

Esquema de calificación

Noviembre de 2022

Matemáticas: Análisis y Enfoques

Nivel Medio

Prueba 2

© International Baccalaureate Organization 2022

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2022

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2022

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Instrucciones para los examinadores

Abreviaturas

- **M** Puntos concedidos por tratar de utilizar un **Método** correcto.
- A Puntos concedidos por una Respuesta (en inglés, Answer) o por Precisión (en inglés, Accuracy); a menudo dependen de los puntos M precedentes.
- **R** Puntos concedidos por un **Razonamiento** claro.
- **AG** Respuesta dada (del inglés *Answer Given*) en la propia pregunta, por lo que no se concede ningún punto.
- **FT** Arrastre de error (del inglés *Follow Through*). La práctica de conceder puntos, a pesar de que el alumno haya cometido errores en apartados anteriores, por **sus** métodos/respuestas correctos a partir de resultados incorrectos.

Uso del esquema de calificación

1 General

Conceda los puntos utilizando las anotaciones como se indica en el esquema de calificación p. ej., *M1*, *A2*.

2 Puntuación por método y por respuesta/precisión

- No conceda automáticamente la puntuación máxima cuando la respuesta sea correcta; se debe comprobar todo el procedimiento (el desarrollo del ejercicio) y puntuar la pregunta conforme al esquema de calificación.
- Por lo general, no se puede conceder **M0** seguido de **A1**, puesto que los puntos **A** dependen de los puntos **M** precedentes (si los hay).
- Cuando se indica en la misma línea una puntuación M y otra A (p. ej., M1A1), esto normalmente significa que se conceda M1 por intentar utilizar un método adecuado (p. ej., sustituir en una fórmula) y A1 por utilizar los valores correctos.
- Cuando aparecen dos o más puntuaciones A en la misma línea es porque cada una se puede conceder de manera independiente; así pues, si el primer valor es incorrecto pero los dos siguientes son correctos, se ha de conceder AOA1A1. Si las puntuaciones A1 aparecen en líneas separadas, se asume que dependen una de la otra y, por lo tanto, es poco probable que se otorgue AOA1. Sin embargo, cuando dichas puntuaciones sean independendientes (por ej, el esquema de calificación las presenta en secuencia, pero en la solución, una no conduce directamente a la otra) esto se ha de comunicar a través de una nota y, por lo tanto, puede otorgarse AOA1 (por ejemplo).
- Allí donde el esquema de calificación especifique **A3**, **M2**, etc., **no** subdivida las puntuaciones a menos que haya una nota al respecto.
- En la respuesta a una pregunta del tipo "mostrar que" no es necesario volver a escribir la línea **AG**, a no ser que una **Nota** lo indique de manera explícita en el esquema de calificación.
- Una vez que vea en la hoja la respuesta correcta a una pregunta o a un apartado de una pregunta, ignore cualquier desarrollo adicional, incluso si es incorrecto o sugiere que el alumno no ha comprendido bien la pregunta. Esto fomenta un enfoque uniforme para la corrección, menos dependiente del criterio del examinador. Aunque algunos alumnos puedan verse beneficiados en ese elemento concreto de la pregunta, es probable que estos alumnos también pierdan puntos en otros lugares.

 Una excepción a la regla anterior ocurre cuando una respuesta incorrecta del desarrollo adicional se utiliza en un apartado posterior. Por ejemplo, cuando un valor exacto correcto viene seguido de una aproximación decimal incorrecta en el primer apartado y, a continuación, se utiliza esta aproximación en el segundo apartado. En esta situación, conceda los puntos FT que corresponda, pero no conceda el A1 final en el primer apartado. Ejemplos:

	Respuesta correcta incluida	adicional	¿Alguna cuestión relacionada con la puntuación FT?	Acción
1.	$8\sqrt{2}$	5,65685 (valor decimal incorrecto)	No. Último apartado de la pregunta.	Conceda A1 en la puntuación final (no penalice el desarrollo adicional incorrecto).
2.	$\frac{35}{72}$	0,468111 (valor decimal incorrecto)	Sí. El valor se utiliza en apartados posteriores.	Conceda A0 en la puntuación final (y pueden otorgarse todos los puntos FT en los apartados posteriores).

3 Puntuaciones implícitas

Las puntuaciones implícitas se muestran entre **paréntesis**; **p. ej., (M1)**. Solo se pueden conceder si el alumno ha incluido el procedimiento **correcto** o si dicho procedimiento ha quedado implícito en otro desarrollo/respuesta posterior.

4 Puntuaciones de arrastre de error (solo se aplican después de haberse cometido un error)

Las puntuaciones de arrastre de error (*FT*) se conceden cuando una respuesta incorrecta dada en un **apartado** de una pregunta se utiliza correctamente en los apartados **posteriores** (p. ej., un valor incorrecto del apartado (a) se utiliza en el apartado (d), o un valor incorrecto del subapartado (c)(i) se utiliza en el subapartado (c)(ii)). Por lo general, para poder conceder puntos *FT*, el alumno **tiene que haber incluido el desarrollo del ejercicio** (no tan solo una respuesta final basada en la respuesta incorrecta dada en un apartado anterior). Sin embargo, si todos los puntos que tiene asignados un apartado posterior corresponden a la respuesta o son implícitos, entonces se deben conceder puntos *FT* por *su* respuesta correcta incluso si no ha incluido el desarrollo.

Por ejemplo: tras una respuesta incorrecta al apartado (a) que se utiliza en apartados posteriores, cuando el esquema de calificación indique *(M1)A1* en el apartado posterior, es posible conceder la puntuación máxima por *su* respuesta correcta **sin que haya incluido ningún desarrollo**. Para preguntas más largas donde todas las puntuaciones son implícitas salvo los puntos de respuesta, esta regla es aplicable pero puede invalidarse mediante una **Nota** en el esquema de calificación.

- Dentro de un apartado dado, una vez que se ha cometido un **error** ya no se pueden conceder más puntos **A** en otras partes del desarrollo que hagan uso de ese error. Sin embargo, sí que se pueden conceder puntos **M** si procede.
- Si la pregunta resulta mucho más sencilla debido a un error, utilice su propio criterio para conceder menos puntos *FT*, reflexionando sobre a qué corresponde cada puntuación y cómo se traslada eso a la versión simplificada.
- Si el error conduce a un resultado inadecuado (p. ej., una probabilidad mayor que 1, $\sin\theta = 1,5$, un valor no entero allí donde hay que dar uno entero), no conceda el/los puntos correspondientes a las respuestas finales.

- Es posible que en el esquema de calificación se utilice la palabra "su(s)" en una descripción; con esto se quiere indicar que los alumnos quizá estén empleando un valor incorrecto.
- Si la respuesta del alumno a la pregunta inicial contradice claramente la información proporcionada en el enunciado de la pregunta, no es apropiado conceder ningún punto *FT* en los apartados posteriores. Esto incluye cuando los alumnos no logran completar correctamente una pregunta del tipo "mostrar que" y, en los siguientes apartados, utilizan su respuesta incorrecta en vez del valor proporcionado en el enunciado.
- Las excepciones a estas reglas de FT se indicarán de manera explícita en el esquema de calificación.
- Si un alumno comete un error en un apartado pero obtiene las respuestas correctas en los apartados posteriores, conceda puntos según corresponda, a no ser que el término de instrucción fuera "A partir de lo anterior".

5 Errores de lectura

Si un alumno comete un error al copiar en su hoja los valores o datos de la pregunta, esto se considera un "error de lectura" (*MR*, del inglés *MisRead*). A un alumno solo se le puede penalizar una vez por un error de lectura dado. Utilice el sello *MR* para indicar que se ha producido un error de lectura y no conceda el primer punto, aunque se trate de un punto *M*, pero conceda todos los demás según corresponda.

- Si la pregunta resulta mucho más sencilla debido al error de lectura (MR), utilice su propio criterio para conceder menos puntos.
- Si el MR conduce a un resultado inadecuado (p. ej., una probabilidad mayor que 1, sen $\theta = 1, 5$, un valor no entero allí donde hay que dar uno entero), no conceda el/los puntos correspondientes a las respuestas finales.
- Si el alumno comete un error al copiar su propio trabajo, eso **no** es un error de lectura, sino un error ordinario.
- Si el alumno utiliza una respuesta correcta a una pregunta del tipo "mostrar que" con un grado de precisión mayor del que se proporciona en el enunciado, eso NO es un error de lectura y se puede obtener la puntuación máxima en el apartado posterior.
- Los errores de lectura (MR) solo se pueden aplicar cuando el alumno haya incluido el desarrollo
 del ejercicio. En aquellas preguntas de calculadora donde no esté incluido el procedimiento y se
 haya dado una respuesta incorrecta, los examinadores no deben inferir que el alumno ha
 leído/copiado mal los valores de la calculadora.

6 Métodos alternativos

En ocasiones, los alumnos utilizan métodos distintos de los que aparecen en el esquema de calificación. A menos que en la pregunta se especifique qué método se ha de utilizar, el uso de métodos alternativos correctos no se ha de penalizar, sino que se ha de puntuar conforme a lo que indica el esquema de calificación. Si el término de instrucción es "A partir de lo anterior" y no "A partir de lo anterior o de cualquier otro modo", entonces no se permiten métodos alternativos a no ser que se indique mediante una nota en el esquema de calificación.

- Cuando se incluyen varios métodos alternativos para toda una pregunta, aparecen señalados mediante los encabezamientos MÉTODO 1, MÉTODO 2, etc.
- Las soluciones alternativas para un apartado dado de una pregunta se indican mediante el encabezamiento **O BIEN**... **O BIEN**.

7 Formas alternativas

A menos que en la pregunta se especifique lo contrario, acepte formas equivalentes.

- Dado que se trata de un examen internacional, acepte todas las formas alternativas de **notación**, por ejemplo 1.9 y 1,9; o 1000, 1,000 y 1.000.
- No acepte respuestas finales escritas con notación de calculadora. Sin embargo, se pueden obtener puntos M y puntos A intermedios en los que la información se haya presentado utilizando notación de calculadora, siempre que la evidencia refleje claramente el requisito para conceder la puntuación.
- En el esquema de calificación, las formas **numéricas** y **algebraicas** equivalentes suelen aparecer escritas entre paréntesis, justo a continuación de la respuesta.
- En el esquema de calificación, algunas respuestas **equivalentes** suelen aparecer escritas entre paréntesis. En el esquema de calificación no se presentan todas las notaciones/respuestas/métodos equivalentes, y se pide a los examinadores que apliquen su criterio de forma apropiada para evaluar si el trabajo del alumno es equivalente.

8 Formato y precisión de las respuestas

Cuando el grado de precisión se especifique en el enunciado de la pregunta, uno de los puntos se concederá por dar la respuesta con la precisión requerida. Si el grado de precisión no se indica en la pregunta, deben aplicarse las siguientes reglas: todas las respuestas numéricas deberán ser exactas o aproximadas con tres cifras significativas.

Cuando se utilicen los valores en apartados posteriores, el esquema de calificación generalmente empleará el valor exacto, si bien los alumnos también pueden usar la respuesta correcta con 3 cifras significativas en los apartados posteriores. El esquema de calificación con frecuencia indicará los valores posteriores que resulten "de utilizar valores con 3 cifras significativas".

Simplificación de las respuestas finales: Se aconseja a los alumnos que den las respuestas finales utilizando una forma matemática adecuada. En general, para conceder una puntuación **A**, se debe completar la aritmética y simplificar cualquier valor que conduzca a un número entero; por

ejemplo, $\sqrt{\frac{25}{4}}$ debe escribirse como $\frac{5}{2}$. Una excepción a lo anterior es la simplificación de fracciones, donde no se requiere la forma más sencilla (si bien el numerador y el denominador deben ser números enteros); por ejemplo, $\frac{10}{4}$ se puede dejar así o escribirla como $\frac{5}{2}$. Sin embargo, $\frac{10}{5}$ se debe escribir como 2, dado que se simplifica para dar un número entero.

Las expresiones algebraicas se deben simplificar realizando cualquier operación como la adición y la multiplicación; p. ej., $4e^{2x} \times e^{3x}$ se debe simplificar a $4e^{5x}$, y $4e^{2x} \times e^{3x} - e^{4x} \times e^{x}$ se debe simplificar a $3e^{5x}$. A no ser que se especifique en la pregunta, no es necesario factorizar las expresiones ni tampoco desarrollar las expresiones factorizadas, de modo que x(x+1) y $x^2 + x$ son ambas aceptables.

Tenga presente: para obtener los puntos **A** intermedios NO es necesario simplificar las respuestas.

9 Calculadoras

Para esta prueba se necesita una calculadora de pantalla gráfica, pero si se topa con un ejercicio que sugiera que el alumno ha utilizado algún tipo de calculadora no permitida en los exámenes del PD del IB (p. ej., dispositivos dotados de un sistema algebraico computacional), siga los procedimientos establecidos para abordar la conducta improcedente.

10. Presentación del trabajo del alumno

Procedimiento tachado: Si el alumno (en las hojas que contienen sus respuestas) ha trazado una línea cubriendo parte del procedimiento, o ha tachado de algún otro modo parte del procedimiento, no conceda ningún punto por esa parte del procedimiento, a no ser que haya una nota del alumno que indique explícitamente que quiere que se corrija esa parte del procedimiento.

Más de una solución: Cuando un alumno ofrezca dos o más respuestas distintas a una misma pregunta, el examinador solo debe puntuar la primera respuesta, a no ser que el alumno haya indicado lo contrario. Si la presentación de las respuestas hace que resulte difícil juzgar cuál es "la primera", los examinadores deben aplicar su criterio de manera apropiada para determinarlo.

Trabajo del alumno (solo P1 y P2 de Análisis y Enfoques): Los alumnos tienen instrucciones de escribir sus respuestas a las preguntas de la Sección A en el cuestionario de examen (CE), y las de

la Sección B en los cuadernillos de respuestas. En ocasiones los alumnos necesitan más espacio para la Sección A y utilizan el cuadernillo de respuestas o escriben fuera de las casillas. Ese trabajo hay que calificarlo.

Los alumnos tienen instrucciones de **no** escribir en la Sección B del CE. Es posible que hayan utilizado ese espacio como hoja de borrador, para hacer cálculos que dan por hecho que se van a ignorar. Si han escrito soluciones en el cuadernillo de respuestas, no hay necesidad de mirar la Sección B del CE. Sin embargo, si hay contestaciones a preguntas enteras (o apartados enteros) que no aparecen en el cuadernillo de respuestas, compruebe si están en el CE y puntúelas en caso de que sea así. Si hay una contestación en el cuadernillo de respuestas y otra en el CE, la contestación del cuadernillo debe considerarse la "primera" (véase más arriba).

Sección A

1. (a) 1,01206..., 2,45230...

$$a = 1.01$$
, $b = 2.45$ (1.01 $x + 2.45$)

A1A1

[2 puntos]

(b) 0,981464...

$$r = 0.981$$

Nota: Un error habitual fue el introducir incorrectamente los datos en la calculadora de pantalla gráfica y obtener por respuesta:

a = 1,01700..., b = 2,09814... y r = 0,980888... Hay algunos alumnos que quizá escriban la respuesta redondeando a 3 c.s. (es decir,

$$a = 1,02, b = 2,10 \text{ y } r = 0,981$$
) o a 2 c.s. (es decir,

 $a=1,0,\,b=2,1$ y r=0,98). En casos así conceda **A0A0** en el apartado

(a) y **A0** en el apartado (b). Aunque al redondear algunos valores se obtenga una respuesta aceptada, no hay que obviar que dicha respuesta proviene de un desarrollo incorrecto del ejercicio.

[1 punto]

(c) Por sustituir correctamente el 78 en **su** ecuación de la recta de regresión

(M1)

81,3930..., 81,23 si partió de una respuesta dada con 3 c. s.

81

A1

[2 puntos]

Total [5 puntos]

2. (a) Por tratar de utilizar el teorema del seno

(M1)

$$\frac{24}{\text{sen}113^{\circ}} = \frac{17}{\text{sen BAC}} \text{ O BIEN } \left(\text{sen BAC} = \right) 0,652024...$$
 (A1)

40,6943...

$$\hat{BAC} = 40,7^{\circ}$$

[3 puntos]

(b) **MÉTODO 1** (teorema del coseno aplicado a ABC o BAC)

Por tratar de utilizar el teorema del coseno

(M1)

$$24^2 = AB^2 + 17^2 - 2 \cdot 17 \cdot AB \cdot \cos 113^\circ \quad \left(AB^2 + 13.2848...AB - 287 = 0\right) \quad \text{O BIEN}$$

$$17^2 = AB^2 + 24^2 - 2 \cdot 24 \cdot AB \cdot \cos 40.6943... \circ \left(AB^2 - 36.3935...AB + 287 = 0\right)$$
 (A1)

11,5543...

$$AB = 11,6$$

MÉTODO 2 (teorema del coseno aplicado a \hat{BCA})

Por tratar de utilizar el teorema del coseno (M1)

Por la sustitución correcta (A1)

$$AB^2 = 17^2 + 24^2 - 2 \cdot 17 \cdot 24 \cdot \cos 26.3056...$$
° O BIEN $AB^2 = 133,502...$

11,5543...

$$AB = 11,6$$

MÉTODO 3 (teorema del seno)

Por tratar de utilizar el teorema del seno

(M1)

Por la sustitución correcta

(A1)

$$\frac{AB}{\text{sen26.3056...}^{\circ}} = \frac{24}{\text{sen113}^{\circ}} = \frac{17}{\text{sen40.6943...}^{\circ}} \quad \text{O BIEN } AB = \frac{24 \cdot \text{sen} \left(180^{\circ} - 113^{\circ} - 40.6943...^{\circ}\right)}{\text{sen113}^{\circ}}$$

11,5543...

AB = 11,6

A1

[3 puntos]

Total [6 puntos]

3. (a) (0,708519..., 0,639580...)

$$(0,709,0,640)$$
 $(x = 0,709, y = 0,640)$

A1A1

[2 puntos]

(b) 1,09885...

$$x = 1,10$$
 acepte $(1,10,0)$

A1

[1 punto]

(c) MÉTODO 1

$$\int_0^2 |f(x)| dx \tag{A1}$$

4,61117...

MÉTODO 2

$$-\int_{1.09885...}^{2} f(x)dx \text{ O BIEN } \int_{1.09885...}^{2} |f(x)|dx \text{ O BIEN 4.17527...}$$
 (A1)

$$\int_{0}^{1,09885...} f(x)dx - \int_{1,09885...}^{2} f(x)dx \text{ O BIEN } 0,435901... + 4,17527...$$
 (A1)

4,61117...

Área =
$$4.61$$
 (A1)

[3 puntos]

Total [6 puntos]

4.
$$86,4=50r^3$$
 (A1)

$$r = 1.2 \left(= \sqrt[3]{\frac{86.4}{50}} \right)$$
 incluido aquí o en algún otro lugar del desarrollo (A1)

$$\frac{50(1,2^n-1)}{0,2} > 33500 \text{ O BIEN } 250(1,2^n-1) = 33500$$
 (A1)

Por tratar de resolver su inecuación o ecuación con S_n (M1)

Por un bosquejo (dibujo aproximado) O BIEN $n>26,9045,\,n=26,9\,$ O BIEN $S_{26}=28368,8\,$ O BIEN $S_{27}=34092,6\,$ O BIEN por manipulación algebraica que involucra utilizar logaritmos

$$n=27$$
 acepte $n \ge 27$

Total [5 puntos]

5. La población inicial fue 15000 (visto aquí o en algún otro lugar de la pregunta) (A1)

P(0) = 15000 O BIEN 0.11×15000 O BIEN 0.89×15000

La población que había tras la disminución del 11 % fue de $15000 \times 0.89 (=13350)$ (A1)

Por reconocer que $\,t=8\,$ el 1° de Enero de 2022 (visto aquí o en algún otro

lugar de la pregunta) (A1)

Por sustituir su valor de t para el 1° de Enero de 2022 y su valor de P(8)

en el modelo (M1)

 $15000 \times 0,89 = 15000e^{8k}$ O BIEN $13350 = 15000e^{8k}$

$$k = \frac{\ln 0.89}{8} \left(-0.014566 \right) \tag{A1}$$

Por susutituir t = 2041 - 2014 (= 27) y su valor de k en el modelo (M1)

$$P(27) = 15000 e^{-0.0145...\times 27}$$

10122,3...

$$P(27) = 10100 (10122)$$

Total [7 puntos]

6.

Nota: No conceda ningún punto si hay indicios claros de que ha sumado en lugar de haber multiplicado; p. ej., ${}^9C_r + (ax)^{9-r} + (1)^r$.

Por utilizar un enfoque válido para el desarrollo (ha de ser el producto de un coeficiente del desarrollo de la potencia de un binomio n = 9 y una potencia de ax) (M1)

$${}^{9}C_{r}(ax)^{9-r}(1)^{r} \text{ OR } {}^{9}C_{9-r}(ax)^{r}(1)^{9-r} \text{ O BIEN } {}^{9}C_{0}(ax)^{0}(1)^{9} + {}^{9}C_{1}(ax)^{1}(1)^{8} + \dots$$

Por darse cuenta de que hace falta incluir el término en x^6

(M1)

$$\frac{\text{T\'ermino en } x^6}{21x^2} = kx^4 \text{ O BIEN } r = 6 \text{ O BIEN } r = 3 \text{ O BIEN } 9 - r = 6$$

Por el término correcto o el coeficiente correcto del desarrollo de la potencia de un binomio (visto aquí o en algún otro lugar de la pregunta) (A1)

$${}^{9}C_{6}(ax)^{6}(1)^{3}$$
 O BIEN ${}^{9}C_{3}a^{6}x^{6}$ O BIEN $84(a^{6}x^{6})(1)$ O BIEN $84a^{6}$

BIEN

Por el término correcto en x^4 o el coeficiente correcto (vale también si lo ha incluido en una ecuación) (A1)

$$\frac{{}^{9}C_{6}}{21}a^{6}x^{4}$$
 O BIEN $4a^{6}x^{4}$ O BIEN $4a^{6}$

Por plantear que su término en x^4 o coeficiente de x^4 es igual a $\frac{8}{7}a^5x^4$ o a $\frac{8}{7}a^5$

(no acepte otras potencias de x) (M1)

$$\frac{{}^{9}C_{3}}{21}a^{6}x^{4} = \frac{8}{7}a^{5}x^{4} \text{ OR } 4a^{6} = \frac{8}{7}a^{5}$$

O BIEN

Por el término correcto en x^6 o coeficiente de x^6 (vale también si lo ha incluido en una ecuación)

$$84a^6x^6 \text{ OR } 84a^6$$
 (A1)

Por plantear que su término en x^6 o coeficiente de x^6 es igual a $24a^5x^6$ or $24a^5$ (no acepte otras potencias de x)

(M1)

$$84a^6x^6 = 24a^5x^6$$
 OR $84a = 24$

ENTONCES

$$a = \frac{2}{7} \approx 0,286(0,285714...)$$

Nota: Conceda para el punto final un **A0** si da por respuesta $a = \frac{2}{7}$ o a = 0.

Total [6 puntos]

Sección B

7. (a) El desplazamiento inicial es s(0) (M1)

6 (m) A1

[2 puntos]

(b) La velocidad es s'

-2,29920

-2,30 (m/s)

[2 puntos]

(c) Por tratar de hallar los valores de t en los que la partícula cambia de dirección (M1)

 $t = 0.433007 \dots Y 3.25575 \dots Y 6.33965 \dots (Vale también si aparecen en un gráfico.) (A1)$

La partícula se está alejando de P cuando v > 0 O BIEN cuando s' > 0 (M1)

 $0 \le t < 0.433007..., 3.25575... < t < 6.33965...$

 $0 \le t < 0.433, \ 3.26 < t < 6.34$

[5 puntos]

(d) Por interpretar que la aceleración es a(t) = v'(t) O a(t) = s''(t) (M1)

Por hallar máximos/mínimos en el gráfico de la velocidad O por hallar ceros en el gráfico de la aceleración

(M1)

A1A1

A2

b = 1,23140..., c = 5,68959...

$$b = 1,23$$
, $c = 5,69$

[4 puntos]

(e) **MÉTODO 1** (utilizando la integral de la velocidad)

Por una integral correcta (acepte la ausencia de dt) (A1)

$$\int_{1,2314...}^{5,6895...} |v(t)| dt \quad O \quad \int_{b}^{c} |s'(t)| dt \quad O \quad -\int_{1,2314...}^{3,25575...} v(t) dt + \int_{3,25575...}^{5,6859...} v(t) dt \quad O \quad 3,8560 \ + \ 15,696$$

19,5525...

La distancia total = 19.6 (m)

MÉTODO 2 (utilizando diferencias en el desplazamiento)

Por hallar el desplazamiento en $b,c\,$ ${f y}$ el/los mínimos locales en el gráfico del desplazamiento

(A1)

(b, 4.43306), (c, 16.2734),(3.25575, 0.577001) O BIEN 4.43306,0.577001, 16.2734

Por utilizar un enfoque correcto

(A1)

(4,43306-0,577001) + (16,2734-0,57701) O BIEN acercándose a P 3,85606 + alejándose de P 15,696

19,5525...

La distancia total = 19.6 (m)

A1

[3 puntos]

Total [16 puntos]

8.

Nota: En los apartados (a) y (b) de esta pregunta, los alumnos pueden considerar el triángulo AOD o el triángulo AOE y trabajar de manera correcta para obtener la respuesta. El lado AD puede intercambiarse con el lado AE en el siguiente MS.

(a) Por tratar de utilizar las razones trigonométricas en un triángulo rectángulo o el teorema del seno para hallar AE en función de r y de α (M1)

$$\tan \alpha = \frac{r}{AE}$$
 O BIEN $\frac{AE}{\sec \left(\frac{\pi}{2} - \alpha\right)} = \frac{r}{\sec \alpha}$

$$AE = \frac{r}{\tan \alpha}$$
 O BIEN $AE = \frac{r \sin\left(\frac{\pi}{2} - \alpha\right)}{\sin \alpha}$ O BIEN $AE = \frac{r \cos \alpha}{\sin \alpha}$

Por utilizar un enfoque válido para hallar el área de ADOE

(M1)

2x área del triángulo AED O BIEN área del triángulo AED + área del triángulo OED O BIEN OE×AE

El área de ADOE =
$$2\left(\frac{1}{2} \cdot \frac{r}{\tan \alpha} \cdot r\right)$$
 O BIEN $r \times AE$

El área de ADOE =
$$\frac{r^2}{\tan \alpha}$$

[4 puntos]

(b) (i) Por darse cuenta de que la suma de los ángulos de una cometa es igual a 2π

$$\hat{DOE} + \hat{OEA} + \hat{EAD} + \hat{ADO} = 2\pi$$
 O BIEN $2\alpha + 2 \cdot \frac{\pi}{2} + \hat{DOE} = 2\pi$

$$\hat{DOE} = \pi - 2\alpha$$

Nota: Conceda (M1)A0 si el alumno utiliza grados (por ej

$$\hat{DOE} + \hat{OEA} + \hat{EAD} + \hat{ADO} = 360^{\circ} \text{ O BIEN } 2\alpha + 2 \cdot \frac{\pi}{2} + \hat{DOE} = 360^{\circ} \text{) y}$$

obtiene $\hat{DOE} = 180^{\circ} - 2\alpha$.

(ii) Por utilizar un enfoque válido para hallar el área de R

(M1)

(M1)

Área de la cometa – área del sector circular O BIEN 2(área del triángulo AOE-0.5 área del sector circular OED)

Área del sector circular = $\frac{1}{2}r^2D\hat{O}E\left(=\frac{1}{2}r^2(\pi-2\alpha)\right)$ visto aquí o en algún otro lugar de

Área de R =
$$\frac{r^2}{\tan \alpha} - \frac{1}{2}r^2(\pi - 2\alpha)$$

Note: Accept $\frac{r^2}{\tan \alpha} - \frac{1}{2}r^2 D\hat{O}E$

[5 puntos]

(c) Por igualar su fórmula del área a πr^2

$$\frac{r^2}{\tan \alpha} - \frac{1}{2}r^2(\pi - 2\alpha) = \pi r^2 \tag{M1}$$

Por la ecuación correcta en términos de α

$$\frac{1}{\tan \alpha} - \frac{1}{2} (\pi - 2\alpha) = \pi$$

Por un enfoque válido para resolver la ecuación (M1)

$$\alpha = 0,218979...$$

$$\alpha = 0.219$$

[4 puntos]

Total [13 puntos]

9.

Nota: No penalice la inclusión o la no inclusión de extremos para las probabilidades basadas en una distribución normal. Por ejemplo, para $P\big(T<55\,|\,T>40\big)\,\text{acepte}\ P\big(T\le55\,|\,T>40\big),\ P\big(T\le55\,|\,T\ge40\big),\ \text{etc.}$

(a) Por darse cuenta de que había que hallar P(T > 40)

P(T > 40) = 0.574136...

P(T > 40) = 0.574

[2 puntos]

(b) Por tratar de multiplicar cuatro probabilidades independientes, utilizando sus valores de P(T > 40) y de P(T < 40) (*M1*)

 $(1-p)^3 \cdot p$ O BIEN $(1-0.574136...)^3 \cdot 0.574136...$ O BIEN $(0.425864...)^3 \cdot 0.574136...$ (A1)

0,0443, 0,0444 si partió de una respuesta dada con 3 c.s.

[3 puntos]

A1

(c) (i) Por darse cuenta de que se trataba de probabilidad condicionada $P(T < 55 \,|\, T > 40)$

Nota: Conceda *(M1)* por una expresión o una descripción dadas en el contexto de la pregunta. Acepte $P(T > 40 \mid T < 55)$ pero no acepte solamente $P(A \mid B)$.

$$\frac{P(40 < T < 55)}{P(T > 40)}$$
(A1)

$$\frac{0.461944...}{0.574136...}$$
 (A1)

$$P(T < 55 | T > 40) = 0,804589...$$

$$=0.805$$

(ii) Por darse cuenta de que se trataba de probabilidad binomial (M1)

$$X \sim B(n, p)$$

$$n = 10 \text{ y } p = 0.804589...$$
 (A1)

0,0242111...0,0240188...usando p = 0,805

$$P(X=5)=0.0242$$

[7 puntos]

(d) Sea P(T < a) = x

Por darse cuenta de que la suma de las probabilidades es igual a 1

(visto aquí o en algún otro lugar de la pregunta)

(M1)

BIEN

Por expresar la suma de las tres regiones en una sola variable

(M1)

$$x + 0.904 + 2x$$
 O BIEN $P(T < a) + 0.904 + 2P(T < a)$ O BIEN

$$\frac{1}{2}P(T > b) + 0.904 + P(T > b)$$

O por indicar correctamente x y 2x en un diagrama rotulado con forma de campana

$$P(T < a) + 0.904 + 2P(T < a) = 1 \text{ O BIEN } \frac{1}{2}P(T > b) + 0.904 + P(T > b) = 1$$
 (A1)

(o alguna expresión equivalente)

O BIEN

Por expresar P(T < a) o P(T > b) solo en términos de $P(a \le T \le b)$ (M1)

$$(P(T < a) =) \frac{1}{3} (1 - P(a \le T \le b))$$
 O BIEN $(P(T > b) =) \frac{2}{3} \cdot (1 - P(a \le T \le b))$

$$x = \frac{1}{3}(1 - 0.904)(= 0.032)$$
 O BIEN $P(T > b) = \frac{2}{3}(1 - 0.904)(= 0.064)$ (A1)

ENTONCES

$$P(T < a) = 0.032$$

$$a = 22,18167...$$

$$a = 22,2$$
 acepte 22.1

A1

[4 puntos]

Total [16 puntos]