Answer 1)

Formula used

i. Converting binary to decimal

$$= 1/0 * (2^N)$$

Where,

N is the position from right to left starting from decimal.

- ii. Implementing 2's complement
 - a. Invert the bits (0s to 1s and vice versa)
 - b. Add 1 to LSB
 - c. Final value is presented with negative sign in decimal
 - 2's complement is done when the MSB is set (1) before converting it to decimal from binary.

Unsigned

Sum of 8 bits	R1	R2	Sum	Overflow Test
0110 1110	$(01101110)_2$	$(100111111)_2$	$(00001101)_2$	$110 + 159 \neq 13$
1001 1111	$=(110)_{16}$	$=(159)_{16}$	$=(13)_{16}$	Overflow occurs
1 0000 1101(S)				(Ignore Carry)
1111 1111	$(111111111)_2$	$(00000001)_2$	$(00000000)_2$	$255 + 1 \neq 0$
0000 0001	$=(255)_{16}$	$=(1)_{16}$	$=(0)_{16}$	Overflow occurs
1 0000 0000(S)				(Ignore Carry)
1000 0000	$(10000000)_2$	$(011111111)_2$	$(111111111)_2$	128 + 127 = 255
0111 1111	$=(128)_{16}$	$=(127)_{16}$	$=(255)_{16}$	No Overflow
0 1111 1111(S)				No Carry
0111 0001	$(01110001)_2$	$(00001111)_2$	$(10000000)_2$	113 + 15 = 128
0000 1111	$=(113)_{16}$	$=(15)_{16}$	$=(128)_{16}$	No Overflow
0 1000 0000(S)				No Carry

Signed

Sum of 8 bits	R1	R2	Sum	Overflow Test
0110 1110	$(01101110)_2$	$(100111111)_2$	$(00001101)_2$	110 + (-97) = 13
1001 1111	$=(110)_{16}$	$=(-97)_{16}$	$=(13)_{16}$	No Overflow
1 0000 1101(S)		MSB is 1		(Ignore Carry)
1111 1111	$(111111111)_2$	$(00000001)_2$	$(00000000)_2$	(-1) + 1 = 0
0000 0001	$=(-1)_{16}$	$=(1)_{16}$	$=(0)_{16}$	No Overflow
1 0000 0000(S)	MSB is 1			(Ignore Carry)
1000 0000	$(10000000)_2$	$(011111111)_2$	$(111111111)_2$	(-128)+ 127= -1
0111 1111	$=(-128)_{16}$	$=(127)_{16}$	$=(-1)_{16}$	No Overflow
0 1111 1111(S)	MSB is 1		MSB is 1	No Carry
0111 0001	$(01110001)_2$	$(00001111)_2$	$(10000000)_2$	$113 + 15 \neq -128$
0000 1111	$=(113)_{16}$	$=(15)_{16}$	$=(-128)_{16}$	Overflow occurs
0 1000 0000(S)			MSB is 1	No Carry

Answer 2)

The answer would require 32 bits.

 $0xABhex \times 0xEFhex$

- $= 10101011 \times 11101111$ (binary)
- $= 10101011 \times (2^7 + 2^6 + 2^5 + 2^3 + 2^2 + 2^1 + 2^0)$

Hence, we need to add the following in a variable (final result) using shift left-

- 1) Set final result to 0
- 2) Shift ABhex by 7 places i.e., 101010110000000
- 3) Shift ABhex by 6 places i.e., 10101011000000
- 4) Shift ABhex by 5 places i.e., 1010101100000
- 5) Shift ABhex by 3 places i.e., 10101011000
- 6) Shift ABhex by 2 places i.e., 1010101100
- 7) Shift ABhex by 1 place i.e., 101010110
- 8) Add ABhex to the final result 10101011

The final result would be 1001111110100101.

Answer 3)

 $(DEADBEEF)_{16} = (11011110101011011011111101111011111)_2$

According IEEE 754, the MSB is sign bit. The next 8 bits represent exponent value and rest 23bits is significand value (Given)

Here, the sign bit is 1 which indicates negative number.

$$(101111101)_2 = (189)_{10}$$

The exponent value becomes 189 - 127 i.e., 62

The IEEE decimal value becomes 1.(23 bits) * 2^exp

Calculations –

 $(0.01011011011111101111011111)_2 = (0.35738933086395263672)_{10}$

Final value becomes 1. $35738933086395263672 * 2^{62}$ in decimal which comes out to be **6.259,853,398,707,798,016** * **(10^18)** in negative.

Answer 4)

$$(78.75)_{10} = 78 + 0.75$$

= 1001110 + 0.11
= 1001110.11 in binary = 1.00111011 * 2^6

1) Single precision format

The number is positive so, MSB is 0. Hence, exponent bits became 127 + 6 i.e., 133 (133) = (10000101)

2) Double precision format (64 bits – 11 bits for exponent and 52 bits for significand value)

The number is positive so, MSB is 0. Hence, exponent bits became 1023 + 6 i.e., 1029 (1029) = (10000000101)The final representation in binary becomes **0 10000000101**

Answer 5)

$$(78.75)_{10} = 78 + 0.75$$

= 4E + 0.C
= 4E.C in hexadecimal = 4.EC * 16^1
= 1001110.11 in binary (from answer 4)
= 0.0100111011 * (16^2) to make the LSB 0 (normalization)

The correct bias becomes 64 + 2 from (16^2) i.e., $(1000010)_2$

The MSB will be 0 as the number is positive.

Answer 6)

a)

According IEEE 754, the MSB is sign bit. The next 5 bits represent exponent value and rest 10bits is significand value for half precision (Given)

Bias for 5 exponent bits = 2(5-1) - 1 = 15

The binary format of
$$-1.3625 * 10^{-1}$$
 will be:
= $-(0.001000101110)_2$
= $(1.000101110)_2 * 2^{-3}$

$$= -3 + 15 = 12$$

 $=(01100)_2$

According to half precision format 1 01100 0001011100.

The single precision IEEE 754 format for range and accuracy of the above 16-bit point format will be explained in Answer 7 (Given)

I.
$$16.125 = 10000.001$$

Remainder of Division by 2		
	16	
0	8	
0	4	
0	2	
0	1	
1	0	
Int of Multiplication by 2		
	0.125	
0	0.25	
0	0.5	
1	1	

Similarly for operand 2,

II. 0.3150390625 = 0.01010000101001

Int of Multiplication by 2		
	0.3150390625	
0	0.630078125	
1	1.26015625	
0	0.5203125	
1	1.040625	
0	0.08125	
0	0.1625	
0	0.325	
0	0.65	
1	1.3	
0	0.6	
1	1.2	
0	0.4	
0	0.8	
1	1.6	

Sum of 2 operands will be done by

- =(1.0000001000 + 0.0000010100001010) * 24
- $= 1.0000011100\ 001010 * 2^{4}$

Therefore, Gourd bit becomes 0, Round bit also becomes 0 and Sticky bit is 1.

Thus,

 $(10000.011100001010)_2$

$$= (1 \times 2^{4}) + (0 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0}) + (0 \times 2^{-1}) + (1 \times 2^{-2}) + (1 \times 2^{-3}) + (1 \times 2^{-4}) + (0 \times 2^{-5}) + (0 \times 2^{-6}) + (0 \times 2^{-7}) + (0 \times 2^{-8}) + (1 \times 2^{-9}) + (0 \times 2^{-10}) + (1 \times 2^{-11}) + (0 \times 2^{-12}) = (16.43994140625)_{10}$$

Answer 7)

a) Single Precision

Range of exponent will lie between 1 and $(2^8) - 2$

The value of exponent will hence be between

$$1 - 127$$
 i.e., -126 and $254 - 127 = 127$

The mantissa would be between all 23 bits 0s and 1s.

Hence, the range becomes

- $= 1.0 * 2^{-126}$ and $1.9999998807907104 * <math>2^{127}$
- = 1.1754943508222875e-38 and 3.4028234663852886e+38

Value of $2^{-(23-1)} = 2^{-22} = 2.384185791015625e-07$.

This tells us that the above one (single precision) is accurate only to 7 places post decimal.

b) Half Precision

Range of exponent will lie between 1 and $(2^4) - 2$

The value of exponent will hence be between

$$1 - 15$$
 i.e., -14 and $30 - 15 = 15$

The mantissa would be between all 10 bits 0s and 1s.

Hence, the range becomes

=
$$(1.0)2 * 2^{-14}$$
 and $(1.1.11111111111)2 * 2^{15}$

$$= 1.0 * 2^{-14}$$
 and $1.9990234375 * 2^{15}$

$$= 6.103515625e-05$$
 and $6.5504e+04$

Value of
$$2^{-(10-1)} = 2^{-9} = 1.953125e-03$$

This tells us that the above one (half precision) is accurate only to 3 places post decimal.

c) Floating Point

Range of exponent will lie between 1 and $(2^8) - 2$

The value of exponent will hence be between

$$1 - 127$$
 i.e., -126 and $254 - 127 = 127$

The mantissa would be between all 7 bits 0s and 1s.

Hence, the range becomes

=
$$(1.0)2 * 2^{-126}$$
 and $(1.11111111)2 * 2^{127}$

$$= 1.0 * 2^{-126}$$
 and $1.9999998807907104 * 2^{127}$

Value of $2^{-(7-1)} = 2^{-6} = 1.5625e-02$. This tells us that the above one (bfloat) is accurate only to 2 places post decimal.

Answer 8) Bias =
$$2^{(3-1)} - 1 = 3$$

Number	Binary	Decimal
0	0 000 000	0.0
-0.125	1 000 000	-0.125
Smallest positive normalized number	0 001 000 (+ive no) (min value is 1) (all os)	$0.25 = (1 * 2^{(1-3)})$
largest positive normalized number	0 110 111 (+ive no) (2 ⁽³⁾ – 2) (all 1s)	$15.0 = (1.111 * 2^{(6-3)})$
Smallest positive denormalized number > 0	0 000 001 (+ive no) (denormalized=0) (1)	0.03125 = (0.001 * 2 ⁽⁻²⁾)
largest positive denormalized number > 0	0 000 111 (+ive no) (denormalized=0) (all 1s)	0.21875 = (0.111 * 2 ⁽⁻²⁾)

b) As stated above, smallest +ve no is 0 001 000 and largest +ve no is 0 110 111.

Assumption: c = -4.0 as 1 100 010 which negative FP no.

Case 1:
$$a + (b + c)$$

The calculation would first take place for b + c to fetch 11.0. Subsequently, a would be added to this resulting in 11.25.

Case 2:
$$(a + b) + c$$

The calculation would first take place for a + b to fetch 15 only given it is being represented by the 7 bit IEEE system and is the largest normalized no. which results in a get overlooked during calculation.

Subsequently, a would be added to this resulting in 11.00

Therefore, the two above stated methods resulted in **different** outputs and does not hold true for the 7 bit machine.