Domain-Specific Semantic Relatedness from Wikipedia Structure: A Case Study in Biomedical Text

Armin Sajadi, Evangelos Milios, Vlado Kešelj, and
Jeannette Janssen
{sajadi,eem,vlado}@cs.dal.ca, janssen@mathstat.dal.ca

April 18, 2015

1. Domain Specific Relatedness

- Calculating relatedness between two domain-specific concepts.
- ► The relation can be taxonomic relation (i.e., is-a) or any non taxonomic relation such as is-treated-by in the biomedical domain.
- Measuring relatedness benefits NLP applications.

2. Contributions

- ► Comparing Wikipedia in the biomedical domain with both (1) Ontology-based methods and (2) distributional methods.
- Evaluating a group of graph-based similarity methods on Wikipedia.
- Proposing a new relatedness method using Wikipedia graph structure.

3. Motivations

3.1. Why Wikipedia?

- Domain-specific semantic relatedness relies on either ontologies or specialized corpora.
- Ontologies are labor-intensive and do not exist for most domains.
- Distributional methods need sufficiently large domain specific corpora. Building such corpora is not trivial.

3.2. Why Biomedical Domain?

- ► The availability of high-quality ontologies (MeSH, SNOMED-CT, etc.).
- ► A rich literature for extracting semantic relatedness.
- The availability of reliable datasets.

4. Basic Idea

Given two concepts:

- Extract neighborhood graph for each concept in the Wikipedia graph.
- ▶ Transform the graph to a list using HITS algorithm.
- ► Calculate Kendall's tau distance between the two lists.

5. Relatedness Calculation

6. Formulation

- **6.1. HITS Ranking Algorithm:** Originally proposed to rank web pages
 - ▶ Input: A graph with adjacency matrix M
 - Output: two scoring functions on vertices: Authorities and Hubs
 - Idea: Mutual Reinforcement

```
Hub-scores \leftarrow Principal Eigen-vector of M^TM
```

Auth-scores \leftarrow Principal Eigen-vector of MM^T

6. Formulation

6.2. Kendall's tau Distance:

Counts the number of pairwise disagreements between two given lists σ_1 and σ_2 :

$$K(\sigma_1, \sigma_2) = \frac{2}{n(n-1)} \sum_{\{i,j\} \in \mathcal{P}} \bar{K}_{i,j}(\sigma_1, \sigma_2)$$

where

- $ightharpoonup \mathcal{P}$ is the set of unordered pairs of distinct elements of the lists
- $ightharpoonup K_{i,j}(\sigma_1,\sigma_2)$ is 0 if i and j are in the same order in both of the lists, otherwise it is 1

2. Title

6.3. HITS-Sim Score:

$$\begin{aligned} \textit{HITS-sim}(a,b) &= \lambda \times \textit{HITS-sim}_{hub}(a,b) \\ &+ (1-\lambda) \times \textit{HITS-sim}_{aut}(a,b) \\ &\lambda \in [0,1] \text{ (we use 0.5)} \end{aligned}$$

Table 1. Comparison with Ontology-based methods. o_1 : sct-umls; o_2 : mesh-umls; o_3 : umls

Method	Pedersen. N=29			Mayo N=101			UMN sim. N=566			UMN rel N=587		
	[2]			[4]			[3]			[3]		
	01	02	03	o ₁	02	03	o ₁	02	03	o ₁	02	03
LCH	.44	.42	.61	.03	.26	.3	.23	.25	.4	.17	.34	.34
IIC-LCH	.38	.43	.7	.3	.25	.44	.36	.29	.46	.3	.35	.39
PPR	.63	.31	.69	.17	.05	.46	.23	.18	.41	.17	.18	.33
hits-sim	.71			*.52			†.58			†.51		

Table 2. Comparison with distributional methods

Method	Resources	Pedersen	Mayo	UMN sim.	UMN rel.
Vector	Mayo Corpus*+UMLS	.76	†.02	†.02	†13
Tensor	OHSUMED+UMLS	.76			
Word2Vec	OHSUMED	†.34	†.26	†.36	†.29
Word2Vec	OHSUMED+UMLS	.80	.63	†.39	†.39
hits-sim	Wikipedia	.71	.52	.58	.51

^{*} Mayo Corpus of Clinical Notes.

Table 3. Comparison between Wikipedia based methods

Method	MC [1]	WordSim353 [5]	Ped.	Ped.	Ped.	Mayo	UMN	UMN
			Phys.	Coders	All		Sim.	Rel.
ESA	.73	.75						
CPRel	.83	.64						
WLM^\dagger	.86	.67	.63	.69	.67	.49	.58	.49
Co-Citation [†]	.86	.67	.62	.68	.66	.47	.57	.49
Coupling [†]	.90	*.65	.61	.66	.64	*.44	*.49	*.4
Amsler [†]	.86	.68	.58	.66	.64	*.45	*.53	*.43
SimRank [†]	.79	*.51	*.56	*.55	*.55	*.39	*.45	*.39
EHITS-sim [†]	.84	*.62	.6	.67	.64	*.46	*.54	*.45
HITS-sim	.88	.70	.67	.72	.71	.52	.58	.51

Table 4. The Effect of Metrics: Kendall's tau (τ) , Pearson (r) and cosine distance (cos)

	Pedersen			MayoSRS			U	MN R	el.	UMN Sim.		
	$\overline{\tau}$	r	cos	$\overline{\tau}$	r	cos	$\overline{\tau}$	r	cos	$\overline{\tau}$	r	cos
$\overline{\rho}$.71	.57	.64	.52	.42	.52	.58	.35	.55	.51	.36	.49

8. Conclusion

- ▶ Distributional and ontology-based methods are competitive, and a hybrid of them improves the results.
- ▶ Wikipedia is comparable with the available specialized resources and often significantly improves upon them.
- Our new proposed graph-based relatedness computing approach based on the HITS algorithm achieves the best correlations with human judgement.

8. References I

Miller et al. (1991).

Contextual correlates of semantic similarity.

Pedersen et al. (2007).

Measures of semantic similarity and relatedness in the biomedical domain. Biomedical Informatics, 40(3):288 - 299.

Pakhomov et al. (2010).

Semantic Similarity and Relatedness between Clinical Terms: An Experimental Study. AMIA Annu Symp Proc, 2010:572-576.

Pakhomov et al. (2011).

Towards a framework for developing semantic relatedness reference standards. Biomedical Informatics, 44(2):251-265.

Finkelstein (2001).

Placing search in context: the concept revisited. Conference on World Wide Web, 406-414.