Orders and Primitive Roots

Aprameya Tripathy, minor edits by Dennis Chen

NRU

Thanks to Raymond Feng for suggesting several of the problems in this handout.

§ 1 **Orders**

We begin by reviewing some introductory theorems.

Theorem 1 (Fermat) $a^{p-1} \equiv 1 \pmod{p}$ whenever p is prime and $p \nmid a$.

Theorem 2 (Euler) $a^{\phi(n)} \equiv 1 \pmod{n}$ whenever $\gcd(a, n) = 1$.

(If you have forgotten the proofs for these theorems, try to reprove them as an exercise or refer to **NQU-Mod**.) Notice that both Fermat and Euler are weak.

Example 1 (Stronger Euler on 1000) Show that there exists some x < 400 such that

$$a^x \equiv 1 \pmod{1000}$$

for all a relatively prime to 1000.

Solution: We claim that x = 100 is a satisfactory value of x. Notice that by Euler,

$$a^{100} \equiv a^{100 \pmod{\phi(8)}} \equiv a^{100 \pmod{4}} \equiv a^0 \equiv 1 \pmod{8}$$

and that

$$a^{100} \equiv a^{\phi(125)} \equiv 1 \pmod{125}$$

whenever gcd(a, 1000) = 1. Thus, by CRT,

$$a^{100} \equiv 1 \pmod{1000}$$

for all a relatively prime to 1000.

Often, there is a number $x < \phi(n)$ such that $a^x \equiv 1 \pmod{n}$ for some a. In order to properly discuss this x, we define **orders**.

Definition 1 (Orders) Let a and n be two relatively prime integers with n > 1. Then $\operatorname{ord}_n(a)$ (the order of a mod n) is the smallest positive integer x such that $a^x \equiv 1 \pmod{n}$.

We immediately notice the following fact.

Proof: Clearly, $a^m \equiv 1 \pmod{n}$ if $\operatorname{ord}_n(a) \mid m$ by definition, so the if condition holds.

Now, if $a^m \equiv 1 \pmod{n}$, we see that $m \geq \operatorname{ord}_n(a)$ by definition. Thus, from the division algorithm, there exist two integers q and r such that

$$m = q \cdot \operatorname{ord}_n(a) + r,$$

where $0 \le r \le \operatorname{ord}_n(a) - 1$ and q > 0. Since $a^{\operatorname{ord}_n(a)} \equiv 1 \pmod{n}$, we see $a^{-q \cdot \operatorname{ord}_n(a)} \equiv (1)^{-q} \equiv 1$.

$$a^r \equiv a^{m-q \cdot \operatorname{ord}_n(a)} \equiv 1 \pmod{n},$$

so by the minimality of $\operatorname{ord}_n(a)$, r can't be positive (as $r \leq \operatorname{ord}_n(a) - 1$). Thus, we must have r = 0, meaning $\operatorname{ord}_n(a) \mid m$, completing the proof.

This fact is one of the most useful facts relating to orders - it allows us to take the order of some random value and relate it to the overall modulus. In other words, it allows us to get global information from local information - something that is very powerful in many places. We will explore two of those examples.

Example 2 (Fermat's Christmas Theorem) Show that if a prime p > 2 can be written as the sum of two squares, we must have $p \equiv 1 \pmod{4}$.

Solution: Suppose that $p = x^2 + y^2$ for some positive integers x and y. Clearly, $p \nmid x$ and $p \nmid y$, as if p divided either x or y, we would have $x^2 + y^2 > p$. Since $x^2 + y^2 = p$, we see $x^2 + y^2 \equiv 0 \pmod{p}$. Thus, $(xy^{-1})^2 \equiv -1 \pmod{p}$, and (by squaring),

 $(xy^{-1})^4 \equiv 1 \pmod{p}$. Thus, $\operatorname{ord}_p(xy^{-1}) \mid 4$.

Notice that if $\operatorname{ord}_p(xy^{-1}) \mid 2$, then we would have $(xy^{-1})^2 \equiv 1 \pmod{p}$, but as we showed earlier, $(xy^{-1})^2 \equiv -1 \pmod{p}$. Since p > 2, this is clearly absurd, so we must have $\operatorname{ord}_p(xy^{-1}) \nmid 2$. Since the only factor of 4 that doesn't divide 2 is 4, we must have $\operatorname{ord}_{p}(xy^{-1}) = 4$.

Now, from Fermat, $(xy^{-1})^{p-1} \equiv 1 \pmod{p}$. Thus, $\operatorname{ord}_p(xy^{-1}) = 4 \mid p-1$, so $p \equiv 1 \pmod{4}$.

Observe how we did not ever try to find x, or y, or xy^{-1} . We only tried to find $\operatorname{ord}_{v}(xy^{-1})$. The idea of finding orders instead of variables is quite useful.

Oftentimes, this idea works, but sometimes, we need to use another idea – exploiting minimality.

Example 3 (China TST 2006 Quiz) Find all positive integers a and n such that

$$\frac{(a+1)^n - a^n}{n}$$

is an integer.

Solution: Assume for the sake of contradiction that n > 1. Let p be the smallest prime that divides n (p exists as n > 1). Since $\frac{(a+1)^n - a^n}{n} \in \mathbb{Z}$, we must have $(a+1)^n \equiv a^n \pmod{p}$. Thus (since a is clearly not a multiple of p), $((a+1)a^{-1})^n \equiv 1 \pmod{p}$, so $\operatorname{ord}_p((a+1)a^{-1}) \mid n$.

Observe that from Fermat, $\operatorname{ord}_p((a+1)a^{-1}) \mid p-1$. Thus, $\operatorname{ord}_p((a+1)a^{-1}) \mid \gcd(p-1,n)$. Notice that if gcd(p-1,n) > 1, then there is some prime q < p that divides n, contradicting minimality of p. Thus, we must have gcd(p-1, n) = 1, so $ord_p((a+1)a^{-1}) = 1$.

Thus,

$$(a+1)a^{-1} \equiv 1 \pmod{p} \iff a+1 \equiv a \pmod{p} \iff 1 \equiv 0 \pmod{p},$$

a contradiction.

Thus, n = 1. Substituting that into the original expression, we see that

$$\frac{(a+1)^n - a^n}{n} = \frac{a+1-a}{1} = 1,$$

so $\frac{(a+1)^n-a^n}{n}$ is an integer whenever n=1.

There are two main takeaways from this problem that apply to most order problems.

- igspace The modulus is the most important: Like in the previous example, notice that the method of solving this problem was "Find n" not "find a" (even with primitive roots, the idea is to pick a instead of finding it) It's almost always a better idea to restrict the modulus than restrict the equivalent numbers in problems like these
- lacktriangle Minimality arguments: Notice how important the fact that p was the smallest prime factor of n was. Without it, the problem would be much more difficult.

§ 2 Primitive Roots

We know that we always have $\operatorname{ord}_n(a) \leq \phi(n)$, but can we ever achieve the maximum? In other words, does there exist a value a for a certain n such that $\operatorname{ord}_n(a) = \phi(n)$? What properties might this a have? In order to properly discuss these numbers, we define a **primitive root**.

Definition 2 (Primitive Root) Let a and n be two positive integers. a is called a primitive root modulo n if and only if $\operatorname{ord}_n(a) = \phi(n)$.

Before discussing the applications of primitive roots, we prove that they always exist modulo p, where p is prime.

Definition 3 (Polynomial Ring) Let $\mathbb{Z}[x]$ be the ring of polynomials with integer coefficients.

Theorem 3 (Lagrange) Let $f(x) \in \mathbb{Z}[x]$ such that not all coefficients of f are multiples of some prime p. Then the equation

$$f(x) \equiv 0 \pmod{p}$$

has at most $\deg f$ incongruent solutions (mod p).

Proof: We proceed with induction on $\deg f$.

Consider when deg f = 0. Then, by definition, f(x) = c, where $p \nmid c$. Thus, the equation $f(x) \equiv 0 \pmod{p}$ has no solutions, so the claim holds in the base case.

Now, assume the claim holds for all polynomials of degree m for some $m \in \mathbb{N}$. We will show it holds for all polynomials of degree m+1.

Consider some polynomial $f(x) \in \mathbb{Z}[x]$ with degree m+1. If $f(x) \equiv 0 \pmod{p}$ has no solutions, the claim holds. Otherwise, assume that there exists some constant a such that $f(a) \equiv 0 \pmod{p}$. From the definition of modular arithmetic, there exists some integer q such that f(a) - pq = 0. From the remainder theorem, this means $x - a \mid f(x) - pq$.

Thus, there exists some $g(x) \in \mathbb{Z}[x]$ such that $f(x) = g(x) \cdot (x - a) + pq$. Thus, $f(x) \equiv g(x)(x - a)$ (mod p), and since $\deg(x - a) = 1$, we have $\deg g = m$. Now, notice $g(x) \equiv 0 \pmod{p}$ has at most m solutions (inductive hypothesis) and $x - a \equiv 0 \pmod{p}$ has one solution. Thus, $f(x) \equiv 0 \pmod{p}$ has at most m + 1 solutions, completing the inductive step and finishing the proof.

Fact 2 (Summing the Euler Totient Function) Over the positive integers,

$$\sum_{d|n} \phi(d) = n.$$

We can now show that primitive roots always exist modulo p where p is prime. In fact, we an prove something much stronger.

Theorem 4 (Amount of Repeating Orders) Let p be a prime, and $d \mid p-1$. Then there are exactly $\phi(d)$ elements with order d modulo p.

Proof: Consider the polynomial $x^d - 1$. Clearly, $x^{p-1} - 1 = (x^d - 1) \frac{x^{p-1} - 1}{x^d - 1}$. From the geometric series formula, $\frac{x^{p-1} - 1}{x^d - 1} \in \mathbb{Z}[x]$, and from Fermat, $x^{p-1} - 1 \equiv 0 \pmod{p}$ has p - 1 solutions.

Now, from Lagrange, $x^d-1\equiv 0\pmod p$ has at most d non-congruent solutions $(\bmod p)$, and $\frac{x^{p-1}-1}{x^d-1}\equiv 0\pmod p$ has at most p-d non-congruent solutions $(\bmod p)$. Since $(x^d-1)\frac{x^{p-1}-1}{x^d-1}\equiv 0\pmod p$ has exactly p solutions $(\bmod p)$, x^d-1 and $\frac{x^{p-1}-1}{x^d-1}$ must each respectively have exactly d and p-d non-congruent solutions $(\bmod p)$.

Let $\Omega(q)$ be the number of prime factors of q counted with multiplicity, where $q \mid p-1$. We will show by strong induction on $\Omega(q)$ that there are $\phi(q)$ non-congruent numbers which have order q modulo p.

If $\Omega(q) = 0$, q = 1. Clearly, there is only one number with order $\phi(1) = 1$ modulo p, proving the first base case.

If $\Omega(q)=1$, q would be prime. Consider the number of solutions to $x^q-1\equiv 0\pmod p$. From Fact 1, we know that $x^q-1\equiv 0\pmod p$ if and only if $\operatorname{ord}_p(x)\mid q$. Since q is prime, the number of solutions to $x^q-1\equiv 0\pmod p$ is equal to the number of solutions to $\operatorname{ord}_p(x)=1$ plus the number of solutions to $\operatorname{ord}_p(x)=q$. Since there is only one x such that $\operatorname{ord}_p(x)=1$ and $x^q-1\equiv 0\pmod p$ has q solutions, there are $q-1=\phi(q)$ numbers with order q modulo p. Thus, the second base case is true.

Now, assume that for all $q \mid p-1$ with $\Omega(q) \leq m$, $\operatorname{ord}_p(x) = q$ has $\phi(q)$ solutions. We will show that for any $r \mid p-1$ and $\Omega(r) = m+1$, there are $\phi(r)$ solutions to $\operatorname{ord}_p(x) = r$.

Let the proper divisors of r be $1, r_1, r_2, \ldots, r_n$. Consider the number of solutions to $x^r - 1 \equiv 0 \pmod{p}$. We know that the number of solutions to $x^r - 1 \equiv 0 \pmod{p}$ is equal to the number of solutions to $\operatorname{ord}_p(x) = 1$ plus the number of solutions to $\operatorname{ord}_p(x) = r_1, \ldots$, plus the number of solutions to $\operatorname{ord}_p(x) = r$.

Clearly, $\Omega(r_i) \leq m$ for all $1 \leq i \leq n$. By the inductive hypothesis, there are $\phi(r_i)$ solutions to $\operatorname{ord}_p(x) = r_i$ for all $1 \leq i \leq n$. From Fact 2, it follows that there are $\phi(r)$ solutions to $\operatorname{ord}_p(x) = r$, completing the inductive step and finishing the proof.

It turns out that primitive roots exist mod n if and only if n is either $2, 4, p^k$, or $2p^k$, where p is an odd prime and k is a positive integer. This will turn out to be very useful.

Fact 3 (Primitive Root Residue System) Let p be a prime and g a primitive root modulo p. Show that

$${g, g^2, g^3, \dots, g^{p-1}} \equiv {1, 2, 3, \dots, p-1} \pmod{p}.$$

Proof: Let g^m and g^n be two distinct elements in $\{g, g^2, g^3, \dots, g^{p-1}\}$. Notice that $g^m \not\equiv g^n \pmod p$, as if $g^m \equiv g^n \pmod p$, then we would have $p-1 \mid m-n$. Thus, all the elements in $\{g, g^2, g^3, \dots, g^{p-1}\}$ are distinct modulo p.

Thus, since there are p-1 elements in $\{g, g^2, g^3, \ldots, g^{p-1}\}$ and only p-1 non-zero residues modulo p, non-zero residues modulo p is equivalent to a certain element of the set $\{g, g^2, g^3, \ldots, g^{p-1}\}$ (mod p). Thus,

$${g, g^2, g^3, \dots, g^{p-1}} \equiv {1, 2, 3, \dots, p-1} \pmod{p}.$$

Primitive roots an often be used to convert questions dealing with the set $\{1, 2, 3, \dots, p-1\}$ into ones which deal with the set $\{g, g^2, g^3, \dots, g^{p-1}\}$ – a powerful exchange for many reasons.

They are also typically used when orders aren't powerful enough to solve a problem.

Example 4 (Primitive Root Problem) Find all positive two digit integers \overline{ab} with $a \neq b$ such that $\overline{ab} \mid k^a - k^b$ for all integers k.

Solution: Let p be any prime that divides \overline{ab} , and let q be a primitive root modulo p.

Since we have $\overline{ab} \mid k^a - k^b$ for all integers k, we must have $p \mid \overline{ab} \mid g^a - g^b$, so $g^a \equiv g^b \pmod{p}$. Multiplying by g^{-b} , we get $g^{a-b} \equiv 1 \pmod{p}$, so since $\operatorname{ord}_p(g) = p-1$ (as x is a primitive root modulo p), we have $p-1 \mid a-b$. Thus, since the maximum value of |a-b| is 9 and $a-b \neq 0$, we see that

$$(p-1)+1 \le |a-b|+1 \le 10 \iff p \in \{2,3,5,7\}.$$

Thus, the only primes that can divide \overline{ab} when $a \neq b$ are $\{2, 3, 5, 7\}$, and if a prime p divides \overline{ab} , $p-1 \mid a-b$. We proceed with casework

Case 1: $7 \mid \overline{ab}$.

If $7 \mid \overline{ab}$, then $6 \mid a-b$, so either a = b+6 or b = a+6. Thus, we must have $\overline{ab} \in \{17, 28, 39, 60, 71, 82, 93\}$, but since $7 \mid \overline{ab}$, we must have $\overline{ab} = 28$. Checking (with CRT and Euler), we see $\overline{ab} = 28$ works.

Case 2: $5 \mid \overline{ab}$ and $7 \nmid \overline{ab}$.

Clearly, we must have either b=0 or b=5. Since $5 \mid \overline{ab}$, we have $4 \mid a-b$, so we must have either a=b+4, a=b+8, a=b-4, or a=b-8. Thus, $\overline{ab} \in \{40,80,45,85,15\}$. We can't have $\overline{ab}=45$ or 85, as if $\overline{ab}=45$, then $3 \mid \overline{ab}$ but $2 \nmid a-b$, and if $\overline{ab}=85$, then $17 \mid \overline{ab}$. Now, notice that if $\overline{ab}=40$ or 80, then $k^a-1\neq 0 \pmod 8$ whenever k is even, so we must have $\overline{ab}=15$. Checking (with CRT and Euler), we see $\overline{ab}=15$ works.

Case 3: $3 \mid \overline{ab} \text{ and } 5 \nmid \overline{ab} \text{ and } 7 \nmid \overline{ab}$.

Notice that we have $\overline{ab} = 3^p \dot{2}^q$, where p > 1. Thus, we have $\overline{ab} \in \{27, 81, 12, 18, 24, 36, 48, 54, 72, 96\}$. We can't have $\overline{ab} \in \{27, 81, 12, 18, 36, 54, 72, 96\}$, as then $3 \mid \overline{ab}$ but $2 \nmid a - b$. Thus, $\overline{ab} \in \{24, 48\}$. Now, notice that $\overline{ab} \neq 24$, since whenever $k \equiv 2 \pmod{8}$, $k^2 - k^4 \not\equiv 0 \pmod{8}$. Thus, we must have $\overline{ab} = 48$. Checking (with CRT and Euler), we see $\overline{ab} = 48$ works.

Case 4: 2 is the only prime that divides \overline{ab} .

Notice that we must have $\overline{ab} = 2^a$, where a > 1. Thus, $\overline{ab} \in \{16, 32, 64\}$, but notice that when this is true, $\overline{ab} \nmid 2^a - 2^b$. Thus, this case gives no solutions.

Thus, the solution set is $\overline{ab} \in \{15, 28, 48\}$.

Understand why primitive roots were used and how they were used. If we have freedom to pick the values of our variables, it is often fruitful to use primitive roots.

§ 3 Problems

For some of the problems presented, it may be useful to know the **Lifting The Exponent Lemma**. We will not prove the lemma here. (If you want a thorough treatment of LTE, see Raymond Feng's **NRU-Prime**.)

Theorem 5 (Lifting The Exponent) Let $v_p(n)$ where p is prime be the number such that $p^{v_p(n)} \mid n$ and $p^{v_p(n)+1} \nmid n$.

• If an odd prime $p \mid a - b$ but $p \nmid a$ and $p \nmid b$, we have

$$v_p(a^n - b^n) = v_p(a - b) + v_p(n).$$

• If an odd prime $p \mid a+b$ but $p \nmid a$ and $p \nmid b$, we have

$$v_p(a^n + b^n) = v_p(a+b) + v_p(n)$$

if n is odd, and

$$v_p(a^n + b^n) = 0$$

if n is even.

• if $2 \mid x - y$ but $2 \nmid x$ and $2 \nmid y$, then whenever $2 \mid n$, we have

$$v_2(x^n - y^n) = v_2(x - y) + v_2(n) + v_2(x + y) - 1.$$

Minimum is [28 ℯ]. Problems with the ♥ symbol are required.

"The Mafia is grievously wounded – but not mortally."

Five Families

[1] Problem 1 Show $n \nmid 2^n - 1$ for all n > 1. (This is actually a weaker form of Example 3.)

[2] Problem 2 (AIME I 2019/14) Find the least odd prime factor of $2019^8 + 1$.

[3 \bigoplus] Problem 3 (China TST 1993/1) For all primes $p \geq 3$ such that $p-1 \nmid 120$, define

$$F(p) = \sum_{k=1}^{\frac{p-1}{2}} k^{120}$$

and $f(p) = \frac{1}{2} - \left\{ \frac{F(p)}{p} \right\}$, where $\{x\} = x - [x]$, find the value of f(p).

[3] Problem 4 (Euler) Prove that all factors of $2^{2^n} + 1$ are of the form $k \cdot 2^{n+1} + 1$.

[4 \bigoplus] Problem 5 Suppose p is a prime such that there exists an integer q such $q^2 \equiv -3 \pmod{p}$. Find all solutions to $x^3 \equiv 1 \pmod{p}$ in terms of p and q.

[6] **Problem 6** (Weak Dirichlet) Prove that there are infinite primes $p \equiv 1 \pmod{k}$.

[6] Problem 7 (DIME 2020/14) For a positive integer n not divisible by 211, let f(n) denote the smallest positive integer k such that $n^k - 1$ is divisible by 211. Find the remainder when

$$\sum_{n=1}^{210} nf(n)$$

is divided by 211.

[6] Problem 8 (IMO 1999/4) Find all the pairs of positive integers (x, p) such that p is a prime, $x \le 2p$ and x^{p-1} is a divisor of $(p-1)^x + 1$.

[9] Problem 9 (IMO 1990/3) Find all positive integers n such that $n^2 \mid 2^n + 1$.

[9] Problem 10 (ISL 2012/N6) Let x and y be positive integers. If $x^{2^n} - 1$ is divisible by $2^n y + 1$ for every positive integer n, prove that x = 1.

[13] Problem 11 (ISL 2003/N7) The sequence a_0, a_1, a_2, \ldots is defined as follows:

$$a_0 = 2$$
, $a_{k+1} = 2a_k^2 - 1$ for $k \ge 0$.

Prove that if an odd prime p divides a_n , then 2^{n+3} divides $p^2 - 1$.