USN					

Dayananda Sagar College of Engineering
Shavige Malleshwara Hills, Kumaraswamy Layout, Banashankari, Bangalore-560078, Karnataka
Tel: +91 80 26662226 26661104 Extn: 2731 Fax: +90 80 2666 0789
Web - http://www.dayanandasagar.edu Email: hod-ece@dayanandasagar.edu
(An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified)
(Accredited by National Assessment & Accreditation Council (NAAC) with 'A' grade)

Department of Electronics & Communication Engg. Continuous Internal Evaluation - I

Course Name: Digital System Design Using Verilog	Date :	06.10.2020
Course Code: 18EC5DCDSV	Day:	Tuesday
Semester : VI	Timings:	1 to 2.30 P.M
Max Marks: 50 M	Duration:	1½ Hrs.

No		Question Description	M ks	CO & Levels
•		Read the following statements and choose which one is true.	110	20,019
Q1	(a)	 i) Net types are continuously updated whenever one of the signals on the right hand side of the assignment changes ii) Describing your identifier with type reg will give you a hardware register when you synthesize. iii) Register types and net types cannot be used together in assignments iv) Output and inout ports should be connected with reg data type only. 	1	
	(b)	What does the following code segment implement? assign d = ~(c & b); assign c = ~(a & d); i) A 2-bit shift-register ii) Two NOR functions connected in cascade iii) A one-bit latch iv) A 2-bit comparator	1	
	(c)	Which of these statements is not true? integer a; reg [2:0] b, c; wire [2:0]out; b = 3'b010; c = 3'b111 assign out = (a = = 3)?b:c; i) When a is equal to 3, out gets the value of 010. ii) When a is equal to x, out gets the value of xxx. iii) When a is less than 3, out gets the value of 111. iv) When a is greater than 3, out gets the value of 111.	1	
	(d)	Read the statements and select which are correct. 1. Continuous assignments are made to net types only. 2. Continuous assignments are made using the keyword assign. 3. The right hand side of the continuous assignment is reevaluated each time an operand changes and reassigned to the left hand side. 4. Continuous assignments can assign to register types. i) 1,2 and 3. ii) 1 and 2. iii) 2 and 3. iv) 1,2,3 and 4.	1	
	(e)	Consider the following piece of Verilog code. If the procedure is called when the value of X is '0',what do you think happens to the value of B? always $@(X \text{ or } A)$ begin If (X) $B <= A$; end i) B is assigned the value of A. ii) B is assigned '0'	1	

USN	
-----	--

I		iii) D is assigned the value of V in D metrics its and the		
		iii) B is assigned the value of X iv) B retains its existing value		
		Where are continuous assignments made?		
	(f)	i) Anywhere in the code ii) Within a procedure iii) Outside a procedure iv)	1	
	` /	Within a procedure but outside of the begin-end block		
	()	What types are assigned within procedures?	4	
	(g)	i) Net types and register types. ii) Register types only iii) Net types only iv)	1	
		None of the above		
		Read the statements and select which one is true.		
		i) Initial and always blocks are executed in turn in the order that they appear in		
	(h)	the code.	1	
	(11)	ii) Initial and always blocks are synthesizable	1	
		iii) Only one initial block can be included per module		
		iv) Initial blocks are not synthesizable but always blocks are		
		Consider the following code segment, the final value of variable "r" will		
		be		
		integer p, q, r;		
		initial		
		begin		
	(i)		1	
	(1)	p = 55; q = 10; r = 5;	1	
		p = q * r;		
		q = p - 25;		
		r = p + q;		
		end		
		i) 75 ii) 65 iii) 80 iv) 40		
		Consider the following code segment, the final value of variable "r" will		
		be		
		integer p, q, r;		
		initial		
		begin		
	(j)	p = 55; q = 10; r = 5;	1	
		$p \ll q * r;$		
		$\mathbf{q} < \mathbf{p} - 25;$		
		$\mathbf{r} \leftarrow \mathbf{p} + \mathbf{q}$		
		end		
		i) 75 ii) 80 iii) 65 iv) 40		
		Write a Verilog code for a full subtracter using logic equations and using this	_	:
Q2	a)	module as a component; Develop a Verilog code for 4 bit subtracter.	8	L4,CO2
		For the following Verilog code segment:		
		reg a;		
		reg [2:0] b, c;		
	b)	reg [10:0] x;	2	12002
	b)	a = 3'b100; b = 1'b1; c = 3'b101;	2	L2,CO2
		$x = \{\{2\{b\}\}, a, \{2\{c\}\}\};$		
		What will be the value of x?		
		An AB flip-flop responds to the falling clock edge as follows:		
		If $A = B = 0$, the flip-flop changes state.		
		If $A = 0$ and $B = 1$, the flip-flop output is set to 1.		
Q3	a)	If $A = 1$ and $B = 0$, the flip-flop output is set to 0.	6	L3,CO2
		If $A = B = 1$, no change of flip-flop state occurs.		
		The flip-flop is cleared asynchronously if $CLRn = 0$.		
		Write a complete Verilog module that implements an AB flip-flop.		
		Consider the following Verilog code segment, if the initial value of IR is		
	b)	12345678 (in hexadecimal).	4	L3,CO2
		12575070 (III IICAGCCIIIIII).		

USN	
-----	--

		wire [31:0] IR; wire [3:0] data; wire [15:0] d1; wire [31:16] d2; assign d1 = IR[31:16]; assign d2 = IR[15:0]; assign data = d1[7:4] + d2[19:16] + d2[31:28]; the value of "data" in decimal will be (Note that "data" is a 4-bit variable Note answer should be shown step by step)		
Q4	(a)	Given the following timing waveform for A, draw B and C. wire #3 B; assign #5 B = A; wire #5 C; assign #3 C = A; $\begin{bmatrix} 10ns & 3ns & 5ns \\ 2ns & 2ns \end{bmatrix}$	4	L3,CO1
	(b)	Draw the hardware circuit represented by the following Verilog process: always @(clk,clr) begin if(clr == 1'b1) $Q <= 1'b0;$ else if(clk == 1'b0 && CE == 1'b1) begin if(C == 1'b0) $Q <= A \& B;$ else $Q <= A B;$ end end	6	L3,CO5
5	a)	OR Explain in detail Compilation, simulation and synthesis of Verilog Code with a	7	L2,CO1
	b)	neat block diagram Write Verilog modules using conditional operator that is equivalent to the following code: $A = B1$ when $C = 1$ else $B2$ when $C = 2$ else $B3$ when $C = 3$ else $D3$;	3	L2,CO1
6	a)	Consider the fallowing Verilog code: module bitwise_op ();	3	L2,CO2

USN	
-----	--

	ı	50.07	1	
		reg [2:0] a, b, c, x, y, z;		
		initial		
		begin		
		a = 5; b = 3'b111; c = 3'd x;		
		x = a & b;		
		y = a & c;		
		z = b & 1;		
		\$display (" $x = \%b$, $y = \%b$, $z = \%b$ ",		
		x,y,z);		
		end		
		endmodule		
		Write the final result for x,y and z?		
		Given		
		reg signed [7:0] B = 8'hC7;		
	b)	i)B>>4	2	L2,CO1
		$ ii\rangle B>>>4$	_	22,001
		$ iii)B \ll 4$		
		iv)B <<< 4		
		Write a Verilog description of the following combinational circuit using		
		concurrent statements. Each gate has a 5-ns delay, excluding the inverter, which		
		has a 2-ns delay.		
		A		
	c)	$B = \bigcup_{E}$	5	L3,CO2
	ĺ			,
		A F T		
		OR		
		OR		
		Write the Verilog code for the following 8-bit bidirectional synchronous shift		
		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the		
		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows:		
		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: <i>CLR</i> Asynchronous Clear, which overrides all other inputs		
		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs $Q(7:0)$ 8-bit output		
		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs $Q(7:0)$ 8-bit output $D(7:0)$ 8-bit input		
		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs $Q(7:0)$ 8-bit output $D(7:0)$ 8-bit input SO,SI mode control inputs		
		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs $Q(7:0)$ 8-bit output $D(7:0)$ 8-bit input SO,SI mode control inputs LSI serial input for left shift		
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input S0,S1 mode control inputs LSI serial input for left shift RSI serial input for right shift	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs $Q(7:0)$ 8-bit output $D(7:0)$ 8-bit input SO,SI mode control inputs LSI serial input for left shift	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input S0,S1 mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows:	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input S0,S1 mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows:	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs $Q(7:0)$ 8-bit output $D(7:0)$ 8-bit input SO,SI mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: $\frac{S_0 \qquad S_1 \qquad \text{Action}}{0 \qquad \text{No action}}$	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: **CLR** Asynchronous Clear, which overrides all other inputs **Q(7:0)** 8-bit output **D(7:0)** 8-bit input **S0,S1** mode control inputs **LSI** serial input for left shift **RSI** serial input for right shift The mode control inputs work as follows: ** **So** Si** Action **O** No action **O** No action **O** Right shift	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input S0,S1 mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: 5	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: **CLR** Asynchronous Clear, which overrides all other inputs **Q(7:0)** 8-bit output **D(7:0)** 8-bit input **S0,S1** mode control inputs **LSI** serial input for left shift **RSI** serial input for right shift The mode control inputs work as follows: ** **So** Si** Action **O** No action **O** No action **O** Right shift	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input S0,S1 mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: 5	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs $Q(7:0)$ 8-bit output $D(7:0)$ 8-bit input SO,SI mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input S0,S1 mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: \[\begin{align*} \frac{\sigma_0}{\sigma_0} & \frac{\sigma_1}{\sigma_0} &	6	L3,CO2
7	a)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input S0,S1 mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: 5	6	L3,CO2
7		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs $Q(7:0)$ 8-bit output $D(7:0)$ 8-bit input SO,SI mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: $\frac{S_0}{0}$ $\frac{S_1}{0}$ Action $\frac{S_0}{0}$ No action $\frac{S_0}{0}$ No action $\frac{S_0}{0}$ Left shift $\frac{S_0}{0}$ Left shift $\frac{S_0}{0}$ Load parallel data (i.e., $Q = D$) Given wire $S_0 = 0$		
7	a) b)	Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input SO,SI mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: \[\frac{5_0}{0} \frac{5_1}{0} \frac{\text{Action}}{0} \] 0	6	L3,CO2
7		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input S0,S1 mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: \[\frac{\sigma_0}{\sigma_0} \frac{\sigma_1}{\sigma_0} \frac{\text{Action}}{\sigma_0} \] 0		
7		Write the Verilog code for the following 8-bit bidirectional synchronous shift register with parallel load capability. The notation used to represent the input/output pins is explained as follows: CLR Asynchronous Clear, which overrides all other inputs Q(7:0) 8-bit output D(7:0) 8-bit input SO,SI mode control inputs LSI serial input for left shift RSI serial input for right shift The mode control inputs work as follows: \[\frac{5_0}{0} \frac{5_1}{0} \frac{\text{Action}}{0} \] 0		

USN					

r r r r	Given: reg signed [3:0] C = 4'b1101; reg signed [2:0] D = 3'b111; reg [3:0] A = 4'b1101; reg [2:0] B = 3'b111; reg signed [7:0] S; Evaluate S = C + D; S = A + B;	2	L2,CO1
------------------	--	---	--------