

University Of Alberta

0 0002 83865 71

ING SCHOOL MATHEMATICS

WORKBOOK

QA

36.5

E34

1973

BK.4

WKBK.

CURR

Accompanying
AV material
at
QA 36.5
E3415 1969
CURR AV

Investigating School Mathematics

Workbook

ROBERT E. EICHLER

PHARES G. O'DAFFER

CHARLES R. FLEENOR

ADDISON-WESLEY (CANADA) LTD.

DON MILLS, ONTARIO • READING, MASSACHUSETTS • MENLO PARK, CALIFORNIA • LONDON

Ex LIBRIS
UNIVERSITATIS
ALBERTAEISIS

For Table of Contents,
see the inside back cover.

Copyright© 1975 by Addison-Wesley (Canada) Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
PRINTED IN CANADA.

ISBN 0-201-01104-2

EFG 807978

To measure the length of an object, we need to choose a **unit** of length.

If the unit chosen is the distance across a paper clip,

then the length of the bar is 6 units.

1. Use a paper-clip unit to measure the length of each object.

_____ units

_____ units

2. Use the two rulers below to help you fill in the blanks.

Unit A

Unit B

- A Using unit A, the length of the crayon is _____.

Using unit B, it is _____.

- B Using unit A, the length of the pencil is _____.

Using unit B, the length of the pencil to the nearest unit is _____.

- c If the length of an object is 9 using unit A,

then its length is _____ using unit B.

- d If the length of an object is 8 using unit B,

then its length is _____ using unit A.

1.

- A The length of the pencil is between ____ and ____ centimetres.
- B The length is nearer to ____ centimetres than to ____ centimetres.
- C To the nearest centimetre, the length of the pencil is ____ centimetres.

2.

- A The length of the crayon is between ____ and ____ centimetres.
- B The length is nearer to ____ centimetres than to ____ centimetres.
- C To the nearest centimetre, the length of the crayon is ____ centimetres.

3. Give the length of each bar to the nearest centimetre.

_____ cm

_____ cm

_____ cm

_____ cm

4. Give the length of each object to the nearest centimetre.

_____ centimetres

_____ centimetres

_____ centimetres

_____ centimetres

1.

- A The length of the nail is between $9\frac{1}{2}$ and _____ cm.
- B The length of the nail is nearer to _____ cm than to $9\frac{1}{2}$ cm.
- C To the nearest half cm, the length of the nail is _____ cm.

2.

- A The length of the bolt is between _____ and $7\frac{1}{2}$ centimetres.
- B Its length is nearer to _____ centimetres than to 7 centimetres.
- C To the nearest half centimetre, the length of the bolt is _____ centimetres.

3. Give the length of each object to the nearest half cm.

_____ cm

_____ cm

_____ cm

_____ cm

4. Give the length of each object to the nearest half centimetre.

_____ centimetres

_____ centimetres

_____ centimetres

_____ centimetres

1. The figure will help you think about "unfolding" the rectangle to find its **perimeter** (distance around).

- A The lengths of the four sides of the rectangle are 4, 2, 4, and _____ centimetres.
 B The perimeter of the rectangle is _____ centimetres.
2. The length of each side of the figure is given. Find the perimeter of each figure.

3. Use your centimetre ruler to find the perimeter of each figure.

1. Find the number of square units (area) of each shaded region. The unit is \square .

12 square units

_____ square units

_____ square units

_____ square units

_____ square units

_____ square units

2. Estimate the area of each shaded region.

_____ square units

_____ square units

_____ square units

3. Find the area of each rectangular region.
Use your centimetre ruler in parts b and c.

_____ cm^2

_____ cm^2

_____ cm^2

1. Give the volume of each figure. This is the unit.

A

8 cubic units

B

12 cubic units

D

48 cubic units

C

10 cubic units

2. Give the volume of each figure.

A

24 cubic units

B

18 cubic units

C

18 cubic units

3. Find the volume of each figure even though parts of the figures are covered.

A

24 cubic units

B

24 cubic units

C

24 cubic units

1. Give the missing numbers in the table

Since:	We know that:
 2 jugs will fill 1 can	 2 cans will fill ____ jugs
 1 litre of water weighs 1 kilogram	 6 kilograms of water will fill a ____ litre container
 1 gram of water is $1/1000$ of a litre	 2000 grams of water equals ____ litres
 1 gram of water equals 1 cubic centimetre	 5 cm^3 is equal to ____ grams of water

2. Put a ring around the amount of water that is more.

A 1 kilogram or 2 litres

B 2 litres or 300 grams

C 1 kilogram or 300 grams

D 3 litres or 4000 cubic centimetres

E 4 grams or 6 cm^3

F 1000 cm^3 or 2 litres

G 2 kilograms or 500 cm^3

H 500 grams or $4\frac{1}{2}$ litres

I 22 cm^3 or 14 kilograms

J 1000 grams or $\frac{1}{2}$ litre

1. Name the unit (A, B, or C) that you would use to find each of the following measurements.

A The amount of space inside a . _____

B The distance across a . _____

C The amount of a that needs paint. _____

2. The length of the brush
to the nearest centimetre is _____ centimetres,
to the nearest half cm is _____ cm.

3. Find the area and perimeter of each figure.

4. Find the volume of each figure.

CHANGE OF PACE

The figure represents streets in a town. Mark with a dot all possible ending points if you start at A and walk 4 blocks along the streets without retracing your steps. Each unit (—) is one block. Put the letter B beside the dot that is closest to A.

1. Write the numerals.

_____ tens and _____

_____ tens and _____

_____ hundreds, _____ tens,
and 2

We write _____.

We write _____.

We write _____.

_____ thousands

_____ hundreds

_____ tens

_____ ones

For this number of sticks, we write _____.

2. Write a numeral for each exercise.

A 3 tens and 6 ones _____.

B 8 hundreds, 0 tens, and 3 ones _____.

C 2 thousands, 9 hundreds, 6 tens, and 4 ones _____.

3. Give the missing digits.

A 365 means _____ hundreds, _____ tens, and _____ ones.

B 608 means _____ hundreds, _____ tens, and _____ ones.

C 1390 means _____ thousands, _____ hundreds, _____ tens, and _____ ones.

4. Solve the equations.

A $34 = 30 + \underline{\quad}$

E $837 = \underline{\quad} + 30 + 7$

B $58 = \underline{\quad} + 8$

F $546 = 500 + \underline{\quad} + 6$

C $18 = \underline{\quad} + 8$

G $4321 = 4000 + \underline{\quad} + 20 + 1$

D $654 = 600 + 50 + \underline{\quad}$

H $7895 = \underline{\quad} + 800 + 90 + 5$

1. Write **thousands, hundreds, tens, or ones** in each blank.

- A In 654, the 5 means 5 _____.
- B In 6251, the 2 means 2 _____.
- C In 8734, the 4 means 4 _____.
- D In 9165, the 9 means 9 _____.

2. Write a numeral for each exercise.

- A 7 thousands, 8 hundreds, 5 tens, and 6 ones _____.
- B 2 hundreds, 5 ones, 9 thousands, and 3 tens _____.
- C 3 hundreds, 0 tens, 7 ones, and 5 thousands _____.

3. Find the sums.

- A $7000 + 800 + 20 + 6$ _____
- C $4000 + 300 + 60 + 1$ _____
- B $5000 + 200 + 7 + 80$ _____
- D $700 + 3 + 8000 + 60$ _____

4. Solve the equations.

- A $3749 = 3000 + 700 + 40 +$ _____
- B $2562 = 2000 +$ _____ $+ 60 + 2$
- C $6113 = 6000 + 100 +$ _____ $+ 3$
- D $18\,589 = 10\,000 +$ _____ $+ 500 + 80 + 9$
- E $95\,250 = 90\,000 + 5000 +$ _____ $+ 50$
- F $348\,100 = 300\,000 +$ _____ $+ 8000 + 100$

5. Write the numerals for the numbers that are **one less** and **one more** than the numbers given.

- | | | | | | |
|---------|------|-------|---------|---------|-------|
| A _____ | 699 | _____ | D _____ | 8999 | _____ |
| B _____ | 1001 | _____ | E _____ | 89 999 | _____ |
| C _____ | 3679 | _____ | F _____ | 899 999 | _____ |

6. Write the correct numeral for each exercise.

- A 8 ten thousands, 5 thousands, 2 hundreds, and 2 tens _____.
- B 7 hundred thousands, 9 ten thousands, and 2 thousands _____.

1. A

This odometer shows that car A has travelled 3265 km.

B

This odometer shows that car B has travelled 3274 km.

Which car has travelled farther? _____

2. For each pair of odometers, put a ring around the one that shows the greater number of kilometres.

A

D

B

E

C

F

3. Write the correct sign (< or >) in each circle.

A 5278 5268

D 6125 6025

G 8346 9071

B 2614 2674

E 7183 7099

H 8468 2498

C 3572 4572

F 8651 8649

I 6521 7000

4. List the following set of numbers in order, starting with the smallest.

3426

2951

3265

2987

3333

smallest

largest

5. The area of island A is 3435 square kilometres.
The area of island B is 2868 square kilometres.

Which island is larger? _____

6. There are 274 448 people in City A and 274 359 people in City B.

Which city has more people? _____

7. The airline distance between Vancouver and Montreal is 4892 kilometres. The distance between San Francisco and Montreal is 5065 kilometres.

Which city is farther from Montreal? _____

1.

246 378**318 512 439**These digits tell the number of **thousands**. These digits tell the number of **millions**.There are **246 thousands** in 246 378.There are **318 millions** in 318 512 439.

- A In 315 142 there are _____ thousands.
 B In 48 856 there are _____ thousands.
 C In 809 209 there are _____ thousands.
 D In 7327 there are _____ thousands.
 E In 276 519 206 there are _____ millions.
 F In 76 309 516 there are _____ millions.
 G In 8 652 185 there are _____ millions.
 H In 206 984 469 there are _____ millions.

2. A In 265 327 461 there are _____ millions and _____ thousands.
 B In 46 370 659 there are _____ millions and _____ thousands.
 C In 500 062 327 there are _____ millions and _____ thousands.
 D In 3 008 605 there are _____ millions and _____ thousands.
 E In 314 209 651 there are _____ millions and _____ thousands.
 F In 280 406 721 there are _____ millions and _____ thousands.

3. Write the number that is:

- A 1000 more than 286 573 _____
 B 100 more than 2 365 483 _____
 C 100 000 more than 3 256 348 _____
 D 1000 more than 15 327 651 _____
 E 1 000 000 more than 27 326 518 _____
 F 100 000 more than 14 327 602 _____
 G 100 000 more than 51 278 651 _____
 H 1 000 000 more than 29 356 289 _____
 I 10 000 000 more than 7 836 427 _____

1. Give the number that is **one more** than:

A 9 _____

B 19 _____

C 99 _____

D 109 _____

E 199 _____

F 499 _____

G 999 _____

H 1099 _____

I 5399 _____

J 9999 _____

K 10 999 _____

L 309 999 _____

2. Give the number that is **one less** than:

A 10 _____

B 100 _____

C 190 _____

D 400 _____

E 1000 _____

F 5400 _____

G 7220 _____

H 9200 _____

I 11 730 _____

J 13 700 _____

K 27 000 _____

L 624 010 _____

3. Complete the table by giving the number that is 1, 10, 100, or 1000 more than the given number.

Given number	1 more	10 more	100 more	1000 more
3765	3766	3775	3865	4765
4283	4284	4293	4383	_____
6241	6242	6251	_____	_____
5243	_____	_____	_____	_____
16 704	_____	_____	_____	_____
375 038	_____	_____	_____	_____

4. Using the digits at the right, form the correct 5-digit numeral for each part.

A What is the largest number you can make? _____

B What is the smallest number you can make? _____

C Give the smallest number that has the digit 1 in the ones place. _____

D Give the largest number that has the digit 5 in the ones place. _____

E What is the largest number you can make that has the digit 2 in the thousands place? _____

1. Write thousands, hundreds, tens, or ones in each blank.

- A In 2658, the 6 means _____.
- B In 3472, the 2 means 2 _____.
- C In 4362, the 4 means 4 _____.
- D In 5280, the 8 means 8 _____.

3. A What number is 100 less than 2365? _____

- B What number is 1 more than 1999? _____
- C What number is 1000 less than 4628? _____

4. Give the correct sign (< or >) for each ●.

- A 561 ● 661 B 3472 ● 3462 C 6427 ● 6399 D 17 281 ● 17 290

5. A In 23 486 327 there are _____ millions and _____ thousands.

- B In 340 286 510 there are _____ millions and _____ thousands.
- C In 9 300 654 there are _____ millions and _____ thousands.

6. Write each numeral as in the example. Example: $3264 = 3000 + 200 + 60 + 4$

- A $278 =$ _____
- B $5643 =$ _____
- C $78\ 649 =$ _____

CHANGE OF PACE

Jim is 115 cm tall. At a certain time of day his shadow is 230 cm long. At this same time,

- A how long is his sister's shadow if she is 1 m tall? _____
- B how long is his father's shadow if he is 180 cm tall? _____
- C how tall is his mother if her shadow is 340 cm long? _____
- D how tall is his house if its shadow is 16 m long? _____

3

Addition and Subtraction

Missing Addends

1. A There are _____ of these ■.
 B There are _____ of these ★.
 C There are _____ shapes in all.

2. Write an addition equation for the number-line picture.

3. Write a subtraction equation for the number-line picture.

4. You can find differences by thinking about missing addends.

5. Find each difference by first finding the missing addend.

A $\square + 6 = 14$

$14 - 6 = \square$

B $\square + 9 = 13$

$13 - 9 = \square$

C $\square + 4 = 12$

$12 - 4 = \square$

6. A Since $57 + 84 = 141$, we know that $141 - 84 = \underline{\hspace{2cm}}$.

- B Since $43 + 69 = 112$, we know that $112 - 69 = \underline{\hspace{2cm}}$
 and $112 - 43 = \underline{\hspace{2cm}}$.

- C Since $75 + 66 = 141$, we know that $141 - 75 = \underline{\hspace{2cm}}$
 and $141 - 66 = \underline{\hspace{2cm}}$.

Complete each table.

1.

Add 6	
4	10
A	7
B	9
C	3

2.

Add 9	
A	7
B	4
C	10
D	0

3.

Subtract 8	
13	5
A	11
B	17
C	15

4.

Subtract 6	
A	12
B	9
C	14
D	5

5. Find the sums and differences.

$$\begin{array}{r} A \quad 3 \\ + 6 \\ \hline \end{array}$$

$$\begin{array}{r} B \quad 9 \\ - 2 \\ \hline \end{array}$$

$$\begin{array}{r} C \quad 7 \\ + 7 \\ \hline \end{array}$$

$$\begin{array}{r} D \quad 14 \\ - 3 \\ \hline \end{array}$$

$$\begin{array}{r} E \quad 5 \\ + 6 \\ \hline \end{array}$$

$$\begin{array}{r} F \quad 11 \\ + 5 \\ \hline \end{array}$$

$$\begin{array}{r} G \quad 8 \\ + 5 \\ \hline \end{array}$$

$$\begin{array}{r} H \quad 9 \\ + 5 \\ \hline \end{array}$$

$$\begin{array}{r} I \quad 4 \\ + 6 \\ \hline \end{array}$$

$$\begin{array}{r} J \quad 10 \\ - 7 \\ \hline \end{array}$$

$$\begin{array}{r} K \quad 12 \\ - 8 \\ \hline \end{array}$$

$$\begin{array}{r} L \quad 3 \\ + 9 \\ \hline \end{array}$$

$$\begin{array}{r} M \quad 13 \\ - 4 \\ \hline \end{array}$$

$$\begin{array}{r} N \quad 9 \\ + 6 \\ \hline \end{array}$$

6. Give the missing numbers in the tables.

Addend		Addend	Sum
A	8	3	
B	4		11
C		6	13
D	5	9	

Addend		Addend	Sum
E		9	15
F	7		14
G		2	10
H	8	9	

7. 16 marbles. Lost 9.

How many left? _____

8. Have 8 shells. Found 7 more.

How many shells? _____

9. Have 7 cats. Get 4 more.

How many in all? _____

10. 17 cookies. Ate 9.

How many left? _____

1. When the number 15 is put into the function machine and the function rule is "subtract 9," the output number is 6.

Study the second row of the table. Then complete the table.

Function Rule	
Subtract 9	
INPUT	OUTPUT
15	6
13	4
A	11
B	10

In exercises 2 through 9, give the missing numbers and function rules.

2. Function Rule

Add 8	
INPUT	OUTPUT
6	14
9	17
A	8
B	7
C	5

3. Function Rule

Subtract 7	
INPUT	OUTPUT
11	4
A	13
B	16
C	15
D	14

4. Function Rule

Add 6	
INPUT	OUTPUT
A	8
B	7
C	9
D	6
E	4

5. Function Rule

Subtract 5	
INPUT	OUTPUT
A	11
B	14
C	10
D	12
E	13

6. Function Rule

A	<input type="text"/>
INPUT	OUTPUT
7	1
6	0
8	2
B	15
C	14

7. Function Rule

Add 1 if odd; Subt. 1 if even	
INPUT	OUTPUT
7	8
6	5
A	5
B	8
C	3

8. Function Rule

Double and add 1	
INPUT	OUTPUT
7	15
6	13
A	5
B	8
C	9

9. Function Rule

A	<input type="text"/>
INPUT	OUTPUT
8	15
3	5
6	11
B	5
C	2

1. Solve the equations.

- A Since $9 + 8 = 17$, we know that $8 + 9 = \underline{\hspace{2cm}}$.
- B Since $56 + 78 = 134$, we know that $78 + 56 = \underline{\hspace{2cm}}$.
- C $19 + 56 = \underline{\hspace{2cm}} + 19$ E $327 + 761 = 761 + \underline{\hspace{2cm}}$
- D $27 + \underline{\hspace{2cm}} = 81 + 27$ F $\underline{\hspace{2cm}} + 956 = 956 + 832$

When we change the **order** of the addends, we get the same sum.

2. Solve the equations.

- A Since $8 + (7 + 2) = 17$, we know that $(8 + 7) + 2 = \underline{\hspace{2cm}}$.
- B Since $(36 + 28) + 95 = 159$, we know that $36 + (28 + 95) = \underline{\hspace{2cm}}$.
- C $(7 + 8) + 6 = 7 + (8 + \boxed{\hspace{1cm}})$ D $24 + (\boxed{\hspace{1cm}} + 32) = (24 + 19) + 32$
- E $17 + (86 + 59) = (\boxed{\hspace{1cm}} + 86) + 59$

When we add, we can change the **grouping** and get the same sum.

3. Find the sums. Look for combinations that make 10. Remember:

Because of the **order** and **grouping** principles, we can **add any two** addends first and get the same sum.

- A $3 + 8 + 2 + 6 = \underline{\hspace{2cm}}$ B $5 + 4 + 3 + 5 = \underline{\hspace{2cm}}$
- C $7 + 2 + 6 + 8 = \underline{\hspace{2cm}}$ D $4 + 7 + 6 + 5 = \underline{\hspace{2cm}}$
- E $6 + 8 + 4 + 2 = \underline{\hspace{2cm}}$ F $9 + 6 + 3 + 1 = \underline{\hspace{2cm}}$

4. Solve the equations.

- A $7 + 0 = \underline{\hspace{2cm}}$ B $\underline{\hspace{2cm}} + 0 = 11$ C $23 + \underline{\hspace{2cm}} = 23$
- D $47 + \underline{\hspace{2cm}} = 47$ E $\underline{\hspace{2cm}} + 19 = 19$ F $0 + \underline{\hspace{2cm}} = 32$

The sum of any number and zero is that number.

1. Find the sums.

A	3 20 + 40 <hr/>	3 20 + 40 <hr/>	3 26 + 40 <hr/>	3 26 + 43 <hr/>	B	50 50 + 30 <hr/>	4 30 + 30 <hr/>	54 30 + 2 <hr/>	54 30 + 2 <hr/>
----------	--------------------------	--------------------------	--------------------------	--------------------------	----------	---------------------------	--------------------------	--------------------------	--------------------------

C	30 30 + 10 <hr/>	30 5 + 10 <hr/>	35 10 + 1 <hr/>	35 10 + 11 <hr/>	D	60 60 + 20 <hr/>	7 20 + 20 <hr/>	67 20 + 2 <hr/>	67 20 + 22 <hr/>
----------	---------------------------	--------------------------	--------------------------	---------------------------	----------	---------------------------	--------------------------	--------------------------	---------------------------

2. Find the sums as in the example.

Example:
$$\begin{array}{r} 27 \\ + 56 \\ \hline 13 \\ + 70 \\ \hline 83 \end{array}$$

A	$\begin{array}{r} 43 \\ + 29 \\ \hline \end{array}$	B	$\begin{array}{r} 66 \\ + 28 \\ \hline \end{array}$	C	$\begin{array}{r} 59 \\ + 34 \\ \hline \end{array}$	D	$\begin{array}{r} 65 \\ + 29 \\ \hline \end{array}$
----------	---	----------	---	----------	---	----------	---

3. Study each picture and give the missing sums.

4. Find the sums.

A	$\begin{array}{r} 56 \\ + 43 \\ \hline \end{array}$	B	$\begin{array}{r} 38 \\ + 64 \\ \hline \end{array}$	C	$\begin{array}{r} 49 \\ + 56 \\ \hline \end{array}$	D	$\begin{array}{r} 78 \\ + 95 \\ \hline \end{array}$	E	$\begin{array}{r} 64 \\ + 27 \\ \hline \end{array}$	F	$\begin{array}{r} 56 \\ + 18 \\ \hline \end{array}$
----------	---	----------	---	----------	---	----------	---	----------	---	----------	---

G	$\begin{array}{r} 79 \\ + 56 \\ \hline \end{array}$	H	$\begin{array}{r} 98 \\ + 71 \\ \hline \end{array}$	I	$\begin{array}{r} 64 \\ + 83 \\ \hline \end{array}$	J	$\begin{array}{r} 39 \\ + 64 \\ \hline \end{array}$	K	$\begin{array}{r} 58 \\ + 79 \\ \hline \end{array}$	L	$\begin{array}{r} 67 \\ + 84 \\ \hline \end{array}$
----------	---	----------	---	----------	---	----------	---	----------	---	----------	---

1. Find the sums.

A 6
2
8
+ 4

B 9
2
3
+ 4

C 7
2
1
+ 6

D 5
4
2
+ 3

E 7
2
6
+ 1

F 5
2
3
+ 4

G 7
8
4
+ 1

H 6
2
4
+ 3

I 7
1
2
+ 3

J $8 + 6 + 2 =$ _____

R $9 + 6 + 3 =$ _____

K $9 + 1 + 5 =$ _____

S $7 + 5 + 8 =$ _____

L $6 + 2 + 8 =$ _____

T $9 + 3 + 6 + 2 =$ _____

M $5 + 6 + 5 =$ _____

U $7 + 6 + 3 + 4 =$ _____

N $7 + 2 + 1 =$ _____

V $9 + 2 + 1 + 8 =$ _____

O $8 + 3 + 4 =$ _____

W $7 + 3 + 9 + 9 =$ _____

P $7 + 1 + 6 =$ _____

X $8 + 3 + 2 + 5 =$ _____

Q $3 + 8 + 4 =$ _____

Y $8 + 2 + 8 + 4 =$ _____

2. Complete each magic square.

A

6	7	
1		
8	3	

B

10	6	5
	7	
9		

C

	2	
8	4	0
		5

3. Short stories.

A 6 robins. 8 sparrows.

How many birds? _____

D Rained 4 days. Sunny 9 days.

How many days? _____

B 9 boys. 8 girls.

How many children? _____

E 6 drums. 9 bugles.

How many instruments? _____

C 2 weeks.

How many days? _____

F Stayed 9 days. Then stayed 1 more

week. Stayed how long in all? _____

1. Find the sums.

$$\begin{array}{r} \mathbf{A} \quad 8 \\ + 7 \\ \hline \end{array} \rightarrow \begin{array}{r} 68 \\ + 57 \\ \hline \end{array} \rightarrow \begin{array}{r} 468 \\ + 957 \\ \hline \end{array} \rightarrow \begin{array}{r} 7468 \\ + 5957 \\ \hline \end{array} \rightarrow \begin{array}{r} 37468 \\ + 85957 \\ \hline \end{array}$$

$$\begin{array}{r} \mathbf{B} \quad 9 \\ + 6 \\ \hline \end{array} \rightarrow \begin{array}{r} 59 \\ + 76 \\ \hline \end{array} \rightarrow \begin{array}{r} 459 \\ + 676 \\ \hline \end{array} \rightarrow \begin{array}{r} 8459 \\ + 9676 \\ \hline \end{array} \rightarrow \begin{array}{r} 58459 \\ + 79676 \\ \hline \end{array}$$

$$\begin{array}{r} \mathbf{C} \quad 8 \\ + 5 \\ \hline \end{array} \rightarrow \begin{array}{r} 38 \\ + 45 \\ \hline \end{array} \rightarrow \begin{array}{r} 938 \\ + 645 \\ \hline \end{array} \rightarrow \begin{array}{r} 7938 \\ + 6645 \\ \hline \end{array} \rightarrow \begin{array}{r} 97938 \\ + 46645 \\ \hline \end{array}$$

2. Find the sums.

$$\begin{array}{r} \mathbf{A} \quad 607 \\ + 834 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{B} \quad 964 \\ + 289 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{C} \quad 7462 \\ + 9317 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{D} \quad 8652 \\ + 9064 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{E} \quad 98463 \\ + 72169 \\ \hline \end{array}$$

$$\begin{array}{r} \mathbf{F} \quad 286 \\ 430 \\ + 927 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{G} \quad 651 \\ 287 \\ + 965 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{H} \quad 7364 \\ 8091 \\ + 7436 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{I} \quad 7064 \\ 9391 \\ + 8405 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{J} \quad 67283 \\ 90726 \\ + 54391 \\ \hline \end{array}$$

$$\begin{array}{r} \mathbf{K} \quad 643 \\ 728 \\ + 569 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{L} \quad 758 \\ 304 \\ + 619 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{M} \quad 7268 \\ 473 \\ 5860 \\ + 29 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{N} \quad 9642 \\ 17 \\ 8406 \\ + 927 \\ \hline \end{array} \quad \begin{array}{r} \mathbf{o} \quad 36280 \\ 4076 \\ 91824 \\ + 698 \\ \hline \end{array}$$

CHANGE OF PACE

A code and an addition exercise are given. See if you can solve the code. Each letter stands for a digit. For example, C stands for the digit 8.

Code: A = █ B = █
 C = █ D = █ E = █

$$\begin{array}{r} 8CDC \\ + AEB \\ \hline BDBE \end{array}$$

Clue: Could B stand for more than 1?

We say: "Seven dollars and thirty-six cents."

We write:

\$ 7 . 3 6

The period separates dollars from cents.

1. Give the total amounts.

$$\begin{array}{r} 276 \\ + 341 \\ \hline 617 \end{array}$$

A Since $\underline{+341}$, we know that $\underline{+3.41}$.

$$\begin{array}{r} 507 \\ + 236 \\ \hline 1371 \end{array}$$

B Since $\underline{628}$, we know that $\underline{+2.36}$.

2. Find the total amounts.

A $\underline{\$18.55}$

B $\underline{\$25.19}$

C $\underline{\$8.45}$

D $\underline{\$52.14}$

E $\underline{\$1.79}$

$\underline{+1.34}$

$\underline{+32.44}$

$\underline{+9.67}$

$\underline{+54.56}$

$\underline{+5.68}$

F $\underline{\$39.37}$

G $\underline{\$25.89}$

H $\underline{\$3.97}$

I $\underline{\$129.35}$

J $\underline{\$2749.50}$

$\underline{+24.77}$

$\underline{+10.29}$

$\underline{+0.65}$

$\underline{+374.87}$

$\underline{+5277.77}$

3. Short stories.

- A Had \$5.39.
Earned \$2.70 more.

How much in all? _____

- c Had \$23.65 in a savings account.
Put in \$7.86 more.

How much in savings now? _____

- B Movie ticket \$1.50
Popcorn 0.35
Soda 0.35

How much in all? _____

- d A bike costs \$59.98.
A basket costs \$3.49.
Tax is \$1.94.

How much in all? _____

1. Give the missing numbers in each equation.

Think
 $63 = 50 + \underline{\quad}$

$$\begin{array}{r} 5 \\ 6 \\ - 2 \\ \hline 3 \end{array}$$

Think
 $13 - 7 = \underline{\quad}$

$$\begin{array}{r} 5 \\ 6 \\ - 2 \\ \hline 6 \end{array}$$

Think
 $5 - 2 = \underline{\quad}$

$$\begin{array}{r} 5 \\ 6 \\ - 2 \\ \hline 3 \end{array}$$

2. Find the differences.

A $\begin{array}{r} 61 \\ - 44 \\ \hline \end{array}$

B $\begin{array}{r} 72 \\ - 29 \\ \hline \end{array}$

C $\begin{array}{r} 84 \\ - 56 \\ \hline \end{array}$

D $\begin{array}{r} 30 \\ - 19 \\ \hline \end{array}$

E $\begin{array}{r} 92 \\ - 65 \\ \hline \end{array}$

F $\begin{array}{r} 73 \\ - 27 \\ \hline \end{array}$

G $\begin{array}{r} 67 \\ - 38 \\ \hline \end{array}$

3. Study the steps and give the missing numbers in the equations.

Think
 I can't subtract
 7 from 5.

$$\begin{array}{r} 9 \\ 3 \\ - 2 \\ \hline 5 \end{array}$$

Think
 $35 = 20 + \underline{\quad}$

$$\begin{array}{r} 2 \\ 9 \\ - 2 \\ \hline 5 \end{array}$$

Think
 $15 - 7 = \underline{\quad}$

$$\begin{array}{r} 2 \\ 9 \\ - 2 \\ \hline 8 \end{array}$$

Think
 $92 = 80 + \underline{\quad}$

$$\begin{array}{r} 8 \\ 9 \\ - 2 \\ \hline 8 \end{array}$$

Think
 $12 - 8 = \underline{\quad}$

$$\begin{array}{r} 8 \\ 9 \\ - 2 \\ \hline 8 \end{array}$$

Think
 $8 - 2 = \underline{\quad}$

$$\begin{array}{r} 8 \\ 9 \\ - 2 \\ \hline 8 \end{array}$$

4. Find the differences.

A $\begin{array}{r} 146 \\ - 81 \\ \hline \end{array}$

B $\begin{array}{r} 153 \\ - 67 \\ \hline \end{array}$

C $\begin{array}{r} 961 \\ - 268 \\ \hline \end{array}$

D $\begin{array}{r} 435 \\ - 174 \\ \hline \end{array}$

E $\begin{array}{r} 267 \\ - 158 \\ \hline \end{array}$

F $\begin{array}{r} 817 \\ - 734 \\ \hline \end{array}$

G $\begin{array}{r} 2934 \\ - 1561 \\ \hline \end{array}$

H $\begin{array}{r} 8153 \\ - 4832 \\ \hline \end{array}$

I $\begin{array}{r} 7812 \\ - 3728 \\ \hline \end{array}$

J $\begin{array}{r} 76432 \\ - 32766 \\ \hline \end{array}$

1. Study the examples. Then give the missing numbers for each exercise.

Examples: $802 = 80$ tens + 2 or 79 tens + 12

$7005 = 700$ tens + 5 or 699 tens + 15

$6043 = 60$ hundreds + 43 or 59 hundreds + 143

- A $702 = \underline{\quad}$ tens + 2 or 69 tens + $\underline{\quad}$
- B $508 = 50$ tens + $\underline{\quad}$ or $\underline{\quad}$ tens + 18
- C $900 = \underline{\quad}$ tens + 0 or $\underline{\quad}$ tens + 10
- D $1308 = 130$ tens + $\underline{\quad}$ or 129 tens + $\underline{\quad}$
- E $6004 = \underline{\quad}$ tens + 4 or $\underline{\quad}$ tens + 14
- F $7004 = 700$ tens + $\underline{\quad}$ or $\underline{\quad}$ tens + 14
- G $8026 = \underline{\quad}$ hundreds + 26 or $\underline{\quad}$ hundreds + 126
- H $2035 = 20$ hundreds + $\underline{\quad}$ or $\underline{\quad}$ hundreds + 135
- I $7060 = \underline{\quad}$ hundreds + 60 or $\underline{\quad}$ hundreds + 160
- J $5037 = 50$ hundreds + $\underline{\quad}$ or $\underline{\quad}$ hundreds + 137

2. Give each missing number as in the example.

Example: $\begin{array}{r} 6913 \\ - 703 \\ \hline \end{array}$

A $\begin{array}{r} \cancel{4}02 \\ - \cancel{4}02 \\ \hline \end{array}$

B $\begin{array}{r} \cancel{6}05 \\ - \cancel{6}05 \\ \hline \end{array}$

C $\begin{array}{r} \cancel{9}002 \\ - \cancel{9}002 \\ \hline \end{array}$

D $\begin{array}{r} \cancel{8}004 \\ - \cancel{8}004 \\ \hline \end{array}$

E $\begin{array}{r} \cancel{6}01 \\ - \cancel{6}01 \\ \hline \end{array}$

F $\begin{array}{r} \cancel{2}00 \\ - \cancel{2}00 \\ \hline \end{array}$

G $\begin{array}{r} \cancel{7}001 \\ - \cancel{7}001 \\ \hline \end{array}$

H $\begin{array}{r} \cancel{7}062 \\ - \cancel{7}062 \\ \hline \end{array}$

I $\begin{array}{r} \cancel{4}032 \\ - \cancel{4}032 \\ \hline \end{array}$

3. Find the differences.

A $\begin{array}{r} 203 \\ - 156 \\ \hline \end{array}$

B $\begin{array}{r} 406 \\ - 158 \\ \hline \end{array}$

C $\begin{array}{r} 702 \\ - 135 \\ \hline \end{array}$

D $\begin{array}{r} 900 \\ - 246 \\ \hline \end{array}$

E $\begin{array}{r} 600 \\ - 338 \\ \hline \end{array}$

F $\begin{array}{r} 504 \\ - 257 \\ \hline \end{array}$

G $\begin{array}{r} 200 \\ - 144 \\ \hline \end{array}$

H $\begin{array}{r} 8032 \\ - 3471 \\ \hline \end{array}$

I $\begin{array}{r} 9046 \\ - 2869 \\ \hline \end{array}$

J $\begin{array}{r} 7005 \\ - 5432 \\ \hline \end{array}$

K $\begin{array}{r} 8002 \\ - 6444 \\ \hline \end{array}$

L $\begin{array}{r} 7102 \\ - 4325 \\ \hline \end{array}$

M $\begin{array}{r} 8304 \\ - 4687 \\ \hline \end{array}$

N $\begin{array}{r} 5074 \\ - 1683 \\ \hline \end{array}$

O $\begin{array}{r} 6200 \\ - 2784 \\ \hline \end{array}$

1. Give the total distance for each trip.

- A Vancouver to Toronto to Montreal _____ km
- B Montreal to Halifax to Victoria _____ km
- C Victoria to Montreal to Toronto _____ km
- D Ottawa to Calgary to Regina _____ km
- E Winnipeg to Ottawa to Toronto _____ km

Touring Distances (Kilometres)		
Vancouver to Toronto	4580
Toronto to Montreal	556
Montreal to Halifax	1348
Halifax to Victoria	6344
Victoria to Montreal	4996
Winnipeg to Ottawa	2173
Ottawa to Calgary	3496
Calgary to Regina	753
Toronto to Ottawa	426

2. Tell how much farther the first trip is than the second.

- A Toronto to Montreal; Toronto to Ottawa _____
- B Victoria to Halifax; Victoria to Montreal _____
- C Calgary to Regina; Montreal to Toronto _____
- D Winnipeg to Ottawa; Vancouver to Toronto _____

3. Which is farther, Toronto to Ottawa or

Ottawa to Winnipeg? _____

How much further? _____

4. It is 6344 kilometres from Victoria to Halifax.

How much further is it if you stop in Montreal on the way
from Victoria to Halifax? _____ km

5. It costs \$48.50 to fly from Toronto to Montreal.

It costs \$64.50 to fly from Toronto to Victoria.

How much more does it cost to fly from Toronto to Victoria? _____

1. Solve the equations.

A $9 + 6 = \underline{\hspace{2cm}}$

B $7 + \underline{\hspace{2cm}} = 12$

C $13 - 7 = \underline{\hspace{2cm}}$

D $12 - 5 = \underline{\hspace{2cm}}$

E $\underline{\hspace{2cm}} + 8 = 13$

F $17 - \underline{\hspace{2cm}} = 9$

2. Solve the equations.

A $47 = 30 + \underline{\hspace{2cm}}$

B $78 = 60 + \underline{\hspace{2cm}}$

C $70 = 60 + \underline{\hspace{2cm}}$

3. Find the differences.

Since $27 + 85 = 112$, we know that

$112 - 85 = \underline{\hspace{2cm}}$

$112 - 27 = \underline{\hspace{2cm}}$

4. Solve the equations.

A $68 + \underline{\hspace{2cm}} = 23 + 68$

B $17 + (68 + 95) = (17 + \underline{\hspace{2cm}}) + 95$

5. Find the sums and differences.

A $\begin{array}{r} 37 \\ + 69 \\ \hline \end{array}$

B $\begin{array}{r} 53 \\ - 26 \\ \hline \end{array}$

C $\begin{array}{r} 89 \\ + 58 \\ \hline \end{array}$

D $\begin{array}{r} 174 \\ - 86 \\ \hline \end{array}$

E $\begin{array}{r} \$ 5.28 \\ + 6.94 \\ \hline \end{array}$

F $\begin{array}{r} \$ 7.06 \\ - 1.58 \\ \hline \end{array}$

G $26 + 347 + 9 = \underline{\hspace{2cm}}$

H $4603 - 2776 = \underline{\hspace{2cm}}$

6. Jack bought a bat for \$1.75, a ball for \$2.39, and a glove for \$10.95. How much did he spend in all? _____

CHANGE OF PACE

We can use a letter and a number to locate each point on the map. For example, E-3 gives the location of Pinebluff. Give the location of the other cities.

1. Fairview _____

4. Oakgrove _____

2. Bluelake _____

5. Hilltop _____

3. Cedar Junction _____

6. Sandcreek _____

1. Write the name of the part of the cube (edge, face, right angle, or vertex) in the blanks below.

- A _____
B _____
C _____
D _____

2. Use points A and B to draw \overline{AB} .

3. Use points M and N to draw \overleftarrow{MN} .

4. Draw as many segments as you can connecting points R, S, T, and U.

5. Use points O, P, Q, to draw $\angle POQ$.

6. Write the name of each figure using the proper letters and symbols.

1. Name the lines that are parallel to each other.

_____ is parallel to _____

_____ is parallel to _____

2. Use the points shown to draw the figures named in each part.

A Rectangle

B Parallelogram

c Square

d Rhombus

3. Name the pairs of parallel segments for each figure below.

_____ is parallel to _____

_____ is parallel to _____

_____ is parallel to _____

_____ is parallel to _____

_____ is parallel to _____

_____ is parallel to _____

_____ is parallel to _____

_____ is parallel to _____

1. Ring the figures that are simple closed curves.

2. Place a ✓ in each figure that is a quadrilateral.

3. Draw as many lines of symmetry as you can for each figure. Then complete parts A and B of the table.

REGULAR POLYGONS					
	Triangle	Square	Pentagon	Hexagon	Octagon
A Number of sides	3				
B Lines of symmetry	3	4			

4. Draw as many lines of symmetry as you can for each figure.

5. Complete the drawing so that the dashed line will be a line of symmetry.

1. Refer to the cube at the right to answer the questions.

- A How many faces? _____
- B How many vertices? _____
- C How many edges? _____

2. Choose the correct word from the list at the left that best describes the figure or a part of a figure shown in color.

- angle
- parallel segments
- pyramid
- quadrilateral
- ray
- segment
- simple closed curve
- symmetric figure
- vertex

A _____

B _____

C _____

D _____

E _____

F _____

G _____

H _____

I _____

CHANGE OF PACE

A regular pentagon is hidden in the figure.

Find the pentagon and color it.

5

Multiplication and Division

Related Operations

1. Give the missing numbers. Then solve the equations.

_____ sets of 4

$$3 \times 4 = \boxed{\quad}$$

$$\boxed{\quad} \div 3 = 4$$

6 sets of _____

$$6 \times 3 = \boxed{\quad}$$

$$\boxed{\quad} \div 6 = 3$$

2. Ring as many sets of 4 as you can.

There are _____ dots in all.

There are _____ sets of 4. $20 \div 4 = \boxed{\quad}$

3. Make as many jumps of 6 as you can.

$$6 + 6 + 6 + 6 = \boxed{\quad}$$

$$4 \times 6 = \boxed{\quad}$$

4. Make jumps of 6 from 24 to zero.

$$\begin{array}{r} 24 \\ - 6 \\ \hline 18 \end{array} \quad \begin{array}{r} 18 \\ - 6 \\ \hline 12 \end{array} \quad \begin{array}{r} 12 \\ - 6 \\ \hline 6 \end{array} \quad \begin{array}{r} 6 \\ - 6 \\ \hline 0 \end{array}$$

6 was subtracted _____ times.

$$24 \div 6 = \boxed{\quad}$$

1. Study the sets. Then solve the equations.

2. Find the products.

- A Since $8 \times 7 = 56$,
we know that $7 \times 8 =$ [].
- B Since $6 \times 9 = 54$,
we know that $9 \times 6 =$ [].

- c Since $5 \times 8 = 40$,
we know that $8 \times 5 =$ [].
- d Since $7 \times 6 = 42$,
we know that $6 \times 7 =$ [].

3. Solve the equations.

A $3 \times 47 = 47 \times $ []	C [] $\times 38 = 38 \times 9$	E $64 \times 8 = 8 \times $ []
B $56 \times 4 = $ [] $\times 56$	D $14 \times $ [] $= 9 \times 14$	F $51 \times 7 = $ [] $\times 51$

When we change the **order** of the factors,
we get the same product.

4. Solve the equations.

A $5 \times 1 =$ []

C $7 \times 1 =$ []

E [] $\times 1 = 9$

B $1 \times 5 =$ []

D $1 \times 8 =$ []

F $1 \times$ [] $= 6$

5. Solve the equations.

A $5 \times 0 =$ []

C $7 \times 0 =$ []

E $9 \times$ [] $= 0$

B $0 \times 5 =$ []

D $0 \times 8 =$ []

F [] $\times 6 = 0$

The product of any number and 1
is the number itself.

The product of any number and 0
is 0.

1. Study the sets. Then solve the equations.

A

We see →

We think → 5 threes

3 threes and 2 threes

We write →

$$5 \times 3 = \boxed{\quad}$$

$$(3 \times 3) + (2 \times 3) = \boxed{\quad}$$

B

We see →

We think → 6 fours

4 fours and 2 fours

We write →

$$6 \times 4 = \boxed{\quad}$$

$$(4 \times 4) + (2 \times 4) = \boxed{\quad}$$

2. Solve the equations.

A $5 \times 3 = (3 \times 3) + (\boxed{\quad} \times 3)$

G $8 \times 7 = (7 \times 7) + (\boxed{\quad} \times 7)$

B $6 \times 4 = (\boxed{\quad} \times 4) + (2 \times 4)$

H $9 \times 3 = (7 \times 3) + (\boxed{\quad} \times 3)$

C $7 \times 7 = (4 \times 7) + (\boxed{\quad} \times 7)$

I $8 \times 5 = (\boxed{\quad} \times 5) + (3 \times 5)$

D $6 \times 7 = (\boxed{\quad} \times 7) + (3 \times 7)$

J $7 \times 6 = (5 \times 6) + (2 \times \boxed{\quad})$

E $8 \times 3 = (4 \times 3) + (4 \times \boxed{\quad})$

K $5 \times 9 = (2 \times \boxed{\quad}) + (3 \times 9)$

F $5 \times 9 = (2 \times \boxed{\quad}) + (3 \times 9)$

L $6 \times 8 = (1 \times 8) + (\boxed{\quad} \times 8)$

3. Solve the equations.

A $3 \times 8 = 24$ } → $5 \times 8 = \boxed{\quad}$
 $2 \times 8 = 16$

B $2 \times 6 = 12$ } → $7 \times 6 = \boxed{\quad}$
 $5 \times 6 = 30$

C $3 \times 7 = 21$ } → $6 \times 7 = \boxed{\quad}$
 $3 \times 7 = 21$

D $4 \times 6 = 24$ } → $7 \times 6 = \boxed{\quad}$
 $3 \times 6 = 18$

1. "0" facts The product of any number and zero is _____.

Complete the **0 row** and **column** of the multiplication table on page 35.

2. "1" facts The product of any number and _____ is that number.

Complete the **1 row** and **column** of the table.

3. "2" facts Solving these equations will help you complete the **2 row** of the table.

A Since $3 + 3 = 6$,
we know $2 \times 3 =$ _____.

B Since $5 + 5 = 10$,
we know $2 \times 5 =$ _____.

C Complete the **2 row** of the table.

D Since $2 \times 3 = 6$,
we know that $3 \times 2 =$ _____.

E Now use the order principle
to complete the **2 column**.

4. "3" facts Solving these equations will help you complete the **3 row** of the table.

A $(2 \times 5) + 5 =$ _____ $\rightarrow 3 \times 5 =$ _____

B $(2 \times 4) + 4 =$ _____ $\rightarrow 3 \times 4 =$ _____

C $(2 \times 8) + 8 =$ _____ $\rightarrow 3 \times 8 =$ _____

D Complete the **3 row** of the table.

E Use the order principle to complete the **3 column**.

5. "4" facts Solving these equations will help you complete the **4 row** of the table.

A $(2 \times 7) + (2 \times 7) =$ _____ B $(2 \times 9) + (2 \times 9) =$ _____
 $4 \times 7 =$ _____ $4 \times 9 =$ _____

C Complete the **4 row** of the table.

D Use the order principle to complete the **4 column**.

6. "5" facts Solving these equations will help you complete the **5 row** of the table.

A $(4 \times 6) + 6 =$ _____ $\rightarrow 5 \times 6 =$ _____

B $(4 \times 8) + 8 =$ _____ $\rightarrow 5 \times 8 =$ _____

C $(4 \times 5) + 5 =$ _____ $\rightarrow 5 \times 5 =$ _____

D $(4 \times 7) + 7 =$ _____ $\rightarrow 5 \times 7 =$ _____

E Complete the **5 row** of the table.

F Use the order principle to complete the **5 column**.

1. "6" facts Solve these equations.

Then complete the 6 row and column.

A $(3 \times 8) + (3 \times 8) = \underline{\hspace{2cm}}$

$6 \times 8 = \underline{\hspace{2cm}}$

B $(3 \times 7) + (3 \times 7) = \underline{\hspace{2cm}}$

$6 \times 7 = \underline{\hspace{2cm}}$

C $(3 \times 6) + (3 \times 6) = \underline{\hspace{2cm}}$

$6 \times 6 = \underline{\hspace{2cm}}$

D $(3 \times 9) + (3 \times 9) = \underline{\hspace{2cm}}$

$6 \times 9 = \underline{\hspace{2cm}}$

2. "7" facts Solve these equations to help you complete the 7 row of the table.

A $(6 \times 6) + 6 = \underline{\hspace{2cm}} \rightarrow 7 \times 6 = \underline{\hspace{2cm}}$

B $(6 \times 7) + 7 = \underline{\hspace{2cm}} \rightarrow 7 \times 7 = \underline{\hspace{2cm}}$

C $(6 \times 8) + 8 = \underline{\hspace{2cm}} \rightarrow 7 \times 8 = \underline{\hspace{2cm}}$

D $(6 \times 9) + 9 = \underline{\hspace{2cm}} \rightarrow 7 \times 9 = \underline{\hspace{2cm}}$

E Use the order principle to complete the 7 column.

3. "8" facts Solve these equations. Then complete the 8 row and column of the table.

A $(4 \times 8) + (4 \times 8) = \underline{\hspace{2cm}}$

$8 \times 8 = \underline{\hspace{2cm}}$

B $(4 \times 9) + (4 \times 9) = \underline{\hspace{2cm}}$

$8 \times 9 = \underline{\hspace{2cm}}$

4. "9" facts Solve these equations. Then complete the table.

A $(6 \times 9) + (3 \times 9) = \underline{\hspace{2cm}} \rightarrow$

B $9 \times 9 = \underline{\hspace{2cm}}$

MULTIPLICATION TABLE

\times	0	1	2	3	4	5	6	7	8	9
0 row ↓	0									
1 row ↓		1								
2 row ↓			2							
3 row ↓				3						
4 row ↓					4					
5 row ↓						5				
6 row ↓							6			
7 row ↓								7		
8 row ↓									8	
9 row ↓										9

1. Give the missing numbers.

When you find this **missing factor**,

you have found this **quotient**.

$$\boxed{\quad} \times 4 = 28$$

$$28 \div 4 = \boxed{\quad}$$

2. Find each quotient.

Think
 $? \times 3 = 27$

A $27 \div 3 = \boxed{\quad}$

Think
 $? \times 5 = 40$

B $40 \div 5 = \boxed{\quad}$

Think
 $? \times 6 = 24$

C $24 \div 6 = \boxed{\quad}$

Think
 $? \times 7 = 35$

D $35 \div 7 = \boxed{\quad}$

Think
 $? \times 4 = 32$

E $32 \div 4 = \boxed{\quad}$

Think
 $? \times 7 = 49$

F $49 \div 7 = \boxed{\quad}$

3. Find each missing factor and quotient.

A $\boxed{\quad} \times 4 = 16$
 $16 \div 4 = \boxed{\quad}$

E $\boxed{\quad} \times 7 = 56$
 $56 \div 7 = \boxed{\quad}$

I $\boxed{\quad} \times 4 = 36$
 $36 \div 4 = \boxed{\quad}$

B $\boxed{\quad} \times 5 = 30$
 $30 \div 5 = \boxed{\quad}$

F $\boxed{\quad} \times 8 = 16$
 $16 \div 8 = \boxed{\quad}$

J $\boxed{\quad} \times 6 = 42$
 $42 \div 6 = \boxed{\quad}$

C $\boxed{\quad} \times 5 = 35$
 $35 \div 5 = \boxed{\quad}$

G $\boxed{\quad} \times 3 = 21$
 $21 \div 3 = \boxed{\quad}$

K $\boxed{\quad} \times 5 = 40$
 $40 \div 5 = \boxed{\quad}$

D $\boxed{\quad} \times 4 = 32$
 $32 \div 4 = \boxed{\quad}$

H $\boxed{\quad} \times 7 = 28$
 $28 \div 7 = \boxed{\quad}$

L $\boxed{\quad} \times 9 = 36$
 $36 \div 9 = \boxed{\quad}$

1. A Can you find a number that gives 7 when you multiply it by zero? _____

$$\text{?} \times 7 = 0$$

$$7 \div 0 = \boxed{\quad}$$

- B Is it true that any number times zero is zero? _____

$$\text{?} \times 0 = 0$$

$$0 \div 0 = \boxed{\quad}$$

Since an equation like $7 \div 0 = \boxed{\quad}$ does not have any solution and the equation $0 \div 0 = \boxed{\quad}$ does not have any one solution, we never divide by zero.

2. Find each quotient.

A $\text{?} \times 0 = 7$

$$0 \div 7 = \boxed{\quad}$$

B $\text{?} \times 3 = 0$

$$0 \div 3 = \boxed{\quad}$$

C $\text{?} \times 8 = 0$

$$0 \div 8 = \boxed{\quad}$$

Zero divided by any number (other than zero) is zero.

3. Find each quotient.

A $\text{?} \times 6 = 6$

$$6 \div 6 = \boxed{\quad}$$

B $\text{?} \times 1 = 9$

$$9 \div 1 = \boxed{\quad}$$

Any number (other than zero) divided by itself is 1.
Any number divided by 1 is that number.

4. Solve the equations.

A $3 \div 3 = \boxed{\quad}$

D $7 \div 7 = \boxed{\quad}$

G $0 \div 1 = \boxed{\quad}$

J $2 \div 2 = \boxed{\quad}$

B $0 \div 6 = \boxed{\quad}$

E $9 \div \boxed{\quad} = 1$

H $1 \div 1 = \boxed{\quad}$

K $0 \div 3 = \boxed{\quad}$

C $8 \div 1 = \boxed{\quad}$

F $\boxed{\quad} \div 6 = 0$

I $5 \div \boxed{\quad} = 5$

L $\boxed{\quad} \div 8 = 0$

1. The two function machines are connected. The output for machine A becomes the input for machine B. Give the output for machine B.

For exercises 2 through 9, think about connected function machines and give the missing numbers or rules.

2. **RULE**

A	Multiply by 3
B	Add 2

INPUT A OUTPUT B

2	8
4	14
3	
5	
6	

3. **RULE**

A	Multiply by 4
B	Divide by 4

INPUT A OUTPUT B

6	6
9	9
8	
4	
7	

4. **RULE**

A	Add 7
B	Subtract 5

INPUT A OUTPUT B

3	5
7	9
0	
3	
1	

5. **RULE**

A	Multiply by 2
B	Subtract 4

INPUT A OUTPUT B

6	8
5	6
4	
7	
2	

6. **RULE**

A	Multiply by .3
B	Add

INPUT A OUTPUT B

4	14
7	23
2	8
3	
5	

7. **RULE**

A	Divide by 2
B	Subtract

INPUT A OUTPUT B

14	4
12	3
20	7
16	
10	

8. **RULE**

A	Add 8
B	Subtract

INPUT A OUTPUT B

7	7
1	1
8	
0	
6	

9. **RULE**

A	Multiply by
B	Subtract 0

INPUT A OUTPUT B

6	24
7	28
5	20
3	
9	

Solve the problem. Then write the correct number in the blank.

1. Lily read 23 pages the first day, 48 pages the second day, and only 19 pages the third day. She read _____ pages in the three days.
2. Ed paid \$4.95 for his tennis shoes and \$1.98 for a cap. The shoes cost _____ more than the cap.
3. Betty had 40 cents worth of nickels. She had _____ nickels.
4. Julie visited her grandmother for 35 days last summer. This was _____ weeks.
5. Frank bought seven 8-cent stamps. The stamps cost him _____ cents.
6. An ice-cube tray has 3 rows of cubes with 8 cubes in each row. The tray holds _____ cubes.
7. A case of soda pop holds 24 bottles. The bottles are in 4 rows. There are _____ bottles in each row.
8. Ann weighs 40 kg; Carmen, 37 kg; Laura, 31 kg; and Emilia, 36 kg.
 - A The four girls weigh _____ kilograms in all.
 - B Carmen weighs _____ kilograms more than Laura.
9. Joe put his coins in stacks of 10. When he finished, he had 7 stacks and 8 left over. He had _____ coins.
10. Wilma has some records that play for 5 minutes each. She can play _____ records in 45 minutes.
11. There are 31 children in Jean's class. 16 of them are girls. There are _____ boys in Jean's class.
12. Kim divided her rock collection equally into 5 boxes. She had 40 rocks. She put _____ rocks into each box.
13. Cherie went swimming 4 times a week for 8 weeks. The last 4 weeks of the summer she went only 3 times a week. She went swimming _____ times during the summer.

1.

3 shirts

How many different outfits? _____

$$3 \times 4 = _____$$

2.

5 kinds of ice cream

How many kinds of sundaes? _____

4 kinds of toppings

$$5 \times 4 = _____$$

3.

4 different drinks

How many different lunches? _____

4 different sandwiches

$$4 \times 4 = _____$$

4. Draw lines connecting each square to each circle. Then write a multiplication equation suggested by the pairings.

A

B

C

$$3 \times 2 = 6$$

1. Write a multiplication and a division equation for this set.

$$\underline{\quad \times \quad} = \underline{\quad \div 3 = \quad}$$

2. Solve the equations.

A Since $8 \times 7 = 56$, $56 \div 7 = \boxed{\quad}$. c Since $1 \times 7 = 7$, $7 \div 7 = \boxed{\quad}$.

B Since $0 \times 7 = 0$, $0 \div 7 = \boxed{\quad}$. d Since $7 \times 1 = 7$, $7 \div 1 = \boxed{\quad}$.

3. Solve the equations.

A $6 \times 4 = (\boxed{\quad} \times 4) + (3 \times 4)$ c $8 \times 2 = (4 \times 2) + (\boxed{\quad} \times 2)$

B $5 \times 7 = (3 \times 7) + (2 \times \boxed{\quad})$ d $9 \times 7 = (3 \times \boxed{\quad}) + (6 \times 6)$

4. Solve the equations.

A $6 \times 7 = \boxed{\quad}$ B $48 \div 6 = \boxed{\quad}$ c $28 \div \boxed{\quad} = 7$ d $5 \times \boxed{\quad} = 35$

5. Find the quotients.

A $7 \overline{) 42}$ B $6 \overline{) 48}$ C $7 \overline{) 28}$ D $5 \overline{) 35}$ E $8 \overline{) 72}$

6. Bought 48 cents worth of 6-cent stamps. How many stamps? _____

CHANGE OF PACE

List the squares that have:

1. A black dot (Answer: ABCDGHIJ)
2. A colored dot _____
3. A star _____
4. A colored dot only _____
5. A colored dot but no star _____
6. Both a black dot and a star _____
7. Both a black dot and a star but not a colored dot _____
8. A colored and a black dot _____

You do not need to give the correct answers to the questions in these problems. Just tell whether you would add, subtract, multiply, or divide to find each answer. In exercises 7 through 12, the numbers are covered by screens.

1. Jane had 75 cents. Then she spent 39 cents for a pad of paper. How much did she have left? _____
2. Drew has 53 cents and John has 67 cents. How much do the two boys have together? _____
3. Sue has collected 45 pennies. How many nickels can she get for these pennies? _____
4. Pat pasted 12 stamps on each of 8 pages in his stamp book. How many stamps did he have on these 8 pages? _____
5. Gloria is 74 months old and Sara is 59 months old. How much older is Gloria than Sara? _____
6. One April it rained for 21 straight days. How many weeks was this? _____

7. Jim's older brother plans to be at summer camp for ■■■ weeks. How many days is this? _____
8. Lynn has ■■■ cents and Mike has ■■■ cents.
 - A How much do they have in all? _____
 - B How much more does Lynn have than Mike? _____
9. Mel gave ■■■ baseball cards to ■■■ friends. Each friend got the same number of cards. How many did each friend get? _____
10. Pam spent ■■■ cents on her friends. She bought each of them a soda for ■■■ cents each. How many friends had soda? _____
11. After David earned ■■■ cents he had ■■■ cents. How much did he have before? _____
12. George is ■■■ years old today. How many months old is George? _____

6

Special Products and Quotients

● 10, 100, and 1000 as Factors

1. Solve the equations.

A $3 \times 10 = \underline{\hspace{2cm}}$

D $6 \times 10 = \underline{\hspace{2cm}}$

G $9 \times \underline{\hspace{2cm}} = 90$

B $3 \times 100 = \underline{\hspace{2cm}}$

E $6 \times 100 = \underline{\hspace{2cm}}$

H $\underline{\hspace{2cm}} \times 100 = 900$

C $3 \times 1000 = \underline{\hspace{2cm}}$

F $6 \times 1000 = \underline{\hspace{2cm}}$

I $9 \times 1000 = \underline{\hspace{2cm}}$

2. Find the products.

A $4 \times 100 = \underline{\hspace{2cm}}$

B $7 \times 100 = \underline{\hspace{2cm}}$

$4 \times (10 \times 10) = \underline{\hspace{2cm}}$

$7 \times (10 \times 10) = \underline{\hspace{2cm}}$

$(4 \times 10) \times 10 = \underline{\hspace{2cm}}$

$(7 \times 10) \times 10 = \underline{\hspace{2cm}}$

$40 \times 10 = \underline{\hspace{2cm}}$

$70 \times 10 = \underline{\hspace{2cm}}$

C $5 \times 1000 = \underline{\hspace{2cm}}$

D $9 \times 1000 = \underline{\hspace{2cm}}$

$5 \times (10 \times 100) = \underline{\hspace{2cm}}$

$9 \times (10 \times 100) = \underline{\hspace{2cm}}$

$(5 \times 10) \times 100 = \underline{\hspace{2cm}}$

$(9 \times 10) \times 100 = \underline{\hspace{2cm}}$

$50 \times 100 = \underline{\hspace{2cm}}$

$90 \times 100 = \underline{\hspace{2cm}}$

3. Solve the equations.

A $60 \times 10 = \underline{\hspace{2cm}}$

C $70 \times \underline{\hspace{2cm}} = 700$

E $90 \times 100 = \underline{\hspace{2cm}}$

B $80 \times 10 = \underline{\hspace{2cm}}$

D $\underline{\hspace{2cm}} \times 10 = 400$

F $30 \times 100 = \underline{\hspace{2cm}}$

4. Find the products.

A $40 \times 10 = \underline{\hspace{2cm}}$

B $30 \times 100 = \underline{\hspace{2cm}}$

C $70 \times 1000 = \underline{\hspace{2cm}}$

$3 \times 10 = \underline{\hspace{2cm}}$

$5 \times 100 = \underline{\hspace{2cm}}$

$6 \times 1000 = \underline{\hspace{2cm}}$

$43 \times 10 = \underline{\hspace{2cm}}$

$35 \times 100 = \underline{\hspace{2cm}}$

$76 \times 1000 = \underline{\hspace{2cm}}$

5. Find the products.

A $8 \times 10 = \underline{\hspace{2cm}}$

E $97 \times 10 = \underline{\hspace{2cm}}$

I $56 \times 100 = \underline{\hspace{2cm}}$

B $31 \times 10 = \underline{\hspace{2cm}}$

F $7 \times 100 = \underline{\hspace{2cm}}$

J $3 \times 1000 = \underline{\hspace{2cm}}$

C $18 \times 10 = \underline{\hspace{2cm}}$

G $44 \times 100 = \underline{\hspace{2cm}}$

K $27 \times 1000 = \underline{\hspace{2cm}}$

D $43 \times 10 = \underline{\hspace{2cm}}$

H $50 \times 10 = \underline{\hspace{2cm}}$

L $49 \times 1000 = \underline{\hspace{2cm}}$

1. Find the first product. Then find the other products.

- A Since $4 \times 10 = \underline{\hspace{2cm}}$, we know that $4 \times 100 = \underline{\hspace{2cm}}$
- B Since $19 \times 10) = \underline{\hspace{2cm}}$, we know that $19 \times 100 = \underline{\hspace{2cm}}$.
- C Since $6 \times 10 = \underline{\hspace{2cm}}$, we know that $6 \times 100 = \underline{\hspace{2cm}}$ and
 $6 \times 1000 = \underline{\hspace{2cm}}$.
- D Since $51 \times 10 = \underline{\hspace{2cm}}$, we know that $51 \times 100 = \underline{\hspace{2cm}}$ and
 $51 \times 1000 = \underline{\hspace{2cm}}$.

2. Find the products.

- | | |
|---|---|
| A $24 \times 10 = \underline{\hspace{2cm}}$ | B $36 \times 10 = \underline{\hspace{2cm}}$ |
| $(4 \times 6) \times 10 = \underline{\hspace{2cm}}$ | $(4 \times 9) \times 10 = \underline{\hspace{2cm}}$ |
| $4 \times (6 \times 10) = \underline{\hspace{2cm}}$ | $4 \times (9 \times 10) = \underline{\hspace{2cm}}$ |
| $4 \times 60 = \underline{\hspace{2cm}}$ | $4 \times 90 = \underline{\hspace{2cm}}$ |
| C $35 \times 100 = \underline{\hspace{2cm}}$ | D $21 \times 100 = \underline{\hspace{2cm}}$ |
| $(7 \times 5) \times 100 = \underline{\hspace{2cm}}$ | $(3 \times 7) \times 100 = \underline{\hspace{2cm}}$ |
| $7 \times (5 \times 100) = \underline{\hspace{2cm}}$ | $3 \times (7 \times 100) = \underline{\hspace{2cm}}$ |
| $7 \times 500 = \underline{\hspace{2cm}}$ | $3 \times 700 = \underline{\hspace{2cm}}$ |
| E $32 \times 1000 = \underline{\hspace{2cm}}$ | F $27 \times 1000 = \underline{\hspace{2cm}}$ |
| $(8 \times 4) \times 1000 = \underline{\hspace{2cm}}$ | $(9 \times 3) \times 1000 = \underline{\hspace{2cm}}$ |
| $8 \times (4 \times 1000) = \underline{\hspace{2cm}}$ | $9 \times (3 \times 1000) = \underline{\hspace{2cm}}$ |
| $8 \times 4000 = \underline{\hspace{2cm}}$ | $9 \times 3000 = \underline{\hspace{2cm}}$ |

3. Find the products.

- | | | |
|--|---|--|
| A $5 \times 3 = \underline{\hspace{2cm}}$ | G $3 \times 40 = \underline{\hspace{2cm}}$ | M $30 \times 8 = \underline{\hspace{2cm}}$ |
| B $15 \times 10 = \underline{\hspace{2cm}}$ | H $12 \times 100 = \underline{\hspace{2cm}}$ | N $300 \times 6 = \underline{\hspace{2cm}}$ |
| C $5 \times 30 = \underline{\hspace{2cm}}$ | I $4 \times 300 = \underline{\hspace{2cm}}$ | O $60 \times 90 = \underline{\hspace{2cm}}$ |
| D $15 \times 100 = \underline{\hspace{2cm}}$ | J $3 \times 400 = \underline{\hspace{2cm}}$ | P $4 \times 700 = \underline{\hspace{2cm}}$ |
| E $5 \times 300 = \underline{\hspace{2cm}}$ | K $30 \times 40 = \underline{\hspace{2cm}}$ | Q $3 \times 2000 = \underline{\hspace{2cm}}$ |
| F $5 \times 3000 = \underline{\hspace{2cm}}$ | L $12 \times 1000 = \underline{\hspace{2cm}}$ | R $8000 \times 7 = \underline{\hspace{2cm}}$ |

1. Find the products.

A $7 \times 10 = \underline{\hspace{2cm}}$

D $6 \times 60 = \underline{\hspace{2cm}}$

G $4 \times 500 = \underline{\hspace{2cm}}$

B $43 \times 10 = \underline{\hspace{2cm}}$

E $30 \times 7 = \underline{\hspace{2cm}}$

H $600 \times 9 = \underline{\hspace{2cm}}$

C $90 \times 5 = \underline{\hspace{2cm}}$

F $8 \times 50 = \underline{\hspace{2cm}}$

I $700 \times 8 = \underline{\hspace{2cm}}$

2. Find the missing factors.

A $\boxed{\quad} \times 2 = 14$

D $\boxed{\quad} \times 7 = 35$

G $\boxed{\quad} \times 4 = 240$

B $\boxed{\quad} \times 2 = 140$

E $\boxed{\quad} \times 7 = 350$

H $\boxed{\quad} \times 6 = 4200$

C $\boxed{\quad} \times 2 = 1400$

F $\boxed{\quad} \times 7 = 3500$

I $\boxed{\quad} \times 8 = 6400$

3. Fill in the blanks with as many different pairs of factors as you can.

A $\times \underline{\hspace{2cm}} = 150$

B $\times \underline{\hspace{2cm}} = 270$

150 $\times \underline{\hspace{2cm}} = 150$

 $\times \underline{\hspace{2cm}} = 270$

15 $\times \underline{\hspace{2cm}} = 150$

 $\times \underline{\hspace{2cm}} = 270$

3 $\times \underline{\hspace{2cm}} = 150$

 $\times \underline{\hspace{2cm}} = 270$

5 $\times \underline{\hspace{2cm}} = 150$

 $\times \underline{\hspace{2cm}} = 270$

4. Complete the multiplication table.

\times	10	20	30	50	80	100	200	400
3								
6								
9								
5								

1. Solve the equations. Solving the first equation should help you solve the second one.

A	$\boxed{\quad} \times 3 = 12 \rightarrow$	$\boxed{\quad} \times 3 = 120$	C	$\boxed{\quad} \times 6 = 30 \rightarrow$	$\boxed{\quad} \times 6 = 300$
B	$\boxed{\quad} \times 5 = 35 \rightarrow$	$\boxed{\quad} \times 5 = 350$	D	$\boxed{\quad} \times 4 = 24 \rightarrow$	$\boxed{\quad} \times 4 = 240$

2. Solve the equations.

A	$\boxed{\quad} \times 4 = 28$	B	$\boxed{\quad} \times 5 = 35$	C	$\boxed{\quad} \times 7 = 21$
	$\boxed{\quad} \times 4 = 280$		$\boxed{\quad} \times 5 = 350$		$\boxed{\quad} \times 7 = 210$
	$\boxed{\quad} \times 40 = 280$		$\boxed{\quad} \times 50 = 350$		$\boxed{\quad} \times 70 = 210$

3. First find the missing factor. Then find the quotient.

A	$\boxed{\quad} \times 3 = 120$	B	$\boxed{\quad} \times 8 = 160$	C	$\boxed{\quad} \times 4 = 200$
	$120 \div 3 = \boxed{\quad}$		$160 \div 8 = \boxed{\quad}$		$200 \div 4 = \boxed{\quad}$
D	$\boxed{\quad} \times 40 = 160$	E	$\boxed{\quad} \times 20 = 180$	F	$\boxed{\quad} \times 50 = 250$
	$160 \div 40 = \boxed{\quad}$		$180 \div 20 = \boxed{\quad}$		$250 \div 50 = \boxed{\quad}$
G	$\boxed{\quad} \times 8 = 2400$	H	$\boxed{\quad} \times 30 = 240$	I	$\boxed{\quad} \times 7 = 3500$
	$2400 \div 8 = \boxed{\quad}$		$240 \div 30 = \boxed{\quad}$		$3500 \div 7 = \boxed{\quad}$

4. Find the quotients.

A	$100 \div 2 = \underline{\hspace{1cm}}$	D	$240 \div 30 = \underline{\hspace{1cm}}$	G	$2700 \div 9 = \underline{\hspace{1cm}}$
B	$120 \div 3 = \underline{\hspace{1cm}}$	E	$160 \div 40 = \underline{\hspace{1cm}}$	H	$4200 \div 6 = \underline{\hspace{1cm}}$
C	$140 \div 7 = \underline{\hspace{1cm}}$	F	$350 \div 50 = \underline{\hspace{1cm}}$	I	$4000 \div 8 = \underline{\hspace{1cm}}$

5. Find the quotients.

A	$3) \overline{180}$	C	$4) \overline{360}$	E	$40) \overline{240}$	G	$5) \overline{4500}$
B	$5) \overline{100}$	D	$8) \overline{480}$	F	$70) \overline{4900}$	H	$9) \overline{7200}$

1. Find the products.

A $24 \times 100 = \underline{\hspace{2cm}}$

B $35 \times 100 = \underline{\hspace{2cm}}$

$(4 \times 6) \times 100 = \underline{\hspace{2cm}}$

$(5 \times 7) \times 100 = \underline{\hspace{2cm}}$

$(4 \times 6) \times (10 \times 10) = \underline{\hspace{2cm}}$

$(5 \times 7) \times (10 \times 10) = \underline{\hspace{2cm}}$

$(4 \times 10) \times (6 \times 10) = \underline{\hspace{2cm}}$

$(5 \times 10) \times (7 \times 10) = \underline{\hspace{2cm}}$

$40 \times 60 = \underline{\hspace{2cm}}$

$50 \times 70 = \underline{\hspace{2cm}}$

2. Find the products.

A $30 \times 40 = \underline{\hspace{2cm}}$

E $60 \times 50 = \underline{\hspace{2cm}}$

I $90 \times 20 = \underline{\hspace{2cm}}$

B $50 \times 30 = \underline{\hspace{2cm}}$

F $40 \times 70 = \underline{\hspace{2cm}}$

J $20 \times 80 = \underline{\hspace{2cm}}$

C $70 \times 20 = \underline{\hspace{2cm}}$

G $50 \times 50 = \underline{\hspace{2cm}}$

K $30 \times 60 = \underline{\hspace{2cm}}$

D $80 \times 30 = \underline{\hspace{2cm}}$

H $70 \times 30 = \underline{\hspace{2cm}}$

L $40 \times 40 = \underline{\hspace{2cm}}$

3. Find the missing factor. Then find the quotient.

A $\boxed{\quad} \times 20 = 1400$
 $1400 \div 20 = \boxed{\quad}$

B $\boxed{\quad} \times 50 = 2500$
 $2500 \div 50 = \boxed{\quad}$

C $\boxed{\quad} \times 80 = 1600$
 $1600 \div 80 = \boxed{\quad}$

D $\boxed{\quad} \times 50 = 3000$
 $3000 \div 50 = \boxed{\quad}$

E $\boxed{\quad} \times 30 = 1500$
 $1500 \div 30 = \boxed{\quad}$

F $\boxed{\quad} \times 40 = 1600$
 $1600 \div 40 = \boxed{\quad}$

G $\boxed{\quad} \times 70 = 2800$
 $2800 \div 70 = \boxed{\quad}$

H $\boxed{\quad} \times 40 = 1200$
 $1200 \div 40 = \boxed{\quad}$

I $\boxed{\quad} \times 20 = 1800$
 $1800 \div 20 = \boxed{\quad}$

4. Find the quotients.

A $10 \overline{) 900}$

B $30 \overline{) 1800}$

C $20 \overline{) 800}$

D $40 \overline{) 2800}$

E $80 \overline{) 1600}$

F $40 \overline{) 3600}$

G $80 \overline{) 5600}$

H $90 \overline{) 6300}$

1. Find the products.

A $7 \times 10 = \underline{\hspace{2cm}}$

D $65 \times 10 = \underline{\hspace{2cm}}$

G $2 \times 70 = \underline{\hspace{2cm}}$

B $6 \times 100 = \underline{\hspace{2cm}}$

E $10 \times 37 = \underline{\hspace{2cm}}$

H $30 \times 40 = \underline{\hspace{2cm}}$

C $23 \times 10 = \underline{\hspace{2cm}}$

F $60 \times 3 = \underline{\hspace{2cm}}$

I $60 \times 20 = \underline{\hspace{2cm}}$

2. Find the quotients.

A $70 \div 7 = \underline{\hspace{2cm}}$

D $360 \div 10 = \underline{\hspace{2cm}}$

G $150 \div 30 = \underline{\hspace{2cm}}$

B $800 \div 8 = \underline{\hspace{2cm}}$

E $320 \div 8 = \underline{\hspace{2cm}}$

H $280 \div 40 = \underline{\hspace{2cm}}$

C $500 \div 5 = \underline{\hspace{2cm}}$

F $240 \div 6 = \underline{\hspace{2cm}}$

I $300 \div 50 = \underline{\hspace{2cm}}$

3. Find the quotients.

A $6 \overline{) 600}$

c $8 \overline{) 240}$

e $5 \overline{) 2000}$

g $30 \overline{) 2400}$

b $4 \overline{) 40}$

d $2 \overline{) 140}$

f $4 \overline{) 1600}$

h $20 \overline{) 1200}$

CHANGE OF PACE

Draw and color the other half of each figure to form a **symmetric** figure.

1. Answer true (T) or false (F).

- A The number for A is closer to 30 than to 40. _____
- B The number for B is closer to 30 than to 40. _____
- C The number for C is closer to 50 than to 40. _____
- D The number for D is closer to 50 than to 60. _____
- E The number for E is closer to 60 than to 70. _____

2. Use the closest multiples of 100 to fill in the blanks.

- A The number for A is between 200 and _____.
It is closer to 300 than it is to _____.
- B The number for B is between _____ and _____.
It is closer to _____ than it is to _____.
- C The number for C is closer to _____ than it is to _____.
- D The number for D is closer to _____ than it is to _____.

3. The number shown in color is closer to one of the multiples of 10 or 100 than it is to the other. Put a ring around the one it is closer to.

- | | | |
|------------------------------|---------------------------------|---------------------------------|
| A <u>20</u> , <u>23</u> , 30 | G <u>80</u> , <u>83</u> , 90 | M <u>700</u> , <u>738</u> , 800 |
| B 40, <u>47</u> , <u>50</u> | H <u>40</u> , <u>42</u> , 50 | N <u>400</u> , <u>426</u> , 500 |
| C 90, <u>91</u> , 100 | I <u>60</u> , <u>66</u> , 70 | O <u>800</u> , <u>888</u> , 900 |
| D 30, <u>38</u> , 40 | J <u>100</u> , <u>123</u> , 200 | P <u>300</u> , <u>374</u> , 400 |
| E 50, <u>52</u> , 60 | K <u>300</u> , <u>387</u> , 400 | Q <u>200</u> , <u>256</u> , 300 |
| F 70, <u>76</u> , 80 | L <u>800</u> , <u>827</u> , 900 | R <u>400</u> , <u>437</u> , 500 |

● Estimating Sums and Differences

1. Give an estimate for the sum or difference.

2. Give the multiples of 10 or 100 that are closest to the numbers in the problem. Then give an estimate for the sum.

A $39 \rightarrow 40$
 $+ 23 \rightarrow 20$
 \hline

Estimate $\rightarrow 60$

B $51 \rightarrow$
 $+ 28 \rightarrow$
 \hline

Estimate \rightarrow

C $61 \rightarrow$
 $+ 19 \rightarrow$
 \hline

Estimate \rightarrow

D $121 \rightarrow 100$
 $+ 394 \rightarrow 400$
 \hline

Estimate \rightarrow

E $437 \rightarrow$
 $226 \rightarrow$
 $767 \rightarrow$
 $+ 191 \rightarrow$
 \hline

Estimate \rightarrow

3. Give the multiples of 10 or 100 that are closest to the numbers in the problem. Then give an estimate for the difference.

A $72 \rightarrow$
 $- 39 \rightarrow$
 \hline

Estimate \rightarrow

B $615 \rightarrow$
 $- 199 \rightarrow$
 \hline

Estimate \rightarrow

C $831 \rightarrow$
 $- 196 \rightarrow$
 \hline

Estimate \rightarrow

4. Give the closest multiple of 10 or 100 for the sum or difference.

A $43 + 16 \underline{\quad}$

B $79 - 31 \underline{\quad}$

C $379 + 211 \underline{\quad}$

1. Give the multiple of 10 or 100 that is closest to the larger factor.
Then give an estimate for the product.

A $78 \rightarrow \underline{80}$
 $\times 6 \rightarrow \underline{6}$
 Estimate $\rightarrow \underline{480}$

c $39 \rightarrow \underline{\quad}$
 $\times 7 \rightarrow \underline{7}$
 Estimate $\rightarrow \underline{\quad}$

e $106 \rightarrow \underline{\quad}$
 $\times 24 \rightarrow \underline{24}$
 Estimate $\rightarrow \underline{\quad}$

b $61 \rightarrow \underline{\quad}$
 $\times 4 \rightarrow \underline{4}$
 Estimate $\rightarrow \underline{\quad}$

d $217 \rightarrow \underline{\quad}$
 $\times 9 \rightarrow \underline{9}$
 Estimate $\rightarrow \underline{\quad}$

f $78 \rightarrow \underline{\quad}$
 $\times 39 \rightarrow \underline{40}$
 Estimate $\rightarrow \underline{\quad}$

2. Give an estimate for each product.

a $4 \times 39 \rightarrow \underline{160}$
 b $7 \times 21 \rightarrow \underline{\quad}$
 c $3 \times 47 \rightarrow \underline{\quad}$

d $4 \times 695 \rightarrow \underline{2800}$
 e $9 \times 287 \rightarrow \underline{\quad}$
 f $6 \times 304 \rightarrow \underline{\quad}$

g $69 \times 33 \rightarrow \underline{2100}$
 h $72 \times 19 \rightarrow \underline{\quad}$
 i $58 \times 41 \rightarrow \underline{\quad}$

3. For each $\underline{\quad}$, give the multiple of 10 that is closest to each dividend.

Then for each $\underline{\quad}$, give an estimate for the quotient.

a $6 \overline{) 239}$
 \downarrow
 $6 \overline{) 240}$

b $7 \overline{) 347}$
 \downarrow
 $7 \overline{) \quad}$

c $8 \overline{) 163}$
 \downarrow
 $8 \overline{) \quad}$

d $4 \overline{) 276}$
 \downarrow
 $4 \overline{) \quad}$

4. Put a ring around the best estimate for the quotient.

a $2 \overline{) 78}$ 20, 40, 60
 b $7 \overline{) 371}$ 10, 50, 500
 c $6 \overline{) 108}$ 20, 30, 40
 d $8 \overline{) 418}$ 40, 50, 60
 e $3 \overline{) 297}$ 80, 90, 100

f $7 \overline{) 434}$ 60, 70, 80
 g $6 \overline{) 318}$ 30, 40, 50
 h $8 \overline{) 176}$ 10, 20, 30
 i $9 \overline{) 729}$ 70, 80, 90
 j $3 \overline{) 267}$ 70, 80, 90

1. Match the numbers with the closest multiple of 10 or 100.

A	(61)	(30)	G	(298)	(200)
B	(49)	(40)	H	(614)	(300)
C	(76)	(50)	I	(184)	(400)
D	(28)	(60)	J	(720)	(500)
E	(37)	(70)	K	(390)	(600)
F	(72)	(80)	L	(486)	(700)

2. Estimate the sums, differences, products, and quotients.

A	$68 + 13$ _____	D	$602 - 199$ _____	G	$158 \div 2$ _____
B	$198 + 410$ _____	E	99×3 _____	H	$255 \div 5$ _____
C	$47 - 29$ _____	F	398×4 _____	I	$357 \div 9$ _____

CHANGE OF PACE

Work the exercises and write your answers in the gray squares. Then use the code to get letters for the colored squares. If you do your work carefully you will have a quotation by Karl Friedrich Gauss, a famous mathematician.

CODE		
25 941 +12 476	→	□ □ □ □ □
800 + 2	→	□ □ □
71 661 -2 436	→	□ □ □ □ □
900 - 98	→	□ □ □
71 000 000 425 000 +127	→	□ □ □ □ □ □ □
0 = H	→	M A T H E M A T I C
1 = C		
2 = E	→	I S
3 = A		
4 = I	→	
5 = N		
6 = Q	→	O F
7 = S		
8 = T	→	
9 = U		

1. Study the sets. Then solve the equations.

You can "break apart" one of the factors when you multiply.

We see:

We think:

3 twelves

3 tens and 3 twos

We write:

$$3 \times 12 = (3 \times \underline{10}) + (3 \times \underline{\quad})$$

2. Solve the equations.

A $4 \times 16 = (4 \times 10) + (4 \times \boxed{\quad})$

B $8 \times 36 = (8 \times \boxed{\quad}) + (8 \times 6)$

C $5 \times 23 = (5 \times \boxed{\quad}) + (5 \times 3)$

D $5 \times 92 = (5 \times 90) + (5 \times \boxed{\quad})$

3. Find the sums and products.

A $6 \times 20 = \underline{\quad}$

B $3 \times 40 = \underline{\quad}$

C $4 \times 60 = \underline{\quad}$

$6 \times 3 = \underline{\quad}$

$3 \times 2 = \underline{\quad}$

$4 \times 3 = \underline{\quad}$

$6 \times 23 = \underline{\quad}$

$3 \times 42 = \underline{\quad}$

$4 \times 63 = \underline{\quad}$

D $2 \times 30 = \underline{\quad}$

E $6 \times 50 = \underline{\quad}$

F $5 \times 70 = \underline{\quad}$

$2 \times 7 = \underline{\quad}$

$6 \times 1 = \underline{\quad}$

$5 \times 4 = \underline{\quad}$

$2 \times 37 = \underline{\quad}$

$6 \times 51 = \underline{\quad}$

$5 \times 74 = \underline{\quad}$

4. Find the products for each . Then add the products and write the sum in the .

A

\times	3	
80		
3		
83		

B

\times	6	
70		
4		
74		

C

\times	9	
60		
7		
67		

D

\times	4	
200		
30		
8		
238		

Multiplying with a 2-Digit Factor

1. In the picture Sue is finding the product 5×26 by "breaking apart" the 26. Write the correct product in each to show her thinking.

2. Write the correct product in each .

A $\begin{array}{r} 72 \\ \times 4 \\ \hline \end{array}$

 $\leftarrow 4 \times 2$

$\begin{array}{r} 280 \\ \hline 280 \end{array}$ $\leftarrow 4 \times 70$

 $\leftarrow 4 \times 72$

B $\begin{array}{r} 69 \\ \times 5 \\ \hline \end{array}$

 $\leftarrow 5 \times 9$

$\begin{array}{r} 295 \\ \hline 295 \end{array}$ $\leftarrow 5 \times 60$

 $\leftarrow 5 \times 69$

C $\begin{array}{r} 37 \\ \times 6 \\ \hline \end{array}$

 $\leftarrow 6 \times 7$

$\begin{array}{r} 222 \\ \hline 222 \end{array}$ $\leftarrow 6 \times 30$

 $\leftarrow 6 \times 37$

D $\begin{array}{r} 98 \\ \times 7 \\ \hline \end{array}$

 $\leftarrow 7 \times 8$

$\begin{array}{r} 686 \\ \hline 686 \end{array}$ $\leftarrow 7 \times 90$

 $\leftarrow 7 \times 98$

3. Jane is using a shortcut to find the product 53×4 . Write the correct product in each to show her thinking. Then see how she shows her work.

4. Find the products.

A $\begin{array}{r} 42 \\ \times 6 \\ \hline \end{array}$

B $\begin{array}{r} 83 \\ \times 4 \\ \hline \end{array}$

C $\begin{array}{r} 35 \\ \times 5 \\ \hline \end{array}$

D $\begin{array}{r} 57 \\ \times 3 \\ \hline \end{array}$

E $\begin{array}{r} 46 \\ \times 4 \\ \hline \end{array}$

F $\begin{array}{r} 19 \\ \times 8 \\ \hline \end{array}$

G $\begin{array}{r} 54 \\ \times 7 \\ \hline \end{array}$

H $\begin{array}{r} 71 \\ \times 9 \\ \hline \end{array}$

I $\begin{array}{r} 25 \\ \times 6 \\ \hline \end{array}$

J $\begin{array}{r} 39 \\ \times 5 \\ \hline \end{array}$

K $\begin{array}{r} 80 \\ \times 8 \\ \hline \end{array}$

L $\begin{array}{r} 42 \\ \times 5 \\ \hline \end{array}$

1. Write the correct product in each.

A
$$\begin{array}{r} 835 \\ \times 4 \\ \hline \end{array}$$

$\leftarrow 4 \times 5$

$\leftarrow 4 \times 30$

$\leftarrow 4 \times 800$

$\leftarrow 4 \times 835$

B
$$\begin{array}{r} 507 \\ \times 3 \\ \hline \end{array}$$

$\leftarrow 3 \times 7$

$\leftarrow 3 \times 0$

$\leftarrow 3 \times 500$

$\leftarrow 3 \times 507$

C
$$\begin{array}{r} 460 \\ \times 9 \\ \hline \end{array}$$

$\leftarrow 9 \times 0$

$\leftarrow 9 \times 60$

$\leftarrow 9 \times 400$

$\leftarrow 9 \times 460$

2. A shortcut is used in the problems below. Give the correct digit for each.

A
$$4 \times 8 = 32$$

$4 \times 3 = 12$
 $12 + 3 = 15$

$4 \times 4 = 16$
 $16 + 1 = 17$

$$\begin{array}{r} 3 \\ 438 \\ \times 4 \\ \hline 2 \end{array}$$

$$\begin{array}{r} 4\overset{3}{3}8 \\ \times 4 \\ \hline 2 \end{array}$$

$$\begin{array}{r} 4\overset{3}{3}8 \\ \times 4 \\ \hline 52 \end{array}$$

B
$$6 \times 4 = 24$$

$$6 \times 7 = 42$$

 $42 + 2 = 44$

$$6 \times 3 = 18$$

 $18 + 4 = 22$

$$6 \times 5 = 30$$

 $30 + 2 = 32$

$$\begin{array}{r} 5374 \\ \times 6 \\ \hline \end{array}$$

$$\begin{array}{r} 53\overset{2}{7}4 \\ \times 6 \\ \hline 4 \end{array}$$

$$\begin{array}{r} 5\overset{4}{3}\overset{2}{7}4 \\ \times 6 \\ \hline 244 \end{array}$$

$$\begin{array}{r} 5\overset{2}{3}\overset{4}{7}4 \\ \times 6 \\ \hline 244 \end{array}$$

3. Find the products.

A
$$\begin{array}{r} 395 \\ \times 5 \\ \hline \end{array}$$

B
$$\begin{array}{r} 416 \\ \times 6 \\ \hline \end{array}$$

C
$$\begin{array}{r} 748 \\ \times 3 \\ \hline \end{array}$$

D
$$\begin{array}{r} 876 \\ \times 7 \\ \hline \end{array}$$

E
$$\begin{array}{r} 397 \\ \times 5 \\ \hline \end{array}$$

F
$$\begin{array}{r} 850 \\ \times 9 \\ \hline \end{array}$$

G
$$\begin{array}{r} 206 \\ \times 6 \\ \hline \end{array}$$

H
$$\begin{array}{r} 352 \\ \times 4 \\ \hline \end{array}$$

I
$$\begin{array}{r} 2865 \\ \times 3 \\ \hline \end{array}$$

J
$$\begin{array}{r} 4237 \\ \times 5 \\ \hline \end{array}$$

K
$$\begin{array}{r} 9345 \\ \times 7 \\ \hline \end{array}$$

L
$$\begin{array}{r} 3475 \\ \times 6 \\ \hline \end{array}$$

1. Solve the equations.

A $20 \times 34 = \boxed{10} \times 2 \times 34$

C $40 \times 56 = 10 \times 4 \times \boxed{\quad}$

B $30 \times 82 = 10 \times \boxed{\quad} \times 82$

D $\boxed{\quad} \times 23 = 10 \times 5 \times 23$

2. Solve the equations.

A Since $3 \times 82 = \underline{\hspace{2cm}}$, we know that $30 \times 82 = \underline{\hspace{2cm}}$.

B Since $4 \times 56 = \underline{\hspace{2cm}}$, we know that $40 \times 56 = \underline{\hspace{2cm}}$.

3. Fill the blanks.

- A To multiply by 20, multiply by 2 and then multiply by _____.
- B To multiply by 30, multiply by _____ and then multiply by 10.
- C To multiply by 40, multiply by 4 and then multiply by _____.
- D To multiply by 90, multiply by _____ and then multiply by _____.
- E To multiply by _____, multiply by 6 and then multiply by 10.

4. Write the correct digit in each .

A ① Write the product 3×56 .

② Multiply by 10.

$$\begin{array}{r} 56 \\ \times 30 \\ \hline \end{array}$$

$$\begin{array}{r} 56 \\ \times 30 \\ \hline \end{array}$$

B ① Write the product 4×76 .

② Multiply by 10.

$$\begin{array}{r} 76 \\ \times 40 \\ \hline \end{array}$$

$$\begin{array}{r} 76 \\ \times 40 \\ \hline \end{array}$$

5. Find the products.

A $\begin{array}{r} 39 \\ \times 20 \\ \hline \end{array}$

B $\begin{array}{r} 24 \\ \times 50 \\ \hline \end{array}$

C $\begin{array}{r} 57 \\ \times 40 \\ \hline \end{array}$

D $\begin{array}{r} 49 \\ \times 30 \\ \hline \end{array}$

E $\begin{array}{r} 35 \\ \times 60 \\ \hline \end{array}$

F $\begin{array}{r} 28 \\ \times 90 \\ \hline \end{array}$

G $\begin{array}{r} 64 \\ \times 80 \\ \hline \end{array}$

H $\begin{array}{r} 59 \\ \times 40 \\ \hline \end{array}$

I $\begin{array}{r} 95 \\ \times 70 \\ \hline \end{array}$

J $\begin{array}{r} 63 \\ \times 90 \\ \hline \end{array}$

K $\begin{array}{r} 85 \\ \times 50 \\ \hline \end{array}$

L $\begin{array}{r} 67 \\ \times 60 \\ \hline \end{array}$

● *Multiplying with Two 2-Digit Factors*

1. Write the correct digit in each .

A
$$\begin{array}{r} 6 \ 7 \\ \times 2 \ 4 \\ \hline \end{array}$$

$$\begin{array}{r} 6 \ 7 \\ \times 4 \\ \hline \end{array}$$

B
$$\begin{array}{r} 6 \ 7 \\ \times 2 \ 4 \\ \hline \end{array}$$

$$\begin{array}{r} 2 \ 6 \ 8 \\ \times 2 \ 0 \\ \hline \end{array}$$

C
$$\begin{array}{r} 6 \ 7 \\ \times 2 \ 4 \\ \hline \end{array}$$

$$\begin{array}{r} 2 \ 6 \ 8 \\ 1 \ 3 \ 4 \ 0 \\ \hline \end{array}$$

$$\begin{array}{r} 6 \ 7 \\ \times 2 \ 4 \\ \hline \end{array}$$

B
$$\begin{array}{r} 3 \ 6 \\ \times 2 \ 3 \\ \hline \end{array}$$

$$\begin{array}{r} 3 \ 6 \\ \times 3 \\ \hline \end{array}$$

$$\begin{array}{r} 3 \ 6 \\ \times 2 \ 0 \\ \hline \end{array}$$

$$\begin{array}{r} 3 \ 6 \\ \times 2 \ 3 \\ \hline \end{array}$$

C
$$\begin{array}{r} 5 \ 4 \\ \times 4 \ 6 \\ \hline \end{array}$$

$$\begin{array}{r} 5 \ 4 \\ \times 6 \\ \hline \end{array}$$

$$\begin{array}{r} 5 \ 4 \\ \times 4 \ 0 \\ \hline \end{array}$$

$$\begin{array}{r} 5 \ 4 \\ \times 4 \ 6 \\ \hline \end{array}$$

D
$$\begin{array}{r} 7 \ 2 \\ \times 2 \ 5 \\ \hline \end{array}$$

$$\begin{array}{r} 7 \ 2 \\ \times 5 \\ \hline \end{array}$$

$$\begin{array}{r} 7 \ 2 \\ \times 2 \ 0 \\ \hline \end{array}$$

$$\begin{array}{r} 7 \ 2 \\ \times 2 \ 5 \\ \hline \end{array}$$

2. Find the products.

A
$$\begin{array}{r} 5 \ 2 \\ \times 3 \ 4 \\ \hline \end{array}$$

B
$$\begin{array}{r} 2 \ 8 \\ \times 1 \ 6 \\ \hline \end{array}$$

C
$$\begin{array}{r} 4 \ 5 \\ \times 6 \ 0 \\ \hline \end{array}$$

D
$$\begin{array}{r} 3 \ 8 \\ \times 2 \ 5 \\ \hline \end{array}$$

E
$$\begin{array}{r} 8 \ 3 \\ \times 3 \ 7 \\ \hline \end{array}$$

F
$$\begin{array}{r} 6 \ 4 \\ \times 6 \ 3 \\ \hline \end{array}$$

G
$$\begin{array}{r} 7 \ 5 \\ \times 2 \ 4 \\ \hline \end{array}$$

H
$$\begin{array}{r} 5 \ 4 \\ \times 4 \ 7 \\ \hline \end{array}$$

I
$$\begin{array}{r} 9 \ 2 \\ \times 3 \ 6 \\ \hline \end{array}$$

J
$$\begin{array}{r} 2 \ 3 \\ \times 6 \ 7 \\ \hline \end{array}$$

K
$$\begin{array}{r} 1 \ 8 \\ \times 9 \ 1 \\ \hline \end{array}$$

L
$$\begin{array}{r} 6 \ 5 \\ \times 4 \ 9 \\ \hline \end{array}$$

Find the products.

1.
$$\begin{array}{r} 42 \\ \times 3 \\ \hline \end{array}$$

2.
$$\begin{array}{r} 56 \\ \times 4 \\ \hline \end{array}$$

3.
$$\begin{array}{r} 39 \\ \times 6 \\ \hline \end{array}$$

4.
$$\begin{array}{r} 78 \\ \times 5 \\ \hline \end{array}$$

5.
$$\begin{array}{r} 96 \\ \times 8 \\ \hline \end{array}$$

6.
$$\begin{array}{r} 815 \\ \times 7 \\ \hline \end{array}$$

7.
$$\begin{array}{r} 509 \\ \times 6 \\ \hline \end{array}$$

8.
$$\begin{array}{r} 625 \\ \times 9 \\ \hline \end{array}$$

9.
$$\begin{array}{r} 729 \\ \times 8 \\ \hline \end{array}$$

10.
$$\begin{array}{r} 870 \\ \times 4 \\ \hline \end{array}$$

11.
$$\begin{array}{r} 67 \\ \times 80 \\ \hline \end{array}$$

12.
$$\begin{array}{r} 89 \\ \times 40 \\ \hline \end{array}$$

13.
$$\begin{array}{r} 64 \\ \times 94 \\ \hline \end{array}$$

14.
$$\begin{array}{r} 95 \\ \times 76 \\ \hline \end{array}$$

15.
$$\begin{array}{r} 775 \\ \times 85 \\ \hline \end{array}$$

CHANGE OF PACE

Here is a math "trick" that will help you find a person's age and the day of the month on which he was born. Like most tricks, it is possible to tell why it works. You will probably not be able to explain this trick until after you have studied algebra. Right now you can have fun using the trick to surprise your friends.

Suppose your friend is 12 years old and his birthday is April 23.

Ask your friend to secretly:

1. Multiply his age by 4. $\longrightarrow 4 \times 12 = 48$

2. Add 10. $\longrightarrow 48 + 10 = 58$

3. Multiply by 25. $\longrightarrow 58 \times 25 = 1450$

4. Subtract the number of days in a year (365). $\longrightarrow 1450 - 365 = 1085$

5. Add the day of his birthday. $\longrightarrow 1085 + 23 = 1108$

6. Add 115. $\longrightarrow 1108 + 115 = 1223$
age date

When your friend gives you the answer, use the first 2 digits to tell your friend's age and the last two digits to tell the day of the month on which he was born.

Check this trick, using your own age and birthdate. Try this trick on a friend.

1. There are 365 days in an ordinary year. How many days are in 3 years? _____

FEBRUARY						
SUN	MON	TUES	WED	THU	FRI	SAT
1	2	3	4	5	6	
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28						

2. There are 24 candy bars in a box. If a store buys 8 boxes, how many candy bars does it have? _____

3. Tom had 9 quarters. How many cents are they worth? _____

4. 60 seconds is the same amount of time as 1 minute. How many seconds are in 24 minutes? _____

5. There are 1000 metres in a kilometre. How many metres are in 6 kilometres? _____

6. Mr. Jones sold 12 dozen eggs. There are 12 eggs in a dozen. How many eggs did he sell? _____

7. If a dozen eggs cost 37¢, how much do 12 dozen eggs cost? _____

8. Each workbook has 96 pages. 4 workbooks.
How many pages? _____

9. If the average number of pupils in a classroom is 23 and there are 57 classrooms in a city, how many pupils are there in the school system? _____

10. Each box contains 24 Christmas tree bulbs. If you need 100 bulbs, will 4 boxes be enough?

11. There are 43 rows of chairs with 25 chairs in each row. How many chairs in all? _____

12. An automobile uses 1 litre of gasoline to go 6 km. At this rate, how far can it go while using 63 litres of gasoline? _____

13. If an auto could travel 54 kilometres per hour for 24 hours, how far would it go? _____

14. Sue's sister, Joan, spent 23 hours one week as a baby sitter. If Joan earned 45 cents an hour, how much was her total pay? _____

1. Write the correct digit in each

Step 1

A

Think

$$\begin{array}{r} 426 \\ \times 2 \\ \hline \end{array}$$

$$\begin{array}{r} 426 \\ \times 372 \\ \hline 852 \end{array}$$

Step 2

Think

$$\begin{array}{r} 426 \\ \times 70 \\ \hline \end{array}$$

$$\begin{array}{r} 426 \\ \times 372 \\ \hline 852 \end{array}$$

Step 3

Think

$$\begin{array}{r} 426 \\ \times 300 \\ \hline \end{array}$$

$$\begin{array}{r} 426 \\ \times 372 \\ \hline 852 \\ 29820 \end{array}$$

Step 4

Think

$$\begin{array}{r} 852 \\ 29820 \\ + 127800 \\ \hline \end{array}$$

$$\begin{array}{r} 426 \\ \times 372 \\ \hline 852 \\ 29820 \\ 127800 \end{array}$$

B

Think

$$\begin{array}{r} 324 \\ \times 6 \\ \hline \end{array}$$

$$\begin{array}{r} 324 \\ \times 206 \\ \hline \end{array}$$

Think

$$\begin{array}{r} 324 \\ \times 200 \\ \hline \end{array}$$

$$\begin{array}{r} 324 \\ \times 206 \\ \hline 1944 \end{array}$$

Think

$$\begin{array}{r} 1944 \\ + 64800 \\ \hline \end{array}$$

$$\begin{array}{r} 324 \\ \times 206 \\ \hline 1944 \\ 64800 \end{array}$$

2. Find the products.

A $\begin{array}{r} 199 \\ \times 487 \\ \hline \end{array}$

B $\begin{array}{r} 507 \\ \times 924 \\ \hline \end{array}$

C $\begin{array}{r} 480 \\ \times 675 \\ \hline \end{array}$

D $\begin{array}{r} 951 \\ \times 403 \\ \hline \end{array}$

E $\begin{array}{r} 769 \\ \times 222 \\ \hline \end{array}$

F $\begin{array}{r} 644 \\ \times 394 \\ \hline \end{array}$

G $\begin{array}{r} 343 \\ \times 707 \\ \hline \end{array}$

H $\begin{array}{r} 928 \\ \times 652 \\ \hline \end{array}$

I $\begin{array}{r} 805 \\ \times 999 \\ \hline \end{array}$

J $\begin{array}{r} 539 \\ \times 806 \\ \hline \end{array}$

Find the products.

1.
$$\begin{array}{r} 75 \\ \times 4 \\ \hline \end{array}$$

2.
$$\begin{array}{r} 29 \\ \times 8 \\ \hline \end{array}$$

3.
$$\begin{array}{r} 38 \\ \times 5 \\ \hline \end{array}$$

4.
$$\begin{array}{r} 92 \\ \times 40 \\ \hline \end{array}$$

5.
$$\begin{array}{r} 87 \\ \times 30 \\ \hline \end{array}$$

6.
$$\begin{array}{r} 17 \\ \times 24 \\ \hline \end{array}$$

7.
$$\begin{array}{r} 49 \\ \times 35 \\ \hline \end{array}$$

8.
$$\begin{array}{r} 86 \\ \times 81 \\ \hline \end{array}$$

9.
$$\begin{array}{r} 50 \\ \times 27 \\ \hline \end{array}$$

10.
$$\begin{array}{r} 66 \\ \times 39 \\ \hline \end{array}$$

11.
$$\begin{array}{r} 942 \\ \times 31 \\ \hline \end{array}$$

12.
$$\begin{array}{r} 256 \\ \times 300 \\ \hline \end{array}$$

13.
$$\begin{array}{r} 463 \\ \times 527 \\ \hline \end{array}$$

14.
$$\begin{array}{r} 808 \\ \times 795 \\ \hline \end{array}$$

15.
$$\begin{array}{r} 719 \\ \times 906 \\ \hline \end{array}$$

Short Stories—Time

60 seconds (s) = 1 minute

60 minutes = 1 hour

24 hours = 1 day

7 days = 1 week

52 weeks = 1 year

12 months = 1 year

365 days = 1 year

366 days = 1 leap year

FEBRUARY						
S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28						

1. 5 days. How many hours? _____

5. 13 years old. How many

2. Sleep 8 hours. How many minutes?

months old? _____

6. School lasts 36 weeks.

3. 1 week. How many hours? _____

How many days? _____

4. 3 years plus 1 leap year.

7. 1 day. How many minutes? _____

How many days? _____

8. 31 days. How many hours? _____

1. Solve the equations.

A $4 \times 27 = (4 \times 20) + (4 \times \boxed{\quad})$

B $6 \times 46 = (6 \times 40) + (6 \times \boxed{\quad})$

C $30 \times 48 = 10 \times \boxed{\quad} \times 48$

D $97 \times 50 = 97 \times 5 \times \boxed{\quad}$

E $5 \times 936 = (5 \times 900) + (5 \times \boxed{\quad}) + (5 \times 6)$

2. Find the products.

A $\begin{array}{r} 74 \\ \times 5 \\ \hline \end{array}$

B $\begin{array}{r} 81 \\ \times 9 \\ \hline \end{array}$

C $\begin{array}{r} 53 \\ \times 70 \\ \hline \end{array}$

D $\begin{array}{r} 95 \\ \times 35 \\ \hline \end{array}$

E $\begin{array}{r} 44 \\ \times 88 \\ \hline \end{array}$

F $\begin{array}{r} 353 \\ \times 38 \\ \hline \end{array}$

G $\begin{array}{r} 101 \\ \times 54 \\ \hline \end{array}$

H $\begin{array}{r} 787 \\ \times 46 \\ \hline \end{array}$

I $\begin{array}{r} 399 \\ \times 467 \\ \hline \end{array}$

J $\begin{array}{r} 725 \\ \times 602 \\ \hline \end{array}$

3. It took 24 egg shells for each fourth-grader's art project this week. There were 33 pupils in the class. How many egg shells were used in all? _____

CHANGE OF PACE

1. In the space below draw figures like this one and color the top part red, green, or yellow. Color the bottom part blue or black. Show all the different ways to color the figure. How many different ways are there? _____

2. If you color the top part pink or orange and the bottom part black, red, green, or blue, how many different ways are there to color the figure? _____
3. If you color the top part red, blue, yellow, or black and the bottom part green, red, or purple, how many different ways are there to color the figure? _____

If you could cut through each solid figure and trace around it on a piece of paper as shown, which shape would you get? Place a ✓ in the figure you choose.

1.

2.

3.

4.

5.

Figures that have the same size and same shape are **congruent**.

Complete each sentence.

Square **A** is congruent
to square _____.

Rectangle **D** is congruent
to rectangle _____.

Triangle **G** is congruent
to triangle _____.

Region _____ is congruent
to region _____.

Triangle _____ is congruent
to triangle _____.

Triangle _____ is congruent
to triangle _____.

7. Which two figures are congruent? _____ and _____

1. Draw as many lines of symmetry for each figure as you can find.
Each line of symmetry should divide the figure into 2 congruent figures.

Example:

A

B

C

D

E

F

2. Which figures have more than one line of symmetry? _____
3. Which figure has the most lines of symmetry? _____
4. In which figure does a line of symmetry divide the figure into 2 congruent pentagons? _____
5. In which figures does a line of symmetry divide the figure into 2 congruent triangles? _____

1. Draw a radius in circle A.
Draw a diameter in circle B.

2. Place ✓'s in the pair of congruent triangles.

3. Match each figure with its name.

Cone
Cylinder
Pyramid

4. Draw a line of symmetry through each figure.

CHANGE OF PACE

Work the puzzle.

Across

- 7×90
- $300 + 400$
 $+ 70 + 1$
7. 4 tens
- $5 \times (8 \times 10)$
- $1254 + 10$
- Ten thousand seventy
- $60\,000 + 900 + 1$
- $10 \times 10 \times 10$
- $950 < \underline{\quad} < 952$
- $83 \times \underline{\quad} = 830$
- $(9 \times 1000) + 10$
- $2 \times (3 \times 100)$

Down

- $(80 \times 80) + 1$
- $120 \div 40$
- (4×100)
 $+ (4 \times 10) + 4$
- $210 \div 3$
- 10 tens
- 8276×10
- $560 \div 56$
- 60×1000
- 30×3
- Ten hundred
- $1000 - 1$
- $100 + 10 + 1$
- $\underline{\quad} \times 2 = 100$
- $100 - 90$

1	2			3	4	5	6
7			8		9		
		10		11			
12							
			13		14	15	16
17		18					
19	20				21		
22				23			

Jean, Don, and Bob worked the same problem. Study their work and answer the questions.

$$\begin{array}{r} 204 \div 6 \\ \text{Jean} \\ \begin{array}{r} 204 \\ -60 \\ \hline 144 \\ -60 \\ \hline 84 \\ -60 \\ \hline 24 \\ -24 \\ \hline 0 \end{array} \end{array}$$

(10)

(10)

(10)

(4)

$\boxed{34}$

$$\begin{array}{r} 204 \div 6 \\ \text{Don} \\ \begin{array}{r} 34 \\ 6 \overline{)204} \\ -120 \leftarrow 20 \times 6 \\ \hline 84 \\ -60 \leftarrow 10 \times 6 \\ \hline 24 \\ -24 \\ \hline 0 \end{array} \end{array}$$

$$\begin{array}{r} 204 \div 6 \\ \text{Bob} \\ \begin{array}{r} 34 \\ 6 \overline{)204} \\ -180 \leftarrow 30 \times 6 \\ \hline 24 \\ -24 \\ \hline 0 \end{array} \end{array}$$

(30)

(4)

1. Jean
 - A How many sixes were subtracted the first time? _____
 - The second time? _____ The third time? _____ The last time? _____
 - B How many sixes were subtracted in all? _____

2. Don
 - A How many sixes were subtracted the first time? _____
 - The second time? _____ The last time? _____
 - B How many sixes were subtracted in all? _____

3. Bob
 - A How many sixes were subtracted the first time? _____
 - B How many sixes were subtracted the second time? _____
 - C How many sixes were subtracted in all? _____

4. A Whose work is shortest? _____
- B Did everyone find the same quotient for $204 \div 6$? _____
- C What is the quotient for $204 \div 6$? _____

 Subtracting to Find Quotients

1. Use your own method of subtracting to find these quotients.

A $4 \overline{) 196}$

B $3 \overline{) 84}$

C $5 \overline{) 155}$

D $3 \overline{) 108}$

E $6 \overline{) 174}$

F $8 \overline{) 184}$

2. Find the missing numbers.

A $3 \overline{) 108}$

90	()	$\times 3$
18	()	$\times 3$
0		

B $5 \overline{) 123}$

100	()	$\times 5$
23	()	$\times 5$
3		

C $4 \overline{) 374}$

360	()	$\times 4$
14	()	$\times 4$
2		

D $6 \overline{) 453}$

420	()	$\times 6$
33	()	$\times 6$
3		

E $2 \overline{) 96}$

80	()	$\times 2$
16	()	$\times 2$
()		

F $4 \overline{) 346}$

320	()	$\times 4$
()	()	$\times 4$
()		

Study the examples.

$$\begin{array}{r} \text{divisor} \rightarrow 5 \overline{) 15} \\ \quad \quad \quad \text{dividend} \\ -15 \\ \hline 0 \\ \quad \quad \quad \text{remainder} \end{array}$$

$$\begin{array}{r} \text{divisor} \rightarrow 5 \overline{) 17} \\ \quad \quad \quad \text{dividend} \\ -15 \\ \hline 2 \\ \quad \quad \quad \text{remainder} \end{array}$$

$$5 \overline{) 15}$$

$$5 \overline{) 17} \quad 3 \text{ R } 2$$

If the dividing has been completed correctly,
the remainder is less than the divisor.

1. Find the quotients and remainders.

A $4 \overline{) 17}$

B $6 \overline{) 38}$

C $3 \overline{) 28}$

D $5 \overline{) 44}$

E $8 \overline{) 49}$

F $7 \overline{) 45}$

G $8 \overline{) 75}$

H $9 \overline{) 63}$

2. Solve each story problem.

A How many 8¢ stamps can you buy for 25¢? _____ stamps

How much money will you have left? _____ ¢

B 25 children are to line up in rows of 7.

How many full rows will there be? _____ rows

How many children will be left? _____ children

1. Choose the correct number pair to complete the inequalities in each part. Then find the quotient and remainder.

Number pairs:

1	2	3	4	5	6	7	8	9
2	3	4	5	6	7	8	9	10

A $\boxed{} \times 3 < 8$

$$3 \overline{) 8}$$

$\times 3 > 8$

B $\boxed{} \times 4 < 39$

$$4 \overline{) 39}$$

$\times 4 > 39$

C $\boxed{} \times 6 < 53$

$$6 \overline{) 53}$$

$\times 6 > 53$

D $\boxed{} \times 8 < 55$

$$8 \overline{) 55}$$

$\times 8 > 55$

E $\boxed{} \times 7 < 31$

$$7 \overline{) 31}$$

$\times 8 > 31$

F $\boxed{} \times 9 < 49$

$$9 \overline{) 49}$$

$\times 9 > 49$

2. Choose the correct number pair to complete the inequalities in each part.

Number pairs:

10	20	30	40	50	60	70	80	90
20	30	40	50	60	70	80	90	100

A $\boxed{} \times 4 < 130$

$\times 4 > 130$

B $\boxed{} \times 6 < 160$

$\times 6 > 160$

C $\boxed{} \times 9 < 650$

$\times 9 > 650$

D $\boxed{} \times 7 < 460$

$\times 7 > 460$

E $\boxed{} \times 7 < 300$

$\times 7 > 300$

F $\boxed{} \times 5 < 490$

$\times 5 > 490$

From the set {10, 20, 30, 40, 50, 60, 70, 80, 90}, choose the **largest** number that will make the inequality sentence true. Write this number in the circle. Then write the other missing digits to complete the dividing.

1.

$$3 \overline{) 5 \ 4}$$

$\underline{-} \quad \quad \quad \leftarrow \text{circle}$

$\times 3 < 54$

2.

$$2 \overline{) 8 \ 5}$$

$\underline{-} \quad \quad \quad \leftarrow \text{circle}$

$\times 2 < 85$

3.

$$4 \overline{) 1 \ 3 \ 2}$$

$\underline{-} \quad \quad \quad \leftarrow \text{circle}$

$\times 4 < 132$

4.

$$6 \overline{) 2 \ 6 \ 3}$$

$\underline{-} \quad \quad \quad \leftarrow \text{circle}$

$\times 6 < 263$

5.

$$7 \overline{) 2 \ 9 \ 5}$$

$\underline{-} \quad \quad \quad \leftarrow \text{circle}$

$\times 7 < 295$

6.

$$5 \overline{) 3 \ 2 \ 4}$$

$\underline{-} \quad \quad \quad \leftarrow \text{circle}$

$\times 5 < 324$

7.

$$9 \overline{) 2 \ 8 \ 4}$$

$\underline{-} \quad \quad \quad \leftarrow \text{circle}$

$\times 9 < 284$

8.

$$7 \overline{) 4 \ 5 \ 6}$$

$\underline{-} \quad \quad \quad \leftarrow \text{circle}$

$\times 7 < 456$

 Finding and Checking 2-Digit Quotients

1. Complete the "check" to see if the dividing was done correctly.
Put a ring around **correct** or **incorrect** for each exercise.

A $4 \overline{) 295}$ Check $\begin{array}{r} 73 \\ \times 4 \\ \hline 280 \end{array}$

$$\begin{array}{r} 15 \\ 12 \\ \hline 3 \end{array}$$

$$\begin{array}{r} + 3 \\ \hline \end{array}$$

correct

incorrect

B $6 \overline{) 405}$ Check $\begin{array}{r} 65 \\ \times 6 \\ \hline 360 \end{array}$

$$\begin{array}{r} 35 \\ 30 \\ \hline 5 \end{array}$$

$$\begin{array}{r} + 5 \\ \hline \end{array}$$

correct

incorrect

C $7 \overline{) 583}$ Check $\begin{array}{r} 83 \\ \times 7 \\ \hline 560 \end{array}$

$$\begin{array}{r} 23 \\ 21 \\ \hline 2 \end{array}$$

$$\begin{array}{r} + 2 \\ \hline \end{array}$$

correct

incorrect

2. Find the quotients and remainders. Check your work.

A $3 \overline{) 175}$ Check

B $4 \overline{) 350}$ Check

C $6 \overline{) 473}$ Check

D $5 \overline{) 298}$ Check

E $9 \overline{) 707}$ Check

F $4 \overline{) 369}$ Check

When 5 is substituted for each addend, the sum is the same.
The average of 4, 8, and 3 is 5.

1. Find the sum. Then write the correct substitute in each .

A

$$4 + 6 + 8 + 2 = \boxed{\quad}$$

When is substituted for each addend, the sum is the same.
The average of 4, 6, 8, and 2 is .

B

$$3 + 7 + 9 + 6 + 5 = \boxed{\quad}$$

When is substituted for each addend, the sum is the same.
The average of 3, 7, 9, 6, and 5 is .

C

$$12 + 8 + 7 = \boxed{\quad}$$

The average of 12, 8, and 7 is .

2. Write the missing numbers.

- A The average of 14 and 16 is _____. C The average of 8, 10, and 12 is _____.
B The average of 20 and 30 is _____. D The average of 9, 16, and 5 is _____.

3. Complete the sentences.

- A The sum of 3, 5, and 4 is 12. To find the average of 3, 5, 4, divide _____ by 3.
B To find the average of 6, 8, 5, 9, divide _____ by 4.
C To find the average of 9, 11, and 4, divide _____ by _____.
D To find the average of any 3 numbers, divide their sum by _____.
E To find the average of a set of numbers, divide the _____ of the numbers
by the _____ of addends.

4. Find the average of the numbers in each set.

A $\{4, 9, 7, 12\}$ _____

D $\{39, 21, 45\}$ _____

B $\{5, 3, 9, 7\}$ _____

E $\{70, 54, 62, 98, 26, 14\}$ _____

C $\{16, 22\}$ _____

F $\{47, 65, 33, 89, 56\}$ _____

● Estimating 3-Digit Quotients

From the set {100, 200, 300, 400, 500, 600, 700, 800, 900}, choose the largest number that makes the inequality sentence true. Write this number in the circle. Then complete the dividing.

1.

$$2) \overline{4 \ 6 \ 4}$$

— ← ○ $\times 2 < 464$

2.

$$4) \overline{2 \ 3 \ 4 \ 6}$$

— ← ○ $\times 4 < 2346$

3.

$$3) \overline{1 \ 9 \ 7 \ 3}$$

— ← ○ $\times 3 < 1973$

4.

$$5) \overline{4 \ 4 \ 6 \ 2}$$

— ← ○ $\times 5 < 4462$

5.

$$9) \overline{3 \ 4 \ 6 \ 8}$$

— ← ○ $\times 9 < 3468$

6.

$$8) \overline{4 \ 0 \ 6 \ 7}$$

— ← ○ $\times 8 < 4067$

7.

$$6) \overline{8 \ 4 \ 7}$$

— ← ○ $\times 6 < 847$

8.

$$6) \overline{5 \ 9 \ 3 \ 8}$$

— ← ○ $\times 6 < 5938$

● Finding and Checking 3-Digit Quotients

Find the quotients and remainders. Check your work.

1. $3 \overline{) 320}$

Check

2. $6 \overline{) 695}$

Check

3. $8 \overline{) 5429}$

Check

4. $5 \overline{) 2193}$

Check

5. $9 \overline{) 4684}$

Check

6. $4 \overline{) 3771}$

Check

7. $7 \overline{) 5899}$

Check

8. $5 \overline{) 2595}$

Check

9. $9 \overline{) 8350}$

Check

10. $8 \overline{) 7012}$

Check

11. $6 \overline{) 4720}$

Check

12. $7 \overline{) 6953}$

Check

1. John is 152 cm tall, Ted is 148 cm tall, and Sam is 156 cm tall. What is the average height of the 3 boys? _____
2. 6 light bulbs were put into each box. There were 258 light bulbs. How many boxes were needed? _____
3. The temperatures at noon on Friday, Saturday, and Sunday were 30°C , 32°C , and 31°C . What was the average noon temperature for the 3 days? _____
4. From a group of 453 batteries, 8 boxes were filled with the same number in each box. How many batteries in each box? _____ How many extra batteries? _____
5. 6 cows were put into each pen. There were 144 cows. How many pens were needed? _____
6. Jane found that there were only 189 days until Christmas. How many 7-day weeks is this? _____
7. A newsboy sold 24 magazines that cost 25¢ each. How much money did he receive? _____
8. A record costs \$3.98 and a book costs \$2.49. What is the total cost?

9. What is the average of the following test scores: 94, 86, 88, 97, 100? _____

CHANGE OF PACE

For magic squares A and B, find the sum of the numbers along each arrow. Complete C so it will be a magic square.

A

30	25	26
23	27	31
28	29	24

B

34	39	32
33	35	37
38	31	36

C

24	28	29
	27	

From the set {1, 2, 3, 4, 5, 6, 7, 8, 9}, choose the **largest** number that makes the inequality sentence true. Write this number in the circle. Then complete the dividing.

1.

$$30 \overline{) 156}$$

← $\bigcirc \times 30 < 156$

2.

$$20 \overline{) 174}$$

← $\bigcirc \times 20 < 174$

3.

$$50 \overline{) 379}$$

← $\bigcirc \times 50 < 379$

4.

$$60 \overline{) 543}$$

← $\bigcirc \times 60 < 543$

From the set {10, 20, 30, 40, 50, 60, 70, 80, 90}, choose the **largest** number that makes the inequality sentence true. Write this number in the circle. Then complete the dividing.

5.

$$30 \overline{) 1960}$$

← $\bigcirc \times 30 < 1960$

6.

$$20 \overline{) 1560}$$

← $\bigcirc \times 20 < 1560$

7.

$$40 \overline{) 3190}$$

← $\bigcirc \times 40 < 3190$

8.

$$50 \overline{) 4675}$$

← $\bigcirc \times 50 < 4675$

● Estimating Quotients—2-Digit Divisors

Find the **largest** number that makes the sentence in the cloud true. Then multiply to see if this number is the largest one that will make the other sentence true. For each inequality sentence below the cloud, write the **largest** number that makes it true.

1. Think
 $\boxed{5} \times 30 < 167$ → $\begin{array}{r} 34 \\ \times 5 \\ \hline 170 \end{array}$
 $\boxed{4} \times 34 < 167$ ←

2. Think
 $\boxed{\quad} \times 40 < 264$ → $\begin{array}{r} 39 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 39 < 264$ ←

3. Think
 $\boxed{\quad} \times 60 < 495$ → $\begin{array}{r} 62 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 62 < 495$ ←

4. Think
 $\boxed{\quad} \times 20 < 167$ → $\begin{array}{r} 18 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 18 < 167$ ←

5. Think
 $\boxed{\quad} \times 70 < 584$ → $\begin{array}{r} 66 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 66 < 584$ ←

6. Think
 $\boxed{\quad} \times 30 < 278$ → $\begin{array}{r} 29 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 29 < 278$ ←

7. Think
 $\boxed{\quad} \times 40 < 257$ → $\begin{array}{r} 42 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 42 < 257$ ←

8. Think
 $\boxed{\quad} \times 50 < 413$ → $\begin{array}{r} 53 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 53 < 413$ ←

9. Think
 $\boxed{\quad} \times 60 < 502$ → $\begin{array}{r} 63 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 63 < 502$ ←

10. Think
 $\boxed{\quad} \times 80 < 653$ → $\begin{array}{r} 76 \\ \times \quad \\ \hline \quad \end{array}$
 $\boxed{\quad} \times 76 < 653$ ←

1. Write the numbers to show what Jeff is thinking.
Study the picture to see how he shows his work.

2. Nancy was not able to complete her problem. Study her work.
Then show Nancy how to find the correct quotient and remainder.

3. Fred's work is not complete. Show Fred how to find the correct quotient without erasing any of his work.

4. Find the quotients and remainders.

A $29 \overline{) 234}$

B $61 \overline{) 335}$

C $38 \overline{) 289}$

D $56 \overline{) 466}$

E $34 \overline{) 163}$

Find the quotients and remainders.

1. $3 \overline{) 55}$

2. $6 \overline{) 85}$

3. $4 \overline{) 77}$

4. $9 \overline{) 450}$

5. $2 \overline{) 195}$

6. $4 \overline{) 325}$

7. $5 \overline{) 213}$

8. $7 \overline{) 279}$

9. $6 \overline{) 357}$

10. $9 \overline{) 716}$

11. $8 \overline{) 2054}$

12. $5 \overline{) 4920}$

13. $7 \overline{) 6399}$

14. $5 \overline{) 4386}$

15. $20 \overline{) 1965}$

16. $40 \overline{) 3850}$

17. $90 \overline{) 8111}$

18. $50 \overline{) 3923}$

19. $29 \overline{) 158}$

20. $62 \overline{) 509}$

21. $66 \overline{) 585}$

22. $71 \overline{) 6549}$

1. The distance around a square field is 224 m. How long is one side of the field? _____

2. The fence around the field is made of 5 wires. How many metres of wire were needed to make the fence? _____

3. Five fasteners were needed on each post to fasten the wires. If 260 fasteners were used in all, how many posts were there? _____

4. If the wire costs 18¢ each metre, what does it cost to buy one piece of wire that will go all the way around the field? _____

5. How much does it cost to buy the 5 wires needed to make the fence all the way around the field? _____

6. At the store there were 192 posts placed in piles of 24 posts each. How many piles of posts were there? _____

7. It took 168 hours for the men to build the fence. How many 24-hour periods is this? _____

Short Stories.

1. 1422 bottles.
6 in each carton.

How many cartons? _____

2. 168 children.
Each bus holds 42.

How many buses? _____

3. 30 trees in each row.
54 rows of trees.

How many trees? _____

4. Drive 265 km in
5 hours. About how
many km each hour?

5. Drive an average of 88 km an hour. Drive 8 hours. How far?

6. Rocket to the moon. Took four 24-hour days. How many hours? _____

7. 288 marbles. Put 30 in each bag.

How many bags? _____

How many extra marbles? _____

8. 108 eggs. Put 12 in each carton.

How many cartons? _____

1. Find the quotients and remainders. Check your work.

A Check $3 \overline{) 67}$

B Check $4 \overline{) 306}$

C Check $7 \overline{) 2225}$

2. Find the average of the numbers in each set.

A $\{10, 8, 14, 12\} \underline{\hspace{1cm}}$

B $\{60, 84, 71, 55, 65\} \underline{\hspace{1cm}}$

C $\{96, 48\} \underline{\hspace{1cm}}$

3. Find the quotients and remainders.

A $40 \overline{) 375}$

B $92 \overline{) 725}$

C $64 \overline{) 196}$

D $71 \overline{) 5983}$

4. 174 sheets of paper were divided equally among the children in the class.

If there were 29 children, how many sheets did each child receive? _____

CHANGE OF PACE

Work the puzzle.

Across

1. Add 96 to 87
3. 5 fives
5. 83×83
7. 5 less than 50
9. 1 less than 7×5
10. Number of hours in a day
12. Half of 42
14. 326×18
16. 4×10
17. 1 more than 99

Down

1. A dozen dozen
2. $72 \div 2$
3. 7×406
4. Less than 60, greater than 58
6. $498 \div 6$
8. 2640×2
11. $(4 \times 10) + 6$
13. 10×10
14. 9×6 or 6×9
15. $179 - 98$

1			2		3		4
			5	6			
7	8			9			
		10	11		12	13	
14				15			
16				17			

1. In each exercise, complete the multiplication equations by giving the missing factors. Do not use the same number in more than one equation in an exercise.

A $1 \times 16 = 16$

$2 \times 8 = 16$

$4 \times 4 = 16$

B $1 \times \square = 20$

$2 \times \square = 20$

$4 \times \square = 20$

C $1 \times \square = 9$

$3 \times \square = 9$

The factors of 16 are

1, 16, 2, 8, 4.

The factors of 20 are

1, 20, 2, 10, 4, 5.

The factors of 9 are

1, 9, 3.

D $\square \times \square = 12$

$\square \times \square = 12$

$\square \times \square = 12$

E $3 \times \square = 27$

$3 \times \square = 27$

F $\square \times \square = 18$

$\square \times \square = 18$

$\square \times \square = 18$

The factors of 12 are

1, 12, 2, 6, 3.

The factors of 27 are

1, 27, 3, 9.

The factors of 18 are

1, 18, 2, 9, 3, 6.

G $\square \times \square = 24$

H $\square \times \square = 30$

I $\square \times \square = 36$

The factors of 24 are

1, 24, 2, 12, 3, 8, 4.

The factors of 30 are

1, 30, 2, 15, 3, 10, 5, 6.

The factors of 36 are

1, 36, 2, 18, 3, 12, 4, 9, 6.

2. A The factors of 14 are _____. B The factors of 32 are _____.

● Finding the Greatest Common Factor

1. Draw lines connecting the **common factors** of the 2 numbers.
Then give the **greatest common factor** of the 2 numbers.

A Factors of : {1, 2, 4, 8}

Factors of 12: {1, 2, 3, 4, 6, 12}

The greatest common factor of
8 and 12 is 4

B Factors of 12: {1, 2, 3, 4, 6, 12}

Factors of 18: {1, 2, 3, 6, 9, 18}

The greatest common factor of
12 and 18 is _____.

2. List the factors of the two numbers. Then follow the directions of exercise 1.

A Factors of 10: { }

Factors of 15: { }

The greatest common factor of
10 and 15 is _____.

B Factors of 18: { }

Factors of 24: { }

The greatest common factor of
18 and 24 is _____.

C Factors of 12: { }

Factors of 16: { }

The greatest common factor of
12 and 16 is _____.

D Factors of 12: { }

Factors of 30: { }

The greatest common factor of
12 and 30 is _____.

E Factors of 9: { }

Factors of 27: { }

The greatest common factor of
9 and 27 is _____.

F Factors of 24: { }

Factors of 32: { }

The greatest common factor of
24 and 32 is _____.

G Factors of 32: { }

Factors of 48: { }

The greatest common factor of
32 and 48 is _____.

H Factors of 16: { }

Factors of 27: { }

The greatest common factor
of 16 and 27 is _____.

1. List all the factors of each number.

A Factors of 1: _____

B Factors of 2: _____

C Factors of 3: _____

D Factors of 4: _____

E Factors of 5: _____

F Factors of 6: _____

G Factors of 7: _____

H Factors of 8: _____

I Factors of 9: _____

J Factors of 10: _____

K Factors of 11: _____

L Factors of 12: _____

M Factors of 13: _____

N Factors of 14: _____

O Factors of 15: _____

P Factors of 16: _____

Q Factors of 17: _____

R Factors of 18: _____

S Factors of 19: _____

T Factors of 20: _____

U Factors of 21: _____

V Factors of 22: _____

W Factors of 23: _____

X Factors of 24: _____

Y Factors of 25: _____

Z Factors of 26: _____

2. Which number in exercise 1 has just one factor? _____

3. Which of the numbers in exercise 1 have exactly two factors?

4. Whole numbers that have exactly two factors, the number itself and 1, are called **prime numbers**.

List all the prime numbers less than 26. _____

5. A Are there any prime numbers between 25 and 30? _____

B List the prime numbers between 25 and 30. _____

6. Whole numbers greater than 1 that have more than 2 factors are called **composite numbers**. List the composite numbers less than 30.

7. Which prime number is an even number? _____

1. Write the missing numbers.

A $1 \times \boxed{\quad} = 42$

$2 \times \boxed{\quad} = 42$

$3 \times \boxed{\quad} = 42$

$6 \times \boxed{\quad} = 42$

B Factors of 42: _____

3. A Factors of 18: _____

B Factors of 30: _____

C The common factors of 18 and 30 are _____.

D The greatest common factor of 18 and 30 is _____.

4. What is the greatest common factor of 28 and 42? _____

2. List all the factors of each number.

A Factors of 25: _____

B Factors of 28: _____

C Factors of 31: _____

D Factors of 33: _____

E Factors of 45: _____

F Which one of the numbers above is a prime number? _____

CHANGE OF PACE

An 8-sided figure is called an **octagon**. Figure A below is a Magic Octagon because each set of 3 numbers along a colored line has the same sum. Check this. Also, the number in the middle is the average of the 3 numbers on any one colored line. Use this information to make each figure below a Magic Octagon.

A

B

C

Study exercise 1. Then complete exercises 2 through 6.

We think about a pair of numbers.

We write a fraction for the number pair.

1.

3 parts are colored.
4 parts in all.

2. _____ part is colored.

_____ parts in all.

3 out of **4** parts are colored.

$\frac{3}{4}$ of the region is colored.

Read: "three-fourths" for $\frac{3}{4}$.

3. _____ balls are black.

_____ balls in all.

1 out of **3** parts are colored.

_____ of the region is colored.

4. _____ apples have worms.

_____ apples in all.

_____ out of _____ apples have worms.

_____ of the apples have worms.

5. _____ pieces of pie have been eaten.

_____ pieces at the beginning.

_____ out of _____ pieces have been eaten.

_____ of the pie has been eaten.

6. _____ plants have blossoms on them.

_____ plants in all.

_____ out of _____ plants have blossoms on them.

_____ of the plants have blossoms on them.

Read each story carefully. Then complete the sentence by writing a fraction in each blank.

1. The children were covering the bulletin board with sheets of paper. There was room for 10 sheets. When they had tacked up 7 sheets,

_____ of the bulletin board was covered.

2. There were 5 children on a committee. 3 of them were girls.

_____ of the children were girls.

3. There were 4 jars on a shelf. 2 of them were full of juice.

_____ of the jars were full of juice.

4. Jack was painting a garage door. He had painted 9 panels. There were 12 panels in all.

He had painted _____ of the door.

5. Ann was walking to school. She had walked 5 blocks. It was 8 blocks from her house to school. Ann had walked _____ of the way to school.

6. Sam had 16 marbles. 7 of them were black.

_____ of the marbles were black.

7. Mary completed 5 out of 6 problems.

She completed _____ of her problems.

$\begin{array}{r} 32 \\ \times 4 \\ \hline 128 \end{array}$	$\begin{array}{r} 56 \\ \times 3 \\ \hline 168 \end{array}$	$\begin{array}{r} 29 \\ \times 2 \\ \hline 58 \end{array}$
$\begin{array}{r} 83 \\ \times 5 \\ \hline 415 \end{array}$	$\begin{array}{r} 97 \\ \times 9 \\ \hline 873 \end{array}$	$\begin{array}{r} 64 \\ \times 6 \\ \hline \end{array}$

Mary

This peppermint stick was cut into _____ pieces.

The boy is taking _____ piece.

The boy is taking $\frac{1}{3}$ of the peppermint stick.

This peppermint stick was cut into _____ pieces.

The boy is taking _____ piece.

Is this boy taking $\frac{1}{3}$ of the peppermint stick? _____

Answer true or false for each exercise.

1. $\frac{1}{2}$ of stick is colored. _____

2. $\frac{1}{4}$ of the pie has been eaten. _____

3. $\frac{1}{5}$ of the sheet of paper is being cut off. _____

4. $\frac{4}{5}$ of the pizza is left. _____

5. $\frac{3}{4}$ of the circle is colored. _____

6. $\frac{1}{7}$ of the region is shaded. _____

7. $\frac{2}{3}$ of the cake has icing on top. _____

8. $\frac{5}{6}$ of the region is shaded. _____

Study the examples. Give the missing numbers.

A 2 of the dots are colored.

dots in all.

$\frac{2}{6}$ of the dots are colored.

1 set has colored dots.

sets in all.

$\frac{1}{3}$ of the dots are colored.

Since $\frac{2}{6}$ and $\frac{1}{3}$ can both be used to compare the colored dots with all the dots,

we say $\frac{2}{6}$ is equivalent to $\frac{1}{3}$.

B 1 part out of 4

parts is colored.

$\frac{1}{4}$ of the region is colored.

parts out of 8 parts

are colored.

$\frac{1}{8}$ of the region is colored.

Since $\frac{1}{4}$ and $\frac{2}{8}$ can both be used to compare the colored part with the whole region,

we say $\frac{1}{4}$ is equivalent to $\frac{2}{8}$.

Give the missing numbers.

1. out of 3 parts

are colored.

— of the region is colored.

out of 6 parts are

colored.

— of the region is colored.

— is equivalent to —.

2. dots are colored.

dots in all.

— of the dots are colored.

sets have colored dots.

sets in all.

— of the dots are colored.

— is equivalent to —.

1. In each row the fractions suggested by the figures are equivalent to each other. Write these fractions.

2. In the charts below, write fractions that show what part of the bar is shaded. Each fraction you write in chart A should be equivalent to $\frac{1}{4}$. Each fraction you write in chart B should be equivalent to $\frac{1}{5}$.

● Building Sets of Equivalent Fractions

Write the missing fractions in each exercise.

$$\frac{1 \times 2}{1 \times 5}$$

$$\frac{2 \times 2}{2 \times 5}$$

$$\frac{3 \times 2}{3 \times 5}$$

$$\frac{4 \times 2}{4 \times 5}$$

$$\frac{5 \times 2}{5 \times 5}$$

$$\frac{6 \times 2}{6 \times 5}$$

$$\frac{1 \times 2}{1 \times 7}$$

$$\frac{2 \times 3}{2 \times 7}$$

$$\frac{3 \times 3}{3 \times 7}$$

$$\frac{4 \times 3}{4 \times 7}$$

$$\frac{1 \times 5}{1 \times 6}$$

$$\frac{2 \times 5}{2 \times 6}$$

$$\frac{3 \times 5}{3 \times 6}$$

$$\frac{4 \times 5}{4 \times 6}$$

$$4. \left\{ \frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \dots \right\}$$

$$5. \left\{ \frac{1}{5}, \frac{2}{10}, \frac{3}{15}, \dots \right\}$$

$$6. \left\{ \frac{5}{10}, \frac{10}{20}, \frac{15}{30}, \dots \right\}$$

$$7. \left\{ \frac{2}{7}, \frac{4}{14}, \frac{6}{21}, \dots \right\}$$

$$8. \left\{ \frac{7}{10}, \frac{14}{20}, \dots \right\}$$

$$9. \left\{ \frac{4}{9}, \frac{8}{18}, \dots \right\}$$

$$10. \left\{ \frac{3}{7}, \dots \right\}$$

$$11. \left\{ \frac{5}{8}, \dots \right\}$$

Write the correct numerator or denominator in each

$$\frac{3}{4}$$

← Numerator
← Denominator

$$\frac{1}{6}$$

← Numerator
← Denominator

$$\frac{3}{9}$$

← Numerator
← Denominator

$$\frac{3}{10}$$

← Numerator
← Denominator

$$\frac{3}{6}$$

← Numerator
← Denominator

$$\frac{4}{8}$$

← Numerator
← Denominator

7. The denominator is twice the numerator.

$$\frac{7}{14}$$

← Numerator
← Denominator

8. The numerator is 3 less than half of the denominator.

$$\frac{7}{14}$$

← Numerator
← Denominator

9. The denominator is one more than 6 times the numerator.

$$\frac{3}{19}$$

← Numerator
← Denominator

CHANGE OF PACE

1. Each group of dots below shows a triangular number. Draw dots to show the next three triangular numbers.

2. Draw dots to show the next three square numbers.

3. Write the correct triangular numbers in the blanks.

$$\underline{1} + \underline{3} = 4$$

$$\underline{3} + \underline{6} = 9$$

$$\underline{\quad} + \underline{\quad} = 16$$

$$\underline{\quad} + \underline{\quad} = 25$$

$$\underline{\quad} + \underline{\quad} = 36$$

$$\underline{\quad} + \underline{\quad} = 49$$

Using Fractions to Compare Objects

1. Write the missing fractions.

- A We use fractions to compare a part of an object (or unit) with the whole object or unit.

OR

- B We can use fractions to compare one object (or unit) with another object or unit.

The shaded region is _____ of the square.

Region ABCD is _____ the size of the square.

2. Write the missing fractions.

- A We use fractions to compare a part of a segment with the whole segment.

\overline{AC} is _____ of \overline{AB} .

OR

- B We can use fractions to compare one segment with another segment.

\overline{CD} is _____ as long as \overline{AB} .

3. Write the missing fractions for each comparison.

The shaded region is _____ of the square centimetre.

Region ABCD is _____ the size of the square centimetre.

Region ABCDEF is _____ the size of the square centimetre.

Segment AC is _____ of the segment AB.

Segment EF is _____ as long as segment AB.

Segment CD is _____ as long as segment AB.

Fractions are often used to compare an object with a unit, such as a centimetre. Fractions with the numerator equal to or greater than the denominator are often used for such comparisons. Give the missing numbers or fractions.

1. Unit

We use the fraction $\frac{1}{3}$ to compare rod A with the unit.

We use the fraction $\frac{2}{3}$ to compare rod B with the unit.

We use the fraction $\frac{3}{3}$ to compare rod C with the unit.

For rod D, we use the fraction $\frac{4}{3}$.

For rod E, we use the fraction $\frac{5}{3}$.

For rod F, we use the fraction $\frac{6}{3}$.

2. Unit

3. Unit

4.

$\frac{1}{2}$

$\frac{2}{2}$

$\frac{3}{2}$

$\frac{4}{2}$

5. Fractions with numerator equal to or greater than the denominator are sometimes called **improper fractions**. Ring the **improper fractions** in the list.

$$\frac{2}{3}, \quad \frac{3}{2}, \quad \frac{2}{2}, \quad \frac{5}{3}, \quad \frac{1}{9}, \quad \frac{7}{7}, \quad \frac{9}{5}.$$

● Checking to See if Two Fractions are Equivalent

Find the products. Put a ring around equivalent or not equivalent to make the sentence true.

Remember: If the two "cross products" are the same, then the fractions are equivalent.

1. \rightarrow $3 \times 6 =$ $\frac{2}{3}$ is equivalent not equivalent to $\frac{6}{9}$.

2. \rightarrow $8 \times 3 =$ $\frac{5}{8}$ is equivalent not equivalent to $\frac{3}{4}$.

3. \rightarrow $10 \times 4 =$ $\frac{7}{10}$ is equivalent not equivalent to $\frac{4}{5}$.

4. \rightarrow $10 \times 10 =$ $\frac{3}{10}$ is equivalent not equivalent to $\frac{10}{37}$.

5. \rightarrow $6 \times 0 =$ $\frac{0}{6}$ is equivalent not equivalent to $\frac{0}{12}$.

6. \rightarrow $5 \times 9 =$ $\frac{5}{5}$ is equivalent not equivalent to $\frac{9}{9}$.

7. Circle the pair of fractions if they are equivalent fractions.

A $\frac{3}{8}, \frac{6}{9}$

B $\frac{2}{3}, \frac{8}{12}$

C $\frac{1}{5}, \frac{2}{9}$

D $\frac{1}{4}, \frac{5}{20}$

E $\frac{4}{4}, \frac{6}{6}$

F $\frac{1}{2}, \frac{50}{100}$

G $\frac{1}{2}, \frac{2}{1}$

H $\frac{0}{7}, \frac{0}{5}$

1. You have learned how to build a set of equivalent fractions from a lowest-terms fraction. Give the missing fractions.

$$\frac{2}{3} \rightarrow \frac{2 \times 2}{2 \times 3} \rightarrow \frac{3 \times 2}{3 \times 3} \rightarrow \frac{4 \times 2}{4 \times 3} \rightarrow \frac{5 \times 2}{5 \times 3} \rightarrow \frac{6 \times 2}{6 \times 3} \rightarrow \frac{7 \times 2}{7 \times 3}$$

↓ ↓ ↓ ↓ ↓ ↓ ↓

$$\left\{ \frac{2}{3}, \frac{4}{6}, \text{ } , \text{ } \right\}$$

2. In each exercise below a set of equivalent fractions was built as in exercise 1.

In each set write the **lowest-terms** fraction that was used to build the set.

A $\left\{ \frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{8}{12}, \dots \right\}$

D $\left\{ \text{ }, \frac{6}{14}, \frac{9}{21}, \frac{12}{28}, \dots \right\}$

B $\left\{ \text{ }, \frac{6}{10}, \frac{9}{15}, \frac{12}{20}, \dots \right\}$

E $\left\{ \text{ }, \frac{3}{6}, \frac{4}{8}, \frac{5}{10}, \dots \right\}$

C $\left\{ \text{ }, \frac{6}{8}, \frac{9}{12}, \frac{15}{20}, \dots \right\}$

F $\left\{ \text{ }, \frac{15}{9}, \frac{20}{12}, \frac{25}{15}, \dots \right\}$

3. Each set is a set of **equivalent fractions**. Each set has one fraction that is in **lowest terms**. Ring that fraction.

A $\left\{ \frac{8}{12}, \frac{6}{9}, \frac{12}{18}, \frac{2}{3}, \frac{4}{6}, \frac{14}{21} \right\}$

E $\left\{ \frac{4}{3}, \frac{12}{9}, \frac{20}{15}, \frac{24}{18}, \frac{16}{12}, \frac{8}{6} \right\}$

B $\left\{ \frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \frac{25}{30}, \frac{30}{36} \right\}$

F $\left\{ \frac{18}{42}, \frac{15}{35}, \frac{12}{28}, \frac{9}{21}, \frac{6}{14}, \frac{3}{7} \right\}$

C $\left\{ \frac{4}{14}, \frac{2}{7}, \frac{6}{21}, \frac{8}{28}, \frac{12}{42}, \frac{10}{35} \right\}$

G $\left\{ \frac{9}{24}, \frac{12}{32}, \frac{3}{8}, \frac{18}{48}, \frac{15}{40}, \frac{6}{16} \right\}$

D $\left\{ \frac{18}{30}, \frac{12}{20}, \frac{6}{10}, \frac{9}{15}, \frac{3}{5}, \frac{15}{25} \right\}$

H $\left\{ \frac{15}{20}, \frac{12}{40}, \frac{18}{60}, \frac{9}{30}, \frac{3}{10}, \frac{6}{20} \right\}$

1. Write the missing numbers and fractions.

parts are colored.

parts in all.

of the region
is colored.

balls are black.

balls in all.

of the balls
are black.

parts are colored.

parts in all.

of the region
is colored.

2. Is $\frac{1}{3}$ of the rod colored? _____

3. Are $\frac{1}{4}$ of the marbles colored? _____

4. Write the fraction suggested by each figure.

5. Are the two fractions $\frac{2}{3}$ and $\frac{4}{7}$ equivalent? _____

$$\frac{2}{3} \cancel{=} \frac{4}{7}$$

6. Write the lowest-terms fraction that was used to build the following set of equivalent fractions. $\left\{ \text{---}, \frac{2}{8}, \frac{3}{12}, \frac{4}{16}, \dots \right\}$

CHANGE OF PACE

1. The number 12 345 679 is interesting.
Find these products to see why.

A $12\ 345\ 679$
 × 9

B $12\ 345\ 679$
 × 18

C $12\ 345\ 679$
 × 27

2. What do you think you could multiply 12 345 679 by to get the following products?

A 444 444 444 _____

B 555 555 555 _____

C 666 666 666 _____

Number pairs can show locations.

The is "3 over and 5 up" on the graph.

The co-ordinates of the are (3, 5).

1. Give the missing numbers.

A The is "2 over and _____ up".

B The is _____ over and 3 up.

Its co-ordinates are (_____, 3).

C The is _____ over and _____ up.

Its co-ordinates are (_____, _____).

2. Use the grid in exercise 1 to graph each of these points.

Write the letter beside it.

Example:

B (3, 6)

D (0, 4)

F (3, 3)

Graph letter A at (2, 2).

C (6, 5)

E (5, 1)

G (6, 0)

3. Draw a picture by graphing and connecting the points in the order given.

- $(4, 1) \rightarrow (5, 2) \rightarrow (5, 3) \rightarrow (3, 3)$
- $\rightarrow (1, 4) \rightarrow (1, 6) \rightarrow (0, 5)$
- $(0, 7) \rightarrow (1, 8) \rightarrow (2, 7) \rightarrow (2, 5)$
- $\rightarrow (3, 6) \rightarrow (4, 6) \rightarrow (5, 7) \rightarrow$
- $(6, 9) \rightarrow (8, 9) \rightarrow (10, 7) \rightarrow (10, 5)$
- $\rightarrow (8, 3) \rightarrow (6, 3) \rightarrow (6, 1) \rightarrow$
- $(4, 1)$.

1. Draw the other half of each figure so that **symmetric** figures are formed.

2. Use the grid at the right to make a larger drawing of the figure below so that the two figures will be **similar**.

3. Use the move given and show the final position of each figure.

1. Use the graph at the right to answer each question below.

- a On which day were the most number of students absent? _____
- b How many students were absent on Wednesday? _____
- c Which two days had the same number of absences? _____, _____
- d What is the total number of absences for the week? _____

SCHOOL ABSENCES FOR ONE WEEK

2. Complete the function tables. Then graph the number pairs on the grid.

Function Rule

Subtract

INPUT	OUTPUT
8	7
7	6
6	
5	

INPUT	OUTPUT
4	
3	
2	
1	

3. Complete the function tables. Then graph the number pairs on the grid.

Function Rule

Multiply by 2

INPUT	OUTPUT
0	0
1	2
2	
3	

INPUT	OUTPUT
4	
5	
6	
7	

1. Give the correct number or letter in each blank.

- A The letter *C* is 4 over and ____ up.
- B The letter ____ is 2 over and 1 up.
- c The letter whose co-ordinates are $(4, 0)$ is ____.
- d The co-ordinates of letter *B* are $(\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$.

2. Graph and connect the points in the order given.

$(3, 1) \rightarrow (4, 1) \rightarrow (4, 2) \rightarrow (5, 2)$
 $\rightarrow (6, 4) \rightarrow (7, 4) \rightarrow (6, 6) \rightarrow$
 $(4, 4) \rightarrow (1, 4) \rightarrow (0, 5) \rightarrow (0, 4)$
 $\rightarrow (1, 3) \rightarrow (1, 1) \rightarrow (2, 1) \rightarrow$
 $(2, 2) \rightarrow (3, 2) \rightarrow (3, 1)$.

3. Draw the other half of the figure so that it will be symmetric.

CHANGE OF PACE

Give the number for each shaded space.

In each exercise below, two tags are tied on a wire. The arrow shows a cricket's jump. Write a fraction in each

The cricket has jumped $\frac{1}{3}$ of the way from the 0 tag to the 1 tag.

The jump is $\frac{1}{3}$ of the way from 0 to 1.

The jump is $\frac{2}{3}$ of the way from 0 to 1.

The jump is $\frac{3}{4}$ of the way from 0 to 1.

The jump is $\frac{4}{5}$ of the way from 0 to 1.

The jump is $\frac{5}{6}$ of the way from 0 to 1.

Fractional Numbers and the Number Line

For each set of equivalent fractions

we think of one fractional number

and one point on the number line.

For each set of equivalent fractions there is one fractional number. Put a ring around the point for the number.

Set of equivalent fractions for the number	Which point on the number line goes with the fractional number?
1. $\left\{ \frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \dots \right\}$	
2. $\left\{ \frac{1}{5}, \frac{2}{10}, \frac{3}{15}, \frac{4}{20}, \dots \right\}$	
3. $\left\{ \frac{3}{4}, \frac{6}{8}, \frac{9}{12}, \frac{12}{16}, \dots \right\}$	
4. $\left\{ \frac{3}{5}, \frac{6}{10}, \frac{9}{15}, \frac{12}{20}, \dots \right\}$	
5. $\left\{ \frac{1}{6}, \frac{2}{12}, \frac{3}{18}, \frac{4}{24}, \dots \right\}$	
6. $\left\{ \frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \dots \right\}$	
7. $\left\{ \frac{3}{8}, \frac{6}{16}, \frac{9}{24}, \frac{12}{32}, \dots \right\}$	
8. $\left\{ \frac{7}{8}, \frac{14}{16}, \frac{12}{24}, \frac{28}{32}, \dots \right\}$	

Instead of naming a fractional number by writing a set of equivalent fractions as in example A, we can use **any one** of the fractions from the set to name the fractional number, as shown in example B. We usually use the lowest-terms fraction to name the number.

$$\left\{ \frac{1}{4}, \frac{2}{8}, \frac{3}{12}, \frac{4}{16}, \frac{5}{20}, \dots \right\}$$

In each exercise, write a fraction to name the fractional number for the point over the colored arrow. **Use a different fraction in each exercise.**

1.

7.

13.

2.

8.

14.

3.

9.

15.

4.

10.

16.

5.

11.

17.

6.

12.

18.

1. If two fractions can be used to name the same fractional number, we write an equality sign (=) between them. Write the missing numerators and denominators.

A
 $\frac{1}{2} = \frac{\text{?}}{8}$

C
 $\frac{2}{8} = \frac{1}{\text{?}}$ $\frac{3}{4} = \frac{9}{\text{?}}$

E
 $\frac{4}{12} = \frac{2}{\text{?}}$ $\frac{10}{12} = \frac{5}{\text{?}}$ $\frac{10}{12} = \frac{18}{\text{?}}$

B
 $\frac{1}{3} = \frac{2}{6}$ $\frac{2}{3} = \frac{4}{6}$

D
 $\frac{4}{10} = \frac{1}{5}$ $\frac{4}{5} = \frac{16}{20}$

F
 $\frac{1}{8} = \frac{3}{\text{?}}$ $\frac{14}{32} = \frac{7}{\text{?}}$

2. Answer T (true) or F (false).

A $\frac{1}{3}$ is equivalent to $\frac{3}{9}$. _____

E $\frac{1}{3} = \frac{3}{9}$ _____

I $\frac{4}{5} = \frac{8}{10}$ _____

B $\frac{3}{4}$ is equivalent to $\frac{8}{12}$. _____

F $\frac{3}{4} = \frac{8}{12}$ _____

J $\frac{4}{9} = \frac{5}{8}$ _____

C $\frac{2}{7}$ is equivalent to $\frac{1}{4}$. _____

G $\frac{2}{7} = \frac{1}{4}$ _____

K $\frac{5}{8} = \frac{4}{7}$ _____

D $\frac{3}{5}$ is equivalent to $\frac{9}{15}$. _____

H $\frac{3}{5} = \frac{9}{15}$ _____

L $\frac{3}{8} = \frac{9}{24}$ _____

CHANGE OF PACE

142 857 is another interesting number. When you multiply the number by 1, 2, 3, 4, 5, or 6, you can read the answer on this dial.

For example, to read the answer for $1 \times 142 857$ you start at the arrow and read "142 857" going clockwise around the dial.

Find the products below and mark an arrow on each dial that shows where you start to read the answer.

A 142857×2

B 142857×3

c 142857×4

D 142857×5

E 142857×6

Comparing Fractional Numbers

1. The shaded part of each region will help you tell which fractional number is greater. Write the correct sign (< or >) in each ●.

$$\frac{2}{3}$$

$$\frac{3}{8}$$

B

$$\frac{1}{4}$$

$$\frac{1}{5}$$

C

$$\frac{1}{4}$$

$$\frac{1}{2}$$

$$\frac{3}{4}$$

$$\frac{3}{8}$$

E

$$\frac{5}{6}$$

$$\frac{7}{8}$$

F

$$\frac{2}{3}$$

$$\frac{4}{7}$$

$$\frac{3}{8}$$

$$\frac{1}{4}$$

H

$$\frac{5}{7}$$

$$\frac{5}{8}$$

I

$$\frac{1}{3}$$

$$\frac{3}{8}$$

2. The number line will help you tell which fractional number is greater. Write the correct sign (< or >) in each ●.

A $\frac{5}{16}$ ● $\frac{3}{8}$

E $\frac{9}{16}$ ● $\frac{1}{4}$

I $\frac{5}{8}$ ● $\frac{7}{16}$

M $\frac{3}{16}$ ● $\frac{1}{2}$

B $\frac{1}{8}$ ● $\frac{1}{4}$

F $\frac{1}{2}$ ● $\frac{3}{8}$

J $\frac{11}{16}$ ● $\frac{7}{8}$

N $\frac{3}{8}$ ● $\frac{5}{8}$

C $\frac{5}{8}$ ● $\frac{13}{16}$

G $\frac{1}{8}$ ● $\frac{1}{2}$

K $\frac{7}{8}$ ● $\frac{15}{16}$

O $\frac{3}{4}$ ● $\frac{3}{8}$

D $\frac{11}{16}$ ● $\frac{1}{2}$

H $\frac{1}{16}$ ● $\frac{1}{4}$

L $\frac{13}{16}$ ● $\frac{7}{8}$

P $\frac{3}{4}$ ● $\frac{15}{16}$

 Naming Fractional Numbers Greater than 1

1. Give the missing numerators.

2. Give the missing numbers. The number lines above will help you.

A	$2 = \frac{?}{3}$	D	$1 = \frac{8}{?}$	G	$3 = \frac{?}{12}$	J	$2 = \frac{?}{8}$
B	$3 = \frac{?}{8}$	E	$3 = \frac{?}{2}$	H	$0 = \frac{?}{3}$	K	$\frac{9}{3} = ?$
C	$\frac{36}{12} = ?$	F	$2 = \frac{24}{?}$	I	$\frac{3}{3} = \frac{?}{2}$	L	$\frac{6}{2} = ?$

3. Put a ring around the point on the number line for each fractional number given.

The number lines below will help you think about adding fractional numbers. Give the missing numbers.

First jump _____ thirds. Then jump _____ more thirds. $\frac{2}{3} + \frac{4}{3} =$ _____

First jump _____ fourths. Then jump _____ more fourths. _____ + $\frac{3}{4} =$ _____

First jump _____ fifths. Then jump _____ more fifths. $\frac{9}{5} +$ _____ = _____

First jump _____ sixths. Then jump _____ more sixths. _____ + _____ = _____

For exercises 5 through 7, complete the jumps on each number line. Then give the sum.

First jump 3 halves. Then jump 2 halves. $\frac{3}{2} + \frac{2}{2} =$ _____

First jump 3 fourths. Then jump 7 fourths. $\frac{3}{4} + \frac{7}{4} =$ _____

First jump 2. Then jump $\frac{3}{5}$. $2 + \frac{3}{5} =$ _____

1. We can use fractions to name a whole number. Give the missing fractions for the "whole number" points on the number line below.

A $\frac{0}{2}$ $\frac{2}{2}$ $\frac{4}{2}$ $\frac{6}{2}$

B $\frac{0}{5}$ $\frac{5}{5}$ $\frac{10}{5}$

2. Give the missing numerator for each fraction.

A $1 = \frac{\square}{2}$

C $0 = \frac{\square}{2}$

E $1 = \frac{\square}{3}$

G $7 = \frac{\square}{4}$

I $0 = \frac{\square}{5}$

B $5 = \frac{\square}{2}$

D $2 = \frac{\square}{3}$

F $3 = \frac{\square}{3}$

H $1 = \frac{\square}{4}$

J $9 = \frac{\square}{5}$

3. Numerals such as $3\frac{1}{2}$ are called mixed numerals. Write the mixed numeral for the point over the colored arrow.

4. The mixed numeral $3\frac{1}{2}$ means $3 + \frac{1}{2}$. Give the correct number for each blank.

A $3\frac{1}{4}$ means $3 + \underline{\hspace{1cm}}$

C $2\frac{1}{7} = \underline{\hspace{1cm}} + \frac{1}{7}$

E $\underline{\hspace{1cm}} = 8 + \frac{3}{4}$

B $2\frac{1}{5}$ means $\underline{\hspace{1cm}} + \frac{1}{5}$

D $\underline{\hspace{1cm}} = 4 + \frac{1}{6}$

F $5\frac{1}{6} = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

5. Give the correct numerator in each $\underline{\hspace{1cm}}$. Then write the improper fraction in each blank.

A $1\frac{1}{2} = \frac{\underline{\hspace{1cm}}}{2} + \frac{1}{2} = \underline{\hspace{1cm}}$

C $1\frac{1}{3} = \frac{\underline{\hspace{1cm}}}{3} + \frac{1}{3} = \underline{\hspace{1cm}}$

E $2\frac{1}{4} = \frac{\underline{\hspace{1cm}}}{4} + \frac{1}{4} = \underline{\hspace{1cm}}$

B $2\frac{1}{2} = \frac{\underline{\hspace{1cm}}}{2} + \frac{1}{2} = \underline{\hspace{1cm}}$

D $2\frac{1}{3} = \frac{\underline{\hspace{1cm}}}{3} + \frac{1}{3} = \underline{\hspace{1cm}}$

F $3\frac{1}{5} = \frac{\underline{\hspace{1cm}}}{5} + \frac{1}{5} = \underline{\hspace{1cm}}$

6. Give a mixed numeral for each fraction.

A $\frac{7}{2} = \underline{\hspace{1cm}}$

B $\frac{5}{3} = \underline{\hspace{1cm}}$

C $\frac{7}{4} = \underline{\hspace{1cm}}$

D $\frac{11}{5} = \underline{\hspace{1cm}}$

1. Give a mixed numeral for each sum.

A $3 + \frac{1}{5} = \underline{\quad}$

C $\frac{1}{3} + 8 = \underline{\quad}$

E $2 + \frac{5}{6} = \underline{\quad}$

B $1 + \frac{3}{7} = \underline{\quad}$

D $3 + \frac{9}{10} = \underline{\quad}$

F $7 + \frac{1}{6} = \underline{\quad}$

2. Give an improper fraction for each sum.

A $\frac{1}{5} + \frac{4}{5} = \underline{\quad}$

C $\frac{3}{5} + \frac{3}{5} = \underline{\quad}$

E $\frac{3}{4} + \frac{5}{4} = \underline{\quad}$

B $\frac{3}{4} + \frac{2}{4} = \underline{\quad}$

D $\frac{7}{6} + \frac{5}{6} = \underline{\quad}$

F $\frac{6}{5} + \frac{0}{5} = \underline{\quad}$

3. Give a whole number or a mixed numeral for each sum.

A $\frac{1}{5} + \frac{4}{5} = \underline{\quad}$

C $\frac{3}{5} + \frac{3}{5} = \underline{\quad}$

E $1\frac{3}{4} + \frac{5}{4} = \underline{\quad}$

B $\frac{3}{4} + \frac{2}{4} = \underline{\quad}$

D $\frac{7}{6} + \frac{5}{6} = \underline{\quad}$

F $1\frac{1}{2} + 0 = \underline{\quad}$

4. Give the missing numerator for each fraction.

A $\frac{1}{2} = \frac{\square}{4}$

C $\frac{1}{5} = \frac{\square}{10}$

E $\frac{1}{2} = \frac{\square}{6}$

B $\frac{1}{2} = \frac{\square}{8}$

D $\frac{1}{3} = \frac{\square}{12}$

F $\frac{1}{3} = \frac{\square}{6}$

5. Use the fractions in exercise 4 to help you find the sums.

A $\frac{1}{2} + \frac{1}{4} = \underline{\quad}$

C $\frac{1}{5} + \frac{7}{10} = \underline{\quad}$

E $\frac{1}{2} + \frac{1}{3} = \underline{\quad}$

B $1\frac{1}{2} + \frac{1}{8} = \underline{\quad}$

D $\frac{1}{3} + \frac{7}{12} = \underline{\quad}$

F $1\frac{1}{3} + 2\frac{1}{2} = \underline{\quad}$

6. Solve each story problem.

A Tom's green pencil is $5\frac{1}{4}$ cm long.
Jeff's pencil is $4\frac{3}{4}$ cm long.
What is their combined
lengths?

B Ann bought $\frac{1}{2}$ kilogram of cashews.
and $1\frac{1}{4}$ kilograms of peanuts.
How many kilograms of nuts did
she buy?

1. Put a ring around the point on the number line for the number indicated by the set of equivalent fractions.

A $\left\{ \frac{2}{5}, \frac{4}{10}, \frac{6}{15}, \frac{8}{20}, \dots \right\}$

B $\left\{ \frac{5}{8}, \frac{10}{16}, \frac{15}{24}, \frac{20}{32}, \dots \right\}$

2. Give the correct numerator so that both fractions name the same fractional number.

A $\frac{3}{5} = \frac{\text{[red box]}}{10}$

B $\frac{2}{4} = \frac{\text{[red box]}}{16}$

C $\frac{5}{8} = \frac{\text{[red box]}}{16}$

3. Write the correct sign ($<$ or $>$) in the .

$$\frac{3}{4} \quad \text{[red circle]} \quad \frac{5}{8}$$

4. Give the missing numbers.

A $3 = \frac{\text{[red box]}}{2}$ C $\frac{12}{4} = \underline{\hspace{2cm}}$

B $\frac{8}{4} = \underline{\hspace{2cm}}$ D $\frac{10}{3} = \underline{\hspace{2cm}}$

5. Find the sums.

A $\frac{3}{5} + \frac{4}{5} = \underline{\hspace{2cm}}$

B $3 + \frac{4}{5} = \underline{\hspace{2cm}}$

C $\frac{3}{7} + \frac{4}{7} = \underline{\hspace{2cm}}$

CHANGE OF PACE

Work the puzzle.

Across

- 9 hundreds, 6 tens, and 5 ones
- Number of months in a year
- Largest number that can be written using the digits 4, 5, 6, 7, 8, 9
- $(10 \times 10) - (1 \times 10)$
- Area of this rectangle 9×4
- 3010×50
- Perimeter of the rectangle in item 10
- Smallest 3-digit number

Down

- Largest 3-digit number
- 34×20
- A number between 55 and 59
- Half of 30
- 2 dozen
- 16×4
- $1 \times 2 \times 5$
- 40×15
- $2\frac{2}{5} = \frac{\text{[red box]}}{5}$
- $(8 \times 8) - 8$
- $459 \div 9$

1	2	3		4	5
6				7	
8					
			9		10
12	13			14	
15				16	

CONTENTS

Workbook page	To follow text page	Chap	
			QA 36-5 E34 1973 BK-4 WKBK- EICHOLZ ROBERT E INVESTIGATING SCHOOL MATHEMATICS 39283343 Curr
			 * 000028386571 *
			183 185 187 191 193 193 197 199 201 202
Chapter 1 NUMBERS AND MEASUREMENT			
1 Measurement by Counting	5		
2 The Centimetre	9		
3 Fractional Numbers in Measurement	13		
4 Perimeter	17		
5 Area	25		
6 Volume	27		
7 Liquid Measure	29		
8 Reviewing the Chapter	33		
Chapter 2 NUMBERS AND NUMERALS			
9 Understanding Place Value	37		
10 Thousands	43		
11 Inequalities	45		
12 Thousands and Millions	51		
13 Comparing Numbers	53		
14 Reviewing the Chapter	56		
Chapter 3 ADDITION AND SUBTRACTION			
15 Missing Addends	59		
16 Know the Facts	63		
17 The Function Machine	65		
18 The Basic Principles for Addition	67		
19 Adding 2-digit Numbers	69		
20 Finding Sums	71		
21 Finding Larger Sums	73		
22 Finding Sums of Money	77		
23 Finding Differences	85		
24 More About Subtraction	89		
25 Solving Problems	93		
26 Reviewing the Chapter	95		
Chapter 4 GEOMETRY			
27 Points, Lines, Segments, and Angles	103		
28 Parallel Lines and Segments	105		
29 Closed Curves and Symmetry	113		
30 Reviewing the Chapter	114		
Chapter 5 MULTIPLICATION AND DIVISION			
31 Related Operations	119		
32 Some Basic Principles for Multiplication	123		
33 The Multiplication-Addition Principle	125		
34 Reviewing Multiplication Facts	127		
35 More Multiplication Facts	129		
36 Missing Factors and Quotients	135		
37 Zero and One Facts in Division	137		
38 The Function Machine	145		
39 Solving Problems	147		
40 Pairing and Multiplication	151		
41 Reviewing the Chapter	153		
42 Choosing the Operation	155		
Chapter 6 SPECIAL PRODUCTS AND QUOTIENTS			
43 10, 100, and 1000 as Factors	157		
44 Special Products	159		
45 Missing Factors	161		
46 Special Quotients	163		
47 More Products and Quotients	165		
48 Reviewing the Chapter	168		
Chapter 7 ESTIMATION			
49 Estimating	171		
50 Estimating Sums and Differences	173		
51 Estimating Products and Quotients	177		
52 Reviewing the Chapter	180		
Chapter 9 GEOMETRY			
63 Space Figures and Plane Figures	209		
64 Congruent Figures	215		
65 Congruence and Symmetry	217		
66 Reviewing the Chapter	218		
Chapter 10 DIVIDING			
67 Division and Subtraction	221		
68 Subtracting to Find Quotients	221		
69 Quotients and Remainders	223		
70 Estimating Quotients	227		
71 Using Estimating to Find Quotients	229		
72 Finding and Checking 2-digit Quotients	231		
73 Finding Averages	233		
74 Estimating 3-digit Quotients	235		
75 Finding and Checking 3-digit Quotients	236		
76 Solving Problems	237		
77 Dividing by Multiples of 10	241		
78 Estimating Quotients—2-digit Divisors	242		
79 Finding Quotients—2-digit Divisors	242		
80 Dividing Practice	243		
81 Solving Problems	245		
82 Reviewing the Chapter	247		
Chapter 11 NUMBER THEORY			
83 Finding Factors of a Number	253		
84 Finding the Greatest Common Factor	255		
85 Prime Numbers	257		
86 Reviewing the Chapter	260		
Chapter 12 FRACTIONS			
87 Number Pairs and Fractions	263		
88 Writing Fractions	265		
89 Fractions and Parts of a Region	267		
90 Understanding Equivalent Fractions	273		
91 Sets of Equivalent Fractions	275		
92 Building Sets of Equivalent Fractions	277		
93 Numerators and Denominators	279		
94 Using Fractions to Compare Objects	283		
85 Learning About Improper Fractions	285		
96 Checking to See if Two Fractions are Equivalent	287		
97 Fractions in Lowest Terms	289		
98 Reviewing the Chapter	293		
Chapter 13 GEOMETRY AND GRAPHING			
99 Locating and Graphing Points	299		
100 More Co-ordinate Graphing	307		
101 Graphs and Functions	311		
102 Reviewing the Chapter	314		
Chapter 14 FRACTIONAL NUMBERS			
103 Fractions and Length	317		
104 Fractional Numbers and the Number Line	321		
105 Naming Fractional Numbers	323		
106 Using the Equality Sign	325		
107 Comparing Fractional Numbers	331		
108 Naming Fractional Numbers Greater than 1	333		
109 Adding Fractional Numbers	335		
110 Whole Numbers, Fractions, and Mixed Numerals	339		
111 More About Adding Fractional Numbers	341		
112 Reviewing the Chapter	343		

ISM

EICHOESEL DAFFER • FLEENOR
C1597

ADDISON-WESLEY (CANADA) LIMITED

1104