Math 22 Workshop I 8 July 2010

- 1. Let A be a $m \times n$ matrix, let **b** and **b**' be vectors in \mathbf{R}^m and let c be a scalar. Prove the following statements.
 - (a) If $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{b}'$ are both consistent, then $A\mathbf{x} = \mathbf{b} + \mathbf{b}'$ is consistent.
 - (b) If $A\mathbf{x} = \mathbf{b}$ is consistent, then so is $A\mathbf{x} = c\mathbf{b}$.
- 2. Let A be a $m \times n$ matrix, let **u** and **v** be vectors in \mathbb{R}^n and let c be a scalar.
 - (a) If \mathbf{u} and \mathbf{v} are solutions to the homogeneous system $A\mathbf{x} = \mathbf{0}$, then so is $\mathbf{u} + \mathbf{v}$.
 - (b) If **u** is a solution to A**x** = **0**, then c**u** is too.
- 3. A variation on problem 2 (with the same hypotheses).
 - (a) Is it true that **u** and **v** are solutions to $A\mathbf{x} = \mathbf{0}$ if and only if $\mathbf{u} + \mathbf{v}$ is?
 - (b) Suppose that $c \neq 0$. Then is it true that **u** is a solution to $A\mathbf{x} = \mathbf{0}$ if and only if $c\mathbf{u}$ is?
- 4. Let A be a $m \times n$ matrix. Show that if $\mathbf{u}_1, \dots, \mathbf{u}_p$ are all solutions to $A\mathbf{x} = \mathbf{0}$ and if $\mathbf{v} \in \mathrm{Span}(\{\mathbf{u}_1, \dots, \mathbf{u}_p\})$, then \mathbf{v} is a solution to $A\mathbf{x} = \mathbf{0}$.
- 5. Prove or disprove the following statements.
 - (a) If the vectors \mathbf{u} and \mathbf{v} are solutions to $A\mathbf{x} = \mathbf{b}$, then so is $\mathbf{u} + \mathbf{v}$.
 - (b) If A and B are 2×2 matrices and if $\mathbf{u} \in \mathbf{R}^2$, then $A(B\mathbf{u}) = B(A\mathbf{u})$.