

DIGILENT Basys 3 FPGA

基于 Vivado 上手教程

(-)

Vivado 设计流程

Vivado 设计流程

一、 实验目的

通过 LED 流水灯设计实验了解 Vivado 设计流程,熟悉 Basys 3 的外设接口及设置。

二、 实验内容

- 创建一个新的 Vivado 工程项目
- 编写 LED 流水灯的 Verilog 源文件
- 建立仿真
- 添加引脚约束文件
- 编写 testbench 进行激励仿真测试
- 添加时序约束
- 在 Basys 3 FPGA 开发板上运行实验设计

三、 实验步骤

- 1. 创建新的工程项目
 - 1) 双击桌面图标打开 Vivado 2017.1,或者选择开始>所有程序>Xilinx Design Tools> Vivado 2017.1>Vivado 2017.1

2) 点击'Create Project',或者单击 File>New Project 创建工程文件。

3) 弹出工程导向窗口,点击 Next 继续。

4) 将新的工程项目命名为'flow_led',勾选创建工程子文件夹,点击 Next 继续。

5) 新建一个RTL工程,勾选'Do not specify sources at this time'先不添加源文件,点击 Next 继续。

6) 点击 Board, 在搜索框输入'Basys3', 选择 Basys3 开发板, 点击 Next 继续。 注意需要先安装 Digilent board files。

7) 确认相关信息无误后点击 Finish 完成工程项目的创建。

2. 添加源文件

1) 完成工程创建后会弹出如下界面,在 Flow Navigator 中展开 Project Manger,点击 Add Source 添加源文件。

2) 选择'Add or create design source', 点击 Next 继续。

3) 点击 Create File 或者点击'+'号,选择'Create File'。

4) 在弹出的窗口中输入文件名'flowing_led',点击 OK。

5) 新的源文件已经被添加到列表中,点击 Finish 完成添加。

6) 在弹出的窗口中定义模块的输入/输出端口,点击 OK 继续。

7) 在 Source 中展开 Design Sources,双击 flowing_led 打开'flowing_led.v'文件。

8) 在'flowing_led.v'文件中已经定义好了输入/输出端口,接下来需要完成模块的功能设计,在文件中输入相应的代码。

参考代码:

```
`timescale 1ns / 1ps
module flowing light(
    input clk,
    input rst,
    output [15:0] led
    );
    reg[23:0]cnt reg;
    reg[15:0]light reg;
    always@(posedge clk)
      begin
           if(rst)
           cnt reg<=0;
           else
           cnt reg<=cnt reg+1;</pre>
      end
    always@(posedge clk)
      begin
           if(rst)
           light reg<=16'h0001;
           else if(cnt reg == 24'hffffff)
           begin
               if(light reg == 16'h8000)
                 light reg<=16'h0001;
                 light reg<=light reg<<1;</pre>
           end
      end
```


assign led = light reg;

endmodule 输入完成后 Ctrl+S 保存。

3. 添加约束文件

在 Vivado 2017.1 中有两种方式可以添加约束文件,一种是使用 Vivado I/O Planning 功能,另一种是新建约束文件,手动输入约束命令。下面将分别介绍两种约束文件的添加步骤:

- a) 使用 Vivado I/O Planning 添加约束文件
 - 1) 在 Flow Navigator 中点击'Run Synthesis'对工程进行综合。

2) 使用默认设置,点击 OK 开始综合。

3) 综合完成后,选择打开综合后的结果,点击 OK 查看。

4) 此时应看到如下界面,如果没有出现如下界面可以在顶部工具栏中点击 Layout>I/O Planning。

5) 在右下方选项卡中选中 I/O Ports 一栏,在对应的信号后面输入对应的 Basys 3 FPGA 引脚标号,选择对应的电平标准,Basys 3 使用 LVCMOS33(3.3V) 的电平标准。

6) 添加约束文件需要重新综合,更新设计,点击 OK 继续。

7) 创建约束文件,命名约束文件为'top_xdc.xdc',点击 OK 继续。

8) 创建完成后,可以在 Source 窗口中展开 Constraints 找到'top_xdc.xdc'文件。按照步骤 1)点击'Run Synthesis'重新综合,更新设计工程。

- b) 新建手动输入约束文件
 - 1) 在 Project Manager 中点击 Add Source, 选择第一项'Add or create constraints', 点击 Next 继续。

2) 点击 Create File,在弹出窗口中输入文件名'top_xdc.xdc',点击 OK 完成新建约束文件。

- 3) 点击 Finish 完成约束文件创建。
- 4) 在 Source 窗口中展开 Constraints,双击'top_xdc.xdc'文件开始编辑,输入相应的 Basys 3 FPGA 引脚信息和电平标准。 参考代码:

```
set property PACKAGE PIN L1 [get ports {led[15]}]
set property PACKAGE PIN P1 [get ports {led[14]}]
set property PACKAGE PIN N3 [get ports {led[13]}]
set property PACKAGE PIN P3 [get ports {led[12]}]
set property PACKAGE PIN U3 [get ports {led[11]}]
set property PACKAGE PIN W3 [get ports {led[10]}]
set property PACKAGE PIN V3 [get ports {led[9]}]
set property PACKAGE PIN V13 [get ports {led[8]}]
set property PACKAGE PIN V14 [get ports {led[7]}]
set property PACKAGE PIN U14 [get ports {led[6]}]
set property PACKAGE PIN U15 [get ports {led[5]}]
set property PACKAGE PIN W18 [get ports {led[4]}]
set property PACKAGE PIN V19 [get ports {led[3]}]
set property PACKAGE PIN U19 [get ports {led[2]}]
set property PACKAGE PIN E19 [get ports {led[1]}]
set property PACKAGE PIN U16 [get ports {led[0]}]
set property IOSTANDARD LVCMOS33 [get ports {led[15]}]
set property IOSTANDARD LVCMOS33 [get ports {led[14]}]
set property IOSTANDARD LVCMOS33 [get ports {led[13]}]
set property IOSTANDARD LVCMOS33 [get ports {led[12]}]
set property IOSTANDARD LVCMOS33 [get ports {led[11]}]
set property IOSTANDARD LVCMOS33 [get ports {led[10]}]
set property IOSTANDARD LVCMOS33 [get ports {led[9]}]
set property IOSTANDARD LVCMOS33 [get ports {led[8]}]
set property IOSTANDARD LVCMOS33 [get ports {led[7]}]
set property IOSTANDARD LVCMOS33 [get ports {led[6]}]
```



```
set_property IOSTANDARD LVCMOS33 [get_ports {led[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports clk]
set_property IOSTANDARD LVCMOS33 [get_ports rst]
set_property PACKAGE_PIN W5 [get_ports clk]
set_property PACKAGE_PIN U18 [get_ports rst]
```

- 4. 利用 Vivado 进行功能仿真
 - 1) 创建测试平台(testbench)文件,点击 Add Source。选择'Add or create simulation sources',点击 Next 继续。

2) 点击 Create File,将测试文件命名为'flowing_led_tb.v',点击 Finish 完成测试文件的创建。

- 3) 在弹出的输入输出端口设置的窗口中设置为空,直接点击 OK。
- 4) 在 Source 一栏中展开 Simulation Sources,展开 sim_1 文件夹,双击打开 'flowing_led_tb.v'文件开始编辑。

5) 编辑测试平台文件,参考代码如下:

```
`timescale 1ns / 1ps
module flowing led tb();
reg clk;
reg rst;
wire[3:0]led;
flowing led u0(
  .clk(clk),
  .rst(rst),
  .led(led));
parameter PERIOD = 10;
always begin
clk = 1'b0;
\#(PERIOD/2) clk = 1'b1;
\#(PERIOD/2);
end
initial begin
clk = 1'b0;
rst = 1'b0;
#100;
rst = 1'b1;
#100;
rst = 1'b0;
end
endmodule
```


6) 在 Flow Navigator 中,展开 Simulation,点击 Run Simulation,选择'Run Behavioral Simulation'。

7) 可以通过左侧的 Scope 一栏中找到想要查看的模块的寄存器,在 Objects 一栏中右击选择'Add to Wave Window'添加需要查看的信号。

可通过选择工具栏中的如下选项来进行波形的仿真时间控制。如下工具条,分别是复位波形(即清空现有波形)、运行仿真、运行特定时长的仿真、仿真时长设置、仿真时长单位、单步运行、暂停。

- 5. 添加时序约束
 - 1) 重新综合完成后选择'Open Synthesized Design', 点击 OK。

2) 在左侧的 Flow Navigator 中依次选择 Synthesis>Open Synthesized Design>Edit Timing Constraints。

3) 在时序约束窗口中展开 Clocks, 右键 Create Clock, 选择'Create Clock'。

4) 在弹出的窗口中将时钟命名为'clk_pin',在 Source objects 一项中点击右侧的按钮选择目标源。

5) 在弹出窗口中选择 I/O Ports 类型,点击'Find',选中'clk'端口并将其移到右侧,点击'Set'继续。

6) 将周期设为8ns,上升设为0ns,下降设为4ns,点击OK继续。

7) 接下来设置输入延迟,展开 Inputs,双击'Set Input Delay'。

8) 按照下图设置输入延迟,Clock 选择 clk_pin,Objects 选择 rst。 Delay value 设为-0.5ns,勾选最小延迟(最短路径),点击 OK。

9) 展开 Outputs,双击'Set Output Delay', Clock 选择 clk_pin, Objects 选择所有的输出(led[0]~led[15]),延迟设为 0ns,点击 OK 继续。

10) 在工具栏中选择 File>Save Constraints,或者 Ctrl+S 保存。然后打开 'top_xdc.xdc'文件可以看到约束命令已被写入约束文件。

11) 完成时序报告后,可以看到 Hold 一项中显示为红色,并且在'Design Timing Summery'旁有一个红色的感叹号,表示时序约束后无法满足需求,在 Implementation(实现)时,Vivado 会自动优化布线路径,来满足用户设定的时序约束条件。

6. 工程实现

1) 在 Flow Navigator 中展开 Implementation,点击'Run Implementation'。完成后,在弹出窗口中选择'Generate Bitstream'生成比特流文件。

2) 生成比特流文件后选择'Open Hardware Manager', 点击 OK。

- 3) 将 Basys 3 FPGA 开发板 PROG 接口(J4)通过 micro-USB 线连接到电脑 USB 接口,确认电源(JP2)跳线为 USB 供电模式,模式(JP1)跳线为 JTAG。打开 Basys 3 开关通电。
- 4) 在 Hardware Manager 中点击'Open Target',选择'Auto Connect'连接 Basys 3 FPGA 开发板。

5) 在 Hardware 一项中看到,Basys 3 FPGA 已经成功的连接到了电脑,点击 'Program device'将工程下载到 Basys 3 开发板上。

6) 选择需要下载的比特流文件,点击'Program'开始下载。

7) 下载完成后,在 Basys 3 FPGA 开发板上的运行演示。

