1. На гладкой горизонтальной поверхности стола покоится клин. Гладкая наклонная поверхность клина образует с горизонтом угол α такой, что $cos\alpha=0,6$. Если шайбе, находящейся у основания клина, сообщить начальную скорость V_0 вдоль поверхности клина, то к моменту достижения шайбой высшей точки траектории скорость шайбы уменьшается в n=5 раз. В

процессе движения шайба безотрывно скользит по клину, а клин по столу. Ускорение свободного падения g. Известными считать V_0 , n и α .

- 1) Найдите отношение m/M массы шайбы к массе клина.
- 2) На какую максимальную высоту H, отсчитанную от точки старта, поднимается шайба в процессе движения по клину?
 - 3) Через какое время T после старта шайба поднимается на максимальную высоту?
- 2. Систему из трёх брусков, находящихся на горизонтальном столе, приводят в движение, прикладывая горизонтальную силу F. Коэффициент трения между столом и брусками m_{\bullet} и m_{\circ} равен и Мас

соприкасающимися брусками m_1 и m_2 равен μ . Массы брусков $m_1=3m,\ m_2=m,\ m_3=4m.$ Массой горизонтально натянутой нити, массой блока и трением в его оси пренебречь.

- 1) Найти силу натяжения нити, если бруски m_1 и m_2 скрепить, а параметры $F,\ m,\ \mu$ подобрать такими, чтобы бруски двигались по столу как одно целое.
- 2) Найти силу натяжения нити, если параметры F, m, μ подобраны так, что нескреплённые бруски m_1 и m_2 движутся друг по другу, а бруски m_1 и m_3 по столу.
- 3. Небольшой по размерам шарик массой m движется по окружности в горизонтальной плоскости, находясь от вертикальной оси вращения на расстоянии R. Шарик удерживается двумя нитями (см. рисунок), составляющими с осью вращения углы $\alpha(cos\alpha=4/5)$ и $\beta(cos\beta=3/5)$. Сила натяжения верхней нити в 2 раза больше, чем нижней.

- 2) Найти угловую скорость вращения.
- 4. На гладком закреплённом шкиве радиусом R висит массивный однородный канат массой m и длиной l=9R, прикреплённый к шкиву в точке E. Точка E и горизонтальная ось O шкива находятся в одной вертикальной плоскости.
 - 1) Найти силу натяжения каната в точке A.
 - 2) Найти силу натяжения каната в точке B такой, что угол DOB равен $\alpha(sin\alpha=3/4)$.
- 5. Небольшая шайба массой m соскальзывает без начальной скорости с вершины гладкого закреплённого полушара. С какой силой действует шайба на полушар в момент, когда касательная составляющая ускорения шайбы равна $a_{\tau} = \frac{5}{12} g$?

