Does $QNC_1 = noisy-QNC_1$?

David Ponarovsky

June 24, 2025

Introduction

Today:

- Noisy Circuits.
- Definitions and Motivation.
- Pippenger Construction. (Classical, Fault Tolerance with constant overhead at depth).
- 'Franch-line' works, modern fault tolerance methods and gadgets. ('log n' overhead at depth).
- Next week, directions and hints that might show separation. (\neq) .

TAKEAWAYS:

- More about codes.
- First view to fault tolerance.

Nosiy Circuit.

Nosiy Circuit.

Definition

p- Depolarizing Channel. The qubit depolarizing channel with parameter $p \in [0,1]$ is the quantum channel \mathcal{D}_p defined by:

$$\mathcal{D}_{p}(\rho) = (1-p)\rho + p \cdot \frac{l}{2}$$

where ρ is a single-qubit density matrix and I is the identity matrix.

Definition

p-Noisy Circuit. Given a circuit C (regardless of the model), its p-noisy version \tilde{C} is the circuit obtained by alternately taking layers from C and then passing each (qu)bit through a p-Depolarizing channel.

Threshoold Theorem.

Theorem (Threshold Theorem. Informal.)

There is a universal $p_{th} \in (0,1)$ such that for any $p < p_{th}$, any circuit in BQP can be simulated by a p-noisy BQP circuit. The simulating circuit has a depth that is at most poly log n times the original depth.

Definition

Definition (NC - Nick's Class)

 \mathbf{NC}_i is the class of decision problems solvable by a uniform family of Boolean circuits, with polynomial size, depth $O(\log^i(n))$, and fan-in 2.

Definition (QNC)

The class of decision problems solvable by polylogarithmic-depth, and finate fan out/in quantum circuits with bounded probability of error. Similarly to \mathbf{NC}_i , \mathbf{QNC}_i is the class where the decisdes the circuits have $\log^i(n)$ depth.

Definition (QNC_G)

For a fixing finate fan in/out gateset G, the class with deciding circuits composed only for gates in G and at depath at most polylogaritmic. And in similar to \mathbf{QNC}_i , $\mathbf{QNC}_{G,i}$ is the restirction to circuits with depath at most $\log^i(n)$.

Pippenger's Construction.

Theorem (Threshold Theorem - Pippenger. Informal.)

There is fault tolerance construction with a constant depth overhead.

Encode each bit with the repetition code $0 \mapsto 0^m$, $1 \mapsto 1^m$. Now observe that any logical operation, without decoding, can be made in O(1) depth.

For example, $OR(\bar{x}, \bar{y})$ can be computed by applying in parallel $OR(x_i, y_i)$ for each i.

The 'Decoding' trick.

Instead of completely decoding, we would apply only a single step of partial decoding. We assume that in each code block the bits are partitioned into random disjoint triples, and we will apply a local correction to each of the triples by majority.

Claim

There are constants $\alpha, \eta \in (0,1)$ such that for any bit string x at a distance $\leq \alpha n$ from the code (Repetition Code), one cycle of local correction on x yields x' such that:

$$d(x',C) \leq d(x,C)$$

The 'Decoding' trick.

Suppose that a bit obserb a bit flip with probability p. So in expectation we expect that entire bolck at length n will absorb pn flips.

$$\eta (\beta + p) n \leq \beta n$$

$$\beta \geq \frac{p}{1 - \eta}$$

First noitce that the repetition code could be defined as Tanner code, for any Δ -regular graph G and local code C_0 which is the repetition over Δ bits.

In particular G could be a bipartite expander graph. Denote the right and the left vertices subsets by V^- and V^+ .

Decoding:

For $\Omega(\log n)$ iterations, do:

- 1. In every even iteration, all the vertices in V^+ 'correct' their local view based on the majority.
- 2. In every odd iteration, all the vertices in V^- 'correct' their local view based on the majority.

For having a constant depth error reduction procedure, it's enough to run the decoding above for two iterations.

```
Data: x \in \mathbb{F}_2^n
1 for v \in V^+ do

\begin{array}{c|c}
2 & x'_{\nu} \leftarrow \\
& \arg\min \{y \in C_0 : |y + x|_{\nu}|\}
\end{array}

3 end
                                                                 u_2
4 for v \in V^- do
5 x'_{v} \leftarrow  arg min \{y \in C_0 : |y + x|_{v}|\}
6 end
                                                                 u_1
7 return x
```

Lemma

There exists $\beta \in (0,1)$ such that if the error is at weight less than β n, then a single correction round reduces the error by at least a $\frac{1}{2}$ fraction.

Proof.

Denote by $S^{(0)} \subset V^+$ and $T^{(0)} \subset V^-$ the subsets of left and right vertices adjacent to the error. And denote by $T^{(1)} \subset T^{(0)}$ the right vertices such any of them is connect by at least $\frac{1}{2}\Delta$ edges to vertices at $S^{(0)}$.

Note that that any vertex in $V^-/T^{(1)}$ has on his local view less than $\frac{1}{2}\Delta$ faulty bits, So it corrects into his right local view in the first right correction round.

Therefore after the right correction round the error is set only on $T^{(1)}$'s neighbourhood, namely at size at most $\Delta |T^{(1)}|$. We will show:

$$\Delta |T^{(1)}| \leq \operatorname{constant} \cdot |e|$$

Using the expansion property we get an upper bound on $T^{(1)}$ size:

$$\begin{split} \frac{1}{2}\Delta|T^{(1)}| &\leq \Delta \frac{|T^{(1)}||S^{(0)}|}{n} + \lambda \sqrt{|T^{(1)}||S^{(0)}|} \\ \left(\frac{1}{2}\Delta - \frac{|S^{(0)}|}{n}\Delta\right)|T^{(1)}| &\leq \lambda \sqrt{|T^{(1)}||S^{(0)}|} \\ |T^{(1)}| &\leq \left(\frac{1}{2}\Delta - \frac{|S^{(0)}|}{n}\Delta\right)^{-2}\lambda^2|S^{(0)}| \end{split}$$

Since any left vertex adjoins to at most Δ faulty bits we have that $\Delta |S^{(0)}| \leq |e|$. Combing with the inequality above we get:

$$|\Delta|T^{(1)}| \le \left(\frac{1}{2}\Delta - \frac{|e|}{n}\right)^{-2}\lambda^2|e|$$

Hence for $|e|/n \le \beta = \frac{1}{2}\Delta - \sqrt{2\lambda}$ it holds that $\Delta |T^{(1)}| \le \frac{1}{2}|e|$.

The Franch's Construction.

Tillich and Zemor 2014 Leverrier, Tillich, and Zemor 2015 Grospellier 2019

- Tillich, Jean-Pierre and Gilles Zemor (Feb. 2014). "Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength". In: *IEEE Transactions on Information Theory* 60.2, pp. 1193–1202. DOI: 10.1109/tit.2013.2292061. URL: https://doi.org/10.1109%2Ftit.2013.2292061.
- Leverrier, Anthony, Jean-Pierre Tillich, and Gilles Zemor (Oct. 2015). "Quantum Expander Codes". In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science. IEEE. DOI: 10.1109/focs.2015.55. URL:

https://doi.org/10.1109%2Ffocs.2015.55.

Grospellier, Antoine (Nov. 2019). "Constant time decoding of quantum expander codes and application to fault-tolerant quantum computation". Theses. Sorbonne Université. URL: https://theses.hal.science/tel-03364419.

Franch's gadgets.

Theorem

 1 There exists a threshold p_0 such that the following holds. Let $p < p_0$, let $\delta > 0$ and let D be a circuit with m qubits, with T time steps and |D| locations. We assume that the output of D is a quantum state $|\psi\rangle$.

Then there exists another circuit D' whose output is $|\psi\rangle$ and such that when D' is subjected to a local noise model with parameter p, there exists a $\mathcal N$ a local stochastic noise on the qubits of $|\psi\rangle$ with parameters $p'=c\cdot p$ such that:

$$\Pr[\text{ output of } D' \text{ is not } \mathcal{N}\left(|\psi\rangle\right)] \leq \delta$$

In addition D' has m' qubits and T' time steps where:

$$m' = m \text{ polylog } (|D|/\delta)$$

 $T' = T \text{ polylog } (|D|/\delta)$

¹Theorem 6.4 in Grospellier 2019

Proof Sketch.

Denote by $\Phi^k(D)$ the circuit obtained by the original fault-tolerance construction when concatinating k-times. Thus, the output of $\Phi_k(D)$ is $|\psi\rangle$ encoded in the concatenated code, thus we need to decode the output of $\Phi^k(D)$ in fault tolerant manner. We fix \mathcal{E}^{-1} somde decoding circit for the Steane code and we denote by $\Lambda(D)$ the citrcuit $\Phi^1(D)$ followed by m_0 copies of \mathcal{E}^{-1} , one per block of the Steane code. In pariticular, the output of $\Lambda(D)$ is an m_0 -qubit state. Similarly, the circuit $\Lambda^k(D)$ is the circuit $\Phi^k(D)$ followed by k layers of decoding, the ith decoding layer uses $\Phi^{k-i}(\mathcal{E}^{-1})$.

Hypergraph Product Code.

Figure: Caption for the image

Hypergraph Product Code.

Error reduction in the Quantum Expander Code.

Quantum Expander Code.

Consider C_1 , C_2 (classical) expanders codes². Consider the Hypergraph code defined by them.

First

Error Reducing Stage. One shows that for any error with weight at most $\alpha\sqrt{n}$, the error can be reduced. The proof uses the expansion in the classical codes.

Second

Then, one shows that with probability $1 - \Theta(e^{-\sqrt{n}})$, the error can be decomposed into disjoint errors, each with size at most $\alpha \sqrt{n}$.

²such C_1^{\perp} , C_2^{\perp} also have a good distance.

Hypergraph Product Code.

Start

Initialize Magic states in parallel for both the Clifford and the ${\cal T}$ states. Do it using the original threshold construction.

Figure: Caption for the image

Disjointness.