5

CLAIMS

The invention claimed is:

1	1.	A prim	ne mover for powering an electrical generator, comprising:
2		a)	a base;
3 .		b)	elements;
4		c)	a pick-up balance; and
5		d)	a drive train;
6		wherei	n said elements are rotatably mounted to said base;
7		wherei	n said pick-up balance is rotatably mounted to said base; and
8		wherei	n said drive train is for operatively connecting said prime mover to the electrica
9		genera	tor.
1	2.	The mo	over as defined in claim 1, wherein said base comprises a rear end support;
2		wherei	n said rear end support has a throughbore;
3		wherei	n said base comprises a front end support;

wherein said front end support has a throughbore;

wherein said base comprises a main axle sleeve;

6		wherein said main axle sleeve extends through said throughbore in said rear end
7		support;
8		wherein said main axle sleeve extends through said throughbore in said front end
9		support;
10		wherein said base comprises a main axle;
11		wherein said main axle extends through said main axle sleeve;
12		wherein said base comprises a generator support;
13		wherein said generator support is spaced behind said front end support;
14		wherein said generator support is for supporting the electrical generator;
15		wherein said base comprises a reset motor support; and
16		wherein said reset motor is spaced in front of said front end support.
1	3.	The mover as defined in claim 2, wherein said elements comprise a plurality of element
2		arms;
3		wherein said plurality of arms have first ends;
4		wherein said first ends of said plurality of arms rotatably receive said main axle sleeve;
5		wherein said plurality of arms have second ends;
6		wherein said elements comprise an element clutch;
7		wherein said element clutch operatively connects said plurality of element arms to said
8		main axle sleeve;
9		wherein said elements comprise an element gear;

10		wherein said element gear is attached to said main axle sleeve;
11		wherein said elements comprise a plurality of element weights;
12		wherein said plurality of element weights are connected to said second ends of said
13		plurality of element arms;
14		wherein said elements comprise a primary balance;
15		wherein said elements comprise a counter balance; and
16		wherein amount of electricity produced is proportional to amount of said plurality of
17		weights used in said plurality of element arms and said pick-up balance.
1	4.	The mover as defined in claim 3, wherein said pick-up balance rotatably receives said
2		main sleeve;
3		wherein said pick-up balance has a pivot;
4		wherein said pick-up balance is operatively connected to said plurality of element arms
5		via said pivot;
6		wherein said pick-up balance has a pick-up balance gear; and
7		wherein said pick-up balance gear is operatively connected to said pick-up balance.
1	5.	The mover as defined in claim 2, wherein said drive train comprises a generator arm;
2		wherein said generator arm is disposed in front of said front end support;
3		wherein said generator arm is for connecting to the electrical generator;
4		wherein said drive train comprises a generator arm axle;

5		wherein said generator arm axle is operatively connected to said generator arm;
6		wherein said drive train comprises a following arm;
7		wherein said following arm is operatively connected to said generator arm by said
8		generator arm axle;
9		wherein said following arm forms a crank with said generator arm;
10		wherein said drive train comprises a driving arm;
11		wherein said driving arm is operatively connected to said following arm; and
12		wherein said driving arm receives said main axle sleeve.
1	6.	The mover as defined in claim 2, wherein said drive train comprises a reset motor;
2		wherein said reset motor extends between said front end support and said reset motor
3		support;
4		wherein said reset motor is operatively connected to said main axle; and
5		wherein said reset motor is controlled by a computer to reset said prime mover once
6		electric power has been restored.
1	7	The mover as defined in claim 6, wherein said drive train comprises a pulley system;
2		wherein said pulley system comprises a first pulley;
3		wherein said first pulley is attached to said reset motor;
4		wherein said pulley system comprises a second pulley;
5		wherein said second pulley is attached to said main axle;

6	wherein said pulley system comprises a third pulley;
7	wherein said third pulley is for connecting to the electrical generator;
8	wherein said pulley system comprises a cable; and
9	wherein said cable operatively connects said first pulley, said second pulley, and said
0	third pulley together.