Sasha (Alexander) Kaurov, Ph.D.

Astronomer & astrophysicist with 10+ years of experience in research, science outreach and curriculum development. Passionate about advancing the scientific frontier as well as making it accessible to the public using the latest technologies.

WORK EXPERIENCE

The Institute for Advanced Study — *Visitor, Program in Interdisciplinary Studies*Princeton, NJ, 08/2021 — PRESENT

The Institute for Advanced Study — Postdoctoral researcher

Princeton, NJ, 2016 — 07/2021

AMIAS fellowship	2016 - 2017
Paternity leave	01 - 06/2017
Eric and Wendy Schmidt fellowship	2017 - 2018
William D. Loughlin fellowship	2018 - 2019
IBM Einstein fellowship	2019 - 2020
William D. Loughlin fellowship	2020 - 2021

The University of Chicago — Research Assistant

Chicago IL, 2012 — 2016

Fermilab — Research Assistant

Batavia IL, 2012 — 2013

• Fermilab Fellowship in Theoretical Physics

2012 - 2013

The University of Chicago — Teaching Assistant

Chicago IL, 2011 — 2012

- PHSC 12000 The Origin of Universe & How We Know
- PHSC 11900 Introductory astronomy course
- PHSC 13500 Chemistry The Atmosphere

EDUCATION

The University of Chicago — Ph.D.

Chicago IL, 2011 — 2016

Astronomy & Astrophysics.

Thesis: "Analytical and numerical modeling of the epoch of cosmic reionization."

McCormick Fellowship

2011 - 2012

St. Petersburg State Polytechnic University — *B.Sc.*

St. Petersburg, Russia, 2007 — 2011

Nuclear astrophysics.

Thesis: "Multidimensional numerical simulations of heat transfer in the crusts of neutron stars."

- Russian Academy of Science fellowship
 Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, Russia
- **Ioffe Institute Fellowship**St. Petersburg State Polytechnic University, Russia

PUBLIC SERVICE

- The National Aeronautics and Space Administration (NASA) grant review panelist.
- Referee for Monthly Notices of the Royal Astronomical Society.

REFERENCES

Academic:

Matias Zaldarriaga, professor at the Institute for Advanced Study matiasz@ias.edu

Nickolay Gnedin, professor at the University of Chicago and senior scientist at Fermilab gnedin@fnal.gov

Education and outreach:

Mark Subbarao, president of the International Planetarium Society, lead of NASA's Scientific Visualization Studio mark.u.subbarao@nasa.gov

Piet Hut, professor of Interdisciplinary Studies at the Institute for Advanced Study piet@ias.edu

SELECTED ASTRONOMY PROJECTS

- Cosmology and Astrophysics with 21 cm signal. We leverage numerical cosmological simulations to forward model the observed optical and radio signals and then design machine learning techniques capable of meaningfully interpreting the mock data.
- Time-domain Astronomy and Highly Magnified Stars in Lensing Clusters. We mine the existing data and develop methods for the upcoming space telescopes to detect the brightness variability of lensed galaxies and then build theoretical models to constrain the physics of dark matter.
- ❖ Geological Evidences of Near-Earth Supernova Explosion. We adopt numerical models of the Inter-Stellar Medium to estimate the flux of the supernova ejecta that can reach the Solar system.

SELECTED DATA-DRIVEN SCIENCE COMMUNICATION PROJECTS

- Leveraging Public and Marketing Data for Probing Public's Perception of Science. Together with Prof. Naomi Oreskes (Harvard) we explore new methods of deducing public's trust in science by creating indicators from large datasets, potentially replacing traditional methods of field surveys.
- AI for democratizing access to Higher Ed. We adapt NLP and other ML techniques to analyze the freely available online learning resources and aggregate them in a way to make them accessible to students with any background or experience.
- Quantitative Methods for Accessibility Estimations. Together with Mark SubbaRao (President, International Planetarium Society) we studied the accessibility of the planetariums in the United States based on census data and Google Maps API.

SELECTED OUTREACH AND SCIENCE COMMUNICATION PROJECTS

STEM XR initiative https://stemxr.org. I founded a network of 50+ science communicators, theater professionals and technologists from 18 countries who joined on the quest of combining novel immersive tech and theatrical storytelling techniques for creating science-focused shows and experiences.

Science communication in the shared virtual worlds. I designed and supervised the development of various virtual world experiences. In collaboration with the Earth Life Science Institute (ELSI, Tokyo Institute of Technology) and the Japan Aerospace Exploration Agency (JAXA) we designed a virtual outreach lecture about the Hayabusa2 mission and another for the Nautilus science magazine.

MENTORING

- I co-founded a mentoring program that connects undergraduate and graduate students from post-Soviet countries (Russia, Belarus, Ukraine and Kazakhstan) with mid-career scientists from all over the world. We generate around 100 mentor-mentee pairs each quarter from ~20 countries. https://www.thesciencementors.com/en
- Several undergraduate students from St. Petersburg State Polytechnic University (my alma mater) have defended their B.Sc. theses under my supervision:
 - Evgenii Chaikin (B.Sc., 2017), M.Sc. fellowship at the University of Bonn (Germany), currently Ph.D. student at Leiden Observatory (Netherlands).
 - Nadezhda Tuberozova (B.Sc., 2018), currently a graduate student at the University of Bonn (Germany).
 - Ekaterina Leonova (B.Sc., 2019), currently M.Sc. fellow at the University of Geneva (Switzerland).

PUBLICATIONS

20+ refereed research papers with h-index (ADS): 12.

List of my publications and various metrics are available on ADS portal: https://ui.adsabs.harvard.edu/search/p = 0&q=orcid%3A0000-0003-0255-1204

Selected publications

Highly Magnified Stars in Lensing Clusters: New Evidence in a Galaxy Lensed by MACS J0416.1-2403 2019ApJ...880...58K

Kaurov, Alexander A.; Dai, Liang; Venumadhav, Tejaswi; Miralda-Escudé, Jordi; Frye, Brenda

Implication of the Shape of the EDGES Signal for the 21 cm Power Spectrum

Kaurov, Alexander A.; Venumadhav, Tejaswi; Dai, Liang; Zaldarriaga, Matias

Cosmic Reionization on Computers. II. Reionization History and Its Back-reaction on Early Galaxies 2014ApJ...793...30G

Gnedin, Nickolay Y.; Kaurov, Alexander A.

Planetarium commute accessibility in the United States of America

DOI: 10.22541/au.159724581.14747461

Kaurov, Alexander A.; Bazhenov, Vyacheslav; SubbaRao, Mark

The students I mentored are in Italic.

2018ApJ...864L..15K

	Title	Authors	Year	Citations (ADS)	
	Current projects:				
28	Optical properties of the Resonant Drag Instabilities: Consequences for the variability of AGB-stars and R Cor Bor stars	Steinwandel, Kaurov , Hopkins	2021		
27	The Back Reaction of Lyman Alpha Radiation onto the Gas	Murinov, Kaurov , Dai, Venumadhav	2021		
26	Cosmological Counts in Cells: Theory and Numerical Simulations	Ivanov, Kaurov	2021		
25	Python Package for Data Reduction Pipeline for Near-Infrared and Optical Spectroscopy	Kaurov , Brenda Frye	2021		
	Submitted:				
24	Simulations of Fe60 entrained in ejecta from a near-earth supernova: Effects of observer motion	Chaikin, Kaurov , Fields	2021		
	Published:				
23	Planetarium commute accessibility in the United States of America (accepted to CAPJournal) 10.22541/au.159724581.14747461	Kaurov, Bazhenov, SubbaRao	2020	0	
22	Asymmetric surface brightness structure of caustic crossing arc in SDSS J1226+2152: a case for dark matter substructure 2020MNRAS.495.3192D	Dai, Kaurov , Sharon and 6 more	2020	9	
21	Research and Development for HI Intensity Mapping 2019BAAS51g71T	Timbie and 53 more	2019	3	
20	Packed Ultra-wideband Mapping Array (PUMA): A Radio Telescope for Cosmology and Transients 2019BAAS51g53S	Slosar and 61 more	2019	35	
19	Highly Magnified Stars in Lensing Clusters: New Evidence in a Galaxy Lensed by MACS J0416.1-2403 2019ApJ88058K	Kaurov, Dai, Venumadhav, Miralda-Escudé, Frye	2019	21	
18	Probing the Time Domain with High Spatial Resolution 2019BAAS51c.529B	Blakeslee, John and 19 more	2019	1	
17	Non-perturbative probability distribution function for cosmological counts in cells 2019JCAP03009I	Ivanov, Kaurov , Sibiryakov	2019	14	
16	Heating of the intergalactic medium by the cosmic microwave background during cosmic dawn 2018PhRvD98j3513V	Venumadhav, Dai, Kaurov , Zaldarriaga	2018	33	

15	Probing Dark Matter Subhalos in Galaxy Clusters Using Highly Magnified Stars <u>2018ApJ86724D</u>	Dai, Venumadhav, Kaurov , Miralda-Escudé	2018	15
14	Implication of the Shape of the EDGES Signal for the 21 cm Power Spectrum 2018ApJ864L15K	Kaurov, Venumadhav, Dai, Zaldarriaga	2018	20
13	Observing Galaxy Mergers at the Epoch of Reionization <u>2018ApJ85381C</u>	Chaikin, Tyulneva, Kaurov	2018	1
12	Stochasticity in the 21cm power spectrum at the epoch of reionization and cosmic dawn 2017arXiv170904353K	Kaurov	2017	2
11	Neutron stars with variable internal heaters 2017EL11729001C	Chaikin, Kaurov , Kaminker, Yakovlev	2017	0
10	The Effects of Dark Matter Annihilation on Cosmic Reionization <u>2016ApJ833162K</u>	Kaurov , Hooper, Gnedin	2016	6
9	On Improving Analytical Models of Cosmic Reionization for Matching Numerical Simulation <u>2016ApJ831198K</u>	Kaurov	2016	5
8	Cosmic Reionization On Computers. Mean and Fluctuating Redshifted 21 cm Signal 2016ApJ824114K	Kaurov, Gnedin	2016	10
7	Energy Dissipation of Energetic Electrons in the Inhomogeneous Intergalactic Medium during the Epoch of Reionization 2016ApJ82497K	Kaurov	2016	1
6	Cosmic Reionization on Computers. III. The Clumping Factor 2015ApJ810154K	Kaurov, Gnedin	2015	22
5	Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity <u>2015PASA3218P</u>	Popov, Kaurov , Kaminker	2015	12
4	Cosmic Reionization on Computers. II. Reionization History and Its Back-reaction on Early Galaxies 2014ApJ79330G	Gnedin, Kaurov	2014	72
3	Thermal emission of neutron stars with internal heaters 2014MNRAS.442.3484K	Kaminker, Kaurov, Potekhin, Yakovlev	2014	37
2	Recombination Clumping Factor during Cosmic Reionization <u>2014ApJ787146K</u>	Kaurov, Gnedin	2014	25
1	Effect of Halo Bias and Lyman Limit Systems on the History of Cosmic Reionization <u>2013ApJ77135K</u>	Kaurov, Gnedin	2013	21