EE102 - Practice Midterm Exam

Rules:

- You have 1 hour and 40 minutes.
- Only this exam booklet and One Sheet of notes may be on your desk.
- NOT allowed: lecture notes, homeworks, calculators,...
- Answer each question in the space provided. EXPLAIN your reasoning. Simply writing down the answer is not adequate.

Problem 1 [15 pts]

For the function

$$f(t) = 2(t+1)[u(t+1) - u(t)] + (2t - t^2)u(t)u(2-t) + u(t-3).$$

Sketch f(t) and $\frac{df}{dt}$, and give an analytic formula for the latter in its simplest form.

Problem 2 [15 pts]

Given a linear, time-invariant system with impulse response function

$$h(t) = u(t)e^{-t},$$

find the response to $x(t) = u(-t)e^t$.

Problem 3 [20 pts]

Consider the cascade interconnection of the figure, where S_1 and S_3 are LTI, causal systems, and S_2 is defined by the relationship

$$w(t) = e^t y(t).$$

- (a) Is S_2 LTI, causal?
- (b) We are told that
 - The impulse response of S_3 is $h_3(t) = \delta(t) u(t)$.
 - Applying the input $x(t) = e^{-t}u(t)$, the overall output is z(t) = tu(t).

Find the impulse response $h_1(t)$ of the first system.

Problem 4 [25 pts]

Consider the system described by the input-output relationship y(t) = |x(t)|.

- a) Is the system (i) linear? (ii) time invariant? (iii) causal?
- b) We apply the input $x(t) = u(t)\sin(t)$; sketch y(t) and also the difference $z(t) = y(t) y(t \pi)$.
- c) Find the Laplace transform Y(s) for the output y(t) in part b), and its DOC. Hint: It may help to work with z(t), and express it in terms of x(t) and $x(t-\pi)$.

Problem 5 [25 pts]

Consider the differential equation defined for $t \geq 0$,

$$\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} + y(t) = te^{-t}, \quad y(0) = \alpha, \quad \frac{dy(t)}{dt}(0) = \beta.$$

- (a) Find the Laplace transform Y(s) as a function of α , β .
- (b) Compute the initial and final values $\lim_{t\to 0+} y(t)$, $\lim_{t\to +\infty} y(t)$. Do they depend on α , β ?
- (c) Now take $\alpha = 0$, $\beta = 1$. Find the solution y(t) for $t \ge 0$.