BẢNG ĐÁP ÁN

1 – A	2 – C	3 – B	4 – C	5 – A	6 – A	7 – D	8 – D	9 – A	10 – C
11 – A	12 – B	13 – A	14 – C	15 – A	16 – D	17 – C	18 – B	19 – A	20 – C
21 – A	22 – B	23 – D	24 – D	25 – B	26 – C	27 – C	28 - D	29 - C	30 – B
31 - B	32 - D	33 - B	34 - D	35 – C	36 - B	37 – B	38 - B	39 - C	40 - D
41 - A	42 - D	43 – D	44 - A	45 – A	46 - B	47 - C	48 - A	49 - C	50 - D

Câu 1: Cho tập hợp M có 30 phần tử. Số tập con gồm 5 phần tử của M là:

- **A.** C_{30}^5 .
- **B.** A_{30}^5 .

C. 30^5 .

D. A_{30}^4 .

Lời giải

Chon A.

Câu 2: Cho hai hàm số f(x) và g(x) liên tục trên K, $a,b \in K$. Khẳng định nào sau đây là khẳng định sai?

- **A.** $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$ **B.** $\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx.$ **C.** $\int_{a}^{b} f(x)g(x) dx = \int_{a}^{b} f(x) dx. \int_{a}^{b} g(x) dx.$ **D.** $\int_{a}^{b} [f(x) g(x)] dx = \int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx.$

Lời giải

Chon C.

Câu 3: Biết f(x) là hàm liên tục trên R và $\int_{0}^{9} f(x)dx = 9$. Khi đó $\int_{1}^{4} f(3x-3)dx$ là

A. 27.

B. 3.

C. 0.

D. 24.

Lời giải

Đặt t = 3x - 3, ta có dt = 3dx, $x = 1 \Rightarrow t = 0$; $x = 4 \Rightarrow t = 9$.

Ta có: $\int_{0}^{4} f(3x-3)dx = \frac{1}{3} \int_{0}^{9} f(t)dt = \frac{1}{3}.9 = 3$. Chọn B.

Câu 4: Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): -x + y + 3z - 2 = 0. Phương trình mặt phẳng (α) đi qua A(2;-1;1) và song song với (P) là:

- **A.** x y + 3z + 2 = 0.
- **B.** -x + y 3z = 0.
- **C.** -x + y + 3z = 0. **D.** -x y + 3z = 0.

Lời giải

 $\vec{n}_{(\alpha)} = (-1;1;3)$ nên phương trình mặt phẳng (α) : $-1(x-2)+1(y+1)+3(z-1)=0 \Leftrightarrow -x+y+3z=0$.

Chon C.

Câu 5: Trong không gian với hệ tọa độ vuông góc Oxyz, cho đường thẳng $d: \begin{cases} x = 2 + 3t \\ y = 5 - 4t \end{cases}$; $t \in R$ và điểm z = -6 + 7t

A(1;2;3). Đường thẳng đi qua A và song song với đường thẳng d có véc tơ chỉ phương là:

- **A.** $\vec{u} = (3, -4, 7)$.
- **B.** $\vec{u} = (3; -4; -7)$. **C.** $\vec{u} = (-3; -4; -7)$. **D.** $\vec{u} = (-3; -4; 7)$.

 \vec{u} cùng phương với (3;-4;7).

Chon A.

Câu 6: Số đường tiệm cận đứng và ngang của đồ thị hàm số $y = \frac{3x+1}{x^2-4}$ là:

A. 3.

B. 1.

C. 2.

D. 4.

Lời giải

Tiệm cận đứng x = 2 và x = -2. Tiệm cận ngang y = 0.

Chon A.

Câu 7: Cắt hình nón đỉnh S bởi một mặt phẳng đi qua trục, ta được một tam giác vuông cân, cạnh huyển bằng $a\sqrt{2}$. Thể tích khối nón bằng:

A. $\frac{\pi a \sqrt{2}}{4}$.

B. $\frac{\pi a^3 \sqrt{2}}{6}$.

C. $\frac{\pi a^2 \sqrt{2}}{12}$.

D. $\frac{\pi a^3 \sqrt{2}}{12}$.

Lời giải

Khối nón có bán kính đáy $r = \frac{a\sqrt{2}}{2}$, đường cao $h = \frac{a\sqrt{2}}{2}$

Do đó $V = \frac{1}{3}h.S_d = \frac{1}{3}.h.\pi r^2 = \frac{1}{3}\pi.\left(\frac{a\sqrt{2}}{2}\right)^3 = \frac{\pi a^3\sqrt{2}}{12}$. Chọn D.

Câu 8: Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB = a, AD = 2a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa cạnh SD và mặt phẳng đáy bằng 60° . Thể tích V của khối chóp S.ABCD là

A. $V = \frac{2a^3}{\sqrt{2}}$. **B.** $4a^3\sqrt{3}$.

C. $V = \frac{a^3}{2}$.

D. $V = \frac{4a^3}{\sqrt{2}}$.

Lời giải

Ta có: $\widehat{SDA} = 60^{\circ} \Rightarrow SA = AD \cdot \tan 60^{\circ} = 2a \cdot \sqrt{3}$.

Do đó $V = \frac{1}{3}SA.S_{ABCD} = \frac{1}{3}SA.AB.AD = \frac{1}{2}2\sqrt{3}a.a.2a = \frac{4\sqrt{3}}{2}a^3$. Chọn **D.**

Câu 9: Phương trình $(\sqrt{2}-1)^x + (\sqrt{2}+1)^x - 2\sqrt{2} = 0$ có tích các nghiệm là

D. 0.

Lời giải

Đặt $\left(\sqrt{2}-1\right)^x = t$, ta có $\left(\sqrt{2}+1\right)^x = \left(\frac{1}{\sqrt{2}-1}\right)^x = \frac{1}{\left(\sqrt{2}-1\right)^x} = \frac{1}{t}$. Phương trình tương đương với:

 $t + \frac{1}{t} - 2\sqrt{2} = 0 \Leftrightarrow t^2 - 2\sqrt{2}t + 1 = 0 \Leftrightarrow \begin{bmatrix} t = -1 + \sqrt{2} \\ t = 1 + \sqrt{2} \end{bmatrix}$, do đó x = 1 hoặc x = -1. Chọn A.

Câu 10: Họ các nguyên hàm của hàm số $f(x) = e^{2x+3}$ là

A. $\int f(x)dx = \frac{1}{2}e^{2x+3} + C.$

B. $\int f(x)dx = e^{2x+3} + C$.

C.
$$\int f(x)dx = \frac{1}{2}e^{2x+3} + C$$
.

D.
$$\int f(x)dx = 2e^{2x+3} + C.$$

Lời giải

$$\int f(x)dx = \int e^{2x+3}dx = \frac{1}{2} \int e^{2x+3}d(2x+3) = \frac{e^{2x+3}}{2} + C \cdot \text{Chọn C.}$$

Câu 11: Tiếp tuyến của đồ thị hàm số $y = \frac{x^3}{3} - 2x^2 + 3x + 1$ song song với đường thẳng y = 3x + 1 có phương trình là:

A.
$$y = 3x - \frac{29}{3}$$
.

B.
$$y = 3x - \frac{29}{3}$$
; $y = 3x + 1$.

C.
$$y = 3x + \frac{29}{3}$$
.

D.
$$y = 3x - 1$$
.

Lời giải

Ta có: $y' = x^2 - 4x + 3$. Tiếp tuyến song song với đường thẳng y = 3x + 1 thì 2 đường này phải cùng hệ số

góc, ta có:
$$y' = 3 \Leftrightarrow x^2 - 4x + 3 = 3 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 4 \end{bmatrix}$$

Khi x = 0, ta có phương trình: y = 3(x-0) + y(0) = 3x+1. Đường này trùng với đường thẳng y = 3x+1

Khi
$$x = 4$$
, ta có phương trình $y = 3(x-4) + y(4) = 3x - 12 + \frac{7}{3} = 3x - \frac{29}{3}$.

Chon A.

Câu 12: Cho các số thực dương a,b,c với $c \neq 1$. Khẳng định nào sau đây là **sai?**

A.
$$\log_c ab = \log_c b + \log_c a$$
.

B.
$$\log_c \frac{a}{b} = \frac{\log_c a}{\log_c b}$$
.

$$\mathbf{C.} \, \log_c \sqrt{b} = \frac{1}{2} \log_c b.$$

D.
$$\log_c \frac{a}{b} = \log_c a - \log_c b$$
.

Lời giải

$$\log_c \frac{a}{b} = \log_c a - \log_c b \cdot \mathbf{Chon} \ \mathbf{B}.$$

Câu 13: Giá trị nhỏ nhất của hàm số $y = \frac{x^2 + 3}{x + 1}$ trên đoạn [-4; -2] là:

A.
$$\min_{[-4;-2]} y = -7$$
.

A.
$$\min_{[-4;-2]} y = -7$$
. **B.** $\min_{[-4;-2]} y = -\frac{19}{3}$. **C.** $\min_{[-4;-2]} y = -8$. **D.** $\min_{[-4;-2]} y = -6$.

C.
$$\min_{[-4;-2]} y = -8$$

D.
$$\min_{[-4;-2]} y = -6$$

Lời giải

$$y = \frac{x^2 + 3}{x + 1} = \frac{\left(x^2 - 1\right) + 4}{x + 1} = x - 1 + \frac{4}{x + 1}; \ y' = 1 - \frac{4}{\left(x + 1\right)^2} = \frac{\left(x + 1\right)^2 - 2^2}{\left(x + 1\right)^2} = \frac{\left(x - 1\right)\left(x + 3\right)}{\left(x + 1\right)^2}$$

Trên đoạn [-4;-2], $y'=0 \Leftrightarrow x=-3$, do đó $Min\{y\}=Min\{y(-4);y(-3);y(-2)\}=y(-2)=-7$.

Chon A.

Câu 14: Gọi r là bán kính đường tròn đáy và l là độ dài đường sinh của hình trụ. Diện tích xung quanh của hình tru là:

A. $2\pi r^2 l$.

B. πrl .

C. $2\pi lr$.

D. $\frac{1}{3}\pi rl$.

Lời giải

Công thức tính diện tích xung quanh của hình trụ: $S_{xa} = 2\pi rh = 2\pi rl$. **Chọn C.**

Câu 15: Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên:

Khẳng định nào sau đây là đúng?

- **A.** Hàm số có giá trị cực tiểu bằng -2 và giá trị cực đại bằng 2.
- **B.** Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng -2.
- C. Hàm số đạt cực đại tại x = -1 và đạt cực tiểu tại x = 2.
- **D.** Hàm số có đúng một cực trị.

Lời giải

Chon A.

Câu 16: Hai số phức $z_1 = 2 + 3i$, $z_2 = 1 + i$. Giá trị của biểu thức $|z_1 + 3z_2|$ là:

A. $\sqrt{55}$.

B. 5.

C. 6.

D. $\sqrt{61}$.

Lời giải

$$z_1 + 3z_2 = 2 + 3i + 3(1+i) = 5 + 6i$$
. Do đó: $|z_1 + 3z_2| = |5 + 6i| = \sqrt{5^2 + 6^2} = \sqrt{61}$. Chọn D.

Câu 17: Gọi z_0 là nghiệm phức có phần ảo dương của phương trình $z^2 + 2z + 10 = 0$. Tính iz_0 ?

A. $iz_0 = 3 - i$.

B. $iz_0 = -3i + 1$.

C. $iz_0 = -3 - i$.

D. $iz_0 = 3i - 1$.

Lời giải

Phương trình $z^2 + 2z + 10 = 0$ có 2 nghiệm là -1 + 3i và -1 - 3i nên $z_0 = -1 + 3i$.

Do đó $iz_0 = -i + 3i^2 = -3 - i$. Chọn C.

Câu 18: Các khoảng đồng biến của hàm số $y = x^4 - 8x^2 - 4$ là:

A. $(-\infty; -2)$ và (0; 2).

B. (-2;0) và $(2;+\infty)$.

C. (-2;0) và (0;2).

D. $(-\infty; -2)$ và $(2; +\infty)$.

Lời giải

Ta có: $y' = 4x^3 - 16x = 4x(x-2)(x+2)$, do đó $y' > 0 \Leftrightarrow \begin{vmatrix} -2 < x < 0 \\ x > 2 \end{vmatrix}$. Chọn B.

Câu 19: Trong không gian Oxyz, cho điểm A(1,-2,3). Hình chiếu vuông góc của điểm A lên mặt phẳng (Oxy) là điểm M có tọa độ:

A. M(1;-2;0).

B. M(0;-2;3).

C. M(1;0;3).

D. M(2;-1;0).

Lời giải

Gọi M(a;b;0) là điểm thuộc (Oxy). Ta có $\overrightarrow{AM} = (a-1;b+2;-3); \vec{n}_{(Oxy)} = (0;0;1)$.

$$\overrightarrow{AM}$$
 / $\overrightarrow{n}_{(Oxy)}$ \Leftrightarrow $\begin{cases} a-1=0 \\ b+2=0 \end{cases} \Leftrightarrow \begin{cases} a=1 \\ b=-2 \end{cases}$. Do đó M (1;-2;0). Chọn A.

Ghi nhớ: Hình chiếu vuông góc của điểm A(a;b;c) lên mặt phẳng (Oxy) là điểm M(a;b;0).

Câu 20: Cho số phức z thỏa mãn |z-1|=|z-2+3i|. Tập hợp các điểm biểu diễn số phức z là:

- **A.** Đường tròn tâm I(1;2), bán kính R=1.
- **B.** Đường thẳng có phương trình 2x 6y + 12 = 0.
- C. Đường thẳng có phương trình x-3y-6=0.
- **D.** Đường thẳng có phương trình x-5y-6=0.

Lời giải

Đặt
$$z = a + bi$$
. Ta có: $|z - 1| = |a - 1 + bi| = \sqrt{(a - 1)^2 + b^2}$;

$$|z-2+3i| = |a-2+(b+3)i| = \sqrt{(a-2)^2+(b+3)^2}$$

Theo đề bài:

$$(a-1)^{2} + b^{2} = (a-2)^{2} + (b+3)^{2} \Leftrightarrow -2a+1 = -4a+4+6b+9 \Leftrightarrow 2a-6b-12 = 0 \Leftrightarrow a-3b-6 = 0.$$

Do đó điểm biểu diễn số phức z thuộc đường thẳng x-3y-6=0. Chọn C.

Câu 21: Đồ thị sau đây là của hàm số nào?

A.
$$y = x^3 - 3x + 1$$
. **B.** $y = x^3 + 3x + 1$.

B.
$$y = x^3 + 3x + 1$$
.

C.
$$y = -x^3 - 3x + 1$$

Lời giải

lim $y = +\infty$ nên hệ số a > 0. (loại C và D).

Đồ thị hàm số có 2 điểm cực trị nên phương trình y'=0 có 2 nghiệm phân biệt. **Chọn A.**

Câu 22: Trong các mệnh đề sau, mệnh đề nào sai?

A.
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - x + 1} + x - 2 \right) = \frac{-3}{2}$$
.

B.
$$\lim_{x \to -1^-} \frac{3x+2}{x+1} = -\infty$$
.

C.
$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x + 1} + x - 2 \right) = +\infty.$$

D.
$$\lim_{x \to -1^+} \frac{3x+2}{x+1} = -\infty.$$

Chú ý rằng $\lim_{x \to 1^-} \frac{3x+2}{x+1} = -\infty = \frac{-1}{0^-} = +\infty$. Chọn B.

Câu 23: Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d_1 : $\begin{cases} x = 1 - 2t \\ y = 3 + 4t \end{cases}$ và

 $d_2: \left\{ \right. y = 2 + 2t$. Khẳng định nào sau đây là đúng?

A.
$$d_1 \perp d_2$$
.

B.
$$d_1 \equiv d_2$$
.

C.
$$d_1$$
 và d_2 chéo nhau.

D.
$$d_1 / / d_2$$
.

Lời giải

Đường thẳng d_1 có véc tơ chỉ phương $\overrightarrow{u_1} = (-2, 4, 6)$

Đường thẳng d_2 có véc tơ chỉ phương $\overrightarrow{u_2} = (-1, 2, 3)$.

Vì $\overrightarrow{u_1}$ cùng phương với $\overrightarrow{u_2}$ nên 2 véc tơ này song song hoặc trùng nhau.

Nhận thấy điểm $M(1;3;-2) \in d_1$ nhưng không thuộc d_2 nên $d_1//d_2$. **Chọn D.**

Câu 24: Tập nghiệm của bất phương trình $3^{x+2} \ge \frac{1}{9}$ là:

A.
$$[0;+\infty)$$
.

B.
$$(-\infty; 4)$$
.

C.
$$(-\infty;0)$$
.

D.
$$[-4; +\infty)$$
.

Lời giải

Ta có:
$$3^{x+2} \ge \frac{1}{9} \Leftrightarrow 3^{x+2} \ge 3^{-2} \Leftrightarrow x+2 \ge -2 \Leftrightarrow x \ge -4$$
. Chọn **D.**

Câu 25: Đồ thị của hàm số $y = \frac{ax+b}{cx+d}$ như hình vẽ. Mệnh đề nào sau đây là đúng?

B.
$$ad > 0, ab < 0.$$

C.
$$bd < 0, ab > 0$$
.

D.
$$bd > 0$$
, $ad > 0$.

Lời giải

Ta có: $y(0) < 0 \Rightarrow \frac{b}{d} < 0 \Rightarrow bd < 0$ nên b, d trái dấu (1).

Lại có $y\left(-\frac{b}{a}\right) = 0$, dựa theo đồ thị ta thấy hàm số có 1 nghiệm duy nhất $x_0 > 0 \Rightarrow -\frac{b}{a} > 0 \Rightarrow ab < 0$ nên a và b trái dấu (2).

Từ (1) và (2) suy ra a và d cùng dấu nên ad > 0. Chọn B.

Câu 26: Tích phân $I = \int_{-1}^{2} 3x \cdot e^x dx$ nhận giá trị nào sau đây:

A.
$$I = \frac{3e^3 + 6}{e^{-1}}$$
. **B.** $I = \frac{3e^3 - 6}{e^{-1}}$. **C.** $I = \frac{3e^3 + 6}{e}$. **D.** $I = \frac{3e^3 + 6}{-e}$.

B.
$$I = \frac{3e^3 - 6}{e^{-1}}$$

C.
$$I = \frac{3e^3 + 6}{e}$$
.

D.
$$I = \frac{3e^3 + 6}{-e}$$
.

$$I = 3\int_{-1}^{2} xd\left(e^{x}\right) = 3xe^{x}\Big|_{-1}^{2} - 3\int_{-1}^{2} e^{x}dx = 6e^{2} + 3e^{-1} - 3\left(e^{2} - e^{-1}\right) = 3e^{2} + \frac{6}{e} = \frac{3e^{3} + 6}{e}.$$
 Chọn C.

Câu 27: Trong không gian Oxyz, mặt phẳng (α) đi qua điểm M(1;2;1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho độ dài OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O tới mặt phẳng (α) .

A.
$$\frac{4}{\sqrt{21}}$$
.

B.
$$\frac{\sqrt{21}}{21}$$
.

C.
$$\frac{3\sqrt{21}}{7}$$
.

D.
$$9\sqrt{21}$$
.

Vì A, B, C thuộc các tia Ox, Oy, Oz, giả sử A(a;0;0); B(0;b;0); C(0;0;c) với a,b,c>0.

Theo đề bài: c = 2b = 4a.

Phương trình mặt phẳng (α): $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \Leftrightarrow \frac{x}{a} + \frac{y}{2a} + \frac{z}{4a} = 1$.

Vì
$$M(1;2;1) \in (\alpha)$$
 nên $\frac{1}{a} + \frac{2}{2a} + \frac{1}{4a} = 1 \Leftrightarrow \frac{9}{4a} = 1 \Leftrightarrow a = \frac{9}{4}$.

Do đó phương trình mặt phẳng (α): $x + \frac{y}{2} + \frac{z}{4} = \frac{9}{4}$.

Khoảng cách từ gốc tọa độ O tới (α) : $d = \frac{\left|-\frac{9}{4}\right|}{\sqrt{1^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^2}} = \frac{3\sqrt{21}}{7}$. Chọn C.

Câu 28: Cho cấp số nhân (u_n) thỏa mãn $\begin{cases} u_1 + u_2 + u_3 = 13 \\ u_4 - u_1 = 26 \end{cases}$. Tổng 8 số hạng đầu của cấp số nhân (u_n) là

A.
$$S_8 = 1093$$
.

B.
$$S_0 = 3820$$
.

C.
$$S_8 = 9841$$
. **D.** $S_8 = 3280$.

D.
$$S_{\circ} = 3280$$
.

Lời giải

Giả sử công bội của cấp số nhân là q, từ đề bài ta có:

Gia sur cong bọi của cáp số nhân là
$$q$$
, từ để bài tả có:
$$\begin{cases} u_1 + qu_1 + q^2u_1 = 13 \\ q^3u_1 - u_1 = 26 \end{cases} \Rightarrow q^3 - 1 = 2\left(q^2 + q + 1\right) \Leftrightarrow \left(q - 3\right)\left(q^2 + q + 1\right) = 0 \Leftrightarrow q = 3 \Rightarrow u_1 = 1.$$

Chon D.

Câu 29: Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(0;0;-3), B(2;0;-1) và mặt phẳng (P): 3x-8y+7z-1=0. Điểm C(a;b;c) là điểm nằm trên mặt phẳng (P), có hoành độ dương để tam giác ABC đều. Tính a-b+3c.

Lời giải

Ta có:
$$AB = \sqrt{2^2 + 0^2 + 2^2} = 2\sqrt{2}$$
; $\overrightarrow{AB} = (2,0,2)$.

Phương trình mặt phẳng trung trực của đoạn thẳng AB: x+z+1=0.

Gọi đường thẳng d là giao tuyến của mặt phẳng trung trực của đoạn thẳng AB và (P). Đường thẳng d đi

qua điểm
$$M(0;-1;-1)$$
 và có véc tơ chỉ phương $\vec{u} = [(1;0;1);(3;-8;7)] = (8;-4;-8) \Rightarrow (d): \begin{cases} x = 2t \\ y = -1-t \\ z = -1-2t \end{cases}$

Điểm C thuộc d, giả sử tọa độ của C là C(2t;-1-t;-1-2t) (t>0)

Ta có:
$$CA = AB \Leftrightarrow 4t^2 + (1+t)^2 + 4(t-1)^2 = 8 \Leftrightarrow 9t^2 - 6t - 3 = 0 \Leftrightarrow t = 1 \text{ (do } t \text{ duong)}.$$

Vậy $a = 2t = 2; b = -1 - t = -2; c = -1 - 2t = -3$ nên $a - b + 3c = 2 + 2 - 9 = -5$. **Chọn C.**

Câu 30: Cho $f(x) = a \ln \left(x + \sqrt{x^2 + 1}\right) + b \sin x + 6$ với $a, b \in R$. Biết $f\left(\log \left(\log e\right)\right) = 2$. Tính giá trị của

 $f(\log(\ln 10))$.

A. 4.

B. 10.

C. 8.

D. 2.

Chú ý rằng $\log(\log e) + \log(\ln 10) = \log(\log e \cdot \ln 10) = \log(\log_{10} e \cdot \log_e 10) = \log(1) = 0$.

Đặt $\log(\log e) = t \Rightarrow \log(\ln 10) = -t$.

Ta có: $f(t) = a \ln(t + \sqrt{t^2 + 1}) + b \sin t + 6 = 2 \Rightarrow a \ln(t + \sqrt{t^2 + 1}) + b \sin t = -4$.

 $f(-t) = a \ln\left(-t + \sqrt{t^2 + 1}\right) + b \sin\left(-t\right) + 6 = a \ln\frac{1}{\sqrt{t^2 + 1} + t} - b \sin t + 6 = -a \ln\left(\sqrt{t^2 + 1} + t\right) - b \sin t + 6$

=4+6=10. Chọn B.

Câu 31: Số giá trị nguyên của tham số m thuộc [-2;4] để hàm số $y = \frac{1}{3}(m^2 - 1)x^3 + (m+1)x^2 + 3x - 1$ đồng biến trên R là:

A. 3.

B. 5.

C. 0.

D. 2.

Lời giải

Ta có: $y' = (m^2 - 1)x^2 + 2(m+1)x + 3$

- Với m = -1, ta có $y' = 3 > 0 \quad \forall x \in R$ nên hàm số luôn đồng biến trên R.
- Với m=1, y'=4x+3. Với $x<-\frac{3}{4}$ thì y'<0 nên hàm số không đồng biến trên R.
- Với $m^2 \neq 1$, ta có $y' \geq 0$ với mọi $x \in R$ khi và chỉ khi

$$\begin{cases} m^2 - 1 > 0 \\ \Delta' = (m+1)^2 - 3(m^2 - 1) \le 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m > 1 \\ m < -1 \\ m^2 - m - 2 \ge 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m > 1 \\ m < -1 \\ m \le 2 \end{bmatrix} \end{cases} \Leftrightarrow \begin{bmatrix} m \ge 2 \\ m < -1 \end{cases}.$$

Vậy các giá trị nguyên của m thỏa mãn điều kiện đề bài thuộc $\{-2, -1, 2, 3, 4\}$. Chọn B.

Câu 32: Cho x, y > 0 và thỏa mãn $\begin{cases} x^2 - xy + 3 = 0 \\ 2x + 3y - 14 \le 0 \end{cases}$. Tính tổng giá trị lớn nhất và nhỏ nhất của biểu thức

$$P = 3x^2y - xy^2 - 2x^3 + 2x ?$$

A. 4.

B. 8.

C. 12.

D. 0.

Lời giải

Vì x, y > 0 nên ta có: $x^2 - xy + 3 = 0 \Leftrightarrow x^2 + 3 = xy \Leftrightarrow y = x + \frac{3}{x}$.

Do đó: $2x+3y-14 \le 0 \Leftrightarrow 2x+3\left(x+\frac{3}{x}\right)-14 \le 0 \Leftrightarrow 5x+\frac{9}{x}-14 \le 0 \Leftrightarrow 5x^2-14x+9 \le 0 \Leftrightarrow 1 \le x \le \frac{9}{5}$.

Ta có:

$$P = 3x^{2}y - xy^{2} - 2x^{3} + 2x = 3x^{2}\left(x + \frac{3}{x}\right) - x\left(x + \frac{3}{x}\right)^{2} - 2x^{3} + 2x = 3x^{3} + 9x - x\left(x^{2} + \frac{9}{x^{2}} + 6\right) - 2x^{3} + 2x = 5x - \frac{9}{x}.$$

Xét hàm số
$$f(x) = 5x - \frac{9}{x}$$
, ta có $f(x)$ xác định trên $\left[1; \frac{9}{5}\right]$ có $f'(x) = 5 + \frac{9}{x^2} > 0$ nên $f(1) \ge f(x) \ge f\left(\frac{9}{5}\right) \Leftrightarrow -4 \ge f(x) \ge 4$. Do đó $MinP = -4$ và $MaxP = 4$. Chọn **D.**

Xem Video chữa đề trên YouTube: https://youtu.be/nmL0NpSIxvc Anh Đức – Hà Đông – Hà Nội

Câu 33: m_0 là giá trị của tham số m để đồ thị hàm số $y = x^4 + 2mx^2 - 1$ có 3 điểm cực trị lập thành một tam giác có diện tích bằng $4\sqrt{2}$. Mệnh đề nào sau đây là đúng?

A.
$$m_0 \in (-1;1]$$
.

B.
$$m_0 \in (-2; -1]$$
.

C.
$$m_0 \in (-\infty; -2]$$
.

D.
$$m_0 \in (-1;0)$$
.

Lời giải

Ta có: $y' = 4x^3 + 4mx = 4x(x^2 + m)$. Điều kiện để hàm số có 3 điểm cực trị là m < 0. Khi đó các điểm cực trị là x = 0; $x = -\sqrt{-m}$ và $x = \sqrt{-m}$.

Các điểm cực trị của đồ thị hàm số là: A(0;-1); $B(-\sqrt{-m};-m^2-1)$ và $C(\sqrt{-m};-m^2-1)$.

Trung điểm H của BC có tọa độ $(0; -m^2 - 1)$.

Ta có:
$$BC = \sqrt{(2\sqrt{-m})^2} = 2\sqrt{-m}$$
; $AH = \sqrt{(-m^2)^2} = |-m^2| = m^2$.

Tam giác ABC cân tại A nên $S_{ABC} = \frac{1}{2}BC.AH = \frac{1}{2}.2\sqrt{-m}.m^2 = \sqrt{-m}.m^2 = 4\sqrt{2} \Rightarrow m = -2$.

Chọn C.

Câu 34: Cho $X = \{0,1,2,3,...,15\}$. Chọn ngẫu nhiên 3 số trong tập hợp X. Tính xác suất để trong 3 số được chọn không có hai số liên tiếp.

A.
$$\frac{13}{35}$$
.

B.
$$\frac{7}{20}$$
.

C.
$$\frac{20}{35}$$
.

D.
$$\frac{13}{20}$$
.

Lời giải

A là biến cố trong 3 số được chọn không có hai số liên tiếp.

A là biến cố trong 3 số được chọn có ít nhất 2 số liên tiếp.

Số trường hợp để trong 3 số được chọn là 3 số liên tiếp: $n_1 = 14$.

Số trường hợp để trong 3 số được chọn, có 2 số là 0 và 1, số còn lại khác 2: $n_2 = \frac{15-3}{1} + 1 = 13$.

Số trương hợp để trong 3 số được chọn, có 2 số là 14 và 15, số còn lại khác 13: $n_3 = \frac{12-0}{1} + 1 = 13$

Số trường hợp để trong 3 số được chọn có đúng 2 số liên tiếp: $n_4 = n_2 + n_3 + 13.12 = 2.13 + 12.13 = 14.13$ Tổng số khả năng của \overline{A} : $n(\overline{A}) = n_1 + n_4 = 14 + 13.14 = 14^2$

Không gian mẫu: $n(\Omega) = C_{16}^3 = 560$. Do đó: $P(A) = \frac{560 - 14^2}{560} = \frac{13}{20}$. **Chọn D.**

Câu 35: Tổng các nghiệm của phương trình $2\cos^2 x + \sqrt{3}\sin 2x = 3$ trên $\left[0; \frac{5\pi}{2}\right]$ là:

A.
$$\frac{7\pi}{6}$$
.

B.
$$\frac{7\pi}{3}$$
.

C.
$$\frac{7\pi}{2}$$
.

D.
$$2\pi$$
.

Lời giải

Phương trình tương đương với: $1 + \cos 2x + \sqrt{3} \sin 2x = 3 \Leftrightarrow \frac{1}{2} \cos 2x + \frac{\sqrt{3}}{2} \sin 2x = 1$

 $\Leftrightarrow \cos 2x \cdot \cos \frac{\pi}{3} + \sin 2x \cdot \sin \frac{\pi}{3} = 1 \Leftrightarrow \cos \left(2x - \frac{\pi}{3}\right) = 1 \Leftrightarrow 2x - \frac{\pi}{3} = k2\pi \quad \left(k \in \mathbb{Z}\right) \Leftrightarrow x = \frac{\pi}{6} + k\pi.$

Ta có: $0 < \frac{\pi}{6} + k\pi \le \frac{5\pi}{2} \Leftrightarrow -\frac{1}{6} < k \le \frac{7}{3}$. Mà $k \in \mathbb{Z} \Rightarrow k \in \{0;1;2\}$. Do đó các nghiệm của phương trình thuộc $\left(0, \frac{5\pi}{2}\right]$ là $\frac{\pi}{6}$; $\frac{7\pi}{6}$ và $\frac{13\pi}{6}$. Tổng các nghiệm đó là $\frac{7\pi}{2}$. **Chọn C.**

Câu 36: Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): x+y-z-3=0 và hai điểm A(1;1;1), B(-3;-3;-3). Mặt cầu (S) đi qua hai điểm A, B và tiếp xúc với (P) tại điểm C. Biết rằng Cluôn thuộc 1 đường tròn cố định. Tính bán kính của đường tròn đó.

A.
$$R = 4$$
.

B.
$$R = 6$$
.

C.
$$R = \frac{2\sqrt{33}}{3}$$
. **D.** $R = \frac{2\sqrt{11}}{3}$.

D.
$$R = \frac{2\sqrt{11}}{3}$$
.

Lời giải

Dễ thấy AB không song song với (P). Gọi K là giao điểm của AB và (P).

Gọi A', B' lần lượt là hình chiếu của A, B lên (P), M là trung điểm của AB, I là tâm của mặt cầu (S). ΔICK vuông tại C nên $KC^2 = IK^2 - IC^2 = IK^2 - IA^2$.

Vì
$$IA = IB \Rightarrow IM \perp AB$$
, do đó $IK^2 - IA^2 = (IM^2 + MK^2) - (IM^2 + MA^2) = MK^2 - MA^2 = MK^2 - \frac{1}{4}AB^2$

Do đó $KC = \sqrt{MK^2 - \frac{1}{A}AB^2}$ không đổi, mà K cố định nên C luôn di động trên đường tròn tâm K, bán

kính $\sqrt{MK^2 - \frac{1}{4}AB^2}$ và nằm trong mặt phẳng (P).

Phương trình đường thẳng AB: x = y = z.

Điểm K là giao của AB và (P) nên tọa độ của K thỏa mãn hệ $\begin{cases} x = y = z \\ x + y - z - 3 = 0 \end{cases} \Leftrightarrow x = y = z = 3.$

Do đó K(3;3;3). Điểm M là trung điểm của AB nên $M(-1;-1;-1) \Rightarrow MK^2 = 4^2.3$.

Lại có
$$AB^2 = 4^2 + 4^2 + 4^2 = 4^2.3$$
. Do đó $R = \sqrt{4^2.3.\frac{3}{4}} = \sqrt{6^2} = 6$. Chọn B.

Câu 37: Gọi S là tập hợp các giá trị của tham số m để phương trình $\left(\frac{1}{9}\right)^3 - m\left(\frac{1}{3}\right)^3 + 2m + 1 = 0$ có nghiệm.

Tập $R \setminus S$ có bao nhiều giá trị nguyên?

A. 4.

B. 9.

C. 0.

D. 3.

Đặt $t = \left(\frac{1}{3}\right)^x$ (t > 0). Phương trình tương đương với: $t^2 - mt + 2m + 1 = 0$ (1)

$$\Delta = m^2 - 4(2m+1) = m^2 - 8m - 4 = \left(m - 4 - 2\sqrt{5}\right)\left(m - 4 + 2\sqrt{5}\right) \Rightarrow \Delta \ge 0 \Leftrightarrow \begin{bmatrix} m > 4 + 2\sqrt{5} \\ m < 4 - 2\sqrt{5} \end{bmatrix}$$

Để phương trình đề bài có nghiệm thì (1) phải có ít nhất 1 nghiệm dương, ta có 3 trường hợp:

TH1: (1) có 2 nghiệm đều dương
$$\Leftrightarrow \begin{cases} \Delta \geq 0 \\ S = m > 0 \\ P = 2m + 1 > 0 \end{cases} \Leftrightarrow \begin{cases} m > 4 + 2\sqrt{5} \\ m < 4 - 2\sqrt{5} \Leftrightarrow m > 4 + 2\sqrt{5} \\ m > 0 \end{cases}$$

TH2: (1) có 1 nghiệm t > 0, 1 nghiệm t = 0. (1) có nghiệm $t = 0 \Leftrightarrow m = -\frac{1}{2}$, thay vào thấy nghiệm còn lại là $t = -\frac{1}{2} < 0$ (không thỏa mãn)

TH3: (1) có 2 nghiệm trái dấu $\Leftrightarrow P < 0 \Leftrightarrow 2m+1 < 0 \Leftrightarrow m < -\frac{1}{2}$

Do đó:
$$S = \left(-\infty; -\frac{1}{2}\right) \cup \left(4 + 2\sqrt{5}; +\infty\right) \Rightarrow R \setminus S = \left[-\frac{1}{2}; 4 + 2\sqrt{5}\right].$$

Do đó các giá trị nguyên của $R \setminus S$ thuộc tập hợp $\{0;1;2;3;4;5;6;7;8\}$. Chọn B.

Câu 38: Cho hàm số y = f(x) liên tục trên $R \setminus \{0; -1\}$ thỏa mãn các điều kiện $f(1) = -2 \ln 2$ và $x(x+1).f'(x) + f(x) = x^2 + x$. Giá trị của $f(2) = a + b \ln 3$ $(a,b \in Q)$. Tính $a^2 + b^2$.

A.
$$\frac{25}{4}$$
.

B.
$$\frac{9}{2}$$
.

C.
$$\frac{5}{2}$$
.

D.
$$\frac{13}{4}$$
.

Lời giải

Ta có:
$$x(x+1).f'(x) + f(x) = x^2 + x \Leftrightarrow \frac{x}{x+1}f'(x) + \frac{1}{(x+1)^2}f(x) = \frac{x}{x+1} \Leftrightarrow \left[f(x).\frac{x}{x+1}\right]' = \frac{x}{x+1}$$

$$\Rightarrow f(x) \cdot \frac{x}{x+1} = \int \frac{x}{x+1} = x - \ln|x+1| + C.$$

Thay x = 1, ta được $f(1) \cdot \frac{1}{2} = 1 - \ln 2 + C \Leftrightarrow -\ln 2 = 1 - \ln 2 + C \Rightarrow C = -1$.

Do đó $f(x) \cdot \frac{x}{x+1} = x - 1 - \ln|x+1|$, thay x = 2, ta có $f(2) \cdot \frac{2}{3} = 1 - \ln 3 \Leftrightarrow f(2) = \frac{3}{2} - \frac{3}{2} \ln 3$.

$$a^2 + b^2 = 2 \cdot \left(\frac{3}{2}\right)^2 = \frac{9}{2}$$
. Chọn B.

Câu 39: Biết rằng hai số phức z_1, z_2 thỏa mãn $|z_1 - 3 - 4i| = 1$ và $|z_2 - 3 - 4i| = \frac{1}{2}$. Số phức z có phần thực

là a và phần ảo là b thỏa mãn 3a-2b=12 . Giá trị nhỏ nhất của $P=\left|z-z_1\right|+\left|z-2z_2\right|+2$ bằng

A.
$$P_{\min} = \frac{\sqrt{9945}}{11}$$

B.
$$P_{\min} = 5 - 2\sqrt{3}$$
.

A.
$$P_{\min} = \frac{\sqrt{9945}}{11}$$
. **B.** $P_{\min} = 5 - 2\sqrt{3}$. **C.** $P_{\min} = \frac{\sqrt{9945}}{13}$. **D.** $P_{\min} = 5 + 2\sqrt{5}$.

D.
$$P_{\min} = 5 + 2\sqrt{5}$$
.

Trên mặt phẳng tọa độ Oxy, xét điểm I(3;4) biểu diễn số phức 3+4i; điểm J(6;8) biểu diễn số phức 6+8i. M(a;b) biểu diễn số phức z. Điểm A và B lần lượt biểu diễn các số phức $z_1,2z_2$.

Theo đề bài:

$$|z_1-3-4i|=1 \Rightarrow AI=1$$

 $\Rightarrow A$ thuộc (I;1).

$$|z_2 - 3 - 4i| = \frac{1}{2} \iff |2z_2 - 6 - 8i| = 1$$

$$\Leftrightarrow BJ = 1 \Leftrightarrow B \in (J;1)$$
.

Vì 3a-2b=12 nên M thuộc đường thẳng (d):3x-2y=12.

Ta có:
$$P = |z - z_1| + |z - 2z_2| + 2 = MA + MB + 2 = MA + AI + MB + BJ \ge MI + MJ$$
.

Gọi J' đối xứng với J qua d thì MJ' = MJ \Rightarrow MI + MJ = MI + MJ' $\geq IJ$ '. Dấu bằng xảy ra khi và chỉ khi M trùng với giao điểm S của IJ' và đường thẳng d.

Giả sử J'(a;b). Ta có: $\overrightarrow{JJ'} = (a-6;b-8)$

$$\overrightarrow{JJ}' \cdot \overrightarrow{u}_d = 0 \Leftrightarrow (a-6;b-8) \cdot (2;3) = 0 \Leftrightarrow 2(a-6) + 3(b-8) = 0 \Leftrightarrow 2a+3b=36$$
 (1)

Lại có trung điểm của JJ' là điểm có tọa độ $\left(\frac{a+6}{2};\frac{b+8}{2}\right)$ thuộc đường thẳng d nên

$$3\left(\frac{a+6}{2}\right) - 2\left(\frac{b+8}{2}\right) = 12 \Leftrightarrow \frac{3}{2}a + 9 - b - 8 = 12 \Leftrightarrow \frac{3}{2}a - b = 11 (2)$$

Từ (1) và (2) suy ra
$$J'\left(\frac{138}{13}; \frac{64}{13}\right) \Rightarrow IJ' = \frac{\sqrt{9945}}{13}$$
. **Chọn C.**

Câu 40: Cho hình thang cong (H) giới hạn bởi các đường $y = \ln(x+1)$, trục hoành và đường thẳng x = e-1. Tính thể tích khối tròn xoay thu được khi quay hình (H) quanh trục Ox.

A. e-2.

B. 2π .

C. πe .

D. $\pi(e-2)$.

Lời giải

Thể tích khối tròn xoay thu được khi quay (H) quanh trục Ox:

$$V = \pi \int_{0}^{e^{-1}} \left[\ln(x+1) \right]^{2} dx = \pi \int_{1}^{e} (\ln t)^{2} dt = \pi (e-2).$$
 Chọn D.

Câu 41: Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông tại A, AB = a, BC = 2a. Gọi M, N, P lần lượt là trung điểm của AC, CC', A'B và H là hình chiếu của A lên BC. Tính khoảng cách giữa MP và NH.

A. $\frac{a\sqrt{3}}{4}$.

B. $a\sqrt{6}$.

C. $\frac{a\sqrt{3}}{2}$.

D. *a*.

Vì M và P là trung điểm của AC và AB' nên $MP/\!/B$ 'C. Mặt phẳng (BB'C'C) chứa HN và song song với MP nên khoảng cách giữa MP và HN là khoảng cách từ M tới mặt phẳng (BB'C'C).

Vì M là trung điểm của AC nên khoảng cách này bằng $\frac{1}{2}$

khoảng cách từ A xuống (BB'C'C).

Dễ thấy
$$AH \perp (BB'C'C)$$
 và $AH = \frac{AB.AC}{BC} = \frac{a.\sqrt{3}a}{2a} = \frac{\sqrt{3}}{2}a$

$$d_{_{M/(BB'C'C)}} = \frac{1}{2}AH = \frac{1}{2}.\frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{4}a$$

Chọn A.

Câu 42: Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:

A. Tam giác MNE.

B. Tứ giác MNEF với F là điểm bất kỳ trên cạnh BD.

C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF //BC.

D. Hình thang MNEF với F là điểm trên cạnh BD mà EF //BC.

Lời giải

M, N là trung điểm của AB và AC nên MN //BC và

$$MN = \frac{1}{2}BC.$$

Qua E kể đường thẳng song song với BC, cắt BD tại F thì $EF//MN \Rightarrow$ thiết diện là tứ giác MNEF .

Ta có
$$\frac{EF}{BC} = \frac{DE}{DC} = \frac{3}{4} \Rightarrow EF = \frac{3}{4}BC > MN$$
.

Do đó tứ giác MNEF là hình thang, không là hình bình hành.

Chọn D.

Câu 43: Phương trình $|x^3 - 3x| = m^2 + m$ có 6 nghiệm phân biệt khi và chỉ khi

A.
$$m > 0$$
.

B.
$$m < -2$$
 hoặc $m > 1$.

C.
$$-1 < m < 0$$
.

D.
$$-2 < m < -1$$
 hoặc $0 < m < 1$.

Lời giải

Khảo sát và vẽ đồ thị hàm số $y = |x^3 - 3x|$, ta được đồ thị như hình vẽ.

Số nghiệm của phương trình $|x^3 - 3x| = m^2 + m$ là số giao điểm của đồ thị hàm số $y = |x^3 - 3x|$ với đường thẳng $y = m^2 + m$. Để phương trình này có 6 nghiệm phân biệt

Xem Video chữa đề trên YouTube: https://youtu.be/nmL0NpSIxvc

Anh Đức – Hà Đông – Hà Nội

thì
$$0 < m^2 + m < 2 \Leftrightarrow \begin{cases} m(m+1) > 0 \\ (m-1)(m+2) < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \begin{bmatrix} m > 0 \\ m < -1 \end{cases} \Leftrightarrow \begin{bmatrix} -2 < m < -1 \\ 0 < m < 1 \end{cases}$$
. Chọn D.

Câu 44: Một vật đang chuyển động với vận tốc v = 20(m/s) thì thay đổi vận tốc với gia tốc được tính theo thời gian t là $a(t) = -4 + 2t(m/s^2)$. Tính quãng đường vật đi được để từ thời điểm thay đổi gia tốc đến lúc vật đạt vận tốc bé nhất.

A.
$$\frac{104}{3}$$
 m.

D.
$$\frac{104}{6}$$
 m.

Lời giải

$$v = \int (-4 + 2t) dt = -4t + t^2 + C$$
. Tại thời điểm $t = 0$, $v = 20 \Rightarrow C = 20$.

Do đó $v = -4t + t^2 + 20 = (t-2)^2 + 16 \ge 16$. Dấu bằng xảy ra khi và chỉ khi t = 2.

$$s = \int_{0}^{2} (-4t + t^{2} + 20) dt = \frac{104}{3}$$
 m. Chọn A.

Câu 45: Trong không gian với hệ tọa độ vuông góc Oxyz, cho mặt phẳng (P): x+2y+z-4=0 và đường thẳng $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{3}$. Phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d là:

A.
$$\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{-3}$$
.

B.
$$\frac{x-1}{5} = \frac{y+1}{-1} = \frac{z-1}{2}$$
.

$$\mathbf{C} \cdot \frac{x-1}{5} = \frac{y-1}{2} = \frac{z-1}{3}.$$

D.
$$\frac{x+1}{5} = \frac{y+3}{-1} = \frac{z-1}{3}$$
.

Lời giải

 Δ có véc tơ chỉ phương: $\vec{u} = [\vec{n}_{(P)}; \vec{u}_d] = [(1;2;1);(2;1;3)] = (-5;1;3)$

Đường thẳng d giao (P) tại M có tọa độ thỏa mãn hệ: $\begin{cases} \frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{3} \\ x+2y+z-4=0 \end{cases} \Leftrightarrow \begin{cases} x=1 \\ y=1 \Rightarrow M\left(1;1;1\right). \end{cases}$

 Δ qua M và có véc tơ chỉ phương \vec{u} nên phương trình Δ : $\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{-3}$. Chọn A.

Câu 46: Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị của hàm số y = f'(x) như hình vẽ. Số điểm cực trị của hàm số y = f(x) + 2x là:

Lời giải

Xét hàm số g(x) = f(x) + 2x. Ta có g'(x) = f'(x) + 2; $g'(x) = 0 \Leftrightarrow f'(x) = -2$.

Để x_0 là 1 điểm cực trị của hàm số y = g(x) thì $g'(x_0) = 0$ và g'(x) đổi dấu tại x_0 .

Chú ý rằng các nghiệm của phương trình $g'(x) = 0 \Leftrightarrow f'(x) = -2$ là hoành độ giao điểm của đồ thị hàm số y = f'(x) với đường thẳng y = -2. Nhìn vào đồ thị hàm số y = f'(x), ta thấy 2 đường này giao nhau tại 2 điểm có hoành độ là -1 và a (a > 0). Tuy nhiên f'(x) + 2 không đổi dấu tại -1 và f'(x) + 2 đổi dấu tại a nên hàm số y = g(x) = f(x) + 2x có 1 điểm cực trị. **Chọn B.**

Câu 47: Cho hình lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC)bằng 60° , cạnh AB = a. Tính thể tích V của khối lăng trụ ABC.A'B'C'.

A.
$$V = \frac{\sqrt{3}}{4}a^3$$
.

B.
$$V = \frac{3}{4}a^3$$
.

C.
$$V = \frac{3\sqrt{3}}{8}a^3$$
. **D.** $V = \sqrt{3}a^3$.

D.
$$V = \sqrt{3}a^3$$
.

Lời giải

Gọi M là trung điểm của BC. Dễ thấy góc giữa 2 mặt phẳng (ABC) và (A'BC) là góc $\widehat{AMA'}$.

$$\triangle ABC$$
 đều có $AB = a \Rightarrow AM = \frac{\sqrt{3}a}{2}$.

$$AA' = AM \cdot \tan AMA' = AM \cdot \tan 60^\circ = \frac{\sqrt{3}a}{2} \cdot \sqrt{3} = \frac{3a}{2}$$

$$S_{ABC} = \frac{1}{2}AB.AC.\sin 60^{\circ} = \frac{1}{2}a^{2}.\frac{\sqrt{3}}{2} = \frac{\sqrt{3}a^{2}}{4}$$

$$V_{ABC.A'B'C'} = \frac{\sqrt{3}a^2}{4} \cdot \frac{3a}{2} = \frac{3\sqrt{3}a^3}{8}$$
 . Chọn C.

Câu 48: Biết rằng hệ số của x^{n-2} trong khai triển $\left(x - \frac{1}{4}\right)^n$ bằng 31. Tìm n.

A.
$$n = 32$$
.

B.
$$n = 30$$
.

C.
$$n = 31$$
.

D.
$$n = 33$$
.

Lời giải

$$\left(x - \frac{1}{4}\right)^n = \sum_{k=0}^n C_n^k x^{n-k} \left(-1\right)^k \left(\frac{1}{4}\right)^k. \text{ Do đó hệ số của } x^{n-2} \ (k=2) \text{ là: } C_n^2 \left(-1\right)^2 \left(\frac{1}{4}\right)^2 = \frac{C_n^2}{16} = \frac{n(n-1)}{32} = 31$$

$$\Rightarrow n(n-1) = 32.31 \Rightarrow n = 32. \text{ Chọn A.}$$

Câu 49: Cho hình chóp *S.ABC*. Tam giác *ABC* vuông tại *A*, AB = 1cm, $AC = \sqrt{3}cm$. Tam giác *SAB*, *SAC* lần lượt vuông góc tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng $\frac{5\sqrt{5\pi}}{c}cm^3$. Tính khoảng cách từ C tới (SAB).

A.
$$\frac{\sqrt{5}}{2}$$
 cm.

B.
$$\frac{\sqrt{5}}{4}$$
 cm.

C.
$$\frac{\sqrt{3}}{2}$$
 cm.

Gọi I là trung điểm của BC, H là điểm đối xứng với A qua $I \Rightarrow ABHC$ là hình chữ nhật.

Theo đề bài: $AB \perp SB$; $AB \perp HB \Rightarrow AB \perp (SBH) \Rightarrow AB \perp SH$

Lại có: $AC \perp SC; AC \perp CH \Rightarrow AC \perp (SCH) \Rightarrow AC \perp SH$

Do đó $SH \perp (ABC)$.

Gọi O là trung điểm của SA thì $OI \perp (ABC)$ và OA = OS $\Rightarrow O$ là tâm của khối cầu ngoại tiếp hình chóp.

$$V = \frac{4}{3}\pi R^3 = \frac{5\sqrt{5}\pi}{6} \Rightarrow R = \frac{\sqrt{5}}{2} \Rightarrow \frac{SA}{2} = \frac{\sqrt{5}}{2} \Rightarrow SA = \sqrt{5}$$
.

Lại có
$$AH = BC = 2 \Rightarrow SH = \sqrt{SA^2 - AH^2} = \sqrt{5 - 4} = 1$$

$$\text{K\'e } AK \perp SB \ \left(K \in SB\right) \Rightarrow HK \perp \left(SAB\right). \ \text{Vì } CH \ / \ \left(SAB\right) \Rightarrow d_{C/\left(SAB\right)} = d_{H/\left(SAB\right)} = HK$$

Áp dụng hệ thức lượng:
$$\frac{1}{HK^2} = \frac{1}{HS^2} + \frac{1}{HB^2} = \frac{1}{1} + \frac{1}{3} = \frac{4}{3} \Rightarrow HK = \frac{\sqrt{3}}{2}$$
. **Chọn C.**

Câu 50: Cho hình lăng trụ tam giác ABC.A'B'C' có đáy là tam giác ABC vuông tại A, AB = 3,

AC = 4, $AA' = \frac{\sqrt{61}}{2}$. Hình chiếu của B' lên mặt phẳng (ABC) là trung điểm cạnh BC, M là trung điểm

cạnh A'B'. Cosin của góc tạo bởi mp(AMC') và mp(A'BC) bằng

A.
$$\frac{11}{\sqrt{3157}}$$
.

B.
$$\frac{\sqrt{13}}{65}$$
.

C.
$$\frac{33}{\sqrt{3517}}$$
.

D.
$$\frac{33}{\sqrt{3157}}$$
.

0

Lời giải

Gọi O là trung điểm của BC, H là hình chiếu của A lên BC.

Ta có:
$$BC = \sqrt{AB^2 + AC^2} = 5 \Rightarrow OB = \frac{5}{2}$$
.

$$OB' = \sqrt{BB'^2 - OB^2} = 3$$
.

Vì AB < AC nên H nằm giữa O và B.

$$CH = \frac{AC^2}{BC} = \frac{4^2}{5} = \frac{16}{5} \Rightarrow OH = CH - CO = \frac{16}{5} - \frac{5}{2} = \frac{7}{10}.$$

Lại có
$$AH = \frac{AB.AC}{BC} = \frac{3.4}{5} = \frac{12}{5}$$
.

Xét hệ trục tọa độ Oxyz với O là gốc tọa độ; $B\left(-\frac{5}{2};0;0\right)$; $B'\left(0;0;-3\right)$; $A\left(-\frac{7}{10};\frac{12}{5};0\right) \Rightarrow C\left(\frac{5}{2};0;0\right)$

Ta có:
$$\overrightarrow{BB'} = \overrightarrow{AA'} = \left(\frac{5}{2}; 0; -3\right) \Rightarrow A'\left(\frac{9}{5}; \frac{12}{5}; -3\right); \overrightarrow{CC'} = \overrightarrow{BB'} \Rightarrow C'\left(5; 0; -3\right).$$

$$M$$
 là trung điểm của $A'B'$ nên $\Rightarrow M\left(\frac{9}{10}; \frac{6}{5}; -3\right)$.

Mặt phẳng (AMC') có véc tơ pháp tuyến:
$$\overrightarrow{n_1} = \left[\overrightarrow{C'A}; \overrightarrow{C'M'}\right] = (3,6;12,3;-3)$$

Mặt phẳng (A'BC) có véc tơ pháp tuyến:
$$\overrightarrow{n_2} = \left[\overrightarrow{A'B}; \overrightarrow{A'C}\right] = (0; -15; -12)$$

Côsin của góc giữa 2 mặt phẳng này là:
$$\frac{\left|\overrightarrow{n_1}.\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|} \simeq 0,587322$$
. **Chọn D.**

