Конспект для подготовки к ГОСу. Математический анализ

Редкозубов В.В.

Теорема Больцано-Вейерштрасса. Критерий Коши

Пусть $\{a_n\}$ — (числовая) последовательность, т.е. функция $a: \mathbb{N} \to \mathbb{R}$.

Определение. $\Pi o d no c ne do в a meльно c mью <math>\{a_{n_k}\}$ последовательности $\{a_n\}$ называется композиция строго возрастающей функции $\sigma \colon \mathbb{N} \to \mathbb{N}, \ \sigma(k) = n_k$, и последовательности $a \colon \mathbb{N} \to \mathbb{R}$, $a_{n_k} = a \circ \sigma(k)$.

 $\Pi pumep. \left\{ \frac{1}{2^k} \right\}$ — подпоследовательность $\left\{ \frac{1}{2^n} \right\}$.

Теорема (Больцано-Вейерштрасс). Всякая ограниченная последовательность имеет сходящуюся подпоследовательность.

\Delta Пусть последовательность $\{a_n\}$ ограничена, тогда значения всех ее членов принадлежат некоторому отрезку [c,d]. Разделим [c,d] пополам и положим $[c_1,d_1]=[c,(c+d)/2]$, если [c, (c+d)/2] содержит значения бесконечного множества членов $\{a_n\}$ (т.е. множество $\{m \in \mathbb{N} : a_n\}$ $a_m \in [c, (c+d)/2]$ бесконечно). В противном случае отрезок [(c+d)/2, d] содержит значения бесконечного множества членов $\{a_n\}$ и мы положим $[c_1,d_1]=[(c+d)/2,d]$. Выберем такой номер n_1 , что $a_{n_1} \in [c_1, d_1]$. Пусть уже построен отрезок $[c_k, d_k]$, содержащий значения бесконечного множества членов $\{a_n\}$, и выбран $a_{n_k} \in [c_k, d_k]$. Обозначим через $[c_{k+1}, d_{k+1}]$ левую половину $[c_k, d_k]$, если она содержит значения бесконечного множества членов $\{a_n\}$; в противном случае через $[c_{k+1}, d_{k+1}]$ обозначим правую половину. Теперь находим такой номер $n_{k+1} > n_k$, что $a_{n_{k+1}} \in [c_{k+1}, d_{k+1}]$. По индукции будет построена последовательность стягивающихся отрезков $\{[c_k,d_k]\}$ и подпоследовательность $\{a_{n_k}\}$ исходной последовательности. По Т Кантора о вложенных отрезках существует точка $a=\lim_{k\to\infty}c_k=\lim_{k\to\infty}d_k$. Так как $c_k\leqslant a_{n_k}\leqslant d_k$ для всех $k\in\mathbb{N},$

To $\lim_{k\to\infty} a_{n_k} = a$.

Определение. Последовательность $\{a_n\}$ называется $\phi y n \partial a$ ментальной, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geqslant N \ \forall m \geqslant N : |a_n - a_m| < \varepsilon.$$

Теорема (Коши). Последовательность $\{a_n\}$ сходится \iff $\{a_n\}$ фундаментальна.

 \blacktriangle (\Rightarrow) Пусть $\exists a \in \mathbb{R}$: $a = \lim_{n \to \infty} a_n$. Зафиксируем $\varepsilon > 0$. По определению предела найдется номер N, такой что $(n\geqslant N\Rightarrow |a_n-a|<\frac{\varepsilon}{2})$. Тогда при $n,\ m\geqslant N$ имеем

$$|a_n - a_m| = |(a_n - a) - (a_m - a)| \leqslant |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Это означает, что $\{a_n\}$ фундаментальна.

 (\Leftarrow) Пусть последовательность $\{a_n\}$ фундаментальна. Покажем, что $\{a_n\}$ ограничена.

По условию фундаментальности найдется такой номер N, что $|a_n - a_m| < 1$ при всех n, $m\geqslant N$. В частности, $a_N-1< a_n< a_N+1$ для всех $n\geqslant N$. Определим $\alpha=\min\{a_N-1,a_1,\ldots,a_{N-1}\}$ и $\beta = \max\{a_N + 1, a_1, \dots, a_{N-1}\}$, тогда $\alpha \leqslant a_n \leqslant \beta$ для любого $n \in \mathbb{N}$.

По Т Больцано-Вейерштрасса $\{a_n\}$ имеет сходящуюся подпоследовательность $\{a_{n_k}\}, a_{n_k} \to a$. Покажем, что $a=\lim_{n\to\infty}a_n$. Пусть $\varepsilon>0$. По условию фундаментальности существует такой номер N_1 , что $|a_n-a_m|<\frac{\varepsilon}{2}$ при всех $n,\ m\geqslant N_1$, и по определению предела существует номер такой N_2 , что $|a_{n_k}-a|<\frac{\varepsilon}{2}$ при всех $k\geqslant N_2$. Положим $N=\max\{N_1,N_2\}$. Тогда при любом $n \geqslant N$ имеем

$$|a_n - a| \le |a_n - a_{n_N}| + |a_{n_N} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(учтено, что $n_N\geqslant N$). Следовательно, $\lim_{n\to\infty}a_n=a$.

Достижение точных граней функции, непрерывной на отрезке

Определение. Функция $f: E \to \mathbb{R}$ непрерывна в точке $a \in E$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E \colon (|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon).$$

 Φ ункция f непрерывна (на E), если она непрерывна в каждой точке множества E.

Теорема (Вейерштрасс). Если функция $f:[a,b] \to \mathbb{R}$ непрерывна, то существуют точки $x_s, x_i \in [a,b]$, такие что $f(x_s) = \sup_{[a,b]} f$ и $f(x_i) = \inf_{[a,b]} f$.

▲ Покажем сначала, что f ограничена. Если это не так, то $\forall n \in \mathbb{N} \ \exists x_n \in [a,b] \colon |f(x_n)| > n$. По Т Больцано-Вейерштрасса $\{x_n\}$ имеет сходящуюся подпоследовательность $\{x_{n_k}\}, \ x_{n_k} \to x_0$. Ввиду замкнутости отрезка точка $x_0 \in [a,b]$. Функция f непрерывна в точке x_0 , поэтому $f(x_{n_k}) \to f(x_0)$, но по построению $|f(x_{n_k})| > n_k \to +\infty$; противоречие.

Пусть $M=\sup f$. Поскольку f ограничена, то $M\in\mathbb{R}$. По определению супремума $\forall n\in\mathbb{N}$ $x_n\in[a,b]\colon M-\frac{1}{2}< f(x_n)\leqslant M$ и, значит, $f(x_n)\to M$. По Т Больцано-Вейерштрасса $\{x_n\}$

 $\exists x_n \in [a,b] \colon M - \frac{1}{n} < f(x_n) \leqslant M$ и, значит, $f(x_n) \to M$. По Т Больцано-Вейерштрасса $\{x_n\}$ имеет сходящуюся подпоследовательность $\{x_{n_k}\}, x_{n_k} \to x_s$ и $x_s \in [a,b]$. Функция f непрерывна в точке x_s , поэтому $f(x_{n_k}) \to f(x_s)$. С другой стороны, $f(x_{n_k}) \to M$. В силу единственности предела $f(x_s) = M$.

Точка x_i находится аналогично.

Теорема о промежуточных значениях

Теорема. Если функция $f:[a,b] \to \mathbb{R}$ непрерывна и число s лежит между f(a) и f(b), m.e. $f(a) \leqslant s \leqslant f(b)$ или $f(b) \leqslant s \leqslant f(a)$, то найдется $c \in [a,b]$, что f(c) = s.

A Пусть $f(a) \leqslant f(b)$ и число s удовлетворяет $f(a) \leqslant s \leqslant f(b)$. Обозначим $[a_1,b_1] = [a,b]$. Если определен отрезок $[a_k,b_k]$, то положим

$$[a_{k+1},b_{k+1}] = \begin{cases} \left[a_k,\frac{a_k+b_k}{2}\right], & \text{если } f\left(\frac{a_k+b_k}{2}\right) \geqslant s, \\ \left[\frac{a_k+b_k}{2},b_k\right], & \text{если } f\left(\frac{a_k+b_k}{2}\right) < s. \end{cases}$$

В обоих случаях $f(a_{k+1}) \leqslant s \leqslant f(b_{k+1})$. По индукции будет построена последовательность вложенных отрезков $\{[a_n,b_n]\}$, таких что $f(a_n) \leqslant s \leqslant f(b_n)$. Так как $b_n-a_n=\frac{b-a}{2^{n-1}}\to 0$, то $\{[a_n,b_n]\}$ стягивающаяся. По Т Кантора существует точка c — общая для всех отрезков $[a_n,b_n]$, причем $a_n\to c$ и $b_n\to c$. Функция f непрерывна в точке c, поэтому переходя в неравенстве $f(a_n)\leqslant s\leqslant f(b_n)$ к пределу при $n\to\infty$, получим $f(c)\leqslant s\leqslant f(c)$. Следовательно, f(c)=s и искомая точка c найдена.

Случай f(b) < f(a) рассматривается аналогично.

Теоремы о среднем для дифференцируемых функций

Теорема (Ролль). Если функция f непрерывна на [a,b], дифференцируема на (a,b) и f(a) = f(b), то найдется такая точка $c \in (a,b)$, что f'(c) = 0.

▲ По Т Вейерштрасса существуют такие точки $x_s, x_i \in [a,b]$, что $f(x_i) \leqslant f(x) \leqslant f(x_s)$ для всех $x \in [a,b]$. Если $f(x_s) > f(a) = f(b)$, то положим $c = x_s$. Тогда $\frac{f(x) - f(c)}{x - c} \geqslant 0$ при $x \in [a,c)$ и $\frac{f(x) - f(c)}{x - c} \leqslant 0$ при $x \in (c,b]$. С одной стороны, $f'(c) = \lim_{x \to c - 0} \frac{f(x) - f(c)}{x - c} \geqslant 0$, с другой, $f'(c) = \lim_{x \to c + 0} \frac{f(x) - f(c)}{x - c} \leqslant 0$. Следовательно, f'(c) = 0 и точка c — требуемая.

Если $f(x_i) < f(a) = f(b)$, то положим $c = x_i$. Если $f(x_s) = f(x_i)$, то f — постоянна на [a,b] и любая точка $c \in (a,b)$ подходит. \blacksquare

Теорема (Лагранж). Если функция f непрерывна на [a,b] и дифференцируема на (a,b), то найдется такая точка $c \in (a,b)$, что f(b) - f(a) = f'(c)(b-a).

▲ Рассмотрим функцию $h(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a) - f(a)$. Эта функция непрерывна на [a, b], дифференцируема на (a, b) и h(a) = h(b) = 0. Поэтому по T Ролля найдется такая точка $c \in (a, b)$, что h'(c) = 0, т.е. $f'(c) - \frac{f(b) - f(a)}{b - a} = 0$. ■

Если рассмотреть функцию $h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a))$ и повторить предыдущие рассуждения, то получим доказательство следующего факта.

Теорема (Коши). Если функции f и g непрерывны на [a,b], дифференцируемы на (a,b) и $g' \neq 0$ на (a,b), то найдется такая точка $c \in (a,b)$, что $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.

Определение. Пусть функция f n раз дифференцируема в точке x_0 , т.е. существует $f^{(n)}(x_0) \in \mathbb{R}$, тогда равенство $f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + r_n(x)$ называется формулой Тейлора функции f в точке x_0 . При этом $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ называется многочленом Тейлора, $r_n(x) = f(x) - P_n(x) - ocmamoчным членом$.

Теорема (Лагранж). Пусть функция f дифференцируема n+1 раз на интервале (a,b) и $a < x_0 < b$,. Тогда для любого $x \in (a,b)$ найдется такая точка c, лежащая между x_0 и x, что

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

▲ Пусть для определенности $x > x_0$. Для функций $r_n(x)$ $\varphi(x) = (x - x_0)^{n+1}$ имеют место равенства $r_n(x_0) = r'_n(x_0) = \ldots = r_n^{(n)}(x_0) = 0$, $\varphi(x_0) = \varphi'(x_0) = \ldots = \varphi^{(n)}(x_0) = 0$, причем производные φ' , φ'' , ..., $\varphi^{(n+1)}$ не обнуляются на (x_0, x) . По Т Коши о среднем, примененной к r_n и φ на отрезке $[x_0, x]$, имеем

$$\frac{r_n(x)}{\varphi(x)} = \frac{r_n(x) - r_n(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{r'_n(c_1)}{\varphi'(c_1)}$$

для некоторой точки $c_1 \in (x_0, x)$. Повторяем рассуждения для r'_n и φ' на отрезке $[x_0, c_1]$:

$$\frac{r'_n(c_1)}{\varphi'(c_1)} = \frac{r'_n(c_1) - r'_n(x_0)}{\varphi'(c_1) - \varphi'(x_0)} = \frac{r''_n(c_2)}{\varphi''(c_2)}$$

для некоторой точки $c_2 \in (x_0, c_1)$ и т.д. Применяя Т Коши в итоге n+1 раз, получим точки $x_0 < c_{n+1} < c_n < \ldots < c_1 < x$, такие что

$$\frac{r_n(x)}{\varphi(x)} = \frac{r'_n(c_1)}{\varphi'(c_1)} = \dots = \frac{r_n^{(n+1)}(c_{n+1})}{\varphi^{(n+1)}(c_{n+1})}.$$

Для $c = c_{n+1}$ равенство крайних членов запишется в виде

$$\frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}{(x - x_0)^{n+1}} = \frac{f^{(n+1)}(c)}{(n+1)!}$$

и требуемое равенство установлено.

Следствие (остаточный член в форме Пеано). Если функция f в некоторой окрестности точки x_0 имеет производную n-го порядка, непрерывную в самой точке x_0 , то

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n), \quad x \to x_0.$$

▲ По предыдущей теореме $f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(n)}(c)}{n!} (x-x_0)^n$, где точка c = c(x) лежит между точками x_0 и x. Так как $c(x) \to x_0$ при $x \to x_0$, то в силу непрерывности производной $f^{(n)}$ в точке x_0 имеем $f^{(n)}(c) = f^{(n)}(x_0) + o(1)$ при $x \to x_0$. ■

Замечание. Для формулы Тейлора с остаточным членом в форме Пеано достаточно существования $f^{(n)}(x_0) \in \mathbb{R}$.

Исследование функций при помощи производной

Теорема 1 (условия монотонности). Пусть функция $f: I \to \mathbb{R}$ непрерывна на промежутке I и дифференцируема во всех внутренних точках I. Тогда

- 1) f нестрого возрастает на $I \Leftrightarrow f'(x) \geqslant 0$ на внутренности I;
- 2) f нестрого убывает на $I \Leftrightarrow f'(x) \leqslant 0$ на внутренности I;
- 3) f постоянна на $I \Leftrightarrow f'(x) = 0$ на внутренности $x \in I$.

▲ Докажем пункт 1.

- (\Rightarrow) Пусть f нестрого возрастает на I, x_0 внутренняя точка I, т.е $\exists \delta > 0$: $B_{\delta}(x_0) \subset I$. Тогда $\frac{f(x) f(x_0)}{x x_0} \geqslant 0$ для всех $x \in B'_{\delta}(x_0)$. Следовательно, $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} \geqslant 0$.
- (\Leftarrow) Пусть $x, y \in I, x < y$. По Т Лагранжа f(y) f(x) = f'(c)(y x) для некоторой точки $c \in (x, y)$. Поскольку c внутренняя точка I, значение $f'(c) \geqslant 0$ и, значит, $f(x) \leqslant f(y)$. Следовательно, f нестрого возрастает на I.

Пункт 2 доказывается аналогично. Пункт 3 следует из предыдущих двух утверждений. ■

Замечание. Как видно из доказательства (\Leftarrow), если f'(x) > 0 (< 0) на внутренности I, то f строго возрастает (строго убывает) на I. Обратное неверно ($f(x) = x^3$ на (-1,1)).

Определение. Точка x_0 называется точкой локального максимума (строгого локального максимума) функции $f \colon E \to \mathbb{R}$, если x_0 внутренняя точка множества E и $\exists \delta > 0 \ \forall x \in B'_{\delta}(x_0) \colon f(x) \leqslant f(x_0) \ (f(x) < f(x_0)).$

Аналогично определяются *точки* (*строгого*) *локального минимума*. Вместе с точками локального максимума они называются *точками локального экстремума*.

Теорема 2 (Ферма). Пусть $x_0 - m$ очка локального экстремума функции f. Если f имеет производную в точке x_0 , то $f'(x_0) = 0$.

▲ Если x_0 — точка локального максимума f, то существует такое $\delta > 0$, что $\frac{f(x) - f(x_0)}{x - x_0} \leqslant 0$ при $x_0 < x < x_0 + \delta$, $\frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$ при $x_0 - \delta < x < x_0$. С одной стороны, $f'(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0$, с другой, $f'(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$. Поэтому $f'(x_0) = 0$. ■

Теорема 3 (достаточные условия экстремума). Пусть функция f определена на интервале (a,b) и $x_0 \in (a,b)$. Пусть f дифференцируема на $(a,b) \setminus \{x_0\}$ и непрерывна в точке x_0 . Тогда

- 1) если $f'(x) \ge 0$ на (a, x_0) и $f'(x) \le 0$ на (x_0, b) , то x_0 точка локального максимума f (строгого, если неравенства для производной строгие);
- 2) если $f'(x) \leq 0$ на (a, x_0) и $f'(x) \geq 0$ на (x_0, b) , то x_0 точка локального минимума f (строгого, если неравенства для производной строгие).

A Если функция f удовлетворяет условиям пункта 1, то по Т1 f нестрого возрастает на $(a, x_0]$ и нестрого убывает на $[x_0, b)$. Так что $f(x) \leq f(x_0)$ на $(a, b) \setminus \{x_0\}$ и, значит, x_0 — точка локального максимума f. Если неравенства для производной строгие, то возрастание/убывание строгое. Так что $f(x) < f(x_0)$ на $x \in (a, b), x \neq x_0$ и, значит, x_0 — точка строгого локального максимума f.

Пункт 2 доказывается аналогично. ■

Замечание*. Для функции $f(x) = x^2(2 + \sin\frac{1}{x})$ при $x \neq 0$, f(0) = 0, точка x = 0 является точкой строгого минимума, однако условия Т3 не выполняются.

Определение. Пусть $f: I \to \mathbb{R}$ определена на промежутке I. Функция f называется випуклой на I, если для любых $x, y \in I$, $x \neq y$, и любого $t \in (0,1)$ имеет место неравенство

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y).$$
 (*)

Функция f называется вогнутой на I, если функция -f выпукла на I.

Пример. Линейная функция $l(x) = \alpha x + \beta$ одновременно выпукла и вогнута на любом промежутке.

Замечание. 1) Условие выпуклости функции f геометрически означает, что график f лежит не выше nn60 \ddot{u} его хорды.

2) Если функции f и g выпуклы на промежутке I, то (как непосредственно следует из определения) функция f+g также выпукла на I. В частности, прибавление (вычитание) к выпуклой функции линейной не меняет условия выпуклости: f выпукла на промежутке $I \Leftrightarrow f+l$ выпукла на I.

Теорема 4. Пусть функция $f: I \to \mathbb{R}$ непрерывна на промежутке I и дифференцируема на внутренности I. Тогда f выпукла на $I \Leftrightarrow f'$ нестрого возрастает на внутренности I.

▲ (⇒) Пусть x, y — внутренние точки I, x < y. Можно считать, что f(x) = f(y) = 0. Действительно, выполнения этого условия всегда можно добиться заменой функции f на f + l, где l — некоторая линейная функция (сравните с док-вом Т Лагранжа). Прибавление линейной функции также не меняет возрастания f'. Если f выпукла на I, то $f(z) \le 0$ для любого $z \in (x, y)$. Это следует из (*), т.к. z = (1 - t)x + ty при некотором $t \in (0, 1)$. Тогда

$$f'(x) = \lim_{z \to x+0} \frac{f(z) - f(x)}{z - x} \le 0, \qquad f'(y) = \lim_{z \to y-0} \frac{f(y) - f(z)}{y - z} \ge 0,$$

так что $f'(x) \leq f'(y)$. Следовательно, производная нестрого возрастает на внутренности I.

 (\Leftarrow) Фиксируем точки $x, y \in I, x < y$. Считаем, что f(x) = f(y) = 0. Покажем, что для f выполняется условие (*), т.е. $f(z) \leqslant 0$ для любого $z \in (x,y)$. Если f(z) > 0 в некоторой точке $z \in (x,y)$, то применяя Т Лагранжа о среднем к сужениям функции f на отрезки [x,z] и [z,y] получим такие точки $c_1, c_2, x < c_1 < z < c_2 < y$, что

$$f'(c_1) = \frac{f(z) - f(x)}{z - x} > 0,$$
 $f'(c_2) = \frac{f(y) - f(z)}{y - z} < 0.$

Имеем $c_1 < c_2$, но $f'(c_1) > f'(c_2)$, т.е. производная не является нестрого возрастающей на внутренности I.

Следствие. Пусть функция f дважды дифференцируема на (a,b). Тогда f выпукла на (a,b) $\Leftrightarrow f'' \geqslant 0$ на (a,b).

Теорема Кантора о равномерной непрерывности

Пусть $E \subset \mathbb{R}^n$ и функция $f: E \to \mathbb{R}^m$.

Определение. Функция f непрерывна на E, если f непрерывна в каждой точке E, т.е.

$$\forall x \in E \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in E : \ (\|y - x\| < \delta \Rightarrow \|f(y) - f(x)\| < \varepsilon)$$

 $(\|\cdot\| - \text{евклидова норма})$. Здесь δ зависит от ε и от x, т.е. $\delta = \delta(x, \varepsilon)$. Если удается δ выбрать по ε одним для всех точек $x \in E$, то приходим к следующему понятию.

Определение. Функция f равномерно непрерывна на E, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x,y \in E \colon \ (\|y - x\| < \delta \Rightarrow \|f(y) - f(x)\| < \varepsilon).$$

Очевидно, что (f р.н. на $E) \Rightarrow (f$ непр. на E). В общем случае, обратное утверждение неверно $(f(x) = x^2)$ на $E = \mathbb{R}$. Ситуация меняется, если E является компактом.

Напомним, что множество K (в МП X) называется компактным, если из любого его покрытия $\{G_{\lambda}\}_{\lambda\in\Lambda}$ открытыми множествами, $K\subset\bigcup_{\lambda\in\Lambda}G_{\lambda}$, можно выбрать конечный набор $G_{\lambda_1},\ldots,G_{\lambda_m}$, также покрывающий K. В \mathbb{R}^n мн K компактно $\Leftrightarrow K$ замкнуто и ограничено.

Теорема (Кантор). Если функция $f \colon K \to \mathbb{R}^m$ непрерывна на компакте K, то f равномерно непрерывна на K.

▲ Пусть $\varepsilon > 0$. Так как f непрерывна на K, то $\forall a \in K \; \exists \delta_a > 0 \; \forall x \in K \colon \; \rho_K(x,a) < \delta_a \Rightarrow \|f(x) - f(a)\| < \varepsilon/2$. Семейство окрестностей $\{B_{\delta_a/2}(a)\}_{a \in K}$ образует открытое покрытие K. Поскольку K компакт, то $K \subset B_{\delta_a/2}(a_1) \cup \ldots \cup B_{\delta_a/2}(a_N)$.

Покажем, что $\delta = \min_{1\leqslant i\leqslant N} \delta_{a_i}/2$ искомое. Пусть $\|x-x'\| < \delta$. Точка x лежит в некотором шаре $B_{\delta_{a_i}/2}(a_i)$. Тогда $\|x'-a_i\| \leqslant \|x'-x\| + \|x-a_i\| < \delta_{a_i}$ и, значит, также $x' \in B_{\delta_{a_i}}(a_i)$. Следовательно,

$$||f(x') - f(x)|| \le ||f(x') - f(a_i)|| + ||f(x) - f(a_i)|| < \varepsilon. \blacksquare$$

Достаточное условие дифференцируемости

Пусть $f: E \to \mathbb{R}$ определена на множестве $E \subset \mathbb{R}^n$ и a — внутренняя точка E.

Определение. Функция f называется $\partial u \phi \phi e p e n u u p y e m o u в точке <math>a$, если существует линейная функция $\ell_a \colon \mathbb{R}^n \to \mathbb{R}$, что

$$f(a+h) - f(a) = \ell_a(h) + \alpha(h) ||h||, \tag{*}$$

где $\alpha(h) \to 0$ при $h \to 0$ (последнее слагаемое записывают $o(\|h\|)$). Линейная функция ℓ_a называется $\partial u \phi \phi e penuuanom$ функции f в точке a и обозначается df_a .

Пусть e^1, \ldots, e^n — стандартный базис в \mathbb{R}^n . Если функция f дифференцируема в точке a, то ввиду линейности df_a и равенства $||te^k|| = |t|$ имеем

$$f(a+te^k) - f(a) = tdf_a(e^k) + |t|\alpha(te^k).$$

Поэтому существует $\lim_{t\to 0} \frac{f(a+te^k)-f(a)}{t} = df_a(e^k)$. Этот предел называют *частной производной f* по переменной x_k в точке a и обозначают $\frac{\partial f}{\partial x_k}(a)$ или $f'_{x_k}(a)$.

Таким образом,
$$df_a(h) = df_a\left(\sum_{k=1}^n h_k e^k\right) = \sum_{k=1}^n h_k df_a(e^k) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(a)h_k$$
 для любого $h \in \mathbb{R}^n$.

Теорема. Если все частные производные $\frac{\partial f}{\partial x_k}$ функции $f \colon E \to \mathbb{R}$ определены в некоторой окрестности точки а и непрерывны в этой точке, то f дифференцируема в точке a.

▲ Выберем $B_r(a) \subset E$, где определены $\frac{\partial f}{\partial x_k}$, и зафиксируем $h = (h_1, \dots, h_n)$ с ||h|| < r. Покажем, что найдутся такие точки $c^k \in B_r(a)$, что

$$f(a+h) - f(a) = \sum_{k=1}^{n} \frac{\partial f}{\partial x_k}(c^k) h_k.$$

Для наглядности рассмотрим случай n=2. Разность f(a+h)-f(a) можно переписать в виде

$$f(a+h) - f(a) = f(a_1 + h_1, a_2 + h_2) - f(a_1 + h_1, a_2) + f(a_1 + h_1, a_2) - f(a_1, a_2).$$

Функция $t \mapsto f(t, a_2)$ дифференцируема на отрезке с концами a_1 и $a_1 + h_1$, поэтому по Т Лагранжа существует такая точка a_1^* , лежащая между a_1 и $a_1 + h_1$, что

$$f(a_1 + h_1, a_2) - f(a_1, a_2) = \frac{\partial f}{\partial x_1}(a_1^*, a_2)h_1$$

(при $h_1=0$ пусть $a_1^*=a_1$). Аналогично $f(a_1+h_1,a_2+h_2)-f(a_1+h_1,a_2)=\frac{\partial f}{\partial x_2}(a_1+h_1,a_2^*)h_2$.

Положим
$$c^1 = (a_1^*, a_2)$$
 и $c^2 = (a_1 + h_1, a_2^*)$. Тогда $c^k \in B_r(a)$ и $f(a+h) - f(a) = \sum_{k=1}^2 \frac{\partial f}{\partial x_k}(c^k)h_k$.

Так как $\|c^k - a\| \le \|h\|$ и $c^k = c^k(h)$, то $c^k(h) \to a$ при $h \to 0$. Поскольку $\frac{\partial f}{\partial x_k}$ непрерывна в точке a, то $\frac{\partial f}{\partial x_k}(x) \to \frac{\partial f}{\partial x_k}(a)$ при $x \to a$ и, значит, $\frac{\partial f}{\partial x_k}(c^k(h)) = \frac{\partial f}{\partial x_k}(a) + o(1)$ при $h \to 0$. Учитывая, что $|h_k| \le \|h\|$, имеем

$$f(a+h) - f(a) = \sum_{k=1}^{2} \frac{\partial f}{\partial x_k}(a)h_k + ||h||o(1), \quad h \to 0.$$

Следовательно, f дифференцируема в точке a.

Функция может быть недифференцируемой в точке, но быть непрерывной и в окрестности иметь частные производные по всем переменным. Примером такой функции может служить $f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}, f(0,0) = 0$ и точка (0,0).

Определение. Пусть $E \subset \mathbb{R}^n$, a — внутренняя точка E. Функция $f \colon E \to \mathbb{R}$ называется непрерывно дифференцируемой в точке a, если все частные производные f определены в некоторой окрестности точки a и непрерывны в точке a. Если множество E открыто и f непрерывно дифференцируема в каждой точке E, то она называется непрерывно дифференцируемой на E. Множество всех таких функций будем обозначать $C^1(E)$.

Теорема о неявной функции, заданной одним уравнением

Определение. Говорят, что функция $f \colon E \subset \mathbb{R}^n \to \mathbb{R}$ неявно задана уравнением $F(x_1, \dots, x_n, y) \equiv F(x, y) = 0$, если F(x, f(x)) = 0 для всех $x \in E$.

Пример. Функция $f: [-1,1] \to \mathbb{R}$, $f(x) = \sqrt{1-x^2}$, неявно задана уравнением $x^2 + y^2 - 1 = 0$. **Теорема**. Пусть U — открытое множество в $\mathbb{R}^n \times \mathbb{R}$, $(a,b) \in U$ и пусть функция $F \colon U \to \mathbb{R}$ такая, что

1)
$$F \in C^1(U);$$
 2) $F(a,b) = 0;$ 3) $F_y'(a,b) \neq 0.$ Тогда $\exists \delta, \ \sigma > 0 \ u \ makas функция $f \in C^1(B_\delta(a)), \ umo$$

$$\forall (x,y) \in B_{\delta}(a) \times B_{\sigma}(b)$$
: $F(x,y) = 0 \Leftrightarrow y = f(x)$.

При этом
$$\frac{\partial f}{\partial x_k}(x) = -\frac{F'_{x_k}(x,f(x))}{F'_y(x,f(x))}, k = 1,\ldots,n.$$

\Delta Пусть для определенности $F_u'(a,b)>0$. Выберем $\sigma>0$ так, что $F_u'(x,y)>0$ для любой точки $(x,y) \in B_{2\sigma}(a,b)$. Тогда функция $\varphi_0 \colon [b-\sigma,b+\sigma] \to \mathbb{R}, \ \varphi_0(y) = F(a,y)$, имеет положительную производную и, значит, строго возрастает. Отсюда следует, что $\varphi_0(b-\sigma) < \varphi_0(b) < \varphi_0(b+\sigma)$ или $F(a, b - \sigma) < 0 < F(a, b + \sigma)$. По непрерывности F

$$\exists \delta \in (0, \sigma) \ \forall x \in B_{\delta}(a): \quad F(x, b - \sigma) < 0 \ \land \ F(x, b + \sigma) > 0$$

и, кроме того, $B_{\delta}(a) \times [b-\sigma,b+\sigma] \subset B_{2\sigma}(a,b)$.

Фиксируем $x \in B_{\delta}(a)$ и рассмотрим функцию $\varphi \colon [b-\sigma,b+\sigma] \to \mathbb{R}, \ \varphi(y) = F(x,y)$. Эта функция непрерывна и $\varphi(b-\sigma) < 0$, а $\varphi(b+\sigma) > 0$, поэтому по T о промежуточном значении $\varphi(y)=0$ для некоторого $y\in (b-\sigma,b+\sigma)$. Такая точка y единственная в силу строго возрастания φ (ведь $\varphi'(y) = F_y'(x,y) > 0$). Тем самым определена функция $f: B_\delta(a) \to \mathbb{R}, f(x) = y$, причем

$$\forall (x,y) \in B_{\delta}(a) \times B_{\sigma}(b)$$
: $F(x,y) = 0 \Leftrightarrow y = f(x)$.

Докажем непрерывность функции f. Предположим f разрывна в некоторой точке $x \in B_{\delta}(a)$. Тогда $\exists \varepsilon > 0$ и последовательность $x^{(k)} \to x$, что $f(x^{(k)}) \notin B_{\varepsilon}(f(x))$ для всех $k \in \mathbb{N}$. Числовая последовательность $\{f(x^{(k)})\}$ ограничена (ведь $f(x^{(k)}) \in B_{\sigma}(b)$), следовательно, имеет сходящуюся подпоследовательность: $f(x^{(k_j)}) \to y$ при $j \to \infty$. Имеем $0 = F(x^{(k_j)}, f(x^{(k_j)})) \to F(x, y)$ и, значит, F(x,y) = 0 ввиду непрерывности F. Поскольку $F(x,b\pm\sigma) \neq 0$, то $y \in (b-\sigma,b+\sigma)$. Однако $y \neq f(x)$, что противоречит единственности решения уравнения F(x,y) = 0.

Докажем дифференцируемость f. Для точки $p \in B_{\delta}(a)$ из условия дифференцируемости Fв точке (p,q), где q=f(p), следует

$$F(p+h,q+u) = F(p,q) + \sum_{k=1}^{n} F'_{x_k}(p,q)h_k + F'_y(p,q)u + \alpha(h,u) \cdot (||h|| + |u|),$$

где $\alpha(h, u) \to 0$ при $h \to 0, u \to 0$.

Возьмем $u = f(p+h) - f(p) \equiv u(h)$, тогда $u(h) \to 0$ при $h \to 0$ ввиду непрерывности f в точке p. Кроме того, F(p+h,q+u(h)) = F(p+h,f(p+h)) = 0, F(p,q) = F(p,f(p)) = 0. Поэтому

$$\sum_{k=1}^{n} F'_{x_k}(p,q)h_k + F'_y(p,q)u(h) + \beta(h)(\|h\| + |u(h)|) = 0, \tag{*}$$

где $\beta(h) = \alpha(h, u(h)) \to 0$ при $h \to 0$. Будем брать приращение h настолько малым, что $|\beta(h)| \leq \frac{1}{2} |F_y'(p,q)|$. Тогда

$$u(h) = -\frac{\sum_{k=1}^{n} F'_{x_k}(p, q)h_k + \beta(h)\|h\|}{F'_y(p, q) \pm \beta(h)} = \sum_{k=1}^{n} O(1)h_k + o(1) \cdot \|h\|,$$

так что $|u(h)| = O(1) \|h\|$ при $h \to 0$. Следовательно, равенство (*) может быть переписано в виде

$$\sum_{k=1}^{n} F'_{x_k}(p,q)h_k + F'_y(p,q)u(h) + o(1)||h|| = 0.$$

Откуда, учитывая, что u(h) = f(p+h) - f(p), получаем

$$f(p+h) - f(p) = \sum_{k=1}^{n} -\frac{F'_{x_k}(p,q)}{F'_{y}(p,q)} h_k + o(\|h\|), \quad h \to 0,$$

т.е. f дифференцируема в точке p и $\frac{\partial f}{\partial x_k}(p) = -\frac{F'_{x_k}(p,f(p))}{F'_y(p,f(p))}$.

Частная производная $\frac{\partial f}{\partial x_k}$ непрерывна как отношение двух непрерывных функций, поэтому f непрерывно дифференцируема в $B_{\delta}(a)$.

Экстремумы функций многих переменных

Пусть $f \colon E \to \mathbb{R}$ определена на множестве $E \subset \mathbb{R}^n$ и a — внутренняя точка E.

Определение. Точка a называется точкой локального максимума (строгого локального максимума) функции f, если

$$\exists \delta > 0 \ \forall x \in B'_{\delta}(a) \colon f(x) \leqslant f(a) \quad (f(x) < f(a)).$$

Аналогично определяются точки (строгого) локального минимума. Вместе с точками локального максимума они называются *точками локального экстремума*.

Теорема 1 (необходимое условие). Если a-mочка локального экстремума функции f и существует $\frac{\partial f}{\partial x_k}(a)$, то $\frac{\partial f}{\partial x_k}(a)=0$.

▲ По определению точки экстремума существует $\delta > 0$, такое что $f(a) = \max_{x \in B_{\delta}(a)} f(x)$ или $f(a) = \min_{x \in B_{\delta}(a)} f(x)$. Отсюда, в частности, следует, что 0 является точкой локального экстремума функции $\varphi(t) = f(a + te^k)$, $t \in (-\delta, \delta)$. По Т Ферма $\varphi'(0) = 0$. Следовательно, $\frac{\partial f}{\partial x_k}(a) = \varphi'(0) = 0$. ■

Cnedcmbue. Если a — точка локального экстремума функции f и f дифференцируема в этой точке, то $df_a \equiv 0$ и grad $f(a) = 0_n$.

Определение. Точка $a \in \mathbb{R}^n$, в которой все частные производные функции f обращаются в ноль, называется *стационарной точкой* функции f.

Пусть $U \subset \mathbb{R}^n$ открыто. Напомним, что функция $f \colon U \to \mathbb{R}$ называется дважды непрерывно дифференцируемой на U (пишут $f \in C^2(U)$), если все частные производные 2-го порядка определены на U и являются непрерывными функциями. В этом случае $d^2f_a(h) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(a)h_ih_j$ является квадратичной формой в \mathbb{R}^n .

Относительно квадратичных форм нам понадобится

Лемма 1. Если кв. форма Q положительно определена, то $\exists \eta > 0 \ \forall h \in \mathbb{R}^n \colon \ Q(h) \geqslant \eta \|h\|^2$.

▲ Положим $\eta = \inf_{\|h\|=1} Q(h)$. Поскольку функция Q непрерывна, а единичная сфера в \mathbb{R}^n является компактом, то по T Вейерштрасса значение η достигается и, следовательно, $\eta > 0$. Тогда для $h \neq 0$ имеем $Q(h) = Q\left(\frac{h}{\|h\|}\right) \|h\|^2 \geqslant \eta \|h\|^2$. При h = 0 неравенство очевидно верно. ■

Теорема 2 (достаточные условия). Пусть множество U открыто в \mathbb{R}^n , функция $f \in C^2(U)$ $u \in U$ — стационарная точка f. Тогда справедливы следующие утверждения:

- 1) если форма d^2f_a положительно определена, то a- точка строгого локального минимума f;
- 2) если форма d^2f_a отрицательно определена, то a точка строгого локального максимума f;
- 3) если форма d^2f_a неопределена, то функция f в точке a не имеет локального экстремума.
- **\Delta** 1) Запишем для f формулу Тейлора с остаточным членом в форме Пеано

$$f(a+h) = f(a) + \frac{1}{2}d^2f_a(h) + \alpha(h)||h||^2,$$

где функция $\alpha(h) \to 0$ при $h \to 0$. По предыдущей лемме существует $\eta > 0$, такое что $d^2 f_a(h) \geqslant 2\eta \|h\|^2$ для всех $h \in \mathbb{R}^n$. Поскольку функция α бесконечна мала, найдется $\delta > 0$, такое что $|\alpha(h)| \leqslant \frac{\eta}{2}$ для всех $h \in \mathbb{R}^n$ с $0 < \|h\| < \delta$. Поэтому для таких $h \in \mathbb{R}^n$

$$f(a+h) - f(a) \ge \eta \|h\|^2 - \frac{\eta}{2} \|h\|^2 = \frac{\eta}{2} \|h\|^2 > 0$$

и, значит, a — точка строгого минимума f.

- 2) Поскольку $d^2(-f)_a = -d^2f_a$, случай сводится к предыдущему заменой f на -f.
- 3) Если a точка минимума f, то для всех $h \in \mathbb{R}^n$ с $||h|| < \delta$ выполнено

$$f(a+h) - f(a) = \frac{1}{2}d^2 f_a(h) + \alpha(h) ||h||^2 \ge 0.$$

Поэтому для любого $v \in \mathbb{R}^n$

$$\lim_{t \to +0} t^{-2} \left(\frac{1}{2} d^2 f_a(tv) + \alpha(tv) \|tv\|^2 \right) = \frac{1}{2} d^2 f_a(v) + \|v\|^2 \lim_{t \to +0} \alpha(tv) = \frac{1}{2} d^2 f_a(v) \geqslant 0.$$

Аналогично доказывается, что если a — точка максимума f, то $d^2f_a(v) \leqslant 0$ для любого $v \in \mathbb{R}^n$. Поэтому если d^2f_a принимает значения разных знаков, то f в точке a не имеет локального экстремума.

Замечание. Если форма d^2f_a полуопределена, то T2 не позволяет сделать вывод о наличии экстремума в точке a.

Пример. Рассмотрим функции $f(x,y) = x^2 + y^4$ и $g(x,y) = x^2 - y^4$. Очевидно (0,0) — стационарная точка и f, и g, причем $d^2 f_{(0,0)}(h) = d^2 g_{(0,0)}(h) = h_1^2$ для любого $h = (h_1, h_2)$. Формы $d^2 f$ и $d^2 g$ положительно полуопределены, однако (0,0) является точкой (строгого) минимума f и не является точкой экстремума g, т.к. $g(t,0) = t^2 > 0$ и $g(0,t) = -t^4 < 0$ при $t \neq 0$.

Перейдем к рассмотрению условных экстремумов.

Пусть $f, g_i : E \to \mathbb{R}, i = 1, ..., m, 1 \le m < n$ и $S = \{x \in E : g_i(x) = 0, i = 1, ..., m\}.$

Определение. Точка $a \in S$ называется точкой условного максимума функции f с условиями связи $g_i(x) = 0, i = 1, ..., m$, если $\exists \delta > 0 \ \forall x \in B'_{\delta}(a) \cap S \colon f(x) \leqslant f(a)$. Аналогично определяются точки условного минимума.

Теорема 3 (Лагранж). Пусть множество U открыто в \mathbb{R}^n , f, $g_i \in C^1(U)$, $i = 1, \ldots, m$, u grad $g_i(a)$ линейно независимы. Если а является точкой условного экстремума функции f при выполнении условий $g_i(x) = 0$, то существуют такие числа λ_i , что grad $f(a) = \sum_{i=1}^m \lambda_i \operatorname{grad} g_i(a)$.

Из Т3 следует, что точки условного экстремума являются стационарными точками функции $L\colon U\to \mathbb{R},\ L(x)=f(x)-\sum\limits_{i=1}^m\lambda_ig_i(x),$ называемой функцией Лагранжа.

Интеграл как функция верхнего предела

Определение. Функция $f:[a,b]\to\mathbb{R}$ интегрируема (по Риману) на [a,b], если

$$\exists I \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (T, \xi), \ |T| < \delta : \ |\sigma_T(f, \xi) - I| < \varepsilon,$$

т.е. существует предел интегральных сумм $\sigma_T(f,\xi) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$ с $\xi_i \in [x_{i-1},x_i]$, когда мелкость $|T| = \max_{1 \le i \le n} (x_i - x_{i-1})$ стремится к нулю, равный I. В случае существования I называют определенным интегралом функции f. Множество интегрируемых на [a,b] функций обозначаюют $\mathcal{R}[a,b]$.

Определение. Пусть функция $f\colon I\to \mathbb{R}$ определена на промежутке I и точка $a\in I$. Если $f\in \mathcal{R}[\alpha,\beta]$ для любого отрезка $[\alpha,\beta]\subset I$, то функция $F\colon I\to \mathbb{R},\ F(x)=\int\limits_a^x f(t)\,dt$, называется интегралом с переменным верхним пределом.

Теорема 1. Пусть $f \in \mathcal{R}[\alpha, \beta]$ для любого отрезка $[\alpha, \beta]$ из промежутка I, тогда функция $F(x) = \int\limits_a^x f(t) \, dt, \ x \in I$, непрерывна на I и если f непрерывна в точке x, то функция F дифференцируема в точке x с F'(x) = f(x).

▲ Пусть точка $x \in I$. Выберем $\delta > 0$ так, что $I \cap [x - \delta, x + \delta]$ есть невырожденный отрезок $[\alpha, \beta]$. Так как $f \in \mathcal{R}[\alpha, \beta]$, то она ограничена на $[\alpha, \beta]$, т.е найдется число M, такое что $|f| \leq M$ на $[\alpha, \beta]$. Тогда для любого $y \in [\alpha, \beta]$ выполнено

$$|F(y) - F(x)| = \left| \int_{x}^{y} f(t)dt \right| \le \left| \int_{x}^{y} |f(t)|dt \right| \le M|y - x|$$

и, значит, $\lim_{y\to x} F(y) = F(x)$.

Пусть $\varepsilon > 0$. Если f непрерывна в точке x, то $\exists \delta > 0 \ \forall t \in B_{\delta}(x) \cap I$: $|f(t) - f(x)| < \varepsilon$. Но тогда для любого $y \in B'_{\delta}(x) \cap I$ имеем

$$\left| \frac{F(y) - F(x)}{y - x} - f(x) \right| = \left| \frac{1}{y - x} \int_{x}^{y} f(t) dt - \frac{1}{y - x} \int_{x}^{y} f(x) dt \right| \le \frac{1}{|y - x|} \left| \int_{x}^{y} |f(t) - f(x)| dt \right| \le \frac{1}{|y - x|} \cdot \varepsilon \cdot |y - x| = \varepsilon.$$

Это означает, что $\lim_{y\to x} \frac{F(y)-F(x)}{y-x} = f(x)$, т.е. F'(x) = f(x).

 $\mathit{Cnedcmeue}.$ Если функция $f\colon I\to\mathbb{R}$ непрерывна на промежутке I, то f имеет на I первообразную.

Теорема 2 (формула Ньютона–Лейбница). Если функция f непрерывна на отрезке [a,b] и Φ — ее первообразная на этом отрезке, то $\int_a^b f(x)dx = \Phi(b) - \Phi(a)$.

▲ Функция $\int_a^x f(t) \, dt$ является первообразной для функции f на [a,b]. Поэтому $\int_a^x f(t) \, dt = \Phi(x) + C$. Полагая в равенстве x=a находим, что константа $C=-\Phi(a)$. Осталось положить x=b. ■

Равномерная сходимость

Пусть функции $f_n, f: E \to \mathbb{R}$ (или \mathbb{C}).

Определение. Последовательность $\{f_n\}$ *поточечно сходится* к f на множестве E, если

$$\forall x \in E \, \forall \varepsilon > 0 \, \exists N \in \mathbb{N} \, \forall n \geqslant N \colon |f_n(x) - f(x)| < \varepsilon.$$

При этом f называют $npedenbhoй функцией последовательности <math>\{f_n\}$ и пишут $f_n \to f$ на E. Отметим, что номер N здесь зависит от ε и от x, т.е. $N = N(x, \varepsilon)$. Если удается N выбрать по ε одним для всех точек $x \in E$, то приходим к следующему понятию.

Определение. Последовательность $\{f_n\}$ равномерно сходится к f на множестве E, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geqslant N \ \forall x \in E \colon |f_n(x) - f(x)| < \varepsilon.$$

Пишут $f_n \rightrightarrows f$ на E.

Ясно, что $(f_n \rightrightarrows f \text{ на } E) \Rightarrow (f_n \to f \text{ на } E).$

Теорема. Пусть $f_n \rightrightarrows f$ на $E \subset \mathbb{R}^n$. Если все функции f_n непрерывны в точке $a \in E$ (на E), то предельная функция f также непрерывна в точке a (на E).

▲ Пусть $\varepsilon > 0$. Поскольку $\{f_n\}$ равномерно сходится к f на E, то $\exists N \in \mathbb{N} \ \forall n \geqslant N \ \forall x \in E$: $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$. Тогда для любого $x \in E$ имеем

$$|f(x) - f(a)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(a)| + |f_N(a) - f(a)| < |f_N(x) - f_N(a)| + \frac{2\varepsilon}{3}$$

Поскольку функция f_N непрерывна в точке a, то $\exists \delta > 0 \ \forall x \in B_\delta(a) \cap E \colon |f_N(x) - f_N(a)| < \frac{\varepsilon}{3}$. В итоге имеем $|f(x) - f(a)| < |f_N(x) - f_N(a)| + \frac{2\varepsilon}{3} < \varepsilon$ для всех $x \in B_\delta(a) \cap E$, что доказывает непрерывность функции f в точке a.

Если последовательность $\{f_n\}$ сходится лишь поточечно, то предельная функция может и не оказаться непрерывной $(f_n(x) = x^n \text{ на } E = [0,1]).$

Cледствие 1. Пусть функции f_n непрерывны на [a,b] и пусть $f_n \Rightarrow f$ на [a,b]. Тогда $\int_a^x f_n(t)dt \Rightarrow \int_a^x f(t)dt$ на [a,b].

▲ По Т функция f непрерывна (а следовательно, интегрируема) на [a,b]. Пусть $\varepsilon > 0$. Поскольку $\{f_n\}$ равномерно сходится к f на [a,b], найдется $N \in \mathbb{N} \ \forall n \geqslant N \ \forall t \in [a,b]$: $|f_n(t) - f(t)| < \frac{\varepsilon}{b-a}$. Следовательно, для всех $n \geqslant N$ и $x \in [a,b]$

$$\left| \int_{a}^{x} f_n(t)dt - \int_{a}^{x} f(t)dt \right| \leqslant \left| \int_{a}^{x} |f_n(t) - f(t)|dt \right| < \frac{\varepsilon}{b-a}(b-a) = \varepsilon. \blacksquare$$

Замечание. В условиях следствия $1\lim_{n\to\infty}\int\limits_a^b f_n(x)dx=\int\limits_a^b f(x)dx$. Если последовательность $\{f_n\}$ сходится лишь поточечно, то такое равенство может и не выполняться $(f_n(x)=nxe^{-nx^2}$ на E=[0,1]).

Следствие 2. Пусть функции f_n непрерывно дифференцируемы на [a,b], $f'_n \Rightarrow g$ на [a,b] и существует такое $x_0 \in [a,b]$, что последовательность $\{f_n(x_0)\}$ сходится. Тогда $f_n \Rightarrow f$ на [a,b], функция f непрерывно дифференцируема на [a,b] и f'=g.

 \blacktriangle По \Tau функция g непрерывна на [a,b]. По формуле Ньютона–Лейбница и следствию 1 имеем

$$f_n(x)-f_n(x_0)=\int_{x_0}^x f_n'(t)dt
ightharpoons \int_{x_0}^x g(t)dt$$
 на $[a,b].$

Определим функцию $f(x) = c + \int_{x_0}^x g(t) dt$, где $f_n(x_0) \to c$. Сходящуюся последовательность $\{f_n(x_0)\}$ можно считать, очевидно, функциональной последовательностью, равномерно сходящейся на [a,b]. Поэтому $f_n \rightrightarrows f$ на [a,b] (как сумма двух равномерно сходящихся последовательностей). По свойствам интеграла с переменным верхним пределом f непрерывно дифференцируема на [a,b] с f'=g.

Отметим, что условием следствия 2 является равномерная сходимость производных, а не самих функций. Равномерный предел непрерывно дифференцируемых функций может и не оказаться дифференцируемой функцией $(f_n(x) = \sqrt{x^2 + \frac{1}{n}} \text{ на } E = [-1, 1]).$

Определение. Функциональный ряд $\sum_{k=1}^{\infty} f_k$ равномерно (поточечно) сходится на E к сумме S, если последовательность его частичных сумм $S_n = \sum_{k=1}^n f_k$ равномерно (поточечно) сходится к S на E.

Применяя Т и ее следствия к последовательности частичных сумм, получим соответствующие утверждения для рядов:

- 1. Пусть ряд $\sum_{k=1}^{\infty} f_k$ равномерно сходится на $E \subset \mathbb{R}^n$. Если все функции f_k непрерывны в точке $a \in E$ (на E), то его сумма S также непрерывна в точке a (на E).
- 2. Пусть функции f_k непрерывны на [a,b] и пусть ряд $\sum_{k=1}^{\infty} f_k$ равномерно сходится на [a,b]. Тогда $\int_a^b \left(\sum_{k=1}^{\infty} f_k(x)\right) dx = \sum_{k=1}^{\infty} \left(\int_a^b f_k(x) dx\right)$.
- 3. Пусть функции f_k непрерывно дифференцируемы на [a,b], ряд $\sum_{k=1}^{\infty} f_k'$ равномерно сходится на [a,b] и существует такое $x_0 \in [a,b]$, что ряд $\sum_{k=1}^{\infty} f_k(x_0)$ сходится. Тогда ряд $\sum_{k=1}^{\infty} f_k$ равномерно сходится на [a,b] и $\left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f_k'(x)$.

Утверждение 2 (соот. 3) носит название теоремы *о почленном интегрировании* (соот. *о почленном дифференцировании*) ряда.

Определение. Степенным рядом называется функциональный ряд вида

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k, \tag{1}$$

где $a_k, x_0 \in \mathbb{R}, x$ — вещественная переменная.

Определение. Неотрицательное число R (или символ $+\infty$) называется $paduycom\ cxodumo-cmu$ ряда (1), если $\forall x \in \mathbb{R} \colon |x-x_0| < R$ ряд (1) сходится, а $\forall x \in \mathbb{R} \colon |x-x_0| > R$ ряд (1) расходится. Интервал (x_0-R,x_0+R) называется $unmepвanom\ cxodumocmu$ ряда (1).

Теорема 1 (Коши – Адамар). Каждый степенной ряд (1) имеет радиус сходимости R, выражаемый формулой $R=\frac{1}{\frac{|\sum_{k=-\infty}^{k}\sqrt{|a_k|}}{|\sum_{k=-\infty}^{k}\sqrt{|a_k|}}}$ (считаем $\frac{1}{+\infty}=0$, $\frac{1}{0}=+\infty$).

\Delta Покажем, что величина R в формуле Коши – Адамара удовлетворяет определению радиуса сходимости. Пусть $x \neq x_0$, тогда

$$q = \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k(x - x_0)^k|} = \overline{\lim}_{k \to \infty} |x - x_0| \sqrt[k]{|a_k|} = |x - x_0| \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|}.$$

Если $|x-x_0| < R$, то q < 1 и по признаку Коши сходимости числовых рядов ряд (1) абсолютно сходится (а, следовательно, сходится). Если $|x-x_0| > R$, то q > 1 и по признаку Коши n-й член ряда (1) не стремится к нулю. Ряд (1) расходится (и абсолютно расходится, т.е. расходится ряд из модулей членов). \blacksquare

Следствие. Если степенной ряд (1) имеет радиус сходимости $R \in (0, +\infty]$, то на любом отрезке $[x_0 - r, x_0 + r]$, где $0 \le r < R$, он сходится равномерно.

▲ Как следует из доказательства Т1, в точке $x_1 = x_0 + r$ ряд абсолютно сходится, т.е. сходится числовой ряд $\sum_{k=0}^{\infty} |a_k| r^k$. Поскольку $\forall x \in [x_0 - r, x_0 + r] \ \forall k \in \mathbb{N}_0$: $|a_k(x - x_0)^k| \leq |a_k| r^k$, то ряд (1) равномерно сходится на $[x_0 - r, x_0 + r]$ по признаку Вейерштрасса. ■

Теорема 2. Если $f(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k - сумма степенного ряда с радиусом сходимости <math>R > 0$, то для любого $m \in \mathbb{N}$ функция f имеет производную m-го порядка на $(x_0 - R, x_0 + R)$

$$f^{(m)}(x) = \sum_{k=m}^{\infty} a_k k(k-1) \cdot \ldots \cdot (k-m+1)(x-x_0)^{k-m},$$

nричем ряд в nравой части имеет тот же paduyc cxoдимости R.

▲ Пусть m=1. Поскольку $\lim_{k\to\infty} \sqrt[k]{k}=1$, то последовательности $\{\sqrt[k]{|a_k|}\}$ и $\{\sqrt[k]{|a_k|}\}$ имеют одни и те же частичные пределы. В частности, у них совпадают верхние пределы и, значит, по формуле Коши-Адамара заключаем, что радиус сходимости $\sum\limits_{k=1}^{\infty} k a_k (x-x_0)^k$ равен R. При

 $x \neq x_0$. Ряды $\sum_{k=1}^{\infty} k a_k (x-x_0)^k$ и $\sum_{k=1}^{\infty} k a_k (x-x_0)^{k-1}$ отличаются числовым множителем, а значит, сходятся одновременно (при $x=x_0$ очевидно сходятся). Следовательно, радиус сходимости второго ряда также равен R.

По следствию из Т1 ряд $\sum_{k=1}^{\infty} k a_k (x-x_0)^{k-1}$ равномерно сходится на отрезке $[x_0-r,x_0+r]$ для любого $r\in(0,R)$. По Т о почленном дифференцировании функционального ряда равенство $f'(x)=\sum_{k=1}^{\infty} k a_k (x-x_0)^{k-1}$ имеет место на $[x_0-r,x_0+r]$, а в силу произвольности $r\in(0,R)$ — и на всем интервале (x_0-R,x_0+R) .

Общее утверждение устанавливается индукцией по m.

Следствие. Если функция f разлагается в ряд по степеням $x-x_0$, т.е. существует $\delta>0$, что $f(x)=\sum\limits_{k=0}^{\infty}a_k(x-x_0)^k$ для всех $x\in B_{\delta}(x_0)$, то коэффициенты $a_k=\frac{f^{(k)}(x_0)}{k!},\ k=0,1,2,\ldots$

Таким образом, единственным степенным рядом, представляющим функцию f в некоторой окрестности x_0 , является ряд $Teйлора \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$. Отметим, что не всякая бесконечно дифференцируемая функция разлагается в ряд по степеням $x-x_0$. Например, у функции

 $f(x) = e^{-1/x^2}$, f(0) = 0, ряд Тейлора в точке $x_0 = 0$ нулевой, но он не сходится к f ни в какой окрестности этой точки.

Сходимость тригонометрического ряда Фурье в точке

Пусть $f-2\pi$ -периодическая абсолютно интегрируемая на $[-\pi,\pi]$ функция (т.е. $\int_{-\pi}^{\pi} f(x)dx$, понимаемый как несобственный интеграл с конечным числом особенностей абсолютно сходится). Тригонометрический ряд Фурье функции f — это ряд вида

$$S(f,x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx = \sum_{k=-\infty}^{\infty} c_k e^{ikx},$$

где $c_k = \hat{f}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$, $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$, $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$. Коэффициенты связаны соотношениями $c_0 = \frac{a_0}{2}$, $c_k = \frac{a_k - ib_k}{2}$, $c_{-k} = \frac{a_k + ib_k}{2}$, $k \in \mathbb{N}$. Рассмотрим вопрос сходимости ряда Фурье S(f,x) в точке, т.е. условие существования ко-

Рассмотрим вопрос сходимости ряда Фурье S(f,x) в точке, т.е. условие существования конечного $\lim_{n\to\infty} S_n(f,x)$, где $S_n(f,x) = \sum_{k=-n}^n c_k e^{ikx}$. Для этого запишем $S_n(f,x)$ в виде интеграла, используя определение c_k :

$$S_n(f,x) = \sum_{k=-n}^n \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u)e^{-iku}du \cdot e^{ikx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-n}^n f(u)e^{ik(x-u)}du.$$

Сделав замену t = x - u и вводя ядро Дирихле $D_n(t) := \frac{1}{2} \sum_{k=-n}^n e^{ikt} = \frac{1}{2} + \sum_{k=1}^n \cos kt$, получим

$$S_n(f,x) = \frac{1}{\pi} \int_{x-\pi}^{x+\pi} f(x-t)D_n(t)dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t)D_n(t)dt = \frac{1}{\pi} \int_0^{\pi} [f(x+t) + f(x-t)]D_n(t)dt,$$

где 2-е равенство получено ввиду 2π -периодичности f и D_n , а 3-е — ввиду четности D_n .

Теорема (признак Дини). Пусть $f-2\pi$ -периодическая абсолютно интегрируемая на $[-\pi,\pi]$ функция и пусть для точки x и числа S существует такое $\delta>0$, что интеграл

$$\int_0^\delta \frac{|f(x+t) + f(x-t) - 2S|}{t} dt < +\infty.$$

Тогда ряд Фурье функции f сходится в точке x κ числу S.

igsim Поскольку $\int_0^\pi D_n(t) dt = \frac{\pi}{2}$ и $D_n(t) = \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}}$ при $t \neq 2m\pi$, имеем $S_n(f,x) - S = \frac{1}{\pi} \int_0^\pi [f(x+t) + f(x-t)] D_n(t) \ dt - \frac{1}{\pi} \int_0^\pi 2S \cdot D_n(t) \ dt = \frac{1}{\pi} \int_0^\pi \frac{f(x+t) + f(x-t) - 2S}{2\sin\frac{t}{2}} \sin\left(n + \frac{1}{2}\right) t \ dt.$

Пусть $\varepsilon > 0$. Уменьшим $\delta \in (0,\pi)$ настолько, что $\int_0^\delta \frac{|f(x+t)+f(x-t)-2S|}{t} \ dt < \varepsilon$.

Воспользуемся неравенством $\sin x \geqslant \frac{2}{\pi} x$ на $[0, \frac{\pi}{2}]$ (следует из выпуклости вверх \sin на $[0, \frac{\pi}{2}]$). Тогда

$$\frac{1}{\pi} \int_0^{\delta} \left| \frac{f(x+t) + f(x-t) - 2S}{2\sin\frac{t}{2}} \sin\left(n + \frac{1}{2}\right) t \right| dt \leqslant \frac{1}{\pi} \int_0^{\delta} \frac{|f(x+t) + f(x-t) - 2S|}{\frac{2}{\pi} t} dt < \frac{\varepsilon}{2}.$$

Функция $h(t) = \frac{f(x+t) + f(x-t) - 2S}{2\sin\frac{t}{2}}$ абсолютно интегрируема на $[\delta, \pi]$, поэтому по лемме Римана

$$I_n := \frac{1}{\pi} \int_{\delta}^{\pi} \frac{f(x+t) + f(x-t) - 2S}{2\sin\frac{t}{2}} \sin\left(n + \frac{1}{2}\right) t \ dt \to 0, \qquad n \to \infty.$$

Следовательно, $\exists N \in \mathbb{N} \ \forall n \geqslant N \colon \ |I_n| < \frac{\varepsilon}{2}$ и, значит, $|S_n(f,x) - S| < \varepsilon$ при всех $n \geqslant N$.

Следствие. Пусть $f-2\pi$ -периодическая абсолютно интегрируемая на $[-\pi,\pi]$ функция и для точки x существуют конечные f(x+0), f(x-0) и конечные обобщенные односторонние производные

$$f'_R(x) = \lim_{t \to +0} \frac{f(x+t) - f(x+0)}{t}, \quad f'_L(x) = \lim_{t \to +0} \frac{f(x-t) - f(x-0)}{-t}.$$

Тогда ряд Фурье функции f сходится в точке x к числу $\frac{f(x+0)+f(x-0)}{2}$.

▲ Из существования конечных $f_R'(x)$ и $f_L'(x)$ вытекает, что $\exists \delta > 0 \ \exists C > 0 \ \forall t \in (0, \delta)$: $|f(x+t) - f(x+0)| \leqslant Ct$ и $|f(x-t) - f(x-0)| \leqslant Ct$. Но тогда $\frac{|f(x+t) + f(x-t) - 2S|}{t} \leqslant 2C$ на $(0, \delta)$ для $S = \frac{f(x+0) + f(x-0)}{2}$ и фигурирующий в признаке Дини интеграл сходится по признаку сравнения. ■

Равномерная сходимость рядов Фурье

Лемма. Пусть $f-2\pi$ -периодическая кусочно-непрерывная на $[-\pi,\pi]$ функция. Тогда выполнено неравенство Бесселя:

$$\sum_{k=-\infty}^{\infty} |\hat{f}(k)|^2 \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx.$$

f A Положим $c_k=\hat{f}(k)$ и воспользуемся свойством модуля комплексного числа $|z|^2=zar{z}$, тогда

$$\int_{-\pi}^{\pi} \left| f(x) - \sum_{k=-n}^{n} c_k e^{ikx} \right|^2 dx = \int_{-\pi}^{\pi} \left(f(x) - \sum_{k=-n}^{n} c_k e^{ikx} \right) \left(\overline{f(x)} - \sum_{m=-n}^{n} \overline{c}_m e^{-imx} \right) =$$

$$= \int_{-\pi}^{\pi} |f(x)|^2 dx - \sum_{m=-n}^{n} \overline{c}_m \int_{-\pi}^{\pi} f(x) e^{-imx} dx - \sum_{k=-n}^{n} c_k \overline{\int_{-\pi}^{\pi} f(x) e^{-ikx} dx} + 2\pi \sum_{k=-n}^{n} c_k \overline{c}_k$$

(при перемножении крайних членов воспользовались ортогональностью системы $\{e^{ikx}\}_{k\in\mathbb{Z}}$ на $[-\pi,\pi]$). Используя выражения коэффициентов c_k через интеграл, имеем

$$0 \leqslant \int_{-\pi}^{\pi} \left| f(x) - \sum_{k=-n}^{n} c_k e^{ikx} \right|^2 dx = \int_{-\pi}^{\pi} |f(x)|^2 dx - 2\pi \sum_{k=-n}^{n} |c_k|^2.$$

Откуда $\sum_{k=-n}^{n} |c_k|^2 \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$ и заявленное неравенство получается предельным переходом при $n \to \infty$.

Теорема. Пусть f — непрерывная 2π -периодическая функция, имеющая кусочно-непрерывную на $[-\pi,\pi]$ производную f'. Тогда ряд Фурье f равномерно сходится κ f на всей числовой прямой.

▲ По формуле интегрирования по частям

$$2\pi \hat{f}'(k) = \int_{-\pi}^{\pi} f'(t)e^{-ikt}dt = f(t)e^{-ikt}\Big|_{-\pi}^{\pi} + ik \int_{-\pi}^{\pi} f(t)e^{-ikt}dt = 2\pi ik \hat{f}(k)$$

(внеинтегральный член равен нулю, т.к. функция $f(t)e^{-ikt}$ 2π -периодична).

Далее, при $k \neq 0$ ввиду неравенства $2ab \leqslant a^2 + b^2$ имеем

$$|\hat{f}(k)| = |\hat{f}'(k)| \cdot \frac{1}{|k|} \le \frac{1}{2} |\hat{f}'(k)|^2 + \frac{1}{2k^2}.$$

По неравенству Бесселя ряд $\sum_{k=-\infty}^{\infty} |\widehat{f}'(k)|^2$ сходится. Но тогда по признаку сравнения и сходимости $\sum_{k \neq 0} \frac{1}{2k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2}$ заключаем сходимость ряда $\sum_{k=-\infty}^{\infty} |\widehat{f}(k)|$.

Поскольку $|\hat{f}(k)e^{ikx}| = |\hat{f}(k)|$ для всех $x \in \mathbb{R}$ и $k \in \mathbb{Z}$, то ряд Фурье $S(f,x) = \sum_{k=-\infty}^{\infty} \hat{f}(k)e^{ikx}$ равномерно сходится на $\mathbb R$ по признаку Вейерштрасса. По следствию из признака Дини он в каждой точке x сходится к f(x).

Преобразование Фурье

Пусть функция f абсолютно интегрируема на любом отрезке.

Определение. Преобразованием Фурье функции f называется функция

$$F[f](y) = \hat{f}(y) := \text{v.p. } \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iyx} dx.$$

Функция F[f](-y) называется обратным преобразованием Фурье функции f. Напомним, что v.p. $\int_{-\infty}^{\infty} f(x)dx := \lim_{u \to +\infty} \int_{-u}^{u} f(x)dx$ и если f абсолютно интегрируема на \mathbb{R} , то v.p. интеграл совпадает с несобственным интегралом по \mathbb{R} .

В дальнейшем будем рассматривать свойства $F[f](y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iyx} dx$ для абсолютно uнтегрируемой на \mathbb{R} функции f. Нам потребуется следующая

Пемма. Пусть функция f абсолютно интегрируема на \mathbb{R} . Тогда функция F[f] непрерывна на $\mathbb R$ и для всякого отрезка [c,d]

$$\int_{c}^{d} F[f](y)dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{c}^{d} f(x)e^{-iyx}dydx.$$

 \blacktriangle Для любого $n \in \mathbb{N}$ существует непрерывная финитная (т.е. равная нулю вне некоторого отрезка) функция f_n , такая что $\int\limits_{-\infty}^{\infty}|f(x)-f_n(x)|dx<\frac{1}{n}$. Так как

$$\left| F[f](y) - F[f_n](y) \right| = \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} (f(x) - f_n(x)) e^{-iyx} dx \right| \leqslant \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x) - f_n(x)| dx \leqslant \frac{1}{n\sqrt{2\pi}},$$

то $F[f_n](y) \underset{[c,d]}{\rightrightarrows} F[f](y)$ при $n \to \infty$. Пусть f_n равна нулю вне $[\alpha,\beta]$. Поскольку

$$|e^{-iyx} - e^{-iy_0x}| = |e^{-i(y-y_0)x} - 1| = 2 \left| \sin \frac{(y-y_0)x}{2} \right| \le |x||y-y_0|,$$

$$\sqrt{2\pi} |F[f_n](y) - F[f_n](y_0)| = \left| \int_0^\beta f_n(x) [e^{-iyx} - e^{-iy_0x}] dx \right| \le |y - y_0| \int_0^\beta |x f_n(x)| dx,$$

то $F[f_n](y) \to F[f_n](y_0)$ при $y \to y_0$ и, значит, функция $F[f_n]$ непрерывна. Тогда функция F[f]непрерывна (как равномерный предел непрерывных функций) и $\lim_{n\to\infty} \int\limits_{c}^{d} F[f_n](y)dy = \int\limits_{c}^{d} F[f]dy$.

Покажем, что $\lim_{n\to\infty} \int_{-\infty}^{d} F[f_n](y)dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{d} f(x)e^{-iyx}dydx$.

По Т Фубини $\int_{c}^{d} F[f_n](y)dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_n(x) \int_{c}^{d} e^{-iyx} dx$ (т.к. интегрирование фактически ведется по $[\alpha, \beta] \times [c, d]$) и теперь утверждение вытекает из оценки

$$\left| \int_{-\infty}^{\infty} \int_{c}^{d} [f(x) - f_n(x)] e^{-iyx} dx dy \right| \leqslant (d - c) \int_{-\infty}^{\infty} |f(x) - f_n(x)| dx \leqslant \frac{d - c}{n}. \blacksquare$$

Теорема 1. Если функция f абсолютно интегрируема на \mathbb{R} и имеет там непрерывную абсолютно интегрируемую производную f', то F[f'](y) = iyF[f](y).

▲ Поскольку $f(x) = f(0) + \int\limits_0^x f'(t) dt$, то из сходимости $\int\limits_0^{+\infty} f'(t) dt$ вытекает существование конечного предела $A = \lim_{x \to +\infty} f(x)$. Число A = 0, т.к. в противном случае |f| > |A|/2 в некоторой окрестности $+\infty$ и интеграл $\int\limits_0^{+\infty} |f| dx$ будет расходиться. Значит, $\lim_{x\to +\infty} f(x) = 0$. Аналогично $\lim_{x \to -\infty} f(x) = 0.$ Интегрируем по частям

$$\sqrt{2\pi}F[f'](y) = \int_{-\infty}^{+\infty} f'(x)e^{-iyx}dx = f(x)e^{-iyx}\Big|_{x \to -\infty}^{x \to +\infty} - \int_{-\infty}^{+\infty} f(x)(-iy)e^{-iyx}dx = \sqrt{2\pi}iyF[f](y). \blacksquare$$

Теорема 2. Если функции f(x) и xf(x) абсолютно интегрируемы на \mathbb{R} , то преобразование Фурье F[f] является непрерывно дифференцируемой на $\mathbb R$ функцией и $\frac{d}{du}F[f](y) = F[(-ix)f](y)$.

▲ По лемме

$$\int_{0}^{t} F[(-ix)f](y)dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{0}^{t} (-ix)f(x)e^{-ixy} \, dy dx.$$

Так как
$$\int_{0}^{t} (-ix)e^{-ixy} dy = \int_{0}^{t} \frac{d}{dy}e^{-ixy} dy = e^{-ixt} - 1$$
, то $\int_{0}^{t} F[(-ix)f](y) dy = F[f](t) - F[f](0)$.

По лемме функция F[(-ix)f] непрерывна, поэтому функция $F[f](t) = F[f](0) + \int_{0}^{t} F[(-ix)f](y)dy$ непрерывно дифференцируема (как интеграл с переменным верхним пределом). Осталось продифференцировать при t=y.