Sequence models & Attention mechanism

8/10 points (80%)

Quiz, 10 questions

Congratulations! You passed!

Next Item

1/1 points

1.

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence \$\$x\$\$.

False

Correct

points

2.

In beam search, if you increase the beam width ${\it B}$, which of the following would you expect to be true? Check all that apply.

Beam search will run more slowly.

Sequence models & Attention mechanism

8/10 points (80%)

Ouiz	10	questions
Quiz,	10	questions

Corr	ect
	Beam search will use up more memory.
Corr	ect
	Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)
Corr	ect
	Beam search will converge after fewer steps.
Un-s	elected is correct
~	1 / 1 points
	thine translation, if we carry out beam search without using sentence dization, the algorithm will tend to output overly short translations.
0	True
Corr	ect
	False
~	1/1 points

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x

Sequence models & Attention mechanism

8/10 points (80%)

Quiz, 10 questions

. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y} =$

"I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^* =$

"I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

Correct

- No, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \le P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

1/1 points

5.

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on

Sequence models & Attention mechanism $x > P(\hat{y} \mid x)$

8/10 points (80%)

Quiz, 10 questions

. This suggest you should focus your attention on improving the search algorithm.

True.

Correct

False.

1/1 points

6.

Consider the attention model for machine translation.

Further, here is the formula for \$\$\alpha^{<t,t'>}\$\$.

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_x} \exp(e^{})}$$

Which of the following statements about \$\$\alpha^{<t,t'>}\$\$ are true? Check all that apply.

We expect $\alpha^{< t, t^{'}>}$

Sequence models to be generally larger for values of $a^{< t^{'}>}$ Attention mechanism

8/10 points (80%)

Quiz, 10 questions

$$v^{< t>}$$

. (Note the indices in the superscripts.)

Correct

to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t^{'}>}$

. (Note the indices in the superscripts.)

Un-selected is correct

 $\sum_{t} \alpha^{< t, t'>} = 1$

(Note the summation is over t .)

Un-selected is correct

 $\sum_{t'} \alpha^{< t, t'>} = 1$

(Note the summation is over t'

.)

Correct

×

0/1

points

7.

The network learns where to "pay attention" by learning the values $e^{\langle t,t'\rangle}$, which are computed using a small neural network:

Sequence models & Attention mechanism

8/10 points (80%)

Quiz, 10 questions

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

True

False

1/1 points

8.

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

The input sequence length T_x is large.

Correct

The input sequence length T_x is small.

1/1 points

9.

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

__c_oo_o_kk___b_ooooo__oo__kkk

Sequence models & Attention mechanism

8/10 points (80%)

Quiz, 10 questions

С	0	r	r	е	C	t

	cook book
	coookkbooooookkk
×	0 / 1 points
10 . In trigg is:	er word detection, $x^{< t>}$
	Features of the audio (such as spectrogram features) at time $\it t$.
	The $\it t$ -th input word, represented as either a one-hot vector or a word embedding.
This	should not be selected
	Whether the trigger word is being said at time $\it t$.
	Whether someone has just finished saying the trigger word at time <i>t</i> [Math Processing Error].

