Classification of C^* -algebras: February report

Jack Ceroni*
(Dated: Saturday 23rd March, 2024)

I. Introduction

I will discuss the reading I have completed in the month of February. This set of notes is entirely dedicated to exploration of C^* -dynamical systems, in addition to a paper related to the subject.

II. Introduction to C^* -dynamical systems

Let us begin by defining a C^* -dynamical system:

Definition II.1 (C^* -dynamical system). A C^* -dynamical system is a pair (A, σ) , where A is a C^* -algebra and $\sigma : \mathbb{R} \to \operatorname{Aut}(A)$ is a map from the real numbers to the automorphism group of A, such that the semigroup condition is satisfied, $\sigma_t \circ \sigma_s = \sigma_{s+t}$ and $\sigma_0 = \operatorname{id}$. Moreover, the map $t \mapsto \sigma_t(a)$ is assumed to be continuous as a function from \mathbb{R} to A, for each $a \in A$.

In the context of quantum mechanics, A might be a subalgebra of the algebra of bounded operators on some Hilbert space \mathcal{H} of quantum states, where the operators in $A \subset B(\mathcal{H})$ are observables, and σ is the time-evolution induced by the Schrodinger equation corresponding to some Hamiltonian $H \in B(\mathcal{H})$, namely

$$\sigma_t(a) = e^{iHt} a e^{-iHt}. (1)$$

Checking that this is a valid C^* -dynamical system is easy.

We will need some basic terminology for working with C^* -dynamical systems:

Definition II.2 (State). A state on a C^* -algebra A is a linear map $\rho: A \to \mathbb{C}$ such that $\rho(a^*a) \geq 0$ and $\rho(1) = 1$. The idea with this definition is to generalize the notion of a state in quantum mechanics. We have observables which are evolving in time, and $\rho(\sigma_t(a))$ is the expectation value of a at time t with respect to the state ρ (if σ_t are the dynamics of some C^* -dynamical system).

Example II.1 (States of matrix algebras). Suppose $A = M_{n \times n}(\mathbb{C})$, with the Hilbert-Schmidt inner product, $\langle a,b \rangle = \operatorname{Tr}(a^*b)$, and the corresponding norm inducing a C^* -algebra structure (recall all matrix norms yield equivalent metric spaces). Recall the Riesz representation theorem for finite-dimensional vector spaces: given a linear function $\phi: A \to \mathbb{C}$ on an inner product space, there exists a unique $\rho \in A$ such that $\phi(a) = \langle \rho, a \rangle$, and thus a unique ρ such that $\phi(a) = \operatorname{Tr}(\rho a)$ for all a. It follows that in this setting, an algebra state can be uniquely specified in terms of an element of the algebra $\rho \in A$, such that $\phi(1) = \operatorname{Tr}(\rho) = 1$, and such that ρ has a non-negative spectrum, as if v is an eigenvector of ρ , then the eigenvalue projection p_v is positive, and we must have $\operatorname{Tr}(\rho p_v) = \lambda_v \geq 0$, with λ_v the eigenvalue corresponding to v.

These conditions are also clearly sufficient: given non-negative $\rho \in A$ with $\text{Tr}(\rho) = 1$, clearly $a \mapsto \text{Tr}(\rho a)$ is a state (we have the positivity condition because if ρ is positive, then $\rho = s^*s$ and $\text{Tr}(\rho a^*a) = \text{Tr}(s^*sa^*a) = \text{Tr}(as^*)(as^*)^* \ge 0$).

This is why, in quantum mechanics, we will call a positive operator ρ with unit trace a quantum state: because there is a bijection between the collection of all such quantum states, and algebra states $\phi \in A$!

Definition II.3. Given a C^* -dynamical system (A, σ) , some $a \in A$ is said to be σ -analytic if the map $t \mapsto \sigma_t(a)$ extends to an A-valued entire function $z \mapsto \sigma_z(a)$ (in other words, this function is everywhere analytic/has a convergent power series representation).

^{*} jack.ceroni@mail.utoronto.ca

Definition II.4 (Types of states). A state ϕ on A is said to be a ground state with respect to σ if, for every $a \in A$ and every σ -analytic $b \in A$, the function $z \mapsto \phi(a\sigma_z(b))$ is bounded in the region $\text{Im}(z) \geq 0$. A state ϕ is said to be σ -invariant if $\phi(\sigma_t(b)) = \phi(b)$ for all $b \in A$ and all $t \in \mathbb{R}$. A state ϕ is said to be a KMS $_\beta$ state with respect to σ , at inverse temperature $\beta \in [0, \infty)$ if $\phi(ab) = \phi(b\sigma_{i\beta}(a))$ for all σ -analytic a and b.

Example II.2 (KMS states in quantum theory). Suppose $A = M_{n \times n}(\mathbb{C})$: a C^* -algebra of $n \times n$ complex matrices. In quantum mechanics, one may think of this as the algebra of observables corresponding to a collection of qubits. We let σ_t be the *Heisenberg time-dynamics* of a given *Hamiltonian* $h \in A$, where h is self-adjoint, with

$$\sigma_t(a) = e^{iht} a e^{-iht} \tag{2}$$

Verifying that σ_t gives rise to a valid C^* -dynamical system is easy: note that

$$\sigma_{s+t}(a) = e^{ih(t+s)} a e^{-ih(t+s)} = e^{iht} (e^{ihs} a e^{-ihs}) e^{-iht} = \sigma_t(\sigma_s(a)) \quad \text{and} \quad \sigma_0(a) = e^{ih(0)} a e^{-ih(0)} = a.$$
 (3)

Moreover, given $a \in A$, the function $t \mapsto \sigma_t(a) = e^{iht}ae^{-iht}$ is norm-continuous due to the fact that the function $t \mapsto e^{iht} = \cos(th) + i\sin(th)$ is norm-continuous, via the continuous functional calculus of the underlying algebra.

In this setting, we can explicitly write down a KMS $_{\beta}$ state, namely,

$$\rho_{\beta}(a) = \operatorname{Tr}\left(\frac{e^{-\beta h}}{\operatorname{Tr}\left[e^{-\beta h}\right]}a\right) \tag{4}$$

Verifying that this map is a KMS $_{\beta}$ state is trivial: we have

$$\rho_{\beta}(b\sigma_{i\beta}(a)) = \rho_{\beta}(be^{-\beta h}ae^{\beta h}) = \operatorname{Tr}\left(\frac{1}{\operatorname{Tr}\left[e^{-\beta h}\right]}be^{-\beta h}ae^{\beta h}e^{-\beta h}\right) = \operatorname{Tr}\left(\frac{abe^{-\beta h}}{\operatorname{Tr}\left[e^{-\beta h}\right]}\right) = \rho_{\beta}(ab) \tag{5}$$

It is moreover possible to see that this is the only possible KMS $_{\beta}$ state. Recall we explained that every state $\phi \in A$ has a unique representation as $a \mapsto \text{Tr}(\rho a)$ for some positive, unit trace $\rho \in A$. It follows that if ϕ_{β} is a KMS $_{\beta}$ state, we must have $\phi_{\beta}(a) = \text{Tr}(\eta a)$ for some η (which is positive and has unit-trace). The KMS-condition implies that we must have

$$Tr(b\eta a) = Tr(\eta ab) = Tr(\eta be^{-\beta h} ae^{\beta h})$$
(6)

Since h is Hermitian, it follows from spectral theorem that we have an eigenvector basis of h. Let $p_{v,w}$ be a map which sends eigenvector v to eigenvector w, and sends everything else to 0. Let $a_v = \sum_k p_{v,v_k}$, where k sums over all eigenvectors. Note that

$$\operatorname{Tr}(\eta a_v a_w^*) = \operatorname{Tr}(\eta a_w^* e^{-\beta h} a_v e^{\beta h}) = e^{\beta \lambda_v} \operatorname{Tr}\left[e^{-\beta h}\right] \operatorname{Tr}(\eta p_{v,w}) \tag{7}$$

for $v \neq w$, the left-hand side of the equation is 0, so $\text{Tr}(\eta p_{v,w}) = 0$. For v = w, we have

$$e^{\beta\lambda_v}\operatorname{Tr}\left[e^{-\beta h}\right]\operatorname{Tr}\left(\eta p_{v,v}\right) = \operatorname{Tr}(\eta a_v a_v^*) = \sum_{jk}\operatorname{Tr}\left(\eta p_{v_j,v_k}\right) = \operatorname{Tr}(\eta) = 1$$
 (8)

which implies that $\text{Tr}(\eta p_{v,v}) = \text{Tr}[e^{-\beta h}]e^{-\beta \lambda_v}$. It follows immediately from these facts that we must have $\eta = \frac{1}{\text{Tr}[e^{-\beta h}]}e^{-\beta h}$, as desired.

Often, we wish to use an equivalent formulation of the KMS condition, which does not involve analytic elements of the algebra:

Proposition II.1. A state ϕ is a KMS $_{\beta}$ state if and only if for any $a, b \in A$, there exists a function F(a, b, z) analytic when $0 < \text{Im}[z] < \beta$, continuous on the closure of this strip, which satisfies the following conditions:

$$F(a,b,t) = \phi(a\sigma_t(b)), \qquad F(a,b,t+i\beta) = \phi(\sigma_t(b)a) \tag{9}$$

where $t \in \mathbb{R}$.

Proof. Suppose this condition holds, so we have a function F(a, b, z) satisfying the conditions. Let $a, b \in A$ be σ -analytic. It follows that the function $t \mapsto \sigma_t(b)$ can be extended analytically to $G(z) = \sigma_z(b)$, and similarly, the function $H(z) = \phi(a\sigma_z(b))$ is analytic. Clearly, for any $z = t \in \mathbb{R}$, we have

$$P(t) = F(a, b, t) - H(t) = \phi(a\sigma_t(b)) - \phi(a\sigma_t(b)) = 0$$
(10)

and moreover, since P(z) is an analytic function on the domain $S_{\beta} = \{z | 0 < \text{Im}[z] < \beta\}$ which can be extended to a continuous function on the closure, taking on real values on the real line, by the Schwarz reflection principle, we can extend P to an analytic function \widetilde{P} on $\widetilde{S}_{\beta} = \{z | -\beta < \text{Im}[z] < \beta\}$. In particular, since \widetilde{P} is analytic on the real line and vanishes, it must vanish on the entire domain, which means F(a, b, z) = H(z) in the upper-strip. In particular,

$$H(i\gamma) = \phi(a\sigma_{i\gamma}(b)) = F(a, b, i\gamma) \tag{11}$$

for all $\gamma < \beta$. It follows from continuity that taking $\gamma \to \beta$, we have $H(i\beta) \to F(a,b,i\beta) = \phi(ba)$. This is precisely the desired condition.

To prove the converse, suppose we have $\phi(ab) = \phi(b\sigma_{i\beta}(a))$ for all σ -analytic a and b. Again, for such σ -analytic b, the function $F(a,b,z) := \phi(a\sigma_z(b))$ is analytic. The goal is to show that this function satisfies the required conditions of the proposition. Indeed, we have

$$F(a,b,t) = \phi(a\sigma_t(b)) \tag{12}$$

as well as

$$F(a, b, t + i\beta) = \phi(a\sigma_{t+i\beta}(a)) = \phi(a\sigma_{i\beta}(\sigma_t(b))) = \phi(\sigma_t(b)a)$$
(13)

where we know that $\sigma_{t+i\beta} = \sigma_{i\beta} \circ \sigma_t$ as a byproduct of the analytic extension. To define a function on all elements of the algebra, not just the σ -analytic ones, we will show that there is a dense *-subalgebra of analytic elements, from which we can extend F to the entire algebra. Indeed, suppose $a \in A$, we define

$$a_m = \sqrt{\frac{m}{\pi}} \int_{\mathbb{R}} \sigma_t(a) e^{-mt^2} dt \tag{14}$$

Of course, this integral (this is the Bochner integral: an analogue of Lebesgue integration defined when the domain being considered is an arbitrary Banach space) converges as $||\sigma_t(a)|| \le ||a||$. We claim that a_m is σ -analytic, and moreover, taking all a_m for all $a \in A$ yields a dense subset of A. Moreover,

$$||a_m|| = \left| \left| \sqrt{\frac{m}{\pi}} \int_{-\infty}^{\infty} ae^{-mt^2} dt \right| \right| \le \sqrt{\frac{m}{\pi}} \int_{-\infty}^{\infty} ||\sigma_t(a)|| e^{-mt^2} dt \le ||a||$$

$$\tag{15}$$

for each m. Due to the fact that $\sigma_s \in \operatorname{Aut}(a)$, we have

$$\sigma_s(a_m) = \sqrt{\frac{m}{\pi}} \int_{-\infty}^{\infty} \sigma_{s+t}(a) e^{-mt^2} dt = \sqrt{\frac{m}{\pi}} \int_{-\infty}^{\infty} \sigma_t(a) e^{-m(t-s)^2} dt$$
 (16)

The right-hand side of the above extends to an analytic function on the complex plane in the variable s. Indeed, note that wehen we naively substitute a complex variable z = x + iy for the place of s in the above expression, we get

$$e^{-m(t-x-iy)^2} = e^{-m(t-x)^2} e^{my^2} e^{2iy(t-x)}$$
(17)

which implies that the integrand still converges, as we are effectively multiplying by an overall norm-increasing factor of the form e^{my^2} , a constant. It therefore follows that the collection of a_m are σ -analytic. To see that the collection of a_m , for all $a \in A$, forms a dense subset of A, note that

$$||a - a_m|| = \left| \left| \int_{-\infty}^{\infty} (a - \sigma_t(a))e^{-mt^2} dt \right| \right| \le \int_{-\infty}^{\infty} ||a - \sigma_t(a)||e^{-mt^2} dt$$
 (18)

If we take $m \to \infty$, the integral above approaches $||a - \sigma_0(a)|| = ||a - a|| = 0$, which means we can make a_m arbitrarily close to a. For σ -analytic elements, note that

$$||F(a,b,z)|| = ||\phi(a\sigma_z(b))|| \le ||a\sigma_z(b)|| \le ||a|| ||\sigma_{iIm[z]}(b)||$$
(19)

where we don't necessarily know that σ_z for general complex numbers is a *-automorphism, so we cannot use the fact that *-automorphisms are norm decreasing. Nevertheless, this function will still be bounded on S_{β} . It follows from Hadamard's three-lines theorem that

$$\sup_{z \in \overline{S}_{\beta}} F(a, b, z) \le ||\phi(a\sigma_{i\beta}(b))|| = ||\phi(ba)|| \le ||a|| ||b||$$
(20)

Now, let us pick $a, b \in A$ and sequences a_n and b_n of σ -analytic elements converging to each, respectively. We will have

$$||F(a_n, b_n, z) - F(a_m, b_m, z)|| = ||\phi(a_n \sigma_z(b_n)) - \phi(a_m \sigma_z(b_m))||$$
(21)

$$= ||\phi((a_n - a_m)\sigma_z(b_n)) - \phi(a_m\sigma_z(b_m - b_n))||$$
 (22)

$$\leq ||\phi((a_n - a_m)\sigma_z(b_n))|| + ||\phi(a_m\sigma_z(b_m - b_n))||$$
 (23)

$$= ||F(a_n - a_m, b_n)|| + ||F(a_m, b_m - b_n)||$$
(24)

$$\leq ||a_n - a_m|| ||b_n|| + ||b_m - b_n|| ||a_m|| \tag{25}$$

which implies that the sequence of (a_n, b_n) is Cauchy in \overline{S}_{β} , so we have a well-defined continuous extension of F to all $a, b \in A$, completing the proof.

A particularly nice property of KMS states is their invariance under time-evolution.

Proposition II.2. KMS $_{\beta}$ states with respect to the dynamical system σ are σ -invariant: they do not change under time-evolution with respect to σ .

Proof. Let ϕ be a KMS state. Let a be a σ -analytic element of the underlying algebra. The KMS condition implies that

$$\phi(\sigma_t(a)) = \phi(\sigma_{t+i\beta}(a)) \tag{26}$$

It follows that the entire function $z \mapsto \phi(\sigma_z(a))$ is β -periodic. Note that $||\sigma_t(a)|| \le ||a||$ for all t. It follows that for any z = x + iy,

$$||\phi(\sigma_z(a))|| \le ||\sigma_z(a)|| = ||\sigma_x(\sigma_{iy}(a))|| \le ||\sigma_{iy}(a)|| \le \max_{y \in [0,\beta]} ||\sigma_{iy}(\sigma)||$$
 (27)

where the maximum exists as the function $y \mapsto ||\sigma_{iy}(\sigma)||$ on $[0, \beta]$ is clearly continuous. Thus, we have a bounded entire function, which, by Liouville's theorem, is constant. In particular, $\phi(\sigma_t(a)) = \phi(a)$ for all t. To see that this claim is also true for arbitrary $a \in A$, we once again use the density of the σ -analytic elements, and note that if $a_n \to a$ with each a_n σ -analytic, then $\phi(\sigma_t(a_n)) \to \phi(\sigma_t(a))$ and $\phi(\sigma(a_n)) \to \phi(\sigma(a))$ by continuity, so $\phi(\sigma_t(a)) = \phi(a)$.

III. Crystallization of C^* -algebras

The paper begins by defining what the crystal of a C^* -algebra is. Intuitively, given a C^* -dynamical system, we define the crystal as the quotient algebra which collapses all non-zero-energy eigenstates of the dynamics down to a point.

Definition III.1. Let A be a C^* -algebra, let σ_t for $t \in \mathbb{R}$ be a one-parameter group of algebra automorphisms for M. Given $\lambda \in \mathbb{R}$, define

$$A_{\lambda} = \{ a \in A \mid \sigma_t(a) = e^{it\lambda} a \text{ for all } t \in \mathbb{R} \}.$$
 (28)

We assume that the dynamics are almost-periodic, meaning that the *-subalgebra spanned by all the A_{λ} is dense in A. Let $I_{\lambda} = \overline{A_{\lambda} A_{\lambda}^*}$, which is an algebra ideal in A_0 , and let

$$I = \overline{\sum_{\lambda > 0} I_{\lambda}} \tag{29}$$

The C^* -algebra $A_c = A_0/I$ is called the *crystal* of (A, σ) .

Lemma III.1. A unital *-homomorphism $\varphi: A \to B$ between C^* -algebras is norm-decreasing.

Proof. First, note that if $\lambda \in \operatorname{sp}(\varphi(a))$, then $\varphi(a) - \lambda \cdot 1$ is not invertible. Suppose $a - \lambda \cdot 1$ were invertible: then $\varphi(a - \lambda \cdot 1) = \varphi(a) - \lambda \cdot 1$ would be, a contradiction. Thus, $\operatorname{sp}(\varphi(a)) \subset \operatorname{sp}(a)$. Now, note that

$$||\varphi(a)|| = \sup |\operatorname{sp}(\varphi(a))| \le \sup |\operatorname{sp}(a)| = ||a||. \tag{30}$$

and we're done. \Box

Claim III.1. The above definition of the crystal makes sense.

Proof. First, let us check that each A_{λ} is a sub-algebra. Clearly, it is closed under sums/products/scalar product/inversion and has the additive identity, since σ_t is an algebra automorphism, and is thus linear/multiplicative. In addition, suppose $a \in A_{\lambda}$, then $\sigma_t(a^*) = \sigma_t(a)^* = e^{-it\lambda}a^*$, so A_{λ} is not a sub-*-algebra unless $\lambda = 0$.

To see that A_0 is a C^* -algebra, note that $\sigma_t(1) = \sigma_t(1)\sigma_t(1)$ implying $\sigma_t(1) = 1$ as σ_t is an automorphism, so σ_t is a unital *-isomorphism, meaning that it is unit-preserving. Thus, $||\sigma_t(a)|| \le ||a||$, so σ_t is continuous, implying that if $a_n \to a$ with $a_n \in A_0$, then $\sigma_t(a_n) \to 0$ and $\sigma_t(a) = 0$, so $a \in A_0$. To see that $A_\lambda A_\lambda^*$ is in A_0 is easy, for $a \in A_\lambda$, we have

$$\sigma_t(aa^*) = \sigma_t(a)\sigma_t(a^*) = e^{i\lambda t}ae^{-i\lambda t}a^* = aa^*$$
(31)

so $aa^* \in A_0$. Thus, the span of all such aa^* is in A_0 so $A_\lambda A_\lambda^* \subset A_0$. Since A_0 is closed, $\overline{A_\lambda A_\lambda^*} \subset A_0$. Clearly, I_λ is closed under the star. When the authors identify I_λ with $\overline{A_\lambda A_\lambda^*}$, I'm assuming that they mean I_λ is the two-sided ideal generated by the elements of this set.

Proposition III.1. The elements $\lambda \in \mathbb{R}$ such that $A_{\lambda} \neq 0$ form a group under addition.

Proof. Note that if $A_c, A_d \neq 0$, then we can pick $a \in A_c$ and $b \in A_d$, so that

$$\sigma_t(ab) = \sigma_t(a)\sigma_t(b) = e^{i(c+d)t}ab \tag{32}$$

for all t, so $ab \in A_{c+d}$. In addition, note that if $a \in A_c$, then $\sigma_t(a^*) = \sigma_t(a)^* = e^{-ict}a^*$, so $a^* \in A_{-c}$. We assume $A_0 \neq 0$, or else the entire construction of the crystal becomes trivial. It follows immediately that we have a group.

With this fact, let $\Gamma \subset \mathbb{R}$ be the group defined above. It is of course true that we have a natural embedding $j: \Gamma \to \mathbb{R}$ by inclusion, so there is a homomorphism between Pontryagin duals, $j_*: \widehat{R} \to \widehat{\Gamma}$.

Claim III.2. There is a natural pairing between \mathbb{R} and $\widehat{\mathbb{R}}$.

Proof. Recall that $\widehat{\mathbb{R}} = \operatorname{Hom}(\mathbb{R}, \mathbb{T})$. Suppose $\phi \in \operatorname{Hom}(\mathbb{R}, \mathbb{T})$, so there $\phi(y) = e^{i\varphi(y)}$, where $\varphi : \mathbb{R} \to [0, 2\pi)$. We must have $\phi(y+z) = \phi(y) \cdot \phi(z)$, so $e^{i\varphi(x+y)} = e^{i\varphi(x)+\varphi(y)}$. Thus,

$$e^{i[\varphi(x+y)-\varphi(x)-\varphi(y)]} = 1 \Longrightarrow \varphi(x+y) = \varphi(x) + \varphi(y) \tag{33}$$

as $\varphi(x), \varphi(y), \varphi(x+y) \in [0, 2\pi)$. Thus, φ must be linear, so $\varphi(y) = e^{ixy}$ for all y, where $x \in \mathbb{R}$. Of course, this x is unique. Suppose $e^{ixy} = e^{ix'y}$ for all y, then $e^{i[x-x']y} = 1$ for all y, which would imply that (x-x')y is always a multiply of 2π , for any y. The only way which this is possible is the case that the multiple is 0, and x = x'.

It follows that we have a natural mapping $\mathbb{R} \to \widehat{\Gamma}$, taking $x \in \mathbb{R}$, to the map $y \mapsto e^{ixy} \in \widehat{\mathbb{R}}$, to the map $e^{ixy} \circ j$, where j is the embedding of Γ into \mathbb{R} . The image of $\mathbb{R} \mapsto \widehat{\Gamma}$ is dense, which implies that we should be able to extend a map $t \mapsto \sigma_t(a)$ to a map on all of $\widehat{\Gamma}$. This allows us to define $E: A \to A_0$, as

$$E(a) = \int_{\widehat{\Gamma}} \sigma_{\chi}(a) d\chi \tag{34}$$

where we are taking the integral with respect to the Haar-measure on $\widehat{\Gamma}$, and integral being taken is again the Bochner, operator-valued integral. The reason why this map goes into A_0 is because

$$\sigma_t(E(a)) = \int_{\widehat{\Gamma}} \sigma_{t+\chi}(a) d\chi = \int_{\widehat{\Gamma}} \sigma_{\chi}(a) d\chi \tag{35}$$

as the Haar measure is invariant under action by the group $\widehat{\Gamma}$, which amounts to addition by some scalar. Moreover, note that for $a \in A_{\lambda}$ with $\lambda \neq 0$, we will have

$$E(a) = \int_{\widehat{\Gamma}} \sigma_{\chi}(a) d\chi = e^{-it\lambda} \int_{\widehat{\Gamma}} \sigma_{\chi}(\sigma_{t}(a)) d\chi = e^{-i\lambda t} \int_{\widehat{\Gamma}} \sigma_{\chi}(a) d\chi = e^{-i\lambda t} E(a)$$
(36)

which means that $(1 - e^{-i\lambda t})E(a) = 0$ for all t. If $\lambda \neq 0$, E(a) = 0.

This observation immediately establishes an important fact: there is a natural way in which we can "collapse" the entire algebra A down to the crystal A_0 , by simply performing the above "averaging" operation, such that everything outside of A_0 is collapsed to a point. This implies that the above map E can actually be thought of as a contraction map to the quotient, A_c This will allow us to draw connections between ground states of A_0 , and ground states of A_c .

Proposition III.2. Suppose the subalgebra spanned by the A_{λ} is dense in A. Then there is a completely positive contraction onto the crystal A_c obtained via the averaging map defined above, $\vartheta:A\to A_c=A_0/I$, where $\vartheta(a)=E(a)+I$. In the case that $A_c\neq 0$, then the map $\psi\mapsto \psi\circ\vartheta$ is a bijection of the state-space of A_c and the σ -ground states of A. If $A_c=0$, then there are no σ -ground states of A.

Proof. The first claim, that we have a contraction map, is true from the definition, as we explained in the previous paragraph. Recall that a ground state of A is precisely a character map $\phi: A \to \mathbb{C}$ such that for σ -analytic b and $a \in A$, the function $z \mapsto \phi(a\sigma_z(b))$ is bounded in the region of $\mathrm{Im}[z] \geq 0$. Since the algebra generated by the A_λ is dense, this is equivalent to the function $z \mapsto \phi(a\sigma_z(b))$ being bounded for all σ -analytic $b \in A_\lambda$ (in fact, all such b are σ -analytic), and all $a \in A$. Note that $\phi(a\sigma_z(b)) = e^{i\lambda z}\phi(ab)$. This function is bounded if and only if $\phi(ab) = 0$ for all $a \in A$, and $b \in A_\lambda$ for $\lambda < 0$, as in this case $i\lambda z$ has real component going $+\infty$ for $\mathrm{Im}[z] \geq 0$. By Cauchy-Schwarz,

$$||\phi(ab)||^2 \le ||\phi(a^*a)|| ||\phi(b^*b)|| \tag{37}$$

so if $\phi(b^*b) = 0$, then $\phi(ab) = 0$. Moreover, if $\phi(ab) = 0$ for all a, then in particular, $\phi(b^*b) = 0$ for all b, we have $\phi(ab) = 0$ if and only if $\phi(b^*b) = 0$ for all $b \in A_{\lambda}$ with $\lambda < 0$. Recall from earlier that $A_{\lambda}^* = A_{-\lambda}$. Thus, the above condition is equivalent to ϕ being a state which factor through $\overline{A_{\lambda}^*A_{\lambda}} = \overline{A_{-\lambda}A_{-\lambda}^*} = I_{-\lambda}$ for all $\lambda < 0$, so ϕ factors through I_{λ} for all $\lambda > 0$, which is true if and only if ϕ is a state which factors through I. Hence, $\phi \circ \theta$ is clearly a state for A_c . Moreover, given some state on A_c , we can think of it as a state $\phi \circ \vartheta$, where ϕ just collapses everything not in A_0 to 0, which in turn, by the above, means that ϕ will be a ground state for A.

Now that I have a better understanding of C^* -dynamical systems, for my March report, I will be diving deeper into some of the other theorems outlined in this work, which explore further properties of the algebra crystal.