Class 13: RNA-Seq Mini-Project

Kira

1. Differential Expression Analysis

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

```
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  colData = read.csv("GSE37704_metadata.csv", row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
              hoxa1_kd
SRR493369
SRR493370
              hoxa1_kd
SRR493371
              hoxa1_kd
  countDataTmp = read.csv("GSE37704_featurecounts.csv", row.names=1)
  head(countDataTmp)
               length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                  918
                              0
                                        0
                                                 0
                                                           0
                                                                      0
                  718
                                                                      0
ENSG00000279928
                             0
                                        0
                                                 0
                                                           0
                             23
                                       28
                                                 29
                                                           29
                                                                     28
ENSG00000279457
                 1982
ENSG00000278566
                939
                              0
                                        0
                                                  0
                                                            0
                                                                      0
```

ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q.1 Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countDataTmp[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

We want to check that the metadata and count data match:

```
all(rownames(colData) == colnames(countData))
```

[1] TRUE

Q.2 Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# Filter count data where you have 0 read count across all samples.
to.keep <- rowSums(countData) != 0

countData <- countData[to.keep,]

nrow(countData)</pre>
```

[1] 15975

head(countData)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Now we are ready to run our differential expression analysis:

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
estimating size factors
estimating dispersions
```

gene-wise dispersion estimates

 ${\tt mean-dispersion}\ {\tt relationship}$

final dispersion estimates

fitting model and testing

dds

```
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
Next, get results for the HoxA1 knockdown versus control siRNA:
  res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
     Q.3 Call the summary() function on your results to get a sense of how many genes
     are up or down-regulated at the default 0.1 p-value cutoff.
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                    : 4349, 27%
                    : 4396, 28%
LFC < 0 \text{ (down)}
outliers [1]
                    : 0, 0%
low counts [2]
                    : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
Now we will make a volcano plot:
  plot( res$log2FoldChange, -log(res$padj) )
```


Q.4 Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "green"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "purple"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(abline(v=c(-2,2),lty=2)")</pre>
```


Now we can add gene annotation:

Q.5 Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

```
res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                                     pvalue
                                                           stat
                  <numeric>
                                 <numeric> <numeric> <numeric>
                                                                  <numeric>
                  29.913579
                                 0.1792571 0.3248216
                                                       0.551863 5.81042e-01
ENSG00000279457
ENSG00000187634 183.229650
                                 0.4264571 0.1402658
                                                       3.040350 2.36304e-03
ENSG00000188976 1651.188076
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
```

0.7297556 0.1318599 5.534326 3.12428e-08

0.0405765 0.2718928 0.149237 8.81366e-01

0.5428105 0.5215598 1.040744 2.97994e-01

ENSG00000187961 209.637938

ENSG00000187583 47.255123

ENSG00000187642 11.979750

```
ENSG00000188290 108.922128
                                  2.0570638 0.1969053 10.446970 1.51282e-25
                                                        2.505522 1.22271e-02
ENSG00000187608 350.716868
                                 0.2573837 0.1027266
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163
                                                        8.346304 7.04321e-17
ENSG00000237330
                                 0.7859552 4.0804729
                                                        0.192614 8.47261e-01
                   0.158192
                       padj
                                 symbol
                                              entrez
                                                                       name
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.86555e-01
                                     NΑ
ENSG00000187634 5.15718e-03
                                 SAMD11
                                              148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                  NOC2L
                                               26155 NOC2 like nucleolar ...
ENSG00000187961 1.13413e-07
                                 KLHL17
                                              339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                               84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                               84808 PPARGC1 and ESRR ind..
                                  PERM1
ENSG00000188290 1.30538e-24
                                   HES4
                                               57801 hes family bHLH tran..
                                                9636 ISG15 ubiquitin like..
ENSG00000187608 2.37452e-02
                                  ISG15
ENSG00000188157 4.21963e-16
                                    AGRN
                                              375790
                                                                       agrin
ENSG00000237330
                                 RNF223
                                              401934 ring finger protein ...
```

Q.6 Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file ="deseq_results.csv")
```

2. Pathway Analysis

Here we are going to use the gage package for pathway analysis. Once we have a list of enriched pathways, we're going to use the pathview package to draw pathway diagrams, shading the molecules in the pathway by their degree of up/down-regulation.

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                           "151531" "1548"
                                                              "1549"
                                                                       "1551"
                                 "10941"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                    "1890"
                                                              "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                    "54490"
                                                              "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                           "54657"
                                                    "54658"
                                                              "54659"
                                                                       "54963"
[33] "574537" "64816"
                        "7083"
                                 "7084"
                                           "7172"
                                                    "7363"
                                                              "7364"
                                                                       "7365"
[41] "7366"
              "7367"
                        "7371"
                                 "7372"
                                           "7378"
                                                    "7498"
                                                              "79799"
                                                                       "83549"
[49] "8824"
                        "9"
                                 "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201"
                         "10606"
                                  "10621"
                                            "10622"
                                                     "10623"
                                                               "107"
                                                                        "10714"
  [9] "108"
               "10846"
                         "109"
                                  "111"
                                            "11128"
                                                     "11164"
                                                               "112"
                                                                        "113"
 [17] "114"
               "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
                                                                        "159"
 [25] "1633"
               "171568" "1716"
                                  "196883" "203"
                                                     "204"
                                                               "205"
                                                                        "221823"
               "22978"
                         "23649"
                                  "246721" "25885"
                                                               "26289"
                                                                        "270"
 [33] "2272"
                                                     "2618"
 [41] "271"
               "27115"
                         "272"
                                  "2766"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                        "2984"
 [49] "2986"
               "2987"
                                                               "318"
                                                                        "3251"
                         "29922"
                                  "3000"
                                            "30833"
                                                     "30834"
 [57] "353"
                                            "377841" "471"
                                                               "4830"
               "3614"
                         "3615"
                                  "3704"
                                                                        "4831"
 [65] "4832"
                         "4860"
                                            "4882"
                                                     "4907"
                                                               "50484"
                                                                        "50940"
               "4833"
                                  "4881"
 [73] "51082"
               "51251"
                         "51292"
                                  "5136"
                                            "5137"
                                                     "5138"
                                                               "5139"
                                                                        "5140"
 [81] "5141"
               "5142"
                         "5143"
                                  "5144"
                                            "5145"
                                                     "5146"
                                                               "5147"
                                                                        "5148"
 [89] "5149"
               "5150"
                         "5151"
                                  "5152"
                                            "5153"
                                                     "5158"
                                                               "5167"
                                                                        "5169"
```

```
[97] "51728"
               "5198"
                        "5236"
                                  "5313"
                                           "5315"
                                                     "53343"
                                                              "54107"
                                                                       "5422"
[105] "5424"
               "5425"
                        "5426"
                                  "5427"
                                           "5430"
                                                     "5431"
                                                              "5432"
                                                                        "5433"
[113] "5434"
               "5435"
                        "5436"
                                  "5437"
                                           "5438"
                                                     "5439"
                                                              "5440"
                                                                       "5441"
[121] "5471"
               "548644" "55276"
                                  "5557"
                                           "5558"
                                                     "55703"
                                                              "55811"
                                                                       "55821"
[129] "5631"
               "5634"
                                  "56953"
                                           "56985"
                                                     "57804"
                                                              "58497"
                                                                       "6240"
                        "56655"
[137] "6241"
               "64425"
                        "646625" "654364"
                                           "661"
                                                     "7498"
                                                              "8382"
                                                                        "84172"
[145] "84265"
               "84284"
                        "84618"
                                  "8622"
                                           "8654"
                                                     "87178"
                                                              "8833"
                                                                       "9060"
                        "953"
                                           "954"
                                                     "955"
                                                              "956"
                                                                        "957"
[153] "9061"
               "93034"
                                  "9533"
[161] "9583"
               "9615"
```

The main gage() function requires a named vector of fold changes, where the names of the values are the Entrez gene IDs:

```
foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                         1465
                                  51232
                                              2034
                                                        2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  # Look at the first few down (less) pathways
  head(keggres$less)
```

```
p.geomean stat.mean p.val
hsa04110 Cell cycle 8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication 9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport 1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination 3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis 3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
```

	q.val	set.size	exp1
hsa04110 Cell cycle	0.001448312	121	8.995727e-06
hsa03030 DNA replication	0.007586381	36	9.424076e-05
hsa03013 RNA transport	0.073840037	144	1.375901e-03
hsa03440 Homologous recombination	0.121861535	28	3.066756e-03
hsa04114 Oocyte meiosis	0.121861535	102	3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis	0.212222694	53	8.961413e-03

Now, let's try out the pathview() function from the pathview package to make a pathway plot with our RNA-Seq expression results shown in color:

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13

Info: Writing image file hsa04110.pathview.png

Now we can insert the image into our document:

You can play with the other input arguments to pathview() to change the display in various ways including generating a PDF graph:

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13

Info: Writing image file hsa04110.pathview.pdf

Now, let's process our results a bit more to automatically pull out the top 5 up-regulated pathways, then further process that just to get the pathway IDs needed by the pathview() function:

Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres\$greater)[1:5]</pre>

Figure 1: hsa04110

```
# Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
Finally, lets pass these IDs in keggresids to the pathview() function to draw plots for all the
top 5 pathways:
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13
Info: Writing image file hsa04142.pathview.png
```

Info: some node width is different from others, and hence adjusted!

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13
Info: Writing image file hsa04330.pathview.png
We can include these top 5 up-regulated pathways in our document:
    Q.7 Can you do the same procedure as above to plot the pathyiew figures for the
    top 5 down-reguled pathways?
  ## Focus on top 5 down-regulated pathways here for demo purposes only
  keggrespathways.d <- rownames(keggres$less)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids.d = substr(keggrespathways.d, start=1, stop=8)
  keggresids.d
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=keggresids.d, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13
```


Figure 2: hsa04640

Figure 3: hsa04630

Figure 4: hsa00140

Figure 5: hsa04142

Figure 6: hsa04330

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/kirbear/Desktop/BIMM 143/class13

Info: Writing image file hsa04114.pathview.png

We can include these top 5 down-regulated pathways in our document:

3. Gene Ontology (GO)

We can also do a similar procedure with gene ontology. Similar to above, go.sets.hs has all GO terms. go.subs.hs is a named list containing indexes for the BP, CC, and MF ontologies:

Figure 7: hsa04110

Figure 8: hsa03030

Figure 9: hsa03013

Figure 10: hsa03440

Figure 11: hsa04114

```
data(go.sets.hs)
  data(go.subs.hs)
  # Focus on Biological Process subset of GO
  gobpsets = go.sets.hs[go.subs.hs$BP]
  gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
  lapply(gobpres, head)
$greater
                                             p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GD:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
                                                         113 8.519724e-05
GO:0007156 homophilic cell adhesion
                                          0.1951953
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
                                          0.1951953
GO:0048729 tissue morphogenesis
                                                         424 1.432451e-04
GO:0007610 behavior
                                                         427 2.195494e-04
                                          0.2243795
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                         257 5.932837e-04
GO:0035295 tube development
                                                         391 5.953254e-04
                                          0.3711390
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GD:0007067 mitosis
                                                           352 4.286961e-15
                                         5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                                           142 2.028624e-11
                                         1.658603e-08
```

1.178402e-07

84 1.729553e-10

GO:0000236 mitotic prometaphase

\$stats

```
G0:0007156 homophilic cell adhesion 3.824205 3.824205 G0:0002009 morphogenesis of an epithelium 3.653886 3.653886 G0:0048729 tissue morphogenesis 3.643242 3.643242 G0:0007610 behavior 3.530241 3.530241 G0:0060562 epithelial tube morphogenesis 3.261376 3.261376 G0:0035295 tube development 3.253665 3.253665
```

4. (Optional) Reactome Analysis

Reactome is database consisting of biological molecules and their relation to pathways and processes. Let's now conduct over-representation enrichment analysis and pathway-topology analysis with Reactome using the previous list of significant genes generated from our differential expression results above:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Could use the generated text file on the Reactome website to visualize additional information about the regulation of genes and the significance (p-values).