# STUDY SUB-NANOMETER MEMBRANE FLUCTUATIONS IN SINGLE CELLS USING A PLASMONIC IMAGING MICROSCOPE

#### A THESIS BY SURAJ KHOCHARE

**Committee Members:** 

- 1) Dr. Xiaonan Shan (Committee Chair), UH ECE
- 2) Dr. Wei-Chuan Shih, UH ECE
- 3) Dr. Ashutosh Agrawal, UH Mech
- 4) Dr. David Mayerich, UH ECE

#### **Outline:**

- 1. Background
- 2. Surface Plasmon Resonance Imaging
- 3. Sub-Nanometer Membrane Fluctuations
- 4. Cell Heterogeneity
- 5. Cell Metastasis
- 6. Conclusion
- 7. Future Scope

# Background

#### **World Health Organization Report**



# According to a survey by American Cancer Society in 2017,

- <u>15.5 million Americans</u> with a history of cancer were alive on January 1, 2016.
- Around <u>1.6 million</u> people were expected to be diagnosed with cancer in 2017 (excluding the ones with non-invasive cancer).
- Around <u>0.5 million</u> were expected to die of cancer in 2017 (1650 people per day).

Do we know the reason for cancer? | If not, can we study cancer cells? | Can we find a remedy?

#### Introduction to Membrane Fluctuations:

#### **Cause of Cell Membrane Fluctuations**

Extracellular Fluid

Surface protei

Alpha-Helix protein

, Glycoprotein

#### Structure of a Biological Cell



- ✓ Live cells undergo continuous <u>active processes</u>.
- ✓ Ex. :- Metabolism, Metastasis, Mitosis, etc.



Integral protein

(Globular protein)

Filaments of

cytoskeleton

Protein channel

(transport protein)

Peripherial protein

Globular protein

#### Active fluctuations:

Hydrophobic tail:

✓ Cross-membrane iontransport.

Hydrophilic heads

Phospholipid

molecule

Phospholipid bilayer

- ✓ Cell structure
- Endocytosis and Exocytosis

# **Techniques to Image Membrane Fluctuations:**





# Our Approach: Surface Plasmon Resonance Imaging

Sensitive only to bottom membrane

- Image only the bottom cell membrane.
- High sensitivity in z-direction, less distortion.

High Sensitivity : Sub-nanometer Membrane Fluctuations

- Study metabolism.
- Study metastasis.

Single Cells

- Study fundamental properties.
- Study cell heterogeneity.

# Principle of Surface Plasmon Resonance (SPR) Imaging







**SPR Angle** 



**SPR Response** 

# **Live Cell Imaging Using SPR**





Transmitted Image





SPR Image

# Mapping Reflected Light Intensity to Distance from Substrate







Calibration Curve

#### Simulation Model

Layer 5 Cytoplasm

Layer 4 Cell Membrane

Layer 3 Culture Medium

Layer 2 Au

Layer 1 BK7



# Imaging the Sub-nanometer Membrane Fluctuations



# **Analyse Sub-Nanometer Membrane Fluctuations**



- ✓ Image small yet swift movement.
- ✓ Distribution range for fluctuations.
- ✓ These movements may contribute to respiration, metabolism, active fluctuations and thermal fluctuations.

# Confirm Active Membrane Movement By Cell Fixation

Add Paraformaldehyde (4% in PBS)







**Record Entire Fixation Process** 

- Membrane Fluctuations: Brownian or Active?
- Highly concentrated dose kills the cells.
- Therefore, expect no membrane fluctuations.
- This confirms that we image active movement.

## **Quick Review**













# **Cell Heterogeneity**







- ✓ Characteristics of a population may not reflect characteristics of an individual cell.
- ✓ Different cells are at different stages of growth at a given time point.
- ✓ **Factors Involved:** Environmental Conditions, Genetic Variations, interaction with the surrounding.

#### **Intra-Cell Correlation and Differences**

HeLa Cells







HT-1080 Cells



- ✓ Center is more active than edges.
- ✓ Observe energy expenditure.

# **Intra-Cell Transient Heterogeneity**

HeLa Cells



- Analyse sub-regions ( $5 \times 5 \mu m$ ).
- Transient heterogeneity.
- Related to active processes.









# **Long Duration Cell Membrane Movement**

(Scale Bar = 10  $\mu$ m)



- ✓ We see a <u>collective movement</u> (10's of nanometers) as we record for longer time.
- ✓ This can be related to <u>physiological processes</u> like metastasis.
- ✓ Do they have a correlation with the sub-nanometer membrane fluctuations?

#### Relation Between Membrane Movement and Sub-nanometer Fluctuations



#### **Cell Metastasis**



HT-1080



Wound Healing Assay



- ✓ HT-1080: Human Fibrosarcoma Cell Line.
- ✓ Highly active cell membrane fluctuations.

#### **Membrane Movement in Metastatic Cells**

Bright-Field Image



SPR Image







Displaced Area  $\alpha$  Membrane Movement

### **Conclusion:**

- ✓ Live cell imaging of cell bottom membrane with high resolution in z-direction and less noise.
- ✓ Imaging the cell membrane fluctuations important to study metabolism.
- ✓ We observe heterogeneity in cells which corresponds to multiple factors.
- ✓ Enable to analyse metabolic response of a cell during anti-cancer drug treatments.
- ✓ Cell metastasis can be evaluated based on membrane fluctuations to some extent.

#### **Future Plan**

1) Using membrane fluctuations as a characteristics to study metabolic activities at single cell

level.



2) Analyse response of cells to anti-cancer drugs targeting active processes.

