# Machine Learning Algorithms as an Early Predictor of Alzhemier's disease

Marek Kociński

Voss seminar 20.06.2022





### Alzheimer's disease

Loss of autonomy in day-to-day functioning

Managing everyday life activities such as:

- finances,
- medication,
- running errands,
- preparing meals,
- maintaining interests,

is one of the criteria differentiating between mild cognitive impairment (MCI) and Alzheimer's disease (AD).

The goal of the project: To find an early predictor(s) of AD

### **DATA**



The ADNI clinical dataset comprises clinical **longitudinal** information about each subject including:

- · recruitment,
- · demographics,
- · physical examinations,
- and cognitive assessment data.

| STUDY<br>CHARACTERISTICS | ADNI-1                                                                 | ADNI-GO<br>(Grand Opportunities)                | ADNI-2                                                                               | ADNI-3                                                                            |
|--------------------------|------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Primary goal             | Develop biomarkers as<br>outcome measures for clinical<br>trials       | Examine biomarkers in earlier stages of disease | Develop biomarkers as predictors of cognitive decline, and as outcome measures       | Study the use of tau PET and functional imaging techniques in clinical trials     |
| Funding                  | \$40 million federal (NIA), \$27<br>million industry and<br>foundation | \$24 million American<br>Recovery Act funds     | \$40 million federal (NIA), \$27 million industry and foundation                     | \$ 40 million federal (NIA), up to \$20 million industry and foundation           |
| Duration/start date      | 5 years/October 2004                                                   | 2 years/September 2009                          | 5 years/September 2011                                                               | 5 years/September 2016                                                            |
| Cohort                   | 200 elderly controls<br>400 MCI<br>200 AD                              | Existing ADNI-1 + 200 early MCI                 | Existing ADNI-1 and ADNI-GO +  150 elderly controls100 early MCI 150 late MCI 150 AD | Existing ADNI-1, ADNI-GO, ADNI-2<br>+<br>133 elderly controls<br>151 MCI<br>87 AD |









### ■ BMC Part of Springer Nature

#### **BMC Geriatrics**

Home About Articles Submission Guidelines Collections

#### Citation Impact

(SJR)

3.921 - <u>2-year Impact Factor</u>
4.878 - <u>5-year Impact Factor</u>
1.758 - <u>Source Normalized</u>
<u>Impact per Paper</u> (SNIP)
1.414 - <u>SCImago Journal Rank</u>

## Functional activity level reported by an informant is an early predictor of Alzheimer's disease.

Alexandra  $Vik^{1*}$ , Marek Kocinski<sup>1,3</sup>, Ingrid Rye<sup>2</sup>, Astri J Lundervold<sup>2</sup>, Alexander S Lundervold<sup>1,4</sup> and for the Alzheimer's Disease Neuroimaging Initiative<sup>5</sup> Vik et al.

Loss of autonomy in day-to-day functioning may be noticed by relatives subtle changes in ordinary life situations long before these changes are given medical diagnosis.

<u>In this study we ask if:</u> even such subtle changes should be given weight as an early predictor of AD, by including report scales like the functional activity questionnaire (FAQ).



Data balance for: gender, age bins, age and length of participation

### **Methods and Results**

| Demographics                            | sMCI (360)            | cAD (320)             |
|-----------------------------------------|-----------------------|-----------------------|
|                                         | Train (285)/Test (75) | Train (255)/Test (65) |
| Sex (F:M)                               | 114:171/32:43         | 99:156/25:40          |
| Age at inclusion [years]: mean (SD)     | 73.9 (7.4)/72.7(7.3)  | 73.9 (7.7)/73.9 (6.9) |
| Age at inclusion [years]: range         | 55-91/57.8-87.8       | 55.2-88.3/55-88.4     |
| Education [years]: mean (SD)            | 15.8 (2.9)/16.2(2.9)  | 15.8 (2.9)/16.2(2.9)  |
| Participation length [years]: mean (SD) | 4.6 (2.8)/4.5(2.7)    | 5.0 (2.7)/5.5(2.8)    |

Demographics of the included subsample extracted from the ADNI cohort. sMCI – stable mild cognitive impairment, cAD – converting Alzheimer's Disease

**Eleven neurocognitive features** were used as input in a **Random Forest binary classifier** (sMCI vs. cAD) model

Results for RF classifier:

accuracy = 73%



# Predicting conversion to Alzheimer's Disease in individuals with Mild Cognitive Impairment using clinically transferable features

Ingrid Rye $^{1,+}$ , Alexandra Vik $^{2+}$ , Marek Kocinski $^{2,3,4+}$ , Alexander S. Lundervold $^{2,5}$ , Astri J. Lundervold $^{1}$ , and for the Alzheimer's Disease Neuroimaging Initiative\*\*

### **scientific** reports

Explore content > About the journal > Publish with us >

#### Journal metrics 2021

- 2-year impact factor: 4.380
- 5-year impact factor: 5.134
- Immediacy index: 0.783
- Eigenfactor® score: 1.23250
- Article influence score: 1.285
- 2 year median: 3

Longitudinal data that identify two groups of patients who were diagnosed with MCI at a **baseline clinical examination**: one group including patients who were diagnosed with AD and one group retaining their MCI diagnosis during the observation period.

Selected features included **demographic data**, **information from neuropsychological** and **MRI** examinations and **genetic information** about APOE status.

We train two different supervised learning algorithms:

- an ensemble-based model constructed by combining five different models
- a Random Forest (RF) model

|                     | sMCI (N = 357)          | cAD (N = 321)           |
|---------------------|-------------------------|-------------------------|
|                     | Mean (SD)               | Mean (SD)               |
| Demographics        |                         |                         |
| Age                 | 73.1 (7.45)             | 73.9 (7.11)             |
| Gender (%F)         | 41.2                    | 38.9                    |
| Cognitive Function  |                         |                         |
| RAVLT-Im            | 36.9 (10.5)             | 29.3 (7.7)              |
| RAVLT-Delay         | 4.88 (3.93)             | 2.05 (2.67)             |
| RAVLT-Recog         | 11.26 (3.16)            | 9.42 (3.56)             |
| TMTA                | 39.2 (15.6)             | 44.7 (21.5)             |
| TMTB                | 108.1 (56.9)            | 133.8 (73.9)            |
| CFT animals         | 17.8 (5.17)             | 15.8 (4.75)             |
| GDS: mean (SD)      | 1.71 (1.44)             | 1.65 (1.38)             |
| ANART Total errors  | 12.9 (9.3)              | 13.3 (9.6)              |
| Biological measures |                         |                         |
| Hippocampus volume  | $0.00451 (7.6*10^{-4})$ | $0.00398 (6.8*10^{-4})$ |
| APOE (%positive)    | 42.3                    | 64.2                    |



Results for RF classifier:

accuracy = 66%

# 2D and 3D U-Nets for skull stripping in large and heterogeneous set of head MRI using fastai\*





\* - Sathiesh's presentation "Deep learning for medical image analysis: fastai + MONAI"; tomorrow 11:30-11:45

### Data sets:

- ADNI
- AIBL
- |X|
- PPMI
- SLIM
- Calgary-Campinas
- SALD

Training test: 2791 3D images Test sets: 934 + 561 3D images



Dice = 0.978Jaccard = 0.957

### **Assessing kidney function from DCE-MRI**









### **Assessing kidney function from DCE-MRI**

segmentation

Manual labelling

