Álgebra lineal I, Grado en Matemáticas

Reserva

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz adjunta
- (b) Dependencia e independencia lineal de vectores
- (c) Matriz de una aplicación lineal
- (d) Espacio vectorial cociente

Ejercicio 1: (2 puntos) Sean E y F dos espacios vectoriales sobre el mismo cuerpo \mathbb{K} , $\mathcal{B} = \{u_1, ..., u_n\}$ una base de E y $v_1, ..., v_n$ vectores de F. Demuestre que existe una única aplicación lineal tal que $f(u_i) = v_i$, para i = 1, ..., n.

Ejercicio 2: (2 puntos)

Para cada número real a se considera el subespacio H_a de \mathbb{K}^3 de ecuación ax-y+z=0. Sea U=(1,1,1). ¿Para qué valores de a se cumple la igualdad $\mathbb{K}^3=L(u)\oplus H_a$? Determine unas ecuaciones implícitas de L(u)

Ejercicio 3: (4 puntos)

Sean $f: \mathbb{R}^4 \to \mathbb{R}^4$ una aplicación lineal y $a \in \mathbb{R}$ un escalar, tales que:

- i) f(0,0,0,1) = (0,0,1,1) y f(0,0,1,0) = (a,1,1,1),
- ii) ker f contiene al subespacio $H = \{(x, y, z, t) \mid t = y + z = 0\}.$

Se pide:

- a) Calcular la dimensión del núcleo de f y una base de la imagen de f.
- b) El rango de la matriziz M de f en la base canónica o estándar, según los valores de a.