ExG DSP/Classifier Generator in Chisel

Adelson Chua, Justin Doong, Ryan Kaveh, Cem Yalcin, and Rachel Zoll

EE 290C Fall 2018

Wellness Monitor - Motivation

- Software tools/libraries exist for everything:
 - EEGLAB in Matlab
 - Biomedical Genomics Library, WFDB in Python
- An expressive, type generic hardware generator can be easily integrated into an automated design exploration
- Block architectures (e.g., classifiers) can be switched out to perform holistic benchmarks

Wellness Monitor - Overview

 Ingest different data streams (EEG, ECG, EMG, etc.)

Extract pertinent features

Classify

Neurological states (e.g., seizure detection, sleep)

Bandpower, line length, etc...

 Cardiac states (e.g., arrhythmias, bradycardia)

- DWT, peak variability, etc...
- General health states (e.g., auscultatory sensing of blood clots)

■ Peak variability, threshold detection, etc...

Wellness Monitor - Overview

- There can be multiple input channels
- Two types of feature extraction:
 - Time Domain
 - Frequency Domain
- Every feature has a datapath associated with it
- Each datapath consists of blocks with similar I/O structures

Module Generators Overview

- The following generators were implemented as building blocks:
 - FIR / IIR filter
 - Bandpower Extractor
 - Line Length Extractor
 - Principal Component Analysis (PCA)
 - Offline eigendecomposition, online dimensionality reduction
 - Support Vector Machine (SVM)
 - Offline training, online classification
 - Some other supplementary modules (memories, stream-to-parallel converters...)
- FFT generator was imported from ucb-art repo

Feature Extractors: Bandpower & Line Length

- Bandpower: finds average power in a frequency range
 - Calculates the following sum, frequency components acquired from FFT block
 - Configurable frequency bands and number of bins

$$\sum \left(\frac{|X(f)|}{N}\right)^2$$

- Line Length: integral of the derivative within a time window
 - Calculates the following sum
 - Configurable window size

$$\sum_{i=2}^{N} |x(i) - x(i-1)|$$

Principal Component Analysis (PCA)

- Reduce dimensionality of feature space to minimize classifier complexity
 - New set of dimensions will be a linear combination of the original features
 - Transformation matrix is acquired from offline training
 - Dot product for dimensionality reduction done in hardware
 - Configurable number of features and output dimensions

7

Support Vector Machine (SVM)

- Divides positive and negative classes through a separating hyperplane
- Support vectors are the points (actual data from training) that define the hyperplane
- Can also use 'kernel trick' which transforms the data projection into higher dimensional space to curve the separating hyperplane in lower dimensional space

SVM Classifier

Classification is computed using the formula:

$$\sum_{i=1}^{m} \alpha_i y^{(i)} K(x^{(i)}, x) + b$$

- Alpha term is the support vector weights
- o y(i) is the support vector class (1 or -1)
- \circ x(i) is the support vector features, x is the input feature set
- o b is the intercept
- \circ K(x(i),x) is kernel / the similarity function between the support vector and input
 - Some common kernels:

Polynomial

$$K(\mathbf{q}, \mathbf{q}') = (1 + \mathbf{q} \cdot \mathbf{q}')^k$$

Gaussian radial basis function (RBF)

$$K(\mathbf{q}, \mathbf{q}') = \exp(-\|\mathbf{q} - \mathbf{q}'\|^2 / \sigma^2)$$

The sign of the resulting answer decides which class the new point belongs to

SVM Classifier

- Classification can also be extended to multiple classes
 - o Involves creating more than one classifier which vote for the final class
- One vs Rest classification:

n classes,

n classifiers

- One vs One classification:
- n classes, nC2 classifiers
- Error-Correcting Output Codes

n classes.

for classification

Wellness Generator Overview

- Takes specific features and generates a wellness monitor in hardware
- Currently the generator:
 - Creates collection of desired features
 - Decide on the "datapath" that computes the feature
 - Organizes datapaths in human readable data-structure
 - Generates modules
 - Automatically wires everything and connects monitor to a RISC-V core

Wellness Generator Next Steps

- Generator should not duplicate blocks it should reuse them
 - Organize datapaths into a tree structure to reuse blocks
 - Generate the modules (as nodes in tree)
 - Connect the nodes

Finish 'wrapper' app that parses user input

Integrate into automated design flow

Testing

- Two main golden models:
 - ScalaTest
 - Python
- ScalaTest:
 - Unit tests
 - Generatable integration test
- Python
 - Functionally equivalent python model for a specific design
 - Used to confirm seizure detector could actually detect seizures

Application-Specific Training-Testing Setup

- Test framework for application-specific testing from raw data
- Starts from SVM training to C tests in a simulated RISC-V environment
- Python script creates SVM model given the data, writes out all configuration matrices and input vectors to CSV files
- Scala tester reads CSV to get parameters, uses it to test Chisel datapath, writes out a C header file (.h) containing config matrices and I/O vectors
- 3. Header file is used by the C program to test the accelerator connected to the RISC-V core

^{*} All generator parameters are set in the Python script, no need to change parameters in the Scala or C code

Sample Execution (Seizure Detection)

```
wellness_IntegrationTest_FixedPoint.riscv
This emulator compiled with JTAG Remote Bitbang client. To enable, use +jtag_rbb_enable=1.
Listening on port 52105
This test uses 32 total data width with 8 binary places
Done configuring PCA Vector: 1 reduced dimension(s), 3 original features
Done configuring SVM Support Vector: 10 support vectors, 1 reduced dimension(s)
Done configuring SVM Alpha Vector: 1 classifier(s), 10 support vectors
Done configuring SVM Intercept: 1 classifier(s)
Passing data through C test instead of external input
                                                                                                                          No seizure
                                                              PASSED (within 15%)
Scores: 7.4023 0.0000
                               Expected: 7.4684 0.0000
                                                                                     Predicted label: No seizure
Scores: 7.4023 0.0000
                               Expected: 7.4577 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
Scores: 7.4023 0.0000
                               Expected: 7.4450 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
Scores: 7.4023 0.0000
                                                              PASSED (within 15%)
                               Expected: 7.4468 0.0000
                                                                                     Predicted label: No seizure
                               Expected: 7.4206 0.0000
                                                              PASSED (within 15%)
Scores: 7.3632 0.0000
                                                                                     Predicted label: No seizure
Scores: 7.3632 0.0000
                               Expected: 7.4211 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
Scores: 7.3632 0.0000
                               Expected: 7.4017 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
Scores: 7.3632 0.0000
                               Expected: 7.4044 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
Scores: 7.3632 0.0000
                               Expected: 7.4028 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
Scores: 7.3632 0.0000
                               Expected: 7.4023 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
Scores: 7.3242 0.0000
                               Expected: 7.3856 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
                               Expected: 7.3957 0.0000
Scores: 7.3632 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
                               Expected: 6.5523 0.0000
                                                              PASSED (within 15%)
Scores: 6.5039 0.0000
                                                                                     Predicted label: No seizure
Scores: 6.3593 0.0000
                               Expected: 6.4082 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
                               Expected: 2.3943 0.0000
                                                              PASSED (within 15%)
Scores: 2.4140 0.0000
                                                                                     Predicted label: No seizure
Scores: 1.2421 0.0000
                               Expected: 1.2134 0.0000
                                                              PASSED (within 15%)
                                                                                     Predicted label: No seizure
                               Expected: 0.2105 0.0000
                                                              PASSED (within 15%)
Scores: 0.1875 0.0000
                                                                                     Predicted label: No seizure
                                                                                                                           Seizure
Scores: 0.0000 0.6328
                               Expected: 0.0000 0.6636
                                                              PASSED (within 15%)
                                                                                     Predicted label: SEIZURE
Scores: 0.0000 1.1679
                               Expected: 0.0000 1.1870
                                                              PASSED (within 15%)
                                                                                     Predicted label: SEIZURE
Scores: 0.0000 1.4921
                                                              PASSED (within 15%)
                               Expected: 0.0000 1.5238
                                                                                     Predicted label: SEIZURE
Scores: 0.0000 1.4921
                               Expected: 0.0000 1.5127
                                                              PASSED (within 15%)
                                                                                     Predicted label: SEIZURE
  Chisel HW
                                Golden Tester
     Output
                                      Output
```

Conclusion and Next Steps

- Flexible and scalable wellness monitor generator implemented in Chisel
- Seizure detector functionality confirmed through comparisons with Python model

- Block optimizations/modularity (SVM and PCA)
- Optimize datapath generation
- Include new health feature extractors
- GUI for painless design space exploration

DWT Generator

Capture both frequency and temporal information about the signal

- Pass signal through lowpass & highpass filters
- Downsample
- Configurable number of levels, filter coefficients and length

Feature Extractor:

- DWT used to detect QRS waveform
- Tachycardia, bradycardia

