CMPT733 PROJECT MILESTONE
TOPIC: "GLOBAL DATA ANALYSIS FOR SOCIAL
UNREST PREDICTION"

TEAM "EXA-MINE": RAKSHA HARISH, TAVLEEN SAHOTA, HARMAN JIT SINGH

PROBLEM STATEMENT

- How can we predict social unrest events (protests, riots, etc.) across the globe based on factors like historical event patterns, poverty, hunger, crime rate, natural calamities, etc.?
- What insights can be derived from the study of these factors and are there important relationships among these factors?
- What other approaches can be implemented to accurately predict social unrest?
- Application domain: World governments, policy making, Social science, world hunger/disaster management.

APPROACHES

Our project will be exploring 3 approaches to predict social unrest:

- 1. Temporal Burst Patterns in Historical Events data
- 2. Additional Data Sources that capture social, political and economic contexts poverty, hunger(food prices), crime rates, etc.
- 3. Predictors from Twitter-feed

APPROACHES

Our project will be exploring 3 approaches to predict social unrest:

- 1. Temporal Burst Patterns in Historical Events data:
 - Utilizes temporal burst patterns in Event streams to uncover the underlying event development mechanics and predict social unrest.
- 2. Additional Data Sources that capture social, political and economic contexts:

 Study global factors like poverty, hunger, crime rate, natural calamities and social biases in order to determine the factors that may lead to social unrest in the future.
- 3. Use Predictors from Twitter-feed

Twitter data is more vulnerable to propaganda. Since Twitter data is annotated based on Crowd sourcing it isn't sufficiently reliable to predict the sequence of event. Also, using live-twitter streams may be computationally challenging. Because of these and other issues, we concluded to exclude Twitter live-stream for this iteration of the application.

CHALLENGES

- 1. **Domain Knowledge:** There is limited work done in this area with very little reference material. Therefore, extensive literature review was required.
- 2. Handling Data: Historical datasets are extremely big and handling them requires expertise (familiarity with Google BigQuery etc.).
- 3. Availability of Datasets: Many datasets are available only for a certain time period making it difficult to aggregate datasets without losing key information.

DATASETS

- The GDELT Project (Global Data on Events, Location, and Tone) data (over 2.5 TB), using Google BigQuery.
- World food program (WFP) data
- International Relations and Human Rights data Harvard University
- World Poverty data The World Bank
- Hazards and Disaster Risk (Socioeconomic Data) NASA, USA
- Crime rates data UN Office on Drugs and Crime
- Net National Household Income per annum The World Bank
- ACLED Data The Armed Conflict Location and Event Data Project

ACTION PLAN

- 1. EDA: Perform comprehensive analysis including descriptive statistics, temporal analysis, comparative analysis, etc. Use these findings to determine next analysis/course-of-action.
- 2. Visualize data patterns to observe previous trends that led to social unrest.
- 3. Integration of a variety of data sources based on relevance (for specific time period).
- 4. Feature Selection and Engineering from the available datasets and (possibly) real-time twitter feed, to predict social unrest.
- 5. Analysis of the twitter feed, and finding similarities in the available cleaned datasets.
- 6. Build competing models to predict how and when these global factors may lead to social unrest and fine-tune the best one.
- 7. Build an interactive UI allowing users to access real-time social unrest predictions and other insights.

METHODOLOGY

DATA SCIENCE PIPELINE

DEVELOPMENT

• <u>SCRUM:</u> We used an adaptive scrum methodology with pairprogramming. We held bi-weekly scrum calls to quickly resolve issues and make decisions. We documented meeting minutes.

TECHNOLOGIES

 EDA + Visualization: Python with relevant packages + Jupyter Notebook/JupyterLab (in AWS)

Data Storage: AWS Cloud S3 buckets

Interactive Web-app: Dash

• SCM: GitHub

TENTATIVE TIMELINE

Task	Week	Status
Literature Review	Week 6-7	Completed
EDA + Twitter API	Week 7-9	Completed
Modeling	Week 10-11	In-progress
EDA - iteration 2	Week 11-12	In-progress
Improving Model	Week 11-13	
UI	Week 10-12	In-progress
Integration + Debugging	Week 12-13	
Documentation	Week 13	

Note: This is a tentative timeline to track progress, not to be mistaken for Waterfall methodology.

KEY INSIGHTS FROM EDA

Fig1: Frequency of Events Histogram

Fig2: Distribution of events across the year

KEY INSIGHTS FROM EDA

Fig1: Distribution of 5 types of events based on their intensity

Fig2: Mosaic Graph of Canada (lower intensity events=green)

Fig3: Mosaic Graph of USA (high intensity events = red/brown)

THANK YOU!