

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 337/20, 237/21, 237/32, 237/32, 237/36, 337/22, 323/62, C07D 209/14, 109/42, 209/42, 009/42, 109/42, 107/42, 133/50, 133/64, 239/56, 249/18, 263/12, 175/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04, A61K 31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/43, 31/44, 31/47, 31/48, 31/44, 31/47, 31/55

A1

(11) 国際公開番号

WO97/29079

(43) 国際公開日

1997年8月14日(14.08.97)

(21) 国際出願番号

PCT/JP97/00291

(22) 国際出願日

1997年2月6日(06.02.97)

(30) 優先権データ

特願平8/20083

1996年2月6日(06.02.96)

特願平8/94989

1996年4月17日(17.04.96)

(71) 出願人 (米国を除くすべての指定国について) 日本たばこ産業株式会社(JAPAN TOBACCO INC.)[JP/JP] 〒105 東京都港区虎ノ門二丁目2番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

稲葉隆之(INABA, Takashi)[JP/JP]

嘉屋徹道(KAYA, Tetsudo)[JP/JP]

岩村浩幸(IWAMURA, Hiroyuki)[JP/JP]

〒569-11 大阪府高槻市紫町1番1号

日本たばこ産業株式会社 医薬総合研究所内 Osaka, (JP)

(74) 代理人

弁理士 高島 一(TAKASHIMA, Hajime)

〒541 大阪府大阪市中央区平野町三丁目3番9号

(湯木ビル) Osaka, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA. CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ. TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

請求の範囲の補正の期限前であり、補正審受領の際には再公 開される。

(54) Title: NOVEL COMPOUNDS AND PHARMACEUTICAL USE THEREOF

(54)発明の名称 新規化合物およびその医薬用途

(57) Abstract

Compounds represented by general formula (I) and pharmaceutically acceptable salts thereof: wherein each symbol is as define d in the specification. These compounds and salts act selectively on cannabinoid receptors, especially peripheral receptors, are reduced in the side effects against the central nervous system, and are excellent in immunomodulatory, anti-inflammatory and antiallergic activities and a nephritis curing effect, thus being useful as agonists and antagonists of cannabinoid receptors (especially peripheral cannabinoid receptors), immunomodulator, remedies for autoimmune diseases, anti-inflammatory, antiallergic, and nephritis remedy.

#23

(57) 要約

式(I)

$$R^{2} \xrightarrow{R^{4}} A \xrightarrow{(A1k^{1})_{P} - (Y)_{q} - (A1k^{2})_{r} - R}$$

$$(1)$$

〔式中、各記号は明細書中に記載のとおりである〕

で表される化合物またはその医薬上許容される塩、およびその医薬用途。

本発明の化合物(I)およびその医薬上許容される塩は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する。よって、カンナビノイドレセプター(特に末梢型カンナビノイドレセプター)作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤および腎炎治療剤として有用である。

明細書

新規化合物およびその医薬用途

技術分野

本発明は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用する新規化合物およびその医薬用途に関する。より詳しくは、中枢系の副作用が少なく、免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する新規化合物およびその医薬用途に関する。

背景技術

従来、大麻成分としてカンナビノイドと呼ばれる一連のC、H、Oからなる化合物群が知られていた。このうちテトラヒドロカンナビノール(THC)が幻覚作用の主体とされており、また大麻草中に含有する主成分としては Δ 9-THCであることが知られている。この Δ 9-THCによる薬理作用としては、運動失調、被刺激性の増大、制吐、鎮痛、体温低下、呼吸抑制、カタレプシー惹起作用、血管拡張作用、免疫抑制作用等が観察されている。

これら薬理作用のメカニズムとしては、中枢神経系(Devane等, Mol Pharmacol. 1988, 34, 605-613; Hollister 等, Pharmacol. Rev., 1986, 38, 1-20; Renv等, Prog. Drug. Exp. Ther., 1991, 36, 71-114) および末梢細胞系(Nye 等, J. Pharmacol. Exp. Ther., 1985, 234, 784-791; Flynn 等, Mol Pharmacol. 1992, 42, 736-742) に大別され、中枢神経系を介した作用の一部は医療への適用が報告されている。

とりわけ、末梢細胞型レセプター、例えばマクロファージ上のレセプターの発見(Munnro等, Nature, 1993, 365, 61-65)によって、免疫反応を調節することにより、抗炎症作用、抗アレルギー作用並びに腎炎治療効果を有し、もとより免疫調節作用を併せ持つ、末梢細胞型レセプターのアゴニストの開発が期待されている。

カンナビノイドレセプターのアゴニストについては、ピラゾール誘導体 (特開 平6-73014号公報、EP656354、EP658546)、THC誘導 体 (特開平 3 - 2 0 9 3 7 7 号公報)、ベンゾオキサジン誘導体 (US 5 1 1 2 8 2 0)、インドール誘導体 (US 5 0 8 1 1 2 2)、脂肪酸誘導体 (WO 9 4 / 1 2 4 6 6) が公知である。

また、アミド誘導体についても種々報告されている。例えば、特開昭61-5 4号公報には5-リポキシゲナーゼ阻害剤としてベンゾイルアミノ酸アミドが開 示されており、特公平6-49686号公報には中間体としてアリル-エチルベ ンズアミドが開示されており、特開昭52-85137号公報には血糖低下剤と して2-ブトキシフェニルーエチルベンズアミドが開示されており、特開昭51 - 1 3 1 8 4 6 号公報には血糖低下剤として 2 - ブトキシフェニルーエチルベン ズアミド安息香酸が開示されているがこれは安息香酸誘導体であり、特開平5-2 1 3 8 7 7 号公報には血小板活性化因子阻害剤としてNーアセチルー 3 . 4 ー ビス(ヘプチルオキシ)-N-(2-ピリジニルメチル)ベンズアミドが開示さ れており、特公昭 4 6 - 3 1 8 5 2 号公報には局所麻酔剤として 1 - (N) -メ チルー2-(4'-ブトキシー2'、6'-ジメチルベンゾイルアミノ)-メチ ルーピペリジンが開示されており、特開昭50-137972号公報には抗結核 症剤として4-ブトキシーN-(3-ピリジル)-ベンズアミドが開示されてお り、US4743610にはトロンボキサン合成阻害剤としてアミノーアルコキ シーピリジニルーアルキルーベンズアミドが開示されており、特開平1-859 6 3 号公報には血小板活性化因子阻害剤としてアルコキシーナフタレニルーピリ ジニルーアミドが開示されている。しかし、これら文献には、カンナビノイドレ セプターが介在する作用機序に基づく薬理作用については開示されていない。

本発明の目的は、上記問題点がなく、カンナビノイドレセプター、特に末梢型 レセプターに選択的に作用する新規化合物、およびその医薬用途を提供すること である。

より詳細には、本発明の目的は、カンナビノイドレセプター、特に末梢細胞系に選択的に作用し、中枢神経系への作用(即ち、興奮、幻覚、運動失調、被刺激性の増大、体温低下、呼吸抑制、カタレプシー惹起作用、血圧低下等の副作用)

発明の開示

上記目的を達成すべく本発明者らが鋭意研究した結果、本発明の新規化合物が、カンナビノイドレセプター、特に末梢細胞系レセプターに選択的な親和性を有し、従ってカンナビノイドレセプターが関与することが知られている医用領域、特に末梢細胞系組織が関与する医用領域(免疫疾患、各種炎症、アレルギー性疾患、腎炎等)において医薬的効果を示すことを見出した。

即ち、本発明は以下のとおりである。

(1)式(1)

$$R^{2} \xrightarrow{R^{4}} A \xrightarrow{(A1k^{1})_{P} - (Y)_{q} - (A1k^{2})_{r} - R}$$

$$(1)$$

〔式中、XはCHまたはNを示し、

Wは-O-、-S(O), -、-CR 5 R 6 -、-NR 7 - -NR 7 CO-、-CONR 7 - 、-COO-または-OCO- (R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は、R 7 は、R 7 7 7 7 7 7 8 8 8 8 9

R¹ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該 R¹ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールア

ルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8R^9$ (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、フリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ 。S(O) 。 $R^{12}(R^{12}$ は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2 を、u は0, 1, 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、 ハロゲン原子またはニトロ基を示し、当該アルキルはアルコキシ、水酸基で置換 されていてもよく、

R'は水素原子を示すか、またはR'とR'がA環と一緒になって式(II)

(式中、W'R'、R²、R³の置換位置はA環、B環のいずれの位置であって もよく、W'R'、R²、R³はそれぞれ前記WR'、R²、R³と同義であり 、B環はベンゼン環、ピリジン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk' は-CH=CH-、 $-CH_2$ CH_2 - または-C=C-を示し、 Yは-CONR'''-、-NR''CO-、-COO-、 $-CH_2$ NR'''-または- NHCONH- (R'''、R''は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリ

ールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ ーまたは-CONH(CH_2)、-(vは0, 1, 2を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジル、ピペリジノ、カルボキシル、アルコキシカルボニル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

P、q、rはそれぞれ独立して0または1を示す。

なお、p=1かつq=1のとき、Alk'が-CH=CH-を示し、かつYが-CONR''0-を示し、かつR3がR''0と一緒になって-NHCO-を示し、A環と縮合環を形成してもよく、

p=0かつq=1のとき、Yが-CONR¹⁰-または-CH²NR¹⁰-を示し、かつR³がR¹⁰と一緒になって-CH=CH-、-CH²CHR²¹-、-CH²-、-S-、-CHOH-、-CO-、-CH²CO-、-NHCR²⁸(CH²)、-、-NHCR²⁹R³⁰-または-N=CR³¹-(R²¹は水素原子または水酸基を、R²⁸は酸素原子または硫黄原子を、R²⁹、R³⁰は同一または異なってそれぞれアルキルを、R³¹はアルキルまたは水素原子を、v¹は0または1を示す)

を示し、A環と縮合環を形成してもよく、

r=0 かつq=1 のとき、Yが $-CONR^{10}-$ または $-CH_2NR^{10}-$ を示し、かつRと R^{10} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよく、

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。〕

で表される化合物(以下、化合物(I)ともいう)またはその医薬上許容される 塩を有効成分として含有してなるカンナビノイドレセプター作動薬または拮抗薬。 (2)式(I)

〔式中、XはCHまたはNを示し、

Wは-O-、-S(O), -、-CR 5 5 6 6 $^{-}$

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子、アルキル、アルケニル、

(式中、W'R'、R²、R³の置換位置はA環、B環のいずれの位置であってもよく、W'R'、R²、R³はそれぞれ前記WR'、R²、R³と同義であり、B環はベンゼン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk' はーCH=CH-または-CH2CH2-を示し、

Yは-CONR'°-、-NR''CO-、-COO-、-CH2NR'°-または-NHCONH-(R'°、R''は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ - または-CONH (CH_2) 、- (vは0, 1, 2を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)

で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピペリジノ、カルボキシル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=0かつq=1のとき、Yが $-CONR^{10}$ -または $-CH_2$ NR^{10} -を示し、かつ R^3 が R^{10} と一緒になって-CH=CH-、 $-CH_2$ CHR^{27} -、 $-CH_2$ - 、-S-、-CHOH-、-CO-、 $-CH_2$ CO-、 $-NHCR^{28}$ (CH_2)、-、 $-NHCR^{29}$ R^{30} - または $-N=CR^{31}$ - (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、V' は 0 または 1 を示し、A 環と縮合環を形成してもよく、

r=0かつq=1のとき、Yが $-CONR'''-または<math>-CH_2NR'''-を示し、かつRとR'''が隣接する窒素原子と一緒になってヘテロアリールを形成してもよく、$

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。〕 で表される化合物またはその医薬上許容される塩を有効成分として含有してなる 上記(1)記載のカンナビノイドレセプター作動薬または拮抗薬。

(3)式(la)

$$R^{2}$$
 $CH = CH - C - N - (A1k^{2}), -R$ (1a)

〔式中、Wは-O-、-S(O)、-、-CR 5 R 6 -、-NR 7 - -NR 7 CO-、-CONR 7 - 、-COO-または-OCO-(R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、t は 0 、 1 、 2 を示す)を示し、

R' はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリールでルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ 。S(O) 。 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2を、u1 は0, 1, 2を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルオーシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキル

スルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されてい てもよく、

R¹⁰* は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ - または-CONH (CH_2)、- (vは 0, 1, 2 を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシル、オシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0 のとき、 $R \ge R^{-0}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい。

で表される化合物(以下、化合物(la)ともいう)またはその医薬上許容される塩。 (4)式(la)

〔式中、Wは-O-、-S(O)、-、-CR $^{\circ}R$ $^{\circ}$ -または-NR $^{\prime}$ - (R $^{\circ}$ $^{\circ}$ $^{\circ}$ は同一または異なってそれぞれ水素原子またはアルキルを、R $^{\prime}$ は水素原子またはアルキルを、R $^{\circ}$ は $^{\circ}$ $^{\circ$

 R^+ はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該 R^+ における各基はそれぞれ、アルキル、アルキルアミノで置換されていてもよく、

R³ は水素原子またはアルコキシを示し、

 R^{10} は水素原子またはアルキルを示し、当該アルキルはヘテロアリールで置換されていてもよく、

 Alk^2 はアルキレンを示し、当該アルキレンはアルコキシカルボニル;水酸基で置換されていてもよいアルキル; $-CONR^{13}R^{14}$ (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノで置換されていてもよく、当該ベンゼン縮合シクロアルシクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアル

キルは水酸基、アルコキシで置換されていてもよく、 rは0または1を示す。

なお、r = 0 のとき、 $R \ge R^{10}$ が隣接する窒素原子と一緒になってモルホリノまたはイミダゾリルを形成してもよい。

で表される上記(3)記載の化合物またはその医薬上許容される塩。

- (5) R[®] が水素原子、R[®] がーOR[™]、-NR[®] R[®] または-(CH₂)_u S
- (O) R¹²であり、ベンゼン環上の一CH=CH-CO-NR¹⁰² (Alk²)
- , Rの結合位置に対して、R² の置換位置がパラ位、-WR¹ の置換位置がメ タ位である上記(4)記載の化合物またはその医薬上許容される塩。
- (6) R^1 が炭素数 $4 \sim 6$ のアルキルである上記(5) 記載の化合物またはその 医薬上許容される塩。
- (7) $A lk^2$ がエチレンである上記(6) 記載の化合物またはその医薬上許容される塩。
- (8) r = 0 のとき、 $R \ge R^{10}$ が隣接する窒素原子と一緒になってモルホリノを形成する上記(4)記載の化合物またはその医薬上許容される塩。
- (9) (E) $-N-[2-(4-t)^2-t^2-t^2] 3-(4-t)^2$ $+2-3-(4-t)^2$
- 3 (4 x + 5 3 x + 5 x +
- 3-(3, 4-ジペンチルオキシフェニル)-(E)-N-(2-(4-ヒドロキシフェニル) エチル] アクリルアミド、
- (E) -N-[2-(4-t)+1] + (4-t) +
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシ-3-ヘキシルオキシフェニル) アクリルアミド、

- (E) -N-[2-(3-E)] (4-メトキシー 3-(4-X)) アクリルアミド、
- (E) $-N-(2-(2-k^2-k^2-k^2-k^2)) = 3-(4-k^2-k^2-k^2-k^2) = 3-(4-k^2-k^2) = 3-($
- (E) $-N-(2-(4-E)^2-2)^2-2$ (4 $-E^2-2$) $-N-(2-(4-E)^2-2)^2$ (4 -2) $-N-(2-(4-E)^2-2)^2$ (4 -2) $-N-(2-(4-E)^2-2)^2$ (4 -2) $-N-(2-(4-E)^2-2)^2$ (4 -2) $-N-(2-(4-E)^2-2)^2$ (4 -2) -20
- (E) $-N-[2-(4-E)^2+2]$ エチル] -N-3+2 (4-3) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] <math>-3-(3-4)ペンチルオキシー4-メトキシフェニル) アクリルアミド、

- $3 [3 (1, 1 2) \times f + 2 \times f + 2$
- (E) -N-[2-(3, 4-ジヒドロキシフェニル) エチル] -3-[3-(1, 1-ジメチルヘプチル) -4-メトキシフェニル] アクリルアミド、
- 3 (3 (3 (4 1)) (E) (4 1) (E) (4 1) 5 - (4 - 1)5 - (4
- (E) N (4 アミノー3 ペンチルオキシフェニル) N [2 (4 ヒドロキシフェニル) エチル] アクリルアミド、
- - $(E) N [2 (4 \lambda + \lambda + \lambda)] 3 (4 \lambda + \lambda)$

- 3 ペンチルオキシフェニル) アクリルアミド、
- 3-(4-メトキシ-3-ペンチルオキシフェニル)-(E)-N-(2-モルホリノエチル) アクリルアミド、
- (E) -N-[2-(3, 4-ジヒドロキシフェニル) エチル] -3-(4- メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) $-N-(2-(4-E)^2+2)$ $-3-(4-y)^2+2$ $-3-(4-y)^2+2$ $-3-(2-(4-y)^2+2)$ $-3-(4-y)^2+2$
- 3 [3 (N', N' i)] (N') (N'
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(3-ペンチルアミノ-4-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-[3-(N'-メチル-N'-ペンチルアミノ) -4-メトキシフェニル] アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシ-3-ペンチルチオフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-ペンチルオキシ-3-ペンチルチオフェニル) アクリルアミド、
- (E) -N-(2-(4-アミノフェニル) エチル]-3-(4-メトキシー3-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-(2-(4-ヒドロキシフェニル) エチル) -3-(3-ペンチルオキシ-4-ペンチルチオフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(3-ペンチルオキシ-4-メチルチオフェニル) アクリルアミド、
- (E) -N-[2-(4-アミノフェニル) エチル] -3-(4-メトキシー3-ペンチルチオフェニル) アクリルアミド、

- (E) $-N-[2-(4-x)^2-4-4]$ $-3-(4-x)^2$ $-3-(4-x)^2$ $-3-(4-x)^2$ $-3-(4-x)^2$
- (E) −N−〔2−(イミダゾール−4−イル) エチル〕−3−(4−メトキ シー3−ペンチルアミノフェニル) アクリルアミド、
- (E) -N-(2-(4-)+0+2) エチル) エチル] -3-(4-) アミノ-3- ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-アミノフェニル) エチル] -3-(4-メトキシー3-ペンチルアミノフェニル) アクリルアミド、

- (E) $-N-[2-(4-E)^2+2)^2+2$ (N' -x) +y-N'-2 (N' -x) -x-2 (N' -x) -x (N
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-ペンチルアミノ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-)27]フェニル) エチル] -3-(4-)3+シー 3-ペンチルオキシフェニル) アクリルアミド、および
- (E) -N-[2-(4-カルバモイルフェニル) エチル] -3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド

から選ばれる上記(7)記載の化合物またはその医薬上許容される塩。

(10)式(Ib)

〔式中、Wは-O-、-S(O), -、-CR 5 R 6 -、-NR 7 -、-NR 7 CO-、-CONR 7 -、-COO-または-OCO-(R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7

R⁻ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R⁻ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリールでルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ $_u$ S(O) $_u$ R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、u は 0 、1 、2 を、u は 0 、1 、2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、ニトロ基またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^{10b} は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ -または-CONH (CH_2)、-(vは0,1,2を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまだはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r = 0 のとき、 $R \ge R^{100}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい。

で表される化合物(以下、化合物(Ib)ともいう)またはその医薬上許容される塩。 (11)式(Ib)

〔式中、Wは-O-、-S(O), -、-CR $^{\circ}$ R $^{\circ}$ -、-NR $^{\prime}$ -、-NR $^{\prime}$ CO- (R $^{\circ}$ \times R $^{\circ}$ は同一または異なってそれぞれ水素原子またはアルキルを、R $^{\prime}$ は水素原子またはアルキルを、R $^{\circ}$ は水素原子またはアルキルを、R $^{\circ}$ $^{\circ$

R' はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-N R^8 R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または- (CH_2) $_{\rm u}$ S (O) $_{\rm u}$ R^{12} (R^{12} はアルキルを、 $_{\rm u}$ は $_{\rm u}$ $_{\rm u}$ は $_{\rm u}$ $_{\rm u}$

R³ は水素原子、アルコキシ、アルキル、ニトロ基またはハロゲン原子を示し、 当該アルキルは水酸基で置換されていてもよく、

R¹⁰⁶ は水素原子、アルキルまたはアルケニルを示し、当該アルキルはヘテロアリール、アリールスルフィニルまたはアルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 Alk^2 はアルキレンまたはアルケニレンを示し、当該アルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}R^{14}$ (R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

rは0または1を示す。

なお、 r = 0 のとき、RとR'® が隣接する窒素原子と一緒になってモルホリノ、イミダゾリルを形成してもよい。〕

で表される上記(10)記載の化合物またはその医薬上許容される塩。

- (12) R^3 が水素原子、 R^2 が $-OR^{15}$ 、 $-NR^8$ R^9 または $-(CH_2)$ 」 S(O) 」 R^{12} であり、ベンゼン環上の $-CO-NR^{106}$ $-(Alk^2)$ 、-Rの結合位置に対して、 R^2 の置換位置がパラ位、 $-WR^1$ の置換位置がメタ位である上記(11)記載の化合物またはその医薬上許容される塩。
- (13) R' が炭素数 $4 \sim 6$ のアルキルである上記(12)記載の化合物またはその医薬上許容される塩。
- (14) Alk² がエチレンである上記(13) 記載の化合物またはその医薬上許容される塩。
- (15) N-(2-(4-ヒドロキシフェニル) エチル) -4-メトキシ-3-ペンチルオキシベンズアミド、
- 4-xトキシ-N-[2-(4-ヒドロキシフェニル) エチル] <math>-3-ペンチルオキシベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(4-ヒドロキシフェニル) エチル] ベンズアミド、

メトキシベンズアミド、

3-ブチルオキシ- N- (2-(4-ヒドロキシフェニル) エチル)-4-メトキシベンズアミド、

3- へプチルオキシ- N- [2- (4- ヒドロキシフェニル) エチル] <math>- 4- メトキシベンズアミド、

N-[2-(3-EFD+シフェニル) エチル] -4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル] -N-メチル-4-メトキシ-3-ペンチルオキシベンズアミド、

3-(2-xチルブチルオキシ)-N-(2-(4-t)+2)ェニル) エチル)-4-xトキシベンズアミド、

N-[2-(4-ヒドロキシ-3-メトキシフェニル) エチル]-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

N-(2-(4-ヒドロキシフェニル) エチル)-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル] -4-ヒドロキシ-N-メチル-3-ペンチルオキシベンズアミド、

3-(1, 1-ジメチルへプタン) -N-(2-(4-ヒドロキシフェニル) エチル<math>) -4-メトキシベンズアミド、

N-[2-(3, 4-ジヒドロキシフェニル) エチル]-3-(1, 1-ジメチルへプタン)-4-メトキシベンズアミド、

3-(1, 1-i)メチルヘプタン)-N-[2-(4-i)+i)キシフェニル)エチル]-4-iメトキシベンズアミド、

3-(1, 1-ジメチルへプタン) -N-(2-(4-ヒドロキシフェニル) エチル) -4-ヒドロキシベンズアミド、

N-(2-(3, 4-ジヒドロキシフェニル) エチル)-3-(1, 1-ジメチルへプタン)-4-ヒドロキシベンズアミド、

 $3-\Lambda$ キシルーN-[2-(4-ヒドロキシフェニル) エチル] -4-メトキ シベンズアミド、

3, 4-ジへキシルオキシ-N-[2-(4-ヒドロキシフェニル) エチル] ベンズアミド、

4-メトキシ-N- [2-(4-ペンチルオキシフェニル) エチル] -3-ペンチルオキシベンズアミド、

4-メトキシ-N-(2-モルホリノエチル)-3-ペンチルオキシベンズアミド、

4-メトキシ-N-〔2-(4-プロペン-2-イルオキシフェニル) エチル] -3-ペンチルオキシベンズアミド、

 $N-[2-(4-E)^2]$ エチル $[2-(7-2)^2]$ エチル $[2-(7-2)^2]$

N-(2-(3,4-ジヒドロキシフェニル) エチル)-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-Pセトキシフェニル) エチル] -4-メトキシ-3-ペンチルオキシ-N-(E) -フェニルチオビニルベンズアミド、

- -3-ペンチルオキシベンズアミド、

- 3-ジペンチルアミノ-N-[2-(4-ヒドロキシフェニル) エチル]-4 メトキシベンズアミド、
- N-[2-(4-ヒドロキシフェニル) エチル] -3-イソヘキシル-4-メトキシベンズアミド、
- $N-[2-(4-E)^2] + (N'-1) + (N'$
- $N-[2-(4-E)^2]$ エチル) エチル) -3-2 ペンチルアミノー 4-2 ペンチルオキシベンズアミド、
- 3, 4-ジペンチルオキシーN-[2-(4-スルファモイルフェニル) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(イミダゾール-4-イル) エチル] ベンズアミド、
- 3, 4-iペンチルオキシ-N-[2-(4-i) エチル) ベンズアミド、
- 3, 4-ジペンチルオキシーN-[2-(4-フルオロフェニル) エチル] ベンズアミド、
- N [2 (4 E F D + v) 2 v) エチル] 4 プ D ピ ル オ + v 3 3 2 v ペンチルオ キシベンズアミド、

- 3, 4-iブチルオキシーN-[2-(4-i)ドロキシフェニル) エチル] ベンズアミド、
- 3, $4-ジへプチルオキシ-N-(2-(4-ヒドロキシフェニル) エチル} ベンズアミド、$
- $N-(2-(4-E)^2+2)$ エチル) エチル) -4-3+2 ンチルオキシベンズアミド、
- $N-\{2-(4-E)^{2} + (4-E)^{2} + (4-E)^{2}$
- N-[2-(4-EFD+2)]-3-(N'-J+N')-N-[2-(4-EFD+2)]-3-(N'-J+N')
- N-[2-(4-ヒドロキシフェニル) エチル] -4-メトキシ-3-ペンチルチオベンズアミド、
- N-(2-(4-)) アナル (2-(4-)) アナル (2-(4-)) アナルナナン (2-(4-)) アナルチオベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(2-チェニル) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシ-N-(2-(5-ヒドロキシインドール-3-イル) エチル] ベンズアミド、
- N-(2-(4-ジメチルアミノフェニル) エチル)-3, 4-ジペンチルオ キシベンズアミド、
- 4-ブチリルアミノ-N-[2-(4-ヒドロキシフェニル) エチル]-3-ペンチルオキシベンズアミド、
 - N-[2-(4-ヒドロキシフェニル) エチル] -4-ホルミルアミノー3-

ペンチルチオベンズアミド、

N-〔2-(4-ヒドロキシフェニル)エチル〕-4-メチルチオ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル] -3-ペンチルオキシ-4- ペンチルチオベンズアミド、

 $N-[2-(4-E)^2]$ エチル $]-3-(4-E)^2$ ルオキシ]-4-2 トキシベンズアミド、

4-メトキシ-N- (2-(4-ニトロフェニル) エチル)-3-ペンチルチオベンズアミド、

N-〔2-(イミダゾール-4-イル)エチル〕-4-メトキシ-3-ペンチルチオベンズアミド、

 $N - [2 - (4 - r \le 1 / 7 \le 1 / 2 + n)] - 4 - 2 / 2 + 2 / 3 - 2 / 2 / 3 - 2 / 2 / 3 - 2 / 2 / 3 - 2 / 2 / 3 -$

N-[2-(4--1)] エチル]-4-ペンチルオキシ-3-ペンチルチオペンズアミド、および

N-[2-(イミダゾール-4-イル) エチル] -4-ペンチルオキシ-3-ペンチルチオベンズアミド

から選ばれる上記(14)記載の化合物またはその医薬上許容される塩。

(16)式(Ic)

$$R^{2} \xrightarrow{h} Q N - (A1k^{2}), -R' \qquad (Ic)$$

〔式中、Wは-O-、-S(O), -、-CR 5 R 6 -、-NR 7 -、-NR 7 CO-、-CONR 7 -、-COO-または-OCO-(R 5 、R 6 は同一また

は異なってそれぞれ水素原子またはアルキルを、R' は水素原子またはアルキルを、t は 0 , 1 , 2 を示す)を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該 R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、フリール、アリールアルキルを示す)、 $-NR^8$ R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリール、ヘテロアリールでルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ 。S(O) 。 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

乙は一CH₂ーまたは一CO-を示し、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ -または-CONH(CH_2)、-(vは 0 , 1 , 2 を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

R'はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノ、ピリジルで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。]

で表される化合物(以下、化合物(Ic)ともいう)またはその医薬上許容される塩。 (17)式(Ic)

$$R^{2} \xrightarrow{h} Q N - (A1k^{2})_{r} - R' \qquad (1c)$$

R¹ はアルキルを示し、

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子またはアルキルを示す)、

乙は一CH₂ーまたは一COーを示し、

rは0または1を示す。〕

Qは-CH=CH-、 $-CH_2$ CHR^2 $^7-$ 、 $-CH_2$ - 、-S- 、-CHOH- 、-CO- 、 $-CH_2$ CO- 、 $-NHCR^2$ 8 (CH_2) 、- 、 $-NHCR^2$ 9 R^{30} - または $-N=CR^{31}-$ (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、 R^{30} は R^{30} は R^{30} な R^{30} な

 Alk^2 はアルキレン、 $-COCH_2$ -または-CONH (CH_2)、- (vは 0 , 1, 2を示す)を示し、

R'はアリール、ヘテロアリールまたはシクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アシルオキシ、ニトロ、アミノ、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノで置換されていてもよく、当該シクロアルキルは=Oで置換されていてもよく、

で表される上記(16)記載の化合物またはその医薬上許容される塩。

- (18) Zが-CO-であり、Qが $-CH_2-$ である上記(17) 記載の化合物またはその医薬上許容される塩。
- (19) R^2 が $-OR^{15}$ 、Wが-O-、 $-NR^7$ -または $-NR^7$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^1$ の置換位置がベンゼン環上の j 位である上記(18)記載の化合物またはその医薬上許容される塩。
- (20) R^1 が炭素数 $4 \sim 6$ のアルキルである上記(19)記載の化合物またはその医薬上許容される塩。
- (21) 2-[2-(4-ヒドロキシフェニル) エチル] -5-メトキシ-4-ペンチルオキシ-2, <math>3-ジヒドロイソインドール-1-オン、
- $2 (2 (4 \langle x \rangle) + \langle x \rangle + \langle x$
- 5-メトキシー2-[2-(4-ニトロフェニル) エチル] -4-ペンチルオキシー2, 3-ジヒドロイソインドールー1-オン、

- 2-[2-(4-)+)エチルフェニル)エチル〕-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
 - 4,5-ジペンチルオキシ-2-[2-(イミダゾール-4-イル)エチル]
- 2, 3 ジヒドロイソインドール- 1 -オン、
- 2-[2-(4-ベンジルオキシフェニル) エチル] -4, 5-ジペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
- , 3-ジヒドロイソインドールー1-オン、
 - 2-[2-(4-アミノフェニル)エチル]-4,5-ジペンチルオキシ-2
- ,3-ジヒドロイソインドール-1-オン、
 - 4,5-ジペンチルオキシ-2-[2-(4-ヒドロキシフェニル)エチル]
- -2,3-ジヒドロイソインドール-1-オン、
- 4, 5-ジペンチルオキシー2-〔2-(4-メチルアミノフェニル) エチル <math>]-2, 3-ジヒドロイソインドール-1-オン、
- 2-[2-(4-アミノフェニル) エチル] -5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
- 2-[2-(4-ヒドロキシフェニル) エチル] -5-メトキシ-4-ペンチルアミノ-2 3 -ジヒドロイソインドール-1-オン
- 5-メトキシー4-ペンチルオキシー2- (2-(4-ピリジン) エチル)-2, 3-ジヒドロイソインドールー1-オン、
- 5-メトキシ-2-[2-(4-メチルアミノフェニル) エチル] -4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン
- から選ばれる上記(20)記載の化合物またはその医薬上許容される塩。

- (22) Zが-CO-であり、Qが-CH=CH-である上記(17) 記載の化合物またはその医薬上許容される塩。
- (23) R^2 が $-OR^{15}$ 、Wが-O-、 $-NR^7$ -または $-NR^7$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^1$ の置換位置がベンゼン環上の j 位である上記(22)記載の化合物またはその医薬上許容される塩。
- (24) R' が炭素数 $4 \sim 6$ のアルキルである上記 (23) 記載の化合物または その医薬上許容される塩。
- (25) 2 [2 (4 ベンジルオキシフェニル) エチル] 6 メトキシー 5 ペンチルオキシー 2 H イソキノリン <math>- 1 オン、
- 2-[2-(4-ヒドロキシフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、
- 2-[2-(4-ピリジル) エチル] -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、
- 4-[2-(6-)++>-1-)+y-5-%ンチルオキシー1H-1y+ノリンー2-1ル)エチル】フェニルアセテート、
- 6-メトキシー2- (2- (4-ニトロフェニル) エチル) 5-ペンチルオキシー2H-イソキノリン-1-オン、
- 2-[2-(4-)+) エチルフェニル) エチル] -6- メトキシー5- ペンチルオキシー2H- イソキノリン-1- オン、
- 6-メトキシー5-ペンチルオキシー2-(2-フェニルエチル)-2H-イソキノリンー1-オン、
- 2-[2-(4-rセチルアミノフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、
- 5, 6 ジペンチルオキシー2 [2 (4 ヒドロキシフェニル) エチル] 2 H イソキノリンー<math>1 -オン、
- 2-[2-(4-アミノフェニル) エチル] -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

- 2-[2-(4-r)] エチル]-6-yトキシー5-ペンチルオ キシー2H-4 リンー1-4 ン塩酸塩、
- 2-[2-(4-ジメチルアミノフェニル) エチル] -6-メトキシ-5-ペ ンチルオキシー 2H-イソキノリン-1-オン、
- 2-[2-(4-メチルアミノフェニル) エチル] -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、
- 6-メトキシー 2- (2-(4-ピペリジノフェニル) エチル) 5-ペンチルオキシー 2H-イソキノリンー1-オン、および
- 6-メトキシー2-〔2-(4-ピリジル)エチル]-5-ペンチルオキシー 2H-イソキノリン-1-オン塩酸塩
- から選ばれる上記(24)記載の化合物またはその医薬上許容される塩。
- (26) Zが-CO-であり、Qが $-CH_2$ CHR^2 7-であり、 R^2 7が水素原子である上記(17)記載の化合物またはその医薬上許容される塩。
- (27) R^2 が $-OR^{15}$ 、Wが-O-、 $-NR^7$ または $-NR^7$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^1$ の置換位置がベンゼン環上の j 位である上記(26)記載の化合物またはその医薬上許容される塩。
- (28) R' が炭素数 $4 \sim 6$ のアルキルである上記(27) 記載の化合物またはその医薬上許容される塩。
- (29) 6 メトキシー2 [2 (4 オキソシクロヘキシル) エチル] 5 -ペンチルオキシー3, 4 ジヒドロ 2H イソキノリン 1 オン、
- 4-[2-(6-)++>-1-) エチル] フェニルアセテート、
- 2-(2-7ェニルエチル)-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
 - 2- [2-(4-アセチルアミノフェニル) エチル] -6-メトキシ-5-ペ

`ンチルオキシー3,4-ジヒドロー2H-イソキノリシー1-オン、

 $6 - \text{E} F \text{D} + \hat{\nu} - 2 - (2 - (4 - \text{E} F \text{D} + \hat{\nu}) \text{T} + \hat{\nu}) - 5 - ペン$ チルオキシー 3, $4 - \hat{\nu} \text{E} F \text{D} - 2 H - 4 \gamma + 2 J \gamma - 1 - 4 \gamma$

2-(2-(4-)+0) エチルフェニル) エチル]-6-1+0-5-0 ンチルオキシー[2-(4-)+0] オージヒドロー[2+0] Hーイソキノリンー[1-1+0]

2-(2-(4-アミノフェニル) エチル)-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

6-メトキシー5-ペンチルオキシー2- $\{2-(4-$ ピリジル) エチル $\}-$ 3, 4-ジヒドロー2H-イソキノリン-1-オン、

6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1H-イソキノリンー2-カルボン酸 N- (4-アミノフェニル) アミド、

6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1 H-イソキノリンー2-カルボン酸 N- (4-アミノフェニル) メチル) アミド 、および

6 - メトキシー1 - オキソー5 - ペンチルオキシー3, 4 - ジヒドロー1 H - イソキノリンー2 - カルボン酸 N - (4 - ニトロフェニル) アミドから選ばれる上記(28)記載の化合物またはその医薬上許容される塩。

(30) Zが-CO-であり、Qが $-NHCR^2$ ⁸ (CH_2) v-であり、 R^2 ⁸が酸素原子であり、v が0である上記(17)記載の化合物またはその医薬上許容される塩。

(31) R^2 が $-OR^{-5}$ 、Wが-O-、 $-NR^{-7}$ - または $-NR^{-7}$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^{-1}$ の置換位置がベンゼン環上の j 位である上記(30)記載の化合物またはその医薬上許容される塩。

(32) R^1 が炭素数 $4 \sim 6$ のアルキルである上記(31)記載の化合物または その医薬上許容される塩。

(33) 7-メトキシ-3-[2-(4-二トロフェニル) エチル] -8-ペン チルオキシ-(1H, 3H) -キナゾリン-2, 4-ジオン、 7-メトキシー3-[2-(4-ピリジル) エチル]-8-ペンチルオキシー $(1\,H,\ 3\,H)$ ーキナゾリンー $2,\ 4-$ ジオン、

3-[2-(4-ヒドロキシフェニル) エチル]-7-メトキシ-8-ペンチルオキシ-(1H, 3H) -キナゾリン-2, 4-ジオン、

3-[2-(4-)+n) エチル]-7-++2-8-% チルオキシー [1H, 3H) ーキナゾリンー [2, 4-3] ポン、および

3-[2-(4-ジメチルアミノフェニル) エチル] -7-メトキシ-8-ペンチルオキシ-(1H, 3H) -キナゾリン-2, 4-ジオン、

から選ばれる上記(32)記載の化合物またはその医薬上許容される塩。

(34)式(Id)

〔式中、XはCHまたはNを示し、

W' は-O-、-S(O), -、-CR $^{\circ}$ R $^{\circ}$ -、-NR $^{\prime}$ - 、-NR $^{\prime}$ CO-、-CONR $^{\prime}$ -、-COO-または-OCO- (R $^{\circ}$ 、R $^{\circ}$ は同一または異なってそれぞれ水素原子またはアルキルを、R $^{\prime}$ は水素原子またはアルキルを、t は 0 , 1 , 2 を示す)を示し、

R¹ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリールでルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ 。S(O) 。 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、uは0,1,2を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されてい てもよく、

W'R'、R'、R'の置換位置はA環、B環のいずれの位置であってもよく、 B環はベンゼン環、ピリジン環またはフラン環を示し、

Alk' は $-CH = CH - CH_2 CH_2 - state - C = C - を示し、$

R¹⁰⁰ は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ - または-CONH (CH_2) v - (v は 0 , 1 , 2 を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す

か、またはR¹³とR¹⁴が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=〇で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。

なお、r=0 のとき、 $R \ge R^{-00}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい。〕

で表される化合物(以下、化合物(Id)ともいう)またはその医薬上許容される塩。 (35)式(Id)

$$\begin{array}{c|c}
R^{2}, \\
\hline
B & A \\
\chi & R^{3},
\end{array}$$
(Alk')_P-C-N-(Alk'),-R
(Id)
$$\begin{array}{c|c}
0 & R^{10d}
\end{array}$$

〔式中、XはCHまたはNを示し、

W' は-O-、-S(O), -、-CR $^{\circ}R$ $^{\circ}$ -、-NR $^{\prime}$ - または-NR $^{\prime}C$ O- (R $^{\circ}$ 、R $^{\circ}$ は同一または異なってそれぞれ水素原子またはアルキルを、R $^{\prime}$ は水素原子またはアルキルを、t は 0 , 1 , 2 を示す)を示し、

R「はアルキルを示し、

 R^2 は水素原子、アルキルまたは $-OR^{15}$ (R^{15} は水素原子、アルキルを示す)を示し、

R³ は水素原子またはハロゲン原子を示し、

 $W'R' \setminus R^2 \setminus R^3$ の置換位置はA環、B環のいずれの位置であってもよく、

B環はベンゼン環またはフラン環を示し、

Alk は-CH=CH-または-CH2CH2-を示し、

R¹⁰⁰ は水素原子を示し、

Alk² はアルキレンを示し、

Rはアリールまたはヘテロアリールを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基、ニトロ、アミノで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。]

で表される上記(34)記載の化合物またはその医薬上許容される塩。

- (36) XがNである上記(35)記載の化合物またはその医薬上許容される塩。
- (37) R³'が水素原子、R²'が-OR''であり、Wが-O-である上記 (36) 記載の化合物またはその医薬上許容される塩。
- (38) R''が炭素数 $4 \sim 6$ のアルキルである上記(37) 記載の化合物またはその医薬上許容される塩。
- (39) 7-メトキシー8-ペンチルオキシキノリンー3-カルボン酸 N- (2-(4-)) (4-

7-メトキシー8-ペンチルオキシキノリンー3-カルボン酸 N- [2-(4-ヒドロキシフェニル) エチル] アミド、

7-メトキシー8-ペンチルオキシキノリンー3-カルボン酸 N- $\{2 \{4-$ アミノフェニル $\}$ エチル $\}$ アミド、

7-メトキシー8-ペンチルオキシキノリン-3-カルボン酸 N- $\{2-$ (4-ニトロフェニル) エチル) アミド、および

7ーメトキシー8ーペンチルオキシキノリンー3ーカルボン酸 Nー [2ー (イミダゾールー4ーイル) エチル] アミド

から選ばれる上記(38)記載の化合物またはその医薬上許容される塩。

(40)式(le)

WO 97/29079 PCT/JP97/0029

〔式中、WはO-、-S(O)、-、-CR 5 R 6 -、-NR 7 -、-NR 7 CO-、-CONR 7 -、-COO-または-OCO-(R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 8 は0、1、2を示す)を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、フリールアルキルを示す)、 $-NR^8$ R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、アウル、アリール、アリールアルキルでのアリールを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ $_u$ S(O) $_u$ R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} は R^{12} は R^{12} で R^{12} で

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R°は式(i)

$$\begin{pmatrix} N \\ 0 \end{pmatrix}$$
 (i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。〕

で表される化合物(以下、化合物(Ie)ともいう)またはその医薬上許容される塩。 (41)式(Ie)

〔式中、Wは-O-または-S(O)、-を、tは0, 1, 2を示す)を示し、 R^1 はアルキルを示し、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子またはアルキルを示す)、または- (CH_2) $_{u}$ S (O) $_{u}$ R^{12} (R^{12} はアルキルを、 $_{u}$ は $_{0}$ $_{1}$, $_{2}$ を示す)を示し、

R³ は水素原子、アルコキシ、アルキル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルは水酸基で置換されていてもよく、

R°は式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。〕 で表される上記 (40)記載の化合物またはその医薬上許容される塩。

(42) R² が-OR¹⁵または-(CH₂) $_{u}$ S(O) $_{u}$ R¹²であり、ベンゼン 環上の-R^e の結合位置に対して、R² の置換位置がパラ位、-WR¹ の置換位置がメタ位である上記(41)記載の化合物またはその医薬上許容される塩。

(43) R''が炭素数 $4 \sim 6$ のアルキルである上記 (42) 記載の化合物またはその医薬上許容される塩。

 $(44) 2 - (4 - \sqrt{1 + 1}) - 3 - \sqrt{1 + 1}$ $\sqrt{1 + 1}$ \sqrt

2-(3, 4-i)ペンチルオキシフェニル)-4, 4-iメチルー4, 5-iヒドロオキサゾール、

 $2 - (4 - \cancel{x} + \cancel{y} + \cancel{x} + \cancel{y} + \cancel{y}$

 $2-(3-\mathcal{C})$ -4, $4-\mathcal{C})$ -4, $4-\mathcal{C})$ -4, $5-\mathcal{C}$ -4, $5-\mathcal{C}$ -4,

2 - (4 - ペンチルオキシー 3 - ペンチルチオフェニル) - 4, 4 - ジメチル

-4,5-ジヒドロオキサゾール、および

-4, 5-ジヒドロオキサゾール

から選ばれる上記(43)記載の化合物またはその医薬上許容される塩。

(45)上記(3)~(44)のいずれかに記載の化合物またはその医薬上許容 される塩を有効成分として含有してなる医薬組成物。

- (46)カンナビノイドレセプターが末梢型カンナビノイドレセプターである上記(1)または(2)記載のカンナビノイドレセプター作動薬または拮抗薬。
- (47)免疫調節剤である上記(1)、(2)、(46)のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- (48)自己免疫疾患治療剤である上記(1)、(2)、(46)のいずれかに 記載のカンナビノイドレセプター作動薬または拮抗薬。
- (49) 抗炎症剤である上記(1)、(2)、(46) のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- (50) 抗アレルギー剤である上記(1)、(2)、(46) のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- (51) 腎炎治療剤である上記(1)、(2)、(46)のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

本明細書中で使用されている各基について以下に説明する。

アルキルとしては、直鎖状でも分枝鎖状でもよく、具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、イソペンチル、ネオペンチル、t-ペンチル、ヘキシル、イソヘキシル、ネオヘキシル、ヘプチル等が挙げられる。 R^2 、 R^2 、 R^3 、 R^3 、 R^7 、 R^8 、 R^9 、 R^{12} 、 R^{15} 、 R^{29} 、 R^{30} 、 R^{31} においては、好ましくは炭素数 $1\sim 10^{10}$ のものが挙げられる。 R^{29} 、 R^{30} 、 R^{31} においては、より好ましくは炭素数 $1\sim 10^{10}$ 、 $10\sim 10^{10}$ 、 $10\sim 10$ 、 $10\sim 1$

アルケニルとしては、直鎖状でも分枝鎖状でもよく、具体的には、ビニル、アリル、クロチル、2-ペンテニル、3-ペンテニル、2-ヘキセニル、3-ヘキセニル、0プテニル等が挙げられる。0R 8 、0R 9 、0R 10 、

においては、好ましくは炭素数 $2 \sim 4$ のものが挙げられる。 R^+ 、 R^+ においては、好ましくは炭素数 $4 \sim 7$ のものが挙げられる。

アルキニルとしては、直鎖状でも分枝鎖状でもよく、具体的には、エチニル、プロピニル、ブチニル、2-ペンチニル、3-ペンチニル、2-ヘキシニル、3-ペンチニル、2-ヘキシニル、3-ペンチニル、1 においては、好ましくは炭素数 1 である。1 、1 においては、好ましくは炭素数 1 であるのが挙げられる。1 、1 においては、好ましくは炭素数 1 であるのが挙げられる。

Alk² におけるアルキレンとしては、好ましくは炭素数1~4であり、直鎖状でも分枝鎖状でもよく、具体的には、メチレン、エチレン、トリメチレン、テトラメチレン等が挙げられる。より好ましくは炭素数2のものである。

 Alk^2 におけるアルケニレンとしては、好ましくは炭素数 $2 \sim 4$ であり、直鎖状でも分枝鎖状でもよく、具体的には、ビニレン、プロペニレン、ブテニレン等が挙げられる。

R³、R³におけるアルコキシとしては、好ましくは炭素数1~7であり、直鎖状でも分枝鎖状でもよく、具体的には、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s – ブトキシ、t – ブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ等が挙げられる。

 R^3 、 R^3 におけるアルコキシカルボニルとしては、好ましくは炭素数 $2\sim5$ であり、上記アルコキシのうち炭素数 $1\sim4$ のものにカルボニルがついたものが挙げられる。具体的には、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル等が挙げられる。

R[®]、R[®]におけるアシルとしては、好ましくは炭素数1~5であり、具体的には、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル等が挙げられる。

シクロアルキルとしては、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロペキシル、シクロペプチル等が挙げられる。R¹、R¹、R゚、

 R^{9} 、 R^{15} においては、好ましくは炭素数 $3 \sim 6$ のものが挙げられる。Rにおいては、好ましくは炭素数 $3 \sim 7$ のものが挙げられる。より好ましくは炭素数 6 のものが挙げられる。

 R^+ 、 R^+ 、 R^8 、 R^8 、 R^{15} におけるシクロアルキルアルキルとしては、そのシクロアルキル部は前述のうち炭素数 $3\sim 6$ のものが挙げられ、アルキル部は前述のうち炭素数 $1\sim 4$ のものが挙げられる。具体的には、シクロプロピルメチル、シクロブチルメチル、シクロペンチルメチル、シクロヘキシルメチル、シクロプロピルエチル、シクロプロピルプロピル、シクロプロピルブチル等が挙げられる。

 R^1 、 R^3 、 R^3 、 R^3 、 R^{15} におけるアリールアルキルとしては、そのアリール部は前述と同様のものが挙げられ、そのアルキル部は前述のうち炭素数 $1\sim4$ のものが挙げられる。具体的には、ベンジル、フェネチル、フェニルプロピル、フェニルブチル、ナフチルメチル、ビフェニルメチル等が挙げられ、好ましくはベンジルである。

ヒドロイソインドリル、ヒドロキノリル、ヒドロイソキノリル等が挙げられ、好 ましくはチエニル、イミダゾリル、モルホリノである。

R'におけるヘテロアリールとしては、上記ヘテロアリールで例示されたもの以外にさらにピリジルが挙げられ、好ましくはピリジル、チエニル、イミダゾリル、モルホリノである。

R®とR®が隣接する窒素原子と一緒になって形成するヘテロアリール、R¹³とR¹が隣接する窒素原子と一緒になって形成するヘテロアリール、RとR¹®(R¹®。、R¹®。、R¹®。)が隣接する窒素原子と一緒になって形成するヘテロアリールとしては、前述のヘテロアリールのうち、1つ以上の窒素原子を有するヘテロアリールが挙げられる。具体的には、ピロリジニル、イミダゾリジニル、ピペリジノ、ピペラジニル、モルホリノ、ピラゾリル、イミダゾリル、テトラゾリル、トリアゾリル、ピロリル、ピロリニル、インドリル、ヒドロアゼピニル、ヒドロインドリル、ヒドロイソインドリル、ヒドロキノリル、ヒドロイソキノリル等が挙げられ、好ましくはモルホリノ、ピペリジノ、ピロリジニル、イミダゾリルである。

 R^1 、 R^8 、 R^8 、 R^{15} におけるヘテロアリールアルキルとしては、そのヘテロアリール部は前述と同様のものが挙げられ、そのアルキル部は前述のうち炭素数 $1 \sim 4$ のものが挙げられる。具体的には、2 - チェニルメチル、3 - フリルメチル、4 - ピリジルメチル、2 - キノリルメチル、3 - イソキノリルメチル等が挙げられ、好ましくは 4 - ピリジルメチルである。

Rにおけるベンゼン縮合シクロアルキルとしては、具体的には、テトラヒドロナフタレン、インダン等が挙げられ、好ましくはテトラヒドロナフタレンである。

R³、R³におけるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙 げられる。

 R^{10} 、 R^{100} 、 R^{100} 、 R^{100} 、 R^{11} におけるアミノ保護基としては、具体的には、ベンジリデン、4-クロロベンジリデン、4-ニトロベンジリデン、サリチリデン、 $\alpha-$ ナフチリデン、 $\beta-$ ナフチリデン等の置換されていてもよいアラ

ルキリデン;

ベンジル、4-メトキシベンジル、3,4-ジメトキシベンジル、2-二トロベンジル、4-二トロベンジル、ベンズヒドリル、ビス(4-メトキシフェニル)メチル、トリチル等の置換されていてもよいアラルキル:

ホルミル、アセチル、プロピオニル、ブチリル、ピバロイル、2-クロロアセチル、2-ブロモアセチル、2-ヨードアセチル、2, 2-ジクロロアセチル、2, 2-トリクロロアセチル、2, 2-トリフルオロアセチル、フェニルアセチル、フェノキシアセチル、ベンゾイル、4-クロロベンゾイル、4-メトキシベンゾイル、4-ニトロベンゾイル、ナフチルカルボニル、アダマンチルカルボニル等の置換されていてもよいアシル:

メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、tーブトキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニル、シクロヘキシルオキシカルボニル、2-クロロエトキシカルボニル、2-ヨードエトキシカルボニル、2,2,2-トリクロロエトキシカルボニル、2,2,2-トリクロローtーブトキシカルボニル、ベンズヒドリルオキシカルボニル、ビスー(4-メトキシフェニル)メトキシカルボニル、フェナシルオキシカルボニル、2ートリメチルシリルエトキシカルボニル、2ートリフェニルシリルエトキシカルボニル、フルオレニルー9-メトキシカルボニル・第の置換されていてもよいアルコキシカルボニル:

ビニルオキシカルボニル、2ープロペニルオキシカルボニル、2ークロロ-2ープロペニルオキシカルボニル、3ーメトキシカルボニル-2ープロペニルオキシカルボニル、2ープテニルオキシカルボニル、2ープテニルオキシカルボニル、シンナミルオキシカルボニル等の置換されていてもよいアルケニルオキシカルボニル;

フェノキシカルボニル:

ベンジルオキシカルボニル、4 ープロモベンジルオキシカルボニル、2 ークロロ ベンジルオキシカルボニル、3 ークロロベンジルオキシカルボニル、3, 5 ージ メトキシベンジルオキシカルボニル、4-メトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニル、4-ニトロベンジルオキシカルボニル、2-ニトロ-4,5-ジメトキシベンジルオキシカルボニル、3,4,5-トリメトキシベンジルオキシカルボニル等の置換されていてもよいアラルキルオキシカルボニル;

トリメチルシリル、 t ーブチルジメチルシリル等の置換されていてもよい低級アルキルシリル;

メチルチオカルボニル、エチルチオカルボニル、ブチルチオカルボニル、 t - ブ チルチオカルボニル等の置換されていてもよいアルキルチオカルボニル;

ベンジルチオカルボニル等の置換されていてもよいアラルキルチオカルボニル; ジシクロヘキシルホスホリル、ジフェニルホスホリル、ジベンジルホスホリル、 ジー (4-ニトロベンジル) ホスホリル、フェノキシフェニルホスホリル等の置 換されていてもよいホスホリル;

ジエチルホスフィニル、ジフェニルホスフィニル等の置換されていてもよいホスフィニル等が挙げられる。また、場合によってはフタロイル等であってもよい。 好ましくはアラルキルオキシカルボニルであり、より好ましくはベンジルオキシカルボニルである。

また、置換されていてもよい各基は、1個以上の置換基で置換されていてもよい。当該置換基として使用される基について以下に説明する。

アルキルとしては、前述のうち炭素数1~4のものが挙げられる。

アルコキシとしては、前述のうち炭素数1~4のものが挙げられる。

アルコキシカルボニル、ハロゲン原子は、それぞれ前述と同様のものが挙げられる。

ヘテロアリールは、前述のR'と同様のものが挙げられる。

アルキルアミノとしては、そのアルキル部が前述の炭素数1~4のアルキルであるものが挙げられる。具体的には、メチルアミノ、エチルアミノ、プロピルアミノ、ブチルアミノ、ジメチルアミノ、ジエチルアミノ等が挙げられる。

アルキルチオとしては、そのアルキル部が前述の炭素数1~4のアルキルであるものが挙げられる。具体的には、メチルチオ、エチルチオ、プロピルチオ、ブ チルチオ等が挙げられる。

アルキルスルフィニルとしては、そのアルキル部が前述の炭素数 I ~ 4 のアルキルであるものが挙げられる。具体的には、メチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、ブチルスルフィニル等が挙げられる。

アルキルスルホニルとしては、そのアルキル部が前述の炭素数1~4のアルキルであるものが挙げられる。具体的には、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル等が挙げられる。

アルケニルオキシとしては、そのアルケニル部が前述の炭素数 2 ~ 4 のアルケニルであるものが挙げられる。具体的には、エテニルオキシ、プロペニルオキシ、ブテニルオキシ等が挙げられる。

アシルとしては、前述のうち炭素数1~4のものが挙げられる。

アシルオキシとしては、そのアシル部が前述の炭素数1~4のアシルであるものが挙げられる。具体的には、ホルミルオキシ、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、イソブチリルオキシ等が挙げられ、好ましくはアセチルオキシである。

アシルチオとしては、そのアシル部が前述の炭素数1~4のアシルであるものが挙げられる。具体的には、ホルミルチオ、アセチルチオ、プロピオニルチオ、ブチリルチオ、イソブチリルチオ等が挙げられ、好ましくはアセチルチオである。

アシルアミノとしては、そのアシル部が前述の炭素数1~4のアシルであるものが挙げられる。具体的には、ホルミルアミノ、アセチルアミノ、プロピオニルアミノ、ブチリルアミノ等が挙げられ、好ましくはアセチルアミノである。

アルコキシカルボニルとしては、そのアルコキシ部が前述の炭素数1~4のアルコキシであるものが挙げられる。具体的には、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル等が挙げられ、好ましくはエトキシカルボニルである。

アリールスルフィニルとしては、そのアリール部が前述と同様のものが挙げられる。具体的には、フェニルスルフィニル、ナフチルスルフィニル、ビフェニルスルフィニル等が挙げられる。

アラルキルオキシとしては、そのアリールアルキル部が前述と同様のものが挙 げられる。具体的には、ベンジルオキシ、フェネチルオキシ、フェニルプロピル オキシ、フェニルブチルオキシ、ナフチルメチルオキシ、ビフェニルメチルオキ シ等が挙げられる。

医薬上許容される塩としては、具体的には、ナトリウム塩、カリウム塩、セシウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩;トリエチルアミン塩、ピリジン塩、ピコリン塩、エタノールアミン塩、トリエタノールアミン塩、ジシクロヘキシルアミン塩、N,N'ージベンジルエチレンジアミン塩等の有機アミン塩;塩酸塩、臭化水素酸塩、硫酸塩、燐酸塩等の無機酸塩;蟻酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩等の有機酸塩;メタンスルホン酸塩、ベンゼンスルホン酸塩、 pートルエンスルホン酸塩等のスルホン酸塩;アルギニン塩、アスパラギン酸塩、グルタミン酸塩等のアミノ酸塩等が挙げられるが、これらに限定されるものではない。

なお、本発明においては、各化合物の各種異性体、プロドラッグ等も包含される。

また、本発明において、化合物(Ia)、(Ib)、(Ic)、(Id)、(Ie)は化合物(I)に包含されるものである。よって、以下、これら化合物を化合物(I)でまとめて説明する。

化合物(I)は、例えば以下のようにして製造することができるが、これらに 限定されるものではない。

<u>製法1</u>:式(I)においてq=1,Y=-CONR'゚-の場合

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、化合物(12)と反応させることにより、化合物(1-2)を得るものである。

$$R^{2} \xrightarrow{R^{4}} (Alk^{1})_{P} - C - OH + H - N - (Alk^{2})_{R} - R$$

$$(11) \qquad (12)$$

$$R^{2} \xrightarrow{R^{4}} (Alk^{1})_{P} - C - N - (Alk^{2})_{R} - R$$

$$WR^{1} \qquad R^{3} \qquad (1-2)$$

〔式中、各記号は前記と同義である。〕

活性化されたカルボン酸誘導体としては、例えば、カルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;カルボン酸を、Nーヒドロキシベンゾトリアゾール、Nーヒドロキシスクシンイミド等と、ジシクロヘキシルカルボジイミド(DCC)、1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド(WSC)ハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;カルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてN-ヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン 等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常 $0 \sim 1$ 0 0 $\mathbb C$ であり、好ましくは $0 \sim 3$ 0 $\mathbb C$ である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは $1 \sim 1$ 2 時間である。

<u>製法2</u>:式(I)においてq=1, Y=-NR''CO-の場合

本方法は、化合物(14)を活性化されたカルボン酸誘導体とし、化合物(13)と、 適当な溶媒中、適当な塩基の存在下、反応させることにより、化合物(1-3)を得 るものである。

〔式中、各記号は前記と同義である。〕

本方法における活性化されたカルボン酸誘導体、塩基、溶媒、および反応温度 、反応時間等の各条件は製法 1 の場合と同様である。

製法3:式(I)においてq=1, Y=-COO-の場合

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、化合物(15)と反応させることにより、化合物(1-4)を得るものである。

〔式中、各記号は前記と同義である。〕

活性化されたカルボン酸誘導体としては、例えば、カルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;カルボン酸を、Nーヒドロキシベンゾトリアゾール、Nーヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;カルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤として得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、Nーメチルモルホリン 等の有機アミンが挙げられ、好ましくはピリジンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリ

ル、アセトン等の極性溶媒等が挙げられる。好ましくは上記塩基を溶媒として兼 ねる。

反応温度は、通常 $0 \sim 1$ 0 0 ∞ であり、好ましくは $0 \sim 3$ 0 ∞ である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは $1 \sim 1$ 2 時間である。

また、本方法の他に、化合物(11)と化合物(15)を酸触媒下、脱水縮合することによっても化合物(I-4)を得ることができる。

酸触媒としては、例えば、塩酸、硫酸、硝酸等の鉱酸、酢酸、メタンスルホン酸、p-トルエンスルホン酸等の有機酸等が挙げられる。

<u>製法4</u>:式(Ⅰ)においてq=1, Y=-CH2NR10-の場合

本方法は、製法 1 で得られた化合物 (1-2)を適当な溶媒中、適当な還元剤を用いて還元することにより、化合物 (1-5)を得るものである。

〔式中、各記号は前記と同義である。〕

還元剤としては、例えば、LiAlH,、LiBH,、NaBH,、ジイソブチルアルミニウムヒドリド(DIBAL)、還元アルミニウム(Red-Al)等が挙げられ、好ましくは<math>LiAlH, である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 $-30\sim100$ °Cであり、好ましくは $0\sim50$ °Cである。反応時間は、通常15 分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。

<u>製法5</u>:式(I) においてq=1, Y=-NHCONH-の場合

本方法は、化合物(11)を、酸アジドを経てクルティウス転移させ、生じたイソシアネートに化合物(25)を反応させることにより、化合物(I-6)を得るものである。

〔式中、各記号は前記と同義である。〕

なお、クルティウス転移は、アシルアジドの熱転移によりイソシアネートへ変換させる反応である。

アシルアジドの合成としては、①カルボン酸に塩基の存在下、ジフェニルリン酸アジドを作用させる方法、②カルボン酸をエステル経由でヒドラジドに導き、これに亜硝酸またはそのアルキルエステルを反応させる方法、③カルボン酸を酸塩化物に導き、これにアジ化ナトリウムを作用させる方法、④混合酸無水物にアジ化ナトリウムを作用させる方法等がある。

塩基としては、例えば、トリエチルアミン、ピリジン、水素化カリウム、水素化ナトリウム、N-メチルモルホリン等が挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ グリム、ジオキサン等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩 化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエー テル系溶媒、より好ましくはジオキサンである。

反応温度は、通常 $0\sim150$ \mathbb{C} であり、好ましくは $0\sim80$ \mathbb{C} である。反応時間は、通常15 分間 ~6 時間であり、好ましくは $1\sim3$ 時間である。

<u>製法 6</u>:式(I)においてp=q=r=0、Rが式(i)で表される基(1個以上の置換基で置換されていてもよい)の場合

〔式中、各記号は前記と同義である。〕

(1)本方法においては、まず、化合物(21)とチオニルハライドを反応させて酸ハライドとした後、これを2-rミノー2-メチルプロパノールと反応させることにより、化合物(22)を得る。

チオニルハライドとしては、チオニルクロリド、チオニルブロミド等が挙げら

れる。

また、本工程は、酸ハライド等に導く以外に、適当な縮合剤を用いることによっても実施可能である。

縮合剤としては、例えば、DCC、WSCハイドロクロライド、ピバロイルクロリド、エトキシカルボニルクロリド等が挙げられる。また、反応助剤として、ヒドロキシベンゾトリアゾール(HOBT)、N-ヒドロキシスクシンイミド(NBS)、ピリジン、トリエチルアミン等を適宜選択して用いることもできる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはハロゲン系溶媒であり、より好ましくはジクロロメタンである。

反応温度は、通常 $0 \sim 1$ 0 0 ∞ であり、好ましくは $0 \sim 4$ 0 ∞ である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは $1 \sim 6$ 時間である。

(2) 次に、(1) で得られた化合物(22)を適当な脱水剤と反応させることにより、化合物 (I-7)を得る。

脱水剤としては、例えば、塩化チオニル、POC1。、五塩化リン、五酸化二リン、無水酢酸、塩化亜鉛、四塩化チタン等が挙げられ、好ましくは塩化チオニルである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられるが、好ましくは無溶媒である。

反応温度は、通常 $0 \sim 1$ 0 0 ∞ であり、好ましくは 1 $0 \sim 5$ 0 ∞ である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは $1 \sim 6$ 時間である。

(3) さらに、(2) で得られた化合物 (I-7)を適当な塩基で処理した後、エチレンオキシドと反応させることにより、化合物 (I-8)を得る。

塩基としては、例えば、リチウムジイソプロピルアミド(LDA)、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムへキサメチルジシラザン(LiHMDS)、ナトリウムへキサメチルジシラザン(NaHMDS)、カリウムへキサメチルジシラザン(KHMDS)、水素化ナトリウム、水素化カリウム、EtMgBr、(i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr)。i-Pr0.

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくは1,2-ジメトキシエタンである。

反応温度は、通常 $-100\sim100$ ℃であり、好ましくは $-100\sim0$ ℃である。反応時間は、通常15 分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。 (4) また、(2) で得られた化合物 (I-7)を適当な塩基で処理した後、適当な 炭酸エステルと反応させることにより、化合物 (I-9)を得る。

炭酸エステルとしては、クロロ炭酸エチル、炭酸ジエチル等が挙げられ、好ま しくはクロロ炭酸エチルである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくは1,2-ジメトキシエタンである。

反応温度は、通常 $-100\sim100$ ℃であり、好ましくは $-78\sim30$ ℃である。反応時間は、通常 $15分間\sim24$ 時間であり、好ましくは $1\sim6$ 時間である。(5)さらに、(4)で得られた化合物(1-9)を適当な還元剤と反応させることにより、化合物(1-10)を得る。

還元剤としては、例えば、LiAlH,、LiBH,、NaBH,、DIBA L、Red-Al等が挙げられ、好ましくはLiAlH,である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 $-30\sim100$ $^{\circ}$ であり、好ましくは $0\sim50$ $^{\circ}$ である。反応時間は、通常15 分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。

<u>製法 7</u>:式(I)においてp=0, q=1かつ $Y=-CONR^{\circ}$ -または $-CH_2$ N R° -で、 R° と R° が一緒になってA環と縮合環を形成する場合

ここでは、さらに以下の製法7-1~7-6に分けて説明する。

製法7-1:式(I)において、p=0, q=1かつ $Y=-CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-CH_2$ CH_2 -、 $-CH_2$ -、-CH=CH-、-CH OH-または $-CH_2$ CHOH-を形成する場合

$$R^{2} \xrightarrow{WR^{1}} X = COOH$$

$$R^{2} \xrightarrow{WR^{1}} X =$$

[式中、nは1または2を示し、他の各記号は前記と同義である。]

(1) 本方法においては、まず、化合物(23)のカルボキシル基と結合した炭素に 隣接した炭素をアルキル化し、化合物(24)に導く。

また、カルボン酸をオキサゾリン(I-7) とした後に、適当な塩基で処理し、エチレンオキシドでアルキル化することにより、化合物(I-8) とし、これを常法により加水分解することによっても化合物(24)(n=2) を得ることができる。

さらに、化合物(I-7)を、塩基にひきつづき、クロロ炭酸エチルでアルキル化して化合物(I-9)とし、これを適当な還元剤で処理した場合には、化合物(I-10)を得ることができる。化合物(I-10)は、常法により加水分解することにより、化合物(24)(n=1)に誘導される。

なお、反応条件は製法6の(3)、(4)および(5)と同じである。

(2) 次に、化合物(24)を活性化されたカルボン酸誘導体とし、所望の化合物(25) と縮合させ、化合物(I-11)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;所望のカルボン酸を、Nーヒドロキシベンゾトリアゾール、Nーヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてNーヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン 等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

容媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒:ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常 0 ~ 1 0 0 ℃であり、好ましくは 0 ~ 3 0 ℃である。反応時間は、通常 1 5 分間~ 2 4 時間であり、好ましくは 1 ~ 1 2 時間である。

(3) さらに、化合物(I-11)は、脱水することによって化合物(I-12)に導くことができる。

脱水は、酸の存在下で行い、酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸;塩酸、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられ、好ましくはpートルエンスルホン酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常 $0\sim2$ 00 $\mathbb C$ であり、好ましくは60 ~1 20 $\mathbb C$ である。反応時間は、通常 $3\sim4$ 8時間であり、好ましくは $6\sim1$ 2時間である。

(3')なお、上記の酸触媒での脱水反応が円滑に進行しない場合には、化合物 (I-11)における 2 位のアルキル基の水酸基を酸化し、アミナール(I-11') (n=1 のとき)またはアミナール(I-11'') (n=2 のとき)を経て、これを適当な還元剤で還元することによっても、化合物(I-12)を得ることができる。

酸化反応のための親電子剤としては、例えば、無水酢酸、トリフルオロ無水酢

酸、三酸化硫黄ーピリジン複合体($SO_3 - Py$)、五酸化二リン、(COC_1)。等が挙げられ、好ましくは $SO_3 - Py$ である。

また、反応補助剤として、ジメチルスルホキシド、トリエチルアミン等を用いることができる。また、ピリジニウムクロロクロメート(PCC)、ピリジニウムジクロメート(PDC)等のクロム酸化剤を用いることもできる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルスルホキシドである。

反応温度は、通常-78 -30 $^{\circ}$ $^{\circ}$ であり、好ましくは10 -20 $^{\circ}$ である。反応時間は、通常15 分間-24 時間であり、好ましくは1 -3 時間である。

還元剤としては、水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム、 リチウムホウ素ナトリウム、トリエチルシラン、トリメチルシラン、ジフェニル シラン、フェニルシラン、トリクロロシラン、トリメチルシラン等が挙げられ、 好ましくは、トリエチルシランである。

なお、還元反応は、適当な酸の存在下、進行する。酸としては、トリフルオロ 酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等で あり、好ましくはトリフルオロ酢酸である。

反応温度は、通常-10~100℃であり、好ましくは0~30℃である。反 応時間は、通常15分間~48時間であり、好ましくは30分間~3時間である。

この還元反応は、接触水素添加による還元反応を用いることによっても行うことができる。

(3") なお、上記 n = 2 の場合、アミナール(l-11") を溶媒中、酸で処理し、 脱水することにより目的化合物の一つである化合物(l-11") を得ることができ る。引き続き化合物(I-11")を適当な溶媒中、還元することにより、n=2 である化合物(I-12)を得ることができる。

上記脱水反応で用いる酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸;塩酸、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられ、好ましくは塩酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはクロロホルムである。

反応温度は、通常 $0 \sim 2$ 0 0 $\mathbb C$ であり、好ましくは 6 $0 \sim 1$ 2 0 $\mathbb C$ である。反応時間は、通常 $3 \sim 4$ 8 時間であり、好ましくは $6 \sim 1$ 2 時間である。

上記還元反応で用いる還元触媒としては、例えば、パラジウムー炭素、水酸化パラジウムー炭素、ラネーニーケル等が挙げられ、好ましくはパラジウムー炭素である。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素 、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチ ル等のエステル系溶媒;ジメチルホルムアミド、アセトニトリル、アセトン等の 極性溶媒;メタノール、エタノール等のアルコール系溶媒;塩酸、酢酸等の酸等 が挙げられ、好ましくは酢酸である。

反応は水素気流中、高圧条件下で行い、通常 $1 \sim 4 \text{ kg f/cm}^2$ 、好ましくは 3 kg f/cm^2 である。

反応温度は、通常 $0 \sim 1$ 0 0 $\mathbb C$ であり、好ましくは 5 $0 \sim 6$ 0 $\mathbb C$ である。反応時間は、通常 $1 \sim 4$ 8 時間であり、好ましくは $1 \sim 2$ 0 時間である。

<u>製法 7-2</u>:式 (I) において、p=0, q=1 かつ $Y=-CONR^{0}$ - かつ R^{0} さ R^{0} ・ の R^{0}

$$\mathbb{R}^2$$
 COOH (23)

$$R^{2}$$
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4

$$R^{2} \xrightarrow{R^{4}} N - (A1k^{2}), -R'$$

$$WR^{1} \qquad 0 \qquad (I-13)$$

〔式中、各記号は前記と同義である。〕

(1)まず、製法7-1と同様にして、化合物(23)のカルボキシル基と結合した 炭素に隣接した炭素をアシル化し、化合物(26)に導く。 アシル化剤としては、例えば、クロロ炭酸エチル、二酸化炭素等が挙げられ、 好ましくはクロロ炭酸エチルである。

なお、化合物(23)において、カルボン酸等価体として、オキサゾリンを用いた 場合には、アシル化反応終了後、一般的な手法によってカルボン酸を復活させる ことができる。(2)(1)で得られた化合物(26)を、一般的な手法により化合 物(27)に導くことができる。

(3) (2) で得られた化合物(27)を化合物(25') と加熱脱水縮合反応させることにより、化合物(I-13)を得る。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、 t ーブタノール等のアルコール系溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常 $0 \sim 2 \ 0 \ 0$ \mathbb{C} であり、好ましくは $1 \ 0 \ 0 \sim 1 \ 3 \ 0$ \mathbb{C} である。 反応時間は、通常 $1 \ 5$ 分間 $\sim 2 \ 4$ 時間であり、好ましくは $1 \sim 6$ 時間である。 製法 7-3 :式 (I) において、p=0, q=1 かつ $Y=-CONR^{10}$ - かつ R^3 と R^{10} が一緒になって - S - を示し A 環と縮合環を形成する場合

[式中、各記号は前記と同義である。]

(1)本方法においては、まず、所望の化合物(23)のカルボキシル基に隣接した 炭素をメチルチオ化し、化合物(50)に導く。

この際、例えばカルボン酸をオキサゾリン(I-7) とした後に、適当な塩基で処理し、ジアルキルスルフィドと反応させた場合には、化合物(50)が得られる。なお、カルボン酸等価体として、オキサゾリンを用いた場合には、メチルチオ化反応終了後、一般的な手法によってカルボン酸を復活させることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくは1,2-ジメトキシエタンである。

(2)次に、化合物(50)を活性化されたカルボン酸誘導体とし、所望の化合物(25)と縮合させ、化合物(I-15)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;所望のカルボン酸を、Nーヒドロキシベンゾトリアゾール、Nーヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてNーヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、Nーメチルモルホリン等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等の

エステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常 $0 \sim 1 \ 0 \ 0 \sim 0$ であり、好ましくは $0 \sim 3 \ 0 \sim 0$ である。反応時間は、通常 $1 \ 5 \ 5 \sim 0 \sim 0$ 時間であり、好ましくは $1 \sim 1 \ 2 \sim 0 \sim 0$ 時間である。

(3) さらに、化合物(I-15)は、N-クロロスクシンイミドの存在下に環化することによって、化合物(I-16)に導くことができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはジクロロメタンである。

反応温度は、通常 $0 \sim 2 \ 0 \ 0$ \mathbb{C} であり、好ましくは $0 \sim 3 \ 0$ \mathbb{C} である。反応時間は、通常 $3 \sim 4 \ 8$ 時間であり、好ましくは $6 \sim 1 \ 2$ 時間である。

製法7-4:式(I)において、p=0, q=1かつ $Y=-CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-NHCR^{28}-$ 、 $-NHCR^{29}R^{30}-$ または $-N=CR^{31}$ ーを示しA環と縮合環を形成する場合

WO 97/29079

〔式中、各記号は前記と同義である。〕

(1)活性化されたカルボン酸誘導体(51)を、化合物(25')と縮合させ、化合物(1-17)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化 チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理すること により得られる酸ハロゲン化物;所望のカルボン酸を、N-ヒドロキシベンゾト リアゾール、Nーヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル; 所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてNーヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。 塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン 等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常 0 ~ 1 0 0 ℃であり、好ましくは 0 ~ 3 0 ℃である。反応時間は、通常 1 5 分間~ 2 4 時間であり、好ましくは 1 ~ 1 2 時間である。

(2) 次に、化合物(I-17)は、酸の存在下、炭素ユニット化合物を縮合することによって化合物(I-18)、(I-19)、(I-20)にそれぞれ導くことができる。

炭素ユニット化合物としては、例えば、化合物(1-18)における R^{28} が酸素原子の場合はトリホスゲンであり、 R^{28} がイオウ原子の場合は、二硫化炭素である。化合物(1-19)における R^{29} 、 R^{30} が共にメチル基の場合はアセトンである。化合物(1-20)における R^{31} が水素原子の場合は、ジメチルホルムアミドジメチルアセタールであり、 R^{31} がメチル基の場合はアセチルアセトンである。

酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化 銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸;塩 酸、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられ、好ましくは塩酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはクロロホルムである。

反応温度は、通常 $0\sim2$ 0 0 $\mathbb C$ であり、好ましくは室温~ 1 0 0 $\mathbb C$ である。反応時間は、通常 $3\sim4$ 8 時間であり、好ましくは $6\sim1$ 2 時間である。

製法7-5:式(I)において、p=0, q=1かつ $Y=-CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-CH_2$ CO-または-CH=CH-を示しA 環と縮合環を形成する場合

〔式中、Haltいロゲン原子を、 R^{32} 、 R^{33} は同一または異なってそれぞれ炭素数 $1\sim 6$ のアルキルまたはベンジルを示し、他の各記号は前記と同義である。〕 (1) 化合物(52)を、適当な溶媒中、金属触媒の存在下、活性化されたエステル 化合物と反応させることにより、化合物(53)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム等のエーテル系溶媒等が挙げられ、好ましくはトルエンである。

金属触媒としては、例えばハロゲン化銅等が挙げられ、好ましくは臭化銅である。

活性化されたエステル化合物とは、アルキルマロン酸エステル等を適当な塩基 と混合することによって形成することができる。

この場合の適当な塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 nーブチルリチウム、 sーブチルリチウム、 tーブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは水素化ナトリウムである。

反応温度は、通常-10~200℃であり、好ましくは0~100℃である。 反応時間は、通常15分間~48時間であり、好ましくは30分間~3時間である。

(2) 化合物(53)を適当な溶媒中、塩の存在下、脱炭酸反応することにより化合物(54)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素 、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルス ルホキシド、アセトニトリル、アセトン、水等の極性溶媒等が挙げられ、好まし くは極性溶媒であり、より好ましくは水とジメチルスルホキシドの混合溶媒であ る。

塩としては、塩化ナトリウム、シアン化ナトリウム、フッ化リチウム、塩化リチウム、ヨウ化リチウム、炭酸リチウム、臭化カリウム、塩化カリウム、ヨウ化カリウム、シアン化カリウム、塩化マグネシウム等である。

反応温度は、通常 $0 \sim 3 \ 0 \ 0$ $\mathbb C$ であり、好ましくは $1 \ 0 \ 0 \sim 2 \ 0 \ 0$ $\mathbb C$ である。 反応時間は、通常 $1 \ 5$ 分間 $\sim 2 \ 4$ 時間であり、好ましくは $3 \ 0$ 分間 ~ 3 時間である。

- (3) 化合物(54)と化合物(25) を用いて、製法 7-1の(2) と同様にしてアミド縮合することにより、化合物(55)を得ることができる。
- (4) 化合物(55)を適当な溶媒中、塩基の存在下で環化し、化合物(1-21)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素 、1,2-ジクロロエタン等のハロゲン系溶媒;メタノール、エタノール、イソプロ ピルアルコール、 t ーブタノール等のアルコール系溶媒等が挙げられ、好ましく はアルコール系溶媒であり、より好ましくはエタノールである。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化カリウム、水酸化リチウム、ナトリウムメトキシド、ナトリウムエトキシド、カリウム t ーブトキシド等が挙げられ、好ましくはナトリウムエトキシドである。

反応温度は、通常 $0 \sim 2$ 0 0 \mathbb{C} であり、好ましくは $0 \sim 1$ 5 0 \mathbb{C} である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは 3 0 分間 ~ 3 時間である。

(5) なお、化合物(I-21)を還元後、脱水することにより、化合物(I-11"')を得ることができる。

還元剤としては、例えば、LiAlH,、LiBH,、NaBH,、DIBAL、Red-Al等が挙げられ、好ましくはLiAlH,である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 $-30\sim100$ ℃であり、好ましくは $0\sim50$ ℃である。反応時間は、通常15分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。 製法7-6:式(I)において、p=0, q=1かつY=-CONR 10 -かつ 3 と 10 が一緒になって $^{-1}$ NHCOCH 10 -を形成する場合

$$\begin{array}{c|c}
R^{2} & & & & & & & & \\
\hline
 & & & & & & & & \\
 & & & & & & & \\
\hline
 & & & & & & \\
 & & & & & & \\
\hline
 & & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & &$$

$$R^{2} \xrightarrow{R^{4}} N - (A1k^{2}), -R'$$

$$N = 0$$

〔式中、各記号は前記と同義である。〕

- (1) 化合物(56)および化合物(25') を用いて、製法 7-1 の(2) と同様にしてアミド縮合することにより、化合物(57)を得ることができる。
- (2) 化合物(57)を塩基の存在下、プロモ酢酸エチル等のハロ酢酸エチルでアミド基をアルキル化することにより、化合物(58)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 nーブチルリチウム、 sーブチルリチウム、 tーブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは水素化ナトリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはテトラヒドロフランである。

反応温度は、通常-10~200℃であり、好ましくは0~100℃である。 反応時間は、通常15分間~48時間であり、好ましくは1~8時間である。

(3) 化合物(58)を用い、常法によるニトロ基の還元反応の後、環化反応を行うことにより化合物(1-22)を得ることができる。

環化は、酸の存在下で行い、酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸;塩酸、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられ、好ましくはpートルエンスルホン酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常0~200℃であり、好ましくは60~120℃である。反

応時間は、通常3~48時間であり、好ましくは6~12時間である。

<u>製法8</u>:式(I)においてr=0, q=1かつ $Y=-CONR^{10}$ ーまたは-CH $2NR^{10}$ ーで、Rと R^{10} が隣接する窒素原子と一緒になってヘテロアリールを形成する場合

ここでは、式(I)において、r=0, q=1かつ $Y=-CONR^{10}-$ かつR と R^{10} が隣接する窒素原子と一緒になってモルホリノを形成する場合について例示する。

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、適当な溶媒中、 適当な塩基の存在下、モルホリンと反応させることにより、化合物(I-14)を得る ものである。

$$R^{2} \xrightarrow{\mathbb{R}^{4}} (A1k^{1})_{P} - COOH + HN \longrightarrow 0$$

$$R^{2} \xrightarrow{\mathbb{R}^{4}} (A1k^{1})_{P} - C - N \longrightarrow 0$$

$$WR^{1} \qquad \mathbb{R}^{3}$$

$$(11)$$

$$R^{2} \xrightarrow{\mathbb{R}^{4}} (A1k^{1})_{P} - C - N \longrightarrow 0$$

$$(I-14)$$

〔式中、各記号は前記と同義である。〕

本方法における活性化されたカルボン酸誘導体、塩基、溶媒、および反応温度、反応時間等の各条件は製法1の場合と同様である。

なお、RとR'®が隣接する窒素原子と一緒になって他のヘテロアリールを形成する場合の化合物は、原料化合物としてのモルホリンの代わりに、所望のヘテロアリール環を用いる以外は、上記と同様にして合成することができる。

また、Y=-CH2NR'°-の場合の化合物は、Y=-CONR'°-の場合の

化合物を、製法4に準じて還元することにより合成することができる。

以上、製法 $1 \sim 8$ について説明したが、上記製法において、 R^2 と R^4 が A 環 と一緒になって式 (II) で表される縮合環を形成する場合の化合物は、原料化合物として縮合環を有するものを用いる以外は、上記製法と同様にして合成するこができる。

ここで、製法 1 において原料として用いられる化合物(11)は、例えば以下の製法 $1-A\sim 1-F$ のようにして得ることができる。

製法1 − A

$$(R^{2})_{m-y}$$
 COOH (35)

〔式中、 R^{21} 、 R^{22} はそれぞれ R^{1} で示したものと同様の基を示し、Tはハロゲン原子を示し、m、yはそれぞれ1、2 または3 を示し、 $m-y \ge 0$ である。〕 (1) まず、化合物(31)を原料とし、塩基の存在下、化合物(29)で水酸基をエーテル化することにより、化合物(32)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸リチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10~200℃であり、好ましくは0~60℃である。反応時間は、通常15分間~48時間であり、好ましくは1~8時間である。

(2) 次に、(1) で得られた化合物(32)を酸化反応させることにより、化合物(33)を得る。

用いる酸化剤としては、例えば、NaClO2、CrO3、K2Cr2O7、 KMnO, 等が挙げられる。 また、反応助剤として、例えば、NaHPO、、KHPO、、アミレン等を適 宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはtーブタノールである。

(3) さらに、(2) で得られた化合物(33)を、塩基の存在下、化合物(30)でエーテル化することにより、化合物(34)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 nーブチルリチウム、 sーブチルリチウム、 tーブチルリチウム、 リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、 t ープタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10~200℃であり、好ましくは0~60℃である。反応時間は、通常15分間~48時間であり、好ましくは1~8時間である。

(4) さらに、(3) で得られた化合物(34)を塩基の存在下、加水分解することにより、化合物(35)を得る。

製法1-B

$$(H0)_{m-y} \xrightarrow{\chi} CH0$$

$$(OR^{21})_{y} COOR^{25}$$

$$(H0)_{m-y} \xrightarrow{\chi} COOH$$

$$(R^{22}0)_{m-y} \xrightarrow{\chi} COOH$$

$$(32)$$

$$(OR^{21})_{y} COOH$$

$$(37)$$

〔式中、 R^{25} は炭素数 $1 \sim 6$ のアルキルを示し、他の各記号は前記と同義である。〕 (1) まず、製法 1-A (1) で得られた化合物(32)をウィッティッヒ反応させることにより、化合物(36)を得る。

ウィッティッヒ試薬としては、例えば、メチル (トリフェニルホスホラニリデン) アセテート、エチル (トリフェニルホスホラニリデン) アセテート等が挙げられ、好ましくはメチル (トリフェニルホスホラニリデン) アセテートである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 $0 \sim 1$ 0 0 ∞ であり、好ましくは $0 \sim 7$ 0 ∞ である。反応時間は、通常 1 5 分間 ~ 1 2 時間であり、好ましくは 3 0 分間 ~ 3 時間である。

(2)次に、(1)で得られた化合物(36)を塩基の存在下、加水分解することにより、化合物(37)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 n - ブチルリチウム、 s - ブチルリチウム、 t - ブチルリチウム、 リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸リチウムである。

(3) さらに、(2) で得られた化合物(37)を製法1-A(3)、(4) と同様にして反応させ、化合物(38)を得る。

製法1-C

〔式中、 R^{23} 、 R^{24} はそれぞれ R^{1} で示したものと同様の基を示し、他の各記号は前記と同義である。〕

まず、化合物(39)を化合物(46)と反応させ、化合物(40)を得る。次に、化合物(40)を常法により還元し、化合物(41)を得る。さらに、化合物(41)を化合物(47) と反応させ、化合物(42)および化合物(43)を得る。次いで、化合物(42)および化合物(43)を加水分解し、化合物(44)および化合物(45)を得る。

上記反応で用いる試薬、条件等は、製法1-Aで用いたものと同様のものが挙 げられる。

製法1-D

〔式中、R³¹、R³⁵はそれぞれR¹で示したものと同様の基を示し、他の各記号は前記と同義である。〕

(1) 化合物(59)を原料とし、塩基の存在下、化合物(60)で水酸基をエーテル化することにより化合物(61)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸リチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10~200 ℃であり、好ましくは0~60 ℃である。反応時間は、通常15 分間~48 時間であり、好ましくは1~8 時間である。

(2) 化合物(61)を濃硫酸の存在下、発煙硝酸を反応させることにより化合物(62)を得ることができる。

溶媒としては、例えば、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒;酢酸、無水酢酸等の酸溶媒等が挙げられ、好ましくは酢酸である。

反応温度は、通常 $-50\sim200$ ℃であり、好ましくは $-10\sim60$ ℃である。 反応時間は、通常15分間 ~48 時間であり、好ましくは $1\sim8$ 時間である。

(3) 化合物(62)を塩基の存在下、化合物(63)で水酸基をエーテル化することにより化合物(64)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、ローブチルリチウム、sーブチルリチウム、tーブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10~200℃であり、好ましくは0~60℃である。反応時間は、通常15分間~48時間であり、好ましくは1~8時間である。

(4) 化合物(64)を酸化することにより化合物(56') を得ることができる。

用いる酸化剤としては、例えば、NaClO₂、CrO₃、K₂Cr₂O₇、 KMnO₄等が挙げられる。

また、反応助剤として、例えば、NaHPO、、KHPO、、アミレン等を適 宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-

ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等の エステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリ ル、アセトン、酢酸、水等の極性溶媒;メタノール、エタノール、イソプロピル アルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはイ ソプロピルアルコールまたはtーブタノールである。

反応温度は、通常 $0 \sim 1$ 0 0 \mathbb{C} であり、好ましくは $0 \sim 3$ 0 \mathbb{C} である。反応時間は、通常 1 0 分間 ~ 6 時間であり、好ましくは 1 5 分間 ~ 3 時間である。

(5) 化合物(56') から化合物(51') への還元は、常法により行われる。

製法I一E

$$R^{2}$$
 R^{4}
 R^{2}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R

〔式中、各記号は前記と同義である。〕

(1) 製法1-A~1-Dの方法により得られた化合物(65)を適当な溶媒中、または混合溶媒中、ハロゲン化剤と反応させることにより化合物(66)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム、ジオキサン等のエーテル系溶媒;ジクロロメタン、クロロホルム 、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチ ル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキ シド、アセトニトリル、アセトン、水等の極性溶媒等が挙げられ、好ましくはハ ロゲン系溶媒、またはジオキサンと水との混合溶媒である。

ハロゲン化剤としては、Nープロモスクシンイミド、臭素等が挙げられる。

反応温度は、通常 $0 \sim 2$ 0 0 \mathbb{C} であり、好ましくは $0 \sim 6$ 0 \mathbb{C} である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは 3 0 分間 ~ 3 時間である。

(2) 化合物(66)を適当な溶媒中、通常行われる酸化反応を行うことにより化合物(52)を得ることができる。

用いる酸化剤としては、例えば、NaClO₂、CrO₃、K₂Cr₂O₇、 KMnO₄等が挙げられる。

また、反応助剤として、例えば、NaHPO、、KHPO、、アミレン等を適 宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはtーブタノールである。

反応温度は、通常 $-30\sim100$ ℃であり、好ましくは $0\sim30$ ℃である。反応時間は、通常10 分間 ~12 時間であり、好ましくは30 分間 ~3 時間である。製法1-F

$$R^{36}$$
 (67)
 R^{36} (68)
 R^{37} (70)
 R^{38} (71)
 R^{38} (72)
 R^{38} (72)

〔式中、 R^{36} は水酸基または水素原子であり、 R^{37} は R^{1} と同じであり、 R^{38} は R^{2} と同じである。〕

本方法において、カルボニル化合物(67)の置換基〇Hに隣接した炭素をアルキ

ルチオ化し、化合物(71)または化合物(72)に導くことができる。

この際、置換基OHと結合した炭素に隣接した炭素の反応性を向上させるためにハロゲン化された化合物(68)とし、これを適当な塩基と適当な硫黄化剤を用いることによりチオール体(71)を得ることができる。

なお、アルキルチオ化の際に、化合物(67)のカルボキシル基あるいはカルボニル基は、それぞれオキサゾリジン、イミダゾリジン等で常法により保護される場合もある。これら保護基は反応後、常法によりカルボキシル基あるいはカルボニル基にもどすことが可能である。

(1) 化合物(67)を、適当な溶媒中、ハロゲン化剤と反応させることにより、化合物(68)を得ることができる。

ハロゲン化剤としては、例えば、臭素、N-ブロモスクシンイミド、臭化水素、臭化水素酸、臭化銅等が挙げられる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、水等の極性溶媒;酢酸、塩酸、硫酸等の酸溶媒等が挙げられ、好ましくは酢酸である。

反応温度は、通常 $0 \sim 2$ 0 0 ∞ であり、好ましくは $0 \sim 6$ 0 ∞ である。反応時間は、通常 1 0 分間 ~ 1 8 時間であり、好ましくは 3 0 分間 ~ 3 時間である。

- (2) 化合物(68)と化合物(69)を用いて、製法1-Aの(1)と同様にして化合物(70)を得ることができる。
- (3) 化合物(70)を適当な溶媒中、塩基の存在下、硫黄化剤を用いてアルキルチオ化合物(71)を得ることができる。

用いられる塩基としては、例えば、LDA、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、LiHMDS、NaHMDS、KHMDS、水

素化ナトリウム、水素化カリウム、E t Mg B r、 $(i-Pr)_2 N Mg B r$ 等が挙げられ、好ましくはn-ブチルリチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

硫黄化剤としては、例えば、n-アルキルジスルフィド等が挙げられる。これを用いて、所望のn-アルキル(炭素数1~7)チオ化を行うことができる。

反応温度は、通常 $-100\sim50$ ℃であり、好ましくは $-78\sim30$ ℃である。 反応時間は、通常15分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。

(4) 化合物(71)がアルデヒド誘導体 (R^{36} が水素原子) の場合は、製法1-B と同様にして化合物(72)を得ることができる。

このように上記製法 $1-A\sim 1-F$ に準じて、任意の置換基を有する化合物(1)を得ることができる。

製法1-G

製法1において原料として用いられる化合物(12)は、例えば以下のようにして得ることができる。

〔式中、 Alk^2^4 は Alk^2 より炭素数が1つ少ないものを示し、他の各記号は前記と同義である。〕

(1) まず、化合物(48)を適当な還元剤を用いて還元し、化合物(25)を得る。

還元剤としては、例えば、BH。、BH。・SMe2、LiBH.、NaBH 、、KBH、、NaBH。OH、LiAlH、等が挙げられ、好ましくはLiA lH、である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 $-30\sim100$ $\mathbb C$ であり、好ましくは $0\sim80$ $\mathbb C$ である。反応時間は、通常15 分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。

(2) さらに、(1) で得られた化合物(25)と、化合物(49)を塩基の存在下、反応させることにより、化合物(12)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、nーブチルリチウム、sーブチルリチウム、tーブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等の エステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリ ル、アセトン等の極性溶媒;メタノール、エタノール、イソプロパノール、tー ブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミ ドである。

反応温度は、通常 $0 \sim 150$ \mathbb{C} であり、好ましくは $20 \sim 100$ \mathbb{C} である。反応時間は、通常 $1 \sim 48$ 時間であり、好ましくは $3 \sim 24$ 時間である。

上記のようにして製造された化合物(I)は、例えば、濃縮、減圧濃縮、溶媒抽出、晶析、再結晶、クロマトグラフィー等の公知の手段により、分離精製することができる。

また、化合物(I)の医薬上許容される塩、および化合物(I)の各種異性体は、従来公知の方法により製造することができる。

化合物(I) およびその医薬上許容される塩は、哺乳動物に対し、カンナビノイドレセプターが関与することが知られている医用領域、特に末梢細胞系組織が関与する医用領域(免疫疾患、各種炎症、アレルギー性疾患、腎炎等)において医薬的効果を示す。

つまり、化合物(I) およびその医薬上許容される塩は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用、腎炎治療効果を有する。よって、化合物(I) およびその医薬上許容される塩は、カンナビノイドレセプター(特に末梢型カンナビノイドレセプター)作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤、腎炎治療剤として有用である。

化合物(I)またはその医薬上許容される塩を医薬製剤として用いる場合には、通常、それ自体公知の薬理学的に許容される担体、賦形剤、希釈剤、増量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矯味剤、溶解補助剤、その他の添加剤、具体的には水、植物油、エタノールまたはベンジルアルコールのようなアルコール、ポリエチレングリコール、グリセロールトリアセテート、ゼラチン、ラクトース、デンプン等のような炭水化物、ステアリン酸マグネシウム、タルク、ラノリン、ワセリン等と混合して、常法により錠剤、丸剤、散剤、顆粒剤、坐剤、注射剤、点眼剤、液剤、カプセル剤、トロ

ーチ剤、エアゾール剤、エリキシル剤、懸濁剤、乳剤、シロップ剤等の形態とな すことにより、経口または非経口的に投与することができる。

投与量は、疾患の種類および程度、投与する化合物並びに投与経路、患者の年齢、性別、体重等により変わり得る。経口投与の場合、通常、成人 1 日当たり化合物 (I) 0. $1\sim1$ 000 mg、好ましくは $1\sim3$ 00 mgを、 $1\sim$ 数回にわけて投与する。

以下、実施例により本発明を具体的に述べるが、本発明はこれらによって限定 されるものではない。

参考例1

4-メトキシトルエン($100 \, \mathrm{m}\, 1$ 、 $0.793 \, \mathrm{m}\, \mathrm{o}\, 1$)と塩化メチレン($300 \, \mathrm{m}\, 1$)を混合し、この溶液を $0\, ^{\circ}$ とまで冷却した後に塩化アルミニウム($190.3\, \mathrm{g}\, \mathrm{s}\, 1$. $44\, \mathrm{m}\, \mathrm{o}\, 1$)を加えた。この溶液にヘプタノイルクロリド($123\, \mathrm{m}\, 1$ 、 $0.8\, \mathrm{m}\, \mathrm{o}\, 1$)を2 時間かけて滴下した後に反応溶液を室温まで昇温、そのまま 2 時間攪拌した。この反応溶液を氷($400\, \mathrm{g}$)に向かって注いで反応を停止し、水層をクロロホルム($300\, \mathrm{m}\, 1$)で抽出した。有機層を合わせて水、飽和炭酸水素ナトリウム水溶液、飽和食塩水($8100\, \mathrm{m}\, 1$)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を蒸留($120\, \mathrm{pa}\, \mathrm{sh}\, 125 \sim 140\, \mathrm{ch}\, 1$ 0 して精製することにより $1-(2-\mathrm{ch}\, 120\, \mathrm{ch}\, 125 \sim 140\, \mathrm{ch$

 $^{1}H-NMR$ (CDC 1_{3}) δ : 12.2(1H, s), 7.53(1H, s),

7. 26(1H, d, J=8.47Hz), 6. 88(1H, d, J=8.47Hz), 2. 96(2H, t, J=7.31Hz),

1. 79-1.67(2H, m), 1. 47-1.25(6H, m), 0. 90(3H, t, J=6.90Hz).

FABMS (m/z): 235[M⁺ H ⁺] (10), 221(100), 202(40).

IR (Neat, cm^{-1}): 3500-3100, 1642.

参考例 2

1-(2-ヒドロキシ-5-メチルフェニル) ヘプタン-1ーオン (127g、

0. 61 mol)、2. 5 N水酸化ナトリウム水溶液(250 ml)およびエタノール(250 ml)を混合し、この溶液を0 Cまで冷却した後にジメチル硫酸(60 ml)を加えて2 時間加熱還流した。さらに、ジメチル硫酸(40 ml)および2.5 N水酸化ナトリウム水溶液(170 ml)を加えて2 時間加熱還流した後に反応溶液を減圧濃縮した。得られた残渣をエーテル(200 ml)で2回抽出した後、有機層を合わせて2.5 N水酸化ナトリウム水溶液、飽和食塩水(8100 ml)で20 ml0の 20 ml

¹H-NMR (CDCl₁) δ: 7.42(1H, s), 7.22(1H, d, J=8.42Hz), 6.83(1H, d, J=8.42Hz), 3.84(3H, s), 2.93(2H, t, J=7.56Hz), 2.28(3H, s), 1.70-1.59(2H, m), 1.45-1.20(6H, m), 0.87(3H, t, J=6.2Hz). 参考例 3

1-(2-x)トキシー 5-xチルフェニル)へプタンー 1-xン(81.6g、0.348 mol)、クロロ酢酸エチル(64g、0.522 mol)およびベンゼン(100 ml)を混合し、この溶液を0℃まで冷却した後にカリウムー t-x に t-

ムエトキシドを加えて室温で1.5時間攪拌した。この反応溶液に水(17m1)を加えて0.5時間攪拌した後、エタノールを減圧留去し、水(350m1) および濃塩酸(63m1)を加えて1.5時間加熱還流した。水層をエーテル(200m1)で3回抽出した後、有機層を合わせて水、飽和炭酸水素ナトリウム水溶液および飽和食塩水(各100m1)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を減圧蒸留(450pa、155~160℃)することにより2~(2~メトキシ~5~メチルフェニル)オクタナール(64.5g、74.6%)を無色油状物質として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 9.65(1H, s), 7.06(1H, d, J=8.32Hz),

- 6.88(1H, s), 6.80(1H, d, J=8.32Hz), 3.79(3H, s), 3.74(2H, t, J=8.46Hz),
- 2.29(3H, s), 2.17-2.00(1H, m), 1.75-1.60(1H, m), 1.45-1.20(8H, m),
- 0.87(3H, t, J=6.78Hz)

 $FABMS (m/z) : 249[M^+H^+] (80), 219(60).$

参考例 4

2-(2- + 1) キャー 5- + 1 チャンフェニル)オクタナール(63.8g、0.257mol)、ヨウ化メチル(160ml、2.57mol)およびベンゼン(300ml)を混合し、この溶液を-5 でまで冷却した後にカリウムーt-7 トキッド(31.3g、0.279mol)を反応溶液が0でを越えないように加えて-2 でで0.5時間攪拌した。この反応溶液を氷水(200ml)に向かって注ぐことにより反応を停止し、水層をエーテル(150ml)で2回抽出した後、有機層を飽和食塩水(100ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣にメタノール(400ml)、セミカルバジド塩酸塩(28.6g、0.257mol)の水溶液(110ml)およびピリジン(20.4ml、0.257mol)を加えて室温で0.75時間攪拌した。析出した結晶を濾過し、ヘキサンで洗浄し、この結晶を乾燥することにより2-(2-メトキシー5-メチルフェニル)オクタナールセミカルバジド(64.7g、79%)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 7.97(1H, s), 7.32(1H, s), 7.00(1H, s), 6.96(1H, d, J=8.22Hz), 6.73(1H, d, J=8.22Hz), 5.10(2H, bs), 3.71(3H, s), 2.26(3H, s), 2.08-1.93(1H, m), 1.84-1.72(1H, m), 1.42(3H, s), 1. 28-0. 9(8H, m), 0. 82(3H, t, J=6. 66Hz).

参考例 5

2-(2-メトキシ-5-メチルフェニル) オクタナールセミカルバジド (6 4. 7g (0. 203mol) 、 3mol0 、 3mol0 、 3mol0 、 3mol0 . 43mol) およびキシレン(600ml) を混合し、この溶液を2.5時間加 熱還流した。この反応溶液を氷水(200m1)に向かって注ぐことにより反応 を停止し、水層をトルエン(120ml)で3回抽出した後、有機層を飽和食塩 水(100m1)で3回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾 別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(クロロホルム)を用いて精製することにより2-(1,1-ジメチルへプチル)-1-メトキ シー4ーメチルベンゼンをキシレンとの混合物として得た(51g、overweight)。これをこのまま次の反応に用いた。

 $^{1}H-NMR$ (CDC1₃) δ : 6.99(1H, s), 6.97(1H, d, J=8.03Hz), 6.75(1H, d, J=8.03Hz), 3.78(3H, s), 2.28(3H, s), 1.82-1.73(2H, m), 1.31(6H, s), 1.25-1.13(6H, m), 1.05-0.91(2H, m), 0.84(3H, t, J=5.68Hz). 参考例 6

2 - (1, 1 - ジメチルヘプチル) - 1 - メトキシー 4 - メチルベンゼン (キシレンとの混合物:51g、0.203molとして計算)、N-ブロモスクシ ンイミド (38.4g、0.215mol)、ベンゾイルペルオキシド (0.g 7g、4mmo1) および四塩化炭素 (500m1) を混合し、この溶液を3. 5 時間加熱還流した。さらにN-ブロモスクシンイミド (2. 1g、12 mmo 1)を加えて0.5時間加熱還流した後、N-ブロモスクシンイミド (36g、 0. 2 mo 1) を加えてこの反応溶液を 2 時間加熱還流した。結晶を濾過して得 られた母液を飽和食塩水(100m1)で2回洗浄し、無水硫酸マグネシウムで

乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1)を用いて精製することにより3-(1,1-ジメチルヘプチル)-4-メトキシベンズアルデヒド(33.4g、2 steps 50%)を淡黄色油状物質として得た。

 $^{1}H - NMR (CDC1_{3}) \delta : 9.87(1H, s), 7.77(1H, s),$

7..74(1H, d, J=8.32Hz), 6.96(1H, d, J=8.32Hz), 3.91(3H, s).

1.83-1.70(2H, m), 1.37(6H, s), 1.35-1.06(6H, m), 1.04-0.85(2H, m),

0.83(3H, t, J=6.74Hz).

FABMS (m/z): 263[M+H+] (100), 247(95), 163(50). 参考例 7

3-(1, 1-i)メチルヘプチル)-4-メトキシベンズアルデヒド(13g、49.5mmol)、t-iグタノール(65ml)および2-メチル-2-iブテン(35.2ml、332mmol)を混合し、この溶液に亜塩素酸ナトリウム(7.37g、64.4mmol)、リン酸二水素ナトリウム(7.73g、64.4mmol)および水(50ml)を混合して調製した溶液を滴下し、室温で12時間攪拌した。1N水酸化ナトリウム溶液(100ml)を加えてt-iグノールを減圧留去した後に濃塩酸を加えて酸性にし、水層を酢酸エチル(150ml)で3回抽出した。有機層を合わせて飽和食塩水(100ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=5/1~2/1)を用いて精製することにより3-(1,1-i)メチルヘプチル)-4-メトキシー安息香酸(10.7g、77%)を無色結晶として得た。

 $^{1}H - NMR (CDCl_{3}) \delta : 7.98(1H, d, J=2.15Hz),$

7.97(1H, dd, J=9.12, 2.15Hz), 6.89(1H, d, J=9.12Hz), 3.89(3H, s),

1.83-1.74(2H, m), 1.36(6H, s), 1.24-1.10(6H, m), 1.00-0.94(2H, m),

0.83(3H, t, J=6.49Hz).

FABMS (m/z): 279[M⁺ H ⁺] (65), 261(70), 193(100).

参考例8

 $^{1}H-NMR$ (CDCl₃) δ : 7.65(1H, d, J=16Hz), 7.39(1H, s),

- 7. 37(1H, d, J=9.0Hz), 6. 85(1H, d, J=9.0Hz), 6. 30(1H, d, J=16Hz),
- 3.85(3H, s), 3.79(3H, s), 1.84-1.73(2H, m), 1.34(6H, s).
- 1. 28-1. 12(6H, \mathbf{m}), 1. 01-0. 85(2H, \mathbf{m}), 0. 83(3H, \mathbf{t} , J=6. 45Hz).

FABMS (m/z): 319[M⁺ H ⁺] (55), 287(65), 233(100).

参考例 9

3-〔3-〔1, 1-ジメチルヘプチル)-4-メトキシフェニル〕桂皮酸メチルエステル(334.5 mg、1.05 mmo1)、メタノール(4 m1)、1 N水酸化ナトリウム水溶液(1.2 m1、1.2 mmo1)を混合し、この溶液を1時間加熱還流した。メタノールを減圧留去した後、濃塩酸0.3 m1 および飽和食塩水(5 m1)を加え、水層を酢酸エチル(5 m1)で4回抽出した。有機層を合わせて飽和食塩水(5 m1)で2回洗浄した後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後減圧濃縮して、得られた結晶をヘキサンで洗浄することにより3-〔3-〔1,1-ジメチルヘプチル)-4-メトキシフェニル〕桂皮酸(0.33g、quant.)を無色結晶として得た。

 1 H - NMR (CDC1₃) δ : 7.75(1H, d, J=15.9Hz), 7.44-7.38(2H, m), 6.86(1H, d, J=6.45Hz), 6.32(1H, d, J=15.9Hz), 3.86(3H, s),

1. 82-1. 73(2H, m), 1. 34(6H, s), 1. 27-1. 10(6H, m), 1. 00-0. 87(2H, m), 0. 84(3H, t, J=6.45Hz).

参考例10

窒素置換した反応容器に3-(3-(1,1-i)メチルヘプチル)-4-yトキシフェニル】桂皮酸(600 m g、2.16 m m o 1)、塩化メチレン(6 m 1)を混合し、この溶液を0 $\mathbb C$ まで冷却した。この溶液に三臭化ホウ素(0.82 m 1、8.64 m m o 1)の塩化メチレン溶液(4 m 1)を滴下し、室温で20時間攪拌した。さらに三臭化ホウ素(0.82 m 1、8.64 m m o 1)の塩化メチレン溶液(5 m 1)を滴下し、室温で18 時間攪拌した。この反応溶液を水(20 m 1)に向かって注いで反応停止、エーテル(20 m 1)を加えて有機層を1 N 水酸化ナトリウム水溶液(20 m 1)で3 回抽出、濃塩酸を加えて酸性にした水層を酢酸エチル(40 m 1)で3 回抽出した。有機層を合わせて飽和食塩水(20 m 1)で2 回洗浄した後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=6/1~1/2)を用いて精製することにより3-(1,1-i)メチルヘプチル)-4 Hーヒドロキシ安息香酸(457 m g、80%)を無色結晶として得た。

 1 H - NMR (CDCl $_{3}$) δ : 8.00(1H, s), 7.86(1H, d, J=8.4Hz), 6.72(1H, d, J=8.4Hz), 5.85-5.28(1H, bs), 1.87-1.77(2H, m), 1.40(6H, s), 1.30-1.14(6H, m), 1.07-0.93(2H, m), 0.83(3H, t, J=6.8Hz). FABMS (m/z): 265[M $^{+}$ H $^{+}$] (100), 247(40), 179(60).

参考例11

クロム酸(105.4mg、1.05mmo1、1.2eq)を酢酸(2ml)に溶解し、氷冷下、3-(1,1-ジメチルヘプチル)ベンズアルデヒド(205mg、0.878mmo1)の酢酸(2ml)溶液を加えて2分間攪拌した。更に室温で30分間攪拌させた後に濃硫酸を2滴加え、3時間攪拌した。この反応溶液に水(10ml)を加え、酢酸エチル(10ml)で2回抽出した。有

機層をあわせて飽和食塩水(20m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー($n-\Lambda$ キサン/酢酸エチル=2/1)を用いて精製することにより、3-(1,1-3) が、すいのでは、ないのでは、3-(1,1-3) を見かり、ないのでは、3-(1,1-3) を見かり、ないのでは、3-(1,1-3) を見かり、3-(1,1-3) に 3-(1,1-3) に 3-(1,1-3)

参考例12

アルゴン置換した反応容器に2-メチルー〔1, 4〕-ナフトキノン(5 g、 29 mmo1)、エーテル(200 ml)を混合し、この溶液を-10℃まで冷 却した。この溶液に水素化リチウムアルミニウム(LAH)(1.0g、26. 3 mm o 1) とエーテルの懸濁液 (40 m 1) を 40 分かけて滴下し、室温で 0 . 5時間攪拌した。この反応溶液に1N塩酸(100ml)を滴下することによ り反応停止、水層を酢酸エチル(100m1)で2回抽出し、有機層を合わせて 飽和食塩水(50m1)で2回、飽和炭酸水素ナトリウム水溶液(30m1)で 3回、飽和食塩水 (50ml) で2回洗浄した。無水硫酸マグネシウムで乾燥し 、乾燥剤を遮別後、減圧濃縮して得られた残渣に水(10ml)および濃塩酸(10ml) を加えて2時間加熱還流した。この反応溶液に水(50ml) を加え た後、水層をエーテル(50ml)で2回抽出、有機層を水(30ml)、飽和 炭酸水素ナトリウム水溶液(30ml)で2回、飽和食塩水(30ml)で2回 洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得ら れた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=30/1~10 /1)を用いて精製することにより3-メチルナフタレン-1-オールを構造未 確認の化合物を含む混合物として得た。このものをこれ以上精製することなく次 の反応に用いた。

参考例13

アルゴン置換した反応容器に3-メチルナフタレン-1-オールの粗生成物、ジメチルホルムアミド (DMF) ($20\,\mathrm{m}\,1$)、炭酸カリウム ($3\,\mathrm{g}$ 、 $2\,\mathrm{l}$. $7\,\mathrm{mmo}\,1$) およびペンチルブロミド ($4.0\,\mathrm{m}\,1$ 、 $3\,2.3\,\mathrm{mmo}\,1$) を混合し、この溶液を $90\,\mathrm{C}\,\mathrm{C}\,\mathrm{G}\,\mathrm{shift}$ 時間攪拌した。DMFを減圧留去した後、水 ($20\,\mathrm{m}\,1$) を加えて水層を酢酸エチル ($20\,\mathrm{m}\,1$) で3回抽出、有機層を飽和食塩水 ($20\,\mathrm{m}\,1$) で洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー (0. 中ンノ酢酸エチル=0.0~0.0~0.1)を用いて精製することにより0.1 を無色油状物質として得た。

 $^{1}H - NMR$ (CDCl₃) δ : 8.23(1H, d, J=8.07Hz),

- 7.69(1H, d, J=8.07Hz), 7.48-7.36(2H, m), 7.19(1H, s), 6.65(1H, s),
- 4.13(2H, t, J=6.42Hz), 2.49(3H, s), 1.98-1.87(2H, m), 1.53-1.37(4H, m),
- 0.98(3H, t, J=7.19Hz).

参考例14

3-メチルー1-ペンチルオキシナフタレンの粗生成物、四塩化炭素(15m 1)およびN-プロモスクシンイミド(2.11g、11.9mmo1)を混合し、ベンゾイルペルオキシド(72.7mg、0.3mmo1)の四塩化炭素溶液(3m1)を加えた後、この溶液を100℃で 4 時間攪拌した。結晶を濾別後、母液を飽和食塩水(20m1)で 2 回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=25/1)を用いて精製することにより1-プロモー2-ジプロモメチルー4-ペンチルオキシナフタレン(1.16g、69%)を無色結晶として得た。

 1 H - NMR (CDC1 $_{3}$) δ : 8.35-8.25(2H, m), 7.73-7.57(2H, m), 7.55(1H, s), 7.42(1H, s), 4.31(2H, t, J=6.41Hz), 2.10-1.97(2H, m), 1.82-1.45(4H, m), 1.04(3H, t, J=7.19Hz).

FABMS (m/z): 466[M+H+] (20), 385(100), 315(40). 参考例 1 5

1- 7 = 1 - 2 = 1 -

 1 H - NMR (CDC1 $_{3}$) δ : 10.64(1H, s), 8.50-8.42(1H, m), 8.38-8.30(1H, m), 7.75-7.62(2H, m), 7.27(1H, s), 4.20(2H, t, J=6.5Hz),

2. 00-1. 88(2H, m), 1. 60-1. 36(4H, m), 0. 97(3H, t, J=7.2Hz).

FABMS (m/z): 322[M+ H +] (100), 251(65), 144(40).

参考例16

1-ブロモー4-ペンチルオキシナフタレンー2-カルボアルデヒド(0.77g、2.4mmol)、t-ブタノール(4.8ml)、2-メチルー2-ブテン(1.71ml、16.1mmol)を混合し、この溶液に亜塩素酸ナトリウム(360mg、3.12mmol)、リン酸二水素ナトリウム(374mg、3.12mmol)および水(2.4ml)を混合して調製した溶液を滴下し、室温で16.5時間攪拌した。1N水酸化ナトリウム水溶液(5ml)を加えてt-ブタノールを減圧留去した後に、濃塩酸を加えて酸性にし、飽和食塩水(5ml)を加えた後に水層を酢酸エチル(10ml)で3回抽出した。有機層を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルから再結晶することにより1-ブロモー4-ペンチルオキシナフタ

8.33(1H, d, J=8.4Hz), 7.72-7.58(2H, m), 7.24(1H, s),

4. 18(2H, t, J=6.48Hz), 1. 62-1. 37(6H, m), 0. 97(3H, t, J=7.2Hz).

 $FABMS (m/z) : 338[M^+H^+] (90), 339(70), 268(50)$

参考例17

アルゴン置換した反応容器に1-プロモー4-ペンチルオキシナフタレンー2-カルボン酸(400 mg、1.19 mm o 1)とテトラヒドロフラン(THF)(3 m 1)を混合し、この溶液を-78 \mathbb{C} に冷却した後、n-ブチルリチウムのヘキサン溶液(1.6 M)を1.63 m 1(2.61 mm o 1)加え1時間攪拌した。水(0.5 m 1)および飽和食塩水(2 m 1)を加えた後に水層を酢酸エチル(5 m 1)で4回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1~1/2)を用いて精製することにより、4-ペンチルオキシナフタレン-2-カルボン酸(149.6 mg、49%)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 8.32(1H, d, J=7.47Hz), 8.31(1H, s),

7. 93(1H, d, J=7.47Hz), 7. 68-7. 52(2H, m), 7. 42(1H, s).

4.23(2H, t, J=6.48Hz), 2.04-1.90(2H, m), 1.65-1.39(4H, m),

0.98(3H, t, J=7.2Hz)

 $FABMS (m/z) : 259[M^+H^+] (50), 258(100), 188(70).$

参考例18

 1 - ブロモー 4 - ペンチルオキシナフタレンー 2 - イル) 桂皮酸メチルエステル (592 mg、78%) を淡黄色結晶として得た。

 $^{1}H - NMR$ (CDCl₃) δ : 8.38(1H, d, J=15.9H₂),

- 8. 34(1H, d, J=8.0Hz), 8. 27(1H, d, J=8.0Hz), 7. 67-7. 52(2H, m).
- 6. 94(1H, s), 6. 45(1H, d, J=15.9Hz), 4. 15(2H, t, J=6.44Hz), 3. 86(3H, s).
- 2. 03-1. 90(2H, m), 1. 64-1. 30(4H, m), 0. 97(3H, t, $J=7.17H_2$).

FABMS (m/z): 378[M⁺ H ⁺] (100), 379(60), 226(60).

参考例19

3-(1-プロモー4-ペンチルオキシナフタレン-2-イル) 桂皮酸メチルエステル(588mg、1. 56mmo1)、エタノール(4m1)および1N 水酸化ナトリウム水溶液(4m1)を混合し、この溶液を1時間加熱還流した。エタノールを減圧留去した後、濃塩酸を加えて反応溶液を酸性にした。THF(5m1)および酢酸エチル(20m1)を加えて析出した結晶を溶解させて有機層を分離した後、水層を酢酸エチル(20m1)で20m1)で20m1)の大海した後、水層を酢酸エチル(20m1)で2mm は、有機層を合わせて飽和食塩水(20m1)で3mm で3mm が、減圧濃縮して、得られた残渣をヘキサンで洗浄して精製することにより3-(1-7mm-4-4mm) 大力タレン-2-4mm)桂皮酸(54mm の 3mm を淡黄色結晶として得た。

 $^{1}H-NMR$ (DMSO-d₆) δ : 12.6(1H, bs), 8.26(1H, d, J=7.76Hz),

- 8. 22(1H, d, J=7.76Hz), 7. 03(2H, d, J=8.4Hz), 8. 15(1H, d, J=15.8Hz),
- 7. 75-7. 60(2H, m), 7. 34(1H, s), 6. 84(1H, d, J=15.8Hz),
- 4. 27(2H, t, J=6.41Hz), 1. 93-1. 80(2H, m), 1. 59-1. 33(4H, m),
- 0.93(3H, t, J=7.15Hz).

 $FABMS (m/z) : 364[M^+H^+] (20), 169(100).$

参考例20

アルゴン置換した反応容器に3-(1-70モ-4-4) では、 3-(1-70E-4-4) では、 3-(1-70E-

 $^{1}H - NMR (DMSO - d_{6}) \delta : 12.4(1H, bs), 8.16-8.10(1H, m), 7.91-7.86(1H, m), 7.71(1H, s), 7.69(1H, d, J=15.9Hz), 7.59-7.50(2H, m),$

7. 28(1H, s), 6. 70(1H, d, J=15.9Hz), 4. 23(2H, t, J=6.42Hz),

1.94-1.8(2H, m), 1.60-1.35(4H, m), 0.93(3H, t, J=7.16Hz).

FABMS (m/z): $285[M^+ H^+]$ (10), 284(300), 169(100).

参考例21

2ーヒドロキシー3ーメトキシ安息香酸(15.66g、93mmo1)、DMF(200ml)、炭酸カリウム(51.4g、372mmol)およびペンチルブロミド(29ml、233mmol)を混合し、この溶液を90℃で1時間攪拌した。DMFを減圧留去した後、水(100ml)を加えて水層を酢酸エチル(150ml)で3回抽出、有機層を合わせて飽和食塩水(70ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣に1N水酸化ナトリウム水溶液(70ml)およびエタノール(70ml)を加えて1時間加熱還流した。さらに1N水酸化ナトリウム水溶液(70ml)およびエタノール(70ml)を加えて2時間加熱還流した後エタノールを減圧留去、濃塩酸を加えてこの溶液を酸性にした後、水層を酢酸エチル(100ml)で3回抽出、有機層を合わせて飽和食塩水(100ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1~1/1)を

用いて精製することにより3-メトキシ-2-ペンチルオキシ安息香酸(20.5g、97%)を淡黄色油状物質として得た。

 1 H - NMR (CDCl₃) δ : 7.22(1H, d, J=7.35Hz), 7.20-7.09(2H, m), 4.26(2H, t, J=6.96Hz), 3.91(3H, s), 1.90-1.79(2H, m), 1.50-1.30(4H, m), 0.92(3H, t, J=7.0Hz).

参考例22

3ーメトキシー2ーペンチルオキシ安息香酸(1.5g、6.3 mmol)、メタノール(10 ml)および濃硫酸1滴を混合し、この溶液を7時間加熱還流した。メタノールを減圧留去した後、飽和炭酸水素ナトリウム水溶液(3 ml)を加えて水層を酢酸エチル(20 ml)で2回抽出、有機層を合わせて飽和炭酸水素ナトリウム水溶液(5 ml)で2回、飽和食塩水(5 ml)で洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣にアルゴン気流下THF(15 ml)を加えて0℃に冷却し、この溶液にLAH(0.49g、13 mmol)を加えて1時間攪拌した。この反応溶液に水(0.4 ml)、1 N水酸化ナトリウム水溶液(0.4 ml)および水(1.2 ml)を順次滴下し、エーテル(60 ml)を加えて1時間激しく攪拌した後、無機塩を濾別後減圧濃縮することにより(3 ーメトキシー2 ーペンチルオキシフェニル)メタノールの粗生成物を得た。このものを精製することなく次の反応に用いた。参考例23

(3-)メトキシー 2-ペンチルオキシフェニル)メタノールの粗生成物(1.2g)、ジメチルスルホキシド(DMSO)(25m1)およびトリエチルアミン(6.72m1、48.2mmo1)を混合し、この溶液を0 ∞ に冷却した後、三酸化硫黄ーピリジン複合体(2.56g、16.1mmo1)を加えた。室温で1時間攪拌した後、反応溶液を水に注いで反応停止、水層を酢酸エチル(30m1)で3回抽出した。有機層を合わせて2N 塩酸(30m1)、水(30m1)および飽和食塩水(30m1)で洗浄した後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー

(ヘキサン/酢酸エチル= $15/1\sim10/1$) を用いて精製することにより3-メトキシー2-ペンチルオキシベンズアルデヒド(1.16g, 3 steps 83%) を無色油状物質として得た。

 $^{1}H - NMR$ (CDCl₃) δ : 7.42(1H, d, J=6.69H₂),

7. 20-7. 09(3H, m, involving a singlet at 7.13), 4. 12(2H, t, J=6.73Hz).

3. 89(3H, s), 1. 90-1. 75(2H, m), 1. 52-1. 32(4H, m), 0. 93(3H, t, J=7.08Hz).

FABMS (m/z): 223[M+H+] (60), 164(20).

参考例24

3-メトキシー2-ペンチルオキシベンズアルデヒド(1.15g、5.17 mmol)、THF(20ml)およびメチル(トリフェニルホスホラニリデン)アセタート(3.34g、10mmol)を混合し、この溶液を4時間加熱還流した。THFを滅圧留去して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)を用いて精製することにより3-(3-メトキシー2-ペンチルオキシフェニル)桂皮酸メチルエステル(1.48g、over weight)を無色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 7.35(1H, d, J=2.0Hz),

- 7. 15(1H, dd, J=8.3, 2. 0Hz), 7. 03(2H, d, J=8.4Hz).
- 6. 80(2H, d, J=8.4Hz), 6. 80(1H, d, J=8.3Hz), 6. 62(1H, bs),
- 6. 19(1H, t, J=12.9Hz), 3. 98(2H, t, J=6.9Hz), 3. 86(3H, s),
- 3. 64(2H, q, J=6.9Hz), 2. 82(2H, t, J=6.9Hz), 1. 9-1.7(2H, m),
- 1.5-1.3(4H, m), 0.90(3H, t, J=7.0Hz).

 $FABMS (m/z) : 358[M^+H^+] (100), 221(80), 154(60).$

参考例 2 5

3-(3-3++2)-2-3 ペンチルオキシフェニル)桂皮酸メチルエステル(1.47g、5.28mmol)、エタノール(10ml)および1N水酸化ナトリウム水溶液(10ml)を混合し、この溶液を0.5時間加熱還流した。エタノールを減圧留去した後に濃塩酸を加えて酸性(pH=1)にすることにより

析出した結晶を酢酸エチル(20m1)で3回抽出、有機層を合わせて飽和食塩水(20m1)で3回洗浄した後、無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をエタノールから再結晶して精製することにより3-(3- y)トキシー2-ペンチルオキシフェニル)桂皮酸(1.09g、78%)を無色結晶として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 8.16(1H, d, J=16.2Hz),

- 7. 19(1H, d, J=7.99Hz), 7. 06(1H, d, J=7.99Hz), 6. 95(1H, d, J=7.99Hz),
- 6. 48(1H, d, J=16.2Hz), 3. 99(2H, t, J=6.88Hz), 3. 87(3H, s).
- 1.89-1.75(2H, m), 1.57-1.35(4H, m), 0.94(3H, t, J=7.14Hz).

FABMS (m/z) : 265[M⁺ H ⁺] (40), 264(70), 177(100).

参考例26

アルゴン置換した反応容器に2-Eドロキシ-3-yトキシ安息香酸(7.15g、 $30\,\text{mmol}$)、トルエン($60\,\text{ml}$)、トリエチルアミン($4.6\,\text{ml}$ 、 $33\,\text{mmol}$)およびアジ化ジフェニルホスホリル($7.11\,\text{ml}$ 、 $33\,\text{mm}$ o 1)を混合し、この溶液を室温で1時間攪拌した後に、 $45\,\text{C}$ から $100\,\text{C}$ を で昇温しながら $2.5\,\text{時間攪拌した}$ 。ベンジルアルコール($3.41\,\text{ml}$ 、 $33\,\text{mmol}$)を加えて $2\,\text{時間加熱環流した後}$ 、この反応溶液に氷水($60\,\text{ml}$)を 加えて反応停止、水層を酢酸エチル($50\,\text{ml}$)で $30\,\text{ml}$ 出、有機層を合わせて 飽和食塩水($50\,\text{ml}$)で $20\,\text{洗浄した}$ 。無水硫酸マグネシウムで乾燥し、乾燥 剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー($0.4\,\text{ml}$)を 所能エチル= $0.4\,\text{ml}$ を用いて精製することにより、($0.4\,\text{ml}$ を かられたまな かったまな かったまなな かったまな かったまな かったまなな かったまな かったまな かったまなな かったまなな

 1 H-NMR (CDC $_{13}$) δ : 7.73(1H, d, J=8.1Hz), 7.42-7.31(6H, m), 7.01(1H, t, J=8.4Hz), 7.01(1H, d, J=8.4Hz), 5.21(2H, s),

- 3.99(2H, t, J=6.8Hz), 3.84(3H, s), 1.80-1.67(2H, m), 1.5-1.3(4H, m),
- 0.90(3H, t. J=7.1Hz)

FABMS (m/z) : 344[M+H+] (45), 343(100), 300(65). 参考例 2 7

(3-メトキシー2ーペンチルオキシフェニル)カルバミン酸ベンジルエステル(2g、5.82mmol)、エタノール(50ml)および10%パラジウムー炭素触媒(160mg)を混合し、この溶液を水素気流下室温で4.5時間攪拌した。パラジウムー炭素触媒を遮別した後エタノールを減圧留去し、得られた残渣にエタノール(10ml)およびエトキシメチレンマロン酸ジエチル(1.29ml、6.4mmol)を加えてこの溶液を2時間加熱環流した。エタノールを減圧留去した後、得られた残渣に流動パラフィン(10ml)を加え、250で1時間攪拌し、室温まで冷却した後に褐色油状物質を流動パラフィンと分離し、この褐色油状物質に酢酸エチル(3ml)およびヘキサン(10ml)を加えて攪拌することにより得られる結晶をヘキサン、エーテルで洗浄して精製することにより、7-メトキシー4-オキソー8-ペンチルオキシー1、<math>4-ジヒドロキノリンー3-カルボン酸エチルエステル(589mg、3steps30%)を淡茶色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 9.15(1H, bs), 8.55(1H, s),

8. 12(1H, d, J=9.1Hz), 7. 03(1H, d, J=9.1Hz), 4. 36(2H, q, J=7.1Hz),

4.17(2H, t, J=6.9Hz), 3.96(3H, s), 1.85-1.69(2H, m), 1.50-1.32(7H, m),

0.91(3H, t, J=7.0Hz).

FABMS (m/z): 334[M⁺ H ⁺] (100), 288(30), 218(20).

参考例28

7-メトキシー4-オキソー8-ペンチルオキシー1,4-ジヒドロキノリンー3-カルボン酸エチルエステル(580mg、1.74mmol)とオキシ塩化リン(3ml)を混合し、この溶液を1時間加熱還流した。この反応溶液を氷(30g)に向かって注いで反応を停止し、30%水酸化ナトリウム水溶液(20ml)を氷冷下ゆっくりと滴下した。水層をエーテル(20ml)で4回抽出し、有機層を合わせて飽和食塩水(10ml)で2回洗浄した後、この溶液を無

水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮することにより得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、4-クロロ-7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸エチルエステル(561 mg、92%)を淡黄色結晶として得た。

'H-NMR (CDC1₃) δ: 9.21(1H, s), 8.16(1H, d, J=9.0Hz), 7.47(1H, d, J=9.0Hz), 4.48(2H, q, J=7.2Hz), 4.26(2H, t, J=7.1Hz), 4.05(3H, s), 1.94-1.74(2H, m), 1.51-1.30(7H, m), 0.92(3H, t, J=7.1Hz). FABMS (m/z): 352[M+H+] (100), 294(60). 参考例 2 9

4-クロロー7-メトキシー8-ペンチルオキシキノリンー3-カルバミン酸エチルエステル(311mg、0.84mmol)、エタノール(3ml)および1N水酸化ナトリウム水溶液(3ml)を混合し、この溶液を0.5時間加熱還流した。エタノールを減圧留去した後、濃塩酸を加えて反応溶液を酸性にし、THF(10ml)と酢酸エチル(10ml)を加えて析出した結晶を溶解させて有機層を分離した後、有機層を飽和食塩水(10ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をエタノールから再結晶して4-クロロー7-メトキシー8-ペンチルオキシキノリン-3-カルバミン酸(229mg、80%)を淡黄色結晶として得た。

 $^{1}H-NMR$ (DMSO-d₆) δ : 13.8(1H, bs), 9.07(1H, s),

8. 10(1H, d, J=9.6Hz), 7. 75(1H, d, J=9.6Hz), 4. 13(2H, t, J=6.5Hz),

3.99(3H, s), 1.78-1.67(2H, m), 1.50-1.28(4H, m), 0.88(3H, t, J=7.4Hz).

FABMS (m/z): 324[M⁺ H ⁺] (85), 307(25), 266(25).

参考例30

 間攪拌した。パラジウムー炭素触媒を遮別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル= $10/1\sim6/4$)を用いて精製することにより、7-メトキシー8-ペンチルオキシキノリンー3-カルバミン酸(74.6mg、83%)を黄色結晶として得た。

 $^{\dagger}H - NMR (DMSO - d_6) \delta : 9.32(1H, s), 8.70(1H, s),$

7. 80(1H, d, J=4.52Hz), 7. 54(1H, d, J=4.52Hz), 4. 16(2H, t, J=6.53Hz),

3. 95(3H, s), 1. 83-1. 68(2H, m), 1. 57-1. 30(4H, m), 0. 90(3H, t, J=7. 18Hz). FABMS (m/z): 290[M+ H+] (100), 258(35), 220(60).

参考例31

3 - ブロモー4 - メトキシベンズアルデヒド(15g、70mmol)、tーブタノール(140ml)、2 - メチルー2 - ブテン(50ml、469mmol)を混合し、この溶液に亜塩素酸ナトリウム(10.42g、91mmol)、リン酸二水素ナトリウム二水和物(14.2g、91mmol)および水(70ml)を混合して調製した溶液を滴下し、室温で16時間攪拌した。1N水酸化ナトリウム水溶液(50ml)を加えてtーブタノールを減圧留去した後に、濃塩酸を加えて酸性にし、析出した結晶を濾取しヘキサンで洗浄した。得られた結晶を酢酸エチル(200ml)に溶かし、この溶液を、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮することにより3-ブロモー4-メトキシ安息香酸(10.5g、65%)を無色結晶として得た。

「H-NMR (CDC13) δ: 12.9(1H, bs), 8.06(1H, s), 7.94(1H, d, J=8.5Hz), 7.20(1H, d, J=8.5Hz), 3.93(3H, s). FABMS (m/z): 232[M+H+] (800), 233(90), 231(100). 参考例 3 2

3 - プロモー4 - メトキシ安息香酸 (8.75g、37.9 mmol)、トルエン (80 ml)、酢酸エチル (20 ml)、塩化メチレン (20 ml) および DMF 1 滴を混合し、この溶液に塩化チオニル (6.5 ml、90 mmol)を 加えて70℃で0.5時間攪拌した。反応溶液を減圧濃縮した後にトルエンを加

え、さらに減圧濃縮して得られた残渣に塩化メチレン(160m1)を加えてこの溶液を0°Cに冷却した。2-アミノー2-メチルー1-プロパノール(7.64m1、80mm01)を滴下し、室温で14時間攪拌した後、析出した結晶を遮別後、減圧濃縮して得られた残渣を酢酸エチル(200m1)を加えて希釈し、この溶液を1 N塩酸(50m1)で洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮して得られた残渣と塩化メチレン(150m1)を混合し、氷冷下塩化チオニル(10.9m1、150mmo1)を加えて室温で2時間攪拌した。この反応溶液に、水(13m1)および50%水酸化ナトリウム水溶液(40m1)を氷冷下順次加え水層を酢酸エチル(100m1)で3回抽出した。有機層を合わせて飽和食塩水(100m1)で2回洗浄し、この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮することにより得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1~1/2)を用いて精製することにより、2-(3-ブロモー4-メトキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール(7.10g、66%)を無色油状物質として得た。

'H-NMR (CDCl₃) δ: 8.15(1H, s), 7.85(1H, d, J=8.5Hz), 6.90(1H, d, J=8.5Hz), 4.09(2H, s), 3.93(3H, s), 1.37(6H, s). FABMS (m/z): 285[M+H+] (200), 286(90), 284(100). 参考例 3 3

2-(3-ブロモ-4-メトキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール(2.1g、7.4mmol)とTHF(15ml)を混合し、この溶液を-78℃に冷却した後、n-ブチルリチウムのヘキサン溶液(1.6M)を4.75ml(7.6mmol)加え2時間攪拌した。DMF(1.16ml、15mmol)を加えて20分間攪拌した後、水(20ml)を加えて反応停止、水層を酢酸エチル(20ml)で2回抽出、有機層を合わせて飽和食塩水(30ml)で洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサ

ン/酢酸エチル= $3/1\sim1/3$)を用いて精製することにより、5-(4,4) ージメチルー 4 、5-ジヒドロオキサゾールー 2-イル) -2-メトキシベンズアルデヒド (0.71g,41%) を無色透明結晶として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 8.36(1H, d, J=2.3Hz),

- 8.15(1H, dd, J=8.8, 2.3Hz), 7.01(1H, d, J=8.8Hz), 4.09(2H, s),
- 3.97(3H, s), 1.37(6H, s).

参考例34

ペンチルトリフェニルホスホニウムブロミド(1. 17g、2.83 mmol)とエーテル(5 ml)を混合し、この溶液にn ーブチルリチウムのヘキサン溶液(1.6 M)を1.77 ml(2.83 mmol)加え室温で2時間攪拌した。この溶液に5 ー(4,4 ージメチルー4,5 ージヒドロオキサゾールー2ーイル)-2 ーメトキシベンズアルデヒド(600.8 mg、2.58 mmol)の THF溶液(3 ml)を加えて1.5時間攪拌した後、水(5 ml)を加えて反応停止、水層を酢酸エチル(5 ml)で3 回抽出、有機層を合わせて飽和食塩水(20 ml)で2 回洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2 / l)を用いて精製することにより、2 ー〔3 ー(1 ーヘキセニル)-4 ーメトキシフェニル〕-4,4 ージメチル-4,5 ージヒドロオキサゾール(583.3 mg、79%)を幾何異性体比1:1 の混合物(無色油状物質)として得た。

¹H-NMR (CDC1₃)

E-isomer

 δ : 7.99(1H, s), 7.75(1H, d, J=8.4Hz), 6.87(1H, d, J=8.4Hz),

6. 66(1H, d, J=15.9Hz), 6. 32(1H, dt, J=15.9, 6. 9Hz),

4.08(2H, s), 3.87(3H, s), 2.28-2.18(2H, m),

1.51-1.26(10H, m, involving a singlet at 1.37), 0.87(3H, t, J=7.2Hz).

Z - isomer

 δ : 7.83(1H, d, J=8.4Hz), 7.77(1H, s), 6.84(1H, d, J=8.4Hz),

6.44(1H. d. J=11.7Hz), 5.75(1H. dt. J=11.7, 7.26Hz), 4.08(2H. s),

3. 86(3H, s), 2. 30-2.21(2H, m), 1. 51-1.30(4H, m), 0. 92(3H, t, J=7.5Hz).

参考例35

2-〔3-(1-ヘキセニル)-4-メトキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール(583mg、2.03mmol)に6N塩酸(20ml)を加え4時間加熱還流した。この溶液に飽和食塩水(30ml)を加えて水層を酢酸エチル(50ml)で3回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、3-(1-ヘキセニル)-4-メトキシ安息香酸(164.3mg、35%)を幾何異性体比1:1の混合物(無色結晶)として得た。

'H-NMR (CDCl₃)

E-isomer

 δ : 8.17(1H, d, J=2.13Hz), 7.95(1H, dd, J=8.31, 2.13Hz),

6. 92(1H, d, J=8.31Hz), 6. 67(1H, d, J=16.0Hz),

6. 32(1H, dt, J=16.0, 6.95Hz), 3.92(3H, s), 2.30-2.21(2H, m),

1.51-1.30(4H, m), 0.89(3H, t, J=7.18Hz).

Z - isomer

 δ : 8.02(1H, dd, J=8.66, 2.18Hz), 8.00(1H, d, J=2.13Hz),

6.89(1H, d, J=8.66Hz), 6.47(1H, d, J=11.6Hz),

5. 79(1H, dt, J=11.6, 7.36Hz), 3.91(3H, s), 2.30-2.21(2H, m),

1. 51-1.30(4H, m), 0. 93(3H, t, J=7.28Hz).

参考例36

 触媒を濾別後、減圧濃縮して得られた残渣をヘキサンで洗浄して精製することにより、3-ヘキシルー4-メトキシ安息香酸(1 1 6 m g、7 2 %)を無色結晶として得た。

¹H-NMR (CDCl₃) δ: 7.97(1H, d, J=8.63Hz), 7.88(1H, s), 6.88(1H, d, J=8.63Hz), 3.89(3H, s), 2.63(2H, t, J=7.72Hz), 1.67-1.50(2H, m), 1.42-1.21(6H, m), 0.89(3H, t, J=6.88Hz). FABMS (m/z): 237[M+H+] (100), 236(90), 219(80). 参考例 3.7

 $^{1}H - NMR$ (CDC1₃) δ : 7.88(1H, dd, J=8.55, 2.20Hz),

- 7. 82(1H, d, J=2.20Hz), 6. 84(1H, d, J=8.55Hz), 3. 90(3H, s), 3. 87(3H, s),
- 2.61(2H, t, J=7.74Hz), 1.65-1.50(2H, m), 1.42-1.24(4H, m),
- 0.88(3H, t, J=6.89Hz).

FABMS (m/z): $251[M^+ H^+]$ (100), 219(45), 179(45).

参考例38

アルゴン気流下3-ヘキシル-4-メトキシ安息香酸メチルエステル(93.2mg、0.372mmol)とTHF(2ml)を混合し、この溶液に氷冷下LAH(19mg、0.5mmol)を加えて1時間攪拌した。この反応溶液に水(0.019ml)、1N水酸化ナトリウム水溶液(0.019ml)および水(0.06ml)を順次滴下し、エーテル(20ml)を加えて1時間激しく

攪拌した後、無機塩を遮別後減圧濃縮することにより(3-ヘキシル-4-メトキシフェニル)メタノールの粗生成物を得た。このものを精製することなく次の 反応に用いた。

参考例39

アルゴン気流下(3-ヘキシルー4-メトキシフェニル)メタノールの粗生成物とDMSO(1.5m1)およびトリエチルアミン(0.46m1、3.3mmo1)を混合し、この溶液に氷冷下、三酸化硫黄ーピリジン複合体(159mg、1mmo1)を加えた後室温で1時間攪拌した。この反応溶液を水(20m1)に注いで反応を停止し、水層を酢酸エチル(20m1)で3回抽出した。有機層を2N塩酸(<math>20m1)、水(20m1) および飽和食塩水(30m1) で順次洗浄し、この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮することにより得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1)を用いて精製することにより、3-ヘキシルー4-メトキシベンズアルデヒド(75.4mg、2 steps 92%)を無色油状物質として得た。「1-NMR(1-DC 1)。1-0 1-1 1-0 1-1 1-0 1-1 1-2 1-3 1-3 1-4 1-4 1-4 1-5

参考例 4 0

 $3- \text{N}+ \text{N} + \text{N$

 $^{1}H - NMR$ (CDC1₃) δ : 7.64(1H, d, J=15.6Hz),

- 7. 34(1H, d, J=8.4Hz), 7. 32(1H, s), 6. 93(1H, d, J=8.4Hz),
- 6.30(1H, d, J=15.6Hz), 3.85(3H, s), 3.79(3H, s), 2.59(2H, t, J=7.7Hz).
- 1.64-1.50(2H, m), 1.42-1.21(6H, m), 0.97-0.83(3H, m)

FABMS (m/z): 277[M⁺ H +] (60), 276(100), 245(60).

参考例 4 1

 $3-(3-\Lambda+\nu)-4-\lambda+\nu$ フェニル)桂皮酸メチルエステル(80mg、0.29mmol)、エタノール(1ml)および1N水酸化ナトリウム水溶液(1ml)を混合し、この溶液を1.5時間加熱還流した。エタノールを減圧留去した後、濃塩酸を加えて溶液を酸性にし、酢酸エチル(5ml)を加えて析出した結晶を溶解させて有機層を分離した後、水層を酢酸エチル(5ml)で2回抽出、有機層を合わせて飽和食塩水(8ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルから再結晶して $3-(3-\Lambda+\nu)-4-\lambda+\nu$ 建皮酸(58mg、76%)を無色結晶として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 7.73(1H, d, J=15.9Hz).

- 7. 37(1H, d, J=8.1Hz), 7. 35(1H, s), 6. 84(1H, d, J=8.1Hz).
- 6.56(1H, d, J=15.9Hz), 2.60(2H, t, J=8.0Hz), 1.73-1.50(2H, m),
- 1. 43-1.22(6H, m), 0. 89(3H, t, J=6.6Hz).

FABMS (m/z): 263[M⁺ H ⁺] (60), 262(100), 191(40).

参考例 4 2

プロモアセチルプロミド (7. 73g、0.0383mol、1.0eq)を 二硫化炭素 (35ml)に溶解し、氷塩で冷却した後に無水塩化アルミニウム (10.2g、0.077mol、2.0eq)、2ーペンチルオキシフェノール (6.9g、0.0383mol、1.0eq)を順次加え、1時間攪拌した。 更に室温で4時間攪拌した後に氷冷下、水 (10ml)、希塩酸 (10ml)を 注意深く加えた。この反応溶液をエーテル (10ml)で2回抽出した後、有機 層をあわせて飽和食塩水 (30ml)で洗浄し、無水硫酸ナトリウムで乾燥した。 乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー($n-\Lambda++\nu$) 酢酸エチル=5/1)を用いて精製することにより、 $1-(4-\nu)$ ヒドロキシー $3-\Lambda$ ンチルオキシフェニル) $-2-\pi$ ロモエタノン(6.58g 、57.0%)を得た。

 1 H - N M R (C D C $_{13}$) δ : 7.55(1H, d, J=8.1Hz), 7.54(1H, s), 6.97(2H, d, J=8.1Hz), 6.19(1H, s), 4.40(2H, s), 4.12(2H, t, J=6.6Hz), 1.9-1.8(2H, m), 1.5-1.4(4H, m), 0.94(3H, t, J=7.0Hz). FABMS (m/z): $302[M^{+}$ H $^{+}$] (80), 301(85).

参考例 4 3

水酸化ナトリウム(680mg)、水(2m1)、アンチホルミン(34m1)の溶液を55℃まで昇温し、1-(4-l) にロキシー3ーペンチルオキシフェニル)-2- プロモエタノン(3.01g、0.01mol、1.0eq)を加え、60℃~70℃で40分間攪拌した。これにチオ硫酸ナトリウム(1.2g)の水溶液(10m1)を加え、室温まで冷却した後に濃塩酸(5m1)を加えてpHを5~6にした。この反応溶液に、水(50m1)を加え、酢酸エチル(100m1)で2回抽出した後、有機層をあわせて飽和食塩水(200m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を適別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル/酢酸=2/1/0.01)を用いて精製することにより、4-l にキシー3-ペンチルオキシ安息香酸(1.24g、55.3%)を得た。

'H-NMR (CDCl₃) δ: 8.0-6.8(3H, m), 6.3(1H, bs),
4.2-4.0(2H, m), 2.0-1.8(2H, m), 1.6-1.4(4H, m), 0.9(3H, t, J=7.5Hz).
FABMS (m/z): 225[M+H+] (80), 207(50).
参考例 4 4

3-ヒドロキシー4-メトキシ安息香酸(9.6g、0.057mol)をDMF(90ml)に溶解し、この溶液に1-ブロモペンタン(25.9g、0.17mol、3.0eq)と無水炭酸カリウム(47.4g、0.34mol、

 $^{1}H - NMR$ (CDCl₃) δ : 7.7(1H, dd, J=9, 3H₂),

7. 6(1H, d, J=3Hz), 6. 9(1H, d, J=9Hz), 4. 3(2H, t, J=9Hz),

4.1(2H, t, J=8Hz), 3.9(3H, s), 2.0-1.7(4H, m), 1.5-1.3(8H, m),

0.9(6H, t, J=8.0Hz).

FABMS (m/z): 309[M⁺ H ⁺] (80), 308(100), 239(42).

IR (Neat, cm⁻¹): 2956, 1712.

元素分析: C18H28O4

理論値 C 70.10, H 9.15

分析値 C 70.19, H 9.25

参考例 4 5

ペンチル 4-メトキシー3-ペンチルオキシベンゾエート(17.4g、0.056mol)をメタノール(85ml)に溶解し、1N水酸化ナトリウム水溶液(85ml、0.085mol、1.5eq)を加え、1.5時間加熱還流・した。この反応溶液を室温まで冷却した後n-ヘキサン(100ml)で洗浄し、水層に氷冷下10%塩酸水溶液(約120ml)を加え酸性にした。これを酢酸エチル(220ml)で2回抽出し、有機層をあわせて飽和食塩水(400ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルより再結晶することにより精製し、4-メトキシー3-ペンチルオキシ安息香酸(10.7g、79.6%)を無色結晶として得た。

融点:124.6~125.0℃

 $^{1}H - NMR$ (CDCl₃) δ : 7.76(1H, d, J=2.1Hz),

7.60(1H, dd, J=8.6, 2.1Hz), 6.92(1H, d, J=8.6Hz), 4.08(2H, t, J=7.0Hz),

4.05(3H, s), 2.1-1.8(2H, m), 1.6-1.3(4H, m), 0.94(3H, t, J=7.2Hz).

FABMS (m/z): 239[M⁺ H ⁺] (80), 238(100), 168(57).

IR (KBr. cm^{-1}): 3432, 2951, 1678.

元素分析: C13 H18 O4

理論値 C 65.53, H 7.61

分析值 C 65.65, H 7.74

参考例 4 6

3-ヒドロキシー4-メトキシ桂皮酸(9.7g、0.050mol、1.0eq)をDMF(90ml)に溶解し、この溶液に1-プロモペンタン(22.7g、0.150mol、3.0eq)と無水炭酸カリウム(41.5g、0.30mol、6.0eq)を順次加えた後、90で3時間加熱攪拌した。この反応溶液を室温まで冷却し、無水炭酸カリウムを遮別した後、遮液に水(200ml)を加え、酢酸エチル(200ml)で2回抽出した。有機層をあわせて飽和食塩水(300ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル= $15/1\sim10/1$)を用いて精製することにより、ペンチル4-メトキシー3-ペンチルオキシシンナメート(18.2g、100%)を無色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 7.62(1H, d, J=15.0Hz),

7.08(1H, dd, J=10.3, 1.9Hz), 7.06(1H, d, J=1.9Hz),

6.86(1H. d. J=10.3Hz), 6.30(1H, d. J=15.0Hz), 4.19(2H, t. J=9.0Hz),

4.03(2H. t. J=6.0Hz), 3.89(3H. s), 1.9-1.6(4H. m), 1.5-1.3(8H. m),

1.0-0.9(6H, m).

FABMS (m/z): 335[M⁺ H ⁺] (55), 334(100), 247(62).

IR (Neat, cm^{-1}): 2954, 1710.

元素分析:С20Н30О(

理論値 C 71.82, H 9.04

分析值 C 71.99, H 9.28

参考例 4 7

ペンチル 4-メトキシー3-ペンチルオキシシンナメート(18.0g、0.050mol)をメタノール(75ml)に溶解し、1N水酸化ナトリウム水溶液(75ml、0.075mol、1.5eq)を加え、1時間加熱還流した。この反応溶液を室温まで冷却した後、氷冷下、10%塩酸水溶液(約100ml)を加え酸性にした。これを酢酸エチル(150ml)で2回抽出し、有機層をあわせて飽和食塩水(300ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルより再結晶することにより精製し、4-メトキシー3-ペンチルオキシ桂皮酸(12.2g、93%)を無色結晶として得た。

融点:150.0~150.3℃

 $^{1}H - NMR$ (CDCl₃) δ : 7.73(1H, d, J=16.0Hz),

7.13(1H, dd, J=8.1, 1.9Hz), 7.09(1H, d, J=1.9Hz), 6.88(1H, d, J=8.1Hz),

6. 31(1H, d, J=16.0Hz), 4. 04(2H, t, J=6.8Hz), 3. 91(3H, s),

2.1-1.8(2H, m), 1.5-1.3(4H, m), 0.94(3H, t, J=7.0Hz).

FABMS (m/z): $265[M^+H^+]$ (62), 264(100), 247(40).

IR (KBr, cm^{-1}): 2934, 1679.

元素分析: C15H20O4

理論値 C 68.16, H 7.63

分析值 C 68.20, H 7.78

参考例 4 8

3, 4-ジヒドロキシ安息香酸(462mg、3mmol)をDMF(10m 1)に溶解し、この溶液に炭酸カリウム(3.73g、27mmol、9eq) と1-プロモペンタン($1.70\,m1$ 、 $13.5\,mmo1$ 、 $4.5\,eq$)を順次室温下で加え、 $110\,^{\circ}$ で24時間攪拌した。この反応混合物を濾過し残渣の炭酸カリウムを酢酸エチル($50\,m1$)で洗浄した。濾液を水($15\,m1 \times 3$)および飽和食塩水($15\,m1$)で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(ヘキサン/酢酸エチル=95/5)を用いて精製することにより、3,4-5ペンチルオキシ安息香酸ペンチル($912\,mg$ 、83%)を得た。

 1 H - NMR (CDCl₃, 300MHz) δ : 7.66(1H, d, J=8.4, 1.9Hz), 7.57(1H, d, J=1.9Hz), 6.89(1H, d, J=8.4Hz), 4.31(2H, t, J=6.7Hz), 4.07(4H, 2t, J=6.6Hz), 1.90-1.76(6H, m), 1.52-1.38(12H, m),

FABMS (+) (m/z): 465[M + 1] (61), 364[M](100), 295(45), 276(42).

参考例 4 9

0.98-0.94(9H, m).

3, 4-i%ペンチルオキシ安息香酸ペンチル(911mg、2.50mmo1)をメタノール(15.0m1)に溶解し、この溶液に1N水酸化カリウム水溶液(7.5m1、7.5mmo1、3eq)を加え、5時間還流攪拌した。この反応混合物に<math>3N塩酸水溶液を加え酸性(<math>pH<2)とした後、クロロホルム($20m1\times3$)で抽出し、有機層を飽和食塩水(20m1)で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して無色固体を得た。このものを酢酸エチルーへキサンから再結晶し3, 4-i%ンチルオキシ安息香酸(512mg、70%)を無色結晶として得た。

 $^{1}H - NMR$ (CDCl₃, 300MHz) δ : 7.71(1H, dd, J=8.4, 2.0Hz), 7.58(1H, d, J=2.0Hz), 6.88(1H, d, J=8.4Hz), 4.06(2H, t, J=6.6Hz), 4.04(2H, t, J=6.6Hz), 1.87-1.79(4H, m), 1.49-1.35(8H, m), 0.95-0.90(6H, m).

FABMS(+)(m/z): 295[M+1](52),

294[M](80), 277(29), 224(32).

参考例 5 0

3ーヒドロキシー4ーニトロ安息香酸(5g、27.4 mmol)、DMF(40ml)、炭酸カリウム(13.8g、100mmol)およびペンチルブロミド(8.7ml、70mmol)を混合し、この溶液を100℃で1.5時間攪拌した。反応溶液を濾過して無機塩を濾別し、DMFを減圧留去した。得られた残渣に酢酸エチル(100ml)を加えて飽和食塩水(30ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を滤別後、減圧濃縮して得られた残渣にエタノール(150ml)および10%パラジウムー炭素触媒(0.5g)を加えて水素気流下室温で5.5時間攪拌した。パラジウムー炭素触媒を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1)を用いて精製することにより4ーアミノー3ーペンチルオキシ安息香酸ペンチルエステル(5.72g、2 steps70%)を淡黄色油状物質として得た。

 1 H - NMR (CDC1 $_{3}$) δ : 7.53(1H, dd, J=8.2, 1.7Hz), 7.44(1H, d, J=1.7Hz), 6.66(1H, d, J=8.2Hz), 4.26(2H, t, J=6.7Hz),

4.20(2H, bs), 4.05(2H, t, J=6.5Hz), 1.86-1.65(4H, m), 1.50-1.30(8H, m), 1.0-0.85(6H, m).

FABMS (m/z) : 294[M⁺ H ⁺] (80), 224(50), 206(50).

参考例51

4ーアミノー3ーペンチルオキシ安息香酸ペンチルエステル(1g、3.41 mmo1)、アセトン(5 m1)、炭酸カリウム(0.83g、6 mmo1)およびヨウ化メチル(4 m1)を混合し、この溶液を 9 時間加熱還流した。反応溶液を濾過して無機塩を濾別し、アセトンを減圧留去して得られた残渣にエタノール(10 m1)および1N水酸化ナトリウム水溶液(10 m1)を加えて2.5時間加熱還流した後エタノールを減圧留去した。濃塩酸を加えてこの溶液を酸性にした後、水層を酢酸エチル(20 m1)で3回抽出、有機層を合わせて飽和食

塩水(20m1)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)を用いて精製することにより $4-ジメチルアミノ-3-ペンチルオキシ安息香酸(146mg、2 steps17%)を淡黄色油状物質として得た。 <math>^{1}$ H-NMR(CDC13) δ : 7.68(1H, dd, J=8.1, 1.5H2),

7. 53(1H, d, J=1.8Hz), 6. 85(1H, d, J=8.1Hz), 4. 06(2H, t, J=6.8Hz).

2. 93(6H, s), 1. 93-1. 80(2H, m), 1. 50-1. 30(4H, m), 0. 94(3H, t, J=7.2Hz).

 $FABMS (m/z) : 252[M^+H^+] (100), 181(30).$

参考例 5 2

 1 H - NMR (CDC 1₃) δ : 7.48(1H, dd, J=8.3, 1.9Hz),

7. 38(1H, d, J=2.1Hz), 6. 79(1H, d, J=8.3Hz), 4. 26(2H, t, J=6.7Hz).

4.09(3H, s), 3.86(2H, bs), 1.78-1.66(2H, m), 1.47-1.29(4H, m).

0.93(3H, t, J=7.1Hz).

 $FABMS (m/z) : 238[M^+ H^+] (60), 237(100).$

参考例 5 3

3-アミノー4-メトキシ安息香酸(1.53g、6.45mmol)、DM

F(15m1)、炭酸カリウム(2.07g、15mmo1)およびペンチルブロミド(1.86m1、15mmo1)を混合し、この溶液を100℃で10.5時間攪拌した。反応溶液を濾過して無機塩を濾別し、DMFを減圧留去して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1)を用いて精製することにより4-メトキシー3-ペンチルアミノ安息香酸ペンチルエステル(1.32g、67%)および3-ジメチルアミノー4-メトキシ安息香酸ペンチルエステル(334mg、14%)をそれぞれ無色油状物質として得た。

4-メトキシー3-ペンチルアミノ安息香酸ペンチルエステル

 $^{1}H - NMR$ (CDCl₃) δ : 7.41(1H, dd, J=8.1, 2.1Hz),

7. 24(1H, d, J=2.1Hz), 6. 75(1H, d, J=8.1Hz), 4. 27(2H, t, J=6.6Hz),

4.20(1H, bs), 3.90(3H, s), 3.17(2H, t, J=7.2Hz), 1.82-1.62(4H, m),

1.5-1.3(8H, m), 0.93(3H, t, J=7.2Hz).

FABMS (m/z): $308[M^+ H^+]$ (50), 307(100), 250(50).

3-ジメチルアミノー4-メトキシ安息香酸ペンチルエステル

 $^{1}H-NMR$ (CDC13) δ : 7.67(1H, dd, J=8.5, 2.1Hz),

7. 66(1H, d, J=2.0Hz), 6.84(1H, d, J=8.5Hz), 4.28(2H, t, J=6.7Hz),

3. 89(3H, s), 3. 08(4H, t, J=7.7Hz), 1. 80-1.70(2H, m), 1. 5-1.18(16H, m),

0.93(3H, t, J=7.1Hz), 0.86(3H, t, J=7.0Hz).

FABMS (m/z): 378[M⁺ H ⁺] (100), 320(100), 264(40).

参考例 5 4

4-メトキシー3-ペンチルアミノ安息香酸ペンチルエステル(500mg、

1. 63mmol)にエタノール(3ml)および1N水酸化ナトリウム水溶液(3ml)を加えて2時間加熱還流した後エタノールを減圧留去、濃塩酸を加えてこの溶液を中和した後、水層を酢酸エチル(5ml)で3回抽出、有機層を合わせて飽和食塩水(5ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた粗結晶をヘキサンで洗浄して精製するこ

とにより 4- メトキシー 3-ペンチルアミノ安息香酸 (3.5.6 mg、7.1%)を 無色結晶として得た。

 $^{1}H - NMR$ (CDC 1₃) δ : 7.51(1H, dd, J=8.1, 2.1Hz),

7. 29(1H, d, J=2.1Hz), 6. 78(1H, d, J=8.1Hz), 3. 92(3H, s),

3. 18(2H, t, J=7.2Hz), 1.75-1.6(2H, m), 1.5-1.3(4H, m),

0.93(3H, t, J=6.5Hz).

FABMS (m/z): 238[M⁺ H ⁺] (80), 180(70).

参考例55

- 8 C - 1 . NO E M C J WINC C C CA

融点:67.9~68.2℃

 $^{1}H - NMR$ (CDC1₃) δ : 7.5-7.3(5H, m), 7.23(2H, d, J=8.7Hz),

6.97(2H, d, $J=8.7H_2$), 5.06(2H, s), 3.67(2H, s).

 $FABMS (m/z) : 223[M^+ H^+] (40).$

I R (KBr, cm^{-1}): 3438, 2247, 1615, 1514, 1247, 1014.

元素分析:ClsHlsNO4

理論値 C 80.69, H 5.87, N 6.27

分析値 C 80.48, H 5.83, N 6.33

参考例 5 6

LAH (2. 82g、0. 15mol、1. 5eq) をTHF (50ml) に

溶解し、この溶液に氷冷下で、4-ペンジルオキシフェニルアセトニトリル(11.1g、0.05mol、1.0eq)のTHF溶液(<math>50ml)を滴下した。滴下終了後、1.5時間加熱還流させた。反応溶液を室温まで冷却した後、氷冷下、飽和硫酸ナトリウム水溶液(約40ml)を加え、セライト濾過の後、滤液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=10/1)を用いて精製することにより、2-(4-ペンジルオキシフェニル)エチルアミン(<math>2.02g、17.9%)を無色針状晶として得た。融点: $58.7\sim59.6$ ℃

 $^{1}H - NMR$ (CDCl₃) δ : 7.5-7.3(5H, m), 7.11(2H, d, J=8.6Hz),

- 6. 92(2H, d, J=8.6Hz), 5. 04(2H, s), 2. 93(2H, t, J=6.8Hz),
- 2. 69(2H, t, J=6.8Hz), 1. 57(2H, bs).

 $FABMS (m/z) : 228[M^+H^+] (40).$

IR (KBr, cm⁻¹): 3360, 2864, 1611, 1513, 1248.

参考例 5 7

3-ヒドロキシフェニルアセトニトリル(834 mg、6.26 mmo 1)を DMF(10 m 1)に溶解し、この溶液にベンジルブロミド(0.82 m 1.6. 89 mmo 1、1.1 eq)と無水炭酸カリウム(1.30 g、9.40 mm o 1、1.5 eq)を順次加えた後、90 \mathbb{C} で1.5 時間加熱攪拌した。この反応溶液を室温まで冷却し、水(20 m 1)を加え、酢酸エチル(40 m 1)で2回抽出した。有機層をあわせて飽和食塩水(80 m 1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(10 を開かることにより、(10 m 11 を用いて精製することにより、(11 m 12 m 13 m 14 m 15 m 15 m 16 m 17 を得た。

 1 H - NMR (CDCl₃) δ : 7.5-7.3(6H, m), 7.0-6.9(3H, m), 5.09(2H, s), 3.72(2H, s).

参考例 5 8

LAH (0. 615 g、0. 0162 mol、3. 0 e q)をTHF (20 m l)に溶解し、この溶液に氷冷下で、(3-ベンジルオキシフェニル)アセトニトリル (1. 2 g、0. 0054 mol、1. 0 e q)のTHF溶液 (20 m l)を滴下した。滴下終了後、3時間加熱還流させた。反応溶液を室温まで冷却した後、氷冷下、飽和硫酸ナトリウム水溶液(約30~40 m l)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=10/1)を用いて精製することにより、2-(3-ベンジルオキシフェニル)エチルアミン (0. 434 g、35. 3%)を淡黄色アモルファスとして得た。

 1 H-NMR (CDC1 $_{3}$) δ : 7.5-7.2(6H, m), 6.8-6.7(3H, m), 5.09(2H, s), 2.95(2H, t, J=7.0Hz), 2.70(2H, t, J=7.0Hz), 2.01(2H, bs). FABMS (m/z) : 228[M $^{+}$ H $^{+}$] (90).

参考例 5 9

2-(3-ベンジルオキシフェニル) エチルアミン(434mg、1.91mmol、1.0eq)のTHF(10ml)溶液に10%パラジウムー炭素触媒(水分含量50%)(86mg)を加えた後、水素気流下、3時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、2-(3-ヒドロキシフェニル) エチルアミン(250mg、95.5%)を得た。

 $^{1}H-NMR$ (CDC1₃) δ : 8.26(1H, bs), 7.1-6.9(1H, m),

6.7-6.6(1H, m), 6.6-6.4(2H, m), 2.7-2.6(2H, m), 2.6-2.5(2H, m),

3.5(2H. bs).

 $FABMS (m/z) : 138[M^+ H^+] (30).$

参考例60

(2-ヒドロキシフェニル) アセトニトリル (1.01g、0.0076mo 1)をDMF (10ml) に溶解し、この溶液にベンジルブロミド (0.90m 1、0.0076mol、1.0eq) と無水炭酸カリウム (2.1g、0.0 15mol、3.0eq) を順次加えた後、90℃で1.5時間加熱攪拌した。

LAH (1.04g、0.0273mol、3.0eq)をTHF (25ml)に溶解し、この溶液に氷冷下で、(2-ベンジルオキシフェニル)アセトニトリル(2.04g、0.0091mol、1.0eq)のTHF溶液(25ml)を滴下した。滴下終了後、室温で15分攪拌後、2時間加熱還流させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約30~40ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=5/1)を用いて精製することにより、2-(2-ベンジルオキシフェニル)エチルアミン(0.415g、20.0%)を淡黄色アモルファスとして得た。

 $FABMS (m/z) : 228[M^+H^+] (100).$

参考例 6 2

2-(2-ベンジルオキシフェニル) エチルアミン(415 mg、1.826 mmol、1.0eq)のTHF(10ml)溶液に10%パラジウム-炭素触媒(水分含量50%)(42 mg)を加えた後、水素気流下、2時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、2-(2-ヒドロキシフェニル) エチルアミン(230 mg、91.8%)を得た。

参考例 6 3

3-(4-ヒドロキシフェニル)プロピオニトリル (1.47g、0.01m ol)をDMF (24ml)に溶解し、この溶液にベンジルブロミド (1.31 ml、0.01lmol、1.1eq)と無水炭酸カリウム (4.15g、0.030mol、3.0eq)を順次加えた後、90℃で3時間加熱攪拌した。この反応溶液を室温まで冷却し、水 (100ml)を加え、酢酸エチル (100m

1)で2回抽出した。有機層をあわせて飽和食塩水(200m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、3-(4-ベンジルオキシフェニル)プロピオニトリル(2.39g、100%)を無色固体として得た。

参考例 6 4

LAH (570 mg、0.015 mol、1.5 eq)をTHF (30 ml) に溶解し、この溶液に氷冷下で、3-(4-ベンジルオキシフェニル) プロピオニトリル (2.37g、0.01 mol、1.0 eq)のTHF溶液 (50 ml)を滴下した。滴下終了後、室温で2時間攪拌させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約30~40 ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=10/1~5/1)を用いて精製することにより、3-(4-ベンジルオキシフェニル) プロピルアミン (1.2g、49.7%)を淡黄色アモルファスとして得た。

 1 H - NMR (CDCl₃) δ : 7.4-7.3(5H, m), 7.10(2H, d, J=8.6Hz), 6.90(2H, d, J=8.6Hz), 5.04(2H, s), 3.48(2H, s), 2.72(2H, d, J=7.1Hz), 2.60(2H, t, J=7.7Hz), 1.8-1.7(2H, m).

 $FABMS (m/z) : 242[M^+ H^+] (100).$

参考例 6 5

3-(4-ベンジルオキシフェニル)プロピルアミン(620mg、2.57mmol、1.0eq)のTHF(10ml)溶液に10%パラジウム-炭素触媒(水分含量50%)(120mg)を加えた後、水素気流下、2時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、3-(4-ヒドロキシフェニル)プロピルアミン(354mg、91.1%)を得た。

 1 H-NMR (CDC1₃) δ : 7.0(2H, d, J=9Hz), 6.7(2H, d, J=9Hz), 3.0(3H, bs), 2.7(2H, t, J=7.5Hz), 2.6(2H, t, J=7.5Hz), 1.8-1.7(2H, m). FABMS (m/z): 152[M+H+] (100).

参考例66

LAH(570mg、0.015mol、1.5eq)をTHF(30ml)に溶解し、この溶液に氷冷下で、4-ベンジルオキシベンゾニトリル(2.09g、0.01mol、1.0eq)のTHF溶液(30ml)を滴下した。滴下終了後、室温まで昇温させた後、3時間加熱還流させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約30~40ml)を加え、セライト濾過の後、濾液を減圧濃縮して4-ベンジルオキシベンジルアミン(2.03g、95.1%)を淡黄色アモルファスとして得た。

 1 H - N M R (C D C $_{13}$) δ : 7.4-7.3(5H, m), 7.22(2H, d, J=8.6Hz), 6.94(2H, d, J=8.6Hz), 5.05(2H, s), 3.80(2H, s), 1.50(2H, s). F A B M S (m/z): 214[M+ H+] (60), 197(100).

参考例67

4-ベンジルオキシベンジルアミン(530 mg、2.485 mmo 1、1.0 eq)のTHF(10 ml)溶液に10%パラジウムー炭素触媒(水分含量50%)(50 mg)を加えた後、水素気流下、3 時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1/1)を用いて精製することにより、4-ヒドロキシベンジルアミン(260 mg、85.0%)を得た。

 $^{1}H-NMR$ (CDC1₃) δ : 7.1(2H, d, J=9Hz), 6.77(2H, d, J=9Hz), 3.8(2H, s), 2.9(3H, bs).

 $FABMS (m/z) : 124[M^+H^+] (80).$

参考例 6 8

2-(4-E)ドロキシフェニル)エチルアミン(1.37g、10.0mmo 1、1.0eq)を酢酸(10ml)に溶解し、二酸化白金触媒(137mg) を加えた後、水素気流下、3kgf/cm²、70℃で5時間攪拌した。反応溶 液をセライト濾過し、触媒をトルエンで洗浄した後、濾液を減圧濃縮して、2-(4-E) ロキシシクロヘキシル)エチルアミン(1.8g)を得た。 'H-NMR (CDCl₃) δ: 8.76(1H, bs), 3.9(0.5H, bs), 3.6-3.5(0.5H, m), 3.0-2.8(4H, m), 2.2-0.8(9H, m). FABMS (m/z): 144[M+H+] (20), 128(100). 参考例 6.9

LAH (1.90g、50mmol)をジエチルエーテル(150ml)に懸濁し、室温下3ーピリジルアセトニトリル(5.91g、50mmol、1.0eq)のジエチルエーテル(150ml)溶液を加えた。室温で14時間攪拌後、この反応溶液に水(1.9ml)、15%水酸化ナトリウム水溶液(1.9ml)および水(5.7ml)を順次加えた。生じた沈殿をセライト濾過しジェチルエーテルで洗浄した後濾液を減圧濃縮した。得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=30/1~クロロホルム/メタノール/トリエチルアミン=8/2/0.1)に付し、2-(3-ピリジル)エチルアミン(2.39g、39%)を無色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ :

- 8.48-8.46(2H, m), 7.55-7.52(1H, m), 7.25-7.16(1H, m),
- 2. 99(2H, t, J=7.5Hz), 2. 76(2H, t, J=7.5Hz).

FABMS (+) (m/z) : 123[M+1] (100).

参考例70

4-ビニルピリジン(5.26m1、50mmo1)と塩化アンモニウム(5.35g、100mmo1、2.0eq)をメタノール(2.5m1)および水(15m1)に溶解し、23時間還流攪拌した。この反応溶液を氷水にあけ、15%水酸化ナトリウム水溶液で強塩基とした後クロロホルム(50m1)で3回抽出した。有機層をあわせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、減圧蒸留することにより、2-(4-ピリジル)エチルアミン(①)(1.80g、30%; 87%/6mmHg)を無色油状物質として得た。また、蒸留残渣をカラムクロマト(クロロホルム/メタノール=<math>30/1~9/1)に付し、ビス〔2-(4-ピリジル)

エチル〕アミン(②)(1.11g、20%)を淡黄色油状物質として得た。

- ①: $^{\dagger}H-NMR$ (CDC1₃, 300MHz) δ :
- 8.53-8.51(2H, m), 7.15-7.13(2H, m), 3.04-2.98(2H, m),
- 2.75(2H, t, J=8.4Hz).
- FABMS (+) (m/z) : 123[M+1] (100).
- $(2): {}^{1}H-NMR (CDCl_{3}, 300MHz) \delta:$
- 8. 47-8.42(4H, m), 7. 11-7.09(4H, m), 2. 95-2.90(4H, m),
- 2.77(4H, t. J=7.1Hz).

FABMS (+) (m/z) : 228[M+1] (100).

参考例71

- ①: $^{\prime}H-NMR$ (CDCl₃, 300MHz) δ :
- 8.56-8.52(4H, m), 7.60(1H, td, J=7.60, 1.80Hz), 7.17(1H, d, J=7.6Hz),
- 7. 16-7.09(1H, m), 3. 12(2H, t, J=6.7Hz), 2. 93(2H, t, J=6.7Hz).
- FABMS (+) (m/z) : 123[M+1] (100), 106(45).
- ②: $^{\dagger}H-NMR$ (CDCl₃, 300MHz) δ :
- 8. 48(2H, d, J=4.8Hz), 7. 57(2H, td, J=7.6, 1. 7Hz), 7. 14(2H, d, J=7.6Hz),
- 7.12-7.08(2H, m), 3.10-2.96(8H, m), 2.41(1H, brs).

FABMS (+) (m/z) : 228[M + 1] (100), 135(80). 参考例 7 2

2-(4-EFD+2)フェニル)エチルアミン(5.0g、0.0364mol、1、1eq)をぎ酸(77ml、2.04mol、56eq)に溶解し、この溶液に無水酢酸(25.4ml、0.27mol、7.4eq)を5~15℃で加えた。室温で3時間攪拌後、この反応溶液に氷冷水(30ml)を加え減圧濃縮した。残渣に水(50ml)を加え、酢酸エチル(50ml)で2回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して2-(4-EFDキシフェニル)エチルーNーホルムアミド(6.6g、100%)を油状性物質として得た。

 $^{1}H-NMR$ (CDC1,) δ : 8.69(1H, s), 8.09(1H, s),

7. 41(2H, d, J=8.7Hz), 6. 60(2H, d, J=8.7Hz), 3. 83(2H, t, J=4.9Hz),

3.51(2H, t, J=4.9Hz).

FABMS (m/z) : 166(100).

参考例73

LAH(2.14g、0.056mol、3eq)をTHF(30ml)に溶解し、この溶液に氷冷下で、2-(4-EFD+2)フェニル)エチルーN-ホルムアミド(3.1g、0.0188mol、1eq)のTHF溶液(30ml)を滴下した。滴下終了後、室温まで昇温させた後、5時間加熱還流させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約10~20ml)を加え、セライト濾過の後、濾液を減圧濃縮して2-(4-EFD+2)ェニル)エチルーN-メチルアミン(2.81g、99.0%)を得た。

 $^{1}H - NMR$ (CDC 1₃) δ : 7.1-6.9(2H, m), 6.7-6.6(2H, m),

4.0(1H, bs), 2.9-2.7(2H, m), 2.7-2.6(2H, m), 2.31(3H, m).

FABMS (m/z) : 152(60), 121(80).

参考例74

(1) 4-メトキシベンズアルデヒド (2g、14.7mmo1) にベンゼン (

 $20 \, \text{m} \, 1)$ および N, N' - ジメチルエチレンジアミン(1. $56 \, \text{m} \, 1$ 、14. $7 \, \text{mmo} \, 1$)を加えて、水を除きながら $5 \, \text{時間加熱還流した後に、ベンゼンを減圧留去することにより } 2-(4-メトキシフェニル)-1, <math>3-$ ジメチルイミダゾリジンの租生成物を得た。

(2) 上記粗生成物(0.5g、2.42mmol)、THF(6ml)およびテトラメチルエチレンジアミン(0.73ml、4.84mmol)を混合し、この溶液を-78 $^{\circ}$ に冷却した後に、n-ブチルリチウム(1.6 Mへキサン溶液、3ml、4.84mmol)を加え、0 $^{\circ}$ で2時間攪拌した。この溶液を-78 $^{\circ}$ に冷却した後、ジーn-アミルジスルフィド(1.07ml、4.84mmol)を加え、室温で11.5時間攪拌した。水(5ml)を加え、水層を酢酸エチル(5ml)で3回抽出した。有機層を合わせて飽和食塩水(5ml)で洗浄した。減圧濃縮して、得られた残渣に10%硫酸水溶液を加えて、2日間攪拌した。水層を酢酸エチル(10ml)で4回抽出し、有機層を合わせて飽和食塩水(5ml)で2回洗浄した。減圧濃縮して、得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1~10/1)を用いて精製することにより4-メトキシ-3-ペンチルチオベンズアルデヒド(437mg、76%)を淡黄色油状物質として得た。

 $^{1}H - NMR (CDC1_{3}, 300MHz) \delta : 9.87(1H, s),$

7. 74(1H, d, J=2.1Hz), 7. 66(1H, dd, J=8.1, 1.8Hz), 6. 95(1H, d, J=8.1Hz),

3. 98(3H, s), 2. 95(2H, t, J=7.4Hz), 1. 62-1. 80(2H, m), 1. 20-1. 55(4H, m),

0.91(3H, t, J=7.2Hz).

 $FABMS (m/z) : 289[M^+H^+](100), 237(70).$

参考例76

イソバニリン(200g、1.314mol)、酢酸(700ml)および濃硫酸(0.2ml)の懸濁液を0℃まで冷却した後に、発煙硝酸(57.2ml、1.38mol)の酢酸溶液(200ml)を30分かけて滴下した。40分間攪拌後、水(400ml)を加え、結晶を濾取することにより3-ヒドロキシ

3-ヒドロキシー4-メトキシー2-ニトロベンズアルデヒドと3-ヒドロキシー4-メトキシー6-ニトロベンズアルデヒドの混合物、およびDMF (700 ml)を混合し、この溶液に炭酸カリウム (136.7g、989 mmol) およびブロモペンタン (122.7ml、989 mmol)を順次加えた。100℃で4時間攪拌した後、反応溶液を濾過し、濾液に水(600 ml) およびヘキサンー酢酸エチル(1:1、600 ml)を加えて分液した。水層をヘキサンー酢酸エチル(1:1、600 ml)を加えて分液した。水層を合わせて無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮し、生成した結晶を濾取することにより4-メトキシー6-ニトロー3-ペンチルオキシベンズアルデヒド(②)(90.1g、44%)を黄色結晶として得た。また、上記結晶を濾取した後の濾液をさらに濃縮することにより4-メトキシー2-ニトロー3-ペンチルオキシベンズアルデヒド(①)(117g、58%)を赤色油状物質として得た。

- ①: ${}^{1}H-NMR$ (CDC13, 300MHz) δ : 9.80(1H, s), 7.64(1H, d, J=8.6Hz), 7.09(1H, d, J=8.6Hz), 4.11(2H, t, J=6.6Hz), 3.99(3H, s), 1.60-1.80(2H, m), 1.28-1.47(4H, m), 0.92(3H, t, J=7.1Hz). FABMS (m/z): 268[M+H+](80), 198(100).
- ②: ${}^{1}H-NMR$ (CDC1₃, 300MHz) δ : 10.4(1H, s), 7.61(1H, s), 7.39(1H, s), 4.16(2H, t, J=6.8Hz), 1.82-1.95(2H, m), 1.30-1.50(4H, m), 0.94(3H, t, J=7.2Hz).

参考例78

4 - メトキシー 2 - ニトロー 3 - ペンチルオキシベンズアルデヒド (70 g)

261.9mmol)、アミド硫酸(76.3g、785.7mmol)およびイソプロパノール(210ml)を混合し、この溶液を水浴で冷却しながら亜塩素酸ナトリウム(38.5g、340.5mmol)水溶液(350ml)を滴下した。20分間攪拌後、酢酸エチル(300ml)を加えて、有機層を分離した。水層を酢酸エチル(200ml)で抽出した。有機層を合わせて飽和食塩水(150ml)で洗浄した。この溶液を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮し、生成した結晶を濾取することにより4-メトキシー2-10-3-ペンチルオキシ安息香酸(59.02g、80%)を淡黄色結晶として得た。

 $^{1}H - NMR$ (CDC1₃, 300MHz) δ : 7.85(1H, d, J=8.8Hz),

- 7. 02(1H, d, J=8.8Hz), 4. 08(2H, t, J=6.7Hz), 3. 98(3H, s),
- 1.95-1.80(2H, m), 1.30-1.45(4H, m), 0.93(3H, t, J=7.0Hz).

FABMS (m/z): 284[M⁺ H ⁺](30), 266(30), 196(100).

参考例79

4-メトキシー2-ニトロー3ーペンチルオキシ安息香酸(26.8g、94.6mmol)とエタノール(350ml)を混合し、この溶液に10%パラジウムー炭素触媒(2.6g)を加えた。水素気流下(3kgf/cm²)、室温で7.5時間攪拌した後に、反応溶液を濾過し、濾液を減圧濃縮した。析出した結晶を濾取することにより2-アミノー4-メトキシー3-ペンチルオキシ安息香酸(22.7g、95%)を灰色結晶として得た。

 $^{1}H-NMR$ (CDCl₃, 300MHz) δ : 7.87(1H, d, J=9.0Hz),

- 6.31(1H, d, J=9.0Hz), 3.94(2H, t, J=6.8Hz), 3.89(3H, s),
- 1.70-1.88(2H, m), 1.30-1.54(4H, m), 0.94(3H, t, J=7.1Hz).

参考例80

3-rミノー4-メトキシ安息香酸ペンチルエステル(0.744g、4.45mmol)、塩化メチレン(15ml)およびジメチルスルフィド(0.33ml、4.50mmol)を混合し、この溶液を-30℃まで冷却した後に、N

ークロロスクシンイミド(601mg、4.5mmol)を加えた。1時間攪拌後、トリエチルアミン(0.627ml、4.5mmol)を加えて、0.5時間加熱還流した。飽和食塩水(0.5ml)を加えて反応を停止した後、反応液を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)を用いて精製することにより3-rミノー4-メトキシー2-メチルチオメチル安息香酸ペンチルエステル(0.83g、82%)を褐色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 7.40(1H, d, J=8.6H₂),

- 6.74(1H, d, J=8.6Hz), 4.40(2H, bs), 4.26(2H, t, J=6.7Hz), 4.22(2H, s),
- 3.90(3H, s), 2.05(3H, s), 1.65-1.80(2H, m), 1.30-1.50(4H, m),
- 0.93(3H, t, J=7.1Hz).

FABMS (m/z): 298[M⁺ H ⁺](10), 297(50), 250(50).

参考例 8 1

3-rミノー4-xトキシー2-xチルチオメチル安息香酸ペンチルエステル(830 mg、2.79 mm o 1)とDMF(4.0 m 1)を混合し、この溶液にカリウム t- プトキシド(470 mg、4.19 mm o 1)およびブロモペンタン(0.62 m 1、5.0 mm o 1)を順次加えた。100 で 1 時間攪拌した後、濾過、濾液を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=15/1)を用いて精製することにより4-xトキシー2-x チルチオメチル-3-x プンチルアミノ安息香酸ペンチルエステル(178 mg、17%)を淡黄色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 7.54(1H, d, J=8.7Hz),

- 6.75(1H, d, J=8.7Hz), 4.27(2H, t, J=6.7Hz), 4.23(2H, s), 3.88(3H, s),
- 3.73(1H, bs), 3.05(2H, t, J=7.1Hz), 2.02(3H, s), 1.70-1.85(2H, m),
- 1.30-1.50(10H, m), 0.83-0.97(6H, m).

参考例82

4-メトキシー2-メチルチオメチルー3-ペンチルアミノ安息香酸ペンチル

参考例 8 3

エステル($173 \, \text{mg}$ 、 $0.47 \, \text{mmol}$)を用い、参考例 $45 \, \text{と同様にしてエステル加水分解を行うことにより} 4-メトキシー2-メチルチオメチルー3-ペンチルアミノ安息香酸(<math>93 \, \text{mg}$ 、66%)を無色結晶として得た。

 1 H - NMR (CDCl₃, 300 MHz) δ : 7.74(1H, d, J=8.6Hz), 6.80(1H, d, J=8.6Hz), 4.31(2H, s), 3.92(3H, s), 3.09(2H, t, J=7.1Hz), 2.08(3H, s), 1.50-1.65(2H, m), 1.30-1.45(4H, m), 0.94(3H, t, 7.0Hz). FABMS (m/z): 298[M+H+](50), 250(50), 185(85).

 1 H-NMR (CDC1 $_{3}$, 3 0 0 MHz) δ : 8.10(1H, d, J=8.9Hz), 6.99(1H, d, J=8.9Hz), 4.02(2H, t, J=6.6Hz), 3.93(3H, s), 2.50(3H, s), 1.75-1.90(2H, m), 1.30-1.58(4H, m), 0.95(3H, t, 7.1Hz). FABMS (m/z): 285[M+H+](40), 267(100).

参考例 8 4

参考例85

4-アミノー3-ペンチルオキシ安息香酸(200mg、0.90mmol)、塩化メチレン(5ml)およびピリジン(0.081ml、1.0mmol)を混合し、この溶液に塩化バレリル(0.11ml、0.90mmol)を加えて、室温で0.5時間攪拌した。反応溶液に水を加えて、水層を酢酸エチル(5ml)で3回抽出した。有機層を合わせて飽和食塩水(10ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた粗結晶をヘキサンで洗浄することにより4-ペンタノイルアミノー3-ペンチルオキシ安息香酸(109.5mg、40%)を無色結晶として得た。

 1 H - NMR (CDC1₃, 3 0 0 MHz) δ : 8.50(1H, d, J=8.4Hz), 7.98(1H, s), 7.73(1H, d, J=8.4Hz), 7.55(1H, s), 4.11(2H, t, J=6.6Hz), 2.43(2H, t, J=7.5Hz), 1.80-1.95(2H, m), 1.35-1.55(6H, m), 0.96(6H, t, 7.2Hz).

FABMS (m/z): 308[M⁺ H ⁺](40), 206(100).

(1) 2-ヒドロキシー3-メトキシベンズアルデヒド(3.00g、19.7mmol) とDMF(25m1)を混合し、この溶液に炭酸カリウム(3.00g、22.0mmol) およびブロモペンタン(2.73ml、22.0mmol) およびブロモペンタン(2.73ml、22.0mmol) を順次加えた。100で2時間攪拌した後、反応溶液を濾過し、水(20ml) および酢酸エチル(50ml)を加えて分液した。水層を酢酸エチル(25ml) で2回抽出した。有機層を合わせて飽和食塩水(20ml) で2回洗浄した後、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮することにより3-メトキシー2-ペンチルオキシベンズアルデヒドの粗生成物を得た。

(2) 上記粗生成物にTHF(30ml) およびメチル(トリフェニルホスホラニリデン) アセタート(7.36g、22.0mmol) を加えて、5.5時間加熱還流した。THFを減圧留去して、得られた残渣にヘキサン(100ml) を加え、析出した結晶を濾別した。濾液を減圧濃縮して、得られた残渣にエタノール(40ml) および1N水酸化ナトリウム水溶液(40ml) を加えて1時

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 8.17(1H, d, J=16.2Hz),

- 7. 18(1H, d, J=7.8Hz), 7. 06(1H, t, J=7.8Hz), 6. 95(1H, d, J=7.8Hz),
- 6. 48(1H, d, J=16.2Hz), 3. 99(2H, t, J=6.7Hz), 3. 86(3H, s),
- 1. 75-1.85(2H, m), 1. 37-1.49(4H, m), 0. 94(3H, t, 7.2Hz).

FABMS (m/z): $265[M^+H^+](20)$, 177(100).

参考例86

- 6. 98(2H, d, J=7.9Hz), 3. 95(2H, t, J=6.7Hz), 3. 83(3H, s).
- 2. 95(2H, t, J=7.9Hz), 2. 66(2H, t, J=7.9Hz), 1. 70-1. 85(2H, m),
- 1.35-1.50(4H, m), 0.92(3H, t, 7.0Hz).

 $FABMS (m/z) : 267[M^+ H^+](20), 179(100).$

参考例87

3-(3-メトキシー2-ペンチルオキシフェニル)プロピオン酸(1.00g、3.75mmo1)、塩化チオニル(0.72m1、10mmo1)および DMF 1 滴を混合し、室温で15分間攪拌した。トルエン(10m1)を加えて、濾液を減圧濃縮した。得られた残渣にアセトン(5m1)およびアジ化ナトリ

ウム(0. 33g、5. 0 mm o 1)の水(0. 5 m 1)溶液を加え、室温で20分間攪拌した。水(5 m 1)を加え、水層をトルエン(2 0 m 1)で2回抽出した。有機層を合わせて飽和食塩水(1 0 m 1)で2回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣にトルエン(1 0 m 1)を加えて 2. 5 時間加熱還流した。トルエンを減圧留去して、得られた残渣にポリリン酸(3 m 1)を加えて 4 0 分間攪拌した。水(2 0 m 1)および酢酸エチル(5 0 m 1)を加えて、有機層を分離した。有機層を水(1 0 m 1)、飽和食塩水(1 0 m 1)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮した。得られた残渣にヘキサン(1 0 m 1)を加えて、析出した結晶を濾取することにより6 - 2 トキシー5 - 2 - 2 - 2 - 2 + 2 - 2 + 2 - 2 + 2 - 2 + 2 - 2 + 2 + 2 - 2 + 2

 1 H - N M R (C D C 1 , 3 0 0 M H z) δ : 7.84(1H, d, J=8.4Hz), 6.88(1H, d, J=8.4Hz), 6.04(1H, bs), 3.93(2H, t, J=6.9Hz), 3.90(3H, s), 3.49-3.55(2H, m), 3.02(2H, t, J=6.6Hz), 1.70-1.81(2H, m),

1.30-1.50(4H, m), 0.94(3H, t, 7.2Hz).

 $FABMS (m/z) : 264[M^+H^+](100).$

参考例 8 8

3-ヒドロキシー4-メトキシベンズアルデヒド(200g、1.31mo1)、ジオキサン(1000m1)および水(400m1)を混合し、この溶液に N-プロモスクシンイミド(245.7g、1.38mo1)を10分かけて加えた。60分後および70分後に<math>N-プロモスクシンイミドをそれぞれ16.4g(92.1mmo1)および7.02g(39.4mmo1)加えて、さらに 30分間攪拌した。水(<math>1600m1)を加えて、生成した結晶を濾取した。この結晶を水(1000m1)で洗浄することにより2-プロモ-3-ヒドロキシー4-メトキシベンズアルデヒド(227.1g、74.8%)を淡赤色結晶として得た。

'H-NMR (DMSO-d₆, 300MHz) δ: 10.1(1H, s), 9.59(1H, s), 7.40(1H, d, J=8.4Hz), 7.14(1H, d, J=8.4Hz), 3.92(3H, s). FABMS (m/z): 232[M⁺ H⁺](20), 185(100). 参考例 8 9

- (2) 上記粗生成物、イソプロパノール(440ml)およびアミド硫酸(283.9g、2.92mol)を混合し、この反応液に氷冷下、亜塩素酸ナトリウム(純度80%、143.3g、1.27mol)の水溶液(1320ml)を滴下した。内温40℃で30分間攪拌した後、水(1000ml)を加えた。生成した結晶を適取し、水(2000ml)で洗浄することにより2ーブロモー4ーメトキシー3ーペンチルオキシ安息香酸(238.98g、77%)を無色結晶として得た。

 1 H - NMR (C D C $_{13}$, 3 0 0 MH z) δ : 7.83(1H, d, J=8.7Hz), 6.90(1H, d, J=8.7Hz), 3.98(2H, t, J=6.7Hz), 3.92(3H, s), 1.82-1.90(2H, m), 1.30-1.53(4H, m), 0.94(3H, t, 7.2Hz). F A B M S (m/z): 318[M+H+](10), 185(100).

参考例90

(1) 2-プロモー4-メトキシー3-ペンチルオキシ安息香酸(80.1g、

253mmol)、トルエン(480ml)、臭化銅(I)(3.62g、25.3mmol)およびマロン酸ジエチル(153.4ml、1.01mol)を混合し、この懸濁液に水素化ナトリウム(60%ディスパージョン、30.3g、758mmol)を加え、内温78 $^{\circ}$ ~83 $^{\circ}$ で1時間攪拌した。同様の操作で2-ブロモー4ーメトキシー3-ペンチルオキシ安息香酸(49.43g、156mmol)を反応させた反応液を上記反応液と合わせ、この反応液を水(1000ml、500ml)で抽出した。水層をヘキサン(500ml)で洗浄した後、濃塩酸を加えて酸性にした。酢酸エチル(1000ml、500ml)で抽出し、有機層を合わせて無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、遮液を減圧濃縮することにより2-(6-カルボキシー3-メトキシー2-ペンチルオキシフェニル)マロン酸ジエチルエステルの粗生成物を得た。

(2) 上記粗生成物、塩化リチウム(5 1. 9 3 g、1. 2 3 m o 1)、水(7. 3 5 m 1、4 0 8 m m o 1)およびDMSO(4 0 5 m 1)を混合し、1 4 0 ℃で1時間攪拌した。反応液に水(6 0 0 m 1)および酢酸エチル(8 0 0 m 1)を加えて、有機層を分離した。有機層を水(3 0 0 m 1)で2回洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、濾液を減圧濃縮して、得られた残渣にヘキサン(2 5 0 m 1)を加えた。生成した結晶を濾取し、ヘキサン(1 5 0 m 1)で洗浄することにより2 − エトキシカルボニルメチル−4 − メトキシー3 − ペンチルオキシ安息香酸(9 9. 9 3 g、2 steps 7 5. 3 %)を淡茶色結晶として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 7.93(1H, d, J=8.7Hz),

6.88(1H, d, J=8.7Hz), 4.12-4.22(4H, m), 3.93(2H, t, J=6.6Hz),

3.93(3H, s), 1.70-1.88(2H, m), 1.35-1.55(4H, m), 1.26(3H, t, 7.2Hz),

0.93(3H, t, 6.9Hz).

FABMS (m/z): 323[M+H+](70), 277(90).

参考例91~131

上記参考例1~90と同様にして、参考例91~131に示す化合物を得た。

当該化合物の物性を表1~14に示す。

実施例1-1

4-メトキシー3-ペンチルオキシ桂皮酸(5.29g、0.02mol、1.0eq)と1-ヒドロキシペンゾトリアゾール水和物(2.7g、0.024mol、1.0eq)をDMF(50ml)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアミン(4.1g、0.03mol、1.5eq)と1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド(WSC)塩酸塩(4.6g、0.024mol、1.2eq)を順次氷冷下で加えた。室温で12時間攪拌後、この反応溶液に氷水(50ml)、飽和炭酸水素ナトリウム水溶液(50ml)を順次加え、酢酸エチル(200ml)で2回抽出した。有機層をあわせて飽和食塩水(200ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=5/1~2/1)を用いて精製することにより、(E)-N-[2-(4-ヒドロキシフェニル)エチル)-3-(4- メトキシー3-ペンチルオキシフェニル)アクリルアミド(8.61g、100%)を無色固体として得た。このものを酢酸エチルから再結晶することにより再精製し、無色結晶(<math>6.28g、81.9%)とした。

当該化合物の物性を表15に示す。

実施例1-2~1-33

上記実施例1-1と同様にして、表15~25に示す化合物を得た。

実施例 1 - 3 4

参考例 103 で得られた 3-(4-y)トキシ-3-ペンチルチオフェニル)柱 皮酸(100 mg、0.357 mm o1)を用い、実施例 1-1 と同様にしてN-[2-(4-y) にロキシフェニル)エチル1-3-(4-y) キシー3-ペンチルチオフェニル)アクリルアミド(118 mg、83%)を無色結晶として得た。

実施例1-35

参考例 9.7 で得られた 3-(4-) トキシー 3- ペンチルアミノフェニル)桂皮酸(1.00 m g、0.380 m m o 1)を用い、実施例 1-1 と同様にして N -[2-(4-) アミノフェニル)エチル)-3-(4-) トキシー 3- ペンチルアミノフェニル)アクリルアミド(3.1.1 m g、2.1%)を淡黄色結晶として得た。

上記実施例1-34、35で得られた化合物の物性を表26に示す。

上記実施例 $1-1\sim1-35$ と同様にして、実施例 $1-36\sim1-92$ に示す 化合物を得た。当該化合物の物性を表 $26\sim45$ に示す。

実施例2-1

実施例1-36~1-92

4 - メトキシー 3 - ペンチルオキシ安息香酸(4.77g、0.02mol、1eq)と1-ヒドロキシベンゾトリアゾール水和物(2.7g、0.024mol、1.0eq)をDMF(50ml)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアミン(4.1g、0.03mol、1.5eq)とWSC塩酸塩(4.6g、0.024mol、1.2eq)を順次氷冷下で加え、実施例1-1と同様にして、N-〔2-(4-ヒドロキシフェニル)エチル)-(4-メトキシー3-ペンチルオキシ)ベンズアミド(5.6g、79%)を無色結晶として得た。

当該化合物の物性を表46に示す。

実施例2-2~2-43

上記実施例2-1と同様にして、表46~60に示す化合物を得た。

実施例2-44

3, 4 - ジペンチルオキシー〔2 - (4 - 二トロフェニル) エチル〕ベンズアミド(110mg、0.25mmol、1.0eq)をメタノール(11ml)に溶解し、10%パラジウムー炭素触媒(10mg、水分含量50%)を加えた後、水素気流下、2時間攪拌した。反応溶液を室温まで冷却した後、セライト濾過し、濾液を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィ

-(酢酸エチル/ヘキサン=1/1)を用いて精製することにより、 $\{2-(4-7)\}$ ($\{2-(4-7)\}$)エチル $\{2-(4-7)\}$ ($\{4-2\}$)を無色結晶として得た。 実施例 $\{2-4\}$

3, 4-ジヘキシルオキシ安息香酸(161 mg、0. 5 mmo 1)と1-ヒドロキシベンゾトリアゾール水和物(45. 9 mg、0. 3 mmo 1、0. 6 eq)をDMF(5 ml)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアミン(82 mg、0. 6 mmo 1、1. 2 eq)とWSC塩酸塩(11 4 mg、0. 6 mmo 1、1. 2 eq)を順次室温下で加えた。室温で15 時間 攪拌後、この反応溶液を酢酸エチル(75 ml)にあけ、水(5 ml×3)および飽和食塩水(15 ml)で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=50 / 1)を用いて精製することにより、3, 4-ジヘキシルオキシーN- $\{2-$ (4-ヒドロキシフェニル)エチル)ベンズアミド(230 mg)を得た。得られた固体を酢酸エチルーヘキサンから再結晶することにより、無色結晶の3, 4-ジヘキシルオキシーN- $\{2-$ (4-ヒドロキシフェニル)エチル)ベンズアミド(194 mg、10 mg 10 mg

参考例 79 で得られた 2-7ミノー 4-メトキシー 3-ペンチルオキシ安息香酸(45.0g、177.6mmol)を用い、実施例 2-1と同様にして 2-アミノー 4-メトキシーN- (2-(4-ニトロフェニル)エチル)-3-ペンチルオキシベンズアミド(67.85g、95%)を淡黄色結晶として得た。実施例 2-47

参考例 78 で得られた 4- メトキシー 2- ニトロー 3- ペンチルオキシ安息香酸(500 mg、1.76 mmo 1)を用い、実施例 2-1 と同様にして 4- メトキシー 2- ニトロー N- [2-(4- ニトロフェニル)エチル)-3- ペンチルオキシベンズアミド(738 mg、97%)を無色結晶として得た。

実施例2-48

実施例 2 - 4 9

参考例 8 2 で得られた 4-メトキシー 2-メチルチオメチルー 3-ペンチルアミノ安息香酸(90 m g、0.30 m m o 1)を用い、実施例 2-1 と同様にしてNー $\{2-(4-$ ヒドロキシフェニル)エチル $\}-4-$ メトキシー 2-メチルチオメチルー 3-ペンチルアミノベンズアミド(113 m g、90%)を無色結晶として得た。

実施例 2 - 5 0

参考例 8 3 で得られた 4 ーメトキシー 2 ーメチルチオー 3 ーペンチルオキシ安 息香酸を用い、実施例 2 ー 1 と同様にしてN ー [2 ー (4 ーヒドロキシフェニル) エチル] ー 4 ーメトキシー 2 ーメチルチオー 3 ーペンチルオキシベンズアミド を無色結晶として得た。

実施例2-51

実施例 2-52

参考例112で得られた4-ペンチルオキシ-3-ペンチルチオ安息香酸を用い、実施例2-1と同様にしてN-[2-(4-アミノフェニル)エチル]-4-ペンチルオキシ-3-ペンチルチオベンズアミドを無色結晶として得た。

上記実施例 2 - 4 4 ~ 2 - 5 2 で得られた化合物の物性を表 6 0 ~ 6 3 に示す。 実施例 2 - 5 3 ~ 2 - 1 6 1

上記実施例 $2-1\sim2-5$ 2 と同様にして、実施例 2-5 3 $\sim2-1$ 6 1 に示す化合物を得た。当該化合物の物性を表 6 3 ~9 9 に示す。

実施例 3-1

4-メトキシー3-ペンチルオキシ桂皮酸(529 mg、2.0 mm o 1、1 e q)をピリジン(10 m 1)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアルコール(484 mg、3.5 mm o 1、1.5 e q)とWSC 塩酸塩(460 mg、2.4 mm o 1、1.2 e q)を順次氷冷下で加え、実施例1-1と同様にして、2-(4-ヒドロキシフェニル)エチル-3-(4-メトキシ-3-ペンチルオキシ)シンナメート(61 mg、7.9%)を無色結晶として得た。

当該化合物の物性を表100に示す。

実施例 3-2~3-3

上記実施例3-1と同様にして、実施例3-2及び3-3に示す化合物を得た 。当該化合物の物性を表100に示す。

実施例4-1

3-(1-ブロモ-4-ペンチルオキシナフタレン-2-イル) 桂皮酸(51

. 2 m g、 0. 1 4 1 m m o 1) と 1 - ヒドロキシベンゾトリアゾール水和物(1 9. 1 m g、 0. 1 4 1 m m o 1)をDMF(1 m 1)に溶解し、この溶液に 2 - (4 - ヒドロキシフェニル)エチルアミン(2 3. 2 m g、 0. 1 6 9 m m o 1)とWS C塩酸塩(3 2. 4 m g、 0. 1 6 9 m m o 1)を順次氷冷下で加え、実施例 1 - 1 と同様にして、(E) - 3 - (1 - ブロモー 4 - ペンチルオキシナフタレン-2 - イル)- N - 〔2 - (4 - ヒドロキシフェニル)エチル〕アクリルアミド(5 2. 3 m g、 7 7%)を無色結晶として得た。

当該化合物の物性を表101に示す。

実施例 4-2~4-4

上記実施例4-1と同様にして、表101~102に示す化合物を得た。 実施例5-1

7-メトキシー8-ペンチルオキシキノリンー3-カルバミン酸(24mg、0.083mmol)とクロロホルム(1.0ml)およびDMF(0.3ml)を混合し、この溶液に2-(4-ピリジニル)エチルアミン(12.2mg、0.1mmol)のDMF溶液(0.1ml)とWSC塩酸塩(19.2mg、0.1mmol)およびジメチルアミノピリジン(1mg、0.0082mmol)を順次加え、実施例1-1と同様にして、7-メトキシー8-ペンチルオキシキノリン-3-カルバミン酸(2-ピリジン-4-イルエチル)アミド(11.4mg、35%)を無色結晶として得た。

当該化合物の物性を表103に示す。

実施例 5 - 2 ~ 5 - 9

上記実施例 5-1 と同様にして、実施例 $5-2\sim5-9$ に示す化合物を得た。 当該化合物の物性を表 $103\sim105$ に示す。

実施例6-1

(1)塩化チオニル(7.3 ml、0.100 mol、4 eq)に4-メトキシ-3-ペンチルオキシ安息香酸(5.96g、0.025 mol、1 eq)を溶解し、室温で24時間攪拌した。反応溶液を減圧下、過剰の塩化チオニルを留去

した。残渣に、ジクロロメタン(10m1)を加え、氷冷下2-rミノー2-xチルプロパノール(5.01m1、0.053mo1、2.1eq)を加え、室温で2時間攪拌した。この反応溶液に水(200m1)を加え、酢酸エチル(200m1)で2回抽出した。有機層をあわせて飽和食塩水(400m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-n+1)を開いて精製することにより、N-(2-t+1)を用いて精製することにより、N-(2-t+1)のでは、1-t+10。を用いて精製することにより、1-t+11)を用いて精製を含む、1-t+11)を用いて精製を含む、1-t+11)を用いて精製を含む、1-t+11)を用いて特別を含む、1-t+11)を用いては、

 $^{1}H - NMR$ (CDCl₃) δ : 7.38(1H, d, J=2.1H₂),

- 7. 20(1H, dd, J=8.3, 2. 1Hz), 6. 84(1H, d, J=8.3Hz), 6. 13(1H, bs),
- 4.79(1H, t, J=6.1Hz), 4.06(2H, t, J=6.9Hz), 3.90(3H, s),
- 3.69(2H, d, J=6.1Hz), 2.0-1.8(2H, m), 1.5-1.3(4H, m), 1.41(3H, s),
- 1.41(3H, s), 0.93(3H, t, J=7.1Hz).

FABMS (m/z): $310[M^+H^+]$ (100), 221(100), 238(50).

IR (Neat, cm^{-1}): 3385, 2955, 1638, 1505.

(2) N-(2-ヒドロキシー1, 1-ジメチルエチル) -4-メトキシー3-ペンチルオキシベンズアミド(5.498g、0.0178mol、1eq)を塩化チオニル(4.29ml、0.0214mol、3.3eq)に溶解し、室温で1時間攪拌した。反応溶液をジエチルエーテル(40ml)に移し、得られた塩酸塩を濾取し、過剰の塩化チオニルを除去した。この塩酸塩に氷冷下1N水酸化ナトリウム水溶液(約20ml)を加え、pH10のアルカリ溶液にした後にジエチルエーテル(30ml)で2回抽出した。有機層をあわせて飽和食塩水(60ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、2-(4-メトキシー3-ペンチルオキシフェニル)-4, 4-ジメチルー4,5-ジヒドロオキサゾール(4.46g、86%)を無色結晶として得た。

実施例 6 - 2

実施例 6-3

実施例6-4

LAH (255mg、6.72mol、3.0eq)をTHF (30ml)に溶解し、この溶液に氷冷下で、エチル 6-(4,4-ジメチルー4,5-ジヒドロオキサゾールー2-イル)-3-メトキシー2-ペンチルオキシベンゾエート(814mg、2.24mmol、1.0eq)のTHF溶液(50ml)を滴下した。滴下終了後、室温で1.5時間攪拌させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約20ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/l)を用いて精製することにより、[6-(4,4-ジメチルー4,5-ジヒドロオキサゾール-2-イル)-3-メトキシー2-ペンチルオキシフェニル)メタノール(677mg、94.1%)を得た。

実施例6-5

②: ${}^{1}H-NMR$ (CDCl₃, 300MHz) δ :

- 8. 64-8. 59(1H, m), 7. 73(1H, td, J=7.7, 1. 8Hz), 7. 45-7. 40(2H, m),
- 7. 30-7. 23(2H, m), 6. 96(1H, t), 6. 87(1H, d, J=8.5Hz),
- 6.03(1H, t, J=5.7Hz), 4.16-4.02(4H, m), 3.90(3H, s), 2.15(3H, s),
- 1.91-1.82(2H, m), 1.50-1.36(4H, m), 0.93(3H, t, J=7.0Hz).
- FABMS (+) (m/z): 402[M + 1] (26), 401(93), 341(67), 221(100)
- ③: ${}^{1}H NMR (CDC1_{3}, 300MHz) \delta$:
- 8.40-8.32(1H, m), 7.43-7.40(2H, m), 7.27-7.22(2H, m),
- 6. 85(1H, d, J=8.4Hz), 4. 06(2H, t, J=7.8Hz), 3. 89(3H, s).
- 3.84(2H, q, J=5.9Hz), 3.10(2H, t, J=6.3Hz), 2.34(3H, s),
- 1.91-1.80(2H, m), 1.49-1.33(4H, m), 0.93(3H, t, J=7.0Hz).

FABMS (+) (m/z) : 401[M+1] (82), 221(73), 154(100).

実施例 6-6

実施例 6-1 と同様にして得られた 2-(3-7) ロモー 4-4 トキシフェニル) -4 、 4-9 メチルー 4 、 5-9 ヒドロオキサゾール(400 mg、 1 、 41 mm o 1)と THF(4 m 1)を混合し、この溶液を -60 ∞ に冷却した後に、n-7 チルリチウム(1 、 6 M n キサン溶液、1 、 94 m 1 、 3 、 1 mm o 1)を加え、1 、 1 5 時間攪拌した。この溶液に 1 の 1 で 1 の 1 を加え、1 に 1 の 1 に 1 の 1 を加え、1 に 1 の 1 を 1 の 1 で 1 の 1 に 1 に 1 の 1 に 1 に 1 の 1 に

上記実施例 $6-1\sim6-6$ で得られた化合物の物性を表 $106\sim107$ に示す。 実施例 $6-7\sim6-13$

上記実施例 $6-1\sim6-6$ と同様にして、実施例 $6-7\sim6-1$ 3 に示す化合物を得た。当該化合物の物性を表 1 0 8 \sim 1 1 0 に示す。

実施例7-1

実施例7-2

 $N-(2-(4-E)^2+2)$ エチル]-3-E+2 アタルイミド(1.67g、0.0053mo1、1eq のメタノール(20m1) -x タノール(50m1) 一酢酸(20m1)の混合溶液に10%パラジウムー炭素触媒(水分含量50%)(200mg)を加えた後、水素気流下、3 時間室温攪拌した。反応溶液をセライト濾過し濾液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=50/1)を用いて精製することにより、3-Tミノー $N-(2-(4-E)^2+2)$ エチル 29 フタルイミド(360mg、24.1%)を無色固体として得た。

実施例7-3

3-アミノーN-〔2-(4-ヒドロキシフェニル) エチル〕フタルイミド(110mg、0.390mol、1eq)をアセトン(30ml)に溶解し、この溶液に1-クロロ-1-ペンタノン(70.5mg、0.585mmol、1.5eq)とトリエチルアミン(0.081ml、0.585mol、1.5eq)を順次加えた後、30分間加熱還流した。この反応溶液を室温まで冷却し、

水水(10m1)、0エン酸(10m1)を加え、酢酸エチル(20m1)で2回抽出した。有機層をあわせて飽和食塩水(30m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=5/1)を用いて精製することにより、4-[2-(1,3-ジオキソ-4-ペンタノイルアミノー1,3-ジヒドロイソインドール-2-イル)エチル)フェニルペンタノエート(<math>80.2mg、56.2%)を無色結晶として得た。

実施例7-4

- (1) エチル 6-(4,4-ジメチル-4,5-ジヒドロオキサゾール-2-イル)-3-メトキシー2ーペンチルオキシベンゾエート(200mg、0.55mmol、1eq)を3N塩酸水溶液(20ml)に溶解し、11時間加熱還流した。反応終了後室温まで冷却し、酢酸エチル(20ml)で2回抽出した。有機層をあわせて飽和食塩水(40ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、1N水酸化カリウム水溶液(10ml)に溶解し、1.5時間室温で攪拌した。反応溶液に氷水と3N塩酸水溶液(30ml)を加えて酸性にし、酢酸エチル(20ml)で2回抽出した。有機層をあわせて飽和食塩水(40ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、4-メトキシー3-ペンチルオキシフタル酸(178mg、100%)を得た。
- (2) 2-

実施例7-5

〔6ー(4, 4ージメチルー4, 5ージヒドロオキサゾールー2ーイル)-3 -メトキシー2-ペンチルオキシフェニル] メタノール(344mg, 1, 07mmol、1.0eq)をDMSO(4ml)に溶解し、この溶液にトリエチル アミン(1.4ml、9.63mmol、9.0eg)を加え、冷水で冷却した 。これに三酸化硫黄-ピリジン複合体(511mg、3.21mmo1、3.0 eq)を加え、室温で1.5時間攪拌させた。この反応溶液に水(5ml)を加 え、酢酸エチル(20ml)で2回抽出した。有機層をあわせて飽和食塩水(2 00ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃 縮した。得られた残渣を、メタノール(16ml)に溶解し、2-(4-ヒドロ キシフェニル) エチルアミン (146.8mg、1.07mmol、1.0eg)、シアノボロヒドリド(6 7. 3 mg、1. 0 7 mmo l、1. 0 e a)を加 えて室温で10時間攪拌した。反応液を減圧濃縮した後にシリカゲルカラムクロ マトグラフィー(n-ヘキサン/酢酸エチル=5/1)を用いて精製することに より、2- [2-(4-ヒドロキシフェニル) エチル] - 5-メトキシー4-ペ ンチルオキシー2, 3-ジヒドロイソインドールー1ーオン(6.7 mg、1.7%)を得た。

実施例7-6

3-ヒドロキシ無水フタル酸(1.0g、6.6mmol) をメタノール(20ml) に溶解し、この溶液に触媒量のp-トルエンスルホン酸を加えた。加熱 還流温度で5時間攪拌後、減圧にて濃縮し、3-ヒドロキシフタル酸ジメチルの粗生成物を得た。3-ヒドロキシフタル酸ジメチルの粗生成物をDMF(20ml)に溶解し、この溶液に炭酸カリウム(6g、43mmol)とn-アミルブロミド(3ml、24mmol)を加えた。90で1.5時間攪拌後、セライト濾過にて固形物を除去し、減圧にて濃縮し、3-ペンチルオキシフタル酸ジメ

チルの粗生成物を得た。 3-ペンチルオキシフタル酸ジメチルの粗生成物をメタノール(10ml)に溶解し、この溶液に<math>1N水酸化ナトリウム水溶液(20ml)を加えた。 90 \mathbb{C} で2時間攪拌後、この反応溶液に3N 塩酸水溶液(15ml)を加えた。酢酸エチル(30ml×3)にて抽出後、飽和食塩水(20ml) で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、3-ペンチルオキシフタル酸の粗生成物を得た。 <math>3-ペンチルオキシフタル酸の粗生成物を酢酸(<math>20ml)に溶解し、これにチラミン塩酸塩(1.0gl、7.3mmol)を加えた。 90 \mathbb{C} にて2時間攪拌後、減圧にて濃縮した。 得られた残渣を、シリカゲルカラムクロマトグラフィー(1+10 1+10 1+10 1+11 1+11 1+11 1+12 1+11 1+12 1+12 1+12 1+13 1+14 1+13 1+14 1+14 1+14 1+15 1+15 1+15 1+15 1+16 1+17 1+

実施例7-7

実施例7-8

N-2-(4-k) ロキシフェニル)エチルー 3-k ンチルオキシフタルイミド (412 mg、1.17 mmo1)をTHF (1 m1)に溶解し、この溶液に BH_3 ・THFの1.0 M THF溶液 (4 m1、4.0 mmo1)を加えた。加熱環流下 8 時間攪拌後、この反応溶液に 3 N塩酸水溶液(1 0 m1)を加え、更に 0.5 時間同じ温度にて攪拌後、水を 2 0 m1 加えた。酢酸エチル(2 0 m1×3)にて抽出後、飽和炭酸水素ナトリウム水溶液(2 0 m1)と飽和食塩水(3 0 m1)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、N-2-(4-k) とがロキシフェニル)エチルー2-k で、カースー(2 2 2 mg、2 0.6 2 8 mmo1、2 9%)を無色結晶として得た。

N-2-(4-E) アンフェニル エチルー 3-2 アンチルオキシフタルイミド (351 mg、 0.99 mm o 1) を THF (1 m 1) に 溶解した 溶液を LA

H(74mg、2mmol)のTHF(1ml)懸濁液に0℃にて加えた。室温で5時間撹拌後、この反応溶液を3N塩酸水溶液(20ml)にあけ、酢酸エチル(20ml×3)にて抽出後、飽和炭酸水素ナトリウム水溶液(20ml)と飽和食塩水(30ml)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/l)を用いて精製することにより、Nー2ー(4ーヒドロキシフェニル)エチルー3ーペンチルオキシイソインドリン(130mg、40%)を無色結晶として得た。

実施例 7 - 9

(1) 4-ヒドロキシフタル酸ジメチル(10.0g、 $47\,\text{mmo}$ 1)をDMF(100 m1)に溶解し、この溶液に炭酸カリウム(30g、 $217\,\text{mmo}$ 1)とn-アミルブロミド(10 m1、 $80\,\text{mmo}$ 1)を加えた。 $90\,\text{C}$ で2時間攪拌後、セライト濾過にて固形物を除去し、減圧にて濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)を用いて精製することにより、4-Cンチルオキシフタル酸ジメチル(12.7g、 $45.4\,\text{mmo}$ 1、97%)を無色油状物として得た。

 $^{1}H-NMR$ (CDCl₃, 300MHz) δ : 7.80(1H, d, J=8.40Hz),

- 7. 05(1H, d, J=2.70Hz), 6. 97(1H, dd, J=8.40, 2. 70Hz),
- 4.00(2H, t, J=6.90Hz), 3.91(3H, s), 3.87(3H, s),
- 1. 80(2H, quint, J=6. 98Hz), 1. 47-1. 34(4H, m), 0. 93(3H, t, J=7. 20Hz). FABMS (+) (m/z): 281[M+1] (42), 249(100), 179(78).
- (2) 4-ペンチルオキシフタル酸ジメチル(3.0g、10.7mmo1)をメタノール(20m1)に溶解し、この溶液に1N水酸化ナトリウム水溶液(25m1)を加えた。室温で6.5時間攪拌後、この反応溶液に3N塩酸水溶液(20m1)を加えた。酢酸エチル(40m1×3)にて抽出後、飽和食塩水(30m1)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、4-ペンチルオキシフタル酸の粗生成物を得た。この粗生成物

は精製することなく次の反応に用いた。

 $4-\mathcal{N}$ ンチルオキシフタル酸の粗生成物を酢酸($20\,\mathrm{m}\,1$)に溶解し、これに チラミン塩酸塩($2.74\,\mathrm{g}$ 、 $20\,\mathrm{mm}\,\mathrm{o}\,1$)を加えた、 $96\,\mathrm{C}$ にて4時間攪拌後、減圧にて濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=6/1)を用いて精製することにより、N-2-(4-1)といった。N-2-(4-1)といった。N-2-(4-1)といった。N-2-(4-1)といった。

実施例7-10

N-2-(4-E)ドロキシフェニル)エチルー4-ペンチルオキシフタルイミド(330 mg、0.93 mmo1)をTHF(1 ml)に溶解し、この溶液にBH。・THFの1.0M THF溶液(1.5 ml、1.5 mmo1)を加えた。加熱還流下1.5時間攪拌後、この反応溶液に3N塩酸水溶液(2 ml)を加え、更に0.5時間同じ温度にて攪拌後、水を20 ml加えた。酢酸エチル(20 ml×3)にて抽出後、飽和炭酸水素ナトリウム水溶液(20 ml)と飽和食塩水(30 ml)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、N-2-(4-E)により、エチルー4ーペンチルオキシイソインドールー1ーオン(①)(139 mg、0.41 mmo1、44%、無色結晶)とN-2-(4-E)にはいり、エチルー5ーペンチルオキシイソインドールー1ーオン(②)(111 mg、0.33 mmo1、35%、無色結晶)を得た。

実施例7-11

N-2-(4-ヒドロキシフェニル) エチル-4-ペンチルオキシフタルイミド(208mg、0.59mmol)をTHF(1ml)に溶解した溶液をLAH(40mg、1.1mmol)のTHF(1ml) 懸濁液に0℃にて加えた。室温で3.5時間攪拌後、この反応溶液を3N塩酸水溶液(20ml)にあけ、酢酸エチル(20ml×3)にて抽出後、飽和炭酸水素ナトリウム水溶液(20

m1)と飽和食塩水(30m1)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=30/1)を用いて精製することにより、N-2-(4-ヒドロキシフェニル)エチルー4-ペンチルオキシイソインドリン(181mg、94%)を無色結晶として得た。

実施例 7-12

(1) [6-(4,4-i)]メチルー4,5-iジヒドロオキサゾールー2ーイル) -3-iメトキシー2ーペンチルオキシフェニル]メタノール [4,69g]、0.014mmol、1eq)を3N塩酸 (50ml) に溶解し、3時間加熱攪拌した。反応終了後、室温まで冷却した後ジエチルエーテル [50ml) で2回抽出した。有機層をあわせて飽和食塩水 [100ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー [n-n] かかか [n-n] を用いて精製することにより、[5-i] を用いて精製することにより、[5-i] を用いてオンノーイン([5-i] を用いて精製することにより、[5-i] を無色油状物質として得た。

 $^{1}H - NMR$ (CDCl₃) δ : 7.61(1H, d, J=8.3Hz),

7.07(1H, d, J=8.3Hz), 5.28(2H, s), 4.09(2H, t, J=6.6Hz), 3.95(3H, s),

1.8-1.7(2H, m), 1.5-1.3(4H, m), 0.93(3H, t, J=6.9Hz).

 $FABMS (m/z) : 251[M^+H^+] (100).$

(2) 2-(4-ベンジルオキシフェニル) エチルアミン(377mg、1.66mmol、2eq)をジクロロメタン(3ml)に溶解し、トリメチルアルミニウム(15%ヘキサン溶液、0.88ml、1.825mmol、2.2eq)を加えて30分間攪拌した。これに5-メトキシー4-ペンチルオキシー3Hーイソベンゾフラン-1-オン(207.6mg、0.83mmol、1eq)のジクロロメタン溶液(3ml)を滴下し、24時間攪拌した。この溶液に、3N塩酸(20ml)を加えてクロロホルム(10ml)で3回抽出した。有機層をあわせて飽和食塩水(50ml)で洗浄し、無水硫酸ナトリウムで乾燥した。

乾燥剤を遮別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー($n-\Lambda$ キサン/酢酸エチル= $2/1\sim1/1$)を用いて精製することにより、2-(2-ヒドロキシメチル)-4-メトキシ-3-ペンチルオキシ-N-[2-(4-ベンジルオキシフェニル)エチル〕ベンズアミド(204 m g、51.5%)を無色結晶として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 7.5-7.3(5H, m), 7.15(2H, d, J=8.5Hz),

7.11(1H, d, J=8.5Hz), 6.93(2H, d, J=8.5Hz), 6.79(1H, d, J=8.5Hz),

6. 20(1H, t, J=6.7Hz), 5. 05(2H, s), 4. 65(2H, d, J=6.7Hz),

4. 20(1H, t, J=6.7Hz), 3. 97(2H, t, J=6.7Hz), 3. 85(3H, s),

3.67(2H, q, J=6.8Hz), 2.88(2H, t, J=6.8Hz), 1.9-1.7(2H, m),

1.5-1.3(4H, m), 0.93(3H, t, J=7.1Hz).

 $FABMS (m/z) : 478[M^{+}H^{+}] (30), 460(100).$

IR (KBr, cm⁻¹): 3333, 2937, 1623, 1510, 1268, 1216, 1014.

元素分析: C2, H3, NO,

理論値 C 72.93, H 7.39, N 2.93

分析值 C 73.06, H 7.50, N 2.79

実施例7-1-3

2-(2-kkn+2) メチル) -4-kk+2 3 -2 ペンチルオキシーN -(2-(4-kkn+2) パンズアミド (219.1mg、2-(4-kkn+2) ルオキシフェニル) エチル〕 ベンズアミド (219.1mg、0.459mmol、1.0eq)をDMSO (3ml) に溶解し、水冷下、トリエチルアミン (0.59ml、4.13mmol、9eq)、三酸化硫黄ーピリジン複合体 (219mg、1.38mmol、3eq)を加えた。室温で 4時間攪拌後、この反応溶液に飽和炭酸水素ナトリウム水溶液 (10ml) を加え、酢酸エチル (20ml) で 2 回抽出した。有機層をあわせて飽和食塩水 (30ml) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン= 3/1)を用いて精製することにより、2-(2-(4-kn+2)) に溶解することにより、2-(2-(4-kn+2)) の

実施例7-14

2-[2-(4-ベンジルオキシフェニル) エチル] -3-ヒドロキシ-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン(142 mg、0.30 mmo1、1.0 eq) をジクロロメタン(3 m1) に溶解し、トリエチルシラン(0.095 m1、0.60 mmo1、2.0 eq) を加え10分間室温攪拌した。これにトリフルオロ酢酸を加え、更に4時間攪拌した。この反応溶液に飽和炭酸水素ナトリウム水溶液(30 m1)を加え、酢酸エチル(30 m1)で2回抽出した。有機層をあわせて飽和食塩水(60 m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、2-(2-(4-ベンジルオキシフェニル) エチル] -5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン(136 mg、99.8%)を無色油状物質として得た。

実施例7-15

2-(2-(4-ベンジルオキシフェニル) エチル]-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン(125.9mg、0.274mmo1、1.0eq) を酢酸エチル(10ml)に溶解し、10%パラジウムー炭素触媒(80mg、水分含量50%)を加えた後、水素気流下、3時間攪拌した。反応終了後セライト濾過し、濾液を減圧濃縮し、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/1)を用いて精製することにより、2-(2-(4-ヒドロキシフェニル) エチル]-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン(75mg、74.1%)を無色結晶として得た。

なお、当該化合物は実施例 7 - 5 と同じ化合物であり、その物性等も実施例 7 - 5 と同じである。

実施例7-16

(1) [6-(4,4-i)メチルー4,5-iジヒドロオキサゾールー2ーイル)ー3-iメトキシー2-iペンチルオキシフェニル] エタノール(4.69g、0.014mmol、1eq)を3N塩酸(<math>50ml) に溶解し、1.5時間加熱攪拌した。これを室温まで冷却した後、氷冷下水酸化ナトリウム水溶液を加えてアルカリ性水溶液($pH=13\sim14$)にし、1時間室温攪拌した。この溶液に塩酸を加えて酸性溶液($pH=1\sim2$)にして、ジエチルエーテル(50ml)で2回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-i2 中で i3 を用いて精製することにより、i3 を用いてオリン(i4 の i5 の i7 の i7 の i8 の i9 の i9

 $^{1}H - NMR$ (CDC1₃) δ : 7.86(1H, d, J=8.6H₂),

- 6.92(1H, d, J=8.6Hz), 4.48(2H, t, J=6.0Hz), 3.95(2H, t, J=6.8Hz),
- 3.92(3H, s), 3.06(2H, t, J=6.0Hz), 1.8-1.7(2H, m), 1.5-1.3(4H, m),
- 0.93(3H, t, J=7.1Hz)

 $FABMS (m/z) : 265[M^+H^+] (100).$

(2) 2-(4-ベンジルオキシフェニル) エチルアミン(1.15g、5.1 mmol、1eq)のジクロロメタン溶液(2ml)をジクロロメタン(30ml)に溶解し、トリメチルアルミニウム(15%ヘキサン溶液、4.9ml、10.2mmol、2eq)を滴下し、室温で30分間攪拌した。この溶液に、6-メトキシー5-ペンチルオキシー3,4-ジヒドロイソクマリン(1.36g、5.1mol、1eq)のジクロロメタン溶液(30ml)を滴下し、室温で12時間攪拌した。この溶液に3N塩酸(20ml)を加えてジクロロメタン(20ml)で2回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1

/1~酢酸エチル)を用いて精製することにより、2-(2-EFD+2x+N)0 -4-X++2-3-ペンチルオキシ-N-(2-(4-ベンジルオキシフェニル)エチル)ベンズアミド(1.35g、53.7%)を無色結晶として得た。融点:<math>93.4~93.7℃

 $^{1}H - NMR$ (CDC1₃) δ : 7.5-7.3(5H, m), 7.15(2H, d, J=8.6Hz),

- 7. 05(1H, d, J=8.5Hz), 6. 93(2H, d, J=8.6Hz), 6. 75(1H, d, J=8.5Hz),
- 6. 40(1H, bs), 5. 05(2H, s), 3. 96(1H, bs), 3. 94(2H, t, J=6.7Hz),
- 3. 86(2H, q, J=5.7Hz), 3. 84(3H, s), 3. 65(2H, q, J=6.8Hz),
- 2. 94(2H, t, J=5.7Hz), 2. 86(2H, t, J=6.8Hz), 1. 8-1.7(2H, m),
- 1.5-1.3(4H, m), 0.92(3H, t, J=7.1Hz).

FABMS (m/z): $492[M^+H^+]$ (100), 210(60).

I R (KBr, cm^{-1}): 3291, 2932, 1614, 1512, 1243.

元素分析: CaoHarNOs

理論値 C 73.29, H 7.59, N 2.85

分析值 C 73,51, H 7,72, N 2,80

実施例7-17

5 - ペンチルオキシー 2 H - イソキノリンー 1 - オン (1. 275 g、 100 %) を無色結晶として得た。

実施例7-18

2-[2-(4-ベンジルオキシフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-2 H-イソキノリン-1-オン (1.18g,2.5 mmol,1.0 eq) を酢酸 (20ml) に10%水酸化パラジウムー炭素触媒 (300mg, 水分含量 50%) を加えた後、水素気流下、 $60\sim70\%$ 、 $3kgf/cm^2$ の条件下で4時間加熱攪拌した。反応溶液を室温まで冷却した後セライト濾過し、濾液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=4/1)を用いて精製することにより、6-メトキシ-2-[2-(4-オキソシクロヘキシル) エチル]-5-ペンチルオキシー3、4-ジヒドロ-2 H-イソキノリン-1-オン (800mg,82.6%) を淡黄色油状物質として得た。

実施例7-19

 $2-(2-E \ Fird + \nu x + \nu) - 4 - \lambda F + \nu - 3 - \alpha \lambda y + \nu x + \nu - N - \{2-(4-E \ Fird + \nu x + \nu) x + \nu\} \alpha \lambda x x y z F (121.9 mg、0.304 mmol、1.0eq)をDMSO(6 ml)に溶解し、水冷下、<math>F$ リエチルアミン(0.39 ml、2.7 mmol、9 eq)、三酸化硫黄ーピリジン複合体(145 mg、0.91 mmol、3 eq)を順次加えた。室温で2時間攪拌後、この反応溶液に水(20 ml)、飽和炭酸水素ナトリウム水溶液(10 ml)を順次加え、酢酸 x + ル (20 ml)で2 回抽出した。有機層をあわせて飽和塩化アンモニウム水溶液(40 ml)、飽和食塩水(40 ml)で順次洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸 x + ル λ x + λ x を用いて精製することにより、2 - λ 2 - λ 2 - λ 2 - λ 2 - λ 3 - λ 3 を無色結晶として、3 - λ 3 を無色結晶として、3 - λ 5 - λ 2 - λ 3 - λ 2 - λ 3 - λ 2 - λ 2 - λ 3 - λ 2 - λ 2 - λ 3 - λ 2 - λ 2 - λ 2 - λ 3 - λ 3 - λ 5 - λ 6 - λ 6 - λ 6 - λ 6 - λ 7 - λ 6 - λ 7 - λ 7 - λ 7 - λ 6 - λ 7 - λ 7 - λ 6 - λ 7 - λ 7 - λ 6 - λ 7 - λ 9 - λ 9

ーヒドロキシフェニル)エチル〕-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2 H-イソキノリン-1-オン(②)(103.1 mg、82.5%)を無色油状物質として得た。

- ②: ${}^{1}H NMR$ (CDC1₃) δ : 7.85(1H, d, J=8.7Hz),
- 7. 09(2H, d, J=8.5Hz), 6. 89(1H, d, J=8.7Hz), 6. 77(2H, d, J=8.5Hz).
- 5.50(1H, bs), 4.82(1H, m), 4.1-4.0(1H, m), 4.0-3.9(2H, m), 3.88(3H, s),
- 3.7-3.5(1H, m), 3.3-3.2(1H, m), 3.0-2.8(3H, m), 2.3-2.2(1H, bs),
- 1.8-1.7(2H, m), 1.5-1.3(4H, m), 0.92(3H, t, $J=7.1H_2$).

 $FABMS (m/z) : 400[M^+H^+] (80), 382(60).$

IR (Neat, cm⁻¹): 3304, 2934, 1631, 1597, 1468, 1281.

実施例7-20

 $2-(2-\text{E}^{\dagger} \text{I} \text{P} + \text{P} \times \text{F} + \text{P}) - 4-\text{F} \times \text{F} \times \text{P} - 3-\text{C} \times \text{F} \times \text{P} \times \text{P} - \text{N} - (2-\text{E}^{\dagger} \text{I}) \times \text{P} \times \text{P$

実施例7-21

2-[2-(4-ベンジルオキシフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン(1.21g、2.6mmol、

なお、当該化合物は実施例 7-19 ①と同じ化合物であり、その物性等も実施例 7-19 ①と同じである。

実施例7-22

 $2-[2-(4-E)^2-2-2]$ エチル] -6-2+2-2-2 ルオキシー2H-4 ソキノリンー1-3 (681.8 mg、1.79 mm o 1、1.0 eq)をジクロロメタン(7 m 1)に溶解し、水冷下、2, 6-ルチジン(575 mg、5.36 mm o 1、3 eq)、無水酢酸(1.13 g、5.36 mm o 1、3 eq)を順次加えた。室温で12 時間攪拌後、3 時間加熱環流した。反応溶液を室温まで冷却した後、水(10 m 1)、10 %塩酸水溶液(10 m 1)を順次加え、ジクロロメタン(30 m 1)で2 回抽出した。有機層をあわせて飽和食塩水(40 m 1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/1)を用いて精製することにより、4-[2-(6-2+2+2-1)] を用いて精製することにより、4-[2-(6-2+2+2-1)] で、2-(6-2+2+2-1) で、2-(6-2+2-1) で

実施例7-23

4-[2-(6-)++y-1-)+y-5-ペンチルオキシー1H-1+y+ノリン-2-1ル)エチル〕フェニルアセテート(5.65g、13.0 mm o 1、1.0 e q)を酢酸(60 m 1)に溶解し、10%パラジウムー炭素触媒(5. 6 g、水分含量 5 0 %)を加えた後、水素気流下、 8 時間、 6 0 ~ 7 0 $^{\circ}$ C、 3 k g f / c m² の圧力下で加熱攪拌した。反応溶液を室温まで冷却した後セライト濾過し、濾液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1 / 1)を用いて精製することにより、 4 $^{\circ}$ $^{\circ$

実施例 7-24

4-[2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1H-イソキノリン-2-イル) エチル] フェニルアセテート(720mg、1. 69mmo1、1eq) をメタノール(10m1)に溶解し、アンモニア水(10m1)を加えた後、2時間室温攪拌した。反応溶液を減圧濃縮して、残渣に水(<math>20m1)を加え、酢酸エチル(30m1)で2回抽出した。有機層をあわせて1N塩酸水溶液(<math>10m1)、飽和食塩水(50m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/1)を用いて精製することにより、2-[2-(4-ヒドロキシフェニル) エチル] -6-メトキシ-5-ペンチルオキシ-3, <math>4-ジヒドロ-2H-4ソキノリン-1ーオン(396mg、61.0%)を無色結晶として得た。

実施例7-25

4-[2-(6-)++>-1-)++>-1-) ステルオキシー3, 4-ジヒドロー1 Hーイソキノリンー2 ーイル) エチル] フェニルアセテート(25 m g、0.0588 mmo1、1.0 eq)をメタノール(1 m 1)に溶解し、アンモニア水(3 滴)を加えた後、1 時間室温攪拌した。反応溶液を減圧濃縮して、無色固体(21 m g、93.1%)を得た。これを酢酸エチルとメタノールの混合液より再結晶精製することにより、2-[2-(4-)+1-) エチル)-6-メトキシー7-ペンチルオキシー3, 4-ジヒドロー2 H-イソキ

ノリン-1-オン(15mg、66.5%)を無色針状晶として得た。 実施例7-26

実施例7-27

実施例7-28

4-{2-((2-アセトキシ-2-ベンゼンスルファニルエチル)-(3-メトキシ-4-ペンチルオキシベンゾイルアミノ)}エチル]フェニルアセテートを用い、実施例7-27と同様にして、2-(2-(4-ヒドロキシフェニル

実施例7-29

2-(2-(4-r)+r) エチル エチル]-(6-r)+r) - 7-ペンチルオキシ) -2 Hーイソキノリンー1ーオン(300 mg、0.708 m mol、1.0 eq)を酢酸(5 ml)溶液に10 %パラジウムー炭素触媒(水分含量 50 %)(100 mg)を加えた後、水素気流下、室温、3 kg f / c m 2 の圧力下で 16 時間攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、4-(2-(6-r)+r)-1-r+r)-7-ペンチルオキシー <math>3, 4-ジ ヒドロー 2 Hーイソキノリンー 2 ーイル) エチル] フェニルアセテート(90 mg、47.7%)を無色結晶として得た。

実施例 7 - 3 0

4, 5-iッペンチルオキシー3-iヒドロキシー2-i(2-i(4-i)ロフェニル)エチル〕ー2, 3-iジヒドロイソインドールー1-iオン(1. 04g、2. 2mmol、1. 0eq)をジクロロメタン(20ml)に溶解し、トリエチルシラン(0. 70ml、4. 4mmol、2. 0eq)を加え、10分間室温で攪拌した。これにトリフルオロ酢酸(2. 2ml)を加え、さらに 4時間攪拌した。この反応溶液に飽和炭酸水素ナトリウム水溶液(40ml)を加え、酢酸エチル(30ml)で3回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、4, 5-iジペンチルオキシー2-i(2-i)エートロフェニル)エチル)ー2-i, 3-i0 に次チレインドールー1-i1 にない。12 によっと、13 を決黄色結晶として得た。

実施例7-31

ブ4 A(100 mg)を混合し、0℃まで冷却した。N-20 ロロスクシンイミド(44.7 mg、0.33 mmo1)を加えて、室温で24時間攪拌した。飽和食塩水(0.5 m1)を加えて、水層を酢酸エチル(5 m1)で5 回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥後、乾燥剤を濾別し、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィーで2回(クロロホルム/メタノール=50/1~10/1、ヘキサン/酢酸エチル=1/2)精製することにより2-〔2-(4-ヒドロキシフェニル)エチル〕-5-メトキシ-4-ペンチルアミノー2、3-ジヒドロイソインドール-1-オン(12.4 mg、15%)を無色結晶として得た。

実施例7-32

実施例2-50で得られたN-(2-(4-ヒドロキシフェニル)エチル)-0. 21mmo1)、モレキュラーシーブ4A(200mg)および塩化メチレ ン(1 m l) を混合し、この溶液を0℃に冷却した。N-クロロスクシンイミド (29.4 mg、0.22 mmo1)を加えて、室温で5時間攪拌した。反応溶 液を濾過し、濾液に酢酸エチル(20ml)を加えて、飽和食塩水(5ml)で 2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して 、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル =1/1)を用いて精製することにより淡黄色油状物質を得た。残った原料を反 応させるため、さらにこの油状物質にモレキュラーシーブ4A(200mg)お よび塩化メチレン(1m1)を混合し、この溶液を0℃に冷却した後、N-クロ ロスクシンイミド(17.4mg、0.13mmol)を加えて室温で2時間攪 拌した。反応溶液を濾過し、濾液に酢酸エチル(20m1)を加えて、飽和食塩 水(5m1)で1回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後 、減圧濃縮して、得られた残渣を薄層クロマトグラフィー(クロロホルム/メタ ノール=20/1)を用いて精製することにより2-[2-(4-ヒドロキシフ ェニル) エチル) - 6 - メトキシ- 7 - ペンチルオキシベンゾ [d] イソチアゾ ールー3-オン(34mg、42%)を無色結晶として得た。 実施例7-33

実施例 2-120で得られた 2-(2-E)ドロキシメチル) -3, 4-EスペンチルオキシーN -[2-(4-E)ロフェニル)エチル〕ベンズアミド(19. 83g、42.0mmol、1.0eq)をDMSO(<math>200ml)に溶解し、冷水で冷やしながら、三酸化硫黄ーピリジン複合体(20.1g、12.6mmol、3eq)、トリエチルアミン(52.7mg、37.8mmol、9eq)を順次加えた。反応溶液を室温まで昇温した後、この温度で 2時間攪拌した。この反応液に飽和炭酸水素ナトリウム水溶液(300ml)を加え、酢酸エチル(400ml)で抽出した。有機層を飽和食塩水(300ml)で順次洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮することにより3-Eドロキシー2-[2-(4-E)ロフェニル)エチル〕 -4, 5-Eスペンチルオキシー 2, 3-Eとドロイソインドールー1ーオン(32.2g、overweight)を黄色油状物質として得た。

実施例7-34

実施例 7 - 3 5

実施例7-34で得られた2-[2-(4-r)]フェニル)エチル]-4,

5ービスペンチルオキシー2、3ージヒドロイソインドールー1ーオン(22.37g、52.7mmo1、1.0eq)をメタノール(100m1)に溶解し、この溶液に10% HC1ーメタノール溶液(86.0g、236mmo1、4.4eq)を加え、30分間室温で攪拌した。溶媒を減圧濃縮した後、得られた残渣をヘキサンで洗浄し、エタノールに加熱溶解した。1時間室温冷却の後、氷冷下攪拌し、晶析した結晶を遮取し、冷エタノールで洗浄した。一昼夜40℃で真空乾燥することにより2ー〔2ー(4ーアミノフェニル)エチル〕ー4、5ービスペンチルオキシー2、3ージヒドロイソインドールー1ーオン 塩酸塩(17.451g、72%)を無色針状晶として得た。

実施例7-36

実施例7-37

実施例7-36で得られた5-メトキシ-2-(2-(4-ニトロフェニル) エチル) -4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オンを用いて、実施例7-34と同様にして2-(2-(4-アミノフェニル) エチル) -5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1 -オンを無色結晶として得た。

実施例7-38

実施例 7 - 2 3 と同様にして得られた 2 - 〔2 - 〔4 - アセトアニリニル〕エチル〕- 7 - メトキシー 8 - ペンチルオキシー 3, 4 - ジヒドロー 2 H - イソキノリンー 1 - オン〔2 3 9.4 mg、3.8 mmol、1.0 eq〕をエタノール〔2 0 ml〕に溶解し、この溶液に 3 N塩酸〔2 0 ml〕を加えて、加熱還流した。反応溶液を減圧濃縮した後、得られた残渣を、エタノールーエチルエー

テルで再結晶精製することにより2-(2-(4-r))フェニル)エチル)-7-メトキシー8-%ンチルオキシー3, 4-ジヒドロー2 H-イソキノリンー1-オン 塩酸塩(165 mg、70.0%)を無色結晶として得た。 実施例7-39

実施例7-40

実施例7-39で得られた7-メトキシ-3-〔2-〔4-ニトロフェニル) エチル〕-8-ペンチルオキシ-1 H-キナゾリン-2, 4-ジオン (4.5. 0 g、1.05 mm o 1)、 エタノール(1.300 m 1)およびジオキサン(7.00 m 1)を混合し、この溶液に1.0%パラジウムー炭素触媒(4..5 g)を加えた。水素気流下室温で1.6..5 時間攪拌した後に反応溶液を濾過し、濾液に活性炭(2..6 g)を加え、5.0 $\mathbb C$ で 1 時間攪拌した。この反応溶液を濾過して、溶媒を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/酢酸エチル=3/1)に付し、析出した粗結晶をエタノールーへキサンから再結晶することにより3-[2-(4-アミノフェニル)エチル〕-7-メトキシ-8-ペンチルオキシ-1 H-キナゾリン-2, 4-ジオン(3.3..82 g、

81%)を淡黄色結晶として得た。

実施例7-41

実施例7-40で得られた3-[2-(4-r)]フェニル)エチル]-7-メトキシ-8-ペンチルオキシ-1 H-キナゾリン-2, 4-ジオン(28. 0 g、70. 4 m m o 1) とエタノール(5 0 0 m 1) を混合し、結晶が完全に溶解するまで加熱環流した。この溶液に濃塩酸(5. 9 3 m 1、7 0. 4 m m o 1) を滴下し、さらにエタノール(2 0 0 m 1) を加えて室温まで冷却した。生成した結晶を濾過することにより3-[2-(4-r)]フェニル)エチル)-7-メトキシ-8-ペンチルオキシ-1 H-キナゾリン-2, 4-ジオン 塩酸塩(2 8. 2 4 4 8 8 9 2 8) を無色結晶として得た。

実施例7-42

実施例2-48で得られた { (4-メトキシー2-ニトロー3-ペンチルオキシベンゾイル) ー [2-(4-ニトロフェニル) エチル] アミノ} 酢酸エチルエステル (70.0mg、0.135mmol) とエタノール (2ml) を混合し、10%パラジウムー炭素触媒 (30mg)を加えた。水素気流下室温で10.5時間攪拌した後に反応溶液を濾過し、溶媒を減圧濃縮した。析出した粗結晶にトルエン (10ml) およびpートルエンスルホン酸一水和物 (1mg、0.0053mmol) を加えて3.5時間加熱還流した。この反応溶液に酢酸エチル (20ml) を加え、有機層を飽和重曹水 (5ml)、飽和食塩水 (5ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=10/1)を用いて精製することにより4-[2-(4-アミノフェニル)エチル] -8-メトキシー9-ペンチルオキシー3,4-ジヒドロー1H-ヘンゾ[e] [1,4] ジアゼピンー2,5-ジオン (35mg、2steps 63%)を無色結晶として得た。

実施例7-43

実施例2-46で得られた2-アミノー4-メトキシーN-〔2-〔4-二ト

ロフェニル)エチル〕-3-ペンチルオキシベンズアミド(300 m g、0.74 7 m m o 1)、アセトン(3 m l)および酢酸(1.5 m l)を混合し、100 $^{\circ}$ で 2 時間撹拌した。酢酸エチル(30 m l)と水(25 m l)を加えて、有機層を分離した。有機層を飽和食塩水(20 m l)で 2 回、飽和重曹水(20 m l)、飽和食塩水(20 m l)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、乾燥剤を濾別し、減圧濃縮することにより 7-メトキシー 2, 2-ジメチルー 3-〔2-(4-ニトロフェニル)エチル〕-9-ペンチルオキシー 2, 3-ジヒドロー 1 H - キナゾリンー 4 - オンの粗生成物を得た。

実施例7-44

実施例 2-46で得られた 2-rミノー4-yトキシーNー〔2-(4-r)ロフェニル)エチル〕 -3-ペンチルオキシベンズアミド(200 mg、0.498 mm o 1)、エタノール(3 m 1)およびアセチルアセトン(0.13 m 1、1.25 mm o 1)を混合し、この溶液に濃塩酸 1 滴を加えて 2.5 時間加熱環流した。酢酸エチル(30 m 1)と飽和食塩水(30 m 1)を加えて、有機層を分離し、この有機層を飽和重曹水(20 m 1)および飽和食塩水(20 m 1)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、乾燥剤を遮別し、減圧濃縮することにより 7-yトキシー2-yチルー3-[2-(4-r)ロフェニル)エチル〕 -8-ペンチルオキシー 3 Hーキナゾリンー 4-オンの粗生成物を得た。

実施例7-45

実施例2-61で得られた2-7ミノー4-メトキシー3-ペンチルオキシーN-(2-ピリジンー4-イルエチル)ペンズアミド(100 mg、0.280 mm o l)を用い、実施例7-39と同様の方法により7-メトキシー8-ペンチルオキシー3-(2-ピリジンー4-イルエチル)-1 H-キナゾリン-2,4-ジオン(103 mg、96%)を無色結晶として得た。

実施例 7 - 4 6

実施例2-61で得られた2-アミノ-4-メトキシ-3-ペンチルオキシ-

実施例7-47

実施例 2-6 1 で得られた 2-r > 1-4-y > 1-4-y > 1-3 > 1

実施例7-48

実施例2-51で得られた〔3-メトキシ-2-ペンチルオキシ-6-(2-ピリジン-4-イルエチルカルバモイル)フェニル〕酢酸エチルエステルの粗生 成物、エタノール(400m1)およびナトリウムエトキシド(1.98g、29.1mmo1)を混合し、90 でで30 分間攪拌した。溶媒を減圧濃縮した後、1 N塩酸(100m1)、水(100m1)およびヘキサンー酢酸エチル溶液(2:1 溶液、150m1)を加えて、水層を分離した。有機層を水(100m1))と 1 N塩酸(100m1)の溶液で抽出した後、水層を合わせてヘキサンー酢酸エチル溶液(2:1 溶液、150m1)で洗浄した。氷冷下水層に炭酸ナトリウムを加えて溶液を塩基性にした後、水層を酢酸エチル(300m1)で 2m 抽出し、無水硫酸マグネシウムで乾燥した。乾燥剤を遮別後、溶媒を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/4)を用いて精製することにより6- メトキシー5-ペンチルオキシー6-(2-ピリジン-4-イルエチル)-4 H-イソキノリン-1, 3-ジオン(31.51g、2steps 67.5%)を淡黄色結晶として得た。実施例 <math>7-49

実施例 7 - 4 8で得られた 6 - メトキシー 5 - ペンチルオキシー 2 - (2 - ピリジンー 4 - イルエチル) - 4 H - イソキノリンー 1 、 3 - ジオン(3 0 、9 7 g、8 0 、9 8 mm o 1)、塩化メチレン(1 5 0 m 1)およびメタノール(1 5 0 m 1)を混合し、この溶液に氷冷下水素化ホウ素ナトリウム(6 、1 2 7 g、1 6 2 mm o 1)をゆっくりと加えた。室温で 2 時間攪拌した後、氷冷下濃塩酸を p H = 1 になるまで加え、室温で 3 0 分間攪拌した。飽和炭酸水素ナトリウム水溶液を加えて溶液を塩基性にし、水層をクロロホルム(5 0 0 m 1)で抽出した。無水硫酸マグネシウムで乾燥、乾燥剤を濾別後、溶媒を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)を用いて精製した。このものに 4 N 塩酸ージオキサン溶液(4 0 m 1)を加え、さらに酢酸エチル(2 0 0 m 1)およびヘキサン(1 0 0 m 1)を加え生成した結晶を遮取した。この結晶を酢酸エチルで 2 回加熱洗浄することにより 6 - メトキシー 5 ーペンチルオキシー 2 - (2 - ピリジンー 4 - イルエチル) - 2 H - イソキノリンー1 - オン塩酸塩(2 2 、4 1 2 g、6 8 、7 %)を無色結晶として得た。

実施例7-50

6-メトキシー5-ペンチルオキシー1, 2, 3, 4ーテトラヒドロイソキノリン (116 mg、0.465 mmol)、(4ーニトロフェニル) 酢酸 (101.1 mg、0.558 mmol) および1ーヒドロキシベンゾトリアゾール水和物 (81.7 mg、0.605 mmol)をDMF (2 ml)に溶解し、この溶液にWS C塩酸塩 (125 mg、0.651 mmol)を氷冷下で加えた。室温で3時間攪拌後、この反応溶液に酢酸エチル (3 ml)と飽和炭酸水素ナトリウム水溶液 (3 ml)を加えて、有機層を分離した。有機層を無水硫酸ナトリウムで乾燥、乾燥剤を濾別後、溶媒を減圧濃縮することにより1ー(6ーメトキシー5ーペンチルオキシー3,4ージヒドロー1Hーイソキノリンー2ーイル)ー2ー(4ーニトロフェニル)エタノンの粗生成物を得た。このものをそのまま次の反応に用いた。

実施例7-51

実施例 7-50で得られた1-(6-メトキシ-5-ペンチルオキシ-3,4 -ジヒドロ-1 H-イソキノリン-2-イル) -2-(4-ニトロフェニル) エタノンの粗生成物をエタノール (4m1) に溶解し、この溶液に10%パラジウムー炭素触媒 (38mg) を加えた。水素気流下 3 時間攪拌した後、反応液を濾過、溶媒を減圧濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー (4+y) 作酸エチル=1/2)を用いて精製することにより2-(4-r) ミノフェニル)-1-(6-メトキシ-5-ペンチルオキシ-3,4-ジヒドロ-1 H-イソキノリン-2-イル)エタノン(159mg、2steps 89%)を無色油状物質として得た。

上記実施例 7-1~7-51で得られた化合物の物性を表111~127に示す。

実施例7-52~7-102

上記実施例 7-1~7-51と同様にして、実施例 7-52~7-102に示す化合物を得た。当該化合物の物性を表127~144に示す。

実施例8-1

7-メトキシクマリン(300 mg、2.78 mmol)をモルホリン(3 ml)に溶解し、2 時間加熱還流した。この反応溶液を室温まで冷却した後に水(10 ml)、飽和クエン酸(50 ml)を加え、酢酸エチル(50 ml)で2 回抽出した。有機層をあわせて飽和食塩水(100 ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(10 ml)で酸エチル=10 を用いて精製することにより、(10 ml)を一(10 ml)を無色結晶として得た。

実施例8-2

実施例 8 - 3

4-メトキシー3-ペンチルオキシ桂皮酸(500 mg、2.62 mmo1、1 eq)と1-ヒドロキシベンゾトリアゾール水和物(371 mg、2.75 mo1、1.05 eq)をDMF(5 m1)に溶解し、この溶液にモルホリン(

 $684\,\mathrm{mg}$ 、7. $85\,\mathrm{mmol}$ 、3. $0\,\mathrm{eq}$)とWSC塩酸塩($526\,\mathrm{mg}$ 、2. $75\,\mathrm{mmol}$ 、1. $05\,\mathrm{eq}$)を順次氷冷下で加えた。室温で $12\,\mathrm{ehll}$ 提押後、この反応溶液に氷水($5\,\mathrm{ml}$)、飽和炭酸水素ナトリウム水溶液($5\,\mathrm{ml}$)を順次加え、酢酸エチル($20\,\mathrm{ml}$)で2回抽出した。有機層をあわせて飽和食塩水($40\,\mathrm{ml}$)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー($n-\mathrm{ne}$ サン/酢酸エチル= 1/2)を用いて精製することにより、(E) $-3-(3-\mathrm{ne}$ ペンチルオキシー4ーメトキシフェニル) $-1-\mathrm{ne}$ ルホリンー4ーイループロプー2ーエン- $1-\mathrm{ne}$ ($343\,\mathrm{mg}$)、49.8%)を無色固体として得た。実施例 8-4

窒素気流下、4-メトキシ-3-ペンチルオキシ安息香酸(250mg、1.05mmol、1eq)を塩化チオニル(1.05ml)に溶解し、<math>70 ℃で5時間攪拌した。これを室温まで冷却した後減圧下、過剰の塩化チオニルを留去した。残渣を、氷冷下モルホリン(274mg、3.15mol、3.0eq)のDMF(3ml)溶液に加えた。氷冷下で30 分間攪拌した後、更に室温で1.5時間攪拌した。この反応溶液に水(30ml)を加え、酢酸エチル(50ml)で2回抽出した。有機層をあわせて飽和食塩水(50ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー($n-\wedge$ キサン/酢酸エチル=2/1)を用いて精製することにより、4-メトキシ-3-ペンチルオキシフェニル)モルホリン-<math>4-4ルーメタノン(219mg、 $67.9%)を油状性物質として得た。上記実施例<math>8-1\sim8-4$ で得られた化合物の物性を表 $145\sim146$ に示す。実施例 $8-5\sim8-7$

上記実施例 $8-1\sim8-4$ と同様にして、実施例 $8-5\sim8-7$ に示す化合物を得た。当該化合物の物性を表 $146\sim147$ に示す。

参考例	構造式	1H NMR (δ) ppm	MS
91	MeO COOH MeO 無色結晶	CDC13,300MHz 10.72(1H, bs), 8.14(1H, d, J = 8.8 Hz), 6.64(1H,dd,J=8.8,2.3Hz), 6.51(1H, d, J = 2.3 Hz), 4.21(2H, t, J = 6.6 Hz), 3.87(3H, s), 1.83-1.95(2H, m), 1.33-1.50(4H, m), 0.95(3H, t, J = 7.0 Hz).	FAB+ 239[M+H+] (70), 221(30).
92	MeO NHPen 無色結晶	CDC13,300MHz 7.51(1H,dd,J=8.1,2.1Hz), 7.29(1H, d, J =2.1 Hz), 6.78(1H, d, J =8.1 Hz), 3.92(3H, s), 3.18(2H, t, J =7.2 Hz), 1.6-1.75(2H, m), 1.3-1.5(4H, m), 0.93(3H, t, J =6.5 Hz).	
93	PenO COOH PenO OPen 無色結晶	CDC13,300MHz 7.32(2H, s), 4.0-4.1(6H, m), 1.7-1.9(6H, m), 1.30-1.55(12H, m), 0.85-0.95(9H, m).	FAB+ 381[M+H+] (100), 310 (60).

参考例	構造式	1H NMR (δ) ppm	MS
94	MeO NPen ₂ 無色結晶	CDCl3,300MHz 8.65(1H, bs), 8.22(1H, d, J =9.0 Hz), 7.14(1H, d, J =9.0 Hz), 4.06(3H, s), 3.54(4H, bt), 1.8-2.1(1H, m), 1.0-1.4(11H, m), 0.81(6H, bt).	FAB+ 308[M+H+] (100), 250(30).
95	PenO CO ₂ H PenO OPen 無色結晶	CDC13,300MHz 7.67(1H, d, J = 16 Hz), 7.75(2H, s), 6.31(1H, d, J = 16 Hz), 3.9-4.1(6H, m), 1.7-1.9(6H, m), 1.30-1.55(12H, m), 0.87-1.0(9H, m).	FAB+ 407[M+H+] (90), 336(60).
96	PenO NHPen 無色結晶	CDC13,300MHz 7.47(1H,dd,J=8.4,2.1Hz), 7.28(1H, d, J =2.0 Hz), 6.76(1H, d, J =8.4 Hz), 4.06(2H, t, J =6.6 Hz), 3.18(2H, t, J =7.1 Hz), 1.78-1.92(2H, m), 1.62-1.74(2H, m), 1.30-1.53(8H, m), 0.94(3H, t, J =7.0 Hz), 0.93(3H, t, J =7.0 Hz).	FAB+ 294[M+H+] (50), 277(60), 185(100).

参考例	構造式	IH NMR (δ) ppm	MS
97	MeO CO ₂ H NHPen 黄色結晶	CDC13,300MHz 7.71(1H, d, J = 16 Hz), 6.86(1H,dd,J=8.2,2.0Hz), 6.77(1H, s), 6.74(1H, d, J = 8.2 Hz), 6.29(1H, d, J = 16 Hz), 3.88(3H, s), 3.14(2H, t, J = 7.1 Hz), 1.6-1.75(2H, m), 1.3-1.5(4H, m), 0.94(3H, t, J = 7.0 Hz).	FAB+ 264[M+H+] (50), 237(100), 206(40).
98	MeO CO ₂ H NPen ₂ 黄色結晶	CDC13,300MHz 7.72(1H, d, J = 16 Hz), 7.18(1H,dd,J=8.4,2.0Hz), 7.12(1H, d, J = 2.0 Hz), 6.85(1H, d, J = 8.4 Hz), 6.30(1H, d, J = 16 Hz), 3.88(3H, s), 3.08(4H, t, J = 7.7 Hz), 1.37-1.54(4H, m), 0.25-1.36(8H, m), 0.87(6H, t, J = 6.9 Hz).	FAB+ 334[M+H+] (100), 276(30).
99	MeO CO ₂ H NPen 淡黄色油状	CDC13,300MHz 7.77(1H,dd,J=8.5,2.1Hz), 7.66(1H, d, J = 2.0 Hz), 6.88(1H, d, J = 8.5 Hz), 3.94(3H, s), 3.04(2H, t, J = 7.8 Hz), 2.82(3H, s), 1.45-1.60(2H, m), 1.2-1.4(4H, m), 0.89(3H, t, J = 6.9 Hz).	FAB+ 252[M+H+] (100), 194(50).

参考例	構造式	1H NMR (δ) ppm	MS
100	PenO NHPen 無色結晶	CDC13,300MHz 7.72(1H, d, J = 16 Hz), 6.84(1H,dd,J=8.1,1.8Hz), 6.77(1H, d, J = 2.4 Hz), 6.72(1H, d, J = 8.1 Hz), 6.30(1H, d, J = 16 Hz), 4.03(2H, t, J = 6.3 Hz), 3.15(2H, t, J = 7.1 Hz), 1.75-1.90(2H, m), 1.60-1.73(2H, m), 1.30-1.50(8H, m), 0.94(6H, t, J = 6.9 Hz).	FAB+ 320[M+H+] (70), 262(20).
101	PenHN OPen 無色結晶	CDC13,300MHz 7.69(1H,dd,J=8.1,1.5Hz), 7.41(1H, d, J = 1.8 Hz), 6.54(1H, d, J = 8.1 Hz), 4.05(2H, t, J = 6.5 Hz), 3.20(2H, t, J = 7.1 Hz), 1.75-1.90(2H, m), 1.60-1.75(2H, m), 1.30-1.50(8H, m), 0.85-1.2(6H, m).	FAB+ 294[M+H+] (50), 293(100), 236(20).
102	MeO NPen 淡黄色結晶	CDCl3,300MHz 7.72(1H, d, J = 16 Hz), 7.17(1H, bs), 6.88(1H, bs), 6.33(1H, s, J = 16 Hz), 3.92(3H, s), 3.07(2H, bs), 2.82(3H, bs), 1.4-1.6(2H, m), 1.2-1.4(4H, m), 0.88(3H, t, J = 6.8 Hz).	FAB+ 278[M+H+] (100), 220(30).

参考例	構造式	IH NMR (δ) ppm	MS
103	MeO S 無色結晶	CDC13,300MHz 7.72(1H, d, J = 16 Hz), 7.42(1H, d, J = 2.1 Hz), 7.36(1H,dd,J=8.5,2.1Hz), 6.85(1H, d, J = 8.5 Hz), 6.33(1H, d, J = 16 Hz), 3.93(3H, s), 2.91(2H, t, J = 7.4 Hz), 1.60-1.75(2H, m), 1.30-1.50(4H, m), 0.91(3H, t, J = 7.1 Hz).	FAB+ 281[M+H+] (60), 280(100).
104	CO ₂ H N O 無色結晶	CDC13,300MHz 7.73(1H, d, J =8.4 Hz), 7.43(1H, s), 6.54(1H, d, J =8.4 Hz), 4.05(2H, t, J =6.3 Hz), 2.94(3H, s), 1.73-1.90(2H, m), 1.30-1.55(4H, m), 0.94(3H, t, J =6.9 Hz).	FAB+ 238[M+H+] (80), 220(60), 169(100).
105	PenHN + CO ₂ H HN	CDCl3,300MHz 7.67(1H,dd,J=8.4,1.8Hz), 7.41(1H, d, J =1.8 Hz), 6.61(1H, d, J =8.4 Hz), 3.18(2H, t, J =8.3 Hz), 3.12(2H, t, J =8.3 Hz), 1.6-1.8(4H, m), 1.30-1.50(8H, m), 0.94(6H, t, J =6.9 Hz).	293[M+H+] (40), 292(100).
·	無色結晶		

参考例	構造式	1H NMR (δ) ppm	MS
106	PenO CO ₂ H N M 無色結晶	CDCl3,300MHz 7.71(1H,dd,J=8.4,2.1Hz), 7.62(1H, d, J =2.1 Hz), 6.86(1H, d, J =8.4 Hz), 4.06(2H, t, J =6.6 Hz), 3.05(2H, t, J =7.7 Hz), 2.83(3H, s), 1.80-1.95(2H, m), 1.20-1.65(10H, m), 0.94(6H, t, J =7.0 Hz), 0.89(6H, t, J =7.0 Hz).	FAB+ 308[M+H+] (20), 185(100).
107	PenO S 次黄色油状	CDC13,300MHz 9.85(1H, s), 7.72(1H, d, J = 2.1 Hz), 7.63(1H,dd,J=8.4,1.8Hz), 6.91(1H, d, J = 8.4 Hz), 2.94(2H, t, J = 7.4 Hz), 1.80-1.93(2H, m), 1.6-1.78(2H, m), 1.20-1.60(8H, m), 0.94(3H, t, J = 7.2 Hz), 0.92(3H, t, J = 7.2 Hz).	FAB+ 295[M+H+] (80), 294(100), 225(40).
108	PenO Br	CDCl3,300MHz 8.29(1H, d, J = 2.1 Hz), 8.02(1H,dd,J=9.0,2.4Hz), 6.91(1H, d, J = 9.0 Hz), 4.10(2H, t, J = 6.5 Hz), 1.80-1.95(2H, m), 1.30-1.60(4H, m), 0.95(3H, t, J = 7.2 Hz).	FAB+ 288[M+H+] (30), 218(30).
	無色結晶		

***		111 NIATO (8)	MC
参考例	構造式 	1H NMR (δ) ppm	MS
109	PenO S 無色結晶	CDCl3,300MHz 7.71(1H, d, J = 16 Hz), 7.41(1H, d, J = 2.4 Hz), 7.33(1H,dd,J=8.7,1.8Hz), 6.83(1H, d, J = 8.7 Hz), 6.31(1H, d, J = 16 Hz), 4.06(2H, t, J = 6.5 Hz), 2.90(2H, t, J = 7.4 Hz), 1.80-1.95(2H, m), 1.60-1.77(2H, m), 1.30-1.56(8H, m), 0.94(3H, t, J = 8.0 Hz), 0.91(3H, t, J = 8.0 Hz).	FAB+ 337[M+H+] (50), 266(50).
111	MeO S 無色結晶	CDC13,300MHz 7.95(1H, s), 7.93(1H, d, J =8.4 Hz), 6.88(1H, d, J =8.4 Hz), 3.97(3H, s), 2.95(2H, t, J =7.4 Hz), 1.65-1.80(2H, m), 1.30-1.55(4H, m), 0.91(3H, t, J =7.2 Hz).	FAB+ 255[M+H+] (30), 254(40).
112	PeO S	CDC13,300MHz 7.94(1H, d, J = 2.0 Hz), 7.89(1H,dd,J=8.5,2.0Hz), 6.85(1H, d, J = 2.0 Hz), 4.10(2H, t, J = 6.6 Hz), 2.94(2H, t, J = 7.4 Hz), 1.77-1.95(2H, m), 1.60-1.75(2H, m), 1.3-1.5(8H, m), 0.91(3H, t, J = 7.1 Hz).	FAB+ 311[M+H+] (50), 310(100), 240(40).
	無色結晶		

参考例	構造式	1H NMR (δ) ppm	MS
113	MeO Y COOH MeO		
114	MeO NO ₂ 無色結晶		
115	MeO OH NH		

<u></u>			
参考例	構造式	1H NMR (δ) ppm	MS
116	MeO OH NH OH 茶色結晶	DMSO-d6,300MHz 7.39(1H,d,J=8.8Hz) 6.48(1H,d,J=8.8Hz) 3.80(3H,s) 3.32(2H,t,J=6.9Hz) 1.35-1.50(2H,m) 1.20-1.33(4H,m) 0.85(3H,t,J=7.0Hz)	
117	MeO NH ₂ COOH NH ₂ 淡黄色結晶	CDC13,300MHz 7.87(1H,d,J=15.6Hz) 7.17(1H,d,J=8.7Hz) 6.39(1H,d,J=8.7Hz) 6.27(1H,d,J=15.6Hz) 3.96(2H,t,J=6.8Hz) 3.86(3H,s) 1.70-1.85(2H,m) 1.30-1.50(4H,m) 0.94(3H,t,J=7.1Hz)	
118	NH ₂ O OH MeO O	CDCI3,300MHz 7.37(1H,s) 6.13(1H,s) 3.94(2H,t,J=6.8Hz) 3.86(3H,s) 1.75-1.85(2H,m) 1.35-1.50(4H,m) 0.93(3H,t,J=7.2Hz)	

参考例	構造式	1H NMR (δ) ppm	MS
119	MeO OH SMe SMe 無色結晶	CDC13,300MHz 7.86(1H,d,J=8.8Hz) 6.84(1H,d,J=8.8Hz) 4.26(2H,s) 3.97(2H,t,J=6.7Hz) 3.91(3H,s) 2.09(3H,s) 1.75-1.90(2H,m) 1.30-1.50(4H,m) 0.95(3H,t,J=7.1Hz)	FAB+ 299[M+H+] (50) 289(60)
120	Br CO ₂ H OPen 無色結晶	CDC13,300MHz 8.29(1H, d, J =2.1 Hz) 8.02(1H, dd, J =9.0, 2.4 Hz) 6.91(1H, d, J =9.0 Hz) 4.10(2H, t, J =6.5 Hz) 1.80-1.95(2H, m) 1.30-1.60(4H, m) 0.95(3H, t, J =7.2 Hz)	288[M+H+] (30) 218(30)
121	COOH S O 無色結晶	CDC13,300MHz 7.66(1H,d,J=9.0Hz) 7.47(1H,s) 7.19(1H,d,J=9.0Hz) 4.09(2H,t,J=6.6Hz) 2.93(2H,t,J=7.4Hz) 1.30-1.90(12H,m) 0.94(3H,t,J=7.5Hz) 0.92(3H,t,J=7.5Hz)	FAB+ 311[M+H+] (50) 310(100) 240(40)
	無色結晶		

T22 MeS	参考例	構造式	IH NMR (δ) ppm	MS
TO2H 7.71(1H.d.J=16.2Hz) 7.08-7.19(2H,m) 6.97(1H,s) 6.38(1H,d.J=16.2Hz) 4.06(2H,LJ=6.5Hz) 2.912(2H,LJ=7.5Hz) 1.30-1.95(12H,m) 0.87-0.98(6H,m) CO2H CO2H CO2H CO2H CO3,300MHz 7.72(1H,d.J=15.9Hz) 7.08-7.15(2H,m) 6.96(1H,s) 6.96(1H,s) 6.39(1H,d.J=15.9Hz) 4.06(2H,LJ=6.5Hz) 2.45(3H,s) FAB+ 337[M+H+ (40) 336(100) FAB+ 281[M+H+ (20) 280(40)	122	MeS	CDCl3,300MHz 7.71(1H,d,J=8.2Hz) 7.48(1H,s) 7.14(1H,d,J=8.2Hz) 4.11(2H,t,J=6.5Hz) 2.47(3H,s) 1.80-1.90(2H,m) 1.30-1.55(4H,m)	FAB+ 255[M+H+] (30)
7.72(1H,d,J=15.9Hz) 7.08-7.15(2H,m) 6.96(1H,s) 6.39(1H,d,J=15.9Hz) 4.06(2H,L)=6.5Hz) 2.45(3H,s)	123	s	7.71(1H,d.J=16.2Hz) 7.08-7.19(2H,m) 6.97(1H,s) 6.38(1H,d.J=16.2Hz) 4.06(2H,t.J=6.5Hz) 2.912(2H,t.J=7.5Hz) 1.30-1.95(12H,m)	337[M+H+] (40)
1.80-1.90(2H,m) 1.35-1.60(4H,m) 0.95(3H,t,J=7.4Hz)	124	MeS	7.72(1H,d,J=15.9Hz) 7.08-7.15(2H,m) 6.96(1H,s) 6.39(1H,d,J=15.9Hz) 4.06(2H,t,J=6.5Hz) 2.45(3H,s) 1.80-1.90(2H,m) 1.35-1.60(4H,m)	281[M+H+] (20)

参考例	構造式	1H NMR (δ) ppm	MS
125	COOH N 無色結晶	CDC13,300MHz 7.72(1H,d,J=15.9Hz) 7.11(1H,d,J=8.2Hz) 7.10(1H,s) 6.82(1H,d,J=8.2Hz) 6.30(1H,d,J=15.9Hz) 4.05(2H,t,J=6.6Hz) 3.05(2H,t,J=7.8Hz) 2.81(3H,s) 1.80-1.95(2H,m) 1.20-1.65(10H,m) 0.94(3H,t,J=7.1Hz) 0.89(3H,t,J=7.1Hz)	
126	CO ₂ H HN O 無色結晶	CDC13,300MHz 9.04(1H,bs) 7.82(1H,d,J=8.7Hz) 7.72(1H,bs) 6.90(1H,d,J=8.7Hz) 4.11(2H,t,J=6.6Hz) 2.42(2H,t,J=7.5Hz) 1.63-1.94(4H,m) 1.33-1.53(6H,m) 0.96(6H,t,J=7.4Hz)	
127	CO₂H N N N N N N N N N N N N N N N N N N N		FAB+ 321[M+H+] (60) 219(100)

参考例	構造式	1H NMR (δ) ppm	MS
128	MeO CO ₂ H MeO HN O 無色結晶	CDC13,300MHz 9.05(1H,bs) 7.83(1H,d,J=8.7Hz) 6.91(1H,d,J=8.7Hz) 3.95(3H,s) 2.41(2H,t,J=7.5Hz) 1.65-1.80(2H,m) 1.35-1.48(2H,m) 0.95(3H,t,J=7.3Hz)	FAB+ 252[M+H+] (70) 185(100)
129	CO ₂ H NH NH N	DMSO-d6,300MHz 12.8(1H,s) 9.71(1H,s) 8.40(1H,s) 8.32(1H,d,J=8.4Hz) 7.52(1H,d,J=8.4Hz) 7.59(1H,s) 4.07(2H,t,J=6.6Hz) 1.75-1.83(2H,m) 1.30-1.50(4H,m) 0.90(3H,t,J=7.1Hz)	FAB+ 252[M+H+] (100) 182(100)
130	O ₂ N COOH O ₂ N		

表 14

参考例	構造式	IH NMR (δ) ppm	MS
131	H_2N CO_2H 次黄色結晶	DMSO-d6,300MHz 7.26(1H,d,J=15.7Hz) 7.03(1H,s) 6.89(1H,d,J=8.2Hz) 6.59(1H,d,J=8.2Hz) 6.19(1H,d,J=15.7Hz) 5.08(2H,bs) 3.98(2H,t,J=6.5Hz) 1.68-1.80(2H,m) 1.27-1.50(4H,m) 0.90(3H,t,J=7.1Hz)	FAB+ 250[M+H+] (60) 249(100)

爽施例	俳 強式	聚点	1H NMR (8) ppm	IRcm.1	MS	元素分析
1-1	Meo O Meo	106.5~ 107.3℃	CDC1,-300MHz 7.54(1H, d, J=15.5, 15.3 Hz) 7.05(2H, d, J=8.4 Hz) 7.05(2H, d, J=8.2, 1.9 Hz) 7.05(1H, dd, J=8.2, 1.9 Hz) 7.05(1H, dd, J=8.2, 1.9 Hz) 7.05(1H, dd, J=8.2, 1.9 Hz) 7.00(1H, d, J=1.9 Hz) 6.83(1H, d, J=8.2 Hz) 6.81(2H, d, J=8.4 Hz) 6.81(2H, d, J=8.4 Hz) 6.81(1H, d, J=15.5 Hz) 6.09(1H, bs) 7.00(2H, t, J=6.8 Hz) 7.01(2H, d, J=6.8 Hz) 7.02(2H, q, J=6.8 Hz) 7.02(2H, q, J=6.8 Hz)	KBr 3231 1646 1516	FAB+ 384 [M*H*J(50) 136(100)	C ₁₀ H ₁₁ N ₁₁ 理器值 C; 72.04% H; 7.62% N; 3.65% 分析值 C; 72.04% H; 7.81% N; 3.64%
1-2	Eio	126~ 127°C	(DMSO-d6, 300MHz) 9.14(1H, s) 7.97(1H, t) 7.97(1H, t) 7.31(1H, d, J=15.8 Hz) 6.93-7.12(5H, m) 6.67(2H, d, J=8.4 Hz) 6.46(1H, d, J=15.8 Hz) 4.04(2H, t, J=6.9 Hz) 3.97(2H, t, J=6.6 Hz) 3.26-3.37(2H, m) 2.63(2H, t, J=6.5 Hz) 1.66-1.77(2H, m) 1.26-1.46(7H, m)		FAB+ 398 [M*H*] (52) 276(23) 261(100) 190(85) 162(86)	
1-3	COH Retails	126- 127°C	(DMSO-d6, 300MHz) 9.15(1H, s) 7.97(1H, t) 7.32(1H, d, J=15.7 Hz) 6.94-7.13(5H, m) 6.68(2H, d, J=8.4 Hz) 6.47(1H, d, J=15.7 Hz) 3.95-4.00(4H, m) 3.25-3.38(2H, m) 2.65(2H, t, J=7.5 Hz) 1.64-1.78 (4H, m) 0.81-0.94(6H, m)		FAB+ 440 [M'H'] (50) 318(14) 303(44) 162(100)	

DANSO-d6, 300MHz) 13172H, m) KBF	安林伊	植海式	融点	N HI	1H NMR (8) ppm	IRcm-1	MS	元素分析	~
1312 793(114, i) = 5.5 Hz] 254(214, i) = 5.305 1316				(DMSO-d6, 300MHz)		KBr	FAB+		
131- 739(1H, L)-5.5 Hz 264(2H, L)-7.5) 733(1H, d, 1-2.0 Hz) 171(2H, m) 1644 173(1H, d, 1-2.0 Hz) 171(2H, m) 1645 173(1H, d, 1-2.0 Hz) 171(2H, m) 1645 173(1H, d, 1-2.0 Hz) 174(2H, m) 1645 173(1H, d, 1-2.0 Hz) 174(2H, m) 174(2H, m)				9.15(1H, s)	3.33(2H, m)	3484	270		
131				7.98(1H, t, J=5.5 Hz]	2.64(2H, t, J=7.5)	2206	3/0		
133				7.33(1H, d, J=15.7 Hz)	1.71(2H, m)	2562	COUNT IN IMI		
135° 135° 135° 136°		\	123~	7.13(1H. d. J=2.0 Hz)	1.44(2H, m)	1 0	240(31)		
Angle	_	,	125C	7.09(1H, dd, 8.4, 2.0 Hz)	0.94(3H, 1, J=7.4 Hz)	6861	(92)557	-	
(697(H, d, 1=8.3 Hz)	_) } }		7.01(2H. d. J=8.4 Hz)		1349	(0,70)		_
(5.68(714 d. j=8.4 Hz)		Carried Carrie		(407/1H d I=8 3 Hz)		1516			_
#色格晶		,		6.68(2H, d. 1=8.4 Hz)		1260			
1440 1018		> >		6 48/1H 4 1-15 8 H2)		1241			
1018				3 98/2 H d 1=6 5 Hz)		1140			
DMSO-d6, 300MHz 264(2H, L) =7.5 Hz 3456 173(2H, m) 264(2H, L) =7.5 Hz 3456 173(2H, m) 2952 173(1H, d, 1=5.0 Hz 1.72(2H, m) 2952 173(1H, d, 1=5.0 Hz 1.73(2H, m) 1542 173(2H, d, 1=8.3 Hz 1.37-1.25(4H, m) 1544 1187 173(2H, d, 1=8.3 Hz 1.37-1.25(4H, m) 1544 1187 173(2H, d, 1=8.3 Hz 1.37-1.25(4H, m) 1544 1544 1187 173(2H, d, 1=8.3 Hz 1.37-1.25(4H, m) 1544 173(2H, d, 1=8.3 Hz 1.37-1.25(4H, m) 1544 173(2H, d, 1=8.3 Hz 1.37-1.25(4H, m) 1237	_			3 30 2 10 2		1018			
DMSO-06, 300MHz 1, 15, 14, 15, 15, 14, 15, 15, 14, 15, 15, 14, 15, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	• • •	無色結晶		3.78(3H. s)					
MeO 117- 117- 12(1H, 4) 137(2H, H, 1=7.5 Hz) 137(2H, H, 1=15.7 Hz) 137(2H, H, H) 1552 117- 12(1H, 4, 1=15.7 Hz) 137(2H, H, H) 1652 118	T			(DMSO-46, 300MHz)		ΣŖ	FAB+		_
MeO Meo Meb結晶 Meo Meo Meo Meo Meo Meo Meo Me				9.14(IH. s)	2.64(2H, t, J=7.5 Hz)	,	4		
1177 7.12(1H, d, J=15.7 Hz) 1.41(2H, m) 1.652 1187 7.12(1H, d, J=2.0 Hz) 1.37-1.25(4H, m) 1.652 1187 7.09(1H, dd, 8.3, 2.0 Hz) 0.88(3H, t, J=6.9 Hz) 1.594 1187 7.01(2H, d, J=8.3 Hz) 0.88(3H, t, J=6.9 Hz) 1.594 1187 7.01(2H, d, J=8.3 Hz) 0.88(3H, t, J=6.9 Hz) 1.514 0.90(1H, d, J=8.3 Hz) 0.84(2H, t, J=7.5 Hz) 1.215 0.90(1H, d, J=1.9 Hz) 1.70(2H, m) 1.215 0.90(1H, d, J=2.0 Hz) 1.37-1.22(6H, m) 1.614 0.90(1H, d, J=8.3 Hz) 0.84(3H, t, J=6.9 Hz) 1.518 0.90(1H, d, J=8.3 Hz) 0.84(3H, t, J=6.9 Hz) 1.518 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.9 Hz) 1.518 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.9 Hz) 1.518 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.9 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.9 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.9 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.9 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.6 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.9 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.6 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.6 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.84(3H, t, J=6.6 Hz) 1.318 0.90(1H, d, J=1.5 Hz) 0.90(1H, d, J=1.5 Hz) 0.90(1H, d, J=1				7 97(1H, 1, 1=5 6 Hz)	1.72(2H, m.)	3456	398		_
117				7 32/1H 4 1-14 7 Hz)	141(2H m)	2952	[M'H'](33)		—
1187		~	1171	7.52(1ff, d, 5=15.7 ftz)	1.71(411, 111)	1652	397[M] (32)		
MeO		0=		7.12(1H, d, J=2.0 HZ)	1.3/-1.25(4ff, fff)	1614	276(25)		
### 17.01(2H, d, J=8.4 Hz) 15.48	_		•	7.09(1H, dd, 8.3, 2.0 Hz)	0.88(3H, t, J=6.9 Hz)	1594	261(36)		
(6.86(2H, d, J=8.3 Hz) (5.88(2H, d, J=6.8 Hz) (5.88(2H, d, J=6.8 Hz) (5.88(2H, d, J=6.8 Hz) (5.88(2H, d, J=6.8 Hz) (5.88(2H, d, J=5.9 Hz) (5.88(2H, d, J=2.0 Hz) (5.88(2H, d, J=8.3 H		T		7.01(2H, d, J=8.4 Hz)		1548	176(69)		_
(5.68(2H, d, J=8.3 Hz) (4.7(1H, d, J=15.8 Hz) (4.7(1H, d, J=15.8 Hz) (4.7(1H, d, J=15.8 Hz) (4.7(1H, d, J=15.8 Hz) (4.7(1H, d, J=15.9 Hz) (4.7(1H, d, J=15.8 H		MeO		6.96(1H, d, J=8.3 Hz)		1514	153(100)		_
(647(1H, d, J=15.8 Hz) 1259 1259 1243 1378(3H, s) 3.78(3H, s) 3.78(3H, s) 1243 1244 12 1243 137(2H, u, J=6.6 Hz) 1243 137(2H, m) 124(1H, s) 1.70(2H, m) 123~ 1.40(2H, m) 124で 1.21(1H, d, J=2.6 Hz) 1.70(2H, m) 1614 124で 1.21(1H, d, J=2.0 Hz) 1.37-1.22(6H, m) 1614 124で 1.00(2H, d, J=8.3 Hz) 6.95(1H, d, J=8.3 Hz) 6.95(1H, d, J=8.3 Hz) 6.95(1H, d, J=8.3 Hz) 6.95(1H, d, J=8.3 Hz) 6.96(2H, d, J=8.3		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6.68(2H, d, J=8.3 Hz)		1343			
(DMSO-d6, 300MHz) 2.64(2H, t, J=7.5 Hz) 1243 3.33(2H, m) (DMSO-d6, 300MHz) 2.64(2H, t, J=7.5 Hz) 3280 7.97(1H, t, J=5.6 Hz) 1.70(2H, m) 2.933 7.32(1H, d, J=15.9 Hz) 1.40(2H, m) 1650 124で 7.32(1H, d, J=2.0 Hz) 1.37-1.22(6H, m) 1614 7.00(2H, d, J=8.3 Hz) 6.95(1H, d, J=6.6 Hz) 1237 3.33(2H, t, J=6.6 Hz) 1138 第一位 2.33(2H, t, J=6.6 Hz) 7.33(2H, t, J=6.6))		6.47(1H, d, J=15.8 Hz)		10.50		-	_
(DMSO-d6,300MHz) 2.64(2H,t, J=7.5 Hz) 3.280 (DMSO-d6,300MHz) 2.64(2H,t, J=5.6 Hz) 1.70(2H,m) 2.933 (DMSO-d6,300MHz) 1.23 (DMSO-d6,300MHz) 1.23 (DMSO-d6,300MHz) 1.24で 7.12(1H,d, J=2.0 Hz) 1.37-1.22(6H,m) 1614 (DMSO-d6,300MHz) 1.24で 7.08(1H,dd,8.3,2.0 Hz) 0.84(3H,t, J=6.9 Hz) 1538 (DMSO-d6,300MHz) 1.24で 7.08(1H,dd,8.3,2.0 Hz) 0.84(3H,t, J=6.9 Hz) 1538 (DMSO-d6,300MHz) 1.237 (DMSO-d6,300MHz) 1.237 (DMSO-d6,300MHz) 1.237 (DMSO-d6,300MHz) 1.237 (DMSO-d6,300MHz) 1.237 (DMSO-d6,300MHz) 1.237 (DMSO-d6,300MHz) 1.24で 7.12(1H,d,J=6.9 Hz) 1.38 (DMSO-d6,300MHz) 1.24で 7.12(1H,d,J=6.9 Hz) 1.37-1.22(6H,m) 1.24で 7.12(1H,d,J=6.9 Hz) 1.24				3.97(2H, t, J=6.6 Hz)		1343		=	
Media (DMSO-d6, 300MHz) 2.64(2H, t, J=7.5 Hz) 3280 7.97(1H, t, J=5.6 Hz) 1.70(2H, m) 2933 1.24で 7.12(1H, d, J=2.0 Hz) 1.37-1.22(6H, m) 1650 1.24で 7.00(2H, d, J=8.4 Hz) 0.84(3H, t, J=6.9 Hz) 1538 1538 1538 1538 1538 1538 1538 1538		年存計		3.78(3H, s)		C+71			
(DMSO-d6, 300MHz) 2.64(2H, t, J=7.5 Hz) 3280 7.97(1H, t, J=5.6 Hz) 1.70(2H, m) 2933 1.22(1H, d, J=15.9 Hz) 1.40(2H, m) 1650 1.24で 7.12(1H, d, J=2.0 Hz) 1.37-1.22(6H, m) 1614 1.24で 7.08(1H, dd, B.3, 20 Hz) 0.84(3H, t, J=6.9 Hz) 1538 1.24で 7.00(2H, d, J=8.3 Hz) 6.95(1H, d, J=15.8 Hz) 1.259 1.237 3.96(2H, t, J=6.6 Hz) 1.38 1.33 3.33 (2H, m)				3.33(2H, m)					7
0.14(1H, s) 2.64(2H, t, J=7.5 Hz) 3280 7.97(1H, t, J=5.6 Hz) 1.70(2H, m) 2933 7.32(1H, d, J=15.9 Hz) 1.40(2H, m) 1650 124で 7.08(1H, dd, 8.3, 2.0 Hz) 1.37-1.22(6H, m) 1614 7.00(2H, d, J=8.3 Hz) 0.84(3H, t, J=6.9 Hz) 1538 6.95(1H, d, J=8.3 Hz) 6.95(1H, d, J=8.3 Hz) 1516 6.86(2H, d, J=8.3 Hz) 6.47(1H, d, J=8.3 Hz) 1259 6.47(1H, d, J=15.8 Hz) 1237 3.96(2H, t, J=6.6 Hz) 1138	Т			(DMSO-d6, 300MHz)		Ř	FAB+	:	
7.97(1H, t, J=5.6 Hz) 1.70(2H, m) 2933 7.32(1H, d, J=15.9 Hz) 1.40(2H, m) 1.650 1.24で 7.12(1H, d, J=2.0 Hz) 1.37-1.22(6H, m) 1.614 7.08(1H, dd, 8.3, 2.0 Hz) 0.84(3H, t, J=6.9 Hz) 1.538 1.538 6.95(1H, d, J=8.3 Hz) 6.95(1H, d, J=8.3 Hz) 6.95(1H, d, J=8.3 Hz) 6.95(1H, d, J=15.8 Hz) 1.259 6.47(1H, d, J=15.8 Hz) 1.237 3.96(2H, t, J=6.6 Hz) 1.138 1.138				9.14(1H, s)	2.64(2H, t, J=7.5 Hz)	3280	412	Curuno,	
MeO 123				7.97(1H, t, J=5.6 Hz)	1.70(2H, m)	2033	217		
MeO 123		č		7.32(1H, d, J=15.9 Hz)	1.40(2H, m)	5667	(M'H') (00)	理論値	_
MeO 124℃ 7.08(114, dd, 8.3, 2.0 Hz) 0.84(3H, t, J=6.9 Hz) 1614 7.08(2H, d, J=8.4 Hz)		(123~	7 12(1H d 1=2 0 Hz)	1.37-1.22(6H. m)	1650	290(22)	C: 72 96%	-
MeO		() ()	124C	771 C.2 - 2 - 2 - 111 21.7	0.84(3H; 1, J=6.9 Hz)	1614	275(28)	H: 8.08%	
MeO				7 0000H d 1=8 4 Hz)		1598	176(52)	N: 3.40%	
(5.95(2H, d, J=3.3 Hz) (6.47(1H, d, J=15.8 Hz) (6.47(1H, d, J=15.8 Hz) (7.95(2H, t, J=6.6 Hz) (7.95(3H, s) (7.95(3H, s)				(21 1:3-2 is ital) (21 Hz) (21 Hz)		1538	108(100)		
6.47(1H, d. J=15.8 Hz) 3.96(2H, t. J=6.6 Hz) 3.78(3H, s)				6.55(2H; d; 3=8:3 Hz)		1516		分析值	
3.96(2H, t, J=6.6 Hz) 3.78(3H, s) 3.33 (7H, s)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6.00(211, 0.1-01) 6.00(1		1259		C; 72.96%	
3.33 (7.94, s)				3.06(7H + 1=6 K Hz)		1237		H; 8.23%	
		4 T		3.78(3H, s)		1138		0/ 1C.C ,N	
1 177 177 177 1		第650		3.33 (2H. m)					_

実施例	標逸式	融点	1H NMR (8)	mdd (ψ)	IRcm-1	MS	元素分析
1-7	HO N O O O O O O O O O O O O O O O O O O	176.6∼ 177.2℃	H2)	0.9(3H, t, J= 7.5 Hz)	KBr 3280 2934 1654 1619 1511	FAB+ 356 [M*H*] (20) 169(100)	C ₁ ,H ₁₃ NO ₄ 理論值 C; 70.96% H; 7.09 % N; 3.94 % 分析值 C; 70.66% H; 7.23% N; 4.08 %
1-8	Meo H		(2) (42) (42) (42) (42) (42)	1.3-1.5(4H, m) 0.9(3H, t, J= 7.5 Hz)	KBr 3221 1513 1264	FAB+ 370 [M⁺H⁺] (40)	C _D H ₁₁ NO ₄ 理論值 C; 71.52% H; 7.37 % N; 3.79 % 分析值 C; 71.64% H; 7.48% N; 3.82 %
1-9	HOO NACO NACO NACO NACO NACO NACO NACO NA		CDCl,300MHz 7.51(1H, d, J=15.5 Hz) 7.04(1H, dd, J=8.4, 2.4 Hz) 7.04(1H, d, J=2.4 Hz) 7.00(2H, d, J=8.3 Hz) 6.82(1H, d, J=8.4 Hz) 6.78(2H, d, J=8.3 Hz) 6.71(1H, bs) 6.21 (1H, d, J=15.5 Hz) 5.73(1H, bs) 7.03(2H, bs) 3.86(3H, s) 3.86(3H, s) 3.38(2H, q, J=6.7 Hz)	2.59(2H, t, J=7.4 Hz) 1.7-1.9(2H, m) 1.3-1.5 (4H, m) 0.92(3H, t, J=7.0 Hz)	Neal 3300 2932 1652 1594 1514 1260	FAB+ 398 [M*H*] (95) 247(50) 177(100)	

元素分析	C ₂₃ H ₃₀ NO,		
MS	FAB+ [M*H*] (40) HRFAB(m/z) 理路值 CaHsoNO, 384.5006 分析值 384.2166	FAB+ 384 [M*H*] (100)	FAB+ [M*H*] (40) 247(35) HRFAB(m/z) 理論值 C23 H36NO ₄ 390.5486 分析值 390.2638
IRcm.	Neat 3280 2933 1656 1586 1573 1260	Neat 3280 1655 1594 1513 1260	Neat 3288 2927 1513 1260
IH NMR (3) ppm	CDCl ₃ 300MHz 7.52(1H, d, J=15.5 Hz) 7.27(1H, bs) 7.16(1H, t, J=7.6 Hz) 7.01(1H, dd, J=8.3, 1.8 Hz) 6.97(1H, d, J=1.8 Hz) 6.97(1H, d, J=7.6 Hz) 6.77 (1H, b, J=7.6 Hz) 6.77 (1H, b, J=6.8 Hz) 3.97(2H, b, b)	CDCl ₃ 300MHz 7.82(1H, bs) 7.60(1H, d, J=15.5 Hz) 7.14(1H, t, J=7.9 Hz) 7.06(1H, d, J=8.5 Hz) 7.06(1H, d, J=8.5 Hz) 7.06(1H, d, J=7.9 Hz) 7.01(1H, s) 6.92(1H, d, J=7.9 Hz) 6.83(1H, d, J=7.9 Hz) 6.83(1H, d, J=7.9 Hz) 6.84(1H, d, J=7.9 Hz) 6.84(1H, d, J=7.9 Hz) 6.84(1H, d, J=15.5 Hz) 6.17(1H, bs) 6.17(1H, bs)	CDCl ₃ 300MHz 7.54(1H, d, J=15.5 Hz) 1.8-1.9(4H, m) 7.07(1H, dd, J=8.3, 1.9 Hz) 1.2-1.8(10H, m) 7.02(1H, d, J=8.3 Hz) 1.2-1.8(10H, m) 6.85(1H, d, J=8.3 Hz) 0.94(3H, t, J=7.1 Hz) 6.23(1H, d, J=15.5 Hz) 0.94(3H, t, J=7.1 Hz) 5.52(1H, bt) 7.02 (2H, t, J=6.9 Hz) 3.88(3H, s) 3.9-4.1(0.5H, m) 3.3-3.5(2H, m) 1.9-2.1 (2H, m)
英			-
横语式	Ho OH	HO NOOM	HO NOWN
44年	1-10	₹	1-12

実施例	標準式	夏	IH NMI	1H NMR (3) ppm	Dem.	MS	计数分析
			CDC! 300MHz				14 (7)607
			o 62 o 66/211		Nes Es	FAB+	:
			8.53-8.55(2H, m)	1.80-1.90(2H, m)	,,,,,		CnHnNO,
			7.56 (1H, d, J=15.7 Hz)	1.32-1.51(4H. m)	3301	369	
	•		7 16.7 1979 m)	(-11 V 3-11 1 1-6 V V	2949	[MTH1000]	:
		125~	(110-7:10/211, 111)	0.55(50.1, 1, 5=0.5 0.2)	1416		理論值
	 -	1361	/.06(1H, dd, J=8.0, 2.1 Hz)		Cipi		C: 71.71%
	2		7.01(1H, d, J= 2.1 Hz)		1203		H. 766 9.
1 13	·		6 84/1H d 1-8 0 Hz)				11, 7.00 /0
1-13	MeO		6.00(111, 0, 1=6.0 112)				% 7.00.7
			0.19(1ft, u, J=13./ ftZ)				华 左 在
	<>>-		(1 'H1' 1)				
			4.06(2H, t, J=7.2 Hz)	-			C; 71.03%
			3.88(3H s)				H; 7.82%
	1 1 1		(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)				N: 7.59 %
			3.05 (2H, q, J=0.9 HZ)				
			CDC 300MB				
			CLC. S. COMITIE		Neat	FAB+	
			8.53-8.60(1H, m)	1.36-1.49(4H, m)	1240	350	$C_{22}H_{22}N_1O_3$
			/ 1.03(1H, td, J=7.7, 1.8 Hz)	0.94(3H, t, J=7.0 Hz)	25.5	209	
	(7.53(1H, d, J=15.6 Hz)		2951	[M'H'](100)	Y 0 44 A4
)= -	~ -	7.03-7.22/4H m)		1654	289(23)	世間等
	,	93 C	(mr *** *** *** *** *** *** *** *** *** *	_	1 402	247(59)	C; 71.71%
			0.64 (IH, a, J=8.3 Hz)		1512	(22)21	H; 7.66 %
1-14			6.63(1H, br s)		5151	(2:)::	N; 7.60 %
	O O O O		6.25(1H, d, J= 15.6 Hz)		1238		;
	\ \ \ \		4.03(2H,I, J=6.9 Hz)		1134		分价值
	/ >		3.88(3H. s)				C; 71.76%
			3 81/7H & 1-6 2 Hz/1				H; 7.85%
	######################################		3 02/2H 1 1-0.2 HZ/				N; 7.56 %
			1.81-1.89(2H. m)				
			CDCI,,300MHz		S Z	FAB+	
			8.43-8.59(2H, m)	1.31-1.53(4H, m)			
			7.50-7.64(2Н, ш)	0.93(3H, t, J=7.1 Hz)	1645	474	
	•		7.50(1H, d, J=15.3 Hz)	•	1592	[Mr.Hr.] (100)	
	, ===		7.02-7.16(5H, m)		1434	247(81)	
			7.01(1H, d, J= 1.9 Hz)		1261	177(99)	
1.15	· · · · · · · · · · · · · · · · · · ·		6.84(1H, d, J=8.3 Hz)		1139	-	
	Neo -		6.61(1H, d, J= 15,3 Hz)	_			
			4.05(2H, t, J=6.8 Hz)				
			3.89(3H, s)				
			3.73-3.86(4H, m)				
	· 谈赞色油状		2.98-3.20(4H, m)				
			1.77-1.95(2H, m)				
				A	-		-

元素分析	理論值 理論值 C; 73.54% H; 7.45 % N; 8.87% 分析值 C; 73.65% N; 8.88 %		
MS	FAB+ 474 [M*H*] (36) 369(23) 247(50) 177(73) 106(100)	FAB+ 398 [M*H*] (70) 247(100) 177(80)	FAB+ 384 [M*H*] (70) 247(44) 176(100)
IRcm-t	Neat 2953 1642 1596 1510 1260	Neal 3220 2931 1643 1584 1514	
1H NMR (&) ppm	CDCI _{3,3} 00MHz 8.52-8.54(4H, m) 7.61(1H, d, J=15.0 Hz) 7.05-7.20(4H, m) 7.05-7.20(4H, m) 7.05(1H, dd, J=8.8, 1.9 Hz) 6.95(1H, d, J=1.9 Hz) 6.97(1H, d, J=1.9 Hz) 6.47(1H, d, J=1.54z) 4.03(2H, t, J=6.7 Hz) 3.90 (3H, s) 3.50-3.67(4H, m) 2.80-2.99(4H, m) 1.83-1.94(2H, m)	CDC! ₃ 300MHz 7.44(1H, d, J=15.4 Hz) 6.7.4(1H, d, J=15.4 Hz) 6.7.7(2H, d, J=8.3 Hz) 6.77(2H, d, J=8.3 Hz) 6.77(2H, d, J=8.3 Hz) 6.31(1H, d, J=15.4 Hz) 4.02(2H, t, J=6.7 Hz) 3.87(3H, s) 3.6-3.7(2H, m) 2.99(3H, s) **2.8-2.9(2H,] 1.8-1.9(2H, m) 1.3-1.5(4H, m)	DMSO-d6,300MHz 9.14(1H, s) 7.98(1H, t) 7.32(1H, d, 15.8 Hz) 6.94-7.15(5H, m) 6.67(2H, d, 1=8.4 Hz) 6.47(1H, d, 1=15.8 Hz) 3.99(2H, t, 1=6.7 Hz) 3.77(3H, s) 3.29-3.36(2H, m) 2.64(2H, t, 1=7.5 Hz) 1.70-1.85(1H, m) 1.61(2H, q, 1=6.7 Hz)
融点	114~ 116°C		91∼ 92℃
棒油片	Neo O O O O O O O O O O O O O O O O O O O	MeO Me	Meo OH Meo OH Meb
实施研	1-16	1-17	1-18

元素分析			C ₂ H ₂ N ₃ O ₃ 理辭值 C; 67.39% H; 7.09% N; 6.57% 分析值 C; 67.30% H; 7.17% N; 6.55%
MS	FAB+ 398 [M*H*] (24) 261(14) 176(100)	FAB+ 368 [M*H*] (37) 231(36) 176(100)	FAB+ 427 [M*H*] (20) 247(50) 136(70)
IRcm.1			KBr 3600- 3000 1652 1612
IH NMR (8) ppm	DMSO-d6,300MHz 9.15(1H, s) 7.98(1H, t) 7.38(1H, t) 7.31(1H, d, J=15.8 Hz) 6.647.115(3H, m) 6.68(2H, d, J=8.4 Hz) 6.647(1H, d, J=15.8 Hz) 3.86(2H, d, J=5.8 Hz) 3.86(2H, d, J=5.8 Hz) 3.27(3.39(2H, m) 2.64(2H, t, J= 7.2 Hz) 1.37-1.68(1H, m) 1.37-1.68(1H, m)	DMSO-d6,300MHz 9.14(1H, s) 7.97(1H, t, J=5.7 Hz) 7.30(1H, d, J=15.6 Hz) 6.94-7.09(5H, m) 6.67(2H, d, J=15.6 Hz) 6.46(1H, d, J=15.6 Hz) 3.81(2H, d, J=6.9 Hz) 3.78(3H, s) 3.29-3.35(2H, m) 2.63(2H, t, J=7.5 Hz) 0.53-0.60(2H, m)	CDC1,300MHz 7.56(1H, d, J=15.6 Hz) 7.17(2H, d, J=8.51Hz) 7.07(1H, d, J=8.27 Hz) 7.07(1H, d, J=8.27 Hz) 7.03(1H, d, J=8.27 Hz) 6.85(1H, d, J=8.51 Hz) 6.75(2H, d, J=15.6 Hz) 6.17(1H, d, J=7.58 Hz) 7.08(1H, bs) 7.08(1H, bs) 7.08(1H, bs) 7.08(1H, bs) 7.08(1H, bs)
张 点		135∼ 136℃	
李 海穴	Aeo	Meo	MeO CONH2 OH
英施例	1-19	1-20	1-21

実施例	構造式		NH HI	1H NMR (8) ppm	IRcm.1	MS	元素分析
1-22	Meo COOMe OH		CDCl ₃ 300MHz 7.55(1H, d, J=15.6 Hz) 7.04(1H, d, J=8.3Hz) 7.01(1H, s) 6.96(2H, d, J=8.4 Hz) 6.83(1H, d, J=8.4 Hz) 6.75(2H, d, J=8.4 Hz) 6.26(1H, d, J=15.6 Hz) 6.20(1H, bs) 6.20(1H, bs) 6.13(1H, bd) 4.9-5.1(1H, m) 4.01(2H, t, J=6.8 Hz) 3.88(3H, s)	3.74(3H, s) 3.0-3.2(2H, m) 1.8-1.9(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.0 Hz)	Neal 3283 1747 1658 1514 1261	442 [M'H'] (60) 247(100) HRFAB(m/z) 理路值 C ₂₅ H ₃₂ NO _o 442.3370 分析值	
1-23	Mac A A COH	188~ 190°C	B.55(2H, s) 8.55(2H, s) 7.95(1H, d, J=8.0 Hz) 7.34(1H, d, J=16.0 Hz) 7.14(1H, d, J=2.0 Hz) 7.09(1H, dd, 8.2, 2.0 Hz) 6.97(1H, d, J=16.0 Hz) 6.54(1H, s) 6.44(1H, s) 6.41(1H, s) 3.93-4.05(3H, m) 3.78(3H, s) 2.80(1H, dd, J=16.3, 5.2 Hz)	2.65(2H, t) 2.46 (1H, dd, J=13.6, 9.4 Hz) 1.28-1.96(8H, m) 0.90 (3H, t, J=6.9 Hz)	Neat 3347 2941 1518 1257	FAB+ 426 [M'H'] (34) 154(100)	C ₃ H ₁₁ NO ₃ 理警督 C; 70.57% H; 7.34% N; 3.29% 分析值 C; 70.17% H; 7.43% N; 3.23%
1-24	MeO	114~ 116°C	CDC1,300MHz 7.45(1H, d, J=15.7 Hz) 7.05(1H, dd, J=8.5, 2.2 Hz) 7.01(1H, d, J=2.2 Hz) 6.87(1H, d, J=8.5 Hz) 6.84(1H, d, J=8.5 Hz) 6.70-6.73(2H, m) 6.18 (1H, d, J=15.7 Hz) 5.54-5.61(2H, m) 4.01(2H, t, J=6.7 Hz) 3.88(3H, s) 3.87(3H, s) 3.63(2H, q, J=6.7 Hz)	2.82(2H, t,J=6.7 Hz) 1.80-1.90 (2H, m) 1.33-1.5 (4H, m) 0.93(3H, t, J=6.7 Hz)	Neat 3244 2930 1516 1258	FAB+ 414 [M*H*] (69) 263(58) 247(80) 177(100)	C ₄ H ₁₁ NO ₅ 理論值 C; 69.71% H; 7.56% N; 3.39% 分析值 C: 69.73% H; 7.71% N; 3.36 %

Г	·		
元素分析		C ₃ ,H ₃₀ NO ₄ 理論値 C; 72.04% H; 7.62% N; 3.65% A-析値 C; 71.64% H; 7.74% N; 3.54 %	
MS	FAB+ 370 [M*H*] (40) 163(40)	FAB+ 384 [M*H*] (30)	FAB+ 384[M+H+] (100) 177(90)
IRcm-1	KBr 3377 2954 1655 1586	Neat 3330 2933 2360 2341 1590	
1H NMR (3) ppm		DMSO-d6,300MHz 9.5(1H, s) 2.8-3.6(3H, m) 9.2(1H, bs) 2.6-2.8(2H, m) 7.3(1H, d, J=15 Hz) 7.0(1H, d, J=9 Hz) 6.6(1H, d, J=9 Hz) 6.2-6.9(3H, s) 6.0(1H, d, J=15 Hz) 3.9(3H, t, J=7.5 Hz) 3.9(3H, m) 3.6-3.7(1H, m) 3.4-3.5(1H, m) 3.2-3.4(1H, m)	CDCI, 300MHz 7.89(1H, d, J=16 Hz) 6.97-7.10(4H, m) 6.97-7.10(4H, m) 6.89(1H, dd, J=6.1, 1.8 Hz) 6.80(2H, dd, J=6.6, 1.8 Hz) 6.80(2H, dd, J=16 Hz) 6.39(1H, d, J=16 Hz) 5.09-5.15(1H, m) 5.39(1H, s) 3.42(2H, t, J=6.8 Hz) 3.44(2H, t, J=6.8 Hz) 3.45(3H, s) 3.61(2H, q, J=6.6 Hz) 2.81(2H, q, J=6.6 Hz) 2.81(2H, q, J=6.9 Hz) 1.70-1.85(2H, m)
西京	(分類点) 78 92.5~ 95.3℃ 6.7 95.3℃ 6.6 9.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	<u>ପ୍ର୍ବ୍ୟର ବର୍ଷ କୁ କୁ କୁ କୁ କୁ କୁ କୁ କୁ</u>	CI 6.5 6.1 6.1 7.2 8.1 9.1 9.1 9.1 7.1
構造式	F N	HO N N N N N N N N N N N N N N N N N N N	O OHO OMe
米梅囱	1-25	1-26	1-27

		3X	
元素分析	(C ₂₁ H ₂₂ NO ₄ 運動値 C ₅ 71.52% H; 7.37% N; 3.79% 分析値 C; 71.06% H; 7.50% N; 3.74 %	C _n H ₁₁ NO, 理論值 C; 76.56% H; 8.80% N; 3.31% 分析值 C; 76.80% H; 9.18% N; 3.48 %	
MS	FAB+ 370 [M*H*] (40) 233(35)	FAB+ 424 [M*H*](100) 287(57) 161(53)	FAB+ 409 [M*H*] (30) 106(100)
IRcm ⁻¹	KBr 3340 2932 1646 1583	KBr 3389 3162 1654 1611	Neal 3270 1655 1618 1600
1H NMR (8) ppm	1 HZ 2 HZ 2 HZ 2 HZ 2 HZ 9 HZ	CDC1,300MHz 7.57(1H, d, J=15.3 Hz) 7.34(1H, s) 7.34(1H, s) 7.32(1H, dd, J=8.2 Hz) 7.06(2H, d, J=8.2 Hz) 6.82(3H, d, J=8.2 Hz) 6.19(1H, bs) 6.19(1H, bs) 6.19(1H, d, J=15.3 Hz) 3.83(2H, t, J=6.9 Hz) 3.83(2H, t, J=6.6 Hz) 2.80(2H, t, J=7.0 Hz) 1.72-1.82(2H, m) 1.32(6H, s)	CDCI,300MHz 8.50(1H, d, J=8.35 Hz) 7.59(1H, d, J=8.35 Hz) 7.36(1H, bs) 7.36(1H, bs) 7.36(1H, bs) 7.32(1H, d, J=5.85 Hz) 7.16(1H, d, J=5.85 Hz) 6.23(1H, d, J=5.85 Hz) 6.23(1H, d, J=5.85 Hz) 6.23(1H, d, J=5.85 Hz) 6.23(1H, d, J=6.56 Hz) 7.86(2H, bs) 7.86(2H, d, J=6.56 Hz) 7.91(2H, t, J=7.02 Hz) 7.91(2H, t, J=7.02 Hz) 7.91(2H, t, J=7.02 Hz) 7.72-1.83(2H, m)
製点			
14年	HO NO	MeO Neo	New Management
Ser tekson	1-28	1-29	1-30

元素分析			
MS	FAB+ 440 [M*H*] (90) 287(100) 161(77)	FAB+ 382 [M*H*] (80) 260(20) 245(50)	FAB+ 367 [M*H*] (90) 245(20)
IRcm.1	KBr 3650- 3000 1651 1598		
1H NMR (3) ppm	88) 8.5 H 8.5 H 8.5 H 9 Hz)	CDCI, 300MHz 7.55(1H, d, J=16 Hz) 7.28(1H, d, J=16 Hz) 7.28(1H, d, J=9.6 Hz) 7.27(1H, s) 7.27(1H, s) 7.27(2H, d, J=8.4 Hz) 6.81(2H, d, J=9.6 Hz) 6.80(1H, d, J=9.6 Hz) 6.80(1H, d, J=16 Hz) 6.80(1H, d, J=16 Hz) 6.30(2H, m, involving 8 singlet at 5.55) 3.83(3H, s) 2.81(2H, t, J=6.8 Hz)	CDCI,300MHz 8.54(2H, d, J=6.0 Hz) 1.47-1.70(2H, m) 7.57(1H, d, J=15 Hz) 1.23-1.40(6H, m) 7.29(1H, d, J=8.7 Hz) 0.89(3H, t, J=6.9 Hz) 7.28(1H, s) 7.16(2H, d, J=6.0 Hz) 6.81(1H, d, J=8.7 Hz) 6.19(1H, d, J=15 Hz) 7.36(2H, d, J=15 Hz) 7.36(2H, d, J=15 Hz) 7.36(2H, d, J=15 Hz) 7.36(2H, d, J=6.5 Hz) 7.36(2H, q, J=6.5 Hz)
融点			
構造式	HO NO	Meo H	Neo O
实施例	1-31	1-32	1-33

元素分析	C23H29NO3S	·	
MS	FAB+ 400[M+H+] (100)	FAB+ 382 [M*H*] (50) 246(20)	FAB+ 424[M+H+] (100)
IRcm.1			Neat 3298 2932 1651 1606 1543 1513 1256
1H NMR (8) ppm	4Hz) Hz) Hz) Hz) 4Hz) Hz)	CDCI, 300MHz 7.52(1H, d, J=15 Hz) 7.02(2H, d, J=8.1 Hz) 6.79(1H, d, J=8.1 Hz) 6.77(2H, t, J=6.6 Hz) 6.77(1H, d, J=8.1 Hz) 6.71(1H, d, J=8.1 Hz) 6.70(1H, s) 6.66(2H, d, J=8.1 Hz) 6.66(2H, d, J=8.1 Hz) 6.66(2H, d, J=15 Hz) 6.16(1H, d, J=15 Hz) 7.50(1H, bs)	DMSO-d6,300Mfhz 8.0 (1H, bt) 7.5 (2H, d, J=9 Hz) 7.5 (2H, d, J=9 Hz) 7.3 (1H, d, J=15 Hz) 7.1 (2H, d, J=9 Hz) 6.9 (2H, d, J=4 Hz) 7.0 (2H, t, J=4 Hz)
70.	107.3~ 108.5 T	143.1∼ 144.9℃	·
任命制 188	We co	S Meo HN C	
安林色	1-34	1-35	1-36

		<u> </u>	
元素分析		C22H27NO3 理論值 C; 74.46% H; 7.70% N; 3.96%. 分析值 C; 74.68% H; 7.88%	C ₃ H ₃ NO ₄ 理論值 C; 74,14% H; 8.67% N; 3.09% 分析值 C; 74,29% H; 8.84% N; 3.16%
MS	FAB+ 454[M+H+] (100)	548+354[M+H+]	FAB+ 454 [M+H+] (50)
IRcm.1	Neat 3303 2955 2870 1652 1619 1515 1258	Neal 3300 2933 2359 1652 1602 1513 1227	NaCl 3305 2933 1652 1619 1514 1257
IH NMR (8) ppm	1.6-1 5 Hz) 1.3-1 Hz) 0.8-1 Hz) Hz) Hz) 5 Hz) 5 Hz)	DMSO-46,300MHz 9.2 (1H, s) 8.0 (1H, bt) 8.0 (1H, bt) 7.5 (2H, d, J = 9 Hz) 7.3 (1H, d, J = 15 Hz) 7.0 (2H, d, J = 9 Hz) 6.9 (2H, d, J = 9 Hz) 6.7 (2H, d, J = 4 Hz) 3.3 (2H, t, J = 4 Hz) 2.6 (2H, t, J = 4 Hz) 1.6-1.8 (2H, m)	DMSO-d6,300MHz 8.0 (1H, bt) 7.3 (1H, d, J=15 Hz) 7.1 (2H, d, J=9 Hz) 7.0 (1H, d, J=6 Hz) 6.8 (2H, d, J=9 Hz) 6.5 (1H, d, J=15 Hz) 3.8-4.0 (4H, m) 3.8 (3H, s) 3.3-3.5 (2H, m) 2.7 (2H, t, J=4 Hz) 1.6-1.8 (4H, m)
養魚	·	,	:
4 体放力	Meco Company	₹	O NO SWO
英施例	1-37	1-38	-39

夹梳纸	美術	基	IH NMR (3) ppm	TRem-1	MS	元素分析
			OMHz.	Neat	FAB+	Ceetles NO.
			9.1 (1H, s) 2.7 (2H, t, J = 4 Hz)	3462	384	C23H29NO4
	i i			3312	[M+H+] (30)	理論値
	0=		(1H, s)	1648		C; 72.04%
			(1H, d, J	1600		H; 7.62% N: 2.65%
1-40	=		7.0 (2H, d, J =4 HZ)	1540		14, 5.05.70
 -	₩O		(2H, d, J	1512		分析值
			(1H, d, J	1203		H; 7.80%
			4.0 (2H, t, J =6 Hz)	901		N; 3.65%
			3.8 (3H, s) 3.3 (2H, m)			-
				Neat	FAB+	0.14.
			6.92 (2H, d, J=8.5 Hz) 2.65 (2H, t, J=6.9 Hz)	3354	386	C23H31NO4
				2933	(M+H+) (95)	理论位
	0	73.8~		4	137(100)	C; 71.66%
	N N	74.1C	_,	1515		H; 8,11%
1-41			(2H 6.1)			0,50.5
	< < - C		6.00 (111, s)			分析值
	/ >		3.95 (2H, t, J=6.9 Hz)			C; 71.64% H: 8 28%
-			3.82 (3H, s)			N: 3.63%
			3.43 (2H, q, J=6.9 Hz)			
			CDC13,300MHz	ğ	FAB+	
			7.8 (1H, d, J = 15 Hz) 1.8-2.0 (2H, m)	2303	300	C24H31NO4
				2934	(M+H+) (70)	
	OMe	116.3~	7.1 (1H, dd, $J = 9$, 1 Hz) 0.93 (3H, t, $J = 7$ Hz)	1650	262(60)	理論値
		117.2°C	7.0 (1H, d, J = 1 Hz)	1614	177(100)	C; 72.52%
			0.9 (2n, u, J =9 nz) 6.8 (1H, d J =9 Hz)	1511		N: 3.52%
1-42	MeO		6.2 (1H, d, J = 15 Hz)			i i
	\ \ -°		5.6 (1H, bs)			がず1個 C. 12 028
			4.0 (2H, t, J =4 Hz)			H; 7.99%
			3.9 (3H, s)			N; 3.56%
			3.6 (2H, q, J =/ Hz)			
					1	

. 表 29

г		1	
元紫分析	C23H29NO4 理論值 C; 72.04% H; 7.62% N; 3.65% 分析值 C; 72.25% H; 7.81% N; 3.60%		
MS	FAB+ 384 [M+H+] (60) 177(100)		·
IRcm.1	Neat 3278 2933 1649 1602 1514		·
IH NMR (ð) ppm			
数点			
構造式	HO O O O O O O O O O O O O O O O O O O	Meo	9 N H H
奥施例	1-43	1-44	1-45

構造式	整点	1H NMR (&) ppm	IRcm.1	MS	元素分析
Neo N	170.1~ 171.2°C	CDCI3,300MHz 8.3 (1H, bt) 7.5 (1H, d, J=18 Hz) 7.0 (2H, d, J=9 Hz) 7.0 (2H, d, J=9 Hz) 7.0 (1H, s) 6.8 (1H, d, J=9 Hz) 6.4 (1H, d, J=18 Hz) 4.0 -4.2 (4H, m) 7.0 (2H, t, J=7.5 Hz) 6.4 (1H, d, J=18 Hz) 6.5 (1H, d, J=18 Hz) 6.6 (1H, d, J=18 Hz) 6.6 (1H, d, J=18 Hz) 6.7 (2H, m) 7.0 (2H, m)	KBr 3276 2956 1666 1627 1514	1377 [M+H+] (100)	C21H32N2O4 理論值 C; 66.99% H; 8.57% N; 7.44% 分析值 C; 66.94% N; 7.43%
MeO H COMe					
Neo	 D 2 153	DMSO-d6300MHz 6.46 (1H, dd, J=9.0, S.73 (1H, s) 8.73 (1H, s) 2.0 Hz) 8.62 (1H, s) 3.97 (2H, t, J=7.5 Hz) 7.97 (1H, t, J=5.9 Hz) 3.97 (2H, t, J=7.5 Hz) 7.33 (1H, d, J=16.5 Hz) 3.78 (1H, s) 7.13 (1H, dd, J=9.0, z) 2.58 (2H, t, J=7.5 Hz) 7.09 (1H, dd, J=9.0, z) 1.67-1.78 (1H, m) 6.97 (1H, d, J=9.0 Hz) 0.90 (3H, t, J=6.0 Hz) 6.60 (1H, d, J=9.0 Hz) 6.48 (1H, d, J=9.0 Hz)	3340 1515 1259 1140	FAB+ 400 [M+H+] (92) 307(14) 247(71) 177(80) 154(100)	

実施例	秦 海坎	Medi	1H NMR (3) npm	Rem.t	MS	元素分析
1-49	Neo A A A A A A A A A A A A A A A A A A A			3250 2933 2528 1261 1136 1023		
1-50	MeO H N N N N N N N N N N N N N N N N N N	108~110 T	CDCi3,300MHz 8.28 (1H, d, J=6.3 Hz) 1.33-1.52 (4H, m) 7.72-7.79 (1H, m) 0.94 (3H, t, J=7.0 Hz) 7.50 (1H, d, J=15.4 Hz) 7.19-7.38 (3H, m) 6.84 (1H, d, J=8.1 Hz) 6.26 (1H, d, J=8.1 Hz) 6.26 (1H, d, J=6.8 Hz) 3.88 (3H, s) 3.72-3.82 (1H, m) 3.28(2H, t, J=6.3 Hz) 1.80-1.92 (2H, m)	1512	384[M+H+] (100) 247(89) 177(75)	
15-1	MeO	130~132 C	CDCi3300Mhz 8.47-8.54 (2H, m) 7.51-7.62 (2H, m) 7.24-7.28 (1H, m) 6.59-7.09 (1H, m) 6.85 (1H, d, J=8.5 Hz) 6.19 (1H, d, J=18.2 Hz) 5.51-5.70 (1H, m) 4.02 (2H, t, J=7.3 Hz) 3.89 (1H, s) 3.66 (2H, q, J=6.9 Hz) 2.91 (2H, t, J=6.9 Hz) 1.80-1.92 (2H, m)	3245 1596 1263 1140	FAB+ 369[M+H+] (100) 311(21) 247(14) 177(29)	

实施例	構造式	融点	1H NMR (8) ppm	IRcm ⁻¹	MS	元素分析
1-52	Meo A A CO					
1-53	Meo C N	·				
1-54	Meo HN Neo HN N	162.7~ 163.5°C	CDCI,300MHz 7.53(1H, d, 1=15 Hz) 7.31(2H, d, 1=15 Hz) 7.31(2H, d, 1=8.7 Hz) 6.75-6.85(3H, m) 6.71(1H, d, 1=8.1 Hz) 6.70(1H, s) 6.70(1H, s) 6.70(1H, s) 6.71(1H, d, 1=15 Hz) 6.71(1H, d, 1=17		FAB+ 383 [M*H*] (50) 246(60)	

実施例	構造式	基点	22 H	man (&) WM HI	1	MG	计数分析	_
1-55	Meo N		5 Hz) 10 Hz 11 Hz	0.86(6H, t, J=7.1 Hz)		FAB+ 453 [M*H*] (100) 395(80)	10 C Mail.	
-56	無色潜晶	144.9~ 145.5 C	CDCl,,300MH2 7.50(1H, d, J=15 Hz) 7.08(2H, d, J=8.4 Hz) 6.80(2H, d, J=8.4 Hz) 6.67(2H, s) 6.67(2H, s) 6.19(1H, d, J=15 Hz) 5.58(1H, bt) 5.49(1H, s) 3.97(6H, t, J=6.5 Hz) 3.62(2H, q, J=6.5 Hz) 2.81(2H, t, J=6.8 Hz) 1.7-1.85(6H, m) 1.3-1.5(12H, m)	0.86-0.97(9H, m)		FAB+ 526 [M*H*] (30) 389(40)		
	HOAm	119.9~ 121.3°C	CDCI, 300MHz 7.54(1H, d, J=16 Hz) 7.07(2H, d, J=8.4 Hz) 6.80(2H, d, J=8.4 Hz) 6.77(1H, dd, J=8.7, 2.1 Hz) 6.70 (1H, s) 6.69(1H, d, J=16 Hz) 6.17(1H, dd, J=16 Hz) 5.8(1H, bs) 5.8(1H, bt) 7.8(1H, bt)	2.80(2H, t, J=6.8 Hz) 1.75-1.85(2H, m) 1.6-1.7(2H, m) 1.3-1.5(8H, m) 0.9-0.97(6H, m)		FAB+ 439 [M*Y*] (50) 302(100)		

	·	表 34 	
元素分析		C24H27NO4 理論值 C; 73.26% H; 6.92% N; 3.56% 分析值 C; 73.25% H; 6.96% N; 3.56%	
MS	FAB+ 397 [M'H'] (100) 39(80)	FAB+ 394 [M+H+] (73) 187(100)	FAB+ 404 [M+H+] (32) 154(100)
IRem-1		2953 1656 1606 1516 1339 1150	
1H NMR (3) ppm	CDCl _{1,3} 00MHz 7.55(1H, d, J=16Hz) 7.02-7.12(4H, m) 6.77-6.85(3H, m) 6.17(1H, d, J=16 Hz), 5.58(1H, bi) 3.88(3H, s) 3.61(2H, q, J=6.5 Hz) 3.02(2H, t, J=8.0 Hz) 2.81(2H, t, J=6.9 Hz) 2.78(3H, s) 1.51.65(2H, m) 1.22-1.48(4H, m)	CDCl3,300MHz 7.67 (1H, d, J=15.4 Hz) 2.81 (2H, t, J=6.6 Hz) 7.62 (1H, d, J=2.2 Hz) 1.84-1.93 (2H, m) 7.30 (1H, d, J=1.5 Hz) 1.35-1.54 (4H, m) 7.06-7.09 (2H, m) 0.94 (3H, t, J=7.2 Hz) 6.92 (1H, d, J=1.5 Hz) 6.92 (1H, d, J=2.2 Hz) 6.73 (1H, d, J=2.2 Hz) 6.73 (1H, d, J=15.4 Hz) 5.95 (1H, s) 5.95 (1H, s) 5.67 (1H, brt) 4.17 (2H, t, J=6.6 Hz) 3.63 (2H, q, J=6.6 Hz)	CDCI: 7.26- 7.03- 6.79- 6.10 5.49- 5.14 3.90(3.60
数点	104.8∼ 106.4℃		161~162 C
棒造式	Meo A Meo	O N N M 無色結晶	MeO
安林安	1-58	1-59	1-60

实施列		最近	1H NMR (A) anm	2	374	1111日
1-61	Meo H					
1-62	Meo The Macon	·				
1-63	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	132~133	CDCI3,300MHz 7.53 (1H, d, J=15.5 Hz) 1.80-1.87 (2H, m) 6.99-7.06 (4H, m) 1.39-1.49 (4H, m) 6.79-6.84 (3H, m) 0.92 (3H, t, J=7.1 Hz) 6.31 (1H, s) 6.38 (1H, s) 6.39-6.11 (1H, m) 6.99-6.11 (1H, m) 6.99-7.09 (2H, t, J=6.7 Hz) 6.79 (2H, t, J=6.7 Hz) 6.79 (2H, t, J=6.7 Hz)		FAB+ 410[M+H+] (100) 288(25) 273(55)	

元素分析		C27H37NO3S	C22H28N2O4 · HCl 理論值 C; 62.77% H; 6.70% N; 6.65% A) 桥值 C; 57.75% N; 6.05%
MS	FAB+ 410 [M+H+] (77) 273(36) 154(100)	FAB+ 456[M+H+] (100) 319(50)	FAB+ 385[M+H+] (80), 154(100), 136(80).
IRcm ⁻¹			KBr 3215 1653 1617 1516
IH NMR (3) ppm	1.79-1.86 (2H, m) 1.38-1.48 (4H, m) 0.93 (3H, t, J=7.0 Hz)	2.81(2H,t,J=6.9Hz) 1.80-1.90(2H,m) 1.60-1.70(2H,m) 1.25-1.55(8H,m) 0.93(3H,t,J=7.1Hz) 0.90(3H,t,J=7.1Hz)	3.31 (2H, q, J= 6.6 Hz) 2.9-3.1 (2H, m) 2.63 (2H, t, J= 7.5 Hz) 2.55 (3H, t, J= 6.0 Hz) 2.0-2.2 (2H, m)
MN HI	CDCI3,300MHz 7.52 (1H, d, J=1; 7.02-7.09 (4H, m 6.79-6.86 (3H, m 6.15 (1H, d, J=1; 6.01-6.12 (1H, m 5.55 (1H, brt) 5.34 (1H, s) 5.34 (1H, s) 5.26-5.45 (2H, m 4.58-4.61 (2H, m 4.02 (2H, t, J=6.; 3.61 (2H, q, J=6.; 2.81 (1H, t, J=6.;	CDCl3,300MHz 7.53(1H,d,J=15.5Hz) 7.36(1H,d,J=2.1Hz) 7.26(1H,dd,J=2.1,8,4Hz) 7.08(2H,d,J=8.5Hz) 6.80(2H,d,J=8.5Hz) 6.70(1H,d,J=8.5Hz) 6.70(1H,d,J=15.5Hz) 5.54(1H,bt) 5.54(1H,bt) 5.14(1H,s) 4.03(2H,t,J=6.6Hz) 3.61(2H,t,J=6.6Hz) 2.88(2H,t,J=7.4Hz)	BMSO-d6,300MHz 8.97 (2H, bs) 8.63 (1H, t, f = 5.7 Hz) 7.31 (1H, d, f = 15.6 Hz) 7.15 (1H, d, f = 18.4 Hz) 7.12 (1H, dd, f = 8.4, 1.8 Hz) 6.99 (2H, d, f = 8.4 Hz) 6.99 (1H, d, f = 8.4 Hz) 6.99 (1H, d, f = 8.4 Hz) 6.91 (1H, d, f = 8.4 Hz) 6.92 (1H, d, f = 8.4 Hz) 6.93 (1H, d, f = 8.4 Hz) 6.93 (1H, d, f = 8.4 Hz) 6.94 (2H, d, f = 8.4 Hz) 6.95 (1H, d, f = 15.6 Hz) 7.08 (2H, t, f = 6.6 Hz) 3.78 (3H, s)
養点	119∼120 C	109.5∼ 110.4℃	OH 221 ~ 222
秦	O N H C結晶	Heb結晶	A HCI M HCI
实施例	29-1	1-65	1-66

*HMOVE JUDY	東京 プログラウ	000	IH NMR (3) ppm	Rem.t	MS FAB+	75 * 57*01
CLDCI,300MI 7.53(1H, d, J) 7.02(2H, d, J) 7.02(2H, d, J) 6.84(1H, d, J) 6.66(2H, d, J) 7.02(2H, d, J) 6.16(1H, d, J) 7.02(2H, d, J) 8.50(1H, bi) 7.02(2H, t, J) 8.50(1H, bi) 7.02(2H, t, J) 8.50(1H, bi) 7.02(2H, t, J) 8.60(2H, t, J) 7.02(2H, bi) 8.50(1H, bi) 7.02(2H, t, J) 8.60(2H, d, J) 8.60(2H, d, J) 8.60(2H, d, J) 8.60(2H, d, J) 8.60(2H, d, J)		7.53(11) 7.03(11) 7.02(21) 7.00(11) 6.84(11) 6.66(2) 6.16(11) 7.00(2) 3.60(2) 3.60(2)	7.53(1H, d, J=16 Hz) 2.77(2H, t, J=6.8 Hz) 7.05(1H, d, J=8.4 Hz) 1.8-1.93(2H, m) 1.02(2H, d, J=8.4 Hz) 1.3-1.55(4H, m) 7.02(2H, d, J=8.4 Hz) 0.94(3H, t, J=7.2 Hz) 6.84(1H, d, J=8.4 Hz) 6.66(2H, d, J=8.4 Hz) 6.16(1H, d, J=16 Hz) 5.50(1H, bt) 3.50(2H, bt) 3.88(3H, s) 3.60(2H, bs) 3.60(2H, bs)		383 [M*H*] (40) 247(80)	·
CDC CDC 7.53 7.53 7.53 7.53 7.53 7.53 7.53 7.53		CDC 7.33 7.24 7.27 7.27 7.21 6.68 6.68 6.68 9.91 9.92 9.93 9.93	CDCI, 300MHz CDCI, 300MHz 7.53(1H, d, J=16 Hz) 7.53(1H, d, J=16 Hz) 7.27(1H, d, J=2.1 Hz) 7.27(1H, d, J=8.5 Hz) 7.01(2H, d, J=8.3 Hz) 6.81(1H, d, J=8.3 Hz) 6.66(2H, d, J=8.3 Hz) 6.17(1H, d, J=16 Hz) 7.01(2H, d, J=6.5 Hz) 7.01(2H, d, J=6.5 Hz) 7.01(2H, d, J=6.5 Hz) 7.01(2H, d, J=6.5 Hz)		FAB+ 399 [M*H'] (50) 263(40)	

夹施例 構造式		養点	IH NMR (8)	(δ) ppm	IRcm.1	MS	元素分析	
	N ₂	114.1~		1.25-1.50(4H, m) 0.91(3H, t, J=7.1 Hz)		FAB+ 429 [M*H*] (20) 307(20)		
Meo N		114.6C	7.31(1H, dd, J=2.4, R.2) 6.84(1H, d, J=16 Hz) 5.64(1H, h)					
			3.93(3H, s) 3.70(2H, q, J=6.9 Hz)					
淡黄色結晶			3.04(2H, t, J=7.0 Hz) 2.90(2H, t, J=7.4 Hz) 1.58-1.75(2H, m)					
			CDC1,300MHz	13.1 (QH m)		FAB+		
				0.90(3H, t, Ja7.1 Hz)		374		
+ X X X X X X X X X X X X X X X X X X X		119.2∼ 120.4℃	7.38(1H, d, J=2.1 Hz) 7.30(1H, dd, J=2.1, 8.5 Hz)			263(30)		
) > >			0.83(1H, s) 6.82(1H, d, J=8.5 Hz)					
MeO.			6.56(1H, bt)					
/ > >			3.91(3H, s)					
年 4 1 日			3.69(2H, q, J=6.9 Hz) 2.83-2.92(4H, m)					
			1.6-1.73(2H, m)					
						FAB+		
			8.18(2H, d, J=8.6 Hz) 3.0	3.02(2H, t, J=6.9 Hz)		412		
Ç Z	_			1.3-1.5(4H, m)		[M*H*] (30)		
		122.1~	6.80(1H, d, J=8.2 Hz) 0.9	0.93(3H, t, J=7.1 Hz)		240(30)		
ZI			6.70(1H, s)					
OeM			6.17(1H, d, J=15 Hz)					
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			5.35(1H, bt) 4.20(1H, bt)					-
			3.87(3H, s)					
無色結晶			3.68(2H, q, J=6.7 Hz)					
				-1		,		_

実施例	情 遊式	製点	1H NMR (8) ppm	IRcm ⁻¹	MS	元素分析
1-73	A NT A NT A	150.7~ 151.6°C	1.55- Hz) 1.3-1 0.88(1.02) Hz) 1.142)		FAB+ 357 [M*H*] (50) 246(30)	
1-74	一。	100.6∼ 101.2℃	CDC13,300MHz 7.55 (1H, d, J = 16.0 Hz) 7.18 (1H, dd, J = 5.1, 1.1 Hz) 7.06 (1H, dd, J = 8.1, 1.1 Hz) 7.06 (1H, dd, J = 8.2, 1.9 Hz) 7.01 (1H, d, J = 1.9 Hz) 6.96 (1H, dd, J = 3.1, 3.5 Hz) 6.86 (1H, dd, J = 3.5, 1.5 Hz) 6.86 (1H, dd, J = 3.5, 1.5 Hz) 6.87 (1H, d, J = 6.9 Hz) 5.70 (1H, b) 7.01 (2H, t, J = 6.9 Hz) 3.88 (3H, s) 3.67 (2H, q, J = 6.4 Hz)	·	FAB+ 374[M+H+] (100)	(21H27NO3S) 理論値 (C, 67.53% (C, 67.53% (H, 7.29% (N, 3.75% (A, 51% (C, 67.51% (H, 7.47% (N, 3.77%
51-1	が黄色鱗ぺん状晶	69.8∼ 70.2℃	CDC[13.300MiHz 7.60 (2H, d, J = 8.4 Hz) 1.8-2.0 (2H, m) 7.55 (1H, d, J = 15.6 Hz) 1.3-1.5 (4H, m) 7.34 (2H, d, J = 8.4 Hz) 0.93 (3H, t, J = 6.9 Hz) 7.06 (1H, dd, J = 8.1, 2.1 Hz) 7.00 (1H, d, J = 8.1 Hz) 6.84 (1H, d, J = 8.1 Hz) 6.19 (1H, d, J = 15.6 Hz) 5.64 (1H, bt) 4.00 (2H, t, J = 6.6 Hz) 3.88 (3H, s) 3.65 (2H, q, J = 6.9 Hz) 2.96 (2H, t, J = 6.9 Hz)	KBr 3280 2936 2856 2229 1651 1609 1518	FAB+ 393[M+H+] (100)	

爽施例	構造式	融点	NN HI	1H NMR (&) ppm	IRcm.1	MS	元整分析
			20MIHz		ğ	FAB+	
			9.0 (1H, bs)	1.6-1.8 (2H, m)			•
		•	8.04 (1H, bi)	1.3-1.5 (4H, m)	3422	412[M+H+]	
	1000°		7.87 (2H, d, J = 8.1 Hz)	0.90 (3H, t, J= 7.1 Hz)	2938	(300)	
) =	174.2~	7.36 (2H, d, J = 8.1 Hz)		1610		
		20.67	7.30 (1H, d, J= 15.7 Hz)		1518		
1-76	± ————————————————————————————————————		7.13 (1H, d, J=1.7 Hz)		1262		
?	>		7.08 (1H, dd, J= 8.3, 1.7 Hz)				
	\ \ -		6.46 (1H, d, J = 15.7 Hz)				
			3.97 (2H, t, J = 6.6 Hz)				
			3.78 (3H, s)				
	無色結晶		3.44 (2H, q, J = 6.9 Hz)				
			2.85 (2H, t, J = 6.9 Hz)				
			CDCl3,300MHz				
			7.89(1H,d,J=15.3Hz)	1.20-1.40(4H,m)			C22H29N3O2
			7.13(2H,d,J=8.4Hz)	0.88(3H,t,J=7.1Hz)			
	-		7.00(1H,dd,J=2.1,7.2Hz)				-
	NH2		6.75-6.85(2H,m)				
			6.66(2H,d,J=8.4Hz)				
1-77	Oew -		6.28(1H,d,J=15,3Hz)				
:	o HN		5.71(1H,bt)				
			4.45(2H,d,J=5.4Hz)				
			3.84(3H,s)				
			3.65(1H,bs)				
	無色油状		3.08(2H,t,J=6.9Hz)				
		-	1.45-1.60(2H,m)				
			CDCI3,300MHz				
	-		7.84(1H,d,J=15.3Hz)	1.20-1.38(4H,m)		-	C23H31N3O2
			6.97-7.04(3H,m)	0.88(3H,t,J=7.1Hz)			
		-	6.75-6.85(2H,m)				
	· ·		6.66(2H,d,J=8.4Hz)				
			6.22(1H,d,J=15.3Hz)				
1-78)))))))))))))))))))		5.56(1H,bt)		-		
	NH O HN		3.84(3H,s)				
		:	3.63(1H,bs)				
			3.02(211,4,5=0.012)				
	無色油状		2.77(2H,t,J=6.8Hz)				
	350		1.45-1.60(2H.m)				

元素分析		C23H31N3O3	C22H29N3O3
MS	FAB+ 411[M+H+] (100)	FAB+ 398 [M+H+] (35) 262(40)	FAB+ 384[M+H+] (100)
Rcm-1	KBr 3440 1684 1214 1138	KBr 3292 2931 1649 1611 1516 1293 1235	KBr 3337 2952 1657 1608 1519 1458 1096
1H NMR (8) ppm	15.9 8.4 8.4 1 8.4 1 15.9 15.9	CDCl3,300MHz 7.69(1H,d,J=15.3Hz) 2.77(2H,t,J=6.8Hz) 7.06(1H,d,J=8.8Hz) 1.70-1.90(2H,m) 7.01(2H,d,J=8.4Hz) 1.30-1.50(4H,m) 6.66(2H,d,J=8.4Hz) 0.93(3H,t,J=7.1Hz) 6.35(1H,d,J=15.3Hz) 5.49(1H,bl) 4.21(2H,bs) 3.94(2H,t,J=6.8Hz) 3.84(3H,s) 3.61(2H,bs) 3.50(2H,q,J=6.5Hz)	CDCi3,300MHz 8.53(2H,d,J=6.0Hz) 7.70(1H,d,J=15.3Hz) 7.16(2H,d,J=6.0Hz) 7.16(2H,d,J=8.8Hz) 6.35(1H,d,J=8.8Hz) 6.35(1H,d,J=15.3Hz) 5.60(1H,b) 4.20(2H,bs) 3.94(2H,t,J=6.8Hz) 3.84(3H,s) 3.67(2H,q,J=6.6Hz) 2.90(2H,t,J=6.9Hz)
融点	125.5- 126.2°C	130.0~ 131.6 C	105.8∼ 106.9℃
標造式	A M CONH ₂	Neo NH ₂ NH ₂ X 数色結晶	MeO NH ₂ H
実施例	1-79	1-80	1-81

X467	標道式	動点	1H N	1H NMR (S) ppm	IRcm ⁻¹	MS	元素分析	
				(-H0 y-1 · HC/32 C	KBr	FAB+	COUNTRIA	Г
			7.09(1H,d,J=8.8Hz)	2.70(2fn,f,J=0.8fn2) 1.70-1.85(2H,m)	3290	468	C28H4IN3C3	
	NHS		7.01(2H,d,J=8.3Hz)	1.25-1.65(10H,m)	1667	332(20)		
			6.66(2H,d,J=8.3Hz) 6.45(1H,d,I=8.8Hz)	0.94(3H,t,1=7.1Hz) 0.88(3H,t,1=7.0Hz)	1602	262(60)		
_) >> \ >> \ >> \		6.14(1H,d,J=15.5Hz)		1515			
Q W	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5.51(1H,bs)		1292			
	\ \ \ \ \ \ \		3.92(2H,1,J=6.7Hz)		1571			-
			3.84(3H,s)					
			3.62(2H,bs)					
ZS.	淡黄色アモルファス		3.59(2H,q,J=6.5Hz) 3.08(2H,t,J=7.1Hz)					
			CDC13,300MHz		ğ	FAB+		т-
			8.53(2H,d,J=5.7Hz)	1.70-1.85(2H,m)	200		C27H39N3O3	
			7.78(1H,d,J=15.9Hz)	1.20-1.60(10H,m)	2936	454[M+H+] (100)		
	N. O.	68.4~	7.16(2H,d,J=5.7Hz)	0.8-1.0(6H,m)	1648			
		69.6C	6.46(1H,d,J=8.7Hz)		- 56			
	· · · · · · · · · · · · · · · · · · ·		6.16(1H,d,J=15.9Hz)		1550			
Š.	W ₀ N N N N N N N N N N N N N N N N N N N		5.60(1H,bt)		1292			
	\ \ \ \ \ \		3.92(2H,t,J=6.8Hz)		1106			
			3.84(3H,s)		? : 			
	9 17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3.66(2H,q,J=6.7Hz)					
	谈其色格品		2.90(2H,t,J=7.1Hz)					
ŀ			CDCI,300MHz			FAB+		_
			7.54(1H, d, J=15 Hz)	2.81(2H, t, J=6.9 Hz)		757		
			7.14(1H, d, J=8.1 Hz)	1.78-1.90(2H, m)		450		
	₽(2 2 2	7.08(2H, d, J=8.3 Hz)	1.6-1.74(2H, m)		(M.H.) (100)		
)- -	109.5	7.03(1H, d, J=8.1 Hz)	1.28-1.55(8H, m))13(m)		
/		2	6.90(1H, s)	0.94(3H, t, J=7.1 Hz)				
			6.80(2H, d, J=8.3 Hz)	0.90(3H, t, J=7.2 Hz)				
•	<u> </u>		6.24(1H, d, J=15 Hz)					
	\ \ \ \ \ \ \ \ \ \		5.55(1H, M)					
			4.02(2H, t, J=6.6 Hz)					_
	無色落島		3.62(2H, q, J=6.1 Hz)					
			2.89(2H, t, J=7.4 Hz)					

	C28H40N2O3	
FAB+ 400 [M*H*] (40) 307(100)	FAB+ 453[M+H+] (100) 395(90) 316(50)	FAB+ 369 [M+H+] (80) 368(80)
CDCI,,300MHz 7.55(1H, d, J=16 Hz) 7.06-7.13(4H, m) 7.06-7.13(4H, m) 6.90(1H, s) 6.90(1H, s) 6.24(1H, d, J=16 Hz) 7.54(1H, b) 7.54(1H, b) 7.60(2H, t, J=6.5 Hz) 7.60(2H, t, J=6.1 Hz) 7.61(2H, t, J=6.1 Hz)	CDC13,300MHz 7.54(1H,d,J=15.5Hz) 2.81(2H,t,J=6.8Hz) 7.08(2H,d,J=8.5Hz) 7.08(2H,d,J=8.5Hz) 7.07(1H,d,J=8.45Hz) 7.03(1H,s) 7.03(1H,s) 6.80(2H,d,J=8.5Hz) 6.80(2H,d,J=7.1Hz) 6.80(2H,d,J=15.5H) 6.79(1H,d,J=15.5H) 6.31(1H,s) 7.03(1H,s) 8.03(2H,t,J=6.6Hz) 8.03(2H,t,J=6.6Hz) 8.04(2H,t,J=7.8Hz)	DMSO-d6,300MHz 9.14(1H,s) 7.84(1H,t,1=5.7Hz) 7.84(1H,t,1=5.7Hz) 7.23(1H,d,1=15.6Hz) 7.23(1H,d,1=8.4Hz) 6.99(1H,d,1=8.4Hz) 6.94(1H,s) 6.66(2H,d,1=8.4Hz) 6.66(2H,d,1=8.4Hz) 6.60(1H,d,1=8.1Hz) 6.60(1H,d,1=8.1Hz) 6.50(1H,d,1=15.6Hz) 6.32(2H,d,1=15.6Hz) 6.32(2H,d,1=15.6Hz) 6.33(2H,t,1=6.6Hz) 7.25(2H,t,1=6.6Hz) 7.25(2H,t,1=6.6Hz) 7.25(2H,t,1=6.6Hz) 7.25(2H,t,1=6.6Hz)
140.3∼ 140.9℃	4.5	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Mes (中)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	H-N-A-M-A-M-A-M-A-M-A-M-A-M-A-M-A-M-A-M-A
1-85	1-86	
	CDCl,300MHz 7.55(1H, d, J=16 Hz) 1.35-1.57(4H, m) 7.06-7.13(4H, m) 0.94(3H, t, J=7.1 Hz) 6.90(1H, s) 6.90(1H, s) 6.80(2H, d, J=16 Hz) 7.55(1H, b) 7.	CDCL,300MHb T.55(14,4,1=6,1E) T.55(14,4,1) T.55(14,4,1=16,1E) T.55(14,4,1=17,1 Hz) T.55(14,4,1=16,1E) T.55(14,4,1=17,1 Hz) T.55(14,4,1) T.55(14,4,1,1) T.55(14,4,1,1) T.55(14,4,1,1) T.55(14,4,1,1) T.55(14,4,1,1) T.55(14,4,1,1) T.55(14,4,1,1) T.55(14,4,1,1) T.55(14,4,1,1) T.55(14,4,1,1,1) T.55(14,4,1,1,1) T.55(14,4,1,1,1,1) T.55(14,4,1,1,1,1) T.55(14,4,1,1,1,1,1) T.55(14,4,1,1,1,1,1,1,1) T.55(14,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

実施例	博造式	動点	N HI	IH NMR (&) ppm	IRcm-1	MS	元素分析
			CDCI3,300MHz	2 89(3H. bs)		FAB+	C23H30N2O3
			7.09(2H, d, J=8.5 Hz)	2.81(2H, t, J=6.9 Hz)		357 [M+H+] (50)	
	- To	213.7~	7.03(1H, d, J=8.1 Hz)	1.76-1.9(2H, m) 1.33-1.5(4H, m)		246(30)	
		214.7C	6.79(2H, d, J=8.5 Hz)	0.94(3H, I, J=7.1 Hz)			
1-88			6.51(1H, d, J=8.1 Hz)		_		
	~ ~ ±	_	5.47(1H, bt)				
			4.98(1H, s)				
	谈黄色結晶		3.99(2H, t, J=6.5 Hz)				
			3.61(2H, q, J=6.2 Hz)				
			CDCl3,300MHz 7,51(1H,d,J=15,4Hz)	3.15(2H.bs)		FAB+	C27H28N2O3
			7.08(2H,d,J=8.4Hz)	2.80(2H,t,J=6.9Hz)		438	
	₹		7.01(1H,d,J=8.2Hz)	1.75-1.90(2H,m)		102(30)	
			6.27(111,3) 6.79(2H d I=8 4H ₂)	0.85-1.0/6H m)			
00			6.51(1H,d,J=8.2Hz)				
1-07			6.06(1H,d,J=15,4Hz)				
	<i>(</i>)		5.45(1H,bt)				
			4.99((1H,8)				
	無色辞品		3.99(2H,t,J=6.5Hz)				
			3.60(2H,q,J=6.5Hz)				
			CDCI3,300MHz				
-			7.52(1H,d,J=15.5Hz)				
	!		7.02(2H,G,J=8.3HZ) 6.63-6.81(5H m)				
	ON O		6.16(1H,d,J=15.5Hz)			-	
			5.53(1H,bt)				
1-90	=		3.66-3.75(2H,m)				
	→ ××+		3.59(2H,q,J=6.5Hz)			··· -	
	\ \ \ \		3.13(2H,bs)				
			1.60-1.75(2H,m)				
	谈黄色結晶		1.30-1.50(4H,m)				
			0.93(3H,t,J=7.1Hz)				

吳施彻	構造式	融点	Z H	TH NMR (&) ppm	ro.m.1	Me	作等存在
			l		1	212	ルグザン
_			CDCI3,300MHz			FAR	
			8.17(2H, d, J=8.7 Hz)	2.89(3H, d, J=5.0 Hz)			C23H29N3O4
			7.52(1H, d, 1=1 \$ Hz)	1 75.1 97/7H m)		412	
			7 200 1 1 1000 1	(11, 27, 10) (211, 111)		(MAHA)	
	NOS	136 4	(7.38(ZH, d, J=8.7 Hz)	1.3-1.5(4H, m) ·		246/60)	
		132.0	7.03(1H, d, J=8.2 Hz)	0.93(3H, t, J=7.1 Hz)		(00)	
		2	6.86(1H, s)				
1-91	±.		6.50(1H, d, J=8.2 Hz)				
	-		6.07(1H, d, J=15 Hz)				
	\ \ \ \ \		5.47(1H, bt)				
			4.55(1H, bs)				
		-	3.98(2H, t, J=6.5 Hz)				
	谈橙色結晶		3.66(2H, q, J=.6.6 Hz)				
			3.00(2H, t, J=6.9 Hz)				
			CDC13,300MHz			EAB	
			7.10 (2H, d, J = 8.5 Hz)	1.7-1.8 (2H, m)			
			7.00 (2H, d, J = 8.5 Hz)	1.4-1.5 (4H, m)		414(M+H+)	
			6.93 (2H, t, J = 7.9 Hz)	0.92 (3H, t, J = 7.0 Hz)		(180)	
	`		6.77 (1H, d, J = 7.9 Hz)	•••			
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		6.63 (1H, d, J = 7.9 Hz)				
1-92	·		5.80 (1H, bs)				
	\{\}_{\}		3.91 (2H, t, $J = 6.7 \text{ Hz}$)				
			3.84 (3H, s)				
			3.47 (2H, s)				
		:	3.45 (2H, q, J = 6.2 Hz)				•
· · · · ·	黄色油状	,	2.78 (2H, I, J = 6.2 Hz)				
			2.29 (3H, s)		_		

实施例	構造式	融点	1H NMR (3) ppm	IRcm.1	MS	元素分析
2-1	HO HO O O O O O O O O O O O O O O O O O	114.3∼ 115.6℃	CDC!;300MHz 7.35(1H, d, J=2.0 Hz) 7.15(1H, dd, J=8.3, 2.0 Hz) 7.03(2H, d, J=8.4 Hz) 6.80(2H, d, J=8.4 Hz) 6.80(2H, d, J=8.3 Hz) 6.62(1H, bs) 6.19(1H, bt) 3.98(2H, t, J=6.9 Hz) 3.64(2H, q, J=6.9 Hz) 2.82(2H, t, J=6.9 Hz) 1.7-1.9(2H, m)	KBr 3322 1633	FAB+ 358 [M'H'] (100) 221 (100)	G ₁₁ H ₁₇ NO ₄ 理論値 C; 70.56% H; 7.61% N; 3.92% 分析値 C; 70.58% H; 7.79% N; 3.89 %
2-2	EIO N N N N N N N N N N N N N N N N N N N	116~ 117°C	DMSO-d6,300MHz 9.14(1H, s) 8.33(1H, t) 7.39-7.41(2H, m) 6.96-7.02(3H, m) 6.66(2H, d, J=8.4 Hz) 4.05 (2H, q, J=6.9 Hz) 3.97(2H, t, J=6.6 Hz) 3.32-3.43(2H, m) 2.69(2H, t, J=7.5 Hz) 1.66-1.78(2H, m) 0.89(3H, t, J=7.2 Hz)		FAB+ 372 [M'H'] (55) 235(100) 206(24) 164(23)	
2-3	N N WEALB	134~ 136 T	DMSO-d6,300MHz 9.14(1H, s) 8.33(1H, t, J=5.4 Hz) 7.40-7.42 (2H, m) 6.97-7.03(3H, m) 6.68(2H, d, J=8.4 Hz) 3.96-4.01(4H, m) 3.32-3.45(2H, m) 2.70(2H, t, J=7.4 Hz) 1.64-1.78(4H, m) 1.26-1.49(8H, m) 0.83-0.94(6H, m)		FAB+ 414 [M*H*] (100) 277(58) 207(59) 170(75) 136(85)	

実施例	構造式	政 集	IH NMR (8) ppm	IRcm.1	MS	元素分析
. 2-4	・	93.6∼ 94.2℃	CDCl ₃ ,300MHz 7.09(2H, d, J=8.4 Hz) 6.86(2H, s) 6.70(2H, dd, J=8.4, 2.1 Hz) 6.0(1H, bi) 3.92-4.03(6H, m) 3.64(2H, q, J=6.6 Hz) 2.84(2H, q, J=7.1 Hz) 1.7-1.88(6H, m) 1.3-1.5(12H, m) 0.88-1.0 (12H, m)		FAB+ 500 [M*H*] (70) 293(65)	
2-5	Ma ₂ N A A A A A A A A A A A A A A A A A A A	95.3∼ 96.4℃	CDCJ,300MHz 7.33(1H, s) 7.09(2H, d, J=8.4 Hz) 7.09(2H, d, J=8.1 Hz) 6.8(1H, d, J=8.1 Hz) 6.7(1H, d, J=8.1 Hz) 6.79(2H, d, J=8.4 Hz) 6.05(1H, bt) 5.33(1H,bs) 7.33(1H,bs) 7.33(FAB+ 371 [M*H*] (100) 234(50)	
2-6	MeO HN HN HE 格晶	145.9 ~ 146.5 ℃	CDC!,300MHz 7.09(2H, d, J=8,4 Hz) 6.98(1H, d, J=1,8 Hz) 6.98(1H, dd, J=7,8, 2.1 Hz) 6.91(1H, dd, J=7,8, 2.1 Hz) 6.79(2H, d, J=8,4 Hz) 6.70(1H, d, J=7,8 Hz) 6.04(1H, bt) 5.30(1H, bs) 7.30(1H, bs) 3.87(3H, s) 3.87(3H, s) 3.87(3H, s) 3.85(2H, q, J=6,6 Hz) 2.85(2H, t, J=7,1 Hz) 2.85(2H, t, J=6,9 Hz)		FAB+ 357 (M*H*] (100) 220(80)	

表 48

野猪鹿	横海武	養点	1H NMR (&) ppm	IRcm ⁻¹	MS	元素分析
2			100MHz	ξĒ	FAB+	
	НО	116~	9.14(1H, s) 1.45(2H, m) 8.34(1H, t, J=5.5 Hz) 0.94(3H, t, J=7.4 Hz) 7.43(1H, dd, J=8.4, 1.8 Hz) 7.40(1H, d, J=1.8 Hz)	3310 1613 1549	344 [M*H*] (100) 237(27) 223(35)	
2-7	M _P O _P M	<u> </u>	7.02(2H, d, J=8.3 Hz) 7.00(1H, d, J=8.2 Hz) 6.67(2H, d, J=8.3 Hz) 3.98(2H, t, J=6.5 Hz)	1272 1238 1135	207(61) 168(60) 153(86)	
	第色結晶		3.80(3H, s) 3.36(2H, m) 2.70(2H, I, J=7.5 Hz) 1.72(2H, m)			
				XB.	FAB+	C ₂₂ H ₂₉ NO ₄
	# -	134~	8.34(1H, t, J=5.5 Hz) 1.23-1.35(4H, m) 7.41(1H, br d, J=8.4 Hz) 0.87(3H, t, J=7.4 Hz) 7.30(1H, br c)	3256 2940	[M*H*](100) 251(30)	理論值 C: 71.13%
	2	135C	7.00(2H, d, J=8.3 Hz) 6.98(1H, d, J=8.2 Hz)	1556	233(61)	H; 7.87% N; 3.77%
2-8	МеО		6.66(2H, d, J=8.3 Hz) 3.96(2H, t, J=6.5 Hz) 3.071H s)	1323		分析值 C; 71.02%
	無色結晶		3.36(2H, m) 2.69(2H, t, J=7.5 Hz) 1.71(2H, m)	1188		N; 3.74 %
				KBr 3452	FAB+	C ₁₃ H ₃₁ NO ₄
	НО О=	125~	8.33(1H, t, J=5.5 Hz) 0.85(3H, t, J=/.4 Hz) 7.40(1H, dd, J=8.4, 1.9 Hz) 7.37(1H, d, J=1.9 Hz)	3263 2921 1642	[M*H*] (100) 265(15) 249(73)	理論值 C; 71.66%
c	N N N N N N N N N N N N N N N N N N N		7.69(2H, d, J=8.3 Hz) 6.97(1H, d, J=8.2 Hz)	1615	170(32)	N; 3.63%
	Mao		6.65(2H, d, J=8.3 Hz) 3.95(2H, t, J=6.5 Hz) 3.78(7H s)	1510		分析值 C; 71.57%
	集色結晶		3.36(2H, m) 2.68(2H, t, 1=7.5 Hz) 1.70(2H, m)	1318	·	n; 8.24% N; 3.53 %

奥施例	構造式	器点	IH NMR (A) num	1.00	Me	计算分析
2-10	Mag O N O O N O O O O O O O O O O O O O O	162.7~ 163.2°C	00MH2) 8.4. 1.8 Hz) 8 Hz) 8 Hz) 4 Hz) 8 Hz) 5 Hz)	KBr 3295 1642 1514	FAB+ 330 [M*H*] (100) 221(70) 154(75)	C ₁₆ H ₁₃ NO ₄ 理論值 C; 69.28% H; 7.04% N; 4.25% 分析值 C; 68.84% H; 7.24% N; 4.25%
2-11	MeO HOON		CDCI,300MHz 7.43(1H, d, J=2.1 Hz) 7.26(1H, dd, J=8.3, 2.1 Hz) 7.20(2H, d, J=8.3 Hz) 6.84(1H, d, J=8.3 Hz) 6.81(1H, d, J=8.3 Hz) 6.32(1H, bi) 5.80(1H, bs) 4.55(2H, d, J=5.6 Hz) 4.04(2H, t, J=6.9 Hz) 3.89(3H, s) 1.7-1.9(2H, m) 1.3-1.5(4H, m)	KBr 3320 2955 1510	FAB+ 344 [M'H'] (100) 238(45) 221(70)	C ₂₀ H ₃₃ NO, 理路值 C; 69.95% H; 7.34% N; 4.08% 分析值 C; 70.05% H; 7.42% N; 4.14 %
2-12	Mac O OH		CDCI,300MHz 7.37(1H, d, 1=2.0 Hz) 7.12(1H, dd, 1=8.4, 2.0 Hz) 7.12(1H, dd, 1=8.4, 2.0 Hz) 7.06(2H, d, 1=8.4 Hz) 6.83(1H, d, 1=8.4 Hz) 6.77(2H, d, 1=8.4 Hz) 6.02(1H, b1) 7.66(1H, bs)	KBr 3319 2933 1513 1267	FAB+ 372 [M'H'](42) 221(35)	

Г Т			
元素分析	·	C ₃ ,H ₃ ,NO ₄ 理論值 C; 70.56% H; 7.61% N; 3.92% 分析值 C; 70.59% H; 7.77% N; 3.87 %	·
MS	FAB+ 358 [M*H*] (40) 221(50) HRFAB(m/z) 理驗值 C ₂₁ H ₃₈ NO ₄ 358.4622 分析值 358.2008	FAB+ 358 [M*H*] (90) 221(100)	FAB+ 364 [M*H*] (50) 221(100) HRFAB(m/z) 理論值 C ₂₁ H ₃₄ NO ₄ 364.5102 分析值 364.2481
IRcm ⁻¹	KBr 3319 2954 1581 1505 1268	Neat 3347 2951 1620 1578 1514	Neat 3316 2927 1633 1504 1267
1H NMR (8) ppm	CDCl ₃ 300MHz 7.34(1H, d, 1=2.0 Hz) 7.17(1H, dd, 1=8.3, 2.0 Hz) 7.17(1H, dd, 1=8.3, 2.0 Hz) 7.17(1H, dd, 1=8.3, 2.0 Hz) 7.00(1H, bs) 6.80(1H, d, 1=8.3 Hz) 6.76.8(3H, m) 6.22(1H, bs) 3.99(2H, t, 1=6.9 Hz) 3.86(3H, s) 3.65(2H, q, 1=6.8 Hz) 2.83(2H, t, 1=6.8 Hz) 1.8-1.9(2H, m)	CDCl _{1,3} 00MHz 7.96(1H, bs) 7.41(1H, d, J=1.9 Hz) 7.26(1H, dd, J=8.3, 1.9 Hz) 7.26(1H, dd, J=8.0 Hz) 7.10(1H, t, J=8.0 Hz) 7.08(2H, d, J=8.0 Hz) 6.92(1H, d, J=8.0 Hz) 6.92(1H, d, J=6.8 Hz) 3.86(3H, s) 3.86(3H, s) 3.59(2H, q, J=7.0 Hz) 2.96(2H, t, J=7.0 Hz) 1.8-1.9(2H, m)	CDCl,300MHz 7.39(1H, d, J=1.9 Hz) 7.21(1H, dd, J=8.3, 1.9 Hz) 6.83(1H, d, J=8.3 Hz) 6.03(1H, bs) 4.04 (2H, t, J=6.9 Hz) 3.9-4.0(2H, m) 3.88(3H, s) 3.2-3.6(4H, m) 1.0-2.1(15H, m) 0.91(3H, t, J=7.1 Hz)
1000			
建物 机	HO Neo Oew	Meo O Oem	HO NBO O O O O O O
安林伊	2-13	2-14	2-15

実施例	秦海 沙	表点	1H NMR (\$) ppm	IRcm-1	MS	元素分析
2-16	MeO	6 8 6 0	0 0 Hz 0 12,2,2 2 Hz 0 Hz 0 Hz 0 Hz	Neat 3309 2947 1634 1513 1269	FAB+ 343 [M'H'] (100) 285(27) 221(48)	C ₂₀ H ₂₆ N ₁ O, 理論值 C; 70.15% H; 7.65% N; 8.18% 分析值 C; 70.14% H; 7.81% N; 8.12%
2-17	MeO Mebilia	83.C	CDCl ₃ ,300MHz 8.55-8.57(1H, m) 7.63(1H, td, J=7.6, 1.8 Hz) 7.42(1H, d, J=2.0 Hz) 7.27(1H, dd, J=8.3, 2.0 Hz) 7.27(1H, dd, J=8.3 Hz) 6.85(1H, d, J=8.3 Hz) 4.07(2H, t, J=6.9 Hz) 3.90(3H, s) 3.84(2H, q, J=6.0 Hz) 1.80-1.90(2H, m) 1.30-1.50(4H, m)	Neal 3242 1630 1508 1272	FAB + 343 [M*H*] (100) 221(52) 154(74)	C ₂₀ H ₂₆ N ₂ O ₃ 理路庙 C; 70.15% H; 7.65% N; 8.18% 分析值 C; 70.22% H; 7.86% N; 8.15%
2-18	MeO New		CDC1,,300MHz 8.38-8.58(2H, m) 7.49-7.64(2H, m) 7.27(1H, d) 7.02-7.19(3H, m) 6.70-6.32(3H, m) 3.95(2H, t, J=6.9 Hz) 3.86(3H, s) 3.55-3.90(4H, m) 2.81-3.33(4H, m) 1.78-1.91(2H, m) 1.30-1.50(4H, m) 0.93(3H, t, J=7.0 Hz)	Neat 2953 1628 1433 1261	FAB+ 448 [M'H'] (83) 354(29) 434(33) 221(100)	C ₂ ,H ₃ ,N ₃ O ₃ 理路(值 C; 72.46% H; 7.43% N; 9.39% 分析值 C; 71.57% H; 7.66% N; 9.12%

実施例	構造式	融点	1H NMR (&) ppm	IRem.1	MS	元素分析	
2-19	MeO O O O O O O O O O O O O O O O O O O		CDCl _{3,3} 00MHz 8.50(4H, br s) 7.03(4H, br s) 6.81(1H, d, J= 9.0 Hz) 6.66-6.70(2H, m) 3.94(2H, t, J=6.5 Hz) 3.88(3H, s) 3.44-3.73(4H, m) 2.70-3.00(4H, m) 1.79-1.90(2H, m) 0.93(3H, t, J=7.3 Hz)	Neat 2933 1628 1601 1261	FAB+ 448 [M+H+] (55) 390(14) 343(29) 221(100)		
2-20	HO N O OBM	83.4~ 85.2°C	CDCl ₃ 300MHz 7.1(1H, bs) 6.8-7.0(6H, m) 6.3(1H, bs) 3.9(2H, d, 1=7.5 Hz) 3.9(3H, s) 2.6-3.0(2H, m) 2.8(3H, bs) 1.7-1.9(2H, m) 0.9(3H, t, 1=7.5 Hz)	KBr 3300 2932 2362 1606 1516	FAB+ 372 [M⁴H⁺] (35) 221(40)	C ₂₁ H ₂₃ NO ₄ 理論值 C; 71.13% H; 7.87% N; 3.77% 分析值 C; 71.41% H; 8.07% N; 3.88 %	衣 3 4
2-21	MGO H HEMB	128~ 129℃	DMSO-d6,300MHz 9.14(1H, s) 8.34(1H, t) 7.41-7.43(2H, m) 6.97-7.02(3H, m) 6.67(2H, d, J=8.4 Hz) 4.00(2H, t, J=6.8 Hz) 3.79(3H, s) 3.33-3.43(2H, m) 2.70(2H, t, J=7.5 Hz) 1.72-1.86(1H, m) 1.62(2H, q, J=6.8 Hz) 0.93(6H, d, J=6.6 Hz)		FAB+ 358 [M'H'] (65) 221(99) 150(100)		·

实施例	構造以	拉霍	IH NMR (&) ppm	TR.	TRem-1	MS	元素分析
2-22	MeO Hehla	97.7 98.C	ा. वेवे छ छ।			FAB+ 372 [M*H*](55) 235(71) 150(100)	
2-23	MeO	168∼ 169℃	DMSO-d6,300MHz 9.14(1H, \$) 8.33(1H, t, J=5.4 Hz) 7.37-7.45(2H, m) 6.97-7.02(3H, m) 6.67(2H, d, J=8.3 Hz) 3.80-3.82(5H, m) 2.70(2H, t, J=7.4 Hz) 1.13-1.30(1H, m) 0.50-0.63(2H, m)		3 E	FAB+ 342 104'1'] (100) 205(42) 185(38) 150(50)	
2-24	Mao CONH ₂ OH	199.3~ 200.9 C	DMSO-d6,300MHz 9.10(1H, s) 8.22(1H, d, J=8.5 Hz) 7.42(1H, bs) 7.42(1H, bs) 7.42(1H, d, J=8.48 Hz) 7.35(1H, s) 7.35(1H, s) 7.10(2H, d, J=8.41 Hz) 7.01 (2H, bs) 6.60(2H, d, J=8.48 Hz) 3.92-4.00(2H, m) 3.79(3H, s) 6.70(1H, d, J=8.48 Hz) 6.70(1H, d, J=8.48 Hz) 6.70(1H, d, J=8.48 Hz) 6.70(1H, d, J=8.48 Hz) 6.70(1H, d, J=8.41 Hz) 7.01(2H, m)	4.7 Hz) KBr 10.9 Hz) 3600- 1652 1612 1612		FAB+ 401 [M'H'] (35) 384(40) 221(100)	C ₂₁ H _M N ₃ O ₃ 理警倍 C; 65.98% H; 7.05% N; 6.99% 分析值 C; 66.02% H; 7.10% N; 6.91%

(2) 1.7-1.8(2H, m) (3) Hz) 1.3-1.5(4H, m) (42) 0.9(3H, t, J=4 Hz) (43) (44) 1.3-1.5(4H, m) (45) 1.30-2.12(10H, m) (47) 1.30-2.12(10H, m) (48) 0.92(3H, t, J=7.0 Hz)	1.7-1.8(2H, m) 1.3-1.5(4H, m) 0.9(3H, t, J=4 Hz) 1.30-2.12(10H, m) 0.92(3H, t, J=7.0 Hz)
3 Hz) 1.3-1.5(4H, m) (b) (c) (d) (e) (e) (e) (e) (f) (f) (f) (f	1.3-1.5(4H, m) 0.9(3H, t, J=4 Hz) 1.30-2.12(10H, m) 0.92(3H, t, J=7.0 Hz)
(z) 0.9(3H, t, J=4 Hz) (z) (z) (z) (z) (z) (z) (z) (z) (z) (0.9(3H, t, J=4 Hz) 1.30-2.12(10H, m) 0.92(3H, t, J=7.0 Hz)
(2) (2) (2) (4) (4) (4) (5) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	
(z) (z) 0 Hz) 8.1, 2.0 Hz)	
(z) 0 Hz) 8.1, 2.0 Hz)	
D Hz)	
s) m) OOMHz , d, J=2.0 Hz) , dd, J=8.1, 2.0	H7
E 8 5 5	MH12 A, J=2.0 H2) d, J=8.1, 2.0 H2 J=8.1 Hz)) (1) J=7.7 Hz) 1H, m)
3.2(2H, CDCl ₃ ,3 7.39(1H 7.21(1H	3.2(2H, m) CDC1,300Mhz 7.39(1H, d, J=2.0 Hz) 7.21(1H, dd, J=8.1, 2, 6.84(1H, d, J=8.1 Hz) 6.62(1H, s) 6.57 (1H, s) 6.17(1H, d, J=7.7 Hz) 4.29-4.42 (1H, m)
	2191 -091
	¥ 8

	構造式	國	1H NMR (8) ppm	IRcm.1	MS	元素分析
	O+O	73.1~ 73.5°C	MHz H, m) J=8.0 Hz H, m) J=8.0 Hz J=8.5 Hz		FAB+ 358 [M*H*] (100) 221(40) 150.9(70)	
OMe	27 0	·	6.00(1H, s) 3.85(3H, s) 3.91(2H, t, J=6.9 Hz) 3.85(3H, s) 3.69(2H, q, J=6.68 Hz) 2.85(2H, t, J=7.2 Hz) 1.50-1.65(2H, m)			
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HO N	76.2~ 77.0°C	DMSO-d6,300MHz 9.76(1H, d, J=4.4 Hz) 9.13(1H, s) 8.39(1H, d, bs) 7.59(1H, d, J=1.8 Hz) 7.45(1H, d, J=1.8 Hz) 7.36(1H, dd, J=8.8, 1.8 Hz) 6.99(2H, d, J=8.4 Hz) 6.65(2H, d, J=8.4 Hz)	KBr 3242 2931 1637 1515 1496		
	/ >		4.02(2H, t, J= 6.6 Hz) 3.2-3.4(2H, m) 2.67(2H, t, J=7.5 Hz) 1.7-1.8(2H, m)			
P	N N N N N N N N N N N N N N N N N N N		DMSO-d6,300MHz 9.48(1H, bs) 9.20(1H, s) 6.5-7.2(7H, m) 3.9-4.0(2H, m) 3.3-3.5(2H, m) 2.7-3.0(3H, m) 1.6-1.8(2H, m) 1.3-1.5(4H, m)	·	FAB+ 358 [M*H*l (20)	·
			0.87(3H, 1, J=7.0 Hz)			

_	構造式	整点	1H NMR (&) ppm	IRcm-1	MS	元素分析
НО	N OH	77.5~ 77.8°C	4Hz 8.1, 2 8.1, 2 8.1, 2 1.1 Hz 6.12)	Neat 3383 2955 1646 1602 1513	FAB+ 316 [M+H+] (25)	
МеО	HO H		CDCl ₃ 300MHz 7.58(1H, s) 7.49(1H, d, J=8.44 Hz) 7.09(2H, d, J=8.36 Hz) 6.81(1H, d, J=8.44 Hz) 6.78(2H, d, J=8.44 Hz) 6.78(2H, d, J=8.44 Hz) 5.96-6.03(1H, m) 5.18(1H, s) 3.83(3H, s) 3.83(3H, s) 1.73-1.78(2H, m) 1.73-1.78(2H, m)	Neat 3500- 2970 1634	FAB+ 398 [M+H+] (90) 261(100) 121(42)	
MeO	N N O		CDCJ,300MHz 8.52(2H, d, J=5.99 Hz) 0.84-1.00(2H, m) 7.60(1H, s) 0.83(3H, d, J=6.7 Hz) 7.49(1H, d, J=8.49 Hz) 7.17(2H, d, J=5.99 Hz) 6.84(1H, d, J=8.49 Hz) 6.0-6.10(1H, m) 3.85(3H, s) 3.71(2H, q, J=6.66 Hz) 2.95(2H, t, J=6.96 Hz) 1.73-1.83(2H, m) 1.33(6H, s) 1.10-1.27(6H, m)	Neat 3300 1633	FAB+ 383 [M*H*] (70) 261(60)	

元素分析		MO. 101% 13% 19% 12% 12%	NO。 12名 12名 12名 12名 12名 12名 12名
K		C ₃ H ₁₃ NO ₄ 理器值 C; 72.01% H; 8.53% N; 3.39% 分析值 C; 72.12% H; 8.92% N; 3.42 %	C ₃ H ₃ NO ₄ 理醫商 C; 73.04% H; 8.72% N; 3.28% 分析值 C; 73.06% H; 8.82% N; 3.27%
MS	FAB+ 383 [M*H*] (100) 261(70)	FAB+ 414 [M'H'] (60) 278(25) 261(100)	FAB+ 428 [M'H'] (50) 261(100) 150(43)
IRcm.	Neat 3316 1634	Neat 3600- 3000 1602	KBr 3600- 3050 1625 1602
IH NMR (8) ppm	8.56(1H, d, 1=4.90 Hz) 0.82(3H, t, 1=6.67 Hz) 7.58-7.68(3H, m) 7.58-7.68(3H, m) 7.14-7.24(2H, m) 7.14-7.24(2H, m) 6.85(1H, d, 1=8.44 Hz) 3.79-3.80(5H, m, involving a singlet at 3.85 3.10(2H, t, 1=6.21 Hz) 1.74-1.82(2H, m) 1.35(6H, s) 1.11-1.24(6H, s) 0.86-0.98(2H, m)	CDCl ₃ 300MHz 7.49(1H, bs) 7.58(1H, d, J=2.25 Hz) 7.50(1H, dd, J=8.0, 2.25 Hz) 6.82(2H, d, J=8.18 Hz) 6.82(2H, d, J=8.18 Hz) 6.76(1H, d, J=8.0, 1.88 Hz) 6.61(1H, dd, J=8.0, 1.88 Hz) 6.61(1H, dd, J=5.56 Hz) 5.95(1H, bs) 3.83(3H, s) 3.61(2H, q, J=6.59 Hz) 2.77(2H, t, J=6.98 Hz) 1.72-1.78(2H, m)	CDCI,300MHz 7.60(1H, s) 7.47-7.59(1H, m) 6.80-6.89(2H, m) 6.80-6.89(2H, m) 6.00-6.10(1H, m) 6.00-6.10(1H, m) 5.56(1H, bs) 3.72(2H, q, J=7.15 Hz) 1.73-1.80(2H, m) 1.73-1.80(2H, m)
新			
集版 以	N H O O O O O O O O O O O O O O O O O O	HO N OBW	HO NO
災酷包	2-34	2-35	2-36

元素分析	C ₁₁ H ₁₁ NO ₂ 理路值 C; 73.77% H; 8.48% N; 3.19% 分析值 C; 73.61% H; 8.72% N; 3.22 %	国際値 国際値 C; 75.16% H; 8.67% N; 3.65% 分析値 C; 74.91% H; 8.85% N; 3.62 %	理論値 理論値 C: 72.15% H; 8.33% N; 3.66% 分析値 C; 71.95% H; 8.56% N; 3.52 %
MS	FAB+ 440 [M'H'] (100) 278(60) 261(90)	FAB+ 384 [MT+](100) 264(30) 247(60)	FAB+ 400 [M*H*] (55) 264(35) 247(100)
IRcm-1	KBr 3282 2416 1599 1531	KBr 3450- 3000 1698 1622 1574	KBr 3700- 3050 1629 1602
1H NMR (8) ppm	1.32(6H. s) 1.08-1.23(6H. m) 0.82-0.96(2H. m) 0.81(3H, t, J=6.67 Hz)	1.31(6H, s) 1.06-1.23(6H, m) 0.83-1.00(2H, m) 0.81(3H, t, J=6.6 Hz)) olving	2.56-2.68(2H, m) 1.74-1.86(2H, m) 1.31(6H, s) 1.10-1.27(6H, m) 0.85-1.00(2H, m) 0.81(3H, t, J=6.6 Hz)
1		DMSO-d6,300MHz 9.76(1H, s) 9.13(1H, s) 8.20(1H, t, 1=5.49 Hz) 7.58(1H, s) 7.50(1H, d, 1=8.36 Hz) 7.01(2H, d, 1=8.42 Hz) 6.76(1H, d, 1=8.42 Hz) 6.76(1H, d, 1=8.42 Hz) 3.27-3.40(5H, m, involving a singlet at 3.06) 2.69(2H, t, 1=7.5 Hz) 1.73-1.87(2H, m)	DMSO-d6,300MHz 8.77(1H, s) 8.71(1H, s) 8.60(1H, s) 8.60(1H, s) 7.58(1H, s) 7.48-7.52(1H, m) 6.75 (1H, d, J=8.3 Hz) 6.63(1H, d, J=8.3 Hz) 6.61(1H, s) 6.61(1H, s) 6.2-6.47(1H, m) 3.22-3.38(5H, m, involving a singlet at 3.31)
10	188.9∼ 189.5℃	149.7~ 150.2°C	159.3~ 160.0°C
14.5	HO Neo	HO NO	HO NH OH
全体体	2-37	2-38	2-39

元素分析	国 か (2,14,13,N,O ₂)		
MS	FAB+ 369 [M*H*] (100) 247(20) 169(40)	FAB+ 368 [M*H*] (100) 231(80)	FAB+ 356.1 [M*H*] (100) 236(30) 219(80)
IRcm-1	KBr 3450 2950 1632 1602 1575		·
1H NMR (3) ppm	CDCI,,300MHz 9.78(1H, s) 8.45(2H, d, J=5.68 Hz) 8.23-8.29(1H, m) 7.56(1H, s) 7.25(2H, d, J=5.68 Hz) 6.75(1H, d, J=8.3 Hz) 3.42-3.51(2H, m) 3.30(3H, s) 7.80-2.88(2H, m) 1.74-1.83(2H, m) 1.30(6H, s) 1.08-1.20(6H, s)	CDCl,,300MHz 7.72(1H, \$) 7.72(1H, \$) 7.45(1H, \$\delta\$, \$)=7.6 Hz) 7.42(2H, \$\delta\$, \$\delta\$-1.0-1.3(6H, \$\mathrm{m}\$) 7.42(2H, \$\delta\$, \$\delta\$-7.6 Hz) 7.31(1H, \$\delta\$, \$\delta\$-7.6 Hz) 7.06(2H, \$\delta\$, \$\delta\$-8.2 Hz) 7.07(1H, \$\sigma\$) 7.01(2H, \$\delta\$, \$\delta\$-8.2 Hz) 7.01(2H, \$\delta\$, \$\delta\$-8.2 Hz) 6.27(1H, \$\delta\$, \$\delta\$-8.2 Hz) 3.67(2H, \$\delta\$, \$\delta\$-6.7 Hz) 2.84(2H, \$\delta\$, \$\delta\$-6.7 Hz) 1.5-1.6(2H, \$\mathrm{m}\$) 1.28(3H, \$\sigma\$)	CDCl _{1,3} 00MHz 7.52(1H, d, J=10.3 Hz) 7.49(1H, s) 7.49(1H, s) 7.69(2H, d, J=8.46 Hz) 6.81(1H, d, J=8.46 Hz) 6.80(2H, d, J=8.46 Hz) 6.80(2H, d, J=8.46 Hz) 7.98-6.10(1H, m) 7.32(1H, s) 7.32(1H, s) 7.32(1H, s) 7.32(2H, m)
70 92	179.9∼ 180.5℃		101.8~ 102.4 °C
1	N N OH	HO N	HO OHW
dr tte mi	2-40	2-41	2-42

実施例	横造式	製点	1H NMR (3) ppm	IRcm ⁻¹	MS	元素分析
2-43	MeO NI O	88.6~ 89.4 C	8.53(1H, d, J=5.97 Hz) 0.88(3H, t, J=6.86 Hz) 7.52(1H, d, J=8.7 Hz) 7.50(1H, s) 7.50(1H, s) 7.18(2H, d, J=5.97 Hz) 6.82(1H, d, J=8.7 Hz) 6.00-6.13(1H, m) 3.85(3H, s) 3.72(2H, q, J=6.67 Hz) 2.95(2H, t, J=6.96 Hz) 2.95(2H, t, J=7.74 Hz) 1.49-1.60(2H, m) 1.25-1.40(4H, m)		FAB+ 341 [M*H*] (100) 219(40) 105.9(87)	
2-44	HH2 NH2 NH3	116.6~ 116.9°C	CDCI _{3,300MHz} 7.34(1H, d, J=2.1 Hz) 7.12(1H, dd, J=8.4, 2.1 Hz) 7.02(2H, d, J=8.3 Hz) 6.83(1H, d, J=8.4 Hz) 6.65(2H, d, J=8.3 Hz) 6.01(1H, bt) 4.02(2H, t, J=6.6 Hz) 7.02(2H, t, J=6.8 Hz)	KBr 3327 2934 1626 1513 1270 1226	FAB+ 413 [M*H*] (40) 277(80) 137(100)	C ₂₅ H ₂₆ N ₂ O ₅ 理辭值 C; 72.78% H; 8.80% N; 6.79 % 分析值 C; 72.91% H; 9.05% N; 6.74%
2-45	I HO N N N N N N N N N N N N N N N N N N	127~128 °C	CDCI3,300MHz 7.34 (1H, d, J=2.0 Hz) 7.08-7.26 (3H, m) 6.78-6.83 (3H, m) 6.04 (1H, m) 5.21 (1H, s) 3.99-4.04 (4H, m) 3.65 (2H, q, J=7.0 Hz) 2.85 (2H, t, J=7.0 Hz) 1.77-1.86 (4H, m) 0.88-0.92 (6H, m)		FAB+ 442[M+H+] (100)	

美施例	構造式	製造	1H NMR (8) ppm	IRcm-1	MS	元素分析
2-46	MBO NH2 NO2		CDCI3,300MHz 8.18(2H,d,J=8.4Hz) 7.40(2H,d,J=8.4Hz) 6.91(1H,d,J=8.9Hz) 6.20(1H,d,J=8.9Hz) 5.97(1H,bt) 5.78(1H,bt) 5.78(1H,bt) 3.93(2H,t,J=6.7Hz) 3.84(3H,s) 3.04(2H,t,J=6.9Hz) 1.70-1.83(2H,m) 1.30-1.50(4H,m)			
2-47	Mag No ₂ Oem		CDCi3,300MHz 8.15(2H,d,J=8.1Hz) 7.39(2H,d,J=8.1Hz) 7.18(1H,d,J=8.7Hz) 6.94(1H,d,J=8.7Hz) 6.94(1H,d,J=8.7Hz) 6.11(1H,bt) 4.08(2H,t,J=6.6Hz) 3.91(3H,s) 3.64(2H,q,J=6.6Hz) 3.00(2H,t,J=7.1Hz) 1.65-1.77(2H,m) 1.30-1.50(4H,m) 0.94(3H,t,J=7.1Hz)			·
2-48	Mao No ₂ Co ₂ Et	· .	CDCl3.300Mitz 8.19(2H,d,J=8.5Hz) 7.47(2H,d,J=8.5Hz) 7.23(1H,d,J=8.4Hz) 7.00(1H,d,J=8.4Hz) 4.13-4.40(6H,m) 3.92(3H,s) 3.92(2H,b) 3.03(2H,b) 1.70-1.83(2H,m) 0.93(3H,t,J=7.0Hz)			-

実施例	構造式	融点	1H NMR (3) ppm	IRcm.1	MS	元素分析
2-49	MeO HO SMe	93.2∼ 94.1℃	5 Hz) 1.5.1 3 Hz) 1.3.1. 5 Hz) 0.91(3 Hz) 6 Hz) 0 Hz)		FAB (M') 369(
2-50	MeO SMe		CDCl,300MHz 7.57(1H, d, J=9.0 Hz) 7.52(1H, bl) 7.12(2H, bl) 7.12(2H, d, J=8.4 Hz) 6.87(1H, d, J=9.0 Hz) 6.78(2H, d, J=8.4 Hz) 5.35(1H, bs) 3.96(2H, t, J=6.8 Hz) 3.86(3H, s) 3.71(2H, q, J=6.6 Hz) 2.88(2H, t, J=7.1 Hz) 2.30(3H, s) 1.76-1.90(2H, m)		FAB+ 404 [M'H'] (50) 267(100)	
2-51	Z= ON ON ON ON ON ON ON ON ON ON ON ON ON				·	

米描色	集造 外	五	(a) GMIN DI		ľ		
			midd (o) aiwir ur		E.	MS	元素分析
			CDCI,,300MHz			FAR+	
			7.62(1H, d, J=3.0 Hz) 1.62-1.73(2H, m)	<u> </u>			
			7.40(1H,dd,J=2.1,8.4Hz) 1.28-1.54(8H, m)	_		429	
	NH2			H2)		[M'H'] (50)	
)=	101.1~		H ₂)		293(100)	
	\ \ \	٦٥.201		·			
2-52	# \		5.99(1H, bt)				
	<i>></i>		4.04(2H, t, J=6.6 Hz)				
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		3.64(2H, q, J=6.5 Hz)				
	, .)		3.63(2H, bs)				
			2.91(2H, t, J=7.5 Hz)				
			2.81(2H, t, J=6.8 Hz)				
			1.7-1.8(2H, m)				
		*	CDCl3,300MHz	-			
•			7.04(2H,d,J=8.4Hz) 0.92(3H,t,J=7.1Hz)	[<u>z</u>]			
							
•	Ho		6.78(2H,d,J=8.4Hz)	_			
			6.20(1H,d,J=8.7Hz)				
			6.04(1Н,ы)				
2-53	-√ -√		5.71(2H,bs)	_			
	MeO NH2		3.92(2H,t,J=6.8Hz)				
	\{\}_\{\}_\		3.82(3H,s)				
	,		3.59(2H,q,J=6.6Hz)				
	1		2.80(2H,t,J=6.9Hz)			 ,	•
	沙黄色梧晶		1.70-1.85(2H,m)				
		1	1.50-1.50(4A,m)				
	•		CDCI,300MHz 7 \$7(1H d 1:21 Hz) 1.32 1 \$7411			FAB+	
						407	
	HO			_ (211		(W.H.) (20)	
)	139.8~	6.96(1H, dd, J=1.9, 8.1 Hz)			271(20)	
		40.3 C	6.70(2H, d, J#8.5 Hz)				
2-54			6.08(1Н, Ы)		<u>. </u>		
_	The state of the s	-	5.00(1H, bs)				
	\ \ -o		4.06(2H, t, J=6.5 Hz)				
	/ > >		3.65(2H, q, J=6.6 Hz)			- · · · · · · · · · · · · · · · · · · ·	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3.13(2H, t, J=7.1 Hz)				
	用加克斯		2.83(ZH, t, J=6.9 Hz)	-			
			1.0-1./3(ZH, M)		_		

標準式		養養	1H NMR (ð) ppm	Rem.1	MS	元素分析
			CDCI ₃ ,300MHz		FAB+	
			7.27(1H, d, J=1.5 Hz)		374	_
			7.04-7.13(4H, m)		[M"H"] (30)	
c	Ho /	1487~	_		307(20)	
() = (_	149.3°C				
	<u> </u>					
<u> </u>			4.07(2H, t, J=6.5 Hz)			
> -			3.67(2H, q, J=6.5 Hz)			
\ \ -0			2.86(2H, I, J=7.7 Hz)			
\ \ \			2.43(3H, s)			
			1.78-1.92(2H, m)			
無色結晶			1.37-1.6(4H, m)			
			0.94(3H, 1, J=7.1 Hz)			
			-		FAB+	
			=8.7 Hz)		703	
			7.35(1H, bt) 0.93(3H, t, J=7.1 Hz)		1971	
(NH2	0	7.02(2H, d, J=8.3 Hz)	_	(oc) [w. w]	
) -		80.8 20.7	6.87(1H, d, J=8.7 Hz)		(001)(07	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\langle	7.70	6.63(2H, d, J=8.3 Hz)			
<u></u>			3.95(2H, t, J=6.7 Hz)			
SMe			3.85(3H, s)			
\ \ -o			3.69(2H, q, J=5.7 Hz)			
/ }			3.57(2H, bs)			
•			2.83(2H, I, J=6.9 Hz)			
淡醋色結晶			2.31(3H, s)			
	- 11		1.75-1.88(2H, m)			
			Ηz		FAB+	
			(2011, EU, 1, 1=1.1 ft.)		378	
1	· ·		/.50(IH, S)		(M*H*1 (100)	
0=	Z-	~ y 80	/.48(1h, u, j=6./ hz)		267(50)	
\ =\ 		99.3°C	0.8/(1H, 0, J=8./ HZ)			
Z	>		0.8/(IH, 5)			
CANO			5.9 /(2ff, t, 1=0.0 flZ) 3 86/3H s)			
PINIO			(5,11C,0) (2,11C,0)			
			3.70(zn, 4, 3=0.3 nz)			
			2.36(3H, s)			
無色結晶			1.75-1.88(2H, m)	-		
H (44)			1.3-1.55(4H, m)			

施例	構造式	製点	IH NMR (8) ppm	IRcm-1	-ı MS	元素分析	_
			CDCI,,300MHz	_	FAB+		
			7.20(1H, d, J=.5 Hz) 1.3-1.53(4H, m)				
			7.12(2H, d, J=8.6 Hz) 0.94(3H, t, J=7.1 Hz)		418		
	동 .				[M.H.] (30)		
			6.78(2H, d, J=8.6 Hz)		281(100)	,	
			6.70(1H, bi)				
85	:x'		5.06(1H, s)	_	-		
2	MeO SMe		3.95(2H, 1, J=6.7 Hz)				
	~ ~ ~		3.91(2H, s)		-		
	/ >		3.85(3H, s)				
			3.67(2H, q, J=6.6 Hz)				
			2.88(2H, t, J=7.0 Hz)				
			1.75-1.87(2H, m)				
			CDCI,,300MHz		FAB+		·
		•	8.18(2H, d, J=8.7 Hz)		 		
			7.63(1H, bt)	_	433	,	
	NO ₂		7.60(1H, d, J=8.6 Hz)		[M'H'] (40)		
	0=	29.3∼	7.45(2H, d, J=8.7 Hz)		(267(100)		表 —
		21.001	6.90(1H, d, J=8.6 Hz)				.
50	Z		3.96(2H, I, J=6.7 Hz)				-{
,	MeO SMe	_	3.87(3H, s)		·		5
	\ \ -o'		3.78(2H, q, J=6.6 Hz)				5
	,)		3.09(2H, t, J=7.0 Hz)	- ,			
		-	2.39(3H, s)				
	無色結晶		1.75-1.9(2H, m)				
			1.32-1.54(4H, m)				
				χĐ	FAB+		
				3376	337	C21H29N3O3	
			6.91(1H,d,J=8.7Hz) 0.93(3H,t,J=7.2Hz)	3311	(M±H±1/20)		
	NH2	27.47	6.66(2H,d,J=7.8Hz)	9100	236(50)		
		98.3%	6.19(1H,d,J=8.7Hz)	1631	(00000		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	5.92(1H,bs)	1626			
-60	- ∜		5.77(2H,bs)	1284			
3	MeO NH2		3.92(2H,t,J=6.8Hz)	178/			
	__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3.83(3H,s)				
			3.61(2H,bs)	=;	-		
			3.60(2H,q,J=6.5Hz)				
	無色結晶		2.79(2H,t,J=6.9Hz)				
			1.7-1.93(2H,m)				

	衣 0 0		
元素分析	C20H27N3O3	C20H27N3O3	C20H27N3O3
MS	FAB+ 358 [M+H+] (60) 236(70)	FAB+ 358 [M+H+] (50) 307(20)	FAB+ 358 [M+H+] (40) 236(100)
Rcm-1	KBr 3345 1626 1530 1282	KBr 3330 2955 1630 1529 1289	KBr 3332 2930 1632 1598 11542 1259
1H NMR (8) ppm	0.92(3H,t,J=7.1Hz)		0.92(3H,t,J=7.1Hz)
	CDC13,300MHz 8.53(2Hd,J=6,0Hz) 7.16(2Hd,J=8,9Hz) 6.91(1Hd,J=8,9Hz) 6.19(1Hd,J=8,9Hz) 5.96(1H,bs) 5.96(1H,bs) 3.92(2H,L)=6,8Hz) 3.83(3Hs) 3.66(2Hq,J=6,6Hz) 2.91(2Hq,J=6,9Hz) 1.70-1.83(2H,m) 1.30-1.50(4H,m)	CDC13,300MHz 8.77(1H,b) 8.52(2H,d,J=6.1Hz) 7.23(2H,d,J=6.1Hz) 6.64(1H,d,J=8.8Hz) 3.91(3H,s) 3.73(2H,q,J=6.2Hz) 2.96(2H,L,J-7.1Hz) 2.87(2H,L,J=7.2Hz) 1.40-1.58(2H,m) 1.20-1.40(4H,m) 0.88(3H,L,J=6.8Hz)	CDCl3,300MHz 8.53(2H,d.J=6.0Hz) 7.18(2H,d.J=6.0Hz) 6.73(1H,s) 6.73(1H,s) 5.99(1H,b) 5.35(2H,b) 3.85(2H,t.J=6.6Hz) 3.85(2H,t.J=6.7Hz) 3.87(2H,q.J=6.7Hz) 2.93(2H,t.J=7.1Hz) 1.70-1.80(2H,m) 1.30-1.50(4H,m)
融点	86.5~ 87.6°C	116.8~ 117.6 C	128.7~ 129.4 ^C
構造式	MeO NH ₂ Med結晶	MeO H N N N N N N N N N N N N N N N N N N	MeO H2 O H MeO MeO Meb
米福包	2-61	2-62	2-63

	A 01	
C21H29N3O3	C21H27N3O5	,
FAB+ 402 [M+H+] (20) 266(20)	FAB+ 402 [M+H+] (20) 266(20)	FAB+ 448 [M+H+] (55) 390(14) 343(29) 221(100)
KBr 3258 2934 1650 1514 1336 1272 1220	Neat 3258 2934 1650 1514 1336 1272 1221	Neat 2933 1628 1601 1261
13,300MHz	13,300MHz (1H,s) (2H,d,J=8,4Hz) (2H,d,J=8,4Hz) (1H,s) (2H,d,J=6,8Hz)	CDCl,,300MHz 8.50(4H, br s) 7.03(4H, br s) 6.81(1H, d, J= 9.0 Hz) 6.66-6.70(2H, m) 3.94(2H, t, J=6.5 Hz) 3.88(3H, s) 3.44-3.73(4H, m) 2.70-3.00(4H, m) 1.79-1.90(2H, m) 1.31-1.50(4H, m) 0.93(3H, t, J=7.3 Hz)
	CDX 7.59 7.03 7.03 7.03 7.03 7.03 7.03 7.03 7.03	CDC 8.50 7.03 6.66 3.94 3.44 2.70 1.79 1.31
NH2 P H NH2 MBO O MB	NO2 Q NH2 MBO H H	MeO O O O O O O O O O O O O O O O O O O
2-64	2-65	2-66
	CDC13,300MHz 7.59(1H,s) 7.59(1H,s) 7.03(2H,d.)=8.4Hz) NH2	CDC33300MHz

灾施例	構造式	融点	1H NMR (3) ppm	1Rcm-1	MS	元素分析
					FAB+	
			7.1-7.5 (3H, m) 1.46 (9H, s)		,	
			7.08 (2H, d, J = 8.4 Hz)		459	
			6.86 (2H, d, J = 8.4 Hz)		[M+H+J(50).	
			6.80 (1H, bs)			
			5.91 (1H, bs)			
2-67	<u> </u>		3.99 (2H, bs)			
; ;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.87 (3H, s)			
	NBoc O		3.64 (2H, q, J = 6.3 Hz)			-
	> >		3.42 (2H, t, J = 6.6 Hz)		-	
			2.87 (3H, s)			
	黄色油状	•	2.84 (2H, t, J = 6.6 Hz)			
			2.0-2.1 (2H, m)			
					FAB+	
					· ·	
			7.18(1H, d, J=8.4 Hz) 1.3-1.5(4H, m)		378	
	0=		3 Hz) ([M+H+](30),	
					300(100).	
	(6.81(1H, d, J=8.4 Hz)			
2-68			6.35(1H, bs)			
)—)—	-	4.67(2H, d, J=6.9 Hz)			
	\ \ \ \ \		4.14(1H, t, J=6.9 Hz)			
	/ > >		3.97(2H, t, J=6.6 Hz)			
			3.86(3H, s)			•
	谈黄色結晶		3.72(2H, q, J=6.3 Hz)			
			3.16(2H, t, J=6.3 Hz)			
			CDC13,300MHz		FAB+	
			7.10(1H d I_8 d H=) 001/24 + 1_6 0 U_3		386	
					[M+H+] (30)	
)=		6.20(1H, bs)		368(100)	_
			4.63(2H, d, J=6.9 Hz),			
2-69	- -		4.20(1H, t, J=6.6 Hz),			
} i	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3.96(2H, t, J=6.6 Hz),			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.84(3H, s),			<u> </u>
	,		3.67(2H, q, J=6.6 Hz)			
	年安林县		2.32(3H, s) =0.0 Hz)		-	
			1.7-1.9(4H. m)			
				1	-	

_			
元素分析	·		
MS		FAB+ 400[M+H+] (100), 382 (30).	FAB+ 386[M+H+] (100)
IRcm-1	` .		
1H NMR (&) ppm	4 Hz 4 Hz 4 Hz 6 9 Hz 9 Hz 9 Hz 7 Hz 7 Hz	CDC(3,300MHz 7.13(4H, s) 7.05(1H, d, J=8.4 Hz), 6.75(1H, d, J=8.4 Hz), 6.36(1H, bs) 4.03(1H, t, J= 4.8 Hz) 3.94(2H, t, J= 6.9 Hz) 3.87(2H, t, J= 6.9 Hz) 3.87(2H, q, J=6.6 Hz) 2.94(2H, q, J=5.4 Hz) 2.94(2H, q, J=5.4 Hz) 2.94(2H, q, J=5.4 Hz) 2.33(3H, s)	CDCi3,300MHz 7,2-7,4(5H, m) 7,04(1H, d, J=8,4 Hz), 6,75(1H, d, J=8,4 Hz), 6,46(1H, bs) 3,94(2H, t, J= 5,0 Hz) 3,94(2H, t, J= 5,0 Hz) 3,86(2H, t, J= 5,1 Hz) 3,86(2H, t, J= 5,1 Hz) 3,83(3H, s) 3,69(2H, q, J=6,6 Hz) 2,9-3,0(4H, m) 1,75(2H, t, J=7,1 Hz) 1,3-1,5(4H, m)
融点			
構造式	NO ₂ NO ₂ NO ₃ NO ₃		
実施例	2-70	2-71	2-72

元素分析			
MS	FAB+ 392[M+H+] (100), 374(25)	FAB+ 417 [M+H+](20), 399(100)	
IRem.1			
1H NMR (&) ppm	7,1.7. 5 Hz 7,3 1 5 Hz 1 Hz 1 Hz 1 Hz 1 Hz	CDCi3,300MHz 8.18(2H, d, J=8.7 Hz) 7.41(2H, d, J=8.7 Hz) 7.41(2H, d, J=8.7 Hz) 7.16(1H, d, J=8.4 Hz) 6.82(1H, d, J=8.4 Hz) 6.40(1H, bs) 4.65(2H, t, J=6.6 Hz), 3.97(2H, t, J=6.6 Hz), 3.97(2H, t, J=6.6 Hz), 3.86(3H, s) 3.74(2H, q, J=6.6 Hz) 3.07(2H, t, J=6.6 Hz) 3.07(2H, t, J=6.6 Hz) 1.7-1.9(2H, m)	
融点			
構造式	OH 無色結晶	NO ₂	ОВИ
実施例	2-73	2-74	2-75

			·
元素分析		C19H30N2O4 理論值 C; 65.12% H; 8.63% N; 7.99% 分析值 C; 65.02% H; 8.56% N; 8.30%	
MS	FAB+ 328[M+H+] (100) 191(75)	FAB+ 351[M+H+] (100) 221(80) 264(60)	
IRcm-1	NaCl 3314 2932 1638 1580 1515	KBr 3286 2945 1654 1617 1515	
1H NMR (8) ppm	CDC13,300MHz 7.28 (1H, s) 7.23 (1H, t, J=8.0 Hz) 7.15 (1H, d, J=8.0 Hz) 7.08 (1H, s) 7.02 (2H, d, J=8.0 Hz) 6.98 (1H, d, J=8.0 Hz) 6.98 (1H, bt) 6.32 (1H, bt) 7.93 (2H, t, J=7.6 Hz) 6.34 (2H, t, J=7.0 Hz) 7.95 (2H, t, J=7.0 Hz) 7.95 (2H, t, J=7.0 Hz) 7.96 (2H, t, J=7.0 Hz) 7.97 (2H, t, J=7.0 Hz) 7.98 (2H, t, J=7.0 Hz) 7.98 (2H, t, J=7.0 Hz) 7.99 (2H, t, J=7.0 Hz)	CDCI3,300MHz 7.43 (1H, d, J=2.0 Hz) 1.3-1.5 (4H, m) 7.26 (2H, dd, J=8.4, 0.93 (3H, t, J=7.0 Hz) 6.85 (1H, d, J=8.4Hz) 6.85 (1H, d, J=8.4Hz) 6.76 (1H, bt) 4.06 (2H, t, J=6.9 Hz) 3.90 (3H, s) 3.73 (4H, t, J=4.6 Hz) 3.55 (2H, q, J=5.7 Hz) 2.62 (2H, t, J=5.7 Hz) 2.53 (4H, t, J=4.6 Hz) 1.8-1.9 (2H, m)	
最近		113.5~ 114.2°C	
構造式	HO N O	O N N N O O O O O O O O O O O O O O O O	Meo H
奥施例	2-76	2-77	2-78

元素分析		C22H29NO5 理論値 C; 68.20% H; 7.54% N; 3.61% 分析値 C; 67.74% N; 7.72%	C22H27NO6 理論值 C; 65.82% H; 6.78% N; 3.49% 分析值 C; 63.00% H; 6.84% N; 3.26%
MS	FAB+ 510 [M+H+] (65) 384(45) 221(100)	FAB+ 388 [M+H+] (45) 221(100)	FAB+ 402 [M+H+] (60) 221(100) 237(42)
IRem.1	Neal 3234 1609 1516	KBr 3324 2954 1616 1515 1264	KBr 3431 3303 1740 1641 1509
1H NMR (8) ppm	CDCI3.300MHz 7.4-7.7 (5H, m) 7.2-7.4 (1H, m) 6.6-6.9 (7H, m) 3.92 (2H, t, J=6.8 Hz) 3.87 (3H, s) 3.6-4.0 (2H, m) 3.5-3.7 (2H, m) 3.5-3.7 (2H, m) 3.0-3.2 (1H, m) 3.0-3.2 (1H, m) 2.6-2.8 (2H, m) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	CDCI3,300MHz 7.3 (1H, d, J=3 Hz) 1.7-1.9 (2H, m) 7.2 (1H, dd, J=9, 3 Hz) 1.2-1.5 (4H, m) 7.0 (2H, d, J=9 Hz) 0.91 (3H, t, J=7.5 Hz) 6.8 (1H, d, J=9 Hz) 6.6 (1H, bs) 6.4 (1H, bt) 4.3-4.4 (1H, m) 4.0 (2H, t, J=7.5 Hz) 3.9 (3H, s) 3.4-3.8 (2H, m) 3.2 (1H, m) 2.8-2.9 (2H, m)	DMSO-d6,300MHz 12.50 (1H, bs) 9.14 (1H, s) 8.43 (1H, d, J=8.2 Hz) 7.42 (2H, bd, J=8.2 Hz) 7.35 (1H, bs) 7.10 (2H, d, J=8.5 Hz) 7.00 (1H, d, J=8.5 Hz) 6.63 (2H, d, J=8.3 Hz) 4.4-6 (1H, m) 3.97 (2H, t, J=6.4 Hz) 3.80 (3H, s) 7.9-3 (7H, m)
難点		89.2~ 90.4°C	
横逢式	HO S C COPW	MaO CH2OH OH	Мво (200H ОН
灾施例	2-79	2-80	2-81

元素分析		C21H27NO5 理論值 C; 67.54% H; 7.29% N; 3.75% 分析值 C; 68.30% H; 7.49%	
MS		FAB+ 374 [M+II+] (37) 307(19) 238(45) 169(57) 154(100)	FAB+ 343 [M+H+-HCI] (100)
IRem.t		3435 3253 1561 1508 1275	2934 1638 1505 1268
1H NMR (8) ppm		BMSO-d6,300MHz 8.55-8.80 (2H, m) 8.35 (1H, t) 7.38-7.47 (2H, m) 7.00 (1H, d, J=8.5 Hz) 6.64 (1H, d, J=2.2 Hz) 6.65 (1H, dd, J=8.5, 6.46 (1H, dd, J=8.5, 3.98 (2H, t, J=6.7 Hz) 3.98 (2H, t, J=6.7 Hz) 3.98 (2H, t, J=6.7 Hz) 3.29 (3H, s) 3.29-3.41 (2H, m) 2.63 (2H, t, J=8.3 Hz)	DMSO-d6,300MHz 8.74 (2H, d, J=6.0 Hz) 8.50 (1H, brs) 7.81 (2H, d, J=6.0 Hz) 7.38-7.42 (2H, m) 6.99 (1H, d, J=8.0 Hz) 3.96 (2H, t, J=6.8 Hz) 3.80 (3H, s) 3.60 (2H, q, J=6.5 Hz) 3.10 (2H, t, J=6.5 Hz) 1.66-1.78 (2H, m) 1.27-1.46 (4H, m) 0.90 (3H, t, J=6.5 Hz)
聯点			
構造式	вмо Д Д Овм	HO N O O W HO N N N N N N N N N N N N N N N N N N	MeO HCI MeO HCI
実施例	2-82	2-83	2-84

米斯色	構造式	融点	1H NMR (&) ppm	IRcm.	MS	元素分析	_
2-85	MeO S S S		CDCI3300MHz 7.1-7.3 (5H, m) 7.27 (1H, d, J=8.2 Hz) 7.22 (2H, d, J=8.5 Hz) 7.22 (2H, d, J=8.5 Hz) 7.04 (2H, d, J=8.5 Hz) 7.04 (2H, d, J=8.5 Hz) 6.9-7.1 (2H, m) 6.87 (1H, d, J=8.2 Hz) 5.68 (1H, d, J=13.6 Hz) 7.08 (2H, t, J=7.8 Hz) 7.09 (3H, s)	Neat 2932 1760 1659 1600			
2-86	MBO O O O O O O O O O O O O O O O O O O		CDCI3,300MHz 6.8-7.3 (7H, m) 3.99 (2H, t, J=6.9 Hz) 3.88 (3H, s) 3.2-3.8 (4H, m) 2.8-3.0 (2H, m) 2.28 (3H, s) 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 1.0-1.2 (3H, m) 0.92 (3H, t, J=7.1 Hz)	Neal 2933 1762 1628	FAB+ 428 [M+H+] (25) 221(100)		
	MeO N N N N N N N N N N N N N N N N N N N		CDCI3,300MHz 8.07 (2H, brd) 7.41(1H, d, J=1.7 Hz) 7.20 (1H, brd, J=8.3 Hz) 7.13 (2H, d, J=6.5 Hz) 6.84 (1H, d, J = 8.3 Hz) 6.44-6.65(1H, m) 7.05 (2H, t, J=6.9 Hz) 7.90 (3H, s) 7.90 (2H, q, J=6.7 Hz) 7.96 (2H, t, J=6.7 Hz) 7.96 (2H, t, J=6.7 Hz) 7.96 (2H, t, J=6.7 Hz) 7.96 (2H, m) 7.97 (2H, m) 7.98 (2H, m) 7.99 (2H, m)		FAB+ 359 [M+H+] (95) 221(55) 151(53) 122(100)		

元素分析	C20H26N2O4 理論值 C; 67.02% H; 7.31% N; 7.82% 分析值	% %	8. %
卍			ङ
MS	FAB+ 359 [M+H+] (51) 307(27) 221(36) 154(100)		FAB+ 359 [M+H+] (35) 221(29) 154(100)
IRcm.1	3310 1637 1510 1269 1230		
1H NMR (S) ppm	1.81-1.91 (2H, m) 1.36-1.50 (4H, m) 0.93 (3H, t, J=7.0 Hz)		1.77-1.90 (2H, m) 1.32-1.49 (4H, m) 0.92 (3H, t, J=7.0 Hz)
1	8.54-8.56 (1H, m) 7.73(1H, td, J=7.7, 1.9 Hz) 7.48 (1H, d, J=7.9 Hz) 7.36 (1H, d, J=1.9 Hz) 7.22-7.27 (2H, m) 6.85 (1H, d, J=8.4 Hz) 6.59-6.69 (1H, m) 5.00 (2H, m) 3.99-4.09 (3H, m) 3.60-3.69 (1H, m)		CDCI3,300MHz 8.18 (1H, d, J=2.9 Hz) 7.39 (1H, d, J=1.8 Hz) 7.05 (1H, dd, J=8.3, 1.8 Hz) 7.17-7.25 (1H, m) 7.14 (1H, dd, J=8.2, 2.9 Hz) 7.08 (1H, d, J=8.2, 6.85 (1H, d, J=8.3 Hz) 4.04 (2H, t, J=6.7 Hz) 3.89 (3H, s) 3.79 (2H, q, J=6.4 Hz)
MAA	110~112 C		117~118 T
传谱式	MeO H OH MeO Meo OH		MeO H H N N MeO OH 無色結晶
	2-88 Me(2-89 MeC

_		Y	
元素分析	C24H35N2O2CI	C23H33CIN2O2	
MS	FAB- 418 [M-H+] (20) 417(100) 381(90)	FAB- 403 [M-H+] (10) 367(100)	
TRcm ⁻¹			
1H NMR (3) ppm	B.83(2H,d,J=6.4Hz) 8.83(2H,d,J=6.4Hz) 8.47(1H,bt) 7.98(2H,d,J=6.4Hz) 7.65(1H,d,J=8.5Hz) 7.59(1H,s) 6.98(1H,d,J=8.5Hz) 5.05(1H,bs) 3.82(3H,s) 3.62(2H,q,J=6.0Hz) 3.16(2H,d,J=6.5Hz) 1.70-1.80(2H,m) 1.29(6H,s)	DMSO-d6,300MHz 9.85(1H,s) 8.77(2H,d,J=6.4Hz) 8.30(1H,bs) 7.87(2H,d,J=6.4Hz) 7.54(1H,s) 7.45(1H,d,J=8.3Hz) 6.76(1H,d,J=8.3Hz) 3.53-3.63(2H,m) 1.72-1.82(2H,m) 1.10-1.25(6H,m)	
種点			
構造式	MeO 無色結晶	HO HO 無色結晶	Meo Commonway
東施列	2-91	2-92	2-93

H. IOH
,0
P.

		表 10 	
元素分析		C23H31NO5 理論值 C; 68.81% H; 7.78% N; 3.49% 分析值 C; 68.34% H; 7.70% N; 3.53%	C22H30N2O4 理論值 C; 68.37% H; 7.82% N; 7.25% 分析值 C; 68.37% H; 7.75% N; 7.39%
MS	FAB+ 418 [M+H+] (20) 221(40) 151(30)	FAB+ 402[M+H+] (100)	FAB+ 387 [M+H+] (90) 106(100)
1Rcm ⁻¹	Neat 3500 2926 1631 1512 1267	3152 1943 1623 1543 1489 1279	Neat 3247 2935 1631 1596 1558 1488 1278 1086
1H NMR (3) ppm	CDCI3,300MHz 7.36 (1H, d, J=2.0 Hz) 2.94 (2H, dd, J= 6.9, 7.18 (1H, dd, J=8.3, 2.0 Hz) 2.71 (2H, d, J=5.8 Hz) 7.09 (2H, d, J=8.3 Hz) 2.15 (3H, s) 6.84 (1H, d, J=8.3 Hz) 1.8-1.9 (2H, m) 6.77 (2H, d, J=8.3 Hz) 1.3-1.5 (4H, m) 6.23 (1H, bd, J=6.9 Hz) 0.92 (3H, t, J=7.0 Hz). 6.0 (1H, bs) 4.4-4.6 (1H, m) 4.00 (2H, t, J = 6.8 Hz) 3.89 (3H, s)	CDCI3300MHz 7.05 (1H, d, J=8.4 Hz) 2.84 (2H, t, J=6.9 Hz) 7.02 (2H, d, J=8.5 Hz) 1.7-1.8 (2H, m) 6.75 (2H, d, J=8.5 Hz) 1.7-1.8 (2H, m) 6.74 (1H, d, J=8.4 Hz) 0.92 (3H, t, J=7.0 Hz) 6.46 (1H, bs) 6.30 (1H, bs) 4.50 (1H, bs) 3.94 (2H, t, J=6.7 Hz) 3.89 (2H, q, J=5.6 Hz) 3.83 (3H, s) 3.64 (2H, q, J=5.6 Hz) 2.95 (2H, t, J=5.6 Hz)	CDCI3,300MHz 7.17 (2H, d, J=5.7 Hz) 1.3-1.5 (4H, m) 7.11 (2H, d, J=8.5 Hz) 0.92 (3H, t, J=7.1 Hz) 6.92 (1H, bs) 6.78 (2H, d, J=8.5 Hz) 3.93 (2H, t, J=6.7 Hz) 3.89 (2H, q, J=5.7 Hz) 3.84 (3H, s) 3.71 (2H, q, J=6.7 Hz) 2.95 (2H, t, J=6.7 Hz) 2.95 (2H, t, J=5.7 Hz) 1.70 (1H, bs)
最点	·	127.5∼ 128.5℃	
構造式	HO SMB OH OH	HO HO O O O O O O O O O O O O O O O O O	N- N- O-
安施例	2-97	2-98	2-99

実施例	構造式	融点	1H NMR (3) ppm	IRem-1	WS		元素分析
			CDC1,300MH2	-	FAB+		
			8.19(1H, d, J=8.7 Hz) 2.83(2H, I, J=6.9 Hz)				
			8.02(1H, bi) 1.6-1.75(2H, m)		358		
-	HO	,	7.07(2H, d, J=8.4 Hz) 1.3-1.42(4H, m)		[M'H'] (100)	1001	
_		90.6	6.79(2H, d, J=8.4 Hz) 0.92(3H, t, J=7.11Hz)		(07)(70)		
		77.76	6.58(1H, dd, J=8.7, 2.1 Hz)				
2.100	→		7.08 (2H, d, J=8.0 Hz)	-			
3	_ O New		6.92(1H, d, J=8.0 Hz)				
			6.43(1H, d, J=2.1 Hz)				
	ا	_ _	5.72(1H, s)	_	_	_	
_			3.99(2H, t, J=6.6 Hz)	-			
	無色結晶		3.83(3H, s)				
			3.69(2H, q, J=6.7 Hz)				
			CDCI,,300MHz		FAR		
			7.39(1H, d, J=2.4 Hz)				
			7.22(11H, dd, J=8.4, 2.4 Hz)		427		
	₹		7.05(2H, d, J=8.4 Hz)		(M*H*) (90)	<u></u>	
	=		6.81(2H, d, J=8.4 Hz)		369(100)		
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	- 	6.79(1H, d, J=8.4 Hz)				
2-101	= -\ -\ :		6.17(1H, bt)				
	MeO		3.85(3H, s)				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3.65(2H, q, J=6.6 Hz)	-			
			3.06(4H, t, J=7.8 Hz)				
			2.83(2H, t, J=7.1 Hz)			<u>.</u>	
			1.13-1.50(12H, m)				
			0.84(6H, t, J=6.8 Hz)		_		
				Neat	FAB+		
			•	0000		CnH	C ₂₂ H ₂₇ NO ₄
	į		0 Hz)	0700			
	HO	, , ,	7.07(2H, d, J=8.5 Hz) 1.65(3H, s)	OIC!	(MTH') (100)	100) 理路値	铺
)=	120.6~	6.83(2H, d, J=8.5 Hz)	0071		C: 71	C: 71.52%
		71.121	6.80(1H, d, J=8.4 Hz)			H. 7.	H; 7.37%
2-102			6.08(1H, bd)			χ̈́	N; 3.79 %
	MeO.		5.83(1H, bs)	-		O to the	, i
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5.1-5.2(1H, m)			ر ا ا	7. VI 183
	,)		4.00(2H, t, J=7.4 Hz)	· ·		H; 7.43%	43%
		,	3.89(3H, s)			N; 3.90%	%06
	無色結晶		3.66(2H, q, J=6.9 Hz)				
			7.84(∠n, t, j=0.9 mz)			-	

構造式	融点	1H NMR (8) ppm	IRcm-t	MS	元素分析
M P M M M M M M M M M M M M M M M M M M	131.9∼ 132.1℃	CDCl,300Mft2 7.35(1H, d. J=2.0 Hz 7.13(1H, dd. J=8.4, 2 7.06(2H, d. J=8.5 Hz 6.81(1H, d. J=8.4 Hz 6.79(1H, d. J=8.5 Hz) 6.00(1H, bs) 6.09(1H, bt) 3.99(2H, t. J=7.0 Hz) 3.87(3H, s) 3.64(2H, q. J=6.9 Hz) 2.83(2H, t. J=6.9 Hz) 1.7-1.9(2H, m)	KBr 3380 2954 1509 1267 1228	FAB+ 372[M*H*] (100) 235(60)	C ₂₂ H ₁₃ NO ₄ 理論值 C; 71.13% H; 7.87% N; 3.77% 分析值 C; 71.41% H; 7.93% N; 3.87%
Me N Me had	115.3~ 116.0°C	CDCl,300MHz 7.36(1H, d. J=2.1Hz) 7.21(1H, dd. J=8.4, 2.1 Hz) 7.21(1H, dd. J=8.4, 2.1 Hz) 7.21(1H, dd. J=8.4, 1.1 Hz) 6.8(2H, dd. J=8.4, 1.5 Hz) 6.05(1H, bt) 5.48(1H, s) 3.88(3H, s) 3.66(2H, q, J=6.6 Hz) 3.03(2H, t, J=7.7 Hz) 2.85(2H, t, J=7.1 Hz) 2.85(2H, t, J=7.1 Hz) 2.79(3H, s)		FAB+ 371 [M*H*] (100) 313(70)	
N HN HN 無色結晶	115.5~ 116.1°C	CDC1,300MHz 7.09(2H, d, J=8.4 Hz) 6.98(1H, d, J=8.1 Hz) 6.98(1H, dd, J=8.1, 1.8Hz) 6.89(1H, dd, J=8.1, 1.8Hz) 6.89(1H, dd, J=8.1, 1.8Hz) 6.79(2H, d, J=8.1 Hz) 6.68(1H, d, J=8.1 Hz) 6.06(1H, bt) 7.40(1H, bt) 7.40(2H, t, J=6.5 Hz)		FAB+ 412 [M'H'] (100) 276(40)	

元素分析		C22H25NO4 理論值 C; 71.91% H; 6.86% N; 3.81% 分析值 C; 71.00% H; 6.92% N; 3.54%	C ₃ H ₃ N ₂ O ₅ S 理論值 C; 63.00% H; 7.61% N; 5.88% A 5.88% C; 63.28% H; 7.60% N; 5.80%
MS	FAB+ 413 [M'H'] (70) 276(100)	FAB+ 368[M+H+] (100) 231(90)	FAB+ 477 [M*H*] (100)
IRcm-1		2932 1595 1514 1341 1203	KBr. 3399 2939 1628 1505 1268 1161
1H NMR (8) ppm	4 Hz 4 Hz 4 Hz 5 Hz 6 Hz 8 Hz)	CDCI3,300MHz 7.64 (1H, d, J=2.2 Hz) 1.82-2.05 (2H, m) 7.42 (1H, d, J=1.5 Hz) 1.35-1.51 (4H, m) 7.26 (1H, d, J=1.5 Hz) 0.93 (3H, t, J=7.2 Hz) 7.05-7.08 (2H, m) 6.80-6.83 (2H, m) 6.73-6.74 (1H, d, J=2.2 Hz) 6.52 (1H, brs) 6.52 (1H, brt) 7.65 (2H, t, J=6.8 Hz) 7.68 (2H, t, J=6.8 Hz) 7.64 (2H, t, J=6.8 Hz) 7.65 (2H, t, J=6.8 Hz)	BMSO-d6,300MHz 8.40(1H, bt) 7.74(2H, d. J=8.3 Hz) 7.42(2H, d. J=8.3 Hz) 7.3-7.5(2H, m) 7.26(2H, s) 6.70(1H, d. J=9.0 Hz) 3.99(2H, t. J=6.2 Hz) 3.97(2H, q. J=6.6 Hz) 3.45(2H, m) 1.6-1.8(4H, m) 1.3-1.5(8H, m)
融点	102.2~ 103.5 °C		187.0∼ 187.5℃
佛造式	H N N W M G M	OH O O O O O O	************************************
奥施例	2-106	2-107	2-108

安施列	体造式	重	1H NMR (3) ppm	шс	IRcm.1	MS	元素分析
2-109	無 無 無 無 無 無 無 無 無 無 無 無 無 無	163.5∼ 163.7℃	9 Hz) 0 Hz) 8.3, 2.0 Hz) 3 Hz) 9 Hz) 3 Hz) 3 Hz)	0.92(3H, t, J±7.1 Hz)	KBr 3201 2933 1632 1514 1268 1222	FAB+ 388 [M*H*] (100)	C ₂₂ H _{3,N} ,O ₃ 理論值 C; 68.20% H; 8.58% N; 10.84 % 分析值 C; 68.23% H; 8.61% N; 10.66%
2-110	And	118.3 ~	7 Hz) 7 Hz) 1.1 Hz) 8.4, 2.1 Hz) 4 Hz) 6 Hz) 6 Hz) 0 Hz)	0.93(3H, t, J=7.1 Hz) 0.92(3H, t, J=7.1 Hz)	KBr 3497 3286 1750 1627 1522	FAB+ 443 [M*H*](100)	型論値 理論値 C; 67.85% H; 7.74% N; 6.33 % 分析値 C; 6825% H; 7.87% N; 6.32%
2-111	() () () () () () () () () ()	105.8~ 106.4 °C	CDCI,300MHz 7.34(1H, d, J=2.1Hz) 7.20(1H, d, J=8.7 Hz) 7.20(1H, d, J=8.7 Hz) 7.18(1H, d, J=8.7 Hz) 7.18(1H, d, J=8.7 Hz) 7.13(1H, dd, J=8.7 Hz) 7.02(1H, d, J=8.7 Hz) 6.99(2H, d, J=8.6 Hz) 6.82(1H, d, J=8.3 Hz) 6.00(1H, bt) 7.02(2H, t, J=6.7 Hz) 7.02(2H, t, J=6.8 Hz) 7.02(2H, t, J=6.9 Hz)	Hz) Hz)	KBr 3279 2931 1628 1510 1227	FAB+ 416 [M'H'] (100)	C ₂ H _x FNO ₄ · 1/2H,O 理論(他 C; 70.73% H; 8.31% N; 3.30 % 分析(值 C; 70.70% H; 8.26% N; 3.26%

元素分析	·		
	(23)		
MS	FAB+ 378 [M+H+] (27) 154(100)		
IRcm.1			
IH NMR (8) ppm	CDC13,300MHz 7.30-7.45 (6H, m 7.18 (1H, dd, J= 7.06-7.09 (2H, m 6.84 (1H, d, J=8, 6.78-6.81 (2H, m) 5.99 (1H, bt) 5.32 (1H, s) 5.33 (1H, s) 5.32 (1H, s) 5.33 (2H, s) 5.35 (2H, s) 5.35 (2H, s) 5.35 (2H, s) 5.35 (2H, s)		
養点	132~133 C		
棒造式	Meo OH Mebh晶	HO NGO OPW	но Д Овм
実施例	<u> </u>	2-113	2-114

構造式	最点	1H NMR (&) ppm	IRcm.1	MS	元素分析
A M M M M M M M M M M M M M M M M M M M	114~116 C	CDCi3.300MHz 7.36 (1H, d, J=2.0 Hz) 0.92 (3H, t, J=7.1 Hz) 7.06-7.12 (3H, m) 6.78-6.84 (3H, m) 6.00-6.10 (2H, m) 5.60 (1H, s) 5.26-5.44 (2H, m) 4.60-4.63 (3H, m) 4.02 (2H, t, J=6.8 Hz) 3.65 (2H, q, J=6.8 Hz) 2.84 (2H, t, J=6.8 Hz) 1.79-1.88 (2H, m) 1.30-1.50 (4H, m)	·	FAB+ 384[M+H+] (100) 263(29) 247(62)	
P N H H H H H E b t t t t t t t t t t t t t t t t t t	139~139	044 4004		FAB+ 384[M+H+] (100) 263(31) 247(48)	
E O ZI					

		
元素分析	C3,H4,NO, 理論值 C; 74.27% H; 8.12% N; 2.62 % 分析值 C; 74.54% H; 8.15% N; 2.67%	程論値 程論値 C; 66.08% H; 7.68% N; 5.93% A)が値 C; 66.38% H; 7.73% N; 5.88%
MS	FAB+ 534 [M*H*] (20) 516(100)	FAB+ 473 [M+H+](10), 455(100)
IRam¹¹	KBr 3358 2953 1631 1511 1236	KBr 3281 2958 1628 1522 1348
1H NMR (&) ppm	CDCI, 300MHz 7.3-7.5(5H, m) 7.16(2H, d, J=8.5 Hz) 7.09(1H, d, J=8.5 Hz) 6.94(2H, d, J=8.5 Hz) 6.94(2H, d, J=8.5 Hz) 6.94(2H, t, J=7.0 Hz) 6.77(1H, d, J=8.5 Hz) 6.77(1H, t, J=6.9 Hz) 7.05(2H, s) 7.05(2H, s) 7.05(2H, s) 7.05(2H, t, J=6.9 Hz) 7.05(2H, t, J=6.9 Hz) 7.05(2H, t, J=6.9 Hz) 7.05(2H, t, J=6.9 Hz) 7.05(2H, t, J=6.7 Hz) 7.05(2H, t, J=6.7 Hz) 7.05(2H, t, J=6.7 Hz) 7.05(2H, t, J=6.7 Hz)	CDCI3,300MHz 8.17(2H, d, J=8.7 Hz) 1.3-1.5(8H, m) 7.41(2H, d, J=8.7 Hz), 0.94(3H, t, J=7.1 Hz) 7.14(1H, d, J=8.5 Hz), 0.93(3H, t, J=7.2 Hz) 6.80(1H, d, J=8.5 Hz) 6.53(1H, bt) 4.64(2H, s) 4.00(1H, bs) 3.98(2H, t, J=6.7 Hz) 3.98(2H, t, J=6.9 Hz) 3.73(2H, q, J=6.9 Hz) 3.06(2H, t, J=6.9 Hz) 1.7-1.9(4H, m)
超	121.2~ 121.6°C	117.7- 118.7°C
#進式 OH	無色鱗べん状晶	OH NO2 jet special and specia
実施 包 2-118	2-119	2-120

		表 0 0	
元素分析	C ₁ ,H ₁ ,N,O ₄ 理論值 C; 66.16% H; 8.45% N; 10.06 % 分析值 C; 66.36% H; 8.52% N; 9.81%	·	
MS	FAB+ 418 [M*H*] (30) 400(100)	FAB+ 386[M+H+] (100)	FAB+ 470[M+H+] (100)
IRem.1	KBr 3205 2932 1618 1569 1276		
1H NMR (8) ppm	CDCI,300MHz 7.60(1H, s) 7.48(1H, bs) 7.33(1H, d, J=8.5 Hz) 7.33(1H, d, J=8.5 Hz) 7.33(1H, s) 6.90(1H, s) 6.90(1H, s) 6.88(1H, d, J=8.5 Hz) 7.77(2H, s) 7.77(2H, s) 7.76(1H, bs) 7.76(1H, bs) 7.76(1H, bs) 7.76(1H, d, J=6.6 Hz) 7.76(1H, d, J=6.0 Hz) 7.76(1H, d, J=6.0 Hz) 7.76(1H, bs)		CDCI3,300Mhz 7.34 (1H, d, J=2.2 Hz) 7.07-7.26 (3H, m) 6.78-6.83 (3H, m) 6.06 (1H, t, J=6.6 Hz) 5.53 (1H, s) 4.01 (4H, t, J=6.6 Hz) 3.65 (2H, q, J=6.6 Hz) 2.84 (2H, t, J=6.6 Hz) 1.74-1.88 (4H, m) 1.22-1.52 (16H, m) 0.89 (6H, t, J=7.0 Hz)
基項	128.8℃ 128.8℃	133~134 °C	124~125 C
存出八	M N N N N N N N N N N N N N N N N N N N	A H C H A H A H A H A H A H A H A H A H	N N M M M M M M M M M M M M M M M M M M
灾施研	2-121	2-122	2-123

_		42 0 1	
元素分析	·		
MS	FAB+ 357 [M*H*] (70) 220(100)	FAB+ 412 [M*H*] (40) 185(100)	FAB+ 427 [M'H'] (100) 369(50)
IRcm.1			
1H NMR (8) ppm	7H2 5 H2 5 H2 7 H2 6 H2 7 H2 8 H2 7 H2	CDCl _{1,3} 00MHz 7.14(1H, d, J=1.8 Hz) 7.08(2H, d, J=8.4 Hz) 7.06(1H, dd, J=7.8, 1.8 Hz) 6.78(2H, d, J=8.4 Hz) 6.5(1H, d, J=7.8 Hz) 6.03(1H, bt) 3.65(2H, q, J=6.6 Hz) 3.11(2H, t, J=6.8 Hz) 3.10(2H, m) 1.5-1.5(8H, m) 0.93(6H, t, J=7.1 Hz)	CDCI,,300MHz 7.33(1H, d, J=2.4 Hz) 7.16(1H, dd, J=8.4 Hz) 7.09(2H, d, J=8.4 Hz) 6.79(2H, d, J=8.4 Hz) 6.79(2H, d, J=8.4 Hz) 6.79-6.82(3H, m) 6.04(1H, bt) 5.49(1H, bt) 3.60(2H, t, J=6.6 Hz) 3.04(2H, t, J=7.8 Hz) 2.84(2H, t, J=6.9 Hz) 2.84(2H, t, J=6.9 Hz) 2.80(3H, s) 1.8-1.95(2H, m)
融点	215.1∼ 215.7℃	85.3~ 86.3 C	109.4∼ 110.4℃
構造式	Me. N O Me.	M HN ME 格晶	Me M
実施例	2-124	2-125	2-126

_			
元素分析			
MS	FAB+ 343 [M*H*] (50) 185(100)	FAB+ 374 [M*H*] (100) 237(60)	FAB+ 430 [M*H*] (100) 309(50)
Perm'-			
IH NMR (&) ppm	CDC1,300MHz 7.29(1H, d. J=1.8 Hz) 7.29(1H, d. J=1.8 Hz) 7.0(1H, d. J=8.5 Hz) 7.0(1H, d. J=8.1, 1.8 Hz) 6.79(2H, d. J=8.1 Hz) 6.0(1H, d. J=8.1 Hz) 6.0(1H, b.) 5.4(1H, bs) 4.02(2H, bs) 4.02(2H, t. J=6.6 Hz) 3.64(2H, q. J=6.6 Hz) 2.83(2H, t. J=6.9 Hz) 1.75-1.9(2H, m)	CDCJ,300MHz 7.63(1H, d, J=2.1 Hz) 7.43(1H, d, J=8.4, 2.1 Hz) 7.1(2H, d, J=8.4 Hz) 6.8(1H, d, J=8.4 Hz) 6.79(2H, d, J=8.4 Hz) 6.04(1H, bt) 5.25(1H, s) 3.92(3H, s) 3.92(3H, t, J=6.5Hz) 2.91(2H, t, J=6.9 Hz) 7.1(2H, t, J=6.9 Hz)	CDCl,,300MHz 7.62(1H, d, J=2.4 Hz) 1.6-1.75(2H, m) 7.41(1H, dd, J=8.7, 2.4 Hz) 1.3-1.5(8H, m) 7.09(2H, d, J=8.4 Hz) 0.94(3H, t, J=6.9 Hz) 6.8(2H, d, J=8.4 Hz) 0.90(3H, t, J=7.2 Hz) 6.02(1H, bt) 5.16(1H, s) 5.16(1H, s) 7.09(2H, t, J=6.6 Hz) 7.09(2H, t, J=6.4 Hz) 7.09(2H, t, J=7.4 Hz)
斯斯	138.5~ 139.5 C	124.1~ 124.9°C	116.3~ 116.9 C
構造式	H ₂ N	MeO S 無色結晶	A HO HO HE
实施例	2-127	2-128	2-129

英施例	大型学	1 00	IH NMR (8) ppm	IRem.1	MS	元素分析	
	無色結晶		CDCl ₃ 300MHz 7.35(1H, d, J=2.2 Hz) 7.16(1H, dd, J=8.3, 2.2 Hz) 7.16(1H, dd, J=8.1, 1.0 Hz) 7.17(1H, dd, J=5.1, 1.0 Hz) 6.95(1H, dd, J=5.1, 3.5 Hz) 6.85(1H, dd, J=3.5, 1.0 Hz) 6.15(1H, bs) 4.02(2H, t, J=6.7 Hz) 7.17(2H, q, J=6.6 Hz) 3.17(2H, q, J=6.5 Hz) 7.17(2H, q, J=6.5 Hz)				
	HO NH MH		CDCl ₃ 300MHz 7.95(1H, s) 7.33(1H, d, J=2.1 Hz) 7.22(1H, d, J=8.7 Hz) 7.13(1H, dd, J=8.7 Hz) 7.24(1H, dd, J=8.7 Hz) 7.0-7.1(2H, m) 6.81(1H, dd, J=8.7, 2.5 Hz) 6.81(1H, dd, J=6.8 Hz) 6.70(1H, dd, J=6.8 Hz) 6.70(1H, bs) 7.90(2H, t, J=6.6 Hz) 7.90(2H, t, J=6.8 Hz) 7.90(2H, t, J=6.5 Hz) 7.90(2H, t, J=6.5 Hz) 7.90(2H, t, J=6.5 Hz)	·	FAB+ 453 [M+H+](30) 159(100) 277(80)		
	() () () () () () () () () ()	130.7~ 131.0°C	CDCl3,300MHz 7.34 (1H, d, J = 2.1 Hz) 1.7-1.9 (4H, m) 7.13 (1H, dd, J = 8.4, 2.1 Hz) 1.3-1.5 (8H, m) 7.06 (2H, d, J = 8.4 Hz) 0.93 (3H, t, J = 7.1 Hz) 6.81 (1H, d, J = 8.4 Hz) 0.93 (3H, t, J = 7.1 Hz) 6.82 (2H, d, J = 8.5 Hz) 0.93 (3H, t, J = 7.1 Hz) 6.00 (1H, bt) 4.02 (2H, t, J = 6.6 Hz) 4.02 (2H, t, J = 6.6 Hz) 4.01 (2H, t, J = 6.6 Hz) 3.64 (2H, q, J = 6.7 Hz) 2.83 (3H, s) 2.81 (2H, t, J = 6.7 Hz)	KBr 3370 2956 11624 11580 11523 1275 1225	FAB+ 427 [M+H+](50), 277(100).	(26H38N2O3) 理論値 (C; 73.20% H; 8.96% N; 6.57% 分析値 C; 73.28% H; 9.37% N; 6.55%	

实施例	構造式	延	1H NMR (8) ppm	IRcm ⁻¹	MS	元素分析	
2-133	無色結晶	118.5~ 118.7°C		KBr 3302 2956 1630 1511 1269 1226	FAB+ 441 [M+H+](50), 277(100).		
2-134	Q N N M E M E M E M E M E M E M E M E M E	135.2∼ 136.2℃			FAB+ 427 [M*H*] (100) 290(65)		. 22 5 U
2-135	O C C C C C C C C C C C C C C C C C C C	130.5∼ 131.3℃	CDCl ₁ ,300MHz 7.38(1H, d, J=1.7 Hz) 0.94(3H, t, J=7.1 Hz) 7.34(1H, d, J=8.2 Hz) 7.09(2H, d, J=8.3 Hz) 7.02(1H, dd, J=2.1, 8.2 Hz) 6.78(2H, d, J=8.3 Hz) 6.78(2H, bt) 4.96(1H, s) 4.96(1H, s) 7.02(2H, q, J=6.0 Hz) 7.02(2H, q, J=6.9 Hz) 7.02(2H, m) 7.02(2H, m) 7.02(2H, m)		FAB+ 362 [M*H*] (60) 225(30)		

元素分析			
MS	FAB+ 371 [M*H*] (30) 238(20)	FAB+ 440 [M*H*] (50) 356(70)	FAB+ 371 [MrH'] (60) 234(100)
IRcm.1			
1H NMR (8) ppm	1.7-1.9(2H, m) 1.3-1.5(4H, m) 0.91(3H, t, J=6.9 Hz)	1.5-1.65(4H, m) 1.28-1.42(4H, m) 0.90(3H, t, J=7.4 Hz) 0.89(3H, t, J=7.4 Hz)	1.68-1.8(2H, m) 1.33-1.5(2H, m) 0.96(3H, t, J=7.3 Hz)
N HI			CDCl ₃ ,300MHz 8.66(1H, s) 7.77(1H, bs) 7.69(1H, dd, J=2.2, 8.5 Hz) 7.08(2H, d, J=8.4 Hz) 6.92(1H, d, J=8.5 Hz) 7.68(2H, d, J=8.4 Hz) 6.37(1H, b) 5.55(1H, s) 3.93(3H, s) 3.61(2H, q, J=6.7 Hz) 2.83(2H, t, J=6.7 Hz)
数点	177.9~ 178.2°C	179.0∼ 179.8℃	126.9~ 127.6°C
構造式	O N O M M D M M M M M M M M M M M M M M M M	Refala	MeO HIN OH
東施例	2-136	2-137	2-138

		友 9.4	
元素分析			在 20H25NO5 理論値 C; 66.83% H; 7.01% N; 3.89% 分析値 C; 66.68% H; 7.10% N; 3.80%
MS	FAB+ 427 [M*H*] (40) 195(100)	FAB+ 430 [M*H*] (100) 293(50)	FAB+ 359[M+H+] (100).
IRcm-1			KBr 3325 1510
1H NMR (&) ppm	CDCl,,300MHz 8.64(1H, d, J=2.1 Hz) 7.80(1H, bs) 7.80(1H, bs) 7.67(1H, dd, J=2.4, 9.0 Hz) 7.67(1H, dd, J=2.4, 9.0 Hz) 6.97(3H, t, J=7.1 Hz) 7.09(2H, d, J=8.4 Hz) 6.97(3H, t, J=6.9 Hz) 6.97(3H, t, J=6.9 Hz) 6.97(3H, t, J=6.9 Hz) 6.97(3H, t, J=6.9 Hz) 6.36(1H, bi) 5.59(1H, bi) 5.59(1H, bi) 5.59(1H, bi) 5.59(1H, bi) 5.29(1H, bi) 2.30(2H, t, J=6.6 Hz) 2.31(2H, t, J=7.5 Hz)	CDCJ,300MHz 7.26(1H, d, J=1.8 Hz) 7.05-7.15(4H, m) 6.80(2H, d, J=8.4 Hz) 6.05(1H bx) 4.81(1H, s) 4.06(2H, t, J=6.6 Hz) 3.66(2H, q, 6.6 Hz) 2.89(2H, t, J=7.4 Hz) 2.89(2H, t, J=6.8 Hz) 1.3-1.8(4H, m) 1.3-1.55(8H, m) 0.94(3H, t, J=6.9 Hz)	DMSO-d6,300MHz 8.36 (1H, L, J = 5.4 Hz) 7.41 (1H, dd, J = 8.4, 2.1 Hz) 7.40 (1H, d, J = 2.1 Hz) 7.00 (2H, d, J = 8.4 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.66 (2H, d, J = 8.4 Hz) 6.66 (2H, d, J = 8.4 Hz) 7.02 (2H, L, J = 6.6 Hz) 7.03 (3H, s) 7.04 (3H, s) 7.05 (3H, s) 7.06 (3H, s) 7.06 (3H, s) 7.07 (3H, s) 7.08 (3H, s) 7.09 (3H, s) 7.09 (3H, s) 7.09 (3H, s) 7.09 (3H, s)
最点	164.1~ 164.8 U	130.3~ 131.4 °C	167.9℃ 167.9℃
構造式	A HO HIN HIN HIS HERALB	N N H色結晶	OH N N N N N N N N
米施例	2-139	2-140	2-141

	· · · · · · · · · · · · · · · · · · ·	42	
元素分析	C22H26N2O4 理論值 C; 67.01% H; 7.31% N; 7.81% 分析值 C; 62.45% H; 6.99%	·	
MS	FAB+ 359[M+H+] (100).	FAB+ 373 [M*H*] (30) 237(50)	FAB+ 403 (M*H*) (30) 307(20)
IRcm ⁻¹	KBr 3500 1635 1516		
1H NMR (3) ppm	BASO-d6,300M1E 8.36 (1H, 1, J = 5.4 Hz) 7.41 (1H, dd, J = 8.4, 2.1 Hz) 7.40 (1H, d, J = 2.1 Hz) 7.00 (2H, d, J = 8.4 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.66 (2H, d, J = 8.4 Hz) 6.66 (2H, d, J = 8.4 Hz) 7.02 (2H, t, J = 6.6 Hz) 7.03 (2H, t, J = 6.6 Hz) 7.04 (2H, q, J = 6.6 Hz) 7.05 (2H, t, J = 6.6 Hz) 7.06 (2H, t, J = 6.6 Hz) 7.07 (2H, t, J = 6.6 Hz) 7.08 (2H, t, J = 6.6 Hz) 7.09 (2H, t, J = 6.6 Hz) 7.09 (2H, t, J = 6.6 Hz) 7.09 (3H, s)	CDC!,300MHz 7.62(1H, d, J=2.2 Hz) 7.42(1H, dd, J=2.2 Hz) 7.42(1H, dd, J=2.3, 8.5 Hz) 7.01(2H, d, J=8.3 Hz) 6.79(1H, d, J=8.3 Hz) 6.64(2H, d, J=8.3 Hz) 6.64(2H, d, J=8.3 Hz) 7.91(1H, s) 7.91(1H, s) 7.92(1H, b) 7.92(2H, b) 7.92(2H, b) 7.92(2H, b) 7.92(2H, b) 7.92(2H, c, J=7.4 Hz) 7.92(2H, t, J=7.4 Hz) 7.92(2H, t, J=6.8 Hz) 7.92(2H, t, J=6.8 Hz) 7.92(2H, t, J=6.8 Hz)	CDCI,300MHz 8.19(2H, d. J=9.0 Hz) 8.65(1H, d. J=2.1 Hz) 7.44(1H, dd, J=2.1, 8.4 Hz) 7.41(2H, d. J=9.0 Hz) 6.82(1H, d. J=8.4 Hz) 6.05(1H, bt) 3.93(3H, t) 3.74(2H, q. J=6.6 Hz) 3.07(2H, t. J=7.5 Hz) 1.6-1.75(2H, m) 1.3-1.5(4H, m)
最点	169.0∼ 170.0℃	139.1∼ 140.1℃	106.9∼ 107.9℃
排造式	() () () () () () () () () ()	MeO S 無色結晶	MeO S Meb枯晶
奥施例	2-142	2-143	2-144

融点 CDC),300MHz
7.75(1H, d, J=2.1 Hz) 7.60(1H, s) 7.59(1H, d, J=8.4 Hz) 7.38(1H, bs) 6.87(1H, s) 6.84(1H, d, J=8.4 Hz)
3.93(3H, s) 3.73(2H, q, J=6.0 Hz) 2.86-3.0(4H, m) 1.63-1.75(2H, m) 1.3-1.5(4H, m) 0.89(3H, t, J=7.2 Hz)
CDCl,300MHz 8.19(2H, d, J=9.0 Hz) 7.64(1H, d, J=2.4 Hz) 7.42(1H, dd, J=2.7, 8.7 Hz) 106.4 7,41(2H, d, J=9.0 Hz) 107.2 C
6.04(11, bt) 6.04(11, bt) 6.04(11, bt) 4.06(21, t, b=6.5 Hz) 3.73(21, q, b=6.6 Hz) 3.06(21, t, b=7.4 Hz) 2.91(21, t, b=7.4 Hz)
1.82-1.92(2H, m) 1.63-1.73(2H, m)
CDCl,300MHz 7.72(1H, d, J=2.2 Hz) 7.59(1H, s) 7.55(1H, dd, J=2.2, 8.5 Hz) 7.31(1H, hs)
3.71(2H, q, J=5.9 Hz) 2.92(2H, t, J=7.3 Hz) 2.90(2H, t, J=6.5 Hz)
1.78-1.88(2H, m) 1.62-1.73(2H, m)

传道式		融点	1H NMR (å) ppm	IRem ⁻¹	MS	元素分析
N	Ð					
Me O O T + N 7 7 X			CDCI3,300MHz 0.95 (3H, t, J=7.00 Hz) 1.30 - 1.50 (4H, m) 1.79 (2H, q, J=7.12 Hz) 2.38 (2H, t, J=7.61 Hz) 2.84 (2H, t, J=7.61 Hz) 2.84 (2H, t, J=7.67 Hz) 3.24 (3H, s) 3.92 (2H, t, J=6.59 Hz) 5.66 (1H, s) 6.58 - 6.63 (2H, m) 6.72 (2H, d, J=8.34 Hz) 6.85 (1H, dd,J=2.21, 8.41 Hz)	3287 3014 2933 2871 1633 1588 1516	FAB+ 342[M+H+] (100) 282(13)	
M O M 無色結晶		84.2°C	CDCI3,300MHz 0.92 (3H, t, J=7.5 Hz) 1.32 - 1.45 (4H, m) 1.76 (2H, q, J=7.5 Hz) 2.60 (2H, t, J=7.5 Hz) 2.96 (2H, t, J=7.5 Hz) 3.92 (2H, t, J=6.0 Hz) 5.42 (1H, br) 6.65 (1H, d, J=6.0 Hz) 6.75 (2H, d, J=6.0 Hz) 7.07 (2H, d, J=6.0 Hz) 7.13-7.26 (1H, m)	3092 2935 2867 1654 1620 1597	FAB+ 328[M+H+] (100) 282(13) 258(12)	C20H25NO3 理論值 C; 73.37% H; 7.70% N; 4.28% 分析值 C; 73.22% H; 7.94% N; 4.30%

実施例	集体式	1000	1H NMR (\$) ppm	IRcm-1	MS	元素分析
2-151	MeO Me Me Me Meo Me	100.2~ 100.6 C	CDCI3,300MHz 0.92 (3H, t, J=7.08 Hz) 6.90 (2H, d, J=8.43 Hz) 1.30 - 1.50 (4H, m) 1.75-1.88 (2H, m) 2.35 (2H, t, J=7.61 Hz) 2.81 (2H, t, J=7.67 Hz) 3.21 (2H, s) 3.22 (2H, t, J=6.83 Hz) 6.32 (1H, br) 6.52-6.56 (2H, m) 6.72 (2H, d, J=8.46 Hz) 6.80 (1H, d, J= 8.34 Hz)	3272 2933 2870 1630 1593 1514	·	
2-152	N O O M eha晶		CDCi3,300MHz 0.93 (3H, t, J=7.02 Hz) 7.69 (1H, d, J=15.45Hz) 1.27-1.48 (4H, m) 1.78 (2H, q, J=7.17 Hz) 3.97 (2H, t, J=6.59 Hz) 5.43 (1H, s) 6.39 (1H, d, J=15.43Hz) 6.68 (1H,dd, J=1.90, 7.81 Hz) 6.85 (2H, d, J= 8.61 Hz) 6.96-7.04 (1H, m) 7.18-7.26 (2H, m) 7.41-7.45 (3H, m)	3302 2954 1661 1603 1544	FAB+ 326[M+H+] (100) 284(47) 180(29)	C20H23NO3 理論值 C; 73.82% H; 7.12% N; 4.30% 分析值 C; 73.16% H; 7.28% N; 4.53%
2-153	Me N O O 無色結晶	121.6~ 121.9 °C	CDCI3,500Mhz 0.91 (3H, t, J=7.3 Hz) 1.34-1.47 (4H, m) 1.79 (2H, q, J=7.0 Hz) 3.39 (3H, s) 3.96 (2H, t, J=6.5 Hz) 6.26 (1H, d, J=15.5 Hz) 6.36 (1H, br) 6.36 (1H, d, J=8.5 Hz) 7.21 (2H, d, J=8.5 Hz) 7.21 (2H, d, J=8.5 Hz) 7.21 (1H, d, J=8.5 Hz) 7.21 (1H, d, J=8.5 Hz) 7.21 (1H, d, J=8.5 Hz) 7.31 (1H, t, J=6.3 Hz)	3168 2935 2871 1644 1581	FAB+ 340[M+H+] (100) 233(34) 193(17)	C21H25NO3 理論值 C: 74.31% H; 7.17% N; 4.13% 分析值 C: 74.54% H; 7.54% N; 6.82%

_		X 9 1	
元素分析	(C21H25NO4 理論値 (C; 70.96% H; 7.09% が析値 (C; 70.54% H; 7.04% N; 4.18%	C22H27NO4 理論信 C; 71.52% H; 7.37% N; 3.79% 分析值 C; 71.32% H; 7.38% N; 3.70%	理路值 C; 72.82% H; 7.40% N; 4.34% 分析值 C; 72.15% H; 7.40% N; 4.44%
MS	FAB 356 [M+ 314(209(FAB+ 370 [M+H+] (74) 223(46) 147(100)	FAB+ 314[M+H+] (100) 220(10) 193(27)
IRcm-1	3392 2956 1654 1605 1584 1510	3074 2933 1642 1578 1509	3127 2937 1575 1518
IH NMR (8) ppm	DMSO-d6,300мнь 0.89 (3H, t, J=7.5 Hz) 1.25-1.44 (4H, m) 1.72 (2H, q, J=6.0 Hz) 3.71 (3H, s) 3.90 (2H, t, J=7.5 Hz) 6.55 (1H, d, J=6.0 Hz) 6.81 (2H, d, J=6.0 Hz) 6.89 (1H, d, J=6.0 Hz) 7.28-7.50 (4H, m) 9.88 (1H, s)	CDCI3.300MHz 0.89 (3H, t, J=7.5 Hz) 1.28-1.46 (4H, m) 1.81 (2H, q, J=5.3 Hz) 3.37 (3H, s) 3.91 (3H, s) 3.97 (2H, t, J=7.5 Hz) 6.23 (1H, d, J=15.0 Hz) 6.73-6.90 (5H, m) 7.19 (2H, d, J=15.0 Hz) 7.60 (1H, d, J=15.0 Hz) 7.74 (1H, s)	CDCI3,300MHz 0.92 (3H, t, J=7.07 Hz) 1.31-1.42 (4H, m) 1.71 (2H, q, J=6.89 Hz) 3.46, (3H, s) 3.82 (2H, t, J=6.60 Hz) 6.53-6.75 (5H, m) 7.11-7.17 (3H, m) 7.45 (1H, s)
融点	177.7- 178.0°C	169.1∼ 169.4℃	152.7∼ 152.9℃
構造式	MeO	MeO Ne MeO	Me N O M m m m m m m m
東施倒	2-154	2-155	2-156

			表 9 8	
元素分析	C21H27NO4 理論值 C: 70.56%	N, 3.92% 分析值 C; 70.57% H; 7.88% N; 3.96%	C19H23NO4 理論值 C; 69.28% H; 7.04% N; 4.25% 分析值 C; 69.03% H; 7.14% N; 5.56%	E20H25NO4 理論值 C; 69.95% H; 7.34% N; 4.08% 分析值 C; 69.09% H; 7.42% N; 5.73%
MS	FAB+ 358 [M+H+] (83) 357(100) 288(13)	209(23)	FAB+ 384 [M+H+] (80) 329(100) 260(17) 209(36)	FAB+ 344[M+H+] (100) 343(99) 223(35)
IRcm.1	3406 3240 3145 3085	2930 2865 1649 1613 1553	3314 3123 2957 2868 1643 1608 1585 1550 1514	3154 2933 1615 1589 1571 1507
1H NMR (3) ppm	3300MHz (3H, t, J=7 1.44 (4H, m (2H, q, J=7. (2H, d, J=7.	2.97 (2.H, d, J=7.3 Hz) 3.82 (3H, s) 3.98 (2H, t, J=7.5 Hz) 5.28 (1H, s) 6.73-6.78 (4H, m) 6.97 (1H, br) 7.08 (2H, d, J=7.5 Hz) 7.23 (1H, br)	CDCI3,500MHz 0.90 (3H, t, J=7.0 Hz) 1.30-1.43 (4H, m) 1.73 (2H, q, J=6.9 Hz) 3.73 (3H, s) 3.91 (2H, t, J=6.5 Hz) 6.84 (2H, d, J=7.5 Hz) 6.89 (1H, d, J=9.0 Hz) 7.29 (1H, d, J=9.0 Hz) 7.44 (1H, br) 7.83 (2H, d, J=7.5 Hz) 9.80 (1H, br) 10.05 (1H, br)	CDCl3,500MHz 0.91 (3H, t, J=7.0 Hz) 1.34-1.40 (4H, m) 1.67-1.74 (2H, m) 3.44 (3H, s) 3.78-3.95 (5H, m) 6.52-6.72 (5H, m) 7.13-7.16 (3H, m)
位置	125.8∼ 126.1℃		137.7∼ 138.0℃	138.7∼ 138.9℃
体语式	H _O	MeO (無色結晶	MeO N Neb N	MeO O O O O O O O O O O O O O O O O O O
班特		2-157	2-158	2-159

	梯遊式	重	1H NMR (&) ppm	IR.m.'	MS	元素分析
		L	CDCl3,300MHz	Neat	FAB+	
	Þ		6.7-6.9 (7H, m)	1288	27.6	
			4.70 (1H, bs)	2036	3/4 (M±H±1/30)	
	EH2OH OH		3.94 (2H, t, J=6.8 Hz)	0067	330(100)	
		257.1∼ 258.2℃	3.9-4.0 (2H, m)	1264	ì	
			(3.80 (3H, s)			
			(3.6-3.7 (2H, m)			
	MeO		3.4-3.5 (1H, m)			
	, ,		3.0-3.1 (2H, bs)			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2.6-2.9 (2H, m)	-		
			1.7-1.8 (2H, m)			
			1.2-1.5 (4H, m)			
			0.88 (3H, t, J=7.0 Hz)	<u></u>		
			CDCI3,300MHz			
	•		0.98 (3H, t. J=6.98 Hz)			C18H21NO3
	HO (1.38-1.52 (4H, m)	3299		
	\ <u>_</u>		1 83 (2H a 1=6.68 Hz)	2938		西路
		101.6~	401 (2H + 1= 651 Hz)	2868		C: 72 22%
			(T. 100 - 11) 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1640		H: 707%
			8 00 H-)	1542		N: 4.68%
	0		(211 / G); (211 / G) = 1 P H C) E 6 9	1508		t L
,	·	,	(== 100 c = 1 F H C C = 1			がが個
	(7.14 (111, 0,)=/./O 114)			C; 72.17%
	く _{/0}		/.28 (1H, t, J=8.04 HZ)			H; 7.15%
	/ >		7.41-7.73 (2H, m)		٠	N; 4.67%
	無色結晶	-	7.76 (1H, d, J=8.54 Hz)			
			7.97 (1H. br)			

実施例	構造式	拉	H NMR (&)	Jan 1	10,001	Ϋ́	并分布上
3-1	Ho C C C C C C C C C C C C C C C C C C C	102.1∼ 102.3℃	5.9 Hz 5.8 Hz 5.9 Hz 1.9 Hz 1.5 Hz 5.9 Hz 9 Hz 9 Hz)			FAB+ 385 [M*H*] (80) 384(100)	C ₁₃ H ₂₃ O ₃ 理監值 C; 71.85% H; 7.34% 分析值 C; 72.22% H; 7.49%
3-2	MeO O O O O	104.1~ 104.3 C	CDCl ₃ .300Mftz 7.63(1H, dd, J=8.4, 2.0 Hz) 0.93(3H, t, J=7.0 Hz) 7.51(1H, d, J=2.0 Hz) 7.14(2H, d, J=8.5 Hz) 6.87(1H, d, J=8.4 Hz) 6.78(2H, d, J=8.5 Hz) 6.50(1H, bs) 4.45(2H, t, J=7.0 Hz) 4.04(2H, t, J=6.9 Hz) 3.91(3H, s) 2.99(2H, t, J=6.9 Hz) 1.8-1.9(2H, m)	H2) KBr 3377 2941 1687 1273		FAB+ 359 1M*H*1 (30) 221(95)	C ₁₁ H ₂₄ O ₃ 理論值 C; 70.37% H; 7.31% 分析值 C; 70.55% H; 7.44%
3-3	Meo O O O O O O O O O O O O O O O O O O O	170.1~ 171.2°C	CDCi3,300MHz 8.1 (1H, d, J=9 Hz) 8.0 (1H, d, J=15 Hz) 7.4-8.0 3H, m) 7.2 (1H, d, J=9 Hz) 7.2 (1H, s) 6.9 (1H, d, J=9 Hz) 6.6 (1H, d, J=15 Hz) 4.1 (2H, t, J=4 Hz) 4.0 (3H, s) 1.8-2.0 (2H, m) 1.4-1.6 (4H, m) 1.0 (3H, t, J=7.5 Hz)	KBr 3448 2929 1777 1621 1595 1508 1260		(20)	C29H23N3O4 理論值 C; 66.13% H; 6.08% N; 11.02% 分析值 C; 66.21% H; 6.09% N; 11.00%

構造式		最近	1H NMR (8) ppm	<u>8</u>	TRem.1	MS	元素分析
	₹	205.4∼ 206.0℃		m) m) .13 Hz)	4 = 44	FAB+ 483 [M*H*](35) 485(30) 482(100)	
	Z-\	148.2 148.8 C	BMSO-d6,300MHz 8.49(2H, d, J=5.97 Hz) 8.20-8.34(3H, m) 8.20-8.34(3H, m) 8.00(1H, d, J=15.6 Hz) 7.74(1H, t, J=7.70 Hz) 7.29(2H, d, J=5.97 Hz) 7.29(2H, d, J=5.97 Hz) 7.29(2H, d, J=5.97 Hz) 7.29(2H, d, J=6.42 Hz) 8.20(2H, q, J=6.44 Hz) 7.85(2H, q, J=6.34 Hz) 7.85(2H, m)	m) .16 Hz)	F 45.44	FAB+ 468 [M*H*](20) 467(45)	
	Z	148.3~ 149.5 C	CDCl ₃ 300MHz 8.76-8.82(1H, m) 8.55(2H, dd, J=4.2, 1.2 Hz) 8.52(2H, dd, J=4.2, 1.2 Hz) 8.22-8.37(1H, m) 7.74(1H, d, J=15.3 Hz) 7.46(1H, s) 7.26(1H, m)	6.9 Hz) m) n) 4 Hz)	38 EV 30 EV	FAB+ 389 [M*H*](60) 307(30) 197(30)	·

表102

夹施例	構造式	融点	1Н NMR (δ) ppm	IRcm-1	MS	元素分析
			DMSO-46,300MHz		FAB+	
			9.15(1H, s) 1.83-1.95(2H, m)			
	•		8.06-8.14(2H, m) 1.35-1.58(4H, m)		404	
			7.84-7.90(1H, m) 0.93(3H, t, J=7.2 Hz)		(M'H')(00)	
	0.		7.61(1H, s)		197(45)	
		7.0.1				
7			7.09(1H, s)			
‡ ‡	\		7.02(2H, d, J=8.4 Hz)			
	\ \ \		6.74(1H, d, J=15.6 Hz)			
	,)		6.67(2H, d, J=8.4 Hz)			
			4.2(2H, t, J=6.45 Hz)			
			3.38(2H, q, J=6.8 Hz)			
			2.66(2H, t, J=7.35 Hz)			

_		r	
元素分析			
MS	FAB+ 394 [M*H*](100) 336(25)	FAB+ 378 [M*H*](80) 257(35) 241(50)	FAB+ 363 [M*H*](100) 305(15) 241(20)
IRcm-1			
1H NMR (8) ppm	CDCI,300MHz 9.15(1H, s) 8.51(1H, s) 8.50(2H, d, 1=4.66 Hz) 7.61(1H, d, 1=9.02 Hz) 7.40(1H, d, 1=9.02 Hz) 7.17(2H, d, 1=4.66 Hz) 6.64-6.75(1H, m) 6.64-6.75(1H, m) 6.26(2H, t, 1=7.01 Hz) 7.80(2H, q, 1=6.51 Hz) 7.80(2H, q, 1=6.51 Hz) 7.80(2H, q, 1=6.51 Hz) 7.80(2H, q, 1=6.51 Hz) 7.80(2H, m)	CDCI ₃ ,300MHz 8.25-8.30(1H, m) 7.76-7.83(1H, m) 7.61(1H, s) 7.47-7.58(2H, m) 7.19(1H, s) 7.19(1H, s) 7.13(2H, d, J=8.3 Hz) 6.20-6.35(1H, m) 5.23(1H, s) 7.23(2H, t, J=6.44 Hz) 7.20(2H, t, J=6.56 Hz) 7.30(2H, t, J=6.56 Hz) 7.30(2H, t, J=6.50 Hz)	CDCI,300MHz 8.25-8.31(1H, d, J=6.0 Hz) 1.37-1.60(4H, m) 8.25-8.31(1H, m) 7.77-7.83(1H, m) 7.63(1H, s) 7.50-7.57(2H, m) 7.21(1H, s) 7.20(2H, d, J=6.0 Hz) 6.30-6.45(1H, m) 3.78(2H, q, J=6.66 Hz) 3.00(2H, t, J=6.66 Hz) 1.89-2.00(2H, m)
融点	·		103.6∼ 105.4℃
柳造式	Neo Oem	PO NH O	O H O
夹施刨	5-1	5-2	5-3

		表104	
元素分析			
MS	FAB+ 457 [M*H*](50) 458(90) 456(100)	FAB+ 442 [M*H*](40) 443(80) 441(100	FAB+ 409 [M*H*] (100) 339(50)
IRcm ⁻¹			
1H NMR (8) ppm	CDCI,300MHz 8.28(1H, t, J=8.13 Hz) 8.25(1H, t, J=8.13 Hz) 7.64(1H, t, J=8.13 Hz) 7.55(1H, t, J=8.13 Hz) 7.55(1H, t, J=8.13 Hz) 7.55(1H, t, J=8.13 Hz) 7.15(2H, d, J=8.51 Hz) 6.80(1H, s) 6.80(1H, s) 6.80(1H, s) 7.92-6.03(1H, m) 7.80(1H, s) 7.10(2H, t, J=6.43 Hz) 7.93(2H, t, J=6.55 Hz) 7.93(2H, t, J=6.55 Hz)	CDC1,300MHz 8.54(2H, d, J=5.96 Hz) 1.36-1.62(4H, m) 8.28(1H, d, J=6.98 Hz) 7.65(1H, d, J=6.98 Hz) 7.55(1H, d, J=6.98 Hz) 7.55(1H, d, J=6.98 Hz) 7.55(1H, d, J=6.98 Hz) 7.23(2H, d, J=6.98 Hz) 7.23(2H, d, J=5.96 Hz) 6.80(1H, s) 6.02-6.16(1H, m) 4.11(2H, t, J= 6.42 Hz) 3.82(2H, q, J=6.71 Hz) 3.03(2H, t, J=7.03 Hz) 1.87-2.00(2H, m)	DMSO-d6,300MHz 9.13(1H, d, J=2.4 Hz) 8.62(1H, d, J=2.4 Hz) 7.78(1H, d, J=9.9 Hz) 7.60(1H, d, J=9.9 Hz) 7.1(2H, d, J=8.7 Hz) 6.73(2H, d, J=8.7 Hz) 4.18(2H, t, J=6.8 Hz) 4.04(3H, s) 3.60(2H, t, J=7.4 Hz) 2.86(2H, t, J=7.4 Hz) 1.77-1.9(2H, m)
10 3	135.2~ 135.8°C	131.9~ 132.6 U	141.2~ 142.6°C
4-15/48	0=(ZT O	MeO Neo
14.100	× 5-4	5-5	5-6

実施例	情 遠式	融点	IH NMR (8) ppm	R	IRem.1	MS	元素分析
5-7	MeO NO ₂ N	109.8∼ 110.6℃	1 Hz 1 Hz 0 Hz 0 Hz 0 Hz 1 Hz 1 Hz			FAB+ 438 IM*H*] (30) 307(20)	
% %	MeO N H R H R H R H R H R H R H R H R H R H	106.2~ 107.7°C	CDCJ ₃ 300MHz 9.11(1H, d, J=2.2 Hz) 1.8-1.95(2H, m) 8.51(1H, d, J=2.2 Hz) 1.3-1.6(4H, m) 7.65(1H, d, J=9.1 Hz) 0.94(3H, t, J=7.1 Hz) 7.42(1H, d, J=9.1 Hz) 0.94(3H, t, J=7.1 Hz) 7.07(2H, d, J=9.1 Hz) 6.70(2H, d, J=9.1 Hz) 6.22(1H, bt) 4.29(2H, t, J=7.1 Hz) 4.05(3H, s) 3.75(2H, q, J=6.2 Hz) 3.65(2H, bs) 2.88(2H, t, J=6.6 Hz)	(2)	1 426	FAB+ 408 (M*H*) (70) 307(20)	-
5.9	MaO N N N N N N N N N N N N N N N N N N N	73.2~ 74.7°C	CDCI,,300MHz 9.34(1H, d, J=2.2 Hz) 8.67(1H, d, J=2.1 Hz) 8.30(1H, bs) 7.75(1H, s) 7.68(1H, d, J=9.1 Hz) 7.41(1H, d, J=9.1 Hz) 6.92(1H, s) 4.29(2H, t, J=7.1 Hz) 4.05(3H, s) 3.75-3.86(2H, m) 2.85-2.95(2H, m) 1.8-1.95(2H, m)		4 626	FAB+ 383 (M'H'] (70) 307(20)	

金林林何	10000000000000000000000000000000000000	養点	1H NMR (&) ppm	IRem'1	MS	元素分析
6-1	Z	62.0~ 63.2°C	CDCI,300MHz 7.51(1H, dd, J=8.4, 1.8 Hz) 7.46(1H, d, J=1.8 Hz) 6.86(1H, d, J=8.4 Hz) 4.07(2H, s) 4.07(2H, s) 3.89(3H, s) 1.8-2.0(2H, m) 1.3-1.5(4H, m) 1.3-1.5(4H, m) 1.37(6H, s) 0.93(3H, t, J= 7.0 Hz)	Neat 2959 1648 1513	FAB+ 292 [M*H*] (100) 291(80) 276(75)	四路位 四路位 C; 70.07 % H; 8.65 % N; 4.81 % 分析値 C; 69.86 % H; 8.70 % N; 5.01 %
6-2	MeO O O O O		CDCI,300MHz 7.5(IH, d, J=9.0 Hz) 6.89(IH, d, J=9.0 Hz) 6.2(1H, bs) 4.1(2H, s) 4.0(2H, t, J=7.5 Hz) 4.0(2H, t, J=4.5 Hz) 3.9(3H, s) 3.3(2H, t, J=4.5 Hz) 1.6-1.8(2H, m) 1.3-1.5(4H, m) 1.4(6H, s) 0.93(3H, t, J=7.5 Hz)	Neal 3264 2960 1640	FAB+ 336 [M*H*] (100) HRFAB(m/z) 336.2189 理論值 C ₁₉ H ₃₀ NO ₄ 336.458 分析值 336.2189	C ₁ ,H ₂₉ NO ₄ 運路值 C; 68.03 % H; 8.71% N; 4.18 % 分析值 C; 67.66 % H; 9.01% N; 4.28 %
6-3	MeO COOEt	·	CDCI,,300MHz 7.63(1H, dd, J=8.7 Hz) 6.90(1H, d, J=8.7 Hz) 4.36(2H, q, J=7.2 Hz) 4.02(2H, s) 4.00(2H, t, J=6.7 Hz) 3.88(3H, s) 1.6-1.8(2H, m) 1.37 (2H, t, J=7.2 Hz) 1.37 (2H, t, J=7.2 Hz) 1.37 (2H, t, J=7.2 Hz) 1.37 (2H, t, J=7.0 Hz) 0.92(3H, t, J=7.0 Hz)	Neat 2961 173712	FAB+ 364 [M*H*] (100) 318(70) 176(50)	

	·	<u> </u>	T
元素分析			
MS	7. AB 32. 32. 364 32. 32. 32. 32. 32. 32. 32. 32. 32. 32.	FAB+ 341 [M*H*] (100) 221 (60)	FAB+ 308[M+H+] (100), 292(20).
IRcm.1	Neat 3300 2960 1635 1273		
1H NMR (§) ppm	CDCl,300MHz 7.59(1H, d, J=8.7 Hz) 6.84(1H, d, J=8.7 Hz) 6.66(1H, bs) 4.80(2H, s) 4.80(2H, s) 3.95(2H, t, J=6.7 Hz) 3.88(3H, s) 1.7-1.9(2H, m) 1.39(6H, s) 1.3-1.6(4H, m) 0.94(3H, t, J= 7.1 Hz)	CDC[_{1,3} 00MHz 8.06-8.13(1H, m) 1.37-1.47(4H, m) 7.70(1H, id, J=7.8, 1.7 Hz) 0.92(3H, i, J=7.1Hz) 7.6(1H, dd, J=8.4, 1.9 Hz) 7.6(1H, d, J=1.9 Hz) 7.42(1H, d, J=7.8 Hz) 7.21-7.25(1H, m) 6.90(1H, d, J=8.4 Hz) 5.75(1H, dd, J=10.2, 7.2 Hz) 4.13(1H, dd, J=10.2, 7.2 Hz) 4.07(2H, i, J=6.9 Hz) 3.92(3H, s) 1.82-1.92(2H, m)	7.80(1H, d, J = 2.0 Hz), 7.60(1H, d, J = 8.5.2.0Hz), 6.83(1H, d, J = 8.5 Hz), 4.08(2H, s), 3.93(3H, s), 2.93(2H, t, J = 7.3 Hz), 1.3-1.5(10H, m, involving a singlet at 1.37), 0.90(3H, t, J = 7.2 Hz).
融点			
精造式	MeO OeM	MeO O O O	MeO S S
夹施例	6-4	6-5-1	9-9

		Y	
元素分析			
MS	FAB+ 341[M+H+} (100) 340(100)	FAB+ 348[M+H+] (100)	FAB+ 420[M+H+] (100)
Rem.1		Neat 2958 1648 1512	Neat 2958 1739 1652 1276
H NMR (3) ppm	CDCI3,300MHz 7.55(1H,d,J=8.1Hz) 7.44(1H,s) 7.37(1H,d,J=8.1Hz) 4.13(2H,s) 4.08(2H,t,J=6.6Hz) 1.80-1.93(2H,m) 1.33-1.60(4H,m) 1.338(6H,s) 0.94(3H,t,J=7.1Hz)	CDCl3.300MHz 7.48(1H, dd, 1=8.4, 2.2 Hz), 7.45(2H, d, 1=2.2 Hz) 6.85(1H, d, 1=8.4 Hz) 4.07(2H, s) 4.0-4.1(4H, m) 1.7-1.9(4H, m) 1.37 (6H, m) 1.3-1.6 (8H, m) 0.93(3H, t, 1=7.1 Hz) 0.93(3H, t, 1=7.1 Hz)	CDCl3,300MHz 7.60(1H, d, J=8.7 Hz) 6.88(1H, d, J=8.7 Hz) 6.88(1H, d, J=8.7 Hz) 4.36(2H, q, J=7.2 Hz) 4.01(2H, s) 3.9-4.1(4H, m) 1.6-2.0(4H, m) 1.38 (3H, t, J=7.2 Hz) 1.31(6H, s) 1.31(6H, m) 0.8-1.0(6H, m)
77.22			
4-4-4	Br OPen 無色油状		N N O COOEt 無色油状
14.40	米	6-8	6-9

実施例	構造式	数点	IH NMR (&) opm	T. m. d.	MS	计每个标
				Near	FAB+	IA-CO METO
			7.56(1H, d, J=8.7 Hz)			
			6.81(1H, d, J=8.7 Hz)	3317	378	
	<u>_</u>		6.64(1H, bs)	2957	[M.H.] (100)	
	^ z=		4.80(2H, s)	1635	360(80)	
	`o'.		4.07(2H, s)	1301		
6-10			4.00(2H, t, J=6.5 Hz)	1273		
	E \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.95(2H, t, J≖6.7 Hz)	0101		
			1.7-1.9(4H, m)			
			1.3-1.5(8H, m)			
			1.38(6H, s)			
	無色油状		0.93(3H, 1, J=7.1 Hz)			· · · · · ·
			0.93(3H, I, J=1.1 Hz)			
-			CDCI3,300MHz 7 spziu 4 1_8 1 = 1		FAB+	
	\ <u></u>		731115-771175 L		308[M+H+1	
	\ ·		7 (8/11 4 14 111-7		(100)	
			4.08(2H 1=6.5Hz)			
	-\ =\ \		4 08/2H ")			
· 11 y) }= <u> </u>		2.43(3H.s)			
11-0			1.80-1.90(2H.m)			
	- Nex		1.35-1.50(4H,m)			
	\ \ .o	-	1.37(6H,s)			
	/ } }		0.93(3H,t,J=7.2Hz)			
	谈黄色油状					
			CDCI3,300MHz		FAB+	
			7.47(1H, d, J =8.1Hz),			
	,		7.36(1H, s),		364[M+H+]	
	\ \ \ \		7.16(1H, d, J=8.1Hz),		(001)	
	~ ·		4.08(2H, s),		-	
			4.07(2H, t, J=6.5 Hz),	-,-		
6-12			2.90(2H, t, J=7.4 Hz),			
			1.80-1.90(2H, m),			
			1.60-1.73(2H, m),			•
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.4	1.33-1.55(8H, m)			
	3.6 4. 3.4 4.		0.03(CH 0 Hz)			
			0.00(3H + 1.40 H-)		_	

表 110

	1.00	17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1	Me	中華中市
米馬西	構造式	KK 层	III NMK (0) ppm	IKcm.	CIM	JU-W 17 WI
			CDC13,300MHz		FAB+	
			7.78(1H, d, J =2.4 Hz),			
	<u> </u>		7.73(1H,dd,J=8.4,1.8Hz),		304(M+H+)	
	Ϋ́	_	6.81(1H, d, J =8.4 Hz),		20420	
	^ z=		4.07(2H, s),		.(07).	
	\ <u>`</u> \	-	4.06(2H, 1, J =6.5 Hz),			
) 		2.92(2H, t, J =7.4 Hz),			
C1-0	_ _{		1.80-1.90(2H, m),			
	PenO		1.60-1.75(211, m),			
	- u		1.33-1.55(14H, m,			
	/ } }		involving a singlet at 1.37),			
	無色油状		0.94(3H, t, J =6.9 Hz),			
			0.90(3H, t, J =6.9 Hz).			

元素分析			
MS	FAB+ 313 [M°H°] (20)	FAB+ 283 [M*H*] (40)	FAB+ 451 [M*H*] (30) 367(20)
IRcm ⁻¹	KBr 3366 1777 1710	KBr 3382 3254 2942 1744 1673	KBr 3479 3372 1739 1692 1633
1H NMR (8) ppm	DMSO-d6,300MHz 9.19(1H, s) 8.26(1H, d, J=7.7 Hz 8.13(1H, d, J=7.7 Hz 8.03(1H, d, J=8.4 Hz 6.99(1H, d, J=8.4 Hz 6.68(2H, d, J=8.4 Hz 3.72(2H, t, J=7.5 Hz 2.78(2H, t, J=7.5 Hz	DMSO-d6300MHz 9.16(1H, s) 7.39(1H, dd, J=7.0 Hz) 6.39(2H, d, J=8.4 Hz) 6.94(1H, d, J=8.3 Hz) 6.91(1H, d, J=8.3 Hz) 6.63(2H, d, J=8.4 Hz) 6.63(2H, d, J=7.3 Hz) 2.75(2H, t, J=7.3 Hz)	CDCl _{1,3} 000MH ₂ 9.5(1H, s) 8.8(1H, d, J=6 H ₂) 7.6(1H, t, J=6 H ₂) 7.5(2H, d, J=6 H ₂) 7.2(2H, d, J=9 H ₂) 7.0(2H, d, J=9 H ₂) 7.0(2H, d, J=7.5 H ₂) 3.9(2H, t, J=7.5 H ₂) 3.0(2H, t, J=7.5 H ₂) 2.5(2H, t, J=7.5 H ₂) 2.6(2H, t, J=7.5 H ₂) 3.6(2H, t, J=7.5 H ₂)
酸点	108.2~ 109.2°C	210.0∼ 211.0℃	119.0∼ 120.2℃
棒造式	NO ₂ OH	OHN O ZHN	O HN O
奥施例	7-1	7-2	7-3

元素分析		C ₂₂ H ₂₃ NO ₄ 理論信 C; 71.52% H; 7.37% N; 3.79% 分析值 C; 71.50% H; 7.39% N; 3.87%	
MS		FAB+ 370 [M*H*](100) 262(40)	
IRcm ⁻¹		KBr 3129 2956 1659 1273	Neal 3422 3021 2955 2871 1766 1704 1614 1516
1H NMR (8) ppm	DMSO-46,300MHz 7.50(1H, d, J=8.0 Hz) 7.09(2H, d, J=8.3 Hz) 7.07(1H, d, J=8.0 Hz) 6.74(2H, d, J=8.3 Hz) 5.40(1H, bs) 4.26(2H, t, J=6.8 Hz) 3.92(3H, s) 3.83(2H, t, J=7.7 Hz) 2.89(2H, t, J=7.7 Hz) 1.7-1.9(2H, m) 1.3-1.5(4H, m) 0.92(3H, t, J=7.2 Hz)	CDCl,300MHz 7.52(1H, d, J=8.3 Hz) 7.06(2H, d, J=8.4 Hz) 6.97(1H, d, J=8.4 Hz) 6.75(2H, d, J=8.4 Hz) 6.40(1H, bs) 4.24(2H, s) 4.03(2H, t, J=6.7 Hz) 3.89(3H, s) 3.82(2H, t, J=7.2 Hz) 2.91(2H, t, J=7.2 Hz) 1.6-1.8(2H, m) 1.3-1.5(4H, m)	CDCl ₃ 300Mhz 7.61(1H, t, J=7.83 Hz) 7.38(1H, d, J=7.22 Hz) 7.16(1H, d, J=8.43 Hz) 7.11(2H, d, J=8.30 Hz) 6.75(2H, d, J=8.33 Hz) 4.54.8(1H, br) 4.16(2H, t, J=6.64 Hz) 3.84(2H, t, J=7.69 Hz) 2.90 (2H, t, J=7.68 Hz) 1.84-1.92(2H, m) 1.35-1.52(4H, m) 0.94(3H, t, J=7.04 Hz)
重		146.3∼ 146.9 ℃	
が忠昊	Meo	MeO O O O	D
14.144.03	7-4	7-5	7-6

		· · · · · · · · · · · · · · · · · · ·	
元素分析			C ₁₁ H ₁₁ NO ₄ 理路值 C; 71.37% H; 6.56% N; 3.96% 分析值 C; 71.39% H; 6.62% N; 3.99%
MS	FAB+ 340 [M*H*] (100) 326(60) 270(18)	FAB+ 326 [M*H*] (100) 218(62) 121(20)	FAB+ 354 [M*H*] (100) 289(16) 246(20)
IRcm ⁻¹	Neat 3163 2950 2868 1662 1612 1596	Neat 3400 2943 2870 2806 1613 1594	Neal 3435 2934 1765 1696 1613 1515
1H NMR (3) ppm		CDCl _{1,3} 00MHz 7.26(1H, t, J=7.76 Hz) 7.07(2H, d, J=8.47 Hz) 6.79(1H, d, J=7.44 Hz) 6.69(1H, d, J=8.07 Hz) 6.67(2H, d, J=8.45 Hz) 4.02(4H, s) 3.97(2H, t, J=6.54 Hz) 2.80-3.00(4H, m) 1.70-1.85(2H, m) 1.30-1.45(4H, m) 0.93(3H, t, J=7.01 Hz)	CDCl _{3,3} 00MHz 7.69(1H, d, J=8.25 Hz) 7.26(1H, d, J=2.19 Hz) 7.26(1H, d, J=2.19 Hz) 7.05-1.12(3H, m) 6.73(2H, d, J=8.46 Hz) 5.83 (1H, s) 4.03(2H, t, J=6.54 Hz) 3.85(2H, t, J=7.22 Hz) 2.89(2H, t, J=7.49 Hz) 1.75-1.84(2H, m) 1.32-1.47(4H, m) 0.93(3H, t, J=7.01 Hz)
最近	161.3∼ 161.6℃	107.8∼ 108.1 ℃	114.7~ 115.1°C
構造式	HO O O	HO N O	
実施例	7-7	7-8	7-9

元素分析		·	国論値 理論値 C: 77.50% H; 8.36% N; 4.30% 分析値 C: 77.29% H; 8.56% N; 4.29%
MS	FAB+ 340 [M*H*] (100) 324(28) 232(33)	FAB+ 340 [M*H*] (100) 324(25) 232(32)	FAB+ 326 [M'H'](97) 218(100) 191(26) 121(78)
IRcm ⁻¹	Neat 3132 3012 2953 2867 1738 1662 1617 1594	Neat 3103 2934 1654 1618 1594	Neat 2941 2873 2807 1612 1590
1H NMR (3) ppm	CDCI3,300MHz 7.72(1H, d, 1=8.42 H 7.04(2H, d, 1=8.50 H 6.93(1H, dd, 1=8.44, 6.85(1H, d, 1=1.73 F 6.76(2H, d, 1=6.48 H 3.98(2H, t, 1=6.53 H 3.83(2H, t, 1=7.09 H 2.90(2H, t, 1=7.07 H 1.77-1.82(2H, m) 1.37-1.45(4H, m) 0.93(3H, t, 1=7.06 H	CDCI,300MHz 7.31(1H, d, J=2.33 Hz) 7.24(1H, d, J=7.89 Hz) 7.03-7.08(3H, m) 6.76(2H, d, J=8.48 Hz) 6.24(1H, br) 3.97(2H, t, J=6.59 Hz) 3.97(2H, t, J=7.19 Hz) 2.91(2H, t, J=7.16 Hz) 1.75-1.81(2H, m) 1.38-1.42(4H, m) 0.93(3H, t, J= 7.03 Hz)	CDCl ₃ ,300MHz 7.04-7.09(3H, m) 6.64-6.75(4H, m) 3.90-3.96 (6H, m) 2.80-2.97(4H, m) 1.74-1.79(2H, m) 1.36-1.44(4H, m) 0.93(3H, t, J=7.04 Hz)
英量	138.8℃ 138.8℃	137.5~ 137.8°C	120.5∼ 120.7℃
構造式	HO	HO	HONO
米施例	7-10-1	7-10-2	7-11

		<u> </u>	
元素分析	C ₂₈ H ₃₃ NO ₅ 理論值 C; 73.24% H; 6.99% N; 2.95% 分存值 C; 73.06% H; 7.06% N; 2.81%		C ₂₀ H ₃₁ NO ₄ 理論值 C; 76.41% H; 7.05% N; 2.97% 分析值 C: 76.55% H; 7.06% N; 2.96 %
MS	FAB+ 476 [M*H*] (50) 458(60)	FAB+ 460 [M*H*](100) 262(50)	FAB+ 472 [M*H*](100)
IRcm.1	Neat 3300 2933 1670 1268		KBr 3438 2950 1652 1623 1597 1510 1283
IH NMR (8) ppm	8 Hz 8 Hz	CDC!,300MHz 7.53(1H, d, J=8.2 Hz) 7.3-7.5(5H, m) 7.3-7.5(5H, m) 7.15 (2H, d, J=8.6 Hz) 6.99(1H, d, J=8.2 Hz) 6.90(2H, d, J=8.6 Hz) 6.90(2H, d, J=8.6 Hz) 7.02(2H, s)	CDCI,,300MHz 8.20(1H, d, J=9.1 Hz) 7.3-7.5(5H, m) 7.3-7.5(5H, m) 7.13 (1H, d, J=9.1 Hz) 7.12(2H, d, J=8.6 Hz) 6.90(2H, d, J=7.7 Hz) 6.90(2H, d, J=7.7 Hz) 6.04(2H, s) 7.13(2H, t, J=7.7 Hz) 6.05 (1H, d, J=7.7 Hz) 7.13(2H, t, J=6.7 Hz) 7.13(2H, t, J=6.7 Hz) 7.13(2H, t, J=6.7 Hz) 7.13(2H, t, J=6.7 Hz) 7.13(2H, t, J=7.3 Hz) 7.13(2H, t, J=7.3 Hz) 7.13(2H, t, J=7.3 Hz)
融点			106.3~ 107.2 C
構造式	MacO OH	MeO No	Meo Company
東施例	7-13	7-14	7-17

実施例	構造式	延	IH NMR (&) ppm	I'Rcm-1	MS	计赛分析
7-18	MeO O O O O		5 Hz 5 Hz 6 Hz 6 Hz 6 Hz 7 Hz	Neat 2954 1714 1644 1279	FAB+ 388[M+H+] (100)	
7-19-1	MBO O O O	130.3∼ 131.1 ℃	CDCl,,300MHz 8.2Q(1H, d, J=8.9 Hz) 7.13(1H, d, J=8.9 Hz) 7.03(1H, bs) 7.02(2H, d, J=8.2 Hz) 6.85(1H, d, J=7.5 Hz) 6.82(2H, d, J=7.5 Hz) 6.72(1H, d, J=7.5 Hz) 6.72(1H, d, J=7.5 Hz) 7.02(2H, t, J=7.5 Hz)	Neat 3250 2959 1642 1586 1514 1283	FAB+ 381 [M*H*] (100) 261(40) 191(40)	C ₃ ,H ₃ ,NO ₄ 理略值 C; 72,42% H; 7.13% N; 3.66% 分析值 C; 72.30% H; 7.21% N; 3.58%
7-19-2	HO NO					

9 Hz) 0.94(3H, t, J=7.1 Hz) 3478 367 9 Hz) (650) 9 Hz) (651) (652) (672) 6 Hz) (672) (672) (673) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) (7 Hz) 1 Hz) (7 Hz	梯造式	養点	1H NMI CDCI,300MHz	IH NMR (&) ppm	Rcm-	MS FAB+	元素分析
00.3C 7.14(H, d, J=8.9 Hz) 12936 [M'H'](50) 00.3C 67(H, d, J=7.6 Hz) 1284 4.19(2H, d, J=7.6 Hz) 1284 1.3-1.5(Hm) 1.3-1.5(Hm			8.51(2H, d, J=8.9 Hz)	0.94(3H, t, J=7.1 Hz)	3478	367	$C_{22}H_{26}N_2O_3$
No. 1	0	6	7.14(1H, d, J=8.9 Hz)		2936	[M'H'](50)	理論值
6.67((H. d. 1=7.6 Hz) 4.19(2H, t. 1=6.7 Hz) 4.19(2H, t. 1=6.7 Hz) 1.37(3H, s) 3.97(3H, s) 3.97(3H, s) 1.7.15(2H, m) 1.7.17(2H, d. 1=8.5 Hz) 1.7.19(2H, m) 1.		90.3C	7.14(2H, d, J=5.9 Hz)		1625		C; 72.11% H: 7.15%
4.19(2H, t, J=7.3 Hz) 4.01(2H, t, J=6.7 Hz) 3.00(2H, t, J=6.7 Hz) 1.7-1.9(2H, m) 2.20(2H, d, J=8.5 Hz) 2.20(2H, d, J=8.5 Hz) 2.20(2H, d, J=8.5 Hz) 2.20(2H, d, J=7.6 Hz) 2.20(2H, d, J=7.6 Hz) 2.20(2H, d, J=7.6 Hz) 2.20(2H, d, J=8.6 Hz) 2.20(2H, d, J=8.4 Hz) 2.20(2H, d, J=8.4 Hz) 2.20(2H, d, J=8.4 Hz) 2.20(2H, d, J=7.5 Hz) 3.00(2H, t, J=7.5 Hz) 2.20(2H, t, J=7.5 Hz) 2.20(2H, t, J=7.5 Hz) 2.20(2H, t, J=7.5 Hz)	z —,		6.67(1H, d, J=7.6 Hz)		1596		N; 7.64%
4.01(2H, t, 1=6.7 Hz) 3.97(3H, t, 1=7.3 Hz) 3.97(3H, t, 1=7.3 Hz) 3.97(3H, t, 1=7.3 Hz) 1.7-1.5(2H, m) 1.7-1.5(2H, m) CDC(11, d, 1=8.5 Hz) 7.22(2H, d, 1=8.5 Hz) 7.12(2H, d, 1=8.5 Hz) 7.12(2H, d, 1=8.5 Hz) 7.12(2H, d, 1=7.6 Hz) 6.67(1H, d, 1=7.5 Hz) 4.15(2H, m) 4.15(2H, t, 1=7.5 Hz) 7.07(2H, t, 1=7.5 Hz) 7.07(2H, t, 1=6.7 Hz) 7.07(2H, t, 1=6.4 Hz) 7.07(2H, d, 1=8.4 Hz) 7.07(2H, d, 1=8.4 Hz) 7.07(2H, d, 1=8.4 Hz) 7.07(2H, t, 1=7.5 Hz) 7.07(2H, t, 1=7.3 Hz) 7.0	\		4.19(2H, t, J=7.3 Hz)		1284		华 桥值
3.97(3H, s) 3.997(3H, s) 3.997(3H, s) 1.7-19(2H, m) 1.7-19(2H, m) 1.7-15(4H, m) 1.7-15	\ \ -c		4.01(2H, t, J=6.7 Hz)				C; 72.03%
3.00(2H, i, 1=7;3 Hz) 1.7-15(4H, m) 1.3-15(4H, m) 1.3-15(4H, m) 1.3-15(4H, m) 1.3-15(4H, m) 1.3-15(4H, m) 2.32(2H, d, 1=8;9 Hz) 7.12(2H, d, 1=8;9 Hz) 7.12(2H, d, 1=8;9 Hz) 7.12(2H, d, 1=8;9 Hz) 7.12(2H, d, 1=8;1 Hz) 7.12(2H, d, 1=8;1 Hz) 6.80(1H, d, 1=8;1 Hz) 6.80(1H, d, 1=7;1 Hz) 4.15(2H, i, 1=7;1 Hz) 4.15(2H, i, 1=7;1 Hz) 1.3-15(4H, m) 1.3-15(3H, m) 1.3-15(3	/ >		3.97(3H, s)				H; 7.25%
CDCI,300MHz 8.20(1H, d, J=8.9 Hz) 1.3-1.5(4H, m) 7.22(2H, d, J=8.9 Hz) 1.3-1.5(4H, m) 7.22(2H, d, J=8.9 Hz) 0.94(3H, t, J=7.1 Hz) 3438 4.24 7.14(1H, d, J=8.9 Hz) 0.94(3H, t, J=7.1 Hz) 2957 [M'H'](30) 7.01(2H, d, J=8.5 Hz) 1.76 Hz) 1.657 Hz) 6.80(1H, d, J=7.6 Hz) 6.80(1H, d, J=7.6 Hz) 1.2637 6.80(1H, d, J=7.6 Hz) 1.267 Hz) 1.283 4.15(2H, t, J=7.5 Hz) 1.29(3H, s) 3.07(2H, t, J=7.5 Hz) 1.3-1.5(4H, m) 7.22(3H, s) 1.7-1.9(2H, m) 7.27(2H, d, J=8.6 Hz) 1.3-1.5(4H, m) 7.27(2H, d, J=8.6 Hz) 1.3-1.5(4H, m) 7.28(3H, s) 1.3-1.5(4H, m) 7.28(3H, s) 1.3-1.5(4H, m) 7.28(3H, s) 1.3-1.5 Hz) 7.38(3H, s) 1.3-1.5 Hz) 7.			3.09(2H, l, J=7.3 Hz)				N; 7.54 %
CDCI,300MHz 8 200(H, d, J=8.9 Hz) 7.22(2H, d, J=8.5 Hz) 7.12(2H, d, J=8.5 Hz) 6 800(H, d, J=7.6 Hz) 7.12(2H, d, J=7.6 Hz) 8 3.07(2H, t, J=7.5 Hz) 1.72(2H, t, J=7.5 Hz) 1.72(2H, d, J=8.4 Hz) 7.72(2H, d, J=8.6 Hz) 7.72(2H, d, J=8.4 Hz) 7.72(2H			1.3-1.5(4H, m)				
0Ac 7.12(1H, d, J=8,9 Hz) 1.3-1.5(4H, m) 3438 424 7.12(2H, d, J=8,1 Hz) 0.94(3H, t, J=7.1 Hz) 2957 [M'H'] (50) 7.14(1H, d, J=8,5 Hz) 0.94(3H, t, J=7.1 Hz) 2957 [M'H'] (50) 1.16(1H, d, J=7.6 Hz) 6.80(1H, d, J=7.6 Hz) 1.657 1.162H 1, J=7.5 Hz) 1.15(2H, t, J=7.5 Hz) 4.15(2H, t, J=7.5 Hz) 1.29(3H, s) 3.07(2H, t, J=7.5 Hz) 1.2-1.5(4H, m) 1.3-1.5(4H, m) 1.7-1.9(2H, m) 1.7-1.9(2H, m) 1.3-1.5(4H, m) 1			CDCI,300MHz		ξĐ	FAB+	
OAC 7.14(1H, d, J=8.5 Hz) 0.94(3H, i, J=7.1 Hz) 2957 [M*H*] (50) 170(2H, d, J=8.9 Hz) 17062 170(2H, d, J=7.6 Hz) 17062 170(2H, d, J=7.6 Hz) 17062 170(2H, d, J=7.6 Hz) 17062 1			8.20(1H, d, J=8.9 Hz)	1.3-1.5(4H, m)	3438	474	C24H29NO,
OAC 7.14(1H, d, 1=8.9 Hz) 1762 1762 1654 6.80(1H, d, 1=7.6 Hz) 1762 1654 6.80(1H, d, 1=7.6 Hz) 1627 1627 1627 1637 1762 1637 14.15(2H, d, 1=7.5 Hz) 1627 1627 1637 1637 1637 1637 1637 1637 1637 163			7.22(2H, d, J=8.5 Hz)	0.94(3H, t, J=7.1 Hz)	2957	IM.H-1(50)	;
6.80(1H, d, 1=8.5 Hz) 6.80(1H, d, 1=7.6 Hz) 6.67(1H, d, 1=7.6 Hz) 1.07(2H, t, 1=7.5 Hz) 4.01(2H, t, 1=7.5 Hz) 4.01(2H, t, 1=7.5 Hz) 3.96(3H, s) 3.07(2H, t, 1=7.5 Hz) 2.29(3H, s) 1.7-1.9(2H, m) CDCl,300MHz 7.84(1H, d, 1=8.6 Hz) 7.84(1H, d, 1=8.6 Hz) 7.01(2H, d, 1=8.4 Hz) 7.01(2H, d, 1=8.4 Hz) 7.01(2H, t, 1=6.7 Hz) 3.88(3H, s) 3.38(2H, t, 1=6.7 Hz) 2.28(3H, s) 2.28(OAC		7.14(1H, d, J=8.9 Hz)		1762	(201 11 11)	理論値
6.80(1H, d, J=7.6 Hz) 6.67(1H, d, J=7.6 Hz) 6.67(1H, d, J=7.6 Hz) 6.67(1H, d, J=7.5 Hz) 4.15(2H, t, J=7.5 Hz) 1.7-19(2H, m) 2.29(3H, s) 1.7-1.9(2H, m) CDCl _{t,3} 300MHz CDCl _{t,3} 40MHz CDCl _{t,3} 40MHz CDCl _{t,4} 4)==		7.01(2H, d, J=8.5 Hz)		16.5		C; 70.90%
6.67(11H, d,)=7.6 Hz) 4.15(2H, t,)=7.5 Hz) 4.15(2H, t,)=7.5 Hz) 4.01(2H, t,)=6.7 Hz) 3.96(3H, s) 3.96(3H, s) 3.229(3H, s) 1.7-1.9(2H, m) CDC(1,300MHz 7.27(2H, d,)=8.6 Hz) 7.27(2H, d,)=8.4 Hz) 6.87(1H, d,)=8.6 Hz) 3.90(2H, t,)=6.7 Hz) 3.88(3H, s) 3.75(2H, t,)=6.7 Hz) 3.88(3H, s) 3.28(3H, t,)=6.6 Hz) 2.28(3H, s) 2.28(3H, s)			6.80(1H, d, J=7.6 Hz)		1627		H; 6.90%
4.15(2H, t, J=7.5 Hz) 4.01(2H, t, J=6.7 Hz) 3.96(3H, s) 3.07(2H, t, J=7.5 Hz) 2.29(3H, s) 1.7-1.9(2H, m) CDC(t,300MHz 7.84(1H, d, J=8.6 Hz) 7.01(2H, d, J=8.4 Hz) 7.01(2H, d, J=	: ¬;		6.67(1H, d, J=7.6 Hz)		1201		N; 3.31%
OAC (24, t, J=6.7 Hz) 3.96(34, s) 3.07(2H, t, J=7.5 Hz) 2.29(3H, s) 1.7-1.9(2H, m) CDCl ₃ 300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.6 Hz) 7.29(2H, t, J=7.5 Hz) 7.29(2H, t, J=7.5 Hz) 7.28(2H, t, J=7.5 Hz) 7.28(2H, t, J=7.5 Hz) 7.28(2H, t, J=6.6 Hz) 7.28(2H, t, J=6.6 Hz)			4.15(2H, t, J=7.5 Hz)	.	C071		分析值
3.96(3H, s) 3.07(2H, t, J=7.5 Hz) 2.29(3H, s) 1.7-1.9(2H, m) CDC(1,300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.4 Hz) 7.01(2H, d, J=8.6 Hz) 7.01(2H, d, J=8.6 Hz) 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.75(2H, t, J=7.5 Hz) 2.25(2H, t, J=7.5 Hz) 2.28(3H, s)	\ \ 		4.01(2H, t, J=6.7 Hz)				C: 71.10%
3.07(2H, t, J=7.5 Hz) 2.29(3H, s) 1.7-1.9(2H, m) CDCl,300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.01(2H, d, J=8.4 Hz) 7.01(2H, d, J=8.6 Hz) 7.01(2H, d, J=6.6 Hz) 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.38(2H, t, J=7.5 Hz) 2.29(2H, t, J=7.5 Hz) 2.28(2H, t, J=6.6 Hz) 2.28(2H, t, J=6.6 Hz) 2.29(3H, s) 2.28(3H, s) 2.29(3H, s)	/ >		3.96(3H, s)				H; 6.99%
2.29(3H, s) 1.7-1.9(2H, m) CDCl _{1,3} 300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=6.4 Hz) 7.27(2H, d, J=7.5 Hz) 7.28(2H, d, J=7.5 Hz) 7.28(2H, d, J=7.5 Hz) 7.28(2H, d, J=7.5 Hz) 7.28(2H, d, J=6.6 Hz) 7.28(3H, s)			3.07(2H, t, J=7.5 Hz)				N; 3.22 %
OAC CDC!,300MHz 1.3-1.5(4H, m) 2936 7.27(2H, d. J=8.6 Hz) 0.93(3H, t, J=7.0 Hz) 1756 7.01(2H, d. J=8.4 Hz) 0.93(3H, t, J=7.0 Hz) 1756 8.87(1H, d. J=8.6 Hz) 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.75(2H, t, J=6.7 Hz) 3.38(3H, s) 3.38(2H, t, J=6.6 Hz) 2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s) 2.28(3H, s) 3.38(2H, t, J=6.6 Hz) 2.28(3H, s) 3.38(3H, s) 3.38(3H, s) 3.38(3H, s) 3.38(3H, t, J=6.6 Hz) 3.38(3H, t,	-		2.29(3H, s)				
OAC 7.27(2H, d, J=8.6 Hz) 1.3-1.5(4H, m) 2936 7.27(2H, d, J=8.4 Hz) 0.93(3H, t, J=7.0 Hz) 1756 7.01(2H, d, J=8.4 Hz) 0.93(3H, t, J=7.0 Hz) 1756 1646 6.87(1H, d, J=8.6 Hz) 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.75(2H, t, J=6.7 Hz) 2.95(2H, t, J=7.5 Hz) 2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s) 3.72(3H, t, J=6.6 Hz) 2.28(3H, s) 3.72(3H, t, J=6.6 Hz) 3.72(3H, t, J			1.7-1.9(zh, m)		ġ	EAB.	
OAC 7.27(2H, d, J=8.4 Hz) 0.93(3H, t, J=7.0 Hz) 1736 7.01(2H, d, J=8.4 Hz) 0.93(3H, t, J=7.0 Hz) 1756 17.01(2H, d, J=8.4 Hz) 0.93(3H, t, J=7.0 Hz) 1646 6.87(1H, d, J=8.6 Hz) 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.75(2H, t, J=7.5 Hz) 2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s)			7,84(1H, d, J=8.6 Hz)	1.3-1.5(4H, m)			
OAC 7.01(2H, d, J=8.4 Hz) 1756 6.87(1H, d, J=8.6 Hz) 1646 5.90(2H, t, J=6.7 Hz) 1219 3.88(3H, s) 3.75(2H, t, J=7.5 Hz) 3.38(2H, t, J=7.5 Hz) 2.95(2H, t, J=6.6 Hz) 2.295(2H, t, J=6.6 Hz) 2.89(2H, t, J=6.6 Hz)			7.27(2H, d, J=8.4 Hz)	0.93(3H, t, J=7.0 Hz)	2936	426	
6.87(1H, d. J=8.6 Hz) 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.75(2H, t, J=7.5 Hz) 2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s)	4		7.01(2H, d, J=8.4 Hz)		1756	[M*H*](100)	
	\		6.87(1H, d, J=8.6 Hz)		1040	276(50)	
3.88(3H, s) 3.75(2H, t, J=7.5 Hz) 3.38(2H, t, J=6.6 Hz) 2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s)			3.90(2H, t, J=6.7 Hz)		6121		
3.75(2H, t, J=7.5 Hz) 3.38(2H, t, J=6.6 Hz) 2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s)	:		3.88(3H, s)				
3.38(2H, t, 1=6.6 Hz) 2.95(2H, t, 1=7.5 Hz) 2.89(2H, t, 1=6.6 Hz) 2.28(3H, s)			3.75(2H, 1, J=7.5 Hz)	•			
2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.38(2H, t, J=6.6 Hz)				
2.89(2H, I, J=6.6 Hz) 2.28(3H, s)	,, ,,		2.95(2H, t, J=7.5 Hz)				
2.28(3H, 8)			2.89(2H, 1, J=6.6 Hz)				
			2.28(3H, s)				

6 Hz) 1.3-1.5(4H, m) 6 Hz) 0.92(3H, I, J=7.1 Hz) 7 Hz) 7 Hz) 7 Hz) 7 Hz) 8 Hz 8 Hz 1.3-1.5 (4H, m) 8 Hz 9 Hz) 9 Hz) 1.3-1.5 (4H, m) 9 Hz) 1.3-1.5 (4H, m) 1.3-1.5(4H, m) 1.		構造式	蒙点	1H P	1H NMR (8) ppm	IRcm ⁻¹	MS EAD	元素分析
0				7.82(1H, d, J=8.6 Hz)	1.3-1.5(4H, m) 0.92(3H: 1. 1=7 1 Hz)		FAB+ 384	C ₂₃ H ₂₉ NO ₄
6 590(H, d, l=84 Hz) 1 300(H, l, l=67 Hz) 1 300(H, l, l=67 Hz) 1 300(H, l, l=67 Hz) 1 300(H, l, l=68 Hz) 2 300(H, l, l=17 Hz) 1 6-1.8(2H, m) 1 6-1.8(2H, m) 1 6-1.8(2H, m) 1 70.66- 2 300(H, l, l=17 Hz) 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		₩	. 27	6.85(1H, d, J=8.6 Hz)			[M*H*] (100)	理論値
3.90(2H, L. 1-6.7 Hz) 3.37(2H, L. 1-7.1 Hz) 3.39(2H, L. 1-6.6 Hz) 2.90(2H, L. 1-6.6 Hz) 2.90(2H, L. 1-6.6 Hz) 2.80(2H, L. 1-6.7 Hz) 2.80(2H, L. 1-3.1 Hz)			144.4C	6.79(2H, d, J=8.4 Hz) 6.35(1H, s)			264(40)	C; 72.04% H: 7.62%
3.30(2H, L, 1=0.1 Hz) 3.30(2H, L, 1=6.6 Hz) 2.86(2H, L, 1=6.6 Hz) 2.86(2H, L, 1=1.1 Hz) 1.6-1.8(2H, m) 1.6-1.8(2H, m) 1.70.6- 1.70(2H, d, 1=8.3 Hz) 2.80(2H, L, 1=6.7 Hz) 1.70(2H, d, 1=8.3 Hz) 2.80(2H, L, 1=0.7 Hz) 2.80(2H, L, 1=0.7 Hz) 2.80(2H, L, 1=0.7 Hz) 2.80(2H, L, 1=0.7 Hz) 2.80(2H, m) 3.80(2H, m	:			3.90(2H, I, J=6.7 Hz)				N; 3.65%
3.39(2H, t.) 1=66 Hz) 2.80(2H, t.) 1=66 Hz) 2.80(2H, t.) 1=61 Hz) 1.6-1.8(2H, t.) 1.6-1.8(2H, t.) 1.6-1.8(2H, t.) 1.6-1.8(2H, t.) 1.6-1.8(2H, t.) 1.70(2H, d.) 1=8.3 Hz) 1.70(2H, d.) 1=8.3 Hz) 1.70(2H, d.) 1=8.3 Hz) 1.70(2H, t.) 1=6.9 Hz) 1.81(2H, t.) 1=6.9 Hz) 1.81(2H, t.) 1=6.7 Hz) 1.81(2H, t.) 1	¥	> >-		3.73(3H, 8)				分析值
2.90(2H, t, 1=6,1Hz) 1.66(3H, t) =7.1 Hz) 1.66(3H, t) =6.1 Hz) 1.766(3H,		\ \ \ \ \		3.39(2H, t, 1=6.6 Hz				C; 72.04%
2.86(2H, t, J=7.1 Hz) 1.6-18(2H, m) 2.86(2H, s) 7.59(1H, s) 7.10(2H, s) 7.10(2				2.90(2H, t, J=6.6 Hz)				851.7 Z
CDCI,,300MHz 7.59(1H, s) 7.10C2H, d, 1-8.5 Hz) 170.6				2.86(2H, t, J=7.1 Hz) 1.6-1.8(2H, m)				
0 1.3-1.5 (4H, m) 1.3-1.5 (4H,				CDCI,,300MHz		Nea	FAB+	
OH 171.4°C (5.7(2H, d.) 1=8.5 Hz) 0.93(3H, t, 1=7.1 Hz) 2934 [M'H'] (40) 23(11, d.) 23(2H, t.) 23(2				7.59(1H, s)	1.3-1.5 (4H, m)	1227	38.4	C ₂₃ H ₃₉ NO ₄
00H 171.4°C 6.7(12H, d. J=8.5 Hz) 2361 170.6°C 6.7(12H, d. J=8.5 Hz) 1600 1516 1516 1516 1516 1516 1516 1516	_			7.10(2H, d, J=8.5 Hz)	0.93(3H, t, J=7.1 Hz)	2934	IM'H'1 (40)	
OH 171.4°C 6.78(H, s) 156.9 Hz) 156.0 Hz) 1516 1516 1516 1516 3.88(3H, s) 1.38(3H, s) 1.38(3H, s) 1.37(2H, t, J=6.7 Hz) 1.37(2H, t, J=6.9 Hz) 1.37(2H, t, J=7.3 Hz) 1.37(2H, t,	_/		170.6~	7.00(1H, bs)		2361	(02) [11 111	理論値
0 OAC	_	i	171.4C	6.7/(ZH, Q, J=8.3 HZ)		1600		C; 72.04%
3.88(3H, s) 3.73(2H, t, J=7.3 Hz) 3.39(2H, t, J=6.7 Hz) 2.87(2H, t, J=6.7 Hz) 2.87(2H, t, J=6.7 Hz) 2.87(2H, t, J=6.7 Hz) 2.87(2H, m) 4.8-1.9(2H, m) 4.18-1.9(2H, m) 4.19-1.3 Hz) 4.19-1.4 (14, J=7.3 Hz) 4.19-1.4 (14, d, J=7.3 Hz) 4.10(2H, t, J=7.3 Hz) 4.00(3H, s) 5.30(2H, t, J=7.3 Hz) 4.10(2H, t, J=7.3 Hz) 4.00(3H, s) 5.30(2H, t, J=7.3 Hz) 4.00(3H, s) 5.30(2H, t, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 6.30(3H, t, J=7.3 Hz)	,		-	4.02(2H, t, J=6.9 Hz)		1516		N: 3.65%
3.73(2H, t, 1=7.3 Hz) 3.39(2H, t, 1=6.7 Hz) 2.87(2H, t, 1=6.7 Hz) 2.87(2H, t, 1=6.7 Hz) 2.77(2H, t, 1=6.7 Hz) 1.81-19(2H, m) CDCI,300MHz 7.82(1H, s) 7.82(1H, s) 7.82(1H, s) 7.82(1H, d, 1=8.5 Hz) 6.83(1H, t, 1=7.1 Hz) 6.83(1H, d, 1=7.3 Hz) 6.74(1H, d, 1=7.3 Hz) 6.31(1H, d, 1=7.3 Hz) 6.31(1H, d, 1=7.3 Hz) 4.10(2H, t, 1=6.9 Hz) 7.82(2H, s) 7.82(2H, s) 7.82(2H, s) 7.82(3H, s) 7.82(2H, s) 7.82(3H, s) 7.8				3.88(3H, s)		1280		きなり
3.39(2H, t, J=6.7 Hz) 2.87(2H, t, J=7.3 Hz) 2.87(2H, t, J=7.3 Hz) 2.87(2H, t, J=6.7 Hz) 1.8-1.9(2H, m) CDCl _{1,3} 300MHz 7.82(1H, s) 7.21(2H, d, J=8.5 Hz) 7.21(2H, d, J=8.5 Hz) 7.21(2H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 4.19(2H, t, J=7.3 Hz) 4.00(3H, s) 3.08(2H, t, J=7.3 Hz) 7.22(3H, s) 7.22(3H, s) 7.21(2H, t, J=7.3 Hz) 7.22(3H, s)				3.73(2H, t, J=7.3 Hz)				27-61-18 C: 21-02-8
2.87(2H, t, J=7.3 Hz) 2.77(2H, t, J=6.7 Hz) 1.8-1.9(2H, m) CDCl, 300MHz 7.21(2H, s) 7.21(2H, d, J=8.5 Hz) 7.21(2H, d, J=7.1 Hz) 7.21(2H, d, J=7.3 Hz) 6.83(1H, s) 6.83(1H, s) 6.74(1H, d, J=7.3 Hz) 6.	ž			3.39(2H, I, J=6.7 Hz)				C; 71.93% H: 7.65%
O OAC 6.31(1H, G, J=6.7 Hz) O CDCl,300MHz 7.82(1H, S) 7.21(2H, d, J=8.5 Hz) 7.00(2H, d, J=8.5 Hz) 6.83(1H, S) 6.83(1H, G, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 4.10(2H, t, J=6.9 Hz) 7.00(3H, S) 7.00(2H, t, J=6.9 Hz) 7.00(2H, t, J=7.3 Hz) 7.00(2H, t, J=6.9 Hz) 7.00(2H, t, J=7.3 Hz)				2.87(2H, t, J=7.3 Hz)				N; 1113.62
OOAC 6.31(1H, d, J=8.5 Hz) 0.95(3H, t, J=7.1 Hz) 7.21(2H, d, J=8.5 Hz) 0.95(3H, t, J=7.1 Hz) 7.00(2H, d, J=8.5 Hz) 6.83(1H, s) 6.74(1H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 4.19 2H, t, J=7.3 Hz) 4.00(2H, t, J=6.9 Hz) 4.00(3H, s) 3.08(2H, t, J=7.3 Hz) 7.29(3H, s) 7.29(3H, s) 7.29(3H, s) 7.29(3H, s) 7.20(3H,				2.77(2H, t, J=6.7 Hz)				
CDCI,,300MHz 7.82(1H, s) 7.21(2H, d, J=8.5 Hz) 7.00(2H, d, J=8.5 Hz) 6.83(1H, s) 6.74(1H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 4.19 2H, t, J=7.3 Hz) 4.00(3H, s) 3.08(2H, t, J=7.3 Hz) 7.21(2H, t, J=7.3 Hz) 4.00(3H, s) 7.229(3H, s) 7.229(3H, s) 7.229(3H, s) 7.229(3H, s)	ı			1.8-1.9(2H, m)				
OAC 6.31(1H, s) 1.3-1.5(4H, m) 7.21(2H, d, J=8.5 Hz) 0.95(3H, t, J=7.1 Hz) 7.00(2H, d, J=8.5 Hz) 0.95(3H, t, J=7.1 Hz) 6.83(1H, s) 6.74(1H, d, J=7.3 Hz) 6.74(1H, d, J=7.3 Hz) 4.10(2H, t, J=6.9 Hz) 4.00(3H, s) 3.08(2H, t, J=7.3 Hz) 7.229(3H, s)				СDС1,300МН2			FAB+	
O OAC (3.14, d. J=8.3 Hz) 0.93(3H, t. J=7.1 Hz) 7.00(2H, d. J=8.5 Hz) 6.83(1H, s) 6.34(1H, d. J=7.3 Hz) 6.34(1H, d. J=7.3 Hz) 4.19 2H, t. J=7.3 Hz) 4.10(2H, t. J=6.9 Hz) 4.00(3H, s) 3.08(2H, t. J=7.3 Hz) 2.29(3H, s) 1.8.2 0.70 m.				7.82(1H, s)	1.3-1.5(4H, m)		474	
O OAC 6.83(1H, s) 6.83(1H, s) 6.83(1H, s) 6.73(1H, d, J=7.3 Hz) 6.71(1H, d, J=7.3 Hz) 7.19 2H, t, J=7.3 Hz) 7.19 2H, t, J=6.9 Hz) 7.10(2H, t, J=6.9 Hz) 7.29(3H, s) 7.29(3H, s) 7.29(3H, s) 7.29(3H, s)	_			7.21(2H, 0, J=8.5 HZ)	0.93(3H, l, J=/,1 HZ)		IM'H' COO	
OAC 6.74(1H, d, J=7.3 Hz) 6.31(1H, d, J=7.3 Hz) 4.19 2H, I, J=7.3 Hz) 4.10(2H, I, J=6.9 Hz) 4.00(3H, s) 3.08(2H, I, J=7.3 Hz) 1.9.3 0.74	_/			7.00(2H, a, J=8.3 HZ)			261(70)	
OAO OAO	_	,		0.03(1ff, 8)				
Z-	,			6.31(1H, d, J=7.3 Hz)			-	
2				4.19 2H, I, J=7.3 Hz)			-	
) 2		4.10(2H, t, J=6.9 Hz)				
	ž			4.00(3H, s)				
2.29(3H, s)				3.08(2H, t, J=7.3 Hz)				
				2.29(3H, s)				-

			
元素分析			G ₂ H ₃ ,NO ₃ 理略百 C; 70.57% H; 7.34% N; 3.29% A) 析面 C; 70.19% H; 7.36% N; 3.24 %
MS	FAB+ 382 [M*H*] (100) 261(50)	FAB+ 382 [M*H*] (100) 261(50)	FAB+ 426 [M+H+] (60) 276(55) HRFAB(m/z) 理論值 C ₂₃ H ₃₂ NO ₃ 426.5380 分析值
. IRcm.1	KBr 3441 2953 1565 1516	KBr 3441. 2953 1565 1516	Neal
1H NMR (8) ppm		DMSO-d6,300MHz 9.2(1H, bs) 1.3-1.5(4H, m) 7.6(1H, s) 7.2(1H, d, J=6 Hz) 7.1(1H, s) 7.0(2H, d, J=9 Hz) 6.6(2H, d, J=6 Hz) 6.4(1H, d, J=6 Hz) 7.0(2H, t, J = 6 Hz)	CDCI,300MHz 7.60(1H, s) 7.27(2H, d, J=8.5 Hz) 7.27(2H, d, J=8.5 Hz) 7.01(2H, d, J=8.5 Hz) 6.59(1H, s) 4.02(2H, t, J=6.9 Hz) 3.90(3H, s) 3.36(2H, t, J=7.3 Hz) 3.38(2H, t, J=6.7 Hz) 2.25(2H, t, J=6.7 Hz) 2.27(2H, t, J=6.7 Hz) 2.28(3H, s) 1.8-1.9(2H, m)
最点	209.4~ 210.7℃	147.2~ 148.3℃	93.2~ 94.1°C
情 遊式	MeO OH	MaO OH	OAG OAG
実施例	7-27	7-28	7-29

米施쮠	横淮式	1000	H NMR (3) prem	1. m1	374	计算公按
7-30	ZON Z	96.2-96.7 C	CDC13,300MHz 8.15(2H, d, J=8.7 Hz 7.49(1H, d, J=8.3 Hz 7.42(2H, d, J=8.3 Hz 4.22(2H, s), 4.06(2H, t, J=6.7 Hz) 4.04(2H, t, J=6.5 Hz) 3.88(2H, t, J=7.2 Hz) 3.11(2H, t, J=7.2 Hz) 1.8-1.9(2H, m) 1.3-1.5(8H, m)	KBr 2933 1687 1516 1344	FAB 455 (100) (100) (100)	C26H34N2O5 理論值 C; 68.70% H; 7.54% N; 6.16% 分析值 C; 68.92% H; 7.54% N; 6.05%
7-31	HO O O O O O O O O O O O O O O O O O O	115.0~ 116.5°C	CDCl ₃ ,300MHz 7.27(1H, d, J=8.2 Hz) 7.10(2H, d, J=8.4 Hz) 6.84(1H, d, J=8.2 Hz) 6.69(2H, d, J=8.4 Hz) 5.38(2H, s) 3.88(3H, s) 3.70(2H, t, J=7.7 Hz) 3.14(2H, t, J=7.7 Hz) 2.89(2H, t, J=7.7 Hz) 1.5-1.63(2H, m) 1.3-1.4(4H, m) 0.91(3H, t, J=8.0 Hz)	KBr 2932 1676 1515 1261	FAB+ 369 [M*H*] (100) 261(50)	
7-32	HO NO	110.0-	CDCI3,300MHz 7,71(1H, d, J=8.4 Hz) 7,39(1H, bs) 7,05(2H, d, J=8.1 Hz) 7,00(1H, d, J=8.4 Hz) 6,76(2H, d, J=8.1 Hz) 4,13(2H, t, J=6.6 Hz) 4,07(2H, t, J=7.4 Hz) 3,93(3H, s) 2,97(2H, t, J=7.4 Hz) 1,65-1,8(2H, m) 1,3-1,5(4H, m) 0,94(3H, t, J=7.1 Hz)		FAB+ 388[M+H+] (100) 267(50)	C21H25N04S

传造式	环	五百五	1H NMR (8) ppm	IRcm ⁻¹	MS	元紫分析
` >			CDC13,300MHz 8.12(2H, d, J=8.6 Hz) 1.3-1.5(8H, m) 7.90(1H, d, J=8.6 Hz) 0.9-1.0(6H, m) 7.31(1H, d, J=8.2 Hz) 0.9-1.0(6H, m) 6.89(1H, d, J=8.2 Hz) 5.69(2H, d, J=9.6 Hz) 4.0-4.2(2H, m) 3.98(2H, t, J=6.5 Hz) 3.7-3.9(1H, m) 3.6-3.8(1H, m) 3.6-3.8(1H, m) 3.2-3.3(1H, m) 1.7-1.9(4H, m)	Neat 3300 2960 1673 1520 1345 1269	FAB+ 471 [M+H+](20), 453(60), 165(100).	
>		67.2.67.8 C	CDCi3,300Mhz 7.46(1H, d, J=8.2 Hz) 7.02(2H, d, J=8.3 Hz) 6.97(1H, d, J=8.3 Hz) 6.97(1H, d, J=8.2 Hz) 6.07(1H, d, J=8.2 Hz) 6.01(2H, d, J=8.3 Hz) 7.02(2H, t, J=6.6 Hz) 7.02(2H, t, J=6.6 Hz) 7.03(2H, t, J=6.5 Hz) 7.03(2H, t, J=6.7 Hz) 7.03(2H, t, J=7.4 Hz)	Neat 3346 2931 1681 1620 1272	FAB+ 425 [M+H+](65), 120(100)	(26H36N2O3) 理論値 (C; 73.55% H; 8.55% N; 6.60% 分析値 C; 73.39% H; 8.74% N; 6.47%
>	124+ FUN	213.6- 214.6°C	DMSO-d6,300MHz 10.19 (3H, bs) 7.34 (1H, d, J = 8.4 Hz) 7.28 (2H, d, J = 8.4 Hz) 7.26 (2H, d, J = 8.4 Hz) 7.06 (1H, d, J = 8.4 Hz) 7.06 (1H, d, J = 8.4 Hz) 7.06 (1H, d, J = 8.6 Hz) 7.07 (2H, t, J = 6.6 Hz) 7.08 (2H, t, J = 7.2 Hz) 7.09 (2H, t, J = 7.2 Hz) 7.93 (2H, t, J = 7.2 Hz) 7.93 (2H, t, M) 7.94 (6H, m) 7.95 (6H, m) 7.97 (6H, m) 7.97 (6H, m) 7.98 (6H, t, J = 7.2 Hz)	XBr	FAB+ 425[M+H+] (100)	C26H36N2O3・ HC1 理論値 C; 50.00% H; 10.00% N; 5.00%

_			
元素分析			
MS	FAB+ 399[M+H+] (100), 262(80)	FAB+ 369[M+H+] (100)	FAB+ 383 [M+H+](50), 120 (100).
IRem.		XBr 3348 2931 1682 1621 1518 1272	
1H NMR (&) ppm	4 Hz 4 Hz 4 Hz 5 Hz) 5 Hz) 5 Hz)	CDCl3,300MHz 7.52 (1H, d, J = 8.4 Hz) 7.02 (2H, d, J = 8.4 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.61 (2H, d, J = 8.4 Hz) 4.20 (2H, s) 4.20 (2H, s) 3.90 (3H, s) 3.76 (2H, t, J = 6.6 Hz) 3.30 (2H, d, J = 6.9 Hz) 3.30 (2H, d, J = 6.9 Hz) 2.86 (1H, d, J = 6.9 Hz) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	CDCI3,300Mhz 10.46 (3H, bs) 10.46 (3H, bs) 7.71 (1H, d, J = 8.4 Hz) 7.49 (2H, d, J = 8.4 Hz) 7.26 (2H, d, J = 8.4 Hz) 6.82 (1H, d, J = 6.0 Hz) 3.89 (2H, d, J = 6.6 Hz) 3.85 (3H, s) 3.71 (2H, t, J = 7.5 Hz) 3.44 (2H, t, J = 6.0 Hz) 2.92 (4H, qu, J = 6.6 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)
最点		64-67 C	212~215 °C(dec.)
構造式	ON	NH ₂	O NH2-HG
奖施例	7-36	7-37	7-38

元素分析			四路値 (C22H28CIN3O4 理路値 (C, 60.89% (C, 60.89% (C, 60.95% (C,
MS	·	FAB+ 398 [M+H+] (30)	FAB. 396(20) 326(20)
INCm.1		KBr 2954 1708 1654 1618	KBr 2953 2542 1705 1665 1621 1412
1H NMR (8) ppm	DMSO-46,300MHz 10.7(11H,s) 8.14(2H,d.)=8.4Hz) 7.66(1H,d.)=8.7Hz) 7.50(2H,d.)=8.7Hz) 6.97(1H,d.)=8.7Hz) 8.15(2H,t.)=6.9Hz) 3.91(2H,t.)=6.9Hz) 3.03(2H,t.)=7.1Hz) 1.70-1.80(2H,m) 0.88(3H,t.)=7.1Hz)	CDCi3,300MHz 8.05(1H,s) 7.83(1H,d,J=9.0Hz) 7.12(2H,d,J=7.1Hz) 7.12(2H,d,J=7.8Hz) 6.80(1H,d,J=9.0Hz) 6.64(2H,d,J=7.8Hz) 6.64(2H,d,J=7.8Hz) 7.18(2H,t,J=8.0Hz) 7.18(2H,t,J=8.0Hz) 7.18(2H,t,J=8.0Hz) 7.18(2H,t,J=8.1Hz) 7.18(2H,t,J=8.1Hz) 7.18(2H,t,J=8.1Hz) 7.18(2H,t,J=8.1Hz) 7.190-1.50(4H,m)	DMSO-46,300MHz 10.73(1H,s) 10.17(2H,bs) 10.17(2H,bs) 10.17(2H,bs) 10.17(2H,bs) 10.17(2H,bs) 10.17(2H,bs) 10.17(2H,d,bs,thz) 10.17(2H,d,bs,bs,thz) 10.17(2H,d,bs,bs,bs,thz) 10.17(2H,d,bs,bs,bs,bs,thz) 10.17(2H,d,bs,bs,bs,bs,bs,bs,bs,bs,bs,bs,bs,bs,bs,
操 点		154.9~ 155.7°C	244.249 C (decomp)
化规 集	New O H O Oek	Mao O NH2	Meo N O N O N O N O N O N O N O N O N O N
実施例	7-39	7-40	7-41

	1	T	
元素分析	C23 H2 9N3O4		
MS	FAB [M+		
IRcm ⁻¹	KBr 3455 3360 2935 1694 1634 1465 1290		
1H NMR (8) ppm	1.25-1.45(4H,m) 0.88(3H,t,J=6.9Hz)		
	DMSO-d6,300MHz 9.43(1H,s) 7.46(1H,d,J=9.0Hz) 6.97(2H,d,J=8.1Hz) 6.88(2H,d,J=8.1Hz) 6.47(2H,s) 3.90(2H,t,J=6.6Hz) 3.84(3H,s) 3.78(2H,s) 3.62(2H,t,J=7.7Hz) 2.64(2H,t,J=7.7Hz) 1.60-1.75(2H,m)		
MAA	161.0∼ 164.0℃		
構造式	MBO NH2	MeO H NO2	MeO C C C C C C C C C C C C C C C C C C C
実施例	7-42	7-43	7-44

1.30-1.50(4H,m) 0.92(3H,t,1=7.1Hz)

_	構造式	MAA	1H NMR (&) ppm	IRem ⁻¹	MS	元素分析
ΣΣ	New O		DMSO-d6,300MHz 8.79(2H,d,J=6.0Hz) 7.95(2H,d,J=6.0Hz) 7.76(1H,d,J=8.7Hz) 7.18(1H,d,J=8.7Hz) 4.18(2H,t,J=7.7Hz) 3.91(2H,t,J=7.7Hz) 3.91(2H,s) 3.88(3H,s) 3.14(2H,t,J=6.8Hz) 1.60-1.78(2H,m) 1.25-1.50(4H,m) 0.90(3H,t,J=7.1Hz)			
≥	MeO O O O	152.8~ 153.3°C	DMSO-d6,300MHz 8.81(2H,d,J=6.6Hz) 7.95(1H,d,J=9.0Hz) 7.92(3H,d,J=6.6Hz) 7.36(1H,d,J=7.5Hz) 7.30(1H,d,J=7.5Hz) 7.30(1H,d,J=7.5Hz) 6.61(1H,d,J=7.5Hz) 8.95(2H,t,J=6.9Hz) 3.95(2H,t,J=6.9Hz) 3.95(2H,t,J=6.5Hz) 1.65-1.77(2H,m) 1.28-1.49(4H,m)	KBr 3436 2389 1655 1630 1285 1087		C22H27CIN2O3 理論值 C; 65.58% H; 6.75% N; 6.95% 分析值 C; 65.34% H; 6.89% N; 6.98%
≥	MeO O O O					

実施例	構造式	融点	1H NMR (8) ppm	IRcm ⁻¹	MS	元素分析	
			DMSO-d6,300MHz		FAB+		
			6.77-6.93(4H,m)			C23H30N2O3	
			6.51(2H,d,J=8.4Hz)		383		
	NHS		4.52(2H,s)		(M+H+) (60)		
)		4.51(2H,bs)		(00)687		
			3.88(2H,t,J=6.5Hz)				_
7 51	:		3.75(3H,s)				
16-/	MeO		3.63(2H,t,J=6.0Hz)				
	\ \ -c		3.56(2H,s)				
•	/ }		2.68(2H,t,J=5.9Hz)				
			1.60-1.73(2H,m)				_
	無色油水		1.30-1.50(4H,m)				
			0.89(3H,t,J.m7.2Hz)				
			CDCI,300MHz	Near			_
			7.61(1H, t, J=7.83 Hz)	,,,,			
			7.38(1H, d, J=7.22 Hz)	34.22			
	HO		7.16(1H, d, J=8.43 Hz)	3071			
			7.11(2H, d. J=8.30 Hz)	2955			
			6.75(2H, d. J=8.33 Hz)	2871			
	> > -		4 5-4 8(1H. hr.)	1266			
7-52			4.16(2H, 1, J=6.64 Hz)	1704			
	<u>,</u> 0		3.84(2H, t, J=7.69 Hz)	1614			_
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2.90 (2H, t, Ju-7.68 Hz)	1516			
			1.84-1.92(2H, m)			÷	
	無色結晶		1,35-1,52(4H, m)				
			0.94(3H, t, J=7.04 Hz)				_

夹施例	構造式	發点	1H NMR (&) ppm	IRcm-1	MS	元素分析
7-54	が が が が が が が が が が が が が が		CDC13,300MHz 8.12(2H, d, J=8.7 Hz) 7.39(2H, d, J=8.7 Hz) 7.39(2H, d, J=8.7 Hz) 6.90(1H, d, J=8.1 Hz) 6.90(1H, d, J=9.4 Hz) 7.6.90(2H, d, J=9.4 Hz) 7.6.90(2H, d, J=9.4 Hz) 7.6.90(3H, s) 7.7.18(3H, s)		FAB+ 415 [M+H+](60), 397(80), 179(100).	
7-55	N N OH M色枯晶		CDC13,300MHz 7,37(1H, d, J=8.4 Hz) 7,11(1H, dd, J=8.4 Hz) 6,92(1H, d, J=8.4 Hz) 6,92(1H, d, J=8.4 Hz) 6,82(1H, dd, J=5.1, 3.3 Hz) 6,83(1H, dd, J=5.1, 3.3 Hz) 6,83(1H, dd, J=9.9 Hz) 5,63(1H, d, J=9.9 Hz) 4,0-4.1(2H, m) 3,87(3H, s) 3,87(3H, s) 3,87(1H, qu, J=6.9 Hz) 3,47(1H, d, J=4.5 Hz) 3,17(2H, t, J=7.2 Hz)	KBr 3312 1672 1267	FAB+ 376 [M+H+](50). 358(100).	·
7-56	新色結晶		CDC13,300MHz 7.40(1H, d, 1=8.1 Hz) 1.7-1.8(2H, m) 7.12(1H, d, 1=8.1 Hz) 1.2-1.5(4H, m) 7.07(2H, d, 1=8.1 Hz) 0.93(3H, I, 1=7.1 Hz) 6.94(1H, d, 1=8.1 Hz) 5.61(1H, d, 1=9.5 Hz) 4.0-4.2(2H, m) 3.87(3H, s) 3.87(3H, s) 3.87(3H, q, 1=6.9 Hz) 3.60(2H, q, 1=6.9 Hz) 2.93(2H, d, 1=9.8 Hz) 2.30(3H, s) 2.30(3H, s)		FAB+ 384[M+H+] (100), 366(100).	

元素分析		·	C ₃ ,H ₄ ,NO ₃ 理論曲 C; 74,55% H; 7.77% N: 2.63 % 分析値 C; 74,82% H; 7.77% N; 2.67%
MS	FAB+ 368[M+H+] (100)	FAB+ 416 [MrH+] (10) 398(100)	FAB+ 531 [M*H*] (20) 514(80) 165(100)
IRcm.		Neat 3500 2956 1769 1274	KBr 3252 2951 1659 1271
1H NMR (3) ppm	CDC13,300MHz 7.52 (1H, d, J = 8.11) 7.13 (2H, d, J = 8.11) 7.08 (2H, d, J = 8.11) 6.08 (1H, d, J = 8.11) 4.17 (2H, s) 4.17 (2H, s) 7.00 (3H, s) 3.00 (3H, s) 3.00 (2H, t, J = 7.2 H 2.99 (2H, t, J = 7.2 H 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, J = 7.2 H		CDC1,300MHz 7.3-7.5(5H, m) 7.39(1H, d, J=8.6 Hz) 7.14(2H, d, J=8.6 Hz) 7.14(2H, d, J=8.6 Hz) 7.14(2H, d, J=8.6 Hz) 6.91(1H, d, J=8.6 Hz) 6.88(2H, d, J=8.6 Hz) 5.65(1H, d, J=9.8 Hz) 5.02(2H, s) 4.0-4.2(2H, m) 3.99(2H, t, J=6.5 Hz) 3.7-3.9(1H, m) 3.5-3.6(1H, m) 2.91(2H, m)
强过	57.4-58.5 T		108.2~
構造式	のののののののではいません。	T TO	************************************
实施例	7-57	7-58	7-59

一米福定		4 91		11. 12. 14.)	-		
	L	N. Ye		IN NMK (&) ppm	IRem.1	MS	元素分析
			CDCI,300MHz		Near	FAB+	
			7.61(IH, s)	1.3-1.5(8H, m)		!	
			7.45(1H, d, J=8.3 Hz)	0.93(3H, I, J=7.0 Hz)	3238	400	
	(6.97(1H, d, J=8.3 Hz	0.93(3H, t, J=7.0 Hz)	2926	[M*H*] (100)	
		114.2~	6.86(1H, s)		1660		
	EN.	714.0	4.60(1H, bs)		1464 464		
7-60			4.31(2H, s)		1268		
			4.07(2H, t, J=6.6 Hz)				
	\ \ \ -		4.04(2H, 1.1=6 5 Hz)		<u> </u>		
			3.91(2H, t, J=6.8 Hz)				
			3.04(2H, 1, J=6.8 Hz)				
	無色結晶		1.8-1.9(2H, m)				
			1.7-1.8(2H, m)				
			CDCI,300MHz		Zes	FAR+	
			7.50(1H, d, J=8.2 Hz)	1.7-1.8(2H, m)		}	C,H,NO,
			7.3-7.5(5H, m)	1.3-1.5(8H, m)	2931	316	;
	•		7.16(2H, d, J=8.6 Hz)	0.94(3H, t, J=7.1 Hz)	1687	(M'H')(100)	TH 90-14
			6.97(1H, d, J=8.2 Hz)	0.93(3H, t, J=7.1 Hz)	1618	318(50).	三月代
			6.90(2H, d, J=8.6 Hz)		1511		C; /0.60%
7-61			5.03(2H, s)		1221		n; 6.01%
_	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4.19(2H, s)				N. 2.1.2 W
	\ \ \ \ \ \		4.05(2H, t, J=6.6 Hz)				分析值
		_	4.04(2H, t, J=6.5 Hz)				C; 76.26%
			3.80(2H, t. J=7.6 Hz)				H; 8.17%
	無色油状		2.93(2H. t. J=7.6 Hz)				N; 2.43%
			1.8-1.9(2H, m)				
			CDCI,,300MHz				
			7.49(1H, d, J=8.3 Hz)	1.3-1.5(8H. m)	ž	rAB+	
			7.06(2H, d, J=8.5 Hz)	0.94(3H. t. J=7.0 Hz)	3156	426	C261131VO4
			6.95(1H, d, J=8.3 Hz)	0.94(3H, t. 1=7.0 Hz)	2932	(M'H') (100)	
	F	122.2~	6.75(2H, d, J=8.5 Hz)	(200)	1657		理路值
		7 0.27	6.72(1H, bs)		1464		C; 73.38%
7-62			4.24(2H, s)		1273		H; 8.29%
	~ ~ ~		4.06(2H, t, J=6.7 Hz)				N; 3.29 %
	/ } }		4.02(2H, t, J=6.5 Hz)				分析値
			3.83(2H, t, J~7.2 Hz)		-		C; 73.60%
			2.91(2H, t, J=7.2 Hz)				H: 8.30%
	無色針状晶		1.8-1.9(2H, m)				N; 3.29%
		1	1./-1.6(zл, m)				

丁			
元素分析		(C27H38N2O3) 理論値 (C; 73.94% H; 8.73% N; 6.39% 分析値 (C; 73.89% H; 9.10% N; 6.41%	
MS	FAB+ 412[M+H+] (100).	FAB+ 439[M+H+] (100)	FAB+ 453[M+H+] (100)
IRcm ⁻¹	KBr 3500 2932 1613 1515 1490 1263		Neat 3280 2931 2870 1666 1617 1523 1273
1H NMR (3) ppm	CDCI3,300MHz 7.08 (2H, d, J= 8.5 Hz) 6.82 (1H, d, J= 8.1 Hz) 6.75 (1H, d, J= 8.1 Hz) 6.68 (2H, d, J= 8.5 Hz) 6.68 (2H, d, J= 8.5 Hz) 3.9-4.1 (8H, m) 2.9-3.0 (2H, m) 2.9-2.9 (2H, m) 1.7-1.9 (4H, m) 1.3-1.5 (8H, m) 0.92 (3H, t, J= 7.0 Hz)	CDC[3,300MHz 7.50 (1H, d. J = 8.2 Hz) 7.60 (2H, d. J = 8.2 Hz) 7.60 (2H, d. J = 8.4 Hz) 7.65 (2H, d. J = 8.4 Hz) 6.97 (1H, d. J = 8.2 Hz) 6.94 (3H, t. J = 7.1 Hz) 6.54 (2H, d. J = 8.4 Hz) 7.95 (2H, t. J = 6.6 Hz) 7.95 (2H, t. J = 6.6 Hz) 7.95 (2H, t. J = 6.6 Hz) 7.95 (2H, t. J = 7.1 Hz) 7.95 (1H, bs) 7.95 (1H, bs) 7.95 (2H, t. J = 7.1 Hz) 7.95 (3H, s) 7.96 (3H, s) 7.96 (3H, s) 7.96 (3H, s) 7.97 (3H, s) 7.97 (3H, s) 7.97 (3H, s) 7.97 (3H, s)	CDC[3,300MHz 7.50 (1H, d, J= 8.2 Hz) 7.50 (1H, d, J= 8.2 Hz) 7.10 (2H, d, J= 8.7 Hz) 6.98 (1H, d, J= 8.7 Hz) 6.68 (2H, d, J= 8.7 Hz) 6.68 (2H, d, J= 8.7 Hz) 4.20 (2H, s) 4.01 (4H, t, J= 7.1 Hz) 7.90 (6H, s) 7.90 (6H, s) 7.91 (2H, t, J= 7.1 Hz) 7.91 (2H, t, J= 7.1 Hz) 7.92 (6H, s) 7.93 (2H, t, J= 7.1 Hz) 7.94 (2H, t, J= 7.1 Hz) 7.95 (6H, s) 7.97 (2H, m) 7.97 (2H, m) 7.97 (3H, m)
五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五五	78.3~ 78.6 C	91.7~ 92.0°C	
美班外	無色結晶	無色結晶	無色油状
安林例	7-63	7-64	7-65

実施例	構造式 .	動点	1H NMR (3) ppm	IRem.1	1-1 MS	元素分析
99-L			/H2 J=6.0 l J=8.4 l J=6.6 F		FAB 355 (100	
	う アモルファス		3.91 (3H, s) 3.87 (2H, t, J = 7.2 Hz) 3.00 (2H, t, J = 7.2 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.94 (3H, t, J = 7.2 Hz)			
_			CDCl3,300MHz 7,53 (1H, d, J = 8,1 Hz) 0,93 (3H, J = 6,9 Hz)		FAB+	
	0=	•	_	2926 1682 1615	397 [M+H+](30), 147(100).	
19-1			4.20 (2H, s) 4.20 (2H, s) 4.01 (2H, t, J = 6.9 Hz)	1522		
-	\{ \}		3.90 (3H, s) 3.78 (2H, t, J = 7.2 Hz) 2.91 (6H, s)	1076		
	アモルファス		2.88 (1H, d, J= 6.9 Hz) 1.5-1.8 (2H, m) 1.3-1.5 (4H, m)			
			CDCI3,300MHz 7.52 (1H, d, J = 8.1 Hz) 1.3-1.5 (4H, m)	Near	FAB+	
	c		7.05 (2H, d, J = 8.4 Hz) 0.94 (3H, t, J = 7.2 Hz) 6.99 (1H, d, J = 8.1 Hz)	1650	383[M+H+] (100).	-
	NHAW		6.54 (2H, d, J = 8.4 Hz) 4.36 (1H, s)	1622		
89-2			4.21 (2H, s) 4.02 (2H + f = 6.6 Hz)	1524		
			3.90 (31.);	1282	•	
	1		3.77 (2H, I, J = 7.2 Hz) 2.87 (1H, I, J = 7.2 Hz)			
	ドモルファス		2.81 (34, 8) 1.6-1.8 (24, m)			

		A 100	<u> </u>
元素分析			
MS	FAB+ 380[M+H+] (100), 119 (50).	FAB+ 380[M+H+] (100), 119 (50).	FAB+ 366[M+H+] (100), 261 (50).
IRcm-1			
1H NMR (8) ppm	8.8 8.8 8.8 8.8 1 7.5 1 7.5 1 7.2 4	CDCl3,300MHz 8.19 (1H, d, J = 8.8 Hz) 7.12 (1H, d, J = 8.8 Hz) 7.09 (4H, s) 6.78 (1H, d, J = 7.5 Hz) 6.65 (1H, d, J = 7.2 Hz) 4.14 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.02 (2H, t, J = 7.2 Hz) 2.31 (3H, s) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m)	CDC13,300MHz 8.20 (1H, d, J = 9.0 Hz) 7.2-7.4 (5H, m) 7.13 (1H, d, J = 9.0 Hz) 6.76 (1H, d, J = 7.5 Hz) 6.64 (1H, d, J = 7.5 Hz) 4.17 (2H, t, J = 7.5 Hz) 4.00 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.07 (2H, t, J = 7.5 Hz) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, J = 7.5 Hz)
融点		·	
# 情治式	へ。	AEBIK	しつの
実施例	7-69	7-70	7-71

_		& 134	
·元素分析			
MS	FAB+ 368[M+H+] (100), 276 (50).	FAB+ 423[M+H+] (100)	PAB+ 425[M+H+] (100), 276(40).
IRcm-1			
IH NMR (3) ppm	CDCI3,300MHz 7.84 (1H, d, J= 9.0 Hz) 7.2-7.4 (5H, m) 6.86 (1H, d, J= 9.0 Hz) 3.89 (2H, t, J= 6.6 Hz) 3.87 (3H, s) 3.76 (2H, t, J= 6.6 Hz) 3.74 (2H, t, J= 6.6 Hz) 2.95 (2H, t, J= 6.6 Hz) 2.95 (2H, t, J= 6.6 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.92 (3H, t, J= 7.5 Hz)	CDC13,300MHz 8.19 (1H, d, J= 9.0 Hz) 7.41 (2H, d, J= 8.4 Hz) 7.41 (2H, d, J= 8.4 Hz) 7.15 (2H, d, J= 8.4 Hz) 7.12 (2H, d, J= 8.4 Hz) 6.76 (1H, d, J= 7.5 Hz) 6.64 (1H, d, J= 7.5 Hz) 6.64 (1H, d, J= 7.5 Hz) 7.01 (2H, d, J= 7.5 Hz) 7.02 (2H, t, J= 7.5 Hz) 7.03 (2H, t, J= 7.5 Hz) 7.04 (2H, t, J= 7.5 Hz) 7.05 (3H, s) 7.07 (2H, t, J= 7.5 Hz) 7.06 (3H, s) 7.07 (2H, t, J= 7.5 Hz) 7.08 (3H, s)	CDC13,300MHz 7.82 (1H, d, J = 8.7 Hz) 7.42 (2H, d, J = 8.4 Hz) 7.42 (2H, d, J = 8.4 Hz) 7.19 (2H, d, J = 8.4 Hz) 6.86 (1H, d, J = 8.7 Hz) 3.90 (2H, t, J = 6.9 Hz) 3.86 (3H, s) 3.73 (2H, t, J = 6.6 Hz) 3.86 (3H, g, J = 6.6 Hz) 2.89 (4H, q, J = 6.6 Hz) 2.89 (4H, q, J = 6.6 Hz) 2.16 (3H, s) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)
製点			
横 衛式	しつの人間を指決無色油状	、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	、
英插例	7-72	7-73	7-74

元素分析			
MS	FAB+ 370[M+H+] (100)	FAB+ 382[M+H+] (100), 276 (80).	FAB+ 383[M+H+] (50), 153 (100), 118.9 (100).
IRcm ⁻¹	3295 2957 1595 1306 1244		·
1H NMR (&) ppm	E 2.4 (m)	CDCl3,300MHz 7.84 (1H, d, J= 9.0 Hz) 7.15 (2H, d, J= 8.1 Hz) 7.09 (2H, d, J= 8.1 Hz) 6.86 (1H, d, J= 9.0 Hz) 3.90 (2H, t, J= 6.6 Hz) 3.88 (3H, s) 3.73 (2H, t, J= 6.6 Hz) 3.61 (2H, t, J= 6.6 Hz) 3.61 (2H, t, J= 7.2 Hz) 2.89 (4H, qu, J= 7.2 Hz) 2.31 (3H, s) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)	CDC13,300MHz 7.83 (2H, d, J = 8.4 Hz) 7.04 (2H, d, J = 8.4 Hz) 6.86 (1H, d, J = 8.4 Hz) 6.63 (2H, d, J = 8.4 Hz) 3.89 (2H, t, J = 6.9 Hz) 3.89 (2H, t, J = 6.9 Hz) 3.89 (2H, t, J = 6.9 Hz) 3.87 (2H, t, J = 6.9 Hz) 3.87 (2H, t, J = 6.9 Hz) 3.70 (2H, t, J = 6.9 Hz) 3.71 (2H, s) 3.72 (2H, s) 3.73 (2H, t, J = 6.6 Hz) 2.8-3.0 (4H, m) 1.7-1.8 (2H, m)
融点	184.5~ 154.8 C	688.3 €8.3 C	75.5~ 75.9 C
構造式	HO N OH	無色結晶	NH4 ※黄色固体
実施例	7-75	7-76	77-7

实施例	標造式	五数	N HI	1H NMR (8) ppm	TRem-1	MS	元妻分析	Г
			20MHz	1.2 1.6 (011)	ğ	FAB		T
			7.95 (1H, d, J= 6.6 Hz)	0.91 (3H, I, J = 5.3 Hz)	3336	438		
	₹ X		7.26 (1H, d, J= 6.6 Hz)	0.83 (3H, t, J = 5.4 Hz)	2360	[M+] (100).		
		111.7°C	7.25 (1H, d, J = 5.6 Hz)		5051			
7.79) } }= •		6.66 (2H, d, J = 6.2 Hz)					_
0/-/			6.55 (1H, d, $J = 5.6$ Hz)					
	\		4.11 (2H, t, J= 4.7 Hz)					
	- 37-		4.05 (2H, t, J = 5.5 Hz)					
			3.96 (2H, t, J= 4.9 Hz)					
	斯巴針	-	2.63 (2n, t, J = 3.3 ftz) 1.7-1.9 (4H, m)					
			CDC13,300MHz		Neat	FAB+		Т
			8.53 (2H, d, J = 5.3 Hz)	0.93 (3H, t, J = 7.0 Hz)	1031	36000411111		
	2:		7.83 (1H, d, J = 8.6 Hz)		2360	303(NI+R+)		_
	·		6.87 (1H d /m.8 6 Hz)		1727			
			3.89 (3H, s)		1649			
7-79			4.04 (2H, I, J = 6.6 Hz)		1595			
` `	\ \ \ \ \		3.79 (2H, t, J= 7.4 Hz)		1475			
	-0		3.38 (2H, t, J = 6.6 Hz)		17/3			
	\		2.97 (2H, t, J = 7.4 Hz)					
	:		2.90 (2H, I, $J = 6.6$ Hz)					
	羊的苗状		1.7-1.5 (4H, m)					
			CDCI3,300MHz		Sea N	FARA		Т
			8.20 (1H, d, J = 8.7 Hz)	0.1.3-1.5 (4H, m)	3 :			
	NH ₂		7.13 (1H, d, J = 8.7 Hz)	0.94 (3H, t, J = 7.2 Hz)	3347	381[M+H+]		
		78.6~	6.98 (2H, d, J = 8.4 Hz)		2350			_
		79.2C	6.77 (1H, d, J = 7.2 Hz)		0557			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6.65 (1H, d, J = 7.2 Hz)		1632			_
7-80			0.62 (2H, d, J = 8.4 Hz) 4.11 (2H. L. J = 7.2 Hz)		1594			
			4.01 (2H, t, J = 6.6 Hz)		1518			
	\ \ \ -		3.96 (3H, s)		1281			
			3.56 (2H, bs)					
	無色結晶		2.95 (2H, t, J = 7.2 Hz)					
			1.7-1.9 (2H, M)					

	<u> </u>	22 10 1	
元素分析			
MS	FAB+ 381 [M+] (100).	FAB+ 409[M+H+] (100).	FAB+ 395 [M+H+](20), 133 (100).
1Rcm ⁻¹	Neat 3448 2936 1644 1582 1287	Neat 2925 2360 1652 1282	Neat 2931 2359 1681 1671 1524 1270
1H NMR (8) ppm	Hz 6.7 I 6.7 I 6.2 I 6.3	CDC(3,300MHz 8.20 (1H, d, J = 8.9 Hz) 1.3-1.5 (4H, m) 7.13 (1H, d, J = 8.9 Hz) 0.94 (3H, t, J = 7.1 Hz) 7.01 (2H, d, J = 8.4 Hz) 6.72 (2H, d, J = 8.4 Hz) 6.72 (2H, d, J = 7.5 Hz) 6.66 (1H, d, J = 7.5 Hz) 6.66 (1H, d, J = 7.5 Hz) 4.13 (2H, t, J = 6.7 Hz) 3.96 (3H, s) 2.98 (2H, d, J = 7.2 Hz) 2.98 (2H, d, J = 7.2 Hz) 2.98 (2H, d, J = 7.2 Hz) 1.7-1.9 (2H, m)	CDCi3,300Mhz 8.20 (1H, d, J = 9.0 Hz) 7.13 (1H, d, J = 9.0 Hz) 7.13 (1H, d, J = 9.0 Hz) 7.03 (2H, d, J = 8.4 Hz) 6.80 (1H, d, J = 7.5 Hz) 6.65 (1H, d, J = 7.5 Hz) 6.50 (2H, d, J = 8.4 Hz) 4.11 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.7 Hz) 3.96 (3H, s) 2.96 (2H, t, S) 2.96 (2H, t, S) 2.97 (1H, s) 2.98 (1H, s) 2.99 (1H, s)
融点	199.3~ 199.6 T		
標造式	MH ₂ ·HCl	>	JEW777
实施例	7-81	7-82	7-83

_	,	衣 130	
元素分析	C28		C21H25N3O4
MS	FAB+ 449 [M+H+](60), 187(100).	FAB+ 454[M+H+] (100).	FAB+ 384 [M+H+] (60)
IRcm.1	Neat 2934 2359 1650 1624 1595 1281	KBr 3426 2935 1654	KBr 2936 2362 1718 1654 1623 1459 1245
1H NMR (8) ppm	CDC13,300MHz 8.20 (1H, d, J= 8.7 Hz) 7.13 (1H, d, J= 8.7 Hz) 7.08 (2H, d, J= 8.7 Hz) 6.87 (2H, d, J= 8.4 Hz) 6.87 (2H, d, J= 8.4 Hz) 6.7 (1H, d, J= 7.5 Hz) 6.64 (1H, d, J= 7.5 Hz) 6.64 (1H, d, J= 7.5 Hz) 7.08 (2H, t, J= 6.6 Hz) 3.96 (3H, s) 3.1-3.2 (4H, m) 2.98 (2H, d, J= 7.5 Hz) 1.3-2.0 (12H, m)	CDC13,300MH2 7.93 (1H, d, J = 8.44 Hz) 7.17 (2H, d, J = 8.44 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.76 (2H, d, J = 8.4 Hz) 6.76 (2H, s) 4.75 (1H, s) 4.0-4.2 (6H, m) 3.94 (2H, s) 2.8-2.9 (2H, m) 1.7-1.9 (4H, m) 1.3-1.6 (8H, m) 0.95 (6H, t, J = 6.9 Hz)	DMSO-d6,300MHz 11.21(1H,s) 8.49(2H,bs) 7.32(2H,d,J=5.4Hz) 7.26(1H,s) 6.66(1H,s) 4.14(2H,t,J=7.5Hz) 3.95(2H,t,J=6.6Hz) 3.82(3H,s) 2.93(2H,t,J=7.4Hz) 1.60-1.80(2H,m) 1.30-1.50(4H,m) 0.89(3H,t,J=6.9Hz)
融点		175.7~ 176°C	196.9∼ 198.1℃
構造式	で フモルファス	無色針状晶	HN NN NN NN NN NN NH NH NH NN NN NN NN N
莱施例	7-84	7-85	7-86

元素分析	C22H26N2O5		
MS	FAB+ 399 [M+H+] (50) 279(40)	FAB+ 383[M+H+] (100).	FAB+ 383[M+H+] (100).
TRem.1	XBr 3399 1707 1637 1432 1298	KBr 2925 1666 1518 1350 1285	KBr 1708 1662 1598 1353 1081
1H NMR (§) ppm	H (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	CDC13,300MHz 7.97 (1H, d, J= 9.0 Hz) 7.10 (2H, d, J= 8.1 Hz) 7.00 (1H, d, J= 9.0 Hz) 6.63 (2H, d, J= 8.1 Hz) 4.1-4.2 (2H, m) 4.00 (2H, t, J= 6.6 Hz) 3.94 (2H, s) 3.93 (3H, s) 3.59 (2H, s) 1.7-1.9 (2H, m) 1.7-1.9 (2H, m)	CDCI3.300MHz 8.53 (2H, d, J = 5.7 Hz) 7.95 (1H, d, J = 9.0 Hz) 7.23 (2H, d, J = 5.7 Hz) 7.00 (1H, d, J = 9.0 Hz) 7.00 (1H, d, J = 9.0 Hz) 4.1-4.3 (2H, m) 4.00 (2H, t, J = 6.9 Hz) 3.96 (2H, s) 3.96 (2H, s) 2.93 (2H, m) 1.7-1.9 (2H, m) 1.7-1.9 (2H, m) 0.95 (3H, t, J = 7.2 Hz)
融点	187.0~ 187.8 °C	144.2~	113.2~ 113.6°C
構造式	MeO N O N O N O N O N O N O N O N O N O N	NH2 NH2 ・	いっくしている。
実施例	7-87	7-88	7-89

Γ			
元素分析	C23	C24H31N3O4	C23H31N3O3
MS	FAB 412 [M+	FAB+ 426 IM+H+J (20)	FAB+ 398 [M+H+] (80) 382(60) 276(40)
1Rcm.1	KBr 3397 1707 1647 1615	KBr 2956 1709 1651 1619 1094	KBr 3448 3285 2954 1630 1303
1H NMR (8) ppm	0.95(3H,1,J=7.2Hz)	0.95(3H,1,J=7.1Hz)	0.94(3H,t,J=7.1Hz)
			CDC(3,300Mfz 8.53(2H,d,J=6.0Hz) 7.64(1H,d,J=8.8Hz) 7.22(2H,d,J=6.0Hz) 6.44(1H,d,J=8.8Hz) 4.52(1H,s) 3.96(2H,t,J=6.8Hz) 3.88(3H,s) 3.63(2H,t,J=8.0Hz) 2.96(2H,t,J=8.0Hz) 1.68-1.82(2H,m) 1.53(6H,s)
位置	172.0∼ 173.0℃	127.0∼ 128.5℃	83.2~ 83.8 C
標遊式	MeO H O H MeO H O H MeO H O H Meo H O H O H O H O H O H O H O H O H O H	MeO	MeO N N N N N N N N N N N N N N N N N N N
埃施例	7-90	7-91	7-92

元素分析

MS

C24H33N3O3

		PCT/JP97/00291
	表 141	
	C23H29N3O2	C21H26CIN3O3
[M+H+] (60) 276(100)	FAB+ 396 [M+H+] (20) 307(10)	FAB+ 368 [M+H+] (30) 263(30)
2956 1632 1301	KBr 3356 2932 1658 1598 1101	KBr 3426 2958 1724 1655 1603 1498 1295
6.66(2H,d.J=8.3Hz) 6.66(2H,d.J=8.3Hz) 6.43(1H,d.J=8.7Hz) 4.51(1H,s) 3.97(2H,t.J=6.8Hz) 3.80(2H,s) 3.60(2H,s) 3.57(2H,t.J=8.2Hz) 2.85(2H,t.J=8.2Hz) 1.70-1.85(2H,m) 1.54(6H,s)	CDC13,300MHz 8,02(1H,d.J=8,9Hz) 7,09(1H,d.J=8,9Hz) 7,01(2H,d.J=8,3Hz) 6,63(2H,d.J=8,3Hz) 4,15-4,25(4H,m) 3,96(3H,s) 3,60(2H,s) 2,92((2H,t.J=7,6Hz) 2,48(3H,s) 1,72-1,90(2H,m) 0,92(3H,t,J=7,2Hz)	DMSO-d6,300MHz 8.83(2H.d.J=5.4Hz) 8.28(1H.s) 7.97(2H.d.J=8.7Hz) 7.32(1H.d.J=8.7Hz) 7.32(1H.d.J=8.7Hz) 4.32(2H.d.J=6.5Hz) 3.90(3H.s) 3.34(2H.d.J=6.8Hz) 1.60-1.75(2H.m) 1.25-1.50(4H.m) 0.88(3H,t,J=6.9Hz)
	80.3~ 82.5°C	145.5~ 148.3 C
Z H Z	N. H.	Ö H- Z=∖

_			
元素分析		C22H27N3O4	C23H30CIN3O4
MS		FAB+ 398 [M+H+] (30) 264(30)	FAB+ 412(30)
IRcm.1		KBr 3228 2948 1703 1593 1543 1395 1286	
1H NMR (8) ppm		CDCI3,300MH2 11.5(1H,s) 7.89(1H,d,J=8.4Hz) 7.34(2H,d,J=8.7Hz) 6.93(1H,s,J=8.7Hz) 6.03(2H,d,J=6.5Hz) 3.95(2H,t,J=6.5Hz) 3.93(2H,t,J=6.5Hz) 3.03(2H,t,J=6.5Hz) 1.70-1.83(2H,m) 0.94(3H,t,J=7.2Hz)	DMSO-d6,300MHz 9.74(2H,t,J=5.9Hz) 7.75(1H,d,J=8.7Hz) 7.40(2H,d,J=8.4Hz) 7.25(2H,d,J=8.7Hz) 7.11((1H,d,J=8.7Hz) 4.44(2H,d,J=6.2Hz) 3.99(2H,t,J=6.3Hz) 3.88(2H,t,J=6.3Hz) 3.87(3H,s) 2.94(2H,t,J=6.3Hz) 1.60-1.72(2H,m) 1.25-1.45(4H,m)
最近		157.0∼ 158.0℃	
構造式	Neo Company	MeO Heb結晶	MacO MacO MacO MacO MacA MacA MacA MacA MacA MacA MacA MacA
州南宮	7-96	7-97	7-98

実施例	構造式	融点	1H NMR (8) ppm	IRcm.t	MS	元素分析
7-99	MeO Meo Mtz		CDCI3,300MHz 7.03(2H,d_J=8.3Hz) 6.73(2H,s) 6.64(2H,d_J=8.3Hz) 3.91(2H,s,J=6.7Hz) 3.81(3H,s) 3.63(2H,s) 3.63(2H,s) 3.63(2H,m) 1.70-1.83(2H,m) 1.30-1.50(4H,m) 0.93(3H,t,J=7.1Hz)		FAB+ 369 [M+H+] (50) 262(100)	C23H3ZN2O2
7-100	M60 H2 H H		CDC13.300MHz 7.14(2H,d,J=9.0Hz) 6.85(1H,d,J=8.4Hz) 6.79(1H,d,J=8.4Hz) 6.79(1H,d,J=8.4Hz) 6.64(2H,d,J=9.0Hz) 6.17(1H,bs) 4.57(2H,s) 3.93(2H,t,J=6.6Hz) 3.84(3H,s) 3.65(2H,t,J=5.9Hz) 2.94(2H,t,J=5.9Hz) 1.70-1.82(2H,m) 1.32-1.55(4H,m)		FAB+ 384 [M+H+] (80) 248(100)	C22H29N3O3
7-101	MacO H H NH2HGI 無色茁铁		DMSO-d6,300Mitz 9.95(1H,bs) 7.33(2H,d.J=8.7Hz) 7.31(2H,d.J=8.7Hz) 7.21(2H,d.J=8.7Hz) 7.21(2H,d.J=8.7Hz) 7.19(1H,bt) 6.88(1H,d.J=8.4Hz) 6.82(1H,d.J=8.4Hz) 6.82(1H,d.J=8.4Hz) 7.19(2H,s) 7.19(1H,bt) 6.82(1H,d.J=8.4Hz) 7.19(1H,bt) 6.82(1H,d.J=8.4Hz) 7.19(1H,bt)		FAB- 432 [M-H+] (5) 396(10) 265(40)	C23H32CIN3O3

表 144

dr the tool	七类类	Ti Ti	1H NMR (8) ppm	IRcm.1	MS	元素分析
X	71974		CDCi3,300MHz		FAB+	
			7.09 (2H, d, J= 8.5 Hz)		. 02t	
			6.74 (2H, d, J = 8.5 Hz)		[M+H+]	
	\{_\		6.73 (2H, s)		(00)	
			3.92 (2H, d, J = 6.7 Hz)			
			3.91 (1H, bs)			
			3.64 (2H, s)			
701-/			2.7-2.9 (8H, m)			
	Y		1.7-1.9 (2H, m)			
	\$		1.3-1.5 (4H, m)			
			0.93 (3H, t, J = 7.0 Hz)			
	無色結晶					

MS 元素分析	FAB+ 264 [M*H*] (85)	FAB+ C ₁₉ H ₂₁ NO ₄ 334 [M ² H ⁻](70) 理論値 246(30) C; 68.44% 177(100) H; 8.16% N; 4.20% 分析値 C; 68.55% H; 8.43% N; 4.25%	FAB+ 264 [M*H*] (100) 理論值 177(70) C; 63.87% H; 6.51% N; 5.32% 分析值 C; 63.67% H; 6.63% N; 5.35%
IRcm.1	KBr 3424 1629 1560	Neat 2956 1643 1600	KBr 3426 3200 1640 1574
1H NMR (8) ppm	DMSO-d6,300MHz 7.73(1H, d, J=15.4 H 7.58(1H, d, J=8.5 Hz 7.00(1H, d, J=15.4 H 6.98(1H, bs) 6.44(1H, s) 6.42(1H, d, J=8.5 Hz 3.73(3H, m) 3.2-3.5(4H, m)	CDCl ₃ ,300MHz 7.82(1H, d, J=15.5 Hz) 7.38(1H, d, J=8.4 Hz) 6.97(1H, dd, J=8.4, 2.4 Hz) 6.48(1H, dd, J=8.4, 2.4 Hz) 6.45(1H, d, J=2.4 Hz) 4.11(2H, t, J=6.4 Hz) 3.82(3H, s) 3.70(8H, bs) 1.8-1.9(2H, m) 0.94(3H, t, J=7.1 Hz)	DMSO-d6,300MHz 9,00(1H, s) 7.36(1H, d, J=15.4 Hz) 7.14(1H, d, J=2.2 Hz) 7.09(1H, dd, J=8.4, 2.2 Hz) 6.97 (1H, d, J=15.4 Hz) 6.97 (1H, d, J=16.4 Hz) 3.79(3H, s) 3.58(8H, bs)
融点	185.5~ 186.5°C		
構造式	О НО ОӨМ	Meo O O O O O O O O O O O O O O O O O O O	O O O O O O O O O O O O O O O O O O O
実施例	8-1	8-2	8-3

#and	MBA CDC
O 6.96(1H, dr, J=1.7, Hz) 6.96(1H, dr, J=8.1, 1.7 Hz) 6.86(1H, d. J=8.1, Hz) 4.02(2H, t. J=6.9 Hz) 3.89(3H, s) 3.69(8H, bs) 1.8-1.9(2H, m) 1.3-1.5(4H, m) 0.93(3H, t. J=7.0 Hz)	Z
DMSO-d6,300Mhz 9.00 (1H, s) 7.36 (1H, d J = 15.4 Hz) 7.14 (1H, d, J = 2.2 Hz) 7.09 (1H, dd, J = 8.4, 2.2 Hz 6.97 (1H, d, J = 15.4 Hz) 6.92 (1H, d, J = 15.4 Hz) 3.79 (3H, s) 3.58 (8H, bs)	~ O
CDCI3.300MHz 8.33 (1H, s) 8.01 (1H, d, J= 7.63 (1H, s) 7.26 (1H, s) 7.25 (1H, d, J= 6.93 (1H, d, J= 6.93 (1H, d, J= 6.93 (1H, d, J= 6.93 (1H, d, J= 8.07 (2H, t, J= 3.93 (3H, s) 1.8-1.9 (2H, m)	Z]

-			_
夷	1	Λ	7

奥施例	構造式	製点	man (&) aNN HI	-	L	WANG
			I	Irem	MIS	ルボガが
			CDCI3,300MHz	X	FAB+	
			8.11 (1H. s)			CIKHIONIO
	C		7 64 (111 -)	3500	208	507110711010
)=		7.24 (IH, S)		27.0	
			740 /1H dd 1=63	2957	(M+H+) (40)	
		110.9~		1698	221(100)	
		111.12	(zH C.1	2	<u> </u>	
			7.16 (1H, s)		_	H; 6.99%
8-7			6.95 (1H, d, J=6.3 Hz)			N: 9.72%
	→ YOM		4.06 (7H + 1=5.1 Hz)			
			3.06 (211, 1, 3-3,1112)			分析值
_	· ·		3.70 (311, 8)			C. 66 604
			1.8-1.9 (2H, m)			0, 00,02,0
	,		13-15 (AH m)			11; 7.08%
			(iii tith) (:1-Cit			N: 9239
			0.93 (3H, t, J=5.3 Hz)			

薬理実験

(I) Binding assay (in vitro)

標本は、カンナビノイド中枢型(CB1)および末梢型(CB2)レセプターの豊富な組織として、それぞれラット小脳膜画分および脾臓細胞を用いた(雄性 SDラット、7~9週齢)。丸底24穴プレートに標本(小脳膜画分:50 μ g /m1、脾臓細胞:1×10 7 cells/m1)、標識リガンド([3 H] Win55212-2、2nM)および非標識Win55212-2または被検物質を加え、小脳膜画分の場合30 $^{\circ}$ で90分、脾臓細胞の場合4 $^{\circ}$ で360分インキュベーションした。Assay bufferは、小脳膜画分の場合0.2% BSAを含む50mM Tris Risk、脾臓細胞の場合0.2% BSAを含む50mM Tris-HBSSを用いた。インキュベーション終了後、フィルター

(Packard, Unifilter 24GF/B) で濾過し、乾燥させた後 scintilation solution (Packard, Microsint-20)を加え、サンプルの放射能を測定した

(Packard, Top count A9912V)。非特異的結合は過剰量のWin55212-2 $(1 \mu M)$ を加えることにより得、標識リガンドのみを加えて得た全結合から非特異的結合を差し引くことにより、特異的結合を算出した。被検物質はDMSOに溶解し、DMSOの最終濃度が0.1%になるようにした。結合した被検物質の、特異的結合に占める割合からICso値を求め、これと〔³H〕Win55212-2のKd値から被検物質のKi値を算出した。

〔II〕カラゲニン誘発足浮腫モデル(in vivo)

[III] ヒツジ赤血球(SRBC)誘発遅延型過敏症(DTH)モデル(in vivo)雌性ddyマウス(6~8週齢)を用いた。初日に、マウス左足踵にSRBC

 10° 個を皮内投与し($40\mu1/foot$)、動物を免疫した。5日後、オリーブオイルに溶解した被検化合物を<math>10m1/k gにて経口投与し、その1時間後、右足踵に $SRBC10^{\circ}$ 個を皮内投与して反応を惹起した。惹起 24 時間後に両足の容積を測定し、左足容積から右足容積を差し引いた値を浮腫率として算出した。

なお、〔III〕、〔III〕ともに被検化合物はDMSOに溶解し、オリーブオイルで希釈して用いた(DMSOの最終濃度は1%)。

上記 [I] 、 [I I] の結果を表 1 4 8 、 1 4 9 に示す。

表 148

		Ki 値 (nM)		ED50 (π	ıg/kg : po)
実施例	中枢型レセプター (C)	末梢型レセプター (S)	C/S	カラゲニン 誘発足浮腫 モデル	ヒツジ赤血球 誘発遅延型 過敏症モデル
1-1	230	4.8	48	1.00	1.52
1-2	400	1.8	222	>1.00	0.48
1-4	960	7.7	125	0.55	0.71
1-5	450	4.4	102	1.20	2.45
1-13	3700	44.0	84	0.25	9.20
1-22	480	1.4	343	0.14	0.77
1-34	930	1.1	845	0.59	1.95
1-35	160	10	16	0.12	0.063
2-1	1400	2.5	560	0.040	0.14
2-2	1100	1.1	1000	0.51	0.90
2-3	>3300	0.44	>8250	0.17	0.053
2-5	330	3.6	92	0.40	3.25
2-6	500	1.1	455	0.30	0.72
2-7	>2500	9.5	263	2.28	2.35
2-8	1000	3.7	270	0.73	1.45
2-13	5600	6.6	849	3.20	5.60
2-16	>4300	73	>59	1.10	1.95

表 149

		Ki 値 (nM)		ED50 (m	g/kg : po)
実施例	中枢型レセプター (C)	末梢型レセプター (S)	c/s	カラゲニン 誘発足浮腫 モデル	ヒツジ赤血球 誘発遅延型 過敏症モデル
2-26	>2500	18.0	>139	, >10.0	3.75
2-52	>4300	1.9	>2300	1.85	0.58
6-4	650	11.0	59	0.25	10.0
7-4	1000	7.3	137	1.60	1.60
7-5	>2500	11.0	>227	0.014	0.038
7-19-1	200	3.7	54	0.092	0.033
7-20	400	8.4	48	0.195	0.084
7-24	>2500	1.8	>1389	0.028	0.027
7-30	2600	1.8	1440	<0.01	0.021
7-31	11	0.088	125	0.012	0.08
7-34	330	0.11	3000	0.29	0.012
7-37	1300	14	93	0.49	0.058
7-38	220	9.9	22	0.11	0.011
7-40	109	<3.7	>30	0.016	-
8-2	560	8.4	67	0.50	>10.0

[IV] 抗thy-1抗体誘発腎炎モデル (in vivo)

雄性Wistarラット(6週齢)を用い、被検化合物(プレドニゾロン、実施例7-35化合物)を経口投与し、その1時間後に抗thy-1抗体(ox-7,0.938mg/ml)を0.1ml/ラットにて尾静脈より投与した。被検化合物は、その後6日目まで1日1回投与した。6日目に8mlの水を強制負荷した後、絶水とし、その後連続16時間、尿を採取した。7日目に採血致死させ、腎臓を取り出し、その重量を測定後、ホルマリンで固定し、組織切片を作成した(PAS染色)。評価は、尿中タンパク量と腎糸球体内有核細胞数を測定することにより行った。なお、被検化合物は0.5%HPMCにて懸濁液とし、1回につき10ml/kg投与した。その結果を表150に示す。

表150

実験群	尿中タンパク (mg/16hr)	腎糸球体内有核細胞数 (nuclei/glomerulus)
Sham	2.6 ± 0.3	67.6 ± 0.9
Control	31.9 ± 4.0	90.1 ± 1.4
プレドニゾロン (3 mg/kg)	20.9 ± 2.7	76.9 ± 0.9
実施例7-35化合物(0.1 mg/kg)	15.2 ± 2.4	84.8 ± 1.2

Sham

:抗 t h y - 1 抗体を投与せず、水の負荷を行い、

容媒(HPMC)の経口投与を行ったもの

Control

: 抗 t h y - 1 抗体を投与し、水の負荷を行い、

溶媒(HPMC)の経口投与を行ったもの

プレドニゾロン

:抗thy-1抗体を投与し、水の負荷を行い、

実施例7-35化合物」

当該被験化合物の経口投与を行ったもの

抗 t h y - 1 抗体投与によって誘発される、尿中タンパク量および腎糸球体内 有核細胞数の増加の両方に対して、本発明の実施例7-35化合物は、0.1 m g / k g の投与量で有意な抑制効果を示した。 以下に製剤例を挙げるが、これに限定されるものではない。

製剤例

(1)実施例1-1の化合物	1 0 g
(2) 乳糖	50g
(3) トウモロコシデンプン	1 5 g
(4) カルボキシメチルセルロースナトリウム	4 4 g
(5) ステアリン酸マグネシウム	1 g

(1)、(2)、(3)の全量、および(4)の30gを水で練合し、真空乾燥後、製粒を行う。この製粒末に14gの(4)および1gの(5)を混合し、打錠機で錠剤とすることにより、1錠あたり10mgの(1)を含有する錠剤1000個を製造する。

本発明の化合物(I)およびその医薬上許容される塩は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する。よって、カンナビノイドレセプター(特に末梢型カンナビノイドレセプター)作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤および腎炎治療剤として有用である。

WO 97/29079 PCT/JP97/00291

請求の範囲

1. 式(I)

$$R^{2} \xrightarrow{R^{4}} A \xrightarrow{(A1k^{1})_{P} - (Y)_{q} - (A1k^{2})_{r} - R}$$

$$(1)$$

〔式中、XはCHまたはNを示し、

 $W (t-O-, -S(O), -, -CR^{\circ}R^{\circ}-, -NR^{\prime}-, -NR^{\prime}CO-, -CONR^{\prime}-, -COO-$ または $-OCO-(R^{\circ}, R^{\circ})$ は同一または異なってそれぞれ水素原子またはアルキルを、 R^{\prime} は水素原子またはアルキルを、tは0, 1, 2を示す)を示し、

R' はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R^8 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ S(O) R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} は水素原子、アルキル、アルキルア

ミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル 、ハロゲン原子またはニトロ基を示し、当該アルキルはアルコキシ、水酸基で置 換されていてもよく、

R'は水素原子を示すか、またはR'とR'がA環と一緒になって式(II)

(式中、W'R'、R²、R³の置換位置はA環、B環のいずれの位置であって もよく、W'R'、R²、R³はそれぞれ前記WR¹、R²、R³と同義であり 、B環はベンゼン環、ピリジン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk' は-CH=CH-、-CH2 CH2 -または-C≡C-を示し、

Yは一CONR'°-、-NR''CO-、-COO-、-CH2NR'°-または-NHCONH-(R'°、R''は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ $-sthateconh(CH_2)$ $-(vid_0, 1, 2を示す)$ を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ $-R^{14}$ ($-R^{13}$ $-R^{14}$ は同一または異なってそれぞれ水素原子またはアルキルを示すか、または $-R^{13}$ と $-R^{14}$ が隣接する窒素原子と一緒になってヘテロアリールを形成

してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジル、ピペリジノ、カルボキシル、アルコキシカルボニル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

P、q、rはそれぞれ独立して0または1を示す。

なお、p=1かつq=1のとき、Alk がーCH=CH-を示し、かつYがーCONR の NR の NR の NR が NR の NR が NR の NR を NR の NR NR の N

p=0かつq=1のとき、Yが $-CONR^{10}$ -または $-CH_2$ NR^{10} -を示し、かつ R^3 が R^{10} と一緒になって-CH=CH-、 $-CH_2$ CHR^{27} -、 $-CH_2$ -、-S-、-CHOH-、-CO-、 $-CH_2$ CO-、 $-NHCR^{28}$ (CH_2) v-、 $-NHCR^{29}R^{30}$ -または $-N=CR^{31}$ - (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、v は0または1を示す)を示し、A環と縮合環を形成してもよく、

r=0かつq=1のとき、Yが $-CONR^{10}$ -または $-CH_2$ N R^{10} -を示し、かつRと R^{10} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよく、

p=q=r=0の時、Rは式(i)

$$\stackrel{\mathsf{N}}{\smile}$$
 (i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基 、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニト ロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジル で置換されていてもよい。〕

で表される化合物またはその医薬上許容される塩を有効成分として含有してなる カンナビノイドレセプター作動薬または拮抗薬。

2. 式(I)

$$R^{2} \xrightarrow{A} (A1k^{1})_{P} - (Y)_{q} - (A1k^{2})_{r} - R$$

$$(1)$$

〔式中、XはCHまたはNを示し、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-N R^8 R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または- (CH_2) $_{u}$ S (O) $_{u}$ R^{12} (R^{12} はアルキルを、u は 0 、 1 、 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、アルコキシカルボニル、ハロゲン原子 またはニトロ基を示し、当該アルキルは水酸基で置換されていてもよく、 R'は水素原子を示すか、またはR'とR'がA環と一緒になって式(II)

(式中、W'R'、R²、R³の置換位置はA環、B環のいずれの位置であって もよく、W'R'、R²、R³はそれぞれ前記WR¹、R²、R³と同義であり 、B環はベンゼン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk' は-CH=CH-または-CH2 CH2 -を示し、

Yは一CONR'°ー、-NR''CO-、-COO-、-CH2NR'°ーまたは-NHCONH-(R'°、R''は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ -または-CONH(CH_2)、-(vは 0 , 1 , 2 を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{12}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピペリジノ、カルボキシル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、=Oで置換されていてもよく、当該ベンゼン縮合

シクロアルキルは水酸基で置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=0かつq=1のとき、Yが $-CONR^{10}$ ーまたは $-CH_2$ NR^{10} ーを示し、かつ R^3 が R^{10} と一緒になって-CH=CH-、 $-CH_2$ CHR^{27} ー、 $-CH_2$ $-CH_3$ $-CH_4$ $-CH_5$ $-CH_6$ $-CH_6$ $-CH_7$ $-CH_8$ $-CH_8$

r=0かつq=1のとき、Yが-CONR'°-または-CH2NR'°-を示し、 かつRとR'°が隣接する窒素原子と一緒になってヘテロアリールを形成してもよ く、

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。〕 で表される化合物またはその医薬上許容される塩を有効成分として含有してなる 請求の範囲1記載のカンナビノイドレセプター作動薬または拮抗薬。

3. 式 (la)

$$R^{2} \xrightarrow{\text{CH} = \text{CH} - \text{C} - \text{N} - (\text{A1}k^{2}), -R}$$

$$\begin{array}{c} \text{II} & \text{I} \\ \text{O} & \text{R}^{10} \end{array}$$
(1a)

〔式中、WはO-、-S(O)、-、-CR 5 R 6 -、-NR 7 -、-NR 7 CO-、-CONR 7 -、-COO-または-OCO-(R 5 、R 6 は同一また

は異なってそれぞれ水素原子またはアルキルを、 R^1 は水素原子またはアルキルを、t は 0 , 1 , 2 を示す)を示し、

R¹ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、アルキール、アリール、アリールアルキルを示す)、 $-NR^8$ R 8 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキルを示すか、ステロアリール、ヘテロアリール、ヘテロアリールでルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ u S(O) u R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2を、u'は0, 1, 2を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されてい てもよく、

R¹⁰ は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、

Alk² はアルキレン、アルケニレン、-COCH₂ -または-CONH (CH₂

)、-(vは0, 1, 2を示す)を示し、当該 $A1k^2$ におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル;- CON R^{13} R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0 のとき、R と R^{10} か 解接する 窒素原子と一緒になって ヘテロアリールを形成してもよい。

で表される化合物またはその医薬上許容される塩。

4. 式 (la)

$$R^{2}$$
 CH = CH - C - N - (A1 k^{2}), - R (1a)

〔式中、WはO-、-S(O)、-、-CR 5 R 6 -または-NR 7 -(R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 8 0、R 8 1、R 8 1 は R 8 2 を示す)を示し、

R' はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアル キルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルア ミノで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-N R^8 R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子またはアルキルを示す)、または- (CH_2) $_{u}$ S (O) $_{u}$ R^{12} (R^{12} はアルキルを、u は 0 , 1 , 2 を、u' は 0 , 1 , 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノで置換されていてもよく、

R³ は水素原子またはアルコキシを示し、

R¹⁰* は水素原子またはアルキルを示し、当該アルキルはヘテロアリールで置換されていてもよく、

 Alk^2 はアルキレンを示し、当該アルキレンはアルコキシカルボニル;水酸基で置換されていてもよいアルキル; $-CONR^{13}R^{14}$ (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0 のとき、 $R \ge R^{10}$ が隣接する窒素原子と一緒になってモルホリノまたはイミダゾリルを形成してもよい。〕

で表される請求の範囲3記載の化合物またはその医薬上許容される塩。

- 5. R³ が水素原子、R² が-OR¹⁵、-NR⁶ R⁶ または-(CH₂) _u S (O) _u R¹²であり、ベンゼン環上の-CH=CH-CO-NR¹⁰⁴ (Alk²),
- -Rの結合位置に対して、R²の置換位置がパラ位、-WR¹の置換位置がメタ 位である請求の範囲 4 記載の化合物またはその医薬上許容される塩。

- 6. R' が炭素数 4 ~ 6 のアルキルである請求の範囲 5 記載の化合物またはその 医薬上許容される塩。
- 7. $A lk^2$ がエチレンである請求の範囲 6 記載の化合物またはその医薬上許容される塩。
- 8. r=0 のとき、R と R^{10} が 解接する 窒素原子と一緒になってモルホリノを形成する請求の範囲 4 記載の化合物またはその 医薬上許容される塩。
- 9. (E) $-N-(2-(4-L)^2 + 2) + 2 3 (2-(4-L)^2 + 2) + 2 (2-(4-L)^2 + 2) + 2$
- 3-(3, 4-ジペンチルオキシフェニル)-(E)-N-[2-(4-ヒドロキシフェニル) エチル] アクリルアミド、
- (E) $-N-[2-(4-E)^2-2-2]$ $-3-(4-y)^2$ -3-7 $-3-(4-y)^2$ -3-7 -3-1
- (E) -N-(2-(4-)) エチル) エチル) -3-(4-) トキシー 3-(4-) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシー3-ヘプチルオキシフェニル) アクリルアミド、
- (E) -N-(2-(3-)) アクリルアミド、
- (E) -N-[2-(2-E)] ローンフェニル) エチル] -3-(4-y) キシー 3-(2-y) アクリルアミド、
- (E) -N-(2-(4-)) に -N-(2-) (4-) エチル) -N-(2-) (4-) アクリルアミド、
 - (E) -N-(2-(4-ヒドロキシフェニル) エチル) -3-(3-イソペ

ンチルオキシー4ーメトキシフェニル)アクリルアミド、

- (E) -N-(2-(4-ヒドロキシ-3-メトキシフェニル) エチル] -3
- (4-メトキシー3-ペンチルオキシフェニル)アクリルアミド、
 - $3 [3 (1, 1 i) \times fu \wedge fu) 4 i + i + i + i (E)$
- $-N-(2-(4-t)^2-t)^2-t$

- (E) -N-(4-r) 3-(3-r) + 3-(4-r) N-(2-(4-r) 1) N-(2-(4-r) 1) N-(3-r) + 3-(3-r) + 3-(
- 3-(4-)++>-3-ペンチルオキシフェニル)-(E)-N-[2-(4-ペンチルオキシフェニル) エチル) アクリルアミド、
- (E) -N-(2-(4-メトキシフェニル) エチル) -3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- 3-(4-)トキシー3-ペンチルオキシフェニル)-(E)-N-(2-モルホリノエチル)アクリルアミド、
- (E) -N-[2-(3, 4-3)!F!] + [2-(4-3)!F!] + [2-(4-3)!F!] + [2-(3, 4-3)!F!] + [2-(4-3)!F!] + [2-
- (E) -N-(2-(4-ヒドロキシフェニル) エチル) -3-(4-メトキシー3-ペンチルアミノフェニル) アクリルアミド、

- $3 (3 (N', N' i)^2 + i) 4 i + i i$ $(2 (4 i)^2 + i) (2 i) i$
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(3-ペンチルアミノ-4-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシ-3-ペンチルチオフェニル) アクリルアミド、
- (E) $-N-(2-(4-E)^2+2)$ エチル) エチル) -3-(4-C) ルオキシ-3-C ルナオフェニル) アクリルアミド、
- (E) -N-[2-(4-アミノフェニル) エチル] -3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) N [2 (4 ヒドロキシフェニル) エチル] 3 (3 ペンチルオキシー 4 ペンチルチオフェニル) アクリルアミド、
- (E) N [2 (4 ヒドロキシフェニル) エチル] 3 (3 ペンチルオキシ-4 メチルチオフェニル) アクリルアミド、
- (E) -N-[2-(4-アミノフェニル) エチル] -3-(4-メトキシー3-ペンチルチオフェニル) アクリルアミド、
- (E) -N-(2-(イミダゾール-4-7) エチル) -3-(4-1) エチルシー3-ペンチルチオフェニル) アクリルアミド、
- - (E) N (2 (4 E + D + D) 2 (4 E + D) 3 (4 E + D)

WO 97/29079 PCT/JP97/00291

アミノー3ーペンチルオキシフェニル) アクリルアミド、

(E) -N-(2-(4-r)) -3-(4-r) -

- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-[(N'-メチル-N'-ペンチルアミノ) -4-ペンチルオキシフェニル] アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-ペンチルアミノ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) $-N-(2-(4-\nu)7/7)$ エチル) $-3-(4-\nu)$ キシー $3-(2-(4-\nu)7/7)$ アクリルアミド、および
- (E) $-N-(2-(4-\pi)\nu)$ エチル $(2-(4-\pi)\nu)$ エチル $(3-(4-\pi)\nu)$ キシー $(3-(4-\pi)\nu)$ アクリルアミドから選ばれる請求の範囲 7 記載の化合物またはその医薬上許容される塩。

10. 式(Ib)

〔式中、Wは-O-、-S(O)、-、-CR 5 R 6 -、-NR 7 -、-NR 7 CO-、-CONR 7 -、-COO-または-OCO-(R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 8 8 9 $^$

R¹ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルア

ルキルを示し、当該R¹ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルール、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、クロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリール、ヘテロアリールでルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 ER^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ S(O) R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} 1) R^{12} 1 (R^{12} 1) R^{12} 2 (R^{12} 1) R^{12} 3 (R^{12} 1) R^{12} 4 (R^{12} 1) R^{12} 5 (R^{12} 1) R^{12} 6 (R^{12} 1) R^{12} 7 (R^{12} 1) R^{12} 8 (R^{12} 1) R^{12} 8 (R^{12} 1) R^{12} 9 (R^{12} 1)

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル 、ニトロ基またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置 換されていてもよく、

R¹⁰⁶ は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ - または-CONH (CH_2)、- (v は 0, 1, 2 を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル: $-CONR^{13}$

R''(R'''、R''は同一または異なってそれぞれ水素原子またはアルキルを示すか、またはR''''とR''が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0のとき、 $R \ge R^{10}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい。〕

で表される化合物またはその医薬上許容される塩。

11. 式(Ib)

$$R^{2}$$
 $C-N-(A1k^{2}), -R$ (1b) R^{10b}

〔式中、Wは-O-、-S(O)、-、-CR $^{\circ}R$ $^{\circ}$ -、-NR $^{\prime}$ -、-NR $^{\prime}$ $^{\circ}$ $^{\circ}$

R¹ はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該 R¹ における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-N

 R^{8} R^{9} $(R^{8}$ 、 R^{9} は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または- (CH_{2}) $_{u}$ S (O) $_{u}$ R^{12} $(R^{12}$ $_{u}$ $_{z}$ $_$

R³ は水素原子、アルコキシ、アルキル、ニトロ基またはハロゲン原子を示し、 当該アルキルは水酸基で置換されていてもよく、

R¹⁰⁰ は水素原子、アルキルまたはアルケニルを示し、当該アルキルはヘテロアリール、アリールスルフィニルまたはアルコキシカルボニルで置換されていてもよく、 よく、当該アルケニルはフェニルチオで置換されていてもよく、

 Alk^2 はアルキレンまたはアルケニレンを示し、当該アルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}R^{14}$ (R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

rは0または1を示す。

なお、r=0 のとき、 $R \ge R^{100}$ が隣接する窒素原子と一緒になってモルホリノ、イミダゾリルを形成してもよい。〕

で表される請求の範囲10記載の化合物またはその医薬上許容される塩。

12. R³が水素原子、R²が-OR¹⁵、-NR®R®または-(CH₂) u S (O) u R¹²であり、ベンゼン環上の-CO-NR¹⁰ - (Alk²), -Rの結合

位置に対して、R² の置換位置がパラ位、-WR¹ の置換位置がメタ位である請求の範囲11記載の化合物またはその医薬上許容される塩。

- 13. R が炭素数 $4 \sim 6$ のアルキルである請求の範囲 12 記載の化合物またはその医薬上許容される塩。
- 14. Alk² がエチレンである請求の範囲13記載の化合物またはその医薬上許容される塩。
- 15. N- [2-(4-ヒドロキシフェニル) エチル] -4-メトキシ-3-ペ ンチルオキシベンズアミド、
- 4-エトキシーN-〔2-(4-ヒドロキシフェニル) エチル〕-3-ペンチルオキシベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(4-ヒドロキシフェニル) エチル] ベンズアミド、
- $4 9 \times + 9 \times + 1 \times +$

- $3- \land$ プチルオキシ $N- [2-(4- \vdash F \vdash D +) +)$ エチル]-4- メトキシベンズアミド、
- N-[2-(2-EFD+シフェニル) エチル] -4-メトキシ-3-ペンチ ルオキシベンズアミド、
 - N- [2-(4-ヒドロキシシクロヘキシル) エチル] 4-メトキシー3-

ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル] -N-メチル-4-メトキシ-3-ペンチルオキシベンズアミド、

3- 1 イソペンチルオキシ-N-[2-(4- 1) + 1] - 4- 1 メトキシベンズアミド、

3-(2-xチルブチルオキシ) -N-(2-(4-t)+t) エチル] -4-tトキシベンズアミド、

N-[2-(4-ヒドロキシー3-メトキシフェニル) エチル] -4-ヒドロキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル]-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

3-(1, 1-ジメチルへプタン)-N-(2-(4-ヒドロキシフェニル)エチル)-4-メトキシベンズアミド、

3-(1, 1-ジメチルへプタン)-N-[2-(4-ヒドロキシー3-メトキシフェニル) エチル]-4-メトキシベンズアミド、

3-(1, 1-ジメチルへプタン)-N-[2-(4-ヒドロキシフェニル)エチル]-4-ヒドロキシベンズアミド、

N-(2-(3, 4-ジヒドロキシフェニル) エチル)-3-(1, 1-ジメチルへプタン)-4-ヒドロキシベンズアミド、

3-ヘキシル-N-[2-(4-ヒドロキシフェニル) エチル] -4-メトキシベンズアミド、

3, 4-ジへキシルオキシ-N-[2-(4-ヒドロキシフェニル) エチル] ベンズアミド、

N-[2-(3, 4-ジヒドロキシフェニル) エチル] -4-メトキシ-3- ペンチルオキシベンズアミド、

N-(2-(4-rv++v)z=n) エチル) -4-y++v-3-v+ ルオキシ-N-(E) -フェニルチオビニルベンズアミド、

N-[2-(4-アセトキシフェニル)エチル]-N-エチル-4-メトキシ-3-ペンチルオキシベンズアミド、

 $4-(2-{N-(4-メトキシ-3-ペンチルオキシベンゾイル) アミノ} エチル] ピリジン<math>-N-オキシド$ 、

3- ジペンチルアミノ-N- [2-(4-ヒドロキシフェニル) エチル] - 4 - メトキシベンズアミド、

 $N-(2-(4-E)^2+2)$ エチル $(2-(4-E)^2+2)$ エチル $(2-(4-E)^2+2)$ トキシベンズアミド、

 $N - \{2 - (4 - E + F$

N-[2-(4-ヒドロキシフェニル) エチル] -4-ペンチルアミノ-3-ペンチルオキシベンズアミド、

- 3, 4 ジペンチルオキシーN-〔2-〔4-スルファモイルフェニル〕エチル〕ベンズアミド、
- 3, $4- {\it i}$ ペンチルオキシーN- $(2-({\it i}$ ${\it i$
- 3, 4-3ペンチルオキシ-N-(2-(4-7)ルオロフェニル) エチル) ベンズアミド、
- $N-(2-(4-E)^2+2)$ エチル(2-4) $(4-E)^2+2$ $(4-E)^2+2$
- N-[2-(4-ヒドロキシフェニル) エチル] -4-プロピルオキシ-3- ペンチルオキシベンズアミド、
- 3, 4-iブチルオキシーN-[2-(4-i)+i) エチル] ベンズアミド、
- 3, 4 ジヘプチルオキシーN 〔2 (4 ヒドロキシフェニル)エチル) ベンズアミド、
- N-[2-(4-ヒドロキシフェニル) エチル]-4-メチルアミノ-3-ペンチルオキシベンズアミド、
- $N-[2-(4-E)^2]$ エチル] -3, 4-ジペンチルアミノベンズアミド、

 $N-(2-(4-E)^2+2)$ エチル]-4-4+4-3-3-4 ルチオベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル]-4-ペンチルオキシー3-ペンチルチオベンズアミド、

- 3, 4 ジペンチルオキシーN [2 (2 チェニル) ェチル] ベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(5-ヒドロキシインド-ル-3-イル) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(4-メチルアミノフェニル) エチル] ベンズアミド、
- 4-プチリルアミノ-N- [2-(4-ビドロキシフェニル) エチル]-3-ペンチルオキシベンズアミド、
- N-(2-(4-ヒドロキシフェニル) エチル]-4-ホルミルアミノ-3-ペンチルチオペンズアミド、
- N-[2-(4-ヒドロキシフェニル) エチル] -4-メチルチオ-3-ペンチルオキシベンズアミド、
- N-(2-(4-ヒドロキシフェニル) エチル]-3-ペンチルオキシ-4-ペンチルチオペンズアミド、

- - N- [2-(イミダゾール-4-イル) エチル] -4-メトキシー3-ペンチ

ルチオベンズアミド、

N-(2-(4-r)) エチル(2-(4-r)) エチル(3-4) エチル(3-4) チルチオベンズアミド、

N- [2-(イミダゾール-4-イル) エチル] -4-ペンチルオキシ-3-ペンチルチオベンズアミド

から選ばれる請求の範囲14記載の化合物またはその医薬上許容される塩。 16.式(Ic)

$$R^{2} \xrightarrow{k} Q N - (A1k^{2}), -R' \qquad (1c)$$

〔式中、Wは-O-、-S(O)、-、-CR $^{\circ}R$ $^{\circ}$ -、-NR $^{\prime}$ -、-NR $^{\prime}$ $^{\circ}CO$ -、-CONR $^{\prime}$ -、-COO-または-OCO-(R $^{\circ}$ 、R $^{\circ}$ は同一または異なってそれぞれ水素原子またはアルキルを、R $^{\prime}$ は水素原子またはアルキルを、t は 0 , 1 , 2 を示す)を示し、

R¹はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^{2} は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^{8}R^{9}$ (R^{8} 、 R^{9} は同一または異なってそれぞれ水素原子、アルキル、アルケニル、

アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^8 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または R^{12} (R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、 R^{12} は R^{12} における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

乙は一CH₂ーまたは一COーを示し、

Qは-CH=CH-、-C H_2 C HR^2 ⁷-、-C H_2 C-、-S-、-CHOH-、-CO-、-C H_2 CO-、-NHC R^2 ⁸(CH $_2$)、-、-NHC R^2 ⁹ R^3 ⁰-または-N=C R^3 ¹-(R^2 ⁷は水素原子または水酸基を、 R^2 ⁸は酸素原子または硫黄原子を、 R^2 ⁹、 R^3 ⁰は同一または異なってそれぞれアルキルを、 R^3 ¹はアルキルまたは水素原子を、 R^3 ¹はアルキルまたは水素原子を、 R^3 ¹はア

 $A1k^2$ はアルキレン、アルケニレン、 $-COCH_2$ -または-CONH (CH_2) 、-(vは0, 1, 2を示す) を示し、当該 $A1k^2$ におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{11} (R^{13} 、 R^{11} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{11} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

R'はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノ、ピリジルで置換されていて

もよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。]

で表される化合物またはその医薬上許容される塩。

17. 式(Ic)

$$R^{2} \xrightarrow{h} Q N - (A1k^{2}), -R' \qquad (Ic)$$

〔式中、Wは-O-、-S(O)」-、-CR 6 R 6 -、-NR 7 -または-NR 7 CO-(R 6 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 1 はアルキルを示し、R 1 はアルキルを示し、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子またはアルキルを示す)

乙は一CH₂一または一CO一を示し、

Qは-CH=CH-、-CH $_2$ CHR $_2$ 1 2 1-、-CH $_2$ CH $_3$ C+CHOH-、-CO-、-CH $_2$ CO-、-N+CH $_3$ CH $_3$ CH $_4$ CH $_3$ CH $_4$ CH $_5$

 Alk^2 はアルキレン、 $-COCH_2$ -または-CONH (CH_2)、- (vは 0 , 1 , 2 を示す) を示し、

R'はアリール、ヘテロアリールまたはシクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アシルオキシ、ニトロ、アミノ、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノで置換さ

れていてもよく、当該シクロアルキルは=0で置換されていてもよく、rは0または1を示す。]

で表される請求の範囲16記載の化合物またはその医薬上許容される塩。

- 18. Zが-CO-であり、Qが $-CH_2-$ である請求の範囲17記載の化合物またはその医薬上許容される塩。
- 19. R^2 が $-OR^{15}$ 、Wが-O-、 $-NR^7$ または $-NR^7$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^1$ の置換位置がベンゼン環上の j 位である請求の範囲 18記載の化合物またはその医薬上許容される塩。
- 20. R^1 が炭素数 $4 \sim 6$ のアルキルである請求の範囲 19 記載の化合物またはその医薬上許容される塩。
- 21. $2-(2-(4-t)^2-t)^2-t$ $21. 2-(4-t)^2-t$ $21. 2-(4-t)^2-t$ 21
- 2-(2-(4-ベンジルオキシフェニル) エチル) -5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
- 5-メトキシー2-(2-(4-ニトロフェニル) エチル) -4-ペンチルオキシー2, 3-ジヒドロイソインドールー1-オン、
- 2-(2-(4-メチルフェニル) エチル]-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
- 4, 5 ジペンチルオキシー 2 〔2 〔イミダゾールー4 イル〕エチル〕- 2、3 ジヒドロイソインドールー1 オン、
- - 4, 5-ジペンチルオキシ-2-[2-(4-ニトロフェニル) エチル] -2
- **, 3 ージヒドロイソインドールー1ーオン、**
 - 2 [2 (4 7 = 1) + 1] 4, 5 3 = 3 = 2 = 2
- , 3 ジヒドロイソインドールー1 オン、
 - 4. 5 ジペンチルオキシー2 [2 (4 ヒドロキシフェニル) エチル]

- -2, 3-ジヒドロイソインドールー1-オン、
- 4, 5-ジペンチルオキシー2-[2-(4-メチルアミノフェニル) エチル] <math>-2, 3-ジヒドロイソインドール-1-オン、
- 2-[2-(4-アミノフェニル) エチル] -5-メトキシ-4-ペンチルオ キシー2, 3-ジヒドロイソインドールー1-オン、
- 2-[2-(4-ヒドロキシフェニル) エチル] -5-メトキシ-4-ペンチルアミノ-2, 3-ジヒドロイソインドール-1-オン、
- 5-メトキシー4-ペンチルオキシー2- [2-(4-ピリジン) エチル]-2、3-ジヒドロイソインドールー1-オン、

- から選ばれる請求の範囲20記載の化合物またはその医薬上許容される塩。
- 22. Zが一CO-であり、Qが一CH=CH-である請求の範囲17記載の化 合物またはその医薬上許容される塩。
- 23. R^2 が $-OR^{-1}$ 、Wが-O-、 $-NR^{-1}$ または $-NR^{-1}$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^{-1}$ の置換位置がベンゼン環上の j 位である請求の範囲 2 2 記載の化合物またはその医薬上許容される塩。
- 24. R' が炭素数 $4\sim6$ のアルキルである請求の範囲 23 記載の化合物またはその医薬上許容される塩。
- 25. 2-(2-(4-ベンジルオキシフェニル) エチル]-6-メトキシ-5 -ペンチルオキシー2H-イソキノリン-1-オン、
- 2-[2-(4-ヒドロキシフェニル) エチル] -6-メトキシー5-ペンチルオキシー<math>2H-イソキノリン-1-オン、

2-(2-(4-ピリジル) エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

6-メトキシー2- (2-(4-ニトロフェニル) エチル)-5-ペンチルオキシー2H-イソキノリンー1-オン、

6- メトキシー5-ペンチルオキシー2-(2-フェニルエチル)-2H-イソキノリン-1-オン、

2-(2-(4-re) + re) + r

5, 6-ジペンチルオキシー2-〔2-(4-ヒドロキシフェニル〕エチル〕-2H-イソキノリン-1-オン、

2-[2-(4-r)] エチル]-6-xトキシー5-ペンチルオキシー2H-47キノリンー1-47、

2-[2-(4-r)] エチル]-6-xトキシー5-xンチルオキシー2H-4ソキノリン-1-xン塩酸塩、

2-[2-(4-ジメチルアミノフェニル) エチル] -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

6-メトキシー 2- (2-(4-ピペリジノフェニル) エチル)-5-ペンチルオキシー 2H-イソキノリンー1-オン、および

6-メトキシー2-〔2-(4-ピリジル) エチル〕-5-ペンチルオキシー 2H-イソキノリン-1-オン塩酸塩

から選ばれる請求の範囲24記載の化合物またはその医薬上許容される塩。

- 2 6. Zが-CO-であり、Qが-CH₂ CHR²'-であり、R²'が水素原子である請求の範囲17記載の化合物またはその医薬上許容される塩。
- 27. R^2 が $-OR^{15}$ 、Wが-O-、 $-NR^7$ または $-NR^7$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^1$ の置換位置がベンゼン環上の j 位である請求の範囲 2 6 記載の化合物またはその医薬上許容される塩。
- 28. R' が炭素数 $4 \sim 6$ のアルキルである請求の範囲 27 記載の化合物またはその医薬上許容される塩。
- 29. 6-x+2-2-(2-(4-x+1)-2-1-x) -5-4 -4x+3-3 -5-4 -4x+3-3 -5-4 -4x+3-3 -5-4 -4x+3-3 -5-4 -4x+3-4 -4x+3-4
- $2 [2 (4 E F D + \nu) T x \nu] 6 \nu + \nu 5 \nu + \nu + \nu 3$, $4 \nu + \nu 2 H 4 + \nu + 1 + \nu$
- 2-(2-7ェニルエチル)-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
- 2-(2-(4-rv+nr)) 2-(2-(4-rv+nr)) 2-(2-(4-rv+nr)) 2-(2-(4-rv+nr)) 2-(2-(4-rv+nr)) 2-(2-(4-rv+nr)) 2-(2-(4-rv+nr)) 2-(4-rv+nr) 2-(4-rv+nr)
- 6-ヒドロキシー2- (2-(4-ヒドロキシフェニル) エチル]-5-ペンチルオキシー3, 4-ジヒドロー2H-イソキノリン-1-オン、
- 2-(2-(4-)+1) エチルフェニル)エチル]-6-+1+1-5-3-4 キシー[3, 4-3+1] 2 H-イソキノリン-1-オン、
- 2-[2-(4-アミノフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
- 6-メトキシー5-ペンチルオキシー2- [2-(4-ピリジル) エチル]-3, 4-ジヒドロ-2 H-イソキノリン-1-オン、
- 6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1 H-イソキノリン-2-カルボン酸 N- (4-アミノフェニル) アミド、

6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1 H-イソキノリンー2-カルボン酸 N- (4-アミノフェニル) メチル) アミド 、および

6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1H-イソキノリンー2-カルボン酸 N-(4-ニトロフェニル)アミド から選ばれる請求の範囲28記載の化合物またはその医薬上許容される塩。

30. Zが-CO-であり、Qが $-NHCR^{28}$ (CH_2)、-であり、 R^{28} が酸素原子であり、v'が0である請求の範囲17記載の化合物またはその医薬上許容される塩。

3 1. R^2 が $-OR^{15}$ 、Wが-O-、 $-NR^7$ - または $-NR^7$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^1$ の置換位置がベンゼン環上の j 位である請求の範囲 3 0 記載の化合物またはその医薬上許容される塩。

 $32. R^1$ が炭素数 $4\sim6$ のアルキルである請求の範囲 31 記載の化合物またはその医薬上許容される塩。

33. 7-メトキシ-3-[2-(4-二トロフェニル) エチル] -8-ペンチルオキシ-(1 H. 3 H) -キナゾリン-2, 4-ジオン、

 $3-\{2-(4-ヒドロキシフェニル)$ エチル $\}-7-メトキシ-8-ペンチルオキシ-(1H, 3H) -キナゾリン-2, 4-ジオン、$

3- [2-(4-メチルアミノフェニル) エチル] - 7-メトキシ-8-ペン チルオキシ- (1 H, 3 H) - キナゾリン-2, 4-ジオン、および

3-(2-(4-ジメチルアミノフェニル) エチル)-7-メトキシ-8-ペンチルオキシ-(1H, 3H)-キナゾリン-2, 4-ジオン、

から選ばれる請求の範囲32記載の化合物またはその医薬上許容される塩。

3 4. 式 (ld)

$$\begin{array}{c|c}
R^{2}, \\
B & A \\
X & R^{3},
\end{array}$$
(Alk¹)_P-C-N-(Alk²),-R
(Id)
$$\begin{array}{c|c}
0 & R^{10d}
\end{array}$$

〔式中、XはCHまたはNを示し、

W' t=0-、-S(O)、-、-CR $^{\circ}$ R $^{\circ}$ -、-NR $^{\prime}$ - 、-NR $^{\prime}$ CO-、-CONR $^{\prime}$ -、-COO-または-OCO-(R $^{\circ}$ 、R $^{\circ}$ は同一または異なってそれぞれ水素原子またはアルキルを、R $^{\prime}$ は水素原子またはアルキルを、t は 0 、 1 、 2 を示す)を示し、

R'はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R'における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^{2} は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、アルキール、アリール、アリールアルキルを示す)、 $-NR^{8}$ R^{8} (R^{8} 、 R^{9} は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリールでルキルを示すか、または R^{8} と R^{9} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_{2})$ S(O) R^{12} (R^{12} は水素原子、アルキル、アルキールを示す)を示し、当該 R^{2} における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオ

キシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されてい てもよく、

 $W'(R^1)$ 、 R^2 、 R^3 の置換位置はA環、B環のいずれの位置であってもよく、B環はベンゼン環、ビリジン環またはフラン環を示し、

Alk' は-CH=CH-、-CH2 CH2 -または-C=C-を示し、

R¹⁰⁰ は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 $A1k^2$ はアルキレン、アルケニレン、 $-COCH_2$ - または-CONH(CH_2)、- (v は 0 、 1 , 2 を示す)を示し、当該 $A1k^2$ におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{11} (R^{13} 、 R^{11} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{11} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。

なお、r = 0 のとき、 $R \, L \, R^{100}$ が隣接する窒素原子と一緒になってヘテロアリ

ールを形成してもよい。〕

で表される化合物またはその医薬上許容される塩。

35. 式 (ld)

$$\begin{array}{c|c}
R^{2'} \\
B \\
X \\
R^{3'}
\end{array}$$
(A1k¹)_P-C-N-(A1k²),-R
(1d)
$$\begin{array}{c|c}
0 & R^{10d}
\end{array}$$

〔式中、XはCHまたはNを示し、

R「はアルキルを示し、

R² は水素原子、アルキルまたは-OR¹⁵ (R¹⁵は水素原子、アルキルを示す) を示し、

R³ は水素原子またはハロゲン原子を示し、

W' R' 、 R^{3} の置換位置は A 環、 B 環のいずれの位置であってもよく、 B 環はベンゼン環またはフラン環を示し、

Alk' は-CH=CH-または-CH2 CH2 - を示し、

R¹⁰⁰ は水素原子を示し、

Alk² はアルキレンを示し、

Rはアリールまたはヘテロアリールを示し、当該アリールおよびヘテロアリール はそれぞれ、水酸基、ニトロ、アミノで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。]

で表される請求の範囲34記載の化合物またはその医薬上許容される塩。

- 36. XがNである請求の範囲35記載の化合物またはその医薬上許容される塩。
- 37. R³'が水素原子、R²'が-OR¹⁵であり、Wが-O-である請求の範囲36記載の化合物またはその医薬上許容される塩。

38. R''が炭素数4~6のアルキルである請求の範囲37記載の化合物またはその医薬上許容される塩。

39. 7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(4-ピリジル) エチル] アミド、

7-メトキシー8-ペンチルオキシキノリンー3-カルボン酸 N- [2-(4-ヒドロキシフェニル) エチル] アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(4-アミノフェニル) エチル] アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(4-ニトロフェニル) エチル] アミド、および

7-メトキシー8-ペンチルオキシキノリンー3-カルボン酸 N-〔2-(イミダゾールー4-イル) エチル〕アミド

から選ばれる請求の範囲38記載の化合物またはその医薬上許容される塩。

40. 式(le)

R' はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスル

ホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、アルキール、アリール、アリールアルキルを示す)、 $-NR^8$ R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリール、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ 。S(O) 。 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、L は L は L の、L の、L の、L のを示す)を示し、当該L における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基、アルコキシ、アルコキシカルボニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R°は式(i)

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基 、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニト ロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジル で置換されていてもよい。〕

で表される化合物またはその医薬上許容される塩。

41. 式(le)

〔式中、Wは-O-または-S(O), -を、tは0, 1, 2を示す)を示し、R はアルキルを示し、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子またはアルキルを示す)、または $-(CH_2)$ 。S(O) 。 R^{12} (R^{12} はアルキルを、uは 0 , 1 , 2 を 、u は 0 , 1 , 2 を 示し、

 R^3 は水素原子、アルコキシ、アルキル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルは水酸基で置換されていてもよく、

R°は式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。〕 で表される請求の範囲 4 0 記載の化合物またはその医薬上許容される塩。

- 42. R^2 が $-OR^{15}$ または $-(CH_2)$ 」S(O) 』 R^{12} であり、ベンゼン環上の $-R^e$ の結合位置に対して、 R^2 の置換位置がパラ位、 $-WR^1$ の置換位置がメタ位である請求の範囲 4 1 記載の化合物またはその医薬上許容される塩。
- 43. R ''が炭素数 $4\sim6$ のアルキルである請求の範囲 42 記載の化合物またはその医薬上許容される塩。
- 44.2-(4-メトキシー3-ペンチルオキシフェニル)-4,4-ジメチル
- 4, 5-ジヒドロオキサゾール、
- 2-(4-)++>-3-ペンチルチオフェニル)-4, 4-ジメチルー4, 5-ジヒドロオキサゾール、
 - 2-(3, 4-ジペンチルオキシフェニル)-4, 4-ジメチル-4, 5-ジ

ヒドロオキサゾール、

- 2- (4-メチルチオー3-ペンチルオキシフェニル)-4, 4-ジメチルー 4. 5-ジヒドロオキサゾール、
- 2-(3-ペンチルオキシー4-ペンチルチオフェニル)-4, 4-ジメチル -4, 5-ジヒドロオキサゾール、
 - 2-(4-ペンチルオキシー3-ペンチルチオフェニル)-4, 4-ジメチル
- -4.5-ジヒドロオキサゾール、および
- -4. 5-ジヒドロオキサゾール
- から選ばれる請求の範囲 4 3 記載の化合物またはその医薬上許容される塩。
- 45. 請求の範囲3~44のいずれかに記載の化合物またはその医薬上許容される塩を有効成分として含有してなる医薬組成物。
- 46. カンナビノイドレセプターが末梢型カンナビノイドレセプターである請求の範囲1または2記載のカンナビノイドレセプター作動薬または拮抗薬。
- 47. 免疫調節剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- 48 自己免疫疾患治療剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- 49. 抗炎症剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- 50. 抗アレルギー剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- 51. 腎炎治療剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

International application No.
PCT/JP97/00291

A. CLASSIFICATION OF SUBJECT MATTER Int. C1 ⁶ C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62, C07D209/14, 209/42, According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by	Minimum documentation searched (classification system followed by classification symbols) Int. C1 ⁶ C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62,				
Documentation searched other than minimum documentation to the ex	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where an					
A JP, 6-211867, A (F. Hoffman August 2, 1994 (02. 08. 94) Claim; pages 4 to 9 & EP, 5 & US, 5315015, A & CA, 2108	, 97333, A2				
X JP, 49-93335, A (Kissei Pha Ltd.), September 5, 1974 (05. 09. Claim; pages 4 to 6	74),				
A & BE, 809935, A & NL, 74007 & DE, 2402398, A & FI, 7400 & FR, 2214476, A & PT, 6119 & HU, 10376, T & US, 394042 & AT, 7400443, A & GB, 1446	Claim; pages 4 to 6 & BE, 809935, A & NL, 7400754, A & DE, 2402398, A & FI, 7400145, A & FR, 2214476, A & PT, 61195, A & HU, 10376, T & US, 3940422, A & AT, 7400443, A & GB, 1446141, A & SU, 520041, A & CA, 1029744, A				
X US, 4743610, A (American Cy May 10, 1988 (10. 05. 88),	vanamid Co.), 10, 11, 45				
A Claims (Family: none) X EP, 176333, A2 (Ortho Pharm					
X EP, 176333, A2 (Ortho Pharm September 23, 1985 (23. 09.	20 45				
X Further documents are listed in the continuation of Box C.	See patent family annex.				
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B is deviced and not in conflict with the application but cited to understand the principle or theory underlying the invention 					
"E" cartier document but published on or after the international filing date	earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is document which may throw doubts on priority claim(s) or which is				
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document means means the combined with one or more other such documents, such combination.					
"P" document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art document member of the same patent family					
Date of the actual completion of the international search May 27, 1997 (27. 05. 97) Date of mailing of the international search report June 3, 1997 (03. 06. 97)					
Name and mailing address of the ISA/ Authorized officer					
Japanese Patent Office					
Facsimile No.	Telephone No.				

		PCT/J	P97/00291
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
A	Claims; examples & AU, 8547698, A & NO, 8503730, A & DK, 8504311, A & PT, 81182, A & FI, 8503639, A & HU, 40087, T & US, 4639518, A & ES, 8701737, A & ZA, 8507302, A & SU, 1409129, A & KR, 9001181, B		31 - 33
	WO, 91/14677, A1 (Otsuka Pharmaceutical Ltd.), October 3, 1991 (03. 10. 91), Cliam 18; example	Co.,	34 - 36
A			37 - 39
]	JP, 50-89363, A (Hoechst AG.), July 17, 1975 (17. 07. 75), Page 15, example		40 - 42
Α .	& BE, 823279, A & NL, 7415940, A & DE, 2458176, A & DK, 7406450, A & FR, 2254332, A & US, 3962259, A & GB, 1495286, A & AT, 7409883, A & CA, 1051886, A & IL, 46202, A & CH, 620214, A		43, 44
	LIN, J.H., et al. New Poly(amide-Imide) Synthesis. XVII. Journal of Polymer Scie Part A: Polymer Chemistry, April 1996, No. 5, p. 747-754	nce:	16 - 21
T	Database CA on STN, No. 118:226257 (199	7)	16, 17, 22-25
			+ . ^{m.} ,

International application No.

PCT/JP97/00291

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04, A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

B. (Continuation) FIELDS SEARCHED

C07D209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04, A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1. C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62, C07D209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04,

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1. C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62, C07D209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04.

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連すると認められる文献

//42.7	o California de la cali	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Α	JP, 6-211867, A (エフ・ホフマン-ラ ロシュ アーゲー)	1 - 5 1
	2. 8月. 1994 (02. 08. 94) 特許請求の範囲。第4-9頁	
	&EP, 597333, A2 &US, 5315015, A	·
	&CA, 2108919, A	
		*
X	│JP,49-93335,A(キッセイ薬品工業株式会社)	3 - 5, 45
	5. 9月. 1974 (05. 09. 74) 特許請求の範囲。第4-6頁	
A	&BE, 809935, A &NL, 7400754, A	6 - 9
•	&DE, 2402398, A &FI, 7400145, A	,
	&FR, 2214476, A &PT, 61195, A	
	&HU, 10376, T &US, 3940422, A	
	&AT, 7400443, A &GB, 1446141, A	
ı	&SU, 520041, A &CA, 1029744, A	
		4

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 27.05.97	国際調査報告の発送日 03 06 97
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP)	特許庁審査官(権限のある職員) 4 H 9 5 4 7 柳 和子 印
郵便番号100 東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3444

国際出願番号 PCT/JP97/00291

C (続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	US, 4743610, A (American Cyanamid Company) 10.5月, 1988 (10.05,88) CLAIMS	10, 11, 45
A	(ファミリーなし)	
Х	EP, 176333, A 2 (ORTHO PHARMACEUTICAL CORPORATION) 23. 9月, 1985 (23. 09. 85) CLAIMS, EXAMPLES	16, 17, 30
A	&AU, 8547698, A &NO, 8503730, A &DK, 8504311, A &PT, 81182, A &FI, 8503639, A &HU, 40087, T &US, 4639518, A &ES, 8701737, A &ZA, 8507302, A &SU, 1409129, A &KR, 9001181, B	3 1 - 3 3
X	WO, 91/14677, A1 (大塚製薬株式会社) 3. 10月. 1991 (03. 10. 91) 請求の範囲18, 実施例	3 4 - 3 6
A		İ
x	JP, 50-89363, A (ヘキスト・アクチーエンゲゼルシャフト) 17. 7月. 1975 (17. 07. 75) 第15頁, 実施例	40-42
A	&BE, 823279, A &NL, 7415940, A &DE, 2458176, A &DK, 7406450, A &FR, 2254332, A &US, 3962259, A &GB, 1495286, A &AT, 7409883, A	43,44
P A	&CA, 1051886, A &IL, 46202, A &CH, 620214, A	16-21
	Journal of Polymer Science: Part A: Polymer Chemistry, April 1996, Vol. 34, No. 5, p. 747-754	
Т	Database CA on STN, No. 118:226257 (1997)	1 6, 1 7, 2 2 - 2 5

第2ページA欄の続き

A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

第2ページB欄の続き

A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

Commentant of the separation

THIS PAGE BLANK (USPTO)