- 6. 时序逻辑电路的分析与设计
- 6.1 时序逻辑电路的基本概念
- 6.2 同步 时序逻辑电路的分析
- 6.3 同步 时序逻辑电路的设计
- *6.4 异步 时序逻辑电路的分析
- 6.5 若干典型的时序逻辑集成电路

6.5 若干典型的时序逻辑集成电路

- 6.5.1 寄存器和移位寄存器
- 6.5.2 计数器

6.5 若干典型的时序逻辑集成电路

6.5.2 计 数 器

概 述

1、计数器的逻辑功能

计数器的基本功能是对输入时钟脉冲进行计数。它也可用于分频、定时、产生节拍脉冲和脉冲序列及进行数字运算等等。

2、计数器的分类

- •按触发动作,分为同步和异步计数器
- •按编码体制,分为二进制、BCD进制和循环码计数器等
- •按逻辑功能,分为加法、减法和可逆计数器

- 1、二进制计数器
- (1) 异步二进制计数器---4位异步二进制加法计数器
- ① 工作原理

5

结论: ▶ 计数器的功能: 不仅可以计数也可作为分频器。

如考虑每个触发器都有 $1t_{pd}$ 的延时,电路会出现什么问题?

▶可能出现瞬间的逻辑错误

▶异步计数脉冲的最小稳定时间 T_{min} = Nt_{pd} 。(N为位数)

$$T_{CP} \gg N t_{pd}$$

②典型集成电路

中规模集成电路74HC/HCT393中集成了两个4位异步二进制计数器在 5V 、25℃工作条件下,74HC/HCT393中每级触发器的传输延迟时间典型值为 6ns。

74HC/HCT393的逻辑符号

复习: D触发器构成T触发器

(2)二进制同步加计数器

 Q_0 在每个CP都翻转一次

FF₀可采用T0=1的T触发器

 Q_1 仅在 Q_0 =1后的下一个CP 到来时翻转

FF₁可采用T1=Q₀的T触发器

 Q_2 仅在 Q_0 = Q_1 =1后的下一个 CP到来时翻转

FF₂可采用T2= Q₀Q₁的T触发 器

 Q_3 仅在 Q_0 = Q_1 = Q_2 =1后的下一个CP到来时翻转

FF₃可采用T3= Q₀Q₁Q₂的T触 发器

计数顺序	电路	进位输出				
	Q_3	Q_2	Q_1	Q_0	近世制 出	
0	0	0	0	0	0	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	0	
4	0	1	0	0	0	
5	0	1	0	1	0	
6	0	1	1	0	0	
7	C	1	1	1	0	
8	1	0	0	0	0	
9	1	0	0	1	0	
10	1	0		0	0	
11	1	0	1		0	
12	1	1	0	0	0	
13	1	1	0	1	0	
14	1	1	1	0	0	
15	1	1	1	1		
16	d	0	0	0	0 10	

4位二进制同步加计数器时序图

▶所有触发器的状态更新同时进行,滞后时间为1 t_ld

▶比异步二进制计数器稳定,工作速度高于相同位数的异步计数器。

(3) 异步清零和同步并行置数

(2)典型 集成计数器74LVC161

74LVC161逻辑功能表

输入								输 出					
清零	预置	使能		时钟	预置数据输入				计 数				进位
\overline{CR}	PE	CEP	CET	CP	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	TC
L	×	×	×	×	×	×	×	×	L	L	L	L	L
H	L	×	×	\uparrow	D_3	D_2	D_1	D_0	D_3	D_2	D_1	D_0	*
H	H	\mathbf{L}	×	×	×	×	×	×		保	持		*
H	H	×	\mathbf{L}	×	×	×	×	×		保	持		*
Н	Н	Н	Н	\uparrow	×	×	×	×		计	数		*

CR的作用?

PE的作用?

15

例6.5.1 试用74LVC161构成模216的同步二进制计数器

2. 用集成计数器构成任意进制计数器

例 用74LVC161构成九进制加计数器。

解:九进制计数器应有9个状态,而74 LVC 161在计数过程中有16个状态。如果设法跳过多余的7个状态,则可实现模9计数器。

(1) 反馈清零法

17

(2) 反馈置数法

练习1:

用74LVC161构成12进制加计数器。

分别采用清零法和置数法完成,正常计数时初始状态0000,画状态转换图。

19

21

练习2:

如图由2片74LS161组成的计数器。

分析(1)芯片(I)和(II)的计数模值各为多少?

(2) 分别作出芯片(I) 和(II) 的状态转移图。

练习3:

由74LS161组成的计数器。计数模值各为多少?状态转移图?

作业(2)

- 课后参考习题:
- 6.5 (4、13、15、16、17、18、19、
- 20(去掉))
- 习题集:
- 7、8