SYDE 556/750

Simulating Neurobiological Systems Lecture 4: Temporal Representations

Chris Eliasmith

January 22 & 28, 2020

- ► Slide design: Andreas Stöckel
- ► Content: Terry Stewart, Andreas Stöckel, Chris Eliasmith

Reminder: The LIF Neuron

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}t} v(t) &= -rac{1}{ au_{\mathrm{RC}}} ig(v(t) - J ig) \,, \ v(t) &\leftarrow \delta(t - t_{\mathrm{th}}) \,, \ v(t) &\leftarrow 0 \,, \end{aligned}$$

$$\begin{array}{l} \text{if } \textit{v}(t) < 1 \,, \\ \\ \text{if } \textit{t} = \textit{t}_{\rm th} \,, \\ \\ \text{if } \textit{t} > \textit{t}_{\rm th} \text{ and } \textit{t} \geq \textit{t}_{\rm th} + \tau_{\rm ref} \,, \end{array}$$

Temporal Decoding of Two Neurons

Temporal Decoding of One Hundred Neurons

Filtering by Convolution

Gaussian Filter

$$h(t)=c\exp\left(rac{-t^2}{\sigma^2}
ight)$$
 where c chosen s.t. $\int_{-\infty}^{\infty}h(t)\,\mathrm{d}t=1$

Convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) d\tau$$

Filtering a Spike Train

Random Signals

White Noise (zero mean)

Random Signals

Time t (s)

Frequency f (Hz)

Frequency f (Hz)

White Noise (zero mean)

Bandlimited
White Noise
(zero mean,
5 Hz bandwidth)

Random Signals

White Noise (zero mean)

Bandlimited
White Noise
(zero mean,
10 Hz bandwidth)

Filtering a Spike Train for a Random Signal

Optimal Filter

$$H(\omega) = \frac{X(\omega)\overline{R}(\omega)}{|R(\omega)|^2}$$

Optimal Filter (Improved)

$$H(\omega) = \frac{X(\omega)\overline{R}(\omega) * W(\omega)}{|R(\omega)|^2 * W(\omega)}$$

Precise
Good for analysing data after the fact

Precise
Good for analysing data after the fact

Non-causal

Does not describe a biological process

Precise
Good for analysing data after the fact

Non-causal

Does not describe a biological process

We need to find a mechanism that low-pass filters spikes over time!

Synapses as Filters

Synapses as Filters

Post-synaptic currents (EPSCs, IPSCs) are low-pass filtered spike trains!

Exponential Low-Pass Filter (I)

Synaptic Filter (Time Domain)

$$h(t) = egin{cases} c^{-1}t^n \exp^{-t/ au} & ext{if } t \geq 0\,, \ 0 & ext{otherwise}\,, \end{cases}$$

Synaptic Filter (Time Domain)

where
$$c=\int_0^\infty t^n \exp^{-t/ au}\,\mathrm{d}t$$
 .

Exponential Low-Pass Filter (II)

$$h(t) = egin{cases} c^{-1}t^n \exp^{-t/ au} & ext{if } t \geq 0\,, \ 0 & ext{otherwise}\,, \end{cases}$$

Synaptic Filter (Frequency Domain)

where
$$c = \int_0^\infty t^n \exp^{-t/\tau} dt$$
.

Example: Synaptic Filter for Two Neurons

Example: Synaptic Filter for One Hundred Neurons

Image sources

Title slide

From Wikimedia.

Author: Camille Grávis, between 1889 and 1900.

"Captive balloon with clock face and bell, floating above the Eiffel Tower, Paris, France."