RL and Optimization Problem

■ 가치함수 V(s) (직관력)을 높이는 (최적화) 학습 방법

■ MDP로 풀기에는 현실 문제의 복잡도가 너무 높다

Fior Hyeriii Bae (in bae@pusaii

RL and Optimization

- Traditional (Combinatorial) Optimization
 - Scheduling
- RL
 - Dynamic Optimization
 - Real-time decision

강화학습의 종류

Experience replay

Experience replay memory

- Issue 1. 성공적인 Deep Learning applications는 hand-labelled training data set을 요하는데, Reinforcement Learning에 서는 오로지reward를 통해 학습이 이루어지고, 그 reward도 sparse하고 noisy 심지어는 delay되어 주어진다.
- Issue 2. Deep Learning에서는 data sample이 i.i.d. 분포를 가정하지만, Reinforcement Learning에서는 현재 state가 어디인 지에 따라 갈 수 있는 다음 state가 결정되기때문에 state간의 correlation이 크다. 즉, data간의 correlation이 크다.

Experience replay

이전에 살펴본 algorithm들과 같이 본 논문이 나오기 전에는 environment와 상호작용하며 얻어진 on-policy sample들,

$$s_t,\ a_t,\ r_t,\ s_{t+1},\ a_{t+1}$$

을 통해 parameter를 update하였습니다. 하지만, 이와 같은 방법은 on-policy sample을 통해 update하기때문에 sample에 대한 의존 성이 커서 policy가 converge하지 못하고 oscillate할 수 있습니다. 이러한 문제를 해결하고자, 착안한 아이디어가 **Experience replay**입 니다. 각 time-step별로 얻은 sample(experience)들을 아래와 같은 tuple형태로 data set에 저장해두고, randomly draw하여 minibatch를 구성하고 update하는 방법입니다.

$$e_t = (s_t, a_t, r_t, s_{t+1}), D = e_1, e_2 \dots e_N$$

이때, data set은 무한히 저장할 수 없기 때문에 N으로 고정하고, FIFO방식으로 저장합니다. 또한 input으로써 arbitrary length를 받는데 에 어려움이 있기 때문에 function ϕ 를 정의하여 pre-processing하여 state의 length를 fixed시킵니다. Experience replay를 이용하면 아래와 같은 이점을 얻을 수 있습니다.

- data sample을 한번 update하고 버리는 기존의 방법과 달리 random sampling을 함으로써 data usage efficiency를 도모할 수 있습니다.
- RL에서 발생할 수 있는 state간의 high correlation 문제(위에서 언급한 Issue 2. correlation문제)를 해결 할 수 있습니다현재 update 된 parameter를 통해 다음 training의 대상이 되는 sample을 어느정도 determine할 수 있습니다.
- 현재의 policy에 따라 argmax action을 고르고 난 뒤, 그 다음 training sample은 이 action에 따라 결정됩니다. 이를 current sample에 의해 다음 training sample이 dominate되었다고 말합니다. 본 논문에 따르면, 이렇게 되면 불필요한 feedback loops를 돌거나, parameter들이 local minimum에 빠지거나 diverge하는 경우를 찾아낼 수 있어서, 이를 방지할 수 있다고 합니다. 주의할 점은, experience replay를 사용할 땐, 반드시 off-policy로 learning해야하는데, 이는 current parameter가 update하는 sample들과 다르기때문입니다.

Prof. Hyerim Bae (hrbae@pusan.ac

```
Algorithm 1 Deep Q-learning with Experience Replay
 Initialize replay memory \mathcal{D} to capacity N
 Initialize action-value function Q with random weights
for episode = 1, M do
     Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
      for t = 1, T do
          With probability \epsilon select a random action a_t
          otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
          Execute action a_t in emulator and observe reward r_t and image x_{t+1}
          Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
          Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
          Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
          \text{Set } y_j = \left\{ \begin{array}{ll} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{array} \right.
          Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
     end for
 end for
```

Let W be an event log over T, and $a, b \in T$:

• $|a>_W b|$ is the number of times $a>_W b$ occurs in W,

•
$$a \Rightarrow_W b = \left(\frac{|a >_W b| - |b >_W a|}{|a >_W b| + |b >_W a| + 1}\right)$$

Deep RL for process model discovery

Prof. Hyerim Bae (hrbae@pusan.ac.kr)

Research Results

Key Components

- ✓ Action space
- ✓ State
- ✓ Reward
- ✓ Environments
- ✓ Q-Networks
- ✓ Experiences Replay

04. [AutoPD] Automatic Discovery Multi-perspective Process Model

Research Results

Key Components

- ✓ Action space
- ✓ State
- ✓ Reward
- ✓ Environments
- ✓ Q-Networks
- ✓ Experiences Replay

A New Experience Replay Algorithm for improving the learning performance of Deep Reinforcement Learning

04. [AutoPD] Automatic Discovery Multi-perspective Process Model

Research Results

[Experiment 4-1] The overall average reward received by the agent while learning is in progress

04. [AutoPD] Automatic Discovery Multi-perspective Process Model

Research Results

[Experiments 4-2] The average fitness of the process model derived by the agent during training

04. [AutoPD] Automatic Discovery Multi-perspective Process Model

Research Results

[Experiments 4-2] The average number of times an agent discovering a process model with the fitness of 0.7 or more during the learning process

04. [AutoPD] Automatic Discovery Multi-perspective Process Model

Contribution

- ✓ Proposed a new perspective process discovery algorithm that can derive process models from various perspectives at once
- ✓ A new ER method called DERED is proposed to improve the performance of reinforcement learning.
- ✓ Using 6 actual event logs, we secured nearly twice the learning performance improvement in the experiment compared to the existing ER method.
- ✓ Through the proposed method, process model discovery, conformance checking, and process model improvement are automatically performed to make it easier to provide process models to users.

3. Research Summary

01. Research Summary

Through this study, we propose an automated process mining method that allows business experts to easily apply process mining.

