Lista 6

Arruti, Sergio, Jesús

1. Ejercicio 79.

Para una R-álgebra de Artin Λ , vía $\varphi: R \longrightarrow \Lambda$, pruebe que:

- a) Λ es un anillo artiniano.
- b) $C(\Lambda)$ es un anillo conmutativo artiniano.
- c) Λ es una $C(\Lambda)$ -álgebra de Artin, vía la inclusión $C(\Lambda) \hookrightarrow \Lambda$.
- d) Λ^{op} es un R-álgebra de Artin, vía la composición de morfismo de anillos $R \longrightarrow Im(\varphi) \hookrightarrow C(\Lambda) \hookrightarrow \Lambda^{op}$.
- e) Para todo $M \in Mod(\Lambda)$, por cambio de anillos $\varphi : R \longrightarrow \Lambda$, se tiene que $M \in {}_{\Lambda-R}Mod \cap {}_{R}Mod_{R}$. Más aún, $Mod(\Lambda)$ es una subcategoría de Mod(R).

Demostraci'on. a) En virtud de que $\Lambda \in mod(R)$, existen $n \in \mathbb{N}$ y $\varepsilon : R^n \longrightarrow \Lambda$ un epimorfismo. Adicionalmente, como R es artiniano, tenemos que R^n es artiniano. Entonces Λ es artiniano como R-módulo. $\therefore \Lambda$ es artiniano como anillo.

- b) Se deduce del inciso anterior, de la inclusión $C(\Lambda) \hookrightarrow \Lambda$ y de que la familia de anillos artinianos es cerrada bajo subobjetos.
- $\therefore C(\Lambda)$ es conmutativo artiniano.
- C) Primero, por el inciso anterior, $C(\Lambda)$ es un anillo artiniano. Además, dado que $\Lambda \in mod(R)$, existe $n \in \mathbb{N}$ tal que $R^n \longrightarrow \Lambda$ es epimorfismo. También, como $Im(\varphi) \subseteq C(\Lambda)$, podemos restringirnos a $C(\Lambda)^n \longrightarrow \Lambda$ de tal manera que éste es un epimorfismo. Luego, $\Lambda \in mod(C(\Lambda))$. $\therefore \Lambda$ es un $C(\Lambda)$ -álgebra de Artin.
- d) Por la propia definición de álgebra de Artin, R es anillo artiniano. Además, como $\Lambda \in mod(R)$, existen $n \in \mathbb{N}$ y $\varepsilon : R^n \longrightarrow \Lambda$ un epimorfismo. Este epimorfismo y la composición $R \longrightarrow Im(\varphi) \hookrightarrow C(\Lambda) \hookrightarrow \Lambda^{op}$ inducen un epimorfismo $\varepsilon^{op} : R^n \longrightarrow \Lambda^{op}$.
- $\therefore \Lambda^{op}$ es un álgebra de Artin.

[e] Dado que Λ es un R-álgebra de Artin vía $\varphi:R\longrightarrow \Lambda,$ podemos definir la acción

$$*: R \times M \to M$$

 $(r, m) \mapsto r * m = \varphi(r) m$

de tal forma que M es un R-módulo a izquierda. En efecto:

1.- Sean $r, s \in R$ y $m \in M$. Entonces

$$(r+s)*m = \varphi(r+s)m$$

$$= [\varphi(r) + \varphi(s)]m$$

$$= \varphi(r)m + \varphi(s)m$$

$$= r*m + s*m$$

2.- Sean $r \in R$ y $m, x \in M$. Entonces

$$r * (m + x) = \varphi(r) (m + x)$$
$$= \varphi(r) m + \varphi(r) x$$
$$= r * m + r * x$$

3.- Sean $r, s \in R$ y $m \in M$. Entonces

$$\begin{split} (rs)*m &= \varphi\left(rs\right)m \\ &= [\varphi\left(r\right)\varphi\left(s\right)]m \\ &= \varphi\left(r\right)[\varphi\left(s\right)m] \\ &= r*[\varphi\left(s\right)m] \\ &= r*(s*m) \end{split}$$

4.- Finalmente, sea $m \in M$. Entonces

$$1_R * m = \varphi(1_R) m = 1_\Lambda m = m$$

Por lo que M es un Λ -módulo a izquierda.

Por otro lado, dado que $Im\left(\varphi\right)\subseteq C\left(\Lambda\right)$, podemos definir sobre M una acción

$$*: M \times R \to M$$
$$(m,r) \mapsto m * r = \varphi(r) m$$

Más aún, bajo esta acción, heredada por la acción de Λ, M es un R-módulo a izquierda, del cuál bastará probar la propiedad: m*(rs)=

(m*r)*s, $\forall r, s, m$. En efecto, si $r, s \in R$, $m \in M$, entonces

$$m * (rs) = \varphi(rs) m$$

$$= \varphi(r) \varphi(s) m$$

$$= \varphi(s) \varphi(r) m$$

$$= [\varphi(r) m] * s$$

$$= (m * r) * s$$

Por consiguiente, $M \in {}_{\Lambda-R}Mod \cap {}_{R}Mod_{R}$.

Por último, mediante el funtor de cambio de anillos

$$F_{\varphi}:Mod\left(\Lambda\right)\longrightarrow Mod\left(R\right)$$

tenemos que todo Λ -módulo a izquierda es un R-módulo a izquierda y todo morfismo de Λ -módulos es, a su vez, un morfismo de R-módulos. $\therefore Mod(\Lambda)$ es una subcategoría de Mod(R).

2. Ejercicio 82.

Sea R un anillo y $f: M \longrightarrow N$ en Mod(R). Considere \overline{f} la factorización de f a través de su imagen. Pruebe que $\overline{f}: M \longrightarrow Im(f)$ es minimal a derecha si y sólo si f es minimal a derecha.

Demostración. \Longrightarrow Sea $g \in Hom(\overline{f}, \overline{f})$. Entonces $g \in End_R(M)$ y $\overline{f}g = \overline{f}$. Sin embargo, $Dom(f) = Dom(\overline{f}) = M$ y $\overline{f} = f \mid^{Im(f)}$. Luego, fg = f, y así $g \in Hom(f, f)$. En virtud de que f es minimal a derecha, g es un isomorfismo. $\therefore \overline{f}$ es minimal a derecha.

 \subseteq Sea $g \in Hom(f, f)$. En consecuencia, $g \in End_R(M)$ y fg = f. Por consiguiente, $\overline{f}g = f \mid^{Im(f)} g = f \mid^{Im(f)} = \overline{f}$. Lo cual implica que $g \in Hom(\overline{f}, \overline{f})$. Más aún, g es un isomorfismo, toda vez que \overline{f} es minimal a derecha. \Box

3. Ejercicio 85.

Sean Λ un álgebra de Artin, $P \in \mathcal{P}(\Lambda)$, $\Gamma = End(\Lambda P)^{op}$ y el funtor de evaluación

$$e_P: mod(\Lambda) \longrightarrow mod(\Gamma)$$

Pruebe que si

$$P_0 \longrightarrow P_1 \longrightarrow X \longrightarrow 0$$

es una presentación en add(P) de $X \in mod(\Lambda)$, entonces

$$e_P(P_0) \longrightarrow e_P(P_1) \longrightarrow e_P(X) \longrightarrow 0$$

es una presentación proyectiva en $mod(\Gamma)$ de $e_P(X)$.

Demostración. Sea $P_0 \longrightarrow P_1 \longrightarrow X \longrightarrow 0$ una presentación en add(P) de X. Como $P \in \mathcal{P}(\Lambda)$, se tiene que $P \in mod(\Lambda)$. Entonces, el teorema **3.2.2.b**), $e_P \mid_{add(P)} : add(P) \longrightarrow \mathcal{P}(\Gamma)$ es una R-equivalencia. De tal manera que, y usando el teorema **3.2.2.a**), $e_P(P_0)$, $e_P(P_1)$ son Γ-módulos proyectivos.

Por otro lado, puesto que $P_0 \longrightarrow P_1 \longrightarrow X \longrightarrow 0$ es exacta y el funtor covariante $Hom_{\Lambda}(_{\Lambda}P_{\Gamma},*)$ es exacto derecho en $mod(\Lambda)$, entonces

$$e_P(P_0) \longrightarrow e_P(P_1) \longrightarrow e_P(X) \longrightarrow 0$$

es exacta.

 $\therefore e_P(P_0) \longrightarrow e_P(P_1) \longrightarrow e_P(X) \longrightarrow 0$ es una presentación proyectiva en $Mod(\Gamma)$.

4. Ejercicio 88.

Sea $h: I_1 \longrightarrow I_2$ un mono-esencial en Mod(R). Pruebe que si I_1 y I_2 son inyectivos, entonces h es isomorfismo.

Demostración. En virtud de que I_2 es inyectivo y h es mono-esencial, h es una envolvente inyectiva de I_1 . Por otra parte, sea $f:I_1\longrightarrow I_1$ un isomorfismo. Entonces f es minimal a izquierda. En efecto, sea $g\in Hom(f,f)$. De esta forma, $g\in End_R(I_1)$ y gf=f. Luego, gf es un isomorfismo. Más aún, g es un isomorfismo, puesto que f lo es. Así, efectivamente, f es minimal a izquierda; y por el **Lema 3.3.2**, f es mono-esencial.

En resumen, $h: I_1 \longrightarrow I_2$ y $f: I_1 \longrightarrow I_1$ son envolventes inyectivas de I_1 . Por el ejercicio anterior, existe $g: I_1 \longrightarrow I_2$ un isomorfismo en Mod(R) tal que qf = h. $\therefore h$ es isomorfismo.

5. Ejercicio 91.

Pruebe que:

- a) $\mathbb{Z}\mathbb{Q}$ es inyectivo e inescindible.
- b) Para todo $M \in \mathcal{L}(\mathbb{ZQ}) \setminus \{0\}, I_0(M) \cong \mathbb{Q}$

Demostración. [a] Primero, \mathbb{Q} es divisible. En efecto, si $n \in \mathbb{Z} \setminus \{0\}$ y $x \in \mathbb{Q}$, entonces $x/n \in \mathbb{Q}$ y x = n(x/n). Ahora, aunado a la divisibilidad, por la **Proposición 3.3.8.**, \mathbb{Q} es inyectivo.

Por otra parte, por el ejercicio anterior, \mathbb{Z} es irreducible. Además, $\mathbb{Z} \subseteq \mathbb{Q}$ es mono-esencial. En efecto, sea $X \subseteq \mathbb{Q}$ tal que $X \cap \mathbb{Z} = 0$ y sea $x \in X$. Entonces existe $0 \neq n \in \mathbb{Z}$ tal que $nx \in \mathbb{Z}$. Luego $nx \in X \cap \mathbb{Z} = 0$. Como \mathbb{Q} es dominio entero, x = 0. Así, X = 0.

Finalmente, puesto que \mathbb{Z} es irreducible y que $\mathbb{Z} \subseteq \mathbb{Q}$ es mono-esencial, se satisface la **Proposición 3.3.7.d**). $\mathbb{Z} \subseteq \mathbb{Q}$ es inyectivo e inescindible.

b) Sea
$$0 \neq M \leq Q$$
. Por la **Proposición 3.3.5.c**), $I_0(M) \leq \mathbb{Q}$. Como $I_0(M)$ es inyectivo, existe $K \leq \mathbb{Q}$ tal que $\mathbb{Q} \cong K \oplus I_0(M)$. Dado que \mathbb{Q} es inescindible, $K = 0$. $\therefore I_0(M) \cong \mathbb{Q}$

6. Ejercicio 94.

Para un anillo artiniano a izquierda R, pruebe que las siguientes condiciones se satisfacen:

- a) Sea $\{f_i:A_i\longrightarrow B_i\}_{i=1}^n$ una familia de morfismos en Mod(R). Entonces $\coprod_{i=1}^n f_i:\coprod_{i=1}^n A_i\longrightarrow \coprod_{i=1}^n B_i$ es mono-esencial $\Leftrightarrow f_i:A_i\longrightarrow B_i$ es mono-esencial $\forall i\in[1,n]$.
- b) $\forall Q, Q' \in Mod(R)$ inyectivos, $Q \cong Q' \Leftrightarrow soc(Q) \cong soc(Q')$.
- c) Si $\{S_i\}_{i=1}^n$ es una familia completa de simples en Mod(R) no isomorfos dos a dos, entonces $\{I_0(S_j)\}_{j=1}^n$ es una familia completa de inyectivos inescindibles en Mod(R) no isomorfos dos a dos.

Demostración. [a] \Rightarrow Supongamos que el morfismo $\coprod_{i=1}^n f_i$ es monoesencial. Sea $i \in [1, n]$ y sea $Y_i \in \mathcal{L}(B_i)$ tal que $f_i^{-1}(Y_i) = 0$. Definimos $Y = \coprod_{j=1}^n Y_j \in \mathcal{L}\left(\coprod_{j=1}^n B_j\right)$ como $Y_j = \delta_{ji}Y_i$. De manera que $\coprod_{j=1}^n f_j^{-1}(Y) = 0$. Como $\coprod_{j=1}^n f_j$ es mono-esencial, Y = 0, y en particular $Y_i = 0$. $\therefore f_i$ es mono-esencial.

Suponga que todo f_i es mono-esencial. Sea $Y \in \mathcal{L}\left(\prod_{i=1}^n B_i\right)$ tal que $\left(\prod_{i=1}^n f_i\right)^{-1}(Y) = 0$. Denote por $\eta_i : \prod_{i=1}^n B_i \longrightarrow B_i$ la i-ésima proyección canónica. Entonces $\prod_{i=1}^n f_i^{-1}(\eta_i(Y)) = 0$. Luego, $f_i^{-1}(\eta_i(Y)) = 0$. En virtud de que f_i es mono-esencial, $\eta_i(Y) = 0$. De modo que Y = 0. $\therefore \prod_{i=1}^n f_i$ es mono-esencial.

b) \Rightarrow Sean $Q, Q' \in Mod(R)$ inyectivos. Si $Q \cong Q'$, entonces $soc(Q) \cong soc(Q')$, pues soc(*) es un funtor.

 $\boxed{\Leftarrow)} \text{ Sean } Q,Q' \in Mod\left(R\right). \text{ Suponga que } soc\left(Q\right) \cong soc\left(Q'\right). \text{ Como } R \text{ es artiniano a izquierda, } soc\left(Q\right) \hookrightarrow Q \text{ y } soc\left(Q'\right) \hookrightarrow Q' \text{ son mono-esencial.}$ Dado que Q y Q' son inyectivos, $soc\left(Q\right) \hookrightarrow Q$ y $soc\left(Q'\right) \hookrightarrow Q'$ son envolventes inyectivas. Ahora, puesto que $soc\left(Q\right) \cong soc\left(Q'\right), soc\left(Q\right) \hookrightarrow Q$ y $soc\left(Q\right) \hookrightarrow Q'$ son envolventes inyectivas de Q. Usando el **Ejercicio 88.**, Q y Q' son inyectivos.

 $\therefore Q \cong Q'$

c) Como S_i es simple, por la **Proposición 3.3.9.a**), $I_0(S_i)$ es inyectivo inescindible.

Por otro lado, considere S_i , S_j dos R-módulos simples no isomorfos. Entonces, por la **Proposición 3.3.9.b**), $soc(I_0(S_i)) \cong S_i$ y $soc(I_0(S_j)) \cong S_j$. Luego, por el inciso anterior, $I_0(S_i) \not\cong I_0(S_j)$.

Por último, suponga que Q es inyectivo inescindible. Por la **Proposición 3.3.9.b**), $soc(Q) \cong S_i$, para algún $i \in [1, n]$. Por el inciso anterior, $Q \cong I_0(S_i)$.

: $\{I_0(S_j)\}_{j=1}^n$ es una familia completa de inyectivos inescindibles en Mod(R) no isomorfos dos a dos.

7. Ejercicio 97.

Sean R anillo y $n \ge 1$. Pruebe que la correspondencia

$$\{Ideales\ de\ R\} \longrightarrow \{Ideales\ de\ Mat_{n\times n}\ (R)\}$$

$$I \mapsto Mat_{n\times n}\ (I)$$

es una biyección. En particular, si D es un anillo de división, se tiene que el anillo $Mat_{n\times n}\left(D\right)$ es simple $\forall n\geq 1.$

 $\begin{array}{ll} Demostraci\'on. \ {\rm Sean} \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Mat_{n\times n} \left(I \right) \ {\rm y} \ \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in Mat_{n\times n} \left(R \right). \\ {\rm Entonces} \end{array}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix}$$

у

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} xa + yc & xb + yd \\ za + wc & zb + wd \end{pmatrix}$$

Ahora, en virtud de que I es un ideal de R, se tiene que

$$ax+bz, ay+bw, cx+dz, cy+dw \in I$$

$$xa+yc, xb+yd, za+wc, zb+wd \in I$$

Luego,
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in Mat_{n \times n}(I)$.

Por otra parte, sea J un ideal de $Mat_{n\times n}\left(R\right)$. Consideremos el conjunto $I_J=\{r\in R:r\mathbb{I}\in J\}$, donde $\mathbb{I}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$. Veamos que I_J es un ideal de $Mat_{n\times n}\left(R\right)$.

- a) Primero, $0 \cdot \mathbb{I} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in J$. Por lo que $0 \in I_J$.
- b) Sean $r, s \in I_J$. Entonces

$$(r+s)\mathbb{I} = (r+s) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} r+s & 0 \\ 0 & r+s \end{pmatrix}$$
$$= \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} + \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix}$$
$$= r\mathbb{I} + s\mathbb{I} \in J$$

En consecuencia, $r + s \in I_J$; y así I_J es un subgrupo abeliano de R.

c) Sean $r \in R$, $x \in I_J$. De modo que

$$(rx)\mathbb{I} = \begin{pmatrix} rx & 0\\ 0 & rx \end{pmatrix} \in J$$

У

$$(xr)\mathbb{I} = \begin{pmatrix} xr & 0 \\ 0 & xr \end{pmatrix} \in J$$

Luego, $rx, xr \in I_J$.

Por lo que I_J es un ideal de R.

En resumen, todo ideal I de R genera un ideal $Mat_{n\times n}\left(R\right)$ y viceversa, todo ideal J de $Mat_{n\times n}\left(R\right)$ induce un ideal de R. Por tanto, hay una correspondencia biunívoca

$$\{Ideales\ de\ R\} \longrightarrow \{Ideales\ de\ Mat_{n\times n}\left(R\right)\}$$

$$I \mapsto Mat_{n\times n}\left(I\right)$$

Finalmente, sea D un anillo con división. Entonces los únicos ideales de D son 0 y D. Por la correspondencia biyectiva entre ideales de D e ideales de $Mat_{n\times n}(D)$, se tiene que $Mat_{n\times n}(D)$ no tiene ideales propios no triviales. $\therefore Mat_{n\times n}(D)$ es un anillo simple. \square