PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 99/51553

C07C 17/087, 17/21, 17/23

A1

(43) International Publication Date:

14 October 1999 (14.10.99)

(21) International Application Number:

PCT/US99/07230

(22) International Filing Date:

1 April 1999 (01.04.99)

(30) Priority Data:

60/080,708

3 April 1998 (03.04.98)

US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): MANOGUE, William, H. [US/US]; 224 Beverly Road, Newark, DE 19711 (US). NAPPA, Mario, Joseph [US/US]; 3 Oakridge Court, Newark, DE 19711 (US). SIEVERT, Allen, Capron [US/US]; 215 Rhett Lane, Elkton, MD 21921 (US).
- (74) Agent: HEISER, David, E.; E.I. du Pont de Nemours and Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AE, AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PROCESS FOR THE PRODUCTION OF FLUOROCARBONS

(57) Abstract

A process is disclosed for the manufacture of hexafluoropropylene and 1,1,1,2,3,3,3—heptafluoropropane. The process involves: (a) feeding 1,1,2—trichloro–3,3,3—trifluoropropene–1, HF and Cl₂ to a first reaction zone containing a catalyst comprising trivalent chromium and operating at a temperature of at least 250 °C, but not more than about 325 °C, to produce a reactor effluent comprising C₃Cl₃F₅, C₃Cl₂F₆, CF₃CClFCF₃, HCl and HF. The reactor effluent of (a) may be distilled to produce (i) a low boiling stream including HCl; (ii) a reactant stream including an azeotrope of 2–chloro–1,1,1,2,3,3,3—heptafluoropropane and HF and (iii) a high-boiling stream including C₃Cl₂F₆ and C₃Cl₃F₅. The 2–chloro–1,1,1,2,3,3,3—heptafluoropropane of reactant stream (ii) may be reacted with hydrogen in the presence of a catalyst to produce a mixture of hexafluoropropylene and 1,1,1,2,3,3,3—heptafluoropropane, while the C₃Cl₂F₆ and C₃Cl₃F₅ of high boiling stream (iii) may be fed along with HF to a second reaction zone containing a catalyst comprising trivalent chromium and operating at a temperature of at least about 375 °C to produce a reaction product comprising CF₃CClFCF₃ and HF. The reactor product from the second reaction zone may be recycled to the first reaction zone.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

10

15

20

25

30

35

TITLE

PROCESS FOR THE PRODUCTION OF FLUOROCARBONS

FIELD OF THE INVENTION

The present invention relates to the synthesis of hexafluoropropylene and 1,1,1,2,3,3,3-heptafluoropropane.

BACKGROUND

Commercial methods for the preparation of hexafluoropropylene (CF₃CF=CF₂ or HFP), a fluoromonomer, typically involve temperatures greater than 600°C. The high reaction temperatures lead to the formation of perfluoroisobutylene, an extremely toxic compound which is costly to remove and destroy (e.g., see European Patent Application No. 002,098). Processes for the manufacture of HFP at lower temperatures based on the use of acyclic threecarbon hydrocarbons or partially halogenated three-carbon hydrocarbons are disclosed in U.S. Patent Nos. 5,043,491, 5,057,634 and 5,068,472.

1,1,1,2,3,3,3-Heptafluoropropane (CF₃CHFCF₃ or HFC-227ea), a fire extinguishant, can be prepared by the reaction of HF with HFP in contact with activated carbon (e.g., see British Patent Specification No. GB 902,590). The manufacture of HFC-227ea in this instance is tied to the availability HFP.

There is a need for alternative methods of manufacturing HFP and HFC-227ea.

SUMMARY OF THE INVENTION

A process is provided for the manufacture of hexafluoropropylene and 1,1,1,2,3,3,3-heptafluoropropane. The process comprises (a) feeding 1,1,2-trichloro-3,3,3-trifluoropropene-1 (CCl₂=CClCF₃), HF and Cl₂ to a first reaction zone containing a catalyst comprising trivalent chromium and operating at a temperature of at least 250°C, but not more than about 325°C, to produce a reactor effluent comprising C₃Cl₃F₅, C₃Cl₂F₆, CF₃CClFCF₃, HCl and HF; (b) distilling the reactor effluent of (a) to produce (i) a low boiling stream comprising HCl, (ii) a reactant stream comprising an azeotrope of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane HF and (iii) a high-boiling stream comprising C₃Cl₂F₆ and C₃Cl₃F₅; (c) reacting the 2-chloro-1,1,1,2,3,3,3-heptafluoropropane of reactant stream (ii) with hydrogen in the presence of a catalyst to produce a mixture comprising hexafluoropropylene and 1,1,1,2,3,3,3-heptafluoropropane; (d) feeding the C₃Cl₂F₆ and C₃Cl₃F₅ of high boiling stream (iii) along with HF to a second reaction zone containing a catalyst comprising trivalent chromium and operating at a temperature of at least about 375°C to produce a reaction product comprising CF₃CClFCF₃ and HF; and (e) recycling the reaction product of (d) to the first reaction zone.

WO 99/51553 PCT/US99/07230

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 is a schematic flow diagram of an embodiment of the process of this invention.

DETAILED DESCRIPTION

The present invention involves the use of CCl₂=CClCF₃ and CF₃CClFCF₃ in combination as materials for producing CF₂=CFCF₃ and CF₃CHFCF₃. The process of the invention uses an azeotropic composition of CF₃CClFCF₃ and HF as a precursor to the desired products. Further information on such azeotropes is provided in U.S. Patent Application No. _____ [CL-1158-P1], which is hereby incorporated by reference herein.

 $Cl_2=CCl_2CF_3$, a feed material for step (a) above, may be derived, for example, by the chlorofluorination of hexachloropropylene. At least a portion of the $CF_3CCIFCF_3$ is derived in accordance with step (d) above.

Figure 1 is illustrative of one method of practicing this invention. Referring to Figure 1, a feed mixture comprising hexachloropropylene (i.e., CCl₂=CClCCl₃ or HCP), chlorine and hydrogen fluoride and where the HF:HCP molar ratio is about 3:1, or more (the Cl₂:HCP ratio is typically about 1:1, or more), is passed through line (110) into reactor (100). Liquid phase, vapor phase or trickle bed reactors can be used. For the liquid phase and trickle bed reactors the reaction temperature is at least about 25°C. The trickle bed reactors are usually packed, e.g., with carbon, or can contain bubble trays; both modes are well known in engineering practice. For the vapor phase reactors, which can be either empty or packed (e.g., with carbon), the minimum reaction temperature is at least 150°C. The CCl₂=CClCF₃ starting material of step (a) can also be obtained by the chlorofluorination reaction of 2-fluoropropane over a divalent cobalt on an activated carbon catalyst as described in U.S. Pat. No. 3,865,885.

The reactor effluent from chlorofluorination reactor (100) comprising 1,1,2-trichloro-3,3,3-trifluoropropene-1 (i.e., CCl₂=CClCF₃ or FC-1213xa), chlorine, HF and HCl is passed through line (120) into line (510) where it is combined with the reaction effluent from reactor (500). The reactor (500) effluent comprises 2-chloro-1,1,1,2,3,3,3-heptafluoropropane (i.e., CF₃CClFCF₃ or CFC-217ba), HCl and HF.

The combined (100) and (500) reactor effluents are sent to reactor (200) which is maintained at a temperature within the range of about 250°C to about 325°C. Reactor (200) is packed with a catalyst comprising trivalent chromium. Additional HF may be added, if required. A preferred catalyst is Cr_2O_3 prepared by the pyrolysis of $(NH_4)_2Cr_2O_7$ as described in U.S. Patent No. 5,036,036.

The reactor (200) effluent comprising HF, $C_3Cl_3F_5$, $C_3Cl_2F_6$ and C_3ClF_7 is sent through line (210) into distillation column (300). The $C_3Cl_3F_5$ component

5

10

15

20

25

30

WO 99/51553 PCT/US99/07230

is mainly composed of CClF₂CCl₂CF₃, CCl₂FCClFCF₃ and a small amount of CCIFCF₂CCIF₂. The C₃Cl₂F₆ component is mainly composed of CF₃CCl₂CF₃ and CCIF₂CCIFCF₃ and small amounts of CCIF₂CF₂CCIF₂. The C₃CIF₇ component is mainly composed of CF₃CClFCF₃. HCl and other low boiling 5 components are removed through line (320) and the remainder of the reactor (200) effluent is sent through line (310) into a second distillation column (400). The bottom fraction from column (400) which comprises HF, C₃Cl₃F₅ and C₃Cl₂F₆ is sent through line (430) into reactor (500) which is maintained at a temperature of at least about 375°C. The reactor is packed with a catalyst comprising trivalent chromium. A preferred catalyst is the above-described Cr₂O₅ prepared by pyrolysis of (NH₄)₂Cr₂O₇. The effluent from reactor (500) comprising HCl, HF and CFC-217ba is removed through line (510) and sent to reactor (200).

HF/CFC-217ba azeotrope is removed from the top of column (400) through line (410). HF/CFC-217ba azeotrope is passed through line (420) into catalytic reactor (600) along with hydrogen which is fed through line (610). The reactor (600) product is removed through line (620) and comprises, HCl, HF, hexafluoropropylene (i.e., CF₃CF=CF₂ or HFP) and 1,1,1,2,3,3,3-heptafluoropropane (CF₃CHFCF₃ or HFC-227ea). The hydrogenolysis of step (c) may be conducted in the presence of HF. HFP and HFC-227ea can be isolated by conventional means. A portion of the azeotrope can be taken off through line (410) for other uses (e.g., the manufacture of CF₃CF₂CF₃).

The fluorination catalyst employed in steps (a) and (d) of the process of the invention may be supported or unsupported. Any of the fluorination catalysts described in the prior art may be used such as oxides, halides and oxyhalides of aluminum, cobalt, manganese, iron and particularly chromium. Suitable chromium-containing catalysts include oxide, hydroxide, oxyhalide, halides, inorganic acid salts, basic chromium fluorides and especially preferred are the chromium oxide catalysts described in U.S. Pat. No. 5,036,036. The catalysts may be given a prefluorination treatment by passing hydrogen fluoride, with or without an inert diluent such as nitrogen, over the catalyst at a temperature within the range of about 250 to 450°C prior to use.

The operating pressure of the process of the invention is dependent on the product isolation scheme employed and is generally within the range of from about 101 kPa to about 5000 kPa.

The reaction zone of steps (a) and (d) may consist of one or two reactors. CFC-217ba may be reacted with hydrogen to form a product comprising HFP and HFC-227ea by contacting the CFC-217ba with hydrogen at an elevated temperature in the vapor phase over a catalyst comprising at least one component selected from the group consisting of elemental metals, metal oxides, metal

10

15

20

25

30

WO 99/51553 PCT/US99/07230

halides and metal oxyhalides; wherein the metal of said hydrodehalogenation catalyst component is selected from copper, nickel, chromium and mixtures thereof and the halogen of said halides and said oxyhalides is selected from fluorine, chlorine and mixtures thereof. Greater details of the reaction with hydrogen are described in U.S. Patent No. 5,057,634 which is incorporated herein by reference. Another useful catalyst comprises a three-dimensional matrix carbonaceous material such as that described in U.S. Patent No. 4,978,649.

Alternatively, CFC-217ba can be converted to a product comprising HFC-227ea and HFP by contacting CFC-217ba with hydrogen at an elevated temperature in the vapor phase over a catalyst comprising at least one metal selected from the group consisting of rhenium, ruthenium, rhodium and palladium. The reaction temperature for these metal-containing catalysts is at least about 100°C. The reaction temperature when other catalysts are used is normally at least about 300°C. In any case, the reaction temperature is normally less than 500°C.

The reaction pressure is normally within the range of about 100 kPa to about 7000 kPa. Typically, the mole ratio of hydrogen to CFC-217ba is from 0.5:1 to 25:1, preferably from 1:1 to 5:1.

Those skilled in the art will recognize that since the drawings are representational, it will be necessary to include further items of equipment in an actual commercial plant, such as pressure and temperature sensors, pressure relief and control valves, compressors, pumps, storage tanks and the like. The provision of such ancillary items of equipment would be in accordance with conventional chemical engineering practice.

The reaction zone and its associated feed lines, effluent lines and associated units should be constructed of materials resistant to hydrogen fluoride and hydrogen chloride. Typical materials of construction, well-known to the fluorination art, include stainless steels, in particular of the austenitic type, the well-known high nickel alloys, such as Monel® nickel-copper alloys, Hastelloy® nickel-based alloys and, Inconel® nickel-chromium alloys, and copper-clad steel.

Without further elaboration, it is believed that one skilled in the art can, using the description herein, utilize the present invention to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and do not constrain the remainder of the disclosure in any way whatsoever.

5

10

15

20

25

30

25

30

35

EXAMPLES

	LEGEND		
		13 is CClF ₃	23 is CHF ₃
		112 is CCl ₂ FCCl ₂ F	113 is CCl ₂ FCClF ₂
5		114 is CCIF ₂ CCIF ₂	115 is CCIF ₂ CF ₃
	•	125 is CHF ₂ CF ₃	214ab is CCl ₂ FCCl ₂ CF ₃
		215aa is CClF ₂ Cl ₂ CF ₃	215bb is CCl ₂ FCClFCF ₃
	•	215ca is CCl ₂ FCF ₂ CClF ₂	216aa is CF ₃ CCl ₂ CF ₃
	•	216ba is CClF ₂ CClFCF ₃	216ca is CCIF ₂ CF ₂ CCIF ₂
10		217ba is CF ₃ CClFCF ₃	.217ca is CCIF ₂ CF ₂ CF ₃
		218 is CF ₃ CF ₂ CF ₃	226da is CF ₃ CHClCF ₃
		226ea is CCIF ₂ CHFCF ₃	227ea is CF ₃ CHFCF ₃
		236ea is CHF ₂ CHFCF ₃	236fa is CF ₃ CH ₂ CF ₃
		1213xa is CCl ₂ =CClCF ₃	1214 is C ₃ Cl ₂ F ₄
15		1215 is C ₃ ClF ₅	1215xc is CF ₂ =CClCF ₃
		1225zc is CF ₂ =CHCF ₃	HFP is CF ₃ CF=CF ₂
		CT is contact time	P is pressure
		T is temperature	-

General Procedure for Product Analysis

The following general procedure is illustrative of the method used. Part of the total reactor effluent was sampled on-line for organic product analysis using a Hewlett Packard HP 5890 gas chromatograph equipped with a 20' (6.1 m) long x 1/8" (0.32 cm) diameter tubing containing Krytox® perfluorinated polyether on an inert carbon support and within a flame ionization detector. The helium flow was 35 mL/min. Gas chromatographic conditions were 70°C for an initial hold period of three minutes followed by temperature programming to 180°C at a rate of 6°C/minute.

The bulk of the reactor effluent containing organic products and also inorganic acids such as HCl and HF was treated with aqueous caustic prior to disposal.

EXAMPLE 1

Chlorofluorination of FC-1213xa

Chromium oxide (47.25 g, 35 mL, 10-20 mesh, (2.0-0.84 mm)), obtained from the pyrolysis of ammonium dichromate prepared according to the procedure described in U.S. Pat. No. 5,036,036, was placed in a 5/8" (1.58 cm) diameter Inconel® nickel alloy reactor heated in a fluidized sand bath. It was heated to 175°C in a flow of nitrogen (50 cc/min) at which time HF flow (50 cc/min) was also started through the reactor. After 15 minutes, the nitrogen flow was decreased to 20 cc/min and the HF flow increased to 80 cc/min. The reactor

WO 99/51553 PCT/US99/07230

temperature was gradually increased to 400°C during a 2 hour period and maintained at 400°C for an additional 30 minutes. At the end of this period the reactor was brought to the desired operating temperature for catalyst evaluation under a nitrogen flow.

The results of the chlorofluorination reaction are shown in Table 1 in area %.

T	Molar Ratio	C.T. Sec.	<u>TABLE</u> % 217ba	- % 226da	% 216aa	% 216ba	% 215aa	% Others
°C	HF:1213xa:Cl ₂	60	0.3	1.8	10.1	9.9	74.9	3.0
250	20:1:2	•	0.5	2.5	15.6	10.8	67.8	2.8
260	20:1:2	60		0.7	10.6	13.2	72.4	2.6
260	20:1:4	60	0.5			9.7	82.4	1.7
260	10:1:2	60	0.2	0.3	5.7		76.2	2.3
260	20:1:4	30	0.5	0.8	8.5	11.8		2.8
275	20:1:2	30	1.1	2.5	23.4	12.4	57.8	
275	20:1:2	60	1.0	2.8	27.8	11.2	54.9	2.4
	20:1:4	15	1.5	1.1	16.0	14.9	64.4	2.1
275	10:1:2	30	1.3	1.1	45.7	9.5	40.9	1.5
300		30	3.1	1.9	48.3	12.8	31.6	2.2
300	20:1:2		3.4	2.7	45.4	11.4	34.6	2.5
300	20:1:2	15			80.7	9.7	4.7	1.0
325	6:1:2	30	3.9	0.0	114 115			_

Others include mostly 1215, as well as 113, 114, 115, 1214, 215ca, 216ca and 217ca.

10

15

5

EXAMPLE 2

Chlorofluorination of FC-1213xa

The reactor used in Example 1 was charged with a 20% CrCl₃/carbon catalyst (6.15 g, 15 mL, 10-20 mesh, (2.0-0.84 mm)), prepared as described in Example 1 of U.S. Pat. No. 3,632,834, and activated as described above in Example 1.

The contact time for each run was 15 seconds. The results of the chlorofluorination reaction are shown in Table 2 in area %.

10

	TABLE 2											
	T °C	Molar Ratio HF:1213xa:Cl ₂	% 216aa_	% 216ba	% 1214	% 215aa	% 215bb	% 1213xa	% 214ab	% Others		
_	300	20:1:4	4.0	0.2	6.5	19.5	6.9	61.3	0.0	.1.9		
	325	20:1:4	8.7	0.5	3.7	39.1	7.1	39.7	0.0	1.3		
	325	20:1:2	14.6	0.4	3.7	36.1	6.6	37.2	0.0	1.4		
	350	20:1:4	16.1	1.0	3.1	50.7	7.9	0.0	19.1	1.9		
	250	6:1:1	13.6	0.5	2.5	51.9	4.3	. 1.2	25.0	1.2		

Others include mostly 1215, as well as 13, 112, 113, 216ca, 226da and 217ba.

EXAMPLE 3

Fluorination of FC-216aa

The reactor and catalyst treatment were the same as those decribed in Example 1. A fresh sample of chromium oxide catalyst was used.

The contact time for each run was 30 seconds. The results of the fluorination reaction are shown in Table 3 in mol %.

TABLE 3

T °C ⋅	Molar Ratio HF:216aa	% 218	% - 217ba	% 1215	% 226da	% 216aa	% Others
375	4:1	0.2	7.4	0.6	0.7	90.2	0.8
400	4:1	0.6	18.2	. 0.7	0.9	78.7	0.9
400	8:1	0.6	22.2	1.0	0.9	74.5	8.0
400	12:1	0.6	23.8	1.3	0.9	72.4	0.9
400	20:1	0.6	28.2	1.8	1.7	66.5	1.2
425	20:1	1.3	53.7	1.6	1.7	39.7	1.9

Others include mostly 23, 115, 125, 1214, 1215, 227ea, 216ba and 217ca.

EXAMPLE 4

$CF_3CCIFCF_3 + H_2 \rightarrow CF_3CF = CF_2 + CF_3CHFCF_3$

A 15" (38.1 cm) X 3/8" (0.95 cm) O.D. Inconel™ 600 nickel alloy U-tube reactor was charged with 5% Re/Acid-Washed Carbon (2.4 g, 6.25 mL). The

H₂:CFC-217ba molar ratio was 2:1. Results (in mol %) at various conditions are shown in Table 4.

				TABLE 4				
T	p is (kPa)	CT min.	% Conv. 217ba	% Sel. HFP	% Sel. 1225zc	% Sel. 227ea	% Sel. 226ea	% Sel. Other
<u>°C</u>	psig (kPa) 0 (101)	1.1	100	23	0.6	71	3.7	1.3
260	,	1.3	98	18	0.6	73	6.6	1.3
260	38 (363)	1.1	80	16	0.5	76	6.2	1.3
260	100 (791)	1.0	100 .	-25	1.7	68	2.6	2.3
280	0 (101)		100	18	1.8	71	6.4	3.0
280	30 (308)	1.0	100	7	2.8	69	16.4	4.5
280	100 (791)	2.1		25	1.6	69	2.0	2.2
300	0 (101)	0.3	100		2.4	67	1.7	2.9
300	0 (101)	0.5	100	26		66	1.7	4.4
300	0 (101)	1.0	100	. 23	4.0	00	1.,	

EXAMPLE 5

 $CF_3CCIFCF_3 + H_2 \rightarrow CF_3CF = CF_2 + CF_3CHFCF_3 + CF_3CHFCCIF_2$

A 15" (38.1 cm) X 1/4" (0.64 cm) O.D. Hastelloy™ C-276 nickel alloy

U-tube reactor was charged with 1% Re/Acid-Washed Carbon calcined at 925°C (2.59 g, 6.25 mL). The reaction pressure was 0 psig (101.3 kPa). Results (in mol %) at various conditions are shown in Table 5.

TABLE 5

. T °℃	Mol H ₂ :217ba	CT sec.	% Conv. 217ba	% Sel. HFP	% Sel. 227ea	% Sel. 236fa	% Sel. 226ea	% Sel. Other
	2	31	100	4	43	1.5	43.4	0.8
325		16	80	18	36	0.6	42.0	3.6
325	2		85	18	36	1.2	40.1	5.5
350	2	15			40	0.9	27.2	3.3
325	4	30	76	29				2.1
325	4	6	23	58	35	0.2	4.1	3.1
350	4	6	24	59	32	0.7	3.0	4.5
		3	8	67	24	0.9	0.4	7.7
350	4	3			25	1 1	0.2	9.9
360	4	3	5	64	25	1.1	0.2	7.7

10

15

EXAMPLE 6

 $CF_3CCIFCF_3 + H_2 \rightarrow CF_3CF = CF_2 + CF_3CHFCF_3$

A 15" (38.1 cm) X 3/8" (0.95 cm) O.D. Inconel™ 600 nickel alloy U-tube reactor was charged with 1% Ru/Acid-Washed Carbon (1.9 g, 6.25 mL. The reaction pressure was 0 psig (101.3 kPa). Results (in mol %) at various conditions are shown in Table 6.

T 4	BI	\mathbf{r}	6
1 /2	١BI	٠r,	n

T °C	Mol H ₂ :217ba	CT min.	% Conv. 217ba	% Sel. HFP	% Sel. 227ea	% Sel. 226ea	% Sel. Other
200	4	0.30	84	7	74	. 5	13
175	4	0.32	46	10	72	4	15
213	2	0.30	81	9	75	6	9
200	1	0.31	. 50	15	74	5	6

EXAMPLE 7

$$CF_3CCIFCF_3 + H_2 \rightarrow CF_3CF = CF_2 + CF_3CHFCF_3$$

A 15" (38.1 cm) X 1/4" (0.64 cm) O.D. InconelTM 600 nickel alloy U-tube reactor was charged with carbon which was a three-dimensional matrix carbonaceous material (2.36 g, 6.25 mL, 20-30 mesh (0.84-0.59 mm)). The reaction pressure was 0 psig (101.3 kPa) for the first Table 7 entry and 30 psig (308 kPa) for all the others. The H₂:CFC-217ba molar ratio was 4:1 for the first entry and 16:1 for all the others. Results (in mol %) at various conditions are shown in Table 7.

TA	\mathbf{BI}	Æ	7

T	CT	% Conv.	% Sel.	% Sel.	% Sel.	% Sel.	
°C	min.	217ba	HFP	227ea	236ea	1215xc	
350	0.10	10	65	27	4	0.9	
350	0.12	11	61	28	8	0.8	
370	0.12	12	61	27	9	1.0	
400	0.12	15	59	27	10	1.2	
400	0.06	1,2	68	24	5	0.7	
425	0.06	14	68	24	5	0.8	
475	0.05	24	63	27	7 .	0.7	
450	0.05	13	62	31	5	0.4	
450	0.11	. 13	52	40	· 6	0.4	

EXAMPLE 8

 $CF_3CCIFCF_3 + H_2 \rightarrow CF_3CF = CF_2 + CF_3CHFCF_3$

The same reactor and catalyst as used for Example 7 was used. The reaction pressure was 0 psig (101.3 kPa) and the H₂:CFC-217ba molar ratio was 4:1. Results (in mol %) at various conditions are shown in Table 8.

TABLE 8

• • • • • • • • • • • • • • • • • • •											
T	CT	% Conv. 217ba	% Sel. HFP	% Sel. 227ea	% Sel. 236ea	% Sel. 1215xc	% Sel. Others	-			
°C	min.	21700		20	2	0.7	1.6				
325	0.10	14	43	20	2	0.7	1.0				
343	0.10		6 5	20	4	1.2	2.6				
350	0.10	11	62	28	7	1	70.				
550			(5	27	5	0.9	3.0				
350	0.05	9	65	21	9	•					
500		•	5.0	32	6	2.4	4.4				
350	0.50	9	56	32	O						

10

15

CLAIMS

- A process for the manufacture of CF₂=CFCF₃ and CF₃CHFCF₃, comprising:
- (a) feeding CCl₂=CClCF₃, HF and Cl₂ to a first reaction zone containing a catalyst comprising trivalent chromium and operating at a temperature of at least 250°C, but not more than about 325°C, to produce a reactor effluent comprising C₃Cl₃F₅, C₃Cl₂F₆, CF₃CClFCF₃, HCl and HF;
 - (b) distilling the reactor effluent of (a) to produce (i) a low boiling stream comprising HCl, (ii) a reactant stream comprising an azeotrope of CF₃CClFCF₃ and HF and (iii) a high-boiling stream comprising C₃Cl₂F₆ and C₃Cl₃F₅;
 - (c) reacting the CF₃CClFCF₃ of reactant stream (ii) with hydrogen in the presence of a catalyst o produce a mixture comprising CF₂=CFCF₃ and CF₃CHFCF₃;
 - (d) feeding the C₃Cl₂F₆ and C₃Cl₃F₅ of high boiling stream (iii) along with HF to a second reaction zone containing a catalyst comprising trivalent chromium and operating at a temperature of at least about 375°C to produce a reaction product comprising CF₃CClFCF₃ and HF; and
 - (e) recycling the reaction product of (d) to the first reaction zone.
- 20 2. The process of Claim 1 wherein the CCl₂=CClCF₃ of (a) is derived by the chlorofluorination of CCl₂=CClCCl₃.
 - 3. The process of Claim 1 wherein the hydrogenolysis of (c) is conducted in the presence of HF.

FIG. 1

INTERNATIONAL SEARCH REPORT

Inte onal Application No

		101/03 99/0/230	
A. CLASSIF IPC 6	CO7C17/087 CO7C17/21 CO7C17/23		,
According to	International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS			
Minimum do IPC 6	cumentation searched (classification system followed by classification symbols)		
	ion searched other than minimum documentation to the extent that such documents are inc	luded in the fields searched	—
Documentat	ion searched other than minimum documentation to the extent that such documents are the	naded in the helds searched	·
Electronic da	ata base consulted during the international search (name of data base and, where practic	al. search terms used)	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Υ .	US 5 043 491 A (WEBSTER JAMES L ET AL) 27 August 1991	1-3	
	cited in the application see the whole document		
Y	EP 0 539 989 A (HOECHST AG) 5 May 1993 see the whole document	1-3	
	·		
		·	
- A -	· .		
Furt	her documents are listed in the continuation of box C. X Patent fami	ly members are listed in annex.	
	ategories of cited documents :		
"A" docum	or priority date	ublished after the international filing date and not in conflict with the application but and the principle or theory underlying the	
"E" earlier	document but published on or after the international "X" document of pan cannot be cons	icular relevance; the claimed invention dered novel or cannot be considered to live step when the document is taken alone	
which citatio	is cited to establish the publication date of another nor other special reason (as specified) cannot be consent referring to an oral disclosure, use, exhibition or document is co	icular relevance; the claimed invention idered to involve an inventive step when the mbined with one or more other such docu- mbination being obvious to a person skilled	
"P" docum	ent published prior to the international filing date but in the art.	er of the same patent family	
Date of the	actual completion of the international search Date of mailing	of the international search report	
2	July 1999 12/07/	/1999	·
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	er	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Janus	, S ,	

INTERNATIONAL SEARCH REPORT

information on patent family members

inter inal Application No PCT/US 99/07230

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5043491 A	27-08-1991	CA 2032250 A DE 69010171 D DE 69010171 T EP 0434407 A JP 2613685 B JP 4117335 A	20-06-1991 28-07-1994 05-01-1995 26-06-1991 28-05-1997 17-04-1992
EP 0539989 A	05-05-1993	CA 2081813 A DE 59208629 D ES 2104790 T JP 5221894 A SG 44743 A	02-05-1993 24-07-1997 16-10-1997 31-08-1993 19-12-1997