Intégration et probabilités

Introduction

Références:

- Billingsley, Probability and measure
- Kolmogorov & Fomin, tome 2

Motivations:

- Définir la longueur d'une partie de \mathbb{R}
- Définir l'aire d'une partie de \mathbb{R}^2
- Définir $\int f dx$ pour $f: \mathbb{R}^d \to \mathbb{R}$
- Définir, préciser la notion mathématique décrivant une suite infinie de jets de dés

Par exemple:

- Si $f: \mathbb{R} \to \mathbb{R}$, on peut définir $\int f$ comme l'aire algébrique définie par le graphe de f. Ainsi, définir une aire permet de définir une intégrale
- De même, $\lambda(A) = \mathbb{1}_A$ avec $\mathbb{1}_A(x) = 1$ ssi $x \in A$. Donc définir une intégrale revient à définir une mesure.
- Tirer un nombre au hasard dans [0,1], cela revient à tirer au hasard la suite de ses décimales au D10, car on mesure une partie de $\{0, 1, \dots 9\}^{\mathbb{N}}$

On se demande alors comment définir la surface d'une partie du plan.

Méthode 1 : à la Riemann. On approxime avec un quadrillage. On compte le nombre de carrés qui intersectent l'ensemble considéré, puis on conclut en passant à la limite quand le côté du quadrillage tend vers 0.

Méthode 2 : on pose $\lambda(A) := \inf_{(R_i)} \sum_{i=1}^{\infty} \lambda(R_i)$ où R_i est une suite de rectangles recouvrant A.

À noter : les deux méthodes ont des cas pathologiques différents.

Ensembles dénombrables

Définition: Un ensemble est dénombrable ssi il est en bijection avec \mathbb{N}

Propriété: Toute partie d'un ensemble dénombrable est au plus dénombrable

Démonstration: On pose $x : \mathbb{N} \to X, Y \subset X$. Si Y n'est pas fini :

$$i_1 = \min\{i \in \mathbb{N}, x_i \in Y\}$$

$$\dots$$

$$i_n = \min\{i \in \mathbb{N}, x_i \in Y \setminus \{x_1, \dots, x_{n-1}\}\}$$

Ainsi, $k \mapsto x_{n_k}$ est une bijection de \mathbb{N} vers Y.

Propriété: L'image d'une suite est au plus dénombrable.

Démonstration: On note $x: \mathbb{N} \to X$ une suite. On crée de manière analogue une sous-suite injective de x de même image que x (sauf si $f(x(\mathbb{N}))$ est fini).

Propriété : $\mathbb{N} \times \mathbb{N}$ est dénombrable.

Démonstration: $(n_1, n_2) \mapsto 2^{n_1}(2n_2 + 1) - 1$ est une bijection $\mathbb{N}^2 \to \mathbb{N}$.

1

Propriété : Une réunion au plus dénombrables d'ensembles au plus dénombrable est au plus dénombrable.

Démonstration: On traite le cas "union dénombrable d'ensembles dénombrables". Soit A_i des parties dénombrables d'un ensemble X. Pour tout i, il existe $b_i : \mathbb{N} \to A_i$ bijection. $(i,j) \mapsto b_i(j)$

(nb : ceci requiert en fait l'axiome du choix dénombrable) Alors $\mathbb{N}^2 \to \bigcup_i A_i$ est surjective.

Donc $\bigcup A_i$ est au plus dénombrable.

Or
$$\bigcup_{i}^{i} A_{i}^{i} \supset A_{i}$$
.

Donc $\bigcup_{i} A_i$ est dénombrable.

Propriété : Si X est dénombrable, $\mathcal{P}(X)$ ne l'est pas.

Plus généralement, quel que soit X, X et $\mathcal{P}(X)$ ne sont jamais en bijection (théorème de Cantor).

Démonstration: Supposons qu'il existe $x: X \to \mathcal{P}(X)$ une bijection.

Considérons $B := \{x, x \notin A_x\}$. Comme x est une bijection, il existe $y \in X$ tel que $B = A_y$. Question : a-t-on $y \in B$. On arrive à un paradoxe type Russel.

Exercice:

- $\{0,1\}^{\mathbb{N}}$ est non dénombrable.
- \mathbb{R} est non dénombrable.

lim sup et lim inf

Définition :

Soit $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ (plus généralement $\in \bar{\mathbb{R}}^{\mathbb{N}}$). Alors $s_n:=\sup_{k\geq n}x_k$.

 s_n est décroissante (donc a une limite dans \mathbb{R}).

Alors $\lim s_n =: \lim \sup x_n = \inf s_n$.

De même pour $\liminf x_n$.

Propriété: $\lim x_n$ existe ssi $\lim \inf x_n = \lim \sup x_n$. Dans ce cas, $\lim x_n = \lim \sup x_n = \lim \inf x_n$.

Démonstration: $\Leftarrow: i_n \leq x_n \leq s_n$. On conclut par théorème d'encadrement. $\Rightarrow: \text{Si } x_n \to l \text{ alors}: \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, l - \varepsilon \leq i_n \leq l \leq s_n \leq l + \varepsilon$. Donc $s_n \to l$ et $i_n \to l$.

Propriété : Si y_n est une sous-suite de x_n , alors $\liminf x_n \leq \liminf y_n \leq \limsup y_n \leq \limsup x_n$

Ainsi, si l est valeur d'adhérence de x_n , alors $\liminf x_n \leq l \leq \limsup x_n$.

Propriété: $\limsup x_n = -\liminf(-x_n)$

Propriété : Il existe une sous-suite de x_n qui converge vers $\limsup x_n$. Idem pour $\liminf x_n$.

Démonstration: On choisit $k_n \geq n$ tel que $s_n - \frac{1}{n} \leq x_{k_n} \leq s_n$. $n \mapsto x_{k_n}$ converge vers $\limsup x_n$.

Familles sommables

On pose $(a_i)_{i \in I}$ famille de nombres positifs. **Définition**: $\sum_{i \in I} a_i := \sup_{F \subset I \text{fini}} \sum_{i \in F} a_i$

Propriété: Si $\sum_{i \in I} a_i$ est fini, alors $\{i \in I, a_i \neq 0\}$ est au plus dénombrable.

Démonstration: $\{i \in I, a_i \in \mathbb{R} \setminus \{0\}\} \subset \bigcup_{k \in \mathbb{N}} \{i \in I, a_i \geq \frac{1}{k}\}$

À partir de maintenant, on considérera I dénombrable.

Propriété: Si $\sigma: \mathbb{N} \to I$ est une bijection, alors $\sum_{i \in I} a_i = \lim_{n \to +\infty} \sum_{k=1}^n a_{\sigma(k)} =:$ $\sum_{k=1}^{+\infty} a_{\sigma(k)}$

 $\begin{array}{l} \textbf{D\'{e}monstration} \ : \forall F \subset I \ \text{fini}, \ \sigma^{-1}(F) \ \text{est fini donc major\'e par un entier } N. \\ \sum_{i \in F} a_i = \sum_{k \in \sigma^{-1}(F)} a_{\sigma(k)} \leq \sum_{k=1}^N a_{\sigma(k)} \leq \sum_{k=1}^{+\infty} a_{\sigma(k)} \\ \text{Donc par passage au sup} : \sum_{i \in I} a_i \leq \sum_{k=1}^{+\infty} a_{\sigma(k)}. \\ \text{R\'{e}ciproquement}, \ \sum_{k=1}^N a_{\sigma(k)} = \sum_{i \in \sigma(\llbracket 1, N \rrbracket)} a_i \leq \sum_{i \in I} a_i. \ \text{On conclut par passage \`{a} la limite}. \end{array}$

Corollaire: Si $(a_k) \in \mathbb{R}_+^{\mathbb{N}}, \sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} a_{\sigma(k)}$ et ce quel que soit $\sigma : \mathbb{N} \to \mathbb{N}$ bijection.

En particulier dans le cas $I = \mathbb{N}^2$, $(a_{i,j})_{(i,j)\in I} \in \mathbb{R}^I_+$:

Propriété: $\sum_{(i,j)\in I} a_{i,j} = \sum_{i=1}^{+\infty} \left(\sum_{j=1}^{+\infty} a_{i,j}\right) = \sum_{j=1}^{+\infty} \left(\sum_{i=1}^{+\infty} a_{i,j}\right)$

Démonstration: $F \subset I$ fini. Il existe $N \in \mathbb{N}$ tel que $F \subset [1, N]^2$. Donc $\sum_{(i,j) \in F} a_{i,j} \leq 1$ $\begin{array}{l} \sum_{i=1}^{N}\sum_{j=1}^{N}a_{i,j} \leq \sum_{i=1}^{N}\sum_{j=1}^{+\infty}a_{i,j} \leq \sum_{i=1}^{+\infty}\sum_{j=1}^{+\infty}a_{i,j}.\\ \text{R\'{e}ciproquement}, \ \forall N \in \mathbb{N}, \forall M \in \mathbb{N}, \sum_{i=1}^{N}\sum_{j=1}^{M}a_{i,j} \leq \sum_{(i,j) \in \mathbb{N}^2}a_{i,j}. \end{array}$

Donc $(M \to +\infty)$, $\sum_{i=1}^{N} \sum_{j=1}^{+\infty} a_{i,j} \le \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$. Donc $(N \to +\infty)$, $\sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j} \le \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$.

Séries absolument convergentes

Soit $(a_i)_{i\in I}$ une famille de réels tels que $\sum_{i\in I} |a_i|$ soit finie.

On définit $a_i^+ := \max(a_i, 0), a_i^- := \max(-a_i, 0).$

Donc $a_i^+ - a_i^- = a_i$ et $a_i^+ + a_i^- = |a_i|$.

Propriété: $\sum_{i \in I} a_i^+ - \sum_{i \in I} a_i^- = \sum_{k=1}^{+\infty} a_{\sigma(k)}$ et ce quel que soit $\sigma : \mathbb{N} \to I$ bijection.

Démonstration: $\sum_{i \in I} a_i^+ \leq \sum_{i \in I} |a_i|$ donc la somme est finie. Idem pour $\sum_{i \in I} a_i^-$. $\sum_{k=1}^n a_{\sigma(k)} = \sum_{k=1}^n a_{\sigma(k)}^+ - \sum_{k=1}^n a_{\sigma(k)}^- = \sum_{k=1}^n a_{\sigma(k)}^+ - \sum_{k=1}^{+\infty} a_{\sigma(k)}^+ = \sum_{k=1}^{+\infty} a_{\sigma(k)}^+$

Corollaire : Sous réserve de convergence absolue, on a :

$$\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} a_{\sigma(k)}$$

$$\sum_{i=1}^{+\infty}\sum_{j=1}^{+\infty}a_{i,j}=\sum_{j=1}^{+\infty}\sum_{i=1}^{+\infty}a_{i,j}$$

Vocabulaire

Définition : Soit X un ensemble. On dit que $A \subset \mathcal{P}(X)$ est :

- une algèbre (d'ensembles) si elle est stable par union finie, intersection finie et passage au complémentaire, contient \emptyset et X.
- une tribu (ou σ -algèbre) si c'est une algèbre stable par réunion/intersection dénombrable.

Exemple:

- $\mathcal{P}(X)$ est une tribu.
- $\{\emptyset, X\}$ est une tribu.

Si on se donne une partition finie de $X: X = X_1 \sqcup X_2 \cdots \sqcup X_k$, alors l'ensemble des $A \subset X$ de la forme $A = \bigcup_{n \in I \subset [\![1,k]\!]} X_n$ est une tribu finie.

Lemme : Toute algèbre finie est associée à une partition finie.

Démonstration : Soit \mathcal{A} une algèbre finie.

$$\forall x \in X, A(x) := \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A.$$

Pour x et y donnés, soit A(x) = A(y), soit $A(x) \cap A(y) = \emptyset$.

Fixons $x \in X, B \in \mathcal{A}$.

- Soit $x \in B$ et alors $A(x) \subset B$.
- Soit $x \in B^{\complement}$ et alors $A(x) \subset B^{\complement}$ i.e. $A(x) \cap B = \emptyset$

On conclut avec B = A(y).

Définition : Si \mathcal{A} est une algèbre de X et $m: \mathcal{A} \to [0, +\infty]$ une fonction.

On dit que m est une mesure additive si :

- $--m(\emptyset) = 0$
- $--m(A \sqcup B) = m(A) + m(B) \qquad (A \cap B = \emptyset)$

Définition: Si $\mathcal{T} \subset \mathcal{P}(X)$ est une tribu, $m: \mathcal{T} \to [0, +\infty]$ est une mesure si :

- $--m(\emptyset) = 0$
- $m(\bigsqcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$ pour $(A_i)_{i \in I}$ famille dénombrable disjointe.

Remarque: Toute mesure est une mesure additive.

Remarque: On appelle parfois les mesures "mesures σ -additives".

Remarque : Lorsque $m: A \to [0, +\infty]$ est une mesure additive sur une algèbre, les propriétés suivantes sont équivalentes :

- 1. Si $A_i \in \mathcal{A}$ sont disjoints, (A_i) dénombrable, $\bigsqcup_{i \in I} A_i \in \mathcal{A}$, alors $m(\bigsqcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$
- 2. Si $A, A_i \in \mathcal{A}, A \subset \bigcup_{i \in I} A_i$, alors $m(A) \leq \sum_{i \in I} m(A_i)$.

Dans ce cas, on dit que m est σ -additive.

Démonstration : $(1) \Rightarrow (2)$:

Soit
$$A_i \in \mathcal{A}$$
. On définit \tilde{A}_i par : $\tilde{A}_1 = A_1, \dots \tilde{A}_n = A_n \setminus \tilde{A}_{n-1} \quad \forall n \geq 1$

Alors $\bigcup A_i = \bigcup A_i$.

Si $A \subset \bigcup A_i$, $\overline{\text{alors }} A \subset \bigcup \tilde{A}_i$. Alors $A = \bigcup (A \cap \tilde{A}_i)$.

Donc $m(A) = m(\bigsqcup(\tilde{A}_i \cap A)) \leq \sum m(A_i)$.

- $(2) \Rightarrow (1)$:
- Si $A = \bigsqcup A_i \stackrel{(2)}{\Rightarrow} m(A) \le \sum m(A_i)$.
- $A \supset \bigsqcup_{i=1}^{n} A_i$ quel que soit n.

Donc $m(A) \ge \sum_{i=1}^{n} m(A_i)$. Donc $(n \to +\infty)$, $m(A) \ge \sum_{i=1}^{+\infty} m(A_i)$.

Définition : Soit $f: \Omega \to X$ une application. Si \mathcal{A} est une algèbre (ou une tribu) sur Ω , alors on définit l'algèbre (tribu) image par :

$$f_*\mathcal{A} = \{A \subset X, f^{-1}(A) \in \mathcal{A}\}$$

Si \mathcal{A} est une algèbre (tribu) sur X, alors

$$f^*\mathcal{A} = \{f^{-1}(A), A \in \mathcal{A}\}\$$

est une algèbre (tribu) sur Ω .

La vérification du fait que f^*A et f_*A est une algèbre (tribu) découle des propriétés des préimages :

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$

Définition : Si $f:(\Omega, \mathcal{A}, m) \to X$ est une application, on définit la mesure image (ou la loi) comme la mesure :

$$(f_*m)(Y) := m(f^{-1}(Y))$$

définie sur $f_*\mathcal{A}$.

Définition : m est dite finie ssi $m(X) < +\infty$

Définition : m est dite de probabilité ssi m(X) = 1**Définition :** $f: (\Omega, \tau) \to (X, T)$ est dite mesurable si :

$$\forall Y \in \mathcal{T}, f^{-1}(Y) \in \tau$$

i.e.

$$f_*\tau \supset \mathcal{T}$$
$$f^*\mathcal{T} \subset \tau$$

Exercice: Soit Ω, X des ensembles, \mathcal{T} une tribu sur X. Soit $f: \Omega \to X$ une application, $g: \Omega \to X$ une application à valeurs dans un ensemble fini Y. Alors g est $f^*\mathcal{T}$ mesurable ssi $\exists h: (X, \mathcal{T}) \to (Y, \mathcal{P}(Y))$ mesurable telle que $g = h \circ f$. i.e. "g est f-mesurable ssi g ne dépend que de f".

Modélisation d'une expérience aléatoire finie (ex : jets de dés)

Soit Y un ensemble fini représentant les issues possibles. Il y a 2 manières de représenter un tirage aléatoire sur Y.

- 1. On se donne une mesure de probabilité sur $(Y, \mathcal{P}(Y))$. Pour ceci, il suffit de donner $p: Y \to [0,1]$ tel que $\sum_{y \in Y} p(y) = 1$. On note P la mesure de probabilité ainsi créée.
- 2. On se donne un espace de probabilité abstrait $(\Omega, \mathcal{T}, \mathbb{P})$ et une application mesurable $f: \Omega \to Y$ telle que $f_*\mathbb{P} = P$.

Pour passer de 1. à 2., il suffit de prendre $\Omega = Y$, $\mathcal{T} = \mathcal{P}(Y)$, $\mathbb{P} = P$, $f = \mathrm{id}$.

L'expérience aléatoire consistant à jeter un nombre fini k de dés de valeurs possibles Y_1, \ldots, Y_k est simplement une expérience aléatoire à valeurs dans le produit $Y = Y_1 \times Y_2 \times \cdots \times Y_k$.

La description en termes de variables aléatoires consiste donc à se donner une application mesurable $f:(\Omega, \mathcal{T}, P) \to Y$, c'est à dire k applications mesurables $f_i:(\Omega, \mathcal{T}, P) \to Y_i$, définies sur le même espace de probabilités.

Définition : La loi de f (qui est une probabilité sur Y) est dite *loi jointe*. Les lois des f_i (qui sont des probabilités sur Y_i) sont dites *lois marginales*.

Remarque : La loi jointe détermine les lois marginales, qui peuvent se décrire explicitement par $m_i(y_i) = \sum_{y_1,\dots,y_{i-1},y_{i+1},\dots,y_k} m(y_1,\dots,y_k)$.

Plus abstraitement, ce soint les mesures images $m_i = (\Pi_i)_* m_i$ où $\Pi_i : Y \to Y_i$ est la projection.

Remarque : La loi jointe est déterminée par $|Y_1| \times \cdots \times |Y_k| - 1$ nombres réels (-1 à cause de la contrainte $\sum p = 1$).

Les lois maginales sont déterminées par $|Y_1|+\cdots+|Y_k|-k$ nombres réels, ce qui est beaucoup moins.

Si on se donnes les marginales m_1, \ldots, m_k , ilm existe de nombreuses lois jointes qui engendrent ces marginales. L'une d'entre elles est particulièrement intéressante : la loi produit $m((y_1, \ldots, y_k)) = m_1(y_1) \cdot \cdots \cdot m_k(y_k)$, qui correspond (par définition) à des expériences indépendantes.

Définition:

- Les événement A, B dans un espace de probabilité (Ω, \mathcal{T}, P) sont dits indépendants si $P(A \cap B) = P(A)P(B)$.
- Si $(X_i, \mathcal{T}_i)_{1 \leq i \leq k}$ sont des espaces mesurables (c'est à dire munis de tribus \mathcal{T}_i), les variables aléatoires (applications mesurables) $f_i : (\Omega, \mathcal{T}, P) \to (X_i, \mathcal{T}_i)$ sont dites indépendantes si $\forall Z_i \in \mathcal{T}_i, P(f_1 \in Z_1, \dots, P_k \in Z_k) = P(f_1 \in Z_i) \cdot \dots \cdot P(f_k \in Z_k)$

Propriété : Les événements A et B sont indépendants ssi les variables aléatoires $\mathbbm{1}_A, \mathbbm{1}_B$: $(\Omega, \mathcal{T}, P) \to \{0, 1\}$ le sont.

Démonstration : Il suffit de montrer que A^{\complement} et B sont indépendants (le reste est évident ou vient par symétrie).

$$P(A^{\complement} \cap B) = P((\Omega \setminus A) \cap B)$$

$$= P(B \setminus A \cap B)$$

$$= P(B) - P(A \cap B)$$

$$= P(B) - P(A)P(B)$$

$$= (1 - P(A))P(B)$$

$$= P(A^{\complement})P(B)$$

Définition : Les événements A_1, \ldots, A_k sont dits indépendants si $\mathbbm{1}_{A_1} \ldots \mathbbm{1}_{A_k} : \Omega \to \{0,1\}$ le sont.

Remarque : Il ne suffit pas d'avoir l'indépendance deux à deux ou $P(A_1 \cap \cdots \cap A_k) = P(A_1) \cdot \cdots \cdot P(A_k)$.

Propriété: Il suffit d'avoir $P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$, et ce $\forall \{i_1, \dots, i_k\} \subset [1, k]$.

Démonstration : Il faut montrer que

(*)
$$P(B_1 \cap \cdots \cap B_k) = P(B_1) \cdot \cdots \cdot P(B_k) \forall B_i \in \{\emptyset, A_i, A_i^{\complement}, \Omega\}$$

Il découle de l'hypothèse que c'est vrai pour $B_i \in \{\emptyset, A_i, \Omega\}$.

Il suffit donc de constater que (*) implique $P(B_1^{\complement} \cap B_2 \cap \cdots \cap B_k) = P(B_1^{\complement})P(B_2) \cdot \cdots \cdot P(B_k)$, ce qui se montre comme ce-dessus. On conclut par récurrence finie.

Exemple: Tirage non indépendant:

On tire – chiffres dans [1,6], en leur imposant d'être distincts. La loi jointe est donc : $P(y_1,\ldots,y_6) = \begin{cases} 0 & \text{si non distincts} \\ \frac{1}{6!} & \text{si distincts} \end{cases}$

Les lois marginales sont : $P_1(y_1) := \sum_{y_2,\dots,y_k} P(y_1,\dots,y_k) = \frac{5!}{6!} = \frac{1}{6}$. Les lois marginales sont donc les mêmes que pour un tirage indépendant!

Définition : On dit que f_i , $i \in I$ sont indépendantes si f_i , $i \in F$ le sont pour tout $F \subset I$ fini.

Modélisation d'une suite infinie de jets dés indépendants

Donnons-nous une suite infinie d'espaces de probabilités finis (Y_i, P_i) (la tribu est $\mathcal{P}(Y_i)$).

Pour chaque n, on a vu que l'on peut trouver des variables aléatoires indépendantes f_i : $(\Omega_n, \mathcal{T}_n, P_n) \to Y_i$ de loi P_i .

Question : peut-on prendre $(\Omega_n, \mathcal{T}_n, P_n)$ indépendant de n?

Théorème 1

Il existe un espace de probabilité (Ω, \mathcal{T}, P) et une suite de variables aléatoires $f_i : \Omega \to Y_i$ qui sont indépendantes et de loi P_i .

Remarque : Les variables aléatoires $f_i, i \in \mathbb{N}$ sont indépendantes ssi f_1, \ldots, f_n le sont pour tout n.

L'hypothèse d'indépendance consiste donc à dire que, pour tout n et pour tout $(y_1, \ldots, y_n) \in$ $Y_1 \times \cdots \times Y_n$, l'événement $\{f_1 = y_1, \dots, f_n = y_n\}$ est mesurable $(f_1 = y_1, \dots, f_n = y_n)$ $y_1, \ldots f_n = y_n) = P_1(y_1) \cdot \cdots \cdot P_n(y_n).$

En termes de loi, ceci implique que $\{y_1\} \times \dots \{y_n\} \times Y_{n+1} \times \dots$ est mesurable sur $X := \prod Y_i$ et que sa mesure est $m(\{y_1\} \times \dots \times Y_{n+1}) = P_1(y_1) \cdot \dots \cdot P_n(y_n)$.

Introduction de l'algèbre A_{∞} engendrée par les cylindres finis

Sur le produit $X = \prod Y_i$, pour n fixé, les ensembles de la forme $\{y_1\} \times \cdots \times \{y_n\} \times Y_{n+1} \times \cdots$ forment une partition finie (ce sont les cylindres finis), qui engendre une algèbre finie A_n (qui est donc aussi une tribu).

C'est l'algèbre engendrée par les n premières coordonnées. En effet si $\Pi: X \to Y_1 \times \cdots \times Y_n$ est la projection, alors $\mathcal{A}_n = \Pi^*(\mathcal{P}(Y_1 \times \cdots \times Y_n)).$

Cette algèbre décrit les parties de X qui peuvent être décrites en termes des n premières coordonnées.

On a
$$\mathcal{A}_n \subset \mathcal{A}_{n+1}$$
. On note $\mathcal{A}_{\infty} = \bigcup_{n>1} \mathcal{A}_n$.

On a $\mathcal{A}_n \subset \mathcal{A}_{n+1}$. On note $\mathcal{A}_\infty = \bigcup_{n \geq 1} \mathcal{A}_n$. \mathcal{A}_∞ est donc l'algèbre des parties de X qui dépendent d'un nombre fini de coordonnées. C'est l'algèbre engendrée par les cylindres finis.

Contrairement aux A_n , A_{∞} est infinie et ce n'est pas une tribu!

L'hypothèse d'indépendance des f_i implique que la loi m doit être définie sur \mathcal{A}_{∞} , et qu'elle y est déterminée par la relation

$$(*) \quad m(\{y_1\} \times \dots \times \{y_n\} \times Y_{n+1} \times \dots) = P_1(y_1) \cdot \dots \cdot P(y_n)$$

Théorème 2

Il existe sur $X = \prod Y_i$ une tribu τ , qui contient \mathcal{A}_{∞} , et une mesure m sur \mathcal{T} qui vérifie (*).

On vient en fait de voir que le théorème 1. implique le théorème 2. Réciproquement, il suffit de prendre $\Omega = X, \mathcal{T} = \tau, P = m, f = \text{projection}.$

Pour démontrer l'utilité du théorème 2., donnons des exemples d'ensembles qu'il est naturel de considérer et qui sont dans τ mais pas dans \mathcal{A}_{∞} . On suppose $Y_i \subset \mathbb{R}$

Exemple: L'ensemble $\{(y_i) \in X, \frac{y_1 + \dots y_n}{n} \to l\}$ est mesurable. En effet, il s'écrit : $\bigcap_{k \ge 1} \bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} \{\left| \frac{y_1 + \dots y_n}{n} - l \right| \le n \}$

 $\{1, 1\}$, i.e. $\forall k \geq 1, \exists n \in \mathbb{N}, \forall m \geq n, \dots$ Chacun des ensembles est dans \mathcal{A}_{∞} donc l'ensemble considéré est dans τ .

Quelques résultats d'extension des mesures

Si A_n est une suite d'ensembles, on note :

$$\liminf A_n = \bigcup_n \bigcap_{m \ge n} A_m = \{A_i \text{ APCR}\}\$$

$$\limsup A_n = \bigcap_n \bigcup_{m \geq n} A_m = \{A_i \text{ infinitely often (i.o.)}\}\$$

Si τ est une tribu, que les $A_n \in \tau$, alors $\limsup A_n \in \tau$ et $\liminf A_n \in \tau$.

Propriété:

Démonstration: $\forall m, M, \bigcap_{n \geq m} A_n \subset A_n$. Donc $\bigcap_{n \geq m} A_n \subset \limsup A_n$, donc $\liminf A_n \subset A_n$ $limsupA_n$

Exercice: $\limsup \mathbb{1}_{A_n} = \mathbb{1}_{\limsup A_n}$

Exemple: On considère un tirage aléatoire indépendant $f_n \in -1, 1^{\mathbb{N}}$, ce que l'on voit comme un jeu de hasard (le joueur gagne ou perd 1 à chaque étape). Étant donnée la richesse initiale r_0 et un objectif R, on considère l'événement {le joueur atteint la richesse R avant de se ruiner}.

Il s'écrit
$$\bigcup_{n \ge 1} \{ y_1 + \dots y_n \ge -r_0 \quad \forall k < n \text{ et } y_1 + \dots + y_k = R - r_0 \}.$$

C'est une réunion dénombrable d'éléments de \mathcal{A}_{∞}

Le théorème 2 sera déductible du théorème suivant :

Théorème 3 Hahn-Kolmogorov

Soit A une algèbre d'ensembles sur X. Soit \underline{m} une mesure de probabilité additive sur A, qui vérifie la propriété de σ -additivité.

Alors il existe une tribu τ contenant \mathcal{A} , et une mesure de proba m sur τ qui prolonge \underline{m} . De plus, on peut prendre : $m(B) = \inf_{B \subset \bigcup A_i} \sum_{i \in \mathbb{N}} \underline{m}(A_i)$, où le inf est pris sur les recouvrements dénombrables de B par des éléments de A.

Pour démontrer le théorème 2, on va appliquer le théorème 3 avec $\mathcal{A} = \mathcal{A}_{\infty}$, et \underline{m} la mesure additive déterminée par $\underline{m}(\{y_1\} \times \cdots \times \{y_n\} \times Y_{n+1} \times \cdots) = P_1(y_1) \dots P_n(y_n)$.

Il nous suffit donc de vérifier que cette mesure additive a la propriété de σ -additivité.

Propriété: Toute mesure additive sur A_{∞} est σ -additive.

Démonstration: Soient $A \in \mathcal{A}_{\infty}$ et $A_i \in \mathcal{A}_i$ nfty tel que $A \subset \bigcup A_i$, alors $\exists n, A \subset \bigcup_{i=1}^n A_i$.

- méthode savante : c'est la compacité de A dans X muni de la topologie produit (les A_i sont ouverts et compacts)
- à la main : On pose $B_n = A \setminus \bigcup_{i=1}^n A_i$. On veut montrer que $\exists n, B_n = \emptyset$, sachant que

On suppose que $B_n \neq \emptyset, \forall n$. On note $B_n(y_1) := \Pi_1^{-1}(y_1) \cup B_n$, ce sont les éléments de B_n qi commencent par y_1 .

Pour chaque $y_1, n \mapsto B_n(y_1)$ est décroissante. Comme $B_n = \bigcup_{y_1 \in Y_1} B_n(y_1)$ (union finie) (et

 $B_n \neq \emptyset$), il existe y_1 tel que les $B_n(y_1)$ sont tous non vides.

On fixe maintenant un tel y_1 et on reprend le même raisonnement sur y_2 , puis... On obtient de la sorte une suite y.

Ainsi, il existe une suite $(y_1, \dots) \in B_n \forall n \text{ car } \forall n, \exists k_n, B_n \in \mathcal{A}_{k_n}$.

Ainsi, $\forall n, B_n \ni y \text{ donc } \bigcap B_n \neq \emptyset$. Absurde.

Propriété: Dans le contexte du théorème d'Hahn-Kolmogorov, $m^*: \mathcal{P}(X) \to [0, \infty]$ est une mesure extérieure, c'est à dire que $m^*(\emptyset) = 0$, m^* est croissante, et $m^*\left(\bigcup_{i \in \mathbb{N}} Z_i\right) \le$ $\sum_{i\in\mathbb{N}} m^*(Z_i), \forall Z_i.$

Démonstration: Démontrons la dernière propriété. Fixons $\varepsilon > 0$. Pour tout i, il existe un recouvrement $A_{i,j}, j \in \mathbb{N}$ de Z_i tel que $\sum_j \underline{m}(A_{i,j}) \geq m^*(Z_i) \geq \sum_j \underline{m}(A_{i,j}) - \varepsilon 2^{-i}$, alors $A_{i,j}, i \in \mathbb{N}$, $j \in \mathbb{N}$ est un recouvrement de $\bigcup Z_i$, et $m^*(\bigcup Z_i) \leq \sum_{i,j} \underline{m}(A_{i,j}) \leq \sum_{i\geq 1} (m^*(Z_i) + \varepsilon 2^{-1}) \leq \varepsilon + \varepsilon 2^{-i}$ $\sum_{i\geq 1} m^*(Z_i).$

Démonstration Démonstration du théorème d'Hahn-Kolmogorov : Deux étapes :

- 1. $m^*|_{\mathcal{A}} = \underline{m}$ Si $A \subset \bigcup A_i$, alors $\underline{m}(A) \leq \sum \underline{m}(A_i)$ par σ -additivité de \underline{m} . En prenant l'inf, on obtient $\underline{m}(A) \leq m^*(A)$. L'inégalité réciproque s'obtient en considérant le recouvrement trivial $A_1 = A, A_2 = A_3 = \cdots = \emptyset$.
- 2. On dit que $Y \subset X$ est mesurable si, pour tout $\varepsilon > 0, \exists A \in \mathcal{A}$ tel que $m^*(Y \Delta A) \leq \varepsilon$. Alors l'ensembre \mathcal{T} des parties mesurables est une algèbre.

- si $m^*(Y\Delta A) \leq \varepsilon$, alors $m^*(Y^{\complement} \cap A^{\complement}) \leq \varepsilon$, donc \mathcal{T} est stable par complément.
- Soient Y, Z mesurables et A, B tels que $m^*(Y \Delta A) \leq \varepsilon, m^*(Z \Delta B) \leq \varepsilon$ alors $m^*((Y \cup A)) \leq \varepsilon$ $Z(\Delta(A \cup B)) \le 2\varepsilon \operatorname{car}(Y \cup Z)\Delta(A \cup B) \subset (Y\Delta A) \cup (Z\Delta B).$
- 3. m^* est une mesure additive sur \mathcal{T} .

Démonstration: Y, Z disjoints, A, B comme ci-dessus.

$$(A \cap B) = (Y \cup (A \setminus Y)) \cap (Z \cup (B \setminus Z)) \subset Y \cap Z \cup (B \setminus Z) \cup (A \setminus Y)$$

donc $\underline{m}(A \cap B) \leq 2\varepsilon$

$$A \cup B = (Y \cup (A \setminus Y)) \cup (Z \cup (B \setminus Z)) \subset Y \cup Z \cup (A \setminus Y) \cup (B \setminus Z)$$

 $\underline{m}(A \cup B) \le m^*(Y \cup Z) + 2\varepsilon$

$$\text{et } \underline{m}(A \cup B) = \underline{m}(A) + \underline{m}(B) - \underline{m}(A \cap B) \geq \underline{m}(A) + \underline{m}(B) - 2\varepsilon \geq m^*(Y) - \varepsilon + m^*(Z) - \varepsilon - 2\varepsilon.$$

Finalement, $m^*(Y) + m^*(Z) \le m^*(Y \cup Z) + 6\varepsilon$

Comme m^* est une mesure extérieure et une mesure additive sur l'algèbre \mathcal{T} , elle a la propriété de σ -additivité.

4. \mathcal{T} est une tribu.

Démonstration: $Y_i \in \mathcal{T}$. On veut montrer que $Y_{\infty} := \bigcup Y_i \in \mathcal{T}$. On peut supposer que les

$$Y_i$$
 sont disjoints. Alors $\forall n, m^*(\bigsqcup_{i=1}^n Y_i) = \sum_{i=1}^n m^*(Y_i) \le m^*(X) = 1$. Donc la série $\sum m^*(Y_i)$

converge, donc
$$\forall \varepsilon, \exists n, \sum_{i=n+1}^{+\infty} m^*(Y_i) \leq \varepsilon$$
.

Alors en posant $Z = \bigcup_{i=1}^n Y_i$, on a $m^*(Y_\infty \setminus Z) \le \varepsilon$, $Z \subset Y_\infty$. Ensuite, on prend $A \in \mathcal{A}$ tel que $m^*(A \setminus Z) \le \varepsilon$, $m^*(Z \setminus A) \le \varepsilon$. On obtient $A \setminus Y_\infty \subset A \setminus Z$, $Y_\infty \setminus A \subset (Z \setminus A) \cup (Y_\infty \setminus Z)$.

$$m^*(A \setminus Z) \leq \varepsilon, m^*(Z \setminus A) \leq \varepsilon$$
. On obtient $A \setminus Y_\infty \subset A \setminus Z, Y_\infty \setminus A \subset (Z \setminus A) \cup (Y_\infty \setminus Z)$.

Complément : on aurait pu donner une autre preuve du théorème 3 basée sur un résultat général sur les mesures extérieures. Lorsque m^* est une mesure extérieure, on dit que $Y \subset X$ est m^* -mesurable si

$$\forall Z\subset X, m^*(Z)=m^*(Z\cap Y)+m^*(Z\cap Y^{\complement}).$$

Théorème 4 Carathéodory

Si m^* est une mesure extérieure, l'ensemble $\mathcal T$ des parties m^* -mesurables est une tribu, et $m^*|_{\mathcal{T}}$ est une mesure.

Remarque : Dans le cas du théorème de Hahn, la tribu $\mathcal T$ est la même que celle introduite dans la démonstration précédente.

Démonstration Carathéodory ⇒ Hahn-Kolmogorov :

Il suffit de montrer que les éléments de A sont m^* -mesurables, et que $m^*|_{A} = \underline{m}$.

- $--m^*(A) \le \underline{m}(A) \forall A \in \mathcal{A}$
- $m^*(A) \ge \underline{m}(A) \forall A \in \mathcal{A}$. En effet, si $A \subset \bigcup A_i$, on peut supposer les A_i disjoints. Alors par σ-additivité de \underline{m} sur \mathcal{A} : $\underline{m}(A) = \sum_{i} \underline{m}(A_i^i) \ge m^*(A)$.
- Soit $A \in \mathcal{A}$ et $Zin\mathcal{P}(X)$. On considère un recouvrement A_i de Z. $\sum_i \underline{m}(A_i) = \sum_i \underline{m}(A_i \cap A) + \underline{m}(A_i \cap A^{\complement}) \ge m^*(Z \cap A) + m^*(Z \cap A^{\complement}).$

On prend l'inf : $m^*(Z) \geq m^*(Z \cap A) + m^*(Z \cap A^{\complement})$. L'autre inégalité découle de la sousadditivité.

П

Démonstration Carathéodory:

1. \mathcal{T} est une algèbre.

Démonstration: On a $\emptyset \in \mathcal{T}, X \in \mathcal{T}$, et stabilité par complément de manière triviale. $A, B \in \mathcal{T} \Rightarrow \forall Y, m^*(Y) = m^*(Y \cap A) + m^*(Y \cap A^{\complement}) = m^*(Y \cap A \cap B) + m^*(Y \cap A \cap B^{\complement}) + m^*(Y \cap A \cap B) + m^*(Y \cap B)$ $m^*(Y \cap A^{\complement} \cap B^{\complement}) + m^*(Y \cap A^{\complement} \cap B).$

Remarque: $(A \cap B)^{\complement} = (B^{\complement} \cap A) \cup (B \cap A^{\complement}) \cup (A^{\complement} \cap B^{\complement})$ Donc $m^*(Y) \ge m^*(Y \cap (B \cup B^{\complement}))$ (A)) + $m^*(Y \cap (B \cap A)^{\complement})$

2. m^* est additive sur \mathcal{T}

Démonstration : $A, B \in \mathcal{T}, A \cap B = \emptyset$.

- $m^*(A \cup B) = m^*((A \cup B) \cap A) + m^*((A \cup B) \cap A^{\complement}) = m^*(A) + m^*(B)$
- 3. \mathcal{T} est une tribu.

Démonstration: soit A_n une suite d'éléments deux à deux disjoints de \mathcal{T} . Posons $B_n =$ $\bigcup_{k=1}^n A_n \text{ et } B_{\infty} = \bigcup_{k=1}^{\infty} A_n.$

 $\forall Y \subset X, m^*(Y \cap B_n) = m^*(Y \cap B_n \cap A_n) + m^*(Y \cap B_n \cap A_n^{\complement}) = m^*(Y \cap A_n) + m^*(Y \cap B_{n-1}).$ Donc $m^*(Y \cap B_n) = \sum_{k=1}^n m^*(Y \cap A_k)$.

Alors $m^*(Y) = m^*(Y) = m^*(Y \cap B_n) + m^*(Y \cap B_n^{\complement}) \ge \sum_{k=1}^n m^*(Y \cap A_k) + m^*(Y \cap B_{infty}^{\complement}).$ À la limite : $m^*(Y) \ge \sum_{n=1}^{\infty} m^*(Y \cap A_n) + m^*(Y \cap B_{\infty}^{\complement})$

On peut cependant se poser la question de l'unicité de m^* dans Hahn-Kolmogorov.

Théorème 5

Si $\mu: B \to [0,1]$ est une mesure sur une tribu $B \subset \mathcal{A}$, $\mu|_{\mathcal{A}} = \underline{m}$, alors $\mu = m^*$ sur $\mathcal{T} \cap B$.

Remarque : Il existe une plus petite tribu contenant \mathcal{A} ($\bigcap_{\mathcal{T} \subset \mathcal{A}, \ \mathcal{T} \text{ tribu}} \mathcal{T}$). Sur cette tribu, il existe une unique mesure prolongeant \underline{m} .

Démonstration:

- 1. Si $B \subset \bigcup_i A_i, A_i \in \mathcal{A}_i, B \in \mathcal{B}$, alors $\mu(B) \leq \sum_i \mu(A_i) = \sum_i \underline{m}(A_i)$. En prenant l'inf sur les familles A_i , on conclut $\mu \leq m^*|_{\mathcal{B}}$
- 2. Comme $\mu(B) \leq 1 \mu(B^{\complement})$, si $B \in \mathcal{T}$, on a $A m^*(B^{\complement}) = m^*(B)$ donc $\mu(b) \geq m^*(B)$ et donc $\mu(B) = m^*(B)siB \in \mathcal{T}$

Loi des grands nombres

On se donne $Y \subset \mathbb{R}$ fini, une mesure de probabilité p sur Y, et une suite finie $f_{i,i\in\mathbb{N}}: \Omega \to Y$ de variables aléatoires iid suivant la loi p. L'existence d'une telle suite découle des théorèmes de la section précédente.

Définition : Si $f: \Omega \to \mathbb{R}$ est une variable aléatoire prenant un nombre fini de valeurs, on note $E(f) = \sum_{y \in f(\Omega)} y P(f = y)$ l'espérance de f.

Dans notre contexte on note e := E(f).

On définit $S_n = \frac{f_1 + \dots + f_n}{n} : \Omega \to \mathbb{R}$. Chacune des variables aléatoires S_n prend un nombre fini de valeurs, mais les variables S_n ne sont pas indépendantes.

On veut montrer les trois énoncés suivants :

Théorème 6 Loi faible des grands nombres

 $P(\left|\frac{S_n}{n} - e\right| \ge \varepsilon) \to 0$

Théorème 7 Loi forte des grands nombres

$$P(\frac{S_n}{n} \to e) = 1$$

Théorème 8

$$\forall \alpha > \frac{1}{2}, \quad P(\frac{S_n - ne}{n^{\alpha}} \to 0) = 1$$

Quelques outils de théorie de la probabilité

Pour démontrer ces résultats, on va avoir besoin d'un certain nombre d'autres outils.

Théorème 9 Inégalité de Markov

Si f est une variable aléatoire positive,

$$\forall a \in \mathbb{R}_*^+, \quad P(f > a) \le \frac{E(f)}{a}$$

Démonstration: On écrit la définition de E(f), on coupe la somme en deux selon y > a ou $y \le a$, on majore brutalement et on conclut.

Théorème 10 Inégalité de Bienaymé-Tchebychev

$$\forall a \in \mathbb{R}_*^+, \quad P(|f - E(f))| > a) \le \frac{Var(f)}{a^2}$$

Démonstration: On élève l'événement au carré, on conclut par Markov.

 $\begin{array}{ll} \textbf{Propriét\'e} & : & E(XY) := E(X)E(Y) + Cov(X,Y), \\ Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) \end{array}$

Démonstration : Il suffit de l'écrire.

Lemme: Si X et Y sont deux variables aléatoires indépendantes, Cov(X,Y)=0.

Démonstration: Trivial.

Propriété Convergence monotone : Soit (Ω, \mathcal{T}, m) un espace mesuré. Si (A_n) est une suite décroissante et que $m(A_1)$ est fini, alors $m(\bigcap_{n \in \mathbb{N}} A_n) = \lim_{n \in \mathbb{N}} m(A_n)$. Si (A_n) est une suite croissante alors $m(\bigcup_{n \in \mathbb{N}} A_n) = \lim_{n \in \mathbb{N}} m(A_n)$.

Si (A_n) est une suite croissante, alors $m(\bigcup_{n\in\mathbb{N}}A_n)=\lim m(A_n)$.

Démonstration: On pose $B_n = A_n \setminus A_{n-1}$, et par double passage à la limite, la propriété sur les suites croissantes est immédiate. Le résultat sur les suites décroissantes vient du passage au complémentaire.

Lemme Fatou ensembliste:

- $-m(\liminf A_n) \le \liminf m(A_n)$
- Si m est finie, $m(\limsup A_n) \ge \limsup m(A_n)$
- Si m est finie et $\limsup A_n = \liminf A_n = A$, alors $m(A_n) \to A$

Démonstration: On pose $B_n = \bigcap_{n \in \mathbb{N}} A_m$. C'est une suite croissante.

$$m(B_n) \to m(\bigcup_n B_n) = m(\liminf_n A_n)$$
 $m(B_n) \le m(A_n) \Longrightarrow \liminf_n m(A_n) \le m(\liminf_n A_n)$

Si $\sum_{n>0} m(A_n)$ est finie, alors Lemme Premier lemme de Borel-Cantelli : $m(\limsup A_n) = 0.$

Démonstration: $B_n := A$. $m(B_n) \le \sum_{m \ge n}^{\infty} m(A_n) \to 0$ (reste de série convergente) Or, $\lim m(B_n) = m(\lim \sup A_n) = 0$.

Théorème 11 Inégalité de Kolmogorov

P(
$$\max_{A \le k \ len} |\tilde{S}_k| \ge a$$
) $\le \frac{nVar(f)}{a^2}$

Démonstration: $T(\omega) := \text{le premier temps pour lequel } | S_n \geq a. \ T(\omega) \in \mathbb{N} \cup \{+\infty\}$ $(T = k) = \{ |\tilde{S}_1| < a \} \cap \dots \cap \{ |\tilde{S}_{n-1}| < a \} \cap \{ |\tilde{S}_n| \ge a \} \in \mathcal{A}_k.$ T est ainsi un $\it temps$ d'arrêt.

$$Var\tilde{S}_{n} = E(\tilde{S}_{n}^{2}) \geq \sum_{k=1}^{n} E(S_{n}^{2} \mathbb{1}_{\{T=k\}})$$

$$= \sum_{k=1}^{n} E((\tilde{S}_{n} + \tilde{S}_{k} - \tilde{S}_{k}) \mathbb{1}_{\{T=k\}})$$

$$= \sum_{k=1}^{n} E(\tilde{S}_{k}^{2} \mathbb{1}_{\{T=k\}}) + \sum_{k=1}^{n} E((\tilde{S}_{n} - \tilde{S}_{k}) \tilde{S}_{k} \mathbb{1}_{\{T=k\}}) \text{ et } (*) : \tilde{S}_{n} - \tilde{S}_{k} = \tilde{f}_{k+1} + \dots + \tilde{f}_{n}. \text{ Or }$$

$$\geq \sum_{k=1}^{n} a^{2} P(T=k) + 0 + 0(*)$$

$$\geq a^{2} P(M_{n} \geq a)$$

 $\tilde{S}_k \mathbb{1}_{\{T=k\}}$ ne dépend que des k premières valeurs (indépendance).

Remarque: Illustration de la notion de temps d'arrêt:

On considère un jeu de hasard : une suite f_i de v.a. i.i.d. à valeurs dans $\{-1,1\}$, avec P(1)=p. Supposons que le joueur choisit un temps $T(\omega)$ pour miser. Peut-il optimiser sa probabilité de gain $P(f_{T(\omega)}(\omega) = 1)$?

On peut choisir $T(\omega)$ le premier temps tel que $f_{T(\omega)} = 1$, mais cela nécessite de connaître tous

En réalité, on ne dispose pas de l'almanach des sports, on n'a que l'information des k-1premiers tirages, i.e. $\{T = k\} \in \mathcal{A}_{k-1}$, c'est un temps d'arrêt.

Propriété: Si T vérifie cette condition, $P(f_{T(\omega)}(\omega) = 1) = p$.

Démonstration: $P(f_{T(\omega)}(\omega) = 1) = \sum_{k=1}^{\infty} P((T = k) \cap (f_k = 1))$. On conclut par indépendance.

Démonstrations des lois des grands nombres

Démonstration Loi faible des grands nombres :
$$P(\left|\frac{S_n}{n} - e\right| \geq \alpha) = P(|S_n - E(S_n)| \geq n\alpha) \leq \frac{Var(S_n)}{n^2\alpha^2} = \frac{nVar(f)}{n^2\alpha^2} = \frac{Varf}{n\alpha^2}$$

Démonstration Loi forte des grands nombres : $\sum_n P(A_{n^2}(\varepsilon))$ converge. Donc $m(\limsup(A_{n^2}(\varepsilon))) = 0$ d'après Borel-Cantelli. Donc $\frac{S_{n^2}}{n^2} \to E(f)$ p.p. Montrons alors que si $\frac{S_{n^2}}{n^2} \to E(f)$ alors $\frac{S_n}{n} \to E(f)$. On note $M = \max |f|$. Soit k(n) tel que $k(n)^2 \le n < (k(n) + 1)^2$.

$$\left| \frac{S_n - nE(f)}{n} \right| \le \frac{|S_{k(n)^2} - k(n)^2 E(f)| + (n - k(n)^2)(M + E(f))}{k(n)^2}$$

$$\le \left| \frac{S_{k(n)^2} - k(n)^2 E(f)}{k(n)^2} \right| + \frac{(k(n)^2 + 1) - k(n)^2}{k(n)^2} (M + E(f))$$

Chacun des termes tend vers 0, ce qui achève la preuve.

Démonstration Inégalité de Kolmogorov
$$\Rightarrow$$
 théorème 3 : $P(\frac{M_n}{n^{\alpha}} \geq \varepsilon) \leq \frac{Var(f)}{n^{2\alpha-1}\varepsilon^2}$ où $M_n = \max_{1 \leq k \leq n} |\tilde{S}_k|$ On fixe $R \in \mathbb{N}$ tel que $(2\alpha-1)r > 1$.

$$P(\frac{M_{n^r}}{n^{r\alpha}} \ge \varepsilon) \le \frac{Var(f)}{\varepsilon^2 n^{(2\alpha - 1)r}}$$

C'est le terme général d'une série convergente, donc par le premier lemme de Borel-Cantelli, on en déduit que $P(\frac{M_n r}{n^{r\alpha}} \geq \varepsilon \text{ i.o.}) = 0$, et donc que p.p., $\frac{M_n r}{n^{r\alpha}} \to 0$.

Mais
$$\frac{M_{n^r r}}{n^{r\alpha}} \to 0 \Rightarrow \frac{\tilde{S}_n}{n^{\alpha}} \to 0$$
.

Mais $\frac{M_n r_n}{n^{r\alpha}} \to 0 \Rightarrow \frac{\tilde{S}_n}{n^{\alpha}} \to 0$. En effet, soit k(n) tel que $(k(n)-1)^r \le n < k(n)^r$. Alors,

$$\begin{split} \frac{\tilde{S}_n}{n^{\alpha}} &\leq \frac{M_{k(n)^r}}{n^{\alpha}} \\ &= \frac{M_{k(n)^r}}{k(n)^{\alpha r}} \cdot \frac{k(n)^{\alpha r}}{n^{\alpha}} \\ &\leq \frac{M_{k(n)^r}}{k(n)^{\alpha r}} \cdot \frac{k(n)^{\alpha r}}{(k(n) - 1)^{\alpha r}} \end{split}$$

Le premier terme tend vers 0, le second vers 1, ce qui conclut la preuve.