EQUINUMERABILITY

JAIME SEVILLA

Now we present some basic results of equinumerability. We will later apply some of those results to computability.

Definition 1. Two sets A and B are **equivalent** or **equinumerable** if there exists a correspondence (bijection) between them. This is denoted $A \sim B$.

Proposition 2. The relation of equivalence is an equivalence relation.

Theorem 3 (Schröder-Bernstein). If $X \prec Y$ and $X \succ Y$ then $X \sim Y$.

Lemma 4. Let f be a total function from X to Y and g be a total function from Y to X. Then there exists $A \subset X$ and $B \subset Y$ such that f(A) = B and g(Y - B) = X - A.

Proof Sketch of lemma 1. The lemma is equivalent to the affirmation of the existence of a fixed point of the equation A = X - g(Y - f(A)).

Consider the chain $C = \{X, X - g(Y - f(X)), ..., h(n), X - g(Y - f(h(n)))\}.$

This chain is ordered by inclusion \supset .

We can check that $A = \cap C$ is the desired fixed point.

Proof Sketch of Schröder-Bernstein. From the hypothesis we have two one to one functions, f from X to Y and g from Y to X. Using lemma 1, there exists $A \subset X$ and $B \subset Y$ such that f(A) = B and g(Y - B) = X - A. Now we define $h: X \to Y$ as

$$h(z) = \begin{cases} f(z) & \text{if } z \in A \\ g^{-1}(z) & \text{if } z \notin A \end{cases}$$

It can be shown that *h* is a correspondence.

Definition 5. A set is **enumerable** if it is equivalent with the set of natural numbers \mathbb{N} .

Proposition 6. The following sets are all enumerable:

- (1) The set of integers \mathbb{Z} .
- (2) The set of rational numbers \mathbb{Q} .
- (3) The set of n-uples of natural numbers for all $n \mathbb{N}^n$.
- (4) The set of finite words over an enumerable alphabet Σ^* .
- (5) The set of finite subsets of an enumerable set.

Proposition 7. *The set* $\mathscr{P}(\mathbb{N})$ *is not enumerable.*

Proposition 8. The interval (0 1) is not enumerable.

Proposition 9. The following sets are all equivalent:

(1) The set of subsets of natural numbers $\mathscr{P}(\mathbb{N})$.

Date: December 2015.

1

- (2) The set of boolean functions over the natural numbers, $2^{\mathbb{N}}$.
- (3) The interval (0.1).
- (4) The set of real numbers \mathbb{R} .
- (5) *The interval* [0 1].
- (6) \mathbb{R}^2
- (7) \mathbb{R}^n for all n.
- (8) $\mathbb{R} \times \mathbb{N}$
- $(9) \mathbb{R}^{\mathbb{N}}$

Proof of $2^{\mathbb{N}} \sim (0 \ 1)$. Every real number in $(0 \ 1)$ can be represented in binary as $0.1010...a_n a_{n+1}...$, and therefore as a function $f: \mathbb{N} \to 2$ such that f(n) = 1 iff $a_n = 1$. This is not an equivalence, since for example $0.1111... \not\in (0 \ 1)$. Therefore we have shown that $(0 \ 1) \leq 2^{\mathbb{N}}$.

Conversely, every function $f: \mathbb{N} \to 2$ can be represented as a real number a = 0.f(0)0f(1)1f(2)0...Thus $(0\ 1) \succeq 2^{\mathbb{N}}$.

We conclude by Schöder-Bernstein that $2^{\mathbb{N}} \sim (0 \ 1)$.

EXERCISES

- (1) Show that the set of cofinite subsets of an enumerable set is enumerable.
- (2) Show that the points inside of the inferior semicircle of radius 1 and center (1,1) are equivalent to \mathbb{R} .

REFERENCES

- [1] George S. Boolos, John P. Burgess, Richard C. Jeffrey, Computability and Logic
- [2] Paul Halmos, Naive Set Theory