

UNIFIED MEMORY NOTES ON GPU DATA TRANSFERS

23 April 2018 | Andreas Herten | Forschungszentrum Jülich

Overview, Outline

Overview

- Unified Memory enables easy access to GPU development
- But some tuning might be needed for best performance

Contents

Background on Unified Memory History of GPU Memory Unified Memory on Pascal Unified Memory on Kepler Practical Differences

Revisiting scale_vector_um Example

Hints for Performance

Task

Background on Unified Memory History of GPU Memory

CPU and GPU Memory

Location, location

At the Beginning CPU and GPU memory very distinct, own addresses

CPU
CPU Memory

Scheduler Interconnect L2 DRAM

Member of the Helmholtz Association 23 April 2018 Slide 3 l 16

CPU and **GPU** Memory Scheduler Location, location, location At the Beginning CPU and GPU memory very distinct, own addresses CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but data copy manual CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once Interconnect L2

Member of the Helmholtz Association 23 April 2018 Slide 3 l 16

CPU and **GPU** Memory Scheduler Location, location, location At the Beginning CPU and GPU memory very distinct, own addresses CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but data copy manual CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults on-demand initiate data migrations (Pascal) Interconnect L2 **CPU** Unified

Memory

Member of the Helmholtz Association 23 April 2018 Slide 3/16

CPU and **GPU** Memory Location, location, location

CPU

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults on-demand initiate data migrations (Pascal)

Future Address Translation Service: Omit page faults

Interconnect

L₂

Unified Memory

Member of the Helmholtz Association 23 April 2018 Slide 3116

Unified Memory in Code

Vojgjfe Nfnpsz

```
void sortfile(FILE *fp, int N) {
   char *data:
   char *data d;
   data = (char *)malloc(N):
   cudaMalloc(&data d, N);
   fread(data, 1, N, fp);
   cudaMemcpy(data d, data, N,
   kernel<<<....>>>(data. N):
   cudaMemcpy(data, data d, N,
   host func(data);
   cudaFree(data d): free(data): }
```

```
void sortfile(FILE *fp, int N) {
    char *data:
    cudaMallocManaged(&data, N);
    fread(data, 1, N, fp):
    kernel<<<....>>>(data. N):
    cudaDeviceSynchronize():
    host func(data);
    cudaFree(data); }
```

```
cudaMallocManaged(&ptr, ...);
*ptr = 1;
kernel<<<...>>(ptr);
```

```
\verb| cudaMallocManaged(\$ptr, \dots); \longleftarrow \verb| Empty! No pages anywhere yet (like malloc())| \\
```

```
kernel<<<...>>(ptr);
```

Under the hood

cudaMallocManaged(&ptr, ...); ← Empty! No pages anywhere yet (like malloc())


```
cudaMallocManaged(&ptr, ...);  
Empty! No pages anywhere yet (like malloc())

*ptr = 1;  
CPU page fault: data allocates on CPU

kernel<<<...>>>(ptr);  
GPU page fault: data migrates to GPU
```

- Pages populate on first touch
- Pages migrate on-demand
- GPU memory over-subscription possible
- Concurrent access from CPU and GPU to memory (page-level)

23 April 2018

Slide 6116

Slide 6116

Slide 6116

Slide 6116

Slide 6116

Migration on Kepler

Migration on Kepler

Implementation before Pascal

Kepler (JURECA), Maxwell, ...

- Pages populate on GPU with cudaMallocManaged()
- \rightarrow Might migrate to CPU if touched there first
 - Pages migrate in bulk to GPU on kernel launch
 - No over-subscription possible

Practical Differences

Revisiting scale_vector_um Example

Different scales

Comparing scale_vector_um on JURON and JURECA

Different scales

Comparing scale vector um on JURON and JURECA

```
==109924== Profiling result:
Time(%)
           Time
                    Calls
                               Avg
                                        Min
                                                 Max
                                                      Name
100.00% 1.8203ms
                          1.8203ms 1.8203ms 1.8203ms scale(float, float*, float*, int)
```

```
==12922== Profiling result:
Time(%)
           Time
                   Calls
                              Avg
                                       Min
                                                Max
                                                    Name
100.00% 136.03us
                       1 136.03us 136.03us 136.03us scale(float, float*, float*, int)
```

Different scales

Comparing scale_vector_um on JURON and JURECA

```
JURON
```

Why?!

Shouldn't P100 be about $4 \times$ faster than K80?

```
JUREC/
```


Different scales


```
JURECA
```


Different scales

	324 ms	324 1,447 ms	325 ms		
■ [0] Tesla K80					
 Unified Memory 					
└ 🍸 Data Migration (DtoH)					П
└ 🍸 Data Migration (HtoD)	Data Migration	Data Migration Data Migratio	n Data Migra		
Context 1 (CUDA)					
Compute				scale	
└ 🍸 100,0% scale(flo				scale	

What happens?

JURON Kernel is launched, data is needed by kernel, data migrates host→device

⇒ Run time of kernel **incorporates** time for data transfers

JURECA Data will be needed by kernel – so data migrates host→device **before** kernel launch

 \Rightarrow Run time of kernel without any transfers

What happens?

JURON Kernel is launched, data is needed by kernel, data migrates host \rightarrow device

⇒ Run time of kernel **incorporates** time for data transfers

JURECA Data will be needed by kernel – so data migrates host→device **before** kernel launch

⇒ Run time of **kernel** without any transfers

- Implementation on Pascal is the more convenient one
- Total run time of whole program does not principally change Except it gets shorter because of faster architecture
- But data transfers sometimes sorted to kernel launch

What happens?

JURON Kernel is launched, data is needed by kernel, data migrates host→device

⇒ Run time of kernel **incorporates** time for data transfers

JURECA Data will be needed by kernel – so data migrates host \rightarrow device **before** kernel launch

⇒ Run time of **kernel** without any transfers

- Implementation on Pascal is the more convenient one
- Total run time of whole program does not principally change Except it gets shorter because of faster architecture
- But data transfers sometimes sorted to kernel launch
- \Rightarrow What can we do about this?

General hints

Keep data local
 Prevent migrations at all if data is processed by close processor

General hints

- Keep data local
 Prevent migrations at all if data is processed by close processor
- Minimize thrashing
 Constant migrations hurt performance

General hints

- Keep data local
 Prevent migrations at all if data is processed by close processor
- Minimize thrashing
 Constant migrations hurt performance
- Minimize page fault overhead Fault handling costs \mathcal{O} (10 μ s), stalls execution

New API routines

API calls to augment data location knowledge of runtime

cudaMemPrefetchAsync(data, length, device, stream)
 Prefetches data to device (on stream) asynchronously

New API routines

- cudaMemPrefetchAsync(data, length, device, stream)
 Prefetches data to device (on stream) asynchronously
- cudaMemAdvise(data, length, advice, device) Advise about usage of given data, advice:

New API routines

- cudaMemPrefetchAsync(data, length, device, stream)
 Prefetches data to device (on stream) asynchronously
- cudaMemAdvise(data, length, advice, device) Advise about usage of given data, advice:
 - cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to

New API routines

- cudaMemPrefetchAsync(data, length, device, stream)
 Prefetches data to device (on stream) asynchronously
- cudaMemAdvise(data, length, advice, device) Advise about usage of given data, advice:
 - cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
 - cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first access will establish mapping

New API routines

- cudaMemPrefetchAsync(data, length, device, stream)
 Prefetches data to device (on stream) asynchronously
- cudaMemAdvise(data, length, advice, device) Advise about usage of given data, advice:
 - cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
 - cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first access will establish mapping
 - cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to avoid page fault

New API routines

- cudaMemPrefetchAsync(data, length, device, stream)
 Prefetches data to device (on stream) asynchronously
- cudaMemAdvise(data, length, advice, device) Advise about usage of given data, advice:
 - cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
 - cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first access will establish mapping
 - cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to avoid page fault
- Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve current GPU device id (default: 0)

Hints in Code

```
void sortfile(FILE *fp, int N) {
    char *data;
   // ...
    cudaMallocManaged(&data, N);
    fread(data. 1. N. fp):
    cudaMemPrefetchAsync(data, N, device);
    kernel<<<....>>>(data. N):
    cudaDeviceSynchronize();
    host func(data);
    cudaFree(data); }
```


Hints in Code

```
void sortfile(FILE *fp, int N) {
    char *data;
   // ...
    cudaMallocManaged(&data, N);
    fread(data, 1, N, fp);
    cudaMemPrefetchAsync(data, N, device);
    kernel<<<....>>>(data. N):
    cudaDeviceSynchronize():
    host func(data);
    cudaFree(data); }
```

Prefetch data to avoid expensive GPU page faults

Hints in Code

```
void sortfile(FILE *fp, int N) {
    char *data:
   // ...
    cudaMallocManaged(&data, N);
    fread(data. 1. N. fp):
    cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, device);
    cudaMemPrefetchAsync(data, N, device);
    kernel<<<....>>>(data. N):
    cudaDeviceSynchronize():
    host func(data);
    cudaFree(data); }
```

Read-only copy of data is created on GPU during prefetch

→ CPU and GPU reads will not fault

Prefetch data to avoid expensive GPU page faults

Tuning scale_vector_um

Express data movement

- Location of code: Unified Memory/exercises/tasks/scale/
- Look at Instructions.md for instructions
 - 1 Show runtime that data should be migrated to GPU before kernel call
 - 2 Build with make
 - 3 Run with make run
 Orbsub -I -R "rusage[ngpus shared=1]" ./scale vector um
 - 4 Generate profile to study your progress see make profile
- See also CUDA C programming guide for details on data usage

Finished early? There's one more task in the appendix!

Conclusions

What we've learned

- Unified Memory is productive feature for GPU programming
- Unified Memory is implemented differently on Pascal (JURON) and Kepler (JURECA)
- With CUDA 8.0, there are new API calls to express data locality

Conclusions

What we've learned

- Unified Memory is productive feature for GPU programming
- Unified Memory is implemented differently on Pascal (JURON) and Kepler (JURECA)
- With CUDA 8.0, there are new API calls to express data locality

Appendix Jacobi Task Glossary

Jacobi Task

One more time...

- Location of code: Unified_Memory/exercises/tasks/jacobi/
- See Jiri Kraus' slides on Unified Memory from 2016 at Unified_Memory/exercises/slides/jkraus-unified_memory-2016.pdf
- Short instructions
 - Avoid data migrations in while loop of Jacobi solver: apply boundary conditions with provided GPU kernel; try to avoid remaining migrations
 - Build with make (CUDA needs to be loaded!)
 - Run with make run
 - Look at profile see make profile

Glossary I

- CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA C/C++. 4, 5, 6, 7, 8, 70, 71, 72
 - JSC Jülich Supercomputing Centre, the supercomputing institute of Forschungszentrum Jülich, Germany. 75
- JURECA A multi-purpose supercomputer with 1800 nodes at JSC. 55, 56, 57, 71, 72
- JURON One of the two HBP pilot system in Jülich; name derived from Juelich and Neuron. 55, 56, 57, 71, 72
- NVIDIA US technology company creating GPUs. 75
- Pascal GPU architecture from NVIDIA (announced 2016). 4, 5, 6, 7, 8, 55, 56, 57

Glossary II

CPU Central Processing Unit. 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 48, 61, 62, 63, 64, 65, 66, 69

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 48, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75

HBP Human Brain Project. 75

References: Images, Graphics I

[1] Martin Oslic. Bug. Freely available at Unsplash. URL: https://unsplash.com/photos/Qi93Pl5vDRw.

