南京工业大学大学物理 B-1 试题 (A) 卷答案

2015 - 2016 学年第 2 学期 使用班级 <u>物理 B 班级</u>

	· 选择题 (共20分)	
	1. (本题 2分)(3001) (D)	
	2. (本题 2分)(3072) (A)	
	3. (本题 2分)(3321) (C)	
	4. (本题 2分)(3165) (C)	
	5. (本题 2分)(3163) (C)	
	6. (本题 2分)(5531) (B)	
	7. (本题 2分)(3213) (D)	
	8. (本题 2分)(3368) (D)	
	9. (本题 2分)(4607) (D)	
	10. (本题 2分)(4619) (B)	
•	. 填空题 (共 34 分)	
	11. (本题 3分)(5390)	
	4.8 m/s^2	3分
	12. (本题 3分)(0351)	1 ()
	$mg/\cos\theta$	1分
	$\sin \theta \sqrt{\frac{gl}{\cos \theta}}$	2分
	13. (本题 3分)(0222)	2.4
	2 m/s	3分
	14. (本题 3 分)(0149) g/l	1分
	K / L	1 /]

2分

g/(2l)

15. (本题 3分)(1600) q / ε_0 1分 0 1分 1分 $-q/\mathcal{E}_0$ 16. (本题 3分)(1314) 3分 $\overline{16\pi^2\varepsilon_0 R^4}$ 17. (本题 4分)(1146) $1/\varepsilon_r$, $1/\varepsilon_r$ 18. (本题 3分)(1364) 3分 $\frac{1}{4\pi\varepsilon_0 R_2}$ 19. (本题 3分)(5667) $-\pi r^2 B \cos \alpha$ 3分 20. (本题 3分)(2600) 11.25 Am^2 3分 21. (本题 3分)(2584) 3分 aIB 三 计算题 (共40分) 22. (本题 6分)(5626) 解: (1) $a = \frac{dv}{dt} \Rightarrow \int_{v_0}^{v} dv = \int_0^t a dt = \int_0^t (6t - 8) dt$ $\Rightarrow v - v_0 = 3t^2 - 8t \Rightarrow v = 3t^2 - 8t + 10 \quad (m/s)$, $3 \implies$ (2) $v = \frac{dx}{dt} \Rightarrow \int_{x_0}^{x} dx = \int_{0}^{t} v dt = \int_{0}^{t} (3t^2 - 8t + 10) dt$ $\Rightarrow x - x_0 = t^3 - 4t^2 + 10t \Rightarrow x = t^3 - 4t^2 + 10t + 1$ (m) 23. (本题 6分)(0831)

解:根据牛顿第二定律,小物体尚在球面上时,

$$mg\cos\theta - N = mv^2/R$$

1分

小物体脱离球面时刻,N=0,因而有

$$mg\cos\theta=mv^2/R$$

(1)

2 分

由机械能守恒定律,得

$$\frac{1}{2}mv^2 = mgR(1-\cos\theta)$$

2

2分

①、②联立解得

$$\cos\theta = 2/3$$
$$\theta = \cos^{-1}(2/3)$$

1分

24. (本题 8分)(1373)

. 解:

合力:
$$F = F_{CD} - F_{EF} = \frac{\mu_0 I_2 I_1 b}{2\pi} \frac{a}{d(d+a)}$$
, 方向 \leftarrow 。 1 分

25. (本题 8分)(1539)

解: (1) 设内、外球壳分别带电荷为+Q和-Q,则两球壳间的电位移大小为

$$D = \frac{Q}{4\pi r}$$
 场强大小为
$$E = \frac{Q}{4\pi \varepsilon_0 \varepsilon_r r^2}$$
 2 分

两球壳间电势差
$$U_{12} = \int_{R_1}^{R_2} \vec{E} \cdot d\vec{r} = \frac{Q}{4\pi\varepsilon_0\varepsilon_r} \int_{R_1}^{R_2} \frac{dr}{r^2}$$
$$= \frac{Q}{4\pi\varepsilon_0\varepsilon_r} (\frac{1}{R_1} - \frac{1}{R_2}) = \frac{Q(R_2 - R_1)}{4\pi\varepsilon_0\varepsilon_r R_1 R_2}$$
2 分

 $C = \frac{Q}{U_{12}} = \frac{4\pi\varepsilon_0\varepsilon_r R_1 R_2}{R_2 - R_1}$ 2 \(\frac{\partial}{2}\)

(2) 电场能量
$$W = \frac{CU_{12}^2}{2} = \frac{2\pi\varepsilon_0\varepsilon_r R_1 R_2 U_{12}^2}{R_2 - R_1}$$
 2 分

26. (本题 6分)(5131)

电容

解: 子弹和细杆的碰撞过程中, 子弹和细杆组成的系统角动量守恒:

$$mv_0 \cdot \frac{l}{2} = [m \cdot (\frac{l}{2})^2 + \frac{1}{12}ml^2]\omega$$
 4 \(\frac{l}{2}\)

解以上方程得: $\omega = \frac{3v_0}{2l}$ 2分

27. (本题 6分)(4505)

$$E = 4\int_0^{\frac{\theta}{2}} \frac{\lambda ds}{4\pi\varepsilon_0 R^2} \cos\theta = 4\int_0^{\frac{\theta}{2}} \frac{\lambda d\theta}{4\pi\varepsilon_0 R} \cos\theta$$

$$= \frac{\lambda}{\pi\varepsilon_0 R} \sin\frac{\theta}{2}$$

U=0 2分

四 回答问题 (共 6分)

28. (本题 2分)(3060)

答: 合外力矩为零,转动惯量减小,根据角动量守恒,角速度要增加。

29. (本题 2分)(3435)

答: 在这一问题中动量守恒,
$$m_{\downarrow}v_{\downarrow}+m_{\scriptscriptstyle\mathrm{fi}}v_{\scriptscriptstyle\mathrm{fi}}=0$$
,则 $v_{\downarrow}-v_{\scriptscriptstyle\mathrm{fi}}=(1+\frac{m_{\downarrow}}{m_{\scriptscriptstyle\mathrm{fi}}})v_{\downarrow}$,人相

4分

对于地面速度一定时,船的质量越大,人相对于船的速度越小,则人越容易上岸, 所以人从大船上容易上岸,而从小舟上不容易跳上岸。

30. (本题 2分)(5213)

答: 静电屏蔽使得鸟笼是一个等势体, 因此其中的鸟是安全的。