UNIVERSIDADE CÂNDIDO MENDES

JÔNATAS OLIVERIA LOPES SOARES MAYCON BARRETO LOPES WALLACE GOMES DE SOUZA

MÓDULO DE MAPEAMENTO DO TOOLKIT HÓRUS

Campos dos Goytacazes - RJ Junho - 2009

JÔNATAS OLIVERIA LOPES SOARES MAYCON BARRETO LOPES WALLACE GOMES DE SOUZA

MÓDULO DE MAPEAMENTO DO TOOLKIT HÓRUS

Monografia apresentada à Universidade Cândido Mendes como requisito obrigatório para a obtenção do grau de Bacharel em Cinências da Computação.

ORIENTADOR: Prof. D.Sc. Ítalo Matias

CO-ORIENTADOR: Prof. D.Sc. Dalessandro Soares

Campos dos Goytacazes-RJ 2009

JÔNATAS OLIVERIA LOPES SOARES MAYCON BARRETO LOPES WALLACE GOMES DE SOUZA

MÓDULO DE MAPEAMENTO DO TOOLKIT HÓRUS

Monografia apresentada à Universidade Cândido Mendes como requisito obrigatório para a obtenção do grau de Bacharel em Cinências da Computação.

Aprovada em ____ de _____ de 2009.

BANCA EXAMINADORA

Prof. D.Sc. Ítalo Matias - Orientador Doutor pela UFRJ

> Prof. D.Sc. Dalessandro Soares Doutor pela PUC-Rio

> > Prof. BLABLABLA Univeridade de Londres

Dedico este trabalho a minha mãe

Jônatas

Dedico este trabalho a meus pais

Dedico este trabalho a meus pais
Wallace

Maycon

Agradecimentos

Agradecemos a Deus, pois sem Ele nada do que se fez poderia ter sido feito; a Ele que nos deu forças pra superar as dificuldades e vencer as barreiras.

Agradecimentos aos pais

Agradecimentos ao orientador e co-orientador.

Agradecemos aos demais integrantes da Banca Examinadora, os quais, pelo menos em algum momento, desde a origem até a conclusão do trabalho, deram a sua contribuição.

Agradecemos a todos os professores da Universidade Cândido Mendes do curso de ciências da computação, que nos acompanharam e nos ensinaram nessa fase única e marcante de nossas vidas, que foi nossa formação acadêmica.

Eu, Jônatas, agradeço em especial

Eu, Maycon, agradeço em especial

Eu, Wallace, agradeço em especial

Agradecemos também à Chrystiano, Leandro, Lucas e Thiago que participaram diretamente da nossa formação e, juntamente conosco, proporcionaram a conclusão deste trabalho. E os nossos sinceros agradecimentos a todas as pessoas que, direta ou indiretamente contribuíram para que este trabalho fosse concluído.

Teste

Resumo

Palavras-chave:

Abstract

Keywords:

Sumário

1	Intr	rodução	12												
2	Inte	eligência Artificial	13												
_	2.1	Agentes Inteligentes	13												
	2.2	Teste de Turing	14												
	2.3	Técnicas de IA	14												
	2.0	2.3.1 RNA	14												
		2.3.2 Algoritmos Genéticos	14												
		2.3.3 Lógica Fuzzy	14												
		2.0.0 Eograf uzz,													
3	Vis	ão Computacional	15												
4	Rob	pótica	16												
	4.1	Sensores	$\frac{-17}{17}$												
	4.2	Efetuadores	-												
	4.3	Percepção													
	4.4	Localização													
	4.5	Mapeamento													
	4.6	Planejamento													
		3													
	4.8	Controle	17												
5	Arq	guiteturas em Robótica	18												
6	О Т	Pool IV:4 Homes	17 17 17 17 17 17 17												
U															
	6.1	Objetivo	_												
	6.2	1													
	6.3	Módulos do Horus													
		6.3.1 Core do Horus													
		6.3.2 Modulo de Visão	19												
		6.3.3 Modulo de Mapeamento	19												
7	A N T	DD	20												

,	
	•
SUMÁRIO	1V
DUMAINO	1Λ

8		eamei		21
	8.1	SLAM		22
		8.1.1	Landmark Straction	22
		8.1.2	Data Association	23
		8.1.3	State Estimation	23
		8.1.4	State Update	25
		8.1.5	Landmark Update	25
9	Apli	icação	do ambiente virtual com um robô autônomo	26
10	Con	clusõe	s e Trabalhos Futuros	27
Aı	pêndi	ices		28
\mathbf{A}	Dep	endên	cias do Tool kit	28
В	Inst	alaçõe	5	29

Lista de Figuras

Lista de Tabelas

8.1	Algoritmo RANSAC																															2	24
-----	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----

Introdução

A robótica era um sonho até pouco tempo atrás, hoje em dia a sua existência é tão comum que muitas vezes nos passam desapercebidos grandes avanços da área. Cada vez mais robos, ou melhor, agentes estão presentes em nosso dia-a-dia a fim de facilitar nossos afazeres a fim de nos tornar mais produtivos. A robótica móvel é um campo da robótica que estuda as vantagens da mobilidade dos agentes. Essa mobilidade os tornam capazes de avançar ainda mais em ambientes de difícil acesso ao ser humano.

Inteligência Artificial

2.1 Agentes Inteligentes

Um Agente, por definição, e todo elemento ou entidade autonoma que pode perceber seu ambiente por algum meio cognitivo ou sensorial e de agir sobre esse ambiente por intermédio de atuadores. Algumas definições do termo agente na lingua portuguesa tais como "O que opera ou é capaz de operar", "O que promove negócios alheios" e "Autor". Existem definições de agentes em várias áreas do conhecimento humano.

- Sociologia
- Economia
- Comportamento Animal
- Software
- Robótica

- 2.2 Teste de Turing
- 2.3 Técnicas de IA
- 2.3.1 RNA
- 2.3.2 Algoritmos Genéticos
- 2.3.3 Lógica Fuzzy

Visão Computacional

Robótica

A ciência robótica é reponsável pela parte da tecnologia que tem por intuito otimizar

tarefas feitas por humanos e, em alguns casos, substituí-los por motivos que vão desde a

preservação da integridade do ser humano até mesmo a ocupação de seu cargo de trabalho.

Alheios a um mundo de filmes e preconceitos, os robôs tornam os resultados dos serviços

melhores e sua precisão é muito mais que a de um funcionário. A robótica se utiliza de vários

dispositivos para emular os sentidos e as reações humanas em determinadas situações. Esses

dispositivos tratam diferentemente cada um dos sentidos humanos. Algumas categorias de

dispositivos são:

1. Sensores: Dispositivos diversos que "sentem" o mundo e convertem isso para dados

passíves de serem analisados.

2. Efetuadores

3. Percepção

4. Localização

5. Mapeamento:

6. Planejamento:

7. Movimento: São as técnicas que podem ser utilizadas para

16

- 8. Controle:
- 4.1 Sensores
- 4.2 Efetuadores
- 4.3 Percepção
- 4.4 Localização
- 4.5 Mapeamento
- 4.6 Planejamento
- 4.7 Movimento
- 4.8 Controle

Arquiteturas em Robótica

O Tool Kit Horus

- 6.1 Objetivo
- 6.2 Arquitetura
- 6.3 Módulos do Horus
- 6.3.1 Core do Horus
- 6.3.2 Modulo de Visão
- 6.3.3 Modulo de Mapeamento

ANPR

Mapeamento

O mapeamento é uma funcionalidade que é tratada de muitas formas dentro da literatura. O uso de algoritmos de mapeamento permite que um agente móvel possa identificar sua posição em um ambiente desconhecido e identificar o local em que está inserido. Com o ambiente devidamente mapeado é possível otimizar a rota uma vez que o agente já o conhece.

Algumas técnicas de mapeamento que foram estudadas:

- Técnica utilizando o algoritmo Djkistra e Subida de Montanha.
- Método incremental convencional.
- Técnica baseada em grafos de visibilidade.
- SLAM (Simultaneous Localization and Mapping).

O método de mapeamento que será incluído no Toolkit Hórus será o SLAM (Simultaneous Localization and Mapping), tendo em vista que ele soluciona dois problemas clássicos da teoria das posições, que define a dificuldade de se localizar em um ambiente desconhecido e a dificuldade de mapear um ambiente onde não se sabe onde está.

8.1 SLAM

O Simultaneous Localization and Mapping é uma técnica utilizada em agentes autônomos para o mapeamento de ambientes desconhecidos levando em consideração a sua posição atual como a posição inicial para início do mapeamento. Os sensores que podem ser utilizados para a implementação do são diversos. Para a prova de conceito foi utilizado o odômetro, dispositivo que mensura distâncias percorridas, e o laser, dispositivo para detectar a presença de objetos na cena.

O SLAM é composto por vários segmentos que são independentes e tem suas comunicações muito bem estabelecidas o que os torna mais flexíveis quanto aos algoritmos utilizados em cada um dos segmentos. Cada um dos segmentos tem uma enorme gama de algoritmos que o compõe. Foram incorporadas ao Tool Kit apenas as mais otimizadas e relevantes para melhor utilização no processo.

Esses segmentos são:

- 1. Landmark Extraction: Segmento responsável pela extração de marcos no ambiente.
- 2. Data Association: Segmento que associa os dados extraídos de um mesmo marco por diferentes leituras do laser.
- 3. State Estimation: Segmento responsável por estimar a posição atual do robô com base em seu odômetro e nas extrações de marcos no ambiente.
- 4. State Update: Segmento que atualiza o estado atual do agente.
- 5. Landmark Update: Segmento que atualiza as posições dos marcos no ambiente em relação ao agente.

8.1.1 Landmark Straction

A forma de gestão dos marcos (objetos) e dos pontos de movimentação (áreas de movimentação do agente) foi feita através de um grafo. A escolha dessa estrutura foi baseada na sua credibilidade e largo uso na literatura.

Existem dois algoritmos que foram analisados para ser incorporados nesse segmento: o RANSAC e o SPIKE.

8.1.1.1 RANSAC

O RANSAC (Random Sampling Consensus) algoritmo que utiliza-se de uma grande quantidade de informações para estimar os dados relevantes de um modelo matemático. Em conjunto com o SLAM o RANSAC identifica linhas de acordo com os pontos passados pelo laser, através da identificação de pontos muito próximos uns dos outros pode-se concluir que ali existe linhas, ou nesse caso, paredes que impossibilitam a transposição do agente.

Através de vários marcos o RANSAC obtêm uma amostra que será analisada a fim de encontrar pontos próximos, consequentemente uma parede, baseado em um limir de proximidade. Esse limiar é chamado de Consensus.

8.1.1.2 RANSAC

8.1.2 Data Association

O segmento Data Association (tradução livre: Associação de Dados) é responsável pela filtragem e associação dos dados obtidos através dos dispositivos do agente.

Uma vez que um marco seja visualizado em um passo do agente e esse mesmo marco é visto novamente em um novo passo, a sua posição mudou, em relação ao agente. O Data Association faz a analíse da posição autal do marco com a sua posição imediatamente aterior, com esse paralelo certifica-se que o marco existe ou se ele foi removido da cena.

Este segmento tem como saída para o State Estimation um lista com os marcos da cena.

8.1.3 State Estimation

O segmento State Estimation (tradução livre: Estimação do Estado) tem com objetivo analisar as informações passadas pelo Data Association e estimar as posições dos marcos

while

- Houverem leituras de laser não associadas.
- E o número de leituras for maior que o limiar;
- E o número de iterações não for maior que o limite.

do

- Selecionar uma leitura de laser na lista.
- Seleciona uma quantidade S de exemplos de leitura do laser que estão associadas a uma quantidade D de graus daquele laser.
- Usando esses exemplos S e a leitura original para calcular o menor quadrado que se ajuste a linha.
- Determinar quantas leituras do laser estão dentro de X unidades de medida que melhor se ajustam a linha.
- if O número de leituras do laser que ficam sobre a linha é maior que o Consensus then
 - Calcular o novo mínimo quadrado que melhor se ajuste a linha, com base em todas as leituras e a linha formada anteriormente.
 - Adicionar o melhor ajuste baseado no calculo anterior.
 - Remover o número de leituras que cruzam a linha do total de leituras não associadas.

end if end while

Tabela 8.1: Algoritmo RANSAC

e do agente, com essas informações ele prepara as posições de cada elemento na cena e analisa o estado anterior já gravado.

8.1.4 State Update

O State Update (tradução livre: Atualização do Estado) faz a gravação do estado atual do agente, sua posição, em relação a posição inicial, valores relativos ao odômetro.

8.1.5 Landmark Update

Com o mesmo objetivo e com focos diferentes, o State Update (tradução livre: Atualização de marcos) faz a gravação do estado atual dos marcos, sua posição, em relação a posição do agente.

Aplicação do ambiente virtual com um robô autônomo

Conclusões e Trabalhos Futuros

Apêndice A

Dependências do Tool kit

Apêndice B

Instalações