

Algoritmos y Estructuras de Datos III

Primer cuatrimestre 2021 (dictado a distancia)

Algoritmos para determinar Caminos Mínimos en Digrafos

Queremos ir desde un punto a otro de una ciudad. Tenemos un mapa de las calles de la ciudad con las distancias entre cada par de intersecciones adyacentes.

- ¿Cómo determinamos el camino más corto entre esos dos puntos?
- Debemos considerar dos escenarios:
 - uno en el que todas las aristas o arcos tengan igual peso,
 - y otro donde no sucede ésto, es más, hasta podría haber aristas con peso negativo.
- Los grafos (pesados o no) son la estrutura natural para modelar redes en las cuales uno quiere ir de un punto a otro de la red atravesando una secuencia de enlaces.
- Sobre estas estructuras se han desarrollado algoritmos eficientes para resolver muchos de estos problemas.

- Podemos modelar el mapa de la ciudad mediante un grafo:
 - los vértices representan las intersecciones de las calles
 - las aristas (o arcos si es orientado) los segmentos de calle entre dos intersecciones adyacentes
 - y la función de peso corresponde a la longitud de este segmento.
- Nuestro objetivo es encontrar un camino mínimo desde el vértice que respresenta la esquina de salida al vértice que representa la de llegada.
- ► El peso de cada arista puede ser interpretado como otras métricas diferentes a la distancia, como el tiempo que lleva recorrerlo, el costo que implica hacerlo o cualquier otra cantidad que se acumule linealmente a lo largo de un camino y que querramos minimizar.

Sea G = (V, X) un grafo y $I : X \to \mathbb{R}$ una función de longitud/peso para las aristas de G.

► La *longitud* de un camino *C* entre dos vértices *v* y *u* es la suma de las longitudes de las aristas del camino:

$$I(C) = \sum_{e \in C} I(e)$$

- Un camino mínimo C^0 entre v y u es un camino entre v y u tal que $I(C^0) = \min\{I(C)|C \text{ es un camino entre } v \text{ y } u\}$.
- Puede haber varios caminos mínimos.

Dado un grafo G, se pueden definir tres variantes de problemas sobre caminos mínimos:

Único origen - único destino: Determinar un camino mínimo entre dos vértices específicos, v y u.

Único origen - múltiples destinos: Determinar un camino mínimo desde un vértice específico v al resto de los vértices de G.

Múltiples orígenes - múltiples destinos: Determinar un camino mínimo entre todo par de vértices de G.

- Todos estos conceptos se pueden adaptar cuando se estudian grafos orientados. En el resto de la clase, vamos a trabajar con este tipo de grafos.
- Propiedad de subestructura óptima de un camino mínimo:

Dado un digrafo G = (V, X) con una función de peso $I: X \to \mathbb{R}$, sea $P: v_1 \dots v_k$ un camino mínimo de v_1 a v_k .

Entonces $\forall 1 \leq i \leq j \leq k$, $P_{v_i v_j}$ es un camino mínimo desde v_i a v_j .

Aristas con peso negativo:

- Si el digrafo G no contiene ciclos de peso negativo (o contiene alguno pero no es alcanzable desde v), el problema sigue estando bien definido, aunque algunos caminos puedan tener longitud negativa.
- Sin embargo, si G tiene algún ciclo con peso negativo alcanzable desde v, el concepto de camino de peso mínimo deja de estar bien definido.
- Circuitos: Siempre existe un camino mínimo que no contiene circuitos (si el problema está bien definido).

Camino mínimo - Único origen-múltiples destinos

Problema: Dados G = (V, X) un digrafo, $I : X \to \mathbb{R}$ una función que asigna a cada arco una longitud y $v \in V$ un vértice del grafo. El objetivo es calcular los caminos mínimos desde v al resto de los vértices.

Distintas situaciones:

- El grafo puede ser orientado o no.
- ► Todos los arcos tienen igual longitud o no.
- ► Todos los arcos tienen longitud no negativa o no.
- Asumiremos que todo vértice es alcanzable desde v.

- ► En el caso de tener todas los arcos igual longitud, este problema se traduce en encontrar los caminos que definen las distancias (caminos con mínima cantidad de arcos).
- Para ésto podemos adaptar fácilmente el algoritmo BFS que vimos la clase pasada para calcular tanto la distancia como el camino mínimo desde v al resto de los vértices.

```
BFS(G,v)
   entrada: G = (V, X) de n vertices, un vertice v
   salida: pred[u] = antecesor de u en un camino minimo desde v
           dist[u] = distancia desde v a u
   pred[v] \leftarrow 0, dist[v] \leftarrow 0, COLA \leftarrow \{v\}
   para todo u \in V \setminus \{v\} hacer
          dist[u] \leftarrow \infty
   fin para
   mientras COLA \neq \emptyset hacer
           w \leftarrow \text{sacarPrimerElem}(COLA)
           para todo u tal que (w \to u) \in X y dist[u] = \infty hacer
                  pred[u] \leftarrow w
                  dist[u] \leftarrow dist[w] + 1
                  insertarAlFinal(COLA, u)
           para
   fin mientras
   retornar pred y dist
```

Dado G = (V, X) un digrafo y $v \in V$:

Lema: Sea $COLA = [v_1, ..., v_r]$. Se cumple que:

- $b dist[v_1] + 1 \ge dist[v_r] y$

Corolario: Si el vértice u ingresa a COLA antes que el vértice w, se cumple que $dist[u] \leq dist[w]$ en todo momento de la ejecución del algoritmo.

Lema: Se cumple que $dist[u] \ge d(v, u)$ para todo $u \in V$ en todo momento del algoritmo.

Teorema: Dado G = (V, X) un digrafo y $v \in V$. El algoritmo BFS enunciado calcula d(v, u) para todo $u \in V$.

Complejidad: La complejidad de este algoritmo es $\mathcal{O}(m)$, donde m es la cantidad de arcos del digrafo, ya que se examina cada arco exactamente una vez. Si es grafo no fuera dirigido, cada arista se examinaría dos veces, siendo también $\mathcal{O}(m)$.

Camino mínimo - Único origen - Grafo pesado Algoritmo de Dijkstra (1959)

- Asume que las longitudes de los arcos son positivas. El grafo puede ser orientado o no orientado.
- Algoritmo goloso.
- Construye un árbol de caminos mínimos: un árbol enraizado en v conteniendo un camino mínimo desde v hacia todo otro vértice de V.
- Comienza con el vértice v y agrega un vértice a este árbol en cada iteración.
- ► En cada iteración agrega el vértice más cercano a *v* de entre todos los que todavía no fueron agregados al árbol.
- Es decir, en la iteración k agrega al árbol de caminos mínimos el k-ésimo vértice más cercano a v.

Camino mínimo - Único origen - Grafo pesado Algoritmo de Dijkstra (1959)

- Mantiene un conjunto S de vértices que ya han sido incorporados al árbol de caminos mínimos y cuya distancia está almacenada en el vector π .
- Inicialmente $S = \{v\}$ y $\pi[v] = 0$.
- Para cada $u \in V \setminus S$, determina el camino mínimo que puede ser construido siguiendo un camino desde v dentro de S hasta a algún $z \in S$ y luego el arco $(z \to u)$:

$$\forall u \in V \setminus S \text{ considera el valor } \pi'[u] = \min_{(z \to u) \in X, z \in S} \pi[z] + \mathit{l}((z \to u)).$$

- Elige el vértice w para el cual este valor es mínimo:
 - ► Agrega w a S
 - Fija $\pi[w] = \pi'[w]$
 - Actualiza π' para los adyacentes de w que no están en S.
- En la implementación no es necesario utilizar dos vectores distintos, π y π' , ya que cada vértice tendrá sólo uno de estos valores activo.

Algoritmo de Dijkstra - Ejemplo

$$S = \{1\}6\}2\}5\}3\}4\}$$
 $\pi = (0, 4, 7, 8, 5,53)$

Algoritmo de Dijkstra (1959)

Longitudes de aristas no negativas, grafo orientado o no orientado.

$$\begin{split} S \leftarrow \{v\}, \ \pi[v] \leftarrow 0 \\ \text{para todo} \ u \in V \ \text{hacer} \\ \text{si} \ (v \rightarrow u) \in X \ \text{entonces} \\ \pi[u] \leftarrow l((v \rightarrow u)) \\ \text{si no} \\ \pi[u] \leftarrow \infty \\ \text{fin si} \\ \text{fin para} \\ \text{mientras} \ S \neq V \ \text{hacer} \\ w \leftarrow \arg\min\{\pi[u], u \in V \setminus S\} \\ S \leftarrow S \cup \{w\} \\ \text{para todo} \ u \in V \setminus S \ \textbf{y} \ (w \rightarrow u) \in X \ \text{hacer} \\ \text{si} \ \pi[u] > \pi[w] + l((w \rightarrow u)) \ \text{entonces} \\ \pi[u] \leftarrow \pi[w] + l((w \rightarrow u)) \\ \text{fin si} \\ \text{fin para} \\ \text{fin mientras} \\ \text{retornar} \ \pi \end{split}$$

Algoritmo de Dijkstra (1959) - Determina camino mínimo

```
S \leftarrow \{v\}, \ \pi[v] \leftarrow 0, \ pred[v] \leftarrow 0
para todo u \in V hacer
         si (v \rightarrow u) \in X entonces
                   \pi[u] \leftarrow I((v \rightarrow u)), pred[u] \leftarrow v
         si no
                   \pi[u] \leftarrow \infty, pred[u] \leftarrow \infty
         fin si
fin para
mientras S \neq V hacer
         w \leftarrow \arg\min\{\pi[u], u \in V \setminus S\}
         S \leftarrow S \cup \{w\}
         para todo u \in V \setminus S y (w \rightarrow u) \in X hacer
                   si \pi[u] > \pi[w] + I((w \to u)) entonces
                             \pi[u] \leftarrow \pi[w] + I((w \rightarrow u))
                             pred[u] \leftarrow w
                   fin si
         fin para
fin mientras
retornar \pi, pred
```

Algoritmo de Dijkstra - Ejemplo (con peso negativo)

$$S = \{1\}6\}$$
 $\pi = (0, 4, 7, \infty, \infty, \infty), 3)$

jYa no actualizará $\pi(6)$!

Algoritmo de Dijkstra

Lema: Dado un grafo orientado G con pesos no negativos en las arcos, al finalizar la iteración k el algoritmo de Dijkstra determina el camino mínimo desde el vértice v a los vértices de S_k (siendo S_k el valor del conjunto S al finalizar la iteración k).

Teorema: Dado un grafo orientado G con pesos no negativos en las aristas, el algoritmo de Dijkstra determina el camino mínimo desde el vértice v al resto de los vértices de G.

Los pasos computacionales críticos de este algoritmo son:

- 1. encontrar el próximo vértice a agregar a S,
- 2. actualizar π .

Cada uno de estos pasos se realiza *n* veces.

- La forma más fácil de implementar (1) es buscar secuencialmente el vértice que minimiza, ésto se hace en $\mathcal{O}(n)$.
- En el paso (2), el vértice elegido tiene, a lo sumo n, adyacentes y para cada uno podemos actualizar π en $\mathcal{O}(1)$.

Considerando ésto, cada iteración es $\mathcal{O}(n)$, resultando $\mathcal{O}(n^2)$ el algoritmo completo.

▶ Podemos ser más cuidadosos en el cálculo de (2), teniendo en cuenta que en total (no por cada iteración) se realiza m veces.

- Con ésto el algoritmo completo es $\mathcal{O}(m+n^2)$ que sigue siendo $\mathcal{O}(n^2)$.
- Ésto sugiere que si queremos mejorar su complejidad, debemos revisar la implementación del paso (1).

- Para mejorar (1), se debe utilizar una estructura de datos que permita encontrar en forma más eficiente el mínimo.
- Por ejemplo, utilizando una cola de prioridades sobre heap con n elementos, crearla es $\mathcal{O}(n)$ y es posible borrar el elemento mínimo e insertar uno nuevo en $\mathcal{O}(\log_n)$.
- Si se mantiene un arreglo auxiliar apuntando a la posición actual de cada vértice en el heap, también es posible modificar el valor de π de un vértice en $\mathcal{O}(\log_n)$.

- Considerando todas las iteraciones, la operación (1) es $\mathcal{O}(nlog_n)$.
- Cada aplicación del paso (2) requiere, a lo sumo, d(u) inserciones o modificaciones por cada vértice elegido u.
- ► Cada una de estas operaciones es $\mathcal{O}(log_n)$, dando en total $\mathcal{O}(d(u)log_n)$.
- Sumando sobre todas las iteraciones, la operación (2) es $\mathcal{O}(mlog_n)$.
- ► El algoritmo completo resulta $\mathcal{O}(n \log_n + m \log_n)$, que es $\mathcal{O}(m \log_n)$.
- Ésto es mejor que $\mathcal{O}(n^2)$ cuando m es $\mathcal{O}(n)$, pero peor si m es $\mathcal{O}(n^2)$.

Camino mínimo - Múltiples orígenes - múltiples destinos Algoritmos matriciales

Sea G = (V, X) un digrafo de n vértices y $I : X \to \mathbb{R}$ una función de peso para las aristas de G. Definimos las siguientes matrices:

▶ $L \in \mathbb{R}^{n \times n}$, donde los elementos l_{ij} de L se definen como:

$$I_{ij} = \begin{cases} 0 & \text{si } i = j \\ I((v_i \to v_j)) & \text{si } (v_i \to v_j) \in X \\ \infty & \text{si } (v_i \to v_j) \notin X \end{cases}$$

▶ $D \in \mathbb{R}^{n \times n}$, donde los elementos d_{ij} de D se definene como:

$$d_{ij} = egin{cases} ext{longitud del camino mínimo orientado de } v_i ext{ a } v_j & ext{si existe alguno} \ ext{si no} & ext{si no} \end{cases}$$

D es llamada matriz de distancias de G.

Camino mínimo - Múltiples orígenes - múltiples destinos Algoritmos matriciales

		1	2	3	4
	1	0	3	3 ∞ 2 0 4	3
L =	2	2	0	2	2
	3	-2	∞	0	1
	4	∞	4	4	0

Camino mínimo - Múltiples orígenes - Alg. de Floyd (1962)

Calcula el camino mínimo entre todo par de vértices de un digrafo pesado.

Utiliza la técnica de programación dinámica y se basa en lo siguiente:

1. Si $D^0 = L$ y calculamos D^1 como

$$d_{ij}^1 = \min(d_{ij}^0, d_{i1}^0 + d_{1j}^0)$$

 d_{ij}^1 es la longitud de un camino mínimo de v_i a v_j con nodo intermedio v_1 o directo.

2. Si calculamos D^k a partir de D^{k-1} como

$$d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$$

 d_{ij}^k es la longitud de un camino mínimo de v_i a v_j cuyos nodos intermedios están en $\{v_1, \ldots, v_k\}$.

3. $D = D^n$

Algoritmo de Floyd (1962) - Ejemplo

Camino mínimo - Múltiples orígenes - Alg. de Floyd (1962)

Asumimos que el grafo es orientado y que no hay circuitos de longitud negativa.

```
Floyd(G)
   entrada: G = (V, X) de n vertices
   salida: D matriz de distancias de G
   D \leftarrow L
   para k desde 1 a n hacer
         para i desde 1 a n hacer
               para i desde 1 a n hacer
                    d[i][j] \leftarrow \min(d[i][j], d[i][k] + d[k][j])
               fin para
         fin para
   fin para
   retornar D
```

Algoritmo de Floyd (1962)

Lema: Al finalizar la iteración k del algoritmo de Floyd, d[i][j] es la longitud de los caminos mínimos desde v_i a v_j cuyos nodos intermedios son elementos de $V_k = \{v_1, \ldots, v_k\}$, si no existe circuito de peso negativo con todos sus vértices en V_k

Teorema: El algoritmo de Floyd determina los caminos mínimos entre todos los pares de nodos de un grafo orientado sin circuitos negativos.

Algoritmo de Floyd (1962)

- ¿Cuál es la complejidad de algoritmo de Floyd?
- ¿Cuánta memoria requiere?
- ¿Cómo podemos hacer si además de las longitudes queremos determinar los caminos mínimos?
- ¿Cómo se puede adaptar para detectar si el grafo tiene circuitos de longitud negativa?

```
Algoritmo de Floyd (1962)
 Floyd(G)
    entrada: G = (V, X) de n vertices
    salida: D matriz de distancias de G
     D \leftarrow L
    para k desde 1 a n hacer
          para i desde 1 a n hacer
                si d[i][k] \neq \infty entonces
                      si d[i][k] + d[k][i] < 0 entonces
                            retornar "Hay circuitos negativos"
                      fin si
                      para j desde 1 a n hacer
                            d[i][i] \leftarrow \min(d[i][i], d[i][k] + d[k][i])
                      fin para
                fin si
          fin para
    fin para
    retornar D
```