Problema 1. Bonus track. Demostreu les següents afirmacions:

1. $\exp: \mathfrak{sl}(2,\mathbb{R}) \to \mathrm{SL}(2,\mathbb{R})$ no és exhaustiva.

Demostració. Sigui $Y \in \exp \mathfrak{sl}(2,\mathbb{R})$. Aleshores, $\exists X(X \in \mathfrak{sl}(2,\mathbb{R}) \land \exp X = Y)$. Sigui vp X el conjunt de valors propis d'X. Com $X \in \mathfrak{sl}(2,\mathbb{R})$, tr X = 0, d'on el polinomi característic associat a X és $p_X(\lambda) = \lambda^2 + \det X$. Aleshores, o bé els vp $X = \{\sqrt{-\det X}, -\sqrt{-\det X}\}$ o bé vp $X = \{0\}$ (si les arrels coincideixen, $\det X = 0$). Considerem J_X la matriu canònica de Jordan associada a X. De l'alternativa anterior i aplicant exp, tenim que o bé

$$\exp J_X = \exp \begin{pmatrix} \sqrt{-\det X} & 0 \\ 0 & -\sqrt{-\det X} \end{pmatrix} = \begin{pmatrix} e^{\sqrt{-\det X}} & 0 \\ 0 & e^{-\sqrt{-\det X}} \end{pmatrix}$$

o bé

$$\exp J_X = \exp \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Suposem que $\binom{-1}{0}$ $\binom{-1}{-1}$ $\in \exp \mathfrak{sl}(2,\mathbb{R})$ $(\exists X(X \in \mathfrak{sl}(2,\mathbb{R}) \land \exp X = \binom{-1}{0}$). Si J_X és la matriu canònica de Jordan associada a X, tenim que

$$\exp J_X = \exp P^{-1}XP \qquad (\exists P(P \in \mathrm{GL}(2,\mathbb{R}) \wedge J_X = P^{-1}XP))$$

$$= P^{-1} \exp XP \qquad (\text{Propietat de } \exp : \mathfrak{sl}(2,\mathbb{R}) \to \mathrm{SL}(2,\mathbb{R}))$$

$$= P^{-1} \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} P$$

Per l'alternativa anterior, exp J_X és una matriu canònica de Jordan. Però, $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ també és una matriu canònica de Jordan que no és de la forma de cap alternativa, contradicció. Aleshores, $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \notin \exp \mathfrak{sl}(2,\mathbb{R})$. És fàcil veure que $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \in \mathrm{SL}(2,\mathbb{R})$. Per tant, $\exp \mathfrak{sl}(2,\mathbb{R}) \subsetneq \mathrm{SL}(2,\mathbb{R})$ (exp : $\mathfrak{sl}(2,\mathbb{R}) \to \mathrm{SL}(2,\mathbb{R})$ no és exhaustiva).

2. El grup de Lie SU(2) és diffeomeorf a l'esfera \mathbb{S}^3 .

Demostració. Recordem que SU(2) = $\{A \in SL(2,\mathbb{C}) : A\overline{A^t} = Id \land \det A = 1\}$. Veiem que SU(2) = $\{\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} : |\alpha|^2 + |\beta|^2 = 1\}$. En efecte,

- (a) Sigui $\begin{pmatrix} \alpha & \beta \\ \gamma & \omega \end{pmatrix} \in SU(2)$. Per definició de SU(2), det $\begin{pmatrix} \alpha & \beta \\ \gamma & \omega \end{pmatrix} = \alpha \omega \beta \gamma = 1$ i $\overline{\begin{pmatrix} \alpha & \beta \\ \gamma & \omega \end{pmatrix}^t} = \begin{pmatrix} \alpha & \beta \\ \gamma & \omega \end{pmatrix}^{-1}$. Aleshores, $(\overline{\beta} & \overline{\gamma}) = \overline{\begin{pmatrix} \alpha & \beta \\ \gamma & \omega \end{pmatrix}^t} = (\overline{\gamma} & \alpha & \overline{\beta})^{-1} = \frac{1}{\alpha \omega \beta \gamma} (\overline{\gamma} & \alpha & \overline{\beta}) = (\overline{\gamma} & \alpha & \overline{\beta})$, d'on deduïm que $\gamma = -\overline{\beta}$ i $\omega = \overline{\alpha}$. Per tant, $(\overline{\gamma} & \beta & \overline{\beta}) = (\overline{\gamma} & \beta & \overline{\beta})$ i $|\alpha|^2 + |\beta|^2 = \alpha \overline{\alpha} + \beta \overline{\beta} = \alpha \omega \beta \gamma = 1$, d'on $(\overline{\gamma} & \beta & \overline{\beta}) \in \{(\overline{\gamma} & \beta & \overline{\beta}) : |\alpha|^2 + |\beta|^2 = 1\}$.
- (b) Sigui $\binom{\alpha}{-\overline{\beta}} \frac{\beta}{\alpha}$ $\in \{\binom{\alpha}{-\overline{\beta}} \frac{\beta}{\alpha}\}: |\alpha|^2 + |\beta|^2 = 1\}$. Tenim que $\det \binom{\alpha}{-\overline{\beta}} \frac{\beta}{\alpha} = |\alpha|^2 + |\beta|^2 = 1$. A més,

$$\frac{\left(\begin{array}{c}\alpha & \beta \\ -\overline{\beta} & \overline{\alpha}\end{array}\right)\overline{\left(\begin{array}{c}\alpha & \beta \\ -\overline{\beta} & \overline{\alpha}\end{array}\right)^t} = \left(\begin{array}{c}\alpha & \beta \\ -\overline{\beta} & \overline{\alpha}\end{array}\right)\left(\overline{\begin{array}{c}\overline{\alpha}} & -\beta \\ \overline{\beta} & \alpha\end{array}\right) = \left(\begin{array}{c}|\alpha|^2 + |\beta|^2 & \overline{\alpha}\overline{\beta} - \overline{\beta}\overline{\alpha}\\ \overline{\beta}\overline{\alpha} - \overline{\alpha}\overline{\beta} & |\beta|^2 + |\alpha|^2\end{array}\right) = \left(\begin{array}{c}1 & 0 \\ 0 & 1\end{array}\right)}{\overline{\left(\begin{array}{c}\alpha & \beta \\ -\overline{\beta} & \overline{\alpha}\end{array}\right)^t}\left(\begin{array}{c}\alpha & \beta \\ -\overline{\beta} & \overline{\alpha}\end{array}\right) = \left(\overline{\begin{array}{c}\overline{\alpha}} & -\beta \\ \overline{\beta} & \alpha\end{array}\right)\left(\begin{array}{c}\alpha & \beta \\ -\overline{\beta} & \overline{\alpha}\end{array}\right) = \left(\begin{array}{c}|\alpha|^2 + |\beta|^2 & \overline{\alpha}\beta - \overline{\beta}\overline{\alpha}\\ \overline{\beta}\alpha - \alpha\overline{\beta} & |\beta|^2 + |\alpha|^2\end{array}\right) = \left(\begin{array}{c}1 & 0 \\ 0 & 1\end{array}\right)}$$

d'on
$$\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \in SU(2)$$
.

Sigui $\mathbb{S}^3 = \{(z,w) \in \mathbb{C}^2 : |z|^2 + |w|^2 = 1\}$. Considerem $f: \mathbb{S}^3 \to \mathrm{SU}(2)$ definida per $f(z,w) := \left(\frac{z}{-\overline{w}} \frac{w}{\overline{z}}\right)$ amb inversa $f^{-1}: \mathrm{SU}(2) \to \mathbb{S}^3$ definida per $f^{-1}(\left(\frac{\alpha}{-\overline{\beta}} \frac{\beta}{\alpha}\right)) = (\alpha,\beta)$. És evident que f, f^{-1} són classe \mathscr{C}^{∞} . Per tant, $f: \mathbb{S}^3 \to \mathrm{SU}(2)$ és un difeomorfisme.