MAE 5776

ANÁLISE MULTIVARIADA

Júlia M Pavan Soler

pavan@ime.usp.br

MAE5776

✓ Estatísticas descritivas multivariadas: ℜ^{nxp}, ℜ^{pxp}, ℜ^{nxn}

Regiões (elipsóides) de Concentração: $R(Y_i) = \left(Y_i \in \Re^p; \left(Y_i - \overline{Y}\right)' S_u^{-1} \left(Y_i - \overline{Y}\right) \leq \chi_p^2(\alpha)\right)$

✓ Inferência sobre $\mu \in \Re^p$:

Caso de Uma Única População:
$$R(\mu|Y) = \left\{ T^2 = n\left(\overline{Y} - \mu\right)' S_u^{-1} \left(\overline{Y} - \mu\right) \le \frac{(n-1)p}{(n-p)} F_{p,(n-p)}(\alpha) \right\}$$

Caso de Duas Populações:

$$R\left(\mu_{D} \mid Y_{1}, Y_{2}\right) = \begin{cases} T^{2} = n\left(\bar{D} - \mu_{D}\right)' S_{D}^{-1}\left(\bar{D} - \mu_{D}\right) \leq \frac{\left(n-1\right)p}{\left(n-p\right)} F_{p,(n-p)}\left(\alpha\right) \end{cases}$$

$$Comparações$$

$$R\left(\mu_{D} \mid Y_{1}, Y_{2}\right) = \begin{cases} T^{2} = \left(\bar{D} - \mu_{D}\right)' \left(S_{c}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)\right)^{-1} \left(\bar{D} - \mu_{D}\right) \leq \frac{\left(n_{1} + n_{2} - 2\right)p}{\left(n_{1} + n_{2} - p - 1\right)} F_{(p;n_{1} + n_{2} - p - 1)}\left(\alpha\right) \end{cases}$$
Múltiplas

⇒ Caso de Duas ou Mais Populações (MANOVA):

Delineamento Completamente Aleatorizado com Um Fator em G níveis

$$Y_{ig p \times 1} \sim N_p \left(\mu_{g p \times 1}; \Sigma_{g p \times p} \right); \quad H_0: \mu_g = \mu, \quad g = 1, 2, ..., G$$

Delineamentos "Completamente Aleatorizado" com Um Único Fator

Т6	T12	T18	Trat 🔪
1.48	2.81	3.56	1
1.04	2.07	2.81	2
1.48	2.52	3.41	1
1.04	1.93	2.89	2
1.80	2.15	3.20	1
1.50	2.70	3.75	2
1.80	2.15	3.90	1
1.20	2.25	3.30	2
1.78	2.96	4.00	3
1.48	2.81	3.85	4
1.33	2.52	3.84	3
1.03	2.07	2.96	4
1.65	3.00	3.98	3
1.50	2.85	3.75	4
1.65	3.00	4.05	3
1.20	2.70	3.90	4
1.35	2.55	3.67	3
1.20	2.70	3.60	4
	1.48 1.04 1.48 1.04 1.80 1.50 1.80 1.78 1.48 1.33 1.03 1.65 1.50	1.48 2.81 1.04 2.07 1.48 2.52 1.04 1.93 1.80 2.15 1.50 2.70 1.80 2.15 1.20 2.25 1.78 2.96 1.48 2.81 1.33 2.52 1.03 2.07 1.65 3.00 1.50 2.85 1.65 3.00 1.50 2.70 1.35 2.55	1.48 2.81 3.56 1.04 2.07 2.81 1.48 2.52 3.41 1.04 1.93 2.89 1.80 2.15 3.20 1.50 2.70 3.75 1.80 2.15 3.90 1.20 2.25 3.30 1.78 2.96 4.00 1.48 2.81 3.85 1.33 2.52 3.84 1.03 2.07 2.96 1.65 3.00 3.98 1.50 2.85 3.75 1.65 3.00 4.05 1.20 2.70 3.90

Considere os seguintes dados de um Delineamento Completmente Aleatorizado com 1 Fator Tratamento em 4 níveis (Trat=1, Trat=2, Trat=3 e Trat=4)

p=3 variáveis (medidas repetidas de O2): T6, T12 e T18

$$Y_{48 \times (3+1)}$$
 3 variáveis resposta quantitativas e 1 categórica (identificando grupo)

$$H_0: \mu_g = \mu_{3\times 1}, \ g = 1, 2, 3, 4$$

MANOVA.RM do R

DCA com Um Único Fator

	Т6	T12	T18	Trat
1	1.48	2.81	3.56	
2	1.04	2.07	2.81	2
3	1.48	2.52	3.41	1
4	1.04	1.93	2.89	2
5	1.80	2.15	3.20	1
6	1.50	2.70	3.75	2
	1 00	0 1 5	2 00	1
23		2.15		1
24		2.25		2
25	1.78	2.96	4.00	3
26	1.48	2.81	3.85	4
27	1.33	2.52	3.84	3
28	1.03	2.07	2.96	4
29	1.65	3.00	3.98	3
30	1.50	2.85	3.75	4
45	1.65	3.00	4.05	3
46	1.20	2.70	3.90	4
47	1.35	2.55	3.67	3
48	1.20	2.70	3.60	4

MANOVA.RM do R

$$H_0: \mu_g = \mu_{3\times 1}, \ g = 1, 2, 3, 4$$

```
T6 T12 T18
Total(n=48) 1.497500 2.558333 3.664375

Trat T6 T12 T18
1 (n=9) 1.618333 2.434167 3.526667
2 (n=9) 1.321667 2.430000 3.425000
3 (n=9) 1.655833 2.799167 4.029167
4 (n=9) 1.394167 2.570000 3.676667
```


Delineamento "Completamente Aleatorizado" com Um Único Fator

Dados "Iris" do R: Medidas do comprimento e largura da pétala e sépala de 50 flores de íris de três espécies (setosa, versicolor e virginica).

	Sepal Length	Sepal Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	-	0.2	setosa
2	4.9	3.0	:	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
<u>, </u>					
50	5.0	3.3	1.4	0.2	setosa
51	7.0	3.2	4.7	1.4	versicolor
/~ = ~ \	i L		i I		
(100)	5.7	2.8	4.1	1.3	versicolor
101	6.3	3.3	6.0	2.5	virginica
102	5.8	2.7	5.1	1.9	virginica
/ · · · ·	 	i			
(150)	5.9	3.0	5.1	1.8	virginica

petal

Comparar os Centróides das 3 espécies (considerando as 4 variáveis)?

$$H_0: \mu_g = \mu_{4\times 1}, \ g = 1, 2, 3$$

Inferência sobre Vetores de Médias de "Muitas" Populações

Comparações de Duas Populações ⇒ Comparações de Muitas Populações (G≥2)

População estratificada

$$N_p(\mu_2;\Sigma_2)$$

População 2

Amostra

$$Y_{21}, Y_{22}, \dots, Y_{2n_2}$$

$$Y_{G1}, Y_{G2}, \dots, Y_{Gn_G}$$

$$\overline{Y}_{G} \qquad S_{G}$$

Inferência sobre Vetores de Médias de "Muitas" Populações

$$\mathbf{Y}_{ig_{p\times 1}} = (Y_{ig1}, Y_{ig2}, ..., Y_{igp})'$$
: vetor de observações da unidade i no grupo g

Modelo distribucional: $Y_{i\varrho} \stackrel{ua}{\sim} N_n(\mu_e; \Sigma_e)$

$$Y_{n \times p} \in \Re^{n \times p}; \quad Y_{n \times p} \stackrel{H_0}{\sim} N_{n \times p} \left(\mu_{n \times p} ; \; \Omega_{np \times np} = diag_{g=1}^G \left(I_{n_g} \otimes \Sigma_g \right) \right)$$

$$H_0: \mu_1 = \mu_2 = \dots = \mu_G; \quad \Sigma_g = \Sigma$$
 Sob Homocedasticidade!

$$\mathsf{Sob}\;\mathsf{H}_0 \qquad Y_{n\times p} \in \Re^{n\times p}; \quad Y_{n\times p} \stackrel{H_0}{\sim} N_{n\times p} \left(\mu_{n\times p} = 1_n \,\mu'; \Omega_{np\times np} = I_n \,\otimes \Sigma\right)$$

Independência das observações entre e dentro dos grupos

$$\Rightarrow \mu_{n \times p} = 1_n \mu_{p \times 1}' = \begin{pmatrix} \mu' \\ \mu' \\ \dots \\ \mu' \end{pmatrix} \qquad \Rightarrow \Omega = I_n \otimes \Sigma = \begin{pmatrix} \Sigma & 0 & \cdots & 0 \\ 0 & \Sigma & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \Sigma \end{pmatrix}$$

Inferência sobre Vetores de Médias de Muitas Populações

$$Y_{g_{n_g \times p}}; \quad Y_{gi} \stackrel{nd}{\sim} N_p \left(\mu_g; \Sigma_g\right); \quad g = 1, ..., G$$
 Hipótese condicional: $H_0: \mu_1 = \mu_2 = ... = \mu_G; \quad \Sigma_g = \Sigma$ sob homocedasticidade $H_1:\in$ pelo menos um centróide diferente; $\Sigma_g = \Sigma$

Estimador de máxima

verossimilhança

EMVS sob H_0 :

$$\Rightarrow \begin{cases} \overline{Y} = 1/nY'1_n; & n = n_1 + \dots + n_G \\ \hat{\Sigma} = S_{p \times p} = \frac{1}{n} \sum_{g=1}^{G} \sum_{i=1}^{n_g} (Y_{ig} - \overline{Y})(Y_{ig} - \overline{Y})' \end{cases}$$

EMVS sob H₁:

$$\Rightarrow \begin{cases} \bar{Y_g}; & g = 1,...,G \quad \text{pivisor n} \\ \hat{\Sigma} = S_{c.MVS} = \frac{n_1 S_1 + ... + n_G S_G}{n} \end{cases}$$

 $nS = T_{p \times p}$ Matriz de Soma de Quadrados e Produtos Cruzados TOTAL. SSN

 $nS_{c.MVS} = E_{p \times p}$ Matriz de Soma de Quadrados e Produtos Cruzados DENTRO de GRUPOS

$$H = T - E = \sum_{g=1}^{G} n_g \left(\overline{Y}_g - \overline{Y} \right) \left(\overline{Y}_g - \overline{Y} \right)' \text{Matriz de Soma de Quadrados e Produtos Cruzados ENTRE}$$
GRUPOS

Fontes de Variabilidade

Grupo	u.a.	Y_1	Y_2	•••	Y_{j}	•••	Y_p	
1	1	<i>Y</i> ₁₁₁	<i>Y</i> ₁₁₂	•••	Y_{11j}	•••	Y_{11p}	ge Va
		•••		• • •				u.
1	n_1	Y_{n_111}	Y_{n_112}	•••	Y_{n_11j}	•••	$Y_{n_1 1 p}$	Ī
		$\overline{Y}_{.11}$	$\overline{Y}_{.12}$	•••	$\overline{Y}_{.1j}$	•••	$\overline{Y}_{.1p}$	
2	1	<i>Y</i> ₁₂₁	<i>Y</i> ₁₂₂	•••	Y_{12j}	•••	Y_{12p}	
		•••		•••				
2	n_2	$Y_{n_2 21}$	$Y_{n_2 22}$	2	Y_{n_2}	j	$Y_{n_1 2}$	p_
		$\overline{Y}_{.21}$	$\overline{Y}_{.22}$	•••	$\overline{Y}_{.2j}$	•••	$\overline{Y}_{.2p}$	
G	1	Y_{1G1}	Y_{1G2}	•••	Y_{1Gj}	•••	Y_{1Gp}	
		•••		•••				
G	n_G	Y_{n_GG1}	Y_{n_GG2}	···	Y_{n_GG}		Y_{n_GG}	p
		$\overline{ar{Y}}_{.G1}$	$\overline{Y}_{.G2}$	•••	$\overline{Y}_{.Gj}$	•••	$\overline{\overline{Y}}_{Gp}$	—

_{ariabilidade} Dentro e Grupo (E)

Variabilidade Entre Grupos (H) Y_{1}

$$E_{p \times p} = \sum_{g=1}^{G} \sum_{i=1}^{n_g} \left(Y_{ig} - \overline{Y}_g \right) \left(Y_{ig} - \overline{Y}_g \right)'$$

 $H_{p \times p} = \sum_{g=1}^{G} n_g \left(\overline{Y}_g - \overline{Y} \right) \left(\overline{Y}_g - \overline{Y} \right)'$

$$T_{p \times p} = nS = \sum_{g=1}^{G} \sum_{i=1}^{n_g} (Y_{ig} - \overline{Y}) (Y_{ig} - \overline{Y})'$$

Identidade útil em 93p (decomposição útil)

$$Y_{ig} = \overline{Y} + (\overline{Y}_g - \overline{Y}) + (Y_{ig} - \overline{Y}_g)$$

Lembrando "ANOVA":

Para p=1

Delineamento Completamente Aleatorizado

$$N(\mu_1;\sigma^2)$$
 $N(\mu_2;\sigma^2)$... $N(\mu_G;\sigma^2)$

População

T 1	T ₂	• • •	TG
Y 11	Y21	• • •	Y_{G1}
• • •	••• (Yij	• • •
Y _{1n1}	Y 2 n2	• • •	$\mathbf{Y}_{\mathbf{G}}\mathbf{n}_{\mathbf{G}}$
n 1	n2		$\mathbf{n}_{\scriptscriptstyle{\mathbf{G}}}$
\overline{Y}_1	\overline{Y}_2	• • •	$\overline{Y}_{\!G}$
S_1	S_2		S_G

Amostra

- **✓** Normalidade
- ✓ Variância constante
- **✓ Independência**

Lembrando ANOVA - Modelo Linear Geral

Resposta da observação i do grupo g

Modelo Estrutural:
$$y_{ig} = \mu_g + e_{ig}$$

Parametrização de Médias

$$=\mu+ au_g+e_{ig}$$
 ; $\sum_{g=1}^G au_g=0$ Parametrização de Desvios

$$= \begin{cases} \mu_1 + e_{ig} \\ \mu_1 + \tau_g + e_{ig}; \ g = 2,...,G \end{cases} \text{ Parametrização Casela de Referência}$$

Modelo Distribucional:
$$e_{ig} \sim N_1(0; \sigma^2)$$

Forma matricial:

$$Y_{n\times 1} = X_{n\times G} \quad \beta_{G\times 1} \quad + \quad e_{n\times 1}$$

vetor de Matriz de observações Planejamento parâmetros

vetor de vetor de erros

$$Y_{ig} = \mu + \tau_g + e_{ig}; \quad \sum_g \tau_g = 0 \quad \text{Usando a parametrização de desvios}$$

$$Y_{n\times 1} \qquad X_{n\times G} \qquad \beta_{G\times 1} \qquad e_{n\times 1}$$

$$G_{S}^{=3} \text{ grupos observações} \qquad \begin{bmatrix} Y_{11} & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ Y_{21} & Y_{31} & Y_{31} & 0 \\ Y_{31} & Y_{31} & Y_{31} & 0 \end{bmatrix}$$

$$\begin{bmatrix} e_{11} & e_{21} & e_{31} & e_{31} \\ e_{31} & e_{31} & e_{31} & e_{31} \\ e_{32} & e_{32} & e_{33} \\ e_{33} & e_{34} & e_{34} & e_{34} \\ e_{34} & e_{34} & e_{34} & e_{34} \\ e_{35} & e_{35} & e_{35} & e_{35} \\ e_{31} & e_{32} & e_{35} & e_{35} \\ e_{32} & e_{33} & e_{35} & e_{35} \\ e_{33} & e_{35} & e_{35} & e_{35} \\ e_{34} & e_{35} & e_{35} & e_{35} \\ e_{35} e_{35} & e_{35} \\ e_{35} & e_{35} & e_{35} \\ e_{35} & e_{$$

oe	; S		_			٦	
	Y_{11}		1	1	0		
	Y_{21}		1	1	0		
	Y_{31}		1	1	0		
	Y_{41}		1	1	0		
	Y_{51}		 1	1	0		
	Y_{12}		1	0	1		
	Y_{22}		1	0	1		
	Y_{32}	_	1	0	1		
	Y_{42}	_	1	0	1		
	Y_{52}		 1.	0	1		
	Y_{13}		1	-1	-1		
	Y_{23}		1	-1	-1		
	Y_{33}		1	-1	-1		
	Y_{43}		1	-1	-1		
	$egin{bmatrix} Y_{43} \ Y_{53} \ \end{bmatrix}$		 1_	-1	-1		
	_	=	_			_	

 $egin{bmatrix} e_{11} \ e_{21} \ e_{31} \ e_{41} \ e_{41} \ e_{51} \ e_{12} \ e_{22} \ e_{22} \ e_{42} \ e_{53} \ e_{13} \ e_{23} \ e_{43} \ e_{53} \ \end{bmatrix}$

ANOVA - Fontes de Variação

Considere a seguinte identidade (decomposição útil para se obter as fontes de variação envolvidas no modelo):

$$y_{ig} = \overline{y} + (\overline{y}_g - \overline{y}) + (y_{ig} - \overline{y}_g)$$

$$y_{ig} - \overline{y} = (\overline{y}_g - \overline{y}) + (y_{ig} - \overline{y}_g)$$

$$\sum_{g,i} (y_{ig} - \overline{y})^2 \qquad \sum_{g} n_g (\overline{y}_g - \overline{y})^2 \qquad \sum_{g,i} (y_{ig} - \overline{y}_g)^2$$

SQTotal

corrigida pela média **SQTratamento**

"fonte de variação Entre grupos" **SQResidual**

"fonte de variação Dentro do grupo"

Tabela de ANOVA

$$H_0: \mu_1 = \mu_2 = \dots = \mu_G = \mu \in \Re \times H_1: \exists$$
 pelo menos uma diferença

F.V.	g l	SQ	QM	F	valor-p
ENTRE		$\sum_{g} n_g (\bar{y}_g - \bar{y})^2$			MD
DENTRO	n-G	$\sum_{g,i} (y_{ig} - \overline{y}_g)^2$	SQDentro/(n-G	r)	
TOTAL	n-1	$\sum_{g,i} (y_{ig} - \overline{y})^2$			
				iid	iid , .

$$\mathbf{F} = \frac{QMEntre}{QMDentro} \sim \mathbf{F}(G-1, n-G)$$
Sob: $y_{ig} = \mu_g + e_{ig}; e_{ig} \sim N_1(0; \sigma^2)$
normalidade
homocedasticidade
independência

Modelo MANOVA

vetor de observações da unidade i do grupo g

$$Y_{ig p \times 1} \sim N_p(\mu_g; \Sigma_g); i = 1,...,n_g, g = 1,...,G$$

DCA:Delineamento Completamente Aleatorizado Completamente Aleatorizado (1 fator em G níveis)

Efeito Aleatório Fixo
$$Y_{ig_{p\times 1}} = \mu + \tau_g + e_{ig} \quad ; \quad \sum_{g=1}^G \tau_g = 0$$

Modelo distribucional:
$$e_{ig} \sim N_p(0; \Sigma) \Rightarrow Y_{ig} \sim N_p(\mu_g; \Sigma)$$

Suposições: observações independentes (Entre grupos e Dentro de grupo), Distribuição Normal p-variada, Matriz de Covariâncias homogênea

Modelo MANOVA

$$Y_{ig_{p\times 1}} = (Y_{ig1}, Y_{ig2}, ..., Y_{igp})' \qquad Y_{ig_{p\times 1}} = \mu + \tau_g + e_{ig} \quad ; \quad \sum_{g=1}^{G} \tau_g = 0 \qquad e_{ig} \sim N_p(0; \Sigma)$$

Identidade útil para descrever as fontes de variação:

$$Y_{ig p \times 1} = \overline{Y} + (\overline{Y}_g - \overline{Y}) + (Y_{ig} - \overline{Y}_g)$$

$$H = \sum_{g=1}^{G} n_g \left(\overline{y}_g - \overline{y} \right) \left(\overline{y}_g - \overline{y} \right)'$$
 matriz de SQPC devido ao efeito do tratamento (Entre Grupos) - Notação: H=SSB (*Between*)

$$= \sum_{g=1}^{G} \sum_{i=1}^{n_g} \left(y_{ig} - \overline{y}_g \right) \left(y_{ig} - \overline{y}_g \right)' = (n_1 - 1) S_{u1} + \dots + (n_G - 1) S_{uG}$$
: matriz de SQPC devido ao erro (Dentro de Grupos)

Notação: E=SSW (*Within*)
$$H + E = \sum_{g=1}^{G} \sum_{i=1}^{n_g} (y_{ig} - \overline{y}) (y_{ig} - \overline{y})'$$
: matriz de SQPC total corrigida pela média

Notação: H+E=T

Tabela de MANOVA

$$H_0: \mu_1 = \mu_2 = \dots = \mu_G = \mu$$

F.V.	g.l.	Matriz de SQPC
Trat	G-1	$H_{p \times p} = \sum_{g=1}^{G} n_g \left(\overline{Y}_g - \overline{Y} \right) \left(\overline{Y}_g - \overline{Y} \right)'$
Resíduo	n-G	$E_{p \times p} = \sum_{g=1}^{G} \sum_{i=1}^{n_g} \left(Y_{ig} - \overline{Y}_g \right) \left(Y_{ig} - \overline{Y}_g \right)'$
TOTAL	n-1	$T = H + E = \sum_{i=1}^{G} \sum_{j=1}^{n_g} (Y_{ig} - \overline{Y})(Y_{ig} - \overline{Y})'$

g = 1 i = 1

$$\Lambda^* = \frac{|E|}{|H+E|} = |T^{-1}E| = |I+E^{-1}H|^{-1}$$

Estatística lambda de Wilks (critério baseado na estatística Razão de Verossimilhanças sob normalidade multivariada, independência e homocedasticidade).

Quanto menor maior é a evidência para efeito de grupo!

Distribuição da Estatística Λ*

Var. # Grupos Distribuição Amostral (sob $Y_{ig} \sim N_p(\mu_g; \Sigma)$)

$$p = 1$$
 $g \ge 2$ $\left(\frac{N-g}{g-1}\right)\left(\frac{1-\Lambda^*}{\Lambda^*}\right) \sim F_{g-1,N-g}$

$$p = 2 \qquad \qquad g \ge 2 \qquad \left(\frac{N - g - 1}{g - 1}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2(g - 1), 2(N - g - 1)}$$

$$p \ge 1$$
 $g = 2$ $\left(\frac{N-p-1}{p}\right)\left(\frac{1-\Lambda^*}{\Lambda^*}\right) \sim F_{p,N-p-1}$

$$p \ge 1$$
 $g = 3$ $\left(\frac{N-p-2}{p}\right)\left(\frac{1-\sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2p,2(N-p-2)}$

Caso assintótico:
$$-\left(N-1-\frac{p+g}{2}\right) \ln\left(\frac{|E|}{|H+E|}\right) \stackrel{n\to\infty}{\sim} \chi^2_{p(g-1)}(\alpha)$$

Dados Iris (G=3,p=4)

Tabela de MANOVA

Qual é o modelo estrutural da MANOVA?

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu$$

$$\Leftrightarrow$$

$$H_0: \mathbf{\tau}_1 = \mathbf{\tau}_2 = \mathbf{\tau}_3 = 0$$

F.V.	No. g.l.	Matriz de Soma de Quadr e Prod Cruzados
Grupo	3-1	SSB=H 63.21 -19.95 165.25 71.28 11.34 -57.24 -22.93 437.10 186.77 80.41 Matriz de SQPC devie ao efeito de Grupo
Resíduo	150-3	SSW=E 38.96 13.63 24.62 5.65 Matriz de SQPC devidence 16.96 8.12 4.81 ao efeito do Erro 6.16
TOTAL	150-1	SST=H+E 102.17 -6.32 189.87 76.92 28.31 -49.12 -18.12 464.33 193.05 86.57

$$\Lambda^* = \frac{\mid E \mid}{\mid H + E \mid} = 1.486462\text{e-}31 \qquad \Rightarrow \underbrace{\left(\frac{N - p - 2}{p}\right)}_{\text{Concl.?}} \underbrace{\left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right)}_{\text{Concl.?}} \sim F_{2p,2(N - p - 2)}(\alpha = 0,01)$$

Dados Iris (G=3,p=4) Tabela de MANOVA ⇒ Tabelas de ANOVA

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu \implies$$

$$\Rightarrow$$

$$H_{0j}: \mu_{1j} = \mu_{2j} = \mu_{3j} = \mu_{j}$$
 $j=1,2,...,p$

Tabela ANOVA para Variável 1:

F.V.	No. g.l.	SQ	QM	F
Grupo	3-1	63.21	31.61	31.61/0.265=119.27 qf(0.99;2;147) = 4.7525
Resíduo	150-3	38.96	0.265	Concl.?
TOTAL	150-1	102.17		

Resultados da ANOVA para cada Variável:

Fontes de Var.	SQGrupo	SQResídu	o F	
resp 1	63.2121	38.9562	119.27	
resp 2	11.3449	16.9620	49.16	
resp 3	437.1028	27.2226	1180.16	
resp 4	80.4133	6.1566	960.01	
Número de g.l.	2	147		
Erro padrão residual:	0.5147894 0	.3396877 0	.4303345	0.20465

Obtenha as Tabelas ANOVA para cada variável! Da análise individual das variáveis a de maior dignificância é a Varável 3 seguida da 4!

 $=\sqrt{0.265}$

Estatísticas da MANOVA

Critério	Estatística		Aproximação F
Wilks	$\Lambda = \frac{ E }{ H+E } = \frac{1}{2}$	$\prod_{i} \frac{1}{1 + (\lambda_{i})}$	$\left(\frac{rt-2f}{pq}\right)\left(\frac{1-\Lambda^{1/t}}{\Lambda^{1/t}}\right) \sim F_{pq,(rt-2f)}$
Traço de Pillai		``_ <i>\\</i> '\	$\left(\frac{2n+s+1}{2m+s+1}\right)\left(\frac{V}{s-V}\right) \sim F_{s(2m+s+1),s(2n+s+1)}$
Traço de Hotellin Lawley		$=\sum_{i}(\lambda_{i})$	$\frac{2(sn+1)U}{s^2(2m+s+1)} \sim F_{s(2m+s+1),2(sn+1)}$
Raiz Máxima de l		(λ_1)	$\frac{(v-d+q)\theta}{d} \sim F_{d,(v-d+q)}$

p= # de var.; q=g.l. trat (ou do contraste); v=g.l. erro; s=min(p,q); r=(p+q+1)/2; f=(pq-2)/4 d= max(p,q); m=(|p-q|-1)/2; n=(v-p-1)/2; λ : autovalor de |H- λ E|=0; $t = \sqrt{(p^2q^2-4)/(p^2+q^2-5)}$ se $(p^2+q^2-5)>0$, ou 1 c.c.

Contribuição das Variáveis na Discriminação dos Grupos

Considere a seguinte decomposição espectral:

$$|H - \lambda E| = 0; \ (H - \lambda E)l = 0 \Rightarrow \frac{l_k 'Hl_k}{l_k 'El_k} = \lambda_k$$
$$l_k = (l_{k1} \ l_{k2} \dots l_{kp})'$$

Dados Iris:

Notação: H=SSB; E=SSW A informação sobre discriminação entre os grupos está na decomposição espectral de $E^{-1}H$

A avaliação dos coeficientes dos autovetores, *l*, associados aos maiores autovalores, λ, define a importância de cada variável no efeito de tratamento. *Este resultado decorre também da Análise Discriminante de Fisher.*

A variável Y4, seguida de Y3, mais contribuem para a discriminação entre os grupos (respeitando a estrutura multivariada).

Comparações Múltiplas

Comparações múltiplas entre tratamentos (dois a dois) para cada variável (com correção de Bonferroni):

Dados Iris: Realize comparações múltiplas com correção para os múltiplos testes!

Comparação entre Tratamentos g e h:

$$\mu_{\scriptscriptstyle g} - \mu_{\scriptscriptstyle h} \;\; \Rightarrow \;\; ar{Y}_{\scriptscriptstyle g} - ar{Y}_{\scriptscriptstyle h}$$

Avaliar os componentes do vetor de diferenças (p variáveis)

$$au_g - au_h$$

$$\hat{ au}_{g_{p imes 1}} = \overline{Y}_g - \overline{Y} \quad \Longrightarrow \quad \hat{ au}_{g|j} = \overline{Y}_{g|j} - \overline{Y}_g$$
 Trat g Variável j

$$\hat{\tau}_{g_{p\times 1}} = \overline{Y}_g - \overline{Y} \implies \hat{\tau}_{g \ j} = \overline{Y}_{g \ j} - \overline{Y}_j \qquad \hat{\tau}_h = \overline{Y}_h - \overline{Y} \implies \hat{\tau}_{h \ j} = \overline{Y}_{h \ j} - \overline{Y}_j$$
Trat o Variável i

$$V\left(\overline{Y}_{g\,j} - \overline{Y}_{h\,j}\right) = \left(\frac{1}{n_g} + \frac{1}{n_h}\right) \frac{E_{jj}}{n - G} \Rightarrow \left(\overline{Y}_{g\,j} - \overline{Y}_{h\,j}\right) \pm t_{n - G} \left(\alpha / 2K\right) \sqrt{V\left(\overline{Y}_{g\,j} - \overline{Y}_{h\,j}\right)}$$

Intervalo de confiança $100(1-\alpha)\%$ com Correção de Bonferroni para um total de K comparações.

$$(Ex., K=p + G(G-1)/2)$$