

Description

The VSM350N07 uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. It can be used in automotive applications and a wide variety of other applications.

General Features

• $V_{DSS} = 75V, I_D = 350A$ $R_{DS(ON)} < 2.2m\Omega @ V_{GS} = 10V$ (Typ: 1.7 m Ω)

- Good stability and uniformity with high E_{AS}
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Automotive applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM350N07-T7	VSM350N07	TO-247	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDSS	75	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	350	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	270	Α	
Pulsed Drain Current	I _{DM}	1280	А	
Maximum Power Dissipation	P _D	460	W	
Derating factor		3.07	W/℃	
Single pulse avalanche energy (Note 3)	E _{AS}	3500	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}\!\mathbb{C}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 1)	R _{θJC}	0.33	°C/W
--	------------------	------	------

Electrical Characteristics (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	75	86	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =75V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±200	nA
On Characteristics						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	1.7	2.2	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =40A	100	-	-	S
Dynamic Characteristics			•			
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V, F=1.0MHz	-	25500	-	PF
Output Capacitance	C _{oss}		-	1652	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0ivinz	-	1261	-	PF
Switching Characteristics						
Turn-on Delay Time	t _{d(on)}	V _{DD} =40V,I _D =40A	-	50	-	nS
Turn-on Rise Time	t _r		-	235	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10 V , R_{GEN} =1.2 Ω (Note2)	-	180	-	nS
Turn-Off Fall Time	t _f		-	280	-	nS
Total Gate Charge	Qg	V _{DS} =40V,I _D =40A, V _{GS} =10V ^(Note2)	-	586	-	nC
Gate-Source Charge	Q _{gs}		-	120	-	nC
Gate-Drain Charge	Q_{gd}	v GS-10 v	-	200	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	170	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note2)}$	-	500	-	nC

Notes:

- 1. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 2. Pulse Test: Pulse Width \leq 400 μ s, Duty Cycle \leq 2%.
- 3. EAS condition: Tj=25 $^{\circ}\text{C}\,\text{,V}_{DD}\text{=}37.5\text{V},\text{V}_{G}\text{=}10\text{V},\text{L=}1\text{mH,Rg=}25\Omega$
- 4. Isd \leqslant 125A, di/dt \leqslant 260A/ μ s, Vdd \leqslant V(BR)dss, TJ \leqslant 175°C

Test circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

 T_J -Junction Temperature(${}^{\circ}\mathbb{C}$)

Figure 4 Rdson-JunctionTemperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance