

Problem 4.5

An n-channel MOSFET is biased in the saturation region at a constant V_{GS} . (a) The drain current is $I_D=0.250$ mA at $V_{DS}=1.5$ V and $I_D=0.258$ mA at $V_{DS}=3.3$ V. Determine the value of λ and r_o . (b) Using the results of part (a), determine I_D at $V_{DS}=5$ V.

Problem 4.9

The circuit shown in Figure 4.1 has parameters $V_{DD}=2.5~{\rm V}$ and $R_D=10~{\rm k}\,\Omega$. The transistor is biased at $I_{DQ}=0.12~{\rm mA}$. The transistor parameters are $V_{TN}=0.3~{\rm V}$, $k_n^{'}=100\,\mu\,{\rm A/V}^2$, and $\lambda=0$. (a) Design the W/L ratio of the transistor such that the small-signal voltage gain is $A_v=-3.8$. (b) Repeat part (a) for $A_v=-5.0$.

Problem 4.13

Consider the circuit in Figure 4.14 in the text. The circuit parameters are $V_{DD}=3.3~\rm V$, $R_D=8~\rm k\,\Omega$, $R_1=240~\rm k\,\Omega$, $R_2=60~\rm k\,\Omega$, and $R_{Si}=2~\rm k\,\Omega$. The transistor parameters are $V_{TN}=0.4~\rm V$, $k_n^{'}=100~\mu\,\rm A/V^2$, W/L=80, and $\lambda=0.02~\rm V^{-1}$. (a) Determine the quiescent values I_{DQ} and V_{DSQ} . (b) Find the small-signal parameters g_m and r_o . (c) Determine the small-signal voltage gain.

For the NMOS common-source amplifier in Figure P4.15, the transistor parameters are: $V_{TN}=0.8~\rm V,~K_n=1~\rm mA/V^2$, and $\lambda=0$. The circuit parameters are $V_{DD}=5~\rm V,~R_S=1~\rm k\Omega$, $R_D=4~\rm k\Omega$, $R_1=225~\rm k\Omega$, and $R_2=175~\rm k\Omega$. (a) Calculate the quiescent values I_{DQ} and V_{DSQ} . (b) Determine the small-signal voltage gain for $R_L=\infty$. (c) Determine the value of R_L that will reduce the small-signal voltage gain to 75 percent of the value found in part (b).

Figure P4.15

Consider the ac equivalent circuit shown in Figure P4.18. Assume $r_o = \infty$ for the transistor. The small-signal voltage gain is $A_v = -8$ for the case when $R_S = 1$ k Ω . (a) When R_S is shorted ($R_S = 0$), the magnitude of the voltage gain doubles. Assuming the small-signal transistor parameters do not change, what are the values of g_m and R_D ? (b) A new value of R_S is inserted into the circuit and the voltage gain becomes $A_v = -10$. Using the results of part (a), determine the value of R_S .

Figure P4.18