CPE 110408423 VLSI Design Chapter 12: Array Subsystems

Bassam Jamil
[Computer Engineering Department,
Hashemite University]

Lecture 3: SRAM

Outline

- Memory Arrays
- □ SRAM Architecture
 - SRAM Cell
 - Decoders
 - Column Circuitry
 - Multiple Ports

12.1 Memory Arrays

Memory Arrays

- ☐ Random access memory (RAM) is accessed with an address and has a latency independent of the address.
- □ Serial access memories (SAM) are accessed sequentially so no address is necessary.
- □ Content addressable memories (CAM) determine which address(es) contain data that matches a specified key.
- Volatile vs. nonvolatile memory.
 - Volatile memory retains its data as long as power is applied,
 - nonvolatile memory will hold data indefinitely.
 - RAM is synonymous with volatile memory, while ROM is synonymous with nonvolatile memory.

Volatile Memory

- ☐ The memory cells used in volatile memories can be divided into static structures and dynamic structures.
- ☐ Static cells use some form of feedback to maintain their state,
- Dynamic cells use charge stored on a floating capacitor through an access transistor.
 - Charge will leak away through the access transistor even while the transistor is OFF,
 - So dynamic cells must be periodically read and rewritten to refresh their state.
- ☐ Static RAMs (SRAMs) are **faster** and **less troublesome**, but require **more area per bit** than their dynamic counterparts (DRAMs).

Non-Volatile Memory

■ Volatility:

 Some nonvolatile memories are read-only (e.g. mask ROM), but many nonvolatile memories can be written, albeit more slowly than their volatile memories.

☐ Types of non-volatile memories:

- Mask ROM: the contents of a mask ROM are hardwired during fabrication and cannot be changed.
- 2. **Programmable ROM (PROM)** is **programmed** once after fabrication by blowing on-chip fuses with a special high programming voltage.
- 3. Erasable programmable ROM (EPROM) is programmed by storing charge on a floating gate.
 - It can be erased by exposure to ultraviolet (UV) light for several minutes to knock the charge off the gate. Then the EPROM can be reprogrammed.
- Electrically erasable programmable ROMs (EEPROMs) are erased in microseconds with onchip circuitry.
- 5. Flash memories are a variant of EEPROM that erases entire blocks rather than individual bits.
 - Sharing the erase circuitry across larger blocks reduces the area per bit.
 - Because of their good density and easy in-system reprogrammability, Flash memories have replaced other nonvolatile memories in most modern CMOS systems.

Memory Array Architecture

- Memory cells can have one or more ports for access.
- On a read/write memory, each port can be read-only, write-only, or both.
- ☐ A memory array contains 2ⁿ words of 2^m bits each.
 - Total number of bits = $2^n \times 2^m$ bits
- \square memory array containing 16 4-bit words (n = 4, m = 2).
 - Total number of bits = 64 bits

Memory Array :One row per word and One column per bit

- ☐ The simplest design with one row per word and one column per bit.
- The **row decoder** uses the address to activate one of the rows by asserting the **wordline**.
- During a read operation, the cells on this wordline drive the **bitlines**.
- ☐ The **column** circuitry may contain amplifiers or buffers to sense the data.
- A typical memory array may have thousands or millions of words of only 8–64 bits each, which would lead to a tall, skinny layout that is hard to fit in the chip floorplan and slow because of the long vertical wires.
- □ Therefore, the array is often folded into fewer rows of more columns. After folding, each row of the memory contains 2^k words, so the array is physically organized as 2^{n-k} rows of 2^{m+k} columns or bits.

16 4-bit words:

(n = 4, m = 2, k=0)

Memory Array: Two-way Fold

- ☐ The array is physically organized as 2^{n-k} rows of 2^{m+k} columns or bits.
- ☐ The Figure shows a two-way fold (k = 1) with eight rows and eight columns.
- □ The column decoder controls a multiplexer in the column circuitry to select 2^m bits from the row as the data to access.
- Larger memories are generally built from multiple smaller sub-arrays so that the wordlines and bitlines remain reasonably short, fast, and low in power dissipation.

12.2 SRAM

- ☐ Static RAMs use a memory cell with internal feedback that retains its value as long as power is applied. It has the following attractive properties:
 - Denser than flip-flops
 - Compatible with standard CMOS processes
 - Faster than DRAM
 - Easier to use than DRAM
- ☐ SRAMs are widely used i: caches, register files, tables and buffers.

SRAM Cell: 12T SRAM Cell

- Basic building block: SRAM Cell
 - Holds one bit of information, like a latch
 - Must be read and written
- □ 12-transistor (12T) SRAM cell
 - Use a simple latch connected to bitline
 - Large area, so it is not used.
- ☐ Cell size accounts for most of array size
 - Reduce cell size at expense of complexity
 - The small cell size also offers shorter wires and hence lower dynamic power consumption.

SRAM Cell: 6T SRAM Cell

- ☐ 6T SRAM Cell
 - Used in most commercial chips
 - Data stored in cross-coupled inverters
- □ Read:
 - Precharge bit, bit_b
 - Raise wordline
- □ Write:
 - Drive data onto bit, bit_b
 - Raise wordline
- ☐ The central challenges in SRAM design are
 - minimizing its size
 - ensuring that the circuitry holding the state is weak enough to be overpowered during a write, yet strong enough not to be disturbed during a read.

12.2.1.1 Read Operation

- □ Read operation:
 - Precharge both bitlines high
 - Then turn on wordline
 - One of the two bitlines will be pulled down by the cell
- \Box Ex: Q= 0, Q_b = 1
 - bit discharges, bit_b stays high
 - But Q bumps up slightly
- Read stability
 - P2/D2 must not flip
 - D1 >> A1

12.2.1.2 Write Operation

- Write operation:
 - Drive one bitline high, the other low
 - Then turn on wordline
 - Bitlines overpower cell with new value
- \Box Ex: Q = 0, Q_b = 1, bit = 1, bit_b = 0
 - Force Q_b low, then Q rises high
- Writability

12: **SRAM**

- Must overpower feedback inverter
- A2 >> P2

12.2.1.3 Cell Stability

□ Read stability:

 The nMOS pulldown transistor in the cross-coupled inverters must be strongest.

■ Writibility:

 the access transistors are of intermediate strength, and the pMOS pullup transistors must be weak.

Static Noise Margin

□ The static noise margin (SNM) measures how much noise can be applied to the inputs of the two crosscoupled inverters before a stable state is lost (during hold or read) or a second stable state is created (during write).

- ☐ The static noise margin can be determined graphically from a butterfly diagram shown in Figure.
- The butterfly plot shows two stable states (with one output low and the other high) and one metastable state (with V1 = V2). A positive value of noise shifts curve I left and curve II up. Excessive noise eliminates the stable state of V1 = 0 and V2 = VDD, forcing the cell into the opposite state.
- The static noise margin is determined by the length of the side of the largest square that can be inscribed between the curves.

REST of the SLIDES Are reading material

SRAM Column Example

Read

Write

SRAM Layout: Physical Design

- \Box Cell size is critical (left): 26 x 45 λ (smaller in industry)
- \Box Tile cells sharing V_{DD} , GND, bitline contacts (6T:right).

Thin Cell

- □ In nanometer CMOS
 - Avoid bends in polysilicon and diffusion
 - Orient all transistors in one direction
- ☐ Lithographically friendly or thin cell layout fixes this
 - Also reduces length and capacitance of bitlines

Commercial SRAMs

- ☐ Five generations of Intel SRAM cell micrographs.
 - Transition to thin cell at 65 nm
 - Steady scaling of cell area

♦ IBM

Intel

Row Circuitry: Decoders

- ☐ Row circuitry consists of decoder & worldline drivers
- □ n:2ⁿ decoder consists of 2ⁿ n-input AND gates
 - One needed for each row of memory
 - Build AND from NAND or NOR gates

Static CMOS

Pseudo-nMOS

Row Circuitry: Decoders

Static CMOS

Pseudo-nMOS

■ Wordline must be qualified with clock (shared clock and transistors).

Decoder Layout

- Decoders must be pitch-matched to SRAM cell: height of decoder gate must match height of the row it drives.
 - Requires very skinny gates

Large Decoders

- \Box For n > 4, NAND gates become slow.
 - Break large gates
 into multiple smaller gates

Predecoding

- Many of these gates are redundant
 - Factor out common gates into predecoder
 - Saves area
 - Same path effort

Column Circuitry

- ☐ Some circuitry is required for each column
 - Bitline conditioning
 - Write driver
 - Bitline sense amplifiers
 - Column multiplexing

Bitline Conditioning

Precharge bitlines high before reads or writes

□ Equalize bitlines to minimize voltage difference when using sense amplifiers

Bitline Sense Amplifiers

- ☐ Bitlines is classified: large-signal (single-ended sensing) or small-signal. (differential sensing).
- ☐ Large-signal: bitline swings between Vdd and GND.
- Small-signal: one of the two bitlines changes by a small amount to save delay and reduce energy consumption.

Bitline Sense Amplifiers

- □ Bitlines have many cells attached
 - Ex: 32-kbit SRAM has 128 rows x 256 cols
 - 128 cells on each bitline
- \Box t_{pd} \propto (C/I) Δ V
 - Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors (small I)
- \square Sense amplifiers are triggered on small voltage swing (reduce $\triangle V$)

Differential Pair Amp

- ☐ Differential pair requires no clock
- But always dissipates static power
- Consumes a significant amount of DC power.

Clocked Sense Amp

- □ Clocked sense amp saves power (consumes power only while activated).
- Requires sense_clk after enough bitline swing
- □ Isolation transistors cut off large bitline capacitance, regenerative feedback to make one output high and the other low.

Twisted Bitlines

- □ Sense amplifiers also amplify noise
 - Coupling noise is severe in modern processes
 - Try to couple equally onto bit and bit_b
 - Done by twisting or transposing bitlines

Column Multiplexing

- ☐ Recall that array may be folded for good aspect ratio
- ☐ Ex: 2 kword x 16 folded into 256 rows x 128 columns
 - Must select 16 output bits from the 128 columns
 - Requires 16 8:1 column multiplexers

Ex: 2-way Muxed SRAM

Tree Decoder Mux

- ☐ Column mux can use pass transistors
 - Use nMOS only, precharge outputs
- \Box One design is to use k series transistors for 2^k:1 mux
 - No external decoder logic needed

Single Pass-Gate Mux

Or eliminate series transistors with separate decoder

Multiple Ports

- We have considered single-ported SRAM
 - One read or one write on each cycle
- Multiported SRAM are needed for register files
- □ Examples:
 - Multicycle MIPS must read two sources or write a result on some cycles
 - Pipelined MIPS must read two sources and write a third result each cycle
 - Superscalar MIPS must read and write many sources and results each cycle

Dual-Ported SRAM

- □ Simple dual-ported SRAM
 - Two independent single-ended reads
 - Or one differential write

- Do two reads and one write by time multiplexing
 - Read during ph1, write during ph2

Multi-Ported SRAM

- □ Adding more access transistors hurts read stability
- Multiported SRAM isolates reads from state node
- □ Differential read ports double the number of read bitlines and transistors.
- Single-ended bitlines save area
- Multiple write ports simply attach the ports to the state node.

Multi-Ported SRAM

☐ 3 write ports and 4 read ports:

CMOS VLSI Design 4th Ed.

Large SRAMs

Large SRAMs are split into banks or subarrays for

speed and reduce power

- ☐ Ex: UltraSparc 512KB cache
 - 4 128 KB subarrays
 - Each have 16 8KB banks
 - 256 rows x 256 cols / bank
 - 60% subarray area efficiency
 - Also space for tags & control

