1 Appendix

1.1 Curves and Genera

Lemma 1.1. Let X be a integral scheme proper over k then $K = H^0(X, \mathcal{O}_X)$ is a finite field extension of k and for any coherent \mathcal{O}_X -module \mathcal{F} , the cohomology $H^p(X, \mathcal{F})$ is a finite-dimensional $H^0(X, \mathcal{O}_X)$ -module.

Proof. Since \mathcal{O}_X is coherent, and X is proper over k so $K = H^0(X, \mathcal{O}_X)$ is a finite k-module. However, since X is integral $H^0(X, \mathcal{O}_X)$ is a domain but a finite k-algebra domain is a field and we see K/k is a finite extension of fields. Furthermore, the $\mathcal{O}_X(X)$ -module structure on $H^p(X, \mathcal{F})$ gives it a K-module structure. Since X is proper over k then $H^p(X, \mathcal{F})$ is a finite k-module and thus finite as a K-module. \square

Unfortunately, when k is not algebraically closed then we may not have $H^0(X, \mathcal{O}_X) = k$ even for smooth projective varieties. Therefore, some caution must be taken in defining numerical invariants of the curve such as genus. However, by [?, Tag 0BUG], whenever X is proper geometrically integral then indeed $H^0(X, \mathcal{O}_X) = k$. Furthermore, for proper X if $H^0(X, \mathcal{O}_X) \neq k$ then X cannot be geometrically connected by [?, Tag 0FD1].

Let C be a smooth proper curve over k with $H^0(C, \mathcal{O}_C) = K$. Then we define $g(C) := \dim_K H^0(X, \Omega_{C/k})$. If C is any curve over k then there is a unique smooth proper curve S over k which is k-birational to C. Then we define g(C) := g(S).

By definition, the genus of a curve is clearly a birational invariant since there is a unique smooth complete curve in every birational equivalence class of curves.

There is a slight subtlety in this definition in the case of a non-perfect base field. It it always true that we can find a proper regular curve C in each birational equivalence class however when k is non-perfect the curve C may not be smooth. However, under a finite purely separable extension K/k, we can ensure that C_K admits a smooth proper model. Then we define $g(C) := g(C_K)$ in the case that C_K is a curve. The only thing that can go wrong is when C is not geometrically irreducible since then C_K will not be integral.

The arithmetic genus $g_a(C)$ of a proper curve C over k with $H^0(C, \mathcal{O}_C) = K$ is,

$$g_a(C) := \dim_K H^1(X, \mathcal{O}_C)$$

By Serre duality, if C is smooth then $H^0(C, \Omega_C) = H^1(C, \mathcal{O}_X)^{\vee}$ meaning that $g_a(C) = g(C)$.

The arithmetic genus depends on the projective compactification and singularities meaning it will not be a birational invariant unlike the (geometric) genus.

Example 1.2. Let k = p(t) for an odd prime p = 2k + 1 and consider the curve,

$$C = k[x, y]/(y^2 - x^p - t)$$

which is regular but not smooth at $P = (y, x^p - t)$. Consider the purely inseperable extension $K =_p (t^{1/p})$. Then $C_K = K[x, y]/(y^2 - (x - t^{1/p})^p) \cong K[x, y]/(y^2 - x^p)$.

Taking the normalization of C_K gives ${}^1_K \to C_K$ via $t \mapsto (t^p, t^2)$. This is birational since the following ring map is an isomorphism,

$$(K[x,y]/(y^2-x^p))_x \to K[t]_t$$

sending $x \mapsto t^2$ and $y \mapsto t^p$ which has an inverse $t \mapsto y/x^k$ since $x \mapsto t^2 \mapsto y^2/x^{2k} = x$ and $y \mapsto t^p \mapsto y^p/x^{kp} = y(y^{2k}/x^{pk}) = y$ and $t \mapsto y/x^k \mapsto t^{p-2k} = t$.

Therefore, $C_K \mathbb{P}^1_K$ so $g(C) = g(C_K) = 0$. However, consider the projective closure,

$$\overline{C} = k[X, Y, Z]/(Y^2Z^{p-2} - X^p - tZ^p)$$

then $\overline{C} \hookrightarrow \mathbb{P}^2_k$ is a Cartier divisor (since \mathbb{P}^2_k is locally factorial) so we find that $H^0(\overline{C}, \mathcal{O}_{\overline{C}}) = k$ and $\dim_k H^1(\overline{C}, \mathcal{O}_{\overline{C}}) = \frac{1}{2}(p-1)(p-2) = k(2k-1)$ since its sheaf of ideals is $\mathcal{O}_{\mathbb{P}^2_k}(-p)$. Then p=3 we expect this to be an elliptic curve and we do see $g_a(\overline{C}) = 1$. However, $g(\overline{C}) = 0$ and correspondingly C is not smooth due to the positive characteristic phenomenon.

Lemma 1.3. Suppose that $f: X \to Y$ is a finite birational morphism of n-dimensional irreducible Noetherian schemes. Then $H^n(Y, \mathcal{O}_Y) \twoheadrightarrow H^n(X, \mathcal{O}_X)$ is surjective.

Proof. The map f must restrict on some open subset $U \subset X$ to an isomorphism $f|_U: U \to V$. Thus, the sheaf map $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ restricts on V to an isomorphism $\mathcal{O}_Y|_V \xrightarrow{\sim} (f_*\mathcal{O}_X)|_V$. We factor this map into two exact sequences,

$$0 \longrightarrow \longrightarrow \mathcal{O}_Y \longrightarrow \longrightarrow 0$$

$$0 \longrightarrow f_* \mathcal{O}_X \longrightarrow 0$$

with = ker $(\mathcal{O}_Y \to f_*\mathcal{O}_X)$ and = coker $(\mathcal{O}_Y \to f_*\mathcal{O}_X)$ and = Im $(\mathcal{O}_Y \to f_*\mathcal{O}_X)$. Taking cohomology and using that it vanishes in degree above n we get,

$$H^{n-1}(Y,) \longrightarrow H^n(Y,) \longrightarrow H^n(Y,\mathcal{O}_Y) \longrightarrow H^n(Y,) \longrightarrow 0$$

$$H^{n-1}(Y,) \longrightarrow H^n(Y,) \longrightarrow H^n(X,\mathcal{O}_X) \longrightarrow H^n(X,) \longrightarrow 0$$

where we have used that $f: X \to Y$ is affine to conclude that $H^p(Y, f_*\mathcal{F}) = H^p(Y, \mathcal{F})$ for any quasi-coherent \mathcal{O}_X -module \mathcal{F} . Furthermore, $|_V = 0$ so $\mathcal{O}_Y \subset X \setminus V$ but is coherent so the support is closed. Since V is dense open, is supported in positive codimension so $H^n(Y,) = 0$ (since $H^n(S,)$ vanishes due to dimension on the closed subscheme $S = \mathcal{O}_X$ on which is supported). Thus we have,

$$H^n(Y, \mathcal{O}_Y) \twoheadrightarrow H^n(Y,) \twoheadrightarrow H^n(Y,) \twoheadrightarrow H^n(X, \mathcal{O}_X)$$

proving the proposition.

Let S and C be proper curves over k where S is smooth which are birationally equivalent and $H^0(S, \mathcal{O}_S) \cong H^0(C, \mathcal{O}_C)$. Then the genera satisfy,

- 1. $g_a(C) \geq g_a(S)$
- 2. g(C) = g(S)
- 3. $g(C) \leq g_a(C)$ with equality if and only if C is smooth.

Proof. Given a birational map SC we can extend it to a birational morphism $S \to C$ since S is regular. The morphism $S \to C$ is automatically finite since it is a non-constant map of proper curves. Then the previous lemma implies that $g_a(S) \leq g_a(C)$. (b). follows from the definition of g(C). The third follows from the fact that $g(S) = g_a(S)$ because of Serre duality,

$$H^1(S, \mathcal{O}_S) \cong H^0(S, \Omega_{S/k})^{\vee}$$

using that S is smooth. Then we see that $g(C) = g(S) = g_a(S) \leq g_a(C)$ proving the inequality part of (c). Finally, if C is smooth we see by Serre duality that $g(C) = g_a(C)$. Conversely, suppose that $g(C) = g_a(C)$ then $g_a(C) = g(C) = g(S) = g_a(S)$ and consider the map $f: S \to C$ which is finite birational map of integral schemes over k. In particular, f is affine so for each $g \in C$ we may choose an affine open $g \in V \subset C$ whose preimage $g \in C \in C$ whose preimage $g \in C \in C$ which is also affine. On sheaves, this gives a map of domains $g \in C$ whose preimage $g \in C$ which localizes to an isomorphism on the fraction fields. However, the localization map of a domain is injective so $g \in C$ which we extend to an exact sequence,

$$0 \longrightarrow \mathcal{O}_C \longrightarrow f_*\mathcal{O}_S \longrightarrow 0$$

Note that $f: S \to C$ induces an isomorphism $H^0(C, \mathcal{O}_C) \xrightarrow{\sim} H^0(S, \mathcal{O}_S)$ since it is a map of fields with the same (finite) dimension over k. Then the long exact sequence of cohomology gives,

$$0 \to H^0(C, \mathcal{O}_C) \xrightarrow{\sim} H^0(S, \mathcal{O}_S) \to H^0(X,) \to H^1(C, \mathcal{O}_C) \xrightarrow{\sim} H^1(S, \mathcal{O}_S) \to H^1(S,) = 0$$

I claim that $H^1(S,)=0$. Since f is birational, is supported in codimension one. Thus, the map $H^1(C,\mathcal{O}_C) \to H^1(S,\mathcal{O}_S)$ is surjective but $g_a(C)=g_a(S)$ so these vectorspaces have the same dimension so $H^1(C,\mathcal{O}_C) \xrightarrow{\sim} H^1(S,\mathcal{O}_S)$ is an isomorphism. Thus, from the exact sequence we have $H^0(X,)=0$. However, \mathcal{O}_C is a closed (is coherent) dimension zero subset i.e. finitely many discrete closed points. However, a sheaf supported on a discrete set of points is zero iff it has no global sections. Therefore, =0 so $\mathcal{O}_C \xrightarrow{\sim} f_*\mathcal{O}_S$. In particular $\mathcal{O}_C(V) \xrightarrow{\sim} \mathcal{O}_S(U)$ is an isomorphism which implies that the map of affine schemes $f|_U:U\to V$ is an isomorphism. Since the affine opens V cover C we see that $f:S\to C$ is an isomorphism. In particular, C is smooth.

1.2 The Locus on Which Morphisms Agree

Lemma 1.4. Let $(R, \mathfrak{m}, \kappa)$ be a local ring. Then for schemes X there is a natural bijection,

$$\operatorname{Hom}(R,X)\cong\{x\in X\text{ and local map }\mathcal{O}_{X,x}\to R\}$$

Proof. Given $R \to X$ we automatically get $\mathfrak{m} \mapsto x$ and $\mathcal{O}_{X,x} \to R_{\mathfrak{m}} = R$. Now, note that taking any affine open neighborhood $x \in A \subset X$ and then $A \to A_{=}\mathcal{O}_{X,x}$ to give $\mathcal{O}_{X,x} \to A \to X$. Clearly, this map sends $\mathfrak{m}_x \mapsto x$ and at \mathfrak{m}_x has stalk map id: $\mathcal{O}_{X,x} \to \mathcal{O}_{X,x}$ since it is the localization at of $A \to A$.

Thus we get an inverse as follows. Given a point $x \in X$ and a local map $\phi : \mathcal{O}_{X,x} \to R$ then take,

$$R \to \mathcal{O}_{X,x} \to X$$

This is inverse since $\mathfrak{m} \mapsto \mathfrak{m}_x$ (because $\mathcal{O}_{X,x} \to \mathfrak{m}_x$ is local) and $\mathfrak{m}_x \mapsto x$ and the stalk at \mathfrak{m} gives $\mathcal{O}_{X,x} \stackrel{\mathrm{id}}{\to} \mathcal{O}_{X,x} \stackrel{\phi}{\to} R$.

Finally, I claim that any $f: R \to X$ factors through $R \to \mathcal{O}_{X,x} \to X$ and thus is reconstructed from $x \in X$ and $\mathcal{O}_{X,x} \to R$. Choose an affine open neighborhood $x \in A \subset X$ then consider $f^{-1}(A)$ which is open in R and contains the unique closed point $\mathfrak{m} \in R$ so there is some $f \in R$ s.t. $\mathfrak{m} \in D(f) \subset f^{-1}(A)$ so $f \notin \mathfrak{m}$ so $f \in R^{\times}$ and thus D(f) = R. Therefore, we get a map $R \to A$ and thus $\phi: A \to R$ where $\phi^{-1}(\mathfrak{m}) == x$ so $A \setminus B$ is mapped inside $B \setminus B$ so this map factors through $A \to A \setminus B$ giving the desired factorization $A \to \mathcal{O}_{X,x} \to A \to X$.

Definition: The locus Z on which two maps $f, g: X \to Y$ over S agree is given as the pullback,

$$Z \xrightarrow{Y} \downarrow \qquad \qquad \downarrow^{\Delta_Y} \downarrow \qquad \qquad \downarrow^{\Delta_Y} \downarrow \qquad \qquad X \xrightarrow{F} Y \times_S Y$$

with F = (f, g). This is the equalizer of $f, g : X \to Y$. Furthermore $Z \to X$ is an immersion since it is the base change of $\Delta_{Y/S}$ which is an immersion.

Lemma 1.5. Topologically, the locus on which S-morphisms $f, g: X \to Y$ agree is,

$$Z = \{x \in X \mid f(x) = g(x) \text{ and } f_x = g_x : \kappa(f(x)) \to \kappa(x)\}$$

Proof. On some S-subscheme $G \subset X$, the maps $f|_G = g|_G$ agree iff there exists $G \to Y$ such that,

$$G \xrightarrow{F} Y \times_{S} Y$$

$$\downarrow^{\Delta}$$

$$X \xrightarrow{F} Y \times_{S} Y$$

commutes. In particular, for any point $x \in X$ consider $\iota : \kappa(x) \to X$ then $f \circ \iota = g \circ \iota$ iff f(x) = g(x) and $f_x = g_x : \kappa(f(x)) \to \kappa(x)$. Consider a point $z \in Z$ and $\kappa(z) \to Z$, such a point is equivalent to giving a diagram,

However, $\iota: Z \to X$ is an immersion so $\iota_x: \kappa(\iota(x)) \xrightarrow{\sim} \kappa(x)$ is an isomorphism. Therefore, points $\kappa(z) \to Z$, are exactly points of X for which a lift $\kappa(x) \to Y$ exists i.e. points such that f and g agree in the required way.

Lemma 1.6. If $f: X \to Y$ is an immersion then $f_x: \mathcal{O}_{Y,f(x)} \twoheadrightarrow \mathcal{O}_{X,x}$ is surjective for each $x \in X$ and $f_x: \kappa(f(x)) \xrightarrow{\sim} \kappa(x)$ is an isomorphism.

Proof. For closed immersions, $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ is surjective by definition. Thus we get a surjection $f_{x}: \mathcal{O}_{Y,y} \to (f_{*}\mathcal{O}_{X})_{f(x)}$. Furthermore, topologically, $f: X \to Y$ is a homomorphism onto its image so for any open $U \subset X$ there exists an open $V \subset Y$ s.t. $U = f^{-1}(V)$ showing that,

$$(f_*\mathcal{O}_X)_{f(x)} = \varinjlim_{f(x) \in V} \mathcal{O}_X(f^{-1}(V)) = \varinjlim_{x \in U} \mathcal{O}_X(U) = \mathcal{O}_{X,x}$$

Furthermore, for an open immersion, $f^{\flat}: f^{-1}\mathcal{O}_Y \to f_*\mathcal{O}_X$ is an isomorphism so $\mathcal{O}_{Y,y} \to \mathcal{O}_{X,x}$ is an isomorphism. Thus the composition, $f_x: \mathcal{O}_{Y,f(x)} \twoheadrightarrow \mathcal{O}_{X,x}$ is surjective. Furthermore, f_x is local we get $f_x: \kappa(f(x)) \twoheadrightarrow \kappa(x)$ which is a surjection of fields and thus an isomorphism.

Lemma 1.7. If $Y \to S$ is separated then the locus on which $f, g: X \to Y$ over S agree is closed.

Proof. Since $X \to S$ is separated, $\Delta_{Y/S} : Y \to Y \times_S Y$ is a closed immersion. So $Z \to X$ is the base change of a closed immersion and thus a closed immersion. \square

Lemma 1.8. Let X be a reduced and Y be a separated scheme over S and $f,g:X\to Y$ be morphism over S. If $f\circ j=g\circ j$ agree on a dense subscheme $j:G\hookrightarrow X$ then f=g.

Proof. Consider $F = (f, g) : X \to Y \times_S Y$. Since $\Delta : Y \to Y \times_S Y$ is a closed immersion (by separateness). Then $F^{-1}(\Delta)$ is the locus on which f = g which is closed because $\Delta : Y \to Y \times_S Y$ is a closed immersion. Since $f|_G = g|_G$ we get a diagram,

Since $\iota: Z \hookrightarrow X$ is a closed immersion with dense image, $Z \hookrightarrow X$ is surjective. By the following, $\iota: Z \to X$ is an isomorphism. Thus, $F = F \circ \iota \circ \iota^{-1} = \Delta_Y \circ \tilde{F} \circ \iota^{-1}$. By the universal property of maps $X \to Y \times_S Y$ this implies that $f = g = \tilde{F} \circ \iota^{-1}$.

Lemma 1.9. Let X be a scheme and consider an exact sequence of quasi-coherent \mathcal{O}_X -modules,

$$0 \longrightarrow \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{A} \longrightarrow 0$$

and \mathcal{A} is a sheaf of \mathcal{O}_X -algebra. Suppose that $\mathcal{F}_x \neq 0$ for each $x \in X$. Then $\hookrightarrow \mathcal{N}$ where \mathcal{N} is the sheaf of nilpotent.

Proof. Take an affine open $U = R \subset X$ such that $\mathcal{A}|_U = A$. Then we have an surjection of rings $R \to A$ giving R/I = A for $I = \ker(R \to A)$. Now, for each $\in R$ we know $R = \mathcal{O}_X$, $\neq 0$. However, if $\not\supset I$ then (R/I) = A = 0 so we must have $\supset I$ for all $\in R$ i.e. $I \subset R$. Therefore, $|_U \hookrightarrow \mathcal{N}|_U$ for any affine open $U \subset X$ showing that is comprised of nilpotents.

Corollary 1.10. If X is reduced and $\iota: Z \hookrightarrow X$ is a surjective closed immersion then $\iota: Z \xrightarrow{\sim} X$ is an isomorphism.

Proof. Since $\iota: Z \hookrightarrow X$ is a homeomorphism onto its image X it suffices to show that the map of sheaves $\iota^{\#}: \mathcal{O}_{X} \to \iota_{*}\mathcal{O}_{Z}$ is an isomorphism. Since $\iota: Z \to X$ is a closed immersion $\iota^{\#}: \mathcal{O}_{X} \twoheadrightarrow \iota_{*}\mathcal{O}_{Z}$ is a surjection and \mathcal{O}_{Z} is a quasi-coherent sheaf of \mathcal{O}_{X} -algebras giving an exact sequence,

$$0 \longrightarrow \longrightarrow \mathcal{O}_X \longrightarrow \iota_* \mathcal{O}_Z \longrightarrow 0$$

Furthermore,

$$\mathcal{O}_X \iota_* \mathcal{O}_Z = \operatorname{Im}(\iota) = X$$

since $(\iota_*\mathcal{O}_Z)_x = \mathcal{O}_{Z,x}$ when $x \in \text{Im}(\iota)$ (and zero elsewhere). by the above, $\hookrightarrow \mathcal{N} = 0$ since X is reduced to $\iota^\# : \mathcal{O}_X \to \iota_*\mathcal{O}_Z$ is an isomorphism.

Lemma 1.11. A rational S-map f: XY with X reduced and $Y \to S$ separated is equivalent to a morphism $f: f \to Y$.

Proof. For any (U, f_U) and (V, f_V) representing f there must be a dense (in X) open $W \subset U \cap V$ on which $f_U|_W = f_V|_W$ and thus $f_U|_{U \cap V} = f_V|_{U \cap V}$ since $f_U, f_V : U \cap V \to Y$ are morphisms from reduced to irreducible schemes. Now f has an open cover (U_i, f_i) for which $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ so these morphisms glue to give $f: f \to Y$ (Hom_S (-, Y) is a sheaf on the Zariski site).

1.3 Extending Rational Maps

Lemma 1.12. Regular local rings of dimension 1 exactly correspond to DVRs.

Proof. Any DVR R has a uniformizer $\varpi \in R$ then dim R = 1 and $\mathfrak{m}/\mathfrak{m}^2 = (\varpi)/(\varpi^2) = \varpi \kappa$ which also has $\dim_{\kappa}(\mathfrak{m}/\mathfrak{m}^2) = 1$ so R is regular. Conversely, if R is a regular local ring of dimension dim R = 1 then, by regularity, R is a normal Noetherian domain so by dim R = 1 then R is Dedekind but also local and thus is a DVR.

Proposition 1.13. Let X be a Noetherian S-scheme and $Z \subset X$ a closed irreducible codimension 1 generically nonsingular subset (with generic point $\eta \in Z$ such that $\mathcal{O}_{X,\eta}$ is regular). Let f: XY be a rational map with Y proper over S. Then $Z \cap f$ is a dense open of Z.

Proof. Choose some representative (U, f_U) for f: XY. Note that $\mathcal{O}_{X,\eta}$ is a regular dimension one (see Lemma 1.16) ring and thus a DVR. Consider the generic point $\xi \in X$ of X then, by localizing, we get an inclusion of the generic point $\mathcal{O}_{X,\xi} \to \mathcal{O}_{X,\eta} \to X$ and $\mathcal{O}_{X,\xi} = K(X) = \mathcal{O}_{X,\eta}$. Furthermore, the inclusion of the generic point gives $K(X) \to U \xrightarrow{f_U} Y$ and thus we get a diagram,

and a lift $\mathcal{O}_{X,\eta} \to Y$ by the valuative criterion for properness applied to $Y \to k$ since $\mathcal{O}_{X,\eta}$ is a DVR. Choose an affine open $R \subset Y$ containing the image of $\mathcal{O}_{X,\eta} \to Y$ (i.e. choose a neighborhood of the image of η which automatically contains $f(\xi)$ since the map factors $\mathcal{O}_{X,\eta} \to \mathcal{O}_{Y,f(\eta)} \to R \to Y$) and let $\eta \in V = A \subset X$ be an affine open neighborhood of ξ mapping onto R. By Lemma 1.20, since $\mathcal{O}_{X,\eta}$ is a domain, we may shrink V so that A is a domain. Since X is irreducible $U \cap V$ is a dense open. Note that if $\eta \in U$ then $\eta \in f$ and thus $Z \cap f$ is a nonempty open of the irreducible space Z and therefore a dense open so we are done. Otherwise, let $\in A$ correspond to $\eta \in Z$ then $A=\mathcal{O}_{X,\eta}$ is a DVR. Take some principal affine open $D(f) \subset U \cap V$ for $f \in A$ so $f \in \text{since} \notin D(f) \subset U \cap V$. Since A is a DVR we may choose a uniformizer $\varpi \in \text{so the map } A \to \text{via } 1 \mapsto \varpi \text{ is as isomorphism when localized at } . Since A is$ Noetherian both are f.g. A-modules so there must be some $s \in A \setminus \text{such that } A_s \to_s$ is an isomorphism. Replacing A by A_s we may assume $=(\varpi)\subset A$ is principal. Since $f \in \text{we can write } f = t \varpi^k \text{ for some } a \in A \setminus (\text{see Lemma 1.14}). \text{ Then consider } V = A_t.$ Since $t \notin \text{then } \eta \in \tilde{V}$ and since $f = t\varpi^k$ we have $D(f) \subset D(t) = \tilde{V}$. Now we get the following diagram,

I claim the square is a pushout in the category of affine schemes because maps $R \to A$ and $R \to A_f$ which agree under the inclusion to A gives a map $R \to A_{\cap}A_f \subset A$. However, consider,

$$x \in A_{\cap}A_t \implies x = \frac{u\varpi^r}{s} = \frac{a}{f^n}$$

for $u, s, t \in A \setminus \text{ and } a \in A$. Thus we get,

$$ut^n \varpi^{r+nk} = sa$$

so $a \in r^{+nk} \setminus r^{+nk+1}$ ($s \notin$ which is prime) and thus $a = u'\varpi^{r+nk}$ for $u' \in A \setminus r$. Therefore,

$$x = \frac{u'\varpi^{r+nk}}{t^n\varpi^{nk}} = \frac{u'\varpi^r}{t^n} \in A_t$$

Thus, $A \cap A_f \subset A_f$ so we get a map $R \to A_t$. Therefore we get a map $f_{\tilde{V}} : \tilde{V} \to Y$ such that $(f|_{\tilde{V}})|_{D(f)} = (f_U)|_{D(f)}$ which implies that $\eta \in \tilde{V} \subset f$ so $Z \cap f$ is a dense open of Z.

Let $C \to S$ be a proper regular Noetherian scheme with dim C = 1 and f : CY a rational S-map with $Y \to S$ proper. Then f extends uniquely to a morphism $f : C \to Y$.

Proof. For any point $x \notin f$ let $Z = \overline{\{x\}} \subset D$ for $D = C \setminus f$. Since f is a dense open, by lemma 1.15, we have $Z, C \geq D, C \geq 1$ but dim C = 1 so Z, C = 1. Furthermore, since C is regular $\mathcal{O}_{C,x}$ is regular and thus, by the previous proposition, $Z \cap f$ is a dense open and in particular $x \in f$ meaning that f = C so we get a morphism $C \to Y$. This is unique because C is reduced (it is regular) and Y is separated (it is proper over S) so morphisms $C \to Y$ are uniquely determined on a dense open which any representative for f : CY is defined on.

Rational maps between normal proper curves are morphisms.

Birational maps between normal proper curves are isomorphisms.

Proof. Let $f: C_1C_2$ and $g: C_2C_1$ be birational inverses of smooth proper curves. Then we know that these extend to morphisms $f: C_1 \to C_2$ and $g: C_2 \to C_1$. Furthermore, the maps $g \circ f: C_1 \to C_1$ must extend the identity on some dense open. However, since curves are separated and reduced there is a unique extension of this map so $g \circ f = \mathrm{id}_{C_1}$ and likewise $f \circ g = \mathrm{id}_{C_2}$.

If k is perfect then there exists a unique normal curve in each birational equivalence class of curves.

Proof. It suffices to show existence. Given a curve X, we consider the projective closure $X \hookrightarrow \overline{X}$ which is birational and $\overline{X} \to k$ is proper. Then take the normalization $\overline{X}^{\nu} \to \overline{X}$ which remains proper over k and is birational. Then \overline{X}^{ν} is regular and thus smooth over k since k is perfect and $\overline{X}^{\nu} \to X$ is birational.

1.4 Lemmas

Lemma 1.14. Let A be a Noetherian domain and $=(\varpi)$ a principal prime. Then any $f \in \text{can be written as } f = t\varpi^k \text{ for } f \in A \setminus$.

Proof. From Krull intersection,

$$\bigcap_{n>0}^{\infty} {}^{n} = (0)$$

so there is some n such that $f \in {}^{n} \setminus {}^{n+1}$. Thus $f = t\varpi^{n}$ for some $f \in A$ but if $t \in then$ $f \in {}^{n+1}$ so the result follows.

Lemma 1.15. Consider a closed subset $Y \subset X$ and an open $U \subset X$ with $U \cap Z \neq \emptyset$. Then $Y, X = Y \cap U, U$.

Proof. Consider a chain of irreducible $Z_i \supseteq Z_{i+1}$ with $Z_0 \subset Y$. I claim that $Z_i \mapsto Z_i \cap U$ and $Z_i \mapsto \overline{Z_i}$ are inverse functions giving a bijection between closed irreducible chains in X with final terms contained in Y and closed irreducible chains in U with final term contained in $Y \cap U$. Note, if $Z_i \subset Y \cap U$ then $\overline{Z_i} \subset Y$ since Y is closed in X.

First, $\overline{Z_i \cap U} \subset Z_i$ and is closed in X. Then $\overline{Z_i \cap U} \cup U^C \supset Z_i$ so because Z_i is irreducible $\overline{Z_i \cap U} = Z_i$ since by assumption $Z_i \not\subset U^C$. Conversely, if $Z_i \subset U$ is a closed irreducible subset then $\overline{Z_i}$ is closed and irreducible in X and $Z_i \subset \overline{Z_i} \cap U$ but $Z_i = C \cap U$ for closed $C \subset X$ so $Z_i \subset C$ and thus $\overline{Z_i} \subset C$ so $\overline{Z_i} \cap U \subset C \cap U = Z_i$ meaning $Z_i = \overline{Z_i} \cap U$. Thus we have shown these operations are inverse to each other.

Finally, if $Z_i \cap U - Z_{i+1} \cap U$ then $\overline{Z_i \cap U} = \overline{Z_i \cap U}$ so $Z_i = Z_{i+1}$ so the chain does not degenerate. Likewise, if $\overline{Z_i} = \overline{Z_{i+1}}$ then $\overline{Z_i} \cap U = \overline{Z_{i+1}} \cap U$ so $Z_i = Z_{i+1}$. Therefore, we get a length-preserving bijection between the chains defining Y, X and $Y \cap U, U$. \square

Lemma 1.16. Let $Z \subset X$ be a closed irreducible subset with generic point $\eta \in Z$. Then $Z, X = \dim \mathcal{O}_{X,\eta}$.

Proof. Take affine open neighborhood $\eta \in U = A \subset X$. Then for $\in A$ corresponding to η we get $A = \mathcal{O}_{X,\eta}$. However, $Z, X = Z \cap U, U$ and $Z \cap U = \overline{\{\}} = V()$. Therefore,

$$Z, X = Z \cap U, U = = \dim A = \dim \mathcal{O}_{X,\eta}$$

Lemma 1.17. Let X be a Noetherian scheme then the nonreduced locus,

$$Z = \{ x \in X \mid \mathcal{O}_{X,x} \neq 0 \}$$

is closed.

Proof. The subsheaf $\mathcal{N} \subset \mathcal{O}_X$ is coherent since X is Noetherian. Thus $Z = \mathcal{O}_X \mathcal{N}$ is closed and $\mathcal{N}_x = \mathcal{O}_X x$. Locally, on U = A we have $\mathcal{N}|_U = A$ and A is a f.g. A-module since A is Noetherian so,

$$\mathcal{O}_X \mathcal{N} \cap U = AA = V(AA)$$

is closed in A.

Lemma 1.18. Let X be a Noetherian scheme then X has finitely many irreducible components.

Proof. First let X = A for a Noetherian ring A. Then the irreducible components of A correspond to minimal primes $\in A$. Then dim A = 0 and A is Noetherian so A is Artinian. A must have some associated prime so $AA = \{A_{\}}$. By [?, Tag 05BZ], then $AA \cap = = \{\}$ so every minimal prime is an associated prime. However, for A Noetherian then A admits a finite composition series so there are finitely many associated primes.

Now let X be a Noetherian scheme. For any affine open $U \subset X$ we have shown that U has finitely many irreducible components. However, since X is quasi-compact there is a finite cover of affine opens and thus X must have finitely many irreducible components.

Lemma 1.19. Let X be a Noetherian scheme and Y is the complement of some dense open U. Then $Y, X \ge 1$.

Proof. It suffices to show that Y does not contain any irreducible component since then any irreducible contained in Y cannot be maximal. Since X is Noetherian, it has finitely many irreducible components Z_i . Then if $Z_j \subset Y$ for some i we would have $Z_i \cap U = \emptyset$ but then,

$$U = \bigcup_{i \neq j} Z_i$$

which is closed so $\overline{U} \subsetneq X$ contradicting our assumption that U is dense. \square

Lemma 1.20. Let X be a Noetherian scheme and $x \in X$ such that $\mathcal{O}_{X,x}$ is a domain. Then there is an affine open neighborhood $x \in U \subset X$ with U = A and A is a domain.

Proof. Take any affine open neighborhood $x \in U \subset X$ with U = A and $\in A$ corresponding to x. Then $A = \mathcal{O}_{X,x}$ is a domain. Since X is Noetherian then A is Noetherian so it has finitely many minimal primes i (corresponding to the generic points of irreducible components of U) with $0 \subset \mathbb{N}$ is a domain, it has a unique minimal prime and thus 0 is the only minimal prime contained in (geometrically A being a

domain corresponds to the fact that is the generic point of a generically reduced irreducible subset which lies in only one irreducible component)

Now for any $i \neq 0$ take $f_i \in \setminus_0$. This is always possible else \subset_0 contradicting the minimality of $_0$. If $f \notin \text{then } \not\supset_i$ for any $i \neq 0$ so \supset_0 since it must lie above some minimal prime. Thus $A_f =_0 A_f$ is prime and $f \notin \text{since else } \supset_1 \cap \cdots \cap_n$ which is impossible since $\not\supset_i$ for any i. Now we know that A = 0 and A_f is Noetherian so A is finitely generated. Thus, there is some $g \notin \text{such that } A_{fg} = (A_f)_g = 0$. Thus A_{fg} is a domain since $A_{fg} = (0)$ and is prime and $\in A_{fg}$ because $fg \notin \text{.}$ Therefore, $x \in A_{fg} \subset U$ is an affine open satisfying the requirements.

This does not imply that X is integral if $\mathcal{O}_{X,x}$ is a domain for each $x \in X$ (which is false, consider $k \times k$) because it only shows there is an integral cover of X not that $\mathcal{O}_X(U)$ is a domain for each U.

Example 1.21. Let $X = k[x,y]/(xy,y^2)$. Then for the bad point = (x,y) we have $\mathcal{O}_{X,} = (y)$. Away from the bad point, say = (x-1,y) we have, $\mathcal{O}_{X,} = k[x]_{(x-1)}$ so $\mathcal{O}_{X,} = (0)$. Furthermore, at the generic point = (y), we have, $\mathcal{O}_{X,} = k(x)$ so $\mathcal{O}_{X,} = (0)$.

Example 1.22. Consider X = k[x, y, z]/(yz) which is the union of the x-y and x-z planes. Consider the generic point of the z-axis = (x, y) then $\mathcal{O}_{X,} = k[x, z]_{(x)}$ is a domain since the z-axis only lies in one irreducible component. However, at the generic point of the x-axis, = (y, z) we get $\mathcal{O}_{X,} = (k[x, y, z]/(yz))_{(y,z)}$ has zero divisors yz = 0 so is not a domain since the x-axis lives in two irreducible components.

1.5 Reflexive Sheaves (WIP)

Recall the dual of a \mathcal{O}_X module \mathcal{F} is the sheaf $\mathcal{F}^{\vee} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$. We say that a coherent \mathcal{O}_X -module \mathcal{F} is reflexive if the natural map $\mathcal{F} \to \mathcal{F}^{\vee\vee}$ is an isomorphism.

Lemma 1.23. Let X be an integral locally Noetherian scheme and \mathcal{F}, \mathcal{G} be coherent \mathcal{O}_X -modules. If \mathcal{G} is reflexive then $\mathscr{H}_{om_{\mathcal{O}_X}}(\mathcal{F}, \mathcal{G})$ is reflexive.

Proof. See [?, Tag
$$0$$
AY4].

In particular, since \mathcal{O}_X is clearly reflexive, this lemma shows that for any coherent \mathcal{O}_X -module then \mathcal{F}^{\vee} is a reflexive coherent sheaf. We say the map $\mathcal{F} \to \mathcal{F}^{\vee\vee}$ gives the reflexive hull $\mathcal{F}^{\vee\vee}$ of \mathcal{F} .

Let \mathcal{R} be the full subcategory \mathcal{O}_X of coherent reflexive \mathcal{O}_X -modules. \mathcal{R} is an additive category and in fact has all kernels and cokernels defined by taking reflexive hulls of the sheaf kernel and cokernel. Furthermore, \mathcal{R} inherits a monoidal structure from the tensor product defined using the reflexive hull as follows,

$$\mathcal{F} \otimes_{\mathcal{R}} \mathcal{G} = (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})^{\vee \vee}$$

Finally, we define RPic (X) to be group of constant rank one reflexives induced by the monoidal structure on \mathcal{R} . Explicitly, RPic (X) is the group of isomorphism classes of constant rank one reflexive coherent \mathcal{O}_X -modules with multiplication $(\mathcal{F}, \mathcal{G}) \mapsto (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})^{\vee\vee}$ and inverse $\mathcal{F} \mapsto \mathcal{F}^{\vee}$.

The importance of reflexive sheaves derives from their correspondence to Weil divisors. Here we let X be a normal integral separated Noetherian scheme.

If D is a Weil divisor then $\mathcal{O}_X(D)$ is reflexive of constant rank one.

Proof. (CITE OR DO).
$$\Box$$

Theorem 1.24. Let X be a normal integral separated Noetherian scheme. There is an isomorphism of groups $C\ell X \xrightarrow{\sim} RPic(X)$ defined by $D \mapsto \mathcal{O}_X(D)$.

Proof. (DO OR CITE)
$$\Box$$

We summarize the important results as follows.

Theorem 1.25. Let X be a Noetherian normal integral scheme. Then for any Weil divisors D, E,

1.
$$\mathcal{O}_X(D+E) = (\mathcal{O}_X(D) \otimes_{\mathcal{O}_X} \mathcal{O}_X(E))^{\vee\vee}$$

2.
$$\mathcal{O}_X(-D) = \mathcal{O}_X(D)^{\vee}$$

3.
$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X(D), \mathcal{O}_X(E)) = \mathcal{O}_X(E-D)$$

4. if E is Cartier then $\mathcal{O}_X(D+E) = \mathcal{O}_X(D) \otimes_{\mathcal{O}_X} \mathcal{O}_X(E)$

$$Proof.$$
 (DO OR CITE)

Finally, we have a result which controls when the dualizing sheaf can be expressed in terms of a divisor. Let X be a projective variety over k. Then,

- 1. if X is normal then its dualizing sheaf ω_X is reflexive of rank 1 and thus X admits a canonical divisor K_X s.t. $\omega_X = \mathcal{O}_X(K_X)$
- 2. if X is Gorenstein then ω_X is an invertible module so K_X is Cartier.

Proof. (FIND CITATION OR DO).
$$\Box$$