$$\int (1 + 0.2s) \frac{A-1}{S(s^2+16s+100)}$$

$$= \frac{0.75 \left[1 + \frac{5}{5}\right]}{5 \left(\frac{5^{2}}{100} + \frac{165}{100} + 1\right)}$$

$$\omega \text{ at } \omega_n = 5.$$

$$17.5 - 20log(50) = -16.47$$

at
$$10=10$$

-16.47-0=-16.47

$$|7.5 - 20log(lox) = 0$$

 $|7.5 - 20log(lox) = 0$

$$\frac{2}{S(1+\frac{S}{1.5})(s+\frac{S}{10})}$$

Break frequency = 2.5, 10

	0.1	2.5	10	100
Pole at 00	-:20	-20	-20	-20
Pole al-1-2.5)		- 20	- 20	- 20
pole at (-10)			-20	- 20
-	- 2-0	-40	- 60	- 60
)	*

from 10 it decrease with slope - 60 dblde.

Pole at "0" has no effect (1)

0.25 | 1 | 25 | 100

Pole=-2.5 -45 | 0

Pole=-10 | 0 -45 | 0

-45 | 0

$$S(1+\frac{S}{0.20})(1+\frac{S}{0.75})$$

$$13 = 0.01 \quad 0.25 \quad 0.33$$

$$13 = 0.01 \quad 0.25 \quad 0.33$$

$$10 - 20 - 20 - 20$$

$$11 - 0.35 \quad 0 \quad 0 \quad -20 - 20$$

$$11 - 0.35 \quad 0 \quad 0 \quad -20 - 20$$

$$11 - 0.35 \quad 0 \quad 0 \quad -20 - 20$$

$$w = 0.01$$
 $w(s) = 0.25$
 $w(s) = 38.06$
 $w = 0.33$
 $w(s) = 33.23$

· W=1

4.611 00-60 logn = [1.1942]

66 02 - 20dblde

38.06

1.1942

1.1942

1.1942

3-60dbldec

$$\alpha - \omega = 25$$

 $N(s) = -117.09 - 900loy(2s) = -242.9$

$$0 \text{ RFM } \omega > 100 \text{ its constant}$$

$$-117.09 - 90 \log(N) = -180$$

$$= 0.00003$$

I These cross over keg.

					1
1	ω	0.026	0.037	2:5	9.3
Pole -	.0.25	-45	-4S	0	0
, -	-0.33		24.	-45	(0)
•			-90	- 4s	J
		l			

_90

-180 1 10-1 100 101

for critically damped,

$$=) (1.6 + 47d)^{2} = 16$$

$$\Rightarrow \begin{bmatrix} T_d = -1.4 \end{bmatrix}, \quad \boxed{T_d = 0.6}$$

$$S(s+2)(s^{2}+3s+10)$$

$$= \frac{3}{20} \times \frac{1}{5} - \frac{1}{16} \times \frac{1}{(s+2)} - \frac{1}{80} \times \frac{7s+31}{(s+\frac{3}{2})^{2} + \frac{31}{4}}$$

$$= \left(\frac{3}{20}\right) \frac{1}{5} - \left(\frac{1}{16}\right) \frac{1}{(s+2)} - \left(\frac{1}{80}\right) \times \frac{7(s+\frac{3}{6}) + 7.36}{(s+\frac{3}{2})^{2} + \frac{31}{4}}$$

i. The mangenitude of the sinuspids are of the same sold order of magnitude as the residue of the pole at -2, pto pole-z-no cancellation cannot be assumed

(b)
$$C(s) = \frac{S + 2.5}{S(s+2)(s^2 + 4s + 20)} = \left(\frac{1}{16}\right)\frac{1}{S} - \left(\frac{1}{64}\right)\frac{1}{(s+2)}$$

$$- \left(\frac{1}{64}\right)\frac{3s + 14}{S^2 + 4s + 20}$$

$$= \left(\frac{1}{16}\right)\frac{1}{S} = \left(\frac{1}{64}\right)\frac{1}{(s+2)} - \left(\frac{1}{64}\right)\frac{3(s+2) + 2\sqrt{16}}{(s+2)^2 + 16}$$

The amplitude of the sinusoids are of the same order of magnitude as the residue of the pole at -2, pole-zero cancellation cannot be assumed.

$$C) \underset{S(s+2)}{\text{S}+ C(s)} = \frac{(s+2\cdot 1)}{s(s+2)(s^2+s+5)}$$

$$= (0\cdot 21)\frac{1}{s} - (0\cdot 007)\frac{1}{s+2} - \frac{0\cdot 2s + 0\cdot 21}{s^2+s+5}$$

$$= (0\cdot 21)\frac{1}{s} - (0\cdot 007)\frac{1}{s+2} - \frac{0\cdot 2(s+\frac{1}{2}) + 0\cdot 0s\sqrt{\frac{19}{4}}}{(s+\frac{1}{2})^2 + \frac{19}{4}}$$

The amplitude of sinusoids are of two θ order of magnitude larger than the residue of the pole at -2, pole-zero cancellation can be assumed Now, $2 \frac{1}{5} u = 1$, $u = \sqrt{5} = 2.236$, $\gamma = 0.214$

(6) (a)
$$T(s) = \frac{16}{s^2 + 3s + 16}$$

$$\frac{1}{2}$$
 $\frac{1}{1.00} = 28.06\%$

$$T_{S} = \frac{4}{8600} = 2.667 \Rightarrow T_{S} = 2.667 \text{ seconds}$$

$$T_S = \frac{4}{42 \text{ Lon}} = 2.667 = 0.8472 = 0.8472 \text{ second}$$

$$T_P = \frac{TT}{400 \sqrt{1-42}} = 0.8472 = 0.8472 \text{ second}$$

$$w_n T_r = [1.76 \frac{100}{100} - 0.417 \frac{100}{100} + 1.039 \frac{100}{100}]$$

$$5^{2} + 0.025 + 0.04$$
 $5^{2} + 0.025 + 0.04$
 $5^{2} + 0.025 + 0.04$
 $5^{2} + 0.025 + 0.04$
 $5^{2} + 0.025 + 0.04$
 $5^{2} + 0.025 + 0.04$
 $5^{2} + 0.025 + 0.04$
 $5^{2} + 0.025 + 0.04$
 $5^{2} + 0.025 + 0.04$
 $7_{8} = 0.2$
 $7_{8} = 5.26$ seconds

 $7_{8} = 15.73$ seconds

 $7_{8} = 15.73$ seconds

 $7_{8} = 15.73$ seconds

 $7_{8} = 15.73$ seconds

$$T_s = 4\infty$$
 seconds

$$(C) T(s) = \frac{1.05 \times 10^{7}}{5^{2} + 1.6 \times 10^{3} s + 1.05 \times 10^{7}}$$

$$U(s) = \frac{500}{(s+1)(s+3)(s+10)}$$

$$|G(j\omega)| = \frac{500}{\sqrt{10^{2}+1}\sqrt{10^{2}+100}} = |G(j\omega)|$$

$$C(j\omega) = \frac{500}{\sqrt{10^{2}+100}} - \frac{10}{10}$$

$$C(j\omega) = -\frac{10}{10} - \frac{10}{10} - \frac{10}{10}$$

$$C(j\omega) = -\frac{10}{10} - \frac{10}{10} - \frac{10}{10}$$

$$C(j\omega) = -\frac{10}{10} - \frac{10}{10} - \frac{10}{10}$$

$$L(u|iw) = -ton^{-1} \cdot v - ton^{-3}$$

$$L(u|iw) = -ton^{-1} \cdot v - ton^{-3}$$

$$L(u|iw) = k \left[(1-jw)(3-jw)(10-jw) \right]$$

$$j(a) = k \left[(1-j(a))(3-j(a))(10-3) - 30j(2-3) \right]$$

$$= k \left[(30-3j(2-j(a))(10-3) - 30j(2-3) \right]$$

$$= k \left[(30-3j(2-j(a))(10-3) - 30j(2-3) \right]$$

	[(wil)]	[alia)
· 10 = 0	50/3	0
(150) 22=*	0	- 270

(8)
$$(s) = (s+2)$$
 $(s+1)(s-1)$

$$G(j\omega) = \frac{2+j\omega}{(j\omega+1)(j\omega-1)}$$

$$= -(2+j\omega)$$

$$1+\omega^2$$

$$fox \ \omega = 0 \ for \ \omega = \infty$$
 $(-2,0) \ (0,0)$

$$N = P - Z$$

There are no poles in RMP At is stable