Характер группоида

А. А. Владимиров

16.06.2022

Задача

Дан функтор $\varkappa = (\varkappa_1, \varkappa_2) : \mathbf{Cat}(\Gamma) \to \mathbf{Vec}$. Найти $\varkappa_2 : (f : \Gamma_1 \to \Gamma_2) \mapsto (A_f : \varkappa_1(\Gamma_1) \to \varkappa_1(\Gamma_2))$, если известно, что $\varkappa_1 : \Gamma \mapsto V$, где V – пространство характеров, т.е. $V = \{\chi : \operatorname{Hom}\Gamma \to \mathbb{C} : \chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)\}$.

Таким образом задача сводится к нахождению линейного оператора A_f на коммутативной диаграмме

Рис. 1: постановка задачи

Решение

Содержание

0.1	Хараг	ктер группоида
	i.	Группоид
	ii.	Элементарный группоид
	iii.	Характер на группоиде
	iv.	Группа
	v.	Абелева группа
	Преобразование характеров	
	i.	Что дальше?

0.1 Характер группоида

і. Группоид

Обсудим сперва структуру группоида общего вида¹

Определение 1. [1] *Группоидом* назывется категория, в которой любая стрелка обратима.

Для этого введем операцию произведения множеств стрелок, корректную тогда и только тогда, когда все упорядоченные пары стрелок взятые из соответствующих множеств перемножаемы, итак

$$A \cdot B \doteqdot \{ f \circ g \mid \forall f \in A, \forall g \in B \}, \tag{1}$$

в частности, если A — одноэлементное множество, имеем

$$f \cdot B \doteq \{f \circ h \mid \forall g \in B\}.$$

Теперь упомянем пару утверждений, справдливых для любого группоида.

Общеизвестно, что в группоиде все группы петель изоморфны, иначе говоря верно

Утверждение 1. Для любых $a, b \in \mathrm{Obj}(\Gamma)$

$$hom(b,b) = h hom(a,a)h^{-1},$$
(2)

 $ede\ h\ -\ npouseonehas\ cmpenka\ us\ a\ e\ b.$

Также имеет место

Утверждение 2. Для любых различных вершин $a, b \in \mathrm{Obj}(\Gamma)$ справедливо

$$hom(a,b) = f \cdot hom(a,a), \tag{3}$$

 $\it rde\ f\ -\ npouseone нas\ cmpenka\ us\ a\ e\ b.$

Доказательство. Вложение правого множества в левое справедливо в силу аксиом композиции в категории.

Обратное вложение имеет место, так как для любого $g \in \text{hom}(a,b)$ найдется $h \in \text{hom}(a,a)$ такое, что g = fh, а именно $h = f^{-1}h$.

Следствие. Пользуясь утверждениями 1, 2 или непосредственно, несложно доказать, что:

$$hom(a,b) = hom(b,b) \cdot f, \quad f: a \to b$$
$$hom(a,b) \cdot hom(a,a) = hom(b,b) \cdot hom(a,b) = hom(a,b),$$
$$hom(b,c) \cdot hom(a,b) = hom(a,c).$$

¹здесь и далее под группоидами подразумеваются связные группоиды

Утверждения 1, 2 и их следствия позволяют заключить, что по заданному группоиду можно построить категорию, с тем же набором вершин и стрелками вида $\hom(a,b):a\to b$, которая также является группоидом, иначе говоря можно ввести следующее

Определение 2. Пусть $G=\operatorname{Fund}\Gamma$ — фундаментальная группа группоида. Φ актор-группоидом или факторизацией группоида Γ по фундаментальной группе² называется группоид Γ/G такой, что

$$\mathrm{Obj}\,\Gamma/G=\mathrm{Obj}\,\Gamma,$$

$$\mathrm{Arr}\,\Gamma/G=\{\mathrm{hom}(a,b):a\to b\mid \forall a,b\in\mathrm{Obj}(\Gamma)\}.$$

Подобно каноническому гомоморфизму отоброжающему группу в факторгруппу, можно опрделить канонический функтор ε переводящий Γ в Γ/G , а именно $\varepsilon: a \mapsto a, \varepsilon: (f: a \to b) \mapsto (\text{hom}(a, b) = \varepsilon(f): a \to b)$.

Удобнее однако, зафиксировать некоторую вершину a группоида Γ , ее группу петель $\hom(a,a)=A$, и веер стрелок 3 f,g,\ldots Тогда, в силу утверждений 1,2 стрелки группоида Γ/G имеют вид $fA,\,fAf^{-1},\,gA,\ldots$, и отображение, осуществляемое функтором ε приобретает вид:

Рис. 2: канонический функтор

Пусть читателя не смущает произвол в выборе вершины a и веера стрелок, ибо вне зависимости от него стрелки вида $fA:a\to b$ все равны $\hom(a,b)$ как множества. Преимущество такой записи состоит в ее наглядности и удобстве полученной «алгебры» операций в фактор-группоиде. Выведем эти операции, пользуясь утверждениями 1,2, их следствиями и введенной операцией 1 перемножения множеств стрелок:

 $^{^2}$ в действительности можно вводить факторизацию группоида по любой нормальной подгруппе фунадментальной группы

³ Определение. Веером стрелок вершины a группоида Γ называется множество состоящее из стрелок исходящих из вершины a по одной в каждую из прочих.

обращение стрелки $fA: a \to b$:

$$(fA)^{-1} = \text{hom}(b, a) = f^{-1} \text{hom}(b, b) = f^{-1} f A f^{-1} = A f^{-1} : b \to a;$$

композиция стрелок $Ah:b\to a$ и $gA:a\to c$:

$$qA \cdot Ah = qAh : b \rightarrow c.$$

Так, ясно, как получена стрелка qAf^{-1} на рис. 2:

$$gA \cdot (fA)^{-1} = gA \cdot Af^{-1} = gAf^{-1}.$$

Заметим, что в полученном группоиде $\varepsilon(\Gamma)$ любая стрелка $a \to b$ представлена в единственном экземпляре (и равна $\hom(a,b)$). Группоиды подобного вида назовем элементарными.

іі. Элементарный группоид

Определение 3. Элементарным группоидом будем называть группоид для любых двух вершин a и b которого существует одна и притом только одна стрелка $f: a \to b$.

Рис. 3: элементарный группоид

Такие группоиды представляют для нас интерес ввиду простоты своей структуры. Более того, такие группоиды можно свести всего навсего к вееру стрелок.

Утверждение 3. Элементарный группоид E однозначно задается любым веером своих стрелок.

Более строго: пусть задан дан веер стрелок $V = \{f: a \to b, g: a \to c...\}$ вершины а некоторого элементарного группоида E. Минимальный по включению группоид, содержащий данный веер есть сам E.

Доказательство. Пусть Γ — Минимальный по включению группоид, содержащий V, тогда из определения веера (стрелки проведены из a в каждую из прочих вершин E) получаем что $\mathrm{Obj}\,E\subset\mathrm{Obj}\,\Gamma$.

Пользуясь аксиомами композции в категории из стрелок в V можно получить стрелку между любыми двумя вершинами в из $\mathrm{Obj}\,E$, т.е. по определению элементарного группоида все $\mathrm{Arr}\,E$. Таким образом, $\mathrm{Arr}\,E \subset \mathrm{Arr}\,\Gamma$, а поскольу Γ — минимальный, то $\Gamma = E$.

ііі. Характер на группоиде

Вернемся к группоиду общего вида и попытаемся задать характер на нем, но сперва отметим важное (хоть и достаточно очевидное) свойство характера, позволяющее в некотором смысле перенести все предыдущие рассуждения на характер.

Утверждение 4. Будучи задан на перемоножаемых и неперескающихся множествах стрелок A и B, характер однозначно продолжается на их произведение $A \cdot B$.

Так, пусть задан характер на фундаментальной группе группоида Γ . Для определенности пусть задано $\chi: A \to \mathbb{C}$, где $A = \hom(a, a), a \in \mathrm{Obj}\,\Gamma$.

iv. Группа

Рассмотрим некоторую группу G, его фактор-группу G/G' по коммутанту G' и следующую диаграмму

Здесь $\tau:g\mapsto gG'$ — канонический гомоморфизм; $\chi,\ \chi_{ab}$ — характеры групп G и G/G' соответственно.

Оказывается, что

Утверждение 5. для любого $\chi: G \to \mathbb{C}$ существует и при том единственный характер $\chi_{ab}: G/G' \to \mathbb{C}$ такой, что диаграмма (4) коммутативна, т.е.

$$\chi = \chi_{ab} \circ \tau$$
.

Доказательство. Действительно, потребуем для любого $g \in G$

$$\chi(g) = \chi_{ab} \circ \tau(g),$$

тогда

$$\chi(g) = \chi_{ab}(gG'),$$

и χ_{ab} задан на G/G' однозначно.

Более того χ_{ab} задан корректно, т.к. для $\forall f \in gG' \ \exists h \in G' : f = gh$, но по определению коммутанта существуют такие a и b, что $h = aba^{-1}b^{-1}$, откуда $f = gaba^{-1}b^{-1}$, и

$$\chi(f) = \chi(gaba^{-1}b^{-1}) = \chi(g) + \chi(a) + \chi(b) - \chi(a) - \chi(b) = \chi(g),$$

то есть,

$$\chi(f) = \chi(g)$$
, для любых f и g из одного смежного по G' класса. (5)

Очевидно, что χ_{ab} — характер:

$$\chi_{ab}(gfG') = \chi(gf) = \chi(g) + \chi(f) = \chi_{ab}(gG') + \chi_{ab}(fG').$$

Замечание. Попутно доказано важное для понимания происходящего утверждение (5), показывающее, что факторизация группы по коммутанту G' разбивает ее также и на «области постоянства» характера (рис. 4). Становится ясно, что вместо рассмотрения характера χ на всей группе, достаточно пронаблюдать лишь за его «действием с точностью до G'», т.е. за определяемым им на G/G' характере χ_{ab} .

Рис. 4

Обратно,

Утверждение 6. характер χ_{ab} однозначно задает χ , как

$$\chi = \chi_{ab} \circ \tau$$

Утверждение представляется очевидным.

Так, построено взаимооднозначное отображение $t: \chi_{ab} \mapsto \chi_{ab} \circ \tau = \chi$ между характерами группы и ее абелизации (т.е. фактор группы по коммутанту). Покажем, что отображение t является гомоморфизмом (а следовательно и изоморфизмом) линейных пространств.

Действительно, для любого $g \in G$

$$t(c_1\chi_{ab}^1 + c_2\chi_{ab}^2)(g) = (c_1\chi_{ab}^1 + c_2\chi_{ab}^2) \circ \tau(g) =$$

$$= (c_1\chi_{ab}^1 + c_2\chi_{ab}^2)(gG') = c_1\chi_{ab}^1(gG') + c_2\chi_{ab}^2(gG') =$$

$$= c_1\chi_{ab}^1 \circ \tau(g) + c_2\chi_{ab}^2 \circ \tau(g) = c_1t(\chi_{ab}^1)(g) + c_2t(\chi_{ab}^2)(g).$$

Тем самым доказано следующее

Утверждение 7. Пространства характеров группы G и ее абелизации G/G' изоморфны. Конкретно, изоморфизм имеет вид:

$$t: G/G' \to G. \quad t: \chi_{ab} \mapsto \chi_{ab} \circ \tau,$$
 (6)

где au — канонический гомоморфизм G o G/G'.

Последнее утверждение позволяет нам свести задачу изучения характеров группы G к рассмотрению характеров на G/G' — группе, абелевой по определению.

v. Абелева группа

Итак, пусть некоторая группа A — абелева. Как задать на ней характер? Нетрудно получить ответ в случае конечно-порожденных групп.

Известно, что для таких групп справедливо разложение 4

$$A \simeq \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n} \oplus \operatorname{Tor} A = \mathbb{Z}^{n} \oplus \operatorname{Tor} A,$$

где \mathbb{Z}^n — свободная подгруппа,

 $\operatorname{Tor} A \ \ = \ \{a \in A : ma = 0 \ \text{для некоторого} \ m \in \mathbb{Z}, m \neq 0\} - \textit{nodrpynna кручения},$ причем

Tor
$$A \simeq \mathbb{Z}_{p_1} \oplus \ldots \oplus \mathbb{Z}_{p_s}$$
,

где \mathbb{Z}_{p_i} — циклическая группа порядка p_i .

Отсюда

$$A = \{x_1 e_1 + \dots + x_n e_n + x_{n+1} f_1 + \dots + x_{n+s} f_s \mid x_i \in \mathbb{Z}\},\tag{7}$$

где $\{e_i\}_{i=1}^n$ – базис свободной подгруппы, $\{f_i\}_{i=1}^s$ – порождающие соответствующих циклических групп. Попутно введем обозначение $|\dim|A=n$.

Пусть теперь задан характер $\chi:A\to\mathbb{C},$ тогда для любого $a\in A,$ с учетом (7) верно

$$\chi(a) = \chi(\alpha_1 e_1 + \ldots + \alpha_n e_n + \alpha_{n+1} f_1 + \ldots + \alpha_{n+s} f_s) =$$

$$= \alpha_1 \chi(e_1) + \ldots + \alpha_n \chi(e_n) + \alpha_{n+1} \chi(f_1) + \ldots + \alpha_{n+s} \chi(f_s),$$

но, так как порядок каждого элемента f_i конечен, то $\chi(f_i)=0$ для всех i=1,...,s, и

$$\chi(a) = \alpha_1 \chi(e_1) + \ldots + \alpha_n \chi(e_n). \tag{8}$$

Тем самым доказано

Утверждение 8. Для конечно-порожденной группы A пространство характеров $X(A) = \{\chi : A \to \mathbb{C} : \chi(a+b) = \chi(a) + \chi(b)\}$ имеет размерность

$$\dim X(A) = |\dim| A. \tag{9}$$

0.2 Преобразование характеров

⁴см.[2] гл.9 §1

і. Что дальше?

Список литературы

- [1] Маклейн С. «Категории для работающего математика». Изд-во ФизМатЛит, Москва, 2004.
- [2] Винберг Э. Б. «Курс алгебры». Изд-во МЦНМО, Москва, 2014.