LATEX ASSIGNMENT

ANAND

9-09-2023

EXERCISE 12.11.4

- 1. Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, -1), (4, 3, -1).
- 2. If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to Both of these are $m_1n_2 m_2n_1, n_1l_2 n_2l_2 n_2l_1, l_1m_2 l_2m_1$.
- 3. Find the angle between the lines whose direction ratios are a, b, c and b-c, c-a, a-b.
- 4. Find the equation of a line parallel to x-axis and passing through the origin.
- 5. If the co-ordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
- 6. If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular, Find the value of k.
- 7. Find the vector equation of the line passing through (1,2,3) and perpendicular to the plane $\overrightarrow{r} \cdot (\hat{i} + 2\hat{j} 5\hat{k}) + 9 = 0$.
- 8. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 2$.
- 9. Find the shortest distance between the lines $\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} 2\hat{j} + 2\hat{k})$ and $\vec{r} = -4\hat{i} \hat{k} + \mu(3\hat{i} 2\hat{j} 2\hat{k})$.
- 10. Find the co ordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the *YZ*-plane.
- 11. Find the co ordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX-plane.
- 12. Find the co ordinates of the point where the line through (3, -4, -5) and (2, -3, 1) crosses the plane 2x + y + x = 7.

- 13. Find the equation of the plane passing through the point (-1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
- 14. If the points (1, 1, p) and (-3, 0, 1) be equidistant from the plane $\overrightarrow{r} \cdot (3\hat{i} + 4\hat{j} 12\hat{k}) + 13 = 0$, then find the value of p.
- 15. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (2\hat{i} + 3\hat{j} \hat{k}) + 4 = 0$ and parallel to x-axis.
- 16. If O be the origin and the coordinates of P be (1, 2, -3), then find the equation of the plane passing through P and perpendicular to OP.
- 17. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) 4 = 0$, $\vec{r} \cdot (2\hat{i} + \hat{j} \hat{k}) + 5 = 0$ and which is perpendicular to the plane $\vec{r} \cdot (5\hat{i} + 3\hat{j} 6\hat{k}) + 8 = 0$
- 18. Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\overrightarrow{r} = 2\hat{i} \hat{j} 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\overrightarrow{r} \cdot (\hat{i} \hat{j} + \hat{k}) = 5$.
- 19. Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes $\overrightarrow{r} \cdot (\hat{i} \hat{j} + 2\hat{k}) = 5$ and $\overrightarrow{r} \cdot (3\hat{i} + \hat{j} + \hat{k}) = 6$
- 20. Find the vector equations of the line passing through the point (1, 2, -4) and perpendicular to the two lines:

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}.$$
 (1)

21. Prove that if a plane has the intercept a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{p^2}$.

Choose the correct answer in 22 and 23

- 22. Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is
 - (a) 2 units
 - (b) 4 units
 - (c) 8 units
 - (d) $\frac{2}{\sqrt{29}}$ units
- 23. The planes: 2x y + 4z = 5 and 5x 2.5y + 10z = 6 are
 - (a) Perpendicular
 - (b) Parallel
 - (c) Intersect y axis
 - (d) Passes through $(0, 0, \frac{5}{4})$