Notas de cómo hacer algunas cosas con R

Marcos Bujosa

July 27, 2024

Algunas notas de cómo hacer cosas en R.

Carga de algunas librerías de R que vamos a usar aquí

```
library(readr)  # para leer ficheros CSV
library(zoo)  # para leer datos con indices temporales
library(ggplot2)
library(jtools)  # para representación resultados estimación (summ)
```

y además fijamos los parámetros por defecto para las figuras en png del notebook

```
# fijamos el tamaño de las figuras que se generan en el notebook
options(repr.plot.width = 12, repr.plot.height = 4, repr.plot.res = 200)
```

1 De CSV a data_frame

```
datos_df <- read_csv('datos/GNPvsMelanoma.csv',show_col_types = FALSE)
head(datos_df, 3)</pre>
```

obs	GNP	Melanoma
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1936	193.0	1.0
1937	203.2	0.8
1938	192.9	0.8

2 De data_frame a ts

Este método permite volver al data_frame

obs	GNP	Melanoma
1936	193.0	1.0
1937	203.2	0.8
1938	192.9	0.8

3 De CSV a ts (vía zoo)

3.1 Primero zoo

3.2 Luego a ts

```
data_ts = as.ts( data )
class(data_ts)
head(data_ts, 3)
plot(data_ts[,'GNP'])
```

- 1. 'mts'
- 2. 'ts'

3. 'matrix'

GNP	Melanoma
193.0	1.0
203.2	0.8
192.9	0.8

Figure 1: A matrix: 3 Œ 2 of type dbl

4 De dataframe a ts

```
#+BEGIN_SRC jupyter-R
tseries <- as.ts( read.zoo( datos_df ) )
head(tseries)
plot(tseries)</pre>
```

GNP	Melanoma
193.0	1.0
203.2	0.8
192.9	0.8
209.4	1.4
227.2	1.2
263.7	1.0

5 De ts a data_frame

	date	GNP	Melanoma
	< date >	<dbl></dbl>	<dbl></dbl>
1	1936-01-01	193.0	1.0
2	1937-01-01	203.2	0.8
3	1938-01-01	192.9	0.8

Figure 2: A matrix: 6 Œ 2 of type dbl

6 Resumen: dos formas de pasar de datos anuales en CSV a ts

Una forma

obs	GNP	Melanoma
1936	193.0	1.0
1937	203.2	0.8

donde read_csv('datos/GNPvsMelanoma.csv',show_col_types = FALSE) es un data_frame Otra forma (vía zoo)

```
# library(zoo)
data_ts = as.ts( read.zoo('datos/GNPvsMelanoma.csv', header=TRUE, index.column = 1, sep=",", FUN = as.yearmon) )
head(data_ts, 3)
```

GNP	Melanoma
193.0	1.0
203.2	0.8
192.9	0.8

7 Gráfico de dos series temporales con sendos ejes verticales

```
# Mostrando la serie GNP
p <- autoplot(as.zoo(data_ts[,'GNP']))
p <- p + geom_line(aes(y = as.zoo(data_ts[,'GNP'])), colour="blue")

# como tienen escalar distintas se requiere ajustar los datos
sf<-max(data_ts[,'GNP'])/max(data_ts[,'Melanoma'])

# Se agrega Melanoma a Y multiplicada por el factor
p <- p + geom_line(aes(y = as.zoo(data_ts[,'Melanoma'])*sf), colour="red")
p <- p + scale_y_continuous(sec.axis = sec_axis(~./sf, name = "Incidencia casos de melanoma"))</pre>
```


7.1 Desde el dataframe

```
# Mostrando la serie GNP
p <- ggplot(DF, aes(x = date))</pre>
p <- p + geom_line(aes(y = GNP), colour="blue")</pre>
{\it \# como \ tienen \ escalar \ distints \ se \ requiere \ ajustar \ los \ datos}
sf<-max(DF['GNP'])/max(DF['Melanoma'])</pre>
\# Se agrega Melanoma a Y multiplicada por el factor
p <- p + geom_line(aes(y = Melanoma*sf), colour="red")</pre>
p <- p + scale_y_continuous(sec.axis = sec_axis(~./sf, name = "Casos de melanoma"))</pre>
p \leftarrow p + labs(y = "GNP",
              x = "Fechas")
# Se modifican los colores de los ejes
p <- p + theme(</pre>
    axis.title.y.left=element_text(color="blue"),
    axis.text.y.left=element_text(color="blue"),
    axis.ticks.y.left = element_line(color = "blue"),
    axis.title.y.right=element_text(color="red"),
    axis.text.y.right=element_text(color="red"),
    axis.ticks.y.right = element_line(color = "red")
```


7.1.1 Y otra manera con xyplot (de latticeExtra)

Y ahora generamos el gráfico

```
library(latticeExtra) # alternativa para gráficos con doble eje vertical (doubleYScale)
kk <- xyplot(GNP + Melanoma ~ date, DF, type="l")
# se agrega dos ejes Y se construye cada serie por separado
obj1 <- xyplot(GNP ~ date, DF, type = "l" , lwd=2, ylab="GNP (miles de millones de $)", xlab="Years")
obj2 <- xyplot(Melanoma ~ date, DF, type = "l", lwd=2, ylab="Casos de melanoma")
# --> se realiza la grafica con el segundo eje Y
doubleYScale(obj1, obj2, add.ylab2 = TRUE)
```


8 Añadir nueva columna a un ts

```
d_GNP = diff(datos_ts[,"GNP"])
d_Melanoma = diff(datos_ts[,"Melanoma"])
```

5f061e65-c149-4dee-bc7d-a5338e092fb4

este método cambia el nombre de las primeras columnas

```
serie = ts.union(data_ts, d_GNP, d_Melanoma)
head(serie,3)
```

76659920-41c9-4bd6-a654-09e26c8b2a20

Este método es mejor, pero es pesado

```
serie = ts.union(GNP = data_ts[,'GNP'], Melanoma = data_ts[,'Melanoma'], d_GNP, d_Melanoma)
head(serie,3)
```

db11562d-7198-478f-953f-40fdfaf12282

cd42271e-0f3a-4cd9-a1c4-1cdf0b4cb9c9

9 Otros

```
mal_modelo <- lm(d_GNP ~ d_Melanoma)
summ( mal_modelo )</pre>
```

1ceafe33-19a8-41f8-885a-cec3987c19fa

```
plot(as.ts(resid(mal_modelo)))
abline(0,0)
```

9fb7d7f2-2948-46c7-8240-ca2e9384cc2d