Assignment Project Exam Help

Resignment Project Exam Helpes
https://eduassistpro.github.io/
Add WeChat edu_assist_pro
CIS 418

Source: S. Bodily, 2007

Assignment Project Feram Help

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Those dreams are built from losing lottery tickets, by Brooklyn-based artists Adam Eckstrom and Lauren Was and it's entitled Ghost of a Dream. The tickets were discarded by unlucky patrons. "Chance city" was built by the artist Jean Shin.

Assignmenty Project Exame Help

Add WeChat edu_assist_pro

Suppose you owned a lottery ticket tha loss and \$125 gain.

ikely to result in \$100

How much would you accept for this ticket?

Expected Monetary Value (EMV)

50% Signment Project Fxam Help

Certainty Equivalen https://eduassistpro.github.io/

Risk premium (RP) Add WeChat edu_assist_pro
how much of the EMV you'd be w p to avoid the
risk of losing money.

RP = EMV-CE

If RP>0 you are risk averse.

If RP<0 you are risk prone.

If RP=0 you are risk neutral.

A monetary utility function translates wealth Assignment Project Exam Help into

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Does this utility function represents the utility of a risk-averse, risk-neutral or risk-prone decision maker?

Explain by showing an example.

Expected Uenttyroje C Examty Hquivalent

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add Chat edu_assist_pro

Under the expected utility model, decision makers make choices that maximize their expected utility. The same choices **also** maximize the certainty equivalent.

Various signer on Straight because del model risk

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Risk-averse function: Concave.
- Risk-neutral function: Linear.
- Risk-prone function: Convex.

Assignmenty Project Exame Help

Add WeChat edu_assist_pro

Here is an explanation by Veritasium:

https://www.youtube.com/watch?v=vBX-KulgJ1o

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Example Property Property Example Problem

Add WeChat edu_assist_pro

There is an investment that for e ested returns \$4.3 or \$0 with equal probability.

My current wealth is \$14,000. How much of \$14,000 should I invest?

Assignment Project Exam Help -- The more I in ed net wealth, but my risk goes up as https://eduassistpro.github.io/

Add WeChat edu_assist_pro

My optimal investment weuld depend on my risk prefe

Add WeChat edu_assist_pro

• A decision maker shows constant risk aversion if she has the same positive risk premium for any two risky opportunities that have respective outcomes that differ only by a constant amount.

Therefore, her expected utility would be modeled by a negative exponential function. Help $EU = 1 - e^{-CE/R}$

• A decision maker s https://eduassistpro.github.io/ A decision maker s premium for any two risky opportuniti edu_assist_pro outcomes that differ only by a constant amount.

Therefore, her expected utility would be modeled by a **logarithmic** function:

$$EU = \ln\left(CE + A\right)$$

• R, A = Risk tolerance.

Risk premium a rotust ction of the tial wealth

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Lower risk premiums = higher risk

Riskiasment Region 544mi Halpwealth

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

With the logarithmic utility the percentage of total wealth invested in the risky investment stays the same as the amount of wealth changes.

Acipumine Projecta Eximizing EU

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Action 12 Project Examily CE

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Calculate the Ciertainty Equivalent

Add WeChat edu_assist_pro
The expected utility of the uncertain in ual to the ual to the utility of certainty equivalent.

Negative Exponential Utility

Logarithmic Utility

$$EU_{gamble} = \underset{\text{utility of certainty equivalent}}{\textbf{Assignificent Project Exam Help } CE A$$

$$\downarrow \quad \text{https://eduassistpro.github.io/}$$

$$e^{-CE/R} = 1 - EU_{AGG} \quad \text{WeChat edu_assist_pro} \quad CE \quad A$$

$$\downarrow \quad CE = \exp\left(EU_{gamble}\right) - A$$

$$\downarrow \quad CE = -R \ln\left(1 - EU_{gamble}\right)$$

$$CE = -R \ln\left(1 - EU_{gamble}\right)$$

Calculate Projects Freeted Utility

Add WeChat edu_assist_pro

Investment: for every 1\$ invested, returns \$4.3 or \$0 with equal probability.

My current wealth is \$14,000.

Calculate EMV, CE and RP for \$2000 investment.

Assignment Project Exam Help

Initial Wealth

Investment https://eduassistpro.github.io/

 $Add_{obability}$ eChat_edu_assist_pro

	Au Probability		iu_as	Sist_pro
Lose	0.5	\$ 12,000.00	0.943891	
Win	0.5	\$ 20,600.00	0.99288	
	Expected	\$ 16,300.00	0.968385	
	CE	\$ 14,389.93		
	RP	\$ 1,910.07		$CE = -R \cdot \ln(1 - 0.968)$

Exainment Rejectiferanvestehent?

Add WeChat edu_assist_pro

The decision maker owns an investm sult in personal wealth of either \$21,000 or \$11,000 in today's dollars with equal probability

- Q1. The decision maker can choose to
 - Keep the investment
 - o Sell this Assignment Projecto Exam Help
- Sell half of th
 Which option will be
 https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Q2. What is the minimum price that the will accept now for the entire investment?

Assume the decision maker has *constant risk aversion* with *risk tolerance* parameter R = \$4166.

Appignment Project BaaruHelms

Add WeChat edu_assist_pro

• To increase efficiently, we can write tion to calculate the Negative Exponential Utility and the Certainty Equivalent:

Function Assignment Project Exam Help

NEXPEU =
End Function https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Function CE_NEXPEU(EU, R)

CE_NEXPEU = -R * Log(1 - EU)

End Function

Option 2: Action part Project Feete de l'élevisities (or CEs)

Add WeChat edu_assist_pro

Assignment Project Exam Help

keep

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Sell for 14K

Decision: Sell ½ for 7K

Action Project Execusion tree

For this inxestor, the second 50% of this investment are worth less than 7K in the first 50%

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Q2: The minimum this investor will accept right now for the i nt is \$13,256

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Simon Business School CIS-418 Ricky Roet-Green

Examples: Profession P

I would like to bet \$5000 on a horse. The domain of which we consider the probability of winning are given below.

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

So if I place \$100 bet on Tea Biscuit, and Tea Biscuit comes in first I would get \$1800. That will happen with 15% probability. With 85% probability Tea Biscuit will not come in first, and I will lose my \$100.

Simon Business School CIS-418 Ricky Roet-Green

Sample spreadsheet to compare utilities of betting on di horses Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$EU = 1 - e^{-CE/R}$$

What if you could splot the better all one the horses?

Add WeChat edu_assist_pro

Risk tolerance parameter													
R	\$	25,000											
	Wa	ste O'Time	Fool's Folly		First in Ninth		Save Your Money		Tea Biscuit				
Prob of coming first		35%	10%		10%		30%		15%				
Payout on \$1 bet	\$	2.50	\$	4.00	\$	4.50	\$	5.00	\$	18.00			
Bets	\$	400.00	\$	1,000.00	\$	1,500.00	\$	2,000.00	\$	100.00	Expe	cted	
Winnings if first	*	1,000.00	\$17	4,000,00) in	6,750,004	\$	xamon	áln	1,800.00	\$4,6	95.00	CE
Utility if first		79918			. 1	0,24		Aaiii _{0.33} 1	Cib	0.07	\$	0.16	\$4,403.39

https://eduassistpro.github.io/

Built a spreadsheet that includes the abov

- What would be your colder We Chat edu_assist_pro
- What are the decision variables?
- What are the constraints?

Optimize using two different objectives: risk-averse vs. risk-neutral. Compare the results.