Blockchains with Virtualchain Extending Existing

Ryan Shea[†], Michael J. Freedman* Jude Nelson*, Muneeb Ali*†,

Pretend cryptocurrencies do not exist

What's in a Proof-of-Work Blockchain?

- Total ordering of writes
- "Stable" view ordering (*)
- Append-only
- 100% replicated
- Tamper-resistant
- Anyone can write
- Fixed growth rate (pay-to-play)
- Hard to upgrade once deployed

Distributed Applications and Blockchains

- Replicated state machines (RSMs) on top?
- Strategy: store input history

Advantages

- Open app membership
- Survive total app failure
- Blockchain-agnostic
- App-agnostic

Challenges

- Blockchain failure
- Goes offline
- "Centralization" attacks
- Blockchain forks
- Data loss
- Chain reorganization

Virtualchain

- Fork*-consistent RSMs on existing blockchains
- Fork detection & recovery
- Cross-chain migration

Fork*-Consistency (Li & Maziéres, NSDI'07)

RSMs in "fork sets"

 $FS_a = \{1, 2, 3, 4, 6\}$

Fork set shares history

Partition after fork detection

တ် Divergent state RSM, RSM, block n Nakamoto Consensus Creates Fork Sets block n'-1 block n-1 RSM, RSM₁ block n-2 Conflicting writes Multiple leaders block n-3

Reorganizations Create Fork Sets

- Conflicting TXs discarded
- Accepted TXs re-ordered

Solution: Consensus Hashes

- In-band app-level consensus
- Used for:
- Identifying fork sets (multiplexing)
- Fork detection and recovery
- Blockchain migration
- Lightweight fork set selection

Consensus Hash Construction

- CH(n): cryptographic hash
- Covers **state transition history** ("journal")

In-band Consensus

Fork sets: agree on CH(n) for all n

Client: embed latest CH in input TX

Obtained from preferred fork set

Server: consider TX only if CH is "recent" "Send/ACK" with K-block timeout

Lightweight Fork Set Selection

Given CH(n), search for characteristic state transitions

Dealing with Blockchain Forks

- Most forks are short-lived
- Avoid with "confirmations"
- Long-lasting forks are rare
- But widely noticed!
- Due to bugs or attacks

Fork/Reorganization Detection

- Continuously audit CH history
- Alert on disagreement

Joining Fork Sets

CH(n)'s journal

- Last "valid" CH(n)
- Host CH(n)'s journal off-chain
- Fetch and verify with CH(n)

Cross-chain Migration

Trusted MIGRATE

Bootstrap for

from blockchain 1

CH(b)'s journal

J ends on blockchain 1. Final RSM state is $S_{{\scriptscriptstyle I},b}$

block b

On Centralization, Trust, and Cryptocurrencies

- Already trust RSM author
- Use CHECKPOINT, MIGRATE judiciously
- Ignore with no loss of security
- Cryptocurrency: RSM input rate-limiter
- RSMs becoming key use-case
- Cloud market is >10x more valuable

Example: Bitcoin OP_RETURN Usage

Source: Harry Kalodner

Concluding Remarks

- In production for >1 year in Blockstack
- https://github.com/blockstack/blockstack-virtualchain
- Ali, Nelson, Shea, Freedman (ATC'16)
- Migrated from Namecoin to Bitcoin

Thank you! Questions?