Terminology in ontologies and other lexicographic resources

Dra. Guadalupe Aguado de Cea

lupe@fi.upm.es

http://www.oeg-upm.net
Ontological Engineering Group
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

Outline

- What is terminology?
- Terminology in scientific domains
- Approaches in terminology
- Object of study and working methods in terminology
- The insights of terminology
- Concepts and their relations
- Terms and their formation
- Linguistic resources and ontologies
- Reusing non ontological resources
- Final remarks

What is terminology?

The term terminology is polysemic:

- As a product: set of terms from a given subject field.
- As a discipline: set of fundamental principles and conceptual bases that govern the study of specialized terms, their description, analysis and relations.
- As a practice: set of principles oriented towards term compilation

Terminology in technical & scientific domains

- No professional communication can exist without terminology
- No knowledge transfer can exist without terminology
- Without terminology there is not
 - -Intelectual and material development
 - -Professional research and training
- As a consequence,
 - -no further development would take place
 - A country would isolate from the rest of developed countries

(Picht, 1979)

Terminology: interdisciplinary subject field

Theoretical and descriptive goals of terminology

- Concepts
- Terms
- Relation between terms and concepts
- Definitions (not included in this lesson)

Semantic triangle by Ogden & Richards

The object of study of terminology

Definition of a concept

- In general: Unit of knowledge created by a unique combination of characteristics. ISO 1087-1 (2000)
- In terminology: Concepts shall be considered mental representation of objects within a specialized context or field ISO/DIS 704 (2006)
- BUT concepts are influenced by social and cultural circumstances given at a certain moment
 - -SO this can lead to different classifications in the conceptual system
- Concepts can be seen as:
 - Units of **thought**: represent and recognize the object mentally
 - Units of **knowledge**: represent knowledge in each subject field
 - Units of communication: transmit knowledge by means of linguistic symbols

Description of a concept

• Concepts are described according to their common features, properties or characteristics, either by intension or extension

Intension

- Set of characteristics which makes up the concept (ISO 1087-1: 2000)
- The bigger the number of common characteristics, the more restricted is the intension.
- The intension of the concept winter in polar countries includes: low temperatures, ice, wind, snow, etc.

Extension

- Totality of objects to which a concept corresponds (ISO 1087-1: 2000)
- A general concept has a wide extension as it includes two or more objects by reason of common properties.
- The extension of the concept planet includes: *Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.*

Characteristics of a concept

- "Abstraction of a property of an object or of a set of objects" (ISO 1087-1:2000)
- According to the importance in forming a concept
 - essential: indispensable to understand and distinguish a concept
 - The back of a seat distinguishes a stool and a chair.
 - complementary: colour, material, shape, ...

- According to the relation with the object represented
 - **intrinsic**, which are observable properties:
 - **Shape**: oval, round, narrow, wide, ...
 - Material: wooden, stone, metalic, ...
 - Colour: red, blue, green, orange...
 - **Position:** vertical, hanging, slanting
 - extrinsic, relation of the object with others
 - Mode of employement or application: analogic, digital, hybrid.
 - **Origin** or how an object comes into existence: producer, inventor, provider, the place of its production, (town, country), ...

Subject field Computer hardware	Object (visual representation)	Concept Abstraction based on the set of all mechanical mice	Term: mechanical mouse	ISO /DIS
Category	Property	Characteristic	Degree of essentiality	704, 2006
Level of abstraction	concreteness	1. concreteness	essential	
Type of object	Input device	2. input device	essential	
colour	Ivory-coloured	3. Any colour	Non-essential	
usage	Hand-manoeuvred along a hard, flat-surface	4. Has a ball on its underside on which the device rolls	essential	
composition	Has a metal ball on its underside on which the device rolls	5. Has a ball on its underside on which the device rolls	essential	
composition	Has three buttons	6. Has at least one button	essential	
connection	Connected to a computar by a connecting wire	y 7. May be connected to a computer by a wire	Non-essential	
function	Rollers detect the movement of the ball	8. Rollers (mechanical sensors) detect the movement of the ball	essential	
function	The ball controls the movement of a cursor on a	9. Ball movement controls the movement of a pointer on a	e essential	
12	computer display screen	computer display screen	Onto Engin ing&	

Relations between concepts: hierarchical relations

Close relation between a concept and its characteristics

A. GENERIC RELATIONS (genus-species relation) IS_A

- One of the concepts includes another concept
 - **vertical:** hypernym- hyponym; superordinate –subordinate
 - **horizontal:** two specific ideas of the same generic concept with some distinguishing characteristics

- Broader than (BT)
- *Narrower than* (NT)
- Associated to (AT)

B. PARTITIVE RELATIONS (part-whole relation) PART_OF

- These relations are also called meronimic (HAS_PART)
 - Car: wheels, seats, doors, boot, stearing wheel, gearbox...
- Different types of meronimic relations

Vertical Relation

Horizontal Relation : co-hyponyms

Other Meronimic Relations

Relación	Ejemplo
componente - objeto	pedal - bicicleta
miembro - colección	barco - flota
porción - masa	rebanada - pan
material - objeto	acero - coche
fase - actividad	pagar - comprar
lugar - área	oasis - desierto

Tabla II.2: Modelo de Winston et al. (1987)

Climent, S. 1999 Individuación e información parte-todo. Representación para el procesamiento computacional del lenguaje

Non-hierarchical relations (ad-hoc relations)

- Caused by : (acid rain- nuclear explosion)
- -**Product of**: (paper- wood pulp)
- Property of (compressibility -gas)
- Quantitative measure (temperature-heat)
- Instrument for (computer- data processing)
- Counter-agent for (insecticide- insects)
- Container of (toolbox- tools)
- Method of (diamond drilling- drilling)
- Material for (iron-bridge building)
- *Place for* (coal mine- coal exploitation)
- -Associated with (production-consumption)

How do we express concepts?

- In natural language:
 - Terms (one-word or multi-word terms) that denote or refer to a concept in a subject field
 - Definitions
 - Glosses, etc.
- In artificial language
 - Codes
 - Formulas
- In a multimedia resource:
 - Icons
 - Photos
 - Diagrams
 - Graphs
 - Video-clips
 - Audio-clips
 - Other multimedia representations

Term formation I

- According to its **origin**:
 - Borrowings from other languages: hardware, software, football, cookies, folksonomies
 - Adapted borrowings: formatear, inicializar, fútbol, etc.
 - Loans of structure: inteligencia artificial, lógica difusa, programación orientada a objetos, anotación social, kindergarten= jardín de infancia
 - Semantic loans: aplicación, utilidades, editar, icono, ratón, menú, semantic grid
 - -Transliteration
- According to its **formation**:
 - One-word terminological units : Programa, aplicación, icono, menú, ratón
 - Multiword terminological units : lenguaje de programación, lenguaje de alto nivel, programación orientada a objetos

Term formation II

- According to its components:
 - Suffixation:
 - teca/tica: animática, burórica, indumática, ofimática, robótica, telemática, turismática
 - ware: hard-, soft-, middle-,
 - itis: a) inflamación: bronquitis, faringitis, amigdalitis, otitis
 - b) obsesión: madriditis, mamitis, futbolitis
 - Prefixation: ciber: cibercafé, cibernauta, cibermedicina, ciberdelito, etc
 - Composition: salvapantallas, reposapiés, sujetamanos, radiotelevisión,
 - Abbreviation (acronyms): PC, PDF, TCP/IP, MS-DOS, MP3, wysiwyg,
 - Conversion: download, input, output,
 - Neologization: autoedición, "gustomizar",
 - Metaphorization: paquete de mejoras salariales, navegar, autopistas de la información, papelera, escritorio, bajar de la red, machacar un fichero, caerse el sistema, etc

Relations between denomination and concept

- Synonymy: the quality of two or more words with the same or similar meaning:
 - -contaminación, polución; store, save a file
- Polisemy: the capacity for a word(s) or a sign to have multiple meanings.
 - -Cabo
- Homonymy: The quality of a word or group of words that share the same speling but have different meanings, usually because they have different origins. :
 - Tarifa (ciudad), tarifa de precios
 - Vino (bebida), vino (del verbo "venir")

Relación entre denominación y concepto: Synonymy in terminology

- 1. an acronym and the complete terminological unit: *UCP: Unidad central de proceso*
- 2. An acronym thar represents the English term and the complete term in Spanish:

CPU: unidad central de proceso

LAN: red de área local

3. An abbreviated form and the complete term:

un mini: un miniordenador

una macro: una macroinstrucción

4. A scientific denomination and the popular one:

chip: circuito integrado

5. A standardised term and the dialectal variant

hormigón in Spain and concreto in South America

array, matriz in Spain y arreglo in South America

6. Symbols and their terms

Ca = Calcio

7. Variants of a term:

tecla de borrar = tecla de suprimir menú de persiana = menú desplegable

Relation between denomination and concept: Polisemy in terminology

Conceptual
Content

Expression

A
B

1. A group of loosely coupled computers that work together closely (HW)

2. A group of disk sectors used in a File Allocation Table (SW)

Relation between denomination and concept

¿¿ Homonymy in terminology??

Conceptual Content

Expression

Vino (del verbo venir) y vino (bebida)
Concreto (adjetivo) y concreto (hormigón en Sudamérica)

En terminología: perspectiva polisémica

Linguistic and conceptual resources: terminological chaos?

Some definitions

• Thesaurus: Organized controlled vocabulary of terms and their relations (hierarchical,

ec word-sense-entry →

• C [- ORTHOGRAPHY : string

at - WORD-MEANING : word-meaning-id+

• I SYNONYMS : word-meaning-id*

re NEAR-SYNONYMS: word-meaning-id*

• St HYPONYMS: hyponym*
HYPERONYMS: hyperonym*

• T ANTONYMS : antonym*

in MERONYMS: meronym*

• (HOLONYMS : holonym*

QUANTIFICATION: quantification*

COLLOCATIONS: collocation*

SEMANTIC-FRAME: sem-frame

ACTIONALITY: actionality

ENTRY-CREATOR: (HUMAN | MACHINE)

IS VALIDATED: Boolean]

a subject domain. iformation developed by several

data model that allows the storage,

emantic relations between concepts and scopes thet may exist in some

the semantics of the grammatical units other kinds of information

What is an ontology?

- "An ontology is similar to a dictionary or glossary, but with greater detail and structure that enables computers to process its content. (IEEE Standard Upper Ontology Working Group)
- "An ontology consists of a set of concepts, axioms, and relationships that describe a domain of interest." SUMO ontology http://ontology.teknowledge.com/

Classification from an ontological perspective (Lassila & McGuinness)

Lightweight Ontologies

Heavyweight Ontologies

• Gómez-Pérez, A., Fernandez-Lopez, M., Corcho, O. (2003) Ontological engineering: with examples from the areas of knowledge management, e-commerce and the Semantic Web. Londres: Springer Verlag London Ltd.

Glossaries

- List of terms, not always with definitions.
- Terms usually belong to a subject field
- Terms are defined according to the meaning in that field only

U.S. ENVIRONMENTAL PROTECTION AGENCY List of all Topics Bookmark Recent Additions | Contact Us Search: All FPA Advanced search You are here: EPA Home » Browse EPA Topics » List of all Topics List of all Topics Alphabetical List of All Topics This page organizes topics into alphabetical order, like a book's index. You can also browse topics organized into broad categories, like a book's table of contents. <u> A B C D E E G H ! J K L M N O P Q R S T U Y W X Y Z</u> Back to Top Abandoned Mine Ecosystems > Mines > Abandoned Mine Cleanup > Storage Tanks > Abandoned Properties Abandoned Properties Air > Air Pollution Control > Abatement Abatement Abatement Treatment/Control > Air Pollution Control > Abatement Above Ground Tanks Industry > Storage Tanks > Above Ground Tanks Accident Preparedness Emergencies > Accidents > Accident Preparedness Accident Prevention Emergencies > Accidents > Accident Prevention Emergencies > Accidents Accidents Accomplishments Cleanup > Accomplishments Acetone Pollutants/Toxics > Soil Contaminants > Acetone Acid Rain Air > Air Pollution Effects > Acid Rain Acute Exposure Human Health > Exposure > Acute Exposure Administrative Civil Enforcement Compliance And Enforcement > Civil Enforcement > Administrative Civil Enforcement Administrator Environmental Protection Agency > Administrator Human Health > Advisories Advisories Environmental Protection Agency > Science Advisory Board (SAB) > Advisory Committees Advisory Committees

CINDOC Glossary

Tesauros

<u>Inicio</u>

<u>Alfabético</u>

<u>Búsquedas</u>

Glosario de Máquinas Herramienta

ABCDEFGHIJKLMNÑOPQRSTUVWXYZ

Listado alfabetido de terminos [#1] (no-descriptores en cursiva)

1 2 3 4 5 6 [Siguiente] [Fin]

a prueba de empleo incorrecto

abrazadera para tubos

accionamiento de la mesa

accionamiento del avance

accionamiento eléctrico

accionamiento forzado

accionamiento hidráulico

accionamiento individual

accionamiento neumático

accionamiento por cuerda

accionamiento por fricción

accionamiento por grupos

accionamiento por poleas escalonadas

accionamiento por trinquete

aceleración

acoplador roscado para tuberías

acoplamiento de desembrague

acoplamiento de ejes

INSPEC Thesaurus

Type of data included **Equivalence** THESAURUS search words: natural languages relation UF natural language processing (UF=used formatural language processing) BT languages (BT=broader, term is languages) Generic relation TT languages (TT=top term in a hierarchy of terms) **Hierarchical relation** RT artificial intelligence (RT=related term/s) **Specific relation** computational linguistic **Associative** formal languages relation programming languages query languages specification languages speech recognition user interfaces CC C4210L; C6140D; C6180N; C7820(CC=classification code) Other data DI January 1985(DI=date [1985]) PT high level languages (PT-prior term to natural languages)

An excerpt from INSPEC Thesaurus

Cellular radio	used for (UF): cellular communication cellular telephones Groupe Speciale Mobile (GSM) microcellular radio pan-european radio vodafone
Land mobile radio Radiotelephony	These twp terms are broader terms (BT) to "cellular radio". If you searched under these terms, you will retrieve a larger set of documents
Radio applications Telecommunication	These terms are top terms (TT) in the hierarchy
Channel allocation Land mobile radio Personal communication networks Radio access networking Space division multiple access	All these terms are related terms (RT) to "cellular radio"
DI January 1985	Date when "cellular radio" was added
mobile radio systems	previous term (PT) used before 1985
B6250F; D4045	class codes

Table 1: Inspec Thesaurus (1999) -- an excerpt on cellular phones

nouns round object that is hit or thrown or kicked in games; "the ball travelled 90 mph on his serve"; "the mayor threw out the first ball"; "the ball rolled into the corner pocket" Hypernyms (... is kind of) Hyponyms (kinds of ...) Antonyms (opposites of ...) Meronyms (parts of ...) Holonyms (... is part of) Related Verbs Related Adjectives a solid ball shot by a musket; "they had to carry a ramrod as well as powder and ball" an object with a spherical shape; "a ball of fire" verbs adjectives

supported by the lexical reference system: nouns, verbs, and adjectives.

Thus, three different tabs are presented to you. A simple click opens a certain tab, and, offers its content: a list of meaning, each representing a certain synset of the search term. In order to find out which element of the web reto which meaning or synset, please click on it. Two thing happen:

The meaning gets marked (with red color) and so do the corresponding elements of the web. A certain circle or sphere, representing a specific synset, becomes marked red, and also all of the edges that point to the set of synonyms (representing the synset). In addition, the 'meaning' opens its content and presents a list of lexical pointers associated with the selected part of speech. A click on one of these pointers, e.g. hypernym, lets you explore the broader terms associated with the selected synset.

SMART THESAURUS MUSIC supports the following lexical relationships:

Noun

- [1] Hypernym or broader term (...is a kind of)
- [2] Hyponym or narrower term (kinds of ...)
- [3] Antonym (opposites of ...)
- [4] Meronym (parts of ...)
- [5] Holonym (... is a part of)
- [6] Related verbs
- [7] Related Adjectives

Types of relations

Verb

- [1] Hypernym or broader term (...is a kind of)
- [2] Hyponym or narrower term (kinds of ...)
- [3] Related verbs
- [4] Related nouns

Semantic network

- Concept structure with nodes and relations, not hierarchically organized
- Can include BT, NT, RT relations or other associative relations

Lexicons

Generally, of two types

- general
 - -contain language used in all/general contexts
- specific
 - -contain the language used in a specific domain of knowledge

Implications of both types of lexicons

- –Quantity and quality of information (granularity)
- -Complexity of the design
- -Complexity in the development process

How are lexicons used in NLP?

• They contain the necessary linguistic information to construct meaning representations

field

Lexicon

Account v. ...

Went vpast GO
Go v. (NP_SUNJ ((role AGENT) (sem + animate))
(VP ((verb GO)
(PP ((prep TO)
(NP ((role TARGET) (sem +loc))))

John n. sem: human
Store n. sem: loc

John went to the store
Topic=
financial

GO

AGENT John TARGET store

Adapted from Nancy Ide

money.....

bank....

.....account

Account *n*. Domain [financial]

Bank 1 *n domain* [financial]

Bank 2 *n domain* [geography]

Money n. domain [financial]

Lexicon

Types of lexicons

• Various types:

– Morphosyntactic Information :

http://www.mat.upm.es/~aries/description.html

http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/CQP-HTMLDemo/PennTreebankTS.html

- Semantic Information:
 - Semantic features: human being, animate, human, physical object, mental object
 - Different entries for different senses
 - Semantic relations: synonyms, quasi-synonyms, antonyms, etc.
 - Hierarchical relations: part_of, kind_of, etc...
- Syntactic-semantic Information : colocations
- Information about a domain
- Definitions

PennTreeBank

Lexicon about "Existence" (Faber and Mairal, 1999)

1.1	General: 7	Γο exist / to continue to exist.
1.2	To begin	to exist [be, live]
	1.2.1	To cause something to exist [create, make]
1.3	To exist i	the perception of others [appear]
	1.3.1	To cause something to exist in the perception of others [show]
1.4	To exist in	n time (becoming real) [happen]
	1.4.1	To cause something to exist in time [induce, provoke]
		1.4.1.1. To cause something to exist in time in a particular way [precipitate, hasten]
		1.4.1.2 . To cause something to happen, making it possible [allow, permit]
		1.4.1.3. To cause something not to happen [prevent, avoid, stifle, smother]
1.5	To exist a	s something
	1.5.1 To e	xist as the representation of something else [represent, express]
		1.5.1.1 To cause something to exist as a representation of something [copy, reproduce
	1.5.2 To e	exist as a part of something [comprise, constitute]
1.6	To begin	to exist [start, commence, be Born]
	1.6.1 To c	rause to begin to exist [start, commence]
		1.6.1.1 To cause to be born [abort]
	1.6.2 To b	begin to exist in the perception of others [arise, form]
	1.6.3	To begin to exist in time (becoming real) [start, originate]
		1.6.3.1 To cause something to begin to exist in time [start, initiate]
1.7	To contin	ue to exist [last, endure]
	1.7.1	To stop something from continuing [interrupt]
1.8	To stop ex	xisting [die]
	1.8.1	To cause somebody/something to stop existing [kill, murder]
	1.8.2	To stop existing in the perception of others [disappear, vanish]
		1.8.2.1 To cause something to stop existing in the perception of others [erase, delete]
		1.8.2.2 To stop existing in time [end, finish, cease]
		1.8.2.3 To cause something to stop existing in time [end. finish. cease]

Comparison of lexical resources

2						
CLASSIFICATION CRITERIA	GLOSSARY	DATABASE	DICTIONARY	THESAURUS	LEXICON	ONTOLOGY
Organization	alphabetical order	alphabetical order	alphabetical order	semantically + generically related lexical entries	semantically related lexical entries	semantically related lexical entries
Semantic information	definition in NL	definition + other kinds of info. in NL	definition + pos + etymologies + derivation + usage examples in NL	hierarchical, associative, equivalent relationships	explicit hierarchy (synonymy, antonymy, meronymy) + grammatical + contextual information	explicitly defined hierarchy relationships around a unique concept
Physical format	paper + electronic format	electronic format	paper + electronic form <i>a</i> t	paper + electronic format	electronic format	electronic format (readable also by machines)
Domain of knowledge	general + specific	general + specific	general + specific	specific	general + specific	general + specific (agreed by domain experts)

Types of Non-Ontological Resources

Maedche et al. 2001

Text
Dictionary
Knowledge base
Relational schemata

Sabou et al. 2007

- Unstructured
- Semi-structured
- Structured

Hodge 2000

Gangemi et al. 1998

Catalogue of normalized terms
Glossed Catalogue
Taxonomy

■ Terms Lists

- Authority files
- Glossaries
- Dictionaries
- Gazetteers
- Lexicons
- Classification and categories
 - Subject headings
 - Classification schemes,
 - taxonomies and
 - categorization schemes
- Relationship lists
 - Thesauri
 - Semantic Newtorks

They do not take into account the **Non-Ontological Resource** data model, an important artifact in the re-engineering process.

Transforming NOR into ontologies SKOS

- Simple Knowledge Organization System
 - Simple, flexible, extensible, machine-understandable representation for sharing KOS
 - Goal: to enable easy publication of controlled structured vocabularies for the semantic web
 - Thesauri
 - Classification schemes
 - Subject heading systems
 - Taxonomies
 - Other 'controlled language'
 - How: by using a common data model for sharing and linking knowledge organization systems
 - BUT SKOS is **not** a formal knowledge representation language.

Many exist and are in use in cultural heritage, medicine, libraries, ...

Elements in SKOS

• Semantic Relationships **Broader/Narrower Terms Related Terms** • Lexical Labels Preferred, alternative and concepts hidden labels **URIs** Additional documentation Notes, comments, descriptions Has-a Related-to labelled Lexical concepts strings notes documented assigned notation

Graph from SKOS Example in RDF

Classification Scheme

• A classification scheme¹ is the descriptive information for an arrangement or division of objects into groups based on characteristics, which the objects have in common. E.g. water area classification scheme².

^{1.} International Standard Organization (ISO). Information technology - Metadata registries - Part 1: Framework, 2004. Report ISO/IEC FDIS 11179-1.

^{2.} http://www.fao.org/figis/servlet/RefServlet

Data Models (I)

• Path Enumeration Data Model is defined as a model that stores for each node the path (as a string) from the root to the node.

ID	CSI_Name
20000	Water area
20000.21000	Environmental area
20000.24020	Jurisdiction area
20000.22000	Fishing Statistical area
20000.21000.21001	Inland/marine
20000.21000.21002	Ocean
20000.21000.21003	North/South/Equatorial
20000.22000.22001	FAO statistical area
20000.22000.22002	Areal grid system

Adjacency List is a recursive structure for hierarchy representations that comprises a list of nodes with a linking column to their parent nodes.

	ID	CSI_Name	Parent
	20000	Water area	
\rightarrow	21000	Environmental area	20000
	24020	Jurisdiction area	20000
	22000	Fishing Statistical area	20000
	21001	Inland/marine	21000
	21002	Ocean	21000
\rightarrow	21003	North/South/Equatorial	21000
	22001	FAO statistical area	22000
	22002	Areal grid system	22000

Data Models (II)

Snowflake Data Model is a normalized structure for hierarchy representations. For each hierarchy level a entity is created. In this model each hierarchy node has a column linked to its parent node.

Flattened Data Model, is a denormalized structure. The hierarchy is represented with a table where each hierarchy level is stored on a different column.

21001

21002

21003

22001

22002

Example - FAO Water Areas Classification Scheme

Classification Scheme

Adjacency List

ID	CSI_Name	Parent
20000	Water area	
21000	Environmental area	20000
24020	Jurisdiction area	20000
22000	Fishing Statistical area	20000
21001	Inland/marine	21000
21002	Ocean	21000
21003	North/South/Equatorial	21000
22001	FAO statistical area	22000
22002	Areal grid system	22000

Terminology and ontologies

- Terminology helps in the knowledge organization by establishing relations between terms and concepts
- An ontology is a conceptualization or representation of a domain, agreed by experts and readable by a machine
- Approach oriented to the communication among users of an organization
- Terminological change: from terminological data bases to terminological and knowledge/ontological data bases: terms in context and with relations among them
- Terms retrieved form texts can be the starting point in the development of ontologies

Comparison factors

	Terminology	Ontologies
Level of formality in the definition	Text in NL	Formal language without ambiguities
Computer support	Terminological bases with few relations among concepts	Sound knowledge representation languages with relations among concepts
Users	Translators Domain experts Linguistic mediators Text editors	Information interchange between people and machines
Language	NL for expressing knowledge with precision	Labels for naming concepts have less importance

Recommended papers Terminology and ontologies, October 2009

- Van Assem, Malaisé, Miles & Schreiber: "A method to convert a thesaurus to SKOS". http://www.cs.vu.nl/~guus/papers/Assem06b.pdf
- Van Assem, Menken, Schreiber, Wielemaker & Wielinga: "A method for converting thesauri to RDF/OWL
- http://www.cs.vu.nl/~guus/papers/Assem04a.pdf
- Lauser, Sini, Lian, Keizer and Katz
- ftp://ftp.fao.org/docrep/fao/009/ah801e/ah801e00.pdf
- Campbell, Oliver, Packman & Shortliffe "Representing thoughts, words and things in UMLS.
- http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=613
 23

Terminology in ontologies and other lexicographic resources

Dra. Guadalupe Aguado de Cea

lupe@fi.upm.es

http://www.oeg-upm.net
Ontological Engineering Group
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn,
28660 Boadilla del Monte, Madrid, Spain

