Second-order generalised algebraic theories

signatures and first-order semantics

Ambrus Kaposi Szumi Xie¹

Eötvös Loránd University, Budapest

FSCD 2024, Tallinn

¹This talk is funded by COST Action EuroProofNet, supported by COST (European Cooperation in Science and Technology, www.cost.eu)

Overview

Examples of SOGATs

SOGAT → GAT translation

The theory of SOGAT signatures

Summary

Examples of SOGATs

$$\frac{x \in \Gamma}{\Gamma \vdash x} \text{ (var)}$$

$$\frac{\Gamma \vdash t \qquad \Gamma \vdash u}{\Gamma \vdash t \cdot u} \text{ (app)} \qquad \frac{\Gamma, x \vdash t}{\Gamma \vdash \text{ lam } x \cdot t} \text{ (lam)}$$

$$\frac{\Gamma, x \vdash t \qquad \Gamma \vdash u}{\Gamma \vdash (\text{lam } x \cdot t) \cdot u = t[u/x]} \text{ (b)}$$

$$\frac{\Gamma \vdash t = t' \qquad \Gamma \vdash u = u'}{\Gamma \vdash t \cdot u = t' \cdot u'} \qquad \frac{\Gamma, x \vdash t = t'}{\Gamma \vdash \text{ lam } x \cdot t = \text{ lam } x \cdot t'}$$

$$\frac{t}{t \cdot u} \qquad (app) \qquad \frac{x \vdash t}{lam x. t} \qquad (lam)$$

$$\frac{x \vdash t}{(lam x. t) \cdot u = t[u/x]} \qquad (\beta)$$

$$\frac{t: Tm \qquad u: Tm}{t \cdot u: Tm} \text{ (app)} \qquad \qquad \frac{t: Tm \to Tm}{\text{lam } t: Tm} \text{ (lam)}$$

$$\frac{t: Tm \to Tm \qquad u: Tm}{\text{(lam } t) \cdot u = t \ u} \text{ (b)}$$

```
Tm : Sort

-·- : Tm \rightarrow Tm \rightarrow Tm

lam : (Tm \rightarrow Tm) \rightarrow Tm

\beta : (t: Tm \rightarrow Tm) \rightarrow (u: Tm) \rightarrow (lam t) \cdot u = t u

lam (\lambda f. lam (\lambda x. f \cdot (f \cdot x))): Tm
```

Simply typed lambda calculus

```
Tv : Sort
            : Ty
- \Rightarrow - : \mathsf{TV} \to \mathsf{TV} \to \mathsf{TV}
Tm : Tv \rightarrow Sort
-\cdot -: Tm (A \Rightarrow B) \rightarrow Tm A \rightarrow Tm B
lam : (Tm A \rightarrow Tm B) \rightarrow Tm (A \Rightarrow B)
            : (t : Tm A \rightarrow Tm B) \rightarrow (u : Tm A) \rightarrow (lam t) \cdot u = t u
       lam (\lambda f. lam (\lambda x. f \cdot (f \cdot x))) : Tm ((\iota \Rightarrow \iota) \Rightarrow (\iota \Rightarrow \iota))
```

Minimalistic first-order logic

```
Tm
          : Sort
For
         : Sort
-\supset -: For \rightarrow For \rightarrow For
        : (Tm \rightarrow For) \rightarrow For
Eq : Tm \rightarrow Tm \rightarrow For
Pf
          : For → Sort
irrel : (u : Pf A) \rightarrow (v : Pf A) \rightarrow u = v
\supset_{intro}: (Pf A \rightarrow Pf B) \leftrightarrow Pf (A \supset B): \supset_{elim}
\forall_{intro}: ((t:Tm) \rightarrow Pf(A t)) \leftrightarrow Pf(\forall A): \forall_{elim}
         \forall (\lambda x. \forall (\lambda y. Eq x y \supset Eq y x)) : For
```

System F

```
Tv : Sort
Tm : Tv \rightarrow Sort
- \Rightarrow - : \mathsf{TV} \to \mathsf{TV} \to \mathsf{TV}
lam : (Tm A \rightarrow Tm B) \cong Tm (A \Rightarrow B): app
\forall : (Ty \rightarrow Ty) \rightarrow Ty
Lam : ((A : Ty) \rightarrow Tm (F A)) \cong Tm (\forall F) : App
   Lam (\lambda A. \text{lam } (\lambda x. x)) : \text{Tm } (\forall (\lambda A. A \Rightarrow A))
```

Calculus of constructions and the lambda cube

```
* : \square

Ty : \square \to Sort

Tm : Ty * \to Sort

\Pi_{(\star,\star)} : (A:Ty*) \to (Tm A \to Ty*) \to Ty*
```

 $\Pi_{(\square,*)} : (K : \square) \to (\mathsf{Ty} \ K \to \mathsf{Ty} \ *) \to \mathsf{Ty} \ *$ $\Pi_{(\square,\square)} : (K : \square) \to (\mathsf{Ty} \ K \to \square) \to \square$ $\Pi_{(*\square)} : (A : \mathsf{Ty} \ *) \to (\mathsf{Tm} \ A \to \square) \to \square$

+ universal properties

: Sort

Minimalistic Martin-Löf type theory

```
Tv : \mathbb{N} \to Sort
Tm : Tv i \rightarrow Sort
U : (i : \mathbb{N}) \to \mathsf{Ty}(i+1)
c : Ty i \cong \text{Tm}(U i) : El
\Pi : (A : Ty i) \rightarrow (Tm A \rightarrow Ty i) \rightarrow Ty i
lam : ((a : Tm A) \rightarrow Tm (B a)) \cong Tm (\Pi A B) : app
Lift: Ty i \rightarrow \text{Ty} (i + 1)
lift : Tm A \cong Tm (Lift A) : unlift
```

SOGAT → GAT translation

Second-order models?

Model:

Tm: Set

 $\mathsf{app}:\mathsf{Tm}\to\mathsf{Tm}\to\mathsf{Tm}$

 $lam: (Tm \to Tm) \to Tm$

 β : app (lam t) u = t u

Second-order models?

Model:

```
Tm : Set

app : Tm \rightarrow Tm \rightarrow Tm

lam : (Tm \rightarrow Tm) \rightarrow Tm

\beta : app (lam t) u = t u
```

Homomorphism:

```
f: Tm_A \rightarrow Tm_B

f(app_A t u) = app_B (f t) (f u)

f(lam_A t) = lam_B (\lambda x. f (t?))

t: Tm_A \rightarrow Tm_A x: Tm_B
```

SOGAT	GAT		
	Con : S Sub : C	Sort Con → Con → Sort	Category
			Terminal object

SOGAT	GAT
	Con, Sub, & : Category with terminal object
Tm : Sort	Tm : Con → Sort -[-] : Tm Γ → Sub Δ Γ → Tm Δ (functorial) -▷ : Con → Con -,- : Sub Δ Γ × Tm Δ \cong Sub Δ (Γ ▷) : (p, q)

SOGAT	GAT	
	Con, S	ub, : Category with terminal object
Tm : Sort	Tm	: Con → Sort
	-[-]	: Tm $\Gamma \rightarrow \text{Sub } \Delta \Gamma \rightarrow \text{Tm } \Delta$ (functorial)
	- ⊳	: Con → Con
	-,-	: Sub $\triangle \Gamma \times Tm \triangle \cong Sub \triangle (\Gamma \triangleright) : (p,q)$
$app: Tm \rightarrow Tm \rightarrow Tm$	app	: $Tm \Gamma \rightarrow Tm \Gamma \rightarrow Tm \Gamma$
	app[]	: $(app t u)[\sigma] = app (t[\sigma]) (u[\sigma])$
$lam: (Tm \rightarrow Tm) \rightarrow Tm$	lam	: $Tm(\Gamma \triangleright) \rightarrow Tm\Gamma$
· · ·	lam[]	: $(\operatorname{lam} t)[\sigma] = \operatorname{lam} (t[\sigma \circ p, q])$
β: app (lam t) $u = t u$	β	: app (lam t) $u = t[id, u]$
, , ,	•	

SOGAT	GAT	
	Con, S	Sub, : Category with terminal object
Tm : Sort	Tm	: Con → Sort
	-[-]	: $Tm \Gamma \rightarrow Sub \Delta \Gamma \rightarrow Tm \Delta$ (functorial)
	- ⊳	: Con → Con
	-,-	: Sub $\triangle \Gamma \times Tm \triangle \cong Sub \triangle (\Gamma \triangleright) : (p,q)$
$app:Tm\toTm\toTm$	арр	: $Tm \Gamma \rightarrow Tm \Gamma \rightarrow Tm \Gamma$ (+ subst. rule)
$lam: (Tm \rightarrow Tm) \rightarrow Tm$	lam	: $Tm (\Gamma \triangleright) \rightarrow Tm \Gamma$ (+ subst. rule)
SOGAT: lam ()	\ <i>f</i> . lam ($(\lambda x. \operatorname{app} f(\operatorname{app} f x))$: Tm
GAT: lam (l	am (ap	p (q[p]) (app (q[p]) q))) : Tm >

SOGAT	GAT	
	$\mathcal C$: Category with terminal object
Tm : Sort	Tm	: LocRepPsh(\mathcal{C})

app: $Tm \to Tm \to Tm$ app: $Tm \times Tm \to Tm$

System F – translation

SOGAT	GAT
	Con, Sub, > : Category with terminal object
Ty : Sort	Ty : $Con \rightarrow Sort$ - \triangleright_{Ty} : $Con \rightarrow Con$
Tm : Ty → Sort	Tm : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Sort$ - \triangleright_{Tm} - : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Con$
*	$\triangleright_{Ty} \triangleright_{Tm} A \triangleright_{Ty} \triangleright_{Tm} B$: Con

System F – translation

SOGAT	GAT
	Con, Sub, > : Category with terminal object
Ty : Sort⁺	Ty : $Con \rightarrow Sort$ - \triangleright_{Ty} : $Con \rightarrow Con$
Tm : Ty → Sort ⁺	Tm : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Sort$ - \triangleright_{Tm} - : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Con$
*	$\triangleright_{Ty} \triangleright_{Tm} A \triangleright_{Ty} \triangleright_{Tm} B$: Con

Dependent type theory – translation

SOGAT	GAT
	Con, Sub, > : Category with terminal object
Ty : Sort	Ty : Con → Sort
Tm : Ty → Sort ⁺	Tm : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Sort$ ->- : $(\Gamma : Con) \rightarrow Ty \Gamma \rightarrow Con$

Dependent type theory – translation

SOGAT	GAT	
	Con, Sub, > : Category	
Ty : Sort	Ty, Tm, - ⊳ - : with families	
$Tm : Ty \rightarrow Sort^*$		

The theory of SOGAT signatures

The SOGAT of GATS

```
Ty : Sort

Tm : Ty \rightarrow Sort<sup>+</sup>

\Sigma : (A : Ty) \rightarrow (Tm A \rightarrow Ty) \rightarrow Ty \quad (+\beta, \eta)

U : Ty

El : Tm U \rightarrow Ty

\Pi : (a : Tm U) \rightarrow (Tm (El a) \rightarrow Ty) \rightarrow Ty \quad (+\beta, \eta)

Eq : (A : Ty) \rightarrow Tm A \rightarrow Tm A \rightarrow Ty
```

The SOGAT of SOGATS

```
Tv: Sort
Tm: Tv → Sort*
\Sigma : (A : Tv) \rightarrow (Tm A \rightarrow Tv) \rightarrow Tv (+\beta, \eta)
U:Tv
El : Tm U \rightarrow Ty
\Pi : (a : Tm U) \rightarrow (Tm (El a) \rightarrow Ty) \rightarrow Ty (+\beta, \eta)
Eq: (A : Ty) \rightarrow Tm A \rightarrow Tm A \rightarrow Ty
U<sup>+</sup>:Tv
el^+: Tm U^+ \rightarrow Tm U
\pi^+: (a: Tm\ U^+) \to (Tm\ (El\ (el^+\ a)) \to Tm\ U) \to Tm\ U \ (+\beta, \eta)
```

Untyped lambda calculus – signature

Tm : Sort⁺
$$\Sigma \ U^{+} \left(\lambda Tm. \right.$$

$$\left((\underline{Tm} \Rightarrow^{+} \underline{el^{+} Tm}) \Rightarrow \underline{El} \ (\underline{el^{+} Tm}) \right) \times$$

$$app : Tm \rightarrow Tm \qquad \left(\underbrace{el^{+} Tm}_{U} \Rightarrow \underline{el^{+} Tm} \Rightarrow \underline{El} \ (\underline{el^{+} Tm}) \right) \right)$$

Different ways to define app

app:
$$Tm \to Tm \to Tm$$

$$el^{+} Tm \Rightarrow el^{+} Tm \Rightarrow El (el^{+} Tm) \qquad Tm \Gamma (A \Rightarrow B) \to Tm \Gamma A \to Tm \Gamma B$$

$$el^{+} Tm \Rightarrow El (Tm \Rightarrow^{+} (el^{+} Tm)) \qquad Tm \Gamma (A \Rightarrow B) \to Tm (\Gamma \triangleright A) B$$

$$El (Tm \Rightarrow^{+} Tm \Rightarrow^{+} (el^{+} Tm)) \qquad Tm (\Gamma \triangleright (A \Rightarrow B) \triangleright A)$$

Translation details

SOGAT signature → GAT signature

Algorithm implemented in Agda

Computes curried signatures without Yoneda overhead

```
app : Sub \Gamma \diamond \times \text{Tm } \Gamma \rightarrow
((\Delta : \text{Con}) \rightarrow \text{Sub } \Delta \Gamma \times \text{Tm } \Delta \rightarrow \text{Tm } \Delta) \times \text{naturality}
\text{app : } \mathbb{1} \times \text{Tm } \Gamma \times \text{Tm } \Gamma \rightarrow \text{Tm } \Gamma
\text{app : } \text{Tm } \Gamma \rightarrow \text{Tm } \Gamma \rightarrow \text{Tm } \Gamma
```

Extensions and variation

Support for parametrized/open signatures and infinitary operations by adding new type formers:

$$\hat{\Pi}: (A:\mathsf{Set^\circ}) \to (A \to \mathsf{Ty}) \to \mathsf{Ty}$$

$$\tilde{\pi}: (A:Set^\circ) \to (A \to Tm\ U) \to Tm\ U$$

Alternative semantics using single substitution calculus:

Related to (Ehrhard 1988)

Summary

Summary

Structural languages with bindings are SOGATs

Not SOGAT, but GAT:

- linear logic
- · modal languages
- · no substitution under lambda

Not even GAT: small-step operational semantics

Summary

Languages can be specified without separate scoping, typing, conversion relations, and without resorting to De Bruijn indices

- Higher-order abstract syntax (Hofmann 1999)
- Equational logical framework (Harper 2021)
- Representable map category (Uemura 2021)
- Two-level type theory (Annenkov et al. 2023)

SOGATs can be translated to GATs to obtain nice metatheory