Mathematik A Prüfung Herbstsemester 2017

Enrico De Giorgi*

30. Januar 2018

Teil I: Offene Fragen (50 Punkte)

Allgemeine Anweisungen für offene Fragen:

- (i) Ihre Antworten müssen alle Rechenschritte enthalten, diese müssen klar ersichtlich sein. Verwendung von korrekter mathematischer Notation wird erwartet und fliesst in die Bewertung ein.
- (ii) Ihre Antworten zu den jeweiligen Teilaufgaben müssen in den dafür vorgesehenen Platz geschrieben werden. Sollte dieser Platz nicht ausreichen, setzen Sie Ihre Antwort auf der Rückseite oder dem separat zur Verfügung gestellten Papier fort. Verweisen Sie in solchen Fällen ausdrücklich auf Ihre Fortsetzung. Bitte schreiben Sie zudem Ihren Vor- und Nachnamen auf jeden separaten Lösungsbogen.
- (iii) Es werden nur Antworten im dafür vorgesehenen Platz bewertet. Antworten auf der Rückseite oder separatem Papier werden nur bei einem vorhandenen und klaren Verweis darauf bewertet.
- (iv) Die Teilaufgaben werden mit den jeweils oben auf der Seite angegebenen Punkten bewertet.
- (v) Ihre endgültige Lösung jeder Teilaufgabe darf nur eine einzige Version enthalten.
- (vi) Zwischenrechnungen und Notizen müssen auf einem getrennten Blatt gemacht werden. Diese Blätter müssen, deutlich als Entwurf gekennzeichnet, ebenfalls abgegeben werden.

Aufgabe 1 (26 Punkte)

Corobon ist	dia Funktian
Gegeben ist	die Funktion
	$f: D_f \to \mathbb{R}, \ x \mapsto y = \ln(\sqrt{x-2} - 4) + \ln(\sqrt{x-2} + 4).$
Ermitteln Sie	e den Definitionsbereich D_f und den Wertebereich W_f von f .
Hinweis: Ver	einfachen Sie zunächst die Logarithmusterme.

(a2) (3 P	
Gegeben is	t die Funktion
	$f: D_f \to \mathbb{R}, \ x \mapsto y = \ln(\sqrt{x-2} - 4) + \ln(\sqrt{x-2} + 4).$
Ist die Fun	ktion f auf ihrem Definitionsgebiet streng konkav (Beweis)?

(a3) (3 Punkte)
Gegeben ist die Funktion
$f: D_f \to \mathbb{R}, \ x \mapsto y = \ln(\sqrt{x-2} - 4) + \ln(\sqrt{x-2} + 4).$
Ermitteln Sie die Umkehrfunktion f^{-1} von f .

Um seine (Geschäftsidee zu finanzieren, nimmt ein Start-up einen Kredit in Höhe von
'000'000 C vährend der urückzahler Zahlungen i	HF auf. Die Bank stimmt einem niedrigeren jährlichen Zinssatz von 0.5% r ersten 5 Jahre zu, in denen das Start-up am Ende jeden Jahres $10'000$ CHF nuss. Danach steigt der Zinssatz auf 2% p.a. und es werden konstanten Höhe von C^I CHF vereinbart, die wieder am Ende jeden Jahres fällig sind eht vor, dass der Kredit in 15 Jahren zurückgezahlt ist.
N ie hoch m ${ m st}?$	üssen die jährlichen Zahlungen \mathbb{C}^I sein, sodass der Plan des Start-ups umsetzbar
50:	

(b) (Zusätzlicher Lösungsplatz)				

(c) (4 Punkte)	
Berechnen Sie	. 2 <u>-1</u>
	$\lim_{x \to 0} \frac{2}{x^4} e^{-\frac{1}{x^2}}.$

(c) (Zusätzlicher	Losungspiatz)		

Eine professionel	lle Langstreckenläuferin läuft in der ersten Stunde 20 Kilometer. Danach
nimmt ihre Leist las heisst beispie welche Werte $a \in$	rung in jeder weiteren Stunde des Laufens um einen Faktor $a \in (0,1]$ ab elsweise in der zweiten Stunde läuft sie noch $20 * (1-a)$ Kilometer. Für $a \in (0,1]$ und $b \geq 20$ wird die Läuferin einen Wettkampf mit einer Länge von wältigen können, gegeben dass sie beliebig lange laufen kann?
Triioineterii bew	valvigen komien, gegeben dass sie benebig lange ladien kami.
Stellen Sie die Lö	ösungsmenge graphisch (in einem (a,b)-System) dar.

(a) (Zusatziich	er Lösungsplatz	·)		

Aufgabe 2 (24 Punkte)

(a1) (5 Punkte) Sei $a_k=\ln\left(1+\left(\frac{1}{2}\right)^k\right)$ für $k=1,2,\ldots$ Verwenden Sie das Taylorpolynom P_2 zweiter Ordnung der Funktion

	$f: D_f \to \mathbb{R}, x \mapsto y = f(x) = \ln(1+x)$	
Punkt $x_0 = 0$, u	n einen Näherungswert für $\sum_{k=1}^{\infty} a_k$ zu bestimmen.	

	$\mathbf{tz})$		

(a2) (4 Punkte)	
Gegeben ist die Funktio	on .
	$f: D_f \to \mathbb{R}, x \mapsto y = f(x) = \ln(1+x).$
	lied zweiter Ordnung von f in $x_0 = 0$.
Zeigen Sie	$\sum_{k=1}^{\infty} R_2\left(\left(\frac{1}{2}\right)^k\right) \le \frac{1}{21}.$

(b) (4 Punkte)
Gegeben ist die Funktion
$f(x,y) = \frac{\ln(9 - 9x^2 - y^2)}{(x - y)\sqrt{4 - x^2 - y^2}}.$
Ermitteln Sie den Definitionsbereich \mathcal{D}_f von f und stellen Sie diesen graphisch dar.

(D) (Zusatzlici	her Lösungsplatz	2)		

~ .		
Gegeben sei (lie Nutzenfunktion	
	$u(c_1, c_2) = c_1^{\alpha} c_2^{1-\alpha}$	
für $\alpha \in (0,1]$ Budgetrestril	1), wobei c_1, c_2 die konsumierten Mengen der Güter 1 und 2 sind, und c_1	die
DadSonobin	$C: p_1 c_1 + p_2 c_2 = 10$	
fiir Droigo n	$> 0 \text{ und } p_2 > 0.$	
ful Fielse p_1	> 0 and $p_2 > 0$.	
Für welche $u(c_1, c_2) = $	Werte der Parameter α , p_1 , p_2 berührt die Niveaulinie (Indifferenzkurv die Budgetlinie C im Konsumgüterbündel $(c_1^{\star}, c_2^{\star}) = (1, 2)$?	ve

(c) (Zusätzlicher Lö	sungsplatz)		

(d) (6 Punkte)

Die Funktionen f und g sind auf \mathbb{R}^2_{++} definiert und haben den Wertebereich \mathbb{R}_{++} . Ausserdem ist die Funktion f homogen vom Grad r und die Funktion g homogen vom Grad r-2. Für die Funktion h gilt:

Für die Funktion h gilt:	
	$h(x,y) = \frac{f(x,y)}{g(x,y)},$ $h_y(x,y) = x - \frac{3}{2} x^{0.5} y^{0.5}$
	g(x,y)
	$h_y(x,y) = x - \frac{3}{2} x^{0.5} y^{0.5}$
und	
	$\varepsilon_{h,x}(x,y) = \frac{x y - \frac{1}{2} x^{0.5} y^{1.5}}{x y - x^{0.5} y^{1.5}}$
	$xy - x^{0.5}y^{1.5}$
Ermitteln Sie $h(x, y)$ und v	vereinfachen Sie den Funktionsterm.

(d) (Zusätzlicher Lö	isungsplatz)		

Teil II: Multiple-Choice-Fragen (50 Punkte)

Allgemeine Anweisungen für Multiple-Choice-Fragen:

- (i) Die Antworten auf die Multiple-Choice-Fragen müssen im dafür vorgesehenen Antwortbogen eingetragen werden. Es werden ausschliesslich Antworten auf diesem Antwortbogen bewertet. Der Platz unter den Fragen ist nur für Notizen vorgesehen und wird nicht korrigiert.
- (ii) Jede Frage hat nur eine richtige Antwort. Es muss also auch jeweils nur eine Antwort angekreuzt werden.
- (iii) Falls mehrere Antworten angekreuzt sind, wird die Antwort mit 0 Punkten bewertet, auch wenn die korrekte Antwort unter den angekreuzten ist.
- (iv) Bitte lesen Sie die Fragen sorgfältig.

Aufgabe 3 (24 Punkte)

Frage 3 (2 Punkte)

Welche der folgenden Aussagen über eine Funktion f und einen Punkt $x_0 \in D_f$ ist wahr?

- (a) Wenn f in x_0 stetig ist, dann ist f in x_0 differenzierbar.
- (b) Wenn f in x_0 differenzierbar ist, dann ist f in x_0 stetig.
- (c) f ist in x_0 stetig genau dann, wenn f in x_0 differenzierbar ist.
- (d) Wenn f in x_0 differenzierbar ist, dann ist f in x_0 unstetig.

Frage 4 (3 Punkte)

Ein Investor hat die Wahl zwischen zwei Projekten:

Projekt I erfordert eine Anfangsinvestition von CHF 100'000 und zahlt CHF 50'000 in 6 Monaten sowie CHF 60'000 in 1 Jahr aus.

Projekt II erfordert eine Anfangsinvestition von CHF 100'000 und zahlt in 1 Jahr CHF 110'000 aus.

- (a) Projekt I ist Projekt II vorzuziehen, gegeben, dass der Zinssatz strikt positiv ist.
- (b) Projekt II ist Projekt I vorzuziehen, gegeben, dass der Zinssatz strikt positiv ist.
- (c) Projekt I und Projekt II haben denselben Nettobarwert.
- (d) Ob Projekt I dem Projekt II vorzuziehen ist, oder Projekt II dem Projekt I, hängt von der Höhe des strikt positiven Zinssatzes ab.

Frage 5 (3 Punkte)

Ein Finanzberater schlägt seinem Kunden zwei Optionen für die Rückzahlung eines Hypothekenkredites vor: Option 1 sieht die Rückzahlung des Kredites mit konstanten Zahlungen C^D vor, welche über n^D Jahre am Jahresanfang erfolgen. Bei Option 2 dagegen wird derselbe Kredit mit konstanten Zahlungen C^I am Jahresende über n^I Jahre zurückgezahlt.

Unter der Voraussetzung, dass der Zinssatz strikt positiv ist, folgt:

- (a) $C^I = C^D$, wenn $n^I = n^D$.
- (b) $C^I > C^D$, wenn $n^I = n^D$.
- (c) $C^I < C^D$, wenn $n^I = n^D$.
- (d) $C^I < C^D$ genau dann, wenn $n^I > n^D$.

Frage 6 (3 Punkte)

Wir betrachten die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto y = \left\{ \begin{array}{ll} \frac{\sin(x)}{a(x-\pi)} & \text{for } x \neq \pi \\ a & \text{for } x = \pi \end{array} \right.$$

Für welches $a \in \mathbb{R}$ ist f überall stetig?

- (a) a = 1.
- (b) a = -1.
- (c) $a \in \{-1, 1\}$.
- (d) f ist für kein $a \in \mathbb{R}$ überall stetig.

Frage 7 (3 Punkte)

Sei $f(x) = 1 + 3x - 4x^4$ und P_4 das Taylorpolynom vierter Ordnung von f in $x_0 = 1$. Welche der folgenden Aussagen über das Restglied vierter Ordnung R_4 in $x_0 = 1$ ist wahr?

- (a) $R_4(x) > 0$ für alle x.
- (b) $R_4(x) < 0$ für alle x.
- (c) $R_4(x) = 0$ für alle x.
- (d) Jeder der Fälle $R_4(x) > 0$, $R_4(x) < 0$ und $R_4(x) = 0$ ist für entsprechende $x \in \mathbb{R}$ möglich.

Frage 8 (3 Punkte)

Für eine Funktion f ist die Elastizität $\varepsilon_f(x)$ gegeben durch:

$$\varepsilon_f(x) = x \ln(x) + e^{3x}$$
.

Sei g die Funktion definiert durch g(x) = f(ax) für a > 0.

Dann gilt:

(a)
$$\varepsilon_g(x) = x \ln(x) + e^{3x}$$
.

(b)
$$\varepsilon_g(x) = a x \ln(x) + a e^{3x}$$
.

(c)
$$\varepsilon_g(x) = \frac{x}{a} \ln(x) + \frac{e^{3x}}{a}$$
.

(d) Keine der obigen Antworten ist richtig.

Aufgabe 4 (26 Punkte)

Frage 1 (3 Punkte)

Gegeben ist die Funktion

$$f: \mathbb{R}^2_{++} \to \mathbb{R}_{++}, \quad (x,y) \mapsto f(x,y) = (x^2 + 2xy + y^2) e^{x+y}.$$

Ihre partiellen Elastizitäten $\varepsilon_{f,x}(x,y)$ und $\varepsilon_{f,y}(x,y)$ genügen der Ungleichung

- (a) $\varepsilon_{f,x} > \varepsilon_{f,y}$ für alle $(x,y) \in \mathbb{R}^2_{++}$.
- (b) $\varepsilon_{f,x} < \varepsilon_{f,y}$ für alle $(x,y) \in \mathbb{R}^2_{++}$.
- (c) $\varepsilon_{f,x} < \varepsilon_{f,y}$ für $(x,y) \in \mathbb{R}^2_{++}$ mit x > y.
- (d) $\varepsilon_{f,x} < \varepsilon_{f,y}$ für $(x,y) \in \mathbb{R}^2_{++}$ mit x < y.

Frage 2 (4 Punkte)

Gegeben ist die Funktion

$$f: \mathbb{R} \to \mathbb{R}_{++}, \quad x \mapsto f(x) = x^2 e^{x^2} + 1.$$

- (a) f hat ein lokales Maximum in $x_0 = 0$.
- (b) f hat ein lokales Minimum in $x_0 = 0$.
- (c) f hat einen Wendepunkt in $x_0 = 0$.
- (d) f hat keine stationären Punkte.

Frage 3 (4 Punkte)

Gegeben ist die Funktion

$$f: D_f \to \mathbb{R}, x \mapsto f(x) = \frac{1}{1+x}.$$

 P_3 und P_4 seien die Taylorpolynome dritter und vierter Ordnung von f in $x_0=0$.

Dann gilt:

- (a) $P_3(x) > P_4(x)$ für alle $x \in D_f \setminus \{x_0\}$.
- (b) $P_3(x) < P_4(x)$ für alle $x \in D_f \setminus \{x_0\}$.
- (c) $P_3(x) = P_4(x)$ für alle $x \in D_f \setminus \{x_0\}$.
- (d) Jeder der Fälle $P_3(x) > P_4(x)$, $P_3(x) < P_4(x)$ oder $P_3(x) = P_4(x)$ ist für entsprechende $x \in D_f \setminus \{x_0\}$ möglich.

Frage 4 (4 Punkte)

Gegeben sind die Funktionen

$$f(x,y) = \sqrt{1 - 4x^2 - y^2}$$

und

$$g(x,y) = \ln(2x - x^2 - y^2 + 8)$$

mit den entsprechenden Definitionsgebieten \mathcal{D}_f und $\mathcal{D}_g.$

Dann gilt:

- (a) $D_f \subseteq D_g$.
- (b) $D_g \subseteq D_f$.
- (c) $D_f = D_g$.
- (d) $D_f \cap D_g = \emptyset$.

Frage 5 (3 Punkte)

Sei $f(x) = \sin(x)$ und P_3 das Taylorpolynom dritter Ordnung von f in $x_0 = 0$.

Welche der folgenden Aussagen bezüglich des Restgliedes dritter Ordnung R_3 von f in $x_0=0$ ist wahr?

- (a) $|R_3(x)| \leq \frac{|x|^4}{128}$ für alle $x \in \mathbb{R}$.
- (b) $|R_3(x)| \leq \frac{|x|^4}{64}$ für alle $x \in \mathbb{R}$.
- (c) $|R_3(x)| \leq \frac{|x|^4}{32}$ für alle $x \in \mathbb{R}$.
- (d) $|R_3(x)| \leq \frac{|x|^4}{16}$ für alle $x \in \mathbb{R}$.

Frage 6 (2 Punkte)

Gegeben ist die Funktion

$$f(x,y) = 8\left(\frac{1}{x} + \frac{1}{5y}\right)^{-0.5} + \sqrt{3x} + \sqrt{y} \quad (x > 0, y > 0).$$

- (a) f ist linear homogen.
- (b) f ist homogen vom Grad -0.5.
- (c) f ist homogen vom Grad 0.5.
- (d) f ist nicht homogen.

Frage 7 (3 Punkte)

Gegeben sind die Funktionen

$$f(x,y) = \frac{x^2}{y} + 1 + \sqrt{x^2 + 5y^2} \quad (x > 0, y > 0)$$

und

$$g(x,y) = f(ax, ay),$$

wobei a > 0.

- (a) g ist linear homogen.
- (b) g ist homogen vom Grad a.
- (c) g ist homogen vom Grad 2a.
- (d) g ist nicht homogen.

Frage 8 (3 Punkte)

Gegeben sei die Funktion

$$f(x,y) = x^{a+1} \sqrt{y^{4a+4}} + (xy)^{\frac{3a+3}{2}} \quad (x > 0, y > 0),$$

wobei $a \in \mathbb{R}$, mit partiellen Elastizitäten $\varepsilon_{f,x}$ und $\varepsilon_{f,y}$.

Für welchen Wert von a gilt

$$\varepsilon_{f,x} + \varepsilon_{f,y} = 3$$
?

- (a) a = 0.
- (b) a = 1.
- (c) a = 2.
- (d) a = 3.

Prüfungen Assessment-Stufe: Herbstsemester 2017

1,200 Mathematik A

Antwortbogen Multiple-Choice-Fragen

Auf	fgab	e 3	(24	Punl	kt€	e)
	(a)	Sing (b) □	(c)	(d)	(4	Punkte)
		Sing (b) □			(3	Punkte)
		Sing (b) □			(2	Punkte)
		Sing (b) □			(3	Punkte)
Frag	ge 5: (a)	Sing (b) □	le-C : (c)	hoice (d)	(3	Punkte)
	(a)	Sing (b) □	(c)	(d)	(3	Punkte)
	(a)	Sing (b) □	(c)	(d)	(3	Punkte)
	(a)	Sing (b) □	(c)	(d)	(3	Punkte)

Prüfungen Assessment-Stufe: Herbstsemester 2017 1,200 Mathematik A

Aufgabe 4 (26 Punkte)						
Frage 1 (a) 1. □	(b)	(c)	(d)	(3	Punkte)	
Frage 2 (a) 2. □	(b)	(c)	(d)	(4	Punkte)	
Frage 3 (a) 3. □	(b)	(c)	(d)	(4	Punkte)	
Frage 4 (a) 4. □	(b)	(c)	(d)	(4	Punkte)	
Frage 5 (a) 5. □				(3	Punkte)	
Frage 6 (a) 6. □	(b)	(c)	(d)	(2	Punkte)	
Frage 7 (a) 7. □	(b)	gle-C (c)	hoice (d)	(3	Punkte)	
	: Sing (b)			(3	Punkte)	