ΘΕΜΑ 2

2.1.

2.1.Α. Σωστή απάντηση η (β)

Μονάδες 4

2.1.B.

Τις απόλυτες θερμοκρασίες T_c και T_h μπορούμε να τις υπολογίσουμε από τη σχέση:

$$T = 273 + \theta$$

Η θερμοκρασία της θερμής δεξαμενής είναι: $T_h = (273 + 227)K$ ή $T_h = 500~K$

Η απόδοση της μηχανής Carnot δίνεται από τη σχέση:

$$e_{Carnot} = 1 - \frac{T_c}{T_h}$$
 $\dot{\eta}$ 0,40 = $1 - \frac{T_c}{500}$ $\dot{\eta}$ $T_c = 300 K$.

Άρα η θερμοκρασία της ψυχρής δεξαμενής σε βαθμούς κελσίου °C θα είναι:

$$T = 273 + \theta$$
 ή $(300 - 273)^{\circ}$ C = θ ή $\theta = 27^{\circ}$ C

Μονάδες 8

2.2.

2.2.Α. Σωστή απάντηση η (γ)

Μονάδες 4

2.2.B.

Η αρχική κινητική ενέργεια είναι ίση με:

$$K_0 = \frac{1}{2} \, m \, v_0^2$$

Τη χρονική στιγμή που διπλασιάζεται η τιμή της κινητικής ενέργειας αυτή θα είναι ίση με:

$$K = \frac{1}{2} m v^2$$
, όπου $K = 2 K_0$

Επομένως:

$$K = 2 \; K_0 \; \dot{\eta} \; \tfrac{1}{2} \; m \; v^2 = 2 \; \tfrac{1}{2} \; m \; v_0^2 \; \dot{\eta} \; \; v^2 = 2 \; v_0^2 \; \dot{\eta} \; \; v_x^2 + v_y^2 = 2 \; v_0^2$$

Επειδή η $v_x = v_0 \,$ θα έχουμε ότι:

$$v_x^2 + v_y^2 = 2 \cdot v_x^2$$
 $\dot{\eta}$ $v_x^2 = v_y^2$ $\dot{\eta}$ $\frac{v_x}{v_y} = 1$

Μονάδες 9