

What is claimed is:

1. A multiplier for multiplying a first signal and a second signal, the first signal representing a first binary number $a = [a_{N-1} \dots a_1 a_0]$, the second signal representing a second binary number $b = [b_{N-1} \dots b_1 b_0]$, the multiplier comprising:
 - a first port for receiving the first signal;
 - a second port for receiving the second signal;
 - a triangle array operatively coupled to the first signal and the second signal; and
 - an adder for adding elements of the triangle array to produce a third signal representing a product of the first signal and the second signal.

2. The multiplier according to claim 1, wherein the triangle array includes lines $k = 0$ to $N-1$, such that:
 - the line $k = 0$ of the triangle array is equal to $[0 (a_0 * b_0)]$; and
 - the lines $k = 1$ to $N-1$ of the triangle array are equal to $[p_1 p_0 d_{k-1} \dots d_1 d_0]$,
 wherein the peak bits $[p_1 p_0]$ for each line k are determined by:
 - $[p_1 p_0] = [0 0]$ if $a_k * b_k \neq 1$,
 - $[p_1 p_0] = [1 0]$ if $[a_k * b_k = 1 \text{ AND } c_k = 1]$, and
 - $[p_1 p_0] = [0 1]$ if $[a_k * b_k = 1 \text{ AND } c_k = 0]$,
 wherein $[d_{k-1} \dots d_1 d_0]$ for each line k are determined by:
 - $[d_{k-1} \dots d_1 d_0] = [0_{k-1} \dots 0_0]$ if $[a_k b_k] = [0 0]$,
 - $[d_{k-1} \dots d_1 d_0] = [a_{k-1} \dots a_1 a_0]$ if $[a_k b_k] = [0 1]$,
 - $[d_{k-1} \dots d_1 d_0] = [b_{k-1} \dots b_1 b_0]$ if $[a_k b_k] = [1 0]$, and
 - $[d_{k-1} \dots d_1 d_0] = [s_{k-1} \dots s_1 s_0]$ if $[a_k b_k] = [1 1]$,
 and wherein $s = [s_{N-2} \dots s_1 s_0]$ is equal to the sum sequence $[(a_{N-2} + b_{N-2}) \dots (a_1 + b_1) (a_0 + b_0)]$ and $c = [c_{N-1} \dots c_1]$ is equal to the carry sequence associated with the sum sequence s .

3. The multiplier according to claim 2, further comprising a second adder for producing the sum sequence s and the carry sequence c .

4. The multiplier according to claim 2, further comprising at least one multiplexer for producing $[d_{k-1} \dots d_1 d_0]$ for each line k .

5. The multiplier according to claim 4, wherein the multiplexer is a four to one multiplexer having as inputs 0, the first signal, the second signal, and the sum sequence s, the multiplexer controlled by $[a_k \ b_k]$.
6. The multiplier according to claim 1, wherein the triangle array is represented by a number of digits that is substantially 30% less than the number of digits required in a diamond array.
7. The multiplier according to claim 1, wherein the triangle array is represented by a number of digits that is substantially 50% less than the number of digits required in a diamond array.
8. A processor for multiplying a first signal and a second signal, the first signal representing a first binary number $a = [a_{N-1} \dots a_1 \ a_0]$, the second signal representing a second binary number $b = [b_{N-1} \dots b_1 \ b_0]$, the processor comprising:
- input means for receiving the first signal and the second signal;
 - means for forming a triangle array as a function of the first signal and the second signal; and
 - an adder for adding elements of the triangle array to form a third signal representing a product of the first signal and the second signal.

9. The processor according to claim 8, wherein the triangle array includes lines $k = [0 \ 1 \ \dots \ N-1]$, such that:

the line $k = 0$ of the triangle array is equal to $[0 \ (a_0 * b_0)]$; and

the lines $k = 1$ to $N-1$ of the triangle array are equal to $[p_1 \ p0 \ d_{k-1} \ \dots \ d_1 \ d_0]$,

wherein the peak bits $[p_1 \ p0]$ for each line k are determined by:

$$[p_1 \ p0] = [0 \ 0] \text{ if } a_k * b_k \neq 1,$$

$$[p_1 \ p0] = [1 \ 0] \text{ if } [a_k * b_k = 1 \text{ AND } c_k = 1], \text{ and}$$

$$[p_1 \ p0] = [0 \ 1] \text{ if } [a_k * b_k = 1 \text{ AND } c_k = 0],$$

wherein $[d_{k-1} \ \dots \ d_1 \ d_0]$ for each line k are determined by:

$$[d_{k-1} \ \dots \ d_1 \ d_0] = [0_{k-1} \ \dots \ 0_0] \text{ if } [a_k \ b_k] = [0 \ 0],$$

$$[d_{k-1} \ \dots \ d_1 \ d_0] = [a_{k-1} \ \dots \ a_1 \ a_0] \text{ if } [a_k \ b_k] = [0 \ 1],$$

$$[d_{k-1} \ \dots \ d_1 \ d_0] = [b_{k-1} \ \dots \ b_1 \ b_0] \text{ if } [a_k \ b_k] = [1 \ 0], \text{ and}$$

$$[d_{k-1} \ \dots \ d_1 \ d_0] = [s_{k-1} \ \dots \ s_1 \ s_0] \text{ if } [a_k \ b_k] = [1 \ 1],$$

and wherein $s = [s_{N-2} \dots s_1 s_0]$ equal to the sum sequence $[(a_{N-2} + b_{N-2}) \dots (a_1 + b_1) (a_0 + b_0)]$ and $c = [c_{N-1} \dots c_1]$ is equal to the carry sequence associated with the sum sequence s .

10. The processor according to claim 9, wherein the means for forming the triangle array include a second adder for producing the sum sequence s and the carry sequence c .

11. The processor according to claim 9, wherein the means for forming the triangle array includes at least one multiplexer for producing $[d_{k-1} \dots d_1 d_0]$ for each line k .

12. The processor according to claim 11, wherein the multiplexer is a four to one multiplexer having as inputs 0, the first signal, the second signal, and the sum sequence s , the multiplexer controlled by $[a_k \ b_k]$.

13. The processor according to claim 8, wherein the triangle array is represented by a number of digits that is substantially 30% less than the number of digits required in a diamond array.

14. The processor according to claim 8, wherein the triangle array is represented by a number of digits that is substantially 50% less than the number of digits required in a diamond array.

15. A computer program product for use on a computer system for multiplying a first binary number $a = [a_{N-1} \dots a_1 a_0]$ and a second binary number $b = [b_{N-1} \dots b_1 b_0]$, the computer program product comprising a computer usable medium having computer readable program code thereon, the computer readable program code comprising:

program code for forming a triangle array from the first binary number and the second binary number, the triangle array including lines $k = 0$ to $N-1$; and

program code for adding lines $k = 0$ to $N-1$.

16. The computer program product according to claim 15, wherein the program code for forming the triangle array includes:

program code for producing line $k = 0$, wherein line $k=0$ is equal to $[0 \ (a_0 * b_0)]$;

program code for producing lines $k = 1$ to $N-1$ of the triangle array, wherein lines $k=1$ to $N-1$ are equal to $[p_1 \ p_0 \ d_{k-1} \dots \ d_1 \ d_0]$, wherein the peak bits $[p_1 \ p_0]$ for each line k are determined by:

$$\begin{aligned}[p_1 \ p_0] &= [0 \ 0] \text{ if } a_k * b_k \neq 1, \\ [p_1 \ p_0] &= [1 \ 0] \text{ if } [a_k * b_k = 1 \text{ AND } c_k = 1], \text{ and} \\ [p_1 \ p_0] &= [0 \ 1] \text{ if } [a_k * b_k = 1 \text{ AND } c_k = 0],\end{aligned}$$

wherein $[d_{k-1} \dots \ d_1 \ d_0]$ for each line k are determined by:

$$\begin{aligned}[d_{k-1} \dots \ d_1 \ d_0] &= [0_{k-1} \dots 0_0] \text{ if } [a_k \ b_k] = [0 \ 0], \\ [d_{k-1} \dots \ d_1 \ d_0] &= [a_{k-1} \dots a_1 \ a_0] \text{ if } [a_k \ b_k] = [0 \ 1], \\ [d_{k-1} \dots \ d_1 \ d_0] &= [b_{k-1} \dots b_1 \ b_0] \text{ if } [a_k \ b_k] = [1 \ 0], \text{ and} \\ [d_{k-1} \dots \ d_1 \ d_0] &= [s_{k-1} \dots s_1 \ s_0] \text{ if } [a_k \ b_k] = [1 \ 1],\end{aligned}$$

and wherein $s = [s_{N-2} \dots s_1 \ s_0]$ is equal to the sum sequence $[(a_{N-2} + b_{N-2}) \dots (a_1 + b_1) (a_0 + b_0)]$ and $c = [c_{N-1} \dots c_1]$ is equal to the carry sequence associated with the sum sequence s .

17. A method for performing signal processing that requires multiplication of a first signal representing a binary number $a = [a_{N-1} \dots a_1 \ a_0]$ and a second signal representing a second binary number $b = [b_{N-1} \dots b_1 \ b_0]$, the method comprising:

- receiving the first signal;
- receiving the second signal;
- forming a triangle array from the signal and the second signal, the triangle array including lines $k = 0$ to $N-1$; and
- adding lines $k = 0$ to $N-1$.

18. The method according to claim 17, wherein forming the triangle array includes:

- producing line $k = 0$ of the triangle array such that line $k = 0$ is equal to $[0 \ (a_0 * b_0)]$;
- producing lines $k = 1$ to $N-1$ of the triangle array such that lines $k = 1$ to $N-1$ are equal to $[p_1 \ p_0 \ d_{k-1} \dots \ d_1 \ d_0]$, wherein the peak bits $[p_1 \ p_0]$ for each line k are determined by:

$$\begin{aligned}[p_1 \ p_0] &= [0 \ 0] \text{ if } a_k * b_k \neq 1, \\ [p_1 \ p_0] &= [1 \ 0] \text{ if } [a_k * b_k = 1 \text{ AND } c_k = 1], \text{ and} \\ [p_1 \ p_0] &= [0 \ 1] \text{ if } [a_k * b_k = 1 \text{ AND } c_k = 0],\end{aligned}$$

wherein $[d_{k-1} \dots \ d_1 \ d_0]$ for each line k are determined by:

$[d_{k-1} \dots d_1 d_0] = [0_{k-1} \dots 0_0]$ if $[a_k b_k] = [0 0]$,

$[d_{k-1} \dots d_1 d_0] = [a_{k-1} \dots a_1 a_0]$ if $[a_k b_k] = [0 1]$,

$[d_{k-1} \dots d_1 d_0] = [b_{k-1} \dots b_1 b_0]$ if $[a_k b_k] = [1 0]$, and

$[d_{k-1} \dots d_1 d_0] = [s_{k-1} \dots s_1 s_0]$ if $[a_k b_k] = [1 1]$,

and wherein $s = [s_{N-2} \dots s_1 s_0]$ is equal to the sum sequence $[(a_{N-2} + b_{N-2}) \dots (a_1 + b_1) (a_0 + b_0)]$ and $c = [c_{N-1} \dots c_1 c_0]$ is equal to the carry sequence associated with the sum sequence s .