

Sequence Encoding Basic Attention

國立臺灣大學資訊工程學系 陳縕儂助理教授 http://vivianchen.idv.tw

Representations of Variable Length Data

- Input: word sequence, image pixels, audio signal, click logs
- Property: continuity, temporal, importance distribution
- Example
 - ✓ Basic combination: average, sum
 - ✓ Neural combination: network architectures should consider input domain properties
 - CNN (convolutional neural network)
 - RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties

Recurrent Neural Networks

- Learning variable-length representations
- Fit for sentences and sequences of values
- Sequential computation makes parallelization difficult
- No explicit modeling of long and short range dependencies

Convolutional Neural Networks

- Easy to parallelize
- Exploit local dependencies
 - ✓ Long-distance dependencies require many layers

Attention

- Encoder-decoder model is important in NMT
- RNNs need attention mechanism to handle long dependencies
- Attention allows us to access any state

Machine Translation with Attention

Dot-Product Attention

- Input: a query q and a set of key-value (k-v) pairs to an output
- Output: weighted sum of values

Inner product of query and corresponding key

$$A(q, K, V) = \sum_{i} \left(\frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i \right)$$

- \checkmark Query q is a d_k -dim vector
- \checkmark Key k is a d_k -dim vector
- Value v is a d_v -dim vector

Dot-Product Attention in Matrix

- Input: multiple queries q and a set of key-value (k-v) pairs to an output
- Output: a set of weighted sum of values

$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i$$

$$A(Q, K, V) = \operatorname{softmax}(QK^T)V$$

$$[|Q| \times d_k] \times [d_k \times |K|] \times [|K| \times d_v]$$

softmax row-wise

$$= [|Q| \times d_v]$$

