Comprehensive Error Handling and Recovery Strategy

Introduction

Purpose

This document outlines the sophisticated error handling and recovery mechanisms designed for the real-time stock data streaming system, ensuring robust, resilient, and reliable performance.

Error Classification Taxonomy

1. Connection Errors

- Websocket Disconnection
 - Unexpected connection termination
 - Network instability
 - External API unavailability
- Authentication Failures
 - Invalid API credentials
 - Token expiration
 - Security-related disconnections

2. Parsing Errors

- Message Structure Violations
 - Malformed JSON
 - Unexpected data formats
 - Missing critical fields
- Data Type Mismatches

- Incorrect data type conversion
- Precision loss
- Unexpected data representations

3. Processing Errors

• Threading Complications

- Deadlock prevention
- Race condition mitigation
- Resource contention handling

• Queue Management Issues

- Message backlog management
- Overflow prevention
- Prioritization strategies

4. Resource Constraint Errors

Memory Exhaustion

- Prevent out-of-memory scenarios
- Intelligent memory management
- Dynamic resource allocation

CPU Overutilization

- Thread pool throttling
- Computational load balancing
- Graceful performance degradation

5. External API Errors

• Rate Limiting

- Handle API quota restrictions
- Implement intelligent backoff
- Manage request frequency

Data Inconsistency

- Validate external data sources
- Implement data integrity checks
- Provide fallback mechanisms

Error Response Strategies

1. Automatic Reconnection

• Exponential Backoff Algorithm

- o Incremental wait times between reconnection attempts
- Prevent overwhelming the system
- Adaptive retry mechanism

• Connection Retry Limits

- Maximum reconnection attempts
- Fallback to alternative data sources
- Comprehensive logging

2. Message Retry Mechanism

Transient Error Handling

- Identify retriable errors
- Implement smart retry logic
- Preserve message integrity

Message Queue Management

- Temporary message storage
- Intelligent reprocessing
- Prevent data loss

3. Fallback Data Processing

Degraded Mode Operation

- Maintain partial system functionality
- Alternative data sources
- Reduced processing capabilities

Cached Data Utilization

- Use previously processed data
- Minimize service interruption
- Provide continuous insights

4. Resource Reallocation

• Dynamic Thread Pool Adjustment

- Adaptive thread management
- Resource optimization
- Performance maintenance

Computational Load Balancing

- Distribute processing load
- Prevent single point of failure
- Maintain system responsiveness

5. Graceful Degradation

• Selective Ticker Processing

- Prioritize critical stock tickers
- Suspend non-essential processing
- Maintain core system functionality

Partial Data Delivery

- Provide available data
- Clear error communication
- Transparent system state

Recovery Mechanisms

1. Websocket Reconnection

- Intelligent connection restoration
- Minimal service interruption
- Comprehensive connection state management

2. Thread Pool Reset

- Safe thread termination
- Resource cleanup
- Predictable system recovery

3. Cache Recovery

- Persistent data storage
- State restoration capabilities
- Minimize data loss

4. State Restoration

- Capture system state before failure
- Intelligent rollback mechanisms
- Comprehensive context preservation

5. Logging and Alerting

- Detailed error documentation
- Real-time notification systems
- Forensic analysis support

Monitoring and Reporting

Error Rate Tracking

- Comprehensive error metrics
- Historical performance analysis
- Trend identification

System Health Dashboard

- Real-time system status
- Detailed error visualizations
- Actionable insights

Performance Impact Analysis

- Quantify error-related overhead
- Optimization recommendations
- Continuous improvement tracking

Root Cause Investigation

- Detailed error context
- Systematic problem identification
- Preventative strategy development

Continuous Improvement Feedback

- Error pattern recognition
- Machine learning-enhanced prediction
- Proactive system enhancement

Conclusion

The error handling and recovery strategy provides:

- Robust system resilience
- Minimal service disruption
- Intelligent error management
- Continuous system improvement

Key Principles

- Anticipate potential failures
- Provide intelligent responses
- Maintain system integrity
- Ensure data reliability

Author: Shriniwas Kulkarni

PCCOE 2026 BTech CSE(AIML)

• Email: kshriniwas180205@gmail.com

• Phone: +91 [8999883480]

• **GitHub:** github.com/Shriniwas18K