2º Teste (VA) - 28 de Janeiro de 2020 - 9:30 às 11:00

Instruções

- NÃO É PERMITIDA A UTILIZAÇÃO DE QUAISQUER ELEMENTOS DE CONSULTA.
- NÃO PODE TER CALCULADORAS OU TELEMÓVEIS LIGADOS E/OU VISÍVEIS.
- Antes de começar:
 - Identifique com o nome e número a primeira página do seu caderno de respostas.
 - Preencha nesta folha o seu nome, número e a sala onde está.
 - Numere todas as páginas do caderno de respostas, **frente e verso**.
 - Coloque o seu documento de identificação em cima da mesa de trabalho.
- Sair da sala de exame se <u>entregar</u> o exame, ou <u>desistir</u>. Em ambos os casos, só o poderá fazer <u>ao fim dos primeiros 30 minutos</u>, e deve sempre entregar esta folha de instruções.
- SE DESISTIR: Entregue apenas esta folha de instruções, assinada, e com a indicação que desistiu.

pergunta	classificação	cotação
1 a, b, c		4
2		4
3 a, b, c		4
4 a, b, c		4
5 a, b, c, d		4
total		20

Nome:			
Número:			
Sala:			

2º Teste (VA) - 28 de Janeiro de 2020 - 9:30 às 11:00

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores.

Problema 1 (4 val.) Determine uma primitiva de cada uma das seguintes funções:

(a)
$$f(x) = e^{2x} \operatorname{sen}(3x+1)$$
 (b) $g(x) = \operatorname{senh}(2+\cos x) \operatorname{sen} x$ (c) $h(x) = \frac{3x^2 + 7x - 2}{(x-1)(x^2 + 2x + 1)}$

Problema 2 (4 val.) Considere as funções

$$f(x) = 1/\sqrt{3x}$$
 e $g(x) = 1/\sqrt{2 - 2x^2}$

Sendo $A = \{(x, y) : 0 < x < 1 \text{ e } 0 < y < f(x)\}\$ e $B = \{(x, y) : 0 < x < 1 \text{ e } 0 < y < g(x)\}\$, calcule a área do conjunto $A \cup B$.

Problema 3 (4 val.) Determine se as seguintes séries são absolutamente convergentes, simplesmente convergentes ou divergentes:

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{3^k k^2}{5^k \sqrt{k+1}}$$
 (b) $\sum_{k=1}^{\infty} (-1)^k \frac{(2k)! 10^k}{(3k)!}$ (c) $\sum_{k=1}^{\infty} (-1)^k \sqrt{k} (1 - \cos(1/k))$

Problema 4 (4 val.) Neste grupo, definimos

$$f(x) = \sum_{k=1}^{\infty} (-1/4)^k \frac{x^{2k}}{2k(2k-1)}.$$

- (a) Determine o domínio de convergência da série, e especifique a parte desse domínio onde a série é absolutamente convergente.
- (b) Diga se f tem um extremo em x=0 e caso afirmativo classifique-o.
- (c) Calcule $\int_{a}^{1} f(x)dx$ com error inferior a 0,004.

Problema 5 (4 val.) Demonstre as seguintes afirmações.

- (a) Se f é a função característica do conjunto $A = \{1/n : n \in \mathbb{N}\}$, i.e., f(x) = 1 para $x \in A$ e f(x) = 0 quando $x \notin A$, então f é integrável em [0,1].
- (b) Se $\limsup |a_{n+1}/a_n| = \alpha < 1$ então a série $\sum a_n$ é absolutamente convergente. (c) Se $f_n(x) = \arctan(x^2/\sqrt{n})$ então a sucessão f_n converge pontualmente para qualquer $x \in \mathbb{R}$ mas não converge uniformemente em \mathbb{R} .
- (d) A equação diferencial $y' + e^{x^2}y = \operatorname{sen} x$ tem uma única solução em \mathbb{R} tal que y(0) = 1.

 2° Teste (VB) - 28 de Janeiro de 2020 - 9:30 às 11:00

Instruções

- NÃO É PERMITIDA A UTILIZAÇÃO DE QUAISQUER ELEMENTOS DE CONSULTA.
- NÃO PODE TER CALCULADORAS OU TELEMÓVEIS LIGADOS E/OU VISÍVEIS.
- Antes de começar:
 - Identifique com o nome e número a primeira página do seu caderno de respostas.
 - Preencha nesta folha o seu nome, número e a sala onde está.
 - Numere todas as páginas do caderno de respostas, **frente e verso**.
 - Coloque o seu documento de identificação em cima da mesa de trabalho.
- Sair da sala de exame se <u>entregar</u> o exame, ou <u>desistir</u>. Em ambos os casos, só o poderá fazer <u>ao fim dos primeiros 30 minutos</u>, e deve sempre entregar esta folha de instruções.
- SE DESISTIR: Entregue apenas esta folha de instruções, assinada, e com a indicação que desistiu.

pergunta	classificação	cotação
1 a, b, c		4
2		4
3 a, b, c		4
4 a, b, c		4
5 a, b, c, d		4
total		20

Nome:				
Número: _		_		
Sala:				

2º Teste (VB) - 28 de Janeiro de 2020 - 9:30 às 11:00

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores.

Problema 1 (4 val.) Determine uma primitiva de cada uma das seguintes funções:

(a)
$$f(x) = e^{2x} \operatorname{sen}(3x+1)$$
 (b) $g(x) = \operatorname{senh}(2+\cos x) \operatorname{sen} x$ (c) $h(x) = \frac{3x^2 + 7x - 2}{(x-1)(x^2 + 2x + 1)}$

Problema 2 (4 val.) Considere as funções

$$f(x) = 1/\sqrt{3x}$$
 e $g(x) = 1/\sqrt{2 - 2x^2}$

Sendo $A = \{(x, y) : 0 < x < 1 \text{ e } 0 < y < f(x)\}\$ e $B = \{(x, y) : 0 < x < 1 \text{ e } 0 < y < g(x)\}\$, calcule a área do conjunto $A \cup B$.

Problema 3 (4 val.) Determine se as seguintes séries são absolutamente convergentes, simplesmente convergentes ou divergentes:

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{3^k k^2}{5^k \sqrt{k+1}}$$
 (b) $\sum_{k=1}^{\infty} (-1)^k \frac{(2k)! 10^k}{(3k)!}$ (c) $\sum_{k=1}^{\infty} (-1)^k \sqrt{k} (1 - \cos(1/k))$

Problema 4 (4 val.) Neste grupo, definimos

$$f(x) = \sum_{k=1}^{\infty} (-1/4)^k \frac{x^{2k}}{2k(2k-1)}.$$

- (a) Determine o domínio de convergência da série, e especifique a parte desse domínio onde a série é absolutamente convergente.
- (b) Diga se f tem um extremo em x=0 e caso afirmativo classifique-o.
- (c) Calcule $\int_{a}^{1} f(x)dx$ com error inferior a 0,004.

Problema 5 (4 val.) Demonstre as seguintes afirmações.

- (a) Se f é a função característica do conjunto $A = \{1/n : n \in \mathbb{N}\}$, i.e., f(x) = 1 para $x \in A$ e f(x) = 0 quando $x \notin A$, então f é integrável em [0,1].
- (b) Se $\limsup |a_{n+1}/a_n| = \alpha < 1$ então a série $\sum a_n$ é absolutamente convergente. (c) Se $f_n(x) = \arctan(x^2/\sqrt{n})$ então a sucessão f_n converge pontualmente para qualquer $x \in \mathbb{R}$ mas não converge uniformemente em \mathbb{R} .
- (d) A equação diferencial $y' + e^{x^2}y = \operatorname{sen} x$ tem uma única solução em \mathbb{R} tal que y(0) = 1.