Logistische Regression

Thomas Sine-Nomine

Überblick

Die logistische Regression wird häufig zum Abschätzen der Wahrscheinlichkeit eingesetzt, dass ein Datenpunkt einer bestimmten Kategorie angehört (z. B.: Wie hoch ist die Wahrscheinlichkeit, dass eine E-Mail Spam enthält?). Wenn die geschätzte Wahrscheinlichkeit mehr als 50 % beträgt, sagt das Modell vorher, dass der Datenpunkt zu dieser Kategorie gehört.

Somit lässt sich die logistische Regression im Gegensatz zu anderen Regressionsmodellen zur Klassifikation einsetzen.

Modellfunktion

Als Modellfunktion kommt die Sigmoid-Funktion zum Einsatz:

$$h_{\theta}(x) = \frac{1}{1 + e^{-z}} \text{ mit } z = \theta^T x$$

Es handelt sich hierbei um eine nicht-lineare Funktion. Die folgende Abbildung zeigt den Funktionsgraphen.

Abb. 1: Logistische Funktion

Kostenfunktion

Für die Kostenfunktion wird die mittlere quadratische Abweichung (englisch *mean squared error*) verwendet:

$$MSE(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

 $\mathrm{MSE}(\theta)$ ist nicht konvex und besitzt in der Regel lokale Minima. Das Gradientenverfahren lässt sich auf diese Funktion nicht anwenden.

Anwendungsgebiete

- Vorhersage von Wahlergebnissen
- medizinische Diagnosen
- Kaufverhalten
- Prüfung von Kreditanträgen auf Risiken
- Nutzerverhalten im Internet

Beispiel-Usecase

Eine Anwendungsmöglichkeit ist die Vorhersage des Bestehens bzw. Nicht-Bestehens einer Prüfung in Abhängigkeit von der investierten Vorbereitungszeit.

Abb. 2: Vorhersage von Prüfungsergebnissen mittels logistischer Regression.

Bei einem Funktionswert von >0,5 ist ein Bestehen der Prüfung wahrscheinlicher.

Programmbeispiel

In scikit-learn ist die logistische Regression im Modul LogisticRegression verfügbar. Das Training erfolgt wie gewohnt mit fit().

from sklearn.linear_model import
 LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X, y)

Vorhersagen werden mittels predict gemacht:

log_reg.predict([[1.7], [1.5]])

Literatur

- A. Géron, K. Rother und T. Demmig, Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow, Konzepte, Tools und Techniken für intelligente Systeme, 2. Aufl. Heidelberg: O'Reilly, 2020.
- [2] Wikipedia, Logistic regression. Adresse: https://en.wikipedia.or g/w/index.php?title=Logistic_regression&oldid=1210273561 (besucht am 26.02.2024).
- [3] D. Basecamp. (2022). Was ist eine Logistische Regression?, Adresse: https://databasecamp.de/ki/logistische-regression (besucht am 26.02.2024).