

Kwame Ackah Bohulu

July 3, 2020

0.1 Equation and Proof

Proof. The polynomial representation of a weight-3 RTZ input is given by

$$Q(x) = x^{h\tau + t}(1 + x^{\beta\tau + 1} + x^{\gamma\tau + 2})$$

The impulse response of the RSC encoder is

$$(1\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ \cdots)$$

and using the inpulse response, we can calculate the parity weight as well as Hamming weight of the turbo codeword.

Let

$$\begin{array}{l} \phi_1 = (0\ 0\ 1),\ \phi_1' = (0\ 1\ 0),\ \phi_1'' = (1\ 0\ 0),\\ \phi_2 = (0\ 1\ 1),\ \phi_2' = (1\ 1\ 0),\ \phi_2'' = (1\ 0\ 1),\\ \phi_3 = (1\ 1\ 1). \end{array}$$

Then, the weight-3 RTZ occurs since $\phi_2 + \phi_2' + \phi_2'' = \mathbf{0}_{\tau} = \mathbf{0}_3$. Now, we consider the weight of the vector derived by the sumation of the followings vectors.

$$egin{array}{ll} (\mathbf{0}_{3(\gamma+h)} \; oldsymbol{\phi}_1 \; oldsymbol{\phi}_2' \; \cdots) \ (\mathbf{0}_{3(eta+h)} \; oldsymbol{\phi}_2 \; oldsymbol{\phi}_2'' \; \cdots) \ (\mathbf{0}_{3h} \; \; oldsymbol{\phi}_3 \; oldsymbol{\phi}_2 \; \cdots) \end{array}$$

Without loss of generality, we can assume that all weight-3 RTZ inputs begin at the 0th position, ie h=t=0. This is because the case where h>0 or t>0 is just a right-shifted version of the weight-3 RTZ. With this assumption, we we only need to consider cases where $h=0,\ \gamma\geq h$. To simplify calculation, we have included an addition table for all the vectors which is shown in Table 1

	$ \phi_1 $	$ \phi_1'$	ϕ_1''	$ \phi_2 $	ϕ_2'	ϕ_2''	$ \phi_3 $
ϕ_1	0_3	_	_	_	_	_	_
ϕ_1'	ϕ_2	0 ₃	_	_	_	_	_
$oldsymbol{\phi}_1''$	ϕ_2''	ϕ_2'	0 ₃	_	_	_	
ϕ_2	ϕ_1'	ϕ_1	ϕ_3	0_3	_	_	_
ϕ_2'	ϕ_3	ϕ_1''	ϕ_1'	ϕ_2''	0_3	_	_
ϕ_2''	ϕ_1''	ϕ_3	ϕ_1	ϕ_2'	$oldsymbol{\phi}_2$	0_3	
ϕ_3	ϕ_2'	$oldsymbol{\phi}_2''$	ϕ_2	$oldsymbol{\phi}_1''$	ϕ_1	ϕ_1'	0_3

Table 1: Truth Table

Furthermore, we consider 4 general cases for all possible values of i, j, k where $i \ge k$ These cases are (= =), (= <), (< =) and (< <)

Case 0: $\gamma = \beta = h$

For this case, the vectors to sum will be

$$(\phi_1 \ \phi_2' \ \cdots)$$

$$(\phi_2 \ \phi_2'' \ \cdots)$$

$$(\phi_3 \ \phi_2 \ \cdots)$$

$$(\phi_3'' \ \mathbf{0}_3 \ \cdots)$$

and the derived vector will be $(\phi_2'' \ \mathbf{0}_3 \ \cdots)$ with a weight of $w_p = 2$

Case 1a: $\gamma = h < \beta$ vectors to sum:

$$\begin{array}{c} (\phi_1 \ \phi_2' \ \phi_2' \ \phi_2' \ \phi_2' \ \cdots) \\ (\mathbf{0}_3 \ \cdots \ \mathbf{0}_3 \ \phi_2 \ \phi_2'' \ \cdots) \\ + (\phi_3 \ \phi_2 \ \phi_2 \ \phi_2 \ \phi_2 \ \cdots) \\ \hline \\ (\phi_2' \ \phi_2'' \ \phi_2'' \ \phi_2' \ \mathbf{0}_3 \ \cdots) \end{array}$$

derived vector : $(\phi_2' \ (\phi_2'')_{\beta-h-1} \ \phi_2' \ \mathbf{0}_3 \ \cdots)$ Parity weight:

$$w_p = 2(\beta - h) + 2 = 2\beta + 2 \tag{0-1}$$

Case 1b: $\beta = h < \gamma$ vectors to sum:

$$\begin{array}{c} (\mathbf{0}_3 \ \cdots \ \cdots \ \mathbf{0}_3 \ \boldsymbol{\phi}_1 \ \boldsymbol{\phi}_2' \ \cdots) \\ (\boldsymbol{\phi}_2 \ \boldsymbol{\phi}_2'' \ \cdots \ \boldsymbol{\phi}_2'' \ \boldsymbol{\phi}_2'' \boldsymbol{\phi}_2'' \ \cdots) \\ + (\boldsymbol{\phi}_3 \ \boldsymbol{\phi}_2 \ \cdots \ \boldsymbol{\phi}_2 \ \boldsymbol{\phi}_2 \ \boldsymbol{\phi}_2 \ \cdots) \\ \hline \\ (\boldsymbol{\phi}_1'' \ \boldsymbol{\phi}_2' \ \cdots \ \boldsymbol{\phi}_2' \ \boldsymbol{\phi}_3 \ \mathbf{0}_3 \ \cdots) \end{array}$$

derived vector : $(\phi_1'' (\phi_2)_{\gamma-h-1} \phi_3 \mathbf{0}_3 \cdots)$ Parity weight:

$$w_p = 2(\gamma - h) + 2 = 2\gamma + 2 \tag{0-2}$$

Case 2a: $h < \gamma = \beta$

vectors to sum:

derived vector : $(\phi_3 \ (\phi_2)_{\gamma-h-1} \ \phi_1 \ \mathbf{0}_3 \ \cdots)$ Parity weight:

$$w_p = 2(\gamma - h) + 2 = 2\gamma + 2 \tag{0-3}$$

Case 3a: $h < \gamma < \beta$

vectors to sum:

$$\begin{array}{c}
(\mathbf{0}_{3} \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{0}_{3} \phi_{1} \phi_{2}' \cdot \cdot \cdot \cdot \phi_{2}' \phi_{2}' \phi_{2}' \cdot \cdot \cdot) \\
(\mathbf{0}_{3} \cdot \mathbf{0}_{3} \phi_{2} \phi_{2}'' \cdot \cdot \cdot) \\
+(\phi_{3} \phi_{2} \cdot \cdot \cdot \cdot \phi_{2} \phi_{2} \phi_{2} \cdot \cdot \cdot \cdot \phi_{2} \phi_{2} \phi_{2} \cdot \cdot \cdot) \\
\hline
(\phi_{3} \phi_{2} \cdot \cdot \cdot \cdot \phi_{2} \phi_{1}' \phi_{2}'' \cdot \cdot \cdot \phi_{2}'' \phi_{2}' \mathbf{0}_{3} \cdot \cdot \cdot)
\end{array}$$

derived vector : $(\phi_3 \ (\phi_2)_{\gamma-h-1} \ \phi_1' \ (\phi_2'')_{\beta-\gamma-1} \ \phi_2' \ \mathbf{0}_3 \ \cdots)$ Parity weight:

$$w_p = 2(\gamma - h) + 2 + 2(\beta - i)$$

$$= 2(\beta - h) + 2$$

$$= 2\beta + 2$$
(0-4)

Case 3b: $h < \beta < \gamma$

$$\frac{(\mathbf{0}_{3} \cdots \cdots \cdots \cdots \mathbf{0}_{3} \phi_{1} \phi'_{2} \cdots)}{(\mathbf{0}_{3} \cdots \cdots \mathbf{0}_{3} \phi_{2} \phi''_{2} \cdots \phi''_{2} \phi''_{2} \phi''_{2} \cdots)} + (\phi_{3} \phi_{2} \cdots \phi_{2} \phi_{2} \phi_{2} \cdots \phi_{2} \phi_{2} \phi_{2} \cdots)}{(\phi_{3} \phi_{2} \cdots \phi_{2} \mathbf{0}_{3} \phi'_{2} \cdots \phi'_{2} \phi_{3} \mathbf{0}_{3} \cdots)}$$

derived vector : $(\phi_3 \ (\phi_2)_{j-k-1} \ \mathbf{0}_3 \ (\phi_2')_{i-j-1} \ \phi_3 \ \mathbf{0}_3 \ \cdots)$ Parity weight:

$$w_p = 2(\beta - h) + 1 + 2(\gamma - \beta) + 1$$

= 2(\gamma - h) + 2
= 2\gamma + 2 (0-5)

From all the above cases we can conclude that the parity weight for a weight-3 RTZ sequence may be calculated as

$$w_p = 2l + 2 \tag{0-6}$$

where $l = \max\{\gamma, \beta\} - k = \max\{\gamma, \beta\}$ since k = 0

Assuming that after interleaving, another weight-3 RTZ input is produced. Let γ', β', h', l' and w'_p be similarly defined. Then the Hamming weight w_H of the turbo codeword produced can be calculated as

$$w_H = 7 + 2(l + l') (0-7)$$