Example Project

YOUR NAME 07/01/2017

A header

Lorem ipsum dolor sit amet, **consectetur adipiscing elit**. Sed molestie elementum massa, vitae scelerisque neque tristique vel. Maecenas quam tellus, placerat ac urna eget, imperdiet condimentum urna (Donoho 2010):

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Two plus two equals 4.

Figure 1: Plotted Random Numbers

A Table of Some Numbers That Are Included with R

This is a table with lots of numbers.¹

Table 1: mtcars Dataset

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4

¹This is a footnote.

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

2012 Olymics Medals Count Table

Table 2: 2012 Medal Count

country	gold	silver	bronze	total
RUS	13	11	9	33
US	9	7	12	28
NOR	11	5	10	26
CAN	10	10	5	25
NED	8	7	9	24
GER	8	6	5	19
AUT	4	8	5	17
FRA	4	4	7	15
SWE	2	7	6	15
SWI	6	3	2	11
CHN	3	4	2	9
KOR	3	3	2	8
CZE	2	4	2	8

country	gold	silver	bronze	total
SLO	2	2	4	8
JPN	1	4	3	8
ITA	0	2	6	8
BLR	5	0	1	6
POL	4	1	1	6
FIN	1	3	1	5
GB	1	1	2	4
LAT	0	2	2	4
AUS	0	2	1	3
UKR	1	0	1	2
SVK	1	0	0	1
CRO	0	1	0	1
KAZ	0	0	1	1

Regression model

Table 3: Parameter Estimates

	$Dependent\ variable:$					
	pres	tige				
	(1)	(2)				
education	5.361***	4.573***				
	(0.332)	(0.672)				
typeprof		6.142				
		(4.259)				
typewc		-5.458**				
		(2.691)				
Constant	-10.732***	-2.698				
	(3.677)	(5.736)				
Observations	102	98				
\mathbb{R}^2	0.723	0.798				
Adjusted R ²	0.720	0.791				
Residual Std. Error	9.103 (df = 100)	7.814 (df = 94)				
F Statistic	$260.751^{***} (df = 1; 100)$					
Note:	*p<0.1; **p<0.05; ***p<0.01					

References

Donoho, David L. 2010. "An Invitation to Reproducible Computational Research." Biostatistics~11~(3):~385-88.