Tame algebras have dense g-vector fans

Toshiya Yurikusa (Tohoku University)

joint work with Pierre-Guy Plamondon (Université Paris-Saclay)

2020 / 7 / 3

Motivation

- Λ : a finite dimensional algebra over an algebraic closed field k.
- $K^b(\operatorname{proj}\Lambda)$: the homotopy category of bounded complexes of finitely generated projective right Λ -modules.

Motivation

- Λ : a finite dimensional algebra over an algebraic closed field k.
- $K^b(\operatorname{proj} \Lambda)$: the homotopy category of bounded complexes of finitely generated projective right Λ -modules.

A 2-term presilting object in $K^b(\operatorname{proj}\Lambda)$ has a numerical invariant, g-vector, in \mathbb{Z}^n (\simeq Grothendiek group of $K^b(\operatorname{proj}\Lambda)$).

There is a simplicial polyhedral fan $\mathcal{F}^{\mathbf{g}}(\Lambda)$, g-vector fan, whose

- ray is generated by the g-vector of an indecomposable 2-term presilting object;
- maximal cone is generated by the g-vectors of direct summands of a 2-term silting object.

In this talk, we identify $\mathcal{F}^{\mathbf{g}}(\Lambda)$ with its geometric realization.

Relation to other subjects

- (1) There are bijections between the following objects:
 - Iso. classes of basic 2-term silting objects in $K^b(\operatorname{proj} \Lambda)$;
 - Iso. classes of basic support τ -tilting modules in $\operatorname{mod} \Lambda$;
 - Functorially finite torsion classes in $\operatorname{mod} \Lambda$;
 - Iso. classes of 2-term simple-minded collections in $\mathcal{D}^b(\operatorname{mod}\Lambda)$;
 - Intermediate t-structures with length heart in $\mathcal{D}^b(\operatorname{mod}\Lambda)$...
- (2) The g-vector fans are related to various subjects:
 - normal fans of generalized associahedrons [Chapoton et al., 2002];
 - Cambrian fans [Reading and Speyer, 2009];
 - ullet tropical cluster \mathcal{X} -variety [Fock and Goncharov, 2009];
 - cluster/stability scattering diagrams
 [Bridgeland, 2017, Gross et al., 2018]...

Let $m \in \mathbb{Z}_{\geq 1}$ and K_m be an m-Kronecker quiver, that is,

$$K_m := [1 \xrightarrow{i} 2].$$

In particular, K_1 is of type A_2 and K_2 is a Kronecker quiver. The g-vector fan $\mathcal{F}^{\mathbf{g}}(kK_m)$ is well known as follows:

For $m \geq 2$, $\mathcal{F}^{\mathbf{g}}(kK_m)$ contains infinitely many rays converging to the rays r_{\pm} . If m=2, then $r_{+}=r_{-}$. If $m\geq 3$, then $r_{+}\neq r_{-}$ and the interior of the cone spanned by r_{+} and r_{-} is the complement of the closure $\overline{\mathcal{F}^{\mathbf{g}}(kK_m)}$.

Theorem ([Asai, 2019, Demonet et al., 2019])

The following are equivalent:

(1)
$$\mathcal{F}^{\mathbf{g}}(\Lambda) = \mathbb{R}^n$$
; (2) $\#\{2\text{-term (pre)silting objects for }\Lambda\} < \infty$.

Theorem ([Asai, 2019, Demonet et al., 2019])

The following are equivalent:

(1)
$$\mathcal{F}^{\mathbf{g}}(\Lambda) = \mathbb{R}^n$$
; (2) $\#\{2\text{-term (pre)silting objects for }\Lambda\} < \infty$.

This naturally leads the following question.

Question

When does Λ satisfy $\overline{\mathcal{F}^{\mathbf{g}}(\Lambda)} = \mathbb{R}^n$?

Sketch of proof

Today's talk

- 1 g-vector fans and main theorem
- 2 Two ingredients of proof
- Sketch of proof
- 4 Application to cluster algebras

Notations

• $\Lambda = \bigoplus_{i=1}^n P_i$: a decomposition of Λ as direct sum of pairwise non-isomorphic indecomposable projective right Λ -modules.

Sketch of proof

- $K_0(\operatorname{proj}\Lambda)$: the Grothendieck group of $K^b(\operatorname{proj}\Lambda)$
- [X]: the image of an object X in $K_0(\operatorname{proj} \Lambda)$

Then $K_0(\operatorname{proj} \Lambda)$ is a free abelian group with basis $[P_1], \ldots, [P_n]$, thus it gives $K_0(\operatorname{proj}\Lambda) \simeq \mathbb{Z}^n$.

Notations

• $\Lambda = \bigcap_{i=1}^n P_i$: a decomposition of Λ as direct sum of pairwise non-isomorphic indecomposable projective right Λ -modules.

Sketch of proof

- $K_0(\operatorname{proj}\Lambda)$: the Grothendieck group of $K^b(\operatorname{proj}\Lambda)$
- [X]: the image of an object X in $K_0(\operatorname{proj} \Lambda)$

Then $K_0(\operatorname{proj} \Lambda)$ is a free abelian group with basis $[P_1], \ldots, [P_n]$, thus it gives $K_0(\operatorname{proj}\Lambda) \simeq \mathbb{Z}^n$.

• $K^{[-1,0]}(\operatorname{proj}\Lambda)$: the full subcategory of $K^b(\operatorname{proj}\Lambda)$ whose objects are complexes concentrated in degrees -1 and 0, that is $P = P^{-1} \xrightarrow{f} P^0$. We identify P with $f \in \operatorname{Hom}_{\Lambda}(P^{-1}, P^0)$.

Definition

The g-vector of $P \in K^{[-1,0]}(\operatorname{proj} \Lambda)$ is $[P] \in K_0(\operatorname{proj} \Lambda) \simeq \mathbb{Z}^n$.

2-term silting complexes and g-vector fan

Definition

An object $X \in K^{[-1,0]}(\operatorname{proj} \Lambda)$ is presilting if $\operatorname{Hom}_{K^b(\operatorname{proj}\Lambda)}(X,\Sigma X)=0$, where Σ is the shift functor. It is silting if, moreover, it generates $K^b(\operatorname{proj}\Lambda)$.

2-silt $\Lambda = \{ \text{iso. classes of basic silting objects in } K^{[-1,0]}(\text{proj }\Lambda) \}$

Theorem ([Adachi et al., 2014])

There is a simplicial polyhedral fan $\mathcal{F}^{\mathbf{g}}(\Lambda)$ whose

- ray is generated by the g-vectors of an indecomposable presilting object of $K^{[-1,0]}(\operatorname{proj} \Lambda)$:
- maximal cone is a positive cone generated by $[S_1], \ldots, [S_n]$ for $\bigcap_{i=1}^n S_i \in 2\text{-silt }\Lambda.$

 $\mathcal{F}^{\mathbf{g}}(\Lambda)$: the (2-term silting) g-vector fan of Λ

Sketch of proof

g-tame algebras

Definition

The algebra Λ is g-tame if $\overline{\mathcal{F}^{\mathbf{g}}(\Lambda)} = \mathbb{R}^n$.

Note that the g-tameness is already known for

- path algebras of extended Dynkin quivers [Hille, 2006];
- Jacobian algebras associated with triangulated surfaces [Y, 2020];
- complete preprojective algebras of extended Dynkin graphs [Kimura and Mizuno, 2019];
- complete special biserial algebras [Aoki and Y, 2020].

Main theorem

Definition (1970s)

The algebra Λ is tame if for any dimension vector \mathbf{d} , there are k[t]- Λ -bimodules $M_1, \ldots, M_{m(\mathbf{d})}$ such that

- (1) each M_i is free of finite rank as a k[t]-module;
- (2) all but finitely many indecomposable Λ -modules of dimension vector d have the form

$$k[t]/(t-\lambda)\otimes_{k[t]}M_i$$

Sketch of proof

with $i \in \{1, \ldots, m(\mathbf{d})\}$ and $\lambda \in k$.

Main theorem

Tame algebras are g-tame.

Remark that there is a non-tame algebra which is g-tame.

Two ingredients of proof for the main theorem.

Sketch of proof

Sketch of proof

1. Generic decomposition (notation)

For $\mathbf{g} \in K_0(\operatorname{proj} \Lambda)$, let $P^{\mathbf{g}_+}$ and $P^{\mathbf{g}_-}$ be the unique finitely generated projective modules without common non-zero direct summands such that $\mathbf{g} = [P^{\mathbf{g}+}] - [P^{\mathbf{g}-}].$

Let $\mathbf{g}, \mathbf{g}' \in K_0(\operatorname{proj} \Lambda)$. We denote by $e(\mathbf{g}, \mathbf{g}')$ the minimal value of $\dim \operatorname{Hom}_{K^b(\operatorname{proj}\Lambda)}(P,\Sigma P'),$

where $P, P' \in K^{[-1,0]}(\operatorname{proj} \Lambda)$ with $[P] = \mathbf{g}$ and $[P'] = \mathbf{g}'$.

1. Generic decomposition

Theorem ([Derksen and Fei, 2015],[Plamondon, 2013])

Any $\mathbf{g} \in K_0(\operatorname{proj} \Lambda)$ can be written as

$$\mathbf{g}=\mathbf{g}_1+\ldots+\mathbf{g}_r,$$

Sketch of proof

where for each $i, j \in \{1, ..., r\}$ with $i \neq j$,

- (1) a general element of $\operatorname{Hom}_{\Lambda}(P^{(\mathbf{g}_i)_-}, P^{(\mathbf{g}_i)_+})$ is indecomposable;
- (2) $e(\mathbf{g}_i, \mathbf{g}_j) = 0.$

Moreover, g_1, \ldots, g_r are unique for these properties.

The decomposition in Theorem is the generic decomposition of g.

1. Generic decomposition: tame algebras

Theorem ([Geiss et al., 2020])

Let Λ be a tame algebra, and let $\mathbf{g} \in K_0(\operatorname{proj} \Lambda)$. Then the generic decomposition of g has the form

Sketch of proof

$$\mathbf{g} = \mathbf{g}_1 + \ldots + \mathbf{g}_r + \mathbf{h}_1 + \ldots + \mathbf{h}_s,$$

where r, s > 0 and

- (1) a general element of $\operatorname{Hom}_{\Lambda}(P^{(\mathbf{g}_i)_-}, P^{(\mathbf{g}_i)_+})$ is presilting;
- (2) there is a dense open subset \mathcal{U} of $\operatorname{Hom}_{\Lambda}(P^{(\mathbf{h}_{j})_{-}}, P^{(\mathbf{h}_{j})_{+}})$ such that the cokernels of morphisms in \mathcal{U} are indecomposable Λ -modules which are bricks and are isomorphic to their own Auslander-Reiten translate.

2. Cylinders

To save space, we use the notations

$$\operatorname{Hom}_{K^b(\operatorname{proj}\Lambda)}(X,Y) = \operatorname{Hom}(X,Y) = (X,Y).$$

Sketch of proof

Definition

For $U, X \in K^b(\operatorname{proj} \Lambda)$, we choose a basis (f_1, \ldots, f_d) of the space Hom(U,X) and a triangle

$$\Sigma^{-1}X^d \to \operatorname{Cyl}_X U \to U \xrightarrow{f} X^d$$
, where $f = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_d \end{bmatrix}$.

The object $Cyl_X U$ is the cylinder of U with respect to X.

The cylinder is only defined up to isomorphism.

Sketch of proof

Commuting cylinders

Lemma (Commuting cylinders)

Let X and Y be non-isomorphic indecomposable objects of $K^b(\operatorname{proj}\Lambda)$, and let $U \in K^b(\operatorname{proj}\Lambda)$. We assume that the following hold:

- (1) $\operatorname{Hom}(X, \Sigma Y) = \operatorname{Hom}(Y, \Sigma X) = 0$;
- (2) for any $\phi \in \text{Hom}(U, X)$ and $\psi \in \text{Hom}(X, Y)$, then $\psi \phi = 0$;
- (3) for any $\phi' \in \text{Hom}(U,Y)$ and $\psi' \in \text{Hom}(Y,X)$, then $\psi' \phi' = 0$.

Then $\operatorname{Cyl}_{\mathbf{Y}} \operatorname{Cyl}_{\mathbf{Y}} U \simeq \operatorname{Cyl}_{\mathbf{Y}} \operatorname{Cyl}_{\mathbf{Y}} U$.

Sketch of proof for (Commuting cylinders)

The triangles defining $Cyl_X U$ and $Cyl_Y U$ are

$$\Sigma^{-1}X^d \to \operatorname{Cyl}_X U \xrightarrow{x} U \xrightarrow{f} X^d \ , \quad \Sigma^{-1}Y^e \to \operatorname{Cyl}_Y U \xrightarrow{y} U \xrightarrow{g} Y^e.$$

By (1) (2), $\operatorname{Hom}(U,Y) \xrightarrow{x^*} \operatorname{Hom}(\operatorname{Cyl}_X U,Y)$ is an isomorphism.

By (1) (3), $\operatorname{Hom}(U,X) \xrightarrow{y^*} \operatorname{Hom}(\operatorname{Cyl}_Y U,X)$ is an isomorphism. Thus, by the octahedral axiom, there is a commutative diagram:

Thus, by the octahedral axiom, there is a commutative diagram:

 \uparrow defining $\operatorname{Cyl}_X\operatorname{Cyl}_YU$

g-vectors of cylinders

Lemma

Let H be an indecomposable object of $K^{[-1,0]}(\operatorname{proj} \Lambda)$ such that $\operatorname{Hom}(H,\Sigma H)$ is one-dimensional, and let $U\in K^{[-1,0]}(\operatorname{proj}\Lambda)$. Then $\operatorname{Cyl}_{\Sigma^H}^m U$ is in $K^{[-1,0]}(\operatorname{proj}\Lambda)$ for any $m \in \mathbb{Z}_{>0}$, and

$$[\operatorname{Cyl}_{\Sigma H}^m U] = [U] + md[H],$$

where $d = \dim \operatorname{Hom}(U, \Sigma H)$.

Proof By the triangle $H^d \to \operatorname{Cyl}_{\Sigma H} U \to U \to \Sigma H^d$, we have $[\operatorname{Cyl}_{\Sigma H} U] = [U] + d[H]$ and

$$(\Sigma H^d, \Sigma H) \twoheadrightarrow (U, \Sigma H) \rightarrow (\operatorname{Cyl}_{\Sigma H} U, \Sigma H) \rightarrow (H^d, \Sigma H) \rightarrow 0,$$

thus $\dim(\operatorname{Cyl}_{\Sigma H} U, \Sigma H) = d$. Repeating the cylinder with respect to ΣH , the desired equality is obtained.

g-vectors of cylinders

Lemma (g-vectors of cylinders)

Let H_1, \ldots, H_s be indecomposable objects of $K^{[-1,0]}(\operatorname{proj} \Lambda)$ such that

Sketch of proof

- for each $i \in \{1, ..., s\}$, $\operatorname{Hom}(H_i, \Sigma H_i)$ is one-dimensional;
- for each pair of disctinct $i, j \in \{1, \dots, s\}$, the objects $X = \Sigma H_i$ and $Y = \Sigma H_i$ satisfy the hypotheses of (Commuting cylinders) for any $U \in K^{[-1,0]}(\operatorname{proj} \Lambda)$.

Let $d_i = \dim \operatorname{Hom}(U, \Sigma H_i)$, and $a_1, \ldots, a_s \in \mathbb{Z}_{>0}$. Then $\operatorname{Cyl}_{\Sigma H}^{a_s} \cdots \operatorname{Cyl}_{\Sigma H}^{a_1} U$ is in $K^{[-1,0]}(\operatorname{proj}\Lambda)$, and

$$[\operatorname{Cyl}_{\Sigma H_s}^{a_s} \cdots \operatorname{Cyl}_{\Sigma H_1}^{a_1} U] = [U] + \sum_{i=1}^s a_i d_i [H_i].$$

Sketch of proof

Presilting cylinders

Lemma (Presilting cylinders)

Let H be an indecomposable object of $K^{[-1,0]}(\operatorname{proj} \Lambda)$ such that $\operatorname{Hom}(H, \Sigma H)$ is one-dimensional, and let $U \in K^{[-1,0]}(\operatorname{proj} \Lambda)$ satisfying the following:

- (1) U is presilting (i.e. $Hom(U, \Sigma U) = 0$);
- (2) $\operatorname{Hom}(H, \Sigma U) = 0$;
- (3) for any non-zero $q \in \operatorname{Hom}_{\mathcal{D}\Lambda}(\Sigma H, \nu H)$ the induced morphism

$$\operatorname{Hom}_{K^b(\operatorname{proj}\Lambda)}(U,\Sigma H) \xrightarrow{g_*} \operatorname{Hom}_{\mathcal{D}\Lambda}(U,\nu H)$$

is injective, where $\nu = - \otimes_{\Lambda}^{L} D\Lambda$ is the Nakayama functor. Then $\operatorname{Cyl}_{\Sigma H} U$ is in $K^{[-1,0]}(\operatorname{proj} \Lambda)$ and also satisfies (1)–(3).

Sketch of proof for (Presilting cylinders): only (1) and (2)

Let $\operatorname{Cyl}_{\Sigma H} U \to U \xrightarrow{f} \Sigma H^d$ be the triangle defining $\operatorname{Cyl}_{\Sigma H} U$. There is a commutative diagram:

$$(C,U) \longrightarrow (H^d,U) \longrightarrow (\Sigma^{-1}U,U)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\Sigma H^d,\Sigma H^d) \stackrel{f^*}{\rightarrow} (U,\Sigma H^d) \rightarrow (C,\Sigma H^d) \rightarrow (H^d,\Sigma H^d) \rightarrow (\Sigma^{-1}U,\Sigma H^d)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\Sigma H^d,\Sigma C) \longrightarrow (U,\Sigma C) \longrightarrow (C,\Sigma C) \longrightarrow (H^d,\Sigma C) \longrightarrow (\Sigma^{-1}U,\Sigma C)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\Sigma H^d,\Sigma U) \longrightarrow (U,\Sigma U) \longrightarrow (C,\Sigma U) \longrightarrow (H^d,\Sigma U) \longrightarrow (\Sigma^{-1}U,\Sigma U)$$

where $C = \operatorname{Cyl}_{\Sigma H} U$.

Sketch of proof for (Presilting cylinders): only (1) and (2)

Let $\operatorname{Cyl}_{\Sigma H} U \to U \xrightarrow{f} \Sigma H^d$ be the triangle defining $\operatorname{Cyl}_{\Sigma H} U$. There is a commutative diagram:

$$\begin{array}{c|c} (C,U) \longrightarrow (H^d,U) \longrightarrow 0 \\ & & & & & & \downarrow \\ (\Sigma H^d,\Sigma H^d) \stackrel{f^*}{\Rightarrow} (U,\Sigma H^d) \twoheadrightarrow (C,\Sigma H^d) \twoheadrightarrow (H^d,\Sigma H^d) \twoheadrightarrow 0 \\ & & & & & \downarrow \\ (\Sigma H^d,\Sigma C) \longrightarrow (U,\Sigma C) \longrightarrow (C,\Sigma C) \longrightarrow (H^d,\Sigma C) \longrightarrow 0 \\ & & & & & \downarrow \\ (\Sigma H^d,\Sigma U) \longrightarrow 0 \stackrel{(1)}{\longrightarrow} (C,\Sigma U) \longrightarrow 0 \stackrel{(2)}{\longrightarrow} 0 \end{array}$$

where $C = \operatorname{Cyl}_{\Sigma H} U$. Thus C satisfies (1) and (2).

Sketch of proof for the main theorem

Sketch of proof

•0000

Sketch of proof for the main theorem

Let Λ be a tame algebra with $K_0(\operatorname{proj} \Lambda) \simeq \mathbb{Z}^n$ ($\mathcal{F}^{\mathbf{g}}(\Lambda) \subseteq \mathbb{R}^n$). We only need to prove $\mathbf{g} \in \overline{\mathcal{F}^{\mathbf{g}}(\Lambda)}$ for any $\mathbf{g} \in \mathbb{Z}^n$.

Sketch of proof

00000

Sketch of proof for the main theorem

Let Λ be a tame algebra with $K_0(\operatorname{proj} \Lambda) \simeq \mathbb{Z}^n$ $(\mathcal{F}^{\mathbf{g}}(\Lambda) \subseteq \mathbb{R}^n)$. We only need to prove $\mathbf{g} \in \overline{\mathcal{F}^{\mathbf{g}}(\Lambda)}$ for any $\mathbf{g} \in \mathbb{Z}^n$. We consider the generic decomposition

$$\mathbf{g} = \mathbf{g}_1 + \ldots + \mathbf{g}_r + a_1 \mathbf{h}_1 + \ldots + a_s \mathbf{h}_s,$$

where $\mathbf{h}_i \neq \mathbf{h}_i$ for $i \neq j$ and $a_i \in \mathbb{Z}_{>0}$. Then

- there is a presilting object G of $K^{[-1,0]}(\operatorname{proj}\Lambda)$ with g-vector $[G] = \mathbf{g}_1 + \ldots + \mathbf{g}_r.$
- there are indecomposable objects $H_i \in K^{[-1,0]}(\operatorname{proj}\Lambda)$ with g-vector \mathbf{h}_i such that H_1, \dots, H_s satisfy the hypotheses of (g-vectors of cylinders).

If s=0, then $\mathbf{g}=[G]\in\mathcal{F}^{\mathbf{g}}(\Lambda)$ and there is nothing to prove. Assume that s > 0, then G is not silting.

Let G' be its Bongartz co-completion, defined by the triangle

$$\Lambda \to G'' \to G' \to \Sigma \Lambda$$
,

Sketch of proof

where the left-most morphism is a left (add G)-approximation of Λ . Then $G \oplus G' \in 2$ -silt Λ .

Lemma

Taking U = G' and $H = H_i$ for $i \in \{1, ..., s\}$, conditions (1)–(3) of (Presilting cylinders) are satisfied. Also, $\text{Hom}(G', \Sigma H_i) \neq 0$.

For each $i \in \{1, \ldots, s\}$, let $d_i = \dim \operatorname{Hom}(G', \Sigma H_i) \neq 0$. Let $d = \prod_{i=1}^{s} d_i$, and let $e_i = \frac{d}{d_i}$ for each i. In the same way as (Presilting cylinders), we get that

$$\operatorname{Cyl}_{\Sigma H_s}^{a_s e_s} \cdots \operatorname{Cyl}_{\Sigma H_1}^{a_1 e_1} G'$$

is a presilting object of $K^{[-1,0]}(\operatorname{proj} \Lambda)$.

Sketch of proof

00000

$$G^{\oplus d} \oplus \operatorname{Cyl}_{\Sigma H_s}^{a_s e_s} \cdots \operatorname{Cyl}_{\Sigma H_1}^{a_1 e_1} G'$$

is presilting. Since H_1, \ldots, H_s satisfy the hypotheses of (g-vectors of cylinders), we get

$$[G^{\oplus d} \oplus \text{Cyl}_{\Sigma H_s}^{a_s e_s} \cdots \text{Cyl}_{\Sigma H_1}^{a_1 e_1} G'] = d[G] + [G'] + \sum_{i=1}^s a_i e_i d_i [H_i]$$

$$= d([G] + \sum_{i=1}^s a_i [H_i]) + [G']$$

$$= d\mathbf{g} + [G'].$$

Sketch of proof

0000

Similarly, for any $m \in \mathbb{Z}_{>0}$, we have that

$$G^{\oplus dm} \oplus \operatorname{Cyl}_{\Sigma H_s}^{ma_s e_s} \cdots \operatorname{Cyl}_{\Sigma H_1}^{ma_1 e_1} G'$$

is a presilting object with g-vector $md\mathbf{g} + [G']$. Thus

$$\mathbf{g} \in \bigcup_{m=1}^{\infty} \mathbb{R}_{>0}(md\mathbf{g} + [G']).$$

Since each $md\mathbf{g} + [G']$ is the g-vector of a presilting objects, these vectors are in the fan $\mathcal{F}^{\mathbf{g}}(\Lambda)$. Thus $\mathbf{g} \in \overline{\mathcal{F}^{\mathbf{g}}(\Lambda)}$. This finishes the proof of the main theorem.

g-vector fans and main theorem

Sketch of proof

Q: a quiver without loops and 2-cycles

 $\mathcal{A}(Q)$: the cluster algebra associated with Q

Mutation of quivers

For a quiver R, the mutation $\mu_k R$ at a vertex k is a quiver obtained from R by the following steps:

- (1) For any path $i \to k \to j$, add an arrow $i \to j$;
- (2) Reverse all arrows incident to k;
- (3) Remove a maximal set of disjoint 2-cycles.

 Q^{prin} : the quiver obtained by adding a vertex i' and an arrow $i' \to i$ for every vertex i of Q $(\mathbf{e}_1, \dots \mathbf{e}_n)$: the standard basis of \mathbb{Z}^n $\left(Q^{\mathrm{prin}}, (\mathbf{e}_1, \dots, \mathbf{e}_n)\right)$: the initial g-vector seed of $\mathcal{A}(Q)$

g-vectors of cluster algebras

Definition-Proposition ([Fomin and Zelevinsky, 2007])

All g-vector seeds of $\mathcal{A}(Q)$ are obtained from $\left(Q^{\mathrm{prin}},(\mathbf{e}_1,\ldots,\mathbf{e}_n)\right)$ by the following mutation rule:

For a g-vector seed $(R, (\mathbf{g}_1, \ldots, \mathbf{g}_n))$, the mutation $\mu_k(R, (\mathbf{g}_1, \ldots, \mathbf{g}_n)) = (\mu_k R, (\mathbf{g}_1', \ldots, \mathbf{g}_n'))$ at $k \in \{1, \ldots, n\}$ is also a g-vector seed, where

$$\mathbf{g}'_{\ell} = \begin{cases} \mathbf{g}_{\ell} & \text{if } \ell \neq k; \\ -\mathbf{g}_{k} + \sum_{i=1}^{n} [b_{ik}]_{+} \mathbf{g}_{i} - \sum_{j=1}^{n} [b_{jk}]_{+} (b_{ij})_{i=1}^{n} & \text{if } \ell = k, \end{cases}$$

with $b_{ij} = \#\{i \to j \text{ in } R\} - \#\{j \to i \text{ in } R\}$, $[z]_+ = \max(z, 0)$.

The vectors \mathbf{g}_i in \mathbf{g} -vector seeds are the \mathbf{g} -vectors of $\mathcal{A}(Q)$.

Cluster g-vector fan

Theorem ([Derksen et al., 2010])

There is a simplicial polyhedral fan $\mathcal{F}_{cluster}^{\mathbf{g}}(Q)$ whose

- ray is generated by a g-vector;
- maximal cone is generated by all g-vectors in a g-vector seed.

Sketch of proof

 $\mathcal{F}_{cluster}^{\mathbf{g}}(Q)$: the cluster g-vector fan of Q

Cluster g-vector fan

Theorem ([Derksen et al., 2010])

There is a simplicial polyhedral fan $\mathcal{F}_{cluster}^{\mathbf{g}}(Q)$ whose

- ray is generated by a g-vector;
- maximal cone is generated by all g-vectors in a g-vector seed.

Sketch of proof

 $\mathcal{F}_{\text{cluster}}^{\mathbf{g}}(Q)$: the cluster g-vector fan of Q

Definition

We say that Q is

- cluster-g-dense if $\mathcal{F}_{cluster}^{\mathbf{g}}(Q) = \mathbb{R}^n$;
- half cluster-g-dense if $\overline{\mathcal{F}_{\text{cluster}}^{\mathbf{g}}(Q)}$ and $\overline{\mathcal{F}_{\text{cluster}}^{\mathbf{g}}(Q^{op})}$ are closed half-spaces in \mathbb{R}^n .

Mutation-finite quivers

We say that Q is

- mutation equivalent to Q' if Q is obtained from Q' by a sequence of mutations;
- mutation-finite if there are only finitely many quivers mutation equivalent to Q.

Sketch of proof

Theorem ([Felikson et al., 2012])

A mutation-finite quiver Q is one of the followings:

- an m-Kronecker quiver K_m with m > 3;
- a quiver defined from a triangulated surface [Fomin et al., 2008];
- a quiver mutation equivalent to one of the quivers E_i , E_i , $E_i^{(1,1)}$, X_6 and X_7 for $i \in \{6,7,8\}$.

g-vector fans and main theorem

Mutation-finite quivers

Lemma ([Muller, 2016])

If Q is not mutation-finite, then Q is neither cluster-g-dense nor half cluster-g-dense.

Additive categorification of cluster algebras

The mutation of objects in 2-silt Λ is also defined.

• 2-silt $\Lambda \subset 2$ -silt Λ : the subset consisting of objects obtained from Λ by sequences of mutations.

Sketch of proof

• 2-silt $\Lambda \subseteq 2$ -silt Λ : the subset consisting of objects obtained from $\Sigma\Lambda$ by sequences of mutations.

They induce the subfans $\mathcal{F}^{\mathbf{g}}_{+}(\Lambda)$ and $\mathcal{F}^{\mathbf{g}}_{-}(\Lambda)$ of $\mathcal{F}^{\mathbf{g}}(\Lambda)$, respectively.

A potential W of Q is a linear combination of cycles in Q. A non-degenerate potential W of Q defines a Jacobian algebra J(Q,W) [Derksen et al., 2008]. The potential W is Jacobi-finite if J(Q, W) is finite dimensional.

Additive categorification of cluster algebras

Theorem (Additive categorification of cluster algebras)

Let Q be a quiver without loops and 2-cycles. Let W be a non-degenerate Jacobi-finite potential of Q.

(1) There is a bijection

$$2\text{-silt}^+ J(Q, W) \leftrightarrow \{\mathbf{g}\text{-}vector\ seeds\ of\ Q\}$$

commuting with mutations, and $\mathcal{F}^{\mathbf{g}}_{+}(J(Q,W)) = \mathcal{F}^{\mathbf{g}}_{\text{elustor}}(Q)$.

(2) There is a bijection

$$2\text{-silt}^- J(Q, W) \leftrightarrow \{\mathbf{g}\text{-}vector\ seeds\ of\ Q^{\mathrm{op}}\}\$$

commuting with mutations, and $\mathcal{F}_{-}^{\mathbf{g}}(J(Q,W)) = -\mathcal{F}_{\mathrm{cluster}}^{\mathbf{g}}(Q^{\mathrm{op}}).$

Additive categorification: mutation-finite case

Theorem ([Geiss et al., 2016])

A quiver Q is a mutation-finite one that is not mutation equivalent to one of the quivers X_6 , X_7 and K_m with $m \geq 3$ if and only if there is a non-degenerate Jacobi-finite potential W of Q such that J(Q,W) is tame.

In this case, our main theorem implies that $\overline{\mathcal{F}^{\mathbf{g}}(J(Q,W))} = \mathbb{R}^n$.

Additive categorification: mutation-finite case

Theorem ([Barot et al., 2010], [Buan et al., 2006], [Y, 2020])

Suppose that Q is mutation-finite except for mutation equivalence classes of X_6 and X_7 . Let W be a non-degenerate Jacobi-finite potential of Q and J = J(Q, W). Then

- (1) if Q is not defined from a closed surface with exactly one puncture, then $2\text{-silt }J=2\text{-silt}^+J$ and thus $\mathcal{F}^{\mathbf{g}}(J)=\mathcal{F}^{\mathbf{g}}_+(J)=\mathcal{F}^{\mathbf{g}}_+(J)=\mathcal{F}^{\mathbf{g}}_{\mathrm{cluster}}(Q);$
- (2) otherwise, $2\text{-silt }J = 2\text{-silt}^+ J \sqcup 2\text{-silt}^- J$ and thus $\mathcal{F}^{\mathbf{g}}(J) = \mathcal{F}^{\mathbf{g}}_+(J) \sqcup \mathcal{F}^{\mathbf{g}}_-(J) = \mathcal{F}^{\mathbf{g}}_{\text{cluster}}(Q) \sqcup (-\mathcal{F}^{\mathbf{g}}_{\text{cluster}}(Q^{\text{op}})).$

Therefore, we get

- (1) $\mathcal{F}_{\text{cluster}}^{\mathbf{g}}(Q) = \mathbb{R}^n$, that is, Q is cluster-g-dense;
- (2) $\overline{\mathcal{F}_{\mathrm{cluster}}^{\mathbf{g}}(Q) \sqcup (-\mathcal{F}_{\mathrm{cluster}}^{\mathbf{g}}(Q^{\mathrm{op}}))} = \mathbb{R}^n$. In fact, it was given in [Y, 2020] that $\overline{\mathcal{F}_{\mathrm{cluster}}^{\mathbf{g}}(Q)}$ is a closed half-space in \mathbb{R}^n , that is, Q is half cluster-g-dense.

Classification of (half) cluster-g-dense quivers

Corollary

Suppose that Q is not mutation equivalent to one of the guivers X_6 , X_7 and K_m with m > 3. Then

- Q is cluster-g-dense or half cluster-g-dense if and only if it is mutation-finite:
- it is half cluster-g-dense if and only if it is defined from a closed surface with exactly one puncture.

On the other hand, K_m is not (half) cluster-g-dense for $m \geq 3$.

Conjecture for X_6 and X_7

- [Mills, 2017] $\mathcal{F}_{cluster}^{\mathbf{g}}(X_6) = -\mathcal{F}_{cluster}^{\mathbf{g}}(X_6^{op});$
- [Seven, 2014] $\mathcal{F}_{cluster}^{\mathbf{g}}(X_7)$ is contained in some open half-space in \mathbb{R}^n .

Therefore, the following seems natural.

Conjecture

- (1) The quiver X_6 is cluster-g-dense.
- (2) The quiver X_7 is half cluster-g-dense.

Remark that the Jacobian algebras associated with X_6 and X_7 are not tame [Geiss et al., 2016].

Thank you for your attention!

Reference I

```
[Adachi et al., 2014] Adachi, T., Iyama, O., and Reiten, I. (2014).
  	au-tilting theory.
  Compos. Math., 150(3):415-452.
[Aoki and Y, 2020] Aoki, T. and Y, T. (2020).
  Complete gentle algebras are g-tame.
  arXiv:2003.09797 [math.RT].
[Asai, 2019] Asai, S. (2019).
  The wall-chamber structures of the real Grothendieck groups.
  arXiv preprint arXiv:1905.02180.
[Barot et al., 2010] Barot, M., Kussin, D., and Lenzing, H. (2010).
  The cluster category of a canonical algebra.
   Transactions of the American Mathematical Society, 362(8):4313–4330.
[Bridgeland, 2017] Bridgeland, T. (2017).
  Scattering diagrams, Hall algebras and stability conditions.
  Algebraic Geometry, 4(5):523-561.
```

Reference II

```
[Buan et al., 2006] Buan, A. B., Marsh, R., Reineke, M., Reiten, I., and Todorov, G.
  (2006).
  Tilting theory and cluster combinatorics.
  Advances in mathematics, 204(2):572-618.
[Chapoton et al., 2002] Chapoton, F., Fomin, S., and Zelevinsky, A. (2002).
  Polytopal realizations of generalized associahedra.
  volume 45, pages 537-566.
  Dedicated to Robert V. Moody.
[Demonet et al., 2019] Demonet, L., Iyama, O., and Jasso, G. (2019).
  \tau-tilting finite algebras, bricks, and q-vectors.
  Int. Math. Res. Not. IMRN. (3):852-892.
[Derksen and Fei, 2015] Derksen, H. and Fei, J. (2015).
  General presentations of algebras.
  Adv. Math., 278:210-237.
[Derksen et al., 2008] Derksen, H., Weyman, J., and Zelevinsky, A. (2008).
  Quivers with potentials and their representations I: Mutations.
```

Selecta Mathematica, 14(1):59–119.

Reference III

```
[Derksen et al., 2010] Derksen, H., Weyman, J., and Zelevinsky, A. (2010).
  Quivers with potentials and their representations II: applications to cluster algebras.
  J. Amer. Math. Soc., 23(3):749-790.
[Felikson et al., 2012] Felikson, A., Shapiro, M., and Tumarkin, P. (2012).
  Skew-symmetric cluster algebras of finite mutation type.
  J. Eur. Math. Soc., 14(4):1135-1180.
[Fock and Goncharov, 2009] Fock, V. V. and Goncharov, A. B. (2009).
  Cluster ensembles, quantization and the dilogarithm.
  Ann. Sci. Ec. Norm. Supér. (4), 42(6):865-930.
[Fomin et al., 2008] Fomin, S., Shapiro, M., and Thurston, D. (2008).
  Cluster algebras and triangulated surfaces. part I: Cluster complexes.
  Acta Math., 201(1):83-146.
[Fomin and Zelevinsky, 2007] Fomin, S. and Zelevinsky, A. (2007).
  Cluster algebras IV: coefficients.
  Compositio Mathematica, 143(1):112-164.
```

Reference IV

```
The representation type of Jacobian algebras.
  Advances in Mathematics, 290:364-452.
[Geiss et al., 2020] Geiss, C., Labardini-Fragoso, D., and Schröer, J. (2020).
  Schemes of modules over gentle algebras and laminations of surfaces.
  arXiv:2005.01073 [math.RT].
[Gross et al., 2018] Gross, M., Hacking, P., Keel, S., and Kontsevich, M. (2018).
  Canonical bases for cluster algebras.
  Journal of the American Mathematical Society, 31(2):497–608.
[Hille, 2006] Hille, L. (2006).
  On the volume of a tilting module.
  Abh. Math. Sem. Univ. Hamburg, 76:261-277.
[Kimura and Mizuno, 2019] Kimura, Y. and Mizuno, Y. (2019).
  Two-term tilting complexes for preprojective algebras of non-dynkin type.
  arXiv preprint arXiv:1908.02424.
```

[Geiss et al., 2016] Geiss, C., Labardini-Fragoso, D., and Schröer, J. (2016).

Reference V

```
[Mills, 2017] Mills, M. R. (2017).
  Maximal green sequences for quivers of finite mutation type.
  Advances in Mathematics, 319:182-210.
[Muller, 2016] Muller, G. (2016).
  The existence of a maximal green sequence is not invariant under quiver mutation.
  Electron. J. Combin., 23(2):P2.47.
[Plamondon, 2013] Plamondon, P.-G. (2013).
  Generic bases for cluster algebras from the cluster category.
  Int. Math. Res. Not. IMRN, (10):2368-2420.
[Reading and Speyer, 2009] Reading, N. and Speyer, D. E. (2009).
  Cambrian fans.
  Journal of the European Mathematical Society, 11(2):407–447.
[Seven, 2014] Seven, A. I. (2014).
```

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 10:089.

Maximal green sequences of exceptional finite mutation type quivers.

Reference VI

[Y, 2020] Y, T. (2020).
Density of g-Vector Cones From Triangulated Surfaces.
International Mathematics Research Notices.
rnaa008.