Information Fusion in Localization

Zijun Gong

IoT Thrust, Information Hub Hong Kong University of Science and Technology (Guangzhou)

May 2023

Motivation

Introduction

Suppose we have two independent estimates of x as

$$x_1 = x + n_1$$
 and $x_2 = x + n_2$

- $n_1 \sim \mathcal{N}(0, \sigma_1^2)$ and $n_2 \sim \mathcal{N}(0, \sigma_2^2)$ are independent measurement noise
- $\sigma_1^2 > \sigma_2^2$, x_1 is a better estimate of x
- Can we get a better estimate of x by combining x_1 or x_2 ?
- Suppose $\sigma_1 = 0.1 \,\mathrm{m}, \; \sigma_2 = 10 \,\mathrm{m}, \; \text{how much better is the accuracy by combining } x_1 \; \text{and}$ x_2 ? Does information fusion even make sense?

Fig. 1: Geometrical distribution of target and anchors.

How it works?

- (a) the target is constantly broadcasting a beacon signal
- (b) an AUV is receiving the beacon signal signal in real-time
- (c) the target can be localized with enough measurements

Why mobile anchor?

(a) Better coverage (b) Improved Accuracy (c) Easy deployment

Doppler-Based Localization

Protocol

Target located at x, broadcasts at f₀ Hz

Doppler vs ToA vs TDoA

- The AUV is located at x_a
- AUV moves at $\mathbf{v} = (v_x, v_y)$
- The radial velocity is

$$v_r = \frac{(\mathbf{x}_a - \mathbf{x})^T \mathbf{v}}{\|\mathbf{x}_a - \mathbf{x}\|}.$$
 (1)

The tangential velocity

$$\mathbf{v}_t = \mathbf{v} - v_r \mathbf{a} = (\mathbf{I} - \mathbf{a} \mathbf{a}^T) \mathbf{v}, \quad (2)$$

The Doppler shift is measured as

$$f_D = -f_0 \frac{v_r}{c}. (3)$$

Doppler-Based Localization-CRLB

Doppler vs ToA vs TDoA

The gradient of f_D with respect to \mathbf{x}

$$\nabla_{\mathbf{x}} f_D = \frac{f_0}{c} \frac{\mathbf{v}_t}{d} \tag{4}$$

- The AUV takes M measurements
- Consider i.i.d. Doppler estimation error
- The CRI B:

$$\mathbf{R}_{\mathbf{x}}^{Dop} = \sigma_f^2 \bar{d}^2 \lambda_0^2 \left(\sum_{m} \mathbf{v}_{t,m} \mathbf{v}_{t,m}^T \right)^{-1}$$
(5)

ullet ${f v}_{t,m}$ is the tangential velocity related to the m-th measurement

- Positioning error is proportional to distance
- In the far-field, the GDOP (Geometrical Dilution of Precision) will be poor

PDF of Propagation Delay

$$f(\hat{\tau}; \mathbf{x}) \propto \exp \left\{ -\frac{1}{2\sigma_t^2} \sum_m (\hat{\tau}_m - \tau_m)^2 \right\}$$

 $\hat{\tau}_m$: measured propagation delay of the m-th period:

 τ_m : true propagation delay

 σ_t^2 : timing error

The CRLB is given as:

$$\mathbf{R}_{\mathbf{x}}^{ToA} = c^2 \sigma_t^2 \left(\sum \mathbf{a}_m \mathbf{a}_m^T \right)^{-1} \tag{6}$$

- Positioning error is not dependent on distance
- Poor GDOP in far-field because \mathbf{a}_m 's are almost parallel

TDoA-Based Localization

- Why TDoA: Tx-Rx synchronization might impractical
- There will be extra unknown: Δt
- CRLB is given as

$$\mathbf{R}_{\mathbf{x}} = \frac{1}{c^2 \sigma_t^2} \left(\sum_{m} (\mathbf{a}_m - \bar{\mathbf{a}}) (\mathbf{a}_m - \bar{\mathbf{a}})^T \right)^{-1}$$

• $\mathbf{a}_m - \mathbf{a} \approx (\mathbf{x}_m - \bar{\mathbf{x}})/\bar{d}$

$$\bullet \ \mathbf{R}_{\mathbf{x}}^{TDoA} \succeq \mathbf{R}_{\mathbf{x}}^{ToA}$$

- Poor GDOP in far-field
- Positioning error is dependent on distance $\{a_m - a\}$'s are almost parallel

How do we get Doppler shift & ToA/TDoA simultaneously?

The target broadcasts a LFM signal of the following form

$$s(t) = Ae^{j(2\pi f_0 t + k\pi t^2 + \phi)}, \quad (t \in [0, T]).$$

The received signal is another LFM signal:

$$r(t) = s(\rho(t-\tau)) + w(t), \tag{7}$$

- ρ : timing scaling factor: $\rho = 1 v_r/c$
- τ : propagation delay
- w(t): additive white noise
- Received signal is another LFM signal:

$$r(t) = \tilde{A} \exp\left[j\left(2\pi\tilde{f}_0 t + \tilde{k}t^2 + \tilde{\phi}\right)\right] + w(t),\tag{8}$$

Joint Doppler Shift & ToA Estimation (FrFT)

The parameters of the received LFM signal are functions of τ and ρ :

$$\tilde{f}_0 = f_0 \rho - k \rho^2 \tau, \ \tilde{k} = k \rho^2, \ \tilde{\phi} = k \rho^2 \tau^2 - 2f_0 \rho \tau + \phi,$$

Fractional Fourier Transform can be used for joint estimation:

$\mathsf{Doppler} + \mathsf{ToA} / \mathsf{TDoA} \text{-} \mathsf{CRLB}$

Doppler+ToA

- Define $\phi = [\tilde{f}_0, \tilde{k}_0]^T$
- CRLB of ϕ is

$$\mathbf{R}_{\phi} \propto \frac{\sigma^2}{\tilde{A}^2 T^2} \left[\begin{array}{cc} 16 & -30/T \\ -30/T & 60/T^2 \end{array} \right].$$

CRLB is given as

$$\mathbf{R}_{\mathbf{x}} = \left(\sum_{m} \mathbf{P}_{m}^{T} \mathbf{F}_{\boldsymbol{\eta}_{m}} \mathbf{P}_{m}\right)^{-1}.$$

Doppler+TDoA

The CRLB in this case will be

$$\tilde{\mathbf{R}}_{\mathbf{x}} = \left(\mathbf{R}_{\mathbf{x}}^{-1} - \mathbf{f}\mathbf{f}^T/p\right)^{-1}, \quad (9)$$

- $\bullet \mathbf{f} = \sum_{m} \mathbf{P}_{m}^{T} \mathbf{F}_{\boldsymbol{\eta}_{m}} \mathbf{p}$
- By using TDoA instead of ToA, positioning error will increase:

$$\tilde{\mathbf{R}}_{\mathbf{x}} \succeq \mathbf{R}_{\mathbf{x}}$$
 (10)

Simulation Parameters

f_0	10 kHz
B	400 Hz
k	200 Hz/s
T	2 s
c	1500 m/s

Fig. 2: Geometrical distribution of target and anchors.

Fig. 3: Comparison of ToA-, TDoA, and Doppler-based localization.

Normalized Positioning Error

Fig. 4: TDoA- and Doppler-based localization error with distance.

Geometrical Explanation

Fig. 5: Geometrical explanation of the huge performance improvement.

Mathematical Explanation

The FIM of Doppler shift-based positioning system

$$\mathbf{F}_d = [\mathbf{f}_0, \mathbf{f}_1] \left[\begin{array}{cc} \lambda_{d,0} & 0 \\ 0 & \lambda_{d,1} \end{array} \right] \left[\begin{array}{c} \mathbf{f}_0^T \\ \mathbf{f}_1^T \end{array} \right].$$

- $\lambda_{d,0} \gg \lambda_{d,1}$
- The condition number: $c_d = \lambda_{d,0}/\lambda_{d,1}$
- Variance of positioning error:

$$\sigma_d^2 = 1/\lambda_{d,0} + 1/\lambda_{d,1} \approx \frac{c_d}{\lambda_{d,0} + \lambda_{d,1}}.$$
 (11)

0

$$\sigma_d^2 = \frac{\lambda_{d,0} + \lambda_{d,1}}{\lambda_{d,0} \lambda_{d,1}} \approx \frac{1}{\lambda_{d,1}}.$$

So the positioning accuracy is highly dependent on the smallest eigenvalue.

The Wooden Barrel Theory: the capacity of a barrel is determined not by the longest wooden bars, but by the shortest. In our case, the smallest eigenvalue of the FIM is the bottleneck of system performance.

Mathematical Explanation

The FIM of ToA-based system is

$$\mathbf{F}_t \approx \left[\mathbf{f}_0, \mathbf{f}_1\right] \left[\begin{array}{cc} \lambda_{t,0} & 0 \\ 0 & \lambda_{t,1} \end{array} \right] \left[\begin{array}{c} \mathbf{f}_0^T \\ \mathbf{f}_1^T \end{array} \right].$$

- $\lambda_{t,0} \ll \lambda_{t,1}$. That is to say, most of the energy of \mathbf{F}_t lies on the sub-space of \mathbf{f}_1 , while most energy of \mathbf{F}_d lies on \mathbf{f}_0 .
- The condition number is approximately

$$c_t = \lambda_{t,1}/\lambda_{t,0}$$
.

The variance of positioning error will be

$$\sigma_t^2 = 1/\lambda_{t,0} + 1/\lambda_{t,1} = \frac{\lambda_{t,0} + \lambda_{t,1}}{\lambda_{t,0}\lambda_{t,1}} = \frac{c_t + 1}{\lambda_{t,1}} \approx \frac{c_t}{\lambda_{t,0}}.$$
 (12)

•

$$\sigma_t^2 = \frac{\lambda_{t,0} + \lambda_{t,1}}{\lambda_{t,0} \lambda_{t,1}} \approx \frac{1}{\lambda_{t,0}}.$$

Again the positioning accuracy is highly dependent on the smallest eigenvalue.

• The FIM of the ToA+Doppler shift-based positioning system will be

$$\mathbf{F}_{t+d} = \mathbf{F}_t + \mathbf{F}_{\mathbf{d}} = [\mathbf{f}_0, \mathbf{f}_1] \begin{bmatrix} \lambda_{t,0} + \lambda_{d,0} & 0 \\ 0 & \lambda_{t,1} + \lambda_{d,0} \end{bmatrix} \begin{bmatrix} \mathbf{f}_0^T \\ \mathbf{f}_1^T \end{bmatrix}.$$

- none of these two eigenvalues are small any more
- We have the upper and lower bounds of the positioning error as

$$\min\left\{\frac{1}{\lambda_{t,0}}, \frac{1}{\lambda_{d,1}}\right\} < \frac{2}{\lambda_{t,0} + \lambda_{d,1}} \le \sigma_{t+d}^2 \le \frac{1}{\lambda_{t,0}} + \frac{1}{\lambda_{d,1}}$$

- $lackbox{lack}$ In this inequality, we can clearly see that the positioning error is no longer related to the condition numbers c_d and c_t .
- This is the power of diversity of measurements! (diversity gain in wireless communications).

Take Home Messages

- For Doppler Shift/TDoA-based localization, the positioning error in the far-field is poor for two reasons:
 - Huge condition number of the FIM
 - Large distance
- For ToA-based localization, the poor positioning accuracy mainly comes from the huge condition number
- By combing Doppler shift with ToA/TDoA measurements, positioning accuracy can be significantly improved