

Global Trigger firmware Specification for MP7 platform for Upgrade Phase I

Herbert Bergauer, Babak Rahbaran, Johannes Wittmann Email: herbert.bergauer@oeaw.ac.at

Institute of High Energy Physics (HEPHY)

http://www.hephy.at http://globaltrigger.hephy.at

August 12, 2021

Revision History

Doc Rev	Description of Change	Revision Date
6.0	New structure of document for firmware versions 1.12.x.	2021/02/10
5.7	Fixed typo in section "Invariant mass calculation for three objects" 4.4.12.1.6.	2020/12/03
5.6	Updated text in section "VHDL-Templates for VHDL-Producer" ??.	2020/09/31
5.5	Inserted links to VHDL modules.	2020/09/18
5.4	Updated text in section "Correlation conditions" 4.4.12. Description is for v1.10.0 of Global Trigger Logic.	2020/09/17
5.3	Inserted description of "Invariant mass divided by delta R calculation" (see 4.4.12.1.5).	2020/09/10
5.2	Fixed typo (unconstrained pt).	2020/09/09
5.1	Inserted text for new muon structure in sections 4.2.2, 4.4.4 and 4.4.12.2. Added subsections in section ??	2020/08/04
5.0	Additional text in section 4.4.12.2.2.	2020/05/25
4.9	Inserted text in section 4.4.6.1.2 for Calorimeter Overlap Remover conditions and 4.4.12.2.2 for Calo Calo Overlap Remover Correlation conditions.	2020/04/16
4.8	Updated text in sections ??, ?? and 4.4.12 for changes which have been done for GTL VHDL version 1.8.0 (module names without version number, "five eta cuts").	2019/08/13
4.7	Inserted "Asymmetry" and "Centrality" of "Energy sums" (GTL VHDL version 1.6.0). Therefore updated sections 4.1, 4.2.1, 4.4.7 added section "Centrality condition" 4.4.10 and updated Table 2	2018/08/13
4.6	Updated text in section "Global Trigger Logic" (4) according to firmware version v1.5.0 of gtl_module.vhd	2018/02/21
4.5	Updated text in section "Framework" (3) according to firmware version v1.2.3 of frame.vhd	2018/01/19
4.4	New "icons" ET_{miss}^{HF} and HT_{miss}^{HF} in Table 2 and Section 4. Updated glossary (see Section 7)	2016/11/11
4.3	Updated table " μ FDL register map" (27) and section "Register map" (5.4.1.1). Moved "List of Tables" and "List of Figures" to the end of document. Inserted link to "Scales for inputs to μ GT" (4.3). Moved section "Software reset" to section "Framework" as subsection (3.7). Removed empty sections "IPBus", "Firmware Configuration" and "Bibliography"	2016/11/03

Doc Rev	Description of Change	Revision Date
4.2	Updated sections "Calo-Layer2 optical interfaces" (4.2.1) and "Energy sum quantities conditions" (4.4.7) for towercount trigger bits. Inserted section "Towercount condition" (4.4.9)	2016/10/25
4.1	Updated section "Calo-Layer2 optical interfaces" (4.2.1) for new energy sum quantities and minimum bias trigger bits. Updated sections "Firmware" (2), "Framework" (3) and "Fi- nal Desicion Logic" (5).	2016/06/09
4.0	Updated Text in section "Muon Muon Correlation condition module" (4.4.12.2.7).	2016/01/15
3.9	Removed "Double objects requirements condition with spatial correlation", because not used anymore in the future, replaced by Correlation conditions (see sections ?? and ??.	2016/01/08
3.8	Minor changes in text and updated Figure 11.	2016/01/08
3.7	Changed colour in Figure 12 and updated text for correlation conditions (see section 4.4.12.	2016/01/07
3.6	Updated Figures 11 and 10 and text 4.4.12.2.1.	2015/12/21
3.5	Inserted drawing of VHDL structure of cuts for correlation conditions (see Figure 13).	2015/11/18
3.4	Updated muon η ranges (Table 9) and inserted correlation conditions (see section 4.4.12). Created scheme for conversion of calorimeter η and φ to muon scale for calo-muon-correlation conditions (see Figure 14).	2015/11/17
3.3	Added Text in sections (4.4.6.1.3) and (4.4.6.1.4).	2015/10/08
3.2	Updated Text in section "Final Desicion Logic" (5).	2015/10/06
3.1	Updated Figure 15 and Tables 27, ?? and ??. Remaned section "Calorimeter conditions module - version 2" to "Calorimeter conditions module - version 3" (see ??), section "Muon conditions module" to "Muon conditions module - version 2" and section "Muon comparators module" to "Muon comparators module" to "Muon comparators module - version 2" (see ??)	2015/10/02
3.0	Updated text and tables of η ranges for Calorimeter objects (see 4.4.2).	2015/09/22
2.9	Renewed Figures in GTL and FDL (see Figure 9, 10 and 11) and FDL(see Figure 15 and 16). Added register bits description of FDL Register map (see section 5.4.1.1).	2015/09/16
2.8	Updated text, tables and listings of section "VHDL-Templates for VHDL-Producer" (see ??).	2015/09/15
2.7	Corrected calculation of muon η step width (see 4.4.4).	2015/09/10
2.6	Edited text in Tables ??, 17 and ??.	2015/08/28
2.5	Updated definition of η ranges for Calorimeter objects and Muon objects (4.4.2 and 4.4.4).	2015/08/20

Doc Rev	Description of Change	Revision Date
2.4	Added section Calo Muon Correlation condition (4.4.12.2.6).	2015/08/19
2.3	Added section "Register map" (5.4.1.1) for μ FDL.	2015/06/26
2.2	Updated figures (9, 10 and 11) for GTL and edited section "Correlation conditions" (see 4.4.12).	2015/05/08
2.1	Added tables for calorimeter isolation-bits and for muon quality- and isolation-bits definition (8, 11 and 13). Edited section glossary (7) and acronyms.	2015/05/07
2.0	Added text for "Energy sum conditions" (4.4.7) and updated chapters for "Calorimeter conditions" for version 2. Inserted isolation bits for electron/ γ and tau objects (4.4.2).	2015/05/06
1.9	Minor changes "Demux Lane Data" (see 3.2) and "Muon data" (see 4.4.4).	2014/11/06
1.8	Edited Section "Energy sum quantities conditions" (see 4.4.7).	2014/10/08
1.7	Added sections "Configuration of optical connections" (3.1), "Demux Lane Data" (3.2) and "Lane Mapping Process" (3.3) to framework. Removed tables of optical interfaces from gtl and referenced to tables in framework.	2014/10/07
1.6	Minor changes in "Calorimeter conditions" (??) and "Muon conditions" (??)	2014/07/01
1.5	Updated with minor changes in "Muon conditions" (??)	2014/06/17
1.4	Fixed bug in Figure 12	2014/04/30
1.3	Updated section "Muon conditions" (??)	2014/04/22
1.2	Removed section "Muon charge module" and added new section "Muon charge correlation module" (see 4.4.11). Edited text in section and subsections "Muon conditions definition" (see ??)	2014/04/15
1.1	Changed Figure 12 and minor changes in text for anti-clockwise behaviour in φ	2014/04/04
1.0	Added definition for "calorimeter conditions over bx", see section ??.	2014/03/12
0.9	Changed text of condition description in subsections ?? and ??	2014/02/12
0.8	Updated calorimeter data structure in 4.2.1	2013/12/03
0.7	Updated muon data structure in 4.2.2	2013/12/02
0.6	Moved decription of VHDL templates for TME to ??	2013/11/18
0.5	Subsection 4.2 added to section 4	2013/11/11
0.4	GTL and FDL firmware implemented for new data structure (GTL firmware version v1.0.0 [fix part of GTL], FDL firmware version v1.0.0)	2013/11/06

Doc Rev	Description of Change	Revision Date
0.3	New framework implementation based on new object types definition. Additionally, the ROP is implemented based on	2013/10/13
0.2	$ m production\ requirements$ $ m First\ framework\ implementation\ +\ ROP$	2012/07/01
0.1	Document created	2012/02/22

Contents

Li	st of	f Figures	9	
Li	st of	f Tables	10	
1	Glo	Global Trigger System overview		
2	Firi	mware overview	12	
	2.1	Firmware version	13	
	2.2	Directory structure of Global Trigger firmware	13	
		2.2.1 Package: lhc_data_pkg	13	
3	Fra	mework	14	
	3.1	Configuration of optical connections	15	
	3.2	Demux Lane Data	15	
	3.3	Lane Mapping Process	15	
		3.3.1 Implementation	15	
	3.4	Delay Manager	15	
		3.4.1 Implementation	15	
	3.5	SIM and SPY Memory	19	
		3.5.1 Implementation	19	
		3.5.1.1 SPY Trigger	20	
		3.5.1.2 SIM/SPY memory	20	
		3.5.1.3 SPY memory II	23	
		3.5.1.4 SPY memory III	23	
		3.5.2 Interface Specification	24	
	3.6	TCM	24	
		3.6.1 Counter Overview	24	
		3.6.2 Bunch Crossing Number and counters derived from it	24	
		3.6.3 Special counter: $bx_nr_d_fdl$	25	
		3.6.4 Counters derived from l1a	25	
		3.6.5 Errors	25	
		3.6.6 SW-Registers	26	
		3.6.7 Hardware Test	30	
	3.7	Software Reset	30	

4	Glo	bal Tri	igger Logic	31
	4.1	$\mu \mathrm{GTL}$	Interface	31
	4.2	Definit	tion of optical interfaces	32
		4.2.1	Calo-Layer2 optical interfaces	32
		4.2.2	Global Muon Trigger optical interfaces	34
	4.3	Impler	mentation in firmware	35
		4.3.1	Top-of-hierarchy module	35
		4.3.2	Package module	36
	4.4	$\mu \mathrm{GTL}$	structure	38
		4.4.1	Data ±2bx	38
		4.4.2	Definitions of Calorimeter data	39
		4.4.3	Definitions of Energy sum quantities data	41
		4.4.4	Definitions of Muon data	43
		4.4.5	Calculation of differences in η and φ	45
		4.4.6	Combination conditions	46
			4.4.6.1 Combination conditions definition	46
			4.4.6.1.1 Combination conditions module	47
			$4.4.6.1.2 \hspace{0.5cm} \hbox{Calorimeter Overlap Remover conditions module} \ . \ .$	54
			4.4.6.1.3 Calorimeter comparators module	55
			4.4.6.1.4 Muon comparators module	57
		4.4.7	Energy sum quantities conditions	60
			4.4.7.1 Energy sum quantities conditions module (including Asymmetry conditions)	60
			4.4.7.2 Energy sum quantities conditions module - template for VHDL-Producer	61
		4.4.8	Minimum bias trigger conditions	61
		4.4.9	Towercount condition	61
		4.4.10	Centrality condition	61
		4.4.11	Muon charge correlation module	62
		4.4.12	Correlation conditions	64
			4.4.12.1 Calculation of cuts	64
			4.4.12.1.1 ΔR calculation	64
			4.4.12.1.2 Invariant mass calculation	65
			4.4.12.1.3 Transverse mass calculation	65

		4.4.12.1.4 Two-body pt calculation	. 66
		4.4.12.1.5 Invariant mass divided by ΔR calculation	. 66
		4.4.12.1.6 Invariant mass calculation for three objects	. 66
		4.4.12.1.7 Overview of possible correlation cuts	. 66
		4.4.12.2 Correlation condition modules	. 68
		4.4.12.2.1 Calo Calo Correlation condition module	. 69
		4.4.12.2.2 Calo Calo Overlap Remover Correlation condition module	
		4.4.12.2.3 Calo Calo Correlation condition module for Invarian Mass Divided by ΔR	
		4.4.12.2.4 Calo Correlation condition module for Invariant Maswith Three Objects	
		4.4.12.2.5 Calo Esums Correlation condition module	. 77
		4.4.12.2.6 Calo Muon Correlation condition module	. 82
		4.4.12.2.7 Muon Muon Correlation condition module	. 89
		4.4.12.2.8 Muon Muon Correlation condition module for Invarant Mass Divided by ΔR	
		4.4.12.2.9 Muon Correlation condition module for Invariant Mawith Three Objects	
		4.4.12.2.10 Muon Esums Correlation condition module	. 97
		4.4.13 External Conditions	. 103
		4.4.14 Algorithms logic	. 103
5	Fina	al Desicion Logic	103
	5.1	μ FDL Interface	. 103
	5.2	MP7 Final-OR hardware solution	. 104
	5.3	Data flow	. 105
	5.4	Main parts	. 106
		5.4.1 Registers and memories	. 106
		5.4.1.1 Register map	. 107
		5.4.2 Algo-bx-masks	. 115
		5.4.3 Rate-counters	. 115
		5.4.4 Prescalers	. 115
		5.4.5 Finor-masks	. 115
		5.4.6 Veto-masks	. 115
		5.4.7 Finor	. 116
	5.5	Implementation in firmware	. 116

-	Υ .					
•	10	m	٦T	e	nı	ī.S

6	Readout-Process	118
7	Glossary	119
Bil	oliography	121
Inc	\mathbf{dex}	121

List of Figures

1	μGT payload	12
2	System architecture overview	14
3	Delay Manager: delay_element	18
4	Memory subsystem	20
5	start of the bunch crossing number with the first bcres_d	25
6	normal operation of the bunch crossing number	25
7	set of the software register err_det when bc_res_d is not asserted correctly .	26
8	reset of the software register err_det when err_det_reset_event toggles	26
9	$\mu { m GTL}$ firmware	31
10	VHDL file generation by VHDL Producer	37
11	Scheme of μ GTL pipeline structure	38
12	Setting the limits for "window"-comparators for φ	55
13	VHDL structure of cuts for correlation conditions	65
14	Conversion of calorimeter η and φ to muon scales	83
15	$\mu { m FDL}$ firmware v1.0.1	104
16	μ FDL pipeline v1.0.1	105

List of Tables

2	Configuration of optical connections
3	Current lane mapping
4	delay manager registers
5	counters of the timer counter manager
6	scripts for testing the tcm
7	φ scale of calorimeter objects
8	Definition of e/γ and tau isolation bits
9	η scale of muon objects
10	φ scale of muon objects
11	Definition of muon quality bits
12	Definition of muon isolation bits
13	Definition of muon impact parameter bits
14	Explanation of Listing 4
14	Explanation of Listing 4
14	Explanation of Listing 4
15	LUT contents for isolation comparison
16	LUT contents for impact parameter comparison
17	LUT contents for quality comparison of muon objects
18	Explanation of Listing 6
19	Muon charge correlation - Double Muon
20	Muon charge correlation - Triple Muon
21	Muon charge correlation - Quad Muon
22	Explanation of Listing 7
23	Explanation of Listing 8
23	Explanation of Listing 8
24	Explanation of Listing 9
24	Explanation of Listing 9
24	Explanation of Listing 9

24	Explanation of Listing 9	89
25	Explanation of Listing 10	93
25	Explanation of Listing 10	94
25	Explanation of Listing 10	95
25	Explanation of Listing 10	96
25	Explanation of Listing 10	97
26	Explanation of Listing 10	101
26	Explanation of Listing 10	102
26	Explanation of Listing 10	103
27	$\mu { m FDL}$ register map	107
27	$\mu { m FDL}$ register map	108
27	uFDL register map	109

1 Global Trigger System overview

The Global Trigger System is based on uTCA technology and 10Gbps optical links. A set of 6 MP7 boards with FPGAs of the powerful Xilinx Virtex-7 family is available. The Global Trigger firmware is implemented on these FPGAs. Every FPGA contains a part of the VHDL representation of a L1 Menu, the partitioning is done by VHDL Producer tool. The trigger decision of every MP7 board is collected on an AMC502 board to generate the "final OR" signal which triggers the readout of the detector.

2 Firmware overview

The figure 1 shows the architecture of μ GT payload. It consists of framework and the algorithm logic which it consists of the following modules:

- 1. Global Trigger Logic Data Mapping
- 2. μGTL
- 3. μ FDL

The output mux (part of framework) collects data for read-out record which are send via MP7 read-out to AMC13.

The IPBus system allows the control of hardware via a 'virtual bus', using a standard IP-over-gigabit-Ethernet network connection.

Figure 1: μ GT payload

2.1 Firmware version

This firmware description is valid for version 1.15.3 of Global Trigger firmware, containing the following module versions:

• Framework: 1.2.3

• Global Trigger Logic: 1.15.1

• Final Decision Logic: 1.3.6

2.2 Directory structure of Global Trigger firmware

INSERT TEXT!!!

2.2.1 Package: lhc_data_pkg

The VHDL record lhc_data_t (shown in Listing 1) is used as a container for all object streams processed by the system. It is declared in the VHDL package lhc_data_pkg. For debugging and simulation purposes a second package (lhc_data_debug_util_pkg) is created which contains functions to convert the lhc_data_t to a hexadecimal string representation and vice versa. The testbench of the design uses this functions to load the contents of the SIM memory from a file.

Listing 1: lhc data t record specification

```
type lhc_data_t is record
        muon : muon_array_t;
        eg : eg_array_t;
        tau : tau_array_t;
        jet : jet_array_t;
        ett : std_logic_vector(ETT_DATA_WIDTH-1 downto 0);
        ht : std_logic_vector(HT_DATA_WIDTH-1 downto 0);
        etm : std_logic_vector(ETM_DATA_WIDTH-1 downto 0);
        htm : std_logic_vector(HTM_DATA_WIDTH-1 downto 0);
        etmhf : std_logic_vector(ETMHF_DATA_WIDTH-1 downto 0);
        htmhf : std_logic_vector(HTMHF_DATA_WIDTH-1 downto 0);
        link_11_fr_0_data : std_logic_vector(LINK_11_FR_0_WIDTH-1 downto
        link_11_fr_1_data : std_logic_vector(LINK_11_FR_1_WIDTH-1 downto
        link_11_fr_2_data : std_logic_vector(LINK_11_FR_2_WIDTH-1 downto
        link_11_fr_3_data : std_logic_vector(LINK_11_FR_3_WIDTH-1 downto
        link_11_fr_4_data : std_logic_vector(LINK_11_FR_4_WIDTH-1 downto
           0);
        link_11_fr_5_data : std_logic_vector(LINK_11_FR_5_WIDTH-1 downto
            0);
        external_conditions : std_logic_vector(
            EXTERNAL_CONDITIONS_DATA_WIDTH-1 downto 0);
end record;
```

3 Framework

Remark:

with frame v1.2.3 "Delay Manager" (dm.vhd) and "Data Source Multiplexer" (dsmux.vhd) are removed because these features were never used in production system, only for tests. Simmem data not useable anymore, because of removed dsmux. The reason of removing is to get more available resources.

Figure 2 shows the basic components the framework together with Readout-Process.

Figure 2: System architecture overview

The central data type of the framework is shown in Listing 1 (see Section 2.2.1 for details). In the current configuration it comprises 2304 bits (288 Bytes). Data from the GTH interfaces is demultiplexed (from 240 MHz clock domain to LHC clock domain, see Demux Lane Data 3.2) and mapped to this data type in the LMP (Lane Mapping Process). It is also used as input and output type for the SIM/SPY I memory. The DM (Delay Manager) takes the output of the LMP and applies software configurable delays to the the different object streams (e.g. muon data, jet, tau etc.) in the lhc_data_t to produce a consistent output (also regarding to the bcres signal). The software configurable multiplexer DSMUX (Data Source Multiplexer) is used to select which data stream is used as input for the processing elements (trigger logic). The output of the DSMUX is routed to the GTL (Global Trigger Logic) and ROP (Read Out Process) and can optionally be stored in the SPY I memory.

3.1 Configuration of optical connections

The configuration of the optical connections to Calo-Layer2 is (currently) done as described in Table 2, where frame means the 32 bits data (240 MHz) within a LHC clock period.

3.2 Demux Lane Data

Data from GTH interfaces is in the 240 MHz clock domain. The demultiplexing to the LHC clock domain (about 40 MHz) is done in demux_lane_data.vhd, which is instantiated in frame.vhd as often as lanes are used (currently 16 lanes are used).

3.3 Lane Mapping Process

In the Lane Mapping Process module data from the lanes are mapped to objects structure defined in lhc_data_pkg.vhd.

3.3.1 Implementation

Currently lane mapping is "fixed" in lmp.vhd module, see Table 3

3.4 Delay Manager

Remark:

with frame v1.2.3 "Delay Manager" (dm.vhd) and "Data Source Multiplexer" (dsmux.vhd) is removed because these features were never used in production system, only for tests. The reason of removing is to get more available resources.

The Delay Manager is responsible for creating a delayed version of the lhc_data and the bcres signal on its input. For this purpose it uses an internal memory to record the history of the input signals.

3.4.1 Implementation

The DM is basically a reimplementation of the concept of the last design. The reimplementation was necessary because the new framework version uses the register bank for software registers and the old DM was not flexible enough to handle the lhc_data_t introduced in the new framework.

The DM instantiates one delay_element for every object type defined in the lhc_data_t (e.g. muon, eg, etc.). The delay_element uses RAM blocks to implement the delay line. However, for the delays 0 and 1 this memory can not be used (write latency) and must be bypassed (Figure 3).

Table 2: Configuration of optical connections

	frame					
link	0	1	2	3	4	5
0	reserved	reserved	muon obj. 0 [031]	muon obj. 0 [3263]	muon obj. 1 [031]	muon obj. 1 [3263]
1	reserved	reserved	muon obj. 2 [031]	muon obj. 2 [3263]	muon obj. 3 [031]	muon obj. 3 [3263]
2	reserved	reserved	muon obj. 4 [031]	muon obj. 4 [3263]	muon obj. 5 [031]	muon obj. 5 [3263]
3	reserved	reserved	muon obj. 6 [031]	muon obj. 6 [3263]	muon obj. 7 [031]	muon obj. 7 [3263]
4	electron/ γ obj. 0	electron/ γ obj. 1	electron/ γ obj. 2	electron/ γ obj. 3	electron/ γ obj. 4	electron/ γ obj. 5
5	electron/ γ obj. 6	electron/ γ obj. 7	electron/ γ obj. 8	electron/ γ obj. 9	electron/ γ obj. 10	electron/ γ obj. 11
6	jet obj. 0	jet obj. 1	jet obj. 2	jet obj. 3	jet obj. 4	jet obj. 5
7	jet obj. 6	jet obj. 7	jet obj. 8	jet obj. 9	jet obj. 10	jet obj. 11
8	tau obj. 0	tau obj. 1	tau obj. 2	tau obj. 3	tau obj. 4	tau obj. 5
9	tau obj. 6	tau obj. 7	tau obj. 8	tau obj. 9	tau obj. 10	tau obj. 11
	ET	HT	$ET_{ m miss}$	$HT_{ m miss}$	ET^{HF}_{miss}	HT^{HF}_{miss}
10	ETTEM	TOWER- COUNT	ASYMET	ASYMHT	ASYM- ETHF	ASYM- HTHF
	MBT0HFP	MBT0HFM	MBT1HFP	MBT1HFM	CENT[3:0]	CENT[7:4]
11	free	free	free	free	free	free
12	external- conditions [031]	external- conditions [3263]	reserved	reserved	reserved	reserved
13	external- conditions [6495]	external- conditions [96127]	reserved	reserved	reserved	reserved
14	external- conditions [128159]	external- conditions [160191]	reserved	reserved	reserved	reserved
15	external- conditions [192223]	external- conditions [224255]	reserved	reserved	reserved	reserved

Table 3: Current lane mapping

lane	objects
0	muon objects 01
1	muon objects 23
2	muon objects 45
3	muon objects 67
4	electron/ γ objects 05
5	electron/ γ objects 611
6	jet object 05
7	jet object 611
8	tau object 05
9	tau object 611
10	energy sum quantities (incl. minimum bias trigger bits and towercounts)
11	n/a (currently not used)
12	external-conditions [063]
13	external-conditions [64127]
14	external-conditions [128191]
15	external-conditions [192255]

Figure 3: Delay Manager: delay_element

The Implementation of the DM is very generic because it makes extensive use of the constants provided by the lhc_data_pkg. The lhc_data_i input signal is converted into a std_logic_vector. The constants LHC_DATA_SLV_START_INDICES and LHC_DATA_SLV_OBJECT_WIDTH provide the start index of each object in this vector and their width respectively. The number of objects is given by the LHC_DATA_OBJECT_COUNT constant. This information is used by a for-generate statement to instantiate the required delay_-element components.

For the *bcres_o* and the *bcres_FDL_o* signals two additional delay_element components are instantiated.

If only the data width or the array size of an object in the lhc_data_t is changed the DM does not need any modification. If, however, a new object is added a new delay register must be added, as described in the register bank section.

The registers for all delays have the same layout (see Register 3.1). The names for the individual (per object) delay registers are given in Table 4. For the software addresses of these registers refer to the xml/qt amc514 dm.xml file.

delay The delay in lhc clock cycles (40 MHz) used for the specific object data.

object description register name bcres for TCM bcres tcm delay bcres for FDL bcres_fdl_delay muon data muons delay e/geg_delay tau tau_delay jet_delay jet ett delay ett ht ht_delay etm_delay $_{\rm etm}$ htmhtm_delay external conditions ex_con_delay

Table 4: delay manager registers

SIM and SPY Memory 3.5

Remark:

with frame v1.2.3 Simmem data not useable anymore, because of removed "Data Source Multiplexer". The reason of removing "Data Source Multiplexer" is to get more available resources.

$Under\ construction!!!$

Figure 4 shows the SIM/SPY memory subsystem of the framework. It is used to calibrate the system, i.e. to set the correct delays in the Delay Manager, to record results of the GTL/FDL and output packages of the ROP and to provide simulation data for the system. All source files for the memory subsystem are located in src/mem directory.

3.5.1**Implementation**

The memory subsystem consists of four main parts, which will be discussed in more detail in the following sections

- SPY Trigger
- SIM/SPY Memory
- SPY Memory II
- SPY Memory III

Figure 4: Memory subsystem

3.5.1.1 SPY Trigger

The SPY trigger controls the SPY memories and decides when data is recorded. It can be configured and controlled using software registers 3.2 and 3.3 provided by the register bank.

When the SPY trigger receives a spy12 command (next or once) over the software register interface it asserts the spy1 and spy2 signals for the appropriate orbit. This means that the spy signals go high with the bunch crossing counter reaching the value zero and stay high until it reaches zero again (overflow). Note that when the SIM memory is being used (indicated by the $simem_in_use_i$ input provided by the DSMUX component) the spy1 output will not be asserted.

When a spy3 command is received the SPY trigger asserts the spy3 signal and waits until the $spy3_ack$ signal is asserted.

3.5.1.2 SIM/SPY memory

This component combines the SIM memory and the SPY memory I. This optimization is possible because these two memories are never used at the same time. There are basically two use cases for this memory.

• SIM memory: Data is read form the memory and provided to GTL and ROP to test these components.

Tregister 5.2. ST Transger ORBIT WOMBER TREGISTERS

Orbit. In Just 10

Orbit. In Just 11

Register 3.2: SPY Trigger Orbit Number Registers

orbit_nr_low The 32 low bits of the 48 bit orbit number, used for the spy once trigger.

orbit_nr_high The 16 high bits of the 48 bit orbit number, used for the spy once trigger.

• SPY memory: External data is received by the GTX and stored in the memory to check the alignment of the data.

It is very important to guarantee that the spy input signal is not asserted, as long as the memory is used as SIM memory. Note that this functionality is implemented in the SPY trigger component.

The SIM/SPY memory converts the lhc_data_i input signal to a std_logic_vector using the converter function provided by the lhc_data_pkg. This vector is then divided into chunks of 32 bits (the PCIe data width). For each of these chunks a 32 bit true-dual-port memory (2 read ports, 2 write ports, 2 clock domains) is instanciated. Thus, every memory has a read/write port in both clock domain, the 125MHz PCIe clock domain and the 40MHz LHC clock domain, which can be used simultaneously. The PCIe data-in signal ($sw_i.data$) is connected to PCIe-clock domain write port of the memories. A memory select signal is generated form the LSBs of the software address ($sw_i.addr$). The memory select signal also controls the multiplexer on the output of the memories to generate the $sw_o.data$ signal.

Depending on whether the SIM/SPY memory is used to provide simulation data or to store/spy data the address on the LHC-clock domain port of the internal memories is adjusted. If data is recorded (SPY) the bunch crossing counter is used as memory address directly. When the memory is read the read latency (two clock cycles) must be taken into account. This is achieved by subtracting 2 form the bunch crossing number before using it as address. To generate the *lhc_data_o* signal the LHC-clock domain data out ports of the internal memories are concatenated and converted back to the lhc_data_t.

If the lhc_data_t is changed (e.g. new objects added) no modifications in the SIM/SPY memory are required. The SIM/SPY memory only depends on the (auto-generated) functions

Register 3.3: SPY TRIGGER CONFIGURATION REGISTER

Regis	Register 3.3: SPY Trigger Configuration Register						
भू की की की की की भू की की की की की	reserved.	ता या या स्वा स्वा स्वा स्वा स्वा स्वा स्वा स्वा स्वा स्वा स्वा स्वा संस्था					
31 30 29 28 27 26	6	6 5 4 3 2 1 0					
0 0 0 0 0	0	0 0 0 0 0 0 Reset					
$spy12_once$	Triggers the recording of the selected orbit to and II, when written with 1.	to SPY memories I					
$\mathrm{spy}12_\mathrm{next}$	Triggers the recording of the next whole orbit I and II, when written with 1.	t to SPY memories					
$\mathrm{spy3}$	Triggers the recording of the next package the the ROP to SPY memory III, when written v	·					
clr_spy12_rdy	Clears the ready flag of the SPY trigger for SPY memories I and II, when written with 1.						
clr_spy3_rdy	Clears the ready flag of the SPY trigger for SPY memory III, when written with 1.						
${\it clr_spy12_err}$	Clears the error flag, when written with 1.						
spy12_bsy	Indicates that the SPY trigger for SPY memories I and II is busy.						
$spy3_bsy$	Indicates that the SPY trigger for SPY memory III is busy.						
$\mathrm{spy}12_\mathrm{rdy}$	Indicates that one orbit has been recorded in SPY memories I and II and that the SPY trigger is ready for new commands.						
$\mathrm{spy3}\mathrm{_rdy}$	PY memory III and ands.						
$\mathrm{spy}12_\mathrm{err}$	Indicates an error condition (Set only when number for the spy once trigger lies in the past not be recorded).						

used to convert a lhc_data_t signal to std_logic_vector and vice versa (see Section 2.2.1 for details).

In the current implementation the size every object in the lhc_data_t is a multiple of 32 bit. This is also expected by the SIM/SPY memory. If objects with 16 bit sizes are added the SIM/SPY memory must be modified to support this situation (e.g. zero pad the lhc_data_t). Furthermore take into account that the PCIe memory bus is 32 bits wide. So 16 bit objects should be added to the end of the lhc_data_t (as last entry) to keep software memory access simple.

3.5.1.3 SPY memory II

The SPY memory II is divided into two subcomponents, to store the *algos* and *finor* outputs of the FDL. Both memory can only be read over the SW interface. A write access has no effect. The algos memory uses the same architecture as the SIM memory. The finor memory uses a true-dual-port memory with asymmetric ports. This memory can be written with a data width of one bit and read with a data width of 32 bit.

3.5.1.4 SPY memory III

The SPY memory III stores the output of the ROP, which is sent to the DAQ. The input data width is configurable to bus widths of 16, 32 or 64 bits. Depending on the input data width the memory uses different architectures.

- 16 Bit
 A true-dual-port memory with asymmetric ports (16 and 32 bits) is used.
- 32 Bit A true-dual-port memory with 32 Bit data width is used.
- 64 Bit
 Two true-dual-port memories with 32 Bit data width are used.

3.5.2 Interface Specification

Listing 2: SPY trigger interface specification

```
entity spytrig is
       port
        (
               lhc_clk
                       : in std_logic;
               lhc_rst : in std_logic;
               orbit_nr : in orbit_nr_t;
                         : in bx_nr_t;
               bx_nr
               sw_reg_i : in sw_reg_spytrigger_in_t;
                         : out sw_reg_spytrigger_out_t;
               sw_reg_o
               spy1_o
                          : out std_logic;
               spy2_o
                          : out std_logic;
               spy3_o
                          : out std_logic;
               spy3_ack_i : in std_logic;
               simmem_in_use_i : in std_logic
       );
end;
```

3.6 TCM

$Under\ construction!!!$

The Timer Counter Manager (TCM) provides different counters, listed in table 5.

3.6.1 Counter Overview

Table 5: counters of the timer counter manager

Counter	range	increase condition	reset condition	Comments
bx_nr	0to3563	rising_edge(lhc_clk)	overflow	
event_nr	$0to2^{32} - 1$	l1a=1 and rising_edge(lhc_clk)	BGOS: event counter reset	
trigger_nr	$0to2^{48} - 1$	l1a=1 and rising_edge(lhc_clk)	BGOS: start run	
orbit_nr	$0to2^{48} - 1$	overflow of bx_nr	BGOS: orbit counter reset	
luminosity_seg_nr	$0to2^{32} - 1$	rising_edge(orbit_nr(18))	BGOS: orbit counter reset	
start_lumisection	0to1	luminosity_seg_nr increases	after 25ns	'1' for 25ns
bx_nr_d_fdl	0to3563	rising_edge(lhc_clk)	overflow	

3.6.2 Bunch Crossing Number and counters derived from it

All counters except for event_nr and the trigger_nr (which are trivial because they are increased with l1a) are dependent on the bunch crossing counter bx_nr as stated in table 5. The bx_nr is zero at startup, then waits for the the first bcres_d (bunch crossing reset delayed) and starts counting as depicted in figure 5. It's maximal value is 3563 (0xdeb), then it automatically overflows and starts at zero again (see figure 6). Exactly when bx_nr = 0,

bcres_d has to be asserted. Otherwise the counter is out of synchronization. If this happens, the software register err_det is set and the counter waits for the next bcres_d to synchronize again. Note that the value of the counter is invalid until it has synchronized again.

Figure 5: start of the bunch crossing number with the first bcres_d

Figure 6: normal operation of the bunch crossing number

3.6.3 Special counter: bx_nr_d_fdl

The bx_nr_d_fdl is derived from bcres_d_fdl in the same manner as bx_nr is derived from bcres_d. bx_nr_d_fdl will automatically resync if the logic described in subsection 3.6.5 detects a synchronization error for bx_nr.

3.6.4 Counters derived from l1a

The counters event_nr and trigger_nr are increased with l1a, i.e. they are increased twice if l1a is high for 2 clock cycles, etc. They differ only in their value range and the condition that resets the counters, see table 5.

3.6.5 Errors

As stated above, bcres_d has to be asserted exactly when bx_nr = 0, otherwise the counter is out of sync. Then the software register err_det is set as depicted in figure 7. err_det can be reset via the software event register err_det_reset_event as depicted in figure 8. Furthermore err_det is set if bgos = Resync-0x1 and the counter value is not 3563.

The TCM implements two additional counters (bx_nr_chk and bx_nr_max) for debugging purposes. These counters are not visible by any other module but readable via software. bx_nr_chk is a 32bit Counter that increases with every LHC clock cycle and resets with bcres_d. bx_r_max holds the highest value bx_nr_chk ever reached (should be 3563 if the link is aligned).

Figure 7: set of the software register err_det when bc_res_d is not asserted correctly

Figure 8: reset of the software register err_det when err_det_reset_event toggles

3.6.6 SW-Registers

All counters except for the start_lumisection described in table 5 can be read by software via the following sw registers:

Register 3.4: TCM Bunch Crossing Number Register

Register 3.5: TCM EVENT NUMBER REGISTER

Register 3.6: TCM Trigger Number Registers

	J	×	riseer ju		
31					0
		()		
	tegatued			kisget Jit Ji	
31		16	15		0
	0			0	

trigger_nr_l The 32 low bits of the 48 bit trigger number.

trigger_nr_h The 16 high bits of the 48 bit trigger number.

Register 3.7: TCM Orbit Number Registers

		ó	not pt
31			0
		0	
	reserved		orbit pt. h
31		16	15 0
	0		0

orbit_nr_l The 32 low bits of the 48 bit orbit number.

orbit_nr_h The 16 high bits of the 48 bit orbit number.

Register 3.8: TCM Luminosity Segment Number Register

Register 3.9: TCM Bunch Crossing Number FDL Register

Register 3.10: TCM Bunch Crossing Number Check Register

Register 3.11: TCM Bunch Crossing Number Max Register

Some additional control register can be used to check and reset err_det, disable the check of bcres_d and bcres_d_fdl (bx_nr and bx_nr_d_fdl automatically reset when they overflow if cmd_ign_bcres is set, bcres_d is ignored) and simulate the bgos signal. To do this, a value of the orbit signal has to be written to sw-register bgos. The value of the input signal bgos is replaced by the value of the sw-register for exactly one clock cycle, when "1" is written to the event register bgos_event.

Register 3.12: TCM CMD_IGN_BCRES

cmd_ign_bcres bcres is ignored (not checked) when this is set.

err_det Set when out of synchronization.

err_det_reset_event Event register: resets err_det.

Reset

bgos For simulation of the bgos signal.

bgos_event Event register: replaces the input signal bgos by the sw-register bgos for exactly one clock cycle.

luminosity_seg_period_msk luminosity_seg_nr is increased when the orbit_nr mod lum_seg_period_mask = 0.

3.6.7 Hardware Test

There are various python scripts located in the software/GtControl/branches/fpga-design-2013/python/GtControl directory for testing the tcm module. Please refer to the output of the scripts for information how the tests are performed in detail. See table 6.

Table 6: scripts for testing the tcm

script	purpose	
tcm_counter_values.py	outputs the values of all counters defined above	
tcm_produce_err_det	produces an err_det by manipulating bgos	
tcm_err_det_reset	resets the err_det software register	
tcm_trigger_test	tests trigger_nr and event_nr by generating l1a signals using l1asim	
tcm_lum_seg_nr_test	checks the period of two successive increases of the luminositiy_seg_nr	

3.7 Software Reset

The software reset module (sw_reset) provides the possiblity for a software reset via the software event register sw_reset_event.

Register 3.18: Software Reset register

sw_reset_event Event register: Generates a reset signal for exactly one clock cycle.

4 Global Trigger Logic

Remark:

This description is for version 1.15.1 of Global Trigger Logic.

The Global Trigger Logic (μ GTL) firmware contains conditions and algorithms for trigger decision.

Figure 9: μ GTL firmware

4.1 μ GTL Interface

Inputs:

- Calo-Layer2 data
 - Electron/ γ objects
 - Jet objects
 - Tau objects
 - Energy summary information:
 - * Total Et (ET)
 - * total Et from ECAL only (ETTEM)
 - * total calibrated Et in jets (HT)

- * missing Et (ET_{miss})
- * missing Et including HF (ET_{miss}^{HF})
- * missing Ht objects (HT_{miss})
- * missing Ht including HF $(\mathrm{HT}_{miss}^{HF})$
- * "Asymmetry" information (ASYMET, ASYMHT, ASYMETHF, ASYMHTHF)
- Minimum bias HF bits (included in energy summary information data structure)
- Towercount bits (number of firing HCAL towers, included in energy summary information data structure)
- "Centrality" bits
- Global Muon Trigger data
- External conditions

Outputs:

• Algorithms

4.2 Definition of optical interfaces

Remark:

All definitions for scales in the following chapters are from a CMS Detector Note: "Scales for inputs to μ GT" (see actual version in https://raw.githubusercontent.com/cms-l1-globaltrigger/mp7_ugt_legacy/master/doc/scales_inputs_2_ugt/pdf/scales_inputs_2_ugt.pdf).

4.2.1 Calo-Layer2 optical interfaces

The configuration of optical connections from Calo-Layer2 to μGT is shown in Table 2.

The data structure of an electron/ γ object (bits 27..31 are not defined yet, reserved for quality, ...):

The data structure of a jet object (bits 27..31 are not defined yet, reserved for quality, ...):

31 27	26 19	18 11	10 0
iso/qu/sp	φ	η	$E_{ m T}$

The data structure of a tau object (bits 27...31 are not defined yet, reserved for quality, ...):

4 Global Trigger Logic

31 27	26 25	24 17	16 9	8 0	
qual/spare	iso	φ	η	$E_{ m T}$	

The data structure of "total Et" (ET) quantity [including "total Et from ECAL only" (ET-TEM) and "minimum bias HF+ threshold 0" bits]:

31	28	27 24	23 12	11 0
MBT0HF		spare	$E_{ m T}$ [ETTEM]	$E_{ m T}$ [ET]

The data structure of "total calibrated Et in jets" (HT) quantity [including "towercount" and "minimum bias HF- threshold 0" bits]:

31 28	27 25	24 12	11 0
MBT0HFM	spare	TOWERCOUNT	$E_{ m T}$

The data structure of "missing Et" (ET_{miss}) quantity [including "Asymmetry" ASYMET and "minimum bias HF+ threshold 1" bits]:

31 28	27 20	19 12	11 0
MBT1HFP	ASYMET	φ	$E_{ m T}$

The data structure of "missing Ht" $(HT_{\rm miss})$ quantity [including "Asymmetry" ASYMHT and "minimum bias HF- threshold 1" bits]:

31 28	27 20	19 12	11 0
MBT1HFM	ASYMHT	φ	$E_{ m T}$

The data structure of "missing Et including HF" (ET $_{miss}^{HF}$) quantity [including "Asymmetry" ASYMETHF and "Centrality" bits (3:0)]:

31 28	3 2		19 12	i 11 U	
[CENT3:0]	ASYMETHF	φ	$E_{ m T}$	

The data structure of "missing Ht including HF" (HT^{HF}_{miss}) quantity [including "Asymmetry" ASYMHTHF and "Centrality" bits (7:4)]:

	27 20	19 12	11 0
CENT[7:4]	ASYMHTHF	φ	$E_{ m T}$

4.2.2 Global Muon Trigger optical interfaces

The data structure of a muon object (64 bits - bit 34 = charge sign, bit 35 = charge valid, bit 61 is a spare bit, bit 63..62 = impact parameter):

4.3 Implementation in firmware

The firmware of μ GTL consists of two main parts:

- A top-of-hierarchy file (gtl_module.vhd), which contains the pipeline for ±2bx data, the instantiations of calculators for differences in η and φ, the instantiations of conditions, the instantiations of charge correlation logic of muons and the Algorithms logic for 512 Algorithms, as well as a package file (gtl_pkg.vhd) for declarations. Actually 6 AMC board are used to contain 512 Algorithms. Therefore the 512 Algorithms are partitioned by VHDL Producer. The VHDL Producer for every Trigger Menu creates VHDL snippets files (algo_index.vhd, gtl_module_instances.vhd, gtl_module_rsignals.vhd, ugt_constants.vhd), these snippets are inserted into templates for gtl_module.vhd (gtl_module_tpl.vhd) and gtl_pkg.vhd (gtl_pkg_tpl.vhd) during simulation and synthesis.
- A set of VHDL-files exists for all the modules instantiated in top-of-hierarchy and the modules in the hierarchy. These files, called the "fixed part", are not influenced by VHDL Producer.

The latency of μ GTL is fixed to 5 bunch-crossings, 2 bunch-crossings for the pipeline of ± 2 bx data (for data with +2bx and +1bx), 2 bunch-crossings for conditions (fixed), also for the conditions requested in the future, 1 bunch-crossing for the logic of Algorithms (See Figure 11).

4.3.1 Top-of-hierarchy module

The top-of-hierarchy module (gtl_module.vhd) contains

- the pipeline for $\pm 2bx$ data
- the instantiations of charge correlation logic of muons (generated by VHDL Producer)
- the instantiations of calculators for differences in η and φ (generated by VHDL Producer)
- the instantiations of conditions (generated by VHDL Producer)
- a boolean logic for Algorithms (generated by VHDL Producer)

Listing 3 contains the entity-declaration of the top-of-hierarchy file (gtl_module.vhd).

Listing 3: Entity declaration of gtl_module.vhd

```
ett_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       ht_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       etm_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       htm_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
-- HB 2016-04-18: updates for "min bias trigger" objects (quantities) for Low-
   pileup-run May 2016
       mbt1hfp_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       mbt1hfm_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       mbt0hfp_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       mbt0hfm_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
-- HB 2016-06-07: inserted new esums quantities (ETTEM and ETMHF).
       ettem_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       etmhf_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
-- HB 2016-09-16: inserted HTMHF and TOWERCNT
       htmhf_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       towercount_data : in std_logic_vector(MAX_TOWERCOUNT_BITS-1 downto 0);
-- HB 2018-08-06: inserted signals for "Asymmetry" and "Centrality" (included in
   esums data structure).
       asymet_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       asymht_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       asymethf_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       asymhthf_data : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       centrality_data : in std_logic_vector(NR_CENTRALITY_BITS-1 downto 0);
   *************************
       muon_data : in muon_objects_array(0 to NR_MUON_OBJECTS-1);
        external_conditions : in std_logic_vector(NR_EXTERNAL_CONDITIONS-1 downto
       algo_o : out std_logic_vector(NR_ALGOS-1 downto 0));
end gtl_module;
```

4.3.2 Package module

All the declarations for arrays ('type'), parameters ('constant') and look-up-tables ('constant') used in modules are available in gtl_pkg.vhd package-file.

Figure 10: VHDL file generation by VHDL Producer

4.4 μ GTL structure

4.4.1 Data $\pm 2bx$

The μ GTL input data flow through a register pipeline of four stages. With those data it is possible to have conditions with objects from different bunch-crossings (within ± 2 bunch-crossings), e.g. for Correlation conditions.

See Figure 11 for a scheme of μ GTL pipeline structure. The data "data_p_1bx" and "data_p_2bx" occur 1 respectively 2 bunch-crossings after data for a certain bunch-crossing, therefore we got 2 bunch-crossings of latency from those data. The data "data_m_1bx" and "data_m_2bx" have no influence on latency, because coming before data for a certain bunch-crossing.

Figure 11: Scheme of μGTL pipeline structure

4.4.2 Definitions of Calorimeter data

The calorimeter trigger processing identifies electron/ γ , jet and tau objects and energy sum quantities.

electron/ γ :

Twelve objects are passed to the μGT for each event.

For each selected object, the Calo-Layer2 sends parameters for $E_{\rm T}$ and for position and quality information - encoded in 32 bits:

- 9 bits $p_{\rm T}$, range = 0..255 GeV (HW index = 0..0x1FF), step = 0.5, the highest bin will mark an overflow (HW index 0x1FF): meaning has to be defined
- 8 (7+1 sign) bits pseudo-rapidity (η) position, range = -5.0 to 5.0, step = 0.087/2, linear scale, 138 bins (HW index = 0xBC..0x44)
- 8 bits azimuth angle (φ) position, range = 2π , step $\approx 2\pi/144~(=2.5^{\circ})$, 144 bins (HW index = 0..0x8F), HW index starting at 0° (anti-clockwise)
- 2 bits isolation
- 5 bits spare

The data structure of an electron/ γ object (bits 27..31 are not defined yet, reserved for quality, ...):

31	27	26	25	24			17	16		9	8		0
spare	9	is	0		(ρ			η			$p_{ m T}$	

jet:

Twelve objects are passed to the μGT for each event.

For each selected object, the Calo-Layer2 sends parameters: $E_{\rm T}$, for position and quality information - encoded in 32 bits:

- 11 bits $p_{\rm T}$, range = 0..1023 GeV (HW index = 0..0x7FF), step = 0.5, the highest bin will mark an overflow (HW index 0x7FF): meaning has to be defined
- 8 (7+1 sign) bits pseudo-rapidity (η) position, range = -5.0 to 5.0, step = 0.087/2, linear scale, 230 bins (HW index = 0x8E..0x72)
- 8 bits azimuth angle (φ) position, range = 2π , step $\approx 2\pi/144$ ($=2.5^{\circ}$), 144 bins (HW index = 0..0x8F), HW index starting at 0° (anti-clockwise)
- 5 bitsspare

The data structure of a jet object (bits 27..31 are not defined yet, reserved for quality, ...):

3	31 27	26 19	18 11	10 0
	spare	arphi	η	$p_{ m T}$

tau:

Twelve objects are passed to the μGT for each event.

For each selected object, the Calo-Layer2 sends parameters for $E_{\rm T}$ and for position and quality information - encoded in 32 bits:

- 9 bits $p_{\rm T}$, range = 0..255 GeV (HW index = 0..0x1FF), step = 0.5, the highest bin will mark an overflow (HW index 0x1FF): meaning has to be defined
- 8 (7+1 sign) bits pseudo-rapidity (η) position, range = -5.0 to 5.0, step = 0.087/2, linear scale, 138 bins (HW index = 0xBC..0x44)
- 8 bits azimuth angle (φ) position, range = 2π , step $\approx 2\pi/144$ ($\triangleq 2.5^{\circ}$), 144 bins (HW index = 0..0x8F), HW index starting at 0° (anti-clockwise)
- 2 bits isolation
- 5 bits spare

The data structure of a tau object (bits 27..31 are not defined yet, reserved for quality, ...):

31 27	$26 \ 25$	24 17	16 9	8 0
spare	iso	arphi	η	$E_{ m T}$

The representation of the 8 bits (called "hardware index [HW index]") in η is expected as Two's Complement notation as shown below.

HW index	η range	η bin
0x72	114*0.087/2 to 115*0.087/2	114
•••		•••
0x01	0.087/2 to 2*0.087/2	1
0x00	0 to 0.087/2	0
0xFF	0 to -0.087/2	-1
0xFE	-0.087/2 to -2*0.087/2	-2
0x8E	-114*0.087/2 to -115*0.087/2	-115

The representation of the 8 bits in φ is expected as shown in Table 7.

The representation of the 2 bits for isolation (e/ γ and tau) is expected as shown in Table 8.

Table 7: φ scale of calorimeter objects

HW index	φ range	φ range [degrees]	φ bin
0x00	0 to $2\pi/144$	0 to 2.5	0
0x01	$2\pi/144$ to $2*2\pi/144$	2.5 to 5.0	1
			•••
0x8F	$143*2\pi/144 \text{ to } 2\pi$	357.5 to 360	143

Table 8: Definition of e/γ and tau isolation bits

bits [2625]	definition
00	not isolated
01	isolated
10	TBD
11	TBD

4.4.3 Definitions of Energy sum quantities data

energy sum quantities:

Consists of following quantities (naming convention see 7):

- ET
- HT
- ET_{miss}
- HT_{miss}
- ETTEM
- \mathbf{ET}_{miss}^{HF}
- \mathbf{HT}_{miss}^{HF}
- ASYMET
- ASYMHT
- ASYMETHF
- ASYMHTHF
- CENTO
- .
- **CENT7**

Calo-Layer2 sends 6 frames (each 32 bits) with Energy sum quantities containing the following information:

- $E_{\rm T}$, 12 bits, range = 0..2047 GeV (HW index = 0..0xFFF), step = 0.5, the highest bin will mark an overflow (HW index 0xFFF): meaning has to be defined
- azimuth angle (φ) position, 8 bits, range = 2π , step $\approx 2\pi/144~(=2.5^{\circ})$, 144 bins (HW index = 0..0x8F), HW index starting at 0° (anti-clockwise)
- "Towercount", 13 bits, range = 0..8191
- "Minimum bias", 4 bits, range = 0..15
- "Asymmetry", 8 bits, range = 0..255 (used 0..100)
- $\bullet\,$ "Centrality", 8 bits, used as signals

Frame0: The data structure of "total Et" (ET) quantity [including "total Et from ECAL only" (ETTEM) and "minimum bias HF+ threshold 0" bits]:

31	28	27 24	23 12	11 0
MBT0HF	⁷ P	spare	$E_{ m T}$ [ETTEM]	$E_{ m T}$ [ET]

Frame1: The data structure of "total calibrated Et in jets" (HT) quantity [including "towercount" and "minimum bias HF- threshold 0" bits]:

31 28	27 25	24 12	11 0
MBT0HFM	spare	TOWERCOUNT	$E_{ m T}$

Frame2: The data structure of "missing Et" (ET_{miss}) quantity [including "Asymmetry" ASYMET and "minimum bias HF+ threshold 1" bits]:

31 28	27	20	19 12	11 0
MBT1HFP		ASYMET	arphi	$E_{ m T}$

Frame3: The data structure of "missing Ht" (HT_{miss}) quantity [including "Asymmetry" ASYMHT and "minimum bias HF- threshold 1" bits]:

31 28	27 20	19 12	11 0
MBT1HFM	ASYMHT	φ	$E_{ m T}$

Frame4: The data structure of "missing Et including HF" (ET_{miss}^{HF}) quantity [including "Asymmetry" ASYMETHF and "Centrality" bits (3:0)]:

31	28 27	20	19 12	11	0
CENT [3 : 0]	ASYMETHF	arphi	$E_{ m T}$	

Frame5: The data structure of "missing Ht including HF" (HT_{miss}^{HF}) quantity [including "Asymmetry" ASYMHTHF and "Centrality" bits (7:4)]:

31 28	27	20 19 12	11 0
CENT[7:4]	ASYMHTHF	φ	$E_{ m T}$

4.4.4 Definitions of Muon data

Eight Muon objects are provided by Global Muon Trigger. One Muon object has a 64 bits data structure with parameters for $p_{\rm T}$, for unconstrained $p_{\rm T}$, for impact parameter, for position, charge, quality and isolation information:

- 10 bits azimuth angle (φ) position, range = 2π , step $\approx 2\pi/576$ ($= 0.625^{\circ}$), 576 bins (HW index = 0..0x23F), HW index starting at 0° (anti-clockwise)
- 9 bits $p_{\rm T}$, range = 0..255 GeV (HW index = 0..0x1FF), step = 0.5, the highest bin will mark an overflow (HW index 0x1FF): meaning has to be defined
- 4 bits quality, 16 types for quality (meaning not defined yet!)
- 9 (8+1 sign) bits pseudo-rapidity (η) position, range = -2.45 to 2.45, step = 0.087/8, linear scale, 452 bins (-225..225, HW index = 0x11F..0x0E1)
- 2 bits isolation, 4 types for isolation (meaning not defined yet!)
- 1 bit charge sign, charge sign = '0' means "positive" charge, charge sign = '1' means "negative" charge
- 1 bit charge valid (='1' means "valid")
- 7 index bits
- 10 bits azimuth angle (φ) position, raw data
- 8 bits unconstrained $p_{\rm T}$, range = 0..255 GeV (HW index = 0..0xFF), step = 1.0, the highest bin will mark an overflow (HW index 0xFF)
- 1 spare bit
- 2 bits impact parameter

The data structure of a muon object (64 bits - bit 34 = charge sign, bit 35 = charge valid, bit 61 is a spare bit, bit 63..62 = impact parameter):

63 62		60	53	52		43	42		36	35 34	33 32
imp para	r	unconst.	$^{ m PT}$		φ (out)		i	index	bits	ch	iso
31		23	22	19	18		10	9			0
	η	(extrapol.)	qu	al	$p_{ m T}$				φ (extra	pol.)	

The representation of the 9 bits (called "hardware index [HW index]") in η is expected as Two's Complement notation as shown in Table 9.

The central value of the bin 0 (-0.010875/2 to +0.010875/2) = 0.0, the left edge of the bins will range from $-255 \times 0.010875 - 0.010875/2 = -2.7785625$ to $+255 \times 0.010875 - 0.010875/2 = 2.7676875$. The central value of the bins will range between ± 2.773125 . The physical η range of the muon detectors is about ± 2.45 , so that not all possible η bins will be used.

Table 9: n scale of muon objects

HW index	η range	η bin
0x0E1	224.5*0.087/8 to 225.5*0.087/8	225
0x0E0	223.5*0.087/8 to 224.5*0.087/8	224
•••		
0x001	0.5*0.087/8 to 1.5*0.087/8	1
0x000	0.5*-0.087/8 to 0.5*0.087/8	0
0x1FF	0.5*-0.087/8 to 1.5*-0.087/8	-1
0x1FE	1.5*-0.087/8 to -2.5*0.087/8	-2
•••		
0x11F	-224.5*0.087/8 to -225.5*0.087/8	-225

The representation of the 10 bits in φ is expected as shown in Table 10.

Table 10: φ scale of muon objects

HW index	φ range	φ range [degrees]	φ bin
0x000	0 to $2\pi/576$	0 to 0.625	0
0x001	$2\pi/576$ to $2*2\pi/576$	0.625 to 1.250	1
•••			•••
0x23F	$575*2\pi/576 \text{ to } 2\pi$	359.375 to 360	575

The representation of the 4 bits for quality is expected as shown in Table 11.

The representation of the 2 bits for isolation is expected as shown in Table 13.

bits [22..19] definition 0000 quality "level 0" quality "level 1" 0001 0010 quality "level 2" 0011 quality "level 3" 0100 quality "level 4" 0101 quality "level 5" quality "level 6" 0110 quality "level 7" 0111 1000 quality "level 8" quality "level 9" 1001 1010 quality "level 10" 1011 quality "level 11" 1100 quality "level 12" 1101 quality "level 13" 1110 quality "level 14"

Table 11: Definition of muon quality bits

Table 12: Definition of muon isolation bits

quality "level 15"

1111

bits [3332]	definition
00	not isolated
01	isolated
10	TBD
11	TBD

The representation of the 2 bits for impact parameter is expected as shown in Table 13.

4.4.5 Calculation of differences in η and φ

Some condition types namely correlation conditions uses differences in η and φ to make the decision. Therefore these differences are calculated out of these conditions, because the differences can be used several times in different condition types. The differences in η and φ are calculated in bins. These differences in bins are converted to numbers (by LUTs), which represents values of differences (multiples of units in η and φ). Differences in φ are provided by module sub_phi_integer_obj_vs_obj.vhd, which instantiates the module sub_nunsigned_phi.vhd as many times as the numbers of both objects determine.

In the module sub_unsigned_phi.vhd a calculation of a difference of two objects is done, both objects must have the same resolution, namely the higher one. The result is the absolute

Table 13: Definition of muon impact parameter bits

bits [6362]	definition
00	TBD
01	TBD
10	TBD
11	TBD

value of the difference. There are two differences in φ , one "clockwise" and one "anti-clockwise". For the final result the smaller difference is taken.

Differences in η are provided by module sub_eta_integer_obj_vs_obj.vhd, which instantiates the module sub_unsigned_eta.vhd as many times as the numbers of both objects determine.

In the module sub_unsigned_eta.vhd a calculation of a difference of two objects is done with a signed subtraction, because of the Two's Complement notation of η values. The result is the absolute value of the difference.

4.4.6 Combination conditions

4.4.6.1 Combination conditions definition

A condition consists of input data and a set of requirements, which contain the requirements to be complied. The requirements are called "object cuts".

The requirement list contains:

thresholds for $p_{\rm T}$, ranges for η and φ , LUTs for isolation, LUTs for quality, requsted charges, thresholds for unconstrained $p_{\rm T}$, a LUTs for impact parameter. The condition is complied, if every comparison between object parameters and requirements is valid for the following object cuts (only for requested cuts):

For Calorimeter input data:

- $p_{\rm T}$ greater-equal (or equal) threshold
- η in range
- φ in range
- iso LUT

For Muon input data:

- $p_{\rm T}$ greater-equal (or equal) threshold
- η in range
- φ in range

- iso LUT
- requested charge
- quality LUT
- unconstrained $p_{\rm T}$ greater-equal (or equal) threshold
- impact parameter LUT

There are different types of conditions implemented, depending of how many objects have to comply the requirements.

- "Quad objects requirements condition": this condition type consists of requirements for 4 different trigger objects of the same object type. For each object the requirements can be different. To fulfill this condition, there must exist at least one set of 4 different objects, each of which fulfills at least one of the requirements.
- "Triple objects requirements condition": this condition type consists of requirements for 3 different trigger objects of the same object type. For each object the requirements can be different. To fulfill this condition, there must exist at least one set of 3 different objects, each of which fulfills at least one of the requirements.
- "Double objects requirements condition": this condition type consists of requirements for 2 different trigger objects of the same object type. For each object the requirements can be different. To fulfill this condition, there must exist at least one set of 2 different objects, each of which fulfills at least one of the requirements.¹
- "Single object requirement condition": this condition type consists of one requirement for one trigger object of a given object type. To fulfill this condition, there must exist at least one object which fulfills the requirement.

The values of the requirements are given by VHDL Producer for every Trigger Menu. The input data objects have to be of same type and same bunch-crossing.

With "Double objects requirements condition" a correlation cut of "two-body pt" can be required (calorimeter and muon objects).

Additionally charge correlation cuts with "Double objects requirements condition", "Triple objects requirements condition" and "Quad objects requirements condition" of muon objects can be required.

4.4.6.1.1 Combination conditions module

TBD

¹"Double objects requirements condition with spatial correlation" not used anymore, replaced by Correlation conditions

Listing 4: Entity declaration of comb_conditions.vhd

```
entity comb_conditions is
    generic (
        slice_1_low_obj1: natural := 0;
        slice_1_high_obj1: natural := NR_MU_OBJECTS-1;
       slice_2_low_obj1: natural := 0;
       slice_2_high_obj1: natural := NR_MU_OBJECTS-1;
       slice_3_low_obj1: natural := 0;
        slice_3_high_obj1: natural := NR_MU_OBJECTS-1;
        slice_4_low_obj1: natural := 0;
        slice_4_high_obj1: natural := NR_MU_OBJECTS-1;
        pt_ge_mode_obj1: boolean := true;
       pt_thresholds_obj1: common_templates_array := (others => (others => '0'))
       nr_eta_windows_obj1: common_templates_natural_array := (others => 0);
       eta_w1_upper_limits_obj1: common_templates_array := (others => (others =>
       eta_w1_lower_limits_obj1: common_templates_array := (others => (others =>
        eta_w2_upper_limits_obj1: common_templates_array := (others => (others =>
        eta_w2_lower_limits_obj1: common_templates_array := (others => (others =>
             '0'));
        eta_w3_upper_limits_obj1: common_templates_array := (others => (others =>
            '0'));
        eta_w3_lower_limits_obj1: common_templates_array := (others => (others =>
             '()'));
        eta_w4_upper_limits_obj1: common_templates_array := (others => (others =>
             '0'));
        eta_w4_lower_limits_obj1: common_templates_array := (others => (others =>
             '0'));
        eta_w5_upper_limits_obj1: common_templates_array := (others => (others =>
             '0'));
        eta_w5_lower_limits_obj1: common_templates_array := (others => (others =>
             '0'));
        nr_phi_windows_obj1: common_templates_natural_array := (others => 0);
       phi_w1_upper_limits_obj1: common_templates_array := (others => (others =>
             '0'));
       phi_w1_lower_limits_obj1: common_templates_array := (others => (others =>
             '0'));
       phi_w2_upper_limits_obj1: common_templates_array := (others => (others =>
            '0'));
       phi_w2_lower_limits_obj1: common_templates_array := (others => (others =>
            '0'));
        iso_luts_obj1: common_templates_iso_array := (others => (others => '1'));
        requested_charges_obj1: common_templates_string_array := (others => "ign"
       qual_luts_obj1: common_templates_quality_array := (others => (others =>
            '1'));
        upt_cuts_obj1: common_templates_boolean_array := (others => false);
        upt_upper_limits_obj1: common_templates_array := (others => (others =>
            '0'));
        upt_lower_limits_obj1: common_templates_array := (others => (others =>
        ip_luts_obj1: common_templates_ip_array := (others => (others => '1'));
```

```
requested_charge_correlation: string(1 to 2) := "ig";
slice_low_obj2: natural := 0;
slice_high_obj2: natural := NR_TAU_OBJECTS-1;
pt_ge_mode_obj2: boolean := true;
pt_threshold_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0) := (
   others => '0');
nr_eta_windows_obj2: natural := 0;
eta_w1_upper_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w1_lower_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w2_upper_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w2_lower_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w3_upper_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w3_lower_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w4_upper_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w4_lower_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w5_upper_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
eta_w5_lower_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
nr_phi_windows_obj2: natural := 0;
phi_w1_upper_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
phi_w1_lower_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
phi_w2_upper_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
phi_w2_lower_limit_obj2: std_logic_vector(MAX_TEMPLATES_BITS-1 downto 0)
   := (others => '0');
iso_lut_obj2: std_logic_vector(2**MAX_ISO_BITS-1 downto 0) := (others =>
   '1');
twobody_pt_cut: boolean := false;
pt_width: positive := EG_PT_VECTOR_WIDTH;
pt_sq_threshold_vector: std_logic_vector(MAX_WIDTH_TBPT_LIMIT_VECTOR-1
   downto 0) := (others => '0');
twobody_upt_cut: boolean := false;
upt_width: positive := MU_UPT_VECTOR_WIDTH;
upt_sq_threshold_vector: std_logic_vector(MAX_WIDTH_TBPT_LIMIT_VECTOR-1
   downto 0) := (others => '0');
sin_cos_width: positive := CALO_SIN_COS_VECTOR_WIDTH;
pt_sq_sin_cos_precision : positive := MU_MU_SIN_COS_PRECISION;
deta_orm_cut: boolean := false;
deta_orm_upper_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0) := (others => '0');
deta_orm_lower_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0) := (others => '0');
```

```
dphi_orm_cut: boolean := false;
       dphi_orm_upper_limit_vector: std_logic_vector(
           MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0) := (others => '0');
       dphi_orm_lower_limit_vector: std_logic_vector(
           MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0) := (others => '0');
       dr orm cut: boolean := false;
       dr_orm_upper_limit_vector: std_logic_vector(MAX_WIDTH_DR_LIMIT_VECTOR-1
           downto 0) := (others => '0');
       dr_orm_lower_limit_vector: std_logic_vector(MAX_WIDTH_DR_LIMIT_VECTOR-1
           downto 0) := (others => '0');
       nr_obj1: natural := NR_EG_OBJECTS;
       type_obj1 : natural := EG_TYPE;
       nr_obj2: natural := NR_TAU_OBJECTS;
       type_obj2 : natural := TAU_TYPE;
       nr_templates: positive := COMMON_NR_TEMPLATES
   );
   port (
        lhc_clk: in std_logic;
       obj1_calo: in calo_objects_array(0 to nr_obj1-1) := (others => (others =>
            '0'));
       obj1_muon: in muon_objects_array(0 to NR_MU_OBJECTS-1) := (others => (
           others => '0'));
       obj2: in calo_objects_array(0 to nr_obj2-1) := (others => (others => '0')
           );
       ls_charcorr_double: in muon_charcorr_double_array := (others => (others
           => 'O');
       os_charcorr_double: in muon_charcorr_double_array := (others => (others
           => 'O');
       ls_charcorr_triple: in muon_charcorr_triple_array := (others => (others
           => (others => '0'));
       os_charcorr_triple: in muon_charcorr_triple_array := (others => (others
           => (others => '0')));
       ls_charcorr_quad: in muon_charcorr_quad_array := (others => (others => (
           others => (others => '0')));
       os_charcorr_quad: in muon_charcorr_quad_array := (others => (others => (
           others => (others => '0')));
       deta_orm: in deta_dphi_vector_array(0 to nr_obj1-1, 0 to nr_obj2-1) := (
           others => (others => '0'));
       dphi_orm: in deta_dphi_vector_array(0 to nr_obj1-1, 0 to nr_obj2-1) := (
           others => (others => '0')));
       pt : in diff_inputs_array(0 to nr_obj1-1) := (others => (others => '0'));
       cos_phi_integer : in sin_cos_integer_array(0 to nr_obj1-1) := (others =>
           0);
       sin_phi_integer : in sin_cos_integer_array(0 to nr_obj1-1) := (others =>
           0):
       condition_o: out std_logic
   );
end comb_conditions;
```

Item	Explanation
slice_1_low_obj1	low value of slice for first object.
slice_1_high_obj1	high value of slice for first object.
slice_2_low_obj1	low value of slice for second object.
slice_2_high_obj1	high value of slice for second object.
slice_3_low_obj1	low value of slice for third object.
slice_3_high_obj1	high value of slice for third object.
slice_4_low_obj1	low value of slice for fourth object.
slice_4_high_obj1	high value of slice for fourth object.
pt_ge_mode_obj1	'mode-selection' for the $p_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
pt_thresholds_obj1	array of four threshold values for comparison in pt (four threshold, because of max. 4 requirements).
nr_eta_windows_obj1	array of four integer values for number of η cuts.
eta_w1_upper_limits_obj1	array of four "upper limits" of "window"-comparator 1 for $\eta.$
eta_w1_lower_limits_obj1	array of four "lower limits" of "window"-comparator 1 for $\eta.$
eta_w2_upper_limits_obj1	array of four "upper limits" of "window"-comparator 2 for $\eta.$
eta_w2_lower_limits_obj1	array of four "lower limits" of "window"-comparator 2 for η .
eta_w3_upper_limits_obj1	array of four "upper limits" of "window"-comparator 3 for $\eta.$
eta_w3_lower_limits_obj1	array of four "lower limits" of "window"-comparator 3 for η .
eta_w4_upper_limits_obj1	array of four "upper limits" of "window"-comparator 4 for $\eta.$
eta_w4_lower_limits_obj1	array of four "lower limits" of "window"-comparator 4 for η .
eta_w5_upper_limits_obj1	array of four "upper limits" of "window"-comparator 5 for $\eta.$
eta_w5_lower_limits_obj1	array of four "lower limits" of "window"-comparator 5 for $\eta.$
nr_phi_windows_obj1	array of four integer values for number of φ cuts.
phi_w1_upper_limits_obj1	array of four "upper limits" of "window"-comparator 1 for φ .
phi_w1_lower_limits_obj1	array of four "lower limits" of "window"-comparator 1 for φ .
phi_w2_upper_limits_obj1	array of four "upper limits" of "window"-comparator 2 for φ .
phi_w2_lower_limits_obj1	array of four "lower limits" of "window"-comparator 2 for φ .
iso_luts_obj1	array of four LUTs (4 bits) for isolation.
requested_charges_obj1	array of four strings for requested charge ("pos" means "positive charge", "neg" means "negative charge" and "ign" means "ignore charge").
qual_luts_obj1	array of four LUTs (16 bits) for quality.
upt_cuts_obj1	array of four boolean for using unconstrained $p_{\rm T}$ cuts.
upt_upper_limits_obj1	array of four "upper limits" of unconstrained $p_{\rm T}$.
upt_lower_limits_obj1	array of four "lower limits" of unconstrained $p_{\rm T}.$
ip_luts_obj1	array of four LUTs (4 bits) for impact parameter.

Table 14: Explanation of Listing 4

Item	Explanation
requested_charge_correlation	string (2 characters) for requested charge correlation ("ls" means "like sign", "os" means "opposite sign" or "ig" means "ignore").
pt_ge_mode_obj2	'mode-selection' for the $p_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
pt_thresholds_obj2	array of four threshold values for comparison in pt (four threshold, because of max. 4 requirements).
nr_eta_windows_obj2	array of four integer values for number of η cuts.
eta_w1_upper_limits_obj2	array of four "upper limits" of "window"-comparator 1 for $\eta.$
eta_w1_lower_limits_obj2	array of four "lower limits" of "window"-comparator 1 for η .
eta_w2_upper_limits_obj2	array of four "upper limits" of "window"-comparator 2 for $\eta.$
eta_w2_lower_limits_obj2	array of four "lower limits" of "window"-comparator 2 for η .
eta_w3_upper_limits_obj2	array of four "upper limits" of "window"-comparator 3 for $\eta.$
eta_w3_lower_limits_obj2	array of four "lower limits" of "window"-comparator 3 for η .
eta_w4_upper_limits_obj2	array of four "upper limits" of "window"-comparator 4 for $\eta.$
eta_w4_lower_limits_obj2	array of four "lower limits" of "window"-comparator 4 for η .
eta_w5_upper_limits_obj2	array of four "upper limits" of "window"-comparator 5 for $\eta.$
eta_w5_lower_limits_obj2	array of four "lower limits" of "window"-comparator 5 for η .
nr_phi_windows_obj2	array of four integer values for number of φ cuts.
phi_w1_upper_limits_obj2	array of four "upper limits" of "window"-comparator 1 for φ .
phi_w1_lower_limits_obj2	array of four "lower limits" of "window"-comparator 1 for φ .
phi_w2_upper_limits_obj2	array of four "upper limits" of "window"-comparator 2 for φ .
phi_w2_lower_limits_obj2	array of four "lower limits" of "window"-comparator 2 for φ .
iso_luts_obj2	array of four LUTs (4 bits) for isolation.
twobody_pt_cut	valid strings are 'true' and 'false' (type is boolean).
pt_width	vector length of pt value for two-body pt.
pt_sq_threshold_vector	hex value for threshold of two-body pt comparison (value for pt square).
twobody_upt_cut	valid strings are 'true' and 'false' (type is boolean).
upt_width	vector length of unconstrained pt value for two-body pt.
upt_sq_threshold_vector	hex value for threshold of two-body unconstrained pt comparison (value for pt square). $$
sin_cos_width	vector length of sine and cosine.
pt_sq_sin_cos_precision	precision of sine and cosine calculation in LUTs.
deta_orm_cut	selection of $\Delta \eta$ cut for overlap removal.
deta_orm_upper_limit_vector	"upper limit" of "window"-comparator for comparison of $\Delta\eta$ for overlap removal (hex value).
deta_orm_lower_limit_vector	"lower limit" of "window"-comparator for comparison of $\Delta\eta$ for overlap removal (hex value).

Table 14: Explanation of Listing 4

Item	Explanation
dphi_orm_cut	selection of $\Delta \varphi$ cut for overlap removal.
dphi_orm_upper_limit_vector	"upper limit" of "window"-comparator for comparison of $\Delta\varphi$ for overlap removal (hex value).
dphi_orm_lower_limit_vector	"lower limit" of "window"-comparator for comparison of $\Delta\varphi$ for overlap removal (hex value).
dr_orm_cut	selection of ΔR cut for overlap removal.
dr_orm_upper_limit_vector	"upper limit" of "window"-comparator for comparison of ΔR^2 for overlap removal (hex value).
dr_orm_lower_limit_vector	"lower limit" of "window"-comparator for comparison of ΔR^2 for overlap removal (hex value).
nr_obj1	number of objects of input obj1.
type_obj1	type of input obj1.
nr_obj2	number of objects of input obj2 (for overlap removal).
type_obj2	type of input obj2 (for overlap removal).
nr_templates	number of requirements, selector of condition-type. Valid values are 1, 2 , 3 and 4 .
lhc_clk	clock input (LHC clock).
obj1_calo	calo input data.
obj1_muon	muon input data.
obj2	calo input data for overlap removal.
ls_charcorr_double	array of "like sign" charge correlation for double condition.
os_charcorr_double	array of "opposite sign" charge correlation for double condition.
ls_charcorr_triple	array of "like sign" charge correlation for triple condition.
os_charcorr_triple	array of "opposite sign" charge correlation for triple condition.
ls_charcorr_quad	array of "like sign" charge correlation for quad condition.
os_charcorr_quad	array of "opposite sign" charge correlation for quad condition.
deta_orm	array of $\Delta \eta$ for overlap removal.
dphi_orm	array of $\Delta \varphi$ for overlap removal.
pt	pt value for two-body pt.
cos_phi_integer	interger value of cosine for two-body pt.
sin_phi_integer	interger value of sine for two-body pt.
condition_o	output of condition (routed to Algorithms logic, see 4.4.14).

4.4.6.1.2 Calorimeter Overlap Remover conditions module

The Calorimeter Overlap Remover conditions consits of a Calorimeter condition (??) and a single condition for a different calo object type. One or more correlation cut(s) ($\Delta\eta$, $\Delta\varphi$ and ΔR - 4.4.12) for overlap removal is required between different calo object types. Overlap Remover conditions calo_conditions_orm.vhd are implemented only for calo object types.

4.4.6.1.3 Calorimeter comparators module

A comparator between the energy (p_T) and a threshold (pt_threshold) and a comparison in η with five "window"-comparators and φ with two "window"-comparators is done in this basic module. The values for p_T threshold, the 'mode-selection' for the p_T comparator and the "limits" of the "window"- comparators is given in the generic interface list of the module. Additionally the data-structure of input data (data_i in port interface list) is provided as a record in this list. The output signal of the module is in high state, if all comparisons are true.

The comparison in η is done with five "window"-comparators, so one gets max. five ranges for η . The η value (HW index) has a Two's Complement notation, the comparisons is done signed. Number of windows is given for η .

The comparison in φ is done with two "window"-comparators, so one gets two ranges for φ . The comparisons is done unsigned. Number of windows is given for φ .

There are two cases how the limits of one "window"-comparator could be set (see also Figure 12 and Listing 5):

- Upper limit is less than lower limit $=> \varphi$ range between the limits, including the φ bin with value =0 (HW index).
- Upper limit is greater/equal than lower limit => φ range between the limits, not including the φ bin with value = 0 (HW index).

Listing 5: VHDL code of "window"-comparator in φ

Upper limit is greater/equal than lower limit

Figure 12: Setting the limits for "window"-comparators for φ

The values of η and φ have to be inside of only one of the required ranges ("or").

The comparison of isolation (for electron/ γ , tau and muon) is done with a LUT (Table 15). [To ignore quality comparison, all bits in the LUT have to be '1'.]

Table 15: LUT contents for isolation comparison

LUT content (4 bits)	isolation (2 bits)	trigger
, ,	1501&01011 (2 0105)	tingger
X"0"	XX	no trigger
X"1"	00	trigger on isolation bits $= 00$
X"2"	01	trigger on isolation bits $= 01$
X"3"	00 or 01	trigger on isolation bits $= 00$ or 01
X"4"	10	trigger on isolation bits $= 10$
X"5"	00 or 10	trigger on isolation bits $= 00$ or 10
X"6"	01 or 10	trigger on isolation bits $= 01$ or 10
X"7"	00 or 01 or 10	trigger on isolation bits $= 00$ or 01 or 10
X"8"	11	trigger on isolation bits $= 11$
X"9"	00 or 11	trigger on isolation bits $= 00$ or 11
X"A"	01 or 11	trigger on isolation bits $= 01$ or 11
X"B"	00 or 01 or 11	trigger on isolation bits $= 00$ or 01 or 11
X"C"	10 or 11	trigger on isolation bits $= 10$ or 11
X"D"	00 or 10 or 11	trigger on isolation bits $= 00$ or 10 or 11
X"E"	01 or 10 or 11	trigger on isolation bits $= 01$ or 10 or 11
X"F"	00 or 01 or 10 or 11	trigger on isolation bits = 00 or 01 or 10 or 11 (= "ignore" isolation)

4.4.6.1.4 Muon comparators module

This module contains the same comparators as in Calorimeter comparators module (4.4.6.1.3).

Additionally a comparator between unconstrained $p_{\rm T}$ and a threshold (upt_threshold), a comparison of impact parameter with LUT, a comparison of quality with LUT and a comparison of requested charge is done in this basic module.

The comparison of impact parameter is done with LUT (Table 16). [To ignore quality comparison, all bits in the LUT have to be '1'.]

The comparison of quality is done with LUT (Table 17). [To ignore quality comparison, all bits in the LUT have to be '1'.]

Charge valid and charge sign bits must be equal to the requested charge.

Table 16: LUT contents for impact parameter comparison

LUT content (4 bits)	impact parameter (2 bits)	trigger
X"0"	XX	no trigger
X"1"	00	trigger on impact parameter bits = 00
X"2"	01	trigger on impact parameter bits = 01
X"3"	00 or 01	trigger on impact parameter bits = 00 or 01
X"4"	10	trigger on impact parameter bits = 10
X"5"	00 or 10	trigger on impact parameter bits = 00 or 10
X"6"	01 or 10	trigger on impact parameter bits = 01 or 10
X"7"	00 or 01 or 10	trigger on impact parameter bits = 00 or 01 or 10
X"8"	11	trigger on impact parameter bits = 11
X"9"	00 or 11	trigger on impact parameter bits = 00 or 11
X"A"	01 or 11	trigger on impact parameter bits = 01 or 11
X"B"	00 or 01 or 11	trigger on impact parameter bits = 00 or 01 or 11
X"C"	10 or 11	trigger on impact parameter bits = 10 or 11
X"D"	00 or 10 or 11	trigger on impact parameter bits = 00 or 10 or 11
X"E"	01 or 10 or 11	trigger on impact parameter bits = 01 or 10 or 11
X"F"	00 or 01 or 10 or 11	trigger on impact parameter bits = 00 or 01 or 10 or 11 (= "ignore" impact parameter)

Table 17: LUT contents for quality comparison of muon objects

LUT content (16 bits)	quality bits (4 bits)	trigger
X"0000"	xxxx	no trigger
X"0001"	0000	trigger on quality "level 0"
X"0002"	0001	trigger on quality "level 1"
X"0003"	0001 or 0000	trigger on quality "level 1" or "level 0"
X"0004"	0010	trigger on quality "level 2"
	•••	
X"8000"	1111	trigger on quality "level 15"
X"C000"	1111 or 1110	trigger on quality "level 15" or "level 14"
X"FFFF"	XX	trigger on all quality "levels" (= "ignore")

4.4.7 Energy sum quantities conditions

4.4.7.1 Energy sum quantities conditions module (including Asymmetry conditions)

For the entity-declaration of esums_conditions.vhd, see Listing 6.

Listing 6: Entity declaration of esums_conditions.vhd

```
entity esums_conditions is
   generic
               (
       et_ge_mode : boolean;
       obj_type : natural := ETT_TYPE; -- ett=0, ht=1, etm=2, htm=3
       et_threshold: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0);
       phi_full_range : boolean;
       phi_w1_upper_limit: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
       phi_w1_lower_limit: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
       phi_w2_ignore : boolean;
       phi_w2_upper_limit: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
       phi_w2_lower_limit: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
  );
   port (
       clk : in std_logic;
       data_i : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
       condition_o : out std_logic
   );
end esums_conditions;
```

Table 18: Explanation of Listing 6

Item	Explanation
et_ge_mode	'mode-selection' for the $E_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
obj_type	valid strings are 'ETT_TYPE', 'HTT_TYPE', 'ETM_TYPE', 'HTMTYPE' and 'ETMHF_TYPE'.
et_threshold	threshold value for comparison in $E_{\rm T}$. The size of the std_logic_vector depends on the number of $E_{\rm T}$ bits.
phi_full_range	boolean to set full range of φ .
phi_w1_upper_limits	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limits	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limits	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limits	"lower limit" of "window"-comparator 2 for φ .
clk	clock input (LHC clock).
data_i	input data, structure defined in obj_type.
condition_o	output of condition (routed to Algorithms logic, see 4.4.14).

A comparator between $E_{\rm T}$ and a threshold (et_threshold) and, depending on object type, a comparison in φ with two "window"-comparators is done in this module. The value for

 $E_{\rm T}$ threshold, the 'mode-selection' for the $E_{\rm T}$ comparator and the limits for the "window"-comparators are given in the generic interface list of the module. The selection whether a comparison in φ is part of the condition is done with the value of the generic parameter 'obj_type' ('ETM_TYPE', 'ETMHF_TYPE', 'HTM_TYPE' and 'HTMHF_TYPE' force a comparison). The comparison in φ is done in the same way as for calorimeter conditions (see 4.4.6.1.3). Additionally the data-structure of input data (data_i in port interface list) is provided as a record in this list. The output signal of the module is in high state, if all comparisons are true.

Data for Asymmetry trigger are received on 4 frames on bits 27..20 (8 bits). For every type a comparision with an 8-bit threshold (greater-equal [or equal]) is done. Asymmetry data are interpreted as counts.

4.4.7.2 Energy sum quantities conditions module - template for VHDL-Producer

A VHDL-template for VHDL-Producer of instantiating esums_conditions.vhd is given below (see Listing ??).

4.4.8 Minimum bias trigger conditions

Data for Minimum bias trigger are received on the 4 MSBs of 4 frames used for Energy sum quantities (see 4.4.7).

- MBT0HFP: "minimum bias HF+ threshold 0" bits
- MBT0HFM: "minimum bias HF- threshold 0" bits
- MBT1HFP: "minimum bias HF+ threshold 1" bits
- MBT1HFM: "minimum bias HF- threshold 1" bits

In minimum bias trigger conditions module (min_bias_hf_conditions.vhd) there is a comparision with a 4-bit threshold (greater-equal [or equal]).

4.4.9 Towercount condition

Data for Towercount trigger (number of firing HCAL towers) are received on frame HT (see 4.4.7) on bits 24..12 (13 bits) of HT data structure.

In towercount condition module (towercount_condition.vhd) there is a comparision with a 13-bit threshold (greater-equal [or equal]).

4.4.10 Centrality condition

Centrality bits used as a signals for triggers (similar to external signals).

4.4.11 Muon charge correlation module

For definition of muon charge, see 4.4.4.

In the muon charge correlation module (muon_charge_correlations.vhd), the charge correlations are made for different muon conditions-types. The module is instantiated in the top-of-hierarchy module (gtl_module.vhd) and not inside of a muon conditions module. The charges of objects (number of objects depends on muon condition type) are compared to get "like sign charge" ("LS") or "opposite sign charge" ("0S"), "LS" means that the charges (charge sign) of objects are the same, "0S" means that at least one object has different charge than the others. This information is used in all instatiated muon conditions. There is no charge correlation for single type conditions.

In all cases the "charge valid" bit of the objects must be set.

In TME one can select "LS", "0S" or ignore for charge correlation in muon conditions.

Table 19: Muon charge correlation - Double Muon

```
x x | I ignore (charge x = +, -, I)
+ + LS both positive muons
- - LS both negative muons
I I LS both muons with the same sign, positive or negative
+ - OS two muons of opposite sign
- + OS idem
I I OS idem
```

Table 20: Muon charge correlation - Triple Muon

```
x x x
H + + + LS three muons of positive charge
- - - LS three muons of negative charge
I I I LS three muons of the same sign (positive or negative)
+ + - OS a pair plus a positive muon
+ - - OS a pair plus a negative muon
+ - I OS a pair plus a negative or positive muon
```

Table 21: Muon charge correlation - Quad Muon

x x x x	I ignore (charge $x = +, -, I$)
+ + + +	LS four muons of positive charge
	LS four muons of negative charge
IIII	LS four muons of the same sign (positive or negative)
+ + + -	OS a pair plus two positive muons
+ +	OS two pairs
+	OS a pair plus two negative muons
+ - I I	OS a pair plus two negative or positive muons

4.4.12 Correlation conditions

The correlation conditions contain a combination of two "Single object requirement conditions" of two object types or one "Double objects requirement condition" of objects of the same type. In addition with object cuts there are correlation cuts for $\Delta \eta$, $\Delta \varphi$, ΔR , mass, mass divided by ΔR and "two-body pt".

The correlation condition of "Invariant mass for three objects" contains one "Triple objects requirement condition" of objects of the same type with one object cut for mass.

The following cuts can be used:

- Cut for $\Delta \eta$ (DETA).
- Cut for $\Delta \varphi$ (DPHI).
- Cut for ΔR (DR).
- Cuts for charge correlation (only for muon).
- Cuts for mass (MASS) of following mass types:
 - Cut for Invariant mass.
 - Cut for Invariant mass with unconstrained pt (only for muons).
 - Cut for Invariant mass divided by ΔR .
 - Cut for Transverse mass.
- Cut for Two-body pt.

There is one correlation condition type for a mass cut with three objects:

• Cut for invariant mass for three objects (MASS).

4.4.12.1 Calculation of cuts

Calculation of $\Delta \eta$ and $\Delta \varphi$ see section "Calculation of differences in η and φ " (4.4.5).

4.4.12.1.1 ΔR calculation

The calculation of ΔR of two objects is done with formula:

$$\Delta R = \sqrt{(\eta_1 - \eta_2)^2 + (\varphi_1 - \varphi_2)^2}.$$

In the TME there are two thresholds for ΔR : "greater/equal lower limit" and "less/equal upper limit", given in floating point notation with one position after decimal point. The comparison in VHDL is done with ΔR^2 (no square root in VHDL), thresholds for ΔR^2 are provided by VHDL-Producer.

Figure 13: VHDL structure of cuts for correlation conditions

4.4.12.1.2 Invariant mass calculation

The calculation of *invariant mass of two objects* is done with formula:

$$M = \sqrt{2pt_1pt_2(\cosh(\eta_1 - \eta_2) - \cos(\varphi_1 - \varphi_2))}.$$

In the TME there are two thresholds for M: "greater/equal lower limit" and "less/equal upper limit", given in GeV (floating point notation) with one position after decimal point in even numbers.² The comparison in VHDL is done with $\frac{M^2}{2}$ (no square root in VHDL), thresholds for $\frac{M^2}{2}$ are provided by VHDL-Producer.

4.4.12.1.3 Transverse mass calculation

The calculation of transverse mass of two objects is done with formula:

$$M = \sqrt{2pt_1pt_2(1 - \cos(\varphi_1 - \varphi_2))}.$$

In the TME there are two thresholds for M: "greater/equal lower limit" and "less/equal upper limit", given in GeV (floating point notation) with one position after decimal point in even

²even numbers to get a precision of one position after decimal point after dividion by 2, because VHDL-Producer calculates thresholds for $\frac{M^2}{2}$, which includes a division by 2.

numbers.

The comparison in VHDL is done with $\frac{M^2}{2}$ (no square root in VHDL), thresholds for $\frac{M^2}{2}$ are provided by VHDL-Producer.

4.4.12.1.4 Two-body pt calculation

The calculation of two-body pt is done with formula:

$$pt = \sqrt{pt_1^2 + pt_2^2 + 2pt_1pt_2(\cos(\varphi_1)\cos(\varphi_2) + \sin(\varphi_1)\sin(\varphi_2))}$$

In the TME there is one threshold for pt, given in GeV (floating point notation) with one position after decimal point. The comparison in VHDL is done with pt^2 (no square root in VHDL), threshold for pt^2 is provided by VHDL-Producer.

4.4.12.1.5 Invariant mass divided by ΔR calculation

The formulas for invariant mass divided by ΔR of two objects are:

$$M = \sqrt{2pt_1pt_2(\cosh(\eta_1 - \eta_2) - \cos(\varphi_1 - \varphi_2))}.$$

$$\Delta R = \sqrt{(\eta_1 - \eta_2)^2 + (\varphi_1 - \varphi_2)^2}.$$

In the TME there is one threshold for $M/\Delta R$, given in GeV (floating point notation) with one position after decimal point. The calculation of invariant mass divided by ΔR of two objects is done in an own module outside of the condition (mass_div_dr_calculator.vhd) with $\frac{M^2}{2} \times (1/\Delta R^2)$ (no square root in VHDL). This module is instantiated once for every object type bunch-crossing combination.

The values of $1/\Delta R^2$ in VHDL are given by LUTs stored in BRAMs (as ROMs). The addresses of the BRAMs are given by $\Delta \eta$ and $\Delta \varphi$. The contents of the LUTs are created by calculating $1/\Delta R^2$, rounding-up at the 5th position after decimal point and multiplying by 100000 to get integer values.

4.4.12.1.6 Invariant mass calculation for three objects

The calculation of *invariant mass calculation for three objects* is done by calculating the invariant mass for all two-object combinations and take the sum of the three invariant masses of the two-object combinations.

In the TME there are two thresholds for M: "greater/equal lower limit" and "less/equal upper limit", given in GeV (floating point notation) with one position after decimal point in even numbers.

4.4.12.1.7 Overview of possible correlation cuts

The following list gives an overview of possible correlation cuts in conditions:

• Calo conditions:

	- two-body pt (for double condition)
•	1
	$-\Delta\eta$ overlap removal
	$-\Delta \varphi$ overlap removal
	$-\Delta R$ overlap removal $-$ two-body pt (for double condition)
•	Muon conditions:
	- charge correlation
	- two-body pt (for double condition)
•	Calo calo correlation condition with calo overlap removal:
	$ \Delta\eta$ overlap removal
	$ \Delta \varphi$ overlap removal
	$-\Delta R$ overlap removal
	$ \Delta\eta$
	$ \Delta arphi$
	$-\Delta \mathrm{R}$
	- invariant mass
	- two-body pt
•	Calo calo correlation condition:
	$ \Delta\eta$
	$ \Delta arphi$
	$-\Delta R$
	- invariant mass
	- two-body pt
•	Calo calo correlation condition for invariant mass divided by ΔR :
	– invariant mass divided by ΔR
•	Calo calo correlation condition mass with three objects:
	- invariant mass with three objects
•	Calo muon correlation condition:
	$ \Delta\eta$
	$ \Deltaarphi$

- $-\Delta R$
- invariant mass
- two-body pt
- Calo esums correlation condition:
 - $-\Delta \varphi$
 - transverse mass
 - two-body pt
- Muon muon correlation condition:
 - charge correlation
 - $-\Delta\eta$
 - $-\Delta\varphi$
 - $-\Delta R$
 - invariant mass or invariant mass unconstraint pt
 - two-body pt
- Muon muon correlation condition for invariant mass divided by ΔR :
 - charge correlation
 - invariant mass divided by ΔR
- Muon muon correlation condition mass with three objects:
 - charge correlation
 - invariant mass with three objects
- Muon esums correlation condition:
 - $-\Delta\varphi$
 - transverse mass
 - two-body pt

4.4.12.2 Correlation condition modules

As described in section Correlation conditions (4.4.12), correlations of two object types are available. Therefore several modules are provided with possible correlations (objects 1-objects 2):

- Correlation condition with calorimeter objects (calo_calo_correlation_condition.vhd: electron/ γ -electron/ γ -electron/ γ -jet, electron/ γ -tau, jet-jet, jet-tau and tau-tau are possible.)
- Correlation condition for mass divided by ΔR with calorimeter objects (calo_calo_mass_div_dr_condition.vhd: electron/ γ -electron/ γ -electron/ γ -jet, electron/ γ -tau, jet-jet, jet-tau and tau-tau are possible.)

- Correlation condition with calorimeter objects and energy sum quantities ($ET_{\rm miss}$, ET_{miss}^{HF} and $HT_{\rm miss}$ only) (calo_esums_correlation_condition.vhd: electron/ γ -etm, jet-etm, tau-etm, electron/ γ -htm, jet-htm, tau-htm, electron/ γ -etmhf, jet-etmhf and tau-etmhf are possible.)
- Correlation condition with calorimeter objects and muons objects
 (calo_muon_correlation_condition.vhd: electron/γ-muon, jet-muon and taumuon are possible.)
- Correlation condition with muon objects (muon_muon_correlation_condition.vhd)
- Correlation condition for mass divided by ΔR with muon objects (muon_muon_mass_div_dr_condition.vhd)
- Correlation condition with muon objects and energy sum quantities ($ET_{\rm miss}$, ET_{miss}^{HF} and $HT_{\rm miss}$ only) (muon_esums_correlation_condition.vhd: muon-etm, muon-etmhf and muon-htm are possible.)

There are two modules for mass with three objects:

- Correlation condition for mass with three objects with calorimeter objects (same type, same bunch-crossing)
 (calo_mass_3_obj_condition.vhd
- Correlation condition for mass with three objects with muon objects (muon_mass_3_obj_condition.vhd)

4.4.12.2.1 Calo Calo Correlation condition module

The calo calo correlation condition module contains two "Single object requirement conditions" for different types of calo objects (electron/ γ , jet or tau) or same type with data from different bunch-crossings as one possible mode and a "Double objects requirement condition" for calo objects of same type and same bunch-crossing as a second mode (selection is done by a parameter in the generic list of calo_calo_correlation_condition.vhd named "same bx").

In addition there are "Cuts" for differences in η ($\Delta\eta$) and φ ($\Delta\varphi$), a calculation of ΔR (DR), a calculation of invariant mass (MASS) and a calculation of two-body pt, see Figure 13. The differences in η and φ are calculated in bins. These differences in bins are converted to numbers (by LUTs, e.g. EG_EG_DIFF_ETA_LUT, EG_EG_DIFF_PHI_LUT, ...), which represents values of differences (multiples of units in η and φ). These values given in the LUTs are calculated as floating-point values (based on the scales of η and φ), which are multiplied by a factor and truncated to an integer value. So, in the LUTs we have integer values, the factor is $10^{\rm precision}$. This "precision" is a parameter given for certain LUTs.

Remark: Definitions of scales (see Tables 4.4.2, 7, 9 and 10):

- Calorimeter objects:
- η bin width = $\frac{0.087}{2}$ (bin 0 from 0.0 to $\frac{0.087}{2}$)
- ϕ bin width = $\frac{2\pi}{144}$ (bin 0 from 0.0 to $\frac{2\pi}{144}$)

The contents of the LUTs for $\cosh(\Delta \eta)$ (EG_EG_COSH_DETA_LUT, ...) and $\cos(\Delta \varphi)$ (EG_EG_COS_DPHI_LUT, ...) for invariant mass (formular see 4.4.12.1.2) are created by calculating hyperbolic cosine and cosine, rounding-up at the 3rd position after decimal point, and multiplying by 1000 to get integer values.³

The contents of the LUTs for $\cos(\varphi)$ (CALO_COS_PHI_LUT) and $\sin(\varphi)$ (CALO_SIN_PHI_LUT) for two-body pt (formular see 4.4.12.1.4) are created by calculating cosine and sine, rounding-up at the 3rd position after decimal point and multiplying by 1000 to get integer values.

The condition is complied, if at least one comparison between object parameters and requirements is valid for the both "Single object requirement condition" or the "Double objects requirement condition" and the results of selected "Cuts" are inside of a range (upper and lower limit) or greater/eual a threshold (e.g. for two-body pt). This limits are parts of the "generic" list of the entity declaration of the module and are expressed in hex notation. The limits for $\Delta \eta$ and $\Delta \varphi$ are expressed with a precision of 3rd position after decimal point, for DR, MASS and two-body pt with 1st position after decimal point.

For the VHDL entity declaration of calo calo correlation condition module in calo_calo_correlation_condition.vhd, see Listing 7.

 $^{^3}Definition$ of "constant CALO_INV_MASS_COSH_COS_PRECISION..." in file gtl_pkg.vhd. Value 1000 from $10^{\rm CALO_INV_MASS_COSH_COS_PRECISION}$.

Listing 7: Entity declaration of calo calo correlation condition.vhd

```
entity calo_calo_correlation_condition is
   generic (
       same_bx: boolean;
       deta_cut: boolean;
       dphi_cut: boolean;
       dr_cut: boolean;
       mass_cut: boolean;
       mass_type : natural;
       twobody_pt_cut: boolean;
       calo1_object_low: natural;
       calo1_object_high: natural;
       et_ge_mode_calo1: boolean;
       obj_type_calo1: natural := EG_TYPE;
       et_threshold_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1 downto 0);
       nr_eta_windows_calo1 : natural;
       eta_w1_upper_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w1_lower_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w2_upper_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w2_lower_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w3_upper_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto ():
        eta_w3_lower_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w4_upper_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w4_lower_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w5_upper_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w5_lower_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
       phi_full_range_calo1: boolean;
       phi_w1_upper_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
       phi_w1_lower_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
       phi_w2_ignore_calo1: boolean;
       phi_w2_upper_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
       phi_w2_lower_limit_calo1: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        iso_lut_calo1: std_logic_vector(2**MAX_CALO_ISO_BITS-1 downto 0);
       calo2_object_low: natural;
       calo2_object_high: natural;
       et_ge_mode_calo2: boolean;
       obj_type_calo2: natural := JET_TYPE;
        et_threshold_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1 downto 0);
       nr_eta_windows_calo2 : natural;
       eta_w1_upper_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
```

```
downto 0);
eta_w1_lower_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
eta_w2_upper_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
eta_w2_lower_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto ():
eta_w3_upper_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
eta_w3_lower_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
eta_w4_upper_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
eta_w4_lower_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
eta_w5_upper_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0):
eta_w5_lower_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
phi_full_range_calo2: boolean;
phi_w1_upper_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
phi_w1_lower_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
phi_w2_ignore_calo2: boolean;
phi_w2_upper_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
phi_w2_lower_limit_calo2: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
   downto 0);
iso_lut_calo2: std_logic_vector(2**MAX_CALO_ISO_BITS-1 downto 0);
diff_eta_upper_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
diff_eta_lower_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
diff_phi_upper_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
diff_phi_lower_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
dr_upper_limit_vector: std_logic_vector(MAX_WIDTH_DR_LIMIT_VECTOR-1
dr_lower_limit_vector: std_logic_vector(MAX_WIDTH_DR_LIMIT_VECTOR-1
   downto 0);
mass_upper_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
   downto 0);
mass_lower_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
   downto 0);
pt1_width: positive;
pt2_width: positive;
mass_cosh_cos_precision : positive;
cosh_cos_width: positive;
pt_sq_threshold_vector: std_logic_vector(MAX_WIDTH_TBPT_LIMIT_VECTOR-1
```

```
downto 0);
        sin_cos_width: positive;
        pt_sq_sin_cos_precision : positive
   );
   port (
        lhc_clk: in std_logic;
        calo1_data_i: in calo_objects_array;
        calo2_data_i: in calo_objects_array;
        diff_eta: in deta_dphi_vector_array;
        diff_phi: in deta_dphi_vector_array;
        pt1 : in diff_inputs_array;
        pt2 : in diff_inputs_array;
        cosh_deta : in calo_cosh_cos_vector_array;
        cos_dphi : in calo_cosh_cos_vector_array;
        cos_phi_1_integer : in sin_cos_integer_array;
        cos_phi_2_integer : in sin_cos_integer_array;
        sin_phi_1_integer : in sin_cos_integer_array;
        sin_phi_2_integer : in sin_cos_integer_array;
        condition_o: out std_logic
    );
end calo_calo_correlation_condition;
```

Table 22: Explanation of Listing 7

Item	Explanation
same_bx	boolean indicating whether data are from same Bx - 'true' for same Bx.
deta_cut	boolean for using $\Delta \eta$ cut.
dphi_cut	boolean for using $\Delta \varphi$ cut.
dr_cut	boolean for using DR cut.
mass_cut	boolean for using MASS cut.
mass_type	selection of mass type (INVARIANT_MASS_TYPE, INVARIANT_MASS_PT_TYPE, TRANSVERSE_MASS_TYPE or TRANSVERSE_MASS_PT_TYPE are allowed).
calo1_object_low	low index of object range (valid numbers: 011).
calo1_object_high	high index of object range (valid numbers: 011, but greater or equal calo1_object_low).
et_ge_mode_calo1	'mode-selection' for the $E_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only).
obj_type_calo1	selection of calo1 object type (EG_TYPE, JET_TYPE or TAU_TYPE are allowed)
et_threshold_calo1	threshold value for comparison in $E_{\rm T}$.
nr_eta_windows_calo1	integer value for number of η cuts.
eta_w1_upper_limit_calo1	"upper limit" of "window"-comparator 1 for η .
eta_w1_lower_limit_calo1	"lower limit" of "window"-comparator 1 for η .
eta_w2_upper_limit_calo1	"upper limit" of "window"-comparator 2 for η .
eta_w2_lower_limit_calo1	"lower limit" of "window"-comparator 2 for η .

Table 22: Explanation of Listing 7

Item	Explanation
eta_w3_upper_limit_calo1	"upper limit" of "window"-comparator 3 for η .
eta_w3_lower_limit_calo1	"lower limit" of "window"-comparator 3 for η .
eta_w4_upper_limit_calo1	"upper limit" of "window"-comparator 4 for η .
eta_w4_lower_limit_calo1	"lower limit" of "window"-comparator 4 for η .
eta_w5_upper_limit_calo1	"upper limit" of "window"-comparator 5 for η .
eta_w5_lower_limit_calo1	"lower limit" of "window"-comparator 5 for η .
phi_full_range_calo1	boolean to set full range of φ .
phi_w1_upper_limit_calo1	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limit_calo1	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore_calo1	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limit_calo1	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limit_calo1	"lower limit" of "window"-comparator 2 for φ .
iso_lut_calo1	content of LUT (4 bits) for isolation comparison.
calo2_object_low	low index of object range (valid numbers: 011).
calo2_object_high	high index of object range (valid numbers: 011, but greater or equal calo2_object_low).
et_ge_mode_calo2	'mode-selection' for the $E_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
obj_type_calo2	selection of calo2 object type (EG_TYPE, JET_TYPE or TAU_TYPE are allowed)
et_threshold_calo2	threshold value for comparison in $E_{\rm T}$.
nr_eta_windows_calo2	integer value for number of η cuts.
eta_w1_upper_limit_calo2	"upper limit" of "window"-comparator 1 for η .
eta_w1_lower_limit_calo2	"lower limit" of "window"-comparator 1 for η .
eta_w2_upper_limit_calo2	"upper limit" of "window"-comparator 2 for η .
eta_w2_lower_limit_calo2	"lower limit" of "window"-comparator 2 for η .
eta_w3_upper_limit_calo2	"upper limit" of "window"-comparator 3 for η .
eta_w3_lower_limit_calo2	"lower limit" of "window"-comparator 3 for η .
eta_w4_upper_limit_calo2	"upper limit" of "window"-comparator 4 for η .
eta_w4_lower_limit_calo2	"lower limit" of "window"-comparator 4 for η .
eta_w5_upper_limit_calo2	"upper limit" of "window"-comparator 5 for η .
eta_w5_lower_limit_calo2	"lower limit" of "window"-comparator 5 for η .
phi_full_range_calo2	boolean to set full range of φ .
phi_w1_upper_limit_calo2	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limit_calo2	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore_calo2	boolean to ignore "window"-comparator 2 for φ .

Item	Explanation
phi_w2_upper_limit_calo2	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limit_calo2	"lower limits" of "window"-comparator 2 for φ .
iso_lut_calo2	content of LUT (4 bits) for isolation comparison.
diff_eta_upper_limit	"upper limit" of "window"-comparator for comparison of differences in η (hex value).
diff_eta_lower_limit	"lower limit" of "window"-comparator for comparison of differences in η (hex value).
diff_phi_upper_limit	"upper limit" of "window"-comparator for comparison of differences in φ (hex value).
diff_phi_lower_limit	"lower limit" of "window"-comparator for comparison of differences in φ (hex value).
dr_upper_limit	"upper limit" of "window"-comparator for comparison of ΔR^2 (hex value).
dr_lower_limit	"lower limit" of "window"-comparator for comparison of ΔR^2 (hex value).
DETA_DPHI_VECTOR_WIDTH	vector width of $\Delta \eta$ and $\Delta \varphi$ for calculation of ΔR^2 .
DETA_DPHI_PRECISION	position after decimal point for $\Delta \eta$ and $\Delta \varphi$.
mass_upper_limit	"upper limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value).
mass_lower_limit	"lower limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value).
MASS_PRECISION	position after decimal point for $\frac{M^2}{2}$.
pt1_width	number of bits of pt1.
pt2_width	number of bits of pt2.
MASS_COSH_COS_PRECISION	position after decimal point for $\cosh(\Delta \eta)$ and $\cos(\Delta \varphi)$.
cosh_cos_width	number of bits for the maximum value in the LUT for $\cosh(\Delta \eta)$.
pt_sq_threshold	threshold value for comparison in two-body pt (pt^2) .
sin_cos_width	number of bits for the maximum value in the LUT for $\cos(\varphi)$ and $\sin(\varphi)$.
PT_PRECISION	position after decimal point for pt^2 .
PT_SQ_SIN_COS_PRECISION	position after decimal point for $\cos(\varphi)$ and $\sin(\varphi)$.
lhc_clk	clock input (LHC clock).
calo1_data_i	calorimeter input data, structure defined with obj_type_calo1.
calo2_data_i	calorimeter input data, structure defined with obj_type_calo2.
diff_eta	differences in η , calculated in an instance of module subeta_integer_obj_vs_obj.vhd in top-of-hierarchy module (gtlmodule.vhd), see 4.4.5.
diff_phi	differences in φ , calculated in an instance of module sub_phi_integer_obj_vs_obj.vhd in top-of-hierarchy module (gtl_module.vhd).
pt1	calo 1 E_{T} values [from LUT, in $GeV \times 10].^4$

 $^{^4}$ value 10 from $10^{\mathrm{CALO_INV_MASS_PT_PRECISION}}$

Item Explanation pt2 calo2 $E_{\rm T}$ values [from LUT, in $GeV \times 10$]. $\cosh(\Delta \eta)$ values [from LUT, $\cosh(\Delta \eta) \times 1000$].⁵ cosh_deta $\cos(\Delta\varphi)$ values [from LUT, $\cosh(\Delta\varphi) \times 1000$]. cos_dphi $\cos(\varphi)$ values from LUT for calo1. cos_phi_1 $\cos(\varphi)$ values from LUT for calo2. cos_phi_2 $\sin(\varphi)$ values from LUT for calo1. sin_phi_1 $\sin(\varphi)$ values from LUT for calo2. sin_phi_2 output of condition (routed to Algorithms logic, see 4.4.14). condition_o

Table 22: Explanation of Listing 7

4.4.12.2.2 Calo Calo Overlap Remover Correlation condition module

The Calo Calo Overlap Remover Correlation conditions consits of two modes. One with a Calo Calo Correlation condition with "Double objects requirement condition" for calo objects of same type and same bunch-crossing (4.4.12.2.1) and a single condition for a different calo object type (can have different bunch-crossing too). There has to be at least one correlation cut for the objects of "Double objects requirement condition" and a correlation cut for overlap removal between objects (one or more cut(s) of $\Delta \eta$, $\Delta \varphi$ and ΔR) of different object types ("2plus1"). A second mode ("1plus1") with a Calo Calo Correlation condition with a single condition and a different calo object type (can have different bunch-crossing too) also with a single condition. There has to be at least one correlation cut for the different objects (e.g. invariant mass) and a correlation cut for overlap removal between the objects (one or more cut(s) of $\Delta \eta$, $\Delta \varphi$ and ΔR).

Overlap Remover Correlation conditions calo_calo_calo_correlation_orm_condition.vhd are implemented only for calo object types.

4.4.12.2.3 Calo Calo Correlation condition module for Invariant Mass Divided by ΔR

The calo calo correlation condition module for invariant mass divided by ΔR contains two "Single object requirement conditions" for different types of calo objects (electron/ γ , jet or tau) or same type with data from different bunch-crossings as one possible mode and a "Double objects requirement condition" for calo objects of same type and same bunch-crossing as a second mode (selection is done by a parameter in the generic list of calo_calo_mass_div_dr_condition.vhd named "same_bx").

The calculation of *invariant mass divided by* ΔR *of two objects* is done in an own module outside of the condition (mass_div_dr_calculator.vhd), see 4.4.12.1.5. This module is instantiated once for every object type bunch-crossing combination.

 $^{^{5}}$ value 1000 from $\overline{10^{\mathrm{CALO_INV_MASS_COSH_COS_PRECISION}}$

In the TME there is one threshold for $M/\Delta R$: "greater/equal threshold", given in GeV (floating point notation).

The threshold for comparison with $\frac{M^2}{2} \times (1/\Delta R^2)$ (no square root in VHDL) is provided by VHDL-Producer.

No other correlation cuts available in this condition type.

4.4.12.2.4 Calo Correlation condition module for Invariant Mass with Three **Objects**

The calo correlation condition module for invariant mass with three objects (calo mass -3_obj_condition.vhd) contains a "Triple objects requirement condition" for calo objects of same type and same bunch-crossing.

In addition a "Cut" for calculation of invariant mass with three objects (see 4.4.12.1.6) is mandatory.

No other correlation cuts available in this condition type.

4.4.12.2.5Calo Esums Correlation condition module

The calo esums correlation condition module (calo_esums_correlation_condition.vhd) contains two "Single object requirement conditions", one of calo objects (electron/ γ , jet or tau) and one of esums $(ET_{\text{miss}}, ET_{miss}^{HF})$ or HT_{miss} .

In addition there are "Cuts" for differences in φ ($\Delta \varphi$) or a calculation of mass (MASS) for Transverse mass or Transverse mass with two-body pt.

The differences in φ are calculated in bins. These differences in bins are converted to numbers (by LUTs, e.g. EG_ETM_DIFF_PHI_LUT, ...), which represents values of differences (multiples of units in φ). These values given in the LUTs are calculated as floating-point values (based on the scales of φ), which are multiplied by a factor and truncated to an integer value. So, in the LUTs we have integer values, the factor is 10^{precision}.

The contents of the LUTs $\cos(\Delta\varphi)$ (EG ETM COS DPHI LUT, ...) for Transverse mass (formular see 4.4.12.1.3) are created by calculating cosine, rounding-up at the 3rd position after decimal point and multiplying by 1000 to get integer values.⁶

The contents of the LUTs for $\cos(\varphi)$ (CALO_COS_PHI_LUT) and $\sin(\varphi)$ (CALO_SIN_PHI_-LUT) for two-body pt (formular see 4.4.12.1.4) are created by calculating cosine and sine, rounding-up at the 3rd position after decimal point and multiplying by 1000 to get integer values.

The condition is complied, if at least one comparison between object parameters and requirements is valid for the both "Single object requirement condition" and the results of selected "Cuts" are inside of a range (upper and lower limit). This limits are parts of the "generic" list of the entity declaration of the module and are expressed in hex notation. The limits for $\Delta \varphi$

⁶Definition of "constant CALO_INV_MASS_COSH_COS_PRECISION..." in file gtl_pkg.vhd. 1000 from $10^{\text{CALO_INV_MASS_COSH_COS_PRECISION}}$

are expressed with a precision of $3^{\rm rd}$ position after decimal point, for MASS with $1^{\rm st}$ position after decimal point.

For VHDL entity declaration for calo esums correlation condition module in calo_esums_-correlation condition.vhd, see Listing 8.

Listing 8: Entity declaration of calo esums correlation condition.vhd

```
entity calo_esums_correlation_condition is
     generic (
        dphi_cut: boolean;
        mass_cut: boolean;
        mass_type : natural;
        twobody_pt_cut: boolean;
        calo_object_low: natural;
        calo_object_high: natural;
        et_ge_mode_calo: boolean;
        obj_type_calo: natural := EG_TYPE;
        et_threshold_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1 downto 0);
        nr_eta_windows_calo : natural;
        eta_w1_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w1_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w2_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w2_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w3_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w3_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w4_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w4_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w5_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w5_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        phi_full_range_calo: boolean;
        phi_w1_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        phi_w1_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        phi_w2_ignore_calo: boolean;
        phi_w2_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        phi_w2_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        iso_lut_calo: std_logic_vector(2**MAX_CALO_ISO_BITS-1 downto 0);
        et_ge_mode_esums: boolean;
        obj_type_esums: natural := ETM_TYPE;
```

```
et_threshold_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
        phi_full_range_esums: boolean;
        phi_w1_upper_limit_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1
           downto 0);
        phi_w1_lower_limit_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1
           downto 0);
        phi_w2_ignore_esums: boolean;
        phi_w2_upper_limit_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1
           downto 0);
        phi_w2_lower_limit_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1
           downto 0);
        diff_phi_upper_limit_vector: std_logic_vector(
           MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
        diff_phi_lower_limit_vector: std_logic_vector(
           MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
        mass_upper_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
           downto 0);
        mass_lower_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
           downto 0);
        pt1_width: positive;
        pt2_width: positive;
        mass_cosh_cos_precision : positive;
        cosh_cos_width: positive;
        pt_sq_threshold_vector: std_logic_vector(MAX_WIDTH_TBPT_LIMIT_VECTOR-1
           downto 0);
        sin_cos_width: positive;
        pt_sq_sin_cos_precision : positive
    );
    port (
        lhc_clk: in std_logic;
        calo_data_i: in calo_objects_array;
        esums_data_i: in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
        diff_phi: in deta_dphi_vector_array;
        pt1 : in diff_inputs_array;
        pt2 : in diff_inputs_array;
        cos_dphi : in calo_cosh_cos_vector_array;
        cos_phi_1_integer : in sin_cos_integer_array;
        cos_phi_2_integer : in sin_cos_integer_array;
        sin_phi_1_integer : in sin_cos_integer_array;
        sin_phi_2_integer : in sin_cos_integer_array;
        condition_o: out std_logic
    );
end calo_esums_correlation_condition;
```

Table 23: Explanation of Listing 8

Item	Explanation
dphi_cut	boolean for using $\Delta \varphi$ cut.
mass_cut	boolean for using MASS cut.
mass_type	selection of mass type (TRANSVERSE_MASS_TYPE or TRANSVERSE_MASS_PT_TYPE are allowed).
calo_object_low	low index of object range (valid numbers: 011).
calo_object_high	high index of object range (valid numbers: 011, but greater or equal calo_object_low).
et_ge_mode_calo	'mode-selection' for the $E_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only).
obj_type_calo	selection of calo1 object type (EG_TYPE, JET_TYPE or TAU_TYPE are allowed)
et_threshold_calo	threshold value for comparison in E_{T} .
nr_eta_windows_calo	integer value for number of η cuts.
eta_w1_upper_limit_calo	"upper limit" of "window"-comparator 1 for η .
eta_w1_lower_limit_calo	"lower limit" of "window"-comparator 1 for η .
eta_w2_upper_limit_calo	"upper limit" of "window"-comparator 2 for η .
eta_w2_lower_limit_calo	"lower limit" of "window"-comparator 2 for η .
eta_w3_upper_limit_calo	"upper limit" of "window"-comparator 3 for η .
eta_w3_lower_limit_calo	"lower limit" of "window"-comparator 3 for η .
eta_w4_upper_limit_calo	"upper limit" of "window"-comparator 4 for η .
eta_w4_lower_limit_calo	"lower limit" of "window"-comparator 4 for η .
eta_w5_upper_limit_calo	"upper limit" of "window"-comparator 5 for η .
eta_w5_lower_limit_calo	"lower limit" of "window"-comparator 5 for η .
phi_full_range_calo	boolean to set full range of φ .
phi_w1_upper_limit_calo	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limit_calo	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore_calo	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limit_calo	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limit_calo	"lower limit" of "window"-comparator 2 for φ .
iso_lut_calo	content of LUT (4 bits) for isolation comparison.
et_ge_mode_esums	'mode-selection' for the $E_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
obj_type_esums	selection of esums type (ETM_TYPE, ETMHF_TYPE or HTMTYPE are allowed)
et_threshold_esums	threshold value for comparison in E_{T} .
phi_full_range_esums	boolean to set full range of φ .

Table 23: Explanation of Listing 8

Item	Explanation
phi_w1_lower_limit_esums	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore_esums	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limit_esums	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limit_esums	"lower limits" of "window"-comparator 2 for φ .
diff_phi_upper_limit	"upper limit" of "window"-comparator for comparison of differences in φ (hex value).
diff_phi_lower_limit	"lower limit" of "window"-comparator for comparison of differences in φ (hex value).
DETA_DPHI_VECTOR_WIDTH	vector width of $\Delta \varphi$.
DETA_DPHI_PRECISION	position after decimal point for $\Delta \varphi$.
mass_upper_limit	"upper limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value).
mass_lower_limit	"lower limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value).
MASS_PRECISION	position after decimal point for $\frac{M^2}{2}$.
pt1_width	number of bits of pt1.
pt2_width	number of bits of pt2.
MASS_COSH_COS_PRECISION	position after decimal point for $\cos(\Delta\varphi)$.
cosh_cos_width	number of bits for the maximum value in the LUT for $\cos(\Delta\varphi)$.
pt_sq_threshold	threshold value for comparison in two-body pt (pt^2) .
sin_cos_width	number of bits for the maximum value in the LUT for $\cos(\varphi)$ and $\sin(\varphi)$.
PT_PRECISION	position after decimal point for pt^2 .
PT_SQ_SIN_COS_PRECISION	position after decimal point for $\cos(\varphi)$ and $\sin(\varphi)$.
lhc_clk	clock input (LHC clock).
calo_data_i	calorimeter input data, structure defined with obj_type_calo1.
esums_data_i	esums input data, structure defined with obj_type_esums.
diff_phi	differences in φ , calculated in an instance of module sub_phi_integer_obj_vs_obj.vhd in top-of-hierarchy module (gtl_module.vhd).
pt1	calo $E_{\rm T}$ values [from LUT, in $GeV \times 10$].
pt2	esums $E_{\rm T}$ values [from LUT, in $GeV \times 10$].
cos_dphi	$\cos(\Delta\varphi)$ values from LUT.
cos_phi_1	$\cos(\varphi)$ values from LUT for calo1.
cos_phi_2	$\cos(\varphi)$ values from LUT for esums.
sin_phi_1	$\sin(\varphi)$ values from LUT for calo 1.
sin_phi_2	$\sin(\varphi)$ values from LUT for esums.
condition_o	output of condition (routed to Algorithms logic, see 4.4.14).

 $^{^7 {\}rm value~10~from~10^{CALO_INV_MASS_PT_PRECISION}}$

4.4.12.2.6 Calo Muon Correlation condition module

The calo muon correlation condition module (calo_muon_correlation_condition.vhd) contains a "Single object requirement condition" for one type of calo objects (electron/ γ , jet or tau) and a "Single object requirement condition" for muon objects. In addition there are "Cuts" for differences in η ($\Delta\eta$) and φ ($\Delta\varphi$), a calculation of ΔR (DR), a calculation of invariant mass (MASS) and a calculation of two-body pt, see Figure 13.

The differences in η and φ are calculated in bins. These differences in bins are converted to numbers (by LUTs, e.g. EG_MU_DIFF_ETA_LUT, EG_MU_DIFF_PHI_LUT, ...), which represents values of differences (multiples of units in η and φ). These values given in the LUTs are calculated as floating-point values (based on the scales of η and φ), which are multiplied by a factor and truncated to an integer value. So, in the LUTs we have integer values, the factor is $10^{\rm precision}$. This "precision" is a parameter given for certain LUTs.

Because of the different scales of calorimeter and muon objects in η and φ , there are LUTs for conversion the calorimeter bins to muon bins (in gtl_pkg.vhd: e.g. EG_ETA_CONV_-2_MUON_ETA_LUTand EG_PHI_CONV_2_MUON_PHI_LUT).

Remark:

The center value of bins are used as reference value for conversion. The content of EG_ETA_-CONV 2 MUON ETA LUTis calculated with formular:

```
"converted-calo-eta[bin] = calo-eta[bin] \times 4 + 2",
```

of EG PHI CONV 2 MUON PHI LUTwith formular:

"converted-calo-phi[bin] = calo-phi[bin] $\times 4 + 2$ ".

The conversion calculations are preliminary, others may be proposed.

Definitions of scales (see Tables 4.4.2, 7, 9 and 10):

- Calorimeter objects:
 - $-\eta \text{ bin width} = \frac{0.087}{2} \text{ (bin 0 from 0.0 to } \frac{0.087}{2} \text{)}$
 - $-\phi$ bin width $=\frac{2\pi}{144}$ (bin 0 from 0.0 to $\frac{2\pi}{144}$)
- Muon objects:
 - η bin width = $\frac{0.087}{8}$ (bin 0 from $0.5\times\frac{-0.087}{8}$ to $0.5\times\frac{+0.087}{8})$
 - $-~\phi$ bin width = $\frac{2\pi}{576}$ (bin 0 from 0.0 to $\frac{2\pi}{576})$

The contents of the LUTs for $\cosh(\Delta\eta)$ (EG_MUON_COSH_DETA_LUT, ...) and $\cos(\Delta\varphi)$ (EG_MUON_COS_DPHI_LUT, ...) for invariant mass (formular see 4.4.12.1.2) are created by calculating hyperbolic cosine and cosine, rounding-up at the 4th position after decimal point, and multiplying by $10000(10^{\text{CALO}_{MUON_{INV}_{MASS_{COSH}_{COS_{PRECISION}}})}$ to get integer values.⁸ The contents of the LUTs for $\cos(\varphi)$ (CALO_COS_PHI_LUT and MUON_COS_PHI_LUT) and $\sin(\varphi)$ (CALO_SIN_PHI_LUT and MUON_SIN_PHI_LUT) for two-body pt (formular see 4.4.12.1.4) are created by calculating cosine and sine, rounding-up at the 3rd position after

⁸Definition of "constant CALO_MUON_INV_MASS_COSH_COS_PRECISION ...", "constant EG_ETA_CONV_2_MUON_ETA_LUT ..." and "constant EG_PHI_CONV_2_MUON_PHI_LUT ..." in file gtl_pkg.vhd.

Figure 14: Conversion of calorimeter η and φ to muon scales

decimal point, and multiplying by 1000 to get integer values.

The condition is complied, if at least one comparison between object parameters and requirements is valid for the both "Single object requirement condition" and the results of selected "Cuts" are inside of a range (upper and lower limit) or greater/eual a threshold (e.g. for two-body pt). This limits are parts of the "generic" list of the entity declaration of the module and are expressed in hex notation. The limits for $\Delta \eta$ and $\Delta \varphi$ are expressed with a precision of 3rd position after decimal point, for DR, MASS and two-body pt with 1st position after decimal point.

For the VHDL entity declaration of calo muon correlation condition module in calo_muon_-correlation_condition.vhd, see Listing 9.

Listing 9: Entity declaration of calo muon correlation condition.vhd

```
entity calo_muon_correlation_condition is
    generic (
       deta_cut: boolean;
       dphi_cut: boolean;
       dr_cut: boolean;
       mass_cut: boolean;
       mass_type : natural;
       twobody_pt_cut: boolean;
       calo_object_low: natural;
        calo_object_high: natural;
       et_ge_mode_calo: boolean;
       obj_type_calo: natural := EG_TYPE;
       et_threshold_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1 downto 0);
       nr_eta_windows_calo : natural;
       eta_w1_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto ():
       eta_w1_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w2_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w2_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w3_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w3_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto ():
        eta_w4_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w4_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w5_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        eta_w5_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
       phi_full_range_calo: boolean;
       phi_w1_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
       phi_w1_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
       phi_w2_ignore_calo: boolean;
       phi_w2_upper_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
       phi_w2_lower_limit_calo: std_logic_vector(MAX_CALO_TEMPLATES_BITS-1
           downto 0);
        iso_lut_calo: std_logic_vector(2**MAX_CALO_ISO_BITS-1 downto 0);
       muon_object_low: natural;
       muon_object_high: natural;
       pt_ge_mode_muon: boolean;
       pt_threshold_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto 0);
       nr_eta_windows_muon : natural;
        eta_w1_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
           downto 0);
        eta_w1_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
           downto 0);
```

```
eta_w2_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w2_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w3_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w3_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta w4_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w4_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w5_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w5_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
phi_full_range_muon : boolean;
phi_w1_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
phi_w1_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
phi_w2_ignore_muon : boolean;
phi_w2_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
phi_w2_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
requested_charge_muon: string(1 to 3);
qual_lut_muon: std_logic_vector(2**(D_S_I_MUON_V2.qual_high-D_S_I_MUON_V2
   .qual_low+1)-1 downto 0);
iso_lut_muon: std_logic_vector(2**(D_S_I_MUON_V2.iso_high-D_S_I_MUON_V2.
   iso_low+1)-1 downto 0);
upt_cut_muon : boolean;
upt_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto
upt_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto
   0);
ip_lut_muon: std_logic_vector(2**(D_S_I_MUON_V2.ip_high-D_S_I_MUON_V2.
   ip_low+1)-1 downto 0);
diff_eta_upper_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
diff_eta_lower_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
diff_phi_upper_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
diff_phi_lower_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
dr_upper_limit_vector: std_logic_vector(MAX_WIDTH_DR_LIMIT_VECTOR-1
   downto 0);
dr_lower_limit_vector: std_logic_vector(MAX_WIDTH_DR_LIMIT_VECTOR-1
mass_upper_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
   downto 0);
```

```
mass_lower_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
           downto 0);
        pt1_width: positive;
        pt2_width: positive;
        mass_cosh_cos_precision : positive;
        cosh_cos_width: positive;
        pt_sq_threshold_vector: std_logic_vector(MAX_WIDTH_TBPT_LIMIT_VECTOR-1
           downto 0);
        sin_cos_width: positive;
        pt_sq_sin_cos_precision : positive
    );
    port (
        lhc_clk: in std_logic;
        calo_data_i: in calo_objects_array;
        muon_data_i: in muon_objects_array;
        diff_eta: in deta_dphi_vector_array;
        diff_phi: in deta_dphi_vector_array;
        pt1 : in diff_inputs_array;
        pt2 : in diff_inputs_array;
        cosh_deta : in calo_muon_cosh_cos_vector_array;
        cos_dphi : in calo_muon_cosh_cos_vector_array;
        cos_phi_1_integer : in sin_cos_integer_array;
        cos_phi_2_integer : in sin_cos_integer_array;
        sin_phi_1_integer : in sin_cos_integer_array;
        sin_phi_2_integer : in sin_cos_integer_array;
        condition_o: out std_logic
    );
end calo_muon_correlation_condition;
```

Table 24: Explanation of Listing 9

Item	Explanation
deta_cut	boolean for using $\Delta \eta$ cut.
dphi_cut	boolean for using $\Delta \varphi$ cut.
dr_cut	boolean for using DR cut.
mass_cut	boolean for using MASS cut.
mass_type	selection of mass type (INVARIANT_MASS_TYPE, INVARIANT_MASS_PT_TYPE, TRANSVERSE_MASS_TYPE or TRANSVERSE_MASS_PT_TYPE are allowed).
calo_object_low	low index of object range (valid numbers: 011).
calo_object_high	high index of object range (valid numbers: 011, but greater or equal calo_object_low).
calo_et_ge_mode_calo	'mode-selection' for the $E_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only).
obj_type_calo	selection of calo object type (EG_TYPE, JET_TYPE or TAU_TYPE are allowed)
et_threshold_calo	threshold value for comparison in $E_{\rm T}$.

Table 24: Explanation of Listing 9

Item	Explanation
nr_eta_windows_calo	integer value for number of η cuts.
eta_w1_upper_limit_calo	"upper limit" of "window"-comparator 1 for η .
eta_w1_lower_limit_calo	"lower limit" of "window"-comparator 1 for η .
eta_w2_upper_limit_calo	"upper limit" of "window"-comparator 2 for η .
eta_w2_lower_limit_calo	"lower limit" of "window"-comparator 2 for η .
eta_w3_upper_limit_calo	"upper limit" of "window"-comparator 3 for η .
eta_w3_lower_limit_calo	"lower limit" of "window"-comparator 3 for η .
eta_w4_upper_limit_calo	"upper limit" of "window"-comparator 4 for η .
eta_w4_lower_limit_calo	"lower limit" of "window"-comparator 4 for η .
eta_w5_upper_limit_calo	"upper limit" of "window"-comparator 5 for η .
eta_w5_lower_limit_calo	"lower limit" of "window"-comparator 5 for η .
phi_full_range_calo	boolean to set full range of φ .
phi_w1_upper_limit_calo	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limit_calo	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore_calo	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limit_calo	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limit_calo	"lower limit" of "window"-comparator 2 for φ .
iso_lut_calo	content of LUT (4 bits) for isolation comparison.
muon_object_low	low index of object range (valid numbers: 07).
muon_object_high	high index of object range (valid numbers: 07 , but greater or equal $muon_object_low$).
pt_ge_mode_muon	'mode-selection' for the $p_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
pt_threshold_muon	threshold value for comparison in $p_{\rm T}$.
nr_eta_windows_muon	integer value for number of η cuts.
eta_w1_upper_limit_muon	"upper limit" of "window"-comparator 1 for η .
eta_w1_lower_limit_muon	"lower limit" of "window"-comparator 1 for η .
eta_w2_upper_limit_muon	"upper limit" of "window"-comparator 2 for η .
eta_w2_lower_limit_muon	"lower limit" of "window"-comparator 2 for η .
eta_w3_upper_limit_muon	"upper limit" of "window"-comparator 3 for η .
eta_w3_lower_limit_muon	"lower limit" of "window"-comparator 3 for η .
eta_w4_upper_limit_muon	"upper limit" of "window"-comparator 4 for η .
eta_w4_lower_limit_muon	"lower limit" of "window"-comparator 4 for η .
eta_w5_upper_limit_muon	"upper limit" of "window"-comparator 5 for η .
eta_w5_lower_limit_muon	"lower limit" of "window"-comparator 5 for η .
phi_full_range_muon	boolean to set full range of φ .

Table 24: Explanation of Listing 9

Item	Explanation
phi_w1_upper_limit_muon	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limit_muon	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore_muon	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limit_muon	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limit_muon	"lower limits" of "window"-comparator 2 for φ .
requested_charge_muon	string for requested charge ("pos" means "positive charge", "neg" means "negative charge" and "ign" means "ignore charge").
qual_lut_muon	content of LUT (16 bits) for quality comparison.
iso_lut_muon	content of LUT (4 bits) for isolation comparison.
upt_cut_muon	boolean for using unconstrained $p_{\rm T}$ cuts.
upt_upper_limit_muon	"upper limit" of unconstrained $p_{\rm T}$.
upt_lower_limit_muon	"lower limit" of unconstrained $p_{\rm T}$.
ip_lut_muon	content of LUTs (4 bits) for impact parameter.
diff_eta_upper_limit	"upper limit" of "window"-comparator for comparison of differences in η (hex value).
diff_eta_lower_limit	"lower limit" of "window"-comparator for comparison of differences in η (hex value).
diff_phi_upper_limit	"upper limit" of "window"-comparator for comparison of differences in φ (hex value).
diff_phi_lower_limit	"lower limit" of "window"-comparator for comparison of differences in φ (hex value).
dr_upper_limit	"upper limit" of "window"-comparator for comparison of ΔR^2 (hex value).
dr_lower_limit	"lower limit" of "window"-comparator for comparison of ΔR^2 (hex value).
DETA_DPHI_VECTOR_WIDTH	vector width of $\Delta \eta$ and $\Delta \varphi$ for calculation of ΔR^2 .
DETA_DPHI_PRECISION	position after decimal point for $\Delta \eta$ and $\Delta \varphi$.
mass_upper_limit	"upper limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value).
mass_lower_limit	"lower limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value).
MASS_PRECISION	position after decimal point for $\frac{M^2}{2}$.
pt1_width	number of bits of pt1.
pt2_width	number of bits of pt2.
MASS_COSH_COS_PRECISION	position after decimal point for $\cosh(\Delta \eta)$ and $\cos(\Delta \varphi)$.
cosh_cos_width	number of bits for the maximum value in the LUT for $\cosh(\Delta \eta)$.
pt_sq_threshold	threshold value for comparison in two-body pt (pt^2) .
sin_cos_width_1	number of bits for the maximum value in the LUT for $\cos(\varphi)$ and $\sin(\varphi)$ of calos.
sin_cos_width_2	number of bits for the maximum value in the LUT for $\cos(\varphi)$ and $\sin(\varphi)$ of muon.

Table 24: Explanation of Listing 9

Item	Explanation
PT_PRECISION	position after decimal point for pt^2 .
PT_SQ_SIN_COS_PRECISION	position after decimal point for $\cos(\varphi)$ and $\sin(\varphi)$.
lhc_clk	clock input (LHC clock).
calo_data_i	calorimeter input data, structure defined with obj_type_calo .
muon_data_i	muon input data.
diff_eta	differences in η , calculated in an instance of module sub_eta_integer_obj_vs_obj.vhd in top-of-hierarchy module (gtl_module.vhd), see 4.4.5.
diff_phi	differences in φ , calculated in an instance of module sub_phi_integer_obj_vs_obj.vhd in top-of-hierarchy module (gtl_module.vhd).
pt1	calo $E_{\rm T}$ values [from LUT, in $GeV \times 10$].
pt2	muon $p_{\rm T}$ values [from LUT, in $GeV \times 10$].
cosh_deta	$\cosh(\Delta \eta)$ values [from LUT, $\cosh(\Delta \eta) \times 10000$]. ¹⁰
cos_dphi	$\cos(\Delta\varphi)$ values [from LUT, $\cosh(\Delta\varphi) \times 10000$].
cos_phi_1	$\cos(\varphi)$ values from LUT for calo.
cos_phi_2	$\cos(\varphi)$ values from LUT for muon.
sin_phi_1	$\sin(\varphi)$ values from LUT for calo.
sin_phi_2	$\sin(\varphi)$ values from LUT for muon.
condition_o	output of condition (routed to Algorithms logic, see $4.4.14$).

4.4.12.2.7 Muon Muon Correlation condition module

The muon muon correlation condition module contains two "Single object requirement conditions" for data from different bunch-crossings as one possible mode and a "Double objects requirement condition" for muon objects at same bunch-crossing as a second mode (selection is done by a parameter in the generic list of muon_muon_correlation_condition.vhd named "same_bx"). In the case of a "Double objects requirement condition", requirements for "requested charge correlations" are used and a muon charge correlation module (see 4.4.11) is required.

In addition there are "Cuts" for differences in η ($\Delta \eta$) and φ ($\Delta \varphi$), a calculation of ΔR (DR), a calculation of invariant mass with pt or of invariant mass with unconstrained pt (MASS), a calculation of two-body pt.

The differences in η and φ are calculated in bins. These differences in bins are converted to numbers (by LUTs, e.g. MUON_MUON_DIFF_ETA_LUT, MUON_MUON_DIFF_PHI_-LUT), which represents values of differences (multiples of units in η and φ). These values

⁹value 10 from 10^{CALO_MUON_INV_MASS}_PT_PRECISION

 $^{^{10} \}mathrm{value}~10000~\mathrm{from}~10^{\mathrm{CALO_MUON_INV_MASS_COSH_COS_PRECISION}$

given in the LUTs are calculated as floating-point values (based on the scales of η and φ), which are multiplied by a factor and truncated to an integer value. So, in the LUTs we have integer values, the factor is $10^{\text{precision}}$. This "precision" is a parameter given for certain LUTs.

Remark: Definitions of scales (see Tables 9 and 10):

- Muon objects:
- η bin width = $\frac{0.087}{8}$ (bin 0 from $0.5\times\frac{-0.087}{8}$ to $0.5\times\frac{\pm0.087}{8})$
- ϕ bin width = $\frac{2\pi}{576}$ (bin 0 from 0.0 to $\frac{2\pi}{576}$)

The contents of the LUTs for $\cosh(\Delta \eta)$ (MUON_MUON_COSH_DETA_LUT) and $\cos(\Delta \varphi)$ (MUON_MUON_COS_DPHI_LUT) for invariant mass (formular see 4.4.12.1.2) are created by calculating hyperbolic cosine and cosine, rounding-up at the 4th position after decimal point, and multiplying by 10000 to get integer values.¹¹

The contents of the LUTs for $\cos(\varphi)$ (MUON_COS_PHI_LUT) and $\sin(\varphi)$ (MUON_SIN_PHI_LUT) for two-body pt (formular see 4.4.12.1.4) are created by calculating cosine and sine, rounding-up at the 3rd position after decimal point, and multiplying by 1000 to get integer values.

The condition is complied, if at least one comparison between object parameters and requirements is valid for the both "Single object requirement condition" or the "Double objects requirement condition" and the results of selected "Cuts" are inside of a range (upper and lower limit) or greater/eual a threshold (e.g. for two-body pt). This limits are parts of the "generic" list of the entity declaration of the module and are expressed in hex notation. The limits for $\Delta \eta$ and $\Delta \varphi$ are expressed with a precision of 3rd position after decimal point, for DR and MASS with 1st position after decimal point.

For the VHDL entity declaration of muon muon correlation condition module in muon_muon_correlation_condition.vhd, see Listing 10.

 $^{^{11}} Definition$ of "constant MUON_INV_MASS_COSH_COS_PRECISION" in file gtl_pkg.vhd. Value 10000 from $10^{\rm MUON_INV_MASS_COSH_COS_PRECISION}$.

Listing 10: Entity declaration of muon muon correlation condition.vhd

```
entity muon_muon_correlation_condition is
          generic (
                 same_bx: boolean;
                 deta_cut: boolean;
                 dphi_cut: boolean;
                 dr_cut: boolean;
                 mass_cut: boolean;
                 mass_type : natural;
                 twobody_pt_cut: boolean;
                 muon1_object_low: natural;
                 muon1_object_high: natural;
                 pt_ge_mode_muon1: boolean;
                 pt_threshold_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto 0);
                 nr_eta_windows_muon1: natural;
                 eta_w1_upper_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w1_lower_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w2_upper_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w2_lower_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w3_upper_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w3_lower_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w4_upper_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w4_lower_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w5_upper_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 eta_w5_lower_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 phi_full_range_muon1: boolean;
                 phi_w1_upper_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 phi_w1_lower_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 phi_w2_ignore_muon1: boolean;
                 phi_w2_upper_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 phi_w2_lower_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
                         downto 0);
                 requested_charge_muon1: string(1 to 3);
                 D_S_I_MUON_V2.qual_low+1)-1 downto 0);
                  iso\_lut\_muon1: std\_logic\_vector(2**(D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON\_V2.iso\_high-D\_S\_I\_MUON_V2.iso\_high-D\_S\_I\_MUON_V2.iso\_high-D\_S\_I\_MUON_V2.iso\_high-D\_S\_I\_MUON_V2.iso\_high-D\_S\_I\_MUON_V2.iso\_high-D\_S\_I\_
                         iso_low+1)-1 downto 0);
                 upt_cut_muon1 : boolean;
                 upt_upper_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto
                 upt_lower_limit_muon1: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto
                          0);
```

```
ip_lut_muon1: std_logic_vector(2**(D_S_I_MUON_V2.ip_high-D_S_I_MUON_V2.
   ip_low+1)-1 downto 0);
muon2_object_low: natural;
muon2_object_high: natural;
pt_ge_mode_muon2: boolean;
pt_threshold_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto 0);
nr_eta_windows_muon2: natural;
eta_w1_upper_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto ():
eta_w1_lower_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w2_upper_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w2_lower_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w3_upper_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0):
eta_w3_lower_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w4_upper_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w4_lower_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w5_upper_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
eta_w5_lower_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0):
phi_full_range_muon2: boolean;
phi_w1_upper_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
phi_w1_lower_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
phi_w2_ignore_muon2: boolean;
phi_w2_upper_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
   downto 0);
downto 0);
requested_charge_muon2: string(1 to 3);
qual_lut_muon2: std_logic_vector(2**(D_S_I_MUON_V2.qual_high-
   D_S_I_MUON_V2.qual_low+1)-1 downto 0);
iso_lut_muon2: std_logic_vector(2**(D_S_I_MUON_V2.iso_high-D_S_I_MUON_V2.
   iso_low+1)-1 downto 0);
upt_cut_muon2 : boolean;
upt_upper_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto
   0);
upt_lower_limit_muon2: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto
   0);
ip_lut_muon2: std_logic_vector(2**(D_S_I_MUON_V2.ip_high-D_S_I_MUON_V2.
   ip_low+1)-1 downto 0);
requested_charge_correlation: string(1 to 2);
diff_eta_upper_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
diff_eta_lower_limit_vector: std_logic_vector(
   MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
```

```
diff_phi_upper_limit_vector: std_logic_vector(
           MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
        diff_phi_lower_limit_vector: std_logic_vector(
           MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
        dr_upper_limit_vector: std_logic_vector(MAX_WIDTH_DR_LIMIT_VECTOR-1
           downto 0);
        dr_lower_limit_vector: std_logic_vector(MAX_WIDTH_DR_LIMIT_VECTOR-1
           downto 0);
        mass_upper_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
           downto 0);
        mass_lower_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
           downto 0);
        pt_width: positive;
        upt_width: positive;
        mass_cosh_cos_precision : positive;
        cosh_cos_width: positive;
        pt_sq_threshold_vector: std_logic_vector(MAX_WIDTH_TBPT_LIMIT_VECTOR-1
           downto 0);
        sin_cos_width: positive;
        pt_sq_sin_cos_precision : positive
   );
   port (
        lhc_clk: in std_logic;
       muon1_data_i: in muon_objects_array;
        muon2_data_i: in muon_objects_array;
        ls_charcorr_double: in muon_charcorr_double_array;
        os_charcorr_double: in muon_charcorr_double_array;
        diff_eta: in deta_dphi_vector_array;
        diff_phi: in deta_dphi_vector_array;
        pt1 : in diff_inputs_array;
        pt2 : in diff_inputs_array;
        upt1 : in diff_inputs_array;
        upt2 : in diff_inputs_array;
        cosh_deta : in muon_cosh_cos_vector_array;
        cos_dphi : in muon_cosh_cos_vector_array;
        cos_phi_1_integer : in sin_cos_integer_array;
        cos_phi_2_integer : in sin_cos_integer_array;
        sin_phi_1_integer : in sin_cos_integer_array;
        sin_phi_2_integer : in sin_cos_integer_array;
        condition_o: out std_logic
end muon_muon_correlation_condition;
```

Table 25: Explanation of Listing 10

Item	Explanation
same_bx	boolean indicating whether data are from same Bx - 'true' for same $\mathrm{Bx}.$
deta_cut	boolean for using $\Delta \eta$ cut.
dphi_cut	boolean for using $\Delta \varphi$ cut.

Table 25: Explanation of Listing 10

Item	Explanation
dr_cut	boolean for using DR cut.
mass_cut	boolean for using MASS cut.
mass_type	selection of mass type (INVARIANT_MASS_TYPE, INVARIANT_MASS_PT_TYPE, TRANSVERSE_MASS_TYPE or TRANSVERSE_MASS_PT_TYPE are allowed).
muon_object_low	low index of object range (valid numbers: 07).
muon_object_high	high index of object range (valid numbers: 07, but greater or equal muon_object_low).
pt_ge_mode_muon1	'mode-selection' for the $p_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
pt_threshold_muon1	threshold value for comparison in $p_{\rm T}$.
nr_eta_windows_muon1	integer value for number of η cuts.
eta_w1_upper_limit_muon1	"upper limit" of "window"-comparator 1 for η .
eta_w1_lower_limit_muon1	"lower limit" of "window"-comparator 1 for η .
eta_w2_upper_limit_muon1	"upper limit" of "window"-comparator 2 for η .
eta_w2_lower_limit_muon1	"lower limit" of "window"-comparator 2 for η .
eta_w3_upper_limit_muon1	"upper limit" of "window"-comparator 3 for η .
eta_w3_lower_limit_muon1	"lower limit" of "window"-comparator 3 for η .
eta_w4_upper_limit_muon1	"upper limit" of "window"-comparator 4 for η .
eta_w4_lower_limit_muon1	"lower limit" of "window"-comparator 4 for η .
eta_w5_upper_limit_muon1	"upper limit" of "window"-comparator 5 for η .
eta_w5_lower_limit_muon1	"lower limit" of "window"-comparator 5 for η .
phi_full_range_muon1	boolean to set full range of φ .
phi_w1_upper_limit_muon1	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limit_muon1	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore_muon1	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limit_muon1	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limit_muon1	"lower limits" of "window"-comparator 2 for φ .
requested_charge_muon1	string for requested charge ("pos" means "positive charge", "neg" means "negative charge" and "ign" means "ignore charge").
qual_lut_muon1	content of LUT (16 bits) for quality comparison.
iso_lut_muon1	content of LUT (4 bits) for isolation comparison.
upt_cut_muon1	boolean for using unconstrained $p_{\rm T}$ cuts.
upt_upper_limit_muon1	"upper limit" of unconstrained $p_{\rm T}$.
upt_lower_limit_muon1	"lower limit" of unconstrained p_{T} .
ip_lut_muon1	content of LUTs (4 bits) for impact parameter.

Table 25: Explanation of Listing 10

Item	Explanation
pt_ge_mode_muon2	'mode-selection' for the $p_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
pt_threshold_muon2	threshold value for comparison in $p_{\rm T}$.
nr_eta_windows_muon2	integer value for number of η cuts.
eta_w1_upper_limit_muon2	"upper limit" of "window"-comparator 1 for η .
eta_w1_lower_limit_muon2	"lower limit" of "window"-comparator 1 for η .
eta_w2_upper_limit_muon2	"upper limit" of "window"-comparator 2 for η .
eta_w2_lower_limit_muon2	"lower limit" of "window"-comparator 2 for η .
eta_w3_upper_limit_muon2	"upper limit" of "window"-comparator 3 for η .
eta_w3_lower_limit_muon2	"lower limit" of "window"-comparator 3 for η .
eta_w4_upper_limit_muon2	"upper limit" of "window"-comparator 4 for η .
eta_w4_lower_limit_muon2	"lower limit" of "window"-comparator 4 for η .
eta_w5_upper_limit_muon2	"upper limit" of "window"-comparator 5 for η .
eta_w5_lower_limit_muon2	"lower limit" of "window"-comparator 5 for η .
phi_full_range_muon2	boolean to set full range of φ .
phi_w1_upper_limit_muon2	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limit_muon2	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore_muon2	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limit_muon2	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limit_muon2	"lower limits" of "window"-comparator 2 for φ .
requested_charge_muon2	string for requested charge ("pos" means "positive charge", "neg" means "negative charge" and "ign" means "ignore charge").
qual_lut_muon2	content of LUT (16 bits) for quality comparison.
iso_lut_muon2	content of LUT (4 bits) for isolation comparison.
upt_cut_muon2	boolean for using unconstrained $p_{\rm T}$ cuts.
upt_upper_limit_muon2	"upper limit" of unconstrained p_{T} .
upt_lower_limit_muon2	"lower limit" of unconstrained $p_{\rm T}$.
ip_lut_muon2	content of LUTs (4 bits) for impact parameter.
requested_charge_correlation	string (2 characters) for requested charge correlation ("ls" means "like sign", "os" means "opposite sign" or "ig" means "ignore").
diff_eta_upper_limit	"upper limit" of "window"-comparator for comparison of differences in η (hex value).
diff_eta_lower_limit	"lower limit" of "window"-comparator for comparison of differences in η (hex value).
diff_phi_upper_limit	"upper limit" of "window"-comparator for comparison of differences in φ (hex value).
diff_phi_lower_limit	"lower limit" of "window"-comparator for comparison of differences in φ (hex value).

Table 25: Explanation of Listing 10

Item	Explanation		
dr_upper_limit	"upper limit" of "window"-comparator for comparison of ΔR^2 (hex value).		
dr_lower_limit	"lower limit" of "window"-comparator for comparison of ΔR^2 (hex value).		
DETA_DPHI_VECTOR_WIDTH	vector width of $\Delta \eta$ and $\Delta \varphi$ for calculation of ΔR^2 .		
DETA_DPHI_PRECISION	position after decimal point for $\Delta \eta$ and $\Delta \varphi$.		
mass_upper_limit	"upper limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value).		
mass_lower_limit	"lower limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value).		
MASS_PRECISION	position after decimal point for $\frac{M^2}{2}$.		
pt_width	number of bits of pt.		
MASS_COSH_COS_PRECISION	position after decimal point for $\cosh(\Delta \eta)$ and $\cos(\Delta \varphi)$.		
cosh_cos_width	number of bits for the maximum value in the LUT for $\cosh(\Delta \eta)$.		
pt_sq_threshold	threshold value for comparison in two-body pt (pt^2) .		
sin_cos_width	number of bits for the maximum value in the LUT for $\cos(\varphi)$ and $\sin(\varphi)$.		
PT_PRECISION	position after decimal point for pt^2 .		
PT_SQ_SIN_COS_PRECISION	position after decimal point for $\cos(\varphi)$ and $\sin(\varphi)$.		
lhc_clk	clock input (LHC clock).		
muon1_data_i	muon1 input data.		
muon2_data_i	muon2 input data.		
ls_charcorr_double	array of "like sign" charge correlation for double condition.		
os_charcorr_double	array of "opposite sign" charge correlation for double condition.		
diff_eta	differences in η , calculated in an instance of module subeta_integer_obj_vs_obj.vhd in top-of-hierarchy module (gtlmodule.vhd), see 4.4.5.		
diff_phi	differences in φ , calculated in an instance of module subphi_integer_obj_vs_obj.vhd in top-of-hierarchy module (gtlmodule.vhd).		
pt1	muon 1 $p_{\rm T}$ values [from LUT, in $GeV \times 10].^{12}$		
pt2	muon 2 $p_{\rm T}$ values [from LUT, in $GeV \times 10].$		
upt1	muon 1 unconstrained $p_{\rm T}$ values [from LUT, in $GeV \times 10$]. 13		
upt2	muon 2 unconstrained p_{T} values [from LUT, in $GeV \times 10].$		
cosh_deta	$\cosh(\Delta \eta)$ values [from LUT, $\cosh(\Delta \eta) \times 10000$]. ¹⁴		
cos_dphi	$\cos(\Delta\varphi)$ values [from LUT, $\cosh(\Delta\varphi) \times 10000$].		
cos_phi_1	$\cos(\varphi)$ values from LUT for muon.		
cos_phi_2	$\cos(\varphi)$ values from LUT for muon (different to cos_phi_1, when data from different bunch-crossings).		

¹² value 10 from 10 MUON_MUON_INV_MASS_PT_PRECISION 13 value 10 from 10 MUON_MUON_INV_MASS_PT_PRECISION

 $^{^{14} \}rm value~10000~from~10^{MUON_MUON_INV_MASS_COSH_COS_PRECISION$

 Item
 Explanation

 sin_phi_1 $sin(\varphi)$ values from LUT for muon.

 sin_phi_2 $sin(\varphi)$ values from LUT for muon (different to sin_phi_1 , when data from different bunch-crossings).

 condition_o
 output of condition (routed to Algorithms logic, see 4.4.14).

Table 25: Explanation of Listing 10

4.4.12.2.8 Muon Muon Correlation condition module for Invariant Mass Divided by ΔR

The muon muon correlation condition module for invariant mass divided by ΔR contains two "Single object requirement conditions" from different bunch-crossings as one possible mode and a "Double objects requirement condition" for objects of same bunch-crossing as a second mode (selection is done by a parameter in the generic list of muon_muon_mass_div_dr_condition.vhd named "same_bx").

The calculation of *invariant mass divided by* ΔR of two objects is done in an own module outside of the condition (mass_div_dr_calculator.vhd), see 4.4.12.1.5. This module is instantiated once for every object type bunch-crossing combination.

The comparison of calculated values and threshold is done inside the module (textttmuon_muon_mass_div_dr_condition.vhd).

In the TME there is one threshold for M/ Δ R: "greater/equal threshold", given in GeV (floating point notation).

The threshold for comparison with $\frac{M^2}{2} \times (1/\Delta R^2)$ (no square root in VHDL) is provided by VHDL-Producer.

No other correlation cuts, except "charge correlation", available in this condition type.

4.4.12.2.9 Muon Correlation condition module for Invariant Mass with Three Objects

The muon correlation condition module for invariant mass with three objects (muon_mass_-3_obj_condition.vhd) contains a "Triple objects requirement condition" for objects of same type and same bunch-crossing.

In addition a "Cut" for calculation of *invariant mass with three objects* (see 4.4.12.1.6) is mandatory.

No other correlation cuts, except "charge correlation", available in this condition type.

4.4.12.2.10 Muon Esums Correlation condition module

The muon esums correlation condition module (muon_esums_correlation_condition.vhd) contains two "Single object requirement conditions", one of muon objects and one of esums $(ET_{\mathrm{miss}}, ET_{miss}^{HF})$ or HT_{miss} .

In addition there are "Cuts" for differences in φ ($\Delta \varphi$) or a calculation of mass (MASS) for Transverse mass or Transverse mass with two-body pt.

Because of the different scales of muon objects and esums in φ , there are LUTs for conversion the esums bins to muon bins (in gtl_pkg.vhd: e.g. ETM_PHI_CONV_2_MUON_PHI_LUT).

Remark:

The center value of bins are used as reference value for conversion. The content of LUT is calculated with formular:

"converted-esums-phi[bin] = esums-phi[bin] \times 4 + 2" (see Figure 14). The conversion calculations are preliminary, others may be proposed.

Definitions of scales:

- ET_{miss} , ET_{miss}^{HF} or HT_{miss} : $-\phi \text{ bin width} = \frac{2\pi}{144} \text{ (bin 0 from 0.0 to } \frac{2\pi}{144})$
- Muon objects:
 - $-\phi$ bin width $=\frac{2\pi}{576}$ (bin 0 from 0.0 to $\frac{2\pi}{576}$)

The contents of the LUTs for $\cos(\Delta\varphi)$ (MU_ETM_COS_DPHI_LUT, ...) for Transverse mass (formular see 4.4.12.1.3) are created by calculating cosine, rounding-up at the 4th position after decimal point and multiplying by 10000 ($10^{\text{MU}_{\text{ETM}}\text{COSH}_{\text{COS}}\text{PRECISION}}$) to get integer values.¹⁵

The contents of the LUTs for $\cos(\varphi)$ (CALO_COS_PHI_LUT and MUON_COS_PHI_LUT) and $\sin(\varphi)$ (CALO_SIN_PHI_LUT and MUON_SIN_PHI_LUT) for two-body pt (formular see 4.4.12.1.4) are created by calculating cosine and sine, rounding-up at the 3rd position after decimal point and multiplying by 1000 to get integer values.

The condition is complied, if at least one comparison between object parameters and requirements is valid for the both "Single object requirement condition" and the results of selected "Cuts" are inside of a range (upper and lower limit). This limits are parts of the "generic" list of the entity declaration of the module and are expressed in hex notation. The limits for $\Delta \varphi$ are expressed with a precision of 3rd position after decimal point, for MASS with 1st position after decimal point.

For VHDL entity declaration for muon esums correlation condition module in muon_esums_-correlation_condition.vhd, see Listing 11.

Listing 11: Entity declaration of muon_esums_correlation_condition.vhd entity muon_esums_correlation_condition is

¹⁵Definition of "constant MU_ETM_COSH_COS_PRECISION ..." and "constant CALO_PHI_-CONV_2_MUON_PHI_LUT ..." in file gtl_pkg.vhd.

```
generic (
  dphi_cut: boolean;
  mass_cut: boolean;
  mass_type : natural;
  twobody_pt_cut: boolean;
  muon_object_low: natural;
  muon_object_high: natural;
  pt_ge_mode_muon: boolean;
  pt_threshold_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto 0);
  nr_eta_windows_muon : natural;
  eta_w1_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
  eta_w1_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
  eta_w2_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
  eta w2_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
   eta_w3_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
   eta_w3_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
   eta_w4_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
   eta_w4_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0):
   eta_w5_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
   eta_w5_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
  phi_full_range_muon : boolean;
  phi_w1_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
  phi_w1_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
  phi_w2_ignore_muon : boolean;
  phi_w2_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
  phi_w2_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1
      downto 0);
   requested_charge_muon: string(1 to 3);
   qual_lut_muon: std_logic_vector(2**(D_S_I_MUON_V2.qual_high-D_S_I_MUON_V2
       .qual_low+1)-1 downto 0);
   iso_lut_muon: std_logic_vector(2**(D_S_I_MUON_V2.iso_high-D_S_I_MUON_V2.
      iso_low+1)-1 downto 0);
  upt_cut_muon : boolean;
  upt_upper_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto
  upt_lower_limit_muon: std_logic_vector(MAX_MUON_TEMPLATES_BITS-1 downto
   ip_lut_muon: std_logic_vector(2**(D_S_I_MUON_V2.ip_high-D_S_I_MUON_V2.
      ip_low+1)-1 downto 0);
   et_ge_mode_esums: boolean;
  obj_type_esums: natural := ETM_TYPE;
```

```
et_threshold_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
        phi_full_range_esums: boolean;
        phi_w1_upper_limit_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1
           downto 0);
        phi_w1_lower_limit_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1
           downto 0);
        phi_w2_ignore_esums: boolean;
        phi_w2_upper_limit_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1
           downto 0);
        phi_w2_lower_limit_esums: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1
           downto 0);
        diff_phi_upper_limit_vector: std_logic_vector(
           MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
        diff_phi_lower_limit_vector: std_logic_vector(
           MAX_WIDTH_DETA_DPHI_LIMIT_VECTOR-1 downto 0);
        mass_upper_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
           downto 0);
        mass_lower_limit_vector: std_logic_vector(MAX_WIDTH_MASS_LIMIT_VECTOR-1
           downto 0);
        pt1_width: positive;
        pt2_width: positive;
        mass_cosh_cos_precision : positive;
        cosh_cos_width: positive;
        pt_sq_threshold_vector: std_logic_vector(MAX_WIDTH_TBPT_LIMIT_VECTOR-1
           downto 0);
        sin_cos_width: positive;
        pt_sq_sin_cos_precision : positive
   );
   port (
        lhc_clk: in std_logic;
       muon_data_i: in muon_objects_array;
        esums_data_i: in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
        diff_phi: in deta_dphi_vector_array;
        pt1 : in diff_inputs_array;
        pt2 : in diff_inputs_array;
        cos_dphi : in calo_muon_cosh_cos_vector_array;
        cos_phi_1_integer : in sin_cos_integer_array;
        cos_phi_2_integer : in sin_cos_integer_array;
        sin_phi_1_integer : in sin_cos_integer_array;
        sin_phi_2_integer : in sin_cos_integer_array;
        condition_o: out std_logic
   );
end muon_esums_correlation_condition;
```

Table 26: Explanation of Listing 10

Item	Explanation	
dphi_cut	boolean for using $\Delta \varphi$ cut.	
mass_cut	boolean for using MASS cut.	
mass_type	selection of mass type (TRANSVERSE_MASS_TYPE or TRANSVERSE_MASS_PT_TYPE are allowed).	
muon_object_low	low index of object range (valid numbers: 07).	
muon_object_high	high index of object range (valid numbers: 07, but greater or equal muon_object_low).	
pt_ge_mode_muon	'mode-selection' for the $p_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)	
pt_threshold_muon	threshold value for comparison in $p_{\rm T}$.	
nr_eta_windows_muon	integer value for number of η cuts.	
eta_w1_upper_limit_muon	"upper limit" of "window"-comparator 1 for η .	
eta_w1_lower_limit_muon	"lower limit" of "window"-comparator 1 for η .	
eta_w2_upper_limit_muon	"upper limit" of "window"-comparator 2 for η .	
eta_w2_lower_limit_muon	"lower limit" of "window"-comparator 2 for η .	
eta_w3_upper_limit_muon	"upper limit" of "window"-comparator 3 for η .	
eta_w3_lower_limit_muon	"lower limit" of "window"-comparator 3 for η .	
eta_w4_upper_limit_muon	"upper limit" of "window"-comparator 4 for η .	
eta_w4_lower_limit_muon	"lower limit" of "window"-comparator 4 for η .	
eta_w5_upper_limit_muon	"upper limit" of "window"-comparator 5 for η .	
eta_w5_lower_limit_muon	"lower limit" of "window"-comparator 5 for η .	
phi_full_range_muon	boolean to set full range of φ .	
phi_w1_upper_limit_muon	"upper limit" of "window"-comparator 1 for φ .	
phi_w1_lower_limit_muon	"lower limit" of "window"-comparator 1 for φ .	
phi_w2_ignore_muon	boolean to ignore "window"-comparator 2 for φ .	
phi_w2_upper_limit_muon	"upper limit" of "window"-comparator 2 for φ .	
phi_w2_lower_limit_muon	"lower limits" of "window"-comparator 2 for φ .	
requested_charge_muon	string for requested charge ("pos" means "positive charge", "neg" means "negative charge" and "ign" means "ignore charge").	
qual_lut_muon	content of LUT (16 bits) for quality comparison.	
iso_lut_muon	content of LUT (4 bits) for isolation comparison.	
upt_cut_muon	boolean for using unconstrained $p_{\rm T}$ cuts.	
upt_upper_limit_muon	"upper limit" of unconstrained p_{T} .	
upt_lower_limit_muon	"lower limit" of unconstrained p_{T} .	
ip_lut_muon	content of LUTs (4 bits) for impact parameter.	

Table 26: Explanation of Listing 10

Item	Explanation		
et_ge_mode_esums	'mode-selection' for the $E_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)		
obj_type_esums	selection of esums type (ETM_TYPE or HTM_TYPE are allowed)		
et_threshold_esums	threshold value for comparison in $E_{\rm T}$.		
phi_full_range_esums	boolean to set full range of φ .		
phi_w1_upper_limit_esums	"upper limit" of "window"-comparator 1 for φ .		
phi_w1_lower_limit_esums	"lower limit" of "window"-comparator 1 for φ .		
phi_w2_ignore_esums	boolean to ignore "window"-comparator 2 for φ .		
phi_w2_upper_limit_esums	"upper limit" of "window"-comparator 2 for φ .		
phi_w2_lower_limit_esums	"lower limits" of "window"-comparator 2 for φ .		
diff_phi_upper_limit	"upper limit" of "window"-comparator for comparison of differences in φ (hex value).		
diff_phi_lower_limit	"lower limit" of "window"-comparator for comparison of differences in φ (hex value).		
DETA_DPHI_VECTOR_WIDTH	vector width of $\Delta \varphi$.		
DETA_DPHI_PRECISION	position after decimal point for $\Delta \varphi$.		
mass_upper_limit	"upper limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value		
mass_lower_limit	"lower limit" of "window"-comparator for comparison of $\frac{M^2}{2}$ (hex value)		
MASS_PRECISION	position after decimal point for $\frac{M^2}{2}$.		
pt1_width	number of bits of pt1.		
pt2_width	number of bits of pt2.		
MASS_COSH_COS_PRECISION	position after decimal point for $\cos(\Delta\varphi)$.		
cosh_cos_width	number of bits for the maximum value in the LUT for $\cos(\Delta\varphi)$.		
pt_sq_threshold	threshold value for comparison in two-body pt (pt^2) .		
sin_cos_width_1	number of bits for the maximum value in the LUT for $\cos(\varphi)$ and $\sin(\varphi)$ of muon.		
sin_cos_width_2	number of bits for the maximum value in the LUT for $\cos(\varphi)$ and $\sin(\varphi)$ of esums.		
PT_PRECISION	position after decimal point for pt^2 .		
PT_SQ_SIN_COS_PRECISION	position after decimal point for $\cos(\varphi)$ and $\sin(\varphi)$.		
lhc_clk	clock input (LHC clock).		
muon_data_i	muon input data.		
esums_data_i	esums input data, structure defined with obj_type_esums.		
diff_phi	differences in φ , calculated in an instance of module sub_phi_integer_obj_vs_obj.vhd in top-of-hierarchy module (gtl_module.vhd).		
pt1	muon $E_{\rm T}$ values [from LUT, in $GeV \times 10$].		
pt2	esums $E_{\rm T}$ values [from LUT, in $GeV \times 10$].		

Table 26: Explanation of Listing 10

Item	Explanation	
cos_dphi	$\cos(\Delta\varphi)$ values from LUT.	
cos_phi_1	$\cos(\varphi)$ values from LUT for muon.	
cos_phi_2	$\cos(\varphi)$ values from LUT for esums.	
sin_phi_1	$\sin(\varphi)$ values from LUT for muon.	
sin_phi_2	$\sin(\varphi)$ values from LUT for esums.	
condition_o	output of condition (routed to Algorithms logic, see 4.4.14).	

4.4.13 External Conditions

Maximal 256 External Conditions are possible in Global Trigger. They are provided as inputs in the Algorithms logic of μ GTL. External Conditions will include the "Technical Trigger" of the legacy system.

4.4.14 Algorithms logic

The outputs of all the instantiated conditions are combined in the Algorithms logic with boolean algebra given by TME for every single Algorithm. These Algorithms are registered and provided as inputs for Final Decision Logic.

5 Final Desicion Logic

The Final Desicion Logic (μ FDL) firmware contains algo-bx-masks, suppression of algos caused by calibration trigger, prescalers, veto-masks and rate-counters ("before prescalers", "after prescalers" and "post dead time") for each Algorithm and the local Final-OR- and veto-logic.

5.1 μ FDL Interface

Inputs:

- Algorithms from μ GTL
- IPBus interface (for registers, counters and memories)
- LHC-clock
- Reset signal
- BC0, BGo test-enable, L1A

Figure 15: μ FDL firmware v1.0.1

• Begin of lumi-section

Outputs:

- Prescale factor set index to Readout-Process
- Algorithms after GTLogic to Readout-Process
- Algorithms after algo-bx-masks to Readout-Process
- Algorithms after prescalers to Readout-Process
- Algorithms after Final-OR-masks to Readout-Process
- Local Final-OR to Readout-Process
- Local veto to Readout-Process
- Local Final-OR with veto to Readout-Process
- Local Final-OR to mezzanine
- Local veto to mezzanine
- Local Final-OR with veto to mezzanine

5.2 MP7 Final-OR hardware solution

The firmware of μFDL in this document is based on a hardware configuration with maximum 6 μGT modules.

Figure 16: μ FDL pipeline v1.0.1

5.3 Data flow

Every Algorithm, in total 512 coming from μ GTL, passes a algo-bx-mask, the logic for suppression of algos caused by calibration trigger and a prescaler, which reduces the trigger rate by a given factor. Prescaled Algorithms signals are combined to a local final-or-signal (Final-OR). For every Algorithm there is a rate-counter before prescaler and after prescaler, which are incremented by LHC-clock if the Algorithm is true. In addition there are post-dead-time counters, one for each Algorithm, which are incremented, if the Algorithm and the L1A-signal are true at the same bunch-crossing. Algorithms after GTLogic, after algo-bx-masks, after prescalers, the local Final-OR- and local veto-signal are provided for read-out-record.

If there are not enough firmware resources in one μ GT board, more boards could be used. Therefore the 512 Algorithms are partitioned by TME. TME will set the number of Algorithms as constant in the package module gtl_pkg.vhd. This means μ GTL and μ FDL firmware considered as a unit for synthesis. In the case of more μGT boards, the local Final-OR and local veto are routed via a mezzanine board on MP7 (located on "General Purpose I/O connector") to the FINOR-AMC502 module, where the total Final-OR is created and send to TCDS.

A mapping for Algorithms is provided, to give flexibility for setting the index of Algorithms:

- creating a mapping instance (algo_mapping_rop.vhd) over TME (see ??), this component will be instantiated in fix part of FDL, and new calculation will done each time over TME.
- TME delivers just the number of Algorithms, which will be built on each card.
- from FDL point of view, FDL see incremented number of Algorithms indexes, e.g. 0, 1, 2, which is e.g. 69, 200, 300.

• TME should take care of assignment of each Algorithm to a number, that means if in card 1 algo_59 is defined, nobody allows to produce the same number again.

5.4 Main parts

The top-of-hierarchy module (fdl module.vhd) contains

- version registers
- a command pulse register
- prescalers for all Algorithms
- registers for prescale factors
- register for prescale factor set index
- rate-counters for all Algorithms, finor, veto, L1A and post-dead-time
- read only registers for rate-counter values
- algo-bx-masks for all Algorithms
- Final-OR-masks for all Algorithms
- veto-masks for all Algorithms
- the Final-OR-logic

5.4.1 Registers and memories

All registers and memories are 32 bits wide. (A first draft of the definition of the relative addresses is shown in Table 27.)

- Dual-port memories for the algo-bx-masks are implemented. For each Algorithm there is a mask bit at every bunch crossing of one orbit. Therefore in total memories of 4096 x 512 bits are implemented. Because of the 32 bit data interface, 16 memories each with a size of 4096 x 32 bits are instantiated.
- Read-only registers for the value of rate-counters (before and after prescalers, post-dead-time counters) are implemented, 512 registers, one for every Algorithm. Rate-counter value has 32 bits.
- Registers for prescale factor of the prescalers are implemented, 512 registers, one for every Algorithm. A prescale factor value has 24 bits.
- Registers for masks (finor- and veto-masks) are implemented, 512 registers.
- One register for prescale factors set index is implemented. This register contains a value, which is unique for a given set of prescale factors. The content of this register is part of Readout-record.

- One register for command pulses is implemented. One bit of this register (bit 0) is used for "setting the request signal for updating prescale factors high", which enables, that the prescale factors and the prescale factor set index are loaded at the begin of a luminosity segment period. (Other bits are not defined yet.)
- One control register is implemented (the content has to be defined).
- 32 register for L1 Trigger Menu name for μ GTL is implemented.
- 4 register for L1 Trigger Menu UUID for μ GTL is implemented.
- One register for L1 Trigger Menu compiler version is implemented.
- One register for μ FDL firmware version is implemented.
- One register for μ GTL firmware (fixed code) version is implemented.

5.4.1.1 Register map

The register map for μFDL has a base address of 0x90000000.

Table 27: μ FDL register map

Offset	Register name	Access	Description
Oliset	Register name	Access	Description
0x90000000	Algo BX masks(0)	r/w	4096 memory addresses of algo-bx-masks for Algorithms 0-31.
0x90001000	Algo BX masks(1)	r/w	4096 memory addresses of algo-bx-masks for Algorithms 32-63.
•••	•••	•••	
0x9000F000	Algo BX masks(15)	r/w	4096 memory addresses of algo-bx-masks for Algorithms 480-511.
0x90010000	Rate counter before prescale:	r r	512 read-only registers for rate-counter values before prescalers.
0x90010200	Prescale factors	r/w	512 registers for prescale factors.
0x90010400	Rate counter after prescaler	r	512 read-only registers for rate-counter values after prescalers.
0x90010600	Rate counter post-dead-time	r	512 read-only registers for post-dead-time rate-counter values.
0x90010800	Masks	r/w	512 registers for finor-masks and veto-masks. Bit 0 = finor-mask, bit 1 = veto-mask.

Page 107 of 121

Table 27: μFDL register map

Offset	Register name	Access	Description
0x90091880	Prescale factors set index	r/w	Register for prescale factors set index.
0x900918C0	L1tm name	r	32 registers for L1 Trigger Menu name for μ GTL.
0x900918E0	L1tm uuid	r	4 registers for L1 Trigger Menu UUID for μ GTL.
0x900918E4	L1tm compiler version	r	Register for L1 Trigger Menu compiler version.
0x900918E5	GTL FW version	r	Register for firmware version of μ GTL VHDL code.
0x900918E6	FDL FW version	r	Register for firmware version of μ FDL VHDL code.
0x900918E7	L1tm FW uuid	r	4 registers for L1 Trigger Menu FW UUID for μ GTL.
0x900918EB	SVN revision number	r	Register for SVN revision number.
0x900918EC	L1tm uuid hash	r	Register for L1 Trigger Menu UUID hash for μ GTL.
0x900918ED	L1tm FW uuid hash	r	Register for L1 Trigger Menu FW UUID hash for μ GTL.
0x900918EE	Module ID	r	Register for Module ID of L1 Trigger Menu.
0x90091900	Command Pulses	r/w	Register for command pulses.
0×90091980	Rate counter finor	r	One read-only registers for finor rate-counter value.
0x90092200	L1A latency delay	r/w	Register for L1A latency delay value (used for post-dead-time counter).
0x90093000	Rate counter L1A	r	One read-only registers for L1A rate-counter value.
0x90094000	Rate counter veto	r	One read-only registers for veto rate-counter value.
0x90095000	Current prescale set index	r	Read-only register for prescale factors set index, which was "updated" with begin of current lumi-section ("prescale_factors_setindex_reg_updated(0)" in VHDL).

Table 27: μ FDL register map

Offset	Register name	Access	Description
0x90095001	Previous prescale set index	r	Read-only register for prescale factors set index, which was "updated" with begin of previous lumi-section for monitoring "prescale_factorsset_index_reg_updated(1)" in VHDL).
0x90096000	Calibration trigger gap	r/w	Register for begin and end (in Bx) of calibration trigger gap.

Register 5.1: Rate counter before prescaler

rate_counter_before_prescaler Rate counter before prescaler. Counts the occurancy of an algo (given by register address) in one luminosity segment.

Register 5.2: Prescale factor

 $prescale_factor$ Prescale factor of an algo (given by register address). Prescale factor = 0 means disable algo.

Register 5.3: Rate counter after prescaler

rate_counter_after_prescaler Rate counter after prescaler. Counts the occurancy of an algo (given by register address) in one luminosity segment.

Register 5.4: Rate counter post-dead-time

rate_counter_postdeadtime Rate counter post-dead-time. Counts the occurancy of an algo (given by register address) and L1A at the same bx in one luminosity segment.

Register 5.5: Masks

veto_mask Selection of a veto (by an algo, given by register address) for veto-or.

finor_mask Selection of an algo (given by register address) for final-or.

Register 5.6: Prescale factors set index

prescale_factor_set_index Index for a certain set of prescale factors.

Register 5.7: L1TM COMPILER VERSION

reserved	inajot	ninoi	re ^{ribioti}	
31 24	23 16	15 8	7 0	
0	0	0	0	Reset

major Major version of L1tm compiler.

minor Minor version of L1tm compiler.

revision Revision version of L1tm compiler.

Register 5.8: GTL FW VERSION

reserved	Trailor	ninor	regision	
31 24	23 16	15 8	7 0	
0	0	0	0	Reset

major Major version of GTL firmware.

minor Minor version of GTL firmware.

revision Revision version of GTL firmware.

Register 5.9: FDL FW VERSION

	reserved	najoi	Tilitai	revizion	
31	24	23 16	15 8	7 0	
	0	0	0	0	Reset

major Major version of FDL firmware.

minor Minor version of FDL firmware.

revision Revision version of FDL firmware.

Register 5.10: Command Pulses Register

request_update_factor_pulse Sets the request signal for updating prescale
factors high. Updating is done at the next "begin of luminosity segment".

Register 5.11: RATE COUNTER FINOR

rate_counter_finor Rate counter finor. Counts the occurancy of finor in one luminosity segment.

Register 5.12: L1A LATENCY DELAY

Tree tree de la latency de latency de latency de la latency de latency de la latency de latency de latency de la latency de latency de la latency de latency de la latency de la latency de latency de la latency de latency de latency de la latency de la latency de latency de

lla_latency_delay L1A latency delay value (used for post-dead-time counter).

Register 5.13: RATE COUNTER L1A

rate counter 11a

0

Reset

rate_counter_l1a Rate counter L1A. Counts the occurancy of L1A in one luminosity segment.

rate_counter_veto Rate counter veto. Counts the occurancy of veto in one luminosity segment.

prescale_factor_set_index_updated Index for a certain set of prescale factors, which was "updated" with begin of current lumi-section.

prescale_factor_set_index_updated Index for a certain set of prescale factors, which was "updated" with begin of previous lumi-section.

begin_calibration_trigger_gapBegin of calibration trigger gap (in Bx).end_calibration_trigger_gapEnd of calibration trigger gap (in Bx).

5.4.2 Algo-bx-masks

Every Algorithm passes a logic where at every bunch-crossing of the orbit the Algorithm is enabled (or not). The algo-bx-masks are implemented as dual-port memories and loaded at the begin of run. The size of the algo-bx-masks memory is number of bunch-crossings per orbit for address length and number of Algorithms for data-depth (3564 [4096] x 512 bits). The address (bx-number) of the memory for masking the Algorithm is delivered by an address-counter for algo-bx-masks memory, which is reseted with a delay-able bcres signal, to get the correct relations between Algorithms and masks from memory.

5.4.3 Rate-counters

Every Algorithm has a rate-counters with 32 bits, because of the length of one luminosity segment period. There are counters before and after prescalers and post-dead-time counters. The counters before and after prescalers are incremented, if the Algorithm signal is in high state and a positive edge of LHC-clock occur. The post-dead-time counters are incremented, if the Algorithm signal is in high state (delayed by L1A latency delay), a L1A signal and a positive edge of LHC-clock occur. The content of a counter is updated into a register (for reading the counter value) and is reseted at the begin of a luminosity segment period. So there is one luminosity segment period time to read the registers with the counter values by software.

5.4.4 Prescalers

Every Algorithm has a prescaler with a prescale factor of 24 bits. The prescaler reduces the trigger-rate per Algorithm with a factor, so e.g. a factor of 2 passes through every second trigger. A prescale factor of 0 inhibits all triggers of the certain Algorithm. The factor is loaded into a register by software and updated at begin of a new luminosity segment period, if the update was enabled by software ('request_update_factor_pulse' was set in "command_pulses" register). The prescaler works with the new factor. A register for "prescale factor set index" contains a value which represents a certain set of prescale factors. The content of this register is seen in the Readout-record too. The "prescale factor set index" is loaded into the register by software and updated at begin of a new luminosity segment period.

5.4.5 Finor-masks

Every Algorithm passes a Final-OR-mask, which enables the Algorithm for Final-OR. The Final-OR-masks are implemented as registers and loaded at the begin of a run.

5.4.6 Veto-masks

Every Algorithm passes a veto-mask, if at least one Algorithm, which is enabled by veto-mask, becomes high state, then Final-OR is disabled as long as the Algorithm is in high state. The veto-masks are implemented as registers and loaded at the begin of a run.

5.4.7 Finor

The Final-OR-signal is a disjunction of all Algorithms passed the Final-OR-bx-masks. An Algorithm enabled by veto-mask, disables the Final-OR. This is done on the FINOR-AMC502 module.

5.5 Implementation in firmware

The entity-declaration of fdl_module.vhd is shown in 5.3.

Listing 12 contains the entity-declaration of the fdl_module.vhd.

Listing 12: Entity declaration of fdl_module.vhd

```
entity fdl_module is
   generic (
       SIM MODE : boolean := false; -- if SIM MODE = true, "algo bx mask" is
           given by "algo_bx_mask_sim".
       PRESCALE_FACTOR_INIT : ipb_regs_array(0 to MAX_NR_ALGOS-1);
       MASKS_INIT : ipb_regs_array(0 to MAX_NR_ALGOS-1);
       PRESCALE_FACTOR_SET_INDEX_WIDTH : positive := 8;
       PRESCALE_FACTOR_SET_INDEX_REG_INIT : ipb_regs_array(0 to 1) := (others =>
            X"00000000");
       L1A_LATENCY_DELAY_INIT : ipb_reqs_array(0 to 1) := (others => X"00000000"
           );
       CNTRL_REG_INIT : ipb_regs_array(0 to 1) := (others => X"00000000");
-- Input flip-flops for algorithms of fdl_module.vhd - used for tests of
   fdl_module.vhd only
       ALGO_INPUTS_FF: boolean := false
   );
   port (
       ipb_clk
                          : in std_logic;
       ipb_rst
                           : in std_logic;
       ipb_in
                           : in ipb_wbus;
                           : out ipb_rbus;
       ipb_out
       lhc_clk
                          : in std_logic;
       lhc_rst
                          : in std_logic;
       bcres
                          : in std logic;
       test_en
                          : in std_logic;
                          : in std_logic;
       begin_lumi_section : in std_logic;
                           : in std_logic_vector(NR_ALGOS-1 downto 0);
       bx_nr_out : out std_logic_vector(11 downto 0);
       prescale_factor_set_index_rop : out std_logic_vector(
           PRESCALE_FACTOR_SET_INDEX_WIDTH-1 downto 0);
       algo_after_gtLogic_rop : out std_logic_vector(MAX_NR_ALGOS-1 downto 0);
       algo_after_bxomask_rop
                                 : out std_logic_vector(MAX_NR_ALGOS-1 downto
           0);
       algo_after_prescaler_rop
                                     : out std_logic_vector(MAX_NR_ALGOS-1
           downto 0);
                          : out std_logic;
       local_finor_rop
       local_veto_rop
                           : out std_logic;
```

```
finor_2_mezz_lemo : out std_logic; -- to LEMO
    finor_preview_2_mezz_lemo : out std_logic; -- to LEMO
    veto_2_mezz_lemo : out std_logic; -- to LEMO
    finor_w_veto_2_mezz_lemo : out std_logic; -- to tp_mux.vhd
    local_finor_with_veto_o : out std_logic; -- to SPY2_FINOR
-- HB 2016-03-02: v0.0.21 - algo_bx_mask_sim input for simulation use with
    MAX_NR_ALGOS (because of global index).
    algo_bx_mask_sim : in std_logic_vector(MAX_NR_ALGOS-1 downto 0)
    );
end fdl_module;
```

6 Readout-Process

The readout is done via TX-links of MP7 to AMC13.

7 Glossary

```
electron/\gamma = electron/gamma objects over Calo-Layer2 (VHDL: eg)
jet = jet objects over Calo-Layer2 (VHDL: jet)
tau = tau objects over Calo-Layer2 (VHDL: tau)
muon = muon objects over \muGMT (VHDL: muon)
ET = Scalar sum of transverse energy components over Calo-Layer2 (VHDL: ett)
ETTEM = Scalar sum of transverse energy components from ECAL only over Calo-Layer2
     (VHDL: ettem)
MBTxHFy = Minimum bias HF bits (VHDL: MBT0HFP, MBT0HFM, MBT1HFP, MBT1HFM)
HT = Magnitude of the vectorial sum of transverse energy of jets (hadronic) over Calo-
     Layer2 (VHDL: htt)
TOWERCOUNT = tower counts (VHDL: towercount)
ET_{\text{miss}} = 2\text{-vector sum of transverse energy over Calo-Layer2 (VHDL: etm)}
HT_{\text{miss}} = Missing Total transverse energy of jets over Calo-Layer2 (VHDL: htm)
\mathbf{ET}_{miss}^{HF} = 2-vector sum of transverse energy including HF over Calo-Layer2 (VHDL: etmhf)
\mathbf{HT}_{miss}^{HF}= Missing Total transverse energy of jets including HF over Calo-Layer2 (VHDL:
     htmhf)
ASYMET = Asymmetry of ET over Calo-Layer2 (VHDL: asymet)
ASYMHT = Asymmetry of HT over Calo-Layer2 (VHDL: asymht)
ASYMETHF = Asymmetry of ET including HF over Calo-Layer2 (VHDL: asymethf)
ASYMHTHF = Asymmetry of HT including HF over Calo-Layer2 (VHDL: asymhthf)
CENTx = Centrality bits [7:0] over Calo-Layer2 (VHDL: cent7, cent6, ...)
p_{\rm T} = transverse momentum of muon objects(VHDL: pt)
E_{\rm T} = energy of calorimeter objects (VHDL: et)
\eta = \text{pseudo-rapidity position (VHDL: eta)}
\varphi = \text{azimuth angle position (VHDL: phi)}
isolation = isolation information (VHDL: iso)
quality = quality information (VHDL: qual)
```

Acronyms

 $\mathbf{D}\mathbf{A}\mathbf{Q}$ Data Acquisition

 $\mathbf{DM}\,$ Delay Manager Module

 ${\bf FDL}\,$ Final Decision Logic Module

 $\mathbf{GTL}\,$ Global Trigger Logic Module

 ${f ROP}$ Readout-Process Module

 ${f TCM}$ Timing Counter Manager Module

 \mathbf{TCS} Trigger Control System

 \mathbf{GCT} Calorimeter Trigger Layer-2

 \mathbf{GMT} Global Muon Trigger

GT Global Trigger

References