Fonctions exponentielles

Terminale STMG2

1 Définition de l'exponentielle de base a

On représente ci-contre les valeurs de la suite géométrique $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=a^n$, avec a>0.

Définition 1. Le prolongement aux réels de la suite u_n est appelée **fonction exponentielle de base** a. Pour tout x réel, l'image de x par cette fonction est notée a^x . En particulier, si x < 0, alors cette image est définie par :

$$a^x = \frac{1}{a^{-x}}$$

Exemple. À l'aide d'une calculatrice, donner la valeur des image de fonctions exponentielles suivantes :

- a) $2^{3,5} =$
- b) 10, 2^{0,2} =
- c) $0,6^{-5,4} =$

2 Représentation graphique

On représente ci-dessous la courbe représentative d'une fonction exponentielle de base a. Elle correspond au prolongement des points de coordonnées $(n; a^n)$.

3 Sens de variation

Proposition 1. Soit a > 0 un nombre réel. Alors,

- La fonction exponentielle de base a est strictement croissante si et seulement si a > 1.
- La fonction exponentielle de base a est strictement décroissante si et seulement si a < 1.
- La fonction exponentielle de base a est constante si et seulement si a=1.

Exemple.

- a) Comparer 3, 4¹² et 3, 4¹⁵:
- b) Comparer 0, 7³ et 0, 7⁹:

Proposition 2. Soit une fonction de la forme $f: x \mapsto ka^x$ avec k un nombre réel et a > 0, alors le sens de variation de f est donné grâce au tableau suivant.

	a > 1	a < 1
k > 0	Croissante	Décroissante
k < 0	Décroissante	Croissante

4 Propriétés algébrique de la fonction exponentielle

Proposition 3. Soit a un réel positif, ainsi que x, y deux réels quelconques. Alors,

- $\bullet \ a^{x+y} = a^x \times a^y$
- $\bullet \ a^{x \times y} = (a^x)^y$
- $\bullet \ a^{x-y} = \frac{a^x}{a^y}$
- $\bullet \ a^{-x} = \frac{1}{a^x}$
- $a^{1/n} = \sqrt[n]{a}$
- $a^0 = 1$

Exemple. Simplifier les expressions suivantes en une puissance de 2 :

- a) $2^15 \times 2^12 =$ d) $\frac{2^18}{2^5} =$
- b) $2^{-7} =$ e) $64^4 =$
- c) $(2^{1}2)^{-5} = \dots$ f) $2^{4} + 2^{4} = \dots$

5 Cas particulier: taux d'évolution moyen

Définition 2. On suppose qu'une quantité évolue de T% en n étapes. Alors, si le coefficient multiplicateur de T est noté CM, on dit que le **taux d'évolution moyen** est donné par le taux d'évolution t dont le coefficient multiplicateur cm est donné par

$$cm = CM^{1/n}$$

Cela correspond au taux d'évolution constant associé à une étape.

Exemple. Le prix du loyer augmente de 54% en quatre ans. Donner le taux d'évolution moyen de cette augmentation.

- a) On calcule d'abord le coefficient multiplicateur de +54% : CM=
- b) On calcule ensuite $cm = CM^{1/4} =$
- c) On déduit le taux d'évolution moyen t=cm-1=