C-A-S-H end-member model:

Phases	V° (cm³ mol ⁻¹)	ΔH _f ° (kJ mol ⁻¹)	ΔG _f ° (kJ mol⁻¹)	S° (J mol ⁻¹ K ⁻¹)	Cp° (J mol ⁻¹ K ⁻¹)	Reference
5CA, C _{1.25} A _{0.125} S ₁ H _{1.625}	57.3	-2491	-2293	163	177	[1]
INFCA, C ₁ A _{0.15625} S _{1.1875} H _{1.65625}	59.3	-2551	-2343	154	181	[1]
JenD, C _{1.5} S _{0.67} H _{2.5} ^a	80.6	-2401	-2169	173	209	[2]
T2C*, C _{1.5} S ₁ H _{2.5} ^b	80.6	-2721	-2298	167	237	[3]
T5C, C _{1.25} S _{1.25} H _{2.5}	79.3	-2780	-2517	160	234	[1]
TobH, C ₁ S _{1.5} H _{2.5}	85.0	-2831	-2560	153	231	[1]

^{*}Adapted from Myers et al 2014.

Pitzer parameters used for C-A-S-H modelling in presence of NaOH and KOH:

Species	Species		Interaction	
A	В	Parameter_type	Value	Reference
AlO2-	K+	В0	0.094	[4]
AlO2-	K+	B1	0.32	[4]
AlO2-	K+	CO	-0.0012	[1]
Ca+2	AlO2-	В0	0.315098	[5]
Ca+2	AlO2-	B1	1.687621	[2]
Ca+2	HSiO3-	ВО	0.342599	[2]
Ca+2	HSiO3-	B1	1.710847	[2]
Ca+2	OH-	B1	-0.3727	[6]
Ca+2	OH-	B2	-11.052	[3]
Ca+2	OH-	CO	-0.0092	[3]
Ca+2	SiO3-2	В0	0.1960	[2]
Ca+2	SiO3-2	B1	2.4181	[2]
K+	HSiO3-	В0	0.1160	[2]
K+	HSiO3-	B1	0.4546	[2]
K+	OH-	CO	0.0041	[7]
K+	SiO3-2	В0	0.0783	[2]
K+	SiO3-2	B1	0.5166	[2]
Na+	AlO2-	В0	-0.0083	[8]
Na+	AlO2-	B1	0.071	[5]
Na+	AlO2-	CO	9.77E-03	[5]
Na+	HSiO3-	В0	0.1391	[2]
Na+	HSiO3-	B1	0.4681	[2]
Na+	OH-	CO	0.0044	[5]
Na+	SiO3-2	В0	0.0877	[2]
Na+	SiO3-2	B1	0.5304	[2]
OH-	Ca+2	В0	-0.1421	[3]
OH-	K+	В0	0.1611	[9]
OH-	K+	B1	0.137	[9]
OH-	Na+	В0	0.0864	[5]
OH-	Na+	B1	0.253	[5]

References:

- [1] R. J. Myers, S. A. Bernal, and J. L. Provis, "A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation," *Cem. Concr. Res.*, vol. 66, pp. 27–47, Dec. 2014.
- [2] D. A. Kulik, "Improving the structural consistency of C-S-H solid solution thermodynamic models," *Cem. Concr. Res.*, vol. 41, no. 5, pp. 477–495, May 2011.
- [3] D. P. Prentice, S. A. Bernal, M. Bankhead, M. Hayes, and J. L. Provis, "Phase evolution of slagrich cementitious grouts for immobilisation of nuclear wastes," *Adv. Cem. Res.*, p. 16, 2017.
- [4] D. J. Wesolowski, "Aluminum Speciation and Equilibria in Aqueous-Solution: I. The Solubility of Gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100 °C," *Geochim. Cosmochim. Acta*, vol. 56, no. 3, pp. 1065–1091, 1992.
- [5] M. C. Simoes, K. J. Hughes, D. B. Ingham, L. Ma, and M. Pourkashanian, "Estimation of the Pitzer Parameters for 1–1, 2–1, 3–1, 4–1, and 2–2 Single Electrolytes at 25 °C," *J. Chem. Eng. Data*, vol. 61, no. 7, pp. 2536–2554, 2016.
- [6] J. Duchesne and E. J. Reardon, "Measurement and prediction of portlandite solubility in alkali solutions," *Cem. Concr. Res.*, vol. 25, no. 5, pp. 1043–1053, 1995.
- [7] K. S. Pitzer, "Ion interaction approach: theory and data correlation," in *Activity Coefficients in Electrolyte Solutions*, 1991.
- [8] H. Park and P. Englezos, "Osmotic coefficient data for NaOH-NaCl-NaAl(OH)4-H2O system measured by an isopiestic method and modeled using Pitzer's model at 298.15 K," *Fluid Phase Equilib.*, vol. 155, no. 2, pp. 251–259, 1999.
- [9] P. M. May, D. Rowland, G. Hefter, and E. Königsberger, "A generic and updatable pitzer characterization of aqueous binary electrolyte solutions at 1 bar and 25 °C," *J. Chem. Eng. Data*, vol. 56, no. 12, pp. 5066–5077, 2011.