Software • Introduction + JMF · Programming + MIDP + Browser based software architecture + MHP + Distributed software • XML • Components + X-Smiles + Servers · Operating systems + Network + Terminals Petri Vuorimaa

Causes of multimedia

- Multimedia has continuous media elements, which have to be synchronized
- Media is usually transferred as streams
- Inside the stream, the samples (audio sample, video frame, etc.) are in order
- Media streams can be synchronized
 - + Internal synchronization: isochronous
 - + External synchronization: synchronous

Petri Vuorimaa

Buffering of media streams

- It is impossible to synchronize media streams exactly
- Data transfer delay fluctuates, which causes jitter
- Human can detect even small fluctuation
- Fluctuation can be reduced with buffering
- Usually, buffering is required in several stages

Petri Vuorimaa

Programming

- There are two ways to implement distributed multimedia system:
 - + client / server
 - + distributed software
- Browser software architecture is typical example of client / server architecture
- Distributed software means usually distributing a object oriented software into a network

Petri Vuorimaa

Browser based architecture

- Internet applications are based on client / server architecture
- WWW browser is a typical client program
- WWW server is a typical server
- There can also be other servers (database, video on demand, video conference, etc.)
- In addition infrastructure servers are needed (proxies, directories, etc.)

etri Vuorimaa

RealSystem

- RealSystem is a typical example of client / server architecture
- The system can stream different media (audio, video, animations, etc.)
- The system is composed of development tools, intermediate servers, and client programs
- The basic version of the client software is free, but other software products are commercial

Petri Vuorimaa

RealSystem architecture

| Composition | Com

Distributed software

- Object oriented software can easily be distributed to several computers
- Objects have to find each other somehow
 - + directory service
- The method calls and replies of the objects have to be forwarded to the right computer
 - + Object Request Broker (ORB)
- Commercial solutions are, e.g., OMG Corba, Microsoft DCOM & .NET, and Java RMI & Jini

Petri Vuorimaa

10

Components

- Client and object implementation talk via ORB
- The interfaces are defined with IDL (Interface Description Language)
- Normally, the calls are made to the static stub, which forwards the call via skeleton to the object
- The implementation can also be dynamic
- Object register with the help of the adapter

etri Vuorimaa

Software architecture implementation

- The software architecture can be implemented also on the system component level
- Multimedia affects both servers, network, and
- Efficient implementation requires additional features and even full redesign of some components

Petri Vuorimaa

Servers

- The servers can be classified into transaction (www, data base) and streaming servers (video)
- Scalability is most important feature of transaction
 - + if necessary, the task can be divided for several servers (replication)
- Most important feature of streaming servers is real-time support
 - + in practice, this means real-time scheduling

Petri Vuorimaa

Disk scheduling

- The hard disk usage of video-on-demand servers have to be designed carefully
- Usually, the disk seek time and space consumption is optimize
 - + thus data retrieval is based on fairness
- Video-on-demand server has to keep buffers full
 - + real-time scheduling algorithms
 - + relative location of files

Petri Vuorimaa

Oracle video server

Network

- Network has to support multimedia transfer:
 - + Quality of Service (QoS)
 - + real -time media streams
- Resources have to be reserved for multimedia
 - + ATM OoS
 - + IP Integrated Services
 - + IP Differentiated Services

Petri Vuorimaa

Network (cont.)

- Network protocols have to support real-time media streams
 - + e.g., IP Real-Time Protocol (RTP), Real-Time Control Protocol (RTCP), and Real-Time Streaming Protocol
- In addition, the network has to support several simultaneous users
 - + e.g., IP Multicast

Terminals

- The biggest problem of terminals is limited resources:
 - + processing power, memory, and communications
- Current operating systems support primarily graphical user interface
- Support for multimedia is more limited
- Real-time operating system support better multimedia

Petri Vuorimaa

Multimedia processing steps

- · Receiving of packets
- · Network drivers
- IP/UDP protocol
- Real-time transfer protocols
- Codec
- Player
- · Windowing system
- Audio, video, etc. drivers

Petri Vuorimaa

User interaction

- The terminal also has to track the user
 - + keyboard
 - + mouse
 - + etc.
- The devices create interrupts
- The interrupts can easily jam with the network, etc. interrupts

Petri Vuorimaa

Terminal software architecture

- The terminal software architecture can be implemented with several ways
 - + operating system + drivers + windowing
 - + browser + plug-in players
 - + Java
 - + XML browser

Petri Vuorimaa

Java Media Framework • JMF allows use of multimedia in Java applications • Real-time network protocols • Multiplexing • Codecs • Players • Effects • Capture • Control

Java MIDP

Petri Vuorimaa

- Mobile Information Device Profile (MIDP)
- Intended for small devices
 - $+ \ Mobile \ phones \ etc.$
- Consists of Java Virtual Machine (JVM) and Application Programming Interfaces (API)
- Latest version 2.0

Petri Vuorimaa 29

MIDP Requirements

- Minimum requirements are:
 - + Display 96x54, 1 bit (b/w)
 - + 256 KB memory for MIDP implementation
 - + 8 KB application memory
 - + Two directional network
 - + Audio

Petri Vuorimaa

MIDP basic APIs

- Basic packets (java.lang & java.util)
- Network (javax.microedition.io)
- Application lifecycle (javax.microedition.midlet)
- Data storage (javax.microedition.rms)
- User interface (javax.microedition.lcdui & javax.microedition.lcdui.game)
- Certificates (javax.microedition.pki)
- Multimedia (java.microedition.media & javax.microedition.media.control)

Petri Vuorimaa

Extensions

- Java Bluetooth API (JSR-82)
- Java Wireless Messaging API (JSR-120)
- Java Mobile Media API (JSR-135)
- Nokia UI API

Petri Vuorimaa

Mobile Multimedia API

- Mobile Media (MMAPI) version 1.0 + java.sun.com/products/mmapi
- Support for continuous media (e.g., audio, video) in MIDP
- Platform independent thin Java layer
- Not the same thing as JMF
- Optional package
- MIDP 2.0 includes only audio part of MMAPI

Petri Vuorimaa

Multimedia Home Platform

- One example of Java environment is the Multimedia Home Platform (MHP) of digital television
- The environment is composed of Java, JMF, TV, net, etc. APIs
- Applications are called Xlets
- The Xlets are transmitted via broadcast network
- Data is transferred through so called data- and object carousels

Petri Vuorimaa

XML

- Metalanguage for defining markup languages
 - + XML languages can be used either for presenting or processing of content
- Processing means, e.g., retrieval or filtering of XML data
- Presenting means presenting of XML content in different kinds of terminals
- Often, Cascading Style Sheets (CSS) and ECMAScript language are used in addition

Petri Vuorimaa

Processing Languages

- eXtensible Stylesheet Language Transformations (XSLT) XML data transformations
- XML Schema Data model
- XPath Element references

Petri Vuorimaa

Presentation Languages

- XSL Formatting Objects (XSL FO) Formatting
- eXtensible HyperText Markup Language (XHTML) HTML 4.01 in XML format
- Synchronized Multimedia Integration Language (SMIL) Synchronized multimedia language
- Scalable Vector Graphics (SVG) Vector graphics
- X3D 3D graphics
- VoiceXML Voice control

Petri Vuorimaa

Processing of XML data

- · Parsing of XML file
- Parsing of XSL style sheet
- Transformation of XML according to $\,$ XSL style sheet
- Document Object Model (DOM) data structure
- Execution of start-up scripts
- Building of presentation language layout model
- Rendering of presentation language
- Execution of event handler scripts

Petri Vuorimaa

XML Components

- XML parser
- XSL transformer
- DOM interface
- ECMAScript interpreter
- XPath engine
- XML Schema engine
- CSS layout

Petri Vuorimaa

X-Smiles History

- Development of X-Smiles started as student software project in 1998
- Later development work has continued in various research projects
 - + GO
 - + XML Devices
- Published as open source code in 2001
 - + www.x-smiles.org

Petri Vuorimaa

- 44

Operating systems

- In current software architectures, operating system has very important role
- Most of the media processing is done by calling system software
- Application acts as coordinator
- Data copying between application and operating systems causes problems
- Operating systems are poor resource managers

Petri Vuorimaa

-----l 46

Real-time operating system

- Small size: extra features have been removed
- Interrupt processing: jamming prevented
- Real-time scheduling: time of task processing
- Memory management: shared memory
- Message forwarding: communication between different levels is fast
- **Resource reservation:** task will not be accepted, if resources are not available

Petri Vuorima

Microkernel

- Operating system becomes more compact, if all "unnecessary" features are removed
 - + windowing, share file systems, etc.
- One solution is use so called Microkernel
 - + the kernel of the operating system is as small as possible and real-time
 - + other features are implemented as user processes
 - + the required system can be composed from different components

Petri Vuorimaa 4

Embedded Linux

- Linux is an interesting alternative also in embedded devices
- Unnecessary features (e.g., X-Windows) can be removed so that memory consumption is reduced
- Implementation of real-time features in kernel is very difficult, but not always necessary
- For example, in set-top box hardware takes care of video and audio processing

Petri Vuorimaa