ر مدفعه ۱۲ (مدفعه ۲۲) ول و سیراه های مالی مالی با بایس مالی فلی رفت هست له در تعزیه ی ال ما ترسی منزای رو به نسرب دوما ترسی مالا مثلث با یا سی مثلث تعزیه می شود (نعاریف) (ما ترسی بالامتلاز (U) = ما ترسی مادرات الحان های زیر قبله لعبلی صفر ما بشه (نعاریف) (ما ترسی بایس متلاز () = مرسر سرسر مالای سرسر مالای سرسر مالای سرسر مالای سرسر مالای سرسر میساند () ﴾ حال أمر بغواهيم دستًساه ط= Ax المراسم با عاب المراسم المراسم با عاب المراسم الله عالم المراسم المر $L_{L}(UX) = 6 \left\{ L = 6 \right\}$ (نَسَهُ عَ) براس تعین ما رَسِ هار تعبر یه ی LV ازما ترسی هار مقرمات ایستفا دلام سیم ا نها ته سی کا ته سیل کا ترسی سهاری میکا تی به دست آمده یفعایی درانگورسیم هذفی گاوس است (Ep ... E,) A = U ىيەشنارھاس دېرفىلى درھائيىن ئۇنئىپ سىراسىر دىيىن دىسنى D A=(Ep ... E) U= LU PL=(Ep...E,) = E, E, ...E (سوال ۱۳۳۰) دستاه سه هادله سه معمول زیر را حل سیر Y21 + 21 + 121 -1 $f\chi I + \chi Y + \nu \chi Y = 0$ $-9\chi I M - 1 \chi Y - 1 \chi \chi Y = -Y$ $-9\chi I M - 1 \chi Y - 1 \chi \chi Y = -Y$ -9 - 1 - 1 Y $R^{\mu} + \mu R I$ 0 - 1 - 1 Iالنون از في كيات هار سهلي مَومات به الفاحرة ربيع ما ترس هاى مقدمات را تعيين مر شع $E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $LY = B \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_T \\ y_T \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \longrightarrow \begin{bmatrix} y_1 & 0 \\ y_T & 0 \\ y_T & 0 \end{bmatrix} \begin{bmatrix} y_1 & 0 \\ y_T & 0 \\ y_T & 0 \end{bmatrix}$ $(X = Y \Rightarrow (Y \mid W) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (y \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (y \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ xr \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix} x \mid \\ x \mid \\ xw \end{pmatrix} = (x \mid XW = -1) \begin{pmatrix}$

You raise

شرکت سی ای دِی CIDCO.

ممدان،ملرستان،شماره ۲۸۰ طبقه سوم

تلفن وفكس ١٤٠٠ ٣٠١٤٠

التخرية المان المرسك سريجيم مرتونع ارو مشغب سقم

D ما ترس ل با س مثلث هست (الهارهاي قبلر اصلي آن كي هسد

الهان هار ز میر قبله اصلی کازروی معزمین مهرای معاسه مارسی اسفاده می شع کاتعین

ر توضیعاً ت فرمن کنید ما زرمیس A را دار معم (لینسازها دبرزل رسولسیمی دستی

 $A_{y} = \begin{bmatrix} y \cdot y & -1 & 0 & -y \\ 0 & y & 1 & y & -y \\ 0 & 0 & 0 & y \end{bmatrix} \tilde{v} \begin{bmatrix} y & y & -1 & 0 & -y \\ 0 & y & 1 & y & -y \\ 0 & 0 & 0 & y \end{bmatrix}$

(رَبَقُ = وَمِا ابِن مِلُورِمُ مُوسِمِ لَهُ بِرِلَى عَدْفُ ١٩١ حر A ، ١٦١٢٦ (والعَامِدُ إِنْ العِ وصرب اعى برابرم است س الدراي به در ما برابر مالد ما شد

الله على متناملر ١١١ م الم التقسيم سرااه يا مي سم و عاى بها به المه مرا ما مي نوارد

تبریات ما ترسی اگر (۲-۲/۴۷) = (۲۷,۷,۷) و استه با شع ورودی در فیفای اگر نفر می مرفود است. است و رودی در فیفای اگر اليّا خروب حرصناي م تعريف من سَوْد (جون ١ بردار بايه داريع) ع $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x \\ y - z \end{bmatrix}$

 $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = r\left(x \\ y \right) = \begin{bmatrix} r \\ r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ ۲> ۱ ۾ سَريل نساطي 1/X | = |Y| (|X| ١١٧١ ، ٥ تبريل انقاضى درواقع ٢ رودر بردا روري ضرب اسالرميسم

١٥٢ عاصله نقطه ازموا مغتمات بيترس تله

شرکت سی ای دی C I D CO.

همدان،هلرستان،شماره • ۴۸ طبقه سوی تلمن ومكس ١٤٠٠س

﴿ مَرِينا مَ عَامَر سِي رُون وَلِي مَوْل ما هُمْ تَرَسِبُ مُرد. Galin Cot Nielsance

T, (X)=A,X, T, (X)=A,X, T=T,OT,

 $L_{r}(x) = T_{r}(T_{r}(x)) = T_{r}(A_{r}x) = A_{r}A_{r}x$

(بیشنیارهای فیرنملی

سرال الملك سر ما سرك المرا العناس منسب به محور برى سيب حرف شكا دوا الم انساط با فا نتور ٢ را انعام دهر. ها ٧٠ نَاسَتُ المهر لا بايد ول ر تنزبل ول لا تغییری می نظر به فقط الا قرنیام یکود (می ا

 $T_1 = T_1\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ y \end{bmatrix}$

 $= \left(\left(\begin{array}{cc} p & p \\ p & p \end{array} \right) \left(\begin{array}{c} \chi \\ 5 \end{array} \right)$ $T_{\mu} = T_{\mu} \left(\begin{bmatrix} \chi \\ 5 \end{bmatrix} \right) =$

 $= \sqrt{r}.\left(\begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}\right) \sqrt{r} \left(\begin{bmatrix} -1$

تعریل کمها هری کتبریلی ۴ مائرس متاناریای به متعام ریاشد

 $T(y) = Ay \Rightarrow A^{-1} = AT$ بهاترس هایی که هموس شون برابرماترانها ده شور باشه ما ترس هار متعامد می توسم

سیار مسم سریا ی متمامر؟ نرم و زاور و فاصله سب ها له رئیسر بی دهند (شو اتبال را تغییر بی انگر بردارهای ۱ و ۷ رود رنهار بگیره که ناویه ی بین شون به باشر (۲۰٫۹) ه ع می ایم کارور کار

(نبريل انسال) ما به مايي فيل و تابت تهام نقاط در دا منه تبريل T(4) = 4+V آنبریل Affine ترسب س تبریل ما ترسی و تبریل انتقال Affine (سریل) آ (سربیات فرکی سریل که حافظ جع وضرب اسارباشه ، کے سریر هل هست T(u+v) = T(u) + T(v) () ()T(ca) = CT(a) () /نته ها معم المرتبريل الريسي كي تبريل بولي إست (سُوال ۱۳۶۶) خل بودن تبریل زبیر را بررسی بنیر T(X,Y) = (X-Y, YX)(x, +x, - y, -x, +xx) $u_{\gamma} = (\chi_{\gamma}, \chi_{\gamma}) \longrightarrow T(u_{\gamma}) = (\chi_{\gamma} - \chi_{\gamma}) \xrightarrow{r} \chi_{r}$ * 4,+4,=(x,+x,,x,+x) -> T(4,+4) = (x,+x,-x,-y,-y, , "x, +"x,) (C4) = (CX, , CY,) -> T(C4) = (C(X, -Y,), rcx,) () تبریل، فلی است. (د (x, -Y,), ۲(x) ع) جند است. ا کافی ست بر مخل بورن مقط هین اتبات آن کافی ست بر مخل بورن مقط هین اتبات آن کافی ست بر مخل بورن مقط هین اتبات آن کاف (سوال۳۷) فیلی بودن تبریل زیررا بررست سیر T(x, y, z) = (xy, z)ول: برار التاب فلي بيودن فقط اراقه ي سك مثال نقن كافي است --> T(1,7, r) = (7, r) $C=Y \longrightarrow T(Y,Y,g) = (\Lambda, 1) \neq YT(4) \longrightarrow$ $T(\alpha x + bx + c) = (a+b)x + c$ (سور الراع) فيلى بودن تعريل زيرا برسك نير $T: P_{\bullet}(x) \to P(x)$

شرکت سی ای دی تاريخ، C I D CO. همدان،هلرستان ،شماره ۲۸۰ طبقه سوم $u_{i} = a_{i} \mathcal{X}^{r} + b_{i} \mathcal{X}_{i} + c_{i} \longrightarrow T(u_{i}) = (a_{i} + b_{i}) \mathcal{X}_{i} + c_{i}$ تلفن وفكس ١٤٠،٣ /1. 100 mg 1 / 1/2 $u_r = \alpha_r x^r + b_r x + c_r \longrightarrow T(u_r) = (a_r + b_r)x + c_r$ L> 4 = 4, + x 4 = (a, + da,)x" + (b1+xbr)x+ c1+xcr $L_{\uparrow}T(u) = (a, +b_1 + \alpha(a_{r} + b_r))\chi_{i+c_1} + \alpha c_r$ $= (a+b_1)X + C_1 + \mathcal{L}\left((a_r + b_r)X + C_r\right)$ $= T(u_1) + \mathcal{L}\left((u_r)\right)$ - (4,+ x 4,) = T(4,) + x T(4r) _ = [m] Jo (سنوال ۱۹۹ اطلاعات زرید از کت تبویل فعلی درد سترس است. (۳۹-۱) کر احساب نیر $T(1, \cdot, \cdot, \cdot) = (Y_9 - 1)$ $\{ T(0, \cdot, \cdot, \cdot) = (Y_7 - 1) \}$ $\{ T(0, \cdot, \cdot, \cdot) = (Y_7 - 1) \}$ الله و نسریل فلی است بنا براین برای معاسد (۱٫-۲٫۳) کا فی است که بردار (روراره) را به صورت نه سب خلی از (۰٫۰۱) ر (۰٫۱٫۰) را به صورت نه سب خلی از (۰٫۰۱) ر (۰٫۱٫۰) بنوسم T(1,-r,r)=T(1(1,.,.)-Y(0,1,0)+V(-,.,1))[(,,,) - YT(,,,) + "T(,,)) $= (P, -1) - P(P, 1) + P(P, 0) = (\Lambda, -P)$ (,) + (,) + (,) + (,) + (,) = (,) + (,) الله و المارة ال $\begin{aligned}
& (e_1) = (e_1), & (e_n) = (e_n), & (e_n), & (e_n) = (e_n), & (e_n), & (e_n) = (e_n), & (e_n),$

(M sies) سُوال الله الما في نما يس ما ترسي تبريل زيررا قيس سير $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} -y \\ -x \end{bmatrix}$ (b) e=[!], e(i) (>T(e) = (-1), T(er) = (-1) -> A = (T(e)) T(e) = [-1] $T(\begin{bmatrix} \times \\ \times \end{bmatrix}) = A(\begin{bmatrix} \times \\ \times \end{bmatrix})$ $T(X_0Y) = (Y_0X_1 + Y_1, Y_2, X_1)$ ایش ها ترسیس تبدیل زیررا تعین نیز $T((x)) = \begin{pmatrix} x + y \\ y \end{pmatrix}, e_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, e_r \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $T(e_1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $A = \begin{bmatrix} T(e_1) & T(e_1) \end{bmatrix} = \begin{bmatrix} Y & 1 \\ 0 & Y \\ 1 & -1 \end{bmatrix} \longrightarrow T(\begin{bmatrix} X \\ Y \end{bmatrix}) = A(X)$ (كرك تبريل فيلى ، مجوع الى ست كه ألا شت آن توسل تبريل فيلى) بردار صفراست (سُرُد نبریل فیلی ؛ مجوعه ای ۵ تام فروجی های مهند تبریل فیلی درآن قرار می میوند ، بُرد تبریل فیلی و بیر ر تسك اكر تو بل رواز عنا س برداري ١٠ به ٧ مقريف كنفيم ؟ مرئل كي بَريل فلك كيد زيره جوع ١٠ اي از ۹ هست کره ۱ = ۱ ۱ برفرار الله عنی تو عاملی و دخل این فهاهست در که باصفر (نسته: اَنْرَمَا مِنْقَامِلَ که در ۱۷ وجود دارد وارد سَرِ کِ سَمِ، مَا يَامِ مُروجِي هاي همَن به رست بيا د ك عهام كو مهام أبردار لا بوش داري شا) و به وس بغشى كه بوشش دادة مى شام برد (((المعرفة على المعرفة Kerned . Ronga

(نَبَهُ : اتنات مِنْهُ که ؟ مرزل کید کیدیل فیلی کی ریرفنای برداری است به کیدربرفنای بردازی است به کیدربرفنای بردازی ا ۱۳۱۱ ۱۳۵۰ ۱۳۱۰ میران کید کید کید ریرفنای برداری است به کیدربرفنای برداری از که اتنات می میتادیم که بردیک تبریل فیلی کید زیرفنای برداری است به کیدربرفنای برداری از که شماره

تاريخ،

شرکت سی ای دی CID CO.

همدان،هلرستان،شماره ۲۸۰ طبقه سوم تلفن وفكس ١٤٠٠س

Vank (T) + nullity (T) = dim domain (T) (pero, lun rise)

به نجر بررسر فیلی ؟ رنگ تبریل فیلی عیکوسیم هی در برابرهست با بعر دامنه ی آ به بعد کر از تبر بر فیلی ؛ (۱۱۱۱۴ مربر فیلی عیکوسیم هی در برابرهست با بعر دامنه ی ۲

لے مثل کر الربرابرا الا ما سه بعری صست سِ مجوع رنگ و نا لستی بالربرابرا الا ما سه

قَوْسَهُ ٧٠٠ كُرُول مَرْسًا تَ فِيلَى : جواب هاى هُنُون دستَسَاه سافتالسَّوه بالما ترسِ مهادل آن است قهنباسی مرد تسلیا تفلی؛ فهای اسبن شره توسله ستون های ها ترس هادل آن است

مِنَالَ فَ صَرَصَ بَنُ تَبِرِمِلِ آخِلَى بَاشُو و آن را به شَكَلها ترسِي نُوسَتُه العِيم (۱) = Ay = (۱) = Ay

الادا ی خوانعے فینا یہ رو بیرا تنفی که باصفر آما ست بیرا می نام کا ایسا می است بیرا می نام ہے است نام ہے

و ٥ = ١٨ كالمعرَبَو صنيا - عبلى ؟ مي دسياه هين رو شون مي د ١ (ارور عاى درون) درون المروسية المروسية

(مثالی طرمن کن ما کرس ۱۹/۹ به تشوره به رو بنوسی [] (a۱ ۵۲ ... ۵۲ [] = (۱ ۵۲ ... ۵۲ م ۱۳) م syntal م ستون هار سل م باشر و یک بردار (۱۸) هستنو کے چون تبریل از ۲۳ باسم هست به در فینای ۲۳ قرار مریوه

 $T(q) = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = u_1 a_1 + u_1 a_1 + \cdots + u_n a_n = S \operatorname{Fan}(a_1, \dots, a_n)$

 $T(x,y,z)=(\chi+ty+rz)$ $\chi+\chi+rz$

 $T(u) = \begin{bmatrix} 1 & y & y \\ 0 & -1 & 1 \end{bmatrix} u$

البراتبريل وبمشل مائرسي مرفوسيم ل

 $AU = 0 \longrightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R^{\mu} - R^{1}} \begin{bmatrix} 1 & \mu & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R^{1} - 1} \begin{bmatrix} 1 & \mu & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R^{1} - 1} \begin{bmatrix} 1 & \mu & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R^{1} - 1} \begin{bmatrix} 1 & \mu & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R^{1} - 1} \xrightarrow{R^{1} - 1} \begin{bmatrix} 1 & \mu & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R^{1} - 1} \xrightarrow{R^{1} - 1} \begin{bmatrix} 1 & \mu & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R^{1} - 1} \xrightarrow{R^{1}$

 $- > A = \circ - > \begin{pmatrix} 1 & \circ & \circ \\ & 1 & -1 \end{pmatrix} \begin{pmatrix} \chi \\ \chi \\ z \end{pmatrix} = \circ - > \begin{pmatrix} \chi + \circ Z = \circ \\ & \chi = - \circ Z \end{pmatrix}$ $= \left(\frac{-\alpha z}{z} \right) = z \left(\frac{-\alpha}{1} \right)$ $= \left(\frac{z}{z} \right) = z \left(\frac{-\alpha}{1} \right)$ $= \left(\frac{z}{z} \right) = z \left(\frac{-\alpha}{1} \right)$ وجون مي منفير آزادد اربع الله ١١١١ دراين ترسب قعل برابربا مي است Range = Span([:],[r]), [m]) = $x[:] + \beta[r] + x[m]$ الرخواهيم تعرايت فنارو ٩٠ سـ بيار مع الربرد/ رهارا اله ٢٥ و ٣٠ نشان برهيم مستوره ما برسیداه و ۱۹ ست حربور این ما برسیداد او ۱۹ ست حربور این ما بر در این ما بر در این ما بر در این ما برسید فیلی نوارد | Range(T) = SIPan([:], (:)) -> jungimen july > july | = 0.7 اے جون تعداد برد رهای باید میں برابربا اهست کے بعر بڑر سَربل (RANK) برابرا ا هست $RANK + nullity = \frac{1}{2}$ Y + 1 = PQ(تيريل خيل ك سه كي و چكوس بزير) تبریل کی به یک ، براس هربرداردر بر د تبریل فقط یه بردار مناظر دردامنه تا بع وجوددارد T(u) = T(v) T(u) = T(v) X

ر قرین می کید تیریل لفلی کیدی کو است آبر کرنل آی فقط شامل بردار صفر ما شو (فنهیه های کید به کیداست آبر ما ترمین آن که ها دل سلوی ما ترمین های ما شو

تاريخ،

شرکت سی ای دی

همدان،هلرستان،شماره ۲۸۰ طبقه سوم تلفن وفكس ١٤٠٠ ٣٠١٤٠

(نبته) نَمَا سَتِ سِرد/ رهار مستقل فيلى كَ مَوسِل تَسِرِيلات فيلى مَدِيه مَبَ كَ فود ؟ مسقل خيلي هسسز لي آير ۱ ما مستقل في باش ي (۱ مرسال تا (۱ مرسال مستقل فيلي مستقل فيلي مستقل فيلي مستقل فيلي مستقل فيلي مستقل

رتبر بل معوس ع از روی بردارهای داخل برد تیریل، بردارهای متنافلا درداها آن را عین می ند

T(S(u)) = S(T(u)) = 9 ToS(u) = SoT(u) = 9

(نبته منفع عَشر له مازم و ما مني سراس و جود محوس، کب به سب بودت سريل خل است

(ساع) عبارات رو بهرو هادل هم صسر D T معنوس بزیر هست P غیرمنفرد هست ۴۰ ا

عان A المست ما مرس عادل معان A المست

(سته) می دانیم به سی آوردن آی برای بورست آوردن آی جایی به و که را عوش می شعم

سؤال کا میک به مید بودن تبریل فیلی را سرسکرد ۷ و سیمی هموس آن را به دست آورید $T(\chi, \chi) = (\mu\chi + t\chi_0 = \chi_+ \chi_\gamma)$

 $D = \begin{bmatrix} P & + & 1 & 0 \\ 0 & V & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & F & F \\ 0 & 1 & -6 \end{bmatrix} = \begin{bmatrix} 1 & F & F \\ 0 & 1 & -6 \end{bmatrix} = \begin{bmatrix} 1 & F & F \\ 0 & 1 & -6 \end{bmatrix}$

$$\rightarrow T^{-1}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = A^{-1}\left(x \\ y \right) = \begin{bmatrix} ux - fy \\ yy - \omega x \end{bmatrix}$$

		(Diece)	
	يَسًا و دود دارد	ائرىس مرىجى كىپ دنىر مىنان	opel in lies (: i lies pr.
۔ ایانی	1: 1: 1:	La ware lumbs	() 18m (last) w/
	1 . 1 . 1	V 06102 100 11 15	- 4
(M=99-	و تعلیل د بیشاه هارات کیلی که در میشاه هارات کیلی که در میشان می میشان ما ترسی های کیلی میشان می ترسی های کیلی	ان ما ترسِ ۳ ۲ ۲ از م	لنته:) برای ماسه ی درتر میا
ۇ ن ۇر.	ست آمره بعراز عزف سیلرا ام وست	مینا <i>ن ایگراز بیر</i> مانئرس، به د	cofact.rl min.r
, P 0 3	ست آمره بعراز عرف سیلرا ام و سته		$C:j=(-1)^{i+j}$
		$A = \begin{cases} A = A \\ A = A = \\ A = A = A \\ A = A = A$	مُلِينًا فرضُ مِن اللهِ مِنْ اللهِ
	$M_{11} = \begin{pmatrix} -1 & \gamma \\ -1 & \gamma \\ -\gamma & 1 \end{pmatrix} = -1$	- (-+) = m	
	11 - 1	,	
	$C_{11} = (-1)^{1+1} \times m = m$		
(A	1 = 1A1 - a C + a	C + 9 C	رہول کئی درمینان کے سیدسمارا ول
	$\int_{x_{xy}} A = a_{11} c_{11} + a_{11}$		کے سیمدسملرا ول
LA	$\left A \right = \frac{\alpha}{n} \left C_{11} + \alpha_{12} \right $	G(r+111+9)n Cin =	E a c i
À	. (, , , ,]	یں زیر را حساب نسر	منو المان حرته ميلان ما تربي
	A = \[\begin{aligned} 1 & \tau & -1 \\ \tau & \tau & \tau \\ \tau & \tau & \tau \end{aligned} \]	Wr 1 -1 + 0 1 -	+ arm Crr
			==9
)A =	با ستون دلفواه ما ساکرد (سلرس) زن دزن (سلرس) سلرنم	بَوْن براساس هرسلر ۱۸ = که هی ده که ا	هر ساسی در _{سا} ن راهد (سام
the state of the s			
	، هیسازه ، قریبه ی مطار است. ۵ هیسازه برابر با تعاد است	ره سملروستون غرد باینه ک	ته سیار ده وی اگر ده دوع شار
	۵ ههساره بیرانبر بالله درست - ا	11 195 11	
)	(+ - + - · · · · · · · · · · · · · · · ·		

شرکت سی ای دی .(۱۱ CO

همدان،هلرستان،شماره ۲۸۰ طبقه سوم تلفن وفکس ۳۰۱۴۰

تاريخ،ت

.....ıməti

$$|A| = |x| | |x|$$

$$= \begin{array}{c|c} & \times & | & \Gamma & | & F \\ \hline & \circ & -1 & | & \hline \\ & \circ & 1 & -m \end{array} \xrightarrow{\text{univ}} \begin{array}{c} & \text{univ} \\ \hline & & | & | & | & | & | & | & | \\ \hline & & & | & | & | & | & | & | & | \\ \hline & & & & | & | & | & | & | & | & | \\ \hline & & & & | & | & | & | & | & | & | \\ \hline & & & & | & | & | & | & | & | & | \\ \hline & & & & | & | & | & | & | & | \\ \hline & & & & | & | & | & | & | & | \\ \hline & & & & | & | & | & | & | & | \\ \hline & & & & | & | & | & | & | \\ \hline & & & | & | & | & | & | & | \\ \hline & & & | & | & | & | & | \\ \hline & & & | & | & | & | & | \\ \hline & & | & | & | & | & | \\ \hline & & | & | & | & | & | \\ \hline & & | & | & | & | & | \\ \hline & & | & | & | & | & | \\ \hline & & | & | & | & | \\ \hline & & | & | & | & | \\ \hline & | & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & | & | & | & | \\ \hline & |$$

درَ مِنان -روش ساروس ، مجوع منرب قبارهای اصلی منصلی محبوع منرب قبارهای فرعی

$$A = \begin{cases} a & b & e \\ 3 & h \end{cases} = (aei + bfg + cde) - (bdi + afh + ceg)$$

$$= | Y \circ - | G = (| O G)$$