2-Channel Low-Power Wireless Scalp EEG System Analog Front End PCB Design

Jiaxu Meng

Full Schematic

2 EEG channels

- 1st stage: EEG signal acquisition
- 2nd stage: band pass filtering 0.1-50Hz
- 3rd and 4th stage: amplification
- Gain: 72.5dB (x4200)
- High input impedance
- High CMRR

Reference voltage

- single power supply: +3V battery
- rise subject's baseline voltage up to +1.5V for signal integrity

RLD channel

- reduce Vcm: negative feedback
- safety: $1M\Omega$ resistance in case of leakage

Signal Acquisition and Output

• EEG electrodes • coupled directly to electrodes

compensation RES sacrifices Zin

NI ADC can use floating point

• INA126 circuitry

INA operates on Vref by feeding Vref voltage into pin5

adjustable differential gain by Rg

Duke

Schematic for Simulation

Simulation vs Bench Testing – Frequency Response

Method: The passband is obtained by manually adjusting input signal frequency until the output signal magnitude decreased by 3dB (became 0.707 times of Vout/Vi) through filtering stage

Bench Testing: passband is 0.15Hz – 64Hz

Simulation vs Bench Testing – CMRR

CMRR calculation:

$$Ad = 5 \times 1.2 \times 28 \times 25 = 4200$$

Vcm in =
$$500$$
mV

$$Acm = \frac{Vcm_out}{Vcm_in} = \frac{1.5065 - 1.4397}{1} = 0.0668$$

CMRR =
$$20log \frac{Ad}{Acm} = 20log \frac{4200}{0.0668} = 96dB$$

Method: Input a Vcm with magnitude of 500mV to both INA input pins and record the output signal for calculation

CMRR calculation:

$$Ad = 3860$$

$$Acm = \frac{Vcm_out}{Vcm_in} = \frac{0.092}{1} = 0.092$$

CMRR =
$$20log \frac{Ad}{Acm} = 20log \frac{3860}{0.092} = 92.45dB$$

Simulation vs Bench Testing – DC Offset Tolerance

Bench testing tolerance: +/-170 mV

Method: increase the amplitude of DC offset voltage on input signals until the output signal is distorted

EEG Testing

Raw EEG signal obtained from P300 speller BCI2000 system

Low pass filter with cut off frequency 10Hz

Band pass filter within 1 - 10Hz

Result

Specification	Design Value	Simulation Result	Measured Result
Gain	72.5dB = x4200	72.5dB = x4194	71.73dB = x3860
Noise (input- referred)	$3.6 \mu V rms$ from $0.1 to 50 Hz$	Max=0.228 μV rms	3.1 μV rms
Input voltage range	+/- 250 μV	+/- 250 μV	+/- 250 μV
High pass filter -3 dB	0.106 Hz	0.142 Hz	0.149 Hz
Low pass filter -3 dB	53.05 Hz	52.5 Hz	64.3 Hz
Input offset range	+/- 300 mV	+/- 200 mV	+/- 170 mV
Power consumption	33mW	5.96mW	120mW
CMRR (dB)	> 60 dB	96dB	92.45dB
Input Impedance	> 10 MΩ	10^9 ΜΩ	10^9 ΜΩ
Leakage Current	< 1 μΑ	0.12μΑ	0.02 μΑ
Distortion	< 1%	0.04%	

- Low pass filter should have lower cut off frequency
- Input offset range should be enlarged without sacrificing input impedance
- EEG testing for suddenly opening eyes in bright light

