Attorney Docket No.: Q64193

Art Unit: 1752

$$(V^{1})_{n^{1}} Y^{1}_{1} \qquad Y^{2}_{2} (V^{2})_{n^{2}}$$

$$R^{1} - N \qquad N - R^{2} \qquad N - R^{2}$$

$$(L^{5} - L^{4})_{p^{2}} (M^{1})_{m^{1}} \qquad (III)$$

wherein R¹ and R² each represents a substituted alkyl, aryl or heterocyclic group, and R¹ is substituted with -SO₃H and R² is substituted with a dissociable group other than -SO₃H; Y¹ and Y² each represents an atomic group necessary to form a 5-or 6-membered nitrogen-containing heterocyclic ring, and Y¹ and Y² may be condensed with other carbocyclic ring or heterocyclic ring; V¹ and V² each represents a substituent; n¹ and n² each represents an integer of 0 or more (preferably 6 or less, more preferably 2 or less), and when n¹ and n² each represents 2 or more, V¹ and V² may be the same with or different from each other; L¹, L², L³, L⁴, L⁵, L⁶ and L² each represents a methine group; p¹ represents 0, 1, 2 or 3, p² and p³ each represents 0 or 1, and when p¹ represents 2 or 3, repeating L² and L³ may be the same with or different from each other; M¹ represents a counter ion; and m¹ represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

Attorney Docket No.: Q64193 Art Unit: 1752

Please delete the paragraph starting on page 5, line 17, ending on page 7, and replace with:

(5) The silver halide photographic emulsion as described in the above item (1), (2), (3) or (4), wherein at least one sensitizing dye is represented by the following formula (III) and at least one sensitizing dye is represented by formula (IV):

$$(V^{11})_{n^{11}}$$
 V^{11} V^{12} V^{12}

wherein R^{11} and R^{12} each represents a substituted alkyl, aryl or heterocyclic group, and R^{11} is substituted with -SO₃H and R^{12} is substituted with a dissociable group other than -SO₃H; X^{11} and X^{12} each represents an oxygen atom, a sulfur atom, a selenium atom, NR^{15} , $CR^{16}R^{17}$, or L^{13} = L^{14} ; R^{15} , R^{16} and R^{17} each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L^{13} and L^{14} each represents a methine group; V^{11} and V^{12} each represents a substituent; n^{11} and n^{12} each represents an integer of 0 or more (preferably 4 or less, more preferably 2 or less), and when n^{11} and n^{12} each represents 2 or more, V^{11} and V^{12} may be the same with or different from each other; L^{11} represents a methine group; M^{11} represents a counter ion; and m^{11} represents a number of 0 or more necessary to neutralize the electric charge in the molecule;

AMENDMENT UNDER 37 C.F.R. §1.111

U.S. Appln. NO. 09/845,355

Attorney Docket No.: Q64193 Art Unit: 1752

$$(V^{13})_{n^{13}}^{211} \xrightarrow{X^{13}}_{P_{13}}^{212} \xrightarrow{X^{14}}_{P_{14}}^{212} \xrightarrow{Z^{12}}_{(V^{14})_{n^{14}}}^{212}$$

$$(IV)$$

$$(M^{12})_{m^{12}}^{13}$$

OV

wherein R^{13} and R^{14} each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R^{13} and R^{14} is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X^{13} and X^{14} each represents an oxygen atom, a sulfur atom, a selenium atom, NR^{18} , $CR^{19}R^{20}$, or $L^{15}=L^{16}$; R^{18} , R^{19} and R^{20} each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L^{15} and L^{16} each represents a methine group; Z^{11} represents a benzene ring or a naphthalene ring; Z^{12} represents a naphthalene ring; V^{13} and V^{14} each represents a substituent; n^{13} and n^{14} each represents an integer of 0 or more (n^{13} represents preferably 4 or less, more preferably 2 or less, and n^{14} represents preferably 6 or less, more preferably 2 or less), and when n^{13} and n^{14} each represents 2 or more, V^{13} and V^{14} may be the same with or different from each other; L^{12} represents a methine group; M^{12} represents a counter ion; and m^{12} represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

Please delete the second paragraph on page 8, ending on page 10, and replace with:

(7) The silver halide photographic emulsion as described in the above item

(1), (2), (3) or (4), wherein at least one sensitizing dye is represented by the

following formula (V) and at least one sensitizing dye is represented by formula (VI):

$$(V^{21})_{n^{21}} \xrightarrow{X^{21}} L^{21} = L^{22} - L^{23} = (V^{22})_{n^{22}} (V^{22})_{n^{22}}$$

$$(W^{21})_{m^{21}} \xrightarrow{R^{21}} (W^{21})_{m^{21}}$$

wherein R²¹ and R²² each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R²¹ and R²² is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X²¹ and X²² each represents an oxygen atom, a sulfur atom, a selenium atom, NR²⁵, CR²⁶R²⁷, or L²⁷=L²⁸; R²⁵, R²⁶ and R²⁷ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L²⁷ and L²⁸ each represents a methine group; V²¹ and V²² each represents a substituent; n²¹ and n²² each represents an integer of 0 or more (preferably 4 or less, more preferably 2 or less), and when n²¹ and n²² each represents 2 or more, V²¹ and V²² may be the same with or different from each other; L²¹, L²² and L²³ each represents a methine group; M²¹ represents a counter ion; and m²¹ represents a number of 0 or more necessary to neutralize the electric charge in the molecule;

 $\binom{1}{2}$

wherein R²³ and R²⁴ each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R23 and R24 is substituted with -SO3H and the other is substituted with a dissociable group other than -SO $_3H$; X^{23} and X^{24} each represents an oxygen atom, a sulfur atom, a selenium atom, NR28, CR29R30, or L29=L30; R28, R29 and R30 each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L29 and L30 each represents a methine group; Z21 represents a benzene ring or a naphthalene ring; Z^{22} represents a naphthalene ring; V^{23} and V^{24} each represents a substituent; n23 and n24 each represents an integer of 0 or more (when Z21 represents a benzene ring, n23 represents 4 or less, preferably 2 or less, and when Z^{21} represents a naphthalene ring, n^{23} represents 6 or less, preferably 2 or less, and n^{24} represents 6 or less, preferably 2 or less), and when n^{23} and n^{24} each represents 2 or more, V^{23} and V^{24} may be the same with or different from each other; L^{24} , L^{25} and L^{26} each represents a methine group; M^{22} represents a counter ion; and m²² represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

IN THE CLAIMS:

Please enter the following amended claims:

Attorney Docket No.: Q64193 Art Unit: 1752

1 (amended). A silver halide photographic emulsion which contains at least two different sensitizing dyes represented by the following formula (I):

$$Dye - (A)_rQ /_{q} (M)_m$$
 (1)

wherein Dye represents a dye moiety; A represents a linking group; Q represents a dissociable group; r represents 0 or 1; q represents an integer of 2 or more, provided that at least one Q represents -SO₃H and at least one Q represents a dissociable group other than -SO₃H; M represents a counter ion; and m represents a number of 0 or more necessary to neutralize the electric charge in the molecule, and when m represents 2 or more, M's need not be the same.

4 (amended). The silver halide photographic emulsion as claimed in claim 1, wherein said sensitizing dyes are represented by the following formula (II):

Attorney Docket No.: Q64193 Art Unit: 1752

wherein R¹ and R² each represents a substituted alkyl, aryl or heterocyclic group, and R¹ is substituted with -SO₃H and R² is substituted with a dissociable group other than -SO₃H; Y¹ and Y² each represents an atomic group necessary to form a 5-or 6-membered nitrogen-containing heterocyclic ring, and Y¹ and Y² may be condensed with other carbocyclic ring or heterocyclic ring; V¹ and V² each represents a substituent; n¹ and n² each represents an integer of 0 or more, and when n¹ and n² each represents 2 or more, V¹ and V² may be the same with or different from each other; L¹, L², L³, L⁴, L⁵, L6 and L7 each represents a methine group; p¹ represents 0, 1, 2 or 3, p² and p³ each represents 0 or 1, and when p¹ represents 2 or 3, repeating L² and L³ may be the same with or different from each other; M¹ represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

5 (amended). The silver halide photographic emulsion as claimed in claim 1, wherein at least one sensitizing dye is represented by the following formula (III) and at least one sensitizing dye is represented by formula (IV):

$$(V^{11})_{n^{11}}$$
 V^{11}
 V^{11}
 V^{11}
 V^{12}
 V^{12}

Attorney Docket No.: Q64193 Art Unit: 1752

wherein R¹¹ and R¹² each represents a substituted alkyl, aryl or heterocyclic group, and R¹¹ is substituted with -SO₃H and R¹² is substituted with a dissociable group other than -SO₃H; X¹¹ and X¹² each represents an oxygen atom, a sulfur atom, a selenium atom, NR¹⁵, CR¹⁶R¹⁷, or L¹³=L¹⁴; R¹⁵, R¹⁶ and R¹⁷ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L¹³ and L¹⁴ each represents a methine group; V¹ and V¹² each represents a substituent; n¹¹ and n¹² each represents an integer of O or more, and when n¹¹ and n¹² each represents 2 or more, V¹¹ and V¹² may be the same with or different from each other; L¹¹ represents a methine group; M¹¹ represents a counter ion; and m¹¹ represents a number of 0 or more necessary to neutralize the electric charge in the molecule;

wherein R¹³ and R¹⁴ each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R¹³ and R¹⁴ is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X¹³ and X¹⁴ each represents an oxygen atom, a sulfur atom, a selenium atom, NR¹⁸, CR¹⁹R²⁰, or L¹⁵=L¹⁶; R¹⁸, R¹⁹ and R²⁰ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic

Attorney Docket No.: Q64193 Art Unit: 1752

group; L¹⁵ and L¹⁶ each represents a methine group; Z¹¹ represents a benzene ring or a naphthalene ring; Z¹² represents a naphthalene ring; V¹³ and V¹⁴ each represents a substituent; n¹³ and n¹⁴ each represents an integer of 0 or more, and when n¹³ and n¹⁴ each represents 2 or more, V¹³ and V¹⁴ may be the same with or different from each other; L¹² represents a methine group; M¹² represents a counter ion; and m¹² represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

7 (amended). The silver halide photographic emulsion as claimed in claim 1, wherein at least one sensitizing dye is represented by the following formula (V) and at least one sensitizing dye is represented by formula (VI):

wherein R^{21} and R^{22} each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R^{21} and R^{22} is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X^{21} and X^{22} each represents an oxygen atom, a sulfur atom, a selenium atom, NR^{25} , $CR^{26}R^{27}$, or L^{27} = L^{28} ; R^{25} , R^{26}

5,355 Art Unit: 1752

and R²⁷ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L²⁷ and L²⁸ each represents a methine group; V²¹ and V²² each represents a substituent; n²¹ and n²² each represents an integer of 0 or more, and when n²¹ and n²² each represents 2 or more, V²¹ and V²² may be the same with or different from each other; L²¹, L²² and L²³ each represents a methine group; M²¹ represents a counter ion; and m²¹ represents a number of 0 or more necessary to neutralize the electric charge in the molecule;

wherein R²³ and R²⁴ each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R²³ and R²⁴ is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X²³ and X²⁴ each represents an oxygen atom, a sulfur atom, a selenium atom, NR²⁸, CR²⁹R³⁰, or L²⁹=L³⁰; R²⁸, R²⁹ and R³⁰ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L²⁹ and L³⁰ each represents a methine group; Z²¹ represents a benzene ring or a naphthalene ring; Z²² represents a naphthalene ring; V²³ and V²⁴ each

Attorney Docket No.: Q64193

Art Unit: 1752

wher differ

represents a substituent; n²³ and n²⁴ each represents an integer of 0 or more, and when n²³ and n²⁴ each represents 2 or more, V²³ and V²⁴ may be the same with or different from each other; L²⁴, L²⁵ and L²⁶ each represents a methine group; M²² represents a counter ion; and m²² represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

11 (amended). A silver halide photographic material which comprises a support having provided thereon at least one emulsion layer containing the silver halide photographic emulsion which contains at least two different sensitizing dyes represented by the following formula (I):

$$Dye^{-(M)_rQ)_q} (M)_m$$
 (I)

wherein Dye represents a dye moiety; A represents a linking group; Q represents a dissociable group; r represents 0 or 1; q represents an integer of 2 or more, provided that at least one Q represents -SO₃H and at least one Q represents a dissociable group other than -SO₃H; M represents a counter ion; and m represents a number of 0 or more necessary to neutralize the electric charge in the molecule, and when m represents 2 or more, M's need not be the same.