Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Zero order empirical entropy seems insufficient when context matters

Bigram frequency per 40,000 words

th	1.52	en	0.55	ng	0.18
he	1.28	ed	0.53	of	0.16
in	0.94	to	0.52	al	0.09
er	0.94	it	0.50	de	0.09
an	0.82	ou	0.50	se	0.08
re	0.68	ea	0.47	le	0.08
nd	0.63	hi	0.46	sa	0.06
at	0.59	is	0.46	si	0.05
on	0.57	or	0.43	ar	0.04
nt	0.56	ti	0.34	ve	0.04
ha	0.56	as	0.33	ra	0.04
es	0.56	te	0.27	ld	0.02
st	0.55	et	0.19	ur	0.02

Can compress better if we consider *context*

Let C change depending on surrounding symbols

$$egin{aligned} exttt{gtatcggagcgctctgcgttatcgatcgcgatctggt} \ C_{ exttt{tcg}}(exttt{a}) & C_{ exttt{tcg}}(exttt{a}) & C_{ exttt{tcg}}(exttt{a}) & C_{ exttt{tcg}}(exttt{a}) & C_{ exttt{tcg}}(exttt{a}) \end{aligned}$$

For k symbols of context, we have codes $C_i \in \{C_{\Sigma^k}\}$

Could consider context to the right →

$$C_{
m tcg}({
m a})$$
 $C_{
m gcg}({
m a})$ $C_{
m tcg}({
m a})$ $C_{
m tcg}({
m a})$ $C_{
m tct}({
m a})$

Or context to the left ←

gtgtatcggagcgctctgcgttatcgatcgcgatctggt

$$C_{\mathrm{tct}}(\mathrm{a})$$
 $C_{\mathrm{cgg}}(\mathrm{a})$ $C_{\mathrm{gtt}}(\mathrm{a})$ $C_{\mathrm{tcg}}(\mathrm{a})$ $C_{\mathrm{gcg}}(\mathrm{a})$

How should we build each code $\{C_{\Sigma^k}\}$?

Same as before, but with frequencies conditioned on context

E.g. $C_{\rm gca}$ is built considering the number of times each symbol occurs just after gca

abracadabraabracadabra

Let S_a be the substring we get by concatenating characters just after the a's

$$S_a = bcdbabcdb$$

Build code C_a using frequencies in S_a :

$$\{a:1, b:4, c:2, d:2, r:0\}$$

$${a:1, b:4, c:2, d:2, r:0}$$

 ${a:1, b:4, c:2, d:2, r:0}$

 ${a:1, b:4, c:2, d:2, r:0}$

$$\{a:1, b:4, c:2, d:2, r:0\}$$

abracadabraabracadabra

$$S_{
m a}={
m bcdbabcdb}$$
 $\{{
m a:1,\ b:4,\ c:2,\ d:2}\}$ $C_{
m a}({
m a})={
m 000}$ $C_{
m a}({
m d})={
m 001}$ $C_{
m a}({
m c})={
m 01}$ $C_{
m a}({
m b})={
m 1}$

abracadabraabracadabra

mississippimississippi

$$S_{\rm i} = {\rm sspmssp}$$
 $\{{\rm s}:4,\ {\rm p}:2,\ {\rm m}:1\}$ $C_{\rm i}({\rm p})={\rm 00}$ $C_{\rm i}({\rm m})={\rm 01}$ $C_{\rm i}({\rm s})=1$

$$S_{
m m}={
m ii} \quad \{{
m i}:2\}$$
 (no code) $S_{
m p}={
m pipi} \qquad C_{
m p}({
m p})=0$ $\{{
m p}:2,\,{
m i}:2\} \qquad C_{
m p}({
m i})=1$ $S_{
m s}={
m sisisisi}$ $\{{
m s}:4,\,{
m i}:4\} \qquad C_{
m s}({
m s})=0$ $C_{
m s}({
m i})=1$

mississippimississippi

Def'n of *high-order empirical entropy* H_k is similarly hierarchical

Codes achieving near- H_0 given context

 H_k of a length-n string S is a weighted sum over all contexts of the zero order empirical entropy of symbols having that context

$$H_k(S) = \sum_{t \in \Sigma^k} \frac{|S_t|}{n} \cdot H_0(S_t) \quad \text{for } k > 0$$

S is the entire string, S_t is the concatenation of symbols having context t

$$C_{\rm a}({\rm d}) = 001$$

$$C_{\rm a}(c) = 01$$

$$C_{\rm a}(b) = 1$$

Schemes like this can compress to $\leq n(H_k(S) + 1)$ bits

With added overhead of switching between many codes

Collection	H0	H1	H2
CODE SOURCES	5.537 (69.21%)	4.038 (50.48%)	3.012 (37.65%)
MIDI	5.633 (70.41%)	4.734~(59.18%)	4.139~(51.74%)
PROTEINS	4.195~(52.44%)	4.173~(52.16%)	4.146~(51.82%)
DNA	$1.982\ (24.78\%)$	1.935~(24.19%)	1.925~(24.06%)
ENGLISH	4.529~(56.61%)	3.606~(45.08%)	$2.922\ (36.53\%)$
XML	5.230 (65.37%)	3.294 (41.17%)	2.007~(25.09%)

Empirical entropies for 6 texts. Values are bits-per-symbol, percentages are ratios compared to ASCII.

Table from: Prezza, Nicola. Compressed Computation for Text Indexing. Diss. PhD thesis, University of Udine, 2016.

 ${\cal H}_k$ encoding reaches into the string, extracting "structure" needed to compress well

k balances compression with overhead Grouping principle at play

 H_0 -based methods are simpler, faster, require less memory, but can't find as much structure as H_k

...or...can they? Order to the rescue