SISTEM PEMILIHAN LAPTOP TERBAIK DENGAN MENGGUNAKAN METODE WEIGHTED PRODUCT (WP)

Susliansvah¹; Ririn Restu Aria²; Susi Susilowati³

Program Sistem Informasi 1,2,3 Universitas Bina Sarana Informatika http://www.bsi.ac.id ¹suslian<u>syah.slx@bsi.ac.id</u>, ²ririn.rra@bsi.ac.id, ³susi.sss@bsi.ac.id

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.

Abstract— The Weighted Product method requires a normalization process because this method assumes the results of evaluating each attribute. The results of these multiplications have not been meaningful if they have not been compared (divided) with standard values. The weight for the benefit attribute functions as a positive power in the multiplication process, while the weight of the cost functions as a negative rank. The Weighted Product method uses multiplication as a linking attribute rating, where the rating of each attribute must be raised first with the corresponding weight. Weighting Product Weighted method is calculated based on the level of importance. This system requires input weight values based on prospective buyers' needs in the form of prices, RAM capacity, processor type, Harddisk capacity, and VGA (Video *Grapphics Array*). The results of this study provide laptop recommendations according to specification requirements for prospective buyers with 100% calculation accuracy based on manual calculations and calculations on laptop selection decision support systems.

Keywords: Selection, Laptop, best, Weighted **Products**

Intisari—Metode Weighted Product memerlukan proses normalisasi karena metode mengaluhkan hasil penilaian setiap atribut. Hasil perkalian tersebut belum bermakna jika belum dibandingkan (dibagi) dengan nilai standart. Bobot untuk atribut manfaat berfungsi sebagai pangkat positif dalam proses perkalian, sementara bobot biaya berfungsi sebagai pangkat negatif. Metode Weighted Product menggunakan perkalian sebagai untuk menghubungkan rating atribut, dimana rating setiap atribut harus dipangkatkan dulu dengan bobot yang bersangkutan.Pembobotan metode Weighted Product dihitung berdasarkan tingkat kepentingan. Sistem ini membutuhkan masukan nilai bobot berdasarkan kebutuhan calon pembeli berupa harga, kapasistas RAM, jenis prosesor, kapasitas *Harddisk*, dan VGA (*Video Grapphics* Array). Hasil dari pennelitian ini memberikan saran laptop sesuai dengan kebutuhan spesifikasi untuk calon pembeli dengan tingkat akurasi perhitungan 100% berdasarkan perhitungan manual dan perhitungan pada sistem pendukung keputusan pemilihan laptop.

Kata Kunci: Pemilihan, Laptop, terbaik Weighted Produk

PENDAHULUAN

Sistem Pendukung Keputusan (SPK) merupakan suatu penerapan sistem informasi yang ditujukan untuk membantu pimpinan dalam proses pengambilan keputusan (Hatta, Rizaldi, & Khairina, 2016). Sistem Pendukung Keputusan (SPK) digunakan untuk membantu pengambilan keputusan berdasarkan kriteria yang sudah ditentukan (Yoni & Mustafidah, 2016). Pengambilan keputusan dilakukan dengan pendekatan sistematis terhadap permasalahan melalui proses pengumpulan data menjadi informasi serta ditambah dengan faktorfaktor yang perlu dipertimbangkan dalam pengambilan keputusan (Kurniasih, 2013).

Salah satu metode dalam FMADM yang cukup terkenal adalah metode weighted product (WP). Metode WP cukup banyak digunakan untuk pengambilan keputusan karena metodenya yang sederhana dengan memasukkan semua faktor dan komputasinya cepat (Supriyono & Sari, 2015), serta mampu memilih alternatif terbaik dari sejumlah alternatif (Zai, Mesran, & Buulolo, 2017). Pada metode Weighted Product menggunakan perkalian untuk menghubungkan rating atribut, dimana rating setiap atribut harus dipangkatkan dulu dengan bobot atribut yang bersangkutan (Nurjannah, Arifin, & Khairina, 2015).

Banyak merek dan tipe laptop yang dijual di pasaran, tentunya dengan harga yang bervariasi pula, membuat pengguna menjadi kesulitan dalam menentukan pilihan yang sesuai dengan kebutuhannya (Sanyoto, Handayani, Widanengsih, 2017). Tidak jarang juga pengguna membeli laptop dengan spesifikasi yang tidak disesuaikan dengan kegunaannya (Syafitri, Sutardi, & Dewi, 2016). Misalnya saja, membeli laptop dengan spesifikasi tinggi, tetapi penggunaannya hanya

sebatas untuk pekerjaan mengetik. Padahal sebenarnya dengan spesifikasi "tinggi" tersebut, pengguna dapat menggunakan laptop untuk pekerjaan lain yang lebih berat, desain grafis misalnya, Hidayatullah dalam (Hartanto & Prasetiyowati, 2012).

BAHAN DAN METODE

Metode WP dapat membantu dalam mengambil keputusan pemilihan laptop, akan tetapi perhitungan dengan menggunakan metode WP ini hanya menghasilkan nilai terbesar yang akan terpilih sebagai alternatif yang terbaik. Perhitungan akan sesuai dengan metode ini apabila alternatif yang terpilih memenuhi kriteria yang telah ditentukan. Metode WP ini lebih efisien karena waktu yang dibutuhkan dalam perhitungan lebih singkat. Bobot untuk atribut manfaat berfungsi sebagai pangkat positif dalam proses perkalian, sementara bobot biaya berfungsi sebagai pangkat negatif (Syafitri et al., 2016).

Perbaikan bobot untuk Σ = menggunakan Persamaan (1).

$$W_j = \frac{w_j}{\Sigma w_j}....(1)$$

Variabel W adalah pangkat bernilai positif untuk atribut keuntungan dan bernilai negatif untuk atribut biaya. Preferensi untuk alternatif diberikan oleh Persamaan (2).

$$S_i = \prod_{j=1}^n X_{ij} W_j$$
.....(2)

Keterangan:

Π : Product

Si : Skor / nilai dari setiap alternatif

Xij : Nilai alternatif ke- i terhadap atribut ke- j

wj : Bobot dari setiap atribut atau kriteria n : Banyaknya kriteria

Untuk alternatif terbaik mencari dilakukan dengan Persamaan (3).

$$V_i = \frac{\prod_{j=1}^{n} X_{ij} w_j}{\prod_{j=1}^{n} (X_{j^*}) w_j}....(3)$$

Dalam penyelesaian pemilihan laptop terbaik dengan menggunakan metode Weighted Product diperlukan kriteria-kriteria dan bobot untuk melakukan perhitungan sehingga akan didapat alternatif terbaik. Berikut merupakan kriteria yang dibutuhkan untuk pengambilan keputusan, berdasarkan parameter menentukan laptop terbaik pada SMK Mandiri Bekasi sebagai berikut:

Tabel 1. Kriteria

Kriteria	keterangan
C1	Prosesor
C2	RAM
C3	Hrddisk
C4	VGA
C5	Harga

Sumber: (SMKMandiriBekasi, 2018)

Dalam kriteria tersebut, ditentukan suatu tingkatan kepentingan kriteria berdasarkan nilai bobot yang telah ditentukan. Rating setiap alternatif pada setiap kriteria sebagai berikut:

Tabel 2. Rating Alternatif

1 = Sangat Rendah
2 = Rendah
3 = Cukup
4 = Tinggi
5 = Sangat Tinggi

Sumber: (SMKMandiriBekasi, 2018)

Berdasarkan kriteria dari rating setiap alternatif (Ai) pada setiap kriteria (Ci) yang telahditentukan, selanjutnya bobot setiap kriteria

a. Nilai Bobot Prosesor (C1)

Tabel 3 Kriteria Prosesor		
	Sangat Tinggi	5
Prosesor	Tinggi	4
F105e501 —	Sedang	3
	Rendah	2
	Sangat Rendah	1

Sumber: (SMKMandiriBekasi, 2018)

Nilai bobot (W) dari masing-masing kriteria prosesor yang telah ditentukan oleh pihak sekolah SMK Mandiri Bekasi.

b. Kriteria Bobot RAM (C2)

Tabel 4 Kreteria Kapasitas RAM 16 GB 5 8 GB 4 Kapasitas RAM 3 4 GB 2 2 GB

Sumber: (SMKMandiriBekasi, 2018)

Nilai bobot (W) dari masing-masing kriteria kapasitas RAM yang telah ditentukan oleh pihak sekolah SMK Mandiri Bekasi.

1 GB

1

c. Kriteria Bobot Harddisk (C3)

Tabel 5 Kriteria Harddisk

raber 5 Kriteria Haruuisk		IX
	>750 GB	5
Kapasitas Harddisk	750 GB	4
	500 GB	3
	320 GB	2
	250 GB	1

Sumber: (SMKMandiriBekasi, 2018)

Nilai bobot (W) dari masing-masing kriteria harddisk yang telah ditentukan oleh pihak sekolah SMK Mandiri Bekasi.

d. Kriteria Bobot VGA (C4)

Tabel 6 Kriteria VGA

Tuber o In teeria vari		
Prosesor -	Sangat Tinggi	5
	Tinggi	4
	Sedang	3
	Rendah	2
	Sangat Rendah	1

Sumber: (SMKMandiriBekasi, 2018)

Nilai bobot (W) dari masing-masing kriteria VGA yang telah ditentukan oleh pihak sekolah SMK Mandiri Bekasi.

e. Kriteria Bobot Harga (C5)

Tabel 5 Kriteria Harga

	rabere minteria marga	
	> 15 Jt	5
Harga	8 – 15 Jt	4
	6 – 8 Jt	3

4 - 6 Jt	2
3 – 4 Jt	1

Sumber: (SMKMandiriBekasi, 2018)

Nilai bobot (W) dari masing-masing kriteria harga yang telah ditentukan oleh pihak sekolah SMK Mandiri Bekasi.

HASIL DAN PEMBAHASAN

1. Seleksi Data Alternatif

Beberapa alternatif yang akan diseleksi dengan metode Weighted Product yang dapat dilihat dibawah ini:

Tabel 7 Data Alternatif

		raber / L	ala A	iternat	11	
		Kriteria				
No	Altern	C1	C2	С3	C4	C5
	atif					
1	Axioo	Intel	2	500	Intel HD	4.1
	- Neon	Celeron	GB	GB	Family	00.
	TNW	N2940				00
	C825					0
2	Axioo	Intel	2	500	Intel HD	4.0
	Neon	Celero	GB	GB	Family	00.
	TNNC	n				00
	825	Quad Core				0
		N2920				
3	Acer	AMD A10-	4	1 TB	AMD	6.6
	Aspire	7300	GB		Raden	99.
	E5 -				R7	00
	551				M265	0
4	Lenov	Intel Core	2	500	NVIDIA	5.3
	0	i3-5005U	GB	GB	GeForce	99.
	Ideap				920A	00
	ad				DDR3L	0
	100				2GB	
5	Toshi	Intel Core	2	500	NVIDIA	6.2
	ba	i3-3227u	GB	GB	GoForce	00.
	S40 A				GT 740	00
					M	0
6	HP	AMD A4 -	2	500	AMD	3.8
	14-	500	GB	GB	Radeon	30.
	G1024				HD 833	00
	U					0

Sumber: (SMKMandiriBekasi, 2018)

Data alternatif merupakan data laptop yang akan diseleksi untuk dijadikan sebagai data dalam mencari laptop terbaik.

2. Menentukan Nilai Bobot Alternatif

Tabel 8. Nilai Bobot Alternatif

		Kriteria			
Alternati	C1	C2	С3	C4	C5
f					
A1	2	1	3	2	5
A2	4	4	3	2	2
A3	1	3	4	5	4
A4	4	1	3	2	5
A5	4	1	3	2	4
A6	4	1	3	2	1
		1 1			

Sumber: (SMKMandiriBekasi, 2018)

Merupakan nilai dari masing-masing kriteria dari setiap data alternatif.

3. Menentukan Nilai Bobot Kriteria

Tabel 9. Nilai Bobot kriteria

- 140	or year Bobot mire	0110
W1	Prosesor	5
W2	RAM	4
W3	Harddisk	3
W4	VGA	5
W5	Harga	3

Sumber: (SMKMandiriBekasi, 2018)

Merupakan hasil penentuan Nilai bobot setiap kriteria yang telah didapatkan dari pihak sekolah.

4. Perbaikan Bobot Perkriteria

Setelah mendapatkan nilai bobot pada masing-masing kriteria maka dilakukan perbaikan bobot dari nilai bobot awal.

$$W_j = \frac{W_j}{\Sigma W_j} \dots (1)$$

$$W_1 = \frac{5}{5+4+3+5+3} = \frac{5}{20} = 0.25$$

$$W_2 = \frac{4}{5+4+3+5+3} = \frac{4}{20} = 0.2$$

$$W_3 = \frac{3}{5+4+3+5+3} = \frac{3}{20} = 0.15$$

$$W_4 = \frac{5}{5+4+3+5+3} = \frac{5}{20} = 0.25$$

$$W_5 = \frac{3}{5+4+3+5+3} = \frac{3}{20} = 0.15$$

Tabel 10. Hasil Perbaikan Bobot Kriteria

Nilai Bobot
0,25
0,2
0,15
0,25
0,15

Sumber: (Susliansyah, Aria, & Susilowati, 2018)

Merupakan hasil dari perbaikan bobot pada setiap kriteria dari W1 sampai dengan W5.

5. Perhitungan Nilai Vektor (S)

Setelah dilakukan perbaikan bobot, dilakukan perhitungan nilai vektor (S), dengan memangkatkan dan mengalikan nilai masingmasing kriteria tersebut dengan bobot yang sudah diperbaiki sebelumnya.

$$S_i = \prod_{i=1}^n X_{ij} W_i$$
....(2)

$$S1 = (2^{0,25}) (1^{0,20}) (3^{0,15}) (2^{0,25}) (5^{0,15})$$

= 1.30990

$$S2 = (4^{0,25}) (4^{0,2}) (3^{0,15}) (2^{0,25}) (5^{0,15})$$

=2,35830

$$S3 = (1^{0.25}) (3^{0.2}) (4^{0.15}) (5^{0.25}) (4^{0.15})$$

= 1.86280

$$S4 = (4^{0.25}) (1^{0.2}) (3^{0.15}) (2^{0.25}) (3^{0.15})$$

= 1,55774

$$S5 = (4^{0,25}) (1^{0,2}) (3^{0,15}) (2^{0,25}) (4^{-0,15})$$

= 1,61076

$$S6 = (4^{0,25}) (1^{0,2}) (3^{0,15}) (2^{0,25}) (1^{-0,15})$$

= 1.98308

Tabel 11. Hasil Nilai Vektor S

Tabel 11. Hash Milai Vektor 5		
Alternatif	Nilai Vektor S	
A1	1,309899	
A2	2,358295	
A3	1,862802	
A4	1,557741	
A5	1,610763	
A6	1,983082	
Total	10,68258	

Sumber: (Susliansyah et al., 2018)

Merupakan hasil dari nilai vektor S terhadap data alternatif A1 sampai dengan A6.

6. Perhitungan Nilai Vektor (V)

Setelah mendapatkan nilai Vektor (S) langkah selanjutnya yaitu menentukan nilai vektor (V) yaitu, membagi preferensi setiap alternatif dengan jumlah total vektor S

$$V_i = \frac{\prod_{j=1}^{n} X_{ij} w_j}{\prod_{j=1}^{n} (X_{j^*}) w_j}....(3)$$

$$V_1 = \frac{1,309899}{10,68258} = 0,122620$$

$$V_2 = \frac{2,358295}{10.68258} = 0,220761$$

$$V_3 = \frac{1,862802}{10.68258} = 0,174378$$

$$V_4 = \frac{1,557741}{10,68258} = 0,145821$$

$$V_5 = \frac{1,610763}{10,68258} = 0,150784$$

$$V_6 = \frac{1,983082}{10,68258} = 0,185637$$

Tabel 12. Hasil Nilai Vektor V

1 4 5 6 1 1 2 1 1 1 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Alternatif	Nilai Vektor V
A1	0,122620
A2	0,220761
A3	0,174378
A4	0,145821
A5	0,150784
A6	0,185637

Sumber: (Susliansyah et al., 2018)

Dari hasil perhitungan Vektor V dari data alternatif A1 sampai A2, dibuatlah perangkingan yaitu:

Tabel 13. Hasil Perangkingan

Alternatif	Nilai Vektor V	Perangkinan
A1	0,122620	6
A2	0,220761	1
А3	0,174378	3
A4	0,145821	5
A5	0,150784	4
A6	0,185637	2

Sumber: (Susliansyah et al., 2018)

Merupakan hasil perangkingan perhitungan nilai vektor V, sehingga diperoleh perurutan perangkingan data altenatif dari peringkat ke 1 sampai peringkat ke 6 adalah: A2, A6, A3, A5, A4 dan A1.

KESIMPULAN

Penerapan metode Weighted Product digunakan untuk membantu dapat merekomendasikan dalam pemilihan laptop terbaik Di Sekolah SMK Mandiri Bekasi dengan pengurutan nilai alternatif dari nilai alternatif terkecil sampai nilai alternatif terbesar. Dengan menggunakan 5 kriteria yaitu : Prosesor, RAM, Harddisk, VGA, Harga. Alternatif yang diuji dapat diperoleh nilai alternatif vaitu : (1) Axioo - Neon TNW C825 V1 =0,122620 (2) Axioo Neon TNNC825 V_2 = 0,220761 (3) Acer Aspire E5 - 551

V3= 0,174378 (4) Lenovo Ideapad 100 V4= 0,145821 (5) Toshiba S40 A V5= 0,150784 (6) HP 14-G1024U *V6* = 0.185637.

REFERENSI

- Hartanto, T., & Prasetiyowati, M. I. (2012). Sistem Pendukung Keputusan Pemilihan Laptop Berbasis Web dengan Metode Analytical Hierarchy Process (Studi Kasus: SAMCO COMPUTER). ULTIMATICS, IV(2), 7–15.
- Hatta, H. R., Rizaldi, M., & Khairina, D. M. (2016). Penerapan Pen erapan Metode Weighted Product U ntuk Pemilihan Lokasi L ahan Baru Pemakaman Muslim Dengan Visualisasi Google Maps. TEKNOSI, 02(03), 85-94.
- Kurniasih, D. L. (2013). Sistem Pendukung Keputusan Pemilihan Laptop dengan Metode TOPSIS. Pelita Informatika Budi Darma, III(April), 6-13.
- Nurjannah, N., Arifin, Z., & Khairina, D. M. (2015). Sistem Pendukung Keputusan Pembelian Sepeda Motor Dengan Metode Weighted Product. Jurnal Informatika Mulawarman, 10(2), 2-6.
- Sanyoto, G. P., Handayani, R. I., & Widanengsih, E. (2017). SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN LAPTOP UNTUK KEBUTUHAN OPERASIONAL DENGAN METODE AHP (STUDI KASUS: DIREKTORAT PEMBINAAN KURSUS DAN PELATIHAN KEMDIKBUD). Jurnal Pilar Nusa Mandiri, 13(2), 167-174.
- SMKMandiriBekasi. (2018). Sistem Pemilihan Laptop Terbaik Dengan Menggunakan Metode Weighted Product (WP).
- Supriyono, H., & Sari, C. P. (2015). Rumah Tinggal Menggunakan Metode Weighted Product. Jurnal Ilmu Komputer Dan Informatika Pemilihan, 1(1), 23-28.
- Susliansyah, Aria, R. R., & Susilowati, S. (2018). SISTEM PEMILIHAN LAPTOP **TERBAIK** MENGGUNAKAN DENGAN *METODE* WEIGHTED PRODUCT (WP).
- Syafitri, N. A., Sutardi, & Dewi, A. P. (2016). Penerapan metode Weighted Product Dalam Sistem Pendukung Keputusan Pemilihan Laptop Berbasis Web. SemanTIK, 2(1), 169-
- Yoni, D. C., & Mustafidah, H. (2016). Penerapan Metode WP (Weighted Product) Untuk Pemilihan Mahasiswa Lulusan Terbaik di

- Fakultas Teknik Universitas Muhammadiyah Purwokerto. JUITA, IV(1), 22-27.
- Zai, Y., Mesran, & Buulolo, E. (2017). Sistem Pendukung Keputusan untuk menentukan Buah Rambutan dengan Kualitas Terbaik menggunakan Metode Weighted Product (WP). Media Informatika Budidarma, 1(1), 8-11.