MATH2267 Week 5 Vectors

Semester 2, 2018

Overview

Vectors

 Introduction to vectors
 Basic operations
 Scalar or dot product
 Scalar projection

 Vector projection
 Vector product or cross product

1: Introduction

Physical quantities are either scalars or vectors.

```
Vectors have both magnitude and direction

Example: forces, velocity, electric field, ....

Scalars have only magnitude

Example: temperature, time, distance, ....
```

```
Vectors are represented: geometrically, by directed line segments; algebraically, by bold face letters (a, b, u, v, \text{ etc.}). or \vec{a}, \vec{g} e.t.c (in hand writing)
```

1: Introduction

i: from O(0,0,0) to $P_1(1,0,0)$

j: from O(0,0,0) to $P_2(0,1,0)$

k: from O(0,0,0) to $P_3(0,0,1)$

1: Introduction

A 3-D vector **a** has three components:

$$\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}$$

or

$$\mathbf{a} = (a_1, a_2, a_3)$$
 (component form)

where a_1 , a_2 , a_3 are real numbers.

2-D vectors have two components: $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$, or in component form: $\mathbf{a} = (a_1, a_2)$.

2: Basic Vector Operations

Multiplication of vector by a scalar:

For
$$\mathbf{a} = (a_1, a_2, a_3), \lambda \in \mathbb{R}$$
:

$$\lambda \mathbf{a} = (\lambda a_1, \lambda a_2, \lambda a_3)$$
 (parallel to \mathbf{a})

Geometric interpretation:

2: Basic Vector Operations

Addition and subtraction:

For
$$\mathbf{a} = (a_1, a_2, a_3)$$
 and $\mathbf{b} = (b_1, b_2, b_3)$.
 $\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$
 $\mathbf{a} - \mathbf{b} = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$

- Note: a − b = a + (−b)
- Geometrically, vector addition follows Tail-Nose Rule:

2: Basic Vector Operations

Example. For
$$\mathbf{a} = (3, 5, -7)$$
, $\mathbf{b} = (-2, 4, 11)$,

(1)
$$3\mathbf{a} = 3(3, 5, -7)$$

$$= (3 \times 3, 3 \times 5, 3 \times (-7))$$

$$= (9, 15, -21)$$
(2)
$$\mathbf{a} + \mathbf{b} = (3, 5, -7) + (-2, 4, 11)$$

$$= (3 - 2, 5 + 4, -7 + 11)$$

$$= (1, 9, 4)$$
(3)
$$2\mathbf{a} - \mathbf{b} = 2(3, 5, -7) - (-2, 4, 11)$$

$$= (6, 10, -14) - (-2, 4, 11)$$

$$= (6 + 2, 10 - 4, -14 - 11)$$

$$= (8, 6, -25)$$

2: Basic Vector Operations

The magnitude (length) of a vector:

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$
 (also $\|\mathbf{a}\|$)

The unit vector in the direction of a:

$$\hat{\pmb{a}} = rac{1}{|\pmb{a}|} \pmb{a}$$

Example. Let a = (3, 5, -7). Then,

1.
$$|\mathbf{a}| = \sqrt{3^2 + 5^2 + (-7)^2} = \sqrt{9 + 25 + 49} = \sqrt{83}$$

2.
$$\hat{\boldsymbol{a}} = \frac{1}{|\boldsymbol{a}|} \boldsymbol{a} = \frac{1}{\sqrt{83}} (3, 5, -7) = (\frac{3}{\sqrt{83}}, \frac{5}{\sqrt{83}}, -\frac{7}{\sqrt{83}})$$

2: Basic Vector Operations

Position Vector

Given point $P(a_1, a_2, a_3)$, the position vector of P is:

$$\overrightarrow{OP} = a_1 \, i + a_2 \, j + a_3 \, k = (a_1, a_2, a_3)$$

 a_1 , a_2 , a_3 are components of the vector.

2: Basic Vector Operations

Example. Given point P(1, -2, -5), find \overrightarrow{OP} and $|\overrightarrow{OP}|$. **Solution.**

$$\overrightarrow{OP} = \mathbf{i} - 2\mathbf{j} - 5\mathbf{k}$$

 $|\overrightarrow{OP}| = \sqrt{1^2 + (-2)^2 + (-5)^2} = \sqrt{30}$

2: Basic Vector Operations

Vector between Two Points

Vector from $A(a_1, a_2, a_3)$ to $B(b_1, b_2, b_3)$ is given by the tail-nose rule, $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
 ('last' minus 'first')

2: Basic Vector Operations

Example. Find the vector from A(1,2,-3) to B(3,5,-6). **Solution.**

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (3,5,6) - (1,2,-3) = (3-1,5-2,-6-(-3))$$

$$= (2,3,-3)$$

$$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB}$$

$$= (1,2,-3) - (3,5,6) = (1-3,2-5,-3-(-6))$$

$$= (-2,-3,3) = -\overrightarrow{AB}$$

3: Dot Product

The scalar product or dot product of **a** and **b** is

$$m{a}\cdotm{b}=|m{a}||m{b}|\cos heta$$

where θ is the angle between **a** and **b**.

If
$$\mathbf{a} = (a_1, a_2, a_3)$$
 and $\mathbf{b} = (b_1, b_2, b_3)$, then

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

3: Dot Product

Example. Find $a \cdot b$ for

$$\mathbf{a} = (2, -3, 2)$$
 and $\mathbf{b} = (6, 1, -2)$.

Solution.

$$\mathbf{a} \cdot \mathbf{b} = 2 \times 6 + (-3) \times 1 + 2 \times (-2)$$

= 12 - 3 - 4
= 5

3: Dot Product

Angle between Two Vectors

$$m{a} \cdot m{b} = |m{a}| |m{b}| \cos \theta$$
 $\implies \cos \theta = (m{a} \cdot m{b})/(|m{a}| |m{b}|)$

$$\implies \theta = \cos^{-1} \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}$$

3: Dot Product

Example. Let $\mathbf{a} = (2, 3, 5)$ and $\mathbf{b} = (1, -2, 1)$. Find the angle between the vectors \mathbf{a} and \mathbf{b} .

$$\mathbf{a} \cdot \mathbf{b} = 2(1) + 3(-2) + 5(1) = 1,$$

 $|\mathbf{a}||\mathbf{b}| = \sqrt{4 + 9 + 25}\sqrt{1 + 4 + 1} = 2\sqrt{57}$
 $\theta = \cos^{-1}\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$
 $= \cos^{-1}\frac{1}{2\sqrt{57}}$
= 1.5045 (radians) (= 86.2027°)

Julia works in degree by adding 'd' to the function name: input degree values: sind(30), cosd(45), tand(60) output degree values: asind(0.5), acosd(1), $atand(\frac{\sqrt{2}}{2})$

3: Dot Product

Orthogonal Vectors

Non-zero vectors a and b are orthogonal iff

$$\mathbf{a} \cdot \mathbf{b} = 0$$

as

$$|\boldsymbol{a}\cdot\boldsymbol{b}| = |\boldsymbol{a}||\boldsymbol{b}|\cos\theta = 0 \iff \cos\theta = 0 \iff \theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$$

Example. Are $\mathbf{a} = (3, -1, 2)$ and $\mathbf{b} = (3, 5, -2)$ orthogonal? Solution.

$$\mathbf{a} \cdot \mathbf{b} = 3 \times 3 + (-1) \times 5 + 2 \times (-2) = 9 - 5 - 4 = 0,$$

 \Longrightarrow **a** and **b** are orthogonal.

3: Projections

The scalar projection of \boldsymbol{a} in the direction of \boldsymbol{b} is simply the (scalar) component of \boldsymbol{a} in the direction of \boldsymbol{b} .

"Scalar proj. \boldsymbol{a} on \boldsymbol{b} " = $|\boldsymbol{a}|\cos\theta = |\boldsymbol{a}|(\boldsymbol{a}\cdot\boldsymbol{b})/(|\boldsymbol{a}||\boldsymbol{b}|)$

(Scalar proj. of
$$\boldsymbol{a}$$
 in \boldsymbol{b}) = $\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}|}$

Note: If $\theta > 90^{\circ}$, scalar projection is negative.

3: Projections

The vector projection of \boldsymbol{a} in the direction of \boldsymbol{b} is simply the scalar projection $(\boldsymbol{a} \cdot \boldsymbol{b})/|\boldsymbol{b}|$ multiplied by $\hat{\boldsymbol{b}} = \boldsymbol{b}/|\boldsymbol{b}|$, which is

$$\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}|} \, \hat{\boldsymbol{b}} \left(= \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}|} \, \frac{\boldsymbol{b}}{|\boldsymbol{b}|} = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{b}|^2} \, \boldsymbol{b} \right)$$

Thus, "Vector proj. of **a** in **b**" = $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b}$

3: Projections

Example. Find the scalar and vector projections of $\mathbf{a} = (5, -7, -6)$ in the direction of $\mathbf{b} = (2, 6, -3)$. Solution.

$$\mathbf{a} \cdot \mathbf{b} = 10 - 42 + 18 = -14$$
 $|\mathbf{b}| = \sqrt{2^2 + 6^2 + (-3)^2} = \sqrt{49} = 7$
scalar proj. $= (\mathbf{a} \cdot \mathbf{b})/|\mathbf{b}|$
 $= -14/7 = -2$
vector proj. $= [(\mathbf{a} \cdot \mathbf{b})/|\mathbf{b}|^2] \mathbf{b}$
 $= -[14/49] \mathbf{b}$
 $= -[2/7] (-2, -6, 3)$
 $= (-4/7, -12/7, 6/7)$

NOTE: Cross product is not required.

Next Week 6:

More Vectors and Matrices

Eigenvalues and eigenvectors

Requirements:

- Hand-computing eigenvals/eigenvecs of 2 × 2 matrices
- Julia computing eigenvals/eigenvecs of square matrices
- Leslie matrix

Requirements:

- Modelling age structured population, Leslie Matrix
- Determine population behavior