Inverse Transform Sampling

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Simulation is crucial for probabilistic modeling

Strategy

- 1. Generate uniform samples in [0,1]
- 2. Transform them so that they have the desired distribution

Histogram of uniform samples

Goal

Idea

Goal: Simulate random variable \tilde{a}

Input: Uniform random variable \tilde{u}

Strategy: Design g so that $g(\tilde{u})$ has the same distribution as \tilde{a}

For any interval (x, y], we want

$$P(x < g(\tilde{u}) \le y) = P(x < \tilde{a} \le y)$$

Idea

Length of set mapped to (x, y]?

$P(x < \tilde{a} \leq y)$

Remember the cdf?

Use the inverse cdf!

Inverse-transform sampling

Aim: Simulate sample from random variable \tilde{a} with cdf $F_{\tilde{a}}$ using sample from uniform random variable \tilde{u}

Algorithm:

- 1. Obtain a sample u of \tilde{u}
- 2. Set $a := F_{\tilde{a}}^{-1}(u)$

Does this work?

$$F_{\tilde{b}}(y) = P\left(\tilde{b} \le y\right)$$

$$= P\left(F_{\tilde{a}}^{-1}(\tilde{u}) \le y\right)$$

$$= P\left(\tilde{u} \le F_{\tilde{a}}(y)\right)$$

$$= \int_{u=0}^{F_{\tilde{a}}(y)} du$$

$$= F_{\tilde{a}}(y) \qquad Yes!$$

Exponential distribution

Aim: Sample from exponential random variable \tilde{a} with parameter λ

$$F_{\tilde{a}}(a) := 1 - e^{-\lambda a}$$

$$F_{\tilde{a}}^{-1}(u) = \frac{1}{\lambda} \log \left(\frac{1}{1-u} \right)$$

 $F_{\tilde{a}}^{-1}(\tilde{u})$ is an exponential random variable with parameter λ

Exponential distribution

Histogram of uniform samples

Histogram of transformed samples

$\lambda_{\rm ML} = 0.9986$

