1. Умножение матрицы на вектор

	Количество потоков														
	1		2		4		7		8		16		20		10
M=N	T1	T2	S2	T4	S4	T7	S7	T8	S8	T16	S16	T20	S20	T40	S40
20000	1,97	1,00	1,97	0,65	3,03	0,30	6,57	0,26	7,58	0,15	13,49	0,14	14,07	0,14	14,07
40000	7,88	4,12	1,91	2,15	3,67	1,31	6,02	1,06	7,43	0,57	13,82	0,48	16,42	0,27	29,19

На графиках красным указан

При увеличении числа потоков коэффициент ускорения сначала растет почти линейно, но затем его рост замедляется. Это связано с ростом накладных расходов:

- 1. создание и управление потоками;
- 2. синхронизацию доступа к общей памяти;
- 3. обмен данными между потоками.

Эти расходы начинают доминировать при большом количестве потоков, снижая эффективность. Так же при фиксированном размере задачи и увеличении числа потоков на каждый поток приходится все меньше работы. Если объем вычислений на поток слишком мал, накладные расходы на переключение потоков могут превысить выигрыш от параллелизации.

2. Численное интегрирование

	Количество потоков														
	1	1 2		4		7		8		16		20		40	
nsteps	T1	T2	S2	T4	S4	T7	S7	T8	S8	T16	S16	T20	S20	T40	S40
40000000	0,47	0,24	1,96	0,13	3,62	0,08	5,88	0,06	7,83	0,04	11,75	0,03	15,67	0,02	23,50

При увеличении числа потоков коэффициент ускорения сначала растет почти линейно, но затем его рост замедляется. Это связано с ростом накладных расходов:

- 1. создание и управление потоками;
- 2. синхронизацию доступа к общей памяти;
- 3. обмен данными между потоками.

Эти расходы начинают доминировать при большом количестве потоков, снижая эффективность. Так же при фиксированном размере задачи и увеличении числа потоков на каждый поток приходится все меньше работы. Если объем вычислений на поток слишком мал, накладные расходы на переключение потоков могут превысить выигрыш от параллелизации.

3. Итерационный метод

	Количество потоков														
	1 2		4			7		8		16		20		40	
	T1	T2	S2	T4	S4	T7	S7	T8	S8	T16	S16	T20	S20	T40	S40
1															
вариант	44,34	25,47	1,74	13,64	3,25	8,19	5,41	7,27	6,10	4,94	8,98	4,07	10,89	3,41	13,00
2															
вариант	44,16	24,03	1,84	12,30	3,59	7,14	6,18	6,27	7,04	3,90	11,32	3,10	14,25	3,30	13,38

При увеличении числа потоков коэффициент ускорения сначала растет почти линейно, но затем его рост замедляется. Это связано с ростом накладных расходов:

- 1. создание и управление потоками;
- 2. синхронизацию доступа к общей памяти;
- 3. обмен данными между потоками.

Эти расходы начинают доминировать при большом количестве потоков, снижая эффективность. Так же при фиксированном размере задачи и увеличении числа потоков на каждый поток приходится все меньше работы. Если объем вычислений на поток слишком мал, накладные расходы на переключение потоков могут превысить выигрыш от параллелизации.

Исходя из замеров времени и коэффициентов ускорения, можно сделать вывод, что второй вариант реализации задачи, предполагающий создание одной параллельной секции **#pragma omp parallel**, охватывающей весь итерационный алгоритм, выгоднее с точки зрение производительности, чем создание отдельных параллельных секций **#pragma omp parallel for**.

Скорее всего, это связано с тем, что каждый **#pragma omp parallel for** создает и завершает новый параллельный регион. Это приводит к частому запуску и остановке потоков, что вносит дополнительную нагрузку. В то время как **#pragma omp parallel** создает один параллельный регион, в рамках которого потоки переиспользуются на протяжении всего выполнения блока.

4. Schedule

schedule_type	time	
static		13,35
dynamic		13,41
guided		13,39

Замеры приведены для chunk_size = 1250. Эффективнее всего оказался static.