MA2001 Supplementary Notes on Eigenvalues and Eigenvectors

Some general properties of the eigenvalues

Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of a given matrix A.

i.e. $A\overrightarrow{x_i} = \lambda_i \overrightarrow{x_i}, i = 1, 2, \dots, n$

Then,

- (1) The matrix A^k has eigenvalues $\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$ and the same eigenvectors as A.
- (2) The matrix kA has eigenvalues $k\lambda_1, k\lambda_2, \ldots, k\lambda_n$ and the same eigenvectors as A.
- (3) The inverse A^{-1} (if exists) has eigenvalues $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ and the same eigenvectors as A.
- (4) The matrix A^{T} has eigenvalues $\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}$ but NOT necessarily the same eigenvectors as A.
- (5) The matrix (A + kI) has eigenvalues $(\lambda_1 + k)$, $(\lambda_2 + k)$, ..., $(\lambda_n + k)$ and the same eigenvectors as A. Proof of (1):

Since $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of a given matrix A, we have

$$A\overline{x_i} = \lambda_i \overrightarrow{x_i}, \quad i = 1, 2, \dots, n$$

$$A^{k}\overrightarrow{x_{i}} = A^{k-1}A\overrightarrow{x_{i}} = A^{k-1}\lambda_{i}\overrightarrow{x_{i}} = \lambda_{i}A^{k-2}A\overrightarrow{x_{i}} = \lambda_{i}A^{k-2}\lambda_{i}\overrightarrow{x_{i}} = \dots = \lambda_{i}^{k}\overrightarrow{x_{i}}, \quad i = 1, 2, \dots, n$$

 \therefore The matrix A^k has eigenvalues $\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$ and the same eigenvectors as A.

Exercise:

Verify the properties (2) - (5) and give an example for each of the properties above.