DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIVERSITY AT BUFFALO

CSE 574 Programming Assignment 3 Classification And Regression

Group 141

Shivam Sahu (#50247673) Parush Garg (#50248921)

PART 1 - Implementation of Logistic Regression:

Data	Accuracy (%)
Training data	84.896
Validation data	83.74
Test data	84.08

Time taken for Logistic Regression - 1488.4046782690566 secs (Approx. 24 min)

Training set Confusion Matrix:

										_
[[4	4833	1	14	8	10	20	25	6	2	4]
]	2	5655	33	13	3	17	3	10	0	6]
[36	41	4588	76	50	28	55	66	1	17]
[21	25	133	4665	9	143	21	46	1	67]
[8	21	24	5	4573	13	24	14	0	160]
[51	19	38	135	47	3953	93	17	8	60]
[27	13	30	2	22	70	4745	3	3	3]
[12	22	48	11	46	13	3	4974	0	136]
[131	292	841	1005	192	1310	131	52	35	862]
[29	23	13	88	166	44	1	156	2	4427]]
										_

```
Error for class 1 : 1.82815 % Error for class 2 : 1.51515 % Error for class 3 : 7.46269 % Error for class 4 : 9.08205 % Error for class 5 : 5.55556 % Error for class 6 : 10.5858 % Error for class 7 : 3.51769 % Error for class 8 : 5.52707 % Error for class 9 : 99.2785 % Error for class 10 : 10.5476 %
```

Testing set Confusion Matrix:

11	961	0	1	3	1	5	5	3	0	1]
]	0	1123	4	1	0	2	4	1	0	0]
]	9	11	942	22	12	4	14	14	0	4]
]	4	1	22	928	2	22	4	14	0	13]
]	1	2	6	3	917	0	9	2	1	41]
]	11	4	3	42	14	777	21	9	0	11]
]	9	4	8	2	4	20	910	1	0	0]
]	2	9	22	7	7	2	1	948	1	29]
]	33	41	150	203	51	258	47	19	1	171]
1	10	8	1	16	35	15	1	22	0	901]]

```
Error for class 1 : 1.93878 % Error for class 2 : 1.05727 % Error for class 3 : 8.72093 % Error for class 4 : 8.11881 % Error for class 5 : 6.61914 % Error for class 6 : 12.8924 % Error for class 7 : 5.01044 % Error for class 8 : 7.7821 % Error for class 9 : 99.8973 % Error for class 10 : 10.7037 %
```

Conclusion:-

The accuracy given by Logistic Regression is less because Logistic Regression considers all the points in a dataset and choose any hyperplane which separates the data rather than choosing the best hyperplane.

PART 2: Implementation Of Support Vector Machines

Activity 1 - SVM with linear kernel

Kernel	Training Accuracy (%)	Validation Accuracy (%)	Testing Accuracy (%)	Time (in secs)
linear	97.286	93.64	93.78	950.766103

Time taken for SVM with linear kernel: — 950.766103 secs (Approx. 15.8 min)

Activity 2 - SVM with radial basis function, gamma = 1

Kernel	Training Accuracy (%)	Validation Accuracy (%)	Testing Accuracy (%)	Time (in secs)
rbf	100	15.48	17.14	16157.1364

Time taken for SVM with radial basis function, gamma 1 :— 16157.136420 secs (Approx. 4.5 hours)

Activity 3 - SVM with radial basis function, gamma = 0

Kernel	Training Accuracy (%)	Validation Accuracy (%)	Testing Accuracy (%)	Time (in secs)
rbf	94.294	94.02	94.42	1677.707449

Time taken for SVM with radial basis function, gamma 0 :— 1677.707449 secs (Approx. 28 min)

Activity 4 - SVM with radial basis function, different values of C

Kernel	C Values	Training Accuracy	Validation Accuracy	Testing Accuracy
rbf	1	94.294	94.02	94.42
rbf	10	97.132	96.18	96.1
rbf	20	97.952	96.9	96.67
rbf	30	98.372	97.1	97.04
rbf	40	98.706	97.23	97.19
rbf	50	99.002	97.31	97.19
rbf	60	99.196	97.38	97.16
rbf	70	99.34	97.36	97.26
rbf	80	99.438	97.39	97.33
rbf	90	99.542	97.36	97.34
rbf	100	99.612	97.41	97.4

Time taken for SVM with radial basis function, different values of C:=10214.1234 secs (Approx. 2.83 hours)

Observations:-

- 1. **Activity 1 :** Linear kernel is useful when the dataset have lots of features i.e multidimensional data and where original data is very informative. Our MNIST dataset have high dimensionally but the pixels are not very informative hence the accuracy is not as high as it would be for nonlinear models.
- 2. Low accuracy is observed in **Activity 2** where gamma = 1 compared to **Activity 3** where gamma = 0 which shows a clear case of overfitting.
- 3. From **Activity 4** We can observe the below points:
 - **a.** From graph we can see that with increase in C, accuracy also increases.
 - **b.** In any regularization scheme, it is important to choose proper value for C, also known as the penalty factor. If it is too large, we have a high penalty for non-separable points and we may store many support vectors and overfit. If it is too small, we may have under-fitting.
 - **c.** For large values of C like 50 and above, the SVM will choose a smaller-margin hyperplane which classifies more of training data points correctly.
 - **d.** Conversely, a very small value of C like less that 50, will cause the optimizer to choose a larger-margin separating hyperplane, even if it misclassifies more data points.

Conclusion:-

So from **Part 1** and **Part 2** we can conclude that SVM (with rbf kernel) works better when the dataset have lots of features i.e multi-dimensional data and Logistic Regression works better when dataset have fewer feature. Our MNIST dataset have more no of features thats why SVM gives better accuracy than Logistic Regression

PART 3 - Implementation of Multi-class Logistic Regression

Method	Training Data	Validation Data	Test data	Time (in secs)
Multi-class Logistic Regression	93.448	92.48	92.55	88.505324
Logistic Regression one-vs-all	84.896	83.74	84.08	1488.40467

Training set Confusion Matrix:

[[4	786	1	12	7	11	33	30	7	32	4]
]	1	5592	26	17	6	19	2	13	58	8]
]	23	45	4503	72	58	24	59	53	108	13]
]	14	18	95	4654	4	148	15	39	105	39]
]	8	20	21	7	4576	6	42	13	24	125]
]	39	13	36	117	34	3963	68	18	102	31]
]	23	11	29	1	24	52	4758	2	16	2]
]	8	16	49	18	34	9	4	4989	14	124]
1	22	75	51	103	16	113	23	16	4387	45]
]	17	18	9	55	126	30	2	134	42	4516]]
										_

```
Error for class 1 : 2.78286 % Error for class 2 : 2.61233 % Error for class 3 : 9.17709 % Error for class 4 : 9.29644 % Error for class 5 : 5.4936 % Error for class 6 : 10.3596 % Error for class 7 : 3.25335 % Error for class 8 : 5.24216 % Error for class 9 : 9.56504 % Error for class 10 : 8.74924 %
```

Testing set Confusion Matrix:

11	960	0	0	3	0	6	6	4	1	0]
1	0	1110	3	2	0	2	4	2	12	0]
1	6	8	924	16	10	3	14	8	39	4]
1	4	1	20	914	0	25	3	10	26	7]
1	1	1	6	2	921	0	9	4	9	29]
]	10	2	2	37	10	773	15	6	30	7]
]	9	3	4	2	7	15	914	3	1	0]
]	1	9	19	6	6	2	0	952	2	31]
]	9	8	6	26	9	23	10	8	868	7]
1	11	8	0	10	28	5	0	20	8	919]]

```
Error for class 1 : 2.04082 % Error for class 2 : 2.20264 % Error for class 3 : 10.4651 % Error for class 4 : 9.50495 % Error for class 5 : 6.21181 % Error for class 6 : 13.3408 % Error for class 7 : 4.5929 % Error for class 8 : 7.393 % Error for class 9 : 10.883 % Error for class 10 : 8.91972 %
```

Conclusion:-

Logistic Regression traditionally is used for binary classification. Multi-class Logistic Regression can be used to build a classifier that can classify 10 classes at the same time. In term of performance from the table above we are able to observe that the accuracy obtained in Multi-class Logistic Regression is higher comparing to one-vs-all Logistic Regression strategy. Moreover, since we are able to classify 10 classes simultaneously, the time to complete for Multi-class Logistic Regression is less.