# **Image Stitching**

r08944022 蔡仲閔

vtsai01@cmlab.csie.ntu.edu.tw

()

#### **Table of Contents**

Q

Q

- Project Description
- <u>Algorithms</u>
- <u>Usages</u>
- Results
- Acknowledgements and Links

## **Project Description**

There are several steps(shown below) including feature detection, feature description, feature matching, alignment and blending, we use MSOP(<u>Multi-Image Matching using Multi-Scale Oriented Patches (http://matthewalunbrown.com/papers/cvpr05.pdf</u>)) as <u>Feature Descriptor</u> and use KNN(k nearest neighbor) with RANSAC to do the <u>Feature Matching</u>. We also implemented <u>Alignment and Blending</u> for images to show our result.

## **Algorithms**

#### **Feature Descriptor**

We implemented the MSOP to do the feature dectection and also use non maximumal suppression to make sure our features are well distributed. Here are some example:





figure 1: image pyramid's feature map detect by harris corner detector

#### **Feature Matching**

In this part, we use K nearest neighbor with k=2 to find their matching. To make sure we choose the good matching pairs, we also implemented **David Lowe's ratio test** shown in function feature\_matching() in utils/stitch.py. Here are some example:

Q





 $\mathcal{Q}$ 

Q

figure 2: feature matching in differnent level of pyramid

### **Alignment and Blending**

After we have the matching pair, we can caluculate the tanslation between image. To get the best motion models, we implemented *RANSAC* shown in function <code>pairwise\_alignment(...)</code> in <code>utils/stitch.py</code>. Then, we can do the blending, the result is not quite good until we modified the blending weighted in different dimension according to the magnitude of its motion parameter.

## **Usages**

There are python file(main.py) and ipython notebook(Stitching.ipynb) for you to choose.

#### **Prepare Images and Meta Data**

Put your images in a single folder and prepare your meta data file. The meta file should contains filename and focal length separated with spaces.(see ./images/yard-002/pano.txt)

Start

here is an example to run the code.

python3 main.py --img-dir ./images/yard-001/ --meta-path ./images/yard-001/pano.txt

to see more parameters

python3 main.py --help

### **Results**

## **Original Image**



#### Stitching Image



tags: NTU Homework vfx

## **Acknowledgements and Links**

- <u>Digital Visual Effects (https://www.csie.ntu.edu.tw/~cyy/courses/vfx/20spring/overview/)</u>
- <u>Github Code (https://github.com/qa276390/image-stitching-msop)</u> for this Project