FYS1120 - Oppsummering

Robin A. T. Pedersen

September 26, 2016

Contents

1	Forord	2
2	Introduksjon	2
3	Ladning og Coulombs lov	3
4	Elektriske felt 4.1 generelt	3 3 4 4
5	Dipoler	4
6	Fluks	4
7	Gauss' lov	4
8	Elektrisk arbeid og potensiell energi	5
9	Elektrisk potensial (spennende nei vent. spenning.)	5
10	Ekvipotensialflater	5
11	Kondensatorer og Kapasitans 11.1 Kondensator?	5 5
12	Dielektrika	6
13	Elektrisk strøm, resistivitet og resistans	6
14	Energi, effekt og resistivitet?	6
15	Elektromotorisk spanning? fike de siste seksionene	6

1 Forord

ADVARSEL! Teksten er shi... ikke top notch.

Denne teksten er ment som et sammendrag av emnet FYS1120.

Hensikten er, for meg personlig, å få en oversikt over fagets struktur. Hvis teksten også kan fungere som et oppslagsverk eller som generell støttelitteratur for andre, er det vel og bra. **Men vit at det kan finnes feil og mangler.** Jeg er ingen autoritet i feltet og skriver dette for selv å lære faget.

Innholdet er planlagt å struktureres etter forelesningene. Avvik vil forekomme der tema i forelesningene overlapper.

2 Introduksjon

Emnet ser ut til å ha flere tema felles med $Fysikk\ 2$ fra vgs, og FYS1210 for oss som har hatt det.

Følgende er en oversikt over begreper vi skal lære mer om. Mer detaljer kommer i senere seksjoner.

Elektrostatikk Det motsatte av elektrodynamikk. Statisk elektrisitet handler om elektrisk ladning som står i ro eller beveger seg langsomt.

Elektrisk strøm Bevegelse av elektrisk ladning. F.eks i form av elektroner eller ioner.

Elektrisk kraft Kraften som tiltrekker eller frastøter ladde partikler beskrives av Coulumbs lov. Kraften mellom to ladde partikler er proporsjonal med produktet av ladningene, og omvendt proporsjonal med kvadradet av avstanden mellom dem.

Kirchhoffs lov om strømmer Summen av strømmene inn i et punkt, er lik summen av strømmene ut.

Kirchhoffs lov om spenning Summen av alle spenninger i en krets er null. Altså, spenningsfallet over komponentene tilsvarer spenningen fra batteriet.

Lineære kretser Krets-parametre (motstand, induktivitet, kapasitet, osv) er konstante. I komponentene er forholdet mellom strøm og spenning lineært. Inneholder ingen ikke-lineære komponenter (forsterkere, dioder, transistorer, osv).

Elektroniske komponenter Motstand, diode, transistor, spole, IC, kondensator, sensor, osv.

Magnetfelt Magnetiske felt kan lages ved bevegelse av ladde partikler og forekommer i magnetiske materialer. Deres retning og magnitude beskrives av vektorfelt. To enheter brukes: tesla (magnetfelt) og ampere per meter (H-felt).

Amperes lov Det magnetiske feltet rundt en elektrisk strøm er proporsjonal med strømmen. På eksamen i $Fysikk\ 2$ sitter folk med høyrehåndsregelen og peker med tommelen som en anvendelse av amperes lov.

Elektromagnetisk induksjon Forandring av magnetisk fluks gjennom en krets skaper spenning.

Forskyvningsstrøm Er ikke en strøm av ladde partikler, men et elektrisk felt som varierer i tid.

Vekselstrøm Elektrisk strøm hvor bevegelsesretningen periodisk reverseres. Som produsert i en alternator (generator) ved elektromagnetisk induksjon.

Transiente strømmer (kompleks beskrivelse) Kortvarige strømmer, som f.eks. kan komme i tillegg til en sinusformet strøm. Oppstår bl.a. pga. forandring i magnetisk fluks.

Maxwells ligninger En samling av fire ligninger som beskriver sammenhengen mellom elektriske og magnetiske felt. Gauss' lov, Amperes lov, Faradays induksjonslov, magnetiske monopoler.

Elektromagnetiske bølger Elektrisk felt som oscillerer i fase med magnetisk felt og brer seg som tversbølger. F.eks. synlig lys, radiobølger osv.

Stråling fra ladning i bevegelse Når ladde partikler aksellereres produseres elektromagnetiske bølger.

3 Ladning og Coulombs lov

TODO

4 Elektriske felt

4.1 generelt

På grunn av en eller flere ladninger virker det krefter på andre ladninger i samme rom.

Vi bruker en $testladning \ q_0$ for og måler den elektriske kraften i et rom.

Hvis vi deler på q, få vi den delen av kraften som kun avhenger av egenskapen til rommet. Dette er efeltet.

$$\mathbf{E} = rac{\mathbf{F}}{q}$$

4.2 E-felt og spenning

Vi kan relatere E-felt til spenning.

$$W = U = Fd$$

$$V = \frac{U}{q} = \frac{Fd}{q} = Ed$$

 ${\rm S} \mathring{\rm a}$ E-felt kan skrives som

$$E = \frac{V}{d}$$

4.3 Parallelle flater?

Ved parallelle flater? kan vi se bort fra vektordelen av følgende integral.

$$\int \mathbf{E} \cdot \mathbf{A} = \frac{q}{\epsilon_0}$$

Det gir

$$EA = \frac{q}{\epsilon_0}$$

E-feltet er da (husk at $q = \sigma A$):

$$E = \frac{\sigma A}{\epsilon_0 A} = \frac{\sigma}{\epsilon_0}$$

5 Dipoler

TODO

6 Fluks

TODO

7 Gauss' lov

TODO

8 Elektrisk arbeid og potensiell energi

TODO

9 Elektrisk potensial (spennende... nei vent. spenning.)

TODO

10 Ekvipotensialflater

TODO

11 Kondensatorer og Kapasitans

11.1 Kondensator?

To ledende flater separert kan, når spenning er påført, samle opp og holde på ladning.

For en gitt spenning V, holder en cap (capasitor/kondensator) på en viss mengde ladning Q. Forholdet mellom hvor mye ladning den kan holde, for en gitt spenning, sier hvor god kapasitans C kondensatoren har.

$$C = \frac{Q}{V}$$

11.2 Parallell-plate kondensator

Kapasitans i en kondensator C = Q/V kan uttrykkes annerledes. Når to parallelle plater utgjør kondensatoren har vi

$$C = \frac{Q}{V} = \frac{\sigma A}{V} = \frac{\sigma A}{Ed} = \frac{\sigma A}{\frac{\sigma}{\epsilon_0}d} = \frac{\epsilon_0 \sigma A}{\sigma d} = \frac{\epsilon_0 A}{d}$$

Det bruker at

$$Q = \sigma A$$

og at

$$E = \frac{F}{q} \implies F = qE$$

$$W = U = Fd = qEd$$

$$V = \frac{U}{q} = Ed$$

og til sist (E-felt normalt på flatene)

$$\int \mathbf{E} \cdot \mathbf{dA} = EA = \frac{q}{\epsilon_0} = \frac{\sigma A}{\epsilon_0} \implies E = \frac{\sigma A}{\epsilon_0 A} = \frac{\sigma}{\epsilon_0}$$

12 Dielektrika

TODO

- 13 Elektrisk strøm, resistivitet og resistans $_{\text{TODO}}$
- 14 Energi, effekt og resistivitet?

TODO

15 Elektromotorisk spenning? fiks de siste seksjonene

TODO