Escuela de Ciencias Físicas y Matemáticas

Métodos Matemáticos de la Física Hoja de trabajo 1

I. ESPACIOS EUCLÍDEOS, NORMA, SECUENCIAS DE CAUCHY Y CONVERGENTES

- 1. Decir si las siguientes reglas son definiciones de producto escalar
 - a) $(\mathbf{a}, \mathbf{b}) = a_1b_1 a_1b_2 a_2b_1 + ka_2b_2$, con \mathbf{a} y \mathbf{b} vectores en \mathbb{R}^2 con componentes (a_1, a_2) y (b_1, b_2) , respectively.
 - b) $(A, B) = \text{Tr}(A^t B)$ con $A, B \in \mathbb{R}^{n \times n}$, matrices reales de $n \times n$.
- 2. Mostrar la desigualdad triangular

$$|||x|| - ||y||| \le ||x + y|| \le ||x|| + ||y|| \tag{1}$$

- 3. Considere el conjunto de funciones $\chi_n(x) = \sin nx$ con $n = 1, 2, \dots$, definidas en el intervalo $0 \le x \le \pi$. Proponer una regla que satisfaga los axiomas de producto escalar y calcular el producto escalar entre dos funciones del conjunto.
- 4. Mostrar que si los vectores no nulos $\{x_1, x_2, \dots, x_k\}$ son ortogonales entre sí, entonces son linealmente independientes.
- 5. Mostrar que, en un espacio euclídeo, el producto escalar de cualquier vector con el vector nulo es siempre cero.
- 6. Considere la secuencia de funciones linealmente independientes $\{x_0(t) = 1, x_1(t) = t, \dots, x_k(t) = t^k, \dots\} \in C_2(-1, 1)$. Construya a partir de esta secuencia un conjunto ortonormal de polinomios $\{P_k(t)\}$ de grado $k \in \mathbb{N}$.
- 7. Para todos $x, y, u, v \in E$, demostrar

$$|\rho(x,y) - \rho(x,u)| \le \rho(u,y)$$

$$|\rho(x,y) - \rho(u,v)| \le \rho(x,u) + \rho(y,v)$$

donde $\rho(x,y)$ indica la distancia entre $x \in y$.

8. Demuestre que la función definida en el espacio $\mathbb{N}\times\mathbb{N}$ como

$$\rho(n,m) = \begin{cases} 0, & n = m \\ 1 + \frac{1}{n+m}, & n \neq m \end{cases}$$
 (2)

define una distancia en \mathbb{N} .

9. Suponga el espacio vectorial \mathbb{R}^n definido sobre el campo de los reales. Demuestre que para $x \in \mathbb{R}^n$, la regla

$$||x|| = |x_1| + |x_2| + |x_3| + \dots + |x_n|$$
(3)

donde $x = (x_1, x_2, \dots, x_n)$, define una norma.

10. Considere el espacio C(a, b) de funciones continuas en el intervalo [a, b] a valores en los complejos. Muestre que la regla

$$\|\cdot\|: C(a,b) \to \mathbb{R}$$

$$f(x) \mapsto \max_{x \in [a,b]} |f(x)| \tag{4}$$

satisface las propiedades de norma.