Задача 1. В школьной столовой 5 кранов для умывания. Каждый может быть закрыт или открыт. Сколькими способами может течь вода в столовой?

Задача 2. Некое современное здание имеет форму куба, стоящего на четырёх колоннах. Имеется 6 красок. Сколькими способами можно покрасить грани здания этими красками в 6 цветов? (Каждая грань красится целиком в один цвет, разные грани красятся в разные цвета.)

Задача 3. а) В заборе 20 досок, каждую надо покрасить в синий, зелёный или жёлтый цвет, причём соседние доски красятся в разные цвета. Сколькими способами это можно сделать?

б) А если требуется ещё, чтобы хоть одна из досок обязательно была синей?

Задача 4. а) Сколько можно составить различных (не обязательно осмысленных) слов из k букв, используя русский алфавит?

б) А если потребовать, чтобы буквы в словах не повторялись?

в) Сколькими способами можно переставить буквы в слове из k различных букв?

Задача 5. а) Сколько существует 10-значных чисел, не содержащих цифру 1?

б) Сколько из них содержит цифру 9 (хотя бы одну)?

Задача 6. а) Десять девушек водят хоровод. Сколькими способами они могут встать в круг?

б) Сколько ожерелий можно составить из 10 различных бусин?

в) А если в ожерелье всего 3 белых и 7 синих бусин?

Задача 7. а) Сколько строк можно составить из 0 и 1, чтобы в каждой строке было 10 цифр?

б) На дереве растут 10 яблок. Сколькими способами можно сорвать несколько из них?

Задача 8. Меню в школьном буфете постоянно и состоит из n разных блюд. Петя хочет каждый день выбирать себе завтрак по-новому (за раз он может съесть от 0 до n разных блюд).

а) Сколько дней ему удастся это делать? б) Сколько блюд он съест за это время?

в) Вася решил последовать примеру Пети, но съедать каждый день нечетное число блюд. Сколько дней ему удастся это делать? **r)** Сколько блюд он съест за это время?

Задача 9. В классе учатся 20 человек. Сколькими способами из них можно выбрать двоих школьников: старосту и ответственного за проездные билеты? А просто двоих школьников?

Задача 10. Сколько разных слов (не только осмысленных) можно получить, переставляя буквы в словах

a) РОК; б) КУРОК; в) КОЛОБОК; г)
$$\underbrace{\mathbb{A}\mathbb{A}\dots\mathbb{A}}_{a}\underbrace{\mathbb{B}\mathbb{B}\dots\mathbb{B}}_{b}$$
? д)* $\underbrace{\mathfrak{G}_{1}\dots\mathfrak{G}_{1}}_{k_{1}}\underbrace{\mathfrak{G}_{2}\dots\mathfrak{G}_{2}}_{k_{2}}\dots\underbrace{\mathfrak{G}_{m}\dots\mathfrak{G}_{m}}_{k_{m}}$.

Задача 11. а) Сколькими способами можно выбрать трёх дежурных в классе из 20 человек?

6) А сколькими способами можно выбрать старосту, его помощника и трёх дежурных?

Задача 12. Сколькими способами можно расставить на шахматной доске

а) 8 различных ладей; б) 8 неразличимых ладей так, чтобы они не били друг друга?

Задача 13. Фабрика игрушек выпускает разноцветные кубики. У всякого кубика каждая грань окрашена целиком одной из шести красок, имеющихся на фабрике, причём разные грани одного кубика окрашены разными красками. Сколько видов кубиков выпускает фабрика?

Задача 14*. Фабрика из предыдущей задачи начала выпуск параллелепипедов $1 \times 1 \times 2$, склеивая по два из выпускаемых ею кубиков. Сколько получится различных видов новой игрушки?

Задача 15*. Решите две предыдущие задачи, заменив куб на тетраэдр (и 6 цветов на 4).

Задача 16. а) Какое наибольшее число неразличимых слонов можно расставить на шахматной доске так, чтобы они не били друг друга?

б) Докажите, что число способов такой расстановки — квадрат некоторого числа.

в)* Найдите это число. (Сначала решите такую же задачу для досок 2×2 , 3×3 , 4×4 , ...)

Задача 17. Сколько существует строк из 20 цифр, в которых встречаются только нули и единицы, причём никакие два нуля не стоят рядом?

Задача 18*. В таблицу размера $k \times l$ записывают числа +1 и -1 так, чтобы произведение чисел в каждой строке и в каждом столбце равнялось +1. Сколькими способами это можно сделать?

1	2	3 a	3 6	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	4 B	5 a	5 6	6 a	6 6	6 B	7 a	7 б	8 a	8 6	8 B	8 Г	9	$\begin{vmatrix} 10 \\ a \end{vmatrix}$	10 б	10 B	10 Г	10 Д	11 a	11 б	12 a	12 б	13	14	15	16 a	16 б	16 _B	17	18