Problem 1. Prove the mean value theorem for integrals: If $f:[a,b] \to \mathbb{R}$ is continuous, then there exists $a \in [a,b]$ such that $\int_a^b f = f(c)(b-a)$.

Take
$$F(x) = \int_{0}^{x} f(t) dt$$
. By $F7C$, $F'(x) = f(x)$.

 $F(b) - F(a) = \int_{0}^{b} f(t) dt$. Since f is continuous on Ca, b .

On Ca, b . F is continuous on Ca, b .

and differentiable on (a, b) . By MVT ,

 $F(b) - F(a) = F'(c)$,

which is $\int_{a}^{b} f = f(c)(b-a)$

Problem 2. Compute

$$e^{S^{2}} \geqslant 0 \quad \forall s \qquad \frac{d}{dx} \left(\int_{-x}^{x} e^{s^{2}} ds \right).$$
Let $F(x) = \int_{-x}^{x} e^{s^{2}} ds$

$$= \int_{-x}^{0} e^{s^{2}} ds + \int_{0}^{x} e^{s^{2}} ds$$

$$= 2 \int_{0}^{x} e^{s^{2}} ds$$

$$= 2 \int_{0}^{x} e^{s^{2}} ds$$

$$\frac{d}{dx} F(x) = f(x) = \frac{d}{dx} \left(2 \int_{0}^{x} e^{s^{2}} ds \right)$$
by FTC, $= 2 e^{x^{2}}$

Problem 3. Compute

$$\frac{d}{dx} \left(\int_{0}^{x^{2}} \sin(s^{2}) ds \right).$$

$$\int_{0}^{b} f(g(x)) g'(x) dx = \int_{g(\omega)}^{g(b)} f(s) ds$$

$$\int_{0}^{b} f(x) = \sin x^{2}, g(x) = x^{2}, g'(x) = 2x$$

$$f(g(x)) = \sin (x^{2})^{2} = \sin x^{4}$$

$$a = 0, g(x) = 0, b = x, g(x) = x^{2}$$

$$\frac{d}{dx} \left(\int_{0}^{x^{2}} \sin(s^{2}) ds \right) = \frac{d}{dx} \left(\int_{0}^{x} \sin x^{4} \cdot 2x dx \right)$$

$$= 2x \cdot \sin x^{4}$$

Problem 4. Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Let $c \in [a,b]$ be arbitrary. Define

$$F(x) := \int_{c}^{x} f. \quad \Rightarrow \quad \bigcap (\chi) - \bigcap (c)$$

Prove that F is differentiable and that F'(x) = f(x) for all $x \in [a, b]$.

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{\int_{x}^{x+h} f}{h} = \lim_{h \to 0} f(d)$$
By FTC,
$$F(x+h) = \int_{c}^{x+h} f = \int_{c}^{x} f + \int_{x}^{x+h} f = F(x) + \int_{x}^{x+h} f$$
By MVT,
$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$
Since $f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} \frac{f(x)}{h} = \lim_{h \to 0} f(d)$$

$$f(x) = \lim_{h \to 0} f(d)$$

Problem 5. Prove integration by parts. That is, suppose F and G are continuously differentiable functions on [a, b]. Then prove

$$\int_{a}^{b} F(x)G'(x) = F(b)G(b) - F(a)G(a) - \int_{a}^{b} F'(x)G(x) dx.$$

$$\left(F(x) G(x) \right)^{2} = F'(x) G(x) + F(x) G'(x)$$

$$F(x) G'(x) = \left(F(x) G(x) \right)^{2} - F'(x) G(x)$$

$$\int_{a}^{b} F(x) G'(x) = \int_{a}^{b} \left(F(x) G(x) \right)^{2} - \int_{a}^{b} F'(x) G(x)$$

$$\int_{a}^{b} F(x) G'(x) = \int_{a}^{b} \left(F(x) G(x) - \int_{a}^{b} F'(x) G(x) \right)$$

$$\int_{a}^{b} F(x) G'(x) = \int_{a}^{b} \left(F(x) G(x) - \int_{a}^{b} F'(x) G(x) \right)$$

Problem 6. Suppose F and G are continuously differentiable functions defined on [a,b] such that F'(x) = G'(x) for all $x \in [a,b]$. Using the fundamental theorem of calculus, show that F and G differ by a constant. That is, show that there exists a $C \in \mathbb{R}$ such that F(x) - G(x) = C.

$$F'(x) = G'(x) \ \forall \ x \in [a,b]$$
. Take the integral on both sides,
$$\int F'(x) = \int G'(x) \ \forall \ x \in [a,b] \ .$$
 Since by FTC ,
$$\int f = F + C$$
, so $F(x) + C$, $= G(x) + C_2$, $F(x) - G(x) = C$

Problem 7. Suppose $f:[a,b] \to \mathbb{R}$ is continuous and $\int_a^x f = \int_x^b f$ for all $x \in [a,b]$. Show that f(x) = 0 for all $x \in [a,b]$.

$$\int_{\alpha}^{x} f = \int_{x}^{b} f, \quad \int_{\alpha}^{x} f = -\int_{b}^{x} f, \quad \frac{d}{dx} \int_{\alpha}^{x} f = \frac{d}{dx} (-\int_{a}^{x} f)$$

$$f(x) = -f(x), \quad 2f(x) = 0, \quad f(x) = 0 \quad \forall x \in C_{\alpha}, b$$

Problem 8. A function f is an odd function if f(x) = -f(-x), and f is an even function if f(x) = f(-x). Let a > 0. Assume f is continuous. Prove:

- (a) If f is odd, then $\int_{-a}^{a} f = 0$.
- (b) If f is even, then $\int_{-a}^{a} f = 2 \int_{0}^{a} f$.

(a)
$$\int_{-9}^{a} f = \int_{-9}^{0} f + \int_{0}^{9} f$$

Since f(x) = -f(-x), f(x) 20=) f(-x) 50 or f(x) 50 =) f(-x) 20.

And since $\forall x \in (0,0)$, f(x) = -f(-x). For any $x, \in (0,0)$, $\exists x \in (0,0)$

So $\int_{-q}^{0} f = -\int_{0}^{q} f$, $\int_{-q}^{q} f = 0$

s.t. $f(x_1)+f(x_2)=f(x_1)-f(x_1)=0$ $f(x_2)=-f(x_1), x_2=-x_1$

(b)
$$\int_{-a}^{a} f = \int_{-a}^{0} f + \int_{0}^{a} f$$

Since f(x) = f(-x), f(x)>0=)f(-x)>0 or f(x) so=)f(-x)so

For any $X_1 \in [0, \alpha]$, $\exists x_2 \in [-\alpha, 0] s.t. f(x_2) = f(x_1), x_2 = -x_1$

$$50 \int_{-9}^{0} f = \int_{0}^{0} f, \quad \int_{-9}^{9} f = 2 \int_{0}^{9} f$$