼付型としたりすることができる。

【0015】つぎに本発明の電極付治療器具の使用法を説明する。図1に示すように、眼内障の患者の眼球E上に本体1を載置し、切開手術をすべき部位に電極6を合わせる。そして吸引孔から空気を吸い出し、本体1を眼球Eに吸着させる。ついで注入孔11から薬液である抗癌剤、たとえばブレオマイシンを $10\mu\text{g}/\text{mL}$ 投与し、保持材9に保持させたのち、前記電極6に電圧5Vを間隔5.0msの電気パルスを8回印加する。この電気パルスによりブレオマイシンの分子量は1400と高いにもかかわらず、細胞内に浸透しやすくなる。なお本発明においては、薬液を投与したのち、電気パルスを印加するものに限定されず、電気パルスを印加したのち、薬液を投与するよりもよい。印加終了後、マーキング孔10から色素を用いて切開部位にマーキングを行ない、ついで吸着を解除して本体1を取り外す。つぎに通常の手術により、前記マーキング箇所の一部細胞(強膜)を切開する。

【0016】つぎに本発明の電極付治療器具における電極を動物実験例で説明する。実験に用いた動物は5羽の有色家兎である。まず強膜を切開手術する前に、 $1.0\mu\text{g}/\text{mL}$ のブレオマイシンを浸したスポンジを前記各家兎の片目の強膜上に5分間置き、その後、両部位に電極を合わせ、電圧5Vを間隔5.0msの電気パルスを8回負荷し、ブレオマイシンを浸透させた。そしてその部位に強膜弁を形成した(以下、実施例といいう)。同様に前記電気パルスを行なわずにブレオマイシンのみを投与したばあいも行なった(以下、比較例といいう)。術前の平均眼圧2.0mmHgが、手術1週間後には術前より眼圧は下降して、実施例のばあいは、1.1mmHgであり、比較例のばあいは、1.2mmHgであった。さらには手術2週間後には、実施例のばあいでは、明らかに涙道が形成され、平均眼圧1.2mmHgであり、比較例のばあいは、1.5mmHgであった。さらに手術30日後も同様に実施例のばあいの方が比較例のばあいよりも眼圧が安定して低かった。

【0017】

【発明の効果】以上説明したとおり、本発明では、薬液を電気パルスを併用して目的とする部位に浸透させることができる。そのため、薬液の濃度を下下げることが可能となり、また周辺組織への安全性も向上する。現在、家兎を用いた動物実験では $10\mu\text{g}/\text{mL}$ のブレオマイシンを使用している。

【図面の簡単な説明】

【図1】本発明の電極付治療器具の一実施例を示す断面図である。

【図2】図1における電極付治療器具の斜視図である。

【図3】図1における電極部の底面図である。

【図4】図1における本体の他の実施例を示す斜視図である。

【図5】図1における本体のさらに他の実施例を示す斜視図である。

【図6】薬液保持の他の実施例を示す平面図である。

【図7】図3における電極の他の実施例を示す平面図である。

【図8】図3における電極のさらに他の実施例を示す平面図である。

【図9】図3における電極のさらなる他の実施例を示す平面図である。

【図10】図1における電極の取付構造の一実施例を示す部分断面図である。

【図11】図1における電極の取付構造の他の実施例を示す部分断面図である。

【図12】図1における電極の取付構造のさらに他の実施例を示す部分断面図である。

【図13】図1における電極の取付構造のさらなる他の実施例を示す部分断面図である。

【図14】図1における電極の取付構造のさらなる他の実施例を示す部分断面図である。

【符号の説明】

- 1 本体
- 2 電極部
- 3 透明レンズ部
- 4 円柱部
- 5 吸引孔
- 6、6a、6b、26a、26b、36a、36b 電極
- 9 保持材
- 10 マーキング孔
- 11 注入孔
- 21 丸いシート(本体)
- 31 丸棒(本体)
- E 眼球

【図1】

【図3】

【図2】

【図7】

【図8】

【図5】

【図10】

【図4】

【図4】

【図5】

(5)

特開平9-266954

【図6】

【図11】

【図12】

【図13】

【図14】

