Data Mining

Association Rules Discovery Part one: Apriori

Market basket problem

Given:

- Large number of items: bread, milk, banana, cereal, ...
- Customer fill their basket (or, online shopping carts) with a subset of these items
- Available recordings of the content of the baskets
- Goal:
 - Derive "What items do people buy together?"

Purpose:

- Marketers use the information to position items, and control the way a typical customer traverse the store
- Targeted advertisement during online shopping/browsing

Related Problems

Similar problems

- Information gathering from text documents
 - Baskets: documents
 - Items: words
 - Goal: documents share groups of words may indicate the resemblance of their content → information retrieval and intelligence gathering

Finding mirror sites

- Baskets : documents
- Items : sentences
- Goal: web page containing groups of the same sentences may indicate they are mirror sites on the web

Goal of Market-basket analysis

- Association rule discovery
- Causality analysis

What is Association Rule?

Assume :

- $-J=\{i_1, i_2, ..., i_m\}$ is a set of items;
- D, be a set of database transactions where each transaction T is a set of items, such that T is a subset of J;

```
T_1: i_2, i_5, i_6, i_{12}, i_9, i_{30}, i_{55}, ...
T_2: i_1, i_2, i_5, i_{38}, i_{39}, i_{100}, i_{121}, ...
T_3: i_4, i_6, i_{23}, i_{29}, i_{59}, i_{44}, ...
...
T_N: i_6, i_9, i_{35}, i_{26}, i_{40}, ...
```

Association Rule

An association rule is an implication of the form

$$X \rightarrow Y$$

where X and Y are subsets of J, and X and Y do not share common item.

For example:

buys canned beer → buys chips & buys coke

buys laptop & buys external hard drive \rightarrow buys power supply

X and Y are sets of items.

A transaction T is said to **contain** X (or Y) if and only if X is a subset of T.

Support and Confidence

Support of the rule:

The rule X → Y holds in the transaction set D with support s, where s is the percentage of transactions in D that contain both X and Y. (Computed as P(X and Y))

Confidence of the rule:

The rule $X \rightarrow Y$ has **confidence** c in the transaction set D if c is the percentage of transactions in D containing X that also contain Y. (Computed as P(Y|X))

Lift

• Lift of the rule:

The rule X \rightarrow Y has **lift** I in the transaction set D if I is the percentage of transactions in D containing X that also contain Y, while controlling for how popular item Y is. (Computed as $\frac{P(X,Y)}{P(X)P(Y)}$)

Example Association Rules

Examples:

- Computer → financial_management_software
 [support = 2%, confidence = 60%, lift = 0.3]
- 2. Diaper → beer[support =3.5%, confidence = 45%, lift =2.6]
- 3. Milk, butter → bread[support = 6%, confidence = 60%, lift=1.2]

Rules from a real database

circle size \rightarrow support red color \rightarrow lift

grocery transactions

Practice problem

- Given transaction database, D:
 - T1 bread, milk, banana, cereal, apple, sugar, flour, butter
 - T2 cereal, pear, sugar, salt, egg, flour, milk
 - T3 bread, milk, potato, onion, apple
 - T4 potato chip, orange juice, coke, ice cream
 - T5 coke, potato chip, sugar, flour, milk

Assume that: $milk \rightarrow apple$ is an association rule discovered:

- What is the support, confidence, and lift for this rule?
- how about {sugar, flour} → egg?

Causality Analysis

- Causality analysis:
 - Does the presence of X actually causes Y to be bought?
 - Test method:
 - Question: does diaper causes beer to be bought? Or does beer causes diaper to be bought?
 - Approach 1: lower the price of diaper, raise the price of beer
 - Approach 2: lower the price of beer, raise the price of diaper
 - Result

Terminologies

- itemset: a set of items
- k-itemset : an itemset that contains k items
- occurrence frequency of an item: the number of transactions that contain the itemset
- frequent k-itemset: a k-itemset whose occurrence frequency is greater than or equal to a pre-defined minimum support count
- minimum support (count)
- minimum confidence (count)
- strong association rules: association rules that satisfy both the minimum support and the minimum confidence threshold

Apriori based association rule discovery methods

- Finding frequent item sets
 - Frequent item set : set of items appearing in at least fraction s of the baskets
 - Why do we need to find frequent item sets?
 - What do we mean by frequent?
 - Frequent item sets can be found efficiently using the Apriori property
- What is the Apriori property?

Aprori property: If a set of items **S** is frequent, then every subset of **S** is also frequent

Apriori property

- How does Apriori property help in finding the frequent item sets efficiently?
 - Proceeds level wise, start from frequent single items,
 then find the frequent pairs, the frequent triples, ...

The Basic Process

- The algorithm proceeds level-wise:
 - Given minimum support count s, in the first pass find the 1-itemsets (sets with single items) that appear in at least s number of baskets. (L1)
 - Pairs of items in L1 become the candidate pairs C2 for the second pass. The pairs in C2 whose count reaches s are the frequent pairs, L2.

The basic process (cont.)

- The candidate triples, C3 are those sets such that all of the 2-itemsets are frequent. E.g., for {A, B,C} to be candidate 3-itemset, {A, B}, {B,C}, and {A,C} should all be frequent 2-itemset. Count the occurrences of triples in C3, those with a count of at least s are the frequent triples, L3.
- Proceed as this until the ith frequent item set becomes empty.

L_i: frequent item set of size i

C_i: candidate item set of size i

The Apriori Algorithm

Identify frequent 1-itemset by scanning the database For each k value (starting with k=2, ends when L_{k-1} becomes empty):

- 1. Applying candidate generation to generate all possible kitemsets based on the frequent 1-itemsets
- the join step :

 L_k is found by joining L_{k-1} with itself

Apriori assumes that all items within a transaction or itemset are sorted in lexicographic order.

Two items may be joined if they share the first k-2 items (Why?)

The Apriori Algorithm

the pruning step:

 C_k is a superset of $L_{k,}$ that is, its members may or may not be frequent, but all of the frequent k-itemsets are included in C_k .

2. Eliminate candidate k-itemsets that have support smaller than the minimum support count

Return the union of all L_k

Algorithm Apriori

```
L<sub>1</sub> = find_frequent_1-itemsets (D);
for (k=2; L_{k-1} != \phi; k++) {
  C_k = apriori_gen(L_{k-1});
  for each transaction t in D {
      C_t = \mathbf{subset}(C_k, t);
      for each candidate c in C,
           c.count ++;
   L_k = \{c \text{ in } C_k \mid c.count >= minimum\_support \_count\}
    L=L union L_k;
return L;
```

Algorithm Apriori (cont.)

```
// frequent (k-1)-itemset
procedure apriori_gen(L<sub>k-1</sub>)
   for each itemset I_1 in L_{k-1}
       for each itemset I_2 in L_{k-1} {
          if (I_1[1] = I_2[1]) \wedge (I_1[2] = I_2[2]) \wedge ... \wedge (I_1[k-2] = I_2[k-2]) \wedge (I_1[k-1] < I_2[k-1]))
                c = l_1 join l_2; // join step
                   has_infrequent_subset(c, L<sub>k-1</sub>)
                                                                   then
                        delete c; // pruning step
                else
                        add c to C<sub>k</sub>;
    return C<sub>\(\beta\)</sub>;
```

Algorithm Apriori (cont.)

```
procedure has_infrequent_subset (c<sub>k.</sub>, L<sub>k-1</sub>) {
  for each (k-1)-subset s of c_k {
      if s not in L_{k-1} then
          return TRUE;
  return FALSE;
```

One Example

Set minimum support count to be 2

Database

TID	Items
100	1 3 4
200	$2\ 3\ 5$
300	$1\ 2\ 3\ 5$
400	2 5

-	_	•	
r		3	
•			

TID	Set-of-Itemsets
100	{ {1}, {3}, {4} }
200	$\{\ \{2\},\ \{3\},\ \{5\}\ \}$
300	$\{ \{1\}, \{2\}, \{3\}, \{5\} \}$
400	$\{ \{2\}, \{5\} \}$

 L_1

Itemset	Support	
{1}	2	
{2}	3	
{3}	3	
{5}	3	

 C_2

C_2		
Itemset		
{1 2}		
{1 3}		
{1 5}		
{2 3}		
{2 5}		
$\{3\ 5\}$		

$$\overline{C}_2$$

- 2		
TID	Set-of-Itemsets	
100	{ {1 3} }	
200	{ {2 3}, {2 5}, {3 5} }	
300	{ {1 2}, {1 3}, {1 5},	
	$\{2\ 3\},\ \{2\ 5\},\ \{3\ 5\}\ \}$	
400	$\{\ \{2\ 5\}\ \}$	

 L_2

	12
Itemset	Support
{1 3}	2
{2 3}	2
{2 5}	3
$\{3\ 5\}$	2

 C_3

		_		
It	e	m	set	
{	$\overline{2}$	3	5}	

 \overline{C}_3

0.3			
TID	Set-of-Itemsets		
200	{ {2 3 5} }		
300	{ {2 3 5} }		

 L_3

23		
Itemset	Support	
$\{2\ 3\ 5\}$	2	

Recap

Effects of the Apriori property

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Set minimum
Support count
to be 3

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Min sup = 3/5

Triplets (3-itemsets)

If every subset is considered,			
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 6 + 12 + 20 = 38$			
With support-based pruning,			
6 + 6 + 1 = 13			

Itemset	Count
{Bread,Milk,Diaper}	3

Generate Candidates

- Assume the items in L_k are listed in an order (e.g., alphabetical)
- Step 1: self-joining L_k (IN SQL)

```
insert into C_{k+1}

select p.item_1, p.item_2, ..., p.item_k, q.item_k

from L_k p, L_k q

where p.item_1=q.item_1, ..., p.item_{k-1}=q.item_{k-1}, p.item_k<q.item_k
```

Example of Candidates Generation

- $L_3 = \{abc, abd, acd, ace, bcd\}$
- Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace

Generate Candidates

- Assume the items in L_k are listed in an order (e.g., alphabetical)
- Step 1: self-joining L_k

```
insert into C_{k+1}

select p.item_1, p.item_2, ..., p.item_k, q.item_k

from L_k p, L_k q

where p.item_1 = q.item_1, ..., p.item_{k-1} = q.item_{k-1}, p.item_k < q.item_k
```

Step 2: pruning

```
for all itemsets c in C_{k+1} do

for all k-subsets s of c do

if (s is not in L_k) then delete c from C_{k+1}
```

Example of Candidates Generation

- $L_3 = \{abc, abd, acd, ace, bcd\}$
- Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace

Practice Question

TID	List of items	
T100	I1, I2, I5	
T200	12, 14	Given the transaction data, find all frequent item sets having minimum support count = 2
T300	12, 13	
T400	11, 12, 14	
T500	I1, I3	
T600	12, 13	
T700	I1, I3	
T800	11, 12, 13, 15	
T900	11, 12, 13	

Step Two: Generate strong association rules from the frequent itemsets

Compute:

confidence
$$(X \rightarrow Y) = p(Y|X)$$

- support_count(X ^ Y): number of transactions containing both itemsets X and Y
- support_count(X) is the number of transactions containing the itemset X.

Generate strong association rules

- The basic idea: given a frequent itemset I, generate all strong associate rules based on I
- Direct approach:
 - for each frequent itemset I, generate all <u>nonempty</u>
 <u>subsets</u> of I,
 - for every nonempty subset s of l, output the rule :

$$s \rightarrow (I-s)$$

if support_count(l) / support_count(s)

>= minimum confidence

Properties of the confidence measure

Given:

```
a is a subset of I, a' is a subset of a
```

```
support (I) <= support (a) <= support(a')</pre>
```

Then:

confidence (a
$$\rightarrow$$
 (I - a)) >= confidence (a' \rightarrow (I - a'))

Why?

Properties of the confidence measure

Similarly,

confidence of $((I - a) \rightarrow a) <= confidence of ((I - a') \rightarrow a')$

Therefore,

If $(l-a') \rightarrow a'$ is not a strong rule, then none of the rules of the form $(1-a) \rightarrow a$ can be strong, where a is a superset of a'

Rule Generation

The apriori approach for rule generation

- Basis: If (I-a') \rightarrow a' is not a strong rule, then none of the rules of the form (1-a) \rightarrow a can be strong, (a' is a subset of a)

– Approach :

- Start by generating rules that have a single consequent
- Increase size of consequent to 2 using the "ap_gen" function, based on only the successful single consequents
- Continue to increase the number of consequents,
 (equivalently, decreasing the size of the antecedent)..., one
 item at a time, until the antecedent becomes empty

Example

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	11, 12, 13

Given the transaction data, find all association rules having minimum support count = 2, and minimum confidence of 70%.

Example

TID	List of items	Given the transaction data,
T100	11, 12, 15	find all association rules having minimum support
T200	12, 14	count = 2 , and minimum
T300	12, 13	confidence of 70%.
T400	11, 12, 14	We already derived frequent itemsets for this TD as:
T500	I1, I3	
T600	12, 13	{{I1}}, {I2}, {I3}, {I4}, {I5},
T700	I1, I3	{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5} {I1, I2, I3}, {I1, I2, I5}}
T800	11, 12, 13, 15	
T900	11, 12, 13	Suppose $l_k = \{I1, I2, I5\}$

Second Step: Rule Generation

 Given a frequent itemset X, find all non-empty subsets y⊂ X such that y→ X − y satisfies the minimum confidence requirement

— If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

• If |X| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Efficient Rule Generation

Efficient Rule Generation

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- $join(CD \rightarrow AB,BD \rightarrow AC)$ would produce the candidate rule $D \rightarrow ABC$
- Prune rule D→ABC if there exists a subset (e.g., AD→BC) that does not have high confidence

Rule generation algorithm

 $H_1 = \{consequences \ of \ rules \ from \ I_k \ with \ one \ item \ in \ the \ consequent \ \};$

```
Given I_k:

for each item i in I_k,

(1) Treat it as consequent,

(2) form rule I_k- i \rightarrow i

(3) compute confidence = support(I_k)/support(I_k-i)

if confidence > min_conf

output rule I_k- i \rightarrow i

add i to H1
```

Rule generation algorithm (Cont.)

```
ap-genrules (I<sub>k</sub>: frequent k-itemset, H<sub>m</sub>: set of m-item consequents)
if (k > m+1) then begin
      H_{m+1} = apriori-gen(H_m);
      for all h_{m+1} belongs to H_{m+1} do
          Conf = support(I_k)/support(I_k- h_{m+1});
          if (Conf >= minimum confidence) then
              Output the rule (l_k - h_{m+1}) \rightarrow h_{m+1} with
              confidence = Conf, support = support(I_{\nu});
          else // pruning
               Delete h_{m+1} from H_{m+1}
       Call ap-genrules(l_k, H_{m+1});
```

Discussion

- Why use apriori-gen to create the consequents?
 - Join: form the consequent part of the rule, with successively larger sizes
 - Prune: eliminate no-hope candidates

• Why is it necessary to delete h_{m+1} from H_{m+1} ?

Implementation of Apriori

- Hash tree is used for two steps of Apriori
 - Test whether "subset s of candidate itemset is in L_{k-1}"
 → pruning step
 - Test whether "a candidate itemset C_k is in a transaction t" → for support count
- hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Example of the hash-tree for C₃

Example of the hash-tree for C₃

Example of the hash-tree for C₃

Subset(candidate itemset, L_{k-1})

- Goal : check "is there any (k-1) subset of c that is not in L_{k-1} ?
- Approach:
 - All items in L_{k-1} are stored in a hash tree
 - For each non-empty (k-1) subsets of a k-itemset, checking whether a (k-1) subset is in L_{k-1} takes O(1)

Subset (c_k, t)

Assumption:

- Items in transactions are ordered
- Items in candidate set are ordered
- Candidate c_k are put in a hash tree

Approach:

- At root level, hash on every item in the transaction,
- At level i,
 if it is an interior node, hash on every item following the ith item,
 - if it is a leaf node, check if the candidate c is in the list if yes, update the count for that candidate

Efficient Support Count

- Goal : Test whether "a candidate itemset C_k is in a transaction t"?
 - All the k subsets of a transaction t are stored in a hash tree
 - Checking whether a candidate itemset C_k is in the transaction t takes O(1) time

Discussion of the Apriori algorithm

- Much faster than the Brute-force algorithm
 - It avoids checking all elements in the lattice
- The running time is in the worst case O(2^d)
 - Pruning really prunes in practice
- It makes multiple passes over the dataset
 - One pass for every level k
- Multiple passes over the dataset is inefficient when we have thousands of candidates and millions of transactions

AproriTid

- Objectives: as the size of the frequent itemsets increases,
 - reduce the length of each transaction
 - reduce the number of transactions necessary to check for support

• Method:

- Database D is not used for counting support after the first pass.
- The set \overline{C}_k <Tid, $\{X_k\}$ > is used for counting support afterwards, where $\{X_k\}$ is a potentially large k-itemset present in the transaction with identifier Tid.

Making a single pass over the data: the AprioriTid algorithm

- The database is **not** used for counting support after the 1st pass!
- Instead information in data structure C_k is used for counting support in every step
 - C_k = {<TID, { X_k }> | X_k is a potentially frequent k-itemset in transaction with id=TID}
 - C₁: corresponds to the original database (every item i is replaced by itemset {i})
 - The member C_k corresponding to transaction t is < t.TID, $\{c \in C_k | c \text{ is contained in } t\}>$

Algorithm AprioriTid

```
1) L_1 = \{large 1-itemsets\};
2) \overline{C}_1 = \text{database } \mathcal{D};
3) for (k = 2; L_{k-1} \neq \emptyset; k++) do begin
    C_k = \operatorname{apriori-gen}(L_{k-1}); // New candidates
   \overline{C}_k = \emptyset;
   for all entries t \in \overline{C}_{k-1} do begin
            // determine candidate itemsets in C_k contained
            // in the transaction with identifier t.TID
           C_t = \{c \in C_k \mid (c - c[k]) \in t.\text{set-of-itemsets } \land
                  (c - c[k-1]) \in t.\text{set-of-itemsets};
           forall candidates c \in C_t do
8)
9)
               c.count++;
           if (C_t \neq \emptyset) then \overline{C}_k += \langle t.\text{TID}, C_t \rangle;
10)
11)
        end
        L_k = \{c \in C_k \mid c.\text{count} \ge \text{minsup}\}
13) end
14) Answer = \bigcup_{k} L_k;
```

AprioriTid Example (minsup=2)

Discussion on the AprioriTID algorithm

```
L<sub>1</sub> = {frequent 1-itemsets}
\overline{C_1} = database D
for (k=2, L_{k-1}' \neq empty; k++)
          C_k = GenerateCandidates(L_{k-1})
          \overline{\mathbf{C}}_{\mathbf{k}} = \{\}
          for all entries t e Ck-1
               C_t = \{c \in C_k | t[c-c[k]] = 1 \text{ and } t[c-c[k-1]] = 1\}
                for all c ∈ C+ {c.count++}
                           if (C,≠ {})
                                append C<sub>+</sub> to C<sub>k</sub>
                           endif
          endfor
          L_k = \{c \in C_k \mid c.count > = minsup\}
  endfor
```

return U_k L_k

- One single pass over the data
- $\overline{C_k}$ is generated from $\overline{C_{k-1}}$
- For small values of k, C_k could be larger than the database!
- For large values of k, C_k can be very small

Apriori vs. AprioriTID

 Apriori makes multiple passes over the data while AprioriTID makes a single pass over the data

 AprioriTID needs to store additional data structures that may require more space than Apriori

 Both algorithms need to check all candidates' frequencies in every step

Practice Problem

```
items
TID
T1
      11, 12, 13, 15
T2
      12, 14
T3
      12, 16
T4
      11, 12, 14, 15
T5
      11, 12
T6
      11, 12, 13, 15
T7
      11, 12, 13
```

Apriori vs. AprioriTid Performance

- AprioriTid replaces a pass over the original dataset by A pass over the set \overline{C}_k AprioriTid is very effective in later passes when the size of \overline{C}_k becomes small
- AprioriTid beats Apriori when its \overline{C}_k sets can fit in memory.

compared to the size of the database.

• When \overline{C}_k does not fit in memory, There is a jump in the execution time for AprioriTid.

Algorithm AprioriHybrid

Use Apriori for the initial passes, and switch to AprioriTid when it expects that the set \overline{C}_k at the end of the pass will fit in memory.

Apriori vs. AprioriTid (T10.I4.D100k, minsup = 0.75%)