Theory of Quantum Information Assignment 1

Name: Nate Stemen (20906566)

Email: nate@stemen.email

Due: Oct 8, 2021

Course: QIC 820

All references to theorem/propositions/etc. are references to Watrous's book.

Problem 1

Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces and let $\Phi \in \operatorname{CP}(\mathcal{X}, \mathcal{Y})$ be a completely positive map. Prove that there exists an operator $B \in \operatorname{L}(\mathcal{X} \otimes \mathcal{Z}, \mathcal{Y})$, for some choice of a complex Euclidean space \mathcal{Z} , such that

$$\Phi(X) = B(X \otimes \mathbb{1}_{\mathcal{Z}})B^*$$

for all $X \in L(\mathcal{X})$. Identify a condition on the operator B that is equivalent to Φ preserving trace.

Solution. By Proposition 2.18 we know that Φ^* is also a completely positive map $\Phi^* \in \operatorname{CP}(\mathcal{Y}, \mathcal{X})$. Now, using the Stinespring representation of Φ^* and Theorem 2.22, there exists an $A \in \operatorname{L}(\mathcal{Y}, \mathcal{X} \otimes \mathcal{Z})$ such that

$$\Phi^*(Y) = \operatorname{tr}_{\mathcal{Z}}(AYA^*). \tag{1}$$

Using the fact that $(\Phi^*)^* = \Phi$, and Equation 2.72 which gives us the dual representation of a Strinespring map we have

$$\Phi(X) = \Phi^{**}(X) = A^*(X \otimes \mathbb{1}_{\mathcal{Z}})A.$$

Finally, taking $B = A^*$ we see first $B \in L(\mathcal{X} \otimes \mathcal{Z}, \mathcal{Y})$ and indeed

$$\Phi(X) = B(X \otimes \mathbb{1}_{\mathcal{Z}})B^*.$$

To derive a condition on *B* such that Φ preserves trace we set $tr(X) = tr(\Phi(X))$.

$$tr(X) = tr(\Phi(X)) = tr(B(X \otimes \mathbb{1}_{\mathcal{Z}})B^*)$$

$$= tr_{\mathcal{X}}(tr_{\mathcal{Z}}(B^*B(X \otimes \mathbb{1}_{\mathcal{Z}})))$$

$$= tr(tr_{\mathcal{Z}}(B^*B)X)$$

Thus, in order for this mapping to preserve trace we must have $\operatorname{tr}_{\mathcal{Z}}(B^*B) = \mathbb{1}_{\mathcal{X}}$.

Perhaps a simpler way of seeing this is using the fact that Φ preserving trace is equivalent to Φ^* being a unital map. Thus using eq. (1) we have

$$\Phi^*(\mathbb{1}_{\mathcal{Y}}) = \operatorname{tr}_{\mathcal{Z}}(B^*\mathbb{1}_{\mathcal{Y}}B) = \operatorname{tr}_{\mathcal{Z}}(B^*B) = \mathbb{1}_{\mathcal{X}}.$$

Problem 2

Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces, let $\Phi \in T(\mathcal{X}, \mathcal{Y})$ be a positive (but not necessarily completely positive) map, and let $\Delta \in C(\mathcal{Y})$ denote the completely dephasing channel with respect to the space \mathcal{Y} . Prove that $\Delta \Phi$ is completely positive.

Solution. Let $\mathcal{X} = \mathbb{C}^{\Sigma}$ and $\mathcal{Y} = \mathbb{C}^{\Gamma}$ with $E_{a,b}$ being the standard basis for $L(\mathcal{X})$ and $\tilde{E}_{a,b}$ be the standard basis for $L(\mathcal{Y})$. First, the Choi representation of Φ can be expanded:

$$J(\Phi) = \sum_{a,b \in \Sigma} \Phi(E_{a,b}) \otimes E_{a,b}$$

$$= \sum_{a,b \in \Sigma} \left[\sum_{c,d \in \Gamma} \alpha_{c,d} \tilde{E}_{c,d} \right] \otimes E_{a,b}$$

$$= \sum_{\substack{a,b \in \Sigma \\ c,d \in \Gamma}} \alpha_{c,d} \tilde{E}_{c,d} \otimes E_{a,b}$$

We can now use the fact that $J(\Delta\Phi) = [\Delta \otimes \mathbb{1}_{\mathcal{X}}]J(\Phi)$ to write the Choi representation of $J(\Delta\Phi)$.

$$J(\Delta \Phi) = [\Delta \otimes \mathbb{1}_{\mathcal{X}}] J(\Phi)$$

$$= \sum_{\substack{a,b \in \Sigma \\ c,d \in \Gamma}} \alpha_{c,d} \Delta(\tilde{E}_{c,d}) \otimes E_{a,b}$$

$$= \sum_{\substack{a,b \in \Sigma \\ c \in \Gamma}} \alpha_{c,c} \tilde{E}_{c,c} \otimes E_{a,b}$$

With this we now aim to use Theorem 2.22 to prove $\Delta\Phi$ is completely positive by showing $J(\Delta\Phi) \in \operatorname{Pos}(\mathcal{Y} \otimes \mathcal{X})$. First we derive a condition on the $\alpha_{c,d}$ coefficients using the fact that Φ is a positive map. Let $\{|c\rangle\}_{c\in\Gamma}$ be a basis for \mathcal{Y} , and since $E_{a,b}$ is a positive operator, so should $\Phi(E_{a,b})$.

$$\langle \tilde{c} | \Phi(E_{a,b}) | \tilde{c} \rangle = \langle \tilde{c} | \sum_{c,d \in \Gamma} \alpha_{c,d} \tilde{E}_{c,d} | \tilde{c} \rangle = \sum_{c,d \in \Gamma} \alpha_{c,d} \langle \tilde{c} | c \rangle \langle d | \tilde{c} \rangle = \sum_{c,d \in \Gamma} \alpha_{c,d} \delta_{\tilde{c},c} \delta_{d,\tilde{c}} = \alpha_{\tilde{c},\tilde{c}}$$

Thus for all $c \in \Gamma$ we have $\alpha_{c,c} \ge 0$.

Now take $\{|c\rangle \otimes |a\rangle\}_{\substack{a \in \Sigma \\ c \in \Gamma}}$ to be a basis for $\mathcal{Y} \otimes \mathcal{X}$. We can now check if $J(\Delta\Phi) \in \operatorname{Pos}(\mathcal{Y} \otimes \mathcal{X})$ by showing $\langle c| \otimes \langle a| J(\Delta\Phi) |c\rangle \otimes |a\rangle \geq 0$.

$$\begin{split} \left\langle \tilde{c} \right| \otimes \left\langle \tilde{a} \right| J(\Delta \Phi) \left| \tilde{c} \right\rangle \otimes \left| \tilde{a} \right\rangle &= \sum_{\substack{a,b \in \Sigma \\ c \in \Gamma}} \alpha_{c,c} \left\langle \tilde{c} \right| \otimes \left\langle \tilde{a} \right| \ \tilde{E}_{c,c} \otimes E_{a,b} \ \left| \tilde{c} \right\rangle \otimes \left| \tilde{a} \right\rangle \\ &= \sum_{\substack{a,b \in \Sigma \\ c \in \Gamma}} \alpha_{c,c} \left\langle \tilde{c} \right| c \right\rangle \left\langle c \right| \tilde{c} \right\rangle \left\langle \tilde{a} \right| a \right\rangle \left\langle b \right| \tilde{a} \right\rangle \\ &= \alpha_{\tilde{c},\tilde{c}} \end{split}$$

Since we've already shown $\alpha_{c,c} \ge 0$ for all $c \in \Gamma$, this shows that $J(\Delta \Phi)$ is positive semidefinite by extending this argument to linear combinations of the basis elements.

Problem 3

Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces and let Σ be an alphabet. Suppose further that $\eta: \Sigma \to \operatorname{Pos}(\mathcal{X})$ is a function satisfying

$$\sum_{a\in\Sigma}\eta(a)\in\mathrm{D}(\mathcal{X}),$$

which is to say that η represents an *ensemble of states*, and $u \in \mathcal{X} \otimes \mathcal{Y}$ is a purification of the average state of this ensemble:

$$\operatorname{tr}_{\mathcal{Y}}(uu^*) = \sum_{a \in \Sigma} \eta(a).$$

Prove that there exists a measurement $\mu : \Sigma \to Pos(\mathcal{Y})$ for which

$$\eta(a) = \operatorname{tr}_{\mathcal{Y}} \left[(\mathbb{1}_{\mathcal{X}} \otimes \mu(a)) u u^* \right]$$

for all $a \in \Sigma$.

Solution completed in collaboration with Alev Orfi, and Muhammad Usman Farooq.²

Solution. The fact that vec : $L(\mathcal{X}, \mathcal{Y}) \to \mathcal{Y} \otimes \mathcal{X}$ is a bijection allows us to find an operator $A \in L(\mathcal{Y}, \mathcal{X})$ such that vec(A) = u. We thus have

$$\operatorname{tr}_{\mathcal{Y}}(uu^*) = \sum_{a \in \Sigma} \eta(a) = AA^*$$

using $\operatorname{tr}_{\mathcal{Y}}(\operatorname{vec}(C)\operatorname{vec}(B)^*)=CB^*$ for $C,B\in\operatorname{L}(\mathcal{Y},\mathcal{X})$. Combining Exercise 3 which says $\operatorname{im}(P)\subseteq\operatorname{im}(P+Q)$ for $P,Q\in\operatorname{Pos}(\mathcal{X})$ and the fact that $\eta(A)\in\operatorname{Pos}(\mathcal{X})$, we can write $\operatorname{im}(\eta(a))\subseteq\operatorname{im}(\Sigma\eta(a))=\operatorname{im}(AA^*)\subseteq\operatorname{im}(A)$. Now, we need a lemma—Lemma 2.30 from Watrous.

Lemma. For $D \in L(\mathcal{Y}, \mathcal{X})$ we have the following equality of sets.

$$\{P \in Pos(\mathcal{X}) : im(P) \subseteq im(D)\} = \{DQD^* : Q \in Pos(\mathcal{X})\}$$

Thus since $\eta(a) \in \text{Pos}(\mathcal{X})$ and $\text{im}(\eta(a)) \subseteq \text{im}(A)$, we can find a $Q_a \in \text{Pos}(\mathcal{X})$ such that $\eta(a) = AQ_aA^*$. In particular since the transpose is a positive map Q_a^{T} is also positive and we take as definition $\mu(a) := Q_a^{\mathsf{T}}$.

We now show $\mu : \Sigma \to \operatorname{Pos}(\mathcal{X})$ is indeed a measurement. We've already shown $\mu(a)$ to be a positive semi-definite operator on \mathcal{X} , so we need to show μ resolves the identity.

$$\sum_{a \in \Sigma} \eta(a) = \sum_{a \in \Sigma} A \mu(a)^{\mathsf{T}} A^* = A \left[\sum_{a \in \Sigma} \mu(a)^{\mathsf{T}} \right] A^* = A A^*$$

This last equality follows from the definition of A, and in order for it to hold we must have $\sum_{a\in\Sigma} \mu(a)^{\intercal} = \mathbb{1}_{\mathcal{X}}$. Taking the transpose of both sides we have the required summation.

¹akborfi@uwaterloo.ca

²mu7faroo@uwaterloo.ca

Lastly we must show these $\mu(a)$ relate to $\eta(a)$ in the proper way.

$$\begin{split} \eta(a) &= A\mu(a)^\intercal A^* \\ &= \operatorname{tr}_{\mathcal{Y}} \left[\operatorname{vec}(A\mu(a)^\intercal) \operatorname{vec}(A)^* \right] \\ &= \operatorname{tr}_{\mathcal{Y}} \left[\operatorname{vec}(\mathbb{1}_{\mathcal{X}} A\mu(a)^\intercal) \operatorname{vec}(A)^* \right] \\ &= \operatorname{tr}_{\mathcal{Y}} \left[(\mathbb{1}_{X} \otimes \mu(a)) \operatorname{vec}(A) \operatorname{vec}(A)^* \right] \\ &= \operatorname{tr}_{\mathcal{Y}} \left[(\mathbb{1}_{X} \otimes \mu(a)) uu^* \right] \end{split}$$

Problem 4

Let \mathcal{X} , \mathcal{Y} , and \mathcal{Z} be complex Euclidean spaces and let $\Phi \in C(\mathcal{X}, \mathcal{Y} \otimes \mathcal{Z})$ be a channel. Prove that the following two statements are equivalent:

(a) There exists a complex Euclidean space W, a state $\sigma \in D(\mathcal{Y} \otimes \mathcal{W})$, and a channel $\Psi \in C(\mathcal{W} \otimes \mathcal{X}, \mathcal{Z})$ so that

$$\Phi(X) = \big[\mathbb{1}_{L(\mathcal{Y})} \otimes \Psi \big] (\sigma \otimes X)$$

for all $X \in L(\mathcal{X})$.

(b) There exists a density operator $\rho \in D(\mathcal{Y})$ for which

$$\operatorname{tr}_{\mathcal{Z}}(J(\Phi)) = \rho \otimes \mathbb{1}_{\mathcal{X}}.$$

Solution completed in collaboration with Mohammad Ayyash,³ and Nicholas Zutt.⁴

Solution. (a) \Longrightarrow (b) To start let us take $\mathcal{X} = \mathbb{C}^{\Sigma}$, $\mathcal{Y} = \mathbb{C}^{\Gamma}$ and $\mathcal{W} = \mathbb{C}^{\Pi}$. We can now expand σ in the tensor product basis of $D(\mathcal{Y} \otimes \mathcal{W})$ as

$$\sigma = \sum_{\substack{c,d \in \Gamma \\ e,f \in \Pi}} \sigma_{c,d,e,f} E_{c,d}^{\mathcal{Y}} \otimes E_{e,f}^{\mathcal{W}}.$$
 (2)

Where we use $E_{a,b}^{\mathcal{V}}$ to be the standard matrix on space \mathcal{V} . This allows us to expand Φ as follows.

$$\Phi(X) = \sum_{\substack{c,d \in \Gamma \\ e,f \in \Pi}} \sigma_{c,d,e,f} E_{c,d}^{\mathcal{Y}} \otimes \Psi(E_{e,f}^{\mathcal{W}} \otimes X)$$

Now we compute the Choi representation of Φ , and then trace out \mathcal{Z} . If there are no limits on the summation, assume it is the same limits as the previous summation *with* limits.

$$J(\Phi) = \sum_{\substack{a,b \in \Sigma \\ c,d \in \Gamma \\ e,f \in \Pi}} \sigma_{c,d,e,f} E_{c,d}^{y} \otimes \Psi(E_{e,f}^{w} \otimes E_{a,b}^{x}) \otimes E_{a,b}^{x}$$

$$\operatorname{tr}_{\mathcal{Z}}(J(\Phi)) = \sum_{\sigma_{c,d,e,f}} E_{c,d}^{\mathcal{Y}} \otimes \operatorname{tr} \left[\Psi(E_{e,f}^{\mathcal{W}} \otimes E_{a,b}^{\mathcal{X}}) \right] \otimes E_{a,b}^{\mathcal{X}}$$

$$= \sum_{\sigma_{c,d,e,f}} E_{c,d}^{\mathcal{Y}} \otimes \operatorname{tr} \left[E_{e,f}^{\mathcal{W}} \otimes E_{a,b}^{\mathcal{X}} \right] \otimes E_{a,b}^{\mathcal{X}}$$
 (\$\Psi\$ preserves trace)
$$= \sum_{\sigma_{c,d,e,f}} \mathcal{E}_{c,d}^{\mathcal{Y}} \otimes \operatorname{tr} \left[E_{e,f}^{\mathcal{W}} \right] \operatorname{tr} \left[E_{a,b}^{\mathcal{X}} \right] \otimes E_{a,b}^{\mathcal{X}}$$
 (\$\text{tr}(A \otimes B) = \text{tr} A \text{tr} B\$)
$$= \sum_{\sigma_{c,d,e,f}} \mathcal{E}_{c,d}^{\mathcal{Y}} \otimes E_{c,d}^{\mathcal{X}} \otimes E_{a,b}^{\mathcal{X}}$$
 (\$\text{tr}(E_{a,b}^{\mathcal{Y}}) \otimes \delta_{a,b}\$)
$$= \sum_{\substack{a \in \Sigma \\ c,d \in \Gamma \\ e \in \Pi}} \sigma_{c,d,e,e} E_{c,d}^{\mathcal{Y}} \otimes E_{a,a}^{\mathcal{X}}$$

$$= \sum_{\substack{c,d \in \Gamma \\ e \in \Pi}} \sigma_{c,d,e,e} E_{c,d}^{\mathcal{Y}} \otimes \left[\sum_{a \in \Sigma} E_{a,a}^{\mathcal{X}} \right] = \operatorname{tr}_{\mathcal{W}}(\sigma) \otimes \mathbb{1}_{\mathcal{X}}$$

³mmayyash@uwaterloo.ca

⁴nzutt@uwaterloo.ca

The last step follows from taking the trace of eq. (2):

$$\operatorname{tr}_{\mathcal{W}}(\sigma) = \sum_{\substack{c,d \in \Gamma \\ e,f \in \Pi}} \sigma_{c,d,e,f} E_{c,d}^{\mathcal{Y}} \otimes \operatorname{tr} \left[E_{e,f}^{\mathcal{W}} \right] = \sum_{\substack{c,d \in \Gamma \\ e \in \Pi}} \sigma_{c,d,e,e} E_{c,d}^{\mathcal{Y}}$$

Thus taking $\rho := \operatorname{tr}_{\mathcal{W}}(\sigma)$ we have $\operatorname{tr}_{\mathcal{Z}}(J(\Phi)) = \rho \otimes \mathbb{1}_{\mathcal{X}}$. The fact that $\rho \in D(\mathcal{Y})$ follows from the fact that the trace is completely positive, and clearly $\operatorname{tr}(\rho) = \operatorname{tr}(\operatorname{tr}_{\mathcal{W}}(\sigma)) = \operatorname{tr}_{\mathcal{Y} \otimes \mathcal{W}}(\sigma) = 1$.

(b) \Longrightarrow (a) Let $u \in \mathcal{Y} \otimes \mathcal{W} \otimes \mathcal{X}$ be a purification of $\rho \otimes \mathbb{1}_{\mathcal{X}}$. That is $\operatorname{tr}_{\mathcal{W}}(uu^*) = \rho \otimes \mathbb{1}_{\mathcal{X}} = \operatorname{tr}_{\mathcal{Z}}(J(\Phi))$. Further we have $\operatorname{tr}_{\mathcal{W} \otimes \mathcal{X}}(uu^*) = \dim(\mathcal{X}) \cdot \rho = \operatorname{tr}_{\mathcal{X}} \operatorname{tr}_{\mathcal{Z}}(J(\Phi)) = \operatorname{tr}_{\mathcal{Z} \otimes \mathcal{X}}(J(\Phi))$. Proposition 2.29 with $P = J(\Phi)$ gives us the existence of a channel $\Lambda \in C(\mathcal{W} \otimes \mathcal{X}, \mathcal{Z} \otimes \mathcal{X})$ such that

$$(\mathbb{1}_{L(\mathcal{Y})} \otimes \Lambda)(uu^*) = J(\Phi).$$

We can now use

$$\Phi(X) = \operatorname{tr}_{\mathcal{X}} \left(J(\Phi) (\mathbb{1}_{\mathcal{Y} \otimes \mathcal{Z}} \otimes X^{\mathsf{T}}) \right)$$

to recover the action of Φ from the Choi representation.

$$\Phi(X) = \operatorname{tr}_{\mathcal{X}} \left[\left([\mathbb{1}_{\mathcal{Y}} \otimes \Lambda] (uu^*) \right) \left(\mathbb{1}_{\mathcal{Y} \otimes \mathcal{Z}} \otimes X^{\mathsf{T}} \right) \right]$$

We can now trace out \mathcal{X} after applying Λ to give a channel $\Psi := \operatorname{tr}_{\mathcal{X}} \circ \Lambda$ which is an element of $C(\mathcal{W} \otimes \mathcal{X}, \mathcal{Z})$. This allows us to write the final form of Φ as

$$\Phi(X) = (\mathbb{1}_{\mathcal{Y}} \otimes \Psi)(\underbrace{\operatorname{tr}_{\mathcal{X}}(uu^*)}_{\sigma} \otimes X^{\mathsf{T}}).$$

I have no idea how to get rid of the tranpose.