Haorui Zhang

9/12/2021

CS 453

1.

- a. The number of $V(C_n * C_n) = n * n$
- b. To prove that $C_n * C_n$ is a 4-regular graph, we need to show that for any vertex (a, b) of the graph $C_n * C_n$, (a, b) is adjacent to exactly other four vertices. For two vertices (a, b) and (c, d) be adjacent in $C_n * C_n$, either a = c and b is adjacent to d, or b = d and a is adjacent to c. Since the C_n is a cycle, it is a 2-regular graph, and each vertex is adjacent to vertices next to it. For $C_n * C_n$, each vertex in G_1 is adjacent to the vertices which the corresponding vertex in G_2 is adjacent to, which is another 2 vertices. Therefore, $C_n * C_n$ is a 4-regular graph for $n \ge 3$
- c. Number of edges in $C_n=n$, and number of edges of $C_n*C_n=n*n+n*n=2n^2$.

2.

a. Assume $G=(V_1,E_1)$ is a n-regular graph and $H=(V_2,E_2)$ is a m-regular graph, then $G*H=(V_1*V_2,E)$. $E=\{(v_1,v_2)(u_1,u_2)|\ (v_1=u_1\ and\ v_2u_2\in E_2)or(v_2=u_2\ and\ v_1u_1\in E_1)\}$. So for (v_1,v_2) , there are m edges from E_2 and n edges from E_1 . Therefore, G*H is a (n+m)-regular graph.

3.

a.

b.

W has 4-degree.

4.

a. Since W has a length of k and W' has a length of k+1, for any $k \ge 1$, it means that W' always has one more vertex connects in the walk than W, which means the graph contains loop or cycle. Therefore, G can not have a longest walk.

b. A path is a walk does not repeat a vertex. Therefore, if W is a walk in the graph G has length of k, which is larger than b the upper bound length of path in G, it means W must contains one or more repeated nodes since the path does not contain repeat nodes and b is the length of walk that does not contain repeat nodes.