TCONND 性能参考文档

Tencent 腾讯

腾讯科技 (深圳) 有限公司

版权所有 侵权必究

修订记录

日期	修订版本	描述	作者
2009-3-11	1.0	创建	hardway
2009-8-19		修改	hardway
2010-06-10		增加	hardway

目录

1. 1:概述	3
1.1. 编写目的	
1.2. 适用范围	
1.3. 词汇表	
2. 测试数据	4
2.1. 测试方法及环境	4
2.1.1. 测试环境	4
2.1.2. 测试方法	4
2.1.3. 组件性能	
2.1.4. tconnd 的理论性能(使用 TAES 算法)	5
2.1.5. tconnd 的理论性能(使用 TEA 算法)	6
2.1.6. tconnd 的理论性能(通信过程不加密)	6
2.2. 测试用例	7
2.2.1. Case 1:tconnd 使用 taes 算法	
2.2.2. Case 2:tconnd 使用 tea 算法	
2.2.3. Case 3:tconnd 通信过程不加密	
2.3. 理论性能与实际性能比较	8
2.4. 小结	8

TCONND 性能参考文档

1.1:概述

1.1. 编写目的

本文档主要说明 tconnd 性能测试数据.

1.2. 适用范围

内部开发人员参考

1.3. 词汇表

词汇	解释
TConnd	接入服务器

2. 测试数据一

2.1. 测试方法及环境

2.1.1.测试环境

环境	IP	CPU
测试客户端	172.23.142.45	X3210 2.13G
测试服务端	172.23.142.43	X3210 2.13G
测试版本	(TSF4G_CONND_01	_0008)
备注	对 tconnd 加解密算法	,编译选项做了优化处
	理。	

2.1.2.测试方法

首先计算各组件的 benchmark.,可以粗略的根据公式计算 tconnd 的理论处理速度,各个组件下占 tconnd 的 cpu 时间可以根据 gprof 数据得出,根据各组件的性能大概可以算出 tconnd 的理论处理速度供参考。tconnd 性能理论值可以根据参考下列公式.

理论值=组件共占用 cpu 百分比/ \sum 调用次数/组件速度(时间:us)

=组件共占用 cpu/(4/tdr + 2/tbus + 1/tsec)

其中 tconnd 处理一次请求包调用四次 tdr,两次 tbus,一次加解密。

2.1.3.组件性能

tdr 处理速度跟包大小无关,只跟 tconnd 定义的包头有关 tbus 的处理速度基本跟包大小呈线性增长,其数据根据 tbusd 测试数据计算. TSEC 处理速度基本跟包大小跟线性增长。

组件性能/包	TDR(万包/秒)	TBUS(万包/秒)	TEA(/秒)	TAES(包/秒)
大小(byte)			(加解密)	(加解密)
128	190	58.88	145208	346070
256	190	54.99	78688	183486
512	190	49.21	40866	94787
1024	190	37.40	20790	47916

2.1.4.tconnd 的理论性能(使用 TAES 算法)

	I	I	I	I	1
组件所占 cpu/	TDR	TBUS	TAES	组件共占	tconn 理论性
包长(byte)				CPU(百分比)	能(万包/秒)
128	35.22%	8.96%	47.9%	92.08%	10.96
256	22.26%	4.83%	60.44%	87.53%	7.82
512	17.3%	5.35%	72.66%	95.31%	5.71
1024	0.070/	1.000/	0.5.1007	06.1207	2.41
1024	9.07%	1.88%	85.18%	96.13%	3.41

2.1.5.tconnd 的理论性能(使用 TEA 算法)

组件所占 cpu/	TDR	TBUS	TEA	组件共占	tconn 理论性
包长(byte)				CPU(百分比)	能(万包/秒)
128	32.57%	8.77%	50.8%	92.14%	7.43
256	23.75%	5.98%	64.33%	94.06%	5.11
512	12.56%	3.94%	79.24%	95.74%	3.13
1024	7.38%	2.3%	87.5%	97.18%	1.77
102.	,		0.10.70	,,,,,,,	1 , ,

2.1.6.tconnd 的理论性能(通信过程不加密)

组件所占 cpu/	TDR	TBUS	组件共占	tconn 理论性
包长(byte)			CPU(百分比)	能(万包/秒)
128	66.66%	10.5%	77.16%	14.03
256	56.43%	16.9%	73.33%	12.86
512	61.49%	15.3%	76.79%	12.39
1024	60.71%	15.23%	75.94%	10.26
1027	00.7170	13.23/0	13.7470	10.20

2.2. 测试用例

2.2.1.Case 1:tconnd 使用 taes 算法

包长(byte)	tconnd 实际处理速度
	(万包/秒)
128	13.36
256	8.87
512	5.91
1024	3.06

2.2.2.Case 2:tconnd 使用 tea 算法

包长(byte)	tconnd 实际处理速度
	(万包/秒)
128	9.33
256	5.74
512	3.03
1024	1.70

2.2.3.Case 3:tconnd 通信过程不加密

互娱研发中心-架构组

包长(byte)	tconnd 实际处理速度
	(万包/秒)
128	22.38
256	18.68
512	13.38
1024	9.04

2.3. 理论性能与实际性能比较

加密的情况下,理论计算性能值跟实际相比还是比较接近的..不加密的情况下,理论计算性能值跟实际相比还是有比较大的差距的,这可能跟理论计算方法有关。

2.4. 测试小结

tconnd 在加密的情况下实际处理速度基本上理论计算值一致,其性能瓶颈主要为组件处理速度(加解密,tdr,tbus).

3. 测试数据二

3.1. 测试环境

环境	IP	CPU	
32 位测试服务器	172.17.64.206	Xeon5130 2.00)G*4
62 位测试服务器	172.17.64.82	Xeon(TM) 2.80	0G*4
测试版本	(TSF4G_CONND_02_0001) build 20100610		
备注	tconnd 作了 64 位移植补充性能测试		

3.2. 测试方法

主要是测试 tconnd 在 QQ 方式使用 taes 算法情况下在 32 位机器和 64 位机器上的性能以及 补充测试包长 64 字节情况下性能。

3.3. 测试用例

3.3.1.tconnd 32 位 TAES 算法

包长(byte)	tconnd 实际处理速度	
	(万包/秒)	
64	13. 30	
128	11.91	
256	8.10	
512	5.17	
1024	2.96	

3.3.2.tconnd 64 位 TAES 算法

包长(byte)	tconnd 实际处理速度	
	(万包/秒)	
64	5. 35	
128	3.92	
256	2.95	
512	1.83	

1024 1.08

3.4. 测试分析及小结

图(一)

图(二)

第 10 页 共 12 页

从上图测试结果,可以得到如下补充结论

- ➤ TCONND 处理包数随着包长大小增加线性下降,总体吞吐量随着包长的增加线性增加
- ▶ 同样的测试用例 64 位比 32 位性能要差很多,主要是加解密的 taes 库在 64 位机器上没有优化性能比 32 位要差很多,同时 tdr 和 tbus 在 64 位机器上性能都有不同的下降,参考 tdr 和 tbus 性能测试。

4. 测试数据三

4.1. 测试环境

环境	IP	CPU
32 位测试服务器	172.17.64.206	Xeon5130 2.00G*4
测试版本	(TSF4G_CONND_02_0001) build 20100727	
备注	Base(tbus,tcomm,tapp)做了部分重构	

4.2. 测试方法

主要是测试在 BASE 做了修改之后 tconnd 在 QQ 方式使用 taes 算法性能有没有变化。

4.3. 测试用例

4.3.1.tconnd 32 位 TAES 算法

包长(byte)	TCONND BASE1.11 处理速度	TCONND BASE 2.0处理速度
	(万包/秒)	(万包/秒)
64	13. 30	13. 50
128	11.91	11.30
256	8.10	8.10
512	5.17	5.16
1024	2.96	3.12

表(三) TCONND BASE2.0 性能对比

图(三) TCONND BASE2.0 性能对比

4.4. 测试分析及小结

对比发现,Base2.0 的改动基本不会影响 TCONND 的性能。