What is Al?

Traditional programming vs Al

The practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world.

HI before Al

Interactively visualize and explore your data before Al

Download data files from my GitHub

Interactively visual exploration – (1) Tableau Public

Tableau Public

Practice – Tableau public

- 1. Download and install Tableau Public
- 2. Visualize the motion data file
- 3. Search Kaggle (https://www.kaggle.com/) to find a sensor data file (see next slide)
- 4. Use Tableau public to visualize the data file

Kaggle

Interactively visual exploration – (2) Orange

Orange

Orange

Practice – Orange

- 1. Download and install Orange
- 2. Visualize the 3M TUG data file
- 3. Search Kaggle to find a classification data file
- 4. Use Orange to visualize the high dimensional data

Kaggle

Data visualization – (3) Python coding

Data visualization with Python

Data visualization with Python

Data visualization with Python

Practice – Python coding

- 1. Log in to Colab
- 2. Run python code to visualize the motion sensor data file
- 3. Run python code to visualize the 3M TUG data file
- 4. Run python code to visualize the two data files you download from Kaggle

Al Learning map

Theory is when you know everything, but nothing works.

Practice is when you don't know anything, yet everything works.

In Programming we combine theory and practice; nothing works, and we don't know why.

Python development tools

Data preprocessing

Topics to be covered:

- 1. Standardization
- 2. Scaling with sparse data and outliers
- 3. Normalization
- 4. Categorical Encoding
- 5. Imputation

Data preprocessing in Python

Steps involved in data preprocessing:

- 1. Importing the required Libraries
- 2. Importing the data set
- 3. Handling the Missing Data.
- 4. Encoding Categorical Data.
- 5. Splitting the data set into test set and training set.
- 6. Feature Scaling.

https://aaaanchakure.medium.com/data-preprocessing-3cd01eefd438

Steps in Data Preprocessing in Machine Learning

- 1. Acquire the dataset
- 2. Import all the crucial libraries
- 3. Import the dataset
- 4. Identifying and handling the missing values
- 5. Encoding the categorical data
- 6. Splitting the dataset
- 7. Feature scaling

https://www.upgrad.com/blog/data-preprocessing-in-machine-learning/

Why Data Preprocessing?

Data in the real world is not clean

- incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data, e.g., occupation="""
- noisy: containing errors or outliers, e.g., Salary="-10"
- inconsistent: containing discrepancies in codes or names, e.g., Age="42" Birthday="03/07/1997"
- No quality data, no quality mining results!
- Quality decisions must be based on quality data
 - Duplicates or missing data may cause incorrect or misleading analyses.

Data Preprocessing: Major Tasks

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data transformation

Normalization and aggregation

Data reduction

 Obtains reduced representation in volume but produces the same or similar analytical results

Data discretization

 Part of data reduction but with particular importance, especially for numerical data

Data Cleaning Tasks

- Fill in missing values
- Identify outliers and smooth out noisy data
- Correct inconsistent data
- Resolve redundancy caused by data integration

Data Transformation

- Smoothing: remove noise from data
- Aggregation: summarization, data cube construction
- Generalization: concept hierarchy climbing
- Normalization: scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
- Attribute/feature construction
 - New attributes constructed from the given ones

Feature engineering

Machine Learning

Deep Learning

TABLE II SUMMARY OF FEATURES

TUG sensor-based features		
Feature name	Direction	Unit
Sit to stand		
Angle range	ML	deg
Acceleration range	V, AP	m/s^2
Completion time		S
Walking	-	
Acceleration CV	V, AP, ML	
Acceleration range	V, AP, ML	m/s^2
Acceleration median	V, AP, ML	m/s^2
Acceleration RMS	V, AP, ML	m/s^2
Angular velocity CV	V, AP, ML	
Angular velocity range	V, AP, ML	deg/s
Angular velocity median	V, AP, ML	deg/s
Angular velocity RMS	V, AP, ML	deg/s
Speed		m/s
Turning		·
Acceleration CV	V, AP, ML	
Acceleration range	V, AP, ML	m/s^2
Acceleration median	V, AP, ML	m/s^2
Acceleration RMS	V, AP, ML	m/s^2
Angular velocity CV	V, AP, ML	
	1	

Hsu, Y. C., Zhao, Y., Huang, K. H., Wu, Y. T., Cabrera, J., Sun, T. L., & Tsui, K. L. (2020). A novel approach for fall risk prediction using the inertial sensor data from the timed-up-and-go test in a community setting. IEEE Sensors Journal, 20(16), 9339-9350.

- > Supervised Feature Selection Methods
 - > Wrapper Feature Selection Methods
 - > Filter Feature Selection Methods
 - > Embedded or Intrinsic Feature Selection Methods
- > Feature Selection with Statistical Measures
 - > Univariate Feature Selection
- > Feature Selection Strategies
 - > Selection Method
 - > Transform Variables
- > Which Feature Selection Method is the Best?
- > Feature Selection Implementations
 - > Feature Selection For Regression models
 - Classification Feature Selection