

Department of Computer Science Federal University of Bahia

Luan Passos, Rebeca Sousa, Thamiris Gomes Eduardo Almeida

INTRODUCTION

- Code Anomaly x Metric-based Techniques;
- Metrics are used to measure the quality of a system;
- Threshold Values infer in the measurement process;
 - Problems in identifying these threashold values;

OBJECTIVES

- Evaluate the ContextSmell tool;
- Compare the accuracy of the strategies used;
- Understand the strategies behind solving design problems;
- Improve the ContextSmell tool;

CASE SELECTION

- Fraunhofer;
- 6 professionals;
- Systems developed in JAVA;
- 2 participants in the project;
- WEB System;

RESEARCH QUESTIONS

RQ1 - Are there differences in the accuracy of the techniques in deriving threshold values for metrics at the method level?

• RQ2 - What design decisions influenced the developers to indicate methods as false positives?

DATA COLLECTING

- Execution of design problem recommendation tool;
 - 286 classes e 54.737 lines of code;
 - 353 methods indicated and analyzed by ContextSmell
- Questionnaire based on the results of the tool
 - Quantitative data
 - Qualitative data

PREPARATIONS AND EXECUTION

- Create a development environment to realize the study;
- Set fixed threshold values, based in what was proposed in (ALVES; 2010);
- Define e configurate systems that will be used as the design reference;
- Define participants and what systems will be analyzed by each one of them;
- Execute the .jar file "ContextSmellView.jar", of the ContextSmell tool in the available environment.

THRESHOLD VALUES DERIVING STRATEGIES

- ∘ A − Fixed values based in the table found in (ALVES, 2010);
- o X − Threshold values extracted from systems considering their architectural roles (ANICHE, 2016);
- ∘ R − Fixed threshold values extracted from systems that follow the same design rules;
- D Threshold values extracted from systems that follow the same design rules and considering their design roles;

o Tabela 1 − Long Method (LOC)

	A	R	D	X
True Positives	35	43	29	67
False Negatives	64	56	70	32
False Positives	6	8	2	9
True Negatives	4	2	8	1
Recall	0,35	0,43	0,29	0,68
Precision	0,85	0,84	0,94	0,88
Accuracy	0,36	0,41	0,34	0,62
F-measure	1,06	1,30	0,87	2,03

o Tabela 2 − Cyclomatic Complexity (CC)

	A	R	D	X
True Positives	50	29	22	16
False Negatives	7	28	36	41
False Positives	41	50	2	12
True Negatives	9	0	47	38
Recall	0,87	0,50	0,37	0,28
Precision	0,54	0,36	0,91	0,57
Accuracy	0,55	0,27	0,64	0,50
F-measure	2,61	1,5	1,11	0,84

o Tabela 3 − High Coupling (Efferent)

	A	R	D	X
True Positives	23	19	42	43
False Negatives	42	46	23	22
False Positives	0	1	2	4
True Negatives	6	5	4	2
Recall	0,35	0,29	0,65	0,66
Precision	1,00	0,95	0,95	0,91
Accuracy	0,41	0,34	0,65	0,63
F-measure	1,05	0,87	1,93	1,98

o Tabela 4 − Number of Parameters (NOP)

	A	R	D	X
True Positives	36	31	36	15
False Negatives	18	23	18	39
False Positives	3	5	0	1
True Negatives	6	4	9	8
Recall	0,67	0,57	0,67	0,28
Precision	0,92	0,86	1,00	0,94
Accuracy	0,67	0,56	0,71	0,37
F-measure	2	1,72	2	0,83

RESULTS

- RQ1 Are there differences in the accuracy of the techniques in deriving threshold values for metrics at the method level?
- Yes, there is a difference in the threshold deriving accuracy between the strategies.

Acurácia	A	R	D	X
	0,36	0,41	0,34	0,62
LOC				
	0,55	0,27	0,64	0,50
CC				
	0,41	0,34	0,65	0,63
Efferent				
	0,67	0,56	0,71	0,37
NOP				

RESULTS

- Consider the design roles for threshold derivation
 - LOC: técnica X had the highest accuracy with 0,62
 - CC: técnica D had the highest accuracy with 0,64
 - AE: técnica D had the highest acuracy with 0,65
 - NOP: técnica D had the highest accuracy with 0,71

RESULTS

- RQ2 What design decisions influenced the developers to indicate methods as false positives?
 - Disregard Long Method for File Manipulations methods;

"updateFiles"

THREATS TO VALIDITY

- Developer's personal experience;
- Developer's experience in the project;
- Undefined Architectural Roles;

ETHICAL QUESTIONS

- Info not consented to sharing by company;
 - Project Name;
 - Source Code;
 - Project Documentation;
 - Intellectual and/or Industrial Properties related to confidential information;

REFERENCES

- ANICHE, Maurício et al. SATT: Tailoring Code Metric Thresholds for Different Software Architectures. In: Source Code Analysis and Manipulation (SCAM), 2016 IEEE 16th International Working Conference on. IEEE, 2016. p. 41-50.
- ALVES, Tiago L.; YPMA, Christiaan; VISSER, Joost. Deriving metric thresholds from benchmark data. In: **Software Maintenance (ICSM), 2010 IEEE International Conference on**. IEEE, 2010. p. 1-10.
- FONTANA, Francesca Arcelli et al. Automatic metric thresholds derivation for code smell detection. In: **Proceedings of the Sixth International Workshop on Emerging Trends in Software Metrics**. IEEE Press, 2015. p. 44-53.
- LANZA, Michele; MARINESCU, Radu; DUCASSE, Stéphane. Objectoriented metrics in practice: using software metrics to characterize. **Evaluate, and Improve the Design of Object-Oriented Systems**, p. 220, 2006.
- FOWLER, M. et al. Refactoring: Improving the Design of Existing Code. Reading, Massachusetts: Addison Wesley, 1999.