VSDSquadron FPGA Mini Board - LED Control Implementation

1. Understanding the Verilog Code

Module Overview

The top module is responsible for controlling an RGB LED using an internal oscillator. It includes:

- **LED Outputs:** led_red, led_blue, led_green (for RGB control).
- Clock Input: hw_clk (hardware oscillator, though unused in the current code).
- **Test Output:** testwire (debug signal driven by the frequency counter).

Internal Components

1.Internal Oscillator (SB_HFOSC)

- Configured with CLKHF_DIV = "0b10" (divides clock frequency).
- Generates a clock signal (int_osc) that drives the counter.

2. Frequency Counter

- frequency_counter_i (28-bit register) increments on every rising edge of int_osc.
- testwire is assigned frequency_counter_i[5], generating a test signal.

3.RGB LED Driver (SB_RGBA_DRV)

- Controls the hardware LED outputs (led_red, led_green, led_blue).
- . Current settings:
 - RGB0_CURRENT = "0b000001" (Red)
 - RGB1_CURRENT = "0b000001" (Green)
 - RGB2_CURRENT = "0b000001" (Blue)
- LED Behavior:
 - Red and Green LEDs are off (RGB0PWM = 0, RGB1PWM = 0).
 - Blue LED is on (RGB2PWM = 1).

2. Creating the PCF File (Pin Mapping)

The **Pin Constraint File (PCF)** assigns FPGA pins to module signals.

Signal	Pin	Function
led_red	39	Controls Red
		LED
led_blue	40	Controls blue
		LED
led_green	41	Controls green
		LED
hw_clk	20	External clock
		input
testwire	17	Debug/test
		signal

Verifying Pin Assignments

- The PCF file matches the VSDSquadron FPGA
 Mini board specifications.
- These mappings ensure the LEDs and test signal are correctly routed to the board's pins.

3. Integrating with the VSDSquadron FPGA Mini Board

Board Setup

- 1. Connect the FPGA board to a computer via **USB-C**.
- 2.Ensure FTDI drivers are installed (for serial communication).

Building & Flashing Steps

Run the following commands in the project directory:

make clean # Clears previous builds make build # Compiles the Verilog design sudo make flash # Programs the FPGA

• If successful, the **blue LED should turn on**, confirming correct operation.

4. Final Summary

Key Observations

- Verilog Code: Generates an internal clock and drives an RGB LED.
- **PCF File:** Correctly assigns FPGA pins to module signals.
- Board Programming: The blue LED turns on, validating the design.

Challenges & Solutions

Challenge	Solution
FPGA not detected	Ensured correct USB
during flashing	connection and FTDI
	setup