Plan du cours

I.	Limites de suites		1
	1.	Limite d'une suite	1
	2.	Limites et comparaison	3
	3.	Comportement des suites géométriques	5
H.	Recherche d'un seuil		6
III.	Sui	tes arithmético-géométriques	7

Activité d'introduction 1

PARTIE A

On s'intéresse au nombre d'abonnés d'une plate-forme de streaming de musique de France. En 2020, on compte 30 000 abonnés à la plate-forme. Chaque année, 90 % des abonnés se réabonnent, et il y a 10 000 nouveaux abonnés.

- 1) Déterminer le nombre d'abonnés en 2021 et en 2022.
- 2) On note u_n le nombre d'abonnés en milliers en 2020 + n.
- (a) Exprimer u_{n+1} en fonction de u_n . Calculer ensuite les valeurs u_{40} et u_{50} à l'aide de la calculatrice.
- **(b)** Représenter graphiquement la suite sur la calculatrice. Interpréter.

PARTIE B

On s'intéresse à l'évolution d'une population de singe dans une réserve naturelle.

En 2020, il y a 100 singes dans la réserve. Chaque année, la population de singes augmente de 10 % par rapport à l'année précédente.

- 1) Déterminer le nombre de singes en 2021 et en 2022.
- 2) On note v_n le nombre de singes en 2020 + n.
- (a) Exprimer v_n en fonction de n. Calculer ensuite les valeurs v_{40} et v_{50}
- **(b)** Représenter graphiquement la suite sur la calculatrice. Interpréter. Que peut-on penser de cette évolution?

I. Limites de suites

Étudier la limite d'une suite (u_n) c'est chercher ce que deviennent les nombres u_n lorsque n devient grand (tend vers l'infini); plus précisément :

- Les nombres u_n finissent-ils par se rapprocher d'un nombre fixe?
- Les nombres u_n finissent-ils par dépasser n'importe quel nombre aussi grand que l'on veut?

1. Limite d'une suite

Définition Les suites convergentes

Une suite u converge lorsqu'il existe un réel ℓ tel que tout intervalle ouvert I centré en ℓ contient tous les termes de la suite à partir d'un certain rang.

On écrit :
$$\lim_{n\to +\infty} u_n = \ell$$

Définition

Les suites divergentes

Une suite u diverge vers $+\infty$ (respectivement $-\infty$) si, pour tout réel A>0(respectivement B < 0), il existe un rang p à partir duquel tous les termes de la suite sont plus grands que A (respectivement B).

 $\lim_{n\to +\infty} u_n = +\infty \text{ (respectivement } \lim_{n\to +\infty} u_n = -\infty)$ On écrit:

Exemples:

• Déterminer $\lim_{n \to +\infty} \left(-\frac{2}{n}\right)$ et en déduire si la suite converge ou diverge.

On a : $\lim_{n \to +\infty} n = +\infty$

Par quotient, $\lim_{n\to+\infty} \frac{-2}{n} = 0$

La suite $\left(-\frac{2}{n}\right)_{n\in\mathbb{N}^*}$ converge vers 0.

• Déterminer $\lim_{n \to +\infty} \left(\frac{1}{e^n} + n^2 \right)$ et en déduire si la suite converge ou diverge.

On a : $\lim_{n\to +\infty} e^n = +\infty$ Donc **Par quotient,** $\lim_{n\to +\infty} \frac{1}{e^n} = 0$ De plus, $\lim_{n\to +\infty} n^2 = +\infty$.

Donc **Par somme,** $\lim_{n\to+\infty} \frac{1}{e^n} + n^2 = +\infty$

Chapitre 2 : Suites arithmético-géométriques

La suite
$$\left(\frac{1}{e^n} + n^2\right)_{n \in \mathbb{N}^*}$$
 diverge.

• Déterminer $\lim_{n \to +\infty} \left(\frac{3-e^n}{1+e^{-n}} \right)$ et en déduire si la suite converge ou diverge.

On a :
$$\lim_{n \to +\infty} 3 - e^n = -\infty$$

De plus,
$$\lim_{n\to+\infty}e^{-n}=\lim_{n\to+\infty}\frac{1}{e^n}=0$$
. Donc **Par somme,** $\lim_{n\to+\infty}1+e^{-n}=1$

Donc Par quotient,
$$\lim_{n\to+\infty} \frac{3-e^n}{1+e^{-n}} = -\infty$$

La suite
$$\left(\frac{3-e^n}{1+e^{-n}}\right)_{n\in\mathbb{N}^*}$$
 diverge.

2. Limites et comparaison

Propriété

Soient deux suites (u_n) et (v_n) telles que, à partir d'un certain rang, $u_n \leq v_n$.

•
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} v_n = +\infty$

•
$$\lim_{n \to +\infty} v_n = -\infty$$
 alors $\lim_{n \to +\infty} u_n = -\infty$

On remarque par lecture graphique que $u_n < v_n$ et $\lim_{n \to +\infty} u_n = +\infty$.

Donc par comparaison des limites on en conclut que $\lim_{n\to +\infty} v_n = +\infty$.

Exemples:

1) Etudier la limite de la suite (u_n) définie sur \mathbb{N} par $u_n = (-1)^n + 3n$

A l'aide de la calculatrice, on conjecture que la suite (u_n) diverge vers $+\infty$.

On cherche donc une suite (v_n) telle que $u_n \ge v_n$.

Chapitre 2 : Suites arithmético-géométriques

Pour tout entier *n*,

$$-1 \le (-1)^n \le 1 \Leftrightarrow -1 + 3n \le (-1)^n + 3n \le 1 + 3n \text{ (car } n > 0 \text{ donc } 3n > 0)$$

$$\Leftrightarrow -1 + 3n \le u_n \le 1 + 3n$$
 On choisit donc $v_n = -1 + 3n$.

On a pour tout entier n, $u_n \ge v_n$ et $\lim_{n \to +\infty} v_n = +\infty$

Donc $\lim_{n\to+\infty} u_n = +\infty$ et la suite diverge aussi vers $+\infty$.

- **2)** Soit (u_n) la suite définie sur \mathbb{N} par $u_n = n + 2sin(n)$. Montrer que pour tout $n \in \mathbb{N}$, $u_n \ge n 2$ et en déduire la limite de la suite (u_n) .
 - Montrons que pour tout $n \in \mathbb{N}$, $u_n \ge n 2$.

Pour tout entier $n,-1 \le sin(n) \le 1$

$$\Leftrightarrow -2 \le sin(n) \times 2 \le 2 \Leftrightarrow -2 + n \le 2sin(n) + n \le 2 + n \text{ (car } n > 0)$$

Donc pour tout $n \in \mathbb{N}$, $u_n \ge n - 2$.

• On a pour tout entier n, $u_n \ge n-2$ et $\lim_{n \to +\infty} n-2 = +\infty$

Donc d'après le théorème de comparaison, $\lim_{n\to+\infty}u_n=+\infty$.