corrigé distribué le 6/06/25

Mini-problème.

Les fonctions absolument monotones sont sommes de leur série de Taylor.

Soit I un intervalle de \mathbb{R} .

Une fonction $f: I \to \mathbb{R}$ est dite absolument monotone (en abrégé A.M.) sur I si elle est de classe C^{∞} sur I et vérifie la relation suivante :

$$\forall n \in \mathbb{N}, \quad \forall x \in I, \qquad f^{(n)}(x) \geqslant 0.$$

- 1. (a) Donner un exemple de fonction A.M. sur tout intervalle de \mathbb{R} .
 - (b) Montrer que $x \mapsto -\ln(1-x)$ est A.M. sur]0,1[.
- 2. Soit f une fonction A.M. sur [0, b[, où b > 0. Pour $n \in \mathbb{N}$, on définit la fonction R_n par

$$\forall x \in [0, b[R_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k.$$

- (a) Exprimer R_n comme une intégrale. avez-vous eu besoin d'aller relire le cours ou connaissez-vous la formule?
- (b) Démontrer que R_n est positive.
- (c) Montrer que $x \mapsto \frac{R_n(x)}{x^n}$ est croissante sur [0, b[et préciser $\lim_{x \to 0} \frac{R_n(x)}{x^n}$.
- (d) Soit $x \in [0, b[$. Justifier que la série $\sum \frac{f^{(n)}(0)}{n!}x^n$ converge.
- (e) Notons S(x) la somme de la série précédente. Montrer que les fonctions f et S coïncident sur [0, b[.

Exercice facultatif(*)

Déterminer le nombre de permutations de S_6 qui commutent avec (123)(456).

indication : faire apparaître des conjugués de cycles