Devoir surveillé n° 5 : corrigé

Problème 1 — Petites Mines 2009

Partie I - Étude d'une fonction

1. f est dérivable sur \mathbb{R} par opérations arithmétiques sur des fonctions dérivables. Pour tout $x \in \mathbb{R}$,

$$f'(x) = 3(1 - 2x^2)e^{-2x^2}$$

On en déduit que f est

- ▶ strictement décroissante sur $\left]-\infty, -\frac{1}{\sqrt{2}}\right]$;
- ▶ strictement croissante sur $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$;
- ▶ strictement décroissante sur $\left[\frac{1}{\sqrt{2}}, +\infty\right[$.

Pour tout $x \neq 0$, $xe^{-x^2} = \frac{x^2e^{-x^2}}{x}$. Par croissances comparées,

$$\lim_{x \to +\infty} x^2 e^{-x^2} = \lim_{x \to -\infty} x^2 e^{-x^2} = 0$$

via le changement de variables $X=x^2$. A fortiori

$$\lim_{x \to +\infty} x e^{-x^2} = \lim_{x \to -\infty} x e^{-x^2} = 0$$

Puis, par opérations

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = -1$$

On en déduit le tableau de variations suivant.

x	$-\infty$	$-\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{2}}$		$+\infty$
f'(x)	_	O	+	0	_	
f(x)	-1	$f\left(-\frac{1}{\sqrt{2}}\right)$		$f\left(\frac{1}{\sqrt{2}}\right)$		_1

En particulier, C_f admet une asymptote horizontale d'équation y=-1 au voisinage de $+\infty$ et $-\infty$. Puisque f(-x)+f(x)=-2 pour tout $x\in\mathbb{R}$, C_f est symétrique par rapport au point de coordonnées (0,-1).

2. Puisque f(0) = -1 et f'(0) = 3, C_f admet au point d'abscisse 0 une tangente d'équation y = 3x - 1. Pour tout $x \in \mathbb{R}$

$$f(x) - (3x - 1) = 3x(e^{-x^2} - 1)$$

Pour tout $x \in \mathbb{R}$, $e^{-x^2} - 1 \le 0$ car $-x^2 \le 0$ et par croissance de exp sur \mathbb{R} . Ainsi $f(x) - (3x - 1) \le 0$ pour $x \ge 0$ et $f(x) - (3x - 1) \ge 0$ pour $x \le 0$. On en déduit que \mathcal{C}_f est au-dessus de sa tangente à gauche de 0 et au-dessous de celle-ci à droite de 0. \mathcal{C}_f admet donc un point d'inflexion au point d'abscisse 0.

3.

- 4. a. f étant de classe \mathcal{C}^{∞} sur \mathbb{R} , elle admet un développement limité à tout ordre en 0.
 - **b.** On sait que $e^{u} = 1 + u + \frac{u^{2}}{2} + o(u^{2})$. On en déduit que

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2} + o(x^4)$$

puis que

$$f(x) = _{x \to 0} -1 + 3x - 3x^3 + \frac{3}{2}x^5 + o(x^5)$$

Partie II – Étude d'une équation différentielle

- 1. L'équation différentielle H_n est $xy'-(n-2x^2)y=0$. Sur \mathbb{R}^* , elle équivaut à $y'-\left(\frac{n}{x}-2x\right)y=0$. Une primitive de $x\mapsto\frac{n}{x}-2x$ sur \mathbb{R}^*_+ est $x\mapsto n\ln(x)-x^2$. Les solutions de H_n sur \mathbb{R}^*_+ sont donc les fonctions $x\mapsto \lambda x^n e^{-x^2}$ où λ décrit \mathbb{R} . Une primitive de $x\mapsto\frac{n}{x}-2x$ sur \mathbb{R}^*_- est $x\mapsto n\ln(-x)-x^2$. Les solutions de H_n sur \mathbb{R}^*_+ sont donc les fonctions $x\mapsto \lambda(-x)^n e^{-x^2}$ où λ décrit \mathbb{R} ou, de manière plus simple, les fonctions $x\mapsto \lambda x^n e^{-x^2}$ où λ décrit encore \mathbb{R} .
- 2. La fonction constante égale à -1 étant clairement une solution particulière de E_n sur \mathbb{R} . On en déduit que les solutions de E_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* sont les fonctions $x\mapsto -1+\lambda x^ne^{-x^2}$.
- 3. Supposons dans un premier temps n=1. Soit y une solution de E_1 sur \mathbb{R} . Comme y est solution de E_1 sur \mathbb{R}_+^* et \mathbb{R}_-^* , il existe $(\lambda,\mu)\in\mathbb{R}^2$ tel que

$$y(x) = \begin{cases} -1 + \lambda x e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x e^{-x^2} & \text{si } x < 0 \end{cases}$$

La continuité de y en 0 impose y(0) = -1. De plus,

$$\lim_{x\to 0^+}\frac{y(x)-y(0)}{x-0}=\lambda \qquad \mathrm{et} \lim_{x\to 0^+}\frac{y(x)-y(0)}{x-0}=\mu$$

La dérivabilité de y en 0 impose donc $\lambda = \mu$. On a donc $y(x) = \lambda x e^{-x^2}$ pour tout $x \in \mathbb{R}$. Réciproquement pour tout $\lambda \in \mathbb{R}$, $x \mapsto -1 + \lambda x e^{-x^2}$ est de classe \mathcal{C}^1 et solution de E_1 sur \mathbb{R} .

Les solutions de E_1 sur \mathbb{R} sont donc les fonctions $x \mapsto -1 + \lambda x e^{-x^2}$ où λ décrit \mathbb{R} .

Supposons maintenant $n \ge 2$. Comme précédemment toute solution y de E_n sur $\mathbb R$ est nécessairement de la forme

$$y(x) = \begin{cases} -1 + \lambda x^n e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x^n e^{-x^2} & \text{si } x < 0 \\ -1 & \text{si } x = 0 \end{cases}$$

Réciproquement, si y est de la forme précédente, elle est bien solution de E_n sur \mathbb{R}_+^* et \mathbb{R}_-^* , elle est bien de classe \mathcal{C}^1 sur \mathbb{R}_+^* et sur \mathbb{R}^* , elle est continue en 0 puisque $\lim_{0^+} y = \lim_{0^-} y = 0 = y(0)$ et

$$\lim_{x \to 0^+} y'(x) = \lim_{x \to 0^-} y'(x) = 0$$

donc y est de classe \mathcal{C}^1 sur \mathbb{R} en vertu du théorème de prolongement \mathcal{C}^1 .

REMARQUE. Si on ne connaît pas encore le théorème de prolongement \mathcal{C}^1 , on procède «à la main». On constate que

$$\lim_{x \to 0^+} \frac{y(x) - y(0)}{x - 0} = \lim_{x \to 0^-} \frac{y(x) - y(0)}{x - 0} = 0$$

donc y est dérivable en 0 et y'(0) = 0. De plus

$$\lim_{x\to 0^+} y'(x) = \lim_{x\to 0^-} y'(x) = 0 = y'(0)$$

donc y' est continue en 0. Puisque y' est continue sur \mathbb{R}_+^* et \mathbb{R}_-^* , y' est continue sur \mathbb{R} i.e. y est de classe \mathcal{C}^1 sur

On vérifie alors que y est encore solution de E_n en 0 donc elle est solution de E_n sur \mathbb{R} .

Partie III – Étude de deux suites

- 1. On a $f_n(0) = -1 < 0$ et $f_n(1) = \frac{3}{e} 1 > 0$.
- 2. f_n est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$

$$f'_n(x) = 3(nx^{n-1} - 2x^{n+1})e^{-x^2} = 3x^{n-1}(n - 2x^2)e^{-x^2}$$

On en déduit que f_n est strictement croissante sur $\left[0, \sqrt{\frac{n}{2}}\right]$ et strictement décroissante sur $\left[\sqrt{\frac{n}{2}}, +\infty\right[$. Pour tout $x \in \mathbb{R}_+^*$

$$f_n(x) = (x^2)^{\frac{n}{2}} e^{-x^2} - 1$$

donc, par croissances comparées, $\lim_{x\to+\infty} f_n(x) = -1$.

Remarquons que puisque $n \ge 2$, $1 \in [0, \sqrt{\frac{n}{2}}]$ et puisque f_n est strictement croissante sur cet intervalle, $f_n\left(\sqrt{\frac{n}{2}}\right) \ge$

f est strictement monotone et continue sur chacun des deux intervalles $\left[0,\sqrt{\frac{n}{2}}\right]$ et $\left[\sqrt{\frac{n}{2}},+\infty\right[$. De plus, $f_n(0)<0$, $f_n\left(\sqrt{\frac{\pi}{2}}\right) > 0$ et $\lim_{\infty} f < 0$ donc, d'après le corollaire du théorème des valeurs intermédiaires, f_n s'annule une unique fois sur chacun des deux intervalles $\left[0,\sqrt{\frac{n}{2}}\right]$ et $\left[\sqrt{\frac{n}{2}},+\infty\right[$ en deux réels notés respectivement u_n et v_n . Puisque $f_n(1)>0$ et que 1 appartient à l'intervalle $\left[0,\sqrt{\frac{n}{2}}\right]$ sur lequel f_n est strictement croissante, $u_n>1$. Par

ailleurs $v_n > \sqrt{\frac{n}{2}} \ge 1$ puisque $n \ge 2$.

- 3. D'après la question précédente, $\nu_n \geqslant \sqrt{\frac{\pi}{2}}$ pour tout $n \geqslant 2$. Or $\lim_{n \to +\infty} \sqrt{\frac{\pi}{2}} = +\infty$ donc $\lim_{n \to +\infty} \nu_n = +\infty$ par théorème de minoration.
- a. Par définition, $f_n(u_n) = 0$ pour tout $n \ge 2$ donc $e^{-u_n^2} = \frac{1}{3u^n}$.
 - **b.** $f_{n+1}(u_n) = 3u_n^{n+1}e^{-u_n^2} 1 = u_n 1 < 0.$
 - $\mathbf{c.} \ \, \mathrm{On \ sait \ \'egalement \ que \ } f_{n+1}(u_{n+1}) = 0 \ \mathrm{et \ que \ } f_{n+1} \ \mathrm{est \ strictement \ croissante \ sur \ l'intervalle \ [0,1] \ \mathrm{contenant}$ u_n et u_{n+1} . D'où $u_n < u_{n+1}$. Ceci étant valable pour tout $n \geqslant 2$, la suite $(u_n)_{n\geqslant 2}$ est strictement croissante.
 - d. La suite $(u_n)_{n\geqslant 2}$ est également majorée par 1 donc elle converge en vertu du théorème de la limite monotone.
- a. Évident.

b. Supposons $l \neq 1$. On a en fait l < 1 puisque (u_n) est majorée par 1. Pour tout $n \geq 2$, $f_n(u_n) = 0$ et donc $g_n(u_n) = 0$ d'après la question précédente. Ainsi pour tout $n \in \geq 2$.

$$0 = \ln 3 + n \ln(u_n) - u_n^2$$

Puisque l < 1, le membre de droite diverge vers $-\infty$, ce qui est absurde. On en déduit que l = 1.

c. Pour tout $n \ge 2$, $g_n(u_n) = 0$ et donc

$$n\ln(1+w_n) = u_n^2 - \ln 3$$

Puisque (w_n) converge vers 0, $n \ln(1+w_n) \sim nw_n$. Par ailleurs, $\lim_{n\to+\infty} u_n^2 - \ln 3 = 1 - \ln 3$ donc

$$w_n \sim \frac{1 - \ln 3}{n}$$

SOLUTION 1.

- 1. On sait que th est strictement croissante et continue sur \mathbb{R} . De plus, $\lim_{-\infty} th = -1$ et $\lim_{+\infty} th = 1$. Donc th induit une bijection de \mathbb{R} sur G.
- **2.** Soit $(a, b) \in \mathbb{R}^2$.

$$\begin{split} \frac{\operatorname{th}(\alpha) + \operatorname{th}(b)}{1 + \operatorname{th}(\alpha) \operatorname{th}(b)} &= \frac{\frac{\sinh \alpha}{\operatorname{ch} \alpha} + \frac{\sinh b}{\operatorname{ch} b}}{1 + \frac{\sinh \alpha}{\operatorname{ch} \alpha} \cdot \frac{\sinh b}{\operatorname{ch} b}} \\ &= \frac{\sinh \alpha \operatorname{ch} b + \sinh b \operatorname{ch} \alpha}{\operatorname{ch} \alpha \operatorname{ch} b + \sinh a \operatorname{sh} b} \\ &= \frac{(e^{\alpha} - e^{-\alpha})(e^{b} + e^{-b}) + (e^{b} - e^{-b})(e^{\alpha} + e^{-\alpha})}{(e^{\alpha} + e^{-\alpha})(e^{b} + e^{-b}) + (e^{b} - e^{-b})(e^{\alpha} - e^{-\alpha})} \\ &= \frac{e^{\alpha + b} - e^{-(\alpha + b)}}{e^{\alpha + b} + e^{-(\alpha + b)}} = \operatorname{th}(\alpha + b) \end{split}$$

3. Vérifions que \star est une loi interne sur G. Soit $(x,y) \in G^2$. Par surjectivité de th sur G, il existe $(a,b) \in \mathbb{R}^2$ tel que $x = \operatorname{th} a$ et $y = \operatorname{th} b$. Alors $x \star y = \operatorname{th}(a+b) \in G$.

La loi \star est clairement commutative.

Vérifions que \star est associative. Soit $(x,y,z) \in G^3$. Comme précédemment, il existe $(a,b,c) \in \mathbb{R}^3$ tel que $(x,y,z) = (\operatorname{th} a,\operatorname{th} b,\operatorname{th} c)$. Alors

$$(x \star y) \star z = \operatorname{th}(a + b) \star \operatorname{th} c = \operatorname{th}(a + b + c) = \operatorname{th} a \star \operatorname{th}(b + c) = x \star (y \star z)$$

Pour tout $x \in G$, $0 \star x = x \star 0 = x$ et $0 \in G$ donc 0 est neutre pour \star .

Enfin, pour tout $x \in G$, $x \star (-x) = (-x) \star x = 0$ et $-x \in G$ donc tout élément de G est inversible pour la loi \star . Tout ceci prouve que (G, \star) est un groupe commutatif.

4. Tout d'abord $x^{\star 0} = 0 = \frac{(1+x)^0 - (1-x)^0}{(1+x)^0} + (1-x)^0$. Supposons que $x^{\star n} = \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}$ pour un certain $n \in \mathbb{N}$. Alors

$$\begin{split} x^{\star(n+1)} &= x \star x^{\star n} \\ &= \frac{x + x^{\star n}}{1 + x \cdot x^{\star n}} \\ &= \frac{x + \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}}{1 + x \cdot \frac{(1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n}} \\ &= \frac{x(1+x)^n + x(1-x)^n + (1+x)^n - (1-x)^n}{(1+x)^n + (1-x)^n + x(1+x)^n - x(1-x)^n} \\ &= \frac{(1+x)(1+x)^n - (1-x)(1-x)^n}{(1+x)(1+x)^n + (1-x)(1-x)^n} \\ &= \frac{(1+x)^{n+1} - (1-x)^{n+1}}{(1+x)^{n+1} + (1-x)^{n+1}} \end{split}$$

Par récurrence, l'égalité de l'énoncé est vraie pour tout $n \in \mathbb{N}$. Enfin, si $n \in \mathbb{Z}_{-}$, en utilisant le fait que $-n \in \mathbb{N}$,

$$\begin{split} x^{\star n} &= (x^{\star - 1})^{\star (-n)} = (-x)^{\star (-n)} \\ &= \frac{(1 + (-x))^{-n} - (1 - (-x))^{-n}}{(1 + (-x))^{-n} + (1 - (-x))^{-n}} \\ &= \frac{\frac{1}{(1 - x)^n} - \frac{1}{(1 + x)^n}}{\frac{1}{(1 - x)^n} + \frac{1}{(1 + x)^n}} \\ &= \frac{(1 + x)^n - (1 - x)^n}{(1 + x)^n + (1 - x)^n} \end{split}$$

SOLUTION 2.

1. a. Récurrence évidente.

b. Soit $n \in \mathbb{N}^*$.

$$u_{n} - \sqrt{a} = \frac{1}{2} \left(u_{n-1} - 2\sqrt{a} + \frac{a}{u_{n-1}} \right) = \frac{1}{2} \left(\sqrt{u_{n-1}} - \frac{\sqrt{u_{n-1}}}{\sqrt{a}} \right)^{2} \geqslant 0$$

c. Soit $n \in \mathbb{N}^*$.

$$u_{n+1} - u_n = \frac{1}{2} \left(\frac{a}{u_n} - u_n \right) = \frac{a - u_n^2}{u_n}$$

Or $u_n > 0$ et $u_n^2 \ge a$ d'après la question 1.b donc $u_{n+1} - u_n \le 0$. La suite (u_n) est donc décroissante à partir du rang 1.

d. La suite (u_n) est décroissante et minorée (par 0 ou \sqrt{a} au choix) donc elle converge vers un réel ℓ . Par passage à la limite, $\ell \geqslant \sqrt{a} > 0$ donc on peut affirmer que $\lim_{n \to +\infty} \frac{a}{u_n} = \frac{a}{\ell}$ puis que $\ell = \frac{1}{2} \left(\ell + \frac{a}{\ell} \right)$. On en déduit que $\ell^2 = a$ et, comme $\ell > 0$, $\ell = \sqrt{a}$.

2. On pose $\nu_n = \frac{u_n - \sqrt{\alpha}}{u_n + \sqrt{\alpha}}$ pour tout $n \in \mathbb{N}$.

a. Soit $n \in \mathbb{N}$. D'une part,

$$u_{n+1} - \sqrt{a} = \frac{1}{2} \left(u_n - 2\sqrt{a} + \frac{a}{u_n} \right) = \frac{(u_n - \sqrt{a})^2}{2u_n}$$

D'autre part,

$$u_{n+1} + \sqrt{a} = \frac{1}{2} \left(u_n + 2\sqrt{a} + \frac{a}{u_n} \right) = \frac{(u_n + \sqrt{a})^2}{2u_n}$$

On en déduit que

$$\nu_{n+1} = \frac{u_{n+1} - \sqrt{a}}{u_{n+1} - \sqrt{a}} = \frac{(u_n - \sqrt{a})^2}{(u_n + \sqrt{a})^2} = \nu_n^2$$

 $\mathbf{b.}\ \mathrm{Une}\ \mathrm{r\'{e}currence}\ \mathrm{\'{e}vidente}\ \mathrm{montre}\ \mathrm{que}\ \nu_{n}=\nu_{0}^{2^{n}}\ \mathrm{pour}\ \mathrm{tout}\ n\in\mathbb{N}.$

 $\mathbf{c.} \ \ \mathrm{Puisque} \ u_0 > 0 \ \mathrm{et} \ a > 0, \ u_0 - \sqrt{a} < u_0 + \sqrt{a} \ \mathrm{et} \ \sqrt{a} - u - 0 < u_0 + \sqrt{a} \ \mathrm{donc} \ |u_0 - \sqrt{a}| < u_0 + \sqrt{a} = |u_0 + \sqrt{a}|.$ On en déduit que $|v_0| < 1$.

d. Pour tout $n \in \mathbb{N}^*$, $\nu_n = \nu_0^{2^n}$. Or $|\nu_0| < 1$. On en déduit que (ν_n) converge vers 0. Or pour tout $n \in \mathbb{N}$,

$$u_n = \frac{1 + v_n}{1 - v_n} \sqrt{a}$$

Donc (u_n) converge vers \sqrt{a} .

3. On s'intéresse maintenant à la vitesse de convergence de (\mathfrak{u}_n) vers sa limite.

 $\textbf{a. La suite } (u_n + \sqrt{a}) \text{ est convergente donc born\'ee. Ainsi } u_n + \sqrt{a} \underset{n \to +\infty}{=} \mathcal{O}(1). \text{ Or pour } n \in \mathbb{N}^*, \ \nu_n = \nu_{n-1}^2 \geqslant 0 \text{ donc } \nu_n = |\nu_n| = |\nu_0|^{2^n} = K^{2^n} \text{ en posant } K = |\nu_0|. \text{ Or } u_n - \sqrt{a} = \nu_n(u_n + \sqrt{a}) \text{ donc } u_n - \sqrt{a} \underset{n \to +\infty}{=} \mathcal{O}(K^{2^n}).$

b. Montrer que pour tout $q \in [0, 1[$, $u_n - \sqrt{a} = o(q^n)$.

c. Soit $q \in]0,1[$. La question précédente nous dit qu'il suffit de montrer que $K^{2^n} = o(q^n)$. C'est évident si K = 0. Sinon, pour tout $n \in \mathbb{N}$,

$$\frac{K^{2^n}}{q^n} = \exp\left(2^n \ln K - n \ln q\right)$$

Or pour tout $n \in \mathbb{N}$,

$$2^n \ln K - n \ln q = 2^n \left(\ln K - \frac{n}{2^n} \ln q \right)$$

Par croissance comparées, $\lim_{n\to +\infty}\frac{n}{2^n}=0$ donc $\lim_{n\to +\infty}\ln K-\frac{n}{2^n}\ln q=\ln K<0$ donc $\lim_{n\to +\infty}2^n\ln K-n$ $\ln q=-\infty$. Par conséquent, $\lim_{n\to +\infty}\frac{K^{2^n}}{q^n}=0$ i.e. $K^{2^n}=0$ i.e. K

4.

```
from math import sqrt

def minimal(a,u0,e):
    u=u0
    n=0
    while abs(u-a)>e:
        u=(u+a/u)/2
        n+=1
    return n
```