1) C100 + 2t)y' + y = 7(100 + 2t);	\ \vi \ \ \vi \ \ \vi \ \ \ \vi \ \ \ \	
(100 + 24) dy + y = 7 (100 + 26)		
$\frac{dy}{dt} + \frac{1}{100 + 20} y = 7$	F(x) = 7	
$\frac{dy}{dt} + \frac{1}{100+2t} y = 7$ $\frac{1}{2} \int_{100+2t}^{1} \frac{dt}{dt} \int_{e}^{1} \frac{1}{100+2t} dt = 7 dt + 1$	Sioglat de	v = 100+24 dv = 2dt
y(t)= (- \fraction + 1/2 \lanches +) dt + - 1/2 ln c 100+2	£)
y(4) = (4 7 () () & en(100+24)))		1 - (5)
$y(t) = \left(\frac{7}{(100+20)^{2}}\right)\left(\frac{1}{2}\right)\left($	C Icot 2U'2	
$4(t) = \left(\frac{1}{(\log t)^{2}}\right)\left(\frac{(\log t)^{2}}{3}\right)$		
y(t) = 7 (100 + 2t) + 0 (100 + 2t) 1/2	+	
$\frac{\partial y}{\partial x} + \frac{3}{x}y = \frac{3}{x^3}$	y (x):	
$L(x) = \left(-\frac{3}{x} dx\right) \left(\frac{3}{x} dx\right) \left(\frac{3}{x} dx\right) \frac{3}{x^3} dx$	+ cc = 5 = dx	

$\begin{aligned} &\mathcal{L}(\mathbf{x}) = \left(-\frac{3}{8}\ln(\mathbf{x})\right) \left(\left(\frac{3}{8}\ln(\mathbf{x})\right) + \frac{1}{8}\ln(\mathbf{x})\right) \\ &= \left(\frac{1}{8}\ln(\mathbf{x}^3)\right) \left(\frac{1}{8}\ln(\mathbf{x}^3)\right) + \frac{1}{8}\ln(\mathbf{x}^3) \\ &= \left(\frac{1}{8}\right) \left(\left(\frac{1}{8}\ln(\mathbf{x}^3)\right) + \frac{1}{8}\ln(\mathbf{x}^3)\right) \\ &= \left(\frac{1}{8}\right) \left(\left(\frac{1}{8}\ln(\mathbf{x})\right) + \frac{1}{8}\ln(\mathbf{x})\right) + \frac{1}{8}\ln(\mathbf{x}) \\ &= \left(\frac{1}{8}\right) \left(\left(\frac{1}{8}\ln(\mathbf{x})\right) + \frac{1}{8}\ln(\mathbf{x})\right) + \frac{1}{8}\ln(\mathbf{x}) \\ &= \left(\frac{1}{8}\right) \left(\left(\frac{1}{8}\ln(\mathbf{x})\right) + \frac{1}{8}\ln(\mathbf{x})\right) \\ &= \left(\frac{1}{8}\right) \left(\left(\frac{1}{8}\ln(\mathbf{x})\right) + \frac{1}{8}\ln(\mathbf{x})\right) \\ &= \left(\frac{1}{8}\ln(\mathbf{x})\right) \left(\frac{1}{8}\ln(\mathbf{x})\right) \left(\frac{1}{8}\ln(\mathbf{x})\right) \\ &= \left(\frac{1}{8}\ln(\mathbf{x})\right) \left(\frac{1}{8}\ln(\mathbf{x})\right) \\ &= \left(\frac{1}{8}\ln(\mathbf{x})\right) $	
$= \frac{1}{x^3} \int \frac{1}{x^3} \frac{1}{x^3} dx dx dx dx$ $= \frac{1}{x^3} \int \frac{1}{x^3} \frac{1}{x^3} dx $	$\frac{y(x) = (-3 \ln(x)) \left(\frac{3 \ln(x)}{2} \frac{3 \ln(x)}{x^3} \right) + \frac{3 \ln(x)}{2}$
$= \frac{1}{x^3} \left(\int \frac{\sin(x) dx}{dx} \right) + \frac{c}{x^3}$ $= \frac{7}{x^3} - \cos(x) + \frac{c}{x^3}$ $y(x) = -\frac{\cos(x)}{x^5} + \frac{c}{x^3}$ $\frac{dy}{dx} + \frac{1}{\tan(x)} \frac{dx}{dx} = x \sin(2x) \cos(x) + \frac{1}{2} \cos(x)$ $y(x) = \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx} + \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx}$ $\frac{dy}{dx} + \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx} + \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx}$ $y(x) = \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx} + \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx} + \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx}$ $\frac{1}{2} \int \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx} + \frac{1}{2} \int \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx} + \frac{1}{2} \int \frac{1}{2} \int \frac{1}{\tan(x)} \frac{dx}{dx} + \frac{1}{2} \int \frac{1}{2$	$= \left(\frac{en(\bar{x}^3)}{en(\bar{x}^3)}\right) \left(\frac{sen(x)}{x^3}\right) dx + ce^{n(\bar{x}^3)}$
$= \frac{1}{x^3} - \cos(x) + \frac{c}{x^3}$ $y(x) = -\frac{\cos(x)}{x^3} + \frac{c}{x^3}$ $3) \cos(x) y' + \sin(x) y = x \operatorname{sen}(2x) \cos(x) $ $\frac{dy}{dx} + \tan(x) y = x \operatorname{sen}(2x)$ $y(x) = \frac{dy}{dx} + \tan(x) \frac{dx}{dx} $ $\int \frac{dx}{dx} \cos(x) + \int \cos(x) \frac{dx}{dx} $ $\int \frac{dx}{dx} \cos(x) + \int \cos(x) \frac{dx}{dx} + \int \cos(x) \frac{dx}{dx} + \int \cos(x) \frac{dx}{dx} $ $\int \frac{dx}{dx} \cos(x) + \int \cos(x) \frac{dx}{dx} + \int \cos(x) \frac{dx}$	
$y(x) = -\frac{\cos(x)}{x^3} + \frac{c}{x^3}$ 3) $\cos(x) y' + \sin(x) y = x \sec(x) \cos(x) $ $\frac{\partial y}{\partial x} + \tan(x) y = x \sec(x)$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial x} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x}$ $\frac{\partial x}{\partial x} +$	
3) $\cos(x)y'$ } $\sin(x)y = x \sin(2x)\cos(x)$ $\begin{cases} \cos(x) & \cos(x) \end{cases}$ $\begin{cases} \cos(x) & \cos$	
$\frac{\partial y}{\partial x} + \frac{1}{2} \cos(x) y = x \sin(2x)$ $\frac{\partial y}{\partial x} = \left(\frac{1}{2} + \frac{1}{2} \tan(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} \cot(x) \frac{\partial x}{\partial x} \right) \left(\frac{1}{2} + \frac{1}{2} $	
$\begin{aligned} & \{\cos z + \sin(x) = \cos(x) \} \\ & \{\cos z + \sin(x) \} \\ & \{\cos(x) + \cos(x) \} \\ & \{\cos(x) + \cos(x) + \cos(x) \} \\ & = (\cos(x)) (\int \cos(x) \times \sin(x) dx) + \cos(x) \\ & = (\cos(x)) (\int \cos(x) \times \sin(x) dx) + \cos(x) \\ & = (\cos(x)) (\int \cos(x) \times \sin(x) dx) + \cos(x) \\ & = (\cos(x)) (\int \cos(x) \times \sin(x) dx) + \cos(x) \\ & = (\cos(x)) (\int \cos(x) \times \sin(x) dx) + \cos(x) \\ & \{\cos(x) + \cos(x) + \cos(x) + \cos(x) + \cos(x) \} \end{aligned}$ $\begin{aligned} & \text{Inlegial} & = -x \cos(x) + \int \cos(x) dx = -x \cos(x) + \sin(x) \end{aligned}$	$\frac{\partial y}{\partial x} + \tan(x)y = x \sin(2x)$
$y(x) = \left(\frac{\ln(\cos(x))}{\sin(\cos(x))}\right) \left(\frac{-\ln(\cos(x))}{\sin(\cos(x))}\right) + \frac{\ln(\cos(x))}{\sin(\cos(x))} + \frac{\ln(\cos(x))}{\sin(\cos(x))} + \frac{\ln(\cos(x))}{\sin(\cos(x))} + \frac{\ln(\cos(x))}{\sin(x)} + \frac$	y(x)= (+ Stank)dx) (Second)dx + - Stank)dx
$= (\cos(x))(\int \cos(x) \times \sin(ax) dx) + \cos(x)$ $= (\cos(x))(+\int \frac{2x \cdot \sin(x) \cos(x)}{\cos(x)} dx) = (\cos(x))(+\int 2x \cdot \sin(x) dx)$ $= (\cos(x))(+\int \frac{2x \cdot \sin(x) \cos(x)}{\cos(x)} dx) = -x \cos(x) + \sin(x)$	(cas du = -sen (x) dx
$= (\cos(x)) \left(+ \int \frac{2x \sin(x) \cos(x)}{\cos(x)} dx \right) = (\cos(x)) \left(+ \int 2x \sin(x) dx \right)$ In legical = $-x \cos(x) + \int \cos(x) dx = -x \cos(x) + \sin(x)$	
mlegial = -x cos (x) + Scos(x) dx = -x cos(x) + sen(x)	$= (\cos(x))()(\cos(x) \times \sin(2x) dx) + (\cos(x))(+) 2x \sin(x) dx)$ $= (\cos(x))(+) 2x \sin(x) \cos(x) dx) = (\cos(x))(+) 2x \sin(x) dx$
$\frac{x=0}{dx=4n}dx=\sin(x)dx$	

$$y(x) = (\cos(x))(+x)[-x\cos(x)+\sin(x)] + \cos(x)$$

$$y(x) = -\frac{x}{2} \cdot \cos^{2}(x) + 2\cos(x)\cos(x) + 1 + \cos(x)$$

$$y(x) = -\frac{x}{2} \cdot \cos^{2}(x) + 2\cos(x)\cos(x) + 1 + \cos(x)$$

$$y(x) = -\frac{x}{2} \cdot \cos^{2}(x) + 2\cos(x)\cos(x) + 1 + \cos(x)$$

$$y(x) = -\frac{x}{2} \cdot \cos^{2}(x) + \cos^{2}(x)$$

$$y(x) = -\frac{x}{2} \cdot \cos^{2}(x)$$

$$y(x) = -\frac{x}{2} \cdot \cos^{2}(x) + \cos^{2}(x)$$

$$y(x) = -\frac{x}{2} \cdot \cos^{2$$

6) y	- 2xy =	x 3 c-x2	con la con	dicion y	(0)=7	8 VI =	x y(x)
			x3x x3e				
) + (c)	10 =	2x2 4xdx	12/2	=4
		13 dx) +		2 - 10	ماو تام	21-21	Can Cu
to Legica	(-ēv) +	[e 2 4v]	- \$5 <u>od</u>	8) 00 60	しゃこさい	V= -€2
- An order of the same of the			= (2)(3)(+ 00×2	
	4 cx2	1 + c	ev ² si	y(0)=	1		
11/8.	= c c	= 9/8					
	4ex	$-\frac{7}{8c^{x^2}}$	gex"				