데이터 마이닝 / 정보 디자인

날씨 데이터를 이용한 폭염 예측

2018204085 박지영 (대표)

2017204077 유 준

2019204032 송인섭

2019204037 오수빈

2019204061 이규민

CONTENTS

1. 주제

2. 데이터 전처리

3. 데이터 분석

4. 대시보드

CONTENTS

1. 주제

- 분석 목표
- 2. 데이터 전처리

3. 데이터 분석

4. 대시보드

폭염의 기준 : 최고 기온이 33도 이상

폭염 주의보

폭염 경보

최고 기온이 33도 이상인 상태가

<u>최고 기온이 35도</u> 이상인 상태가

속될 예정

2일 이상

최고 기온에 영향을 끼치는 변수를 찾아 가까운 미래의 폭염 예측

CONTENTS

1. 주제

2. 데이터 전처리

- 데이터셋
- 결측치 대체
- 3. 데이터 분석

4. 대시보드

02.데이터 전처리 - 데이터셋

- OBS_ASOS_DD_1907_1909.csv
 ∴
- OBS_ASOS_DD_1910_1919.csv
- OBS_ASOS_DD_1920_1929.csv
 ∴
- OBS_ASOS_DD_1930_1939.csv
- OBS_ASOS_DD_1940_1949.csv
- 3 OBS_ASOS_DD_1950_1959.csv
- OBS_ASOS_DD_1970_1979.csv
 OBS_ASOS_DD_1970_1979.csv
- 3 OBS_ASOS_DD_1980_1984.csv
- OBS_ASOS_DD_1985_1989.csv
 ∴
- 3 OBS_ASOS_DD_1990_1994.csv
- M OBS_ASOS_DD_1995_1999.csv
- OBS_ASOS_DD_2000_2004.csv
- 3 OBS_ASOS_DD_2005_2009.csv
- 3 OBS_ASOS_DD_2010_2014.csv
- 3 OBS_ASOS_DD_2015_2021.csv
- 3 OBS_ASOS_DD_2021_6.csv

- 1907년 ~ 2021년까지의 **종관기상관측데이터**
 - -> 파일을 불러와 하나의 데이터프레임으로 **합치는** 작업을 실행

02.데이터 전처리 - 데이터셋

А	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	T	U	V	W
지점	지점명	일시	평균기온(%	최저기온(°0	최저기온 시	최고기온(약	최고기온 시	강수 계속시	10분 최다	10분 최다김	1시간 최다	1시간 최다	일강수량(m	최대 순간	청대 순간	등최대 순간품	최대 풍속(n	최대 풍속	청대 풍속	평균 풍속(n	풍정합(100	최다풍향(1

• 변수의 이름을 재지정

0111	펴그기오/%	치자기모(~	치져기오시	[최고기오/°d	최고기오 시	가스 계소.	10년 차다	10년 최다.	1 オレフト ネレーレ	1시가 치다	이가스랴/~	치대 스카 3	최대 순간 등	치대 스가프
			회사기는 사		피포기는 시	8 T 41 T V	110도 피너	110분 피너?	디지된 피니	1시간 꾀다	52120	[쬐네 군인 7	피네 간인 3	피네 군단공
1907-10-01	13,5	7.9		20,7									0	
1907-10-02	16,2	7,9		22							0,2		0	
1907-10-03	16,2	13,1		21,3							2.4		0	
1907-10-04	16,5	11,2		22									0	
1907-10-05	17.6	10,9		25.4									0	

- 과거의 기술의 문제로 관측되지 않은 변수들에 결측치가 존재
 - -> 변수의 결측치가 10000개 이상인 변수는 삭제
- 1950년~1953년도엔 많은 변수들에 결측치가 존재

	on(x) sum(is.na(x)		A	·		
date	tempAvg	tempLow	теmpнign w	indMaxInstantDir	windMax	windMaxDir
0	346	347	348	378	467	407
windAvg	airDXSum	RHMin	RHAvg	VPAvg	LocalAPAvg	seaAPAv
410	3121	5971	346	346	7047	9546
sunlightTimeSum	warCloudAvg	groundTempAvg	grassTempMin	temp5Avg	temp10Avg	temp20Avg
3252	346	6161	9885	9426	7606	7619
temp30Avg	temp_5	temp1	temp1_5	evapnSmallSum		
7632	7693	7729	7731	2070		

• 해당 데이터셋에 가장 적합한 결측치 대체 방법을 탐색

<결측치 처리 방법>

- 데이터셋에 결측치가 존재하는 행을 모두 삭제
- 결측치가 없는 데이터셋에서 임의로 결측치를 생성
- 16가지 방법으로 결측치를 대체
- 결측치를 대체한 값과 실제값을 비교해 각 결측치 대체 방법의 **결과 비교**

CONTENTS

1. 주제

2. 데이터 전처리

3. 데이터 분석

- 선형회귀모델
- 시계열모델

4. 대시보드

03.데이터 분석 - 모델

La vue

시계열모델 --- 장기 예측

1) 목표

```
$ date
                         "1907-10-01" "1907-10-02" "1907-10-03" "1907-10-04"
$ tempAvg
                         0.038 0.185 0.185 0.201 0.261 ...
$ tempLow
                        0 0 0.283 0.179 0.163 ...
                        0.127 0.196 0.159 0.196 0.376 ...
                         -0.259 -0.259 -0.259 -0.259 ...
$ windMax
                        -0.519 -1.074 0.407 -1.259 -1 ...
$ windMaxDir
                        0 0 0 -2 -2 ...
$ windAve
                        0.143 -0.857 0 -0.714 -0.429 ...
$ airDXSum
                        0.187 -0.829 0.042 -0.683 -0.393 ...
$ RHMin
                        -0.455 0.5 0.864 0.636 0.136 ...
$ RHAvg
                         -0.0305 0.3249 0.6954 0.7107 0.1878 ...
$ VPAvg
                        0.024 0.312 0.416 0.44 0.336 ...
                         -0.15 0.599 0.626 0.136 0.578 ...
$ LocalAPAvg
$ seaAPAvg
                        -0.512 0.25 -0.242 -0.274 0.266 ...
$ sunlightTimeSum : num
                        0.424 -0.273 0.455 -0.455 0.455 ...
$ warCloudAvg
                        -0.69 0.345 0.069 0.241 -0.862 ...
$ groundTempAvg
                        0.163 0.313 0.524 0.197 0.514 ...
$ grassTempMin
                        0.0825 0.0206 0.1134 0.3299 0.0979 ...
$ temp5Avg
                        -0.0513 0.1218 0.109 0.0641 -0.0577 ...
$ temp10Avg
                        -0.47 -0.47 -0.47 -0.47 -0.47 ...
$ temp20Avg
                        -0.481 -0.481 -0.481 -0.481 -0.481 ...
$ temp30Avg
                        $ temp 5
                        0.103 0.23 0.309 0.121 0.152 ...
                        0.23704 0.38519 0.47407 -0.04444 0.00741 ...
$ temp1
$ temp1 5
                        0.35 0.505 0.534 -0.456 -0.32 ...
$ evapnSmallSum
                        0.4 0 0.9 -0.167 0.5 ...
$ to_tempHigh
                  : num 0.196 0.159 0.196 0.376 0.159 ...
```

- 종속변수 : 1,2,3,4,5,6,7일 후의 최고기온
- 독립변수: 평균기온, 최저기온, 최고기온, 최대순간풍속 풍향, 최대풍속, 최대풍속 풍향, 평균풍속, 풍정합, 최소상대습도, 평균상대습도, 평균증기압, 평균현지기압, 최고해면기압, 합계일조시각, 평균전운량, 평균지면온도, 최저초상온도, 평균 5,10,20,30cm지중온도, 0.5,1.0,1.5m 지중온도, 합계소형증발량

2) 정규화/표준화

2) 정규화/표준화

• 데이터의 분포가 **한쪽으로 치우침** (ex. windAvg)

Log Transform

- 각 변수에 로그를 취함
 - -> 0이나 음수는 일정한 상수를 더한 후 로그를 취함
- 이질적 분산들을 바로잡음

3) Scaling

Train Data

1907년 ~ 2016년

Test Data

2017년 ~ 2021년 5월

4) 차원축소

상관계수 행렬

4) 차원축소

공분산 행렬

VS

상관계수 행렬

- 설문조사와 같은 scale 점수화가 된 경우에는 **공분산 행렬**을 사용
- 변수의 scale이 많이 다른 경우, 특정 변수가 전체적인 경향을 좌 우하기 때문에 **상관계수 행렬**을 사용

5) 모델링

전진선택법

VS

후진선택법

```
> summary(model_fwd3)
                                                               > summary(model_bwd3)
call:
                                                               call:
lm(formula = to_tempHigh ~ tempHigh + sunlightTimeSum + windMax +
                                                               lm(formula = to_tempHigh ~ grassTempMin + windMax + windAvg +
    temp5Avg + RHMin + windMaxInstantDir + LocalAPAvg, data = train)
                                                                   RHMin + sunlightTimeSum + windMaxInstantDir + temp5Avg, data = train)
Residuals:
                                                               Residuals:
     Min
                     Median
                10
                                  3Q
                                          мах
                                                                     Min
                                                                                    Median
                                                                                                         Max
-0.276581 -0.016351 0.002635 0.018416 0.237708
                                                               -0.274369 -0.021779 0.001429 0.022772 0.283494
Coefficients:
                                                               Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                                                                                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 0.0439430 0.0081426 5.397 6.83e-08 ***
                                                               (Intercept)
                                                                                 0.8085493 0.0040781 198.264 < 2e-16 ***
tempHiah
                                                               grassTempMin
                                                                                0.0311895 0.0019166 16.273 < 2e-16 ***
sunliahtTimeSum
                                                                                0.010945 0.002364
                                                               windMax
                                                                                                   4.631 3.65e-06 ***
windMax
                -0.0316257 0.0012224 -25.873 < 2e-16 ***
                                                               windAva
                                                                               -0.075759 0.002165 -34.989 < 2e-16 ***
                0.1396798  0.0042110  33.170  < 2e-16 ***
temp5Avq
                                                                               -0.017529 0.002127 -8.241 < 2e-16 ***
                                                               RHMin
RHMin
                 0.0371713 0.0017282 21.509 < 2e-16 ***
                                                               sunliahtTimeSum
                                                                                windMaxInstantDir -0.0088153 0.0021597 -4.082 4.48e-05 ***
                                                                                          0.002471 -32.361 < 2e-16 ***
                                                               windMaxInstantDir -0.079961
LocalAPAvg
                -0.0018027 0.0006738 -2.675 0.00747 **
                                                                                          0.004978 76.326 < 2e-16 ***
                                                               temp5Avq
                                                                                 0.379916
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                                                               signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.0298 on 41794 degrees of freedom
                                                               Residual standard error: 0.03595 on 41794 degrees of freedom
Multiple R-squared: 0.9121,
                             Adjusted R-squared: 0.9121
                                                               Multiple R-squared: 0.8721,
                                                                                            Adjusted R-squared: 0.872
F-statistic: 6.195e+04 on 7 and 41794 DF, p-value: < 2.2e-16
                                                               F-statistic: 4.07e+04 on 7 and 41794 DF, p-value: < 2.2e-16
```


5) 모델링

6) 모델 시각화 – 최고기온에 영향을 미치는 변수 시각화

```
lm(formula = to_tempHigh ~ tempHigh + sunlightTimeSum + windMax +
   temp5Avg + RHMin + windMaxInstantDir + LocalAPAvg, data = train)
Residuals:
             1Q Median
                             3Q
-0.276581 -0.016351 0.002635 0.018416 0.237708
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               0.0439430 0.0081426 5.397 6.83e-08 ***
                       0.0040781 198.264 < 2e-16 ***
sunlightTimeSum
               0.0311895 0.0019166 16.273 < 2e-16 ***
               windMax
temp5Avg
                       0.0042110 33.170 < 2e-16 ***
               0.0371713
                       0.0017282 21.509 < 2e-16 ***
-0.0018027 0.0006738 -2.675 0.00747 **
```

1일 후의 최고기온 예측 모델

```
lm(formula = to_tempHigh2 ~ sunlightTimeSum + temp5Avg + windMaxInstantDir +
   VPAvg + tempHigh + RHAvg + seaAPAvg + LocalAPAvg, data = train2)
Residuals:
                1Q Median
-0.273655 -0.021727 0.003508 0.024948 0.241821
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                  0.141409
                           0.011921 11.862 < 2e-16 ***
(Intercept)
                             0.002340 13.904 < 2e-16 ***
sunlightTimeSum
                             0.006032 34.578 < 2e-16 ***
windMaxInstantDir -0.023074
                             0.002811 -8.210 2.28e-16 ***
                  0.141345
                             0.005808 24.338 < 2e-16 ***
VPAvg
tempHigh
                  0.593580
                             0.005772 102.835 < 2e-16 ***
                 -0.019279
                             0.002502 -7.706 1.33e-14 ***
RHAvg
seaAPAvg
                 -0.024523
                             0.003089 -7.939 2.08e-15 ***
                             0.000984 6.944 3.86e-12 ***
```

2일 후의 최고기온 예측 모델

```
lm(formula = to_tempHigh3 ~ temp5Avg + sunlightTimeSum + VPAvg +
   windMaxInstantDir + windMaxDir + tempHigh + RHAvg + seaAPAvg +
   LocalAPAvg + windAvg, data = train3)
Residuals:
             1Q Median
-0.27871 -0.02371 0.00323 0.02710 0.26400
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  0.155643 0.015057 10.337 < 2e-16 ***
                            0.006514 38.300 < 2e-16 ***
                  0.249472
temp5Avg
sunlightTimeSum
                 0.016215
                            0.002668 6.077 1.24e-09 ***
VPAvg
                            0.006263 25.008 < 2e-16 ***
windMaxInstantDir
                 -0.037247
                            0.003328 -11.192 < 2e-16 ***
windMaxDir
                  0.013486
                            0.001171 11.515 < 2e-16 ***
tempHigh
                  0.536754
                            0.006353 84.482 < 2e-16 ***
                            0.002731 -11.599 < 2e-16 ***
RHAve
                            0.003457 -10.971 < 2e-16 ***
LocalAPAvg
                  0.014625
                            0.001099 13.312 < 2e-16 ***
                            0.001699 16.220 < 2e-16 ***
                  0.027557
```

3일 후의 최고기온 예측 모델

6) 모델 시각화 – 최고기온에 영향을 미치는 변수 시각화

	var_name ‡	coe1_est ‡	coe2_est ‡	coe3_est ‡	coe4_est ‡	coe5_est ‡	coe6_est [‡]	coe7_est ‡
1	temp5Avg	0.139679832	0.208588786	0.24947214	0.26732703	0.271446051	NA	NA
2	temp30Avg	NA	NA	NA	NA	NA	0.10073228	0.09743894
3	sunlightTimeSum	0.031189502	0.032532146	0.01621531	0.01217436	0.007513765	NA	NA
4	wind MaxInstant Dir	-0.008815250	-0.023073948	-0.03724704	-0.04126128	-0.042799757	-0.03791524	-0.03762528
5	windMaxDir	NA	NA	0.01348572	0.01647404	0.017247152	0.01648241	0.01423494
6	VPAvg	NA	0.141345180	0.15663862	0.16849089	0.170339621	0.24141774	0.24963592
7	seaAPAvg	NA	-0.024523033	-0.03792666	-0.05210285	-0.060987949	-0.07839887	-0.08405892
8	LocalAPAvg	-0.001802721	0.006833214	0.01462540	0.01863211	0.020707219	0.02386941	0.02474613
9	tempHigh	0.808549304	0.593579980	0.53675359	0.49909833	0.487152746	0.60424435	0.59303468
10	RHAvg	NA	-0.019278778	-0.03168169	-0.04003729	-0.043635076	-0.06450248	-0.07011942
11	windAvg	NA	NA	0.02755712	0.03740675	0.041817222	0.04859343	0.05044554
12	RHMin	0.037171291	NA	NA	NA	NA	NA	NA
13	windMax	-0.031625683	NA	NA	NA	NA	NA	NA

6) 모델 시각화 – 실제값과 예측값 비교

1일 후의 최고기온 예측 모델

2일 후의 최고기온 예측 모델

3일 후의 최고기온 예측 모델

6) 모델 시각화 - 실제값과 예측값 비교 2021년 1월~6월 선형회귀모델

03.데이터 분석 - 시계열모델

1) 목표

```
dataset=data

#6.25 기간 제거

data1=dataset[:15434]

data2=dataset[16054:]

dataset=pd.concat([data1,data2],ignore_index=True)
```

• 모델 학습에 악영향을 미쳐 1년 단위로 총 1950~1953년 간의 데이터 일괄 제거

03.데이터 분석 - 시계열모델

1) 목표

```
features_considered =['tempHigh','tempAvg', 'VPAvg','RHAvg','groundTempAvg', 'temp_5', 'temp1_5', 'windMax','date']
```

• 입력 신호로는 여러가지 변수를 • 모델이 대략적인 계절 파악에 테스트하여 제일 학습 결과가 도움을 주기 위해 1년중 몇일인지를 좋았던 변수들 사용 나타내는 변수로 Date변수 추가

- In []:
 target_names = ['tempHigh','tempAvg', 'VPAvg','RHAvg','groundTempAvg', 'temp_5', 'temp1_5', 'windMax']
 - 예측한 값을 바탕으로 예측을 하기 위해 출력 신호는 Date 변수를 제외한 나머지 변수들로 예측

2) 정규화/표준화

```
def outliar(data): #이상치 제거 파악
q1,q3=np.percentile(data,[25,75])
iqr =q3-q1
lower=q1-(iqr*1.5)
upper=q3+(iqr*1.5)
return np.where((data>upper)¦(data<lower))
```

```
In []:
    x_scaler = MinMaxScaler()
    x_train_scaled = x_scaler.fit_transform(x_train)
    print("Min:", np.min(x_train_scaled))
    print("Max:", np.max(x_train_scaled))
    x_test_scaled = x_scaler.transform(x_test)
    y_scaler = MinMaxScaler()
    y_train_scaled = y_scaler.fit_transform(y_train)
    y_test_scaled = y_scaler.transform(y_test)
    print(x_train_scaled.shape)
    print(y_train_scaled.shape)
```

• 이상치 제거

• 스케일링: MinMaxScaler()

3) Scaling

5) 모델링

```
def batch_generator(batch_size, sequence_length):
   while True:
        x_shape = (batch_size, sequence_length, num_x_signals)
        x_batch = np.zeros(shape=x_shape, dtype=np.float16)
        y_shape = (batch_size, sequence_length, num_y_signals)
        y batch = np.zeros(shape=y shape, dtype=np.float16)
        for i in range(batch_size):
            idx = np.random.randint(num train - sequence length)
            x_batch[i] = x_train_scaled[idx:idx+sequence_length]
            y_batch[i] = y_train_scaled[idx:idx+sequence_length]
        yield (x_batch, y_batch)
```

데이터 양이 많으므로 전체 데이터를 학습하지 않고 특정 기간을 랜덤하게 묶어서 입력데이터로 사용

03.데이터 분석 - 시계열모델

5) 모델링

03.데이터 분석 - 시계열모델

5) 모델링

CallBack Option

- 체크 포인트 기록
- 성능 하락시(과적합) 학습 중지
- TensorBoard 로그 작성

```
In [226]: model.compile(loss=loss_mse_warmup, optimizer='Adam')
model.summary()
```

Optimizer는 Adam, 손실함수는 구간을 별도로 재정의한 MSE를 사용

```
In [211]:
model.fit(generator,epochs=50,steps_per_epoch=200,validation_data=validation_data,callbacks=callbacks)
```

CallBack에서 과적합시 자동 중지 되는것을 감안하여 Epoch는 여유롭게, Epoch당 step은 200씩

직전까지의 실제 데이터를 바탕으로 계속 다음 날을 예측한 결과

예측한 값을 바탕으로 그 다음날을 연속하여 예측한 결과

CONTENTS

1. 주제

2. 데이터 전처리

3. 데이터 분석

4. 대시보드

분석적 대시보드 활용

날씨에 영향을 미치는 수 많은 변수들 분석

04.대시보드 - 개요

1. Scatter Plot

Prediction & Analysis 2017 | firstHalf

Scatter Plot을 사용

변수 간 상관관계 분석

Dropdown을 통해 **데이터 분리** (2017 ~ 2021.6)

La vue

2. Radar chart

▶ 텍스트에 마우스오버 시 관련 변수의 색을 레이터차트에 표현

선형 회귀 모델 사용

분석모델의 추정치 사용(%)

1~7일 후 **최고기온 예측에 특정 변 수들이 미치는 영향의 정도** 시각화

3. Linear regression model graph

Prediction & Analysis 2017 | firstHalf

Scatter Plot과 마찬가지로 **시간연동** (Dropdown)

2017~2020.6 까지의 최고기온 분석

마우스 오버 시 각 시간별 온도 표현

실제값과 예측값의 정확도 분석

확대/축소 및 다양한 툴 사용

4. Time series analysis graph

시계열 분석을 통한 계절의 경향성 파악

X축을 1년 단위의 시간축 설정

폭염기준선 표현(33도 이상 2일 지속 시)

예측에 의하면 2021년 여름은 평균 이하

마우스 오버 시 날짜별 온도 표현

04.대시보드 - 총평

Prediction & Analysis | 2017 | firstHalf

Dropdown을 이용하여 시간 을 분리

선형회귀모델 그래프와 Scatter Plot을 연동

2017 ~ 2020 년 여름까지의 기간을 **상반기, 하반기**별로 확인 가능

Scatter Plot에 Animation을 넣어 보는 재미 상승

각각 차트와 그래프별 MouseOver시 관련 정보표 현

날씨를 분석하는 데 다양한 모델을 사용하려고 시도했기 때문에 그것들을 최대한 표현 하되 interactive하게 만들기 위해 노력

Q8_A