

Sistemas de Informação GSI016 Banco de Dados 1

Álgebra Relacional

Prof. Bruno Travençolo

Revisão: Seleção σ sigma

Seleciona tuplas da relação argumento que satisfaçam à condição de seleção

σ_{condição_seleção} (relação argumento)

- pode envolver operadores de comparação (=, <, ≤, >, ≥, ≠)
- pode combinar condições usando-se ∧, ∨, ¬

- relação
- resultado de alguma operação da álgebra relacional

Revisão: Projeção

Produz uma nova relação contendo um subconjunto vertical da relação argumento, sem duplicações

 $\pi_{\text{lista_atributos}}$ (relação argumento)

- lista de atributos
- os atributos são separados por vírgula

- relação
- resultado de alguma operação da álgebra relacional

Revisão: Atribuição

- Funcionalidades
 - associa uma relação argumento a uma relação temporária
 - permite o uso da relação temporária em expressões subsequentes

relação temporária ← relação argumento

Revisão: Renomear ($\rho = r\hat{o}$)

- Renomeia
 - nome da relação
 - nomes dos atributos da relação
 - nome da relação e nomes dos atributos

5

Revisão: Produto Cartesiano

- Combina tuplas de duas relações
- Tuplas da relação resultante
 - todas as combinações de tuplas possíveis entre as relações participantes

relação argumento 1 x relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

Revisão: Produto Cartesiano

 Utilizado quando se necessita obter dados presentes em duas ou mais relações

- Concatena tuplas relacionadas de duas relações em tuplas únicas
- Simplifica consultas que requerem produto cartesiano
 - forma um produto cartesiano dos argumentos

relação argumento 1 × condição_junção relação argumento 2

relação

cliente (<u>nro_cli</u>, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	RuaX	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	RuaX	137,00	2

vendedor (<u>cod_vend</u>, nome_vend)

cod_vend	nome_vend	
1	Adriana	
2	Roberto	

•	nro_cli	nome_cli	end_cli	saldo	cod_ven d	cod_ven d	nome_ve
	1	Márcia	Rua X	100,00	1	1	Adriana
	2	Cristina	Avenida 1	10,00	1	1	Adriana
	3	Manoel	Avenida 3	234,00	1	1	Adriana
	4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor

número de tuplas: entre zero e o (número de tuplas de cliente * número de tuplas de vendedor)

- Condição de junção
 - <condição> ^ <condição> ^ ... ^ <condição>
- \bullet A_i θ B_j
 - A_i: atributo da relação argumento 1
 - B_i: atributo da relação argumento 2
 - A_i e B_i tem o mesmo domínio
 - θ (theta) é um operador de comparação $\{=, <, \le, >, \ge, \ne\}$
 - existem diversas variações sobre a operação de junção

Junção theta

- na qual pode ser usada qualquer operador θ
 válido no domínio dos atributos comparados
 - **♦** {=, <, ≤, >, ≥, ≠}
- os atributos envolvidos na comparação <u>aparecem</u> <u>ambos na relação resultado</u> (gerando pares de atributos), mas tuplas com valores nulos nos atributos envolvidos na junção <u>não aparecem</u> no resultado
- variação mais genérica

◆Junção theta

cliente (nro_cli, nome_cli, end_cli, saldo, vendedor)

vendedor (cod_vend, nome_vend)

cliente ⋈ vendedor ≠ cod vend vendedor

grau da relação resultante é igual a 7

Equi-Junção

- uso mais comum de junção
- o operador θ é a igualdade
 - **◆** {=}
- os atributos envolvidos na comparação <u>aparecem</u> <u>ambos na relação resultado</u> (gerando pares de atributos com valores idênticos), mas tuplas com valores nulos nos atributos envolvidos na comparação <u>não aparecem</u> no resultado

♦ Equi-Junção

cliente (nro_cli, nome_cli, end_cli, saldo, vendedor)

vendedor (cod_vend, nome_vend)

cliente ⋈ _{vendedor = cod vend} vendedor

grau da relação resultante é igual a 7

- ◆ Junção Natural R * S
 - semelhante à operação de Equi-Junção
 - porém, dos atributos da junção, <u>apenas os</u> originários de uma das relações operadas aparecem na relação resultado
 - requer que os atributos comparados tenham nomes iguais nas duas relações
 - tuplas com valores nulos nos atributos envolvidos na comparação também <u>não aparecem</u> no resultado

Junção Natural

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

vendedor (cod_vend, nome_vend)

vendedor * cliente

grau da relação resultante é igual a 6

Junção Natural

cliente (nro_cli, nome_cli, end_cli, saldo, vendedor)

vendedor (cod_vend, nome_vend)

vendedor * ρ_(nro_cli, nome_cli, end_cli, saldo, cod_vend) cliente

grau da relação resultante é igual a 6

R

 A
 B
 C

 1
 a
 x

 2
 b
 y

 3
 a
 y

 4
 c
 y

S

D
d
d
е

 $R \bowtie S$

А	В	C	Α	D
1	a	X	1	d
2	b	У	2	d

- Interna (inner join)
 - somente as tuplas de R que têm tuplas correspondentes em S, e vice-versa, aparecem no resultado

A B C

1 a x

2 b y

3 a y

S

Α	D
1	d
2	d
5	е

 $R \supset S$

Α	В	С	Α	D
1	a	X	1	d
2	b	у	2	d
3	а	у	Null	Null
4	С	у	Null	Null

- Externa à esquerda (left outer join)
 - mantém cada tupla de R em R ⊃ S
 - preenche com valores nulos os atributos de S que não correspondem às tuplas em R

R

Α	В	С
1	a	X
2	b	у
3	a	у
4	С	у

S

Α	D
1	d
2	d
5	е

 $R \bowtie S$

Α	В	С	Α	D
1	а	X	1	d
2	b	У	2	d
5	Null	Null	5	е

- Externa à direita (right outer join)
 - mantém cada tupla de S em R ⋉ S
 - preenche com valores nulos os atributos de R que não correspondem às tuplas em S

Α	D

1	a	X
2	h	1/

Α	D
1	d
2	d
5	е

 $R \supset S$

Α	В	С	А	D
1	a	X	1	d
2	b	у	2	d
3	a	у	Null	Null
4	С	у	Null	Null
5	Null	Null	5	е

- Externa completa (full outer join)
 - mantém as tuplas de R e S em R ⊃
 S
 - preenche com valores nulos os atributos que não correspondem à coluna de junção

Exercicio 1

- Considere as seguintes relações
 - usuário (<u>cliente_nome</u>, gerente_nome)
 - cliente (<u>cliente_nome</u>, rua, cidade)

usuário

cliente_nome	gerente_nome
Márcia	Manoel
Rodrigo	Maria

cliente

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá

Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

- Considere as seguintes relações
 - usuário (<u>cliente_nome</u>, gerente_nome)
 - cliente (<u>cliente_nome</u>, rua, cidade)
- Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

```
temp<sub>1</sub> \leftarrow \pi <sub>cliente_nome</sub> (\sigma<sub>gerente_nome = "Manoel"</sub> (usuário))

temp<sub>2</sub> \leftarrow temp<sub>1</sub> x cliente

temp<sub>3</sub> \leftarrow \sigma <sub>temp1.cliente_nome = cliente.cliente_nome</sub> (temp<sub>2</sub>)

\pi <sub>temp1.cliente_nome, cidade</sub> (temp3)
```

- Considere as seguintes relações
 - usuário (<u>cliente_nome</u>, gerente_nome)
 - cliente (<u>cliente_nome</u>, rua, cidade)
- Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

```
temp<sub>1</sub> \leftarrow \pi <sub>cliente_nome</sub> (\sigma<sub>gerente_nome = "Manoel"</sub> (usuário))
temp<sub>2</sub> \leftarrow temp<sub>1</sub> * cliente
\pi <sub>temp1.cliente_nome, cidade</sub> (temp2)
```

- Considere a seguinte relação
 - cliente (<u>cliente_nome</u>, rua, cidade)

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá
Cristina	Rua XTZ	Maringá
Sofia	Rua X	Maringá
Ricardo	Rua AAA	Itambé

Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

- Considere a seguinte relação
 - cliente (<u>cliente_nome</u>, rua, cidade)
- Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

```
temp<sub>1</sub> \leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente\_nome} = \text{"Rodrigo"}} (cliente))
```

 $temp_2 \leftarrow temp_1 x cliente$

```
temp_3 \leftarrow \sigma_{cliente\_nome <> "Rodrigo"} (temp_2)
```

 $\pi_{\text{cliente_nome}}(\sigma_{\text{temp}_1.\text{rua} = \text{cliente.rua} \land \text{temp}_1.\text{cidade} = \text{cliente.cidade}}(\text{temp}_3))$

- Considere a seguinte relação
 - cliente (<u>cliente_nome</u>, rua, cidade)
- Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

```
temp<sub>1</sub> \leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente\_nome} = \text{"Rodrigo"}} (cliente))

temp<sub>2</sub> \leftarrow \text{temp}_1 * cliente

temp<sub>3</sub> \leftarrow \sigma_{\text{cliente\_nome}} (temp<sub>2</sub>)

\pi_{\text{cliente\_nome}} (temp<sub>3</sub>)
```

Operações sobre Conjuntos

- Operações
 - união
 - intersecção
 - diferença
- Características

- Duas relações são compatíveis quando:
- possuem o mesmo grau
- seus atributos possuem os mesmos domínios (os domínios dos i-ésimos atributos de cada relação são os mesmos)
- atuam sobre relações compatíveis
- eliminam tuplas duplicadas da relação resultado

União de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes a R, a S, ou a ambas R e S

relação argumento 1 ∪ relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

União de Conjuntos

 relações cujos domínios dos atributos são iguais, na mesma ordem de definição das colunas

Intersecção de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes tanto a R quanto a S

relação argumento 1 ∩ relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

Intersecção de Conjuntos

Notação: <relação1> ∩ <relação2>

Diferença de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes a R que não pertencem a S

relação argumento 1 – relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

Diferença de Conjuntos

Notação: <relação1> - <relação2>

Exemplo: Listar os <u>vendedores</u> que não atendem nenhum cliente, ou seja, que estão na tabela Vendedor mas que não estão na tabela de "Clientes"

Relações Cliente e Pedido

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

pedido (nro_ped, data, nro_cliente)

nro_ped	data	nro_cliente
1	10/12/2004	1
2	11/12/2004	4

Consultas 5, 6 e 7

- Liste os números dos clientes que
 - ou têm pedido, ou foram atendidos pelo vendedor 2, ou ambos
 - têm pedido, e que foram atendidos pelo vendedor 2
 - 7. têm pedido, mas que não foram atendidos pelo vendedor 2

cliente (<u>nro_cli</u>, <u>nome_cli</u>, <u>end_cli</u>, <u>saldo</u>, <u>cod_vend</u>) <u>pedido (<u>nro_ped</u>, data, <u>nro_cliente</u>)</u>

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

nro_ped	data	nro_cliente
1	10/12/2004	1
2	11/12/2004	4

cliente (nro cli, nome cli, end cli, saldo, cod vend)

		_ ,	_ , ,	
nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

pedido (<u>nro_ped</u>, data, <u>nro_cliente</u>)

nro_ped	data	nro_cliente
1	10/12/2004	1
2	11/12/2004	4

Consultas 5, 6 e 7

Liste os números dos clientes que têm pedido.

Temp₁
$$\leftarrow \pi_{\text{nro cliente}}$$
 (pedido)

Liste os números dos clientes que foram atendidos pelo vendedor 2.

temp₂
$$\leftarrow \pi_{\text{nro_cli}} (\sigma_{\text{cod_vend} = 2} \text{ (cliente)})$$

Consulta 5

Liste os números dos clientes que ou têm pedido, ou foram atendidos pelo vendedor 2, ou ambos.

temp₁

nro_cliente

1

4

temp₂

nro_cli 4 $temp_1 \cup temp_2$

nro_cliente
1
4

Consulta 6

Liste os números dos clientes que têm pedido, e que foram atendidos pelo vendedor 2.

te	m	p ₁

nro_cliente

1

4

temp₂

nro_cli		
4		

 $temp_1 \cap temp_2$

nro_	_cliente
	4

Consulta 7

•

Liste os números dos clientes que têm pedido, mas que não foram atendidos pelo vendedor 2.

temp₁

nro_cliente
1

temp₂

nro_cli 4 $temp_1 - temp_2$

nro_cliente 1

Exercício

- Considere as seguintes relações
 - Aluno = (Nome, Idade, Curso)
 - Professor = (Nome, Idade, Depto)
 - Matricula = (<u>NomeA</u>, <u>Disciplina</u>, Nota)
 - Aulas = (NomeProf, Disciplina)
- Listar a idade e o nome dos alunos e professores do banco de dados
- 2. Listar as disciplinas em que os alunos de Computação se matricularam
- 3. Listar o departamento dos professores que não ministram a disciplina de Banco de Dados

Exercício

1) Listar a idade e o nome dos alunos e professores do banco de dados

```
Aux1 \leftarrow \pi_{\{Nome, Idade\}}(Aluno)
Aux2 \leftarrow \pi_{\{Nome, Idade\}}(Professor)
Pessoas \leftarrow Aux1 \cup Aux2
```

2) Listar as disciplinas em que os alunos de computação se matricularam

```
\pi_{\{\text{Disciplina}\}}(\sigma_{(\text{curso} = "computação")}(\text{Aluno} * \rho_{(\text{Nome, Disciplina, Nota)}} \text{Matricula)})
```

3) Listar o departamento dos professores que não ministram a disciplina de Banco de Dados

```
Aux1 \leftarrow \pi_{\text{Nome}}(\sigma_{\text{disciplina} = \text{"Banco de Dados"}}(\text{Professor * }\rho_{\text{(Nome, Disciplina)}} \text{ Aulas)})
Aux2 \leftarrow \pi_{\text{Nome}}(\text{Professor})
Departamento \leftarrow \pi_{\text{Depto}}(\text{Aux2} - \text{Aux1}) * \text{Professor}
```

Atividades complementares

- Leitura para casa
 - Capítulo 6, "Álgebra e cálculo relacional"
 do livro: Elmasri, Ramez; Navathe, Shamkant B.
 Sistemas de banco de dados, 6ª. edição (2011).

Referências

Slides Adaptados do Prof. Humberto Luiz Razente