

California Polytechnic University San Luis Obispo

Masters Thesis

Artificial Neural Network-Based Robotics

Justin Ng

 $\begin{array}{c} \text{supervised by} \\ \text{Dr. Andrew Danowitz} \end{array}$

September 25, 2017

Contents

A	cknowledgements	iv
\mathbf{A}	bstract	\mathbf{v}
1	Introduction 1.1 Kalman Filters 1.1.1 Algorithm	vi vi vi
2	Project Plan (draft) 2.1 Problem	2 2 2 2 3
3	ETEX Usage 3.1 Figures and Ref	4 4 5 5 5 6 6 6
4	Control Problem	7
5	Training Algorithm	8
6	Implementation	9
7	Results	10
8	Conclusion	11
R	eferences	12
\mathbf{A}	ppendices	13

List of Figures

3.1 Pad thai			4
--------------	--	--	---

List of Tables

Acknowledgements

I would like to thank everyone for everything.

Abstract

Note: All project files can be found at https://www.github.com/okayjustin/roborodentia2017

Artificial neural networks (ANNs) are highly-capable alternatives to traditional problem solving schemes due to their ability to solve non-linear systems with a non-algorithmic approach. The applications of ANNs range from process control to pattern recognition and, with increasing importance, robotics. A robot is created with multiple sensors and actuators for environment perception, movement and object manipulation while an on-board microcontroller processes the ANNs and provides the control interface. After training, the neural networks use the various sensor inputs to make the robot accomplish a series of tasks. The system demonstrates how effective and applicable ANNs are to robotic control.

Introduction

1.1 Kalman Filters

The system relies on several different sensors to determine where it is within the environment, a problem commonly referred to as robot localization. The *Kalman Filter* (KF), an optimal state estimator, performs noise filtering and sensor fusion, the process of combining measurements from multiple sensors.

1.1.1 Algorithm

The Kalman Filter algorithm and equations are reproduced here from Roger Labbe's excellent interactive, online book [4].

Initialization

Before the first run of the filter, initialize the estimated state (\mathbf{x} , also called the prior) and estimated state covariance matrix (\mathbf{P}).

Predict

During the predict phase, the process model is used to predict the future state $(\bar{\mathbf{x}}, \text{ prior})$ after one time step by summing the current estimated state (\mathbf{x}) multiplied by the *state transition function* (\mathbf{F}) with the xxxxxxx (\mathbf{B}) multiplied by the xxxxxx (\mathbf{u}) . The covariance of prior $(\bar{\mathbf{P}})$ is larger than the estimated state covariance (\mathbf{P}) due to uncertainty in the process model (\mathbf{Q}) .

$$ar{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{B}\mathbf{u}$$

 $ar{\mathbf{P}} = \mathbf{F}\mathbf{P}\mathbf{F}^T + \mathbf{Q}$

Update

Make measurements (\mathbf{z} , measurement mean) and determine their accuracy (\mathbf{R} , measurement noise covariance). Calculate the residual (\mathbf{y}) between the measurement and the product of

the measurement function (\mathbf{H}) and the predicted state from the previous phase. Calculate the scaling factor (\mathbf{K}, \mathbf{K}) alman gain) based on whether the measurement or predicted state is more accurate. Set the next estimated state, \mathbf{x} , between the measurement and predicted state based on \mathbf{K} . Finally, update the estimated state covariance, \mathbf{P} , based on the certainty in the measurement.

$$\begin{aligned} \mathbf{y} &= \mathbf{z} - \mathbf{H}\bar{\mathbf{x}} \\ \mathbf{K} &= \bar{\mathbf{P}}\mathbf{H}^T(\mathbf{H}\bar{\mathbf{P}}\mathbf{H}^T + \mathbf{R})^{-1} \\ \mathbf{x} &= \bar{\mathbf{x}} + \mathbf{K}\mathbf{y} \\ \mathbf{P} &= (\mathbf{I} - \mathbf{K}\mathbf{H})\bar{\mathbf{P}} \end{aligned}$$

Project Plan (draft)

2.1 Problem

Create a competition robot for Roborodentia and control it using neural networks.

2.2 Solution

Design and manufacture a robot. Write firmware with a neural network implementation and train it to perform competition tasks.

2.3 Objectives

- Select robot design criteria.
- Create several solutions and prototype a few proof-of-concepts.
- Design electrical systems:
 - Power systems: Batteries, regulation, distribution.
 - Microcontroller: sufficient processing power and IO.
 - Sensors: dependent on control strategy. What information needed?
 - Actuators
- Model robot in SolidWorks with attention to manufacturing.
- Order parts and manufacture robot.
- Bring up electrical system and perform functional checks.
- Design neural network and training plan.
- Develop firmware: neural network, FSM design, communications, debug code.

- Train network and tune.
- \bullet Revise mechanical/electrical/firmware and repeat.

2.4 Tasks and Timeline

LATEX Usage

3.1 Figures and Ref

This is where I introduce stuff. See Figure 3.1.

Figure 3.1: Pad thai

3.2 Math

$$f(x) = x^2 (3.1)$$

This is an equation that we don't want to number:

$$f(x) = x^2$$

Here's an in-line equation: $f(x) = x^2$.

Here's an aligned equation: Aligns at the &.

$$1 + 2 = 3$$

$$1 = 3 - 2$$

$$f(x) = x^{2}$$

$$g(x) = \frac{1}{x}$$

$$F(x) = \int_{b}^{a} \frac{1}{3}x^{3}$$

$$\frac{1}{\sqrt{x}}$$

$$\begin{bmatrix} a & \lambda \\ c & d \end{bmatrix}$$

3.3 Citations

Random citation [1] embeddeed in text.

Random citation [2] embeddeed in text.

Random citation [1] embeddeed in text. [3] [4]

3.4 Accents

Première \dot{x}

3.5 Dashes

The space is 3-dimensional.

Read pages 3–4.

I saw them—there were 3 men alive

The temperature dropped to -3 degrees.

3.6 Lists

- First Level
 - Second Level
 - * Third Level
 - · Fourth Level
- 1. First level item
- 2. First level item
 - (a) Second level item
 - (b) Second level item
 - i. Third level item
 - ii. Third level item
 - A. Fourth level item
 - B. Fourth level item

3.7 Groups

will produce a paragraph that is four (this is an easy mistake to make).

3.8 Code highlighting

```
class MyClass(Yourclass):
  def __init__(self, my, yours):
  bla = '5 1 2 3 4'
  print bla
```

Chapter 4
Control Problem

Chapter 5
Training Algorithm

Chapter 6 Implementation

Results

Conclusion

References

- [1] D. H. Nguyen and B. Widrow, "Neural networks for self-learning control systems," *IEEE Control Systems Magazine*, 1990. [Online]. Available: https://web.stanford.edu/class/ee373b/NNselflearningcontrolsystems.pdf.
- [2] J. Doe, The Book without Title. Dummy Publisher, 2100.
- [3] R. Negenborn, "Robot localization and kalman filters," PhD thesis, 2003. [Online]. Available: http://www.negenborn.net/kal_loc/thesis.pdf.
- [4] R. R. Labbe, Kalman and bayesian filters in python, 2017. [Online]. Available: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python.

Appendices