

હનુરી ખેતી કુ યુસીધુરન્જાજી

સ્વ. સર અલઘર્ટ હંગિર્ઝ કે મૂલ અંગેલી પુસ્તક
‘એચ એન્ટિકલ્યાસ્સ સેસ્ટાયન્ટ’ કા
શ્રી અલ્યા ડિકે દ્વારા અનુષ્ઠાનિત મરાઠી પુસ્તક
‘એચ એન્ટિકલ્યાસ્સ સેસ્ટાયન્ટ’ કા હિન્દી અનુવાદ

અનુવાદક : પ્રમાનનથ પંડિત

हमारी खेती का वस्त्रियतनामा

अनुवाद -

प्रभाकर पंडित

मुद्रक -

साधना ग्राफिक

8/1, काणी मोहल्ला, इन्दौर

मुख पृष्ठ -

दिलीप माटे

प्रथम संस्करण -

2010

किमत रु 100/-

आदरांजली

हमारे वैवाहिक जीवन में मिले “अर्धांगिनी” पद को जिसने 42 वर्षों तक सूझ-बूझ तथा तन्मयता से निभाया उस दिवंगत पत्नी सौ. अरुंधती डिके की स्मृति को यह कृति समर्पित है।

निर्वाण दिवस : 14 अप्रैल 09

अरुण डिके

प्रकाशक :

एज्युकेशनल एड क्राफ्ट

6, सिख मोहल्ला, मेन रोड, इन्दौर - 452 007 (म.प्र.)

मनोगत

एक उन्नत खेती का वसीयतनामा प्रस्तुत करते हुए मुझे दोहरी प्रसन्नता हो रही है। दोहरी इसलिए कि जाने माने कृषि वैज्ञानिक सर अल्बर्ट हॉवर्ड द्वारा लिखे गए उन्नत खेती के वसीयतनामे “एन एग्रीकल्चरल टेस्टार्मेंट” का इससे पहले मराठी भाषा मे अनुवाद हो चुका है, जिसे मैंने लगभग एक वर्ष पूर्व संपन्न किया था और जो अब पुस्तक रूप में छप चुकी है। मराठी अनुवाद का जो स्वागत महाराष्ट्र में हुआ उससे प्रेरित होकर हमने इसे हिंदी भाषा में अनुवादित कर प्रकाशित करने का निर्णय लिया। अनुवाद का यह काम मेरे मित्र प्रभाकर पंडित ने बड़ी तत्परता से किया जिन्हें हिन्दी व मराठी भाषा पर समान रूप से महारत हासिल है। मराठी पुस्तक के लगभग एक वर्ष के अल्प अन्तराल में वसीयत का हिन्दी प्रारूप प्रकाशित कर पाना मेरी दूसरी प्रसन्नता का कारण है।

यह पुस्तक उस बड़ी कमी को पूरी करती है जिसके कारण हमारी खेती की देशी पष्ठदति को लगभग भुला दिया गया था। जैसा कि आपभी महसूस करेंगे, इस रचना में सर अल्बर्ट ने आधुनिकता के नाम पर हमारी खेती पर हो रहे अत्याचारों पर कुठाराधात किया है। यह हमारे तथाकथित कृषि वैज्ञानिकों की आँखे खोलने के लिए भी काफी है जो प्रकृति के मूल सिध्दांतों की अनदेखी कर विकास के नाम पर हमारी संपन्न खेती को रसातल की ओर ले जा रहे हैं।

यह पुस्तक हमारे किसानों को यह संदेश देती है कि परंपरागत खेती ही वास्तविक उन्नत लाभदायक पष्ठदति है और उसे अक्षुण्ण बनाए रखना ही उनके लिए फायदे का सौदा बनेगी। हाँलाकि काफी कुछ खो चुके हैं हम हमारी विरासत की थाली से, परंतु अभी भी समय है कि अब हम चेतें और उन सभी अवैज्ञानिक कारकों को नकार दें जो हमारे लिए, हमारे पशुधन और हमारे खेतों के लिए हानिकारक हैं। उस काम में सर अल्बर्ट हॉवर्ड के अनमोल विचार और अनुभव हमारा मार्गदर्शन करेंगे। इन्हीं शब्दों के साथ मैं भारतीय खेती की पुर्णस्थापना के लिए यह पुस्तक हमारे किसानों को समर्पित करता हूँ।

अरुण डिके

भारतीय जैविक खेती का

अध्ययनशील अन्वेषक - सर अल्बर्ट हॉवर्ड

॥ प्रावक्षण ॥

खेती करने वालों को अनपढ़, अनाड़ी कहा जाता है। परंतु आधुनिक कृषि विज्ञान प्रशिक्षित उन सभी वैज्ञानिकों को क्या अनपढ़ नहीं मानना चाहिए जिन्होंने समय की जरूरत महसूस कर 100 वर्ष पहले जैविक खेती पर सार्थक अनुसंधान करने वाले वैज्ञानिक सर अल्बर्ट हॉवर्ड को भुला दिया है? वे एकमात्र ऐसे अंग्रेज कृषि वैज्ञानिक थे जिन्होंने बर्तानी सरकार की नाराजगी की परवाह किए बिना लगातार तीन दशकों तक भारत में रहकर यहाँ की उस समय प्रचलित जैविक खेती का गहराई से अध्ययन किया और पूरे विश्व को उसकी महत्ता से परिचित कराया।

डॉ. हॉवर्ड का परिचय प्राप्त करने से पहले उन्होंने जिन रसायनों से युक्त खेती पष्ठदति का विशेष किया उसे जानना अधिक उपयुक्त होगा। 19वीं सदी के प्रारंभ में सन् 1834 में बासिंगल नामक रसायन वैज्ञानिक ने उन दिनों की आधुनिक खेती के नाम पर कुछ रसायनों का खेतों में उपयोग शुरू किया। उसके लगभग 6 वर्ष बाद सन् 1840 में जर्मनी के रसायन शास्त्री जस्टस वॉन लाईबिंग ने एन पी के नामक रसायनिक तिरखूट को खेतों में ढेल दिया जो आज तक कायम है। इतना ही नहीं वह तिरखूट आज तक हमारे कृषि वैज्ञानिकों के दिमाग का एकमात्र भोजन बना हुआ है। खेती में एन पी के रसायनों की उपयोगिता को प्रोत्साहित करने हेतु लाईबिंग ने दो कारणों का सहारा लिया था।

1. खेत में परिपक्व हुई फसल के पौधों को जलाने पर बच्ची हुई राख का विश्लेषण किये जाने से फसलों के लिए क्या खुराक जरूरी है इसका पता लगाया जा सकता है।
2. ह्यूमस नामक पदार्थ (सूक्ष्म जीव-जन्तुओं, तिनके-पत्तियों के अपघटन से

प्राप्त उपजाऊ पदार्थ) पानी में घुलनशील नहीं होता अतः उसका कोई लाभ फसल को नहीं मिलता है। इसके अलावा पौधे जो कर्ब (कार्बन) पत्तियों के द्वारा वातावरण से प्राप्त करते हैं उसके सहभाग के लिए अन्य तत्वों को रसायनों के माध्यम से मिट्टी में मिलाना जरूरी होता है।

इन दो अवधारणाओं पर आधारित अनुसंधान के बल पर आज भी एन पी के रसायन खेती का मूल आधार बने बैठे हैं। इन अवधारणाओं को स्थापित करते समय लाईबिंग ने खेत की 23.65 सेंटीमीटर (9 इंच) गहरी मिट्टी का अध्ययन करना जरूरी नहीं समझा और इतनी गहराई से नीचे डाले गए रासायनिक उर्वरक उन्हें अधिक आवश्यक लगे। इसके बावजूद फसलों से अधिक उपज इस 9 इंच गहरी मिट्टी में मौजूद ह्यूमस से मिलती है यह उन्हें काफी समय बाद अपने जीवन के अंतिम वर्षों में मालूम हुआ और ह्यूमस को नकार कर रसायनों को अति आवश्यक बताने की अपनी त्रुटी को उन्होंने स्वीकार किया था। यह हकीकत है।

यह होते होते 20वीं सदी के प्रारंभ तक इन 60 वर्षों में रासायनिक उर्वरक खेतों में काफी गहराई तक उत्तर गए थे। इसी समय सन् 1905 में इंग्लैंड के अंग्रेजों ने भारतीय किसानों को रासायनिक खेती से परिचित कराने के लिए एक अंग्रेज कृषि वैज्ञानिक डॉ. अल्बर्ट हॉवर्ड को इंडिया भेजा। अल्बर्ट हॉवर्ड ने यहाँ आकर तत्कालिन बंगाल प्रेसिडेन्सी के पूसा (अब बिहार राज्य में) स्थित अखिल भारतीय कृषि अनुसंधान केन्द्र में अपना आसन जमाया। कुछ समय तक तो ठीक ठाक चलता रह परंतु शीघ्र ही कुशाग्र बुद्धि के इस युवा वैज्ञानिक ने अनुसंधान केन्द्र के बाहर देसी किसानों द्वाया परंपरागत तरीकों से की जा रही खेती पर नजर डाली तो वे आश्चर्यचित रह गए। उन्होंने महसूस किया कि अपने अनुसंधान केन्द्र की अपेक्षा केन्द्र के बाहर की जा रही खेती अधिक परिपक्व और ओजपूर्ण है और वे उस खेती में रम गए। उन्हें यह भी महसूस हुआ कि किसी अनुसंधान के बिना जब अनपढ़ किसान भी इतनी अच्छी फसल उगा सकते हैं तब उनके अपने अनुसंधान केन्द्र पर कार्यरत कीटविज्ञानी, पादप रोग विज्ञानी, वनस्पतिशास्त्री और सांचियकी विज्ञानी की फौज की क्या आवश्यकता है? उनके इस सोच और दृष्टाव

के कारण केन्द्र के अन्य वैज्ञानिकों को असुविधा होने लगी। डॉ. हॉवर्ड ने भारतीय परंपरागत खेती पद्धति पर अनुसंधान करने का निश्चय किया जिसके लिए उन्हें खुली छूट मिलना जरूरी था। अतः उन्होंने अपना स्थान बदलने की योजना बनाई। इसी समय मध्यभारत की रियासतों ने उनकी मदद करने की पहल की, तदनुसार सेन्ट्रल कॉटन कमिटी के बुलावे पर उन्होंने इन्दौर होलकर दरबार का रुख किया जहाँ से उन्हें कृषि अनुसंधान केन्द्र के लिए 120 हेक्टर भूमि देने का आश्वासन मिला। इस तरह सन् 1924 में उन्होंने 99 वर्ष के पट्टे पर प्राप्त जमीन पर आय पी आय (इन्स्टिट्यूट ऑफ प्लांट इंडस्ट्रीज) की स्थापना की। वर्तमान में यह संस्थान परिवर्तित होकर कृषि महाविद्यालय बन गया है। आय पी आय के निदेशक का पदभार संभालने के बाद डॉ. हॉवर्ड ने नये सिरे से अनुसंधान कार्यक्रम संचालित किए और 7 वर्षों की साधना के बाद सन् 1931 में तिनके-पत्तियों और फसलों के अवशेषों व अवशिष्ट सामग्री से जैविक खाद बनाने की तकनीक ढूँढ निकाली और उसे नाम दिया “इन्दौर मेथड ऑफ कम्पोस्ट मेकिंग”。 उनकी इस होलकर दरबार और इन्दौरवासियों को प्रेमरूपी भेंट को आगे चलकर पूरे विश्व में मान्यता मिली, अनेक देशों में उन्होंने विभिन्न फसलों पर इन्दौर कम्पोस्ट के परीक्षण किए और सफलता के झंडे गढ़े। सन् 1934 में लंदन में आयोजित एक अन्तर्राष्ट्रीय कृषि प्रदर्शनी में भारत के नक्शे पर इन्दौर का नाम पढ़कर प्रदर्शनी देखने आए महात्मा गांधी ने इसका कारण पूछा तब उन्हें आई पी आई और इन्दौर कम्पोस्ट की जानकारी मिली। स्वदेश लौटकर गांधीजी जब इन्दौर आए थे तब उन्होंने स्वतः आई पी आई संस्थान को भेंट दी और इन्दौर मेथड ऑफ कम्पोस्ट मेकिंग की जानकारी ली। इस प्रसंग पर लिए गए अनेक छायाचित्र आज भी इन्दौर कृषि महाविद्यालय की शोभा बढ़ा रहे हैं। कम्पोस्ट मेकिंग की यह पद्धति जहाँ डॉ. अल्बर्ट हॉवर्ड की अगुवाई में विकसित हुई साथ ही इसमें एक भारतीय वैज्ञानिक डॉ यशवंत वाड़ का भी उल्लेखनीय योगदान रहा।

सर अल्बर्ट हॉवर्ड अध्ययनशील वैज्ञानिक थे। उनकी नजर खेती से भी आगे जाकर विश्व की घटनाओं और इन घटनाओं के खेती पर पड़ने वाले परिणामों

पर रहती थी । उस समय आ रही औद्योगिक क्रांति का उन्हे पूरी तरह अंदाजा था । औद्योगिक क्रांति के कारण खेत जमीन की उपजाऊ मिट्टी को होने वाली हानि से वे भी महात्मा गांधी की तरह दुखी थे । मिट्टी ही इस धरती की सबसे बड़ी पूँजी है, यह वे मानते थे । उपजाऊ मिट्टी ही निरंतर अक्षय खेती की पहली और अंतिम सीढ़ी है यह उनका विश्वास था । अपनी विश्व प्रसिद्ध पुस्तक “एन एग्रीकल्चरल टेस्टामेंट” में उन्होंने लिखा है कि महान रोमन साम्राज्य का पतन राज्यकर्ताओं द्वारा पूँजीपतियों के हाथों खेती और उपजाऊ मिट्टी की उपेक्षा के कारण ही हुआ था । उनका कथन था कि किसी देश का गौरव उसकी जनसंख्या होता है (हमारे अर्थशास्त्री कृपया नोट करें) इस जनसंख्या की मूलभूत आवश्यकता दो वक्त की रोटी, कपड़ा और सिर छुपाने के लिए आसरा अगर मिल जाए तो उस देश की शक्ति और समृद्धि को कोई नहीं रोक सकता । इसके विपरीत अगर इन आवश्यकताओं पर ध्यान न दिया गया तो बड़ी से बड़ी पूँजी उस देश को नहीं बचा सकेगी । देश की समृद्धि के लिए गाँवों की समृद्धि, देश की अर्थव्यवस्था और कृषि व्यवसाय में संतुलन होना जरूरी होता है ।

सर हॉवर्ड ने सौ साल पहले अपनी पुस्तक में मिट्टी में उपस्थित सूक्ष्म जीवाणु मायकोरायजा के पौधों के साथ एक सेतु की तरह कार्यरत होने के बारे में काफी विस्तार से लिखा है । उसके बाद से इतना लंबा समय बीत जाने पर भी हमारे कृषि विश्वविद्यालयों को मायकोरायजा सूक्ष्म जीवाणुओं का महत्व समझ में नहीं आया है । मायकोरायजा जैसे सूक्ष्म मित्र जीवाणुओं की बदौलत ही पेड़-पौधों और प्राणियों के अवशेषों का मिट्टी में विघटन होकर ह्यूमस जैसे बहुमूल्य पदार्थ की उत्पत्ति होती है । इस तथ्य की जानकारी डॉ. हॉवर्ड को थी परंतु दिन-रात एन.पी. के का जाप करने वाले हमारे कृषि वैज्ञानिकों को इसकी जानकारी तक नहीं, इसे क्या कहेंगे? ह्यूमस की उपस्थिति से ही मिट्टी में सी.एन रेशो (अर्थात् कार्बन-नाईट्रोजन अनुपात) 10:1 कीटों से लड़ने की प्रतिरोधक शक्ति बढ़ती है यह निष्कर्ष सर हॉवर्ड ने प्रतिपादित किया था ।

विश्व में औद्योगिक क्रांति के बाद उद्योगों ने पैर फैलाए और उद्योगों की तर्ज

पर खेती में भी नफे-नुकसान का गणित प्रवेश कर गया । इस बजह से अधिक उपज पाने के लिए खेती में संश्लेषित रसायनों का उपयोग बढ़ता गया । हमारे देश में भाप पर चलने वाली रेलगाड़ी, बिजली की मोटरें आईं, आवागमन बढ़ता गया । इन सबका परिणाम खेती पर भी दिखाई देने लगा । जैविक खाद के साथ रासायनिक उर्वरकों के उपयोग से खेती का संतुलन बिगड़ने लगा । डॉ. हावर्ड इन बदलावों से चिंतित थे । उन्होंने अपनी पुस्तक में लिखा है “योरप के किसानों को एशिया के देशों से मिट्टी की देखभाल कैसे करनी चाहिए, यह सीखना पड़ेगा । गोबर की खाद का उपयोग ही भारत की समृद्धि का आधार है जबकि इस ओर अनदेखी करना पश्चिम के देशों की खेती की कमजोरी । उन देशों के वैज्ञानिकों ने गोबर पर कुछ भी अनुसंधान नहीं किया इस बात पर डॉ. हावर्ड को हैरानी होती थी । “पश्चिम के उन कृषि वैज्ञानिकों की जैविक पोषण के प्रति उपेक्षा और रासायनिक उर्वरकों के प्रति अतिरिक्त प्रेम उन देशों को संकट में डालेगा और इसकी सिफारिश करने वाले कृषि वैज्ञानिक कालबाह्य हो जाएँगे” यह भविष्यवाणी डॉ. हॉवर्ड ने सन् 1940 में अपनी पुस्तक के माध्यम से की थी ।

अपनी पुस्तक में वह आगे लिखते हैं “भारत में आकर मैंने सन् 1905 से 1910 के बीच देखा कि हमारे अनुसंधान केन्द्रों पर उपलब्ध कीट व रोग विज्ञानी, वनस्पतिशास्त्र के विशेषज्ञ, महँगे छिड़काव यंत्र जैसी सुविधाओं के न होते हुए भी साधारण किसान इतनी अच्छी उपजाऊ खेती कैसे कर लेते हैं? बाद में मुझे समझ में आया कि हम वैज्ञानिक मात्र अपनी प्रयोगशालाओं तक ही सीमित अनुसंधान के नतीजों को पूरी कृषि के लिए अनुमोदित कर देते हैं, यह सही नहीं है । वैज्ञानिक लुई पाश्चर ने खोजे हुए सूक्ष्मजीवों तथा चार्ल्स डार्विन के मित्र केंचुओं के कारण बनी हुई उपजाऊ मिट्टी ही अधिक उत्पादन देने में सक्षम होती है । इनकी तुलना में कोई भी उत्तर बीज खेती में समृद्धि नहीं ला सकते । उत्तर बीजों के उपयोग से मात्र 10 प्रतिशत उपज बढ़ती है जबकि मिट्टी उपजाऊ हो तो 100 प्रतिशत वृद्धि संभव है ।”

कृषि अनुसंधान केन्द्रों पर प्रचलित सांख्यिकी शास्त्र पर उन्हें सख्त एतराज था । उनका मानना था कि इन केन्द्रों पर 3 मीटर गुण 10 मीटर आकार के प्लॉट

पर अनेक प्रतिवलित क्रमों (रेस्लीकेटेड) के प्रयोगों से प्राप्त निष्कर्षों को पूरे खेतों और देश पर लाना शुद्ध पागलपन है। किसी उद्योग की तरह खेती का तंत्र एक समान कभी भी संभव नहीं है अतः खेती में गणित की तरह उत्पादन को गुणित कर आँका नहीं जा सकता। इसी तरह ऐसे अनुसंधान कार्यक्रमों में पशुधन की पूरी तरह उपेक्षा हुई है। सांख्यिकी शास्त्र के साथ-साथ गणित शास्त्र भी खेती में प्रवेश करने से उसके पीछे अर्थशास्त्र भी आ जाता है, उन सबके हत्थे चढ़ते खेती का पूरी तरह दिवाला निकलना सुनिश्चित है।

कृषि अनुसंधान से मिले नतीजों के आकलन के लिए बनाई गई अलग-अलग समितियों के गठन पर भी अल्बर्ट हॉवर्ड को आपत्ति थी। कृषि अनुसंधान को अलग-अलग विषयों के आधार पर विभाजित किया जाता है जैसे कीटशास्त्र, रसायनशास्त्र, मृदा शास्त्र आदि। अब उन विषयों पर हुए अनुसंधानों के नतीजों के आकलन करने के लिए भी अलग-अलग समितियाँ बनाने की शुरुआत हुई है, ऐसा क्यूं, खेती को एक समग्र दृष्टिकोण से देखना क्या अधिक उपयुक्त नहीं होगा, यह उनका सवाल है। विज्ञान और यथार्थ में कितना अंतर होता है यह खेती समझने से मालूम पड़ता है। हमारे कृषि वैज्ञानिक अपने अनुसंधान कार्यों का लेखा-जोखा जिस भाषा में प्रस्तुत करते हैं वह इतनी किलो, समझने में कठिन होती है कि अधिकांश किसान उसे समझ ही नहीं सकते।

अल्बर्ट हॉवर्ड का मत था कि इंग्लैंड में जैविक खेती के कारण ही आलू की फसल बची रही। रासायनिक उर्वरकों का उपयोग शुरू होते ही फसल पर कीड़ों और बीमारियों का प्रकोप शुरू हो गया और आलू की खेती बरबाद हो गई। मिट्टी, पौधों की जड़ें ये सभी सजीव जीवित अंग हैं, उनमें रासायनिक उर्वरकों का उपयोग नकारात्मक असर पैदा करता है। खेती में प्रबंधन सही तरीके से होने पर किसी सांख्यिकीय विज्ञान की आवश्यकता नहीं होती है खेती कर्म का मुख्य उद्देश्य अब सुरक्षा है, उद्योग नहीं।

डॉ. हॉवर्ड ने अपने एक लेख में सुझाया था कि लंदनवासियों को सामूहिक रूप से रसायनों के उपयोग के कारण बिगड़ी हुई खेती की ओर ध्यान देना जरूरी

है। शहरों में रहने वाले नागरिक प्रदूषण-मुक्त, उपजाऊ मिट्टी में उगाया शुद्ध-सात्त्विक भोजन, स्वस्थ पशुधन से प्राप्त दुग्ध पदार्थ का सेवन कर स्वस्थ, रोगमुक्त नागरिक बनें इस संदेश का स्कूलों में प्रचार होना आवश्यक है। इतना ही नहीं बल्कि यह शिक्षा प्रणाली का प्रमुख मुद्दा होना चाहिए। शहरी लोगों को अपनी गृहवाटिका में साफ-सुधरे स्वस्थ फल व सज्जियाँ कैसे उगाई जाती हैं इसका प्रशिक्षण दिया जाना चाहिए। कोल्हापुर के जैविक कृषि विशेषज्ञ श्रीपाद अच्युत दाभोलकर का 10 गुंठे (चौथाई एकड़े) की स्वयंपूर्ण खेती का संदेश शायद 100 वर्ष पूर्व डॉ. हॉवर्ड के मुंह से निकला हुआ प्रतीत होता है। खुद उगाओ और उसका उपभोग लो, कृत्रिम रसायन युक्त खेती से दूर रहो, शायद यही वह संदेश था।

डॉ. अल्बर्ट हॉवर्ड ने अपने देश की शहरी महिलाओं का आवाहन इस बात के लिए किया था कि वे जैविक बागवानी के तरीके सीख कर इंग्लैंड के गाँव-गाँव में उसका प्रचार करें। खेती अगर कायम रही तो इंग्लैंड भी कायम रहेगा, यह उनका कहना था।

हिन्दुस्तान में उनके गोरों की बर्तनी सरकार है यह जानते हुए भी उन्होंने निर्भीकता से कहा था “अनुसंधान केन्द्रों को सुधारा जाना चाहिए। सरकारी तंत्र द्वारा बनाया, विकसित किया गया महँगा, बनावटी तरीका छोड़ो। समय गँवाने वाली कमेटी, उनकी बैठकें, रिपोर्ट पर ध्यान न दें। खेती को उन्नत, समृद्ध बनाना है तो कृषि विशेषज्ञों की संख्या कम करें। प्लांट ब्रीडर कम हों, हमें फसलों की गिनी चुनी किसमें चाहिए, बहुसंख्य नहीं।”

अपनी पुस्तक के उपसंहार में सर हॉवर्ड ने अमेरिका के राष्ट्रपति से आवाहन किया है कि उनके देश में प्रतिवर्ष 70 करोड़ डॉलर (सन् 1939 के स्तर पर) मानवों के इलाज पर खर्च किये जाते हैं। इस खर्च में रोगी लोगों की कार्यक्षमता में आई कमी का मूल्य शामिल नहीं है। अमेरिका अपने खेत की मिट्टी का संरक्षण करने में इस 70 करोड़ डॉलर्स का चौथाई हिस्सा भी बचा सके तो अमेरिका का भविष्य कितना उज्ज्वल होगा यह कहने की आवश्यकता नहीं है। इस पुस्तक

की अंतिम पंक्ति लिखते समय उन्हें साग्रह कहना पड़ा कि स्वस्थ, उपजाऊ मिट्टी में स्वस्थ सात्त्विक अन्न पैदा करने से विश्व की कम से कम आधी आबादी स्वस्थ रह सकेगी ।

सर अल्बर्ट हॉवर्ड द्वारा लिखित “एन एग्रीकल्चरल टेस्टामेंट” पुस्तक पहली बार सन् 1940 में लंदन में प्रकाशित हुई थी । सन् 1956 तक इस पुस्तक के 7 संस्करण निकल चुके थे परंतु इसके बाद यह पुस्तक अनुपलब्ध हो गई, कोई नूतन संस्करण नहीं आया । आशंका यह है कि 1960 के दशक में नोबल पारितोषिक विजेता कृषि वैज्ञानिक नॉर्मल बोरलॉग द्वारा प्रतिपादित हरित क्रान्ति के दबाव के कारण लगभग 40 वर्षों तक इस पुस्तक का पुनः प्रकाशन नहीं हो सका । तत्पश्चात सन् 1996 में गोवा की दी अदर इंडिया प्रेस ने इस पुस्तक को प्रकाशित किया । तबसे सन् 2004 तक पुस्तक के 3 नये संस्करण प्रकाशित हो चुके हैं ।

यह अजूबा ही माना जाएगा कि एक अंग्रेज कृषि वैज्ञानिक सन् 1905 में भारत आता है हमारे किसानों को पश्चिम की उन्नत खेती के तरीके सिखाने के लिए, उल्टे हमारी देसी खेती पश्चिम सीखकर इसका पूरे विश्व में प्रचार करता है, सन् 1924 में इन्दौर में इंस्टीट्यूट ऑफ प्लांट इंडस्ट्रीज की स्थापना करता है (जिसे सन् 1959 में इन्दौर कृषि महाविद्यालय में परिवर्तित किया गया), जहाँ अब हमारे देसी कृषि वैज्ञानिक विद्यार्थियों को विदेशी कृषिज्ञान के पाठ पढ़ाते हैं और इसके 40 वर्ष बाद हम फिर उसी पारंपरिक देसी खेती की ओर मुड़ते समय हॉवर्ड का स्मरण करते हैं । इसे कहेंगे कालाय तस्यै नमः ।

गत 100 वर्षों का कृषि का इतिहास खंगालने पर मालूम होता है कि जैविक खेती का इतनी गहराई तक अध्ययन करने वाला कोई भी कृषि वैज्ञानिक आज तक पैदा नहीं हुआ है । भारतीय कृषिशास्त्रीयों को इस तथ्य को स्वीकारना चाहिए और कृषि विश्वविद्यालयों द्वारा अल्बर्ट हॉवर्ड की पुस्तक को अपने पाठ्यक्रम में शामिल करना चाहिए, यह एक आह्वान है, समय की पुकार है ।

अनुक्रमणिका

क्र.	अध्याय	पृष्ठ
1.	एक उन्नत खेती का वसीयतनामा - 1	14
2.	एक उन्नत खेती का वसीयतनामा - 2	20
3.	ह्यूमस का महत्व	27
4.	इन्दौर प्रणाली से खाद निर्माण और उपयोग के अनुभव	32
5.	इन्दौर प्रणाली की जैविक खाद के उपयोग से प्राप्त अनुभव	40
6.	भूमि को उपजाऊ बनाने के विविध प्रयोग	47
7.	खेत की बीमार और स्वस्थ फसलें : मिट्टी में वायु का संचार	54
8.	फलबाग के घास चरे का परिणाम	62
9.	भूमि का रोग - भूक्षरण या कटाव	69
10.	भूमि के क्षारीय होने के कारण और उपाय	76
11.	भूमि को सबल बनाना ही इन समस्याओं का हल	83
12.	मायकोरायजा से दोस्ती और रोग फसलों का नियंत्रण	89
13.	स्वास्थ्य का रहस्य है उपजाऊ जमीन की फसलें	95
14.	अनुसंधान में एकात्मक कृषि का विचार नहीं ?	102
15.	अच्छी खेती करने के लिए योग्य अनुसंधान चाहिए	109
16.	मिट्टी की उपजाऊ क्षमता बनाए रखने की भारतीय किसानों को योग्यता	116
17.	भूमि की उपजाऊ क्षमता टिकाए रखने की आवश्यकता	124
18.	एक खेती का वसीयतनामा	132
19.	बंगाल के चाय बागानों में जैविक खाद का उपयोग	136
20.	गाँवों और शहरी कचरे से ह्यूमस उत्पादन	140

एक उन्नत खेती का वसीयतनामा

मिट्टी की उर्वरता बनाए रखना चिरकालीन, निरंतर उपजाऊ खेती का पहला लक्ष्य होना चाहिए । साधारणतया फसलों की अधिक उपज लेने की होड़ में इस ओर ध्यान नहीं दिया जाता जिस कारण मिट्टी बिगड़ जाती है । उर्वरता बनाए रखने के लिए मिट्टी का प्रबंधन यह मूल नियम है ।

मिट्टी की उर्वरता के बारे में विचार करते समय यह विचार करना आवश्यक है खेती किस पध्दति से की जा रही है । खेती पध्दति के चार आयाम हो सकते हैं, जो कि निम्नलिखित हैं:-

1. प्रकृति ही सर्वोच्च किसान है इस सोच के अन्तर्गत आदिकाल में प्रचलित खेती जिसमें वृक्ष न होकर केवल धास के हरे भरे विराट चारागाह पाए जाते थे, यह एक महासागर जैसे विस्तृत थे ।
2. विलुप्त हुए राष्ट्रों की खेती पध्दति के समान ।
3. परिचम के विज्ञान से अछूती पूर्व के देशों की खेती तथा
4. पिछले 100 वर्षों से योरप और अमेरिका में विकसित वैज्ञानिक खेती ।

(1) प्रकृति में मृदा व्यवस्थापन

कृषि विज्ञान पर लिखी हुई किसी भी पुस्तक में प्रकृति में हो रहे मिट्टी और पानी के व्यवस्थापन का कोई उल्लेख नहीं मिलता है । फिर भी आज हम उसे उपजाऊ पाते हैं, इसके मूल में प्रकृति ही कारण बनती है । इस पर प्रश्न उठता है कि खेती का मूल तत्व क्या है? इसे समझने के लिए वनों और जंगलों में जाना पड़ेगा । पहला तथ्य यह है कि वन में मिश्र खेती होती है, जहाँ जंगल हैं वहाँ प्राणी होना आवश्यंभावी है । जंगल में पेड़-पौधों और प्राणियों की अपनी प्रजातियाँ हिलामिल कर रहती देखी जाती हैं । प्राणियों में भी विभिन्न प्रजातियाँ जैसे स्तनपायी जानवरों के साथ रेंगने वाले और हवा में उड़ने वाले पक्षी भी पाए जाते हैं । इसी तर्ज पर वृक्षों और अन्य पेड़-पौधों का भी सहवास होता है । यहाँ पर आधुनिक खेती की तरह एक फसल पध्दति का अवलंब नहीं होता, बहु फसली तथा मिश्र खेती का चलन पाया जाता है वनों में ।

सूर्यप्रकाश, बारिश और हवा के झोकों से वनों की मिट्टी हमेशा सुरक्षित रहती है । सुरक्षित अर्थशास्त्र यह वनों का आदर्श होता है । वहाँ घाटे की कोई गुंजाईश नहीं । पेड़ों की पत्तियाँ सौर ऊर्जा का पूरा उपयोग अपनी बढ़वार और विशाल छतरी (चंद्रवा) बनाने के लिए करती हैं । ये पत्तियाँ बारिश का पानी लोक (झेल) कर नीचे मिट्टी को केवल सींचती रहती हैं जिस बजह से नीचे मिट्टी के साथ कोपलों और जीव-जन्तुओं की सुरक्षा होती है । इसी तरह हवा के तेज झोकों को भी झेलकर पत्तियाँ नीचे हवा के हल्के झोकों का उपहार देती है ।

इस प्रकार मिट्टी की सुरक्षा होने के साथ ही बारिश का काफी पानी मिट्टी में रिसकर नीचे अंदर समाता है और गहराई तक पहुँचकर नदी नालों से जा मिलता है । वृक्षों की पत्तियाँ भी उन पर गिरा पानी झेलकर नीचे गिरे पत्तियों के कचरे को गीला कर धीरे से मिट्टी में प्रवेश करती हैं । इस तरह तिनके-पत्तियों का जीवांश गलकर उपजाऊ ह्यूमस में तब्दील हो जाता है । यह ह्यूमस अत्यंत भुरभुरा और नरम होता है । ऐसा अत्यंत धीमी गति से गिरे पानी व हवा की उपस्थिति में पनप रहे केंचुओं के कारण संभव होता है । जंगल की मिट्टी अत्यंत नरम और भुरभुरी रहती है जिसमें भरपूर नमी होती है और नमी को पकड़कर रखने की क्षमता भी विकसित हो जाती है । कभी-कभी बारिश के पानी से जंगल में झारने बहते हैं जिनका पानी अत्यंत साफ रहता है, उसमें मिट्टी का कण भी मौजूद नहीं होता ।

जंगल की मिट्टी में क्षरण (सॉईल इरोजन) जैसी कोई संभावना नहीं रहती है । जंगली नदी-नाले पूरे साल भर बहते रहते हैं क्योंकि बारिश का पानी हरदम रिसता रहता है और उनकी खेंच समुद्र की ओर रहती है । जंगल में अकाल कभी नहीं पड़ता है क्योंकि वहाँ चाहे जितना और चाहे जहाँ पानी उपलब्ध होता है ।

वन खुद ही खाद का निर्माण करता है, उसका वितरण भी करता है । इस खाद में भरपूर मात्रा में खनिज होते हैं । जंगल के किसी एक टुकड़े का निरीक्षण करने पर समझ में आता है कि वहाँ पौधे और जीव-जन्तुओं के अवशेष भारी मात्रा में बिखरे पड़े होते हैं और सूक्ष्मजीवों के कारण उनका मिट्टी में परिवर्तन होता रहता है । यह परिवर्तन पहले वायुजीवी अर्थात् वायु की उपस्थिति में (एरोबिक) होता है जबकि बाद में वायुपरोक्ष अर्थात् वायु के न होने पर अवायुवीय (एनएरोबिक) होता है । यह परिवर्तन इतना साफ-सुथरा, निर्मल होता है कि जिसमें गंदगी, मक्खियाँ, कचरा, कचरा पेटी, सीबेज पाईप, फैलने वाली बीमारियाँ आदि

के लिए यहाँ कोई जगह नहीं होती। इसके विपरीत गर्भियों में रहने के लिए जंगल उत्तम स्थान है। चारों तरफ बहते शीतल हवा के झोंके और सुहाना मौसम, वनस्पति अवशेषों से निर्मित मिट्टी यह सुखद स्थिति जुलाई से सितंबर के बीच रहती है।

वृक्षों को आवश्यक खनिज तत्व मिट्टी और मिट्टी के निचले स्तर से मिलते हैं। वे अपनी जड़ों के माध्यम से पानी में घुलनशील अवस्था में इन खनिजों को प्राप्त करते हैं। इन गहरी जड़ों के बल पर ही वृक्ष सीधे तनकर खड़े रहते हैं। मिट्टी में अगर स्फुर की कमी हो तो भी वृक्ष इसे पोषक अवस्था में प्राप्त कर लेते हैं। पालाश (पोटाश), स्फुर (फास्फोरस) खनिज भूमि से वृक्षों की रसवाही कोशिकाओं से होकर पत्तियों तक पहुँचते हैं। पत्तियों में जमा होकर ये खनिज पतझड़ के कारण नीचे गिरी पत्तियों के अवघटन से फिर मिट्टी को समृद्ध बनाते हैं और इस तरह मिट्टी पुनः उपजाऊ बन जाती है और जड़ों को खनिज तत्व उपलब्ध कराती है। इस प्रकार वनखेती दो तरीकों से जारी रहती है (1) खनिज तत्वों का निरंतर चक्रिय परिचालन तथा (2) मिट्टी की निचली सतह से खनिज तत्वों को ऊपर लाकर मिट्टी को सम्पूर्ण भूमिका निभाती है। इस प्रकार वनों में मिट्टी की पोषकता बढ़ाने के लिए उर्वरकों की बोरियाँ उड़ाने की जरूरत नहीं पड़ती है। वृक्षों के पोषण के लिए सभी तत्व अपने आप उपलब्ध होते रहते हैं। इसी प्रकार जैविक तथा रासायनिक तत्वों का वितरण भी प्राकृतिक तरीके से होता है। उपजाऊ सतह से पेड़ों को जैविक तत्व उपलब्ध होते हैं और मिट्टी से खनिज तथा अन्य रसायन। भूमि में पोषक तत्वों का कभी अकाल नहीं पड़ता है। मिट्टी में यदा-कदा ह्यूमस तत्व अधिक हो जाते हैं तो केंचुए व अन्य जीव-जन्तु उसे खाकर हजम कर देते हैं। इस भारी मात्रा में जमा ह्यूमस का पता हमें तब लगता है, जब जंगल काटकर उस भूमि पर खेती की जाती है। इस जंगल को साफ कर तैयार भूमि पर किसी खाद के उपयोग के बिना भी प्रारंभ के 10 वर्षों तक लगातार चाय, कॉफी, रबर, केला आदि की खेती सफलता से की गई है। एक आदर्श प्रशासक की तरह प्रकृति अपने संसाधनों के उपयोग से तरल पदार्थों का भंडारण बिना किसी निवेश के करने में सक्षम होती है।

पशुधन और फसलें एक दूसरे का भलीभांति ख्याल रख सकते हैं। प्रकृति को कभी भी दवाईयों के छिड़काव की तथा उसके लिए किसी यंत्र की

आवश्यकता नहीं पड़ी। प्रकृति में पशुओं के लिए किसी टीके अथवा इंजेक्शन की जरूरत नहीं रहती है। जंगल में फसलों और पशुओं को रोग अथवा बीमारियों का आक्रमण झेलना पड़ता भी है तो वह कुछ समय में काबू में आ जाता है क्योंकि वे खुद ही अपनी रक्षा कर लेते हैं। वनों का एक ही कानून है “जियो और जीने दो।”

हम किसी वृक्ष विहीन हरियाली अथवा विराट मैदानों को देखते हैं तो वहाँ भी यही दिखाई देता है। हरी भरी घास का गलीचा बारिश के पानी का सफल प्रबंधन करता है, वैसे ही जैसे जंगल करता है। वहाँ भी मिट्टी का क्षरण नहीं होता जबकि वहाँ झरने भी नहीं मिलते हैं बल्कि मिट्टी की ऊपरी सतह में भरपूर ह्यूमस पाया जाता है। उत्तरी अमेरिका के प्रियरी चारागाहों में जंगली भौसों के बड़े-बड़े झुंड विचरण करते थे। वहाँ किसी पशु चिकित्सालय का नामोनिशान नहीं होता है। प्रारंभ में जब ऐसे हरे भरे मैदानों में गेहूँ की खेती शुरू हुई तब किसी खाद अथवा पशुश्रम की वहाँ आवश्यकता नहीं पड़ी।

झीलों, तालाब, नदी और समुद्र में भी मिश्र खेती का नियम होता है। सभी प्रजातियों की वनस्पति वहाँ आपको बढ़ती हुई दिखाई देंगी। कहीं भी एक फसली खेती नहीं। वनस्पति अवशेष, प्राणियों की विष्ठा और कचरे का एक साथ व्यवस्थापन होता है। इन स्थानों पर भी ह्यूमस कीचड़ में, पानी में तथा तैरने वाली वस्तुओं में पाया जाता है। सागर और हरियाली के मैदान भी जंगल के समान खुद खाद का निर्माण करते हैं।

मनुष्य द्वारा प्रारंभ की गई खेती पद्धति की व्याख्या करते समय यह देखना निश्चित ही दिलचस्प होगा कि प्राकृतिक खेती की कितनी हिमायत की और कितनी उपेक्षा की है।

(2) विलुप्त राष्ट्रों की खेती पद्धति

मोहन जो दाढ़ो अथवा मिस्र (इजिप्ट) देशों की भूमि में विलुप्त राष्ट्रों की खेती का अध्ययन करना आसान नहीं है। शायद वहाँ खड़ी हुई ऐतिहासिक इमारतों को जाँचा-परखा जा सकता है परंतु खेती को नहीं। खेतों के किसी प्रकार के भग्नावशेष उपलब्ध नहीं होते, या तो वहाँ जंगल खड़े होंगे अथवा नई तरह की खेती की जा रही होगी।

एक बात जरूर है, वहाँ की गई खुदाई में नहरों के अवशेष प्राप्त हुए

हैं जिनका अध्ययन कर वहाँ की जा रही खेती को समझा जा सकता है। पाषाण युग में पेरू देश में पहाड़ों की सीढ़ीनुमा खेती का कोई लिखित इतिहास उपलब्ध नहीं है। वहाँ पहाड़ों को काटकर लौह अयस्क की खुदाई शुरू होने से पहले चट्टानों को काटकर खेती करने के लिए सीढ़ियाँ बनाई जाती थीं, कभी कभी 49 सीढ़ियों की श्रेणी बनाई जाती थी। इन सीढ़ियों की दीवारें सावधानी से पत्थर जमाकर बनाई होती थी। सीढ़ियों पर मिट्टी फैलाकर खेती की जाती थी। जिस तरह हम घरों में गमलों में पौधे लगाते हैं वैसे ही बड़ी आकार के गमले जैसी सीढ़ियों में यह खेती होती थी। इन्हें पत्थरों से बनी नहरों से पानी पहुँचाया जाता था। आज भी हिमालय की तलहटी में ऐसी सीढ़ीदार खेती की जाती है, चीन, जापान, श्रीलंका और दक्षिण भारत के अलावा भी भारत के उत्तर पश्चिम के हुजा क्षेत्र में भी ऐसी खेती होती थी यह जानकारी कान्टेव (सन् 1864) की पुस्तक में मिलती है।

प्राचीन काल की खेती का ऐसा ही वर्णन हमें रोम की खेती का मिलता है। रोम खेती अत्यंत समृद्ध थी परंतु सदैव युद्धरत रोम सैन्य ने खेती की उपेक्षा की। किसानों ने छोटे-छोटे खेत बेच डाले, उन पर बड़े नगरों का निर्माण हुआ, बड़े-बड़े कुलक जमींदार पैदा हुए, गुलाम प्रथा का आरंभ हुआ, इन गुलामों से खेती करवाई गई, गुलाम कम पढ़ने पर बाहर से लाए गए, खेती महँगी हुई, चाहिए जैसी उपज खेतों से मिलना बंद हुई, धीरे-धीरे रोमन साम्राज्य धूल में मिल गया। उनकी गलती यह थी कि वे उपजाऊ मिट्टी का बचाव नहीं कर सके। किसी भी देश की आबादी की संभाल की तो राष्ट्र शक्तिशाली बनता है। आबादी की दशा बिगड़ने पर बड़ी से बड़ी पूँजी देश को नहीं बचा सकती। ग्रामीण क्षेत्र की संपत्ति से ही देश संपन्न बनता है। किसी भी देश का अर्थशास्त्र इसी देश में कार्यरत होना चाहिए।

(3) पश्चिम के विज्ञान से अछूती पूर्व के देशों की खेती

किसानों द्वारा साल दर साल जोती जा रही खेती की बदौलत ये देश आज टिके हुए हैं। इन देशों की खेती का प्राचीन इतिहास देखने की आवश्यकता नहीं है, वह इससे पहले भी ऐसी ही चिरस्थायी थी। पाँच हजार वर्ष बीत गए, चीन के छोटे खेतों की मिट्टी आज भी वैसी ही उपजाऊ बनी हुई है। उतनी हरियाली, उतने वन और सागर। ऐसी क्या खासियत है पूर्व के देशों की खेती में?

भारत का ही उदाहरण लें। 1931 की जनगणना के अनुसार प्रतिव्यक्ति

1.20 हेक्टर (3 एकड़े) भूमि थी जिसमें से 20 आर (आधा एकड़े) सींचित थी। इससे पहले 1929 में यह अनुपात 1.08 हेक्टर और 25 आर का था इससे यह सिद्ध होता है कि जीवन कितना संघर्षपूर्ण था। ये छोटे खेत हमेशा बड़े खेतों की तरह बोये जाते थे। चीन और जापान में भी आबादी का हमेशा खेती पर दबाव रहता था, पशुधन पर भी। 1977 में जापान की खेती का आकार 51.80 हजार हर्गमीटर था और आबादी थी 4.6 करोड़ अर्थात् प्रति व्यक्ति 7.5 हेक्टर भूमि उपलब्ध थी। चीन में भी यही स्थिति थी।

इन राष्ट्रों में खाद्यान्न और पशुओं के लिए चारे का प्राधान्य था। पेट भरने के लिए ही खेत जोते जाते थे। 1869 में स्वेज नहर बनने के बाद पश्चिम के देशों के बाजारों की भूख बढ़ गई। उद्योग शुरू हुए और खेती पर दबाव बढ़ता गया क्योंकि आबादी के साथ ही मशीनों का भी पेट भरता था। कपास और जूट की खेती के कारण मिट्टी पर दबाव बढ़ने लगा। भारत में कपड़े की पहली मिल सन् 1918 में कलकत्ता के पास गोस्टर में शुरू हुई। 1838 में जूट का निर्यात शुरू हुआ और पहली जूट मिल हुगली में 1855 में स्थापित हुई। वहाँ बना हुआ तैयार माल निर्यात होने लगा और हमारी मिट्टी पर दबाव बढ़ता गया। इस दबाव को देखते हुए कोलकत्ता में कपास व जूट मिल शुरू करने का औचित्य नहीं है। आज मिट्टी की उपजाऊ क्षमता देखते हुए इन उद्योगों की स्थापना क्यों करें? यह तो धन की बर्बादी कही जाएगी। उद्योग लगाने वाले, शासन, पूँजीपति, निर्माता और विक्रेता इन सभी ने इस पर गंभीरता से विचार करना जरूरी है। उद्योगों की बढ़ती भूख और मिट्टी की उपजाऊ क्षमता इनका संतुलन बनाए रखना जरूरी है।

एक उन्नत खेती का वसीयतनामा

गत 25 वर्षों में भारत के खाद्यान्न उत्पादन में अनोखा फरक दिखाई देता है। पहले देश में शकर की कमी होने पर जावा, मॉरिशस और योरप से शकर आयात की जाती थी परंतु कोयंबटूर से निकली गन्ने के उन्नत किस्मों के कारण और उत्तर प्रदेश के शाहजहाँपुर अनुसंधान केन्द्र की सक्रियता से अब देश में शकर का भरपूर उत्पादन होने लगा है। विश्वयुद्ध से पहले देश में 38 हजार टन शकर का आयात होता था जो अब घटकर मात्र 14 हजार टन रह गया है।

भारतीय किसान जंगल के कायदे के अनुसार कुछ फसलों की खेती करते हैं। इनमें प्रमुखता से खाद्यान्न की फसलें शामिल हैं। गेहूँ, जौ और मक्का की खेती दलहनी फसलों के साथ की जाती है। इनमें से कुछ फसलें शीघ्र परिपक्व होती हैं। अरहर उत्तर प्रदेश की सर्वाधिक लोकप्रिय फसल है, उसे अन्य दलहनों अथवा मक्का के साथ उगाया जाता है। अनाज फसलों को दलहनों के साथ उगाने से दोनों को लाभ होता है और उपज भी अच्छी होती है। उनकी जड़ों से झरने वाले पोषक तत्वों के कारण ऐसा होता है। जड़ों पर उपस्थित मायकोरायजा मूक्षम जीवाणुओं के कारण क्या यह पोषक तत्व झरते हैं? विज्ञान के पास अब भी (सन् 1931) इस प्रश्न का उत्तर नहीं है।

पश्चिम के देश जिस एक फसली खेती के कारण प्रेरणा हैं इसके विपरीत भारतीय किसान खेत में दो अथवा अधिक फसलें एक ही खेत में उगा रहे हैं। ब्रिटेन में किसान अब भारतीय खेती का एवं ऑस्ट्रेलिया के किसान चीन का साग सब्जियाँ उगाने का तरीका अपनाने लगे हैं। यहाँ पश्चु और पौधे एक साथ पनपते हैं, हाँलाकि अधिक अहमियत फसलों को मिलती है। दोनों के एक साथ पनपने का कारण यह कि बैल जुताई के लिए और गाय और भैंस दूध पैदा करने के लिए पाले जाते हैं। अन्य देशों की तरह यहाँ भी गोबर खाद और गोमूत्र का उपयोग पूरी तरह नहीं किया जाता है। चीन में मानव विष्ठा का उपयोग खेती में होता है, भारत में यह कुछ गाँवों तक सीमित होता है। इसका उपयोग बढ़ा दिया जाए तो हमारे यहाँ भी सघन खेती का रकबा बढ़ सकता है। भारत में 5 लाख गाँव हैं। इनमें से अनेक गाँवों के आसपास बहुत उपजाऊ भूमि मौजूद है जिसमें

जैविक खाद का भरपूर उपयोग हुआ है। इनमें उगाई गई फसलों का निरीक्षण करने पर पता लगता है कि इनसे उपज अच्छी मिलती है और फसलों पर कीटब्याधियों का प्रकोप भी कम दिखाई देता है। उपजाऊ मिट्टी और स्वस्थ रोगमुक्त फसलों का क्या संबंध होता है यह देखने के लिए भारत के लाखों खेत इसके साक्षी हैं और यह प्रक्रिया सैकड़ों वर्षों से जारी है। परंतु आधुनिक खेती का दम भरने वाले रॉथमस्टड अनुसंधान केन्द्र इस ओर ध्यान देने के लिए भी तैयार नहीं हैं क्योंकि इस प्रक्रिया के वैज्ञानिक प्रमाण उपलब्ध नहीं हैं ऐसा उनका मानना है।

मिट्टी में नन्नजन आपूर्ति करने वाली कई फसलें भारत में उगाई जाती हैं यह सन् 1888 के बाद मान लिया गया है। इससे पहले 30 साल तक इस मुद्दे पर बहस जारी थी। अंततः पश्चिम के वैज्ञानिकों ने स्वीकार किया कि दलहनी तथा कुछ तिलहनी फसलें भूमि में नन्नजन की आपूर्ति कर उसे उपजाऊ बनाती हैं। फसल चक्र में ऐसी एक फसल का होना आवश्यक है। उत्तर भारत के गंगा कछार वाले क्षेत्र में किसान अरहर की फसल इसी कारणवश उगाते हैं कि इसकी जड़ें मिट्टी के अंदर काफी गहराई तक चारों ओर फैलकर मिट्टी को नरम और भुरभुरी बनाती हैं।

यहाँ किसानों के हल लकड़ी के बने होते हैं, केवल उसके भूमि में प्रवेश करने वाले सिरे पर लोहे की पांस लगी रहती है। पश्चिम देशों की खेती में उपयोगी मिट्टी पलटने वाले व मिट्टी काटने वाले औजार यहाँ उपयोग में नहीं लिये जाते। इसके दो कारण हैं, (1) मिट्टी काटने का काम ग्रीष्म ऋतु में सूर्य की तेज धूप में होता है और (2) मिट्टी को न पलटने से मिट्टी की सतह एक समान रहती है, वहाँ बारिश का पानी खड़ा नहीं रहता और सिंचाई करना आसान होता है। दूसरा यह कि जैविक खाद द्वारा मिट्टी को दिया गया नन्नजन तत्व सुरक्षित रहकर पौधों को उपलब्ध होता रहता है। गहरी जुताई से यह पोषक तत्व पौधों की जड़ों की पहुँच से बाहर पहुँचता है और मिट्टी की उपजाऊ क्षमता घट सकती है।

सुदूर पूर्व के देशों की प्रमुख फसल धान है। किसी अन्य दो फसलों की तुलना में धान की उत्पादकता भारत में सर्वाधिक है। भारत में की जा रही धान की खेती अध्ययन का विषय है। यहाँ सभी दूर धान के बाद धान की ही खेती की जाती है। यह ताज्जुब की बात है कि किसी खाद के उपयोग के बिना धान

का इतना उत्पादन होता है कि उसे निर्यात भी किया जाता है । फिर इतना उत्पादन कैसे होता है? शायद खेत के पानी पर तैरने वाला शौवाल ही नव मुहूर्या करता होगा? अथवा जिस राष्ट्रवादिका (नर्सरी) में धान के रोपे उगाये जाते हैं वहाँ गोबर खाद का भरपूर उपयोग होता है, वहाँ से पोषक तत्व रोपे के साथ खेत तक पहुँच जाते हैं और फसल का पोषण करते हैं? कारण कुछ भी हो, यह पश्चिम अधिक उपयोगी और लाभदायक प्रतीत होती है । रोपे को प्रारंभ में ही भरपूर पोषण मिलने से मुख्य फसल भी उपजाऊ बनती है । इस पश्चिम में मजदूर काफी संख्या में लगते हैं और भारत में मजदूरों की कमी नहीं है । धान की इस खेती का अध्ययन किया जाना चाहिए ।

भारत में मजदूरों द्वारा एक वर्ष में किए गए काम, उसके लिए खर्च किए गए श्रम और गाँव में उपलब्ध पशुधन के श्रम का रूपयों में आकलन किया जाए तो कितना धन होगा इसका अंदाजा ही नहीं लगाया जा सकता । इस बीच आराम के कुछ घंटे भी व्यर्थ नहीं जाते, इन्हीं हाइटोड मेहनत के बाद कुछ आराम करना भी आवश्यक है । भारत में मजदूर सूर्योदय से लेकर सूर्यास्त तक कड़ी मेहनत करते हैं । कम समय में इन्हें काम निपटाने हैं तो बड़ी संख्या में मजदूर तो चाहिए ।

भारत जैसे देश में जहाँ खेती ग्रामीण आबादी की आमदनी का मुख्य साधन है वहाँ गरीबी तो होगी ही और खेतों के छोटे छोटे टुकड़ों पर सघन खेती करना मजबूरी है । ताज्जुब इस बात का है कि खेती पर इतना भार होने पर भी मिट्टी की उत्पादकता नहीं घटी अथवा कीट व्याधियों का प्रकोप भी नहीं बढ़ा । ऐसा शायद प्रकृतिक तरीके से खेती करने के कारण संभव हुआ है ।

(4) योरप और अमेरिका में विकसित वैज्ञानिक खेती

पश्चिम के देशों में खेती की बात करने पर समझ में आता है कि वे 3 प्रकार की भूख शांत करने के लिए खेती करते हैं- 1. समाज का गरीब तबका, गाँवों के लोग, गरीब शहरी और पशु । 2. खेत की मिट्टी में पोषकता बढ़ाने में कोई योगदान न देने वाले शहरी लोग और 3. लगातार कच्चे माल की माँग करने वाले कल कारखाने और उद्योग । शहरी लोगों को मालूम है कि मशीनों को अधिक से अधिक व्यस्त, चालू रखने से ही तैयार माल अधिक मात्रा में और कम खर्च में बनेगा । इसका विपरीत परिणाम मिट्टी की उर्वरता पर पड़ता है । ऐसे परस्पर विरोधी वातावरण में पश्चिम के देश खेती कैसे करते हैं यह देखना दिलचस्प

होगा ।

खेत छोटे नहीं होते, मात्र फ्रांस और स्विटज़रलैंड के छोटे परिवारों के लिए छोटे फॉर्म, रूस के बड़े बड़े सरकारी और सहकारी क्षेत्र के विशाल फार्म तथा अमेरिका, अर्जेंटिना के बड़े बड़े पशुपालन के लिए बने रांच/ इतने विशाल भूभागों के कारण प्रतिवर्ग मील क्षेत्र में रहने वालों की संख्या निश्चित ही काफी कम होती है । कनाडा में सन् 1911 में 400 हेक्टर (एक हजार एकड़) पर 29 मजदूर थे, वह संख्या सन् 1926 में घटकर 16 रह गई । इनमें मजदूरों की संख्या और भी कम थी । फलस्वरूप कम मजदूरों द्वारा चलाए जाने वाले कृषि यंत्र विकसित हुए । इन देशों में खेती अधिकतर एक फसली होती है, भारत की तरह मिश्र फसली कम पायी जाती है । उत्तरी अमेरिका में हमेशा गेहूँ ही उगाया जाता है, गेहूँ के भूसे में गोबर और गोमूत्र मिलाकर जैविक खाद बनाने का रिवाज नहीं । भूसा यहाँ सिरदर्द बनता है जिससे छुटकारा पाने के लिए उसे जलाना आसान होता है । बैलों के स्थान पर मशीनें आ रही हैं । उनकी संख्या तेजी से बढ़ रही है । खेती में बिजली का भी उपयोग शुरू हो गया है (सन् 1930-32) । खेत की जुताई गहरी की जाती है । कम्बाईन होर्वेस्टर जैसे यंत्रों का उपयोग बढ़ रहा है । जितनी गहरी जुताई उतनी अधिक उत्पादकता यह मानसिकता बन गई है । रोमन गुलामों का स्थान मशीन नामक गुलामों ने ले लिया है । इस प्रक्रिया में धाटा यह हुआ कि बैलों और घोड़ों से मिलने वाला गोबर और मूत्र इन मशीनों से नहीं मिलता और मिट्टी की उपजाऊ क्षमता बढ़ नहीं पाती । यह कहना सटीक होगा कि पश्चिम के गुलाम यंत्रों के स्थान पर रोमन खेती के गुलाम बेहतर थे । कृत्रिम संश्लेषित रसायनों का भरपूर उपयोग हो रहा है । युद्ध के काम में आने वाले विस्फोटक रसायन अब खेतों की ओर जा रहे हैं । बाजार में एन पी के रसायन भरपूर मात्रा में उपलब्ध हैं । यह एन पी के मानसिकता अब किसानों के साथ ही अनुसंधान केन्द्रों पर कब्जा कर रही है ।

मतलबी लोग खेती पर कब्जा कर रहे हैं । गोबर खाद वापरने की मशक्कत के स्थान पर रासायनिक उर्वरकों का उपयोग अधिक आसान है । घोड़े हाँकने के स्थान पर टैक्टर चलाना सरल हो गया है, फिर दाना पानी का सिरदर्द भी नहीं । अब खेती से नफा प्राप्त करना आसान हो गया है । लेकिन इस सिवके का दूसरा पहलू है । मशीनें और रसायन मिट्टी की उपजाऊ क्षमता बढ़ाते नहीं हैं क्योंकि खेती को बढ़ाने वाले तिनके पत्तियों का सड़ना-गलना बंद हो गया है ।

संक्षेप में उन्होंने भूमि की मूल पूँजी को चालू खाते (करंट एकाउंट) में डाल दिया है, डालो कुछ भी नहीं, बस निकालते जाओ। आने वाले कुछ वर्षों में खेती का दीवाला ही निकलने वाला है।

ह्यूमस के खात्मे और खेती के मशीनीकरण से फसलों और ढोर-डंगर पर रोगों का आक्रमण बढ़ गया है। योरेप में फैल रही पशुओं की फुट एड माऊथ डिसीज (खुरपका मुंहपका) और भारत में कुछ स्थानों पर फैल रही इस बीमारी की तुलना करें तो समझ में आएगा कि सदोष खेती पध्दति ही इस समस्या का मूल है। गोबर खाद का कम उपयोग और मिट्टी का उपजाऊपन कम होने का कारण है आलू और कुछ फलदार वृक्षों पर जहरीली दवाईयों का छिड़काव होना।

पश्चिम के देशों में खाद्य प्रसंस्करण में काफी बढ़ोत्तरी हुई है। इस बजह से मिट्टी और मनुष्यों के पेट में अंतर बढ़ गया है। बजह है मछलियाँ, दूध, सब्जियाँ, फल आदि डिब्बा बंद मिलने लगे हैं। इस तकनीक में कार्बन डाई आक्सीड का उपयोग बड़े पैमाने पर होता है। बर्फ में जमाए गए खाद्यान्नों का प्रचलन भी बढ़ा है। हालांकि कम से कम समय में यह खाद्यान्न मनुष्य को उपलब्ध हो रहा है परंतु अगले 25 वर्षों में जनस्वास्थ्य किस स्तर पर पहुँचेगा इसका शायद ही किसी ने विचार किया है? खाद्यान्न की ताजगी क्या डिब्बाबंद रह सकती है? इस प्रश्न का अगर सकारात्मक उत्तर मिलता है तो मानना पड़ेगा कि विज्ञान ने वाकई प्रगति की है।

खेती की उपज बढ़ाने के लिए विज्ञान का सहारा लिया जाता है और पश्चिम के देशों का विश्व को प्रदल यह एक उपहार है। उस विज्ञान को भी अलग अलग शाखाओं में बाँटा गया है। यह माना जाता है कि इससे खेती का विकास होगा। इसके लिए अनेक स्थानों पर अनुसंधान केन्द्रों की शाखाएँ खोली गई हैं। ये शाखा केन्द्र किसानों को खेती के बारे में समझाई देते रहते हैं।

बरसाती कुकुरमुत्तों की तरह कृषि अनुसंधान केन्द्रों के ये प्रयोग असफल रहे हैं। धरती माता के खाद के जन्मसिद्ध अधिकारों का यह अतिक्रमण है। जैसे खेतों ने हड़ताल कर ली है। भूमि की उपजाऊ शक्ति रसातल को पहुँच गई है। इंगलैंड में खेती पर किए गए अध्ययन के निष्कर्ष बताते हैं कि बढ़ती आबादी और मशीनीकरण का यह दबाव इंगलैंड की भूमि सहन नहीं कर पाएगी। यही हाल अमेरिका केनाडा, अफ्रीका, आस्ट्रेलिया और न्यूजीलैंड देशों का है। उत्तम से उत्तम कुछ खेती छोड़ दें तो इंगलैंड में खेती उत्तर पर है। अखबारों और सरकार

में इसकी प्रतिष्ठनि गूँज रही है। अमेरिका में तो मिट्टी का उपजाऊपन बढ़ाने के लिए पूरी सरकारी मशीनरी जुटी हुई है। पश्चिम की सभ्यता और संस्कृति को बनाए रखने की जिम्मेदारी अब लोगों के सद्विवेक पर टिकी हुई है।

मिट्टी की पोषकता

मिट्टी की पोषकता क्या होती है? तात्पर्य यह कि वास्तव में उपजाऊ शक्ति क्या है मिट्टी की? उसका भूमि पर, फसलों और पशुओं पर क्या प्रभाव पड़ता है। इस अध्याय में इन्हीं बातों का अध्ययन करेंगे। प्रकृति के दृष्टिकोण से ही हम मिट्टी की उपजाऊ क्षमता को समझ सकते हैं। इस अध्ययन में साधरणतया सांख्यिकी शास्त्र का उपयोग कर खेती की उपज के जो निष्कर्ष निकाले जाते हैं उनसे दूर रहकर स्वतंत्र रूप से मिट्टी की उपजाऊ क्षमता को अंकना उपयुक्त होगा। दूसरे शब्दों में कृषि विज्ञान के अलग अलग विभाग करने के बजाय खेती को समग्र रूप से समझकर उसकी समस्याओं को समझना बेहतर होगा।

हमारे जीवनचक्र के सभी पहलू एक दूसरे से जुड़े होते हैं और वे प्रकृति की क्रियाओं पर निर्भर रहते हैं। सभी पहले महत्वपूर्ण होते हैं जिसमें से किसी एक को निकालना संभव नहीं होता। इसी प्रकार अधिक उपज की अपेक्षा उस उपज की गुणवत्ता को समझना अधिक महत्वपूर्ण है। व्यापार में नफे नुकसान का हिसाब रखते समय हम रोजमेल (बैलेंस शीट) बनाते हैं कंपनी की व्यवस्था और उसकी कार्यप्रणाली का भी विचार करते हैं। यह नियम मिट्टी की उपजाऊ क्षमता पर भी लागू होता है। हमें पूरे वन का विचार करना चाहिए, वन के किसी एक वृक्ष का नहीं।

जीवन के दो घटक होते हैं, वृद्धि और अपक्षय और ये दोनों घटक एक दूसरे के पूरक होते हैं।

पहले वृद्धि की बात करते हैं। उत्पादन मिट्टी से होता है। उसमें से पशु आहार बनता है। फसल और जानवर मनुष्य का भोजन है, शरीर में ही उनका पाचन होता है। मनुष्य का स्वास्थ्य और रोगमुक्त शरीर ही विकास का मुख्य ध्येय होता है। मिट्टी से निकल कर मानव तक पहुँचने वाली यह विकास की शृंखला अटूट, अखंड होती है, होनी चाहिए। यह एक दूसरे से जुड़ी हुई है।

मानव शरीर की बढ़वार सूर्य की ऊर्जा से होती है, पत्तियों में मौजूद हरे

ह्यूमस का महत्व

खेत की मिट्टी में ह्यूमस नामक पदार्थ की मौजूदगी से मिट्टी के कणों के बीच उचित अंतर रखा जाकर वहाँ वायु का संचार भली प्रकार होगा और मिट्टी की सभी क्रियाएँ सुचारू रूप से चलेंगी। इसके विपरीत मिट्टी में ह्यूमस की कमी से मिट्टी के कणों के बीच रिक्तता नहीं होगी, उनमें वायु का संचार नहीं होगा और पौधों की बढ़वार रूक जाएगी। इसलिए मिट्टी में ह्यूमस का होना आवश्यक है।

ह्यूमस अन्य कारणों से भी महत्वपूर्ण है। ह्यूमस की मौजूदगी से मायकोरायजा सूक्ष्म जीवाणुओं की क्रियाशीलता बढ़ती है। इन सूक्ष्म जीवाणुओं और जड़ों की कोशिकाओं में आपस में क्या लेन-देन होता है यह समझना मुश्किल है मगर इसका लाभ पौधों को मिलता है यह समझा जा सकता है। मायक्रोस्कोप में देखकर जड़ों की कोशिकाओं का अध्ययन करने से समझ में आता है कि वहाँ पाचन क्रिया कैसे होती है। यह भी दिखाई देगा कि वे कोशिकाएँ सूक्ष्म जीवाणुओं को समाप्त कर देती हैं। उनमें से ही पौधों को कार्बोहायड्रेट और प्रोटीन्स प्राप्त होते हैं। इसका अर्थ यह हुआ कि पत्तियों को मिलने वाला भोजन मिट्टी में उपस्थित सूक्ष्म जीवाणुओं की पाचन क्रिया पर निर्भर करता है। दूसरे शब्दों में मनुष्य का भोजन भी इसी प्रक्रिया पर निर्भर है। इस प्रकार सफल खेती के लिए दोनों प्रक्रियाएँ-वृद्धि और अपक्षय जरूरी हैं। पौधों की, फसल की बढ़वार तेजी से चाहिए तो मिट्टी में जैविक पदार्थों के अपक्षय की रफ्तार भी तेज करनी होगी। अगर यह नहीं होता है तो खेती और खेतीहर दोनों का अंत सुनिश्चित समझें।

वॉकमन नामक वैज्ञानिक ने मिट्टी के महत्वपूर्ण घटक ह्यूमस का वर्णन इस प्रकार किया है :

वनस्पति, पेड़ पौधों और प्राणियों के अवशेष से सूक्ष्मजीवाणुओं द्वारा प्राणवायु की उपस्थिति अथवा अनुपस्थिति में तैयार किए गए बादामी अथवा काले रंग के निराकार जटिल पदार्थ को ह्यूमस कहते हैं। यह पदार्थ जैविक खाद, सड़े हुए तिनके-पत्तियों और जल भंडारों की तली में मौजूद होता है। इसका पुनः विघटन संभव नहीं है, यह पानी में घुलनशील नहीं होता परंतु कुछ विम्ल (क्षारीय)

रंग के क्लोरोफिल के माध्यम से इस ऊर्जा का निर्माण होता है। वातावरण से कर्ब (कार्बन), प्राणवायु, जल और भूमि से जरूरी खनिज और सूक्ष्म तत्व लेकर हरी पत्तियाँ मानव के लिए अन्न का निर्माण करती हैं। हरी पत्तियों की ताजगी अत्यंत महत्वपूर्ण होती है। वही पृथ्वी के, मानव के लिए अन्न और अन्य सभी क्रियाकलापों का केन्द्र बिन्दु होता है। इसके अतिरिक्त अन्य कोई वैकल्पिक अन्न उपलब्ध नहीं है। हरी पत्तियों और सूर्य की रोशनी के बिना व्यापार व्यवसाय, उद्योग, हमारा आपका सभी कुछ व्यर्थ है।

हरी पत्तियों के सभी क्रियाकलाप किस वजह से होते हैं? मिट्टी की उपजाऊ क्षमता और पौधों की जड़ों के क्रियाशील रहने से ही ना? जड़ों की कार्यक्षमता भी दो बातों से संभव है:-

1. जड़ों पर उपस्थित रोमों (केशमूल) और मायकोरायजा नामक सूक्ष्मजीवों के साथ उनके सहजीवन से उत्पन्न मिट्टी की ऊपरी सतह के कणों के बीच फसलों के परिपक्व होने तक अटूट रहता है। मिट्टी के कणों की बाहरी सतह पर उपस्थित नमी ही इस प्रक्रिया को संभव बनाती है। इसी नमी की उपस्थिति में मिट्टी के अन्य सूक्ष्मजीव, बैक्टीरिया आदि भी कार्यक्षम रहते हैं।

मिट्टी को पौधों से जोड़ने का काम जड़ों पर उपस्थित यही रोम (केशमूल) करते हैं। यही रोम नई जड़ों की उत्पत्ति का माध्यम होते हैं। इन रोमों का काम होता है मिट्टी के कणों की बाहरी दीवारों से नमी और सभी पोषक तत्व लेकर ऊपर पत्तियों को पहुँचाना। इसके लिए उन्हे प्राणवायु की भी आवश्यकता पड़ती है। इस क्रिया से कार्बन डाई आक्साईड गैस उत्पन्न होती है। प्राणवायु और कार्बन डाई आक्साईड की हिस्सेदारी को सीमित करने के लिए मिट्टी के कणों के बीच की रिक्तता और अंतरिक्ष का संबंध स्थापित होना जरूरी है। मिट्टी खुली, छितरी होनी चाहिए और इसके लिए खेत की जुताई-गुड़ाई महत्वपूर्ण है।

मिट्टी के अन्दर कार्यरत सूक्ष्मजीवों में क्लोरोफिल नामक हरित द्रव्य उपस्थित नहीं होता और इन्हे अंधेरे में ही काम करना पड़ता है जिसके लिए उन्हे हमेशा ऊर्जा की आवश्यकता होती है। यह ऊर्जा तिनके-पत्तियों के विगलन से उत्पन्न होती है।

द्रवों में यह तुलना में ह्यूमस में कर्ब (कार्बन) अधिक मात्रा में उपस्थित होता है । औसतन ह्यूमस में कर्ब 55 से 58 प्रतिशत होता है जबकि नन्न की मात्रा 3 से 6 प्रतिशत होती है । ह्यूमस का कर्ब नन्नजन अनुपात (सी:एन रेशो) 10:1 होता है ।

पौधों की ताजगी, पत्तियों की चमक, फूलों का गहरा रंग, चारों ओर फैली जड़ों का विस्तार आदि लक्षणों से मिट्टी में ह्यूमस की मौजूदगी का अंदाजा लगाया जा सकता है । ह्यूमस के कारण बीजों का विकास अच्छा होता है, ह्यूमस से उगाये गये अन्न का रंग, स्वाद, पोषकता बढ़ती है, अन्न की अवश्यकता कम होती है ।

ह्यूमसयुक्त मिट्टी में उगाए गए चारे से पशुओं की बढ़वार भली भाँति होती है उनका रंग, उनकी त्वचा चमकदार बनती है, उनकी आँखें भी तेजस्वी, चमकीली दिखाई देती हैं ।

कैसे टिकाऊ होगी पोषकता?

मानव ने खेती करना शुरू किया, पशुपालन बढ़ाया और प्रकृति के चक्र में हस्तक्षेप शुरू हुआ । खाद्यान्न उगाने और ऊन, चमड़ा तथा कपास का धागा और कपड़ा इन सबके लिए मिट्टी की उपजाऊ क्षमता का शोषण हुआ । उसकी पूर्ति जैविक खाद के उपयोग से की जाने लगी या फिर नई भूमि हाँककर पश्चिम के देशों की औद्योगिक क्रांति का पेट भरने लगा ।

इसी के साथ साल दर साल बढ़ रही जनसंख्या का पेट भरने के लिए जंगल काटे जा रहे हैं । कुछ स्थानों पर लगातार खेती से अनुपयोगी हुई जमीन को जंगल लगाकर उपयोगी बनाया गया है । ऐसी घटनाएँ कभी-कभार होने वाले युधों के कारण भी घटती हैं । पश्चिमी देशों में तेजी से बढ़ रहे उद्योगों की ओर जाने लगे । शहर बढ़ते गए वैसे उनकी भूख भी बढ़ती गई । इसके लिए अधिक खाद्यान्न तेजी से पैदा करने के लिए रासायनिक उर्वरकों की जरूरत पड़ने लगी । कुछ स्थानों पर दोनों तरह की खाद का उपयोग होने से खेती का संतुलन बिगड़ता गया ।

कैसे बनती है जैविक खाद और कैसे वह फसलों को मिलती हैं?

1. खेत की जुताई करते समय पिछली फसल के अवशेष-जड़े, टूंठ, तने,

पत्तियाँ आदि मिट्टी में गड़ जाते हैं और सङ्कर मिट्टी में मिलते हैं ।

2. पोखर और छोटे तालाबों के पानी पर तैरने वाला नीला-हरे रंग का शैवाल (काई)

3. चारागाहों से प्राप्त सड़ा-गला चारा
4. पशुओं का मूत्र
5. पशुओं का गोबर
6. घरों में निकला और शहरी कचरा
7. उद्योगों से निकला कचरा
8. मानव मल

9. नदी नालों और समुद्र में उगा हुआ धास चारा, फसलों की कटाई और गहाई के उपरांत पौधों की जड़ें भूमि में रह जाती हैं । वे सङ्कर गलकर बनी जैविक खाद मिट्टी में मिल जाती हैं । इस खाद के साथ बातावरण से अवशोषण कर प्राप्त सूक्ष्म जीवाणुओं की खाद मिलकर मिट्टी को पोषक बनाती है जिससे अच्छी उपज प्राप्त होती है ।

उक्त वर्णित जैविक खाद के प्रकार महत्वपूर्ण होते हुए भी वास्तव में अनेक अड़चनों के कारण खेती में उनका उपयोग हो नहीं पाता । इसी के परिणामस्वरूप लाईबेग नामक वैज्ञानिक की सिफारिश के अनुसार जैविक खाद की आपूर्ति में आई कमी को रासायनिक उर्वरकों के उपयोग से पूरा करने की शुरुआत हुई । परंतु जैविक खाद में उपस्थित मायकोरायजा जैसे जीवाणुओं की पूर्ति रासायनिक उर्वरकों द्वारा किया जाना संभव नहीं है ।

इन्दौर प्रणाली से निर्मित जैविक खाद

वर्ष 1924 और 1931 के बीच इन्दौर में स्थापित आय पी आय (इन्स्टिट्यूट ऑफ प्लान्ट इन्डस्ट्रीज) अनुसंधान केन्द्र में पशु और वनस्पति के अवशेषों के उपयोग से जैविक खाद बनाने की प्रणाली विकसित की गई । इस संस्थान की स्थापना के लिए इन्दौर के होलकर दरबार ने स्थान व जमीन उपलब्ध कराये जिसके प्रत्युपकार में इस प्रणाली को “इन्दौर मेथड ऑफ कम्पोस्ट मेकिंग” यह नाम दिया गया ।

अल्बर्ट हॉवर्ड को यह प्रणाली विकसित करने में 7 वर्ष का लंबा समय लगा । परंतु इसके पहले भी 25 वर्षों के लंबे अंतराल तक उन्होंने इस तकनीक

पर अनुसंधान कर इसके अनुभव लिये थे। इस अनुसंधान के दौरान उन्होंने अनुभव किया कि फसलों, पशुओं और मनुष्य की रोगग्रसिता का मिट्टी की उपजाऊ शक्ति के साथ सीधा संबंध होता है।

जैविक खाद निर्माण करने की प्रणाली विकसित करने का एक और उद्देश्य था। पूसा के कृषि अनुसंधान केन्द्र पर पौध प्रजनन कार्य के दौरान वर्ष 1905 से 1924 के 19 वर्षों के अनुभवों ने उन्हे यह भरोसा दिलाया था कि मिट्टी में ह्यूमस की भरपूर उपलब्धि से ही उन्नत किस्मों से अच्छी उपज मिलती है। उन्नत किस्मों के बीज से मात्र 10 प्रतिशत उपज में बढ़ोत्तरी प्राप्त की जा सकती है जबकि मिट्टी में ह्यूमस की भरपूर मात्रा होने पर उन्नत किस्म से 100 प्रतिशत अधिक उपज मिल सकती है। ह्यूमस के बिना 10 प्रतिशत अतिरिक्त उपज प्राप्त करने की जद्दोजहद से मिट्टी की उपजाऊ क्षमता पर गंभीर प्रभाव पड़ता है। दूसरे शब्दों में मिट्टी की उत्पादन क्षमता ही उन्नत बीज के स्थान पर अधिक उपज देने में सक्षम होती है।

वर्ष 1918 के आते आते इन दो विचारधाराओं से यह सुनिश्चित हुआ कि कृषि अनुसंधान में काफी घालमेल है और अनुसंधान केन्द्रों द्वारा अपने कार्यक्रमों को सुधारना जरूरी है। पौध प्रजनन शास्त्र (प्लांट ब्रीडिंग), रोग शास्त्र (प्लांट पैथॉलॉजी), कीटविज्ञान (एन्टोमोलॉजी) तथा अन्य विभागों को बंद करना होगा। उपजाऊ मिट्टी और स्थानीय किसानों द्वारा की जाने वाली परंपरागत खेती का विचार करना पहली आवश्यकता है। पूसा कृषि अनुसंधान केन्द्र इतनी गंभीरता से इन मुद्दों पर विचार ही नहीं कर सकता क्योंकि खेतों में जहाँ भी कचरा दिखाई देता है वहीं उसे सड़ाकर मिट्टी की उपजाऊ क्षमता बढ़ाने का विचार वहाँ अलग अलग विभागों में कार्यरत वैज्ञानिकों को कभी छू भी नहीं सकेगा। केन्द्र में स्वतंत्र रूप से विचार कर काम करने की आजादी ही नहीं होती। इसलिए इन अनुसंधानों से नया कुछ हासिल होगा इसकी आशा रखना व्यर्थ है। स्वतंत्र विचार धारा पर अनुसंधान करने हेतु एक अलग संस्थान गठित करने का अब समय आ गया है। स्वतंत्र सोच के बिना विज्ञान ही नहीं। अल्बर्ट हॉवर्ड के इन विचारों को और उनके द्वारा दिए गए प्रयासों को अंततः सफलता मिली और भारत के मध्य प्रांत में केन्द्रीय कपास समिति के सहयोग से सन् 1924 में इन्स्टिट्यूट ऑफ प्लांट इंडस्ट्रिज की स्थापना हुई। इन्दौर के महाराज ने उन्हे 120 हेक्टर भूमि 99 वर्ष के पट्टे पर प्रदान की। अंग्रेज शासित भारत के मध्य वाले मध्य देश में ऐसे कृषि अनुसंधान

केन्द्र की आवश्यकता महसूस की जा रही थी। आई पी आई के खुल जाने से दो महत्वपूर्ण उद्देश्य पूरे हो गए। एक-इस केन्द्र में पूसा अनुसंधान केन्द्र जैसे अलग विभाग बैंटे हुए नहीं थे और दो-इस केन्द्र में पूरी तरह मिट्टी की उपजाऊ शक्ति पर केन्द्रित अनुसंधान कार्य किया जाना था।

जैविक खाद बनाने के लिए कच्चे माल के रूप में वनस्पति और प्राणियों के अवशेष मिलाकर मिट्टी की अभिक्रिया अम्लीय (एसीडीक) अथवा विम्लीय (एल्कलाईन क्षारीय) न रखकर संतुलित रखना संभव हुआ।

जैविक खाद बनाने के लिए जरूरी कच्चा माल ठंडी जलवायु वाले इंग्लैंड जैसे देशों में भले ही उपलब्ध न हों परंतु फसलों का भूसा, पैरा, कडबी, अनुपयोगी धास चारा, सड़ी सब्जियाँ, नदी-नालों में उगे खरपतवार, समुद्री खरपतवार व काई, सड़े आलू, खेत का कचरा, कपास पौधे की डंडियाँ, मूँगफली के छिल्के, केले के पत्ते आदि सभी कुछ भारत जैसे समशीतोष्ण जलवायु वाले देशों में भी सभी प्रकार का जैविक कचरा उपलब्ध होता है, साथ में गन्ने की पत्तियाँ और खोई भी।

इस सभी सामग्री का उपयोग दूधारु पशुओं के लिए बिछावन समान इस तरह करना चाहिए कि उसमे कार्बन नत्र का अनुपात 33:1 रहे। इससे बिछावन में सूक्ष्म जीवाणुओं का प्रवेश आसानी से होता है। ये सूक्ष्म जीवाणु पहले पेड़ पौधों की छाल और शाखाओं के रेशों को खाकर गला देते हैं। इसी बजह से इन्दौर के किसान कपास के पौधे, दलहनों की संटियाँ रास्ते व सड़क पर बिछाकर रखते हैं जिससे आने जाने वाले वाहन उन्हे कूटकर उनका भूसा बना दें।

इन्दौर प्रणाली से खाद निर्माण और उपयोग के अनुभव

गड्ढे खोदने की मेहनत बचानी हो अथवा उन जगहों पर जहाँ गड्ढे खोदना संभव न हों वहाँ ढेर पध्दति से भी खाद बनाई जा सकती है। केवल इन ढेरों को बरसात में पानी से तथा तूफान से बचाना जरूरी होता है। ठंडे प्रदेशों में यह ढेर उत्तर दक्षिण दिशा में बनाने चाहिए। जहाँ संभव हो वहाँ किसी दीवार के सहारे ढेर बनाना चाहिए। ढेर की सामग्री को जल्दी सड़ाना हो तो ढेर बहुत बड़ा बनाएँ।

आसाम तथा श्रीलंका जैसे भू-भागों में जहाँ बारिश काफी अधिक होती है, वहाँ ढेर को धास चारे से ढँकना चाहिए। एक दो वर्षों में यह धास चारा भी सड़ कर खाद बन जाएगा।

गड्ढे अथवा ढेर भरने की विधि

साधारणतया एक वर्ष में एक हजार मेट्रिक टन जैविक खाद इन्दौर प्रणाली से बनानी हो उसके लिए गड्ढे का आकार 9 मीटर लंबा, 4.20 मीटर चौड़ा और 0.90 मीटर गहरा खोदना होगा। गड्ढे की दीवारें अंदर की ओर ढालू रखनी होगी। गड्ढे की गहराई कितनी हो यह महत्वपूर्ण है। गड्ढे में वायु का प्रवेश केवल 60 सेंटीमीटर तक ही संभव होता है, अतः गड्ढे में जैविक सामग्री भरने के बाद सतह पर प्रति 1.2 मीटर की दूरी पर लोहे की सब्बल से बड़े बड़े छेद करने होंगे जिससे वायु का प्रवेश 90 सेंटीमीटर गहराई तक सुनिश्चित किया जा सके।

9 मीटर लंबे गड्ढे के 1.5 मीटर आकार के 6 भाग बनाने चाहिए। इनमें से 1 भाग कच्ची सामग्री को मिलाने के लिए खाली छोड़ना होगा जबकि दूसरे भाग से गड्ढे को भरना शुरू करना चाहिए। पहले साग सब्जियों के अवशेष, छिलके आदि 15 सेंटीमीटर की ऊँचाई तक भरें। इसके ऊपर 5 सेंटीमीटर ऊँची मिट्टी अथवा गोबर खाद की परत जमाएं। इस परत के ऊपर गोमूत्र, राख तथा थोड़ी

मिट्टी का मिश्रण भरें। यह परत ज्यादा ऊँची न हो अन्यथा वायु का संचार बाधित होगा। इस सतह पर पानी छिड़ककर उसे गीला कर लें। इस तरह परत के ऊपर परत जमाकर भूमि की सतह के ऊपर 1.5 मीटर ऊँचाई तक भरते चलें। इसके उपरांत इस भाग में सब्बल से 10 सेंटीमीटर ब्यास के गहरे छेद करें जिससे वायु का प्रवेश अंदर तक हो सके। इस प्रकार एक भाग भरने के उपरांत शेष 4 भाग भी इसी प्रकार भर लें। याद रहे, गड्ढे का पहला भाग खाली ही रखना है। सभी 5 भाग पूरी तरह भरने पर सड़ने की क्रिया शुरू होकर दिखाई देगी।

गड्ढे में नमी बनाए रखना आवश्यक होता है। इसके लिए ग्रीष्मऋतु में सुबह शाम पानी का छिड़काव करें। गड्ढे पूरे भरने पर पहले तीन बार पानी से सीचे। पहली बार गड्ढा भरते समय, दूसरी बार गड्ढा पूरा भरने पर और तीसरी बार इसके 12 छोटे घंटे बाद सुबह के समय। ऐसा करने से पानी अंदर तक पहुँचकर कचरे को नम रखेगा।

पानी देना - गड्ढे में भरी गई सामग्री, मौसम और बारिश के तेवरों पर निर्भर करता है। भरी गई सामग्री हरी ताजी हो तो पानी कम लगता है। बारिश में बिलकुल जरूरत नहीं पड़ती। सड़ने के लिए भरा गया कचरा पूरी तरह गीला नहीं चाहिए, लेकिन बिलकुल सूखा भुक्त भी नहीं होना चाहिए। इन्दौर में पूरी तरह जैविक सामग्री सड़ाने के लिए लगभग 900 से 1350 लीटर पानी प्रति मीटर चाहिए। जब सड़ने की प्रक्रिया रुक जाती है तब सामग्री पर फूँद जमनी शुरू हो जाती है, यह ह्यूमस बनने की पहली सीढ़ी होती है। यह जितनी शीघ्र प्रारंभ हो उतना अच्छा, साधारणतया गड्ढा पूरी तरह भरने के 3-4 दिन बाद यह शुरू हो जाता है। सड़ने की प्रक्रिया रुक कर ह्यूमस बनने की एक और निशानी है 1.50 मीटर ऊँचा ढेर दबकर 90 सेंटी मीटर ऊँचा रह जाता है। इस स्थिति में दो बातें पर ध्यान देना जरूरी है।

(1) पानी ज्यादा होने पर वायु का संचार बाधित होने से अवायुवीय (एनएरोबिक) सड़न प्रक्रिया शुरू हो जाती है जिससे सड़ने की दुर्गंध आकर मक्खियों का प्रकोप होने लगता है। ऐसी स्थिति में कचरे को तुरंत उलटना-पलटना जरूरी हो जाता है और (2) पानी की कमी हो जाने पर सड़ने की प्रक्रिया धीमी

हो जाती है, ऐसी स्थिति में कचरे को गीला करना चाहिए ।

कचरे के सड़ने की प्रक्रिया सुचारू रूप से जारी रहे इसके लिए कचरे को उलटना पलटना जरूरी है । इसके लिए निम्नानुसार क्रम अपनाना चाहिए । पहली बार गड्ढे पूरी तरह भरने के 2-3 सप्ताह बार कचरे को पलटना चाहिए । इसके लिए गड्ढे का पहला भाग खाली छोड़ा जाता है । उस भाग में भरे हुए पहले भाग का कचरा, दाँते वाले फावड़े से ढकेल देना चाहिए । कचरे को अलट-पलटकर भरना चाहिए जिससे उसमें वायु का संचार भलीभांति होकर सड़ने की प्रक्रिया जारी रहे । इसी तरह आवश्यक हो तो पानी सींच कर कचरे को नम रखें । इस तरह अगले भाग का कचरा पिछले भाग में पलटते रहें । इससे अंतिम छठवाँ भाग खाली रहेगा ।

दूसरी पलट :

5 सप्ताह बाद कचरे को दूसरी बार पलटना होगा । इसके लिए पहले की तरह ही प्रक्रिया दोहरानी होगी । अब कचरे पर फफूंद सक्रिय होती दिखाई देगी और कचरे का रंग काला और अवस्था भुरभुरी होगी । अब इस पर जीवाणु सक्रिय होकर सड़ने की प्रक्रिया अवायुक्ति (एनएरोबीक) होगी । आवश्यकता हो तो सड़ने की गति बढ़ाने के लिए कचरे को थोड़ा पानी सींचकर नम करें । इसके लिए सुबह और शाम का समय उपयुक्त होगा । ध्यान देने वाली बात है कि जैसे जैसे कचरा सड़ने की प्रक्रिया में तेजी आती है वैसे वैसे पानी की आवश्यकता कम होगी क्योंकि सड़ रहे कचरे में पानी को पकड़कर रखने वाले सूक्ष्म जीवाणु भरपूर संख्या में आ गए होंगे ।

दूसरी बार कचरे को पलटने पर सड़न क्रिया बंद होकर खाद के पकने की क्रिया शुरू होगी । इसी समय वातावरण से नवजन खींचने की प्रक्रिया शुरू होती है । अभी तक खाद में उपस्थित 25 प्रतिशत नवजन वातावरण से आकर शामिल हुआ होता है ।

गड्ढे का तापमान नापने पर भी सूक्ष्म जीवाणुओं की सक्रियता का अंदाजा समझा जाता है । पहले तापमान 65 डिग्री सेल्सियस तक ऊपर जाता है जो बाद में 30 डिग्री सेल्सियस तक उतर जाता है । यह स्थिति लगभग 90 दिनों में बन जाती है । उच्च तापमान पर सक्रिय बने सूक्ष्म जीवाणु 40 से 55 डिग्री सेल्सियस तक

भी सक्रिय बने रहते हैं । खाद को पलटने से उसमें हवा का संचार होता है और तापमान फिर कुछ बढ़ जाता है ।

ह्यूमस के बनने की प्रक्रिया 3 माह में पूरी होकर खाद तैयार हो जाती है । सूक्ष्म जीवाणु अपना काम कर चुके होते हैं, अब खाद को खेतों में वापरने का समय आ गया है । इस परिपक्व खाद को ढेर लगाकर रखा जाए तो वह खराब होने की संभावना होती है । सूक्ष्म जीवाणु मरने लगते हैं, उसमें नाईट्रोट बनने लगता है, ऐसा शायद बारिश की वजह से खाद गीली होकर उसमें अवायुक्ति प्रक्रिया प्रारंभ हो सकती है । तैयार खाद किसान की पूँजी है, उसे वह तत्काल उपलब्ध होनी चाहिए । तैयार खाद का भंडारण करना जरूरी हो तो उसे ढंककर रखें और बीच बीच में उलटते पलटते रहें ।

खाद का उत्पादन

खाद का उत्पादन अनेक बातों पर निर्भर करता है । इन्दौर आई पी आई में गोबर और गोमूत्र भरपूर मात्रा में उपलब्ध रहता था । वहाँ 50 गाड़ी उत्पादन होता था (एक गाड़ी में 0.75 क्यू. मीटर) अर्थात् 38 क्यूबिक मीटर यह एक बैलजोड़ी से मिलने वाली दौलत थी । साग भाजी अधिक होती तो उत्पादन दो गुना प्राप्त हो सकता था ।

कम्पोस्ट खाद में नमी 30 से 60 प्रतिशत पानी की मौजूदगी समझे बिना कुल उत्पादन वजन की गिनती में संभव नहीं था । 1.5 क्यूबिक मीटर खाद का वजन लगभग 1 मिट्रिक टन होता है ।

इन्दौर प्रणाली से पैदा किए गए खाद का व्यावहारिक उपयोग

सन् 1931 में इन्दौर प्रणाली से तैयार जैविक खाद के बारे में लेखों का प्रकाशन शुरू हुआ और सभी अनुसंधान केन्द्रों पर इसके प्रयोग किये जाने लगे । 8 दिसम्बर 1933 के दिन लंदन की “जर्नल ऑफ दी रॉयल सोसायटी ऑफ आर्ट्स” पत्रिका में अल्बर्ट हॉवर्ड का जैविक खाद विषय पर भाषण छपा । इसके बाद 2 वर्ष में पत्रिका की 2 हजार प्रतियाँ छपीं और बिक गईं । सन् 1935 तक इन्दौर प्रणाली का पूरे विश्व में प्रचार हुआ । उसके लाभकारी परिणाम भी सामने आने लगे । 13 नवम्बर 1935 को उनके दूसरे लेख का प्रकाशन इसी जर्नल में हुआ । इस लेख की 6425 प्रतियाँ बांटी गईं, इसके अगले वर्ष 7500 अन्य

प्रतियाँ, फिर जर्मनी और स्पेन में भी लेख छपे ।

इन दो लेखों की वजह से इन्दौर प्रणाली से जैविक (कम्पोस्ट) खाद बनाने का पूरे विश्व में प्रचार हुआ । इसके उपरांत इंग्लैंड के कृषि मंत्रालय ने इस प्रणाली को मान्यता दी ।

इन्दौर प्रणाली से बनाई गई जैविक खाद का पहला परीक्षण अफ्रीका में कॉफी की फसल पर किया गया ।

कॉफी

यह खाद अफ्रीका में इतनी लोकप्रिय हुई कि 28 माह में ही 1660 मिट्रिक टन खाद बिक गई । कॉफी उत्पादन खर्च कम हुआ और कॉफी की उपज बढ़ गई । इसे देखने के लिए रोडेशिया, युगांडा, तांगानिया और बेल्जियम कांगो के किसान आये थे ।

चाय

कॉफी के साथ ही चाय के लिए भी इन्दौर कम्पोस्ट की माँग शुरू हो गई थी । उस समय फिनले, डंकन जैसी कंपनियाँ भारत में अग्रणी थीं । 1934 में डंकन कंपनी के सिल्हट, ककहार, आसाम दर्दा, डुआरस, तराई और दर्जिलिंग जिलों में लगभग 53 केन्द्रों में 2000 मिट्रिक टन खाद का उपयोग हुआ । 1936 आते आते डंकन कंपनी हर साल 15 हजार मि.टन इन्दौर खाद पैदा करने लगी थी । यह उनकी पहली पसंद बनी । डंकन के बाद फिनले कंपनी ने भी इन्दौर खाद माँग गई । इन दो बड़ी कंपनियों के उपयोग से चाय उद्योग में जैविक खाद का महत्व समझ में आने लगा । मजेदार बात यह है कि चाय बागानों में जैविक खाद बनाने के लिए आवश्यक कचरा भरपूर मात्रा में उपलब्ध होता है । सन् 1939 तक चाय बागानों में इन्दौर प्रणाली से बनी जैविक खाद की कुल खपत सालाना दस लाख मे.टन तक बढ़ गई थी । इसके उपरांत न्याज़ीलैंड और केन्या के चाय बागानों में भी इन्दौर जैविक खाद का उपयोग बढ़ गया ।

इस समय भारत के चाय बागानों के कृत्रिम रासायनिक उर्वरक के अनेक ग्राहक थे, सल्फेट औफ अमोनिया का प्रचुर मात्रा में उपयोग होता था । जैविक खाद के कारण उन्हें परेशानी होने लगी । आसाम के टोकलाई और बोरमेरा इन दो बागानों में ही रासायनिक उर्वरकों की काफी खपत होती थी । मिट्टी में अम्लीयता

बढ़ने से चाय की उपज बढ़ती है और सल्फेट औफ अमोनिया के उपयोग से मिट्टी में अम्लीयता का इजाफा होता है ।

इन दो किस्मों के उर्वरकों के उपयोग से एक बात सामने आई । जिन चाय बागानों में सल्फेट औफ अमोनिया का उपयोग होता था उन्हें इन्दौर जैविक खाद की अहमियत तो समझ में आ रही थी इसलिए उन्होंने बीच का रास्ता निकाला । वे दोनों प्रकार के उर्वरक उपयोग में लाने लगे । अब मिट्टी ही तय करेगी क्या सही है ।

इससे एक बात साफ हुई, जिन बागानों में जैविक खाद का उपयोग हुआ वहाँ जड़ों पर मायकोरायजा जीवाणुओं की ज्यादा वृद्धि हुई और रायझोक्टोनिया (जड़सङ्ग) बीमारी पूरी तरह नियंत्रण में आई । साधारणतया चाय बागान में प्रति हेक्टर 12 से 25 मे.टन जैविक खाद का उपयोग होता है ।

जहाँ चाय उगाई जाती है वहाँ काफी बारिश होती है जिससे वहाँ हरी कार्द भी खूब होती है और जैविक खाद बनाने में उसका भी काफी उपयोग किया जा सकता है ।

सिलोन में जैविक खाद बनाने में पशुओं के अवशेषों (गोबर आदि) का उपयोग नहीं किया गया । इसका परिणाम यह हुआ कि खाद अच्छी नहीं बनी जिससे यह सिद्ध हुआ कि पशुओं के बिना खेती संभव नहीं है ।

दार्जिलिंग के जिन चाय बागानों में संश्लेषित उर्वरकों का उपयोग किया गया वहाँ चाय पत्ती की गुणवत्ता बिगड़ गई, खास कर गुमती और जुंगपन के बागानों में यह असर देखने को मिला ।

गन्ने

गन्ने से एक समान कचरा प्राप्त नहीं होता है । जहाँ गुड़ बनता है वहाँ गन्ने की थोड़ी पत्तियाँ और राख उपलब्ध होती है जबकि शकर कारखानों से प्रेसमड़ मिलता है ।

गन्ने की खेती में पहले केवल जैविक खाद का उपयोग होता था परंतु बाद में आमतौर पर रासायनिक उर्वरक वापरे जाने लगे । वहाँ कीट और रोगों का प्रकोप बढ़ता गया । दूसरा असर यह हुआ कि गन्ने की जिन किस्मों को रासायनिक उर्वरक दिए जाने लगे वे किस्में शीघ्र ही समाप्त होने लगी ।

उत्तर प्रदेश में हजारों वर्षों से गोबर खाद से पकने वाले गन्ने पर कभी कीट व्याधियों का प्रकोप नहीं देखा गया। किसी कीटशास्त्री अथवा रोग वैज्ञानिक के वहाँ जाने की जरूरत नहीं पड़ी।

गन्ने की जिन किस्मों में रासायनिक उर्वरकों का उपयोग किया जाता है उनमें कुपोषण पैदा होता है और वह किस्म शीघ्र समाप्त हो जाती है। उसके गन्नों में शकर और पलाश कभी भी संगठित नहीं हो पाते। गन्ने की जड़ों के आसपास मायकोरायझा की उपस्थिति से सब सामान्य हो जाता है। जैविक खाद के उपयोग से मायकोरायझा का संवर्धन होता है।

सन् 1935 में तांबे और यशवंत वाड़ ने गन्ने पर किये गए परीक्षणों से सिद्ध हुआ कि गन्ने के कचरे को पहले सुखाकर फिर गोबर व गोमूत्र के साथ प्रेसमड से सड़ाया जाता है तो उसमें फफूँद और सूक्ष्म जीवाणु भलीभाँति कार्यक्षम होते हैं।

गन्ने के खेत में हवा का संचार विकसित किया जाए, पानी की निकासी भलीभाँति हो और गन्ना रोपणी करने से 3 माह पूर्व जैविक खाद का उपयोग किया जाए तो उपज अच्छी मिलती है।

कपास

इन्दौर के आय पी आय के खेतों में कपास फसल पर जैविक खाद के परीक्षण प्रारंभ करने से पहले भारत में कपास उत्पादन का गहन अध्ययन किया गया था। इसी तरह कपास अनुसंधान केन्द्रों का भी निरीक्षण किया गया। भारत में दो प्रमुख कपास उत्पादक क्षेत्र हैं, दक्षिण भारत और उत्तर-पश्चिमी भारत।

दक्षिण भारत के कपास उत्पादक क्षेत्रों में सभी ओर जैविक खाद का भरपूर उपयोग होता दिखाई दिया जिस वजह से वहाँ उपज भी अच्छी मिलती है, फसल पर कीट या बीमारियों का आक्रमण नहीं होता। परंतु जहाँ किसी भी खाद का उपयोग नहीं होता वहाँ जाहिर है उपज काफी कम मिलती है। थोड़ी बहुत सिंचाई से कुछ अच्छी उपज जरूर मिलती है।

उत्तर-पश्चिम भारत में सिंचाई की अच्छी व्यवस्था होने से उपज अच्छी मिलती है। यहाँ अमेरिकन कपास की किस्में नहीं पनप सकी। मिट्टी भलीभाँति ठीक थी परंतु उसमें वायु का संचार ठीक नहीं था जिस वजह से कपास देर से पक्व होती थी। इस मिट्टी में जैविक खाद की बहुत आवश्यकता थी।

भारत में कपास अनुसंधान में बहुत गफलत थी। मिट्टी में वायु का संचार और पानी का रिसाव कैसे हो इन समस्याओं के निदान कपास अनुसंधान केन्द्रों के पास नहीं थे। क्योंकि उन्हे मार्गदर्शन देने के लिए आवश्यक वैज्ञानिक सोच उपलब्ध नहीं था।

इन्दौर में जो जैविक खाद बनायी जाती थी उसमें कपास की डंडियों और सटीयों का उपयोग होता था। वापरने से पहले उन्हें तोड़ लिया जाता था।

पंजाब के माँटगोमरी जिले में सन् 1932 में इन्दौर जैसी एक संस्था का गठन हुआ। कर्नल कौल ने सबसे पहले कपास के खेत में इन्दौर खाद का उपयोग किया। इससे कपास की उपज में इजाफा हुआ। रेशे की गुणवत्ता भी सुधरी। कपास को मंडी में भाव अच्छा मिलने लगा। सिंचाई में 33 प्रतिशत की बचत हुई। अच्छी उन्नत किस्म की कपास के बीज का वहाँ उत्पादन शुरू हुआ।

इन्दौर प्रणाली की जैविक खाद के उपयोग से प्राप्त अनुभव

इंग्लैंड में की जा रही खेती का सबसे बड़ा दोष यह है कि उस देश में सभी कुछ अर्थात् पशु आहार, मुर्गे-मुर्गियाँ, बकरी, शूकर, दूध देने वाली गायें आदि के लिए आहार बाहरी देशों से आता है। हमारे यहाँ के शहरी लोगों के लिए जिस प्रकार हमारी उपजाऊ खेती पूरी तरह खाद्यान्न मुहैया नहीं कर सकती, लगभग वैसा ही हमारे पालतु पशुओं के लिए है। बाहर से आयात होने वाले पशु आहार का मुख्य घटक है मक्का। हमारे पशुओं के लिए क्या हमारे लिए भी आयात किया जाने वाला मक्का हलकी अनुपजाऊ खेती में उगाया गया होता है।

केनिया और रोडेशिया से आने वाली मक्का निकृष्ट किस्म की होती ही है, जिसे भी मक्का की खेती की जानकारी है वह समझता है इस पेटू फसल के लिए उपजाऊ जमीन कितनी आवश्यक है? इन दोनों देशों में उगाई जा रही मक्का की फसल को जब इन्दौर प्रणाली से बनाई गई जैविक खाद दी गई तो फसलें एकदम पनप गईं और अच्छी उपज प्राप्त हुईं।

रोडेशिया के बारे में एक मजेदार वाक्या हुआ। वहाँ मक्के के फूलों परस्ट्रायग्ना (स्ट्रायग्ल्यूटिया) नामक परजीवी पौधा आक्रमण करता था। इन्दौर जैविक खाद के कारण वह अपने आप गायब हो गया। अक्टूबर 1938 के रोडेशिया एग्रीकल्चरल जर्नल में टिमसन नामक वैज्ञानिक ने एक लेख लिखा है। प्रति हेक्टर 25 मे. टन की दर से खेत में डाले गए इन्दौर कम्पोस्ट के कारण यह परजीवी पूरी तरह नष्ट हो गया। इसके विपरीत जिस खेत में किसी खाद अथवा दवाई का उपयोग नहीं हुआ था वहाँ परजीवी ने मक्का की फसल को नष्ट कर डाला था। खेत के जिस छोटे भाग में इन्दौर कम्पोस्ट का उपयोग किया गया था वहाँ फिर से मक्का की फसल उगायी गई थी। जिस पर किसी कीड़े अथवा परजीवी का आक्रमण नहीं हुआ। दूसरे शब्दों में रोडेशिया के खेतों में जैविक खाद की कितनी आवश्यकता थी, यह कहने की जरूरत नहीं।

जिन देशों में इन्दौर कम्पोस्ट के उपयोग से मक्का की फसल उगाई जाती

है वहाँ फसल की कटाई के बाद उसे अच्छी कीमत मिलनी ही चाहिए। इस उत्तर मक्का के पोषण से पाले गए पशु ऐसे ही अच्छी सेहत के, तन्दुरुस्त ही निकलेंगे।

धान

दुनिया का सबसे महत्वपूर्ण खाद्यान्न है चावल, धान की रोपवाटिका में उत्तम दर्जे की जैविक खाद देने से फसल अच्छी ओजस्वी होती है।

दक्षिण भारत में निजाम राज्य के दिकपल्ली की श्रीमती केर इस महिला ने इन्दौर कम्पोस्ट का धान की फसल पर परीक्षण किया। इससे पहले उन्होंने अल्बर्ट हॉवर्ड के इस खाद की तारीफ में लिखा गया लेख पढ़ा था। उनकी प्रतिक्रिया थी, यह सज्जन अगर सच बोल रहे हैं तो इसका अर्थ यह हुआ कि अब भारतीय ग्रामीण क्षेत्र में आर्थिक क्रांति होने वाली है।

दुर्भाग्य से इन परीक्षणों के दौरान श्रीमती केर की मृत्यु हो गई। लेकिन 2 नवम्बर 1933 को उनके पति, माननीय जी.एम. केर ने जो चिट्ठी लिखी उसका मजमून ऐसा था -

हमारे धान के खेत के हमने तीन हिस्से किए। पहले हिस्से में हमने 3.75 सेंटीमीटर से 4.60 सेंटीमीटर ऊँची इन्दौर कम्पोस्ट की तह बिछाई, दूसरे हिस्से में साधारण जैविक खाद और तीन बटे आठ भाग इन्दौर कम्पोस्ट का मिश्रण फैलाया और तीसरे भाग में कोई खाद नहीं डाली।

आपको पत्र लिखने की जल्दी में धान के पैरा का वजन नहीं कर सके। 12 दिन पूर्व पहले हिस्से के धान की कटाई हुई, 2 दिन पूर्व दूसरे हिस्से और कल तीसरे हिस्से की कटाई की गई है। पहले हिस्से की धान सूख गई है लेकिन दूसरे और तीसरे हिस्से की फसल अभी गीली है। पहले भाग में पैरा खूब निकलेगा और हमारी भैंसों को भरपूर चारा मिलेगा यह निश्चित।

हमारे कुष्ट रोगियों के अस्पताल परिसर के 12 हेक्टर क्षेत्र में जहाँ हमने परीक्षण किये उसमें अगर आपके कम्पोस्ट का प्रयोग किया तो हमें धान कटाई के लिए अतिरिक्त 50-60 कुष्ट रोगियों की आवश्यकता पड़ेगी। आपकी वैज्ञानिक भाषा में शायद यह कथन उपयुक्त न लगे परंतु हमारे लिए यह एक समस्या है, ऐसा समझें।

10 अक्टूबर 1935 को उस अस्पताल से फिर अल्बर्ट हॉवर्ड के नाम एक

पत्र आया। वाष्प, बिजली और बेतार के तार वाले संदेश के साथ बिताने वाले जीवन के समान आशीर्वचन देने योग्य ऐसी आपका इन्दौर कम्पोस्ट है। उसके बिना अब हम यहाँ कुछ नहीं कर सकते हैं। इस खाद के कारण हमारा खेती के बारे में उत्साह फिर बढ़ गया है। हमारी 17.20 हेक्टर खेती पूरी तरह सिंचित है। तीन वर्ष पूर्व हमारी अवस्था दयनीय थी। कारण हमारी जमीन की ऊपरी सतह पर सफेद फिटकरी जैसी पटिटयाँ उभर रही थीं। उसमें से 10 हेक्टर क्षेत्र में मिट्टी काफी सुधर गई है और हमें वहाँ अच्छी उपज मिली है। गत कई वर्षों में हमें ऐसी उपज नहीं मिली थी। बाकी 6 हेक्टर क्षेत्र में धान अभी भी विरल विरल उगती है, क्योंकि वहाँ डालने के लिए हमारे पास पर्याप्त इन्दौर कम्पोस्ट उपलब्ध नहीं है। अब हम चरणोई की जमीन से खाद की व्यवस्था कर रहे हैं। खेत में मात्र 12.50 से.मी. ऊँची इन्दौर कम्पोस्ट की परत बिछाने पर तिगुनी-चौगुनी अधिक उपज मिलती है।

क्षेत्र	भाग 1	भाग 2	भाग 3
क्षेत्र	572.76 वर्ग मीटर	572.76 वर्ग मीटर	572.76 वर्ग मीटर
बोया गया बीज	2.724 कि.ग्रा.	2.724 कि.ग्रा.	2.724 कि.ग्रा.
धान की उपज	19.16 किंवंटल	10.71 किंवंटल	2.72 किंवंटल
पैरा पिंडी	13	106	40

दिक्कपल्ली प्रयोग के परिणाम

ये परिणाम बताते हैं कि रोपा गया धान अच्छी पैदावार देता है। रोपवाटिका (नर्सरी) में तरल पदार्थ (ह्यूमस) फसल के लिए कैसे उपजाऊ बनता है, क्या मायकोरायजा सूक्ष्मजीवाणुओं के कारण? यह अगर सच है तो ऊपर दर्शित परिणामों के निष्कर्ष समझना आसान है। अन्यथा गीले खेत में ह्यूमस से हरी पत्तीयों में प्रकाश संश्लेषण कैसे प्रभावित होता? जैविक पदार्थों का नाईट्रीफिकेशन 2 कारणों से संभव नहीं है:

(1) इस प्रक्रिया के लिए भरपूर हवा आवश्यक है।

(2) खेत में पानी के कारण नाईट्रेट का घोल पतला होगा। इसका अर्थ यह है कि मायकोरायजा सूक्ष्म जीवाणुओं के कारण उपज अधिक मिली।

27 अक्टूबर 1939 के दिन रोपाई के 116 दिन बाद हमारे यशवंत वाड़ ज्ञानुआ जिले से इन्दौर कम्पोस्ट डाले गए खेतों से कुछ धान के रोपे परीक्षण के लिए लेकर आए। 11 दिसम्बर 1939 के दिन डॉ. ईडा लेवीसान ने उनका सूक्ष्म निरीक्षण किया। इस निरीक्षण के परिणाम दिखाते हैं कि धान के खेत में भी मायकोरायजा सूक्ष्म जीवाणुओं का काफी बड़ा महत्व है। इन्हीं के कारण पौधे की जड़ों को ह्यूमस का लाभ मिलता है। अधिक उपज, कीट-व्याधियों से संरक्षण और धान की गुणवत्ता इन्हीं के कारण बढ़ती है।

साग सब्जियाँ

साग सब्जियों के खेतों में ह्यूमस की कमी हमेशा से रही है। पहले लंदन में सुबह-सुबह घोड़ागाड़ी में साग सब्जियाँ बिक्री के लिए मंडी में ले जाई जाती थीं तब वापसी में घोड़ों की लीद इन्हीं गाड़ियों में लदकर वापस आती थी। जब से भाप पर चलने वाली रेलगाड़ियाँ आई और घोड़ों की लीद गायब हुईं। साग सब्जी उगाने वाले छोटे किसान होने के कारण उन्हें गोबर खाद इकट्ठा करना कठिन हो गया। इस बजह से रासायनिक संश्लेषित उर्वरक साग सब्जी के खेतों में जाने लगे। इससे उपज तो बढ़ी परंतु सब्जियों की गुणवत्ता और उनकी टिकाऊ क्षमता में कमी आ गई।

जो साग सब्जियाँ एन पी के उर्वरकों के उपयोग से उगाई जाती हैं उन्हे पहचानना कठिन नहीं है। ऐसी सब्जियाँ कड़क, अधिक रेशेदार और रुखी होती। इनका स्वाद भी नहीं होता और वे बेस्वाद होती है। इसके विपरीत ह्यूमस पर उगाई गई सब्जियाँ नरम, कुरकुरी, और स्वादिष्ट होती हैं।

हमारे आहार शास्त्र में कृत्रिम, संश्लेषित और प्राकृतिक खाद में उगाई गई साग सब्जियों में क्या अंतर होता है यह रेखांकित कर हर स्कूल और घर घर में बच्चों को पढ़ाया जाना चाहिए। ऐसा करने पर बच्चों को होने वाली कई बीमारियाँ - सर्दी, जुकाम-खसरा जैसी बीमारियों की रोकथाम हो सकेगी।

शहरों में ऐसी उच्च श्रेणी की साग सब्जियाँ और फल कहाँ और कैसे उपलब्ध हो सकेंगे इस बात पर विचार करने से दो संभावनाएं उभरती हैं।

जहाँ भी संभव हो वहाँ सागसब्जियों और फलों के शहरी उद्यान स्थापित करने चाहिए। वहाँ शहर का सड़ने लायक जैविक कचरा, तिनके-पत्तियाँ एकत्रित

कर इन्डौर प्रणाली से कम्पोस्ट बनाकर उच्च श्रेणी की साग सब्जियाँ उगाई जा सकती हैं।

इंग्लैंड के लिंकनशॉर इलाके के सरफिलट गांव की इसैनी नर्सरी में ऐसा ही एक प्रयोग किया गया। 4 सितम्बर 1939 को ब्रिटिश कमेटी ने इस नर्सरी को थेंट दी थी। इस थेंट के बारे में कमेटी के प्रमुख कैप्टन विल्सन लिखते हैं।

“इसैनी नर्सरी 130 हैक्टर क्षेत्र में फैली है। उसका विवरण इस प्रकार है:

खेती योग्य जमीन	90 हैक्टर
चारागाह	12 हैक्टर
पशुशाला, चरने के लिए जगह	14 हैक्टर
गहन उद्यान	14 हैक्टर

इस नर्सरी का मुख्य उपयोग अंग्रेजों को यह मनवाना है कि रसायनों के उपयोग से खराब हुई जमीन को पुनः उपजाऊ बनाकर अधिक मनुष्यों को खेती से जोड़ना चाहिए।

इस नर्सरी के माध्यम से यह दिखाया जाता है कि कोई भी बाहरी सामग्री अथवा कृत्रिम संश्लेषित रसायनों के उपयोग के बिना खेती में पल रहे पशु, सागरसब्जी, फलबाग, चारागाह आदि स्वावलंबी होकर आदर्श खेती करना संभव है। ऐसा करने से अत्यंत उपजाऊ मिट्टी वाली यह खेती तैयार होगी। वर्ष 1936 में यहाँ 700 टन इन्डौर प्रणाली का कम्पोस्ट बनाया गया था। इस वर्ष यह मात्रा हजार टन से ऊपर जाएगी।

विगत दो वर्षों से किसी रासायनिक उर्वरक अथवा कीटनाशी रसायनों के उपयोग के बिना यह नर्सरी जैविक खाद के उपयोग से स्वालंबी बनी है। अपवाद स्वरूप इस नर्सरी में एक बार गंधक और चूने का उपयोग किया गया था।

सन् 1932 में इस उद्यान में 675 पौँड मूल्य के 132 मे. टन रोसायनिक उर्वरक खरीदे गए थे जबकि 1937 में 281 पौँड के 40 मे. टन उर्वरक खरीदे। आलू की जिस फसल पर पहले दवाईयों के 5 छिड़काव करने पड़ते थे वहाँ अब एक छिड़काव से काम चल गया और अब उसे भी बंद करना पड़ सकता है।

अब इस उद्यान में निमानुसार फसलें उगायी जाती हैं:

आलू	30 हैक्टर
गेहूँ	30 हैक्टर
जौ, ओट (जई)	

पशुओं के लिए बाली

6 हैक्टर

कंदवर्गीय सब्जी

6 हैक्टर

चारागाह

12 हैक्टर

उद्यान में पल रहा पशुधन निमानुसार है:

गाय

22

घोड़े

14

शूकर (उच्च नस्ल)

15

शूकर (साधारण)

105

मुर्गियाँ

120

अंगूर बागान

पूर्व और पश्चिम के देशों में अंगूर बागानों में एक मजेदार फर्क होता है। पूर्व के देशों में अंगूर की खेती एक फल खाने वाले फल के रूप में होती है जबकि पश्चिम में वाईन शराब बनाने के लिए की जाती है।

पूर्व के देशों में देसी खाद का उपयोग होता है जिससे कीट व्याधियों का प्रकोप नहीं होता। पश्चिम के देशों में पालतू पशु और अंगूर के बाग में कोई समन्वय नहीं होता है। वहाँ के अंगूर बागों में ढोर ढंगर लगभग नहीं होते हैं, इसलिए गोबर की खाद नदारद रहती है। रासायनिक उर्वरकों का भरपूर उपयोग जिसके कारण कीड़े और बीमारियों का भारी प्रकोप। फिर दवाईयों के छिड़काव और अंततः अंगूर की गुणवत्ता और पौधों की आयु समाप्त।

मध्य एशिया के देशों में जहाँ भी अंगूर के बागान हैं वहाँ सुदृढ़ बेलें और भरे-पूरे फलों के गुच्छे दिखाई दिए। उनकी जड़ों की जाँच करने पर मायकोरायजा जीवाणु मिले। उनकी बढ़वार के लिए मिट्टी में ह्यूमस होना आवश्यक है। इस वजह से भी अंगूर बेलें लंबे समय तक टिकाऊ रहती हैं।

दक्षिण अफ्रीका में अंगूर के जिन बागानों में इन्डौर कम्पोस्ट का वापर हुआ है उन सॉमरसेट (पश्चिम) और स्टीलबॉश गाँवों के बीचों बीच सड़क के दोनों किनारों पर पनप रहे अंगूर के बगीचों को देखकर एक पत्रकार ने कृषि साप्ताहिक में कुछ इस तरह लिखा:

“इस सड़क पर सफर कर रहे मुसाफिर मोटरों से दिखाई दे रही अंगूर की बेलें देखकर बेहद खुश होते हैं। ठंड के दिनों में बगीचों में इकट्ठा जैविक

खाद का ढेर देखकर उन्हें भरोसा होता है अंगूर के बगीचे इतने सुदृढ़ और ताजातरीन क्यों दिखाई देते हैं। ठंड में इन अंगूरों को शूकरों को खिलाया जाता है, ठंड में इन शूकरों की विष्टा अंगूर बेलों को मिलती है।

योरप में अंगूर की खेती करने वाले किसान अब समझ रहे हैं कि रासायनिक उर्वरकों के उपयोग से उनके बागान कैसे बीमार और फल स्वादहीन बन गए हैं। उन्हें अब यकीन हो रहा है कि खेती की गुणवत्ता बढ़ानी हो तो साथ में पशुपालन करना कितना जरूरी है।

इन्दौर प्रणाली से निर्मित कम्पोस्ट खाद की विकास गाथा

सन् 1880 में उत्तरी जर्मनी के वैज्ञानिक शुल्ट्ज़ और लूपीज को मालूम हुआ कि वहाँ की रेतीली भूमि ल्यूपिन नामक वनस्पति के कारण खेती लायक कैसे बनी। तब से खेती में हरी खाद का उपयोग शुरू हुआ। अन्य कई अनुसंधान केन्द्रों पर भी इस नई खाद पर प्रयोग किए गए। दलहनी फसलों की जड़ों पर मौजूद गाँठों के कारण यह उजागर हुआ कि वातावरण का नन्हे गाँठों के जीवाणुओं के माध्यम से मिट्टी में उत्तरता है। इस वजह से हरी खाद का प्रचलन शुरू हुआ। इन दलहनी फसलों को खेत में उगाकर जब वे फूलने लगती हैं तो उन्हें जोतकर मिट्टी में ढबा दिया जाता है। छठवीं सदी आते आते हरी खाद का उपयोग बढ़ गया। इससे दोहरा फायदा हुआ। मिट्टी में गाड़े दलहनी पौधों की जड़ों की गाँठों से वातावरण में उपस्थित नन्हजन खेत की मिट्टी को मिलने लगा और पौधों की हरी पत्तियों से ह्यूमस बनाने की शुरूआत भी हो गई। दूसरे शब्दों में जैसे खेत में ही नगण्य खर्च पर नन्हजन का कारखाना स्थापित हो गया। इससे खेती के अन्य कार्यों में भी कोई अड़चन नहीं होती थी। इस हरी खाद के कारण एन पी के की मानसिकता भी कुछ हद तक शांत हुई। जिन खेतों में बारिश की फसलों के बाद हरी खाद को सङ्गने के लिए पर्याप्त समय मिला वहाँ इनके अच्छे परिणाम मिले। परंतु इसके बावजूद बहुत अच्छे नतीजे नहीं मिल सके। ऐसा क्यों हुआ इसका विश्लेषण करना आवश्यक है।

हरी खाद के लिए उपयुक्त दलहनी फसलों के अंकुरण से उनकी वृद्धि तक पत्तियों के सङ्गने व अन्य अवशेषों का विश्लेषण करने से समझ में आता है कि हरी खाद लोकप्रिय क्यों नहीं हुई। जर्मनी में जो परिणाम मिले वैसे परिणाम यहाँ भी मिलेंगे यह अपेक्षा करना व्यर्थ है।

अध्याय : 6

भूमि को उपजाऊ बनाने के विविध प्रयोग

क्या हम कह सकते हैं कि हरी खाद पर आधारित खेती सफल बनाने के लिए उत्तर जर्मनी की मिट्टी और जलवायु को अपने देश में लाया जा सकता है?

हरी खाद की सफलता का राज है :

1. नन्हे चक्रीकरण या स्थानीय खेती पध्दति के संदर्भ में अध्ययन,
2. जिन दलहनी पौधों का उपयोग हरी खाद के लिए किया जाता है उनकी जड़ों पर मौजूद गाँठों की संख्या ज्यादा से ज्यादा कैसे और कितनी बढ़ेगी और उसके लिए अनुकूल वातावरण की आवश्यकता,
3. जिस समय हरी खाद को जुटाई कर खेत में गाड़ा जाता है उस समय पौधों की रासायनिक बनावट कैसी होगी और

4. उस समय खेत की मिट्टी की बनावट कैसी होती है? इन चार बातों की जानकारी हरी खाद की सिफारिश करने से पहले होना आवश्यक है।

ऐसा लगता है कि इनमें से पहले मुद्दे अर्थात् नन्हे चक्रीकरण का स्थानीय खेती पध्दति के अध्ययन का शायद किसी ने भी गंभीरता से विचार नहीं किया, ऐसा लगता है कि उस स्थिति में नन्हे किस अवस्था में है, अगर फसलों द्वारा उपलब्ध नन्हे का उपयोग नहीं किया गया है तो हरी खाद क्या चारे अथवा काई में रूपांतरित हुई अथवा नहीं, यह कोई भी बताने की अवस्था में नहीं है।

हरी खाद के लिए उगाई जा रही दलहनी फसलों की बढ़वार के लिए मिट्टी की स्थिति कैसी होनी चाहिए इस पर कोई अध्ययन हुआ ही नहीं है। शाहजहाँपुर (उत्तर प्रदेश) में कार्यरत कलार्क ने उल्लेख किया है कि हरी खाद की फसल उगाने से पहले खेत में थोड़ी गोबर खाद डालनी चाहिए। इससे जड़ों की गाँठों की बढ़वार भलीभांति होती है और खेत में गाड़ने के बाद उनकी सङ्गत अच्छी होगी। शायद इससे मायकोरायजा जीवाणु भी कार्यक्षम होते हैं। दरअसल सूक्ष्म जीवाणुओं का, हरी खाद का अध्ययन करना ही वैज्ञानिक भूल गए हैं।

इन द्विदल पौधों की खेत में बढ़वार होते समय उनकी रासायनिक संरचना तेजी से बदलती है। कोमल और परिपक्व पत्तियाँ भूमि में गाड़ी जाने पर अंदर के सूक्ष्म जीवाणुओं पर उनका भारी प्रभाव पड़ता है। इस संबंध में वॉकमन एंड टॅनी इन दो वैज्ञानिकों ने रामतिल (नाईजर) पर अध्ययन किया है। इन पौधों की कोमल पत्तियाँ जल्दी सड़ती हैं और उनमें से अमोनिया शीघ्रता से निकल कर बोई गई फसल को मिलता है ऐसा उनका दावा है। परिपक्व पत्तियाँ विलंब से सड़ती हैं और नत्र कम मात्रा में फसल को मिलता है जबकि बाकी आवश्यक नत्र की पूर्ति मिट्टी में उपस्थित सूक्ष्म जीवाणु करते हैं। दूसरे शब्दों में हरी खाद के द्वारा नत्र की आपूर्ति खेत को दरिद्र बना देती है। इसका विवेचन नीचे दी गई तालिका से होता है।

तालिका

रामतिल से हरी खाद आपूर्ति की विभिन्न अवस्थाएँ (वॉकमन और टॅनी)

फसल की अवस्था	प्राप्त कार्बन मि. ग्राम	अमोनिया से प्राप्त नत्र मि. ग्राम	हरी खाद से प्राप्त नत्र मि. ग्राम
25-35 से.मी. ऊंची फसल	286.8	22.2	0
फसल की मात्रा बनती अवस्था	280.4	3.0	0
फूल लगने की अवस्था	199.5	0	7.5
फसल की परिपक्व अवस्था	187.9	0	8.9

टीप: 2 ग्राम सूख रही पत्तियों को 27 दिन सड़ाया गया था।

हरी खाद के पौधों की आयु से उस प्राप्त ह्यूमस की मात्रा का आकलन होता है। कोमल कच्ची पत्तियाँ जिनमें लिगनिन और सेल्यूलोज कम होता है वे कम ह्यूमस बनाती हैं जबकि परिपक्व पत्तियाँ अधिक ह्यूमस। इसका विवरण अगली तालिका में आएगा।

इसका अर्थ यह हुआ कि मिट्टी में सूक्ष्म जीवाणुओं की संख्या बढ़ानी है

तो कोमल पत्तियों को खेत में गाड़ना चाहिये और ह्यूमस की मात्रा बढ़ाने के लिए परिपक्व पत्तियाँ गाड़नी चाहिए।

हरी खाद के लिए वापरी गई फसल की रासायनिक अवस्था जितनी महत्वपूर्ण है इतनी ही महत्वपूर्ण है खेत की मिट्टी की रासायनिक अवस्था। हरी खाद के पौधों को मिट्टी में सड़ाने वाले सूक्ष्म जीवाणुओं को चार वस्तुओं की आवश्यकता पड़ती है:

- (1) भरपूर खनिज और नत्र,
- (2) नमी,
- (3) वायु और
- (4) उपयुक्त तापमान।

इन सब की उपलब्धि एक साथ होना आवश्यक है।

खनिज तत्व और नत्रजन की भूमि में कमी के कारण समस्या उत्पन्न हो सकती है। इस वजह से मिट्टी में गाड़े गए हरी खाद के पौधों की सड़ने की क्षमता पर आगे बोई जाने वाली फसल की पैदावार निर्भर करती है। मिट्टी अगर कम उपजाऊ हो तो हरी खाद के सड़ने के लिए नत्र उपलब्ध नहीं रहेगा जिसका असर अगली फसल के पोषण पर होगा और इस तरह हरी खाद का कोई उपयोग नहीं होगा। इसकी बजाय मिट्टी में गाड़ी गई हरी खाद के लिए ह्यूमस उपयुक्त मात्रा में उपलब्ध हो तो सड़ने की प्रक्रिया भलीभांति पूरी होकर अगली फसल को पूरा पोषण मिलेगा। इस प्रकार किसान को भूमि की उपजाऊ शक्ति निरंतर बनाए रखने में सफलता मिलती है, उसमें कभी भी रुकावट नहीं आती है।

मिट्टी में नमी की कमी हो जाने से सड़ने की प्रक्रिया पूरी तरह बन्द होकर सूक्ष्म जीवाणु निष्क्रिय हो जाएँगे।

इसी तरह हरी खाद के पौधों को मिट्टी में गाड़ने के बाद भारी बारिश में पौधे दब जाने पर मिट्टी में वायु का संचार रुक जाएगा, पत्तियाँ अंदर दब जाएँगी और उनके सड़ने की प्रक्रिया अवायुक्ति (एनएराबिक) हो जाएगी। जितने भी प्रथिन (प्रोटीन्स) उपलब्ध होंगे उन पर सूक्ष्म जीवाणु हमला करने से उसमें से नत्रजन गैस बनकर उड़ जाएगी और जहाँ उच्च कोटि की जैविक खाद बननी थी वहाँ रासायनिक प्रक्रिया शुरू होगी। ऐसा हर बार बारिश के मौसम में होता है जिस वजह से भारत जैसे उष्ण कटिबांधिय देश में हरी खाद का सफल उपयोग संभव नहीं है।

ब्रिटेन जैसे देश में तापमान महत्वपूर्ण मुद्दा है क्योंकि वहाँ काफी ठंड पड़ती है। अतः वहाँ शीत ऋतु प्रारंभ होने से पहले ही हरी खाद को खेत में

गाड़ना आवश्यक है। यहाँ खेतों में हरी खाद का उपयोग किया जा सकता है। इस धारणा के पीछे 3 कारण महत्वपूर्ण हैं:

- (1) एकत्रित नाईट्रोट को संभालकर रखना, (2) ह्यूमस का निर्माण और (3) दोनों कारण,

(1) एकत्रित नाईट्रोट को संभालकर रखना।

इस महत्वपूर्ण कारण का अध्ययन करते समय प्रकृति के बारे में सोचना आवश्यक है कि किस प्रकार मिट्टी में उपस्थित सूक्ष्म जीवाणु जैविक खाद से नत्रजन का निर्माण करते हैं। यह नाईट्रोट कभी व्यर्थ नहीं जाता है। मिट्टी की ऊपरी सतह पर फैली हुई काई के समान वह स्थिर हो जाता है और सड़कर फसलों के काम आता है।

नाईट्रोट की स्थिरता बनाए रखना अथवा निकालना किसान पर निर्भर करता है। किसान दलहनी फसल बो सकता है अथवा चारा खेत से निकाल सकता है। इस प्रकार नाईट्रोट उस खेत में उपयोगी होकर व्यर्थ नहीं जाता। वह जैविक खाद में परिवर्तित होकर पुनः सूक्ष्म जीवाणुओं को मिलता है।

इन्दौर प्रणाली की कम्पोस्ट खाद का विकास

खेती के पशुओं के लिए आवश्यक चारा फसलें, घास, चारा आदि विश्व की किसी मिट्टी में, जलवायु में पैदा किये जाते हैं।

भारत में गन्ना, ज्वार, मक्का, बाजरा और दूब आदि सभी ओर लोकप्रिय हैं। लुसरीन घास, सनई, अरहर, सेम बरबटी भी येन केन प्रकारेण पशु आहार के रूप में उपयोगी बनते हैं। इसी तरह मक्का भी उपयोग में आता है। किसी भी चारा फसल को उगाने के लिए मिट्टी उपजाऊ होना अत्यंत आवश्यक है अन्यथा दो या तीन कटाई के बाद एक भी कटाई हाथ नहीं लगेगी।

लहसुन घास (लुसरीन)

लहसुन घास की अच्छी बढ़वार के लिए खेत में गोबर खाद डालना जरूरी है। इसी के साथ मिट्टी की ऊपरी सतह में वायु का संचार भी अच्छा होना चाहिए। इस वायु की उपस्थिति में पशुओं के गोबर और मूत्र के कारण जीवाणु भलीभांति फैलते हैं। इस कारण खेत में ह्यूमस और चाराफसल की उपज अत्यंत

महत्वपूर्ण है।

खेत में ह्यूमस की मात्रा बढ़ाने के लिए निम्नलिखित उपाय किये जाने चाहिए।

(1) बालटी पध्दति (बेल पध्दति)

चारा फसलों की जमीन में ह्यूमस की मात्रा बढ़ाने के लिए मार्लबोरो के हाजियर साहब का उदाहरण उल्लेखनीय है। दूसरे विश्व युद्ध के बाद वस्तुओं के दाम तेज होने पर उन्हें अपनी गोशाला का कचरा, गोबर आदि ढोने वाली गाड़ी बेचनी पड़ी। उन्होंने अपने पशुओं को बाहर खुले में बाँधना शुरू किया। वह छोटी बालियों में दूध के अलावा गोबर, गोमूत्र, बिछावन का घास चारा आदि खेत में डालने ले जाते थे। उन्होंने इस सब सामग्री में साग साब्जियों के अवशेष आदि एकत्रित कर इन्दौर प्रणाली से कम्पोस्ट बनाना शुरू किया। मिट्टी में सूक्ष्म जीवाणु सक्रिय होकर ह्यूमस बनाते। इससे चारा फसलों की जड़ों में मायकोरायजा की वृद्धि के कारण मिट्टी की उपजाऊ शक्ति बढ़ी, पशुओं का स्वास्थ्य सुधरा और उनकी आमदनी बढ़ गई।

(2) कचरे के ढेर का कायापलट

ह्यूमस बनाने के लिए गोमूत्र, गोबर, पानी आदि सबकुछ उपलब्ध था, सिर्फ प्राणवायु की कमी थी। ऐसी हरियाली पर मिट्टी में घुटन होती, उसमें नत्र की कमी हो जाती थी। ऐसी मिट्टी में बाहर से कचरा लाकर डालने से मिट्टी जीवित हो जाती, कचरे में मौजूद फॉस्फेट की वजह से फायदा होता, ह्यूमस बनने की प्रक्रिया शुरू हो जाती। लेकिन 5-6 साल बाद फिर औद्योगिक कचरा डालने पर यह प्रक्रिया रुक जाती और कोई फायदा नहीं होता था।

(3) मिट्टी की निचली सतह को उपजाऊ बनाना

हरियाली की ऊपरी सतह को गहरी जुताई कर ऊपर नीचे करना होगा। करीब 12 से 14 इंच गहरी ट्रैक्टर से जुताई कर मिट्टी पलटकर निचली मिट्टी को ऊपर लाकर इसमें फसल की बोनी कर उस पर कचरा डालकर मिट्टी को उपजाऊ बनाया जा सकता है। इस पद्धति में भी प्राणवायु की कमी महसूस होती।

(4) चारा फसलों के खेत की जुताई

गहरी जुताई में मिट्टी की निचली सतह पूरी तरह उलट पलट करने से अंदर तक वायु का संचार होता है ।

पूर्व के देशों में यही पद्धति अपनाई जाती है । उनकी देखादेखी अब पश्चिम के किसान भी ऐसा करने लग गए हैं । इसमें केंचुए और खाद का प्रयोग करने पर वह अधिक उपयोगी होगा । इस भूमि में दलहनी फसलें चारे के लिए उगाई जाय तो ह्यूमस की मात्रा बढ़ेगी । एक बार मिट्टी की उपजाऊ क्षमता बढ़ जाती है तो उसमें नई-नई चारा फसलें उगाई जा सकेंगी । फिर भी इसमें एक खतरा है कि एक बार चारा फसल की पैदावार बढ़ जाती है तो किसान उसे बाजार में बेचना शुरू करेगा और इस तरह अधिक चारा फसल उगेगी । इससे पर्यावरण का संतुलन बिगड़ेगा । अतः मुख्य बात यह है कि उपज लेते समय मिट्टी को उपजाऊ बनाए रखना भी आवश्यक है ।

इन चारा फसलों के खेतों का परीक्षण कैसे करें यह बड़ा प्रश्न है । परंतु इस पर भी जुगत है । वह ऐसी कि इस मिट्टी में रासायनिक उर्वरक डालकर देखें, अगर मिट्टी वाकई उपजाऊ है तो इन रासायनों का कोई प्रभाव दिखाई नहीं देगा । वर्ष 1938 में ऐसी अनेक चारा फसलों पर प्रयोग किये गए परंतु उनके कोई उपयोगी परिणाम दिखाई नहीं दिए ।

इन प्रयोगों से यह सिद्ध होता है कि पश्चिमी योरप के अधिकांश खेत उपजाऊ नहीं हैं और उन्हें काफी अधिक मात्रा में ह्यूमस की आवश्यकता है । ऐसे ह्यूमस विहीन खेत रासायनिक उर्वरकों को अच्छा प्रतिसाद देते हैं । इस प्रकार हम ब्रिटेन जैसे देशों में पाते हैं कि वहाँ चारा फसलों के कारण खेतों पर गाय बछड़े भी पलेंगे और ग्रीष्म फसलों का बचा हुआ चारा सर्दी में गाय बछड़ों को दिया जा सकेगा और खेत में सियालू गेहूं की फसल भी ली जा सकेगी । युध्द काल में यह खाद्यान्न उपयोगी सिद्ध होगा और गेहूं की इस फसल पर वायरवर्म कीट का आक्रमण भी नहीं होगा ।

इन्दौर कम्पोस्ट के विविध उपयोग और शहरी कचरे का निपटारा

खेत की मिट्टी से उत्पन्न किए गए खाद्यान्न पर ही शहरी और ग्रामीण लोगों का पेट भरता है । समुद्र में पैदा हुए भोज्य वस्तुओं के अलावा खेत से उत्पन्न भोजन और उससे पैदा कचरा भी शहरों में जमा हो जाता है । इसी प्रकार शहर

के कारखानों से निकला औद्योगिक कचरा भी काफी मात्रा में हो जाता है । इस शहरी कचरे के निपटान के दो तरीके हो सकते हैं:

1. शहर की सड़कों पर जमा, घरों से निकला और कारखानों से झाड़ू लगाकर निकला कचरा जिसमें गोबर भी हो सकता है ।

2. मानव मल-मूत्र

शहर में रहने वाले हर व्यक्ति को जल्दबाजी होती है इस कचरे को शीघ्र ही ठिकाने लगाने की । ब्रिटेन में इस तरह कचरे के इकट्ठा हुए ढेर लगते हैं और उन्हें भस्मकों में जला दिया जाता है परंतु किसी भी स्थिति में यह कचरा वापस खेतों में नहीं जाता है । मानव मल-मूत्र नदियों के माध्यम से समुद्र में बहा दिया जाता है । इससे पहले इस मलबे को शुधीकरण प्रक्रिया से शुद्ध किया जाता है ।

यह कहना बाजिब होगा कि सभी शहर एक प्रकार के परभक्षी होते हैं जो ग्रामीण संपदा पर जीते हैं । ऐसे में जब तक खेतों की मिट्टी उपजाऊ है तब तक शहर जीवित है, उसके बाद तो शहरों का खात्मा ही होना है ।

इस मसले पर शहरी लोगों को गंभीरता से विचार करना होगा कि शहरी कचरा फिर से जैविक खाद में परिवर्तित होकर खेतों की ओर कैसे लौटे । शहरों में फलश संडास की पद्धति लगभग 100 वर्ष पुरानी है परंतु उनका खेती में कोई उपयोग नहीं होता । शायद शहरी लोगों ने अपने निवास स्थान के बाहर देश के बारे में सोचा ही नहीं है ।

खेत की बीमार और स्वस्थ फसलें: मिट्टी में वायु का संचार

शहरी मानव मल के बारे में टुकड़ों-टुकड़ों में विचार किया जाता है। इस विषय पर कभी भी समग्र रूप से विचार नहीं किया गया है अतः इसमें सफलता नहीं मिल पायी है।

सुधार के लिए क्या इसमें कुछ किया जा सकता है? धरती माता के अधिकार स्वरूप इसमें से कुछ प्राप्त किया जा सकता है क्या? सचाई यह है कि मानव मल को खेत में डालना कुछ विशेष कठिन नहीं है। हालाँकि वर्तमान में प्रचलित जलमल निकासी प्रणाली (सीवेज सिस्टम) का विकल्प ढूँढ़ना आसान नहीं है। जबतक खाद्यान्न की कमी अथवा अकाल जैसे हालात नहीं बनते या फिर युद्धक स्थितियों के कारण शहरी आबादी का गाँवों की तरफ किस्थापन नहीं किया जाता तब ऐसा नहीं किया (सीवेज का विकल्प) जा सकेगा।

गाँवों के कचरे में शहरी कचरे को छोटकर निकाले गए कचरे (धातु के डिब्बे, बोतलें आदि) को मिलाकर इस जैविक कचरे को खाद में आसानी से बदला जा सकता है। इस कचरे में लिंगन और सेल्यूलोज प्रचुर मात्रा में होने की क्षमता से इस पर सूक्ष्म जीवाणु शीघ्रता के आक्रमणकर उसे जैविक खाद में बदल डालेंगे।

धरों से निकले कचरे का पृथक्करण करने पर मालूम पड़ता है कि इसमें 42 प्रतिशत जैविक पदार्थ होते हैं जबकि शेष 58 प्रतिशत भाग रसायनों से बना होता है। खाद बनाने के लिए इसका उपयोग करने पर प्रारंभ में उसका तापमान 160 डिग्री सेल्सियस तक बढ़ जाता है। ऐसा थर्मोजीनिक और थर्मोफिलीक बैक्टिरिया के कारण होता है। बैक्टिरिया तापमान बढ़ाकर सेल्यूलोज को तोड़ देते हैं और बड़ी मात्रा में कार्बन डाई ऑक्साईड को बाहर कर देते हैं। इसी समय कचरे में प्रोटीन भी बनता है। ऐसा लगभग इन्दौर प्रणाली के समान ही होता है।

इस कचरे की ऊपरी सतह से नत्रजन, कार्बन डाई ऑक्साईड और प्राणवायु ऑक्सीजन निकल जाती है, इनके अलावा 16 प्रतिशत मिथेन, 2.8 प्रतिशत कार्बन मोनो ऑक्साईड और 2.5 हायड्रोजन भी उड़ जाती है। ऑक्सीजन के निकल

जाने से कचरे की अवायुवीय (अनेरोबिक) सड़न प्रक्रिया शुरू हो जाती है। इसी कारण कार्बन मोनो ऑक्साईड, मीथेन और हायड्रोजन भी बाहर निकलती है। पानी से भरे धान के खेत से भी यही गैसें निकलती हैं।

ह्यूमस के लिए कचरे के शीर्ष भाग का विश्लेषण करने पर निम्नानुसार जानकारी प्राप्त हुई-नत्रजन 0.8 प्रतिशत, स्फुर 0.5 प्रतिशत और पालाश (पोटाश) 0.3 प्रतिशत

इसी शहरी कचरे से बीमारियों फैलाने वाले जीवाणु निकलते हैं क्या इसका विश्लेषण करने पर पता चलता है कि नहीं, इस कचरे में वे जीवाणु नहीं होते हैं।

भारत जैसे देश में जहाँ फ्लश वाले संदास अधिक नहीं वहाँ मानवमल से ह्यूमस खाद बनाना मुश्किल नहीं। 1933 में इन्दौर में कई जगहों पर परीक्षण किये गए। पहला परीक्षण सिविल लाइन्स (रेसिडेन्शी ऐरिया) में और मालवा मिल ऐरिया के साथ मध्यप्रांत और राजपूताने की नगरपालिकाओं पर किये गए। इन सबका यही निष्कर्ष निकला की पशु गोबर की अपेक्षा मानवमल अधिक उपयोगी है।

इन बातों से समझना मुश्किल नहीं कि शहर में जगह-जगह छोटे गड्ढे बनाकर मानवमल से उपयोगी ह्यूमस बनाया जा सकता है।

पूरी दुनिया में इस बारे में परीक्षण किये जा रहे हैं और जल्दी ही कुछ महत्वपूर्ण जानकारी निश्चित तौर पर मिलेगी।

खेत की स्वस्थ्य व रोगी फसलें और भूमि में वायु का संचार

मिट्टी में मौजूद उपजाऊ क्षमता को फसलों में लाने के लिए प्राणवायु ऑक्सीजन आवश्यक है। भूमि के सभी सूक्ष्म जीवाणुओं और फसलों की जड़ों को भी प्राणवायु जरूरी है। इसके लिए खेत में पानी की निकासी के लिए नालियाँ बनाना अथवा मिलवाँ खेती करना शामिल है। खेती में प्राणवायु का महत्व कुछ वर्ष पूर्व ही वैज्ञानिकों की समझ में आया है। इसका कारण भी बड़ा मजेदार है। आज तक सभी कृषि अनुसंधान केन्द्र उन स्थानों पर स्थित थे जहाँ वातावरण में काफी नमी, आर्द्रता पायी जाती थी। वहाँ बारिश भी खेती के लिए उपयुक्त होती थी। बारिश होते ही उसके साथ प्राणवायु भी आया यह निश्चित समझें। वहाँ खेती के लिए प्राणवायु की कभी कमी महसूस नहीं की जाती थी। उत्तर भारत में मौसम

सूखा होने के कारण मिट्टी में नमी लाने के लिए सिंचाई का सहारा लेना पड़ता। सिंचाई के पानी में प्राणवायु भी घुला होता है। ऐसे खेत की मिट्टी में काफी मात्रा में ह्यूमस मौजूद होता है तब पानी मिट्टी कणों में समाया रहकर ऊपर पपड़ी जायेगी। नहरों से सिंचाई शुरू होने के पहले ही भारत के किसानों द्वारा खेत में जीवांश की मात्रा बनाए रखने के कारण मिट्टी में वायु का संचार हमेशा सुगम रहता। नहरें आने के पश्चात् कृषि विभाग द्वारा खेतों को पानी पूरा करने का लक्ष्य सामने रखा था, उन्होंने खेत में जीवांश आपूर्ति की कभी चिंता नहीं की।

बारिश इंचों में सप्ताह का योग

बरसात, तापमान, नमी और जल निकासी के साथ मिट्टी में वायु का प्रवेश रोकने का कोई साधन हो तो उसका खेती में बहुत महत्व है। थोड़ी बहुत प्राण वायु जड़ों तक पहुँचती होगी, कुछ सूक्ष्मजीवों तक भी परंतु दोनों परिस्थितियों में मिट्टी की उपजाऊ क्षमता घट जाती है अथवा मिट्टी बंजर हो जाती है।

भूमि में वायु का संचार कम होने से फसलों पर उसका क्या परिणाम होता है? तो उसका पहला असर पौधों की जड़ों पर होता है। इसका सबसे अच्छा उदाहरण है जंगल और जिसकी बढ़वार रुक गई हो तो ऐसे टूँठों का वन। ऐसे स्थान पर जड़ें खाद को संभालती हैं और वृक्षों की नई कोपलें फूटकर मिट्टी को उपजाऊ बनाती हैं। इस पर कहा जा सकता है कि वायु का संचार कृषि विज्ञान का पृथक विषय न होकर उसी का अभिन्न अंग है।

इस अध्ययन में हम इसी बात पर विचार कर रहे हैं कि:

- प्राणवायु कम पड़ने पर पौधों की जड़ें क्या करेंगी?
- पूरे सालभर खेत की मिट्टी और पौधों की जड़ों का आपस में क्या संबंध है?
- विभिन्न पौधों की जड़ें आपस में कैसे मुकाबला करती हैं।

खेत में प्राणवायु संचार, चारा और वृक्ष खेती

सन् 1917 से 1924 के बीच सर अल्बर्ट हॉवर्ड ने कृषि अनुसंधान केन्द्र पूसा पर वृक्ष और उनके आसपास उग रहे घास चारे की जड़ें आपस में कैसी प्रतिस्पर्धा करती है इस पर अध्ययन किया जिस के मुद्दे थे:

- घास चारे की वजह से फलदार वृक्षों को क्या अड़चन होती है,
- वनों में खड़े वृक्ष कैसे इन आसपास उगने वाले घास चारे का नियंत्रण करते हैं और
- वृक्ष की जड़ों और मिट्टी में संचारित हवा का आपस में क्या संबंध होता है?

पूसा (बिहार) में जून माह में दक्षिण-पश्चिमी मानसूनी हवाएं बंद हो जाने के बाद अक्टूबर तक मौसम नम रहता है। भू-जल स्तर बढ़ता है। अक्टूबर माह के बाद यह सब कम होने लगता है। 1922 में भू-जल स्तर 16.5 फीट (लगभग 5 मीटर) बढ़ गया जिस वजह से भूमि में प्राणवायु संचार में रुकावट आने लगी। जैसे जैसे भू-जल स्तर बढ़ता है भूमि के अन्दर मौजूद प्राणवायु ऑक्सीजन कार्बन

डाई ऑक्साईड बनकर ऊपर वातावरण में निकल जाती है ।

यहाँ कि मिट्टी दोमट, चूना मिश्रित, कुछ महीन बलुई और चिकनी भटीली, 60 मेश की जाली से 98 प्रतिशत छन जाने वाली है। मिट्टी का ऊपरी और निचला स्तर एक समान। पानी का स्तर नीचे 6 मीटर पर, मिट्टी में 30 प्रतिशत कैल्शियम कार्बोनेट (चूना), लेकिन स्फुर मात्र 0.001 प्रतिशत। इतना सब होने के बाद भी पूसा की मिट्टी उपजाऊ है। ढाई वर्ग किलो मीटर क्षेत्र की जनसंख्या मात्र बाहर सौ। पूसा से बीज, तम्बाकू, पशु और मजदूर बड़ी तादाद में बाहर जाते हैं। पूसा की मिट्टी में स्फुर कम होने पर भी यहाँ के किसान स्फुरयुक्त वासायनिक उर्वरकों का उपयोग बेलकुल न करते हुए भी भरपूर पपज लेते हैं। यह सबं कृषि विज्ञान के लिए एक चुनौती ही हो जाएगा। हालाँकि इस मिट्टी ह्यूमस कम मात्रा मे होता है। और बरसात के बाद मिट्टी के ण आपस में चिपक जाते हैं और

बारिश का पानी अंदर प्रवेश नहीं कर पाता । इस बजह से जड़ों और अंततः पौधों की बढ़वार रुक जाती है ।

मिट्टी के अन्दर की हवा का चारा फसल और वृक्षों से क्या रिश्ता है यह जानने के लिए आठ किस्मों के फलदार वृक्ष चुने गए । उनमें से 5 किस्में सदाबहार हरी और तीन किस्में पतझड़ी श्रेणी की थीं । पौधों की रोपणी करने के 2 वर्ष बाद जब उन्होंने जड़ें पकड़ ली तब आठ कतारों के 9 वृक्षों के बीच चारा लगाया गया । आखिरी दो कतारों को बिना चारा लगाए खाली छोड़ा गया ।

चारा भलीभाँति उगकर बढ़ा और जब वृक्षों की बढ़वार पर विपरीत असर दिखाई देने लगा तब दक्षिण दिशा की ओर तीन वृक्षों के पास तली में नालियाँ खोदकर मिट्टी में हवा का संचार कराया गया । नालियाँ 60 सेंटीमीटर गहरी और 45 सेंटीमीटर चौड़ी खोदी गई और उनमें ईटों के टुकड़े डाले गए । उन वृक्षों के बीचोंबीच ये नालियाँ खोदी गई जिनमें फल लगे थे (देखें चित्र क्र. 1)

कुछ वर्षों में चारे की वजह से अनेक वृक्ष समूल नष्ट होते देखे गए ।

चारे के बीचोंबीच लगाए गए वृक्ष, चारे के मध्य में खोदी गई नालियों में से पे गए वृक्ष और वहाँ चारा बिलकुल नहीं, वहाँ लगाए गए वृक्ष इस तरह तीनों श्रेणियों के वृक्षों और चारे का अवलोकन करने पर मालूम पड़ा कि इन सभी में काफी फरक है। इन प्रयोगों को वर्ष सन् 1921, 1922 और 1923 में इसी प्रकार दोहराया गया। इन प्रयोगों में काफी संख्या में मजदूरों की आवश्यकता पड़ी। इसी के साथ 6 मीटर की गहराई तक जड़ों का अध्ययन किया गया।

पतझड़ी वृक्षों का अध्ययन

आडू, आलू बुखारा और सीताफल इन पतझड़ी फलदार वृक्षों का सबसे पहले अध्ययन किया गया । इन तीनों वृक्षों के अध्ययन के नतीजे एक समान मिले । इनमें से हम यहाँ आडू के वृक्षों का विचार करेंगे ।

इस प्रजाति के वृक्ष नवम्बर माह में पत्ते छोड़ते हैं और फरवरी माह में नई कोपलें फूटती हैं जबकि इसके फल मई माह में परिपक्व होते हैं । ठेठ गर्मी की ऋतु में । इसी मौसम और बारिश के प्रारंभ में नई शाखाएं निकलती जाती हैं ।

जड़ें भरपूर, फैली हुई, प्रारंभ में उथली, मिट्टी से ड्योढ़ी और निचली सतह तक फैलकर बढ़ने वाली परंतु बाद में इनकी बढ़वार का अलग दृश्य था,

चित्र क. 1

जड़ें जो ऊपर फैलकर तेजी से बढ़ रही थीं वे नीचे मात्र 4.8 मीटर तक पहुँच सकतीं। आढू की देसी किसिमों में दो प्रकार की जड़ें विकसित होती दिखाई दीं। नई सेमली किश तुए आखू के छैधे गहरी जड़ें लिए होते हैं।

दिसम्बर से जनवरी तक का समय इन वृक्षों के लिए सुप्तावस्था होती है। ऐसे में उथले वृक्षों के बहार पर आने के समय जड़ें गहराई में जाती हैं। मार्च माह में ऊपरी सतह की मिट्टी सूखने पर जड़ें भी पड़कर सूख जाती हैं। मार्च से बारिश के आगमन तक केवल निचले स्तर की जड़ें ही जीवित रही हैं। अप्रैल में जब फल पकना प्रारंभ करते हैं तब जड़ें इसे 4.5 मीटर की गहराई से पानी ऊपर लाना शुरू करती हैं। बारिश शुरू होते ही यह सब कुछ बदल जाता है। मिट्टी की ऊपरी सतह वाली जड़ें जो लगभग मृतप्रायः हो चुकी हैं वे पुनः जीवित होने लगती हैं। यह सब बारिश के प्रारंभ के 30 घंटों में ही होने लगता है। इसका अर्थ यह हुआ बारिश के मौसम में वृक्ष दोनों श्रेणी की जड़ें (ऊपर सतही और गहराई तक गई) को अपने बढ़वार के लिए उपयोग में लाते हैं। जुलाई के अंत में भू-जल का स्तर ऊपर तक आने पर नई बात होती है। अगस्त के प्रारंभ में मात्र ऊपरी 60 सेंटीमीटर तक की जड़ें कार्यक्षम रहती हैं। हवा के झोंकों के कारण मिट्टी में उपस्थित नमी कम हो जाती है। इससे जड़ें प्रभावित होती हैं, वे कभी-

कभी हवा ग्रहण करने के लिए ऊपरी स्तर पर विकसित होती हैं खास कर उस स्थान पर जहाँ छाया पड़ती है ऐसा होता है। यह अक्टूबर तक जारी रहता है। एक बार जैसे ही वृक्ष की जमीन की सतह से ऊपरी भाग की बढ़वार रुक जाती है वृक्ष का तना सूखने लगता है। अक्टूबर के बाद भू-जल स्तर नीचे उतरने लगता है और जड़ें 90 सेंटीमीटर गहराई तक उतर जाती हैं।

अपवाद स्वरूप आढू की जड़ों में एक फरक दिखाई देता है। कभी-कभी ग्रीष्मऋतु में 2.5 सेंटीमीटर तक बारिश हो जाती है, ऐसे समय सतही जड़ों का अध्ययन किया गया। जब 2 सेंटीमीटर बारिश हुई तो ऊपरी स्तर की जड़ों पर इसका प्रभाव पड़ा और तत्काल नई जड़ें विकसित होने लगीं। बारिश के बंद होते ही इनका विकास रुक गया और वे सूख गईं। इससे भी कम बारिश होने से जड़ों पर कोई परिणाम दिखाई नहीं दिया।

फलबाग के घास चारे का परिणाम

ग्रीष्म ऋतु में हुई बारिश के कारण भी यही होता है। इस बारिश के कारण मिट्टी की ऊपरी सतह में मौजूद जड़ें सक्रिय हो जाती हैं। भुरभुरी मिट्टी में वृक्षों को अच्छे फल चाहिए तो सिंचाई जरूरी है। यह सच है कि पूसा (बिहार) में बिना सिंचाई के भी फल लगते हैं परंतु उनकी गुणवत्ता और संख्या कम होती हैं। सिंचाई के कारण मिट्टी की ऊपरी सतह में मौजूद जड़ें अच्छा काम करती हैं और फलधारणा अच्छी होती है।

आडू (प्लम) तथा अन्य फलदार वृक्षों के गहन अध्ययन से पता चलता है कि फफूँद का एक कवक जाल मिट्टी से जड़ों की ओर छलांग लगाता है। मिट्टी की गहराई की सतह में यह फफूँद उपस्थित नहीं होती है। शायद फल वृक्षों की जड़ों से संलग्न मायकोरायजा सूक्ष्म जीवाणुओं की मौजूदगी से यह होता है। इसके लिए दोनों की गुणवत्ता सही होनी चाहिए। इन दो किस्मों की जड़ों की बढ़वार के लिए मायकोरायजा सूक्ष्म जीवाणु और ह्यूमस का निकट का संबंध होना चाहिए। मिट्टी की निचली सतह से ह्यूमस निकालकर उसकी जगह रासायनिक उर्वरक डालकर उत्पन्न किये गए फलों की नजदीक के ह्यूमस युक्त मिट्टी में उगाए गए फलों के साथ तुलना की जा सकती है। रासायनिक उर्वरक डाली गई मिट्टी में मायकोरायजा सूक्ष्म जीवाणु दिखाई भी नहीं देंगे। मायकोरायजा जीवाणु शायद समीप ही उपस्थित कवक जाल से भोजन प्राप्त कर जैविक पोषण से फलों की गुणवत्ता सुधारते होंगे। इस निष्कर्ष से यह भी सिद्ध होता है कि मिट्टी के ऊपरी तल की जड़ें अधिक कार्यक्षम होती हैं।

सीताफल की जड़ें भी आडू जैसी ही कार्यक्षम होती हैं। सीताफल की निचली सतह की मिट्टी की नमी के कारण ही ठेठ गर्मी में भी वृक्षों पर नई कोपलें फूटती हैं। बारिश शुरू होने पर पत्तियों का आकार बढ़ाने का काम मिट्टी की ऊपरी सतह में मौजूद जड़ें ही करती हैं। तने की दो गांठों के बीच की लंबाई भी 52×2.6 सेंटीमीटर से 10.5×4.5 सेंटीमीटर तक बढ़ जाती है। सीताफल के पेड़ को देखकर इस कारगुजारी का पता चलता है।

11 नवम्बर 1939 के दिन हमारे यशवंत वाड इन्दौर नगर के तुकोगंज

क्षेत्र के हीरालाल के बगीचे से सीताफल, आम और नीबू फलों के नमूने लेकर आये थे। 19 दिसम्बर के दिन डॉ. इड़ा लेवीसन ने उनका निरीक्षण किया था। तीनों वृक्षों की जड़ों पर मायकोरायजा की उपस्थिति के लक्षण साफ दिखाई दे रहे थे। जड़ों के रेशे कम अथवा लगभग गायब थे। उसके रोम मोटे, दीवारें पतली और अन्दरूनी भाग दानेदार, दरदरा / अधिकांश फफूँद पचा लीं जा रही होंगी। सीताफल की जड़ों के भी लक्षण थे।

सदाहरित वृक्षों की जड़ें

सदाहरित वृक्षों की पांच प्रजातियों- आम, अमरूद, लीची, नीबू और लोकाट- इनमें से अमरूद वृक्ष का उसके जड़ों के अध्ययन हेतु चयन किया गया। अमरूद वृक्ष मार्च माह के प्रारंभ में अपनी पत्तियाँ गिरा देते हैं, उसी समय उसमें नई कोपले भी फूटने लगती हैं। जड़ों का अध्ययन करने हेतु अमरूद सर्वोत्तम वृक्ष है। पूसा (बिहार) जैसे भूरे रंग की भुरभुरी मिट्टी में उग रहे अमरूद पेड़ों की कत्थाई रंग की जड़ों की अच्छी वृद्धि होती है। कुछ जड़ें सतही, छिछली फैली हुईं, जबकि कुछेक लंबी नीचे गहराई में पानी को खोजने उतरी हुईं। ग्रीष्म ऋतु के प्रारंभ में ये जड़ें काफी सक्रिय, चपल हो जाती हैं, जमीन में गहराई तक 3 से 4.8 मीटर (10 से साढ़े 14 फीट) उत्तर जाती हैं गहरे पानी को स्पर्श करने। जैसे गर्मी की तपिश बढ़ती है ऊपर की जड़ें सूखने लगती हैं और निचली, पानी को छूती जड़ें सक्रिय रहकर काम करती रहेंगी। 1922 में 3 जून के दिन बारिश शुरू हुई। इसके अड़तालीस घंटे बाद अर्थात् 5 जून को ऊपरी सतह की जड़ों का निरीक्षण किया। पहले 42.5 सेंटीमीटर (1 फुट 5 इंच) से नीचे 3.60 मीटर (12 फीट) तक नई जड़ें फूटी हुई दिखीं। सबसे ज्यादा अर्थात् 12.5 सेंटीमीटर (5 इंच) बारिश हो जाने पर जैसे-जैसे मिट्टी में नमी बढ़ती गई वैसे ही अभी तक निष्क्रिय रही जड़ें सक्रिय होती गईं और कुछ दिनों में सभी जड़ें काम में जुट गईं। बारिश आगे खिसकने पर निचले स्तर की सक्रिय जड़ें शांत हो गईं। 25 अगस्त 1922 के दिन केवल ऊपर की जड़ों में ही ओज दिखाई दिया अर्थात् भूमि से 72.5 सेंटीमीटर (29 इंच) की गहराई पर जबकि इससे भी नीचे 1 मीटर 40 सेंटीमीटर गहराई तक की जड़ें सक्रिय दिखाई दीं। अंतिम बारिश में तो वातानुतकी (एरोट्रॉपिक) स्थिति बनती दिखाई दी। मिट्टी की निचली सतह (सबसॉईल) में अक्टूबर माह में नमी कम होते ही वहाँ वायु का दबाव बढ़ा हुआ

दिखाई दिया । नवम्बर में उत्तरी गहराई में उत्तरी हुई जड़ें अधिक सक्रिय चपल बन जाती हैं । हाँलाकि यह स्थिति बारिश के जोर पर निर्भर करती है । सन् 1921 में जब बारिश कम हुई तब निचली जड़ें 4.57 मीटर (15 फिट 3 इंच) तक नीचे उत्तरी हुई दिखाई दी जबकि अगले वर्ष नवम्बर में बारिश और भूमिगत जल का स्तर सामान्य था तब जड़ें 1.67 मीटर (5 फीट 7 इंच) से गहरी नहीं गई ।

ठेठ गर्मी में अमरुद के पेड़ों को सिंचाई दी जाए तो गहराई तक उत्तरी जड़ों के कारण पेड़ पर नई कोपलें फूटती हैं । 1921 में किए गए प्रयोगों के कारण समझ में आया कि गर्मी में की गई एक सिंचाई से पत्तियों की बढ़वार 9.1 सेंटीमीटर X 4.0 सेंटीमीटर से बढ़कर 11.6 X 5.0 सेंटीमीटर हो गई और उनका रंग भी अधिक गहरा हुआ ।

जो स्थिति अमरुद की वही आम, लीची, नीबू और लोकाट फल वृक्षों की पायी गई । केवल नीबू और लीची वृक्षों की जड़ें अधिक गहरी नहीं जाती हैं । ये चारों प्रजातियों के वृक्ष बारिश के देर से प्रारंभ होने पर हवा की मर्जी पर निर्भर रहते हैं ।

घास चारे के विपरीत परिणाम

घासचारे का अनुकूल अथवा विपरीत परिणाम फलदार वृक्षों पर कैसे पड़ता है यह इस बात पर निर्भर करता है कि घास चारे की खेत में बोवनी करते समय क्या स्थिति थी और किन प्रजातियों के फल वृक्ष रोपे गए थे । उसमें भी परिपक्व वृक्षों पर उतने विपरीत परिणाम दिखाई नहीं देते जितने नये रोपे गए वृक्षों पर दिखाई देते हैं । पतझड़ी वृक्षों पर इसके परिणाम शीघ्रता से दिखाई पड़ते हैं, सदाबहार हरे वृक्षों पर नहीं । इससे यह सिद्ध होता है कि वृक्षों का कुपोषण विपरीत परिणाम के कारण होता है ।

नये रोपे गए वृक्षों पर घासचारे के विपरीत परिणामों का अध्ययन पहले किया गया । इनमें भी सीताफल का पेड़ अधिक संवेदनशील रहता है । सन् 1916 में ही यह बात ध्यान में आई थी कि घास चारा बोने के 2 वर्षों के अंदर ही सीताफल का पेड़ मर गया । बाद में लोकाट 3 वर्षों में, प्लम, नीबू और पीच लीची और आम के पेड़ कैसे बच गए । अमरुद पर कोई विशेष प्रभाव नहीं पड़ा । पड़ा भी तो इतना ही कि साधारण पेड़ की तुलना में ऊँचाई आधी रह गई ।

घास चारे की वजह से नई कोपलें ही मर जाती हैं । पत्तियों के अलावा शाखाओं, पुरानी लकड़ी, फल और जड़ों पर भी उसका विपरीत परिणाम होता है । घासचारे के बीच उग रहे फल वृक्षों पर पत्तियाँ विलंब से आती हैं, आकार छोटा रहता है पत्तियाँ पीली पड़कर शीघ्र झड़ने लगती हैं । तने पर गाँठे पास-पास होती हैं, शाखाओं का रंग मंदा, मद्दम और उनकी बढ़वार धीमी । पुराने तने पर फपूँद उग रही हो ऐसे वृक्षों पर फूल देरी से और कम संख्या में लगते हैं । छोटे गहरे रंग के फल लगते हैं और शीघ्र पकते हैं ।

जड़ों की बढ़वार पर भी घास चारे का विपरीत परिणाम दिखाई देता है । अमरुद के पेड़ के अलावा अन्य सभी फल वृक्षों की जड़ों की बढ़वार रुकी हुई और बारिश में वे ओजहीन हो जाती हैं ।

अमरुद के पेड़ों में ऐसा नहीं होता है, मिट्टी की ऊपरी सतह की जड़ें भलीभांति विकसित होती हैं । वे घासचारे की वजह से अधिक गहराई तक नहीं जाती हैं । बारिश शुरू होते ही मिट्टी की ऊपरी सतह में अर्थात् 10 सेंटीमीटर (4 इंच) की गहराई में जड़ें भलीभांति विकसित होती दिखाई पड़ती हैं । वर्ष 1922 के अगस्त माह में जब भूमिगत जल ने सर्वाधिक ऊँचाई प्राप्त की थी तब अमरुद की जड़ें सबसे ऊपर अर्थात् तने के पास से निकली थीं । इसका अर्थ यह हुआ कि घासचारे का गलीचा अमरुद के लिए उपयोगी है, अन्य फल वृक्षों के लिए नहीं ।

मिट्टी में गहरी उत्तरी जड़ों पर घासचारे का कोई विपरीत परिणाम देखने में नहीं आया ।

घासचारा फलवृक्षों की ऊपरी सतह में बढ़ रही जड़ों को तो मारता ही है नये रोपे गए वृक्षों को भी नहीं बक्षता है । सीताफल के मामले में भी ऐसा ही होता है, उसकी जड़ें या तो घासचारे से अलग होकर बढ़ती हैं या फिर नीचे उतर जाती हैं ।

इन प्रयोगों से कई निष्कर्ष निकाले जा सकते हैं । सीताफल, लोकाट, आडू और नीबू के वृक्ष घास चारे की मौजूदगी में मिट्टी की ऊपरी सतह में जड़ें बनाए नहीं रख सकते परंतु गहरी जा रही जड़ों को इससे कोई नुकसान नहीं होता, केवल अमरुद के मामले में वे भलीभांति बढ़ती हैं ।

इस अध्ययन का थोड़ी गहराई में जाकर विश्लेषण करने पर कुछ दिलचस्प परिणाम मिलते हैं । परिपक्व वृक्षों के तने काफी मात्रा के पोषक तत्व

संग्रहित होने से उन्हें कोई कठिनाई पेश नहीं आई परंतु नए वृक्षों का नुकसान हुआ क्योंकि उनके पास अतिरिक्त पोषण नहीं था ।

प्लम के मामले में अधिक दिलचस्प बदलाव दिखाई दिए । नई कोपलें और तना प्रारंभ में कुछ सिकुड़ा हुआ लगा पत्तियों पर कीड़ों का आक्रमण भी दिखाई दिया जबकि नजदीक घास चारा विहीन वृक्षों पर ऐसा कुछ नहीं था । अगर पत्तियों का सिकुड़ा कीड़ों के आक्रमण की वजह से था तो नजदीक के वृक्षों पर उनका आक्रमण क्यों नहीं हुआ । जनवरी 1923 में इन वृक्षों के नये तने 30 सेंटीमीटर से 12.5 सेंटीमीटर तक ऊँचे थे जबकि घासचारा विहीन क्षेत्र के वृक्षों में उनकी ऊँचाई 90 सेंटीमीटर से 17.5 सेंटीमीटर (3 फीट से 7 इंच) थी । आम के वृक्षों ने अवश्य ही घासचारे का मुकाबला किया । 23 जुलाई तक इन वृक्षों में मुझे कीड़ों का आक्रमण नजर नहीं आया, पत्तियाँ अवश्य कुछ हल्की हो गई थीं, शायद ये वृक्ष भूख की वजह से धीरे-धीरे समाप्त हो रहे थे ।

घासचारे की बोवनी के 1 वर्ष बाद इसका क्या प्रभाव पड़ा यह देखा गया । 1922 में प्लम, आडू, सीताफल, आम, लीची और लोकाट के पेड़ों में ऊपरी स्तर पर जड़ें दिखाई दी । लोकाट और सीताफल में अवश्य ही घासचारे से दिक्कत हुई । उनकी नई जड़ें घास से दूर नीचे जा रही थीं ।

इस परीक्षण में यह भी देखने में आया कि हवा जड़ों की मददगार बनती है । 23 जुलाई को नीबू और लोकाट के पेड़ की बगल में दक्षिण दिशा में चूहों के बिल बनाए । इसके ठीक ऊपर की पत्तियाँ गहरी हरी हो गईं । नीचे बिल की मिट्टी हटाने पर दिखाई दिया कि वहाँ नई जड़ें फूट रही हैं कारण कि बिल की वजह से वहाँ वायु का संचार हो रहा था और वजह थी कि वह चूहा ।

हवादार नालियों का पौधों पर प्रभाव

हवादार नालियाँ (Drainage) घासचारे का नए रोपे गए पौधों पर कोई प्रभाव नहीं डालती हैं, इसका कारण जड़ों का मिट्टी में दम घुटना हो सकता है । सीताफल और नीबू के पेड़ों पर इसका कोई परिणाम नहीं दिखाई दिया, सभी पौधे मर गए । प्लम का पौधा अवश्य ही कुछ विलंब से मरा । लोकाट, लीची, आम के पौधों को अवश्य ही फायदा हुआ । अमरुद पर नाली का अथवा घासचारे का कोई परिणाम नहीं हुआ ।

1920 के अन्त में भूमि से 60 सेंटीमीटर (2 फीट) नीचे गहराई में जड़ों

कार्बन इक्स्यू किया गया मात्रा	चारा	चारा + नाला	चारा विहीन खेत	जनवरी 1919 से बारिश
१३६, १४, १७ जनवरी	०.३१२	०.२६९	०.२६९	३०.६७
२१, २२ फरवरी	०.३२०	०.२५३	०.२५३	३२.६०
२२, २२ मार्च	०.४२७	०.२२३	०.१९७	३२.६०
२२, २४ अप्रैल	०.४४०	०.२६२	०.२०३	३०.६७
२६, २७ मई	०.२८५	०.२५७	०.१३३	३०.६७
२७, २८ जून	०.३४२	०.२७४	०.२४९	३०.६७
२७, २८ जुलाई	०.३९०	०.३०४	०.३०४	३०.६७
२५, २६ अगस्त	१.५९०	०.२३६	०.४०१	३२.६०
११, २० सितम्बर	१.९०८	०.१३१	०.४५०	३२.६०
२१, २२ अक्टूबर	१.२७	०.६०२	०.३५६	३२.६०
१५, १६ नवम्बर	०.८५३	०.२६१	०.२६१	३२.६०
२२, २३ दिसंबर	०.३९८	०.३२७	०.२१९	३२.६०

को खोला गया, यह देखने के लिए कि अतिरिक्त वायुसंचार का जड़ों पर क्या प्रभाव पड़ता है। इसका विवरण काफी आश्चर्यजनक है। इन सभी पौधों की जड़ें मोटी और भली प्रकार विकसित थीं। जबकि घास चारे वाले क्षेत्र में अच्छी नहीं थी। केवल अमरुद की जड़ों में कोई फरक दिखाई नहीं दिया। नालियों की वजह से सभी जड़ों में शाखाएं फूट निकली थीं। इन नालियों का उपयोग बारिश का पानी बहाने के लिए होता था। बारिश के बाद नालियों के सिरों पर नई जड़ें निकली हुई दिखाई देती थीं। बाद में घासचारे के नीचे भी जड़ें भली प्रकार बढ़ती देखी गईं।

घासचारे का कुप्रभाव क्यों पड़ता है?

इस बात का अध्ययन करने हेतु मिट्टी में वायु संचार का अध्ययन किया गया। भूमि में 22.5 से 30 सेंटीमीटर गहराई पर मिट्टी में कितनी कार्बन डाई ऑक्साइड है, इसका आकलन किया गया। सन् 1919 में घासचारे वाले खेत में खोदी गई नालियों का अध्ययन किया गया। लगभग दस दस लीटर हवा निकाली गई और प्रयोगशाला में कर्ब वायु (कार्बन डाई ऑक्साइड) अलग की गई। इसके आँकड़े नीचे तालिका में दिए गए हैं।

1920 और 1921 में किए गए परीक्षणों के नतीजे बताते हैं कि जहाँ बिलकुल घासचारा नहीं था वहाँ जितना कर्ब वायु प्राप्त हुआ उससे पाँच गुना अधिक घासचारे के नीचे वाली मिट्टी में बारिश के दिनों में मिला।

कर्ब वायु यह प्राणवायु की अपेक्षा अधिक मात्रा में तथा तेजी से घुलनशील होता है अतः तालिका में दिखाए अनुसार इससे अधिक कर्बवायु मिट्टी में होना चाहिए और वहाँ जड़ें अधिक सक्रिय होनी चाहिए।

जहाँ घासचारा न हो उस मिट्टी में भी कर्बवायु अधिक मात्रा में होता है तो वह ह्यूमस बनाने, नर्तीकरण और मायकोरायजा निर्माण करने में मददगार बनता होगा। इसके लिए मिट्टी में वायु का संचार आवश्यक है। घासचारा न हो ऐसी मिट्टी के स्थान पर घासचारा वाली मिट्टी में 45 सेंटीमीटर (18 इंच) गहराई पर 10 से 20 प्रतिशत अधिक नन्हा पाया गया। हाँलाकि 1923 की बारिश ऋतु में पेरू देश में नन्हीं कमी पाए जाने पर आपूर्ती के लिए अमोनियम सल्फेट डाला गया तो वृक्ष ताजा तरीन हुआ और फलधारणा भी अच्छी हुई।

अध्याय 9

भूमि का रोग - भूक्षरण या कटाव

लीची और लोकाट के वृक्षों की जड़ें बारिश में हवा नहीं ले पाती। अतः घासचारे से ऊपर सिर उठाती है। रासायनिक उर्वरक देने से वृक्षों की बढ़वार तो अच्छी हुई परंतु नजर में आने योग्य एक कमी रह गई और वह कि जिन वृक्षों में खाद नहीं डाली थी, परंतु जिनके नीचे घासचारा उगा था और जिनके नीचे घास चारा नहीं था, उन दोनों वृक्षों की पत्तियों के आकार, रंग-फूल खिलने का समय और नए तने का फुटाव औसत दर्जे का रहा। घासचारे की वजह से नाईट्रोट समाप्त हुआ और जड़ों की बढ़वार रुक गई। रासायनिक नन्हा डालकर यह कमी कुछ हद तक दूर अवश्य हुई। पेरू देश में रासायनिक नन्हा उपयोगी सिद्ध होता है क्योंकि जड़ें हवा में उपलब्ध प्राणवायु चूस लेती हैं। लीची और लोकाट को प्राणवायु कम पड़ता है।

जंगल के वृक्ष और घासचारा

फल वृक्षों में प्राकृतिक घास चारे के गलीचे के नीचे वृक्षों की जड़ों में घुटन आती हो तो भी जंगल में खड़े वृक्ष भलीभाँति पनपते हैं। सन् 1921 और 1923 में उल्लेखित 15 जंगली प्रजातियों के वृक्षों की जड़ों और घासचारे के गलीचे के संबंध कैसे रहते हैं, इसका अध्ययन किया गया।

जंगल के सभी वृक्ष भली प्रकार पनपते हैं, उनकी ग्रीष्म में अच्छी बढ़वार होती है, बारिश के बाद उनकी पत्तियों के आकार, रंगत और फैलाव भलीभाँति विकसित होता है। पत्तियाँ गहरी हरी और चमकीली दिखाई देती हैं, बिलकुल सीताफल की तरह।

सन् 1922 और 1923 के बारिश के मौसम में इन सभी 15 जंगली प्रजातियों के वृक्षों का निरीक्षण करने पर देखा गया कि ऊपरी स्तर की जड़ों में वृक्षों को भलीभाँति बढ़ाया, उसके बाद की ऊपरी 5 से 7 से.मी. की जड़ों की भी अच्छी बढ़वार हुई। इसका अर्थ यह हुआ कि प्राणवायु और नाईट्रोट के लिए उनकी घास चारे के साथ अच्छी स्पर्धा होती है।

घासचारा अपने आसपास बढ़ने वाले वृक्षों को कोई हानि नहीं पहुँचाता।

1921 की ग्रीष्म ऋतु में और 1924 के शुरुआती महीनों में इन सभी वृक्षों की जड़ों को जँचा गया। सभी किस्मों में ऊपरी सतह पर भूमि की नजदीकी जड़ों का महीन जाल बिछा हुआ देखा गया। वह जाल नीचे पानी के लेवल तक पहुँचा हुआ था। गर्मी में रेतीली जमीन में सभी वृक्षों की जड़ें 0.9 से 1.80 मीटर गहरी भू-जल स्तर तक पहुँची हुई पायी गई। इसके लिए उन्होंने आसानी से दीमक की बांबियों से राह बनाई थी। दीमक तथा अन्य कीड़ों द्वारा बनाई गई रिक्तियों, पोले स्थानों का इन जड़ों ने भरपूर उपयोग किया हुआ दिखाई देता है। जो जड़ें अन्यथा सुप्तावस्था में थीं वे भी बारिश के बाद एकदम जोर पकड़ लेती थीं। पानी का स्तर ऊपर आते ही वे जड़ें फिर सुप्त हो गईं। रबी फसलों की बोवनी के बाद नाईट्रेट तैयार होने लगा और ऊपरी स्तर की जड़ें कार्यक्षम होकर वृक्षों पर नई कोपलें फूटने लगीं। बसंत ऋतु में पानी का स्तर नीचे जाते ही मिट्टी में वायु का प्रवेश होने लगता है। ऐसे में पानी के स्तर के अनुरूप जड़ें ऊपर नीचे सरकने लगती हैं।

इस विश्लेषण के बाद समझ में आता है कि घासचारा होना जड़ों के विकास के लिए कितना आवश्यक है। कुछ ऐसे कारण हैं कि जिनकी वजह से जंगली वृक्ष घासचारा एवं अन्य पौधों को बाहर निकालते हैं :

(1) सूखे मौसम में नीचे उत्तर गई जड़ें अटक जाती हैं उस समय जड़ें सुप्तावस्था में होती हैं। इस वजह से उसे 6 मीटर गहराई से पोषण और पानी जमा करने का काम भी वृक्ष इसी समय करते हैं।

(2) प्रकाश के लिए चल रही 5 वृक्षों की जड़ों-जहद इस समय फायदेमंद होती है।

(3) मिट्टी की ऊपरी स्तर पर उग रही जड़ें प्राणवायु और खनिजों के लिए प्रयत्नशील रहती हैं।

जंगली वृक्षों और फलदार वृक्षों के बीच यह फर्क है कि मिट्टी की ऊपरी सतह में हवा की कमी होने पर भी जंगल के वृक्षों को कोई अङ्गन नहीं होती क्योंकि उनकी ऊपरी सतह की जड़ें मजबूत होती हैं। वे घासचारे के नीचे पहुँच कर भी प्राणवायु और नायट्रेट ले लेती

हैं। फलदार वृक्षों की जड़ें कई वायु से बचकर नीचे गहराई में उत्तर जाती हैं। इस वजह से बारिश के मौसम में फलदार वृक्षों को प्राणवायु और नायट्रेट दोनों नहीं मिलते और वे भूखे ही रह जाते हैं। इसमें अपवाद है अमरुद का पेड़।

इस अध्ययन से समशीतोष्ण जंगलों की मिट्टी में वायु का प्रवेश कैसे होता है यह समझ में आता है। भू-जल हवा को आने नहीं देता। बारिश के प्रारंभ में और अंत में जब हवा, पानी और तापक्रम अनुकूल रहते हैं तब नाईट्रेट बनता है और वृक्षों की अच्छी बढ़वार होती है। ठेठ बारिश में दो कारणों से भूमि में हवा का प्रवेश नहीं हो सकता। भूमिगत जल का स्तर बढ़ना और ऊपरी स्तर पर दोनों का इकट्ठा होना, इस वजह से ऊपरी स्तर पर जड़ों का विकास होता है। वृक्षों का अध्ययन करने के लिए जड़ों के विकास का ध्यान रखना जरूरी है।

जड़ों के विकास से मिट्टी का उपजाऊपन भी बढ़ता है। नीचे गहराई में पहुँची हुई मृत जड़ें मिट्टी में खनिजों की आपूर्ति करती हैं और हवा संचार के लिए स्थान बनाती है। उससे मिट्टी में जल निकासी भी विकसित होती है। जीवित जड़ें 6 मीटर गहराई तक मिट्टी को हिलाती-डुलाती हैं और खनिज पदार्थों के स्फुर व पालाश पत्तियों के विकास के लिए उपयोग में लाती हैं। यहीं पत्तियाँ बाद में नीचे गिरकर मिट्टी को उपजाऊ बनाती हैं। इससे सिद्ध होता है कि बिहार क्षेत्र की मिट्टियाँ स्फुर के मामले में कमज़ोर होने पर भी उनकी पोषकता संदेह से परे है। वहाँ किसी रासायनिक उर्वरक के उपयोग के बिना फसलों से अच्छी उपज प्राप्त की जाती है।

मिट्टी में मौजूद खनिजों के उपयोग के लिए वृक्ष ही चाहिए। वृक्ष कहीं भी बढ़ते हैं, वनस्पतियों में वे श्रेष्ठ हैं। इनके कारण मिट्टी की उपजाऊ शक्ति बढ़ती है। अतः यह कहना अतिशयोक्ति नहीं होगी कि जंगल, शहरों के उद्यान और खेत इनका अदल-बदल कर उपयोग होना चाहिए। उद्यानों को खेतों में और खेतों को उद्यानों में बदलना चाहिए।

अवमृदा (सबसॉईल) में वायु का प्रवेश

मिट्टी में वायु का प्रवेश कराने के लिए अवमृदा (सबसॉईल) प्रमुख

हथियार है। वैसे मिट्टी में वायु के प्रवेश के कई मार्ग हैं जिनमें बदलाव भी हो सकता है।

शीत प्रदेशों की मिट्टी में ह्यूमस की कमी के कारण हवा नीचे नहीं आती है। मिट्टी की जुताई के पश्चात मिट्टी के कण एक-दूसरे से चिपक कर बैठने से उनमें वायु का प्रवेश कम होता है। खेत में घासचारे और घूमने फिरने वाले पशुओं के कारण भी मिट्टी पक्की दुष्कर हो जाती है और उसमें हवा का प्रवेश दुश्वार हो जाता है।

गीली मिट्टी में जैविक पदार्थ और केंचुए कम होते हैं, मिट्टी में सतहें बन जाती हैं, वह चिकनी हो जाती है, पानी ऊपर ही रुक जाता है और अंदर तक नहीं जा पाता।

रेतीली मिट्टी में गोबर खाद के स्थान पर रासायनिक उर्वरक वापरने पर मिट्टी में पटल सतहें बन जाती हैं। इन पटलों को समाप्त करने का रास्ता है खेत में भरपूर गोबर खाद डालना। इससे केंचुओं की संख्या बढ़ती है और मिट्टी उपजाऊ बनती है। लूसर्न घास (लुसरीन) लगाने से भी फायदा होता है। खेत में घास लगाने से भी लाभ मिलता है।

पश्चिम के बजाय पूर्व के देशों की मिट्टी में वायु के संचार का अधिक महत्व है। बारिश के पानी अथवा भरपूर सिंचाई से खेत में पटल बन जाते हैं जिन्हें तोड़ना जरूरी है। उत्तर प्रदेश में गंगा के कछार में अरहर की खेती इसी लिए की जाती है। इससे मिट्टी के पटल तो टूटते हैं और खेत में जीवांश भी बढ़ता है। पश्चिम भारत की रेतीली मिट्टी में लूसर्न घास बोई जाती है जबकि दक्षिण की काली मिट्टी में बारिश के बाद पहने वाली गर्मी से मिट्टी के पटल टूट जाते हैं। इसका अर्थ यह हुआ कि अंततः प्रकृति ही कारगर बनती है।

मिट्टी के कुछ रोग मिट्टी का कटाव, उसका क्षरण

मिट्टी का क्षरण यह एक बड़ी विपर्ति है। मिट्टी को उपजाऊ बनाने के लिए इसकी जानकारी रखना बहुत जरूरी है।

बहुत पहले से यह क्षरण जारी है। बड़े-बड़े पत्थर टूट कर उनकी

मिट्टी बनती है और अंततः वह बहकर समुद्र की ओर सरक जाती है। कुछ रास्ते में ही, खेतों में काम आ जाती है। नदी घाटियों में यह सब देखने को मिलता है।

मिट्टी के निचले स्तर पर कई वायु (कार्बन डाइ ऑक्साइड) चट्टानों को तोड़कर खंडित कर मिट्टी बनाता रहता है। उसी समय पशु और वनस्पति जगत में भी उलट-पुलट होकर उनकी मिट्टी बनती रहती है। इसके उपरांत बारिश आती है, ठंड शुरू हो जाने पर मिट्टी के कण धीरे-धीरे नीचे सरकते हैं। उनमें खनिज पदार्थ भी होते हैं। बारिश का पानी उन्हें समुद्र तक पहुँचा देता है। यह प्रकृति का चक्र कहलाता है। फिर नए स्थान की खोज प्रारंभ होती है। मिट्टी का कटाव, उसका क्षरण यह मानव ने मिट्टी पर ढाया हुआ एक जुल्म है, रोग है। मिट्टी का अत्यधिक उपभोग लेने पर प्रकृति उसे ठिकाने लगा देती है और मिट्टी के बारीक कण महासागर की ओर ढकेलती है। फिर खेती करने से नई मिट्टी बनती है और मनुष्य द्वारा लुटने के लिए उसे मिलती है, यह सालों से जारी है। प्रकृति हमेशा नई शुरुआत करती है परंतु अकुशल मानव के साथ उसका मेल नहीं हो पाता। शायद फिर एक बार खेती की नई इबारत लिखी जाएगी, केवल फायदे का गणित छोड़कर अगली पीढ़ी को उपजाऊ मिट्टी देने की शुरुआत करेगा। मिट्टी का क्षरण हमारी गलती से ही होता है।

अमेरिका शायद एकमेव देश है जहाँ मिट्टी के क्षरण का और उससे होने वाली हानि का सही आकलन किया है। राष्ट्रपति रुजवेल्ट ने देश को इस क्षति के बारे में चेतावनी दी थी। इसके बाद आया विश्वयुद्ध, जिस वजह से मिट्टी की उपजाऊ क्षमता काफी बड़े पैमाने पर नष्ट हुई। आर्थिक संकट, अकाल और धूल भरी धरती इन सबने कृषि सुधार की चेतावनी दी थी। रुजवेल्ट के ही कार्यकाल में ही इस काम को सर्वोच्च प्राथमिकता दी गई। सन् 1937 में अमेरिकन खेती की नपती हुई जिसमें लगभग 51 प्रतिशत भूमि क्षरण के कारण खेती के योग्य बच्ची नहीं थी। अमेरिका की तीन चौथाई खेती इस आपत्ति के कारण अनुपयुक्त बन गई। कितनी ही धनराशि खर्च करने पर भी भूमि

को खेती के लिए उपयुक्त बनाना कठिन है।

मिट्टी का गलत उपयोग अमेरिका की मिट्टी के क्षरण का प्रमुख कारण है। मिट्टी की उपजाऊ क्षमता के बारे में अज्ञानता और खेत को लाभ का माध्यम बनाना ये दोनों कारण गलत थे। धन का अभाव, मुट्ठीभर कंपनियों के हाथों में खेती को सौंपना, खेती और उद्योगों में संतुलन न बनाए रखने के कारण मिट्टी की उपजाऊ क्षमता पर पड़ा है। अब वे देश हड्डाकर जाग गए हैं और खेती फायदे का सौदा बनने लगी, ऐसा मानना होगा। 1938 के सरकारी प्रकाशन में यह जानकारी मिलती है।

अफ्रीका में भी यही हुआ

अमेरिका, अफ्रीका और अन्य राष्ट्रों में इस मर्ज के बढ़ने से उस पर तत्काल उपाय शुरू हुए। वे थे सबसे पहले प्राकृतिक जल निकासी के मुख्य स्थल जैसे नदी और उसके दोनों किनारे क्षरण के केन्द्र होते हैं, उनकी सुरक्षा के उपाय करना आदि।

इस का आदर्श जापान ने मिट्टी क्षरण का उपाय कर रखा है। धुआँधार बारिश, तेजी से बह रही मिट्टी, चारों ओर सपाट पहाड़ी ढलान और घाटी जिससे लगातार बहने वाली मिट्टी, परंतु जापान ने धन की परवाह न कर मिट्टी को बाँधे रखकर एक राष्ट्रीय क्षति पर काबू पाया है। इसी वजह से सर्वोत्कृष्ट चावल वहाँ पैदा किया जा सकता है। सन् 1925 में जापान ने प्रति हेक्टर 1132 येन अर्थात् दस गुना राशि खर्च कर मिट्टी को बहने से रोक कर दुनिया के सामने एक आदर्श उदाहरण रखा है। जिन जंगलों को जापान ने 1132 येन प्रति हेक्टर देकर बचाया उन जंगलों का वास्तविक मूल्य 100 येन प्रति हेक्टर था। इस भारी भरकम खर्च से चावल के खेत बचाए जा सके जिनकी कीमत 600 से 750 येन प्रति हेक्टर थी।

सैकड़ों वर्ष पहले जापान में मिट्टी के क्षरण से होने वाले नुकसान का आकलन किया गया था। जापान ने पहाड़ी प्रदेशों का ऊपरी भाग जंगलों के लिए सुरक्षित रखा था। मिट्टी का क्षरण रोकने के लिए यह सबसे बड़ा हथियार है और अब यह जापान की राष्ट्रीय नीति है। यह अत्यंत असरकारक, कम खर्चाला और नीचे की धान की खेती की उपज

बढ़ाने वाला नीतिगत निर्णय माना जाता है। जापान के वार्षिक घटनाक्रम का एक प्रमुख अंग है मिट्टी का कटाव रोकना।

लोवडर मिल्क कहते हैं कि जापान का मृदा संवर्धन का काम जैसे शतरंज की बाजी समान है। वहाँ के जंगलों का इंजीनियर पहले वहाँ के दर्दे घाटियों का निरीक्षण करता है, बाद में स्थितिनुसार एक अथवा अधिक मिट्टी के बंधान बाँधता है। इसके उपरांत वह प्रकृति की प्रतिक्रिया जाँचता है और इसी के अनुरूप आगे निर्माण कार्य शुरू करता है, अधिक बाँध अथवा बाँधों को मजबूती देने का काम या फिर बाँध के नजदीक बंधान जैसी दीवार बनाता है। इसके बाद फिर प्रकृति की प्रतिक्रिया देखकर अगला निर्माण जारी रखता है। जब तक मिट्टी का क्षरण रुकता नहीं तब तक उसके काम की गति इसी प्रकार जारी रहती है। वह इसी के बीच पेड़-पौधे रोपकर एक हरी दीवार भी मिट्टी रोकने के लिए बनाता है। वर्ष 1929 तक लगभग 20 लाख हेक्टर क्षेत्र के जंगलों में मृदा संवर्धन का काम किया गया। जंगल की मृदा संवर्धन का एक और फायदा है कि इससे बारिश का पानी रोका जाकर शनैः शनैः नदियों और पोखरों को मिलता रहता है।

चीन में इसका ठीक उल्टा हो रहा है। चीन प्रशासन को निकासी (इनेजेज) का उत्तर अभी तक मिल नहीं पाया है। पीत नदी के क्षेत्र से नीचे सरकने वाली मिट्टी को रोकने का काम चीन प्रशासन ने नहीं किया। प्रति वर्ष यह नदी लगभग 200 करोड़ मे. टन मिट्टी बहाकर ले जाती है। यह इतनी है कि 400 वर्गमील क्षेत्र में 1.5 मीटर ऊँचाई तक भरी जा सकती है। इस नदी के जलप्रवाह का मिट्टी के क्षरण का सही आकलन ही नहीं किया गया है। चीन की बढ़ती आबादी से यह समस्या और भी बिगड़ रही है। चीन के समान मिसीसिपी नदी का भी यही रोना है।

पूरे विश्व में मिट्टी क्षरण एक गंभीर समस्या बन रही है। इतना होने के बावजूद इसका धनात्मक पहलू यह है कि मिट्टी की निचली सतह पर नई मिट्टी को बनाना अविरत जारी है। इस नई मिट्टी की अगर सुरक्षा की गई तो खेती की नई शुरुआत ही समझें। भारत के मध्य प्रात की काली चिकनी मिट्टी इस प्रक्रिया का जीता जागता सबूत है। यहाँ भी मिट्टी बहती रहती है परंतु इसी के साथ नई मिट्टी भी बनती रहती है। ग्वालियर राज्य में ऐसी नई मिट्टी से बने खेत देखे जा सकते हैं।

भूमि के क्षारीय होने के कारण और उपाय

जहाँ बिलकुल मिट्टी मौजूद न हो ऐसे पथरीले क्षेत्र में ग्वालियर राज्य के राजा द्वारा किया गया भूसंवर्धन का काम अविश्वसनीय कहा जाएगा। इसका फायदा यह हुआ कि थोड़े दिनों में वहाँ उत्कृष्ट श्रेणी के गेहूं का उत्पादन होने लगा।

जंगलों में ऐसा क्या कुछ होता है कि जहाँ मिट्टी सुधारने और नदी नालों को लगातार पानी आपूर्ति का काम वे करते हैं? जंगल काम करते हैं :

(1) बड़े-बड़े विराट वृक्ष और उनके नीचे पनप रहे छोटे पौधे बारिश की पानी की बोछार को झेलकर उसे छोटी बूँदों में बदल कर जमीन पर पड़ी सूखी पत्तियों पर गिराते हैं जिनसे मिट्टी का क्षण नहीं होता और

(2) इससे जंगलों में ह्यूमस की मात्रा बढ़ती है और मिट्टी में पानी को पकड़ रखने की क्षमता विकसित होती है। वह जमा पानी बाद में नदी नालों को लगातार मिलता है।

जंगल में वृक्ष अधिक न हों तो धरती पर घास-चारे का आवरण होना चाहिए अथवा झाड़ियाँ होनी चाहिए। इससे वहाँ निरंतर ह्यूमस बनता रहेगा। ऐसी भूमि में मिट्टी का कटाव लगभग नहीं के बराबर होता है। मास्को की टिमीरिसेव अकादमी के वैज्ञानिक विलियम्स का यह कथन कितना सही है कि पिछड़े देशों की सभ्यता इसलिए समाप्त हुई क्योंकि वहाँ की मिट्टी उपजाऊ नहीं थी।

इसका पूरा श्रेय मिट्टी पर मौजूद घासचारे के आच्छादन को देना होगा। विलियम्स कहते हैं कि घासचारा यह मिट्टी का सबसे बड़ा हथियार तो है साथ ही किसी देश की सभ्यता और संस्कृति का भी रक्षक होता है। उन्हीं के (विलियम्स) प्रयासों से रूस का मृदा संवर्धन अभियान सही तरीके से कार्यान्वित किया गया।

घासचारा मिट्टी की ऊपरी सतह से जल निकासी (ड्रेनेज) का भी काम करता है लेकिन मिट्टी का एक कण भी बाहर नहीं जाने देता। इस वजह से घासचारे को अपने आप खाद मिलती रहती है और उसकी पैदावार बढ़ती है। उत्तर प्रदेश के शाहजहांपुर शकर अनुसंधान केन्द्र में इसके परीक्षण किए गए। खेत के बगल

में पगड़ंडी के पास खुदाई कर वहाँ घास रोपी गई जिस वजह से बारिश का खेत से बहने वाला पानी घास के ऊपर से मिट्टी के कणों को हिलाए बिना बहकर निकल गया।

मिट्टी के कटाव में अगर गलत खेती पद्धति और नदी के किनारों को मृदा संवर्धन की प्राकृतिक जगह का कारण मान लिया जाए तो इसमें कुछ सुधार सुझाए जा सकते हैं। नदी का ऊपरी क्षेत्र वृक्षों से और खेती योग्य भूमि को घासचारे से ढँकना, इस तरह तैयार उर्वरा मिट्टी अपनी प्यास बुझाएगी।

इस क्षेत्र में पशुओं को ज्यादा चरने न दिया जाए और घासचारा भी अधिक बचाया न जाए। कंटूर खेती, कंटूर (समोच्च ऊँचाई की) नाले जैसी प्रणाली का उपयोग किया जाए। किसी एक प्रणाली से मृदा संरक्षण संभव नहीं हो सकता।

क्षारीय (खारी) मिट्टी

मिट्टी से लगातार प्राणवायु कम होता रहा तो वह खेत अनुपजाऊ होगा ही।

उष्ण और समशीतोष्ण देशों में सल्फेट क्लोराइड और सोडियम कार्बोनेट जैसे रसायनों के मिश्रण से सामान्य खेती को बाधा होती है। ऐसे खेतों को क्षारीय अर्थात् खारे खेत कहते हैं। खेत जब इस प्रकार खारे होने लगे तो तुरंत इसके उपाय करने चाहिए अन्यथा वह खेत हाथ से निकल जाता है।

ऐसी क्षारीय जमीनें मध्य एशिया, भारत, परशिया (फारस), इराक, इजिप्त, उत्तरी अफ्रीका और अमेरिका में पायी जाती हैं।

एक समय था जब जमीन हल्की बारिश से भी क्षारीय हो जाती क्योंकि लगातार पड़ रही धूप फिर बारिश, हवा के झाँकों के कारण पथर चट्टाने टूट कर उनमें से निकले क्षार बारिश की नालियों से बहकर निकल नहीं जाते तो मिट्टी में जमकर उसे क्षारीय बना देते हैं। उत्तर पश्चिम भारत में, जहाँ कम बारिश होती है वहाँ क्षारीय भूमि पाई जाती है। परंतु मिट्टी क्षारीय होने का यही कारण माना जाए तो उत्तर प्रदेश के अवध क्षेत्र में काफी बारिश होती है और वहाँ भी क्षार पानी में घुल कर बह कर जा सकते हैं परंतु वहाँ भी भूमि क्षारीय अनुपजाऊ पायी जाती है। बिहार राज्य में भी औसतन 125 से 150 से.मी. बारिश हर साल होती है। अतः कम बारिश वाली भूमि ही क्षारीय होती है यह सही नहीं है। भूमि के क्षारीय होने का मुख्य कारण यह है कि बारिश का पानी जहाँ मिट्टी में उतरता नहीं रिसता नहीं, वह क्षारीय हो जाती है। जहाँ लगातार सिंचाई होती है वहाँ नीचे से अवमृदा का

पानी ऊपर आकर मिट्टी के कण कड़क होकर पानी का निस्तार नहीं होता और नीचे जमा क्षार ऊपर आ जाते हैं। ऐसी जमीन में डाले गए रासायनिक उर्वरक गड़बड़ज़ाला कर देते हैं क्योंकि ये रासायन मिट्टी का जीवांश नष्ट कर देते हैं। पूसा में जहाँ भी इमली, पीपल और बाँस लगाए थे वहाँ क्षारीय पटियाँ दिखाई दी थीं, हरे नीले रंग के धब्बे दिखते। क्योंकि वहाँ अवायुवीय (एनोरेबिक) सूक्ष्म जीवाणु पनपते थे। इसी प्रकार क्वेटा में भी हरे, नीले, भूरे रंग के धब्बे जमीन पर दिखाई देते। उस भाग में कुएँ भी हवा के लिए खुले में होते थे। इससे पानी सल्फ्यूरेटेड हाइड्रोजन से दूषित होने से बचता था। मुंबई प्रदेश में नीरा के पास लगातार सिंचाई से भूमि पर क्षार दिखाई देते थे। माने और ताम्हण देखते थे कि इस पानी में सल्फ्यूरेटेड हाइड्रोजन की बू आती थी, जल निकासी के मुँह के पास सफेद पटियाँ भी दिखाई देतीं। जो जमीनें कभी क्षारीय नहीं थीं वहाँ भी लगातार सिंचाई के कारण क्षार मिट्टी के ऊपर दिखाई देने लगते।

भूमि में क्षार बढ़ने का मुख्य कारण मिट्टी का सही प्रबंधन न होना है।

(1) खेत की लगातार सिंचाई जिस बजह से मिट्टी के कणों में प्रवेश करने वाली हवा का रास्ता रुक जाता है और उस स्थान पर हरी नीली पटियाँ दिखाई देने लगती हैं, जिसका अर्थ मिट्टी का अनउपजाऊ हो जाना समझें। मिट्टी में उपस्थित सूक्ष्म जीवाणु समाप्त हो जाते हैं, जिन क्षेत्रों में पूरे सालभर सिंचाई की व्यवस्था है, वहाँ इस बात का ध्यान रखना आवश्यक है।

(2) मिट्टी में ह्यूमस का ध्यान न रखते हुए एक के बाद एक फसल लेते रहना। उत्तर भारत की इंडो गेंजेटिक पट्टी (गंगाधाटी) में ऐसा हमेशा होता है। वहाँ ह्यूमस शीघ्र ही समाप्त हो जाता है। वहाँ का मौसम भी शीघ्र ही बदलता है, तापमान एकाएक बढ़ जाता है अथवा सूखे मौसम में नमी बढ़ जाती है। ठंडे प्रदेशों में जिस प्रकार जीवांश लगातार मिट्टी में मौजूद रहता है वैसा गर्म देशों में नहीं रहता। इस बजह से लगातार फसलें उगाकर मिट्टी में ह्यूमस की कमी पैदा करना टालें। ऐसी मिट्टी में आगे चलकर क्षार आएंगे ही।

(3) संश्लेषित रासायनिक उर्वरकों, विशेषकर अमोनियम सल्फेट का उपयोग., क्योंकि जिस मिट्टी में जीवांश अधिक मात्रा में होता है वहाँ रासायनिक उर्वरक कुछ फफूँद और सूक्ष्म जीवाणुओं को मिट्टी में बढ़ाते हैं, जो अपनी बढ़वार के लिए मिट्टी में मौजूद ह्यूमस का उपयोग कर उसे कम कर देते हैं। वे जैविक तत्व जो मिट्टी के कणों को चिपकने नहीं देते वे भी इन रासायनिक

उर्वरकों द्वारा पैदा किये जीवाणुओं के कारण कम हो जाते हैं। जिस खेत में प्राणवायु समाप्त होने लगती हैं वह जमीन क्षारीय बनने लगती है।

मिट्टी बड़ी तेजी से अनुपजाऊ बन सकती है। खेत में अवायुवीय जीवाणु बढ़ने लगते हैं, प्राणवायु आपूर्ति का प्रमुख साधन नाईट्रोट वह समाप्त होने लगता है। मिट्टी में उपस्थित जीवांश अवायुवीय (एनएरोबिक) प्रक्रिया से सड़ने लगते हैं। मिट्टी में सल्फ्यूरेटेड हाइड्रोजन बनने लगता है, मिट्टी मृतप्राय हो जाती है। उसमें सल्फेट, क्लोराइड और सोडियम कार्बोनेट बनने लगते हैं। मिट्टी की ऊपरी सतह पर सफेद व भूरे रंग की पटियाँ दिखाई देने लगती हैं। कर्ब वायु और पानी के संपर्क से सल्फेट और क्लोराइड, सोडियम कार्बोनेट बनने लगते हैं।

दलहनी फसलें क्षारीय मिट्टी में बहुत संवेदनशील होती हैं। ऐसी मिट्टी में जड़ों द्वारा फसलों में जा रही नमी जड़ों पर उपस्थित रोयें पर पड़ रहे दबाव पर निर्भर करता है। सामान्य वातावरण में जड़ों के रोयों में मौजूद अवशोषण दबाव के कारण मिट्टी में उपस्थित जलबिंदु तेजी से जड़ों में प्रवेश कर जाते हैं परंतु मिट्टी में क्षार मौजूद होते हैं तो इसका ठीक उलटा होता है, जड़ों की कोशिकाओं में मौजूद पानी बाहर निकल पड़ता है और पौधे मृतप्रायः हो जाते हैं।

पूसा में मुझे ऐसी ही एक हाल ही में क्षारीय बनी जमीन को सामान्य बनाने का काम सौंपा गया। पौधों की काली होती पत्तियाँ और सिकुड़ रही बढ़वार से उन्होंने पहचाना कि मिट्टी में क्षार की मात्रा बढ़ रही है। अब क्या करे? तब मैंने खेत में जैविक सामग्री (जीवांश) डालना शुरू कर दिया और अरहर जैसी गहरी जड़ों वाली फसल उस खेत में लगाई। इससे क्षार नियंत्रण में आ गए। पंजाब जैसे उपजाऊ मिट्टीवाले प्रदेश में क्षार की मात्रा बढ़ने पर उसका पहला प्रभाव कपास के फूलों पर पड़ता है।

क्षारीय भूमि को सुधारना आसान है, ऐसी जमीन में भरपूर जिप्सम डालना चाहिए, जीवांश डालें और उपयुक्त फसलों की बोवनी करें।

परजीवी पौधों के आगे फसलों व पशुओं का समर्पण

जिस प्रकार क्षारण ग्रसित और क्षारीय भूमि को सुधार कर पुनः उसे ओजपूर्ण उपजाऊ मिट्टी में परिवर्तित किया जा सकता है उसी प्रकार कीटग्रस्त और बीमार पौधों से मिट्टी को उपजाऊ बनाया जाता है।

धरती माता के पास अयोग्य फसलों के पौधे ढूँढकर निकालने की क्षमता होती है। अनुपजाऊ भूमि में अथवा अयोग्य फसल किस गलती से बो दी जाती है तब प्रकृति के पास उस पर नियंत्रण पाने की क्षमता होती है। प्रकृति तुरंत कीड़ों अथवा विषाणु अथवा अन्य बीमारियों के जीवाणुओं को उन अनावश्यक पौधों को समाप्त करने के लिए भेजती हैं। इसे ही विकसित कृषि विज्ञान की भाषा में “फसलों पर लगे रोग अथवा बीमारियाँ” कहते हैं। कृषि वैज्ञानिक कहते हैं कि रोग अथवा कीड़ों से फसल को बचाना है अब।

आजकल एक नई बीमारी सामने आ रही है जिसे विषाणु (वायरस) कहते हैं। इनका वैसे कोई भी परजीवी (पॉरासाईट) नहीं है परंतु वायरसग्रस्त पौधे से इसे तंदुरुस्त पौधे पर वहन करने वाल कीट तो है। ऐसे ग्रस्त पौधे की कोशिकाओं का निरीक्षण करें तो उनकी प्रोटीन संरचना में विकृति दिखाई देती है और यह भी मालूम पड़ता है कि उनके हरे पत्तों की बनावट भी बिगड़ गई है। केमिक्स में इस विषय पर काफी खोज जारी है और शीघ्र काफी नया साहित्य बाहर निकला है (1940)।

यह सब किसी विषाणु अथवा अन्य कीट बीमारी के कारण न होकर पौधों की सामान्य शारीरिक तंत्र में आयी विकृति के कारण होता है।

कृषि विज्ञान ऐसे बीमारू फसल के बारे में क्या कहता है? इस प्रश्न का उत्तर काफी दिलचस्प और उसके ज्ञान का प्रकाश डालने जैसा है। उसका उत्तर नीचे लिखे चार शाखाओं वाले विवरण से दिया जाता है :

(1) फसल के साथ ही फसल के विनाशक शत्रु का अध्ययन करने पर और पर्यावरण का दोनों पर पड़ने वाले प्रभाव का अध्ययन करते समय यह समझ में आता है कि ऐसे विनाशकों का कमजोर पक्ष मालूम पड़े तो फसल को बचाया जा सकेगा और विनाशक कारक को समाप्त किया जाना संभव होगा। वास्तव में इन विषयों के विशेषज्ञ वैज्ञानिकों ने इस विषय पर काफी अनुसंधान किये हैं और साहित्य भी लिखा है। नई बीमारियाँ भी इतनी अधिक निकल रही हैं कि इनके विशेषज्ञ भी अमित हो रहे हैं। ये वैज्ञानिक - कीटशास्त्री, रोगशास्त्री, अंतरराष्ट्रीय ग्रंथों में इन समस्याओं के निवान ढूँढते हैं। ठीक उसी तरह जैसे बैंक के किलयरिंग हाउस में चेक निपटाए जाते हैं।

(2) बंकिग्हेमशायर के फैनहम रॉयल में इसके लिए एक अलग संस्था का गठन किया गया है जो इन कीटों के प्रजनन पर अध्ययन करती है।

(3) इन विनाशक कारकों के बीच प्रवेश कर फसलों को बचाने के दो रास्ते हैं :-

1. जब ये हानिकारक जीव फसल पर हमला करते हैं उस समय अथवा हमला करने से पूर्व संभावित समय पर पौधों को रासायनिक दवाइयों के छिड़काव कर बचाना अथवा

2. हानिकारक जीवों को जलाकर नष्ट करना अथवा उन पर तेजाब डालकर समाप्त करना या फिर खेत में दवाई डालकर उन्हें शुरू होने से पूर्व ही नष्ट करना।

(4) विदेशों से घुसपैठ कर देश में प्रवेश पाए इन हानिकारक जीवों को कानून बनाकर उनका प्रवेश रोकना।

यह उपाय शासकीय भंडारण प्रक्रिया के अंतर्गत आता है। पौधों और सामग्री के आयात पर कानूनन पाबंदी लगाई जा सकती है अथवा जहाजों पर ही दवाई का छिड़काव कर उन्हें नष्ट किया जा सकता है। उद्देश्य एक ही है कि इन विनाशक तत्वों से फसल सुरक्षा करना। हवाई, सागरी और भूतल पर चलने वाले वाहनों की संख्या जैसे-जैसे बढ़ती जाएगी वैसे ही यह सब मुश्किल होता जाएगा। अपने परिवार के उद्यान में उत्साही सदस्य ही विदेशों से शोभा बढ़ाने हेतु पौधे और अन्य सामग्री लाते हैं ऐसे में नियंत्रण करना आसान नहीं होगा।

पौधों और फसलों पर आक्रमण करने वाले इन विनाशक तत्वों के अध्ययन के अब 50 वर्ष बीत चुके हैं (1940 में), इसके क्या नतीजे मिले हैं? बीमारियों, कीड़ों पर कुछ स्थायी नियंत्रण के उपाय मिले क्या? नये-नये रोग बीमारियाँ पैदा हो रही हैं और उनके नियंत्रण के लिए विषैले रसायन बाजार में आ रहे हैं। क्या यह सही है? कृषि विज्ञान ने क्या इसी का अध्ययन करना चाहिए? क्यों इतने कीट, बीमारियाँ फसलों पर आक्रमण करते हैं? क्या पश्चिम के देशों के फसल नष्ट करने वाले तत्वों का जात इसके लिए जिम्मेदार है? इन समस्याओं के तत्काल निराकरण के उपाय किसे सूझाता है? पूर्व के देशों के किसान क्या इन विनाशक तत्वों तथा उनके नियंत्रण के उपाय हमें सूझा सकते हैं?

अगले अध्याय में हम इन्हीं बातों पर विचार करेंगे।

कृषि अनुसंधान किसी योजनाबद्ध विचारपूर्वक योजना से पैदा न होकर यह एक व्यापारिक प्रक्रिया का अंग है और समय-समय पर इस विषय पर सार्वजनिक चर्चा सत्रों का आयोजन किया जाना चाहिए कि फसलों पर कीड़ों, बीमारियों और

इन पर खर्च किए गए धन इन सबका कोई तालमेल है अथवा नहीं? उसमें से कोई नया ज्ञान अथवा अनुसंधान उपजा है क्या?

अध्याय 11

भूमि को सबल बनाना ही इन समस्याओं का हल

वर्ष 1819 से सर अल्बर्ट हॉवर्ड ने फसलें और पशुओं के रोग इन विषयों पर निरंतर अध्ययन किया। उनके इन 40 वर्षों के अध्ययन का निचोड़ यहाँ प्रस्तुत कर रहे हैं।

इस अध्ययन के निष्कर्ष सबके सामने रखकर सर हॉवर्ड उनके गुण-दोषों की कैफियत माँगने जा रहे हैं।

सन् 1899 में सर अल्बर्ट हॉवर्ड की पौधे रोग विशेषज्ञ के ओहदे पर वेस्टइंडीज में नियुक्त हुई। वहाँ गत्रा और कोको फसलों के रोग विशेषज्ञ के रूप में वह बहुत लोकप्रिय हुए। वहाँ उन्हें इस बात की जानकारी मिली कि कृषि अनुसंधान केन्द्र के पास अपना खेत भी नहीं है जहाँ वे अपनी फसलें उगाकर उनकी जाँच कर किसानों का सही मार्गदर्शन कर सकें।

इसके उपरांत उनकी नियुक्ति वाय कॉलेज केन्द्र में वनस्पति वैज्ञानिक के पद पर हुई। वहाँ उन्होंने हॉप (ह्यूम्युलस ल्यूप्युलस) नामक अजीब पौधे पर लगाने वाले कीट और बीमारियों का अध्ययन किया। वहाँ भी उनके विचारों को भूमि पर कार्यरूप में बदलने के लिए खेत उपलब्ध नहीं थे। हालाँकि उन्होंने यह अनुभव किया कि परागीकरण होने के बाद हॉप के फूलों में प्राकृतिक शक्ति आ जाती है। इस अनुभव का यह अच्छा परिणाम हुआ कि हॉप की फसल के नर भाग की भी खेती होने लगी और मादा फूलों का परागीकरण की दृष्टि से महत्व बढ़ा।

सन् 1905 में सर अल्बर्ट हॉवर्ड भारत आए। पूसा (बिहार) के कृषि अनुसंधान केन्द्र में उनकी नियुक्ति हुई। वहाँ के संचालक श्री बनार्ड कर्वेंट्री के सहयोग का उन्हें लाभ मिला। वहाँ उन्हें 30 हेक्टर भूमि, धन राशि और काम करने की आजादी मिली। अब वे अपनी इच्छानुसार फसलें उगाकर शोध कार्य कर सकते थे। विश्वविद्यालयीन अध्ययन करने के 6 वर्ष बाद उनका वास्तविक अभ्यासकाल शुरू हो रहा था।

वेस्टइंडीज में रहते हुए उनके दिमाग में घुमड़ रही अनेक योजनाओं को अब साकार करना संभव हो रहा था। एक तो यह विचार कि फसलों पर आक्रमण करने वाले कीड़ों और बीमारियों को उनकी गति से बढ़ने दिया जाए तो क्या होता है? शायद बोवनी का तरीका अथवा किसीं बदलने से कुछ फरक पड़ेगा क्या? इस

अध्ययन के कारण उन्हें अपने आप भारत की देसी खेती पद्धति की खोज हाथ लगी। पूसा अनुसंधान केन्द्र के आसपास किसानों की फसलों पर किसी प्रकार के छिड़काव न होने पर भी फसलें ओजपूर्ण, जोरदार होती थीं।

भारत की पुरानी पारंपरिक खेती पद्धति में इन छिड़कावों के लिए कोई जगह नहीं थी। उन्होंने तय किया कि इस भारतीय खेती पद्धति का निकट से अध्ययन करेंगे। सच पूछो तो सर हॉवर्ड ने इन किसानों को अपना गुरु ही माना था। उन्होंने देखा कि फसलों की जो प्रजातियाँ उस क्षेत्र के लिए उपयुक्त नहीं उन्हीं पर कीड़े और बीमारियों का आक्रमण होता है।

उनके लिए यह सब करना संभव था इसके दो कारण थे। पहला - पूसा अनुसंधान केन्द्र नया नया शुरू हुआ था और दूसरा उन्हें वास्तव में क्या करना है इसकी कोई निश्चित जानकारी उनके पास नहीं थी। इस बजह से वह अपनी मनमर्जी से काम करने को स्वतंत्र थे। दरअसल यह उनका भारतीय खेती को समझने का एक पाठ्यक्रम था। यहाँ से सीखकर ही वह अन्य अनुसंधान केन्द्र के तयशुदा सीमित, अनुसंधान कार्यक्रम से बंधे हुए नहीं थे। उन्हें बाहर के खेतों से वास्तविक व्यावहारिक ज्ञान मिलता रहा।

किसी तरह के छिड़काव अथवा कीट नियंत्रण के बिना उत्पन्न स्वस्थ फसलों से उन्हें नई दिशा मिली। पाँच साल तक उन जर्मीनों में उगाई गई फसलों पर किसी कीट अथवा रोग का आक्रमण नहीं हुआ। वर्ष 1910 आते-आते उन्हें समझ में आ गया कि कीट शास्त्री, रोग शास्त्री, जीवाणु विशेषज्ञ, रसायन शास्त्री, सांख्यिकी शास्त्री आदि की मदद के बिना अथवा संश्लेषित रसायनों से बने उर्वरक, दवाइयाँ, छिड़काव यंत्र आदि से सज्जित अनुसंधान केन्द्रों के बिना भी शक्तिशाली उपजाऊ फसल उगाई जा सकती है।

जिन कारणों से फसलें रोगग्रस्त होती हैं वे निम्नानुसार हैं -

(1) स्वस्थ, ओजपूर्ण फसलों पर कीड़े अथवा बीमारियाँ आक्रमण नहीं करतीं। खेती की मिट्टी के अनुपयुक्त फसल उगाने पर ही कीटव्याधियों का आक्रमण होता है। गलत तरीकों से पोषण किए गए फसलों को नियंत्रित करने के लिए प्रकृति ही कीट-व्याधियों का आक्रमण पैदा करती है क्योंकि प्रकृति को स्वस्थ फसल और वातावरण ही चाहिए।

(2) छिड़काव और दवाइयों की पावड़र भुरक कर किया गया कीट नियंत्रण

अगर सफल भी होता है तो भी वह अवैज्ञानिक है और इसके बाबजूद यह प्रश्न अनुत्तरित रहता है कि स्वस्थ फसल कैसी ली जा सकती है।

(3) बीमार पौधों को जलाना यह सही उपाय नहीं है। उससे खेत का जीवांश नष्ट हो जाता है। प्रकृति में ऐसी कोई व्यवस्था नहीं है कि जिसमें कीड़े और रोगाणु एक साथ संक्रिय रहेंगे। इन निरीक्षणों से यह बात समझ में आती है कि स्वस्थ निरोगी काया यह प्रत्येक फसल का जन्मसिद्ध अधिकार है और कृषि अनुसंधान केन्द्रों का काम विनाशक शत्रुओं को मार कर नष्ट करना नहीं वरन् उन्हें खेती के योग्य उपयुक्त बनाना होना चाहिए।

बैलों पर, जो भारतीय खेती में श्रमशक्ति के केन्द्रबिन्दु हैं, उन पर भी यही नियम लागू होता है। उनके निरीक्षण के लिए सर अल्बर्ट हॉवर्ड ने सभी ढोरों की जाँच की। उनकी खुराक, देखभाल, गौशाला वगैरे को ध्यान से देखा। प्रारंभ में उन्हें थोड़ी दिक्कत पेश आई परंतु व्हाईसराय परिषद के सदस्यों की सहमति से उन्हें 6 जोड़ी बैल देख-रेख करने के लिए मिले। उनकी पृष्ठभूमि खेतीहर किसान की होने के कारण उन्हें बैलों की देख-रेख करने में कोई परेशानी नहीं हुई।

उन्हें दिए गए बैल अच्छी नस्ल के थे। उनकी गौशाला अच्छी बनी हुई थी, पशु आहार में हरा-भरा चारा, खली, चना-चूरी बाटा जो अच्छी उपजाऊ भूमि में पैदा हुआ था। इस अच्छी खुसक की कजह से बैलों को किसी तरह की बीमारी नहीं हुई। उनका टीकाकरण भी नहीं करना पड़ा। उनकी गौशाला फैंसिंग के पास बनी थी। पड़ोस के पशुओं को मुँहपका-खुरपका रोग हुआ था परंतु उनकी नाक से नाक रगड़ कर भी हमारे बैलों को यह रोग नहीं हुआ। जिस तरह भरपूर जैविक खाद देने से फसलें भी कीड़े-बीमारियों से सुरक्षित रहती है उसी तरह उनके बैल भी बीमारियों से बचे रहे।

खेती में कुछ नया करने के लिए समय और जगह का महत्व होता है। ऊपर वर्णित तीनों सिद्धांत पूसा (1910 से 24) क्वेटा ग्रीष्म (1910 से 12) और इन्दौर (1924 से 31) के बीच आजमाए गए।

1910 से 1924 के बीच पूसा की फसलों पर बीमारियों का आक्रमण कभी कभार होता था। पौधों के बहुलीकरण के लिए कभी-कभी गहरी जड़ों वाली बीमार फसलों को प्रयोगों के लिए चुना जाता था। उनके खेतों में बीमारियों का प्रकोप बस इतना ही नाममात्र को होता था। मिट्टी के वायुसंचार की कमी से बीमारियाँ पैदा होती हैं।

खेसरी दाल (लथायरस सटायवस) फसल के प्रयोग में मिट्टी में वायु का संचार और पौधों की बीमारियों में क्या संबंध होता है यह देखने के लिए एक दिलचस्प प्रयोग किया गया। इस दलहनी किस्म के तीन भाग होते हैं। मिट्टी की ऊपरी सतह की जड़ों वाले खेसरी के पौधों पर हरी मक्खी का कम आक्रमण होता है जबकि गहरी जड़ों वाले पौधों पर काफी अधिक संख्या में। इन दोनों सतहों के बीच बढ़ने वाली जड़ों वाले पौधों पर थोड़ी कम संख्या में आक्रमण करती है हरी मक्खी। यह प्रयोग 3 मीटर चौड़ी 3 क्यारियों में किया गया। हरी मक्खी का आक्रमण लगातार होता रहता था। तात्पर्य यह है कि इस कीड़े का आक्रमण केवल गलत प्रबंधन के कारण होता है।

पूसा में तंबाकू पर इसका परीक्षण किया गया।

प्रारंभ में विषाणु (वायरस) के कारण पौधों पर अजीब गाँठें दिखाई देती थीं परंतु जब अच्छी रोपवाटिका में मेहनत से तंबाकू के रोपे तैयार कर जब उन्हें रोपा गया तब उन पर वायरस का बिलकुल आक्रमण नहीं हुआ। प्रारंभ के 3 वर्षों तक ऐसा ही चलता रहा परंतु 1910 से 1925 के बीच ऐसा कभी नहीं हुआ। मिट्टी के सही प्रबंध के अतिरिक्त इस बीमारी की रोकथाम के लिए अन्य कोई प्रयत्न नहीं किए गए।

क्वेटा में नहरों से सिंचाई और फलों की वृद्धि के दो प्रयोग आवश्यक थे। सर हॉवर्ड वहाँ 9 वर्ष रहे परंतु एक बार भी किसी रोग का आक्रमण नहीं हुआ। आदिवासी मजदूरों ने कीट प्रबंधन किए गए खेतों और सिंचाई के कारण अंगूर के बागानों में किसी वायरस अथवा अन्य रोग का आक्रमण दिखाई नहीं दिया। मिलडयू (भूतिया) के सभी कारक उपस्थित होते हुए भी इस रोग का प्रकोप अंगूर पर नहीं दिखाई दिया।

इसके तीन कारण हो सकते हैं। क्वेटा का सूखा मौसम, साफ नीला आसमान, अंगूर के लिए जल निकासी की सुचारू व्यवस्था की गई थी। मिट्टी में भरपूर मात्रा में गोबर खाद का उपयोग किया गया था।

क्वेटा में प्रमुख कीट की समस्या थी हरी मक्खी। फलों के पौधों पर पत्तियाँ लगते ही मक्खी का प्रकोप शुरू हो जाता। मिट्टी और सिंचाई की सही व्यवस्था करने पर इस कीट का आक्रमण नहीं होता। मिट्टी में वायु का संचार सुचारू रूप से रखना होगा। शीत और बसंत ऋतु में ज्यादा सिंचाई करने पर नाशपाती और बादाम के वृक्षों पर हरी मक्खी का आक्रमण होता परंतु बाद में गहरी जुताई करने

से कीड़े गायब हो जाते। इन वृक्षों के तने के निचले भाग पर कीड़े दिखाई देते परंतु ऊपरी भाग पर बिलकुल नहीं।

उनके सभी प्रयासों के बावजूद सर हॉवर्ड कपास की फसल पर एक प्रयोग नहीं कर सके। इन्दौर में कपास पर किसी कीड़े अथवा बीमारी का आक्रमण नहीं होता था। अच्छी देखभाल, मिट्टी में जैविक खाद की विपुलता की वजह से उत्तम किस्म का कपास पकता था। अमेरिका में कपास पर लगने वाली डेंडू इल्ली का हमारे यहाँ नियंत्रण कैसे करें इस विषय पर चर्चा होती थी तब सर अल्बर्ट हॉवर्ड इन्दौर में हो रही कपास की खेती पर 3 मुद्दे उठाते :-

(1) अमेरिका में यह शिकायत डेंडू इल्ली के कारण होती है अथवा गलत व्यवस्थापन के कारण?

(2) वहाँ कपास की खेती में अलग प्रकार से फसल का पोषण किया जाता है जिस कारण वहाँ डेंडू इल्ली के प्रकोप का प्रश्न ही नहीं उठता लेकिन इन्दौर की केन्द्रीय कपास कम्पेटी ने उनकी बातों पर ध्यान नहीं दिया और बहस समाप्त हो गई।

क्वेटा और इन्दौर में ढोर-डंगर को बीमारी होने का सबाल ही नहीं उठता। पूसा में किए गए परीक्षण फिर से पश्चिमी भारत और मध्यप्रांत में किए गए।

सभी परीक्षणों के निष्कर्ष एक ही मिले - अच्छी किस्म की जैविक खाद और जल प्रबंधन।

ह्यूमस की रोग प्रतिरोध शक्ति

अनुसंधान केन्द्र में भी गोबर खाद की कमी महसूस की जाती। जिस देश में ग्रामीण लोग गोबर का इंधन के लिए इस्तेमाल करते हों वहाँ इसे खाद के लिए कहाँ से मिलेगा? इस प्रश्न का उत्तर चीन के किसानों की सालों से चली आ रही परंपरा ने उपलब्ध कराया। वह था पशुओं और फसलों के अवशेषों से ह्यूमस बनाना जिससे हर खेत खाद के मामले में आत्मनिर्भर बने।

दरअसल यह समस्या सर अल्बर्ट हॉवर्ड के अनुसंधान की वजह से नहीं थी। उन्हें तो गोबर खाद की इतनी कमी महसूस होने लगी कि जिस कारण रासायनिक उर्वरकों का उपयोग शुरू करना पड़ता। वह अनुसंधान केंद्र उन्हें अब इतना कठोर, अखेड़ लगने लगा था। उनके जैसे स्वतंत्र विचार वाले वैज्ञानिक के लिए आजादी से काम करना असंभव लगने लगा था। क्योंकि वहाँ खेती व्यवसाय को टुकड़ों-

टुकड़ों में देखा जाता था। समग्रता का वहाँ पूर्ण रूप से अभाव था। उन्हें लगा कि “जहाँ विचारों का स्वातंत्र्य नहीं वहाँ सुधार संभव ही नहीं” गोबर खाद की समस्या है तो उसके विकल्प के बारे में क्या सोचा नहीं जाना चाहिए? मशीन जरूरी है कि उसकी उपयोगिता? ऐसे वैचारिक सिद्धांतों का जहाँ अभाव हो वह अनुसंधान केन्द्र अंततः समाप्त ही होगा। सर अल्बर्ट हॉवर्ड स्वतंत्र विचारों वाले सुधारवादी वैज्ञानिक थे। वहाँ से उनका मन उच्चट जाने पर उन्होंने पूसा अनुसंधान केन्द्र छोड़ने का निर्णय लिया। 1918 से 1924 तक नये स्थान की खोज में बिताने के बाद अंततः 1924 में उन्होंने इन्दौर में इंस्टीट्यूट ऑफ प्लांट इंडस्ट्रीज की स्थापना की जो वर्तमान में इन्दौर कृषि महाविद्यालय कहलाता है।

वहाँ जाने के पश्चात थोड़े ही दिनों में उन्होंने “इन्दौर मैथड ऑफ कम्पोस्ट मेकिंग” नामक खेती के अवशेषों से जैविक खाद बनाने की प्रणाली की खोज की। आय पी आय (इंस्टीट्यूट ऑफ प्लांट इंडस्ट्रीज) के 120 हेक्टर (300 एकड़) रक्के में उन्होंने इस खाद का उपयोग किया और कुछ ही वर्षों में फसलों की उपज दोगुनी हुई। इसी के साथ फसलें भी कीट-व्याधि से मुक्त रहीं।

सन् 1931 से देश-विदेश में बागानी फसलों - कॉफी, चाय, गन्ना, मक्का, कपास, तम्बाकू, रबर में इन्दौर कम्पोस्ट खाद का भरपूर उपयोग होने लगा। इस कारण फसलों पर तथा खेती के पशुओं पर किसी तरह की बीमारी का प्रकोप भी नहीं हुआ। सर हॉवर्ड की इन्दौर प्रणाली का विश्वभर में डंका बजने लगा। इसका एक ही उदाहरण काफी है। रोडेशिया में मक्का की फसल एक परजीवी पौध (स्ट्रायगा ल्यूटिया) के आक्रमण से केवल इन्दौर कम्पोस्ट के कारण बच गई। ऐसा क्यों हुआ? स्ट्रायगा परजीवी ने मक्का की कुपोषण से कमजोर पड़ी फसल पर आक्रमण किया और अब वही फसल मायकोरायजा सूक्ष्म जीवाणुओं के कारण सुरक्षित रही। इन प्रश्नों के उत्तर से ज्ञान के नए द्वार खुलेंगे और पुनः नये अनुसंधान के लिए प्रश्न उपस्थित होंगे।

अध्याय 12

मायकोरायजा से दोस्ती और फसलों का रोग नियंत्रण

फसलों की सेहत में ह्यूमस का क्या महत्व है?

मायकोरायजा की फसलों के साथ दोस्ती बहुत कुछ बता सकेगी।

यह दोस्ती केवल जंगल के वृक्षों में ही नहीं है परंतु खेती की लगभग सभी फसलों के साथ है। सन् 1938 में डॉ. रेनर और डॉ. लेवासान ने डॉ. हॉवर्ड द्वारा दिए गए अनेक नमूनों की जाँच की रबर-कॉफी, कोको, बबूल जैसे छायादार और जड़ों पर नत्रजन की गाँठोंवाले वृक्ष, हरी खाद वाले पौधे, हॉप्स, स्ट्रॉबेरी, प्याज, लहसून, घासचारा, इलायची, अंगूर, केला, कपास, गन्ना और पत्तेदार सब्जियाँ आदि। इन सबमें मायकोरायजा मिलता है। सचाई यह है कि वह विश्व की सभी फसलों में पाया जाता है। मायकोरायजा नामक मिट्टी और पौधों की जड़ों के साथ सहजीवन बिताने वाली संजीवनी से हमारा वास्ता पड़ा है। इसी की वजह से मिट्टी में भरपूर ह्यूमस तैयार होता है। मायकोरायजा फपूँद में प्रथीन (प्रोटीन) के रूप में 10 प्रतिशत नत्रजन मौजूद होता है। ये पौधों की जड़ें पचाता है और वाष्पोत्सर्जन क्रिया से (मिट्टी में उपस्थित द्रव जड़ों के माध्यम से ऊपर पत्तियों तक खिंची जाने की क्रिया) पत्तियों तक पहुँचता है। यह अगर जड़ों में मौजूद न हो तो फसल स्वस्थ नहीं है। बीमारियों से लड़ने की पौधों की ताकत समाप्त होगी, अर्थात् फसल बीमार जाएगी।

इसका यह अर्थ हुआ कि फसलों में बीमारी को ढूँढ़ने के लिए यह देखना जरूरी है कि मिट्टी उपजाऊ है और मायकोरायजा फपूँद के साथ जड़ों की दोस्ती कायम है। ऐसा होने पर ही मिट्टी की उपजाऊ क्षमता का कुछ महत्व है अन्यथा नहीं।

अभी हाल ही में सर अल्बर्ट हॉवर्ड ने देखा कि उपजाऊ मिट्टी में मायकोरायजा के उपयोग से सेवफल की बीमारी ठीक हुई। सन् 1934 की ग्रीष्म ऋतु में सर हॉवर्ड को जो निवास स्थान मिला था वहाँ की मिट्टी अनुपजाऊ बन चुकी थी परंतु एक वर्ष के अंदर ह्यूमस के उपयोग से वह फिर पोषक बन गई।

उनके बगीचे में लगे सेवफल के पेड़ों पर बीमारी और कीड़ों ने जैसे आक्रमण कर रखा था। हरी मक्खी, कॉडलिंग मॉथ, फलों पर काले धब्बों का रोग सभी को मायकोरायजा और ह्यूमस के उपयोग ने जैसे दूर भगाया। ह्यूमस को मिट्टी में एकसार होने और विनाशक जीवों को दूर करने में 3 वर्ष का समय लगा। सेवफल के वृक्षों का जैसे हुलिया ही बदल गया। इनका उपयोग अब परीक्षणों के लिए होगा कि ऐसे बीमारू वृक्ष ह्यूमस के कारण पुनः अपनी मूल स्थिति में आए कि नहीं, पेड़ों पर बैठे कीड़े समाप्त हुए अथवा नहीं, यह सब बातें अब वह स्वस्थ हुए पेड़ ही बताएंगे। इसके लिए किसी मिट्टी परीक्षण की आवश्यकता नहीं है। इसका अर्थ साफ है। प्रकृति ने फसलों की रोग निवारक शक्ति के रूप में एक ताकतवर यंत्र प्रदान किया है। यह यंत्र केवल उपजाऊ जमीन में ही काम करता है, अनुपजाऊ मिट्टी में उगाई गई फसल शायद दवाइयों के छिड़काव से बच भी जाएगी परंतु वह उम्मीद के अनुरूप उपज नहीं देगी, भरपूर रासायनिक उर्वरक डालने के बावजूद अच्छी उपज नहीं मिलेगी।

इस पूरी प्रक्रिया का वैज्ञानिक पहलू जाँचने से पता चलता है कि मायकोरायजा के रूप में प्रकृति ने नन्हजन देने वाले दलहनी पौधों की जड़ों पर उपस्थित गाँठों से भी ज्यादा असरकारक हथियार हमें दिया है। प्रकृति एक ओर जहाँ विज्ञान का उदाहरण देती है वहीं दूसरी ओर सालों-साल चलने वाली ह्यूमस निर्माण की प्रक्रिया भी जारी रखती है। इस पुरानी पारंपरिक पद्धति की रासायनिक उर्वरकों के साथ तुलना करते समय अच्छे से अच्छे किसानों के मन में भी प्रश्न उठ खड़े होते हैं। इन दोनों पद्धतियों का भूमि और फसलों पर एक जैसा प्रभाव कभी भी पड़ सकेगा। अब लोगों को भी यह भरोसा होने लगा है कि संश्लेषित रासायनिक उर्वरक और बढ़ते कीट व्याधि आक्रमण का आपस में कुछ संबंध है। पहले मिश्र खेती होती थी तब दवाई छिड़काव यंत्र आदि नहीं होते थे। आज की तुलना में (1940) उस समय खुरपका मुँह बीमारी से पशु तत्काल मरते थे। उस समय भी मायकोरायजा के साथ सहजीवन होता था परंतु कृषि अनुसंधान केन्द्रों ने कभी इस बात पर विचार नहीं किया कि मिट्टी और फसलें अधिक उर्वरक और उपजाऊ बनेंगे। उन्होंने सीधे-सीधे संश्लेषित रसायनों के उपयोग से मिट्टी को उपजाऊ बनाने के बारे में ही सोचा। जैविक मिट्टी पर विचार करते समय विज्ञान की एक ही शाखा के बारे में सोचा गया।

कल का अनुसंधान

इस अनुसंधान की अगली सीढ़ी के रूप में प्राप्त विचारधारा को जाँचने का काम करना है। उसका प्रारंभ ऐसे किया गया कि बीमार रोगग्रस्त फसल के अवशेषों से खाद बनाई और ह्यूमस का उपयोग कर इसी मिट्टी में दूसरी फसल की बोवनी की। दक्षिण इंग्लैंड के एक बड़े किसान ने बीमारू टमाटर की फसल के अवशेषों से ह्यूमस बनाकर उसी पर टमाटर के रोपे ग्रीन हाउस में लगाए। इस दूसरी फसल पर कोई बीमारी नहीं आई।

भविष्य में अगर फिर बीमारू पौधों का परीक्षण किया जाए तो मालूम पड़ेगा कि कीड़े, फफूँद, वायरस अदि फसलों के रोगों के कारण नहीं हैं। ऐसे प्रयोग उपजाऊ मिट्टी में ही किए जाने चाहिए। उन्हें अच्छा पोषण दिया जाना चाहिए। इन प्रायोगिक फसलों पर कीड़े, बीमारियों के कारक छिड़के जाने चाहिए। स्वस्थ पशुओं पर खुरपका - मुँहपका रोग के जीवाणु संक्रमित करने चाहिए। ऐसे संक्रमित पशु शीघ्र ही ठीक होंगे। ऐसे व्यक्ति ने जिसे उस अनुसंधान में कोई रस नहीं ये प्रयोग किए और उसके अच्छे नतीजे प्राप्त हुए तो रोग निवारण करने वाली इंग्लैंड की बड़ी से बड़ी प्रणाली ढेर होते देर नहीं लगेगी।

सर अल्बर्ट हॉर्कर्ड ने स्वयंप्रेरणा से शुरू किए गए ये परीक्षण अब समाप्ति की ओर हैं (1940)। पूरे 40 साल फसलों को ग्रसित करने वाली बीमारियों और उनके उपायों पर किया गया गहन अनुसंधान पूरा होकर उसके निष्कर्ष जनता के सामने रखे गए हैं।

इसमें कोई दो मत नहीं कि फसलों के रोगों पर अनुसंधान केन्द्र के सभी निष्कर्ष निरथक सिद्ध हुए हैं। उन्हें आगे चलाने का कोई औचित्य नहीं है। इनके स्थान पर कोई उपयोगी अनुसंधान करना अच्छा होगा।

इस असफलता के कारण ढूँढ़ने के लिए दूर जाने की जरूरत नहीं और वैज्ञानिकों ने इसे शुरू कर दिया है। रोगों की व्याख्या का समग्र विचार नहीं किया गया है। केवल उस बीमारी से जुड़े हुए किसी सूक्ष्म जीवाणु का टुकड़ों-टुकड़ों में अध्ययन किया गया।

वैज्ञानिकों का यह अनुसंधान निश्चित ही सफल नहीं होगा क्योंकि इसमें बीमारी का मूल कारण ढूँढ़ा नहीं गया। खेती करना दरअसल एक कला है इसलिए हर वैज्ञानिक ने पहले एक किसान बनना है और खेती के सभी तत्व समझना जरूरी

है।

विनाशक परजीवी जीवजंतुओं के सामने शरणागति लेने वाली फसलों और पशुओं की समस्या का और वैज्ञानिकों द्वारा इस बारे में किए गए आकलन का आपस में कोई संबंध नहीं होना यह स्पष्ट करता है कि राह भूले हुए अनुसंधान केन्द्रों ने फसलों के रोगों का विचार करने से पूर्व स्वतः के रोगग्रस्त होने के बारे में विचार करना जरूरी है।

मिट्टी की उपजाऊ क्षमता और राष्ट्रीय स्वास्थ्य

बीमारु मिट्टी से उपजा अन्न स्त्री-पुरुषों के ऊपर क्या व कैसा प्रभाव डालता है? आईये इस पर भी विचार करें। यह किसी भी अनुसंधान का निष्कर्ष नहीं है परंतु कल के कार्य का आज लिया गया सारांश है। निष्कर्ष इसलिए नहीं क्योंकि इन परिणामों के विवरण उपलब्ध नहीं हैं और संभावित विषय भी आसान नहीं हैं।

फसलों और पशुओं पर किए गए प्रयोग कठिन नहीं होते क्योंकि प्रयोग करने वाले व्यक्ति को पूरी आजादी होती है। मनुष्यों पर वह ऐसे प्रयोग नहीं कर सकता, शायद मानव आहार पर ही ऐसे प्रयोग हो सकते हैं और वे भी जेल के कैदियों अथवा पागलखाने के मरीजों के भोजन पर हालाँकि ऐसे प्रयोगों पर भी भौंहें तन सकती हैं। ऐसे प्रयोगों से मिले निष्कर्ष सामान्य जनमानस पर लागू नहीं किये जा सकते।

आज मुख्य दिक्कत यह है कि उपजाऊ मिट्टी से पैदा किया गया अन्न और उन्हें सेवन करने वाले स्वस्थ लोगों के आपस में क्या संबंध हैं। उन्हें मिलने वाला खाद्यान्न ताजा और नियमपूर्वक सुरक्षित किए गए खेत से ही लाया जाना चाहिए। कुछ अपवाद छोड़ भी दें जिस पद्धति से यह खाद्यान्न उगाया जाता है वह कभी चिन्हित नहीं किया जाता कि उसमें कौन-सी खाद अथवा दवाइयाँ डाली जाती हैं। दरअसल यह सब अनुसंधान करने वाले वैज्ञानिकों द्वारा किया जाना चाहिए। ऐसा आज तक कभी नहीं हुआ कि प्रयोग करने वालों ने खुद की जमीन खरीदी और उस पर प्रयोग किए। शायद इसीलिए कभी भी मनुष्य के भोजन को इतना महत्व नहीं दिया गया। अभी तक का पूरा अनुसंधान विभिन्न पद्धतियों से पैदा किए गए अनाजों के बारे में हुआ था, यह भी नहीं देखा गया कि इस तरह पैदा किया गया खाद्यान्न ताजा था। इस बजह से ऐसे अनुसंधान का कोई महत्व नहीं रह जाता।

खाद्यान्न से किए गए प्रयोगों के अतिरिक्त खेती से स्वास्थ्य के बारे में जानने जैसा क्या बचता है? शायद पूर्व के देश, जो रोमन साप्राज्य और अमेरिका की खोज से पहले से ही उन्नत खेती कर रहे थे, ही बता सकते हैं कि उपजाऊ मिट्टी और एक राष्ट्र का स्वास्थ्य इनमें क्या संबंध होता है? यह तो सर्वविदित है कि चीन और भारत जो हजारों वर्षों से उत्तम खेती कर विश्व की सर्वाधिक आबादी का पेट भर रहे हैं वे शायद इस प्रश्न का उत्तर दे सकेंगे। बदकिस्मती से इन दोनों देशों के साथ दो कमियाँ जुड़ी हुई हैं कि जिस कारण ये देश किसी प्रकार का आदर्श नहीं बन सकते एक असंख्य आबादी और दूसरा बारिश की बेरुखी। बेतहाशा आबादी की वजह से इन देशों पर एक के बाद एक संकट आते रहते हैं और लगातार अकाल का डर भी मुँह बायें खड़ा रहता है। इस वजह से भूमि उपजाऊ होते हुए भी उसका भरपूर फायदा नहीं लिया जा सकता।

भारत के विभिन्न प्रदेशों की आबादी का विचार करने पर मालूम पड़ता है कि 35 करोड़ जनसंख्या वाले इस देश में जात-पांत के कारण बहुत फरक देखा जाता है। दक्षिण पूर्व - पश्चिम की तुलना में उत्तर भारत के लोग अधिक बलवान होते हैं। उनके आहार, भोजन में प्रोटीन, वसा (फॉट) और शकर (कार्बोहायड्रेट) में काफी फर्क दिखाई पड़ता है। खनिज, सूक्ष्मतत्वयुक्त अन्न भी अलग होता है।

उत्तर भारतीय लोग गेहूं पर पलते हैं, वे अधिक आकर्षक और बलवान दिखाई देते हैं। इसके अलावा मटन, चिकन सब कुछ खाते हैं।

अब पूर्व पश्चिम और दक्षिण के प्रदेशों की ओर देखें, वहाँ का मुख्य आहार है भात (चावल) जिसमें अधिक प्रोटीन नहीं, खनिज तत्व नहीं और जीवनसत्त्व (विटामिन) भी नहीं। दूध और दूध से बनी वस्तुएँ भी कम। सब्जियाँ, फल भी ज्यादा नहीं। इन वजहों से शारीरिक मजबूती नहीं।

इस शारीरिक बनावट में फरक भोजन के कारण है यह दिखाने के लिए डॉ. मैकरिसन ने चूहों पर कुछ प्रयोग किए। कुछ चूहों को उन्होंने उत्तर भारत के गेहूं से बना आहार दिया जबकि कुछ दूसरे चूहों को दक्षिण भारतीय चावल से बनी सामग्री दी। तब वही फर्क दिखाई दिया जो लोगों में था अर्थात उत्तर भारत के गेहूं पर बने आहार को खाकर चूहे बलवान हट्टे-कट्टे बने, जबकि चावल पर पले कमज़ोर और वे चूहे जिन्हें दोनों प्रकार के आहार मिलाकर दिए गए थे वे इन दोनों के बीच के दिखाई दिए।

उत्तर पश्चिम भारत के पहाड़ी हुँजा प्रदेश के लोग ज्यादा मजबूत होते हैं। गिलगिट की चोटीयों पर रहने वाले ये निवासी मजबूत, चुस्त और खुशनुमा होते हैं। हजारों सालों से वहाँ पहाड़ों की छत पर सिंचाई से उपजाऊ मिट्टी में उपजा भोजन वे सेवन करते हैं। उसी तरह उत्तर के पहाड़ों पर रहने वाले और सपाट मैदानों के निवासियों के खान-पान और शरीर के गठन में कोई विशेष फर्क नहीं दिखाई देता है। हालाँकि खाद्यान्न उगाने के तरीके अलग-अलग हैं। बर्फीले प्रदेशों से आने वाली मिट्टी, पानी भूमि का उपजाऊपन, सिंचाई का तरीका अलग होने से छोटे खेत भी ह्यूमस की प्रचुरता के कारण उत्तम खाद्यान्न उगाते हैं। किसानों ने खेत की मिट्टी में ह्यूमस का भंडार कम न होने देने से मिट्टी भरपूर उपजाऊ। जो लोग यह अन्न खाते हैं उनका क्या? व्हील ऑफ हेल्थ इस पुस्तक में लेखक ने यहीं लिखा है। उनकी सेहत इतनी अच्छी है कि रोज 60 किलोमीटर चलना उनकी आदत में शुमार है।

हुँजा खेती में एक बात अवश्य ही खोज का विषय है। बर्फीले पहाड़ी क्षेत्रों से हुँजा के खेतों में रॉक पावडर आती है, क्या उसकी वजह से खाद्यान्न अधिक पौष्टिक पैदा होता है? उस पावडर में क्या है कोई नहीं जानता। उस पावडर में सिलिकेट्स होते हैं, उनकी जाँच करनी होगी। अगर यह सही है तो प्रकृति ने अपनी अनुसंधान प्रणाली से पत्थर में से इतना महत्वपूर्ण अंश खोज निकाला है जिसकी वजह से उत्पन्न उपज इतनी असाधारण होती है। शायद चार्ल्स डार्विन जैसा कोई वैज्ञानिक आकर खोज करेगा कि हुँजा के लोगों की अच्छी सेहत का राज क्या है।

भारत में हुए अनुसंधान और निष्कर्ष बताते हैं इंग्लैंड की जनसंख्या और वहाँ के अन्न का भी अध्ययन किया जाना चाहिए। खराब खेती से उत्पन्न दूषित अन्न और राष्ट्र कमजोर बन रहा हो तब उस पर गहन विचार करना जरूरी है। उस देश (ब्रिटेन) का अन्न वितरण कैसा है? उसकी गुणवत्ता परखने हेतु दो प्रणालियाँ उपयोग में लायी गईं। इसमें शहरी और ग्रामीण दोनों क्षेत्र के लोगों को शामिल किया गया। इस काम के लिए 25 साल लगे और इसे दर्ज किया गया। दूसरी प्रणाली में कुछ अभ्यासक परिवारों का समावेश किया गया। लंदन के कुछ एक इलाके में मजदूरों के खानपान और स्वास्थ्य कैसा है इसकी जाँच की गई।

अध्याय 13

स्वास्थ्य का रहस्य है उपजाऊ जमीन की फसलें

चेशायर (इंग्लैंड) की आबादी का अध्ययन और उसके नतीजे इन दोनों की प्रणाली बिलकुल मूल (बुनियादी) पद्धति की है। 25 वर्ष पूर्व (अर्थात् 1915-16) राष्ट्रीय स्वास्थ्य बीमा कानून लागू हुआ। उस कानून का उद्देश्य बीमारियों को दबाई देकर उन्हें रोकना था। इस वजह से लगभग 25 वर्ष इस शहर की आबादी के सक्रियता से स्वास्थ्य-निरीक्षण के अंतर्गत रखा गया था। अगर उस समय के दस्तावेज अच्छी तरह जाँचे जाएँ तो महत्वपूर्ण जानकारी मिल सकती है और ऐसा ही किया गया। चेशायर की स्थानीय स्वास्थ्य पंच समूह समिति जो 600 डॉक्टरों के संपर्क में है, उसके पास स्वास्थ्य संबंधी दस्तावेज उपलब्ध हैं। बीमार लोगों को कैसे ठीक किया गया यह वे निश्चित ही बता सकेंगे और राष्ट्रीय स्वास्थ्य बीमा कानून का यहीं उद्देश्य था। इस वजह से बढ़ रही बीमारियों की रोकथाम में यह प्रणाली निश्चित ही उपयोगी थी।

इस राष्ट्रीय स्तर की बीमारी का एक ही कारण था “त्रुटीपूर्ण भोजन पोषण से बीमारी होती है। इसे चार भागों में बीमारी पर क्या प्रभाव पड़ता है यह देखा गया।

(1) कीड़े लगे दाँत (2) कमजोर जोड़ गठिया (Rickets) (3) एनिमिया (खून की कमी) और (4) मलावरोध (कब्ज)

यह भी खोज की गई कि उचित आहार देने से इन बीमारियों की कैसे रोकथाम की जा सकेगी। उदाहरण के लिए अंग्रेज बच्चों के दाँतों की जाँच में 3,463,948 स्कूली बच्चों के दाँत जाँचे गए जिनमें से 2,425,299 बच्चों के दाँत रोगप्रस्त थे। त्रिस्तान-दे-कुन्हा इस स्थान पर सिद्ध हो चुका है कि समुद्र से और उपजाऊ मिट्टी में पैदा किए गए अन्न से यह बीमारी रोकी जा सकती है। ये पदार्थ हैं मछली, आलू, समुद्री पक्षियों के अंडे, इस के अलावा दूध और प्राकृतिक रूप से उगाई गयी साग-सब्जियाँ। सन् 1935 में 156 लोगों के किए गए निरीक्षण में उनके 3181 दाँत पक्के पाए गए जिसमें से 74 केरियस थे। 1937 के परीक्षण बताते हैं कि भोजन में शकर और आटे के कारण दाँत शीघ्र ही खराब होते हैं।

इससे पूर्व संदर्भित मैकरिसन के प्रयोगों के उदाहरण देकर उक्त समिति वही प्रयोग चेशायर में दोहरा रही है उसके मात्र दो नमूने यहाँ देना उपयुक्त होगा। (1) चेशायर नगर में गर्भवती महिलाओं की महीने में एक बार जाँच की जाती है। उनको भोजन में पोषक आटे की ब्रेड, कच्चा दूध और मक्खन, चेशायर चीज, ओट मील का दलिया, सूप, सलाद, हरी सब्जियाँ, सप्ताह में एक बार मछली, भरपूर फल और मटन। पोषक आटा अर्थात् स्थानीय किस्म का गेहूँ जिसे 2500 आर.पी.एम. गति वाले पंखे की चक्की में पीसा जाता है और 1 भाग कच्चे गेहूँ का आटा जिसे 36 घंटे के अंदर भुना जाता है। अपवादस्वरूप छोड़ दें तो सभी माताएं बालकों को स्तनपान ही करती हैं। बालक को जन्म से लगभग 9 माह तक यही अन्न दिया जाता है। प्रातः 6 बजे से प्रत्येक 4 घंटे बाद बालक को स्तनपान कराया जाता है। बालक स्वस्थ, द्रांत साबूत कीड़े नहीं लगे, गहरी नींद सोते हैं, कोई श्वास रोग नहीं, खेलते हुए बड़े हो रहे हैं। यह कोई वैज्ञानिक प्रयोग नहीं बल्कि पारिवारिक परीक्षण है। मानव आहार किसी विशेष तकनीक से उगाया नहीं गया है परंतु मैकरिसन के प्रयोग सिद्ध करते हैं कि एक पीढ़ी अगर इस प्रकार सुधारी गई तो उसके ठोस परिणाम मिलेंगे।

(2) एक आकर्षक व्यक्तित्व का 23 वर्षीय आयरिश युवक, तेज बुद्धि का धनी, उसे इंगलैंड में 2 माह रहने पर ही पीलिया की बीमारी हो गई। उसका आहार था पोर्क (शूकर मांस), मैदे की ब्रेड, मटन, सैंडविच और चाय। थोड़ा मटन और कभी कभी अंडे। आयरलैंड में रहते हुए उसका भोजन था जैविक खेती से पैदा हुए आलू, गेहूँ का दलिया, दूध और दूध से बने पदार्थ, सब्जियाँ। प्राकृतिक भोजन से कृत्रिम रासायनिक खेती से उत्पन्न भोजन पर जाने के कारण उसे यह बीमारी हुई। यह सिद्ध करता है कि निकृष्ट श्रेणी के अन्न के सेवन से स्वास्थ्य कैसे बिगड़ता है।

यह निश्चित है कि स्वास्थ्य की पाती बताती है कि उत्तम, पोषक अन्न ही अच्छा स्वास्थ्य देता है। फिर चाहे वह हुंजा के गेहूँ की रोटी, दूध और फल खाने वाले सिक्ख हों या फिर आयरलैंड के निवासी। भोजन शुद्ध ताजा होना चाहिए। इसकी पाक क्रिया भी अदल-बदल कर बनी हुई हो। समुद्र का आहार भी ताजा हो, कृत्रिम संश्लेषित रसायनों से मुक्त, उपजाऊ मिट्टी से उत्पन्न पौष्टिक होना चाहिए लेकिन वह कृषि वैज्ञानिकों और फूड प्रोसेसिंग उद्योगों से गज भर दूर ही होना चाहिए।

वसीयतनामे का अंत सर हॉवर्ड द्वारा खुद उपजाऊ मिट्टी, फसलें और पशुओं पर किए गए प्रयोगों से किया गया जो इस प्रकार है - हमारे भोजन टेबल पर उत्तम जैविक खाद मिट्टी में डालकर उगाया गया अन्न होना चाहिए। अपी हाल में थकी हुई खेत की मिट्टी और उसे पुनः सजीव करना इसकी हमें सदैव चिंता रहती है। मनुष्य के स्वास्थ्य में इसका बड़ा महत्व है। वर्तमान में ऐसा नहीं है।

अस्पतालों में हमारा आधे से अधिक काम व्यर्थ हुआ है। कारण यह कि पालने से लेकर हमारे रोगियों का खानपान नकली होता है। हमारे ग्रामीण भाई भी दूध पावड़, मैदे की ब्रेड, डिब्बा बंद खाना खाने लगे हैं। इसमें हम डॉक्टर लोग भी क्या कर सकते हैं?

22 मार्च 1939 के दिन चेशायर की जनता के सामने यह वसीयतनामा रखा गया। इसके उपरांत 15 अप्रैल 1939 के दिन ब्रिटिश मेडिकल जर्नल में उसका प्रकाशन हुआ। पूरे ब्रिटिश साप्राज्य में इसकी गूँज सुनाई दी।

चेशायर के इन्हीं डॉक्टरों का दक्षिण लंदन के निवासियों ने अनुसरण किया। जिन लोगों की औसत साप्ताहिक आय 3 पौंड 15 शिलिंग से 4 पौंड 10 शिलिंग थी ऐसे 20 हजार लोगों का स्वास्थ्य परीक्षण किया गया। लगभग 83 प्रतिशत लोगों को कुछ ना कुछ बीमारी की शिकायत थी। एक महत्वपूर्ण जानकारी यह कि वहाँ कि 93 जनसंख्या के बारे में पता चला। दूसरा यह मालूम पड़ेगा कि उपजाऊ मिट्टी के उगाए गए खाद्यान्न से कितनी बीमारियाँ दूर हुईं। इसके लिए केन्द्र के पास काफी बड़ा खेत अनाज उगाने और दुधारू पशु पालने के लिए और (2) ब्रेड बनाने के लिए एक बेकरी भी चेशायर जैसी होनी चाहिए। ऐसा होने पर हुंजा जैसा भोजन यहाँ भी उपलब्ध होने लगेगा। इन लोगों के स्वास्थ्य के निष्कर्ष भी फिर काफी मजेदार रहेंगे।

हमारी जनसंख्या का आकलन इन दो तरीकों से किया गया। दोनों के निष्कर्ष यह रहे कि सब कुछ ठीक नहीं है। अनेक स्थानों पर विभिन्न प्रकार की बीमारियाँ हैं। स्वास्थ्य विभाग के दस्तावेज बताते हैं कि अन्न का ताजा न होना और गलत पद्धति से खेती ये बीमारी बढ़ने के प्रमुख कारण हैं।

इन्हीं निष्कर्षों पर अगली नीति तय होने वाली है जिसकी कार्य योजना तैयार है। इसके लिए सबूत भी सौभाग्य से उपलब्ध हैं। दो उदाहरण दिये जा सकते हैं। एक गाय-बैलों पर और दूसरा स्कूली बच्चों पर आधारित है।

सरे में सर बर्नाड ग्रीन वेल ने लिखकर भेजा है कि अच्छी उपजाऊ मिट्टी में पैदा की गई खुराक परिवर्तन के तौर पर मुर्गियों और शूकरों को दी गई जिसके 3 बहुत अच्छे परिणाम मिले हैं (1) उनकी मृत्यु दर में कमी आयी। (2) गाय-बैल और अन्य पशु निरोगी रोगमुक्त दिखाई दिए, (3) खुराक में 10 प्रतिशत की बचत हुई क्योंकि घर में पैदा किया हुआ अनाज समाधान देने वाला तसल्लीबक्ष होता है।

लंदन के पास के एक स्कूल के बच्चों को संश्लेषित रासायनिक उर्वरकों और इन्दौर प्रणाली से उगाए गए खाद्यान्न अलग-अलग दिए गए। उनके निष्कर्ष स्कूल के स्टाफ और बच्चों के माता-पिताओं को बहुत दिलचस्प लगे। संश्लेषित रसायनों के उपयोग से पैदा किए गए अन्न को सेवन करने से बच्चों और उनके माता-पिता को जुकाम, खाँसी, खसरा और बुखार जैसी बीमारियाँ अक्सर होती थीं परंतु अब इक्का-दुक्का दिखाई देती हैं क्योंकि उनको भोजन अब ह्यूमसयुक्त मिट्टी से पैदा होता है।

अब इस योजना पर काफी काम होना चाहिए। इंग्लैंड और आयरलैंड में बोर्डिंग स्कूल, ट्रेनिंग सेंटर, अस्पतालों के कर्मचारियों के निवास तथा स्वास्थ्य लाभ के पश्चात हवाखोरी के लिए आए मरीजों को इन सुविधाओं की जरूरत पड़ेगी। (1) प्राकृतिक अनाज उगाने तथा दुधारू पशु रखने के लिए खेत और गौशालाएँ (2) खाद्य पदार्थ बनाने के लिए औषधि देने वाले सुपरवाईज़र (4) रेकार्ड रखने वाले कर्मचारी जो स्वास्थ्य विभाग का विरासतनामा तैयार कर सकें। इस प्रकार पूरा प्रदेश स्वस्थ रह सकेगा। इसके परिणामों की तुलना के लिए आस-पड़ोस में भरपूर बस्तियाँ हैं। इसके लिए सांख्यिकी विज्ञान और गणित लगाने की आवश्यकता नहीं है। धरती माता अपने बालकों को सब कुछ देती है। इस वजह से शायद दूसरा विरासतनामा तैयार होकर रहेगा और संभवतः चेशायर नगर विश्व में अंजरामर होगा।

इस कार्य में अनुसंधान की भी मदद मिल सकेगी। बीमारों की गिनती करने के बजाय स्वस्थ लोगों की गिनती करना महत्वपूर्ण होगा। कृषि अनुसंधान पद्धति को पूरी तरह बदलना होगा। मिट्टी की उपजाऊ क्षमता बढ़ाने को महत्व देने वाले कृषि अनुसंधान केन्द्रों की ही अब आवश्यकता है। कृषि महाविद्यालयों ने थोड़ा समय निकाल कर प्राकृतिक खेती करना सीखना होगा। सबसे पहले उन्हें उत्तर भारत के आदिवासी की पौष्टिक अन्न उगाने में बराबरी करने और फिर उन्हें पीछे छोड़ने

के लिए परिश्रम करना चाहिए।

कृषि अनुसंधान :

आज के (1938) कृषि अनुसंधान का समालोचन

पारंपरिक खेती का अध्ययन और फसलों व पशुओं को होने वाली बीमारियों का आपस में क्या संबंध है इस पर अभी तक कोई अनुसंधान नहीं हुआ है। आज हो रहे अनुसंधान का बारीकी से अध्ययन जरूरी है कि खेती के आज के अनुसंधान का खेती की समस्याओं से कोई संबंध है क्या? इस अध्याय में इन्हीं बातों पर विचार किया गया है।

सन् 1834 में बासिंगल ने जब खेतों में रासायनिक उर्वरक डालने की शुरुआत की तब से सही अर्थों में कृषि अनुसंधान का प्रारंभ हुआ। इससे पहले कुछ अध्ययनशील और परिवर्तन चाहने वाले किसान अपने खेतों में बदलाव लाते थे जिन्हें देखकर पड़ोसी किसान उन्हें अपनाते थे। खेती में सुधार की वजह से हुआ। 1834 के बाद से खेती के अनुसंधान को वैज्ञानिकों के निरीक्षण का सहारा मिला। सन् 1840 में जब लायबेर ने कृषि रसायनों का विधिवत उपयोग फसलों पर शुरू किय तब से नई खेती की शुरुआत हुई ऐसा कहा जा सकता है। किसानों की दिलचस्पी एकाएक बढ़ गई। लायबेर अत्यंत अभ्यासक तथा सबको साथ लेकर चलने वाला, सूक्ष्म निरीक्षक वैज्ञानिक था। उन्होंने खेती में दो बातें खोजी (1) खड़ी फसल अथवा उसकी राख पौधों के पोषण के लिए कौन से तत्व जरूरी हैं यह बताती है तथा (2) ह्यूमस की नमी उड़ जाने पर खेत में कुछ भी बचा नहीं रहता है। हरी पत्तियों में कर्ब वायुमंडल से ही फसलों को मिलता है जिस वजह से मिट्टी और मिट्टी के रसायनों की महत्ता उजागर होती है। इसी वजह से राख का रासायनिक विश्लेषण और मिट्टी को आवश्यक तत्वों की आपूर्ति की जरूरत अच्छी उपज के लिए निर्माण होती है और इसीलिए ह्यूमस की बात करना छोड़ दें। इसका अर्थ यह हुआ कि ह्यूमस पौधों का भोजन नहीं है और ह्यूमस का मिट्टी और फसलों को कोई लाभ नहीं होता है।

सच पूछा जाए तो उन्होंने शीघ्र प्राप्य विज्ञान का लाभ लिया। ऐसा विज्ञान जो आनन-फानन में हल ढूँढ़ता है। ह्यूमस के अपने सिद्धांत को वह इतने चिपक कर बैठे थे कि उन्होंने अपनी बात सही है अथवा गलत यह बताने के लिए प्रकृति को भी मौका नहीं दिया। उन्होंने यह भी नहीं सोचा उनके कहे अनुसार ह्यूमस का

सिद्धांत गलत हो सकता है, ह्यूमस नहीं। उन्होंने यह देखने का भी प्रयत्न नहीं किया कि ह्यूमस मिट्टी की ऊपरी सतह में मौजूद होता है जहाँ से पौधों को खुराक मिलती है। अगर लायबेर को रासायनिक उर्वरकों का महत्व खेत में डालकर जाँचना था तो उन्होंने यह परीक्षण खेत की मिट्टी की ऊपरी 22.5 से.मी. सतह निकाल कर करना चाहिए था क्योंकि इसी 22.5 से.मी. गहरी मिट्टी से पौधों को ह्यूमस के माध्यम से पोषण मिलता है और यही बात उनकी नजर से छूट गई।

उन्होंने वर्षों से खेती करने वाले किसानों की बात कभी भी नहीं सुनी। सबसे ज्यादा व्यावहारिक ज्ञान किसानों के पास ही होता है। लायबेर खुद किसान नहीं थे उन्होंने मात्र विज्ञान का एक ही पहलू देखा। उनके इस अनुसंधान का अगले 100 वर्षों तक किसानों ने खामियाजा भुगता और अभी भी भुगत रहे हैं।

सन् 1843 में प्रारंभ हुआ रॉथमस्टेट अनुसंधान केन्द्र लायबेर से अत्यधिक प्रभावित था। उन्होंने ब्रॉडबॉक के खेत में किए गए परीक्षणों ने पूरे विश्व के किसानों को मन्त्र-मुग्ध कर दिया था। वर्ष 1840 से 1900 का समय खेती के रासायनिकरण का काल बना। एन पी के का इसी समय जन्म हुआ।

रासायनिक उर्वरकों के प्रयोग प्रयोगशालाओं से बाहर निकल कर खेतों में शुरू हुए। आगे चलकर वे काफी लोकप्रिय हुए। रसायन विज्ञान की खामी यह थी कि जो तत्व मिट्टी के रासायनिक पृथक्करण में कम पाए जाते उन्हें संश्लेषित रसायनों के माध्यम से खेत में डालकर भी वे पौधों अथवा फसलों को नहीं मिलते थे। दूसरे शब्दों में केवल रसायनों के उपयोग से खेतों में उपज कभी भी नहीं बढ़ी। इसके फलस्वरूप मिट्टी की संरचना पर अनुसंधान शुरू हुआ और मिट्टी के भौतिक विज्ञान का जन्म हुआ। लगभग इसी समय लुई पाश्चर नामक वैज्ञानिक ने सूक्ष्म जीवाणुओं की खोज की और पूरी विश्व स्तर की खेती के नई दिशा मिली। चार्ल्स डॉर्विन के केंचुओं पर अनुसंधान से मिट्टी की गहनता पर अधिक ध्यान केन्द्रित किया। जैविक सामग्री से नत्रजन निकालने (नाईट्रिफिकेशन) की खोज विनोग्रास्की नामक वैज्ञानिक ने की। इसके लिए कौन-कौन से द्रव पदार्थ (कल्चर) शुद्ध-स्वरूप में लगते हैं इसकी भी जानकारी मिली। इसी के साथ एक नया विज्ञान शास्त्र खेती में आया मृदा जीवाणुशास्त्र (सॉइल बैक्टीरीयालॉजी) नाम से, जिस समय खेती में जीवशास्त्र (बायोलॉजी) और भौतिक शास्त्र (सॉइल फिजीक्स) का अध्ययन हो रहा था उसी समय रूसी वैज्ञानिकों ने खोज निकाला कि मिट्टी यह स्वतंत्र रूप से प्रकृति द्वारा निर्मित जीवित माध्यम है। जिस पर ऋतु वर्षा

भूगर्भ तथा वनस्पति का प्रभाव पड़ता है। इसका लोगों ने अपने-अपने स्तर पर परीक्षण कर स्वीकार किया। इसे ही वैज्ञानिक भाषा में मृदा विज्ञान (पेडॉलॉजी) कहते हैं। लाईबिग की मिट्टी की उपजाऊ अवधारणा इस प्रकार विस्तृत हुई और इसकी चार शाखाएँ विकसित हुईं - रसायन, भौतिक, जीवाणु और मृदा (भू-गर्भ) शास्त्र।

इस दशक के प्रारंभ में ही खोजकर्ताओं ने पता लगाया कि पौधे अपनी आवश्यकता के अनुसार सब तैयार कर लेते हैं। कॉरेन ने ग्रेगर मेंडल के अनुसंधान को पुनर्जीवित किया। आगे चलकर जॉनसन ने ही फसलों व पौधों के बाहरी रूप से अच्छी प्रजाति की पहचान करने और उसे बढ़ाने का अध्ययन किया। कृषि विज्ञान की आधुनिक फसल प्रणाली में रूसी वैज्ञानिकों का बड़ा योगदान है। पौधे प्रजनन प्रणाली हेतु पूरी दुनिया में कच्चे माल की खोज जारी है। वे अब पौधों की जड़ों का मिट्टी के साथ क्या संबंध है इसकी खोज कर रहे हैं और यह भी कि इससे पौधे में बीमारी प्रतिरोधक शक्ति कैसे विकसित होती है।

अनुसंधान में एकात्मक कृषि का विचार नहीं ?

कृषि अनुसंधान बेमेल तरीके से बढ़ रहा है। इसी के साथ गत 40 वर्षों में वनस्पति शास्त्र के सिद्धांत खेती पर लागू हो रहे हैं। उदाहरण कनाड़ा में गेहूँ की किस्म का दिया जा सकता है। वहाँ वैज्ञानिकों ने मार्क्स नामक गेहूँ की शीघ्र पकने वाली किस्म विकसित की जो देखते-देखते कनाड़ा के 20 लाख हेक्टर रक्बे पर फैल गई। ऑस्ट्रेलिया में भी ऐसा ही कुछ हुआ, फॉर ने आविष्कारित की गेहूँ की किस्म चारों ओर फैल गई, केम्ब्रिज में भी ऐसी ही एक नई किस्म लोकप्रिय हुई। भारत में पूना में विकसित हुई गेहूँ की एक किस्म किसान एक करोड़ हेक्टर में उगा रहे हैं। कोयम्बटूर में विकसित की गई गन्ने की एक किस्म देखते-देखते पड़ोस के गज्जों में फैल गई। कपास, जूट, धान, चारावर्गीय फसलों का क्षेत्र भी ऐसे ही बढ़ गया। यह तो एक पहलू है, दूसरा पहलू यह कि इन विपुल उपज देने वाली किस्मों का खास फायदा किसानों को नहीं होता है। सवाल यह उठता है कि इन नई किस्मों का और मिट्टी का आपस में क्या संबंध रहता है यह देखना आवश्यक है अन्यथा इन्हें पैदा करने वाले किसानों की मेहनत व्यर्थ जा सकती है।

इसके अलावा कई नये सुधार हुए हैं। उनका विवरण मिलना आवश्यक है। विश्वयुद्ध के दौरान जो कारखाने वायुमंडल से नवजन लाकर भूमि में डँड़ेल रहे थे वे विस्फोटक बनाने लग गए, अपनी सेना बचाने के लिए और दुश्मनों का सफाया करने के लिए। युद्ध की समाप्ति पर इन रसायनों का क्या किया जाए यह प्रत्येक देश के सामने बड़ा प्रश्न मुँह बाएँ खड़ा था। उन्हें हमारे खेतों ने निमंत्रण दिया और आगे चलकर यही रसायन हमारी खेती के मुख्य भोजन बन गए। एन पी के के मिश्रण पूरी दुनिया में फैले, बिक्री बढ़ी। गत 25 वर्षों में (सन् 1939 से आगे) इन संश्लेषित उर्वरकों की रिकॉर्ड तोड़ बिक्री हुई। लायबेग की भट्टी जम गई।

फसलों की नई किस्में, रसायनिक पदार्थों के परीक्षण और उनके निष्कर्ष, उनकी विविधता और उनके परिणाम सभी कुछ चकरा देने वाला था। चुने गए

उर्वरकों के निष्कर्ष हम अपनी मर्जी से सही-गलत ठहरा सकते हैं। धुआंधार बारिश की तरह इन उर्वरकों के परिणामकारक निष्कर्ष रोकने की और उनकी गहन जांच करने की आवश्यकता थी। गणित के उपयोग से यह सवाल हल कर लिया गया। उनमें तकनीकी फेरबदल कर खेत के अलग-अलग भागों में जो परीक्षण किए जाते थे उन्हें दोहराकर विभिन्न प्लॉट के उपलब्ध आँकड़ों के सांख्यिकीय निष्कर्ष निश्चित किए जाते। केवल उन्हीं निष्कर्षों को सही माना जाता जो सांख्यिकीय गणित पर सही उत्तरते। परंतु इस प्रणाली की एक भुजा लंगड़ी थी। जिस प्लाट में परीक्षण किए जाते उसका आकार और विशाल खेत इनमें फर्क होता है। बड़े खेत में हम जो कुछ करते हैं उसे छोटे से प्लाट में नापना सही नहीं है। दूसरे, उसमें खेत के ढोर-डंगर और मिट्टी के बीच अंतरंग संबंध की पूरी तरह उपेक्षा की जाती है। फसलों का फेरबदल इसका बिलकुल विचार नहीं किया जाता। इस मूलभूत वास्तविकताओं की उपेक्षा कर अपनाए गए तंत्र को हम सही कैसे मानें और उसका लाभ क्या होगा?

खेती में जितनी रसायनिक औषधियाँ आईं उतनी ही नई बीमारियों की भरपार हुई यह सत्य हम कैसे नकारें?

गणित के साथ ही खेती में एक और विषय ने हाथ-पैर पसारे - अर्थशास्त्र। क्या करने पर खेती में लगने वाली लागत कम करके उपज और नफा बढ़ाने पर जोर दिया जाने लगा। इसमें संश्लेषित रसायन और दवाइयाँ भी आईं। खेती के हर कार्यकलाप का लागत मूल्य गिना जाने लगा। भूमाता द्वारा गलत मानी गई खेती के नफे का भी महत्व बढ़ने लगा। व्यापार में होने वाला नफा और नफे की हिस्सेदारी को भी खेती में महत्व दिया जाने लगा। खेती उद्योग बनी।

कृषि विज्ञान विशालकाय बन गया। पूरी दुनिया में कृषि अनुसंधान केन्द्र, प्रयोग केन्द्र और जिला कृषि विभाग (अनुसंधान किसानों तक पहुँचाने हेतु) का जाल बिछाया गया। परंतु ये अनुसंधान केन्द्र जैसे टुकड़ों-टुकड़ों में शुरू हुए वैसे ही उनके काम का तरीका, उनकी उद्देश्यों की पूर्ति हेतु जानना दिलचस्प होगा। अनुसंधान केन्द्र क्या वाकई काम करते हैं अथवा खेत की जैविक क्रियाओं की नोंद करते रहते हैं? इतना उपयोग कितना कम है यह इन प्रयोगों के नतीजे ही बताएँगे। इन सब कार्यों का महत्व अगर ऐतिहासिक उल्लेख करना ही है तो उनका महत्व क्या है यह समय पर ही ज्ञात होगा।

ब्रिटेन में शासकीय तंत्र चलाने के लिए 3 संगठन कार्यरत रहते हैं।

1. कृषि मंत्रालय (जो शासकीय अनुदान नियंत्रित करता है)
2. विकास आयुक्तालय (जो खजाने से धन मुहैया करता है)
3. कृषि अनुसंधान परिषद (जो धनादेश के दस्तावेज जाँचती है और केन्द्र के कृषि अनुसंधान को नियंत्रित करती है)

ब्रिटेन में ऐसे 50 अनुसंधान केन्द्र कार्यरत हैं जो तीन श्रेणियों में बँटे हैं।

1. शासकीय प्रयोगशाला अथवा अनुसंधान केन्द्र
2. कृषि महाविद्यालय अथवा कृषि विश्वविद्यालयों से संलग्न संस्था
3. स्वयंसेवी निजी संस्थाएँ

इनमें से अनेक संस्थाएँ सन् 1911 से ब्रिटेन में शुरू हुई थीं। उनका काम खेती के अनेक विषयों में आधारभूत कार्य करना था।

ये विषय थे कृषि अर्थशास्त्र, मृदा शास्त्र, रोप (पौध) विज्ञान, फसल प्रजनन विज्ञान, उद्यान शास्त्र और फल अनुसंधान विज्ञान, फसल रोग-शास्त्र, पशु वंश एवं प्रजननशास्त्र पशु शरीर शास्त्र, पशु रोग शास्त्र, दुग्ध अनुसंधान, फल सुरक्षा और परिवहन, कृषि यांत्रिकी और मौसम विज्ञान। इस विषय के आगे 4 भाग हैं। पार्श्वभूमि अनुसंधान (मूल वैज्ञानिक तत्वों पर आधारित अनुसंधान), मूल अनुसंधान (मूल अनुसंधान संस्थानों के मान्यवर कार्य), सर्वमान्य अनुसंधान (कुछ व्यवहारिक समस्याओं पर जैसे खुरपका मुँहपका रोग, विकास अनुसंधान (फसलों की नई किसें, बोवनी आदि)।

अनुसंधान पूरा होने पर उनके निष्कर्ष जाँचे जाते हैं। इसमें पहला कदम है प्रादेशिक सलाहकारी सेवा (16 प्रदेशों में) जिसमें 1 से 7 प्रदेशों में सलाहकार अधिकारी नियुक्त होते हैं। उस गाँव के किसान व संगठक इनकी देख-रेख में ये विशेषज्ञ काम करते हैं। केन्द्रीय कोषालय से खेती तक के सभी कार्य उस गाँव की परिषद देखती है। वही किसानों और मंडियों के लिए स्वतंत्र विज्ञान सूचना केन्द्र भी चलाते हैं। कुछ अच्छे गाँवों में किसानों को वैज्ञानिक सलाह देते रहते हैं। उनके स्वतंत्र प्रयोग करने वाले फार्म भी हैं। इस अनुसंधान केन्द्र से संलग्न शासकीय संस्थाएँ भी हैं और राजकीय विभाग भी। ये हैं कीटविज्ञान, रोगविज्ञान, मृदाविज्ञान, पशु स्वास्थ्य, पशु आहार और पशु प्रजनन शास्त्र, फसल प्रजनन, फल उत्पादन, कृषि पर्जीवी शास्त्र और दुग्ध व्यवसाय। ब्रिटेन में आज (1939) एक हजार कृषि वैज्ञानिक सेवारत हैं। वर्ष 1938 के लिए ब्रिटेन का कृषि

अनुसंधान के लिए बजट था 7 लाख पौंड अर्थात् कुल लागत का 90 प्रतिशत। शेष 10 प्रतिशत में स्थानीय समितियाँ, मंडी बोर्ड, विश्वविद्यालय, कंपनियाँ, व्यक्ति और विशेष कृषि समितियाँ देती हैं। शुल्क और विक्रय से प्राप्त आमदानी से भी पैसा मिलता है। वहाँ के कृषक भी अनुसंधान की कोई खास कदर नहीं करते हैं।

ऐसी रहस्यमयी, महँगी संस्था सन् 1911 से ब्रिटेन में अस्तित्व में है। केन्द्रीय शासन की 7 शाखाएँ कृषि अनुसंधान से जुड़ी होती हैं। उन्हें वैज्ञानिक हमेशा बड़ी-बड़ी अनुसंधान की रिपोर्ट भेजते रहते हैं और यह सिलसिला जारी रहता है। इसमें मानवी समय और ऊर्जा का कितना अपव्यय होता है इसका किसी ने भी आकलन करना जरूरी है। शासकीय यंत्रणा में समितियाँ होती हैं। कृषि अनुसंधान परिषद अस्तित्व आने को (1934) एक बड़ा विकास माना जाना चाहिए। इन समितियों की जाँच करने के लिए 6 अन्य समितियाँ और उनके लिए पुनः नई समितियाँ नियुक्त की गईं।

6 समितियों के अतिरिक्त 15 नई समितियाँ अस्तित्व में आईं। इन 15 समितियों में से 12 समितियाँ फसलों और पशुओं के रोगों का काम देख रही हैं, परिषद का मुख्य काम अब यही है।

इनने बड़े रचनातंत्र की वास्तव में क्या जरूरत है? कोषालय (धन देनेवाली) और अनुसंधान संस्थाओं के बीच नियंत्रण के लिए क्या इतनी समितियाँ जरूरी हैं? कृषि विभाग ही क्या यह सब नहीं कर सकता? सच ही देख जाए तो कृषि अनुसंधान में केवल एकमात्र काम का है। जो भी महिला अथवा पुरुष अनुसंधान करता है उसके अलावा अन्य किसी की जरूरत नहीं है। समिति का काम है मात्र उस व्यक्ति पर नियंत्रण रखने का। हम ऐसा मानें कि सादगी और समझदारी नियंत्रक का एकमात्र चरित्र हो।

इस अनुसंधान विभाग में प्रारंभ से ही एक दोष दिखाई देता है। ये अनुसंधान केन्द्र प्रमुख विज्ञान पर आधारित रहते हैं। पूरे कृषि तंत्र की माँग के अनुरूप नहीं जिस वजह से कृषि और विज्ञान अलग-थलग पड़ जाते हैं। एक वैज्ञानिक मात्र उसकी अपनी ही शाखा (विषय) का विचार करता है। इससे खोज भी विभागीय बन जाती है। इस कारण अपवादस्वरूप ही एकाद अच्छा आदर्श काम पूरा होता है। अतः अनुसंधान रिपोर्ट में अधिकांश वैज्ञानिक सतही अनुसंधान कर कम से कम विषयों का अधिक से अधिक विचार कर रहे हैं, ऐसा महसूस होता है। इस वजह से अनुसंधान टुकड़ों-टुकड़ों में होता हुआ लगता है। हालाँकि यह

सच है कि विभिन्न शाखाओं के विशेषज्ञ एक दूसरे की मदद करते हैं परंतु ऐसा कभी कभार ही होता है। दूसरी खामी है वैज्ञानिक तथ्य और खेती के अनुभव। हर वैज्ञानिक को अलग-अलग खेत देने पर भी उनमें स्थापित प्रयोग ही चलते रहते हैं। ग्रेट ब्रिटेन में मात्र एक ही अनुसंधान केन्द्र हैं जहाँ सही अर्थों में वैज्ञानिक अनुसंधान किया जाता है।

किसी शासकीय तंत्र ने कभी इस पर गहन विचार विनियम नहीं किया। किसी चार्ल्स डारविन अथवा लुई पाश्चर ने ऐसे अनुसंधान केन्द्र के भविष्य का आकलन किया होता? उन्हें अगर ऐसे अनुसंधान केन्द्रों में काम करने का अवसर मिलता तो उनकी क्या स्थिति होती? ऐसे टुकड़े-टुकड़े में किया गया विज्ञान अनुसंधान क्या किसका भला कर सकेगा? और ऐसे अनुसंधान क्या वैज्ञानिक को छूट देगा तथा उसके सिवाय विकास कैसे होगा? खेती जैसे विशिष्ट प्रकार के विषय में विज्ञान को व्यावहारिकता से अलग करना क्या ठीक होगा? ऐसी अनुसंधान संस्थाओं को क्या सदैव विरोधाभास का सामना नहीं करना पड़ेगा? कारण यह है कि वैज्ञानिक जन्म लेते हैं उन्हें बनाया नहीं जा सकता। ऐसे प्रश्नों के उत्तर भी सरकारी स्तर के ही रहेंगे।

ये अनुसंधान केन्द्र किसानों से, जिनके लिए यह सब प्रपञ्च किया जाता है, कब रुबरु होंगे? कृषकों को शिकायत रहती है कि वैज्ञानिक व्यावहारिक खेती से दूर, कटे रहते हैं और किसानों की समस्याओं का समाधान करने में अक्षम होते हैं। उनकी ज्वलंत समस्याओं के उत्तर कठिन भाषा में, खोज पत्रकों में गड़े रहते हैं, वह भी विज्ञान का टुकड़ों-टुकड़ों में विषयांतर करके। आम किसान ऐसे विज्ञान समझ ही नहीं सकता। अनुसंधान केन्द्रों पर ऐसे प्लाट कभी नहीं रहते कि जहाँ उनके प्रश्नों के व्यावहारिक उत्तर मिल सकें।

इन शिकवे शिकायतों का एक ही समुचित उत्तर है। इन अनुसंधान फॉर्म पर खोजकर्ताओं द्वारा खुद के अनुमान से प्रश्न उठाकर उन्हें सुलझाना चाहिए। इनके उत्तर खेत में ही मिलने चाहिए। इससे पूरे विश्व में किसानों का समाधान होगा। ग्रेट ब्रिटेन में दूसरी ही प्रणाली है वहाँ इन प्रयोगशालाओं को युद्धभूमि माना जाता है। वहाँ किसानों को आसान उन्हें समझे ऐसी साधारण भाषा में उनके प्रश्नों के व्यावहारिक उत्तर दिए जाते हैं। ऐसे उत्तर जिन्हें वह अपने खेतों पर इन प्रयोगों को आजमा सकता है। इससे प्रयोग के साथ ही प्रयोग करने वाले की भी क्षमता का

पता चल जाता है। इससे विरोधी भी शांत हो जाते हैं। कारण यह कि प्रतिवर्ष 7 लाख पाउंड खेती अनुसंधान पर खर्च करनेवाला देश उस देश के किसानों की शिकायतों का शिकार नहीं हो सकेगा।

सभी कॉमनवेल्थ देशों में यही प्रणाली लागू की जाती है। फर्क सिर्फ एक है, कोषालय से प्रयोग खेतों तक पहुँचने में ढेर सारी समितियों की आवश्यकता नहीं पड़ती। काम जल्दी हो जाता है। एक ही बात होती है कि अनुसंधान दो भागों में बँट जाता है। मूलभूत और स्थानीय टुकड़ों-टुकड़ों में विज्ञान को जोड़कर एक गोलाकार तैयार किया जाता है। समूह को प्रोत्साहन मिलता है। इसका अर्थ यह हुआ कि एक होशियार वैज्ञानिक द्वारा स्वतंत्र बुद्धि से, उसे मिले खेत पर किया गया अनुसंधान एक अपवाद ही माना जाएगा। सन् 1927 में इंग्लैंड में संपन्न एक बैठक में एकमत से तय किया गया कि हर देश में एक प्रयोग केन्द्र स्थापित हो जो विज्ञान के मूलभूत सिद्धांतों पर अनुसंधान कर एक दूसरे के साथ संपर्क बनाए रखे। इस योजना पर आर्थिक संकट ने पानी फेर दिया। केवल प्रमुख केन्द्र ही कार्यरत हो सके, एक त्रिनीदाद (वेस्ट इंडीज) में और दूसरा पूर्व अफ्रीका (अमानी) में।

ऐसे मूलभूत सिद्धांतों पर काम करने वाले दो केन्द्रों के उदाहरण सब कुछ कह जाते हैं। 10 फरवरी 1939 को सर जाफरी ईवांस ने कोको और केले पर किया गया अनुसंधान चुना। जर्नल ऑफ दी रॅयल सोसायटी ऑफ आर्ट्स में वह प्रकाशित हुआ। इंपिरियल कॉलेज ऑफ ट्रॉपिकल त्रिनीदाद में अनुसंधान कैसे होता है? उन्होंने वैज्ञानिकों का एक दल कैसे अनुसंधान करता है इस पर जोर दिया। यह वेस्टइंडीज ही नहीं बल्कि सब दूर भारत में भी लागू होता है।

त्रिनीदाद में सन् 1930 में कोको पर अनुसंधान शुरू हुआ वह दो शाखाओं में वनस्पति और रासायनिक। लगभग 100 वृक्ष निरीक्षण के लिए चुने गए। इन पौधों का प्रजनन सही नहीं होता। अतः कटिंग और अन्य पद्धति से उनकी खेती की गई। परागीकरण का अध्ययन करते समय पता चला कि अनेक बार कोको के फूल बाँझ होने के कारण दूसरे पौधों पर परागीकरण करना पड़ता है जिसके लिए सही पराग देने वाले नर फूल ढूँढ़ने पड़ते हैं। कोको पर उर्वरकों के खास प्रयोग किये जाते हैं। कोको की फलियों के जैव रासायनिक बायोकेमिकल अध्ययन से वह उलझाने वाले, भ्रमित करने वाले सिद्ध हुए। उसमें टॉनिन पदार्थ कितना है और उसकी गुणवत्ता क्या है यह पता नहीं चलता। इस इंपिरियल महाविद्यालय का

अर्थशास्त्र विभाग बताता है कि यह उद्योग घाटे वाला है क्योंकि कोको प्लांटेशन 25 साल बाद तेजी में आता है और आय शुरू होती है। सही कारण खोजने पर पता चला कि कोको प्लांटेशन की मिट्टी की गुणवत्ता में कमी आ रही है जिस वजह से कोको की उपज नहीं मिल रही है। कोको वृक्षों पर कीड़े और फफूंद बड़े स्तर पर आक्रमण करते हैं और दवाइयों के कई छिड़काव करने पड़ते हैं। त्रिनिदाद के केला प्लांटेशन में भी पनामा रोग (फ्यूजेरियम क्यूबन्स) के कारण पूरे वेस्टइंडीज द्वीप समूह और अमेरिका में बीमारी फैली है। पौध रोग विशेषज्ञों को जब वहाँ बुलाया गया जिनकी सलाह पर पनामा रोग प्रतिरोधक शक्तिशाली बीज मँगाना पड़े और फिर पौध प्रजनकों को बुलाया गया।

अध्याय 15

अच्छी खेती करने के लिए योग्य अनुसंधान चाहिए

केले की नई उन्नत किस्म खोजने के लिए खेत में पौध प्रजनन वैज्ञानिकों को रोग-प्रतिरोधक क्षमता, बिना बीज के फल, समान गुणाधर्म देने वाले नर-मादा उस फसल में ढूँढ़ने पड़ते हैं। इस काम के लिए किसी ने कीब स्थित रॉयल बोटनिकल गार्डन का नाम सुझाया था। मलाया से आने वाले केले के वायरस (विषाणु रोग) रोग को रोकने में काफी मेहनत पड़ी। उस किस्म की प्रजनन कार्य के लिए आवश्यकता थी। परंतु उसका रोगग्रस्त होना एक समस्या थी। केले के फल परिवहन के दौरान पकते हैं गैसों से उन्हें पकाया जाता है, उन पर मौसम का भी प्रभाव पड़ता है।

कोको और केले पर किया गया अनुसंधान वैज्ञानिकों के सहयोग से ही संभव होता है। इसके लिए रोग विशेषज्ञ, रसायन शास्त्री, रोग-शास्त्री, कीटशास्त्रज्ञ और अर्थशास्त्री इन सबकी आवश्यकता होती है। यह समय खाऊ और खर्चिला काम है।

उष्ण देशों में अनुसंधान में व्यस्त वैज्ञानिकों की काम करने की पद्धति सभी ओर एक जैसी ही होती है। यह हम कोको और केले में देख ही चुके हैं। किसानों ने ढोर मेहनत की परंतु हाथ में कुछ नहीं आया, हर बार पूछने पर यही जवाब मिलता कि खोज जारी है। इसका अर्थ हुआ कि इस अनुसंधान से एक भी कोको अथवा केले पर आधारित कारखाना खड़ा नहीं रह सका।

हम इन दो प्रश्नों पर विचार करें कि (1) कोको और केला जिस प्रकार वहाँ उगाये जाते हैं। (2) संभावना है कि वहाँ बागानी फसलों में बीमारियों की संभावना (3) पूर्व के देशों में केवल गोबर की खाद पर किसान कैसे कोको और केला उगा लेते हैं? इससे यह निष्कर्ष निकलता है कि त्रिनिदाद की प्रणाली में कुछ बड़ी भारी चूक हो रही है। शायद त्रिनिदाद अनुसंधान केन्द्र में कोको, केले के उत्पादन के साथ उनकी जड़ों पर उपस्थित मायकोरायजा की क्या भागीदारी नहीं हुई होगी? त्रिनिदाद के बागानों में पौधे और खेती के पशुओं का अंतरंग संबंध क्या हो, इसका विचार भी नहीं किया हुआ दिखता है। वहाँ काफी पशु धन है, जहाँ देखकर भी

तकलीफ हो इतनी बीमारियाँ मौजूद देखी गईं। क्योंकि खेत में जड़ों पर मायको रायजा की निर्मिती के लिए अनुकूल स्थिति का न होना एक कमी पायी गई।

भारत और श्रीलंका में केले और कोको की अच्छी फसल लेने के उपरांत दोनों बातों की आवश्यकता है यह उल्लेख करना होगा (1) मिट्टी में वायु का संचार और (2) मायकोरायजा का संपर्क और सह अस्तित्व के अलावा वनस्पति का कचरा और अवशेषों का निरंतर प्रदाय कि जिससे ह्यूमस का निर्माण। अगर यह नहीं हुआ तो उत्पादों की गुणवत्ता में घट और खेत में कीट-रोगों का आगमन होगा यह निश्चित समझें।

वेस्टइंडीज में उत्तम खेती की आवश्यकता है?

त्रिनिदाद के अनुसंधान केन्द्र का अवलोकन खोजी विद्यार्थियों के लिए एक सबक है कि खेती में सहयोग कितना जरूरी है। त्रिनिदाद अनुसंधान केन्द्र ने दिखा दिया है कि जिन्हें कृषि विज्ञान का स्पर्श भी नहीं है वे खेती के नकारात्मक विज्ञान को उपयोग में लाकर निम्न कोटी की फसल पैदा करने के लिए वैज्ञानिकों की बड़ी फौज वहाँ खड़ी कर सकते हैं।

ऐसी सदोष पद्धति का ध्येय सामने रख कर काम करने में क्या खामी है? यह जानना कठिन नहीं है। कृषि विज्ञान की किसी भी शाखा का अध्ययन करते समय प्रश्नों का सामना करने का कोई प्रयत्न ही नहीं करता। कृषि विशेषज्ञ खेती कैसे करना चाहिए यह किसानों द्वारा खेतों में किए गए प्रयोगों के आधार पर नहीं बल्कि प्रयोगशाला में किए गए प्रयोगों के आधार पर बताते हैं। अनुसंधान में विशेषज्ञ व्यक्ति के स्थान पर प्रशासन (प्रबंधन) अच्छा चलाने वाले व्यक्ति को केन्द्र प्रमुख नियुक्त किया जाता है। किसानों की समस्याएँ क्या हैं? इसका सिलसिलेवार आकलन करने के स्थान पर अनुसंधान केन्द्र में एक विशिष्ट विषय के अनेक वैज्ञानिकों को नौकरी पर रखा जाता है। त्रिनिदाद में स्थापित किए गए अनुसंधान केन्द्र का प्रबंध अगर हमारे जैसे देखभाल करने वाले समूह को दिया जाता तो आज वहाँ के नतीजे कुछ अलग ही निकलते। त्रिनिदाद कॉलेज के विद्यार्थियों का विचार करने में मार्गदर्शन करने वाले हमारे जैसे किसी एक को केले पर काम करने दिया जाता और कोको के लिए हमारे पूरे समूह को जोड़ा जाता तो इससे दोनों काम आगे भी जारी रहते। इससे दो बातें सिद्ध हो सकती थीं। (1) संशोधक ही मुख्य अनुसंधान का कर्ताधर्ता होता है यह मुद्दा सही सिद्ध हो जाता और (2) केवल समूह द्वारा कार्य करने से ही परिणाम मिलते हैं यह भावना अदृश्य हो जाती।

किसी भी समस्या का ऐसे टुकड़े-टुकड़े में विशेषज्ञों द्वारा किए गए अनुसंधान का कभी लाभ नहीं मिलता। आज की खेती (1938) के सामने जो प्रश्न है उनका विचार करें तो समूह द्वारा किया गया अनुसंधान व्यर्थ जाता है। यहाँ दो अंग्रेजों के उदाहरण दिए जा सकते हैं।

झूलसा रोग के कारण आलू फसल की अंग्रेजों की खेती से वापसी जैसी एक दर्दनाक घटना घटी। कॉपर सॉल्ट के बिना हम इंग्लैंड में आलू उगा ही नहीं सकते। इसी तरह आलू पर लगने वाली ईलवर्म इल्ली जब तक मिट्टी से समाप्त नहीं होती तब तक फसलचक्र में आलू रह ही नहीं सकता। हमेशा स्कॉटलैंड से महँगा आलू बीज मँगाना पड़ता है, इसका अर्थ यह कि कहीं कुछ गड़बड़ है। क्योंकि जब हम घर की गृह वाटिका में आलू उगाते हैं तब तक स्वस्थ और अच्छा पैदा होता है। हमारे कृषि वैज्ञानिकों ने टुकड़े-टुकड़े में इस समस्या का अध्ययन किया। झूलसा रोग की कवक विशेषज्ञों ने जाँच की, दूसरे समूह ने ईलवर्म का अध्ययन किया, तीसरे समूह ने आलू वायरस की जाँच की, प्रजनन विभाग ने रोग प्रतिरोधी शक्ति युक्त बीज विकसित करने पर जोर दिया, जबकि इस फसल को कौन-सी खाद दी जाय, यह एग्रोनॉमी के विशेषज्ञ तथ करेंगे। इतना बड़ा वैज्ञानिक समूह वास्तव में कुछ भी निश्चित नहीं कर सका और समस्या वहीं की वहीं रही। इन सबका मिट्टी के प्रबंधन के साथ कुछ संबंध है, इसका किसी ने विचार ही नहीं किया। अनुसंधान की दिशा ही गलत थी।

खाद देने के तरीके में भी यही गलती होती है। यह जानकारी के होते कि जंगल का इतना बड़ा आदर्श हमारे सामने है, हमने विज्ञान को टुकड़ों में बाँटा। सौ वर्ष बीत गए जब कुछ समझदार लोगों ने मिट्टी के पोषण पर ताजिंदगी काम किया। उन पोषण तत्वों में सूक्ष्म तत्व बोरॅन, लौह, कोबाल्ट भी आये। हरी खाद भी एक अलग विषय है। इसके अलावा गोबर खाद बनाना, खाद के ढेर लगाना जैसे साधारण विषय भी हैं। खाद की गुणवत्ता महत्वपूर्ण होती है।

खेत में खाद डालने के पीछे दो बातें महत्वपूर्ण हैं। (1) मिट्टी की उपजाऊ शक्ति को साधना और (2) तैयार फसल की गुणवत्ता ये दोनों बातें गायब हुईं क्योंकि कदम ही गलत उठाए थे।

वैज्ञानिक अनुसंधान का सबसे बड़ा दोष है अधिक उपज की आस। भौतिक और रसायन शास्त्र में जो जैसा है वैसा ही उसका महत्व होता है और गुणवत्ता का नहीं परंतु जीव-शास्त्र में फसलों को उगाना और पशुपालन दोनों महत्वपूर्ण होते हैं।

भौतिक और रसायन शास्त्र का यहाँ अर्थपूर्ण कोई संबंध नहीं होता है। भूमि का अनेक मुद्दों से संबंध होता है जैसे मिट्टी का उपजाऊपन, मिट्टी का व्यवस्थापन, जुताई, फसलों की गुणवत्ता, पशुओं का व्यवस्थापन और स्वास्थ्य, नौकर-मालिक के संबंध, संक्षेप में खेती की आत्मा को नापतौल में बंधक नहीं बनाया जा सकता। फिर भी इसका अस्तित्व सभी महसूस करते हैं। इसका न होना अर्थात् असफलता के अलावा कुछ नहीं। फिर इन विषयों का आकलन सांख्यिकीय गणित से करने का आग्रह क्यों किया जाता है? फसलें उगाना और ढोर डंगर पालना इनका और सांख्यिकीय शास्त्र का कहीं भी रत्तीभर कोई संबंध है क्या? अनुसंधान केन्द्र में काम करने वाला वैज्ञानिक खेती की सभी क्रियाओं (जिनमें पेड़-पौधे और पशु-पक्षी भी आते हैं) को ध्यान में रखता है क्या? एक दूसरे को पूरक जैसे पौधे और मिट्टी जिनकी देखभाल वे लोग करते हैं जो हर हफ्ते बदलते रहते हैं। उन फसलों की उपज के गणित का क्या वे इतनी गहनता से विचार करते हैं? क्या कृषि अनुसंधान केन्द्र में अर्थशास्त्र ने कदम रखे और फसलों की गिनती गणित में होने लगी। जैसे कारखानों और जनरल स्टोर में होता है। कील बिरंची बनाने वाले कारखाने में कच्चे माल, उसके लिए जरूरी मजदूरी, ऊर्जा ईंधन आदि कार्यों की कीमत निकाल कर उसे विक्रय के मूल्य से जोड़कर लाभ-हानि का गणित किया जा सकता है, क्योंकि वहाँ सारी सामग्री, सभी क्रियाएँ निश्चित होती हैं, वैसा ही जनरल स्टोर में भी होता है। शायद 30 वर्ष पूर्व (1938) से यह तत्व खेती और किसानों पर लागू करना कठिन नहीं था। केवल उसका हिसाब रखना मात्र अंदाज पत्र जैसा था (क्योंकि मिट्टी की किताब सदैव बंद रहती है। धरती माता के पास पासबुक नहीं होती। खेती का हिसाब, अर्थात् पैसे भरना और निकालना, नामालूम चेक स्वीकारने जैसे होता है। क्योंकि मिट्टी की सिल्लक कितनी है यह किसे मालूम होता है? किसान को मिलने वाली फसल की उपज एक तरह से मिट्टी द्वारा अपने नफे से दिया हुआ हिस्सा होती है। यह सब अंदाज पत्र पर निर्भर करता है। अर्थशास्त्र की दृष्टि से इसे कोई महत्व नहीं होता।

खेती में इन बातों का महत्व होता है:

(1) किसान का खुद का मोल क्या है? दूसरे शब्दों में दूसरे लोग उसका बैंक वाला, उसके मजदूर उसकी क्या कीमत आँकते हैं?

(2) सालभर में खेत कर किया गया खर्च

(3) सालभर में प्राप्त आय और साल के अंत में खेती की कीमत।

उसकी उपजाऊ शक्ति, पशु पक्षी यह सब ठीक हो तो बाकी किसी काम का नहीं और अगर वह ठीक नहीं तो उस पर खर्च किया गया धन व्यर्थ है, फिर बेकार प्रयत्न क्यों करें?

इस अर्थशास्त्र ने खेती का बहुत नुकसान किया है। वह खेत को कारखाना समझता है। खेत उसके लिए नफा नुकसान की दुकान है जिसमें केवल नफा ही देखा जाता है। परंतु खेती का उद्देश्य कारखाने से बिलकुल अलग है। खेती का उद्देश्य अच्छा अब पैदा कर मानव जाति को विकसित करना है। मिट्टी उपजाऊ रही और अच्छा, पोषक अब उत्पन्न हुआ तभी यह उद्देश्य सफल होगा। उत्तम अब, पानी और वायु देना ही अच्छी खेती का मुख्य कार्य है। हमें दिया गया पानी नफा नुकसान नहीं देखता परंतु हमें दिया गया हरित पट्टा, खुली जगह और गृह निर्माण समितियाँ ये सभी घाटे में रहते हैं। फिर हमें दी गई खेती से ही हम नफे की अपेक्षा क्यों करें? कुछ भी हो तो जनता भोजन ही माँगती है। यह कोई क्यों नहीं देखता कि जनता को भरपेट अब मिलता है अथवा नहीं? राष्ट्र की कार्यक्षमता बढ़ाने वाली इस मूलभूत आवश्यकता का कोई विचार क्यों नहीं करता? इसे तो प्रमुखता मिलनी चाहिए। अर्थव्यवस्था बाद में आती है। इस मूलभूत सच्चाई की ओर से आँखें मूँद कर अर्थशास्त्र ने भारी गलती की है।

फसलों की नवीनतम किस्में उगाने वाले सस्ते और उत्तेजित करने वाले उर्वरक मिट्टी में डालकर गहरी जुताई, सोने का अंडा देने वाली मुर्गी को मारने वाले, दूध के सागर निर्माण करने वाली गायों को काम में लगाकर उन्हें समाप्त करने वाले विज्ञान को हमने आजमाया तो ऐसा करने वाले अनुसंधान केन्द्र को अपने कार्य पर पुनः विचार करना होगा। कृषि अनुसंधान केन्द्रों ने अपने ज्ञान का गलत इस्तेमाल कर अच्छा अनाज उगाने वाले किसान के स्थान पर डाकू तैयार किए हैं। अपनी आने वाली फसल की कीमत पर सिर्फ लाभ का गणित उसे सिखाया गया है। भूमि में उपजाऊ क्षमता नामक जो बैंक शेष है, पूँजी है और ढोर-डंगर नामक जो सिल्लक है उसे अपने नफा-नुकसान के हिसाब खाते में कैसे बदलें यह अनुसंधान केन्द्र किसान को सिखाते हैं। व्यापार में ऐसी हरकते दीवाले में समाप्त होती है। इस कृषि अनुसंधान में भले ही उन्हें तात्कालिक सफलता मिले, जब तक मिट्टी फसलें दे रही हैं तब तक यह सब ठीक है परंतु मिट्टी की उपजाऊ शक्ति कभी स्थायी नहीं रहती, वह समाप्त होती है। अंततः फिर भूमि भी थकेगी और खेती मरेगी।

हम इसी का विचार करने वाले हैं कि वास्तव में अनुसंधान केन्द्र ने क्या करना चाहिए?

कृषि अनुसंधान का सफल सोपान

पिछले कुछ अध्यायों में हमने कृषि अनुसंधान पर भरपूर ही आलोचना की। उसकी त्रुटियों को उजागर किया उसमें सुधार की संभावना व्यक्त की गई। सही अर्थों में उचित अनुसंधान कैसा होना चाहिए, इसका एक उदाहरण हम सन् 1908 से 1935 के बीच 27 वर्षों तक भारत में ही किए गए एक गत्रा अनुसंधान केन्द्र का लेते हैं।

भारत के उत्तर प्रदेश में गत्रे पर आधारित अनेक उद्योग हैं। अतः उसी क्षेत्र में खोज की गई। मार्च के प्रारंभ में छोटी पत्तियों वाले पतले गत्रे रोपे गए। अगले वर्ष जनवरी से मार्च महीनों में गत्रे को पिलान कर गुड़ बनाया गया, उत्पादन कम हुआ, प्रति हेक्टेयर 2.5 मे. टन। अतः उपज बढ़ाने का तय किया गया। जॉर्ज क्लर्क नाम के रसायनशास्त्री को यह काम सौंपा गया। यह अच्छा चयन था, क्लर्क को रसायनशास्त्र और अनुसंधान की अच्छी समझ थी। वह खुद लिंकनशायर के होनहार कृषक का बेटा था। खेती उसके खून में थी। खेत में अनुसंधान के लिए उसके पास तीन विशेषताएँ थीं। एक किसान के गुण, विज्ञान में निपुण और अनुसंधान की ललक। अतः उसे किसी समस्या का निदान तुरंत सूझता। उनके उत्तर उसे तुरंत सूझते और वे प्रश्न सुलझाने के लिए आवश्यक दौड़-धूप करने में भी वह आगे रहता। उस क्षेत्र के किसानों को वह समझा भी सकता था।

अपने साथ काम करने वाले सहकर्मियों के मामले में भी वह भाग्यशाली रहा।

एक थे एस.सी. बनर्जी (जो आगे चलकर राय बहादुर बनर्जी बने), प्रतिष्ठित घराने का बैनर्जी प्रयोगशाला का प्रमुख था, मेहनती कार्यकुशल? उसका सहायक हुसैन कुछ अलग था, काम में चतुर, परंतु गुस्सैल। काम झटपट अंजाम देता, उसका स्फूर्ति स्थान था शाहजहाँपुर के खेत जिनमें वह रमता जोगी था, काम के मामले में लेटलतीफी बिलकुल नहीं। इन दोनों ने शाहजहाँपुर के खेतों में जान लगा दी। ग्रामीण विकास का वास्तव में इन दोनों की मेहनत से वह आदर्श स्थान बना। किसी यूरोपियन व्यक्ति द्वारा असंभव जैसा कार्य उन्होंने कर दिखाया। भारतीय खेती की ऐसी सेवा किसी ने न की होगी जितनी उन्होंने की। उनका काम डॉ. हॉवर्ड ने नजदीक से देखा। उन्होंने ईमानदारी से खड़े किये उस अनुसंधान केन्द्र को डॉ.

हॉवर्ड ने देखा था। डॉ. हॉवर्ड ने इस पुस्तक का लेखन इंग्लैण्ड में किया। इस बात का उन्हें मलाल था कि उन दोनों के काम के पुस्तक में उल्लेख पढ़ने के लिए बैनर्जी और हुसैन जीवित नहीं थे।

सन् 1912 तक उत्तर प्रदेश में यह मान्यता थी कि किसानी अनुसंधान और गत्रे की वास्तविक खेती ये दोनों भिन्न विषय हैं जिन्हें अलग-अलग ही रखना चाहिए। उन्हें यह भी नहीं समझ में आता था कि दोनों का मेल कैसे बैठा? उस समय किसी को भी यह नहीं समझ में नहीं आया कि अनुसंधान केन्द्र और किसान के खेत में बोया जाने वाला गत्रा एक ही होता है। इसके अलावा खेत में सुधार होगा कैसे? इस कारण सन् 1911 में जब क्लर्क को वहाँ नियुक्त किया तब उन्होंने अनुसंधान कार्य के लिए खेत जमीन की माँग की थी, जिस पर विवाद उठ खड़ा हुआ। यह विवाद निपटारे के लिए अखिल भारतीय कृषि मंडल के पास भेजा गया। क्लर्क पर काफी आलोचना हुई उन लोगों को यह बिलकुल नहीं अच्छा नहीं लगा कि अनुसंधान करने वाला प्रयोगों के लिए खेत की माँग करे। कृषि अन्वेषकों को लगा कि ऐसा करने से उनका महत्व कम होगा। सन् 1912 में अल्बर्ट हॉवर्ड दौरे पर वहाँ गए तब उनके सामने यह मुद्दा रखा गया। वहाँ के कृषि सलाहकार ने उनकी राय माँगी जिस पर डॉ. हॉवर्ड ने क्लर्क की माँग का समर्थन किया।

मिट्टी की उपजाऊ क्षमता बनाए रखने की भारतीय किसानों की योग्यता

डॉ. अल्बर्ट हॉवर्ड ने केन्द्रीय परिषद को समझाया कि कलर्क को अलग खेत भूमि मुहैया करें और स्वतंत्रापूर्वक काम करने दें। वह बहुत अच्छा काम करेंगे। इस तरह सन् 1912 में कनौत नदी के किनारे शाहजहाँपुर में एक गन्ना अनुसंधान केन्द्र गठित हुआ। सन् 1912 से 1931 तक अर्थात् 19 वर्ष तक कलर्क वहाँ प्रमुख वैज्ञानिक के पद पर कार्यरत रहे। इसके अतिरिक्त वह प्रमुख रसायनशास्त्री (1907 से 21), कृषि महाविद्यालय कानपुर के प्राचार्य (1919 से 1921) और कृषि संचालक (1921 से 1931) के पद पर आसीन रहे। 1912 से 1921 तक वह हर शनिवार-रविवार शाहजहाँपुर में कार्यरत रहते थे। बाद में वह कृषि संचालक बने। इस अवधि में उन्हें भारत की खेती, यहाँ का ग्रामीण जीवन, खेत, ग्रामवासी और उनकी व उनके खेतों की समस्याएँ समझने का मौका मिला। इसका फायदा यह हुआ कि माँटेग्यू चेम्सफोर्ड के बदलाव प्रस्तावों में उनका बड़ा योगदान था। उत्तर भारत को भारत के महत्वपूर्ण गन्ना क्षेत्र के रूप में पहचाना जाता है। बिहार से पंजाब तक फैला 500 मील लंबा यह क्षेत्र कछार की अलूवियल (दोमट) मिट्टी से बना हुआ है। रुहेलखंड, गोरखपुर और मेरठ क्षेत्र का महत्वपूर्ण विकास कार्य इसी पट्टी में होता है। यहाँ की मिट्टी गन्ने की जड़ों के लिए सबसे अच्छी है। जून के अंत से सितंबर तक बारिश का मौसम रहता है। 15 अक्टूबर से 15 मार्च तक ठंड रहती है। उस समय बारिश बहुत कम छिपुट होती है जिसके बाद ग्रीष्म ऋतु शुरू होती है, जो जून के प्रारंभ तक बारिश के प्रारंभ तक रहती है। इस समय गन्ने को सिंचाई देनी पड़ती है। गन्ने की रोपणी वैसे फरवरी के अंत में होती है।

सन् 1912 में जब वहाँ गन्ना अनुसंधान केन्द्र शुरू हुआ तब 95 प्रतिशत किसानों की गन्ने की उपज 13 मे. टन प्रति एकड़ थी। जिसमें से 1 टन गुड़ बनता था। बारिश के मौसम में वहाँ कोई फसल नहीं ली जाती। बाद में खेत में 15-20 उथली जुताई, बक्खरनी होती थी। भारत की प्रदीर्घ परंपरा के अनुरूप वहाँ स्थानीय किस्मों की रोपणी से फसल के उत्पादन का अर्थशास्त्रीय संतुलन बनाए रखा जाता

था। फसलों में नत्रजन, अन्य कार्य सही ढंग से किए जाते थे। पिछले 200 वर्षों से ऐसा ही पतला, ओजस्वी अच्छी उपज देने वाला गन्ना बोया जाता था। अन्य राज्यों जैसा मोटा गन्ना यहाँ उपलब्ध नहीं था। स्थानीय गन्ना इतना पतला कि सैकरम नामक घास जैसा दिखाई देता। यहाँ संस्कृत भाषा में 5-6 नाम वाला गन्ना किसान लगाते थे।

रुहेलखंड में गन्ने की सुधरी उन्नत किस्में लगाने की प्रथा शुरू हुई। उपज 13 टन से बढ़कर 16 मे. टन तक पहुँची। 27 मे. टन तक उपज का आँकड़ा पहुँच गया था परंतु उसके रस का गुड़ कोई खास नहीं बनता था। गन्ने की किस्मों और उत्पादन का मेल नहीं बैठ रहा था।

उत्तर भारत का प्रखर सूर्य प्रकाश ग्रहण कर गन्ने में आवश्यक मात्रा में सूक्ष्म पैदा करने जैसा पौधों की पत्तियों का आकार नहीं था। वे सिकुड़ी हुई बनी थी जिस वजह से चाहिए जैसा रस गन्ने में बनता नहीं था। यह एक महत्वपूर्ण खोज थी। उत्तर प्रदेश में गन्ने की उपज बढ़ाने के लिए उस प्रदेश के विशेषज्ञों का सामना करने के लिए ऐसे प्रयोग होना जरूरी था। प्रदेश का शकर उत्पादन बढ़ाने के लिए अच्छी किस्म का बीज और उन्नत कृषि कार्य आवश्यक था। इस अनुसंधान केन्द्र के अगले सभी खोज कार्यक्रम इन्हीं दो बातों पर निर्भर था। इसके लिए दो बातें जरूरी थीं -

(1) उन्नत किस्म का गन्ना बीज ढूँढ़ना

(2) फसल उत्पादन की प्रणाली में क्या करने से अधिक उपज मिलेगी यह देखना।

शाहजहाँपुर में जावा से आयातित गन्ना किस्म पी.ओ.जे 213 का बीज उस क्षेत्र के लिए सर्वथा उपयुक्त था, जो एक संकरित किस्म थी। इस किस्म का पितृ समूह रुहेलखंड की ही चुनीया किस्म थी जिसे एक डच वैज्ञानिक 20 वर्ष पूर्व जावा से भारत लाया था। इस नर बीज का भारत की स्थानीय किस्म से संकरण यह नवीन किस्म पी.ओ.जे. 213 निकली थी। प्रारंभ में इसी किस्म को रुहेलखंड में बड़े पैमाने पर बोया गया। इस वजह से कुल कालातीत शकर कारखाने जो भंगार हो रहे थे, पुनः पनप गए। इसका एक और यह लाभ हुआ कि शाहजहाँपुर अनुसंधान केन्द्र में अनुसंधान कार्य तेजी पकड़ने लगा। इसी वजह से इस क्षेत्र में कोयंबटूर की नई विकसित किस्म “को 213”, जिसे डॉ. बाबर ने विकसित किया था, भी लोकप्रिय हुई।

कलर्क की समझ में आ गया कि लिंकनशायर के हॉलैंड संभाग में जैसी मिट्टी की देखभाल की गई थी, वैसी यहाँ भी रखनी होगी। हॉलैंड संभाग में 60-70 वर्ष पहले बड़े पैमाने पर वहाँ कि उपजाऊ मिट्टी में आलू बोया जाता था। दोनों मिट्टियों में एक समानता थी कि वे दोनों अलूवियल (दोमट) थी। वहाँ का आलू और यहाँ का गत्रा इनकी उपज की स्थिति एक समान थी। दोनों फसलें

वानस्पतिक तरीके से बोई जाती। इस बजह से गत्रे का अंकुरण जल्दी होकर पौधा शीघ्र ही जड़ पकड़ लेता था। उस समय मौसम भी अनुकूल रहता। जो कुछ गलतियाँ लिंकनशायर में होती थी उन्हें ध्यान में रखकर गत्रे की रोपणी की जाती। गत्रा रोपने से पहले खेत में कुछ नहीं होता था। बारिश की समाप्ति पर खेत में बड़ी मात्रा में गोबर खाद डालकर बक्खर से मिट्टी में मिला दिया जाता। इससे मिट्टी की ऊपरी सतह में ह्यूमस पौधों को उपलब्ध हो जाता। गत्रा 60 से.मी. चौड़ी कुँड (नालियों) में रोपा जाता। ये कुँड 15 से.मी. गहरे होकर उसमें गत्रे को रोपा जाता। (देखें ऊपर का चित्र) नवंबर माह में सपाट क्यारी बनाकर उसमें 22.5 से.मी. (9 इंच) गहरा कुँड (नाली) बनाया जाता है और उसमें मूँगफली अथवा अन्य किसी तिलहन की खली डालकर छोड़ दिया जाता है। फिर फरवरी में गत्रे की रोपाई की जाती है। यह तरीका जावा से भी अधिक उन्नत है। कुँड हाथ से बनाए जाते हैं और यह तरीका सर्वश्रेष्ठ है।

इसके उपरांत अरंडी खली प्रति एकड़ 2170 पौंड की दर से सपाट क्यारी में डाली जाती है इसमें 4.5 प्रतिशत नन्जन होता है। दरअसल लगभग 130 पौंड हरी खाद का उपयोग करने पर इस खाद की आवश्यकता नहीं पड़ती है। हरी खाद की बजह से गोबर खाद भी कम लगेगी। रोपणी से 1 माह पूर्व खेत में सिंचाई की जाती है। खेत में नमी के कारण खली सड़ जाती है और खेत की मिट्टी में

वायु का संचार भी होता है। फरवरी में खेत में गत्रे की रोपणी की जाती है। रोपणी सूखी मिट्टी में की जाती है और रोपणी के दूसरे दिन खेत को सिंचा जाता है। इससे दीमक का प्रकोप नहीं रहता है। जून माह तक 2 बार सिंचाई की जाती है। गत्रा 1 माह का हो जाने पर मिट्टी चढ़ाने का काम किया जाता है। जुलाई तक यह सभी काम निपटाये जाते हैं।

मिट्टी चढ़ाने का काम इसलिए कि वहाँ उपयोगी सूक्ष्म जीवाणु और फॉर्मूद पैदा होती है। कलर्क ने देखा कि गत्रे की जड़ों के आसपास फॉर्मूद भलीभांति उग रही है। गत्रे का मायकोरायजा के साथ अच्छा सहजीवन होने के कारण फसल की अच्छी बढ़वार होती है। इसके लिए जरूरी ह्यूमस हवा, नमी और जड़ों का फैलाव आवश्यक होता है। गत्रे को अगर कुँड (नाली) न बनाकर रोपने के बजाय सपाट क्यारी में रोपने से वहाँ मायकोरायजा पैदा नहीं होगा। मिट्टी पलटने के चार फायदे

(1) गत्रे की निचली गांठों से निकलने वाली जड़ों को भरपूर हवा मिलती है, खुएक मिलती है।

(2) इससे मायकोरायजा के साथ सहजीवन विकसित होता है।

(3) बारिश में गत्रे नीचे से मजबूत बनते हैं जिससे वे हवा से आड़े नहीं पड़ते हैं।

(4) ऊपरी सतह पर मिट्टी के ढेले नहीं बनते खेत में सपाट क्यारी बनाने पर पानी की निकासी के लिए नाली बनाना जरूरी हो जाता है। इसके लिए खेत की पगड़ंडियों को खोदकर उसमें से बारिश का पानी बाहर निकालने के लिए जगह बनाई। इससे खेत का जीवांश (ह्यूमस) खेत की मिट्टी में बना रहा, पानी के साथ बहकर निकल नहीं गया। पगड़ंडी पर उग रहे चारे ने छन्नी का काम किया। धास चारा गाय-बैलों को खिलाने के काम आया। खेत में पानी भरना और मिट्टी का

क्षरण इन छोटे-छोटे उपायों से ठीक हो सकता है।

गन्ने की उन्नत खेती का इन छोटी-छोटी बातों को आजमाने से प्राप्त अच्छा परिणाम मन को आलहादित कर गया। इस बजह से जहाँ प्रति एकड़ 13 मे. टन गन्ना और 1 मे. टन शकर का उत्पादन होता था वहाँ लगभग 36 मे. टन गन्ना और 3.1 मे. टन शकर दे गया। लगातार 20 वर्ष शकर का उत्पादन तीन गुना हो गया। इतने अल्पकाल में उत्पादन का बढ़ना यह वाकई काबिले तारीफ कहा जाएगा। कहीं-कहीं तो उत्पादन 44 मे. टन गन्ना और 4.1 मे. टन शकर प्रति एकड़ मिली। उत्तर प्रदेश की जलवायु को देखते हुए यह एक रेकार्ड ही माना जाएगा।

उत्तर प्रदेश के इन गन्ना परिणामों को देखते हुए 2 बातों पर ध्यान देना जरूरी है - (1) मई-जून में जब जड़ें और फुटाव विकसित होते हैं तब और (2) बारिश में अगस्त-सितंबर में जब गन्ने के सांटे में शकर का भंडारण प्रारंभ होता है तब इन दो कालखंडों में उपेक्षा होने पर उपज घट जाती है। रोपणी के शुरुआती समय में फसल को नायट्रोजन मिलता है और गन्ने में शकर बनने की शुरुआत होने पर फसल को मिट्टी में नमी, हवा और वातावरण नम हो तो गन्ने और शकर का उत्पादन निश्चित ही बढ़ता है। गन्ना उगाने वाले किसानों ने इन दोनों बातों पर गौर करना बहुत जरूरी है।

उत्तर प्रदेश के गन्ने गन्ना अनुसंधान केन्द्र पर इस प्रकार अधिक उपज पाने की नई तकनीक विकसित हुई। यह तकनीक अब पूर्वोत्तर भाग के 4 एकड़ और पश्चिम भाग के 1 एकड़ आकार के खेत में उपयोग में लाना चाहिए। वैसे देखें तो खेत का यह कोई बड़ा आकार नहीं, उसे भी छोटे-छोटे टुकड़ों में बांटा जा सकता है। मिट्टी की उपजाऊ क्षमता सभी हिस्सों में एक जैसी नहीं होती है। इन छोटे-छोटे टुकड़ों वाले किसानों के पास उल्लेखनीय पूँजी कहाँ रहती है? फिर वे आवश्यकता अनुसार जैविक कहाँ से खरीदेंगे? इसके लिए गंगा कछार में फैले खेतों में नन्हन चक्र का अध्ययन जरूरी है। मौसमी खेती पद्धति, मिट्टी में नाइट्रोजन का भराव और हरी खाद इन सब का आपस में क्या संबंध है, इसका भी विचार होना चाहिए। इस क्षेत्र में उन्नत खेती करने का तय होने पर यह अध्ययन शुरू किया गया।

खेती की स्थानीय पद्धति की जानकारी, नव चक्रीकरण का अध्ययन जरूरी है। उत्तर प्रदेश के मौसम में इतनी तेजी से बदलाव और उसकी विविधता इतनी

दिलचस्प है कि उसे उत्तर प्रदेश की विशेषता कहना गलत नहीं होगा। इसके दो कारण हैं- (1) ग्रीष्म की धूधकती गर्मी और सूखे मौसम से एकाएक जून के अंतिम सप्ताह में जब बोवनी होती है तब बरसाती मौसम और (2) वायुमंडल में नमी के साथ अधिक तापमान और सितंबर में बारिश के मौसम की समाप्ति से लेकर अक्टूबर के बोवनी मौसम का ठंडा वातावरण इन सब का गन्ने की उपज पर विपरीत परिणाम होने की संभावना को नकारा नहीं जा सकता। उस दौरान बोवनी के लिए खेत की तैयारी के लिए काफी कम समय होता है और जैविक प्रणाली से फसलों से अन्न उपजाने के लिए समय होता ही नहीं है। इस बजह से गन्ने की बढ़वार को पर्याप्त समय नहीं मिलता है। इन दोनों बातों का रोपणी और गन्ने के बीज के चयन पर प्रभाव पड़ता है। उत्तरप्रदेश में इन दोनों ऋतुओं का अंतर ठंड के मौसम में दिखाई देता है जब गेहूँ और गन्ना पास पास उग रहे होते हैं।

खरीफ और रबी फसलों की इतने बड़े रखबे में खेती होती है कि खाद का बिलकुल उपयोग न करते हुए भी नाइट्रोजन की आपूर्ति कैसे होती है और गंगा किनारे की मिट्टी की उत्पादकता वर्षों तक एक जैसी कैसे बनी रह सकती है? इसके लिए मिट्टी की जाँच की गई। इसके लिए जिन खेतों में खाद नहीं डाली गई थी और अप्रैल माह में गेहूँ खाली हो गए थे उन्हें खोद कर जूलाई मिट्टी को जाँच के लिए निकाला अगस्त गया। स्कोलोसिंग प्रणाली से सितावर उनका नाइट्रोजन जाँचा गया। अक्टूबर नीचे के चित्र से इस प्रयोग के निष्कर्ष क्या मिले इसे समझा जा नववर सकता है। दिसम्बर

इस ग्राफ से समझ में आता जनवरी है कि -

(1) फरवरी और मार्च में जब तापमान बढ़ता है तब गन्ने को आवश्यक नव कैसे मिलता है?

(2) बारिश के मौसम में वह मिट्टी में से कैसे अदृश्य हो जाता है? तेज बैछारों और फूँद की बढ़वार से उसमें कमी आती है और ऐसा भी मिट्टी के ह्यूमस के कारण होता है।

(3) बारिश की मिट्टी में नाईट्रीफिकेशन भी नहीं होता है।

(4) बसंत ऋतु में मिट्टी थोड़ी सूखने पर नाईट्रेट तैयार होने लगता है।

खेत को बक्खरने से मिट्टी में हवा का भरपूर संचार होता है। 25 सितंबर से 30 नवंबर तक 7.5 से.मी. गहरी 5 बार बक्खरनी की गई। नाईट्रेट का इस तरह मिट्टी में जमा होना जैविक प्रक्रिया के कारण ही होता है और वह खरीफ और रबी फसलों के अंकुरण के समय काम आता है।

नाईट्रेट के इस तरह भंडारण का अध्ययन और भारतीय किसानों का खेती का तरीका इनकी जब हम तुलना करते हैं तब उन किसानों की पीठ थपथपाने की इच्छा होती है। किसी भी विज्ञान की सीख लिए बिना वह सालोंसाल चल रही परंपरा से मिट्टी की उपजाऊ क्षमता भलीभांति टिकाए रखता है। वह अनपढ़, गंवार निश्चित ही नहीं। उलटा उसकी गिनती विश्व के श्रेष्ठ अर्थ पूर्ण खेती करने वालों में होनी चाहिए। ठंडे देशों के खेती करने वाले किसानों को व्यास्तव में उससे उत्तम खेती के फाल सीखने चाहिए। भारत के मैदानी खेतों में गन्ना उगाने वाले किसान अपने खेत से अधिक नत्रजन प्राप्त नहीं कर सकते। उनकी मिट्टी की बैंक में नत्रजन की थोड़ी बहुत सिल्लक रहती ही है, वह भी भूमि में गन्ना जैसी भुक्खड़ फसल को नत्र देने वाले सूक्ष्म जीवाणु और ह्यूमस की जमा-पूँजी के कारण जिस बजह से उसने खेत में ऐसी प्रणाली विकसित की है जो इसकी पूर्ति कर देती है। वह समय पर खेत में बक्खर चलाता है जिससे खेत में मौजूद नत्र नष्ट नहीं होता, ह्यूमस भी बना रहता है। इतने कम नत्र भंडार के होते हुए भी वह चीन देश को छोड़ कर अन्य किसी भी किसान से ज्यादा उपज लेता है। सालों साल उसने अपने खेत की मिट्टी की उपजाऊ क्षमता बनाए रखी है।

गन्ने की जड़ों के विकास और फुटाव निकलते समय अर्थात मई व जून में अच्छी उपज प्राप्त करने के लिए खेत में नाईट्रेट होना जरूरी है। अभी वर्तमान में (1940) प्रचलित पद्धति से फसल की वृद्धि के लिए कारखाने में बना अथवा आयात किया हुआ अमोनियम सल्फेट उर्वरक खेत में डाला जाता। यह सर्वथा गलत है, किसान को यह पोसाएगा नहीं। दूसरा, युद्ध की स्थिति में फिर उसकी कमी

महसूस होगी वह अलग। फिर उसके उपयोग से मिट्टी की गुणवत्ता बिगड़ती है वह अलग। यह उपजाऊ शक्ति ही इस देश की सही अर्थों में राष्ट्रीय संपत्ति है। वह इन रासायनिक उर्वरकों के कारण नष्ट होगी। शायद इसके उपयोग से उपज बढ़ेगी भी परंतु आने वाले वर्षों में इसकी कितनी कीमत चुकानी पड़ेगी। मिट्टी की उपजाऊ क्षमता में कमी, कम उत्पादन, कीड़े-बीमारी का प्रकोप, बीमार मिट्टी, बीमार ढोर-डंगर बीमार लोग, मिट्टी का क्षरण और अंततः खेतों के रेगिस्तान में रूपांतरण तो होना ही है। किसानों के हाथों में ऐसी बचकाना योजना के अंतर्गत फसल उत्पादन यह गलत सलाह न होकर अक्षम्य अपराध ही कहा जाएगा। इन संश्लेषित रासायनिक उर्वरकों को नकार भी दें तो नत्र का विकल्प तो चाहिए।

उत्तर प्रदेश में शकर का भरपूर उत्पादन दो बातों से बढ़ सकता है -

(1) बारिश शुरू होते ही मिट्टी में उपलब्ध नत्र का पूरा उपयोग होना जरूरी है।

(2) मिट्टी में जीवांश की मात्रा बढ़ाकर जैव विविधता विकसित करने से जैविक नत्र की मात्रा बढ़ेगी।

मिट्टी में प्रकृति के माध्यम से नाईट्रेट बढ़ाने का नया तरीका ढूँढ़ा गया है। इसे हरी खाद कहते हैं। गन्ना रोपने से पहले खेत में सनई उगाई जाती है। उसके लिए प्रति एकड़ चार मे. टन गोबर खाद दी जाती है। यह गोबर खाद सनई का उत्पादन तो बढ़ाता ही है साथ ही उसे खेत में शीघ्र सड़ाता भी है। 60 दिनों में लगभग 2 मे. टन जीवांश इस हरी खाद के माध्यम से भूमि को दिया जाता है। इससे 2 मे. टन जैविक तत्व अथवा 75 पौँड नत्र एक एकड़ भूमि को मिलता है। इससे बारिश के प्रारंभ में ही मिट्टी को नत्रजन भी मिलता है और जीवांश का कच्चा माल भी मिलता है। हरी खाद और उसे दिए गए गोबर खाद से यह फायदा होता है।

भूमि की उपजाऊ क्षमता टिकाए रखने की आवश्यकता

जैविक सामग्री (जीवांश) को सङ्गने गलाने के लिए प्रारंभ में नमी की आवश्यकता पड़ती है। सनई (सनहैम्प) को खेत में बख्खरने के बाद आई बारिश का अध्ययन किया गया। सितंबर माह के पहले अर्धमास में 12.5 से.मी. से (5 इंच) से कम बारिश हुई। खेत की सिंचाई की गई जिससे हरी खाद पर पर्याप्त मात्रा में फफूँद लगी। नवंबर समाप्ति तक हरी खाद का ह्यूमस नहीं बना। कम तापमान के कारण उसका धीरे-धीरे नाईट्रिफिकेशन होना शुरू हुआ। महीना बाद फरवरी में जब गन्ने की रोपणी हुई तब ह्यूमस में उपलब्ध पूरा नन्हा गन्ने को मिलने लगा। इसका अर्थ यह हुआ कि मिट्टी में ह्यूमस तैयार होने के लिए कुछ समय लगता है। जबकि कम्पोस्ट खाद की ढेर पद्धति में कम समय लगता है। यह नन्हा गन्ने की जड़ों को विकसित करता है। क्यारियाँ लगातार भरते रहने से और गन्ने को सीचते

रहने से नाईट्रिफिकेशन लगातार होता रहता है। खेत के बाहर नालियाँ बनाने से फालतू पानी की निकासी भी भाँति होकर खेत में वायु का संचार भली प्रकार होता है। इस तरह गन्ने को निरंतर नाईट्रेट और मायकोरायजा का सहयोग मिलता रहता है।

हरी खाद का गन्ने की फसल पर क्या असर होता है यह नीचे दिए गए चित्र में दिखाया गया है।

इस चित्र से समझ में आएगा कि ह्यूमस की मौजूदगी से गन्ने को लगातार नाईट्रेट मिलता रहेगा, वह भी मार्च से जून के बढ़वार तेजी से होती है और पौधों को दिया गया पोषण वे तुरंत समाप्त कर देते हैं।

नीचे दी गई तालिका में हरी खाद दिए गए तथा नहीं दिए गए 27 प्लाटों का तुलनात्मक विवरण प्राप्त गन्ने और गुड़ की मात्रा में दिया गया है।

गन्ने की इस सघन खेती से प्रति एकड़ 6 पौंड (1 पौंड = 60 से 65 रुपये) का नफा मिला। इसे शाहजहाँपुर गन्ना अनुसंधान केन्द्र की वार्षिक रिपोर्ट में दर्ज किया गया है। अनेक वर्षों तक वहाँ खर्च की तुलना में आमदनी 50 प्रतिशत अधिक मिलती थी।

इस अनुसंधान केन्द्र की कार्यप्रणाली निर्विवाद थी। हरी खाद के साथ थोड़ी गोबर खाद देने से वहाँ प्रति एकड़ गन्ना उत्पादन 13 मे. टन से 30 मे. टन पर पहुँचा और गुड़ उत्पादन 3 मे. टन प्राप्त हुआ।

यह सघन खेती मात्र गन्ने तक सीमित नहीं रही। वहाँ चना और पूसा गेहूँ भी उगाया जाता था जिन्हें गन्ने के साथ फसल चक्र के लिए शामिल किया जाता था। किसानों को मिलने वाली उपज से तीन गुना अधिक उपज वहाँ प्राप्त होती थी। गन्ना

कटाई के बाद खेत में शेष पोषक तत्व तथा क्यारियों का गेहूँ व चने को बहुत लाभ मिलता था। एक बार तो प्रति एकड़ 35 मन गेहूँ साढ़े तीन एकड़ क्षेत्र में मिला। इसके लिए नवंबर माह में केवल एक सिंचाई 10 से. मी. गहरी की गई थी। इसके पहले उस प्लाट में ऐशी मॉरिशस नामक गन्ने की फसल ली गई थी जिसकी उपज 34.7 मे. टन प्रति एकड़ प्राप्त हुई थी।

शुरुआत में शाहजहाँपुर अनुसंधान केन्द्र के खेतों में गन्ने के बाद लिए गए गेहूँ पर काफी प्रभाव दिखाई दिया। गेहूँ का खेत पन्हाली वाले पतरे जैसा दिखाई देता परंतु लगातार गन्ना गेहूँ फसल चक्र में उगाने पर गेहूँ का खेत सपाट, समतल दिखाई देने लगा। खेत में उपजाऊ क्षमता सुधरी हुई दिखी।

गन्ने की सघन खेती का अध्ययन क्रमशः करना अब कठिन नहीं है।

(1) पिछड़ी, परंपरागत पद्धति से खेती करने पर औसतन 350 मन गन्ना प्रति एकड़ पैदा होता है (1 मन = 82 पौंड, 28.1 मन = मे. टन)।

(2) परंपरागत खेती पद्धति में थोड़ा सुधार कर अर्थात् गहरी जुताई और गोबर की खाद डालकर करने से उपज 450 मन प्रति एकड़ मिल जाती है।

(3) नई उन्नत किस्में पीओजे 213 और को 213 लगाने पर उपज 600 मन प्रति एकड़ तक मिल सकती है अर्थात् 150 मन अधिक।

(4) नई उन्नत किस्मों के साथ हरी खाद लगाकर बिना क्यारियाँ बनाकर रोपणी करने से 600 मन प्रति एकड़ की उपज प्राप्त होती है अर्थात् 150 मन अतिरिक्त उपज।

(5) खेत में क्यारियाँ बनाकर उसमें हरी खाद और 1640 पौंड अरंडी की खली प्रति एकड़ डालकर रोपणी करने पर 1000 मन प्रति एकड़ अर्थात् 400 मन अधिक उपज मिलती है। इसमें क्यारियों में हवा का संचार और ह्यूमस का भी योगदान था।

(6) शाहजहाँपुर अनुसंधान केन्द्र पर ऊपर वर्णित पद्धति से गन्ना उगाने पर 1200 मन प्रति एकड़ तक उपज प्राप्त की गई।

इन नतीजों से मालूम होता है कि नई उन्नत किस्में, हरी खाद, भरपूर जैविक खाद और उन्नत मिट्टी प्रबंधन के कारण 600 मन प्रति एकड़ तक अधिक उपज प्राप्त की जा सकती है। अतः 600 से 800 मन अधिक उपज प्राप्त करने से कार्बोहाइड्रेट भरपूर मात्रा में मिलता है। शाहजहाँपुर के एक प्रयोग में जब 1200

मन उपज मिली तब 17 प्रतिशत रेशे (फायबर) मिले (अर्थात् सेल्यूलोज ही सेल्यूलोज), 12 प्रतिशत सूक्रोस और 1 प्रतिशत कम ज्यादा शकर। गन्ने की उन्नत किस्मों की बढ़वार 4 माह जब अधिक कार्बोहाइड्रेट गन्ने में बनता है तब 204 मन सेल्यूलोज, 144 मन सूक्रोस और 12 मन शकर प्राप्त हुई अर्थात् कुल 360 मन (13.2 मे. टन) प्रति एकड़ कार्बोहाइड्रेट प्राप्त हुआ। इसका अर्थ यह हुआ कि अच्छी बढ़वार के समय में प्रति एकड़ 3.3 मे. टन प्राप्त होने का कारण नई उन्नत किस्में और खेती की विकसित पद्धति थी।

शाहजहाँपुर की इस सफल कहानी में सारा खेल ह्यूमस का था, वह भी हरी खाद के कारण जिस सफलता के दो कारण थे :

- (1) नत्र चक्रीकरण की जानकारी और खेत में ही ह्यूमस का निर्माण
- (2) जैविक खेती के तत्व अपनाना

इस प्रणाली के सिद्ध होने पर अब सवाल वहाँ के किसानों को यह करने के लिए उद्यत करना था। इसके लिए दो बातें महत्वपूर्ण हैं।

1. इस प्रणाली को एकदम अपनाना अथवा प्रारंभ हरी खाद, उन्नत किस्में और सपाट क्यारियाँ बनाकर करना अथवा नहीं यह निर्णय स्थानीय परिस्थितियों का

आकलन कर लेना होगा। इस पर यह तय हुआ कि सपाट क्यारी तरीका छोड़कर ऊपर वर्णित गत्रा उगाने की पूरी सघन खेती पद्धति किसानों से करवाना। यह निर्णय इसलिए लिया क्योंकि जैविक खाद पर्याप्त मात्रा में उपलब्ध नहीं थी। आगे चलकर सन् 1931 में यह समस्या समाप्त हुई। इसी समय क्लर्क ने भी भारत को अलविदा कहा। इस दौरान इन्दौर कम्पोस्ट प्रणाली से खाद का बनना इस क्षेत्र में शुरू हुआ जिससे हर गाँव में जैविक खाद की समस्या दूर हुई।

2. अनुसंधान का यह निर्णय किसानों तक पहुँचाने के लिए किसी बड़े संगठन को जोड़ना उचित होगा क्या? इसी समय प्रदेश का कृषि विभाग एक मंत्री के अधिकार में आया और क्लर्क को कृषि संचालक नियुक्त किया गया और विधान परिषद का सदस्य भी। यह सदस्यता थोड़ा समय छोड़ कर पूरे 10 वर्ष उनके पास थी। इस कारण वैज्ञानिक अन्वेषक के रूप में उन्हें स्वतंत्रता से काम करने की छूट थी। जिन दो मंत्रियों के नियंत्रण में उन्हें काम करना था वे श्री सी.वाय. चिंतामणि और छतारी के नवाब अलग-अलग राजनीतिक विचारधाराओं से जुड़े होने के बावजूद श्री क्लर्क को पूरी तरह समर्थन देते। परिषद के दाँये से लेकर बायें पक्ष के सदस्य भी खेती को विस्तार देने के पक्ष में थे। सन् 1921 से 1931 के बीच कृषि विभाग के सभी आर्थिक प्रस्ताव बिना किसी बहस के पास कर दिए गए। यह सब इस लिए संभव हुआ क्योंकि उस समय कृषि अनुसंधान का कार्य निपुण और जिम्मेदार लोगों के नियंत्रण में था जिस वजह से कृषि विभाग की वाहवाही हुई। परिषद के अधिकांश सदस्य अमीर किसान, जागीरदार थे। गाँवों की समृद्धि उन्हें निश्चित ही चाहिए थी। इस कारण प्रस्ताव पास किया गया कि राज्य के गत्रा उत्पादक क्षेत्र में सरकार की देखरेख में बड़े-बड़े फार्म विकसित किए जाएं, जहाँ किसानों को गत्रा उगाने वाली पद्धति दिखाई जा सके।

उन दिनों शासकीय मदद काफी कम होती थी। हर फार्म को प्रति वर्ष 2 से 3 हजार रुपए मंजूर किए जाते थे। कृषि विभाग और संपत्र किसानों के बीच समझौता हुआ। इसके अंतर्गत शाहजहाँपुर केन्द्र की तरह “को 213” किस्म का हरी खाद के साथ परीक्षण करना तय हुआ। रोपणी के लिए गत्रा बीज सस्ते मूल्य पर देना तय किया गया। इस कारण कम खर्च में वहाँ के मालगुजारों को तैयार करने में सफलता मिली और ग्रामीण क्षेत्र में कृषि विभाग को महत्व मिला। मालगुजार (रेवेन्यू) कृषि विभाग से जुड़े। हालाँकि कुछ जिलों में परेशानी भी हुई।

इसकी वजह थी (1) कृषि विभाग के होशियार अधिकारियों को मालगुजारों पर नियंत्रण रखना मुश्किल होता था और (2) वे सदस्य अवैतनिक तथा मानदेयी होते थे। भारत की खेती में इन मालगुजारों की महत्व की भूमिका थी। उनके भारी सहकार के कारण इतना महत्वपूर्ण अनुसंधान गाँव-गाँव तक पहुँच सका अन्यथा कृषि विभाग यह काम इतने कम समय में अकेले अपने दम पर नहीं कर सकता था। इतनी कम कीमत में मिली जमीन पर इतने महत्वपूर्ण प्रदर्शन प्लाट डाले गए अन्यथा शासन को काफी अधिक पैसा इस काम पर खर्च करना पड़ता। निजी जमीन पर ऐसे प्रयोग अवध प्रदेश में सन् 1914 में शुरू किए गए। ताल्लुकेदारों के इन निजी खेतों पर गेहूँ की किस्मों के बड़े-बड़े प्रदर्शन प्लाट डाले गए और वहाँ बीज भी पैदा किया गया। श्री क्लर्क ने पूरे उत्तर प्रदेश में यह कार्यक्रम जारी किया। पूरी दुनिया के जागीरदार भी यह कार्यक्रम चलाकर अपनी ग्रामीण अर्थव्यवस्था सुधार सकते हैं यही श्री क्लर्क के प्रयासों ने सिद्ध किया है।

इन प्रयोगों के परिणाम क्या होते हैं यह निम्नलिखित रिपोर्ट से स्पष्ट होगा।

सन् 1916 - 17 में श्री क्लर्क को को-213 इस किस्म के गत्रे का बीज कोयम्बटूर से परीक्षण के लिए मिला। वर्ष 1935-36 आते-आते इस किस्म का 33,00,000 मे. टन गत्रा उत्तरप्रदेश में पैदा किया। शासन ने 1934 के गत्रा कानून के अनुसार अत्यंत कम मूल्य पर यह बीज किसानों को प्रदाय किया गया, जिसकी कीमत 20,00,000 पौंड से थोड़ी अधिक थी। इसमें से आधी से थोड़ी ज्यादा कीमत यह सरकार की कमाई थी। इससे जो शकर बनी उसका मूल्य था, 42,000,000 पौंड जिसमें से कुछ रकम वेतन, मजदूरी और लाभांश में बाँटी गई। इस राशि के सामने इंगलैंड के यांत्रिकी उद्योग और उसका व्यापार करने वाले अथवा नया उद्योग लगाने के लिए 10,00,000 पौंड की पूँजी लगाने वाले कहाँ ठहरते हैं।

भारत में अतिरिक्त शकर का भंडार शेष रहने का प्रश्न ही नहीं उठता, वहाँ की स्थानीय मंडी में ही पूरा माल उठ गया। इससे गत्रे के खेत में वैज्ञानिक बदलाव से देश की अर्थव्यवस्था कैसे प्रभावित होती है इसका सबसे अच्छा उदाहरण यह है। इस उन्नत कृषि पद्धति से देश का मंडी शुल्क भी प्रभावित हुआ।

श्री क्लर्क के कृषि विभाग से सेवानिवृत्त होने से दो अच्छी बातें हुईं। उन्हीं के कारण ऊपर लिखे हुए परीक्षणों को आगे जारी रखना संभव हुआ। जैविक

कम्पोस्ट बनाने की इन्दौर प्रणाली से वहाँ ह्यूमस की समस्या हल हुई, सारदा नहर से सिंचाई और बीज की आपूर्ति बढ़ी जिससे कुओं से पानी का प्रदाय आसान हुआ। सघन खेती के दो मुख्य बिंदु ह्यूमस और पानी आसान हुए। शीघ्र ही शाहजहाँपुर प्रणाली का मुख्य विवरण सभी को मालूम होगा जो अत्यंत दिलचस्प रहेगा।

उपसंहार तथा प्रमुख सूचनाएँ

किसी राष्ट्र की सही अर्थों में स्थायी और बाजार को छोड़कर एकदम स्वतंत्र ऐसी कोई पूँजी है तो वह खेत की मिट्टी है। इसका पूरा उपभोग लेने हेतु और इसके संवर्धन के लिए मिट्टी की उपजाऊ शक्ति बनाए रखना अत्यंत जरूरी है। मिट्टी की उपजाऊ शक्ति टिकाए रखना केवल खेती अथवा किसानों की जरूरत नहीं है। इसमें दूसरी अनेक बातों की तथा मुद्दों की उलझन है। धन की पूँजी, उद्योग, जनस्वास्थ्य, जनसमूह की कार्यक्षमता और मानवी सभ्यता का भविष्य आदि विषयों के तकनीकी पहलू संभालकर हम इस लेख में मिट्टी के व्यापक स्वरूप पर चर्चा करेंगे।

उद्योगीकरण से उपजी सभ्यता ने मशीनों के रूप में जनता जनर्दन पर भूख थोड़ी और शहरी जनता ने मिट्टी के उपजाऊपन पर अतिक्रमण किया। भूमि की पूँजी काफी बड़े पैमाने पर बदल रही है। उद्योगों और शहरों का कचरा पुनः जमीन में मिलाया गया होता तो जनसंख्या वृद्धि और उद्योगों के उत्पादन पर कोई सवाल नहीं उठता, परंतु ऐसा नहीं हुआ। उलटा खेती की इतनी छोटी माँग भी हमने नामंजूर कर दी। जनसंख्या जिस गति से बढ़ी है उस गति से अपशिष्ट पदार्थों का सङ्ग्रह नहीं बढ़ा है, खेती का संतुलन बिगड़ा है। जीवनचक्र के इन अधिकारों के बीच बढ़ा रिक्त स्थान बन गया है और यह रिक्त स्थान रासायनिक उर्वरकों से भरने के प्रयास हो रहे हैं। पृथ्वी के धरातल पर मिट्टी बूढ़ी हो रही है अथवा वह जहरीली होती जा रही है। हमारी इस पूँजी का अपव्यय हो रहा है। मिट्टी की उपजाऊ क्षमता में वृद्धि और उसका संवर्धन अब विश्व स्तर की समस्या बन गए हैं।

मिट्टी का तेजी से हो रहा क्षरण यह उसके नष्ट होने का लक्षण है। खेतों में आजकल (1932-40) शुरू हुआ नफा-नुकसान का गणित हमारी खेती और मिट्टी का दीवाला निकलने की शुरूआत है। उसे बचाना अत्यंत जरूरी है और

यह देश की नदियों के किनारों पर मानवी सभ्यता द्वारा फैलाई जा रही गंदगी को रोककर ही लाना संभव है। इस मुश्किल काम को अंजाम देना हमारे प्रशासन को काफी भारी पड़ने वाला है।

मिट्टी के जीवंत जीवन में रासायनिक उर्वरकों के रूप में घोला गया जहर यह मानव जाति और कृषि क्षेत्र पर मंडराता सबसे बड़ा संकट है। इसके लिए लाईब्रेर के अनुयायी और हम जी रही अर्थव्यवस्था दोनों जिम्मेदार हैं। ब्रॉडबैंक के प्रयोग साबित करते हैं कि अगर दिमाग ठिकाने पर रखकर रसायनों का खेती में उपयोग किया जाए तो शेती की उपज जरूर बढ़ेगी, परंतु उद्योगों ने तेजी से इन रसायनों को बनाकर बेचना शुरू कर दिया।

इंग्लैण्ड के बाजार सस्ते खाद्यान्नों से पट गए परंतु किसी ने यह नहीं पूछा कि यह सामान कैसे और कहाँ पैदा किया गया। इस बजह से इस देश के किसानों ने खेती की लागत कम करने के लिए सालों से चल रही परंपरागत मिश्र खेती को त्याग कर रसायनों की ओर मुड़ना उचित समझा, परंतु उनकी यह तरकीब अल्पजीवी साबित हुई क्योंकि मिट्टी की उपजाऊ क्षमता नष्ट होने लगी। धरती माता ने फसलों और पशु-पक्षियों पर बीमारियाँ लादकर अपना रोष प्रगट किया। कीड़े बीमारियों को रोकने के लिए बाजार में छिड़काव यंत्र आ गए।

एक खेती का वसीयतनामा

पशुओं के लिए टीका और सीरम बाजार में आ गए और इसके बावजूद पशु मरना जारी रहा तो उन्हें दागना और काटना शुरू हुआ। यह सब हमारी आँखों के सामने हो रहा है। गलत तरीकों से खेतों में उगाया गया प्रदूषित अन्न सेवन कर शहरवासियों को महंगे और विशेषाधिकार प्राप्त दवाइयों की शरण में जाना पड़ता है। आबादी निकृष्ट अन्न खाने के लिए मजबूर है।

यह दुरावस्था सामूहिक रूप से ही दूर हो सकती है। इस ओर पहला कदम होगा समाज को दूषित अन्न की जानकारी देना और इसमें से मार्ग क्या है यह बताना। उपजाऊ मिट्टी और पौष्टिक अन्न, रोगमुक्त पशुपक्षी और स्वस्थ जनता इनका आपस में क्या और कैसा संबंध है यह समझाना होगा। जिन लोगों के पास थोड़ी बहुत भूमि है उन्होंने पोषक और सुरक्षित निरापद और पुष्टिकर अन्न, साग-सब्जी, दूध-दही, माँस अपनी इस जमीन से कैसे पैदा करना यह करके दिखाना होगा। स्कूल-कॉलेजों में इसे शिक्षा का एक भाग बनाना होगा कि वे जो अन्न खा रहे हैं वह कितना दूषित है और प्रकृति के माध्यम से उत्तम अन्न कैसे पैदा किया जाता है? इंग्लैंड की महिलाओं ने, आने वाले कल की माताओं ने सुरक्षित खाद्यान्न की गरंटी देनी होगी। मिट्टी और खाद पर अन्न का मोल तय करना होगा। शहरीजन जो गलत, त्रुटीपूर्ण कृषि पद्धति पर जी रहे हैं उन्हें इंग्लैंड के ग्रामीण क्षेत्र से नाता जोड़ना होगा। उन्हें जैविक खाद का महत्व समझाना होगा। हो सके तो उन्हें धन देकर मदद भी करनी होगी। उनके खेतों की अच्छी देखभाल करनी पड़ेगी। कारण यह कि ग्रामीण क्षेत्र की उन्नति ही किसी देश की उन्नति होती है। देश का भविष्य भी उसी पर निर्भर करता है। यह अगर नहीं हुआ, जनता की आकांक्षाएँ और धन की आपूर्ति इसका तालमेल नहीं बैठा तो दोनों की हानि अटल है। रोम जैसा यहाँ कभी न हो।

मिट्टी को पूरी प्रतिष्ठा कृषि अनुसंधान ही दे सकेगा, जिसके लिए एक नए सोच का अन्वेषक चाहिए। खेती का भविष्य ऐसे गिने-चुने पुरुष-महिलाओं के हाथों सौंपना चाहिए जिन्होंने वास्तव में वैज्ञानिक कृषि अनुसंधान का अभ्यास कर उसे

एक व्यावहारिक रूप दिया हो। विज्ञान और व्यवहार का तालमेल होना चाहिए। प्रशिक्षण के दौरान भ्रमण भी सुनिश्चित करना चाहिए क्योंकि विभिन्न स्थानों और जलवायु में खेती कैसे होती है यह आप एक स्थान पर बैठ कर नहीं देख सकते।

खेती के सवाल प्रयोगशाला में नहीं परंतु खेत में ही हल करने चाहिए। तीन चौथाई लड्डई जीतने का यही एक तरीका है। अनुसंधानकर्ता को किसान और उसके खेत में काम करने वाले मजदूर, जिन्होंने अपनी पूरी जिंदगी प्रकृति के संग गुजारी है उनकी मूल्यवान मदद मिल सकती है। किसान यह किसी देश की मिश्र खेती का मूलकर्ता होता है। उसके विचार बहुमूल्य होते हैं। इन दोनों के आपसी सामंजस्य और तालमेल से कृषि अनुसंधान में व्याप्त झूठी शान हटाई जा सकती है। हम हैं अत्यंत मूल्यवान धर्मगुरु यह वैज्ञानिकों का अपने बारे में व्याप्त मुगालता दूर होगा। खेतों में काम करने वाले किसान भाई जैसे होते हैं, वे वैज्ञानिकों से एक ही प्रकार से अलग हो सकते हैं और वह इस प्रकार कि उनका विज्ञान और भ्रमण से प्राप्त ज्ञान। हम खेती कैसे उत्तम तरीके से करके दिखा सकते हैं। इसी बात पर अनुसंधानकर्ता का भविष्य निर्भर करता है, किसान किसी सुधार का विरोधी है यह भ्रम दूर होगा। इसके लिए वैज्ञानिक द्वारा बुद्धिजीवी समाज में रहकर लिखकर दिए हुए कागज नहीं बल्कि खेत में लिखा हुआ अनुसंधान चाहिए। भारत के गाँवों में अनेक नेता मिलेंगे जो आपके सटीक अनुसंधान को फैलाने में आपकी मदद करेंगे। इसके लिए किसी अन्य प्रणाली की आवश्यकता नहीं। कृषि अनुसंधान का प्रशासनिक तंत्र जरूर ही उत्तर होना चाहिए। ब्रिटिश साम्राज्य ने खड़ा किया हुआ महँगा, जटिल प्रशासनिक जाल निकाल फेंकना होगा। बेफजूल, समय गँवाने वाली कमिटियाँ बंद करनी होगी, छपे हुए वैज्ञानिक प्रबंधों को काट-छाँटना होगा, खर्च कम करने पड़ेंगे। “विज्ञान को प्रभावशाली बनाने के लिए वैज्ञानिक कम करने चाहिए” यह कहावत सचमुच लाभदायक होती है। जो उचित है वही कृषि अनुसंधान रखना होगा। सही अर्थों में अनुसंधान कार्य में लगे वैज्ञानिकों को धन मुहैया करें और उनके काम में रुकावट न डालें यह सिद्धांत होना चाहिए। प्रशासन को यह भी देखना होगा कि वैज्ञानिक किसी प्रकार की यूनियन आदि संगठन न बनाएँ।

चार्ल्स डार्विन केंचुओं पर अनुसंधान कार्य करते समय खुद अपने से छोटे-छोटे प्रश्न पूछकर उनके उत्तर देने के प्रयास करते थे। मिट्टी की उपजाऊ शक्ति का अध्ययन करते समय भी वैज्ञानिकों ने इसी का अनुसरण करना चाहिए। कृषि

अनुसंधान में दूसरे महत्वपूर्ण जीव अर्थात् कीट, फफूँद तथा अन्य सूक्ष्म जीवाणु जो फसलों और पशु पक्षियों पर आक्रमण करते हैं, विकृत गलत तरीके से खेती करने वालों पर नियंत्रण रखने के लिए प्रकृति ने इन बहुमूल्य जीवों को बनाया है और जो फसलें ये जीव हटाना चाहते हैं उन्हीं फसलों को मनुष्य खेतों में पैदा कर रहा है। यही आज खेती की सही शोकांतिका है। शायद कल हम उन्हें ही सही अर्थों में प्राकृतिक खेती के प्रोफेसर कहेंगे। हमारी खेती सही अर्थों में योग्य है अथवा नहीं यह जाँचने की एक और तरीका यह है कि हमने फसल की जो किस्म बोई है उसका अध्ययन करें कि उसका अंकुरण ठीक है अथवा नहीं, उसमें फूल सही समय पर आ रहे हैं या नहीं, नहीं तो कुछ त्रुटि तो नहीं रह गई, अगर नहीं तो सब कुछ ठीक-ठाक चल रहा है यह समझ लें। सार्थक खेती का अगला भविष्य इस बात पर निर्भर करेगा कि फसल के प्रजनक (ब्रीडर) कितने कम हुए हैं, मिट्टी अगर उपजाऊ है तो फसल प्रजनक कम ही चाहिए।

प्रकृति ने जंगलों के रूप में कचरे और अन्य बेकार सामग्री से ह्यूमस बनाने का एक अच्छा आदर्श हमारे सामने रखा है जिसकी हर व्यक्ति ने नकल करनी चाहिए। समृद्धि की यही मुख्य चाभी है। इन्दौर प्रणाली से बनाया कम्पोस्ट ही इसका केन्द्र-बिन्दु है। उन्हें नमी, हवा और अम्लीय माध्यम को शून्य माध्यम में परिवर्तित करने वाली स्थिति प्राप्त हो तो लाभकारी फफूँद और सूक्ष्म जीवाणु मात्र 90 दिनों में पौधों और पशुओं द्वारा उत्सर्जित कचरे से ह्यूमस बनाते हैं। गोबर खाद के ढेर की उतनी ही देखभाल करना जरूरी है जितनी गौशाला में बंधे हुए ढोर-डंगर की।

पश्चिम के देशों की कच्ची कड़ी है गोबर के ढेर के प्रबंधन की सुधरी हुई पद्धति विकसित करना। जैविक दृष्टि से जिनमें संतुलन नहीं रखा जाता उससे सूक्ष्म जीवाणुओं को दो अति आवश्यक वस्तुएं प्राप्त नहीं होती हैं - भरपूर सेल्यूलोज और भरपूर हवा। रासायनिक दृष्टिकोण से भी उनमें संतुलन नहीं रखा जाता जिस कारण निर्मित नन्हे और अमोनिया हवा में उड़ जाते हैं। इस मामले में शहरी लोग गाँवों की मदद कर सकेंगे। उन्हें शहरी कचरे को कूट कर बारीक बनाकर गाँव वालों को सौंपना चाहिए जिसे उत्तम गुणवत्ता वाले ह्यूमस से तब्दील कर खेती के लिए उपयोग में लाया जा सकेगा।

मायकोरायजा यह मिट्टी में उपस्थित लाभकारी सूक्ष्म जीवाणु और मिट्टी के रस को जोड़ने का काम करते हैं। प्रकृति पौधों में कार्बोहायड्रेट और प्रोटीन पचाकर

हरी पत्तियाँ बनाती हैं अतः हमें भूमि में भरपूर ह्यूमस प्रदाय कर प्रकृति की प्रक्रिया में मददगार बनना चाहिए। इससे फसलों और पशुओं में शक्ति आती है। मानव जीवन के लिए यह स्वास्थ्य जरूरी है। हम सभी स्वस्थ नहीं हैं यह दिखाने वाला एक गणित कैरल ने बनाया है। उनका कहना है कि अमेरिका प्रतिवर्ष 70 करोड़ डॉलर्स दबाइयों पर खर्च करता है। इसमें बीमारी के दौरान नष्ट हुई मानव श्रम की गिनती शामिल नहीं है। मिट्टी को अगर हम अच्छी खाद के उसके जन्म सिद्ध अधिकार मुहैया करते हैं तो इस राशि का कम से कम चौथाई भाग बच सकेगा। इसकी अमेरिकी समाज और देश को भारी आवश्यकता है। इस पुस्तक की अंतिम पंक्ति लिखते समय धर्मगुरु बनने वाली धटना का गवाह होने पर भी मैं यह आग्रहपूर्वक कहना चाहूँगा कि मिट्टी की उपजाऊ क्षमता अगर बढ़ाई जाए तो उससे उत्पन्न अन्न से विश्व की कम से कम आधी आबादी स्वस्थ बनी रहेगी।

बंगाल के चाय बागानों में जैविक खाद का उपयोग

भारत के उत्तरपूर्वी इलाके में हिमालय की तलहटी से 5 मील दक्षिण में दुआर्स जिले में गंडारापारा के चाय बागान हैं, 2796 एकड़ में फैले हुए। इसमें से 1242 एकड़ में चाय की खेती जिसमें से 10 एकड़ में चाय के बीज के लिए पेड़ लगे हुए तथा बाकी में चावल की खेती, जलावन के लिए वृक्ष खेती, टिम्बर, बाँस और चरणोर्ड। बारिश 85 से 160 इंच जो 15 अप्रैल से अक्टूबर के मध्य में होती है। इस दौरान वातावरण गर्म और नम होता है जिससे पौधों की बढ़वार भलीभांति होती है। ठंडा मौसम अधिक पसंदीदा परंतु मार्च से बारिश के प्रारंभ का समय दुखदायी रहता है। नागपुर क्षेत्र के 2200 मजदूर वहाँ सालों से काम कर रहे हैं। चाय बागान का ताजगी भरा माहौल, दो नदियों के बीच की सपाट पठारी भूमि परंतु आस-पड़ोस में कहीं भी नदी के पाट नहीं। बागानों से पानी के निकास के लिए पास ही जंगल व पड़ती भूमि, मजदूरों के लिए निवास, पानी, दवाइयाँ, ईंधन सभी निःशुल्क। मजदूरों की पत्तियों की गर्भावस्था, प्रसूती के दौरान निःशुल्क व्यवस्था। अंग्रेज डॉक्टर निःशुल्क प्रसूती करेंगे, इसके अलावा वार्षिक बोनस, जन्म लिए बालक का लालन-पालन कंपनी करेगी, उनके लिए भोजन, दूध की बोतलें कंपनी की ओर से निःशुल्क जिससे स्वस्थ मजदूर तैयार होंगे।

दुनिया की ओर देखकर हमें शर्म आनी चाहिए कि दूषित अन्न उपजा कर हम प्रकृति की उपेक्षा कर रहे हैं। मिट्टी, फसलें, पशु, पूरी मानव जाति, सभी बीमार।

चाय बागानों को फसल पोषण चाहिए। अच्छा अन्न पैदा करने के लिए फसलों को भी अच्छा पोषण जरूरी है, इसका मूलतत्व है कि पहले मिट्टी की पोषकता बढ़ाएँ। अगर यह होता है तो फसलें मजबूत, सुदृढ़ रहेंगी, उन पर कीड़े-बीमारियों का आक्रमण नहीं होगा।

सन् 1934 में अल्बर्ट हॉवर्ड द्वारा खोजी गई कम्पोस्ट बनाने की इन्दौर प्रणाली बंगाल के चाय बागानों तक पहुँची। इससे खेत में ही ह्यूमस तैयार हुआ। चाय कचरे, के साथ ही चाय के अवशेष इन सबसे इन्दौर कम्पोस्ट खाद बनाई

गई, गोमूत्र मिली हुई मिट्टी, गोबर कचरा इस सब को सड़ाकर इन्दौर खाद बनाई गई। जिन गढ़ों में यह खाद बनाई गई वे 1.2 मीटर गहरे थे।

इसके लिए बीच में ही कहीं खाद बनाने का एक उद्योग चाहिए। खाद का मूल्य भी नियंत्रित होना जरूरी है। वैसा एक उद्योग शुरू किया गया। $4.5 \times 9.3 \times 0.90$ मीटर आकार के 59 हौज बनाए गए, ऊपर 9.9×5.1 मीटर आकार का छप्पर बनाया गया। दो शेड के बीच अंतर 3.6 मीटर और हौजों के बीच 9 मीटर का अंतर रखा गया, इससे कच्चा माल और तैयार खाद लाने ले जाने में आसानी रही। 5 से.मी. व्यास वाले पाइप से, जिसमें छिड़काव के लिए नोजल लगा था, उससे पानी पहुँचाया जाता था। 4.5 मीटर $\times 15$ मीटर आकार की गैशालॉक बनाई गई जिनमें 200 गाएँ पल रही थीं। 5.19×1.59 आकार के बरामदे भी बनाए गए थे गायों को विश्राम के लिए बाँधने हेतु। पानी के लिए 3.45×0.90 मीटर आकार के पानी के टब बनाए गए थे। कार्यालय, चौकीदार की कोठरी और स्टोर रूम पास ही में थे। बाहर सामान लाने ले जाने के लिए बैलगाड़ी की भी

व्यवस्था थी। जहाँ कचरे को कूट कर बारीक किया जाता, वहाँ से लाने ले जाने के लिए भी बैलगाड़ी थी।

इन सभी कामों की गिनती की जाती। कितने हौद भरे, कितनी खाद बनी, कितना खर्च आया खाद का बजन कितना था, कितनी खाद खेतों में गई, कितनी रोपणी में गई, बीज बनाने वाले खेत में कितनी दी गई इन सबकी गिनती रखी जाती थी। कमजोर पौधों को कितनी खाद दी गई इसका भी हिसाब होता था।

गायों की गौशालाएँ जंगलों में बनाई गई थीं। उन्हें जब चाहे तब हटाया जा सकता था क्योंकि गोबर, गोमूत्र गड्ढों के पास होना जरूरी था। गड्ढों में पोले बाँस भी लगे थे जिससे हवा का संचार भली प्रकार होता था। अंदर सड़ने की क्रिया भली-भाँति होती थी। इस कारण खाद काफी अधिक तैयार होती थी। कचरे को हौद में दबाने के लिए मजदूर लकड़ी के पटियों का उपयोग करते। कचरा अच्छी तरह कूट कर अंदर भरा जाता।

कम्पोस्ट खाद बनाने के ऐसे उद्योग सालभर में ही कहीं भी खड़े किए जा सकते हैं। बागान के बीचों-बीच ऐसे हौद बनाए गए तो उनकी देखरेख करना आसान होता है। बारीश के पानी से भी इधर-उधर फैला कचरा, घास, चारा, पत्तियाँ, रहती हैं परंतु उससे हूमस बनाने की प्रक्रिया में रुकावट आती है। अतः उन्हें कुलहाड़ी से बारीक करना ठीक होगा।

ठंड के मौसम में बाहर खुले में खाद बनाई जा सकती है। एक हेक्टर क्षेत्र में 5 मे. टन खेत में फैलाया जा सकता है। कभी-कभी 40 मे. टन खाद फैलाने से बहुत अच्छे परिणाम मिले हैं।

कई बागानों की माँग पूरा करने के लिए जैविक खाद और हरी खाद भी दी जाती है। कुछ लोग बक्खरी हुई हरी खाद और कोई भी सड़ी हुई घास-पत्तियों की खाद खेत में डालते हैं जिससे खेत की मिट्टी की पोषकता को बनाया रखा जाता है। इतने वर्षों के अनुभव से अनेक लोग अपने आप खाद बनाकर खेत में हूमस पहुँचाते हैं। मिट्टी में जितना ज्यादा हूमस होगा उतने मिट्टी के सूक्ष्म जीवाणु सक्रिय रहेंगे। अंततः ये सब फसलों की उपज बढ़ाने के काम आएँगे।

मिट्टी में सूक्ष्म जीवाणु न हो तो फसलों की बढ़वार अच्छी नहीं होगी। इतना तय है कि खेत में हम कितनी भी मात्रा में रासायनिक उर्वरक डालें तेकिन मिट्टी में आवश्यक मात्रा में हूमस नहीं हो तो फसल निराशाजनक ही पकेगी। फसल

कमजोर बढ़वार और रोगों से ग्रस्त दिखाई देगी। इससे एक बात का फायदा जरूर होगा कि फसलों के बारे में जिनका मत परिवर्तन था उनकी हूमस के प्रति आस्था बढ़ेगी।

पानी की निकासी से खेत और मिट्टी में वायु का संचार होगा, इसके बारे में भी विचार करना चाहिए। अनेक चाय बागान के मालिकों कौं इन बातों का महत्व समझ में नहीं आता है। मिट्टी का उपजाऊपन टिकाए रखने के लिए खेत में छायादार वृक्ष, जल निकासी व्यवस्था, मिट्टी को समय पर बक्खरना और खाद की आवश्यकता होती है। खाद सबसे जरूरी है, संश्लेषित रासायनिक उर्वरक शक्तिदायक है और हूमस खेती की प्रमुख पूँजी है।

चाय की खेती का मौसम समाप्त होते होते एक बात समझ में आती है। अक्टूबर 1938 से अप्रैल, 1939 तक 37.5 मि.मीटर कम बारिश हुई। इस कारण उन चाय बागानों में जहाँ कम मात्रा में जैविक खाद डाली गई थी, बड़े डीलडैल के वृक्ष थे, जल निकासी, मिट्टी में जीवांश की कमी इन कारणों से वहाँ अकाल तो नहीं परंतु अकाल जैसी स्थिति बन गई थी।

मजदूरों को खुद के पश्च पालने की छूट थी, वे खेतों में ही चरते थे। इन चाय बागानों में 133 बैंसें, 115 बैल, 612 गाँ, 466 बछड़े, 21 खच्चर, 384 बकरियाँ, 64 शूकर इस तरह कुल 1795 जानवर पल रहे थे। गत दो वर्षों से (1939) वहाँ किसी प्रकार के रासायनिक उर्वरक अथवा दवाइयों का उपयोग नहीं किया गया था। गत वर्ष वहाँ 3085 मे. टन हूमस बनाया गया। साथ ही 1270 मे. टन जंगल की घास पत्तियाँ भी खेत में डाली गईं। इस जैविक खाद बनाने की लागत व खेत में डालने का मूल्य 1 रु. 3 आना और 6 पैसे प्रति मे.टन था जबकि घास पत्ती का मूल्य 1 रु. 3 आना प्रति मे.टन था।

इन खादों की वजह से भूमि की उर्वरा शक्ति बढ़ी। जैविक पदार्थ फिर खेत में डालना इसका अर्थ चाय की गुणवत्ता बढ़ाना और रोगों की रोकथाम करना होता है।

अंततः प्रकृति सर्वश्रेष्ठ होती है यह सभी को स्वीकार्य है।

गाँवों और शहरी कचरे से ह्यूमस उत्पादन

जंगल हमें शहर और गाँवों से निकले कचरे से ह्यूमस कैसे बनता है यह सिखाता है। फफूँद और सूक्ष्म जीवाणुओं के कारण जंगलों में वृक्षों और पशुओं के अवशेषों, शाखाएँ, तिनके, पत्तियाँ आदि सब मिलकर बारिश की मदद से ह्यूमस में परिवर्तित हो जाते हैं। यह पूरी प्रक्रिया साफ-सफाई की होने से किसी तरह के रोग व्याधि की कोई संभावना नहीं रहती। निरंतर हवा की मदद से प्रकृति जंगल की सभी व्यर्थ वस्तुओं की ह्यूमस में परिवर्तन करती रहती है। शहरी और गाँवों के कचरे के लिए भी यही प्रयोग जारी रखने चाहिए। इसके लिए निरंतर हवा और पानी की आपूर्ति बनानी होगी।

इन्दौर कम्पोस्ट प्रणाली खेत से निकले और शहरी कचरे और मानव मल से जैविक खाद करने की सरल और उपयोगी विधि है।

टॉलीगंज कलकत्ता में ह्यूमस निर्माण

ईटों से बने 60 से.मी. गहरे हौद में मानव मल और धरों से निकले कचरे से इन्दौर कम्पोस्ट प्रणाली से बढ़िया जैविक खाद बनाई जा सकती है। हौद के प्रत्येक हिस्से की क्षमता 500 क्यूबिक फीट होकर उसकी तली में जल निकाली और हवा के संचार हेतु एक नाली बनाई गई है। इस हौद का खाका नीचे दिए अनुसार है।

इस प्रकल्प की सफलता प्रत्येक हिस्से में कचरा माल कैसे भरा जाता है इस पर निर्भर करती है। पहली बैलगाड़ी से लाया हुआ कचरा पहले भाग में डाला जाता है। लकड़ी के पटिये से कचरे को फैला कर 5 से 7.5 से. मीटर (2 से 3 इंच) मोटी सतह बनाएँ। उस पर फिर एक बैलगाड़ी कचरा फैलाकर भरें। इस सतह के बीच का भाग कुछ गहरा रखें जिससे कचरे के मध्यबिंदु में छोटा गड्ढा बने। फिर आधी गाड़ी मानव मल इस गड्ढे में डालकर उसे भी लकड़ी से फैलाकर सपाट कर दें। उस पर एक गाड़ी कचरा पैलाकर बिछा दें। इसके मध्य भाग में फिर

उथला गड्ढा बनाकर आधी गाड़ी मानव मल भर दें। उस पर फिर कचरा फैला दें। यह काम दो दिन में पूरा करना होगा। ऐसा करने से मानवी मल के चारों ओर गर्भी और नमी रहेगी और मक्खियाँ नहीं होंगी। इस प्रकार हौद के सभी भाग भर दें केवल अंतिम भाग खाली रखें। कचरा और मानव मल पलटने के लिए पहले 60 से. मीटर गहराई का कचरा लकड़ी के पटिये से पलट कर ऊपर कचरे की एक सतह बिछा दें।

जब सभी भाग अच्छी तरह भरे जाते हैं तो कचरे से बदबू बिलकुल नहीं आती, क्योंकि हवा के संचार से पूरा कचरा और मानव मल नीचे बैठ जाता है। बदबू आने लगे इसका अर्थ यह हुआ कि मजदूरों ने सही ढंग से काम नहीं किया है और कचरा और मानव मल सही तरीके से ढंके नहीं गए हैं।

पहली पलटाई

हौद के सभी हिस्से भरने के पाँच दिन बाद पहली पलटाई करनी चाहिए। इससे सभी कचरा और मानव मल अच्छी तरह मिल जाएंगा। इसी के साथ हिस्से

के ठंडे भाग में अगर मकिख्यों के अंडे पल रहे हैं तो वे भी नष्ट हो जाएंगे। कचरे के ढेर और मानव मल के पलटने के लिए उसे ऊपर नीचे करने के लिए दांतेदार फावड़े का उपयोग आसान होता है। इसका डंडा (हत्था) लंबा होता है जिससे हौद के किनारे पर खड़े रहकर मजदूर यह काम आसानी से कर सकते हैं।

दूसरी पलटाई

पहिली पलटाई करने के 10 दिन बाद दूसरी पलटाई करनी है। इस प्रकार दो पलटाई के 15 दिनों बाद मानव मल का नामोनिशान शेष नहीं रहता है।

पानी की फुहार

गर्भी के मौसम में हर पलटाई के उपरांत ऊपरी सतह पर पानी की फुहार मार कर माल को नम रखने से उसके विघटन की क्रिया तेज हो जाती है।

जैविक सामग्री नम रखें, उसमें गीलापन न हो। बारिश के दिनों में जब ऊपरी सतह ठंडी होती है तब वहाँ कुछ इलियाँ विकसित हो सकती हैं परंतु कचरे को ऊपर नीचे कर पलटने से गर्भी में वे मर जाती हैं और उनका कोई प्रकोप नहीं रहता।

खाद का पक कर तैयार होना

इसके उपरांत एक सप्ताह बाद सभी माल बाहर निकाल कर पकाने के लिए रख छोड़ते हैं। इस क्रिया के लिए करीब 1 माह लगता है। तैयार होने के बाद यह खाद लगभग 1.2 मीटर ऊँची बनती है। इस खाद में न सड़ने वाली वस्तुएँ जैसे नारीयल की कटोरी, चमड़े के टुकड़े आदि को निकाल कर पड़ोस के हिस्से में सड़ने के लिए डाल दें जबकि ईंट रोडे धातु के टुकड़े आदि को निकाल कर बाहर फेंकें। इस सामग्री को हम हाथ से भी मिलाकर ऊपर नीचे कर सकते हैं क्योंकि सड़न की क्रिया लगभग पूरी हो चुकी है और अब इसे खेत में डाला जा सकता है।

खर्च

इस प्रक्रिया के लिए अल्प मूल पूँजी की आवश्यकता पड़ती है। भारत में प्रति 5000 लोग लगभग 250 घन फीट अटाला सामग्री घर से बाहर फेंकते हैं। इतनी सामग्री मानव मल को ढँकने के लिए पर्याप्त होता है। इसके लिए प्रति 500 घन फीट आकार के 16 हौद वाला विस्तृत कारखाना बनाना चाहिए। रास्ते, ओटला, दाँतोंवाला फावड़े इन सबका अनुमानित खर्च रु. 1000 से रु. 1500 तक (1938) में आएगा। इसमें से रोज 150 घन फीट जैविक खाद निकलेगी जिसका मूल्य रु. 5 से 7 तक मिलेगा। (सन् 1938 के स्तर पर) इस तरह पहले वर्ष करीब रु. 1800 की आय होगी। हालांकि कुछ नफा नहीं होगा परंतु लागत पूरी निकल आएगी। यह कारखाना चलाने के लिए 5 व्यक्ति लगेंगे।

गाँवों के लिए आसान उद्योग

गाँवों में रहने वाले गरीब किसान ईंटों से बने पक्के हौद का खर्च न उठा सके तो खुली जगह में थोड़े ऊँचे स्थान पर बीच के हिस्से न बनाते हुए गड्ढा खोदें और उसमें कचरे और मानव मल की सतहें भर कर उन्हें सड़ाकर खाद बनावें। नीचे दिए चित्र में यह स्पष्ट होगा।

अगली मंजिल

मानव मल से ह्यूमस बनाने के लिए शहरी कचरे के साथ इस्तेमाल में कमी महसूस होती है। दोनों अवस्थाओं में मानव मल को जिस अवस्था में है उसमें इकट्ठा कर उसका परिवहन करने से उसे सड़ने में समय लगेगा। इसके स्थान पर

संडास के डिब्बे में ही ह्यूमस डालकर उसे प्रारंभ से ही हवा की मदद से सड़ना शुरू हो सकता है। इससे मक्खियों और इलियों की दिक्कत नहीं रहेगी और बदबू व गंदगी से भी छुटकारा मिलेगा। संडास के डिब्बे में ही खाद बनना शुरू होगा, ह्यूमस की वजह से मानव मल के वजन में थोड़ा इजाफा होगा परंतु उसी स्थान पर खाद बनने की प्रक्रिया शुरू की जा सकेगी। इससे नवजन की हानि भी नहीं होगी।

छोटे गड्ढों में मानव मल से खाद बनाना

मानव मल को ऊपर नीचे न हिलाते हुए भी गड्ढे में खाद बन सकती है। इसके लिए गड्ढे का आकार 60 से.मी. लंबा, 45 से.मी. चौड़ा और 22.5 से.मी. गहरा होगा। (24 इंच X 18 इंच X 10 इंच आकार)। इन गड्ढों को 30-30 से. मीटर के अंतर पर खोदें। गड्ढे की तली की मिट्टी को थोड़ा खोदकर, मिट्टी भुरभुरी कर लें जिससे हवा का संचार होगा और पानी भी नहीं ठहरेगा।

गड्ढे में 5-7 से.मी. तक सब्जियों - फलों के छिलके आदि कचरा डालें उस पर शहरी कचरा और मानव मल फिर उस पर थोड़ा शहरी कचरा इस तरह गड्ढे को पूरा भरकर मिट्टी डालें और बंद कर दें। इस तरह गड्ढे को हौद की तरह ही भरकर उसमें केंचुएँ छोड़कर उसमें अरहर, मक्का आदि के बीज भी बो सकते हैं। जैसे-जैसे बारिश होती है वैसे उस पर मिट्टी चढ़ाते जाएँ, मक्का पहले पकेगी फिर अरहर को जगह मिलेगी। अगले वर्ष अरहर की सीधे में फिर गड्ढे खोदकर इसे शुरू करें इस तरह दो वर्षों में पर्याप्त अच्छी खाद मिलेगी।

