

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

FORM PENGAJUAN JUDUL : Neha Sabila Nazmira Sitorus Nama **NIM** : 211402090 Dosen Judul diajukan oleh* Mahasiswa 1. Data Science and Intelligent System Bidang Ilmu (tulis dua bidang) 2. Computer Graphics and Vision Uji Kelayakan Judul** Diterima Ditolak Hasil Uji Kelayakan Judul: Calon Dosen Pembimbing I: Umaya Ramadhani Putri, S.Kom., M.Kom. Paraf Calon Dosen Pembimbing I (Jika judul dari dosen maka dosen tersebut berhak menjadi pembimbing I) Calon Dosen Pembimbing II: Fanindia Purnamasari, S.TI., M.IT.

Medan, 10 Januari 2025 Ka. Laboratorium Penelitian,

^{*} Centang salah satu atau keduanya

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

RINGKASAN JUDUL YANG DIAJUKAN

	wah ini diisi oleh mahasiswa yang sudah mendapat judul						
Judul / Topik	PREDIKSI JUMLAH EMISI KARBON DIOKSIDA (CO2) BERDASARKAN						
Skripsi	SPESIFIKASI PADA KENDARAAN MENGGUNAKAN METODE EXTREME						
	GRADIENT BOOSTING (XGBOOST)						
Latar Belakang dan Penelitian	Latar Belakang						
Terdahulu	Perubahan iklim global telah menjadi masalah mendesak yang berdampak pada						
	ekosistem, kesehatan manusia, dan perekonomian di seluruh dunia. Salah satu penyebab						
	utamanya adalah emisi gas rumah kaca, khususnya karbon dioksida (CO2) yang						
	dihasilkan oleh berbagai aktivitas manusia, termasuk transportasi (Jainal et al., 2022).						
	Dalam Peraturan Menteri Lingkungan Hidup Nomor 12 Tahun 2010 emisi didefinisikan						
	sebagai zat, energi, dan/atau komponen lain yang dihasilkan dari suatu aktivitas yang						
	dapat masuk ke lingkungan dan berpotensi menjadi polutan. Emisi karbon mengacu pada						
	hasil sisa pembakaran bahan bakar yang dilepaskan melalui sistem pembuangan mesin						
	(Nestiti, 2017).						
	Di Indonesia, sektor transportasi menyumbang hampir 30% dari total emisi karbon						
	dioksida (CO2) yang dihasilkan, dengan mayoritas, yaitu sekitar 88%, berasal dari						
	transportasi darat. Transportasi darat ini didominasi oleh penggunaan bahan bakar						
	minyak (BBM), yang mencapai pangsa hingga 99,97%. Data ini menunjukkan bahwa						
	sektor transportasi, khususnya transportasi darat, memiliki kontribusi yang sanga						
	signifikan terhadap produksi emisi karbon di negara ini. Dengan tinggi						
	ketergantungan pada BBM, sektor ini memainkan peran kunci dalam peningkatan en						
	gas rumah kaca, yang pada akhirnya berdampak pada perubahan iklim. Oleh karena itu,						
	diperlukan upaya strategis untuk mengurangi emisi dari sektor transportasi, baik melalui						
	pengembangan teknologi ramah lingkungan, transisi ke energi bersih, maupun perbaikan						
	sistem transportasi secara keseluruhan (Anindya & Handayeni, 2024).						
	2-2-1						
	Setiap jenis kendaraan memiliki spesifikasi unik, seperti jenis transmisi, kelas						
	kendaraan, jumlah silinder, dan tingkat konsumsi bahan bakar. Faktor-faktor ini						

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

menyebabkan jumlah emisi karbon yang dihasilkan oleh tiap tipe kendaraan berbedabeda. Selain itu, jenis bahan bakar yang digunakan juga memberikan pengaruh yang signifikan terhadap besarnya emisi. Sebagai contoh, kendaraan yang menggunakan bahan bakar Pertamax Turbo cenderung menghasilkan emisi karbon yang lebih rendah dibandingkan dengan kendaraan yang menggunakan bahan bakar Pertalite. Perbedaan ini menunjukkan pentingnya pemilihan bahan bakar yang lebih ramah lingkungan untuk mengurangi dampak negatif terhadap lingkungan (Sanusi et al., 2019).

Penelitian oleh (Asgaryansyah & Paniran, 2024) yang bertujuan untuk mengembangkan model prediktif menggunakan algoritma regresi linier untuk mengukur emisi CO2 kendaraan bermotor berdasarkan jenis bahan bakar (premium, bensin, diesel, etanol) dan jarak tempuh. Dataset mencakup variabel seperti kombinasi konsumsi bahan bakar di jalan raya, emisi CO2, dan jenis bahan bakar. Hasil penelitian menunjukkan model regresi linier memiliki akurasi tinggi, dengan tipe bahan bakar diesel memberikan performa terbaik dengan nilai MSE mencapai 0,5621 sedangkan untuk R2 bernilai 0.9965 menunjukkan bahwa hampir semua variabilitas dalam y dapat dijelaskan oleh variabel x.

Penelitian terkait lainnya oleh (Ji et al., 2024) yang bertujuan untuk memprediksi emisi CO2 dan kebutuhan energi di sektor transportasi China berdasarkan variabel seperti populasi, kilometer kendaraan, tahun, dan PDB per kapita. Metode yang digunakan meliputi algoritma jaringan saraf tiruan (ANN), dan Support Vector Machines (SVM), serta model matematika regresi linier dan eksponensial. Hasil menunjukkan bahwa algoritma SVM memiliki performa terbaik dalam prediksi emisi CO2, sementara ANN unggul dalam memprediksi kebutuhan energi. Secara keseluruhan, semua model menunjukkan prediksi yang akurat, dengan rata-rata peningkatan tahunan konsumsi energi transportasi sebesar 3,8% dan emisi CO2 sebesar 3,66%.

Adapun metode yang diusulkan pada penelitian ini menggunakan metode Extreme Gradient Boosting Regression. XGBoost secara iteratif menggabungkan prediksi dari beberapa pohon lemah untuk membentuk model yang memiliki performa tinggi (Zhou

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

et al., 2020). Metode ini bisa digunakan untuk penyelesaian klasifikasi maupun regresi (Osman et al., 2021). XGBoost Regression adalah pengembangan lanjutan dari algoritma gradient boosting. Metode ini menggunakan model yang lebih terstruktur untuk membangun pohon regresi, sehingga dapat meningkatkan performa sekaligus mengurangi kompleksitas model untuk menghindari overfitting. Prediksi akhir XGBoost diperoleh dengan menjumlahkan hasil prediksi dari setiap pohon regresi. Algoritma ini sangat efektif pada data dengan fitur kategorikal dan tetap menunjukkan kinerja yang baik meskipun menghadapi data dengan kelas yang tidak seimbang (Chairunisa et al., 2024).

Penelitian yang menggunakan metode XGBoost juga telah banyak dilakukan. Pada penelitian yang dilakukan oleh (Chairunisa et al., 2024) untuk memprediksi angka harapan hidup melalui model yang paling akurat dengan menggunakan model decision tree regression, random forest regression, gradient boosting regression, dan XGBoost regression. Model XGBoost regression mengalami peningkatan setelah tuning, dengan RMSE berkurang dari 2.77 menjadi 2.57 dan R² meningkat dari 0.85 menjadi 0.87.

Berdasarkan dari latar belakang dan penelitian terdahulu, maka penulis mengajukan penelitian untuk memprediksi jumlah emisi karbon dioksida (CO2) pada kendaraan dengan judul "Prediksi Jumlah Emisi Karbon Dioksisda (CO2) Berdasarkan Spesifikasi Pada Kendaraan Menggunakan Metode Extreme Gradient Boosting (XGBoost)".

Penelitian Terdahulu

No.	Penulis	Tahun	Metode	Keterangan	
1.	Asgaryansyah	2024	Linear	Mengembangkan model prediktif	
	& Paniran		Regression	on menggunakan regresi linier untuk	
				mengukur emisi CO2 kendaraan	
				berdasarkan jenis bahan bakar dan	
				konsumsi bahan bakar. Dataset	
				mencakup variabel seperti	

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

				konsumsi bahan bakar di jalan raya, jenis bahan bakar, dan emisi
				CO2. Hasil menunjukkan model
				regresi linier akurat, dengan bahan
				bakar diesel memberikan
				performa terbaik dengan nilai
				MSE 0,5621.
2.	Ji et al	2024	ANN,	Memprediksi emisi CO2 dan
			SVM	kebutuhan energi transportasi di
				China menggunakan variabel
				seperti populasi, jarak tempuh
				kendaraan, tahun, dan PDB per
				kapita. Metode yang digunakan
				meliputi ANN, SVM, serta regresi
				linier dan eksponensial. SVM
				unggul dalam prediksi emisi CO2,
				sementara ANN lebih baik untuk
				kebutuhan energi.
3.	Suwandi et al	2022	SARIMA	Peramalan emisi karbon dunia
			dan LSTM	dengan membandingkan performa
				metode SARIMA dan LSTM
				menggunakan data emisi karbon
				Amerika Utara dari tahun 1949
				hingga 2018. Data dianalisis sebagai time series untuk
				mengidentifikasi pola historis.
				Hasil evaluasi menunjukkan
				bahwa model LSTM, dengan nilai
				MAPE 0,540%, lebih akurat
				dibandingkan SARIMA yang
				memiliki MAPE 1,995%. Hal ini
				1,775/0. Hui III

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

				menunjukkan bahwa LSTM lebih
				optimal untuk memprediksi emisi
				karbon.
4.	Chairunisa et	2024	Decision	Penelitian dilakukan untuk
	al		Tree	memprediksi angka harapan hidup
			Regression,	menggunakan berbagai metode
			Random	seperti decision tree regression,
			Forest	random forest regression, gradient
			Regression,	boosting regression, dan XGBoost
			Gradient	regression. Setelah tuning,
			Boosting	performa XGBoost regression
			Regression,	meningkat, dengan RMSE turun
			dan	dari 2,77 menjadi 2,57 dan R² naik
			XGBoost	dari 0,85 menjadi 0,87.
			Regression	
5.	Prastiyo &	2024	XGBoost	Memprediksi tingkat kemiskinan
	Febriandirza		dan	di DKI Jakarta menggunakan data
			Random	dari Badan Pusat Statistik (BPS)
			Forest	untuk periode 2010–2023. Hasil
			Regression	menunjukkan bahwa XGBoost
				Regression lebih unggul di
				wilayah Kepulauan Seribu,
				dengan MAPE sebesar 4,4938
				dibandingkan Random Forest
				yang memiliki MAPE 4,5652.
				Selain itu, XGBoost Regression
				memiliki nilai MSE lebih rendah,
				yaitu 0,446641 dibandingkan
				0,489093 pada Random Forest.

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

6.	Syahreza et al	2024	Random	Memprediksi cuaca menggunakan
			Forest,	data meteorologi (suhu minimum,
			Support	suhu maksimum, curah hujan,
			Vector	arah angin, dan kelembaban rata-
			Regression,	rata), dengan total 1650 data per
			dan	variabel. Hasil menunjukkan
			XGBoost	bahwa XGBoost memberikan
				performa terbaik dibandingkan
				dengan model lainnya dengan
				MAE 0,3744, MSE 0,2278, dan R ²
				0,8183.
L	<u> </u>			

Perbedaan penelitian dengan yang sebelumnya yaitu terletak pada data serta metode yang digunakan. Penelitian ini berfokus pada memprediksi jumlah emisi yaitu CO2 pada kendaraan mobil atau kendaraan beroda empat. Data yang digunakan pada penelitian ini mencakup data spesifikasi kendaraan seperti perusahaan kendaraan, jenis mobil, kelas mobil, jenis transmisi, ukuran mesin, jumlah silinder, tipe bahan bakar, serta konsumsi bahan bakar di kota dan di tol. Metode yang digunakan pada penelitian ini adalah menggunakan extreme gradient boosting yang diketahui belum digunakan pada penelitian sebelumnya dalam memprediksi emisi karbon pada kendaraan.

Rumusan Masalah

Tingginya emisi Karbon Dioksida (CO2) yang dihasilkan terutama dari sektor transportasi darat telah menjadi perhatian serius dalam mitigasi perubahan iklim global. Perbedaan spesifikasi kendaraan, seperti jenis bahan bakar, konsumsi bahan bakar, jenis transmisi, serta konfigurasi mesin, menyebabkan variasi signifikan dalam jumlah emisi yang dihasilkan. Untuk mengatasi masalah ini, diperlukan sistem prediksi yang dapat memperkirakan emisi CO2 yang dihasilkan oleh kendaraan secara akurat. Sistem ini tidak hanya membantu pembuat kebijakan mengelola emisi, tetapi juga membantu pengguna kendaraan memilih opsi yang lebih ramah lingkungan dan efisien.

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

Berdasarkan metode yang digunakan, penelitian ini melewati beberapa tahapan pemrosesan. Tahapan pertama dengan melakukan pengumpulan data mengenai emisi CO2 yang dihasilkan oleh berbagai kendaraan mobil. Data tersebut berisi informasi berupa spesifikasi kendaraan seperti perusahaan kendaraan, jenis mobil, kelas mobil, jenis transmisi, ukuran mesin, jumlah silinder, tipe bahan bakar, konsumsi bahan bakar di kota dan di tol, serta total emisi CO2 yang dihasilkan. Setelah pengumpulan data, dilakukan tahap *pre-processing* untuk membersihkan dan mempersiapkan data sebelum masuk ke dalam proses pelatihan. Data cleaning bertujuan untuk membersihkan data

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

dengan menghapus informasi yang tidak relevan dan data duplikat, serta menangani missing value dengan mengisi berdasarkan nilai rata-rata atau median dari jumlah data. Data transformation mencakup encoding data kategorikal menjadi bentuk numerik dan data normalisasi membuat data memiliki rentang nilai yang sama sehingga membuat model menganalisis data menjadi cepat. Tahapan selanjutnya dilakukan proses pembagian data menjadi data training dan data testing. Setelah data dibagi, selanjutnya adalah pembuatan model dan melatih model menggunakan data training dengan mempertimbangkan menggunakan hyperparameter tuning. Ketika diberikan data testing, model akan menggunakan informasi dari data training untuk menghasilkan prediksi.

Referensi

- Asgaryansyah, N. K., & Paniran, N. P. (2024). Implementasi Algoritma Regresi Linier untuk Mengukur Tingkat Pengeluaran Co2 Pada Kendaraan Bermotor. *Deleted Journal*, 2(3), 84–93. https://doi.org/10.61132/mars.v2i3.132
- Anindya, A. I., & Handayeni, K. D. M. E. (2024). Pengaruh Perilaku Perjalanan Masyarakat Kawasan Pusat Kota Surabaya terhadap Produksi Emisi Karbon. *Jurnal Teknik ITS*, *13*(2). https://doi.org/10.12962/j23373539.v13i2.130199
- Chairunisa, G., Najib, M. K., Nurdiati, S., Imni, S. F., Sanjaya, W., Andriani, R. D., Henriyansah, N., Putri, R. S. P., & Ekaputri, D. (2024). Life expectancy prediction using decision tree, random forest, gradient boosting, and XGBooSt regressions. *Deleted Journal*, 2(2), 71–82. https://doi.org/10.62375/jsintak.v2i2.249
- Jainal, A., Erwina, A. H., Alwendi. (2022). Pentingnya Kesadaran Untuk Peduli Untuk Menjaga Dan Melestarikan Lingkungan. Jurnal Pengabdian Masyarakat. Vol 1. No. 3.
- Ji, T., Li, K., Sun, Q., & Duan, Z. (2024). Urban transport emission prediction analysis through machine learning and deep learning techniques. *Transportation Research Part D Transport and Environment*, 135, 104389. https://doi.org/10.1016/j.trd.2024.104389
- Nestiti, R. F. (2017). Perubahan emisi karbondioksida dengan pemindahan kendaraan pribadi ke kendaraan umum konvensional di Kota Surabaya. https://repository.its.ac.id/43326/
- Osman, A. I. A., Ahmed, A. N., Chow, M. F., Huang, Y. F., & El-Shafie, A. (2021).

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. *Ain Shams Engineering Journal*, 12(2), 1545–1556. https://doi.org/10.1016/j.asej.2020.11.011

- Prastiyo, I. W., & Febriandirza, A. (2024). Analisis Perbandingan Prediksi Tingkat Kemiskinan Menggunakan Metode XGBoost dan Random Forest Regression. *JURNAL MEDIA INFORMATIKA BUDIDARMA*, 8(3), 1694. https://doi.org/10.30865/mib.v8i3.7892
- Sanusi, M., Uloli, H., & Arafat, M. Y. (2019, December). PENGARUH VARIASIJENIS BAHAN BAKAR TERHADAP EMISI GAS BUANG PADA SEPEDA MOTOR VIXION 155cc VVA TIPE INJEKSI TAHUN 2018. In SemanTECH (Seminar Nasional Teknologi, Sains Dan Humaniora) (Vol. 1, No. 1, pp. 202-209).
- Suwandi, S. I. N., Tyasnurita, R., & Muhayat, H. (2022). Peramalan Emisi Karbon Menggunakan Metode SARIMA dan LSTM. *Journal of Computer Science and Informatics Engineering (J-Cosine)*, 6(1), 73-80.
- Syahreza, A., Ningrum, N. K., & Syahrazy, M. A. (2024). Perbandingan Kinerja Model Prediksi Cuaca: Random Forest, Support Vector Regression, dan XGBoost . *Edumatic: Jurnal Pendidikan Informatika*, 8(2), 526–534. https://doi.org/10.29408/edumatic.v8i2.27640
- Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Khandelwal, M., & Mohamad, E. T. (2020). Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. *Underground Space*, 6(5), 506–515. https://doi.org/10.1016/j.undsp.2020.05.008

Medan, 10 Januari 2025 Mahasiswa yang mengajukan,

Thing

(Neha Sabila Nazmira Siorus) NIM. 211402090