Past Paper: Partial Differential Equations

Midterm Exam, 2024

Rashid M. Talha

Disclaimer: Use at your own risk. Errors possible.

Question 1.

Classify the following equation and reduce it to the canonical form

$$u_{xy} + yu_{yy} + \sin(x+y) = 0.$$

Solution. We start by swapping the variables $x \leftrightarrow y$ to get the transformed PDE

$$xu_{xx} + u_{xy} + \sin(x+y) = 0.$$
 (*)

Now, A = x, B = 1, C = D = E = 0. Since, $B^2 - 4AC = 1 > 0$, this is a hyperbolic PDE. So, the corresponding characteristic equation

$$\frac{dy}{dx} = \frac{B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{1 \pm 1}{2x}$$

gives

$$\frac{dy}{dx} = \frac{1}{x} \implies k + y = \ln x \implies xe^{-y} = c_1, \quad \frac{dy}{dx} = 0 \implies y = c_2.$$

Here, k, c_1 and c_2 are constants. These lead to $\xi = xe^{-y} = c_1$ and $\eta = y = c_2$. As a result

$$B^* = 2A\xi_x \eta_x + B(\xi_x \eta_y + \xi_y \eta_x) + 2C\xi_y \eta_y = e^{-y},$$

$$D^* = A\xi_{xx} + B\xi_{xy} + C\xi_{yy} + D\xi_x + E\xi_y = -e^{-y},$$

$$E^* = A\eta_{xx} + B\eta_{xy} + C\eta_{yy} + D\eta_x + E\eta_y = 0.$$

(Also, $A^* = C^* = 0$ because the PDE is hyperbolic.)

As a result, equation (*) implies

$$e^{-y}u_{\xi\eta} - e^{-y}u_{\xi} = \sin(x+y) \implies u_{\xi\eta} - u_{\xi} = e^{\eta}\sin(\eta + \xi e^{\eta}).$$

Here, we used $y = \eta$ and $x = \xi e^y = \xi e^{\eta}$.

Overall, the canonical form of the given PDE is

$$u_{\xi\eta} = u_{\xi} + e^{\eta} \sin(\eta + \xi e^{\eta})$$

with $\xi = ye^{-x}$ and $\eta = x$ (in terms of the original variables).

Question 2.

Apply a linear transformation $\xi = x + by$ and $\eta = x + dy$ to transform the Euler equation

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} = 0$$

into canonical form, where b, d A, B and C are constants.

Solution. We note that this is a second order linear PDE with constant coefficients such that D=E=0. Under the change of variables $\xi=x+by$ and $\eta=x+dy$, these coefficients transform to

$$A^* = A\xi_x^2 + (2B)\xi_x\xi_y + C\xi_y^2 = A + 2Bb + Cb^2,$$

$$B^* = 2A\xi_x\eta_x + (2B)(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y = 2A + 2B(b+d) + 2Cbd,$$

$$C^* = A\eta_x^2 + (2B)\eta_x\eta_y + C\eta_y^2 = A + 2Bd + Cd^2,$$

$$D^* = A\xi_{xx} + (2B)\xi_{xy} + C\xi_{yy} + D\xi_x + E\xi_y = 0,$$

$$E^* = A\eta_{xx} + (2B)\eta_{xy} + C\eta_{yy} + D\eta_x + E\eta_y = 0.$$

The resulting transformed PDE is

$$(A + 2Bb + Cb^{2})u_{\xi\xi} + 2(A + B(b + d) + Cbd)u_{\xi\eta} + (A + 2Bd + Cd^{2})u_{\eta\eta} = 0.$$

The canonical form depends on the solutions of $A^* = 0$; i.e. $A + 2Bb + Cb^2 = 0$. This gives

$$A + 2Bb + Cb^2 \implies b = \frac{-B \pm \sqrt{B^2 - AC}}{C}$$

If $B^2 > AC$, then let

$$b = \frac{-B + \sqrt{B^2 - AC}}{C}$$
 and $d = \frac{-B - \sqrt{B^2 - AC}}{C}$.

This eliminates A^* and C^* and reduces the transformed PDE to the hyperbolic canonical form $2(A + B(b + d) + Cbd)u_{\xi\eta} = 0 \implies u_{\xi\eta} = 0$.

If $B^2 = AC$, then let b = -B/C. We note that

$$A + B(b + d) + Cbd = A - \frac{B^2}{C} + Bd - Bd = A - A = 0.$$

This eliminates A^* and B^* and reduces the transformed PDE to the parabolic canonical form $(A + 2Bd + Cd^2)u_{\eta\eta} = 0 \implies u_{\eta\eta} = 0$.

If $B^2 < AC$, then let

$$b = \frac{-B + i\sqrt{AC - B^2}}{C}, \quad \alpha = \operatorname{Re} \xi = x - \frac{B}{C}, \quad \beta = \operatorname{Im} \xi = \frac{\sqrt{AC - B^2}}{C}.$$

We find that this leads to $u_{\alpha\alpha} + u_{\beta\beta} = 0$, the elliptic canonical form.

Question 3.

Determine the solution of the equation

$$x(y^2 + u)u_x - y(x^2 + u)u_y = (x^2 - y^2)u$$

with the data x + y = 0 and u = 1.

Solution. The characteristic equations are

$$\frac{dx}{xy^2 + xu} = \frac{dy}{-yx^2 - yu} = \frac{du}{(x^2 - y^2)u} = \frac{xdx + ydy}{(x^2 - y^2)u} = \frac{\frac{dx}{x} + \frac{dy}{y}}{y^2 - x^2}$$

Therefore,

$$\frac{du}{(x^2 - y^2)u} = \frac{xdx + ydy}{(x^2 - y^2)u} \implies du = xdx + ydy$$

$$\implies u = \frac{1}{2}x^2 + \frac{1}{2}y^2 + k$$

$$\implies 2u - x^2 - y^2 = c_1.$$

And,

$$\frac{du}{(x^2 - y^2)u} = \frac{\frac{dx}{x} + \frac{dy}{y}}{y^2 - x^2} \implies -\frac{du}{u} = \frac{dx}{x} + \frac{dy}{y}$$
$$\implies \log|u| + \log|x| + \log|y| = k$$
$$\implies uxy = c_2.$$

Here, c_1 , c_2 and k are constants. The general solution is $f(2u - x^2 - y^2, uxy) = 0$ where f is an arbitrary function.

We are given that x + y = 0 when u = 1. This means, y = -x when u = 1. So,

$$c_2 = uxy = x(-x) = -x^2,$$

 $c_1 = 2u - x^2 - y^2 = 2 - x^2 - x^2 = 2 - 2x^2 = 2 + 2c_2.$

Therefore, $c_1 = 2 + 2c_2 \implies 2u - x^2 - y^2 = 2(1 + uxy)$, which can be expressed as

$$u = \frac{2 + x^2 + y^2}{2 - 2xy}.$$

Question 4.

Show that the general solution of a first-order quasilinear partial differential equation

$$a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$$

is $f(\varphi, \psi) = 0$, where f is an arbitrary function of $\varphi(x, y, u)$ and $\psi(x, y, u)$, and $\varphi(x, y, u) = c_1$ and $\psi(x, y, u) = c_2$ are solution curves of the characteristic equations

$$\frac{dx}{dx} = \frac{dy}{dx} = \frac{du}{c}$$
.

Solution. By equating the ratios in the characteristic equations to a common parameter

$$\frac{dx}{a(x,y,u)} = \frac{dy}{b(x,y,u)} = \frac{du}{c(x,y,u)} = dt$$

we can write dx = adt, dy = bdt and du = cdt. Now,

$$\phi(x,y,u) = c_1 \implies d\phi = \phi_x dx + \phi_y dy + \phi_u du = 0 \implies a\phi_x + b\phi_y + c\phi_u = 0,$$

$$\psi(x,y,u) = c_2 \implies d\psi = \psi_x dx + \psi_y dy + \psi_u du = 0 \implies a\psi_x + b\psi_y + c\psi_u = 0.$$

Simultaneously solving these two equations (for a, b, c) gives

$$\frac{a}{\begin{vmatrix} \phi_y & \phi_u \\ \psi_y & \psi_u \end{vmatrix}} = \frac{-b}{\begin{vmatrix} \phi_x & \phi_u \\ \psi_x & \psi_u \end{vmatrix}} = \frac{c}{\begin{vmatrix} \phi_x & \phi_y \\ \psi_x & \psi_y \end{vmatrix}} = \lambda.$$

By defining the notation $\frac{\partial(\phi,\psi)}{\partial(x,y)} = \begin{vmatrix} \phi_x & \phi_y \\ \psi_x & \psi_y \end{vmatrix}$ these ratios can be rewritten as

$$\frac{a}{\frac{\partial(\phi,\psi)}{\partial(y,u)}} = \frac{b}{\frac{\partial(\phi,\psi)}{\partial(u,x)}} = \frac{c}{\frac{\partial(\phi,\psi)}{\partial(x,y)}} = \lambda.$$

Here we used $-\begin{vmatrix} \phi_u & \phi_x \\ \psi_u & \psi_x \end{vmatrix} = \begin{vmatrix} \phi_x & \phi_u \\ \psi_x & \psi_u \end{vmatrix}$. Consequently,

$$\frac{\partial(\phi,\psi)}{\partial(y,u)} = \frac{a}{\lambda}, \quad \frac{\partial(\phi,\psi)}{\partial(u,x)} = \frac{b}{\lambda}, \quad \frac{\partial(\phi,\psi)}{\partial(x,y)} = \frac{c}{\lambda}.$$

Using the expressions found above, we get

$$au_x + bu_y = c \iff u_x \frac{\partial(\phi, \psi)}{\partial(y, u)} + u_y \frac{\partial(\phi, \psi)}{\partial(u, x)} = \frac{\partial(\phi, \psi)}{\partial(x, y)}.$$

Now, since $f(\phi, \psi) = 0$ satisfies the PDE

$$u_x \frac{\partial(\phi, \psi)}{\partial(y, u)} + u_y \frac{\partial(\phi, \psi)}{\partial(u, x)} = \frac{\partial(\phi, \psi)}{\partial(x, y)},$$

we conclude that $f(\phi, \psi) = 0$ satisfies the PDE $au_x + bu_y = c$.

Question 5.

Verify that the function

$$u = \varphi(xy) + x\psi\left(\frac{y}{x}\right)$$

is the general solution of the equation

$$x^2 u_{xx} - y^2 u_{yy} = 0.$$

Solution. We have

$$u_{x} = y\varphi'(xy) + \psi\left(\frac{y}{x}\right) - x\left(\frac{y}{x^{2}}\right)\psi'\left(\frac{y}{x}\right) = y\varphi'(xy) + \psi\left(\frac{y}{x}\right) - \frac{y}{x}\psi'\left(\frac{y}{x}\right)$$

$$u_{y} = x\varphi'(xy) + x\left(\frac{1}{x}\right)\psi'\left(\frac{y}{x}\right) = x\varphi'(xy) + \psi'\left(\frac{y}{x}\right)$$

$$u_{xx} = y^{2}\varphi''(xy) - \frac{y}{x^{2}}\psi'\left(\frac{y}{x}\right) + \frac{y}{x^{2}}\psi'\left(\frac{y}{x}\right) + \frac{y^{2}}{x^{3}}\psi''\left(\frac{y}{x}\right) = y^{2}\varphi''(xy) + \frac{y^{2}}{x^{3}}\psi''\left(\frac{y}{x}\right)$$

$$u_{yy} = x^{2}\varphi''(xy) + \frac{1}{x}\psi''\left(\frac{y}{x}\right)$$

Therefore,

$$x^{2}u_{xx} - y^{2}u_{yy} = x^{2}y^{2}\varphi''(xy) + \frac{y^{2}}{x}\psi''\left(\frac{y}{x}\right) - x^{2}y^{2}\varphi''(xy) + \frac{y^{2}}{x}\psi''\left(\frac{y}{x}\right) = 0$$

Question 6.

Determine the solution of the initial boundary value problem

$$u_{tt} = 4u_{xx},$$
 $0 < x < 1, t > 0,$
 $u(x,0) = 0,$ $0 \le x \le 1,$
 $u_t(x,0) = x(1-x),$ $0 \le x \le 1,$
 $u(0,t) = 0, u(1,t) = 0,$ $t \ge 0.$

Solution. This is the wave equation (c=2) on a bounded spatial interval [0,1]. The general solution is $u(x,t) = \varphi(x+2t) + \psi(x-2t)$ with

$$\varphi(\eta) = \frac{1}{2}f(\eta) + \frac{1}{2c} \int_0^{\eta} g(\tau) \, d\tau + \frac{K}{2}, \quad \psi(\eta) = \frac{1}{2}f(\eta) - \frac{1}{2c} \int_0^{\eta} g(\tau) \, d\tau - \frac{K}{2}.$$

for $0 \le \eta \le 1$. Using $f(\eta) = 0$ and $g(\eta) = \eta(1 - \eta)$ gives,

$$\varphi(\eta) = \frac{1}{4} \left(\frac{1}{2} \eta^2 - \frac{1}{3} \eta^3 \right) + \frac{K}{2}, \quad 0 \le \eta \le 1, \tag{1}$$

$$\psi(\eta) = -\frac{1}{4} \left(\frac{1}{2} \eta^2 - \frac{1}{3} \eta^3 \right) - \frac{K}{2}, \quad 0 \le \eta \le 1.$$
 (2)

The boundary conditions give

$$u(0,t) = 0 \implies \psi(-2t) = -\varphi(2t) \implies \psi(\eta) = -\varphi(-\eta), \tag{*}$$

$$u(1,t) = 0 \implies \varphi(1+2t) = -\psi(1-2t) \implies \varphi(\eta) = -\psi(2-\eta). \tag{**}$$

Now, using (*) in (1) gives,

$$\psi(\eta) = -\varphi(-\eta) = -\frac{1}{4} \left(\frac{1}{2} \eta^2 + \frac{1}{3} \eta^3 \right) - \frac{K}{2}.$$
 (3)

This is valid for $0 \le -\eta \le 1 \implies -1 \le \eta \le 0$. So, the domain of ψ has been extended. Similarly, using (**) in (2) gives,

$$\varphi(\eta) = -\psi(2 - \eta) = \frac{1}{4} \left(\frac{1}{2} (2 - \eta)^2 - \frac{1}{3} (2 - \eta)^3 \right) + \frac{K}{2}.$$
 (4)

This is valid for $0 \le 2 - \eta \le 1 \implies 1 \le \eta \le 2$. So, the domain of φ has been extended. We repeat this process to extend the domain further: using (*) in (3) and (**) in (4).