Ejercicio 01: Modelo SIR

Laura Caviedes Betancourt
Camilo Cortés Parra
Juan Moreno
Nicolás Puentes
Esteban Quintero
Sara Reina
Juan Villamil Santiago

Planteamiento del Problema

Consideremos una población con un número constante de personas donde cada una puede ser identificada como susceptible, infectada o recuperada. Sean **s, i, r** las fracciones de la población que están susceptibles, infectadas o recuperadas, respectivamente.

$$s + i + r = 1$$

En el modelo **SIR** se asume que:

- la población es cerrada.
- el brote epidémico es de corta duración.
- no hay nacimientos ni muertes naturales.
- la infección tiene un período de latencia nulo.
- las personas recuperadas tienen inmunidad de por vida o son personas muertas por el brote.

Planteamiento del Problema

La descripción matemática del modelo **SIR** es la siguiente:

$$egin{aligned} rac{ds}{dt} &= -eta si, \ rac{di}{dt} &= eta si - \gamma i, \ rac{dr}{dt} &= \gamma i \end{aligned}$$

- → β es una cte positiva llamada tasa de transmisión de enfermedades (indica que tan contagiosa es la enfermedad).
- →
 γ es una cte positiva llamada tasa de recuperación y su inverso nos da el tiempo característico de recuperación.

Solución

1.A

Se empleó el método Runge-Kutta de orden 4 para encontrar la evolución temporal de las tres cantidades s(t), i(t) y r(t) para:

$$s(0) = 0.999, \ i(0) = 0.001, \ eta = 0.35, \ \gamma = 0.08$$

1.A

1.B

De la segunda ecuación diferencial del modelo SIR, se tiene que en t = 0:

$$\left.rac{di}{dt}
ight|_{t=0}=[eta s(0)-\gamma]i(0)$$

Dado que el modelo supone que $i(t \to \infty) = 0$, si la tasa de crecimiento en el número de infectados es negativa o nula en el inicio del brote, t = 0, NO se genera ninguna epidemia. Por lo tanto, para que haya epidemia se necesita que dicha tasa de crecimiento sea positiva:

$$eta s(0) - \gamma > 0, \ eta s(0) > \gamma$$

1.C

Se puede demostrar que para $t \to \infty$ la fracción de la población susceptible tiene cota inferior [1]:

$$s(\infty) \geq s(0)e^{-R_0} > 0$$

donde $R_0=eta/\gamma$. En nuestro caso, para $\gamma=0.08\,\mathrm{y}\,\,s(0)=0.999\,\mathrm{obtuvimos}$ lo siguiente:

1.C

$$eta = [0.081 - 0.5]$$

Para
$$eta=0.35
ightarrow R_0=4.37$$

1.C

De esta manera para valores altos de β se tiene que al finalizar la epidemia hay un menor número de susceptibles en la población. Esto responde a que en esta región, la enfermedad considerada es más contagiosa y por lo tanto la población susceptible ha pasado a ser infectada y posteriormente recuperada.

Referencias

 Weiss, H. The SIR Model and the Foundations of Public Health. MATerials MATemàtics. (2013).