Camada de Transporte

CCNA 1: Capítulo 4

Livro: Redes de Computadores e

Internet. Autor: Kurose e Ross

Objetivos

- Explicar o papel dos protocolos da camada de Transporte e os serviços que suportam a comunicação através de uma rede de dados
- Analisar a aplicação e operação de mecanismos do TCP que suportam a confiabilidade
- Analisar a aplicação e operação de mecanismos do TCP que suportam a multiplexação/demultiplexação e gerenciamento de perda de dados
- Analisar a operação do UDP que suportam a comunicação entre dois processos em sistemas finais diferentes.

Camada de Transporte

Funções da Camada de Transporte

- Segmentação de dados
- Multiplexação/Demultiplexação
- Comunicação entre processos
- Identificação de processos

Segmentação/Multiplexação/Demultiplexação

Comunicação entre processos

Os programadores de Aplicação escolhem o protocolo da Camada de Transporte adequado com base na natureza da aplicação.

Cabeçalho do TCP e UDP

Segmento TCP

Bit (0)	Bit (15)	Bit (16)	Bit (31)				
Porta de Origem (16)		Porta de Destino (16)		^			
Número de Seqüência (32)							
Número de Reconhecimento (32)							
Comprimento do Cabeçalho (4) Reservado (6) Bits de	Janela (16)						
Checksum (16)		Urgente (16)		\downarrow			
Opções (0 ou 32, se houver)				•			
DADOS DA CAMADA DE APLICATIVOS (Tamanho varia)							

Datagrama UDP

Bit (0) Bit (15	Bit (16) Bit (31)								
Porta de Origem (16)	Porta de Destino (16)								
Comprimento (16)	Checksum (16)								
DADOS DA CAMADA DE APLICATIVOS (Tamanho varia)									

Dados para diferentes aplicações são direcionados à aplicação correta porque cada aplicação tem um número de porta único.

• IANA - The Internet Assigned Numbers Authority

		essignments/port-numbers	15 0-1023.
Port Assignmen	nts:		
Keyword	Decimal	Description	References
	0/tcp	Reserved	
	0/udp		
*	D/ uap	Jon Postel <postel&isi< td=""><td>adu's</td></postel&isi<>	adu's
π spr-itunes	O/top	_	.edu>
spl-itunes	0/tcp		
api-icunes #	07 CCD		shirt-pocket.com> 28 September 2007
π tepmux	1/tcp		-
GERMA	1/udp		-
±	I/ day	Mark Lottor <mkl&nisc.< td=""><td></td></mkl&nisc.<>	
" compressnet	2/tcp		
compressnet		Management Utility	
compressnet	3/tcp		
compressnet	3/udp	Compression Process	
±	٠,	Bernie Volz <volz&ciso< td=""><td>O.COM></td></volz&ciso<>	O.COM>
 #	4/tcp		C 1 COMP
±	4/udp	_	
" rje	5/tcp	_	
rje	5/udp	•	
#	٠, ١٠٠٠	Jon Postel <postel&isi< td=""><td>.edu></td></postel&isi<>	.edu>
±	6/tcp	-	
	6/udp	Unassigned	
" echo	7/top	Echo	
echo	7/udp	Echo	

- · Cliente: TCP destination port
- Servidor: TCP source port
- o 1Rode ser usada como portas dinâmicas ou privadas (próximo).

Número de porta bem conhecida ou registrada

Portas Privadas ou Dinâmicas(49152 a 65535)

- o Também conhecidas como portas efêmeras
- Geralmente <u>atribuídas a aplicações clientes quando iniciam uma</u> <u>conexão</u>

Cliente: TCP porta fonte

Server: TCP porta destino

Podem também incluir a faixa de Portas Registradas (1024 a 49151)

Segmentação

Funções da Camada de Transporte

A Camada de Transporte divide os dados em partes e adiciona um cabeçalho para entrega pela rede.

O Cabeçalho UDP fornece:

· Origem e destino (portas)

- O Cabeçalho TCP fornece:
 - Origem e destino (portas)
 - Seqüência para entrega da mesma ordem
 - Reconhecimento de segmentos recebidos
 - Controle de fluxo e gestão de congestionamento

TCP - Transmission Control Protocol RFCs: 793, 1122, 1323, 2018, 2581 Estrutura do Segmento

32 bits URG: dado urgente Contagem de dest port # source port # (geralmente não usado) bytes de dados sequence number (e não de ACK: ACKN segmentos!) acknowledgement number válido head not len used UAPRSF Receive window PSH: passe o dado Número de para acima agora! checksum Urg data pnter bytes que o (grl. não usado) receptor pode Options (tamanho variável) RST, SYN, FIN: aceitar gerenciamento de conexão (cmd de application setup e teardown) data (tamanho variável) Soma de verificação (como no UDP)

Número de seq. ACKs

Número de sequencia

 Número do fluxo de bytes relacionado ao primeiro bytes de dados do segmento

Reconhecimentos (acknowledgements):

- Num. seq. do próximo byte esperado do outro lado
- ACK cumulativo

Número de seq. ACKs

simple telnet scenario

TCP - Solicitações e Respostas

TCP - Gerenciamento de Conexões

• Estabelecimento de Conexões - 3 Way Handshake

TCP - Gerenciamento de Conexões

• Finalização de Conexões

TCP - Gerenciamento de Conexões

TCP - Entrega Confiável de Dados

Tempo de ida e volta e timeout

- Q: como configurar o valor do timeout do TCP?
- Maior que RTT
 - mas RTT varia
- Muito pequeno: timeout prematuro, retransmissões desnecessárias
- Mais longo: reação lenta a perda do segmento

- Q: como estimar RTT?
- SampleRTT: tempo medido desde a transmissão do segmento até um ACK recebido
 - ignore retransmissões
- SampleRTT pode variar, logo é necessário que o RTT estimado seja suavizado
 - Média de várias medições recentes, não apenas o SampleRTT atual

Tempo de ida e volta e timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- Média móvel ponderada exponencial
- Influencia das amostras passadas diminui exponencialmente rápido

* typical value: $\alpha = 0.125$

Tempo de ida e volta e timeout

- * timeout interval: EstimatedRTT mais "margem segura"
 - Variação grande em EstimatedRTT -> margem segura maior
- Estimao desvio de SampleRTT a partir de EstimatedRTT:

```
DevRTT = (1-\beta)*DevRTT + \beta*|SampleRTT-EstimatedRTT| (typically, \beta = 0.25)
```

TimeoutInterval = EstimatedRTT + 4*DevRTT

RTT estimado "margem de segurança"

Transferencia confiável do TCP

- TCP cria um serviço confiável acima do IP
 - Fluxo de segmentos
 - Acks cumulativos
 - Único timer de retransmissão
- Retransmissões disparadas por:
 - Eventos de timeout
 - Acks duplicados

Inicialmente considere um transmissão simplificado

- Ignore acks duplicados
- ignore controle de fluxo, controle de congestionamento

Eventos no Transmissor TCP:

Dados recebidos pela app:

- Cria um segmento com num. seq
- Num seq. é o número do fluxo de bytes do primeiro byte do segmento
- Inicia o timer se ele não estiver já rodadndo
 - Intervalo de expiração:
 TimeOutInterval

timeout:

- Retrasmite o segmento que causou o timeout
- Reinicia o timer ack recebido:
- Se o ack reconhece segmentos recebidos previamente sem ACK
 - Atualize o que é pra ser reconhecido
 - Inicie o timer existir
 segmentos sem
 reconhecimento Transport Layer 3-66

Transmissor (simplificado)

TCP: cenários de retransmissão

TCP: cenários de retransmissão

ACK cumulativo

Controle de fluxo do TCP

Controle de fluxo

Receptor controla o transmissor; assim o transmissor nçao vai sobrecarregar o buffer do receptor transmitindo muito rápido

Controle de fluxo do TCP

- receptor "avisa" sobre o espaço vazio no buffer pelo valor de rwnd no cabeçaho de segmentos enviados para o transmissor
 - RcvBuffer tamanho configurado nas opções de soket (valor default é 4096 bytes)
 - Muitos sistemas operacionsos auto-ajustam RcvBuffer
- O tramsnissor limita a quantidade de dados sem reconhecimento para o valor da rwnd do receptor
- Garante que o buffer do receptor não vai estourar

receiver-side buffering

TCP - Entrega Confiável de Dados

Reconhecimento de segmentos TCP

TCP - Controle de Fluxo

Reconhecimento de Segmento TCP e Tamanho da Janela

- O tamanho da janela determina o número de bytes enviados antes de um reconhecimento.
- O número de reconhecimento é o número do próximo byte esperado.

TCP - Controle de Congestionamento

Se os segmentos forem perdidos devido ao congestionamento, o Receptor reconhecerá o último segmento recebido em sequência e responderá com um tamanho de janela reduzido.

Prática

- Segmentação de mensagens HTTP
 - Prática Wireshark e HTTP
 - Questões 12 a 15

UDP- User Datagram Protocol [RFC 768]

- Serviço do melhor esforço, datagramas podem ser:
 - Perdidos
 - Entregues na ordem errada
- Sem conexão
 - Não há "setup" entre remetente e receptor
 - Tratamento independente para cada datagrama

- Elimina estabelecimento de conexão (o que pode causar retardo)
- Simples: não se mantém o estado da conexão nem no remetente, nem no receptor
- Não há controle de congestionamento: UDP pode transmitir tão rápido quanto desejado (e possível)

UDP- User Datagram Protocol [RFC 768]

- Muito utilizado para aplicações de dados contínuos (voz e vídeo)
 - Tolerantes a perda
 - Sensíveis à taxa de Transmissão
- Outros usos do UDP
 - DNS
 - SNMP
- Transferência confiável com UDP: acrescentar confiabilidade na camada de aplicação
 - Recuperação de erro específica a aplicação

Formato do segmento UDP

Checksum

Objetivo: detectar "erros" (ex.: bits trocados) no segmento transmitido

Transmissor:

- Trata o conteúdo do datagrama como sequência de inteiro de 16 bits
- Campo checksum zerado
- Checksum: soma (adição usando complemento de 1) do conteúdo do segmento
- Transmissor coloca complemento de valor da soma no campo checksum da UDP

Receptor:

- Calcula checksum de todo datagrama incluindo o próprio campo checksum
- Verifica se o checksum calculado possui zero
 - SIM: erro detectado
 - NÃO: nenhum erro. Mas ainda pode ter erros? Veja depois...

Exemplo de Checksum da Internet

Note que:

- Ao adicionar números, o transbordo (vai um) do bit mais significativo deve ser adicionado ao resultado
- Exemplo: adição de dois inteiros de 16 bits

												1 0					
transbordo	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1
soma soma de verificação												1					