

Házi feladat dokumentáció

Android alapú szoftverfejlesztés

Félév: 2022 ősz

Space Inspector

Domonkos Ádám – (CWGYWC)

domonkosadam01@gmail.com

Laborvezető: Kövesdán Gábor

Bemutatás

Az alkalmazás az űr iránt érdeklődők számára lehet érdekes. Nagyon sok űrrel kapcsolatos kép és információ érhető már el, de nem volt olyan platform, ahol ezek rendszerezve, egyszerűen elérhető formában megtalálhatóak. A *Space Inspector* alkalmazásban az ilyen képek között lehet kategorizálva keresni és nézelődni.

Főbb funkciók

Minden nap kikerül egy robusztus kép az űrrel kapcsolatban és egy leírás hozzá (APOD).

A Föld körüli aszteroidákat jelenítem meg egy listában, amikre kattintva pontosabb részletek lesznek láthatóak. (Asteroids - NeoWs)

A különböző marsjárók által készített képeket lehet megnézni, ahol különböző szűrőkkel lehet a különböző képeket lekérni. (Mars Rover Photos)

Egy űrrel kapcsolatos eseményre keresve nézhetünk képeket, videókat. (NASA Image and Video Library)).

Felhasználói kézikönyv

1. ábra: A főmenüből minden további főbb funkció elérhető. A jobb felső csillag menü elemre kattintva megnyílik a kedvencek közé mentett napi képek, amik offline is elérhetőek.

2. ábra: Az APOD menüpont alatt található szolgáltatásban nézhetjük meg a napi képeket. A képre kattintva megnyílik teljes képernyős változatban, ahol akár bele is nagyíthatunk. A jobb felső csillag gombbal hozzáadhatjuk, vagy eltávolíthatjuk az offline is elérhető kedvencek közül.

3. ábra: Az NeoWs menüpontban érhetjük a NASA aszteroida adatbázisát. Itt egy nagy lapozható listát jelenít meg az alkalmazás, amiben megjeleníti a meteor nevét és becsült méretét. Az ikonok azt jelzik, hogy veszélyt jelent-e a Földre a pályája alapján. Egy elemet kiválasztva láthatjuk a részletes adatait, illetve, a múlt-, illetve jövőbeli időpontokat, amikor megközelíti a Földet.

4. ábra: A Mars Rover menüpontot választva a NASA különböző marsjárói által készített képeket nézhetjük meg. Először ki kell választanunk, hogy melyik jármű képeire vagyunk kíváncsiak. Ha rákattintottunk egy adott elemre, megnyílnak a legutoljára készített képei. A képre kattintva megnyílik teljes képernyős változatban, ahol akár bele is nagyíthatunk.

5. ábra: A Mars Rover menüponton belül lehetőségünk van szűrni a képek között. Kiválaszthatjuk egy listából, hogy melyik kamera képére vagyunk kíváncsiak. A '-' jelet választva az összes kamera képét mutatni fogja. Az API limitációjából adódóan mindig kötelező kiválasztani egy dátumot a jobb felső dátum mezőre kattintva. Ha nem választunk ki semmi, a legutolsó lehetséges napot veszi figyelembe. Ha a kiválasztott paramétereknek nem felel meg egy kép sem, azt egy hibaüzenettel jelzi a felhasználó számára.

6. ábra: Az Images menüpontot választva a NASA kép gyűjteményében böngészhetünk. Ha beírunk egy keresési kulcsszót, akkor az ahhoz kapcsolódó összes képet visszaadja egy rövid leírással. A képre kattintva megnyílik teljes képernyős változatban, ahol akár bele is nagyíthatunk.

Felhasznált technológiák

- Minden képernyő optimalizált fekvő-, illetve álló módra is. Az alkalmazás támogatja a sötét módban való megjelenítést is.
- Az alkalmazás kijelzői fragmentekből állnak, amit NavigationComponenttel végzek
- Retrofit library az API hívásokhoz
- Glide osztálykönyvtár használata a képek megjelenítésére
- LottieProgressDialog a töltőképernyők megjeleítésére
- Awesome Dialog a visszajelzések megjelenítéséhez
- zoomage segítségével nagyíthatóak a képek
- WebView használata videó lejátszására
- SQLite alapú adattárolás ROOM libraryval
- SharedPreference az utolsó megnyitás dátumának tárolásához
- Notification küldése az alkalmazás indulásakor, ha van új kép
- Implicit intent használata a részletes aszteroida adatokhoz
- ViewModel + Repository architektúra szerint készült a projekt

Fontosabb technológiai megoldások

A legnagyobb kihívást a dátumokkal való műveletek jelentették. Az API a dátumokat sztringként kezeli, amit először dátum formátumúvá kellett alakítani, hogy el lehessen rajta végezni a műveleteket. Utána pedig vissza

kellett konvertálni az API használatához. A beépített dátum konvertáló csak a legújabb Android verziókat támogatja, így nekem kézzel kellett megírni a konverziókat.

A ViewModel architektúra implementálásával felhasználóbarát módon le tudtam kezelni a töltőképernyőket, mert a NASA API bizonyos esetekben lassú lehet. Ez segített elmenteni a képernyők állapotát, is. A Repository minta használatával egyszerűen el tudom érni a külső adatokat.

A videólejátszót először a VideoView implementálásával akartam megvalósítani, de a visszakapott url nem egy videóra, hanem egy videószolgáltató oldalra mutatott. Így kénytelen voltam megjeleníteni az egész oldalt, mert nem lehetett kiszedni csak a videófájl elérési útvonalát.