Relazione di Elettronica

Amplificatori Operazionali

Francesco Forcher

Università di Padova, Facoltà di Fisica francesco.forcher@studenti.unipd.it Matricola: 1073458

Enrico Lusiani

Università di Padova, Facoltà di Fisica enrico.lusiani@studenti.unipd.it Matricola: 1073300

Laura Buonincontri

Università di Padova, Facoltà di Fisica laura.buonincontri@studenti.unipd.it Matricola: 1073131

8 maggio 2016

Sommario

L'obiettivo dell'esperienza è la misura della curva di trasferimento di un amplificatore (in configurazione invertente e non invertente) e lo studio della sua risposta in frequenza (in configurazione non invertente).

INDICE

I	Schema Circuiti				2	
II	Parte	e I		2	2	
	I	Ampli	ificatore invertente	. 2	2	
		I.1	Calcolo amplificazione		3	
		I.2	Analisi	. 3	3	
	II	Ampli	ificatore non invertente	. 4	1	
		II.1	Calcolo amplificazione	. 4	1	
		II.2	Analisi	. 5	5	
III	Parte	e II		7	7	
	I	Ampli	ificatore con A=10	. 7	7	
	II	Ampli	ificatore con A=5	. 8	3	
	III	Ampli	ificatore con A=1	. 9	9	
	IV	Discus	ssione dei punti precedenti	. 9	9	
IV	Ana	lisi dei	dati	10	5	
V	App	endice	: calcolo degli errori	10	5	
VI	Con	clusion	ni	10	5	
VI	ICod :	ice		17	7	

I. SCHEMA CIRCUITI

Circuito di alimentazione:

II. PARTE I

II.I Amplificatore invertente

Schema amplificatore invertente: Le resistenze sono state scelte in modo da avere guadagno $A=-10\frac{V}{V}$

 $R_1=9.85\pm0.05\,k\Omega$

 $R_2=101.3\pm0.6\,k\Omega$

 $R_3 = 56.0 \pm 0.3\,\Omega$

Per il calcolo degli errori sul valore delle resistenze, lette sull'Agilent U1232A, è stata utilizzata la seguente formula:

$$\sigma_{tot} = \sqrt{\sigma_{\%}^2 + \sigma_{dgt}^2}$$

Per il calcolo delle σ_{tot} è stato cercato del datasheet dello strumento, l'errore percentuale e di digit corrispondente al fondo scala utilizzato.

I.1 Calcolo amplificazione

La relazione tra le resistenze, affichè soddisfino la richiesta A=10 è la seguente:

$$\frac{V_1 - V_n}{R_1} = \frac{V_n - V_0}{R_2}$$

$$V_n = 0$$

$$\frac{V_1}{R_1} = \frac{-V_0}{R_2}$$

$$V_0 = -\frac{R_2}{R_1} \cdot V_1$$

Da cui si ricava la relazione per il calcolo di A.

I.2 Analisi

La stima di A teorica, a partire dalle resistenze misurate è:

$$A_{teorica} = 10.28 \pm 0.08$$

Le misure sono state fatte applicando una tensione sinusoidale di frequenza $f=1\,kHz$, variando l'ampiezza tra $0.2V_{pp}$ e $4V_{pp}$.

In seguito è stato fatto il grafico della curva di trasferimento di un amplificatore invertente.

In seguito sono presentati i dati del **Grafico 1** acquisiti in laboratorio, con i rispettivi errori:

Per il calcolo degli errori sui valori di V_{in} e V_{out} letti sull'oscilloscopio, è stata utilizzata la seguente formula:

$$\sigma_{tot} = \sqrt{(0.02 \cdot V_{letto})^2 + (0.06 \cdot V_{div})^2}$$

E' stata fatta l'interpolazione lineare dei punti nel **Grafico 1** pesata dei punti compresi tra 0 e 1.5 V.

$$q = 0.02 \pm 0.03 V$$

 $m = -10.0 \pm 0.1 \frac{V}{V}$

Grafico 1 Curva di trasferimento di un amplificatore invertente

II.II Amplificatore non invertente

Schema amplificatore non invertente: Le resistenze sono state scelte in modo da avere guadagno $A=10\frac{V}{V}$

$$R_{1,up}=9.91\pm0.05\,k\Omega$$

$$R_{1,down} = 9.85 \pm 0.05 \, k\Omega$$

$$R_{2,up}=99.7\pm0.6\,k\Omega$$

$$R_{2,down}=101.3\pm0.6\,k\Omega$$

$$R_4 = 56.0 \pm 0.3\,\Omega$$

II.1 Calcolo amplificazione

La relazione tra le resistenze, affichè soddisfino la richiesta A=10 è la seguente: Nell'ingresso non invertente:

$$\begin{split} \frac{V_1-V_p}{R_{1down}} &= \frac{V_p}{R_{2down}} \\ \frac{V_1}{R_{1down}} &= \frac{V_p}{R_{1down}} + \frac{V_p}{R_{2down}} = V_p \left(\frac{1}{R_{1down}} + \frac{1}{R_{2down}}\right) \end{split}$$

Nell'ingresso invertente:

$$\frac{V_0-V_n}{R_{2up}}=\frac{V_n}{R_{1up}}$$

$V_{in+} \pm$	$V_{\text{in-}}\pm$	FS	$V_{out+} \pm$	$V_{out-}\pm$	FS
$\sigma_{V_{in+}}(V)$	$\sigma_{V_{in-}}(V)$	(V)	$\sigma_{V_{out+}}(V)(V)$	$\sigma_{ m V_{out-}}(m V)$	(V)
1.06 ± 0.03	-1.04 ± 0.03	0.3	-10.7 ± 0.3	10.6 ± 0.3	3
0.107 ± 0.003	-0.108± 0.003	0.03	-1.04 ± 0.03	1.08 ± 0.03	0.3
0.43 ± 0.01	-0.422 ± 0.01	0.12	-4.2 ± 0.1	4.32 ± 0.1	1.2
$0.73 \!\pm 0.02$	-0.74 \pm 0.02	0.2	-7.3 ± 0.2	7.4 ± 0.2	2
$1.36 \!\pm 0.04$	-1.38 ± 0.04	0.4	$\text{-}13.8 \!\pm 0.4$	$13.9 \!\pm 0.4$	4
1.68 ± 0.05	-1.68 ± 0.05	0.5	$\text{-}14.1 \pm 0.4$	$14.9 \!\pm 0.4$	4
1.99 ± 0.05	-1.99± 0.05	0.6	-14.2± 0.4	14.9 ± 0.4	4
2.09 ± 0.06	-2.09± 0.06	0.6	-14.2± 0.4	$14.9 \!\pm 0.4$	4

Tabella 1: Dati curva di trasferimento

$$\frac{V_0}{R_{2up}} = \frac{V_n}{R_{1up}} + \frac{V_n}{R_{2up}} = V_n \left(\frac{1}{R_{1up}} + \frac{1}{R_{2up}} \right)$$

Poichè

$$V_{\mathfrak{p}}=V_{\mathfrak{n}}$$

$$\begin{split} \frac{V_1}{R_{1down}} \frac{1}{\left(\frac{1}{R_{1down}} + \frac{1}{R_{2down}}\right)} &= \frac{V_0}{R_{2up}} \frac{1}{\left(\frac{1}{R_{1up}} + \frac{1}{R_{2up}}\right)} \\ V_0 &= \frac{R_{2up}}{R_{1down}} \cdot V_1 \frac{\left(\frac{1}{R_{1up}} + \frac{1}{R_{2up}}\right)}{\left(\frac{1}{R_{1down}} + \frac{1}{R_{2down}}\right)} \end{split}$$

Da cui si ricava la relazione per il calcolo di A. Se poi si assume che $R_{1down}=R_{1up}$ e $R_{2down}=R_{2up}$, la relazione si semplifica a

$$V_0 = \frac{R_{2up}}{R_{1down}} \cdot V_1$$

II.2 Analisi

La stima di A teorica, a partire dalle resistenze misurate è:

 $A_{teorica} = 10.08 \pm 0.07$

Le misure sono state fatte applicando una tensione sinusoidale di frequenza f = 1 kHz, variando l'ampiezza tra $0.2V_{pp}$ e $4V_{pp}$.

Grafico 2 Curva di trasferimento di un amplificatore invertente

In seguito è stato fatto il grafico della curva di trasferimento di un amplificatore non invertente.

In seguito sono presentati i dati del **Grafico 2** acquisiti in laboratorio, con i rispettivi errori:

 E^\prime stata fatta l'interpolazione lineare pesata dei punti nel Grafico~2 compresi tra 0 e 1.5 V.

$$q = -0.007 \pm 0.03 \, V$$

$$m = 10.0 \pm 0.1 \frac{V}{V}$$

$V_{\text{in}+}\pm$	$V_{\text{in-}}\pm$	FS	$V_{out+} \pm$	$V_{out-}\pm$	FS
$\sigma_{V_{in+}}(V)$	$\sigma_{V_{\text{in}-}}(V)$	(V)	$\sigma_{V_{out+}}(V)$ (V)	$\sigma_{\mathrm{V_{out}-}}(\mathrm{V})$	(V)
1.08 ± 0.03	-1.04 ± 0.03	0.3	$10.7\!\pm0.3$	-10.7 ± 0.3	3
0.108± 0.003	-0.107 ± 0.003	0.03	1.07 ± 0.003	-1.07 ± 0.03	0.3
0.43 ± 0.01	-0.43± 0.01	0.120	4.3 ± 0.1	-4.3± 0.1	1.2
0.74 ± 0.02	-0.74 ± 0.02	0.2	$7.4\pm~0.2$	-7.4± 0.2	2
1.39 ± 0.04	-1.38± 0.04	0.4	$13.9 \!\pm 0.4$	-13.9 ± 0.4	4
1.72 ± 0.05	-1.70 ± 0.05	0.5	$14.9 \!\pm 0.4$	-14.4 ± 0.4	4
2.04 ± 0.05	-1.99 ± 0.05	0.6	14.7 ± 0.4	-14.2 ± 0.4	4
2.14± 0.06	-2.09± 0.06	0.6	14.9 ± 0.4	-14.2± 0.4	4

Tabella 2: Dati curva di trasferimento

III. PARTE II

Le misure sono state effettuate sull'amplificatore non invertente utilizzato al punto precedente e applicando una tensione sinusoidale di frequenza variabile mantenendo l'ampiezza $V_{\rm s}=2V_{\rm pp}.$

III.I Amplificatore con A=10

Le resistenze inserite sono le stesse dello schema precedente, e quindi anche l'amplificazione teorica. In seguito è presentato il grafico della risposta in frequenza di un amplificatore invertente con A=10. In seguito sono presentati i dati del **Grafico 3** acquisiti in laboratorio.

Sono state interpolate separatamente la zona di plateau e di discesa del **Grafico 3**, ottenendo come risultati:

$$\begin{aligned} A_{plateau} &= 10.1 \pm 0.1 \\ q &= 4.0 \pm 0.6 \\ m &= -0.6 \pm 0.1 \end{aligned}$$

La closed-loop bandwidth, f_b , del circuito, è stata ricavata tradformando il grafico come $y' = log_{10}(y)$, interpolando la parte costante, traslandola di 3dB $(log_{10}(\sqrt{2}))$ verso il basso e intersecandola con la retta ottenuta interpolando la parte di discesa. La f_b era poi l'esponenziale in base 10 dell'intersezione. L'errore è stato poi calcolato effettuando una propagazione degli errori sulla f_b , tenendo conto anche dell'alta correlazione tra i coefficienti della retta

Grafico 3 Risposta in frequenza di un amplificatore non invertente con A=10

(-0.9995).
$$\begin{split} f_b &= 215 \pm 7 \text{ kHz} \\ \text{II GBP è} \\ \text{GBP} &= A_{CL} \cdot f_b = 2.17 \pm 0.08 \text{ MHz} \end{split}$$

III.II Amplificatore con A=5

Le resistenze inserite sono state sostituite con:

 $R_{1,up} = 5.54 \pm 0.03 \, k\Omega$

 $R_{1,down} = 5.54 \pm 0.03 \, k\Omega$

 $R_{2,up}=26.9\pm0.1\,k\Omega$

 $R_{2,down}=26.9\pm0.2\,k\Omega$

 $R_4 = 56.0 \pm 0.3\,\Omega$

L'amplificazione teorica è perciò

 $A_{teorica}=4.86\pm0.03$ In seguito è presentato il grafico della risposta in frequenza di un amplificatore non invertente con A=5. In seguito sono presentati i dati del **Grafico 4** acquisiti in laboratorio.

Sono state interpolate separatamente la zona di plateau e di discesa del **Grafico 4**, ottenendo come risultati:

 $A_{plateau} = 4.88 \pm 0.06$

 $q = 3.7 \pm 0.7$

 $\mathrm{m}=-0.5\pm0.1$

Dall'interpolazione si è poi ricavato $f_b=520\pm20\,\text{kHz}$ Il GBP è GBP = $A_{CL}\cdot f_b=2.5\pm0.1\,\text{MHz}$

III.III Amplificatore con A=1

Le resistenze inserite sono state sostituite con:

$$\begin{split} R_{1,up} &= 32.6 \pm 0.2 \, k\Omega \\ R_{1,down} &= 32.6 \pm 0.2 \, k\Omega \\ R_{2,up} &= 32.7 \pm 0.2 \, k\Omega \\ R_{2,down} &= 32.5 \pm 0.2 \, k\Omega \\ R_{4} &= 56.0 \pm 0.3 \, \Omega \end{split}$$

L'amplificazione teorica è perciò

 $A_{teorica}=1.000\pm0.005$ In seguito è presentato il grafico della risposta in frequenza dell'amplificatore non invertente con A=1.

In seguito sono presentati i dati del **Grafico 5** acquisiti in laboratorio: Sono state interpolate separatamente la zona di plateau e di discesa del **Grafico 5**, ottenendo come risultati:

$$\begin{split} A_{plateau} &= 1.01 \pm 0.01 \\ q &= 12.6 \pm 0.4 \\ m &= -2.11 \pm 0.06 \\ &\quad Dall'interpolazione si è poi ricavato f_b = 1.12 \pm 0.01 \, \text{MHz} \\ Il \, GBP \, \grave{e} \\ GBP &= A_{CL} \cdot f_b = 1.13 \pm 0.02 \, \text{MHz} \end{split}$$

III.IV Discussione dei punti precedenti

 Tabella 3: Dati risposta in frequenza

f(Hz)	A
10	10.1 ± 0.3
50	10.1 ± 0.3
100	10.1 ± 0.3
500	10.1 ± 0.3
1000	10.1 ± 0.3
5000	10.1 ± 0.3
50000	$9.4 {\pm} 0.3$
100000	$9.2 {\pm} 0.3$
200000	7.5 ± 0.3
211000	7.1±0.2
215000	7.1 ± 0.2
220000	7.1±0.2
230000	6.9±0.2
250000	6.5±0.2
300000	5.9±0.2
400000	4.7±0.2
500000	3.69±0.1
1000000	1.57±0.05
5000000	0.110±0.003

Grafico 4 Risposta in frequenza di un amplificatore non invertente con A=5

Frequency response

Tabella 4: Dati risposta in frequenza

A
$4.9 {\pm} 0.2$
$4.9{\pm}0.2$
$4.9 {\pm} 0.2$
4.9±0.2
4.8±0.2
4.3±0.1
$4.0 {\pm} 0.1$
3.5±0.1
3.2±0.1
2.02±0.07
$0.44{\pm}0.01$
0.170±0.006

Grafico 5 Risposta in frequenza di un amplificatore non invertente con A=1

Frequency response

Tabella 5: Dati risposta in frequenza

f(Hz)	A
10	1.01 ± 0.03
30	1.01 ± 0.03
100	1.01 ± 0.03
300	1.01 ± 0.03
1000	1.01 ± 0.03
3000	1.00 ± 0.03
10000	1.00 ± 0.03
30000	1.01 ± 0.03
100000	1.02 ± 0.03
300000	1.08 ± 0.04
800000	1.18 ± 0.04
900000	1.05 ± 0.03
1000000	0.90 ± 0.03
1130000	0.71 ± 0.02
1500000	0.39 ± 0.01
2000000	0.210 ± 0.007
3000000	0.090 ± 0.003
6000000	0.030 ± 0.001

Grafico 6 Risposta in frequenza di un amplificatore non invertente a varie amplificazioni

IV. ANALISI DEI DATI

V. APPENDICE: CALCOLO DEGLI ERRORI

da cambiare

VI. CONCLUSIONI

da cambiare

VII. CODICE

É presentata qua la parte fondamentale del codice in c++ usato per i calcoli numerici. Inoltre è stato usato per i calcoli Mathematica.

```
1 /*
2
   * OpampAnalisys.cpp
3
4
      Created on: 01/mag/2016
5
           Author: enrico
 6
8 #include "OpampAnalisys.h"
9 #include "Graph.h"
10
11 #include <TROOT.h>
12 #include <TGraph.h>
13 #include <TGraphErrors.h>
14 #include <TF1.h>
15 #include <TCanvas.h>
16 #include <TAxis.h>
17 #include <TFitResult.h>
18 #include <TFrame.h>
19 #include <TLegend.h>
20
21 #include <iostream>
22
23 using namespace std;
24
25 string OpampAnalisys::basename ="";
26
27 unique_ptr (Graph) readGraph(string);
28
29 OpampAnalisys::OpampAnalisys(string filename)
30
    :filename(filename)
31 {
32
    string name = basename + filename + ".txt";
33
    unique_ptr (Graph) gr = readGraph(name);
34
35
    cout << gr->n() << endl;</pre>
     g = unique_ptr \langle TGraphErrors \rangle (new TGraphErrors(gr->n(), gr->x(),
36
       gr\rightarrow y(), gr\rightarrow ex(), gr\rightarrow ey());
37 }
38
39 OpampAnalisys::~OpampAnalisys()
40 {
41
     // TODO Auto-generated destructor stub
42 }
43
44 void OpampAnalisys::analisys()
45 | {
```

```
46
    TCanvas c("Interpolazione Opamp");
47
    c.SetGrid();
48
49
    g->SetFillColor(1);
50
    g->SetLineColor(2);
51
    g->SetLineWidth(1);
52
    g->SetMarkerColor(4);
53
    g->SetMarkerSize(0.7F);
54
    g->SetMarkerStyle(1);
55
    g->SetTitle("Gain");
    g->GetXaxis()->SetTitle("V_{out} [V]");
56
57
    g->GetYaxis()->SetTitle("V_{in} [V]");
58
    g->Draw("AP");
59
60
    TF1* f = new TF1("fit", "[0]+[1]*x");
61
     f \rightarrow SetParName(1, "m");
62
    f->SetParName(0, "q");
63
    f->SetLineColor(4);
64
    f->SetLineWidth(1);
65
    TFitResultPtr r = g \rightarrow Fit(f, "S", "", -1.5, 1.5);
66
    r->Print("V");
67
    for (unsigned int i = 0; i < r \rightarrow NPar(); ++i)
68
69
      clog << r->ParName(i)
70
71
         << " " << r->Parameter(i)
72
         << " " << r->ParError(i) << endl;</pre>
73
     }
74
75
    TLegend *leg = new TLegend(0.8, 0.8, 0.9, 0.9);
76
     leg->AddEntry(g.get(), "Data", "lp");
     leg->AddEntry(f, "Fit", "l");
77
78
     leg->Draw();
79
80
    c.Update();
    c.GetFrame()->SetFillColor(0);
81
82
    c.GetFrame()->SetBorderSize(12);
83
    c.Modified();
84
85
    string name = "Result" + filename + ".tex";
86
    c.Print(name.c_str());
87 }
```

 $../src/opamp_p1/OpampAnalisys.cpp$