## **GST** Report

(Dated: May 28, 2024)

## I. SETUP

• Name and date of the experiment: test, 17.01.2024

• Number of sequences: 200.

• Average shots per sequence: 500.

• Rank: 1.

• Number of free parameters: 22.

 $\bullet$  Gate set:

 $\{0: \ 'Idle-short', \ 1: \ 'Idle-long', \ 2: \ 'Rx(pi)', \ 3: \ 'Ry(pi)', \ 4: \ 'Rx(pi/2)', \ 5: \ 'Ry(pi/2)'\}$ 

## II. ERROR MEASURES

Table I. Gate quality measures

| Average gate Fidelity   Diamond distance |        |        |  |  |  |  |
|------------------------------------------|--------|--------|--|--|--|--|
| Idle-short                               | 0.9997 | 0.0430 |  |  |  |  |
| Idle-long                                | 0.9988 | 0.0845 |  |  |  |  |
| Rx(pi)                                   | 0.9993 | 0.0664 |  |  |  |  |
| Ry(pi)                                   | 0.9990 | 0.0768 |  |  |  |  |
| Rx(pi/2)                                 | 0.9979 | 0.1132 |  |  |  |  |
| $\mathrm{Ry}(\mathrm{pi}/2)$             | 0.9991 | 0.0753 |  |  |  |  |

Table II. State and measurement quality measures

| $\left  \text{Final cost} \right  \text{Mean TVD: estimate - data} \\ \left  \text{Mean TVD: target - data} \right  \text{POVM - diamond dist.} \\ \left  \text{State - trace dist.} \right  \\$ |        |  |        |        |        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--------|--------|--------|--|--|--|
| 0.0031                                                                                                                                                                                           | 0.0443 |  | 0.0609 | 0.1598 | 0.0160 |  |  |  |

Table III. Normalized rotation axes coefficient.

|              | Idle-short                        | Idle-long | Rx(pi) | Ry(pi) | $\operatorname{Rx}(\operatorname{pi}/2)$ | $\mathrm{Ry}(\mathrm{pi}/2)$ |
|--------------|-----------------------------------|-----------|--------|--------|------------------------------------------|------------------------------|
| $\alpha/\pi$ | 1.986                             | 1.973     | 0.992  | 0.987  | 0.486                                    | 0.490                        |
| $n_X$        | 0.111                             | 0.170     | -1.000 | 0.029  | -0.997                                   | -0.038                       |
| $n_Y$        | 0.726                             | 0.652     | -0.016 | -0.999 | 0.054                                    | -0.999                       |
| $n_Z$        | 1.986<br>0.111<br>0.726<br>-0.679 | -0.738    | 0.026  | -0.014 | -0.051                                   | 0.031                        |

## III. GATE AND SPAM PLOTS



Figure 1. Process matrix in the Pauli basis with entries in [-1,1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 2. Process matrix in the Pauli basis with entries in [-1, 1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 3. Process matrix in the Pauli basis with entries in [-1, 1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 4. Process matrix in the Pauli basis with entries in [-1, 1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 5. Process matrix in the Pauli basis with entries in [-1,1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 6. Process matrix in the Pauli basis with entries in [-1, 1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 7. Left column: real part of state and measurement in standard basis, right column: magnified errors to ideal implementation  $10 \cdot (\hat{\rho} - \rho_{\text{ideal}})$  and  $10 \cdot (\hat{E}_i - E_{i,\text{ideal}})$ .



Figure 8. Left column: imaginary part of state and measurement in standard basis, right column: magnified errors to ideal implementation  $10 \cdot (\hat{\rho} - \rho_{\text{ideal}})$  and  $10 \cdot (\hat{E}_i - E_{i,\text{ideal}})$ .