Problema 12 - partículas

12. Dos cochecitos, inicialmente en reposo, pueden moverse libremente en la dirección X. El coche A tiene una masa de 4,52 kg y el coche B de 2,37 kg. Ambos están atados entre sí comprimiendo un resorte, como se muestra en la figura. Cuando se corta la cuerda que los une, el resorte se expande rápidamente y cae al piso, luego de lo cual el coche A se mueve con una velocidad cuyo módulo es 2 m/s.

- (a) ¿Qué significa moverse libremente?, ¿es suficiente la información dada en el enunciado para su resolución? Analizar e indicar las condiciones supuestas.
- (b) ¿Cuál será el módulo de la velocidad con que se moverá el coche B?
- (c) ¿Cuánta energía había almacenada en el muelle antes de cortar la cuerda?

Año 2021q1 - Buenos Aires - problema SP-12

Punto (a) analizando la situación

El conjunto (A, B, soga, resorte) está en reposo. La soga unida a los carros está tirante y mantiene comprimido al resorte, que está suelto (no vinculado), pero comprimido por los carros y la soga, no se cae.

El problema arranca con (a) preguntando si es posible resolverlo con la información dada. El punto (b) es posible, para el punto (c) hará falta considerar al resorte dentro de un SP, no se puede saber la energía potencia elástica desde el resorte mismo y sin tener ningún dato del mismo.

Año 2021q1 – Buenos Aires – problema SP-12

SP – antes: (A, B, resorte) $\vec{T}_{R/A}$ $\vec{T}_{A/R}$ $\vec{T}_{R/B}$ $\vec{T}_{B/R}$ $\vec{T}_{B/R}$

t_D

Punto (b)

t_A : instante inmediatamente <u>antes</u> de cortarse la cuerda t_D: instante inmediatamente después de cortarse la cuerda

$$\vec{p}_{A}^{t_{A}} + \vec{p}_{B}^{t_{A}} + \vec{p}_{R}^{t_{A}} = \vec{p}_{A}^{t_{D}} + \vec{p}_{B}^{t_{D}} + \vec{p}_{R}^{t_{D}} = 0$$

$$\vec{p}_{B}^{t_{D}} = -\vec{p}_{A}^{t_{D}}$$

$$m_{B} \vec{v}_{B}^{t_{D}} = -m_{A} \vec{v}_{A}^{t_{D}}$$

$$\vec{v}_{B}^{t_{D}} = -\frac{m_{A}}{m_{B}} \vec{v}_{A}^{t_{D}} = -\frac{4,52}{2,37} \ 2 \ \emph{\emph{i}} = -3,81 \ \frac{m}{s} \ \emph{\emph{i}}$$

$$\vec{v}_{B}^{t_{D}} = 3,81 \ m/s$$

Año 2021q1 – Buenos Aires – problema SP-12

6

Año 2021q1 - Buenos Aires - problema SP-12

Punto (c)

Energía que "se almacena" > energía potencial elástica

natural

comprimido

Tiene la capacidad de convertirse en Ec por W fuerza elástica

Punto (c)

Como el resorte está en el SP:

$$\Delta E m_{sist}^{t_A t_D} = \sum W_{FNC}^{t_A t_D}$$

Las fuerzas no conservativas sobre el sistema y sus trabajos son:

$$W_{N_A}^{t_A,t_D} = \int_{t_A}^{t_D} \overrightarrow{N_A} \cdot \overrightarrow{dr} = 0 \qquad W_{N_B}^{t_A,t_D} = \int_{t_A}^{t_D} \overrightarrow{N_B} \cdot \overrightarrow{dr} = 0$$

$$W_{N_B}^{t_A,t_D} = \int_{t_A}^{t_D} \overrightarrow{N_B} \cdot \overrightarrow{dr} = 0$$

$$W_{T_A}^{t_A,t_A} = \int_{t_A}^{t_A} \overrightarrow{T_A} \cdot \overrightarrow{dr} = 0$$

$$W_{T_B}^{t_A,t_A} = \int_{t_A}^{t_A} \overrightarrow{T_B} \cdot \overrightarrow{dr} = 0$$

$$\underset{mismo}{\overrightarrow{T_B}} = 0$$

Punto (c)

Por ello:
$$Em_{sist}^{t_A} = Em_{sist}^{t_D}$$
 A,B,Resorte $Epg_{sist}^{t_A} + Epelást_{sist}^{t_A} + Ec_{sist}^{t_A} = Epg_{sist}^{t_D} + Epelást_{sist}^{t_D} + Ec_{sist}^{t_D}$ $= 0$ $= 0$ $= 0$ $= 0$ $(h = 0)$ $(reposo)$ $(h = 0)$ $(L natural)$ $Epelást_{sist}^{t_A} = Ec_{sist}^{t_D} = Ec_{sist}^{t_D} + Ec_{B}^{t_D} + Ec_{Resorte}^{t_D} = 0 \text{ (m} \rightarrow 0)$ $= \frac{1}{2}.4,52.2^2 + \frac{1}{2}.2,37.3,81^2 = 26,2 \text{ Joule}$

Año 2021q1 – Buenos Aires – problema SP-12