Kodierungen

§2.1 Definition (partielle Funktion; partial function)

Seien A, B Mengen. Relation $\rho \subseteq A \times B$ ist **partielle Funktion**, geschrieben $\rho \colon A \dashrightarrow B$, falls für jedes $a \in A$ höchstens ein $b \in B$ mit $(a, b) \in \rho$ existiert.

Notizen

- Übliche Funktionsschreibweisen auch für partielle Funktionen
- Jede Funktion ist partielle Funktion
- **Definitionsbereich** partieller Funktion $f: A \longrightarrow B$ ist $f^{-1}(B)$ (Elemente des Vorbereiches A, für die f definiert ist)

$$f^{-1}(B) = \{ a \in A \mid \exists b \in B \colon f(a) = b \}$$

• $f^{-1}(B) = A$ für jede Funktion $f: A \to B$

3/35

Kodierungen

Kodierung von f(3, 4) = 7

• Unäre Kodierung

$$g(\underbrace{aaa}_{3} \# \underbrace{aaaa}_{4}) = \underbrace{aaaaaaa}_{7}$$

Binäre Kodierung

$$g(\underbrace{11}_{2+1} \# \underbrace{100}_{4+0+0}) = \underbrace{111}_{4+2+1}$$

• Andere berechenbare Kodierungen auch möglich

Dezimalkodierung: $g: \{0,1,\ldots,9,\#\}^* \longrightarrow \{0,1,\ldots,9\}^*$

Kodierungen

Vereinbarungen

• Beschränkung auf partielle Funktionen

$$f: \mathbb{N}^k \longrightarrow \mathbb{N}$$
 und $g: \Sigma^* \longrightarrow \Delta^*$ (für Alphabete Σ, Δ)

- 2 Kodierungen für natürliche Zahlen
 - Unäre Kodierung: $n \in \mathbb{N}$ repräsentiert durch $a^n = \underbrace{a \cdots a}_{n \text{ mal}}$

Aus
$$f: \mathbb{N}^k \longrightarrow \mathbb{N}$$
 wird $g: \{a, \#\}^* \longrightarrow \{a\}^*$ mit
$$g(a^{n_1} \# a^{n_2} \# \cdots \# a^{n_k}) = a^{f(n_1, \dots, n_k)}$$

• Binäre Kodierung: $n \in \mathbb{N}$ repräsentiert durch bin $(n) \in \{0,1\}^*$

Aus
$$f: \mathbb{N}^k \dashrightarrow \mathbb{N}$$
 wird $g: \{0,1,\#\}^* \to \{0,1\}^*$ mit $g(bin(n_1)\#bin(n_2)\#\cdots\#bin(n_k)) = bin(f(n_1,\ldots,n_k))$

4/35

Kodierung von Sprachen

§2.2 Definition (Sprachenkodierung)

Für jede Sprache $L\subseteq \Sigma^*$ ist $\mathrm{id}_L\colon \Sigma^* \dashrightarrow \Sigma^*$ gegeben durch

$$\mathsf{id}_L = \{(w, w) \mid w \in L\}$$

Notizen

- 'undef' (oder ⊥) steht für nicht definierte Funktionswerte
- Alternative Definition

$$\operatorname{id}_L(w) = egin{cases} w & \operatorname{falls} \ w \in L \\ \operatorname{undef} & \operatorname{sonst} \end{cases}$$

• Also $\operatorname{id}_{I}^{-1}(\Sigma^{*}) = L$

Intuitive Berechenbarkeit

Algorithmus = endliche & eindeutige Handlungsbeschreibung

§2.3 Definition (intuitive Berechenbarkeit; computability)

Funktion $f: \Sigma^* \dashrightarrow \Delta^*$ intuitiv berechenbar (computable), falls Algorithmus A_f existiert, so dass für jede Eingabe $w \in \Sigma^*$

- A_f produziert Ergebnis nach endlicher Zeit gdw. $w \in f^{-1}(\Delta^*)$
- A_f produziert Ergebnis f(w) falls $w \in f^{-1}(\Delta^*)$

Notizen

- $w \in f^{-1}(\Delta^*)$ bedeutet "f(w) definiert"
- A_f muss bei Eingabe $w \in f^{-1}(\Delta^*)$ Ergebnis f(w) liefern
- A_f darf bei Eingabe $w \in \Sigma^* \setminus f^{-1}(\Delta^*)$ <u>kein</u> Ergebnis liefern (Endlosschleife, Absturz, Exception, etc.)

Intuitive Berechenbarkeit

Weitere Notizen

- Mathematische Existenz ausreichend (kann Funktion 2 Formen annehmen, also $f=f_1$ oder $f=f_2$, dann reicht intuitive Berechenbarkeit von f_1 und f_2)
- Beschreibungssprache beliebig (C++, Java, Pseudocode, etc.)
- Hardware irrelevant (Architektur, Ablaufmechanismus, etc.)
- Keine Zeit- oder Speicherbeschränkung (aber A_f muss bei Eingabe $w \in f^{-1}(\Delta^*)$ letztlich terminieren)

7/35

Intuitive Berechenbarkeit

Erklärungsversuch

- E sei Eigenschaft der Welt und f: Σ* --→ Δ*
 (z.B. E = Gültigkeit der Goldbachschen Vermutung)
- ullet Weiterhin gelten E o Berechenbar(f) und eg E o Berechenbar(f)

```
(E 	o Berechenbar(f)) \land (\neg E 	o Berechenbar(f))

\equiv (\neg E \lor Berechenbar(f)) \land (E \lor Berechenbar(f))

\equiv (\neg E \land E) \lor Berechenbar(f)

\equiv Berechenbar(f)
```

Also gilt Berechenbar(f)

Intuitive Berechenbarkeit

- Addition: Funktion $+: \mathbb{N}^2 \to \mathbb{N}$ intuitiv berechenbar
 - Schulmethode
 - x_1 mal Erhöhung von x_2 für $x_1 + x_2$
- Format-Prüfung: Funktion id_L : $\{0,1,\#\}^* \dashrightarrow \{0,1,\#\}^*$ mit

$$L = \underbrace{1 (0 | 1)^* (\# 1 (0 | 1)^*)^*}_{\text{(1. beliebia viele 0 und 1. # und weitere solche Blöcke)}}$$

intuitiv berechenbar

(L regulär)

9/35

Intuitive Berechenbarkeit

 $\pi[n] = \text{erste } n$ Stellen in Dezimalbruchdarstellung von π für alle $n \in \mathbb{N}$

$$\pi[3] = 314$$

$$\pi[3] = 314$$
 $\pi[6] = 314159$ $\pi[1] = 3$

$$\pi[1] = 3$$

• Approximation π : Funktion $\pi: \{a\}^* \to \{0,1,\ldots,9\}^*$ mit

$$\pi(a^n)=\pi[n]$$
 für alle $n\in\mathbb{N}$

intuitiv berechenbar

- ullet Approximationsalgorithmus für π
- Ausgabe erste *n* Stellen sobald ausreichende Genauigkeit

11/35

Intuitive Berechenbarkeit

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi}: \{0,1,\ldots,9\}^* \longrightarrow \{0,1\}^*$ mit

$$\operatorname{\mathsf{sub}}_\pi(w) = egin{cases} 1 & \mathsf{falls} \ w \ \mathsf{in} \ \pi \ \mathsf{vorkommt} \\ \mathsf{undef} & \mathsf{sonst} \end{cases}$$

intuitive Berechenbarkeit: intuitiv berechenbar

Beispiele:

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

Intuitive Berechenbarkeit

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi}: \{0,1,\ldots,9\}^* \longrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_\pi(w) = \begin{cases} 1 & \text{falls } w \text{ in } \pi \text{ vorkommt} \\ 0 & \text{sonst} \end{cases}$$

Intuitive Berechenbarkeit unklar

Beispiele

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

$$sub_{\pi}(15) =$$

$$sub_{\pi}(41) = 1$$

Intuitive Berechenbarkeit

• Länge von Nichtteilstrings von π : Funktion $\ell_{\pi} : \mathbb{N} \dashrightarrow \mathbb{N}$ mit

$$\ell_{\pi}(n) = egin{cases} n & ext{falls Sequenz der Länge } n ext{ existiert,} \ & ext{die nicht in } \pi ext{ vorkommt} \ & ext{undef} & ext{sonst} \end{cases}$$

für alle $n \in \mathbb{N}$

Intuitive Berechenbarkeit intuitiv berechenbar

- Falls alle Sequenzen in π vorkommen, (Eigenschaft E) dann ℓ_{π} überall undefiniert & intuitiv berechenbar
- Sonst existiert kürzeste Seguenz der Länge k, die nicht in π vorkommt $\mathfrak{U} \ell_{\pi}$ intuitiv berechenbar, da

$$\ell_{\pi}(n) = f_k(n) = \begin{cases} n & \text{falls } n \ge k \\ \text{undef sonst} \end{cases}$$

 $(\neg E \to \exists k ((\ell_{\pi} = f_k) \land \mathsf{Berechenbar}(f_k)) \mathsf{ also }$ $\neg E \rightarrow \mathsf{Berechenbar}(\ell_{\pi})$

Intuitive Berechenbarkeit

• Wortproblem Sprache $L\subseteq \Sigma^*$: Funktion $\chi_L\colon \Sigma^* \to \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & ext{falls } w \in L \ 0 & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

• L kontextsensitiv: intuitiv berechenbar

• Typ-0-Sprache *L*: unklar/nicht intuitiv berechenbar

intuitive Berechenbarkeit:

• für kontextsensitive Sprache L: intuitiv berechenbar

• Aufzählung einer Sprache $L \subseteq \Sigma^*$: Funktion $\rho_l : \Sigma^* \dashrightarrow \{0,1\}^*$ mit

 $ho_L(w) = egin{cases} 1 & ext{falls } w \in L \ ext{undef} & ext{sonst} \end{cases}$ für alle $w \in \Sigma^*$

• für Typ-0-Sprache *L*: intuitiv berechenbar

15/35

Intuitive Berechenbarkeit

Problem

 Wie argumentiert man "nicht intuitiv berechenbar"? (muss für beliebige Algorithmen funktionieren)

Ansatz der modellbezogenen Berechenbarkeit

- Festlegung Berechnungsmodell (Grammatik, Turingmaschine, etc.)
- Klärt Begriff 'Algorithmus'

Wiederholung: Chomsky-Grammatik

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

Ableitungsschritte

$$S\Rightarrow_G S'E\Rightarrow_G aS'aE\Rightarrow_G abS'baE\Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE\Rightarrow_G abEaBE\Rightarrow_G abEaEb\Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab\Rightarrow_G ab\varepsilon ab=abab$

Wiederholung: Chomsky-Grammatik

Analyse der Funktionsweise

- Ziel ww mit $w \in \{a, b\}^*$
- Erzeuge zunächst wEw^RE

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$

• Symbol hinter linkem *E* direkt hinter rechtes *E* bewegen

$$Ea \rightarrow EA$$
 $Aa \rightarrow aA$ $Ab \rightarrow bA$ $AE \rightarrow Ea$ $Eb \rightarrow EB$ $Ba \rightarrow aB$ $Bb \rightarrow bB$ $BE \rightarrow Eb$

- Invertiert w^R; liefert w und Satzform wEEw
- Löschen Begrenzer *EE* mit Produktion $EE \rightarrow \varepsilon$

Turingmaschine

Notizen

- Beidseitig unbeschränktes Arbeitsband
- Endliche Kontrolle

(zustandsgesteuert)

- Mobiler Lese- & Schreibkopf
- Eingabe auf Band; Symbole überschreibbar

(Speicher)

Alan Turing (* 1912; † 1954)

- Engl. Informatiker
- Brach dtsch. Enigma-Verschlüsselung
- Verurteilt wegen Homosexualität: akzeptierte Kastration; 2013 offiziell rehabilitiert

19/35

 $(\Gamma_{\mathcal{M}} = \Gamma \setminus \{\Box\})$

20/35

Turingmaschine

§2.4 Definition (Turingmaschine; Turing machine)

Turingmaschine ist Tupel $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$

- endl. Menge Q von Zuständen (states) mit $Q \cap \Gamma = \emptyset$
- endl. Menge Σ von Eingabesymbolen (input symbols)
- endl. Menge Γ von Arbeitssymbolen (work symbols) mit $\Sigma \subseteq \Gamma$
- Übergangsrelation (transition relation)
- $\Delta \subseteq \Big((Q \setminus \{q_+, q_-\}) \times \Gamma \Big) \times \Big(Q \times \Gamma \times \{\triangleleft, \triangleright, \diamond\} \Big)$ • Leersymbol (blank) $\square \in \Gamma \setminus \Sigma$
- Startzustand (initial state) $q_0 \in Q$
- Akzeptierender Zustand (accepting state) $q_+ \in Q$
- Ablehnender Zustand (rejecting state) $q_- \in Q$

⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

Turingmaschine

Damit programmieren?

- Einfaches Modell (vereinfacht Beweise Nichtberechenbarkeit)
- Gleichmächtig wie gebräuchliche Programmiersprachen (C++, Java, Perl, Python, etc.)
- Nicht komfortabel

(kein Direktzugriff)

21/35 22/35

Turingmaschine

Notation: $(q, \gamma) \rightarrow (q', \gamma', d) \in \Delta$ statt $((q, \gamma), (q', \gamma', d)) \in \Delta$

§2.5 Beispiel (Turingmaschine = TM)

TM $\mathcal{M} = \left(\{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot\right)$ mit den Übergängen Δ

$$(q_0,a)
ightarrow (q_a,\Box,
hd) \quad (q_0,b)
ightarrow (q_b,\Box,
hd) \quad (q_0,\Box)
ightarrow (f,\Box,\diamond)$$

$$(q_a,a) o (q_a,a, riangle) \quad (q_a,b) o (q_a,b, riangle) \quad (q_a,\Box) o (q_a',\Box,\lhd)$$

$$(q_b,a)
ightarrow (q_b,a, riangle) \quad (q_b,b)
ightarrow (q_b,b, riangle) \quad (q_b,\Box)
ightarrow (q_b',\Box,\lhd)$$

$$(q_a',a) o (q,\Box,\lhd) \qquad (q_b',b) o (q,\Box,\lhd)$$

$$(q,a)
ightarrow (q,a, riangleright) \qquad (q,b)
ightarrow (q,b, riangleright) \qquad (q,\Box)
ightarrow (q_0,\Box, riangleright)$$

Turingmaschine

Notizen

23/35

- Übergang $(q, \gamma) \rightarrow (q', \gamma', d)$
 - Vorbedingungen
 - 1. Aktueller Zustand *q*
 - 2. Zeichen γ in Bandzelle, auf der der Kopf steht
 - Konsequenzen
 - 1. TM wechselt in Zustand q'
 - 2. γ' überschreibt Inhalt aktueller Bandzelle (ersetzt γ)
 - 3. Kopf bewegt sich Richtung $d \in \{ \triangleleft, \triangleright, \diamond \}$
- Übergänge mit aktuellem Zustand $q \in \{q_+, q_-\}$ verboten (Übergänge aus Finalzustand heraus nicht erlaubt)

⊲ = gehe nach links; ⊳ = gehe nach rechts; ♦ = keine Bewegung

Turingmaschine

Turingmaschine

- 1. Ausgangssituation
 - Eingabe auf Band
 - TM in Startzustand q₀
 - Kopf auf erstem Symbol der Eingabe (auf
 - (auf □ falls Eingabe leer)

(andere Zellen □)

- 2. Übergänge gemäß △
- 3. Haltebedingung
 - Aktueller Zustand final; akzeptierend q_+ oder ablehnend q_-
 - • Kein passender Übergang \to TM hält <u>nicht</u> ordnungsgemäß (Ausnahme)

Akzeptanz Eingabe

Existenz Übergänge von Ausgangssituation in akzeptierenden Zustand

25/35 26/35

Turingmaschine

Beispiel (§2.5)

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \mapsto (q_a, \Box, \triangleright) & (q_0, b) \mapsto (q_b, \Box, \triangleright) & (q_0, \Box) \mapsto (f, \Box, \diamond) \\ (q_a, a) \mapsto (q_a, a, \triangleright) & (q_a, b) \mapsto (q_a, b, \triangleright) & (q_a, \Box) \mapsto (q_a', \Box, \triangleleft) \\ (q_b, a) \mapsto (q_b, a, \triangleright) & (q_b, b) \mapsto (q_b, b, \triangleright) & (q_b, \Box) \mapsto (q_b', \Box, \triangleleft) \\ (q_a', a) \mapsto (q, \Box, \triangleleft) & (q_b', b) \mapsto (q, \Box, \triangleleft) \\ (q, a) \mapsto (q, a, \triangleleft) & (q, b) \mapsto (q, b, \triangleleft) & (q, \Box) \mapsto (q_0, \Box, \triangleright) \end{pmatrix}$$

27 / 35

Turingmaschine

Satzform

- Globale Systemsituation als Wort (Arbeitsband, Position des Kopfes und interner Zustand)
- Kürzen von 🗆 vom linken und rechten Rand, aber nicht unter Kopf
- Satzform ist u q w
 - 1. Arbeitsbandbereich $\upsilon \in \Gamma^*$ links des Kopfes
 - 2. Zustand $q \in Q$
 - 3. Arbeitsbandbereich $w \in \Gamma^+$ unter und rechts des Kopfes
- Situation abb q aabba

Turingmaschine

Turingmaschine

§2.6 Definition (Ableitungsrelation — keine Bewegung)

$$\begin{array}{c} \textit{u} \; \textit{q} \; \gamma \textit{w} \; \vdash_{\textit{M}} \; \textit{u} \; \textit{q}' \; \gamma' \textit{w} \\ \text{falls} \; (\textit{q}, \gamma) \rightarrow (\textit{q}', \gamma', \diamond) \in \Delta \end{array}$$

Turingmaschine

§2.6 Definition (Ableitungsrelation — Schritt nach links)

31/35

Turingmaschine

§2.6 Definition (Ableitungsrelation — Schritt nach rechts)

32/35

Turingmaschine

§2.7 Definition (akzeptierte Sprache; accepted language)

Akzeptierte Sprache von TM
$$M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$$
 ist

$$L(\mathcal{M}) = \left\{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* \colon \varepsilon \ q_0 \ w \Box \ \vdash_{\mathcal{M}}^* \ u \ q_+ \ v \right\}$$

Akzeptanz Eingabe

- Ausgangssituation ε q_0 w für Eingabe w
- TM akzeptiert Eingabe w falls Übergänge von Ausgangssituation $\varepsilon q_0 w$ in akzeptierenden Zustand q_+ existieren

Turingmaschine

Beispiel (§2.5)

TM $\mathcal{M} = \left(\{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot\right)$

$$(q_0,a) {
ightarrow} (q_a, \square, \triangleright) \hspace{0.5cm} (q_0,b) {
ightarrow} (q_b, \square, \triangleright) \hspace{0.5cm} (q_0, \square) {
ightarrow} (f, \square, \diamond)$$

$$(q_a,a) o (q_a,a, riangle) \quad (q_a,b) o (q_a,b, riangle) \quad (q_a,\Box) o (q_a',\Box,\lhd)$$

$$(q_b,a)
ightarrow (q_b,a, riangle) \quad (q_b,b)
ightarrow (q_b,b, riangle) \quad (q_b,\Box)
ightarrow (q_b',\Box,\lhd)$$

$$(q_a',a) o (q,\Box,\lhd) \qquad (q_b',b) o (q,\Box,\lhd)$$

$$(q,a)
ightarrow (q,a, riangleright) \qquad (q,b)
ightarrow (q,b, riangleright) \qquad (q,\Box)
ightarrow (q_0,\Box, riangleright)$$

