Task 1. Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra panel, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickenss to be 13 mm)

Study case changing the Gas

Changing the air for Argon improve the conditions in a 13,89%. Changing the air for Krypton improve the conditions in a 22,23%.

Adding a extra panel in the case of Argon, respect to a triple panel fill with air, would improve the conditions in a 20%.

Adding a extra panel in the case of Krypton, respect to a triple panel fill with air, would improve the conditions in a 30%.

Task 2. Consider the house that we analysed in the last two examples, <u>calculate the heating and cooling load</u> of the other windows which are <u>fixed 14.4 m2 on the west</u>, fixed <u>3.6 m2 on the south</u> and an <u>operable 3.6 m2 on the south</u> (the same window and frame type). <u>How much does the total value change if I change the frame of the window from wooden one to aluminium?</u>

Heating case A (fixed 14,40 m2 on the west)

From the class example: ΔT heating= 24,8°C

Uwindowswest = $2,84 \text{ W/m}^2$. K

HF= Uwindowswest x ΔT heating 2,84 W/m² x 24,8°C 70,43 W/m²

Qwindowswest = HFwindowswest x Awindowswest 70,43 W/m² x 14,40 m2 1014,19W

Answer:

The heating value for the fixed window of 14,40m2, on the west is 1014,19W

Heating case B (fixed 3,60 m2 on the south)

Qwindowssouth = HFwindowssouth x Awindowssouth $70,43 \text{ W/m}^2 \text{ x } 3,60 \text{ m2}$ 1014,19 W

Answer:

The heating value for the fixed window of 3,60m2, on the south is 1014,19W

Heating case C (operable 3.6 m2 on the south)

Qwindowssouth = HFwindowssouth x Awindowssouth 70,43 W/m² x 3,60 m2 1014,19W

Answer:

The heating value for the operable window of 3,60m2, on the south is 1014,19W

Cooling case A (fixed 14,40 m2 on the west)

From the class example: ΔT cooling= 7,9°C

Uwindowswest = $2,84 \text{ W/m}^2$. K

HF= Uwindowswest x ΔT cooling 2,84 W/m² x 7,9°C 22,43 W/m²

Qwindowswest = HFwindowswest x Awindowswest 22,43 W/m² x 14,40 m2

322,99W

CFwindowswest = $(Uwindowswest \times (\Delta T - (0,46DR))) + (PXI \times SHGC \times IAC \times FFs)$

2,84 W/m². C x (7,9°C - 0,46 x 11,90°C) 2,84 W/m². C x (7,9°C - 5,47°C) 2,84 W/m². C x 2,43°C 6,90 W/ m²

```
(PXI x SHGC x IAC x FFs)=
747 x 0,54 x 1 x 0,56=
225,89 W/m<sup>2</sup>
```

Total CF= 6,90 W/m² + 225,89 W/m²= 232,79 W/m²

TOTAL Q= CFwindowswest x Awindowswest 232,79 W/m² x 14,40 m2 = 3352,17W PXIwindowswest= ED + Ed = 559 + 188= 747 SHGC= 0,54 IAC (we assume there are no shading)= 1 FFs= 0,56

Answer:

The cooling value for the fixed window of 14,40m2, on the west is 3352,17W

Cooling case B (fixed 3,60 m2 on the south)

CFwindowssouth = (Uwindowssouth x (ΔT - (0,46DR))) + (PXI x SHGC x IAC x FFs) 2,84 W/m². C x (7,9°C - 0,46 x 11,90°C)

2,84 W/m². C x (7,9°C - 5,47°C)

2,84 W/m². C x 2,43°C

6,90 W/ m²

(PXI x SHGC x IAC x FFs)= 557 x 0,46 x 1 x 0,47= 120,20 W/m²

Total CF= 6,90 W/m² + 120,20 W/m²= 127,10 W/m²

TOTAL Q= CFwindowssouth x Awindowssouth 127,10 W/m² x 3,60 m2 = 457,56W PXIwindowssouth= ED + Ed = 348 + 209 = 557

SHGC= 0,54

FFs= 0,47

IAC (we assume there are no shading)= 1

Answer:

The cooling value for the fixed window of 3,60m2, on the south is 457,56W

Cooling case C (operable 3.6 m2 on the south)

Uwindowswest = $2,87 \text{ W/m}^2$. K

HF= Uwindowswest x ΔT cooling 2,87 W/m² x 7,9°C 22,67 W/m²

Qwindowssouth = HFwindowssouth x Awindowssouth 22,67 W/m² x 14,40 m2

326,44W

CFwindowssouth = $(Uwindowssouth x (\Delta T - (0,46DR))) + (PXI x SHGC x IAC x FFs)$

2,87 W/m². C x (7,9°C - 0,46 x 11,90°C)

2,87 W/m². C x (7,9°C - 5,47°C)

2,87 W/m². C x 2,43°C

6,97 W/ m²

(PXI x SHGC x IAC x FFs)= 556 x 0,46 x 1 x 0,47= 120,20 W/m² PXIwindowssouth= ED + Ed = 348 + 208 = 556 SHGC= 0,46

IAC (we assume there are no shading)= 1 FFs= 0,47

Total CF= $6.97 \text{ W/m}^2 + 120,20 \text{W/m}^2 = 127,17 \text{ W/m}^2$

TOTAL Q= CFwindowssouth x Awindowssouth $127,17 \text{ W/m}^2 \text{ x } 3,60 \text{ m2} = 457,81 \text{W}$

Answer:

Heating case A (fixed 14,40 m2 on the west) in aluminium.

From the class example: ΔT heating= 24,8°C

Uwindowswest = $4,62 \text{ W/m}^2$. K

HF= Uwindowswest x ΔT heating 4,62 W/m² x 24,8°C 114,57 W/m²

Qwindowswest = HFwindowswest x Awindowswest 114,57 W/m² x 14,40 m2 1649,80W

Answer:

The heating value for the fixed window of 14,40m2, on the west is 1649,80W

Heating case B (fixed 3,60 m2 on the south) in aluminium.

Qwindowssouth = HFwindowssouth x Awindowssouth 114,57 W/m² x 3,60 m2 412,45W

Answer:

The heating value for the fixed window of 3,60m2, on the south is 412,45W

Heating case C (operable 3.6 m2 on the south) in aluminium.

Qwindowssouth = HFwindowssouth x Awindowssouth 114,57 W/m² x 3,60 m2 412,45W

Answer:

The heating value for the operable window of 3,60m2, on the south is 412,45W

Cooling case A (fixed 14,40 m2 on the west) in aluminium.

From the class example: ΔT cooling= 7,9°C

Uwindowswest = 3,22 W/m². K

HF= Uwindowswest x ΔT cooling 3,22 W/m² x 7,9°C 25,44 W/m²

Qwindowswest = HFwindowswest x Awindowswest 25,44 W/m² x 14,40 m2 366,33W

CFwindowswest = (Uwindowswest x (ΔT - (0,46DR))) + (PXI x SHGC x IAC x FFs) 3,22 W/m². C x (7,9°C - 0,46 x 11,90°C) 3,22 W/m². C x (7,9°C - 5,47°C) 3,22W/m². C x 2,43°C 7,82W/ m²

(PXI x SHGC x IAC x FFs)= 747 x 0,56 x 1 x 0,56= 234,25 W/m²

Total CF= 7,82 W/m² + 234,25 W/m²= 242,07 W/m²

PXIwindowswest= ED + Ed = 559 + 188= 747 SHGC= 0,56

IAC (we assume there are no shading)= 1 FFs= 0,56

Answer:

The cooling value for the fixed window of 14,40m2, on the west, in aluminium is 3485,80W

Cooling case B (fixed 3,60 m2 on the south) in aluminium.

Uwindowssouth= 3,22 W/m². K

CFwindowssouth = (Uwindowssouth x (ΔT - (0,46DR))) + (PXI x SHGC x IAC x FFs) 3,22 W/m². C x (7,9°C - 0,46 x 11,90°C) 3,22 W/m². C x (7,9°C - 5,47°C) 3,22 W/m². C x 2,43°C 7,82 W/m²

(PXI x SHGC x IAC x FFs)= 557 x 0,56 x 1 x 0,47= 146,60 W/m²

Total CF= 7,82 W/m 2 + 146,60 W/m 2 = 154,42 W/m 2

TOTAL Q= CFwindowssouth x Awindowssouth 154,42 W/m² x 3,60 m2 = 555,91W PXIwindowssouth= ED + Ed = 348 + 209= 557 SHGC= 0.56

IAC (we assume there are no shading)= 1 FFs= 0,47

Answer:

The cooling value for the fixed window of 3,60m2, on the south, in aluminium is 555,91W

Cooling case C (operable 3.6 m2 on the south) in aluminium.

Uwindowswest = 4,62 W/m². K

HF= Uwindowswest x ΔT cooling 4,62 W/m² x 7,9°C 36,49 W/m²

Qwindowssouth = HFwindowssouth x Awindowssouth 36,49 W/m² x 3,60 m2 131,36W

CFwindowssouth = (Uwindowssouth x (ΔT - (0,46DR))) + (PXI x SHGC x IAC x FFs) 4,62 W/m². C x (7,9°C - 0,46 x 11,90°C) 4,62 W/m². C x (7,9°C - 5,47°C) 4,62 W/m². C x 2,43°C 11,22 W/ m²

(PXI x SHGC x IAC x FFs)= 557 x 0,55 x 1 x 0,47= 143,98 W/m²

Total CF= 11,22 W/m² + 143,98W/m²= 155,20 W/m²

TOTAL Q= CFwindowssouth x Awindowssouth 155,20 W/m² x 3,60 m2 = 558,72W PXIwindowssouth= ED + Ed = 348 + 209 = 557 SHGC= 0,55 IAC (we assume there are no shading)= 1 FFs= 0,47

Answer: