Northeastern University

DS5020 - Introduction to Linear Algebra and Probability for Data Science

Assignment 06 - Fall 2018

1) {30 pts} Consider the system of differential equations

$$\frac{dx_1(t)}{dt} = x_1(t) - x_2(t) - x_3(t)$$

$$\frac{dx_2(t)}{dt} = -x_1(t) + 2x_2(t) - x_3(t)$$

$$\frac{dx_1(t)}{dt} = -x_1(t) - x_2(t) + 2x_3(t)$$

- a. Express the system in a matrix form.
- b. Find the general solution of the system.
- c. Find the solution of the system with the initial value $x_1 = 0$, $x_2 = 1$, $x_3 = 5$.
- 2) **{30 pts}** Find SVD of the matrix $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.
 - a. Find eigenvalues and eigenvectors of A^TA .
 - b. Form the diagonal matrix Σ using singular values.
 - c. Find the eigenvectors of AA^T .
 - d. Form the orthonormal vectors U and V using a, b and c above. If needed complete the matrices to squares by adding orthonormal vectors from null spaces A^T and A.
 - e. Verify $A = U\Sigma V^T$.
- 3) {**20 pts**}
 - a. Prove that the diagonal elements of a triangular matrix are its eigenvalues.
 - b. Construct a matrix whose eigenvalues and singular values are the same.

- c. Construct a matrix whose largest singular value is twice its largest eigenvalue.
- d. Prove that the diagonal elements of a triangular matrix are its eigenvalues.
- 4) {20 pts} Use any programming package you like to compute the best rank one approximation of the below matrix.

3	7	3	6	4	3	10	2	4
9	5	8	8	2	7	2	10	3
3	4	8	10	8	7	9	1	9
10	9	4	2	4	8	6	8	5
4	6	6	6	6	5	10	9	10
2	6	1	5	2	1	1	9	2
3	10	1	1	7	3	5	1	3