

Preliminary Design Review

University of Illinois at Urbana-Champaign NASA Student Launch 2018-2019

Team Composition

Project Manager: Hamza El-Kebir

Payload Project Manager: Kenneth Tochihara Payload Chief Engineer: Ayberk Yaraneri Structures and Recovery: George Petrov

Avionics: Mois Bourla

Flight Dynamics: Robert Filipiuk

Ancillary and Safety: Zana Essmyer

Presentation Contents

- ➤ Mission overview
- ➤ Launch vehicle design
 - Leading full-scale design
 - Flight simulations
 - Subscale design
- Avionics design
 - Recovery triggering
 - Payload deployment
- ➤ Payload design
 - Payload configuration
 - Payload deployment
 - Payload guidance navigation and control
- > Project plan

Mission Overview

- ➤ Top-level objectives:
 - Apogee of the launch vehicle between 3500 and 5500 ft
 - Retrieve a ground-based ice sample (10 mL)
 - Achieve full reusability of the system
- > Team-derived top-level objectives:
 - Aerially deploy an unmanned aerial vehicle (UAV)
 - Receive real-time range safety officer (RSO) permission
 - Autonomously operate the UAV to retrieve an ice sample
 - Achieve pressurized nose cone separation
 - Demonstrate adapted payload bay/fairing design

Launch Vehicle Summary

George Petrov, Robert Filipiuk

Launch Vehicle Overview

- ➤ The launch vehicle will deliver a payload to 4,450 feet by adhering to requirements of being aerodynamically efficient, stable, safe, velocity, and cost efficient
- ➤ Will be recoverable by abiding to requirements of parachute deployment, kinetic energy, and redundancies

Specifications		
Length	95 inches	
Max Velocity	Mach 0.53 (593 ft/s)	
Weight	25.6 lbs.	
Diameter	4->6 inches	

Flight Profile

Sections

Vehicle Major Dimensions

- ➤ Overall Length: 95″
- ➤ Overall Estimated Mass: 25.6 lbs.
- ➤ Body Tube: 36"
- ➤ Nose Cone Length: 18"
- ➤ Interstage: 6"
- ➤ Booster System Length: 32"
- ➤ Avionics Coupler Length: 10″
- Payload Bay Length: 9"

Launch Vehicle Materials

- ➤ Booster and Body Tube: Blue Tube
 - Lighter weight
 - Cost effective
- Fairing and Nose Cone: Fiberglass
 - Stronger material
 - Will protect the payload under stresses
- > Fins: Fiberglass
 - High strength
 - Team experiences with custom fiberglass fins
- Centering Rings: Fiberglass
 - Added strength, desired over plywood due to large motor
- Bulkheads: Fiberglass
 - Two layers for a total height of ¼"

Static Stability Margin

- Current CP Location: 70.08 in
- Current CG Location: 55.29 in
- > Stability Margin (at liftoff): 2.46 calibers

Motor Selection

➤ Motor: AeroTech K780R-P

Motor Diameter: 75 mm

Maximum Thrust: 965 N

- Total Impulse: 2371 Ns

- Burn time: 3 sec

- Liftoff T/W: 8.5

- Off Rail Speed: 59 ft/s

Motor Subsystem

- ➤ RMS 75/2560 Motor Casing
 - Constructed from high strength aluminum
- ➤ Blue Tube Mount 28"
 - Permanently attached to centering rings
- Fiberglass Centering Rings
 - 3 Centering Rings for Reliability
- > 2.95-in Aero Pack Retainer

Booster Subsystem

- ➤ Houses motor subsystem
- > Fiberglass fins
 - Slotted between centering rings
- ➤ Houses drogue parachute

Body Tube & Coupler Section

Coupler

- U-Bolt parachute connections for strength
- 1/4" Threaded rods to hold payload sleds
- ➤ Holds recovery electronics and ejection charges

Body Tube

- ➤ Material: Blue Tube
- Contains Main Parachute + Shock Cord
- ➤ One Section with Interstage
- ➤ Length: 36′′

Interstage

- > Transition
 - 4 to 6 inches
- Metal Plate Supports
 - Give structural support to aerodynamic load experienced
- ➤ Outer Transition
 - Filled with 3D prints

Body Tube & Interstage Interface

- Design threaded rod system to connect body tube to interstage
 - Structurally Stable
 - Manufacturable
- ➤ Body tube will extend 2 inches into Payload Bay
 - 4 rods off set by 45 degrees each

Nose Cone

- Contains nose cone parachute
- > Fiberglass nosecone
 - Structurally strong
 - Aerodynamic tangent ogive shape
 - Team experience with material
 - 6-inch diameter by 18-inch length

Recovery Hardware

Main Parachute

- Make: Iris Ultra

Diameter: 72"

Material: Ripstop Nylon

- Shape: Toroidal

Drogue Parachute

Make: Fruity Chutes

- Diameter: 18"

Material Ripstop Nylon

Shape: Elliptical

½" Tubular Kevlar shock cord

Flight Simulations

- OpenRocket
- > Two different simulation conditions
 - Spherical Earth Approximation, $\Delta t = 0.05s$
 - WGS84 (World Geodetic System 84), $\Delta t = 0.01s$
- Varied launch parameters
 - Wind: 0-, 5-, 10-, 15-, 20-mph
 - Launch angle: 5, 7.5, 10 degrees
- ➤ Simulated altitude, drift vs. time under both simulation conditions

Simulation Results

- > Static margin stability = 2.4
- Target altitude = 4,450 ft
- Calculated RMS error between two simulation conditions
 - Significant discrepancy in apogee predictions
 - Relatively low RMS for all scenarios Reliable models

Angle (deg)	Wind (mph)	RMS (ft)
5	0	1.830
5	10	2.975
5	20	1.870
7.5	5	0.152635
7.5	15	0.501
10	0	5.401
10	10	4.801

Drift and Altitude Predictions

- ➤ All values calculated in Open Rocket
- ➤ All calculated drift distances meet the competition requirement of 2,500 ft
- ➤ Chose target altitude closer to WGS84 prediction due to greater expected accuracy

Kinetic Energy

- > Terminal Velocities
 - Assumption: all vehicle components land with same terminal velocity
 - Terminal velocity: 24.4 ft/s
- Kinetic Energies

Part	Terminal Kinetic Energy (ft·lbf)
Nose cone	17.8
Fairing	22.8
Upper Body	24.9
Switch Band	15.8
Lower Body	72.9

➤ All terminal kinetic energies are lower than the competition requirement of 75 ft·lbf

Subscale Vehicle

- > ~Half sized scale model of full-scale vehicle
 - Same materials and similar stability margin
 - Similar motor characteristics
- > Test flight data will be used to refine simulated models
- > Parts ordered

Manufacturing Progress

- ➤ Safely Manufacturing Subscale
 - Booster Tube, Body Tube, and Fairing Tube have been cut
 - Threaded Rods design
 - CAD of 3D printed interstage transition
 - AeroTech H999N-P Motor
- ➤ Launch Date : Mid-December

Ejection Charge Testing: Early December

Avionics

Mois Bourla

Avionics - Overview

Our mission:

- Ensure the successful deployment of altimeter triggered black-powder charges
- Manage the sensor suite to gather data about the flight
- Design a communication system to clear the payload for deployment

Avionics - Altimeters

- > Four Redundant Altimeters
 - 2 Stratologger CF altimeters for altitude
 - Will be official competition altimeter
 - 2 TeleMetrum altimeters for altitude and tracking

Avionics - UAV Deployment System

- ➤ Utilizes the Xbee XSC S3B RF module as the systems transceiver
 - 250 mW transmission power
 - According to the manufacturer, it features a 28 mile range with 2.1 dB dipole antennas.
- ➤ Accompanied by the MPL3115A2, a barometric altimeter that seamlessly integrates with the Arduino system

Air Deployed UAV Payload

Ayberk Yaraneri, Kenneth Tochihara, Hamza El-Kebir

Payload Mission Statement

GOAL: Autonomously collect and transport 10 milliliters of sample materials 3 meters (10ft)

FAA Compliance

- Compliance with Small Unmanned Aircraft Rule (Part 107)
- Register aircraft with the FAA
- Pilot Licensing
 - A pilot will be designated and registered in case of manual control takeover
- Regulated operation of the UAV
 - Must be below 122 meters (400 ft) above the ground

Payload Requirements

- Internal requirements
 - UAV must fit within 6" tube in the fairing of the nose cone
 - UAV must be secured during rocket transport
 - UAV must have a redundant set of inertial measurement units (IMUs)
- ➤ Deployment of UAV during descent
 - Must be deployed in 30 seconds due to low altitude
 - Jettison nose cone to allow UAV deployment
 - Lower UAV from payload bay on a tether
 - Cut tether and begin powered flight

Payload Requirements

- Power distribution of UAV
 - Support for two hours of extended operations (E-OPS)
 - Stand-by on launch pad to mission termination
 - Support for 12 minutes of core operations (C-OPS)
 - Payload deployment to mission termination
 - Support for 5 minutes of close-quarter operations (CQ-OPS)
 - Landing, capture, retrieval to mission termination
- ➤ Independent Operations
 - Autonomous under pilot supervision, with the possibility of direct remote control
 - Capable of determining its own inertial position
 - Capable of waypoint navigation
 - Connected wirelessly with a ground control station

Payload Mission Timeline

- Deployment
 - Nose cone jettison
 - Lower payload via winch system
 - Arms deploy and winch is severed

Payload Mission Timeline

- ➤ UAV Independence
 - Critical systems check
 - Fly away maneuver from upper body tube
 - Begin waypoint navigation towards sample site

Payload Mission Timeline

- Retrieval Site Maneuver
 - Begin descent towards sample site
 - Land on top of sample site using computer vision
 - Collect sample and fly away 3 meters to land on ground

Division of Task Groups

- 1. Structures and Deployment
- 2. Flight Controller
- 3. Ice Retrieval and Mobility Agent
- 4. Computer Vision

Structure System Sizing

- Iterative trade-off study based on the methodology of Winslow et al. (2018)
- Engine/propeller database consisting of 11 motors and 5 propellers
- > X4 design powered by:
 - Four SunnySky X2212 V3 980Kv motors
 - Four 10"x4.7" propellers
 - Two 3000 mAh Li-Po batteries (11.1 V)

Structure System Sizing (cont'd)

- ➤ Leading mass estimate is both feasible and < 24.95 kg (55 lbs) (FAA)
- Take off mass budget of 1.45 kg
 - Airframe: 0.6 kg
 - Battery 0.5 kg
 - Motors, rotors, engine speed controllers: 0.35 kg
- ➤ Thrust-to-weight ratio of 2
- ➤ Hover time: 12 minutes

Propulsion System Components

Motor: SunnySky X2212 V3 980Kv

- Reputable brand with large model selection
- ➤ Previous experience with manufacturer
- Cost effective

Propellers: 10x4.7 foldable propellers

Maximum Thrust: 1650 gram-force, 3.64 pounds

Maximum Power: 405.52 watts

Power Consumption @ Hover: 27.565 watts

Propulsion System Components

Batteries: 2x Turnigy Graphene 3000 mAh 3s in Parallel

Voltage: 11.1 V (nominal)

Continuous Current Rating: 45 A

Total Capacity: 6000 mAh

<u>Total Usable Capacity:</u> 0.85 * 6000 = **5100** mAh

Total Usable Power Capacity: 11.1 * 5.1 = **56.61** Wh

ESC: Lumenier 30A BLHeli ESC

Maximum Continuous Load: 30A

Burst Current: 40A / 5 seconds

Structures Subsystem

- > Arm Configuration
 - X4 Configuration
 - Arms fold upwards parallel to the rocket body
 - Parallel four-bar linkage utilized to extend landing legs

Structures Subsystem

- Airframe material selection
 - 10mm x 10mm square aluminum extrusions for arms
 - Cost effective
 - Easy to machine
 - 3D printed components
 - Complex geometries
 - Stiffness can be modulated (locking mechanism)

- 2×2 weaved carbon fiber composite plates
- Will be machined through a 3rd part machining service

Deployment Subsystem

- ➤ Nosecone will be jettisoned with a Tinder Rocketry exhaustless CO2 ejection system.
- ➤ A 16 gram CO2 cartridge will be used.
- ➤ Testing will be done alongside black powder ejection charge testing in preparation for the subscale launch.

Deployment Subsystem

- ➤ Winch System to lower the payload from the upperbody tube
- ➤ Heat-based approach to sever the winch

Deployment Subsystem

- > Spring-loaded deployable arms
- Folds upward in payload bay, deploys automatically upon ejection

Ice Retrieval and Mobility Agent

- Continuous servo rotates threaded rod to actuate two scoops
- > Structural analysis to optimize retrieval agent of the scoops
- Prototyping to be finished for subscale launch

Flight Controller

- ➤ Navio2 flight controller chosen over Pixhawk and APM
- ➤ Built in co-processor to handle real time control
- ➤ Interfaces with Raspberry Pi 3, for guidance and computer vision
- > Supports peripherals such as telemetry, power sensor, and GPS

Guidance, Navigation and Control

- > Sensors: inertial and absolute sensing
 - Inertial measurement units (accelerometer, gyroscope)
 - Time of flight sensors
 - Visual camera with computer vision
 - Global Positioning System
- ➤ Prior knowledge of retrieval locations stored as GPS coordinates
 - Online waypoint guidance and motion planning
- Custom GNC protocols for system check, manual control override
- ➤ Distinction between GNC and control allocation (CA)
 - Custom guidance, navigation and control code (Raspberry Pi)
 - Off-the-shelf control allocation (Navio2)
- ➤ Discrete time control using Linear Quadratic Gaussian (LQG) scheme

GNC (cont'd)

- > On-board decisions and parameters broadcast through telemetry
- Computer-aided control system design (CACSD) through Matlab Simulink
- ➤ Parameter estimation using Computer-aided design (CAD) software
- ➤ Software-in-the-loop (SITL) testing in Gazebo

Computer Vision

- ➤ Will attempt to detect and track sample retrieval sites
- > Two methods will be investigated
 - Algorithmic approach
 - Machine learning approach

Development and Testing Milestones

- **>** 11/22/2019
 - Have carbon fiber plates sent out for machining by a 3rd party service before fall break.
 - Order miscellaneous structural components for airframe.
 - Conduct maiden flight of test-bed UAV
 - Construct a prototype of I.R.M.A.
- **>** 12/02/2019
 - Mount prototype of I.R.M.A. and begin field testing on test-bed UAV
 - Begin construction of competition airframe
- **>** 12/20/2019
 - Maiden flight of competition airframe

Safety Considerations

- Manufacturing of carbon-fiber pieces out-sourced
- Compliance with FAA regulations
- > Thorough testing of UAV deployment and flight
- ➤ Proper precautions with Li-Po battery usage
- Proper security of components on UAV

Project Plan

Hamza El-Kebir

Near-term Milestones

- Preliminary LQR controller design (End Nov. 2019)
- Computer vision field test (Dec. 2019)
- ➤ UAV maiden flight (Dec. 2019)
- ➤ Subscale flight (Dec. 2019)
- > Avionics design (Dec. 2019)
- ➤ Upper stage assembly (Dec. 2019)
- ➤ Black powder charge testing (Dec. 2019)
- > Pressurized ejection system testing (Dec. 2019)
- ➤ Payload deployment assembly testing (Dec. 2019)

Gantt Chart

Educational Outreach

Robert Filipiuk

59

Outreach Events

- ➤ Illinois Space Day (ISD)
- Urbana Free Library Read-Along
- Mahomet Seymour Science Club
- > Arthur Grade School Visit
- ➤ Next Generation Preschool visit

