On the Probability Measure for Sprinkling in Causal Set Theory

Christoph Minz¹

¹Department of Mathematics University of York

Graduate Research Symposium, 7 April 2019

Introduction

- approach to quantum gravity [Hen09, Sor11]
- replaces continuous spacetime manifold with a discrete set of spacetime events and a causal relation (partial ordered set), (\mathscr{C}, \preceq)

Transitivity:
$$x \leq z \leq y \implies x \leq y$$
, Anti-symmetry: $(x \leq y \wedge y \leq x) \implies x = y$, Local finiteness: $|I(x,y)| < \infty$,

where the causal interval is

$$I(x,y) := \{ z \in \mathscr{C} | x \leq z \leq y \}.$$

The relation \prec excludes the case of elements being equal.

Introduction

Hasse diagram: shows causal relations for the element pairs with I(x, y) = 2 ("direct links"). The labelling by integers is a total order preserving the partial order.

Link matrix: binary representation of the causet links.

Sprinkling is the process of obtaining a causal set (causet) from a spacetime:

- start with a smooth spacetime manifold M (or a compact subset $C \subset M$) and a metric g
- $oldsymbol{\circ}$ select sprinkling set $S \subset M$ by a Poisson process
- obtain the causal relation from the spacetime metric

$$x \leq y \Leftrightarrow (J^+(x) \cap J^-(y) \cap C)$$
 is connected

• forget the embedding of the events in the spacetime, and keep the partial order set (\mathscr{C}, \preceq)

- Introduction
 - What is Causal Set Theory?
 - Visualisation and Representation of a Causal Set
 - What is Sprinkling?
- Construction of the Probability Measures
 - Sprinklings on Compact Spacetime Subsets
 - Causet Configurations
 - Causet Probability
 - Sprinklings on a Spacetime
- Examples of Small Causets
 - 3-Causets in a Diamond Shape
 - 3-Causets in a Square And a Circle Shape
 - 4-Causets
- Future and Past in Causal Sets
 - Smallest Timelike Distances in Causal Sets
 - Propagators of Quantum Fields on Causal Sets

- C: compact subset of the spacetime manifold M
- configuration space of ordered sprinklings (distinguishable events)

$$\mathcal{Q}_C^\# := \bigoplus_{N=0}^\infty C^N$$

 \bullet configuration space of sprinklings (indistinguishable events) using the permutation group P_N

$$Q_C := \bigoplus_{N=0}^{\infty} C^N / P_N$$

homomorphism removing the label due to time-ordering

• alternative the labels might follow from the light-cone coordinate $u = \frac{1}{\sqrt{2}}(t+r)$, where r is the Euclidean distance for spacelike coordinates

• volume-density parameter ρ , determines how many events are sprinkled in the volume

$$V(C) = \int_C \mathsf{dvol}_i$$

• probability measure $\mu_{C,\rho}^\#:\mathcal{Q}_C^\#\to\mathbb{R}^+$ for ordered sprinklings such that

$$\mathrm{d}\mu_{C,\rho}^{\#} = \frac{1}{a} \sum_{N=0}^{\infty} \rho^{N} \prod_{i=1}^{N} \mathrm{d}\mathrm{vol}_{i}$$

• push-forward of the probability measure $\mu_{\mathcal{C},\rho} = \phi_{t_*} \mu_{\mathcal{C},\rho}^\#$

$$d\mu_{C,\rho} = \frac{1}{a} \sum_{N=0}^{\infty} \rho^{N} \prod_{i=2}^{N} \Theta(t_{i} - t_{i-1}) \prod_{i=1}^{N} dvol_{i}, \qquad a = e^{\rho V(C)}$$

$$= \sum_{N=0}^{\infty} \underbrace{\frac{1}{N!} (\rho V(C))^{N} e^{-\rho V(C)}}_{Pr(|\cdot|=N)} \underbrace{\frac{N!}{V(C)^{N}} \prod_{i=2}^{N} \Theta(t_{i} - t_{i-1}) \prod_{i=1}^{N} dvol_{i}}_{i}$$

configuration space of causets

$$Q_{\mathscr{C}} = \bigoplus_{N=0}^{\infty} \mathsf{Posets}(N)$$

- ullet homomorphism from sprinklings to causets $\mathscr{C}:\mathcal{Q}_{\mathcal{C}}
 ightarrow\mathcal{Q}_{\mathscr{C}}$
- causet equivalence and configuration space quotient

$$S \sim_{\mathscr{C}} S' \Leftrightarrow \mathscr{C}(S) = \mathscr{C}(S'), \qquad \widetilde{\mathcal{Q}_C} = \mathcal{Q}_C/\sim_{\mathscr{C}}$$

homomorphism from sprinklings to causets

Construction of the Probability Measures

000000

Ν	a _{A000112} (N)		
0	1		
1	1		
2	2		
3	5		
4	16		
5	63	Ĭ	• •
6	318	-	
7	2045		
8	16999		
9	183231		
10	2567284		
11	46749427		
12	1104891746		

Construction of the Probability Measures

000000

N	a _{A000112} (N)				
0	1				
1	1				
2	2				
3	5				
4	16	\			
5	63	\ [
6	318	\	•	 •	
7	2045	\			• • •
8	16999	\			
9	183231				
10	2567284				
11	46749427				
12	1104891746	_			

N	$a_{A000112}(N)$		
0	1	_	
1	1		
2	2	1	
3	5		
4	16	_	
5	63	7	
6	318	\	
7	2045		
8	16999		
9	183231		
10	2567284		
11	46749427		
12	1104891746	_	

Construction of the Probability Measures

The probability for one equivalence class $[S]_{\mathscr{C}}$, which yields the same causet $\mathscr{C}(S)$ with a fixed number N of elements is $P = \Pr([S]_{\mathscr{C}} \mid |S| = N),$

$$P = \frac{N!}{V(C)^N} \int_{\mathcal{Q}_C} \Theta\left((x_1, \dots, x_N) \in [S]_C\right) \prod_{i=2}^N \Theta(t_i - t_{i-1}) \prod_{i=1}^N \operatorname{dvol}_i$$

$$= \frac{N!}{V(C)^N} \int_{\mathcal{Q}_C} \prod_{i=2}^N \Theta\left(x_i \in C_i^{\mathscr{C}}\right) \prod_{i=2}^N \Theta(t_i - t_{i-1}) \prod_{i=1}^N \operatorname{dvol}_i$$

$$C_i^{\mathscr{C}} = C \cap \bigcap_{j=1}^{i-1} \begin{cases} J^+(x_j), & \mathscr{C}_j(S) \leq \mathscr{C}_i(S) \\ C \setminus J^+(x_j), & \text{else} \end{cases}$$

- all compact subsets of a spacetime $L := \left\{ C \subset M \right\}$
- configuration spaces are related by projectors such that $\forall C_1, C_2, C_3 \in L$

$$\begin{aligned} C_2 \supseteq C_1 &\implies \Pi_{C_1C_2} : \mathcal{Q}_{C_2} \to \mathcal{Q}_{C_1} \\ C_3 \supseteq C_2 \supseteq C_1 &\implies \Pi_{C_1C_2}\Pi_{C_2C_3} = \Pi_{C_1C_3} \end{aligned}$$

projective limit of configuration spaces

$$\overleftarrow{\mathcal{Q}} = \varprojlim_{C \in L} \mathcal{Q}_C := \left\{ (S_C)_{C \in L} \in \prod_{C \in L} \mathcal{Q}_C \middle| \forall C_2 \supseteq C_1 \in L : \Pi_{C_1 C_2} S_2 = S_1 \right\}$$

• natural projectors on the limit

$$\Pi_C: \overleftarrow{\mathcal{Q}} \to \mathcal{Q}_C, \qquad (S_{C'})_{C' \in L} \mapsto S_C$$

• probability measure [AL95] such that

$$\Pi_{C*}\mu_{\rho} = \mu_{C,\rho}, \qquad \qquad \int_{\mathcal{Q}_C} f \mathrm{d}\mu_{C,\rho} = \int_{\overleftarrow{\mathbb{Q}}} f \circ \Pi_C \mathrm{d}\mu_{\rho}$$

$$\mathsf{Pr}(\mathbf{\Sigma_{123}}) = \int_0^1 \mathrm{d}u_1 \int_0^1 \mathrm{d}v_1 \int_{u_1}^1 \mathrm{d}u_2 \int_{v_1}^1 \mathrm{d}v_2 \int_{u_2}^1 \mathrm{d}u_3 \int_{v_2}^1 \mathrm{d}v_3$$

$$\Pr(\Sigma_{123}) = 1! \int_0^1 du_1 \int_0^1 dv_1 \int_{u_1}^1 du_2 \int_{v_1}^1 dv_2 \int_{u_2}^1 du_3 \int_{v_2}^1 dv_3 = 1$$

$$\Pr(\Sigma_{123}) = 2! \int_0^1 du_1 \int_0^1 dv_1 \int_{u_1}^1 du_2 \int_{v_1}^1 dv_2 \int_{u_2}^1 du_3 \int_{v_2}^1 dv_3 = \frac{1}{2!}$$

$$\Pr(\Sigma_{123}) = 3! \int_0^1 du_1 \int_0^1 dv_1 \int_{u_1}^1 du_2 \int_{v_1}^1 dv_2 \int_{u_2}^1 du_3 \int_{v_2}^1 dv_3 = \frac{1}{3!}$$

$$\Pr(\Sigma_{231}) = \frac{1}{3!}$$

$$\Pr(\Sigma_{312}) = \frac{1}{3}$$

$$\Pr(\Sigma_{231}) = \frac{1}{3!}$$

$$\Pr(\Sigma_{312}) = \frac{1}{3}$$

$$\Pr(\Sigma_{231}) = \frac{1}{3!}$$

$$\Pr(\Sigma_{312}) = \frac{1}{3!}$$

Example: d = 1 + 1, other unit volumes, N = 3 all ordered

$$\begin{split} \Pr{}_{\square}(\Sigma_{123}) &= 3! \int \mathsf{d} u_1 \int \mathsf{d} v_1 \int \mathsf{d} u_2 \int \mathsf{d} v_2 \int \mathsf{d} u_3 \int \mathsf{d} v_3 \\ &- \mathsf{a} + |u_1| \quad u_1 \max(v_1, -\mathsf{a} + u_2) \quad u_2 \max(v_2, -\mathsf{a} + u_3) \\ &\sqrt{\mathsf{a}^2 - u_1^2} \quad \sqrt{\mathsf{a}^2 - v_1^2} \quad \sqrt{\mathsf{a}^2 - u_2^2} \quad \sqrt{\mathsf{a}^2 - v_2^2} \quad \sqrt{\mathsf{a}^2 - u_2^2} \\ \Pr{}_{\square}(\Sigma_{123}) &= 3! \int \mathsf{d} u_1 \int \mathsf{d} v_1 \int \mathsf{d} u_2 \int \mathsf{d} v_2 \int \mathsf{d} u_3 \int \mathsf{d} v_3 \\ &- \sqrt{\mathsf{a}^2 - u_1^2} \quad u_1 \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_1, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \quad u_2 \max(v_2, -\sqrt{\mathsf{a}^2 - u_2^2}) \\ & = \max(v_2, -\sqrt{\mathsf{$$

Example: d = 1 + 1, other unit volumes, N = 3 all ordered

$$\mathsf{Pr}_{\,\square}(\Sigma_{123}) = 3! \int\limits_{-\mathsf{a}}^{\mathsf{a}} \mathsf{d} u_1 \int\limits_{-\mathsf{a}+|u_1|}^{\mathsf{a}-|u_1|} \mathsf{d} v_1$$

Example: d = 1 + 1, other unit volumes, N = 3 all ordered

$$\Pr_{\square}(\Sigma_{123}) = 3! \left(2 \int_{\text{ttt}} + 4 \int_{\text{stt}} + 4 \int_{\text{sst}} + 2 \int_{\text{sss}} + 2 \int_{\text{btt}} + 2 \int_{\text{bst}} \right) = \frac{17}{120}$$

$$\Pr_{\bigcirc}(\Sigma_{123}) = 3! (2 \int_{\text{ttt}} + 2 \int_{\text{btt}}) = \frac{1}{8} + \frac{1}{4\pi^2}$$

compact vol. of Minkowski spacetime						
causets	diamond	boosted diamond	square	boosted square	circle	boosted circle
•	0.1668 0.1667	0.1666	0.1418 0.1417	0.1415	0.1505 0.1503	0.1502
123	1		34		$2\pi^2 + 4$	
~~~	<b>0.1664</b> 0.1667	0.1665	<b>0.1789</b> 0.1792	0.1795	0.1749 0.1748	0.1750
132	1		43		$3\pi^2-2$	
	0.1668	0.1669	0.1791	0.1793	0.1745	0.1751
$\wedge$	0.1667		0.1792		0.1748	
213	1		43		$3\pi^2 - 2$	
• •	<b>0.3335</b> 0.3333	0.3333	<b>0.3586</b> 0.3583	0.3581	<b>0.3496</b> 0.3497	0.3494
231, 312	2		86		$6\pi^2-4$	
	0.1665	0.1668	0.1416	0.1416	0.1505	0.1504
	0.1667		0.1417		0.1503	
321	1		34		$2\pi^2 + 4$	
ratio sum.	6	·	240		$16\pi^2$	

4-Causets

Example: d = 1 + 1, N = 4, permutations  $\rightarrow$  permutations and bi-posets  $\rightarrow$  bi-posets  $\rightarrow$  bi-poset groups  $\rightarrow$  poset (probabilities)



Example: d = 1 + 1, N = 4, permutations  $\rightarrow$  permutations and bi-posets  $\rightarrow$  bi-posets  $\rightarrow$  bi-poset groups  $\rightarrow$  poset (probabilities)



4-Causets

Example: d = 1 + 1, N = 4, permutations  $\rightarrow$  permutations and bi-posets  $\rightarrow$  bi-posets  $\rightarrow$  bi-poset groups  $\rightarrow$  poset (probabilities)

	0-0-0		X		X
		<b>₹</b>			
<b>\</b>			•••	V	

4-Causets

Example: d=1+1, N=4, permutations  $\rightarrow$  permutations and bi-posets  $\rightarrow$  bi-posets  $\rightarrow$  bi-poset groups  $\rightarrow$  poset (probabilities)



4-Causets

Example: d=1+1, N=4, permutations  $\rightarrow$  permutations and bi-posets  $\rightarrow$  bi-posets  $\rightarrow$  bi-poset groups  $\rightarrow$  poset (probabilities)

• • • •		X	
•	•	• 🔥	• ^
	V		
• • •	• • •	• •	



















#### Diamond-links as a relation for timelike distance in causal sets



	1	2	3	4	5	6	7	8
1	<b>/</b> 0	1	1	0	1	0	1	0 0 0 0 1 1 0 0
2	0	0	0	1	0	1	0	0 \
3	0		0	1	0	0	0	0
4	0			0	0	0	0	1
5	0				0	0	0	1
6	0					0	0	0
7	0						0	0
8	10							0/

Propagators of Quantum Fields on Causal Sets



$$(\Box_{\pm}\phi)_{\mathsf{x}} := \rho^{\frac{2}{d}} \left( \phi_{\mathsf{x}} + \frac{1}{|\Diamond_{\pm}(\mathsf{x})|} \sum_{\mathsf{z} \in \Diamond_{\pm}(\mathsf{x})} \left( \phi_{\mathsf{z}} - \frac{\alpha}{|\blacklozenge_{\pm}(\mathsf{x},\mathsf{z})|} \sum_{\mathsf{y} \in \blacklozenge_{\pm}(\mathsf{x},\mathsf{z})} \phi_{\mathsf{y}} \right) \right)$$



Abhay Ashtekar and Jerzy Lewandowski.

Projective Techniques and Functional Integration for Gauge Theories.

Journal of Mathematical Physics, 36(5):2170–2191, 1995.



Joe Henson.

The Causal Set Approach to Quantum Gravity.

Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, 393, 2009.



Rafael D Sorkin.

Scalar Field Theory on a Causal Set in Histories Form.

In Journal of Physics: Conference Series, volume 306, 2011.

3-Causets Summary



3-Causets Summary



4-Causets Summar

compact vol. of Minkowski spacetime	$\Diamond$		$\overline{}$	compact vol. of Minkowski spacetime	•	<b>\</b>				compact vol. of Minkowski spacetime	$\Diamond$	<b>*</b>		$\overline{\bigcirc}$	
causets	diamond	square	circle	causets	double cone	octahedron (diamond)	cube	ball	cylinder	causets	double cone	diamond	tesseract (cube)	ball	cylinder
1236	0.0416 0.0417 1	0.0270 0.0282 7	0.0315 0.0309 15	1238	0.0013 0.0017 1	0.0035 0.0031 2	0.0009 0.0015 1	0.0015 0.0015 1	0.0017 0.0015 1		0.0000 0.0001 1	0.0003 0.0006 1	0.0000 0.0000 1	0.0001 0.0001 1	0.0002 0.0003 1
٠٠.	0.0417 0.0417 1	0.0269 0.0282 7	0.0313 0.0309 15	**	0.3091 0.3090 186	0.2198 0.2202 144	0.1819 0.1818 120	0.1973 0.1975 129	0.1322 0.1319 86	400	0.6063 0.6062 9077	0.4326 0.4320 680	0.3782 0.3782 8442	0.3887 0.3886 2692	0.2268 0.2266 732
M	0.0417 0.0417 1	0.0619 0.0605 15	0.0537 0.0535 26	M	0.0151 0.0150 9	0.0253 0.0260 17	0.0327 0.0333 22	0.0309 0.0306 20	0.0522 0.0521 34	M	0.0030 0.0030 45	0.0100 0.0102 16	0.0110 0.0110 246	0.0127 0.0127 88	0.0386 0.0384 124
N N	0.0835 0.0833 2	0.1130 0.1129 28	0.1035 0.1029 50		0.0449 0.0449 27	0.0614 0.0612 40	0.0831 0.0833 55	0.0776 0.0781 51	0.1039 0.1043 68		0.0128 0.0128 192	0.0319 0.0318 50	0.0399 0.0399 890	0.0422 0.0421 292	0.0848 0.0848 274
1.1	0.0415 0.0417 1	0.0619 0.0605 15	0.0538 0.0535 26	1.1	0.0172 0.0166 10	0.0187 0.0183 12	0.0377 0.0379 25	0.0277 0.0276 18	0.0341 0.0337 22	1.1	0.0048 0.0048 72	0.0079 0.0076 12	0.0208 0.0208 464	0.0135 0.0136 94	0.0212 0.0214 69
Y	0.0418 0.0417 1	0.0404 0.0403 10	0.0413 0.0412 20	Y	0.0043 0.0050 3	0.0093 0.0092 6	0.0051 0.0045 3	0.0067 0.0061 4	0.0093 0.0092 6	Y	0.0003 0.0003 5	0.0017 0.0019 3	0.0005 0.0005 11	0.0010 0.0010 7	0.0024 0.0025 8
, A	0.0417 0.0417 1	0.0402 0.0403 10	0.0413 0.0412 20	¥	0.0043 0.0050 3	0.0093 0.0092 6	0.0051 0.0045 3	0.0067 0.0061 4	0.0092 0.0092 6	, A	0.0003 0.0003 5	0.0017 0.0019 3	0.0005 0.0005 11	0.0010 0.0010 7	0.0025 0.0025 8
1	0.1248 0.1250 3	0.1046 0.1048 26	0.1130 0.1132 55	1	0.2825 0.2824 170	0.2429 0.2431 150	0.2688 0.2682 177	0.2585 0.2588 169	0.2173 0.2178 142	1	0.2415 0.2415 3616	0.2581 0.2579 406	0.3153 0.3153 7039	0.2883 0.2883 1997	0.2536 0.2533 818
201, 612, 631	0.0837 0.0833 2	0.0887 0.0887 22	0.0852 0.0864 42	200, 603	0.0259 0.0266 16	0.0316 0.0321 21	0.0302 0.0303 20	0.0300 0.0306 20	0.0332 0.0337 22	200, 600	0.0050 0.0049 74	0.0108 0.0108 17	0.0076 0.0077 171	0.0091 0.0091 63	0.0136 0.0136 44
٧٠	0.0835 0.0833 2	0.0807 0.0806 20	0.0826 0.0823 40	V •	0.0994 0.0997 60	0.1055 0.1055 60	0.1187 0.1182 78	0.1137 0.1133 74	0.1167 0.1166 76	V •	0.0516 0.0516 773	0.0831 0.0832 131	0.0922 0.0922 2059	0.0920 0.0919 637	0.1195 0.1195 386
A •	0.0829 0.0833 2	0.0806 0.0806 20	0.0820 0.0823 40	V •	0.0995 0.0997 60	0.1052 0.1055 69	0.1187 0.1182 78	0.1136 0.1133 74	0.1167 0.1166 76	A •	0.0516 0.0516 773	0.0832 0.0832 131	0.0922 0.0922 2059	0.0918 0.0919 637	0.1196 0.1195 386
V	0.0834 0.0833 2	0.0805 0.0806 20	0.0827 0.0823 40	100, 000 V	0.0172 0.0166 10	0.0322 0.0321 21	0.0193 0.0197 13	0.0248 0.0245 16	0.0311 0.0307 20	V J	0.0022 0.0022 33	0.0100 0.0102 16	0.0033 0.0033 74	0.0063 0.0064 44	0.0125 0.0127 41
Å	0.0834 0.0833 2	0.0807 0.0806 20	0.0824 0.0823 40	Λ	0.0172 0.0166 10	0.0324 0.0321 21	0.0193 0.0197 13	0.0247 0.0245 16	0.0311 0.0307 20	Λ	0.0022 0.0022 33	0.0100 0.0102 16	0.0033 0.0033 74	0.0063 0.0064 44	0.0127 0.0127 41
W	0.0417 0.0417 1	0.0443 0.0444 11	0.0426 0.0432 21	W 1556, 2564	0.0287 0.0282 17	0.0457 0.0459 30	0.0380 0.0379 25	0.0407 0.0413 27	0.0531 0.0537 35	W	0.0090 0.0090 135	0.0280 0.0280 44	0.0174 0.0174 389	0.0231 0.0231 160	0.0454 0.0455 147
<u></u>	0.0415 0.0417 1	0.0444 0.0444 11	0.0427 0.0432 21		0.0288 0.0282 17	0.0459 0.0459 30	0.0380 0.0379 25	0.0407 0.0413 27	0.0533 0.0537 35		0.0090 0.0090 135	0.0281 0.0280 44	0.0174 0.0174 389	0.0231 0.0231 160	0.0456 0.0455 147
- C	0.0417 0.0417	0.0242	0.0305 0.0309 15	- 1234 	0.0043 0.0050 3	0.0113 0.0107 7	0.0025 0.0030 2	0.0049	0.0048		0.0003 0.0003	0.0025 0.0025 4	0.0002 0.0002 4	0.0007	0.0011 0.0012 4
ratio sum.	24	6 248	486	ratio sum.	602	654	660	653	652	ratio sum.	14974	1574	22323	6028	3230