Machine Learning Methodology: Overfitting, REGULARIZATION, AND ALL THAT

CS194-10 Fall 2011

Outline

- ♦ Measuring learning performance
- ♦ Overfitting
- \Diamond Regularization
- ♦ Cross-validation
- ♦ Feature selection

Performance measurement

We care about how well the learned function h generalizes to new data:

$$GenLoss_L(h) = E_{x,y}L(x,y,h(x))$$

Estimate using a test set of examples drawn from same distribution over example space as training set

Learning curve = loss on test set as a function of training set size (often averaged over many trials)

This is a way of evaluating learning algorithms

Performance measurement contd.

E.g., suppose data generated by quadratic + noise:

- Quadratic h is the realizable case (can express true f up to noise); learns quickly, reaches noise floor
- Linear h is the non-realizable case (restricted H or missing inputs); suffers additional structural error
- High-degree polynomial h: realizable but redundant; learns slowly

Training error

During learning, we have access to training error (empirical loss); things may look quite different given fixed training set:

Overfitting

Fix the training set size, vary H complexity (e.g., degree of polynomials)

Example from Bishop, Figure 1.5

For any given N, some h of sufficient complexity fits the data but may have very bad generalization error!!

Regularization

Reduces overfitting by adding a complexity penalty to the loss function

 L_2 regularization: complexity = sum of squares of weights Combine with L_2 loss to get ridge regression:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$$

where $\lambda \geq 0$ is a fixed multiplier and $\|\mathbf{w}\|_2^2 = \sum_{j=1}^D w_j^2$

 w_0 **not** penalized, otherwise regularization effect depends on y-origin

L_2 Regularization Solution

First "center" the data:

- Fix $w_0 = \overline{y} = \frac{1}{N} \sum_{i=1}^N y_i$
- Drop dummy x_0 from data matrix \mathbf{X} and set $x'_{ij} = x_{ij} \overline{x_j}$

Now can write

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

Derivative with respect to \mathbf{w} is

$$\underbrace{-2\mathbf{X}^T\mathbf{Y} + 2\mathbf{X}^T\mathbf{X}\mathbf{w}}_{\text{as before}} + 2\lambda\mathbf{w}$$

and setting this to zero gives

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

MAP (maximum a posteriori) interpretation

General MAP learning:

$$\hat{h} = \arg \max_{h} P(\mathsf{data} \mid h) P(h)$$

$$= \arg \min_{h} \underbrace{-\log P(\mathsf{data} \mid h)}_{\mathsf{as in MLE}} \underbrace{-\log P(h)}_{\mathsf{complexity penalty}}$$

For regression, suppose we think weights are a priori independent and (except for w_0) probably small:

$$P(h_{\mathbf{w}}) = \prod_{j=1}^{D} N(w_j \mid 0, \rho^2) = \alpha_{\rho}^D e^{-\sum_j w_j^2/2\rho^2} = \alpha_{\rho}^D e^{\mathbf{w}^T \mathbf{w}/2\rho^2}$$

MAP interpretation contd.

Assuming Gaussian regression model with variance σ^2 , MAP formula is

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left(\frac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) - N\alpha_{\sigma} \right) + \left(\frac{1}{\rho^2} \mathbf{w}^T \mathbf{w} - D\alpha_{\rho} \right)$$

$$= \arg\min_{\mathbf{w}} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \frac{\sigma^2}{\rho^2} \mathbf{w}^T \mathbf{w}$$

which is identical to L_2 regularization with $\lambda = \sigma^2/\rho^2$

Effect of L_2 regularization

As λ increases, $\mathbf{w}^T \mathbf{w}$ decreases

Example from Hastie, Fig 3.8 (scale is inverse of λ):

L_1 regularization (LASSO)

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \lambda ||\mathbf{w}||_1$$

where
$$\lambda \geq 0$$
 and $\|\mathbf{w}\|_1 = \sum_{j=1}^{D} |w_j|$

Looks like a small tweak, but makes a big difference!

- 1) No more closed-form solution
 - use quadratic programming $\min_{\mathbf{w}} (\mathbf{Y} \mathbf{X}\mathbf{w})^T (\mathbf{Y} \mathbf{X}\mathbf{w}) \text{ s.t. } \|\mathbf{w}\|_1 \leq s$
 - convex problem, polytime (but expensive) solution
- 2) LASSO = MAP learning with Laplacian prior

$$P(w_j) = \frac{1}{2b}e^{-\frac{|w_j|}{b}}$$

where b is the scale

Effect of L_1 regularization

Laplace prior encourages sparsity, i.e., mostly zero weights Example from Hastie *et al.*, Fig 3.10:

Cross-validation

Regularization helps but still need to pick λ . Want to minimize test-set error, but we have no test set!

Idea: make one (a validation set) by pretending we can't see the labels

Try different values of λ , learn \hat{h}^{λ} on rest of data, test \hat{h}^{λ} on validation set, pick best λ , train on all

Problem: small validation set \Rightarrow large error in estimated loss large validation set \Rightarrow small training set \Rightarrow bad \hat{h}^{λ}

Cross-validation contd.

K-fold cross-validation: divide data into K blocks for k=1 to k

train on blocks except kth block, test on kth block average the results, choose best λ

Common cases: K = 5, 10 or K = N (LOOCV)

High computation cost: K folds \times many choices of model or λ

Feature selection

Another way to get a sparse predictor: pick out a small set of the most relevant features

A set of features $F \subseteq \{X_1, \dots, X_D\}$ is minimally relevant if there is some h definable using F such that

- 1) no h' defined on a superset of F has lower generalization loss
- 2) any h'' defined on a subset of F has higher generalization loss

Any feature not in a minimally relevant set is irrelevant

Problems in choosing a minimally relevant set:

- inaccurate estimate of generalization loss
 - ⇒ some features *appear* relevant when they're not
- NP-hard to find a set even with perfect estimates

Forward selection: greedily add feature that decreases CV error most Backward selection: greedily delete feature that decreases CV error most

Summary

Learning performance = prediction accuracy measured on test set

Trading off complexity and degree of fit is hard

Regularization penalizes hypothesis complexity

 L_2 regularization leads to small weights

 L_1 regularization leads to many zero weights (sparsity)

Feature selection tries to discard irrelevant features

Cross-validation enables selection of feature sets or regularization penalties by estimating test-set error on parts of the training set