PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-311473

(43)Date of publication of application: 05.11.2003

(51)Int.CI.

B23K 35/30 C22C 19/05

(21)Application number: 2002-116595

(71)Applicant:

MITSUBISHI HEAVY IND LTD

NIPPON WELDING ROD KK

(22)Date of filing:

18.04.2002

(72)Inventor:

TADA YOSHIHIRO

KAWAGUCHI SEIICHI

ASADA SEIJI MIYAKE KOJI

NAKAJIMA NORITAKA SAITO TEIICHIRO OGAWA NORIHITO

(54) FILLER METAL FOR Ni BASED HIGH Cr ALLOY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a filler metal for an Ni based high Cr alloy which has an excellent weld crack resisting sensitivity. SOLUTION: The filler metal has a composition containing, by weight, \leq 0.04% C, 0.01 to 0.13% Si, \leq 5% Mn, 28 to 31.5% Cr, \leq 1.8% Nb, 0.5 to 1.1% Al, 0.5 to 1% Ti (wherein, Al+Ti: \leq 1.6%), 7 to 11% Fe and \leq 0.5% V, and further containing, as inevitable impurities, \leq 0.02% P, \leq 0.015% S, \leq 0.01% O and 0.002 to 0.03% N, and the balance Ni.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003-311473

(P2003-311473A)(43)公開日 平成15年11月5日(2003.11.5)

(51) Int. C1. 7 B23K 35/30

識別記号

320

FΙ

320

テーマコート・ (参考)

C22C 19/05

B23K 35/30 C22C 19/05

Q В

審査請求 未請求 請求項の数2

OL (全6頁)

(21)出願番号

特願2002-116595(P2002-116595)

(22)出願日

平成14年4月18日(2002.4.18)

(71)出願人 000006208

三菱重工業株式会社

東京都港区港南二丁目16番5号

(71)出願人 000227962

日本ウエルディング・ロッド株式会社

東京都中央区銀座1丁目13番8号

(72)発明者 多田 好宏

兵庫県高砂市荒井町新浜2丁目1番1号

三菱重工業株式会社高砂研究所内

(74)代理人 100100077

弁理士 大場 充 (外1名)

最終頁に続く

(54) 【発明の名称】 N i 基高 C r 合金用溶加材

(57) 【要約】

【課題】 耐溶接割れ感受性に優れたN i 基高C r 合金 用溶加材を提供する。

【解決手段】 重量%で、C:0.04%以下、Si: 0. 01~0. 13%、Mn:5%以下、Cr:28~ 31.5%、Nb:1.8%以下、A1:0.5~1. 1%、Ti:0.5~1%、(但し、Al+Ti:1. 6%以下)、Fe:7~11%、V:0.5%以下を含 有し、さらに不可避的不純物として、P:0.02%以 下、S:0.015%以下、O:0.01%以下、N: 0.002~0.03%を含み、残部がNiからなる組 成を有する。

2

【特許請求の範囲】

【請求項1】 重量%で、C:0.04%以下、Si:0.01~0.13%、Mn:5%以下、Cr:28~31.5%、Nb:1.8%以下、Al:0.5~1.1%、Ti:0.5~1%、(但し、Al+Ti:1.6%以下)、Fe:7~11%、V:0.5%以下を含有し、さらに不可避的不純物として、P:0.02%以下、S:0.015%以下、O:0.01%以下、N:0.002~0.03%を含み、残部がNiからなる組成を有することを特徴とするNi基高Cr合金用溶加材。

1

【請求項2】 重量%で、C:0.04%以下、Si:0.01~0.13%、Mn:5%以下、Cr:28~31.5%、Nb:0.1%以下、Al:0.5~1.1%、Ti:0.5~1%、(但し、Al+Ti:1.6%以下)、Fe:7~11%、V:0.5%以下、Ta:0.01~3%を含有し、さらに不可避的不純物として、P:0.02%以下、S:0.015%以下、O:0.01%以下、N:0.002~0.03%を含

み、残部がNiからなる組成を有することを特徴とする Ni基高Cr合金用溶加材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高温で作動する加圧水型原子力発電プラントなどで用いられるNi基高Cr合金の溶接用溶加材に係り、特に、耐溶接割れ感受性に優れた溶着金属を得るのに適したNi基高Cr合金用溶加材に関する。

10 [0002]

【従来の技術】現在、300~350℃の高温で稼動する加圧水型原子力発電プラントの蒸気発生器伝熱管材などには、耐食性に優れた600合金が用いられている。そして近年、更なる信頼の向上を目指して、新たに開発された690合金が使用され始めている。その代表的な合金組成を表1に示す。尚、特にことわらない限り、本明細書では成分組成を重量%で示すものとする。

[0003]

【表1】

区分 規格				11	学成分	(重量%)		
690	ASME Code Sec. 11-8	С	Si	Mn	s	Ní	Cr	Cu	Fe
690 合金	SB-163 UNS NO6690	0. 15以下	0.5以下	1. 0以下	0.015 以下	58. 0以上	27. 0~ 31. 0	0.5以下	7. 0~ 11. 0

【0004】この690合金を用いて構造物を製造する際には、溶接を伴うのが一般的である。この種の溶接方法としては、ティグ溶接やミグ溶接が用いられ、溶接時に溶融しながら合金を添加し、溶接後の強度を保持し且つ耐溶接割れ性を確保するために溶加材を必要とする。この溶加材に関しては、アメリカ機械学会(The Americ

an Society of Mechanical Engineers: ASME) のAS MEポイラ及び圧力容器規定(ASME Boiler and Pressure Vessel Code:以下、ASME Codeという)の規定が存在し、その化学成分を表2に示す。

[0005]

【表2】

区分	規格		化学成分 (重量%)													
690	ASME Code	С	Si	Ma	Р	s	Ni	Cr	Мо	Cu	Nb	Al	Ti	AI+Ti	Fe	Other
会金	Case2142-1 UNS NO6052	0. 04 以下	0.50 以下	1.00 以下	Q 020 以下	0. 015 以下	Bal.	28. 0 ~ 31. 5	0.50 以下	0.30 以下	0.10 以下	1. 10 以下	1.00 以下	1.50 以下	7. 0 ~ 11. 0	0.50 以下

【0006】690合金母材の組成である表1と比較すれば明らかなように、溶加材の主組成も690合金とほとんど同組成であるが、溶接割れを防ぐために溶加材の40方はP及びCuの含有量に特に制限を加え、また、耐食性の劣化を防ぐためにMo、Nb、A1、Ti及びA1+Ti含有量に制限を加えている。その他、ASMECodeには定められていないが、実際には溶加材を溶製するときに加える脱酸剤や大気から混入する不可避的不純物が含まれており、その種類と含有量は、本発明者らの分析例によれば、Co:0.05%、O:0.004%、N:0.002%である。

[0007]

【発明が解決しようとする課題】690合金は、元来、

高Cr性を有する材料であるから、この溶加材を用いてティグ溶接またはミグ溶接により溶接した構造物の溶接部も室温の機械的性質および耐溶接割れ性などについても十分な性能を有している。しかしながら、この690合金溶加材は、溶接割れ感受性の高いオーステナイトの単一組織であるため、耐溶接割れ感受性の面で更なる性能の向上が求められていた。

【0008】本発明は、以上の技術的課題を解決するためになされたものであって、その目的は、耐溶接割れ感受性に優れたNi基高Cr合金用溶加材を提供することにある。

[0009]

50 【課題を解決するための手段】かかる目的のもと、本発

明者が鋭意検討を行ったところ、溶接金属の高温割れに は、溶融金属が凝固する際に生じる凝固割れと、次パス ビードによる溶接熱影響部に生じる延性低下割れとが存 在し、いずれの割れも低融点金属の存在に起因すること が判明した。そして、本発明者は、合金中のSiの含有 量を低減すること、あるいは、合金にTaを添加するこ とで、耐溶接割れ性に優れたNi基高Cr合金用溶加材 が得られることを知見し、本発明に到達するに至った。 すなわち、本発明のNi基高Cr合金用溶加材は、重量 %で、C:0.04%以下、Si:0.01~0.13 10 に生じるスケール発生を防止又は抑制する。そして、7 %、Mn:5%以下、Cr:28~31.5%、Nb: 1. 8%以下、A1:0. 5~1. 1%、Ti:0. 5 ~1%、(但し、Al+Ti:1.6%以下)、Fe: 7~11%、V:0.5%以下を含有し、さらに不可避 的不純物として、P:0.02%以下、S:0.015 %以下、O:0.01%以下、N:0.002~0.0 3%を含み、残部がNiからなる組成を有することを特 徴とするものである。

【0010】以下に、上記溶加材における各成分の作用 及びその含有量の限定理由を説明する。 C は固溶体強化 20 元素であり、C量の増加と共に引張強度は増加する。一 方、C量の増加は耐応力腐食割れ性を劣化させるので、 両特性を考慮してC量は0%を超え0.04%以下とし た。Siは溶接時に脱酸作用を有しており、その効果を 出すためには0.01%以上の添加が必要であるが、S i量が多くなると溶接割れ感受性が高くなるので、Si 量は0.01~0.13%とした。Mnは溶接時に脱酸 作用及び脱硫作用として有効であり、溶接割れに有害な Sを固定し耐溶接割れ性を抑制する効果があり、この効 果を高めるためにはMn量を多くすることが好ましい が、Mn量を5%を超えて添加すると、溶接時にスラグ の湯流れを悪くし、溶接作業性を劣化させるので、Mn 量は5%以下とした。

【0011】Crは耐食性向上のために必須の元素であ るが、耐応力腐食割れ性の効果を十分ならしめるには、 28%以上が必要である。一方、31.5%を超えると 溶加材の製造時の熱間加工性が著しく劣化するのでCr 量は28~31.5%とした。Nbは炭窒化物形成元素 で、引張強度を向上させるが、Nb量の増加は耐溶接割 れ感受性を低下させるのでNb量は0%を超え1.8% 40 以下とした。

【0012】A1は溶加材を溶製するときに脱酸剤とし て用いるほか、N安定化元素として溶着金属中のNを固 定し強度の改善に寄与するので、その効果を出すため 0. 5%以上の添加が必要であるが、過剰の添加は溶接 中にスラグを発生し、溶接作業性を劣化させるので0. 5~1. 1%とした。TiはAlと同様、その酸化力を 利用して脱酸剤として用いられるほか、溶加材製造時の 熱間加工性の改善にも寄与する。また、TiはNと親和 力が強く、TiNとして析出し、組織を微細化させ、引 50

張強度の改善に寄与するので、その効果を得るためには 0.5%以上の添加が必要であるが、A1と同様に過剰 の添加は溶接中にスラグを発生し、溶接作業性を劣化さ せるのでTiは0.5~1%とした。Al+Tiの添加 は脱酸剤としての作用には有効であるが、A1+Ti量 が増加すると溶接中にスラグを発生し、溶接作業性を著 しく劣化させるのでA1+Ti量は0%を超え1.6% 以下とした。

【0013】Feは690合金のような高Cr量の場合

%未満ではスケール発生が著しくなる。また、11%を 超えて過剰に添加すると応力腐食割れ性を劣化させる。 従って、Feは7~11%とした。Vはマトリックスに 固溶して引張強度を向上させるが、0.5%を超えると 延性が低下する。従って、Vは0.5%以下とした。 【0014】PはNiと低融点の共晶(Ni-Ni,P など)を作り、溶接割れ感受性を高める元素であるの で、含有量は少ないほどよいが、過度な制限は経済性の 低下を招くので、PはO.02%以下とした。SはPと 同じようにNiと低融点の共晶(Ni-Ni,S,など) を作り、溶接割れ感受性を高める元素であり、含有量は 少ないほどよいのでSは0.015%以下とした。〇は 溶加材の溶製中に大気から侵入する不可避的不純物であ り、溶接金属の結晶粒界に酸化物の形となって集まり、 結晶粒界の高温強度を弱くする。また、Oは溶接割れ感 受性を高めるので0.01%以下にすることが望まし い。NはOと同じように不可避的不純物であり、その含 有量の限界値を定めることは重要である。但し、NはT i などと窒化物 (TiNなど)を作り、引張強度を改善 するので積極的に添加する。Nは含有量の増加と共に引 張強度の向上に寄与するが、0.03%を超えると高温 延性が低下する。一方、0.002%未満ではその効果 が小さいので、Nは0.002~0.03%とした。 尚、Moについては0.5%以下、Cuについては0. 3%以下含有されていたとしても、本発明の効果に本質 的な影響を与えるものではない。

【0015】また、本発明のNi基高Cr合金用溶加材 は、重量%で、C:0.04%以下、Si:0.01~ 0. 13%、Mn:5%以下、Cr:28~31. 5 %、Nb:0.1%以下、Al:0.5~1.1%、T i:0.5~1%、(但し、A1+Ti:1.6%以 下)、Fe:7~11%、V:0.5%以下、Ta: 0.01~3%を含有し、さらに不可避的不純物とし て、P:0.02%以下、S:0.015%以下、O: 0.01%以下、N:0.002~0.03%を含み、 残部がNiからなる組成を有することを特徴とするもの

【0016】以下に、上記溶加材における各成分の作用 及びその含有量の限定理由を説明する。Cは固溶体強化 元素であり、C量の増加と共に引張強度は増加する。一

6

方、C量の増加は耐応力腐食割れ性を劣化させるので、両特性を考慮してC量は0%を超え0.04%以下とした。Siは溶接時に脱酸作用を有しており、その効果を出すためには0.01%以上の添加が必要であるが、Si量が多くなると溶接割れ感受性が高くなるので、Si量は $0.01\sim0.13\%$ とした。Mnは溶接時に脱酸作用及び脱硫作用として有効であり、溶接割れに有害なSを固定し耐溶接割れ性を抑制する効果があり、この効果を高めるためにはMn量を多くすることが好ましいが、Mn量を5%を超えて添加すると、溶接時にスラグの湯流れを悪くし、溶接作業性を劣化させるので、Mn量は5%以下とした。

【0017】Crは耐食性向上のために必須の元素であるが、耐応力腐食割れ性の効果を十分ならしめるには、28%以上が必要である。一方、31.5%を超えると溶加材の製造時の熱間加工性が著しく劣化するのでCr量は28~31.5%とした。Nbは炭窒化物形成元素で、引張強度を向上させるが、Nb量の増加は耐溶接割れ感受性を劣化させるのでNb量は0%を超え0.1%以下とした。

【0018】Alは溶加材を溶製するときに脱酸剤とし て用いるほか、N安定化元素として溶着金属中のNを固 定し強度の改善に寄与するので、その効果を出すため 0.5%以上の添加が必要であるが、過剰の添加は溶接 中にスラグを発生し、溶接作業性を劣化させるので0. 5~1. 1%とした。TiはA1と同様、その酸化力を 利用して脱酸剤として用いられるほか、溶加材製造時の 熱間加工性の改善にも寄与する。また、TiはNと親和 力が強く、TiNとして析出し、組織を微細化させ、引 張強度の改善に寄与するので、その効果を得るためには 30 0. 5%以上の添加が必要であるが、A1と同様に過剰 の添加は溶接中にスラグを発生し、溶接作業性を劣化さ せるのでTiは0.5~1%とした。Al+Tiの添加 は脱酸剤としての作用には有効であるが、Al+Ti量 が増加すると溶接中にスラグを発生し、溶接作業性を著 しく劣化させるのでA1+Ti量は0%を超え1.6% 以下とした。

【0019】Feは690合金のような高Cr量の場合に生じるスケール発生を防止又は抑制する。そして、7

%未満ではスケール発生が著しくなる。また、11%を超えて過剰に添加すると応力腐食割れ性を劣化させる。従って、 $Feは7\sim11\%$ とした。Vはマトリックスに固溶して引張強度を向上させるが、0.5%を超えると延性が低下する。従って、Vは0.5%以下とした。Taは高温環境下における合金の固相及び液相の共存温度範囲を狭くし、耐溶接割れ感受性を向上させる。その効果を出すためには、0.01%以上の添加が必要であるが、Ta量が多くなると強度は上昇するが延性を劣化させるので、<math>Ta量は $0.01\sim3\%$ とした。

【0020】PはNiと低融点の共晶(Ni-Ni,Pなど)を作り、溶接割れ感受性を高める元素であるので、含有量は少ないほどよいが、過度な制限は経済性の低下を招くので、Pは0.02%以下とした。SはPと同じようにNiと低融点の共晶(Ni-Ni,S,など)を作り、溶接割れ感受性を高める元素であり、含有量は少ないほどよいのでSは0.015%以下とした。Oは溶加材の溶製中に大気から侵入する不可避的不純物であり、溶接金属の結晶粒界に酸化物の形となって集まり、

結晶粒界の高温強度を弱くする。また、Oは溶接割れ感受性を高めるので0.01%以下にすることが望ましい。NはOと同じように不可避的不純物であり、その含有量の限界値を定めることは重要である。但し、NはTiなどと窒化物(TiNなど)を作り、引張強度を改善するので積極的に添加する。Nは含有量の増加と共に引張強度の向上に寄与するが、0.03%を超えると高温延性が低下する。一方、0.002%未満ではその効果が小さいので、Nは0.002~0.03%とした。尚、Moについては0.5%以下、Cuについては0.3%以下含有されていたとしても、本発明の効果に本質

[0021]

的な影響を与えるものではない。

【実施例】次に、具体的な実施例を挙げて本発明を更に 詳細に説明する。

一実施例1-

溶加材中のSi含有量の適正値について評価を行うため、表3に示す成分の溶加材1~4を作製した。

[0022]

【表3】

溶加材		溶加材の化学成分 (重量%)														
No.	_ C	Si	Mn	Р	S	Ní	Cr	Nb	Al		Al+Ti	Fe	N	0	V	
1	0.007	0.08	1.97	0.003	0.0014	Bai.	29.03	1.65	0.07				0.005	0.002	0.01	
2	0.02	0.013	0.33	0.002	0.0005	Bal.	29.7	1.65	0.09	0.22	0.31			0.002		
3	0.008	0.14			0.0005		29.2			0.6				0.002		
4	0.02	0.15			0.0005		29		0.7	0.6				0.003	0.01	

【0023】次に、作製した溶加材 $1\sim4$ を用いて、バレストレイン試験による溶接割れ評価を行った。そして、各溶加材 $1\sim4$ 中のSi含有量と、バレストレイン試験によって発生した溶接割れ箇所の割れ長さの合計値との相関を調査した。

【0024】結果を図1に示す。同図より、Si含有量の低下に伴って合計値が低下していくことが理解される。そして、Si含有量が0.13%以下、好ましくは0.08%以下であれば、溶接割れの合計値が低いレベ50 ルで安定することも明らかとなった。

【0025】--実施例2--

[0026] 【表4】

溶加材中へのTa添加の有効性を確認するため、表4に

示す成分の溶加材5~12を作製した。

溶加村の化学成分 (重量%)															
С	Si	Mn	Р	S	Ni	Cr	Nb			Ti	Al+Ti	Fe	N	0	V
0.011	0.09	4.7	0.005	0.0004	Bal	28.8	0.02	8.0	_	0.7			0.006	0.003	
0.008	0.13	4.76	0.004	0.0005	Bal.	29.2	0.01	1.73	0.9						
0.011	0.09	4.72	0.005	0.0004	Bal.	28.8	0.02	1.9	0.9	0.7	_				
	0.1	4.72	0.005	0.0004	Bal.	28.8	0.02	2.57	0.9	0.7	1.6				
	0.11	2.83	0.001	0.0013	Bal.	28.8	0.005	3.05	0.9	0.44	0.44				
	0.11	4.94	0.006	0.0004	Bal	29.2	0.01	2.75	0.9	į					
	0.15	4.88	0.004	0.0005	Bal,	29.2	0.01	0.002	0.9	0.6					
0.011	0.07	5.1	0.005	0.0004	Bal.	28.8	0.02	0.002	0.9						
_	0.011 0.008 0.011 0.011 0.033 0.008	0.011 0.09 0.008 0.13 0.011 0.09 0.011 0.1 0.033 0.11 0.008 0.11 0.008 0.15	0.011 0.09 4.7 0.008 0.13 4.76 0.011 0.09 4.72 0.011 0.1 4.72 0.033 0.11 2.83 0.008 0.11 4.94 0.008 0.15 4.88	0.011 0.09 4.7 0.005 0.008 0.13 4.76 0.004 0.011 0.09 4.72 0.005 0.011 0.1 4.72 0.005 0.033 0.11 2.83 0.001 0.008 0.11 4.94 0.006 0.008 0.15 4.88 0.004	0.011 0.09 4.7 0.005 0.004 0.008 0.13 4.76 0.004 0.005 0.011 0.09 4.72 0.005 0.004 0.011 0.1 4.72 0.005 0.0004 0.033 0.11 2.83 0.001 0.0013 0.008 0.11 4.94 0.006 0.0004 0.008 0.15 4.88 0.004 0.0005	C Si Mn P S Ni 0.011 0.09 4.7 0.005 0.0004 Bal. 0.008 0.13 4.76 0.004 0.005 Bal. 0.011 0.09 4.72 0.005 0.0004 Bal. 0.011 0.1 4.72 0.005 0.0004 Bal. 0.033 0.11 2.83 0.001 0.0013 Bal. 0.008 0.11 4.94 0.006 0.0004 Bal. 0.008 0.15 4.88 0.004 0.0005 Bal.	C Si Mn P S Ni Cr 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.011 0.09 4.72 0.005 0.0004 Bal. 28.8 0.011 0.1 4.72 0.005 0.0004 Bal. 28.8 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.008 0.11 4.94 0.006 0.0004 Bal. 29.2 0.008 0.15 4.88 0.004 0.0005 Bal. 29.2	C Si Mn P S Ni Cr Nb 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.008 0.13 4.76 0.004 0.0055 Bal. 29.2 0.01 0.011 0.09 4.72 0.005 0.0004 Bal. 28.8 0.02 0.011 0.1 4.72 0.005 0.0004 Bal. 28.8 0.02 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.005 0.008 0.11 4.94 0.006 0.0004 Bal. 29.2 0.01 0.008 0.15 4.88 0.004 0.0005 Bal. 29.2 0.01	C Si Mn P S Ni Cr Nb Ta 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.8 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.01 1.73 0.011 0.09 4.72 0.005 0.0004 Bal. 28.8 0.02 1.9 0.011 0.1 4.72 0.005 0.0004 Bal. 28.8 0.02 2.57 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.005 3.05 0.008 0.11 4.94 0.006 0.0004 Bal. 29.2 0.01 2.75 0.008 0.15 4.88 0.004 0.0005 Bal. 29.2 0.01 0.002	C Si Mn P S Ni Cr Nb Ta AI 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.8 0.9 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.01 1.73 0.9 0.011 0.09 4.72 0.005 0.0004 Bal. 28.8 0.02 1.9 0.9 0.011 0.1 4.72 0.005 0.0004 Bal. 28.8 0.02 2.57 0.9 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.005 3.05 0.9 0.008 0.11 4.94 0.006 0.0004 Bal. 29.2 0.01 2.75 0.9 0.008 0.15 4.88 0.004 0.0005 Bal. 29.2 0.01 0.002 0.9	C Si Mn P S Ni Cr Nb Ta AI Ti 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.8 0.9 0.7 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.01 1.73 0.9 0.7 0.011 0.09 4.72 0.005 0.0004 Bal. 28.8 0.02 1.9 0.9 0.7 0.011 0.1 4.72 0.005 0.0004 Bal. 28.8 0.02 2.57 0.9 0.7 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.02 2.57 0.9 0.7 0.008 0.11 4.94 0.006 0.004 Bal. 29.2 0.01 2.75 0.9 0.6 0.008 0.15 4.88 0.004 0.0055 Bal. 29.2 0.01 0.002 0.9	C Si Mn P S Ni Cr Nb Ta AJ Ti AH-Ti 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.8 0.9 0.7 1.6 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.01 1.73 0.9 0.7 1.8 0.011 0.09 4.72 0.005 0.0004 Bal. 28.8 0.02 1.9 0.9 0.7 1.6 0.011 0.1 4.72 0.005 0.0004 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 0.038 0.11 4.94 0.006 0.004 Bal. 29.2 0.01 2.75 0.9 0.6 1.5 0.008 0.15 4.89 <t< td=""><td>C Si Mn P S Ni Cr Nb Ta AJ Ti AH-Ti Fe 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.8 0.9 0.7 1.6 8.45 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.01 1.73 0.9 0.7 1.6 8.45 0.011 0.09 4.72 0.005 0.0004 Bal. 28.8 0.02 1.9 0.9 0.7 1.6 8.45 0.011 0.1 4.72 0.005 0.0004 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 8.45 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.002 2.57 0.9 0.4 0.44 8.78 0.008 0.11 4.94 0.006 0.0044 Bal. 29.2 0.01 2.75 0.9</td><td>C Si Mn P S Ni Cr Nb Ta Al Ti Al+Ti Fe N 0.011 0.09 4.7 0.005 0.004 Bal. 28.8 0.02 0.8 0.9 0.7 1.6 8.45 0.06 0.008 0.13 4.76 0.004 0.005 Bal. 29.2 0.01 1.73 0.9 0.7 1.6 8.45 0.06 0.011 0.09 4.72 0.005 0.004 Bal. 28.8 0.02 1.9 0.9 0.7 1.6 8.45 0.06 0.011 0.1 4.72 0.005 0.004 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 8.45 0.06 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 8.45 0.004 0.008 0.11 4.94 0.006 0.</td><td>C Si Mn P S Ni Cr Nb Ta AJ Ti Al+Ti Fe N O 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.8 0.9 0.7 1.6 8.45 0.006 0.003 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.01 1.73 0.9 0.7 1.6 8.45 0.006 0.002 0.011 0.09 4.72 0.005 0.004 Bal. 28.8 0.02 1.9 0.9 0.7 1.6 8.45 0.006 0.002 0.011 0.1 4.72 0.005 0.004 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 8.45 0.006 0.002 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.002 2.57 0.9 0.7 1.6 8.45 0.006</td></t<>	C Si Mn P S Ni Cr Nb Ta AJ Ti AH-Ti Fe 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.8 0.9 0.7 1.6 8.45 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.01 1.73 0.9 0.7 1.6 8.45 0.011 0.09 4.72 0.005 0.0004 Bal. 28.8 0.02 1.9 0.9 0.7 1.6 8.45 0.011 0.1 4.72 0.005 0.0004 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 8.45 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.002 2.57 0.9 0.4 0.44 8.78 0.008 0.11 4.94 0.006 0.0044 Bal. 29.2 0.01 2.75 0.9	C Si Mn P S Ni Cr Nb Ta Al Ti Al+Ti Fe N 0.011 0.09 4.7 0.005 0.004 Bal. 28.8 0.02 0.8 0.9 0.7 1.6 8.45 0.06 0.008 0.13 4.76 0.004 0.005 Bal. 29.2 0.01 1.73 0.9 0.7 1.6 8.45 0.06 0.011 0.09 4.72 0.005 0.004 Bal. 28.8 0.02 1.9 0.9 0.7 1.6 8.45 0.06 0.011 0.1 4.72 0.005 0.004 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 8.45 0.06 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 8.45 0.004 0.008 0.11 4.94 0.006 0.	C Si Mn P S Ni Cr Nb Ta AJ Ti Al+Ti Fe N O 0.011 0.09 4.7 0.005 0.0004 Bal. 28.8 0.02 0.8 0.9 0.7 1.6 8.45 0.006 0.003 0.008 0.13 4.76 0.004 0.0005 Bal. 29.2 0.01 1.73 0.9 0.7 1.6 8.45 0.006 0.002 0.011 0.09 4.72 0.005 0.004 Bal. 28.8 0.02 1.9 0.9 0.7 1.6 8.45 0.006 0.002 0.011 0.1 4.72 0.005 0.004 Bal. 28.8 0.02 2.57 0.9 0.7 1.6 8.45 0.006 0.002 0.033 0.11 2.83 0.001 0.0013 Bal. 28.8 0.002 2.57 0.9 0.7 1.6 8.45 0.006

【0027】次に、作製した溶加材5~12を用いて、 実施例1と同様のバレストレイン試験による溶接割れ評 価を行った。そして、各溶加材5~12中のTa含有量 と、バレストレイン試験によって発生した溶接割れ箇所 の割れ長さを合計した合計値との相関を調査した。

【0028】結果を図2に示す。同図より、Taを添加 することにより合計値が低下すること、及び、Ta含有 量の増加に伴って合計値が低下していくことが理解され る。

[0029]

【発明の効果】以上説明したように、本発明によれば、 耐溶接割れ感受性に優れたNi基高Cr合金用溶加材を 得ることができる。

【図面の簡単な説明】

【図1】 実施例1における合金中のSi含有量と溶接 割れ長さとの関係を示すグラフ図である。

【図2】 実施例2における合金中のTa含有量と溶接 20 割れ長さとの関係を示すグラフ図である。

【図1】

【図2】

フロントページの続き

(72)発明者 川口 聖一

兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内

(72)発明者 朝田 誠治

兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内

(72)発明者 三宅 孝司

兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内

(72)発明者 中島 宣降

兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内

(72)発明者 斉藤 貞一郎

静岡県浜北市中瀬7800番地 日本ウエルディング・ロッド株式会社技術研究所内

(72)発明者 小川 典仁

静岡県浜北市中瀬7800番地 日本ウエルディング・ロッド株式会社技術研究所内