MATH 307

CHAPTER 1

SECTION 1.5: DETERMINANTS

Contents

igin of the Determinant
efinition
2 by 2 matrices
3 by 3 matrices
For General Matrices
Determinant from any row or column
portant Properties of Determinants
When there too many zeros
When the type matters!
When Operations matter!

EXAMPLE 1. Find the equation of the parabola $ax^2 + bx + 1$ passing through the points (1, 1) and (2, 4).

$$2c=1 - b \qquad a \cdot 1^{2} + b \cdot 1 + 1 = 1 \\ 2c=2 - b \qquad a \cdot 4 + b \cdot 2 + 1 = 4 \qquad -b \qquad \begin{cases} a + b = 0 \\ 4a + 2b = 3 \end{cases}$$

$$\begin{bmatrix}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 0 \\
4 & 2 & 3
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 1 & 0 \\
0 & -2 & 3
\end{bmatrix} R_{2} - 4R_{1} \rightarrow R_{2}$$

$$^{2} + 2 = 1 \cdot 2 - 4 \cdot 1$$

$$= a_{11}a_{22} - a_{21}a_{12}$$

Since an arz-arianz \$0, I could find the solution to the problem.

<u>Historical Notes</u>:

- Chinese scholars were the first to use determinants to solve systems of linear equations (3rd century BCE!).
- Cramer (1779) and Bezout (1779 also) used determinant to find a plane curve passing through a set of points, like we did in the previous example.

2 by 2 matrices

Given a 2×2 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$$

the determinant of A, denoted by det(A) is

$$\det\left(A\right) = a_{11}a_{22} - a_{12}a_{21}.$$

Remark: Another notation for the determinant is

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

EXAMPLE 2. Calculate the determinant of the following matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}$.

3 by 3 matrices

Let A be a general 3×3 matrix

- Minor: The minor of an entry a_{ij} is the matrix M_{ij} obtained from A by removing row i and column j.
- Cofactor: The cofactor of an entry a_{ij} is the matrix C_{ij} given by

$$C_{ij} = (-1)^{i+j} \det(M_{ij}).$$

EXAMPLE 3. Find the minor M_{11} , and the cofactor C_{32} of the following matrices:

$$A = \begin{bmatrix} -1 & 6 & 3 \\ -1 & 6 & 3 \\ -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -3 & -1 \\ -1 & 3 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 6 & 3 \\ -2 & 1 \end{bmatrix} \quad \begin{bmatrix} 6 & 3 \\ -2 & 1 \end{bmatrix} \quad \begin{bmatrix} 7 & 2 \\ 2 & -1 \end{bmatrix} \quad \begin{bmatrix} 7 & 2 \\ 2 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 3+2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} 7 & 3+2 \\ 2 & -1 \end{bmatrix} \quad \begin{bmatrix} 7 & 2-2 \\ 2 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 3+2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 3+2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 3+2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & -2 \\ 2 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 3+2 \\ -1 & 3 \end{bmatrix} \quad \begin{bmatrix} -1 & 2 \\ -1 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} -1 & 3 & -1 \\ -1 & -1 \end{bmatrix}.$$

The determinant of
$$A$$
 is given by
$$\det(A) = a_{11} \det(M_{11}) - a_{12} \det(M_{12}) + a_{13} \det(M_{13})$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{12} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{32} + a_{13} a_{12} a_{32} - a_{13} a_{22} a_{31}.$$

EXAMPLE 4. Find the determinant of the following matrices:

$$A = \begin{bmatrix} 2 & 3 & -2 \\ -1 & 6 & 3 \\ 4 & -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} \frac{1}{2} & -3 & -1 \\ 2 & -3 & -1 \\ 1 & -1 & -1 \end{bmatrix}.$$

$$det(A) = 2 \begin{vmatrix} 4 & 3 \\ -2 & 1 \end{vmatrix} - 3 \begin{vmatrix} -1 & 3 \\ 4 & 1 \end{vmatrix} + (-2) \begin{vmatrix} -1 & 6 \\ 4 & -2 \end{vmatrix}$$

$$= 2 (4 \cdot 1 + 4) - 3(-1 \cdot 1 - 12) - 2(2 - 24)$$

$$= 107$$

$$det(B) = 1 \begin{vmatrix} -3 & -1 \\ -1 & -1 \end{vmatrix} - (-2) \begin{vmatrix} 2 & -1 \\ -1 & + 2 \end{vmatrix} = 2$$

$$dif(B) = \left| \begin{array}{c|c} -3 & -1 \\ -1 & -1 \end{array} \right| - \left(-2 \right) \left| \begin{array}{c|c} 2 & -1 \\ 1 & -1 \end{array} \right| + \left| \begin{array}{c|c} 2 & -3 \\ 1 & -1 \end{array} \right|$$

$$= \left| \begin{array}{c|c} (2) & -2(1) + 2(1) \\ = 2 \end{array} \right|$$

For General Matrices

The determinant is defined recursively.

- 1. If A is an 2×2 matrix, then $det(A) = a_{11}a_{22} a_{12}a_{21}$.
- 2. If A is an $n \times n$ matrix, then

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$
 Development w.r.t. first row,
$$= a_{11}\det(M_{11}) - a_{12}\det(M_{12}) + \dots + (-1)^{1+n}a_{1n}\det(M_{1n}).$$

EXAMPLE 5. Compute the determinant of the following matrix:

$$A = \begin{bmatrix} 7 & -3 & 0 & 4 \\ 0 & 0 & 3 \\ 2 & -2 & -5 \\ 0 & 4 & 0 & 6 \end{bmatrix}.$$

$$\frac{det(A)}{1 - 2 - 5} = 7 \begin{vmatrix} 1 & 0 & 3 \\ 1 & -2 - 5 \\ 4 & 0 & 6 \end{vmatrix} - (-3) \begin{vmatrix} 0 & 0 & 3 \\ 2 & -2 - 5 \\ 0 & 0 & 6 \end{vmatrix}$$

$$+ 0 \begin{vmatrix} 0 & 1 & 3 \\ 2 & 1 & -5 \\ 0 & 4 & 6 \end{vmatrix} - 4 \begin{vmatrix} 0 & 1 & 0 \\ 2 & 1 & -7 \\ 0 & 4 & 0 \end{vmatrix}$$

Answer det (A)=84

Determinant from any row or column

Lagrange's Expansion Formula: If A is an $n \times n$ matrix with $n \geq 2$, then

- $\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}$ for any row indexed by <u>i.</u>
- $\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}$ for any column indexed by j.

EXAMPLE 6. Compute again the determinant of the matrix A in Example 4 by

- 1. expanding with respect to another row.
- 2. expanding with respect to one of the column.

2. expanding with respect to one of the column.

According to second row (
$$i=2$$
)

1) $det(A) = a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23} + a_{24}C_{24}$

=- a_{21} $det(H_{21}) + a_{22}$ $det(H_{22}) - a_{23}$ $det(H_{23}) + a_{24}$ $det(H_{24})$

= -0 · $det(H_{21}) + 1$ | 7 · 0 · 1 | 7 · 0 · 1 | 7 · 1

=(-2)(7.|13|-0+0)=(-14)(-6)=[84]

= 0. det(H13) - 0. det(H23) + (-2) |7-34| - 0 det(H43)

Advice: It would be clever to choose the row or column containing the greatest number of zeros.

When there too many zeros...

EXAMPLE 7. Find the determinant

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ -1 & 2 & 3 & 0 & 4 & 2 & -1 \\ 1 & -1 & 1 & 0 & 0 & 3 & -3 & -1 \\ 1 & -1 & 1 & 0 & 0 & 3 & -2 & -1 \\ -2 & -1 & 1 & 0 & -5 & 1 & -6 \end{bmatrix}.$$

Fact: If a matrix A has a row or a column of zeros, then det(A) = 0.

When the type matters!

EXAMPLE 8. Find the determinant

$$A = 1 \cdot \begin{vmatrix} 1 & 4 & 10 & 123 \\ 0 & 2 & 124 & \pi \\ 0 & 0 & 3 & \sqrt{2} \\ 0 & 0 & 0 & 4 \end{vmatrix}$$

$$= 1 \cdot \left(2 \quad \begin{vmatrix} 3 & \sqrt{2} & 1 \\ 0 & 3 & \sqrt{2} \\ 0 & 0 & 4 \end{vmatrix} \right)$$

$$= 1 \cdot 2 \cdot \left(3 \cdot 4 - \sqrt{2} \cdot 0 \right)$$

$$= 1 \cdot 2 \cdot \left(3 \cdot 4 - \sqrt{2} \cdot 0 \right)$$

$$= 1 \cdot 2 \cdot 3 \cdot 4 = 124$$

<u>Fact</u>: The determinant of a triangular (upper or lower) is the product of its diagonal entries.

When Operations matter!

When E is an elementary matrix,

- If E switches row i with row j, then det(E) = -1.
- If E is obtained from I by multiplying a row by some scalar c, then $\det(E) = c$.
- If E is obtained from I by replacing a row of I by itself plus a multiple of another row of I, then det(E) = 1.

This implies the following general facts: Suppose that $A = [a_{ij}]$ is an $n \times n$ matrix with $n \ge 2$.

- If B is a matrix obtained from A by interchanging two rows of A, then det(B) = -det(A).
- If B is a matrix obtained from A by multiplying a row of A by a scalar c, then det(B) = c det(A).
- If B is a matrix obtained from A by replacing a row of A by itself plus a mlutiple of another row of A, then det(B) = det(A).