Representation Theory & Homological Algebra

Lectures by Claire Amiot & Estanislao Herscovich Notes by Alexis Marchand

Institut Fourier First semester 2020-21M2 course

Contents

1	Generalities on modules		
	1.1	Modules and algebras	1
	1.2	Homomorphism modules and tensor products	2
	1.3	Finite-infinite modules	4
2	Categories of modules		
	2.1	k-linear categories	4
	2.2	Short exact sequences	5
	2.3	Exact functors	
	2.4		8
3	Chain complexes		
	3.1	Graded modules	9
	3.2	Complexes of modules	
	3.3	Snake Lemma and long exact sequences	
4	Derived functors		12
	4.1	Projective and injective resolutions	12
	4.2	Universal δ -functors	
	4.3	Derived functors	
	4.4	Tor and Ext groups	16
$\mathbf{R}_{\mathbf{c}}$	References 1		

1 Generalities on modules

Notation 1.1. Rings are assumed to be unitary and associative.

1.1 Modules and algebras

Definition 1.2 (Modules). Let R be a ring. A **(left)** R-module is an abelian group M together with a map $(x, m) \in R \times M \mapsto xm \in M$ s.t., for $x, x' \in R$ and $m, m' \in M$,

• x(m+m') = xm + xm',

- $1_R \cdot m = m$,
- (x + x') m = xm + x'm,
- (xx') m = x (x'm).

We write ModR for the set of (left) R-modules. A **right** R-module is defined similarly.

Remark 1.3. Given a ring R, R^{op} is the ring R with inversed multiplication: xy in R^{op} is yx in R. Hence, a right R-module is a left R^{op} -module.

Proposition 1.4. Given an abelian group M, endowing M with the structure of a left (resp. right) R-module is equivalent to specifying a ring homomorphism $R \to \operatorname{End}(M)$ (resp. $\operatorname{End}(M)^{\operatorname{op}}$).

Definition 1.5 (Bimodule). If R, R' are rings, then an R-R'-bimodule is an abelian group M that is both a left R-module and a right R'-module, s.t. (xm) x' = x (mx') for $x \in R$, $m \in M$, $x' \in R'$.

Notation 1.6. From now on, k denotes a commutative ring (often \mathbb{Z} or a field).

Definition 1.7 (Algebras). A k-algebra is a k-module A that is also a ring, s.t. $\lambda(ab) = (\lambda a)b = a(\lambda b)$ for $\lambda \in k$, $a, b \in A$.

Example 1.8. (i) Any ring is a \mathbb{Z} -algebra.

- (ii) Given a group G, its **algebra group** is the free k-module over G, with multiplication induced by the group law in G.
- **Remark 1.9.** (i) Specifying a structure of k-algebra on a ring A is equivalent to specifying a ring homomorphism $k \to A$ whose image is contained in the centre of A.
 - (ii) If A is a k-algebra, then specifying a structure of A-module on a k-module M is equivalent to specifying a k-linear map $A \to \operatorname{End}_k(M)$.

Proposition 1.10. Let G be a group. Then representations of G (i.e. k-vector spaces V together with a group homomorphism $\rho: G \to GL(V)$) are equivalent to kG-modules.

1.2 Homomorphism modules and tensor products

Notation 1.11. From now on, A denotes a k-algebra (for example A = kG, where G is a group).

Definition 1.12 (Homomorphism module). Given $M, N \in \mathbf{Mod}A$, we denote by $\mathrm{Hom}_A(M,N)$ the set of A-linear maps $M \to N$ and $\mathrm{End}_A(M) = \mathrm{Hom}_A(M,M)$.

 $\operatorname{Hom}_A(M,N)$ is naturally a k-module and $\operatorname{End}_A(M)$ is a k-algebra.

Proposition 1.13. Let A, B, C be k-algebras. If ${}_AM_B$ is an A-B-bimodule, and ${}_AN_C$ is an A-C-bimodule, then $\operatorname{Hom}_A({}_AM_B, {}_AN_C)$ is naturally a B-C-bimodule, with action given by (bfc)(m) = f(mb)c.

Proposition 1.14. (i) Given $M \in \mathbf{Mod}A$, $\mathrm{Hom}_A(A,M) \cong M$ as A-modules.

(ii) $\operatorname{End}_A(A) \cong A^{\operatorname{op}}$ as k-algebras.

Definition 1.15 (Duals). Let $M \in ModA$. We have two notions of duals:

- $M^* = \operatorname{Hom}_k(M, k) \in \operatorname{\mathbf{Mod}} A^{\operatorname{op}},$
- $M^{\vee} = \operatorname{Hom}_A(M, A) \in \operatorname{\mathbf{Mod}} A^{\operatorname{op}}$.

In particular, $A^* = \operatorname{Hom}_k(A, k) \in \operatorname{\mathbf{Mod}} A^{\operatorname{op}}$.

Example 1.16 (Dual representation). Assume that A = kG, and $\rho : G \to GL(V)$ is a f.d. representation of G, i.e. V is a kG-module with $\dim_k V < \infty$. Hence, V^* is a kG^{op} -module. But there is an isomorphism of k-algebras $kG \xrightarrow{\cong} kG^{\mathrm{op}}$ given by $g \mapsto g^{-1}$, so V^* is naturally a kG-module; the corresponding representation of G is $\rho^* : G \to GL(V^*)$ given by $\rho^*(g) \cdot \varphi = \varphi \circ \rho(g^{-1})$.

Definition 1.17 (Restriction of scalars). Let B be a sub-k-algebra of A. Then A is a right-B-module. Given $M \in \mathbf{Mod}A$, the B-module $\mathrm{Hom}_A({}_AA_B,_AM)$ is M seen as a B-module.

In particular, if $H \leqslant G$ is a subgroup and $V \in \mathbf{Mod}kG$, we write $\mathrm{Res}_G^H(V) = \mathrm{Hom}_{kG}(kG, V) \in \mathbf{Mod}kH$.

Proposition 1.18. Let M, M_1, M_2, N, N_1, N_2 be A-modules.

- (i) $\operatorname{Hom}_A(M_1 \oplus M_2, N) \cong \operatorname{Hom}_A(M_1, N) \oplus \operatorname{Hom}_A(M_2, N)$,
- (ii) $\operatorname{Hom}_A(M, N_1 \oplus N_2) \cong \operatorname{Hom}_A(M, N_1) \oplus \operatorname{Hom}_A(M, N_2)$,

(iii)
$$\operatorname{End}_{A}(M_{1} \oplus M_{2}) \cong \begin{pmatrix} \operatorname{End}_{A}(M_{1}) & \operatorname{Hom}_{A}(M_{2}, M_{1}) \\ \operatorname{Hom}_{A}(M_{1}, M_{2}) & \operatorname{End}_{A}(M_{2}) \end{pmatrix}$$
.

Definition 1.19 (Tensor product). Let ${}_BM_A$ be a B-A-bimodule and ${}_AN_C$ be an A-C-bimodule. The **tensor product** ${}_BM \otimes_A N_C$ is the quotient of the free k-module generated by $m \otimes n$ (for $m \in M$, $n \in N$) by the submodule generated by:

- $(m_1 + m_2) \otimes n (m_1 \otimes n + m_2 \otimes n)$ for $m_1, m_2 \in M$ and $n \in N$,
- $m \otimes (n_1 + n_2) (m \otimes n_2 + m \otimes n_2)$ for $m \in M$ and $n_1, n_2 \in N$,
- $(ma) \otimes n m \otimes (an)$ for $m \in M$, $n \in N$ and $a \in A$.

 $_BM \otimes_A N_C$ is naturally a B-C-bimodule.

Proposition 1.20. (i) ${}_{A}A \otimes_{A} Y_{C} \cong_{A} Y_{C} \text{ and } {}_{B}X \otimes_{A} A_{A} \cong_{B} X_{A}$,

- (ii) $(X \otimes_A Y) \otimes_B Z \cong X \otimes_A (Y \otimes_B Z)$,
- (iii) If A is commutative, then $X \otimes_A Y \cong Y \otimes_A X$.
- (iv) $(X_1 \oplus X_2) \otimes_A Y \cong (X_1 \otimes_A Y) \oplus (X_2 \otimes_A Y)$ and similarly for $X \otimes_A (Y_1 \oplus Y_2)$,
- (v) Given maps $f: X_A \to X_A'$ and $g:_A Y \to_A Y'$, there is a k-linear map $f \otimes g: X \otimes_A Y \to X' \otimes_A Y'$.

Definition 1.21 (Extension of scalars). Given a subalgebra $B \hookrightarrow A$, and a B-module M, $A \otimes_B M$ is naturally an A-module; it is M seen as an A-module.

In particular, if $H \leq G$ is a subgroup and $W \in \mathbf{Mod}kH$, we write $\mathrm{Ind}_G^H(W) = kG \otimes_{kH} W \in \mathbf{Mod}kG$.

Remark 1.22. If A, B are k-algebras, then $A \otimes_k B$ is naturally a k-algebra.

An A-B-bimodule is the same as an $A \otimes_k B^{\text{op}}$ -module.

Theorem 1.23 (Adjunction Formula). Let ${}_{A}X$ be an A-module, ${}_{B}Y_{A}$ be a B-A-bimodule and ${}_{B}Z$ be a B-module. Then we have the following isomorphism of k-modules:

$$\operatorname{Hom}_{A}({}_{A}X, \operatorname{Hom}_{B}({}_{B}Y_{A}, {}_{B}Z)) \cong \operatorname{Hom}_{B}({}_{B}Y \otimes_{A}X, {}_{B}Z)$$
.

Corollary 1.24. Let $H \leq G$ be a subgroup. Let $V \in \mathbf{Mod}kG$ and $W \in \mathbf{Mod}kH$. Then

$$\operatorname{Hom}_{kH}\left(W, \operatorname{Res}_{H}^{G}(V)\right) \cong \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G}(W), V\right).$$

1.3 Finite-infinite modules

Proposition 1.25. (i) $\operatorname{Hom}_{A}\left(M,\prod_{j\in J}N_{j}\right)\cong\prod_{j\in J}\operatorname{Hom}_{A}\left(M,N_{j}\right),$

(ii) $\operatorname{Hom}_A(\bigoplus_{i\in I} M_i, N) \cong \prod_{i\in I} \operatorname{Hom}_A(M_i, N).$

Notation 1.26. Given a set I, define:

- $A^I = \prod_{i \in I} A_i$
- $A^{(I)} = \bigoplus_{i \in I} A$.

Definition 1.27 (Free module). Given an A-module M, the following conditions are equivalent:

- (i) M admits an A-basis, i.e. a family $(e_i)_{i\in I}$ in M that is both generating and linearly independent.
- (ii) $M \cong A^{(I)}$ for some set I.

We say that M is **free** if it satisfies the above conditions.

Remark 1.28. It is false in general that if $A^{(I)} \cong A^{(J)}$ (as A-modules), then the sets I and J are in bijection. We may even have $A^m \cong A^n$ with $m \neq n$. However, the above implication holds if A is a finite-dimensional k-algebra.

Remark 1.29. Any module is a quotient of a free module, i.e. there is a surjective morphism $p: A^{(I)} \to M$.

Reiterating the above operation with Ker p, we see that M is the cokernel of some map $A^{(J)} \to A^{(I)}$ of free modules.

Definition 1.30 (Finite generation and finite presentation). Let M be an A-module.

- We say that M is **finitely generated** (f.g.) if there is a surjective morphism $A^n \to M$ for some $n \in \mathbb{N}$.
- We say that M is **finitely presented** (f.p.) if $M \cong \operatorname{Coker}\left(A^m \xrightarrow{f} A^n\right)$ for some map f and some $m, n \in \mathbb{N}$.

Remark 1.31. If A is a finite-dimensional k-algebra and k is a field, then an A-module M is finitely generated iff it is finite-dimensional over k iff it is finitely presented.

Later, we will see that if A is noetherian, then M is f.g. iff M is f.p. Also note that if $A = \mathbb{Z}$, then a subgroup of a f.g. abelian group is f.g.

2 Categories of modules

Notation 2.1. Throughout this section, k is a commutative ring and A is a k-algebra.

2.1 k-linear categories

Definition 2.2 (k-linear category). A category \mathbb{C} is k-linear if $\operatorname{Hom}_{\mathbb{C}}(X,Y)$ has the structure of a k-module for all $X,Y \in \mathbb{C}$ s.t.

- The composition \circ : $\operatorname{Hom}_{\mathbf{C}}(Y,Z) \times \operatorname{Hom}_{\mathbf{C}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathbf{C}}(X,Z)$ is k-linear,
- There is a zero object $0_{\mathbf{C}} \in \mathbf{C}$ satisfying $\operatorname{Hom}_{\mathbf{C}}(X, 0_{\mathbf{C}}) = 0$ and $\operatorname{Hom}_{\mathbf{C}}(0_{\mathbf{C}}, Y) = 0$ for all $X, Y \in \mathbf{C}$,
- There is $X \oplus Y \in \mathbf{C}$ for all $X, Y \in \mathbf{C}$, together with isomorphisms $\operatorname{Hom}_{\mathbf{C}}(X \oplus Y, Z) \cong \operatorname{Hom}_{\mathbf{C}}(X, Z) \oplus \operatorname{Hom}_{\mathbf{C}}(Y, Z)$ and $\operatorname{Hom}_{\mathbf{C}}(Z, X \oplus Y) \cong \operatorname{Hom}_{\mathbf{C}}(Z, X) \oplus \operatorname{Hom}_{\mathbf{C}}(Z, Y)$.

In particular, a \mathbb{Z} -linear category is simply an **additive category**.

Definition 2.3 (k-linear functor). A functor $F: \mathbf{C}_1 \to \mathbf{C}_2$ is k-linear if the induced maps $F: \mathrm{Hom}_{\mathbf{C}_1}(X,Y) \to \mathrm{Hom}_{\mathbf{C}_2}(FX,FY)$ are k-linear, $F0_{\mathbf{C}_1} = 0_{\mathbf{C}_2}$, and for all $X,Y \in \mathbf{C}_1$, there is an isomorphism $F(X \oplus Y) \cong FX \oplus FY$ making the following diagram commute:

Example 2.4. Let $B \hookrightarrow A$ be a subalgebra. Then the restriction functor $\mathbf{Mod}A \to \mathbf{Mod}B$ is k-linear.

Proposition 2.5. Let M be an A-B-bimodule.

- (i) $\operatorname{Hom}_A(M,-): \operatorname{\mathbf{Mod}} A \to \operatorname{\mathbf{Mod}} B$ is a covariant k-linear functor,
- (ii) $\operatorname{Hom}_A(-, M) : \operatorname{\mathbf{Mod}} A \to \operatorname{\mathbf{Mod}} B^{\operatorname{op}}$ is a contravariant k-linear functor,
- (iii) $M \otimes (-) : \mathbf{Mod}B \to \mathbf{Mod}A$ is a covariant k-linear functor,
- (iv) $(-) \otimes M : \mathbf{Mod}A^{\mathrm{op}} \to \mathbf{Mod}B^{\mathrm{op}}$ is a covariant k-linear functor.

Remark 2.6. All isomorphisms of Section 1 are natural isomorphisms between k-linear functors, for instance:

- The isomorphism $\operatorname{Hom}_A(A, M) \cong M$ is functorial in M,
- The isomorphism $\operatorname{Hom}_A(X \otimes Y, Z) \cong \operatorname{Hom}_B(Y, \operatorname{Hom}_A(X, Z))$ is functorial in Y, Z.

2.2 Short exact sequences

Proposition 2.7. Let $f \in \text{Hom}_A(X,Y)$. Then, in the category $\mathbf{Mod}A$, there are two short exact sequences

$$0 \to K \to X \xrightarrow{p} I \to 0,$$

$$0 \to I \xrightarrow{i} X \to C \to 0.$$

such that $i \circ p = f$. Moreover, those exact sequences are unique up to isomorphism.

Note that this is not true in the category of finitely generated A-modules.

In fact, this is because ModA is an abelian category.

Definition 2.8 (Splitting). A short exact sequence $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is said to **split** in **Mod**A if one of the following equivalent conditions is satisfied:

(i) There is an isomorphism $\varphi: Y \xrightarrow{\cong} X \oplus Z$ s.t. the following diagram commutes:

$$0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$$

$$X \oplus Z$$

- (ii) There is a morphism $\varphi: Y \to X \oplus Z$ s.t. the above diagram commutes.
- (iii) f is a **section**, i.e. there exists $h: Y \to X$ s.t. $hf = 1_X$.
- (iv) g is a **retraction**, i.e. there exists $h: Z \to Y$ s.t. $gh = 1_Z$.

Proposition 2.9. ModA has pullbacks and pushforwards.

Remark 2.10. Consider a pullback square:

$$\begin{array}{ccc} X & \longrightarrow & Y_1 \\ \downarrow & & \downarrow \\ Y_2 & \longrightarrow & Y \end{array}$$

Then there is a short exact sequence $0 \to X \to Y_1 \oplus Y_2 \to Y$.

Theorem 2.11. Let $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ be a short exact sequence in ModA (or any abelian category).

(i) Given a morphism $Z' \xrightarrow{w} Z$, there is a commutative diagram with exact rows:

$$0 \longrightarrow X \longrightarrow Y' \longrightarrow Z' \longrightarrow 0$$

$$= \left| \qquad \qquad \downarrow \qquad w \right|$$

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

(ii) Given a morphism $X \xrightarrow{u} X'$, there is a commutative diagram with exact rows:

$$0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$$

$$u \downarrow \qquad \qquad = \downarrow$$

$$0 \longrightarrow X' \longrightarrow Y' \longrightarrow Z \longrightarrow 0$$

Proof. It suffices to prove (i) because (ii) is dual.

Form the pullback $Y \stackrel{v}{\leftarrow} Y' \stackrel{g'}{\to} Z'$ of $Y \stackrel{g}{\to} Z \stackrel{w}{\leftarrow} Z'$. First show that g' is epic. Then consider $K = \operatorname{Ker}\left(Y' \stackrel{g'}{\to} Z'\right)$. There is a natural arrow $K \to X$; it suffices to show that this is an isomorphism. Construct an inverse by considering the cone $Y \stackrel{f}{\leftarrow} X \stackrel{0}{\to} Z'$ over Z.

2.3 Exact functors

Definition 2.12 (Exact functors). Let $F: \mathbf{C}_1 \to \mathbf{C}_2$ be a covariant (resp. contravariant) k-linear functor.

- We say that F is **left exact** if for any exact sequence $0 \to X \to Y \to Z$ (resp. $Z \to Y \to X \to 0$), the sequence $0 \to FX \to FY \to FZ$ is exact.
- We say that F is **right exact** if for any exact sequence $X \to Y \to Z \to 0$ (resp. $0 \to Z \to Y \to X$), the sequence $FX \to FY \to FZ \to 0$ is exact.
- We say that F is **exact** if it is both left and right exact.

Hence, a covariant functor is exact if and only if it preserves short exact sequences.

Example 2.13. The forgetful functors $\mathbf{Mod}A \to \mathbf{Mod}k$ and $\mathbf{Mod}k \to \mathbf{Mod}\mathbb{Z}$ are exact.

Theorem 2.14. Let M be an A-B-bimodule. Then

- (i) $\operatorname{Hom}_A(M,-): \operatorname{\mathbf{Mod}} A \to \operatorname{\mathbf{Mod}} B$ is left exact,
- (ii) $\operatorname{Hom}_A(-, M) : (\operatorname{\mathbf{Mod}}A)^{\operatorname{op}} \to \operatorname{\mathbf{Mod}}B^{\operatorname{op}}$ is left exact,
- (iii) $M \otimes_B (-) : \mathbf{Mod}B \to \mathbf{Mod}A$ is right exact,
- (iv) $(-) \otimes_A M : \mathbf{Mod}A^{\mathrm{op}} \to \mathbf{Mod}B^{\mathrm{op}}$ is right exact.

The key point is that none of the above functors are exact: their default of exactness is the starting point of cohomology.

Proof. (i) We prove a stronger statement: $0 \to X \to Y \to Z$ is exact if and only if for all A-B-bimodules M, the sequence

$$0 \to \operatorname{Hom}(M, X) \to \operatorname{Hom}(M, Y) \to \operatorname{Hom}(M, Z)$$

is exact. The statement (\Rightarrow) is easily proved; for the converse (\Leftarrow) , take M=X, then $M=\operatorname{Ker} f$ and $M=\operatorname{Ker} g$.

- (ii) is similar to (i).
- (iii) Use the stronger statement proved in (i) together with the Adjunction Formula (Theorem 1.23).
- (iv) is similar to (iii).

Definition 2.15 (Projective, injective and flat modules). Let $P, I, M \in \mathbf{Mod}A$.

- P is projective if Hom_A (P, −): ModA → Modk is exact.
 Equivalently, for any epimorphism Y → Z, any map P → Z factors through Y.
- I is injective if $\operatorname{Hom}_A(-,I): (\operatorname{\mathbf{Mod}} A)^{\operatorname{op}} \to \operatorname{\mathbf{Mod}} k$ is exact. Equivalently, for any monomorphism $X \rightarrowtail Y$, any map $X \to I$ factors through Y.
- M is flat if $(-) \otimes_A M : \mathbf{Mod}A^{\mathrm{op}} \to \mathbf{Mod}k$ is exact.

Example 2.16. A is projective (in ModA) because $\operatorname{Hom}_A(A, -)$ is isomorphic to the forgetful functor $\operatorname{Mod}A \to \operatorname{Mod}k$, and it is flat because $(-) \otimes_A A$ is the forgetful functor $\operatorname{Mod}A^{\operatorname{op}} \to \operatorname{Mod}k$. However, A is not injective in general.

Lemma 2.17. Let $(M_i)_{i \in I} \in \mathbf{Mod}A$.

- (i) $\bigoplus_i M_i$ is projective iff M_i is projective for all i.
- (ii) $\prod_i M_i$ is injective iff M_i is injective for all i.
- (iii) $\bigoplus_i M_i$ is flat iff M_i is projective for all i.

This is one of the reasons why, for instance, projective modules are preferred to free modules: because projectivity is stable under taking direct summands.

Theorem 2.18. An A-module P is projective iff it is a direct summand of a free module.

Proof. (\Leftarrow) This is true by Lemma 2.17, since free modules are projective because A is. (\Rightarrow) If P is a projective A-module, note that there exists an epimorphism $F \to P$, where F is a free A-module. Using the projectivity of P, show that this epimorphism is a retraction (i.e. it has a right inverse $P \to F$), and conclude that P is a direct summand of F.

Corollary 2.19. Free implies projective and projective implies flat.

Example 2.20. \mathbb{Q} is flat but not projective over \mathbb{Z} .

2.4 Existence of injective modules

Proposition 2.21. If k is a field, then k is injective in Modk.

Proof. This is due to the fact that if W is a subspace of a vector space V, then W is in fact a direct summand of V.

Notation 2.22. For $M \in \mathbf{Mod}A$, we set $M^* = \mathrm{Hom}_k(M,k) \in \mathbf{Mod}A^{\mathrm{op}}$.

Theorem 2.23. Assume that k is a field. If $M \in \mathbf{Mod}A$ is projective, then $M^* \in \mathbf{Mod}A^{\mathrm{op}}$ is injective.

Proof. Use the fact that M embeds into M^{**} to apply the projectivity of M.

Corollary 2.24. If k is a field, then A^* is injective in ModA.

Remark 2.25. \mathbb{Z} is not injective in $\mathbf{Mod}\mathbb{Z}$: there is no factorisation of $\mathbb{Z} \xrightarrow{\mathrm{id}_{\mathbb{Z}}} \mathbb{Z}$ through $\mathbb{Z} \to \mathbb{Q}$.

Theorem 2.26 (Baer's Criterion). Let $I \in \mathbf{Mod}A$. Then I is injective iff for any monomorphism $X \mapsto A$, any map $X \to I$ factors through A.

Proof. See [1]. \Box

Corollary 2.27. \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective in Mod \mathbb{Z} .

Proof. We use Baer's Criterion: consider a monomorphism $X \mapsto \mathbb{Z}$ and a map $X \xrightarrow{f} I$. We may assume that $X = a\mathbb{Z}$ and $X \mapsto \mathbb{Z}$ is the inclusion. Either a = 0, in which case f = 0. Or $a \neq 0$ and we can set $\tilde{f} : \mathbb{Z} \to \mathbb{Q}$ by $n \mapsto \frac{n}{a} f(a)$. This \tilde{f} is then a factorisation of f through \mathbb{Z} .

Definition 2.28 (Pontryagin dual). Given $M \in ModA$, we define its **Pontryagin dual** by

$$M^{\wedge} = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \in \operatorname{\mathbf{Mod}}(A^{\operatorname{op}}).$$

Lemma 2.29. If $M \neq 0$, then $M^{\wedge} \neq 0$.

Proof. Let $x \in M \setminus \{0\}$. Define a morphism $(x) \to \mathbb{Q}/\mathbb{Z}$ by $x \mapsto \frac{1}{2}$ if x has infinite order, or $x \mapsto \frac{1}{n}$ if x has order n. Now we have a morphism $(x) \to \mathbb{Q}/\mathbb{Z}$, as well as a monomorphism $(x) \mapsto M$. By injectivity of \mathbb{Q}/\mathbb{Z} , there is a factorisation $M \xrightarrow{\varphi} \mathbb{Q}/\mathbb{Z}$ of $(x) \to \mathbb{Q}/\mathbb{Z}$ through M. Thus, $\varphi(x) \neq 0$, so $\varphi \in M^{\wedge} \setminus \{0\}$.

Proposition 2.30. A morphism $X \to Y$ is injective iff $Y^{\wedge} \to X^{\wedge}$ is surjective.

Proof. (\Rightarrow) This is due to the injectivity of \mathbb{Q}/\mathbb{Z} . (\Leftarrow) Consider the exact sequence

$$0 \to \operatorname{Ker} f \to X \xrightarrow{f} Y.$$

Since \mathbb{Q}/\mathbb{Z} is injective, it induces an exact sequence

$$Y^{\wedge} \to X^{\wedge} \to (\operatorname{Ker} f)^{\wedge} \to 0.$$

But if $Y^{\wedge} \to X^{\wedge}$ is surjective, then we must have $(\operatorname{Ker} f)^{\wedge} = 0$, and therefore $\operatorname{Ker} f = 0$ by Lemma 2.29, so f is injective.

Theorem 2.31. Let $M \in \mathbf{Mod}A^{\mathrm{op}}$. Then M is flat iff M^{\wedge} is injective.

Proof. Use the Adjunction Formula (Theorem 1.23) together with Proposition 2.30.

Corollary 2.32. The A-module A^{\wedge} is injective.

3 Chain complexes

3.1 Graded modules

Definition 3.1 (Graded module). A **graded** A-module is an A-module M together with a direct sum decomposition $M = \bigoplus_{n \in \mathbb{Z}} M_n$. A morphism between two graded A-modules $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and $N = \bigoplus_{n \in \mathbb{Z}} N_n$ is a morphism of A-modules $f : M \to N$ s.t. $f(M_n) \subseteq N_n$ for all $n \in \mathbb{Z}$. We denote by $\operatorname{Hom}_{\operatorname{gr} A}(M,N)$ the set of such homomorphisms. This defines the category $\operatorname{GMod} A$ of graded A-modules.

Remark 3.2. Any A-module M can be seen as a graded A-module with $M_0 = M$ and $M_n = 0$ for $n \neq 0$. This defines a fully faithful functor $\iota : \mathbf{Mod}A \to \mathbf{GMod}A$. The graded module $\iota(M)$ is called **concentrated in degree zero**.

Definition 3.3 (Homogeneous elements and degree). If $M = \bigoplus_{n \in \mathbb{Z}} M_n$ is a graded A-module, a nonzero element $m \in M_n$ will be called **homogeneous of degree** n. The **degree** of a homogeneous element will be denoted by deg m or |m|.

Definition 3.4 (Graded submodule). A graded submodule of $M = \bigoplus_{n \in \mathbb{Z}} M_n$ is a sub-A-module N of M such that

$$N = \sum_{n \in \mathbb{Z}} (N \cap M_n).$$

In particular, $N = \bigoplus_{n \in \mathbb{Z}} (N \cap M_n)$ is also graded, and the inclusion $N \hookrightarrow M$ is a morphism of graded modules.

In this case, the quotient M/N has a structure of graded module given by $M/N = \bigoplus_{n \in \mathbb{Z}} M_n/N$, and the projection $M \to M/N$ is a morphism of graded modules.

Example 3.5. If $f: M \to N$ is a morphism of graded modules, then $\operatorname{Ker} f$ is a graded submodule of M and $\operatorname{Im} f$ is a graded submodule of N.

Notation 3.6. Given a graded A-module $M = \bigoplus_{n \in \mathbb{Z}} M_n$, its **shift** M[k] is the graded A-module whose underlying A-module is M, and with $M[k]_n = M_{k+n}$. We denote by $s_{M,k} : M \to M[k]$ (or simply s_M when k = 1) the morphism of A-modules whose underlying map is id_M . Note that $s_{M,k}$ is not a morphism of graded A-modules.

The shift induces a functor $(-)[k] : \mathbf{GMod}A \to \mathbf{GMod}A$.

Definition 3.7 (Internal Hom). Given graded A-modules $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and $N = \bigoplus_{n \in \mathbb{Z}} N_n$, we denote by $\mathcal{H}om_{\operatorname{gr} A}(M,N)$ the graded \mathbb{Z} -module given by

$$\mathcal{H}$$
om_{gr A} $(M, N) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{gr} A}(M, N[n]).$

An element of $\operatorname{Hom}_{\operatorname{gr} A}(M,N[n])$ will be called a **homogeneous morphism of degree** n.

Definition 3.8 (Product and coproduct). Given a family $(M^i)_{i\in I}$ of graded modules, their **product** $\prod_{i\in I} M^i$ (resp. **coproduct** $\coprod_{i\in I} M^i$) is the graded module $P = \bigoplus_{n\in \mathbb{Z}} P_n$ (resp. $C = \bigoplus_{n\in \mathbb{Z}} C_n$) defined by $P_n = \prod_{i\in I} M_n^i$ (resp. $P_n = \coprod_{i\in I} M_n^i$).

Note that $P \ncong \prod_{i \in I} M^i$ as A-modules in general (because products and coproducts do not commute). However, $C \cong \coprod_{i \in I} M^i$ as A-modules.

3.2 Complexes of modules

Definition 3.9 (Complex of modules). A (homological) complex of A-modules, also called a (homological) differential graded A-module is a graded A-module $M = \bigoplus_{n \in \mathbb{Z}} M_n$ together with a morphism of graded A-modules $d_M : M \to M[-1]$, called the differential, and satisfying $d_M \circ d_M = 0$.

In other words, a complex of A-modules if a sequence

$$\cdots \xrightarrow{d_{n+2}} M_{n+1} \xrightarrow{d_{n+1}} M_n \xrightarrow{d_n} M_{n-1} \xrightarrow{d_{n-1}} \cdots,$$

s.t. $d_n \circ d_{n+1} = 0$ for all n.

A morphism between two complexes of A-modules (M, d_M) and (N, d_N) is a morphism of graded A-modules $f: M \to N$ s.t. $d_N \circ f = f \circ d_M$. We denote by $\operatorname{Hom}_{\operatorname{dg} A}(M, N)$ the set of such morphisms. This defines the category $\operatorname{\mathbf{DGMod}} A$ of complexes of A-modules.

Definition 3.10 (Subcomplex). A subcomplex of a complex (M, d_M) is a graded submodule N of M s.t. $d_M(N) \subseteq N$. In this case, both N and M/N can be endowed with the structure of a complex of modules.

Example 3.11. Let (M, d_M) and (N, d_N) be two complexes. Then the graded module $\mathcal{H}om_{gr A}(M, N)$ can be endowed with a structure of complex given by

$$d(f) = d_{N[k]} \circ f - f \circ d_M,$$

for $f \in \mathcal{H}om_{\operatorname{gr} A}(M, N)_k = \operatorname{Hom}_{\operatorname{gr} A}(M, N[k])$.

Note that a morphism of complexes $(M, d_M) \to (N, d_N)$ is precisely an element of $\operatorname{Ker} d \subseteq \operatorname{\mathcal{H}om}_{\operatorname{gr} A}(M, N)$.

Definition 3.12 (Homology groups). Let (M, d_M) be a complex of modules. Then its n-th homology group is the module

$$H_n(M, d_M) = \operatorname{Ker} d_n / \operatorname{Im} d_{n+1}.$$

The graded module $H(M, d_M) = \bigoplus_{n \in \mathbb{Z}} H_n(M, d_M)$ is called the **total homology group**.

Proposition 3.13. Given a morphism $f:(M,d_M)\to (N,d_N)$ of complexes, there is an induced morphism of graded modules $H(f):H(M,d_M)\to H(N,d_N)$. This defines a functor

$$H: \mathbf{DGMod}A \to \mathbf{GMod}A.$$

- **Definition 3.14** (Quasi-isomorphisms, exact complexes, etc.). A morphism of complexes $f: (M, d_M) \to (N, d_N)$ is called a **quasi-isomorphism** if $H(f): H(M, d_M) \to H(N, d_N)$ is an isomorphism.
 - A complex (M, d_M) is said to be **exact** (or **acyclic**) if $H(M, d_M) = 0$, i.e. the zero morphism $(0,0) \to (M, d_M)$ is a quasi-isomorphism.
 - A complex (M, d_M) is said to be **split** if there is a homogeneous element $h \in \mathcal{H}om_{gr\,A}(M, M)_1$ s.t. $d_M = d_M \circ h \circ d_M$. In other words, there is a family $(h_n : M_n \to M_{n+1})$ of morphisms of modules s.t. $d_{n+1} \circ h_n \circ d_{n+1} = d_{n+1}$.
 - A complex is called **split exact** if it is split and exact.

Remark 3.15. Given a complex (M, d_M) and $k \in \mathbb{Z}$, its shift M[k] can be equipped with the structure of a complex given by

$$d_{M[k]} \circ s_{M,k}(m) = (-1)^k s_{M[-1],k} (d_M(m)).$$

This defines a functor $(-)[k] : \mathbf{DGMod}A \to \mathbf{DGMod}A$.

3.3 Snake Lemma and long exact sequences

Lemma 3.16 (Snake Lemma). Suppose given a black commutative diagram of modules with exact rows:

Then there exist red morphisms making the red sequence exact. In addition, we have the following facts:

- (i) The morphism ∂ is defined as follows: given $m'' \in \text{Ker } f''$, there exists $m \in M$ s.t. m'' = p(m); then $f(m) \in \text{Ker } q = \text{Im } j$, so there exists $n' \in N'$ s.t. f(m) = j(n'); we set $\partial(m'') = [n'] \in \text{Coker } f'$.
- (ii) If i is injective, then so is $\operatorname{Ker} f' \to \operatorname{Ker} f$.
- (iii) If q is surjective, then so is Coker $f \to \text{Coker } f''$.
- (iv) The morphism ∂ is natural, i.e. given two black commutative diagrams as above fitting into one three-dimensional commutative diagram, we get a commutative diagram of red exact sequences.

Theorem 3.17. Consider a short exact sequence of complexes of modules:

$$0 \to (M', d') \xrightarrow{f} (M, d) \xrightarrow{g} (M'', d'') \to 0.$$

Then there are morphisms $\partial_n: H_n(M'', d'') \to H_{n-1}(M', d')$ of modules (called the **connecting** morphisms), s.t. the sequence

$$\cdots \to H_n\left(M',d'\right) \xrightarrow{H_n\left(f\right)} H_n\left(M,d\right) \xrightarrow{H_n\left(g\right)} H_n\left(M'',d''\right) \xrightarrow{\partial_n} H_{n-1}\left(M',d'\right) \to \cdots$$

is exact.

Moreover, the connecting morphisms are natural.

Proof. Apply the Snake Lemma to the following diagram:

$$\operatorname{Coker} d'_{n+1} \xrightarrow{\overline{f}_n} \operatorname{Coker} d_{n+1} \xrightarrow{\overline{g}_n} \operatorname{Coker} d''_{n+1} \longrightarrow 0$$

$$\overline{d}'_n \downarrow \qquad \overline{d}'_n \downarrow \qquad \overline{d}''_n \downarrow$$

$$0 \longrightarrow \operatorname{Ker} d'_{n-1} \xrightarrow{f_{n-1}} \operatorname{ker} d_{n-1} \xrightarrow{g_{n-1}} \operatorname{Ker} d''_{n-1}$$

Definition 3.18 (Homotopy). Let $f, g: (M, d) \rightrightarrows (N, d')$ be two morphisms of complexes. A **homotopy** from f to g is a homogeneous element $h \in \mathcal{H}om_{\operatorname{gr} A}(M, N)_1$ s.t. d(h) = f - g, or in other words, a family $(h_n: M_n \to N_{n+1})_{n \in \mathbb{Z}}$ of morphisms of modules s.t.

$$d'_{n+1} \circ h_n + h_{n-1} \circ d_n = f_n - g_n.$$

We then say that f and g are **homotopic**, and we write $f \sim g$. This defines an equivalence relation on $\operatorname{Hom}_{\operatorname{dg} A}(M, N)$.

A homotopy inverse of a morphism $f:(M,d) \to (N,d')$ is a morphism $g:(N,d') \to (M,d)$ satisfying $g \circ f \sim \mathrm{id}_M$ and $f \circ g \sim \mathrm{id}_N$. We then say that f and g are homotopy equivalences.

Example 3.19. A complex (M, d_M) is split exact iff $id_M \sim 0$.

Lemma 3.20. (i) If two morphisms $f, g: (M, d) \Rightarrow (N, d')$ are homotopic, then H(f) = H(g).

(ii) If two complexes (M,d) and (N,d') are homotopy equivalent, then $H(M,d) \cong H(N,d')$.

4 Derived functors

4.1 Projective and injective resolutions

Proposition 4.1. Given an A-module M and a short exact sequence of A-modules

$$0 \to N' \xrightarrow{f} N \xrightarrow{g} N'' \to 0.$$

the following sequences of \mathbb{Z} -modules are exact:

- (i) $0 \to \operatorname{Hom}_A(M, N') \xrightarrow{f_*} \operatorname{Hom}_A(M, N) \xrightarrow{g_*} \operatorname{Hom}_A(M, N''),$
- (ii) $0 \to \operatorname{Hom}_A(N'', M) \xrightarrow{g^*} \operatorname{Hom}_A(N, M) \xrightarrow{f^*} \operatorname{Hom}_A(N', M)$.

Definition 4.2 (Projective and injective modules). An A-module M is called **projective** (resp. injective) if the functor $\operatorname{Hom}_A(M,\cdot)$ (resp. $\operatorname{Hom}_A(\cdot,M)$) is right exact.

Theorem 4.3. An A-module M is projective iff it is a free summand of a free A-module.

Proof. See Theorem 2.18. \Box

Lemma 4.4 (Enough projectives and injectives). Let M be an A-module.

- (i) There exists a projective (and in fact, free) A-module F together with an epimorphism F woheadrightarrow M.
- (ii) There exists an injective A-module I together with a monomorphism $M \rightarrow I$.

Proof. (i) Consider the free module F(M) on M together with the morphism $F(M) \to M$ given by $m \mapsto m$. (ii) Denote by M^{\wedge} the Pontryagin dual of M (c.f. Definition 2.28) and consider $I(M) = \operatorname{Hom}_{\mathbb{Z}}\left(A, \prod_{f \in M^{\wedge}} \mathbb{Q}/\mathbb{Z}\right)$ together with the morphism $i_M : M \to I(M)$ given by $i_M(m)(a) = (f(am))_{f \in M^{\wedge}}$.

Definition 4.5 (Resolution). Let M be an A-module. A **left resolution** (resp. **right resolution**) of M is a complex (P, d_P) (resp. (I, d_I)) of A-modules s.t.

- $P_n = 0$ for n < 0 (resp. $I_n = 0$ for n > 0),
- $H_n(P, d_P) = 0$ for n > 0 (resp. $H_n(I, d_I) = 0$ for n < 0),
- There is a surjective morphism $\varepsilon: P_0 \to M$, called the **augmentation**, and whose kernel is the image of $d_1: P_1 \to P_0$ (resp. an injective morphism $\eta: M \to I_0$, called the **coaugmentation**, and whose image is the kernel of $d_0: I_0 \to I_{-1}$).

In other words, a left resolution is an exact complex

$$\cdots \xrightarrow{d_3} P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\varepsilon} M \to 0,$$

which shall be denoted by $\varepsilon: P_{\bullet} \to M$, and a right resolution is an exact complex

$$0 \to M \xrightarrow{\eta} I_0 \xrightarrow{d_0} I_{-1} \xrightarrow{d_{-1}} I_{-2} \xrightarrow{d_{-2}} \cdots$$

which shall be denoted by $\eta: M \to I_{\bullet}$.

We say that a resolution (P, d_P) is **projective** (resp. **injective**) if P_n is projective (resp. **injective**) for all $n \in \mathbb{Z}$.

- **Lemma 4.6** (Existence of projective and injective resolutions). (i) Given an A-module M, there is a projective resolution $\varepsilon_M : P(M) \to M$ and an injective resolution $\eta_M : M \to E(M)$.
 - (ii) If $f: M \to N$ is a morphism of A-modules, then there are morphisms of complexes $P(f): P(M) \to P(N)$ and $E(f): E(M) \to E(N)$ s.t. $\varepsilon_N \circ P(f)_0 = f \circ \varepsilon_M$ and $\eta_N \circ f = E(f)_0 \circ \eta_M$. This defines functors $P: \mathbf{Mod}A \to \mathbf{GMod}A$ and $E: \mathbf{Mod}A \to \mathbf{GMod}A$.

Proof. Apply Lemma 4.4 inductively for (i). Use the explicit forms of the given resolutions for (ii). \Box

Lemma 4.7 (Comparison Lemma). Let $\varepsilon_P : P_{\bullet} \to M$ be a projective (not necessarily exact) complex with $P_n = 0$ for n < 0, and let $\varepsilon_Q : Q_{\bullet} \to N$ be a left (not necessarily projective) resolution of N.

Given a morphism of A-modules $f: M \to N$, there is a morphism of complexes $F: (P, d_P) \to (Q, d_Q)$ s.t. $f \circ \varepsilon_P = \varepsilon_Q \circ F_0$. Moreover, F is unique up to homotopy.

In other words, we have the following commutative diagram:

$$\cdots \xrightarrow{d_3} P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\varepsilon_P} M$$

$$F_2 \downarrow \qquad F_1 \downarrow \qquad F_0 \downarrow \qquad f \downarrow$$

$$\cdots \xrightarrow{d_3} Q_2 \xrightarrow{d_2} Q_1 \xrightarrow{d_1} Q_0 \xrightarrow{\varepsilon_Q} N \longrightarrow 0$$

Moreover, the dual result holds for injectives.

Proof. Construct the morphisms F_n inductively, using the projectivity of the P_n .

Lemma 4.8 (Horseshoe Lemma). Let $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ be an exact sequence of A-modules. Let $\varepsilon': P'_{\bullet} \to M'$ and $\varepsilon'': P''_{\bullet} \to M''$ be projective resolutions. Then there is a projective resolution $\varepsilon: P_{\bullet} \to M$ s.t. $P_n = P'_n \oplus P''_n$ for all $n \in \mathbb{Z}$, and the following diagram commutes (and has exact rows and columns):

Moreover, this construction is natural.

The dual result holds for injectives.

4.2 Universal δ -functors

Notation 4.9. From now on, we consider two abelian categories A and B.

Definition 4.10 (Homological δ -functor). A homological (resp. cohomological) δ -functor $\mathbf{A} \to \mathbf{B}$ is a family of additive functors $(T_n : \mathbf{A} \to \mathbf{B})_{n \in \mathbb{Z}}$ (resp. $(T^n : \mathbf{A} \to \mathbf{B})_{n \in \mathbb{Z}}$) s.t. $T_n = 0$ (resp. $T^n = 0$) for all n < 0, together with morphisms $(\delta_n : T_n(M'') \to T_{n-1}(M'))_{n \in \mathbb{Z}}$ (resp. $(\delta^n : T^n(M'') \to T^{n+1}(M'))_{n \in \mathbb{Z}}$) for any short exact sequence $0 \to M' \to M \to M'' \to 0$ in \mathbf{A} . We assume that, given a commutative diagram

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

$$\alpha \downarrow \qquad \beta \downarrow \qquad \gamma \downarrow$$

$$0 \longrightarrow N' \xrightarrow{h} N \xrightarrow{k} N'' \longrightarrow 0$$

with exact rows in A, the diagram

$$\cdots \longrightarrow T_{n+1}(M'') \xrightarrow{\delta_{n+1}} T_n(M') \xrightarrow{T_n(f)} T_n(M) \xrightarrow{T_n(g)} T_n(M'') \xrightarrow{\delta_n} \cdots$$

$$F_2 \downarrow F_1 \downarrow F_0 \qquad f \downarrow \qquad \downarrow$$

$$\cdots \longrightarrow T_{n+1}(N'') \xrightarrow{\delta_{n+1}} T_n(N') \xrightarrow{T_n(h)} T_n(N) \xrightarrow{T_n(k)} T_n(N'') \xrightarrow{\delta_n} \cdots$$

is commutative with exact rows (and similarly in the cohomological case). In particular, this implies that T_0 (resp. T^0) is right (resp. left) exact.

Example 4.11. Let A be a commutative ring and $a \in A$. Let $T_0, T_1 : \mathbf{Mod}A \to \mathbf{Mod}A$ be the functors given by $T_0(M) = M/aM$ and $T_1(M) = \{m \in M, am = 0\}$, and let $T_n = 0$ for $n \notin \{0, 1\}$. Then $(T_n : \mathbf{Mod}A \to \mathbf{Mod}A)_{n \in \mathbb{Z}}$ is a homological δ -functor.

Definition 4.12 (Morphism of δ -functors). Let $T_n, U_n : \mathbf{A} \to \mathbf{B}$ be two homological δ -functors with connecting morphisms $\delta_{T,n}, \delta_{U,n}$. A **morphism** of homological δ -functors is a family of natural transformations $(t_n : T_n \to U_n)_{n \in \mathbb{Z}}$ s.t. given any short exact sequence $0 \to M' \to M \to M'' \to 0$ in \mathbf{A} , the following diagram commutes:

$$T_{n}\left(M''\right) \xrightarrow{\delta_{T,n}} T_{n-1}\left(M'\right)$$

$$t_{n}\left(M''\right) \downarrow \qquad \qquad \downarrow t_{n}\left(M'\right)$$

$$U_{n}\left(M''\right) \xrightarrow{\delta_{U,n}} U_{n-1}\left(M'\right)$$

The definition is similar for cohomological δ -functors.

Definition 4.13 (Universal δ -functor). A homological (resp. cohomological) δ -functor $(T_n)_{n\in\mathbb{Z}}$ (resp. $(T^n)_{n\in\mathbb{Z}}$) is called **universal** if given any homological (resp. cohomological) δ -functor $(U_n)_{n\in\mathbb{Z}}$ (resp. $(U^n)_{n\in\mathbb{Z}}$) and natural transformation $t_0: U_0 \to T_0$ (resp. $t^0: T^0 \to U^0$), there exists a unique morphism of homological (resp. cohomological) δ -functor $U_n \to T_n$ (resp. $T^n \to U^n$) extending t_0 (resp. t^0).

Example 4.14. The homological δ -functor of Example 4.11 is universal.

Example 4.15. Let **A** be the subcategory of **DGMod**A given by the complexes (M, d_M) of A-modules with $M_n = 0$ for n < 0. Then $(H_n : \mathbf{A} \to \mathbf{Mod}A)_{n \in \mathbb{Z}}$ is a universal δ -functor.

Definition 4.16 (Erasable functor). An additive functor $F : \mathbf{A} \to \mathbf{B}$ of abelian categories is said to be **erasable** (resp. **coerasable**) if for every object $M \in \mathbf{A}$, there exists an epimorphism $\varepsilon : P \to M$ (resp. a monomorphism $\eta : M \rightarrowtail I$) s.t. $F(\varepsilon) = 0$ (resp. $F(\eta) = 0$).

Proposition 4.17. Let $T_n : \mathbf{A} \to \mathbf{B}$ (resp. $T^n : \mathbf{A} \to \mathbf{B}$) be a homological (resp. cohomological) δ -functor s.t. T_n is erasable (resp. T^n is coerasable) for all $n \ge 1$. Then $(T_n)_{n \in \mathbb{Z}}$ (resp. $(T^n)_{n \in \mathbb{Z}}$) is universal.

Proof. We prove the proposition in the homological case. Let $(U_n)_{n\in\mathbb{Z}}$ be a homological δ -functor together with a natural transformation $t_0:U_0\to T_0$. Assume we have constructed natural transformations $t_i:U_i\to T_i$ for $0\leqslant i< n$ for some n, satisfying the commutativity condition in the definition of morphisms of δ -functors. Given $N\in \mathbf{A}$, since T_n is erasable, there exists an epimorphism $g:P\twoheadrightarrow N$ s.t. $T_n(g)=0$. Consider the short exact sequence $0\to K\to P\to N\to 0$ in \mathbf{A} . We then have the commutative diagram

$$U_{n}\left(N\right) \xrightarrow{\delta_{U,n}} U_{n-1}(K) \xrightarrow{U_{n-1}(i)} U_{n-1}(P)$$

$$\downarrow t_{n-1}(K) \qquad \downarrow t_{n-1}(P)$$

$$T_{n}\left(P\right) \xrightarrow{T_{n}\left(g\right)} T_{n}\left(N\right) \xrightarrow{\delta_{T,n}} T_{n-1}\left(K\right) \xrightarrow{T_{n-1}(i)} T_{n-1}(P)$$

with exact rows. Chasing the diagram, we construct a morphism $t_n(N): U_n(N) \to t_n(N)$ in **B**, and we check that is is independent of the choice of $g: P \to N$. This gives a natural transformation $t_n: U_n \to T_n$. Then do all the verifications to check that we obtain a morphism of δ -functors.

4.3 Derived functors

Definition 4.18 (Enough projectives and injectives). We say that an abelian category \mathbf{A} has **enough projectives** (resp. **injectives**) if for all objects $M \in \mathbf{A}$, there is a projective object $P \in \mathbf{A}$ (resp. an injective object $I \in \mathbf{A}$) together with an epimorphism $P \to M$ (resp. a monomorphism $M \to I$).

Notation 4.19. When considering left (resp. right) derived functors, we assume that **A** has enough projectives (resp. injectives).

Definition 4.20 (Derived functors). Let $F: \mathbf{A} \to \mathbf{B}$ be an additive right exact (resp. left exact) functor. Let $\varepsilon_P: (P, d_P) \to M$ (resp. $\eta_I: M \to (I, d_I)$) be a projective (resp. injective) resolution of M in \mathbf{A} . We define the left (resp. right) derived functors at M as

$$L_n F(M) = H_n \left(F(P), F(d_P) \right)$$

(resp. $R^n F(M) = H^n(F(I), F(d_I))$). This is well-defined because two resolutions of M are homotopy equivalent by the Comparison Lemma (Lemma 4.7).

Remark 4.21. Let $\mathbf{A} \xrightarrow{F} \mathbf{B} \xrightarrow{G} \mathbf{C}$ be additive functors.

- (i) If $M \in \mathbf{A}$ is projective (resp. injective), then $L_nF(M) = 0$ (resp. $R^nF(M) = 0$) for all $n \ge 1$.
- (ii) If F is right (resp. left) exact, then, then $L_0F \cong F$ (resp. $R^0F \cong F$).
- (iii) if F is exact, then $L_nF = 0$ (resp. $R^nF = 0$) for $n \ge 1$.
- (iv) If F is right (resp. left) exact and G is exact, then $L_n(G \circ F) \cong G \circ L_n F$ (resp. $R^n(G \circ F) \cong G \circ R^n F$) for all $n \geqslant 0$.

Definition 4.22 (Acyclic objects and resolutions). Given an additive right (resp. left) exact functor $F: \mathbf{A} \to \mathbf{B}$, we say that an object $M \in \mathbf{A}$ is F-acyclic if $L_nF(M) = 0$ (resp. $R^nF(M) = 0$) for all $n \ge 1$.

A projective (resp. injective) resolution is F-acyclic if all its objects are F-acyclic.

Lemma 4.23. Let $F : \mathbf{A} \to \mathbf{B}$ be an additive right (resp. left) exact functor. Given a morphism $f : M \to N$ in \mathbf{A} , there exist natural morphisms $L_nF(f) : L_nF(M) \to L_nF(N)$ (resp. $R^nF(f) : R^nF(M) \to R^nF(N)$) for all $n \ge 0$ that makes L_nF (resp. R^nF) an additive functor.

Theorem 4.24. Let $F: \mathbf{A} \to \mathbf{B}$ be an additive right (resp. left) exact functor. Then the derived functors $L_n F: \mathbf{A} \to \mathbf{B}$ (resp. $R^n F: \mathbf{A} \to \mathbf{B}$) for $n \ge 0$ form a universal homological (resp. cohomological) δ -functor.

Proof. This follows from the application of Theorem 3.17 to the short exact sequence given by the Horseshoe Lemma (Lemma 4.8).

4.4 Tor and Ext groups

Definition 4.25 (Tor and Ext). (i) Let $M \in \mathbf{Mod}A^{\mathrm{op}}$. The functor $M \otimes (-) : \mathbf{Mod}A \to \mathbf{Mod}\mathbb{Z}$ is right exact, and we define the **torsion groups**

$$\operatorname{Tor}_{n}^{A}(M,N) = L_{n}(M \otimes (-))(N).$$

In fact, $\operatorname{Tor}_n^A(M, N) \cong L_n((-) \otimes N)(M)$ for all $n \geqslant 0$, where $(-) \otimes N : \operatorname{\mathbf{Mod}} A^{\operatorname{op}} \to \operatorname{\mathbf{Mod}} \mathbb{Z}$ is right exact.

(ii) Let $M \in \mathbf{Mod}A$. The functor $\mathrm{Hom}_A(M,-): \mathbf{Mod}A \to \mathbf{Mod}\mathbb{Z}$ is left exact, and we define the **extension groups**

$$\operatorname{Ext}_{A}^{n}\left(M,N\right)=R^{n}\operatorname{Hom}_{A}\left(M,-\right)\left(N\right).$$

In fact, $\operatorname{Ext}_{A}^{n}(M, N) \cong R^{n} \operatorname{Hom}(-, N)(M)$ for all $n \geqslant 0$, where $\operatorname{Hom}(-, N) : (\operatorname{\mathbf{Mod}} A)^{\operatorname{op}} \to \operatorname{\mathbf{Mod}} \mathbb{Z}$ is left exact.

References

- [1] I. Assem. Algèbres et Modules.
- [2] C. A. Weibel. An Introduction to Homological Algebra.