Sequencing in the Run-Time Event Calculus Technical Appendix

Periklis Mantenoglou, Alexander Artikis

This document is structured as follows. First, we provide proofs for the propositions of the paper. Second, we outline the syntax of simple fluent-value pair (FVP) definitions.

1 Proofs of Propositions

Proposition 2 ($[[\alpha_1; \alpha_2]]_S^{rt}$ consists of MDIs). Consider a stream S and activities α_1 and α_2 . The intervals in $[[\alpha_1; \alpha_2]]_S^{rt}$ are MDIs.

Proof. Suppose that the intervals in $[[\alpha_1; \alpha_2]]_S^{rt}$ are not MDIs. In other words, there exist $i_a, i_b \in [[\alpha_1; \alpha_2]]_S^{rt}$, such that $i_a \not\prec_{rt} i_b$ and $i_a \not\prec_{rt} i_b$, i.e., i_a and i_b are overlapping. Since $i_a, i_b \in [[\alpha_1; \alpha_2]]_S^{rt}$, it holds that:

$$\exists i_{1a} \in [[\alpha_1]]_S^{rt}, i_{2a} \in [[\alpha_2]]_S^{rt} : i_a = i_{1a} \otimes_{rt} i_{2a}$$
$$\exists i_{1b} \in [[\alpha_1]]_S^{rt}, i_{2b} \in [[\alpha_2]]_S^{rt} : i_b = i_{1b} \otimes_{rt} i_{2b}$$

We may infer the following properties for these intervals:

Def of
$$\otimes_{rt} \Rightarrow i_a = (s(i_{1a}), e(i_{2a})) \land i_b = (s(i_{1b}), e(i_{2b}))$$

$$i_a \not\prec_{rt} i_b \Rightarrow e(i_{2a}) \ge s(i_{1b}) \tag{1}$$

$$i_b \not\prec_{rt} i_a \Rightarrow e(i_{2b}) \ge s(i_{1a})$$
 (2)

$$i_{1a} \prec_{rt} i_{2a} \Rightarrow e(i_{1a}) < s(i_{2a}) \tag{3}$$

$$i_{1b} \prec_{rt} i_{2b} \Rightarrow e(i_{1b}) < s(i_{2b}) \tag{4}$$

Based on the right-hand side of expressions (1), (2) and (3), the temporal ordering of intervals i_{1a} , i_{1b} , i_{2a} and i_{2b} needs to abide by the constraints shown in Figure 1.

Figure 1: Temporal ordering and constraints based on expressions (1), (2) and (3).

Based on Figure 1, there are four ways of placing intervals i_{1b} and i_{2b} , while respecting expression (4), which we oultine below:

- 1. $i_{1a} \prec_{rt} i_{1b} \prec_{rt} i_{2b} \prec_{rt} i_{2a}$
- 2. $i_{1a} \prec_{rt} i_{1b} \prec_{rt} i_{2a} \prec_{rt} i_{2b}$
- 3. $i_{1b} \prec_{rt} i_{1a} \prec_{rt} i_{2b} \prec_{rt} i_{2a}$
- $4. i_{1b} \prec_{rt} i_{1a} \prec_{rt} i_{2a} \prec_{rt} i_{2b}$

All cases lead to a contradiction. In cases 1 and 2, we have $A(i_{1a}, [[\alpha_1]]_S^{rt}, [[\alpha_2]]_S^{rt}) = \emptyset$, and not i_{2a} , implying that $i_a \notin [[\alpha_1; \alpha_2]]_S^{rt}$ (Definition 7), which is a contradiction. Cases 3 and 4 also lead to a contradiction; we have $A(i_{1b}, [[\alpha_1]]_S^{rt}, [[\alpha_2]]_S^{rt}) = \emptyset$, and not i_{2b} , implying that $i_b \notin [[\alpha_1; \alpha_2]]_S^{rt}$.

Therefore, there are no intervals i_a , i_b in $[[\alpha_1; \alpha_2]]_S^{rt}$, such that $i_a \not\prec_{rt} i_b$ and $i_b \not\prec_{rt} i_a$. Thus, the intervals in $[[\alpha_1; \alpha_2]]_S^{rt}$ are MDIs.

Proposition 3 ($[[(\alpha_1; \alpha_2); \alpha_3]]_S^{rt} = [[\alpha_1; (\alpha_2; \alpha_3)]]_S^{rt}$). Consider a stream S and activities α_1, α_2 and α_3 . It holds that

$$i \in [[(\alpha_1; \alpha_2); \alpha_3]]_S^{rt} \text{ iff } i \in [[\alpha_1; (\alpha_2; \alpha_3)]]_S^{rt}$$

Proof. The following equivalence holds:

$$i \in [[(\alpha_{1}; \alpha_{2}); \alpha_{3}]]_{S}^{rt} \Leftrightarrow$$

$$\exists i_{12} \in [[\alpha_{1}; \alpha_{2}]]_{S}^{rt}, i_{3} \in [[\alpha_{3}]]_{S}^{rt} : i = (s(i_{12}), e(i_{3})) \land$$

$$\exists i_{1} \in [[\alpha_{1}]]_{S}^{rt}, i_{2} \in [[\alpha_{2}]]_{S}^{rt} : i_{12} = (s(i_{1}), e(i_{2})) \land$$

$$\not\exists i'_{12} \in [[\alpha_{1}; \alpha_{2}]]_{S}^{rt} : i_{12} \prec_{rt} i'_{12} \prec_{rt} i_{3} \land$$

$$(5)$$

$$\nexists i_3' \in [[\alpha_3]]_S^{rt} : i_{12} \prec_{rt} i_3' \prec_{rt} i_3 \land$$
(6)

$$\nexists i_1' \in [[\alpha_1]]_S^{rt} : i_1 \prec_{rt} i_1' \prec_{rt} i_2 \wedge \tag{7}$$

$$\nexists i_2' \in [[\alpha_2]]_S^{rt} : i_1 \prec_{rt} i_2' \prec_{rt} i_2 \tag{8}$$

The above equivalence imposes constraints on the temporal ordering of intervals i_1 , i_2 and i_3 . Conditions (5) and (6) impose that there are no intervals for $[[\alpha_1; \alpha_2]]_S^{rt}$ and $[[\alpha_3]]_S^{rt}$ between the ending point of i_2 and the starting point of i_3 . Conditions (7) and (8) impose that there are no intervals for $[[\alpha_1]]_S^{rt}$ and $[[\alpha_2]]_S^{rt}$ between the ending point of i_1 and the starting point of i_2 . Moreover, since there is no interval of $[[\alpha_1; \alpha_2]]_S^{rt}$ between i_2 and i_3 , if $\exists i'_1 \in [[\alpha_1]]_S^{rt}$: $i_2 \prec_{rt} i'_1 \prec_{rt} i_3$, then $\nexists i'_2 \in [[\alpha_2]]_S^{rt}$: $i'_1 \prec i'_2 \prec i_3$, i.e., an interval in $[[\alpha_1]]_S^{rt}$ that is after i_1 may only be situated after the last interval of $[[\alpha_2]]_S^{rt}$ that is before i_3 . Figure 2 depicts these temporal constraints.

Figure 2: Constraints imposed by $i \in [[(\alpha_1; \alpha_2); \alpha_3]]_S^{rt}$, where $i = (i_1 \otimes_{rt} i_2) \otimes_{rt} i_3$. The dotted (resp. dashed) vertical lines outline a region with which no interval of $[[\alpha_1; \alpha_2]]_S^{rt}$ or $[[\alpha_3]]_S^{rt}$ ($[[\alpha_1]]_S^{rt}$ or $[[\alpha_2]]_S^{rt}$) may overlap. Moreover, there may be no interval of $[[\alpha_1]]_S^{rt}$ between i_1 and the dashed-dotted vertical line.

The following equivalence holds:

$$i \in [[\alpha_1;(\alpha_2;\alpha_3)]]_S^{rt} \Leftrightarrow$$

$$\exists i_{1} \in [[\alpha_{1}]]_{S}^{rt}, i_{23} \in [[\alpha_{2}; \alpha_{3}]]_{S}^{rt} : i = (s(i_{1}), e(i_{23})) \land \exists i_{2} \in [[\alpha_{2}]]_{S}^{rt}, i_{3} \in [[\alpha_{3}]]_{S}^{rt} : i_{23} = (s(i_{2}), e(i_{3})) \land \exists i'_{1} \in [[\alpha_{1}]]_{S}^{rt} : i_{1} \prec_{rt} i'_{1} \prec_{rt} i_{23} \land$$

$$(9)$$

$$\nexists i_2' \in [[\alpha_2]]_S^{rt} : i_2 \prec_{rt} i_2' \prec_{rt} i_3 \land \tag{11}$$

$$\nexists i_3' \in [[\alpha_3]]_S^{rt} : i_2 \prec_{rt} i_3' \prec_{rt} i_3 \tag{12}$$

The above equivalence imposes constraints on the temporal ordering of intervals i_1 , i_2 and i_3 . Conditions (9) and (10) impose that there are no intervals for $[[\alpha_I]]_S^{rt}$ and $[[\alpha_2; \alpha_3]]_S^{rt}$ between the ending point of i_1 and the starting point of i_2 . Conditions (11) and (12) impose that there are no intervals for $[[\alpha_2]]_S^{rt}$ and $[[\alpha_3]]_S^{rt}$ between the ending point of i_2 and the starting point of i_3 . Moreover, since there is no interval of $[[\alpha_2; \alpha_3]]_S^{rt}$ between i_1 and i_2 , if $\exists i_3' \in [[\alpha_3]]_S^{rt}$: $i_1 \prec_{rt} i_3' \prec_{rt} i_2$, then $\nexists i_2' \in [[\alpha_2]]_S^{rt}$: $i_1 \prec_{rt} i_2' \prec_{rt} i_3'$, i.e., an interval in $[[\alpha_3]]_S^{rt}$ that is before i_3 may only be situated before the first interval of $[[\alpha_2]]_S^{rt}$ that is after i_1 . Figure 3 depicts these temporal constraints.

Figure 3: Constraints imposed by $i \in [[\alpha_1; (\alpha_2; \alpha_3)]]_S^{rt}$, where $i = i_1 \otimes_{rt} (i_2 \otimes_{rt} i_3)$. The dotted (resp. dashed) vertical lines outline a region with which no interval of $[[\alpha_1]]_S^{rt}$ or $[[\alpha_2; \alpha_3]]_S^{rt}$ ($[[\alpha_2]]_S^{rt}$ or $[[\alpha_3]]_S^{rt}$) may overlap. Moreover, there may be no interval of $[[\alpha_3]]_S^{rt}$ between the dashed-dotted vertical line and i_3 .

By inspecting Figures 2 and 3, we deduce that the constraints they impose on the temporal ordering of the intervals of activities α_1 , α_2 and α_3 are the same. Both cases stipulate that there may not be an interval of α_3 between the first interval of α_2 that is after i_1 and i_3 , and that there may not be an interval of α_1 between i_1 and the last interval of α_2 that is before i_3 . As a result, the conditions under which an interval i is included in list $[[(\alpha_1; \alpha_2); \alpha_3)]_S^{rt}$ and the conditions under which it is included in list $[[\alpha_1; (\alpha_2; \alpha_3)]]_S^{rt}$ are the same.

Proposition 5 (Correctness of Sequencing in RTEC_S). Consider activities α_1 and α_2 , and a stream S. Given the sorted lists of MDIs I_1 and I_2 of α_1 and α_2 given stream S, RTEC_S computes a list of MDIs I for α_1 ; α_2 such that $i \in I$ iff $i \in [[\alpha_1; \alpha_2]]_S^{rt}$.

Proof. RTEC_S computes a list of MDIs for α_1 ; α_2 using Algorithm 1. We prove that Algorithm 1 is sound and complete with respect to $[[\alpha_1; \alpha_2]]_S^{rt}$. We use the fact that $i_1 \otimes_{rt} i_2 \in [[\alpha_1; \alpha_2]]_S^{rt}$ iff $i_1 \prec_{rt} i_2$, $\nexists i'_1 \in I_1 : i_1 \prec_{rt} i'_1 \prec_{rt} i_2$ and $\nexists i'_2 \in I_2 : i_2 \prec_{rt} i'_2 \prec_{rt} i_2$, and the fact that Algorithm 1 may compute an interval $i_1 \otimes_{rt} i_2$ only if index j_1 points to interval i_1 and index j_2 points to interval i_2 , i.e., $j_1 \mapsto i_1 \wedge j_2 \mapsto i_2$. We start with completeness because it is required in our proof of soundness.

Completeness: We prove that if $i_1 \otimes_{rt} i_2 \in [[\alpha_1 ; \alpha_2]]_S^{rt}$, then Algorithm 1 computes $i_1 \otimes_{rt} i_2$. It suffices to prove that Algorithm 1 reaches a state where $j_1 \mapsto i_1$ and $j_2 \mapsto i_2$; in such a state,

since $\nexists i'_1 \in I_1 : i_1 \prec_{rt} i'_1 \prec_{rt} i_2$, Algorithm 1 would follow either lines 5–6 or lines 9–10, both of which compute $i_1 \otimes_{rt} i_2$. Since Algorithm 1 iterates over every interval of at least one of the lists I_1 and I_2 , there is an iteration where $j_1 \mapsto i_1$ or an iteration where $j_2 \mapsto i_2$. Suppose that, in the first such iteration, $j_1 \mapsto i_1$. Then, we have $j_2 \mapsto i'_2$, where i'_2 is before i_2 in sorted list I_2 . Since $\nexists i'_2 \in I_2 : i_2 \prec_{rt} i'_2 \prec_{rt} i_2$, i'_2 is before i_1 , and thus we increment j_2 (see line 4). All intervals of I_2 that are between i'_2 and i_2 , if any, are also before i_1 , meaning that we keep incrementing j_2 until we have $j_1 \mapsto i_1$ and $j_2 \mapsto i_2$. Similarly, we may prove that this state is reached when starting from an iteration where $j_2 \mapsto i_2$. Therefore, if $\exists i_1 \in I_1, i_2 \in I_2 : i_1 \otimes_{rt} i_2 \in [[\alpha_1 ; \alpha_2]]_S^{rt}$, then Algorithm 1 computes $i_1 \otimes_{rt} i_2$, proving that Algorithm 1 is complete.

Soundness: We prove that if Algorithm 1 computes $i_1 \otimes_{rt} i_2$, then $i_1 \otimes_{rt} i_2 \in [[\alpha_1; \alpha_2]]_S^{rt}$. Suppose that $i_1 \otimes_{rt} i_2 \notin [[\alpha_1; \alpha_2]]_S^{rt}$. Then, we have $i_2 \prec_{rt} i_1$, $\exists i'_1 \in I_1 : i_1 \prec_{rt} i'_1 \prec_{rt} i_2$, or $\exists i'_2 \in I_2 : i_1 \prec_{rt} i'_2 \prec_{rt} i_2$. $i_1 \otimes_{rt} i_2$ may only be computed in state $j_1 \mapsto i_1$ and $j_2 \mapsto i_2$. In this state, if $i_2 \prec_{rt} i_1$ holds, then we do not compute $i_1 \otimes_{rt} i_2$ and increment j_2 (line 4). If $\exists i'_1 \in I_1 : i_1 \prec_{rt} i'_1 \prec_{rt} i_2$, then we do not compute $i_1 \otimes_{rt} i_2$ and increment j_1 (lines 7–11). If $\exists i'_2 \in I_2 : i_1 \prec_{rt} i'_2 \prec_{rt} i_2$, then i_1 and i'_2 are adjacent, which implies that, based on the completeness proof, we reach state $j_1 \mapsto i_1 \wedge j_2 \mapsto i'_2$. In this state, since $i_1 \prec_{rt} i'_2$, we follow line 11, where j_1 is incremented beyond i_1 , and thus $i_1 \prec_{rt} i_2$ may not be computed in a subsequent iteration. All cases led to a contradiction. Thus, if Algorithm 1 computes $i_1 \otimes_{rt} i_2$, then $i_1 \otimes_{rt} i_2 \in [[\alpha_1; \alpha_2]]_S^{rt}$, i.e., Algorithm 1 is sound.

Proposition 6 (Complexity of Sequencing in RTEC_S). Consider activities α_1 and α_2 , and a stream S. The worst-case time complexity of RTEC_S for computing the MDIs of α_1 ; α_2 given S is $O(|[[\alpha_1]]_S^{rt}|+|[[\alpha_2]]_S^{rt}|)$.

Proof. RTEC_S computes the MDIs of α_1 ; α_2 using Algorithm 1. In each iteration of the loop of this algorithm, we increment at least of the indices traversing the MDIs in $[[\alpha_1]]_S^{rt}$ and $[[\alpha_2]]_S^{rt}$. As a result, the number of iterations of this loop is bounded by $|[[\alpha_1]]_S^{rt}| + |[[\alpha_2]]_S^{rt}|$. Thus, the worst-case time complexity of sequencing in RTEC_S is $O(|[[\alpha_1]]_S^{rt}| + |[[\alpha_2]]_S^{rt}|)$.

Proposition 7 (Correctness of Sequencing over Windows). Consider a window w over a stream S, and activities α_1 and α_2 . Moreover, suppose that i_f and i_l are, respectively, the earliest and the most recent interval in $[[\alpha_1]]_{S_w}^{rt} \cup [[\alpha_2]]_{S_w}^{rt}$. $[[\alpha_1;\alpha_2]]_{S_w}^{rt} = [[\alpha_1;\alpha_2]]_{S_w}^{rt} \downarrow w$ if $i_f \in [[\alpha_1]]_{S_w}^{rt}$ and $i_l \in [[\alpha_2]]_{S_w}^{rt}$.

Proof. Suppose that the earliest interval i_f of α_1 or α_2 in a window w is an interval of α_1 . Then, there is a no interval i_1 of α_1 before w that is adjacent to an interval i_2 of α_2 in w, because $i_1 \prec_{rt} i_f \prec_{rt} i_2$. Thus, there is no interval of α_1 ; α_2 that overlaps the start of w and is not included $[[\alpha_1;\alpha_2]]_{S_w}^{rt}$. Similarly, if the latest interval i_l of α_1 or α_2 in w is an interval of α_1 , then there is no interval i_2 of α_2 that is after w and is adjacent to an interval i_1 of α_1 in w, because we have $i_1 \prec_{rt} i_l \prec_{rt} i_2$. Thus, there is no interval of α_1 ; α_2 that overlaps the end of w and is not included $[[\alpha_1;\alpha_2]]_{S_w}^{rt}$. Since, for an interval i that is entirely within w, we have $i \in [[\alpha_1;\alpha_2]]_{S_w}^{rt}$ iff $i \in [[\alpha_1;\alpha_2]]_{S_w}^{rt}$ w, it holds that $[[\alpha_1;\alpha_2]]_{S_w}^{rt} = [[\alpha_1;\alpha_2]]_{S_w}^{rt}$ w if $i_f \in [[\alpha_1]]_{S_w}^{rt}$ and $i_l \in [[\alpha_2]]_{S_w}^{rt}$.

2 Syntax of Simple FVP Definitions

Simple FVP definitions have the following syntax.

Definition 1 (Syntax of Rules Defining Simple FVPs). Consider a simple FVP F = V. The initiatedAt(F = V, T) rules of the event description have the following syntax:

```
\begin{split} & \mathsf{initiatedAt}(F=V,\ T) \leftarrow \\ & \mathsf{happensAt}(E_1,\ T)[[,[\mathsf{not}]\ \mathsf{happensAt}(E_2,\ T),\ \dots, \\ & [\mathsf{not}]\ \mathsf{happensAt}(E_n,\ T),[\mathsf{not}]\ \mathsf{holdsAt}(F_1=V_1,\ T),\ \dots, \\ & [\mathsf{not}]\ \mathsf{holdsAt}(F_k=V_k,\ T)]]. \end{split}
```

The first body literal of an initiatedAt rule is a positive happensAt predicate; this is followed by a possibly empty set, denoted by '[[]]', of positive/negative happensAt and holdsAt predicates. 'not' expresses negation-by-failure, while '[not]' denotes that 'not' is optional. All (head and body) predicates are evaluated on the same time-point T. The bodies of terminatedAt(F = V, T) rules have the same form.