O(m log n) Time Algorithms for DFA Minimization and More

Antti Valmari

Tampere University of Technology

Part I: DFA Minimization	Part II: and More
1 Deterministic Finite Automata 2 Minimization of Deterministic 3 Block Splitting 4 Hopcroft's Ideas [1971] 5 Gries' Data Structures (Roughly) 6 More Recent Data Structure 7–9 DFA Min in $O(m \log n)$ Time	10 Bisimilarity 11 Minimal Bisimilar Graph 12 Paige-Tarjan $O(m \log n)$ RCP Alg 13 Extension to Bisimulation [2009, 2010] 14 Markov Chains and Markov Dec

2010-10-09

Part I:

DFA Minimization

1 Deterministic Finite Automata

- $\bullet D = (Q, \Sigma, \delta, \hat{q}, F)$
 - -Q = states
 - $-\Sigma = labels$ (the alphabet)
 - $-\delta = transitions (partial function!)$
 - $-\hat{q}$ = initial state
 - -F = final states

- Let n=|Q|, $m=|\delta|=|$ defined transitions|, $\alpha=|\Sigma|=|$ available labels| technical convenience assumption: n=O(m) (e.g., $n\leq 2m+1$)
- Let $q \in Q$
- ullet The language accepted by q is the set of strings of labels on the paths from q to final states
 - e.g., bottom middle state: $\{aba, aaba, \ldots, ba, baaba, \ldots\}$
 - e.g., bottom right state: $\{\varepsilon, aba, aaba, aaaba, \dots, \dots\}$
- Denote it with $\mathcal{L}(q)$
- The language accepted by D is $\mathcal{L}(D) = \mathcal{L}(\hat{q})$

2 Minimization of Deterministic Finite Automata

• The minimization problem:

Find the smallest DFA that accepts the same language as the given DFA.

- solution:
 - 1. Remove irrelevant states and transitions. (textbook stuff)
 - those that are not reachable from \hat{q}
 - those from which no final state can be reached (except \hat{q})
 - 2. Merge states that accept the same language.

• How can we test if $\mathcal{L}(q_1) = \mathcal{L}(q_2)$?

3 Block Splitting

- States are partitioned into blocks
- ullet q_1 and q_2 go to different blocks only when it is certain that $\mathcal{L}(q_1)
 eq \mathcal{L}(q_2)$
- Initially blocks are F and $Q \setminus F$ (or just one of them, if the other is \emptyset)
- Blocks are split as long as possible
- Reason for putting q_1 and q_2 to different blocks: for some label a and block B, q_1 has and q_2 does not have an a-transition to a state in B
- At most n-1 successful splittings (n = |States|)
- Problem: vulnerable to lots of work

- $O(n^2)$ even if $\alpha = 1$ and m = O(n)
- Cost of "useless" "little" work may be important

4 Hopcroft's Ideas [1971]

- Clarified and improved by Gries [1973] (and, e.g., Knuutila [2001])
- Assumes that δ is full
- Idea: Traverse transitions backwards
 - splitter = (block, label) = (B, a)
 - process one splitter at a time
 - find the q such that $\delta(q,a) \in B$, move them to tentative new blocks
 - each block splits to backwards-encountered and others (if both non-empty)
 - ⇒ no futile scanning of states without relevant output transitions

- Idea: If (B, a) has been used and B splits to B_1 and B_2 , then it suffices to use one of (B_1, a) and (B_2, a)
 - use the "smaller" one (meaning of "smaller" is less trivial than it seems!)
 - \Rightarrow each state is used as a splitter state at most $\log_2 n$ instead of n times
- Both ideas \Rightarrow running time in $O(\alpha n \log n)$ $m \le \alpha n$, often $m \ll \alpha n$

5 Gries' Data Structures (Roughly)

- Partition of Q
 - for each block, there is a doubly linked list of the states in it
 - the block has a pointer to its main list and "tentative new" list
 - each state has a pointer to its block
 - the block knows its size (and the size of the "tentative new" list)
- Inverse transitions: for each q and a, the states q' such that $\delta(q',a)=q$
- Worksets for temporary storage
 - unprocessed splitters, and pointers to them for each (B,a)
 - backwards-encountered states don't cut the branch on which you sit!
 - backwards-encountered blocks
 touched blocks
- $\Theta(\alpha n)$ memory

AV

```
while there are unprocessed splitters (B,a) do choose any and remove it from the workset compute its backwards-encountered states use backwards-encountered states to tentatively split blocks for each touched block B' do split or reset back to earlier status if B' is split then for b \in \Sigma do update the (B',b)
```

6 More Recent Refinable Partition Data Structure

- ullet Maintains a partition of $\{1,2,\ldots,N\}$, for some N
- Like Gries, constant time Mark(e) and amortized constant time Split(s)

- Also sidx[e]
- Of course, all arrays must be updated appropriately in each operation
- ullet Mark(e) swaps e with the first unmarked element and increments mid[s]
 - Trick 1 for the future: returns set number iff all elements were unmarked
- Trick 2 for the future: Split(s) gives new block number to smaller half
 - earlier papers: marked states become the new block
 - does not affect amortized speed, as long as new \neq unmarked bigger half

7 DFA Minimization in $O(m \log n)$ Time 1/3

- Valmari & Lehtinen [2008], improvements Valmari [2010]
- Problem: How to avoid spending excessive time scanning empty splitters?
 - empty (B, a) = no a-transition ends at B
 - and how to avoid using and initializing $\Theta(\alpha n)$ memory?
 - ⇒ cannot use, e.g., in_trans[state, label]
- Idea: Non-empty splitters constitute a partition of transitions that can be maintained similarly to blocks
- ⇒ Two refinable partitions in the same program
 - -B = blocks, partition of states
 - -C = cords, partition of transitions
 - Inverse transitions: $In_trans[q] = \{ (q_1, a, q_2) \in \delta \mid q_2 = q \}$
 - numbers of input transitions of q in arbitrary order
 - \Rightarrow no need for $\Theta(\alpha n)$ data structures, easy to initialize
 - ullet Worksets: only one, W
 - e.g., array of integers used as a stack

8 DFA Minimization in $O(m \log n)$ Time 2/3

Algorithm in great detail

```
\begin{array}{l} c:=1;\ b:=2;\ W:=\emptyset;\\ \textbf{while}\ c\leq |\mathcal{C}|\ \textbf{do}\\ \text{use cord}\ \# c\ \text{to split blocks}\\ c:=c+1;\ W:=\emptyset\\ \textbf{while}\ b\leq |\mathcal{B}|\ \textbf{do}\\ \text{use block}\ \# b\ \text{to split cords}\\ b:=b+1;\ W:=\emptyset \end{array}
```

```
\begin{array}{l} \textbf{for } \ell := \mathcal{C}.first[c] \textbf{ to } \mathcal{C}.end[c] - 1 \textbf{ do} \\ b' := \mathcal{B}.Mark(\ tail[\ \mathcal{C}.elems[\ell]\ ]) \\ \textbf{ if } b' > 0 \textbf{ then } W := W \cup \{b'\} \\ \textbf{ for } b' \in W \textbf{ do } \mathcal{B}.Split(b') \\ \\ \textbf{ for } \ell := \mathcal{B}.first[b] \textbf{ to } \mathcal{B}.end[b] - 1 \textbf{ do} \\ \textbf{ for } t \in In\_trans(\ \mathcal{B}.elems[\ell]\ ) \textbf{ do} \\ \end{array}
```

```
\begin{array}{l} \textbf{for } \ell := \mathcal{B}.\mathit{first}[b] \textbf{ to } \mathcal{B}.\mathit{end}[b] - 1 \textbf{ do} \\ \textbf{for } t \in \mathit{In\_trans}(\ \mathcal{B}.\mathit{elems}[\ell]\ ) \textbf{ do} \\ c' := \mathcal{C}.\mathit{Mark}(t) \\ \textbf{if } c' > 0 \textbf{ then } W := W \cup \{c'\} \\ \textbf{for } c' \in W \textbf{ do } \mathcal{C}.\mathit{Split}(c') \end{array}
```

- Earlier Trick 1
 - \Rightarrow b' and c' may be added to W without testing if they are already there
- Why is there no workset for unprocessed block-splitters and cord-splitters?
 - Hopcroft, Gries: either smaller or new half must be added to unprocessed
 - Trick 2: new number is given to smaller half \Rightarrow these cases are the same
 - unprocessed are chosen for processing in first in first out order
 - \Rightarrow the unprocessed are always $\{b, b+1, \ldots, |\mathcal{B}|\}$ and $\{c, c+1, \ldots, |\mathcal{C}|\}$

9 DFA Minimization in $O(m \log n)$ Time 3/3

- Problem: Not enough time to initially sort the transitions! $O(m \log m)$
 - we aim at so fast an algorithm that ordinary things become too slow
 - solution: counting sort + classification trick of Aho & al. [1974] exercise
 - practical average-time solution: hash table
 - engineer's: don't bother, $O(m \log m)$ is not much worse than $O(m \log n)$
- A prototype implementation
 - 590 lines of C++ (+ libraries for formatted i/o and error messages)
 - refinable partition data structure: 50 lines, other data structures: 20 lines
 - block splitting: 40 lines
 - Aho & al. [1974] & heapsorting as an alternative: 60 lines
 - removal of irrelevant states: 70 lines, other initialization: 80 lines
 - input and output: 130 lines
 - heapsort: 40 lines, range-checking array: 60 lines, main comment: 40 lines
- ⇒ Compared to general idea of the difficulty of programming fast DFA minimization, this is very simple
 - 50 sec on a laptop when $n=10^5$, $\alpha=1000$, $m=5\cdot 10^6$ (includes i/o)

Part II:

and More

10 Bisimilarity

- Weakest relation that satisfies:
 - $-q_1 \sim q_2 \quad \Rightarrow \quad \mathsf{label}(q_1) = \mathsf{label}(q_2)$
 - $-q_1 \sim q_2 \land (q_1, a, q_1') \in \Delta_1 \implies \exists q_2' : q_1' \sim q_2' \land (q_2, a, q_2') \in \Delta_2$
 - $-q_1 \sim q_2 \land (q_2, a, q_2') \in \Delta_2 \implies \exists q_1' : q_1' \sim q_2' \land (q_1, a, q_1') \in \Delta_1$
 - $-q_1^{\mathsf{init}} \sim q_2^{\mathsf{init}}$, or $\forall q_1 \in \mathsf{Initials}_1 : \exists q_2 \in \mathsf{Initials}_2 : q_1 \sim q_2$, and ...
- Fundamental relation in concurrency theory
- Often much better "strong" equivalence than isomorphism
 - unifies states that only differ on x, if the next thing on x is x := 0

11 Minimal Bisimilar Graph

- Nondeterministic version of DFA minimization
- Remove what is not reachable from initial states
- Fuse bisimilar states
- Applications
 - smaller graph for further processing
 - bisimilarity test
- Problem due to nondeterminism: three-way splitting

12 Paige-Tarjan $O(m \log n)$ RCP Algorithm [1987]

- Relational coarsest partition problem: Nondeterministic graph, only one label ($\alpha = 1$)
- Idea: Compound blocks, "q-B-counters", and "q-counters"
- Compound block \approx union of blocks that has been used for splitting let \widehat{B} be the compound block that covers block B
- Biggest block in a compound block need not be used in further splitting
 ⇒ each state is used in a splitter at most log₂ n times
- **Problem:** How to implement three-way splitting?
- \Rightarrow Maintain, for each q and B, the number of transitions from q to B
 - \bullet Each B' has (at most) three kinds of sub-blocks
 - left block: $\#(q,B) > 0 = \#(q,\widehat{B} \setminus B)$
 - middle block: $\#(q,B) > 0 < \#(q,\widehat{B} \setminus B)$
 - right block: #(q,B) = 0

13 Extension to Bisimulation [2009, 2010]

- (Still RCP) cannot afford to represent counters that store 0
 - ⇒ data structure trickery!

- Extend q-B-counters to q-a-B-counters
- Use cords (and the year 2010 DFA tricks)
- Initialization: sort each cord according to start states
 - $O(m_a \log m_a)$, where $m_a \leq n^2$
- Splitting
 - distinguish left blocks from middle blocks by counter values
 - extract left blocks like with DFAs
 - update old and create new counter when extracting middle block
 - main loop and splitting of cords are like with DFAs
- Tricky details here and there and in the correctness proof, but it works!

14 Markov Chains and Markov Decision Processes

- These ideas have also been applied to state lumping of Markov Chains by Valmari and Franceschinis [2010]
 - would be a story of its own
 - finds use for the elegant but mostly useless majority candidate algorithm

 Everything has been put together in a program for minimizing Markov Decision Processes Part III:

Conclusions

15 Conclusions

- $O(m \log n)$ time DFA, bisimulation, and MDP minimization are possible
 - such an algorithm for DFAs was found amazingly late, $1971 \leftrightarrow 2008$
 - the other two problems are strictly more general
 - $O(m \log n)$ time Markov chain lumping was solved in 2003, but our results simplify it
- The breakthrough was the use of another partition, this time of transitions
- In the end the programs are relatively simple
 - we got rid of some data structures in earlier algorithms
- However, many tricky ideas had to be fine-tuned to make it all work
 - algorithms, correctness proofs, and programs
 - details are important for obtaining the promised performance!
- Hidden theme: representing a mapping where some result value is far more common than others
 - sparse mapping
 - avoid explicitly representing that value

Part IV:

Thank you for attention.

Questions?