Lógica Computacional Tarea 1

Rubí Rojas Tania Michelle

28 de febrero de 2019

1. Enuncia formalmente lo siguiente:

a) Sintaxis de la lógica proposicional.

Solución: Definamos un lenguaje para la lógica de proposiciones.

El alfabeto consta de:

- Símbolos o variables proposicionales (un número infinito) : $p_1, ..., p_n, ...$
- Constantes lógicas: ⊥, ⊤
- Conectivos u operadores lógicos: \neg , \wedge , $\vee \rightarrow$, \leftrightarrow
- Símbolos auxiliares: (,)

El conjunto de expresiones o fórmulas atómicas, denotado ATOM consta de:

- Las variables proposicionales: $p_1, ..., p_n, ...$
- Las constantes ⊥, ⊤

Las expresiones que formarán nuestro lenguaje PROP, llamadas usualmente fórmulas, se definen recursivamente como sigue:

- Si $\varphi \in ATOM$ entonces $\varphi \in PROP$. Es decir, toda fórmula atómica es una fórmula.
- Si $\varphi \in PROP$ entonces $(\neg \varphi) \in PROP$.
- φ, ψ entonces $(\varphi \land \psi), (\varphi \lor \psi), (\varphi \to \psi), (\varphi \leftrightarrow \psi) \in PROP$.
- Son todas.
- b) Semántica de la lógica proposicional.

Solución: Definamos el significado de cada conectivo lógico:

• La negación

- \circ La negación de la fórmula P es la fórmula $\neg P$.
- ∘ Símbolo utilizado: ¬
- \circ Su significado en español es: No P, no es cierto que P, es falso que P, etc.
- o Semántica (tabla de verdad):

$oxed{P}$	$\neg P$
1	0
0	1

• La conjunción

- \circ La conjunción de las fórmulas P,Qes la fórmula $P\wedge Q.$ Las fórmulas P,Qse llaman conyuntos.
- ∘ Símbolo utilizado: ∧
- $\circ\,$ Su significado en español es: P y $Q,\,P$ además de $Q,\,P$ pero Q, etc.
- $\circ\,$ Semántica (tabla de verdad):

P	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

• La disyunción

- o La disyunción de las fórmulas P,Q es la fórmula $P\vee Q.$ Las fórmulas P,Q se llaman disyuntos.
- $\circ\,$ Símbolo utilizado: \vee
- o Su significado en español es: Po bien Q,o Po Q,etc.
- o Semántica (tabla de verdad):

P	Q	$P \lor Q$
1	1	1
1	0	1
0	1	1
0	0	0

• La implicación

- o La implicación o condicional de las fórmulas P,Q es la fórmula $P \to Q$. La fórmula P es el antecedente y la fórmula Q es el consecuente de la implicación.
- \circ Símbolo utilizado: \rightarrow
- o Su significado en español es: si P entonces Q, P implica Q, P es condición suficiente para Q, Q siempre que P, P sólo si Q, etc.
- $\circ\,$ Semántica (tabla de verdad):

P	Q	$P \rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

• La equivalencia

- o La equivalencia o bicondicional de las fórmulas P,Q es la fórmula $P\leftrightarrow Q$.
- $\circ\,$ Símbolo utilizado: \leftrightarrow
- \circ Su significado en español es: P si y sólo si Q, P es equivalente a Q, P es condición necesaria y suficiente para Q, etc.
- o Semántica (tabla de verdad):

P	Q	$P \leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

- 2. Dado el conjunto de proposiciones $\Gamma = \{\neg(p \land q), (t \leftrightarrow r), q, (\neg r)\}$. Verifica si el conjunto Γ es tautología, satisfacible o insatisfacible. Solución:
- 3. Utilizando interpretaciones verifica si el siguiente argumento es verdadero o falso.

$$\{(p \land q), (q \lor r), (\neg s)\} \models p \land s$$

Solución:

- 4. Demuestra que los siguientes secuentes son válidos usando deducción natural.
 - a) $\{p \to (q \lor r)\} \vdash (p \to q) \lor (p \to r)$

Demostración.

b) $\{\} \vdash p \lor (q \land r) \rightarrow (p \land r) \lor q$

 \square

- 5. Realiza las siguientes sustituciones eliminando los paréntesis innecesarios en el resultado:
 - a) $((q \lor r)[q, p := \neg p, s] \to (r \land \neg (r \leftrightarrow p)))[p, r, q := r \lor q, q \land p, s]$ Solución:

$$((q \lor r)[q,p := \neg p,s] \to (r \land \neg (r \leftrightarrow p)))[p,r,q := r \lor q,q \land p,s]$$

$$= (((\neg p) \lor r) \to (r \land \neg (r \leftrightarrow p)))[p, r, q := r \lor q, q \land p, s]$$

$$= (((\neg (r \lor q) \lor (q \land p)) \to ((q \land p) \land \neg ((q \land p) \leftrightarrow (r \lor q))))$$

$$= (((\neg (r \lor q) \lor q \land p) \to ((q \land p) \land \neg (q \land p \leftrightarrow r \lor q)))$$

b) $(u \lor t) \to (\neg r \leftrightarrow (u \leftrightarrow s))[r, u, t := u, t, r]$ Solución:

$$(u \lor t) \to (\neg r \leftrightarrow (u \leftrightarrow s))[r, u, t := u, t, r] = (u \lor t) \to (\neg (u) \leftrightarrow ((t) \leftrightarrow s))$$
$$= (u \lor t) \to (\neg u \leftrightarrow (t \leftrightarrow s))$$

6. Realizar el Tableaux de la siguiente fórmula en PL y da el modelo que satisfaga la fórmula en caso de que el Tableaux sea abierto.

3

$$\neg((q \vee \neg(p \to r)) \to (p \wedge (q \to r)))$$

Solución:

- 7. Obtener la forma normal conjuntiva de las siguientes fórmulas (mencionando la operación realizada en cada paso):
 - a) $((q \to r) \to q) \land (r \to q)$ Solución:

$$\begin{array}{ll} ((q \to r) \to q) \wedge (r \to q) \equiv (\neg (\neg q \vee r) \vee q) \wedge (\neg r \vee q) & \text{ya que } P \to Q \equiv \neg P \vee Q \\ & \equiv ((q \wedge \neg r) \vee q) \wedge (\neg r \vee q) & \text{De Morgan} \\ & \equiv (\neg r \wedge (q \vee q)) \wedge (\neg r \vee q) & \text{asociatividad y conmutatividad} \\ & \equiv (\neg r \wedge q) \wedge (\neg r \vee q) & \text{idempotencia} \\ & \equiv (\neg r \wedge \neg r) \wedge (q \vee q) & \text{asociatividad y conmutatividad} \\ & \equiv \neg r \wedge q & \text{idempotencia} \end{array}$$

Como $\varphi = \neg r \land q$ es una conjunción de literales, entonces φ es de la Forma Normal Conjuntiva.

b) $\neg p \land q \rightarrow p \land (r \rightarrow q)$ Solución:

$$\neg p \land q \to p \land (r \to q) \equiv (\neg p \land q) \to (p \land (r \to q)) \quad \text{precedencia y asociatividad de conectivos}$$

$$\equiv \neg (\neg p \land q) \lor (p \land (\neg r \lor q)) \quad \text{ya que } P \to Q \equiv \neg P \lor Q$$

$$\equiv (p \lor \neg q) \lor (p \land (\neg r \lor q)) \quad \text{De Morgan}$$

$$\equiv (p \lor p) \lor (\neg q \land (\neg r \lor q)) \quad \text{asociatividad y conmutatividad}$$

$$\equiv p \lor (\neg q \land (\neg r \lor q)) \quad \text{idempotencia}$$

$$\equiv (p \lor \neg q) \land (\neg r \lor q) \quad \text{asociatividad}$$

Como $\varphi = (p \vee \neg q) \wedge (\neg r \vee q)$ es una conjunción de disyunciones, entonces φ es de la Forma Normal Conjuntiva.

8. Obtener la Forma Normal Disyuntiva de $\neg(w \to \neg p) \lor \neg((\neg s \leftrightarrow w) \lor (p \land s))$. Solución:

$$\neg(w \to \neg p) \lor \neg((\neg s \leftrightarrow w) \lor (p \land s)) \equiv \neg(\neg w \lor \neg p) \lor \neg((\neg s \leftrightarrow w) \lor (p \land s))$$

$$\equiv \neg(\neg w \lor \neg p) \lor \neg(((s \lor w) \land (\neg s \lor \neg w)) \lor (p \land s))$$

$$\equiv (w \land p) \lor (((\neg s \land \neg w) \lor (s \land w)) \land (\neg p \lor \neg s))$$

$$\equiv (w \land p) \lor (\neg s \land \neg w) \lor (s \land w) \land (\neg p \lor \neg s)$$

$$\equiv (w \land p) \lor (\neg s \land \neg w) \lor (s \land w \land \neg p) \lor \neg s$$

Por falta de espacio, no pude colocar arriba la justificación de cada paso, pero lo explico en seguida:

- Eliminamos la implicación, ya que $P \to Q \equiv \neg P \lor Q$.
- Elimamos la doble implicación, ya que $P \leftrightarrow Q \equiv (\neg P \lor Q) \land (P \lor \neg Q)$
- Hacemos que las negaciones figuren únicamente en las variables proposicionales.
- Eliminamos los paréntesis innecesarios, pues todos los operadores tienen la misma precedencia.
- Aplicamos asociatividad.

Como $\varphi = (w \land p) \lor (\neg s \land \neg w) \lor (s \land w \land \neg p) \lor \neg s$ es una disyunción de conjunciones o literales, entonces φ es de la Forma Normal Disyuntiva.

9. Obtener la Forma Normal Negativa de $(p \land (q \rightarrow r)) \rightarrow s$ Solución:

$$(p \land (q \to r)) \to s \equiv \neg (p \land (\neg q \lor r)) \lor s \qquad \text{ya que } P \to Q \equiv \neg P \lor Q$$

$$\equiv (\neg p \lor (\neg \neg q \land \neg r)) \lor s \qquad \text{prop. de } \neg$$

$$\equiv (\neg p \lor (q \land \neg r)) \lor s \qquad \text{prop. de } \neg$$

$$\equiv (\neg p \lor (q \land \neg r)) \lor s \qquad \text{ya que } \neg \neg P \equiv P$$

Como $\varphi = (\neg p \lor (q \land \neg r)) \lor s$ no contiene implicaciones ni equivalencias, y las negaciones que figuran en φ sólo afectan a fórmulas atómicas, entonces φ es de la Forma Normal Negativa.

10. a) Define una función recursiva **pa** que, dada una fórmula ϕ , devuelve el número de paréntesis abiertos "(" que tiene ϕ .

Soluci'on: Definimos recursivamente la funci\'on $\mathbf{pa}::PROP \to \mathbb{N}$ de la siguiente forma:

- $pa(\top) = 0$
- $pa(\perp) = 0$
- pa(VarP) = 0
- $pa(\neg \varphi) = pa(\varphi)$
- $pa((\varphi \star \psi)) = pa(\varphi) + pa(\psi) + 1$
- b) Define una función recursiva \mathbf{pc} que dada una fórmula ϕ , devuelve el número de paréntesis cerrados ")" que tiene ϕ .

Solución: Definimos recursivamente la función $\mathbf{pc} :: PROP \to \mathbb{N}$ de la siguiente forma:

- $pc(\top) = 0$
- $pc(\bot) = 0$
- pc(VarP) = 0
- $pc(\neg \varphi) = pc(\varphi)$
- $pc((\varphi \star \psi)) = pc(\varphi) + pc(\psi) + 1$
- c) Sea $\phi = (((\neg p \land q) \lor \neg r) \to r)$. Prueba que $\mathbf{pa}(\phi) \mathbf{pc}(\phi) = 0$.

Demostración. Aplicamos la definición de **pa** a ϕ :

$$pa(\phi) = pa((((\neg p \land q) \lor \neg r) \to r))$$
 def. de ϕ .

$$= pa(((\neg p \land q) \lor \neg r)) + pa(r) + 1$$
 def. recursiva de \mathbf{pa}

$$= pa((\neg p \land q)) + pa(\neg r) + 1 + 0 + 1$$
 def. recursiva de \mathbf{pa}

$$= pa(\neg p) + pa(q) + 1 + pa(r) + 1 + 0 + 1$$
 def. recursiva de \mathbf{pa}

$$= pa(p) + 0 + 1 + 0 + 1 + 0 + 1$$
 def. recursiva de \mathbf{pa}

$$= 0 + 0 + 1 + 0 + 1 + 0 + 1$$
 def. recursiva de \mathbf{pa}

$$= 3$$
 aritmética

Análogamente, aplicamos la definición de **pc** a ϕ :

$$pc(\phi) = pc((((\neg p \land q) \lor \neg r) \to r)) \qquad \text{def. de } \phi$$

$$= pc(((\neg p \land q) \lor \neg r)) + pc(r) + 1 \qquad \text{def. recursiva de } \mathbf{pc}$$

$$= pc((\neg p \land q)) + pc(\neg r) + 1 + 0 + 1 \qquad \text{def. recursiva de } \mathbf{pc}$$

$$= pc(\neg p) + pc(q) + 1 + pa(r) + 1 + 0 + 1 \qquad \text{def. recursiva de } \mathbf{pc}$$

$$= pc(p) + 0 + 1 + 0 + 1 + 0 + 1 \qquad \text{def. recursiva de } \mathbf{pc}$$

$$= 0 + 0 + 1 + 0 + 1 + 0 + 1 \qquad \text{def. recursiva de } \mathbf{pc}$$

$$= 3 \qquad \text{aritmética}$$

Por lo tanto, **pa**(ϕ) - **pc**(ϕ) = 3 - 3 = 0.

11. Define recursivamente una función **compress** que comprime los elementos consecutivos repetidos de una lista. Ejemplo: > compress "mooloolaba" = "mololaba". Prueba, usando tu definición, que:

compress
$$[1,2,2,3,3,3] = [1,2,3]$$

Solución:

```
\begin{array}{lll} compress & :: & (Eq \ a) \implies [a] \ -> \ [a] \\ compress & [] \ = \ [] \\ compress & [a] \ = \ [a] \\ compress & xs \ = \\ & if \ (head \ xs) \ == \ (head \ (tail \ xs)) \ then \ compress \ (drop \ 1 \ xs) \\ & else \ (head \ xs) \ : \ compress \ (tail \ xs) \end{array}
```

Finalmente, probemos que compress [1,2,2,3,3,3] = [1,2,3]

Demostración.

$$compress[1, 2, 3, 3, 3] = 1 : compress[2, 3, 3, 3]$$

$$= 1 : 2 : compress[3, 3, 3]$$

$$= 1 : 2 : compress[3, 3]$$

$$= 1 : 2 : compress[3]$$

$$= 1 : 2 : [3]$$

$$= [1, 2, 3]$$