

Automotive N-channel 40 V, 0.85 m Ω max., 350 A STripFET F8 Power MOSFET in a PowerFLAT 5x6 package

PowerFLAT 5x6

Features

Order code	V _{DS}	R _{DS(on)} max.	l _D
STL325N4F8AG	40 V	0.85 mΩ	350 A

- AEC-Q101 qualified
- MSL1 grade
- 175 °C maximum operating junction temperature
- 100% avalanche tested
- Low gate charge Q_q
- · Wettable flank package

Applications

- Automotive motor control
- Body and convenience
- · Chassis and safety
- Power train for ICE

Description

The STL325N4F8AG is a 40 V N-channel enhancement mode Power MOSFET designed in STripFET F8 technology featuring an enhanced trench gate structure.

It ensures a state-of-the-art of figure of merit for very low on-state resistance while reducing internal capacitances and gate charge for faster and more efficient switching.

Product status link STL325N4F8AG

Product summary			
Order code	STL325N4F8AG		
Marking ⁽¹⁾	325N4F8		
Package	PowerFLAT 5x6		
Packing	Tape and reel		

 For engineering samples marking, see Section 3.3: PowerFLAT 5x6 marking information.

1 Electrical ratings

Table 1. Absolute maximum ratings (at T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	±20	V
	Drain current (continuous) at T _C = 25 °C ⁽²⁾	350	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C ⁽²⁾	247	Α
	Drain current (continuous) at T _C = 25 °C ⁽³⁾	120	
I _{DM} ⁽¹⁾⁽²⁾⁽⁴⁾	Drain current (pulsed), t _p = 10 μs	1400	А
P _{TOT}	Total power dissipation at T _C = 25 °C	188	W
I _{AS}	Single pulse avalanche current (pulse width limited by T _J max.)	60	Α
E _{AS}	Single pulse avalanche energy (starting T_J = 25 °C, I_D = 60 A, R_{Gmin} = 25 Ω)	590	mJ
T _J	Operating junction temperature range	-55 to 175	°C
T _{stg}	Storage temperature range	-55 (0 175	°C

- 1. Specified by design, not tested in production.
- 2. This is the theoretical current value only related to the silicon.
- 3. This current value is limited by package.
- 4. Pulse width is limited by safe operating area.

Table 2. Thermal data

Symb	l Parameter	Value	Unit
R _{thJA} (Thermal resistance, junction-to-ambient (on 2s2p FR-4 board vertical in still area)	16	°C/W
R _{thJC}	Thermal resistance, junction-to-case	0.8	°C/W

1. Defined according to JEDEC standards (JESD51-5, -7).

DS14213 - Rev 3 page 2/15

2 Electrical characteristics

 T_J = 25 °C unless otherwise specified.

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	40			V
1	Zana mata waltana dunin awanat	V _{DS} = 40 V, V _{GS} = 0 V			1	
I _{DSS}	Zero gate voltage drain current	V _{DS} = 40 V, V _{GS} = 0 V, T _J = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 60 A		0.65	0.85	mΩ

^{1.} Specified by design and evaluated by characterization, not tested in production.

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} ⁽¹⁾	Input capacitance		-	6600	-	pF
C _{oss} ⁽¹⁾	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	-	1970	-	pF
C _{rss} ⁽¹⁾	Reverse transfer capacitance		_	40	-	pF
Q _g ⁽¹⁾	Total gate charge		-	80	-	nC
Q _{gs} ⁽¹⁾	Gate-source charge	V_{DD} = 20 V, I_{D} = 120 A, V_{GS} = 0 to 10 V	-	37	-	nC
Q _{gd} ⁽¹⁾	Gate-drain charge		-	8	-	nC

^{1.} Specified by design and evaluated by characterization, not tested in production.

Table 5. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} ⁽¹⁾	Turn-on delay time	V_{DD} = 20 V, I_{D} = 60 A, R_{G} = 4.7 Ω , V_{GS} = 10 V	-	24.5	-	ns
t _r ⁽¹⁾	Rise time		-	9.5	-	ns
t _{d(off)} ⁽¹⁾	Turn-off delay time		-	42.5	-	ns
t _f ⁽¹⁾	Fall time		-	10.5	-	ns

^{1.} Specified by design and evaluated by characterization, not tested in production.

DS14213 - Rev 3 page 3/15

Table 6. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾⁽²⁾	Forward on current (continuous)	T _C = 25 °C	-		135	Α
V _{SD}	Forward on voltage	I _{SD} = 60 A, V _{GS} = 0 V	-		1.1	V
t _{rr} ⁽¹⁾	Reverse recovery time		-	63		ns
Q _{rr} ⁽¹⁾	Reverse recovery charge	$I_D = 60 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, V_{DD} = 32 \text{ V}$	-	80		nC
I _{RRM} ⁽¹⁾	Reverse recovery current		-	2.6		Α

^{1.} Specified by design and evaluated by characterization, not tested in production.

DS14213 - Rev 3 page 4/15

^{2.} This is the theoretical current value only related to the silicon.

2.1 Electrical characteristics (curves)

DS14213 - Rev 3 page 5/15

Figure 7. Normalized on-resistance vs temperature

Figure 8. Normalized gate threshold voltage vs temperature

Figure 9. Typical reverse diode forward characteristics

Figure 10. Normalized $V_{(BR)DSS}$ vs temperature

Figure 11. Typical output characteristics

Figure 12. Typical transfer characteristics

DS14213 - Rev 3 page 6/15

Figure 13. Typical drain-source on-resistance

Figure 14. Typical on-resistance vs gate-source voltage

Figure 15. Typical gate charge characteristics

Figure 16. Typical capacitance characteristics

DS14213 - Rev 3 page 7/15

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

3.1 PowerFLAT 5x6 WF type C package information

Figure 17. PowerFLAT 5x6 WF type C package outline

8231817_WF_typeC_r23

DS14213 - Rev 3 page 8/15

Table 7. PowerFLAT 5x6 WF type C mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.00		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
E	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
K	1.05		1.35
L	0.90	1.00	1.10
L1	0.175	0.275	0.375
θ	0°		12°

DS14213 - Rev 3 page 9/15

Figure 18. PowerFLAT 5x6 recommended footprint (dimensions are in mm)

8231817_FOOTPRINT_rev23

3.2 PowerFLAT 5x6 packing information

Figure 19. PowerFLAT 5x6 tape (dimensions are in mm)

- (I) Measured from centreline of sprocket hole to centreline of pocket.
- (II) Cumulative tolerance of 10 sprocket holes is ±0.20.
- (III) Measured from centreline of sprocket hole to centreline of pocket

Base and bulk quantity 3000 pcs All dimensions are in millimeters

8234350_Tape_rev_C

DS14213 - Rev 3 page 10/15

Figure 20. PowerFLAT 5x6 package orientation in carrier tape

Pin 1 identification

Figure 21. PowerFLAT 5x6 reel

8234350_Reel_rev_C

DS14213 - Rev 3 page 11/15

3.3 PowerFLAT 5x6 marking information

Figure 22. PowerFLAT 5x6 marking information

Note:

Engineering Samples: these samples can be clearly identified by a dedicated special symbol in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials.

Commercial Samples: fully qualified parts from ST standard production with no usage restrictions.

DS14213 - Rev 3 page 12/15

Revision history

Table 8. Document revision history

Date	Revision	Changes
02-Feb-2023	1	First release.
13-Jun-2024	2	Modified Applications and Description. Modified Table 1. Absolute maximum ratings (at T _C = 25 °C unless otherwise specified), Table 4. Dynamic, Table 5. Switching times and Table 6. Source-drain diode. Added Figure 11. Typical output characteristics, Figure 12. Typical transfer characteristics, Figure 13. Typical drain-source on-resistance, Figure 14. Typical on-resistance vs gate-source voltage, Figure 15. Typical gate charge characteristics and Figure 16. Typical capacitance characteristics. Updated Section 3.1: PowerFLAT 5x6 WF type C package information. Minor text changes.
01-Jul-2024	3	Modified Figure 3. Safe operating area.

DS14213 - Rev 3 page 13/15

Contents

1	Elec	ctrical ratings	2
2		ctrical characteristics	
		Electrical characteristics (curves)	
3	Pac	kage information	8
	3.1	PowerFLAT 5x6 WF type C package information	8
	3.2	PowerFLAT 5x6 packing information	10
	3.3	PowerFLAT 5x6 marking information	12
Rev	ision	history	13

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

DS14213 - Rev 3 page 15/15