Assignment No: B-11

Title: - To study and implement the construction of minimum spanning tree.

Index Terms: class, objects, MST, Prims, Cycle

Problem Statement: You have a business with several offices; you want to lease phone lines to connect them up with each other; and the phone company charges different amounts of money to connect different pairs of cities. You want a set of lines that connects all your offices with a minimum total cost. Solve the problem by suggesting appropriate data structures.

Theory:

Spannin Tree: Any tree, which consists solely of edges in graph G and includes all the vertices in G is called as a spanning tree. Thus for a given connected graph there are multiple spanning trees possible. For a maximal connected graph having n vertices the number of different possible spanning trees is equal to (n!).

Minimum Spanning Tree: The minimum cost or minimum weightage spanning tree is called as Minimum Spanning Tree. To obtain a minimum spanning tree for a given connected graph, we can use Prim,s algorithm (vertex by vertex) or Kruskal" s algorithm (edge by edge).

Prim's Algorithm: In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a connected weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.

All vertices of a connected graph are included in minimum cost spanning tree. Prims algorithm starts from one vertex and grows the rest of tree by adding one vertex at a time by adding associated edge in set T. This algorithm builds a tree by iteratively adding edges until all vertices are visited. The resultant tree is a minimum spanning tree. At each iteration it **selects the vertex** and associated edge having minimum cost or weightage that does not create a cycle. The algorithm is:

Applications of spanning trees:

- To find independent set of circuit equations for an electrical network. By adding an edge from set B to spanning tree we get a cycle and then Kirchhoff" s second law is used on the resulting cycle to obtain a circuit equation. Thus the total number of independent circuit equation we get is equal to the number of edges in set B.
- Using the property of spanning trees we can select the spanning tree with (n-1) edges such that total cost is minimum if each edge in a graph represents cost (weightage). For example, a communication network between number of cities.

Example run

Image	U	Edge(u,v)	V\U	Description
A 7 B 8 5 E 9 F 11	(c) {}		{A,B,C,D, E,F,G}	This is our original weighted graph. The numbers near the edges indicate their weight.
A 7 B 8 5 E E 9 9	(D)	(D,A) = 5 V (D,B) = 9 (D,E) = 15 (D,F) = 6	{A,B,C,E, F,G}	Vertex D has been arbitrarily chosen as a starting point Vertices A , B , E and F are connected to D through a single edge. A is the vertex nearest to D and will be chosen as the second vertex along with the
				The next vertex chosen is the
A 7 B 8 9	c			vertex nearest to either D or A . B is 9 away from D an

		(A,B) = 7		is the smallest distance away, so we highlight the vertex F and the arc DF .
A 7 B 8 C C S S S S S S S S S S S S S S S S S	{A,D,F}	(D,B) = 9 (D,E) = 15 (A,B) = 7 V (F,E) = 8 (F,G) = 11	{B,C,E,G }	The algorithm carries on as above. Vertex B , which is 7 away from A , is highlighted.
A 7 B 8 C C S S S S C S S S S S S S S S S S S		(B,C) = 8 (B,E) = 7 V (D,B) = 9 cycle		In this case, we can choose between C, E, and G. C is 8 away from B, E is 7 away from B, and
F 11 G	{A,B,D,F}	(D,E) = 15 (F,E) = 8 (F,G) = 11	{C,E,G}	G is 11 away from F. E is nearest, so we highlight the vertex E and the

A 7 B 8 C C S S S S C C S S S S S C C S S S S	{A,B,D,E,F}	(B,C) = 8 (D,B) = 9 cycle (D,E) = 15 cycle (E,C) = 5 V (E,G) = 9 (F,E) = 8 cycle (F,G) = 11	{C,G}	Here, the only vertices available are C and G. C is 5 away from E, and G is 9 away from E. C is chosen, so it is highlighted along with the
	{A,B,C,D,E,F }	(B,C) = 8 cycle (D,B) = 9 cycle (D,E) = 15 cycle (E,G) = 9 V (F,E) = 8 cycle (F,G) = 11	{G}	Vertex G is the only remaining vertex. It is 11 away from F , and 9 away from E . E is nearer, so we highlight G and the arc EG .

.....

```
Class
                node is not
                                  class Graph
necessary
                       here...
                                  {
                                  public:
since
                   we are
implementing using
                                        int cost[20][20], mincost,
                                        n; Graph()
adjacency Matrix.
                                          for(i=1;i \le 10;i++)
                                               for(j=1;j \le 10;j++)
                                                        cost[i][i]=-1;
                                           mincost=0;
                                        void Create();
                                        void Display();
                                        void Prims();
```

Algorithm Create ()

// This algorithm is used to read input undirected graph from user.

```
    {
    Read( no of nodes as n);
    Repeat()
    {
    Write("Enter starting and
```

- 5. Write("Enter starting and ending vertices and its cost");
- 6. Read(v1, v2 and c);
- 7. cost[v1][v2]=cost[v2][v1]=c;
- 8. Write("Do You Want To Enter More Edges");
- 9. }until(false);
- 10.

Algorithm Display ()

// This algorithm is used to print undirected graph given by user.

```
    {
    for( i=1 to n) do
    for(j=1 to n ) do
    Write(cost[i][j]);
    }
```

Algorithm Prims()

 $/\!/$ This algorithm is used to find MST and its cost using Prims Logic

```
1. {
2. for(i=1 to n) do
3. visit[i]=0;
```

```
Read ("Enter Staring Vertex in s");
4.
5.
                        Visit[s]=1;
6.
                        for(k=1 to n-1) do
7.
                        min=999;
8.
9.
                        for(i=1 to n) do {
                        for(j=1 \text{ to } n) do
10.
11.
12.
                        if(visit[i]==1 && visit[j]==0) // look for unvisited vertex from visited
13.
                        if(cost[i][j]!=-1 && min>cost[i][j]) find near with min cost
14.
15.
16.
                        min=cost[i][j];
17.
                        row=i;
18.
                        col=j;
19.
20.
                        }
21.
22.
23.
                        Write(Selected Edge in MST is row and col);
24.
                        mincost=mincost+min;
25.
                        visit[col]=1;
26.
                        cost[row][col]=-1;
27.
                        cost[col][row]=-1;
28.
                        }
29.
                        Write(Total Min Cost as mincost);
30.
```

Frequently Asked Questions:

- 1) What is a minimum spanning tree?
- 2) What is weighted graph?
- 3) What are the Prim's algorithms?
- 4) What are the applications of the minimal spanning tree?
- 5) How does Prim's algorithm work?
- 6) What is the Complexity of prim's algorithm?
- 7) What is the application of prim's algorithm?
- 8) State the advantages of the prim's algorithm?

Flowcharts:

Conclusions: