Signals and Systems (ELL205)

By Dr. Abhishek Dixit
Dept. of Electrical Engineering

IIT Delhi

Outline

- What are signals?
- What are systems?
- Different kinds of Signals
 - Continuous-time vs. Discrete-time signals

Outline

- What are signals?
- What are systems?
- Different kinds of Signals
 - Continuous-time vs. Discrete-time signals

- Signals are functions.
 - Functions are maps between domain and range, with a restriction that one input can have maximum one output.

- Signals are functions.
 - Functions are maps between domain and range, with a restriction that one input can have maximum one output.

- Signals are functions.
 - Functions are maps between domain and range, with a restriction that one input can have maximum one output.

The map between domain and range can be expressed as a set of ordered pairs:

or by a mathematical expression, $f(x) = x^2$.

x: independent variable, f(x): dependent variable.

- Signals are functions.
- We focus on two independent variables: time and frequency. The function with independent variable as frequency are special functions known as spectrum.

- Signals are functions.
- We focus on two independent variables: time and frequency. The function with independent variable as frequency are special functions known as spectrum.
- Signal can be a function of many independent variables $f(x_1, x_2, ... x_n)$, known as multi-dimensional function.

Example: Black and white image

$$f(x,y) = Brightness$$

Brightness is communicated by a real number

• Signals can also have multi-dimensional range.

Example: Color images

$$f(x,y) = Color$$

Color is indicated by three real numbers:

First representing **Red**, the second representing **Green**, and the third representing **Blue**.

Black & White Image

- Domain: \mathbb{R}^2 (multi-dimensional signal)
- Range: \mathbb{R} (single-variate signal)

Multi-dimensional signal

Color Image

- Domain: \mathbb{R}^2 (multi-dimensional signal)
- Range: \mathbb{R}^3 (multi-variate signal)

Multi-dimensional and multivariate signals

Outline

- What are signals?
- What are systems?
- Different kinds of Signals
 - Continuous-time vs. Discrete-time signals

System: represented by a rectangular block.

System: represented by a rectangular block.

Formal definition: A system is a process (or an abstraction of the process) which transforms a signal.

System: represented by a rectangular block.

Formal definition: A system is a process (or an abstraction of the process) which transforms a signal.

Simple definition: It takes one input function and gives out another function (or may be even the same signal in case of the identity system).

System: represented by a rectangular block.

Formal definition: A system is a process (or an abstraction of the process) which transforms a signal.

Simple definition: It takes one input function and gives out another function (or may be even the same signal in case of the identity system).

Example: Amplifier

Outline

- What are signals?
- What are systems?
- Different kinds of Signals
 - Continuous-time vs. Discrete-time signals

Continuous-time signals vs. Discrete-time signals

Continuous-time signals vs. Discrete-time signals

Time is the independent variable, assumed just for convenience

Continuous-time signals

• x(t) t is used as the independent variable

() parenthesis is used

Discrete-time signals

• x[n] n is used as the independent variable

[] brackets are used

Continuous-time signals

- x(t)
 t is used as the independent variable
 () parenthesis is used
- Signal is defined for a continuum of values of the i.v.

Discrete-time signals

- x[n] n is used as the independent variable [] brackets are used
- Signal is defined for only discrete values of the i.v.

Continuous-time signals

- x(t) t is used as the independent variable
 () parenthesis is used
- Signal is defined for a continuum of values of the i.v.
- Example:

Discrete-time signals

- x[n] n is used as the independent variable

 [] brackets are used
- Signal is defined for only discrete values of the i.v.
- Example:

Continuous-time signals

• Examples are speech signals

Discrete-time signals

• Examples are population growth

Continuous-time signals

• Examples are speech signals

Discrete-time signals

Examples are population growth

All physical signals are CT signals but CT signals cannot be stored in computer, and that is, bad.

- Thus, $x(t) \rightarrow x[n]$ by sampling.
 - Music → MP3
 - Picture → JPEG

- Thus, $x(t) \rightarrow x[n]$ by sampling.
- Thus, $x[n] \rightarrow x(t)$ by interpolation.

- Thus, $x(t) \rightarrow x[n]$ by sampling.
- Thus, $x[n] \rightarrow x(t)$ by interpolation.
 - Zero-order hold interpolation (good for ears).
 - Linear interpolation (good for eyes).
 - Ears and eyes respond to different kinds of errors.