Análisis para el conjunto de datos Growth

Joel Alejandro Zavala Prieto

Contents

Información de contacto	2
Modelando el dataset Growth	3
Descripción	3
Visualización	3
Coeficientes del modelo de regresión	3
Modelo obtenido	4
Inferencias a los parámetros obtenidos	4
Varianza Heterocedastica	4
Por funciones propias	4
Por linea de comando (inferencias)	4
Intervalo de confianza al nivel 95% por funciones propias	4
Intervalo de confianza al nivel 95% por linea de comando	5
Varianza Homocedastica	6
Por funciones propias	6
Intervalo de confianza al nivel 95% por funciones propias	6
Intervalo de confianza al nivel 95% por linea de comando	6
Medidas de ajuste	7
Resumen general	8
Excluyendo a Malta	9
Descripción	9
Modelo obtenido	9
Medidas de ajuste	10
Resumen general	11

Información de contacto

```
Mail: alejandro.zavala1001@gmail.com
Facebook: https://www.facebook.com/AlejandroZavala1001
Git: https://github.com/AlejandroZavala98

## Loading required package: zoo

## ## Attaching package: 'zoo'

## The following objects are masked from 'package:base': ##

## as.Date, as.Date.numeric
```

Modelando el dataset Growth

Descripción

En esta parte se hara un análisis del conjunto de datos "Growth". Cuya descripción citare

"Contiene datos sobre las tasas de crecimiento promedio durante 1960-1995 para 65 países, junto con variables que están potencialmente relacionadas con el crecimiento. Estos datos fueron proporcionados por el profesor Ross Levine de la Universidad de Brown y fueron utilizados en su artículo con Thorsten Beck y Norman Loayza"

Visualización

Crecimiento anual promedio

Coeficientes del modelo de regresión

	X
(Intercept)	0.6402653
tradeshare	2.3064337

Modelo obtenido

De tal modo el modelo es

```
\hat{growth_i} = 0.6402653 + 2.3064337 tradeshare_i
```

Si predecimos el crecimiento con participacion de $0.5~\mathrm{y}~1$, y creamos un intervalo de confianza para la poredicción al nivel 90% se tiene que:

fit	lwr	upr
1.793482	-1.2187550	4.805719
2.946699	-0.1163921	6.009790

Inferencias a los parámetros obtenidos

Varianza Heterocedastica

Por funciones propias

```
Para \hat{\beta_0}, el estadístico t:
## (Intercept)
      2.809697
Para \hat{\beta}_1, el estadístico t:
## tradeshare
      3.47728
##
Para \hat{\beta}_1, el su p-valor:
##
     tradeshare
## 0.0005065294
Por linea de comando (inferencias)
##
## t test of coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.64027
                               0.45915 1.3945 0.1680736
## tradeshare
                  2.30643
                               0.66329 3.4773 0.0009235 ***
```

Intervalo de confianza al nivel 95% por funciones propias

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

	inf	sup
tradeshare	1.006392	3.606476

Intervalo de confianza al nivel 95% por linea de comando

```
## 2.5 % 97.5 %
## (Intercept) -0.2772641 1.557795
## tradeshare 0.9809608 3.631907
```

Varianza Homocedastica

Por funciones propias

tradeshare
2.981873

tradeshare
0.002864913

Intervalo de confianza al nivel 95% por funciones propias

	inf	sup
tradeshare	0.7904031	3.822464

Intervalo de confianza al nivel 95% por linea de comando

2.5 % 97.5 % ## (Intercept) -0.3388749 1.619405 ## tradeshare 0.7607473 3.852120

Medidas de ajuste

Recordemos algunas medidas importantes, tales como:

Suma total de cuadrados (STC)

$$STC = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

[1] 230.3401

Suma explicada de cuadrados (SEC)

$$SEC = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

[1] 28.48851

Suma de los residuos al cuadrado (SRC)

$$SRC = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

[1] 201.8516

Tamaño de la muestra

[1] 65

 \mathbb{R}^2 o R cuadrado

$$R^2 = \frac{SEC}{STC}$$

[1] 0.1236802

Error estándar de la regresión

[1] 1.78997

Resumen general

```
##
## Call:
## lm(formula = growth ~ tradeshare, data = Growth)
## Residuals:
##
      Min
               1Q Median
                              3Q
## -4.3739 -0.8864 0.2329 0.9248 5.3889
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6403 0.4900 1.307 0.19606
## tradeshare 2.3064
                       0.7735 2.982 0.00407 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.79 on 63 degrees of freedom
## Multiple R-squared: 0.1237, Adjusted \bar{R}-squared: 0.1098
## F-statistic: 8.892 on 1 and 63 DF, p-value: 0.00407
```

Excluyendo a Malta

Descripción

Se procedera hacer un análisis pero excluyendo Malta

Crecimiento anual promedio (Sin Malta)

Modelo obtenido

De tal modo el modelo es

$$\hat{growth}_i = 0.9574 + 1.6809 tradeshare_i$$

Si predecimos el crecimiento con participacion de 0.5 y 1 , al nivel 90% se tiene que:

fit	lwr	upr
1.797863	-1.2142000	4.809926
2.638315	-0.4660119	5.742642

Medidas de ajuste

Recordemos algunas medidas importantes, tales como:

Suma total de cuadrados (STC)

$$STC = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

[1] 207.8082

Suma explicada de cuadrados (SEC)

$$SEC = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

[1] 9.280316

Suma de los residuos al cuadrado (SRC)

$$SRC = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

[1] 198.5278

Tamaño de la muestra

[1] 64

 \mathbb{R}^2 o R cuadrado

$$R^2 = \frac{SEC}{STC}$$

[1] 0.04465809

Error estándar de la regresión

[1] 1.789431

Resumen general

```
##
## Call:
## lm(formula = growth ~ tradeshare, data = df_noMalta)
## Residuals:
              1Q Median
##
      Min
                             3Q
## -4.4247 -0.9383 0.2091 0.9265 5.3776
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9574 0.5804 1.650 0.1041
## tradeshare 1.6809
                       0.9874 1.702 0.0937 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.789 on 62 degrees of freedom
## Multiple R-squared: 0.04466, Adjusted R-squared: 0.02925
## F-statistic: 2.898 on 1 and 62 DF, p-value: 0.09369
```