Streaming Triangle Counting: Deep Dive

A Step-by-Step Visualization of the $O(m \kappa/T)$ Algorithm

Intuition Behind Sampling with $rac{\min(d(u),d(v))}{d_E}$

The key idea is:

Algorithm Recap

"Sample edges in proportion to how likely they are to participate in triangles."

We aim to estimate the number of triangles T using $O(\frac{m\kappa}{T})$ space over three passes. The passes are:

- 1. Edge sampling proportional to degree.
- 2. Sampling a random neighbor of the lower-degree endpoint.
- 3. Checking triangle closure.

Pass 1: Degree-Proportional Edge Sampling

Objective

Select $N=\Theta(d_E/T)$ edges, each with probability $d(e)/d_E$, where $d_e:=\min(d_u,d_v)$. This biases toward edges in dense regions. 1. Normalization: Turning Weights into Probabilities

Visualization

- **Problem**: Raw $\min(d(u), d(v))$ values are just *weights*—they don't sum to 1 (so they're not valid probabilities).
- **Solution**: Divide each edge's weight by the total weight d_E .

 $\mathbb{P}(ext{sample edge } e) = rac{\min(d(u),d(v))}{d_E}$

Sample *e* with prob. $d(e)/d_E$

- This ensures:
 - Each edge's sampling probability is between 0 and 1.
 - o All probabilities sum to 1 (i.e., we always sample some edge).

Details

- Compute in a stream the sum $d_E = \sum_e d(e)$ via a degree oracle.
- Use weighted reservoir sampling to pick N edges proportional to d(e).

Pass 2: Random Neighbor of Lower-Degree Endpoint

Objective

For each sampled edge e = (u, v), find the endpoint $x = \arg \min\{d(u), d(v)\}$. Query a uniformly random neighbor w of x.

Created by Xodo PDF Studio. Learn more at xodo.com/pdf-studio

2. Probability of Picking the "Closing" Neighbor

After sampling e = (u, v):

Visualization

- Let $x = \arg\min(d(u), d(v))$ (the lower-degree endpoint)
- ullet w must be the third vertex in Δ
- Probability of randomly selecting w from x's neighbors:

$$\mathbb{P}(\operatorname{pick} w \mid \operatorname{sampled} e) = rac{1}{\min(d(u),d(v))}$$

Pick random neighbor w (Uniform ran

(Uniform random selection from x's neighbors)

Details

- Use degree oracle to identify *x* with smaller degree.
- Use neighbor oracle to sample w uniformly from N(x).

3. Joint Probability per Edge

Pass 3: Triangle Verification

$$\mathbb{P}(\mathrm{detect}\ \Delta\ \mathrm{via}\ e) = \underbrace{\dfrac{\min(d(u),d(v))}{d_E}}_{\mathrm{sampling}\ e} imes \underbrace{\dfrac{1}{\min(d(u),d(v))}}_{\mathrm{picking}\ w} = \dfrac{1}{d_E}$$

Objective

Check if w completes a triangle with u, v by verifying the existence of edge (u, w) or (v, w) in the stream.

Visualization

4. Total Detection Probability (All 3 Edges)

Since Δ can be detected via any of its 3 edges:

$$\mathbb{P}(ext{detect }\Delta) = 3 imes rac{1}{d_E} = rac{3}{d_E}$$

Details

- Maintain a small hash or Bloom filter to record observed edges in second or third pass.
 2. For Any Triangle (Across All T Triangles):
- If (u, w) observed, record success; else fail.

$$\mathbb{P}(ext{detect any triangle}) pprox rac{3T}{d_E}$$

Probability and Space Analysis

Combining passes gives success probability per sample $3/d_E$, so $N = \Theta(d_E/T)$ samples suffice. Storing N edges and queries yields $O(m\kappa/T)$ space.

Created with LATEX, Visualized for clarity

- Why approximate?
 - Strictly speaking, the events are not perfectly independent (edges may overlap), but for large graphs, this approximation holds well.