Министерство ФГБОУ Югорский государственный университет Институт цифровой экономики

Отчет о лабораторной работе по дисциплине:
Аппаратное обеспечение вычислительных систем
Анализ функционирования линейной непрерывной системы автоматического управления

Студент гр. 1191б Аббазов В.Р.

Преподаватель Усманов Р.Т.

Ханты-Мансийск

2022

1. ИСХОДНЫЕ ДАННЫЕ

1.1. Структура и параметры исходной нескорректированной САУ

Табл. 1.1 Алгебраические уравнения исходной САУ

$x_3=v-y$	$x_4 = y_3$	$x_2 = y_4$	$x_1=y_2-f$
-----------	-------------	-------------	-------------

Табл. 1.2 Параметры динамических звеньев исходной САУ

k_1	f_{I}	T_1	k ₀₁	k_2	f_2	T_2	k_{02}	<i>k</i> ₃	T_3	<i>k</i> ₄	f_4	T_4
1.3	1.0	0.4	0.0	0.5	1.0	0.2	0.0	0.5	0.0	0.5	0.4	0.3

- v задающее воздействие,
- f возмущающее воздействие,
- х_і входная переменная і-го звена,
- у_і выходная переменная і-го звена,
- у = у_і выходная (управляемая) переменная САУ

1.2. Система обыкновенных дифференциальных уравнений, описывающих динамику звеньев исходной САУ

$$T_1 \frac{d^2 y_1}{dt^2} + \frac{dy_1}{dt} = k_1 \left(f_1 \frac{dx_1}{dt} + k_{01} x_1 \right), \quad (1)$$

$$T_2 \frac{d^2 y_2}{dt^2} + \frac{dy_2}{dt} = k_2 \left(f_2 \frac{dx_2}{dt} + k_{02} x_2 \right), \quad (2)$$

$$T_3 \frac{dy_3}{dt} + y_3 = k_3 y_3, (3)$$

$$T_4 \frac{dy_4}{dt} + y_4 = k_4 \left(f_4 \frac{dx_4}{dt} + x_4 \right). \tag{4}$$

2. АНАЛИЗ НЕПРЕРЫВНОЙ ЛИНЕЙНОЙ САУ

2.1. В соответствии с табл. 1.1 составить структурную схему линейной нескорректированной САУ

Рис. 2.1 Структурная схема САУ

2.2. На основании уравнений записать уравнения в операторной форме записи в общем виде и с учетом численных значений.

Табл. 2.1 Дифференциальные уравнения в операторной форме записи

№	Операторная форма				
исходного уравнения	Общий вид	С учетом численных значений			
1	$T_1 p^2 y_1 + p y_1 = k_1 (f_1 p x_1 + k_{01} x_1)$	$0.4p^2y_1 + py_1 = 1.3px_1$			
2	$T_2 p^2 y_2 + p y_2 = k_2 (f_2 p x_2 + k_{02} x_2)$	$0.2p^2y_2 + py_2 = 0.5px_2$			
3	$T_3 p y_3 + y_3 = k_3 x_3$	$y_3 = 0.5x_3$			
4	$T_4 p y_4 + y_4 = k_4 (f_4 p x_4 + x_4)$	$0.3py_4 + y_4 = 0.5(0.4px_4 + x_4)$			

2.3. Получить передаточные функции типовых звеньев структурной схемы

Табл. 2.2 Передаточные функции звеньев

No	Передаточная функция					
звена	Общий вид	С учетом численных значений				
1	$W_1(p) = \frac{k_1(f_1p + k_{01})}{T_1p^2 + p}$	$W_1(p) = \frac{1.3p}{0.4p^2 + p}$				
2	$W_2(p) = \frac{k_2(f_2p + k_{02})}{T_2p^2 + p}$	$W_2(p) = \frac{0.5p}{0.2p^2 + p}$				
3	$W_3(p) = \frac{k_3}{T_3p + 1}$	$W_3(p) = 0.5$				
4	$W_4(p) = \frac{k_4(f_4p + 1)}{T_4p + 1}$	$W_4(p) = \frac{0.2p + 0.5}{0.3p + 1}$				

2.3. Провести имитационное моделирование

Рис. 2.3 Результат моделирования