Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

<u>∧</u> Soma de Riemann

- 1. Calcule a soma de Riemann para f(x) = 3 x/2 no intervalo $2 \le x \le 14$, com seis subintervalos, tomando os pontos amostrais como as extremidades esquerdas. Represente o resultado graficamente.
- 2. Se $f(x) = x^2 2x$, $0 \le x \le 3$, calcule a soma de Riemann com n = 6 tomando como pontos amostrais as extremidades direitas. Represente o resultado graficamente.
- 3. A velocidade de uma corredora aumenta regularmente durante os três primeiros segundos de uma corrida. Sua velocidade em intervalos de meio segundo é dada em uma tabela. Encontre as estimativas superior e inferior para a distância que ela percorreu durante esses três segundos.

<i>t</i> (s)	0	0,5	1,0	1,5	2,0	2,5	3,0
v (m/s)	0	1,9	3,3	4,5	5,5	5,9	6,2

4. Expresse o limite como uma integral definida (não resolva a integral).

(a)
$$\lim_{n\to\infty} \sum_{i=1}^n c_i \ln(1+c_i^2) \Delta x$$
, onde $\Delta x = \frac{4}{n}$ e $c_i = 2 + i \Delta x$

- (b) $\lim_{n\to\infty} \sum_{i=1}^n \frac{\cos x_i}{x_i} \Delta x$, no intervalo $[\pi, 2\pi]$, onde x_i são pontos amostrais.
- (c) $\lim_{n\to\infty}\sum_{i=1}^n\frac{x_i^*}{(x_i^*)^2+4}\Delta x$, no intervalo [1, 3], onde x_i^* são pontos amostrais.
- 5. Use a definição de integral baseada no limite da soma de Riemann, tomando os pontos amostrais como as *extremidades direitas*, para calcular as integrais definidas a seguir.

(a)
$$\int_0^2 (2x+1)dx$$
 (b) $\int_{-1}^2 (3x^2-2x+1)dx$ (c) $\int_0^1 (3x-x^3)dx$

6. Use o limite da soma de Riemann para obter fórmulas para as integrais definidas abaixo, onde a < b.

(a)
$$\int_{a}^{b} c \, dx$$
 (b) $\int_{a}^{b} x \, dx$ (c) $\int_{a}^{b} x^{2} dx$ (d) $\int_{a}^{b} x^{3} dx$

$\underline{\wedge}$ Propriedades das integrais

7. Suponha f e g funções integráveis e $\int_1^2 f(x)dx = -3$, $\int_1^5 f(x)dx = 7$ e $\int_1^5 g(x)dx = 6$. Calcule o valor numérico das integrais abaixo.

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. **Data máxima de entrega: 21/03/2024 até 14:00 horas**

Ciência da Computação

Prof. Tiago J. Arruda

- (a) $\int_{2}^{2} g(x)dx$
- (c) $\int_{1}^{2} 3f(x)dx$
- (e) $\int_{a}^{b} [f(x) g(x)] dx$

- (b) $\int_{z}^{1} g(x)dx$
- (d) $\int_{2}^{5} f(x)dx$
- (f) $\int_{1}^{5} [4f(x) g(x)] dx$

8. É dado o gráfico de f. Calcule cada integral interpretando-a em termos das áreas.

- (a) $\int_{a}^{2} f(x)dx$
- (c) $\int_0^5 f(x)dx$
- (e) $\int_{2}^{\gamma} f(x)dx$

- (b) $\int_{-7}^{7} f(x)dx$
- (d) $\int_{0}^{9} f(x)dx$
- (f) $\int_{0}^{7} f(x)dx$

♠ Primitivação

9. Encontre a função primitiva F(x) mais geral da função f(x). Verifique sua resposta diferenciando o resultado, isto é, F'(x) = f(x).

(a)
$$f(x) = x^2 - 2x + 1$$

(a)
$$f(x) = x^2 - 2x + 1$$

(b) $f(x) = x^{-3} + x^{11} + 13$
(c) $f(x) = 5x^{-1/4} - 7x^{3/4}$
(d) $f(x) = \frac{1}{2\sqrt{x}} + 2x$
(e) $f(x) = \frac{\sqrt{x}}{2} + \frac{5}{\sqrt[5]{x}}$
(f) $f(x) = \frac{1}{7} - \frac{1}{x^{5/4}}$
(g) $f(x) = \sin 2x - 2\cos x$
(h) $f(x) = x^{-3}(x+1)$
(i) $f(x) = 3e^{3x} + 7\sec^2 x$
(j) $f(x) = \frac{2}{5}\sec x \tan x$

(h)
$$f(x) = x^{-3}(x+1)$$

(b)
$$f(x) = x^{-3} + x^{11} + 13$$

(e)
$$f(x) = \frac{1}{2} + \frac{1}{\sqrt[5]{x}}$$

(i)
$$f(x) = 3e^{3x} + 7\sec^2 x$$

(d)
$$f(x) = 3x^{-1} - 7x^{-1}$$

(f)
$$f(x) = \frac{1}{7} - \frac{1}{x^{5/4}}$$

(j)
$$f(x) = \frac{2}{5} \sec x \tan x$$

10. Encontre uma função primitiva F(x) da função f(x) dada que satisfaça a condição inicial.

(a)
$$f(x) = 2 \sin x + \cos x - \frac{1}{2}x^2$$
, onde $F(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}$

(b)
$$f(x) = x^{2/3} + x$$
, onde $F(1) = \frac{1}{2}$

(c)
$$f(x) = \sec x \tan x + \cos x$$
, onde $F\left(\frac{\pi}{3}\right) = 2$

(d)
$$f(x) = x\sqrt[3]{x} + e^x$$
, onde $F(0) = 2$

(e)
$$f(x) = 2 \operatorname{cossec}^2 x - \sec^2 x + \cos x$$
, onde $F\left(\frac{\pi}{3}\right) = 2$