B.Tech. II CSE CS 208 Automata and Formal Languages Mid Semester Examination

Your email address will be recorded when you submit this form.

Not u19cs012@coed.svnit.ac.in? Switch account

* Required

Which of the following regular expressions over {0,1} denotes the set of all string not containing 100 as a substring? *	1 point
0*1*01*	
0*1010*	
0*(10+1)*	
0*(1*0)*	
DFA can recognize *	1 point
only CFG	
only unambiguous grammar	
any grammar	
only regular language	

(a*ab+ba)*a* is equivalent to *

1 point

- (ab + ba + aba)
- (aba + bab)*
- (a + b + ab)*
- (a + ab + ba)*

Identify which of the following conditions does not hold *

1 point

- $(r_1 r_2)^* = (r_1^* + r_2^*)^*$
- $(r_1 r_2)^* = (r_1^* + r_2^*)$
- $(r_1 r_2)^* = r_1^* r_2^*$
- $(r_1 r_2)^* = (r_1^* r_2^*)^*$

Which of the following pairs are equivalent *

1 point

- (ab)*a and a(ba)*
- \bigcirc (a+b)* and (a* + b*)
- None of these
- (a* + b) and (a+b)*

(1 + 00*1) + (1 + 00*1) (0 + 10*1)* (0 + 10*1) = 0*1(0+10*1)**

- False
- True

DFA has *
more than one initial states
o unique path (for a set of inputs) to the final state
all of the these
single final state
The set of regular languages over a given alphabet set is not closed under * 1 point
None of these
intersection
union
Complement
Find the true statement * 1 point
There is nothing like non-determinism in finite state automata.
There is nothing like non-determinism in finite state automata.it depends from case to case.
it depends from case to case.
 it depends from case to case. Non-determinism adds to the recognition power of finite-state automata. Non-determinism does not add to the recognition power of finite-state automat.
it depends from case to case.Non-determinism adds to the recognition power of finite-state automata.
 it depends from case to case. Non-determinism adds to the recognition power of finite-state automata. Non-determinism does not add to the recognition power of finite-state automat. Given an arbitrary non-deterministic finite automation with N states the
 it depends from case to case. Non-determinism adds to the recognition power of finite-state automata. Non-determinism does not add to the recognition power of finite-state automat. Given an arbitrary non-deterministic finite automation with N states the maximum number of states is an equivalent minimized DFA is at least *
 it depends from case to case. Non-determinism adds to the recognition power of finite-state automata. Non-determinism does not add to the recognition power of finite-state automat. Given an arbitrary non-deterministic finite automation with N states the maximum number of states is an equivalent minimized DFA is at least * N²

The intersection of (a+b)*a and b(a+b)* is given by *	1 point
(a+b)*ab(a+b)*	
O ab(a+b)*	
b(a+b)*a	
a(a+b)*b	
Which of the following is regular? *	1 point
Strings of odd number of zeroes	
Strings of all palindromes made up of 0's and 1's	
Strings of 0's whose length is a prime number	
Strings of 0's whose length is a perfect square	
The basic limitation of finite state machine is that *	1 point
The basic limitation of finite state machine is that * it sometimes recognizes non regular language	1 point
	1 point
it sometimes recognizes non regular language	1 point
it sometimes recognizes non regular language all the these	1 point
it sometimes recognizes non regular languageall the theseit sometimes does not recognizes regular language	1 point
it sometimes recognizes non regular languageall the theseit sometimes does not recognizes regular language	
 it sometimes recognizes non regular language all the these it sometimes does not recognizes regular language it can't remember arbitrary large information The set of all strings 0's and 1's such that every pair of adjacent 0's appears 1	
 it sometimes recognizes non regular language all the these it sometimes does not recognizes regular language it can't remember arbitrary large information The set of all strings 0's and 1's such that every pair of adjacent 0's appears 1 before any pair of adjacent 1's *	
 it sometimes recognizes non regular language all the these it sometimes does not recognizes regular language it can't remember arbitrary large information The set of all strings 0's and 1's such that every pair of adjacent 0's appears 1 before any pair of adjacent 1's * (10 + 0)* (epsilon + 1)* (epsilon + 0) 	

- every state of a DFA must always have at most one existing transition arrow for each symbol in the alphabet.
- every state of a DFA must always have exactly one existing transition arrow for each symbol in the alphabet.
- every state of a DFA may have one, or many existing transition arrow for each symbol in the alphabet.
- every state of a DFA may have zero, one, or many existing transition arrow for each symbol in the alphabet.

$$(0 + 1 + 00)* = ?*$$

1 point

- 0*1*
- (0+1)*
- 0* + 1*
- (01)*

(1+00*1)+(1+00*1)(0+10*1)*(0+10*1) = ?*

- (1+00*1)(0+10*1)*
- (0+10*1)*0*1
- None of these
- 0*1(0+10*1)*

The language generated by a deterministic finite automata is * context free language informal language regular language context sensitive language	1 point
The set of all strings which are either strings of a's followed by one b or strings of b's followed by one a *	1 point
a*+(ab+a)*	
(aa+b)*(bb+a)*	
a(a+b)*ab	
a*b+b*a	
L is a nonempty language such that any w in L has length n, then any DFA accepting L must have *	1 point
exactly (n+1) states	
atleast (n+1) states	
atmost (n+1) states	
exactly n states	

- $(r_1* r_1*)* = r_1*$
- $r_1 * r_1 * = r_1 *$
- $(r_1 + r_1)^* = (r_1^*)^*$
- $(r_1*)* = r_1*$

For text searching applications which of them is used *

1 point

- NFA
- DFA
- CFG
- NCFG

O(O+1)*+(O+1)*OO(O+1)* = ? *

1 point

- (01*)0*1*
- **(**(01*)0*1*)*
- None of these
- ((1*0)*01*)*

(11 + 111)* = (111*)* *

- False
- True

Find the regular expression for the set of all strings having atmost one pair 1 point of 0's or atmost one pair of 1's *

- (1+01)* + (1+00)* (1+10)* + (1+10)* + (1+10)*11(0+10)*
- $(1+01)^* + (1+01)^*00(1+01)^* + (0+10)^* + (0+10)^* + (0+10)^*$
- (1+00)*+(1+01)*(1+10)* + (1+11)* + (0+10)*11 (0+10)*
- None of the these

Select which of following represent a set of all strings with a and ending with ab *

- a*+(ab+a)*
- a*b + b*a
- (aa+b)*(bb+a)*
- (a+b)*b

Identify which of the following conditions hold *

- $(r_1 + r_2)^* = (r_1 * r_2 *)$
- $(r_1 + r_2)^* = (r_1 * r_2 *)^*$
- $(r_1 + r_2)^* = (r_1^* + r_2^*)$
- $(r_1 + r_2)^* = (r_1^* + r_2^*)^*$

A language L = {awa: w in of form {a, b}+} is *	1 point
ontext sensitive	
None of these	
regular	
ongext free	
Applications of finite automata can not be found in *	1 point
String matching	
Spelling checkers	
C Lexical analyzers	
Storage purpose	
What is the regular expression defining the language of all words with an odd number of b's is *	1 point
a*b + (a*ba + b)* + a*	
a*b(a*ba*b)*a*	
None of these	

A copy of your responses will be emailed to u19cs012@coed.svnit.ac.in.

Page 1 of 1

Submit

a*(a*b)*a*

This form was created inside of Sardar Vallabhbhai National Institute of Technology, Surat. Report Abuse