

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice Rozwiązywanie równań różniczkowych zwyczajnych

> Maciej Kmąk Informatyka WI AGH, II rok

1 Dane techniczne

Doświadczenie zostało przeprowadzone na komputerze osobistym o specyfikacji:

• System Operacyjny: Windows 11 Pro

• Procesor: 12th Gen Intel(R) Core(TM) i5-1235U 1.3 GHz

• Język: Python 3.12

2 Przebieg Doświadczenia

Celem doświadczenia było numeryczne rozwiązanie równania różniczkowego:

$$y' - kmy\sin(mx) = k^2m\sin(mx)\cos(mx), \quad y(x_0) = a,$$

dla parametrów:

$$x_0 = \frac{\pi}{6}$$
, $x_1 = 2\pi$ zmieniono z $\frac{3\pi}{2}$, $m = 3$, $k = 2.5$.

Wartość parametru a została wyliczona z rozwiązania dokładnego:

$$y(x) = e^{-k\cos(mx)} - k\cos(mx) + 1,$$

co dla $x_0 = \frac{\pi}{6}$ daje:

$$a = y\left(\frac{\pi}{6}\right) = e^{-k\cos\left(m\cdot\frac{\pi}{6}\right)} - k\cos\left(m\cdot\frac{\pi}{6}\right) + 1.$$

Do rozwiązania równania zastosowano dwie metody numeryczne:

- metodę Eulera,
- metodę Rungego-Kutty IV rzędu.

$$h \in \{10^{-1}, 5 \cdot 10^{-2}, 10^{-2}, 5 \cdot 10^{-3}, 10^{-3}, 5 \cdot 10^{-4}, 10^{-4}\}.$$

3 Wyniki Doświadczenia

3.1 Krok $h = 1 \cdot 10^{-1}$

Rysunek 1: Porównanie rozwiązań numerycznych dla kroku $h=1\cdot 10^{-1}$

Na rysunku zauważalna jest istotna różnica między wynikami uzyskanymi metodą Eulera i metodą Rungego-Kutty (RK4) przy kroku h=0,1. W przypadku metody Eulera w miejscach, gdzie rozwiązanie dokładne osiąga drugie i trzecie maksimum (około $x\approx 3$ i $x\approx 5$), rozwiązanie numeryczne błędnie wskazuje wartości minimalne. Oznacza to całkowitą utratę zgodności z rzeczywistym przebiegiem funkcji, co świadczy o dużym błędzie lokalnym i niestabilności metody dla takiego kroku.

3.2 Krok $h = 5 \cdot 10^{-2}$

Rysunek 2: Porównanie rozwiązań numerycznych dla kroku $h = 5 \cdot 10^{-2}$

W przypadku kroku $h=5\cdot 10^{-2}$ widoczna jest poprawa jakości rozwiązania uzyskanego metodą Eulera w porównaniu do przypadku z większym krokiem. Mimo to, nadal występują istotne błędy w pobliżu drugiego i trzeciego maksimum – zamiast wartości maksymalnych, rozwiązanie numeryczne wskazuje tam błędne minima. Choć pierwszy z tych błędów jest mniejszy, drugi jest zauważalnie większy, co wskazuje na częściową poprawę wraz ze zmniejszeniem kroku. Z kolei rozwiązanie uzyskane metodą Rungego-Kutty IV rzędu niemal pokrywa się z rozwiązaniem dokładnym w całym przedziale, wiernie odwzorowując wszystkie ekstrema funkcji. Oznacza to, że RK4 już przy tym kroku zapewnia wysoką dokładność, znacznie przewyższając metodę Eulera.

3.3 Krok $h = 1 \cdot 10^{-2}$

Rysunek 3: Porównanie rozwiązań numerycznych dla kroku $h = 1 \cdot 10^{-2}$

Dla kroku $h=1\cdot 10^{-2}$ widać dalszą poprawę jakości rozwiązania numerycznego uzyskanego metodą Eulera. Drugie maksimum, które wcześniej przyjmowało błędną wartość minimalną, zostało już poprawnie rozpoznane jako maksimum. Niemniej jednak, jego wartość jest wyraźnie zaniżona w porównaniu z rozwiązaniem dokładnym.

Trzecie maksimum natomiast zostało niepoprawnie odwzorowane — zamiast jednej gładkiej górki, pojawiły się dwie niewielkie, rozdzielone lokalne maksima. Świadczy to o oscylacjach numerycznych i niedostatecznej precyzji przy tej wartości kroku.

Rozwiązanie uzyskane metodą Rungego-Kutty IV rzędu pozostaje praktycznie nieodróżnialne od rozwiązania dokładnego. Potwierdza to wysoką dokładność i stabilność tej metody nawet przy relatywnie niewielkim kroku.

3.4 Krok $h = 5 \cdot 10^{-3}$

Rysunek 4: Porównanie rozwiązań numerycznych dla kroku $h = 5 \cdot 10^{-3}$

Dla kroku $h=5\cdot 10^{-3}$ rozwiązanie uzyskane metodą Eulera po raz pierwszy poprawnie odwzorowuje wszystkie trzy maksima funkcji. Widoczna jest znacząca poprawa dokładności względem większych kroków. Mimo tego, trzecie maksimum jest nadal istotnie zaniżone — różnica względem wartości dokładnej wynosi około 9.5 jednostki w normie maksimum. Sugeruje to, że choć metoda Eulera zaczyna lepiej śledzić ogólny kształt rozwiązania, jej precyzja w punktach ekstremalnych nadal pozostaje ograniczona.

3.5 Krok $h = 1 \cdot 10^{-3}$

Rysunek 5: Porównanie rozwiązań numerycznych dla kroku $h = 1 \cdot 10^{-3}$

Dla kroku $h=1\cdot 10^{-3}$ metoda Eulera dostarcza już dobrej aproksymacji rozwiązania. Wszystkie maksima są poprawnie odwzorowane, a trzecie maksimum, które wcześniej było silnie zaniżone, jest obecnie niższe od wartości dokładnej jedynie o około 2 jednostki. Świadczy to o znacznie mniejszym błędzie lokalnym niż w przypadku większych kroków.

Średni błąd (w sensie ℓ^2) wynosi wciąż około 1.5, co oznacza, że chociaż globalna zgodność poprawia się, metoda Eulera nadal wykazuje ograniczoną dokładność w pobliżu punktów ekstremalnych.

Rozwiązanie uzyskane metodą Rungego-Kutty IV rzędu nie różni się zauważalnie od rozwiązania dokładnego. Krzywe nakładają się w całości, co potwierdza doskonałą jakość tej metody przy bardzo małych krokach.

3.6 Krok $h = 5 \cdot 10^{-4}$

Rysunek 6: Porównanie rozwiązań numerycznych dla kroku $h = 5 \cdot 10^{-4}$

Dla kroku $h = 5 \cdot 10^{-4}$ rozwiązanie uzyskane metodą Eulera bardzo dobrze odwzorowuje przebieg funkcji, podobnie jak w przypadku kroku $h = 1 \cdot 10^{-3}$. Maksima i minima są już poprawnie uchwycone, a bład maksymalny względem rozwiązania dokładnego wynosi około 1 jednostki.

3.7 Krok $h = 1 \cdot 10^{-4}$

Rysunek 7: Porównanie rozwiązań numerycznych dla kroku $h = 1 \cdot 10^{-4}$

Dla najmniejszego badanego kroku $h=1\cdot 10^{-4}$, rozwiązanie uzyskane metodą Eulera prezentuje bardzo dobrą zgodność z rozwiązaniem dokładnym — zarówno wizualnie, jak i numerycznie. Jakościowo przypomina ono wyniki metody Rungego-Kutty dla kroku $h=5\cdot 10^{-2}$ (por. Sekcja 4 – Tabela błędów), a błąd maksymalny wynosi około 0.22.

Metoda Rungego-Kutty IV rzędu, dla tego samego kroku, osiąga już niemal pełną zgodność z rozwiązaniem dokładnym — błąd maksymalny oraz błąd średniokwadratowy są rzędu 10^{-4} , co potwierdza jej bardzo wysoką precyzję.

4 Tabela błędów

Poniższa tabela przedstawia porównanie błędów bezwzględnych dla metod Eulera i Rungego-Kutty IV rzędu dla różnych wartości kroku h. Uwzględniono błąd maksymalny (ℓ^{∞}) oraz błąd średniokwadratowy (ℓ^{2}):

Krok h	Euler		RK4	
	Błąd ℓ^{∞}	Błąd ℓ^2	Błąd ℓ^{∞}	Błąd ℓ^2
$1 \cdot 10^{-1}$	38.1319	33.4986	0.3196	0.2670
$5 \cdot 10^{-2}$	35.8553	29.0729	0.2643	0.2589
$1 \cdot 10^{-2}$	16.5578	11.8822	0.0029	0.0029
$5 \cdot 10^{-3}$	9.5003	6.7101	0.0030	0.0029
$1 \cdot 10^{-3}$	2.1318	1.4870	0.0030	0.0030
$5 \cdot 10^{-4}$	1.0804	0.7524	0.0030	0.0030
$1 \cdot 10^{-4}$	0.2191	0.1525	0.0001	0.0001

Tabela 1: Zestawienie błędów bezwzględnych dla metod Eulera i Rungego-Kutty

Analiza błędów pokazuje, że metoda Eulera wykazuje duże błędy dla większych kroków, zwłaszcza w normie maksymalnej, która dla $h=10^{-1}$ przekracza 38 jednostek. Błędy te systematycznie maleją wraz ze zmniejszaniem kroku, jednak dopiero dla $h=5\cdot 10^{-4}$ osiągają około 1. Metoda Rungego-Kutty IV rzędu charakteryzuje się znacznie niższymi błędami już od początku – dla $h=10^{-2}$ błędy są rzędu 10^{-3} , a dla $h=10^{-4}$ spadają do poziomu 10^{-4} . Oznacza to, że RK4 osiąga bardzo wysoką dokładność przy znacznie większych krokach niż Euler, co czyni ją znacznie bardziej efektywną w praktycznych zastosowaniach.