'Yea or Nay': LA Politicians and Machine Learning

- Research Question and Motivation
- Data Collection
- Data Cleaning
- Data Visualization
- Machine Learning
- Correctness of Results
- Conclusion

Research Question and Motivation

- **Data Collection**
- Data Cleaning
- **Data Visualization**
- Machine Learning
- Correctness of Results
- Conclusion

Research Question and Motivation

What attributes are most indicative of how a Los Angeles congressional member will vote (yea or nay) and to what extent can the results be relied upon?

Motivation:

- Curiosity about the strength of influences on a person's voting behavior
- Wanted a way to gauge LA area politicians' general approval towards new bills, propositions, etc.

- Research Question and Motivation
- Data Collection
- Data Cleaning
- Data Visualization
- Machine Learning
- Correctness of Results
- Conclusion

Data Collection

	Α	В	С	D	Е
1	icpsr	bioname	gender	race	immigrant
2	20703	MCCARTHY, Kevin	male	white	no
3	21988	GARCIA, Mike	male	hispanic	no
4	21308	BROWNLEY, Julia	female	white	no
5	20955	CHU, Judy	female	asian	no
6	20104	SCHIFF, Adam	male	white	no
7	21309	CÁRDENAS, Tony	male	hispanic	no
8	29707	SHERMAN, Brad	male	white	no
9	29903	NAPOLITANO, Grace Flores	female	hispanic	no
10	21507	LIEU, Ted	male	asian	yes
11	21754	GOMEZ, Jimmy	male	hispanic	no
12	21508	TORRES, Norma Judith	female	hispanic	yes

Where my datasets came from:

- VoteView, a database maintained by the UCLA political science dpt
 - Members key demographics
 - Rollcalls what is being voted on
 - Votes how each member voted
- Created own csv file for specific LA representative demographics

- Research Question and Motivation
- Data Collection

- Data Cleaning
- Data Visualization
- Machine Learning
- Correctness of Results
- Conclusion

Data Cleaning

What I did:

- Filtered members dataset for only those in the Los Angeles county area
- Dropped non desired columns from data frames
- Joined all four datasets into one master one
 - o 'icpsr', 'rollnumber'
- Cast binary categories into '1' and '0'
- Converted 'born' year into age
- Exclude rollcalls will nan values for descriptions

- Research Question and Motivation
- Data Collection
- Data Cleaning

- Data Visualization
- Machine Learning
- Correctness of Results
- Conclusion

- Comparing differences between 'YEA/NAY' vote distributions for each category
- Will use this as a metric to determine the order of inputs for machine learning model

- Democrats split heavier towards 'YEA' votes than Republicans
- Republicans split heavier towards 'NAY' votes than Democrats

 Marginal difference between gender split on votes

Marginal difference between status as immigrant/naturalized citizen split on votes

- Black representatives most likely to vote 'YEA'
- Asian representatives most likely to vote 'NAY'

Marginal difference between age group split on votes

- Economic liberals largely split towards voting 'YEA'
- Economic conservatives largely split towards voting 'NAY'
- *this split largely mirrors that by political party*

- Research Question and Motivation
- **Data Collection**
- Data Cleaning
- Data Visualization

- Machine Learning
- Correctness of Results
- Conclusion

Machine Learning

```
import numpy as np

model_indices = np.argmax(np.asarray((scores)), axis=0)+1
features[:model_indices]

['vote_desc', 'vote_question', 'party_code']
```



```
grid_cv.fit(X_train, y_train)
grid_cv.best_params_

{'kneighborsclassifier__metric': 'manhattan',
   'kneighborsclassifier__n_neighbors': 3}
```

- Classification model
- K nearest neighbors
- Model selection
 - Testing x argument inputs
 according to the order of greatest
 comparative difference to least

- Hyperparameter tuning
- GridSearch
 - Number of neighbors
 - Distance metric

- Research Question and Motivation
- **Data Collection**
- Data Cleaning
- **Data Visualization**
- Machine Learning
- Correctness of Results
- Conclusion

Correctness of Results

```
PRECISION: TP / (TP + FP)

YES: 6032 / (6032 + 102) = 6032 / 6134 = 0.98337137

NO: 1000 / (1000 + 26) = 1000 / 1026 = 0.97465887

RECALL: TP / (TP + FN)

YES: 6032 / (6032 + 26) = 6032 / 6058 = 0.99570815

NO: 1000 / (1000 + 102) = 1000 / 1102 = 0.90744102

F1 score: 1 / (1/2)((1/precision) + (1 /recall))

YES: 1 / (1/2)((1/0.98337137) + (1 /0.99570815)) = 0.98951118

NO: 1 / (1/2)((1/0.97465887) + (1 /0.90744102)) = 0.93984962
```

How I Measured the 'Correctness':

- Initially set 'scoring' equal to accuracy as a way to select a model and preferred parameters
- Estimated test error through implementing cross validation

 Printed a confusion matrix in order to compute a F1 score for each 'yea' or 'nay' prediction

- Research Question and Motivation
- **Data Collection**
- Data Cleaning
- **Data Visualization**
- Machine Learning
- Correctness of Results
- Conclusion

Conclusion

Key Takeaways

- Political party alone was determined to be the most indicative of a 'yea' or 'nay' vote
- Model possesses relatively high rate of success in its predictions

Applications

 Potential basis for campaign funding considerations

Ethical Concerns

Though high predictive value, still NOT actual vote

Questions?