Plan

- Introduction
- 2 Images
 - L'image en informatique
 - Bitmap vs vectoriel
 - Les principaux modèles d'images bitmap
 - Formats de stockage
 - Exemples de procédés de compression
 - Primitives graphiques

Plan

- 2 Images
 - L'image en informatique
 - Bitmap vs vectoriel
 - Les principaux modèles d'images bitmap
 - Formats de stockage
 - Exemples de procédés de compression
 - Primitives graphiques

• image bitmap/matricielle/raster

- image bitmap/matricielle/raster
- image vectorielle

- image bitmap/matricielle/raster
- image vectorielle

- image bitmap/matricielle/raster
- image vectorielle

Deux modèles en partie liés aux dispositifs d'entrée-sortie

Image rectangulaire découpée suivant une grille régulière

Image rectangulaire découpée suivant une grille régulière

Elément de la grille : **PICT**ure **EL**ement - **pixel**

Image rectangulaire découpée suivant une grille régulière

Elément de la grille :

PICTure ELement - pixel

Image numérique

tableau de pixels p(i,j)

$$1 \le x \le L$$
 et $1 \le y \le H$

Image rectangulaire découpée suivant une grille régulière

Elément de la grille :

PICTure ELement - pixel

Image numérique

tableau de pixels p(i,j)

$$0 \le x \le L - 1$$
 et $0 \le y \le H - 1$

Image rectangulaire découpée suivant une grille régulière

Elément de la grille :

PICTure ELement - pixel

Image numérique

tableau de pixels p(i,j)

$$0 \le x \le L - 1$$
 et $0 \le y \le H - 1$

pixel
$$p(i,j) \equiv \text{couleur}$$

Image rectangulaire découpée suivant une grille régulière

Elément de la grille :

PICTure ELement - pixel

Image numérique

tableau de pixels p(i,j)

$$0 \le x \le L - 1$$
 et $0 \le y \le H - 1$

pixel $p(i,j) \equiv \text{couleur } (+ \text{ infos supplémentaires})$

Image rectangulaire découpée suivant une grille régulière

Elément de la grille :

PICTure ELement - pixel

Image numérique

tableau de pixels p(i,j)

$$0 \le x \le L - 1$$
 et $0 \le y \le H - 1$

pixel $p(i,j) \equiv \text{couleur } (+ \text{ infos supplémentaires})$

Dimensions de l'image :

L (largeur) \times H (hauteur)

Dispositifs d'acquisition

Dispositifs d'acquisition

Scanner

Dispositifs d'acquisition

Appareil photo numérique

Dispositifs d'acquisition

Capteur CCD / CMOS

Dispositifs d'affichage

Dispositifs d'affichage

Imprimante

Dispositifs d'affichage

Ecran plat (plasma / LCD / LED)

Dispositifs d'affichage

Schéma écran plasma

Dimensions, taille et résolution

Dimensions, taille et résolution

Dimensions:

- largeur L (nombre de colonnes de l'image)
- hauteur H (nombre de lignes de l'image)

Dimensions, taille et résolution

Taille : nombre de pixels = $L \times H$ pixels

→ influe sur la place mémoire pour stocker l'image

(en général, place mémoire proportionnelle à la taille)

Dimensions, taille et résolution

Résolution : caractéristique d'un disposition d'entrée/sortie pour une image

resolution : nb de pixels par unité de longueur

en général exprimé en pixel par pouce ou point par pouce (ppp)

acronyme anglais: dot per inch (**dpi**) n dpi: n pixels $\leftrightarrow 1$ pouce = 2,54 cm

Dimensions, taille et résolution

Exemple 1 : image affichée à différentes résolutions / dimensions

Dimensions, taille et résolution

Exemple 1 : image affichée à différentes résolutions / dimensions

Dimension 100×100 Résolution 1

Dimension 100×100

Résolution 2

Dimension 100×100 Résolution 4

Dimensions, taille et résolution

Exemple 1 : image affichée à différentes résolutions / dimensions

Dimension 100×100 Résolution 1

Dimension 50×50 Résolution 1/2

Dimension 25×25 Résolution 1/4

Dimensions, taille et résolution

Exemple 1 : image affichée à différentes résolutions / dimensions

Dimension 100×100 Résolution 1

 $\begin{array}{c} \text{Dimension } 50 \times 50 \\ \text{R\'esolution } 1 \end{array}$

Dimension 25×25 Résolution 1

Dimensions, taille et résolution

Exemple 2 : déterminer les dimensions (et la taille) d'une image bitmap obtenue en scannant une page A4 avec un scanner à la résolution 300 dpi.

Dimensions, taille et résolution

Exemple 2: déterminer les dimensions (et la taille) d'une image bitmap obtenue en scannant une page A4 avec un scanner à la résolution 300 dpi.

Format A4 \simeq 21 cm \times 29,7 cm \simeq 8,25 pouce \times 11,7 pouce

Dimensions, taille et résolution

Exemple 2 : déterminer les dimensions (et la taille) d'une image bitmap obtenue en scannant une page A4 avec un scanner à la résolution 300 dpi.

Format A4 \simeq 21 cm \times 29,7 cm \simeq 8,25 pouce \times 11,7 pouce

- \rightarrow largeur $L = 300 \times 8, 25 = 2475$
- \rightarrow largeur $H = 300 \times 11, 7 = 3510$
- \rightarrow taille 2475 \times 3510 \simeq 8 700 000 pixels

Dimensions, taille et résolution

Exemple 3 : déterminer la résolution d'un écran de diagonale 24 pouces au format HD

Dimensions, taille et résolution

Exemple 3 : déterminer la résolution d'un écran de diagonale 24 pouces au format HD

Format HD : image de dimensions L=1920 par H=1080

Dimensions, taille et résolution

Exemple 3 : déterminer la résolution d'un écran de diagonale 24 pouces au format HD

Format HD : image de dimensions L=1920 par H=1080

diagonale = $\sqrt{L^2 + H^2} = \sqrt{1920^2 + 1080^2}$ pixels $\simeq 2203$ pixels

Dimensions, taille et résolution

Exemple 3 : déterminer la résolution d'un écran de diagonale 24 pouces au format HD

Format HD : image de dimensions L=1920 par H=1080

diagonale =
$$\sqrt{L^2+H^2}=\sqrt{1920^2+1080^2}$$
 pixels $\simeq 2203$ pixels

 \rightarrow résolution : 2203 pixels pour 24 pouces soit : $\frac{2203}{24} \simeq 92$ dpi.

Description d'une image à l'aide de primitives géométriques de base

Description d'une image à l'aide de primitives géométriques de base

 \rightarrow utilisation de langage de description (par ex. OpenGL)

Description d'une image à l'aide de primitives géométriques de base \rightarrow utilisation de langage de description (par ex. OpenGL)

Exemple: dessin d'un triangle en rouge


```
Code OpenGL correspondant :
```

```
/* triangle rouge de sommets (2,1)-(9,3)-(3,8) */
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_TRIANGLES);
  glVertex2f(2.0,1.0);
  glVertex2f(9.0,3.0);
  glVertex2f(3.0,8.0);
glEnd();
```

Dispositifs d'acquisition

Dispositifs d'acquisition

Tablette graphique

Dispositifs d'affichage

Dispositifs d'affichage

Table traçante

Dispositifs d'affichage

Ecran cathodique - exemple écran radar

Dispositifs d'affichage

Schéma écran cathodique