Lógica Computacional

Tarea 1

PCIC - UNAM

25 de febrero de 2020

Diego de Jesús Isla López

(dislalopez@gmail.com) (diego.isla@comunidad.unam.mx)

Problema 2.9

Demostrar:

$$\models ((A \land B) \rightarrow C) \rightarrow ((A \rightarrow C) \lor (B \rightarrow C))$$

Esta fórmula puede parecer extraña ya que puede malinterpretarse como decir que si C se sigue de $A \wedge B$, entonces se sigue de A o de B. Para clarificar esto, mostrar que:

$${A \land B \to C} \models (A \to C) \lor (B \to C),$$

pero:

$${A \land B \to C} \not\models A \to C,$$

 ${A \land B \to C} \not\models B \to C,$

Demostración. Por tableau semántico en la negación de la fórmula:

1.
$$\neg(((A \land B) \to C) \to ((A \to C) \lor (B \to C)))$$
 Negación
2.
$$(A \land B) \to C, \neg((A \to C) \lor (B \to C))$$

$$\alpha \to$$

3.
$$(A \land B) \to C, \neg(A \to C), \neg(B \to C)$$

$$\alpha \to$$

4.
$$(A \land B) \to C, \neg(A \to C), B, \neg C$$

$$\alpha \to$$

5.
$$(A \land B) \to C, A, \neg C, B, \neg C$$

$$\alpha \to$$

6.
$$\neg(A \land B), A, \neg C, B, \neg C$$

$$C, A, \neg C, B, \neg C$$

$$\beta \to$$

7.
$$\neg A, A, \neg C, B, \neg C$$

$$\neg B, A, \neg C, B, \neg C$$

$$\beta \to$$

Problema 3.2

Demostrar que si $\vdash U$ en \mathscr{G} entonces existe un tableau semántico cerrado para \bar{U} .

Demostración. Sea T un tableau semántico (t.s.) para U. Por inducción en la altura h de T:

Si h = 0, entonces U consta de un solo par complementario de literales y, por lo tanto, también \bar{U} . Por lo tanto, el tabelau semántico para \bar{U} es cerrado.

Si h > 0, entonces se aplicó alguna α -fórmula o β -fórmula en la raíz de T. Se sigue la demostración por casos.

Caso 1. Se aplicó una α -fórmula como A tal como $A_1 \wedge A_2$ que corresponde a A_1, A_2 . Entonces, $U = U_1 \cup U_2 \cup \{A\}$, donde $\vdash U_1 \cup \{A_1\}$ y $\vdash U_2 \cup \{A_2\}$. Por hipótesis de inducción, los complementos $\bar{U}_1 \cup \{\bar{A}_1\}$ y $\bar{U}_2 \cup \{\bar{A}_2\}$ tienen tableaux cerrados. Por el teorema de robustez (soundness) de t.s., estos conjuntos son insatisfactibles. Entonces, se sigue que sus superconjuntos $\bar{U}' = \bar{U}_1 \cup \bar{U}_2 \cup \{A_1\}$ y $\bar{U}'' = \bar{U}_1 \cup \bar{U}_2 \cup \{A_2\}$ también son insatisfactibles. Si tomamos $\bar{A} = \bar{A_1} \vee \bar{A_2}$, podemos ver que constituye una β -fórmula. Por regla de tableau, \bar{U} se expande en dos hojas \bar{U}' y \bar{U}'' . Dado que ambas hojas son insatisfactibles y tienen tableaux cerrados, \bar{U} también los tiene.

■ Caso 2. Se aplicó una β -fórmula B tal como $B_1 \vee B_2$ que corresponde a B_1, B_2 . Entonces, $U = U_1 \cup \{B\}$ donde $\vdash U' = U_1 \cup \{B_1, B_2\}$. Por hipótesis de inducción, el complemento $\bar{U}' = \bar{U}_1 \cup \{B_1, B_2\}$ tiene un tableau cerrado. Tomando $\bar{B} = \bar{B}_1 \wedge \bar{B}_2$, vemos que corresponde a una α -fórmula. Por regla de tableau, se expande \bar{U} a \bar{U}' . Dado que \bar{U}' tiene un tableau cerrado, \bar{U} también lo tiene.

Problema 3.9

Demostrar en \mathcal{H} :

$$\vdash A \to A \lor B,$$

$$\vdash B \to A \lor B,$$

$$\vdash (A \to B) \to ((C \lor A) \to (C \lor B))$$

Demostración. Por reglas de Hilbert:

1.	$\{A \to B, \neg C \to A, \neg C\} \vdash \neg C \to A$	Suposición
2.	$\{A \to B, \neg C \to A, \neg C\} \vdash \neg C$	Suposición
3.	$\{A \to B, \neg C \to A, \neg C\} \vdash A$	M.P. 1,2
4.	$\{A \to B, \neg C \to A, \neg C\} \vdash A \to B$	Suposición
5.	$\{A \to B, \neg C \to A, \neg C\} \vdash B$	M.P. 3,4
6.	$\{A \to B, \neg C \to A\} \vdash \neg C \to B$	Deducción en 5
7.	$\{A \to B\} \vdash (C \lor A) \to (C \lor B)$	Deducción en 6

Problema 3.12

Demostrar que el axioma 2 de ${\mathscr H}$ es válido construyendo un tableau semántico para su negación.

Demostración. Por tableau semántico en la negación de la fórmula:

1.
$$\neg((A \to (B \to C)) \to ((A \to B) \to (A \to C)))$$
 Negación
2.
$$A \to (B \to C), \neg((A \to B) \to (A \to C))$$

$$\alpha \to$$
3.
$$A \to (B \to C), A \to B, \neg(A \to C)$$

$$\alpha \to$$
4.
$$A \to (B \to C), A \to B, A, \neg C$$

$$\alpha \to$$
5.
$$\neg A, A \to (B \to C), A, \neg C$$

$$B, A \to (B \to C), A, \neg C$$

$$\beta \to$$
6.
$$\neg A, \neg A, A, \neg C$$

$$B \to C, \neg A, A, \neg C$$

$$B, \neg A, A, \neg C$$

$$B \to C, \neg A, A, \neg C$$

$$\beta \to$$
7.
$$\neg B, \neg A, A, \neg C$$

$$C, \neg A, A, \neg C$$

$$\neg B, B, A, \neg C$$

$$C, B, A, \neg C$$

$$\beta \to$$