29-07-2022- shift-1

EE24BTECH11010 - Balaji B

a) 600

c) 540

b) 660

d) 720

2) z = 2 + 3i, then $z^5 + (\bar{z})^5$ is equal to:

(July-2022)

1

a) 244

c) 245

b) 224

- d) 265
- 3) Let A and B be two 3×3 non-zero real matrices such that AB is a zero matrix. Then (July-2022)
 - a) the system of linear equation AX = 0 has a unique solution
 - b) the system of linear equation AX = 0 has infinitely many solutions
 - c) B is an invertible matrix
 - d) adj(A) is an invertible matrix

4) If
$$\frac{1}{(20-a)(40-a)} + \frac{1}{(40-a)(60-a)} + \dots + \frac{1}{(180-a)(200-a)} = \frac{1}{256}$$
, then the maximum value of a is: (July-2022)

a) 198

c) 212

b) 202

- d) 218
- 5) If $\lim_{x\to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{r \sin^2 x} = \frac{2}{3}$, where $\alpha, \beta, \gamma \in \mathbb{R}$, then which of the following is NOT correct? (July-2022)
 - a) $\alpha^2 + \beta^2 + \gamma^2 = 6$

c) $\alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2 + 3 = 0$ d) $\alpha^2 - \beta^2 + \gamma^2 = 4$

b) $\alpha\beta + \beta\gamma + \gamma\alpha + 1 = 0$

- 6) The integral $\int_0^{\frac{\pi}{2}} \frac{1}{3+2\sin x+\cos x} dx$ is equal to:

(July-2022)

- a) $tan^{-1}(2)$
- b) $\tan^{-1}(2) \frac{\pi}{4}$ c) $\frac{1}{2} \tan^{-1}(2) \frac{\pi}{8}$ d) $\frac{1}{2}$
- 7) Let the solution curve y = y(x) of the differential equation $\left(1 + e^{2x}\right)\left(\frac{dy}{dx} + y\right) = 1$ pass through the point $\left(0, \frac{\pi}{2}\right)$. Then, $\lim_{x \to \infty} e^x y(x)$ is equal to:

d) $\frac{3\pi}{2}$

d) $\sqrt{\frac{2}{5}}$

c) 2: d) V	$\sqrt{\frac{2}{14}}$
10) Let $\mathbf{a} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}}$ and $\mathbf{b} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$. Let \mathbf{c} be a vector satisfying $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b} + \lambda \mathbf{c}$. If \mathbf{b} and \mathbf{c} are non-parallel, then the value of λ is: (July-2022)	
c) 1 d) -	
11) The angle of elevation of the top of a tower from a point A due north of it is α and from a point B at a distance of 9 units due west of A is $\cos^{-1}\left(\frac{3}{\sqrt{13}}\right)$. If the distance of the point B from the tower is 15 units, then $\cot \alpha$ is equal to : (July-2022)	
$\frac{9}{5}$ c) $\frac{4}{3}$	d) $\frac{7}{3}$
12) The statement $(p \land q) \implies (p \land r)$ is equivalent to:	
	$(p \wedge r) \Longrightarrow (p \wedge q)$ $(p \wedge q) \Longrightarrow r$
13) Let the circumcentre of a triangle with vertices $A(a,3)$, $B(b,5)$ and $C(a,b)$, $ab > 0$ be $P(1,1)$. If the line AP intersects the line BC at the point $Q(k_1,k_2)$, then $k_1 + k_2$ is equal to: (July-2022)	
c) $\frac{2}{7}$ d) 4	
14) Let \hat{a} and \hat{b} be two unit vectors such that the angle between them is $\frac{\pi}{4}$. If θ is the angle between the vectors $(\hat{a}+\hat{b})$ and $(\hat{a}+2\hat{b}+2(\hat{a}\times\hat{b}))$, then the value of $164\cos^2\theta$ is equal to : (July-2022)	
	if $+2\hat{j}+\hat{k}$. Let c be a vol., then the value of λ is constant. In the top of a tower france of 9 units due we tower is 15 units, then $\frac{9}{5}$ c) $\frac{4}{3}$ $\Longrightarrow (p \land r)$ is equivalent $p \land r$ is equivalent $p \land r$ intersects the line $p \land r$ intersects the line $p \land r$ intersects that the unit vectors such that the

b) $\frac{3\pi}{4}$

b) $\sqrt{\frac{3}{5}}$

a line with direction ratios 3, -1, -4, is equal to:

c) $\frac{\pi}{2}$

8) Let a line L pass through the point of intersection of the lines bx + 10y - 8 = 0 and $2x - 3y = 0, b \in \mathbb{R} - \left\{\frac{4}{3}\right\}$. If the line L also passes through the point (1,1) and touches the circle $17\left(x^2 + y^2\right) = 16$, then the eccentricity of the ellipse $\frac{x^2}{5} + \frac{y^2}{b^2} = 1$ is : (July-2022)

c) $\frac{1}{\sqrt{5}}$

9) If the foot of perpendicular from the point A(-1,4,3) on the plane P: 2x+my+nz=4 is $\left(-2,\frac{7}{2},\frac{3}{2}\right)$, then the distance of the point A from the plane P, measured parallel to

a) $\frac{\pi}{4}$

a) $\frac{2}{\sqrt{5}}$

a)
$$90 + 27\sqrt{2}$$

c)
$$90 + 3\sqrt{2}$$

d) $54 + 90\sqrt{2}$

a)
$$90 + 27 \sqrt{2}$$

b) $45 + 18 \sqrt{2}$

d)
$$54 + 90\sqrt{2}$$

15)
$$f(\alpha) = \int_{1}^{\alpha} \frac{\log_{10} t}{1+t} dt, \alpha > 0$$
, then $f(e^3) + f(e^{-3})$ is equal to: (July-2022)

b)
$$\frac{9}{2}$$

b)
$$\frac{9}{2}$$
 c) $\frac{9}{\log_e(10)}$ d) $\frac{9}{2\log_e(10)}$

d)
$$\frac{9}{2\log_a(10)}$$