Seminarska naloga iz statistike

Klementina Pirc

Fakulteta za matematiko in fiziko Oddelek za matematiko

julij 2020

Podrobnejša navodila nalog se nahajajo v datoteki 27_sem_nal_Klementina_Pirc.pdf

1. naloga

V datoteki *Kibergrad.csv* so podane informacije o 43 886 družinah. Spodnje naloge se navezujejo na stopnjo izobrazbe, ki jo imajo vodje gospodinjstev. Stopnje so označene s števili od 31 do 46. Naloge sem rešila s pomočjo programa Python in ustreznih knjižnic, postopek pa se nahaja v datoteki *Kibergrad.py*

a)

Na podlagi enostavnega slučajnega vzorca 200 družin poiščemo oceno za delež družin v celotni populaciji, katerih vodja gospodinjstva nima srednješolske izobrazbe. S pomočjo opisov stopenj izobrazbe ugotovimo, da moramo prešteti družine iz vzorca s stopnjo \leq 38. Naj bo d_i stopnja izobrazbe za i-to družino, definiramo

$$x_i = \begin{cases} 1 & \text{\'e } d_i \le 38 \\ 0 & \text{sicer} \end{cases}$$

Sedaj lahko vzorčni delež s izračunamo s formulo

$$s = \frac{1}{n} \sum_{i=1}^{n} x_i$$

kjer je n velikost vzorca, torej 200. Dobimo rezultat s=0.23.

b)

Ocenimo standardno napako se(s) in določimo 95% interval zaupanja. Za izračun standardne napake moramo izračunati varianco s. Ker smo vzeli enostavni slučajno vzorec velja

$$var(s) = \frac{1}{n} \frac{N-n}{N-1} \tilde{\sigma}^2$$

kjer je N=43886 velikost populacije in $\tilde{\sigma}^2$ nepristranska cenilka za populacijsko varianco. Torej

$$\tilde{\sigma}^2 = \frac{N-1}{N(n-1)} \sum_{i=1}^n (x_i - s)^2$$

$$\Rightarrow var(s) = \frac{N-n}{nN(n-1)} \sum_{i=1}^n (x_i - s)^2$$

$$= \frac{N-n}{nN(n-1)} \sum_{i=1}^n (x_i^2 - 2x_i s + s^2)$$

$$= \frac{N-n}{nN(n-1)} \sum_{i=1}^n (x_i - 2x_i s + s^2)$$

$$= \frac{N-n}{N(n-1)} (s - s^2)$$

in zato

$$se(s) = \sqrt{\frac{N-n}{N(n-1)}s(1-s)}$$

Upoštevali smo $x_i^2 = x_i$, kar velja, ker $x_i \in \{0, 1\}$. Standardna napaka za izbrani vzorec je 0.029763.

Interval zaupanja dobimo po formuli $s \mp z_{\alpha} se(s)$. Ker želimo 95% natančnost, je $z_{\alpha} = 1.96$ in tako dobimo interval [0.171662, 0.288337].

c)

Izračunamo populacijski delež S in standardno napako se(S) s formulama

$$S = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $se(S) = \sqrt{\frac{\sigma^2}{N}} = \sqrt{\frac{1}{N^2} \sum_{i=1}^{N} (x_i - S)^2}$

ter dobimo S=0.211502 in se(S)=0.001949. Interval zaupanja torej pokrije populacijski delež, saj $S\in[0.171662,0.288337]$.

Razlika med vzorčnim in populacijskim deležem znaša 0.018497, razlika med vzorčno in populacijsko standardno napako pa 0.027814.

d)

Izberemo še 99 vzorcev, določimo 95% intervale zaupanja, ter jih narišemo skupaj z intervalom za prvi vzorec. S horizontalno črto označimo vrednost S. Vidimo, da populacijski delež pokrije 96 intervalov.

e)

Izračunamo standardni odklon vzorčnih deležev iz 100 prej izbranih vzorcev. Uporabimo formulo

$$\sigma_s = \sqrt{\frac{1}{m} \sum_{i=1}^{m} m(s_i - \bar{s})^2}$$

kjer je m=100 število vzorcev, s_i vzorčni delež i-tega vzorca in \bar{s} povprečje vzorčnih deležev. $\sigma_s=0.028618$, razlika med populacijsko standardno napako se(S) in σ_s pa je 0.026668.

f)

Sedaj izberemo 100 vzorcev velikosti 800 in ponovimo postopke iz točk d) in e).

- $\sigma_s = 0.013002$
- $|\sigma_s se(S)| = 0.011053$
- populacijski delež S pokrije 95 intervalov zaupanja

2. naloga

Želimo oceniti skupno vrednost inventarja z N enotami, kjer ima vsaka knjigovodsko vrednost X in dejansko vrednost Y. Poznamo X za vse enote in želimo oceniti vsoto dejanskih vrednosti vseh enot τ_Y .

$$\tau_Y = \sum_{i=1}^N Y_i$$

Vzamemo enostavni slučajni vzorec z \boldsymbol{n} enotami in predlagamo 3 možne cenilke

$$\hat{\tau}_Y^{(0)} := N\bar{Y} \qquad \hat{\tau}_Y^{(1)} := \tau_X + N(\bar{Y} - \bar{X}) \qquad \hat{\tau}_Y^{(2)} := \frac{\bar{Y}}{\bar{X}} \tau_X$$

a)

Dokažimo, da je $\hat{\tau_Y}^{(1)}$ nepristranska: $E(\hat{\tau}_Y^{(1)}) = \tau_Y$ in izračunajmo njeno varianco. Uporabili bomo naslednje oznake.

 $au_X, au_Y \dots$ vsota vrednosti spremenljivke X oz. Y na celotnem inventarju, $\mu_X, \mu_Y \dots$ povprečna vrednost X oz. Y na celotnem inventarju, $\sigma_X, \sigma_Y \dots$ standardni odklon X oz. Y na vseh enotah inventarja, $\rho_{XY} \dots$ korelacijski koeficient med X in Y na celotnem inventarju, $\bar{X}, \bar{Y} \dots$ vzorčno povprečje X oz. Y.

$$E(\hat{\tau}_Y^{(1)}) = E(\tau_X + N(\bar{Y} - \bar{X}))$$

$$= \tau_X + N(E(\bar{Y}) - E(\bar{X}))$$

$$= \tau_X + N\mu_Y - N\mu_X$$

$$= \tau_X + \tau_Y - \tau_X$$

$$= \tau_Y$$

$$var(\hat{\tau}_{Y}^{(1)}) = var(\tau_{X} + N(\bar{Y} - \bar{X}))$$

$$= N^{2}var(\bar{Y} - \bar{X})$$

$$= N^{2}var(\bar{Y} + \bar{X} - 2cov(\bar{Y}, \bar{X}))$$

$$= N^{2}(\frac{\sigma_{Y}^{2}}{n} \frac{N - n}{N - 1} + \frac{\sigma_{X}^{2}}{n} \frac{N - n}{N - 1} - 2\rho_{XY})$$

$$= \frac{N^{2}}{n} \frac{N - n}{N - 1} (\sigma_{Y}^{2} + \sigma_{X}^{2}) - 2N^{2}\rho_{XY}$$

b)

Privzamemo, da sta X in Y-X na populacijii neodvisni. Zanima nas, kdaj ima cenilka $\hat{\tau}_Y^{(1)}$ nižjo varianco kot cenilka $\hat{\tau}_Y^{(0)}$.

$$var(\hat{\tau}_Y^{(0)}) = var(N\bar{Y})$$
$$= \frac{N^2}{n} \frac{N-n}{N-1} \sigma_Y^2$$

$$\begin{aligned} var(\hat{\tau}_{Y}^{(1)}) &< var(\hat{\tau}_{Y}^{(0)}) \\ \frac{N^{2}}{n} \frac{N-n}{N-1} (\sigma_{Y}^{2} + \sigma_{X}^{2}) - 2N^{2} \rho_{XY} &< \frac{N^{2}}{n} \frac{N-n}{N-1} \sigma_{Y}^{2} \\ \frac{N^{2}}{n} \frac{N-n}{N-1} \sigma_{X}^{2} - 2N^{2} \rho_{XY} &< 0 \\ \frac{N^{2}}{n} \frac{N-n}{N-1} \sigma_{X}^{2} - 2\frac{N^{2}}{n} \frac{N-n}{N-1} \sigma_{X}^{2} &< 0 \\ -\frac{N^{2}}{n} \frac{N-n}{N-1} \sigma_{X}^{2} &< 0 \end{aligned}$$

To je očitno res, saj je $\sigma_X^2>0$ in zato $var(\hat{\tau}_Y^{(1)})< var(\hat{\tau}_Y^{(0)})$ velja vedno. Zgoraj smo upoštevali še

$$\begin{split} cov(\bar{X},\bar{Y}) &= cov(\bar{X},\bar{Y}-\bar{X}+\bar{X}) \\ &= cov(\bar{X},\bar{Y}-\bar{X}) + cov(\bar{X},\bar{X}) \\ &= 0 + var(\bar{X}) \\ &= \frac{\sigma_X^2}{n} \frac{N-n}{N-1} \end{split}$$

Literatura

- [1] E. Zakrajšek, *Verižnica* (1999) od 6 do 10. Dostopno na spletni učilnici FMF 2019/2020 predmeta Matematično modeliranje [22. 7. 2020]
- [2] Zapiski s predavanj predmeta Matematično modeliranje.