Risk-Parity Portfolio

Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST)

> MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST, Hong Kong

- Introduction
- Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

- Introduction
- Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

Motivation

- The Markowitz portfolio has never been embraced by practitioners, among other reasons because
 - variance is not a good measure of risk in practice since it penalizes both the unwanted high losses and the desired low losses: the solution is to use alternative measures for risk, e.g., VaR and CVaR,
 - 2 it is highly sensitive to parameter estimation errors (i.e., to the covariance matrix Σ and especially to the mean vector μ): solution is robust optimization,
 - it only considers the risk of the portfolio as a whole and ignores the risk diversification (i.e., concentrates risk too much in few assets, this was observed in the 2008 financial crisis): solution is the risk-parity portfolio.

- Introduction
- 2 Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

- Introduction
- 2 Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

Returns

- Let us denote the log-returns of N assets at time t with the vector $\mathbf{r}_t \in \mathbb{R}^N$.
- The time index *t* can denote any arbitrary period such as days, weeks, months, 5-min intervals, etc.
- \mathcal{F}_{t-1} denotes the previous historical data.
- Econometrics aims at modeling \mathbf{r}_t conditional on \mathcal{F}_{t-1} .
- r_t is a multivariate stochastic process with conditional mean and covariance matrix denoted as¹

$$\begin{split} & \boldsymbol{\mu}_t \triangleq \mathsf{E}\left[\mathbf{r}_t \mid \mathcal{F}_{t-1}\right] \\ & \boldsymbol{\Sigma}_t \triangleq \mathsf{Cov}\left[\mathbf{r}_t \mid \mathcal{F}_{t-1}\right] = \mathsf{E}\left[(\mathbf{r}_t - \boldsymbol{\mu}_t)(\mathbf{r}_t - \boldsymbol{\mu}_t)^T \mid \mathcal{F}_{t-1}\right]. \end{split}$$

D. Palomar (HKUST) Risk-Parity Portfolio 7/51

¹Y. Feng and D. P. Palomar, *A Signal Processing Perspective on Financial Engineering*. Foundations and Trends in Signal Processing, Now Publishers, 2016.

I.I.D. Model

- For simplicity we will assume that \mathbf{r}_t follows an i.i.d. distribution (which is not very innacurate in general).
- That is, both the conditional mean and conditional covariance are constant

$$\mu_t = \mu$$

$$\mathbf{\Sigma}_t = \mathbf{\Sigma}.$$

 Very simple model, however, it is one of the most fundamental assumptions for many important works, e.g., the Nobel prize-winning Markowitz portfolio theory².

D. Palomar (HKUST) Risk-Parity Portfolio 8/51

²H. Markowitz, "Portfolio selection," J. Financ., vol. 7, no. 1, pp. 77–91, 1952.

Parameter Estimation

• Consider the i.i.d. model:

$$\mathbf{r}_t = \boldsymbol{\mu} + \mathbf{w}_t,$$

where $\mu \in \mathbb{R}^N$ is the mean and $\mathbf{w}_t \in \mathbb{R}^N$ is an i.i.d. process with zero mean and constant covariance matrix Σ .

- The mean vector μ and covariance matrix Σ have to be estimated in practice based on T observations.
- The simplest estimator is the sample estimator:
 - sample mean estimator: $\hat{\pmb{\mu}} = \frac{1}{T} \sum_{t=1}^T \pmb{\mathsf{r}}_t$
 - sample covariance matrix: $\hat{\mathbf{\Sigma}} = \frac{1}{T-1} \sum_{t=1}^{T} (\mathbf{r}_t \hat{\boldsymbol{\mu}}) (\mathbf{r}_t \hat{\boldsymbol{\mu}})^T$.
- Many more sophisticated estimators exist, namely: shrinkage estimators, Black-Litterman estimators, etc.

Parameter Estimation

- The parameter estimates $\hat{\mu}$ and $\hat{\Sigma}$ are only good for large T, otherwise the estimation error is unacceptable.
- For instance, the sample mean is particularly a very inefficient estimator, with very noisy estimates.³
- In practice, T cannot be large enough due to either:
 - unavailability of data or
 - lack of stationarity of data.
- As a consequence, the estimates contain too much estimation error and a portfolio design (e.g., Markowitz mean-variance) based on those estimates can be fatal.
- Indeed, this is why Markowitz portfolio and other extensions are rarely used by practitioners.

D. Palomar (HKUST) Risk-Parity Portfolio 10 / 51

³A. Meucci, *Risk and Asset Allocation*. Springer, 2005.

- Introduction
- 2 Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

Portfolio Return

- Suppose the budget is B dollars.
- The portfolio $\mathbf{w} \in \mathbb{R}^N$ denotes the normalized weights of the assets such that $\mathbf{1}^T \mathbf{w} = 1$ (then $B\mathbf{w}$ denotes dollars invested in the assets).
- For each asset, the initial wealth is Bw_i and the end wealth is

$$Bw_i(p_{i,t}/p_{i,t-1}) = Bw_i(R_{it}+1).$$

• Then the portfolio return is

$$R_{t}^{p} = \frac{\sum_{i=1}^{N} Bw_{i}(R_{it} + 1) - B}{B} = \sum_{i=1}^{N} w_{i}R_{it} \approx \sum_{i=1}^{N} w_{i}r_{it} = \mathbf{w}^{T}\mathbf{r}_{t}$$

• The portfolio expected return and variance are $\mathbf{w}^T \boldsymbol{\mu}$ and $\mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}$, respectively.⁴

⁴G. Cornuejols and R. Tütüncü, *Optimization Methods in Finance*. Cambridge University Press, 2006.

Performance Measures

- Expected return: $\mathbf{w}^T \boldsymbol{\mu}$
- Volatility: $\sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}$
- Sharpe Ratio (SR): expected return per unit of risk

$$SR = \frac{\mathbf{w}^T \boldsymbol{\mu} - r_f}{\sqrt{\mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}}}$$

where r_f is the risk-free rate (e.g., interest rate on a three-month U.S. Treasury bill).

• Information Ratio (IR):

$$\mathsf{IR} = \frac{\mathbf{w}^T \boldsymbol{\mu}}{\sqrt{\mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}}}$$

- Drawdown: decline from a historical peak of the cumulative profit X(t): $D(T) = \max \left\{ 0, \max_{t \in (0,T)} X(t) X(T) \right\}$
- VaR (Value at Risk)
- ES (Expected Shortfall) or CVaR (Conditional Value at Risk)

D. Palomar (HKUST) Risk-Parity Portfolio 13 / 51

Practical Constraints

• Capital budget constraint:

$$\mathbf{w}^T \mathbf{1} = 1.$$

• Long-only constraint:

$$\mathbf{w} \geq 0$$
.

Market-neutral constraint:

$$\mathbf{w}^T \mathbf{1} = 0.$$

Turnover constraint:

$$\|\mathbf{w} - \mathbf{w}_0\|_1 \le u$$

where \mathbf{w}_0 is the currently held portfolio.

Practical Constraints

• Holding constraint:

where $\mathbf{I} \in \mathbb{R}^N$ and $\mathbf{u} \in \mathbb{R}^N$ the lower and upper bounds of turnover of each asset, respectively.

Cardinality constraint:

$$\|\mathbf{w}\|_{0} \leq K$$
.

• Leverage constraint:

$$\|\mathbf{w}\|_1 \leq 2.$$

Risk Control

- In finance, the expected return $\mathbf{w}^T \mu$ is very relevant as it quantifies the average benefit.
- However, in practice, the average performance is not enough to characterize an investment and one needs to control the probability of going bankrupt.
- Risk measures control how risky an investment strategy is.
- The most basic measure of risk is given by the variance⁵: a higher variance means that there are large peaks in the distribution which may cause a big loss.
- There are more sophisticated risk measures such as downside risk, VaR, ES, etc.

D. Palomar (HKUST) Risk-Parity Portfolio 16 / 51

⁵H. Markowitz, "Portfolio selection," J. Financ., vol. 7, no. 1, pp. 77–91, 1952.

Mean-Variance Tradeoff

- The mean return $\mathbf{w}^T \boldsymbol{\mu}$ and the variance (risk) $\mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}$ constitute two important performance measures.
- Usually, the higher the mean return the higher the variance and vice-versa.
- Thus, we are faced with two objectives to be optimized: it is a multi-objective optimization problem.
- They define a fundamental mean-variance tradeoff curve (Pareto curve).
- The choice of a specific point in this tradeoff curve depends on how agressive or risk-averse the investor is.

Markowitz mean-variance portfolio (1952)

• The idea of the Markowitz framework⁶ is to find a trade-off between the expected return $\mathbf{w}^T \boldsymbol{\mu}$ and the risk of the portfolio measured by the variance $\mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}$:

maximize
$$\mathbf{w}^T \boldsymbol{\mu} - \lambda \mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}$$
 subject to $\mathbf{1}^T \mathbf{w} = 1$

where $\mathbf{w}^T \mathbf{1} = 1$ is the capital budget constraint and λ is a parameter that controls how risk-averse the investor is.

 This is a convex QP with only one linear constraint which admits a closed-form solution:

$$\mathbf{w}^{\star} = rac{1}{2\lambda} \mathbf{\Sigma}^{-1} \left(oldsymbol{\mu} +
u^{\star} \mathbf{1}
ight),$$

where ν^* is the optimal dual variable $\nu^* = \frac{2\lambda - \mathbf{1}^T \mathbf{\Sigma}^{-1} \mu}{\mathbf{1}^T \mathbf{\Sigma}^{-1} \mu}$.

D. Palomar (HKUST) Risk-Parity Portfolio 18 / 51

⁶H. Markowitz, "Portfolio selection," J. Financ., vol. 7, no. 1, pp. 77–91, 1952.

Global Minimum Variance Portfolio (GMVP)

 The global minimum variance portfolio (GMVP) ignores the expected return and focuses on the risk only:

minimize
$$\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$$
 subject to $\mathbf{1}^T \mathbf{w} = 1$.

• It is a simple convex QP with solution

$$\label{eq:wgmvp} \textbf{w}_{\mathrm{GMVP}} = \frac{1}{\textbf{1}^{T} \boldsymbol{\Sigma}^{-1} \textbf{1}} \boldsymbol{\Sigma}^{-1} \textbf{1}.$$

• It is widely used in academic papers for simplicity of evaluation and comparison of different estimators of the covariance matrix Σ (while ignoring the estimation of μ).

- Introduction
- 2 Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

Drawbacks of Markowitz's formulation

- The Markowitz portfolio has never been embraced by practitioners, among other reasons because
 - variance is not a good measure of risk in practice since it penalizes both the unwanted high losses and the desired low losses: the solution is to use alternative measures for risk, e.g., VaR and CVaR,
 - 2 it is highly sensitive to parameter estimation errors (i.e., to the covariance matrix Σ and especially to the mean vector μ): solution is robust optimization,
 - it only considers the risk of the portfolio as a whole and ignores the risk diversification (i.e., concentrates risk too much in few assets, this was observed in the 2008 financial crisis): solution is the risk-parity portfolio.

- Introduction
- Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

Motivation

- The Markowitz portfolio has never been embraced by practitioners, among other reasons because
 - it only considers the risk of the portfolio as a whole and ignores the risk diversification (i.e., concentrates risk too much in few assets, this was observed in the 2008 financial crisis)
 - it is highly sensitive to the estimation errors in the parameters (i.e., small estimation errors in the parameters may change completely the designed portfolio)

- Recently, the alternative risk parity portfolio design has been receiving significant attention from both the theoretical and practical sides because
 - diversifies the risk, instead of the capital, among the assets
 - less sensitive to parameter estimation errors.

- Introduction
- Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

Risk Contribution

• Given a portfolio $\mathbf{w} \in \mathbb{R}^N$ and the return covariance matrix $\mathbf{\Sigma}$, the portfolio volatility is:

$$\sigma\left(\mathbf{w}\right) = \sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}.$$

 Following Euler's theorem, the volatility can be decomposed as follows:

$$\sigma(\mathbf{w}) = \sum_{i=1}^{N} w_i \frac{\partial \sigma}{\partial w_i} = \sum_{i=1}^{N} \frac{w_i(\mathbf{\Sigma}\mathbf{w})_i}{\sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}}$$

• Risk contribution from asset *i* to the total risk $\sigma(\mathbf{w})$:

$$\frac{\partial \sigma}{\partial w_i} = \frac{w_i (\mathbf{\Sigma} \mathbf{w})_i}{\sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}}$$

- Normalized risk contribution: $w_i(\mathbf{\Sigma}\mathbf{w})_i/\mathbf{w}^T\mathbf{\Sigma}\mathbf{w}$
- Other measures of risk like VAR and CVaR can also be decomposed following Euler's theorem.

Risk-Parity Portfolio

• Idea: equalize the risks contributions:

$$w_i \frac{\partial f(\mathbf{w})}{\partial w_i} = w_j \frac{\partial f(\mathbf{w})}{\partial w_j} \qquad \forall i, j.$$

• Risk budgeting is a more general concept. Given a risk budget vector $\mathbf{b} = [b_1, \dots, b_N]^T > \mathbf{0}, \mathbf{1}^T \mathbf{b} = 1$, the risk budgeting portfolio should satisfy

$$w_i \frac{\partial f(\mathbf{w})}{\partial w_i} = b_i f(\mathbf{w}) \qquad \forall i.$$

• Risk parity portfolio is a special case of the risk budgeting portfolio with ${\bf b}={\bf 1}/N$.

Risk-Parity Portfolio

- For the volatility we can write
 - risk parity: $w_i(\mathbf{\Sigma}\mathbf{w})_i = w_j(\mathbf{\Sigma}\mathbf{w})_j$ • risk budgeting: $w_i(\mathbf{\Sigma}\mathbf{w})_i = b_i\mathbf{w}^T\mathbf{\Sigma}\mathbf{w}$
- Assuming that Σ is diagonal and with the constraints $\mathbf{1}^T \mathbf{w} = 1$ and $\mathbf{w} \geq \mathbf{0}$, the risk budgeting portfolio is

$$w_i = rac{\sqrt{b_i}/\sqrt{\Sigma_{ii}}}{\sum_{k=1}^N \sqrt{b_k}/\sqrt{\Sigma_{kk}}}, \qquad i=1,\ldots,N.$$

ullet However, for non-diagonal ullet or with other additional constraints, a closed-form solution does not exist in general and some optimization procedures have to be constructed.

Risk-Parity Formulation

• Maillard et al.⁷ aimed at solving:

minimize
$$\sum_{i,j=1}^{N} \left(w_i (\mathbf{\Sigma} \mathbf{w})_i - w_j (\mathbf{\Sigma} \mathbf{w})_j \right)^2$$
 subject to $\mathbf{1}^T \mathbf{w} = 1$.

- The idea is to try to achieve equal risk contributions $\frac{w_i(\mathbf{\Sigma}\mathbf{w})_i}{\sqrt{\mathbf{w}^T\mathbf{\Sigma}\mathbf{w}}}$ by penalizing the differences between the terms $w_i(\mathbf{\Sigma}\mathbf{w})_i$.
- This is a simplified formulation:

minimize
$$\sum_{i=1}^{N} (w_i (\mathbf{\Sigma} \mathbf{w})_i - \theta)^2$$
 subject to $\mathbf{1}^T \mathbf{w} = 1$.

⁷S. Maillard, T. Roncalli, and J. Teïletche, "The properties of equally weighted risk contribution portfolios," *Journal of Portfolio Management*, vol. 36, no. 4, pp. 60–70, 2010.

More Risk-Parity Formulations

• Bruder and Roncalli⁸ proposed to solve:

minimize
$$\sum_{i=1}^{N} \left(\frac{w_i (\mathbf{\Sigma} \mathbf{w})_i}{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}} - b_i \right)^2$$
subject to
$$\mathbf{w}^T \mathbf{1} = 1,$$

where $b_i = \frac{1}{N}$.

 More generally, one can equalize the risk contribution by setting arbitrary proportions (as opposed to equal contributions):

$$\mathbf{b} = [b_1, \dots, b_N]^T > \mathbf{0}, \quad \mathbf{1}^T \mathbf{b} = 1.$$

One more formulation:

minimize
$$\sum_{i,j=1}^{N} \left(\frac{w_i(\mathbf{\Sigma}\mathbf{w})_i}{b_i} - \frac{w_j(\mathbf{\Sigma}\mathbf{w})_j}{b_j} \right)^2$$
 subject to $\mathbf{1}^T \mathbf{w} = 1$.

D. Palomar (HKUST) Risk-Parity Portfolio 29 / 51

⁸B. Bruder and T. Roncalli, "Managing risk exposures using the risk budgeting approach," University Library of Munich, Germany, Tech. Rep., 2012.

And Yet More Risk-Parity Formulations

• One more formulation:

minimize
$$\sum_{i=1}^{N} \left(w_i (\mathbf{\Sigma} \mathbf{w})_i - b_i \mathbf{w}^T \mathbf{\Sigma} \mathbf{w} \right)^2$$
 subject to $\mathbf{1}^T \mathbf{w} = 1$.

And one more:

Yet Even More Risk-Parity Formulations

• What about this one:

More formulations can be found in the book:
 T. Roncalli, *Introduction to Risk Parity and Budgeting*. CRC Press, 2013.

General Problem Formulation

A more general risk parity formulation is⁹:

minimize
$$U(\mathbf{w}) \triangleq \sum_{i=1}^{N} (g_i(\mathbf{w}))^2 + \lambda F(\mathbf{w})$$

subject to $\mathbf{1}^T \mathbf{w} = 1$, $\mathbf{w} \in \mathcal{W}$

where

• $\sum_{i=1}^{N} (g_i(\mathbf{w}))^2$: risk concentration measurement, e.g.,

$$g_i(\mathbf{w}) \triangleq \frac{w_i(\mathbf{\Sigma}\mathbf{w})_i}{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}} - \frac{1}{N},$$

- $F(\mathbf{w})$: preference, e.g., 0, $-\mu^T \mathbf{w}$, $-\mu^T \mathbf{w} + \nu \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$,
- $\lambda \geq 0$: trade-off parameter,
- $\mathbf{1}^T \mathbf{w} = 1, \mathbf{w} \in \mathcal{W}$: capital budget & other convex constraints.

Challenge: the problem is highly nonconvex due to $\sum_{i=1}^{N} (g_i(\mathbf{w}))^2$.

⁹Y. Feng and D. P. Palomar, "SCRIP: Successive convex optimization methods for risk parity portfolios design," *IEEE Trans. Signal Process.*, vol. 63, no. 19, pp. 5285–5300, 2015.

Unified Problem Formulation

- The previous general formulation contains the risk term $R(\mathbf{w}) = \sum_{i=1}^{N} (g_i(\mathbf{w}))^2$, which can be written in a compact way to represent the many formulations presented before.
- Define $\mathbf{M}_i \in \mathbb{R}^{N \times N}$ as a sparse matrix with its *i*-th row equal to that of the covariance matrix Σ .
- Examples:

•
$$R(\mathbf{w}) = \sum_{i,j=1}^{N} \left(w_i (\mathbf{\Sigma} \mathbf{w})_i - w_j (\mathbf{\Sigma} \mathbf{w})_j \right)^2$$
 corresponds to

$$g_{i,j}(\mathbf{w}) = \mathbf{w}^T (\mathbf{M}_i - \mathbf{M}_j) \mathbf{w}$$

•
$$R(\mathbf{w}) = \sum_{i=1}^{N} (w_i(\mathbf{\Sigma}\mathbf{w})_i - \theta)^2$$
 corresponds to

$$g_i(\mathbf{w}) = \mathbf{w}^T \mathbf{M}_i \mathbf{w} - \theta$$

•
$$R(\mathbf{w}) = \sum_{i=1}^{N} \left(\frac{w_i(\mathbf{\Sigma}\mathbf{w})_i}{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}} - b_i \right)^2$$
 corresponds to

$$g_i(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{M}_i \mathbf{w}}{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}} - b_i$$

Unified Problem Formulation

• More examples:

•
$$R(\mathbf{w}) = \sum_{i,j=1}^{N} \left(\frac{w_i(\mathbf{\Sigma}\mathbf{w})_i}{b_i} - \frac{w_j(\mathbf{\Sigma}\mathbf{w})_j}{b_j} \right)^2$$
 corresponds to

$$g_{i,j}(\mathbf{w}) = \mathbf{w}^T (\mathbf{M}_i/b_i - \mathbf{M}_j/b_j)\mathbf{w}$$

•
$$R(\mathbf{w}) = \sum_{i=1}^{N} (w_i (\mathbf{\Sigma} \mathbf{w})_i - b_i \mathbf{w}^T \mathbf{\Sigma} \mathbf{w})^2$$
 corresponds to

$$g_i(\mathbf{w}) = \mathbf{w}^T (\mathbf{M}_i - b_i \mathbf{\Sigma}) \mathbf{w}$$

•
$$R(\mathbf{w}) = \sum_{i=1}^{N} \left(\frac{w_i(\mathbf{\Sigma}\mathbf{w})_i}{\sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}} - b_i \sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}} \right)^2$$
 corresponds to

$$g_i(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{M}_i \mathbf{w}}{\sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}} - b_i \sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}$$

•
$$R(\mathbf{w}) = \sum_{i=1}^{N} \left(\frac{w_i(\mathbf{\Sigma}\mathbf{w})_i}{b_i} - \theta \right)^2$$
 corresponds to

$$g_i(\mathbf{w}) = \mathbf{w}^T \mathbf{M}_i \mathbf{w}/b_i - \theta$$

- Introduction
- Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

Numerical Solving Approach

- Some off-the-shelf nonlinear numerical optimization methods¹⁰ are typically used, e.g.,
 - Sequential Quadratic Programming (SQP)
 - Interior Point Methods (IPM).
- For such risk-parity portfolio problems, they
 - may be very slow, and
 - get stuck at some unsatisfactory points.
- Because the structure of the objective is not explored.

D. Palomar (HKUST) Risk-Parity Portfolio 36 / 51

¹⁰ J. Nocedal and S. J. Wright., *Numerical Optimization*, Second. Springer Verlag, 2006

Numerical Example: Slow Convergence

Off-the-shelf nonlinear solvers have slow convergence for the risk-parity portfolio problem:

Successive Convex Approximation (SCA)

- Basic idea: solving a difficult problem via solving a sequence of simpler problems.
- Minimize $U(\mathbf{w})$ over $\mathbf{w} \in \overline{\mathcal{W}}$ via SCA method¹¹:
 - Construction of Approximation: finding $\tilde{U}(\mathbf{w};\mathbf{w}^k)$ that approximates the function $U(\mathbf{w})$ at the point \mathbf{w}^k and
 - $\tilde{U}(\mathbf{w}; \mathbf{w}^k)$: uniformly strongly convex & cont. differentiable
 - $\nabla \widetilde{U}\left(\mathbf{w}; \mathbf{w}^{k}\right)$: Lipschitz continuous on $\overline{\mathcal{W}}$
 - $\nabla \tilde{U}(\mathbf{w}; \mathbf{w}^k)|_{\mathbf{w}=\mathbf{w}^k} = \nabla U(\mathbf{w})|_{\mathbf{w}=\mathbf{w}^k}$
 - Minimization: minimizing $\tilde{U}(\mathbf{w};\mathbf{w}^k)$ to get the update

$$\mathbf{w}^{k+1} \triangleq \arg\min_{\mathbf{w} \in \overline{\mathcal{W}}} \tilde{U}\left(\mathbf{w}; \mathbf{w}^{k}\right).$$

D. Palomar (HKUST) Risk-Parity Portfolio 38 / 51

¹¹G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang, "Decomposition by partial linearization: Parallel optimization of multi-agent systems," *IEEE Trans. Signal Process.*, vol. 62, no. 3, pp. 641–656, 2014.

Construction of Approximation

Minimization

One More Iteration

Classical Methods as SCA

• (Unconstrained) gradient descent: Set

$$\tilde{U}\left(\mathbf{w};\mathbf{w}^{k}\right) = U\left(\mathbf{w}^{k}\right) + \nabla U\left(\mathbf{w}^{k}\right)^{T}\left(\mathbf{w} - \mathbf{w}^{k}\right) + \frac{1}{2\alpha^{k}}\left\|\mathbf{w} - \mathbf{w}^{k}\right\|_{2}^{2}.$$

Setting the derivative w.r.t. w to zero yields:

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \alpha^k \nabla U(\mathbf{w}^k).$$

• (Unconstrained) Newton's method: Set

$$\begin{split} \tilde{U}\left(\mathbf{w};\mathbf{w}^{k}\right) &= U\left(\mathbf{w}^{k}\right) + \nabla U\left(\mathbf{w}^{k}\right)^{T}\left(\mathbf{w} - \mathbf{w}^{k}\right) \\ &+ \frac{1}{2\alpha^{k}}\left(\mathbf{w} - \mathbf{w}^{k}\right)^{T} \nabla^{2} U\left(\mathbf{w}^{k}\right)\left(\mathbf{w} - \mathbf{w}^{k}\right). \end{split}$$

Setting the derivative w.r.t. w to zero yields:

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \alpha^k \left(\nabla^2 U(\mathbf{w}^k) \right)^{-1} \nabla U(\mathbf{w}^k).$$

SCA for Risk Parity Portfolio Design

Recall the objective

$$U(\mathbf{w}) = \sum_{i=1}^{N} (g_i(\mathbf{w}))^2 + \lambda F(\mathbf{w}).$$

• At the k-th iteration \mathbf{w}^k , set $\tau > 0$ and construct

$$\widetilde{U}\left(\mathbf{w}, \mathbf{w}^{k}\right) = \underbrace{\sum_{i=1}^{N} \left(g_{i}\left(\mathbf{w}^{k}\right) + \left(\nabla g_{i}\left(\mathbf{w}^{k}\right)\right)^{T}\left(\mathbf{w} - \mathbf{w}^{k}\right)\right)^{2}}_{+\frac{\tau}{2} \left\|\mathbf{w} - \mathbf{w}^{k}\right\|_{2}^{2} + \lambda F(\mathbf{w})$$

• IDEA: linearizing nonconvex functions $g_i(\mathbf{w})$ inside the least square \implies quadratic convex $P(\mathbf{w}; \mathbf{w}^k)$ approximates

$$R(\mathbf{w}) = \sum_{i=1}^{N} (g_i(\mathbf{w}))^2$$
, with $\nabla P(\mathbf{w}, \mathbf{w}^k)|_{\mathbf{w} = \mathbf{w}^k} = \nabla R(\mathbf{w})|_{\mathbf{w} = \mathbf{w}^k}$.

D. Palomar (HKUST) Risk-Parity Portfolio 43/51

Problem Reformulation

• $P(\mathbf{w}; \mathbf{w}^k)$ can be rewritten more compactly as

$$P\left(\mathbf{w};\mathbf{w}^{k}\right) = \|\mathbf{A}^{k}\left(\mathbf{w} - \mathbf{w}^{k}\right) + \mathbf{g}\left(\mathbf{w}^{k}\right)\|^{2}$$

where

$$\mathbf{A}^{k} \triangleq \left[\nabla g_{1} \left(\mathbf{w}^{k} \right), \dots, \nabla g_{N} \left(\mathbf{w}^{k} \right) \right]^{T},$$

$$\mathbf{g} \left(\mathbf{w}^{k} \right) \triangleq \left[g_{1} \left(\mathbf{w}^{k} \right), \dots, g_{N} \left(\mathbf{w}^{k} \right) \right]^{T}.$$

ullet We can further expand $P\left(\mathbf{w};\mathbf{w}^{k}
ight)$ as

$$P\left(\mathbf{w};\mathbf{w}^{k}\right) = \left(\mathbf{w} - \mathbf{w}^{k}\right)^{T} \left(\mathbf{A}^{k}\right)^{T} \mathbf{A}^{k} \left(\mathbf{w} - \mathbf{w}^{k}\right) + \mathbf{g} \left(\mathbf{w}^{k}\right)^{T} \mathbf{g} \left(\mathbf{w}^{k}\right) + 2\mathbf{g} \left(\mathbf{w}^{k}\right)^{T} \mathbf{A}^{k} \left(\mathbf{w} - \mathbf{w}^{k}\right)$$

Problem Reformulation

• The QP approximation problem at the k-th iteration is

minimize
$$\tilde{U}(\mathbf{w}, \mathbf{w}^k) = \frac{1}{2}\mathbf{w}^T \mathbf{Q}^k \mathbf{w} + \mathbf{w}^T \mathbf{q}^k + \lambda F(\mathbf{w})$$

subject to $\mathbf{1}^T \mathbf{w} = 1$, $\mathbf{w} \in \mathcal{W}$. (1)

where

$$\begin{split} \mathbf{Q}^k &\triangleq 2 \left(\mathbf{A}^k \right)^T \mathbf{A}^k + \tau \mathbf{I}, \\ \mathbf{q}^k &\triangleq 2 \left(\mathbf{A}^k \right)^T \mathbf{g} \left(\mathbf{w}^k \right) - \mathbf{Q}^k \mathbf{w}^k, \end{split}$$

- This problem can be solved directly with a solver or, depending on the constraints in \mathcal{W} , one may derive simpler closed-form solutions.
- For example, if we only have equality constraints in the form $\mathbf{C}\mathbf{w} = \mathbf{c}$, then from the KKT optimality conditions the optimal solution is found as $\hat{\mathbf{w}}^k = -(\mathbf{Q}^k)^{-1}(\mathbf{q}^k + \mathbf{C}^T \lambda^k)$ where $\lambda^k = -\left(\mathbf{C}(\mathbf{Q}^k)^{-1}\mathbf{C}^T\right)^{-1}\left(\mathbf{C}(\mathbf{Q}^k)^{-1}\mathbf{q}^k + \mathbf{c}\right)$.

Sequential Numerical Algorithm

Algorithm 1: Successive Convex optimization for RIsk Parity portfolio (SCRIP).

Set
$$k=0$$
, $\mathbf{w}^0 \in \overline{\mathcal{W}}$, $\tau>0$, $\{\gamma^k\} \in (0,1]$ repeat

Solve QP problem (1) to get the optimal solution $\hat{\mathbf{w}}^k$ (global minimum)

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \gamma^k \left(\hat{\mathbf{w}}^k - \mathbf{w}^k \right)$$
$$k \leftarrow k + 1$$

until convergence return w^k

More advanced algorithms can be found in
 Y. Feng and D. P. Palomar, "SCRIP: Successive convex optimization methods for risk parity portfolios design," *IEEE Trans. Signal Process.*, vol. 63, no. 19, pp. 5285–5300, 2015.

46 / 51

Convergence Analysis

Proposition 1

Under some technical conditions, suppose $\tau>0$, $\gamma^k\in(0,1]$, $\gamma^k\to 0$, $\sum_k \gamma^k = +\infty$ and $\sum_k \left(\gamma^k\right)^2 < +\infty$, and let $\left\{\mathbf{w}^k\right\}$ be the sequence generated by Algorithm 1. Then, either Algorithm 1 converges in a finite number of iterations to a stationary point or every limit of $\left\{\mathbf{w}^k\right\}$ (at least one such point exists) is a stationary point.

Numerical example

Fast algorithms based on successive convex approximation (SCA):

Outline

- Introduction
- Warm-Up: Markowitz Portfolio
 - Signal model
 - Markowitz formulation
 - Drawbacks of Markowitz portfolio
- 3 Risk-Parity Portfolio
 - Problem formulation
 - Algorithms via SCA
- 4 Conclusions

Conclusions

- We have reviewed the Markowitz portfolio formulation and understood that it has many practical flaws that make it impractical. Indeed, it is not used by practitioners.
- We have learned about the risk-parity portfolio formulation.
- We have explored the numerical resolution of such problems via successive convex approximation (SCA) methods.
- The performance of risk-parity portfolio versus Markowitz portfolio is much improved.
- Side result: we have learned how to develop efficient numerical algorithms based on SCA.

Thanks

For more information visit:

https://www.danielppalomar.com

