Wydział Geodezji i Kartografii

Przedmiot: Wybrane zagadnienia geodezji wyższej

Prowadzący: mgr inż. Viktor Szabó

Projekt: Układy współrzędnych na elipsoidzie

Kierunek: Geoinformatyka

Semestr 7

Student: Patrycja Tatar Numer indeksu: 291578

1. Cel ćwiczenia

Głównym celem zadania było wyznaczenie trasy lotu wybranego samolotu, poprzez przeliczenie układu współrzędnych (ϕ, λ, h) na (n,e,u) za pomocą układu kartezjańskiego (x,y,z). Dodatkowo zostały wyznaczone następujące parametry: odległości skośne, azymuty oraz odległości zenitalne lecącego samolotu.

2. <u>Układy współrzędnych</u>

Współrzędne geodezyjne (φ , λ , h) – ich powierzchnią odniesienia jest bryła elipsoidy, gdzie: φ (szerokość geodezyjna) to kąt pomiędzy normalną danego punktu P a płaszczyzną równika; jego wartości mieszczą się w zakresach od -90° na biegunie południowym do 90° na biegunie północnym;

λ (długość geodezyjna) to kąt pomiędzy płaszczyzną południka miejscowego (dla danego punktu) a płaszczyzną południkową Greenwich; jego wartość są w zakresach od 0° do 360°; h (wysokość) to odległość od powierzchni elipsoidy do punktu na powierzchni Ziemi; jej wartości są mierzone w metrach.

Współrzędne kartezjańskie (x,y,z) – ich początek odniesienia znajduje się w środku geometrycznym elipsoidy; ich cechą charakterystyczną to pokrycie się płaszczyzny xy z płaszczyzną równika.

Współrzędne horyzontalne (n,e,u) – ich punkt odniesienia to punkt w jakim się na tą chwilę znajdujemy; jest on zależny od nas, ponieważ jesteśmy w centrum tego układu.

3. Początkowe dane

Dane samolotu uzyskane z udostępnionej strony https://flightaware.com/live/ są przedstawione w pliku "lot21.txt".

φ	λ	h	
55.6040	12.6218	198	
55.5964	12.6103	480	
55.5897	12.5996	686	
55.5812	12.5861	785	
55.5704	12.5695	930	
55.5595	12.5554	1.166	
55.5412	12.5542	1.417	
55.5247	12.5753	1.715	
55.5154	12.6217	2.065	

(przedstawione dane dla samolotu są tylko dla kilku początkowych punktów lotu, ponieważ ich całkowita ilość wynosi 121)

Dane lotniska Kopenhaga-Kastrup (CPH):

$$- \varphi = 55.62383[^{\circ}]$$

 $^{-\}lambda = 12.64140$ [°]

⁻h = 5 [m]

4. Przeliczenie $(\phi, \lambda, h) \rightarrow (x, y, z)$

Poniżej są przedstawione wzory, dzięki którym możliwa jest konwertacja tych układów w programie Matlab:

```
%obliczanie pozycji lotniska w układzie xyz

N_lotnisko = a/sqrt(1-(e2*((sind((phi_lotnisko))^2))));
x_lotnisko = (N_lotnisko+h_lotnisko)*cosd(phi_lotnisko)*cosd(lambda_lotnisko);
y_lotnisko = (N_lotnisko+h_lotnisko)*cosd(phi_lotnisko)*sind(lambda_lotnisko);
z_lotnisko = (N_lotnisko*(1-e2)+h_lotnisko)*sind(phi_lotnisko);
%obliczanie pozycji samolotu w danych punktach w układzie xyz
N_samolot = a./((1-e2.*sind(phi_samolot).^2)).^(0.5);
x_samolot = (N_samolot+h_samolot).*cosd(phi_samolot).*cosd(lambda_samolot);
y_samolot = (N_samolot+h_samolot).*cosd(phi_samolot).*sind(lambda_samolot);
z_samolot = (N_samolot.*(1-e2)+h_samolot).*sind(phi_samolot);
```


X oznacza położenie lotniska niebieska linia pokazuje tor ruchu samolotu

5. Przeliczenie $(x,y,z) \rightarrow (n,e,u)$

Poniżej są przedstawione wzory, dzięki którym możliwa jest konwertacja tych układów w programie Matlab:

```
%obliczanie pozycji samolotu względem lotniska macierz_delt = [x_lotnisko-x_samolot y_lotnisko-y_samolot z_lotnisko-z_samolot]';

macierz_do_transpozycji = [-sind(phi_lotnisko)*cosd(lambda_lotnisko) -sind(lambda_lotnisko) cosd(phi_lotnisko)*cosd(lambda_lotnisko); -sind(phi_lotnisko)*sind(lambda_lotnisko) cosd(lambda_lotnisko) cosd(phi_lotnisko)*sind(lambda_lotnisko); cosd(phi_lotnisko) 0 sind(phi_lotnisko)]';

macierz_neu = macierz_do_transpozycji * macierz_delt;
```


niebieska linia pokazuje tor ruchu samolotu

6. Odległość skośna s, azymut A i odległość zenitalna

Skrypt wzorów dla programu Matlab:

```
azymuty=atand(e./n);
skosna_odleglosc=(n.^2+e.^2+u.^2).^(0.5);
zenitana_odleglosc=acosd(u./skosna_odleglosc);
```


Na wykresie zależności azymutu od odległości zenitalnej A(z) jest widoczna pionowa linia. Może być ona spowodowana gwałtownym skrętem lub szybkim wznoszeniem się samolotu. Gwałtowny obrót linii w górnej części wykresu miał miejsce podczas startu samolotu z lotniska.

7. Moment dla zenitu równego 90°

Spośród wyznaczonych punktów odległości zenitalnej nie ma żadnego punktu równego 90°. Znaleziono natomiast miejsce, w którym została przekroczona ta wartość:

9	97.51378	97.01321	89.93523	89.93273	89.93107	89.93164	89.92999	89.92068

Przedstawione dwa punkty początkowe są większe od 90, co jest równoważne ze stwierdzeniem, iż w tym czasie samolot znajdował się już pod linią horyzontu. Dopiero po pierwszych dwóch pomiarach wartość długości zenitalnej samolotu zmniejsza się, w tym momencie samolot zaczyna być widoczny na linii horyzontu. Samolot utrzymuje się na linii horyzontu przez cały czas trwania pomiarów współrzędnych.

W pierwszych chwilach lotu samolot znajdował się pod linią horyzontu, ponieważ był on poniżej wieży kontroli lotów, gdzie znajduje się punkt odniesienia dla układu (n,e,u). Po pewnej chwili, samolot wzbił się w powietrze (nad wieżę kontroli lotów) i jego długość zenitalna była mniejsza niż 90°.

8. Mapa lotu samolotu w układzie (ϕ,λ,h)

9. Wnioski

Zastosowanie układu neu jest bardziej parktyczne niż układu geodezyjnego w tym ćwiczeniu, gdyż łatwiej jest określić położenie samolotu względem lotniska.

Zastosowanie układu neu jest mniej praktyczne niż układu geodezyjnego w tym ćwiczeniu, gdyż dużo trudniej jest przedstawić położenie samolotu na mapie świata.