Premier problème : développement de cotangente et application

I : une série entière.

On pose, pour $x \in]-1,1[$

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 - x}$$

- 1. n étant un entier fixé au moins égal à 1 montrer que la fonction $u_n(x) = \frac{1}{n^2 x}$ est développable en série entière.
- 2. Démontrer que f est développable en série entière sur]-1,1[,
- 3. Déterminer une relation entre les dérivées $f^{(p)}(0)$ et les sommes $\alpha_p = \sum_{k=1}^{\infty} \frac{1}{k^{2p}}$.

II: equation fonctionnelle de la cotangente

Dans cette partie on determine une autre expression de la série précédente

4. Soit g une fonction continue sur \mathbb{R}/\mathbb{Z} . On suppose que g vérifie la condition (C) suivante :

$$(C) \begin{cases} g(x+1) = g(x) & \forall x \in \mathbb{R} \setminus \mathbb{Z} & (1) \\ g(\frac{x}{2}) + g(\frac{x+1}{2}) = 2g(x) & \forall x \in \mathbb{R} \setminus \mathbb{Z} & (2) \\ \lim_{0} g(x) = 0 & (3) \end{cases}$$

- (a) Montrer que g se prolonge en une fonction continue sur \mathbb{R} (qu'on note encore g).
- (b) Soit M la borne supérieure de la fonction g sur le segment [0,1].On note E l'ensemble des nombres t de ce segment qui vérifient g(t)=M. Démontrer que E est non vide et que si t est élément de E alors $\frac{t}{2}$ l'est également.
- (c) Montrer que M=0. En déduire que g est la fonction nulle.
- 5. Pour $x \in \mathbb{R} \setminus \mathbb{Z}$ on pose $S_n(x) = \sum_{-n}^n \frac{1}{k+x}$. Montrer que la suite $S_n(x)$ converge simplement vers la fonction h définie sur $\mathbb{R} \setminus \mathbb{Z}$ par $h(x) = \frac{1}{x} 2xf(x^2)$, f étant la fonction étudiée dans la première partie.
- 6. Démontrer que h vérifie les propriétés (1) et (2) de la condition (C) . on commencera par donner une expression simplifiée de $S_n(x+1) - S_n(x)$ et de $S_n(\frac{x}{2}) + S_n(\frac{x+1}{2}) - 2S_{2n}(x)$
- 7. On peut montrer en utilisant des formules de trigonométrie que la fonction $k(x) = \pi \cot (\pi x)$ vérifie également les propriétés (1) et (2) de la condition (C). Il n'est pas demandé de le faire.

En déduire que l'on a pour tout x élément de $]-1,1[\setminus\{0\},$

$$\pi \mathrm{cotan}(\pi x) = \frac{1}{x} - 2\sum_{n=0}^{\infty} \alpha_{n+1} x^{2n+1}$$

8. Application : il est facile de vérifier que la fonction cotangente possède le développement limité généralisé suivant :

$$\frac{1}{\tan u} = u^{-1} - \frac{1}{3}u - \frac{1}{45}u^3 - \frac{2}{945}u^5 + O(u^7).$$

Déterminer la valeur des sommes α_1 , α_2 et α_3 .

III: optionnel

Dans cette partie on explicite davantage les coefficients α_p .

9. (a) Montrer qu'il existe une unique suite $(b_n)_n$ de nombres rationnels telles que $b_0 = 1$ et pour n > 0, $\sum_{i=0}^n \binom{n+1}{i} b_i = 0$.

1

- (b) Calculer b_1, b_2 .
- (c) Etablir que $|b_n| \leq n!$.
- 10. En déduire que l'on a , pour tout z tel que |z| < 1, $\frac{z}{e^z 1} = \sum_{n > 0} \frac{b_n}{n!} z^n$.

Montrer que le rayon de convergence R de cette série ne peut excéder π .

- 11. On pose $\psi(z)=\frac{z}{e^z-1}$, montrer que $\psi(-z)=\psi(z)+z$; en déduire que $b_{2n+1}=0$ pour tout $n\geq 1$. Retrouver b_1 .
- 12. Démontrer que pour tout réel $u \in]-\pi,\pi[\setminus\{0\}]$ on a l'égalité $u\cot an(u)=iu+\psi(2iu)$.
- 13. A l'aide des résultats précédents établir l'égalité : $\alpha_p = (-1)^{p-1}b_{2p}\frac{\pi^{2p}2^{2p-1}}{(2p)!}$. Finalement combien vaut R?

Second problème

Dans ce problème, α et λ sont deux réels non nuls, $\alpha > 0$ et $|\lambda| < 1$. On considère l'équation fonctionnelle

$$f'(x) = \alpha f(x) + f(\lambda x)$$
 (E)

On se propose de résoudre cette équation à l'aide de séries entières.

1. Soit $c \in \mathbb{R}$. Démontrer qu'il existe une unique solution f de (E) développable en série entière et vérifiant f(0) = c. Déterminer le rayon de convergence de cette série.

Préciser la condition (C) pour que cette série soit un polynôme.

2. On suppose la condition (C) non satisfaite. On écrit $f(x) = \sum_{n=0}^{\infty} a_n x^n$.

On se propose de trouver un équivalent de f(x) quand x tend vers $+\infty$.

(a) Un lemme de comparaison :

On considère deux séries entières $u(x)=\sum u_nx^n$ et $v(x)=\sum v_nx^n$ de rayon $+\infty$. On fait en outre l'hypothèse que $v_n=o(u_n)$ et que u_n est strictement positif.

i. Soit ε un réel positif. Par hypothèse il existe N tel que pour n>N on ait $|v_n|\leq \varepsilon u_n$ Démontrer qu'il existe un polynôme P_ε tel que l'on ait pour tout x positif

$$|v(x)| \le \varepsilon u(x) + P_{\varepsilon}(x)$$

- ii. Démontrer que $P_{\varepsilon}(x)$ est négligeable devant u(x) quand x tend vers l'infini.
- iii. Conclure que v(x) = o(u(x)) quand x tend vers l'infini.
- (b) Démontrer la convergence de la suite de terme général $(n)!\alpha^{-n}a_n$.
- (c) Déduire des deux question précédentes qu'il existe une constante k telle que la fonction f vérifie l'équivalent

2

$$f(x) \sim ke^{\alpha x}$$

quand x tend vers l'infini. Il n'est pas demandé de déterminer la constante k.

- 3. Soit g une solution de (E) définie sur $\mathbb R$ vérifiant g(0)=c
 - (a) Pour $p \in \mathbb{N}^*$, exprimer $g^{(p)}(x)$ en fonction de $g^{(p-1)}, \alpha, \lambda$.
 - (b) Soit $a \in \mathbb{R}^+$.

Démontrer l'existence d'une constante κ_a telle que l'on ait pour tout $x \in [-a, a]$ et tout p,

$$|g^{(p)}(x)| \le \kappa_a |\alpha|^p$$

On pourra éventuellement se contenter montrer le résultat plus faible mais suffisant suivant

$$|g^{(p)}(x)| \le \kappa_a |(\alpha| + 1)^p$$

- (c) En déduire que g est développable en série entière sur \mathbb{R} .
- 4. Qu'a t'on finalement prouvé pour les solutions de l'équation différentielle (E)?