INTERPOLACIÓN A TROZOS SEMANA 30/3-3/4

Para cualquier función $f:[x_0,x_n]\to\mathbb{R}$ y un conjunto de nodos distintos $x_i, i=$ $0,\ldots,n$, queremos encontrar una interpolación a trozos de grado k=1 o k=2, es decir una función lineal a trozo o una función cuadrática a trozos, respectivamente, tal que

$$S_k(x_i) = y_i := f(x_i), \quad i = 0, \dots, n.$$

1. Algoritmo interpolación a trozos de grado 1

Sean (x_i, y_i) , i = 0, ..., n los conjunto de pares (x_i, y_i) , i = 0, ..., n, que queremos interpolar con una interpolación a trozos de grado 1.

(1) Para i = 1, ..., n, sean $a_i, b_i \in \mathbb{R}$ la solución del sistema lineal

$$\begin{cases} a_i x_{i-1} + b_i = y_{i-1} \\ a_i x_i + b_i = y_i \end{cases}$$

(2) Para $x \in [x_0, x_n],$

$$S_1(x) := a_i x + b_i$$
, donde $i : x \in [x_{i-1}, x_i]$.

2. ALGORITMO INTERPOLACIÓN A TROZOS DE GRADO 2

Sean (x_i, y_i) , i = 0, ..., n los conjunto de pares (x_i, y_i) , i = 0, ..., n, que queremos interpolar con un interpolación a trozos de grado 2.

(1) Para i = 1, ..., n, sean $a_i, b_i, c_i \in \mathbb{R}$ la solución del sistema lineal

$$\begin{cases} a_1 x_0^2 + b_1 x_0 + c_1 = y_0 \\ a_1 x_1^2 + b_1 x_1 + c_1 = y_1 \\ a_1 x_{0,1}^2 + b_1 x_1 + c_1 = y_{0,1} \end{cases}$$

donde $x_{0,1} := (x_0 + x_1)/2$ y $y_{0,1} := f(x_{0,1})$, y para $i \ge 2$

$$\begin{cases} a_i x_{i-1}^2 + b_i x_{i-1} + c_i = y_{i-1} \\ a_i x_i^2 + b_i x_i + c_i = y_i \\ 2a_i x_{i-1} + b_i = 2a_{i-1} x_{i-1} + b_{i-1} \end{cases}$$

Notese que la última ecuación del sistema asegura que S_2 tenga derivada continua en (x_0, x_n) .

(2) Para $x \in [x_0, x_n],$

$$S_2(x) := a_i x^2 + b_i x + c_i$$
, donde $i : x \in [x_{i-1}, x_i]$.

3. Problemas

- (1) Escribir una función de MATLAB con inputs (x_i, y_i) , i = 0, ..., n, y un punto $x \in \mathbb{R}$, y con output la interpolación a trozos de grado 1 evaluado en x, i.e. $S_1(x)$.
- (2) Escribir una función de MATLAB con inputs (x_i, y_i) , i = 0, ..., n, $(x_{0,1}, y_{0,1})$ y un punto $x \in \mathbb{R}$, y con output la interpolación a trozos de grado 2 evaluado en x, i.e. $S_2(x)$.
- (3) Sea $(i\pi/2, \sin(i\pi/2))$, $i=0,\ldots 4$, un conjunto de nodos. Escribir un script de MATLAB que dibuje el gráfico del $\sin(x)$ en [0,10] y el gráfico de S_1 y de S_2 .