54-41 -17:90 N91-17568

A Verified Model of Fault-Tolerance

John Rushby

Computer Science Laboratory SRI International

Transient Faults are Common and Important

NASA-LaRC 1988 FCDS Technology Workshop:

- energy (composite materials provide less shielding, densely A number of DFCS are highly susceptible to radiated EM packed VLSI more susceptible to SEU)
- Designers must prove that their design will always recover from any and all non-hard faults reasonably quickly

Goal

- A model of a replicated system with exact-match voting
- A fault model that includes transients
- A theorem that establishes the conditions under which the system provides fault tolerance
- checked verification of the theorem that is consonant with A formal specification of the model and a mechanically the journal-level presentation

Status

- Model based closely on that developed by Butler, Caldwell, and DeVito at LaRC, but simplified and more abstract
- Does not model frames and cycles
- Does not model sensor failure or loss of frame counter
- Model and theorem described in draft journal-level report
- Specification and verification in Ehdm completed (Jim Caldwell provided stimulation and help in the proof)
- Currently reconciling the two
- Next step is to address the (over) simplifications

General Idea

committed-to(c)

x = members of foundation(c)

	 :	
		-
		•
		*
		~
		-
		-
		•

P

```
empty: function[set -> bool] = (LAMBDA a : (FORALL x : NOT a(x)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                      member: function[T, set -> bool] == (LAMBDA x, b : b(x))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (FORALL x : member(x, a) = member(x, b)) IMPLIES (a =
                                                                                                                                                                                                                                                                                                                                                                                             (LAMBDA a, b : (FORALL z : a(z) IMPLIES b(z)))
                                                                                                                                                                                                                                                                      union: function[set, set -> set] ==
   (LAMBDA a, b : (LAMBDA x : a(x) OR b(x)))
                                                                                                                                                                                                                                                                                                                                                                  subset: function[set, set -> bool] =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    emptyset: set == (LAMBDA x : false)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     fullset: set == (LAMBDA x : true)
                                                                                                                    set: TYPE IS function[T -> bool]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 extensionality: AXIOM
sets: MODULE [T: TYPE]
                                                                                                                                                                                x, y, z: VAR T
a, b, c: VAR set
                               EXPORTING ALL
                                                             THEORY
```

Cardinality

m, n, p: VAR nat

```
card(union(a, b)) + card(intersection(a, b)) = card(a) + card(b)
                                                                                                                                                                                                                                                                                                                                                             empty_prop: LEMMA card(a) > 0 IMPLIES (EXISTS x : member(x, a))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AND 2 * card(a) > card(c) AND 2 * card(b) > card(c)
                                                                                                                                                                                                   card_subset: AXIOM subset(a, b) IMPLIES card(a) <= card(b)</pre>
                                                                                                                                                                                                                                                                                 card_empty: AXIOM card(a) = 0 IFF empty(a)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IMPLIES card(intersection(a, b)) > 0
card: function[set -> nat]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   AND subset(b, c)
                                                                                                                                                                                                                                                                                                                                                                                                                                                  card_prop: LEMMA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               subset(a, c)
                                                                            card_ax: AXIOM
```

Sensors etc.

actuators: TYPE FROM C WITH (LAMBDA c : cell_type(c) = actuator_cell) sensors: TYPE FROM C WITH (LAMBDA c : cell_type(c) = sensor_cell) sensor_ax: AXIOM (EXISTS a : Gbar(a, c)) IFF NOT (c IN sensors) cell_types: TYPE = (sensor_cell, actuator_cell, task_cell) AND (c IN voted IMPLIES NOT (c IN sensors)) (LAMBDA c : cell_type(c) /= sensor_cell) (c IN actuators IMPLIES c IN voted) cell_type: function[C -> cell_types] active_tasks: TYPE FROM C WITH Gbar: function[C, C -> bool] voted: TYPE FROM C voted_ax: AXIOM a, c: VAR C TYPE ::

Simple Machine

 $step(\sigma,c,n) = \sigma$ with [c:= if $c \in C_-S$ then sensor(c)(n) else $task(c)(\sigma)]$

$$run(0) = (\lambda c: \bot)$$

$$run(n+1) = step(run(n), sched(n+1), n+1).$$

IF c IN sensors THEN sensor(c)(m) ELSE task(c)(s) END IF]) step: function[state, C, M -> state] = (LAMBDA s, c, m : s WITH [c :=

identity: function[M -> nat] == (LAMBDA m : m)

IF m = 0 THEN undef ELSE step(run(m - 1), sched(m), m) END IF) (LAMBDA m : BY identity

11

run: RECURSIVE function[M -> state]

TCC's

(* Subtype TCC generated for the first argument to task in dependency *)

dependency_TCC1: FORMULA

(c IN active_tasks AND (FORALL a : Gbar(a, c) IMPLIES s(a) = t(a))) IMPLIES (cell_type(c) /= sensor_cell)

(* Subtype TCC generated for the first argument to sensor in step *)

step_TCC1: FORMULA (c IN sensors) IMPLIES (cell_type(c) = sensor_cell)

(* Subtype TCC generated for the first argument to task in step *)

step_TCC2: FORMULA

(NOT (c IN sensors)) IMPLIES (cell_type(c) /= sensor_cell)

(* Subtype TCC generated for the first argument to run in run *)

run_TCC1: FORMULA (m >= 0) IMPLIES (NOT (m = 0)) IMPLIES (m - 1 >= 0)

(* Termination TCC generated for run *)

run_TCC2: FORMULA

(m >= 0) IMPLIES (NOT (m = 0)) IMPLIES identity(m) > identity(m - 1)

2

Replicated Machine

$$\neg \mathcal{F}(i)(n) \supset sstep(\rho, c, n)(i) = step(\rho(i), c, n),$$

$$\neg \mathcal{F}(i)(n) \supset vote(\rho,c,n)(i) = \text{ if } c \in C_V \text{ then } \rho(i) \text{ with } [c := maj\{\rho(j)(c) | j \in R\}]$$
 else $\rho(i)$

$$rstep(\rho, c, n) = vote(sstep(\rho, c, n), c, n).$$

```
NOT (F(i)(m)) IMPLIES sstep(rs, c, m)(i) = step(rs(i), c, m)
                                                                                                                                                                AND (FORALL i : member(i, A) IMPLIES rs(i)(c) = x))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (LAMBDA rs, c, m : vote(sstep(rs, c, m), c, m))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ELSE rstep(rrun(m - 1), sched(m), m) END IF)
                                                                                                                                                                                                                                                                                                                                                               THEN rs WITH [(i)(c) := maj(rs, c)]
                                                                                                                                                                                                                                                                                                                                                                                                                                                     rstep: function[rstate, C, M -> rstate] ==
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       rrun: RECURSIVE function[M -> rstate] =
                                                                                                                                        2 * card(A) > card(fullset[R])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        THEN (LAMBDA i : undef)
                                                                                                                                                                                              IMPLIES maj(rs, c) = x
                                                                                                                                                                                                                                                                                                             IMPLIES vote(rs, c, m)
                                                                                                                                                                                                                                                                                                                                                                                               ELSE rs END IF
                                                                                                                                                                                                                                                                                                                                        = IF c IN voted
                                                                                                                                                                                                                                                                                NOT (F(i)(m))
sstep_ax: AXIOM
                                                                                                                                                                                                                                                     vote_ax: AXIOM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (LAMBDA m :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF m = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   BY identity
                                                                                                               (EXISTS A :
                                                                                maj_ax: AXIOM
```

Replicated Machine

Foundation etc.

$$foundation(c) = \begin{cases} \{c\} \\ \{c\} \cup \bigcup_{(a,c) \in \overline{G}} foundation(a) \text{ otherwise} \end{cases}$$

$$support(c) = \begin{cases} \{c\} \cup \bigcup_{(a,c) \in \overline{G}} foundation(a) & \text{if } c \in C_V \\ (a,c) \in \overline{G} \\ foundation(c) & \text{otherwise.} \end{cases}$$

$$committed-to(c) = min\{when(a)|a \in support(c)\}.$$

Foundation etc.

```
committed_to: function[C -> M] == (LAMBDA c : min(critical_times(c)))
                                                                                                                                                                                                                                                                                                                                                                                           (EXISTS b : Gbar(b, c) AND member(a, foundation(b))))
                                                                                                                                                                                          Gbar(b, c) AND member(a, foundation(b)))))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (LAMBDA c : (LAMBDA t : member(sched(t), support(c))))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            OR (c IN voted AND member(a, backup(c))))
                                                                                                                                OR (NOT (c IN voted OR c IN sensors)
foundation: RECURSIVE function[C -> set[C]]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           critical_times: function[C -> set[M]] ==
                                                                                                                                                                                                                                                                                                                                                                                                                                                             support: function[C -> set[C]] =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              member(a, foundation(c))
                                                                                                                                                                                                                                                                                            backup: function[C -> set[C]] =
                                                                                                                                                                AND (EXISTS b:
                                                                                                                                                                                                                                                                                                                                                              (LAMBDA a :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (LAMBDA a :
                                                                    (LAMBDA a :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (LAMBDA c:
                                   (LAMBDA c:
                                                                                                                                                                                                                                                                                                                                (LAMBDA c :
                                                                                                                                                                                                                                   BY dowhen
```

OK and MOK

```
OK(i)(c) = (\forall n : committed-to(c) \le n \le when(c) \supset \neg \mathcal{F}(i)(n)).
```

$$MOK(c) = \exists \Theta \subseteq R, |\Theta| > r/2, i \in \Theta \supset OK(i)(c).$$

```
working: function[C -> set[R]] == (LAMBDA c : (LAMBDA i : OK(i)(c)))
                                                                                                                  committed_to(c) <= m AND m <= dowhen(c)
                                                                                                                                                IMPLIES NOT F(i)(m)))
OK: function[R -> set[C]]
                                                                                       (FORALL m :
                                                        (LAMBDA c :
                             (LAMBDA i :
```

(LAMBDA c : 2 * card(working(c)) > card(fullset[R])) MOK: function[C -> bool] =

Theorem

-

$$\forall a : when(a) \leq when(c) \supset MOK(a),$$

then

$$\forall j: OK(j)(c) \supset rrunto(c)(j)(c) = runto(c)(c).$$

```
(LAMBDA c : MOK(c) AND (FORALL a : Gbar(a, c) IMPLIES safe(a)))
safe: RECURSIVE function[C -> bool] =
                                                                                                                                     correct: function[C -> bool] =
                                                                      BY dowhen
```

(FORALL j : OK(j)(c) IMPLIES rrunto(c)(j)(c) = runto(c)(c))(LAMBDA c :

the_result: THEOREM safe(c) IMPLIES correct(c)

Noetherian Induction

```
mod_proof: PROVE mod_induction d1 <- d1@p1, d3 <- d1@p1, d4 <- d2
                                                                                                                                                                                                                                                                                            (FORALL d1 : (FORALL d2 : d2 < d1 IMPLIES p(d2)) IMPLIES p(d1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FROM general_induction p <- (LAMBDA d : A(d) IMPLIES B(d))
noetherian: MODULE [dom: TYPE, <: function[dom, dom -> bool]]
                                                                                                                                               (EXISTS measure : a < b IMPLIES measure(a) < measure(b))
                                                                                                                                                                                                                                                                                                                                                                                                                                            (FORALL d2 : d2 < d1 IMPLIES (A(d1) AND B(d2)))
                                                                                                                                                                                                                                                                                                                                                                                            (FORALL d3, d4 : d4 < d3 IMPLIES A(d3) IMPLIES A(d4))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IMPLIES (FORALL d : A(d) IMPLIES B(d))
                                                                                                                                                                                                   p, A, B: VAR function[dom -> bool]
                                                         measure: VAR function[dom -> nat]
                                                                                                                                                                                                                                                                                                                              IMPLIES (FORALL d : p(d))
                                                                                                                                                                                                                                  d, d1, d2, d3, d4: VAR dom
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IMPLIES B(d1))
                                                                                                                                                                                                                                                                                  general_induction: AXIOM
                                                                                                                                                                                                                                                                                                                                                                                                                                  AND (FORALL d1:
                                                                                                                                                                                                                                                                                                                                                                                 mod_induction: THEOREM
                                                                                                                                       well_founded: FORMULA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               END noetherian
                                                                                          a, b: VAR dom
                                              ASSUMING
```

The Proof

USING correctness, voted_step, nonvoted_step, sensor_step, correctness_proof: MODULE noetherian[C, Gbar] a, c: VAR C PROOF

discharge_well_founded: PROVE well_founded measure <- dowhen FROM Gbar_when c <- b

(FORALL a : Gbar(a, c) IMPLIES safe(c) AND correct(a)) IMPLIES correct(c) inductive_step: LEMMA

sensor_inductive_step, voted_inductive_step, nonvoted_inductive_step, almost_final_proof: PROVE inductive_step a <- a@p7 FROM induction_body a <- a@p1, induction_body a <- a@p2, induction_body a <- a@p3, induction_body</pre>

mod_induction A <- safe, B <- correct, d <- c, d2 <- a@p3, final_proof: PROVE the_result FROM safe a <- d4@p1, c <- d3@p1, inductive_step c <- d1@p1

END correctness_proof

Summary

- Formal specification and verification revealed typos in the original report
- Exposed omission in original proof
- Led to stronger theorem and more elegant proof (using Noetherian rather than ordinary induction)
- Confirmed that Ehdm has the capability to specify interesting and useful properties in a direct, natural, and readable manner
- Proofs were hard (three intensive man-weeks, 92 lemmas); I haven't yet gone back to see why that was so
- We have the beginnings of a formally verified model for a fault tolerant operating system