

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM170500469401

Fax: +86 (0) 755 2671 0594 Page: 1 of 61

TEST REPORT

Application No.: SZEM1705004694CR (SGS SH No.: SHEM1705002757CR)

Applicant: NXP (China) Management Ltd.

Address of Applicant: 21F, BM InterContinental Business Center, No. 100 Yutong Road, Zhabei

District, Shanghai, China

Manufacturer: NXP (China) Management Ltd.

Address of Manufacturer: 21F, BM InterContinental Business Center, No. 100 Yutong Road, Zhabei

District, Shanghai, China

Factory: Lierda Science and Technology Group Co., Ltd

Address of Factory: Lierda IOT Park, 1326# WenYi Road, Yuhang area, Hangzhou, China

Equipment Under Test (EUT):

EUT Name: QN9080 BLE Dongle **Model No.:** QN9080 BLE Dongle

Trade mark: NXP

FCC ID: 2AIHS9080DG

Standards: 47 CFR Part 15, Subpart C 15.247

Date of Receipt: 2017-05-17

Date of Test: 2017-05-19 to 2017-05-25

Date of Issue: 2017-06-02

Test Result : Pass*

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM170500469401

Page: 2 of 61

Revision Record						
Version Chapter Date Modifier Re						
01		2017-06-02		Original		

Authorized for issue by:		
	Hank Van.	
	Hank Yan /Project Engineer	
	Eric Fu	
	Eric Fu /Reviewer	

Report No.: SZEM170500469401

Page: 3 of 61

2 Test Summary

Radio Spectrum Technical Requirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		

Radio Spectrum Matt	er Part				
Item	Standard	Method	Requirement	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.207	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass	
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass	
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass	
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass	
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	

Report No.: SZEM170500469401

Page: 4 of 61

3 Contents

			Page
1	COV	ER PAGE	1
2	TES	T SUMMARY	3
3	100	ITENTS	4
Ü			
4	GEN	ERAL INFORMATION	6
	4.1 D	ETAILS OF E.U.T.	6
	4.2 D	ESCRIPTION OF SUPPORT UNITS	7
		EASUREMENT UNCERTAINTY	
		EST LOCATION	
		EST FACILITY	
		EVIATION FROM STANDARDS	
		BNORMALITIES FROM STANDARD CONDITIONS	
5	EQL	IPMENT LIST	9
c	DAE	IO SPECTRUM TECHNICAL REQUIREMENT	11
6			
		NTENNA REQUIREMENT	
	6.1.		
	6.1.2		
7	RAD	IO SPECTRUM MATTER TEST RESULTS	12
	7.1 C	ONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)	12
	7.1.		
	7.1.2	Pat Setup Diagram	12
	7.1.3		
		INIMUM 6DB BANDWIDTH	
	7.2.	F	
	7.2.2	1 5	
	7.2.3		
	7.3 C	ONDUCTED PEAK OUTPUT POWER	
	7.3.		
	7.3.3	, 5	
		OWER SPECTRUM DENSITY	
	7.4.		
	7.4.2		
	7.4.3	Measurement Procedure and Data	18
	7.5 C	ONDUCTED BAND EDGES MEASUREMENT	
	<i>7.5.</i> °	'	
	7.5.2		
	7.5.3		
		ONDUCTED SPURIOUS EMISSIONS	
	7.6.2 7.6.2	!	
	7.6.2 7.6.3		
		ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.7.		
	7.7.2	!	
	7.7.3	, 5	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170500469401

Page: 5 of 61

	7.8 RAD	IATED SPURIOUS EMISSIONS	20
	7.8.1	E.U.T. Operation	27
		Test Setup Diagram	
		Measurement Procedure and Data	
8	РНОТ	OGRAPHS	37
	8.1 Con	DUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) TEST SETUP	3
	8.2 RAD	IATED SPURIOUS EMISSIONS TEST SETUP	37
	8.3 EU7	CONSTRUCTIONAL DETAILS	39
9	APPEI	NDIX	40
	9.1 App	endix 15.247	40

Report No.: SZEM170500469401

Page: 6 of 61

4 General Information

4.1 Details of E.U.T.

Power supply: DC 5.0V By USB port. Frequency Range: 2402MHz to 2480MHz

Bluetooth Version: V4.0 BLE
Modulation Type: GFSK
Number of Channels: 40

Sample Type: Portable device
Antenna Type: PCB Antenna

Antenna Gain: 0 dBi

Channel list							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Selected Test Channel				
Channel	Frequency			
The lowest channel (CH0)	2402MHz			
The middle channel (CH19)	2440MHz			
The highest channel (CH39)	2480MHz			

Report No.: SZEM170500469401

Page: 7 of 61

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Laptop	Lenovo	T430u	REF. No.SEA1800
Router	NETGEAR	DGN2200	REF. No.SEA2200
Mouse	Lenovo	M-U0025-O	REF. No.:SEA2400

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	Conducted Spurious emissions	0.75dB
7	DE Dadieted name	4.5dB (below 1GHz)
/	RF Radiated power	4.8dB (above 1GHz)
8	Dadieted Courieus emissies test	4.5dB (30MHz-1GHz)
8	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
9	Temperature test	1 ℃
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

Report No.: SZEM170500469401

Page: 8 of 61

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM170500469401

Page: 9 of 61

5 Equipment List

Minimum 6dB Bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

Conducted Peak Output Power						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

Power Spectrum Density										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09					
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09					
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09					

Conducted Band Edges Measurement										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09					
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09					
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09					

Conducted Spurious Emissions										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09					
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09					
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09					

Report No.: SZEM170500469401

Page: 10 of 61

Radiated Spurious Emissions										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10					
EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19					
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15					
Amplifier (0.1-1300MHz)	НР	8447D	SEM005-02	2016-10-09	2017-10-09					
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14					
Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24					
Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12					
Low Noise Amplifier	Black Diamond Series	BDLNA- 0118-352810	SEM005-05	2016-10-09	2017-10-09					
Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A					

General used equipment									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2016-10-12	2017-10-12				
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2016-10-12	2017-10-12				
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2016-10-12	2017-10-12				
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2017-04-18	2018-04-18				

Report No.: SZEM170500469401

Page: 11 of 61

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirment:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM170500469401

Page: 12 of 61

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Everyoney of emission (MUT)	Conducted limit(dBµV)							
Frequency of emission(MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
*Decreases with the logarithm of the frequency.								

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 22 °C Humidity: 52 % RH Atmospheric Pressure: 1005 mbar Test mode b:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.1.2 Test Setup Diagram

Report No.: SZEM170500469401

Page: 13 of 61

7.1.3 Measurement Procedure and Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Report No.: SZEM170500469401

Page: 14 of 61

Mode:b; Line:Live Line

Site : Shielding Room Condition : CE LINE Job No. : 04694CR Test Mode : b

Freq	Loss	Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB	dBuV	dBuV	dBuV	dB	
0.16765	0.02	9.64	47.31	56.97	65.08	-8.10	QP
0.16765	0.02	9.64	30.80	40.46	55.08	-14.62	AVERAGE
0.18541	0.02	9.64	44.03	53.69	64.24	-10.55	QP
0.18541	0.02	9.64	29.05	38.71	54.24	-15.53	AVERAGE
0.21620	0.02	9.64	37.17	46.83	62.96	-16.13	QP
0.21620	0.02	9.64	20.27	29.93	52.96	-23.04	AVERAGE
0.22797	0.02	9.64	38.47	48.13	62.52	-14.39	QP
0.22797	0.02	9.64	23.77	33.43	52.52	-19.09	AVERAGE
0.25615	0.02	9.64	17.52	27.18	51.56	-24.38	AVERAGE
0.25615	0.02	9.64	33.22	42.88	61.56	-18.67	QP
0.28029	0.02	9.64	17.39	27.05	50.81	-23.76	AVERAGE
0.28029	0.02	9.64	30.85	40.51	60.81	-20.30	QP
	MHz 0.16765 0.16765 0.18541 0.18541 0.21620 0.21620 0.22797 0.22797 0.25615 0.25615 0.28029	Freq Loss MHz dB 0.16765 0.02 0.16765 0.02 0.18541 0.02 0.18541 0.02 0.21620 0.02 0.21620 0.02 0.22797 0.02 0.22797 0.02 0.25615 0.02 0.28029 0.02	Freq Loss Factor MHz dB dB 0.16765 0.02 9.64 0.16765 0.02 9.64 0.18541 0.02 9.64 0.18541 0.02 9.64 0.21620 0.02 9.64 0.21620 0.02 9.64 0.22797 0.02 9.64 0.22797 0.02 9.64 0.25615 0.02 9.64 0.25615 0.02 9.64 0.28029 0.02 9.64	Freq Loss Factor Level MHz dB dB dBuV 0.16765 0.02 9.64 47.31 0.16765 0.02 9.64 30.80 0.18541 0.02 9.64 44.03 0.18541 0.02 9.64 29.05 0.21620 0.02 9.64 37.17 0.21620 0.02 9.64 20.27 0.22797 0.02 9.64 38.47 0.22797 0.02 9.64 23.77 0.25615 0.02 9.64 17.52 0.25615 0.02 9.64 33.22 0.28029 0.02 9.64 17.39	Freq Loss Factor Level Level MHz dB dB dBuV dBuV 0.16765 0.02 9.64 47.31 56.97 0.16765 0.02 9.64 30.80 40.46 0.18541 0.02 9.64 44.03 53.69 0.18541 0.02 9.64 29.05 38.71 0.21620 0.02 9.64 37.17 46.83 0.21620 0.02 9.64 20.27 29.93 0.22797 0.02 9.64 38.47 48.13 0.22797 0.02 9.64 23.77 33.43 0.25615 0.02 9.64 17.52 27.18 0.25615 0.02 9.64 33.22 42.88 0.28029 0.02 9.64 17.39 27.05	Freq Loss Factor Level Level Line MHz dB dB dBuV dBuV dBuV dBuV 0.16765 0.02 9.64 47.31 56.97 65.08 65.08 65.08 65.08 65.08 66.97 65.08 65.08 66.97 65.08 65.08 66.97 65.08 65.08 66.97 65.08 65.08 66.97 65.08 65.08 66.97 65.08 65.08 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.24 66.25	Freq Loss Factor Level Level Line Limit MHz dB dB dBuV dBuV dBuV dBuV dB 0.16765 0.02 9.64 47.31 56.97 65.08 -8.10 0.16765 0.02 9.64 30.80 40.46 55.08 -14.62 0.18541 0.02 9.64 44.03 53.69 64.24 -10.55 0.18541 0.02 9.64 29.05 38.71 54.24 -15.53 0.21620 0.02 9.64 37.17 46.83 62.96 -16.13 0.21620 0.02 9.64 20.27 29.93 52.96 -23.04 0.22797 0.02 9.64 38.47 48.13 62.52 -14.39 0.22797 0.02 9.64 23.77 33.43 52.52 -19.09 0.25615 0.02 9.64 17.52 27.18 51.56 -24.38 0.25615 0.02 <td< td=""></td<>

Report No.: SZEM170500469401

Page: 15 of 61

Mode:b; Line:Neutral Line

Site : Shielding Room Condition : CE NEUTRAL Job No. : 04694CR Test Mode : b

	Freq	Cable Loss	LISN Factor			Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1 @	0.17034	0.02	9.63	45.94	55.59	64.94	-9.35	QP
2	0.17034	0.02	9.63	30.52	40.17	54.94	-14.78	AVERAGE
3	0.19140	0.02	9.63	43.61	53.26	63.98	-10.72	QP
4	0.19140	0.02	9.63	27.34	36.99	53.98	-16.98	AVERAGE
5	0.23040	0.02	9.63	37.63	47.28	62.44	-15.15	QP
6	0.23040	0.02	9.63	22.77	32.42	52.44	-20.01	AVERAGE
7	0.24552	0.02	9.63	34.33	43.98	61.91	-17.92	QP
8	0.24552	0.02	9.63	20.80	30.45	51.91	-21.46	AVERAGE
9	0.25480	0.02	9.63	20.06	29.71	51.60	-21.89	AVERAGE
10	0.25480	0.02	9.63	33.14	42.79	61.60	-18.81	QP
11	0.28328	0.02	9.63	18.60	28.25	50.72	-22.46	AVERAGE
12	0.28328	0.02	9.63	30.67	40.32	60.72	-20.40	QP

Report No.: SZEM170500469401

Page: 16 of 61

7.2 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar
Test mode b:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

Report No.: SZEM170500469401

Page: 17 of 61

7.3 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method: ANSI C63.10 (2013) Section 11.9.1.1

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)					
	1 for ≥50 hopping channels					
902-928	0.25 for 25≤ hopping channels <50					
	1 for digital modulation					
	1 for ≥75 non-overlapping hopping channels					
2400-2483.5	0.125 for all other frequency hopping systems					
	1 for digital modulation					
5725-5850	1 for frequency hopping systems and digital modulation					

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Test mode b:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SZEM170500469401

Page: 18 of 61

7.4 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Test mode b:TX mode Keep the EUT in continuously transmitting mode with GFSK modulation

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

Report No.: SZEM170500469401

Page: 19 of 61

7.5 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Test mode b:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

Report No.: SZEM170500469401

Page: 20 of 61

7.6 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.11

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mba
Test mode b:TX mode Keep the EUT in continuously transmitting mode with GFSK modulation

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

Report No.: SZEM170500469401

Page: 21 of 61

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

Measurement Distance: 3m

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 54 % RH Atmospheric Pressure: 1015 mbar Test mode b:TX mode Keep the EUT in continuously transmitting mode with GFSK modulation

7.7.2 Test Setup Diagram

Above 1GHz

7.7.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SZEM170500469401

Page: 22 of 61

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Condition: 3m HORIZONTAL

Job No: : 04694CR

Mode: : 2402 Band edge

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2385.692	5.33	29.06	37.96	47.31	43.74	74.00	-30.26	peak
2	2390.000	5.34	29.08	37.96	45.08	41.54	74.00	-32.46	peak
3 p	p 2402.288	5.35	29.11	37.96	95.70	92.20	74.00	18.20	peak

Report No.: SZEM170500469401

Page: 23 of 61

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Condition: 3m Vertical Job No: : 04694CR

Mode: : 2402 Band edge

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2370.836	5.32	29.02	37.96	46.46	42.84	74.00	-31.16	peak
2	2390.000	5.34	29.08	37.96	44.54	41.00	74.00	-33.00	peak
3 p	p 2402.288	5.35	29.11	37.96	87.78	84.28	74.00	10.28	peak

Report No.: SZEM170500469401

Page: 24 of 61

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High

Condition: 3m HORIZONTAL

Job No: : 04694CR

Mode: : 2480 Band edge

		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	рр	2479.805	5.41	29.34	37.95	95.13	91.93	74.00	17.93	peak
2		2483.500	5.41	29.35	37.95	47.47	44.28	74.00	-29.72	peak
3		2496.209	5.42	29.39	37.95	48.54	45.40	74.00	-28.60	peak

Report No.: SZEM170500469401

Page: 25 of 61

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High

Condition: 3m VERTICAL Job No: : 04694CR

Mode: : 2480 Band edge

		. DLL	Cable	Ant	Preamp	Read		Limit	0ver		
		Freq			Factor					Remark	
	_										
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		2470 704	F 44	20. 74	37.05	07.00	04.60	74.00	40.60		
1	pр	2479.781	5.41	29.34	37.95	87.88	84.68	74.00	10.68	реак	
2		2483.500	5.41	29.35	37.95	44.74	41.55	74.00	-32.45	peak	
3		2495.481	5.42	29.39	37.95	46.69	43.55	74.00	-30.45	peak	

Report No.: SZEM170500469401

Page: 26 of 61

7.8 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SZEM170500469401

Page: 27 of 61

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 55 % RH Atmospheric Pressure: 1015 mbar

Test mode b:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.8.2 Test Setup Diagram

Below 30MHz

30MHz-1GHz

Above 1GHz

Report No.: SZEM170500469401

Page: 28 of 61

7.8.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM170500469401

Page: 29 of 61

Below 1GHz:

For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Condition: 3m HORIZONTAL

Job No. : 04694CR

Test mode: b

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	33.92	0.60	16.51	27.34	26.04	15.81	40.00	-24.19
2	69.84	0.80	6.90	27.25	29.13	9.58	40.00	-30.42
3	166.07	1.35	9.54	26.83	34.67	18.73	43.50	-24.77
4	198.59	1.40	10.19	26.70	34.58	19.47	43.50	-24.03
5 pp	276.12	1.80	12.85	26.46	36.57	24.76	46.00	-21.24
6	839.18	3.36	22.40	27.09	25.15	23.82	46.00	-22.18

Report No.: SZEM170500469401

Page: 30 of 61

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Condition: 3m VERTICAL Job No. : 04694CR

Test mode: b

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	32.86	0.60	17.10	27.35	30.88	21.23	40.00	-18.77
2 pp	87.11	1.10	8.41	27.22	40.13	22.42	40.00	-17.58
3	136.94	1.29	7.98	26.97	37.57	19.87	43.50	-23.63
4	240.83	1.63	12.01	26.56	30.51	17.59	46.00	-28.41
5	278.07	1.81	12.93	26.46	31.31	19.59	46.00	-26.41
6	368.11	2.11	15.42	26.93	34.30	24.90	46.00	-21.10

Report No.: SZEM170500469401

Page: 31 of 61

Above 1GHz:

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Condition: 3m HORIZONTAL

Job No: : 04694CR Mode: : 2402 TX SE

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1422.798	4.38	25.49	38.06	42.21	34.02	74.00	-39.98	peak
2	3141.145	6.04	31.57	37.91	43.47	43.17	74.00	-30.83	peak
3	4804.000	7.73	34.16	38.40	44.32	47.81	74.00	-26.19	peak
4	7206.000	9.65	36.42	37.11	41.64	50.60	74.00	-23.40	peak
5	9608.000	11.06	37.52	35.10	36.45	49.93	74.00	-24.07	peak
6	pp13059.820	13.45	38.78	38.06	37.09	51.26	74.00	-22.74	peak

Report No.: SZEM170500469401

Page: 32 of 61

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Condition: 3m VERTICAL Job No: : 04694CR

Mode: : 2402 TX SE

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1172.303	4.04	24.34	38.08	41.78	32.08	74.00	-41.92	peak
2	1736.829	4.75	26.82	38.03	42.45	35.99	74.00	-38.01	peak
3	4804.000	7.73	34.16	38.40	45.04	48.53	74.00	-25.47	peak
4	7206.000	9.65	36.42	37.11	39.30	48.26	74.00	-25.74	peak
5	9608.000	11.06	37.52	35.10	37.46	50.94	74.00	-23.06	peak
6	pp14533.910	14.73	40.46	38.95	36.33	52.57	74.00	-21.43	peak

Report No.: SZEM170500469401

Page: 33 of 61

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:middle

Condition: 3m HORIZONTAL

Job No: : 04694CR Mode: : 2440 TX SE

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1938.463	4.95	27.58	38.01	42.59	37.11	74.00	-36.89	peak
2	3495.691	6.30	32.19	37.95	43.60	44.14	74.00	-29.86	peak
3	4880.000	7.83	34.29	38.44	41.73	45.41	74.00	-28.59	peak
4	7320.000	9.73	36.37	37.01	39.41	48.50	74.00	-25.50	peak
5	9760.000	11.21	37.55	35.02	36.58	50.32	74.00	-23.68	peak
6	pp13404.010	13.97	38.64	38.40	38.31	52.52	74.00	-21.48	peak

Report No.: SZEM170500469401

Page: 34 of 61

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:middle

Condition: 3m VERTICAL Job No: : 04694CR

Mode: : 2440 TX SE

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1481.553	4.45	25.73	38.05	42.53	34.66	74.00	-39.34	peak
2	3435.590	6.26	32.09	37.94	42.41	42.82	74.00	-31.18	peak
3	4880.000	7.83	34.29	38.44	42.56	46.24	74.00	-27.76	peak
4	7320.000	9.73	36.37	37.01	39.80	48.89	74.00	-25.11	peak
5	9760.000	11.21	37.55	35.02	36.29	50.03	74.00	-23.97	peak
6	pp14038.450	14.60	39.29	39.00	37.54	52.43	74.00	-21.57	peak

Report No.: SZEM170500469401

Page: 35 of 61

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High

Condition: 3m HORIZONTAL

Job No: : 04694CR Mode: : 2480 TX SE

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB	
1	1507.470	4.48	25.83	38.05	43.82	36.08	74.00	-37.92	peak
2	3890.255	6.62	33.31	37.99	43.66	45.60	74.00	-28.40	peak
3	4960.000	7.95	34.43	38.48	45.63	49.53	74.00	-24.47	peak
4	7440.000	9.81	36.32	36.90	38.15	47.38	74.00	-26.62	peak
5	9920.000	11.36	37.58	34.94	35.79	49.79	74.00	-24.21	peak
6	pp13877.080								-

Report No.: SZEM170500469401

Page: 36 of 61

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High

Condition: 3m VERTICAL

Job No: : 04694CR Mode: : 2480 TX SE

: BLE

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1498.781	4.47	25.80	38.05	48.60	40.82	74.00	-33.18	peak
2	3318.471	6.17	31.89	37.93	42.86	42.99	74.00	-31.01	peak
3	4960.000	7.95	34.43	38.48	43.68	47.58	74.00	-26.42	peak
4	7440.000	9.81	36.32	36.90	38.79	48.02	74.00	-25.98	peak
5	9920.000	11.36	37.58	34.94	36.31	50.31	74.00	-23.69	peak
6	pp13877.080	14.47	39.05	38.88	37.51	52.15	74.00	-21.85	peak

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM170500469401

Page: 37 of 61

8 Photographs

8.1 Conducted Emissions at AC Power Line (150kHz-30MHz) Test Setup

8.2 Radiated Spurious Emissions Test Setup

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and ofcannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SZEM170500469401

Page: 38 of 61

Report No.: SZEM170500469401

Page: 39 of 61

8.3 EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1705004694CR.

Report No.: SZEM170500469401

Page: 40 of 61

9 Appendix

9.1 Appendix 15.247

1.6dB Bandwidth

Test Mode	Test Channel	EBW[MHz]	Limit [MHz]	Verdict
BLE	2402	0.669	>=0.5	PASS
BLE	2440	0.678	>=0.5	PASS
BLE	2480	0.675	>=0.5	PASS

Report No.: SZEM170500469401

Page: 41 of 61

Report No.: SZEM170500469401

Page: 42 of 61

Report No.: SZEM170500469401

Page: 43 of 61

Report No.: SZEM170500469401

Page: 44 of 61

2.Maximum peak conducted output power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
BLE	2402	1.67	<30	PASS
BLE	2440	1.39	<30	PASS
BLE	2480	1.19	<30	PASS

Report No.: SZEM170500469401

Page: 45 of 61

Report No.: SZEM170500469401

Page: 46 of 61

Report No.: SZEM170500469401

Page: 47 of 61

Report No.: SZEM170500469401

Page: 48 of 61

3.Maximum Peak power spectral density

Test Mode	Test Channel	PSD[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	2402	-13.38	<8.00	PASS
BLE	2440	-13.64	<8.00	PASS
BLE	2480	-13.74	<8.00	PASS

Report No.: SZEM170500469401

Page: 49 of 61

Report No.: SZEM170500469401

Page: 50 of 61

Report No.: SZEM170500469401

Page: 51 of 61

Report No.: SZEM170500469401

Page: 52 of 61

4.Band-edge for RF Conducted Emissions

Test	Test	Carrier Max. Spurious Level L		Limit	Verdict	
Mode	lode Channel Po		[dBm]	[dBm]		
BLE	2402	1.690	-56.852	<-18.31	PASS	
BLE	2480	1.220	-57.730	<-18.78	PASS	

Report No.: SZEM170500469401

Page: 53 of 61

Report No.: SZEM170500469401

Page: 54 of 61

Report No.: SZEM170500469401

Page: 55 of 61

5.RF Conducted Spurious Emissions

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref [dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
BLE	2402	30	10000	1000	3000	1.76	-35.830	<-18.24	PASS
BLE	2402	10000	25000	1000	3000	1.76	-53.050	<-18.24	PASS
BLE	2440	30	10000	1000	3000	1.46	-35.320	<-18.54	PASS
BLE	2440	10000	25000	1000	3000	1.46	-52.470	<-18.54	PASS
BLE	2480	30	10000	1000	3000	1.3	-33.920	<-18.7	PASS
BLE	2480	10000	25000	1000	3000	1.3	-53.620	<-18.7	PASS

Report No.: SZEM170500469401

Page: 56 of 61

Report No.: SZEM170500469401

Page: 57 of 61

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and ofcannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SZEM170500469401

Page: 58 of 61

Report No.: SZEM170500469401

Page: 59 of 61

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unlawful and ofcannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SZEM170500469401

Page: 60 of 61

Report No.: SZEM170500469401

Page: 61 of 61

