FOCT 2.759-82

Группа Т52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ. ЭЛЕМЕНТЫ АНАЛОГОВОЙ ТЕХНИКИ

Unified system for design documentation. Graphic designations in diagrams. Elements of analogue technique

MKC 01.080.40 31.180

Дата введения 1983-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам

РАЗРАБОТЧИКИ

- С.С.Борушек, Т.Н.Гуськова, С.П.Корнеева, А.Н.Наголкин, Ф.Р.Кушнеров, Ю.М.Кацовский, Н.А.Кононова, А.М.Михайлов, Л.С.Огненко, А.А.Волков, Л.З.Канищева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.04.82 N 1619
 - 3. Стандарт полностью соответствует СТ СЭВ 3336-81
 - 4. ВВЕДЕН ВПЕРВЫЕ
 - 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
<u>ΓΟCT 2.708-81</u>	1.6
<u>ΓΟCT 2.721-74</u>	1.7, табл.1
<u>ΓΟCT 2.743-91</u>	1.1

6. ИЗДАНИЕ (ноябрь 2004 г.) с Изменением N 1, утвержденным в апреле 1987 г. (ИУС 7-87)

Настоящий стандарт устанавливает общие принципы построения условных графических обозначений элементов аналоговой техники в схемах, выполняемых вручную или автоматизированным способом, во всех отраслях промышленности.

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Условные графические обозначения (УГО) аналоговых элементов должны соответствовать требованиям <u>ГОСТ 2.743</u> и настоящего стандарта.
- 1.2. Условное графическое обозначение аналогового элемента должно иметь форму прямоугольника. УГО содержит основное поле и может содержать одно или два дополнительных поля, которые располагают на противоположных сторонах основного поля.
 - 1.3. Размеры УГО определяются: количеством входных и выходных линий; количеством строк информации в основном и дополнительном полях; количеством знаков, помещаемых в одной строке; наличием дополнительных полей; размером шрифта.

- 1.4. В основном поле УГО на первой строке помещают обозначение функции, выполняемой аналоговым элементом, состоящее из букв латинского алфавита, цифр и специальных знаков, записанных без пробела.
- 1.5. Для обозначения сложной функции элемента допускается построение обозначения, составленного из более простых обозначений функций. Например, обозначение функции интегрирующего усилителя состоит из символов интегрирования и усиления:

- 1.6. Дополнительные данные по <u>ГОСТ 2.708</u> помещают в основном поле УГО под обозначением функции со следующей строки в последовательности, установленной указанным стандартом.
 - 1.7. Обозначение аналоговых и цифровых сигналов приведено в табл.1.

Таблица 1

Наименование	Обозначение
Аналоговый сигнал	По <u>ГОСТ 2.721</u>
Цифровой сигнал	По <u>ГОСТ 2.721</u>

(Измененная редакция, Изм. N 1).

1.8. Входы аналогового элемента изображают с левой стороны, выходы - с правой стороны прямоугольника. Допускается другая ориентация УГО, при которой входы располагают сверху, а выходы - снизу.

1.9. Выводы элементов могут быть обозначены указателями и метками.

Указатели изображают на линии контура или около линии контура УГО на линии связи.

Метки образуют из прописных букв латинского алфавита, арабских цифр и специальных знаков и помещают в дополнительных полях.

1.9.1. Применяют следующие обозначения указателей выводов:

1.9.2. Обозначения основных меток выводов приведены в табл.2.

Таблица 2

Наименование	Обозначение
1. Начальное значение интегрирования	I
2. Установка начального значения	S
3. Установка в состояние "0"	R
4. Установка в исходное состояние (сброс)	SR
5. Поддержание текущей величины сигнала	Н
6. Строб, такт	С
7. Пуск	ST
8. Балансировка (коррекция "0")	NC
9. Коррекция частотная	FC
10. Питание от источника напряжения	U
Допускается:	
перед буквой U проставлять номинал напряжения, при этом вместо буквы U использовать букву V , после буквы U проставлять поясняющую информацию, например:	

указатель питания цифровой части элемента	U#
указатель питания аналоговой части элемента	$U \cap$ или $U \wedge$
признак информационного питания	UD
11. Общий вывод (общее обозначение):	ov
для аналоговой части элемента	$\mathcal{OV} \cap$ или $\mathcal{OV} \wedge$
для цифровой части элемента	OV#

- 1.10. На линиях связи или в их разрыве допускается указывать обозначение и характеристику сигнала.
- 1.11. Обозначения, приведенные в табл.1, могут быть применены для указания аналогового и цифрового элемента или сигнала.

Для указания элементов приведенные обозначения помещают после символа функции в той же самой строке.

Для указания сигналов приведенные обозначения помещают после обозначения или характеристики сигнала, например:

обозначение # проставляют после числа двоичных разрядов;

обозначение \cap или Λ проставляют после характеристики сигнала: синусоиды, пилы.

2. ОБОЗНАЧЕНИЕ ФУНКЦИЙ

2.1. Обозначение основных функций, выполняемых аналоговыми элементами, приведено в табл.3.

Наименование	Обозначение
1. Общее обозначение функции	$F(X1, X2XN)$ или $f(x_1, x_2x_n)$
2. Выбор максимальной переменной	MAX или max
3. Выбор минимальной переменной	MIN или min
4. Генерирование	G
5. Детектирование	DK
6. Деление	$X:Y$ или $x:\mathcal{Y}$
7. Деление частоты	: FR или : fr
8. Дифференцирование	D/DT или d/dt
9. Зона нечувствительности	
10. Извлечение корня	$X \uparrow 0,5$ или $X \land 0,5$ или \sqrt{x}
11. Интегрирование	<i>INT</i> или ∫

12. Насыщение	_
13. Логарифмирование	LOG или log
14. Образование модуля	X или $ x $
15. Переключение, коммутирование (ключ, коммутатор):	SW
замыкание	<i>SWM</i> или —/ —
размыкание	<i>SWB</i> или
переключение	SWT или
16. Показательная функция	$X \! \uparrow \! Y$ или $X \! \! \land \! \! Y$ или $_{X}$
17. Пороговый элемент	<i>TH</i> или Ш , или _○⁻
18. Преобразование	X/Y или x/y

Примечание. Буквы X и Y могут быть заменены обозначениями представляемой информации, например напряжением, частотой, длительностью импульса и т.д.	
19. Сравнение (компаратор, схемы сравнения)	= =
20. Суммирование	SM или Σ
21. Тригонометрические функции, например синус	SIN или sin
22. Умножение	<i>XY</i> или ^{xy}
23. Умножение - деление	XY: Z или xy: z
24. Экспонента	ЕХР или ехр
25. Блок постоянного запаздывания	D L или $lacktriangle$
26. Блок переменного запаздывания	DLV или I—✓I
27. Воспроизведение коэффициентов	K
28. Многофункциональное преобразование	MF
29. Фильтрация	FF

30. Формирование	F
31. Усиление	> или ⊳
32. Преобразование цифро-аналоговое	#/\
33. Преобразование аналого-цифровое	Λ/#
34. Запоминание аналоговой величины (Элемент слежения и хранения)	$M \cap$ или $M \wedge$

2.2. Для обозначения функций аналоговых элементов могут быть использованы обозначения функций элементов по <u>ГОСТ 2.743</u>. Например, наборы нелогических элементов обозначают:

резисторов * R конденсаторов * C и др.

3. ПРИМЕРЫ ОБОЗНАЧЕНИЯ АНАЛОГОВЫХ ЭЛЕМЕНТОВ

3.1. УГО аналоговых элементов приведены в табл.4.

Таблица 4

1. Усилитель

Общее обозначение

 W_1 до W_n - весовые коэффициенты m_1 до m_k - коэффициенты усиления

Коэффициент усиления записывают в УГО устройства напротив линии каждого выхода, за исключением цифрового. При наличии одного коэффициента для всего устройства знак из может быть заменен абсолютной величиной. Если из =1, то цифра 1 может быть опущена

$$u_i = mm_1 \cdot f(W_1 \cdot a_1, W_2 \cdot a_2, ..., W_n \cdot a_n)$$
, где i = 1, 2, ..., k ;

 mW_i - коэффициент передачи по i входу.

С коэффициентом усиления 10000 и двумя выходами.

1.1. Усилитель операционный

Примечание. Если коэффициент усиления достаточно высок, а значение его точной величины не имеет значения, то допускается его не проставлять, либо проставить знак ∞ или букву M, например $\triangleright M$

1.2. Усилитель инвертирующий (инвертор) с коэффициентом усиления 1 u = -1a

1.3. Усилитель с двумя выходами, верхний - неинвертирующий с усилением 2, нижний - инвертирующий с усилением 3

1.4. Усилитель суммирующий
$$u = -10(0,1a+0,1b+0,2c+0,5d+1,0e) = -(a+b+2c+5d+10e)$$

1.5. Усилитель интегрирующий (интегратор)

Если
$$f$$
 =1. \mathcal{E} =0. h =0. то
$$u = -80[c_{t=0} + \int\limits_{0}^{t} (2a + 3b)dt]$$

Примечание. Идентификаторы сигналов (Λ и #) могут быть опущены, если это не приведет к непониманию

1.6. Усилитель дифференцирующий
$$u = 5 \frac{d}{dt} (a + 4b)$$

$$f(x_1, ..., x_n)$$
 заменяют соответствующим обозначением функции, выполняемой преобразователем

2.1. Перемножитель с коэффициентом передачи
$$K$$

$$u = -Kab$$

2.2. Делитель
$$u = \frac{a}{b}$$

Примечание. Символ "/" не должен использоваться для указания деления

2.3. Преобразователь для моделирования функции синуса

$$u = \sin x$$

3. Преобразователь координат

Общее обозначение

3.1. Преобразователь координат полярных в прямоугольные

$$u_1 = a \cdot \cos b$$
$$u_2 = a \cdot \sin b$$

5.1. Замыкающий *SWM*:

Аналоговый сигнал может проходить в любом направлении между c и d, пока цифровой вход e находится в состоянии "1"

5.2. Размыкающий ключ SWB:

Аналоговый сигнал может проходить в любом направлении между c и d, пока цифровой вход e находится в состоянии "0"

5.3. Двунаправленный коммутатор, управляемый логическим элементом И с двумя цифровыми входами

6. Блоки коэффициентов

6.1. Блок постоянного коэффициента:

с одним входом

Электронный текст документа подготовлен АО "Кодекс" и сверен по: официальное издание ЕСКД. Обозначения условные графические в схемах: Сб. ГОСТов. -

М.: ИПК Издательство стандартов, 2005