Math 212 - INQ Differential Equations Oxford College of Emory University Spring 2013

Instructor: Dr. Ricardo Conceição

Office: Pierce Hall 121

Email: ricardo.conceicao@emory.edu

Phone: 4-4657

Office Hours: To be announced on Blackboard.

Course Content: First and second-order ordinary differential equations, systems of ordinary differential equations, power series solutions, applications.

Course Objectives: At the end of the course the student should:

- Be familiar with the general ideas of ordinary differential equations;
- Be able to apply the following methods to the solution of differential equations:
 - separation of variables, integrating factor, reduction of order, undetermined coefficients,
 variation of parameters and power series;
- Be able to solve:
 - homogeneous linear equations with constant coefficients, system of linear first-order equations, first-order exact equations;
- Be able to apply the theory to model some real-life system and/or phenomenon.
- Be able to use technology (Eg. Sage/Wolfram Alpha) to analyze solutions to differential equations and their applications.

Text: The main text will be *Elementary Differential Equations and Boundary Value Problems* by William E. Boyce & Richard C. DiPrima; but we will also be using the free online book *Differential equations and Sage*, by Marshall Hampton, found at http://modular.math.washington.edu/home/wdj/teaching/DiffyQ/.

Try to read the book before coming to class: believe me, this is a very useful habit.

Any additional material needed for this class will be provided in class or via Blackboard at

https://classes.emory.edu/

Grading Policy: Students' grades are determined by performance on problem sets, quizzes, projects, tests, and a comprehensive final exam. All tests will be administered during class time, unless special circumstances require otherwise.

Problem Sets/Quizzes	11%
INQ Projects	12%
3 Tests	54%
Final	23%
Total	100%

Maximum grade cuts are as follows:

A	В	С	D	F
90-100%	80-89.99%	70-79.99%	60-69.99%	0-59%

Plus/minus grades may be assigned for percentages near the maximum grade cuts. Also, I reserve the right to amend, append, or otherwise make changes to the plan for the course.

Homework: Homework problems from each section that we cover in the text will be provided during class time or by email. Although the homework will not be collected, a timely completion of these assignments is crucial to success in this course in addition to serving as an excellent preparation for the tests, quizzes and problem sets.

Problem sets: Due at the BEGINNING of class on the date indicated on the assignments. The problem sets will consist primarily of the assigned homework problems, but I may add additional questions from other sources. You are allowed to receive help from anyone/anything to complete these assignments. This means that others are allowed to explain concepts/techniques to you, and you can compare/verify your work with other students. However, you must be actively engaged in the process of completing the assigned problems. Simply copying the work of another student and submitting it as your own will result in zero credit. All work is expected to be professionally submitted and points will be deducted for a lack of organization, illegible or sloppy work, and the inappropriate use of mathematical symbols, even if answers found are correct.

Quizzes: An undetermined number of quizzes will be given throughout the semester. Quizzes need not be announced ahead of time. There is no provision for making up a quiz. You will receive a zero on any missed quiz. Grades on problem sets are treated identically to those on quizzes.

INQ Projects: Math 212 is designated as INQ course at Oxford College. As such, I have designed a set of assignments to help you learn the ways in which mathematicians pursue knowledge in our discipline. Through them you will be evaluated on your ability to demonstrate increasing self-reliance and independence in inquiring in mathematics.

They will consist of a mix of individual and group projects. In many of these projects, you will be required to write or prepare an oral report to be presented in class. They will often involve the use of the free computer algebra system *Sage*, found at http://www.sagemath.org/.

The first project and an introduction on how to use Sage is posted at the Blackboard website.

Tests: Will include both in-class and take home portions. Specific directions will be provided prior to the exam being given. The Oxford Honor Code applies to all tests and is **individual effort** on all portions.

- ★ Wednesday, February 13th.
- ★ Friday, March 20th.
- ★ Friday, April 26th.

Final Exam: Comprehensive with no exemptions. Please make sure to check your final exam schedule before making any trip arrangements.

Class Attendance: Students are responsible for all material covered in class and any changes to the syllabus that may be announced. Any conflicts between the course schedule and religious holy days are to be negotiated in advance with one's instructor. Please be on time!

Calculators: We may use a simple scientific calculator. Calculators that compute derivatives and integrals are not allowed.

Honor Code: The Honor Code of Oxford College applies to all work submitted for credit in this course. To receive credit for work submitted you must place your name on it. By placing your name on such work, you pledge that the work has been done in accordance with the given instructions and that you have witnessed no Honor Code violations in the conduct of the assignment.

Expectations: They're high! I expect that you will read the text (several times) and attempt all the assigned homework (and more). Written responses to questions should be **grammatically correct!** I welcome your comments, criticisms, and suggestions. Please feel free to stop by my office or e-mail me with any concerns or questions that you may have.

Good luck and I hope this will be an enjoyable experience for all of you!

Student work submitted as part of this course may be reviewed by Oxford College and Emory College faculty and staff for the purposes of improving instruction and enhancing Emory education.

List of Topics Math 212 Spring 2013

- 1. Sage Notes: Introduction Motivation
- 2. Section 1.3: Classification and Solutions of a DE
- 3. Section 2.2: IVP & Separation of Variables
- 4. Section 2.8: Existence and Uniqueness of solutions
- 5. Section 2.1: Integrating Factors
- 6. Section 2.6: Exact Equations
- 7. Sage Notes: Solutions by substitutions
- 8. Section 3.1: 2nd Order ODEs Linear Homogeneous Equations
- 9. INQ Project: Slope Fields and Modeling with 1st order DEs
- 10. TEST 1
- 11. Section 3.2: The Wronskian and independence of solutions
- 12. Section 3.1, 3.3: Homogeneous Equations with Constant coefficients Complex Roots
- 13. Section 3.4: Reduction of Order
- 14. Section 3.5: Undetermined coefficients
- 15. Section 3.6: Variation of Parameters
- 16. Section 4.1: Higher order linear ODE
- 17. Section 4.2: Homogeneous with constant coefficients
- 18. Section 4.3: Undetermined Coefficients
- 19. INQ Project: Euler's Method and Spring-mass models
- 20. TEST 2
- 21. Section 5.1: Power Series Review
- 22. Section 5.2, 5.3: Power series solution: Ordinary points
- 23. Section 5.4, 5.5, 5.6: Euler Equations and Regular singular points
- 24. Section 7.1, 7.2, 7.3: Algebra of Matrices
- 25. Section 7.4, 7.5, 7.6, 7.8: Systems of first order linear DEs
- 26. INQ Project: Modeling with system of linear equations
- 27. TEST 3

Proposed Calendar Math 212 Spring 2013

Monday	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
Jan 14th	Jan 15th	Jan 16th <u>1</u>	Jan 17th	Jan 18th <u>2</u>
		§Sage Notes Introduction - Motivation		$\frac{\S 1.3}{\text{Classification}}$ and Solutions of a DE
Jan 21st	Jan 22nd	Jan 23rd <u>3</u>	Jan 24th	Jan 25th <u>4</u>
No class Martin Luther King Jr. holiday		$\frac{\S 2.2}{\text{IVP }\&}$ Separation of Variables		§2.8 Existence and Uniqueness of solutions
$\begin{array}{ccc} \text{Jan 28th} & \underline{5} \\ & \underline{\S 2.1} \\ & \text{Integrating} \\ & \text{Factors} \end{array}$	Jan 29th	$\begin{array}{ccc} \text{Jan 30th} & \underline{6} \\ & \underline{\S 2.6} \\ \text{Exact Equations} \end{array}$	Jan 31st	Feb 1st 7 §Sage notes Project 1 - Slope fields
Feb 4th 8 §Sage notes Project 1 - Slope fields	Feb 5th	Feb 6th $\underline{9}$ $\underline{\S 2.6}$ Exact Equations & Solutions by substitutions	Feb 7th	Feb 8th 10 §Sage Notes Exact Equations & Solutions by substitutions (cont.)
Feb 11th 11 §Sage Notes Review	Feb 12th	Feb 13th Test 1	Feb 14th	Feb 15th $\underline{12}$ $\underline{\S 3.1}$ 2nd Order ODEs - Linear Homogeneous Equations
Feb 18th 13 §3.2 The Wronskian and independence of solutions	Feb 19th	Feb 20th 14 §3.1 Homogeneous Equations with Constant coefficients	Feb 21st	Feb 22nd 15 §3.3 Homogeneous Equations with Constant coefficients - Complex Roots

Monday	Tuesday	WEDNESDAY	Thursday	FRIDAY
Feb 25th <u>16</u>	Feb 26th	Feb 27th <u>17</u>	Feb 28th	Mar 1st <u>18</u>
<u>§3.4</u>		$\S 3.5$		<u>§3.6</u>
Reduction of		Undetermined		Variation of
Order		coefficients		Parameters
Mar 4th <u>19</u>	Mar 5th	Mar 6th <u>20</u>	Mar 7th	Mar 8th <u>21</u>
<u>§4.1</u>		<u>§4.2</u>		Last day for dropping.
Higher order		Homogeneous		§4.3
linear ODE		with constant		Undetermined
		coefficients		Coefficients
Mar 11th	Mar 12th	Mar 13th	Mar 14th	Mar 15th
Spring Break	Spring Break	Spring Break	Spring Break	Spring Break
Mar 18th <u>22</u>	Mar 19th	Mar 20th	Mar 21st	Mar 22nd 23
§Sage Notes		Test 2		$\S 5.4$
Review				Cauchy-Euler
				Equation
Mar 25th 24	Mar 26th	Mar 27th 25	Mar 28th	Mar 29th 26
§5.1		§5.1 - 5.2		§5.2 - 5.3
Review Power		Power Series		Power Series
Series		Solutions		Solutions -
				Ordinary Points
Apr 1st <u>27</u>	Apr 2nd	Apr 3rd <u>28</u>	Apr 4th	Apr 5th <u>29</u>
<u>§5.4</u>		$\underline{\S5.5}$		Freshmen withdraw.
Power Series		Power Series		$\S 5.6$
Solutions -		Solutions -		Power Series
Singular Points		Regular Singular		Solutions -
		Points		Frobenius
				Method
Apr 8th <u>30</u>	Apr 9th	Apr 10th <u>31</u>	Apr 11th	Apr 12th <u>32</u>
<u>§7.1</u>		<u>§7.2</u>		<u>§7.3</u>
Introduction to		Matrices -		Linear Algebraic
System of 1st		Review		Equations -
order Linear				Eigenvalues and
Equations				Eigenvectors

Monday	Tuesday	Wednesday	Thursday	Friday
Apr 15th <u>33</u>	Apr 16th	Apr 17th <u>34</u>	Apr 18th	Apr 19th <u>35</u>
§7.4 - 7.5		<u>§7.6</u>		<u>§7.8</u>
Basic Theory of		System of linear		System of linear
systems of linear		DEs - Complex		DEs - Repeated
DEs		Eigenvalues		Eigenvalues
Apr 22nd <u>36</u>	Apr 23rd	Apr 24th <u>37</u>	Apr 25th	Apr 26th
<u>§7.8</u>		§Sage Notes		Test 3
System of linear		Review		
DEs - Repeated				
Eigenvalues				
Apr 29th <u>38</u>	Apr 30th	May 1st	May 2nd	May 3rd
Last day of classes.	Reading Day			
Review and				
goodbye				