CS489 Assignment 4

3.)

a.)

a.j	
HMM	Mixture Of Gaussians
Pi =	Pi =
0 1 0	0.4340 0.4060 0.1600
Theta =	Mean for class1
0.8785 0.1144 0.0750 0.0888 0.8408 0.1250 0.0327 0.0448 0.8000	ans = 3.0631
<pre>(data is arranged Theta(c1 c2) = Theta(c1,c2))</pre>	ans = 2.0330 2.0797
Gaussian Data for class1	Mean for class3
ans = 3.0631 0.9567	ans = 0.8952 2.8185
ans = 1.3799 0.5063 0.5063 1.1100 (mean followed by variance matrix)	SIG = 1.1797 0.4199 0.4199 1.0936
Gaussian Data for class2	(variance matrix)
ans = 2.0330 2.0797	
ans = 1.0053 0.1630 0.1630 0.7812	
(mean followed by variance matrix)	
Gaussian Data for class3	
ans = 0.8952 2.8185	
ans =	
1.0792 0.8376 0.8376 1.8418	
(mean followed by variance matrix)	

b.)

НММ	Mixture Of Gaussians
right = 407	right = 367
wrong = 93	wrong = 133
accuracy = 0.8140	accuracy = 0.7340

The HMM model outperforms the Mixture of Gaussians model by 81.40% to 73.40%. This suggests that there is some correlation between consecutive measurements (they are not independent). The HMM model can account for this correlation, while the Mixture of Gaussians Model cannot.

```
c.)
```

```
right = 443
wrong = 57
accuracy = 0.8860
```

Monitoring resulted in an accuracy of 81.40%, while the joint classification resulted in an accuracy of 88.60%. Thus, the joint classification resulted in a higher accuracy. In this case, the joint classification takes into account all inputs (x values) when predicting the outputs (y values). Thus, it is better able to predict the output classes compared to monitoring (which just considers the data seen up to a certain point) especially when the measurements are correlated.