Eliciting a suitable voting rule via examples

Olivier Cailloux¹ Ulle Endriss²

¹LAMSADE, Université Paris-Dauphine ²ILLC, University of Amsterdam

14th November, 2017

https://github.com/oliviercailloux/eliciting-voting-rules-pres-short

Introduction

Context

- A committee (a group of decision makers)
 - a panel attributing a research price
 - a management committee
- Recurring decisions
- A decision is taken using a voting rule
- Voting rule: a systematic way of aggregating different opinions and decide

Our goal

We want to help the committee choose a suitable voting rule.

Voting rule

Input

- A set of possible alternatives (options) A
- Each voter $i \in N$ has a linear order of preference over \mathcal{A}
- A profile \mathbf{R} associates each i to such an order.

Voting rule

Associates to each profile R winning alternatives $A \subseteq \mathcal{A}$.

Our goal

Making decisions involves two steps.

- Establish a constitution: choose a voting rule.
- ② Solve a decision problem: apply the voting rule.

Our goal

We focus on step 1: help the committee choose a voting rule.

- Class of functions \mathcal{F} (the set of all voting rules)
- Preference elicitation in order to choose a function $f \in \mathcal{F}$.
- We want to ask *simple* questions: example-based.

A naïve attempt

A first attempt

Simply give a profile \mathbf{R} and ask for $f(\mathbf{R})$. Then iterate.

• Completely general: all functions in \mathcal{F} can be reached.

But...

- One question brings very little information.
- Questions may be difficult to answer.

General idea

- Ask good (informative, example-based) questions.
- Restrict the class of a-priori acceptable functions to $\mathcal{F}' \subset \mathcal{F}$.

Context

- Context
- Asking good questions
- Restrict the class of functions
- Which questions to ask?
- Conclusion

- Asking good questions
- Which questions to ask?

A different view of a profile

Asking good questions

- We want to ask more informative questions about f.
- We look at profiles under a different angle.
- A rank-vector maps voters to ranks, $x: N \to [1, m]$.
- All rank vectors: $[1, m]^N$.

To each profile \mathbf{R} corresponds a rank-profile $\mathbf{x}_{\mathbf{R}}$.

Representing the preferences of the committee

- We can now ask for the preference status of, e.g., 1 3 versus 2 2 .
- Series of such questions permit to identify a voting rule.

Weak-order based rules

- \geq a weak-order (transitive, reflexive, connected) over $[1, m]^N$.
- ullet Having a profile \mathbf{R} , look at the maximal rank-vectors in it according to \geq .
- The rule $f_{>}$, at \mathbf{R} , selects those alternatives having maximal rank-vectors in R.

A rule f is weak-order based if there exists \geq st $f = f_{>}$.

Incomplete question sets

- We do not want to ask every possible questions!
- Can we get away with only some answers?

Robust rules

- \geq a preorder (transitive, reflexive) over $[1, m]^N$.
- Look at all weak-orders ≥ extending ≥.
- The robust rule F_{\geq} , at R, selects those alternatives winning in some $f_{>}$ (for some \geq extension of \gtrsim).

A rule f is robust if there exists \gtrsim st $f = F_{>}$.

- Context
- 2 Asking good questions
- 3 Restrict the class of functions
- 4 Which questions to ask?
- Conclusion

The WOB class

Not every rule is weak-order based.

- Bad news: we are not fully general any more.
- Good news: we have restricted our class of functions. $WOB = \{ f_{>}, \succeq \text{ a weak-order over } [1, m]^N \} \text{ instead of } \mathcal{F}.$

How does WOB compare to other known classes of rules?

- Every scoring rule (e.g. Borda) is a WOB rule.
- Some WOB rules are not scoring rules. E.g. Bucklin.
- Many Condorcet rules are not WOB rules.

Some relationships between classes of rules

Scoring \subset WOB; Condorcet \cap WOB = \emptyset (for $n = 3k, m \ge 4$).

The class of robust rules

Some robust rules are not WOB rules.

Example (A robust rule)

Some relationships between classes of rules

Scoring \subset WOB \subset Robust.

Olivier Cailloux (LAMSADE)

- Context
- Asking good questions
- Restrict the class of functions
- 4 Which questions to ask?
- Conclusion

Which questions to ask?

- Assume the committee has a weak-order ≥ in mind.
- We want to discover much information using few questions.
- Different questions bring different amount of information.

Elicitation strategy

An elicitation strategy tells us which question should be asked considering our current knowledge.

A strategy:

- computes the fitness of asking about a pair of rank-vectors, for each pair;
- chooses the fittest pair.

We ask q questions, then compare our approximation $F_{>}$ to $f_{>}$.

Which questions to ask?

Which strategy?

We tested three strategies.

```
optimistic fitness of (x, y) proportional to the number of
rank-vectors dominated by x or y, but not both;
```

pessimistic a variant of the previous strategy, using the min operator rather than the sum;

likelihood fitness proportional to the likelihood of a profile occurring where both rank-vectors are possible winners

We assume pareto-dominance and indifference to permutations.

Comparison of strategies

- Optimistic not better than random!
- Likelihood much better than pessimistic.

Number of questions

How many questions must be asked for a useful approximation?

- Our approximation has all the true winners: $f_{\geq}(\mathbf{R}) \subseteq F_{\geq}(\mathbf{R})$.
- But it may have supplementary winners.
- We are interested in the ratio of approximated VS true winners: $\frac{|F_{\geq}(\mathbf{R})|}{|f_{>}(\mathbf{R})|}$.
- We average it over all profiles: $\frac{1}{|\mathcal{R}|} \sum_{\mathbf{R} \in \mathcal{R}} \frac{|f_{\geq}(\mathbf{R})|}{|f_{\geq}(\mathbf{R})|}$.

For 6 voters, 6 alternatives, using the likelihood strategy:

	Target rule	
nb q	Borda	$Random \succeq$
0	1.9	2.2
25	1.3	1.7
99	1.0	1.3

- Which questions to ask?
- Conclusion

Conclusion

We propose to help a committee choose a voting rule.

- We introduce a different look at a profile (see also Sen, 1977).
- We use it to ask simple questions to elicit preferences.
- We analyse the class of rules reachable by our questioning process.
- A robust voting rule may be defined to give all possible winners (inspired by Dias et al., 2002).
- We compare and analyse several elicitation strategies.

Thank you for your attention!

Bibliography

- Dias, L., Mousseau, V., Figueira, J., and Clímaco, J. (2002). An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI. *European Journal of Operational Research*, 138(2):332–348.
- Sen, A. (1977). On weights and measures: Informational constraints in social welfare analysis. *Econometrica*, 45(7):1539–1572.