Interval Estimation

Feng-Chang Lin

Department of Biostatistics
University of North Carolina at Chapel Hill

flin@bios.unc.edu

(C&B §9)

Lin (UNC-CH) Bios 661 April 9, 2019 1 / 23

Introduction

- **Example 1** Suppose X_1, \ldots, X_n are iid from $N(\theta, 1)$.
- We know that $P_{\theta}(\bar{X} = \theta) = 0$ since \bar{X} is a continuous random variable.
- Therefore, even though \bar{X} is a good estimator of θ , it is never equal to θ .

Lin (UNC-CH) Bios 661 April 9, 2019 2 / 23

Introduction (cont'd)

- Example 2 $X \sim \text{Binomial}(n, \theta), \theta \in (0, 1).$
- X/n is the MLE of θ .
- $P_{\theta}(X/n = \theta)$ will be 0 unless θ is one of $\{1/n, 2/n, \dots, (n-1)/n\}$.
- If $\theta = i/n$ for some $i \in \{1, 2, \dots, n-1\}$, then

$$P_{\theta}(X/n = \theta) = P(X = i) = \binom{n}{i} \left(\frac{i}{n}\right)^{l} \left(1 - \frac{i}{n}\right)^{n-l}.$$

• This probability can be very small, especially for large n. For example, if n=20, $\theta=1/2$, then $P_{\theta}(X/n=\theta)$ is about 0.18, and if n=100, it is about 0.08.

4□ > <@ > < \(\bar{a}\) >
E < <p>O< </p>

Lin (UNC-CH) Bios 661 April 9, 2019 3 / 23

Introduction (cont'd)

- In many situations point estimators have low (or zero) probability of being equal to the parameter they estimate.
- If one considers estimators that are intervals instead of single points, that shortcoming can be overcome.
- In the normal mean problem, the interval $(\bar{X}-1.96/\sqrt{n},\bar{X}+1.96/\sqrt{n})$ has probability 0.95 of containing the true parameter value θ .

Lin (UNC-CH) Bios 661 April 9, 2019 4 / 23

Interval Estimator

- Interval Estimator (L(X), U(X)), where L(X) and U(X) are statistics, L(X) < U(X).
- Denoted by either (L(X), U(X)) or [L(X), U(X)].
- One-sided intervals: e.g. $L(X) = -\infty$ or $U(X) = \infty$ (depending on Θ).
- Coverage probability for (L(X), U(X)):

$$CP(\theta) = P_{\theta}(\theta \in (L(X), U(X))),$$

as a function of θ .

• Confidence Coefficient (Confidence Level): $\inf_{\theta \in \Theta} CP(\theta)$.

April 9, 2019

5/23

Lin (UNC-CH) Bios 661

Interval Estimator (cont'd)

• **Example** $X \sim \text{Bernoulli}(\theta), \theta \in [0, 1]$. If one has a confidence interval [0.4, 0.5 + 0.2X]

$$CP(\theta) = \left\{ egin{array}{ll} 0, & 0 \leq heta < 0.4, \\ 1, & 0.4 \leq heta \leq 0.5, \\ heta, & 0.5 < heta \leq 0.7, \\ 0, & 0.7 < heta \leq 1. \end{array}
ight.$$

Confidence coefficient = 0.

Lin (UNC-CH) Bios 661 April 9, 2019 6 / 23

How to Find a Confidence Interval

• Inverting a test: Consider $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. By inverting the acceptance region of a level α test

$$A(\theta_0) = \{x : \delta(x, \theta_0, \alpha) = 0\}$$

with a test function $\delta(x)$, written as $\delta(x, \theta, \alpha)$, one can define

$$C(x) = \{ \theta \in \Theta : \delta(x, \theta, \alpha) = 0 \},\$$

as a subset of Θ .

Then,

$$P_{\theta}(\theta \in C(x)) = P_{\theta_0}(\delta(X, \theta_0, \alpha) = 0)$$

= 1 - P_{\theta_0}(\delta(X, \theta_0, \alpha) = 1) \geq 1 - \alpha.

Bios 661

• Thus C(x) is a $1 - \alpha$ confidence interval of θ .

7/23

• **Example** *X* is a random sample of size *n* from N(θ , 1). $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ with $\alpha = 0.05$.

$$\delta(X, \theta_0, \alpha) = I(|\bar{X} - \theta_0| > 1.96/\sqrt{n}).$$

That means,

$$P_{\theta_0}(\bar{X}-1.96\frac{1}{\sqrt{n}}\leq \theta_0\leq \bar{X}+1.96\frac{1}{\sqrt{n}})=0.95.$$

• The statement is true for every θ_0 . Hence, we can write

$$P_{\theta}(\bar{X} - 1.96 \frac{1}{\sqrt{n}} \le \theta \le \bar{X} + 1.96 \frac{1}{\sqrt{n}}) = 0.95.$$

• Hence, the 0.95 confidence interval is

$$C(x) = (\bar{x} - 1.96/\sqrt{n}, \bar{x} + 1.96/\sqrt{n}).$$

Lin (UNC-CH) Bios 661 April 9. 2019 8/23

- **Example** X is a random sample of size n from Exponential(θ).
- To test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, the acceptance region of the likelihood ratio test (LRT) statistic is

$$A(\theta_0) = \left\{ \boldsymbol{x} : \left(\frac{\sum_{i=1}^n x_i}{\theta_0} \right)^n e^{-\sum_{i=1}^n x_i/\theta_0} \ge c \right\}$$

• Inverting this acceptance region gives the 1 $-\alpha$ confidence interval

$$C(x) = \left\{\theta : \left(\frac{\sum_{i=1}^n x_i}{\theta}\right)^n e^{-\sum_{i=1}^n x_i/\theta} \ge c\right\}.$$

• Check C&B on how to find the upper and lower bound for θ .

◆ロト ◆問 → ◆注 > ◆注 > 注 り Q ©

Lin (UNC-CH) Bios 661 April 9, 2019 9 / 23

- Lower confidence bounds: $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$. Inverting a test gives the interval $[L(X), \infty)$.
- Upper confidence bounds: $H_0: \theta = \theta_0$ versus $H_1: \theta < \theta_0$. Inverting a test gives the interval $(-\infty, U(X)]$.
- **Example** Let X_1, \dots, X_n be a random sample from $N(\theta, \sigma^2)$.
- Consider constructing a 1 $-\alpha$ upper confidence bound for μ .
- ullet The size α test acceptance region is

$$A(\theta_0) = \left\{ \mathbf{x} : \frac{\bar{\mathbf{x}} - \theta_0}{\mathbf{s}/\sqrt{n}} \ge t_{n-1,\alpha} \right\}.$$

• The 1 $-\alpha$ confidence region (or set) is

$$C(x) = \left\{\theta : \bar{x} - t_{n-1,\alpha} \frac{s}{\sqrt{n}} \ge \theta\right\}$$

Lin (UNC-CH) Bios 661 April 9, 2019 10 / 23

- **Pivot (Pivotal Quantity)** $Q(X, \theta)$ is a pivot if the distribution of $Q(X, \theta)$ does not depend on θ .
- Examples

Family	Density	Pivot
Location	$f(x-\mu)$	$ar{X} - \mu$
Scale	$\frac{1}{\sigma}f(\frac{1}{\sigma})$	$\frac{\bar{X}}{\sigma}$
Location-Scale	$\frac{1}{\sigma}f(\frac{x-\mu}{\sigma})$	$\frac{\bar{X}-\mu}{\sigma}$

Lin (UNC-CH) Bios 661 April 9, 2019 11 / 23

Pivotal Quantity

- **Example** If X_1, \dots, X_n are iid $N(\mu, \sigma^2)$, then $(\bar{X} \mu)/(\sigma/\sqrt{n})$ is a pivot.
- If σ^2 is known, we can use this pivot to calculate a confidence interval for μ .
- Let $z_{1-\alpha/2}$ be the $(1-\alpha/2)$ th percentile of a standard norm distribution. One has

$$1 - \alpha = P\left(-z_{1-\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{1-\alpha/2}\right)$$
$$= P\left(\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

• The 1 – α confidence interval is $(\bar{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}})$.

- ◆ロト ◆御 ト ◆注 ト ◆注 ト · 注 · かへの

Lin (UNC-CH) Bios 661 April 9, 2019 12 / 23

Pivotal Quantity (cont'd)

• What if σ^2 is unknown, what pivot can we use to calculate a confidence interval for μ ?

Lin (UNC-CH) Bios 661 April 9, 2019 13 / 23

Pivotal Quantity (cont'd)

- **Example** X is a random sample of size n from exponential(θ).
- Construct a 95% (1 $-\alpha$ = 0.95) confidence interval for θ .
- This is a scale family. Why?
- Let $\mathit{Q}(\mathit{X},\theta) = 2n\bar{\mathit{X}}/\theta \sim \chi^2_{2n}$. Then,

$$\begin{aligned} 1 - \alpha &= P\left(a < Q(X, \theta) < b\right) = P\left(a < 2n\bar{X}/\theta < b\right) \\ &= P\left(2n\bar{X}/b < \theta < 2n\bar{X}/a\right). \end{aligned}$$

- Hence, the 1α confidence interval for θ is $(2n\bar{X}/b, 2n\bar{X}/a)$.
- How to choose a and b? One may let $a = F^{-1}(\alpha_1)$ and $b = F^{-1}(1 \alpha_2)$, where $\alpha_1 + \alpha_2 = \alpha$.

14 / 23

Lin (UNC-CH) Bios 661 April 9, 2019

Minimization of Expected Length

- How to choose α_1 and α_2 ? A convenient choice is $\alpha_1 = \alpha_2 = \alpha/2$.
- One possible criterion is "the shortest interval".
- Since the length can be considered as a function of \bar{X} , we may calculate the "expected length"

$$E\left(2n\bar{X}/a-2n\bar{X}/b\right)=2n\theta\left(\frac{1}{a}-\frac{1}{b}\right).$$

- We choose a and b (or equivalently, α_1 and α_2) such that the expected length is minimized.
- For a fixed θ , the solution depends on n.
- Examples: for n = 1, $\alpha_1 = 0.05$, $\alpha_2 = 0$; for n = 10, $\alpha_1 = 0.044$, $\alpha_2 = 0.006$; for n = 20, $\alpha_1 = 0.04$, $\alpha_2 = 0.01$.

Lin (UNC-CH) Bios 661 April 9, 2019 15 / 23

Another Example from Scale Family

- **Example** X is a random sample of size n from $N(\mu, \sigma^2)$.
- How do we construct a 1 α confidence interval for σ^2 ?
- If μ is unknown, the pivot is

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

What if μ is known? What is the pivot?

16/23

Lin (UNC-CH) Bios 661 April 9, 2019

Pivoting the CDF

- Suppose T is a statistic with cdf F_T . Using $F_T(t|\theta)$ as a pivot is feasible if $F_T(t|\theta)$ is a decreasing or increasing function in θ for each fixed t.
- If $F_T(t|\theta)$ is a decreasing function of θ , to construct a 1 $-\alpha$ confidence interval, we find U(t) and L(t) such that

$$P(T \le t | \theta = U(t)) = \alpha_1$$
, and $P(T \ge t | \theta = L(t)) = \alpha_2$.

with "tail probability" α_1 and α_2 satisfying $\alpha_1 + \alpha_2 = \alpha$.

• One can prove $\{\theta : \alpha_1 \le F_T(t|\theta) \le 1 - \alpha_2\} = \{\theta : L(t) \le \theta \le U(t)\}$ (Theorem 9.2.12 in C&B).

Pivoting the CDF (cont'd)

- Example If X_1, \ldots, X_n are iid with pdf $f(x|\mu) = e^{-(x-\mu)}I_{[\mu,\infty)}(x)$.
- Then, $Y = X_{(1)}$ is sufficient for μ with pdf

$$f_Y(y|\mu) = ne^{-n(y-\mu)}I_{[\mu,\infty)}(y).$$

• Since the CDF $F_Y(y|\mu) = 1 - e^{-n(y-\mu)}$, $\mu \le y < \infty$, is decreasing in μ , we can have

$$\int_{U(y)}^y n e^{-n(u-U(y))} du = \frac{\alpha}{2}, \text{ and } \int_y^\infty n e^{-n(u-L(y))} du = \frac{\alpha}{2}.$$

• The solutions for L(y) and U(y) are

$$L(y) = y + \frac{1}{n} \log(\alpha/2)$$
, and $U(y) = y + \frac{1}{n} \log(1 - \alpha/2)$.

18 / 23

Lin (UNC-CH) Bios 661 April 9, 2019

Pivoting the CDF (cont'd)

• The 1 $-\alpha$ confidence interval for μ is

$$C(y) = \left\{ \mu : y + \frac{1}{n} \log(\alpha/2) \le \mu \le y + \frac{1}{n} \log(1 - \alpha/2) \right\}.$$

- Can we invert the acceptance region of the LRT test to obtain the confidence interval?
- Can we use the pivotal quantity to obtain the confidence interval?What is the pivot?
- If these intervals are different, which one has a shorter length?
- Check Exercise 9.25 in C&B.

Lin (UNC-CH) Bios 661 April 9, 2019 19 / 23

Evaluating Interval Estimators

- Optimizing the length: Minimization of |a b| is generally not easy.
- (Theorem 9.3.2 in C&B) For any unimodal density g with mode in [a, b], subject to total tail area $\alpha_1 + \alpha_2 = \alpha$. Then |a b| is minimized by a and b with g(a) = g(b).
- Optimizing the expected length: we have seen the example.
- Check Example 9.3.4 for which the application of Theorem 9.3.2 will not give the shortest confidence interval.

Exact versus Approximate Confidence Intervals

• Exact confidence interval:

$$P(L(X) < \theta < U(X)) = 1 - \alpha$$

Approximate confidence interval:

$$P(L(X) < \theta < U(X)) \approx 1 - \alpha$$

- Let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$. The 1α confidence interval for μ could be $\bar{X} \pm t_{n-1,1-\alpha/2} S/\sqrt{n}$. Exact or approximate?
- The 1 α confidence interval for σ^2 could be $((n-1)S^2/b, (n-1)S^2/a)$ for some a and b. Exact or approximate?

Lin (UNC-CH) Bios 661 April 9, 2019 21 / 23

Exact versus Approximate CI (cont'd)

• Let X_1, \ldots, X_n be iid Beroulli(θ). The MLE of θ is $\hat{\theta} = \bar{X}$. According to the CLT,

$$\sqrt{n}(\hat{\theta} - \theta) \rightarrow_{d} N(0, \sigma^{2}),$$

where

$$\sigma^2 = Var(X_1) = \theta(1-\theta).$$

• With $\hat{\sigma}^2 = \bar{X}(1 - \bar{X})$, one can construct a $1 - \alpha$ approximate confidence interval

$$\bar{X} \pm z_{1-\alpha/2} \sqrt{\frac{\bar{X}(1-\bar{X})}{n}}.$$

Lin (UNC-CH) Bios 661 April 9, 2019 22 / 23

Exact versus Approximate CI (cont'd)

- In fact, an **exact** confidence interval can be constructed but may not have "exactly" 1α confidence level.
- Check Example 9.2.11 in C&B for another binomial case.
- Check Example 9.2.15 in C&B for a Poisson case.

Lin (UNC-CH) Bios 661 April 9, 2019 23 / 23