Hashing

EECS 233

Hashing

- We have learned several data structures that allow us to store and search for data items using their key fields.
 - Unsorted lists and arrays linear search complexity
 - Sorted arrays log complexity for search; linear for inserts
 - Various trees (AVL, B-trees, Heaps)
 - Generally logarithmic time complexity
 - Rich operations:
 - Insert, remove, search, find max/min, top-k

Taking Stock...

☐ The efficiency of the different data structures and operations:

Data structure	Search for an item	Insert an item
List (unsorted array)		
List (sorted array)		
List (linked list)		
Binary search tree		
Balanced search tree (AVL, B-trees)		
Heaps		

- ☐ Can we do better than logarithmic complexity?
- Hash tables and hashing techniques may allow us to search, insert, and delete an item in sub-logarithmic (average-case) time, namely, O(1)

Storing Objects in an Array: Keys and Indexes

- Key: a (unique) attribute of object
- ☐ Index: a position of object in an array
- Unsorted arrays:
 - Indexes are independent of keys
 - Searching is dumb and inefficient
- ☐ Sorted arrays:
 - Indexes are related to keys
 - Searching is smart (no longer blind) and efficient (logarithmic)
- The hashing idea: treat the key as an index!
 - Searching is simple and takes almost no time (constant) = genius
- Example: storing grades about students in this class
 - Give each student a unique key (integer from 1-150).
 - Store the student records in an array, in the position determined by the key
 - We can perform both search/update and insertion in O(1) time (for up to 150 students).

Hash Functions

- Problem with student grades:
 - > A student will have different keys in different classes
 - What if we used a social security number?
 - Nice, but a humongous array!
- In many real-world problems, the key attribute has semantic meaning
 - Cannot be arbitrarily assigned
 - Phone book: key is person's name, not a unique number
 - Web cache: key is a URL
- ☐ To handle these problems, we use a *hash function*
 - Convert ("map") keys into array indices
 - □ Domain: the keys
 - □ Range: integers in [0, size-of-array)
 - The word "hash": to chop into small pieces (Merriam-Webster)
 - Chopping large domain space into small number of array cells

Hash Tables

- ☐ Example: student list
 - Index = SSN mod 150
- ☐ Problem: multiple keys mapping to the same index
 - Two students with SSN 150-00-0001 and 150-00-0151
 - □ 150000001 mod 150 = 150000151 mod 150 = 1
 - We need techniques to handle such cases called collisions
- ☐ The resulting data structure is known as a *hash table*
 - Hash function
 - Array
 - Procedures and data structures to handle collisions
- Operations:
 - Insert
 - Remove
 - Contains (search)
 - isEmpty, makeEmpty, etc.
 - No findMax!

Hash Functions Desiderata

- Example 1: Salary as key
 - > 10-workers shop
 - Keep employees record in hash table with (salary mod 10) hash function
 - What if all salaries are multiple of 10K? Bad function!
 - What if all salaries are multiple of 2K? Better function!
 - Random salaries Good function!
- ☐ Example 2: String as key (e.g., Webster)
 - keys = character strings composed of lower-case letters
 - hash function:
 - \Box h(key) = (the byte sum of all characters) mode table-size
 - \Box example: h("cat") = ('c' + 'a' + 't') mod 500000
 - ☐ But: assume words are mostly up to 20 character-long
 - □ Max sum is 127*20 = 2540; any larger table is of no use!
- Requirements for good hash functions:
 - Full table size utilization
 - Even ("uniform") key mapping throughout the table
 - □ Utilizing known key distribution in the objects
 - Making hash function "random" the distribution of keys is independent of distribution of indexes they map to

Handling Collisions with Chaining

- If multiple items are assigned the same hash code, "chain" them together. Each position in the hash table serves as a bucket that is able to store multiple data items.
- ☐ Implementation: a linked list
 - disadvantage: memory overhead for the references

- Alternative implementation: each bucket is itself an array (or points to an array)
 - disadvantages:
 - □ large buckets can waste memory
 - a bucket may become full; overflow occurs when we try to add an item to a full bucket

Operations with Chaining

- □ Search for an item
 - Need to traverse the corresponding linked list or array
 - To guarantee short lists, the number of hash table slots should be of the same order as the total number of items
 - Load factor: ratio of the number of items to the number of hash table slots
- Inserting an item
 - Insertion in a linked list or array
 - New list node must be allocated
 - Array size may need to be dynamically adjusted
- Removing an item
 - The size of an almost-empty array needs to be adjusted
 - List node must be garbage-collected

Handling Collisions with Open Addressing

- When the position assigned by the hash function is occupied, find another open position - a process called *probing*.
 - Example: h(key) = <character encoding of first char> <encoding of 'a'>
 - "wasp" has a hash code of 22, but it ends up in position 23, because position 22 is occupied.
- The hash table also performs probing to search for an item.
 - example: when searching for "wasp", we look in position 22 and then look in position 23
 - we can only stop a search when we reach an empty position

Linear Probing for Open Addressing

- □ Probe sequence: h(key), h(key) + 1, h(key) + 2, ..., wrapping around as necessary.
 - > Example:
 - □ "ape" (h = 0) would be placed in position 1, because position 0 is already full.
 - \Box "bear" (h = 1): try 1, 1 + 1, 1 + 2 open!
 - □ where would "whale" end up?
- Advantage: if there is an open position, linear probing will eventually find it.
- Disadvantage: "clusters" of occupied positions develop
 - Increases the lengths of subsequent probes.
 - As load factor increases, both search and insert times look increasingly linear!

0	"ant"
1	
2	"cat"
3	
4	"emu"
5	
6	
7	
22	"wolf"
23	"wasp"
24	"yak"
25	"zebra"

Quadratic Probing for Open Addressing

- □ Probe sequence: h(key), h(key) + 1, h(key) + 4, h(key) + 9, ..., wrapping around as necessary.
 - \rightarrow the offsets are perfect squares: h + 1², h + 2², h + 3², ...
 - Example:
 - "ape" (h = 0): try 0, 0 + 1 open!
 - \Box "bear" (h = 1): try 1, 1 + 1, 1 + 4 open!
 - "whale"?
- Advantage: reduces clustering

0	"ant"
1	
2	"cat"
3	
4	"emu"
5	
6	
7	
22	"wolf"
23	"wasp"
24	"yak"
25	"zebra"

Theorem: If the load factor is less than 50% and the table size is prime, a new item can always be inserted

Double Hashing for Open Addressing

- □ Use two hash functions:
 - > h1 computes the hash code
 - h2 computes the increment for probing
 - Probe sequence: h1, h1 + h2, h1 + 2*h2, ...
- □ Example:
 - > h1 = our previous function h
 - h2 = number of characters in the string
 - \rightarrow "ape" (h1 = 0, h2 = 3): try 0, 0 + 3 open!
 - \rightarrow "bear" (h1 = 1, h2 = 4): try 1 open!
 - "whale"?
- Combines the good features of linear and quadratic probing:
 - reduces clustering
 - Theorem: will find an open position if there is one, provided the table size is a prime number.
 - Disadvantage: the need for two hash functions

Removing Items with Open Addressing

- ☐ Consider the following scenario using linear probing
 - \rightarrow insert "ape" (h = 0): try 0, 0 + 1 open!
 - insert "bear" (h = 1): try 1, 1 + 1, 1 + 2 open!
 - remove "ape"
 - search for "ape"

Removing Items with Open Addressing

- ☐ Consider the following scenario using linear probing
 - \rightarrow insert "ape" (h = 0): try 0, 0 + 1 open!
 - insert "bear" (h = 1): try 1, 1 + 1, 1 + 2 open!
 - remove "ape"
 - \triangleright search for "ape": try 0, 0 + 1 no item
 - search for "bear": try 1 no item, but "bear" is further down in the table
 - Cannot tell if it is not in the table

Any difference with quadratic probing or double hashing?

Removing Items with Open Addressing

- When we remove an item from a position, we need to leave a special value in that position to indicate that an item was removed.
- Three types of positions: occupied, empty, "removed".
- When we search for a key, we stop probing when we encounter an empty position, but not when we encounter a removed position.
 - How to search for "ape"?
 - How to search for "bear"?
- We can insert items in either empty or removed positions.

