Requêtes en algèbre relationnelle

a. Afficher la liste des réservations avec le nom du client et la ville de l'hôtel réservé

PROJECT Id_Réservation, Nom_complet, Ville (SELECT (JOIN Réservation, Client, JOIN Condition Id_Client = Id_Client, JOIN Chambre, JOIN Condition Id_Réservation = Id_Chambre, JOIN Hotel, JOIN Condition Id_Hotel = Id_Hotel))

b. Afficher les clients qui habitent à Paris

PROJECT Nom_complet, Adresse, Ville (SELECT Ville = 'Paris' (Client))

c. Calculer le nombre de réservations faites par chaque client

AGGREGATE Nom_complet, COUNT(Id_Réservation) AS Nombre_Réservations (JOIN Client, Réservation, GROUP BY Id_Client, Nom_complet)

d. Donner le nombre de chambres pour chaque type de chambre

AGGREGATE Type, COUNT(Id_Chambre) AS Nombre_Chambres (JOIN Type_Chambre, Chambre, GROUP BY Id Type, Type)

e. Afficher la liste des chambres qui ne sont pas réservées pour une période donnée

PROJECT Id_Chambre, Numéro, Étage (SELECT (JOIN Chambre, LEFT JOIN Réservation, JOIN Condition Id_Chambre = Id_Réservation) UNION SELECT Date_arrivée > '2025-06-18' OR Date_de_part < '2025-06-15' (Réservation)))

Note: On a choisi '2025-06-15' et '2025-06-18' comme les dates saisies par l'utilisateur.

SQLite et différence avec MySQL

SQLite est un moteur de base de données léger, intégré, qui ne nécessite pas de serveur séparé et est utilisé dans des applications embarquées ou mobiles.

Différence avec MySQL: MySQL est un système de gestion de base de données relationnelle (SGBDR) client-serveur, plus robuste, adapté aux applications web et multi-utilisateurs, tandis que SQLite est plus simple, sans gestion de concurrence avancée et limité en taille de base de données.