STATIQUE DU SOLIDE

Exercice 1

Une barre pesant 100 N, et longue de 5 m, est appuyée sur le sol, via une rotule A; cette dernière se trouve à une distance de 3 m par rapport au pied d'un mur. L'autre extrémité B de la barre repose simplement sur ce mur (= appui mobile). Déterminer les réactions d'appuis $\vec{f_A}$ et $\vec{f_B}$ considérant que le centre de masse de la barre se trouve au milieu de celle-ci.

Exercice 2

Un wagonnet porte une charge p de 5000 N (entraxe ; rayon e = 2 m de roues r = 0.4 m; centre de masse G de la charge, situé à h = 1m par rapport aux rails).

Les rails forment avec l'horizontale un angle α = 15 0 . Un câble CD, horizontal, est accroché au niveau de l'axe C, et maintient l'ensemble en équilibre.

Déterminer les réactions d'appui des roues au sol, \vec{f}_A et \vec{f}_B ainsi que la tension dans le câble CD.

Exercice 3: Brouette

La figure représente une brouette chargée à l'équilibre.

 \vec{F} représente l'action globale verticale exercée sur les deux poignées par l'utilisateur.

Établir, la relation existant, à l'équilibre, entre F, a, b et P.

Exercice 4: Capot d'automobile

- 1- Calculer le torseur résultant en C.
- 2- Appliquer le principe fondamental de la statique et en déduire R_A et R_B .

17/11/2024 Page 1/3

Exercice 5 : Cadre de vélo

- 1- Calculer le torseur résultant en A.
- 2- Appliquer le principe fondamental de la statique et en déduire \vec{B} et \vec{C} .

Exercice 6 : Échelle de pompier

- 1- Calculer le torseur résultant en A.
- 2- Appliquer le principe fondamental de la statique et en déduire \vec{A} et \vec{B} .

Exercice 7 : Hélicoptère

L'hélicoptère proposé évolue horizontalement à vitesse constante suivant l'axe (ox), l'axe (oz) est vertical. \vec{F} et \vec{M} schématisent les actions exercées par l'air sur les pales du rotor principal. \vec{Q} et \vec{M}_{ϱ} sont les actions sur le rotor anti-couple. \vec{R} est la résistance de l'air sur l'ensemble de l'appareil et \vec{P} est le poids total.

- 1- Calculer le torseur résultant en A.
- 2- Appliquer le principe fondamental de la statique et en déduire \vec{R} , \vec{Q} et \vec{F} .

Donnée: P = 3~000 daN; M = 400 N.m; $M_Q = 30 \text{ N.m}$

17/11/2024 Page 2/3

Exercice 8 : Pédale de commande

Présentation du mécanisme

L'assemblage ci-dessous est le modèle simplifié d'une pédale d'un palonnier d'hélicoptère. L'action mécanique exercée par le pied sur la pédale est équivalente pour notre étude à une force appliquée au point A.

Le cahier des charges de ce dispositif indique que la valeur maximale de l'effort transmis au câble est égale à 250 daN (valeur maximale admissible).

L'objectif de l'étude est de déterminer les actions mécaniques extérieures appliquées sur la pédale de commande 2.

Hypothèses

- ✓ Les liaisons sont considérées parfaites.
- ✓ Le frottement sera négligé dans toutes les liaisons.
- ✓ Le poids de la pédale 2 est négligé.

Isolons la pédale 2 et faisons le bilan des actions mécaniques aux points de contact A, B, C et D

1. Déterminer la nature du contact, le nom de la liaison de centre A entre le pied et la pédale 2. Écrire l'expression du torseur d'action mécanique: {T(pied→2)} en A (point d'application).

$$A\{\tau_{p\to 2}\}_{(O,x,y,z)}$$

2. Déterminer la nature du contact, le nom de la liaison de centre B entre le support gauche 1 et la pédale 2.

Écrire l'expression du torseur d'action mécanique: $\{T(1\rightarrow 2)\}$ en B (point d'application).

$$_{\rm B}\{\tau_{l\to 2}\}_{\rm (O,x,y,z)}$$

3. Déterminer la nature du contact, le nom de la liaison de centre C entre le câble et la pédale 2. Écrire l'expression du torseur d'action mécanique: $\{T(c\rightarrow 2)\}$ en C (point d'application).

$$C\{\tau_{c\rightarrow 2}\}_{(O,x,y,z)}$$

4. Déterminer la nature du contact, le nom de la liaison de centre D entre le support droit 1' et la pédale 2.

Écrire l'expression du torseur d'action mécanique: $\{T(1'\rightarrow 2)\}$ en D (point d'application).

$$D\{\tau_{1'\rightarrow 2}\}_{(O,x,y,z)}$$

5. Déterminer l'expression algébrique du torseur d'action mécanique {T(pied→2)} au point B.

$$_{\mathrm{B}}\{\tau_{p\to 2}\}_{(\mathrm{O},\mathrm{x},\mathrm{y},\mathrm{z})}$$

6. Déterminer l'expression algébrique du torseur d'action mécanique {T(cable→2)} au point B.

$${}_{B}\{\tau_{c\rightarrow 2}\}_{(O,x,y,z)}$$

7. Déterminer l'expression algébrique du torseur d'action mécanique $\{T(1\rightarrow 2)\}$ au point B.

$$_{\rm B}\{\tau_{1'\to 2}\}_{({\rm O},x,y,z)}$$

Appliquons le principe fondamental de la statique pour la pédale 2 au point B.

$${}_{B}\{\tau_{p\to 2}\}_{(O,x,y,z)} + {}_{B}\{\tau_{I\to 2}\}_{(O,x,y,z)} + {}_{B}\{\tau_{c\to 2}\}_{(O,x,y,z)} + {}_{B}\{\tau_{I'\to 2}\}_{(O,x,y,z)} = 0$$

- 8. Remplacer les torseurs par les expressions trouvées précédemment et écrire les 6 équations découlant de l'application du principe fondamental de la statique.
- 9. Résoudre le système des 6 équations.
- 10. Ecrire les torseurs des actions mécaniques en A, B, C et D et représenter ces actions

17/11/2024 Page 3/3