Задача 1

Пусть $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$ и угол между векторами \mathbf{a} и \mathbf{b} равен $\varphi = \pi/3$.

Найти скалярное и векторное произведения векторов **c** и **d** если

- 1) c = 2a b и d = b a;
- 2) c = b a и d = a + b.

Ответ:

- 1) (c,d) = -8 и [c,d] = [a,b];
- 2) (c,d) = 5 и [c,d] = -2[a,b].

Залача 2

Найти скалярное и векторное произведения векторов **a** и **b**, имеющих в декартовой прямоугольной системе координат следующие координаты:

- 1) $\mathbf{a} = \{1, -1, 0\} \text{ и } \mathbf{b} = \{0, 1, -1\};$
- 2) $\mathbf{a} = \{-1,0,1\}$ и $\mathbf{b} = \{1,2,1\}$.

Ответ:

- 1) $(\mathbf{a}, \mathbf{b}) = -1 \text{ } \text{и } [\mathbf{a}, \mathbf{b}] = \{1, 1, 1\};$
- 2) $(\mathbf{a}, \mathbf{b}) = 0$ $\mathbb{I}[\mathbf{a}, \mathbf{b}] = \{-2, 2, -2\}$.

Задача 3

Найти ортогональную проекцию вектора \mathbf{b} на вектор \mathbf{a} и угол между ними, если их координаты в декартовой прямоугольной системе координат равны $\mathbf{a} = \{8,6\}$ и $\mathbf{b} = \{1,2\}$.

Ответ: $Pr_{a}(\mathbf{b}) = 2$ и $cos(\varphi) = 2/\sqrt{5}$.

Задача 4

Найти площадь треугольника ABC, координаты вершин которого в декартовой прямоугольной системе координат равны A(1,2,1), B(-1,4,1) и C(1,3,0).

Otbet: $S_{ABC} = \sqrt{3}$.

Задача 5

Доказать свойства смешанного произведения векторов:

- 1) ([\mathbf{a} , \mathbf{b}], \mathbf{c}) = V, где V объём параллелепипеда, построенного на приведённых к общему началу векторах \mathbf{a} , \mathbf{b} и \mathbf{c} , взятый со знаком "+", если тройка векторов \mathbf{abc} правая, и со знаком "—", если тройка векторов \mathbf{abc} левая;
- 2) ([a,b],c) = (a,[b,c]).

Задача 6

Вычислить V — объём параллелепипеда, построенного на приведённых к общему началу векторах $\mathbf{a} = \{-3, 2, 1\}$, $\mathbf{b} = \{0, -1, -2\}$ и $\mathbf{c} = \{-2, 0, -3\}$, определить ориентацию тройки векторов \mathbf{abc} .

Ответ: V = 3, тройка векторов **abc** левая.

Задача 7

Доказать, что векторы \mathbf{a} и \mathbf{b} равны тогда и только тогда, когда $(\mathbf{a}, \mathbf{c}) = (\mathbf{b}, \mathbf{c})$ для любого вектора \mathbf{c} .

Залача 8

Доказать следующие свойства векторного произведения векторов:

- 1) [a,b] = -[b,a];
- 2) $[\lambda \mathbf{a}, \mathbf{b}] = \lambda [\mathbf{b}, \mathbf{a}];$
- 3) [a+b,c] = [a,c] + [b,c].

15.09.2014 14:02:25