General Chemistry Data Sheet ACS Examinations Institute

	AB	BREVIATIONS AND	SYMB	OLS	
amount of substance ampere atmosphere atomic mass unit atomic molar mass Avogadro constant Celsius temperature centi— prefix coulomb electromotive force energy of activation enthalpy entropy equilibrium constant	n A A A A A A A A C	Faraday constant free energy frequency gas constant gram hour joule kelvin kilo- prefix liter measure of pressure milli- prefix molal	F G V R g h J K k L	molar molar mass mole Planck's constant pressure rate constant reaction quotient second speed of light temperature, K time volt volume	M M mol h P k Q s c T t V

	CONSTANTS
	$R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
	$R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
	$1 F = 96,500 \text{ C·mol}^{-1}$
	$1 F = 96,500 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$
	$N_{\rm A} = 6.022 \times 10^{23} \rm mol^{-1}$
	$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$
I	$c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
I	$0 ^{\circ}\text{C} = 273.15 \text{K}$
	Note: Notation such as m·s ⁻¹
IL	is read as meters per second.

	EQUATIONS	
Arrhenius Equation	Nernst Equation	Integrated Rate Laws
$k = Ae^{-E_a/RT}$	$E = E^{\circ} - \frac{RT}{nE} \ln Q$	zero: $[A] = [A]_0 - kt$
Graham's Law of Effusion	Nernst Equation at 25 °C	first: $\ln[A] = \ln[A]_0 - kt$
$\frac{\text{rate}_A}{\text{rate}_A} = \left(\frac{M_B}{M_B}\right)^{1/2}$	$E = E^{\circ} - \frac{0.0592}{\log Q}$	
$rate_B \left(M_A \right)$	$E = E - \frac{1}{n} \log Q$	second: $\frac{1}{[A]} = kt + \frac{1}{[A]_0}$

	1			F	ER	IOD	IC	TAI	RIF	OF	TI	E E	אים די	ATTOR	TIPO			
1	A										111			VI C.I	112			18
	1																	<u>8A</u>
	H 800	2											13	14	15	10		2
<u> </u>		<u>2A</u>	1										3A	4A	15 5A	16 6A	17 · 7A	He 4.003
	3 _i	4 Be											5	6	7	8	7A	10
6.9		9.012											В	C	N	ŏ	F	Ne
1	1	12	Ì										10.81	12.01	14.01	16.00	19.00	20.18
N 22.		Mg 24.31	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
-	-		3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	Al 26.98	Si 28.09	P 30.97	\$ 32.07	Cl 35.45	Ar 39.95
1		20	21	22	23	24	25	26	27	28	29	30	31	32	33	24		
39.		Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	34 Se	35 Br	36
3	7	38	39	40	41	42	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	Kr 83.80
R		Sr	Ý	Zr	Nb	Mo	43 Tc	44 R u	45	46	47	48	49	50	51	52	53	54
85.4		87.62	88.91	91.22	92.91	95.94	(98)	101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te	I	Xe
55	1	56	57	72	73	74	75	76	77	78	79	80	81	82	83	127.6 84	126.9	131.3
132.		Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	W 183.8	Re	Os	Ir	Pt	Au	Hg 200.6	Ti	Pb	Bi	Po	85 At	86
87		88	89	104	105	106	186.2 107	190.2	192.2	195.1	197.0		204.4	207.2	209.0	(209)	(210)	Rn (222)
Fr		Ra	Ac	Rf	Db		Bh	108 Hs	109 Mt	110	111	112	1	114				
(223)	(226)	(227)	(261)	(262)	Sg (263)	(262)	(265)	(266)	(269)	(272)	(277)	-	(2??)				
			58	59	T 60	61	62					······································	L	(2.1)				

58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb	66 Dy 162.5	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	173.0 102 No (259)	175.0 103 Lr (262)