ECON 318 - Spring 2020: Practise Problems for Midterm1 Solutions

1 Question 1

A random variable X has a standard normal distribution with mean 0 and variance 1.

1. What is the probability that X < 0?

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z scor									ore.		
	Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
	0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535

• We use the standard normal distribution table to find that:

$$Pr(X < 0) = 0.5$$

= 50.0%

2. What is the probability that X > 2?

2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574

•

$$Pr(X > 2) = 1 - Pr(X < 2)$$

= 1 - 0.97725
= 0.02275
= 2.275%

3. What is the probability that -2 < X < 2?

-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426

•

$$Pr(-2 < X < 2) = Pr(X < 2) - Pr(X < -2)$$

= 0.97725 - 0.02275
= 0.9545
= 95.45%

2 Question 2

In the past, a chemical plant has a stated goal of producing an average of 1100 pounds of chemical per day. The records for the past year, based on 260 operating days, show the following:

 $\bar{Y} = 1060$ pounds per day.

 $S_Y = 340$ pounds per day.

The managers of the firm wish to test whether or not the average daily production differs from its stated goal.

- 1. Give the appropriate null and alternative hypotheses.
 - $H_0: \bar{Y} = 1100$ $H_1: \bar{Y} \neq 1100$
- 2. Construct a 90% confidence interval for the sample mean.

- The confidence interval is given by: $\left[\hat{\theta} C_{\alpha/2} \cdot SE(\hat{\theta}), \hat{\theta} + C_{\alpha/2} \cdot SE(\hat{\theta})\right]$, where $C_{\alpha/2}$ is the critical value taken from the appropriate distribution, and $SE(\hat{\theta})$ is an estimate of the standard deviation of $\hat{\theta}$.
- $Y_1, ..., Y_n$ randomly drawn from $N(\mu, \sigma^2)$, σ^2 not known. Specify the $(1 \alpha) * 100\%$ confidence for μ
- The estimator on which C.I. is based: $\bar{Y} \sim N(\mu, \sigma^2/n)$
- Use $\frac{\bar{Y}-\mu}{S_Y/\sqrt{n}} \sim t_{n-1}$, and student-t tables to specify $t_{\alpha/2}$ such that

$$Pr\left(-t_{\alpha/2} < \frac{\bar{Y} - \mu}{S_Y/\sqrt{n}} < t_{\alpha/2}\right) = 1 - \alpha$$

• The confidence interval of μ is obtained by rewriting:

$$Pr\left(\bar{Y} - t_{\alpha/2} \frac{S_Y}{\sqrt{n}} < \mu < \bar{Y} + t_{\alpha/2} \frac{S_Y}{\sqrt{n}}\right) = 1 - \alpha$$

- That is, with $1-\alpha$ confidence, $\mu\in\left[\bar{Y}-t_{\alpha/2}\frac{S_Y}{\sqrt{n}},\bar{Y}+t_{\alpha/2}\frac{S_Y}{\sqrt{n}}\right]$
- In the above question, σ^2 (unknown) is estimated:

$$\begin{split} \left[\bar{Y} - t_{\alpha/2, n-1} \frac{S_Y}{\sqrt{n}}, \bar{Y} + t_{\alpha/2, n-1} \frac{S_Y}{\sqrt{n}} \right] &= \left[1060 - (1.65 \frac{340}{\sqrt{260}}), 1060 + (1.65 \frac{340}{\sqrt{260}}) \right] \\ &= \left[1025.2, 1094.8 \right] \end{split}$$

3 Question 3

Suppose you are told that an OLS regression analysis of average weekly earnings yields the following estimated model.

$$A\hat{W}E = 696.7 + 9.6AGE, R^2 = 0.023, ESS = 624.1 \tag{1}$$

- 1. Explain what the coefficient value means.
 - $\alpha = 696.7$: If age is 0, the average weekly earnings equal 696.7. $\beta = 9.6$: If age increases by 1 year, the average weekly earnings increase by \$9.6
- 2. What is the regression's predicted earnings for a 25 year-old worker and a 45 year-old worker?

•

$$E[AWE|Age = 25] = 696.7 + [9.6 * 25]$$

= \$936.7

$$E[AWE|Age = 45] = 696.7 + [9.6 * 45]$$

= \$1, 128.7

4 Question 4

Indicate whether each of the following statements about the simple regression model is true or false. Explain.

- 1. If the sample means of X and Y are zero, then the estimated Y-intercept is zero.
 - TRUE

The estimated regression line passes through the mean of X and mean of Y. This implies that the equation $\bar{Y} = \hat{\alpha} + \hat{\beta}\bar{X}$ is always satisfied. Therefore, if \bar{X} and \bar{Y} are 0, the Y-intercept or $\hat{\alpha}$ is also 0

- 2. The slope of the simple regression model indicates how the actual value of Y changes as X changes.
 - TRUE
- 3. The residuals from a least squares regression are all zero.
 - FALSE

 The sum of the residuals from a least squares regression equal zero.
- 4. The sum of the residuals from a least squares regression is zero.
 - TRUE
- 5. The method of least squares minimizes the residuals.
 - FALSE

 The method of least squares minimizes the sum of the squared residuals
- 6. If the sample covariance between X and Y is zero, then the slope of the least squares regression line is zero.
 - TRUE

$$\hat{\beta} = \frac{\sum_{i} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i} (X_i - \bar{X})^2}$$
$$= \frac{Cov(X, Y)}{Var(X)}$$

Therefore, if the sample covariance between X and Y is 0, $\hat{\beta}=0$