Dielectrics

- Dielectric materials are insulators.
- Insulating materials are used to resist the flow of current through it when a difference of potential is applied across its ends.
- > Dielectric materials are used to store electrical energy.
- Dielectric materials are characterized by dielectric constant, dielectric loss, dielectric strength and high resistivity.
- > Eg. Ferroelectric materials exhibit very high dielectric constant and low dielectric loss.
- ➤ Dielectric materials have resisitivity range from 10¹⁰ to 10²⁰ ohm-m

DIELECTRIC CONSTANT

$$\varepsilon_r = \frac{C}{C_0}$$

where C_0 is the capacitance with air as the medium between the plates and C is the capacitance with dielectric as medium.

 $\boldsymbol{\varepsilon}_{r}$ is called dielectric constant or relative permittivity. It is a dimensionless quantity, which is always greater than unity in case of dielectrics, and it is independent of the size or shape of the dielectric.

 \triangleright ε_r describes the ability of the dielectric material to store electric charges.

$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$$

Where permitivity of the medium (ε) to the permitivity of free space (ε_0)

Electric Field Intensity or Electric Field Strength

Consider a point charge dq in the region of an electric field. Let F be the force acting on the point charge dq. The force per unit test charge dq is known as electric field strength (E), given by

$$E = \frac{F}{dq} = \frac{Q}{4\pi\varepsilon r^2}$$

From Coulomb's law, when two point charges Q_1 and Q_2 are separated by a distance r, the force of attraction or repulsion between the two charges is

$$F = \frac{Q_1 Q_2}{4\pi \varepsilon r^2} \hat{n}$$

where ε is the permittivity or dielectric constant of the medium in which the charge is placed. For vacuum, $\varepsilon = \varepsilon_0 = 8.854 \times 10^{-12} \text{ F m}^{-1}$

Electric Flux Density or Electric Displacement Vector

The electric flux density or electric displacement vector D is the number of flux lines crossing a surface normal to the lines, divided by the surface area.

The electric flux density at a distance r from the point charge Q can be written as,

$$D = \frac{Q}{4\pi r^2}$$

where, $4\pi r^2$ is the surface area of a sphere of radius r.

We know that

$$E = Q/4\pi \epsilon r^2$$

So,

$$D = \varepsilon E = \varepsilon_0 E + P$$

where P is the polarisation and it has the same unit as D, i.e., coulomb per square metre (Cm⁻²).

Here D, E and P are three filed vectors

Dielectric Parameters

- a. Dielectric constant (ε_r)
- b. Electric dipole moment (μ)
- c. Polarisation (P)
- d. Polarisability (α).

Electric Dipole Moment

The arrangement of two equal and opposite charges + Q and - Q, separated by a distance r is known as **electric dipole**.

The product of magnitude of the charge and the distance of separation is known as electric dipole moment (μ).

$$\mu$$
 = charge x distance = Qr

The total dipole moment of a system constituting of point charges Q_1 , Q_2 , Q_3 , .., Q_n and the distances of separation r_1 , r_2 ,.., r_n is

$$\mu_{\text{total}} = \sum_{i=1}^{n} Q_i r_i$$

Polarisation

polarisation: the induced dipole moment per unit volume.

$$P = \mu / volume$$

Polarisability

$$P \propto E$$

$$P = \alpha E$$

where α is a proportionality constant known as **polarisability**. The unit of α is F m².

➤ If the solid material contains N number of particles per unit volume, then the polarisation can be

$$P = N \alpha E$$

where α = α_e + α_i + α_0 . Here α_e , α_i and α_0 are the electronic, ionic and orientation polarisability