Algebraic Topology II - Assignment 7

Matteo Durante, s2303760, Leiden University

15th May 2019

Exercise 2

Proof. (a) It is sufficient to notice that, for any element $[f] \in \pi_n(S^n) \cong \mathbb{Z}$, we have by definition that $h_{S^n}([f]) = f_*([\alpha]) = \deg(f) \cdot [\alpha]$. Since $[\mathrm{Id}_{S^n}] \in \pi_n(S^n)$ is s.t. Id_{S^n} has degree 1 because it induces the identity isomorphism on $H_n(S^n) \cong \mathbb{Z}$, we have then the surjectivity.

Proof. (c) The two maps trivially agree up to sign, for they are isomorphisms from $\pi_n(S^n) \cong \mathbb{Z}$ to $H_n(S^n) \cong \mathbb{Z}$.

Exercise 3

Proof. By the usual argument about cellular maps, $\pi_m(X) = 0 = \pi_m(X) \otimes \mathbb{Q}$ for m < n.

By [1, thm. 12.1], all of the homotopy groups of X are abelian and finitely generated, hence they can be described as $\pi_k(X) = \mathbb{Z}^r \oplus \pi_k(X)^{tors}$ for some $r \in \mathbb{N}$. Also, $\pi_k(X) \otimes \mathbb{Q} = \mathbb{Q}^r$. We will then work with the Hurewicz theorem $\text{mod } \mathcal{C}$, where \mathcal{C} is the class of torsion abelian groups.

First of all, we shall compute $H_n(X) \otimes \mathbb{Q}$ for all n and k.

Using the description of X as a finite CW-complex, we see that its homology corresponds to the homology of the cellular chain complex (C_{\bullet}, ∂) , where $C_0 = \mathbb{Z}$, $C_n = \mathbb{Z}$, C_{n+1} and $C_{n+1} \xrightarrow{\partial_n} C_n$ is given by $m \mapsto km$. It follows that $H_n(X) = \mathbb{Z}/k\mathbb{Z} \in \mathcal{C}$, $H_0(X) = \mathbb{Z}$, $H_m(X) = 0$ for $m \neq 0$, n and $H_0(X) \otimes \mathbb{Q} = \mathbb{Q}$, $H_t(X) \otimes \mathbb{Q} = 0$ for all other t.

By Hurewicz, $\pi_n(X) = H_n(X) = \mathbb{Z}/k\mathbb{Z}$ and $\pi_n(X) \otimes \mathbb{Q} = 0$.

We also have that P_nX is a $K(\mathbb{Z}/k\mathbb{Z}, n)$. We may then consider the fibration sequence $X\langle n\rangle \to X \to K(\mathbb{Z}/k\mathbb{Z}, n)$, which then gives us the following one: $\Omega K(\mathbb{Z}/k\mathbb{Z}, n) = K(\mathbb{Z}/k\mathbb{Z}, n-1) \to X\langle n\rangle \to X$.

By [1, lemma 13.16], $H_n(K(\mathbb{Z}/k\mathbb{Z}, m)) \in \mathcal{C}$ for all $m \in \mathbb{N}_{>0}$ and by [1, lemma 13.15] the same goes for $\pi_{n+1}(X\langle n \rangle) = \pi_{n+1}(X)$. It follows that $\pi_{n+1}(X) \otimes \mathbb{Q} = 0$.

References

[1] Heuts Gijs and Meier Lennart. Algebraic Topology II. 2019.