```
● WorkSheet-9.R × 6∂ prop.test × ● WorkSheet-10.R ×
    Run 🕩 🕆 🖯 🕒 Source 🗸 🗏
  1 library(tidyverse)
2 library(ggplot2)
  4 group1 <- c(25, 30, 28, 35, 32)
  5 group2 <- c(20, 22, 18, 25, 28)
  6 t_test_result <- t.test(group1, group2)</pre>
  8 successes <- 20
  9 total_trials <- 50
 10 prop_test_result <- prop.test(successes, total_trials, alternative = "two.sided")</pre>
 11
 12 data <- matrix(c(30, 20, 15, 25), nrow = 2, byrow = TRUE)
 13 chi_square_result <- chisq.test(data)</pre>
 14
 15 results_df <- data.frame(</pre>
 16
      Test = c("t-test", "Z-Test", "Chi-Square Test"),
 17
       p_value = c(t_test_result$p.value, prop_test_result$p.value, chi_square_result$p.value)
 18 )
 19
 20 ggplot(results_df, aes(x = Test, y = p_value, fill = Test)) +
21 geom_bar(stat = "identity") +
       geom_text(aes(label = round(p_value, 3)), vjust = -0.5) +
labs(x = "Test", y = "p-value", title = "statistical Test Results") +
theme_minimal() +
 22
 23
 24
 25
       theme(axis.text.x = element_text(angle = 45, hjust = 1))
 26
 27
```


EXP:10

```
=\Box
     🔊 🔚 🗌 Source on Save 🔍 🎢 🗸 📋
                                                                                     → Run → ↑ ↓ → Source → =
  1 library(tidyverse)
  2 library(ggplot2)
    group1 <- c(30, 35, 40, 45, 50)
     group2 <- c(25, 30, 35, 40, 45)
group3 <- c(20, 25, 30, 35, 40)
  8 one_way_anova_result <- aov(c(group1, group2, group3) ~ rep(c("Group1", "Group2", "Group3"), each = 5))
  9
 10
     data <- data.frame(
      value = c(group1, group2, group3),
factor1 = rep(c("A", "B", "C"), each = 5)
 11
 12
 13
 14
     two_way_anova_result <- aov(value ~ factor1, data = data)
 15
 16 one_way_p <- summary(one_way_anova_result)[[1]]$`Pr(>F)`[1]
 17
     two_way_p <- summary(two_way_anova_result)[[1]]$`Pr(>F)`[1]
 18
     anova_results <- data.frame(
Analysis = c("one-Way ANOVA", "Two-Way ANOVA"),</pre>
 19
 20
 21
       p_value = c(one_way_p, two_way_p)
 22
 23
 24
     ggplot(anova_results, aes(x = Analysis, y = p_value, fill = Analysis)) +
       geom_bar(stat = "identity", width = 0.5) +
 25
 26
        geom_text(aes(label = format(p_value, scientific = TRUE)), vjust = -0.5, size = 4) +
        labs(title = "ANOVA Results", y = "p-value") +
 27
 28
       theme_minimal() +
 29
       theme(legend.position = "none")
 30
 17:60
      (Top Level) $
                                                                                                              R Script $
```

Environment History Connec	tions Tutorial	
☐ Import Dataset ▼		≣ List • © •
R 💌 🦺 Global Environment 💌		Q,
Data		
<pre>0 anova_results</pre>	2 obs. of 2 variables	
O data	15 obs. of 2 variables	
O one_way_anova_result	List of 13	Q,
two_way_anova_result	List of 13	Q,
Values		
group1	num [1:5] 30 35 40 45 50	
group2	num [1:5] 25 30 35 40 45	
group3	num [1:5] 20 25 30 35 40	
one_way_p	0.177978515625	
two_way_p	0.177978515625	

