11 Forward and Futures

Forward Interest rates

The forward interest rate between time t-1 and t satisfies:

$$(1 + r_t)^t = (1 + r_{t-1})^{t-1} (1 + f_t)$$

$$f_t = \frac{B_{t-1}}{B_t} - 1 = \frac{(1 + r_t)^t}{(1 + r_{t-1})^{t-1}} - 1$$

Forward price

$$F_T = e^{(r-y)T} S_0$$

The swap rate is a weighted average of forward rates:

$$r_s = \frac{\sum_{t=1}^T B_t f_t}{\sum_{u=1}^T B_u} = \sum_{t=1}^T w_t f_t$$
, with the weights $w_t = \frac{B_t}{\sum_{u=1}^T B_u}$

12 Options, Part 1

Net option payoff

The break-even point is given by S_T at which Net Payoff is zero:

$$Netpayof f = max[S_T - K, 0] - C(1+r)^T$$

Option strategies

- Protective Put: Buy stock + Buy a put
- Bull Call Spread: Buy a Call K1 + Write a Call K2, K1 < K2
- Straddle: Buy a Call at K + Buy a Put

Corporate securities as options

- Equity (E): A call option on the firm's assets (A) with the exercise price equal to its bond's redemption value.
- Debt (D): A portfolio combining the firm's assets (A) and a short position in the call with the exercise price equal to its bond's face value (*F*):

$$A = D + E \Longrightarrow D = A - E$$

$$E \equiv max(0, A - F)$$

$$D = A - E = A - max[0, A - F]$$

Put-Call parity for European options

$$C + B \cdot K = P + S$$

Binominal option pricing model Stock

Option at Expiration

Replicating portfolio (call option) solve system to form a portfolio of stock and bond that replicates the call's payoff:

Binominal option pricing model with multiple periods

a shares of the stock; b dollars in the ris-

Compute the time-0 value working backwards: first C_u and C_d then C_0 . In sum-

- Replication strategy gives payoffs identical to those of the call.
- Initial cost of the replication strategy must equal the call price

13 Options, Part 2

Binomial model: risk-neutral pricing

Solve by replication δ shares of the stock, b dollars of riskless bond

$$\delta u S_0 + b(1+r) = C_u$$

$$\delta d S_0 + b(1+r) = C_d$$

Solution:
$$\delta = \frac{C_u - C_d}{(u - d)S_0}$$
, $b = \frac{1}{1 + r} \frac{uC_d - dC)u}{u - d}$

Then: $C_0 = \delta S_0 + b$

$$C_0 = \frac{C_u - C_d}{(u - d)} \frac{1}{1 + r} \frac{uC_d - dC)u}{u - d}$$

Risk neutral probability

$$q_u = \frac{(1+r)-d}{u-d}$$
, $q_d = \frac{u-(1+r)}{u-d}$ Then $C_0 = \frac{q_u C_u + q_d C_d}{1+r} = \frac{E^Q[C_T]}{1+r}$ where $E^Q[\cdot]$ is the expectation under probability $Q = (1, 1-q)$, which is called the risk-neutral probability

State prices and risk-neutral probabili-

$$\Phi_{u} = \frac{q}{1+r}, \Phi_{d} = \frac{1-q}{1+r}$$

$$\Phi_{uu} = \frac{q^{2}}{(1+r)^{2}}, \Phi_{ud} = \Phi_{du} = \frac{q(1-q)}{(1+r)^{2}},$$

$$\Phi_{dd} = \frac{(1-q)^{2}}{(1+r)^{2}}$$
 With state prices, can price

any state-contingent payoff as a portfolio

of state-contingent claims: mathematical- Sharpe Ratio ly equivalent to the risk-neutral valuation formula.

Implementing binominal model

- As we reduce the length of the time step, holding the maturity fixed, the binomial distribution of log returns converges to Normal distribution.
- Key model parameters u, and d need to be chosen to reflect the distribution of the stock return

Once choice is: $u = exp(\sigma \frac{T}{n})$, $d = \frac{1}{u}$, p =

Black-Scholes-Merton formula

$$\begin{split} C_0 &= S_0 N(x) - K e^{-rT} N(x - \sigma \sqrt(T)) \\ x &= \frac{ln(\frac{S_0}{K e^{-rT}})}{\sigma \sqrt{T}} + \frac{1}{2} \sigma \sqrt{T} \end{split}$$

The call is equivalent to a levered long position in the stock; $S_0N(x)$ is the amount invested in the stock; $Ke^{-rT}N(x-\sigma\sqrt{T})$ is the dollar amount borrowed.

Equivalent formulation:
$$C(S_t, t) = N(d_1)S_t - N(d_2)Ke^{-r(T-t)}$$

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left[\ln\left(\frac{S_t}{K}\right) + \left(r + \frac{\sigma^2}{2}\right) (T-t) \right]$$

$$d_2 = d_1 - \sigma\sqrt{T-t}$$

The price of a corresponding put option based on put-call parity is: $P(S_t,t) = Ke^{-r(T-t)} - S_t + C(S_t,t) =$ $N(-d_2)Ke^{-r(T-t)} - N(-d_1)S_t$

Option Greeks

ma: $\Gamma = \frac{\partial \delta}{\partial S} = \frac{\partial^2 C}{\partial S^2}$ Theta: $\Theta = \frac{\partial C}{\partial S}$ Vega:

14 Portfolio Theory

Preliminaries

Portfolio return and variance, two assets $\overline{r}_p = w_1 \overline{r}_1 + w_2 \overline{r}_2$ $\sigma_n^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{12}$ $\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \rho_{12} \sigma_1 \sigma_2$

ving for weights in the two asset case: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

In general, for a vector of weights w, returns r and covariance matrix Σ :

and
$$\sigma_p^2 = w' \cdot \Sigma \cdot w$$
 in Excel $\sigma_p^2 = \text{MMULT}(\text{MMULT}(\text{TRANSPOSE}(w), \Sigma), w)$

$$SR = \frac{r-r_f}{\sigma}$$
, Return-to-Risk Ratio $RRR_{i,p} = \frac{r_i-r_f}{Cov(r_i,r_p)/\sigma_p}$

Tangency Portfolio

Note \bar{x} is vector of excess returns and $\vec{1}$ is a vector of ones of size I, number of

min
$$w' \cdot \Sigma \cdot w$$
 s.t. $w' \cdot \overline{x} = m$ solution: $w_T = \lambda \Sigma^{-1} \overline{x}$ where $\lambda = \frac{1}{\overline{x}' \Sigma^{-1} \overline{1}}$. In summary, the tangency weights are: $w_T = \frac{1}{\overline{x}' \Sigma^{-1} \overline{1}} \Sigma^{-1} \overline{x}$. In Excel

$$\lambda = \text{MMULT}(\text{MMULT}(\text{TRANSPOSE}(\overline{x}), \text{MINVERSE}(\Sigma)), \overrightarrow{1})$$
, lambda is a scalar, then $w_T = \lambda$ MMULT(MINVERSE(Σ), \overline{x}). Once the tangency portfolio is found, RRR is the same for all stocks, meaning that we cannot perturb the weights of individual assets in this portfolio to further increase its risk return trade off.

R14Q4

inputs: $b_1 = 10$, $b_{2,i} = i$, F_1 has $E[F_1] = 0\%$ and $\sigma_{F_1} = 1\%$, F_2 has $E[F_2] = 1\%$ and $\sigma_{F_2} = 1\%$, and ϵ_i has Delta: $\delta = \frac{\partial C}{\partial S}$ Omega: $\Omega = \frac{\partial C}{\partial S} \frac{S}{C}$ Gam- $E[\epsilon_i] = 0\%$ and $\sigma_{\epsilon_i} = 30\%$. F_1 , F_2 , ϵ_i are indep. of each other, and $r_f = 0.75\%$. find sharpe ratio and return-to-risk ratio $E[r_i] = b_1 E[F_1] + b_2, i E[F_2] + E[\epsilon_i] = i \cdot 1\%$

Portfolio return and variance, two assets
$$\overline{r_p}=w_1\overline{r_1}+w_2\overline{r_2}$$

$$\sigma_p^2=w_1^2\sigma_1^2+w_2^2\sigma_2^2+2w_1w_2\sigma_{12}$$

$$\sigma_p^2=w_1^2\sigma_1^2+w_2^2\sigma_2^2+2w_1w_2\rho_{12}\sigma_{12}$$

$$\rho_{12}=\frac{\sigma_{12}}{\sigma_1\sigma_2}$$

$$\rho_{12}=\frac{\sigma_{12}}{\sigma_1\sigma_2}$$

$$\nabla[r_i]=V[b_1F_1+b_{2,i}F_2+\epsilon_i]=b_1^2V[F_1]+b_2^2V[F_2]+V[\epsilon_i]=b_1^2V[F_1]+b_2^2V[F_2]+V[\epsilon_i]=b_1^2V[F_1]+b_2^2V[F_2]+V[\epsilon_i]=b_1^2V[F_1]+b_2^2V[F_2]+V[\epsilon_i]=b_1^2V[F_1]+b_2^2V[F_2]+V[\epsilon_i]=b_1^2V[F_1]+b_2^2V[F_2]+V[\epsilon_i]=b_1^2V[F_1]+b_2^2V[F_2]+V[\epsilon_i]=b_1^2V[F_1]+b_2^2V[F_2]+V[\epsilon_i]=b_1^2V[F_1]+v[\epsilon_i]+$$

$$RRR_{i,p} = \frac{r_i - r_f}{Cov(r_i, r_p)/\sigma_p} \text{ note } Cov(r_i, r_p) = Cov(r_i, \sum_{i=1}^{I} w_i r_i) = \sum_{i=1}^{I} w_i Cov(r_i, r_i)$$