

Chapter 2 Bits, Data Types, and Operations

How do we represent data in a computer?

At the lowest level, a computer is an electronic machine.

works by controlling the flow of electrons

Easy to recognize two conditions:

- 1. presence of a voltage we'll call this state "1"
- 2. absence of a voltage we'll call this state "0"

Computer is a binary digital system.

Digital system:

finite number of symbols

Binary (base two) system:

has two states: 0 and 1

Basic unit of information is the *binary digit*, or *bit*. Values with more than two states require multiple bits.

- A collection of two bits has four possible states:
 00, 01, 10, 11
- A collection of three bits has eight possible states:
 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits has 2n possible states.

What kinds of data do we need to represent?

- Numbers signed, unsigned, integers, floating point, complex, rational, irrational, ...
- Text characters, strings, …
- Images pixels, colors, shapes, …
- Sound
- Logical true, false
- Instructions
- ...

Data type:

representation and operations within the computer

We'll start with numbers...

Unsigned Integers

Non-positional notation

- could represent a number ("5") with a string of ones ("11111")
- problems?

Weighted positional notation

- like decimal numbers: "329"
- "3" is worth 300, because of its position, while "9" is only worth 9

Unsigned Integers (cont.)

An *n*-bit unsigned integer represents 2^n values: from 0 to 2^n -1.

2 ¹	2 ⁰	
0	0	0
0	1	1
1	0	2
1	1	3
0	0	4
0	1	5
1	0	6
1	1	7
	0 0 1 1 0 0	0 0 0 1 1 0 0 0 0 1 1 0 0

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!

add from right to left, propagating carry

Subtraction, multiplication, division,...

Signed Integers

With n bits, we have 2ⁿ distinct values.

- assign about half to positive integers (1 through 2ⁿ⁻¹-1) and about half to negative (-(2ⁿ⁻¹-1) through -1)
- that leaves two values: one for 0, and one extra

Positive integers

 just like unsigned – zero in most significant (MS) bit 00101 = 5

Negative integers

- sign-magnitude set MS bit to show negative,
 other bits are the same as unsigned
 10101 = -5
- one's complement flip every bit to represent negative 11010 = -5
- in either case, MS bit indicates sign: 0=positive, 1=negative

Two's Complement

Problems with sign-magnitude and 1's complement

- two representations of zero (+0 and -0)
- arithmetic circuits are complex
 - How to add two sign-magnitude numbers?

$$- e.g., try 2 + (-3)$$

> How to add two one's complement numbers?

$$- e.g., try 4 + (-3)$$

Two's complement representation developed to make circuits easy for arithmetic.

 for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with "normal" addition, ignoring carry out

$$00101 (5)$$
 $01001 (9)$
+ $11011 (-5)$ + (-9)
 $00000 (0)$ $00000 (0)$

Two's Complement Representation

If number is positive or zero,

normal binary representation, zeroes in upper bit(s)

If number is negative,

- start with positive number
- flip every bit (i.e., take the one's complement)
- then add one

Two's Complement Shortcut

To take the two's complement of a number:

- copy bits from right to left until (and including) the first "1"
- flip remaining bits to the left

Two's Complement Signed Integers

MS bit is sign bit – it has weight -2^{n-1} .

Range of an n-bit number: -2^{n-1} through $2^{n-1} - 1$.

• The most negative number (-2ⁿ⁻¹) has no positive counterpart.

-2 ³	2 ²	2 ¹	2 ⁰		-2 ³	2 ²	2 ¹	2 ⁰	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Converting Binary (2's C) to Decimal

- 1. If leading bit is one, take two's complement to get a positive number.
- 2. Add powers of 2 that have "1" in the corresponding bit positions.
- 3. If original number was negative, add a minus sign.

$$X = 01101000_{two}$$

= $2^6+2^5+2^3=64+32+8$
= 104_{ten}

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Assuming 8-bit 2's complement numbers.

More Examples

$$X = 00100111_{two}$$

= $2^5+2^2+2^1+2^0=32+4+2+1$
= 39_{ten}

$$X = 11100110_{two}$$
 $-X = 00011010$
 $= 2^4+2^3+2^1 = 16+8+2$
 $= 26_{ten}$
 $X = -26_{ten}$

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Assuming 8-bit 2's complement numbers.

Converting Decimal to Binary (2's C)

First Method: Division

- 1. Find magnitude of decimal number. (Always positive.)
- 2. Divide by two remainder is least significant bit.
- 3. Keep dividing by two until answer is zero, writing remainders from right to left.
- 4. Append a zero as the MS bit; if original number was negative, take two's complement.

$X = 104_{ten}$	104/2 = 52 r0 bit 0
i i i i i i i i i i i i i i i i i i i	52/2 = 26 r0 bit 1
	26/2 = 13 r0 bit 2
	13/2 = 6 r1 bit 3
	6/2 = 3 r0 bit 4
	3/2 = 1 r1 bit 5
$X = 01101000_{two}$	1/2 = 0 r1 bit 6

Converting Decimal to Binary (2's C)

Second Method: Subtract Powers of Two

- 1. Find magnitude of decimal number.
- 2. Subtract largest power of two less than or equal to number.
- 3. Put a one in the corresponding bit position.
- 4. Keep subtracting until result is zero.
- 5. Append a zero as MS bit; if original was negative, take two's complement. 10 1024

0

3

16

32

64

128

Operations: Arithmetic and Logical

Recall:

a data type includes representation and operations.

We now have a good representation for signed integers, so let's look at some arithmetic operations:

- Addition
- Subtraction
- Sign Extension

We'll also look at overflow conditions for addition.

Multiplication, division, etc., can be built from these basic operations.

Logical operations are also useful:

- AND
- OR
- NOT

Addition

As we've discussed, 2's comp. addition is just binary addition.

- assume all integers have the same number of bits
- ignore carry out
- for now, assume that sum fits in n-bit 2's comp. representation

Assuming 8-bit 2's complement numbers.

Subtraction

Negate subtrahend (2nd no.) and add.

- assume all integers have the same number of bits
- ignore carry out
- for now, assume that difference fits in n-bit 2's comp. representation

Assuming 8-bit 2's complement numbers.

Sign Extension

To add two numbers, we must represent them with the same number of bits.

If we just pad with zeroes on the left:

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	00001100	(12, not -4)

Instead, replicate the MS bit -- the sign bit:

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	11111100	(still -4)

Overflow

If operands are too big, then sum cannot be represented as an *n*-bit 2's comp number.

$$01000 (8)$$
 $11000 (-8)$
+ $01001 (9)$ + $10111 (-9)$
 $10001 (-15)$ $01111 (+15)$

We have overflow if:

- signs of both operands are the same, and
- sign of sum is different.

Another test -- easy for hardware:

carry into MS bit does not equal carry out

Logical Operations

Operations on logical TRUE or FALSE

two states -- takes one bit to represent: TRUE=1, FALSE=0

A	В	A AND B	A	В	A OR B	A	NOT A
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1	•	
1	1	1	1	1	1		

View *n*-bit number as a collection of *n* logical values

operation applied to each bit independently

Examples of Logical Operations

AND

- useful for clearing bits
 - \triangleright AND with zero = 0
 - > AND with one = no change

	11000101
AND_	00001111
	00000101

OR

- useful for setting bits
 - ➤ OR with zero = no change
 - \triangleright OR with one = 1

	11000101
OR_	00001111
	11001111

NOT

- unary operation -- one argument
- flips every bit

Hexadecimal Notation

It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead.

- fewer digits -- four bits per hex digit
- less error prone -- easy to corrupt long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	Α	10
0011	3	3	1011	В	11
0100	4	4	1100	C	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Converting from Binary to Hexadecimal

Every four bits is a hex digit.

start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

Addition in Hexadecimal Notation

- 2's complement representation
- assume all integers have the same number of bits
- ignore carry out

Assuming 16-bit 2's complement numbers.

Overflow

Fractions: Fixed-Point

How can we represent fractions?

- Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
- 2's comp addition and subtraction still work.
 - > if binary points are aligned

No new operations -- same as integer arithmetic.

Very Large and Very Small: Floating-Point

Large values: 6.023 x 10²³ -- requires 79 bits

Small values: 6.626 x 10⁻³⁴ -- requires >110 bits

Use equivalent of "scientific notation": F x 2^E
Need to represent F (*fraction*), E (*exponent*), and sign.
IEEE 754 Floating-Point Standard (32-bits):

$$N = (-1)^S \times 1.$$
fraction $\times 2^{exponent-127}$, $1 \le exponent \le 254$
 $N = (-1)^S \times 0.$ fraction $\times 2^{-126}$, exponent $= 0$

Floating Point Example

Single-precision IEEE floating point number:

- Sign is 1 number is negative.
- Exponent field is 011111110 = 126 (decimal).
- Fraction is 0.10000000000... = 0.5 (decimal).

Value = -1.5 x
$$2^{(126-127)}$$
 = -1.5 x 2^{-1} = -0.75.

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

both printable and non-printable (ESC, DEL, ...) characters

```
00 nul 10 dle 20 sp 30
                                 50
                                        60
                                              70
                          40
                              a
                                    P
                             A | 51
01 soh 11 dc1 21
                    31
                       1
                         41
                                    Q
                                       61
                                              71
                    32 2
02 stx 12 dc2 22 "
                          | 42 B | 52 R | 62 b |
                                              72
03 etx 13 dc3 23 #
                    33 3
                          43 C
                                 53 S |
                                       63 c
                                              73 s
04 eot 14 dc4 24 $
                    34 4
                          44 D
                                 54 T
                                       64 d
                                              74 t
05 eng 15 nak 25 %
                    35
                          45
                                 55
                                       65
                                              75
                             E
                                    U
                   36 6
                         46 F 56
                                       66 f
06 ack 16 syn 26 &
                                    V
                                              76
07 bel 17 etb 27
                    37
                       7
                          47 G 57
                                        67
                                              77
                                    W
08 bs 18 can 28
                    38 8
                          48
                                 58
                                        68
                                              78
                             H
                                     X
                                                  X
                    39 9
                                 59
                                              79
09 ht | 19 em | 29
                          49
                                       69
                              I
0a nl | 1a sub | 2a
                    3a
                                 5a
                          4a
                              J
                                     \mathbf{z}
                                       6a
                                              7a
0b vt | 1b esc | 2b
                    3b
                          4b K
                                 5b
                                       6b k
                                              7b
0c np | 1c fs | 2c
                    3c <
                                 5c \
                                       6c 1
                          4c L
                                              7c
0d cr 1d qs
             2d
                    3d
                          4d M
                                 5d
                                        6d m
                                              7d
                       =
                    3e >
0e so le rs
             2e
                          4e N
                                 5e
                                        6e
                                              7e
                                        6f
                                              7f del
Of si | 1f us | 2f
                    3f
                       ?
                          4f
                                 5f
```