

ME 5554 - AOE 5754 - ECE 5754 Applied Linear Systems

Instructor: Dr. Steve Southward

Office: 139 Durham

Phone: (540) 231-7385

Email: scsouth@vt.edu

Syllabus Review

Virginia Tech

Class Schedule

-11:00-12:15 Tu & Th

Office Hours & Consultation

- By appointment
- Skype
- -Scholar Chat
- -Email: scsouth@vt.edu
- -Telephone: **540-231-7385**

Syllabus Review

Electronic Information

- Lecture notes will be posted on Scholar prior to each class
- Grades, homework assignments, and solutions will be posted on Scholar
- Course announcements will be posted on Scholar and/or sent via email
- Do NOT send any hardcopy documents to my department mailbox or office
- Lectures will be recorded and the links posted on Scholar (can take up to 24 hours for posting!)
- Some lectures may be pre-recorded

Assignment Policy

- Virginia Tech Graduate Honor Code will be strictly enforced
- All graded assignments MUST be submitted electronically through Scholar
- No graded assignments will be accepted past the due date/ time
- All assignments are due by midnight of the stated due date
- Electronic submissions must be in PDF format
- No hardcopy submissions to my department mailbox or office will be accepted
- You are encouraged to work with others on all assignments except take-home exams, but your submission must be the result of your own efforts

Grading

Homework: 10%

Quiz: 15%

Midterm Exam (10/4): 25%

Midterm Project (10/28): 25%

Final Project (12/9): 25%

Optional Final Exam (12/9): 25%

- Lowest grade of ME, MP, FP, FE will be dropped
- Must qualify for optional final: >50% on all other grades

Grading Policy

- Homework solutions available on Scholar after due date
- Each student is responsible for assigning their own homework grade (subject to the VT Graduate Honor Code)
 - 2 points for <u>attempting ALL problems</u> and getting <u>>80% correct</u>
 - 1 point for <u>attempting ALL problems</u> and getting <u>>40% correct</u>
 - 0 points otherwise
- Each student is responsible for electronically submitting homework grade to instructor within 48 hours of the original due date
- Grading disputes for exams and/or projects must be electronically submitted with a written explanation.
- NO extra credit assignments

Controls Curriculum Options @ VT

FALL	SPRING
Linear Systems Theory	Linear Control Theory
cross-listed as	cross-listed as
ECE 5744 AOE 5744	ECE 6744 AOE 6744
ME 5544	ME 6544
Fall 2009, listed as ECE 5704, taught by Dan Stilwell	Tentatively scheduled to be taught each spring semester.
Proposed official syllabus	Proposed official syllabus
Applied Linear Systems	Applied Linear Control
cross-listed as	cross-listed as
ECE 5754 AOE 5754	AOE 5764 ME 5564
ME 5554 Fall 2009, listed as ME5505, taught by Steve Southward	Tentatively scheduled to be taught each spring semester.
Proposed official syllabus	Proposed official syllabus
Nonlinear Systems Theory	Adaptive Controls Systems
cross-listed as	cross-listed as
ECE 5774	ECE 6774
AOE 5774 ME 5574	AOE 6774 ME 6574
Fall 2009, listed as AOE 5344, taught by Craig Woolsey.	Tentatively scheduled to be taught each spring semester.
Proposed official syllabus	Proposed official syllabus

Course Goals

In this course you will learn how to:

- Represent multi-input-multi-output (MIMO) dynamic systems using <u>state-space</u> models
- Solve for the dynamic response of a linear dynamic system and relate the response to the <u>state-space</u> system description
- Design linear control systems using frequency domain, state estimation, and pole placement techniques

In-Class Participation is EXPECTED!!!

Course Prerequisites

Classical feedback control background:

- Block diagram manipulation & analysis
- Laplace transforms
- Root locus analysis
- Frequency response & transfer functions
- Frequency domain feedback control design

Mandatory Software:

- Matlab 8.0 R2012b (or later)
- Simulink, Control system toolbox
- Powerpoint, Word, Equation Editor
- PDF conversion software

Reference Material

Textbook:

 Linear State-Space Control Systems, Robert Williams & Douglas Lawrence, John Wiley & Sons, 2007

Additional References:

- Franklin, G.F., Powell, J.D., and Emami-Naeini, A., Feedback Control of Dynamic Systems, Addison-Wesley, Reading, MA, 1991.
- Kuo, B.C., Automatic Control Systems, Prentice-Hall, Englewood Cliffs, NY, 1987.
- Dorf, R.C., Bishop, R.H., Modern Control Systems, Addison-Wesley, Reading, MA, 1995.
- Bolton, W., Control Engineering, Longman, Harlow, Essex, England, 1996.
- Levine, W., The Control Handbook, CRC Press, 1996.
- Friedland, B., Control System Design An Introduction to State-Space Methods, McGraw-Hill, 1986.

Course Outline - 1st Half

- Review Classical Feedback Control
- Review Vector/Matrix Theory
- State-Space Representations
- LTI Response & Matrix Exponential
- Transfer Functions & Eigenvalues
- Frequency-Domain Analysis
- Harmonic & Impulse Responses
- Pole Placement
- Controllability

Course Outline - 2nd Half

- Full State Feedback for MIMO
- Stabilizability
- State Estimation & Output Feedback
- Observability & Duality
- Exogenous Inputs, Integral Control
- Optimal Control (LQR/LQG)
- Robustness & Sensitivity
- Kalman Filtering
- Introduction to Discrete Time

Control System Basics

Single-Input Single-Output (SISO) System

Input *u* is the command (control) signal

Output y is the response (measurement) signal

Process (a.k.a. "Plant") *H* is a dynamic system that transforms the input into the output

Control objective: Find *u* to generate a desired *y*

Control System Basics

Typical electro-mechanical plants are made up of connected dynamic subsystems:

Example Control SystemsAircraft utilize many control systems:

http://media.popularmechanics.com/images/lg_cutaway-lg.jpg

Example Control Systems

Virginia Tech

Control is an enabling element of disk drive technology:

http://www.research.ibm.com/journal/rd/405/asthana.html

Example Control Systems

Virginia Tech

Control is also used in advanced biomedical devices:

Control must be used to position the artificial knee properly and change the 'feel' of the knee to match that of an actual knee.

Feedforward Control System

Feedforward control is a form of Open-Loop control (i.e. no explicit feedback loops)

Feedforward control...

is typically used for **command shaping** and/or **disturbance rejection**,

does not alter the dynamics of the process

Feedback Control System

Feedback control is **Closed-Loop** control, where the control signal *u* is a function of the process output *y*

Feedback control...

is typically used for **regulation** or **tracking**, changes the process dynamics

Question for Open Discussion

What are some relative strengths and weaknesses of feedback and feedforward control?

Course Focus

This course will focus on the analysis and design of continuous-time (analog) feedback control systems using state-space methods

- How do we model the process?
- How do we design a feedback controller?
- How do we analyze the performance?

Review of Continuous Control

Your previous study of control system design probably centered around *classical control* techniques for SISO systems.

Classical synthesis & analysis techniques are still valuable and widely used today

For the remainder of this session we will briefly review two main topics in classical control system design:

- Process modeling
- Compensator design techniques

Process Modeling - I

Example: base-excited mechanical oscillator

Free-body diagram force balance:

$$m\ddot{y} = b(\dot{u} - \dot{y}) + k(u - y)$$
damperforce spring force

Collect terms:

$$m\ddot{y} + b\dot{y} + ky = b\dot{u} + ku$$

In the Laplace domain:

$$(ms^{2} + bs + k)Y(s) = (bs + k)U(s)$$

The resulting process <u>Transfer Function</u> is:

$$H(s) = \frac{Y(s)}{U(s)} = \left(\frac{bs + k}{ms^2 + bs + k}\right)$$

Process Modeling - II

Most continuous-time linear systems are represented in the Laplace domain as a ratio of polynomials:

$$H(s) = \left(\frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}\right) \qquad n \ge m$$

The variable s (= σ + $j\omega$) is the Laplace variable from the Laplace Transform:

$$H(s) = \int_{0}^{\infty} e^{-st} h(t) dt$$

h(t) is the process impulse response

Process Modeling - III

Any linear, causal input-output (I/O) relationship can be modeled using Laplace transforms

The controller (or compensator) is usually also represented by a transfer function G(s) which is a ratio of polynomials

$$G(s) = \frac{U(s)}{E(s)}$$

Classical Control Design - I

Typical design problem:

Design a controller G(s) such that:

output y(t) tracks the reference input r(t)

output y(t) is insensitive to measurement noise d(t)

Classical Control Design - II

The output is given by:

$$Y(s) = H(s)U(s) + D(s) = H(s)[G(s)E(s)] + D(s)$$

And the error (for negative feedback) is:

$$E(s) = R(s) - Y(s)$$

Combining yields the following:

$$Y(s) = G(s)H(s)[R(s) - Y(s)] + D(s)$$
$$[1 + G(s)H(s)]Y(s) = [G(s)H(s)]R(s) + D(s)$$

Classical Control Design - III

The Closed-Loop I/O relationships are obtained by solving for Y(s) in terms of the inputs R(s) and D(s)

$$Y(s) = \underbrace{\left(\frac{G(s)H(s)}{1+G(s)H(s)}\right)}_{\text{Complementary Sensitivity } T(s)} R(s) + \underbrace{\left(\frac{1}{1+G(s)H(s)}\right)}_{\text{Sensitivity } T(s)} D(s)$$

Classical Control Design - IV

For Tracking, we want Y(s) approximately equal to R(s):

$$Y(s) \approx R(s)$$
 IF $T(s) \approx 1 \implies G(s)H(s) >> 1$

For Disturbance Rejection, we want:

$$S(s) \approx 0 \implies G(s)H(s) >> 1$$

Both goals appear to be satisfied with the same criterion.

Classical Control Design - V

Good news:

All we need to do is "turn up" the compensator gain to achieve both objectives.

Bad news:

Turning up the gain too much can cause instability. An unstable system is going to have worse performance than the uncontrolled process.

Fundamental Design Tradeoff:

Designing a high-gain compensator GH >> 1 improves tracking performance and reduces the sensitivity to disturbances (good news)but....decreases the stability margin and increases the chance of closed-loop instability (bad news).

Classical Design Methods - I

Root Locus

The Characteristic Equation (CE) is given by:

$$1 + G(s)H(s) = 0$$

Objective: Insure that the roots of the CE remain in the left-half plane (LHP) as a selected control parameter is varied

For example, plot the roots as a function of the compensator gain k:

$$G(s) = k\left(\frac{B(s)}{A(s)}\right) \implies A(s) + kB(s)H(s) = 0$$

Classical Design Methods - II

Loop Shaping in the Frequency-Domain

The Open Loop transfer function is: G(s)H(s)

Objective: Manipulate the magnitude and phase of the loop to achieve the performance objectives while maintaining stability

Designs are analyzed in the frequency domain for Gain Margin and Phase Margin:

Bode Diagram: Mag. & Phase vs. frequency

Nyquist Diagram: Real vs. Imaginary

Nichols Chart: Magnitude vs. Phase

Classical Design Methods - III

There are two common choices for classical compensator designs that you should be familiar with:

PID Compensation

$$G_{PID}(s) = \underbrace{k_P}_{\text{Proporational Control}} + \underbrace{k_I \left(\frac{1}{S}\right)}_{\text{Integral Control}} + \underbrace{k_D s}_{\text{Control}}$$

Lag/Lead Compensation

$$G(s) = k \left(\frac{s+b}{s+a}\right)$$
 $\begin{cases} a < b & \text{Lag Compensation} \\ b < a & \text{Lead Compensation} \end{cases}$

Important Review Topics

Please review the following Classical Control topics:

- Block diagram manipulation
- Laplace transforms $(t \rightarrow s \text{ and } s \rightarrow t)$
- Frequency-domain design (Bode)
- Lead/Lag & PID compensation
- Root locus