Advanced Risk Management

Exercises Week 2

1. In addition to the GARCH(1,1) model on Slide 15 of Week 2, we have estimated a GARCH(2,1) model, which can be written as

$$\sigma_{t+1}^2 = \omega + \alpha_1 R_t^2 + \alpha_2 R_{t-1}^2 + \beta \sigma_t^2.$$

The Stata output is as follows:

ARCH family regression

Sample: 03jan2001 - 31dec2010 Number of obs = 2,514 Distribution: Gaussian Wald chi2(.) = . Log likelihood = -3707.484 Prob > chi2 = .

	R	 Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Interval]
R	_cons	.042164	.018291	2.31	0.021	.0063143	.0780136
ARCH	arch L1. L2.	 0054058 .107387	.0113747 .0144182	-0.48 7.45	0.635 0.000	0276999 .0791278	.0168883 .1356462
	garch L1.	 .8854413	.0111009	79.76	0.000	.863684	.9071986
	_cons	.0180067	.0029191	6.17	0.000	.0122853	.0237281

- (a) Test whether this model is significantly better than the GARCH(1,1) model using a likelihood ratio test. Does the outcome agree with the t-statistic (labelled z) of α_2 ?
- (b) The unconditional variance in this model is $\sigma^2 = \omega/(1 \alpha_1 \alpha_2 \beta)$. Evaluate this expression and compare it to the estimate of σ^2 from the GARCH(1,1) model. [Note that $\hat{\alpha}_1$ is negative, because Stata does not impose $\alpha_i \geq 0$; apparently this does not lead to a problem with $\hat{\sigma}_t^2$ being positive.]
- 2. To allow for a (constant) non-zero mean return, the GARCH(1,1) model is formulated as

$$R_{t+1} = \mu + \sigma_{t+1} z_{t+1},$$

$$\sigma_{t+1}^2 = \omega + \alpha (R_t - \mu)^2 + \beta \sigma_t^2.$$

Because z_t are i.i.d. with mean zero and variance 1, the model implies $E_t(R_{t+1}) = E(R_{t+1}) = \mu$. Using $\operatorname{Var}(R_{t+1}) = E[(R_{t+1} - \mu)^2]$ and $\operatorname{Var}_t(R_{t+1}) = E_t[(R_{t+1} - \mu)^2]$, show that in this model, $\operatorname{Var}(R_{t+1}) = \sigma^2 = \omega/(1 - \alpha - \beta)$, just like in the model with $\mu = 0$.

1

3. There are different ways to obtain an asymmetric News Impact Curve in GARCH models. Christof-fersen discusses the so-called non-linear GARCH model (with zero mean return):

$$R_{t+1} = \sigma_{t+1} z_{t+1},$$

$$\sigma_{t+1}^2 = \omega + \alpha (R_t - \theta \sigma_t)^2 + \beta \sigma_t^2.$$

By comparing the NIC of this model with the NIC of the GJR-GARCH model, discuss which one gives a better representation of the leverage effect.

4. We wish to obtain a 10-day Value at Risk from a volatility model. We assume that the K-day returns $R_{t+1:t+K}$ have a normal distribution with mean 0 and variance $Var(R_{t+1:t+K}) = \sum_{k=1}^{K} E_t(\sigma_{t+k}^2)$, so that

$$\mathit{VaR}_{t+1:t+K}^p = -\sqrt{\sum_{k=1}^K E_t(\sigma_{t+k}^2)} \times \Phi_p^{-1}.$$

- (a) Show that for the RiskMetrics model $\sigma_{t+1}^2=0.06R_t^2+0.94\sigma_t^2$, we have $\text{Var}(R_{t+1:t+10})=10\times\sigma_{t+1}^2$, so that $\textit{VaR}_{t+1:t+10}^p=\sqrt{10}\times\textit{VaR}_{t+1}^p$.
- (b) On one of the worst days of the 2008 financial crisis, both the RiskMetrics model and a GARCH model indicated that $\sigma_{t+1}^2=25$. Use the formulas on Slide 7 of Week 2 to obtain a 10-day 1% VaR based on a GARCH model with $\hat{\omega}=0.01$, $\hat{\alpha}=0.08$, $\hat{\beta}=0.91$, and compare it to the RiskMetrics 10-day 1% VaR.