Skrivtid: 5 timmar. Tillåtna hjälpmedel: endast skrivdon. Varje uppgift ger högst 5 poäng. För betygen 3, 4 och 5 krävs minst 18, 25, resp. 32 poäng. Lösningarna skall åtföljas av förklarande text. För full poäng krävs att du noggrannt motiverar varje steg i ditt resonemang. Påbörja varje uppgift på ett nytt blad. Lycka till!

1. Låt P(x) och Q(x) vara två öppna utsagor vars sanningsvärde beror på en variabel x i ett universum X och låt A, B vara mängderna $A = \{x \in X \colon P(x)\}$ och $B = \{x \in X \colon Q(x)\}$. Beskriv följande mängder i termer A och B med hjälp av snitt, union, mängddifferens och komplement.

(a)
$$\{x \in X: P(x) \land Q(x)\},$$
 (1 poäng)

(b)
$$\{x \in X: P(x) \Rightarrow Q(x)\},$$
 (2 poäng)

(c)
$$\{x \in X: (P(x) \lor Q(x)) \land \neg (P(x) \land Q(x))\}.$$
 (2 poäng)

2. Visa att den Diofantiska ekvationen 91x + 50y = 2 har lösningar. Lös sedan ekvationen fullständigt. (5 poäng)

3. (a) Skriv talet
$$(110321)_4$$
 i bas 10. (2 poäng)

(b) Bestäm resten som fås då
$$9^{387}$$
 delas med 7. (3 poäng)

4. Låt relationen R på heltalen vara definierad av $xRy \Leftrightarrow 12 | x - y$.

(a) Relationen
$$R$$
 har ett speciellt namn. Vilket? (1 poäng)

(b) Visa att relationen
$$R$$
 är en ekvivalensrelation. (3 poäng)

(c) Hur många ekvivalensklasser har
$$R$$
?. (1 poäng)

- 5. Visa med induktion att $n^3 \le 3^n$ för alla heltal $n \ge 3$. (5 poäng)
- 6. (a) Vad betyder det att en funktion är injektiv respektive surjektiv? Återge definitionerna. (2 poäng)
 - (b) Konstruera en surjektiv funktion. Bevisa att funktionen är surjektiv. (3 poäng)
- 7. Hitta samtliga nollställen till polynomet $p(x) = x^4 x^3 + x^2 7x 42$. (5 poäng)

- 8. Låt $p_1(x)$, $p_2(x)$ och $p_3(x)$ vara tre polynom.
 - (a) Visa att om $p_3 \mid p_1$ och $p_3 \mid p_2$ så gäller även att $p_3 \mid p_1 + p_2$. (2 poäng)
 - (b) Visa att om $p_3 \mid p_2$ så gäller även att $p_3 \mid p_2 p_1$. (2 poäng)
 - (c) För division med heltal är resten alltid mindre än delaren, d.v.s. att om n=qm+r så gäller alltid $0 \le r < m$. Vad är motsvarande förhållande mellan delare och rest för division av polynom? (1 poäng)