⑩ 日本国特許庁(JP)

① 特許出願公告

許 公 報(B2)

平5-18897

®Int.Ci.5

識別記号

庁内整理番号

20分分 平成5年(1993)3月15日

C 22 C 38/00

302 L 302 H

7217-4K 7217-4K

38/22

請求項の数 2 (全6頁)

❷発明の名称		延性と靭性に優れた原子炉用分散強化フエライト鋼								
		••	. 6	件 [質 昭	63-102298				
			€	9出 月	夏 昭	63(1988)4月25日 @平1(1989)10月31日				
個発	明	者	奥田	隆	成	茨城県東茨城郡大洗町成田町4002番地 動力炉・核燃料開				
						発事業団 大洗工学センター内				
個発	明	者	野 村	茂	雄	茨城県東茨城郡大洗町成田町4002番地 動力炉・核燃料開				
						発事業団 大洗工学センター内				
@発	明	者	柴 原		格	茨城県東茨城郡大洗町成田町4002番地 動力炉・核燃料開				
						発事業団 大洗工学センター内				
②発	明	者	榎 戸	裕	=	茨城県東茨城郡大洗町成田町4002番地 動力炉・核燃料開				
						発事業団 大洗工学センター内				
@発	明	者	藤 原	優	行	兵庫県神戸市灘区高徳町1の4の11				
@発	明	者	西田	俊	夫	兵庫県神戸市灘区篠原伯母野山町 2の3の1				
②発	明	者	寺 西	洋	志	兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式				
						会社総合技術研究所内				
②発	明	者	平 野		奨	兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式				
			•			会社総合技術研究所内				
②発	明	者	伊勢田	敦	朗	兵庫県尼崎市西長洲本通1丁目3番地 住友金属工業株式				
						会社総合技術研究所内				
创出	頭	人	動力炉・核ク	然料開 多	事	東京都港区赤坂 1 丁目 9 番13号				
			業団							
创出	顯	人	株式会社神	戸製筆	所	兵庫県神戸市中央区脇浜町1丁目3番18号				
⑦出	願	人	住友金属工	集株式会	ὲ往	大阪府大阪市中央区北浜 4丁目 5番33号				
沙沙	理	人	弁理士 尾	段 行	雄					
畲	*	古·	影 元	Æ		•				

1

切特許請求の範囲

1 重量%で、C:0.1%以下、Si:0.1%以下、 Mn:0.1%以下、Cr:12~20%、Mo+W:0.1~ 4.0%、O(Y₂O₂およびTiO₂分は除く):0.01%以 下、残部Feおよび不可避不純物からなり、かつ 5 平均粒径1000Å以下のY₂O₂とTiO₂による複合酸 化物粒子がY₂O₂+TiO₂=0.1~1.0%、分子比で TiO₂/Y₂O₃=0.5~2.0の範囲で基地に均一に分 散されているフエライト単相あるいはフエライ

する延性と靭性に優れた原子炉用分散強化フェラ イト鋼。

2

2 重量%で、C:0.05~0.25%、Si:0.1%以 下、Mn:0.1%以下、Cr:8~12%(但し12%は 含まず)、Mo+W:0.1~4.0%、O(Y2O3および TiO₂分は除く): 0.01%以下、残部がFeおよび不 可避不純物からなり、かつ平均粒径1000A以下の Y₂O₃とTiO₂による複合酸化物粒子がY₂O₃+ TiO2=0.1~1.0%、分子比でTiO2/Y2O3=0.5~ ト/マルテンサイト 2 相組織であることを特徴と 10 20の範囲で基地に均一に分散されている焼戻し

マルテンサイト単相組織であることを特徴とする 延性と靭性に優れた原子炉用分散強化フエライト

発明の詳細な説明

<産業上の利用分野>

本発明は、優れた高温強度を有し、しかも延性 および靭性に優れた原子炉用分散強化フェライト 鋼に関するものである。

本発明の分散強化フエライト鋼は、原子炉、特 に高速増殖炉の炉心で使用される炉心構成要素 10 <課題を解決するための手段> (例えば、燃料集合体、制御棒、反射体等) や高 速炉の機器構造物(例えば、機器容器部材、冷却 系配管部材)などに好ましく利用できる。

< 従来技術>

られる材料には、高温強度、ナトリウムとの共存 在、耐中性子照射特性、加工性、溶接性、燃料と の相互作用など様々な特性が要求されるが、特に 高温強度と耐中性子照射特性がその使用寿命を決 定する上で重要である。

従来より炉心部材としてはSUS304や316など のオーステナイトステンレス鋼が用いられてきた が、耐スエリング性や照射クリープ特性など高速 中性子に対する耐久性に限界があり、燃料の長寿 なつている。

一方、フエライト鋼はオーステナイトステンレ ス鋼に比べ、格段に優れた耐照射特性を有するも のの、高温強度が低い欠点がある。高温強度向上 強化法が古くより知られている。この方法を用い たフェライト鋼としては「液体金属高速中性子増 殖炉用の分散強化フェライト型合金」(特公昭60 -8296号、以下先行特許という)があり、高温ク リーブ破断強度と耐中性子照射特性に優れたもの 35 が得られている。

<発明が解決しようとする課題>

しかし、上記先行特許による合金は強度が高い 反面、延性が低く、また延性・脆性遷移温度が20 低いため、わずか10数%程度の冷間圧延で割れが 生ずる。その結果、高速炉の炉心部材、例えば燃 料被覆管あるいはラッパー管などの高い寸法精度 が要求される薄肉管の経済的な製管は、上配先行

特許による合金では困難である。さらに高速炉の 使用温度350~700℃において亀裂が極めて伝播し やすい低延性材料であり、分散強化材本来の特性 が生かされていない。

そこで本発明は、高速増殖炉の炉心部材として 要求される性質、すなわち高温強度や耐スエリン グ性に優れ、しかも延性、靭性、製管性なども良 好な分散強化フエライト鋼を提供することを目的 としてなされたものである。

すなわち、本発明の延性と靭性に優れた原子炉 用分散強化フエライト鋼の第1の実施態様は、重 量%でC:0.1%以下、Si:0.1%以下、Mn:0.1 %以下、Cr:12~20%、Mo+W=0.1~4.4%、 原子炉、特に高速増殖炉の炉心構成部材に用い 15 O(Y₂O₃およびTiO₂分は除く):0.01%以下、残 部がFeおよび不可避不純物からなり、かつ平均 粒径1000Å以下のY2O2とTiO2による複合酸化物 粒子がY2O2+TiO2:0.1~1.0%、分子比で TiO₂/Y₂O₃=0.5~2.0の範囲で基地(マトリツ 20 クス)に均一に分散されているフェライト単相あ るいはフエライト/マルテンサイト2相組織であ ることを特徴とするものである。

さらに本発明の延性と靭性に優れた原子炉用分 散強化フエライト鋼の第2の実施態様は、重量% 命化を達成するには適していないことが明らかに 25 でC:0.05%~0.25%、Si:0.1%以下、Mn:0.1 %以下、Cr: 8~12% (但し、12%は含まず)、 Mo+W:0.1~4.0%、O(Y₂O₂およびTiO₂分は 除く):0.01%以下、残部がFeおよび不可避不純 物からなり、かつ平均粒径1000Å以下のY2O2と の方法の一つとして、微細酸化物粒子による分散 30 TiO2による複合酸化物粒子がY2O3+TiO2=0.1 ~1.0%、分子比でTiO2/Y2O3=0.5~2.0の範囲 で基地に均一に分散されている焼戻しマルテンサ イト単相組織であることを特徴とするものであ

> 以下、本発明の分散強化フエライト網の化学成 分およびその限定理由について述べる。このうち Y₂O₂とTiO₂の複合添加が本発明の最重要ポイン トである。

Y₂O₂は、基地に均一分散されることによりク **℃付近と高いため、即ち室温での衝撃値が著しく 40 リーブ破断強度を向上させる効果を有する最も重** 要な成分である。しかしながら、Y2O2単独では、 基地に固溶する少量のSiやMn等と容易に複合酸 化物を形成して粗大化しやすくなる。また、Y2 O₃そのものは基地との整合性が悪く、Y₂O₃を多

量に添加してもクリーブ破断強度は向上せず、む しろ延性や靭性が低下する。

Y2O3とTiO2の安定な複合添加物

Y₂O₂・TiO₂を形成させて初めて高い強度が得 られる。

複合添加物Y2Ox・TiOz即ちY2TiOsは、基地 合金組成粉末とY。O。微粉末を機械的に混合する 過程においてTiOa微粉末を添加することにより 形成される。Y2O3単独よりもY2O3・TiO2のほう がエネルギー上安定であるため、混合時にすべて 10 可能となる。 のY2O3とTiO2が反応する。また、あらかじめ調 婴されたY₂O₃・TiO₂複合酸化物を使用すること も可能である。

前述した先行特許においても「イツトリア 合してY2Ti2O7のような相を形成することができ る。」と記載されている。しかし、この方法では、 基地中に固溶したTiとY2O2粒子が反応して複合 酸化物ができるため、複合酸化物の組成が不均一 となり、Ti 濃度の高いものや不足したものが生 20 C含有量は0.05~0.25%に限定する。 じる。このような酸化物は、かえつて熱的に不安 定であるため製管時に高温軟化処理を施すと凝集 租大化し、クリーブ破断強度を低下させる。ま た、Y₂O₃と反応しない過剰なTiは、TiO₂酸化物 化しやすく延性低下の原因となる。また、一度相 大化してしまうと、高温軟化焼鈍を施しても合金 の延性は回復しない。

本発明では、Y₂O₃とTiO₂を分子比で0.5~2.0 地との整合性の良い複合酸化物を均一に分散させ ることができる。

また、添加した全てのTiO2とY2O2との反応に より安定な複合酸化物となつているので、高温の 軟化焼鈍により延性は加工前のそれに回復する。 35 で、0.1%以下に抑える。 (Y₂O₃+TiO₂) 量は、高温強度を向上させるの に、最低0.1%以上必要である。一方、(Y₂O₃+ TiO₂)の添加量を多くすれば、クリープ破断強 度は高くなるが、その効果は、1%で飽和するの で添加量の上限を1%とする。

また、酸化物粒径については、粒径が1000人を 越えるとクリーブ強度を高める効果が著しく低下 するので1000 人以下に限定する。

Cは、組織の安定性を左右する重要な元素であ

り、要求特性によってその成分範囲は異なる。

延性を重視した場合は、組織をフエライト単相 か少量の焼戻しマルテンサイドを含むフエライ ト/マルテンサイト2相にする必要があり、Cr 5 含有量が12~20%の第1の実施態様では、C量は 0.1%以下、好ましくは0.01%未満に抑える必要 がある。また、C含有量を低減することにより、 基地に固溶するMo、Wの固溶量を多くすること ができ、長時間側のクリーブ強度を高めることが

一方、靭性を重視した場合は、組織を安定な焼 戻しマルテンサイト単相にする必要があり、Cr 含有量が8~12%の第2の実施態様では、C量の 下限は0.05%となる。この焼戻しマルテンサイト (Y₂O₃) 組成物中の他の成分たとえばチタンと結 15 組織は、1000~1150℃の焼ならし+700~800℃の 焼戻し処理により得られる。C含有量が多くなる ほど炭化物(M22Ce、MeCなど)の析出量が多 くなり高温強度が高くなるが、0.25%より多量に 添加するど加工性が悪くなる。よつてこの場合の

Ctは、C量とのパランスからC含有量が0.05% 未満の場合、12~20%の範囲でフエライト相、C 含有量が0.05~0.25%の場合は、8~12%の範囲 で焼戻しマルテンサイト相を安定させることがで 単体として析出する。TiO₂は高温使用中に粗大 25 きる。また、8%よりも少ないと高温 (600~700 で)でのナトリウム中脱炭抵抗性および耐食性が 悪くなる。一方、20%以上では、靭性、延性が低 下するので上限を20%とする。

Siは、脱酸剤として必要な元素であるが、使用 の範囲で反応させることにより、安定でしかも基 30 中にY2O2粒子と反応してY2O2とSiO2の複合酸化 物を形成しやすい。この複合酸化物は、粗大化速 度が大きいため、クリープ破断強度を低下させ る。また低Si化によつて製品の表面性状を良好に し、SiO2介在物量を少なくすることもできるの

> Mnは、脱酸・脱硫剤として働き、熱間加工性 の改善にも有効な元素であるが、多量に添加する とSi同様租大化しやすいY₂O₃との複合酸化物を 形成するので、0.1%以下に限定する。

40 MoとWは合金中に固溶し、高温強度を向上さ せる重要な元素であり、総量で0.1%以上添加す る必要がある。MoとW量を多くすれば、固溶強 化作用、炭化物析出強化作用(Mz:Co、MoCな ど)、金属間化合物析出強化作用により、クリー

プ破断強度が向上するが、Mo+Wで4.0%を超え るとδフエライト量が多くなり、かえつて強度も 低下するので、4.0%を上限とする。

特に高い強度を得るには、Mo、Wの複合によ りMo当量(Mo+1/2W)が1.2~1.6%となる組 合わせが良い。

Oは、原料粉末上への吸着あるいは酸化により 必然的に少量含まれる元素であるが、0.01%を招 えると靭性が著しく低下する。また、少量のSiや Mnと介在物を形成しやすくなるので、その上限 10 を0.01%とする。

<実施例>

以下に本発明について実施例を挙げて説明す

表1に供試材の化学成分を示す。

表1で、鋼種10.1~3は本発明鋼(I)(本発 明の第1の実施態様に該当)、鋼種M4~6は本 発明鋼(Ⅱ)(本発明の第2の実施態様に該当)、 鋼種Na.7~13は本発明鋼(I)の比較鋼、鋼種14 はそれぞれ重要な添加物であるTiOz、Y2O3、 (Mo+W)、C量が本発明の範囲とはずれている もの、あるいはTiO₂の代わりにTiを添加したも のを用いた。このうち1413は先行特許で提案され た合金に相当する。

各鋼とも平均粒径lum以下の元素粉あるいは合 金粉と平均粒径1000Å以下の酸化物粉末を目的組 成に調合し、高エネルギーアトライター中に装入 後、高純度アルゴンガス雰囲気中で撹拌して機械 200~300rpm、撹拌時間は24~48hrである。得ら れた合金化粉末を空気にさらすことなくSUS製 の筒状容器に真空封入し、900~1200℃で8~ 15:1の押出比で熱間押出した。

各熱押棒材を10㎜厚の板材に鍛造した後、950 35 ~1200°Cで焼ならしを行い、鋼種Na 1~3及び7 ~13については焼ならしたままのもの、鋼種№4 ~6および14~20については焼ならし後、750~ 820℃の焼もどし熱処理を施したものを供試材と した。

これらの供試材から2t×6W×30GL(mm) の板 状引張試験片を採取し、650℃クリープ破断試験 及び常温引張試験を行つた。また、5t×10W×55 ℓ m (2 m V ノッチ)のシャルピー衝撃試験片を

8

採取し、衝撃特性を調べた。さらに、10(㎜) 厚 板材を20%冷間圧延後1200℃×1hr焼鈍したもの より2t×6W×30GLmmの板状試験片を採取し、常 温引張試験を行い、焼鈍後の引張延性の変化を調 **5** べた。

- それらの試験結果より、650℃×10°hrでのクリ ープ破断応力、常温引張伸び、20℃でのシャルビ ー衝撃値及び冷間加工+焼鈍後の引張伸びを表2 にまとめて示す。

本発明鋼(I),(II)ともに、比較鋼に比べ 650℃クリーブ破断強度、常温での延性、20℃で のシヤルピー衝撃特性、冷間加工+焼鈍後の延性 に優れていることがわかる。特に本発明鋼(1) は延性、本発明鋼(Ⅱ)は靭性に優れている。比 15 較鋼のうち鋼種No.7とNo.14は、TiO2添加量が不 足しているため、分散酸化物粒子が不安定で強度 が低い。

鋼種Na.8とNa.15は、強度は比較的高いものの、 TiOz添加量が過剰であるため、分散酸化物粒子 ~20は本発明鋼(Ⅱ)の比較鋼である。比較鋼に 20 の凝集、粗大化が起こり延性、靭性が低くなつて いる。

> 鋼種Na 9とNa 16は、TiO2無添加、鋼種Na 10と 17はY₂O₂無添加でいずれの場合も強度低下が著 しい。このことは、Y2O3、TiO2単独添加では分 25 散物が不安定であり、Y₂O₃とTiO₂共存下で初め て分散物が安定化され強度が高くなることを示し ている。

鋼種Mallと18は、TiOzの代わりにTiを添加し たものである。いずれも強度は比較的高いもの 的に合金化を行つた。アトライターの回転数は 30 の、延性特に冷間加工+焼鈍後の延性が低い。こ れは、TiはY2O2と反応して複合酸化物を作る以 外に、租大化しやすいTiO₂単体として析出する ため、TiO2粒子が応力集中源となり延性や靭性 が低下することを示している。

> 鋼種Ma12と19は、(Mo+W) 含有量が不足し ているため、強度が低く表2には示していないが 特に長時間側の強度低下が大きい。また、固溶元 素が少ないため、基地の強化がなされず、他の鋼 種に比べ靭性が低い。

> 鋼種№13は先行特許で提案された合金である が、鋼種Nall, 18と同様TiOzの代わりにTiを添 加しているため、本発明鋼に比べ、延性や靭性が

鋼種No.20は、本発明鋼(II)の範囲よりC含有

9

10 .

量が低い。このためフエライト相が多く現れるた め、延性や靭性が著しく低くなつている。 表 1 供試材の化学成分

(Wt%)

No.	С	Si	Mn	Cr	Мо	₩	0	Y2O3	TiO ₂	TiO₂モルY₂O₃ 分率	Ti		備考
1	0.010	0.048	0.033	12,65	0.25	2.16	0.019	0, 180	0.096	1.51		本	発明鋼(I)
2	0.005	0.055	0.040	12, 98	1.30	0.43	0.023	0.307	0.076	0.70		1	
3	0.023	0.053	0.034	14,87	1,02	0.97	0.013	0.234	0.083	1.00	_]	
4	0.071	0.068	0.046	9.30	0.48	1.95	0.020	0,316	0, 117	1.05	_	本	発明鋼(Ⅱ)
5	0, 128	0.040	0.049	10.25	1.27	0.38	0.017	0.405	0, 186	1,30			
6	0.130	0,052	0,032	11.09	0.99	1,05	0.024	0.261	0.090	0.97	_		
7	0.014	0.044	0.038	13.74	0.30	2, 11	0.024	0,383	0.041	0,30	_	本発明鋼	TiO₂不足
8	0.012	0.038	0.027	14. 12	0.52	1,85	0.022	0.227	0.215	2,68		(I) の比	TiO₂過剰
9		0,050	ļ		ļ	1.92	0.020	0,690		0		較鋼	TiO ₂ 無添加
10	0.012	0.029	0.034	13.88	0.48	2,07	0,018	-	0, 750	∞	<u> </u>		Y₂O₃無添加
11	0.012	0,035	0.041	13, 25	0.50	1.90	0.019	0.390	-	0	0.85	·	TiO ₂ 無添加 Ti添加
12	0.010	0.031	0.045	13, 59	0.04	0.04	0.019	0.285	0.138	1.37	-	·	(Mo+W)不足
13	0.013	0.042	0.035	13, 80	0,31	· '	0.023	0.271	-	0	0.95		TiO₂と▼無添 加、Ti添加
14	0, 125	0.037	0.041	11,05	0.40	2.07	0.020	0.335	0.052	0.44	1	本発 明鋼	TiO ₂ 不足
15	0, 143	0,037	0.038	10.89	0.38	1.89	0.023	0.323	0.242	2.17	-	(II) の比	TiOz過剰
16	0.136	0.055	0.036	10.95	0.41	1.91	0.017	0.316	_	0	-	較鋼	TiOz無添加
17	0. 122	0.047	0.039	10.93	0.50	1.87	0.015		0.351	∞	_		Y ₂ O ₂ 無添加
18	0, 125	0.042	0.029	10,88	0, 39	2,00	0.021	0.303	_	0	1.02		TiO ₂ 無添加 Ti添加
19	0, 119	0,050	0.031	10, 97	0.03	0.06	0.018	0.281	0.089	0,89			(1/0+17)不足
20	0.015	0.047	0.036	9, 95	0, 43	2, 14	0.024	0.307	0, 118	1.09	-	ļ	C不足

表2 クリーブ破断強度、延性、靭性の比較

		,							
鋼種No.		650°C、10°hrク リープ破断応力 (kg f / mi)	熱処理まま 材の常温引 張伸び(%)	20℃でのシャ ルピー衝撃値 (kgf-m/cm)	20%冷間加工+1200 ℃×1 hr焼鈍後の常 温引張伸び(%)				
本発明鋼(I) 1		35, 0	18.2	26, 3	21, 3				
	2	34.4	19.5	25.3	20,5				
	3	35, 8	20.0	26.7	20.7				
本発明鋼(Ⅱ)	4	35, 1	17.1	29.5	19, 5				

			·			
鋼種Na		650℃、10°hrク リーブ破断応力 (kgf/mil)	熱処理まま 材の常温引 張仲び(%)	20℃でのシャ ルピー衝撃値 (kgf-m/cd)	20%冷間加工+1200 ℃×1hr焼鈍後の常 温引張仲び(%)	
	5	35, 8	16.5	29.5	18.3	
	6	35, 3	16.9	31,2	18.2	
本発明鋼(I)	7	20,7	17.0	17.0	15.6	
の比較鋼	8	34, 3	9.7	8.4	7.5	
	9	13.4	20.3	10.3	16.7	
l.	10	9,5	20,6	15, 5	10.9	
	11	35, 1	8.5	7.6	4.8	
	12	19.5	18.2	3.5	19.5	
	13	34, 6	10.2	8.3	5.3	
本発明鋼(Ⅱ)	14	21,8	15,6	19.8	14.8	
の比較鋼	15	31.9	8.4	10.5	5, 3	
	16	15, 1	17.5	11.7	14.1	
	17	10.2	17.0	17.3	10,5	
	18	32,5	9.8	9.9	6.5	
	19	21.0	17.6	3,9	14.3	
	20	28.5	11.5	9.7	4.7	

<発明の効果>

以上に説明したように、本発明によれば長時間 優れた高温強度並びに延性及び靭性の良好な酸化 高速増殖炉炉心部材、特に燃料被覆管のような 650℃程度の高温で、しかも高い圧力下で使用さ

れる構造部材の長寿命化が達成できる。

また、延性と靭性が高く、軟化焼鈍による加工 材の延性回復が可能なことから、冷間加工を主体 物分散強化型フエライト鋼が得られることから、25 とした製管法で経済性のある薄肉管の製管も可能 となる。