- Intro
- Signal processing basics
- FRF estimation
- Sensor/shaker technology

Course notes: chapter 4: time and frequency domains, signal processing basics

MS2SC PROVIR http://savoir.ensam.eu/moodle/course/view.php?id=1874 http://savoir.ensam.eu/moodle/course/view.php?id=490

Why do we need frequency responses

- Scenario 1: run-up
- · Scenario 2: modal testing

Frequencies in a run-up

- Periodic excitation : signal with harmonics $u(t) = \sum_n u_n(n\omega t)$
- Constant system $H(\omega)$ or time varying & NL
- Output contains
 both harmonic & constant contributions

Modal analysis: transfers

Bode plot: visualization of transfer function

Contents

- Signal processing basics
- FRF estimation
- · Sensor/shaker technology

Fourier transform: discrete & continuous

• Continuous $Y(\omega) = \int_{-\infty}^{+\infty} y(t)e^{-j\omega t}dt$ and $y(t) = \int_{-\infty}^{+\infty} Y(\omega)e^{j\omega t}$

 Periodic in time: discrete in frequency (series, example harmonic balance methods)

$$Y(k\Delta f) = \frac{1}{T} \int_0^T y(t)e^{-j2\pi\Delta ft}dt \text{ with } y(t) = \sum_{k=-\infty}^{+\infty} Y(k\Delta f)e^{j2\pi k\Delta ft}$$

Discrete in time: periodic in frequency (sample application periodic FEM)

$$Y(f) = \sum_{n = -\infty}^{+\infty} y(n\Delta t)e^{-j\omega n\Delta t} \text{ and } y(n\Delta t) = \frac{1}{\omega_s} \int_{-\omega_s/2}^{\omega_s/2} Y(\omega)e^{j\omega n\Delta t} d\omega$$

 Finite length discrete time: finite frequency (measurements)

$$Y(k\Delta f) = \frac{1}{N} \sum_{n=0}^{N-1} y(n\Delta t) e^{j2\pi nk/N}$$
 and $y(n\Delta t) = \sum_{k=0}^{N-1} Y(k\Delta f) e^{j2\pi nk/N}$

Time and frequency

• Discrete transform only depends values $(e^{\frac{j\pi nk}{N}}$ regular on unit circle)
Time and frequencies are found by

$$k = [1:N]$$

$$t_k = [0:N-1]\Delta t$$

$$= ([0:N-1]/N)T$$

$$f_k = [0:N-1]/(N\Delta t)$$

$$= [0:N-1]/(T)$$

Impose	Consequence	Influence de N
Δt	$F_{Max} = \frac{1}{2\Delta t}$	$T = N\Delta t$ $\Delta f = \frac{1}{N\Delta t}$
F_{Max}	$\Delta t = \frac{1}{2F_{Max}}$	$T = N\Delta t$ $\Delta f = \frac{1}{N\Delta t}$
Δf	$T = \frac{1}{\Delta f}$	$\Delta t = \frac{T}{N}$ $F_{Max} = \frac{N}{2} \Delta f$
T	$\Delta f = \frac{1}{T}$	$\Delta t = \frac{T}{N}$ $F_{Max} = \frac{N}{2} \Delta f$

DFT Properties

Linearity

Base time change

Time delay

Time derivative

Convolution

Energy (Parceval)

$$Y_1 + Y_2 = \mathcal{F}(y_1 + y_2)$$
 and $\alpha Y_1 = \mathcal{F}(\alpha y_1)$
 $\mathcal{F}(y(at)) = Y(f/a)/|a|$
 $\mathcal{F}(y(t - t_0)) = Y(f)e^{-j2\pi f t_0}$
 $\mathcal{F}(\dot{y}) = i\omega \mathcal{F}(y)$
 $A(\omega)B(\omega) = \mathcal{F}\left[\int_{-\infty}^{+\infty} a(\tau)b(t - \tau)\right]$
 $E = \int_{-\infty}^{+\infty} |g(t)|^2 dt = \int_{-\infty}^{+\infty} |G(f)|^2 df$

Continuous vs. DFT problem 1: aliasing

Cannot distinguish first and second half of spectrum

Shannon: The signal should not have content above $F_{max}=F_{sample}/2$

Anti-aliasing filters

Objective : aliased signal reduced by resolution at $F_{max} = F_{sample} / (2 + \alpha)$ Example

- resolution 12 bits=72 dB
- Filter –48 dB/octave
- Reduction $F_{\text{max}} = F_{\text{sample}}/4$

Modern analyzers mix analog and digital anti-aliasing

Simple signals

Continuous vs. DFT problem 2 : leakage

DFT = continuous transform of windowed signal

$$y_{Test}(t) = y(t)w(t) \iff y_{Test}(\omega) = \int_{-\infty}^{+\infty} w(k)y(\omega - k)$$

This is equivalent to a weighted averaging by w(k) in the frequency domain

Leakage (df offset)

$$y(\omega) = \int_{-\infty}^{+\infty} w(k) f(\omega - k) dk$$

 Natural matching freq

Natural ∆f/2

Hanning ∆f/4

Leakage

Non coincident Sine freq.

DFT values

Coincident sine

DFT values

Leakage =
energy at other f
error on frequency
error on amplitude

Time windows

$$w(t) = \left(\sum_{j=0,2} a_0 \cos\left(\frac{2\pi t}{N\Delta t}j\right)\right) \left(\sum_{k=1,N} \delta(t - k\Delta t)\right)$$

Туре	a0	a1	a2	а3	
Rectangular	1	0	0	0	Periodic signals
Hanning	0.5	-0.5	0	0	Continuous random signals
Hamming	0.54	-0.46	0	0	
Flat Top	0.281	-0.521	0.198	0	Low amplitude error (calibration)
Kaiser- Bessel	1	-1.298	0.244	0.003	Separate close components
Exponential					Transients of length > T

Time window properties

[1] K. G. McConnell, *Vibration Testing. Theory and Practice*. Wiley Interscience, New-York, 1995. [2] W. Heylen et P. Sas, *Modal analysis theory and testing*. KUL, 2006

Contents

- Signal processing basics
- FRF estimation

Sensor/shaker technology

Coherence

$$\left[\hat{H}_{1}(f)\right] = \frac{\sum_{n=1}^{N} y_{n}(f)^{H} u_{n}(f)}{\sum_{n=1}^{N} u_{n}(f)^{H} u_{n}(f)} = \frac{\sum_{n=1}^{N} (G_{yu})_{n}}{\sum_{n=1}^{N} (G_{uu})_{n}} = \frac{\hat{G}_{yu}}{\hat{G}_{uu}}$$

$$\gamma^2 = |\hat{G}_{uy}|^2 / \left(\hat{G}_{uu}\hat{G}_{yy}\right)$$

http://macl.caeds.eng.uml.edu/umlspace/apr03.pdf https://www.uml.edu/Research/SDASL/Education/Modal-Space.aspx

Data acquisition and processing

Contents

- Sensor/shaker technology
- Analyzer
- Signal processing basics
- FRF estimation

Hammer

- + Easy to use
- Master single impact
- Low energy level
- Trigger problems
- Triboelectric problems in cables
- Max 10 kHz

Related: cord cutting, pyrotechnic

Shakers

- + High energy level
- + Sustained excitation
- + Repeatable input signal
- Need attachement (modifies response)
- Enforcing acceleration is difficult

Related: piezo inertial stack & patch

Shakers setup

F measured ⇒ Shaker boundary conditions indifferent

Internal force application ⇒ improper test

Shaker table

$$\begin{bmatrix} \mathbf{K}_{ii}(s) & \mathbf{K}_{ic}(s) \end{bmatrix} \begin{bmatrix} \langle q_i \rangle \\ \mathbf{K}_{ci}(s) & \mathbf{K}_{cc}(s) \end{bmatrix} \begin{bmatrix} \langle q_i \rangle \\ q_c \end{bmatrix} = \begin{bmatrix} f_i \\ 0 \end{bmatrix}$$

$$y = c_{i}q_{i} + c_{c}K_{cc}^{-1}[-K_{ci}q_{i}] = c_{i}q_{i} + c_{c}\left[\sum_{j} \frac{\phi_{cj}\phi_{cj}^{T}}{s^{2} + 2s\zeta\omega_{cj} + \omega_{cj}^{2}}\right][-s^{2}M_{ci}q_{i}]$$

Accelerometers

Piezoelectric: measure deformation which is linked to acceleration of seismic mass

Capacitive: measure change in gap

Figure 1: The Accelerometer as a Spring-Mass System

Load cells

- Measure
 deformation
 to estimate
 force
- Rod to minimize moment transmision

Optical techniques

- Laser Doppler Vibrometers
 high amplitude resolution, point scanning
- Images (high number of simultaneous points, smaller amplitude resolution)
 - ESPI (Electronic Speckle Pattern Interferometer)
 - Image correlation white light

Boundary conditions

Suspended, fixed ...

Signal conditioning

Analyzers measure/generate voltages

Sensors generate charges (charge amplifier external or ICP)

Shakers need power

Contents

- Sensor/shaker technology
- Analyzer
- Signal processing basics
- FRF estimation

Acquisition and processing

Sampling technology

DAC : Precision = RangeV / 2ⁿBits

Example : 12 bits P = 20V/4096, 24 bits P = 20/16777216

FFT Zoom

x=real(ifft(Y)); tx=t(1:Nsub:end); x=x(1:Nsub:end); % resample fx=[1/diff(tx(1:2))*[0:length(tx)-1]'/length(tx)]+ftarg;

Y=fft(x)*Nsub;

a) Ordinary (baseband) spectrum

Spectral width = $2(f_0 - f_0) =$

 $f_{SM/2} = f_u$

b) Zoomed spectrum

 $-I_{SM/2} = -I_{u}$

Hardware / software

