清华大学本科生考试试题专用纸 ☆A☆卷					
考试课程: 复变函数引论 (闭卷, 满分 75 分) 考试时间: 2010 年 1 月 11 日上午 8:00-10:00					
系别	班号	学号	姓名	考试教室	/三教
注意: 选择是	返、填空题直 :	接答于试卷,其约	余题目答在专用答题	纸上,且注明题号。	
				题只有一个正确答案。 战者直接打 √ 或 × 视 2	
		$\frac{d}{n}z^{2n}$ 的收敛半径 e ; C. $R = \sqrt{e}$;			
			$M = \max\{ p(z) : z \}$ C. $M = 4022$;		
[] 3、设 ∞ 为 $f(z)$ 之可去奇点,则下列表达式中 未必正确 的是 A. $Res[f(z), \infty] = 0$; B. $\lim_{z\to 0} z f(\frac{1}{z}) = 0$; C. $\lim_{z\to \infty} \frac{f(z)}{\ln z} = 0$; D. $Res[f(\frac{1}{z}), 0] = 0$.					
			及 $f'(0) = B$, 则积分 。 C. $\pi(A - B)$;	· -	
		$= \frac{1}{e^z - 1} - \frac{1}{z} + \exp \frac{1}{z}$ 本性奇点;	≟_1 的 Σ. 极点; D. 非孤立	左 奇点。	
		$\frac{n}{t}$ 在 $ z < 1$ 内和 $\ln(1-z)$; C.	函数为 $-\ln(1+z)$; D. $\ln($	(1-z).	
[] 7、设 下面表述中 错		数 $\sum_{n=2}^{+\infty} \frac{z^n}{n(n-1)}$ 在	:闭圆盘 z ≤1 上的和	四函数,限制 $f(z)$ 在 $ $	$ z \leq 1 \perp$
	' '		B. f(z) 不可能处处没		
C. $f(z)$ É	的最大模在 z	=1 处取得;	D. $f(z)$ 在 $ z = 1$ 上 z	卜可能处处解析。	
得分 [] 二、填空题 (5 小题 7 个空,每个空 3 分,共 21 分)					
1、设函数 $\frac{f(z)}{z^2}=B(x,y)-iA(x,y)$ 在 $\mathbb C$ 中区域 D 上解析,其中为 $A(x,y)$, $B(x,y)$ 均为区域 D 上二元实变函数,则在区域 D 上 $A(x,y)$, $B(x,y)$ 应满足的 Cauchy-Riemann 方程为					
			$;\;rac{\partial f}{\partial ar{z}}$ =	=	o
2、设 $f(z) = \frac{\exp z}{z^2 - 1}$,则 $Res[f(z), \infty] = \underline{\hspace{1cm}}$ 。					
第 1 页/共 2 页 ☆ A ☆ 卷					

3、设 $A \in \mathbb{C}$,则极限 $\lim_{n \to +\infty} n \ln \frac{n - A^2 - iA}{n} = \underline{\hspace{1cm}}$ 。

三、分析与计算题(3小题,共21分,注意:每题要有必要的分析与计算过程,只写答案没有过程不给分)

- 1、(6 分) 设 m 为任意给定正整数, 试计算函数 $f(z) = \ln(1+z^2)$ 的 m 阶导数在 z=0 处的值。
- 2、(7 分) 设 $f(z) = z \, ch \frac{z}{z-1}$, 计算积分

$$I = \frac{1}{2\pi i} \oint_{|z|=2} f(z) dz,$$

并说明 ∞ 是函数 f(z) 的何种奇点。

3、(8 分) 设整函数 f(z) 在 $\mathbb C$ 上处处满足微分方程 f'(z)=zf(z) 且 f(0)=1,试求出 f(z) 在 z=0 处的 Taylor 展开式。**注意:要完整地写出级数中各项系数的显式表达式即通项**。

四、分析证明题(2小题,共12分)

1、(7 分) 设函数 f(z) 在 $z_0 \in \mathbb{C}$ 的某个空心邻域 $B_{\delta}^*(z_0) = \{z \in \mathbb{C} : 0 < |z - z_0| < \delta\}$ 内解析并且 有界 (这里 $\delta > 0$), z_0 为 f(z) 的一个孤立奇点,求证: z_0 必为 f(z) 的可去奇点。

2、(5 分) 设三个函数 f(z), g(z) 和 h(z) 均在 \mathbb{C} 中区域 D 上解析,而且在 D 上有 $f(z)g(z)h(z) \equiv 0$,试证明在 D 上要么 $f(z) \equiv 0$,要么 $g(z) \equiv 0$,要么 $h(z) \equiv 0$.

温 ☆馨 ☆提 ☆示

- 1. 请在交卷前仔细检查试卷和专用答题纸上自己的姓名、学号以及考试教室等信息是否已 经完整填写;
- 2. 考试结束时,请将本试卷正面朝外沿竖中线折叠,然后同稿纸一道夹在专用答题纸里一并上交。