

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

INFERENCIA ESTADÍSTICA APLICADA EN LA GENERACIÓN DE UNA PROPUESTA DE HORARIOS PARA LAS CARRERAS DEL DEPARTAMENTO DE MATEMÁTICAS

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

ACTUARIA

PRESENTA: MIRIAM GABRIELA COLÍN NÚÑEZ

> TUTOR DR. ARRIGO COEN CORIA

CIUDAD UNIVERSITARIA, CD. MX., 2020

UNAM - Dirección General de Bibliotecas

Tesis Digitales

Restricciones de uso

DERECHOS RESERVADOS ©

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos.

El uso de imágenes, fragmentos de videos y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo, mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Datos de la Alumna:
Colín
Núñez
Miriam Gabriela
(Teléfono)
Universidad Nacional Autónoma de México
Facultad de Ciencias
Actuaría
(número de cuenta)
Datos del tutor:
Dr.
Arrigo
Coen
Coria
Datos del sinodal 1:
Datos del sinodal 2:
Datos del sinodal 3:
Datos del sinodal 4:
Datos del sinodal 5:
Datos del trabajo escrito:
Inferencia estadística aplicada en la generación de una propuesta de horarios para las carreras del departamento de matemáticas
(Número de Páginas)
2020

Agradecimientos

¡Muchas gracias a todos!

Índice general

1.	Intro	oducción 1
	1.1.	Motivación
	1.2.	Definición de conceptos
	1.3.	Nomenclatura
	1.4.	Planteamiento del problema
	1.5.	Objetivos
	1.6.	Datos a analizar
		1.6.1. Análisis por tipo de semestre: par e impar
		1.6.2. Análisis por turno: matutino y vespertino
2.	Extr	acción de datos 9
	2.1.	Estructura de las URL's
	2.2.	Extracción de datos con la aplicación SelectorGadget
	2.3.	Tipos de grupos de las páginas web de la Facultad de Ciencias
	2.4.	Limpieza de base de datos
		2.4.1. Problemas de falta de información
		2.4.2. Problemas de información repetida
		2.4.3. Otros problemas al extraer información
	2.5.	Matrices de datos
3.	Aná	lisis estadístico 25
	3.1.	Análisis estadístico básico
		3.1.1. Prueba de tendencia
		3.1.2. Prueba de estacionalidad
		3.1.3. Prueba de homocedasticidad
	3.2.	Análisis estadístico por grupo de datos
	3.3.	Análisis estadístico por carrera
	3.4.	Distribución del tamaño de los grupos
	3.5.	Comportamientos por hora
4.	Sim	ulación 43
	4.1.	Obtención de nombres de materias
	4.2.	
	4.3.	Obtención de los parámetros q_1 y q_2
	4.4.	Simulación de la demanda de alumnos
		Simulación de tamaño de grupos 52

II ÍNDICE GENERAL

	4.6. Obtención de nombres de profesores				
		4.6.1. Profesores de tiempo completo	53		
		4.6.2. Profesores de asignatura	55		
	4.7.	Simulación de solicitudes de profesores	56		
	4.8.	Modelo de Mezcla Gaussiana	58		
		4.8.1. Obtención de mat_demanda_alumnos	58		
	4.9.	Simulación de esqueletos	59		
5.	Teor	ía del Algoritmo Genético aplicado a los horarios	63		
	5.1.	Ciclo de la evolución natural	64		
		5.1.1. Selección	64		
		5.1.2. Cruce	64		
		5.1.3. Mutación	64		
		5.1.4. Reemplazamiento	64		
	5.2.	Algoritmo Genético aplicado a la generación de asignaciones de grupos	64		
		5.2.1. Calificación de asignaciones	65		
6.	Resu	ltados del Algoritmo Genético	67		
7.	Com	portamiento de la selección	69		
8.	Conc	clusiones	71		
Ap	éndic	e A. Observaciones / Notas	75		
Ap	éndic	e B. Materias agrupadas	85		
Ap	éndic	ee C. Resultados útiles	89		
Ap	éndic	e D. Abreviaturas	91		
Bil	bliogr	afía	93		

Índice de figuras

1.1.	Número de alumnos por semestres pares e impares: Probabilidad I	6
1.2.	Histograma del número de alumnos por semestre: Probabilidad I	6
1.3.	Número de alumnos por turno: Probabilidad I	7
1.4.	Histograma del número de alumnos por turno: Probabilidad I	8
2.1.	Página de horarios de la Facultad de Ciencias	9
2.2.	Aplicación SelectorGadget	12
2.3.	Tipo de grupo A	13
2.4.	Tipo de grupo B	13
2.5.	Tipo de grupo C	13
2.6.	Ejemplo de página web en blanco	14
2.7.	Ejemplo de grupo sin información de salón	14
2.8.	Ejemplo de grupo sin información de alumnos	15
2.9.	Ejemplo de grupo sólo con horario	15
2.10.	Ejemplo de información repetida: Planes de estudio	16
	Ejemplo de información repetida: Materia con nombres distintos	17
	Ejemplo de información repetida: Mismo profesor, materias distintas	18
2.13.	Ejemplo de grupo con un alumno	18
	Ejemplo de grupo con medias horas	19
	Ejemplo de grupo con horarios múltiples	19
	Ejemplo de grupo de inglés	20
	Ejemplo de grupo con estructura diferente	20
3.1.	Descomposición por el método aditivo de Holt-Winters	27
3.2.	Media de alumnos por semestre	28
3.3.	Prueba de tendencia	29
3.4.	Número total de alumnos por semestre	30
3.5.	Prueba de estacionalidad	30
3.6.	Desviación estándar del número de alumnos por semestre	31
3.7.	Prueba de normalidad	31
3.8.	Prueba de homocedasticidad	32
3.9.	Número de alumnos de semestres pares e impares	33
	Histogramas del número de alumnos de semestres pares e impares	34
	Número de alumnos por turno de todos los semestres	34
	Histogramas del número de alumnos de los turnos matutino y vespertino	35
	Histogramas del número de alumnos por carrera	36
	Densidades del número de alumnos por carrera	37

IV ÍNDICE DE FIGURAS

3.15. Histograma del número de alumnos por grupo de todos los semestres	37
3.16. Densidades del número de alumnos por grupo de cada semestre	38
3.17. Histograma con densidades ajustadas	40
3.18. Número promedio de grupos por hora	41
3.19. Número promedio de alumnos por hora	42
4.1. Diagrama de flujo de la función gen_asignacion	45
4.2. Matriz con información por materia	46
4.3. Promedio de la desviación estándar: 5 materias, 12 pruebas	47
4.4. Promedio de la desviación estándar: 10 materias, 6 pruebas	47
4.5. Promedio de la desviación estándar: 10 materias, 4 pruebas	48
4.6. Promedio de la desviación estándar: 5 materias, 4 pruebas	48
4.7. Diagrama de los intervalos de confianza	49
4.8. Matriz con medidas de dispersión de prueba aleatoria	49
4.9. Ejemplo de matriz con alumnos corregidos	50
4.10. Ejemplo de vector con demanda simulada para el 2020-2 de "Modelos de	
Supervivencia y Series de Tiempo"	51
4.11. Ejemplo de matriz con demanda simulada para el 2020-2	52
4.12. Profesores de tiempo completo: SelectorGadget	54
4.13. Vector de profesores de tiempo completo	54
4.14. Ejemplo de matriz de solicitudes de un profesor	58
4.15. Mezcla de normales inicial y final	59
4.16. Ejemplo de esqueleto para el semestre 2020-2	61
5.1. Algoritmo Genético	64
5.2. Algoritmo Genético aplicado	65
8.1. ITAM Probabilidad I	73
A 1 December 1 december 1 in the material and 1 if a military	76
A.1. Resumen de clases de ingles antes de modificación	78
A.2. Ejemplo de horarios de semestre 2021-1	
A.3. Notas de T26	79 70
A.4. Ejemplo de Roxygen	79
A.5. Ejemplo de varianza	80
A.6. Cláusula 99 CCTPA: Ayuda para la impresión de la tesis	81
A.7. Nombres planes de estudio	82
A.8. which in plot	83

Índice de tablas

1.1.	Ejemplo de asignación	4
1.2.	Grupos de datos	8
2.1.	Planes de estudio por carrera con clave	10
2.2.	Descripción de las columnas de la matriz mat_posibles_url	11
2.3.	Descripción de las columnas de la matriz m_grande	22
4.1.	Posibles valores para q_1 y q_2	46
4.2.	Diferencias en nombres de profesores de tiempo completo	55
4.3.	Diferencias en nombres de profesores de asignatura	56
D 1	Abreviaturas	91

Códigos

A.1.	Ejemplo de ciclo for	76
A.2.	<i>Ejemplo de estructura de funciones</i>	77

VIII CÓDIGOS

Capítulo 1

Introducción

En este trabajo se hará un análisis estadístico de los datos recabados de las páginas de horarios de la Facultad de Ciencias de la UNAM (Facultad). Se obtendrá un número estimado de alumnos, para cada materia y por cada hora, de las carreras del Departamento de Matemáticas. Se simularán esqueletos de horarios que se calificarán de acuerdo a ciertos criterios. Éstas simulaciones dependen de semestres anteriores, con respecto al que se quiere estimar. Se resolverá el problema de asignación de horarios por medio del algoritmo genético. Con esto se desea disminuir el tiempo que se toma actualmente el hacer tanto los esqueletos de horarios como las asignaciones de grupos en la Facultad.

1.1. Motivación

Lo que motivó la realización de este trabajo es la aportación que se puede hacer a la Facultad, la cual nos parece de gran utilidad y para el beneficio de los alumnos. Podremos obtener una disminución del tiempo que toma realizar los esqueletos y la asignación de profesores en la Facultad.

Actualmente para hacer la asignación de horarios primero se reune el comité encargado de dicha tarea a realizar manualmente los esqueletos de los horarios. Éstos se dan a conocer a los profesores y ellos eligen diferentes opciones de materias y posibles horas en las cuales les gustaría impartir sus clases. Una vez que los profesores han hecho sus solicitudes, se vuelve a hacer una o varias juntas para la asignación final de los horarios que se hace de manera manual.

Se tienen dos tipos de profesores, los de tiempo completo y los de asignatura. Los profesores de tiempo completo, por contrato, deben de cubrir ciertas horas de clase por lo que al momento de hacer la asignación se debe considerar que ellos requieren cubrir su solicitud. Finalmente se publican los horarios a los alumnos.

Una vez que los alumnos han elegido las materias que les gustaría tomar deben de ir con el profesor y él o ella les debe de firmar su tira de materias, si es que el cupo del salón lo permite. En caso de que el alumno no consiga la firma de la materia que desea, deberá buscar una segunda o tercera opción o incluso tener que meterla en algún semestre posterior.

La principal razón por la cual los profesores no firman las tiras de materias es porque el nú-

mero de alumnos que desean inscribirse a su clase es mayor al número de lugares disponibles en el salón asignado. Es por ello que el trabajo que hemos realizado depende de la demanda de alumnos por materia y por horario.

1.2. Definición de conceptos

Las siguientes son las definiciones que se utilizarán a lo largo del trabajo:

Materia: Curso impartido en la Facultad de Ciencias por algún profesor.

Horario: Hora en la que se imparte alguna materia.

Esqueleto: Conjunto Materia-Horario.

Asignación: Conjunto Materia-Horario-Profesor.

Grupo: Clave con la que se identifica una asignación.

Turno Matutino: Comprende las clases impartidas de 7:00-14:00hrs incluyendo la clase de 14:00-15:00hrs.

Turno Vespertino: Comprende las clases impartidas de 15:00-21:00hrs incluyendo la clase de 21:00-22:00hrs.

1.3. Nomenclatura

m: Número de materias que se van a impartir, m = 201

p: Número de profesores que van impartir alguna materia, p = 1387

t: Número de horas del día, t = 15

i: Índice para profesores, $i \in \{1, 2, 3, \dots, p\}$

j: Índice para materias, $j \in \{1, 2, 3, \dots, m\}$

h: Índice para las horas del día, $t \in \{1, 2, 3 \dots, t\}$

 $U_{i,i,h}$: Utilidad de que el profesor i imparta la materia j a la hora h

 $x_{j,i,h}$: Variable binaria que vale 1 si la materia j es impartida por el profesor i a la hora h y cero en otro caso

 $V_{j,i}$: Variable binaria que vale 1 si la materia j puede ser impartida por el profesor i y cero en otro caso

s: Semestre a simular

k : Número de semestres que se tienen como ventana de información

m_grande: Matriz en la que se guarda la información por semestres

r : Matriz *m_filtrada*, submatriz de *m_grande*

vec_sem_sig: Vector con los semestres que se van a simular

 X_4 : Analizar presentación: Hacer varias pruebas con distintas combinaciones y elegir el mejor estilo/presentación

 X_{14} : Revisar/Investigar al respecto del problema y resolverlo

num_sim : Número de simulaciones de la demanda de alumnos para s

E : Matriz de *t* renglones y *m* columnas. En cada entrada se tiene la información del número de alumnos simulados en los grupos al crear *mat_esqueleto*.

D: Matriz de t renglones y m columnas. En la entrada (i, j) se tiene la información de la demanda de alumnos para la hora i y la materia j.

 bin_DUE : Matriz binaria de t renglones y m columnas. Tiene un 1 en la entrada (i, j) si E_{ij} o D_{ij} tienen un valor distinto de cero. Tiene un cero cuando ambas matrices (D y E) tienen un cero en la entrada (i, j).

1.4. Planteamiento del problema

En el problema de asignación de horarios se quiere asociar un profesor con una materia, un salón y un horario. Existen trabajos que han aborado este problema desde otro punto de vista, por ejemplo Yazdani, Naeri y Zeinali, en su artículo *Algorithms for university course scheduling problems* [10], proponen un modelo en el cual se toman 2 decisiones: la asignación de profesor por materia y el salón en el cual se va a impartir cada materia.

Con la función objetivo planteada en dicho modelo se desea maximizar la utilidad de que el profesor i imparta la materia j, más la utilidad de que el profesor i dé clases el día t, más la utilidad de la materia j por ser impartida en el día t. Como punto de comparación, a continuación veremos las dos diferencias principales entre su modelo y el que proponemos en este trabajo.

- 1) No tomamos en cuenta el día en el que se imparte la materia porque suponemos que todas las materias se imparten de lunes a viernes, a la misma hora, en el mismo salón.
- 2) Deseamos maximizar la utilidad de que el profesor i imparta la materia j a la hora h.

Los elementos que consideramos en nuestro modelo son:

- Esqueletos de horario: Matriz de *t* renglones con las horas (7-8, 8-9, ..., 21-22) y *m* columnas. La entrada (*i*, *j*) contiene el número de grupos simulados de la hora *i* para la materia *j*.
- Función calificadora de esqueletos: Califica de acuerdo a qué tan bien o que tan mal se cubre la demanda de los alumnos esperados.
- Conjunto de materias: Nombres de las materias impartidas en la Facultad.
- Conjunto de profesores: Nombres de profesores de tiempo completo y de asignatura.
- Variables de decisión:

$$x_{j,i,h} = \begin{cases} 1 & \text{si la materia } j \text{ es impartida por el profesor } i, \text{ a la hora } h \\ 0 & \text{e.o.c.} \end{cases}$$

II) Función objetivo: (se desea maximizar la utilidad)

máx
$$z = \sum_{i=1}^{p} \sum_{j=1}^{m} \sum_{h=1}^{t} x_{j,i,h} U_{j,i,h}$$
 s. a

III) Restricciones:

$$\sum_{i=1}^{p} \sum_{h=1}^{t} x_{j,i,h} = 1 \quad \forall j$$
 (1.1)

$$\sum_{i=1}^{m} x_{j,i,h} \leqslant 1 \quad \forall i,h \tag{1.2}$$

$$\sum_{h=1}^{t} x_{j,i,h} \leqslant V_{i,j} \quad \forall i,j \tag{1.3}$$

$$x_{j,i,h}, V_{j,i} \in \{0,1\} \ \forall j,i,h$$
 (1.4)

Con las restricciones del tipo (1.1) aseguramos que todas las materias sean dadas. Con las del tipo (1.2) aseguramos que cada profesor no tenga más de un curso por hora. Con las del tipo (1.3) aseguramos que los profesores tengan asignadas materias que puedan impartir. Finalmente con las restricciones del tipo (1.4) se especifica que las variables utilizadas son binarias.

En el planteamiento se tienen dos tipos de restricciones: duras y suaves. Las restricciones duras son las que nos permiten tener soluciones factibles al cumplirlas en su totalidad y las restricciones suaves nos permiten evaluar la calidad de las diferentes soluciones. Usualmente las restricciones suaves están asociadas a preferencias y se cumplen en la medida de lo posible, pero no afectan la factibilidad de las soluciones.

El conjunto de soluciones se presenta por medio de la matriz *mat_asignaciones* la cual es una matriz de tres columnas y tantos renglones como grupos se hayan simulado. En el i-ésimo renglón se tiene la información de la i-ésima materia con su respectivo profesor y horario asignados. En la Tabla 1.1 se muestra un ejemplo del resultado de la asignación.

Materia	Profesor	Horario
Inferencia Estadística	Margarita Elvira Chávez Cano	9-10
Modelos no Paramétricos y de Regresión	Jaime Vázquez Alamilla	10-11
Estadística Bayesiana	Ruth Selene Fuentes García	11-12
Modelos de Supervivencia y de Series de Tiempo	Lizbeth Naranjo Albarrán	13-14

Tabla 1.1: Ejemplo de asignación: Esta tabla muestra un ejemplo de la matriz mat_asignaciones que tiene 3 columnas (Materia, Profesor, Horario).

1.5. Objetivos

El primer objetivo del trabajo es hacer dos funciones que generen:

5

- i) Esqueletos de horarios
- ii) Una asignación de profesores por materia y por horario. La asignación debe cubrir la demanda de alumnos estimada para el semestre siguiente.

Los esqueletos de horarios son utilizados para simular una posible elección de materias y horarios de los profesores para finalmente hacer la asignación correspondiente a la hora, materia y profesor de cada grupo.

El segundo objetivo es disminuir el tiempo utilizado actualmente para la realización de la asignación de horarios.

1.6. Datos a analizar

Para poder realizar el análisis de los datos, hicimos 4 grupos con respecto a dos criterios. El primer criterio fue con respecto al tipo de semestre, par o impar y el segundo con respecto al turno, matutino o vespertino.

Para explicar la elección de los criterios tomamos la información de la materia *Probabilidad I*, desde el semestre 2015-1 hasta el 2020-1. Cabe aclarar que dicha materia en la carrera de Actuaría es una materia obligatoria de tercer semestre. En las siguientes subsecciones veremos el análisis de acuerdo a cada criterio.

1.6.1. Análisis por tipo de semestre: par e impar

En la Figura 1.1 vemos que la línea azul representa el número de alumnos de los semestres impares y la línea roja representa el número de alumnos de los semestres pares. Observamos que en todo momento el número de alumnos de los semestres impares es mayor al número de alumnos de los semestres pares. Ésto nos interesa porque al momento de simular debemos tomar en cuenta que el número de alumnos totales de semestres impares debe de ser siempre mayor al número total de alumnos de los semestres pares.

Continuando con los datos de *Probabilidad I*, obtuvimos la Figura 1.2 que contiene dos histogramas, las barras rojas representan el número de alumnos por grupo de semestres pares y las barras azules representan el número de alumnos por grupo de semestres impares.

Las líneas que se encuentran sobre los histogramas son densidades estimadas que se ajustan a los datos. Para estas aproximaciones se ajustó un kernel gaussiano con la función density(X) de R. Dicha función recibe como parámetro el vector X, con valores numéricos. Algunos datos que se pueden obtener de las densidades vistas en la Figura 1.2 son por ejemplo que alrededor del 20% de los grupos de los semestres pares tienen aproximadamente de 60 a 70 alumnos y que alrededor del 3% de los grupos de los semestres impares tienen entre 150 y 180 alumnos.

Figura 1.1: Número de alumnos por semestres pares e impares de Probabilidad I: Se puede ver que el número de alumnos de semestres impares es siempre mayor al de semestres pares.

Figura 1.2: Histograma del número de alumnos por semestre de Probabilidad I: Los datos se dividen en semestres pares e impares. Las densidades ajustadas son muy parecidas.

7

1.6.2. Análisis por turno: matutino y vespertino

En la Figura 1.3 la línea azul representa el número de alumnos del turno matutino y la línea roja representa el número de alumnos del turno vespertino. Se puede observar que en todo momento el número de alumnos del turno matutino es mayor al número de alumnos del turno vespertino. Ésto impacta en el hecho de que por semestres la varianza en el turno matutino es mucho mayor que en el turno vespertino. Lo cual indica que en el turno vespertino se tiene prácticamente el mismo número de alumnos sin importar si la materia pertenece a un semestre par o impar, a diferencia de lo que ocurre en el turno matutino en donde si influye el hecho de que la materia corresponda a un semestre par o impar.

Figura 1.3: Número de alumnos por turno de Probabilidad I: Los datos se dividen por turno matutino y vespertino. El número de alumnos del turno matutino es siempre mayor al número de alumnos del turno vespertino.

En la Figura 1.4 podemos ver dos histogramas, sobre los cuales se tienen 2 líneas con densidades estimadas que se ajustan a los datos. Las barras rojas representan el número de alumnos del turno vespertino y las barras azules representan el número de alumnos del turno matutino.

Notamos que en este caso las densidades son completamente diferentes. Algunos datos que se pueden obtener de dichas densidades son por ejemplo que alrededor del 20% de los grupos del turno vespertino tienen aproximadamente entre 10 y 20 alumnos y un poco más del 10% de los grupos del turno matutino tienen entre 80 y 90 alumnos.

Figura 1.4: Histograma del número de alumnos por turno de Probabilidad I: Los datos se dividen por turno matutino y vespertino. Las densidades ajustadas son muy diferentes.

Con los resultados observados se obtuvieron los grupos de datos G_1, G_2, G_3, G_4 , para hacer los análisis estadísticos, los cuales se definen en la Tabla 1.2.

Sem. \ Turno	Matutino	Vespertino
Impar	G_1	G_2
Par	G_3	G_4

Tabla 1.2: Grupos de datos: Obtuvimos 4 grupos al combinar los turnos (matutino y vespertino) con los tipos de semestres (pares e impares).

Capítulo 2

Extracción de datos

La fuente de información de donde obtuvimos los datos utilizados son las páginas de los horarios de la Facultad. En la Figura 2.1 se muestra un ejemplo de dichas páginas. Cada página contiene toda la posible información de los grupos de una materia, un semestre y una carrera. Cabe mencionar que sólo tomamos en cuenta la información de las carreras del Departamento de Matemáticas, las cuales son: Actuaría, Ciencias de la Computación, Matemáticas y Matemáticas Aplicadas.

Figura 2.1: Página de horarios de la Facultad de Ciencias: Muestra la información de los horarios de la materia "Lenguajes de Programación y sus Paradigmas", de la carrera de Matemáticas, plan 1983, del semestre 2020-1.

La información que se puede extraer de las páginas mencionadas es: nombre de profesores, nombre de ayudantes, salón, horario, plan, carrera, año, número de semestre, materia, semestre de la materia, tipo de materia e información de exámenes finales.

2.1. Estructura de las URL's

Al iniciar la búsqueda de información notamos que las URL's de las páginas web de los horarios de la Facultad tenían una estructura similar. Ésto nos permitió poder realizar la búsqueda de la información de una manera automática y mucho más rápida. Observamos que la estructura que siguen las URL's mencionadas es la siguiente:

http://www.fciencias.unam.mx/docencia/horarios/a/b/c

Se tiene una raíz común para todas las páginas y al final se tienen tres números los cuales representan:

a =año y número de semestre

b = clave del plan de estudios

c = número de materia

Para este trabajo tomamos en cuenta sólo los planes de estudio vigentes hasta el semestre 2020-1. Es decir, tomamos todos los planes mostrados en la tabla Tabla 2.1, salvo el plan 1972 de Actuaría (el cual ya no está vigente). Dicha tabla muestra los planes de estudio de cada carrera con su clave correspondiente.

PLAN	CLAVE		
	Actuaría		
1972	214		
2000	119		
2006	1176		
2015	2015 2017		
Ciencias de la Computación			
1994	218		
2013	1556		
]	Matemáticas		
1983 217			
Matemáticas Aplicadas			
2017 2055			

Tabla 2.1: Planes de estudio por carrera con clave: La clave de cada plan de estudios se sutituye en **b** en la estructura de las URL's de las páginas de la Facultad.

Una vez identificada la estructura de las URL's pudimos realizar la búsqueda de información de manera automatizada. Originalmente decidimos que $c \in \{1, 2, 3, ..., 10000\}$. Después hicimos una función que genera una matriz llamada $mat_posibles_url$. La función sólo guarda las URL's que si existen. La descripción de lo que contiene cada columna de la matriz $mat_posibles_url$ la podemos ver en la Tabla 2.2. Finalmente al obtener dicha matriz, observamos que el valor máximo que toma c es 991, por lo que redujimos su conjunto de posibles valores y definimos $c \in \{1, ..., 1000\}$.

Col.	Nombre	Explicación	Posibles valores
1	Semestre	Semestre al que pertenece la materia (Año y	20081,, 20192, 20201
		semestre)	
2	Plan	Año en el que se implementó un nuevo plan	1983, 1994, 2000, 2006,
		de estudios	2013, 2015, 2017
3	Materia	Clave del curso impartido	N
4	URL	Nombres de las páginas de los horarios de la	Páginas web de la Facultad
		Facultad	
5	Num. Grupos	Número de grupos que hay en cada página	N
		de internet	

Tabla 2.2: Descripción de las columnas de la matriz mat_posibles_url: La matriz contiene información de cada URL existente.

Decidimos buscar información en 25 semestres, del 2008-1 al 2020-1. Al multiplicar el número de semestres por los posibles valores de \mathbf{c} (25 × \mathbf{c}) obtuvimos un número cercano a 25,000. Este valor es una aproximación del número de posibles URL's con información de los horarios de la Facultad. Notemos que no estamos contando los planes de estudio, de ser así el número supera las 170,000 posibles URL's. Deseamos obtener información de cada una de esas páginas. Obtener dicha información ingresando a cada una de las páginas es complicado por lo que es necesario hacerlo de manera automatizada. Para extraer los datos de las páginas de la Facultad utilizamos una aplicación de *Google Chrome* llamada *SelectorGadget*. La cual explicamos en la siguiente sección.

2.2. Extracción de datos con la aplicación SelectorGadget

La aplicación *SelectorGadget* permite seleccionar la información deseada y arroja una sección del código CSS de una página web. Dicho código se introduce en *R* para poder seleccionar y descargar la información deseada. A continuación veremos los pasos que se deben de seguir para obtener el código CSS de la información seleccionada. Los colores y señalizaciones mencionados hacen referencia a la Figura 2.2. En dicha figura podemos ver un ejemplo del funcionamiento de la aplicación.

- 1. Presionar el ícono de la aplicación, el cual es una lupa (señalado por la flecha roja).
- 2. Seleccionar la información deseada (en color verde).
- 3. La aplicación automáticamente selecciona todas las entradas que coindiciden (en color amarillo).
- 4. En caso de que se haya seleccionado más información de la deseada entonces dar click sobre la información excedente (en color rojo).
- 5. En el cuadro de texto, la aplicación arroja la sección del código CSS correspondiente a la información seleccionada. También muestra el número de entradas selecionadas (en óvalos rojos).

Figura 2.2: Aplicación SelectorGadget: En esta figura se muestra cómo se ve una página de horarios de la Facultad al usar la aplicación SelectorGadget mientras se selecciona la información que deseamos extraer.

En el ejemplo mostrado en la Figura 2.2, se seleccionaron 15 entradas correspondientes a los nombres de los profesores en una página con la información de la materia *Probabilidad I*, en el plan 2015 de Actuaría. Los pasos a seguir son los mismos sin importar la información que se desea obtener, lo único que cambia es el código CSS que arroja la aplicación.

2.3. Tipos de grupos de las páginas web de la Facultad de Ciencias

Al inicio encontramos tres tipos de grupos dentro de las páginas de horarios de la Facultad. Cada uno con información similar, pero hicimos la separación de acuerdo a sus diferencias. Cabe mencionar que en este trabajo consideramos como semestre actual al semestre 2020-1. En todos los grupos se puede encontrar la información del nombre de profesor, nombre del o de los ayudantes, salón, horario y el número de alumnos inscritos en el grupo.

a) En el grupo **A** se tienen las páginas correspondientes al semestre actual. Este grupo tiene la información del número de lugares diponibles por salón, pero no contiene la información de los exámenes finales, porque se considera que el semestres aún está en curso y aún no termina. En la Figura 2.3 podemos ver un ejemplo de este tipo de grupo.

Grupo 9301, 129 lugares. 84 alumnos.

Profesor Jose Luis Navarro Urrutia Iu mi vi 13 a 14 Aula Magna I

Ayudante Luz Candy Becerril Palacios ma ju 13 a 14 Aula Magna I

Ayudante Gabriela Yaneth Romo Cordoba ma ju 13 a 14 Ayudante Adrián Gallardo Pacheco ma ju 13 a 14

Figura 2.3: Tipo de grupo A: Correspondiente al semestre en curso que aún no finaliza.

b) En el grupo **B** se tienen las páginas correspondientes a semestres entre el 2018 – 2 y el semestre anterior al actual, con respecto al año en curso. En este tipo de grupos se tiene información del número de lugares disponibles por salón y la información de los exámenes finales, porque son semestres que ya finalizaron. En la figura Figura 2.4 encontramos un ejemplo de este tipo de grupo.

Grupo 9027, 112 lugares, 68 alumnos

Exámenes finales martes 29 de mayo 2018 y martes 5 de junio 2018 de 18 a 20

Profesor Martin Martinez Estrada Iu mi vi 18 a 19 Aula Magna I

Ayudante Eleazar Bello Cervantes ma ju 18 a 19 Aula Magna I

Ayudante José Eduardo Quintero García ma ju 18 a 19

Presentación

Figura 2.4: *Tipo de grupo B: Correspondiente a semestres ya finalizados, posteriores al semestre 2018-2.*

c) En el grupo C se tienen las páginas correspondientes a semestres anteriores al 2018 – 1, incluyéndolo. Este tipo de grupos tiene información de los exámenes finales, pero no contiene la información del número de lugares disponibles por salón. En la figura Figura 2.5 podemos ver un ejemplo.

Grupo 9259 72 alumnos.

Exámenes finales jueves 11 de enero 2018 y jueves 18 de enero 2018 de 18 a 20.

Profesor Francisco Sánchez Villarreal Iu mi vi 18 a 19 P213

Ayudante Santiago Lara Jiménez ma ju 18 a 19 P213

Ayudante José Oscar Rosales Vergara ma ju 18 a 19

Figura 2.5: Tipo de grupo C: Correspondiente a semestres ya finalizados, anteriores al semestre 2018-1, incluyéndolo.

2.4. Limpieza de base de datos

Se puede encontrar que, en general, cuando uno realiza la limpieza de datos se hace el 80 % del análisis de los datos. Es en ese momento en donde se encuentran los diferentes problemas que se pueden presentar. Se pueden encontrar posibles errores en los datos, información incompleta, o valores poco comunes de acuerdo al comportamiento observado. Los problemas que encontramos al limpiar los datos se desglosan en las siguientes subsecciones.

2.4.1. Problemas de falta de información

Encontramos diferentes tipos de páginas que tenían grupos sin información e incluso páginas sin información alguna. Para guardar la información consideramos sólo los grupos que al menos tenían: nombre de profesor, número de alumnos inscritos y horario. A continuación se muestran varios ejemplos con los diferentes casos de falta de información encontrados.

- En la Figura 2.6 vemos un ejemplo de páginas en las cuales se tiene el nombre de la materia, pero no hay información de algún grupo: http://www.fciencias.unam.mx/docencia/horarios/20081/1556/803

Figura 2.6: Ejemplo de página web en blanco: En este tipo de páginas no encontramos información de los grupos para la materia.

- En la Figura 2.7 encontramos un ejemplo de páginas que no tienen información del salón: http://www.fciencias.unam.mx/docencia/horarios/20081/119/4

Figura 2.7: Ejemplo de grupo sin información de salón: En este tipo páginas no se muestra el salón en el que se imparte la clase.

- En la Figura 2.8 tenemos un ejemplo de páginas que tienen grupos sin información del número de alumnos inscritos en el grupo: http://www.fciencias.unam.mx/docencia/horarios/20112/119/630

Actuaría (plan 2000) Procesos Estocásticos I, Optativas Buscar en grupos Grupo 6157 2 alumnos. Profesor Fernando Guerrero Poblete lu mi vi 12 a 13 O216 Ayudante Héctor Alonso Olivares Aguayo ma ju 12 a 13 O216 Ayudante Rafael Martínez Sánchez ma ju 12 a 13 Ayudante Alfredo Hérnandez Lammoglia ma ju 12 a 13 Grupo 6192 3 alumnos. Profesor Guillermo Garro Gómez lu mi vi 18 a 19 O122 Ayudante Martín Martínez Estrada ma ju 18 a 19 O122 Grupo 6193 Profesor Fernando Baltazar Larios lu mi vi 17 a 18 O221 Ayudante Estela Eréndira Zamora García ma ju 17 a 18 O221

Figura 2.8: Ejemplo de grupo sin información de alumnos: En este tipo páginas encontramos grupos que no tienen el número de alumnos inscritos.

- En la Figura 2.9 vemos un ejemplo de páginas que tienen grupos sólo con el horario, sin nombre del profesor, salón, ayudante, número de alumnos, lugares disponibles: http://www.fciencias.unam.mx/docencia/horarios/20091/119/841

Figura 2.9: Ejemplo de grupo sólo con horario: En este tipo páginas existen grupos que no tienen información del profesor o salón ni del número de alumnos inscritos, sólo tienen la clave del grupo y el horario.

2.4.2. Problemas de información repetida

Dentro de los problemas de información repetida, para guardar la información, juntamos aquellos grupos que provenían del mismo grupo. A continuación presentamos los casos que encontramos con el problema de tener información repetida.

- El número del plan de estudios corresponde al año en que entró en vigencia el plan. Por ejemplo, si se tiene un plan 2015 en Actuaría, entonces dicho plan comenzó a tener vigencia en el año 2015. Debido a ésto no debería de existir un horario con un plan posterior al año del semestre.

En la subfigura (a) de la Figura 2.10 podemos ver una materia de la carrera de Ciencias de la Computación del semestre 2008-2, con el plan 2013, lo cual no es cronológicamente correcto: http://www.fciencias.unam.mx/docencia/horarios/20082/1556/803. En la subfigura (b) de la misma figura, vemos la información de la misma materia y del mismo grupo pero con el plan 1994: http://www.fciencias.unam.mx/docencia/horarios/20082/218/803.

(b) Plan de estudios correspondiente

Figura 2.10: Ejemplo de información repetida (Planes de estudio): No deberían de existir grupos con planes posteriores al año del semestre en el que se busca información.

- En la Figura 2.11 vemos un ejemplo en donde se tiene una misma materia con nombres distintos para las diferentes carreras: http://www.fciencias.unam.mx/docencia/horarios/20201/217/1712 para Matemáicas, plan 1983 y http://www.fciencias.unam.mx/docencia/horarios/20201/2017/1739 para Actuaría, plan 2015. Notamos que la información en ambas páginas es la misma, sólo cambian las claves de los grupos.

Figura 2.11: *Ejemplo de información repetida: Materia con nombres distintos: En estos casos se tienen materias que tienen nombres diferentes de acuerdo a la carrera o plan de estudios.*

- En la Figura 2.12 tenemos un ejemplo de profesores que imparten dos o más clases distintas en el mismo horario y diferente salón: http://www.fciencias.unam.mx/docencia/horarios/20111/2017/162 para Ecuaciones Diferenciales I y http://www.fciencias.unam.mx/docencia/horarios/20111/2017/91 para Cálculo Diferencial e Integral I.

Las materias mencionadas son diferentes, pero las clases comienzan a la misma hora, *Ecuaciones Diferenciales I* de 18-19hrs y *Cálculo Diferencial e Integral I* de 18-20hrs,

dado que se tiene la misma ayudante pudiera ser que se intercambien las horas, pero no se puede asignar más de una clase a la misma hora al mismo profesor.

Actuaría (plan 2015) Ecuaciones Diferenciales I, Cuarto Semestre Buscar en grupos Grupo 1772 15 alumnos. Profesor Edgar René Hernández Martínez Iu mi vi 18 a 19 0123 Ayudante Norma Angélica Cruz Cervantes ma ju 18 a 19 0123 (a) Ecuaciones Diferenciales I Actuaría (plan 2015) Cálculo Diferencial e Integral I, Primer Semestre Buscar en grupos Grupo 1039 54 alumnos. Profesor Edgar René Hernández Martínez Iu a vi 18 a 19 ciller Interdisciplinario de Física y Biomedicina I Ayudante Norma Angélica Cruz Cervantes Iu mi vi 19 a 20 aller Interdisciplinario de Física y Biomedicina I Ayudante Luis Felipe Rivera Flores

(b) Cálculo Diferencial e Integral I

Figura 2.12: Ejemplo de información repetida (mismo profesor, materias distintas): En este caso se tiene más de una clase impartida por el mismo profesor a la misma hora en diferente salón lo cual no debería de ocurrir.

2.4.3. Otros problemas al extraer información

En algunos de los problemas que surgieron, encontramos detalles particulares que tuvimos que resolver caso por caso. Ésto para poder guardar la información de manera adecuada. A continuación se presentan los diferentes casos encontrados:

- Dentro de la obtención de datos del número de alumnos, no se lee la información cuando se tiene *Un alumno*, ya que no se reconoce el texto *Un* como el número 1. En la Figura 2.13 vemos un ejemplo de este caso.

Grupo 6125 Un alumno.

Profesor Reyna Pineda González lu mi vi 21 a 22 102

Ayudante Elmo Jesús Viloria López ma ju 21 a 22 102

Figura 2.13: Ejemplo de grupo con un alumno: En este caso se tiene el texto "Un" y no un número "1".

Para resolver este problema se identificó la variable tipo *string* igual a *Un* para convertir la información y así poder utilizar los datos obtenidos.

- El algoritmo supone que todas las clases duran una hora y no se consideran las medias horas: http://www.fciencias.unam.mx/docencia/horarios/20172/1556/820. En la Figura 2.14 mostramos un ejemplo en donde se considera que esa materia inicia a las 18hrs.

```
Grupo 7014, 41 lugares. 19 alumnos.

Profesor Luis Alberto Ramírez Bermudez ma ju 18:30 a 20 aller de Control y Electrónica

Ayudante Valente Vázquez Velázquez lu mi 20 a 21 Taller de Control y Electrónica

Ayud. Lab. Valente Vázquez Velázquez ju 14 a 16 Taller de Control y Electrónica
```

Figura 2.14: Ejemplo de grupo con medias horas: Se considera que las materias inician en horas enteras y no a las medias horas.

Se tienen materias con múltiples horarios: http://www.fciencias.unam.mx/docencia/horarios/20181/2055/1323. En estos casos sólo se registran los horarios y salones en los que los profesores imparten su clase, no se toman en cuenta las clases impartidas por los ayudantes.

En la Figura 2.15 tenemos un ejemplo de este caso en donde el profesor imparte su clase los lunes, miércoles y viernes de 13-14hrs en el salón O215, hay una ayudantía los martes y jueves de 13-14hrs en el salón O215 y otra ayudantía los martes de 11-13hrs en el salón 304 (Yelizcalli). Se considera que esta materia inicia a las 13hrs y se imparte en el salón O215.

Matemáticas Aplicadas (plan 2017)

Figura 2.15: Ejemplo de grupo con horarios múltiples: En estos grupos sólo se toman en cuenta los horarios y salones en los que los profesores imparten clase.

- Las materias de inglés no se imparten todos los días de la semana, en algunos casos se imparten clases en línea: http://www.fciencias.unam.mx/docencia/horarios/20202/2017/1135. Se registran únicamente los horarios de los días en que se imparten las clases presenciales. En la Figura 2.16 mostramos un ejemplo de este caso.

Grupo 9296, 45 lugares. 20 alumnos.

Profesor Lilian Moreno Roldár sá 7 a 9 Sesión virtual ma 4 a 16 P207

Figura 2.16: Ejemplo de grupo de inglés: Las clases no se imparten todos los días. Hay sesiones virtuales. Sólo se toma en cuenta el horario de las clases presenciales.

- Se tienen grupos que no tienen la misma estructura que los tipos de grupos A, B y C definidos en la Sección 2.3: http://www.fciencias.unam.mx/docencia/horarios/20201/2017/872, debido a ello el código CSS utilizado no sirve para obtener toda la información que se puede obtener del grupo. En la Figura 2.17 tenemos un ejemplo de este caso en donde no se lee adecuadamente el número de alumnos inscritos en el grupo.

Actuaría (plan 2015)

Figura 2.17: Ejemplo de grupo con estructura diferente: En estos casos no se extrae adecuadamente la información de los grupos porque el código CSS utilizado no corresponde a este tipo de grupos.

2.5. Matrices de datos

Una vez que se realizó el proceso de la limpieza de los datos obtenidos, éstos se guardaron, por semestre, en matrices llamadas m_grande . Los nombres de sus columnas con su respectiva explicación y posibles valores, se muestran en la siguiente tabla:

Col.	Nombre	Explicación	Posibles valo-
			res
1	Materia	Nombre de algún curso impartido en la	"Probabilidad
		Facultad	I"
2	Profesor	Nombre de la persona que va a impartir	"Arrigo Coen
		alguna materia	Coria"
3	Horario	Hora en la que se imparte alguna materia	"7 a 8", ,
			"21 a 22"
4	horario_num	Valores de la columna Horario en varia-	$7, 8, 9, \dots, 20, 21$
		bles tipo <i>numeric</i>	

La tabla continúa en la siguiente página

Col.	Nombre	Explicación	Posibles valo-
			res
5	Lugares	Espacios disponibles por salón	N
6	Alumnos	Número de estudiantes inscritos por gru-	N
		po	
7	Salón	Espacio físico en el que se imparte alguna	"O218",,
		materia	"P105"
8	Grupo	Clave con la que se identifica una asignación	4489, 6114,
9	Carrera	Nombre de alguna carrera de la Facultad	"Actuaría",
			"Matemáti-
			cas",
10	Plan	Año en el que se implemento un nuevo	1983, 1994,,
		plan de estudios	2017
11	Semestre	Semestre al que pertenece la materia (Año	20081, ,
		y semestre par o impar)	20192, 20201
12	Cambios	Clave que indica los cambios que se le	$\mid \mathbb{N} \mid$
		han hecho al grupo	
13	Turno	Matutino: 7:00-14:00hrs, Vespertino:	M,V
		15:00-21:00	
14	Semestre_de_materia	Semestre en el que el plan de estudios dic-	"Primer Se-
		ta que se lleva esa materia	mestre",,
			"Optativas"
15	url	Nombre de la página de los horarios de la	url's de la Fa-
		Facultad correspondiente al grupo	cultad
16	Act2000	Columna binaria, indica si el grupo perte-	0,1
		nece a la carrera de Actuaría, plan 2000	
17	Act2006	Columna binaria, indica si el grupo perte-	0,1
10		nece a la carrera de Actuaría, plan 2006	
18	Act2015	Columna binaria, indica si el grupo perte-	0,1
10	G1G1004	nece a la carrera de Actuaría, plan 2015	0.1
19	CdC1994	Columna binaria, indica si el grupo perte-	0,1
20	G1G2012	nece a la carrera de CdC, plan 1994	0.1
20	CdC2013	Columna binaria, indica si el grupo perte-	0,1
2.1	35.4002	nece a la carrera de CdC, plan 2013	0.1
21	Mat1983	Columna binaria, indica si el grupo per-	0,1
		tenece a la carrera de Matemáticas, plan 1983	
22	MatAp2017	Columna binaria, indica si el grupo perte-	0,1
		nece a la carrera de MatAp, plan 2017	
23	NomMat_Act2000	Indica el nombre de las materia corres-	Nombres de
		pondiente a la carrera de Actuaría plan	materias de la
		2000	Facultad

La tabla continúa en la siguiente página

Col.	Nombre	Explicación	Posibles valo-
			res
24	NomMat_Act2006	Indica el nombre de las materia corres-	Nombres de
		pondiente a la carrera de Actuaría plan	materias de la
		2006	Facultad
25	NomMat_Act2015	Indica el nombre de las materia corres-	Nombres de
		pondiente a la carrera de Actuaría plan	materias de la
		2015	Facultad
26	NomMat_CdC1994	Indica el nombre de las materia corres-	Nombres de
		pondiente a la carrera de CdC plan 1994	materias de la
			Facultad
27	NomMat_CdC2013	Indica el nombre de las materia corres-	Nombres de
		pondiente a la carrera de CdC plan 2013	materias de la
			Facultad
28	NomMat_Mat1983	Indica el nombre de las materia corres-	Nombres de
		pondiente a la carrera de Matemáticas	materias de la
		plan 1983	Facultad
29	NomMat_MAp2017	Indica el nombre de las materia corres-	Nombres de
		pondiente a la carrera de MatAp plan	materias de la
		2017	Facultad
30	URL_Act2000	Indica la URL correspondiente a la carre-	url de la Facul-
		ra de Actuaría plan 2000	tad
31	URL_Act2006	Indica la URL correspondiente a la carre-	url de la Facul-
	7777 1 2017	ra de Actuaría plan 2006	tad
32	URL_Act2015	Indica la URL correspondiente a la carre-	url de la Facul-
	7777 6161001	ra de Actuaría plan 2015	tad
33	URL_CdC1994	Indica la URL correspondiente a la carre-	url de la Facul-
2.4	HDL G1G0010	ra de CdC plan 1994	tad
34	URL_CdC2013	Indica la URL correspondiente a la carre-	url de la Facul-
25	LIDI M (1002	ra de CdC plan 2013	tad
35	URL_Mat1983	Indica la URL correspondiente a la carre-	url de la Facul-
26	HDI 164 0017	ra de Matemáticas plan 1983	tad
36	URL_MAp2017	Indica la URL correspondiente a la carre-	url de la Facul-
27	NT.	ra de MatAp plan 2017	tad
37	Num_materia	Número de materia de acuerdo al vector	N
Table /		vec_nom_materias	

Tabla 2.3: Descripción de las columnas de la matriz m_grande: En esta tabla se describe el contenido de las columnas de las matrices en las que se guarda la información por semestres.

La columna *Cambios*, va a guardar todos los cambios que ha tenido cada grupo. El significado de los números que pueden aparecer en esa columna se explican a continuación:

- (1) Grupos con detalles particulares.
- (2) Se anotaron los días en los que se imparte la materia, en la columna *Horario*, por ejemplo cuando había conflicto debido a que el profesor impartía más de una materia a la misma hora, al revisar el caso se encontró que los días en los que se impartía la clase

23

era distinto.

- (3) Se eliminaron los grupos repetidos, al juntar la información en un mismo grupo.
- (4) Páginas que no tienen información del salón.
- (5) Actualización del número de materia por cambio de nombre o agrupamiento de materias.

Capítulo 3

Análisis estadístico

Debido a la naturaleza de los datos, las herramientas elegidas para realizar un análisis estadístico de los datos fueron las series de tiempo. A continuación se describe su definición y aplicación para explicar el motivo de la elección de dichas herramientas estadísticas.

Definimos a una serie de tiempo como una secuencia de observaciones X_t ordenadas cronológicamente. Los datos al tiempo presente dependen de las observaciones anteriores, es decir existe una depencia de X_t con $\{X_{t-1}, X_{t-2}, X_{t-3}, \dots, X_2, X_1, X_0, \dots\}$.

Denotamos a una serie de tiempo como:

$$X_t = m_t + s_t + y_t, \tag{3.1}$$

donde las componentes de la serie de tiempo m_t, s_t, y_t , tienen las siguientes propiedades:

- Tendencia (m_t) : Se le llama tendencia al cambio, a largo plazo, del promedio de los datos. El cambio puede ser creciente o decreciente.
- Estacionalidad (s_t) : Se llama variación estacional a las fluctuaciones periódicas que tiene una serie de tiempo. La longitud de cada periodo es constante y por lo general menor o igual a un año, por ejemplo semanal, mensual o semestral.
- Aleatoriedad (y_t) : También llamada componente irregular, son series de residuales que pueden o no ser aleatorios.

Chatfield y Xing, en su libro *The Analysis of Time Series An Introduction with R* [2], nos indican que existen 2 tipos de variación estacional:

- Aditiva: Se dice que la estacionalidad es aditiva cuando la longitud de cada periodo es constante año con año.
- Multiplicativa: Se dice que la estacionalidad es multiplicativa cuando la longitud de cada periodo es directamente proporcional a la media de los datos de la serie de tiempo.

Con estos tipos de variaciones se forman 3 modelos de estacionalidad:

1. Aditivo: En este modelo se tiene variación estacional aditiva. Se utiliza cuando la varianza o la desviación estándar de la serie de tiempo se mantienen constantes a lo largo

del tiempo. El modelo aditivo se denota como:

$$X_t = m_t + s_t + y_t. (3.2)$$

2. Multiplicativo: En este modelo se tiene variación estacional multiplicativa. Se utiliza cuando la varianza o la desviación estándar de los datos cambian a través del tiempo. Su variabilidad puede ser mayor o menor conforme pasa el tiempo. El modelo multiplicativo se denota como:

$$X_t = m_t s_t y_t. (3.3)$$

3. Mixto: Este modelo se utiliza cuando se tiene variación estacional multiplicativa pero la variabilidad de la componente irregular se mantiene constante a lo largo del tiempo. El modelo mixto se denota como:

$$X_t = m_t s_t + y_t. (3.4)$$

Los objetivos principales al hacer el análisis de una serie de tiempo son:

- Describir: Leer datos en una tabla es mucho más tardado y en algunas ocasiones más complicado que observar una gráfica de los datos que se tienen. Las gráficas ayudan a ver de una manera más inmediata el comportamiento que tienen los datos y es posible observar si la serie de tiempo tiene alguna tendencia o estacionalidad. También se puede ver la posible falta de información o valores atípicos.
- Predecir: Teniendo una serie de tiempo se desea conocer qué va a pasar en el futuro.
 Es conveniente tener varios periodos de información para que la predicción sea lo más acertada posible.

Las áreas en las que se pueden aplicar las series de tiempo son por ejemplo en economía, demografía, finanzas, medio ambiente, ingeniería o medicina. En estas áreas, algunos ejemplos de su aplicación son: precios de acciones diarios, niveles de producción en la agricultura mensuales, medición del sonido por segundos, barriles de petróleo producidos al año, electrocardiogramas, medición de terremotos, tasa de mortalidad, tasa de natalidad, entre otros.

3.1. Análisis estadístico básico

En esta sección haremos un análisis básico de los datos correspondientes a las carreras del Departamento de Matemáticas. Para dicho análisis utilizaremos series de tiempo. Las técnicas de suavizamiento de series de tiempo son útiles para mostrar patrones subyacentes en los datos de las series de tiempo.

Utilizamos la función ts(), de *R* para convertir los datos en serie de tiempo. Con la función decompose() obtuvimos un objeto de la clase *decomposed.ts* de *R*. Graficamos este objeto para poder ver las componentes de la serie de tiempo (ver Figura 3.1). En dicha figura se observan 4 diferentes gráficas, en la primera, de arriba hacia abajo, se observan los datos reales del número total de alumnos para cada semestre. En la segunda se muestra la tendecia de los datos, la cual notamos que es creciente. En la tercera vemos la componente estacional que nos indica que los datos tienen una estacionalidad semestral. En la cuarta se ve la componente aleatoria de los datos la cual ya no tiene estacionalidad ni tendencia.

Decomposition of additive time series

Figura 3.1: Descomposición por el método aditivo de Holt-Winters: Los datos considerados en esta descomposición es el número total de alumnos por semestre.

El método que vamos a utilizar para mostrar los patrones de los datos es el método Holt-Winters aditivo. Este método se utiliza para describir y predecir valores con series de tiempo que tienen componentes de tendencia aproximadamente lineal y de estacionalidad. Para probar éstos supuestos, existen diversas pruebas estadísticas. En las siguientes subsecciones veremos algunas de ellas. En cada una de las subsecciones presentaremos algunas gráficas de series de tiempo y otras de sus valores acumulados. Con ellas observaremos el comportamiento de los datos y probaremos lo que se ve en las gráficas con las respectivas pruebas. Con ésto comprobaremos que los datos cumplen con los supuestos del método.

3.1.1. Prueba de tendencia

Al inicio de este capítulo vimos que se le llama tendencia al cambio, a largo plazo, del promedio de los datos. En la Figura 3.2 se muestra la gráfica de la media del número de alumnos que toman clases por semestre de todas las materias. Observamos que los valores tienen una tendencia creciente, ésto nos indica que cada semestre, en promedio, el número de alumnos incrementa en la Facultad.

Figura 3.2: Media de alumnos por semestre: Se observa una tendencia creciente en la media de alumnos por semestre. La información corresponde a los semestres del 2008-1 al 2020-1.

Para probar que los datos no son aleatorios y tienen una tendencia, utilizamos la función cox.stuart.test(X), de R. Por [1] sabemos que se rechaza H_0 si p-value $\leq \alpha$. Siendo α el nivel de significancia. Sea $\alpha = 0.01$.

En la Figura 3.3 se muestran los resultados de la prueba Cox-Stuart. Dicha prueba tiene como hipótesis nula H_0 :

Primero probamos con H_0 : Los datos provienen de una muestra aleatoria (se rechazó la hipótesis nula)

Después con la alternativa = left.sided probamos H_0 : Los datos tienen una tendencia creciente (no se rechazó la hipótesis nula)

3.1.2. Prueba de estacionalidad

En la Figura 3.4 se muestra la gráfica de barras con el número total de alumnos que toman clases por semestre. A simple vista notamos que tiene una tendencia creciente y una estacionalidad semestral. Podemos ver también que, en general, el número de alumnos de los semestres impares es mayor al de su siguiente semestre par. Este fenómeno los vimos en la Figura 1.1 al hacer el análisis correspondiente a los datos de la materia *Probabilidad I*.

Número de alumnos totales

Figura 3.4: Número total de alumnos por semestre: En esta figura se muestra la gráfica de barras del número total de alumnos inscritos por cada semestre. Se observa que año con año el número aumenta. En general, el número de alumnos de los semestres impares es mayor que el de su respectivo semestre par.

Para la prueba tomamos los datos de la componente estacional

En la Figura 3.5 se muestran los resultados de la prueba Webel-Ollech para estacionalidad. Dicha prueba tiene como hipótesis nula H_0 :

3.1.3. Prueba de homocedasticidad

En la Figura 3.6 se muestra la gráfica de la desviación estándar del número de alumnos por grupo y por semestre de todas las materias. Observamos que los valores se mantienen

constantes a lo largo del tiempo, en un rango de entre 24 y 29 alumnos.

Desviación estandar de alumnos por semestre

Figura 3.6: Desviación estándar del número de alumnos por semestre: Se muestra el comportamiento de los datos el cual es constante a lo largo del tiempo.

Semestres

Utilizamos la prueba Breusch-Pagan que tiene como supuesto que la componente aleatoria $error\ terms$ se ditribuyen normal. Para ello utilizamos la prueba Jarque-Bera para normalidad jarque.bera.test(X), de R. Tiene como hipótesis nula H_0 : Los datos provienen de una distribución normal

En la Figura 3.7 vemos

p-value = $0.3297 > 0.01 = \alpha \Rightarrow NOserechazaH_0$: por lo tanto los residuales provienen de una distribución normal

> jarque.bera.test(num_total_alum.random)

Jarque Bera Test

data: num_total_alum.random
X-squared = 2.2189, df = 2, p-value = 0.3297

Figura 3.7: Prueba de normalidad:...

En la Figura 3.8 vemos

p-value = $0.2561 > 0.01 = \alpha \Rightarrow NOserechazaH_0$: por lo tanto la varianza de los residuales es constante. El ajuste del modelo lineal con la función $lm(X^*t)$ es con respecto al tiempo

*** CHECAR SI ESTÁ BIEN LA PRUEBA ***

Con las pruebas confirmamos que se puede utilizar el método Holt-Winters ya que se cumplen los supuestos que se requieren. Para verificar que el modelo de estacionalidad adecuado es el aditivo, vemos la Figura 3.6 y notamos que la desviación estándar permanece constante a lo largo del tiempo.

Con estas observaciones concluímos que el método Holt-Winters aditivo es el método adecuado para poder hacer predicciones con nuestros datos.

3.2. Análisis estadístico por grupo de datos

En la Figura 3.9 vemos la gráfica del número de alumnos separado por semestres pares e impares. Se observa un comportamiento similar al de la Figura 1.1, de la Sección 1.6. Vemos con mayor claridad lo que ocurre en la Figura 3.4, los datos efectivamente tienen una tendencia creciente. Notamos que el número de alumnos de los semestres impares es mayor al número total de alumnos de los semestres pares en todos los semestres, salvo en el semestre 2018-1 en donde el número de alumnos es menor a los de los semestres adyacentes.

Número de alumnos de semestres pares e impares

Figura 3.9: Número de alumnos de semestres pares e impares: Se observa una tendencia creciente y en general el número de alumnos de semestres impares (línea azul) es mayor al número de alumnos de semestres pares (línea roja).

En la Figura 3.10 observamos los dos histogramas con el número total de alumnos de semestres pares e impares con sus respectivas densidades ajustadas. Notamos que hay una ligera diferencia entre el número de alumnos de los semestres pares con respecto al número de alumnos de los semestres impares. Existe una mayor cantidad de grupos en los semestres pares con un menor número de alumnos, que en los semestres impares. Hay una mayor cantidad de grupos en los semestres impares contra los semestres pares, que tienen entre 35 y 100 alumnos. Tanto para los semestres pares como para los impares, el comportamiento de las densidades ajustadas es muy parecido.

Figura 3.10: Histogramas del número de alumnos de semestres pares e impares: Las densidades ajustadas son muy parecidas, no importa si los datos son de semestres pares o impares.

En la Figura 3.11 mostramos la gráfica del número de alumnos por turno: matutino y vespertino. Se puede observar que en todo momento el número de alumnos del turno matutino es mayor al número de alumnos del turno vespertino.

Figura 3.11: Número de alumnos por turno de todos los semestres: Se observa que la línea azul (turno matutino) está en todo momento por encima de la línea roja (turno vespertino).

Los datos que se graficaron en el histograma de la Figura 3.12 son los alumnos totales por hora de cada semestre. En dicha figura se muestran los dos histogramas con los datos divididos en los turnos matutino y vespertino. Notamos que las densidades ajustadas de cada turno son completamente diferentes. Al ver la gráfica podemos concluir que hay más alumnos en el turno matutino que en el vespertino.

Figura 3.12: Histogramas del número de alumnos de los turnos matutino y vespertino: Al observar esta figura podemos concluir que hay más alumnos en el turno matutino que en el vespertino. Sus densidades ajustadas son diferentes.

3.3. Análisis estadístico por carrera

Es importante recordar que dentro de las carreras existe un tronco común. Es decir, comparten muchas de las materias impartidas en los primeros 4 semestres, por lo que muchos de los grupos de una carrera se encuentran en otra. Cabe mencionar que el número máximo de alumnos por grupo para la carrera de Ciencias de la Computación es 211 y para las otras carreras es 353.

En la Figura 3.13 vemos cuatro histogramas con el número de alumnos por grupo, uno para cada carrera del Departamento de Matemáticas. La escala del eje *Y* es igual para todos los histogramas. De esta manera podemos observar que en las carreras de Actuaría, Ciencias de la Computación y Matemáticas, se tiene la mayor concentración en los grupos de entre 10 y 20 alumnos. La carrera de Matemáticas Aplicadas tiene su mayor concesntración en los grupos que tienen entre 20 y 30 alumnos.

Figura 3.13: Histogramas del número de alumnos por carrera: Se muestran los histogramas con el número de alumnos por grupo. Hay un histograma para cada carrera del Departamento de Matemáticas.

En la Figura 3.14 vemos una gráfica con las densidades ajustadas a los datos del número de alumnos por grupos para cada carrera. Al ver la densidad ajustada a los datos de la carrera de Matemáticas vemos que tiene una mayor concentración de grupos que tienen aproximadamente entre 10 y 30 alumnos, a diferencia de las otras carreras. También podemos observar que en Actuaría y en Matemáticas Aplicadas hay una mayor concentración en los grupos que tienen aproximadamente entre 50 y 75 alumnos, que en Matemáticas o en Ciencias de la Computación. Si vemos la densidad ajustada a los datos de Ciencias de la Computación notamos que hay dos grandes concentraciones, una en los grupos de aproximadamente entre 20 y 30 alumnos y otra entre 40 y 50 alumnos. Con esta gráfica podemos ver con mayor claridad lo que observamos en la Figura 3.13, el comportamiento es similar para todas las carreras pero cada una tiene su propia distribución.

Figura 3.14: Densidades del número de alumnos por carrera: Se muestran las densidades ajustadas para cada carrera del Departamento de Matemáticas.

3.4. Distribución del tamaño de los grupos

En la Figura 3.15 se muestra el histograma del número de alumnos por grupo de todos los semestres, desde el 2008-1 hasta el 2020-1. Observamos el mismo comportamiento que en las Figuras 3.10, 3.13 y 3.14. La mayor frecuencia se encuentra en los grupos que tienen entre 10 y 20 alumnos.

Figura 3.15: Histograma del número de alumnos por grupo de todos los semestres: La información es de los semestres del 2008-1 al 2020-1. Vemos una mayor concentración en los grupos que tienen entre 10 y 40 alumnos.

En la Figura 3.16 vemos diferentes líneas con las densidades ajustadas a los valores del número de alumnos por grupo de cada semestre. Cada línea corresponde a un semestre. Se tomaron los datos de 25 semestres, del 2008-1 al 2020-1. Notamos que el comportamiento va cambiando conforme pasa el tiempo.

En dicha figura, las líneas de color verde corresponden a las densidades ajustadas a los datos de los semestres del 2008-1 al 2012-2. Las de color rosa corresponden a los semestres del 2013-1 al 2017-2. Las de color azul corresponden a los semestres 2018-1 al 2020-1.

Vemos que en los semestres más antiguos se tiene una concentración mayor en los grupos que tienen aproximadamente entre 10 y 30 alumnos. En los semestres más recientes la mayor concentración se tiene en los grupos con aproximadamente entre 25 y 50 alumnos. Esto lo podemos explicar con el hecho de que cada semestre incrementa el número de alumnos inscritos en la facultad, por lo tanto el tamaño de los grupos aumenta.

También podemos observar que conforme pasa el tiempo la media y la varianza aumentan. Es decir, en semestres antiguos se tiene una menor media y varianza. Ésto comparado con los semestres más actuales, los cuales tienen una media y varianza mayor.

Figura 3.16: Densidades del número de alumnos por grupo de cada semestre: Cada línea corresponde a la densidad ajustada de los datos de un semestre entre el 2008-1 y el 2020-1

En los semestres del 2013-1 al 2017-2 se tuvieron grupos con más de 350 alumnos. En los semestres más recientes el número máximo de alumnos por grupo fue alrededor de 250. Esto

lo podemos explicar por las medidas que se tomaron después del sismo del 19 de septiembre de 2017, con respecto al tamaño de los grupos. El número de alumnos inscritos no podía ser mayor al número de lugares disponibles por salón.

Viendo las Figuras 3.15 y 3.16, podríamos concluir que la distribución que mejor se ajusta al tamaño de los grupos es la distribución Poisson por la forma en la que están distribuidos los datos. Para probar esta hipótesis utilizamos la función ks.test(X,Y), de R, para hacer la prueba de Kolmogorov-Smirnov.

La prueba de Kolmogorov-Smirnov, dice que se rechaza H_0 cuando $D_n > D_n^{1-\alpha}$. Donde $D_n^{1-\alpha}$ nos indica el valor en donde inicia la región de rechazo para un nivel de significancia de α y n es el número de datos de la muestra. Tomamos como hipótesis nula $H_0: X$ y Y tienen la misma distribución.

Definimos a X como el vector con el número de alumnos por cada grupo del semestre 2008-1 al 2020-1. Definimos a Y como un vector de números aleatorios de una distribución $Poisson(\lambda)$. Por el resultado C.1, del apéndice C, sabemos que el estimador máximo verosímil de λ para la distribución $Poisson(\lambda)$ es la media de los datos. Con este estimador $(\hat{\lambda} = 34.18)$, obtuvimos los números aleatorios de Y. Tenemos que $Y \sim Poisson(34.18)$.

Por [5] sabemos que:

$$D_n^{1-\alpha} = \sqrt{\frac{\ln\left(\frac{1}{\alpha}\right)}{2n}} - 1.6693n^{-1} - 0.20562n^{-\frac{3}{2}}$$
(3.5)

En nuestro caso los valores de las variables son: n=17,246 y $\alpha=0.01$. Sustituyendo en la ecuación 3.5 tenemos que $D_{17246}^{0.99}=0.01$. Con la función ks.test(X,Y), de R, obtenemos el valor de $D_{17246}=0.39$.

Como $D_{17246}=0.39>0.01=D_{17246}^{0.99}$, entonces se rechaza H_0 , por lo tanto los datos no siguen una distribución Poisson con $\lambda=34.18$.

Hicimos otra prueba suponiendo que los datos tienen una distribución $Normal(\mu, \sigma)$. Para simular los datos de Y utilizamos los estimadores máximo verosímiles de μ y σ . Estos estimadores los obtuvimos con la función fitdistr(X, densfun="normal"), en R. Los valores de los estimadores son $\hat{\mu}=34.18$ y $\hat{\sigma}=26.57$. El resultado de la función de la prueba de Kolmogorov-Smirnov es $D_{17246}=0.10$.

Como $D_{17246} = 0.10 > 0.01 = D_{17246}^{0.99}$, entonces se rechaza H_0 , por lo tanto los datos no siguen una distribución Normal(34.18, 26.57).

Hicimos más pruebas con otras distribuciones y en todos los casos rechazamos la hipótesis nula. En la Figura 3.17 vemos únicamente los casos que expusimos en esta sección. El histograma representa las frecuencias relativas de los datos del número de alumnos por grupo para cada semestre. La línea azul es la densidad ajustada generada por R, la línea morada es la densidad de n números aleatorios con distribución Poisson(34.18) y la línea roja es la densidad de n números aleatorios con distribución Normal(34.18, 26.57).

Histograma del número de alumnos

Figura 3.17: Histograma con densidades ajustadas: Se muestran 3 densidades ajustadas. La línea azul es la ajustada con el método kernel gaussiano por la función density(). La morada corresponde a una Poisson(34.18). La roja corresponde a una Normal(34.18,26.57). Ninguna de las distribuciones propuestas se ajustan de manera adecuada a los datos.

3.5. Comportamientos por hora

En esta sección veremos algunas gráficas cuyo eje *x* corresponde a las horas en las que se imparten las clases. Se empieza por la clase de 7-8hrs y se termina con la clase de 21-22hrs. Primero mostraremos el comportamiento del promedio de grupos por hora y después el comportamiento del promedio del número de alumnos por hora.

En la Figura 3.18 vemos la gráfica de barras con el número promedio de grupos por hora. Tomamos la información de 25 semestres. Observamos una disminución considerable del número de grupos a las 15hrs. Podemos concluir que es debido a que a esa hora, usualmente la gente sale a comer. A las 21hrs se tiene el menor número de grupos, esto se puede explicar por el hecho de que es la última clase impartida en la Facultad.

Hay un descenso leve a las 9hrs donde se pudiera suponer que la gente sale a desayunar. Desde las 7hrs se pueden encontrar clases como *Cálculo Diferencial e Integral*. Pero en general, las clases impartidas a las 7hrs y a las 8hrs suelen ser materias exclusivas para los actuarios como *Teoría del Seguro, Matemáticas Actuariales del Seguro de Personas I y II o Matemáticas Actuariales para Seguro de Daños, Fianzas y Reaseguro*. Podemos decir que a partir de las 9

de la mañana se imparten materias de todas las carreras.

A las 10 de la mañana se tiene el número máximo de grupos. Con esta información se podría medir la capacidad que debería de tener la Facultad en cuanto al número de salones necesarios para cubrir la demanda de grupos. Si se está preparado para cubrir la demanda del pico más alto de todas las horas, entonces los demás casos están cubiertos por tener un menor número de grupos.

Figura 3.18: Número promedio de grupos por hora: Se observa una disminución considerable a las 15hrs y a las 21hrs. El valor más alto se encuentra a las 10hrs.

En la Figura 3.19 se muestra la gráfica de barras con el promedio del número de alumnos por hora. Notamos que el comportamiento de ésta gráfica es muy similar al de la gráfica mostrada en la Figura 3.18. El pico más alto de los datos también se tiene a las 10 de la mañana y el menor número de alumnos se encuentra a las 21hrs. También hay una disminución considerable a las 15hrs.

Promedio de alumnos por hora

Figura 3.19: Número promedio de alumnos por hora: Notamos una disminución de los valores a las 9hrs, a las 15hrs y a las 21hrs. El valor más alto lo encontramos a las 10hrs.

Viendo las Figuras 3.18 y 3.19 podemos concluir que existe una correlación entre el número promedio de grupos por hora y el número promedio de alumnos por hora. Por ejemplo, si no hay alumnos que tomen clases a las 15hrs entonces no tiene caso que se abran grupos a esa hora. Análogamente para las 21hrs. Por el contrario entre más alumnos haya por hora, se deben abrir más grupos a esas horas, como es el caso de las 10hrs.

Capítulo 4

Simulación

La simulación es un proceso que nos permite estudiar el comportamiento de un sistema complejo y difícil de examinar de manera analítica. Nos ayuda a determinar de manera empírica las probabilidades de ciertos eventos. La simulación nos permite experimentar con diversos supuestos que podrían ser muy costosos de realizar físicamente. Las áreas en las que se utiliza la simulación como herramienta diaria son por ejemplo en biología, estadística, medicina, química, matemáticas, investigación de operaciones, física, ingeniería o en las ciencias sociales.

Algunos ejemplos de su aplicación van desde simular el lanzamiento de una moneda justa, hasta la simulación de colisiones de átomos en un acelerador de partículas. Se utiliza para todo tipo de propósitos, por ejemplo para poder realizar predicciones en base a datos históricos o enseñar a los pilotos a volar un avión sin poner en riesgo a la población al volar el avión real.

Actualmente se combinan diferentes metodologías de simulación con el software disponible, el análisis de sensibilidad y la optimización estocástica. Ésto para obtener un mejor resultado al momento de simular sistemas que se hacen cada vez más complejos como las redes neuronales.

A lo largo de este capítulo explicaremos el proceso que seguimos para obtener la asignación de los horarios para cada materia con su respectivo profesor.

4.1. Obtención de nombres de materias

Antes de iniciar las simulaciones primero obtuvimos el vector $vec_nom_materias_total$ con información de las materias encontradas en la matriz m_grande_total del semestre 2008-1 al 2020-1. Dicho vector no tiene nombres repetidos y contiene m = 203 materias.

En esta sección vamos a explicar cómo obtuvimos los *m* nombres de las materias que vamos a utilizar. El motivo de obtener el vector *vec_nom_materias_total* antes de hacer las simulaciones es para evitar problemas como el que vimos en la Figura 2.11, de repetición de información.

Primero obtuvimos un vector con todos los nombres de las materias en la matriz *m_grande_total*.

Aplicamos la función unique() de *R* y obtuvimos un vector de 333 materias. En este vector pudimos encontrar todos los posibles nombres que correspondían a una sola materia por lo que hicimos una matriz llamada *mat_nom_materias_total*. Dicha matriz tiene 22 columnas:

- La primer columna contiene el nombre que vamos a utilizar para las simulaciones y para las asignaciones. En la mayoría de los casos elegimos el nombre más reciente de la materia. Cabe aclarar que hubo algunos casos que elegimos el nombre que lleva la materia en la carrera de Actuaría en lugar del más reciente.
- La segunda columna contiene el número de materia para cada materia en la primer columna.
- Las columnas 3-22 contienen todos los posibles nombres asociados al nombre en la primer columna. Cabe aclarar que no se llenan todas estas columnas para los renglones.

Revisamos caso por caso para no tener nombres repetidos. En el caso de los seminarios, los agrupamos de acuerdo a los posibles nombres que han tenido. En los casos en que algún seminario ya no era impartido, entonces, lo agrupamos con seminarios con temas similares. Ésto último para conservar toda la información posible.

Finalmente las dimensiones de la matriz $mat_nom_materias_total$ fueron 203×22 . Con la primer columna de dicha matriz, obtuvimos el vector $vec_nom_materias_total$. Los nombres del vector son los que utilizaremos en las siguientes secciones para realizar las simulaciones y las asignaciones.

4.2. Funciones hechas en R

El diagrama de flujo de la función **gen_asignacion** se puede ver en la Figura 4.1.

- posibles_url
- *gen_m_grande*
- gen_m_grande_total
- *gen_esqueleto:* Función que genera esqueletos la cual carga la función *simula_grupos* y ésta a su vez carga la función *estima_grupos*.
- gen_solicitudes
- gen_asignacion
- gen_simula_alumnos
- gen_simula_tamano_grupo

Figura 4.1: *Diagrama de flujo de la función* **gen_asignacion**: *Muestra el proceso que se sigue* para la obtención de la matriz de asignación de horario.

4.3. Obtención de los parámetros q_1 y q_2

En esta sección vamos a explicar cómo obtuvimos los valores de q_1 y q_2 . Son parámetros que se introducen en la función hw() de R. Representan los cuantiles utilizados al calcular los intervalos de confianza. Por ejemplo si $q_1 = 80$ entonces se calcula el intervalo al 80% de confianza. Si se introducen a la función los dos parámetros entonces se calculan dos intervalos, uno al $q_1\%$ de confianza y el otro al $q_2\%$ de confianza.

Primero definimos los parámetros generales necesarios para las simulaciones:

- 1. Fijamos la semilla con set.seed (8654).
- 2. Elegimos 3 semestres para simular la demanda del número de alumnos. Los seleccionamos de los semestres que ya teníamos guardados con información real. Hicimos una comparación entre nuestros datos simulados y los reales de cada semestre. Los semestres que elegimos fueron: 2019-1, 2019-2 y 2020-1.
- 3. Fijamos k = 5 (número de semestres que se tienen como ventana de información).
- 4. Fijamos *num_sim* = 10 (número de simulaciones de la demanda de alumnos para el semestre a simular).

Después fijamos 5 materias que consideramos representativas para hacer las pruebas iniciales: Cálculo Diferencial e Integral I, Demografía, Modelos no Paramétricos y de Regresión, Administración de Riesgos Financieros y Temas Selectos de Investigación de Operaciones.

Tomamos 12 posibles combinaciones de valores para q_1 y q_2 , las cuales podemos ver en la Tabla 4.1. La letra L indica que se tomó la cota inferior de q_1 y la letra U indica que se tomó la cota superior de q_2 . Con estas cotas formamos intervalos de tipo (Lq_1, Uq_2) . De

éstos intervalos obtuvimos el número de alumnos simulados para los 3 diferentes semestres previamente definidos y para cada una de las 5 materias elegidas.

$q_1 \backslash q_2$	80	85	90	99
80	-	L80,U85	L80,U90	L80,U99
85	L85,U80	-	L85,U90	L85,U99
90	L90,U80	L90,U85	-	L90,U99
99	L99,U80	L99,U85	L99,U90	-

Tabla 4.1: Posibles valores para q_1 y q_2 : Tabla que muestra todas las combinaciones de los intervalos formados con las cotas inferiores y superiores de q_1 y q_2

Una vez hecha la simulación obtuvimos dos matrices:

- 1. Matriz de diferencias relativas: Esta matriz se genera al restar, los datos reales menos los simulados y después dividirlos entre los reales. Ésta operación se repite para cada materia y para cada simulación.
- 2. Matriz con información por materia: Esta matriz tiene 6 columnas: *materia, intervalo, mín, media, máx* y sd. En el renglón i se tienen los datos de la matriz de diferencias relativas de la i-ésima materia para el intervalo (Lq1,Uq2) correspondiente. Por ejemplo en el primer renglón de la Figura 4.2 vemos que se utilizó el intervalo (L80,U85) para obtener el número de alumnos simulados para el siguiente semestre de la materia Cálculo Diferencial e Integral I. Las columnas 3 y 5 corresponden al mínimo y al máximo error relativo de la materia mencionada. Las columnas 4 y 6 indican la media y la varianza de los errores relativos de todas las simulaciones hechas para Cálculo Diferencial e Integral I.

Materia	Intervalo	Min [‡]	Media [‡]	Max [‡]	sd [‡]
Cálculo Diferencial e Integral I	L80,U85	-2.622222	-0.21911543	0.8627586	0.7287619
Demografía	L80,U85	-1.985714	-0.09395821	0.8378378	0.4695739
Modelos no Paramétricos y de Regresión	L80,U85	-6.922222	-0.45848861	1.0000000	1.5742750
Administración de Riesgos Financieros	L80,U85	-1.816667	-0.03119518	0.6312500	0.3145900
Temas Selectos de Investigación de Operaciones	L80,U85	-2.300000	-0.05121275	0.9384615	0.4202550
Cálculo Diferencial e Integral I	L80,U90	-2.588889	-0.25311699	0.7220690	0.7108189
Demografía	L80,U90	-3.228571	-0.20226571	0.7270270	0.6654177
Modelos no Paramétricos y de Regresión	L80,U90	-6.744444	-0.48396359	1.0000000	1.6007042
Administración de Riesgos Financieros	L80,U90	-2.316667	-0.04418860	0.6375000	0.3924680
Temas Selectos de Investigación de Operaciones	L80,U90	-2.233333	-0.05595981	0.9461538	0.4210018

Figura 4.2: *Matriz con información por materia: Vemos los primeros 10 renglones de la tabla obtenida con información de la matriz de diferencias relativas.*

Decidimos elegir q_1 y q_2 en base a la desviación estándar. A partir de la matriz con información por materia obtuvimos una matriz de dos columnas que se muestra en la Figura 4.3. La

47

nueva matriz contiene en su primer columna el intervalo (Lq_1,Uq_2) correspondiente. En la segunda el promedio de la desviación estándar para cada intervalo de las 5 materias.

Intervalo [‡]	Promedio_sd ^
L85,U80	0.6877112
L90,U80	0.6893502
L80,U85	0.7014912
L90,U85	0.7218125
L80,U90	0.7580821
L85,U90	0.7705116
L99,U90	0.8014339
L90,U99	0.9032661
L99,U80	0.9045421
L99,U85	0.9422762
L85,U99	0.9579213
L80,U99	0.9615854

Figura 4.3: Promedio de la desviación estándar: 5 materias, 12 pruebas: Matriz con el promedio de la desviación estándar para 5 materias y 12 diferentes intervalos.

Los datos en la Figura 4.3 están ordenados de menor a mayor con respecto al promedio de la desviación estándar. Para la segunda prueba elegimos los primeros 6 intervalos de dicha tabla y seleccionamos otras 10 materias: Álgebra Lineal I, Álgebra Superior II, Cómputo Evolutivo, Análisis Matemático IV, Matemáticas Actuariales para Seguro de Daños, Fianzas y Reaseguro, Análisis Numérico, Teoría de la Medida I, Introducción a las Matemáticas Discretas, Inglés I y Cálculo Diferencial e Integral IV. La tabla con el promedio de la desviación estandar de sus datos se puede ver en la Figura 4.4.

Intervalo [‡]	Promedio_sd ^
L85,U90	0.4694684
L85,U80	0.4805732
L80,U90	0.4893892
L90,U85	0.4992955
L80,U85	0.5030579
L90,U80	0.5167806

Figura 4.4: Promedio de la desviación estándar: 10 materias, 6 pruebas: Matriz con el promedio de la desviación estándar para 10 materias y 6 diferentes intervalos.

Para la tercera prueba elegimos, de la Figura 4.4 los intervalos que tuvieran un promedio

en la desviación estándar menor a 0.5. Seleccionamos otras 10 materias: *Modelos de Supervivencia y de Series de Tiempo, Teoría del Seguro, Programación Entera, Investigación de Operaciones, Geometría Moderna I, Geometría Analítica II, Lógica Matemática I, Cálculo Diferencial e Integral III, Inferencia Estadística y Manejo de Datos.* La tabla con el promedio de la desviación estandar de sus datos se puede ver en la Figura 4.5.

Intervalo [‡]	Promedio_sd ^
L90,U85	0.4133900
L80,U90	0.4292204
L85,U80	0.4292348
L85,U90	0.4410803

Figura 4.5: Promedio de la desviación estándar: 10 materias, 4 pruebas: Matriz con el promedio de la desviación estándar para 10 materias y 4 diferentes intervalos.

Podemos ver que los valores de la Figura 4.5 son muy parecidos entre sí. Debido a ésto, hicimos otra prueba con los mismos intervalos pero con 5 materias obligatorias y con muchos alumnos. Las materias que elegimos fueron: *Geometría Analítica I, Cálculo Diferencial e Integral II, Mercados Financieros y Valuación de Instrumentos, Probabilidad II y Procesos Estocásticos I.* Hicimos la prueba para ver si había alguna diferencia en los datos y poder elegir un solo intervalo. La tabla con el promedio de la desviación estandar de sus datos se puede ver en la Figura 4.6.

Intervalo [‡]	Promedio_sd ^
L85,U80	0.5829679
L90,U85	0.6027183
L80,U90	0.6127408
L85,U90	0.6260881

Figura 4.6: Promedio de la desviación estándar: 5 materias, 4 pruebas: Matriz con el promedio de la desviación estándar para 5 materias y 4 diferentes intervalos.

Analizando la información de las Figuras 4.5 y 4.6, decidimos elegir los valores de $q_1 = 85$ y $q_2 = 80$. Por lo que el intervalo que buscamos estará formado por la cota inferior del intervalo de confianza al 85% y por la cota superior del intervalo de confianza al 80%. Para visualizar de una mejor manera cómo se encuentra el intervalo formado, podemos ver la Figura 4.7. De dicho intervalo vamos a obtener los valores para simular la demanda de alumnos para el siguiente semestre, para cada materia en cada hora.

Figura 4.7: Diagrama de los intervalos de confianza: Se muestra el intervalo del que se va a obtener el número de alumnos para la simulación de cada materia en cada hora.

Finalmente con los valores de $q_1 = 85$ y $q_2 = 80$ hicimos una prueba aleatoria (eliminando la semilla). Las materias que elegimos para dicha prueba fueron: *Modelos de Supervivencia* y de Series de Tiempo, Teoría del Seguro, Cálculo Diferencial e Integral I,II y III, Investigación de Operaciones, Geometría Moderna I, Geometría Analítica II, Lógica Matemática I, Probabilidad I y II, Inferencia Estadística, Manejo de Datos, Matemáticas Financieras y Procesos Estocásticos I. En la Figura 4.8 podemos ver los resultados de la prueba aleatoria mencionada. El promedio de la desviación estándar de todas las materias es 0.48.

Materia	Intervalo [‡]	Min [‡]	Media [‡]	Max [‡]	sd [‡]
Modelos de Supervivencia y de Series de Tiempo	L85,U80	-2.4053333	-0.062628178	1.0000000	0.7625277
Teoría del Seguro	L85,U80	-0.7475410	-0.007189294	0.9685714	0.2066836
Cálculo Diferencial e Integral I	L85,U80	-1.8055556	-0.150509219	0.8544828	0.5743739
Investigación de Operaciones	L85,U80	-1.5109589	-0.113587042	0.5523364	0.4197767
Geometría Moderna I	L85,U80	-1.0729730	0.062571864	1.0000000	0.3758780
Geometría Analítica II	L85,U80	-1.6896552	-0.075029650	1.0000000	0.6112092
Lógica Matemática I	L85,U80	-1.4857143	0.009737679	1.0000000	0.4441402
Cálculo Diferencial e Integral III	L85,U80	-1.6142857	-0.118954103	0.8689189	0.5222578
Inferencia Estadística	L85,U80	-1.8022222	-0.045271946	0.9751515	0.5525782
Manejo de Datos	L85,U80	-0.5000000	0.030660747	0.8080000	0.1858422
Matemáticas Financieras	L85,U80	-0.8403974	0.030471884	0.8584270	0.2544040
Cálculo Diferencial e Integral II	L85,U80	-3.2192308	-0.053958329	1.0000000	0.6681179
Probabilidad I	L85,U80	-1.6750000	-0.047856672	0.9188034	0.4289253
Probabilidad II	L85,U80	-1.9750000	-0.124282718	1.0000000	0.7012144
Procesos Estocásticos I	L85,U80	-1.8096154	-0.109287138	0.7419643	0.5144173

Figura 4.8: *Matriz con medidas de dispersión de prueba aleatoria: Se muestra en cada ren*glón la materia y el intervalo del que se tomaron los valores para la simulación.

4.4. Simulación de la demanda de alumnos

La demanda del número de alumnos para el siguiente semestre la hicimos por materia y por hora. Para poder hacer la simulación lo primero que hicimos fue acomodar la información que teníamos por semestres y por hora. El procedimiento que seguimos fue el siguiente:

- 1. Definir el semestre del cual se quiere obtener la simulación (sem_sig).
- 2. Definir el número de semestres que se quieren como ventana de información (k).
- 3. Tomar una submatriz de *m_grande_total* con la información de una materia para los semestres en la ventana de información.
- 4. Para cada semestre dentro de la ventana de información se suma el número de alumnos en cada hora.
- 5. Se obtiene una matriz de $t \times k$ como la que se puede ver en la Figura 4.9. Recordemos que t = 15 y equivale al número de horas en las que se imparten clases.

*	20181 🗦	20182 ‡	20191 Ů	20192 ‡	20201 ‡
7-8	0	0	0	0	0
8-9	0	0	0	0	0
9-10	0	0	71	0	52
10-11	198	0	75	0	144
11-12	0	44	0	9	0
12-13	0	75	0	97	0
13-14	0	0	0	0	0
14-15	0	0	0	0	0
15-16	0	0	0	0	0
16-17	0	0	0	0	0
17-18	0	52	0	40	47
18-19	0	0	0	0	88
19-20	78	0	63	0	0
20-21	0	53	79	69	0
21-22	0	0	0	0	0

Figura 4.9: Ejemplo de matriz con alumnos corregidos: Se puede ver la información del número de alumnos reales de la materia "Modelos de Supervivencia y Series de Tiempo" por semestre y para cada hora.

Con el procedimiento descrito pudimos generar vectores por hora. Aplicamos la función hw() en *R* para obtener la demanda de alumnos esperados para el siguiente semestre. En la Figura 4.10 vemos la matriz vista en la Figura 4.9 junto con el vector de alumnos simulados (señalado en rojo). El vector contiene la demanda de alumnos simulados para el semestre 2020-2 de la materia *Modelos de Supervivencia y Series de Tiempo*.

Notamos que el valor de la demanda de alumnos es cero cuando en todos los semestres de alguna hora no hay datos. En el ejemplo, es el caso de las 7hrs, 8hrs, 13hrs, 14hrs, 15hrs, 16hrs y 21hrs. Observando los datos de las 10hrs. vemos que en los semestres pares no hay alumnos, por lo que en la simulación se obtiene únicamente un alumno. Si vemos los datos de las 17hrs vemos que de los 5 semestres en la ventana se tienen alumnos en los semestres pares y en un semestre impar, el número de alumnos simulados para esa hora son 31 alumnos. Con estos ejemplos podemos ver de manera tangible que el modelo respeta la estacionalidad semestral que tienen los datos.

^	20181 🗘	20182 ‡	20191 0	20192 0	20201 0	20202
7-8	0	0	0	0	0	0
8-9	0	0	0	0	0	0
9-10	0	0	71	0	52	61
10-11	198	0	75	0	144	1
11-12	0	44	0	9	0	8
12-13	0	75	0	97	0	122
13-14	0	0	0	0	0	0
14-15	0	0	0	0	0	0
15-16	0	0	0	0	0	0
16-17	0	0	0	0	0	0
17-18	0	52	0	40	47	31
18-19	0	0	0	0	88	29
19-20	78	0	63	0	0	6
20-21	0	53	79	69	0	132
21-22	0	0	0	0	0	0

Figura 4.10: Ejemplo de vector con demanda simulada para el 2020-2 de "Modelos de Supervivencia y Series de Tiempo": Vemos el vector con el número de alumnos simulados para el 2020-2 de la materia "Modelos de Supervivencia y Series de Tiempo".

Obtuvimos vectores con la demanda simulada para cada una de las materias y formamos una matriz de $t \times m$. Recordemos que t es el número de horas del día y m es el número de materias que se van a impartir. En la Figura 4.11 podemos ver un ejemplo de cómo se ve la matriz formada.

Analicemos 2 pares de grupos, primero veamos la columna de Álgebra Superior II (2) y la de Geometría Analítica I (4). Ambas son materias obligatorias para Actuaría, Matemáticas y Matemáticas Aplicadas. La primera corresponde a semestres pares y la segunda a semestres impares. Notamos que para Geometría Analítica I, se tienen alumnos prácticamente en cada hora, pero el número no es muy grande. Para Álgebra Superior II hay varias horas con cero alumnos simulados pero hay dos grandes cantidades, una a las 9hrs con 832 alumnos y la otra a las 18hrs con 224 alumnos. Con esta comparación podemos ejemplificar la diferencia entre una materia que corresponde a semestres pares y una de semestres impares.

Ahora analicemos las columnas de *Seminario de Topología A* (3) y *Probabilidad II* (6). La primera es una materia optativa para Matemáticas. La segunda es una materia obligatoria para Actuaría, correspondiente a semestres pares y optativa para Ciencias de la Computación, Matemáticas y Matemáticas Aplicadas. El número total de alumnos simulados para *Seminario de Topología A* es menor a 20, en cambio para *Probabilidad II* se tiene una gran cantidad de alumnos a las 8hrs, 9hrs y 10hrs. Considerando los valores que se tienen en el turno vespertino para *Probabilidad II*, notamos que a las 19hrs también hay una gran cantidad de alumnos. Con esta comparación podemos ejemplificar la diferencia entre una materia obligatoria y una optativa, así como la diferencia entre el turno matutino y vespertino.

•	† Topología I	\$Algebra Superior	Seminario de Topología A	\$ Geometría Analítica I	\$ Geometría Moderna I	÷ Probabilidad II
7-8	0	16	0	37	0	0
8-9	2	59	0	39	53	264
9-10	0	832	0	38	55	160
10-11	15	0	1	16	0	187
11-12	56	0	2	0	0	5
12-13	0	0	1	12	6	0
13-14	2	0	5	30	19	0
14-15	32	8	0	107	86	0
15-16	20	7	0	43	1	0
16-17	0	0	0	0	36	0
17-18	1	0	10	27	0	8
18-19	44	224	0	187	0	9
19-20	0	0	0	45	0	85
20-21	0	9	0	10	16	0
21-22	0	6	0	16	0	0

Figura 4.11: Ejemplo de matriz con demanda simulada para el 2020-2: La matriz muestra los vectores con el número de alumnos simulados para el semestre 2020-2 para cada hora de algunas materias.

4.5. Simulación de tamaño de grupos

En esta sección vamos a explicar cómo hicimos la simulación del tamaño de grupos. Vamos a definir al tamaño de un grupo como el número de alumnos que va a tener cada grupo.

Hicimos una función en R que realiza los siguientes pasos:

1. Definir *m_grande_2015* la cual es una submatriz de *m_grande_total* con los datos de los semestres del 2015-1 al 2020-1.

- 2. Obtener, de *m_grande_2015*, la información del número de alumnos que ha tenido un profesor.
- 3. Tomar el mínimo (a) y el máximo (b) de esos datos.
- 4. Generar un número aleatorio con distribución uniforme en ese intervalo con la función runif $(1, \min = a, \max = b)$ en R.
- 5. Redondear el número aleatorio con la función ceiling() en *R*.
- 6. Regresar el número redondeado.

Con este procedimiento simulamos el tamaño de los grupos con respecto a los profesores. En la vida real cuando un alumno decide inscribirse a una materia a cierta hora, la decisión que toma para elegir el grupo al que se quiere inscribir es el profesor con el que le gustaría tomar esa materia a esa hora. Decidimos realizar de esta manera la simulación porque queremos que el número de alumnos de cada grupo dependa de los profesores y no de la distribución general que tiene el tamaño de los grupos (ver Sección 3.4).

4.6. Obtención de nombres de profesores

Antes de iniciar la simulación de las solicitudes hechas (elección de materia y de horario), primero obtuvimos información de los profesores. Guardamos dicha información en la matriz $mat_nom_prof_total$, la cual tiene 2 columnas. En la primer columna se tienen los nombres de todos los profesores que han impartido clase desde el semestre 2015-1 hasta el 2020-1. Dichos nombres los obtuvimos de la matriz m_grande_2015 . En la segunda columna de la matriz, se tiene un 1 si el profesor es de tiempo completo y un 0 si es de asignatura.

En las siguientes subsecciones veremos cómo llenamos la segunda columna de la matriz *mat_nom_prof_total* y cómo hicimos la limpieza de los nombres de los profesores.

4.6.1. Profesores de tiempo completo

Para llenar la segunda columna de la matriz $mat_nom_prof_total$ ingresamos a la página http://www.matematicas.unam.mx/index.php/nosotros/profesores-de-tiempo-completo del Departamento de Matemáticas. Con la aplicación SelectorGadget seleccionamos el vector con el nombre de los profesores de tiempo completo. En la Figura 4.12 podemos ver el código CSS que utilizamos para obtener los datos en R. También observamos que se seleccionaron 94 profesores.

Figura 4.12: Profesores de tiempo completo obtenidos con la aplicación SelectorGadget: Muestra la selección de profesores de tiempo completo con la aplicación SelectorGadget. Se puede ver el código CSS utilizado en R.

Al extraer la información en R obtuvimos un vector con 94 entradas. En la Figura 4.13 podemos ver los primeros 20 valores del vector. Notamos que cada entrada del vector inicia con los caracteres $\langle n \rangle t \rangle t \rangle t \rangle t$. Estos caracteres, en la presentación final de la página de internet, indican un salto de línea y las tabulaciones o espacios que se tienen de izquierda a derecha.

```
[1] "\n\t\t\t\t\t\t Dra. María del Pilar Alonso Reyes"
   [2] "\n\t\t\t\t\t\tDr. Alejandro Alvarado García
             [3]
  [4] "\n\t\t\t\t\t\t Dr. Sergey Antonyan"
[5] "\n\t\t\t\t\t\tDra. Verónica Esther Arriola Ríos"
   [6] "\n\t\t\t\t\t\t\tDra. Diana Avella Alaminos"
                 \n\t\t\t\t\t\t\tDr. Fernando Baltazar Larios"
   [8] "\n\t\t\t\t\t\t\tDr. Pablo Barrera Sánchez"
  [9] "\n\t\t\t\t\t\t\tDr. Fernando Brambila Paz"
[10] "\n\t\t\t\t\t\tM. en C. Alejandro Bravo Mojica"
[11] "\n\t\t\t\t\t\t Dra. Gabriela Campero Arena
[12] "\n\t\t\t\t\t\t\ Dr. Humberto Andrés Carrillo Calvet "
             \n in the total case of the contract of the
Г137
[14] "\n\t\t\t\t\t\t\tMat. Margarita Elvira Chávez Cano"
[15] "\n\t\t\t\t\t\t\tM. en C. Elena de Oteyza de Oteyza"
[16] "\n\t\t\t\t\t\t\tDra. Guillermina Eslava Gómez
[17] "
                 \n\t\t\t\t\t\t\tDra. María de Lourdes Esteva Peralta "
[18] "\n\t\t\t\t\t\t\tDr. Manuel Jesús Falconi Magaña
             "\n\t\t\t\t\t\t\tDra. Ma. Asunción Begoña Fernández Fernández"
[19]
[20] "\n\t\t\t\t\t\t\tAct. Javier Fernández García"
```

Figura 4.13: Vector de profesores de tiempo completo: Se observan las primeras 20 entradas del vector obtenido con la aplicación SelectorGadget al dar click en un profesor de tiempo completo.

Limpiamos los datos para obtener un vector que sólo tuviera los nombres de los profesores, sin su título. Eliminamos el título porque en los horarios publicados en las páginas de la Facultad sus nombres no tienen título. También eliminamos los espacios finales que había en algunos nombres.

De esta manera obtuvimos el vector con el nombre de los profesores de tiempo completo del Departamento de Matemáticas. Dicho vector lo comparamos con la primer columna de la matriz *mat_nom_prof_total*, cuando los nombres coincidieron, pusimos un 1 en el renglón correspondiente.

Al limpiar los datos encontramos 11 nombres que analizamos de manera particular porque no aparecía el 1 en su respectivo renglón. Encontramos que no aparecía la información necesaria en la matriz *mat_nom_prof_total* por diferencias en los nombres. Encontramos diferencias por acentos, por mayúsculas y por nombres incompletos. En la Tabla 4.2 vemos los nombres que aparecen en las páginas de la Facultad comparados con los que aparecen en la página del Departamento de Matemáticas.

Nombre en páginas de la Facultad	Nombre en página del Depto. de Matemáticas
Alejandro Ricardo Garciadiego Dantan	Alejandro Ricardo Garciadiego Dantán
Edith Corina Sáenz Valadez	Edith Corina Sáenz Valadéz
Emilio Esteban Lluis Puebla	Emilio Lluis Puebla
Guillermo Javier Francisco Sienra Loera	Guillermo Sienra Loera
María Asunción Begoña Fernández Fernández	Ma. Asunción Begoña Fernández Fernández
María Concepción Ana Luisa Solís González-Cosío	Ana Luisa Solís González Cosío
María Isabel Puga Espinosa	Isabel Puga Espinosa
María Lourdes Velasco Arreguí	María de Lourdes Velasco Arregui
Mucuy-Kak del Carmen Guevara Aguirre	Mucuy-kak del Carmen Guevara Aguirre
Oscar Alfredo Palmas Velasco	Óscar Alfredo Palmas Velasco
Úrsula Xiomara Iturrarán Viveros	Úrsula Iturrarán Viveros

Tabla 4.2: Diferencias en nombres de profesores de tiempo completo: Se muestran los 11 nombres de los profesores de tiempo completo que se analizaron de manera individual.

4.6.2. Profesores de asignatura

Al llenar la matriz *mat_nom_prof_total* con los nombres de los profesores vimos que la dimensión de dicha matriz es 1387 × 2. Por lo que tenemos 1387 nombres de profesores de los cuales 94 son profesores de tiempo completo. En esta subsección explicaremos cómo hicimos la limpieza de los nombres de los profesores de asginatura. Es decir los 1293 nombres que nos falta por analizar.

Lo primero que hicimos fue ordenar los nombres de los profesores de asginatura alfabéticamente. Con ellos definimos el vector vec_prof_asig . Al ordenarlos, encontramos 9 nombres que tenían un "/" al inicio de su nombre. Quitamos ese caracter y los espacios que tenía antes y después. Ordenamos nuevamente los nombres alfabéticamente. Después buscamos los nombres que tenían añadidos los nombres de los ayudantes. Dejamos únicamente el primer nombre. Aplicamos, al vector, la función unique() en R.

Con el proceso descrito obtuvimos un vector con 1246 nombres. Para comparar los nombres de los profesores, utilizamos la función stringsim(nom_prof_1,nom_prof_2). Dicha función arroja el porcentaje de similitud entre los parámetros que recibe, en este caso dos

nombres de profesores. Para observar las posibles repeticiones guardamos en una matriz los nombres del vector vec_prof_asig y aquellos nombres con más del 60% de coincidencia. Eliminamos 115 repeticiones de nombres. Hubo algunos casos en los que los nombres repetidos eran idénticos y en otras ocasiones diferían por acentos o por guiones. En la Tabla 4.3 vemos los nombres de los profesores que eliminamos por diferencia de acentos o guiones o nombre incompleto.

Nombre a utilizar	Nombre eliminado	
Antonmaria Gerolamo Enrico Minzoni Alessio	Antonmaria Minzoni Alessio	
Araceli Arteaga Jiménez	Aracely Arteaga Jiménez	
José de Jesús Carlos Quintanar Sierra	José Jesús Carlos Quintanar Sierra	
Juan Manuel Eugenio Ramírez de Arellano Niño-Rincón	Juan Manuel Eugenio Ramírez de Arellano Niño Rincón	
Loiret Alejandría Dosal Trujillo	Loiret Alejandria Dosal Trujillo	
María Susana Barrera Ocampo	Ma. Susana Barrera Ocampo	
Manuel de Llano de la Garza	Manuel De Llano De la Garza	
Mónica Alicia Clapp Jiménez-Labora	Mónica Alicia Clapp Jiménez Labora	
Omar Antolín Camarena	Omar Antolin Camarena	
Roberto Carrillo Lárraga	Roberto Carrillo Larraga	
Rocío Jáuregui Renaud	Rocío Jauregui Renaud	
Rodrigo Domínguez López	Rodrígo Domínguez López	
Rosalío Fernando Rodríguez Zepeda	Rosalio Fernando Rodríguez Zepeda	

Tabla 4.3: Diferencias en nombres de profesores de asignatura: Se muestran los nombres de los profesores de asignatura que se eliminaron por estar repetidos a causa de diferencias en el nombre como acentos, guiones o nombre incompleto.

Finalmente obtuvimos un vector con 1131 nombres de los profesores de asginatura. Guardamos los nombres en la matriz *mat_nom_prof_total*. Dicha matriz contiene la información de 1225 profesores.

Algunas notas a considerar de esta matriz son:

- Puede haber profesores que ya no impartan clases en la Facultad.
- Puede ocurrir que no se recopile toda la información de los profesores en la Tabla 4.3 por no haber coincidencias en los nombres.
- Encontramos los nombres *Jonás Raffael Martínez Sánchez* y *Rafael Martínez Sánchez* los cuales consideramos que son nombres de personas distintas.

4.7. Simulación de solicitudes de profesores

En esta sección vamos a explicar cómo hicimos la simulación de la solicitud de los profesores. En la vida real los profesores pueden elegir libremente las materias que quieren impartir y seleccionan las horas a las que desean impartir sus clases. Dado que no contamos con esa información decidimos simular la elección de materias y horarios en base a la información que tenemos de semestres anteriores.

Como vimos en la Figura 4.1 simulamos dos veces las solicitudes de los profesores, en el proceso de asignación. A la primera vez que simulamos las solicitudes la llamaremos *Solicitud oculta* y a la segunda la llamaremos *Solicitud pseudo-real*. La explicación de su uso lo vemos a continuación.

- Solicitud oculta: La llamamos oculta porque nos ayuda para la generación de los esqueletos. No influye directamente en la asignación final.
- Solicitud pseudo-real: Es la simulación de las posibles elecciones que los profesores harían en la vida real. Nos ayuda directamente a realizar la asignación final.

El procedimiento para ambos casos es el mismo. Al finalizar el proceso obtuvimos una matriz, llamada $mat_1_solicitud$, la cual tiene la información de la solicitud de un profesor. La matriz tiene 5 columnas (*Profesor, TC, Materia, Num_Materia, Horario*) y 6 renglones. Los pasos que realizamos para obtener la matriz $mat_1_solicitud$, con la solicitud de un profesor, son los siguientes:

- 1. Llenar la columna *Profesor* con el nombre del profesor del cual queremos realizar la solicitud.
- 2. Llenar la columna *TC* dependiendo del tipo de profesor que se haya elegido en el paso anterior. Esta columna tiene un 1 en cada renglón si el profesor es de tiempo completo y un 0 si el profesor es de asignatura.
- 3. Obtener, de *m_grande_2015*, la información de las materias que ha impartido el profesor elegido. Guardar la información en el vector *materias_profesor*. Se tienen 3 casos con respecto al número de materias que tiene el vector:
 - a) El número de materias es 2: Llenar los primeros 3 renglones, de la columna *Materia*, con la información de la materia 1 y los últimos 3 renglones con la información de la materia 2.
 - b) El número de materias es mayor o igual a 3: Se toma una muestra de dos materias, con la función sample(materias_profesor, size = 2) en R. Se llena la columna *Materia* como el caso anterior.
 - c) El número de materias es 1: Llenar la columna *Materia* con esa materia.
- 4. Llenar la columna *Num_Materia* de *mat_1_solicitud* con los números de materia correspondientes a las materias elegidas en el paso anterior.
- 5. Obtener, de *m_grande_2015*, la información de las horas en las que ha dado clases el profesor elegido. Guardar la información en el vector *horas_profesor*. Se tienen 4 casos con respecto al número de horas que se encuentran en el vector:
 - a) El número de horas es 3: Llenar los renglones 1 y 4, de la columna *Horario*, con la información de la hora 1; los renglones 2 y 5 con la información de la hora 2 y los renglones 3 y 6 con la información de la hora 3.
 - b) El número de horas es mayor o igual a 4: Se toma una muestra de 3 horas, con la función sample (horas_profesor, size = 3) en R. Se llena la columna Horario como el caso anterior.
 - c) El número de horas es 2: Llenar los renglones 1,2,4 y 5, de la columna *Horario*, con la información de la hora 1 y los renglones 3 y 6 con la información de la hora 2.
 - d) El número de horas es 1: Llenar la columna *Horario* con esa hora.

TC Profesor Materia Num_Materia Horario 57 9 1 Margarita Elvira Chávez Cano 1 Modelos no Paramétricos y de Regresión 2 Margarita Elvira Chávez Cano 1 Modelos no Paramétricos y de Regresión 57 10 3 Margarita Elvira Chávez Cano 1 Modelos no Paramétricos y de Regresión 57 11 4 Margarita Elvira Chávez Cano 1 Modelos de Supervivencia y de Series de Tiempo 123 9 5 Margarita Elvira Chávez Cano 1 Modelos de Supervivencia y de Series de Tiempo 123 10 6 Margarita Elvira Chávez Cano 1 Modelos de Supervivencia y de Series de Tiempo 123 | 11

En la Figura 4.14 vemos un ejemplo de la matriz *mat_1_solicitud*.

Figura 4.14: Ejemplo de matriz de solicitudes de un profesor: Se observa un ejemplo de la matriz mat_1_solicitud para un profesor de tiempo completo.

El proceso se repite para cada uno de los profesores en la matriz *mat_nom_prof_total* obtenida en la Sección 4.6. La matriz formada con las solicitudes de todos los profesores la llamamos *mat_solicitudes*. A ella le quitamos los renglones repetidos para poder simular adecuadamente los esqueletos.

4.8. Modelo de Mezcla Gaussiana

Do Chuong y Batzoglou nos indican, en su artículo *What is the expectation maximization algorithm?* [3], que el algoritmo de maximización de la esperanza (EM) es una generalización natural de la estimación por máxima verosimilitud. Ésto para el caso en donde se tiene información incompleta.

Los parámetros iniciales se toman de los datos con ello se obtienen unos parámetros finales que se convierten en los parámetros de la siguiente iteración. Así sucesivamente.

4.8.1. Obtención de mat_demanda_alumnos

Pasos que seguimos para obtener la matriz *mat_demanda_alumnos*. Dicha matriz será utilizada para generar el esqueleto.

- 1. Obtener D_0 con la función $gen_mat_demanda_alumnos$
- 2. Obtener mat_solicitudes con la función gen_solicitudes
- 3. Definir *n_rep*, el número de veces que se va a generar la matriz *D* con la demanda de alumnos para el siguiente semestre.
- 4. Convertir y guardar los datos de D_0 para obtener la distribución por horas (wait_alumnos).
- 5. Graficar los datos para ver su distribución y encontrar el número de medias inicial (k = 4).
- 6. Definir el modelo inicial *mixmdl* con la función normalmixEM(wait_alumnos, k = 4) en R.

Pasos a repetir $(i = 2, ..., n_rep)$:

1. Obtener D'_i con la función $gen_mat_demanda_alumnos$

- 2. Calificar D_i con respecto a D_0 : Las calificaciones dependen de la diferencia relativa entre D_0 y D_i . En caso de que haya un cero en la entrada correspondiente en D_0 , entonces: si sobran alumnos la calificación es -1 y si faltan es 1.
- 3. Actualizar D_i : Se corrige la materia j si su calificación (por materia) está fuera del intervalo [-20, 10]. Se corrige el número de alumnos simulados por hora, si su calificación (por grupo) está fuera del intervalo [-10, 10]. El número de alumnos simulados se genera a partir de la distribución obtenida con el modelo de mezcla de normales.
- 4. Guardar el número de alumnos por materia.
- 5. Convertir y guardar los datos de D_i para obtener la distribución por horas (wait_alumnos).

Una vez que se obtuvieron todos los datos se calcula el promedio de alumnos por materia. Se define la matriz *mat_demanda_alumnos* en base al promedio del número de alumnos y de la distribución del modelo final utilizando la función normalmixEM(wait_alumnos, mixmdl\$mu) en *R*.

En la Figura 4.15 se muestran dos histogramas con los datos iniciales y finales, respectivamente. Las líneas verdes corresponden al ajuste con la función density() en R y las azules al modelo de mezcla de normales.

Figura 4.15: Mezcla de normales inicial y final

4.9. Simulación de esqueletos

En esta sección vamos a explicar cómo generamos la matriz $mat_esqueleto$. La matriz tiene t renglones y m columnas. En la entrada (i,j) se tiene el número de grupos simulados para la hora i y la materia j. La matriz $mat_esqueleto$ depende de la demanda de alumnos y de las solicitudes de los profesores.

El proceso que seguimos para obtener la matriz *mat_esqueleto* es el siguiente:

- 1. Obtener la matriz *mat_demanda_alumnos* con la demanda simulada del número de alumnos para el siguiente semestre (ver Sección 4.8.1).
- 2. Obtener la matriz *mat_solicitudes* con las solicitudes simuladas de los profesores (ver Sección 4.7).
- 3. Elegir un profesor de tiempo completo al azar.

- 4. Elegir al azar un horario y una materia que haya solicitado el profesor elegido en el paso anterior. Con estos datos obtenemos las coordenadas (i, j) para las matrices $mat_demanda_alumnos$ y $mat_esqueleto$.
- 5. Verificar que a esa materia en esa hora aún le sobran alumnos, en la entrada (i, j) de $mat_demanda_alumnos$.
- 6. Simular el número de alumnos para ese grupo (ver Sección 4.5).
- 7. Restar el número de alumnos simulados en el paso anterior, de la materia y hora elegidas, en la entrada (i, j) de $mat_demanda_alumnos$.
- 8. Ese profesor ya no puede impartir clases a esa hora. Retirar renglones correspondientes de *mat solicitudes*.
- 9. Repetir los pasos de 3 a 8 hasta que se terminen los profesores.
- 10. Una vez que se terminen los profesores de tiempo completo, hacer los pasos de 3 a 9 con los profesores de asignatura.

Algunas notas a considerar del procedimiento son:

- Los profesores de tiempo completo deben cumplir con sus horas, por contrato.
- Los profesores sólo pueden tener asignadas a lo más 2 materias.
- Las condiciones de paro del proceso son:
 - a) Ya se cubrió toda la demanda
 - b) Ya no hay más profesores
 - c) Llegar a una cota predefinida para que el ciclo no se haga infinito o tarde mucho en cumplir las condiciones anteriores.

En la Figura 4.16 vemos un ejemplo de la matriz *mat_esqueleto* para el semestre 2020-2. Observemos las últimas 4 columnas que corresponden a las materias de *Cálculo Diferencial* e *Integral I, II, III y IV*. Notamos que el número de grupos simulados para las materias de semestres pares (*Cálculo Diferencial e Integral II y IV*) es mayor que para las materias de semestres impares (*Cálculo Diferencial e Integral I y III*). Esto se debe al comportamiento descrito en la Sección 3.2 y el semestre 2020-2 es par.

^	† Inferencia Estadística	Investigación de Operaciones	† Teoría de Redes	¢ Cálculo de las Variaciones	Cálculo Diferencial e Integral IV	Cálculo Diferencial e Integral	Cálculo Diferencial e Integral II	Cálculo Diferencial e Integral III
7-8	0	1	1	0	0	0	1	0
8-9	1	1	0	0	1	0	1	1
9-10	0	0	0	0	0	0	0	0
10-11	1	0	1	0	2	1	1	1
11-12	1	2	0	0	2	1	0	1
12-13	1	0	1	0	3	1	3	2
13-14	1	2	0	0	2	1	2	2
14-15	1	1	1	0	1	1	1	1
15-16	1	0	0	1	1	1	2	1
16-17	0	0	0	1	2	1	2	2
17-18	0	0	0	1	1	1	3	2
18-19	2	0	1	0	1	1	2	2
19-20	1	1	1	0	3	1	2	2
20-21	1	0	0	0	2	1	2	2
21-22	0	0	0	0	1	1	1	1

Figura 4.16: Ejemplo de esqueleto para el semestre 2020-2: En la entrada (i,j) podemos observar el número de alumnos simulados para la hora i y la materia j.

Teoría del Algoritmo Genético aplicado a los horarios

*** ESCRIBIR ACERCA DE LA TEORÍA DE AG ***

El algoritmo genético actualmente se utiliza para resolver problemas de optimización tanto discretos como continuos. Se basa en el mecanismo de la selección natural de Darwin, el cual nos indica que el individuo más apto sobrevive, por lo que entre mejores sean los padres, mejor es la descendencia.

Definimos a un cromosoma como una posible solución al problema. En nuestro caso representamos a un cromosoma por medio de una matriz con $j_materias$ renglones y con 3 columnas las cuales representan la asignación de profesor, día y salón, respectivamente, por lo que el renglón j indica que la materia j es impartida por el profesor i, el día t, en el salón k.

El valor de adaptabilidad fit(x), de cada cromosoma, se asigna al evaluar su utilidad en la función objetivo, entre mejor sea el cromosoma, más alto será su valor de adaptabilidad. Los mejores cromosomas de la población actual pasan directamente a la siguiente generación. Se dice que la población evoluciona por medio de tres operadores hasta una condición de paro, los operadores son: selección, entrecruzamiento (crossover) y mutación.

Los pasos del algoritmo se muestran a continuación:

- 1. Se inicia con un grupo de cromosomas generados aleatoriamente, a los cuales se les calcula su valor de adaptabilidad
- 2. La probabilidad de que el cromosoma *k* sea elegido para el entrecruzamiento (*crossover*), es:

$$p_k = \frac{fit(x)}{\sum_{h=1}^{pop} fit(h)}$$
 donde pop es el tamaño de la población

de cromosomas

- 3. En el entrecruzamiento se mezclan dos padres para generar nuevas soluciones. Se genera un número aleatorio entre cero y uno, r, si r < 0.6 la primer columna de M_{ij} y la primer columna de M_{ti} del padre 1 se copian en la nueva solución, las demás columnas se llenan con las columnas del padre 2. Si la nueva solución no es factible, en la matriz M_{ij} , si alguna materia tiene asignada dos profesores, se selecciona uno de ellos de manera aleatoria y el otro se elimina de esa asignación; en caso de que alguna materia no tenga profesor asignado, se le asigna uno aleatoriamente.
- 4. Se actualiza la matriz M_{ti} .
- 5. Se aplica el operador *mutación*, se selecciona un profesor de manera aleatoria y se cambia el día en el que más tiene clase por el día que menos clases imparte. Ésto se aplica para cada profesor de manera aleatoria, sin repetición.
- 6. Una vez generadas las nuevas soluciones se elige la mejor entre todas ellas.

5.1. Ciclo de la evolución natural

PADRES POBLACIÓN Reemplazamiento PESCENDIENTES

Figura 5.1: Algoritmo Genético

- 5.1.1. Selección
- **5.1.2.** Cruce
- 5.1.3. Mutación
- 5.1.4. Reemplazamiento

5.2. Algoritmo Genético aplicado a la generación de asignaciones de grupos

Matriz de 3 columnas (Materia-Horario-Profesor), la cual tiene la información de las asignaciones. A cada renglón de la matriz de esqueletos se agrega un profesor. Se genera con el esqueleto obtenido del proceso del AG y de las solicitudes de los profesores.

*** CAMBIAR esqueleto POR asignación ***

Figura 5.2: Algoritmo Genético aplicado

5.2.1. Calificación de asignaciones

66CAPÍTULO 5. TEORÍA DEL ALGORITMO GENÉTICO APLICADO A LOS HORARIOS

Resultados del Algoritmo Genético

Comportamiento de la selección

Conclusiones

La división que se hizo de los datos es estadísticamente adecuada.

Se encontró que el AG es una buena opción para solucionar este problema de maximización.

Este trabajo apoya las necesidades de los alumnos de la Facultad.

Con el fin de encontrar más posibles aplicaciones del programa realizado en este trabajo, se buscaron diferentes páginas de horarios en distintas facultades de la UNAM y de otras universidades. No se pudieron encontrar páginas con todas las características que tienen las páginas de la Facultad. Algunas de las páginas que se encontraron son las siguientes:

- Facultad de Filosofía y Letras UNAM: Se encontró una estructura en las páginas web con las cuales se puede acceder a la información por carrera, pero no se puede acceder a la información de semestres anteriores y dentro de éstas páginas no se pueden encontrar el número de alumnos inscritos por cada materia, por lo que no sería posible una simulación del número de alumnos.

```
https://servicios-galileo.filos.unam.mx/horarios/ordinarios/1354
https://servicios-galileo.filos.unam.mx/horarios/ordinarios/1355
https://servicios-galileo.filos.unam.mx/horarios/ordinarios/1359
```

- Facultad de Ingeniería UNAM: En la siguiente página web se puede seleccionar una materia y buscar la información de ella del semestre en curso, no se puede acceder a información de semestres anteriores y no se tiene alguna estructura para buscar de manera automática los datos.

```
https://www.ssa.ingenieria.unam.mx/horarios.html
```

Una vez que se ingresa a la materia, se puede encontrar información del salón, horario, cupo y vacantes, se podría obtener el número de alumnos inscritos al restar el cupo del número de vacantes, pero al no tener información de semestres anteriores en todo momento, la recopilación de información tardaría años.

- FES Acatlán (Actuaría): En la siguiente página web se pueden descargar los horarios del semestre en curso en un archivo de Excel el cual no contiene información del número de alumnos inscritos en el grupo, tampoco se puede obtener información de

semestres anteriores. No se puede utilizar la aplicación *SelectorGadget* para obtener la información.

http://www.actuaria.acatlan.unam.mx/

- *FES Iztacala (Psicología):* Se encontró una estructura en las páginas web con las cuales se puede acceder a la información en archivos pdf de algunos semestres, dependiendo si el semestre en curso es par o impar. No se puede utilizar la aplicación *SelectorGadget* para obtener la información.

https://psicologia.iztacala.unam.mx/avisos2020/horarios21_1/21-1_3-TERCER% 20SEMESTRE.pdf

https://psicologia.iztacala.unam.mx/avisos2020/horarios21_1/21-1_5-QUINTO% 20SEMESTREv1108.pdf

- Centro de Nanociencias y Nanotecnología (Nanotecnología): Al igual que en el caso anterior la información de las páginas que se muestran a continuación están en archivos pdf por lo que no se puede utilizar la aplicación SelectorGadget para obtener la información.

https://nanolic.cnyn.unam.mx/sitio/wp-content/uploads/2020/09/H-1A-2021-1.pdf

https://nanolic.cnyn.unam.mx/sitio/wp-content/uploads/2020/09/H-1B-2021-1.pdf

https://nanolic.cnyn.unam.mx/sitio/wp-content/uploads/2020/09/H-3A-2021-1.pdf

- Facultad de Química UNAM: En la siguiente página web se pueden seleccionar todas las materias impartidas en la facultad o por carrera.

http://escolares.quimica.unam.mx/Horarios/hor_def_e2.php4

Una vez que se eligió alguna opción, se muestra un listado, en la siguiente url, con las posibles materias que se pueden elegir.

http://escolares.quimica.unam.mx/Horarios/hor_def_pre_e2.php4

Finalmente se accede a la información con la siguiente página web.

http://escolares.quimica.unam.mx/Horarios/hor_tot_e2.php4

No importa las opciones que se elijan, siempre se obtienen esas mismas urls por lo que no hay alguna estructura para poder buscar la información automáticamente.

- ESIME Zacatenco IPN (Ingeniería en Control y Automatización): Se encontró una estructura en las páginas web pero no se puede encontrar el número de alumnos inscritos por materia por lo que no es posible realizar una simulación del número de alumnos.

http://horarios.esimez.ipn.mx/horarios/VHorGpoAl.aspx?Gpo=1AM8&PaId=57

http://horarios.esimez.ipn.mx/horarios/VHorGpoAl.aspx?Gpo=1AV1&PaId=57

- *ITAM*: En este caso se debe de seleccionar una materia y luego se despliega la información, sin importar la selección de la materia, las url son las mismas por lo que no se tiene una estructura en las páginas web.

```
http://escolar1.rhon.itam.mx/licenciaturas/horarios/seleccion_03.asp
http://escolar1.rhon.itam.mx/licenciaturas/horarios/pormateria_03.asp
```


09:14:54 p. m. del 25-septiembre-2020

Los grupos programados para el semestre OTO?O 2016 LICENCIATURA de la materia CALCULO DE PROBABILIDADES.,I son:

DEPTO.	CLAVE	GRUPO	TEORÍA O LABORATORIO	NOMBRE	PROF.	CRÉDITOS	HORARIO	DÍAS	SALÓN	CAMPUS	COMENTARIOS
EST	14101	001	T	CALCULO DE PROBABILIDADES.,I	VICTOR MANUEL ARMANDO AGUIRRE TORRES	6	10:00- 11:30	LU MI	RH314	RIO HONDO	
EST	14101	002	T	CALCULO DE PROBABILIDADES.,I	ANA MEDA GUARDIOLA	6	10:30- 12:00	MA JU	RH313	RIO HONDO	
EST	14101	003	T	CALCULO DE PROBABILIDADES.,I	ERICK MIER MORENO	6	08:30- 10:00	LU VI	RHPB2	RIO HONDO	
EST	14101	004	T	CALCULO DE PROBABILIDADES.,I	LUIS ENRIQUE NIETO BARAJAS	6	13:00- 14:30	LU MI	RH314	RIO HONDO	
EST	14101	005	T	CALCULO DE PROBABILIDADES.,I	MIGUEL ANGEL MENDEZ ANTONIO	6	08:30- 10:00	LU MI	RH313	RIO HONDO	

Figura 8.1: ITAM Probabilidad I

- *Universidad La Salle:* Se encontró que las páginas tienen una cierta estructura y también se tiene la información del número de alumnos inscritos por materia pero los archivos son pdf por lo que no se puede utilizar la aplicación *SelectorGadget* para obtener la información.

 $\label{lem:mx/wp-content/uploads/2020/08/QFB-291.} https://cienciasquimicas.lasalle.mx/wp-content/uploads/2020/08/QFB-291. pdf$

 $\label{lem:mx/wp-content/uploads/2020/08/QFB-391.} https://cienciasquimicas.lasalle.mx/wp-content/uploads/2020/08/QFB-391. pdf$

 $\label{lem:mx/wp-content/uploads/2020/08/QFB-991.} https://cienciasquimicas.lasalle.mx/wp-content/uploads/2020/08/QFB-991. pdf$

- *Universidad Panamericana:* No se encontraron horarios de materias, sólo de exámenes y de entrenamientos.

https://www.up.edu.mx/sites/default/files/fechas_de_examenes_humanidades_1202.pdf

https://www.up.edu.mx/en/media/22960

Sólo se encontró la misma estructura en las otras carreras de la Facultad, por lo que se puede ajustar el programa realizado en este trabajo para ellas. Algunas consideraciones que se deberían de tomar en cuenta son por ejemplo que las materias impartidas en los laboratorios duran más de una hora, no todas las materias se imparten todos los días, existen varias materias que no duran horas enteras. A continuación se presentan algunos ejemplos:

- Biología:

http://www.fciencias.unam.mx/docencia/horarios/20172/181/1601

- Ciencias de la Tierra:

http://www.fciencias.unam.mx/docencia/horarios/20182/1439/1318

- Física:

http://www.fciencias.unam.mx/docencia/horarios/20191/1081/830

- Física Biomédica:

http://www.fciencias.unam.mx/docencia/horarios/20192/2016/1735

- Manejo Sustentable de Zonas Costeras:

http://www.fciencias.unam.mx/docencia/horarios/20181/1262/386

Apéndice A

Observaciones / Notas

- 1. La matriz mat_posibles_url se define con un tamaño fijo antes de correr el algoritmo para que no se demore por tener un objeto que va cambiando de tamaño, por lo que al final de haberle aplicado la función se le deben de quitar los renglones que no tienen información.
- 2. La función *casos_alumnos* convierte los *NA* de la columna *Alumnos* de *m_grande* en ceros pero al generar *m_grande_total* y pasarla por la función *limpia_m_grande* se eliminan los *NA* y se cambian por ceros por lo tanto no es necesaria la función *casos_alumnos*, basta pasar la columna correspondiente a *Alumnos* de *m_grande_total*.
- 3. Cuando se hacen comparaciones se toman los valores reales y se les restan los valores simulados ($Reales \mathbb{E}[Simulados]$)
- 4. Con las gráficas *heatmap* se revisa si el modelo es adecuado o si se debe modificar algo. Se espera que las gráficas sean de color claro ya que nos interesa que el número de grupos y alumnos simulados se parezca al real.
- 5. Se tienen dos tipos de matrices las cuales llamaremos *m_objetivo* y *m_definición*; las matrices *m_objetivo* son las que tienen la información que se utiliza para la asignación; las matrices *m_definición* nos sirven para dos cosas:
 - a) Respaldo de la descripción de cada columna
 - b) Para guardar los índices en los que se encuentran las columnas
- 6. Las matrices tipo *m_definición* son:
 - a) mat_def_columnas_MG
 - b) mat_def_grupos_reales
 - c) mat_def_grupos_simulados
- 7. Las matrices tipo *m_objetivo* son:
 - a) m_grande
 - b) m_grande_total

c) ...

- 8. La función *checa_ind_materia* se encarga de obtener lo índices de las columnas de las matrices tipo *m_definición* para poder sacar información de *m_grande* o de *m_grande_total*.
- 9. Para las simulaciones se utiliza la información anterior a la del semestre que se quiere simular para no tener información real dentro de los datos para la simulación.
- 10. En caso de querer elegir la capacidad del salón se va a elegir la mayor de sus capacidades (comparando las capacidades que se han tenido a lo largo de varios semestres).
- 11. Las matrices *m_grande* y de *m_grande_total* tienen información real.
- 12. En los ciclos que recorren renglones y columnas de matrices, siempre es más rápido hacer (de afuera hacia adentro) primero las columnas y luego los renglones.

Si se tiene una matriz con entradas (i, j) entonces:

```
for(j){
for(i){
    m[i,j]
}
}
```

Código A.1: Ejemplo de ciclo for

- 13. El vector *vec_nom_materias_total* tiene los nombres de las materias, sin repeticiones, que se utiliza para las simulaciones.
- 14. El vector *vec_excepciones* tiene las posibles ecxepciones en las que las funciones que extraen información pueden caer, de esta manera se pueden generar nuevas funciones para corregir esos casos.
- 15. La siguiente imagen es el resultado de la función *imprime_info_idiomas* la cual muestra la información de los idiomas. Dicha función arroja un vector con los semestres que requieren modificación.

```
La matriz m_grande del semestre
                                    20081 no tiene clases de
La matriz m_grande del semestre
                                    20082
                                           no tiene clases de
                                                                  Inglés
La matriz m_grande del semestre
                                     20091
                                            no tiene clases de
La matriz m_grande del semestre
                                    20092
                                            no tiene clases de
                                                                  Inglés
La matriz m_grande del semestre
                                    20101
                                            no tiene clases de
                                                                  Inglés
La matriz m_grande del semestre
                                    20102
                                            no tiene clases de
                                                                  Inglés
La matriz m grande del semestre
                                    20111
                                            no tiene clases de
                                                                  Inalés
La matriz m_grande del semestre
                                    20112
                                            no tiene clases de
                                                                  Inglés
                                                                              Inglés
La matriz m_grande del semestre
                                    20121
                                            no tiene clases repetidas de
La matriz m_grande del
                                            no tiene clases repetidas de
                                    20122
                                                                              Inglés
                         semestre
La matriz m_grande del semestre
                                    20131
                                            no tiene clases repetidas de
La matriz m_grande del
                                    20132
                                            no tiene clases repetidas de
                                                                              Inglés
                         semestre
La matriz m_grande del
                                    20141
                                            no tiene clases repetidas de
La matriz m_grande del semestre
                                    20142
                                           no tiene clases repetidas de
                                                                              Inalés
                                            no tiene clases repetidas de
La matriz m_grande del
                         semestre
                         se tienen
                                     2 clases repetidas de
3 clases repetidas de
En el semestre 20152
En el semestre
                 20161
                         se tienen
                                                                Inglés
En el semestre
                 20162
                         se tienen
                                         clases repetidas de
En el semestre
                 20171
                         se tienen
                                        clases repetidas de
                                                                Inglés
En el semestre
                 20172
                         se tienen
                                         clases repetidas de
                                                                Inglés
                                     4 clases repetidas de
3 clases repetidas de
En el semestre
                 20181
                         se tienen
En el semestre
                 20182
                         se tienen
                                                                Inglés
La matriz m_grande del semestre 20191 no tiene clases repetidas de Inglés
La matriz m_grande dei semestre 20191 no tiene ciases repetida
En el semestre 20192 se tienen 1 clases repetidas de Inglés
En el semestre 20201 se tienen 1 clases repetidas de Inglés
```

Figura A.1: Resumen de clases de ingles antes de modificación

Con esta información se decidió observar caso por caso los renglones que requieren modificación para la matriz *m_grande*

- 16. Debido a la situación en la que estamos viviendo actualmente, ahora más que nunca es necesario tener un programa para la asignación de horarios que permita la realización de las asignaciones sin tener la necesidad de hacer reuniones en persona, ya que al proseguir con las medidas de distanciamiento social, las reuniones antiguamente hechas en persona se tendrían que hacer por medio de alguna plataforma digital las cuales no necesariamente son las más óptimas ya que dependen de la señal de todos los participantes para que haya una comunicación de manera fluída. Debido a ésto, el programa es una buena solución.
- 17. Al hacer las simulaciones del número de alumnos el redondeo es hacia arriba, usando la función *ceiling*.
- 18. El vector *vec_nom_materias_total*, que contiene el nombre de las materias se definió en la lista *param* para poder tomarlo en las diferentes funciones.
- 19. Para resolver un problema, pensar en los pasos en los que se puede dividir dicho problema, usualmente se requieren entre 3 y 8 pasos o casos para obtener un producto final. Para cada paso hacer una función.

Se tienen dos posibles estructuras:

a) La función del paso n manda a llamar a la del paso n-1.

Ej.

simula_grupos{simula_gpos_1_sem {simula_gpos_1_materia {simula_tam_gpo

b) Se tiene una función principal que manda a llamar a las funciones de cada paso:

Ej.

```
gen_asignacion_completa <- function(sem_ini,sem_fin){</pre>
      # Se carga y se limpia la lista de urls (para no tener
     paginas sin informacion,...)
      list_url <- Actualiza_list_url(list_url)</pre>
3
      # Se obtiene "m_grande" y se genera un archivo para cada
     semestre
      for(k in 1:length(semestres)){
        sem info <- semestres[k]</pre>
        directorio_info[k] <- gen_m_grande(sem_info, list_url)
10
      # Se genera el esqueleto del semestre que se quiere obtener
      mat_esqueleto <- gen_esqueleto(directorio_info, param)</pre>
      # Se genera la matriz de solicitudes de todos los profesores
14
      mat_solicitudes <- gen_solicitudes(param)</pre>
15
16
      # Se genera la matriz de asignaciones de todos los
17
     profesores
```

```
mat_asignaciones <- gen_asignacion(mat_esqueleto, mat_
solicitudes, param)

return(mat_asignaciones)

}

20
    return(mat_asignaciones)
</pre>
```

Código A.2: Ejemplo de estructura de funciones

- 20. Pudiera ser que haya un apéndice con "Observaciones" utlizando las notas escritas.
- 21. Todo lo que se escriba debe tener un propósito, sino quitarlo.
- 22. La información que se puede encontrar actualmente (debido a la pandemia) en las páginas web de los horarios de la Facultad no es la misma que la mostrada a lo largo del trabajo ya que ahora no se tiene información del salón, o del número de alumnos inscritos por materia, ni los lugares disponibles por grupo.

Figura A.2: Ejemplo de horarios de semestre 2021-1

Figura A.3: Notas de T26

- 24. En caso de tener subsecciones: entre 3 y 4
- 25. Ser muy directa al escribir, pero explicar mucho más (platicar más). No hacer enunciados tan largos. No puede haber párrafos formados por un sólo enunciado. Escribir una idea por enunciado. No sólo escribir en párrafos, utilizar listas, tablas, ...
- 26. La estructura de cada párrafo debe ser de tipo *reloj de arena*. Ir de lo general a lo particular y volver a lo general con una conclusión.
- 27. Un enunciado equivale a una idea. Un párrafo equivale a un conjunto de ideas comunes.
- 28. Sea $D = \frac{r-s}{s}$, donde r son datos reales, s datos simulados y D la diferencia relativa, se busca que $D \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.
- 29. Ejemplo del uso del comando *Roxygen* para comentar las funciones en *R*.

```
#' Add together two numbers
#'
#' @param x A number
#' @param y A number
#' @return The sum of \code{x} and \code{y}
#' @examples
#' add(1, 1)
#' add(10, 1)
add <- function(x, y) {
    x + y
}</pre>
```

Figura A.4: Ejemplo de Roxygen

30. Escribir en el archivo de LaTeX pequeños comentarios de la idea que se quiere transmitir en cada párrafo (de 2 a 3 palabras claves). Ésto sirve para referencias futuras y

- para ordenar los párrafos con mayor facilidad.
- 31. Escribir párrafos de 2 a 3 enunciados completos, no dejar enunciados solos a menos que contengan información muy importante.
- 32. En caso de tener más de 10 referencias bibliográficas utilizar *Mendeley* para genera un archivo .*bib* y ponerlo en la tesis para tener la bibliográfía.
- 33. Cuidar el tamaño de letra en las gráficas que se pongan
- 34. No poner abreviaturas en los títulos.
- 35. La imagen 3.1 tiene título en inglés, se tienen 2 opciones: dejarlo así o buscar cómo cambiarlo.
- 36. Recordar la diferencia entre:
 - Número de alumnos inscritos
 - Número de alumnos reales
 - Número de alumnos que toman clase por cada horario (no se toman en cuenta los alumnos que empalman clases)
- 37. Para la elección de q_1 y q_2 se debe darle prioridad a la varianza no al mín y al máx porque se pueden tener casos en los que el mín y el máx estén muy cercanos a cero (gráfica superior) pero su varianza es grande. Queremos que la varianza se encuentre alrededor del cero (gráfica inferior).

Figura A.5: Ejemplo de varianza

- 38. Preferir sacrificar el B/N en las imágenes impresas para tener una mejor versión digital a color.
- 39. Guardar figuras hechas en R con el comando: dev.print(pdf, "Figures/Fig_Examples_of_GB_distributions height=5)

- 40. Arrigo dijo que posiblemente alguien se va a quejar de no tomar en cuenta la preferencia de los profesores al realizar las solicitudes.
- 41. Un histograma nos muestra la representación de la distribución empírica de un conjunto de datos. Cada barra en el histograma representa la frecuencia de un intervalo sobre el rango de las observaciones que se tienen.
- 42. Cláusula 99 CCTPA: Ayuda para la impresión de la tesis.

https://www.personal.unam.mx/Docs/Contratos/AAPAUNAM20132015.pdf

Figura A.6: Cláusula 99 CCTPA: Ayuda para la impresión de la tesis

- 43. Equivalencias de nombres para estadística:
 - a) Estadística I Inferencia Estadística
 - b) Estadística II Modelos no Paramétricos y de Regresión
 - c) Estadística III Modelos de Supervivencia y de Series de Tiempo
- 44. La frecuencia relativa en los histogramas no refleja directamente el porcentaje. Se debe multiplicar el valor del eje *Y* por el ancho del intervalo por 100 para obtener cifras en porcentaje. El área total de las barras sumará 1 (11).
- 45. No confundir las carpetas de *Figuras* del GitHub con la del pdf.
- 46. Ya no son necesarias las pruebas de bondad de ajuste porque los tamaños de grupo se van a simular con respecto a los profesores. Ver $T_{32}xx$)
- 47. Los archivos *README* sirven para explicar las cosas a los demás.
- 48. Si los grupos pequeños dan muchos problemas podemos considerar quitarlos.
- 49. Las materias que se actualizaron o cambiaron de nombre se pueden ver en Capítulo B.
- 50. Arrigo dijo que posiblemente alguien se va a quejar del hecho de que actualmente las inscripciones ya no se hacen con tira de materias firmada.
- 51. El comando \figurename{~\ref{nom_figura}} imprime la palabra *Figura* antes del número correspondiente a la figura de la referencia.
- 52. El comando \chaptername{~\ref{nom_capitulo}} imprime la palabra *Capítulo* antes del número correspondiente al capítulo de la referencia.
- 53. El comando \tablename{~\ref{nom_tabla}} imprime la palabra *Tabla* antes del número correspondiente a la tabla de la referencia.

- 54. En los 3 comandos anteriores la ~ sirve para poner un espacio entre el nombre y el número.
- 55. Los comandos \subsecname{\ref{nom_subseccion}}, \secname{\ref{nom_seccion}}, \subsectionname{\ref{nom_seccion}} y \subsectionname{\ref{nom_seccion}} no existen.
- 56. Para cada figura, al momento de explicarla, pensar en el mensaje principal que se quiere transmitir y *dejarla hablar* por sí sola.
- 57. Nos interesa más el comportamiento de semestres más recientes. Darle más peso a ellos en las figuras.
- 58. Utilizar la coma de Oxford en caso de confusión o si el último elemento es compuesto. Ej. Finanzas II, Procesos Estocásticos I, y Probabilidad y Estadística.
- 59. Imagen que muestra el uso de Plan de estudio con sus diferentes variantes *Plan de Estudio*, *Plan de Estudios*, *Planes de Estudios*, *Planes de Estudio*. Los links en donde se encuentran esos nombres son: https://www.dgae-siae.unam.mx/educacion/planes.php y https://www.dgae.unam.mx/planes/licenciatura.html.

Planes de Estudio –

Llene los datos que se le piden a continuación:

Figura A.7: Nombres planes de estudio

- 60. No usar palabras despectivas como: restante,...
- 61. En el modelo de mezcla de Normales tenemos el comando plot (mixmdl, which = 2), la opción which se encarga de seleccionar el tipo de gráfica que se muestra. https://stackoverflow.com/questions/29044055/plot-which-parameter-where-in-r

which selects which plot to be displayed:

- 1. A plot of residuals against fitted values
- 2. A normal Q-Q plot
- 3. A Scale-Location plot of sqrt(| residuals |) against fitted values
- 4. A plot of Cook's distances versus row labels
- 5. A plot of residuals against leverages
- 6. A plot of Cook's distances against leverage/(1-leverage)

By default, the first three and 5 are provided.

Check ?plot.lm in r for more details.

Figura A.8: which in plot

- 62. Uso de mayúsculas:
 - RAE: https://www.rae.es/dpd/may%C3%BAsculas#33c
 - Otro: http://iesbinef.educa.aragon.es/lengua/ortografia/reglas/reglama. htm
- 63. Uso de mayúsculas después de dos puntos RAE:

https://www.rae.es/dpd/dos%20puntos

- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.

Apéndice B

Materias agrupadas

Vemos las materias que se actualizaron o cambiaron de nombre. Las negritas son los nombres y número de materia que tenían cuando el vector tenía 335 materias.

- Administración (1) -> Administración Actuarial (148) -> Administración Actuarial del Riesgo (288)
- Seminario de Inteligencia Artificial (3) -> Recuperación y Búsqueda de Información en Textos (257)
- Seminario de Aplicaciones a las Ciencias Sociales y Administrativas (4) -> Administración de Empresas de Software (258) -> Riesgo Tecnológico (278) -> Temas Selectos de Ingeniería de Software A (192)
- Probabilidad y Estadística (5) -> Probabilidad I (60)
- Mecánica Vectorial (6) -> Cálculo Tensorial (248)
- Matemáticas Avanzadas de la Física (12) -> Funciones Especiales y Transformadas Integrales (53) -> Análisis de Fourier I (208) -> Análisis de Fourier II (231) -> Introducción a las Funciones Recursivas y Computabilidad (224)
- Mecánica Analítica (13) -> Introducción Matemática a la Mecánica Celeste (119)
- **Física Computacional (15)** -> Supercómputo (195)
- Teoría de Gráficas (33) -> Teoría de las Gráficas II (147)
- Graficas y Juegos (36) -> Introducción a las Matemáticas Discretas (311)
- Estadística I (41) -> Inferencia Estadística (300)
- Análisis de Redes (44) -> Teoría de Redes (152)
- Bases de Datos (50) -> Formación Científica I (330) -> Sistemas Manejadores de Bases de Datos (106) -> Sistemas de Bases de Datos (123) -> Grandes Bases de Datos (169) -> Fundamentos de Bases de Datos (241) -> Almacenes y Minería de Datos (269) -> Manejo de Datos (301) -> Programación II (51)

- Análisis Numérico (54) -> Análisis Numérico II (161) -> Temas Selectos de Análisis Numérico (321)
- Seminario sobre Enseñanza de las Matemáticas I (56) -> Seminario de Filosofía de la Ciencia I (118) -> Didáctica de las Matemáticas (319)
- Estadística II (59) -> Modelos no Paramétricos y de Regresión (284) -> Análisis de Regresión (113)
- Teoría de la Computación (67) -> Autómatas y Lenguajes Formales (240)
- Matemáticas Discretas (68) -> Estructuras Discretas (220)
- Programación I (**69**) -> **Programación** (287)
- **Procesos Estocásticos I (70)** -> Procesos Estocásticos (159)
- Seminario de Geometría A (73) -> Álgebra Geométrica (207) -> Geometría Algebraica II (209)
- Fianzas (78) -> Matemáticas Actuariales del Seguro de Daños (79) -> Matemáticas Actuariales para Seguro de Daños, Fianzas y Reaseguro (SN) -> Matemáticas Actuariales para Seguro de Daños (297) -> Reaseguro (98) -> Reaseguro Financiero (127)
- Teoría de Juegos I (143) -> **Teoría de Juegos en Economía (80)**
- Finanzas II (82) -> Métodos Cuantitativos en Finanzas (298)
- Seminario de Aplicaciones Actuariales I (303) -> Seminario de Matemáticas Actuariales Aplicadas (85) -> Seminario de Aplicaciones Actuariales II (323) -> Seminario de Aplicaciones Actuariales (142) -> /Seminario de Aplicaciones Actuariales I/Seminario de Estadística I (333) -> Seminario de Probabilidad A (211) -> Teoría de la Medida II (313)
- Finanzas I (86) -> Mercados Financieros y Valuación de Instrumentos (306) -> Valuación de Opciones (128)
- Problemas Socio-Económicos de México (87) -> Análisis del México Contemporáneo (275) -> México: Nación Multicultural (176)
- Formación Científica II (88) -> Economía (304) -> Economía I (88)
- Productos Financieros Derivados I (91) -> Productos Financieros Derivados II (184) ->
 Productos Financieros Derivados (326)
- Economía II (93) -> Temas Selectos de Economía (307) -> Econometría II (233)
- Demografía I (94) -> Demografía II (97) -> **Demografía** (289) -> Demografía Avanzada (308)
- Introducción a Ciencias de la Computación I (95) -> Introducción a Ciencias de la Computación II (101) -> Introducción a Ciencias de la Computación (222) -> Estructuras de Datos (234) -> Robótica (268)
- Arquitectura de Computadoras (102) -> Organización y Arquitectura de Computadoras (245)

- Análisis de Algoritmos I (103) -> Análisis de Algoritmos II (205) -> Análisis de Algoritmos (243)
- Lenguajes de Programación (104) -> Lenguajes de Programación y sus Paradigmas (247) -> Semántica y Verificación (214)
- Seminario de Ciencias de la Computación A (254) -> Seminario de Ciencias de la Computación (SN) -> Seminario de Ciencias de la Computación B (263) -> Seminario de Temas Selectos de Computación (105) -> Seminario de Aplicaciones de Cómputo (133) -> Seminario de Computación Teórica (162) -> Seminario de Aplicaciones de Cómputo II (191) -> Seminario de Sistemas para Cómputo B (217) -> Seminario de Computación Teórica II (228) -> Seminario de Sistemas para Cómputo A (164) -> Administración de Sistemas Unix/Linux (282) -> Sistemas de Información Geográfica (274) -> Métodos Formales (291)
- Principios de Computación Distribuida (190) -> Computación Concurrente (259) -> Computación Distribuida (252) -> (202)
- Animación por Computadora (255) -> (203)
- Seminario de Programación (107) -> Modelado y Programación (246) -> Diseño y Programación Orientada a Objetos (168) -> Programación Funcional y Lógica (196) -> Programación de Dispositivos Móviles (277) -> Programación Declarativa (296)
- Análisis Lógico (108) -> Lógica Computacional (244) -> Lógica Computacional II (251) -> Lógicas no Clásicas (166)
- Diseño de Sistemas Digitales (130) -> Diseño de Interfaces de Usuario (272) -> Diseño de interfaces (167)
- Seminario de Inteligencia Artificial II (163) -> Reconocimiento de Patrones (264) -> Reconocimiento de Patrones y Aprendizaje Automatizado (281) -> Seminario de Temas Selectos de Computación II (132) -> Computación Cuántica I (267) -> Computación Cuántica II (279) -> Sistemas Expertos (198) -> Razonamiento Automatizado (292)
- Seminario Filosofía de las Matemáticas (135) -> Seminario de Filosofía de la Ciencia II (138) -> Seminario de Filosofía de la Ciencia III (155) -> Seminario de Filosofía de la Ciencia IV (146)
- Estadística III (139) -> Modelos de Supervivencia y de Series de Tiempo (285)
- Seminario Matemáticas Aplicadas I (144) -> Seminario de Cálculo de Formas Diferenciales (273)
- Seminario de Investigación de Operaciones (160) -> Temas Selectos de Investigación de Operaciones (305)
- Temas Selectos de Ingeniería de Software B (165) -> Temas Selectos de Ingeniería de Software A (192) -> Tecnologías para Desarrollos en Internet (265) -> Ingeniería de Software II (283) -> Patrones de Diseño de Software (294)
- Diseño de Experimentos (177) -> Seminario de Estadística I (324)

- **Seminario de Topología B (179)** -> Topología Diferencial II (232)
- Mercadotecnia de Seguros (183) -> Contabilidad de Seguros (290)
- Graficación por Computadoras (186) -> Visualización (188) -> Geometría Computacional (213) -> Visión Por Computadora (293)
- Seminario de Ciencias Computacionales (189) -> Taller de Herramientas Computacionales (312) -> Sistemas Dinámicos Computacionales I (276) -> Lingüística Computacional (227) -> Herramientas de Computación para las Ciencias (229) -> Algoritmos de Apareamiento de Cadenas (286)
- Redes Neuronales y Autómatas Celulares (193) -> Redes Neuronales (302)
- Procesos Paralelos y Distribuidos (194) -> Algoritmos Paralelos (270)
- Algoritmos Genéticos (197) -> Cómputo Evolutivo (280)
- Simulación y Control (201) -> Control Estadístico de la Calidad (210)
- Introducción a la Criptografía (262) -> Criptografía y Seguridad (271)
- Seminario de Apoyo a la Titulación en Ciencias de la Computación (SN) -> Seminario de Apoyo a la Titulación en Ciencias de la Computación A (315) -> Seminario de Apoyo a la Titulación en Ciencias de la Computación B (316)
- Seminario de Apoyo a la Titulación en Matemáticas (SN) -> Seminario de Apoyo a la Titulación en Matemáticas A (310) -> Seminario de Apoyo a la Titulación en Matemáticas B (317)

Apéndice C

Resultados útiles

Definición C.1. Estimador máximo verosímil de λ

Sean $X_1, X_2, ..., X_n$ una muestra aleatoria de una población con función de densidad de probabilidad $Poisson(\lambda)$. Su función de densidad es:

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 (C.1)

$$\mathcal{L}(X_1, X_2, \dots, X_n; \lambda) = \prod_{i=1}^n \left(e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} \right)$$
$$= e^{-n\lambda} \frac{\sum_{i=1}^n x_i}{\prod_{i=1}^n x_i!}$$

Sacamos ln

$$ln\mathcal{L}(X_1, X_2, \dots, X_n; \lambda) = -n\lambda + \sum_{i=1}^n x_i ln\lambda - ln \prod_{i=1}^n x_i!$$

Derivamos con respecto a λ

$$\frac{\partial}{\partial \lambda} ln \mathcal{L}(\underline{X}; \lambda) = -n + \frac{\sum_{i=1}^{n} x_i}{\lambda}$$

Igualamos a cero

$$-n + \frac{\sum_{i=1}^{n} x_i}{\lambda} = 0$$

Despejamos λ

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{x}$$

Derivamos otra vez

$$\frac{\partial^2}{\partial \lambda} ln \mathcal{L}(\underline{X}; \lambda) = -\frac{\sum_{i=1}^n x_i}{\lambda^2} < 0$$

 $\therefore \hat{\lambda} = \bar{x}$ es el estimador máximo verosímil

Apéndice D

Abreviaturas

ABREVIATURA	SIGNIFICADO
CdC	Ciencias de la Computación
ESIME	Escuela Superior de Ingeniería Mecánica y Eléctrica
Facultad	Facultad de Ciencias de la UNAM
FES	Facultad de Estudios Superiores
ITAM	Instituto Tecnológico Autónomo de México
MatAp	Matemáticas Aplicadas
TC	Tiempo Completo
UNAM	Universidad Nacional Autónoma de México
URL	Uniform Resource Locator
a	b

Tabla D.1: Abreviaturas

Bibliografía

- [1] Casella G., (2006), Statistical Inference, Thomson Press
- [2] Chatfield C. y Xing H., (2019), *The Analysis of Time Series An Introduction with R*, Chapman & Hall/CRC
- [3] Do Chuong B. y Batzoglou S., (2008), *What is the expectation maximization algorithm?*, Nature Biotechnology, Vol. 26, No. 8, pp. 897 899
- [4] Gibbons J. D. y Chakraborti S., (2011), *Nonparametric Statistical Inference*, Chapman & Hall/CRC
- [5] Miller L. H., (1956), *Journal of the American Statistical Association*, Vol. 51, No. 273, pp. 111-121.
- [6] Montgomery D., Jennings C. y Kulahci M., (2015), *Introduction to Time Series Analysis and Forecasting*, Wiley
- [7] Rincón L., (2007), Curso intermedio de probabilidad, UNAM
- [8] Rubinstein R. y Kroese D., (2016), Simulation and the Monte Carlo Method, Wiley
- [9] Shumway R. y Stoffer D., (2017), *Time Series Analysis and Its Applications: With R Examples*, Springer
- [10] Yazdani M., Naeri B. y Zeinali E., (2017), *Algorithms for university course scheduling problems*, Tehnički vjesnik, Vol. 24, No. 2, pp. 241-247
- [11] https://estadisticafciencias.files.wordpress.com/2019/08/introduccic3b3n-a-la-estadc3adstica-versic3b3n-final.pdf

https://www.youtube.com/watch?v=2Tw0peN814k&ab_channel=MLTArtificialIntelligence

https://www.r-bloggers.com/2011/08/fitting-mixture-distributions-with-the-r-package