

Énoncés des exercices

Exercice 1 [Indication] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$, paire, 2π -périodique, définie sur $[0,\pi]$ par $f(x) = x^2(\pi - x)^2$.

- 1. Montrer que f est de classe \mathcal{C}^2 sur \mathbb{R} , et qu'elle est de classe \mathcal{C}^3 par morceaux.
- 2. Développer f en série de Fourier. En déduire $\sum_{n=1}^{+\infty} \frac{1}{n^4}$, $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^4}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^8}$.

EXERCICE 2 | [Indication] [Correction]

Soit t un réel non entier. Soit f, 2π -périodique, définie par : $\forall x \in [-\pi, \pi], f(x) = \cos(tx)$.

- 1. Former le développement en série de Fourier de f.
- 2. Montrer que : $\forall t \in \mathbb{R} \mathbb{Z}$, $\frac{\pi}{\tan \pi t} = \frac{1}{t} + \sum_{n=1}^{+\infty} \frac{2t}{t^2 n^2}$. 3. Par dérivation terme à terme, en déduire : $\forall t \in \mathbb{R} \mathbb{Z}$, $\sum_{n=-\infty}^{+\infty} \frac{1}{(t-n)^2} = \frac{\pi^2}{\sin^2(\pi t)}$.

Exercice 3 [Indication] [Correction]

Soit t un nombre réel. On suppose que t n'est pas un entier relatif.

On définit une application f, 2π -périodique sur \mathbb{R} , par : $\forall x \in]0, 2\pi[$, $f(x) = e^{itx}$.

- 1. Calculer les coefficients de Fourier exponentiels de f.
- 2. En utilisant l'identité de Parseval, montrer que $\forall t \in \mathbb{R} \mathbb{Z}$, $\sum_{n=0}^{+\infty} \frac{1}{(t-p)^2} = \frac{\pi^2}{\sin^2(\pi t)}$.

Exercice 4 [Indication] [Correction]

Soit $f \in \mathcal{E}_{2\pi}$. Montrer que la série de terme général $\frac{1}{n}c_n(f)$ est absolument convergente.

Exercice 5 [Indication] [Correction]

Soit λ un réel non nul de]-1,1[. Pour tout réel x, on pose $f(x)=\frac{1}{1-2\lambda\cos x+\lambda^2}$.

- 1. Montrer que la série de Fourier de f converge normalement vers f sur \mathbb{R} . Ecrire l'égalité qui en résulte, sans chercher à calculer les $a_n(f)$ (qu'on notera simplement a_n).
- (a) Montrer que pour tout n de \mathbb{N}^* , on a : $\lambda a_{n+1} (1 + \lambda^2)a_n + \lambda a_{n-1} = 0$.
 - (b) En déduire l'existence de deux réels α et β tels que : $\forall n \in \mathbb{N}, a_n = \alpha \lambda^n + \frac{\beta}{\sqrt{n}}$.
 - (c) Montrer $\beta = 0$. Calculer a_0 et en déduire l'expression de a_n .
- 3. En déduire : $\forall x \in \mathbb{R}, \forall \lambda \in]-1, 1[, \frac{1-\lambda^2}{1-2\lambda\cos x+\lambda^2}=1+2\sum_{n=1}^{+\infty}\lambda^n\cos nx$
- 4. Retrouver ce résultat en utilisant un développement en série entière.

SÉRIES DE FOURIER (II)

Indications, résultats

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Justifier l'égalité
$$f(x) \equiv \frac{1}{2}a_0(f) + \sum_{n=1}^{+\infty} a_n(f)\cos(nx)$$
. Montrer que $a_0(f) = \frac{\pi^4}{15}$.

Après quatre intégrations par parties, on trouve $a_{2n+1} = 0$ et $a_{2n} = -\frac{48}{(2n)^4} = -\frac{3}{n^4}$.

Choisir x, on trouve $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$ et $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^4} = \frac{7\pi^4}{720}$. Parseval donne $\sum_{n=1}^{+\infty} \frac{1}{n^8} = \frac{\pi^8}{9450}$.

Indication pour l'exercice 2 [Retour à l'énoncé]

- On obtient :
$$\forall x \in \mathbb{R}, \ f(x) = \frac{\sin \pi t}{\pi t} + \frac{2t \sin \pi t}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n \cos nx}{t^2 - n^2}.$$

– Choisir $x = \pi$. Pour tout $n \ge 1$, définir l'application $t \mapsto \varphi_n(t) = \frac{2t}{t^2 - n^2}$.

Vérifier qu'on peut appliquer le théorème de dérivation des séries de fonctions.

Indication pour l'exercice 3 [Retour à l'énoncé]

On trouve:
$$\forall p \in \mathbb{Z}, c_p(f) = \frac{e^{i\pi t} \sin \pi t}{\pi (t-p)}$$
.

Indication pour l'exercice 4 [Retour à l'énoncé]

Justifier l'inégalité $\frac{1}{n}|c_n(f)| \leq \frac{1}{2}\left(\frac{1}{n^2} + |c_n(f)|^2\right)$ et utiliser un résultat du cours.

Indication pour l'exercice 5 [Retour à l'énoncé]

- 1. Justifier que pour tout x de \mathbb{R} : $f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos nx$.
- 2. (a) Constater que $\lambda \cos(n+1)x (1+\lambda^2)\cos nx + \lambda \cos(n-1)x = -\frac{\cos nx}{f(x)}$.
 - (b) Résultat du cours sur les récurrences linéaires d'ordre 2.
 - (c) Utiliser le fait (connue) que la suite (a_n) est convergente vers 0. $x 1 \lambda 2$

Poser
$$t = \tan \frac{x}{2}$$
, puis $t = \frac{1-\lambda}{1+\lambda}u$. En déduire $a_0 = \frac{2}{1-\lambda^2}$.

3. C'est une conséquence immédiate du développement en série de Fourier de f.

4. Fixer x et décomposer $g(\lambda) = \frac{1 - \lambda^2}{1 - 2\lambda \cos x + \lambda^2}$ en éléments simples.

Utiliser le DSE de
$$\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$$
 pour $|z| < 1$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

CORRIGÉ DE L'EXERCICE 1 [Retour à l'énoncé]

1. L'application f est π -périodique, de classe \mathcal{C}^{∞} sur $\mathbb{R} - \pi \mathbb{Z}$. Sur $]0, \pi[$, on a :

$$f(x) = \pi^2 x^2 - 2\pi x^3 + x^4$$
, $f'(x) = 2\pi^2 x - 6\pi x^2 + 4x^3$, $f''(x) = 2\pi^2 - 12\pi x + 12x^2$

On constate que
$$\lim_{0^+} f = \lim_{\pi^-} f = 0$$
, $\lim_{0^+} f' = \lim_{\pi^-} f' = 0$ et $\lim_{0^+} f'' = \lim_{\pi^-} f'' = 2\pi^2$.

Or les applications f, f', f'' sont π -périodiques

Donc f est de classe C^2 sur \mathbb{R} et : $\forall k \in \mathbb{Z}, f(k\pi) = 0, f'(k\pi) = 0, f''(k\pi) = 2\pi^2$.

L'application $f^{(3)}$ est définie sur $\mathbb{R} - \pi \mathbb{Z}$ et π -périodique.

Sur
$$]0, \pi[, f^{(3)}(x) = -12\pi + 24x$$
. Ainsi $\lim_{0^+} f^{(3)} = -12\pi$ et $\lim_{0^-} f^{(3)} = 12\pi$.

L'application f est donc de classe \mathcal{C}^3 par morceaux sur \mathbb{R} .

2. f est continue et de classe \mathcal{C}^1 par morceaux. Le théorème de convergence normale s'applique : la série de Fourier de f est CVN vers f sur \mathbb{R} .

L'application f étant paire, sa série de Fourier est une série de "cosinus".

Donc
$$f(x) \equiv \frac{1}{2}a_0(f) + \sum_{n=1}^{+\infty} a_n(f)\cos(nx)$$
, avec : $\forall n \in \mathbb{N}, a_n(f) = \frac{2}{\pi} \int_0^{\pi} f(t)\cos nt \, dt$.

En particulier,
$$a_0(f) = \frac{2}{\pi} \int_0^{\pi} (\pi^2 t^2 - 2\pi t^3 + t^4) dt = \frac{2}{\pi} \left(\frac{\pi^5}{3} - \frac{\pi^5}{2} + \frac{\pi^5}{5} \right) = \frac{\pi^4}{15}.$$

Pour calculer a_n avec $n \ge 1$ on procède à quatre intégrations par parties successives.

Posons:

$$g^{(4)}(x) = \cos nx, g^{(3)}(x) = \frac{\sin nx}{n}, g''(x) = -\frac{\cos nx}{n^2}, g'(x) = -\frac{\sin nx}{n^3}, g(x) = \frac{\cos nx}{n^4}$$

Pour tout entier $n \geq 1$:

$$\int_{0}^{\pi} f(t) \cos nt \, dt = \int_{0}^{\pi} f(t)g^{(4)}(t) \, dt$$

$$= \underbrace{\left[f(t)g^{(3)}(t)\right]_{0}^{\pi}}_{=0} - \int_{0}^{\pi} f'(t)g^{(3)}(t) \, dt = -\int_{0}^{\pi} f'(t)g^{(3)}(t) \, dt$$

$$= -\underbrace{\left[f'(t)g''(t)\right]_{0}^{\pi}}_{=0} + \int_{0}^{\pi} f''(t)g''(t) \, dt = \int_{0}^{\pi} f''(t)g''(t) \, dt$$

$$= \underbrace{\left[f''(t)g'(t)\right]_{0}^{\pi}}_{=0} - \int_{0}^{\pi} f^{(3)}(t)g'(t) \, dt = -\int_{0}^{\pi} f^{(3)}(t)g'(t) \, dt$$

$$= -\left[f^{(3)}(t)g(t)\right]_{0}^{\pi} + \int_{0}^{\pi} f^{(4)}(t)g(t) \, dt$$

$$= \frac{-12\pi}{n^{4}}(1 + (-1)^{n}) + \frac{24}{n^{4}}\underbrace{\int_{0}^{\pi} \cos nt \, dt}_{0}$$

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Ainsi
$$a_n = -\frac{24}{n^4}(1 + (-1)^n)$$
 puis $a_{2n+1} = 0$ et $a_{2n} = -\frac{48}{(2n)^4} = -\frac{3}{n^4}$.

Le développement en série de Fourier de f sécrit donc :

$$\forall x \in \mathbb{R}, f(x) = \frac{\pi}{30} - 3\sum_{n=1}^{+\infty} \frac{\cos 2nx}{n^4}$$

Avec
$$x = 0$$
, on trouve: $\frac{\pi}{30} - 3\sum_{n=1}^{+\infty} \frac{1}{n^4} = 0$ donc $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

Avec
$$x = \frac{\pi}{2}$$
, on trouve: $\frac{\pi}{30} - 3\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^4} = \frac{\pi^4}{16}$ donc $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^4} = \frac{7\pi^4}{720}$.

3. L'égalité de Parseval s'écrit ici :

$$\frac{1}{2}a_0(f)^2 + \sum_{n=1}^{+\infty} a_{2n}(f)^2 = \frac{2}{\pi} \int_0^{\pi} f^2(t) dt = \frac{2}{\pi} \int_0^{\pi} t^4(\pi - t)^4 dt$$

Mais
$$\frac{1}{2}a_0(f)^2 + \sum_{n=1}^{+\infty} a_{2n}(f)^2 = \frac{\pi^8}{450} + 9\sum_{n=1}^{+\infty} \frac{1}{n^8}.$$

D'autre part :

$$\frac{2}{\pi} \int_0^{\pi} f^2(t) dt = \frac{2}{\pi} \int_0^{\pi} (\pi^4 t^4 - 4\pi^3 t^5 + 6\pi^2 t^6 - 4\pi t^7 + t^8) dt$$
$$= 2\pi^8 \left(\frac{1}{5} - \frac{2}{3} + \frac{6}{7} - \frac{1}{2} + \frac{1}{9}\right) = \frac{\pi^8}{315}$$

On en déduit :
$$\sum_{n=1}^{+\infty} \frac{1}{n^8} = \frac{1}{9} \left(\frac{\pi^8}{315} - \frac{\pi^8}{450} \right) = \frac{\pi^8}{9450}.$$

On a représenté (à gauche) la fonction f sur l'intervalle $[-2\pi, 2\pi]$.

Puis on a tracé sur $[0, \pi]$ la différence $f(x) - S_4(x)$, où S_4 est le polynôme de Fourier de f d'indice 4. L'approximation est déjà très bonne; la courbe $y = S_4(x)$ recoupe 6 fois celle de f sur $[0, \pi]$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé de l'exercice 2 [Retour à l'énoncé]

1. L'application f est continue sur \mathbb{R} et de classe \mathcal{C}^1 par morceaux.

Le théorème de convergence normale s'applique donc : la série de Fourier de f est normalement convergente vers f sur \mathbb{R} .

L'application f étant paire, sa série de Fourier est une série de "cosinus".

Pour tout n de \mathbb{N} :

$$a_n(f) = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} \cos tx \cos nx \, dx$$

$$= \frac{1}{\pi} \int_0^{\pi} (\cos(n+t)x + \cos(n-t)x) \, dx$$

$$= \frac{1}{\pi} \left[\frac{\sin(n+t)x}{n+t} + \frac{\sin(n-t)x}{n-t} \right]_0^{\pi} = \frac{(-1)^n \sin \pi t}{\pi} \left(\frac{1}{n+t} - \frac{1}{n-t} \right)$$

$$= \frac{(-1)^n 2t \sin \pi t}{\pi (t^2 - n^2)}$$

En particulier $a_0(f) = 2 \frac{\sin \pi t}{\pi t}$. On obtient donc le développement valable sur \mathbb{R} :

$$f(x) = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} a_n(f) \cos nx = \frac{\sin \pi t}{\pi t} + \frac{2t \sin \pi t}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n \cos nx}{t^2 - n^2}$$

2. Avec $x = \pi$, on obtient : $\forall t \in \mathbb{R} - \mathbb{Z}$, $\cos \pi t = \frac{\sin \pi t}{\pi t} + \frac{2t \sin \pi t}{\pi} \sum_{n=1}^{+\infty} \frac{1}{t^2 - n^2}$.

Après multiplication par $\frac{\pi}{\sin \pi t}$, il vient effectivement :

$$\forall t \in \mathbb{R} - \mathbb{Z}, \quad \frac{\pi}{\tan \pi t} = \frac{1}{t} + \sum_{n=1}^{+\infty} \frac{2t}{t^2 - n^2}$$

3. Pour tout $n \ge 1$, posons $\varphi_n(t) = \frac{2t}{t^2 - n^2}$.

L'application φ_n est de classe \mathcal{C}^{∞} sur $\mathbb{R} - \{-n, n\}$.

Comme on vient de le voir, la série de fonctions $\sum \varphi_n(t)$ est CVS sur $\mathbb{R} - \mathbb{Z}$.

Pour tout réel t de $\mathbb{R} - \pi \mathbb{Z}$ et tout $n \geq 1$, on a :

$$\varphi_n(t) = \frac{1}{t-n} + \frac{1}{t+n} \text{et } \varphi'_n(t) = -\frac{1}{(t-n)^2} - \frac{1}{(t+n)^2}$$

Supposons |t| < k avec k entier. Alors pour tout n de $\mathbb{N}, |t \pm n| \ge |n| - |t| > n - k$.

On en déduit, pour tout n > k, que : $|\varphi'_n(t)| \le \frac{2}{(n-k)^2}$.

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

La série $\sum \varphi'_n$ est donc CVN (donc CVU) sur toute partie bornée de $\mathbb{R} - \mathbb{Z}$ (par exemple sur tout intervalle]m, m+1[délimité par deux entiers consécutifs.)

On peut alors appliquer le théorème de dérivation des séries de fonctions, ce qui permet de dériver terme à terme la série de fonctions $\sum \varphi_n$.

La dérivée de
$$t \mapsto \frac{\pi}{\tan \pi t}$$
 est $-\frac{\pi^2}{\sin^2 \pi t}$.

On trouve donc, pour tout t de $\mathbb{R} - \pi \mathbb{Z}$:

$$-\frac{\pi^2}{\sin^2 \pi t} = \left(\frac{\pi}{\tan \pi t}\right)' = -\frac{1}{t^2} + \left(\sum_{n=1}^{+\infty} \varphi_n(t)\right)' = -\frac{1}{t^2} + \sum_{n=1}^{+\infty} \varphi'_n(t)$$

$$= -\frac{1}{t^2} - \sum_{n=1}^{+\infty} \left(\frac{1}{(t-n)^2} + \frac{1}{(t+n)^2}\right)$$

$$= -\frac{1}{t^2} - \sum_{n=1}^{+\infty} \frac{1}{(t-n)^2} - \sum_{n=1}^{+\infty} \frac{1}{(t+n)^2} = -\sum_{n=-\infty}^{+\infty} \frac{1}{(t-n)^2}.$$

On a donc bien obtenu : $\forall t \in \mathbb{R} - \mathbb{Z}$, $\sum_{n=-\infty}^{+\infty} \frac{1}{(t-n)^2} = \frac{\pi^2}{\sin^2(\pi t)}$.

Corrigé de l'exercice 3 [Retour à l'énoncé]

1. On calcule les coefficients de Fourier exponentiels de f:

$$\forall p \in \mathbb{Z}, c_p(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ipx} dx = \frac{1}{2\pi} \int_0^{2\pi} e^{i(t-p)x} dx = \frac{1}{2\pi} \left[\frac{e^{i(t-p)x}}{i(t-p)} \right]_{x=0}^{x=2\pi}$$
$$= \frac{1}{2\pi} \frac{e^{2i\pi t} - 1}{i(t-p)} = \frac{e^{i\pi t}}{2\pi} \frac{e^{i\pi t} - e^{-i\pi t}}{i(t-p)} = \frac{e^{i\pi t} \sin \pi t}{\pi(t-p)}$$

2. Donc
$$\forall p \in \mathbb{Z}, |c_p(f)| = \frac{|\sin \pi t|}{\pi |t - p|}, \text{ puis } \sum_{p = -\infty}^{p = +\infty} |c_p(f)|^2 = \frac{\sin^2 \pi t}{\pi^2} \sum_{p = -\infty}^{p = +\infty} \frac{1}{(t - p)^2}.$$

D'autre part :
$$|f(t)| = 1 \Rightarrow \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt = 1.$$

Utilisons maintenant l'égalité de Parseval :

$$\sum_{p=-\infty}^{p=+\infty} |c_p(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt \text{ donne ici : } \forall t \in \mathbb{R} - \mathbb{Z}, \sum_{p=-\infty}^{+\infty} \frac{1}{(t-p)^2} = \frac{\pi^2}{\sin^2(\pi t)}.$$

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé de l'exercice 4 [Retour à l'énoncé]

On sait que la série $\sum |c_n(f)|^2$ est convergente (conséquence de l'inégalité de Bessel).

D'autre part, pour tous complexes a et b, on a l'égalité $2|ab| \le |a|^2 + |b|^2$.

On en déduit, pour tout entier $n \ge 1$: $\frac{1}{n} |c_n(f)| \le \frac{1}{2} \left(\frac{1}{n^2} + |c_n(f)|^2 \right)$.

On en déduit par majoration que la série $\sum \frac{1}{n} c_n(f)$ est absolument convergente.

Remarque : utiliser le fait que $\lim_{\infty} |c_n| = 0$ et donc dire que $\frac{1}{n} |c_n(f)| = o\left(\frac{1}{n}\right)$ ne suffit pas à prouver la convergence de la série de terme général $\frac{1}{n} |c_n(f)|$ (penser à la série $\sum \frac{1}{n \ln n}$.)

Corrigé de l'exercice 5 [Retour à l'énoncé]

1. Pour tout réel x et tout λ de] -1,1[, on a :

$$1 - 2\lambda \cos x + \lambda^2 = (\lambda - \cos x)^2 + \sin^2 x > 0$$

L'application f est donc définie sur \mathbb{R} . Elle est visiblement de classe \mathcal{C}^{∞} .

Elle vérifie donc très largement les hypothèses du théorème de convergence normale : la série de Fourier converge normalement vers f sur \mathbb{R} .

Comme f est paire, les coefficients $b_n(f)$ sont nuls.

On peut donc écrire, pour tout x de \mathbb{R} : $f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos nx$.

2. (a) On utilise la définition des coefficients a_n .

Pour tout n de \mathbb{N} , on $a: a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$.

On constate d'autre part que, pour tout $n \ge 1$:

$$\lambda \cos(n+1)x - (1+\lambda^2)\cos nx + \lambda \cos(n-1)x$$
$$= 2\lambda \cos x \cos nx - (1+\lambda^2)\cos nx = -\frac{\cos nx}{f(x)}$$

On en déduit, pour tout $n \geq 1$:

$$\lambda a_{n+1} - (1+\lambda^2)a_n + \lambda a_{n-1} = \frac{2}{\pi} \int_0^{\pi} f(x) \left(-\frac{\cos nx}{f(x)}\right) dx = -\frac{2}{\pi} \int_0^{\pi} \cos nx \, dx = 0$$

(b) La suite $(a_n)_{n\geq 0}$ satisfait donc à une récurrence linéaire d'ordre 2.

L'équation caractéristique est $\lambda t^2 - (1 + \lambda^2)t + \lambda = (\lambda t - 1)(t - \lambda) = 0$.

Les deux racines de cette équation sont λ et $\frac{1}{\lambda}$: elles sont distinctes.

Il existe donc deux réels α et β tels que : $\forall n \in \mathbb{N}, a_n = \alpha \lambda^n + \frac{\beta}{\lambda^n}$.

Page 7 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

(c) On sait que la suite (a_n) est convergente vers 0 (c'est un résultat du cours).

Or $|\lambda| < 1$ et donc $\frac{1}{|\lambda|} > 1$. Pour que a_n tende vers 0, il est nécessaire que β soit nul.

On en déduit que $a_n = \alpha \lambda^n$. Avec cette notation $\alpha = a_0$.

On pose $t = \tan \frac{x}{2}$, avec $t \in [0, +\infty[$.

On a
$$dx = \frac{2 dt}{1 + t^2}$$
 et $\cos x = \frac{1 - t^2}{1 + t^2}$.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} \frac{\mathrm{d}x}{1 - 2\lambda x + \lambda^2} = \frac{4}{\pi} \int_0^{+\infty} \frac{\mathrm{d}t}{(1 + t^2)(1 + \lambda^2) - 2\lambda(1 - t^2)}$$
$$= \frac{4}{\pi} \int_0^{+\infty} \frac{\mathrm{d}t}{(1 - \lambda)^2 + (1 + \lambda)^2 t^2}$$

On pose
$$t = \frac{1-\lambda}{1+\lambda}u$$
, avec $u \in [0, +\infty[$.

On trouve:
$$a_0 = \frac{4}{\pi(1-\lambda^2)} \int_0^{+\infty} \frac{du}{1+u^2} = \frac{2}{1-\lambda^2}$$
.

On en déduit :
$$\forall n \in \mathbb{N}, a_n = a_0 \lambda^n = \frac{2\lambda^n}{1 - \lambda^2}$$
.

3. Le DSF de
$$f$$
 s'écrit donc : $\forall x \in \mathbb{R}, f(x) = \frac{1}{1 - \lambda^2} + \sum_{n=1}^{+\infty} \frac{2\lambda^n}{1 - \lambda^2} \cos nx$

On en déduit (le résultat est vrai de manière évidente si $\lambda = 0$) :

$$\forall x \in \mathbb{R}, \ \forall \lambda \in]-1,1[, \ \frac{1-\lambda^2}{1-2\lambda\cos x+\lambda^2}=1+2\sum_{n=1}^{+\infty}\lambda^n\cos nx$$

4. On fixe le réel x et on pose $g(\lambda) = \frac{1 - \lambda^2}{1 - 2\lambda \cos x + \lambda^2}$.

L'application g est définie sur l'intervalle]-1,1[.

On décompose la fraction rationnelle $g(\lambda)$:

$$g(\lambda) = -1 + \frac{2 - 2\lambda \cos x}{1 - 2\lambda \cos x + \lambda^2} = -1 + \frac{2 - 2\lambda \cos x}{(1 - \lambda e^{ix})(1 - \lambda e^{-ix})}$$
$$= -1 + \frac{1}{1 - \lambda e^{ix}} + \frac{1}{1 - \lambda e^{-ix}}$$

Puis on utilise le DSE, valable pour $|z| < 1 : \frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$.

On en déduit alors :

$$g(\lambda) = -1 + \sum_{n=0}^{+\infty} \lambda^n e^{inx} + \sum_{n=0}^{+\infty} \lambda^n e^{-inx} = -1 + 2\sum_{n=0}^{+\infty} \lambda^n \cos nx = 1 + 2\sum_{n=1}^{+\infty} \lambda^n \cos nx$$

On a ainsi retrouvé le résultat de la question précédente.

Page 8 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.