G12: Contrôle continu nº 1.

Exercice 1 (4 points). Soit X une variable aléatoire de loi uniforme sur [0,1]; X a pour densité $x \mapsto \mathbf{1}_{[0,1]}(x)$. Déterminer la loi de $Y = -\ln(1-X)$.

Exercice 2 (4 points). Soit X une variable aléatoire à valeurs dans \mathbb{R}_+ . On pose

$$\forall \lambda \geq 0, \qquad \psi(\lambda) = \mathbb{E}\left[e^{-\lambda X}\right].$$

- 1. Calculer ψ lorsque X suit la loi de Bernoulli de paramètre $p \in (0,1)$: $\mathbb{P}(X=1) = p$, $\mathbb{P}(X=0) = 1 p$.
- 2. Montrer, dans le cas général, que ψ est continue sur \mathbf{R}_+ et calculer $\lim_{\lambda\to+\infty}\psi(\lambda)$.

Exercice 3 (7 points). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées suivant la loi $\mathcal{N}(0,1)$; on rappelle que X_1 a pour fonction caractéristique $t \longmapsto e^{-\frac{t^2}{2}}$.

1. Soit $n \in \mathbb{N}^*$. Calculer la fonction caractéristique de la variable aléatoire

$$Y_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n X_k.$$

En déduire la loi de Y_n .

2. Soit N une variable aléatoire à valeurs dans \mathbb{N}^* indépendante des $(X_n)_{n\geq 1}$. On définit Y en posant

$$\forall \omega \in \Omega, \qquad Y(\omega) = \frac{1}{\sqrt{N(\omega)}} \sum_{k=1}^{N(\omega)} X_k(\omega).$$

Déterminer la fonction caractéristique de Y ainsi que sa loi

Exercice 4 (5 points). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles; pour tout $n\geq 1,\ X_n$ a pour densité $p_n(x)=\frac{n^2}{2}e^{-n^2|x|}$.

- 1. Calculer, pour tout $n \in \mathbf{N}^*$, $\mathbb{P}\left(\left\{|X_n| > n^{-\frac{3}{2}}\right\}\right)$.
- 2. Déterminer $\mathbb{P}\left(\limsup\left\{|X_n|>n^{-\frac{3}{2}}\right\}\right)$.
- 3. En déduire que, presque sûrement, la série $\sum_{n>1} X_n$ converge absolument.