COMPLEMENTS OF GEOMETRY - SEMINAR 3

- 1. In a triangle the *simedians* are the cevians which are izogonal to the corresponding *medians*. Show that in any triangle the simedians are concurrent.
- **2.**(USAMO '96) Let $\triangle ABC$ be a triangle and M a point in its interior such that $\angle MAB = 10^{\circ}$, $\angle MBA = 20^{\circ}$, $\angle MAC = 40^{\circ}$ and $\angle MCA = 30^{\circ}$. Prove that $\triangle ABC$ is isosceles.
- **3.**(OJM 2024) Let ABCD be a parallelogram. Let M be a point on the side DC and E, N points on the diagonal AC such that $BE \perp AC$ and $\frac{CM}{CD} = \frac{EN}{EA}$. Show that if MN and NB are perpendicular, then ABCD is a rectangle.

Problems for presentation

Presentation 1. Let ABCD be a parallelogram. Let X and Y be points on the sides AB and BC, respectively, such that AX = CY. Prove that the intersection of lines AY and CX lies on the angle bisector of $\angle ADC$.

Presentation 2. Let ABCDE be a convex pentagon such that AB + CD = BC + DE and a circle ω with center O on the side AE is tangent to the sides AB, BC, CD and DE at points P, Q, R and S, respectively. Prove that the lines PS and AE are parallel.

Date: March 11, 2024.

1