Appendix

Appendix file documents network architectures and key parameters setting in Experiment part of our paper, which are referred as Preliminary Experiment, Experiment II, Experiment III respectively.

1. NETWORK ARCHITECTURE

This section is to show details of network architecture in experiment part.

Table 1. Network Architecture of Experiment I

		1				
	input	filter	stride	padding	output	activation/loss function
conv0	1x28x28	32x1x3x3	1	1	32x28x28	leakyRelu
pool0	32x28x28	max,2x2	2	1	32x14x14	/
conv1	32x14x14	32x32x3x3	1	1	32x14x14	leakyRelu
pool1	32x14x14	max,2x2	2	1	32x7x7	/
conv2	32x7x7	16x32x3x3	1	1	16x7x7	leakyRelu
pool2	16x7x7	max,2x2	2	0	16x4x4	/
conv3	16x4x4	16x16x3x3	1	1	16x4x4	leakyRelu
unsample0					16x8x8	/
conv4	16x8x8	32x16x3x3	1	1	32x8x8	leakyRelu
unsample1	32x8x8				32x16x16	/
conv5	32x16x16	32x32x3x3	1	0	32x14x14	leakyRelu
unsample2	32x14x14				32x28x28	/
conv6	32x28x28	1x32x3x3	1	1	1x28x28	softmax+binary cross entropy

Table 2. Network Architecture of Experiment II

			•			
	input	filter	stride	padding	output	activation/loss function
conv0	1x28x28	16x1x8x8	1	1	16x23x23	leakyRelu
pool0	16x23x23	max,2x2	1	0	16x22x22	leakyRelu
conv1	16x22x22	32x16x4x4	1	1	32x21x21	leakyRelu
pool1	32x21x21	max,2x2	1	0	32x20x20	leakyRelu
linear0	32x20x20				32	leakyRelu
linear1	32				10	softmax+cross entropy

Table 3. Network Architecture of Experiment III-Reuter5

	input	output	activation/loss function
linear0	1x1000	5	leakyRelu
linear1	5	5	softmax+cross entropy

Table 4. Network Architecture of Experiment III-Reuter12

	input	output	activation/loss function
linear0	1x1000	20	leakyRelu
linear1	20	12	leakyRelu
linear2	12	12	softmax+cross entropy

Table 5. Network Architecture of Preliminary Experiment

	input	filter	stride	padding	output	activation/loss function
conv0	3x32x32	48x3x3x3	1	1	48x32x32	leakyRelu
pool0	48x32x32	max,2x2	2	1	48x16x16	/
conv1	48x16x16	48x48x3x3	1	1	48x16x16	leakyRelu
pool1	48x16x16	max,2x2	2	1	48x8x8	/
conv2	48x8x8	48x48x3x3	1	1	48x8x8	leakyRelu
pool2	48x8x8	max,2x2	2	1	48x4x4	/
conv3	48x4x4	48x48x3x3	1	1	48x4x4	leakyRelu
pool3	48x4x4	max,2x2	2	1	48x2x2	/
linear0	48x2x2				10	softmax+cross entropy

2. TRAINING KEY PARAMETERS

This section is to show key parameters in meta-training and retraining process in our paper.

Table 6. Meta-training Key Parameters

Exp I	Exp II	Exp III-Reuter5	Exp III-Reuter12	Preliminary Exp
0.01	0.1	0.1	0.1	0.01
0.001	0.001	0.001	0.001	0.001
4	8	8	8	2
10	10	5	12	10
10	10	1	1	10
1	1	1	1	15
400	400	200	200	500
100	800	100	100	100
	0.01 0.001 4 10 10 1 400	0.01 0.1 0.001 0.001 4 8 10 10 10 1 1 1 400 400	0.01 0.1 0.001 0.001 4 8 8 8 10 10 5 10 10 1 1 1 1 1 400 400 200	0.01 0.1 0.1 0.001 0.001 0.001 4 8 8 10 10 5 10 10 1 1 1 1 1 1 1 400 400 200 200

Table 7. Re-training Key Parameters for Experiment I

	$\rho = 0.5\%$	$\rho = 5\%$	ho=10%
Learning Rate	0.05	0.05	0.00
Batch Size	32	32	32
Total Epochs	1	1	1
Optimizer	Adam	Adam	Adam

Table 8. Re-training Key Parameters for Experiment II

	$\rho = 0.5\%$	$\rho = 1\%$	$\rho = 5\%$
Learning Rate	0.05	0.15	0.15
Batch Size	200	200	200
Total Epochs	30	10	10
Optimizer	SGD	SGD	SGD

 Table 9. Re-training Key Parameters for Experiment III and Preliminary

0 3			,
	Exp III-Reuter5	Exp III-Reuter12	Preliminary Exp
Learning Rate	0.0001	0.005	0.001
Batch Size	16	32	64
Total Epochs	50	30	100
Optimizer	Adam	Adam	SGD