

 分子可由單一元素組成,如金、銅、鋁等,亦可由 多種元素組成,如水、硫酸、鹽等。元素是由不同 結構的原子(atom)組成,故每一元素的性質皆不相 同。而任何元素的原子皆由質子(proton)、中子 (neutron)與電子(electron)三種基本質點所組成。

每一能圈對應一固定能階(energy level),愈接近原子核其能階愈低,愈往外,其能階愈高。每一能階由內至外,依序定名為K、L、M、N、O、P、Q階。

能階(續)

■ 各能圈內所能容納的最大電子數。

層次	<i>K</i>	L	М	N	<i>O</i> 5	P	Q
n	1	2	3	4		6	7
最大容納	2 × 1 ²	2 × 2 ²	2×3 ²	2 × 4 ²	2 × 5 ²	2 × 6 ²	2×7 ²
(2n²)	= 2e	= 8e	=18e	= 32e	= 50e	= 72e	=98e
實際電子數	2e	8e	18e	32e	50e	9e	2e

註:實際電子數係指目前所發現的 103 種元素所佔的軌道電子數

■每一能圈又可分成若干個副圈(subshell), 這些副圈由內至外定名為s、p、d、f、g、 h、i階。每一副圈所能容納的電子數亦有一 定的限制,由內而外排列,依2+4(m-1)成 定值。

副圈	s 1	<i>p</i> 2	d 3	f 4	g 5	h 6	i 7
最大容納 電 子 數 2+4(m-1)	2+4(1-1) =2	2+4(2-1) =6	2+4(3 - 1) = 10	1	1	l	2+4(7-1) =26

能階(續)

■ 電子軌道內各能圈的副圈分佈圖。

- 原子最外層能圈上的電子稱為價電子(valence electron)
 - 因遠離原子核,故電子最不安定
 - 當價電子為八個時,化學性質最安定,稱為八隅體
 - 若價電子少於四個,極受原子核的排斥而脫離,脫離出的電子稱為自由電子
 - 反之如果價電子多於四個則易吸收其他原子的電子 形成八隅體,此類電子稱為東縛電子(bound electrons)
 - 若價電子剛好為四個則不易排斥與吸收電子,但可 與其他同為四個價電子的原子以共價鍵方法結合成 八隅體

價電子少於四個的物質極易失去電子, 則相對的提供較多的自由電子成為極佳

的導電度者,稱為導體。

- 可允許電流流動之物質的 特性,稱為導電度(conductivity)
- 與銀做比較之不同 物質的導電度。

物質	相對導電度	
銀	1.000	
銅	0.945	
絽	0.576	
鈎	0.297	
碳	0.017	
鎳	0.015	

導體、絕緣體與半導體(續)

- 價電子多於四個的物質極易吸收自由電子而 形成導電度很差的情況,稱為絕緣體 (insulator)或介質(dielectric)。
- ■一些常見之絕緣體的介質強度之比較表。
- ■價電子為四個,導電度介於 導體與絕緣體間,稱為 半導體(semiconductor)

し野衣	0
物質	介質強度(V/mil)
空氣	21
网質	150
紙	305
高分子化合物	335
型膠	1000
石墨	1050

- 電導(conductance)
 - 電阻的倒數,表示某材料容許電流通過的能力
 - 以G表示,G=1/R
- σ為導電係數或導電率
 - $\sigma = 1/\rho$
- 國際電器委員規定以純軟銅為標準材料定義百 分導電係數(percent conductivity)
 - 20°C時純軟銅導電係數為σ。=(1/1.724)x108
 - 百分導電係數(σ%)=(任何材料之σ/標準純軟銅之 σ_s)x100%=(標準純軟銅之 ρ_s /任何材料之 ρ)x100%

電阻器的色碼

- 目前常用的色碼標示法有三種:
 - 1. 三環式

1:十位數值

2:個位數值

3: 前二位數值的十乘幂值

4:無色代表誤差值為±20%

電阻器的色碼(續)

2. 四環式

1:十位數值

2:個位數值

3:前二位數值的十乘幂值

4:誤差值

電阻器的色碼(續)

3. 五環式

1:十位數值

2:個位數值

3:前二位數值的十乘幂值

4:誤差值

5:可靠度

電阻器的色碼(續)

色帶顏色代表的數值

日間の日でなりの						
色帶 1-3	色帶3	色帶 4	色帶 5			
0 黑 0	0.1 金	5 %金	1%棕			
1 棕	相乘因子	10%銀	0.1 %紅			
2 紅	0.01 銀	20 %無色帶	0.01 %橙			
3 橙			0.001 %黄			
4 黄						
5 綠						
6 藍						
7 紫						
8 灰						
9 白						

電元件與電路

■電路至少必須有一個封閉路徑。

图 1.2 電路

图 1.10 獨立電壓源

圖1.11 定電壓溫

■獨立電壓源是兩端元件,如電池或發電 機,它們在端點間維持一特定電壓,此 電壓是完全獨立於通過元件的電流。圖 1.10表示電壓源符號 υ 伏特以及它的極 性,他指出端點 a 高於端點 b υ 伏特, 若υ > 0,則端點 a 的電位比端點 b 高; 若υ < 0,反之亦然

獨立電流源

■獨立電流源是流過特定電流的兩端點元件,此電流完全與元件的電壓無關,圖 1.12表示一獨力電流源的符號,i是特定電流,箭頭則表示電流方向

兩個或更多電路元件的接點叫做節點,
圖2.7(a)表示三節點電路,(b)表示(a)的重繪節點

圖 2.7 (a)三節點電路;(b)重查三節點電路

克西荷夫電流定律(KCL)

- 1. 進入任何節點的電流代數和為零
- 由圖2.8流入一節點的電流來說明KCL定律,KCL說 $i_1+i_2+(-i_3)+i_4=0$

图 2.8 流經一節點電流

克西荷夫電壓定律(KVL)

- 沿任何封閉路徑的電壓代數和為零
- 圖2.10封閉路徑說明KVL的應用,得

$$-v_1 + v_2 - v_3 = 0 (2.7)$$

這裡電壓符號為從十向一(高向低電位)穿過元件時取正,從一向十(低向高電位)穿過元件時取負,沿用此慣例,可使沿一迴路的電壓降的和為零,使用相反慣例則迴路電壓昇的和為零

图 2.10 沿一封閉路徑電壓