

NUESTRA HISTORIA

La Asociación Electrotécnica Argentina (AEA) es una organización no gubernamental, sin fines de lucro, fundada hace más de cien años por un grupo de ingenieros pertenecientes a la principales empresas eléctricas del país. Entre sus fundadores se encuentra el primer ingeniero eléctrico argentino, Jorge Newbery, en ese momento Director de Alumbrado de la Ciudad de Buenos Aires.

ALGUNAS DE NUESTRAS PUBLICACIONES

GUÍA AEA 770 – Instalaciones eléctricas en viviendas unifamiliares hasta 10 kW. Edición 2018

AEA 90364-0 Guía de aplicación. Edición 2006

AEA 90364-1 Alcance, objeto y principios fundamentales. Edición 2006

AEA 90364-2 Definiciones. Edición 2006

AEA 90364-3 Determinación de las características generales de las instalaciones. Edición 2006

AEA 90364-4 Protecciones para preservar la seguridad. Edición 2006

(CONSULTE VALORES CORRESPONDIENTES EN LA PÁGINA WEB DE AEA)

ALGUNAS DE NUESTRAS PUBLICACIONES

AEA 90364-7-771
Reglamentación para la ejecución de instalaciones eléctricas en inmuebles – Viviendas, oficinas y locales (unitarios).
Edición 2006

AEA 90364-7-779
IRAM 63066 Reglas
particulares para las
instalaciones en
lugares y locales
especiales. Sección
779: Módulos de
instalación
concentrada, de
electrificación
mínima. Edición 2013

AEA 90364-7-780 Instalaciones eléctricas de automatización de edificios. Edición 2011

AEA 90364-7-791 Tomo 1 Ascensores de pasajeros. Edición 2018

AEA 90364-7-791
Tomo 2 Escaleras
mecánicas, rampas y
andenes móviles,
elevador vehicular,
gira coches, rampa
móvil vehicular, sillas
y plataformas salva
escaleras y
montacargas. Edición
2020

AEA 90364-8
Eficiencia energética
en las instalaciones
eléctricas de baja
tensión. Sección 1 –
Requisitos eficiencia
energética. Edición
2019

DOCUMENTOS EN ESTUDIO Y EDITADOS POR EL COMITÉ 00

AEA 91140

Protección contra choques eléctricos.
Aspectos comunes a las
instalaciones y a los componentes,
materiales y equipos

AEA 90909-0

Corrientes de cortocircuito en sistemas trifásicos de corriente alterna

Parte 0: Cálculo de las corrientes

AEA IT 90865-2

Corrientes de cortocircuito - Cálculo de los efectos

Parte 2: Ejemplos de cálculo

AEA 90479-1

Efectos del paso de la corriente eléctrica por el cuerpo humano y los animales domésticos y de cría

Parte 1: Aspectos generales

Efectos del paso de la corriente eléctrica por el cuerpo humano y los animales domésticos y de cría

Parte 5: Umbrales de tensión de contacto para efectos fisiológicos

AEA 90479

Efectos del paso de la corriente eléctrica por el cuerpo humano y por los animales domésticos y de cría

Parte 5: Informe Técnico – Umbrales de tensión de contacto para efectos fisiológicos

AEA MÁS DE 100 AÑOS

Edición: 2019

AEA 90479-5

(Referencia fundamental a AEA 90479-1 Aspectos Generales)

Ejes temáticos:

- 1. Antecedentes IEC 479.
- 2. Límites de aplicación y conceptos.
- 3. Ejemplos.

1. Antecedentes

IEC 479

Documentos reconocidos a nivel internacional para establecer los parámetros de seguridad eléctrica.

1974 1984 1994

"Efectos fisiológicos sobre el cuerpo humano"

Además deben ser tenidos en cuenta otros efectos, como defectos de aislación y posibilidad de contacto con partes activas. Hasta 1984 se fundamenta en experiencias obtenidas con animales y sobre el cuerpo humano, con algunas experiencias con corrientes de choque de corta duración.

La muerte por accidente eléctrico se debe a la fibrilación ventricular. Estudios sobre la fisiología cardíaca y el umbral de fibrilación y; en particular, el tiempo de circulación de la corriente.

2. Límites de aplicación y conceptos

- Tensiones y corrientes alternas de mayor frecuencia.
- Inmersión. (CH sumergido distorsiona el campo eléctrico)
- Aplicaciones médicas. (pacientes con cateterismo)

Parte 1 del primer documento 50/60 Hz

Parte 2 Tensiones a frecuencia mayores (no contemplado en AEA IT 90479-5)

400 Hz en aviones.

450 Hz en equipos de soldadura.

4000 Hz en equipos de electroterapia.

1,4 MHz en fuentes conmutadas.

IEC 60479-4 Efectos de los rayos en las personas y en los animales domésticos (En estudio)

Figura 4. Impacto lateral I_s: corriente del rayo L: corriente en el cuerpo humano

igura 7. Tensión del paso humano en el caso de un impacto lateral de un rayo a tierra-eube

Figura 6. Tensión de los pasos animales para un cuadrúpedos

Tensión de paso

Ejemplo: Determinar la corriente que circularía por el cuerpo en caso de accidente con la red a 220 V.

Según la Ley de Ohm,

 $I = 220/500 \Omega = 440 \text{ mA}$, la que es mortal.

Hipótesis de cuerpo mojado, contacto mano-mano

Definiciones:

Tensión de contacto: Entre partes conductoras cuando son tocadas simultáneamente por una persona o por un animal.

Umbral: Nivel de estímulo suficiente para producir una respuesta.

Umbral de percepción: Valor mínimo de corriente de contacto que provoca alguna sensación.

Umbral de reacción: Valor mínimo de la corriente de contacto que provoca una reacción muscular involuntaria.

Umbral de soltado: Valor máximo de la corriente de contacto a la que una persona que sujeta los electrodos puede soltarlos voluntariamente.

En 1974 se definía la "CORRIENTE LÍMITE DE CONTROL MUSCULAR"

"Valor mínimo de la corriente de contacto a la que una persona que sujeta los electrodos no puede soltarlos voluntariamente".

En la actualidad esa definición corresponde al "UMBRAL DE NO SOLTAR"

3 conceptos fundamentales:

- 1- Umbral de percepción.
- 2- Umbral de no soltar.
- 3- Umbral de fibrilación ventricular.

Tensión límite convencional:

Normal 50 V

Particular 25 V

25 V de tensión de contacto presunta la corriente no llega a 30 mA

La impedancia total del cuerpo humano se compone de :

 $Z_{P1}Z_{P2}$ = Impedancia de la piel (en los puntos de entrada y salida de la corriente)

Z_i = Impedancia interna (tronco y extremidades cuando no se toma en cuenta la impedancia de la piel en los puntos de entrada y salida de la corriente)

 Z_T = Impedancia total (suma vectorial de la Impedancia interna y la Impedancia de la piel)

Figura 1- Impedancia Total del Cuerpo Humano

Impedancia de cuerpo humano:

AEA 90479-1 (Pág. 16)

Trayectoria de corriente mano a mano, para superficie de contacto grande y condición mojada y salada:

Tensión de contacto 25 V 1300 Ω (50%)

Impedancia de cuerpo humano:

AEA 90479-1 (Pág.19)

Trayectoria de corriente mano a mano, superficie de contacto pequeña y condición seca:

Tensión de contacto 25 V 169.000 Ω (50%)

La impedancia de cuerpo humano depende:

- 1- De la tensión aplicada.
- 2- De la frecuencia.
- 3- Del tiempo de circulación de la corriente.
- 4- De la superficie de contacto.
- 5- De la humedad de la piel.

La **corriente de contacto** está determinada por la *tensión* de contacto y la *impedancia del cuerpo humano.*

La *impedancia* está concentrada principalmente en la *piel* y en los *tejidos internos*.

Efectos fisiológicos:

- -Contracción muscular (tetanización)
- -Parálisis respiratoria.
- -Fibrilación ventricular.

El que se produzca un tipo de daño u otro y la gravedad de los mismos depende de varios factores, tales como, las características **fisiológicas del cuerpo**, el **entorno** y las características de la **corriente eléctrica**.

Mano a mano

Tipos de contacto

Mano a pie

Mano a glúteos

Superficie de contacto

Mediana

Grande

Pequeña

Guía para obtener información sobre los umbrales de tensión, según cada situación.

Inicio

Basadas en las impedancias del cuerpo humano y en las curvas corriente-tiempo provistas por la AEA ET 90479-1, el conjunto de diagramas proporcionan el tiempo máximo para cada efecto fisiológico considerado y para una dada tensión de contacto aplicada al cuerpo humano

Cada diagrama incluye un conjunto de nueve curvas correspondientes a:

- Los tres caminos diferentes de la corriente a través del cuerpo humano considerados en este informe (mano-mano; ambas manos a los pies; mano a glúteos), y
- Los tres umbrales diferentes de corriente considerados en este informe (reacción de sobresalto, fuerte reacción muscular y fibrilación ventricular).

Cada diagrama incluye un conjunto de nueve curvas correspondientes a:

- Los tres caminos diferentes de la corriente a través del cuerpo humano considerados en este informe (mano-mano; ambas manos a los pies; mano a glúteos), y
- Los tres umbrales diferentes de corriente considerados en este informe (reacción de sobresalto, fuerte reacción muscular y fibrilación ventricular).

Trayecto de la corriente	Factor de corriente de corazón F
Mano izquierda a pie izquierdo, a pie derecho o a los dos pies	1
Dos manos a los dos pies	1
Mano izquierda a mano derecha	0,4

Pie izquierdo a pie derecho (2005) F =0,04
--

Eso ¿Qué representa en la práctica? Que cuando el contacto se produce entre los dos pies (tensión de paso) se requiere una corriente de pie a pie 25 veces mayor que una corriente entre la mano izquierda y los dos pies para producir el mismo efecto de fibrilación ventricular sobre el corazón.

Figura 1: Efectos de la CA con 50/60 Hz en personas adultas según IEC 479/74

3. Ejemplos

A)

Figura 9 - Zonas convencionales de tensión/tiempo de efectos de corriente alterna (50/60 Hz) en una persona, para condición mojada y superficie de contacto mediana

B)

Figura 9 - Zonas convencionales de tensión/tiempo de efectos de corriente alterna (50/60 Hz) en una persona, para condición mojada y superficie de contacto mediana

Figura 13 - Zonas convencionales de tensión/tiempo de efectos de corriente alterna (50/60 Hz) en una persona, para condición seca y superficie de contacto pequeña

Gracias!

Espacio para consultas

Pueden contactarme a: ricardo.defrance@inspt.utn.edu.ar