EL 6303, Probability and Stochastic Processes	Name:	
Fall 2016		
Section A1, A2		
Elza Erkip		
October 28, 2016		

Midterm Time Limit: 2.5 hours

Please show your work. Good luck!

- 1. (Total: 20 pts) Every morning Hillary arrives at school between 8 am and 9 am. Her arrival time (in minutes) is denoted by continuous random variable T and follows a uniform distibution. Her friend Donald measures Hillary's arrival time with three different watches.
 - (a) (5 pts) Sketch the PDF and CDF of T. Find E(T).
 - (b) (5 pts) The first watch Donald uses has a resolution of 10 minutes, that is it only shows times that are a multiple of 10. The time measured by this watch is T_1 . Sketch T_1 as a function of T. Then sketch the PDF and the CDF of T_1 .
 - (c) (5 pts) The second watch Donald uses stops working from 8:30 am to 8:40 am and then starts working normal. Hence from 8:40 am onwards, it is 10 minutes behind. The time measured by this watch is T_2 . Sketch T_2 as a function of T. Then sketch the PDF and the CDF of T_2 .
 - (d) (5 pts) The third watch Donald uses skips 10 minutes at 8:30 am to 8:40 am. Hence from 8:30 am onwards it is 10 minutes ahead. The time measured by this watch is T_3 . Sketch T_3 as a function of T. Then sketch the PDF and the CDF of T_3 .

Note: Please correctly label all axes! For discrete or mixed random variables you can use the impulse function to show the point masses.

- 2. (Total: 20 pts) You have two coins, 1 and 2. Coin 1 has bias α , that is $P(Heads) = \alpha$. Coin 2 has bias β . At t = 1 you pick one coin randomly, resulting in random variable X_1 . We have $P(X_1 = 1) = p$, that is you pick coin 1 with probability p. You flip the coin you picked. If it shows Tails, you use the same coin at time t = 2. Otherwise, you switch coins. You continue the same procedure for $t = 2, 3, \ldots$ resulting in X_2, X_3, \ldots where X_i denotes the coin used at time i.
 - (a) (4 pts) Find the conditional PMF of X_2 given X_1 , that is $P(X_2 = i | X_1 = j), i, j = 1, 2$.
 - (b) (4 pts) Find the marginal PMF of X_2 .
 - (c) (4 pts) How would you choose p so that X_1 and X_2 have the same marginal distribution?
 - (d) (4 pts) Find the joint PMF of (X_1, X_2, X_3) .
 - (e) (4 pts) For $p = 1, \beta = 1 \alpha$, compare marginal distributions of X_2 and X_3 . What about the marginal distributions of X_t , t = 4, ...?

3. (Total:20 pts) A function h(x) is concave if for all x_1 and x_2 in its domain and $\lambda \in [0,1]$

$$\lambda h(x_1) + (1 - \lambda)h(x_2) \le h(\lambda x_1 + (1 - \lambda)x_2).$$

(a) (5 pts) Suppose $Y \sim Bern(\rho)$. Prove that for h(.) concave

$$E(h(Y)) \le h(E(Y)) \tag{1}$$

- (b) (3 pts) Prove that ln(x), x > 0 is a concave function.
- (c) A mobile user's satisfaction (or utility) of wireless services is usually represented by the function $u(R) = \ln(R)$, where R is the communication rate in Mbits/sec. Suppose $R \sim Unif(100, 500)$.
 - i) (4 pts) Find E(R).
 - ii) (4 pts) Find E(u(R)).
 - iii) (3 pts) Find u(E(R)).
 - iv) (1 pts) Does inequality (1) hold? Comment.

Hint: You can use $\ln(100) \approx 4, \ln(300) \approx 5.7, \ln(500) \approx 6$.

- 4. (Total: 20 pts) Let X be a random variable that denotes your arrival time (in hours) at the shopping mall. We know that $P(6 \ pm \le X \le 8 \ pm) = 1$. Let Y be another random variable that denotes the time (in hours) you spend at the mall. We know that $P(0 \le Y \le 2) = 1$. Let $F_{XY}(x,y)$ denote the joint CDF of (x,y), and $f_{XY}(x,y)$ denote the joint PDF.
 - (a) (3 pts) Sketch the region where we have $F_{XY}(x,y) = 0$. Also sketch the region where we have $F_{XY}(x,y) = 1$.
 - (b) (3 pts) Suppose A is the event that you arrive between $6:30 \ pm$ and $7:30 \ pm$ and spend between 0.5 hours and 1 hour shopping. Find P(A) in terms of $F_{XY}(x,y)$.
 - (c) (8 pts) Now suppose the mall closes at 9 pm. Your departure time from the mall is $Z = \min(X + Y, 9)$. Find $f_Z(z)$, the PDF of Z in terms of $f_{XY}(x, y)$.
 - (d) (6 pts) Assuming that X and Y are independent, for $X \sim unif(6,8), Y \sim unif(0,2)$, find $P(Z \geq 9)$.

5. (Total: 20 pts) Number of packets arriving at a router in an hour is given by N, where N has $Poisson(\mu)$ distribution. Hence

$$P(N=n) = e^{-\mu} \frac{\mu^n}{n!}, n = 0, 1, \dots$$

Packet headers contain two destination addresses, destination 1 or 2. Suppose each packet is addressed to destination 1 with probability p, independent of other packets and independent of N. Let X denote the number of packets for destination 1 and Y denote the number of packets for destination 2.

- (a) (4 pts) Find P(X = k|N = n) and P(Y = k|N = n), k = 0, 1, ..., n.
- (b) (5 pts) Find the PMFs of X and Y.
- (c) (4 pts) Find P(X = k, Y = j | N = n). What are the possible values of k and j?
- (d) (5 pts) Find the joint PMF of X and Y.
- (e) (2 pts) Are X and Y independent? Comment.