Properties of locomotion: Coordinated and Rhythmic.
Coordination: can be L/R alternative or synchronous
Basic locomotion pattern can be generated in the spinal cord:
○ Experiment shows cat can walkon treadmill following transection of the spinal cord.
○ Experiment recording firing from a rat spinal cord segment shows flexor-extensor coordinated firing.
 Spinal cord network act as a central pattern generator (CPG): generate rhythmic motor output.
Basic spinal cord circuitry layout: based on reciprocal inhibition
 Excitatory ipsilateral interneuron (IINe) stimulate motor neurons (MN), stimulate inhibitory contralateral interneurons (CINi).
o Inhibitory contalateral interneuron (CINi) inhibit motor activity on the other side, generates L/R coordination
Optogenetic experiment: expression of channelrhodopsin in glutamatergic neurons with light activation
recreates swim-like movement in lamprey.
Development of the spinal cord circuitry occur early in development: Switching thoracic with lumbar spinal
segment lead to synchronous leg movment (hopping) and alternating wing movement.
Mammalian spinal circuitry: more complex than the Lamprey, 3 regulatory pathways:
 Indirect inhibitory: excitatory commissural interneuron (CINei) excites the inhibitory interneuron on the contralateral side, inhibiting motor neuron (Glutamatergic)
Direct inhibitory: inhibitory commissural interneuron (CINi) inhibits the contralateral motor neuron, same as in Lamprey (GABA-nergic)
 Direct excitatory: excitatory commissural interneuron stimulates the contralateral motor neuron, result in synchrony
(Glutamatergic)
Development of mammalian interneuron network is a result of transcription factor patterning.
○ Reciprocal inhibition pathway is a result of <u>Dbx</u> 1 transcription factor inducing V0 interneuron formation. Dbx1 K0 mice lead to loss of alternating pattern
 Alternation pattern is developed from L/R synchrony, mediated through the ventral white commissure. Cutting of
ventral white commissure lead to loss of synchrony.
Early synchrony is due to excitatory signals generated by CINi, later converted to inhibitory signal
 During early development, intracellular chloride ion concentration is high, cell is hyperpolarised, and the
opening of anionic channel leads to efflux of chloride ions, causes depolarisation.
High NKCC1 expression during early development (Na + Cl import), high KCC2 expression later in
development, export of chloride ions. The expression pattern of 2 transporters — reverse flow of chloride
ions. L/R synchrony to L/R alternation.
Descending control
 At the spinal cord central pattern generator, it receives sensory feedback and integrate into movement. Obstacle
will cause extended limb lifting to step over obstacle.
 The basal ganglia determines the goal of the action, initiate rhythmic pattern generated by CPG
○ Selected locomotion programme is then initiated in the midbrain locomotion region (MLR), control the speed of locomotion
 Steering and posture of the action is controlled by the reticulospinal tract.
MLR controlling the speed can lead to change in locomotion pattern (e.g. walking to galloping alternation-

synchrony)
Posture control development:
 Descending input is required before locomotion can occur in both zebrafish and mice
In mice, control of the hindlimb is acquired after P14
 Synapse formation of the reticulospinal tract allow stimulation of anti-gravity muscles for posture
maintainence.
In zebrafish, development of dopaminergic neurons into the spinal cord lead to CPG activation, shown by
decapitation + DA rescue
Muscle type development:
 Fast and slow fibre development depend on type of innervation.
Switching of phasic/tonic nervous input lead to changes in muscle type