2º SEMESTRE: CÁLCULO NUMÉRICO CON FORTRAN.

TEMARIO:

- 1. Sistemas lineales. Directos e iterativos.
- 2. Cálculo de autovalores.
- 3. Derivación e integración numérica.
- 4. Solución de ecuaciones y sistemas no lineales.
- 5. Solución numérica de ecuaciones diferenciales.

Métodos Iterativos: Conocimientos previos

 Para hallar el error cometido y para estudiar la convergencia necesitamos trabajar con normas de vectores y de matrices:

Norma de matrices:

$$\left| \left| A \right| \right|_{\infty} = \max_{i=1,\dots,n} \left| \sum_{j=1}^{n} A_{ij} \right|$$

Dada una matriz diagonalizable
$$A = CDC^{-1}$$
 con $D = \begin{pmatrix} \lambda_1 & 0 \\ & \lambda_2 & \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$

se define radio espectral de A como $\rho(A) = \max_{i=1}^{n} |\lambda_i|$

Métodos Iterativos: Método de JACOBI

Partimos del sistema original

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots & a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots & a_{2n}x_n = b_2 \\ \vdots & & \ddots & \\ a_{n1}x_1 + a_{n2}x_2 + \dots & a_{nn}x_n = b_n \end{cases}$$

Despejamos en cada ecuación una incógnita:

$$\begin{cases} x_1 = (b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n) / a_{11} \\ x_2 = (b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n) / a_{22} \\ \vdots \\ x_n = (b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{nn-1}x_{n-1}) / a_{nn} \end{cases}$$

Métodos Iterativos: Método de JACOBI

- Necesitamos que los elementos de la diagonal sean distintos de cero.
 Si alguno fuese cero cambiamos filas en el sistema original.
- Podemos escribir el sistema anterior como un esquema iterativo:

$$\begin{cases} x_1^k = (b_1 - a_{12}x_2^{k-1} - a_{13}x_3^{k-1} - \dots - a_{1n}x_n^{k-1})/a_{11} \\ x_2^k = (b_2 - a_{21}x_1^{k-1} - a_{23}x_3^{k-1} - \dots - a_{2n}x_n^{k-1})/a_{22} \\ \vdots \\ x_n^k = (b_n - a_{n1}x_1^{k-1} - a_{n2}x_2^{k-1} - \dots - a_{nn-1}x_{n-1}^{k-1})/a_{nn} \end{cases}$$

A partir de una solución inicial x^0 para calcular el nuevo valor en la iteración k usamos la solución anterior k-1

Métodos Iterativos: Método de JACOBI

- Todo el proceso anterior se podría re-escribir en forma matricial:
 - Si suponemos que no hay ceros en la diagonal descomponemos A

$$A = \begin{pmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ & & & & \\ a_{n1} & a_{n2} & & a_{nn} \end{pmatrix} =$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ a_{n1} & a_{n2} & a_{nn} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{21} & 0 & 0 \\ a_{n1} & a_{n2} & 0 \end{pmatrix} + \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{nn} \end{pmatrix} + \begin{pmatrix} 0 & a_{12} & a_{1n} \\ 0 & 0 & a_{2n} \\ 0 & 0 & 0 \end{pmatrix} = L + D + U$$

Métodos Iterativos: Método de JACOBI

El sistema:

$$\begin{cases} x_1^k = \left(b_1 - a_{12}x_2^{k-1} - a_{13}x_3^{k-1} - \dots - a_{1n}x_n^{k-1}\right) / a_{11} \\ x_2^k = \left(b_2 - a_{21}x_1^{k-1} - a_{23}x_3^{k-1} - \dots - a_{2n}x_n^{k-1}\right) / a_{22} \\ \vdots \\ x_n^k = \left(b_n - a_{n1}x_1^{k-1} - a_{n2}x_2^{k-1} - \dots - a_{nn-1}x_{n-1}^{k-1}\right) / a_{nn} \end{cases}$$

Se puede poner como:

$$\vec{x}^{k} = D^{-1} \left(b - (U + L) \vec{x}^{k-1} \right)$$

Métodos Iterativos: Método de JACOBI

• Llamando: $D^{-1}b = c$ y $-D^{-1}(U+L) = T$

resulta:
$$\vec{x}^k = T \vec{x}^{k-1} + c$$

 Si el método es convergente (veremos luego cuando lo es) el criterio de parada será:

$$\frac{\left\|x^k - x^{k-1}\right\|}{\left\|x^k\right\|} \le Tol$$

Métodos Iterativos: Método de Gauss-Seidel

En notación matricial podemos escribirlo como

$$\begin{cases} a_{11}x_1^k &= b_1 - a_{12}x_2^{k-1} - a_{13}x_3^{k-1} - \dots - a_{1n}x_n^{k-1} \\ a_{21}x_1^k + a_{22}x_2^k &= b_2 - a_{23}x_3^{k-1} - \dots - a_{2n}x_n^{k-1} \\ \vdots &\vdots \\ a_{nn}x_n^k + a_{n1}x_1^k + a_{n2}x_2^k + \dots + a_{nn-1}x_{n-1}^k = b_n \end{cases}$$

Métodos Iterativos: Método de Gauss-Seidel

• Llamando: $(D+L)^{-1}b = c$ y $-(D+L)^{-1}(U) = T$

resulta:
$$\vec{x}^k = T \vec{x}^{k-1} + c$$

 Si el método es convergente (veremos luego cuando lo es) el criterio de parada será:

$$\frac{\left\|x^k - x^{k-1}\right\|}{\left\|x^k\right\|} \le Tol$$

Métodos Iterativos: Ejemplo comparativo: ¿Conclusiones?

- ¿Es Gauss-Seidel más rápido que Jacobi?
 - En general cuando ambos convergen Gauss-Seidel lo hace más rápido
- ¿Converge Gauss-Seidel mejor que Jacobi?
 - En general Gauss-Seidel converge en más casos que Jacobi.
- ¿Cuáles son las condiciones suficientes de convergencia?

EJEMPLO:
$$\begin{cases} x - 5y = -4 \\ 7x - y = 6 \end{cases}$$

REPASO

Métodos Iterativos: Ejemplo comparativo: ¿Conclusiones?

• ¿Cuáles son las condiciones suficientes de convergencia?

JACOBI

0	1	2	3	4	5	6	7
0	-4	-34	-174	-1244	-6124	-42,874	-214,374
0	-6	-34	-244	-1244	-8574	-42,874	-300,124

$$\begin{cases} x - 5y = -4 \\ 7x - y = 6 \end{cases}$$

GAUSS-SEIDEL

0	1	2	3	4	5
0	-4	-174	-6124	-214,374	-7,503,124
0	-34	-1224	-42,874	-1,500,624	-52,521,874

Métodos Iterativos: Convergencia

- Ambos métodos pueden converger o divergir independientemente para el mismo problema.
- En ambos métodos usando notación matricial podemos escribir:

$$\vec{x}^k = T \, \vec{x}^{k-1} + c$$

Si la solución es la correcta debe verificar $\vec{x} = T \vec{x} + c$

Restando ambas: $\vec{x} - \vec{x}^k = T \vec{x} + c - T \vec{x}^{k-1} - c = T(\vec{x} - \vec{x}^{k-1})$

Analogamente:

$$\vec{x} - \vec{x}^{k-1} = T(\vec{x} - \vec{x}^{k-2}) \Longrightarrow \vec{x} - \vec{x}^k = T^2(\vec{x} - \vec{x}^{k-2}) \Longrightarrow$$
$$\Longrightarrow \vec{x} - \vec{x}^k = T^k(\vec{x} - \vec{x}^0)$$

Métodos Iterativos: Convergencia

• Si la matriz Tes diagonalizable $T = CDC^{-1}$ con Ddiagonal

$$T^2 = CDC^{-1}CDC^{-1} = CD^2C^{-1}$$

• • •

$$T^k = CD^k C^{-1}$$

 La diferencia entre la solución exacta y la obtenida en la iteración k depende del comportamiento de la potencia k-esima de la matriz diagonal.

$$D^{k} = \begin{pmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{k} \end{pmatrix}$$

Métodos Iterativos: Convergencia

Se llama radio espectral de una matriz:

$$\rho\left(A\right) = \max_{1 \le i \le n} \left| \lambda_i \right|$$

 A partir de los resultados anteriores podemos afirmar que una estimación del error absoluto en el paso k del proceso iterativo viene dada por:

$$\left\| \vec{x} - \vec{x}^k \right\| = \rho \left(T \right)^k \left\| \vec{x} - \vec{x}^0 \right\|$$

Es decir la propagación del error inicial depende del radio espectral.

Si queremos que el proceso converja, éste tendrá que ser $\rho(T) < 1$

El método (Gauss-Seidel- Jacobi) que más rápido converja será aquel con menor radio espectral

Métodos Iterativos - Método de la potencia: Práctica para todos los grupos

- Implementar Gauss con Pivote
- Implementar LU
- Implementar LU con pivote (No es más que Gauss con Pivote)
- Implementar Jacobi y Gauss-Seidel
- Implementar método de la potencia y potencia inversa

Dado el sistema de ecuaciones:

$$\begin{cases} x - 5y = -4 \\ 7x - y = 6 \end{cases}$$

Calcular el radio espectral del método de Jacobi y Gauss Seidel utilizando el método de la potencia. ¿Convergerán los métodos? ¿Cómo podemos arreglarlo?

Después del arreglo, ¿qué método converge más rápido?

Complementos teóricos. Para presentar por un grupo en la próxima clase

1.- Problemas de autovalores en ciencia e ingeniería

- Estudiar aplicaciones de problemas de autovalores en ciencia e ingeniería.
- Este trabajo no tiene parte de programación. Espero por tanto una presentación y un estudio teórico mucho más detallado que en el resto.

Complementos teóricos. Para presentar por un grupo en la próxima clase

2.- Herramientas de representación gráfica

Instalar Matplotlib:

http://matplotlib.org

 Usarlo para representar gráficamente las soluciones del problema de mínimos cuadrados:

http://stackoverflow.com/questions/11248812/how-to-plot-data-from-multiple-two-column-text-files-with-legends-in-matplotlib

(Presentación debe servir de tutorial para el resto de compañeros)

