حل سوالات كوييز دوم

_ 1

For convolution:

Output size =
$$\frac{\text{Input size-Filter size} + 2 \times \text{Padding}}{\text{Stride}} + 1$$

For pooling:

Output size =
$$\frac{\text{Input size-Pooling size}}{\text{Stride}} + 1$$

Convolutional layer parameters:

 $Parameters = (Filter\ size \times Filter\ size \times Input\ depth + 1) \times Number\ of\ filters$

Fc layer parameters:

If you have a Flatten layer followed by an FC layer with N neurons, and the flattened input has size M, then the number of parameters (P) in the FC layer is given by:

$$P = M \times N + N$$

Layers	Activation volume dimensions	Number of parameters
Input	32*32*3	0
Conv3-8	32*32*8	(3*3*3+1)*8
Leaky Relu	32*32*8	0
Pool-2	16*16*8	0
BatchNorm	16*16*8	2(α,β)*8
Conv3-16	16*16*16	(3*3*8+1)*16
Leaky Relu	16*16*16	0

Pool-2	8*8*16	0
Flatten	1024	0
FC-10	10	1024*10+10

_ ۲

$$u_i = \tanh(x)$$

 $v_j = sigmoid(u_i w_{ij})$

$$\frac{\partial v_j}{\partial u_i} = v_j w_{ij} (1 - v_j)$$

$$\dot{\partial}(x) = \partial(x)(1 - \partial(x))$$