CMPT 409/981: Optimization for Machine Learning

Lecture 5

Sharan Vaswani

September 26, 2022

Recap

For *L*-smooth, convex functions, GD with $\eta = 1/L$ requires $T \geq \frac{2L \|w_0 - w^*\|^2}{\epsilon}$ iterations to obtain point w_T that is ϵ -suboptimal in the sense that $f(w_T) \leq f(w^*) + \epsilon$.

For L-smooth, convex functions, the rate can improved to $\Theta\left(1/\sqrt{\epsilon}\right)$ using Nesterov acceleration.

For *L*-smooth, μ -strongly convex functions, GD with $\eta = \frac{1}{L}$ requires $T \ge \kappa \log \left(\frac{\|w_0 - w^*\|^2}{\epsilon} \right)$ iterations to obtain a point w_T that is ϵ -suboptimal in the sense that $\|w_T - w^*\|^2 \le \epsilon$.

For *L*-smooth, μ -strongly convex functions, the rate can improved to $\Theta\left(\sqrt{\kappa}\log\left(\frac{1}{\epsilon}\right)\right)$ using Nesterov acceleration.

1

We have characterized the convergence of GD on smooth, (strongly)-convex functions when the domain was \mathbb{R}^d i.e. the optimization was "unconstrained".

In general, convex optimization can be constrained to be over a convex set.

Examples: Linear programming, Optimizing over the probability simplex or a norm-ball.

We can modify GD to solve problems such as $\min_{w \in \mathcal{C}} f(w)$ where f is a convex function and \mathcal{C} is a convex set.

Projected GD

$$w_{k+1} = \Pi_{\mathcal{C}} \left[w_k - \eta \nabla f(w_k) \right]$$

where, $\Pi_{\mathcal{C}}[x] = \arg\min_{w \in \mathcal{C}} \frac{1}{2} \|w - x\|^2$ is the Euclidean projection onto the convex set \mathcal{C} .

Q: (i) Is $\Pi_{\mathcal{C}}[x]$ unique for convex sets? (ii) For non-convex sets?

Ans: (i) Yes, since we are minimizing a strongly-convex function over a convex set. (ii) Not necessarily, for example, when the set is the boundary of a circle and we are projecting the centre.

Q: For $x \in \mathbb{R}^d$, compute the Euclidean projection onto the ℓ_2 -ball: $\mathcal{B}(0,1) = \{w | \|w\|_2^2 \le 1\}$?

Ans: We need to solve $y=\min_{\|w\|_2^2\leq 1}\frac{1}{2}\|w-x\|_2^2$. If $\|x\|_2^2\leq 1$, $x\in\mathcal{B}(0,1)$, and $\Pi_{\mathcal{B}(0,1)}[x]=x$. If $\|x\|_2^2>1$, then the projection will result in a point on the boundary of \mathcal{B} and have unit length. Consider the set of candidate points of unit length: $\hat{Y}=\{\hat{y}\mid \|\hat{y}\|_2^2=1\}$. For $y=\frac{x}{\|x\|_2^2}\in\hat{Y}$ and any other $\hat{y}\in\hat{Y}$,

$$y = \underset{\hat{y} \in \hat{Y}}{\arg\min} \frac{1}{2} \|\hat{y} - x\|_{2}^{2} = \frac{1 + \|x\|^{2}}{2} - \langle \hat{y}, x \rangle$$

Hence, if $\|x\|_2^2 > 1$, then $\Pi_{\mathcal{B}}[x] = \frac{x}{\|x\|_2^2}$. Putting both cases together, $\Pi_{\mathcal{B}}[x] = \frac{x}{\max\{1, \|x\|_2^2\}}$. Can and should be formally done using Lagrange multipliers.

For convex optimization over unconstrained domains, we know that the minimizer can be characterized by its gradient norm i.e. if w^* is a minimizer, then, $\nabla f(w^*) = 0$.

Optimality conditions: For constrained convex domains, if f is convex and $w^* \in \arg\min_{w \in \mathcal{C}} f(w)$, then $\forall w \in \mathcal{C}$,

$$\langle \nabla f(w^*), w - w^* \rangle \geq 0$$

i.e. if we are at the optimal, either the gradient is zero (if w^* is inside \mathcal{C}) or moving in the negative direction of the gradient will push us out of \mathcal{C} (if w^* is at the boundary of \mathcal{C}).

For the Euclidean projection, if $y := \Pi_{\mathcal{C}}[x] = \arg\min_{w \in \mathcal{C}} \frac{1}{2} \|w - x\|^2$, then, using the optimal conditions above, $\forall w \in \mathcal{C}$,

$$\langle x-y, w-y\rangle \leq 0$$

i.e. the angle between the rays $y \to x$ and $y \to w$ for all $w \in \mathcal{C}$ is greater than 90° .

Q: For convex set C, if $w^* = \arg\min_{w \in C} f(w)$, what is $\Pi_C[w^*]$?

Ans: w^* since $w^* \in \mathcal{C}$

Claim: Projections onto a convex set are non-expansive operations i.e. for all x_1, x_2 , if $y_1 := \Pi_{\mathcal{C}}[x_1]$ and $y_2 := \Pi_{\mathcal{C}}[x_2]$, then, $||y_1 - y_2|| \le ||x_1 - x_2||$.

Proof: Recall from the last slide, that for the Euclidean projection, $y = \Pi_{\mathcal{C}}[x]$, $\langle x - y, w - y \rangle \leq 0$ for all $w \in \mathcal{C}$. Hence,

$$\langle x_1 - y_1, w - y_1 \rangle \le 0 \implies \langle x_1 - y_1, y_2 - y_1 \rangle \le 0$$
 (Set $w = y_2$)

$$\langle x_2 - y_2, w - y_2 \rangle \le 0 \implies \langle x_2 - y_2, y_1 - y_2 \rangle \le 0$$
 (Set $w = y_1$)

Adding the two equations,

 $\implies ||y_1 - y_2|| < ||x_1 - x_2||$

$$\langle x_{2} - y_{2}, y_{1} - y_{2} \rangle + \langle x_{1} - y_{1}, y_{2} - y_{1} \rangle \leq 0 \implies \langle x_{2} - x_{1} + y_{1} - y_{2}, y_{1} - y_{2} \rangle \leq 0$$

$$\implies \langle y_{1} - y_{2}, y_{1} - y_{2} \rangle \leq \langle x_{1} - x_{2}, y_{1} - y_{2} \rangle \implies \|y_{1} - y_{2}\|^{2} \leq \|x_{1} - x_{2}\| \|y_{1} - y_{2}\|$$
(Cauchy Schwartz)

5

Projected GD for Smooth, Strongly-Convex Functions

Recall the projected GD update: $w_{k+1} = \Pi_{\mathcal{C}}[w_k - \eta \nabla f(w_k)]$. Since $w^* = \Pi_{\mathcal{C}}[w^*]$, using the non-expansiveness of projections with $x_1 = w^*$, $x_2 = w_k - \eta \nabla f(w_k)$, $y_1 = w^*$, $y_2 = w_{k+1}$,

$$||w_{k+1} - w^*|| \le ||w_k - \eta \nabla f(w_k) - w^*||$$

i.e. by projecting onto C, the distance to the minimizer w^* (that lies in C) has not increased.

With this change, the proof proceeds as before. In particular,

$$\|w_{k+1} - w^*\|^2 \le \|w_k - \eta \nabla f(w_k) - w^*\|^2 = \|w_k - w^*\|^2 - 2\eta \langle \nabla f(w_k), w_k - w^* \rangle + \eta^2 \|\nabla f(w_k)\|^2$$

Using smoothness, strong-convexity similar to Lecture 4, we can derive the same linear rate.

$$\|w_{k+1} - w^*\|^2 \le \exp(-T/\kappa) \|w_0 - w^*\|^2$$

Using non-expansivenss of projections, we can redo the proof for smooth, convex functions and get the same $O\left(1/\epsilon\right)$ convergence rate.

Hence, projected GD is a good option for minimizing convex functions over convex sets when the projection operation is computationally cheap.

Nesterov Acceleration

Gradient Descent: $w_{k+1} = \mathsf{GD}(w_k)$ where GD is a function such that $\mathsf{GD}(w) := w - \eta \nabla f(w)$.

Nesterov Acceleration: $w_{k+1} = GD(w_k + \beta_k(w_k - w_{k-1}))$ for $\beta_k \ge 0$ to be determined. Hence,

$$w_{k+1} = [w_k + \beta_k(w_k - w_{k-1})] - \eta \nabla f(w_k + \beta_k(w_k - w_{k-1}))$$

i.e. Nesterov acceleration can be interpreted as doing GD on "extrapolated" points where β_k can be interpreted as the "momentum" in the previous direction $(w_k - w_{k-1})$.

If we define sequence $v_k := w_k + \beta_k (w_k - w_{k-1})$, and initialize $w_0 = v_0$, then,

$$v_k = w_k + \beta_k (w_k - w_{k-1})$$
 ; $w_{k+1} = v_k - \eta \nabla f(v_k)$ (1)

Rewriting the above expression only in terms of v_k ,

$$v_{k+1} = v_k - \eta_k \nabla f(v_k) + \beta_{k+1} [v_k - v_{k-1}] - \eta \, \beta_{k+1} [\nabla f(v_k) - \nabla f(v_{k-1})]$$

i.e. Nesterov acceleration can be interpreted as moving along a combination of three directions – the gradient direction $\nabla f(v_k)$, the momentum direction for the iterates $[v_k - v_{k-1}]$ and the momentum direction for the gradients $[\nabla f(v_k) - \nabla f(v_{k-1})]$.

In order to analyze the convergence of Nesterov acceleration for smooth, convex functions, define $d_k := \beta_k(w_k - w_{k-1})$, set $\eta = \frac{1}{L}$ and define $g_k := -\frac{1}{L}\nabla f(w_k + d_k)$. For $k \ge 1$ (for simplicity, set $w_1 = w_0$),

$$w_{k+1} = [w_k + \beta_k(w_k - w_{k-1})] - \eta \nabla f(w_k + \beta_k(w_k - w_{k-1}))$$

$$\implies w_{k+1} = w_k + d_k - \frac{1}{L} \nabla f(w_k + d_k) = w_k + d_k + g_k.$$

In order to set the momentum parameter β_k , we define a sequence $\{\lambda_k\}_{k=1}^T$ such that,

$$\lambda_0 = 0$$
 ; $\lambda_k = \frac{1 + \sqrt{1 + 4\lambda_{k-1}^2}}{2}$; $\beta_{k+1} = \frac{\lambda_k - 1}{\lambda_{k+1}}$ (2)

Claim: For *L*-smooth, convex functions, Nesterov acceleration with $\eta = \frac{1}{L}$, β_k set according to Eq. (2) and $T \geq \frac{\sqrt{2L} \|w_1 - w^*\|}{\sqrt{\epsilon}}$ iterations to obtain point w_{T+1} that is ϵ -suboptimal in the sense that $f(w_{T+1}) \leq f(w^*) + \epsilon$.

Hence, Nesterov acceleration is optimal for minimizing the class of smooth, convex functions.

In order to prove the claim, we will need the following lemma:

Lemma: When using Nesterov acceleration with $\eta = \frac{1}{L}$, for any vector y, $f(w_{k+1}) - f(y) \le \langle \nabla f(w_k + d_k), w_k + d_k - y \rangle - \frac{1}{2L} \|\nabla f(w_k + d_k)\|^2$.

Proof: Using L-smoothness, since Nesterov acceleration is equivalent to GD on $w_k + d_k$,

$$f(w_{k+1}) - f(w_k + d_k) \le \langle \nabla f(w_k + d_k), w_{k+1} - w_k - d_k \rangle + \frac{L}{2} \|w_{k+1} - w_k - d_k\|^2$$

$$= -\frac{1}{L} \langle \nabla f(w_k + d_k), \nabla f(w_k + d_k) \rangle + \frac{1}{2L} \|\nabla f(w_k + d_k)\|^2$$

$$\implies f(w_{k+1}) - f(w_k + d_k) \le \frac{-1}{2L} \|\nabla f(w_k + d_k)\|^2$$

$$\implies f(w_{k+1}) - f(y) \le f(w_k + d_k) - f(y) - \frac{1}{2L} \|\nabla f(w_k + d_k)\|^2$$

Using convexity: $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$ with $x = w_k + d_k$ and y = y

$$\implies f(w_{k+1}) - f(y) \le \langle \nabla f(w_k + d_k), w_k + d_k - y \rangle - \frac{1}{2I} \left\| \nabla f(w_k + d_k) \right\|^2 \tag{3}$$

Using the lemma with $y=w^*$, with $f^*:=f(w^*)$ and define $\Delta_k:=f(w_k)-f^*$,

$$\Delta_{k+1} = f(w_{k+1}) - f^* \le \langle \nabla f(w_k + d_k), w_k + d_k - w^* \rangle - \frac{1}{2L} \| \nabla f(w_k + d_k) \|^2$$

$$\le -\frac{L}{2} \left[2 \left\langle \frac{-\nabla f(w_k + d_k)}{L}, (w_k - w^*) + d_k \right\rangle + \frac{1}{L^2} \| \nabla f(w_k + d_k) \|^2 \right]$$

$$\implies \Delta_{k+1} \le -\frac{L}{2} \left[2 \langle g_k, w_k - w^* + d_k \rangle + \| g_k \|^2 \right]$$
(4)

Using the lemma with $y = w_k$,

$$[f(w_{k+1}) - f^*] - [f(w_k) - f^*] \le \langle \nabla f(w_k + d_k), d_k \rangle - \frac{1}{2L} \| \nabla f(w_k + d_k) \|^2$$

$$\implies \Delta_{k+1} - \Delta_k \le -\frac{L}{2} \left[2 \left\langle \frac{-\nabla f(w_k + d_k)}{L}, d_k \right\rangle + \frac{1}{L^2} \| \nabla f(w_k + d_k) \|^2 \right]$$

$$\implies \Delta_{k+1} - \Delta_k \le -\frac{L}{2} \left[2 \langle g_k, d_k \rangle + \| g_k \|^2 \right]$$
(5)

For $\lambda_k > 1$,

$$(\lambda_k - 1) \operatorname{Eq.}(5) + \operatorname{Eq.}(4) \le -\frac{L}{2} \left[(\lambda_k - 1) \left[2\langle g_k, d_k \rangle + \|g_k\|^2 \right] + \left[2\langle g_k, w_k - w^* + d_k \rangle + \|g_k\|^2 \right] \right]$$

Let us first simplify the RHS,

$$\begin{split} & \left[(\lambda_{k} - 1) \left[2\langle g_{k}, d_{k} \rangle + \|g_{k}\|^{2} \right] + \left[2\langle g_{k}, w_{k} - w^{*} + d_{k} \rangle + \|g_{k}\|^{2} \right] \right] \\ & = \lambda_{k} \left[2\langle g_{k}, d_{k} \rangle + \|g_{k}\|^{2} \right] - \left[2\langle g_{k}, d_{k} \rangle + \|g_{k}\|^{2} - 2\langle g_{k}, w_{k} - w^{*} + d_{k} \rangle - \|g_{k}\|^{2} \right] \\ & = \frac{1}{\lambda_{k}} \left[\lambda_{k}^{2} \left(2\langle g_{k}, d_{k} \rangle + \|g_{k}\|^{2} \right) + 2\lambda_{k}\langle g_{k}, w_{k} - w^{*} \rangle \right] \\ & = \frac{1}{\lambda_{k}} \left[\|w_{k} - w^{*} + \lambda_{k} d_{k} + \lambda_{k} g_{k} \|^{2} - \|w_{k} - w^{*} + \lambda_{k} d_{k} \|^{2} \right] \end{split}$$

Putting everything together,

$$\lambda_k \left[(\lambda_k - 1) \operatorname{Eq.}(5) + \operatorname{Eq.}(4) \right] \le \frac{L}{2} \left[\| w_k - w^* + \lambda_k d_k \|^2 - \| w_k - w^* + \lambda_k d_k + \lambda_k g_k \|^2 \right]$$
 (6)

Now let us simplify the LHS of Eq. (6),

$$\lambda_{k} \left[(\lambda_{k} - 1) \operatorname{Eq.} (5) + \operatorname{Eq.} (4) \right] = \lambda_{k} \left[(\lambda_{k} - 1) (\Delta_{k+1} - \Delta_{k}) + \Delta_{k+1} \right] = \lambda_{k}^{2} \Delta_{k+1} - (\lambda_{k}^{2} - \lambda_{k}) \Delta_{k}$$

Putting everything together,

$$\lambda_{k}^{2} \Delta_{k+1} - (\lambda_{k}^{2} - \lambda_{k}) \Delta_{k} \leq \frac{L}{2} \left[\|w_{k} - w^{*} + \lambda_{k} d_{k}\|^{2} - \|w_{k} - w^{*} + \lambda_{k} d_{k} + \lambda_{k} g_{k}\|^{2} \right]$$

We wish to sum from k = 1 to T, and telescope the terms. For the RHS, we want that,

$$w_{k} - w^{*} + \lambda_{k} d_{k} + \lambda_{k} g_{k} = w_{k+1} - w^{*} + \lambda_{k+1} d_{k+1} = w_{k} + d_{k} + g_{k} - w^{*} + \lambda_{k+1} d_{k+1}$$

$$= w_{k} + d_{k} + g_{k} - w^{*} + \lambda_{k+1} \beta_{k+1} [w_{k+1} - w_{k}]$$

$$= w_{k} + d_{k} + g_{k} - w^{*} + \lambda_{k+1} \beta_{k+1} [w_{k} + d_{k} + g_{k} - w_{k}]$$

$$\implies \text{We want that: } w_{k} - w^{*} + \lambda_{k} (d_{k} + g_{k}) = w_{k} - w^{*} + (1 + \lambda_{k+1} \beta_{k+1}) [d_{k} + g_{k}]$$

This can be achieved if $\beta_{k+1} = \frac{\lambda_k - 1}{\lambda_{k+1}}$.

Recall that: $\lambda_k^2 \Delta_{k+1} - (\lambda_k^2 - \lambda_k) \Delta_k \leq \frac{L}{2} \left[\|w_k - w^* + \lambda_k d_k\|^2 - \|w_k - w^* + \lambda_k d_k + \lambda_k g_k\|^2 \right]$. In order to telescope the LHS, we want that,

$$\lambda_{k-1}^2 = \lambda_k^2 - \lambda_k \implies \lambda_k = \frac{1 + \sqrt{1 + 4\lambda_{k-1}^2}}{2}$$

By using the sequence $\lambda_k=rac{1+\sqrt{1+4\lambda_{k-1}^2}}{2}$ and setting $eta_{k+1}=rac{\lambda_k-1}{\lambda_{k+1}}$,

$$\lambda_{k}^{2} \Delta_{k+1} - \lambda_{k-1}^{2} \Delta_{k} \leq \frac{L}{2} \left[\left\| w_{k} - w^{*} + \lambda_{k} d_{k} \right\|^{2} - \left\| w_{k+1} - w^{*} + \lambda_{k+1} d_{k+1} \right\|^{2} \right]$$

Summing from k = 1 to T, since $\lambda_0 = 0$

$$\lambda_T^2 \Delta_{T+1} \le \frac{L}{2} \left[\|w_1 - w^* + \lambda_1 d_1\|^2 - \|w_{T+1} - w^* + \lambda_{T+1} d_{T+1}\|^2 \right]$$

$$\le \frac{L}{2} \|w_1 - w^*\|^2 \quad \text{(Since } w_0 = w_1 \implies d_1 = \beta_1 (w_1 - w_0) = 0\text{)}$$

$$\implies \Delta_{T+1} = f(w_{T+1}) - f^* \le \frac{L}{2\lambda_T^2} \|w_1 - w^*\|^2 \tag{7}$$

Recall that $f(w_{T+1}) - f^* \leq \frac{L}{2\lambda_T^2} \|w_1 - w^*\|^2$. Let us prove that $\lambda_k \geq \frac{k}{2}$ by induction.

Base case: k = 1, $\lambda_1 = \frac{1 + \sqrt{1 + 4\lambda_0^2}}{2} = 1 \ge \frac{1}{2}$.

Inductive step: Assuming the statement is true for k-1 i.e. $\lambda_{k-1} \geq \frac{k-1}{2}$,

$$\lambda_k = \frac{1 + \sqrt{1 + 4\lambda_{k-1}^2}}{2} = \frac{1 + \sqrt{1 + (k-1)^2}}{2} \ge \frac{k}{2}.$$

Hence, $\lambda_k \geq \frac{k}{2}$ and $\lambda_T \geq \frac{T}{2}$. Hence,

$$f(w_{T+1}) - f^* \le \frac{2L \|w_1 - w^*\|^2}{T^2}$$

Hence, Nesterov acceleration with $\eta = \frac{1}{L}$ and a carefully engineered β_k sequence can obtain the accelerated $O\left(\frac{1}{L^2}\right)$ rate for smooth, convex functions.

Nesterov acceleration also results in the accelerated $O(\sqrt{\kappa} \log(1/\epsilon))$ rate for smooth, strongly-convex functions.

In order to obtain this rate, the algorithm requires the following parameter settings: $\eta = \frac{1}{L}$ and,

$$\beta_k = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$$

Refer to Bubeck, 3.7.1 for the analysis.

Compared to the smooth, convex setting for which β_k decreases, the strongly-convex setting requires a constant β_k in order to attain the accelerated rate.

Compared to GD, for smooth, strongly-convex functions, Nesterov acceleration requires knowledge of κ (and hence μ) in order to set β_k .

Unlike estimating L, estimating μ is difficult, and misestimating it can result in bad empirical performance. Common trick that results in decent performance is to use the convex parameters (with the decreasing β_k) with restarts.

