aerofit

March 18, 2024

Dataset The company collected the data on individuals who purchased a treadmill from the AeroFit stores during the prior three months. The dataset has the following features:

Dataset link:- https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmi

Product Purchased: KP281, KP481, or KP781

Age: In years Gender: Male/Female Education: In years

MaritalStatus: Single or partnered

Usage: The average number of times the customer plans to use the treadmill each week.

Income: Annual income (in \$)

Fitness: Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape and 5 is the excel

Miles: The average number of miles the customer expects to walk/run each week

0.0.1 price of products- Portfolio

"' Product Portfolio:

- 1. The KP281 is an entry-level treadmill that sells for \$1,500.
- 2. The KP481 is for mid-level runners that sell for \$1,750.
- 3. The KP781 treadmill is having advanced features that sell for \$2,500. "

```
[4]: %load_ext autoreload %autoreload 2
```

```
[84]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import math
from scipy.stats import norm, binom, poisson, expon
```

- [2]: aerofit_weblink = 'https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/

 0000/001/125/original/aerofit_treadmill.csv?1639992749'
- [7]: df = pd.read_csv(aerofit_weblink) df

```
[7]:
                          Gender Education MaritalStatus Usage
                                                                     Fitness
          Product
                    Age
                                                                               Income
      0
             KP281
                     18
                            Male
                                          14
                                                     Single
                                                                  3
                                                                            4
                                                                                 29562
      1
             KP281
                            Male
                                          15
                                                     Single
                                                                  2
                                                                                 31836
                     19
                                                                            3
      2
             KP281
                     19
                         Female
                                          14
                                                  Partnered
                                                                  4
                                                                            3
                                                                                 30699
      3
            KP281
                                                                  3
                                                                                 32973
                     19
                            Male
                                          12
                                                     Single
                                                                            3
      4
             KP281
                     20
                            Male
                                          13
                                                  Partnered
                                                                  4
                                                                            2
                                                                                 35247
      . .
               ... ...
      175
             KP781
                     40
                            Male
                                          21
                                                     Single
                                                                            5
                                                                                 83416
                                                                  6
      176
            KP781
                     42
                            Male
                                          18
                                                     Single
                                                                  5
                                                                            4
                                                                                89641
      177
            KP781
                            Male
                                          16
                                                                  5
                                                                            5
                                                                                90886
                     45
                                                     Single
      178
                                                                  4
             KP781
                     47
                            Male
                                          18
                                                  Partnered
                                                                            5
                                                                               104581
      179
            KP781
                     48
                            Male
                                          18
                                                  Partnered
                                                                  4
                                                                                 95508
           Miles
      0
              112
      1
               75
      2
               66
      3
               85
      4
               47
              200
      175
      176
              200
      177
              160
      178
              120
      179
              180
      [180 rows x 9 columns]
      df.shape
 [8]:
 [8]: (180, 9)
[38]:
      df.dtypes
[38]: Product
                         object
      Age
                          int64
      Gender
                         object
      Education
                          int64
      MaritalStatus
                         object
      Usage
                          int64
      Fitness
                          int64
      Income
                          int64
      Miles
                          int64
      dtype: object
[40]: (df.dtypes.index, df.dtypes.values)
```

```
[40]: (Index(['Product', 'Age', 'Gender', 'Education', 'MaritalStatus', 'Usage',
              'Fitness', 'Income', 'Miles'],
             dtype='object'),
       array([dtype('0'), dtype('int64'), dtype('0'), dtype('int64'), dtype('0'),
              dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64')],
             dtype=object))
     just segregating numerical and categorical variables
[53]: categorical_variable = list()
      numerical_variable = list()
      for i in range(len(df.dtypes.index)):
          if df.dtypes.values[i] == df.dtypes.values[0]:
              categorical_variable.append(df.dtypes.index[i])
          else:
              numerical_variable.append(df.dtypes.index[i])
[54]: (categorical_variable, numerical_variable)
[54]: (['Product', 'Gender', 'MaritalStatus'],
       ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles'])
[66]: pd.DataFrame({i : [df[i].unique()] for i in categorical_variable})
[66]:
                       Product
                                         Gender
                                                       MaritalStatus
                                [Male, Female]
      0 [KP281, KP481, KP781]
                                                 [Single, Partnered]
[55]:
     df.describe()
[55]:
                          Education
                                                     Fitness
                                                                      Income
                    Age
                                           Usage
             180.000000
                         180.000000
                                      180.000000
                                                 180.000000
                                                                 180.000000
      count
              28.788889
                          15.572222
                                        3.455556
                                                    3.311111
                                                               53719.577778
      mean
      std
               6.943498
                           1.617055
                                        1.084797
                                                    0.958869
                                                               16506.684226
     min
              18.000000
                          12.000000
                                        2.000000
                                                    1.000000
                                                               29562.000000
      25%
              24.000000
                          14.000000
                                        3.000000
                                                    3.000000
                                                               44058.750000
      50%
              26.000000
                          16.000000
                                        3.000000
                                                    3.000000
                                                               50596.500000
                                                               58668.000000
      75%
              33.000000
                          16.000000
                                        4.000000
                                                    4.000000
      max
              50.000000
                          21.000000
                                        7.000000
                                                    5.000000
                                                              104581.000000
                  Miles
             180.000000
      count
      mean
             103.194444
      std
              51.863605
     min
              21.000000
      25%
              66.000000
      50%
              94.000000
      75%
             114.750000
```

0.1 Couple observations -

The range of age is from 18 - 50

The median income or the higher # of people have income ~ 58000 , which is a little away from mean ~ 53000 - therefore, there might be outliers weighing the data to that side

the usgae of treadmill is around ~ 4 times

```
Value counts for each categorical variable
```

```
[67]: categorical_variable
[67]: ['Product', 'Gender', 'MaritalStatus']
[79]: for i in categorical_variable:
          print(df[i].value_counts().reset_index(), "\n")
        index Product
     0 KP281
                    80
     1 KP481
                    60
     2 KP781
                    40
         index Gender
     0
          Male
                   104
       Female
                    76
            index MaritalStatus
     0
        Partnered
                             107
     1
           Single
                              73
     0.2 observations
```

- 1. product "KP281" is the most used product
- 2. There are more male members than female
- 3. more couples than singles

```
[80]: df.info()

<class 'pandas.core.frame.DataFrame'>
   RangeIndex: 180 entries, 0 to 179
   Data columns (total 9 columns):
```

Column Non-Null Count Dtype

```
0
    Product
                    180 non-null
                                    object
                    180 non-null
                                     int64
 1
    Age
 2
    Gender
                    180 non-null
                                     object
 3
    Education
                    180 non-null
                                     int64
 4
    MaritalStatus 180 non-null
                                     object
 5
    Usage
                    180 non-null
                                     int64
    Fitness
 6
                    180 non-null
                                     int64
     Income
                    180 non-null
                                     int64
    Miles
                    180 non-null
                                     int64
dtypes: int64(6), object(3)
memory usage: 12.8+ KB
```

0.3 Let's do some outlier detection

i = i + 1

```
[81]: numerical_variable

[81]: ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']

[94]: fig, axes = plt.subplots(1, len(numerical_variable), figsize = (20, 3))
    plt.suptitle('Box plot for the numerical variables')

i = 0
    for col in numerical_variable:
        sns.boxplot(data = df, x = col, ax = axes[i])
```



```
[113]: ## function to calculate the ouliers

def calculate_outlier(data):
    q1 = np.percentile(data, 25)
    q3 = np.percentile(data, 75)

iqr = q3 - q1

lower_bound = q1 - 1.5* iqr
    upper_bound = q3 + 1.5 * iqr
```

```
outlier = [value for value in data if value < lower_bound or value >\sqcup
        →upper_bound]
           return outlier
[114]: outlier_dic = {col : [calculate_outlier(df[col])] for col in_
        →numerical_variable}
       outlier_df = pd.DataFrame(outlier_dic)
[115]: outlier_df
[115]:
                                       Education
                                                                         Usage \
                           Age
       0 [47, 50, 48, 47, 48] [20, 21, 21, 21] [6, 6, 6, 7, 6, 7, 6, 6, 6]
        Fitness
                                                              Income \
       0 [1, 1]
                 [83416, 88396, 90886, 92131, 88396, 85906, 908...
                                                      Miles
       0 [188, 212, 200, 200, 200, 240, 300, 280, 260, ...
[116]: numerical_variable
[116]: ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']
[117]: outlier_dic = dict()
       for col in numerical variable:
           outlier_dic.update({col : [len(calculate_outlier(df[col]))]})
       pd.DataFrame(outlier_dic)
[117]:
          Age Education Usage Fitness Income
                                                  Miles
       0
           5
                              9
                                       2
                                              19
                                                     13
```

the above data frame shows the number of outliers in each numerical variable

- 1. For all attributes, there are no missing values
- 2. For Age, Education, Usage there are very less outliers, For Income, Miles there are more outliers
- 3. the fitness seems to be a categorical variable with more than 2 categories

0.4 Visual Analysis

Univariate

```
[118]: sns.countplot(data = df, x = 'Product')
```

[118]: <Axes: xlabel='Product', ylabel='count'>


```
[148]:
                count price % of units sold Sales in $
       Product
       KP281
                   80
                        1500
                                    44.44444
                                                    120000
       KP481
                   60
                        1750
                                    33.333333
                                                    105000
       KP781
                        2500
                                    22.22222
                                                    100000
                   40
```

0.5 Insight

even though the count for KP281 is higher, the sale is more or less similar for all the produc-

```
[149]: df
[149]:
            Product
                      Age
                           Gender
                                    Education MaritalStatus
                                                               Usage
                                                                       Fitness
                                                                                 Income
              KP281
                                            14
                                                                    3
                                                                                   29562
                       18
                             Male
                                                       Single
              KP281
                                                                    2
       1
                       19
                             Male
                                            15
                                                       Single
                                                                              3
                                                                                  31836
       2
              KP281
                                                   Partnered
                                                                    4
                                                                                  30699
                       19
                           Female
                                            14
                                                                              3
       3
                                            12
                                                                    3
                                                                              3
              KP281
                       19
                             Male
                                                       Single
                                                                                   32973
       4
              KP281
                       20
                             Male
                                            13
                                                    Partnered
                                                                    4
                                                                              2
                                                                                   35247
       175
              KP781
                       40
                             Male
                                            21
                                                       Single
                                                                    6
                                                                              5
                                                                                  83416
       176
              KP781
                       42
                             Male
                                            18
                                                       Single
                                                                    5
                                                                              4
                                                                                  89641
       177
                                                                    5
                                                                              5
                                                                                  90886
              KP781
                       45
                             Male
                                            16
                                                       Single
       178
                                                                    4
              KP781
                       47
                             Male
                                            18
                                                    Partnered
                                                                              5
                                                                                 104581
       179
                                                                    4
              KP781
                       48
                             Male
                                            18
                                                    Partnered
                                                                              5
                                                                                   95508
             Miles
       0
               112
       1
                75
       2
                66
       3
                85
       4
                47
       . .
               •••
       175
               200
       176
               200
       177
               160
       178
               120
       179
               180
       [180 rows x 9 columns]
       sns.countplot(data = df, x = 'Gender')
[152]:
```

zaraz ,

[152]: <matplotlib.legend.Legend at 0x7f10b2bf9480>


```
[155]: gender_df = df.groupby(['Gender'])[['Gender']].count()
    gender_df.index.name = "gender"
    gender_df.rename({"Gender": "Count"}, axis = 1, inplace = True)
    gender_df['% of total'] = (gender_df['Count'] / gender_df['Count'].sum()) * 100
    gender_df
```

[155]: Count % of total gender Female 76 42.222222 Male 104 57.77778

the male participation (57%) is more than female

```
[156]: sns.countplot(data = df, x = 'MaritalStatus')
```

[156]: <Axes: xlabel='MaritalStatus', ylabel='count'>

there are more partnered people than singles

```
[161]: fit_df = df.groupby(['Fitness'])[['Fitness']].count()
  fit_df.index.name = "fitness"
  fit_df.rename({"Fitness": "count"}, axis = 1 , inplace = True)

fit_df['% of total'] = (fit_df['count'] / fit_df['count'].sum()) * 100
  fit_df
```

```
[161]:
                 count
                        % of total
       fitness
                     2
                          1.111111
       1
       2
                    26
                         14.44444
       3
                    97
                         53.888889
       4
                    24
                         13.333333
       5
                    31
                         17.22222
```

0.5.1 around 53 % people, majority, treat them in 3 level fitness

Lets look at the education of people now - might need binning here

```
[175]: df['Education'].unique()
```

```
[175]: array([14, 15, 12, 13, 16, 18, 20, 21])
```

```
[176]: sns.countplot(data = df, x = 'Education')
```

[176]: <Axes: xlabel='Education', ylabel='count'>


```
[194]: count_series = pd.cut(df['Education'], [10, 13, 16, 21]).astype('str')
       count_series
[194]: 0
               (13, 16]
               (13, 16]
       1
               (13, 16]
       2
       3
               (10, 13]
       4
               (10, 13]
               (16, 21]
       175
       176
               (16, 21]
       177
               (13, 16]
               (16, 21]
       178
       179
               (16, 21]
```

Name: Education, Length: 180, dtype: object

```
[196]: sns.countplot(data = count_series, x = count_serr.values)
```

[196]: <Axes: ylabel='count'>


```
[204]: df['Education']
[204]: 0
              14
       1
              15
       2
               14
       3
               12
       4
               13
       175
              21
       176
              18
       177
              16
       178
              18
       179
               18
       Name: Education, Length: 180, dtype: int64
[222]: col = 'Education'
       bin_series = pd.cut(df[col], [10,13,16,19,21]).astype('str')
       print(bin_series, "\n")
```

```
df_temp = pd.DataFrame({ col : bin_series})
print(df_temp, "\n")
df_temp = df_temp.groupby([col])[[col]].count()
df_temp.rename({col : "count"}, axis = 1, inplace = True)
print(df_temp, "\n")
0
       (13, 16]
1
       (13, 16]
2
       (13, 16]
3
       (10, 13]
4
       (10, 13]
       (19, 21]
175
       (16, 19]
176
177
       (13, 16]
178
       (16, 19]
179
       (16, 19]
Name: Education, Length: 180, dtype: object
    Education
0
     (13, 16]
     (13, 16]
1
     (13, 16]
2
3
     (10, 13]
4
     (10, 13]
. .
    (19, 21]
175
    (16, 19]
176
177
     (13, 16]
     (16, 19]
178
179
     (16, 19]
[180 rows x 1 columns]
           count
Education
(10, 13]
               8
(13, 16]
              145
(16, 19]
              23
(19, 21]
               4
```

0.6 creating a method to bin any numerical variable and find out the leading range

```
def bin_col(df : pd.DataFrame, col: str, lims: list)-> pd.DataFrame:
    bin_series = pd.cut(df[col], lims).astype('str')
    df_temp = pd.DataFrame({col : bin_series, "count": df[col]})
    df_temp = df_temp.groupby([col])[[col]].count()
    df_temp.rename({col : "count"}, axis = 1, inplace = True)
    df_temp['% total'] = (df_temp["count"] / df_temp["count"].sum()) * 100
    return df_temp
```

```
[226]: bin_col(df, 'Education', [10, 13, 16, 19, 21])
```

```
[226]:
                   count
                            % total
       Education
       (10, 13]
                       8
                           4.44444
       (13, 16]
                     145
                          80.55556
       (16, 19]
                      23
                          12.777778
       (19, 21]
                       4
                           2.22222
```

most of the customer have 14-16 years(both included) of education

now, lets look at histogram/distribution and box plot together to find out skewness in the data and the outliers

```
[239]: def distnbox(df: pd.DataFrame, col: 'str'):
    fig, axes = plt.subplots(1, 2, figsize = (16, 4))
    sns.histplot(data = df, x = col, ax = axes[0], kde = True)
    sns.boxplot(data = df, x = col, ax = axes[1])
```

```
[240]: distnbox(df, 'Age')
```



```
[241]: bin_col(df, "Age", [10, 15, 25, 30, 35, 40, 45, 50])
```

```
[241]:
                            % total
                  count
       Age
       (15, 25]
                     79
                         43.888889
       (25, 30]
                     41
                          22.777778
       (30, 35]
                     32
                          17.777778
       (35, 40]
                           8.88889
                     16
       (40, 45]
                      6
                           3.333333
       (45, 50]
                      6
                           3.333333
```

43% of people are located in the range of 16-25 yesrs old

[242]: distnbox(df, 'Income')


```
[244]: bin_col(df, "Income", [df['Income'].min(), 40000, 60000, df['Income'].max()])
```

[244]:			count	% total
	Income			
	(29562,	40000]	31	17.222222
	(40000,	60000]	106	58.888889
	(60000,	104581]	42	23.333333
	nan		1	0.555556

0.6.1 Comments:

- 1. 58% of of customers have income around \$40000 to \$60000
- 2. Only 17% are below this range and 23% are above \$60000

lets do some correlation plots

```
[245]: numerical_variable
```

```
[245]: ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']

[252]: df[numerical_variable]
```

```
[252]:
            Age Education Usage Fitness Income Miles
       0
             18
                         14
                                  3
                                           4
                                                29562
                                                          112
       1
             19
                         15
                                  2
                                                31836
                                                           75
                                           3
       2
             19
                         14
                                  4
                                           3
                                                30699
                                                           66
       3
                         12
                                  3
                                                32973
                                                           85
             19
                                           3
                                                35247
       4
             20
                         13
                                  4
                                           2
                                                           47
       175
             40
                         21
                                                83416
                                                          200
                                  6
                                           5
       176
             42
                         18
                                  5
                                           4
                                                89641
                                                          200
       177
             45
                         16
                                  5
                                                90886
                                                          160
                                           5
       178
             47
                                  4
                                                          120
                         18
                                           5 104581
       179
             48
                         18
                                  4
                                                95508
                                                          180
```

[180 rows x 6 columns]

```
[253]: df[numerical_variable].corr()
```

[253]:		Age	Education	Usage	Fitness	Income	Miles
	Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
	Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
	Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
	Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
	Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
	Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000

```
[254]: sns.heatmap(data = df[numerical_variable].corr())
```

[254]: <Axes: >

Usage, miles planned to cover, and fitness are highly dependent on the age

[255]: sns.pairplot(data = df, hue = 'Product')

[255]: <seaborn.axisgrid.PairGrid at 0x7f10b1f52290>


```
[257]: sns.pairplot(data = df[['Age', 'Income', 'Miles', 'Product']], hue = 'Product')
```

[257]: <seaborn.axisgrid.PairGrid at 0x7f10b113ccd0>

income has correlation with miles and age

0.7 Bivariate analysis

0.7.1 Product vs Gender

```
[258]: sns.countplot(df, hue = 'Gender', x = 'Product')
```

[258]: <Axes: xlabel='Product', ylabel='count'>

Product "KP781" is bought by Male customers more than Female customers Product "KP481" and "KP281" is bought by both Male and Female customers

```
[259]: sns.countplot(df, x = 'Product', hue = 'MaritalStatus')
```

[259]: <Axes: xlabel='Product', ylabel='count'>

more of the partnered guys than singles for all the products

0.7.2 product vs fitness

```
[260]: sns.countplot(df, x = 'Product', hue = 'Fitness')
```

[260]: <Axes: xlabel='Product', ylabel='count'>

highly fit people use KP781

```
product vs age
```

```
[261]: sns.boxplot(data = df, y = 'Age', x = 'Product')
```

[261]: <Axes: xlabel='Product', ylabel='Age'>


```
[262]: sns.countplot(data = df, x = "Age", hue = "Product")
```

[262]: <Axes: xlabel='Age', ylabel='count'>

Doesn't make senes, therefore, lets bin Age

```
[263]: sns.countplot(data = df, x = pd.cut(df['Age'], [10,20,30,40,50,60]), hue =_{\sqcup} \hookrightarrow 'Product')
```

[263]: <Axes: xlabel='Age', ylabel='count'>

- 1. Almost all products attract age groups 25-30
- 2. 25-30 customers has bought KP281 more than others

```
[265]: sns.countplot(data = df, x = 'Education', dodge = False, hue = 'Product')
```

[265]: <Axes: xlabel='Education', ylabel='count'>

KP481, KP281 is bought by customers with 14-16 yrs of Education KP781 is mostly bought by customers with 16-21 yrs

[267]: <Axes: xlabel='Miles', ylabel='count'>

KP781 is bought mostly by customers with high "Miles" (Expected Walking distance) KP 481, KP 281 are bought mostly by customers with Moderate/Low "Miles" value

summary

- 1. On the overall, Partnered customers buy more products.
- 2. Product "KP781" is bought by Male customers more than Female customers Otherwise There is not much correlation between Product Type and Gender
- 3. KP281, KP481 are bought by customer who are moderately fit or less fit. Where as KP781 is bought by customer who are very fit.
- 4. High usage: KP781 Moderate usage: KP481, KP281
- 5. Almost all products attract age groups 25-30
- 6. KP781 is bought mostly by customers with high income KP481, KP281 are bought mostly by customers with Moderate/Low income
- 7. KP781 is bought mostly by customers with high "Miles" (Expected Walking distance) KP 481, KP 281 are bought mostly by customers with Moderate/Low "Miles" value

```
[268]: sns.boxplot(x = df['Usage'], y = df['Income'], hue = df['Product'])
```

[268]: <Axes: xlabel='Usage', ylabel='Income'>

Example Customer Profile for "KP481":

Fitness: 2-4 on scale of 5 Usage: 2-4 times a week Age: 20-40 Education: 14-16 Income: Moderate, Range: [40000 to 60000] Miles: 50-100

(Although Product "KP481" is bought by both Male and Female customers, Gender: Male is taken as example) (Although Product "KP481" is bought by both Partnered and Single customers, MaritalStatus: Partnered is taken as example)

Example Customer Profile for "KP781":

Gender: Male Fitness: 4-5 on scale of 5 (Very fit) Usage: 4-6 (High Usage) Age: 20-30 Education: 16-21 (High) Income: High, Range: [60000 to 90000] Miles: 100-200 (High)

0.8 Probabilty

0.8.1 Marginal Probabilites

```
[284]: df_MP = df.groupby(['Product'])[['Product']].count() df_MP
```

```
[284]:
                Product
      Product
      KP281
                     80
       KP481
                     60
       KP781
                     40
[285]: df_MP = df_MP / 180
       df MP
[285]:
                 Product
      Product
      KP281
                0.44444
       KP481
                0.333333
      KP781
                0.22222
[286]: df_MP[' '] = 'Probability that the customer buys ' + df_MP.index + ' ='
       df_MP[[" ", "Product"]].reset_index(drop = True, inplace = True)
[287]:
      df_MP
[287]:
                 Product
       Product
       KP281
                0.444444 Probability that the customer buys KP281 =
                         Probability that the customer buys KP481 =
       KP481
                0.333333
       KP781
                0.222222 Probability that the customer buys KP781 =
      the probbaility of buying lower end model KP281 is higher than other products
      0.8.2 Conditional Probabilities
[288]: df_cross_PG = pd.crosstab(df['Product'], df['Gender'], margins = True)
       df_cross_PG
[288]: Gender
                Female Male
                             All
       Product
       KP281
                    40
                          40
                               80
       KP481
                    29
                          31
                               60
       KP781
                     7
                          33
                               40
       All
                    76
                         104
                             180
[290]: pd.crosstab(df['Product'], df['Gender'], margins = True)
[290]: Gender
                Female Male All
       Product
       KP281
                    40
                          40
                               80
       KP481
                    29
                          31
                               60
       KP781
                     7
                          33
                               40
```

```
All 76 104 180
```

```
pd.crosstab(df['Product'], df['MaritalStatus'], margins=True)
[291]: MaritalStatus Partnered
                                    Single
       Product
       KP281
                                48
                                        32
                                              80
       KP481
                                36
                                        24
                                              60
       KP781
                                23
                                        17
                                              40
       All
                               107
                                        73
                                             180
       pd.crosstab(df['Product'], df['Fitness'], margins=True)
[292]:
[292]: Fitness
                     2
                          3
                                   5
                                      All
       Product
       KP281
                                   2
                                       80
                     14
                         54
                              9
                 1
       KP481
                 1
                     12
                         39
                                   0
                                       60
                              8
       KP781
                              7
                 0
                     0
                          4
                                  29
                                       40
       All
                 2
                     26
                         97
                             24
                                  31
                                      180
```

Given that 72% of customers with low income buy KP281, And it has high sales in the 20-30 yrs Age groups. This product targets the lower income groups. To help target this segment better, we can implement flexible payment plans so that customers can pay in installments.

- 1. Sales for all 3 products is less in the higher age bracket [40+] compared to the lower age brackets [20-30] KP481, being a mid-level-runner models can be improved by adding features like heart-rate monitors, personalised workout modes etc. to attract such age groups and position this product better.
- 2. Adding such differerentiators is important also because the customer demographics of KP281 and KP481 overlapp to a significant extent.
- 1. Only 17% of customers who buy KP781 are female, we can improve this metric by encourage female customers to buy this product, via special promotions/discounts targeting corresponding segment.
- 2. KP781 is not bought by customers with self-rated-fitness rating 1-3 it is recommended to emphasize the benifits and features of KP781 on how it can help the segment of customers who are not in excellent shape in it's advertising campaigns.