

Advanced Network Analysis

12:33

1. Network Data

Weihua An

Outline

- Study Design
 Type of networks
 Type of relationships
- ► Network Data Collection

 - SurveysObservationsOther methods
- ► Network Data Representation
 - Adjacent matrixEdge list
- ► Basic Network Analysis

Study Design

- ► Types of networks
 - Egocentric networks
 Sociocentric networks
 Cognitive networks
- ► Type of relationships

 - Instrumental: advising, collaborator
 Affective: friendship, romantic
 Multiplex: a mixture of different types of relationships

Eopentone networks Ask A a B their friends, know only local returne

Sociountre Networks Ask each person in clay to nominate their best friend

We mainly fours

check out AddHealth Dataset

Network Data Collection

- Survey questions

 - Name generator: ask for the names of contacts
 Name interpreter: provide information on contacts
 Position generator: name contacts with particular positions
- Observation

Cognitive Networks Each peron has their own report of the network Mesh all the versions together

Name Generator (1985 and 2004 GSS)

"From time to time, most people discuss important matters with other people. Looking back over the last six months $\,$ who are the people with whom you discussed matters important to you? Just tell me their first names or initials. IF LESS THAN 5 NAMES MENTIONED, PROBE: Anyone else?"

Name Generator and Interpreter (An 2011)

Index	Name	Code (Check)	Class Index	Strength of Friendship (1 to 10, from least strong to strongest)	Distance between two of your households (meter)	Whether smoke? 1 Yes 2 No 9 Don't know
Aša					,	
Asb						
A8c						
A8d						
A8c						
ARE						
A8g						
A8h						
Añi						
Ašj						

Position Generator (Lin 1999)

Table 2 Position generator for measuring accessed social capital: an example

Here is a list of jobs (show card). Would you please tell me if you happen to know someone (on a first-name basis) having each job?

ф		2. How long have you known this per- son (no. of years)?	relationship with		6. Hist job
0.000	Total Bridge				

Job A Job B Job C

*If you know more than one person, think of the one person whom you have known the longest.

Observations

Possible Problems in Network Data Collection

- ► Problems (Marsden 2005; Handcock and Gile 2007)

 - Recall error forgetting friends (20%) (Brewer and Webste 1999)
 Respondent burden (usually capped at 10 in a fixed choice design)
 Clustering bias: tend to name people in clustering and not necessarily in order of social proximity
- - May affect the structural properties of the social networks, such as density, number of cliques, centralization, and centralities (Brewer and Webster 1999)
 Discordant reports (An and Schramski 2015)

Datasets

of Final Project Data

- ► The UCI Network Data Repository
- ► Linton Freeman's Data Collection
- ► UNICNET Datasets
- ► Stanford Large Network Dataset Collection
- ► Search "network" at AER, APSR, or PNAS
- ► The General Social Survey
- ► National Longitudinal Study of Adolescent Health

Basic Network Analysis

- ► Indegree, outdegree, closeness, betweenness, and eigenvector centrality

 ► Dyad Level → 2 people
- ► Reciprocity, geodistance
- ► Group Level

 ► Triad, cliques, component
- ► Network Level
 - Density, centralization, transitivity

Mathematical Definitions

▶ Degree centrality: the number of nodes a focal node is connected to.

$$D_i = \sum_{i=1}^{N} w_{ij}$$

$$C_i = \left[\sum_j d_{ij}\right]^{-1}$$

 $C_i = \left[\sum_j d_{ij}\right]^{-1}$ where d_{ij} is the geodistance (i.e., the shortest path) between i and j. • Betweenness centrality: the number of shortest paths through a node.

umber of shortest
$$\mathcal{B}_{i} = \sum_{jk} rac{\mathcal{B}_{jk}^{\,i}}{\mathcal{B}_{jk}}$$

where g_{ik} is the number of shortest paths between j and k.

Eigenvector centrality: the extent of connecting to important alters.

$$E_i = \frac{1}{\lambda} \sum_i x_i E_j$$

 $\lambda E = ME$

where M is the adjacency matrix and λ the eigenvalue.

Mathematical Definitions

Density: the proportion of observed ties out of all possible ties.

$$D(G) = \frac{\sum w_{ij}}{n(n-1)}$$

► Centralization: the extent to which ties are concentrated. It is bounded between 0 and 1 with larger values indicating more centralization.

$$C(G) = \sum_{i} \left| \frac{M - C_i}{(n-2)(n-1)} \right|$$

where C_i is the degree of node i, M is the maximum among C_i .

► Transitivity: the proportion of transitive triangles out of possible triangles.

$$T(G) = \frac{\sum_{ijk} w_{ij} w_{jk} w_{ik}}{\sum_{ijk} w_{ij} w_{jk}}$$