

2016—2017 学年第一学期期末考试 考试统一用答题册

考试课程		工科高等代数 A				
班	级	学号				
姓	名	成 绩				

题号	 二	===	四	五	六	总分
成绩						
阅卷人签字						
校对人签字						

2017-1-5

- 一. 选择题 (每题 2 分, 共 22 分)
- **1.** 设 $A \setminus B \setminus C$ 均为 n 阶方阵, E 为 n 阶单位阵, 若 B = E + AB, C = A + CA, 则B-C为(a)
 - a. *E*;
- b. -*E*;
- c. A; d. -A
- **2.** 若 3 阶方阵 $A = (\alpha_1 \ \alpha_2 \ \alpha_3)$ 的行列式|A|=1,则 $|\alpha_1 \ \alpha_2 \ 3 \cdot \alpha_3 \alpha_1|= (c)$
- a. 2; b. 1; c. 3; d. -1
- 3. 设 A 是 4×3 的矩阵, η_1, η_2, η_3 是非齐次方程组 $Ax = \beta$ 的 3 个线性无关解, k_1, k_2 为任意常数,则 $Ax = \beta$ 的通解为 (c)
 - a. $\frac{\eta_1 + \eta_2}{2} + k_1(\eta_2 \eta_1)$;
- b. $\frac{\eta_2 \eta_3}{2} + k_2(\eta_2 \eta_1)$;
- c. $\frac{\eta_2 + \eta_3}{2} + k_1(\eta_3 \eta_1) + k_2(\eta_2 \eta_1);$ d. $\frac{\eta_1 \eta_3}{2} + k_1(\eta_2 \eta_1) + k_2(\eta_3 \eta_1)$
- **4.** 若 $A \in n$ 阶实方阵, $x \in R^n$ 中的列向量, 则 $x^TA^TAx = ($ d
 - a. 长度|Ax|; b. 正数; c. 长度|x/; d. |Ax|²

- a. 既相合又相似: b. 相合但不相似: c. 不相合但相似:
- d. 既不相合也不相似
- **6.** 设A为n阶方阵矩阵.则A可逆等价于(b

- a. det(A) = 0; b. R(A) = n; c. A^T 不可逆; d. A 有零特征值
- 7. 设 A 为 $m \times n$ 阶矩阵,令 $W = \{x \in R^n \mid Ax = 0\}$,则 $\dim(W) + R(A) = (c)$.

 - a. n-1; b. m-n; c. m;

- **8.** 设 A 和 B 为满足 AB = O 的任意两个非零矩阵,则必有(a)
 - a.A 的列向量组线性相关,B 的行向量组线性相关;
 - b.A 的列向量组线性相关,B 的列向量组线性相关;
 - c.A 的行向量组线性相关,B 的行向量组线性相关;
 - d.A 的行向量组线性相关,B 的列向量组线性相关.
- **9.** 实对称阵 A 为正定阵的充分必要条件是(d)

- a. A 满秩; b. A 可逆; c. |A|为正; d. A 的全体特征根为正数

- **10.** 设 A 为 n 阶正交阵,下列说法正确的是(
 - a. $A^T = A^*$ (伴随阵); b. $A^{-1} = A^T$; c. |A| = -1; d. |A| = 1

- 11. 设A和B为n阶方阵,且 $A^2 = A$, $B^2 = B$,E A B可逆,则(c
 - a. $\Re R(A) > R(B)$; b. R(A) < R(B); c. R(A) = R(B); d. $R(A) \neq R(B)$

二.填空题 (每题 2 分,共 8 分)

$$\mathbf{1.} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{19} = \underline{\hspace{1cm}}$$

- **2.** 设 α 是 3 维列向量,若 $\alpha \alpha^T = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$,则 $\alpha^T \alpha = \underline{\qquad \qquad }$
- 3. 若 3 阶方阵 A 满足 |A-E| = |A-2E| = |A+E| = 0,则 $|A^2+3E| = 0$
- **4.** 设 $A \in n$ 阶实正交阵, α_1, α_2, L , α_n 为 n 维列向量且线性无关,若 $(A + E)\alpha_1$ $(A+E)\alpha_{2}$, L, $(A+E)\alpha_{n}$ 也线性无关,则|A|=
- 三. 判断题 (每题 1 分,共 11 分) (正确的在括号内打"√",错误的在括号内打"X")
- 1. 任意线性变换都可以把线性空间的一组基映为一组基.(t)
- 2. 初等列变换不改变矩阵的秩.(t)
- **3.** 若方阵 A 可对角化,则属于 A 的不同特征值的特征子空间彼此正交.()
- **4.** 若方阵 A, B 相合,则 A, B 有相同的特征值.(t)
- 5. 正交变换在任意一组基下的矩阵都是正交阵.(t)
- **6.** 任意 n 阶方阵 A 与 B, AB 和 BA 具有相同的迹.(t)
- 7. 设 A 为实 $m \times n$ 矩阵,则秩 $R(A^T A) = R(A)$. (t)
- **8.** 若向量 $\alpha_1, \alpha_2, \alpha_3$ 可由 ν_1, ν_2 线性表示,则 $\alpha_1, \alpha_2, \alpha_3$ 一定线性无关.(f)
- **9.** 若 A 是正定矩阵,则 $A^{-1} + A^*$ 也是正定矩阵.(t)
- **10.** 设 A 与 B 均为 n 阶方阵,R(A) + R(B) < n,则 A 与 B 有公共的特征值和特 征向量.(t)
- **11.** 若 n 元方程组 $A_{n\times n}$ x=0 只有零解,则 $A_{n\times n}$ x=b 必有唯一解.(f)

四. 计算下列各题 (每题 8 分, 共 24 分)

1. 设 R^4 的两个子空间 V_1 与 V_2 分别为

$$V_1 = \{(a_1, a_2, a_3, a_4) \mid a_1 = a_2 = a_3, a_i \in R, i = 1, 2, 3, 4\}$$

$$V_2 = L(x_1, x_2)$$
, $\sharp + x_1 = (1, 0, 1, 0), x_2 = (0, 1, 0, 1)$.

- (1) 求 $V_1 + V_2$ 的维数及其一组基; (2) 求 V_1 I V_2 的维数及其一组基.

2. 设 A 为 n 阶可逆阵, α 为 n 维列向量, b 为常数,记分块阵

$$P = \begin{pmatrix} E & 0 \\ -\alpha^T A^* & |A| \end{pmatrix}, \quad Q = \begin{pmatrix} A & \alpha \\ \alpha^T & b \end{pmatrix},$$

其中 A^* 为A的伴随矩阵,E为n阶单位阵.

(1) 计算并化简 PQ; (2)求 Q 可逆的充要条件.

3. 设 4 维向量组
$$\alpha_1 = \begin{pmatrix} 1+a \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 2+a \\ 2 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 3 \\ 3+a \\ 3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 4 \\ 4 \\ 4+a \end{pmatrix}$,

- (1) a 为何值时, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关?
- (2) 当 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表示。

五. 求解下列题目 (每题 10 分, 共 20 分)

1. 设所有次数不大于 4 的多项式全体所构成的线性空间为 $P_3[x]$,其上有线性变换 T 将任意 $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in P_3[x]$ 映为

$$T[f(x)] = (a_1 + a_2) + (a_1 + a_2)x + 2(a_0 + a_3)x^3$$

- (1) 设 $P_3[x]$ 的一组基I为 $1, x, x^2, x^3$, 求线性变换T在基I下的矩阵A;
- (2) 判断 A 是否可以相似对角化;若可以,求相似变换的矩阵以及与 A 相似的对角阵;
 - (3) 求 $P_3[x]$ 的另外一组基,使T在该基下的矩阵为对角阵.

- **2.** 已知二次型 $f(x_1, x_2, x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$ 的秩为 2,
- (1) 求此二次型的矩阵及 a 的值;
- (2) 求正交变换x = Qy,把 $f(x_1, x_2, x_3)$ 化成标准形,并写出此标准形;
- (3) 求方程 $f(x_1, x_2, x_3) = 0$ 的解.

六. 证明题 (每题 5 分, 共 15 分)

1. 设 $A \neq m \times n$ 阶实矩阵, $E \neq n$ 阶单位阵. 已知矩阵 $B = \lambda E + A^T A$,求证: 当 $\lambda > 0$ 时,矩阵B 为正定矩阵.

2. 设 A 为 n 阶可逆的反对称阵,b 为 n 维列向量,设 $B = \begin{pmatrix} A & b \\ b^T & 0 \end{pmatrix}$,

求证: 秩 R(B) = n.

3. 设 A 和 B 均为实对称阵,求证:存在正交阵 Q,使 $Q^{-1}AQ$ 与 $Q^{-1}BQ$ 同为对角 阵当且仅当 AB = BA.