## Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection



- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

#### **Model Evaluation and Selection**

- Evaluation metrics
  - How can we measure accuracy?
  - Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy
  - Holdout method
  - Cross-validation
  - Bootstrap
- Comparing classifiers:
  - ROC Curves

2°6 classifier - July (manulus) 1806)

od de la

### **Classifier Evaluation Metrics: Confusion Matrix**



- □ In a confusion matrix w. m classes,  $CM_{i,j}$  indicates # of tuples in class i that were labeled by the classifier as class j
  - May have extra rows/columns to provide totals
- Example of Confusion Matrix:

| Actual class\Predicted class | buy_computer = yes | buy_computer = no | Total |
|------------------------------|--------------------|-------------------|-------|
| buy_computer = yes 🕬 📆       | <b>№</b> 6954      | 46                | 7000  |
| buy_computer = no negot      | ₩ <b>412</b>       | 2588              | 3000  |
| Total                        | 7366               | 2634              | 10000 |

# Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

| A\P | С  | ¬C |     |
|-----|----|----|-----|
| C   | TP | FN | P   |
| ¬C  | FP | TN | N   |
|     | P' | N' | All |

- Classifier accuracy, or recognition rate
  - Percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/AII

■ Error rate: 1 – accuracy, or Error rate = (FP + FN)/All

- Class imbalance problem
  - One class may be rare
    - E.g., fraud, or HIV-positive
  - Significant majority of the negative class and minority of the positive class
  - Measures handle the class imbalance problem
    - Sensitivity (recall): True positive recognition rate
      - Sensitivity = TP/P
    - Specificity: True negative recognition rate
      - Specificity = TN/N

## Classifier Evaluation Metrics: Precision and Recall, and F-measures

- **Precision**: Exactness: what % of tuples that the classifier labeled as positive are actually positive?  $P = Precision = \frac{TP}{TP + FP}$  and much much him for probability in the probability of the probability of
- **Recall:** Completeness: what % of positive tuples did the classifier label as positive?

$$R = Recall = \frac{TP}{TP + FN}$$
which has the properties of the pro

- Range: [0, 1]
- The "inverse" relationship between precision & recall
- F measure (or F-score): harmonic mean of precision and recall
  - In general, it is the weighted measure of precision & recall

$$F_{\beta} = \frac{1}{\alpha \cdot \frac{1}{D} + (1 - \alpha) \cdot \frac{1}{D}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 Assigning  $\beta$  times as much weight to recall as to precision)

F1-measure (balanced F-measure)

That is, when 
$$\beta = 1$$
,

$$F_1 = \frac{2PR}{P+R}$$