1

Exemplar - 12.13.3.28

EE22BTECH11039 - Pandrangi Aditya Sriram*

Question: A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X

Solution: Let the random variables be:

RV	Values	Description
X	{0, 1, 2, 3}	The number of twos rolled in three dice rolls
X_1	{0, 1}	The number of twos rolled on first die
X_2	{0, 1}	The number of twos rolled on second die
X_3	{0, 1}	The number of twos rolled on third die

TABLE 0 RANDOM VARIABLES

For a single die roll, since the probability of rolling a two is $\frac{1}{6}$ the probability distribution function of X_i is:

$$p_{X_1}(k) = p_{X_2}(k) = p_{X_3}(k) = \begin{cases} \frac{1}{6} & \text{if } k = 1\\ \frac{5}{6} & \text{if } k = 0 \end{cases}$$
 (1)

Thus,

$$E(X_1) = E(X_2) = E(X_3) = \sum_{k=0}^{1} k p_Y(k)$$
(2)
= $\frac{5}{6}(0) + \frac{1}{6}(1)$ (3)
= $\frac{1}{6}$ (4)

But, as all three dice rolls are independent, and expectation is linear:

$$X = X_1 + X_2 + X_3 \tag{5}$$

$$\therefore E(X) = E(X_1 + X_2 + X_3) \tag{6}$$

$$= E(X_1) + E(X_2) + E(X_3)$$
 (7)

$$=\frac{1}{2}\tag{8}$$