

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For

Body worn, Cellular and GNSS enabled MPERS

FCC ID: 2AGPI-EC21A Model Names: MA01 and ANH0318-01

Report Number: 12040492-S1V3 Issue Date: 6/28/2018

Prepared for
Anelto Inc.
6270 Morningstar Drive
Suite 100
The Colony, TX 75056

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Date	Revisions	Revised By
V1	6/19/2018	Initial Issue	
V2	6/26/2018	Section 1 – Corrected equipment class	Dave Weaver
V3	6/28/2018	Section 6.3 – Corrected 'Appendix 1' to 'Appendix A'	Dave Weaver

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	6
4.	SAR Measurement System & Test Equipment	7
4.1	SAR Measurement System	7
4.2	2. SAR Scan Procedures	8
4.3	3. Test Equipment	10
5.	Measurement Uncertainty	10
6.	Device Under Test (DUT) Information	11
6.1	DUT Description	11
6.2	?. Wireless Technologies	11
6.3	3. Test Rational	11
6.4	4. General LTE SAR Test and Reporting Considerations	12
7.	RF Exposure Conditions (Test Configurations)	13
8.	Dielectric Property Measurements & System Check	14
8.1	. Dielectric Property Measurements	14
8.2	System Check	16
9.	Conducted Output Power Measurements	17
9.1	. W-CDMA	17
9.2	P. LTE	23
10.	Measured and Reported (Scaled) SAR Results	30
10.	2. W-CDMA Band II	31
10.	.3. W-CDMA Band IV	31
10.	.4. W-CDMA Band V	31
10.	.5. LTE Band 2 (20MHz Bandwidth)	32
10.	.6. LTE Band 4 (20MHz Bandwidth)	32
10.	.7. LTE Band 12 (10MHz Bandwidth)	32
11.	SAR Measurement Variability	33
12.	Simultaneous Transmission SAR Analysis	33
Appe	endixes	34
120	040492-S1V1 Appendix A: SAR Setup Photos	34
	040492-S1V1 Appendix B: SAR System Check Plots	
	Page 3 of 34	

12040492-S1V1 Appendix C: Highest SAR Test Plots	34
12040492-S1V1 Appendix D: SAR Liquid Tissue Ingredients	34
12040492-S1V1 Appendix E: SAR Probe Calibration Certificate	34
12040492-S1V1 Appendix F: SAR Dipole Calibration Certificates	34

1. Attestation of Test Results

Applicant Name	Anelto Inc.					
FCC ID	2AGPI-EC21A					
Model Name	MA01 and ANH031	MA01 and ANH0318-01				
Applicable Standards	FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013					
		SAR Lim	its (W/Kg)			
Exposure Category	Peak spatial-average(1g of tissue)		Extremities (hands, wrists, ankles, etc.) (10g of tissue)			
General population / Uncontrolled exposure	1.	6	4			
DE Evenouse Conditions	Equipment Class - Highest Reported SAR (W/kg)					
RF Exposure Conditions	PCB	DTS	NII	DSS		
Next to Mouth	0.376					
Body-worn	1.393 N/A		N/A	N/A		
Simultaneous TX	N/A					
Date Tested	5/14/2018 to 5/19/2018					
Test Results	Pass					

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:
A.	Celle Sul
Dave Weaver	Coltyce Sanders
Operations Leader	Test Engineer
UL Verification Services Inc.	UL Verification Services Inc.

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- o 941225 D05 SAR for LTE Devices v02r05
- o 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	
SAR Lab F	
SAR Lab G	
SAR Lab H	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution is x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			≤3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	lution, hantom graded grid 1^{st} two points clos to phantom surface $\Delta z_{Zoom}(n>1)$:	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
		between subsequent	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	can x, y, z $\geq 30 \text{ mm}$ $4-5 \text{ GHz: } \geq 2$		$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40001647	9/15/2018
Dielectric Probe kit	SPEAG	DAK-3.5	1087	11/14/2018
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	11/14/2018
Thermometer	Traceable Calibration Control Co.	4242	122529162	12/8/2018

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	Agilent	N5181A	MY50140610	5/31/2018
Power Meter	Agilent	N1912A	MY5519600	7/14/2018
Power Sensor	Agilent	N1912A	MY52260009	1/8/2019
Power Sensor	Agilent	N1912A	MY53020038	4/23/2019
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795093	N/A
Directional coupler	Werlatone	C8060-102	2149	N/A
DC Power Supply	HP	6296A	2841A-05955	N/A

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
E-Field Probe (SAR Lab G)	SPEAG	EX3DV4	3871	8/23/2018
Data Acquisition Electronics (SAR Lab G)	SPEAG	DAE4	1359	2/9/2019
System Validation Dipole	SPEAG	D750V3	1019	3/16/2019
System Validation Dipole	SPEAG	D835V2	4d142	10/12/2018
System Validation Dipole	SPEAG	D1750V2	1077	10/5/2018
System Validation Dipole	SPEAG	D1900V2	5d163	10/5/2018

Other

Name of Equipment	Manufacturer	Type/Model	T Number	Serial No.	Cal. Due Date
Base Station Simulator	R&S	CMW500	T1871	165411-Ci	2/19/2019

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

	MA01		ANH0318-01
Device Dimension	(Length x Width x Heig	ht): 74 mm x 47.5 mm x 21.5	(Length x Width x Height): 73 mm x 47 mm x 18 mm
Back Cover	Normal Battery Cover		
Battery Options	⊠ Standard – Lithium-p	oolymer battery, Rating 3.7Vdc, 2.8	3Wh
Wireless Router (Hotspot)	Not Supported		
Wi-Fi Direct	Not Supported		
	S/N	IMEI	Notes
Test sample information	SMS000106	861108033412825	Conducted Unit
	Photon	N/A	Radiated Unit
Hardware Version	Rev 2		
Software Version	V5.10		

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating Mode	Duty Cycle used for SAR testing
W-CDMA (UMTS)	Band II Band IV Band V	UMTS Rel. 99 (Voice & Data) HSDPA (Rel. 5) HSUPA (Rel. 6) DC-HSDPA (Rel. 9)	100%
LTE	FDD Band 2 FDD Band 4 FDD Band 12	QPSK UE Category 1 16QAM UE Category 1 Rel. 10 Does not support Carrier Aggregation (CA)	100% (FDD)
	Does this device support SV-L	TE (1xRTT-LTE)? □ Yes ⊠ No	

6.3. Test Rational

The DUT is available in two models: MA01 and ANH0318-01. Each model uses the same PCB assembly and antenna. The only difference between the models is the plastic enclosure. The overall dimensions of ANH0318-01 are smaller than MA01. The MA01 is slightly narrower at one end but this is at the opposite end to the antenna location. SAR testing was performed only on ANH0318-01 as this was deemed to be the worst case scenario. Refer to Appendix A for images of the devices.

General LTE SAR Test and Reporting Considerations 6.4.

Item	Description									
			Fre	quency rang	ge: 1850 - 1	910 M	Hz			
	Band 2	Channel Bandwidth								
		20 MHz	15 MHz	10 MHz	5 MH	z	3 MHz	1.4 MHz		
		18700	18675/	18650/	18625	5/	18615/	18607/		
	Low	/1860	1857.5	1855	1852.	.5	1851.5	1850.7		
	Mid	18900/	18900/	18900/	18900	0/	18900/	18900/		
	Mid	1880	1880	1880	1880)	1880	1880		
	High	19100/	19125/	19150/	1917	5/	19185/	19193/		
	riigii	1900	1902.5	1905	1907.	.5	1908.5	1909.3		
			Fre	quency rang	ge: 1710 - 1	755 M	Hz			
	Band 4			Channe	el Bandwidth	h				
		20 MHz	15 MHz	10 MHz	5 MH	z	3 MHz	1.4 MHz		
Frequency range, Channel Bandwidth,	Low	20050/	20025/	20000/	19975	5/	19965/	19957/		
	Low	1720	1717.5	1715	1712.	.5	1711.5	1710.7		
Numbers and Frequencies	Mid	20175/	20175/	20175/	2017	5/	20175/	20175/		
	iviiu	1732.5	1732.5	1732.5	1732.		1732.5	1732.5		
	High	20300/	20325/	20350/	20375	5/	20385/	20393/		
	riigii	1745	1747.5	1750	1752.		1753.5	1754.3		
			Fr	equency rar	ige: 699 – 7	16 MH	lz			
	Band 12			Channe	el Bandwidth	h				
		20 MHz	15 MHz	10 MHz	5 MH	z	3 MHz	1.4 MHz		
	1			23060/	23035	5/	23025/	23017/		
	Low			704	701.5	5	700.5	699.7		
	NA: al			23095/	23095	5/	23095/	23095/		
	Mid			707.5	707.5	5	707.5	707.5		
	High			23130/	2315	5/	23165/	23173/		
	riigii			711	713.5	5	714.5	715.3		
LTE transmitter and antenna	Defende Ann	A								
implementation	Refer to App	enaix A.								
·	-			5 1 <i>i</i> : <i>i</i>	MDD) (D		01 4 0			
	lable	6.2.3-1: Maxi	mum Power I	Reduction (MPR) for P	ower	Class 1, 2 a	nd 3		
	Modulat	ion C	hannel bandwi	dth / Transm	ission band	width	(N _{RB})	MPR (dB)		
		1.4	3.0			15	20			
	OBCK	MHz	MHz			1Hz	MHz	- 4		
	QPSK 16 QAN		> 4 ≤ 4			· 16 : 16	> 18 ≤ 18	≤ 1 ≤ 1		
	16 QAI		> 4			· 16	> 18	≤ 2		
Maximum power reduction (MPR)	64 QAI	Λ ≤ 5	≤ 4	≤ 8 ≤	≤ 12 ≤	16	≤ 18	≤ 2		
	64 QAI		> 4		> 12 >	16	> 18	≤ 3		
	256 QA	M		≥ 1				≤ 5		
	MPR Built-in	by design								
		cturer MPR va	lues are alway	s within the	3GPP mavi	imum I	MPR allowa	nce hut may		
		e default MPR	•	w.u.iii u ic	JOI I IIIdAI	uiii l	··· i allowal	100 but may		
		litional MPR) v	as disabled d	uring SAR te	esting					
Power reduction	No									
	A properly c	onfigured base	station simul	ator was use	ed for the SA	AR and	d power mea	surements;		
Spectrum plots for RB configurations	therefore, sp	ectrum plots f	or each RB all	ocation and	offset config	guratio	n are not inc	cluded in the		
	SAR report.	•			`					
	омп терип.									

- SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI). LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna location.

Wireless technologies	RF Exposure Conditions	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	Note
	Next to Mouth	10 mm	Front	N/A	Yes	
			Rear	N/A	Yes	
			Front	N/A	Yes	
WWAN	Pody worn	0 mm	Edge 1 (Top)	> 25 mm	No	1
	Body-worn	O IIIIII	Edge 2 (Right)	< 25 mm	Yes	
			Edge 3 (Bottom)	< 25 mm	Yes	
			Edge 4 (Left)	< 25 mm	Yes	

Notes:

^{1.} SAR is not required per KDB 447498 D01 §4.2.2 c).

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	H	lead	Во	ody
raiget i requeitey (Miriz)	$\epsilon_{\rm r}$	σ (S/m)	ε_{r}	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR		Band	Tissue	Frequency	Relat	ve Permittivi	ty (er)	С	onductivity (σ)
Lab	Date	(MHz)	Туре	(MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)
				1900	40.44	40.00	1.10	1.45	1.40	3.79
G	5/14/2018	1900	Head	1710	40.73	40.15	1.45	1.33	1.35	-1.59
				1920	40.42	40.00	1.05	1.46	1.40	4.43
				1900	53.63	53.30	0.62	1.57	1.52	3.42
G	5/14/2018	1900	Body	1710	53.79	53.54	0.46	1.42	1.46	-2.57
				1920	53.60	53.30	0.56	1.58	1.52	4.01
				835	42.85	41.50	3.25	0.94	0.90	4.03
G	5/14/2018	835	Head	695	43.25	42.24	2.38	0.89	0.89	-0.28
				905	42.60	41.50	2.65	0.96	0.97	-1.08
				835	54.66	55.20	-0.98	0.98	0.97	0.74
G	5/14/2018	835	Body	695	55.05	55.76	-1.27	0.92	0.96	-3.91
				905	54.51	55.00	-0.89	1.00	1.05	-4.61
				1900	39.91	40.00	-0.23	1.43	1.40	2.43
G	5/17/2018	1900	Head	1710	40.17	40.15	0.06	1.31	1.35	-3.08
				1920	40.00	40.00	0.00	1.45	1.40	3.29
				1900	52.19	53.30	-2.08	1.57	1.52	3.09
G	5/17/2018	1900	Body	1710	52.28	53.54	-2.36	1.42	1.46	-3.12
				1920	52.20	53.30	-2.06	1.57	1.52	3.55
				835	42.09	41.50	1.42	0.92	0.90	2.24
G	5/17/2018	835	Head	695	42.63	42.24	0.91	0.87	0.89	-1.77
				905	41.91	41.50	0.99	0.94	0.97	-3.44
				835	53.18	55.20	-3.66	1.02	0.97	4.95
G	5/17/2018	835	Body	695	53.78	55.76	-3.55	0.96	0.96	-0.08
				905	53.08	55.00	-3.49	1.04	1.05	-1.00
				750	53.56	55.55	-3.58	0.98	0.96	1.83
G	5/17/2018	750	Body	695	53.78	55.76	-3.55	0.96	0.96	-0.08
				790	53.30	55.39	-3.78	0.99	0.97	2.35
				750	42.37	41.96	0.97	0.89	0.89	-0.05
G	5/18/2018	750	Head	695	42.63	42.24	0.91	0.87	0.89	-1.77
				790	42.13	41.76	0.89	0.90	0.90	0.75

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR	5.	Tissue	Dipole Type	Dipole	Me	easured Resul	ts for 1g SAR		Me	asured Result	ts for 10g SAR		Plot
Lab	Date	Туре	_Serial #	Cal. Due Data	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.
G	5/14/2018	Head	D750V3 SN:1019	3/16/2019	0.843	8.43	8.22	2.55	0.561	5.61	5.39	4.08	
G	5/14/2018	Body	D750V3 SN:1019	3/16/2019	0.835	8.35	8.76	-4.68	0.560	5.60	5.80	-3.45	
G	5/14/2018	Head	D835V2 SN:4d142	10/12/2018	1.010	10.10	9.64	4.77	0.670	6.70	6.22	7.72	1,2
G	5/14/2018	Body	D835V2 SN:4d142	10/12/2018	0.954	9.54	9.63	-0.93	0.635	6.35	6.27	1.28	
G	5/14/2018	Head	D1750V2 SN:1077	10/5/2018	3.650	36.50	36.26	0.66	1.970	19.70	19.34	1.86	
G	5/14/2018	Body	D1750V2 SN:1077	10/5/2018	3.650	36.50	37.34	-2.25	1.950	19.50	19.98	-2.40	3,4
G	5/14/2018	Head	D1900V2 SN:5d163	10/5/2018	4.020	40.20	38.77	3.69	2.110	21.10	20.10	4.98	
G	5/14/2018	Body	D1900V2 SN:5d163	10/5/2018	4.040	40.40	42.99	-6.02	2.110	21.10	21.97	-3.96	5,6
G	5/17/2018	Head	D750V3 SN:1019	3/16/2019	0.771	7.71	8.22	-6.20	0.512	5.12	5.39	-5.01	7,8
G	5/17/2018	Body	D750V3 SN:1019	3/16/2019	0.877	8.77	8.76	0.11	0.587	5.87	5.80	1.21	
G	5/17/2018	Head	D1750V2 SN:1077	10/5/2018	3.570	35.70	36.26	-1.54	1.920	19.20	19.34	-0.72	
G	5/17/2018	Body	D1750V2 SN:1077	10/5/2018	3.690	36.90	37.34	-1.18	1.960	19.60	19.98	-1.90	
G	5/17/2018	Head	D1900V2 SN:5d163	10/5/2018	3.860	38.60	38.77	-0.44	2.010	20.10	20.10	0.00	
G	5/17/2018	Body	D1900V2 SN:5d163	10/5/2018	4.510	45.10	42.99	4.91	2.340	23.40	21.97	6.51	
G	5/17/2018	Body	D835V2 SN:4d142	10/12/2018	0.978	9.78	9.63	1.56	0.648	6.48	6.27	3.35	

9. Conducted Output Power Measurements

9.1. W-CDMA

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA Conoral Sottings	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

	Mode	HSDPA	HSDPA	HSDPA	HSDPA		
	Subtest	1	2	3	4		
	Loopback Mode	Test Mode 1					
	Rel99 RMC	12.2kbps RMC					
	HSDPA FRC	H-Set 1					
\A\ OD\A\	Power Control Algorithm	Algorithm 2					
W-CDMA	βc	2/15	11/15	15/15	15/15		
General Settings	βd	15/15	15/15	8/15	4/15		
Settings	Bd (SF)	64					
	βc/βd	2/15	11/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	MPR (dB)	0	0	0.5	0.5		
	D _{ACK}	8			<u>.</u>		
	D _{NAK}	8					
HSDPA	DCQI	8					
Specific	Ack-Nack repetition factor	3					
Settings	CQI Feedback (Table 5.2B.4)	4ms					
	CQI Repetition Factor (Table 5.2B.4)	2					
	Ahs=βhs/βc	30/15					

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 6 procedures in table C,11.1.3 of 3GPP TS 34.121-1 A summary of these settings are illustrated below:

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

	Mode	HSPA						
	Subtest	1	2	3	4	5		
	Loopback Mode	Test Mode 1	•	•		•		
	Rel99 RMC	12.2 kbps RM	1C					
	HSDPA FRC	H-Set 1						
	HSUPA Test	HSPA						
	Power Control Algorithm	Algorithm 2				Algorithm 1		
WCDMA	βc	11/15	6/15	15/15	2/15	15/15		
General	βd	15/15	15/15	9/15	15/15	0		
Settings	βec	209/225	12/15	30/15	2/15	5/15		
	βc/βd	11/15	6/15	15/9	2/15	-		
	βhs	22/15	12/15	30/15	4/15	5/15		
	βed	1309/225	94/75	47/15	56/75	47/15		
	CM (dB)	1	3	2	3	1		
	MPR (dB)	0	2	1	2	0		
	DACK	8	•	1	1	0		
	DNAK	8				0		
HSDPA	DCQI	8	0					
Specific	Ack-Nack repetition factor	3						
Settings	CQI Feedback (Table 5.2B.4)	4ms						
	CQI Repetition Factor (Table 5.2B.4)	2						
	Ahs = βhs/βc	30/15						
	E-DPDCCH	6	8	8	5	0		
	DHARQ	0	0	0	0	0		
	AG Index	20	12	15	17	12		
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	67		
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9		
	Reference E-TFCIs	5	5	2	5	1		
	Reference E-TFCI	11	11	11	11	67		
HSUPA	Reference E-TFCI PO	4	4	4	4	18		
Specific	Reference E-TFCI	67	67	92	67	67		
Settings	Reference E-TFCI PO	18	18	18	18	18		
_	Reference E-TFCI	71	71	71	71	71		
	Reference E-TFCI PO	23	23	23	23	23		
	Reference E-TFCI	75	75	75	75	75		
	Reference E-TFCI PO	26	26	26	26	26		
	Reference E-TFCI	81	81	81	81	81		
	Reference E-TFCI PO	27	27	27	27	27		
	Maximum Channelization Codes	2xSF2	•		•	SF4		

DC-HSDPA Setup Procedures used to establish the test signals

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS34.108. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value		
Nominal .	Avg. Inf. Bit Rate	kbps	60		
Inter-TTI	Distance	TTI's	1		
Number (of HARQ Processes	Proces	6		
		ses	•		
Informati	on Bit Payload (N _{INF})	Bits	120		
Number (Code Blocks	Blocks	1		
Binary Cl	hannel Bits Per TTI	Bits	960		
	ailable SML's in UE	SML's	19200		
Number (of SML's per HARQ Proc.	SML's	3200		
Coding F			0.15		
Number (of Physical Channel Codes	Codes	1		
Modulatio			QPSK		
Note 1:	The RMC is intended to be used for	or DC-HSD	PA		
	mode and both cells shall transmit	with identi	ical		
parameters as listed in the table.					
Note 2: Maximum number of transmission is limited to 1,					
retransmission is not allowed. The redundancy and					
	constellation version 0 shall be use	ed.			

Inf. Bit Payload 120 CRC Addition 120 24 CRC Code Block Turbo-Encoding 12 Tail Bits 432 (R=1/3)1st Rate Matching 432 **RV** Selection 960 Physical Channel Segmentation 960

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 8 procedures in section 5.2 of 3GPP TS34.121. A summary of subtest settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subtest	1	2	3	4				
	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2kbps RMC	12.2kbps RMC						
	HSDPA FRC	H-Set 1							
MCDMA	Power Control Algorithm	Algorithm2							
WCDMA General	βс	2/15	11/15	15/15	15/15				
Settings	βd	15/15	15/15	8/15	4/15				
Settings	βd (SF)	64							
	βc/βd	2/15	12/15	15/8	15/4				
	βhs	4/15	4/15 24/15		30/15				
	MPR (dB)	0	0	0.5	0.5				
	DACK	8							
	DNAK	8							
HSDPA	DCQI	8							
Specific	Ack-Nack Repetition factor	3							
Settings	CQI Feedback	4ms							
	CQI Repetition Factor	2							
	Ahs = βhs/ βc	30/15	•	•	_				

W-CDMA Band II Measured Results

W-CDMA	-4114 11 1410			Maximum	n Averag	e Power
Mo	ode	UL Ch No.	Freq.		(dBm)	
	,40	OL OITHO.	(MHz)	Measured Pwr	Measured Pwr MPR Tune-up 18.07 18.10 N/A 18.50 18.10 17.10 0 18.50 17.10 17.10 0 18.50 17.20 17.10 0 18.50 17.20 16.60 16.60 18.00 16.60 16.60 0.5 18.00 16.60 16.60 18.00 18.50 16.70 17.01 0 18.50 17.28 15.12 16.50 16.50 15.12 15.55 2 16.50 15.12 15.55 2 16.50 15.82 17.01 17.10 0 18.50 17.28 17.01 0 18.50	Tune-up Limit
	Rel 99	9262	1852.4	18.07		
Release 99	(RMC, 12.2	9400	1880.0	18.10	N/A	18.50
	kbps)	9538	1907.6	18.10		
		9262	1852.4	17.10		
	Subtest 1	9400	1880.0	17.10	0	18.50
		9538	1907.6	17.20		
		9262	1852.4	17.10		
	Subtest 2	9400	1880.0	17.10	0	18.50
HSDPA		9538	1907.6	17.20		
113DFA		9262	1852.4	16.60		
	Subtest 3	9400	1880.0	16.60	0.5	18.00
		9538	1907.6	16.60		
		9262	1852.4	16.60		
	Subtest 4	9400	1880.0	16.60	0.5	18.00
		9538	1907.6	16.70		
		9262	1852.4	17.01		
	Subtest 1	9400	1880.0	17.10	0	18.50
		9538	1907.6	17.28		
		9262	1852.4	15.12		
	Subtest 2	9400	1880.0	15.55	2	16.50
		9538	1907.6	15.82		
		9262	1852.4	16.46		
HSUPA	Subtest 3	9400	1880.0	16.00	1	17.50
		9538	1907.6	16.50		
		9262	1852.4	15.12		
	Subtest 4	9400	1880.0	15.55	2	16.50
		9538	1907.6	15.82		
		9262	1852.4	17.01		
	Subtest 5	9400	1880.0	17.10	0	18.50
		9538	1907.6	17.28		
		9262	1852.4	17.10		
	Subtest 1	9400	1880.0	17.20	0	18.50
		9538	1907.6	17.10		
		9262	1852.4	17.10		
Subtest 2 9400		1880.0	17.20	0	18.50	
DC-HSDPA		9538	1907.6	17.10		
DO-HODEA		9262	1852.4	16.60		
	Subtest 3	9400	1880.0	16.70	0.5	18.00
		9538	1907.6	16.70		
		9262	1852.4	16.60		
	Subtest 4	9400	1880.0	16.70	0.5	18.00
		9538	1907.6	16.70		

W-CDMA Band IV Measured Results

W-CDIVIA	Band IV IV	leasured	<u>Results</u>			
			Freq.	Maximum		e Power
Mo	ode	UL Ch No.	(MHz)	Manager d Door	(dBm)	Torres our Lineau
	ı			Measured Pwr	MPR	Tune-up Limit
	Rel 99	1312	1712.4	17.87		
Release 99	(RMC, 12.2	1413	1732.6	17.91	N/A	19.00
	kbps)	1513	1752.6	17.97		
		1312	1712.4	17.00		
	Subtest 1	1413	1732.6	17.00	0	19.00
		1513	1752.6	17.10		
		1312	1712.4	17.00		
	Subtest 2	1413	1732.6	17.00	0	19.00
HSDPA		1513	1752.6	17.10		
_		1312	1712.4	16.50		
	Subtest 3	1413	1732.6	16.50	0.5	18.50
		1513	1752.6	16.50		
		1312	1712.4	16.50		
	Subtest 4	1413	1732.6	16.50	0.5	18.50
		1513	1752.6	16.60		
		1312	1712.4	16.97		
	Subtest 1	1413	1732.6	16.94	0	19.00
		1513	1752.6	17.00		
		1312	1712.4	15.43]	
	Subtest 2	1413	1732.6	15.49	2	17.00
		1513	1752.6	15.47		17.00
		1312	1712.4	16.26		
HSUPA	Subtest 3	1413	1732.6	16.23	1	18.00
		1513	1752.6	16.48		18.00
		1312	1712.4	15.43		
	Subtest 4	1413	1732.6	15.49	2	17.00
		1513	1752.6	15.47		
		1312	1712.4	16.97		
	Subtest 5	1413	1732.6	16.94	0	19.00
		1513	1752.6	17.00		
		1312	1712.4	17.00		
	Subtest 1	1413	1732.6	17.00	0	19.00
		1513	1752.6	17.10		
		1312	1712.4	17.00		
	Subtest 2	1413	1732.6	17.00	0	19.00
DC HCDD v		1513	1752.6	17.10		
DC-HSDPA		1312	1712.4	16.50		
	Subtest 3	1413	1732.6	16.50	0.5	18.50
		1513	1752.6	16.50		
		1312	1712.4	16.50		
	Subtest 4	1413	1732.6	16.50	0.5	18.50
		1513	1752.6	16.60		

W-CDMA Band V Measured Results

W-CDIMA	Band V Me	easured Re	esuits	Maximum	Avoros	o Dower
			Freq.	Waximum	ı Averag (dBm)	e Power
Mo	ode	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit
	Rel 99	4132	826.4	24.22		
Release 99	(RMC, 12.2	4183	836.6	24.23	N/A	25.00
	kbps)	4233	846.6	24.23		
		4132	826.4	23.40		
	Subtest 1	4183	836.6	23.40	0	25.00
		4233	846.6	23.40		
		4132	826.4	23.40		
	Subtest 2	4183	836.6	23.40	0	25.00
LICDDA		4233	846.6	23.40		
HSDPA		4132	826.4	22.80		
	Subtest 3	4183	836.6	22.70	0.5	24.50
		4233	846.6	22.90		
		4132	826.4	22.80		
	Subtest 4	4183	836.6	22.70	0.5	24.50
		4233	846.6	22.90		
		4132	826.4	22.71		
	Subtest 1	4183	836.6	22.49	0	25.00
		4233	846.6	22.80		
		4132	826.4	21.40		
	Subtest 2	4183	836.6	21.41	2	23.00
		4233	846.6	21.79	1	23.00
		4132	826.4	21.30		
HSUPA	Subtest 3	4183	836.6	21.82	1	24.00
		4233	846.6	21.00		
		4132	826.4	22.00		
	Subtest 4	4183	836.6	21.90	2	23.00
		4233	846.6	21.81		
		4132	826.4	22.58		
	Subtest 5	4183	836.6	22.76	0	25.00
		4233	846.6	22.91		
		4132	826.4	23.40		
	Subtest 1	4183	836.6	23.40	0	25.00
		4233	846.6	23.40		
		4132	826.4	23.40		
	Subtest 2	4183	836.6	23.40	0	25.00
DO 116557		4233	846.6	23.40		
DC-HSDPA		4132	826.4	22.80		
DC-HSDPA	Subtest 3	4183	836.6	22.70	0.5	24.50
		4233	846.6	22.90	1	
		4132	826.4	22.80		
	Subtest 4	4183	836.6	22.70	0.5	24.50
		4233	846.6	22.90		
						l .

9.2. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (NRB)									
	1.4	3.0	5	10	15	20					
	MHz	MHz	MHz	MHz	MHz	MHz					
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1				
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1				
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2				
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2				
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3				
256 QAM		≥1									

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤ 1
		0 4 40 00 05	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36, 66, 70	10	>6	≤ 1
_		30, 30, 00, 70	15	>8	≤1
			20	>10	≤ 1
NS_04	6.6.2.2.2, 6.6.3.3.19	41	5, 10, 15, 20	Table 6.2.4-4	Table 6.2.4-4a
		1	10,15,20	≥ 50 (NOTE1)	≤ 1 (NOTE1)
NS_05	6.6.3.3.1		15, 20	Table 6.2.4	-18 (NOTE2)
		65 (NOTE 3)	10,15,20	≥ 50	≤ 1 (NOTE 1)
			15,20		-18 (NOTE 2)
NS 06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10		6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2
NS 10		20	15, 20	Table	6.2.4-3
NS_11	6.6.2.2.1 6.6.3.3.13	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5
NS_12	6.6.3.3.5	26	1.4, 3, 5, 10, 15	Table	6.2.4-6
NS 13	6.6.3.3.6	26	5	Table	6.2.4-7
NS 14	6.6.3.3.7	26	10, 15	Table	6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15		6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10		, Table 6.2.4-12, 6.2.4-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_18	6.6.3.3.11	28	5 10, 15, 20	≥ 2 ≥ 1	≤ 1 ≤ 4
NS 19	6.6.3.3.12	44	10, 15, 20		6.2.4-14
NS_20	6.2.2 6.6.2.2.1 6.6.3.3.14	23	5, 10, 15, 20		8.2.4-15
NS_21	6.6.2.2.1 6.6.3.3.15	30	5, 10	Table	8.2.4-16
NS 22	6.6.3.3.16	42, 43	5, 10, 15, 20	Table	6.2.4-17
NS 23	6.6.3.3.17	42, 43	5, 10, 15, 20		VA
NS 24	6.6.3.3.20	65 (NOTE 4)	5, 10, 15, 20		8.2.4-19
NS 25	6.6.3.3.21	65 (NOTE 4)	5, 10, 15, 20		6.2.4-20
NS 26	6.6.3.3.22	68	10, 15		6.2.4-21
NS_27	6.6.2.2.5, 6.6.3.3.23	48	5, 10, 15, 20		6.2.4-22
NS_28	6.2.2A, 6.6.3.3.24	46 (NOTE 5)	20	Table	6.2.4-23
NS_29	6.2.2A, 6.6.2.3.1a, 6.6.3.3.25	46 (NOTE 5)	20	Table	8.2.4-24
NS_30	6.2.2A, 6.6.3.3.26	46 (NOTE 5)	20	Table	6.2.4-25
NS_31	6.2.2A, 6.6.3.3.27	46 (NOTE 5)	20	Table	6.2.4-26
NS 32	-	-	-	-	-
		lower edge of the as		III. shannal han	

NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned, where channel BW is as defined in subclause 5.6. A-MPR for

LTE Band 2 Measured Results

LIL Dai	IG Z IVIC	usurcu	1C3ult3					
					Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	18700	18900	19100	MDD	Tune-up
(1711 12)		Allocation	Oliset	1860 MHz	1880 MHz	1900 MHz	MPR	Limit
		1	0	16.90	16.77	17.03	0	17.5
		1	49	17.25	16.78	17.26	0	17.5
		1	99	16.90	16.67	16.92	0	17.5
20 MHz	QPSK	50	0	16.10	16.13	16.39	1	16.5
		50	24	16.20	16.10	16.22	1	16.5
		50	50	16.13	16.14	16.10	1	16.5
		100	100 0 16.21		16.22	16.17	1	16.5
DW		20	0.0		Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	18675	18900	19125	MPR	Tune-up
(1411 12)		Tilloodiloi1	Olloct	1857.5 MHz	1880 MHz	1902.5 MHz	WPK	Limit
		1	0	17.00	16.90	17.20	0	17.5
		1	37	17.30	17.10	17.10	0	17.5
		1	74	16.90	17.30	17.00	0	17.5
15 MHz	QPSK	36	0	16.10	16.10	16.30	1	16.5
		36	20	16.10	16.20	16.20	1	16.5
	MHz QPSK	36	39	16.10	16.20	16.10	1	16.5
		75	0	16.10	16.20	16.20	1	16.5
BW		RB	00		Maximum Ave	erage Power (dB	m)	
(MHz)	Mode	Allocation	RB offset	18650	18900	19150	MPR	Tune-up
(1711 12)		Tilloodiloi1	Olloct	1855 MHz	1880 MHz	1905 MHz	WPK	Limit
		1	0	17.00	17.00	17.10	0	17.5
		1	25	17.30	17.30	17.50	0	17.5
		1	49	17.10	17.20	17.40	0	17.5
10 MHz	QPSK	25	0	16.10	16.10	16.10	1	16.5
		25	12	16.10	16.10	16.10	1	16.5
		25	25	16.10	16.20	16.00	1	16.5
		50	0	16.10	16.10	16.20	1	16.5

Note(s):
Device supports LTE UE Category 1 only. Therefore, 16QAM only supports channel bandwidths up to 5MHz per Table A.2.2.1.2-1 of 3GPP TS 36.101 version 13.2.1 Release 13.

LTE Bar	<u>nd 2 Mea</u>	asured	Results	s (continue	<u>d)</u>			
DW		20			Maximum Ave	erage Power (dBi	m)	
BW (MHz)	Mode	RB Allocation	RB offset	18625	18900	19175	MPR	Tune-up
(1411 12)		/ tiloodtion	Olloct	1852.5 MHz	1880 MHz	1907.5 MHz	IVIPK	Limit
		1	0	16.80	16.90	16.80	0	17.5
		1	12	17.10	16.20	17.10	0	17.5
		1	24	17.00	17.20	16.90	0	17.5
	QPSK	12	0	16.10	16.20	16.10	1	16.5
		12	7	16.10	16.20	16.10	1	16.5
		12	13	16.10	16.20	16.10	1	16.5
5 MHz		25	0	16.10	16.10	16.10	1	16.5
3 IVITZ		1	0	15.50	15.60	15.50	1	16.5
		1	12	15.30	15.60	15.40	1	16.5
		1	24	15.60	15.70	15.50	1	16.5
	16QAM	12	0	14.90	15.00	15.10	2	15.5
		12	7	15.00	15.00	15.00	2	15.5
		12	13	15.00	15.10	15.10	2	15.5
		25	0	15.30	15.30	15.20	2	15.5
					Maximum Ave	erage Power (dBi	m)	
BW (MHz)	Mode	RB Allocation	RB offset	18615	18900	19185	MDD	Tune-up
(1711 12)		Allocation	Oliset	1851.5 MHz	1880 MHz	1908.5 MHz	MPR	Limit
		1	0	17.00	17.10	17.20	0	17.5
		1	8	17.00	16.90	17.20	0	17.5
		1	14	16.90	17.10	17.20	0	17.5
	QPSK	8	0	16.10	16.10	16.10	1	16.5
		8	4	16.10	16.10	16.10	1	16.5
		8	7	16.00	16.10	16.10	1	16.5
0.1411		15	0	16.10	16.00	16.00	1	16.5
3 MHz		1	0	16.20	15.70	15.80	1	16.5
		1	8	16.10	15.60	15.80	1	16.5
		1	14	16.00	15.80	15.80	1	16.5
	16QAM	8	0	14.90	14.70	14.90	2	15.5
		8	4	14.90	14.80	15.00	2	15.5
		8	7	14.80	14.80	15.20	2	15.5
		15	0	15.10	15.00	15.10	2	15.5
					Maximum Ave	erage Power (dBi	m)	
BW (MHz)	Mode	RB Allocation	RB offset	18607	18900	19193	MDD	Tune-up
(WIT 12)		Missation	Oligot	1850.7 MHz	1880 MHz	1909.3 MHz	MPR	Limit
		1	0	16.80	17.00	16.90	0	17.5
		1	3	16.90	17.30	17.00	0	17.5
		1	5	16.90	17.10	17.00	0	17.5
	QPSK	3	0	16.20	16.20	16.10	0	17.5
		3	1	16.10	16.20	16.30	0	17.5
		3	3	16.20	16.10	16.10	0	17.5
1 / NAL I-	<u></u>	6	0	16.10	16.10	16.00	1	16.5
1.4 MHz		1	0	16.00	16.10	15.80	1	16.5
		1	3	15.70	16.20	15.80	1	16.5
		1	5	15.70	16.20	15.80	1	16.5
	16QAM	3	0	15.20	14.90	14.90	1	16.5
		3	1	15.00	15.10	15.00	1	16.5
		3	3	14.90	15.00	15.20	1	16.5
		6	0	14.80	15.40	15.10	2	15.5

LTE Band 4 Measured Results

LIL Dai					Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	20050	20175	20300	MDD	Tune-up
(IVII IZ)		Allocation	Oliset	1720 MHz	1732.5 MHz	1745 MHz	MPR	Limit
		1	0		16.31		0	17.5
		1	49		16.58		0	17.5
		1	99		16.38		0	17.5
20 MHz	QPSK	50	0		15.71		1	16.5
		50	24		15.67		1	16.5
		50	50		15.70		1	16.5
		100	0		15.63		1	16.5
BW		RB	RB		Maximum Ave	erage Power (dB	m)	
(MHz)	Mode Allocation		offset	20025	20175	20325	MPR	Tune-up
()				1717.5 MHz	1732.5 MHz	1747.5 MHz	WIFIX	Limit
		1	0	16.30	16.20	16.40	0	17.5
		1	37	16.60	16.40	16.80	0	17.5
		1	74	16.70	16.50	16.50	0	17.5
15 MHz	QPSK	36	0	15.30	15.40	15.40	1	16.5
		36	20	15.40	15.40	15.30	1	16.5
		36	39	15.40	15.40	15.30	1	16.5
		75	0	15.30	15.40	15.20	1	16.5
BW		RB	RB		Maximum Ave	erage Power (dB	m)	
(MHz)	Mode	Allocation	offset	20000	20175	20350	MPR	Tune-up
, ,				1715 MHz	1732.5 MHz	1750 MHz	IVII IX	Limit
		1	0	16.20	16.20	16.40	0	17.5
		1	25	16.60	16.60	16.50	0	17.5
		1	49	16.60	16.30	16.50	0	17.5
10 MHz	QPSK	25	0	15.30	15.40	15.30	1	16.5
		25	12	15.40	15.40	15.40	1	16.5
		25	25	15.40	15.40	15.40	1	16.5
		50	0	15.40	15.50	15.30	1	16.5

Note(s):

- 20 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices.

 Device supports LTE UE Category 1 only. Therefore, 16QAM only supports channel bandwidths up to 5MHz per Table A.2.2.1.2-1 of 3GPP
- TS 36.101 version 13.2.1 Release 13.

LTE Bar	nd 4 Mea	asured	Results	s (continue	<u>d)</u>			
					Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	19975	20175	20375	MDD	Tune-up
(IVII 12)		Allocation	Oliset	1712.5 MHz	1732.5 MHz	1752.5 MHz	MPR	Limit
		1	0	16.20	16.60	16.30	0	17.5
		1	12	16.70	16.60	16.90	0	17.5
		1	24	16.20	16.60	16.60	0	17.5
	QPSK	12	0	15.30	15.50	15.30	1	16.5
		12	7	15.40	15.50	15.30	1	16.5
		12	13	15.40	15.60	15.50	1	16.5
5 MH-		25	0	15.40	15.60	15.40	1	16.5
5 MHz		1	0	15.20	15.20	15.00	1	16.5
		1	12	15.10	15.00	14.60	1	16.5
		1	24	15.40	15.10	15.10	1	16.5
	16QAM	12	0	14.40	14.50	14.40	2	15.5
		12	7	14.40	14.50	14.30	2	15.5
		12	13	14.30	14.50	14.60	2	15.5
		25	0	14.60	14.50	14.40	2	15.5
					Maximum Ave	erage Power (dB	m)	
BW (MH-)	Mode	RB Allocation	RB offset	19965	20175	20385		Tune-up
(MHz)		Allocation	UllSet	1711.5 MHz	1732.5 MHz	1753.5 MHz	MPR	Limit
		1	0	16.30	16.40	16.00	0	17.5
		1	8	16.50	16.60	16.20	0	17.5
		1	14	16.70	16.60	16.30	0	17.5
	QPSK	8	0	15.20	15.70	15.20	1	16.5
	QPSK	8	4	15.20	15.60	15.20	1	16.5
		8	7	15.20	15.60	15.30	1	16.5
		15	0	15.20	15.60	15.20	1	16.5
3 MHz		1	0	15.10	15.50	14.80	1	16.5
		1	8	14.90	15.40	14.90	1	16.5
		1	14	15.00	15.40	14.90	1	16.5
	16QAM	8	0	14.30	14.50	14.00	2	15.5
		8	4	14.40	14.60	14.00	2	15.5
		8	7	14.50	14.60	14.00	2	15.5
		15	0	14.40	14.50	14.30	2	15.5
					Maximum Ave	erage Power (dB	m)	
BW	Mode	RB Allocation	RB offset	19957	20175	20393	l	Tune-up
(MHz)		Allocation	UllSet	1710.7 MHz	1732.5 MHz	1754.3 MHz	MPR	Limit
		1	0	16.40	16.40	16.30	0	17.5
		1	3	16.50	16.70	16.40	0	17.5
		1	5	16.50	16.50	16.40	0	17.5
	QPSK	3	0	16.30	16.50	16.30	0	17.5
		3	1	16.50	16.50	16.20	0	17.5
		3	3	16.40	16.50	16.40	0	17.5
4 4 5 ***		6	0	15.30	15.40	15.30	1	16.5
1.4 MHz		1	0	14.90	15.10	14.80	1	16.5
		1	3	15.00	15.00	14.80	1	16.5
		1	5	15.00	15.00	15.00	1	16.5
	16QAM	3	0	15.40	15.20	15.00	1	16.5
		3	1	15.30	15.50	15.10	1	16.5
		3	3	15.10	15.50	15.10	1	16.5
		6	0	14.30	14.80	14.20	2	15.5

LTE Band 12 Measured Results

LTE Bar	nd 12 M	easured	Resul	ts_	Maximum Ave	vers Dawer (dB		
BW	Mode	RB	RB	22222		erage Power (dB	<i>)</i>	
(MHz)	Mode	Allocation	offset	23060	23095	23130	MPR	Tune-up Limit
		1	0	704 MHz	707.5 MHz 23.40	711 MHz	0	24
		1	25	-	23.80		0	24
		1	49	-	23.80		0	24
10 MHz	QPSK	25	0	-	22.58		1	23
10 101112	QI OIX	25	12		22.68		1	23
		25	25	-	22.67		1	23
		50	0		22.56		1	23
			-			erage Power (dB		20
BW	Mode	RB	RB	23035	23095	23155		Tune-up
(MHz)		Allocation	offset	701.5 MHz	707.5 MHz	713.5 MHz	MPR	Limit
		1	0	23.50	23.50	23.40	0	24
		1	12	23.80	23.80	23.80	0	24
		1	24	23.30	23.70	23.40	0	24
5 MHz	QPSK	12	0	22.60	22.60	22.40	1	23
		12	7	22.60	22.50	22.50	1	23
		12	13	22.40	22.40	22.50	1	23
		25	0	22.60	22.50	22.50	1	23
DIM					Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	23025	23095	23165	MPR	Tune-up
(2)		7000	0001	700.5 MHz	707.5 MHz	714.5 MHz	IVIFIC	Limit
		1	0	23.90	23.40	23.50	0	24
		1	8	23.90	23.70	23.50	0	24
	QPSK	1	14	23.70	23.60	23.50	0	24
	QPSK	8	0	22.50	22.60	22.50	1	23
		8	4	22.50	22.50	22.50	1	23
		8	7	22.40	22.50	22.50	1	23
3 MHz		15	0	22.50	22.50	22.50	1	23
3 IVITIZ		1	0	22.40	22.20	22.20	1	23
		1	8	22.10	22.30	22.10	1	23
		1	14	22.10	22.30	22.10	1	23
	16QAM	8	0	21.90	22.00	21.30	2	22
		8	4	21.80	21.90	21.20	2	22
		8	7	21.50	21.90	21.80	2	22
		15	0	21.40	21.50	21.60	2	22
BW		RB	RB		Maximum Ave	erage Power (dB	m)	
(MHz)	Mode	Allocation	offset	23017	23095	23173	MPR	Tune-up
, ,				699.7 MHz	707.5 MHz	715.3 MHz	WII TX	Limit
		1	0	23.50	23.80	23.50	0	24
		1	3	23.60	23.60	23.90	0	24
		1	5	23.50	23.70	23.70	0	24
	QPSK	3	0	23.00	23.00	23.00	0	24
		3	1	23.00	23.00	23.00	0	24
		3	3	23.00	23.00	23.00	0	24
1.4 MHz		6	0	22.40	22.60	22.40	1	23
		1	0	22.30	22.20	22.10	1	23
		1	3	22.20	22.70	22.30	1	23
		1	5	22.40	22.50	22.30	1	23
	16QAM	3	0	22.00	22.00	21.90	1	23
		3	1	22.00	22.00	22.00	1	23
1		3	3	21.90	22.00	22.00	1	23
		6	0	21.57	21.65	21.85	2	22

Note(s):

MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports
overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be
selected for testing per KDB 941225 D05 SAR for LTE Devices.

^{2.} Device supports LTE UE Category 1 only. Therefore, 16QAM only supports channel bandwidths up to 5MHz per Table A.2.2.1.2-1 of 3GPP TS 36.101 version 13.2.1 Release 13.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

Reported SAR(W/kg) for WWAN= Measured SAR *Tune-up Scaling Factor

Reported SAR(W/kg) for Wi-Fi and Bluetooth= Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available
 non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth
 configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the
 requirement for H, M and L channels may not fully apply.

10.2. W-CDMA Band II

RF Exposure		Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
Next to Mouth	Rel 99 RMC	10	Front	9400	1880.0	18.5	18.1	0.226	0.248	1
				9262	1852.4	18.5	18.1	1.140	1.259	
			Rear	9400	1880.0	18.5	18.1	1.270	1.393	2
				9538	1907.6	18.5	18.1	1.180	1.294	
		0		9262	1852.4	18.5	18.1	0.833	0.920	
			Front	9400	1880.0	18.5	18.1	0.866	0.950	
				9538	1907.6	18.5	18.1	0.889	0.975	
Body-worn	Rel 99 RMC		Edge 2	9400	1880.0	18.5	18.1	0.197	0.216	
				9262	1852.4	18.5	18.1	0.849	0.937	
			Edge 3	9400	1880.0	18.5	18.1	0.887	0.973	
				9538	1907.6	18.5	18.1	0.875	0.959	
				9262	1852.4	18.5	18.1	0.762	0.841	
			Edge 4	9400	1880.0	18.5	18.1	0.757	0.830	
				9538	1907.6	18.5	18.1	0.690	0.757	

10.3. W-CDMA Band IV

RF Exposure		Dist.	Test Position	Ch #.	Freq.	Power	(dBm)	1-g SAR (W/kg)		Plot
Conditions	Mode	(mm)			(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
Next to Mouth	Rel 99 RMC	10	Front	1413	1732.6	19.0	17.9	0.175	0.225	3
		0		1312	1712.4	19.0	17.9	0.910	1.180	4
	Rel 99 RMC		Rear	1413	1732.6	19.0	17.9	0.913	1.173	
				1513	1752.6	19.0	18.0	0.922	1.169	
			Front	1312	1712.4	19.0	17.9	0.715	0.927	
				1413	1732.6	19.0	17.9	0.691	0.888	
Body-worn				1513	1752.6	19.0	18.0	0.759	0.962	
			Edge 2	1413	1732.6	19.0	17.9	0.096	0.123	
				1312	1712.4	19.0	17.9	0.857	1.112	
			Edge 3	1413	1732.6	19.0	17.9	0.878	1.128	
				1513	1752.6	19.0	18.0	0.844	1.070	
			Edge 4	1413	1732.6	19.0	17.9	0.552	0.709	

10.4. W-CDMA Band V

RF Exposure		Dist. (mm)	Test Position	Ch #.	Freq.	Power (dBm)		1-g SAR (W/kg)		Plot
Conditions	Mode				(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
Next to Mouth	Rel 99 RMC	10	Front	4183	836.6	25.0	24.2	0.315	0.376	5
	Rel 99 RMC	0	Rear	4132	826.4	25.0	24.2	0.862	1.032	
				4183	836.6	25.0	24.2	0.827	0.987	
				4233	846.6	25.0	24.2	0.884	1.055	
			Front	4132	826.4	25.0	24.2	0.909	1.088	
Body-worn				4183	836.6	25.0	24.2	0.951	1.135	6
				4233	846.6	25.0	24.2	0.912	1.089	
			Edge 2	4183	836.6	25.0	24.2	0.487	0.581	
			Edge 3	4183	836.6	25.0	24.2	0.590	0.704	
			Edge 4	4183	836.6	25.0	24.2	0.307	0.367	

10.5. LTE Band 2 (20MHz Bandwidth)

RF Exposure		Dist.	Test		Freq. (MHz)	RB	RB	Power (dBm)		1-g SAR (W/kg)		Plot
Conditions	Mode	(mm)	Position	Ch #.		Allocation	offset	Tune-up limit	Meas.	Meas.	Scaled	No.
Next to Mouth	QPSK	10	Front	18900	1880.0	1	49	17.5	16.8	0.196	0.231	7
Next to Modifi	QI OIL	10	TTOTAL	10300	1000.0	50	50	16.5	16.1	0.143	0.155	
				18700	1860.0	1	49	17.5	17.3	1.130	1.197	
			Rear	10700	1000.0	50	24	16.5	16.2	0.867	0.929	
						1	49	17.5	16.8	1.170	1.381	8
		0		18900	1880.0	50	50	16.5	16.1	0.898	0.976	
						100	0	16.5	16.2	0.849	0.906	
				19100	1900.0	1	49	17.5	17.3	1.090	1.152	
						50	0	16.5	16.4	0.877	0.899	
			Front	18700	1860.0	1	49	17.5	17.3	0.774	0.820	
Body-worn	QPSK			18900	1880.0	1	49	17.5	16.8	0.757	0.894	
					1000.0	50	50	16.5	16.1	0.602	0.654	
				19100	1900.0	1	49	17.5	16.2	0.732	0.983	
			Edge 2	18900	1880.0	1	49	17.5	16.8	0.104	0.123	
			Luge 2	10300	1000.0	50	50	16.5	16.1	0.082	0.089	
			Edge 3	18900	1880.0	1	49	17.5	16.8	0.649	0.766	
			Luge 3	10300	1000.0	50	50	16.5	16.1	0.600	0.652	
			Edge 4	18900	1880.0	1	49	17.5	16.8	0.477	0.563	
			Luge 4	10900	1000.0	50	50	16.5	16.1	0.390	0.424	

10.6. LTE Band 4 (20MHz Bandwidth)

RF Exposure		. Dist.	Test		Freq.	RB	RB	Power (dBm)		1-g SAR (W/kg)		Plot
Conditions	Mode	(mm)	Position	Ch #.	(MHz)	Allocation	offset	Tune-up limit	Meas.	Meas.	Scaled	No.
Next to Mouth	QPSK	10	Front	20175	1732.5	1	49	17.5	16.6	0.109	0.135	9
Next to Modifi	QI OIX	10	TTOTIC	20173	1732.3	50	0	16.5	15.7	0.086	0.103	
						1	49	17.5	16.6	0.763	0.943	
		0	Rear	20175	1732.5	50	0	16.5	15.7	0.649	0.778	
						100	0	16.5	15.6	0.817	0.998	10
			Front	20175	1732.5	1	49	17.5	16.6	0.610	0.754	
						50	0	16.5	15.7	0.480	0.576	
						100	0	16.5	15.6	0.493	0.602	
Body-worn	QPSK		Edge 2	20175	1732.5	1	49	17.5	16.6	0.061	0.075	
						50	0	16.5	15.7	0.051	0.061	
			Edge 3	20175		1	49	17.5	16.6	0.666	0.823	
					1732.5	50	0	16.5	15.7	0.551	0.661	
						100	0	16.5	15.6	0.561	0.685	
			Edge 4	20175	1732.5	1	49	17.5	16.6	0.472	0.583	
						50	0	16.5	15.7	0.371	0.445	

10.7. LTE Band 12 (10MHz Bandwidth)

RF Exposure	RF Exposure		Test		Freq.	RB	RB	Power (dBm)		1-g SAR (W/kg)		Plot
Conditions	Mode	Dist. (mm)	Position	Ch #.	(MHz)		offset	Tune-up limit	Meas.	Meas.	Scaled	No.
Next to Mouth	QPSK	10	Front	23095	707.5	1	49	24.0	23.8	0.338	0.354	11
Next to Modifi	QI OIX	10	TTOTIC	20090	101.5	25	12	23.0	22.7	0.252	0.271	
						1	49	24.0	23.8	0.794	0.831	
		0	Rear	23095	707.5	25	12	23.0	22.7	0.667	0.718	
						50	0	23.0	22.6	0.638	0.706	
			Front	23095	707.5	1	49	24.0	23.8	0.902	0.945	12
						25	12	23.0	22.7	0.756	0.814	
Body-worn	QPSK					50	0	23.0	22.6	0.740	0.819	
Body-World	QFSK		Edge 2	23095	707.5	1	49	24.0	23.8	0.581	0.608	
						25	12	23.0	22.7	0.511	0.550	
			Edge 3	23095	707.5	1	49	24.0	23.8	0.525	0.550	
			Luge 3	23095	707.5	25	12	23.0	22.7	0.462	0.497	
			Edge 4	23095	707.5	1	49	24.0	23.8	0.387	0.405	
						25	12	23.0	22.7	0.367	0.395	

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency				Repeated	Highest	First		
Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	SAR (Yes/No)	Measured SAR (W/kg)	Measured SAR (W/kg)	Largest to Smallest SAR Ratio	
700	LTE Band 12	Body	Front	Yes	0.902	0.867	1.04	
850	WCDMA Band V	Body	Front	Yes	0.951	0.921	1.03	
1700	WCDMA Band IV	Body	Rear	Yes	0.922	0.905	1.02	
1700	LTE Band 4	Body	Rear	No	0.817	0.802	1.02	
1900	WCDMA Band II	Body	Rear	Yes	1.270	1.250	1.02	
1900	LTE Band 2	Body	Rear	No	1.170	1.160	1.01	

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is < 1.20.

12. Simultaneous Transmission SAR Analysis

The DUT does not support simultaneous transmission.

Appendixes

Refer to separated files for the following appendixes.

12040492-S1V1 Appendix A: SAR Setup Photos

12040492-S1V1 Appendix B: SAR System Check Plots

12040492-S1V1 Appendix C: Highest SAR Test Plots

12040492-S1V1 Appendix D: SAR Liquid Tissue Ingredients

12040492-S1V1 Appendix E: SAR Probe Calibration Certificate

12040492-S1V1 Appendix F: SAR Dipole Calibration Certificates

END OF REPORT