Progetto di Laboratorio di Reti e Sistemi Distribuiti

Davide Mento

Università degli Studi di Messina

21/06/2024

- 1 Stato dell'arte
- 2 Descrizione del problema
- 3 Implementazione
- 4 Risultati sperimentali
- **5** Conclusioni e futuri sviluppi

- 1 Stato dell'arte
- 2 Descrizione del problema
- 3 Implementazione
- 4 Risultati sperimentali
- 5 Conclusioni e futuri sviluppi

L'algoritmo KNN (K-Nearest Neighbors)

L'algoritmo KNN è un metodo di apprendimento supervisionato per classificazione e regressione. Si basa sul principio che oggetti simili tendono a trovarsi vicini nello spazio delle caratteristiche.

- Non richiede una fase di addestramento complessa.
- Per fare una previsione per un nuovo punto, trova i K punti più vicini nel set di addestramento e determina la classe basandosi sulla maggioranza delle classi dei suoi vicini.

Esempio KNN

Stato dell'arte

00000

L'algoritmo KNN determina la classe di un nuovo punto basandosi sulla maggioranza delle classi dei K punti più vicini nel set di addestramento.

Stato dell'arte

00000

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

Pregi e Difetti del KNN

Pregi:

- Semplicità concettuale e implementativa.
- Non richiede una fase di addestramento complessa.
- Buone prestazioni con dati di alta qualità e ben preprocessati.

Difetti:

- Prestazioni computazionali lente, soprattutto con grandi set di dati.
- Necessità di determinare un valore appropriato di K, che può influenzare significativamente le prestazioni.
- Memoria significativa richiesta per memorizzare l'intero set di addestramento e le distanze tra i punti.

- 1 Stato dell'arte
- 2 Descrizione del problema
- 3 Implementazione
- 4 Risultati sperimentali
- 5 Conclusioni e futuri sviluppi

Data la pesantezza dell'algoritmo KNN, è necessario trovare una soluzione distribuita per migliorarne le prestazioni.

- KNN è computazionalmente intensivo, specialmente con grandi set di dati, a causa della sua natura basata sul calcolo delle distanze.
- L'approccio distribuito può suddividere il carico di lavoro e sfruttare risorse parallele per migliorare l'efficienza complessiva.
- Una soluzione distribuita potrebbe mitigare i problemi di memoria e velocizzare l'esecuzione dell'algoritmo su grandi volumi di dati.

- 1 Stato dell'arte
- 2 Descrizione del problema
- 3 Implementazione
- 4 Risultati sperimentali
- 5 Conclusioni e futuri sviluppi

È stato scelto il dataset Iris per la sua popolarità nella comunità scientifica e per la sua divisione ben organizzata delle classi.

Data Augmentation e Aggiunta di Rumore

- Data Augmentation: Il dataset è stato ampliato tramite RandomOverSampling.
- **Aggiunta di Rumore**: È stato introdotto rumore gaussiano per simulare condizioni reali e migliorare il train set.

Iris dataset - Prima e dopo rumore gaussiano (Features 1 e 2)

- PCA: È stata applicata la PCA (Principal Component Analysis) per ridurre la dimensionalità dei dati mantenendo le loro caratteristiche principali.
- Benefici della PCA: La PCA si è rivelata fondamentale nel rappresentare graficamente le relazioni tra le caratteristiche degli Iris.

MapReduce

Per gestire l'algoritmo KNN in modo efficiente su grandi dataset, è stato adottato un approccio basato su MapReduce utilizzando Ray.

- Ray: Framework per il calcolo distribuito.
- Fase di Map: Ogni mapper riceve una porzione di dati, su di questa viene fatto il calcolo delle distanze e delle K classi più vicine.
- Fase di Reduce: Ogni reducer riceve dati dai mapper, classificando ogni punto.

Diagramma MapReduce

L'implementazione di KNN con MapReduce su Ray offre diversi vantaggi significativi:

Implementazione

00000000

- Scalabilità: La distribuzione del carico su più nodi permette di scalare l'algoritmo per grandi volumi di dati.
- Efficienza: Il parallelismo offerto da Ray accelera il calcolo delle distanze e la determinazione dei vicini più prossimi, riducendo i tempi di esecuzione.

- Stato dell'arte
- 2 Descrizione del problema
- 3 Implementazione
- 4 Risultati sperimentali
- 5 Conclusioni e futuri sviluppi

0000000

Ambiente di Esecuzione

Per l'implementazione del KNN distribuito, è stato utilizzato il cluster del laboratorio, composto da:

- 8 PC: Configurati per il calcolo distribuito.
- **64 Core in totale**: Per gestire il carico computazionale in parallelo.
- 24 Mapper e 24 Reducer: Utilizzati nella fase di MapReduce per distribuire e aggregare le operazioni.

00000000

Test effettuato

I dati mostrati sono ottenuti dall'elaborazione del dataset di **90.000** punti, che include dati aumentati e con rumore gaussiano.

Train set

Previsioni del modello

Previsioni del modello

Davide Mento Università degli Studi di Messina

Precisione del modello

Il modello presenta una precisione del 95.70%, si nota inoltre che prevede con precisione massima la classe setosa (cluster viola). Di seguito viene riportata la matrice di confusione.

Per l'esecuzione dell'algoritmo sequenziale è stato utilizzato un PC del laboratorio (8 core 32GB RAM).

Analisi risultati

Dal grafico si evince che:

- L'algoritmo sequenziale è più veloce con pochi punti, questo dimostra i limiti imposti dall'overhead in un approccio distribuito.
- Intorno ai 60.000 punti, l'algoritmo distribuito supera in velocità quello sequenziale (punto di crossover).
- Superato questo punto, l'algoritmo distribuito risulterà sempre più rapido rispetto a quello sequenziale.
- La precisione dell'algoritmo cresce all'aumentare dei dati di train.

- 1 Stato dell'arte
- 2 Descrizione del problema
- 3 Implementazione
- 4 Risultati sperimentali
- **5** Conclusioni e futuri sviluppi

L'approccio distribuito si conferma essere ottimale per un algoritmo computazionalmente intenso come il KNN. Ricapitolando, il KNN ha dimostrato i suoi pregi e difetti:

- Pregi riscontrati: implementazione intuitiva, precisione elevata.
- Difetti riscontrati: scelta arbitraria di K, utilizzo eccessivo della memoria.

Risultati sperimentali

Sviluppi futuri

L'implementazione può essere sicuramente migliorata con:

- Utilizzo di più macchine.
- Gestione della memoria avanzata.
- Metodo per la risoluzione di un valore K ottimale.

Granie!