

Dropout como Regularização

Aplicação da técnica Dropout em uma Rede Neural Artificial para classificação de números

Aluno:

Guilherme Henrique Rodrigues Borba

- MNIST Modified National Institute of Standards and Technology
- Repositório de imagens manuscritas em tom de cinza;
- 60.000 (Treino) x 10.000 (Teste);
- 28x28 pixels; 0 a 255; uint8;
- Imagem → Rótulo

 As redes neurais têm se mostrado eficazes em reconhecimento de padrões em aplicações como OCR (reconhecimento óptico de caracteres) e automação industrial

OBJETIVO GERAL

Aprendizado: Treinar a rede para identificar corretamente os dígitos manuscritos.

Generalização: Garantir bom desempenho com dados novos (não vistos).

Dropout: Reduzir overfitting desativando aleatoriamente neurônios durante o treino.

MNIST: Base de dados com 70 mil imagens de dígitos (0-9).

METODOLOGIA

	precision	recall	f1-score	support
9	0.97	0.99	0.98	980
1	1.00	0.92	0.96	1135
2	0.90	0.98	0.94	1032
3	0.95	0.97	0.96	1010
4	0.99	0.80	0.88	982
5	0.93	0.98	0.96	892
6	0.95	0.96	0.96	958
7	0.91	0.97	0.94	1028
8	0.95	0.91	0.93	974
9	0.88	0.95	0.91	1009
accuracy			0.94	10000
macro avg	0.94	0.94	0.94	10000
weighted avg	0.94	0.94	0.94	10000

	precision	recall	f1-score	support
9	0.99	0.97	0.98	980
1	0.99	0.87	0.93	1135
2	0.86	0.99	0.92	1032
3	0.87	0.98	0.92	1010
4	0.99	0.88	0.93	982
5	0.96	0.95	0.96	892
6	0.94	0.98	0.96	958
7	0.96	0.92	0.94	1028
8	0.90	0.93	0.91	974
9	0.95	0.93	0.94	1009
accuracy			0.94	10000
macro avg	0.94	0.94	0.94	10000
weighted avg	0.94	0.94	0.94	10000

	precision	recall	f1-score	support
0	0.99	0.96	0.98	980
1	1.00	0.77	0.87	1135
2	0.84	0.98	0.91	1032
3	0.76	0.97	0.85	1010
4	0.99	0.80	0.89	982
5	0.86	0.97	0.91	892
6	0.97	0.94	0.95	958
7	0.90	0.95	0.92	1028
8	0.94	0.86	0.90	974
9	0.94	0.88	0.91	1009
accuracy			0.91	10000
macro avg	0.92	0.91	0.91	10000
weighted avg	0.92	0.91	0.91	10000

	precision	recall	f1-score	support	
ø	0.99	0.96	0.97	980	
1	1.00	0.83	0.91	1135	
2	0.78	0.99	0.87	1032	
3	0.87	0.96	0.91	1010	
4	0.99	0.83	0.90	982	
5	0.80	0.97	0.88	892	
6	0.97	0.90	0.93	958	
7	0.89	0.94	0.92	1028	
8	0.90	0.86	0.88	974	
9	0.96	0.82	0.88	1009	
accuracy			0.91	10000	
macro avg	0.91	0.91	0.91	10000	
weighted avg	0.92	0.91	0.91	10000	

	precision	recall	f1-score	support
9	0.97	0.97	0.97	980
1	1.00	0.14	0.25	1135
2	0.69	0.97	0.81	1032
3	0.53	0.98	0.69	1010
4	0.99	0.68	0.81	982
5	0.85	0.97	0.91	892
6	0.97	0.91	0.94	958
7	0.83	0.92	0.87	1028
8	0.90	0.86	0.88	974
9	0.93	0.83	0.88	1009
accuracy			0.81	10000
macro avg	0.87	0.82	0.80	10000
weighted avg	0.87	0.81	0.79	10000

CONCLUSÃO

- Para o cenário Sem Ruído, o Dropout de 0.1 e 0.2 entregam a melhor acurácia de teste (97.7% e 97.6%);
- Dropouts de 0.3 a 0.5 são mais eficazes em prevenir o overfitting;
- O Dropout de 0.5 sofreu uma queda drástica de 15.3%;
- O Dropout de 0.1 e 0.2 apresentaram a menor perda percentual e as maiores acurácias de teste com ruído (0.942 e 0.939);
- O relatório de classificação do Dropout 0.2 apresenta a melhor acurácia ponderada (weighted avg accuracy \approx 0.94) com maior consistência nas métricas de Precision e Recall entre as classes (menos erros graves);
- Para o 0.2, a Classe 5 ainda é a mais fraca (recall 0.85 e precision 0.93) e a Classe 8 é fraca em recall (0.85), mas o desempenho é superior ao 0.3,0.4 e 0.5;
- Embora o 0.1 tenha a maior acurácia absoluta, o Dropout de 0.2 oferece uma performance quase idêntica, mas com um comportamento de treinamento mais saudável e estável;