

Course > Unit 7: ... > Lec. 14:... > 10. Exe...

10. Exercise: Discrete unknown and continuous observation

Exercises due Apr 8, 2020 05:29 IST Completed

Exercise: Discrete unknown and continuous observation

2/2 points (graded)

Similar to the last example, suppose that $X=\Theta+W$, where Θ is equally likely to take the values -1 and 1, and where W is standard normal noise, independent of Θ . We use the estimator $\widehat{\Theta}$, with $\widehat{\Theta}=1$ if X>0 and $\widehat{\Theta}=-1$ otherwise. (This is actually the MAP estimator for this problem.)

a) Let us assume that the true value of Θ is 1. In this case, our estimator makes an error if and only if W has a low (negative) value. The conditional probability of error given the true value of Θ is 1, that is, \mathbf{P} ($\widehat{\Theta} \neq 1 \mid \Theta = 1$), is equal to

- $\bigcirc \Phi (0)$
- $\bigcirc \Phi(1)$

where Φ is the standard normal CDF.

b) For this problem, the overall probability of error is easiest found using the formula

$$igcirc$$
 $\mathbf{P}\left(\widehat{\Theta}
eq\Theta
ight)=\int\mathbf{P}\left(\widehat{\Theta}
eq\Theta\mid X=x
ight)f_{X}\left(x
ight)\,dx$

$$igotimes \mathbf{P}\left(\widehat{\Theta}
eq \Theta
ight) = \sum_{ heta} \mathbf{P}\left(\widehat{\Theta}
eq heta \mid \Theta = heta
ight) \, p_{\Theta}\left(heta
ight)$$

Solution:

a) We have

$$\begin{split} \mathbf{P}\left(\widehat{\Theta} \neq 1 \mid \Theta = 1\right) &= \mathbf{P}\left(\Theta + W \leq 0 \mid \Theta = 1\right) = \mathbf{P}\left(1 + W \leq 0 \mid \Theta = 1\right) \\ &= \mathbf{P}\left(1 + W \leq 0\right) = \mathbf{P}\left(W \leq -1\right) = \Phi\left(-1\right). \end{split}$$

b) Similar to part (a), $\mathbf{P}\left(\widehat{\Theta} \neq \theta \mid \Theta = \theta\right)$ is easy to calculate for either choice of $\theta = -1$ or $\theta = 1$. For this reason, the second formula is easy to implement.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7: Bayesian inference:Lec. 14: Introduction to Bayesian inference / 10. Exercise: Discrete unknown and continuous observation

interence / To. Exercise. Discrete	unknown and continuous observation	JII	
Show all posts		by recent activ	vity 🗸
	<u>e explain why the question's sta</u> ue value of Θ is 1 . In this case, our es	atement is true? stimator makes an error if and only if W ha	3
? Possible typo error in	<u>question a)</u>	1 new_	5
STAFF - Grammar que Question b) should either		probability of error is most easily found usi	2
· ·	bility of error be equal to 0.5? I seem a bad estimator to me if the o	overal probabilty of error was this high. lsnt	5
? How do I tackle the se Why if we are talking abo	econd question? out a continuous case, can we use disc	crete?	2
● <u>Woah</u> <u>Doesn't this require us to</u>	o integrate a knarley expontential fun	nction? (1/sqrt(2-pi) sigma * exp^x^2/2) ???	3

© All Rights Reserved

