Workload Management

> DBMS on top of Virtual Machines

Are database systems just another application running in the virtualized environment?

No! Virtualization poses several interesting research questions for database systems

- Understanding the performance of database systems on virtual machines
- Configuring and tuning virtual machines running and tuning virtual machines running database systems
- Taking advantage of virtualization capabilities in the database system

Overhead

- TPC-H / PostgreSQL
 - Direct machine
 - Xen virtual machine
- Overhead of virtualization is not unacceptably high
- Can be made lower with better virtualization support

	Base Runtime (secs)	Xen Runtime (secs)	Abs SlwDwn (secs)	Rel SlwDwn (%)
Q1	14.19	15.30	1.11	7.82
Q3	5.20	6.98	1.78	34.35
Q5	4.53	5.99	1.46	32.21
Q7	4.09	5.32	1.23	30.14
Q9	10.99	12.81	1.81	16.49
Q10	5.04	6.36	1.32	26.17
Q13	14.02	15.27	1.25	8.93
Q18	9.38	11.54	2.17	23.12
Q19	5.26	6.33	1.07	20.41
Q21	2.79	3.65	0.86	31.03

Resource Provisioning

What level of resources to give to each DBMS?

Configuring VM parameters

How to tune the DBMS for a given level of resources?

Configuring the DBMS parameters

Need a **model** of how resource allocation affects database performance

Need optimization or control algorithms to decide on the optimal resource allocation

Resource Provisioning (2)

Virtual Machine 1

PostgreSQL, 10 GB TPC-H, Query 17

Virtual Machine 2

■ DB2, 10 GB TPC-H, Query 18

Configuration 1

■ CPU: 50/50

Memory: 50/50

Configuration 2

• CPU: 15/85

Memory: 20/80

Virtualization Design Advisor

> Automatic VM Configuration

Optimize performance of database management systems by controlling the configurations of the virtual machines in which they run

- Virtualization Design Advisor recommends workload-specific configuration using the query optimizer's cost model (offline)
- Runtime information is collected for online refinement and to address changing workloads

> Virtualization Design Advisor

Problem Statement

- W_i: set of workloads processed by i-th VM
- R_i: resource shares (here CPU + memory)
- P_i: query optimizer parameters
- D_i: database instance
- Optimization criteria: minimize

$$\sum_{i=1}^{N} Cost(W_i, R_i)$$

Constrained by degradation limit

$$Degradation(W_i, R_i) = \frac{Cost(W_i, R_i)}{Cost(W_i, [1, \dots, 1])}$$

 $Degradation(W_i, R_i) \leq L_i$

> Virtualization Design Advisor (2)

Renormalize

- Assumption: all DBMS defines cost as total resource consumption
- Define a mapping to unified cost estimation unit of choice (e.g., seconds)
- Highly dependent on DBMS at hand

Calibrate

- Prescriptive parameters
 - Define the configuration of the DBMS itself
 - E.g. sortheap, bufferpools, ...
- Descriptive parameters
 - Characterize the execution environment
 - E.g. cpu tuple cost, random page cost, ...
 - Affect the DBMS only indirectly (through changing cost estimates)
- Find calibration function from resource allocation R_i to set of parameters P_{ik}

Both tasks need to be done once for every DBMS, e.g., by DBMS developers with deep knowledge

> Virtualization Design Advisor (3)

Calibration Problem

- N CPU settings
- M memory settings
- Really need to execute N x M virtual machine settings and calibrations?

Observation

CPU, IO, and memory optimizer parameters are independent of each other

cpu_tuple_cost

cpu_index_tuple_cost

cpu_operator_cost

→ Use regression analysis to find calibration function

> Virtualization Design Advisor (4)

Configuration Enumerator

- Greedy algorithm starting with 1/N share assignment
- Assume "concave and smooth" objective function

Two workloads competing for CPU

Overhead

- Calibration: 9 minutes (PostgreSQL), 6 minutes (DB2)
- Enumeration: 1 minute (about 8 iterations)

Workload Definition based on TPC-H

- Q₁₈ is one of the most CPU intensive queries
- Q_{21} is one of the least CPU intensive queries (execution time much longer than Q_{18})
- Workload units
 - CPU intensive workload unit = C: 25 x Q₁₈
 - CPU non-intensive workload unit = I: 1 x Q₂₁

Experiment: Sensitivity to workload resource needs

- $W_1 = 5 \cdot C + 5 \cdot I$
- $W_2 = k \cdot C + (10-k) \cdot I$ (increase of $k \rightarrow$ more CPU intensive)

Workload Settings

- $W_3 = 1 \cdot C$
- $W_4 = k \cdot C$

Workload Settings

- $W_5 = 1 \cdot C$
- $W_6 = k \cdot I$

