EEE 51 Assignment 6

2nd Semester SY 2017-2018

Due: 5pm Tuesday, Mar. 13, 2018 (Rm. 220)

Instructions: Write legibly. Show all solutions and state all assumptions. Write your full name, student number, and section at the upper-right corner of each page. Start each problem on a new sheet of paper. Box or encircle your final answer.

Answer sheets should be color coded according to your lecture section. The color scheme is as follows:

THQ - yellow
THR - blue
THU - white
THX - green
WFX - pink

1. MOSFET Differential CS Amplifier. Given the following:

$$V_{DD} = 5V, I_R = 50uA, k_{1,2,7,8} = 2k_6 = 100\frac{uA}{V^2}, k_{3,4} = 2k_5 = 75\frac{uA}{V^2} \lambda = 0.02V^{-1}, \text{ and } V_{TH_{n|p}} = 1V$$
:

Figure 1: Differential-CS amplifier

(a) Complete the table and ignore channel length modulation effect and assuming all transistors in saturation. [7 pts]

Parameter	M1	M2	M3	M4	M5	M6	M7	M8
ID								
Vgs								
gm								
ro								

Figure 2: Parameter table

(b) Solve for the gain of the 1st and 2nd stage as well as the overall gain of the amplifier. [3 pts]

2. **BJT Cascode Amplifier with Cascode Load**. A Cascode amplifier is designed as shown in Figure 3. Bias voltages have been provided to it, and the input is fed through a DC block in order to maintain proper biasing. All transistors are confirmed to be biased properly to forward active. The load is a Cascode current mirror designed to provide an output resistance similar to the amplifier's.

Figure 3: Cascode Amplifier

- (a) Draw the small-signal equivalent circuit. Determine the total output resistance R_o , transconductance G_m and gain A_v of the whole amplifier as a function of the small-signal parameters $(g_{m1}, r_{o1}, r_{\pi 1}, g_{m2},$ etc.). [6 pts]
- (b) Convert the small-signal parameters such that G_m , R_o and A_v are then a function of the quiescent collector current of Q_1 , I_{C1} . For both NPN and PNP transistors, $V_A = 200 \,\mathrm{V}$, $\beta = 200$, and let $V_T = 26 \,\mathrm{mV}$. [3 pts]
- (c) Given that the gain and output characteristics of the amplifier have been shown in relationship to the bias current, as a design problem how would you determine what to set the bias current as, based on what possible and reasonable parameters or specifications? [1 pt]
- 3. Multistage Amplifier. For the given figure below, you are given the following assumptions: $\beta \gg 1$ and $|V_{BE}| = 0.7V$. The input and output DC quiescent voltages are set to 0.

Figure 4: Multistage Amplifier

- (a) Determine all the DC collector currents of each transistor. [2 pts]
- (b) Given $V_x = 6$ V and $V_y = 7.5$ V, what are the values of resistors R_1 to R_5 ? [2 pts]
- (c) Assuming ideal current sources, find the circuit gain A_v with loading in-between stages. Write your complete solution. [6 pts]

TOTAL: 30 points.