Q-Step: Week 3 Lecture

Descriptive Statistics and Visualization

Spyros Kosmidis

Oxford

January 28, 2022

Roadmap

Previously

- Research Design
- Concepts and Measurement

Today

- Descriptive Statistics
 - ► Central Tendency
 - ▶ Dispersion
- Visualization
 - ► Actual Example → UK GE (2017)

Next Week

Case Selection

Understanding Data

- Everything that can be entered in a spreadsheet is Data
- Quantifying information helps us analyse complex phenomena
- It allows us to test theoretical expectations (check out week2)
- But, data analysis should not be too complex
- Today, Step 1: Summarize (and Visualize) Data
- But let's go through some definitions before we start looking at numbers

Populations and Samples

- Population→ a set of cases (someone or something) that we aim to describe or draw inferences about
- \bullet Sample \to a subset of cases drawn from a larger population that we actually use in our analysis

Populations and Samples

- Population→ a set of cases (someone or something) that we aim to describe or draw inferences about
- ullet Sample o a subset of cases drawn from a larger population that we actually use in our analysis

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

Levels of Measurement

Nominal

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

Levels of Measurement

Nominal (Mutually Exclusive -unordered- Categories, e.g. Gender)

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

- Nominal (Mutually Exclusive -unordered- Categories, e.g. Gender)
- Ordinal

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

- Nominal (Mutually Exclusive -unordered- Categories, e.g. Gender)
- Ordinal (Categories go from low to high levels in an ordered fashion, Agree-Disagree, Levels of Education, ordering does not say much about differences between levels)

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

- Nominal (Mutually Exclusive -unordered- Categories, e.g. Gender)
- Ordinal (Categories go from low to high levels in an ordered fashion, Agree-Disagree, Levels of Education, ordering does not say much about differences between levels)
- Interval

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

- Nominal (Mutually Exclusive -unordered- Categories, e.g. Gender)
- Ordinal (Categories go from low to high levels in an ordered fashion, Agree-Disagree, Levels of Education, ordering does not say much about differences between levels)
- Interval (Values are ordered but also linear in terms of their interpretation, e.g. Temperature)

A Typical Definition of Variable

A trait that varies/differs across different units/subjects in a sample or population

Levels of Measurement

- Nominal (Mutually Exclusive -unordered- Categories, e.g. Gender)
- Ordinal (Categories go from low to high levels in an ordered fashion, Agree-Disagree, Levels of Education, ordering does not say much about differences between levels)
- **Interval** (Values are ordered but also linear in terms of their interpretation, e.g. Temperature)

Measures of Central Tendency and Dispersion

How can we characterize data?

Let's start with a simple example

- Say you are interested in the 2019 election
- And you want to examine the 5 constituencies surrounding the one you voted
- You collect the data (e.g. www.parliament.uk) for the Green Party
- GreenVote={450,880,685,1750,1566}
- What is the mean level of Green support in the areas around you?
- Fairly easy task: You add up the #GreenVotes and then divide by the number of observations (i.e. 5)

You might have seen this function like this :

Let's start with a simple example

- Say you are interested in the 2019 election
- And you want to examine the 5 constituencies surrounding the one you voted
- You collect the data (e.g. www.parliament.uk) for the Green Party
- GreenVote={450,880,685,1750,1566}
- What is the mean level of Green support in the areas around you?
- Fairly easy task: You add up the #GreenVotes and then divide by the number of observations (i.e. 5)

You might have seen this function like this : $\mu = \frac{\sum\limits_{i=1}^{N} x_i}{N}$

Let's do the calculations

```
 sumofx=450+880+685+1750+1566 \\ N=5 \\ mu=sumofx/N \\ mu
```

```
## [1] 1066.2
```

1066.2 is the average number of votes the Greens got in 5 random constituencies during the 2019 election.

Let's do the calculations

```
sumofx=450+880+685+1750+1566
N=5
mu=sumofx/N
mu
```

[1] 1066.2

1066.2 is the average number of votes the Greens got in 5 random constituencies during the 2019 election.

Let's proceed with some simple examples that will help you understand Central Tendency and Dispersion

• If $X = \{4,5,5,5,6,7,15,3\}$, the mean is

• If X={4,5,5,5,6,7,15,3}, the mean is X=c(4,5,5,5,6,7,15,3) mean(X)

```
## [1] 6.25
```

• If $X = \{4,5,5,5,6,7,15,3\}$, the mean is

```
X=c(4,5,5,5,6,7,15,3)
mean(X)
```

[1] 6.25

- the median is

```
median(X)
```

[1] 5

• If $X = \{4,5,5,5,6,7,15,3\}$, the mean is

[1] 6.25

- the median is

```
median(X)
```

[1] 5

Can you think of cases where the median is preferred to the mean?

A Toy Example, Pt2

• Very often we might be interested in the values that appear more often than others. The most frequent value is called the **mode**

A Toy Example, Pt2

 Very often we might be interested in the values that appear more often than others. The most frequent value is called the mode

Data Dispersion Measures

- Range: maximum value minus minimum value of the variable in a data set
- \bullet Variance (σ^2) : sum of the squared deviations from the mean divided by n-1
- Standard deviation (σ): square root of the variance

Data Dispersion: Variance

- By inspecting deviations from the mean (i.e. the 'typical observation'),
 we are able to see how disperced the data is
- These deviations are both negative and positive, in order not to arrive at a variance of zero we square the individual distances
- Here is the formula:

Data Dispersion: Variance

- By inspecting deviations from the mean (i.e. the 'typical observation'),
 we are able to see how disperced the data is
- These deviations are both negative and positive, in order not to arrive at a variance of zero we square the individual distances
- Here is the formula:

$$\sigma^2 = \frac{\sum\limits_{i=1}^{N} (x_i - \mu)^2}{N - 1}$$

Data Dispersion: Variance

- By inspecting deviations from the mean (i.e. the 'typical observation'), we are able to see how disperced the data is
- These deviations are both negative and positive, in order not to arrive at a variance of zero we square the individual distances
- Here is the formula:

$$\sigma^2 = \frac{\sum\limits_{i=1}^{N} (x_i - \mu)^2}{N - 1}$$

```
X=c(4,5,5,5,6,7,15,3)
sqdiff=(4-mean(X))^2+(5-mean(X))^2+(5-mean(X))^2+
  (5-mean(X))^2+(6-mean(X))^2+(7-mean(X))^2+
  (15-mean(X))^2+(3-mean(X))^2
variance=sqdiff/(length(X)-1)
variance
```

- The standard deviation is the most common way to measure deviation from the mean and is simply the square root of the variance
- Best way to think of it is as a kind of rough typical distance of an observation to the mean
- Very similar to variance, in fact, only a square root away:

- The standard deviation is the most common way to measure deviation from the mean and is simply the square root of the variance
- Best way to think of it is as a kind of rough typical distance of an observation to the mean
- Very similar to variance, in fact, only a square root away:

$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{N}(x_i - \mu)^2}{N - 1}}$$

- The standard deviation is the most common way to measure deviation from the mean and is simply the square root of the variance
- Best way to think of it is as a kind of rough typical distance of an observation to the mean
- Very similar to variance, in fact, only a square root away:

$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{N}(x_i - \mu)^2}{N - 1}}$$

• The standard deviation is crucial for inferential statistics. It is key to understand the statistical significance of a parameter estimate (be patient for a couple of weeks)

```
X=c(4,5,5,5,6,7,15,3)
var(X) #Same as before when we did it by hand!
```

[1] 13.92857

```
X=c(4,5,5,5,6,7,15,3)
var(X) #Same as before when we did it by hand!
## [1] 13.92857
sd(X)
```

[1] 3.7321

```
X=c(4,5,5,5,6,7,15,3)
var(X) #Same as before when we did it by hand!
## [1] 13.92857
sd(X)
```

[1] 3.7321

N = 8 Bandwidth = 0.6647

Now let's do a more interesting example

Q: What was the mean level of turnout in 2017 in Brexit and Remain constituencies?

brseat<-read.csv("brseat.csv")</pre>

What do you observe (if anything)?

Turnout in Brexit and Remain Areas (2017)

```
summary(brseat$Turnout[brseat$Year1==2017])
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
     53.02 65.42 69.16
                            68.75 72.39 79.52
##
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
var(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 21.28935
var(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 27.68395
```

Turnout in Brexit and Remain Areas (2017)

median(brseat\$Turnout[brseat\$Year1==2017 & brseat\$remain==0])

[1] 68.50045

median(brseat\$Turnout[brseat\$Year1==2017 & brseat\$remain==1])

As a boxplot

• box: 25 and 75th percentile

• line: 50th percentile aka median

diamond: mean

circles: some outliers

```
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
```

```
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
```

. . . .

Why is turnout higher in Remain areas?

```
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
```

[1] 70.13509

Why is turnout higher in Remain areas? Is it the referendum?

```
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
Why is turnout higher in Remain areas? Is it the referendum?
mean(brseat$Turnout[brseat$Year1==2015 & brseat$remain==0])
## [1] 65.28172
mean(brseat$Turnout[brseat$Year1==2015 & brseat$remain==1])
## [1] 68.3166
```

```
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
Why is turnout higher in Remain areas? Is it the referendum?
mean(brseat$Turnout[brseat$Year1==2015 & brseat$remain==0])
## [1] 65.28172
mean(brseat$Turnout[brseat$Year1==2015 & brseat$remain==1])
## [1] 68.3166
```

Unlikely to have influenced remain and leave areas differently.

```
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==0])
## [1] 67.96286
mean(brseat$Turnout[brseat$Year1==2017 & brseat$remain==1])
## [1] 70.13509
Why is turnout higher in Remain areas? Is it the referendum?
mean(brseat$Turnout[brseat$Year1==2015 & brseat$remain==0])
## [1] 65.28172
mean(brseat$Turnout[brseat$Year1==2015 & brseat$remain==1])
## [1] 68.3166
```

Unlikely to have influenced remain and leave areas differently. The effect is uniform, yet hard to establish causality!

Some Properties (for the Future)

Next Week: Case Selection

How do the cases you choose affect the conclusions you draw?

Thank you!