

Title: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING
AND EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM
COMPONENTS

Inventor: Bond, et al; Serial No.: 09/900,522; filed 7/6/01
Atty. Ref. No.: 7784-000260; Harness Dickey & Pierce (248) 641-1600

1/87

FIG. 1

32 ASSET Main Module

FIG. 2

asset

Help

File Run Goto Report
Calculate Optimize 42

Airplane Parameters

44 Airplane application

Maximum Takeoff Weight	LB
Number of engines	KTS
Refused takeoff speed	DB
Stage Noise	DB
db delta	LB
AP acoustic level	LB
Max GW/Eng	LB
Max total thrust/Eng	NM
Thrust/GW ratio	
Airplane Type	
Number of Passengers	
Range	

32

ASSET Main Module

FIG. 3

ASSET Main Module

FIG. 4

ASSET Configuration

General:

48a 48 50

Fly-by-Wire	<input checked="" type="checkbox"/> TRUE
Frequency Type	Xxxxxxx
Dual EE Bay	<input type="checkbox"/> FALSE
Double Voltage	<input type="checkbox"/> FALSE
RAT Generator?	<input checked="" type="checkbox"/> TRUE
Technology Era	Xxxxxxx
Fuselage Length	XXX.XXX
Fuselage Diameter	XXX.XX
Number of Passenger Entry/Exit Doors	X
Number of External Power Panels	XXX.XXX
Fan Diameter	XXX.XXX
Sweep Angle	XXXXXX
Wing Span	XXX.XXX
Horizontal Tail Span	NN
	DEG

ASSET EPGDS Method

FIG. 5A

ASSET EPCDS Method

FIG. 5B

7 / 87

AC Electrical Load Characterization	
Number of Fans	<input type="checkbox"/>
Recirculation Fans	<input type="checkbox"/>
Number of E/E Cooling Vent Fans	<input type="checkbox"/>
Number of E/E Cooling Supply Fans	<input type="checkbox"/>
Number of TRUs	<input type="checkbox"/>
Number of ACMPs	<input type="checkbox"/>
Number of Window/Windshield Heaters	<input type="checkbox"/>
Number of Lavatories	<input type="checkbox"/>
Number of Wide Body Pumps	<input checked="" type="checkbox"/>
Number of Wide Body Boost Pumps	<input type="checkbox"/>
Number of Wide Body Override Pumps	<input type="checkbox"/>
Number of Wide Body Jettison Pumps	<input type="checkbox"/>
Number of Narrow Body Pumps	<input type="checkbox"/>
Number of Narrow Body Boost Pumps	<input type="checkbox"/>
Number of Narrow Body Override Pumps	<input type="checkbox"/>
Number of Narrow Body Jettison Pumps	<input type="checkbox"/>

6
FIG.

The screenshot shows a software window titled "ASSET EPGDS Method". On the left, there's a menu bar with "File", "Run", "Goto", and "Report". Below the menu is a toolbar with icons for "New", "Open", "Save", "Print", and "Help". The main area contains a table titled "AC Load Summary by Flight Phase". The columns are labeled "ATA Subsystems", "(kVA)", "(PF)", "(kVA)", "(PF)", and "(PF)". The rows list various aircraft systems. The table is filled with placeholder values like "X.XX" and "X.XXX". At the bottom of the table, there's a note: "Maximum Flight Phase Load <> XXX.XX kVA <> X.XX PF".

ATA Subsystems	(kVA)	(PF)	(kVA)	(PF)	(PF)
--Passenger Loading--			--Engine Start---		--Taxi Out---
21 Air Conditioning	<>XXX.XX	<>X.XX	<>XXX.XX	<>X.XX	<>XXX.XX
22 Auto Flight	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX
23 Communications	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX
24 Electrical Power	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX
25 Equipment/Furnishings	<>XX.XX	<>X.XX	<>XX.XX	<>X.XX	<>XX.XX
26 Fire Protection	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX
27 Flight Control	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX
28 Fuel	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX
29 Hydraulic Power System	<>XX.XX	<>X.XX	<>XX.XX	<>X.XX	<>XX.XX
30 Ice/Rain Protection	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX
31 Instruments	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX
32 Landing Gear	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX

FIG. 7A

ASSET EPGDS Method

54

9 / 87

ATA Subsystems	AC Load Summary by Flight Phase		
	--Passenger Loading--	--Engine Start--	--Taxi Out---
	(kVA)	(kVA)	(kVA)
32 Landing Gear	< X.XX	< X.XX	< X.XX
33 Lights	< XXX.XX	< X.XX	< X.XX
34 Navigation	< X.XX	< X.XX	< X.XX
35 Oxygen	< X.XX	< X.XX	< X.XX
36 Pneumatics	< X.XX	< X.XX	< X.XX
38 Water/Waste	< X.XX	< X.XX	< X.XX
46 Electronic Library	< X.XX	< X.XX	< X.XX
48 Airplane Auxiliary Power	< X.XX	< X.XX	< X.XX
52 Doors	< X.XX	< X.XX	< X.XX
57 Folding Wing	< X.XX	< X.XX	< X.XX
73 Engine Fuel Control	< X.XX	< X.XX	< X.XX
74 Ignition	< X.XX	< X.XX	< X.XX
Maximum Flight Phase Load	< XXX.XX	< KVA	< PF

FIG. 7B

The screenshot shows a software application window titled "ASSET EPGDS Method". The main area displays a table titled "AC Load Summary by Flight Phase". The table has columns for "ATA Subsystems", "---Take-off & Climb---", "----Cruise----", "---Descent & Land---", "(kVA)", "(PF)", "(kVA)", "(PF)", and "(kVA)".

ATA Subsystems	---Take-off & Climb---	----Cruise----	---Descent & Land---	(kVA)	(PF)	(kVA)	(PF)	(kVA)
32 Landing Gear	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
33 Lights	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
34 Navigation	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
35 Oxygen	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
36 Pneumatics	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
38 Water/Waste	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
46 Electronic Library	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
49 Airplane Auxiliary Power	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
52 Doors	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
57 Folding Wing	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
73 Engine Fuel Control	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G
74 Ignition	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G	◇ X.XX G

At the bottom of the table, there is a note: "Maximum Flight Phase Load ◇ XXX.XX | G KVA ◇ X.XX | G PF".

FIG. 7C

11/87

AC Load Summary by Flight Phase

ATA Subsystems	Take-off & Climb--			Cruise---			Descent & Land--		
	(kVA)	(PF)	(kVA)	(PF)	(kVA)	(PF)	(kVA)	(PF)	
73 Engine Fuel Control	<>XX.XX	<>X.XX	<>XX.XX	<>X.XX	<>XX.XX	<>X.XX	<>XX.XX	<>X.XX	
74 Ignition	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	
75 Air	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	
76 Engine Controls	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	
77 Engine Indicating	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	
78 Exhaust	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	
79 Oil	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	
80 Starting	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	<>X.XX	
Flight Phase Subtotals	<>XXX.XX	<>X.XX	<>XXX.XX	<>X.XX	<>XXX.XX	<>X.XX	<>XXX.XX	<>X.XX	
Error/Growth Factor(15%)	<>XX.XX	<>X.XX	<>XX.XX	<>X.XX	<>XX.XX	<>X.XX	<>XX.XX	<>X.XX	
Flight Phase Totals	<>XXX.XX	<>X.XX	<>XXX.XX	<>X.XX	<>XXX.XX	<>X.XX	<>XXX.XX	<>X.XX	
Maximum Flight Phase Load	<>XXX.XX	<>X.XX	<>KVA	<>X.XX	<>PF				

ASSET EPGDS Method

FIG. 7D

12/87

The screenshot shows a software application window titled "ASSET EPGDS Method". The menu bar includes "File", "Run", "Goto", "Report", and "Help". A toolbar on the left contains icons for "New", "Open", "Save", "Print", and "Exit". The main area is titled "Essential AC Loads" and displays a table of load data.

	Quantity	Load per Unit			Totals		
Number of Upper Recirculating Fans	X.X	@<>	X.XX	KVA	Total Fan Load	XXX.XX	KVA
Number of Lower Recirculating Fans	X.X	@<>	X.XX	KVA			
Number of E/E Cooling Supply Fans	X.X	@<>	X.XX	KVA			
Number of E/E Cooling Vent Fans	X.X	@<>	X.XX	KVA			
Number of Hydraulic ACMP Pumps	X.X	@<>	X.XX	KVA	Total Pump Load	XXX.XX	KVA
Number of Fuel Boost Pumps	X.X	@<>	X.XX	KVA			
Number of Fuel Override Pumps	X.X	@<>	X.XX	KVA			
Baseline Flight & Electronic, Ice & Rain	X.XX	KVA			Passenger Load	X.XX	KVA
Baseline Flight & Electronic, Electronics	X.XX	KVA			Baseline Flight & Electronics Total Load	XXX.XX	KVA
Subtotal of Essential Loads	XXX.XX	KVA					
General Feeder Loss	X.XX	KVA					
Total of Essential Loads	XXX.XX	KVA					

FIG. 8

58 ASSET EPGDS Method

13/87

FIG. 9

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS
INVENTOR: BOND, et al.
SN: 09/900,522; FILED 7/6/01
ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

14/87

The screenshot shows a software application window titled "ASSET EPGDS Method". On the left, there is a vertical toolbar with icons for "asset", "Run", "Goto", and "Report". Below this is a menu bar with "File", "Run", "Goto", and "Report". The main area contains a report titled "DC Electrical Load Characterization". The report includes a table with the following data:

	Number of Main Landing Gear Wheels	Number of APU Generators	Number of Doors	Number of Tanks
	X.X	C	C	C
	X.X	C	C	C
	X.X	C	C	C
	X.X	C	C	C

On the right side of the report, there is a vertical column of text: "ASSET EPGDS Method".

FIG. 10

FIG. 11 A

The screenshot shows a software window titled "DC Load Summary by Flight Phase". The menu bar includes "File", "Run", "Goto", "Report", "asset", and "Help". The table has columns for ATA Subsystems, Pass Loading (Amps), Engine Start (Amps), Taxi-Out (Amps), Take-off & Climb (Amps), Cruise (Amps), and Descent & Land (Amps). The ATA Subsystems listed are 31 Instruments, 32 Landing Gear, 33 Lights, 34 Navigation, 35 Oxygen, 36 Pneumatics, 38 Water/Waste, 46 Electronic Library, 49 Airplane Auxiliary Power, 52 Doors, and 57 Folding Wing. Each subsystem row contains seven cells, each containing a placeholder value like "XXX.XXX" followed by a circled letter.

ATA Subsystems	Pass Loading (Amps)	Engine Start (Amps)	Taxi-Out (Amps)	Take-off & Climb (Amps)	Cruise (Amps)	Descent & Land (Amps)
31 Instruments	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
32 Landing Gear	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
33 Lights	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
34 Navigation	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
35 Oxygen	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
36 Pneumatics	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
38 Water/Waste	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
46 Electronic Library	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
49 Airplane Auxiliary Power	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
52 Doors	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
57 Folding Wing	<>XXX.XXX [A]	<>XXX.XXX [B]	<>XXX.XXX [C]	<>XXX.XXX [D]	<>XXX.XXX [E]	<>XXX.XXX [F]
Maximum Flight Phase Direct Current Load						
ASSET EPGDS Method						
XXX.XX [A] AMPS						

FIG. 11B

17/87

DC Load Summary by Flight Phase

ATA Subsystems	Pass Loading (Amps)	Engine Start (Amps)	Taxi-Out (Amps)	& Climb (Amps)	Take-off & Cruise (Amps)	(Amps)	Descent & Land (Amps)
52 Doors	<>X.XX █						
57 Folding Wing	<>X.XX █						
73 Engine Fuel Control	<>X.XX █						
74 Ignition	<>X.XX █						
75 Air	<>X.XX █						
76 Engine Controls	<>X.XX █						
77 Engine Indicating	<>X.XX █						
78 Exhaust	<>X.XX █						
79 Oil	<>X.XX █						
80 Starting	<>X.XX █						
Flight Phase Totals	<>XXX.XX █ <>XXX.XX █						
Maximum Flight Phase Direct Current Load					XXX.XX █ AMPS		
ASSET EPGDS Method							

FIG. 11C

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

18/87

FIG. 12

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

19/87

FIG. 13

62 ASSET EPGDS Method

20/87

FIG. 14

21 / 87

FIG. 15

22/87

16

ASSET EPGDS Method

FIG.

23/87

G.
E.

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS
INVENTOR: BOND, et al.
SN: 09/900,522; FILED 7/6/01
ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

24/87

FIG. 18

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

25/87

FIG. 19

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

26/87

FIG. 20

27 / 87

AC Power Generation							
Generator Input Speed	XXXXXX	<input type="button" value="RPM"/>	IDG				
Method of Cooling	XXXXXX	<input type="button" value="▼"/>					
Generator Capacity	XX.X	<input type="button" value="KVA"/>					
Main AC Power Generator Weight	XXX.X	<input type="button" value="LB"/>					
VSCF Converter Config.	XXXXXX	<input type="button" value="▼"/>					
Maximum Converter Load	XX.X	<input type="button" value="KVA"/>					
Main Converter Unit Weight	XX.X	<input type="button" value="LB"/>					
ATA	Chapter	Section	Title	Motor Controller Load KVA	Motor Controller Weight LB		
<	<input type="button" value="C"/>	<input type="button" value=">"/>	<input type="button" value="C"/>	<input type="button" value="X.X"/>	<input type="button" value="X.X"/>		
<	<input type="button" value="C"/>	<input type="button" value=">"/>	<input type="button" value="C"/>	<input type="button" value="X.X"/>	<input type="button" value="X.X"/>		
<	<input type="button" value="C"/>	<input type="button" value=">"/>	<input type="button" value="C"/>	<input type="button" value="X.X"/>	<input type="button" value="X.X"/>		
<	<input type="button" value="C"/>	<input type="button" value=">"/>	<input type="button" value="C"/>	<input type="button" value="X.X"/>	<input type="button" value="X.X"/>		
<	<input type="button" value="C"/>	<input type="button" value=">"/>	<input type="button" value="C"/>	<input type="button" value="X.X"/>	<input type="button" value="X.X"/>		
<	<input type="button" value="C"/>	<input type="button" value=">"/>	<input type="button" value="C"/>	<input type="button" value="X.X"/>	<input type="button" value="X.X"/>		
<	<input type="button" value="C"/>	<input type="button" value=">"/>	<input type="button" value="C"/>	<input type="button" value="X.X"/>	<input type="button" value="X.X"/>		
				Total Motor Controller Weight	XX.X	<input type="button" value="LB"/>	
IDG Hydraulics				<input type="button" value="X.XXX"/>	<input type="button" value="▼"/>		

FIG. 21

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

28/87

FIG. 22

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS
INVENTOR: BOND, et al.
SN: 09/900,522; FILED 7/6/01
ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

29 / 87

FIG. 23

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

30/87

asset

Help

File Run Goto Report

Back Up AC Power

PMGS

VSCF

Generator Type
Capacity
Cooling Method
Input speed
Generator Weight

Xxxxxxx	▼	KVA
XX.X	▼	
Xxxxxxx	▼	RPM
XXXXXX.X	▼	LB
XX.X	▼	

Number/Engine
PMG Configuration
PMG Unit Weight

X	▼	LB
Xxxxxxx	▼	
XX.X	▼	

Converter Configuration
Converter Weight

Xxxxxxx	▼	LB
XX.X	▼	

ASSET EPGDS Method

80

FIG. 24

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

31 / 87

FIG. 25

FIG. 26

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

33/87

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

34/87

FIG. 28

FIG. 29

File Run Goto Report asset Help

Show Data for: XXXX ▶

Feeder Configuration

Feeder 1:	< > X-XXXX X/XXXX	▼
Feeder 2:	< > X-XXXX X/XXXX	▼
Feeder 3:	< > X-XXXX X/XXXX	▼
Feeder 4:	< > X-XXXX X/XXXX	▼
Feeder 5:	< > XXXX	▼

Bundle Cross-Sections

3-Wire	3-Wire w/Spctr	2 3-Wire	2 3-Wire w/Spctr	6-Wire	6-Wire w/Spctr
3-Wire w/Ntr	w/Spctr	2 3-Wire w/Mtr	2 3-Wire w/Ntr	6-Wire w/Ntr	Blank

ASSET EPGDS Method

FIG. 30

FIG. 31

Feeder Analysis

	Feeder 1	Feeder 2	Feeder 3	Feeder 4	Feeder 5
Show Data for: XXXX▼	XXXX.X	XXXX.X	XXXX.X	XXXX.X	XXXX.X
Phase Current	□	□	□	□	□
Feeder Temperature Rise	□	□	□	□	□
Bundle Derating	□	□	□	□	□
Sizing Altitude	□	□	□	□	□
Altitude Derating	□	□	□	□	□
Ambient Temperature	□	□	□	□	□
Feeder Temperature	□	□	□	□	□
Max Wire Temperature	□	□	□	□	□
Temperature Margin	□	□	□	□	□
Feeder Length	□	□	□	□	□

Maximum Voltage Drop	XX.XXX	VOLTS
Total Voltage Drop	XX.XXX	VOLTS
Voltage Drop Margin	XX.XXX	VOLTS

FIG. 32

Wire Type, Feeder 1:	Wire Type, Neutral 1:	Wire Type, Feeder 2:	Wire Type, Neutral 2:	Wire Type, Feeder 3:	Wire Type, Neutral 3:	Wire Type, Feeder 4:	Wire Type, Neutral 4:	Wire Type, Feeder 5:	Wire Type, Neutral 5:	Feeder 1:	Neutral 1:	Feeder 2:	Neutral 2:	Feeder 3:	Neutral 3:	Feeder 4:	Neutral 4:	Feeder 5:	Neutral 5:	TRU	Feeder	Weight	Total	Wire	Weight	ASSET	EPGDS	Method		
<> XXX-XXX-Xxxx X	<> XXX-XXX-Xxxx X	<> XX.X	<> XX.X	<> XX.X	asset	File	Goto	Report	Help	Wire Type & Weight																				
Show Data for: XXXX																														

FIG. 33

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS
INVENTOR: BOND, et al.
SN: 09/900,522; FILED 7/6/01
ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

40/87

FIG. 34

FIG. 35

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

42/87

ASSET EPGDS Method

Common Dependability Cost Inputs

Number of Main Generators per Airplane	X
Average Number of Flights per Year per Airplane	XXXXX.
Average Flight Hours per Flight	XXX.XX
Airplane Feet Size	XX
Length of System Life in Years (1 – 30 Yrs.)	XX
Average Non-fuel Inflation Rate beyond Present Year	X.XXX
Minimum Attractive Rate of Return	X.XX

ASSET

Run Report

File Goto Help

FIG. 36

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

43/87

The screenshot shows a software window titled "System Acquisition Costs". The menu bar includes "File", "Run", "Goto", "Report", and "Help". A toolbar on the left contains icons for "New", "Open", "Save", "Print", and "Exit". The main area displays three cost components:

System Acquisition Cost, Base Year (per fleet)	<input type="text"/> DOLLARS
System Support Equipment Cost, Base Year (per fleet)	<input type="text"/> DOLLARS
System Initial Training Cost, Base Year (per fleet)	<input type="text"/> DOLLARS

Below these is another row:

System Acquisition Cost per Airplane per Year	<input type="text"/> XXXXX. <input type="text"/> DOLLARS
---	--

On the right side of the window, the text "ASSET EPGDS Method" is visible.

FIG. 37

Fuel Costs	
Lbs Fuel Burned/Flight Hour	Base Year
System Weight (per airplane)	Lb
Direct Horsepower Requirement (per airplane)	HRS [^] -1
System Drag Horsepower Requirement (per airplane)	HP
System Cooling Horsepower Requirement	HP
System Pound of Fuel per Block Trip (per airplane)	LB
Average Fuel Inflation Rate Beyond Present Year	%
Fuel Cost (NPV of Life Cycle Cost)	
Fuel Cost per Airplane per Year	DOLLARS
	DOLLARS
	DOLLARS

ASSET EPGDS Method

FIG. 38

45/87

ASSET EPGDS Method

Spares Costs

Cost/Spare Unit, Base Year	XXXXXX.	DOLLARS
Spares Holding Factor	XXX	%
Shop Turnaround Time in Days	XXX.X	DAY
Main Base Fill Rate (must be less than 1)	XX.XX	
Mean Time Between Unscheduled Removals	XXXXXX.	HRS
Mean Time Between Overhauls	X.	HRS
Number of Spares Required	XXXXXX.	
Initial Spares Cost	XXXXXXX.	DOLLARS
Spares Holding Cost (NPV of Life Cycle Cost)	XXXXXXX.	DOLLARS
Spares Cost (NPV of Life Cycle Cost)	XXXXXXX.	DOLLARS
Spares Cost per Airplane per Year	XXXXX.	DOLLARS

FIG. 39

ASSET EPGDS Method

Line Maintenance Costs

Direct Labor Rate per Hour	XXX.XXX	DOLLARS/HOUR
Maintenance Labor Burden Factor	X.X	
Mean Time Between Unscheduled Removals	XXXXXX.	HRS
Line Labor Hours Required per Removal	X.X	HRS
Line Labor Hours per Maintenance Action (Non-Removal)	X.X	HRS
Maintenance Actions per 1000 Flight Hours (Non-Removal)	X.XX	HRS ⁻¹

Line Maintenance Cost (NPV of Life Cycle Cost)	XXXXXX.	DOLLARS
Line Maintenance Cost per Airplane per Year	XXX.	DOLLARS

ASSET EPGDS Method

Shop Maintenance Costs

Direct Labor Rate per Hour	XX.XX	DOLLARS/HOUR
Maintenance Labor Burden Factor	X.X	
Mean Time Between Unscheduled Removals	XXXXXX.	HRS
Main Generator Mean Time Between Failures	XXXXXX.	HRS
Mean Time Between Overhauls	X.	HRS
Shop Labor Man-Hours per Unconfirmed Failure (Test Time)	X.X	HRS
Shop Labor Man-Hours per Failure (Repair and Test)	XXX.X	HRS
Shop Labor Hours per Overhaul	X.X	HRS
Average Shop Material Cost per Failure, base year	XXXXXX.	DOLLARS
Overhaul Materials Cost per Overhaul	X.	DOLLARS

Shop Maintenance Cost (NPV of Life Cycle Cost)	XXXXXXXXXX.	DOLLARS
Shop Maintenance Cost per Airplane per Year	XXXXXX.	DOLLARS

FIG. 41

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

48/87

ASSET EPGDS Method

Scheduled Maintenance Costs

Direct Labor Rate per Hour	XXX.XX	DOLLARS/HOUR
Maintenance Labor Burden Factor	X.X	
Mean Time Between Unscheduled Removals	XXXXXX.	HRS
Schedule Maintenance Inspection Man Hours per		
1000 Flight Hours		
Rectification Man Hours per 1000 Flight Hours	X.X	
Scheduled Maintenance Material Dollars per		
1000 Flight Hours	X.XX	DOLLARS
		HRS [^] -1
Scheduled Maintenance Cost (NPV of Life Cycle Cost)	XXXXXXXXXX.	DOLLARS
Scheduled Maintenance Cost per Airplane per Year	XXXXX.	DOLLARS

FIG. 42

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

49 / 87

ASSET EPGDS Method

Schedule Interruption Costs

Average Delay Cost per Delay Hour	XXXXXX.	DOLLARS/HOUR
Average Cancellation Cost per Cancellation	XXXXXX.	DOLLARS
Average Air Turnback Cost per Turnback	XXXXXX.	DOLLARS
Average Diversion Cost per Diversion	XXXXXX.	DOLLARS

Number of Delays per 100 Departures	X.XXXX	HRS
Average Delay Time (Hours)	X.XX	
Number of Cancellations per 100 Departures	XXXXXX	
Number of Air Turnbacks per 100 Departures	XXXXXX	
Number of Diversions per 100 Departures	X.XXXX	

Schedule Interruptions Cost (NPV of Life Cycle Cost)	XXXXXXXXX.	DOLLARS
Schedule Interruptions Cost per Airplane per Year	XXXXXX.	DOLLARS

FIG. 43

FIG. 44

FIG. 45

The screenshot shows a software application window titled "ASSET EPGDS Method". The menu bar includes "File", "Run", "Goto", "Report", "asset", and "Help". The main area is a table titled "Reliability Inputs".

Average Flight Hours per Flight	[X.XX]	IFSD Rates (per 1000 flight hours)
LRU MTBF's		
Main Generator MTBF	XXXXXX.	Engine In-flight Shutdowns per 1000 hours [X.XXXX]
APU Generator MTBF	XXXXXX.	APU In-flight Shutdowns per 1000 hours [X.XXXX]
VSCF Backup Generator MTBF	XXXXXX.	
Generator Control Unit (GCU) MTBF	XXXXXXX.	APU No-Start Probability [X.XXXX]
Backup Converter MTBF	XXXXXX.	Probability of RAT Unavailable when Required [X.Xe-XX]
Generator Control Breaker (GCB) MTBF	XXXXXXX.	
Failure to Start Probabilities		
Ram Air Turbine MTBF	XXXXXX.	Rate of Other Channel Faults [X.Xe-XX]
RAT Gen. Control Unit MTBF	XXXXXX.	
Permanent Magnet Generator(PMG) MTBF	XXXXXXX.	Main Generator Shaft Shear Rate [X.Xe-XX]
Main and APU Battery MTBF	XXXXXX.	Backup Generator Shaft Shear Rate [X.Xe-XX]
Main and APU Battery Charger MTBF	XXXXXX.	
Other Failure Rates (per flight hour)		
ASSET EPGDS Method		

FIG. 46

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

53/87

FIG. 47

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

54/87

48

FIG.

FIG. 49

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

56/87

FIG. 50

FIG. 51

The screenshot shows a software application window titled "ASSET EPGDS Method". The menu bar includes "File", "Run", "Goto", "Report", "Help", and a "Toolbox" icon. The main area displays maintenance times for a "Main Generator".

Maintenance Times		Unscheduled Removals	Servicing	Alignment & Adjustment
Frequency (Flight Hours)				
Mean Time Between Unscheduled Removals	X.XXX	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌
Maintenance Interval		◇ X.XX ┌ ┌	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌
Maintenance Corrective Times (Flight Hours)				
Main Generator Unscheduled Removal Access Time	X.XX ┌ ┌	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌
Main Generator Unscheduled Removal Fault Isolation Time	X.XX ┌ ┌			
Repair / Removal & Replace Time	X.XX ┌ ┌			
Main Generator Unscheduled Removal Servicing Time	X.XX ┌ ┌	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌
Main Generator Unscheduled Removal Alignment & Adjustment Time	X.XX ┌ ┌			
Main Generator Unscheduled Removal Checkout / Verification Time	X.XX ┌ ┌			
Main Generator Unscheduled Removal Closing UpTime	X.XX ┌ ┌	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌	◇ X.XX ┌ ┌
Main Generator Unscheduled Removal Mean Corrective Time	X. ┌ ┌	◇ X. ┌ ┌	◇ X. ┌ ┌	◇ X. ┌ ┌

At the bottom left is the page number "90" and at the bottom right is the caption "ASSET EPGDS Method".

FIG. 52

Maintenance Preparation Times (Flight Hours)			
	Unscheduled Removals	Servicing	Alignment & Adjustment
Main Generator Unscheduled Removal Maintenance Coordination Time	X.XX	<> X.XX	<> X.XX
Main Generator Unscheduled Removal Dispatch Delay Time	X.XX		
Main Generator Unscheduled Removal Airplane Ferrying Time	X.XX		
Main Generator Unscheduled Removal Supply Delay Time	X.	<> X.XX	<> X.XX
Main Generator Unscheduled Removal Spares & Equipment Issuing Time	X.XX		<> X.XX
Main Generator Unscheduled Removal Transport Delay Time	X.XX		
Main Generator Unscheduled Removal Maintenance Delay Time	X.XX	<> X.XX	<> X.XX
Main Generator Unscheduled Removal Maintenance Preparation Time	X.	<> X.	<> X.

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

60/87

FIG. 54

The screenshot shows the ASSSET Main Module software interface. The title bar at the top includes standard icons for file operations (File, Run, Goto, Report, Next, Previous, Back) and system navigation (asset, Help). The main window is titled "Airplane Parameters". It features a large graphic of an airplane on the right side. On the left, there is a tree view of parameters categorized under "Application", "Weight", "Configuration", "Stage", "db", and "AP acous". Each category has several items listed, such as "NACELLE", "EPGDS", "Leading Edge", "Floor Beam", "Max GW/Eng", "Max total thrust/Eng", "Thrust/GW ratio", "Airplane Type", "Number of Passengers", and "Range". A detailed callout box highlights the "Weight" category, which contains "Weight Summaries", "EC 32 Weight Summary", "Below Wing Weight", and "ATA 24 Weight Summary". The "ATA 24 Weight Summary" box is expanded to show a hierarchical list of weight components: "24-09, Electrical Power Distribution", "24-10, Generator Drive", "24-21, Power and Regulation", "24-22, Controls and Indication", "24-25, Back-up Generator", "24-28, Feeders", "24-31, Batteries", "24-32, Transformer Rectifier", "24-33, Emergency Generator", "24-35, Flight-Contol DC Power", "24-40, External Power", "24-51, AC Power Distribution", "24-60, DC Power Distribution", "WW-01, Wiring Provision", and "ATA Chapter 24 Weight Totals". The bottom right corner of the interface displays the text "ASSSET Main Module".

FIG. 55

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

INVENTOR: BOND, et al.
SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

62/87

FIG. 56

63/87

FIG. 57

58
FIG.

65 / 87

FIG. 59

66/87

FIG. 60

FIG. 61

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

INVENTOR: BOND, et al
SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

68/87

FIG. 62

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

INVERNITI, BOND, et al.
SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

69 / 87

FIG. 63

FIG. 64

FIG. 65

72/87

FIG. 66

73/87

FIG. 67

74/87

The screenshot shows a software application window titled "ASSET EPGDS Method". The main area displays a table titled "24-60, DC Power Distribution". The table has columns for "Component #", "Component Designation", "Quantity", "Unit Wt.", and "Subtotal". The "Component Designation" column lists items such as "Ground Handling TRU", "Overhead Panel", "DC Distribution Wire", "DC Distribution Connectors", "GND TRU", "P11", "Wire", and "Conn". The "Quantity" column contains mostly zeros, except for "Ground Handling TRU" which is 1, "Overhead Panel" which is 1, "DC Distribution Wire" which is 1, and "DC Distribution Connectors" which is 1. The "Unit Wt." column contains mostly zeros, except for "Ground Handling TRU" which is XX.X, "Overhead Panel" which is XX.X, "DC Distribution Wire" which is XX.X, and "DC Distribution Connectors" which is XX.X. The "Subtotal" column contains mostly zeros, except for "Ground Handling TRU" which is LB, "Overhead Panel" which is LB, "DC Distribution Wire" which is LB, and "DC Distribution Connectors" which is LB.

Component #	Component Designation	Quantity	Unit Wt.	Subtotal
<>	Ground Handling TRU	1	XX.X	LB
<>	Overhead Panel	1	XX.X	LB
<>	DC Distribution Wire	1	XX.X	LB
<>	DC Distribution Connectors	1	XX.X	LB
<>	GND TRU			
<>	P11			
<>	Wire			
<>	Conn			

FIG. 68

75 / 87

FIG. 69

76/87

The screenshot shows a software application window titled "ATA Chapter 24 Weight Totals". The menu bar includes "File", "Run", "Goto", "Report", and "Help". On the left, there's a toolbar with icons for "asset", "New", "Open", "Save", and "Print". The main area displays a table of weight data for various ATA chapters:

ATA 24-09, Electrical Power Distribution	XXXX.X	LB
ATA 24-10, Generator Drive	XXXX.X	LB
ATA 24-21, Power and Regulation	XXXX.X	LB
ATA 24-22, Controls and Indication	XXX.X	LB
ATA 24-25, Back-up Generators	XXXX.X	LB
ATA 24-28, Feeders	XXXX.X	LB
ATA 24-31, Batteries	XXXX.X	LB
ATA 24-32, Transformer Rectifier	XXX.X	LB
ATA 24-33, Emergency Generator	XXXX.X	LB
ATA 24-35, Flight-Control DC Power	XXXX.X	LB
ATA 24-40, External Power	XXX.X	LB
ATA 24-51, AC Power Distribution	XXXX.X	LB
ATA 24-60, DC Power Distribution	XXX.X	LB
WW-01, Wiring Provision	XXXX.X	LB

At the bottom right of the report area, it says "ASSET EPGDS Method". To the right of the report area, there's a vertical column with the text "Electrical Power Generation & Distribution System" followed by a large empty rectangular box containing a "LB" label.

FIG. 70

77/87

Airplane Parameters

The screenshot shows a software application window titled "ASSET Main Module". The menu bar includes "File", "Run", "Goto", "Report", "Next", "Previous", "Back", and "Help". A toolbar on the left contains icons for "File", "Run", "Goto", "Report", "Next", "Previous", "Back", and "Help". The main area displays "Airplane Parameters" with the following table:

Parameter	Value
Application	XXXXXX
eoff Weight	XXXXXX
Configuration	X
Loads	X
Architecture	X
Generation	X
Distribution	X
System Attributes	X
AP acous	Weight Summaries
Max GW/Eng	XXXXXX
Max total thrust/Eng	XXXXXX
Thrust/GW ratio	X.XX
Airplane Type	XXXXXX
Number of Passengers	X.XX
Range	XXXXXX

Below the table, there is a "Weight Summary" section with the following table:

Element	Weight
EC 32, Weight Elements	FC 32-01, AC Power System
	FC 32-02, DC Power System
	FC 32-03, Airframe Lighting
	FC 32-04, Electrical Equipment and Supports
	FC 32-05, Indication & Misc. Elec. Systems
	FC 32-06, Cargo Panels
	FC 32-07, Pwr Phi-W/B Assy/Hldg Tank
	FC 32-08, Elec Load Mgmt Sys (ELMS)
	FC 32-10, Electrical Sys. Cntrl/Indication
	FC 32-23, ARINC 629-Cardfies, BPCU, GCU, FSCF, ELMS
	FC 32-92, Eng/Strut Wiring Instl/Airplane
	FC 32-95, HIRF Protection-Electrical
	FC 32-97, EBU Wire Bundle Assemblies

To the right of the table, there is a schematic diagram of an aircraft main module. The diagram shows a cross-section of the aircraft with various components labeled: LB (Landing Gear), KTS (Knee Thrust Strut), DB (Dome Beam), and EC 32 Weight Elements. A legend indicates that the symbols represent different types of elements.

FIG. 71

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS
INVENTOR: BOND, et al.
SN: 09/900,522; FILED 7/6/01
ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

78/87

FIG. 72

79 / 87

Offset

Help

File Run Goto Report

Airplane Parameters

Airplane application ASSET: Report

Maximum Takeoff Weight LB

Component # Component Designation Qty Unit Wt (LB)

Component #	Component Designation	Qty	Unit	Wt (LB)
32	Electrical Power Generation & Distribution System			
32-01	AC Power System	X	XXX.X	
32-01-01	AC POWER GENERATION EQUIPMENT	X	XXX.X	
32-01-01-01	MAIN AC POWER GENERATORS INSTLD	X	XXX.X	
32-01-01-01-01	PRIME DRIVE GENERATOR	X	XXX.X	
32-01-01-01-02	QUICK ATTACH DETACH (QAD)	X	XX.X	
32-01-01-01-03	GENERATOR FLUIDS	X	XX.X	
32-01-01-01-05	HARDWARE INSTALLATION	X	XX.X	
32-01-01-01-06	WIRING INSTALLATION	X	XX.X	
32-01-01-02	GENERATOR CONTROL UNITS	X	XX.X	
32-01-01-06	BUS POWER CONTROL UNITS	X	XX.X	
32-01-05	EROPS-VSCF POWER GENERATION SYSTEM	X	XXX.X	
32-01-05-01	VSCF GENERATORS & OIL	X	XXX.X	
32-01-05-01-01	VSCF GENERATOR	X	XXX.X	
32-01-05-01-02	VSCF GENERATOR OIL	X	XX.X	

Return

send to printer

save to file

ASSET Main Module

FIG. 73

FIG. 74

FIG. 75

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

82/87

FIG. 76

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

83/87

FIG. 77

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

84/87

FIG. 78

85/87

FIG. 79

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

86/87

TITLE: AIRCRAFT SYNTHESIS AND SYSTEMS EVALUATION METHOD FOR DETERMINING AND
EVALUATING ELECTRICAL POWER GENERATION AND DISTRIBUTION SYSTEM COMPONENTS

INVENTOR: BOND, et al.

SN: 09/900,522; FILED 7/6/01

ATTY: MARK D. ELCHUK; PHONE: (248) 641-1229

87/87

FIG. 81