Mathematical Logic

EXERCISE 1.1 [PAGES 6 - 8]

Exercise 1.1 | Q 1.01 | Page 6

State which of the following is the statement. Justify. In case of a statement, state its truth value.

5 + 4 = 13

Solution: It is a statement which is false, hence its truth value is 'F'.

Exercise 1.1 | Q 1.02 | Page 6

State which of the following is the statement. Justify. In case of a statement, state its truth value.

x - 3 = 14

Solution: It is an open sentence, hence it is not a statement.

Exercise 1.1 | Q 1.03 | Page 6

State which of the following is the statement. Justify. In case of a statement, state its truth value.

Close the door.

Solution: It is an imperative sentence, hence it is not a statement.

Exercise 1.1 | Q 1.04 | Page 6

State which of the following is the statement. Justify. In case of a statement, state its truth value.

Zero is a complex number.

Solution: It is a statement which is true, hence its truth value is 'T'.

Exercise 1.1 | Q 1.05 | Page 6

State which of the following is the statement. Justify. In case of a statement, state its truth value.

Please get me breakfast.

Solution: It is an imperative sentence, hence it is not a statement.

Exercise 1.1 | Q 1.06 | Page 6

State which of the following is the statement. Justify. In case of a statement, state its truth value.

Congruent triangles are similar.

Solution: It is a statement which is true, hence its truth value is 'T'.

Exercise 1.1 | Q 1.07 | Page 6

State which of the following is the statement. Justify. In case of a statement, state its truth value.

$$x^2 = x$$

Solution: It is an open sentence, hence it is not a statement.

Exercise 1.1 | Q 1.08 | Page 8

State which of the following is the statement. Justify. In case of a statement, state its truth value.

A quadratic equation cannot have more than two roots.

Solution: It is a statement which is true, hence its truth value is 'T'.

Exercise 1.1 | Q 1.09 | Page 7

State which of the following is the statement. Justify. In case of a statement, state its truth value.

Do you like Mathematics?

Solution: It is an interrogative sentence, hence it is not a statement.

Exercise 1.1 | Q 1.1 | Page 7

State which of the following is the statement. Justify. In case of a statement, state its truth value.

The sunsets in the west

Solution: It is a statement which is true, hence its truth value is 'T'.

Exercise 1.1 | Q 1.11 | Page 7

State which of the following is the statement. Justify. In case of a statement, state its truth value.

All real numbers are whole numbers.

Solution: It is a statement which is false, hence its truth value is 'F'.

Exercise 1.1 | Q 1.12 | Page 7

State which of the following is the statement. Justify. In case of a statement, state its truth value.

Can you speak in Marathi?

Solution: It is an interrogative sentence, hence it is not a statement.

Exercise 1.1 | Q 1.13 | Page 7

State which of the following is the statement. Justify. In case of a statement, state its truth value.

$$x^2 - 6x - 7 = 0$$
, when $x = 7$

Solution: It is a statement which is true, hence its truth value is 'T'.

Exercise 1.1 | Q 1.14 | Page 7

State which of the following is the statement. Justify. In case of a statement, state its truth value.

The sum of cube roots of unity is zero.

Solution: It is a statement which is true, hence its truth value is 'T'.

Exercise 1.1 | Q 1.15 | Page 7

State which of the following is the statement. Justify. In case of a statement, state its truth value.

It rains heavily.

Solution: It is an open sentence, hence it is not a statement.

Exercise 1.1 | Q 2.1 | Page 7

Write the following compound statement symbolically.

Nagpur is in Maharashtra and Chennai is in Tamil Nadu.

Solution: Let p: Nagpur is in Maharashtra.

Let q: Chennai is in Tamil Nadu.

Then the symbolic form of the given statement is $p \land q$.

Exercise 1.1 | Q 2.2 | Page 7

Write the following compound statement symbolically.

Triangle is equilateral or isosceles.

Solution: Let p: Triangle is equilateral.

Let q: Triangle is isosceles.

Then the symbolic form of the given statement is $p \lor q$.

Exercise 1.1 | Q 2.3 | Page 7

Write the following compound statement symbolically.

The angle is right angle if and only if it is of measure 90°.

Solution: Let p: The angle is right angle.

Let q: It is of measure 90°

Then the symbolic form of the given statement is $p \leftrightarrow q$.

Exercise 1.1 | Q 2.4 | Page 7

Write the following compound statement symbolically.

Angle is neither acute nor obtuse.

Solution: Let p: Angle is acute.

Let q: Angle is obtuse.

Then the symbolic form of the given statement is $\sim p \land \sim q$.

Exercise 1.1 | Q 2.5 | Page 7

Write the following compound statement symbolically.

If \triangle ABC is right-angled at B, then $m\angle A + m\angle C = 90^{\circ}$

Solution: Let p: \triangle ABC is right-angled at B.

Let q: $m\angle A + m\angle C = 90^{\circ}$

Then the symbolic form of the given statement is $p\rightarrow q$.

Exercise 1.1 | Q 2.6 | Page 7

Write the following compound statement symbolically.

Hima Das wins gold medal if and only if she runs fast.

Solution: Let p: Hima Das wins gold medal

Let q: She runs fast.

Then the symbolic form of the given statement is $p \leftrightarrow q$.

Exercise 1.1 | Q 2.7 | Page 7

Write the following compound statement symbolically.

x is not irrational number but is a square of an integer.

Solution: Let p: x is not irrational number

Let q: It is a square of an integer

Then the symbolic form of the given statement is $p \land q$.

[Note: If p: x is irrational number, then the symbolic form of the given statement is $\sim p \land q$.]

Exercise 1.1 | Q 3.1 | Page 7

Write the truth values of the following.

4 is odd or 1 is prime.

Solution: Let p: 4 is odd.

q: 1 is prime.

Then the symbolic form of the given statement is $p \lor q$.

The truth values of both p and q are F.

 \therefore The truth value of pvq is F[FvF = F]

Exercise 1.1 | Q 3.2 | Page 7

Write the truth values of the following.

64 is a perfect square and 46 is a prime number.

Solution: Let p: 64 is a perfect square.

q: 46 is a prime number.

Then the symbolic form of the given statement is $p \land q$.

The truth values of p and q are T and F respectively. ∴ The truth value of p∧q is F

Exercise 1.1 | Q 3.3 | Page 7

.....[T Λ F \equiv F]

Write the truth values of the following.

5 is a prime number and 7 divides 94.

Solution: Let p: 5 is a prime number.

q: 7 divides 94.

Then the symbolic form of the given statement is pAq.

The truth values of p and q are T and F respectively.

∴ The truth value of p∧q is F[T∧F ≡ F]

Exercise 1.1 | Q 3.4 | Page 7

Write the truth values of the following.

It is not true that 5-3i is a real number.

Solution: Let p: 5-3i is a real number.

Then the symbolic form of the given statement is \sim p.

The truth values of p is F.

 \therefore The truth values of \sim p is T[\sim F \equiv T]

Exercise 1.1 | Q 3.5 | Page 7

Write the truth value of the following.

If $3 \times 5 = 8$ then 3 + 5 = 15.

Solution: Let p: $3 \times 5 = 8$

q: 3 + 5 = 15

Then the symbolic form of the given statement is $p\rightarrow q$.

The truth values of both p and q are F.

∴ The truth value of $p\rightarrow q$ is T[$F\rightarrow F \equiv T$]

Exercise 1.1 | Q 3.6 | Page 7

Write the truth value of the following.

Milk is white if and only if sky is blue.

Solution: Let p: Milk is white.

q: Sky is blue

Then the symbolic form of the given statement is $p \leftrightarrow q$.

The truth values of both p and q are T.

∴ The truth value of $p \leftrightarrow q$ is T[$T \leftrightarrow T \equiv T$]

Exercise 1.1 | Q 3.7 | Page 7

Write the truth values of the following.

24 is a composite number or 17 is a prime number.

Solution: Let p: 24 is a composite number.

q: 17 is a prime number.

Then the symbolic form of the given statement is pvq.

The truth values of both p and q are T.

∴ The truth value of pvq is T[TvT \equiv T]

Exercise 1.1 | Q 4.1 | Page 7

If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:

$$p \vee (q \wedge r)$$

Solution: Truth values of p and q are T and truth values of r and s are F.

$$p \lor (q \land r) \equiv T \lor (T \land F)$$

 $\equiv T \lor F \equiv T$

Hence the truth value of the given statement is true.

Exercise 1.1 | Q 4.2 | Page 7

If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:

$$(p \rightarrow q) \lor (r \rightarrow s)$$

Solution: Truth values of p and q are T and truth values of r and s are F.

$$(p \rightarrow q) \lor (r \rightarrow s) \equiv (T \rightarrow T) \lor (F \rightarrow F)$$
$$\equiv T \lor T \equiv T$$

Hence the truth value of the given statement is true.

Exercise 1.1 | Q 4.3 | Page 7

If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:

$$(q \wedge r) \vee (\sim p \wedge s)$$

Solution: Truth values of p and q are T and truth values of r and s are F.

$$(q \land r) \lor (\sim p \land s) \equiv (T \land F) \lor (\sim T \land F)$$

 $\equiv F \lor (F \land F)$
 $\equiv F \lor F \equiv F$

Hence the truth value of the given statement is false.

Exercise 1.1 | Q 4.4 | Page 7

If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:

$$(p \rightarrow q) \land \sim r$$

Solution: Truth values of p and q are T and truth values of r and s are F.

$$(p \rightarrow q) \land (\sim r) \equiv (T \rightarrow T) \land (\sim F)$$
$$\equiv T \land T \equiv T$$

Hence the truth value of the given statement is true.

Exercise 1.1 | Q 4.5 | Page 7

If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:

$$(\sim r \leftrightarrow p) \rightarrow \sim q$$

Solution: Truth values of p and q are T and truth values of r and s are F.

$$(\sim r \leftrightarrow p) \rightarrow (\sim q) \equiv (\sim F \leftrightarrow T) \rightarrow (\sim T)$$

 $\equiv (T \leftrightarrow T) \rightarrow F$
 $\equiv T \rightarrow F \equiv F$

Hence the truth value of the given statement is false.

Exercise 1.1 | Q 4.6 | Page 7

If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:

$$[\sim p \land (\sim q \land r)] \lor [(q \land r) \lor (p \land r)]$$

Solution: Truth values of p and q are T and truth values of r and s are F.

Hence the truth value of the given statement is false.

Exercise 1.1 | Q 4.7 | Page 7

If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:

$$[(\sim p \land q) \land \sim r] \lor [(q \to p) \to (\sim s \lor r)]$$

Solution: Truth values of p and q are T and truth values of r and s are F.

$$[(\sim p \land q) \land (\sim r)] \lor [(q \rightarrow p) \rightarrow (\sim s \lor r)]$$

$$\equiv [(\sim T \land T) \land (\sim F)] \lor [(T \rightarrow T) \rightarrow (\sim F \lor F)]$$

$$\equiv [(F \land T) \land T] \lor [T \rightarrow (T \lor F)]$$

$$\equiv (F \land T) \lor (T \rightarrow T)$$

$$\equiv F \lor T \equiv T$$

Hence the truth value of the given statement is true.

Exercise 1.1 | Q 4.8 | Page 7

If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:

$$\sim [(\sim p \land r) \lor (s \rightarrow \sim q)] \leftrightarrow (p \land r)$$

Solution: Truth values of p and q are T and truth values of r and s are F.

$$\sim [(\sim p \land r) \lor (s \rightarrow \sim q)] \leftrightarrow (p \land r)$$

$$\equiv \sim [(\sim T \land F) \lor (F \rightarrow \sim T)] \leftrightarrow (T \land F)$$

$$\equiv \sim [(F \land F) \lor (F \rightarrow F)] \leftrightarrow F$$

$$\equiv \sim (F \lor T) \leftrightarrow F$$

$$\equiv \sim T \leftrightarrow F$$

$$\equiv F \leftrightarrow F \equiv T$$

Hence the truth value of the given statement is true.

Exercise 1.1 | Q 5.1 | Page 7

Write the negation of the following.

Tirupati is in Andhra Pradesh.

Solution: The negation of the given statement is:

Tirupati is not in Andhra Pradesh.

Exercise 1.1 | Q 5.2 | Page 7

Write the negation of the following.

3 is not a root of the equation $x^2 + 3x - 18 = 0$

Solution: The negation of the given statement is:

3 is a root of the equation $x^2 + 3x - 18 = 0$

Exercise 1.1 | Q 5.3 | Page 7

Write the negation of the following.

 $\sqrt{2}$ is a rational number.

Solution: The negation of the given statement is:

 $\sqrt{2}$ is not a rational number.

Exercise 1.1 | Q 5.4 | Page 7

Write the negation of the following.

Polygon ABCDE is a pentagon.

Solution: The negation of the given statement is:

Polygon ABCDE is not a pentagon.

Exercise 1.1 | Q 5.5 | Page 7

Write the negation of the following.

7 + 3 > 5

Solution: $7 + 3 \gg 5$

EXERCISE 1.2 [PAGE 13]

Exercise 1.2 | Q 1.01 | Page 13

Construct the truth table of the following statement pattern.

 $[(p \to q) \land q] \to p$

Solution: Here are two statements and three connectives.

 \therefore There are 2 × 2 = 4 rows and 2 + 3 = 5 columns in the truth table.

р	q	$p\toq$	$(b \rightarrow d) \lor d$	$[(b \to d) \lor d] \to b$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	Т

Exercise 1.2 | Q 1.02 | Page 13

Construct the truth table of the following statement pattern.

$$(p \land \sim q) \leftrightarrow (p \rightarrow q)$$

Solution:

р	q	~ q	p ∧ ~ q	$p \rightarrow q$	$(p \land \sim q) \leftrightarrow (p \rightarrow$
					q)
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F
F	Т	F	F	Т	F
F	F	Т	F	Т	F

Exercise 1.2 | Q 1.03 | Page 13

Construct the truth table of the following statement pattern.

$$(p \land q) \leftrightarrow (q \lor r)$$

Solution:

р	q	r	p∧q	q∨r	$(p \land q) \leftrightarrow (q \lor r)$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	Т	F
Т	F	F	F	F	Т
F	Т	Т	F	Т	F
F	Т	F	F	Т	F
F	F	Т	F	Т	F
F	F	F	F	F	Т

Exercise 1.2 | Q 1.04 | Page 13

Construct the truth table of the following statement pattern.

$$p \to [\sim (q \land r)]$$

Solution:

р	q	r	q∧r	~ (q)∧ r)	$p \to [\sim (q \land r)]$
	_	-	-		
T	Т	Т	Т	F	F
Т	Т	F	F	Т	Т
Т	F	Т	F	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	F	Т
F	Т	F	F	Т	Т
F	F	Т	F	Т	Т
F	F	F	F	Т	Т

Exercise 1.2 | Q 1.05 | Page 13

Construct the truth table of the following statement pattern.

$$\sim p \wedge [(p \vee \sim q) \wedge q]$$

Solution:

р	q	~ p	~ q	p ∨ ~ q	(p ∨ ~ q) ∧ q	$\sim p \land [p \lor \sim q] \land q$
Т	T	F	F	Т	T	F
Т	F	F	Т	Т	F	F
F	T	Т	F	F	F	F
F	F	T	T	T	F	F

Exercise 1.2 | Q 1.06 | Page 13

Construct the truth table of the following statement pattern.

$$(\sim p \rightarrow \sim q) \ \land \ (\sim q \rightarrow \sim p)$$

Solution:

р	q	~ p	~ q	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$	$(\sim p \rightarrow \sim q) \land (\sim q)$
						$\rightarrow \sim p$)
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	Т	F	F
F	T	Т	F	F	Т	F
F	F	Т	Т	Т	Т	Т

Exercise 1.2 | Q 1.07 | Page 13

Construct the truth table of the following statement pattern.

$$(q \rightarrow p) \lor (\sim p \leftrightarrow q)$$

р	q	~ p	$q \rightarrow p$	$\sim p \leftrightarrow q$	$(q \to p) \lor (\sim p \leftrightarrow q)$
Т	T	F	Т	F	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	F	Т

Construct the truth table of the following statement pattern.

$$[p \to (q \to r)] \leftrightarrow [(p \land q) \to r]$$

Solution:

р	q	r	$q \rightarrow r$	$p \to (q \to r)$	pΛq	$(p \land q) \rightarrow r$	$[p \rightarrow (q \rightarrow r)] \leftrightarrow [(p \land q) \rightarrow$
							rj
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	Т	Т	F	Т	Т
F	Т	F	F	Т	F	Т	Т
F	F	Т	T	Т	F	Т	Т
F	F	F	Т	Т	F	Т	Т

Exercise 1.2 | Q 1.09 | Page 13

Construct the truth table of the following statement pattern.

$$p \to [\sim (q \land r)]$$

р	q	r	q∧r	~ (q)∧ r)	$p \to [\sim (q \land r)]$
Т	Т	Т	Т	F	F
Т	Т	F	F	Т	Т
Т	F	Т	F	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	F	Т
F	Т	F	F	Т	Т
F	F	Т	F	Т	Т
F	F	F	F	Т	Т

Exercise 1.2 | Q 1.1 | Page 13

Construct the truth table of the following statement pattern.

$$(p \lor \sim q) \to (r \land p)$$

Solution:

р	q	r	~ q	p ∨ ~ q	rΛp	$(p \lor \sim q) \to (r \land p)$
Т	Т	Т	F	Т	Т	Т
Т	Т	F	F	Т	F	F
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Т
F	Т	F	F	F	F	Т
F	F	Т	Т	Т	F	F
F	F	F	Т	Т	F	F

Exercise 1.2 | Q 2.01 | Page 13

Using truth table, prove that $\sim p \land q \equiv (p \lor q) \land \sim p$

Solution:

1	2	3	4	5	6
р	q	~p	~p ∧ q	p∨q	(p∨q) ∧~p
Т	Т	F	F	Т	F
Т	F	F	F	Т	F
F	T	T	T	Т	Т
F	F	Т	F	F	F

The entries in columns 4 and 6 are identical

$$\therefore \sim p \land q \equiv (p \lor q) \land \sim p$$

Exercise 1.2 | Q 2.02 | Page 13

Using the truth table prove the following logical equivalence.

$$\sim$$
 (p \vee q) \vee (\sim p \wedge q) \equiv \sim p

Solution:

1	2	3	4	5	6	7
р	q	~ p	p∨q	~ (p ∨ q)	~ p ∧ q	~ (p v q) v (~ p ∧ q)
Т	Т	F	Т	F	F	F
Т	F	F	Т	F	F	F
F	Т	Т	Т	F	Т	Т
F	F	Т	F	Т	F	Т

The entries in columns 3 and 7 are identical.

$$\therefore \sim (p \lor q) \lor (\sim p \land q) \equiv \sim p$$

Exercise 1.2 | Q 2.03 | Page 13

Using the truth table prove the following logical equivalence.

$$p \leftrightarrow q \equiv \sim [(p \lor q) \land \sim (p \land q)]$$

Solution:

1	2	3	4	5	6	7	8
р	q	$p \leftrightarrow q$	p∨q	b∨d	~ (p ∧ q)	(p ∨ q) ∧ ~ (p ∧ q)	~ [(p ∨ q) ∧ ~ (p ∧ q)]
Т	Т	Т	Т	Т	F	F	Т
Т	F	F	Т	F	Т	Т	F
F	Т	F	T	F	Т	Т	F
F	F	T	F	F	Т	F	Т

The entries in columns 3 and 8 are identical.

$$\therefore p \leftrightarrow q \equiv \sim [(p \lor q) \land \sim (p \land q)]$$

Exercise 1.2 | Q 2.04 | Page 13

Using the truth table prove the following logical equivalence.

$$p \to (q \to p) \equiv \sim p \to (p \to q)$$

1	2	3	4	5	6	7
р	q	$q \to p$	$b\to(d\tob)$	~ p	$p \rightarrow q$	$\sim p \rightarrow (p \rightarrow q)$
Т	Т	Т	Т	F	Т	Т
Т	F	Т	Т	F	F	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	Т	Т	Т	Т

The entries in columns 4 and 7 are identical.

$$\therefore p \to (q \to p) \equiv \sim p \to (p \to q)$$

Exercise 1.2 | Q 2.05 | Page 13

Using the truth table prove the following logical equivalence.

$$(p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$$

Solution:

1	2	3	4	5	6	7	8
р	q	r	p v q	$(p \lor q) \rightarrow r$	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \land (q \to r)$
Т	Т	Т	Т	Т	Т	T	Т
Т	Т	F	Т	F	F	F	F
Т	F	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	T	F
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F
F	F	Т	F	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т

The entries in columns 5 and 8 are identical.

$$\therefore (p \lor q) \to r \equiv (p \to r) \land (q \to r)$$

Exercise 1.2 | Q 2.06 | Page 13

Using the truth table prove the following logical equivalence.

$$p \rightarrow (q \land r) \equiv (p \rightarrow q) \land (p \rightarrow r)$$

1	2	3	4	5	6	7	8
р	q	r	q∧r	$p\to (q\;\wedge\;r)$	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \land (p \to r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	F
Т	F	Т	F	F	F	Т	F
Т	F	F	F	F	F	F	F
F	T	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т

The entries in columns 5 and 8 are identical.

$$\therefore p \to (q \land r) \equiv (p \to q) \land (p \to r)$$

Exercise 1.2 | Q 2.07 | Page 13

Using the truth table prove the following logical equivalence.

$$p \to (q \land r) \equiv (p \land q) \ (p \to r)$$

Solution:

1	2	3	4	5	6	7	8
р	q	r	q∧r	$p\to (q\wedger)$	(b v d)	$(p \rightarrow r)$	$(b \lor d) (b \to d)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	F
Т	F	Т	F	F	F	Т	F
Т	F	F	F	F	F	F	F
F	T	Т	Т	Т	Т	Т	Т
F	T	F	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т

The entries in columns 5 and 8 are identical.

$$\therefore p \to (q \land r) \equiv (p \land q) \ (p \to r)$$

Exercise 1.2 | Q 2.08 | Page 13

Using the truth table prove the following logical equivalence.

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Solution:

1	2	3	4	5	6	7	8
р	q	r	q v r	p ∧ (q ∨ r)	pΛq	p∧r	(p \lambda q) \lambda (p \lambda
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

The entries in columns 5 and 8 are identical.

$$\therefore p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Exercise 1.2 | Q 2.09 | Page 13

Using the truth table prove the following logical equivalence.

$$[\sim (p \lor q) \lor (p \lor q)] \land r \equiv r$$

1	2	3	4	5	6	7
р	q	r	pvr	~ (p v q)	~ (p v q) v (p v q)	[~ (p ∨ q) ∨ (p ∨ q)] ∧ r
Т	Т	Т	Т	F	Т	Т
Т	Т	F	Т	F	Т	F
Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	F
F	Т	Т	Т	F	Т	Т
F	Т	F	Т	F	Т	F

F	F	Т	F	Ţ	Т	Т
F	F	F	F	Т	Т	F

The entries in columns 3 and 7 are identical.

$$\therefore [\sim (p \lor q) \lor (p \lor q)] \land r \equiv r$$

Exercise 1.2 | Q 2.1 | Page 13

Using the truth table proves the following logical equivalence.

$$\sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p)$$

Solution:

1	2	3	4	5	6	7	8	9
р	q	~ p	~ q	$p \leftrightarrow q$	$\sim (p \leftrightarrow q)$	p ∧ ~ q	q ∧ ~ p	(p ∧ ~ q) ∨ (q ∧ ~ p)
Т	Т	F	F	Т	F	F	F	F
Т	F	F	T	F	Т	Т	F	Т
F	Т	T	F	F	Т	F	Т	Т
F	F	T	T	T	F	F	F	F

The entries in columns 6 and 9 are identical.

$$\therefore \sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p)$$

Exercise 1.2 | Q 3.01 | Page 13

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$(p \land q) \rightarrow (q \lor p)$$

Solution:

р	q	рлр	q∨p	$(p \land q) \rightarrow (q \lor p)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

All the entries in the last column of the above truth table are T.

$$\therefore$$
 (p \land q) \rightarrow (q \lor p) is a tautology.

Exercise 1.2 | Q 3.02 | Page 13

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$(p \rightarrow q) \leftrightarrow (\sim p \lor q)$$

Solution:

р	q	~ p	$p \to q$	~ p ∨ q	$(p \to q) \leftrightarrow (\sim p \lor q)$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	T
F	F	Т	Т	Т	T

All the entries in the last column of the above truth table are T.

 \therefore (p \rightarrow q) \leftrightarrow (\sim p \lor q) is a tautology.

Exercise 1.2 | Q 3.03 | Page 13

Discuss the statement pattern, using truth table : ~(~p \lambda ~q) v q

Solution: Consider the statement pattern: $\sim (\sim p \land \sim q) \lor q$

Thus the truth table of the given logical statement: ~(~p ^ ~q) V q

р	q	~p	~q	~p^~q	~(~p	~(~p ^ ~q)
					∧ ~q)	V q
Т	Τ	F	F	F	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	Т	F	F

The above statement is **contingency**.

Exercise 1.2 | Q 3.04 | Page 13

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

$$[(p \rightarrow q) \land q] \rightarrow p$$

Solution: Consider the statement pattern : $[(p \rightarrow q) \land q] \rightarrow p$

No. of rows = $2n = 2 \times 2 = 4$

No. of column = m + n = 3 + 2 = 5

Thus the truth table of the given logical statement :

$$\text{[(p} \rightarrow \text{q)} \land \text{q]} \rightarrow \text{p}$$

р	q	$p \to q$	$(b \rightarrow d) \lor d$	$[(b\tod) \lor d]\tob$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	Т

From the above truth table we can say that given logical statement: $[(p \to q) \land q] \to p$ is contingency.

Exercise 1.2 | Q 3.05 | Page 13

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$[(p \rightarrow q) \land \sim q] \rightarrow \sim p$$

Solution:

р	q	~ p	~ q	$p \rightarrow q$	$(p \rightarrow q) \land \sim q$	$[(p \to q) \land \sim q] \to \sim p$
Т	Т	F	F	Т	F	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	F	Т
F	F	Т	T	Т	Т	Т

All the entries in the last column of the above truth table are T.

$$\therefore$$
 [(p \rightarrow q) \land \sim q] \rightarrow \sim p is a tautology.

Exercise 1.2 | Q 3.06 | Page 13

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$(p \leftrightarrow q) \land (p \rightarrow \sim q)$$

р	q	~ q	$p \leftrightarrow q$	$p \rightarrow \sim q$	$(p \leftrightarrow q) \land (p \rightarrow \sim q)$
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
F	Т	F	F	Т	F
F	F	Т	Т	Т	Т

The entries in the last column of the above truth table are neither all T nor all F.

 \therefore (p \leftrightarrow q) \land (p \rightarrow ~ q) is a contingency.

Exercise 1.2 | Q 3.07 | Page 13

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$\sim (\sim q \wedge p) \wedge q$$

Solution:

р	q	~ q	~ q ∧ p	~ (~ q ∧ p)	~ (~ q ∧ p) ∧ q
Т	Т	F	F	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	Т	Т
F	F	Т	F	Т	F

The entries in the last column of the above truth table are neither all T nor all F.

 $\therefore \sim (\sim q \land p) \land q$ is a contingency.

Exercise 1.2 | Q 3.08 | Page 13

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$(p \land \sim q) \leftrightarrow (p \rightarrow q)$$

р	q	~ q	p ∧ ~ q	$p \rightarrow q$	$(p \land \sim q) \leftrightarrow (p \rightarrow q)$
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F

F	•	Т	F	F	Т	F
F	•	F	Т	F	Т	F

All the entries in the last column of the above truth table are F.

 \therefore (p $\land \sim$ q) \leftrightarrow (p \rightarrow q) is a contradiction.

[Note: Answer in the textbook is incorrect]

Exercise 1.2 | Q 3.09 | Page 13

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$(\sim p \rightarrow q) \wedge (p \wedge r)$$

Solution:

р	q	r	~ p	$\sim p \rightarrow q$	pΛr	$(\sim p \rightarrow q) \land (p \land r)$
Т	T	Т	F	Т	Т	Т
Т	T	F	F	Т	F	F
Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	F	F
F	T	Т	Т	Т	F	F
F	T	F	Т	Т	F	F
F	F	Т	Т	F	F	F
F	F	F	Т	F	F	F

The entries in the last column of the above truth table are neither all T nor all F.

 \therefore (~ p \rightarrow q) \land (p \land r) is a contingency.

Exercise 1.2 | Q 3.1 | Page 13

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$[p \to (\sim q \ V \ r)] \leftrightarrow \sim [p \to (q \to r)]$$

р	q	r	~ q	~ q V	$p \rightarrow (\sim q V)$	$q \to$	$b \rightarrow (d \rightarrow$	\sim [p \rightarrow (q \rightarrow	$[p \rightarrow (\sim q \lor r)]$
				r	r)	r	r)	r)]	\leftrightarrow [p \rightarrow (q \rightarrow
T	Т	Т	F	Т	Т	Т	Т	F	<u>')]</u> F
Ť	T	F	F	F	F	F	F	T	F

Т	F	Т	Т	Τ	Т	Т	T	F	F
Т	F	F	Т	Т	Т	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	Т	F	F
F	Т	F	F	F	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т	Т	F	F
F	F	F	Т	Т	T	Т	T	F	F

All the entries in the last column of the above truth table are F.

 \therefore [p \rightarrow (\sim q V r)] \leftrightarrow \sim [p \rightarrow (q \rightarrow r)] is a contradiction.

EXERCISE 1.3 [PAGES 17 - 18]

Exercise 1.3 | Q 1.1 | Page 17

If $A = \{3, 5, 7, 9, 11, 12\}$, determine the truth value of the following.

 $\exists x \in A \text{ such that } x - 8 = 1$

Solution: Clearly $x = 9 \in A$ satisfies x - 8 = 1. So the given statement is true, hence its truth value is T.

Exercise 1.3 | Q 1.2 | Page 17

If $A = \{3, 5, 7, 9, 11, 12\}$, determine the truth value of the following.

 $\forall x \in A, x^2 + x \text{ is an even number}$

Solution: For each $x \in A$, $x^2 + x$ is an even number. So the given statement is true, hence its truth value is T.

Exercise 1.3 | Q 1.3 | Page 17

If $A = \{3, 5, 7, 9, 11, 12\}$, determine the truth value of the following.

 $\exists x \in A \text{ such that } x^2 < 0$

Solution: There is no $x \in A$ which satisfies $x^2 < 0$. So the given statement is false, hence its truth value is F.

Exercise 1.3 | Q 1.4 | Page 17

If $A = \{3, 5, 7, 9, 11, 12\}$, determine the truth value of the following.

 $\forall x \in A, x \text{ is an even number}$

Solution: $x = 3 \in A$, $x = 5 \in A$, $x = 7 \in A$, $x = 9 \in A$, $x = 11 \in A$ do not satisfy x is an even number. So the given statement is false, hence its truth value is F.

Exercise 1.3 | Q 1.5 | Page 17

If $A = \{3, 5, 7, 9, 11, 12\}$, determine the truth value of the following.

 $\exists x \in A \text{ such that } 3x + 8 > 40$

Solution: Clearly $x = 11 \in A$ and $x = 12 \in A$ satisfies 3x + 8 > 40. So the given statement is true, hence its truth value is T.

Exercise 1.3 | Q 1.6 | Page 17

If $A = \{3, 5, 7, 9, 11, 12\}$, determine the truth value of the following.

 $\forall x \in A, 2x + 9 > 14$

Solution: For each $x \in A$, 2x + 9 > 14. So the given statement is true, hence its truth value is T.

Exercise 1.3 | Q 2.01 | Page 17

Write the dual of the following.

 $p \vee (q \wedge r)$

Solution: The dual of the given statement pattern is:

 $p \wedge (q \vee r)$

Exercise 1.3 | Q 2.02 | Page 17

Write the dual of the following.

 $p \wedge (q \wedge r)$

Solution: The dual of the given statement pattern is:

 $p \vee (q \vee r)$

Exercise 1.3 | Q 2.03 | Page 17

Write the dual of the following.

 $(p \lor q) \land (r \lor s)$

Solution: The dual of the given statement pattern is:

 $(p \land q) \lor (r \land s)$

Exercise 1.3 | Q 2.04 | Page 17

Write the dual of the following.

 $p \wedge \sim q$

Solution: The dual of the given statement pattern is:

 $p V \sim q$

Exercise 1.3 | Q 2.05 | Page 17

Write the dual of the following.

 $(\sim p \vee q) \wedge (\sim r \wedge s)$

Solution: The dual of the given statement pattern is:

 $(\sim p \land q) \lor (\sim r \lor s)$

Exercise 1.3 | Q 2.06 | Page 17

Write the dual of the following.

 $\sim p \wedge (\sim q \wedge (p \vee q) \wedge \sim r)$

Solution: The dual of the given statement pattern is:

 $\sim p \vee (\sim q \vee (p \wedge q) \vee \sim r)$

Exercise 1.3 | Q 2.07 | Page 17

Write the dual of the following.

 $[\sim (p \lor q)] \land [p \lor \sim (q \land \sim s)]$

Solution: The dual of the given statement pattern is:

[\sim (p \land q)] \lor [p \land \sim (q \lor \sim s)]

Exercise 1.3 | Q 2.08 | Page 17

Write the dual of the following.

 $c \lor \{p \land (q \lor r)\}$

Solution: The dual of the given statement pattern is:

 $t \wedge \{p \vee (q \wedge r)\}$

Exercise 1.3 | Q 2.09 | Page 17

Write the dual of the following.

 $\sim p \vee (q \wedge r) \wedge t$

Solution: The dual of the given statement pattern is:

~ p ∧ (q ∨ r) ∨ c

Exercise 1.3 | Q 2.1 | Page 17

Write the dual of the following.

$$(p \lor q) \lor c$$

Solution: The dual of the given statement pattern is:

$$(p \land q) \land t$$

Exercise 1.3 | Q 3.1 | Page 18

Write the negation of the following.

$$x + 8 > 11 \text{ or } y - 3 = 6$$

Solution: Let p: x + 8 > 11,

$$q: y - 3 = 6$$

Then the symbolic form of the given statement is pvq.

Since \sim (p v q) $\equiv \sim$ p $\land \sim$ q, the negation of the given statement is:

$$x + 8 \gg 11$$
 and $y - 3 \neq 6$.

OR

$$x + 8 \le 11$$
 and $y - 3 \ne 6$.

Exercise 1.3 | Q 3.2 | Page 18

Write the negation of the following.

11 < 15 and 25 > 20

Solution: Let p: 11 < 15,

Then the symbolic form of the given statement is $p \land q$.

Since \sim (p \land q) \equiv \sim p \lor q, the negation of the given statement is:

11 ≥ 15 or $25 \le 20$

Exercise 1.3 | Q 3.3 | Page 18

Write the negation of the following.

Quadrilateral is a square if and only if it is a rhombus.

Solution: Let p: Quadrilateral is a square.

q: It is a rhombus.

Then the symbolic form of the given statement is $p \leftrightarrow q$.

Since \sim (p \leftrightarrow q) \equiv (p $\land \sim$ q) \lor (q $\land \sim$ p), the negation of the given statement is:

Quadrilateral is a square but it is not a rhombus or quadrilateral is a rhombus but it is not a square.

Exercise 1.3 | Q 3.4 | Page 18

Write the negation of the following.

It is cold and raining.

Solution: Let p: It is cold.

q: It is raining.

Then the symbolic form of the given statement is $p \land q$.

Since \sim (p \land q) \equiv \sim p \lor q, the negation of the given statement is:

It is not cold or not raining.

Exercise 1.3 | Q 3.5 | Page 18

Write the negation of the following.

If it is raining then we will go and play football.

Solution: Let p: It is raining.

q: We will go.

r: We play football.

Then the symbolic form of the given statement is $p \to (q \land r)$.

Since \sim [p \rightarrow (q \wedge r)] \equiv p \wedge \sim (q \wedge r) \equiv p \wedge (\sim q \vee \sim r), the negation of the given statement is:

It is raining and we will not go or not play football.

Exercise 1.3 | Q 3.6 | Page 18

Write the negation of the following.

 $\sqrt{2}$ is a rational number.

Solution: The negation of the given statement is:

 $\sqrt{2}$ is not a rational number.

Exercise 1.3 | Q 3.7 | Page 18

Write the negation of the following.

All-natural numbers are whole numbers.

Solution: The negation of the given statement is:

Some natural numbers are not whole numbers.

Exercise 1.3 | Q 3.8 | Page 18

Write the negation of the following.

 \forall n \in N, n² + n + 2 is divisible by 4.

Solution: The negation of the given statement is:

 \exists n \in N, such that $n^2 + n + 2$ is not divisible by 4.

Exercise 1.3 | Q 3.9 | Page 18

Write the negation of the following.

 $\exists x \in N \text{ such that } x - 17 < 20$

Solution: The negation of the given statement is:

 $\forall x \in \mathbb{N}, x - 17 \ge 20$

Exercise 1.3 | Q 4.1 | Page 18

Write converse, inverse and contrapositive of the following statement.

If x < y then $x^2 < y^2$ $(x, y \in R)$

Solution: Let p: x < y,

q:
$$x^2 < y^2$$

Then the symbolic form of the given statement is $p \rightarrow q$.

Converse: $q \rightarrow p$ is the converse of $p \rightarrow q$.

i.e. If $x^2 < y^2$, then x < y.

Inverse: $\sim p \rightarrow \sim q$ is the inverse of $p \rightarrow q$.

i.e. If $x \ge y$, then $x^2 \ge y^2$.

OR

If $x \not< y$, then $x^2 \not< y^2$.

Contrapositive: $\sim q \rightarrow p$ is the contrapositive of $p \rightarrow q$

i.e. If $x^2 \ge y^2$, then $x \ge y$.

OR

If $x^2 \not< y^2$, then $x \not< y$.

Exercise 1.3 | Q 4.2 | Page 18

Write converse, inverse and contrapositive of the following statement.

A family becomes literate if the woman in it is literate.

Solution: Let p: The woman in the family is literate.

q: A family becomes literate.

Then the symbolic form of the given statement is $p \rightarrow q$.

Converse: $q \rightarrow p$ is the converse of $p \rightarrow q$.

i.e. If a family becomes literate, then the woman in it is literate.

Inverse: $\sim p \rightarrow \sim q$ is the inverse of $p \rightarrow q$.

i.e. If the woman in the family is not literate, then the family does not become literate.

Contrapositive: $\sim q \rightarrow \sim p$ is the contrapositive of $p \rightarrow q$.

i.e. If a family does not become literate, then the woman in it is not literate.

Exercise 1.3 | Q 4.3 | Page 18

Write converse, inverse and contrapositive of the following statement.

If surface area decreases then pressure increases.

Solution: Let p: The surface area decreases.

q: The pressure increases.

Then the symbolic form of the given statement is $p \rightarrow q$.

Converse: $q \rightarrow p$ is the converse of $p \rightarrow q$.

i.e. If the pressure increases, then the surface area decreases.

Inverse: $\sim p \rightarrow \sim q$ is the inverse of $p \rightarrow q$.

i.e. If the surface area does not decrease, then the pressure does not increase.

Contrapositive: $\sim q \rightarrow \sim p$ is the contrapositive of $p \rightarrow q$.

i.e. If the pressure does not increase, then the surface area does not decrease.

Exercise 1.3 | Q 4.4 | Page 18

Write converse, inverse and contrapositive of the following statement.

If voltage increases then current decreases.

Solution: Let p: Voltage increases.

q: Current decreases.

Then the symbolic form of the given statement is $p \rightarrow q$.

Converse: $q \rightarrow p$ is the converse of $p \rightarrow q$.

i.e. If current decreases, then voltage increases. **Inverse:** $\sim p \rightarrow \sim q$ is the inverse of p $\rightarrow q$.

i.e. If voltage does not increase, then-current does not decrease.

Contrapositive: $\sim q \rightarrow p$, is the contrapositive of $p \rightarrow q$.

i.e. If current does not decrease, then voltage does not increase.

EXERCISE 1.4 [PAGE 21]

Exercise 1.4 | Q 1.1 | Page 21

Using the rule of negation write the negation of the following with justification.

$$\sim q \to p$$

Solution: The negation of is $\sim q \rightarrow p$ is

$$\sim (\sim q \rightarrow p) \equiv \sim q \land \sim p \dots (Negation of implication)$$

Exercise 1.4 | Q 1.2 | Page 21

Using the rule of negation write the negation of the following with justification.

$$p \land \sim q$$

Solution: The negation of p $\wedge \sim q$ is

$$\sim$$
 (p $\land \sim$ q) \equiv \sim p v \sim (\sim q)(Negation of conjunction)

$$\equiv \sim p \vee q \dots (Negation of negation)$$

Exercise 1.4 | Q 1.3 | Page 21

Using the rule of negation write the negation of the following with justification.

$$p V \sim q$$

Solution: The negation of p $V \sim q$ is

$$\sim$$
 (p V \sim q) \equiv \sim p \wedge \sim (\sim q)(Negation of disjunction)

$$\equiv \sim p \wedge q \dots (Negation of negation)$$

Exercise 1.4 | Q 1.4 | Page 21

Using the rule of negation write the negation of the following with justification.

$$(p \lor \sim q) \land r$$

Solution: The negation of $(p \lor \sim q) \land r$ is

$$\sim$$
 [(p V \sim q) \wedge r] \equiv (p V \sim q) V \sim r(Negation of conjunction)

$$\equiv$$
 [\sim p \wedge \sim (\sim q)] \vee \sim r(Negation of disjunction) \equiv (\sim p \wedge q) \vee \sim r(Negation of negation)

Exercise 1.4 | Q 1.5 | Page 21

Using the rule of negation write the negation of the following with justification.

$$p \rightarrow (p \lor \sim q)$$

Solution: The negation of $p \rightarrow (p \lor \sim q)$ is

$$\sim$$
 [p \rightarrow (p \vee \sim q)] \equiv p \wedge \sim (p \vee \sim q)(Negation of implication)

$$\equiv p \land [\sim p \land \sim (\sim q)] \dots (Negation of disjunction)$$

$$\equiv p \land (\sim p \land q)$$
(Negation of negation)

Exercise 1.4 | Q 1.6 | Page 21

Using the rule of negation write the negation of the following with justification.

$$\sim$$
 (p \land q) \lor (p \lor \sim q)

Solution: The negation of \sim (p \land q) \lor (p \lor \sim q) is

$$\sim [\sim (p \land q) \lor (p \lor \sim q)] \equiv \sim [\sim (p \land q)] \land \sim (p \lor \sim q)$$
(Negation of disjunction)

$$\equiv$$
 ~ [~ (p \land q)] \land [~ p \land ~ (~ q)](Negation of disjunction)

$$\equiv$$
 (p \land q) \land (\sim p \land q)(Negation of negation)

Exercise 1.4 | Q 1.7 | Page 21

Using the rule of negation write the negation of the following with justification.

$$(p \lor \sim q) \rightarrow (p \land \sim q)$$

Solution: The negation of $(p \lor \sim q) \rightarrow (p \land \sim q)$ is

$$\sim$$
 [(p V \sim q) \rightarrow (p $\land \sim$ q)] \equiv (p V \sim q) $\land \sim$ (p $\land \sim$ q)(Negation of implication)

$$\equiv$$
 (p $\vee \sim$ q) \wedge [\sim p $\vee \sim$ (\sim q)](Negation of conjunction)

$$\equiv$$
 (p $\vee \sim$ q) \wedge (\sim p \vee q)(Negation of negation)

Exercise 1.4 | Q 1.8 | Page 21

Using the rule of negation write the negation of the following with justification.

$$(\sim p \lor \sim q) \lor (p \land \sim q)$$

Solution: The negation of $(\sim p \lor \sim q) \lor (p \land \sim q)$ is

~ [(~ p V ~ q) V (p
$$\wedge$$
 ~ q)] \equiv ~ (~ p V ~ q) \wedge ~ (p \wedge ~ q)(Negation of disjunction)

$$\equiv$$
 [~ (~ p) \land ~ (~ q)] \land [~ p \lor ~ (~ q)] ...(Negation of disjunction and conjunction)

$$\equiv$$
 (p \land q) \land (\sim p \lor q)(Negation of negation)

Exercise 1.4 | Q 2.1 | Page 21

Rewrite the following statement without using if then.

If a man is a judge then he is honest.

Solution: Since $p \rightarrow q \equiv \sim p \vee q$, the given statement can be written as:

A man is not a judge or he is honest.

Exercise 1.4 | Q 2.2 | Page 21

Rewrite the following statement without using if then.

It 2 is a rational number then $\sqrt{2}$ is irrational number.

Solution:

Since $p \rightarrow q \equiv p \lor q$, the given statement can be written as:

2 is not a rational number or $\sqrt{2}$ is irrational number.

Exercise 1.4 | Q 2.3 | Page 21

Rewrite the following statement without using if then.

It f(2) = 0 then f(x) is divisible by (x - 2).

Solution: Since $p \rightarrow q \equiv \sim p \vee q$, the given statement can be written as:

 $f(2) \neq 0$ or f(x) is divisible by (x - 2).

Exercise 1.4 | Q 3.1 | Page 21

Without using the truth table show that $P \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$

Solution: L.H.S = $p \leftrightarrow q$

$$\equiv$$
 (p \rightarrow q) \land (q \rightarrow p)(Biconditional Law)

$$\equiv$$
 (~ p v q) \land (~ q v p)(Conditional Law)

$$\equiv$$
 [\sim p \land (\sim q \lor p)] \lor [q \land (\sim q \lor p)](Distributive Law)

$$\equiv$$
 [(\sim p $\land \sim$ q)] \lor (\sim p \land p)] \lor [(q $\land \sim$ q) \lor (q \land p)](Distributive Law)

$$\equiv$$
 [(\sim p $\land \sim$ q) \lor F] \lor [F \lor (q \land p)](Complement Law)

$$\equiv$$
 (\sim p $\land \sim$ q) \lor (q \land p)(Identity Law)

$$\equiv$$
 (\sim p $\land \sim$ q) \lor (p \land q)(Commutative Law)

$$\equiv$$
 (p \land q) \lor (\sim p \land \sim q)(Commutative Law)

≡ R.H.S.

Exercise 1.4 | Q 3.2 | Page 21

Without using truth table prove that:

$$(p \lor q) \land (p \lor \sim q) \equiv p$$

Solution: L.H.S. =
$$(p \lor q) \land (p \lor \sim q)$$

$$\equiv$$
 p \vee (q \wedge ~ q)(Distributive Law)

= R.H.S.

Exercise 1.4 | Q 3.3 | Page 21

Without using truth table prove that:

$$(p \land q) \lor (\sim p \land q) \lor (p \land \sim q) \equiv p \lor q$$

Solution: L.H.S. =
$$(p \land q) \lor (\sim p \land q) \lor (p \land \sim q)$$

$$\equiv$$
 [(p $\vee \sim$ p) \wedge q] \vee (p $\wedge \sim$ q)(Distributive Law)

$$\equiv$$
 (T \land q) \lor (p \land ~ q)(Complement Law)

$$\equiv$$
 q \vee (p \wedge ~ q)(Identity Law)

$$\equiv$$
 (q \vee p) \wedge (q \vee ~ q)(Distributive Law)

= R.H.S.

Exercise 1.4 | Q 3.4 | Page 21

Without using truth table prove that:

$$\sim$$
 [(p V \sim q) \rightarrow (p $\land \sim$ q)] \equiv (p V \sim q) \land (\sim p V q)

Solution: L.H.S. =
$$\sim$$
 [(p $\lor \sim$ q) \rightarrow (p $\land \sim$ q)]

$$\equiv$$
 (p $\vee \sim$ q) \rightarrow (p $\wedge \sim$ q)(Negation of implication)

$$\equiv$$
 (p $\vee \sim$ q) \wedge [\sim p $\vee \sim$ (\sim q)](Negation of conjunction)

$$\equiv$$
 (p $\vee \sim$ q) \wedge (\sim p \vee q)(Negation of negation)

= R.H.S.

EXERCISE 1.5 [PAGES 29 - 30]

Exercise 1.5 | Q 1.1 | Page 29

Express the following circuit in the symbolic form of logic and writ the input-output table.

Solution: Let p: the switch S₁ is closed

q: the switch S₂ is closed

r: the switch S_3 is closed

 $\sim p \colon the \mbox{ switch } S_1{}' \mbox{ is closed or the switch } S_1$ is open

 $\sim q$: the switch $S_2{}^\prime$ is closed or the switch S_2 is open

 \sim r: the switch S₃' is closed or the switch S₃ is open

I: the lamp L is on

The symbolic form of the given circuit is:

$$p \lor (q \land r) \equiv I$$

I is generally dropped and it can be expressed as:

$$p \vee (q \wedge r)$$

Input-Output Table

р	q	r	q∧r	p∨(q∧r)
1	1		1	1
1	1		0	1

1	0	0	1
1	0	0	1
0	1	1	1
0	1	0	0
0	0	0	0
0	0	0	0

Exercise 1.5 | Q 1.2 | Page 29

Express the following circuit in the symbolic form of logic and writ the input-output table.

Solution: Let p: the switch S₁ is closed

q: the switch S₂ is closed r: the switch S₃ is closed

 \sim p: the switch $S_1{}^\prime$ is closed or the switch S_1 is open

 $\sim q\colon the \mbox{ switch } S_2' \mbox{ is closed or the switch } S_2 \mbox{ is open}$

 $\sim r :$ the switch $S_3{}^\prime$ is closed or the switch S_3 is open

I: the lamp L is on

The symbolic form of the given circuit is:

 $(\sim p \land q) \lor (p \land \sim q)$

Input-Output Table

р	q	~ p	~ q	~ p ∧ q	p ∧ ~ q	$(\sim p \land q) \lor (p \land \sim q)$
1	1	0	0	0	0	0
1	0	0	1	0	1	1
0	1	1	0	1	0	1
0	0	1	1	0	0	0

Exercise 1.5 | Q 1.3 | Page 29

Express the following circuit in the symbolic form of logic and writ the input-output table.

q: the switch S_2 is closed r: the switch S_3 is closed

 \sim p: the switch S_1 ' is closed or the switch S_1 is open

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 $\sim r :$ the switch $S_3{}'$ is closed or the switch S_3 is open

I: the lamp L is on

The symbolic form of the given circuit is:

$$[p \land (\sim q \lor r)] \lor (\sim q \land \sim r)$$

Input-Output Table

р	q	r	~q	~r	~qvr	p∧(~q∨r)	~q∧~r	[p^(~q^r)] v (~q^~r)
								∨ (~q∧~r)
1	1				1	1	0	1
1	1				0	0	0	0
1	0				1	1	0	1
1	0				1	1	1	1
0	1				1	0	0	0
0	1				0	0	0	0
0	0				1	0	0	0
0	0				1	0	1	1

Exercise 1.5 | Q 1.4 | Page 29

Express the following circuit in the symbolic form of logic and writ the input-output table.

q: the switch S_2 is closed r: the switch S_3 is closed

 \sim p: the switch S_1 ' is closed or the switch S_1 is open

 $\sim q$: the switch $S_2{}^\prime$ is closed or the switch S_2 is open

 \sim r: the switch S_3 ' is closed or the switch S_3 is open

I: the lamp L is on

The symbolic form of the given circuit is:

 $(p \lor q) \land q \land (r \lor \sim p)$

Input-Output Table

р	q	r	~p	p∨q	r∨~p	(pvq)\d\(rv~p)
1	1		0	1	1	1
1	1		0	1	0	0
1	0		0	1	1	0
1	0		0	1	0	0
0	1		1	1	1	1
0	1		1	1	1	1
0	0		1	0	1	0
0	0		1	0	1	0

[**Note:** Answer in the textbook is incorrect.]

Exercise 1.5 | Q 1.5 | Page 29

Express the following circuit in the symbolic form of logic and writ the input-output table.

 $q\colon the \ switch \ S_2$ is closed

r: the switch S₃ is closed

 \sim p: the switch S_1 ' is closed or the switch S_1 is open

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 \sim r: the switch S_3 ' is closed or the switch S_3 is open

I: the lamp L is on

The symbolic form of the given circuit is:

 $[pV(\sim p \land \sim q)]V(p \land q)$

Input-Output Table

р	q	~p	~q	~p∧~q	p∨(~p∧~q)	p∧q	$[pV(\sim p \land \sim q)]V(p \land q)$
1	1	0	0	0	1	1	1
1	0	0	1	0	1	0	1
0	1	1	0	0	0	0	0
0	0	1	1	1	1	0	1

Exercise 1.5 | Q 1.6 | Page 29

Express the following circuit in the symbolic form of logic and writ the input-output table.

Solution: Let p: the switch S₁ is closed

q: the switch S2 is closed

r: the switch S₃ is closed

 \sim p: the switch S_1' is closed or the switch S_1 is open

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 \sim r: the switch S_3 ' is closed or the switch S_3 is open

I: the lamp L is on

The symbolic form of the given circuit is:

 $(p \lor q) \land (q \lor r) \land (r \lor p)$

Input-Output Table

р	q	r	p∨q	q∨r	r∨p	$(p \lor q) \land (q \lor r) \land (r \lor p)$
1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	0	1	1	1	1	1
1	0	0	1	0	1	0
0	1	1	1	1	1	1
0	1	0	1	1	0	0
0	0	1	0	1	1	0
0	0	0	0	0	0	0

Exercise 1.5 | Q 2.1 | Page 30

Construct the switching circuit of the following:

$$(\sim p \land q) \lor (p \land \sim r)$$

Solution: Let p: the switch S₁ is closed

q: the switch S_2 is closed r: the switch S_3 is closed

 \sim p: the switch S₁' is closed or the switch S₁ is open \sim q: the switch S₂' is closed or the switch S₂ is open

 \sim r: the switch S₃' is closed or the switch S₃ is open.

Then the switching circuit corresponding to the given statement pattern is:

Exercise 1.5 | Q 2.2 | Page 30

Construct the switching circuit of the following:

$$(p \land q) \lor [\sim p \land (\sim q \lor p \lor r)]$$

Solution: Let p: the switch S₁ is closed

q: the switch S₂ is closed r: the switch S₃ is closed

 $\sim p \colon the \ switch \ S_1' \ is \ closed \ or \ the \ switch \ S_1 \ is \ open$

 \sim q: the switch S₂' is closed or the switch S₂ is open

 \sim r: the switch S₃' is closed or the switch S₃ is open.

Then the switching circuit corresponding to the given statement pattern is:

Exercise 1.5 | Q 2.3 | Page 30

Construct the switching circuit of the following:

$$(p \wedge r) \vee (\sim q \wedge \sim r)] \wedge (\sim p \wedge \sim r)$$

Solution: Let p: the switch S1 is closed

q: the switch S₂ is closed r: the switch S₃ is closed

 $\sim p \colon the \ switch \ S_1' \ is \ closed \ or \ the \ switch \ S_1 \ is \ open$

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 $\sim r :$ the switch $S_3{}^\prime$ is closed or the switch S_3 is open.

Then the switching circuit corresponding to the given statement pattern is:

Exercise 1.5 | Q 2.4 | Page 30

Construct the switching circuit of the following:

$$(p \land \sim q \land r) \lor [p \land (\sim q \lor \sim r)]$$

Solution: Let p: the switch S_1 is closed

q: the switch S2 is closed

r: the switch S₃ is closed

 \sim p: the switch S₁' is closed or the switch S₁ is open

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 \sim r: the switch S₃' is closed or the switch S₃ is open.

Then the switching circuit corresponding to the given statement pattern is:

Exercise 1.5 | Q 2.5 | Page 30

Construct the switching circuit of the following:

$$p \vee (\sim p) \vee (\sim q) \vee (p \wedge q)$$

Solution: Let p: the switch S₁ is closed

q: the switch S₂ is closed r: the switch S₃ is closed

 \sim p: the switch S₁' is closed or the switch S₁ is open

 $\sim q$: the switch $S_2{}^\prime$ is closed or the switch S_2 is open

 \sim r: the switch S₃' is closed or the switch S₃ is open.

Then the switching circuit corresponding to the given statement pattern is:

Exercise 1.5 | Q 2.6 | Page 30

Construct the switching circuit of the following:

$$(p \land q) \lor (\sim p) \lor (p \land \sim q)$$

Solution: Let p: the switch S_1 is closed

q: the switch S₂ is closed r: the switch S₃ is closed

 $\sim p \colon the \ switch \ S_1' \ is \ closed \ or \ the \ switch \ S_1 \ is \ open$

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 \sim r: the switch S₃' is closed or the switch S₃ is open.

Then the switching circuit corresponding to the given statement pattern is:

Exercise 1.5 | Q 3.1 | Page 30

Give an alternative equivalent simple circuit for the following circuit:

Solution: Let p: the switch S₁ is closed

q: the switch S2 is closed

 $\sim p \colon the \ switch \ S_1'$ is closed or the switch S_1 is open

Then the symbolic form of the given circuit is

$$p \wedge (\sim p \vee q)$$
.

Using the laws of logic, we have,

$$p \land (\sim p \lor q)$$

$$\equiv$$
 (p $\land \sim$ p) \lor (p \land q)(By Distributive Law)

$$\equiv$$
 F \vee (p \wedge q)(By Complement Law)

$$\equiv p \land q \dots (By Identity Law)$$

Hence, the alternative equivalent simple circuit is:

Exercise 1.5 | Q 3.2 | Page 30

Give an alternative equivalent simple circuit for the following circuit:

Solution: Let p: the switch S₁ is closed

q: the switch S2 is closed

r: the switch S₃ is closed

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 \sim r: the switch S₃' is closed or the switch S₃ is open.

Then the symbolic form of the given circuit is:

$$[p \land (q \lor r)] \lor (\sim r \land \sim q \land p)$$

Using the laws of logic, we have

$$[p \land (q \lor r)] \lor (\sim r \land \sim q \land p)$$

$$\equiv$$
 [p \land (q \lor r)] \lor [\sim (r \lor q) \land p](By De Morgan's Law)

$$\equiv [p \ \land \ (q \ \lor \ r)] \ \lor \ [p \ \land \ \sim \ (q \ \lor \ r)] \(By \ Commutative \ Law)$$

$$\equiv$$
 p \land [(q \lor r) \lor \sim (q \lor r)](By Distributive Law)

Hence, the alternative equivalent simple circuit is

Exercise 1.5 | Q 4.1 | Page 30

find the symbolic fom of the following switching circuit, construct its switching table and interpret it.

Solution: Let

p: The switch S₁ is closed,

q: The switch S₂ is closed.

Switching circuit is $(pv~q)v(~p\land q)$

The switching table

р	q	~p	~q	pv~q	~р∧ q	(pv~q)v(~p∧q)
1	1	0	0	1	0	1
1	0	0	1	1	0	1
0	1	1	0	0	1	1
0	0	1	1	1	0	1

From the last column of switching table we conclude that the current will always flow through the circuit.

Exercise 1.5 | Q 4.2 | Page 30

Write the symbolic form of the following switching circuit construct its switching table and interpret it.

Solution: Let p: the switch S₁ is closed

q: the switch S₂ is closed

 \sim p: the switch S₁' is closed or the switch S₁ is open.

 \sim q: the switch S_2 ' is closed or the switch S_2 is open.

Then the symbolic form of the given circuit is:

$$p \vee (\sim p \wedge \sim q) \vee (p \wedge q)$$

Switching Table

р	q	~p	~q	~p^~q	b∨d	pv(~p^~q)v(p^q)
1	1	0	0	0	1	1
1	0	0	1	0	0	1
0	1	1	0	0	0	0
0	0	1	1	1	0	1

Since the final column contains '0' when p is 0 and q is '1', otherwise it contains '1'. Hence, the lamp will not glow when S_1 is OFF and S_2 is ON, otherwise, the lamp will glow.

Exercise 1.5 | Q 4.3 | Page 30

Write the symbolic form of the following switching circuit construct its switching table and interpret it.

Solution: Let p: the switch S₁ is closed

q: the switch S_2 is closed r: the switch S_3 is closed

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 $\sim r :$ the switch $S_3{}^\prime$ is closed or the switch S_3 is open

Then the symbolic form of the given circuit is:

$$[p \lor (\sim q) \lor (\sim r)] \land [p \lor (q \land r)]$$

Switching Table

р	q	r	~q	~r	pv(~q)v(~r)	q∧r	p∨(q∧r)	Final
								column
					(I)		(II)	(l) ∧
					, ,		, ,	(II)
1	1	1	0	0	1	1	1	1
1	1	0	0	1	1	0	1	1

1	0	1	1	0	1	0	1	1
1	0	0	1	1	1	0	1	1
0	1	1	0	0	0	1	1	0
0	1	0	0	1	1	0	0	0
0	0	1	1	0	1	0	0	0
0	0	0	1	1	1	0	0	0

From the switching table, the 'final column' and the column of p are identical. Hence, the lamp will glow which S₁ is 'ON'.

Exercise 1.5 | Q 5.1 | Page 30

Obtain the simple logical expression of the following. Draw the corresponding switching circuit.

$$p \vee (q \wedge \sim q)$$

Solution: Using the laws of logic, we have,

 $p \vee (q \wedge \sim q)$

≡ p ∨ F(By Complement Law)

≡ p(By Identity Law)

Hence, the simple logical expression of the given expression is p.

Let p: the switch S₁ is closed

Then the corresponding switching circuit is:

Exercise 1.5 | Q 5.2 | Page 30

Obtain the simple logical expression of the following. Draw the corresponding switching circuit.

$$(\sim p \land q) \lor (\sim p \land \sim q) \lor (p \land \sim q)$$

Solution: Using the laws of logic, we have,

$$(\sim p \land q) \lor (\sim p \land \sim q) \lor (p \land \sim q)$$

$$\equiv$$
 [\sim P \wedge (q \vee \sim q)] \vee (p \wedge \sim q)(By Distributive Law)

$$\equiv$$
 (\sim p \wedge T) \vee (p \wedge \sim q)(By Complement Law)

$$\equiv \sim p \lor (p \land \sim q)$$
(By Identity Law)

$$\equiv$$
 (\sim p \vee p) \wedge (\sim p \wedge \sim q)(By Distributive Law)

$$\equiv$$
 T \land (\sim p \land \sim q)(By Complement Law)

 $\equiv \sim p \lor \sim q \dots (By Identity Law)$

Hence, the simple logical expression of the given expression is $\sim p \ V \sim q$.

Let p: the switch S₁ is closed

q: the switch S2 is closed

 \sim p: the switch S_1 ' is closed or the switch S_1 is open

 \sim q: the switch S_2 ' is closed or the switch S_2 is open.

Then the corresponding switching circuit is:

Exercise 1.5 | Q 5.3 | Page 30

Obtain the simple logical expression of the following. Draw the corresponding switching circuit.

$$[p \lor (\sim q) \lor (\sim r)] \land [p \lor (q \land r)]$$

Solution: Using the laws of logic, we have,

 $[p \lor (~\sim q) \lor (\sim r)] \land [p \lor (q \land r)]$

 \equiv [p \vee { \sim (q \wedge r)}] \wedge [p \vee (q \wedge r)](By De Morgan's Law)

 \equiv p \vee [\sim (q \wedge r) \wedge (q \wedge r)](By Distributive Law)

≡ p ∨ F(By Complement Law)

≡ p(By Identity Law)

Hence, the simple logical expression of the given expression is p.

Let p: the switch S_1 is closed

Then the corresponding switching circuit is:

Exercise 1.5 | Q 5.4 | Page 30

Obtain the simple logical expression of the following. Draw the corresponding switching circuit.

$$(p \land q \land \sim p) \lor (\sim p \land q \land r) \lor (p \land q \land r)$$

Solution: Using the laws of logic, we have,

 $(p \land q \land \sim p) \lor (\sim p \land q \land r) \lor (p \land q \land r)$

 \equiv (p $\land \sim$ p \land q) \lor (\sim p \land q \land r) \lor (p \land q \land r)(By Commutative Law)

 \equiv (F \land q) \lor (\sim p \land q \land r) \lor (p \land q \land r)(By Complement Law)

 \equiv F \vee (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r)(By Identity Law)

 \equiv (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r)(By Identity Law)

 \equiv (~ p \vee p) \wedge (q \wedge r)(By Distributive Law)

 \equiv T \land (q \land r)(By Complement Law)

 \equiv q \wedge r(By Identity Law)

Hence, the simple logical expression of the given expression is $q \wedge r$.

Let q: the switch S2 is closed

r: the switch S₃ is closed.

Then the corresponding switching circuit is:

MISCELLANEOUS EXERCISE 1 [PAGES 32 - 35]

Miscellaneous Exercise 1 | Q 1.1 | Page 32

Select and write the correct answer from the given alternative of the following question:

If p \wedge q is false and p \vee q is true, then _____ is not true.

- 1. p v q
- 2. $p \leftrightarrow q$
- 3. ~p ∨ ~q
- 4. q ∨ ~p

Solution: If p \wedge q is false and p \vee q is true, then $\mathbf{p} \leftrightarrow \mathbf{q}$ is not true.

Miscellaneous Exercise 1 | Q 1.2 | Page 32

Select and write the correct answer from the given alternative of the following question:

 $(p \land q) \rightarrow r$ is logically equivalent to _____.

- 1. $p \rightarrow (q \rightarrow r)$
- 2. $(p \land q) \rightarrow \sim r$
- 3. $(\sim p \lor \sim q) \rightarrow \sim r$
- 4. $(p \lor q) \rightarrow r$

Solution: $(p \land q) \rightarrow r$ is logically equivalent to $p \rightarrow (q \rightarrow r)$.

Miscellaneous Exercise 1 | Q 1.3 | Page 32

Select and write the correct answer from the given alternative of the following question: Inverse of statement pattern (p \lor q) \to (p \land q) is ______.

- 1. $(p \land q) \rightarrow (p \lor q)$
- 2. \sim (p \vee q) \rightarrow (p \wedge q)
- 3. $(\sim p \land \sim q) \rightarrow (\sim p \lor \sim q)$
- 4. $(\sim p \lor \sim q) \rightarrow (\sim p \land \sim q)$

Solution: Inverse of statement pattern $(p \lor q) \to (p \land q)$ is $(\sim p \land \sim q) \to (\sim p \lor \sim q)$.

Miscellaneous Exercise 1 | Q 1.4 | Page 32

Select and write the correct answer from the given alternative of the following question: If $p \land q$ is F, $p \rightarrow q$ is F then the truth values of p and q are _____.

- 1. T, T
- 2. T, F
- 3. F, T
- 4. F, F

Solution: If $p \wedge q$ is F, $p \rightarrow q$ is F then the truth values of p and q are **T**, **F**.

Miscellaneous Exercise 1 | Q 1.5 | Page 32

Select and write the correct answer from the given alternative of the following question: The negation of inverse of $\sim p \rightarrow q$ is _____.

- 1. q \wedge p
- 2. ~p ∧ ~q
- 3. p \wedge q

4. $\sim q \rightarrow \sim p$

Solution: The negation of inverse of $\sim p \rightarrow q$ is $\mathbf{q} \wedge \mathbf{p}$.

Miscellaneous Exercise 1 | Q 1.6 | Page 32

Select and write the correct answer from the given alternative of the following question:

The negation of p \land (q \rightarrow r) is _____.

- 1. $\sim p \land (\sim q \rightarrow \sim r)$
- 2. p v (~q v r)
- 3. $\sim p \land (\sim q \rightarrow \sim r)$
- 4. ~p ∨ (~q ∧ ~r)

Solution: $\forall x \in A, x + 6 \ge 9$

Miscellaneous Exercise 1 | Q 1.7 | Page 32

Select and write the correct answer from the given alternative of the following question:

If $A = \{1, 2, 3, 4, 5\}$ then which of the following is not true?

- 1. $\exists x \in A \text{ such that } x + 3 = 8$
- 2. $\exists x \in A$ such that x + 2 < 9
- 3. $\forall x \in A, x + 6 \ge 9$
- 4. $\exists x \in A$ such that x + 6 < 10

Solution: $\forall x \in A, x + 6 \ge 9$

Miscellaneous Exercise 1 | Q 2.1 | Page 33

Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:

4! = 24.

Solution: It is a statement which is true, hence its truth value is 'T'.

Miscellaneous Exercise 1 | Q 2.2 | Page 33

Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:

 π is an irrational number.

Solution: It is a statement which is true, hence its truth value is 'T'.

Miscellaneous Exercise 1 | Q 2.3 | Page 33

Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:

India is a country and Himalayas is a river.

Solution: It is a statement which is false, hence its truth value is 'F'.[T \land F \equiv F]

Miscellaneous Exercise 1 | Q 2.4 | Page 33

Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:

Please get me a glass of water.

Solution: It is an imperative sentence, hence it is not a statement.

Miscellaneous Exercise 1 | Q 2.5 | Page 33

Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:

 $\cos^2\theta - \sin^2\theta = \cos 2\theta$ for all $\theta \in \mathbb{R}$.

Solution: It is a statement which is true, hence its truth value is 'T'.

Miscellaneous Exercise 1 | Q 2.6 | Page 33

Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:

If x is a whole number then x + 6 = 0.

Solution: It is a statement which is false, hence its truth value is 'F'.

[Note: Answer in the textbook is incorrect.]

Miscellaneous Exercise 1 | Q 3.1 | Page 33

Write the truth value of the following statement:

 $\sqrt{5}$ is an irrational but $3\sqrt{5}$ is a complex number.

Solution: Let p: 5 is an irrational.

q: 35 is a complex number.

Then the symbolic form of the given statement is pAq.

The truth values of p and q are T and F respectively.

 \therefore The truth value of pAq is F.[TAF = F]

[Note: Answer in the textbook is incorrect.]

Miscellaneous Exercise 1 | Q 3.2 | Page 33

Write the truth value of the following statement:

 \forall n \in N, n² + n is even number while n² – n is an odd number.

Solution: Let p: \forall n \in N, n² + n is an even number.

q: \forall n \in N, n² – n is an odd number.

Then the symbolic form of the given statement is $p \land q$.

The truth values of p and q are T and F respectively. \therefore The truth value of pAq is F.

.....[T Λ F \equiv F].

Miscellaneous Exercise 1 | Q 3.3 | Page 33

Write the truth value of the following statement:

 \exists n \in N such that n + 5 > 10.

Solution: \exists $n \in \mathbb{N}$, such that n + 5 > 10 is a true statement, hence its truth value is T. (All $n \ge 6$, where $n \in \mathbb{N}$, satisfy n + 5 > 10).

Miscellaneous Exercise 1 | Q 3.4 | Page 33

Write the truth value of the following statement:

The square of any even number is odd or the cube of any odd number is odd.

Solution: Let p: The square of any even number is odd.

q: The cube of any odd number is odd.

Then the symbolic form of the given statement is pvq.

The truth values of p and q are F and T respectively.

∴ The truth value of pvq is T.[FvT \equiv T]

Miscellaneous Exercise 1 | Q 3.5 | Page 33

Write the truth value of the following statement:

In $\triangle ABC$ if all sides are equal then its all angles are equal.

Solution: Let p: ABC is a triangle and all its sides are equal.

q: It's all angles are equal.

Then the symbolic form of the given statement is $p\rightarrow q$.

If the truth value of p is T, then the truth value of q is T.

∴ The truth value of p \rightarrow q is T[T \rightarrow T \equiv T].

Miscellaneous Exercise 1 | Q 3.6 | Page 33

Write the truth value of the following statement:

 $\forall n \in \mathbb{N}, n + 6 > 8.$

Solution: \forall $n \in \mathbb{N}$, n + 6 > 8 is a false statement, hence its truth value is F. $(n = 1 \in \mathbb{N}, n = 2 \in \mathbb{N} \text{ do not satisfy } n + 6 > 8).$

Miscellaneous Exercise 1 | Q 4.1 | Page 33

If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, determine the truth value of the following statement: $\exists x \in A \text{ such that } x + 8 = 15$

Solution: Clearly $x = 7 \in A$ satisfies x + 8 = 15. So the given statement is true, hence its truth value is T.

Miscellaneous Exercise 1 | Q 4.2 | Page 33

If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, determine the truth value of the following statement: $\forall x \in A, x + 5 < 12$.

Solution: There is no $x \in A$ which satisfies x + 5 < 12. So the given statement is false, hence its truth value is F.

Miscellaneous Exercise 1 | Q 4.3 | Page 33

If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, determine the truth value of the following statement: $\exists x \in A$, such that $x + 7 \ge 11$.

Solution: Clearly $x = 1 \in A$, $x = 2 \in A$ and $x = 3 \in A$ satisfies $x + 7 \ge 11$. So the given statement is true, hence its truth value is T.

Miscellaneous Exercise 1 | Q 4.4 | Page 33

If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, determine the truth value of the following statement: $\forall x \in A, 3x \le 25$.

Solution: $x = 9 \in A$ does not satisfy $3x \le 25$ So the given statement is false, hence its truth value is F.

Miscellaneous Exercise 1 | Q 5.1 | Page 33

Write the negation of the following:

 $\forall n \in A, n + 7 > 6.$

Solution: The negation of the given statement is:

 \exists n \in A, such that n + 7 \leq 6.

OR

 \exists n \in A, such that n + $7 \nearrow$ 6.

Miscellaneous Exercise 1 | Q 5.2 | Page 33

Write the negation of the following:

 $\exists x \in A$, such that $x + 9 \le 15$.

Solution: The negation of the given statement is:

 $\forall x \in A, x + 9 > 15.$

Miscellaneous Exercise 1 | Q 5.3 | Page 33

Write the negation of the following:

Some triangles are equilateral triangle.

Solution: The negation of the given statement is:

All triangles are not equilateral triangles.

Miscellaneous Exercise 1 | Q 6.1 | Page 33

Construct the truth table of the following:

 $p \rightarrow (q \rightarrow p)$

Solution:

р	q	$d \rightarrow b$	$b \to (d \to b)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	Т
F	F	T	Т

Miscellaneous Exercise 1 | Q 6.2 | Page 33

Construct the truth table of the following:

$$(\sim p \lor \sim q) \leftrightarrow [\sim (p \land q)]$$

Solution:

р	q	~p	~q	~p V ~q	p∧q	~ (p∧q)	$(\sim p \lor \sim q) \leftrightarrow [\sim (p \land q)]$
Т	Т	F	F	F	Т	F	Т
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	Т	Т

Miscellaneous Exercise 1 | Q 6.3 | Page 33

Construct the truth table of the following:

Solution:

р	q	~p	~q	~p ^ ~q	~ (~P ^ ~q)	~ (~p ∧ ~q) ∨ q
Т	T	F	F	F	T	T
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	T	T
F	F	Т	Т	Т	F	F

[Note: Answer in the textbook is incorrect.]

Miscellaneous Exercise 1 | Q 6.4 | Page 33

Construct the truth table of the following:

$$[(p \land q) \lor r] \land [\sim r \lor (p \land q)]$$

Solution:

р	q	r	pΛd	(p∧q) ∨ r	~r	~r ∨ (p∧q)	[(p∧q) ∨ r] ∧ [~r ∨ (p∧q)]
Т	Т	Т	Т	Т	F	Т	Т
Т	Т	F	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F	F	F
Т	F	F	F	F	Т	Т	F
F	Т	Т	F	Т	F	F	F
F	Т	F	F	F	Т	Т	F
F	F	Т	F	Т	F	F	F
F	F	F	F	F	T	Т	F

Miscellaneous Exercise 1 | Q 6.5 | Page 33

Construct the truth table of the following:

$$[(\sim\!p \ \lor \ q) \ \land \ (q \to r)] \to (p \to r)$$

Solution:

р	q	r	~p	~p v q	q→r	(~p∨q) ∧ (q→r)	p→r	
Т	T	T	F	Т	Т	Т	Т	Т
Т	T	F	F	Т	F	F	F	Т
Т	F	Т	F	F	Т	F	Т	Т
Т	F	F	F	F	Т	F	F	Т
F	T	Т	Т	Т	Т	Т	Т	Т
F	T	F	Т	T	F	F	Т	Т
F	F	Т	T	Т	Т	Т	Т	Т
F	F	F	T	Т	Т	Т	Т	Т

Miscellaneous Exercise 1 | Q 7.1 | Page 33

Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

$$[(p \to q) \ \land \sim q] \to \sim p$$

Solution:

р	q	~ p	~ q	$p \rightarrow q$	$(p \rightarrow q) \land \sim q$	$[(p \to q) \land \sim q] \to \sim p$
Т	Т	F	F	Т	F	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	T	Т	Т

All the entries in the last column of the above truth table are T.

$$\div$$
 [(p \rightarrow q) $\land \sim$ q] $\rightarrow \sim$ p is a tautology.

Miscellaneous Exercise 1 | Q 7.2 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(p
$$\vee$$
 q) \wedge \sim p] \wedge \sim q

Solution:

р	q	~p	~q	p∨q	(p∨q) ∧ ~p	[(p∨q) ∧ ~p] ∧ ~q
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	F
F	Т	Т	Т	F	F	F

All the entries in the last column of the above truth table are F.

 \therefore [(p \lor q) $\land \sim$ p] $\land \sim$ q is a contradiction.

Miscellaneous Exercise 1 | Q 7.3 | Page 33

Determine whether the following statement pattern is a tautology, contradiction, or contingency:

$$(p \rightarrow q) \land (p \land \sim q)$$

Solution:

р	q	~q	$p \rightarrow q$	p ∧ ~q	$(p \rightarrow q) \land (p \land \sim q)$
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	F	F

All the entries in the last column of the above truth table are F.

$$\therefore$$
 (p \rightarrow q) \land (p \land \sim q) is a contradiction.

Miscellaneous Exercise 1 | Q 7.4 | Page 33

Determine whether the following statement pattern is a tautology, contradiction or contingency:

$$[p \to (q \to r)] \leftrightarrow [(p \land q) \to r]$$

Solution:

р	q	r	$q \rightarrow r$	$p \to (q \to r)$	pΛq	$(p \land q) \rightarrow r$	$[p \to (q \to r)] \leftrightarrow [(p \land q) \to r]$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	Т	Т	F	Т	Т
F	Т	F	F	Т	F	Т	Т
F	F	Т	Т	Т	F	Т	Т
F	F	F	Т	Т	F	Т	Т

All the entries in the last column of the above truth table are T.

 $\therefore [p \to (q \to r)] \leftrightarrow [(p \land q) \to r] \text{ is a tautology}.$

Miscellaneous Exercise 1 | Q 7.5 | Page 33

Determine whether the following statement pattern is a tautology, contradiction or contingency:

$$[(p \land (p \rightarrow q)] \rightarrow q$$

Solution:

р	q	$p \rightarrow q$	$b\vee (b\to d)$	$[b \lor (b \to d)] \to L$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

All the entries in the last column of the above truth table are T.

 $\therefore [(p \land (p \rightarrow q)] \rightarrow q \text{ is a tautology}.$

Miscellaneous Exercise 1 | Q 7.6 | Page 33

Determine whether the following statement pattern is a tautology, contradiction or contingency:

$$(p \land q) \lor (\sim p \land q) \lor (p \lor \sim q) \lor (\sim p \land \sim q)$$

Solution:

р	q	~p	~q	pΛq	~p ∧ q	p∨~q	~p ∧ ~q	(I) ∨ (II) ∨ (III) ∨ (IV)
				(I)	(II)	(III)	(IV)	
Т	Т	F	F	Т	F	Т	F	Т
Т	F	F	Т	F	F	T	F	Т
F	Т	Т	F	F	Т	F	F	Т
F	F	T	Т	F	F	Т	Т	Т

All the entries in the last column of the above truth table are T.

 \therefore (p \land q) \lor (\sim p \land q) \lor (p \lor \sim q) \lor (\sim p \land \sim q) is a tautology.

Miscellaneous Exercise 1 | Q 7.7 | Page 33

Determine whether the following statement pattern is a tautology, contradiction or contingency:

[
$$(p \lor \sim q) \lor (\sim p \land q)$$
] $\land r$

Solution:

р	q	r	~p	~q	p∨~q	~p ∧ q	(p ∨ ~q) ∨ (~p ∧ q)	(l) ∧ r
							(I)	
Т	Т	Т	F	F	Т	F	Т	Т
Т	Т	F	F	F	Т	F	Т	F
Т	F	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	Т	F	Т	F
F	Т	Т	Т	F	F	Т	Т	Т
F	Т	F	T	F	F	Т	Т	F
F	F	Т	Т	Т	Т	F	Т	Т
F	F	F	T	Т	Т	F	Т	F

The entries in the last column are neither all T nor all F.

∴ $[(p \lor \sim q) \lor (\sim p \land q)] \land r \text{ is a contingency.}$

Miscellaneous Exercise 1 | Q 7.8 | Page 33

Determine whether the following statement pattern is a tautology, contradiction or contingency:

$$(p \rightarrow q) \lor (q \rightarrow p)$$

Solution:

р	q	$p \to q$	$q\top$	$(b \to d) \land (d \to b)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

All the entries in the last column of the above truth table are T.

$$\therefore$$
 (p \rightarrow q) \vee (q \rightarrow p) is a tautology.

Miscellaneous Exercise 1 | Q 8.1 | Page 34

Determine the truth values of p and q in the following case:

(p
$$\vee$$
 q) is T and (p \wedge q) is T

Solution:

р	q	p v q	pΛq
T	Т	Т	Т
Т	F	Т	F
F	Т	Т	F
F	F	F	F

Since p \vee q and p \wedge q both are T, from the table, the truth values of both p and q are T.

Miscellaneous Exercise 1 | Q 8.2 | Page 34

Determine the truth values of p and q in the following case:

(p
$$\vee$$
 q) is T and (p \vee q) \rightarrow q is F

Solution:

р	q	p∨q	$(p \lor q) \to q$
Т	Т	Т	Т

Т	F	Т	F
F	Т	Т	Т
F	F	F	Т

Since the truth values of (p \vee q) is T and (p \vee q) \rightarrow q is F, from the table, the truth values of p and q are T and F respectively.

Miscellaneous Exercise 1 | Q 8.3 | Page 34

Determine the truth values of p and q in the following case:

$$(p \land q)$$
 is F and $(p \land q) \rightarrow q$ is T

Solution:

р	q	pΛq	$(b \lor d) \to d$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

Since the truth values of $(p \land q)$ is F and $(p \land q) \rightarrow q$ is T, from the table, the truth values of p and q are either T and F respectively or F and T respectively or both F.

Miscellaneous Exercise 1 | Q 9.1 | Page 34

Using the truth table, prove the following logical equivalence:

$$p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$$

Solution:

1	2	3	4	5	6	7	8
			Α			В	
р	q	$p \leftrightarrow q$	рΛq	~p	~q	~p ^ ~q	AVB
Т	Т	т	Т	F	F	F	Т
Т	F	F	F	F	Т	F	F
F	Т	F	F	Т	F	F	F
F	F	Т	F	Т	Т	Т	Т

By column number 3 and 8

$$p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$$

Miscellaneous Exercise 1 | Q 9.2 | Page 34

Using truth table, prove the following logical equivalence:

$$(p \land q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$$

Solution:

1	2	3	4	5	6	7
р	q	r	p∧q	(p∧q)→r	q→r	p→(q→r)
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	Т	F	T	Т	Т
F	Т	F	F	Т	F	Т
F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	T

The entries in columns 5 and 7 are identical.

$$\therefore (p \land q) \rightarrow r \equiv p \rightarrow (q \rightarrow r).$$

Miscellaneous Exercise 1 | Q 10.1 | Page 34

Using rules in logic, prove the following:

$$\mathsf{p} \leftrightarrow \mathsf{q} \equiv \mathord{\sim} (\mathsf{p} \wedge \mathord{\sim} \mathsf{q}) \vee \mathord{\sim} (\mathsf{q} \wedge \mathord{\sim} \mathsf{p})$$

Solution: By the rules of negation of biconditional,

$$\sim (\mathsf{p} \leftrightarrow \mathsf{q}) \equiv (\mathsf{p} \land \sim \mathsf{q}) \lor (\mathsf{q} \land \sim \mathsf{p})$$

$$\div \sim [(p \land \sim q) \land (q \land \sim p)] \equiv p \leftrightarrow q$$

$$\div \sim (p \land \sim q) \land \sim (q \land \sim p) \equiv p \leftrightarrow q \dots (Negation of disjunction)$$

$$\label{eq:proposed} \therefore \mathsf{p} \leftrightarrow \mathsf{q} \equiv {\sim} (\mathsf{p} \land {\sim} \mathsf{q}) \land {\sim} (\mathsf{q} \land {\sim} \mathsf{p}).$$

Miscellaneous Exercise 1 | Q 10.2 | Page 34

Using rules in logic, prove the following:

$$\sim p \land q \equiv (p \lor q) \land \sim p$$

Solution: (p
$$\vee$$
 q) $\wedge \sim$ p

$$\equiv$$
 (p $\land \sim$ p) \lor (q $\land \sim$ p)(Distributive Law)

$$\equiv$$
 F \vee (q $\wedge \sim$ p)(Complement Law)

```
\equiv q \land \simp .....(Identity Law)
```

$$\therefore \sim p \land q \equiv (p \lor q) \land \sim p$$

Miscellaneous Exercise 1 | Q 10.3 | Page 34

Using rules in logic, prove the following:

$$\sim$$
 (p \vee q) \vee (\sim p \wedge q) \equiv \sim p

Solution:
$$\sim$$
 (p \vee q) \vee (\sim p \wedge q)

$$\equiv$$
 (\sim p $\land \sim$ q) \lor (\sim p \land q)(Negation of disjunction)

$$\equiv \sim p \land (\sim q \lor q) \dots (Distributive Law)$$

$$\equiv \sim p$$
(Identity Law)

$$\therefore \sim (p \lor q) \lor (\sim p \land q) \equiv \sim p$$

Miscellaneous Exercise 1 | Q 11.1 | Page 34

Using the rules in logic, write the negation of the following:

$$(p \lor q) \land (q \lor \sim r)$$

Solution: The negation of $(p \lor q) \land (q \lor \sim r)$ is

$$\sim [(p \ \lor \ q) \ \land \ (q \ \lor \sim r)]$$

$$\equiv \sim (p \lor q) \lor \sim (q \lor \sim r) \dots (Negation of conjunction)$$

$$\equiv$$
 (\sim p $\land \sim$ q) \lor [\sim q $\land \sim$ (\sim r)](Negation of disjunction

$$\equiv$$
 (\sim p $\land \sim$ q) \lor (\sim q \land r)(Negation of negation)

$$\equiv (\sim q \land \sim p) \lor (\sim q \land r)$$
(Commutative law)

$$\equiv$$
 (~q) \land (~p \lor r)(Distributive Law)

Miscellaneous Exercise 1 | Q 11.2 | Page 34

Using the rules in logic, write the negation of the following:

$$p \wedge (q \vee r)$$

Solution: The negation of $p \land (q \lor r)$ is

$$\sim$$
 [p \land (q \lor r)]

$$\equiv \sim p \lor \sim (q \lor r) \dots (Negation of conjunction)$$

$$\equiv \sim p \lor (\sim q \land \sim r)$$
(Negation of disjunction)

Miscellaneous Exercise 1 | Q 11.3 | Page 34

Using the rules in logic, write the negation of the following:

$$(p \rightarrow q) \wedge r$$

Solution: The negation of $(p \rightarrow q) \land r$ is

$$\sim [(p \rightarrow r) \land r]$$

$$\equiv \sim (p \rightarrow q) \vee (\sim r)$$
(Negation of conjunction)

$$\equiv$$
 (p $\land \sim$ q) \lor (\sim r)(Negation of implication)

[Note: Answer in the textbook is incorrect.]

Miscellaneous Exercise 1 | Q 11.4 | Page 34

Using the rules in logic, write the negation of the following:

$$(\sim p \land q) \lor (p \land \sim q)$$

Solution: The negation of $(\sim p \land q) \lor (p \land \sim q)$ is

$$\sim$$
 [(\sim p \wedge q) \vee (p \wedge \sim q)]

$$\equiv \sim (p \land q) \land \sim (p \land \sim q) \dots (Negation of disjunction)$$

$$\equiv [\sim (\sim p) \lor \sim q] \land [\sim p \lor \sim (\sim q)] \dots (Negation of conjunction)$$

$$\equiv$$
 (p $\vee \sim$ q) \wedge (\sim p \vee q)(Negation of negation)

Miscellaneous Exercise 1 | Q 12.1 | Page 34

Express the following circuit in the symbolic form. Prepare the switching table:

Solution:

Let p: the switch S₁ is closed

q: the switch S₂ is closed

 \sim p: the switch S₁' is closed or the switch S₁ is open

 \sim q: the switch S₂' is closed or the switch S₂ is open.

Then the symbolic form of the given circuit is:

$$(p \land q) \lor (\sim p) \lor (p \land \sim q)$$

Switching Table

р	q	~p	~q	pΛq	p ∧ ~q	(p∧q) ∨ (~p) ∨ (p ∧ ~q)
1	1	0	0	1	0	1
1	0	0	1	0	1	1
0	1	1	0	0	0	1
0	0	1	1	0	0	1

Miscellaneous Exercise 1 | Q 12.2 | Page 34

Express the following circuit in the symbolic form. Prepare the switching table:

Solution: Let p: the switch S₁ is closed

q: the switch S_2 is closed r: the switch S_3 is closed

Then the symbolic form of the given statement is:

 $(pvq) \wedge (pvq)$

Switching Table

р	q	r	p∨q	p∨r	(p∨q) ∧ (p∨q)
1	1	1	1	1	1
1	1	0	1	1	1
1	0	1	1	1	1
1	0	0	1	1	1
0	1	1	1	1	1
0	1	0	1	0	0
0	0	1	0	1	0
0	0	0	0	0	0

Miscellaneous Exercise 1 | Q 13.1 | Page 34

Simplify the following so that the new circuit has a minimum number of switches. Also, draw the simplified circuit.

Solution: Let p: the switch S₁ is closed

q: the switch S₂ is closed

 \sim p: the switch S_1 ' is closed or the switch S_1 is open

 \sim q: the switch S_2 ' is closed or the switch S_2 is open.

Then the given circuit in symbolic form is:

 $(p \land q) \lor (\sim p \land q) \lor (\sim p \land \sim q)$

Using the laws of logic, we have,

$$(p \land \sim q) \lor (\sim p \land q) \lor (\sim p \land \sim q)$$

$$\equiv$$
 (p $\land \sim$ q) \lor [(\sim p \land q) \lor (\sim p $\land \sim$ q)](By Associative Law)

$$\equiv$$
 (p $\land \sim$ q) \lor [\sim p \land (q $\lor \sim$ q)](By Distributive Law)

$$\equiv$$
 (p $\land \sim$ q) \lor (\sim p \land T)(By Complement Law)

$$\equiv$$
 (p $\land \sim$ q) $\lor \sim$ p(By Identity Law)

$$\equiv$$
 (p $\vee \sim$ p) \wedge (\sim q $\vee \sim$ p)(By Distributive Law)

$$\equiv T \wedge (\sim q \vee \sim p)$$
(By Complement Law)

$$\equiv \sim q \vee \sim p \dots (By Identity Law)$$

$$\equiv \sim p \vee \sim q \dots (By Commutative Law)$$

Hence, the simplified circuit for the given circuit is:

Miscellaneous Exercise 1 | Q 13.2 | Page 34

Simplify the following so that the new circuit has a minimum number of switches. Also, draw the simplified circuit.

q: the switch S2 is closed

r: the switch S3 is closed

s: the switch S4 is closed

t: the switch S₅ is closed

 \sim p: the switch S_1' is closed or the switch S_1 is open

 \sim q: the switch S_2 ' is closed or the switch S_2 is open

 \sim r: the switch S₃' is closed or the switch S₃ is open

~s: the switch S₄' is closed or the switch S₄ is open

~t: the switch S_5 ' is closed or the switch S_5 is open.

Then the given circuit in symbolic form is:

[
$$(p \land q) \lor \sim r \lor \sim s \lor \sim t$$
] \land [$(p \land q) \lor (r \land s \land t)$]

Using the laws of logic, we have,

$$[(p \land q) \lor \sim r \lor \sim s \lor \sim t] \land [(p \land q) \lor (r \land s \land t)]$$

$$\equiv$$
 [(p \land q) \lor ~ (r \land s \land t)] \land [(p \land q) \lor (r \land s \land t)](By De Morgan's Law)

$$\equiv$$
 (p \land q) \lor [\sim (r \land s \land t) \land (r \land s \land t)](By Distributive Law)

$$\equiv$$
 (p \land q) \lor F(By Complement Law)

$$\equiv p \wedge q \dots (By Identity Law)$$

Hence, the alternative simplified circuit is:

Miscellaneous Exercise 1 | Q 14.1 | Page 35

Check whether the following switching circuits are logically equivalent - Justify.

q: the switch S2 is closed

r: the switch S3 is closed

The symbolic form of the given switching circuits is p \land (q \lor r) and (p \land q) \lor (p \land r) respectively.

By Distributive Law, $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Hence, the given switching circuits are logically equivalent.

Miscellaneous Exercise 1 | Q 14.2 | Page 35

Check whether the following switching circuits are logically equivalent - Justify.

Solution: Let p: the switch S₁ is closed

q: the switch S2 is closed

r: the switch S₃ is closed

The symbolic form of the given switching circuits are

 $(p \lor q) \land (p \lor r)$ and $p \lor (q \land r)$

By Distributive Law,

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Hence, the given switching circuits are logically equivalent.

Miscellaneous Exercise 1 | Q 15 | Page 35

Give alternative arrangement of the switching following circuit, has minimum switches.

Solution: Let p: the switch S₁ is closed

q: the switch S₂ is closed r: the switch S3 is closed

~p: the switch S_1 ' is closed or the switch S_1 is open.

 \sim q: the switch S₂' is closed or the switch S₂ is open.

Then the symbolic form of the given circuit is:

$$(p \wedge q \wedge \sim p) \vee (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r) \vee (p \wedge \sim q \wedge r)$$

Using the laws of logic, we have,

$$(p \wedge q \wedge \sim p) \vee (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r) \vee (p \wedge \sim q \wedge r)$$

$$\equiv$$
 (p $\land \sim$ p \land q) \lor (\sim p \land q \land r) \lor (p \land q \land r) \lor (p $\land \sim$ q \land r)(By Commutative Law)

$$\equiv$$
 (F \wedge q) \vee (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r) \vee (p \wedge \sim q \wedge r)(By Complement Law)

$$\equiv$$
 F \vee (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r) \vee (p \wedge \sim q \wedge r)(By Identity Law)

$$\equiv$$
 (\sim p \wedge q \wedge r) \vee (p \wedge q \wedge r) \vee (p \wedge \sim q \wedge r)(By Identity Law)

$$\equiv$$
 [(\sim p \vee p) \wedge (q \wedge r)] \vee (p \wedge \sim q \wedge r)(By Distributive Law)

$$\equiv$$
 [T \land (q \land r)] \lor (p \land \sim q \land r)(By Complement Law)

$$\equiv$$
 (q \wedge r) \vee (p \wedge \sim q \wedge r)(By Identity Law)

$$\equiv$$
 [q \lor (p $\land \sim$ q)] \land r(By Distributive Law)

$$\equiv$$
 [(q \vee p) \wedge (q \vee \sim q)] \wedge r(By Distributive Law)

$$\equiv$$
 (q \vee p) \wedge T] \wedge r(By Complement Law)

$$\equiv$$
 (q \vee p) \wedge r(By Identity Law)

$$\equiv$$
 (p \vee q) \wedge r(By Commutative Law)

: the alternative arrangement of the new circuit with minimum switches is:

Miscellaneous Exercise 1 | Q 16 | Page 35

Simplify the following so that the new circuit.

Solution:

Let p: the switch S₁ is closed

q: the switch S2 is closed

 \sim p: the switch S_1' is closed or the switch S_1 is open

 \sim q: the switch S₂' is closed or the switch S₂ is open.

Then the symbolic form of the given switching circuit is:

$$(\sim p \lor q) \lor (p \lor \sim q) \lor (p \lor q)$$

Using the laws of logic, we have,

$$(\sim p \lor q) \lor (p \lor \sim q) \lor (p \lor q)$$

$$\equiv$$
 (\sim p \vee q \vee p \vee q) \vee (p \vee q)

 \equiv [(\sim p \vee p) \vee (q \vee q)] \vee (p \vee q)(By Commutative Law)

 \equiv (T \vee T) \vee (p \vee q)(By Complement Law)

 \equiv T \vee (p \vee q)(By Identity Law)

≡ T(By Identity Law)

- : the current always flows whether the switches are open or closed. So, it is not necessary to use any switch in the circuit.
- : the simplified form of the given circuit is:

Miscellaneous Exercise 1 | Q 17 | Page 35

Represent the following switching circuit in symbolic form and construct its switching table. Write your conclusion from the switching table.

Solution:

Let p: the switch S₁ is closed

q: the switch S₂ is closed

r: the switch S₃ is closed

 \sim q: the switch S₂' is closed or the switch S₂ is open

 \sim r: the switch S₃' is closed or the switch S₃ is open

Then the symbolic form of the given circuit is:

 $[p \lor (\sim q) \lor (\sim r)] \land [p \lor (q \land r)]$

Switching Table

р	q	r	~q	~r	pv(~q)v(~r)	q∧r	p∨(q∧r)	Final column
					(I)		(II)	(I) ∧ (II)
1	1	1	0	0	1	1	1	1
1	1	0	0	1	1	0	1	1
1	0	1	1	0	1	0	1	1
1	0	0	1	1	1	0	1	1
0	1	1	0	0	0	1	1	0
0	1	0	0	1	1	0	0	0
0	0	1	1	0	1	0	0	0
0	0	0	1	1	1	0	0	0

From the table, the 'final column' and the column of p are identical. Hence, the given circuit is equivalent to the simple circuit with only one switch S_1 .

 \therefore the simplified form of the given circuit is:

