Improper Integrals

Sriram Vadlamani January 13, 2020

Contents

1	Defi	inition	3
2	Convergence and Divergence		3
	2.1	Proposition 1	3
	2.2	Riemann Functions	3
	2.3	Positive funtions improper integrals	4

1 Definition

When a function is not defind for either or both of the bounds in an integral, it is known as an improper integral.

$$\int_{a}^{b} f(t)dt$$

$$f: [a, b[\to R]$$

$$f \text{ continuous on } [a, b[$$

$$\int_{1}^{+\infty} e^{-t} dt$$

2 Convergence and Divergence

let $f:[a,b[\to R \text{ and } f \text{ be continous on } [a,b[.$ we say that the integral is convergent if

$$\lim_{x \to b} \int_{a}^{x} f(t)dt$$

is a finite value. else, it is divergent.

2.1 Proposition 1

let f and g be two functions on [a,b[such that, both integrals $\int_a^b f(t)dt$ and $\int_a^b g(t)dt$ converge.

Then $\forall \alpha \in R$, $\int_a^b (\alpha f(t) + g(t))$ converges and linearity can be used to split the two integrals.

2.2 Riemann Functions

Theorem:

- $\int_0^1 dt/t^{\alpha}$ converges $\Leftrightarrow \alpha < 1$
- $\int_1^{+\infty} dt/t^{\alpha}$ converges $\Leftrightarrow \alpha > 1$
- $\int_0^{+\infty} dt/t^{\alpha}$ is always divergent.

2.3 Positive funtions improper integrals

let $f:[a,b[\to \mathbf{R}_+ \text{ and } g:[a,b[\to \mathbf{R}_+, \text{ continous on } [a,b[.$ if f(t) < g(t), then

- if $\int_a^b g(t)dt$ is conv $\Rightarrow \int_a^b f(t)dt$ is conv.
- if $\int_a^b f(t)dt$ is divergent $\Rightarrow \int_a^b g(t)dt$ is divergent.
- if f(t) = o(g(t)) then if $\int_a^b g(t)dt$ is conv. $\Rightarrow \int_a^b f(t)dt$ is conv.
- if $f(t) \sim g(t)$ then $\int_a^b f(t) dt$ and $\int_a^b g(t) dt$ have the same nature