```
In [1]: # This Python 3 environment comes with many helpful analytics libraries
         installed
        # It is defined by the kaggle/python docker image: https://github.com/ka
        ggle/docker-python
        # For example, here's several helpful packages to load in
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
        # Input data files are available in the "../input/" directory.
        # For example, running this (by clicking run or pressing Shift+Enter) wi
        11 list all files under the input directory
        import os
        for dirname, _, filenames in os.walk('/kaggle/input'):
            for filename in filenames:
                print(os.path.join(dirname, filename))
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set(rc={"font.style":"normal",
                    "axes.grid":False,
                    'figure.figsize':(10.0,10.0)})
        import nltk
        from nltk.stem.wordnet import WordNetLemmatizer
        from nltk.tokenize import word tokenize
        from nltk.corpus import stopwords
        from wordcloud import WordCloud
        stop words = set(stopwords.words('english'))
        from sklearn.cluster import KMeans
        # Any results you write to the current directory are saved as output.
```

/kaggle/input/online-retail-customer-clustering/OnlineRetail.csv

EDA

```
In [2]: retail_df = pd.read_csv('/kaggle/input/online-retail-customer-clustering/OnlineRetail.csv',encoding='ISO_8859-1')
    retail_df.head()
```

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

```
In [3]: retail_df.CustomerID = retail_df.CustomerID.astype(object)
    retail_df.InvoiceDate = pd.to_datetime(retail_df.InvoiceDate,format='%d-
%m-%Y %H:%M')
```

```
In [4]: retail_df.shape
# 541909 rows, 8 columns
```

Out[4]: (541909, 8)

```
In [5]: retail_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
InvoiceNo
              541909 non-null object
StockCode
              541909 non-null object
Description
              540455 non-null object
              541909 non-null int64
Quantity
InvoiceDate
              541909 non-null datetime64[ns]
UnitPrice
              541909 non-null float64
CustomerID
              406829 non-null object
              541909 non-null object
Country
dtypes: datetime64[ns](1), float64(1), int64(1), object(5)
memory usage: 33.1+ MB
```

```
In [6]: # Drop rows containing missing values
    retail_df = retail_df.dropna()

#Drop rows containing negative values
    idx_qty = retail_df[retail_df.Quantity < 0].index
    retail_df.drop(idx_qty,axis=0,inplace=True)

idx_price = retail_df[retail_df.UnitPrice < 0].index
    retail_df.drop(idx_price,axis=0,inplace=True)

# We do have a few outliers, so we can drop them safely for now.
    idx_outliers = retail_df[retail_df['Quantity'] > 5000].index
    retail_df.drop(idx_outliers,axis=0,inplace=True)
```

```
In [7]: retail_df.describe()
```

Out[7]:

	Quantity	UnitPrice
count	397921.000000	397921.00000
mean	12.600355	3.11619
std	42.889024	22.09687
min	1.000000	0.00000
25%	2.000000	1.25000
50%	6.000000	1.95000
75%	12.000000	3.75000
max	4800.000000	8142.75000

Visualization

```
In [8]: plt.figure(figsize=(12,5))
    sns.countplot(retail_df['Country'],palette= 'Set2')
    plt.xticks(rotation=40,ha='right')
    plt.title("Country Distribution")
    plt.xlabel('Country')
    plt.ylabel('Country');
```


From the above bar chart, we can clearly see that UK has the highest number of customers.

```
In [9]: plt.figure(figsize=(8,5))
    sns.countplot(retail_df['InvoiceDate'].dt.year,palette= 'Set2')
    plt.xticks(rotation=40,ha='right')
    plt.title("Year Distribution")
    plt.xlabel('Year')
    plt.ylabel('Count');
```


The above bar plot shows that most of the transactions occurred in 2011.

The above bar plot shows that transaction volume increase towards the end of a year, peaking in November (early Thanksgiving / Christmas purchases probably).

The above bar plot indicates higher transaction volumes on Thursdays and the lowest on Fridays. Saturday is not shown as no transaction occured.

Next, I'm creating a word cloud to demonstrate the most frequently purchased items and the least purchased. wordcloud() generates the Word Cloud using seaborn library.

tokenize() validates each word in the text using validate_word() and word_tokenize() and returns them.

```
In [12]:
         def wordcloud(text, my mask=None):
             wc = WordCloud(width=1000,height=1000,max words=1000,collocations=Fa
         lse,
             min_font_size=10,contour_width=2, mask=my_mask,background_color='whi
         te').generate(text)
             plt.imshow(wc)
             plt.axis('off')
             plt.show()
         def tokenize(text):
             token = word tokenize(text)
             word_token = []
             for word in token:
                  if validate word(word, stop words) :
                      word_token.append(str(word))
             return(str(word_token))
         def validate word(word, stop words):
             if word not in stop words and word.isalpha():
                  return True
             return False
```


From the above word cloud, we can see that white is the most frequently used descriptor and object is the least frequently used descriptor.

```
In [14]: # Temporary dataframes that will be merged.
temp_df1 = pd.DataFrame()
temp_df2 = pd.DataFrame()
temp_df3 = pd.DataFrame()
```

The Total Amount is the total spent by the customer.

The Transaction Count is the number of transactions made by the customer.

The Latest_Transaction is used to store how recently the customer made the last transaction (in terms of days).

Out[16]:

	CustomerID	Transaction_Count
0	12347.0	182
1	12348.0	31
2	12349.0	73
3	12350.0	17
4	12352.0	85

```
In [17]: # Merge the above to DFs on CustomerID.
    df = pd.merge(temp_df1, temp_df2, on='CustomerID', how='inner')
    df.head()
```

Out[17]:

	CustomerID	Transaction_Amount	Transaction_Count
0	12347.0	4310.00	182
1	12348.0	1797.24	31
2	12349.0	1757.55	73
3	12350.0	334.40	17
4	12352.0	2506.04	85

```
In [19]: # Merge the above DFs based on CustomerID again.
    df = pd.merge(df, temp_df3, on='CustomerID', how='inner')
    df.columns = ['CustomerID', 'Total_Amount', 'Transaction_Count', 'Latest
    _Transaction']
    df.head()
```

Out[19]:

	CustomerID	Total_Amount	Transaction_Count	Latest_Transaction
0	12347.0	4310.00	182	1
1	12348.0	1797.24	31	74
2	12349.0	1757.55	73	18
3	12350.0	334.40	17	309
4	12352.0	2506.04	85	35

The box plot below shows us that the <code>Total_Amount</code> values for the customers are widely spread. On the other hand, <code>Transaction_Count</code> (transaction volume) and <code>Latest_Transaction</code> (Days since most recent purchase date) values are extremely close.

```
In [20]: plt.figure(figsize=(10,5))
    sns.boxplot(data = df[['Total_Amount','Transaction_Count','Latest_Transa
    ction']],orient="v", palette="Set1" ,whis=1.5,saturation=1, width=0.7)
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x7f46b9f6b828>

In [21]: # Just getting a peek into the details here.
df.describe()

Out[21]:

	CustomerID	Total_Amount	Transaction_Count	Latest_Transaction
count	4337.000000	4337.000000	4337.000000	4337.000000
mean	15301.089232	1998.098848	91.750288	91.529859
std	1721.422291	8551.826038	228.837406	99.968030
min	12347.000000	2.900000	1.000000	0.000000
25%	13814.000000	307.090000	17.000000	17.000000
50%	15300.000000	673.260000	41.000000	50.000000
75%	16779.000000	1661.330000	100.000000	141.000000
max	18287.000000	280206.020000	7847.000000	373.000000

```
In [22]: | Q1 = df.Total_Amount.quantile(0.05)
         Q3 = df.Total Amount.quantile(0.95)
         IQR = Q3 - Q1
         df = df[ (df['Total_Amount'] >= Q1 - 1.5 * IQR) & (df['Total_Amount'] <</pre>
         = Q3 + 1.5 * IQR)
         Q1 = df.Transaction Count.quantile(0.05)
         Q3 = df.Transaction_Count.quantile(0.95)
         IOR = O3 - O1
         df = df[ (df['Transaction_Count'] >= Q1 - 1.5 * IQR) & (df['Transaction
         _Count'] <= Q3 + 1.5 * IQR)]
         Q1 = df.Latest_Transaction.quantile(0.05)
         Q3 = df.Latest_Transaction.quantile(0.95)
         IOR = O3 - O1
         df = df[ (df['Latest_Transaction'] >= Q1 - 1.5 * IQR) & (df['Latest_Transaction']
         nsaction' | <= Q3 + 1.5 * IQR) |</pre>
         df
```

Out[22]:

	CustomerID	Total_Amount	Transaction_Count	Latest_Transaction
0	12347.0	4310.00	182	1
1	12348.0	1797.24	31	74
2	12349.0	1757.55	73	18
3	12350.0	334.40	17	309
4	12352.0	2506.04	85	35
4331	18278.0	173.90	9	73
4332	18280.0	180.60	10	277
4333	18281.0	80.82	7	180
4334	18282.0	178.05	12	7
4336	18287.0	1837.28	70	42

4256 rows × 4 columns

```
In [23]: plt.figure(figsize=(10,5))
    sns.boxplot(data = df[['Total_Amount','Transaction_Count','Latest_Transa
    ction']],orient="v", palette="Set1" ,whis=1.5,saturation=1, width=0.7)
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7f46b9ca5fd0>

Preprocessing & Clustering using K-Means algorithm

Out[24]:

	Total_Amount	Transaction_Count	Latest_Transaction
0	1.657337	1.067766	-0.918417
1	0.265403	-0.460499	-0.189896
2	0.243417	-0.035419	-0.748762
3	-0.544932	-0.602193	2.155342
4	0.658040	0.086033	-0.579106

```
In [25]: # Running K-Means for multiple number of clusters to see which gives us
    the least error.
SSE = []

for cluster in range(2,8):
    kmeans = KMeans(n_clusters=cluster,random_state=42)
    kmeans.fit(df_scaled)
    centroids = kmeans.cluster_centers_
    pred_clusters = kmeans.predict(df_scaled)
    SSE.append(kmeans.inertia_)

frame = pd.DataFrame({'Cluster':range(2,8) , 'SSE':SSE})
frame
```

Out[25]:

	Cluster	SSE
0	2	7622.643433
1	3	4427.719029
2	4	3363.937855
3	5	2789.316136
4	6	2391.580656
5	7	2040.103609

Here, we plot the results:

```
In [26]: plt.figure(figsize=(5,5))
    plt.plot(frame['Cluster'],frame['SSE'],marker='o')
    plt.title('Custers Vs SSE')
    plt.xlabel('No of Clusters')
    plt.ylabel('Intertia')
    plt.show()
```


As we can see, the number of clusters can be anything betwen 3 and 10 as the optimal cluster value.

I'm choosing 3.

Training & predicting using K-Means:

```
In [29]: df.head()
```

Out[29]:

	CustomerID	Total_Amount	Transaction_Count	Latest_Transaction	Cluster
0	12347.0	4310.00	182	1	1
1	12348.0	1797.24	31	74	2
2	12349.0	1757.55	73	18	2
3	12350.0	334.40	17	309	0
4	12352.0	2506.04	85	35	2

The below boxplot shows that customers in Cluster 1 spend more money followed by customers in Cluster 2, followed by customers in Cluster 0.

```
In [30]: plt.figure(figsize=(10,5))
    sns.boxplot(x = df['Cluster'] ,y = df['Total_Amount'],orient="v", palett
    e="Set2" ,whis=1.5,saturation=1, width=0.7)
    plt.title("Clusters Vs Total_Amount")
    plt.xlabel("Clusters")
    plt.ylabel("Total_Amount")
    plt.legend();
```


The below boxplot shows that customers in Cluster 1 purchase more frequently followed by customers in Cluster 2, followed by customers in Cluster 0.

```
In [31]: plt.figure(figsize=(10,5))
    sns.boxplot(x = df['Cluster'] ,y = df['Transaction_Count'],orient="v", p
    alette="Set2" ,whis=1.5,saturation=1, width=0.7)
    plt.title("Clusters Vs Transaction_Count")
    plt.xlabel("Clusters")
    plt.ylabel("Transaction_Count")
    plt.legend();
```


The below boxplot shows that customers in Cluster 1 had made recent transactions followed by customers in Cluster 2, followed by customers in Cluster 0.

In []:

```
In [32]: plt.figure(figsize=(10,5))
    sns.boxplot(x = df['Cluster'] ,y = df['Latest_Transaction'],orient="v",
    palette="Set2" ,whis=1.5,saturation=1, width=0.7)
    plt.title("Clusters Vs Latest_Transaction")
    plt.xlabel("Clusters")
    plt.ylabel("Latest_Transaction")
    plt.legend();
```


Thus, we can conclude that Cluster 1 customers have recently had higher transaction volume and also spent higher amount.

```
In [33]:
          plt.scatter(df['Total_Amount'],df['Transaction_Count'],df['Latest_Trans
          ction'],
                                  c=kmeans.labels_, cmap='brg');
           700
           600
           500
           400
           300
           200
           100
             0
                                      8000 10000 12000 14000
                     2000
                           4000
                                 6000
```