Лабораторная работа 6.1 Исследование резонансного поглощения γ -квантов (эффект Мессбауэра)

Нехаев Александр, гр. 654 20 декабря 2018 г.

Содержание

1.	Введение	2
	Ход работы 2.1. Измерение спектра источника	
3.	Вывод	6

1. Введение

Цель работы: С помощью метода доплеровского сдвига мессбауэровской линии поглощения исследуется резонансное поглощение γ -лучей, испускаемых ядрами олова ¹¹⁹Sn в соединении $BaSnO_3$ при комнатной температуре. Определяется положение максимума резонансного поглощения, его величина, а также экспериментальная ширина линии $\Gamma_{\rm экc}$. Оценивается время жизни возбужденного состояния ядра ¹¹⁹Sn.

В работе используются: (См рис. 1) 9 – эксцентрик, С – сцинтилляционный кристалл NaI(Tl), У – усилитель, АА – одноканальный амплитудный анализатор, 9BM – ΠK , Γ – генератор питания двигателя, PД-09 – двигатель с редуктором, BCB – высоковольтный стабилизированный выпрямитель.

Рис. 1: Схема экспериментальной установки

Теоретические основы Нуклоны в атомном ядре, как и электроны в атоме, могут находиться в различных дискретных энергетических состояниях, или, как говорят, на различных энергетических уровнях. Самый низкий из уровней называется основным, остальные носят название возбужденных. Ядра, находящиеся в возбужденных состояниях, могут переходить на более низкие энергетические уровни, в том числе и на основной уровень. Такие переходы происходят самопроизвольно. Освобождающаяся энергия уносится фотоном. Так возникает γ -излучение.

В отличие от основного уровня, все возбужденные уровни ядра имеют конечную ширину. Отложим по оси абсцисс энергию ядра, а по оси ординат – вероятность найти ядро в состоянии с данной энергией (рис. 2a). Ширина кривой, измеренная на половине высоты, называется естественной шириной линии Γ . Она связана со средним временем жизни τ возбужденного состояния ядра соотношением неопределенностей

$$\Gamma \tau \simeq \hbar$$
 (1)

где \hbar — постоянное Планка. Неопределенность в энергии возбужденных уровней приводит к появлению ширины у линий γ -излучения.

Ядра атомов могут не только испускать, но и поглощать фотоны. Если попадающий в атомное ядро фотон имеет энергию, равную разности энергий между основным и какимлибо возбужденным состояниями, то ядро может поглотить фотон и перейти в соответствующее возбужденное состояние. Этот процесс возможен лишь для γ -лучей определенных энергий и носит, таким образом, резонансный характер.

Энергия E_{γ} , уносимая γ -квантом, оказывается меньше энергии E_0 перехода между уровнями. Небольшая, но вполне заметная доля энергии уносится ядром, которое вследствие отдачи начинает двигаться в сторону, противоположную направлению вылета γ -кванта.

Ядро, которое испускает γ -квант, приобретает импульс отдачи, равный по абсолютной величине импульсу γ -кванта. Если ядро свободно и первоначально покоится, то энергия отдачи R равна

$$R = \frac{p^2}{M_{\rm g}} = \frac{E_{\gamma}^2}{2M_{\rm g}c^2}.$$
 (2)

Рассмотрим в качестве примера ядро олова $^{119}{\rm Sn},$ у которого расстояние между основным и первым возбужденным уровням равно $E_0=23.8$ кэВ. Энергия отдачи в этом случае составляет 1

$$R = \frac{E_{\gamma}^2}{2M_{\rm H}c^2} \simeq \frac{E_0^2}{2M_{\rm H}c^2} = 2.5 \cdot 10^{-3} \text{ sB}.$$

Рис. 2: Энергетическое распределение, характеризующее возбужденное состояние ядра (а), и сдвиг линий испускания и поглощения из-за отдачи при свободных ядрах(б).

Энергия, которая расходуется на отдачу ядра, поглощающего γ -квант, оказывается точно такой же. Эта картина иллюстрирует рис.26: линия испускания смещена на величину R влево, а линия поглощения — на столько же вправо от E_0 .

Обсуждая влияние, которое оказывает сдвиг R на резонансное поглощение γ -лучей, следует иметь в виду, что величина R сама по себе не представляет существенного интереса. Важно соотношение между R и шириной Γ соответствующей резонансной линии. Резонансное поглощение возможно только в том случае, если спектры испускания и поглощения перекрываются, т.е. при условии

$$2R \leqslant \Gamma.$$
 (3)

Это условие почти никогда не выполняется для γ -переходов в свободных ядрах. Так, для рассмотренного ядра 119 Sn естественная ширина линии $\Gamma \simeq 3 \cdot 10^{-8}$ эВ, т.е. на много порядков величины меньше R^2 . В принципе, можно компенсировать энергетический сдвиг 2R с помощью эффекта Доплера. Для этого изучающие и поглощающие ядра должны двигаться друго относительно друга со скоростью V, равной

$$V = c \cdot 2R/E_{\gamma}.\tag{4}$$

Для ядер ¹¹⁹Sn нужна скорость $V \simeq 60 \text{ м/c}.$

В реальных условиях ширина линии испускания (и поглощения) складывается из собственной ширины линии и её доплеровской ширины. Из этих двух ширин основную роль играет именно доплеровская ширина уровней, связанная с тепловым движением атомов. Произведем соответсвующие оценки. Доплеровский сдвиг уровней D можно рассчитывать по нерелятивистским формулам, поскольку v - тепловая скорость атомов – много ментше скорости света:

$$D = \frac{v}{c} E_{\gamma} \simeq \frac{v}{c} E_0. \tag{5}$$

¹Величины E_0 , E_γ и R связаны законом сохранения энергии: $E_0 = E_\gamma + R$. Поскольку $R \ll E_\gamma$, в формуле (2) E_γ можно заменить на энергию возбужденного состояния E_0 .

 $^{^2}$ Заметим, что при оптических переходах в атомах соотношение между R и Γ существенно меняется. В этом случае энергии переходов оказываются на 4 порядка и, следовательно, R на 8 порядков величины меньше, чем при γ -излучении, а ширины уровней оказываются, грубо говоря, того же порядка. В этом случае поглощение легко наблюдается.

Оценим величину v. Средняя кинетическая энергия, приходящаяся на одну степень свободы (движение по направлению к поглотителю или от него), равна $k_{\rm B}T/2$. Имеем поэтому:

$$\frac{M_{\rm g}v^2}{2} = \frac{k_{\rm B}T}{2},$$

или

$$v = \sqrt{k_{\rm B}T/M_{\rm H}}. (6)$$

Подставляя это значение в формулу (5) и принимая во внимание (2), найдем

$$D = \sqrt{2Rk_{\rm B}T}$$

Более аккуратный расчет дает

$$D = 2\sqrt{Rk_{\rm B}T} \tag{7}$$

При комнатных температурах $k_{\rm B}T \simeq 1/40$ эВ. Для ¹¹⁹Sn имеем:

$$D = 1.5 \cdot 10^{-2} \text{ sB}.$$

2. Ход работы

2.1. Измерение спектра источника

- 1) Включим приборы и после прогрева установим напряжение на ФЭУ. Включим компьютер.
- 2) Изменяя нижний порог окна сцинтилляционного спектрометра шириной 0.5 В, измерим спектр источника:

Таблица 1: Значения спектра источника

Номер	Нижний порог	Интенсивность
1	0.0	145862.6
2	0.5	350.0
3	1.0	771.2
4	1.5	179.6
5	2.0	26.2
6	2.5	33.0
7	3.0	70.8
8	3.5	109.8
9	4.0	151.0
10	4.5	178.6
11	5.0	196.8
12	5.5	183.8
13	6.0	143.0
14	6.5	83.6
15	7.0	47.8
16	7.5	23.2
17	8.0	10.8
18	8.5	5.8
19	9.0	6.0
20	9.5	4.6

Рис. 3: Спектр источника

3) Построим график $I = f(U_1)$ (рис. 3).

Аппроксимируем график по Гауссовскому распределению вида

$$y = \frac{A \cdot e^{-\frac{(x - x_0)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$$

и получаем коэффициенты

$$A = (635.64 \pm 18.84), x_0 = (4.87 \pm 0.04), \sigma = (1.314 \pm 0.033)$$

упрощая, получаем уравнение

$$y = (192.9 \pm 7.5)e^{-(0.29 \pm 0.03)(x - (4.87 \pm 0.04))^2}$$

Из графика, с учетом аппроксимации находим, что энергия 23.8 эВ соответствует значению $U_1=4.87~\mathrm{B}.$

2.2. Измерение резонансного поглощения

- 4) Установим окно сцинтилляционного спектрометра, соответствующее ширине линии спектра излучения 3.5-7 В, и проведем измерения резонансного поглощения:
 - а) Поглощение на Sn(100)

Используя Лоренцовское распределение, получили кривую, изображенную на рис. ??. Полученное значение $2\Gamma=(0.843\pm0.069)~\text{мм/c}=(6.691\pm0.548)\cdot10^{-8}$ эВ. Химический сдвиг $E_0=(2.572\pm0.018)~\text{мм/c}=(20.406\pm0.014)\cdot10^{-8}$ эВ. $\varepsilon(v)=\frac{N(\infty)-N(v)}{N(\infty)-N_{\Phi}}=12.7\%$.

б) Поглощение на Sn(200)

Используя Лоренцовское распределение, получили кривую, изображенную на рис. ??. Полученное значение $2\Gamma=(1.178\pm0.111)~\text{мм/c}=(9.345\pm0.882)\cdot10^{-8}$ эВ. Химический сдвиг $E_0=(2.526\pm0.027)~\text{мм/c}=(20.044\pm0.021)\cdot10^{-8}$ эВ. $\varepsilon(v)=\frac{N(\infty)-N(v)}{N(\infty)-N_\Phi}=19.4\%$.

в) Поглощение на SnO₂

Используя Лоренцовское распределение, получили кривую, изображенную на рис. ??. Полученное значение $2\Gamma=(2.142\pm0.116)~\text{мм/c}=(1.699\pm0.092)\cdot10^{-7}$ эВ. Химический сдвиг $E_0=(0.006\pm0.022)~\text{мм/c}=(46.826\pm0.017)\cdot10^{-8}$ эВ. $\varepsilon(v)=\frac{N(\infty)-N(v)}{N(\infty)-N_\Phi}=31.1\%$.

3. Вывод

Эффект резонансного поглощения γ -квантов может применяться для исследования структур, содержащих определенные изотопы. Поскольку мессбауэровская линия очень узка, то для того, чтобы резонанс нарушился необходима ничтожная скорость порядка мм/с. Основными причинами уширения линии можно считать нарушение равномерности движения образца, т.к. не всегда время прохождения линейного участка было меньше, чем время измерения и уширение, связанное с вибрациями установки, которые могли произойти по любой причине.

Νo	v_{-}	I_{-}	21.	I_{+}
1	1.44	871.7	$\frac{v_{+}}{1.52}$	853.3
-		0,,		
2	1.52	852.1	1.61	850.1
3	1.48	858.4	1.59	843.1
4	1.37	852.4	1.51	853.6
5	1.21	834.4	1.35	842.6
6	4.44	856.6	4.71	848.4
7	3.71	845.9	3.92	846.7
8	3.08	857.9	3.27	840.0
9	2.48	847.0	2.64	750.8
10	2.12	841.9	1.67	838.1
11	1.57	858.0	1.64	837.1
12	1.55	841.3	1.16	841.4
13	1.06	857.6	2.79	764.0
14	2.62	869.2	3.0	793.3
15	2.83	869.1	3.16	812.6
16	2.99	852.9	3.49	828.7
17	2.16	850.5	3.12	815.8
18	1.85	856.1	2.82	778.5
19	2.34	854.7	2.32	762.0
20	2.11	858.0	1.99	812.8
21	1.93	838.0	2.48	755.3
22	2.25	845.6	2.22	792.8
23	3.28	849.8	2.04	799.9
24	2.94	847.7	2.41	764.4
25	2.66	855.3	2.24	791.3

Рис. 4: График для Sn(100)

$N_{\overline{0}}$	v_{-}	I_{-}	v_+	I_+
1	2.67	384.7	2.83	314.1
2	3.09	382.7	3.26	347.2
3	3.5	385.8	3.73	372.8
4	3.9	380.3	4.14	372.4
5	4.32	384.4	4.55	374.1
6	2.44	379.3	2.61	311.5
7	1.65	381.8	1.7	366.7
8	1.99	385.8	2.12	329.
9	2.7	382.2	2.84	324.7
10	2.93	368.9	3.12	342.6
11	3.04	371.2	3.24	365.9
12	2.67	379.3	2.82	327.2
13	2.43	379.6	2.56	317.5
14	2.17	380.6	2.31	313.9
15	1.94	372.2	2.07	338.1
16	1.72	373.9	1.85	346.9
17	1.45	390.	1.54	360.9
18	1.14	384.6	1.2	379.5
19	0.7	375.7	0.77	371.8
20	1.65	396.	1.77	358.3
21	1.9	374.7	2.04	337.1

Рис. 5: График для Sn(200)

$N_{\overline{0}}$	v_{-}	I_{-}	v_+	I_+
1	0.72	610.6	0.76	619.4
2	0.87	606.	0.93	628.5
3	1.14	654.2	1.21	667.1
4	1.43	686.3	1.53	692.2
5	1.29	673.3	1.38	682.8
6	1.06	652.9	1.23	669.3
7	2.8	743.4	2.98	758.8
8	3.42	757.9	3.59	758.1
9	4.12	750.2	4.37	769.7
10	4.5	751.7	4.77	772.
11	2.51	739.3	2.64	744.
12	2.24	745.6	2.39	750.5
13	1.65	704.4	1.76	728.2
14	1.08	661.9	1.16	649.2
15	0.33	550.3	0.39	556.9
16	0.21	544.	0.25	546.3
17	0.48	565.8	0.53	591.6
18	0.73	603.3	0.75	611.1

Рис. 6: График для ${\rm SnO_2}$