GEX1082 - Tópicos Especiais em Computação XXXIII Deep Learning

Redes Neurais Recorrentes

1100/1101 - CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. Giancarlo D. Salton

Redes Neurais Recorrentes

Aplicações das RNNs

Word Embeddings

E os dados que são sequenciais?

"The quick brown fox jumped Speech recognition over the lazy dog." Music generation "There is nothing to like Sentiment classification in this movie." DNA sequence analysis AGCCCCTGTGAGGAACTAG AGCCCCTGTGAGGAACTAG Machine translation Voulez-vous chanter avec Do you want to sing with moi? me? Video activity recognition Running Yesterday, Harry Potter Yesterday, Harry Potter Name entity recognition met Hermione Granger. met Hermione Granger. Andrew Ng

Redes Neurais Recorrentes

RNNs vs. feedforward

Recurrent Neural Network

$$\mathbf{h_T} = g(\mathbf{W}^T \mathbf{x}_T + \mathbf{R} \mathbf{h_{T-1}} + \mathbf{b})$$

$$o = softmax(\mathbf{h_T})$$
(1)

Através do tempo

Aplicações das RNNs

Aplicações

- Qualquer problema que envolva séries temporais é adequado para RNNs
 - ✓ Mesmo problemas que não são temporais podem ser resolvidos com RNNs!
 - Processamento de imagens
 - ▶ Controle de reforço positivo
 - entre muitos outros
- A maior aplicação das RNNs é no processamento de linguagem
 - ✓ Entretanto, alguns detalhes precisam ser observados antes da aplicação
 - Assunto da próxima aula!

1-para-1

1-para-M

M-para-1

M-para-M (mesmo tamanho de seguência)

M-para-M (tamanhos de sequência diferentes)

Word Embeddings

- Como vimos, RNNs são adequadas para dados que possuem uma sequência que pode ser cuja ordem dos dados pode ser interpretada como um fator temporal
- No entanto, precisamos encontrar uma forma de representar os dados de forma numérica, especialmente quando processamos palavras

One-hote encoding

	1	2	3	4	5	6	7	8
ı	1	0	0	0	0	0	0	0
ate	0	1	0	0	0	0	0	0
an	0	0	1	0	0	0	0	0
apple	0	0	0	1	0	0	0	0
and	0	0	0	0	1	0	0	0
played	0	0	0	0	0	1	0	0
the	0	0	0	0	0	0	1	0
piano	0	0	0	0	0	0	0	1

One-hote encoding

- A codificação *one-hot* é simples de entender e implementar
- No entanto, ela nos obriga a ter um vetor de entrada (features) que possui o mesmo tamanho do vocabulário em uso
- Isto nos traz um problema pois teremos neurônios em excesso na camada de entrada e, portanto, muitas conexões com a primeira camada oculta
- Além disso, teremos representações esparsas (i.e., com muitos zeros), o que atrapalha o processamento da rede
- Solução: representações densas

Word embeddings

Word embeddings

Redes Neurais Recorrentes

Aplicações das RNNs

Word Embeddings

