MIRACLES

Mapping of Ionizing **RA**diation on the **C**osmic web with Lyα Emission and **S**hadow

Yuichi Matsuda(NAOJ) & MIRACLES Team

Thanks to your feedback at the last WS, we have started this program from S21A.

Page 1)				(Page 3)					Prop	osal ID <u>S21A0114QI</u>
,			Semester S21A	Title of Prop						
	Telescope		Proposal ID S21A0114QI	Mapping	of ionizi	ng radiation	on the cosm	ic web wi	th Lya emissio	n and shadov
National As	stronomical Observatory of Japan		Received <u>09/08/2020</u>	12. Observing	g Run					
	Application Form	for Telescope	Time	Instrument	Hours	Moon phase	Moon distance	Seeing	Transparency	OnSrc Hours
	(Queue Normal+I	_		HSC	98	dark/gray	120	3	0.7	81
	(Queue roman 1.	inclisive i rog								
1. Title of Proposal										
Mapping of ioni	zing radiation on the co	smic web with Ly	a emission and shadow	comments:						
2. Principal Investiga				Total Reque	sted Numb	per of Hours	98 Minim	num Accepta	able Number of Ho	ours 9
Name: Matsuda Institute: NAOJ	Yuichi			Total Requested Number of Hours 98 Minimum Acceptable Number of Hours 9 13. Instrument Requirements Specify the set of filters to use (HSC).						
	21-1 Osawa Mitaka Tokyo 181-8588			I	-	ements Specify the 3497 and NB527 fil		(HSC).		
	ichi.matsuda@nao.ac.jp		422-34-3900-3101		<i>3</i> , . , –					
3. Scientific Category	,									
Solar System	Extrasolar Planets	Star Formation a	and Young Disk ISM							
Normal Stars	Metal-Poor Stars	Compact Object	s and SNe Milky Way	14. List of Ta	argets					
Local Group	Nearby Galaxies	★ IGM and Abs.Li	ne Systems Cosmology	Target Name	71 SC03	RA	Dec	Magnitude	(Band)	
Gravitational Lenses	Clusters and Proto-Clu	_		SSA22		221734.0		_	$\frac{\text{ag arcsec}^{-2} (NB497)}{\text{ag arcsec}^{-2} (NB497)}$	
High-z Galaxies(LAEs	s, LBGs) \square High-z Galaxies(others	AGN and QSO A	Activity Miscellaneous							
4. Abstract (approximate	tely 200 words)									
	imaging of the cosmic web toward t									
	tribution of both ionized HII gas (
	round the protocluster in a cosmol- nage. We will unveil (1) the physical									
the cosmic web and gala	xies/AGNs, and (3) the role of the c	cosmic web on cluster form	ation. To identify HII gas filaments							
	ightness of $SB_{Ly\alpha} = 3 \times 10^{-19}$ ergs egration for NB497, in addition to 6									
	To trace HI gas overdesity with a 5 of									
	= 3.3 with Ly α emission as background		ı							
	will enable us to constrain the total of galaxy, super massive black hole,		or and radiative feedback process	Akio In	oue lk	ki Mitsuk	ashi, Mar	iko Kub	10	
5. Co-Investigators	G. J. J.		4 more Co-Is						,0	
Name	Institute	Name	Institute	Riek	ko Mor	nose, Sat	oshi Yama	anaka		
Hideki Umehata	RIKEN	Michele Fumagalli	Durham University							
Ken Mawatari	Univ. of Tokyo	Ian Smail	Durham University							
Hidenobu Yajima	Univ. of Tsukuba	David Alexander	Durham University							
Masayuki Umemura Masao Mori	Univ. of Tsukuba Univ. of Tsukuba	Yoichi Tamura Keiichi Matsuda	Nagoya Univ. Nagoya Univ.							
Takuya Hashimoto	Univ. of Tsukuba	Satoshi Kikuta	NAOJ							
Scott Chapman	Dalhousie University	Kentaro Nagamine	Osaka Univ.							
Tomoki Hayashino	Tohoku Univ.	Masami Ouchi	Univ. of Tokyo							
Toru Yamada	JAXA	Yoshiaki Ono	Univ. of Tokyo							
Charles Steidel	Caltech	Kotaro Kohno	Univ. of Tokyo							
6. Thesis Work										
This proposal is lin	ked to the thesis preparation of									
7. Subaru Open Use	Intensive Programs									
This is a proposal for	0									

HSC Observations of Cosmic Web

(1) The physical properties of the cosmic web (width, length, mass, & ionizing radiation field)

(2) The connection between the cosmic web and galaxy / black hole growths

Cosmic Web & Galaxy/Cluster formation

Yajima+21

(a) 2D dark matter map at z=3 (b) 3D gas map in protocluster

Lya emission

Yajima+21

Lya absorption

Coordinated CFHT/MegaCam U-band 13.1 hours program (Chapman+)

Subaru TAC recommendations

Since there are still some concerns raised by the referees and TAC as follows, we would encourage you to keep improving the observing and analyzing strategies.

- (1) **Unknown systematic on the ultras-deep NB497 image:** The proposers will obtain 3 times deeper NB497 image than the currently existing data. Indeed, deeper images will open a new window to understand the relation between the cosmic web, galaxies, and clusters. This is also complementary with the deep MUSE fields, which have kinematic information but much smaller field of view. However, we are still skeptical if the proposers could achieve their desired depth by spending the integration time of 63 hrs by stacking data including those previously obtained. Moreover, a low-level sky residual of ~29 mag arcsec-2 on a small scale is pointed out in the HSC DR2 paper, including small scale fluctuation (e.g., Galactic cirrus). As the PI presented in the TAC interview, the team has already demonstrated several tests to confirm how the detection limit would be improved by stacking 3000 images and how well small scale fluctuation would be removed by subtracting BB image from NB image. However, we are still concerned about some systematic sources of fluctuations that we have not noticed yet.
- (2) Coarse sampling of the background LBGs: Although it is quite unique to get both the HI and HII content of the protocluster region, it is not clear how they connect the small scale structure that will be probed in emission (~50 ckpc scale) with the larger scale density fluctuations that will be probed in absorption (~5 cMpc scale). The depth of line of sight is much larger (~50 cMpc), about one order of magnitude larger than the spatial resolution in the tangential direction, although it is less likely that more than one cosmic web sheet locates on the same line of sight.

How to decrease systematics

How to increase background LBGs⁹

				0				Wavelength (Å)	
5555			erved wav	elength [Å]			o	5000 5500	
3000		4000		5000	60	00	· · · ·		
		1 441 /	MAN M. J. J. J. W.	7 <u>X</u>		<u> </u>	0.2		
26 `	ng.		Note and March	warmy all raph	may profession	Monday	- 0.1		
. Z	_{-II} =3.1 _{okg} =3.3]	0.8 – 0.6 – 0.4 – 0.4 –		
25 - Z	=3.1	ı	•	NB497 NB527	-		0.6		
							ils;		
							<u>0.8</u> ⊢		
							_	Λ	
				z _{tskg} =3.3, z _{gas} =3.1			1 -	- X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
				z _{tikg} =3.1, z _{gas} =2.8			-	TRAGE MARY MESTING TO THE TOTAL MARY MESTING TO THE TOTAL MARY MESTING TO THE TOTAL MARY MARY MARY MARKET MARY MARKET MAR	
100 kpc	100 Mpc ⁻²	1.4 Mpc ⁻³	inf	z _{thg} =2.8, z _{gas} =2.5			1.2	2 0 6 6 6	
				z _{blg} =3, 3, z _{gas} =3, 1 z _{blg} =2, 5, z _{gas} =2, 2	g/1-20. 2	ND021-21, 2	-		
			(LF の外挿)	z _{tring} =3.1, z _{grax} =2.8	g/r=28, 1 g/r=28, 2	NB497=27. 1 NB527=27. 2	NB468=28. 6 NB497=28. 7		
3 Мре	11x10 ⁻² Mpc ⁻²	1.6x10 ⁻³ Mpc ⁻³	-17.5 mag	z _{tsig} =2.8, z _{gas} =2.5	g/r=27. 9	NB468=26. 9	NB430=28, 4		
		4 0 403 14 13	42.5	z _{tės} =2.5, z _{sss} =2.2	g/r=27.7	NB430=26. 7	NB387=28, 2		
				z _{tág} =3, 3, z _{gm} =3, 1	g/r=26, 7	NB527=25, 7	NB497=27, 2		
				z _{tskg} =3.1, z _{gas} =2.8	g/r=26.6	NB497=25. 6	NB468=27.1		
5 Mpc	4x10 ⁻² Mpc ⁻²	$5.7 \mathrm{x} 10^{-4} \mathrm{Mpc}^{-3}$	-19 mag	z _{bbg} =2.8, z _{ges} =2.5	g/r=26.4	NB468=25. 4	NB430=26, 9		
				z_{blg} =2.5, z_{gas} =2.2	g/r=26. 2	NB430=25. 2	NB387=26.7		
				z _{big} =3, 3, z _{gas} =3, 1	g/r=25.7	NB527=24. 7	NB497=26, 2		
				z _{tskg} =3.1, z _{gen} =2.8	g/r=25.6	NB497=24. 6	NB468=26.1		
10 Mpc	$10^{-2} \ \mathrm{Mpc^{-2}}$	$1.4 \mathrm{x} 10^{-4} \mathrm{Mpc}^{-3}$	-20 mag	z _{tásg} =2.8, z _{gas} =2.5	g/r=25.4	NB468=24. 4	NB430=25, 9		
				z _{blg} =2.5, z _{gas} =2.2	g/r=25.2	NB430=24, 2	NB387=25.7		
			(ラフ)		直近)			Tria watari san s estimate	
空間分解能	数密度(20)	数密度(3D)	の絶対 UV 等級	(gas)の赤方偏移	連続光(Lya			Mawatari-san's estimate	
マッピング	背景天体の	背景天体の	必要な背景天体	背景(bkg)と吸収体	bkg 天体の	bkg 天体の Lya	ガス吸収パンド		

Current Status

- Semester: S21A-S23A (possible extension to S24A?)
 - u-band data (5h, 38%) 13h
 - o g-band data (1h, 12%) 8h
 - r-band data (3.3h, 30%) 10h
 - NB497 data (0h, 0%) 63h
 - NB527 data (0h, 0%) 3h
- Add NB506/515 to increase number of background LBGs?