中国科学技术大学本科毕业论文

Bonnet、Myers 的比较定理 以及推广

作者姓名:		
学	号:	PB20000329
专	示:	数学科学学院
导师姓名:		韦勇 教授
完成时间:		2023年5月23日

中文内容摘要

本文介绍 Bonnet 和 Myers 的比较定理以及推广。

第一章介绍曲面上的 Bonnet 定理,在 Gauss 的曲面理论的框架下证明该定理;第二章借助黎曼几何的知识,给出高维版本 Bonnet 和 Myers 的比较定理的证明;第三章用类似方法证明 Myers 定理的一个推广并介绍其他的相关结果,例如一个带平均凸边界流形的平均曲率比较定理以及郑绍远证明的 Myers 定理的刚性。

关键词: 微分几何; 黎曼几何; 几何分析; 比较定理

Abstract

This article introduces Bonnet's and Myers' comparison theorems and some generalizations.

The first chapter will introduce Bonnet's theorem for surfaces, we will prove this theorem under Gauss' theory of surfaces; the second chapter will recall some basic kownledgements of Riemannian geometry and then use them to prove the general Bonnet's and Myers' theorems; the third chapter will prove a generalization of Myers' theorem using similar method and then introduce other related results, including a comparison theorem for manifolds with mean convex boundary and the rigidity theorem of S. Y. Cheng.

Key Words: Differential geometry; Riemannian geometry; Geometric Analysis; Comparison theorems

目 录

	何要・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 〕
英文内容描	商要・・・・・・・・・・・・・・・・・・・・・・ II
第一章 由	由面上的 Bonnet 定理 ······ 3
第一节	基本概念与定理陈述 · · · · · · · · · · · · · · · · · 3
第二节	exp 映射及其性质 · · · · · · · · · · · · · · · · · · ·
第三节	曲面上的 Hopf-Rinow 定理 · · · · · · · · · · · · · · · · · ·
第四节	弧长的第一、第二变分 · · · · · · · · · · · · · · · · · · ·
第五节	Bonnet 定理的证明······ 10
第二章 高	馬维的 Bonnet 定理和 Myers 定理 ······11
第一节	联络与协变导数 · · · · · · · · · · · · 11
第二节	曲率・・・・・・・・・・・・・・・12
第三节	能量第一、第二变分公式・・・・・・・・・・・・・・・13
第四节	Bonnet 与 Myers 的定理······ 15
第三章 N	Myers 定理的推广及其他相关结果············17
第一节	Myers 定理的一个推广 · · · · · · · · · · · · · · · · · · ·
第二节	Myers 定理的刚性······ 18
第三节	带边流形上的结果 · · · · · · · · · · · · · · · · · · ·
参考文献:	
致谢 · · ·	

第一章 曲面上的 Bonnet 定理 第一节 基本概念与定理陈述

对于三维空间中的曲面的相关理论,笔者在中法班的微分几何课上有所学习。给定一个定向曲面 S,我们将其**高斯曲率**定义为单位外法向量映射微分的行列式

$$K(p) := \det(\mathrm{d}N_p), p \in S.$$

高斯绝妙定理表明,高斯曲率可由第一基本形式确定。第一、第二基本形式及 Christoffel 符号在具体计算中扮演了重要角色,例如,一条**参数化测地线** $\gamma:I\to S$ 由如下方程刻画

$$\frac{\mathrm{D}\gamma'(t)}{\mathrm{d}t} = 0, \forall t \in I,$$

其中,设曲线上向量场 ω 在局部坐标 $\Phi(u,v)$ 下写作 $\omega(t)=a(t)\Phi_u+b(t)\Phi_v$,则

$$\begin{split} \frac{\mathrm{D}\omega(t)}{\mathrm{d}t} = & (a' + \Gamma_{11}^1 a u' + \Gamma_{12}^1 a v' + \Gamma_{12}^1 b u' + \Gamma_{22}^1 b v') \Phi_u \\ & + (b' + \Gamma_{11}^2 a u' + \Gamma_{12}^2 a v' + \Gamma_{12}^2 b u' + \Gamma_{22}^2 b v') \Phi_v \end{split}$$

其中 Γ_{ij}^k 是 Christoffel 符号。利用微分方程的相关知识,我们有如下两个关于测地线的结论:

定理 1.1.1 (测地线存在唯一性). 设 p 是曲面 S 上一点,向量 $v \in T_p S$,则存在 $\epsilon > 0$ 以及参数化测地线 $\gamma_v : (-\epsilon, \epsilon) \to S$ 满足 $\gamma_v(0) = p$ 且 $\gamma_v'(0) = v$ 。并且,如果有 $\epsilon_0 > 0$ 和另一参数化测地线 $\gamma_0 : (-\epsilon_0, \epsilon_0) \to S$ 满足 $\gamma_0(0) = p$ 且 $\gamma_0'(0) = v$,则有 $\epsilon > \epsilon_0$ 且 $\gamma_v|_{(-\epsilon_0, \epsilon_0)} = \gamma_0$ 。

定理 1.1.2 (测地线关于初始条件的光滑依赖性). 设 p 是曲面 S 上一点,则存在 $\varepsilon > 0$,使得映射

$$\gamma\,:\, (-\varepsilon,\varepsilon)\times B_\varepsilon\to S, (t,v)\mapsto \gamma_v(t)$$

是光滑映射。其中 $B_{\epsilon}:=\{v\in T_pS:||v||<\epsilon\}_{\circ}$

测地线在某种意义上就是两点之间的最短曲线,下面的性质体现了这一思想:

性质 1.1.3 (最短线是测地线). 设 $\alpha: I \to S$ 是分段光滑正则弧长参数化曲线,满足这曲线上任意两点的距离等于它们之间这段曲线的长度,则 α 是测地线,特别地, α 处处正则。

其中两点 $p,q \in S$ 之间的**距离**定义为

$$d(x,y) := \inf \left\{ L(\gamma) = \int_0^l |\gamma'(t)| dt : \gamma : [0,l] \to S, \gamma(0) = x, \gamma(l) = y, 分段光滑正则曲线 \right\}$$

这是 *S* 上一个良好定义的度量结构。我们称一条测地线段是**极小**的,若其长度恰好等于其两个端点之间的距离。

我们称曲面 S 是完备的,若对任意一点 $p \in S$,从该点处发的任意一条参数 化测地线 $\gamma:[0,\epsilon) \to S$ 均可延拓为全局定义的参数化测地线 $\tilde{\gamma}:\mathbb{R} \to S$ 。曲面上的 Hopf-Rinow 定理(定理1.3.1)表明,完备曲面上任意两点间存在极小测地线。Bonnet 定理指出:带具有正下界高斯曲率的完备曲面是紧致的。这一章的目标是证明这一定理。

定理 1.1.4 (Bonnet). 设曲面 S 完备且其高斯曲率 K 满足 $K \ge \delta > 0$,则 S 是紧集,且其直径 ρ 满足

$$\rho \leqslant \frac{\pi}{\sqrt{\delta}}.$$

第二节 exp 映射及其性质

在曲面的理论以及黎曼几何的理论中, exp 映射都有重要的作用, 本小节对曲面引入 exp 映射的概念。为此, 我们先来证明一个引理:

引理 1.2.1 (测地线的齐次性). 若参数化测地线 $\gamma_v(t)$ 定义区间为 $(-\epsilon, \epsilon)$, $\lambda > 0$ 是正实数,则 $\gamma_{\lambda v}(t)$ 定义区间为

$$I = \left(-\frac{\varepsilon}{\lambda}, \frac{\varepsilon}{\lambda}\right),\,$$

 $\mathbb{H} \gamma_{\lambda v}(t) = \gamma_v(\lambda t)$.

证明 定义 $\alpha: I \to S$, $t \mapsto \gamma_v(\lambda t)$, 只需验证它是测地线:

$$\frac{\mathrm{D}\alpha'(t)}{\mathrm{d}t} = \lambda^2 \frac{\mathrm{D}\gamma'_v(t)}{\mathrm{d}t} = 0.$$

由测地线唯一性 $\gamma_{\lambda v} = \alpha$ 。

下面这定理给出了 exp 映射的定义和基本性质:

定理 1.2.2 (exp 映射). 给定曲面 S 上一点 $p \in S$,则存在 $\varepsilon > 0$,满足映射

$$\exp_p:\,B_{\varepsilon}:=\{v\in T_pS:\,||v||<\varepsilon\}\to S,v\mapsto \gamma_v(1)$$

良定义,且为 $B_{\epsilon} \to \exp_{p}(B_{\epsilon})$ 的微分同胚。

证明 由定理1.1.2,存在 $\epsilon_1 > 0$,使得映射

$$\gamma: (-\varepsilon_1, \varepsilon_1) \times B_{\varepsilon_1} \to S, (t, v) \mapsto \gamma_v(t)$$

是光滑映射。再由测地线的齐次性,取

$$\varepsilon \in \left(0, \frac{\varepsilon_0^2}{2}\right)$$

即可保证 \exp 映射的良定义和光滑性。只需再证明: \deg_p 在 $0 \in T_pS$ 处是满射。

为此, 固定 $v \in T_p S$, 考虑曲线 $\alpha: t \mapsto tv \in T_p S$, 我们有

$$\frac{\mathrm{d}}{\mathrm{d}t}(\exp_p(tv))\Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}(\gamma_v(t))\Big|_{t=0} = v,$$

于是 $d \exp_p$ 在 $0 \in T_p S$ 处是满射,证毕。

第三节 曲面上的 Hopf-Rinow 定理

注意到,曲面 S 是完备的当且仅当对于任意一点 $p \in S$,其 exp 映射 \exp_p 定义在整个切平面上。我们能够证明曲面上的 Hopf-Rinow 定理:

定理 1.3.1 (Hopf-Rinow). 设 S 是完备曲面。给定两点 $p,q \in S$,则存在一条连接 $p \vdash q$ 的极小测地线。

证明 令 r=d(p,q)。根据定理1.2.2,取 $\delta>0$,使得 $\exp_p:B_\delta\to\exp_p(B_\delta)=:B_\delta(p)$ 是微分同胚,则 $\Sigma:=\partial B_\delta(p)$ 是紧集。设连续函数 d(x,q) 在 $x_0\in\Sigma$ 处取得 Σ 上最小值,并设

$$x_0=\exp_p(\delta v), |v|=1, v\in T_p(S).$$

考虑测地线

$$\gamma(s) = \exp_p(sv),$$

只需证明 $\gamma(r) = q$ 。为此,我们证明:

$$\forall s \in [\delta, r], d(\gamma(s), q) = r - s \tag{1.3.1}$$

当 $s = \delta$ 时,我们有

$$\begin{split} r &= d(p,q) = \inf_{x \in \Sigma} (d(x,p) + d(x,q)) \\ &= \delta + \inf_{x \in \Sigma} d(x,q) \\ &= \delta + d(x_0,q) = \delta + d(\gamma(\delta),q). \end{split}$$

下面假设式1.3.1对 $s_0 \in [\delta, r]$ 成立,来证对充分小的 $\delta' > 0$,该式对 $s_0 + \delta'$ 也对。为此,取 $\delta' > 0$ 使得 $\exp_{\gamma(s_0)}: B_{\delta'} \to \exp_{\gamma(s_0)}(B_{\delta'}) =: B_{\delta'}(\gamma(s_0))$ 是微分同胚,则 $\Sigma' := \partial B_{\delta'}(\gamma(s_0))$ 是紧集。设连续函数 d(x,q) 在 $x' \in \Sigma'$ 处取得 Σ' 上最小值。同前,有

$$d(\gamma(s_0), q) = \delta' + d(x', q),$$

于是有

$$d(x',q) = r - s_0 - \delta'.$$

于是,我们有

$$d(p, x') \ge d(p, q) - d(q, x') = s_0 + \delta'.$$

因此,从 p 沿着测地线到 $\gamma(s_0)$ 再沿着测地线到 x' 的路径具有长度 d(p,x'),根据性质1.1.3,它是测地线。于是 $x' = \gamma(s_0 + \delta')$ 。故

$$d(\gamma(s_0 + \delta'), q) = r - (s_0 + \delta').$$

推论 1.3.2. 若 S 是完备曲面,则 $\forall p \in S$, \exp_p 是满射。

这是因为若 d(p,q)=r,则 $q=\exp_p(rv)$,其中 $v=\gamma'(0)$, γ 是连接 p 与 q 的极小测地线。

推论 1.3.3. 若 S 是完备且有界的曲面(即存在 M > 0 使得 $\forall p, q \in S, d(p,q) < M$),则 S 是紧致的。

这是因为我们有 $S = \exp_p(\overline{B_M})$ 是紧集在连续映射下的像,从而紧致。

第四节 弧长的第一、第二变分

对于曲面 S 上的曲线 α : $[0,l] \to S$,它的一个**变分**是指一个光滑映射 h; $[0,l] \times (-\epsilon,\epsilon) \to S$,满足如下要求

$$h(s,0) = \alpha(s), \forall s \in [0,l].$$

我们称这个变分是**合适的**,若

$$h(0,t) = \alpha(0), h(l,t) = \alpha(l), \forall t \in (-\varepsilon, \varepsilon).$$

我们还可定义一个变分对应的变分向量场

$$V(s) = \frac{\partial h}{\partial t}(s, 0), \forall s \in [0, l].$$

利用指数映射和紧性能够证明,任何沿着曲线 $\alpha:[0,I]\to S$ 的向量场 V 都可以作为某个 α 的变分对应的变分向量场,并且如果 V(0)=V(I),那么这个变分可选取为合适的。

下面我们考虑曲线的弧长

$$L(t) = \int_{0}^{l} \left| \frac{\partial h}{\partial t}(s, t) \right| ds, t \in (-\varepsilon, \varepsilon).$$

可以证明弧长的第一变分公式

定理 1.4.1 (第一变分公式). 设 h; $[0, l] \times (-\epsilon, \epsilon) \to S$ 是弧长参数化曲线 $\alpha : [0, l] \to S$ 的一个合适的变分,则

$$L'(0) = -\int_{0}^{l} \langle A(s), V(s) \rangle ds.$$

其中 V(s) 是 h 对应的变分向量场,而

$$A(s) := \frac{D}{\partial s} \frac{\partial h}{\partial s}(s, 0).$$

证明 当t在0的小邻域内时,有

$$L'(t) = \int_{0}^{l} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{\partial h}{\partial s}, \frac{\partial h}{\partial s} \right\rangle^{\frac{1}{2}} \mathrm{d}s.$$

注意到

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{\partial h}{\partial s}, \frac{\partial h}{\partial s} \right\rangle^{\frac{1}{2}} = \frac{\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{\partial h}{\partial s}, \frac{\partial h}{\partial s} \right\rangle}{2 \left\langle \frac{\partial h}{\partial s}, \frac{\partial h}{\partial s} \right\rangle^{\frac{1}{2}}} = \frac{\left\langle \frac{\mathrm{D}}{\mathrm{d}t} \frac{\partial h}{\partial s}, \frac{\partial h}{\partial s} \right\rangle}{\left| \frac{\partial h}{\partial s} \right|} = \frac{\left\langle \frac{\mathrm{D}}{\mathrm{d}s} \frac{\partial h}{\partial t}, \frac{\partial h}{\partial s} \right\rangle}{\left| \frac{\partial h}{\partial s} \right|},$$

另t=0,有

$$L'(0) = \int_{0}^{l} \left\langle \frac{D}{ds} \frac{\partial h}{\partial t}, \frac{\partial h}{\partial s} \right\rangle ds$$

$$= \int_{0}^{l} \frac{\partial}{\partial s} \left\langle \frac{\partial h}{\partial t}, \frac{\partial h}{\partial s} \right\rangle ds - \int_{0}^{l} \left\langle \frac{\partial h}{\partial t}, \frac{D}{\partial s} \frac{\partial h}{\partial s} \right\rangle ds$$

$$= -\int_{0}^{l} \left\langle \frac{\partial h}{\partial t}, \frac{D}{\partial s} \frac{\partial h}{\partial s} \right\rangle ds.$$

这便是我们要的结果。

定理 1.4.2. 设 $\alpha: [0,l] \to S$ 是弧长参数化正则曲线,则 α 是测地线当且仅当对任意合适的变分 $h: [0,l] \times (-\epsilon,\epsilon) \to S$,均有 L'(0) = 0。

证明 一方面, 若 α 是测地线, 则

$$A(s) = \frac{D}{\partial s} \frac{\partial h}{\partial s} = 0,$$

由定理1.4.1,知L'(0) = 0。

另一方面, 若对任意合适的变分 $h:[0,l]\times (-\varepsilon,\varepsilon)\to S$, 均有 L'(0)=0, 那么, 任取可微函数 $f:[0,l]\to\mathbb{R}$ 满足 $f\geqslant 0$, f(0)=f(l)=0, 并令 V(s)=f(s)A(s), 均有

$$\int_{0}^{l} f(s)|A(s)|^{2} \mathrm{d}s = 0.$$

由 f 任意性, 有 $A \equiv 0$, 故 α 是测地线。

下面,我们只考虑测地线 $\gamma:[0,l]\to S$ 的合适变分,我们称一个变分是**正交的**,若其变分向量场满足 $\langle V(s),\gamma'(s)\rangle=0, \forall s\in[0,l]$ 。

引理 1.4.3. 对于局部坐标 $x:U\to S$,有

$$\frac{\mathrm{D}}{\mathrm{\partial}v}\frac{\mathrm{D}}{\mathrm{\partial}u}x_{u} - \frac{\mathrm{D}}{\mathrm{\partial}u}\frac{\mathrm{D}}{\mathrm{\partial}v}x_{u} = K(x_{u} \wedge x_{v}) \wedge x_{u}.$$

其中 K 为高斯曲率。

证明 注意到

$$\frac{\mathrm{D}}{\mathrm{\partial}u}x_u = \Gamma_{11}^1 x_u + \Gamma_{11}^2 x_v,$$

于是

$$\frac{\mathrm{D}}{\mathrm{\partial}v}\frac{\mathrm{D}}{\mathrm{\partial}u}x_{u} = ((\Gamma_{11}^{1})_{v} + \Gamma_{12}^{1}\Gamma_{11}^{1} + \Gamma_{22}^{1}\Gamma_{11}^{2})x_{u} + ((\Gamma_{11}^{2})v + \Gamma_{12}^{2}\Gamma_{11}^{1} + \Gamma_{22}^{2}\Gamma_{11}^{2})x_{v},$$

类似地

$$\frac{\mathrm{D}}{\mathrm{\partial} u} \frac{\mathrm{D}}{\mathrm{\partial} v} x_u = ((\Gamma_{12}^1)_v + \Gamma_{12}^1 \Gamma_{11}^1 + \Gamma_{12}^1 \Gamma_{12}^2) x_u + ((\Gamma_{12}^2)_v + \Gamma_{11}^2 \Gamma_{12}^1 + \Gamma_{12}^2 \Gamma_{12}^2) x_v,$$

从而

$$\begin{split} \frac{\mathbf{D}}{\partial v} \frac{\mathbf{D}}{\partial u} x_u - \frac{\mathbf{D}}{\partial u} \frac{\mathbf{D}}{\partial v} x_u &= -FKx_u + EKx_v \\ &= K(\langle x_u, x_u \rangle x_v - \langle x_u, x_v \rangle x_u) \\ &= K(x_u \wedge x_v) \wedge x_u. \end{split}$$

更一般地, 我们有

引理 1.4.4. 对于可微映射 $h:[0,l]\times(-\varepsilon,\varepsilon)\to S$,有

$$\frac{\mathrm{D}}{\mathrm{d}t}\frac{\mathrm{D}}{\mathrm{d}s}V - \frac{\mathrm{D}}{\mathrm{d}s}\frac{\mathrm{D}}{\mathrm{d}t}V = K(h_s \wedge h_t) \wedge V,$$

其中V是沿h的向量场。

定理 1.4.5 (第二变分公式). 设 $h:[0,l]\times\to S$ 是弧长参数化测地线 $\gamma:[0,l]\to S$ 的合适正交变分,对应变分向量场为 V(s),则

$$L''(0) = \int_{0}^{l} \left(\left| \frac{\mathrm{D}}{\mathrm{d}s} V(s) \right|^{2} - K |V(s)|^{2} \right) \mathrm{d}s.$$

证明 我们有

$$L''(t) = \int_{0}^{l} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{\mathrm{D}}{\mathrm{d}s} h_{t}, h_{s} \right\rangle |h_{s}|^{-\frac{1}{2}} \mathrm{d}s - \int_{0}^{l} \left\langle \frac{\mathrm{D}}{\mathrm{d}s} h_{t}, h_{s} \right\rangle^{2} |h_{s}|^{-\frac{3}{2}} \mathrm{d}s.$$

注意到,当 t=0 时,有 $|h_s|=1$, $\frac{\mathrm{D}}{\partial s}h_s=0$ 且 $\langle h_s,h_t\rangle=0$,结合

$$\left\langle \frac{\mathrm{D}}{\mathrm{d}s} h_t, h_s \right\rangle = \left(\frac{\mathrm{d}}{\mathrm{d}s} \left\langle h_s, h_t \right\rangle - \left\langle \frac{\mathrm{D}}{\mathrm{d}s} h_s, h_t \right\rangle \right),$$

有

$$L''(0) = \int_{0}^{l} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{\mathrm{D}}{\mathrm{d}s} h_{t}, h_{s} \right\rangle \mathrm{d}s,$$

注意到, 当t=0时

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{\mathrm{D}}{\mathrm{d}s} h_t, h_s \right\rangle &= \left\langle \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{D}}{\mathrm{d}s} h_t, h_s \right\rangle + \left\langle \frac{\mathrm{D}}{\mathrm{d}s} h_t, \frac{\mathrm{D}}{\mathrm{d}t} h_s \right\rangle \\ &= \left\langle \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{D}}{\mathrm{d}s} h_t, h_s \right\rangle - \left\langle \frac{\mathrm{D}}{\mathrm{d}s} \frac{\mathrm{D}}{\mathrm{d}t} h_t, h_s \right\rangle + \left\langle \frac{\mathrm{D}}{\mathrm{d}s} \frac{\mathrm{D}}{\mathrm{d}t} h_t, h_s \right\rangle + \left| \frac{\mathrm{D}}{\mathrm{d}s} h_t \right|^2 \\ &= \left\langle \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{D}}{\mathrm{d}s} h_t, h_s \right\rangle - \left\langle \frac{\mathrm{D}}{\mathrm{d}s} \frac{\mathrm{D}}{\mathrm{d}t} h_t, h_s \right\rangle + \frac{\mathrm{d}}{\mathrm{d}s} \left\langle \frac{\mathrm{D}}{\mathrm{d}t} h_t, h_s \right\rangle + \left| \frac{\mathrm{D}}{\mathrm{d}s} h_t \right|^2 \\ &= -K|V(s)|^2 + \frac{\mathrm{d}}{\mathrm{d}s} \left\langle \frac{\mathrm{D}}{\mathrm{d}t} h_t, h_s \right\rangle + \left| \frac{\mathrm{D}}{\mathrm{d}s} V(s) \right|^2 \end{split}$$

于是

$$L''(0) = \int_0^l \left(\left| \frac{\mathrm{D}}{\mathrm{d}s} V(s) \right|^2 - K |V(s)|^2 \right) \mathrm{d}s + \left\langle \frac{\mathrm{D}}{\mathrm{d}t} h_t, h_s \right\rangle \Big|_0^l = \int_0^l \left(\left| \frac{\mathrm{D}}{\mathrm{d}s} V(s) \right|^2 - K |V(s)|^2 \right) \mathrm{d}s.$$

第五节 Bonnet 定理的证明

证明 任取 $p,q \in S$, 只需证明:

$$d(p,q) \leqslant \frac{\pi}{\sqrt{\delta}}.$$

考虑连接 p,q 的极小测地线 γ (存在性由 Hopf-Rinow 定理保证), 若其长度

$$l = d(p, q) > \frac{\pi}{\sqrt{\delta}},$$

考虑如下变分: 取单位向量 $w_0 \in T_{\gamma(0)}(S)$ 满足 $\langle w_0, \gamma'(0) \rangle = 0$ 并令 w(s) 是 w_0 沿 γ 的平行移动,即 w(s) 是沿 γ 切向量场,满足

$$\frac{\mathrm{D}w}{\mathrm{d}t} = 0.$$

那么,我们有 $|w(s)| \equiv 1$ 且 $\langle w(s), \gamma'(s) \rangle = 0$ 。令

$$V(s) = w(s)\sin\frac{\pi s}{l}$$

并取其对应的正交合适变分, 由第二变分公式有

$$L''(0) = \int_{0}^{l} \left(\left| \frac{\mathrm{D}}{\mathrm{d}s} V(s) \right|^{2} - K |V(s)|^{2} \right) \mathrm{d}s,$$

注意到 w 是平行向量场,于是

$$\frac{\mathrm{D}}{\mathrm{d}s}V(s) = \frac{\pi}{l}\cos\frac{\pi s}{l}w(s),$$

于是

$$L''(0) = \int_{0}^{l} \left(\frac{\pi^2}{l^2} \cos^2 \frac{\pi s}{l} - K \sin^2 \frac{\pi s}{l}\right) ds$$
$$< \int_{0}^{l} \frac{\pi^2}{l^2} \left(\cos^2 \frac{\pi s}{l} - \sin^2 \frac{\pi s}{l}\right) ds$$
$$= 0$$

但 γ 是极小测地线,应有 $L''(0) \ge 0$,矛盾!

第二章 高维的 Bonnet 定理和 Myers 定理

本章的目标是将定理1.1.4推广到高维情形,即黎曼流形上。所谓**黎曼流形**,即一个光滑流形 M 带上一个黎曼度量 g,g 在 M 上的每一点 $p \in M$ 处的切空间上定义一个内积 $g_p(\cdot,\cdot)$,满足对于任意两个光滑切向量场 X,Y,函数 $p\mapsto g_p(X_p,Y_p)$ 均是光滑的。对于光滑流形 M,记 $\chi(M)$ 是其上所有光滑向量场形成的线性空间。

第一节 联络与协变导数

光滑流形 M 上的一个联络是指一个双线性映射

$$\nabla \, : \, \chi(M) \times \chi(M) \to \chi(M), (V,W) \mapsto \nabla_V W$$

满足对任意 $f \in C^{\infty}(M), V, W \in \chi(M)$,均有

$$\nabla_{fV}W = f\nabla_V W \tag{2.1.1}$$

$$\nabla_V f W = f \nabla_V W + (V f) W \tag{2.1.2}$$

此时称 $\nabla_V W$ 是 W 在 V 方向下的协变导数。在黎曼流形上,我们通常考虑具有更好性质的联络,比如

$$Xg(V,W) = g(\nabla_X V, W) + g(V, \nabla_X W)$$
 (2.1.3)

$$\nabla_V W - \nabla_W V = [V, W] \tag{2.1.4}$$

满足以上两个性质的联络被称为 Levi-Civita 联络。不难证明:

定理 2.1.1 (Levi-Civita). 任给一个黎曼流形 (M,g),其上存在唯一的 Levi-Civita 联络。

事实上, Levi-Civita 联络由下面的表达式(Koszul 等式)给出:

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y)$$

$$+ g([X, Y], Z) - g([X, Z], Y) - g([Y, Z], X)$$
(2.1.5)

在 Levi-Civita 联络下,我们能够定义测地线的概念: 称光滑正则参数化曲线 $c:I \to M$ 为测地线,若其满足 $\nabla_{c'}c'=0$ 。与在 Gauss 的曲面理论中一样,利用微分方程的知识,我们能够证明测地线的存在唯一性和对初值的光滑依赖性,

并且,我们仍能够用与第一节相似的方式定义两点间距离、exp 映射和极小测地线的概念,并证明黎曼流形上的 Hopf-Rinow 定理:

定理 2.1.2 (Hopf-Rinow). 设 (M,g) 是黎曼流形,则以下等价:

- (一) M 是完备度量空间;
- (二) 存在某点 $p \in M$,使得 \exp_n 定义在整个切空间 T_nM 上;
- (三) 对任意 $p \in M$,使得 \exp_p 均定义在整个切空间 T_pM 上。

以上任意一条成立时,我们称 (M,g) 为完备的,此时有:对任意 $p,q \in M$,存在连接 p 与 q 的极小测地线。

第二节 曲率

曲率是黎曼几何中的重要概念,借助 Levi-Civita 联络,我们如下定义**曲率张** 量:

$$R(X,Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z$$
 (2.2.1)

这个定义式被称为 Ricci 等式。通过直接计算,我们有:

性质 **2.2.1.** (1) g(R(X,Y)Z,W) = -g(R(Y,X)Z,W) = g(R(Y,X)W,Z);

- (2) g(R(X,Y)Z,W) = g(R(Z,W)X,Y);
- (3) 第一 Bianchi 等式: R(X,Y)Z + R(Z,X)Y + R(Y,Z)X = 0.

对于 $p \in M$ 和线性无关的两个向量 $v, w \in T_pM$,我们定义它们张成平面 $\pi := \operatorname{Span}(v, w)$ 的**截面曲率**:

$$K(\pi) := \frac{g(R(w,v)v,w)}{||v \wedge w||^2},$$

其中分母表示 v, w 张成平行四边形的面积,不难验证这个定义不依赖于张成平面的两个向量的选取。

除了截面曲率,我们还关心 Ricci 曲率: 取 $T_p M$ 的一组标准正交基 (e_1, \cdots, e_n) , 定义

$$Ric(v, w) := \operatorname{tr}(x \mapsto R(x, v)w) = \sum_{i=1}^{n} g(R(e_i, w)v, e_i).$$

对于单位向量 $v \in T_p M$,将其补为标准正交基 (v, e_2, \cdots, e_n) ,则有

$$Ric(v, v) = g(R(v, v), v) + \sum_{i=2}^{n} g(R(e_i, v)v, e_i)$$
$$= \sum_{i=2}^{n} K(v, e_i).$$

第三节 能量第一、第二变分公式

本节我们介绍能量泛函的变分公式(定理2.3.2、定理2.3.4),其在关于测地线性质的研究中起到重要作用,对于 Bonnet 定理与 Myers 定理的证明而言也是十分关键的。

我们考虑 $\Omega_{p,q}$ (所有连接 p,q 的分段光滑的、以区间 [0,1] 参数化的曲线的空间)上的**能量泛函**

$$E(c) = \frac{1}{2} \int_{0}^{1} \left| \frac{\mathrm{d}c(t)}{\mathrm{d}t} \right|^{2} \mathrm{d}t,$$

对于常速率参数化曲线 $\alpha:[0,l] \to M$, 我们有:

性质 2.3.1. 若 α 是弧长泛函的极小值点,则它是能量泛函的极小值点。

证明 设 α 的邻域 V 满足 $\forall c \in V$, $L(c) \geq L(\alpha)$, 由 Cauchy-Schwarz 不等式,

$$\forall c \in V, E(c) \geqslant \frac{1}{2}L(c)^2 \geqslant \frac{1}{2}L(\alpha)^2 = E(\alpha).$$

一般地,对于分段光滑参数化曲线 $c:[a,b] \to M$,我们也定义其能量

$$E(c) = \frac{1}{2} \int_{a}^{b} \left| \frac{\mathrm{d}c(t)}{\mathrm{d}t} \right|^{2} \mathrm{d}t,$$

性质2.3.1告诉我们,弧长参数化的极小测地线是能量泛函的极小值点,于是 我们可以通过计算能量泛函的变分研究极小测地线的性质。

定理 2.3.2 (能量的第一变分公式). 设 $\bar{c}: (-\epsilon, \epsilon) \times [a, b] \to M$ 是分段光滑参数化曲线 $c: [a, b] \to M$ 的分段光滑合适变分,对应的分割为 $a = a_0 < a_1 < \cdots < a_m = b$,则有

$$\frac{\mathrm{d}E(c_s)}{\mathrm{d}s}\bigg|_{s=0} = -\int_a^b g\left(\frac{\partial^2 \bar{c}}{\partial t^2}, \frac{\partial \bar{c}}{\partial s}\right) \mathrm{d}t + \sum_{i=1}^{m-1} g\left(\frac{\partial \bar{c}}{\partial t^-} - \frac{\partial \bar{c}}{\partial t^+}, \frac{\partial \bar{c}}{\partial s}\right)\bigg|_{(0,a_i)}$$

证明 我们对曲线逐段考虑,便可把问题约化到光滑曲线的情形。我们证明,对于c光滑的情形,去掉合适变分的条件,有

$$\frac{\mathrm{d}E(c_s)}{\mathrm{d}s}\bigg|_{s=0} = -\int_a^b g\left(\frac{\partial^2 \bar{c}}{\partial t^2}, \frac{\partial \bar{c}}{\partial s}\right) \mathrm{d}t
+ g\left(\frac{\partial \bar{c}}{\partial t}, \frac{\partial \bar{c}}{\partial s}\right)\bigg|_{(0,b)} - g\left(\frac{\partial \bar{c}}{\partial t}, \frac{\partial \bar{c}}{\partial s}\right)\bigg|_{(0,a)},$$

这是由于

$$\begin{split} \frac{\mathrm{d}E(c_s)}{\mathrm{d}s} &= \frac{\mathrm{d}}{\mathrm{d}s} \frac{1}{2} \int_{a}^{b} g\left(\frac{\partial \bar{c}}{\partial t}, \frac{\partial \bar{c}}{\partial t}\right) \mathrm{d}t \\ &= \int_{a}^{b} g\left(\frac{\partial^2 \bar{c}}{\partial s \partial t}, \frac{\partial \bar{c}}{\partial t}\right) \mathrm{d}t \\ &= \int_{a}^{b} g\left(\frac{\partial^2 \bar{c}}{\partial t \partial s}, \frac{\partial \bar{c}}{\partial t}\right) \mathrm{d}t \\ &= \int_{a}^{b} \frac{\partial}{\partial t} g\left(\frac{\partial \bar{c}}{\partial s}, \frac{\partial \bar{c}}{\partial t}\right) \mathrm{d}t - \int_{a}^{b} g\left(\frac{\partial^2 \bar{c}}{\partial t^2}, \frac{\partial \bar{c}}{\partial s}\right) \mathrm{d}t \\ &= -\int_{a}^{b} g\left(\frac{\partial^2 \bar{c}}{\partial t^2}, \frac{\partial \bar{c}}{\partial s}\right) \mathrm{d}t + g\left(\frac{\partial \bar{c}}{\partial t}, \frac{\partial \bar{c}}{\partial s}\right) \Big|_{(s,a)}^{(s,b)}. \end{split}$$

为给出能量的第二变分公式,我们需要一个引理:

引理 2.3.3. 对于三阶偏导数,有

$$\frac{\partial^3 c}{\partial u \partial s \partial t} - \frac{\partial^3 c}{\partial s \partial u \partial t} = R \left(\frac{\partial c}{\partial u}, \frac{\partial c}{\partial s} \right) \frac{\partial c}{\partial t}.$$

引理可通过计算证明,不在此赘述。借助这个引理,我们给出能量的第二变分公式:

定理 2.3.4 (能量的第二变分公式,Synge). 在定理2.3.2的条件的基础上,进一步假设 c 是测地线且 \bar{c} 是光滑变分,那么

$$\frac{\mathrm{d}^2 E(c_s)}{\mathrm{d}s^2}\bigg|_{s=0} = \int_a^b \left(\left| \frac{\partial^2 \bar{c}}{\partial t \partial s} \right|^2 - g \left(R \left(\frac{\partial \bar{c}}{\partial s}, \frac{\partial \bar{c}}{\partial t} \right) \frac{\partial \bar{c}}{\partial t}, \frac{\partial \bar{c}}{\partial s} \right) \right) \mathrm{d}t + g \left(\frac{\partial^2 \bar{c}}{\partial s^2}, \frac{\partial \bar{c}}{\partial t} \right) \bigg|_a^b.$$

证明 第一变分公式告诉我们

$$\frac{\mathrm{d}E(c_s)}{\mathrm{d}s} = -\int_a^b g\left(\frac{\partial^2 \bar{c}}{\partial t^2}, \frac{\partial \bar{c}}{\partial s}\right) \mathrm{d}t + g\left(\frac{\partial \bar{c}}{\partial t}, \frac{\partial \bar{c}}{\partial s}\right)\Big|_{(s,a)}^{(s,b)},$$

于是

$$\frac{\mathrm{d}^2 E(c_s)}{\mathrm{d}s^2} = -\int_a^b g\left(\frac{\partial^2 \bar{c}}{\partial s^2}, \frac{\partial^2 \bar{c}}{\partial t^2}\right) \mathrm{d}t - \int_a^b g\left(\frac{\partial \bar{c}}{\partial s}, \frac{\partial^3 \bar{c}}{\partial s \partial t^2}\right) \mathrm{d}t + g\left(\frac{\partial^2 \bar{c}}{\partial s^2}, \frac{\partial \bar{c}}{\partial t}\right) \Big|_{(s,a)}^{(s,b)} + g\left(\frac{\partial \bar{c}}{\partial s}, \frac{\partial^2 \bar{c}}{\partial s \partial t}\right) \Big|_{(s,a)}^{(s,b)},$$

令 s = 0 并注意到 c 是测地线,有

$$\frac{\mathrm{d}^{2}E(c_{s})}{\mathrm{d}s^{2}}\bigg|_{s=0} = -\int_{a}^{b} g\left(\frac{\partial\bar{c}}{\partial s}, \frac{\partial^{3}\bar{c}}{\partial s\partial t^{2}}\right) \mathrm{d}t + g\left(\frac{\partial^{2}\bar{c}}{\partial s^{2}}, \frac{\partial\bar{c}}{\partial t}\right)\bigg|_{a}^{b} + g\left(\frac{\partial\bar{c}}{\partial s}, \frac{\partial^{2}\bar{c}}{\partial s\partial t}\right)\bigg|_{a}^{b}
= \int_{a}^{b} g\left(\frac{\partial^{2}\bar{c}}{\partial s}, R\left(\frac{\partial\bar{c}}{\partial s}, \frac{\partial\bar{c}}{\partial t}\right)\right) \mathrm{d}t - \int_{a}^{b} g\left(\frac{\partial\bar{c}}{\partial s}, \frac{\partial^{3}\bar{c}}{\partial t\partial s\partial t}\right) \mathrm{d}t
- \int_{a}^{b} g\left(\frac{\partial\bar{c}}{\partial s}, R\left(\frac{\partial\bar{c}}{\partial s}, \frac{\partial\bar{c}}{\partial t}\right)\right) \mathrm{d}t - \int_{a}^{b} g\left(\frac{\partial\bar{c}}{\partial s}, \frac{\partial^{3}\bar{c}}{\partial t\partial s\partial t}\right) \mathrm{d}t$$

故只需证

$$-\int_{a}^{b} g\left(\frac{\partial \bar{c}}{\partial s}, \frac{\partial^{3} \bar{c}}{\partial t \partial s \partial t}\right) dt + g\left(\frac{\partial^{2} \bar{c}}{\partial t^{2}}, \frac{\partial \bar{c}}{\partial s}\right)\Big|_{a}^{b} = \int_{a}^{b} \left|\frac{\partial^{2} \bar{c}}{\partial t \partial s}\right|^{2} dt,$$

直接应用分部积分公式即可证明。

第四节 Bonnet 与 Myers 的定理

定理 2.4.1 (Bonnet). 设 (M,g) 是完备的黎曼流形,满足截面曲率 $K \ge k > 0$,则有

$$\operatorname{diam}(M) \leqslant \frac{\pi}{\sqrt{k}} =: \operatorname{diam}S_k^n,$$

从而 M 是紧致的,进一步, M 的基本群是有限群。

证明 我们首先证明: 极小测地线的长度总是小于 $\operatorname{diam} S_k^n$, 结合 $\operatorname{Hopf-Rinow}$ 定理,这便能给出关于直径的估计。为此,取弧长参数化极小测地线 γ 的一个合适变分,使其对应的变分向量场为

$$V(t) = \sin\left(\frac{\pi}{l}t\right)E(t),$$

其中 E 是垂直于 c'(t) 的单位平行切向量场。由能量的第二变分公式(定理2.3.4),有

$$0 \leqslant \frac{\mathrm{d}^2 E(c_s)}{\mathrm{d}s^2} \bigg|_{s=0} = \int_0^l \left| \frac{\mathrm{d}V(t)}{\mathrm{d}t} \right|^2 \mathrm{d}t - \int_0^l g(R(V, c'(t))c'(t), V) \mathrm{d}t$$
$$= \frac{\pi^2}{l^2} \int_0^l \cos^2\left(\frac{\pi}{l}t\right) \mathrm{d}t - \int_0^l \sin^2\left(\frac{\pi}{l}t\right) K(E, c'(t)) \mathrm{d}t$$
$$\leqslant \frac{l}{2} \left(\frac{\pi^2}{l^2} - k\right),$$

于是 $l \leq \operatorname{diam} S_k^n$ 。注意到 M 的万有覆叠也满足这个定理的条件,从而也是紧的,于是 M 的基本群是有限群。

这个定理于 1941 年被 Myers 推广到 Ricci 曲率有正下界的完备黎曼流形上: **定理 2.4.2** (Myers). 设 (M,g) 是完备的 n-维黎曼流形,并且其 Ricci 曲率满足 $Ric \ge (n-1)k > 0$,则有

$$\operatorname{diam}(M) \leqslant \frac{\pi}{\sqrt{k}} =: \operatorname{diam} S_k^n,$$

从而 M 是紧致的,进一步, M 的基本群是有限群。

证明的方法与定理2.4.1极其相似,唯一的区别在于我们需要取一组垂直于c'(t) 的单位平行切向量场 E_2, \cdots, E_n ,满足 $c'(t), E_i(t), 2 \leq i \leq n$ 构成 $T_{c(t)}M$ 的规范正交基,再取合适变分对应于

$$V_i(t) = \sin\left(\frac{\pi}{l}t\right) E_i(t),$$

最后将能量第二变分公式给出的结果相加即可,我们不再赘述。

第三章 Myers 定理的推广及其他相关结果

第一节 Myers 定理的一个推广

值得注意的是, Myers 定理2.4.2在物理上, 尤其是广义相对论中, 也有应用。 文献^[5]给出了 Myers 比较定理的一个推广(定理3.1.1), 并用其证明了一个相对 论宇宙的结论。本节将介绍这个推广工作。

定理 3.1.1. 设 (M,g) 是 n-维完备黎曼流形,满足存在常数 a > 0 和 $c \ge 0$,满足: 对任意弧长参数化极小测地线 γ ,均存在关于弧长 t 的函数 f,满足 $|f(t)| \le c$ 并且

$$Ric(\gamma'(t), \gamma'(t)) \geqslant a + \frac{\mathrm{d}f}{\mathrm{d}t},$$

则 M 是紧的,且其直径满足

$$\operatorname{diam}(M) \leqslant \frac{\pi}{a}(c + \sqrt{c^2 + a(n-1)}).$$

进一步地,M 的基本群是有限群。

注. 令 $f \equiv 0$, c = 0, 便得到 Myers 定理2.4.2。

证明 只需证明: 弧长参数化极小测地线 $\gamma:[0,I] \to M$ 总是满足

$$l \leqslant \frac{\pi}{a}(c + \sqrt{c^2 + a(n-1)}).$$

取一组垂直于 $\gamma'(t)$ 的单位平行切向量场 E_2,\cdots,E_n ,满足 $\gamma'(t),E_i(t),2\leqslant i\leqslant n$ 构成 $T_{c(t)}M$ 的规范正交基,再取合适变分对应于

$$V_i(t) = \sin\left(\frac{\pi}{l}t\right) E_i(t),$$

由能量的第二变分公式2.3.4,有

$$\begin{split} 0 &\leqslant \left. \frac{\mathrm{d}^2 E(\gamma_{s,i})}{\mathrm{d}s^2} \right|_{s=0} \\ &= \frac{\pi^2}{l^2} \int\limits_0^l \cos^2\left(\frac{\pi}{l}t\right) \mathrm{d}t - \int\limits_0^l \sin^2\left(\frac{\pi}{l}t\right) K(E_i, \gamma'(t)) \mathrm{d}t \\ &= \frac{l}{2} \frac{\pi^2}{l^2} - \int\limits_0^l \sin^2\left(\frac{\pi}{l}t\right) K(E_i, \gamma'(t)) \mathrm{d}t, \end{split}$$

相加得

$$0 \leqslant \frac{(n-1)\pi^2}{2l} - \int_0^l \sin^2\left(\frac{\pi}{l}t\right) Ric(\gamma', \gamma') dt$$

$$\leqslant \frac{(n-1)\pi^2}{2l} - \int_0^l \sin^2\left(\frac{\pi}{l}t\right) \left(a + \frac{\mathrm{d}f}{\mathrm{d}t}\right) dt$$

$$= \frac{(n-1)\pi^2}{2l} - \frac{al}{2} - \int_0^l \sin^2\left(\frac{\pi}{l}t\right) \frac{\mathrm{d}f}{\mathrm{d}t} dt$$

$$(分部积分) \frac{(n-1)\pi^2}{2l} - \frac{al}{2} + \frac{\pi}{l} \int_0^l \sin\left(\frac{2\pi}{l}t\right) f(t) dt$$

$$\leqslant \frac{(n-1)\pi^2}{2l} - \frac{al}{2} + \pi c,$$

$$l \leqslant \frac{\pi}{l} (c + \sqrt{l^2 + a(n-1)}).$$

从而

第二节 Myers 定理的刚性

关于曲率的比较定理,人们还关心一个问题: 当一个黎曼流形满足定理中关于曲率的条件,并且直径达到所得到的上界时,能否得到关于这个流形的更多信息,乃至确定这个流形? 郑绍远教授在^[2]中给出了答案:

定理 3.2.1 (S. Y. Cheng, 1975). 设 (M, g) 是完备的 n-维黎曼流形,满足 Ricci 曲率 $Ric \ge (n-1)k > 0$,且

$$\operatorname{diam}(M) = \frac{\pi}{\sqrt{k}} = : \operatorname{diam}S_k^n,$$

那么,M 等距同构于欧氏空间中半径为 $\frac{1}{\sqrt{k}}$ 球面 S_k^n 。

为证明这个结论,我们需要 Calabi 的 Laplace 算子的比较定理。我们定义黎 曼流形上的光滑向量场 X 的**散度**为满足如下条件的 1-形式

$$\operatorname{div}X(Y) = -g(\nabla_{E_i}X, Y), \forall Y \in \chi(M),$$

其中 (E_i) 是规范正交标架。我们定义一个光滑函数的 Laplace 为

$$\triangle f := \operatorname{div} \nabla f$$
.

我们能够将欧氏空间中的强极大值原理推广到黎曼流形上:

定理 3.2.2 (强极大值原理). 设 $f \in C^{\infty}(M)$ 满足 $\triangle f \ge 0$,则 f 在每个局部极大值点的一个邻域内为常值。特别地,若 f 有全局极大值点,则 f 为常数。

我们不展示这个定理的证明细节,个中技巧与经典版本的证明无异。

定理 3.2.3 (Calabi,1958). 设 (M,g) 是完备的 n-维黎曼流形,并且其 Ricci 曲率满足 $Ric \ge (n-1)k$, $p \in M$ 是任意一点,考虑距离函数 r(x) = d(x,p),有

$$\triangle r(x) \leqslant (n-1) \frac{sn'_k(r(x))}{sn_k(r(x))}.$$

其中 sn_k(t) 是如下常微分方程的解

$$\begin{cases} x''(t) + kx(t) = 0 \\ x(0) = 0 \\ x'(0) = 1. \end{cases}$$

证明 通过用光滑函数逼近,我们不妨假设r光滑的情形。考虑函数

$$\rho = \frac{\triangle r}{n-1},$$

我们有

$$\partial_r \rho + \rho^2 \le \partial_r \rho + \frac{1}{n-1} |\text{Hess } r|^2 = -\frac{1}{n-1} Ric(\partial_r, \partial_r) \le -k,$$

故由如下的引理3.2.4,有

$$\triangle r(x) \le (n-1) \frac{sn'_k(r(x))}{sn_k(r(x))}.$$

引理 3.2.4 (Riccati 比较原理). 假设两个光滑函数 $\rho_{1,2}:(0,b) \to \mathbb{R}$ 满足

$$\lim_{x \to 0} \rho_1 x) - \rho_2(x) = 0, \quad \rho_1' + \rho_1^2 \leqslant \rho_2' + \rho_2^2,$$

则有 $\rho_2 \geqslant \rho_1$.

证明 记 $F \stackrel{\cdot}{=} \rho_1 + \rho_2$ 的原函数,有

$$((\rho_2-\rho_1)e^F)'=(\rho_2'-\rho_1'+\rho_2^2-\rho_1^2)e^F\geqslant 0,$$

这便给出所要的结论。

下面我们给出刚性定理的证明。

证明 设 $p,q \in M$ 满足 $d(p,q) = \text{diam}S_k^n$,记 $r_1(x) = d(x,p), r_2(x) = d(x,q)$,有 $r_1 + r_2 \geqslant \text{diam}S_k^n$ 。由 Laplace 比较定理3.2.3,有

不难证明 r_1+r_2 在 $M\setminus\{p,q\}$ 上光滑。由强极大值原理(定理3.2.2),有 $r_1+r_2\equiv {\rm diam}S^n_k$ 。于是

$$\begin{split} (n-1)\frac{sn_k'(r_1(x))}{sn_k(r_1(x))} & \geqslant \triangle r_1(x) \\ & = -\triangle r_2(x) \\ & \geqslant -(n-1)\frac{sn_k'(r_2(x))}{sn_k(r_2(x))} \\ & = -(n-1)\frac{sn_k'(\operatorname{diam}S_k^n - r_1)}{sn_k(\operatorname{diam}S_k^n - r_1)} \\ & = (n-1)\frac{sn_k'(r_1(x))}{sn_k(r_1(x))}, \end{split}$$

于是上面不等式中所有等号均成立。进一步地,

$$-(n-1)k = \partial_r \triangle r_1 + \frac{(\triangle r_1)^2}{n-1}$$

$$\leq \partial_r \triangle r_1 + |\text{Hess } r_1|^2$$

$$\leq -Ric(\partial_r, \partial_r) \leq -(n-1)k,$$

于是上面不等式中所有等号也均成立,故

$$\operatorname{Hess} r_1 = \frac{sn_k'}{sn_k} \mathrm{d} s_{n-1}^2,$$

从而
$$g = dr^2 + sn_k^2 ds_{n-1}^2$$
。

第三节 带边流形上的结果

对于带边黎曼流形 M,我们可以将边界 $\partial M \subset M$ 视为嵌入子流形,于是有**第二基本形式**:

$$II(X,Y) := g(\nabla^M_X Y, N), X, Y \in T \partial M,$$

其中 N 为 ∂M 的单位内法向。我们定义**平均曲率:**

$$H = \sum_{i=1}^{n-1} II(e_i, e_i),$$

其中 (e_1, \dots, e_{n-1}) 是 $T \partial M$ 的规范正交基。

定理 3.3.1. 假设 M^n 紧且 Ricci 曲率非负,且 H > 0,则有

$$\int_{\partial M} \frac{1}{H} dA \geqslant n \text{Vol}(M),$$

等号成立当且仅当 M 等距同构于欧氏球面。

证明 利用^[1]中的定理 4.8, 取 $f: M \to \mathbb{R}$ 满足

$$\begin{cases} \triangle f = 1 & \text{in } M, \\ f = 0 & \text{on } \partial M \end{cases}$$

由散度定理,有

$$Vol(M) = \int_{M} \triangle f \, dV = -\int_{\partial M} \frac{\partial f}{\partial N} \, dA$$
 (3.3.1)

由 Cauchy-Schwarz 不等式,有 $(\triangle f)^2 \le n |\nabla^2 f|^2$,结合[10]中的(14)式

$$\int_{M} ((\triangle f)^{2} - |\nabla^{2} f|^{2} - Ric(\nabla f, \nabla f)) dV$$

$$= \int\limits_{\partial M} \left(-2 \frac{\partial f}{\partial N} \triangle_{\partial M} f + (n-1) H \left(\frac{\partial f}{\partial N} \right)^2 + II(\nabla^{\partial M} f, \nabla^{\partial M} f) \right) \mathrm{d}A$$

便得到

$$\frac{\operatorname{Vol}(M)}{n} \geqslant \int_{\partial M} H\left(\frac{\partial f}{\partial N}\right)^2 dA \tag{3.3.2}$$

于是

$$\operatorname{Vol}(M)^{2} \stackrel{(3.3.1)}{=} \left(\int_{\partial M} \frac{\partial f}{\partial N} dA \right)^{2} = \left(\int_{\partial M} \sqrt{H} \frac{\partial f}{\partial N} \cdot H^{-\frac{1}{2}} dA \right)^{2}$$

$$\leq \int_{\partial M} H \left(\frac{\partial f}{\partial N} \right)^{2} dA \int_{\partial M} H^{-1} dA$$

$$\stackrel{(3.3.2)}{\leq} \frac{\operatorname{Vol}(M)}{n} \int_{\partial M} \frac{1}{H} dA$$

这便得到所要的不等式。刚性结论的证明见[9]。

利用第二变分公式,Laplace 比较定理以及定理3.3.1等工具,文献^[7]证明了**定理 3.3.2.** 设带边完备黎曼流形 M^n 满足 Ricci 曲率非负,且边界的平均曲率满足 $H \geqslant (n-1)k > 0$,则

$$\sup_{x \in M} d(x, \partial M) \leqslant \frac{1}{k}.$$

进一步地,若 ∂M 是紧的,则 M 也是紧的。此外,等式成立当且仅当 M 等距同构于半径为 k^{-1} 欧氏球面。

定理证明涉及较多细节, 在这里予以省略。

参考文献

- [1] Thierry Aubin. Some Nonlinear Problems in Riemannian Geometry. Springer Monographhs in Mathematics., Springer-Verlag, 1998.
- [2] S. Y. Cheng. Eigenvalue Comparison Theorems and Its Geometry Applications. *Math. Z.*, 143, 289-297, 1975.
- [3] J. Cheeger, D. G. Ebin. Comparison Theorems in Riemannian Geometry. AMS Chelsea Publishing, 1975.
- [4] M. P. Do Carmo. Differential Geometry of Curves and Surfaces, 2ed, 2017.
- [5] G. J. Galloway. A Generalization of Myers Theorem and an Application to Relativistic Cosmology. *J. Differential Geometry.*, 14, 105-116, 1979
- [6] S. Gallot, D. Hulin, J. Lafontaine. Riemannian Geometry. Universitext., Springer-Verlag, 2004.
- [7] M. M. Li. A Sharp Comparison Theorem for Compact Manifolds with Mean Convex Boundary. *J. Geom. Anal.*, 24, 1490-1496, 2014.
- [8] P. Petersen. Riemannian Geometry. *Graduate Texts in Mathematics.*, 171, Springer, 2016.
- [9] A. Ros. Compact Hypersurfaces with Constant Higher Order Mean Curvatures. *Revista Matemática Iberoamericana.*, 3, 447-453, 1987.
- [10] R. C. Reilly. Applications of the Hessian Operator in a Riemannian Manifold. Indiana Univ. Math. J., 26, 459-472, 1977.

致 谢

时光飞逝! 自我 2020 年入学以来已经将近三年,而我也将提前从承载着许多回忆的中国科学技术大学毕业。回顾我的本科阶段,有太多需要感谢的人:

感谢我的本科毕业论文导师韦勇老师,他曾带过中法班分析 IV、复分析和微分几何三门课的习题课,在巩固基础知识上给予了我很大的帮助,我的这篇论文在选题、参考文献阅读和相关知识学习等方面都离不开韦老师的指导;感谢我的大学生创新项目导师,殷浩老师,殷老师是中法班分析 III 课程的授课老师,他颇具特色的授课给同学们留下了极深的印象,在他的指导下,我初步了解了黎曼曲面这一身处微分几何、代数几何等多个方向交汇点的相关知识;感谢梁永祺老师,他在论文写作方面提供了宝贵的指导意见;感谢麻希南、麻小南老师,他们十分关心同学们的学习状况,也为我们带来了难以忘怀的课堂记忆;感谢曹阳老师、韩邦先老师、孙雯老师、孙哲老师、俞建青老师以及 Stéphane Nonnenmacher、Bernhard Keller、Christophe Margerin、Joël Merker、André Moroianu等曾为中法班授课的中外教师,他们向我们展示了各种各样的美丽的数学;感谢 Lauréline Claeys、赵吉鹏、Nathalie Jay等法语老师,老师们的指导让我得以较好地适应法语授课;感谢徐月老师,她在学习以外的事务上给予了我们帮助。

感谢我的父母,吴剑光女士与叶洪先生,他们含辛茹苦地养育我,支持我学习自己感兴趣的知识;感谢我的好朋友们,这其中有从小学就关系要好的朋友们,也有中学阶段相识的好同学、在学习上互相帮助的好伙伴,还有本科阶段结交的良师益友,其中包括:北京大学的丘瑞岑先生(我的高中同学,我们每个假期都互相给对方作报告,他的报告让我收获颇丰)、我的三位舍友:杨博涵先生、徐海阳先生和许戈宇先生(我们朝夕相处了三年,在各个方面都互相帮助)、中法班的同学们(大家相互讨论交流,是我能够取得进步的一个重要原因)、花女士(姜林静女士,花女士的陪伴是叶先生收到过的最令人喜出望外的礼物)。

最后,感谢我自己,叶骁炜先生。这三年,我渐渐认识到了数学之路的不易,学成绝非一朝一夕。但是,正如苏轼在《又答王庠书》所说"此虽愚钝,而他日学成,八面受敌,与涉猎者不可同日而语也。"路漫漫其修远兮,吾将上下而求索!感谢自己克服了一些困难,坚持到了现在;希望自己以后也能够克服遇到的困难,继续坚持下去!