සියලුම හිමිකම් ඇවිරිණි / All Rights Reserved

අධාාපත දෙපාර්තමේන්මුය්මුinල් මුහුන්ent අධාාපත නම් දෙපාර්තමේන්තුව අධාාපත දෙපාර්තමේන්තුව Provincial Equation of Education වන අදුල් වර්තමේන්තුව

Provincial Department of Education Provincial Dep

පළමු වාර පරීක්ෂණය - 11 ඉේණිය - 2020

First Term Test - Grade 11 - 2020

නම/විභාග අංකය :

ගණිතය - I

කාලය : පැය **02** යි.

- සෑම පුශ්නයකට ම මෙම පතුයේ ම පිළිතුරු සපයන්න.
- ${f A}$ කොටසේ සියලු ම නිවැරදි පිළිතුරු සඳහා ලකුණු ${f 2}$ ක් බැගින් ද ${f ,B}$ කොටසේ එක් පුශ්නයක නිවැරදි පිළිතුරු සඳහා ලකුණු 10 බැගින් ද හිමි වේ.

${f A}$ කොටස

- $\left(3.8\right)^2 = 14.44$ නම් $\sqrt{14}$ හි අගය, වඩාත් ආසන්න පළමු දශමස්ථානයට සොයන්න. (1)
- (2) රූපයේ දක්වෙන තොරතුරු අනුව x හි අගය සොයන්න.

පරිධිය $44\mathrm{cm}$ වන වෘත්තාකාර ආස්තරයකින් 90° කේන්දික ඛණ්ඩයක් කපා (3) ඉවත් කළ කොටසක් රූපයේ දුක්වේ. එහි AB චාප දිග සොයන්න.

- (4) දර්ශක අංකනයෙන් ලියන්න.
- lg b = 3
- (5) පෙට්ටියක එකම තරමේ කාඩ් පත් 15 ක් ඇත. ඉන් 9 ක් රතු පාට වන අතර ඉතිරි ඒවා නිල් පාට ය. සමන් මෙම පෙට්ටියෙන් අහඹු ලෙස ගත් කාඩ් පත නිල් පාට එකක් වීමේ සම්භාවිතාවය ලියන්න.
- (6) විසඳුන්න.

(7) රූපයේ දක්වෙන ABCD රොම්බසයේ BD = $12~\mathrm{cm}$ සහ AC = $16~\mathrm{cm}$ වේ. දී ඇති තොරතුරු අනුව DX+CX+DC අගය සොයන්න.

- (8) සුළු කරන්න. $\frac{x}{5} + \frac{x-1}{2}$
- (9) රූපයේ දී ඇති තොරතුරු අනුව x හා y හි අගය සොයන්න.

(10) කේන්දුය O වන වෘත්තයේ AB ජාහායක් වන අතර එහි මධා ලක්ෂාය C වේ. OC හා AB අතර සම්බන්ධයක් ලියන්න.

(11) රූපයේ දක්වෙන සිලින්ඩරාකාර බඳුනේ පතුලේ පරිධිය $10.5 {
m cm}$ ක් වන අතර එහි උස $20 {
m cm}$ කි. මෙම බඳුනේ වකු පෘෂ්ඨ වර්ගඵලය සොයන්න.

- x+2y=7 මෙම සමීකරණ විසඳීමෙන් තොරව x+y හි අගය සොයන්න. 2x+y=11
- (13) AB සරල රේඛාවේ අනුකුමණය සොයන්න.

(14) වෘත්තයේ AB හා CD ජහා දෙක X හි දී ඡේදනය වේ. දී ඇති තොරතුරු අනුව $D\hat{X}C$ හි අගය සොයන්න.

(15) රූපයේ දක්වෙන ටැංකියේ ඇති ජලය, මිනිත්තුවකට $8\,\ell$ ක සීගුතාවකින් එහි වූ කරාමයෙන් ඉවත් කරයි. මිනිත්තු 30 දී ඉවත්වන ජල පරිමාව සොයන්න.

(16) කුඩා ම පොදු ගුණාකාරය සොයන්න.

 $2x, 3x^2y, 4$

(17) හරස්කඩ වර්ගඵලය $8.5~{
m cm}^2$ වන ඝන වීදුරු පිුස්මයක් රූපයේ දැක්වේ. එහි පරිමාව සොයන්න.

(18) එක්තරා පළාත් පාලන ආයතනයක් තම බල පුදේශයේ පිහිටි නිවසක් රු. 60 000 ලෙස තක්සේරු කර ඇත. මෙම නිවස සඳහා වාර්ෂිකව රු. 2400 ක් වරිපනම් බදු අය කරයි. පළාත් පාලන ආයතනය අය කළ වාර්ෂික වරිපනම් බදු පුතිශතය සොයන්න.

(19) PQRS සමාන්තරාසුයේ SR පාදය T තෙක් දික්කර ඇත. PT සහ SU රේඛා RQ, පාදය U හි දි ඡේදනය වේ. රූපයේ දී ඇති තොරතුරු අනුව පහත පුකාශ නිවැරදි නම් කොටුව තුළ
✓ ලකුණ ද වැරදි නම් ✗ ලකුණ ද යොදන්න.

- (i) PQT තුිකෝණයේ වර්ගඵලය PQRS සමාන්තරාසුයේ වර්ගඵලයෙන් හරි අඩකට සමාන වේ.
- (ii) PQT තිකෝණයේ වර්ගඵලය PSU තිකෝණයේ වර්ගඵලය ට සමාන වේ.

(20) පාසලේ නිවාසාන්තර කුීඩා උත්සවය සඳහා සකස් කළ තරු නිවාසයට 60m නැගෙනහිර දිශාවෙන් සඳු නිවාසයක්, එහි සිට 1200ක දිගංශයකින් 50m දුරින් හිරු නිවාසයක් පිහිටා ඇත. මෙම තොරතුරු පහත දළ රූපයේ දක්වන්න.

(21) පහත වගුවේ හිස්තැන් සම්පූර්ණ කරන්න.

පන්ති පුාන්තර	මධා අගය (x)	අපගමනය (d)
4 - 8	6	
8 - 12	10	0
12 - 16		+ 4

- (22) සාධක සොයන්න.
- $x^2 64$
- (23) දී ඇති වෙන් රූපයේ දක්වෙන තොරතුරු අනුව $\left(A \cup B\right)'$ කුලකය අවයව සහිතව ලියන්න.

(24) කේන්දුය O වන වෘත්තයේ $\stackrel{\wedge}{QPR} = 70^0$ කි. දී ඇති තොරතුරු අනුව x හා y හි අගය සොයන්න.

(25) AB ට සහ AC ට සමදුරින් චලනය වන ලක්ෂායක පථය වන AS, Q හි දී හමුවන සේ, AB ට 5cm ක නියත දුරකින් චලනය වන ලෂායක පථය, පථ පිළිබඳ දැනුම භාවිතයෙන් පහත දළ රූපයේ දක්වන්න.

B කොටස

(1) (a) එක්තරා වැඩක් නිම කිරීමට මිනිස් දින 60 ක් අවශා බව ගණනය කර ඇත. එම වැඩයෙන් $\frac{2}{3}$ ක් දින 5 ක් තුල නිම කළ යුතු වේ. ඒ සඳහා යෙදවිය යුතු මිනිසුන් ගණන සොයන්න.

- (b) රත්නායක මහතා තමා සතු මුදලින් $\frac{1}{8}$ ක් පුණා ආයතනයකට පරිතාහාග කර, ඉතිරියෙන් $\frac{4}{7}$ වහාපාරික කටයුතු සඳහා යෙදවීය.
 - (i) පුණා‍ය අායතනයට පරිත‍යාග කිරීමෙන් පසු රත්නායක මහතාට ඉතිරි වූ කොටස මුළු මුදලින් කවර භාගයක් ද?
 - (ii) රත්තායක මහතා තම වහාපාරයට යෙද වූ කොටස මුළු මුදලින් කොපමණ භාගයක් දැයි සොයන්න.

(iii) පුණා ආයතනයට පරිතාහාග කර තම වහාපාරයට යෙදවීමෙන් පසුව තවත් රු. 60 000 ක් ඉතිරි විය. රත්නායක මහතා සතුව තිබූ මුළු මුදල ගණනය කරන්න.

(2) ABCD යනු 21cm දිග 18cm පළල සෘජුකෝණාසු හැඩැති ලෝහ තහඩුවකි. එහි දිගින් $\frac{1}{3}$ ක් අරය වන සේ ද, AD හා AB පාද මත එක් එක් මායිම් පිහිටන සේ ද, 90° ක කේන්දු කෝණයත් සහිත කේන්දික ඛණ්ඩයක් කපා ඉවත් කළ යුතුව ඇත.

5

(i) ඉහත ආකාරයට කපා ඉවත් කරන කේන්දික බණ්ඩ කොටස මිනුම් සහිතව රූපයේ ඇඳ දක්වන්න.

- (ii) කපා ඉවත් කරන කේන්දික ඛණ්ඩයේ චාප දිග සොයන්න.
- (iii) 90º ක කේන්දු කෝණයක් සහිතව කේන්දික ඛණ්ඩය කපා ඉවත් කළ පසු ඉතිරිවන ලෝහ තහඩුවේ වර්ගඵලය සොයන්න.
- (iv) ඉහත ආකාරයට කපා ඉවත් කළ පසුව ඉතිරිවන ලෝහ තහඩුව වටා 5cm ක පරතරයක් සහිතව ඇණ සවිකිරීමට අවශාව ඇත. ඒ සඳහා අවශාවන ඇණ සංඛ්යාව සොයන්න.

- (3) (a) පළාත් පාලන ආයතනයක් තම බල පුදේශයේ පිහිටි නිවසක් සඳහා තක්සේරු වටිනාකමින් 4% ක් වරිපනම් බදු අය කරයි. මෙම පළාත් පාලන බල පුදේශයේ පිහිටි පුියන්ත මහතා තම නිවසට රු. 560 ක් කාර්තුවකට වරිපනම් බදු ගෙවයි.
 - (i) පියන්ත මහතා වර්ෂයකට ගෙවන වරිපනම් බදු මුදල සොයන්න.
 - (ii) පියන්ත මහතාගේ නිවසේ තක්සේරු වටිනාකම සොයන්න.

(b) අබ්දුල් මහතා තම වාර්ෂික ආදායම සඳහා පහත වගුවේ ආකාරයට ආදායම් බදු ගෙවයි.

වාර්ෂික ආදායම (රු)	ආදායම් බදු පුතිශතය
පළමු 500 000	බද්දෙන් නිදහස්
ඊළඟ 500 000	4%
ඊළඟ 500 000	8%

අබ්දුල් මහතා තම වහාපාරවලින් වසරකට රු. 670 000 ක් ආදායමක් ලබන අතර රැකියාවෙන් මාසිකව රු. 40 000 ක වැටුපක් ලබයි.

(i) අබ්දුල් මහතා තම රැකියාවෙන් වසරකට ලබන ආදායම සොයන්න.

(ii) ඔහු වසරකට ලබන මුලු ආදායම අනුව ගෙවිය යුතු ආදායම් බදු මුදල සායන්න.

(4) (a) පෙට්ටියක එක හා සමාන A සහ B ලෙස නම් කළ මළු දෙකක් ඇත. එම මළු තුල එක හා සමාන රතු සහ නිල් බල්බ ඇත. ඒ පිළිබඳ තොරතුරු පහත වගුවේ දුක්වේ.

	A - මල්ල	B - මල්ල
රතු බල්බ	1	3
නිල් බල්බ	2	2

ශිෂායෙක් ඉහත පෙට්ටියෙන් අහඹු ලෙස මල්ලක් තෝරා ගැනීමේ දී ලැබිය හැකි අවස්ථා දක්වෙන අසම්පූර්ණ රුක් සටහන සම්පූර්ණ කරන්න.

මල්ලක් තෝරා ගැනීම

බල්බයක් තෝරා ගැනීම

- (ii) තෝරාගත් මල්ලෙන් අහඹු ලෙස බල්බයක් ඉවතට ගන්නා ලදී. ගන්නා ලද බල්බය නිල්පාට හෝ රතුපාට වීම දැක්වීමට ඉහත රුක් සටහන දීර්ඝ කරන්න.
- (iii) රුක් සටහන ඇසුරින් ගන්නා ලද බල්බය රතු පාට වීමේ සම්භාවිතාවය සොයන්න.
- (b) (i) B මල්ලෙන් අහඹු ලෙස බල්බයක් ගෙන ආපසු දමා නැවතත් එකක් ගන්නා ලදී. මෙම පරීක්ෂණයට අදාළ නියැදි අවකාශය පහත කොටු දලෙහි දක්වන්න.
 - (ii) ගන්නා ලද බල්බ දෙකම එකම වර්ණයෙන් යුක්ත වීමේ සිද්ධියට අදාල ලක්ෂ වට කර දක්වා එහි සම්භාවිතාවය සොයන්න.

(5) (a) එක්තරා දුම්රියක් A නම් දුම්රිය නැවතුම් පොළේ සිට B දුම්රිය නැවතුම්පොළ වෙත ඒකාකාර වේගයෙන් $___$ ගමන් කර එහි පැයක කාලයක් නැවතී සිට, නැවත C දුම්රිය නැවතුම්පොළ වෙත ගමන් කරයි. දුම්රියෙහි චලිතය දක්වීමට අඳින ලද දුර කාල පුස්තාරයක් පහත දක්වේ.

- (i) A දුම්රිය නැවතුම්පොළ සිට B දුම්රිය නැවතුම්පොළ තෙක් ගමන් කරන වේගය සොයන්න.
- (ii) B දුම්රිය නැවතුම්පොළ සිට C දුම්රිය නැවතුම්පොළ වෙත $40 \, \mathrm{kmh^{-1}}$ ඒකාකාර වේගයෙන් ගමන් කළේ නම්, B හා C දුම්රිය නැවතුම් පොළ අතර දුර සොයා ඉහත දුරකාල පුස්තාරයේ (S) හිස්තැන මත ලියා දක්වන්න.
- (b) අ. පො. ස. (උ. පෙ.) පංතියට ඇතුලත් වූ සිසුන් ගණිතය, විදහාව, තාක්ෂණවේදය, කලා සහ වානිජ අංශ සඳහා ඇතුලත් වූ සංඛ්‍යාව දක්වීමට අදින ලද වට පුස්තාරයක් රූපයේ දක්වේ. විදහාව සහ තාක්ෂණවේදය අංශයේ සමාන සිසුන් සංඛ්‍යාවක් ඇතුලත් වී ඇත.

- (i) විදහාව අංශයට ඇතුත් වූ සිසුන් සංඛ්‍යාව නිරූපා කේන්දු ඛණ්ඩයේ කෝණයේ අගය සොයන්න.
- (ii) ගණිතය අංශයට ඇතුළත් වූ සිසුන් සංඛාහව 30 නම් උසස් පෙළ අංශයේ සිටින මුළු සිසුන් ගණන සොයන්න.
- (iii) ගණිත අංශයේ සිටින සිසුන්ගෙන් 6 දෙනෙක් එම අංශයෙන් ඉවත්ව විදාහ අංශයට ඇතුළත් විය. ඒ අනුව ගණිත අංශයේ සිසුන් සංඛාහව නිරූපණය වන කේන්දික ඛණ්ඩයේ කෝණයේ අගය සොයන්න.

සියලුම හිමිකම් ඇව්රිණි / All Rights Reserved

ත් අධ්යාපන දෙපාර්තමේන්තු යුමු inces ළහුන් int අඩු බහු පනුම ඉදළ ඉරින මේන්තුනු Provincial Department of Education

Ш

ກໍ ເພລາຍສຸດເອ**ກິດອິດໃຊ້ເ** Provincial Department of Education ເຂ**ື້ອຍ ເປັນເຂດ ເວັດເ**ອື່ອກ່**ວງ Vy P**icial De

පළමු වාර පරීක්ෂණය - 11 ශේණිය - 2020

First Term Test - Grade 11 - 2020

නම/විභාග අංකය :

ගණිතය - II

කාලය: පැය 3. මි. 10

- ${f A}$ කොටසින් පුශ්න පහක් සහ ${f B}$ කොටසින් පුශ්න පහක් තෝරාගෙන පුශ්න 10කට පිළිතුරු සපයයන්න.
- පුශ්නවලට පිළිතුරු සැපයීමේදී අදාල පියවර සහ නිවැරදි ඒකක ලියා දක්වන්න.
- සෑම පුශ්නයකට ම ලකුණු 10 බැගින් හිමි වේ.
- පතුලේ අරය ${f r}$ ද උස ${f h}$ වන සිලින්ඩරයක පරිමාව $\pi r^2 h$ ද ගෝලයක පරිමාව $rac{1}{3}\pi r^3$ ද වේ.

\mathbf{A} කොටස

(a) $y=7-x^2$ ශිුතයේ පුස්තාරය ඇඳීමට x හා y අගය ඇතුළත් අසම්පූර්ණ වගුවක් පහත දැක්වේ.

x	-3	-2	-1	0	1	2	3
y	-2	3	•••••	7	6	3	-2

- (i) x = -1 වන විට y හි අගය සොයන්න.
- $m{(ii)}\ x$ අක්ෂය හා y අක්ෂය ඔස්සේ කුඩා කොටු 10 ක් ඒකක එකක් ලෙස ගෙන ශිුතයේ පුස්තාරය අඳින්න.
- (b) (i) ශිුතයේ උපරිම අගය ලියන්න.
 - (ii) ශීර්ෂයේ ඛණ්ඩාංක ලියන්න.
 - (iii) y > 0 වන x හි අගය පුාන්තරය ලියන්න.
 - (iv)ඉහත පුස්තාරය ඒකක 2 ක් පහළට විස්ථාපනය කළ විට ලැබෙන ශිුතයේ පුස්තාරයේ සමීකරණය ලියන්න.
- (2) කීඩා භාණ්ඩ ආනයනය කරනු වහාපාරිකයෙක් එකක් රු. 120 බැගින් වන කීඩා භාණ්ඩ කට්ටල 500 ක් ආනයනය කරයි. ආනයනයේ දී වටිනාකමින් 30% ක තීරුබද්දක් සහ රු. 12 000 ක අතිරේක වියදමක් දූරීමට සිදුවිය. එම කීඩා භාණ්ඩ කට්ටල සියල්ලම විකිණීමෙන් 40% ක ලාභ පුතිශතයක් ලැබීමට නම් එකක් රු. 250 ට වඩා වැඩි මුදලකට විකිණිය යුතු බව පෙන්වන්න.
- $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$ මගින් දුක්වේ. එමගින් 102^3 අගය සොයන්න. (3)
 - විසඳන්න. $\frac{3}{r} \frac{2}{x+1} = 2$

(4) (a) සුළු කරන්න.

$$\sqrt[3]{\frac{-5/2}{x}} \times \sqrt[6]{x^5}$$

- (b) CR වර්ගයේ ලොකු පොතක් රු. 130 ක් ද එම වර්ගයේ පොඩි පොතක් රු. 75 ක් මිල වේ. සුජිව මෙම පොත් වර්ග දෙකෙන් ම පොත් 14 ක් මිලට ගත් අතර ඒ සඳහා රු. 1380 ක් වැය වේ.
 - (i) සුජීව මිලට ගත් CR වර්ගයේ ලොකු පොත් ගණන a ලෙසත් පොඩි පොත් ගණන b ලෙසත් ගෙන සමගාමී සමීකරණ යුගලක් ලියන්න.
 - (ii) එය විසඳීමෙන් සුජීව මීලට ගත් CR වර්ගයේ ලොකු පොත් ගණන සහ පොඩි පොත් ගණන වෙන වෙනම සොයන්න.
- (5) උසස් අධාාපන ආයතනයක අධාාපනය හදාරන සිසුන්ගෙන් 30 ක් එක්තරා දිනක ආහාර සඳහා කළ වියදම් ඇතුළත් වගුවක් පහත දක්වේ.

දිනක වියදම රු.	50 - 100	100 - 150	150 - 200	200 - 250	250 - 300	300 - 350	350 - 400
සිසුන් ගණන	1	4	5	8	6	4	2

- (i) මාත පන්තිය ලියන්න.
- (ii) එදින එක් සිසුවකු ආහාර සඳහා වියදම් කළ මධානාය වියදම ආසන්න 10 ගුණාකාරයට සොයන්න.
- (iii) මධානා වියදම අනුව ශිෂායකු දින 25 ක් අධායන කටයුතු සඳහා සහභාගි වූයේ නම් ඔහුට ආහාර සඳහා යන වියදම රු. 5700 ඉක්මවන බව පෙන්වන්න.
- (6) (a) පාසලක කාර්යාලය, විදාහාගාරය හා පුස්තකාලයෙහි පිහිටීම දක්වීමට අඳින ලද පරිමාණ රූපයක කාර්යාලය හා පුස්තකාලය අතර දුර 4.5 cm වේ. එහි සැබෑ දුර 45m කි.
 - (i) මෙම පරිමාණ රූපය ඇඳීමට භාවිතා කළ පරිමාණය අනුපාතයක් ලෙස දක්වන්න.
 - (ii) කාර්යාලය හා විදහාගාරය අතර ඇති සැබෑ දුර 37.5m නම් එය පරිමාණ රූපයේ දක්විය යුතු දුර සොයන්න.
 - (b) එකිනෙකට 50 m දුරින් පිහිටි සිරස් ගොඩනැගිලි දෙක AB හා CD වන අතර ඒවා මුදුන පිළිවෙලින් A හා C වේ. CD ගොඩනැගිල්ලේ 50 m උසින් පිහිටි කවුළුවක සිට නිරීක්ෂණය කළ විට එයට ඉදියෙන් පිහිටි AB ගොඩනැගිල්ලේ මුදුන 35° ක ආරෝහණ කෝණයකින් නිරීක්ෂණය වේ.
 - (i) මෙම තොරතුරු දුක්වීමට දළ රූපයක් අඳින්න.
 - (ii) 1:1000 පරිමාණය ගෙන පරිමාණ රූපයක් අඳින්න. එමගින් ${
 m AB}$ උස ගණනය කරන්න.

B කොටස

(7) ශිෂායෙක් එක්තරා සැරසිල්ලක් සැකසීම සඳහා පීත්ත පටියක් කැබලි වලට කපා ආරෝහණ පිලිවෙලට තැබූ විට සෑම අනුයාත කැබලි දෙකක් අතරම 4 cm වෙනසක් පැවතින. එහි පස්වැනි කැබැල්ලේ දිග 24 cm විය.

- (i) ඉහත ආකාරයට කපන ලද කැබලි වල දිග, සමාන්තර ශේඪියක පද වේ. සූතු භාවිතයෙන් කපන ලද පළමු පීත්ත පටි කැබැල්ලේ දිග සොයන්න.
- (ii) ඉහත රටාවට කපන ලද 12 වැනි කැබැල්ලේ දිග සොයන්න.
- (iii) ඉහත රටාවට කැබලි 12 ක් කැපීමට 4 m දිග පීත්ත පටියක් පුමාණවත් බව පෙන්වන්න.
- (iv) ඉහත පීත්ත පටියේ ඉතිරි කොටසට තවත් එම වර්ගයේ ම 164 cm දිග කැබැල්ලක් එකතු කර, ඉහත කපන ලද, අනුයාත කැබලි දෙකක් අතර වෙනසට වඩා දිග වැඩි වන සේ අමතර කැබලි 3 ක් කපන ලදී. එසේ කපන ලද අනුයාත කැබලි දෙකක් අතර වෙනස සොයන්න.
- (8) (i) උස h වන සෘජු සිලින්ඩරාකාර බඳුනක අරය r වන අතර එහි $\frac{2}{3}$ උසකට ජලය පුරවා ඇත. එම ජලය අරය a වන අර්ධගෝලාකාර බඳුනකට දැමූ විට එය සම්පූර්ණයෙන් ම පිරීයයි. අර්ධගෝලාකාර බඳුනේ අරය a නම් $a=\sqrt[3]{r^2h}$ බව පෙන්වන්න.

- (ii) $r^2=1.75cm$ ද $h=12~{
 m cm}$ නම් ලසු ගණක වගුව භාවිතයෙන් අර්ධගෝලයේ අරය (a) සොයන්න.
- (9) ABCD සමාන්තරාසුයේ BC = CP වන සේ BC පාදය P දක්වා දික්කර ඇති අතර දික්කළ BA සහ PD රේඛා Q හිදී හමුවේ.
 - (i) මෙම රූපයේ ඔබේ පිළිතුරු පතුයේ පිටපත් කර ඉහත දත්ත ඇතුලත් කර නැවත ඇඳීමෙන් $ADQ\ \Delta \equiv DCP\ \Delta$ බව සාධනය කරන්න.

- (ii) $AB = \frac{1}{2}BQ$ බව සාධනය කරන්න.
- $oxed{10}$ කේන්දුය O වන වෘත්තයේ AB විෂ්කම්භයකි. C හා D යනු වෘත්තය මත පිහිටි ලක්ෂා වේ. $\stackrel{\wedge}{CAD}$ = 20^{0} කි.
 - (a) හේතු දක්වමින් පහත කෝණවල අගය සොයන්න.

- (ii) OĈD
- (b) OAD , AC මගින් සමච්ඡේදනය වේ නම් (i) OC //AD බව පෙන්වන්න.
 - ^
 - (ii) OC මගින් $\stackrel{\wedge}{BOD}$ සමච්ඡේදනය බව සාධනය කරන්න.

- (11) සරල දාරයක්, කවකටුවක් cm / mm පරිමාණයක් භාවිත කරමින් නිර්මාණ රේඛා පැහැදිලිව දක්වමින් පහත නිර්මාණය කරන්න.
 - (i) AB = 8.5 cm වන රේඛා ඛණ්ඩය නිර්මාණය කර එහි ලම්භ සමච්ඡේදකය AB හමුවන ලක්ෂාය D ලෙස නුම් කරන්න.
 - (ii) $\stackrel{\wedge}{\mathrm{BAO}}=30^{\circ}$ වන සේ ඉහත ලම්භ සමච්ඡේදකය මත $\stackrel{\wedge}{\mathrm{O}}$ පිහිටන සේ $\stackrel{\wedge}{\mathrm{BAO}}$ නිර්මාණය කරන්න.
 - (iii) කේන්දුය O වන OD අරය වන වෘත්තය නිර්මාණය කර දික් කරන ලද AO රේඛාව වෘත්ත හමුවන ලක්ෂාය C ලෙස නම් කරන්න.
 - (iv) AB ට සමාන්තරව C හරහා රේඛාවක් නිර්මාණය කරන්න.
 - (v) හේතු දක්වමින් AD = DC බව පෙන්වන්න.
- (12) (a) A හා B කුලක දෙකහි n (A) = 17, n (B) = 15, n (A∩B) = 8 වේ. n (A), n (B), n (A∩B) සහ n(A∪B) අතර සම්බන්ධතාවයක් ලියා එමගින් n(A∪B) අගය ලියන්න.
 - (b) කීඩා සමාජයකට කීඩා උපදේශකවරයන් බඳවා ගැනීම සඳහා පැවති තරඟ විභාගයෙන් සමත් වූ 43 දෙනෙකුගේ සුදුසුකම් පරීක්ෂා කර 30 දෙනෙකු කීඩා උපදේශකවරුන් ලෙස බඳවා ගැනීමට අපේක්ෂා කරයි. ඔවුන්ගෙන් 26 ක් සමස්ත ලංකා කීඩා සහතික ඇති අතර 31 ක් උපාධිධාරීන් වේ. 10 දෙනෙක් ඉහත සුදුසුකම් දෙක සපුරා නොතිබිණ. මෙම තොරතුරු ඇතුළත් අසම්පූර්ණ වෙන් සටහනක් පහත දක්වේ.

- (i) මෙම වෙන් සටහන ඔබේ පිළිතුරු පතුයේ පිටපත් කර ගෙන ${f A}$ හා ${f B}$ නම් කරන්න.
- (ii) ඉහත තොරතුරු වෙන් සටහනෙහි අදාල පුදේශවල දක්වන්න.
- (iii) තරඟ විභාගය සමත් නමුත් සමස්තලංකා තරඟ සහතික පමණක් හිමි අපේක්ෂකයින් අයත් පුදේශය අඳුරු කරන්න.
- (iv) ඉහත සුදුසුකම් 3 ම සපුරාගෙන ඇති අපේඎකයින් කීඩා උපදේශකවරුන් ලෙස බඳවා ගත්තේ නම් එසේ බඳවාගත හැකි පිරිස කීයද?
- (v) ඉහත සුදුසුකම් තුනම සැපිරීම නිසා බඳවාගත හැකි වූ අපේක්ෂකයින් ගණන බඳවා ගැනීමට අපේක්ෂිත සංඛාාවෙන් කවර පුතිශතයක් ද?

ා් අධාාපන දෙපාර්තමේන්තු යැනු incid පහුතුල්ent ඇතුල්පතුම ඉද්දුලූර්තු මේන්තුව Provincial Department of Education provincial Department of Education වියඹ පළාජ අධාාපන දෙපාර්තමේන්තුව Provincial Department of Education

පළමු වාර පරීක්ෂණය - 11 ලේණීය - 2020

First Term Test - Grade 11 - 2020

ගණිතය - පිළිතුරු පතුය

			I	පතු	ූ ය			
	A කොටස				(12)	x + y = 6		02
(1)	3.7		02			3x + 3y = 18 ලබා ගැනීම	- 01	
(2)	$x = 110^{\circ}$	- 01	- 02		ĺ` <i>′</i>	අනුකුමණය $=2$	- 01	02
(3)	11 cm		02		(14)	$D\hat{X}C = 100^{0}$		02
(4)	$10^3 = b$		- 02			$\stackrel{\wedge}{\mathrm{BAX}}=40^{\mathrm{o}}$, $\stackrel{\wedge}{\mathrm{ACD}}=40^{\mathrm{o}}$ ඉතර්		
(5)			- 02			$A\stackrel{\wedge}{X}B=100^0$ මහා ් $A\stackrel{\wedge}{X}D=80^0$ ලබා ගැනීම	- 01	
(6)	x = 8	l	- 02			ජල පරිමාව = 240 ℓ		02
(7)	24 cm DX = 6cm සහ CX = 8 හඳුනා ගැනීම		- 02		(17)	පරිමාව = 8.5×30 = 255cm³		02
(8)	$\frac{7x-5}{10}$ $2x+5x-5$		- 02		(18)	බදු පුතිශතය = 4% == $\frac{2400}{60000} \times 100\%$		02
	$\frac{2x+3x-3}{10}$ නිවැරදි හරය හෝ ලවයට	01			(19)	(i) \(\)		l I
(9)	$x = 140^{\circ}$ $y = 20^{\circ}$	- 01 - 01			(20)	(ii) ✓	- 01	02
(10)	OC _ AB		- 02			තරු සඳු නිවාසය සිවුනය.		
(11)	වර්ගඵලය = 10.5 × 20 = 210 cm ²		- 02			නිවාසය නිවාසය 50m නිවාසය නිවැරදිව දිගංශය ලකුණු කිරීම 50m දක්වීම	- 01 - 01	02

(21)	මධා අගය	-	4		 	01	
		14,			 	01	02
(22)	$(x+8)(x-x^2-8^2)$	8)			 	01	- 02
(23)	$(A \cup B)' =$	{6, 1}			 		- 02
(24)	$x = 140^{\circ} - y = 20^{\circ} - y = 20^{\circ}$				 	01 01	02
(25)	c_1			S			

B කොටස

සමාන්තර රේඛාවට හා 5cm ලකුණු කිරීම ----- 02

$$(1)$$
 (a) වැඩයෙන් $\frac{2}{3}$ සඳහා මිනිස් දින
$$= 60 \times \frac{2}{3} - \dots - 01 \\ = 40 - \dots - 01 \\ = \frac{40}{5} = 8 - \dots - 01 \ 03$$

(b) (i) පරිතාාගයෙන් පසු ඉතිරි කොටස

$$=1-\frac{1}{8}$$

$$=\frac{7}{8}$$
 ----- 01 01

(ii) වහාපාරය සඳහා යෙදවූ කොටස

$$= \frac{7}{8} \times \frac{4}{7} \quad ---- \quad 01$$

$$=rac{1}{2}$$
 ----- 01 02 (තුලා භාගයට ලකුණු නැත.)

(iii) ඉතිරිය

නාගයට ලකුණු නැත.)
$$=1-\left(\frac{1}{8}+\frac{1}{2}\right)------01$$

$$=1-\left(\frac{1+4}{8}\right)$$

 $= 1 - \frac{5}{8}$ $= \frac{3}{2} - \dots 01 | 02$

මුළු මුදල
$$=\frac{3}{8} \to 60000$$

$$=\frac{60000}{3} \times 8 - 01$$

$$= 3 \times 8 - 01$$

$$= 3 \times 160000 - 01$$

(ii) වාප දිග =
$$2 \times \frac{22}{7} \times 7 \times \frac{1}{4}$$
 ------ 01 | 02

(iii) ඉතිරි කොටසේ ව. එ. = 21×18 - $\frac{22}{7}$ ×7×7× $\frac{1}{4}$ ----- 02 = 378 - 38.5 ----- 01 = 339.5 cm² ----- 01

(3) (a) (i) වසරකට ගෙවන වරිපණම් බදු මුදල = 560×4 ------ 01 = රු. 2240 ----- 01

(ii) තක්සේරු වටිනාකම

$$= \frac{100}{4} \times 2240 \quad ---- \quad 01$$
$$= \sigma_7. \quad 56 \quad 000 \quad ---- \quad 01 \quad 02$$

(b) (i) වාර්ෂික ආදායම = 40000×12

$$=$$
 $60.480000 - 01$

(ii) මුළු ආදායම = 480000 + 670000= රු. $1\ 150\ 000 -------01$ ඉදවන $500\ 000\ ට බදු මුදල$

(a) (i) වේගය = $\frac{120}{2}$ ------ $=\frac{4}{100}\times500000$ ---- 01 = රු. 20 000 ----- $= 60 \text{ kmh}^{-1}$ 01 | 02 ඉතිරි ආදායම සඳහා ගෙවිය යුතු $=40 \times 3$ (ii) දුර බදු මුදල $=\frac{8}{100} \times 150000$ = 120 km ----- $240 \mathrm{km}$ පුස්තාරයේ කඩ ඉරමත දැක්වීම $01 \ 02$ = σ_7 . 12 000 ----- 01 මුළු බදු මුදල = 20000 + 12000 (b) (i) = 360 - (150 + 90)-----= σ_{0} . 32000 ----- 01 =360 - 240 $=\frac{120}{2}$ (4) (a) (i) බල්බ තෝරා ගැනීම පෙට්ටිය තෝරා ගැනීම $m{/}$ රතු බල්බය ------01 $=60^{\circ}$ 01 | 02 🔦 නිල් බල්බය ----- 01 (ii) මුළු සිසුන් ගණන $=\frac{30}{90} \times 360$ -- 01 රතු බල්බය = 120 ----- 01 02 නිල් බල්බය ------ 01 | 03 (iii) සිසුන් ගණන = 30 - 6= 24කේන්දු කෝණය = $\frac{24}{120} \times 360$ ---- 01 $\frac{1}{6} + \frac{3}{10}$ = 72 -----01 | 02 10 II පතුය 14 30 \mathbf{A} කොටස 01 03 (a) (i) y = 6 -----(ii) නිවැරදි පරිමාණය අනුව x හා yඇඳීම -----නිවැරදි ලක්ෂාය ලකුණු කිරීම -----සුමට වකුය ඇඳීම ------01 - 03 (b) (i) 7 -----(ii) (0,7) -----පළමු ගැනීම (iii) -2.6 < x < 2.6 -----නිවැරදි ලක්ෂා වටකර දක්වීම --------- 01 - 06 සම්භාවිතාවය $\frac{13}{25}$ ------01 0110 11 ශේුණිය - ගණිතය - වයඹ පළාත 3

Answer

2) (i) ආනයනික විවිනාකම = 120×500 — 01 = σ_{ζ} . 60000 — 01					
ම්පිත් මහි මහි පසු විවිතාකම $= \frac{130}{100} \times 60000 - 01$ $= 78000 - 01$ $= 78000 - 01$ $= 90000 - 01$ $= 90000 - 01$ $= 90000 - 01$ $= 126000 - 01$ $= \frac{126000}{500} \times 90000 - 01$ $= \frac{126000}{500} \times 90000 - 01$ $= 252 - 01$ $= 252 - 01$ $= 252 \times 250 - 01$ $= 252 \times 250 - 01$ $= 1000000 + 60000 + 1200 + 8 - 01$ $1061208 - 01$ $2x^2 + 2x - x - 3 = 0$ $2x^2 + 2x - x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x - 3x - $	(2)	(i)	· ·		
$ = \frac{130}{100} \times 60000 \longrightarrow 01 $ $ = 78\ 000 \longrightarrow 01 $ $ = 90\ 000 \longrightarrow 01 $ $ = 90\ 000 \longrightarrow 01 $ $ = 126\ 000 \longrightarrow 01 $ $ = 126\ 000 \longrightarrow 01 $ $ = \frac{126000}{500} \times 90000 \longrightarrow 01 $ $ = 252 \longrightarrow 01 $ $ = 1000000 + 60000 + 1200 + 8 \longrightarrow 01 $ $ = 1061208 \longrightarrow 01 $ $ = 252 \longrightarrow 01 $ $ = 252 \times 250 \longrightarrow 01 $ $ = 252$				- 01	
$\begin{array}{c} = 78\ 000 - \dots \\ = 78\ 000 + 12\ 000 \\ = 90\ 000 - \dots \\ = 90\ 000 - \dots \\ = 01 \\ = 90\ 000 - \dots \\ = 01 \\ = 126\ 000 - \dots \\ = 01 \\ = 126\ 000 - \dots \\ = 01 \\ = \frac{126000}{500} \times 90000 - 01 \\ = \frac{126000}{500} \times 90000 - 01 \\ = 252 - \dots \\ = 01 \\ = 252 \times 250 - \dots \\ = 252 \times 250 - \dots$			තීරු බදු ගෙවූ පසු වටිනාකම		
$\begin{array}{c} = 78\ 000 - \dots \\ = 78\ 000 + 12\ 000 \\ = 90\ 000 - \dots \\ = 90\ 000 - \dots \\ = 01 \\ = 90\ 000 - \dots \\ = 01 \\ = 126\ 000 - \dots \\ = 01 \\ = 126\ 000 - \dots \\ = 01 \\ = \frac{126000}{500} \times 90000 - 01 \\ = \frac{126000}{500} \times 90000 - 01 \\ = 252 - \dots \\ = 01 \\ = 252 \times 250 - \dots \\ = 252 \times 250 - \dots$			$=\frac{130}{100}\times60000$	- 01	
වැග වූ මුලු මුදල = $78000 + 12000$ = 90000 — 01 0					
$ = 90\ 000 01 $ $ = \frac{140}{100} \times 90000 01 $ $ = \frac{126\ 000}{500} \times 90000 - 01 $ $ = \frac{126000}{500} \times 90000 - 01 $ $ = 252 01 $ $ = 252 \times 250 01 $ $ = 252 \times 250 10 $ $ = 252 \times 250 01 $ $ = 252 \times 250 10 $ $ = 252 \times 250 10 $ $ = 252 \times 250 10 $ $ = 252 \times 250$				0.1	
$= 126000 - 01$ $= \frac{126000}{500} \times 90000 - 01$ $= 252 - 01$ $= 252 > 250 - 01$ $= 252 > 250 - 01$ $= 100$ (3) (i) $(100 + 2)^3$ $100^3 + 3 \times 100^2 \times 2 + 3 \times 100 \times 2^2 + 2^3 - 02$ $1000000 + 60000 + 1200 + 8 - 01$ $1061208 - 01$ (ii) $\frac{3}{x} - \frac{2}{x+1} = 2$ $\frac{3x + 3 - 2x}{x(x+1)} = 2 - 01$ $2x^2 + 2x = x + 3 - 01$ $2x^2 + 2x - x - 3 = 0$ $2x^2 + x - 3 = 0 - 01$ $2x^2 + 3x - 2x - 3 = 0$ $x(2x + 3) - 1(2x + 3) = 0$ $(2x + 3) (x - 1) = 0 - 01$ $2x + 3 = 0 \text{ eash } x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{ eash } x = 1 - 01$ (4) (a) $\sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $(x^{-\frac{5}{2}})^{\frac{1}{3}} \times (x^5)^{\frac{1}{6}} - 01$				- 01	
$ = \frac{126000}{500} \times 90000 - 01 $ $ = 252 - 01 $ $ = 252 > 250 - 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 02 $ $ = 252 > 252 > 02 $ $ = 252 > 252 > 02 $ $ = 252 > 252 > 02 $ $ = 252 > 252 > 02 $ $ = 252 > 252 > 02 $ $ = 252 > 252 > 02 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $ $ = 252 > 252 > 01 $			විකිණිය යුතු මුදල = $\frac{140}{100} \times 90000$	- 01	
			= 126 000	- 01	
			$= \frac{126000}{\times 90000} \times 90000 - \frac{1}{2} \times 900000 - \frac{1}{2} \times 9000000 - \frac{1}{2} \times 900000 - \frac{1}{2} \times 9000000 - \frac{1}{2} \times 900000 - \frac{1}{2} \times 9000000 - \frac{1}{2} \times 90000000 - \frac{1}{2} \times 90000000 - \frac{1}{2} \times 900000000 - \frac{1}{2} \times 900000000000000000000000000000000000$	- 01	
			200		
(3) (i) $(100+2)^3$ $100^3 + 3 \times 100^2 \times 2 + 3 \times 100 \times 2^2 + 2^3 - 02$ 1000000 + 60000 + 1200 + 8 - 01 1061208 - 01 = 04 (ii) $\frac{3}{x} - \frac{2}{x+1} = 2$ $\frac{3x+3-2x}{x(x+1)} = 2 - 01$ $2x^2 + 2x = x+3 - 01$ $2x^2 + 2x - x-3 = 0$ $2x^2 + x - 3 = 0 - 01$ $2x^2 + 3x - 2x - 3 = 0$ x(2x+3) - 1(2x+3) = 0 (2x+3)(x-1) = 0 - 01 2x + 3 = 0 and x - 1 = 0 - 01 $x = \frac{-3}{2} \text{ and } x - 1 = 0 - 01$ x = -1.5 - 01 (4) (a) $\sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $(x^{\frac{5}{2}})^{\frac{1}{3}} \times (x^5)^{\frac{1}{6}} - 01$					
(3) (i) $(100+2)^3$ $100^3 + 3 \times 100^2 \times 2 + 3 \times 100 \times 2^2 + 2^3 - 02$ 1000000 + 60000 + 1200 + 8 - 01 1061208 - 01 = 04 (ii) $\frac{3}{x} - \frac{2}{x+1} = 2$ $\frac{3x+3-2x}{x(x+1)} = 2$ 01 $2x^2 + 2x = x+3 - 01$ $2x^2 + 2x - x - 3 = 0$ $2x^2 + 3x - 2x - 3 = 0$ $2x + 3 = 0 \implies x - 1 = 0 - 01$ $2x + 3 = 0 \implies x - 1 = 0 - 01$ $x = \frac{-3}{2} \implies x = 1 - 01$ (4) (a) $\sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $(x^5)^{\frac{1}{6}} - 01$			= 252 > 250	- 01	10
$ \begin{array}{ccccccccccccccccccccccccccccccccc$					- 10
$ \begin{array}{ccccccccccccccccccccccccccccccccc$	(2)	(i)	(100 ± 2)3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3)	(1)		റാ	
(ii) $\frac{3}{x} - \frac{2}{x+1} = 2$ $\frac{3x+3-2x}{x(x+1)} = 2 \qquad 01$ $2x^2 + 2x = x+3 - 01$ $2x^2 + 2x - x - 3 = 0$ $2x^2 + x - 3 = 0 - 01$ $2x^2 + 3x - 2x - 3 = 0$ $x(2x+3) - 1(2x+3) = 0$ $(2x+3)(x-1) = 0 - 01$ $2x + 3 = 0 \text{odd} x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{odd} x = 1 - 01$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $\left(x^{-\frac{5}{2}}\right)^{\frac{1}{3}} \times \left(x^5\right)^{\frac{1}{6}} - 01$					
(ii) $\frac{3}{x} - \frac{2}{x+1} = 2$ $\frac{3x+3-2x}{x(x+1)} = 2 - 01$ $2x^2 + 2x = x+3 - 01$ $2x^2 + 2x - x - 3 = 0$ $2x^2 + x - 3 = 0 - 01$ $2x^2 + 3x - 2x - 3 = 0$ $x(2x+3) - 1(2x+3) = 0$ $(2x+3)(x-1) = 0 - 01$ $2x+3 = 0 \text{odd} x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{odd} x = 1 - 01$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $(x^5)^{\frac{1}{6}} - 01$					04
$\frac{3x+3-2x}{x(x+1)} = 2 - 01$ $2x^2 + 2x = x+3 - 01$ $2x^2 + 2x - x - 3 = 0$ $2x^2 + x - 3 = 0 - 01$ $2x^2 + 3x - 2x - 3 = 0$ $x(2x+3) - 1(2x+3) = 0$ $(2x+3)(x-1) = 0 - 01$ $2x+3 = 0 \text{ odd} x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{ odd} x = 1 - 01$ $x = -1.5 - 01$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^5\right)^{\frac{1}{6}} - 01$			1001200	- 01	
$\frac{3x+3-2x}{x(x+1)} = 2 - 01$ $2x^2 + 2x = x+3 - 01$ $2x^2 + 2x - x - 3 = 0$ $2x^2 + x - 3 = 0 - 01$ $2x^2 + 3x - 2x - 3 = 0$ $x(2x+3) - 1(2x+3) = 0$ $(2x+3)(x-1) = 0 - 01$ $2x+3 = 0 \text{ odd} x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{ odd} x = 1 - 01$ $x = -1.5 - 01$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^5\right)^{\frac{1}{6}} - 01$					
$\frac{1}{x(x+1)} = 2 - 01$ $2x^{2} + 2x = x + 3 - 01$ $2x^{2} + 2x - x - 3 = 0$ $2x^{2} + x - 3 = 0 - 01$ $2x^{2} + 3x - 2x - 3 = 0$ $x(2x+3) - 1(2x+3) = 0$ $(2x+3)(x-1) = 0 - 01$ $2x + 3 = 0 \text{odd} x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{odd} x = 1 - 01 06$ $x = -1.5 - 10$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^{5}}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}} - 01$		(ii)	$\frac{3}{x} - \frac{2}{x+1} = 2$		
$\frac{1}{x(x+1)} = 2 - 01$ $2x^{2} + 2x = x + 3 - 01$ $2x^{2} + 2x - x - 3 = 0$ $2x^{2} + x - 3 = 0 - 01$ $2x^{2} + 3x - 2x - 3 = 0$ $x(2x+3) - 1(2x+3) = 0$ $(2x+3)(x-1) = 0 - 01$ $2x + 3 = 0 \text{odd} x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{odd} x = 1 - 01 06$ $x = -1.5 - 10$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^{5}}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}} - 01$			3x + 3 - 2x		
$2x^{2} + 2x - x - 3 = 0$ $2x^{2} + x - 3 = 0 - 01$ $2x^{2} + 3x - 2x - 3 = 0$ $x(2x + 3) - 1(2x + 3) = 0$ $(2x + 3)(x - 1) = 0 - 01$ $2x + 3 = 0 \text{odd} x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{odd} x = 1 - 01$ 06 $x = -1.5 - 01$ $(4) (a) \sqrt[3]{x^{-5/2}} \times \sqrt[6]{x^{5}}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}} - 01$			 = 2	- 01	
$2x^{2} + 2x - x - 3 = 0$ $2x^{2} + x - 3 = 0 - 01$ $2x^{2} + 3x - 2x - 3 = 0$ $x(2x + 3) - 1(2x + 3) = 0$ $(2x + 3)(x - 1) = 0 - 01$ $2x + 3 = 0 \text{odd} x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{odd} x = 1 - 01$ 06 $x = -1.5 - 01$ $(4) (a) \sqrt[3]{x^{-5/2}} \times \sqrt[6]{x^{5}}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}} - 01$			$2x^2 + 2x = x + 3$	- 01	
$2x^{2} + x - 3 = 0 - 01$ $2x^{2} + 3x - 2x - 3 = 0$ $x(2x + 3) - 1(2x + 3) = 0$ $(2x + 3)(x - 1) = 0 - 01$ $2x + 3 = 0 \text{ odd } x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{ odd } x = 1 - 01$ $x = -1.5 - 10$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^{5}}$ $\left(x^{-\frac{5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}} - 01$				0.1	
$2x^{2} + 3x - 2x - 3 = 0$ $x(2x + 3) - 1(2x + 3) = 0$ $(2x + 3) (x - 1) = 0 - 01$ $2x + 3 = 0 \text{ and } x - 1 = 0 - 01$ $x = \frac{-3}{2} \text{ and } x = 1 - 01$ $x = -1.5$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^{5}}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}} - 01$				- 01	
$(2x+3)(x-1) = 0 - 01$ $2x+3 = 0 \text{ odd } x-1 = 0 - 01$ $x = \frac{-3}{2} \text{ odd } x = 1 - 01 = 06$ $x = -1.5 - 10$ $(4) (a) \sqrt[3]{x^{-5/2}} \times \sqrt[6]{x^5}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^5\right)^{\frac{1}{6}} - 01$			$2x^2 + 3x - 2x - 3 = 0$		
$(2x+3)(x-1) = 0 - 01$ $2x+3 = 0 \text{ odd } x-1 = 0 - 01$ $x = \frac{-3}{2} \text{ odd } x = 1 - 01 = 06$ $x = -1.5 - 10$ $(4) (a) \sqrt[3]{x^{-5/2}} \times \sqrt[6]{x^5}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^5\right)^{\frac{1}{6}} - 01$			x(2x+3) - 1(2x+3) = 0		
$x = \frac{-3}{2} \text{odd} x = 1 01 06$ $x = -1.5 10$ $(4) (a) \sqrt[3]{x^{-5/2}} \times \sqrt[6]{x^5}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^5\right)^{\frac{1}{6}} 01$				- 01	
$x = -1.5$ $(4) (a) \sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^{5}}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}} 01$			2x + 3 = 0 ඉහර් $x - 1 = 0$	- 01	
(4) (a) $\sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^5\right)^{\frac{1}{6}} - \cdots - 01$			$x = \frac{-3}{2}$ මහර $x = 1$	- 01	06
(4) (a) $\sqrt[3]{x^{-\frac{5}{2}}} \times \sqrt[6]{x^5}$ $\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^5\right)^{\frac{1}{6}} - \cdots - 01$			x = -1.5		
$\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}}$ 01					- 10
$\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}}$ 01					
	(4)	(a)	$\sqrt[3]{x^{-5/2}} \times \sqrt[6]{x^5}$		
			$\left(x^{\frac{-5}{2}}\right)^{\frac{1}{3}} \times \left(x^{5}\right)^{\frac{1}{6}}$	- 01	
	11 ගේ-	ණිය - ශ			

<u>-5</u>			_	
	$\times x^{\frac{5}{6}}$		01	
	$\times x^0$			
	- 01	04		
	7 01	04		
(b) CR ලොකු				
CR පොඩි				
a -	- 01			
130a + 7	- 01			
$(1) \times 75$				
75a +	-75b = 1050	(3)		
(2) - (3)				
55a =	= 330		- 01	
a =	= 6		- 01	
a =	= 6(1) හි අා	ෙ ද්ශය		
a + b	= 14			
6+b	= 14			
b	= 14 - 6			
b	= 8		- 01	
CR ලොකු	ාූ පොත් ගණන	= 6		
CR පොඩි	පොත් ගණන	= 8	- 01	- 07
				- 10
(5) (i) 200 - 250				- 01
· · · · · · · · · · · · · · · · · · ·			 1	- 01
· · · · · · · · · · · · · · · · · · ·	සංඛාහාතය <i>(f)</i>]	- 01
මධා අගය 75 125	සංඛානතය <i>(f)</i> 1 4	fx]	- 01
මධා අගය 75 125 175	සංඛානතය <i>(f)</i>	fx 75 500 875]	- 01
මධා අගය 75 125 175 225	සංඛානය <i>(f)</i> 1 4 5 8	fx 75 500 875 1800]	- 01
මධා අගය 75 125 175 225 275	සංඛාහාතය <i>(f)</i>	75 500 875 1800 1650]	- 01
මධා අගය 75 125 175 225 275 325	සංඛානතය <i>(f)</i>	75 500 875 1800 1650 1300		- 01
මධා අගය 75 125 175 225 275	සංඛාහාතය <i>(f)</i>	75 500 875 1800 1650		- 01
මධා අගය 75 125 175 225 275 325 375	සංඛානය (f) 1 4 5 8 6 4 2 30	75 500 875 1800 1650 1300 750		- 01
මධා අගය 75 125 175 225 275 325 375	සංඛාහාතය (f) 1 4 5 8 6 4 2 30	fx 75 500 875 1800 1650 1300 750 6950		- 01
මධා අගය 75 125 175 225 275 325 375	සංඛාහාතය (f) 1 4 5 8 6 4 2 30	fx 75 500 875 1800 1650 1300 750 6950	- 01	- 01
මධා අගය 75 125 175 225 275 325 375	සංඛාහාතය (f) 1 4 5 8 6 4 2 30	fx 75 500 875 1800 1650 1300 750 6950		- 01
මධා අගය 75 125 175 225 275 325 375	සංඛාහාතය (f) 1 4 5 8 6 4 2 30	fx 75 500 875 1800 1650 1300 750 6950	- 01	- 01
මධා අගය 75 125 175 225 275 325 375	සංඛාහාතය (f) 1 4 5 8 6 4 2 30	fx 75 500 875 1800 1650 1300 750 6950	- 01	- 01
මධා අගය 75 125 175 225 275 325 375 මධා අගය fx තීරය - 6950	සංඛාහාතය (f) 1 4 5 8 6 4 2 30 ය තීරය \begin{subarray}{c} \vert fx \\ \vert f \end{subarray}	fx 75 500 875 1800 1650 1300 750 6950	- 01	- 01
මධා අගය 75 125 175 225 275 325 375 මධා අගය fx තීරය - 6950	සංඛානකය (f) 1 4 5 8 6 4 2 30 æ තීරය <u>ɛ fx</u> <u>ɛ f</u>	fx 75 500 875 1800 1650 1300 750 6950	- 01	- 01
මධා අගය 75 125 175 225 275 325 375 මධා අගය fx තීරය - 6950	සංඛාහාතය (f) 1 4 5 8 6 4 2 30 ය තීරය \[\frac{\varent{\varepsilon} \sigma}{\varepsilon f} \] \[\frac{\varepsilon \sigma}{\varepsilon f} \] \[\frac{\varepsilon \sigma}{\varepsilon f} \] \[\frac{\varepsilon \sigma}{\varepsilon \sigma} \] \[\frac{\varepsilon \sigma}{\varepsilon \sigma} \]	fx 75 500 875 1800 1650 1300 750 6950	01 01	- 01
මධා අගය 75 125 175 225 275 325 375 මධා අගය <i>fx</i> තීරය - 6950	සංඛානය (f) 1 4 5 8 6 4 2 30 æ ණිරය <u>ɛ fx</u> <u>ɛ f</u> 6.950 30 231.6	fx 75 500 875 1800 1650 1300 750 6950	01 01 01	
මධා අගය 75 125 175 225 275 325 375 මධා අගය <i>fx</i> තීරය - 6950	සංඛානාතය (f) 1 4 5 8 6 4 2 30 æ තීරය <u>ɛ fx</u> <u>ɛ f</u> 6.950 30 231.6 57. 230	fx 75 500 875 1800 1650 1300 750 6950	- 01 - 01 - 01 - 01 - 01	- 01
මධා අගය 75 125 175 225 275 325 375 මධා අගය <i>fx</i> තීරය - 6950	සංඛාහාතය (f) 1 4 5 8 6 4 2 30 æ තීරය <u>ɛ fx</u> <u>ɛ f</u> 6.950 30 231.6 වියදම = 230×	fx 75 500 875 1800 1650 1300 750 6950	- 01 - 01 - 01 - 01 - 01 - 01	

 	10	

= 5750 > 5700 - 101 + 03

B කොටස

(ii)
$$T_n = a + (n-1)d$$

= $8 + (12 - 1)4$ ------ 01
= $8 + 44$
= 52 cm ------ 01 02

4m දිග පීත්තපටිය පුමාණවත් වේ -----101 + 03

$$\frac{2}{3}\pi a^{3} = \pi r^{2}h \times \frac{2}{3} - 01$$

$$a^{3} = r^{2}h - 01$$

$$a = \sqrt[3]{r^{2}h}$$

සා.ක.යු.: $ADQ\Delta \equiv DCP\Delta$ වේ. සාධනය:- AD = BC (සමාන්තරාසුය සම්මුඛ පාද λ CP = BC (දන්තය) $\therefore AD = CP$ ------ 02

							71121	VCI
AQDA සහ PDCA වල			([11)	(i)	AB නිර්මාණය ලම්භ සමච්ඡේදකය නිර්මාණය	$\frac{1}{02}$	03
AD = CP (ඉහත සාධිතයි)					(ii)	BÂO = 30 නිර්මාණය		
$\stackrel{\wedge}{\mathrm{A}}\stackrel{\wedge}{\mathrm{Q}}\mathrm{D}=\mathrm{P}\stackrel{\wedge}{\mathrm{D}}\mathrm{C}$ (අනුරූප කෝණ)	01				()	O ලකුණු කිරීම		02
$\stackrel{\wedge}{\mathrm{ADQ}} = \stackrel{\wedge}{\mathrm{CPD}} \left($ අනුරූප කෝණ)	01				(iii)	වෘත්තය නිර්මාණය	01	
					(iv)	C ලකුණු කිරීමසමාන්තර රේඛාව නිර්මාණය		02
$\therefore ADQ\Delta \equiv D\overset{\circ}{C}P\Delta$ (මකා්.මා)	01	07			(v)	$\stackrel{\wedge}{\mathrm{AOD}} = 60$ (තිකෝණයේ අභාන්තර		
1						කෝණ අගය 180)	01	
(ii) සා.ක.යු:- $AB = \frac{1}{2}BQ$ බව						$\stackrel{\wedge}{ ext{CD}}=30$ (එකම වෘත්ත චාපයෙන්		
සාධනය:- ${ m AB}={ m DC}$ (සමන්තුාසුයක සම්මුඛ පාඅ)	01					කේන්දුයේ ආපාතිත කෝණය වෘත්තයෙ ඉතිරි කොටසේ ආපාතිත කෝණයෙන්	\$	
$\mathrm{AQ} = \mathrm{DC}$ (අංගසම Δ වල අනුරූප අංග)	01					හරි අඩක් වේ.)	01	02
AB + AQ = BQ						$\stackrel{\wedge}{\mathrm{OAD}} = 30$ (නිර්මාණය)		
2AB = BQ	01	03				$\stackrel{\wedge}{\mathrm{OAD}} = \stackrel{\wedge}{\mathrm{OCD}} \stackrel{\text{\tiny{OD}}}{\mathrm{\tiny{OD}}}.$		
$AB = \frac{1}{2}BQ$		· 10			• •	$\therefore AD = CD$		
2	_						ļ	10
(10) (a) (i) $\stackrel{\wedge}{{ m COD}} = 40^{0}$ (එකම වෘත්ත චාපයක්				(12)	(a) r	$n(A \cup B) = n(A) + n(B) - n(A \cap B)$	01	
කේන්දුයේ ආපාතිත කෝණයෙන් හරි				, ,	()	= 17 + 15 - 8		
අඩක් වෘත්තයේ ඉතිරි කොටස් ආපාතිත කෝණයවේ) (02					= 24	01	02
^					(b)	43 70		
(ii) $COD = 180 - 40$ (සම ද්වීපාද Δ නිසා)						31 - x (x) 38 - x		
140					උප	ාධිධාරීන් 7 (24) 2 B		
$=\frac{1}{2}$	02	04				10		
$=70^{\circ}$								
(b) (i) සා.ක.යු: OC // AD බව					(i)	A - තරඟ විභගය සමත් පිරිස B - සමස්ත ලංකා කීඩා සහතික ඇති පිරිස -		
සාධනය: $\stackrel{\wedge}{\mathrm{CAD}} = 20^{(\xi}$ ක්කය)(1)						-	01	- 02
$ m C \stackrel{\wedge}{A} O = 20$ (සම්ඉඡ්දය)	01				(11)	31, 26, 10 අදාල පුදේශවල ලකුණු ලකුණු කරන්න	ļ	- 02
$\stackrel{}{\mathrm{ACO}} = 20 \; (\mathrm{AO} = \mathrm{OC} \; \mathfrak{S}$ සා)(2)					(iii)	නිවැරදි පුදේශය අඳුරු කිරීම		-02
(1) = (2)								02
$\therefore \hat{ACO} = \hat{CAD} - \cdots$	01	03			(1V)	31 - x + x + 26 - x + 10 = 43 x = 24	ļ	-02
∴ AD // OC						24		
(ii) සා.ක.යු:- OC මගින් $\stackrel{\wedge}{BOD}$ සමච්ඡේදනය වන බව					(v)	24/30 × 100% 80%		10
සාධනය: OÂD = 40° (20+20)	01					80%	02	10
$\stackrel{\wedge}{\mathrm{BOC}}$ $=40^{0}$ (අනුරූප කෝණ)	01							
$\stackrel{\wedge}{{ m COD}} = 40^0$ (ඉතා 1 හි සාධිතයි)								
∴ CÔD = BÔC මව්	01	03						
එකම් OC මගින් $\stackrel{\wedge}{\mathrm{BOD}}$ සමච්ඡේදනය වී ඇත		- 10						
	_						•	