1	Т	o main measures for the efficiency of an algorithm are	2.5
1.	1 W	o main measures for the efficiency of an argorithm are	2.5
	a)	Processor and memory	
	b)	Complexity and capacity	
	c)	Time and space	
	d)	Data and space	
	e)	Data and memory	
2.	Con	nsidering the following algorithm	2.5
		input m	
		count = 0	
		x = 1	
		while $x \le m$ do	
		begin	
		x = x * 2	
		count = count + 1	
		end	
		output count	
	Wh	at is the output of the algorithm for m=2k+1?	
	a)	m	
	b)	k+1	
	c)	k-1	
	d)	k	
	e)	2k	
	- /		
3.	The	time factor when determining the efficiency of an algorithm is measured by	2.5
	a)	Counting the microseconds	
	b)	Counting the number of key operations	
	c)	Counting the number of statements	
	d)	Counting the kilobytes of the algorithm	
	e)	Counting the number of variables	
4.	The	space factor when determining the efficiency of an algorithm is measured by	2.5
	a)	Counting the memory needed by the algorithm	
	b)	Counting the number of statements	
	c)	Counting the kilobytes of the algorithm	
	d)	Counting the maximum disk space needed by the algorithm	
	e)	Counting the number of key operations	
5.	Ru	nning time $T(n)$, where 'n' is input size of a recursive algorithm is given as follows:	2.5
		C (// 1	

	Whi	ch of the following algorithms, its time complexity can be expressed by the $T(n)$?	
	a)	Binary Search	
	b)	Merge Sort	
	c)	Insertion Sort	
	d)	Selection Sort	
	e)	Dijkstra's algorithm	
6.	Con	sidering the running time $T(n)$ given above in the question 5. Order of magnitude of	2.5
	T(n)	is	
	a)	$O(n^2)$	
	b)	$\mathrm{O}(n)$	
	c)	$O(n \log n)$	
	d)	$O(n^3)$	
	e)	$O(n^n)$	
7.	The	worst case occurs in a linear search algorithm when	2.5
	a)	Item is somewhere in the middle of the array	
	b)	Item is not in the array at all	
	c)	Item is the last element in the array	
	d)	Item is the last element in the array or is not there at all	
	e)	None of the above	
8.	The	best case occurs in a linear search algorithm when	2.5
	a)	Item is the first element in the array	
	b)	Item is not in the array at all	
	c)	Item is the last element in the array	
	d)	Item is not in the array at all	
	e)	None of the above	
	The	time complexity of a linear count already in	2.5
9.	The	time complexity of a linear search algorithm is	2.5
	a)	$\mathrm{O}(n)$	
	b)	$O(n)$ $O(\log n)$	
	c)	$O(\log n)$ $O(n^2)$	
	d)	$O(n \log n)$	
	e)	O(1)	
10		ning time $T(n)$, where n is input size of a recursive algorithm is given as follows:	2.5
	1.011		
		$T(n) = \begin{cases} 1 & if & n=1\\ T(n/2) + 1 & if & n>1 \end{cases}$	
		T(n/2)+1 if $n>1$	

西交利物浦大學

The time complexity of the algorithm is

- a) $O(n^2)$
- b) $O(n \log n)$
- c) $O(n^3)$
- d) $O(n^n)$
- e) $O(\log n)$

Questions 11 to 13 refer to the following graph:

11. The total degree of the graph is

2.5

- a) 21
- b) 18
- c) 20
- d) 19
- e) 10
- 12. Starting at the vertex *a* and resolving ties by the vertex alphabetical order, traverse the graph by breadth-first-search (BFS). Then, the order of vertices visited is
- 2.5

- a) a, b, d, e, f, c, h, g
- b) a, b, c, d, e, f, g, h
- c) a, b, f, g, c, d, h, e
- d) a, b, e, g, f, c, d, h
- e) None of the above

- 13. Starting at the vertex **a** and resolving ties by the vertex alphabetical order, traverse the graph by depth-first-search (DFS). Then, the order of vertices visited is
 - a) h, g, f, e, d, c, b, a

2.5

西交利物浦大学

1		
ľ	a, b, f, g, c, d, h, e	
	a, b, e, g, f, c, d, h	
(l) a, b, d, c, e, f, g, h	
•	None of the above	
14 1	at The a tree constructed by Dillectre's election in the process of solving the	2.5
	Let T be a tree constructed by Dijkstra's algorithm in the process of solving the	2.5
	ingle-source shortest path problem for a weighted connected graph G.	
	. T is a spanning tree of G	
	I. T is a minimum spanning tree of G	
	II. T is a binary tree	
	11. I to a omary acc	
W/1	nich one of the following is correct?	
**1	neri one of the following is correct:	
:) I is true, II and III are false	
	and II and III are true	
) I and II and III are false	
	I) II and III are true but I is false	
	None of the above	
) 1.622 02 02 020 0	
15. I	Let G be a weighted connected graph	2.5
]	. If e is a minimum-weight edge in G, it must be contained in a MST.	
]	I. If e is a minimum-weight edge in G, it must be contained in each MST.	
	II. If e is a maximum-weight edge in G, it must not be contained in any MST.	
Wl	ich one of the following is correct?	
г) I and III are true, II is false	
ł) I and II and III are true	
() I and II and III are false	
(II and III are correct but I is false	
	None of the above	
•	None of the above	
) None of the above	
) None of the above	
) Notice of the above	
) None of the above	
) Notice of the above	
•		
•	Let G be a weighted connected graph	2.5
16. I		2.5

Which one of the following is correct?

- a) I and III are true, II is false
- b) I and II and III are true
- c) I and II and III are false
- d) II and III are true but I is false
- e) None of the above

Questions 17 to 19 refer to the following weighted connected graph graph:

- 17. Let T be a minimum spanning tree of the graph computed using Kruskal's algorithm. The order of edges selected by Kruskal's algorithm is
 - a) (c,d)(a,b)(b,d)(a,c)
 - b) (c,d) (a,b) (b,d) (b,e)
 - c) (c,d)(a,b)(b,d)(a,d)
 - d) (c,d)(a,b)(b,d)(b,c)
 - e) None of the above
- 18. Let T be a minimum spanning tree of the graph computed using Prim's algorithm. Assume vertex *a* is selected first, then the order of vertices selected by Prim's algorithm is
 - a) a, b, d, e, d
 - b) a, c, d, b, e
 - c) a, d, c, e, b
 - d) a, b, d, c, e
 - e) None of the above
- 19. Assume the source vertex is *a*. Running Dijkstra's algorithm for the graph, after the termination, the labels for vertices are
 - a) a(0,-), b(2,a), c(4,a), d(5,b), e(6,b)
 - b) a(0,-), b(2, a), c(4,a), d(5,c), e(6,b)
 - c) a(0,-), b(2, a), c(4,a), d(4,a), e(6,b)

2.5

2.5

, , ,	
d) $a(0,-)$, $b(2,a)$, $c(6,b)$, $d(4,a)$, $e(6,b)$	
e) None of the above	
20 4	125
20. Assume the source vertex is a. Running Dijkstra's algorithm for the graph, after the termination, which one of the followings could be an order of vertices selected by Dijkstra's algorithm?	2.5
a) a, b, e, c, d	
b) a, b, d, e, c	
c) a, b, d, c, e	
d) a, b, e, d, c	
e) None of the above	
Questions 21 to 24 refer to the following Selection sort algorithm.	
ALGORITHM SelectionSort($A[0n-1]$)	
//Sorts a given array by selection sort	
//Input: An array $A[0n-1]$ of orderable elements	
//Output: Array $A[0n-1]$ sorted in ascending order	
for $i = 0$ to $n - 2$ do	
min = i	
for $j = i + 1$ to $n - 1$ do	
if $A[j] < A[min]$ $min = j$	
if $i < min$ do	
swap $A[i]$ and $A[min]$	
21. The time complexity of the Selection sort algorithm is	2.5
a) $O(n \log n)$	
b) $O(2^n)$	
c) $O(n^2)$	
d) $O(2n)$	
e) None of the above	
22. The number of key comparisons needed to sort the numbers A[05]= [6, 5, 4, 3, 2, 1] in	2.5
ascending order using the selection sort algorithm is	
a) 10	
b) 4	
c) 3	
d) 15	
e) 20	
23. The number of swapping operations needed to sort the numbers $A[05] = [6, 5, 4, 3, 2, 1]$	2.5

西交利物浦大学

- a) 10
- b) 4
- c) 3
- d) 15
- e) 20
- 24. To merge the following two sorted sequences into a single sorted sequence, using the Merge algorithm given in the lecture,

2.5

the number of key comparisons needed is

- a) 9
- b) 5
- c) 7
- d) 6
- e) None of the above

Questions 25 to 28 refer to the following Longest Common Subsequence problem.

Let c[i,j] be the length of the Longest Common Subsequence of Xi = x1, x2,..., xi and Yj = y1, y2,...,yj. Then c[i,j] can be recursively defined as following:

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

The following is an incomplete table for the sequences of AATGTT and AGCT.

		A	A	T	G	T	T
	0	0	0	0	0	0	0
A	0	1	1	1	1	1	1
G	0	1	1	1	2	2	2
С	0	1	1	1	2	2	2
T	0	1	1	2	2	3	3

- 25. The value of c[3, 4] is
 - a) 1
 - b) 2
 - c) 3
 - d) 4
 - e) .

26. The length of the longest common subsequence of AATGTT and AGCT is

西交利物浦大学

a)	1	
b)	2	
c)	3	
d)	4	
e)	5	
27. The l	ongest common subsequence of AATGTT and AGCT is	
a)	AGCT	
b)	ATGT	
c)	AATG	
d)	AGC	
e)	AGT	
28. The l	length of the longest common subsequence of AATGT and AGC is	
a)	1	
b)	2	
c)	3	
d)	4	
e)	5	
	DADTH (20 M. I.)	
	PART II (30 Marks)	
Question	1 (18 marks)	
	nsider the following problem. Given an array A consisting of n distinct integers A[1],	
A[n		
	er and $A[p]$, $A[p+1]$,, $A[n]$ is in decreasing order.	

西交利物浦大学

	ge.pe.				ر رس	974	11 - MI 24 /	5
1. Dev	vise a "divide and	d conque	er" algorit	thm to f	ind the posit	tion p.		6
Set up a recurrence relation for the number of key comparisons made by your algorithm and explain it.								6
nota	ed on the recurre ation and prove i thematical Induc	t using e	ither the	iterative	method or	the substi	tution method, i.e.,	6
Question 2 (12 m	arks)							+
Given the following	ing instance of th	ne 0/1 Kı	napsack p	roblem				
	item	weigh	ıt val	lue				
	1	2	\$1	2				
	2 3	1	\$1	0				
	3	3	\$2	0				
The Une	nagals Canagity	W-2						
THE KIIA	psack Capacity	vv –3						+
Let V[i,	j] be the value of	f the mos	st valuabl	le subset	of the first	i items th	at fit into	
	sack of capacity							
	(0						0 0	
	$V[i,j] = \begin{cases} 0 \\ \max \end{cases}$					11 $i =$	0 or $j = 0$	
	$V[i,j] = \{ \max$	$\{V[i-1]\}$	$[1,j], v_i$	+V[i-	$-1, j-w_i$	$\}$ if $j-$	$w_i \ge 0$	
	l		V[i -	1, <i>j</i>]		if j	$w_i < 0$	
1. Us	ing dynamic pro	orammir	ng fill the	a missad	values (fill	ed with a	nestion marks) in	6
	owing table.	grammi	ig, iiii tiic	, illissed	values (IIII	ca wiii qi	iestion marks) in	
	owing table.							+
		ca	pacity j					
	Ite		0	1	2	3		1
	100	0	0	0	0	?		
	$w_1=2, v_1=$		0	0	12	12		
	$w_2=1, v_2=$		0	10	?	22		
	$w_3=3, v_3=3$		0	10	12	?		
	- , 5			1				+
								1
2. Wł	nat is the value o	f the mo	st valuab	le subse	t?			2
3. Giv	ve an optimal sul	bset of th	ne instanc	e based	on the table) .		2

4. What is the value of the most valuable subset if the capacity of the knapsack is 2?

2