1 PROOF

Let **G=(V,T,P,S)** be a context free grammar.

Prove by induction on n where $n \ge 1$ that:

$$\forall W \in T^*, \ \alpha \in (V \cup T)^+, \ \alpha \Longrightarrow^n W \longrightarrow \alpha \Longrightarrow_{lm}^n W$$

(From a high level point of view the claim says that if some terminal word \mathbf{w} can be derived form $\alpha \in (V \cup T)^+$ then there exist a leftmost derivation to derive \mathbf{w} from α)

Basis

If n = 1 then we must show that $\forall w \in T^*$, $\alpha \in (V \cup T)^+$, $\alpha \Longrightarrow^1 w \longrightarrow \alpha \Longrightarrow_{Im}^1 w$:

Let $w \in T^*$ and $\alpha \in (V \cup T)^+$ such that $\alpha \Longrightarrow^1 w$.

by definition of the \Longrightarrow relation we get that:

$$\exists \psi, \chi, \gamma \in (V \cup T)^*, A \in V, \alpha = \psi A \chi \land W = \psi \gamma \chi \land (A \longrightarrow \gamma) \in P$$

Now since $\mathbf{w} \in \mathbf{T}^*$ and since $\mathbf{w} = \mathbf{\psi} \gamma \chi$ we get that $\mathbf{\psi} \in \mathbf{T}^*$ and so:

$$\exists \psi \in \mathsf{T}^*, \ \chi, \gamma \in (\mathsf{V} \cup \mathsf{T})^*, \ \mathsf{A} \in \mathsf{V}, \ \alpha = \psi \mathsf{A} \chi \ \land \ \mathsf{W} = \psi \gamma \chi \ \land \ (\mathsf{A} \longrightarrow \gamma) \in \mathsf{P}$$

And we get by definition of \Longrightarrow_{lm} relation that $\alpha \Longrightarrow_{lm}^{1} \mathbf{w}$ as was to be shown.

Induction hypothesis

Suppose that for some $n = k \ge 1$ we have:

$$\forall w \in T^*$$
, $\alpha \in (V \cup T)^+$, $\alpha \Longrightarrow^k w \longrightarrow \alpha \Longrightarrow_{lm}^k w$

Induction step

We must prove that: $\forall w \in T^*$, $\alpha \in (V \cup T)^+$, $\alpha \Longrightarrow^{k+1} w \longrightarrow \alpha \Longrightarrow_{lm}^{k+1} w$

2 PROOF

Let $\mathbf{w} \in \mathbf{T}^*$ and let $\alpha \in (\mathbf{V} \cup \mathbf{T})^+$ such that $\alpha \Longrightarrow {}^{\mathbf{k}+1} \mathbf{w}$

We get that $\exists \beta \in (V \cup T)^*$, $\alpha \Longrightarrow \beta \Longrightarrow^k w$

since $\alpha \Longrightarrow \beta$ and since **G** is a context-free grammar we get that it must be the case that $\beta \in (V \cup T)^*V(V \cup T)^*$

Also we get by the induction hypothesis that $\beta \Longrightarrow_{\operatorname{Im}^{k}} \mathbf{w}$.

Now because $\alpha \Longrightarrow \beta$ we get by definition of the \Longrightarrow relation that:

$$\exists \gamma, \delta, \zeta \in (V \cup T)^*, A \in V, \alpha = \gamma A \delta \wedge \beta = \gamma \zeta \delta \wedge (A \longrightarrow \zeta) \in P$$

Now there are two possibilities $\gamma \in \mathbf{T}^* \vee \gamma \notin \mathbf{T}^*$

(1) If $\gamma \in \mathbf{T}^*$ we get:

$$\exists \gamma \in \mathsf{T}^*, \ \delta, \zeta \in (\mathsf{V} \cup \mathsf{T})^*, \ \mathsf{A} \in \mathsf{V}, \ \alpha = \gamma \mathsf{A} \delta \land \beta = \gamma \zeta \delta \land (\mathsf{A} \longrightarrow \zeta) \in \mathsf{P}$$

And by definition of the \Longrightarrow_{lm} relation we get that $\alpha \Longrightarrow_{lm} \beta$ and since $\beta \Longrightarrow_{lm}{}^k \mathbf{w}$ we get that $\alpha \Longrightarrow_{lm}{}^{k+1} \mathbf{w}$ as was to be shown.

(2) If $\gamma \notin T^*$ we get that it must be the case that $\gamma \in (V \cup T)^* V(V \cup T)^*$ and so: $\exists \gamma_1 \in T^*, B \in V, \gamma_2 \in (V \cup T)^*, \gamma = \gamma_1 B \gamma_2$

And we get that $\alpha = \gamma_1 \mathbf{B} \gamma_2 \mathbf{A} \delta$ and $\beta = \gamma_1 \mathbf{B} \gamma_2 \zeta \delta$.

Since $\beta \Longrightarrow_{lm}^{k} \mathbf{w}$ and since $k \ge 1$ we get that:

$$\exists \theta \in (V \cup T)^*, \ \beta \Longrightarrow_{Im} \theta \Longrightarrow_{Im}^{k-1} W$$

Now since $\beta \Longrightarrow_{\operatorname{Im}} \theta$ we get that $\gamma_1 \mathbf{B} \gamma_2 \zeta \delta \Longrightarrow_{\operatorname{Im}} \theta$

And since $\gamma_1 \in \mathbf{T}^*$ there must be some production rule in P that was used to (leftmost) derive θ from β of the form $\mathbf{B} \longrightarrow \eta$.

I.e.

$$\exists \eta \in (V \cup T)^*, (B \longrightarrow \eta) \in P$$

By applying this rule we get $\gamma_1 \mathbf{B} \gamma_2 \zeta \delta \Longrightarrow_{\mathrm{Im}} \gamma_1 \eta \gamma_2 \zeta \delta$ and so $\theta = \gamma_1 \eta \gamma_2 \zeta \delta$.

3 PROOF

Now $\alpha = \gamma_1 \mathbf{B} \gamma_2 \mathbf{A} \delta \Longrightarrow_{\operatorname{Im}} \gamma_1 \eta \gamma_2 \mathbf{A} \delta \Longrightarrow \gamma_1 \eta \gamma_2 \zeta \delta = \theta$. Since $\theta \Longrightarrow_{\operatorname{Im}}^{\mathbf{k}-1} \mathbf{w}$ we get that in particular $\theta \Longrightarrow^{\mathbf{k}-1} \mathbf{w}$ and so $\gamma_1 \eta \gamma_2 \mathbf{A} \delta \Longrightarrow^{\mathbf{k}} \mathbf{w}$

Now by the induction hypothesis we get that $\gamma_1 \eta \gamma_2 A \delta \Longrightarrow_{\operatorname{Im}}^k W$ And we got that $\alpha = \gamma_1 B \gamma_2 A \delta \Longrightarrow_{\operatorname{Im}} \gamma_1 \eta \gamma_2 A \delta \Longrightarrow_{\operatorname{Im}}^k W$ And so $\alpha \Longrightarrow_{\operatorname{Im}}^{k+1} W$ as was to be shown.

Q.E.D.