Latent Variable Graphical Model Selection

Dongfang Wang

August 21, 2014

Outline

- Graphical Lasso
 - Gaussian Graphical Model
 - MLE for Gaussian
 - Graphical Lasso
- 2 Latent Variable model selection
 - Problem Statement
 - Regularized Maximum-likelihood Decompostion Framework
 - Adaptivity
- The versatility of the L+S model
- Discussion

Outline

- Graphical Lasso
 - Gaussian Graphical Model
 - MLE for Gaussian
 - Graphical Lasso
- 2 Latent Variable model selection
 - Problem Statement

 \forall

- Regularized Maximum-likelihood Decompostion Framework
- Adaptivity
- The versatility of the L+S model
- Discussion

assian capmear moder

What graphical model is concerned about?

Independentce, Correlation, and possible Causality between variables

Gaussian Graphical Model(Gaussian-Markov Random Field)

- 1 If all variables have a multivariate Gaussian distribution with
 - mean μ
 - covariance matrix Σ (positive definite)
 - concentration matrix $K = \Sigma^{-1}$

the ijth component of Σ^{-1} is zero \Rightarrow variables i and j are **conditionally independent**, given the other variables.

- Undirected graph: no link means conditionally independent.
- Parameter estimation and model selection: estimating parameters and identifying zeros in K

Graphical Lasso 0000 MLE for Gaussian

$$\begin{split} f(\mathbf{x}; \mu, \Sigma) &= \frac{1}{(2\pi)^{p/2} (det\Sigma)^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \\ \log L(\mu, \Sigma; \mathbf{x}) &= -\frac{np}{2} \log(2\pi) - \frac{n}{2} \log det(\Sigma) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \\ \max \quad \frac{n}{2} \log det(K) - \frac{1}{2} (x_i - \mu)^T C(x_i - \mu) \\ \mathbf{u}^* &= \frac{1}{n} \sum_{i=1}^{n} x_i \\ S_n &= \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu^*)^T (x_i - \mu^*) \end{split}$$

MLE

$$\max \quad \frac{n}{2} \log K - \frac{n}{2} Tr(KS_n)$$

Graphical Lasso

What the problem of MLE?

- Large number of unknown parameters to be estimated
- a high-dimensional model
- \odot not a stable estimate of Σ^{-1}
- ont lead to "sparse" graph structure

Lasso for covariance selection

$$-\log det(K) + Tr(KS_n) + \lambda \sum_{i \neq j} |k_{ij}|$$

$$\min -\log det(K) + Tr(KS_n)$$
s.t.
$$\sum_{i \neq j} |k_{ij}| \le t$$

Any problem?

Graphical Lasso 0000 Graphical Lasso

Latent variables

- "Given all other variables" ?
 - not all other variables observed
 - latent variables lead to failure of graphical lasso

Outline

- Graphical Lasso
 - Gaussian Graphical Model
 - MLE for Gaussian
 - Graphical Lasso
- 2 Latent Variable model selection
 - Problem Statement
 - Regularized Maximum-likelihood Decompostion Framework

 \forall

- Adaptivity
- The versatility of the L+S model
- Discussion

Setup

All variables: $X \in \mathbb{R}^{p+h}$ (jointly Gaussian)

- Observed variables: O, |O| = p, $X_O \in \mathbb{R}^p$
- Latent Variables: H, |H| = h, $X_H \in \mathbb{R}^h$

Covariance matrix and Concentration matrix:

$$\Sigma_{(O,H)} = \left(\begin{array}{cc} \Sigma_O & \Sigma_{O,H} \\ \Sigma_{H,O} & \Sigma_H \end{array} \right) \quad K_{(O,H)} = \left(\begin{array}{cc} K_O & K_{O,H} \\ K_{H,O} & K_H \end{array} \right)$$

Schur complement

$$\tilde{K}_O = (\Sigma_O)^{-1} = K_O - K_{O,H}(K_H)^{-1}K_{H,O}$$

Decomposition

Schur complement

$$\tilde{K_O} = (\Sigma_O)^{-1} = K_O - K_{O,H}(K_H)^{-1}K_{H,O}$$

• $S = K_O$: the concentration matrix of the *conditional statistics* of the observed variables given the latent variables.

sparse

(conditional statistics are given by a sparse graphical model)

• $L = K_{O,H}(K_H)^{-1}K_{H,O}$:a summary of the effect of marginalization over the latent variables X_H

small rank

(number of latent variables is small relative to the number of observed variables)

 \vec{K}_{O} : not sparse due to the additional low-rank term

Problem Statement

- The sum of a sparse matrix and a low-rank matrix
- the conditional graphical model structure in the observed variables as well as the number of and effect due to the unobserved latent variables

Low rank: Invariant property

infinitely many configurations of the latent variables:

$$B \in \mathbb{R}^{h \times h}$$
 nonsigular $\hat{K_H} = BK_HB^T, \hat{K_{O,H}} = K_{O,H}B^T$

 X_O : marginal statistics remain the same upon marginalization over the latent variables

Low-rank summarizes the effect of marginalization over the latent variables

Algebraically correct

An estimate (\hat{S},\hat{L}) of a latent-variable Gaussian graphically model given by the concentration matrix $K_{(O,H)}$:

① sign-pattern of \hat{S} is the same as that of S: correct structural estimation

$$sign(\hat{S}_{ij}) = sign(S_{i,j})$$

② the rank of \hat{L} is the same as that of L the number of latent variables (rank) is properly estimated

$$rank(\hat{L}) = rank(L)$$

a realizable graphical model

$$\hat{S} - \hat{L} > 0$$
 $\hat{L} \ge 0$

 \forall

Problem Statement

Goal

Suppose we have *n* samples $\{X_O^i\}_{i=1}^n$ of the observed variables X_O .

Produce estimates (\hat{S}_n, \hat{L}_n) with high probability are algebraically correct and have bounded estimation error (in some norm)

Approach

$$\begin{split} &(\hat{S}_n, \hat{L}_n) = arg \min_{S,L} \quad -l(S-L; \Sigma_O^n) + \lambda_n(\gamma ||S||_1 + tr(L)) \\ &s.t. \ S-L > 0, L > 0 \end{split}$$

Regularized Maximum-likelihood Decompostion Framework

$$(\hat{S}_n, \hat{L}_n) = \arg\min_{S,L} -l(S - L; \Sigma_O^n) + \lambda_n(\gamma ||S||_1 + tr(L))$$

s.t. $S - L > 0, L > 0$

log-likelihood

$$-\log det(K) + Tr(KS_n)$$

$$K = S - L > 0$$

Penalization

trace functional is the usual convex surrogate for the rank over the cone of positive semidefinite matrices

Adaptivity

Suppose there is no hidden variable

The L+S model behaves as well or nearly as well as the graphical lasso?

The analysis in the paper doesn't reach this conclusion

From related problems, suppose we have incomplete and corrupted information about an $n_1 \times n_2$ low-rank matrix L^0 :

$$M_{ij} = L_{ij}^0 + S_{ij}^0$$

regard S^0 as a corruption pattern which is sparse.

min
$$||L||_* + \lambda ||S||_1$$
 s.t. $M_{ij} = L_{ij} + S_{ij}$

min
$$||b||_1 + \lambda ||e||_1$$
 s.t. $y = Xb + e$ (robust sparse regression)

 \forall

The versatility of the L+S model

Outline

- - Gaussian Graphical Model
 - MLE for Gaussian
 - Graphical Lasso
- - Problem Statement
 - Regularized Maximum-likelihood Decompostion Framework
 - Adaptivity
- The versatility of the L+S model

Low dimensional structures in visual data

Visual data exhibit low-dimensional structures due to rich local regularities, global symmetries, repetitive patterns, or redundant sampling.

L+S Model

Video Y = Low-rank appx. X + Sparse error E

Low Rank Matrix Recovery from corrupted observations

The versatility of the L+S model

Repairing Low-rank Textures

Repairing Multiple Correlated Images

Latent Semantic Indexing: the classical solution (PCA)

Documents

CHRYSLER SETS STOCK SPLIT, HIGHER DIVIDEND Chrysler Corp said its board declared a three-for-two stock solit in the

form of a 50 pct stock dividend and raised the quarterly dividend by

Words of record March 23 It said cash will be paid in lieu of fractional share With the solit, Chrysler said 13.2 mln shares remain to be our chased in its stock repurchase program that began in late 1984. That program now has a target of 56.3 mln shares with the latest stock split

about the company's future."

 d_{ij} word frequency (or TF/IDF)

Chrysler said in a statement the actions "reflect not only our out

standing performance over the past few years but also our optim

 $= U_1 \Sigma_1 V_1^T + U_2 \Sigma_2 V_2^T$

Dense, difficult to interpret

a better model/solution?

$$D = A + \underline{E}$$

Low-rank "background" topic model

Informative, discriminative "keywords"

Outline

- Graphical Lasso
 - Gaussian Graphical Model
 - MLE for Gaussian
 - Graphical Lasso
- 2 Latent Variable model selection
 - Problem Statement
 - Regularized Maximum-likelihood Decompostion Framework
 - Adaptivity
- The versatility of the L+S model
- Discussion

Discussion

Assumptions

- Gaussian distribution
- Conditionally independence (sparse)
- Not too may latent variables (low-rank)

Computation

- All we need is the sample cavariance matrix
- efficient convex programming

L+S model