Introdução à Álgebra Linear com o gnu-Octave

Pedro Patrício
Departamento de Matemática
Universidade do Minho
pedro@math.uminho.pt

Notas de apoio para MiEB 2007/2008

Conteúdo

1	Intr	rodução	5				
2	Cálculo Matricial						
	2.1	Notação matricial	11				
	2.2	Operações matriciais	16				
		2.2.1 Soma e produto escalar	16				
		2.2.2 Produto	17				
		2.2.3 Transposição	19				
		2.2.4 Invertibilidade	22				
	2.3	Um resultado de factorização de matrizes	28				
		2.3.1 Matrizes elementares	28				
		2.3.2 O Algoritmo de Eliminação de Gauss	37				
	2.4	Determinantes	44				
		2.4.1 Definição	44				
		2.4.2 Propriedades	45				
		2.4.3 Teorema de Laplace	49				
3	Sistemas de equações lineares 53						
	3.1	Formulação matricial	53				
	3.2	Resolução de $Ax = b$	54				
	3.3	Algoritmo de Gauss-Jordan	63				
	3.4	Regra de Cramer	65				
4	Esj	paços vectoriais	67				
	4.1	Definição e exemplos	67				
	4.2	Independência linear	69				
	4.3	Bases de espaços vectoriais finitamente gerados	71				
	4.4	\mathbb{R}^n e seus subespaços (vectoriais)	75				
		4.4.1 Brincando com a característica	89				
		4.4.2 Aplicação a sistemas impossíveis	89				
5	Va	lores e vectores próprios	97				
	5.1	Motivação e definições	97				

4	CONTEÚDO
<u> </u>	CONTECDO

		Propriedades			
6	Transformações lineares				
	6.1	Definição e exemplos	109		
	6.2	Propriedades das transformações lineares	110		
	6.3	Matriz associada a uma transformação linear	114		
Bibliografia					

Capítulo 1

Introdução

O ano lectivo 2006/07 presenciou a restruturação da Licenciatura em Engenharia Biológica no Mestrado Integrado em Engenharia Biológica, em consonância com o Tratado de Bolonha. Como consequência, a disciplina "Álgebra Linear e Geometria Analítica" viu-se substituída pela unidade curricular "Álgebra Linear C", onde o símbolo "C" tem como único propósito diferenciá-la das outras unidades curriculares semelhantes (mas que são distintas) existentes na Universidade do Minho. Na reestruturação do curso, a unidade curricular a que estas notas se referem pressupõe o recurso a uma ferramenta computacional, tendo a direcção de curso apoiado a escolha do MatLab. No que se segue, tentar-se-á complementar o estudo teórico dos assuntos com exemplos recorrendo à ferramenta computacional. Embora existam recursos que possibilitem aos alunos o uso do MatLab, estes são escassos. Tal levou a que, com o acordo da direcção de curso, se optasse pelo gnu-Octave.

A utilização de um software livre possibilita aos alunos a obtenção legal de software para o seu estudo diário, nos seus computadores pessoais. O Octave é unanimemente referenciado como um clone¹ do MatLab, distribuído segundo a licença GPL (General Public License), existente para várias plataformas, podendo encontrar na internet diversas fontes de informação sobre (in)compatibilidades entre os dois. Outras considerações e preocupações estão descritas em http://torroja.dmt.upm.es:9673/Guillem_Site/, nomeadamente nos Apêndices C e D.

Listam-se alguns endereços úteis:

• Octave Wiki:

http://wiki.octave.org/

• Download da pagina oficial:

http://www.gnu.org/software/octave/download.html

 Octave Workshop para MS-Windows (ambiente gráfico atraente, mas com alguns bugs irritantes:

 $^{^1\}mathrm{Sugerimos}\ \mathrm{a}\ \mathrm{leitura}\ \mathrm{atenta}\ \mathrm{de}\ \mathtt{http://www.macresearch.org/octave_a_free_matlab_clone_and_a_bit_more.$

http://www.math.mcgill.ca/loisel/octave-workshop/

• Octave para MS-Windows @ sourceforge (a forma mais fácil de obter o Octave para Windows:

http://sourceforge.net/project/showfiles.php?group_id=2888

As versões do Octave usadas nos exemplos apresentados são a 2.1.73 e a 2.9.14 (x86_64-pc-linux-gnu). Foram essencialmente desenvolvidos em linux-Gentoo, em linux-Debian e em linux-Ubuntu, e (muito) ocasionalmente testados no Octave-Workshop (em Windows).

Figura 1.1: MatLab e Octave lado a lado, em Linux (no caso, Fedora 5, usado nos laboratórios do Dep. Matemática)

Visualmente, a grande diferença que nos é permitido identificar entre o Octave e o MatLab é o ambiente gráfico que usam. O Matlab funciona num ambiente gráfico, sendo portanto um GUI (graphics user interface), enquanto que o Octave é um CLI (command line interface).

Aliás, só a partir do Matlab 6.0 se adoptou um ambiente gráfico para o MatLab. Existem, acrescente-se, variantes do Octave que o transformam num GUI. Um exemplo bem sucedido é o Octave Workshop a que fizemos referência atrás.

Figura 1.2: Octave 2.1.73 num ambiente Linux (LinuxMint, baseado no Ubuntu)

Existem também implementações gráficas do Octave para ambientes Linux. Um exemplo é o Koctave.

Independentemente da plataforma que usar, é (quase) sempre possível instalar o octave na sua máquina. Sendo um software distribuído sob a licença GPL, o código-fonte está disponível a qualquer utilizador. Precisará, apenas, de um compilador gcc para instalar o Octave. Este processo está simplificado no Workshop, fazendo-se uso de um instalador executável. Se utilizar linux, o octave é instalado de uma forma ainda mais simples. Se usar a distribuição Ubuntu (http://www.ubuntu.com) ou uma sua derivada, ou ainda Debian ou sua derivada, então num terminal faça a actualização da lista de pacotes disponíveis: sudo apt-get update. Instale, de seguida, o octave:

```
sudo apt-get install octave2.1
```

Em alternativa, use o *synaptic* para gerir, de uma forma gráfica, os pacotes instaláveis no seu sistema. Para tirar partido das capacidade gráficas do Octave tem que instalar o gnuplot.

Se usar Gentoo (http://www.gentoo.org) ou uma distribuição sua derivada, não se esqueça (num teminal, como *root*) de sincronizar a lista de pacotes do *portage*: emerge --sync. Depois, verifique se há conflitos fazendo emerge -p octave. Pacotes adicionais do octave

Figura 1.3: Octave Workshop num MS-Windows XP

podem ser consultados fazendo emerge -s octave. Finalmente, instale o octave fazendo emerge octave. Em alternativa, pode usar o Portato para gerir, de uma forma gráfica, os pacotes instaláveis no seu sistema.

É possível ter, numa mesma máquina, dois sistemas operativos, usando aquele que nos realiza melhor certo tipo de tarefas. Mas se quiser manter intacto o seu sistema que não é *nix, então uma boa opção é a exploração dos LiveCD/DVD. Coloque o LiveCD/DVD na sua máquina e reinicialize-a. Terá, de imediato, um sistema linux a funcionar, embora não possa fazer quaisquer tipo de actualizações ou intalação de software. Mas a partir daqui pode, se tal for seu intento, instalá-lo na sua máquina. Existem várias distribuições que possuem um LiveCD/LiveDVD, ou seja, que prescindem de instalação em disco rígido, e que contêm o Octave, bem como outras aplicações matemáticas como o R, o YaCaS ou o GAP. Apresenta-se uma lista não exaustiva de sítios onde pode conhecer mais sobre algumas dessas distribuições.

http://dirk.eddelbuettel.com/quantian.html

http://poseidon.furg.br/

https://www.scientificlinux.org/

http://taprobane.org/

E pronto: se tudo correu como planeado tem à sua disposição o Octave, uma ferramenta

Figura 1.4: Koctave num ambiente linux

computacional numérica que iremos, nos capítulos que se seguem, usar no estudo elementar de Álgebra Linear. Pode ir registando os comandos e respostas num ficheiro de texto fazendo

> diary on

Para dar ordem de fim de escrita no ficheiro, faça

> diary off

Tem, neste momento, tudo o que precisa para estudar e gostar de Álgebra Linear. Tal como todas a áreas de Matemática (de facto, de qualquer ramo da ciência) à sua inspiração

Figura 1.5: Octave num ambiente linux, no caso Gentoo

tem que aliar estudo. Sugerimos que vá explorando os exemplos apresentados nestas notas com o Octave, e que compreenda o raciocínio descrito.

Boa sorte! Correcções, comentários e sugestões são benvindos.

Capítulo 2

Cálculo Matricial

 \mathbb{K} designa \mathbb{C} ou \mathbb{R} .

2.1 Notação matricial

Uma matriz do tipo $m \times n$ sobre \mathbb{K} é uma tabela com mn elementos de \mathbb{K} , elementos esses dispostos em m linhas e n colunas:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Os elementos a_{ij} dizem-se os elementos ou componentes da matriz. A matriz diz-se do tipo $m \times n$ se tiver m linhas e n colunas.

O conjunto de todas as matrizes (do tipo) $m \times n$ sobre \mathbb{K} representa-se por $\mathcal{M}_{m \times n}$ (\mathbb{K}) ou por $\mathbb{K}^{m \times n}$, e o conjunto de todas as matrizes (finitas) sobre \mathbb{K} por \mathcal{M} (\mathbb{K}). \mathbb{K}^m denota $\mathbb{K}^{m \times 1}$.

Alguns exemplos de matrizes:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & -1 \end{bmatrix}, C = \begin{bmatrix} -2 & 1 & 0 & 6 \end{bmatrix}, D = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

Quando conveniente, escrevemos a matriz A da definição anterior como

$$[a_{ij}]$$
,

e referimos a_{ij} como o elemento (i, j) de A, isto é, o elemento na linha i e na coluna j de A. Iremos também usar a notação $(A)_{ij}$ para indicar o elemento na linha i e coluna j de A.

Duas matrizes $[a_{ij}], [b_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$ são iguais se $a_{ij} = b_{ij}$, para $i = 1, \ldots, m, j = 1, \ldots, n$. Ou seja, duas matrizes são iguais se têm o mesmo número de linhas e o mesmo número de colunas, e que os elementos na mesma linha e coluna são iguais.

Uma matriz do tipo m por n diz-se quadrada de ordem n se m=n, ou seja, se o número de linhas iguala o de colunas; diz-se rectangular caso contrário. Por exemplo, são quadradas as matrizes

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array}\right], \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{array}\right]$$

e rectangulares as matrizes

$$\left[\begin{array}{cc} 1 & 2 & 3 \\ 0 & 5 & -3 \end{array}\right], \left[\begin{array}{cc} 1 & -1 \end{array}\right], \left[\begin{array}{c} -1 \\ -4 \\ 0 \end{array}\right].$$

Os elementos diagonais de $[a_{ij}]_{i,j=1,\dots n}$ são $a_{11}, a_{22},\dots, a_{nn}$.

Por exemplo, os elementos diagonais de $\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$ são 1 e -2, e os da matriz $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & -3 \end{bmatrix}$ são 1 e 5.

Nos exemplos atrás apresentados, apenas a matriz A é quadrada, sendo as restantes rectangulares. Os elementos diagonais de A são 1,3.

Octave

Suponha que se pretende definir a matriz $A=\left[\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right]$. Para tal, faz-se

A =

1 2

2 3

A entrada (1,2) é mostrada através do comando

$$ans = 2$$

A primeira linha e a segunda coluna da matriz são mostradas com, respectivamente,

ans =

1 2

No Octave, todas as constantes numéricas são representadas no formato de vírgula flutuante com dupla precisão (as constantes complexas são memorizadas como pares de valores de vírgula flutuante de dupla precisão). O Octave, por defeito, apenas mostra uma parte do valor que armazenou.

```
> format long
> B=[1, 2-i, 3i; 0, sqrt(2), -1]
B =
Column 1:
  Column 2:
  2.00000000000000 - 1.000000000000000i
  1.414213562373095 + 0.00000000000000000
Column 3:
  > format
> B
B =
  1.00000 + 0.00000i 2.00000 - 1.00000i 0.00000 + 3.00000i
  0.00000 + 0.00000i 1.41421 + 0.00000i -1.00000 + 0.00000i
```

Suponhamos agora que se pretende definir C como a matriz constituída pelos elementos que estão nas linhas de B e que estão nas colunas 1 e 2 de B. Para tal, usa-se o comando B(:,1:2). Aqui, o primeiro : indica que se pretender usar todas as linhas de B. O argumento 1:2 indica que consideram da primeira à segunda colunas de B.

```
> C=B(:,1:2)
ans =
1.00000 + 0.00000i 2.00000 - 1.00000i
0.00000 + 0.00000i 1.41421 + 0.00000i
```

Se se pretender a coluna 1 e 3, então usa-se a instrução B(:,[1,3]). Uma forma mais rebuscada seria usar o argumento 1:2:3. A sintaxe é simples: *início:incremento:final*. Assim sendo,

```
> B(:,1:2:3)
ans =

1 + 0i   0 + 3i
0 + 0i   -1 + 0i
```

Finalmente, podemos concatenar a matriz A definida atrás, por colunas e por linhas, respectivamente,

```
> [B(:,1:2:3) A]
ans =
   1 + 0i
          0 + 3i
                     1 + 0i
                              2 + 0i
   0 + 0i -1 + 0i
                     2 + 0i
                              3 + 0i
> [B(:,1:2:3); A]
ans =
   1 + 0i
          0 + 3i
   0 + 0i
          -1 + Oi
            2 + 0i
   1 + 0i
            3 + 0i
   2 + 0i
```

Preste atenção que nem sempre estas operações são possíveis. Uma das causas de falha é o número de linhas ou colunas não compatível.

Finalmente, obtém-se a conjugada de uma matriz conjugando as componentes da matriz dada. Ou seja, a matriz conjugada de $A \in \mathcal{M}_{m \times n}\left(\mathbb{C}\right)$, denotada como \bar{A} , é a matriz $m \times n$ definida por $(\bar{A})_{ij} = \overline{a_{ij}}$. Por exemplo,

```
> conj (B)
ans =
```

2.1. NOTAÇÃO MATRICIAL

1.00000 - 0.00000i 2.00000 + 1.00000i 0.00000 - 3.00000i 0.00000 - 0.00000i 1.41421 - 0.00000i -1.00000 - 0.00000i

Apresentamos, de seguida, alguns tipos especiais de matrizes.

1. Uma matriz diz-se diagonal se for da forma

$$\begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix} = diag(d_1, d_2, \dots, d_n),$$

15

ou seja, o elemento (i, j) é nulo, se $i \neq j$. Portanto, uma matriz quadrada é diagonal se os únicos elementos possivelmente não nulos são os diagonais.

2. A matriz identidade de ordem n, I_n , é a matriz diagonal de ordem n, com os elementos diagonais iguais a 1; ou seja,

$$I_n = \left[egin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ dots & dots & dots \\ 0 & 0 & \cdots & 1 \end{array}
ight].$$

3. Uma matriz $A = [a_{ij}]$ diz-se triangular superior se $a_{ij} = 0$ quando i > j, e triangular inferior se $a_{ij} = 0$ quando i < j. Ou seja, são respectivamente triangulares superiores e inferiores as matrizes

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}, \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

4. Matrizes circulantes

$$\begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_0 \end{bmatrix}.$$

5. Matrizes companheiras, com $v \in \mathbb{K}^{n-1}$,

$$\left[\begin{array}{cc} 0 & a_0 \\ I_{n-1} & v \end{array}\right].$$

6. Matrizes de Hankel

$$H_n = \begin{bmatrix} a_0 & a_1 & a_2 & * & a_{n-1} \\ a_1 & a_2 & * & * & a_n \\ a_2 & * & * & * & * \\ * & a_{n-1} & a_n & * & * \\ a_{n-1} & a_n & * & * & a_{2(n-1)} \end{bmatrix}.$$

7. Matrizes de Toeplitz

$$T_n = \begin{bmatrix} a_0 & a_1 & a_2 & * & a_{n-1} \\ a_{-1} & a_0 & * & * & * \\ * & a_{-1} & * & * & * \\ a_{-n+2} & * & * & * & a_1 \\ a_{-n+1} & a_{-n+2} & * & a_{-1} & a_0 \end{bmatrix}.$$

2.2 Operações matriciais

Vejamos agora algumas operações definidas entre matrizes, e algumas propriedades que estas satisfazem.

2.2.1 Soma e produto escalar

Sejam $A = [a_{ij}], B = [b_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K}) \in \alpha \in \mathbb{K}.$

- 1. A soma entre matrizes A + B é a matriz $m \times n$ cujo elemento (i, j) é $a_{ij} + b_{ij}$. Ou seja, $(A + B)_{ij} = (A)_{ij} + (B)_{ij}$.
- 2. O produto de uma matriz com um escalar αA é a matriz $m \times n$ cujo elemento (i, j) é αa_{ij} . Ou seja, $(\alpha A)_{ij} = \alpha(A)_{ij}$.

Repare que a soma de duas matrizes, da mesma ordem, é feita elemento a elemento, e o produto escalar de uma matriz por $\alpha \in \mathbb{K}$ é de novo uma matriz da mesma ordem da dada, onde cada entrada surge multiplicada por α . Ou seja,

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & & & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2m} + b_{2m} \\ \vdots & & & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nm} + b_{nm} \end{bmatrix}$$

e

$$\alpha \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1m} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2m} \\ \vdots & & & \vdots \\ \alpha a_{n1} & \alpha a_{n2} & \dots & \alpha a_{nm} \end{bmatrix}.$$

17

Por exemplo,

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix}$$
$$5 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5 \cdot 1 & 5 \cdot 2 \\ 5 \cdot 3 & 5 \cdot 4 \end{bmatrix}.$$

e

Como é fácil de compreender, a soma e o produto escalar são comutativos.

De ora em diante, 0 representa uma qualquer matriz cujos elementos são nulos, e se $A = [a_{ij}]$ então $-A = [-a_{ij}]$.

Estas operações satisfazem as propriedades que de seguida se descrevem, onde $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $\alpha, \beta \in \mathbb{K}$:

- 1. A soma de matrizes é associativa: (A + B) + C = A + (B + C).
- 2. A soma de matrizes é comutativa: A + B = B + A
- 3. A matriz nula é o elemento neutro da adição: A + 0 = 0 + A.
- 4. Existe o simétrico de cada matriz A + (-A) = (-A) + A = 0.
- 5. $\alpha(A+B) = \alpha A + \alpha B$.
- 6. $(\alpha + \beta)A = \alpha A + \beta A$.
- 7. $(\alpha \beta)A = \alpha(\beta A)$.
- 8. $1 \cdot A = A$.

2.2.2 Produto

Resta-nos definir o produto matricial.

Seja $A = [a_{ij}]$ uma matriz $m \times p$ e $B = [b_{ij}]$ uma matriz $p \times n$. O produto de A por B, denotado por AB, é a matriz $m \times n$ cujo elemento (i, j) é $a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$. Assim,

$$AB = \left[\sum_{k=1}^{p} a_{ik} b_{kj}\right]_{m \times p} \text{ e portanto } (AB)_{ij} = \sum_{k=1}^{p} (A)_{ik} (B)_{kj}.$$

Atente-se nas dimensões de A e B na definição anterior.

Antes de fazermos referência a algumas propriedades, vejamos uma outra forma exprimir

o produto de duas matrizes. Para tal, assuma que
$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

sendo a primeira do tipo $1 \times n$ e a segunda do tipo $n \times 1$. Pelo que acabámos de referir, o produto de X por Y está bem definido, sendo a matriz produto do tipo 1×1 , e portanto, um elemento de \mathbb{K} . Esse elemento é $x_1y_1 + x_2y_2 + \dots x_ny_n$. Voltemos agora ao produto

de $A_{m \times p}$ por $B_{p \times n}$, e fixemos a linha i de A e a coluna j de B. Ou seja, a matriz linha

$$\begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{ip} \end{bmatrix}$$
 e a matriz coluna $\begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{pj} \end{bmatrix}$. O produto da primeira pela segunda é o

elemento de \mathbb{K} dado por $a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$. Ora, este elemento não é mais nem menos que a entrada (i, j) da matriz produto AB. Ou seja, a entrada (i, j) de AB é o produto da linha i de A pela coluna j de B.

Vejamos algumas propriedades deste produto de matrizes, onde as dimensões das matrizes A, B, C, I, 0 são tais que as operações indicadas estão definidas, e $\alpha \in \mathbb{K}$:

- 1. O produto de matrizes é associativo (AB)C = A(BC);
- 2. O produto de matrizes é distributivo em relação à soma A(B+C) = AB + AC, (A+C)B)C = AC + BC;
- 3. A matriz identidade é o elemento neutro para o produto: AI = A, IA = A;
- 4. A matriz nula é o elemento absorvente para o produto: 0A = 0, A0 = 0;
- 5. $\alpha(AB) = (\alpha A)B = A(\alpha B)$.

Façamos a verificação da primeira igualdade de (1). A verificação de que as matrizes são do mesmo tipo fica ao cargo do leitor. Iremos apenas verificar que a entrada (i, j) de A(B+C)iguala a entrada (i, j) de AB + AC. Ora, supondo que A tem p colunas, e portanto que B e C têm p linhas,

$$(A(B+C))_{ij} = \sum_{k=1}^{p} (A)_{ik} ((B)_{kj} + (C)_{kj})$$

$$= \sum_{k=1}^{p} ((A)_{ik} (B)_{kj} + (A)_{ik} (C)_{kj})$$

$$= \sum_{k=1}^{p} (A)_{ik} (B)_{kj} + \sum_{k=1}^{p} (A)_{ik} (C)_{kj}$$

$$= (AB)_{ij} + (AC)_{ij} = (AB + AC)_{ij}.$$

Verifiquemos também a propriedade (3). Note-se que $(I)_i = 1$ e $(I)_{ij} = 0$ se $i \neq j$. Ora

 $(AI)_{ij} = \sum_{k=1}^{p} (A)_{ik}(I)_{kj} = (A)_{ij}.$ É importante notar que o produto matricial <u>não é</u>, em geral, comutativo. Por exemplo, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$ A lei do anulamento do produto também

não é válida, em geral, no produto matricial. Por exemplo, $\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0$, sem

que um dos factores seja nulo. Ou seja, $AB=0 \Rightarrow (A=0 \text{ ou } B=0)$. De uma forma mais geral, $(AB=AC \text{ e } A\neq 0) \Rightarrow (B=C)$, já que, por exemplo, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} =$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} 2 & 2 \\ -1 & 3 \end{array}\right].$$

Como é fácil de observar, a soma de duas matrizes triangulares inferiores [resp. triangulares superiores] é de novo triangular inferior [resp. triangular superior]. O que se pode dizer em relação ao produto?

Teorema 2.2.1. O produto de matrizes triangulares inferiores [resp. triangulares superiores] é de novo uma matriz triangular inferior [resp. triangular superior].

Demonstração. Sejam A, B duas matrizes triangulares inferiores de tipo apropriado. Ou seja, $(A)_{ij}, (B)_{ij} = 0$, para i < j. Pretende-se mostrar que, para i < j se tem $(AB)_{ij} = 0$. Ora, para i < j, e supondo que A tem p colunas, $(AB)_{ij} = \sum_{k=1}^{p} (A)_{ik}(B)_{kj} = \sum_{k=1}^{i} (A)_{ik}(B)_{kj} = 0$. \square

Por vezes é conveniente considerar-se o produto matricial por blocos. Para tal, considere as matrizes A e B divididas em submatrizes

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

de forma conforme as operações descritas de seguida estejam definidas, então

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}.$$

De uma forma mais geral, se

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1p} \\ A_{21} & A_{22} & \cdots & A_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mp} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ B_{pn} & B_{pn} & \cdots & B_{pn} \end{bmatrix}$$

em que as submatrizes são tais que as operações seguintes estão bem definidas, então

$$AB = \begin{bmatrix} \sum_{k=1}^{p} A_{1k} B_{k1} & \sum_{k=1}^{p} A_{1k} B_{k2} & \cdots & \sum_{k=1}^{p} A_{1k} B_{kn} \\ \sum_{k=1}^{p} A_{2k} B_{k1} & \sum_{k=1}^{p} A_{2k} B_{k2} & \cdots & \sum_{k=1}^{p} A_{2k} B_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{p} A_{mk} B_{k1} & \sum_{k=1}^{p} A_{mk} B_{k2} & \cdots & \sum_{k=1}^{p} A_{mk} B_{kn} \end{bmatrix}.$$

2.2.3 Transposição

A transposta de uma matriz $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{K})$, é a matriz $A^T = [b_{ij}] \in \mathcal{M}_{n \times m}(\mathbb{K})$ cuja entrada (i,j) é a_{ji} , para $i = 1, \ldots, n, j = 1, \ldots, m$. Ou seja, $(A^T)_{ij} = (A)_{ji}$. A matriz é simétrica se $A^T = A$.

Como exemplo, a transposta da matriz $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ é a matriz $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, e a matriz $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ é uma matriz simétrica.

Repare que a coluna i de A^T é a linha i de A, e que uma matriz é simétrica se e só se for quadrada e forem iguais os elementos situados em posições simétricas relativamente à diagonal principal.

A transposição de matrizes goza das seguintes propriedades:

1.
$$(A^T)^T = A;$$

2.
$$(A+B)^T = A^T + B^T$$
:

3.
$$(\alpha A)^T = \alpha A^T$$
, para $\alpha \in \mathbb{K}$;

4.
$$(AB)^T = B^T A^T$$
;

5.
$$(A^k)^T = (A^T)^k, k \in \mathbb{N}.$$

A afirmação (1) é válida já que $((A^T)^T)_{ij} = (A^T)_{ji} = (A)_{ij}$.

Para (2),
$$((A+B)^T)_{ij} = (A+B)_{ji} = (A)_{ji} + (B)_{ji} = (A^T)_{ij} + (B^T)_{ij}$$
.

Para (4),
$$((AB)^T)_{ij} = (AB)_{ji} = \sum_k (A)_{jk} (B)_{ki} = \sum_k (B)_{ki} (A)_{jk} = \sum_k (B^T)_{ik} (A^T)_{kj} = (B^T A^T)_{ij}$$
.

Para (5), a prova é feita por indução no expoente. Para k=1 a afirmação é trivialmente válida. Assumamos então que é válida para um certo k, e provemos que é válida para k+1. Ora $(A^{k+1})^T = (A^kA)^T =_{(4)} A^T(A^k)^T = A^T(A^T)^k = (A^T)^{k+1}$.

Octave

Considere as matrizes $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$. Note que são do mesmo tipo, pelo que a soma está bem definida. Verifica-se a comutatividade destas matrizes para a soma.

> A+B

ans =

- 1 3
- 1 4

> B+A

ans =

- 1 3
- 1 4

Façamos o produto de $\cal A$ pelo escalar 2:

```
> 2*A
ans =
```

4 6

Note ainda que o número de colunas de A iguala o número de linhas de B, pelo que o produto AB está bem definido.

```
> A*B
ans =

-2 3
-3 5
```

Verifique que também o produto BA está bem definido. Mas

```
> B*A
ans =
2 3
1 1
```

> C=[A B(:,2)]

ans =

 $BA \neq AB$, pelo que o produto de matrizes não é, em geral, comutativo.

Considere agora a matriz C cujas colunas são as colunas de A e a terceira coluna é a segunda de B:

3 2

Invertibilidade 2.2.4

Uma matriz A quadradada de ordem n diz-se invertível se existir uma matriz B, quadrada de ordem n, para a qual

$$AB = BA = I_n.$$

Teorema 2.2.2. Seja $A \in \mathcal{M}_n(\mathbb{K})$. Se existe uma matriz $B \in \mathcal{M}_n(\mathbb{K})$ tal que AB = BA = BA I_n então ela é única.

Demonstração. Se B e B' são matrizes quadradas, $n \times n$, para as quais

$$AB = BA = I_n = AB' = B'A$$

então

$$B' = B'I_n = B'(AB) = (B'A)B = I_nB = B.$$

A matriz B do teorema, caso exista, diz-se a *inversa* de A e representa-se por A^{-1} . Por exemplo, a matriz $S = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ não é invertível. Por absurdo, suponha que existe

T, de ordem 2, tal que $ST=I_2=TS$. A matriz T é então da forma $\begin{bmatrix} x & y \\ z & w \end{bmatrix}$. Ora

 $ST = \begin{bmatrix} x & y \\ x & y \end{bmatrix}$, que por sua vez iguala I_2 , implicando por sua vez x = 1 e y = 0, juntamente

Considere a matriz real de ordem 2 definida por $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$. Esta matriz é invertível. Mais adiante, forneceremos formas de averiguação da invertibilidade de uma matriz, bem como algoritmos para calcular a inversa. Por enquanto, deixemos o Octave fazer esses cálculos, sem quaisquer justificações:

$$> A=[1,2;2,3];$$

X =

-3 2 2 -1

Ou seja,
$$A^{-1}=\begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$$
. Façamos a verificação de que $AX=XA=I_2$:

> A*X

ans =

1 0

0 1

> X*A

ans =

1 0

0 1

Uma forma um pouco mais rebuscada é a utilização de um operador boleano para se aferir da veracidade das igualdades. Antes de nos aventurarmos nesse campo, e sem pretender deviarmo-nos do contexto, atribua a a e a b os valores 2 e 3, respectivamente:

$$> a=2;b=3;$$

Suponha agora que se pretende saber se os quadrados de a e de b são iguais. Em linguagem matemática, tal seria descrito por $a^2 = b^2$. Como é óbvio, no Octave tal seria sujeito de dupla significação: o símbolo = refere-se a uma atribuição à variável ou parte de uma proposição? Como vimos anteriormente, = tem sido repetidamente usado como símbolo de atribuição (como por exemplo em a=2); se se pretende considerar = enquanto símbolo de uma proposição, então usa-se ==. O resultado será 1 se a proposição é verdadeira e 0 caso contrário. Por exemplo,

 $> a^2==b^2$

ans = 0

 $> a^2!=b^2$

ans = 1

Usou-se¹ != para indicar \neq .

Voltemos então ao nosso exemplo com as matrizes. Recorde que se pretende averiguar sobre a igualdade $AX=I_2$. O Octave tem uma função pré-definida que constrói a matriz identidade de ordem n: eye(n). Por exemplo, a matriz I_3 é obtida com

> eye(3)

ans =

 $^{^1\}mathrm{De}$ facto poder-se-ia ter usado também $\sim=,$ estando esta palavra também em consonância com a sintaxe do MatLab.

- 1 0 0
- 0 1 0
- 0 0 1

Portanto, a verificação de $AX=I_2$ é feita com:

> A*X==eye(2) ans =

- 1 1
- 1 1

A resposta veio em forma de tabela 2×2 : cada entrada indica o valor boleano da igualdade componente a componente. Suponha que as matrizes têm ordem suficientemente grande por forma a tornar a detecção de um 0 morosa e sujeita a erros. Uma alternativa será fazer

Teorema 2.2.3. Dadas duas matrizes U e V de ordem n, então UV é invertível e

$$(UV)^{-1} = V^{-1}U^{-1}.$$

Demonstração. Como

$$(UV)(V^{-1}U^{-1}) = U(VV^{-1})U^{-1} = UI_nU^{-1} = UU^{-1} = I_n$$

e

$$\left(V^{-1}U^{-1}\right)(UV) = V^{-1}\left(U^{-1}U\right)V = V^{-1}I_{n}V = V^{-1}V = I_{n},$$

segue que UV é invertível e a sua inversa é $V^{-1}U^{-1}$.

Ou seja, o produto de matrizes invertíveis é de novo uma matriz invertível, e iguala o produto das respectivas inversas por ordem inversa.

Duas matrizes A e B, do mesmo tipo, dizem-se equivalentes, e denota-se por $A \sim B$, se existirem matrizes U,V invertíveis para as quais A=UBV. Repare que se $A \sim B$ então $B \sim A$, já que se A=UBV, com U,V invertíveis, então também $B=U^{-1}AV^{-1}$. Pelo teorema anterior, se $A \sim B$ então A é invertível se e só se B é invertível.

As matrizes A e B são equivalentes por linhas se existir U invertível tal que A=UB. É óbvio que se duas matrizes A e B são equivalentes por linhas, então são equivalentes, ou seja, $A \sim B$.

Se uma matriz U for invertível, então a sua transposta U^T também é invertível e $(U^T)^{-1} = (U^{-1})^T$. A prova é imediata, bastando para tal verificar que $(U^{-1})^T$ satisfaz as condições de inversa, seguindo o resultado pela unicidade.

2.2. OPERAÇÕES MATRICIAIS

25

Segue também pela unicidade da inversa que

$$(A^{-1})^{-1} = A,$$

isto é, que a inversa da inversa de uma matriz é a própria matriz.

Octave .

Façamos a verificação desta propriedade com a matriz $A=\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$

ans =

- 1 1
- 1 1

Vimos, atrás, que o produto de matrizes triangulares inferiores [resp. superiores] é de novo uma matriz triangular inferior [resp. superior]. O que podemos dizer em relação à inversa, caso exista?

Teorema 2.2.4. Uma matriz quadrada triangular inferior [resp. superior] é invertível se e só se tem elementos diagonais não nulos. Neste caso, a sua inversa é de novo triangular inferior [resp. superior].

Antes de efectuarmos a demonstração, vejamos a que se reduz o resultado para matrizes (quadradas) de ordem de 2, triangulares inferiores. Seja, então, $L = \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix}$, que assumimos invertível. Portanto, existem $x,y,z,w \in \mathbb{K}$ para os quais $I_2 = L \begin{bmatrix} x & y \\ z & w \end{bmatrix}$, donde segue, em particular, que $a_{11}x = 1$, e portanto $a_{11} \neq 0$ e $x = \frac{1}{a_{11}}$. Assim, como $a_{11}y = 0$ e $a_{11} \neq 0$ tem-se que y = 0. Ou seja, a inversa é triangular inferior. Como y = 0, o produto da segunda linha de L com a segunda coluna da sua inversa é $a_{22}w$, que iguala $(I)_{22} = 1$. Portanto, $a_{22} \neq 0$ e $w = \frac{1}{a_{11}}$. O produto da segunda linha de L com a primeira coluna da sua inversa é $a_{21}\frac{1}{a_{11}} + a_{22}z$, que iguala $(I)_{21} = 0$. Ou seja, $z = -\frac{a_{21}}{a_{11}a_{22}}$.

Demonstração. A prova é feita por indução no número de linhas das matrizes quadradas.

Para n=1 o resultado é trivial. Assuma, agora, que as matrizes de ordem n triangulares inferiores invertíveis são exactamente aquelas que têm elementos diagonais não nulos. Seja $A=[a_{ij}]$ uma matriz triangular inferior, quadrada de ordem n+1. Particione-se a matriz por blocos da forma seguinte:

$$\left[\begin{array}{c|c} a_{11} & O \\ \hline b & \widetilde{A} \end{array}\right],$$

onde b é $n \times 1$, O é $1 \times n$ e \widetilde{A} é $n \times n$ triangular inferior.

Por um lado, se A é invertível então existe $\left[\begin{array}{c|c} x & Y \\ \hline Z & W \end{array}\right]$ inversa de A, com $x_{1\times 1}, Y_{1\times n}, Z_{n\times 1},$ $W_{n\times n}$. Logo $a_{11}x=1$ e portanto $a_{11}\neq 0$ e $x=\frac{1}{a_{11}}$. Assim, como $a_{11}Y=0$ e $a_{11}\neq 0$ tem-se que Y=0. O bloco (2,2) do produto é então $\widetilde{A}W$, que iguala I_n . Sabendo que $\left[\begin{array}{c|c} x & Y \\ \hline Z & W \end{array}\right] \left[\begin{array}{c|c} a_{11} & O \\ \hline b & \widetilde{A} \end{array}\right] = \left[\begin{array}{c|c} 1 & 0 \\ \hline 0 & I_n \end{array}\right]$, tem-se que também $W\widetilde{A}=I_n$, e portanto \widetilde{A} é invertível, $n\times n$, com $(\widetilde{A})^{-1}=W$. Usando a hipótese de indução aplicada a \widetilde{A} , os elementos diagonais de \widetilde{A} , que são os elementos diagonais de A à excepção de a_{11} (que já mostrámos ser não nulo) são não nulos.

Reciprocamente, suponha que os elementos diagonais de A são não nulos, e portanto que os elementos diagonais de \widetilde{A} são não nulos. A hipótese de indução garante-nos a invertibilidade de \widetilde{A} . Basta verificar que $\begin{bmatrix} \frac{1}{a_{11}} & 0 \\ -\frac{1}{a_{11}}\widetilde{A}^{-1}b & \widetilde{A}^{-1} \end{bmatrix}$ é a inversa de A.

Para finalizar esta secção, e como motivação, considere a matriz $V = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Esta matriz é invertível, e $V^{-1} = V^T$ (verifique!). Este tipo de matrizes denominam-se por ortogonais. Mais claramente, uma matriz ortogonal é uma matriz (quadrada) invertível, e cuja inversa iguala a sua transposta. De forma equivalente, uma matriz A invertível diz-se ortogonal se $AA^T = A^TA = I$.

Teorema 2.2.5. 1. A inversa de uma matriz ortogonal é também ela ortogonal.

2. O produto de matrizes ortogonais é de novo uma matriz ortogonal.

Demonstração. (1) Seja A uma matriz ortogononal, ou seja, para a qual a igualdade $A^T = A^{-1}$ é válida. Pretende-se mostrar que A^{-1} é ortogonal; ou seja, que $(A^{-1})^{-1} = (A^{-1})^T$. Ora $(A^{-1})^T = (A^T)^{-1} = (A^{-1})^{-1}$.

(2) Sejam A,B matrizes ortogonais. Em particular são matrizes invertíveis, e logo AB é invertível. Mais,

$$(AB)^{-1} = B^{-1}A^{-1} = B^TA^T = (AB)^T.$$

Impõe-se aqui uma breve referência aos erros de arredondamento quando se recorre a um sistema computacional numérico no cálculo matricial. Considere a matriz $A = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$. A matriz é ortogonal já que $AA^T = A^TA = I_2$.

Octave

Definamos a matriz A no Octave:

27

É premente alertar para o facto de erros de arredondamento provocarem afirmações falsas. Teste algo tão simples como

A transconjugada de A é a matriz $A^* = \bar{A}^T$. Ou seja, $(A^*)_{ij} = \overline{(A)_{ji}}$. Esta diz-se hermítica (ou hermitiana) se $A^* = A$.

Sejam A, B matrizes complexas de tipo apropriado e $\alpha \in \mathbb{C}$. Então

- 1. $(A^*)^* = A$;
- 2. $(A+B)^* = A^* + B^*$;
- 3. $(\alpha A)^* = \bar{\alpha} A^*$;
- 4. $(AB)^* = B^*A^*$;
- 5. $(A^n)^* = (A^*)^n$, para $n \in \mathbb{N}$;

A prova destas afirmações é análoga à que apresentámos para a transposta, e fica ao cuidado do leitor.

Uma matriz unitária é uma matriz (quadrada) invertível, e cuja inversa iguala a sua transconjugada. De forma equivalente, uma matriz A invertível diz-se unitária se $AA^* = A^*A = I$.

Teorema 2.2.6. 1. A inversa de uma matriz unitária é também ela unitária.

2. O produto de matrizes unitárias é de novo uma matriz unitária.

Remetemos o leitor ao que foi referido no que respeitou as matrizes ortogonais para poder elaborar uma prova destas afirmações.

2.3 Um resultado de factorização de matrizes

2.3.1 Matrizes elementares

Nesta secção, iremos apresentar um tipo de matrizes que terão um papel relevante em resultados vindouros: as matrizes elementares. Estas dividem-se em três tipos:

$$a \neq 0; D_k(a) = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & 0 & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & a & & \\ & & 0 & & \ddots & \\ & & & & 1 \end{bmatrix} \leftarrow k$$

$$i \neq j; E_{ij}(a) = \begin{bmatrix} 1 & & & & & & \\ & \ddots & & & & \\ & & 1 & \cdots & a & & \\ & & & \ddots & \vdots & & \\ & & & & 1 & & \\ & & & 0 & & \ddots & \\ & & & & & 1 \end{bmatrix} \leftarrow i$$

Ou seja, as matrizes elementares de ordem n são obtidas da matriz identidade I_n fazendo:

- para $D_k(a)$, substituindo a entrada (k, k) por a;
- para $E_{ij}(a)$, substituindo a entrada (i, j) por a;
- para P_{ij} , trocando as linhas $i \in j$ (ou de outra forma, as colunas $i \in j$).

É óbvio que $D_{\ell}(1) = E_{ij}(0) = P_{kk} = I_n$.

A primeira propriedade que interessa referir sobre estas matrizes é que são invertíveis. Mais, para $a,b\in\mathbb{K}, a\neq 0$,

$$(D_k(a))^{-1} = D_k \left(\frac{1}{a}\right)$$
$$(E_{ij}(b))^{-1} = E_{ij}(-b), \text{ para } i \neq j$$
$$(P_{ij})^{-1} = P_{ij}$$

A segunda, relevante para o que se segue, indica outro o modo de se obter as matrizes $D_k(a)$ e $E_{ij}(a)$ da matriz identidade, cujas linhas são denotadas por l_1, l_2, \ldots, l_n :

- para $D_k(a)$, substituindo a linha k por $a l_k$;
- para $E_{ij}(a)$, substituindo a linha i por $l_i + a l_j$.

Aplicando o mesmo raciocínio, mas considerando as colunas c_1, c_2, \ldots, c_n da matriz identidade:

- para $D_k(a)$, substituindo a coluna k por $a c_k$;
- para $E_{ij}(a)$, substituindo a coluna j por $c_j + a c_i$.

Octave ____

Considere as matrizes 3×3 elementares $D = D_2(5); E = E_{23}(3); P = P_{13}$. Recorde que a matriz I_3 é dada por eye(3).

```
> D=eye(3);
> D(2,2)=5;
> D
D =
     0 0
    5 0
  0 0 1
> E=eye(3);
> E(2,3)=3;
> E
E =
    0 0
    1 3
  0 0 1
> I3=eye(3);
> P=I3;
> P(1,:)=I3(3,:); P(3,:)=I3(1,:);
> P
P =
  0 0 1
    0 0
```

Nesta última matriz, as instruções P(1,:)=I3(3,:); P(3,:)=I3(1,:); indicam que a primeira linha de P é a terceira de I_3 e a terceira de P é a primeira de I_3 .

O que sucede se, dada uma matriz A, a multiplicarmos à esquerda ou à direita 2 por uma

 $^{^2\}mathrm{Recorde}$ que o produto matricial não é, em geral, comutativo, pelo que é relevante a distinção dos dois casos.

matriz elementar? Vejamos com alguns exemplos, tomando

$$A = \begin{bmatrix} 4 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & 4 \end{bmatrix}, P = P_{12}, E = E_{31}(-2), D = D_2\left(\frac{1}{2}\right).$$

Vamos usar o Octave para determinar o produto DEPA. Para tal, faremos primeiro PA, a este produto fazemos a multiplicação, à esquerda, por E, e finalmente ao produto obtido a multiplicação por D, de novo à esquerda.

Octave

Vamos então definir as matrizes A,P,E,D no Octave:

```
> A=[4 2 0; 1 1 0; 2 -1 4];
> I3=eye(3);
> E=I3; E(3,1)=-2;
```

> P=I3; P(1,:)=I3(2,:); P(2,:)=I3(1,:);

> D=I3; D(2,2)=1/2;

Façamos o produto PA:

> P*A ans =

1 1 0

4 2 0

2 -1 4

Qual a relação entre A e PA? Repare que ocorreu uma troca da primeira e da segunda linha de A. Que por sinal foram as mesmas trocas que se efectuaram a I_3 de forma a obtermos P_{12} . À matriz PA, multiplicamo-la, à esquerda, por E:

> E*P*A

ans =

1 1 0 4 2 0

0 -3

> D*E*P*A

ans =

1 1 0

Uma $matriz\ permutação$ de ordem n é uma matriz obtida de I_n à custa de trocas de suas linhas (ou colunas). Aqui entra o conceito de permutação. Uma permutação no conjunto $N_n = \{1,2,\ldots,n\}$ é uma bijecção (ou seja, uma aplicação simultaneamente injectiva e sobrejectiva) de N_n em N_n . Uma permutação $\varphi:N_n\to N_n$ pode ser representada pela tabela $\begin{pmatrix} 1 & 2 & \cdots & n \\ \varphi(1) & \varphi(2) & \cdots & \varphi(n) \end{pmatrix}$. Para simplificar a escrita, é habitual omitir-se a primeira linha, já que a posição da imagem na segunda linha indica o (único) objecto que lhe deu origem.

Definição 2.3.1. O conjunto de todas as permutações em N_n é denotado por S_n e denominado por grupo simétrico.

Como exemplo, considere a permutação $\gamma = (2, 1, 5, 3, 4) \in S_5$. Tal significa que

$$\gamma(1) = 2, \gamma(2) = 1, \gamma(3) = 5, \gamma(4) = 3, \gamma(5) = 4.$$

Note que S_n tem $n! = n(n-1)(n-2) \dots 2 \cdot 1$ elementos. De facto, para $\gamma = (i_1, i_2, \dots, i_n) \in S_n$, i_1 pode tomar n valores distintos. Mas i_2 apenas pode tomar um dos n-1 restantes, já que não se podem repetir elementos. E assim por diante. Obtemos então n! permutações distintas.

Dada a permutação $\varphi = (i_1, i_2, \dots, i_n) \in S_n$, se $1 \leq j < k \leq n$ e $i_j > i_k$ então $i_j > i_k$ diz-se uma inversão de φ . Na permutação $\gamma = (2, 1, 5, 3, 4)$ acima exemplificada existem três inversões, já que $\gamma(1) > \gamma(2), \gamma(3) > \gamma(4), \gamma(3) > \gamma(5)$. O sinal de uma permutação φ , denotado por $sgn(\varphi)$, toma o valor +1 caso o número de inversões seja par, e -1 caso contrário. Portanto, $sgn(\gamma) = -1$. As permutações com sinal +1 chamam-se permutações pares (e o conjunto por elas formado chama-se grupo alterno, A_n), e as cujo sinal é -1 denominam-se por permutações impares.

Uma transposição é uma permutação que fixa todos os pontos à excepção de dois. Ou seja, $\tau \in S_n$ é uma transposição se existirem i,j distintos para os quais $\tau(i) = j, \tau(j) = i$ e $\tau(k) = k$ para todo o k diferente de i e j. Verifica-se que toda a permutação φ se pode escrever como composição de transposições $\tau_1, \tau_2, \ldots, \tau_r$. Ou seja, $\varphi = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_r$. Esta decomposição não é única, mas quaisquer duas decomposições têm a mesma paridade de transposições. Ou seja, se existe uma decomposição com um número par [resp. ímpar] de intervenientes, então qualquer outra decomposição tem um número par [resp. ímpar] de transposições. Mais, esse número tem a mesma paridade da do número de inversões. Por consequência, o sinal de qualquer transposição é -1. A permutação γ definida atrás pode-se decompor como $(2,1,5,3,4) = (2,1,5,3,4) \circ (1,2,5,4,3) \circ (1,2,4,3,5)$.

O conjunto das permutações S_n pode ser identificado com o conjunto das matrizes permutação de ordem n, em que a composição de permutação é de uma forma natural identificado

com o produto de matrizes. A matriz permutação P associada à permutação γ é a matriz obtida de I_5 realizando as trocas de linhas segundo γ . Para fácil compreensão, vamos recorrer ao Octave.

Octave

```
> I5=eye(5);
> P=I5([2 1 5 3 4], :)
P =

0 1 0 0 0
1 0 0 0
0 0 0 1
0 0 1 0 0
0 0 0 1 0
```

Na primeira linha de P surge a segunda de I_3 , na segunda a primeira, na terceira a quinta de I_3 , e assim por diante.

De facto, toda a matriz permutação pode-se escrever como produto de matrizes da forma P_{ij} , tal como definidas atrás. Tal é consequência da existência de uma decomposição da permutação em transposições. Note que as transposições se identificam com as matrizes P_{ij} . Voltemos ao Octave e ao exemplo acima:

Octave

Em primeiro lugar, definamos as matrizes associadas às transposições, e façamos o seu produto:

```
> P1=I5([2 1 3 4 5], :);
> P2=I5([1 2 5 4 3], :);
> P3=I5([1 2 4 3 5], :);
> P1*P2*P3
ans =

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0 0
```

O produto iguala a matriz P associada à permutação escolhida:

Operações elementares sobre as linhas de A são as que resultam pela sua multiplicação à esquerda por matrizes elementares. Ou seja, são operações elementares por linhas de uma matriz

- a troca de duas linhas,
- a multiplicação de uma linha por um escalar não nulo,
- a substituição de uma linha pela sua sua com um múltiplo de outra linha.

De forma análoga se definem as operações elementares sobre as colunas de uma matriz, sendo a multiplicação por matrizes elementares feita à direita da matriz. Na prática, tal resulta em substituir a palavra "linha" pela palavra "coluna" na descrição acima.

Considere a matriz $A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 2 \\ -1 & 0 & 1 \end{bmatrix}$. Em primeiro lugar, e efectuando operações elementares nas linhas de A, tentaremos obter zeros por debaixo da entrada $(A)_{11}$. Ou seja, pretendemos obter algo como $\begin{bmatrix} 2 & 4 & 6 \\ 0 & ? & ? \\ 0 & ? & ? \end{bmatrix}$. Substitua-se a segunda linha, l_2 , pela sua soma com o simétrico de metade da primeira. Ou seja,

$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 2 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{l_2 \leftarrow l_2 - \frac{1}{2}l_1} \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Tal corresponde a multiplicar à esquerda a matriz A por $E_{21}(-\frac{1}{2})=\begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Façamos o mesmo raciocínio para a terceira linha:

$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 2 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{l_2 \leftarrow l_2 - \frac{1}{2}l_1} \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 + \frac{1}{2}l_1} \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 2 & 4 \end{bmatrix}$$

Tal correspondeu a multiplicar o produto obtido no passo anterior, à esquerda, por $E_{31}(\frac{1}{2})$. Ou seja, e até ao momento, obteve-se

$$E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2})A = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 2 & 4 \end{bmatrix} = B.$$

Todos os elementos na primeira coluna de B, à excepção de $(B)_{11}$, são nulos. Concentremonos agora na segunda coluna, e na segunda linha. Pretendem-se efectuar operações elemen-

tares nas linhas de B por forma a obter uma matriz da forma $\begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 0 & ? \end{bmatrix}$. Para tal,

$$\begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 2 & 4 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 - l_2} \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix} = U.$$

Ou seja, multiplicou-se B, à esquerda, pela matriz $E_{32}(-1)$. Como $B = E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2})A$ e $E_{32}(-1)B = U$ podemos concluir que

$$E_{32}(-1)E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2})A = U = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$

Repare que U é uma matriz triangular superior, e que neste exemplo tem elementos diagonais não nulos, e portanto é uma matriz invertível. Como as matrizes elementares são invertíveis e $(E_{32}(-1)E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2}))^{-1}U = A$, segue que a matriz A é também ela invertível. Note ainda que $(E_{32}(-1)E_{31}(\frac{1}{2})E_{21}(-\frac{1}{2}))^{-1} = E_{21}(\frac{1}{2})E_{31}(-\frac{1}{2})E_{32}(1)$. A estratégia descrita acima aplicada à matriz A é denominada por algoritmo de eliminação de Gauss. O resultado final foi a factorização A = LU, onde U é uma matriz triangular superior (veremos mais adiante que de facto pertence a uma subclasse desse tipo de matrizes) e L é uma matriz invertível triangular inferior (por ser a inversa de produto de matrizes invertíveis triangulares inferiores). Nem sempre é possível percorrer estes passos do algoritmo, para uma matriz dada arbitrariamente. Veremos, na próxima secção, que modificações se realizam na estratégia apresentada acima por forma a que se garanta algum tipo de factorização.

Octave .

Consideremos a matriz A dada por

> A=[2 4 6;2 2 2;-1 0 1];

À segunda linha de A soma-se o simétrico da primeira linha:

> I3=eye(3); E21=I3; E21(2,1)=-1;

> A2=E21*A

A2 =

2 4 6

0 -2 -4

-1 0 1

À terceira, somamos a primeira multiplicada por $\frac{1}{2}$:

```
> E31=I3; E31(3,1)=0.5;
> A3=E31*A2
ans =

2  4  6
0  -2  -4
```

Finalmente, à terceira somamos a segunda linha:

```
> E32=I3; E32(3,2)=1;
> A4=E32*A3
A4 =

2     4     6
     0     -2     -4
     0     0
```

A matriz A4 obtida é triangular superior, com um elemento diagonal nulo. Logo, a matriz inicial A não é invertível.

O Octave contém o algoritmo numa sua rotina:

```
> [1,u,p]=lu(A)
1 =

1.00000    0.00000    0.00000
1.00000    1.00000    0.00000
-0.50000    -1.00000    1.00000

u =

2     4    6
0     -2    -4
0     0    0
```

```
1 0 0
0 1 0
0 0 1
```

Aqui, u indica a matriz final do algoritmo e 1 a inversa do produto das matrizes elementares da forma $E_{ij}(\alpha)$ envolvidas:

A matriz p é neste caso a identidade, e não tem nenhum papel. Mais à frente veremos a importância desta matriz (quando não é a identidade).

Obtivemos, então, a factorização lu=A.

O exemplo escolhido foi, de facto, simples na aplicação. Alguns passos podem não ser possíveis, nomeadamente o primeiro. Repare que o primeiro passo envolve uma divisão (no nosso caso, dividimos a linha 1 por $(A)_{11}$). A propósito, os elementos-chave na divisão, ou de forma mais clara, o primeiro elemento não nulo da linha a que vamos tomar um seu múltiplo denomina-se por *pivot*. Ora esse pivot tem que ser não nulo. E se for nulo? Nesse caso, trocamos essa linha por outra mais abaixo que tenha, nessa coluna, um elemento não nulo. E se todos forem nulos? Então o processo terminou para essa coluna e consideramos a coluna seguinte. Apresentamos dois exemplos, um para cada um dos casos descritos:

$$\left[\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 2 \\ -3 & 2 & 9 \end{array}\right]; \left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 6 & 7 \\ 0 & 1 & -2 \end{array}\right].$$

No primeiro caso, a troca da primeira linha pela linha dois ou três resolve o problema. No segundo caso, aplicamos a estratégia a partir da segunda coluna. Recorde que a troca da linha i pela linha j é uma operação elementar de linhas que corresponde à multiplicação, à esquerda, por P_{ij} .

Apresentamos, de seguida, o algoritmo de eliminação de Gauss de uma forma mais formal.

2.3.2 O Algoritmo de Eliminação de Gauss

O Algoritmo de Eliminação de Gauss, (abrev. AEG), segue os passos que em baixo se descrevem:

Seja A uma matriz $m \times n$ não nula.

- 1. Assuma que $(A)_{11} \neq 0$. Se tal não acontecer, então troque-se a linha 1 com uma linha i para a qual $(A)_{i1} \neq 0$. Ou seja, multiplique A, à esquerda, por P_{1i} . Para simplificar a notação, A denotará tanto a matriz original como a obtida por troca de duas das suas linhas. A $(A)_{11}$ chamamos pivot do algoritmo. Se todos os elementos da primeira coluna são nulos, use 2.
- 2. Se a estratégia indicada no passo 1 não for possível (ou seja, os elementos da primeira coluna são todos nulos), então aplique de novo o passo 1 à submatriz obtida de A retirando a primeira coluna.
- 3. Para $i=2,\ldots,m$, e em A, substitua a linha i pela sua soma com um múltiplo da linha 1 por forma a que o elemento obtido na entrada (i,1) seja 0. Tal corresponde a multiplicar a matriz A, à esquerda, por $E_{i1}\left(-\frac{(A)_{i1}}{(A)_{11}}\right)$.

4. Repita os passos anteriores à submatriz da matriz obtida pelos passos descritos, a que se retirou a primeira linha e a primeira coluna.

Após se aplicar o passo 3 em todas as linhas e na primeira coluna, e supondo que $(A)_{11} \neq 0$, a matriz que se obtem tem a forma seguinte:

$$\begin{bmatrix} (A)_{11} & (A)_{12} & (A)_{13} & (A)_{1n} \\ 0 & ? & ? & ? \\ 0 & ? & ? & ? \\ \vdots & ? & ? & ? \\ 0 & ? & ? & ? \end{bmatrix}.$$

Ou seja, e por operações elementares de linhas, podemos obter de A uma matriz com a forma $\left[\begin{array}{c|c} (A)_{11} & *\\ \hline 0 & A \end{array}\right]$. O algoritmo continua agora aplicado à matriz \widetilde{A} segundo os passos 1, 2 e 3. Note que as operações elementares operadas nas linhas de \widetilde{A} são também elas operações elementares realizadas nas linhas de $\left[\begin{array}{c|c} (A)_{11} & *\\ \hline 0 & \widetilde{A} \end{array}\right]$. As operações elementares efectuadas em \widetilde{A} dão origem a uma matriz da forma $\left[\begin{array}{c|c} (\widetilde{A})_{11} & *\\ \hline 0 & \widetilde{A} \end{array}\right]$, onde assumimos $(\widetilde{A})_{11} \neq 0$. Essas operações elementares aplicadas às linhas de $\left[\begin{array}{c|c} (A)_{11} & *\\ \hline 0 & \widetilde{A} \end{array}\right]$ dão lugar à matriz $\left[\begin{array}{c|c} (A)_{11} & \cdots & (A)_{1m}\\ \hline 0 & (\widetilde{A})_{11} & *\\ \hline 0 & 0 & \widetilde{A} \end{array}\right]$. Note que se assumiu que as entradas (i,i) são não nulas, ou que existe uma troca conveniente de linhas por forma a se contornar essa questão. Como é óbvio, tal pode não ser possível. Nesse caso aplica-se o passo 2. Ou seja, e quando tal acontece, tal corresponde à não existência de pivots em colunas consecutivas. Como exemplo, considere a matriz $M = \begin{bmatrix} 2 & 2 & 2 & 2\\ 2 & 2 & 2 & 0\\ 1 & 1 & 0 & 1 \end{bmatrix}$. Multiplicando esta matriz, à esquerda, por $E_{31}(-\frac{1}{2})E_{21}(-1)$, ou seja, substituindo a linha 2 pela sua soma com o simétrico da linha 1, e a linha 3 pela

ou seja, substiuindo a linha $\frac{1}{2}$ pela sua soma com o simétrico da linha 1, e a linha 3 pela sua soma com metade do simétrico da linha 1, obtemos a matriz $M_2 = \begin{bmatrix} 2 & 2 & 2 & 2 \\ \hline 0 & 0 & 0 & -2 \\ \hline 0 & 0 & -1 & 0 \end{bmatrix}$.

Aplicamos agora o algoritmo à submatriz $\widetilde{M} = \begin{bmatrix} 0 & 0 & -2 \\ 0 & -1 & 0 \end{bmatrix}$. Note que a esta submatriz teremos que aplicar (2) por impossibilidade de se usar (1); de facto, não há elementos não nulos na primeira coluna de \widetilde{M} . Seja, então, \widetilde{M}_2 a matriz obtida de \widetilde{M} a que retirou a primeira coluna; ou seja, $\widetilde{M}_2 = \begin{bmatrix} 0 & -2 \\ -1 & 0 \end{bmatrix}$. É necessário fazer a troca das linhas por forma a obtermos um elemento não nulo que terá as funções de pivot. Essa troca de linhas é uma

2.3. UM RESULTADO DE FACTORIZAÇÃO DE MATRIZES

operação elementar também na matriz original $M_2 = \begin{bmatrix} 2 & 2 & 2 & 2 \\ \hline 0 & 0 & 0 & -2 \\ 0 & 0 & -1 & 0 \end{bmatrix}$. Tal corresponde

a multiplicá-la, à esquerda, por P_{23} . Repare que, sendo os elementos nas linhas 2 e 3 e nas colunas 1 e 2 nulos, a troca das linhas de facto apenas altera as entradas que estão simultaneamente nas linhas envolvidas e nas entradas à direita do novo pivot. Obtemos, assim, a

matriz $\begin{bmatrix} 2 & 2 & 2 & 2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$. A matriz obtida tem uma particularidade: debaixo de cada pivot

todos os elementos são nulos.

Octave _

13 indica a matriz identidade de ordem 3.

- > M=[2 2 2 2;2 2 2 0;1 1 0 1]
- > P23=I3([1 3 2],:);
- > E31=I3; E31(3,1)=-0.5;
- > E21=I3; E21(2,1)=-1;
- > P23*E31*E21*M

[J =

- 2 2 2 2
- 0 0 -1 0
- 0 0 0 -2

Como foi referido, a matriz obtida por aplicação dos passos descritos no Algoritmo de Eliminação de Gauss tem uma forma muito particular. De facto, debaixo de cada pivot todos os elementos são nulos. A esse tipo de matriz chamamos $matriz\ escada\ (de\ linhas)$. Uma matriz $A=[a_{ij}]$ é matriz escada (de linhas) se

- (i) se $a_{ij} \neq 0$ com $a_{ik} = 0$, para k < j, então $a_{lk} = 0$ se $k \leq j$ e l > i;
- (ii) as linhas nulas surgem depois de todas as outras.

Sempre que o contexto o permita, diremos matriz escada para significar matriz escada de linhas.

A matriz $U=\left[\begin{array}{cccc} 2 & 2 & 2 & 2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right]$ é uma matriz escada (de linhas) que se obteve de M por

aplicação dos passos (1)–(4). É óbvio que uma matriz escada é triangular superior, mas o recíproco não é válido em geral. Como exemplo, considere a matriz $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$.

Teorema 2.3.2 (Factorização PA = LU). Dada uma matriz A, existem matrizes P permutação, L triangular inferior com 1's na diagonal principal e U matriz escada para as quais PA = LU.

Ou seja, a matriz A iguala $P^{-1}LU$. Portanto, toda a matriz é equivalente por linhas a uma matriz escada de linhas.

Antes de procedermos à prova deste resultado, abrimos um parênteses para apresentarmos dois exemplos que servem de motivação ao lema que se segue.

Considere a matriz $A = \begin{bmatrix} 0 & 3 & -2 \\ -1 & 3 & 0 \\ 1 & 3 & -5 \end{bmatrix}$. A troca da primeira com a segunda linhas dá origem à matriz $\widetilde{A} = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 3 & -2 \\ 1 & 3 & -5 \end{bmatrix}$, a qual, e usando o AEG descrito atrás, satisfaz $E_{32}(-3)E_{31}(2)\widetilde{A} = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{bmatrix}$. Ou seja, existem matrizes P permutação, L triangular inferior com 1's na diagonal e U matriz escada para as quais PA = LU. Para tal, basta tomar $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

interior com 1's na diagonal e
$$U$$
 matriz escada para as quais $PA = LU$. Para tal, basta tomar $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $L = (E_{32}(-3)E_{31}(2))^{-1} = E_{31}(-2)E_{32}(3)$, e $U = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{bmatrix}$. Considere agora a matriz $M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Ora $E_{31}(-1)M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$, o que

força a troca da segunda pela terceira linha. Obtemos, assim, $P_{23}E_{31}(-1)M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

que é uma matriz escada. Neste caso, como se obtêm as matrizes P, L, U do teorema? contrário do exemplo anterior, a realização matricial das operações elementares por linhas do AEG não nos fornece, de forma imediata, essa factorização. No entanto, poder-se-ia escrever

$$E_{31}(-1)M = P_{23}\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ já que } P_{23}^{-1} = P_{23}, \text{ e portanto } M = E_{31}(1)P_{23}\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
 pois $E_{31}(-1)^{-1} = E_{31}(1)$. Note que $E_{31}(1)P_{23} \neq P_{23}E_{31}(1)$. Não obstante, repare que $E_{31}(1)P_{23} = P_{23}E_{21}(1)$, donde $M = P_{23}E_{21}(1)\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, e portanto $PA = LU$, com

$$E_{31}(1)P_{23} = P_{23}E_{21}(1)$$
, donde $M = P_{23}E_{21}(1)\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, e portanto $PA = LU$, com

$$P = P_{23}, L = E_{21}(1) \text{ e } U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Lema 2.3.3. Para i, k, l > j, e para todo o $a \in \mathbb{K}$, é válida a igualdade $E_{ij}(a)P_{kl} = P_{kl}E_{lj}(a)$. Demonstração. Se $k \neq i$, então a igualdade é óbvia.

Suponha que k = i. Pretende-se mostrar que $E_{ij}(a)P_{il} = P_{il}E_{lj}(a)$, com i, l > j. Sendo $P_{il}E_{lj}(a)$ a matriz obtida de $E_{lj}(A)$ trocando as linhas i e l, e visto a linha l de $E_{lj}(a)$ ser

$$\begin{bmatrix} 0 & \cdots & 0 & a & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad l$$

então a linha i de $P_{il}E_{lj}(a)$ é

$$\begin{bmatrix} 0 & \cdots & 0 & a & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ & & \uparrow & & & & \uparrow & & & \\ & & j & & & & l & & \\ \end{aligned} \ .$$

 $E_{ij}(a)P_{il}$ é a matriz obtida de P_{il} a que à linha i se somou a linha j de P_{il} multiplicada por a. Sendo a linha i de P_{il}

$$\begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\uparrow$$

$$l$$

e a linha j de P_{il} , e já que j < i, l,

$$\begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

segue que a linha i de $E_{ij}(a)P_{il}$ é a soma

$$\begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} + a \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \cdots & 0 & a & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\downarrow \uparrow \qquad \qquad \downarrow$$

Para $k \neq i$, a linha k de $E_{ij}(a)P_{il}$ é a linha k de P_{il} , sendo esta a linha k da matriz identidade se $k \neq l$, ou a linha i da identidade se k = l. Por sua vez, a linha k de $P_{il}E_{lj}(a)$ é a linha k da ientidade se $k \neq l$, ou é a linha i de I_n se k = l.

Demonstração do teorema 2.3.2. A prova segue da aplicação do algoritmo de eliminação de Gauss, fazendo-se uso do lema para se obter a factorização da forma U = PLA, onde os pivots do algoritmo são o primeiro elemento não nulo de cada linha (não nula) de U.

A característica de uma matriz A, denotada por $\operatorname{car}(A)$, por c(A) ou ainda por $\operatorname{rank}(A)$, é o número de linhas não nulas na matriz escada U obtida por aplicação do Algoritmo de Eliminação de Gauss. Ou seja, e sabendo que toda a linha não nula de U tem exactamente 1 pivot que corresponde ao primeiro elemento não nulo da linha, a característica de A é o número

de pivots no algoritmo (ainda que o último possa não ser usado, por exemplo, no caso de estar na última linha). Note ainda que car(A) = car(U). Por exemplo, $car\begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} = 3$, já

que a matriz escada obtida desta tem 3 linhas não nulas.

Uma matriz quadrada A de ordem n diz-se $n\tilde{a}o$ -singular se car(A)=n. Ou seja, A é não-singular se forem usados n pivots no algoritmo de eliminação de Gauss. Uma matriz é singular se não for não-singular.

Teorema 2.3.4. As matrizes não-singulares são exactamente as matrizes invertíveis.

Demonstração. Seja A uma matriz quadrada, e U a matriz escada obtida de A por Gauss.

Por um lado, se A é invertível, e como $A \sim U$, segue que U é invertível, quadrada. Como U é triangular superior, não pode ter linhas nulas caso constrário teria um elemento diagonal nulo, o que contraria a invertibilidade de U.

Por outro lado, se A é não-singular então U não tem linhas nulas. Como cada coluna de U tem no máximo 1 pivot, e existem n linhas e n pivots, então cada linha tem exactamente 1 pivot. Ou seja, os elementos diagonais de U são não nulos. Como U é triangular superior, segue que U é invertível, e portanto A é invertível visto $A \sim U$.

Teorema 2.3.5. Se A é uma matriz não-singular, então existe uma matriz P permutação tal que PA é factorizável, de forma única, como PA = LU, onde L é triangular inferior com 1's na diagonal e U é uma matriz triangular superior com elementos diagonais não nulos.

Demonstração. A existência de tal factorização é consequência do teorema 2.3.2. Repare que, sendo a matriz não singular, tal significa que os pivots estão presentes em todas as colunas de U. Assim, os elementos diagonais de U são os pivots, sendo estes não nulos. Resta-nos provar a unicidade. Para tal, considere as matrizes L_1, L_2 triangulares inferiores com 1's na diagonal, e as matrizes U_1, U_2 triangulares superiores com elementos diagonais diferentes de zero, matrizes essas que satisfazem $PA = L_1U_1 = L_2U_2$. Portanto, $L_1U_1 = L_2U_2$, o que implica, e porque L_1, U_2 são invertíveis (porquê?), que $U_1U_2^{-1} = L_1^{-1}L_2$. Como L_1, U_2 são, respectivamente, triangulares inferior e superior, então L_1^{-1} e U_2^{-1} são também triangulares inferior e superior, respectivamente. Recorde que sendo a diagonal de L_1 constituida por 1's, então a diagonal da sua inversa tem também apenas 1's. Daqui segue que $L_1^{-1}L_2$ é triangular inferior, com 1's na diagonal, e que $U_1U_2^{-1}$ é triangular superior. Sendo estes dois produtos iguais, então $L_1^{-1}L_2$ é uma matriz diagonal, com 1's na diagonal; ou seja, $L_1^{-1}L_2 = I$, e portanto $L_1 = L_2$. Tal leva a que $L_1U_1 = L_1U_2$, o que implica, por multiplicação à esquerda por L_1^{-1} , que $U_1 = U_2$.

Octave

Ao se usar uma ferramenta computacional numérica é necessário algum cuidado nos erros de

truncatura. Como exemplo, considere a matriz A=[1E-5 1E5; 1E5 1E-5]. Esta matriz é não-singular, e a única (porquê?) matriz escada obtida, sem quaisquer trocas de linhas, é

$$\left[\begin{array}{cc} 10^{-5} & 10^{5} \\ 0 & 10^{-5} - 10^{15} \end{array}\right] \text{. Usando o Octave,}$$

> format long

> E=eye (2); E(2,1)=-A(2,1)/A(1,1)

F. =

> E*A

ans =

Repare que a matriz não é triangular inferior, e que o elemento (2,2) dessa matriz deveria ser $10^{-5}-10^{15}$ e não -10^{15} como indicado.

```
> (E*A)(2,2)==-1E15
ans = 1
> -1E15==-1E15+1E-5
ans = 1
```

Para o Octave, não existe distinção entre os dois números, por erro de arrondamento.

Embora o AEG seja pouco eficiente neste tipo de questões, existem algumas alterações que são efectuadas por forma a contornar este problema. Um exemplo é a *pivotagem parcial*. Este algoritmo será descrito com detalhe noutra unidade curricular de MiEB. A ideia é, quando se considera um pivot na entrada (i,j), percorrer os outros elementos que estão por baixo dele e trocar a linha i com a linha do elemento que seja maior, em módulo. Tal corresponde a multiplicar, à esquerda, por uma matriz da forma P_{ij} . Esse algorimto está implementado no Octave, sendo chamado pela instrução $\mathtt{lu}(\mathtt{A})$.

1.0000000000000e+05 1.000000000000e-05

0.0000000000000e+00 1.00000000000e+05

P =

0 1

1 0

A matriz L indica a inversa do produto das matrizes elementares, U é a matriz escada, e P é a matriz permutação. Obtemos, deste forma, a factorização PA = LU.

2.4 Determinantes

2.4.1 Definição

Considere a matriz $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ e assuma $a\neq 0$. Aplicando o AEG, obtemos a factorização $\begin{bmatrix} 1 & 0 \\ -\frac{c}{a} & 1 \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & -\frac{bc}{a} + d \end{bmatrix}$. Ou seja, a matriz A é equivalente por linhas à matriz $U=\begin{bmatrix} a & b \\ 0 & -\frac{bc}{a} + d \end{bmatrix}$, que é uma matriz triangular superior. Recorde que A é invertível se e só se U for invertível. Ora, a matriz U é invertível se e só se $-\frac{bc}{a} + d \neq 0$, ou de forma equivalente, se $ad-bc\neq 0$. Portanto, A é invertível se e só se $ad-bc\neq 0$.

Este caso simples serve de motivação para introduzir a noção de determinante de uma matriz.

Na definição que se apresenta de seguida, S_n indica o grupo simétrico (ver Definição 2.3.1).

Definição 2.4.1. Seja A uma matriz quadrada de ordem n. O determinante de A, denotado por det A ou |A|, \acute{e} o escalar definido por

$$\sum_{\sigma \in S_n} sgn(\sigma) \, a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

Vejamos o que resulta da fórmula quando consideramos matrizes 2×2 e matrizes 3×3 . Seja $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. Neste caso, o grupo simétrico S_2 tem apenas as permutações $\sigma_1 = (1\,2)$ e $\sigma_2 = (2\,1)$, sendo que $sgn(\sigma_1) = 1$ e que $sgn(\sigma_2) = -1$. Recorde que $\sigma_1(1) = 1$, $\sigma_1(2) = 2$, $\sigma_2(1) = 2$ e $\sigma_2(2) = 1$. Obtemos, então, $|A| = a_{11}a_{22} - a_{12}a_{21}$.

Figura 2.1: Esquema do cálculo do determinante de matrizes de ordem 2

Seja agora
$$A=\left[\begin{array}{cccc} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{array}\right]$$
. Recorde que S_3 tem 6 elementos. No quadro seguinte,

indicamos, respectivamente, a permutação $\sigma \in S_3$, o seu sinal, e o produto $a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$.

Permutação $\sigma \in S_3$	$sgn(\sigma)$	$a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$
(123)	+1	$a_{11}a_{22}a_{33}$
(231)	+1	$a_{12}a_{23}a_{31}$
(312)	+1	$a_{13}a_{21}a_{32}$
(132)	-1	$a_{11}a_{23}a_{32}$
(213)	-1	$a_{12}a_{21}a_{33}$
(321)	-1	$a_{11}a_{22}a_{31}$

Obtemos, assim,

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{11}a_{22}a_{31}$$

Para fácil memorização, pode-se recorrer ao esquema apresentado de seguida.

Figura 2.2: Esquema do cálculo do determinante de matrizes de ordem 3, ou a Regra de Sarrus

2.4.2 Propriedades

São consequência da definição os resultados que de seguida apresentamos, dos quais omitimos a demonstração.

Teorema 2.4.2. Seja A uma matriz quadrada.

- 1. Se A tem uma linha ou uma coluna nula então |A| = 0.
- 2. $|A| = |A^T|$.
- 3. Se A é triangular (inferior ou superior) então $|A| = \prod_{i=1,\dots,n} (A)_{ii}$.
- 4. $|P_{ij}| = -1, |D_k(a)| = a, |E_{ij}(a)| = 1, \text{ com } i \neq j.$

Daqui segue que $|I_n| = 1$. Segue também que dada uma matriz tringular (inferior ou superior) que esta é invertível se e só se tiver determinante não nulo. Mais adiante, apresentaremos um resultado que generaliza esta equivalência para matrizes quadradas não necessariamente triangulares.

Teorema 2.4.3. Dada uma matriz A quadrada, $a \in \mathbb{K}$,

- 1. $|D_i(a)A| = a|A| = |AD_i(a)|$;
- 2. $|P_{ij}A| = |AP_{ij}| = -|A|$;
- 3. $|E_{ij}(a)A| = |A| = |AE_{ij}(a)|$

Como $|D_i(A)| = a$, $|P_{ij}| = -1$ e $|E_{ij}(a)| = 1$, segue que $|D_i(a)A| = |D_i(a)||A|$, $|P_{ij}A| = |P_{ij}||A|$ e que $|E_{ij}(a)A| = |E_{ij}(a)||A|$. Repare ainda que, se $A \in n \times n$, é válida a igualdade $|\alpha A| = \alpha^n |A|$, já que $\alpha A = \prod_{i=1}^n D_i(\alpha)A$. De forma análoga, dada uma matriz diagonal D com elementos diagonais d_1, d_2, \ldots, d_n , tem-se $|DA| = d_1 d_2 \cdots d_n |A| = |D||A|$.

Corolário 2.4.4. Uma matriz com duas linhas/colunas iguais tem determinante nulo.

Demonstração. Se a matriz tem duas linhas iguais, digamos i e j, basta subtrair uma à outra, que corresponde a multiplicar à esquerda pela matriz $E_{ij}(-1)$. A matriz resultante tem uma linha nula, e portanto tem determinante zero. Para colunas iguais, basta aplicar o mesmo raciocínio a A^T .

O corolário anterior é passível de ser generalizado considerando não linhas iguais, mas tal que uma linha se escreva como soma de múltiplos de outras linhas. O mesmo se aplica a colunas.

Corolário 2.4.5. Tem determinante nulo uma matriz que tenha uma linha que se escreve como a soma de múltiplos de outras das suas linhas.

Demonstração. Suponha que a linha i, ℓ_i , de uma matriz A se escreve como a soma de múltiplos de outras das suas linhas, ou seja, que $\ell_i = \sum_{j \in J} \alpha_j \ell_j = \alpha_{j1} \ell_{j1} + \alpha_{j2} \ell_{j2} + \cdots + \alpha_{js} \ell_{js}$. A linha i de $E_{ij_1}(-\alpha_{j_1})A$ é a matriz obtida de A substituindo a sua linha i por $\ell_i - \alpha_{j_1}\ell_{j_1} = \alpha_{j2}\ell_{j2} + \cdots + \alpha_{js}\ell_{js}$. Procedemos ao mesmo tipo de operações elementares por forma a obtermos uma matriz cuja linha i é nula. Como o determinante de cada uma das matrizes obtidas por operação elementar de linhas iguala o determinante de A, e como a última matriz tem uma linha nula, e logo o seu determinante é zero, segue que |A| = 0.

Corolário 2.4.6. Seja U a matriz obtida da matriz quadrada A por Gauss. $Então |A| = (-1)^r |U|$, onde r indica o número de trocas de linhas no algoritmo.

Sabendo que uma matriz é invertível se e só se a matriz escada associada (por aplicação de Gauss) é invertível, e que esta sendo triangular superior é invertível se e só se os seus elementos diagonais são todos nulos, segue que, e fazendo uso de resultados enunciados e provados anteriormente,

Corolário 2.4.7. Sendo A uma matriz quadrada de ordem n, as afirmações seguintes são equivalentes:

- 1. A é invertível;
- 2. $|A| \neq 0$;
- 3. car(A) = n;
- 4. A é não-singular.

Portanto, uma matriz com duas linhas/colunas iguais não é invertível. Mais, uma matriz que tenha uma linha que se escreva como soma de múltiplos de outras das suas linhas não é invertível.

Teorema 2.4.8. Seja $A \in B$ matrizes $n \times n$.

$$|AB| = |A||B|.$$

Demonstração. Suponha que A é invertível.

Existem matrizes elementares E_1, \ldots, E_s e uma matriz escada (de linhas) U tal que $A = E_1 E_2 \ldots E_s U$. Ora existem também E_{s+1}, \ldots, E_r matrizes elementares, e U_1 matriz escada de linhas para as quais $U^T = E_{s+1} \ldots E_r U_1$. Note que neste último caso se pode assumir que não houve trocas de linhas, já que os pivots do AEG são os elementos diagonais de U já que U^T é triangular inferior, que são não nulos por A ser invertível. Ora U_1 é então uma matriz triangular superior que se pode escrever como produto de matrizes triangulares inferiores, e portanto U_1 é uma matriz diagonal. Seja $D = U_1$. Resumindo, $A = E_1 E_2 \ldots E_s (E_{s+1} \ldots E_r D)^T = E_1 E_2 \ldots E_s DE_r^T E_{r-1}^T \ldots E_{s+1}^T$. Recorde que, dada uma matriz elementar E, é válida |EB| = |E||B|. Então,

$$|AB| = |E_1 E_2 \dots E_s D E_r^T E_{r-1}^T \dots E_{s+1}^T B|$$

$$= |E_1||E_2 \dots E_s D E_r^T E_{r-1}^T \dots E_{s+1}^T B|$$

$$= |E_1||E_2||E_3 \dots E_s D E_r^T E_{r-1}^T \dots E_{s+1}^T B|$$

$$= \dots$$

$$= |E_1||E_2||E_3| \dots |E_s||D||E_r^T||E_{r-1}^T| \dots |E_{s+1}^T||B|$$

$$= |E_1 E_2 E_3 \dots E_s D E_r^T E_{r-1}^T \dots E_{s+1}^T||B|$$

$$= |A||B|.$$

Se A não é invertível, e portanto |A|=0, então AB não pode ser invertível, e portanto |AB|=0.

Como $|I_n|=1$, segue do teorema anterior a relação entre o determinante uma matriz invertível com o da sua inversa.

Corolário 2.4.9. Se A é uma matriz invertível então

$$|A^{-1}| = \frac{1}{|A|}.$$

Recorde que para que uma matriz A seja invertível exige-se a existência de uma outra X para a qual $AX = I_n = XA$. O resultado seguinte mostra que se pode prescindir da verificação de uma das igualdades.

Corolário 2.4.10. Seja A uma matriz $n \times n$. São equivalentes:

- 1. A é invertível
- 2. existe uma matriz X para a qual $AX = I_n$
- 3. existe uma matriz Y para a qual $YA = I_n$

Nesse caso, $A^{-1} = X = Y$.

Demonstração. As equivalências são imediatas, já que se $AX = I_n$ então $1 = |I_n| = |AX| = |A||X|$ e portanto $|A| \neq 0$.

Para mostrar que $A^{-1}=X$, repare que como $AX=I_n$ então A é invertível, e portanto $A^{-1}AX=A^{-1}$, donde $X=A^{-1}$.

Faça a identificação dos vectores $(a,b) \in \mathbb{R}^2$ com as matrizes coluna $\begin{bmatrix} a \\ b \end{bmatrix}$. O produto interno usual $(u_1,u_2)\cdot (v_1,v_2)$ em \mathbb{R}^2 pode ser encarado como o produto matricial $\begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. Ou seja, $u \cdot v = u^T v$. Esta identificação e noção pode ser generalizada de forma trivial para \mathbb{R}^n . Dois vectores u e v de \mathbb{R}^n dizem-se ortogonais, $u \perp v$, se $u \cdot v = u^T v = 0$. A norma usual em \mathbb{R}^n é definida por $||u|| = \sqrt{u \cdot u}$, com $u \in \mathbb{R}^n$

Corolário 2.4.11. Seja A uma matriz real $n \times n$ com colunas c_1, c_2, \ldots, c_n . Então A é ortogonal se e só se $c_i \perp c_j = 0$ se $i \neq j$, $e \parallel c_i \parallel = 1$, para $i, j = 1, \ldots, n$.

Demonstração. Condição suficiente: Escrevendo $A=\left[\begin{array}{ccc}c_1&\cdots&c_n\end{array}\right],$ temos que

$$I_n = A^T A = \begin{bmatrix} c_1^T \\ c_2^T \\ \vdots \\ c_n^T \end{bmatrix} \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}.$$

49

Como o elemento
$$(i,j)$$
 de
$$\begin{bmatrix} c_1^T \\ c_2^T \\ \vdots \\ c_n^T \end{bmatrix} \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \text{ \'e } c_i^T c_j, \text{ obtemos o resultado.}$$

$$Condição \ necess\'aria: \text{ Ora } c_i^T c_j = 0 \text{ se } i \neq j, \text{ e } c_i^T c_i = 1 \text{ \'e o mesmo que } A^T A = I_n, \text{ e pelo}$$

corolário anterior implica que A é invertível com $A^{-1}=A^T$, pelo que A é ortogonal.

Ou seja, as colunas das matrizes ortogonais são ortogonais duas a duas. O mesmo se pode dizer acerca das linhas, já que a transposta de uma matriz ortogonal é de novo uma matriz ortogonal.

2.4.3 Teorema de Laplace

Dada uma matriz A, quadrada de ordem n, denota-se por A(i|j) a submatriz de A obtida por remoção da sua linha i e da sua coluna j.

Definição 2.4.12. Seja $A = [a_{ij}]$ uma matriz quadrada.

1. O complemento algébrico de a_{ij} , ou cofactor de a_{ij} , denotado por A_{ij} , está definido por

$$A_{ij} = (-1)^{i+j} |A(i|j)|$$

2. A matriz adjunta é a transposta da matriz dos complementos algébricos

$$Adj(A) = \left[A_{ij}\right]^T.$$

Teorema 2.4.13 (Teorema de Laplace I). Para $A = [a_{ij}], n \times n, n > 1, então, e para$ $k=1,\ldots,n,$

$$|A| = \sum_{j=1}^{n} a_{kj} A_{kj}$$
$$= \sum_{j=1}^{n} a_{jk} A_{jk}$$

O teorema anterior é o caso especial de um outro que enunciaremos de seguida. Para tal, é necessário introduzir mais notação e algumas definições (cf. [10]).

Seja A uma matriz $m \times n$. Um menor de ordem p de A, com $1 \le p \le \min\{m, n\}$, é o determinante de uma submatriz $p \times p$ de A, obtida de A eliminando m-p linhas e n-pcolunas de A.

Considere duas sequências crescentes de números

$$1 \le i_1 < i_2 < \dots < i_p \le m, \ 1 \le j_1 < j_2 < \dots < j_p \le n,$$

e o determinante da submatriz de A constituida pelas linhas $i_1, i_2, \ldots i_p$ e pelas colunas j_1, j_2, \ldots, j_p . Este determinate vai ser denotado por $A \begin{pmatrix} i_1 & i_2 & \ldots & i_p \\ j_1 & j_2 & \ldots & j_p \end{pmatrix}$. Ou seja,

$$A\begin{pmatrix} i_1 & i_2 & \dots & i_p \\ j_1 & j_2 & \dots & j_p \end{pmatrix} = |[a_{i_k j_k}]_{k=1,\dots p}|.$$

Paralelamente, podemos definir os menores complementares de A como os determinantes das submatrizes a que se retiraram linhas e colunas. Se A for $n \times n$,

$$A \left(\begin{array}{ccc} i_1 & i_2 & \dots & i_p \\ j_1 & j_2 & \dots & j_p \end{array} \right)^c$$

denota o determinante da submatriz de A após remoção das linhas $i_1, i_2, \dots i_p$ e das colunas j_1, j_2, \dots, j_p de A. O cofactor complementar está definido como

$$A^{c} \begin{pmatrix} i_{1} & i_{2} & \dots & i_{p} \\ j_{1} & j_{2} & \dots & j_{p} \end{pmatrix} = (-1)^{s} A \begin{pmatrix} i_{1} & i_{2} & \dots & i_{p} \\ j_{1} & j_{2} & \dots & j_{p} \end{pmatrix}^{c},$$

onde $s = (i_1 + i_2 + \cdots + i_p) + (j_1 + j_2 + \cdots + j_p).$

O caso em que p=1 coincide com o exposto no início desta secção.

Teorema 2.4.14 (Teorema de Laplace II). Sejam $A = [a_{ij}], n \times n, 1 \leq p \leq n$. Para qualquer escolha de p linhas i_1, i_2, \ldots, i_p de A, ou de p colunas j_1, j_2, \ldots, j_p de A,

$$|A| = \sum_{j} A \begin{pmatrix} i_1 & i_2 & \dots & i_p \\ j_1 & j_2 & \dots & j_p \end{pmatrix} A^c \begin{pmatrix} i_1 & i_2 & \dots & i_p \\ j_1 & j_2 & \dots & j_p \end{pmatrix}$$

onde a soma percorre todos os menores referentes à escolha das linhas [resp. colunas].

Para finalizar, apresentamos um método de cálculo da inversa de uma matriz não singular.

Teorema 2.4.15. Se A é invertível então

$$A^{-1} = \frac{Adj(A)}{|A|}.$$

Octave

Vamos agora apresentar uma pequena função que tem como entrada uma matriz quadrada e como saída sua matriz adjunta.

function ADJ=adjunta(A)

% sintaxe: adjunta(A)

```
% onde A e' uma matriz quadrada
% use-a por sua propria conta e risco
% copyleft ;-) Pedro Patricio
n=size(A)(1,1); % n e' o numero de linhas da matriz
ADJ= zeros (n); % inicializacao da matriz ADJ
               % i denota a linha
        for j=1:n
                        % j denota a coluna
                submatriz=A([1:i-1 i+1:n],[1:j-1 j+1:n]); % submatriz e' a
submatriz de A a que se lhe retirou a linha i e a coluna j
                cofactor=(-1)^(i+j)* det(submatriz);
                                                     % calculo do cofactor
                ADJ(j,i)=cofactor; % ADJ é a transposta da matriz dos
cofactores; repare que a entrada (j,i) e' o cofactor (i,j) de A
                % fim do ciclo for em j
                % fim do ciclo for em i
end
Grave a função, usando um editor de texto, na directoria de leitura do Octave. No Octave, vamos
criar uma matriz 4 \times 4:
> B=fix(10*rand(4,4)-5)
B =
   0 -2
           3 -2
  -2 3 1 -1
  -3
      0 4 3
  -4
      4
           0 4
> adjunta(B)
ans =
   76.0000 -36.0000 -48.0000
                                 65.0000
   48.0000 -32.0000 -28.0000
                                 37.0000
   36.0000 -24.0000 -32.0000
                                 36.0000
   28.0000 -4.0000 -20.0000
                                 17.0000
Pelo teorema, como B^{-1}=rac{Adj(B)}{|B|} segue que B\,Adj(B)=|B|I_4.
> B*adjunta(B)
ans =
  -44.00000 -0.00000
                        0.00000
                                     0.00000
    0.00000 -44.00000 -0.00000
                                     0.00000
    0.00000 -0.00000 -44.00000
                                     0.00000
    0.00000 -0.00000 0.00000 -44.00000
```

Capítulo 3

Sistemas de equações lineares

Ao longo deste documento, \mathbb{K} denota \mathbb{R} ou \mathbb{C} .

3.1 Formulação matricial

Uma equação linear em n variáveis x_1, \ldots, x_n sobre K é uma equação da forma

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b,$$

onde $a_1, a_2, \dots, a_n, b \in \mathbb{K}$. Um sistema de equações lineares é um conjunto finito de equações lineares que é resolvido simultaneamente. Ou seja, que se pode escrever da forma

$$\begin{cases}
 a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\
 \dots \\
 a_{m1}x_1 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(1)

Este tipo de sistema pode ser representado na forma matricial

$$Ax = b$$

com

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

A é a matriz do sistema, x é a coluna das incógnitas e b é a coluna dos termos independentes, também denominado por segundo membro do sistema.

De ora em diante não faremos distinção entre o sistema de equações lineares e a sua formulação matricial Ax = b.

Neste capítulo, vamo-nos debruçar sobre a resolução deste tipo de equação. Dizemos que v é solução de Ax = b se Av = b, ou seja, quando v é uma realização possível para a

coluna das incógnitas. Iremos ver em que condições a equação tem solução, e como se podem determinar. Entende-se por resolver o sistema Ax = b encontrar o conjunto (ainda que vazio) de todas as realizações possíveis para a coluna das incógnitas. O sistema diz-se impossível ou inconsistente se o conjunto é vazio e possível ou consistente caso contrário. Neste último caso, diz-se que é possível determinado se existir apenas um e um só elemento no conjunto das soluções, e possível indeterminado se for possível mas existirem pelo menos duas soluções distintas¹. Entende-se por classificar o sistema a afirmação em como ele é impossível, possível determinada ou possível indeterminado.

Um caso particular da equação Ax = b surge quando b = 0. Ou seja, quando a equação é da forma Ax = 0. O sistema associado a esta equação chama-se sistema homogéneo. Repare que este tipo de sistema é sempre possível. De facto, o vector nulo (ou seja, a coluna nula) é solução. Ao conjunto das soluções de Ax = 0 chamamos $núcleo^2$ de A, e é denotado por N(A) ou ainda por $\ker(A)$. Ou seja, para A do tipo $m \times n$,

$$N(A) = \ker(A) = \{x \in \mathbb{K}^n : Ax = 0_{m \times 1}\}.$$

Pelo que acabámos de referir, e independentemente da escolha de A, o conjunto ker(A) é sempre não vazio já que $0_{n\times 1} \in \ker(A)$.

Ou caso relevante no estudo da equação Ax = b surge quando a matriz A é invertível. Neste caso, multiplicando ambos os membros de Ax = b, à esquerda, por A^{-1} , obtemos $A^{-1}Ax = A^{-1}b$, e portanto $x = A^{-1}b$. Ou seja, a equação é possível determinada, sendo $A^{-1}b$ a sua única solução.

3.2 Resolução de Ax = b

Nesta secção, vamos apresentar uma forma de resolução da equação Ax = b, fazendo uso da factorização PA = LU estudada atrás. Vejamos de que forma essa factorização é útil no estudo da equação.

como
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 7 \\ 4x_2 + 5x_3 = 8 \end{cases}$$
. Calculando o valor de x_3 pela última equação, este é subs-

tituido na segunda equação para se calcular o valor de x_2 , que por sua vez são usados na primeira equação para se obter x_1 . Procedeu-se à chamada substituição inversa para se calcular a única (repare que a matriz dada é invertível) solução do sistema. Em que condições se pode usar a substituição inversa? Naturalmente quando a matriz dada é triangular superior com elementos diagonais não nulos. Mas também noutros casos. Considere

a equação matricial
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
. A matriz do sistema não é quadrada,

¹Veremos, mais adiante, que se existem duas soluções distintas então exite uma infinidade delas.

 $^{^2 {\}rm Iremos}$ também usar a denominação espaço~nulo de A.

mas o método da susbstituição inversa pode ainda ser aplicado. O sistema associado é $\begin{cases} x_1 + 2x_2 + 3x_3 = 5 \\ 4x_3 = 6 \end{cases}, \text{ donde } x_3 = \frac{3}{2}, \text{ e } x_1 \text{ dependerá do valor de } x_2. \text{ A solução geral do sistema é } (x_1, x_2, x_3) = (5 - \frac{9}{2} - 2x_2, x_2, \frac{3}{2}) = (5 - \frac{9}{2}, 0, \frac{3}{2}) + x_2(-2, 1, 0). \text{ Mais à frente veremos qual a importância de escrevermos a solução na última forma apresentada. É fácil constatar que a substituição inversa é aplicável desde que a matriz do sistema seja uma matriz escada de linhas. A estatégia na resolução da equação irá, portanto, passar pela matriz escada obtida por Gauss, para depois se aplicar a substituição inversa. Desde que o sistema seja possível, claro.$

Considere o sistema Ax = b e a factorização PA = LU. Ou seja, $U = L^{-1}PA$. Recorde que $L^{-1}P$ reflecte as operações elementares efectuadas nas linhas de A por forma a se obter a matriz escada, percorrendo os passos do AEG. Multiplique ambos os membros de Ax = b, à esquerda, por $L^{-1}P$ para obter $L^{-1}PA = L^{-1}Pb$. Como $U = L^{-1}PA$ tem-se que $Ux = L^{-1}Pb$, e daqui podemos aplicar a substituição inversa... depois de se determinar o termo independente $L^{-1}Pb$. Recorde que $L^{-1}P$ reflecte as operações elementares efectuadas nas linhas de A, de modo que para se obter $L^{-1}Pb$ basta efectuar essas mesmas operações elementares, pela mesma ordem, nas linhas de b. Por forma a simplificar o raciocínio e evitar possíveis enganos, esse processo pode ser efectuado ao mesmo tempo que aplicamos o AEG nas linhas de b. Consideramos, para esse efeito, a matriz aumentada do sistema b0 aplicamos o AEG para se obter a matriz b1 b2, onde b3 onde b4 b5 os sistema for possível, aplica-se a substituição inversa a b4 b5.

As soluções de Ax = b são exactamente as mesmas de Ux = c, e por este facto dizem-se equações equivalentes, e os sistemas associados são equivalentes. De facto, se v é solução de Ax = b então Av = b, o que implica, por multiplicação à esquerda por $L^{-1}P$ que $L^{-1}PAv = L^{-1}Pb$, ou seja, que Uv = c. Por outro lado, se Uv = c então LUv = Lc e portanto PAv = Lc. Ora $c = L^{-1}Pb$, e portanto Lc = Pb. Obtemos então PAv = Pb. Como P é invertível, segue que Av = b e v é solução de Ax = b.

Visto determinar as soluções de Ax = b é o mesmo que resolver Ux = c, interessa-nos, então classificar este último.

Como exemplo, considere a equação $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}. \text{ A segunda equação}$ do sistema associado reflete a igualdade 0=5, o que é impossível. A equação é impossível já que não tem soluções. A matriz aumentada associada à equação é $\begin{bmatrix} 1 & 2 & 3 & | 4 \\ 0 & 0 & 0 & | 5 \end{bmatrix}. \text{ Repare}$ que a característica da matriz A é 1 enquanto que a característica da matriz aumentada [A|b] é 2.

Como é fácil verificar, a característica da matriz a que se acrescentou linhas ou colunas é não inferior à característica da matriz inicial. Por consequência, $car(A) \le car([A|b])$.

Teorema 3.2.1. A equação matricial Ax = b é consistente se e só $car(A) = car(A \mid b)$. Demonstração. Considere PA = LU e $c = L^{-1}Pb$. A equação Ax = b é equivalente à equação

Ux=c, e portanto Ax=b tem solução se e só se Ux=c tem solução. Tal equivale a dizer que o número de linhas nulas de U iguala o número de linhas nulas de [U|c]. De facto, o número sendo o mesmo, por substituição inversa é possível obter uma solução de Ux=c, e caso o número seja distinto então obtemos no sistema associado a igualdade $0=c_i$, para algum $c_i \neq 0$, o que torna Ux=c impossível. Se o número de linhas nulas de U iguala o de [U|c] então o número de linhas não nulas de U iguala o de [U|c].

```
Considere a equação matricial Ax=b onde A=\begin{bmatrix}2&2&1\\1&1&\frac{1}{2}\end{bmatrix} e b=
consistente se e só se car(A) = car([A|b])
> A=[2 2 1; 1 1 0.5]; b=[-1; 1];
> rank(A)
ans = 1
> [L,U,P]=lu(A)
L =
  1.00000
             0.00000
  0.50000
             1.00000
U =
  2
      2
         1
      0
        0
P =
  1
      0
  0
      1
Portanto, car(A) = 1.
> rank([A b])
ans = 2
> Aaum =
   2.00000
               2.00000
                            1.00000
                                       -1.00000
   1.00000
                1.00000
                            0.50000
                                        1.00000
> [Laum, Uaum, Paum] = lu(Aaum)
```

3.2. RESOLUÇÃO DE AX = B

57

Laum =

1.00000 0.00000

0.50000 1.00000

Uaum =

2.00000 2.00000 1.00000 -1.00000

0.00000 0.00000 0.00000 1.50000

Paum =

0 1

0 1

Ora a caraterística da matriz aumentada é 2, pelo que Ax = b é inconsistente.

Dada a equação $A \left| \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right| = b$, considere $U \left| \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right| = c$ equivalente à primeira fazendo

uso da factorização PA = LU da forma habitual. A incógnita x_i diz-se incógnita básica se a coluna i de U tem pivot. Uma incógnita diz-se livre se não for básica. A nulidade de A, $\operatorname{nul}(A)$, é o número de incógnitas livres na resolução de Ax = 0.

posição

> A=[2 2 1; 1 1 -1]; b=[-1; 1];

> [L,U,P]=lu(A)

L =

1.00000 0.00000

0.50000 1.00000

U =

```
2.00000 2.00000 1.00000
0.00000 0.00000 -1.50000
```

P =

1 0

0 1

Repare que $\operatorname{car}(A)=2$. Ora $2=\operatorname{car}(A)\leq\operatorname{car}([A|b])\leq 2$, já que a característica de uma matriz é não superior ao seu número de linhas e ao seu número de colunas. Segue que $\operatorname{car}([A|b])=2$. A equação Ax=b é, portanto, consistente. Façamos, então, a classificação das incógnitas x_1,x_2,x_3 em livres e em básicas. Atente-se à matriz escada de linhas U apresentada atrás. As colunas 1 e 3 têm como pivots, respectivamente, 2 e $-\frac{3}{2}$. As incógnitas x_1 e x_3 são básicas. Já x_2 é livre pois a coluna 2 de U não tem pivot.

Qual o interesse neste tipo de classificação das incógnitas? A explicação é feita à custa do exemplo anterior. A equação Ax=b é equivalente à equação Ux=c, com $U=\begin{bmatrix}2&2&1\\0&0&-\frac{3}{2}\end{bmatrix}$, $c=\begin{bmatrix}-1\\\frac{3}{2}\end{bmatrix}$.

Octave _

Com os dados fornecidos,

> [Laum, Uaum, Paum] = lu([A b])

Laum =

1.00000 0.00000

0.50000 1.00000

Uaum =

2.00000 2.00000 1.00000 -1.00000 0.00000 0.00000 -1.50000 1.50000

Paum =

1 0

0 1

Podemos, agora, aplicar o método da substituição inversa para obter as soluções da

59

equação. Esse método é aplicado da seguinte forma:

- 1. obtem-se o valor das **incógnitas básicas** x_i no sentido sul \rightarrow norte,
- 2. as **incógnitas livres** comportam-se como se de termos independentes se tratassem.

Para conveniência futura, a solução é apresentada na forma

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ \vdots \\ ? \end{bmatrix} + x_{i_1} \begin{bmatrix} ? \\ ? \\ \vdots \\ ? \end{bmatrix} + x_{i_2} \begin{bmatrix} ? \\ ? \\ \vdots \\ ? \end{bmatrix} + \dots x_{i_k} \begin{bmatrix} ? \\ ? \\ \vdots \\ ? \end{bmatrix}$$

onde $x_{i_{\ell}}$ são as incógnitas livres.

Voltando ao exemplo, recorde que se obteve a equação equivalente à dada

$$\begin{bmatrix} 2 & 2 & 1 \\ 0 & 0 & -\frac{3}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ \frac{3}{2} \end{bmatrix}.$$

Resolvendo a última equação correspondente, obtemos o valor da incógnita básica x_3 . De facto, $-\frac{3}{2}x_3 = \frac{3}{2}$ implica $x_3 = -1$. Na equação $2x_1 + 2x_2 + x_3 = -1$, o valor de x_3 é conhecido (bastando-nos, portanto, fazer a substituição) e a incógnita x_2 é livre, comportando-se então como termo independente. Já x_1 é básica, e resolve-se a equação em relação a esta. Obtemos $x_1 = \frac{-2x_2}{2} = -x_2$. Para cada escolha de x_2 obtemos outo valor para x_1 . A solução geral é da forma

$$(x_1, x_2, x_3) = (-x_2, x_2, -1) = (0, 0, -1) + x_2(-1, 1, 0),$$

onde x_2 varia livremente em \mathbb{K} .

Num sistema possível, a existência de incógnitas livres confere-lhe a existência de várias soluções, e portanto o sistema é possível indeterminado. Ora, se o número de incógnitas é n e se k delas são básicas, então as restantes n-k são livres. Recorde que o número de incógnitas iguala o número de colunas da matriz do sistema, e que a característica de uma matriz é igual ao número de pivots. Existindo, no máximo, um pivot por coluna, e como o número das colunas com pivots é igual ao número de incógnitas básicas, segue que a característica da matriz é igual ao número de incógnitas básicas. A existência de incógnitas livres é equivalente ao facto de existirem colunas sem pivot, ou seja, do número de colunas ser estritamente maior que a característica da matriz. De facto, as incógnitas livres são, em número, igual ao número de colunas sem pivot.

Teorema 3.2.2. A equação consistente Ax = b, onde $A \notin m \times n$, tem uma única solução se e só se car(A) = n.

Corolário 3.2.3. Um sistema possível de equações lineares com menos equações que incógnitas é indeterminado.

Recorde que o número de incógnitas livres é o número de colunas sem pivot na resolução de um sistema possível Ax = b. Por outro lado, a nulidade de A, nul(A), é o número de incógnitas livres que surgem na resolução de Ax = 0. Recorde ainda que a característica de A, car(A), é o número de pivots na implementação de Gauss, que por sua vez é o número de colunas com pivot, que iguala o número de incógnitas básicas na equação Ax = 0. Como o número de colunas de uma matriz iguala o número de incógnitas equação Ax = 0, e estas se dividem em básicas e em livres, correspondendo em número a, respectivamente, car(A) e nul(A), temos o resultado seguinte:

Teorema 3.2.4. Para A matriz $m \times n$,

$$n = \operatorname{car}(A) + \operatorname{nul}(A).$$

O resultado seguinte descreve as soluções de uma equação possível Ax = b à custa do sistema homogéneo associado (ou seja, Ax = 0) e de uma solução particular v de Ax = b.

Teorema 3.2.5. Sejam Ax = b uma equação consistente e v uma solução particular de Ax = b. Então w é solução de Ax = b se e só se existir $u \in N(A)$ tal que w = v + u.

Demonstração. Suponha v, w soluções de Ax = b. Pretende-se mostrar que $w - v \in N(A)$, ou seja, que A(w - v) = 0. Ora A(w - v) = Aw - Av = b - b = 0. Basta, portanto, tomar u = w - v.

Reciprocamente, assuma v solução de Ax = b e u solução de Ax = 0. Pretende-se mostrar que w = v + u é solução de Ax = b. Para tal, Aw = A(v + u) = Av + Au = b + 0 = b.

Ou seja, conhecendo o conjunto das soluções de Ax = 0 e uma solução particular de Ax = b, conhece-se o conjunto das soluções de Ax = b.

Octave

Considere a equação matricial Ax=b, com $A=\begin{bmatrix} 9 & -2 & 4 \\ 6 & -5 & 0 \\ -12 & -1 & -8 \end{bmatrix}$ e $b=\begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$. O sistema

é consistente, já que car(A) = car([A|b]) = 2:

> rank ([A b])

ans = 2

> rank (A)

ans = 2

Sendo a característica de A igual a 2 e tendo a matriz 3 colunas, então existe uma, e uma só, incógnita livre na resolução de Ax=b. Façamos, então, a divisão das incógnitas em livres e básicas. Para tal, determina-se a matriz escada de linhas obtida da matriz aumentada [A|b]:

> [Laum, Uaum, Paum] = lu([A b])

Laum =

```
1.000000.000000.00000-0.500001.000000.00000-0.750000.500001.00000
```

Uaum =

```
-12.00000 -1.00000 -8.00000 -1.00000
0.00000 -5.50000 -4.00000 4.50000
0.00000 0.00000 0.00000 0.00000
```

Paum =

0 0 1

0 1 0

1 0 0

Se $x=(x_1,x_2,x_3)$, as incógnitas básicas são x_1 e x_2 , enquanto que x_3 é incógnita livre.

Como vimos do resultado anterior, conhecendo uma solução particular de Ax=b, digamos, v, e conhecendo N(A), ou seja, o conjunto das soluções de Ax=0, então as soluções de Ax=b são da forma v+u, onde $u\in N(A)$. Uma solução particular pode ser encontrada tomando a incógnita livre como zero. Ou seja, considerando $x_3=0$. A sunbstituição inversa fornece o valor das incógnitas básicas x_1,x_2 :

```
> x2=Uaum(2,4)/Uaum(2,2)
x2 = -0.81818
> x1=(Uaum(1,4)-Uaum(1,2)*x2)/Uaum(1,1)
x1 = 0.15152
```

Este passo pode ser efectuado, de uma forma mais simples, como

```
> A\b
ans =
    0.31235
    -0.62518
```

-0.26538

Resta-nos determinar N(A):

```
> null (A)
ans =
0.44012
0.52814
-0.72620
```

O vector u que nos é indicado significa que N(A) é formado por todas a colunas da forma αu . Se, por ventura, nos forem apresentados vários vectores v1 v2 ... vn, então os elementos de N(A) escrevem-se da forma $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$.

Considere, agora, a matriz

```
> A=[2 2 2 0; 1 1 2 2];
```

Esta matriz tem característica 2, como se pode verificar à custa da factorização PA = LU:

L =

1.00000 0.00000

0.50000 1.00000

U =

2 2 2 0

0 0 1 2

P =

1 0

0 1

A nulidade é 2, pelo que existem 2 incógnitas livres na resolução de $A\begin{bmatrix}x_1 & x_2 & x_3 & x_4\end{bmatrix}^T=0_{2\times 1}$. As incógnitas livres são as correspondentes à colunas de U que não têm pivot; no caso, x_2 e x_4 . O sistema associado à equação Ux=0 é $\begin{cases}2x_1+2x_2+2x_3=0\\x_3+2x_4=0\end{cases}$. Resolvendo o sistema em relação à incógnitas básicas x_1,x_3 , e por substituição inversa, obtemos $x_3=-2x_4$, que por sua vez fornece, substituindo na primeira equação, $x_1=\frac{1}{2}\left(-2x_2+4x_4\right)=-x_2+2x_4$. Ou seja, a solução geral de Ax=0 é

$$(x_1, x_2, x_3, x_4) = (-x_2 + 2x_4, x_2, -2x_4, x_4) = x_2(-1, 1, 0, 0) + x_4(2, 0, -2, 1).$$

Sem nos alongarmos em demasia neste assunto, o Octave, como já foi referido, contém uma instrução que calcula o núcleo de uma matriz:

```
> null(A)
ans =
```

-0.71804 -0.35677

0.10227 0.79524

0.61577 -0.43847

-0.30788 0.21924

O resultado apresentado indica os vectores que decrevem o conjunto N(A): todo o elemento de N(A) se escreve como soma de múltiplos dos dois vectores apresentados. Mais, os vectores fornecidos são ortogonais entre si e têm norma 1.

```
> null(A)(:,1)'*null(A)(:,2)
ans = 6.2694e-17
> null(A)(:,1)'*null(A)(:,1)
ans = 1.0000
> null(A)(:,2)'*null(A)(:,2)
ans = 1
```

3.3 Algoritmo de Gauss-Jordan

 $\left\lfloor \frac{I_k \mid M}{0 \mid 0} \right\rfloor$, podendo os blocos nulos não existir. A este método (à excepção da possível troca de colunas) é denominado o algoritmo de Gauss-Jordan, e a matriz obtida diz-se que está na forma canónica (reduzida) de linhas, ou na forma normal (ou canónica) de Hermite. Ou seja, a matriz $H = [h_{ij}], m \times n$, obtida satisfaz:

- 1. H é triangular superior,
- $2. h_{ii}$ é ou 0 ou 1,
- 3. se $h_{ii} = 0$ então $h_{ik} = 0$, para cada k tal que $1 \le k \le n$,
- 4. se $h_{ii} = 1$ então $h_{ki} = 0$ para cada $k \neq i$.

Repare que só são realizadas operações elementares nas linhas da matriz. A aplicação deste método na resolução de uma sistema de equações lineares permite obter, de forma

imediata, o valor das incógnitas básicas. Apesar deste método parecer mais atractivo que o de Gauss (ou suas variantes), em geral é menos eficiente do ponto de vista computacional.

Octave

Considere a matriz
$$A=\begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 0 & 1 & -1 \\ 0 & 0 & -1 & -3 \end{bmatrix}$$
 . A forma normal de Hermite de A é

Ora se A for a matriz aumentada associada a um sistema de equações lineares, a forma canónica apresentada atrás fornece-nos uma solução para o sistema, no caso (-2, -2, 3).

No que se segue, mostramos como se aplica o algoritmo de Gauss-Jordan para inverter matrizes.

Seja A uma matriz $n \times n$, não-singular. Ou seja, invertível. De forma equivalente, existe uma única matriz X tal que $AX = I_n$. Denotemos a matriz X, que pretendemos obter, à custa das suas colunas: $X = \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}$. Pela forma como está definido o produto matricial, e tomando e_i como a i-ésima coluna da matriz I_n , a igualdade $AX = I_n$ podese escrever como $\begin{bmatrix} AX_1 & AX_2 & \cdots & AX_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$. Surgem-nos, então, n equações matriciais:

$$AX_1 = e_1, AX_2 = e_2, \dots, AX_n = e_n.$$

Como A é invertível, cada uma destas equações é consistente e tem apenas uma solução. A solução de $AX_j = e_j$ é a coluna j da matriz X inversa de A que pretendemos calcular. Poder-se-ia aplicar a estratégia de Gauss a cada uma destas equações, ou seja, à matriz aumentada $\begin{bmatrix} A & e_j \end{bmatrix}$. Como a matriz do sistema é a mesma, as operações elementares envolvidas seriam as mesmas para as n equações. Essas operações elementares podem ser efectuadas simultaneamente, considerando a matriz aumentada $n \times 2n$

$$\left[\begin{array}{c|cccc} A & 1 & 0 & \cdots & 0 \\ 0 & 1 & & \vdots \\ & \cdots & & \\ 0 & \cdots & 0 & 1 \end{array}\right].$$

Sendo a matriz invertível, a matriz escada de linhas U obtida de A por aplicação do AEG tem elementos diagonais não nulos, que são os pivots que surgem na implementação do algoritmo.

Aplicando Gauss-Jordan (ou seja, no sentido SE→NW, criando zeros por cima dos pivots que

se vão considerando), obtemos uma matriz da forma
$$\begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & & 0 \\ \vdots & & & \vdots \\ 0 & & 0 & d_n \end{bmatrix} Y_1 \quad Y_2 \quad \cdots \quad Y_n$$

Dividindo a linha i por d_i , para i = 1, ..., n, obtém-se a matriz

$$\left[\begin{array}{c|cccc} I_n & \tilde{X}_1 & \tilde{X}_2 & \cdots & \tilde{X}_n \end{array}\right].$$

Ora tal significa que \tilde{X}_i é a solução de $AX=e_i$. Ou seja, o segundo bloco da matriz aumentada indicada atrás não é mais que a inversa da matriz A. Isto é, Gauss-Jordan forneceu a matriz $\begin{bmatrix} I_n & A^{-1} \end{bmatrix}$.

3.4 Regra de Cramer

A regra de Cramer fornece-nos um processo de cálculo da solução de uma equação consistente Ax = b quando A é invertível, e portanto a solução é única.

Dada a equação
$$Ax=b$$
, onde A é $n\times n$ não-singular, $x=\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}$ e b é do tipo $n\times 1$,

denote-se por $A^{(i)}$ a matriz obtida de A substituindo a coluna i de A pela coluna b.

Teorema 3.4.1 (Regra de Cramer). Nas condições do parágrafo anterior, a única solução de Ax = b é dada por

$$x_i = \frac{|A^{(i)}|}{|A|}.$$

Octave _____

Vamos aplicar a regra de Cramer:

A matriz A é invertível, e portanto Ax = b é uma equação consistente com uma única solução:

$$> \det(A)$$
 ans $= -3$

Definamos as matrizes A1,A2,A3 como as matrizes $A^{(1)},A^{(2)},A^{(3)}$, respectivamente. Aplicamos, de seguida, a regra de Cramer.

-1

```
> A1=A; A1(:,1)=b; A2=A; A2(:,2)=b; A3=A; A3(:,3)=b;
> x1=det(A1)/det(A)
x1 = 1.3333
> x2=det(A2)/det(A)
x2 = -0.33333
> x3=det(A3)/det(A)
x3 = -1
Os valores obtidos formam, de facto, a solução pretendida:
> A*[x1;x2;x3]
ans =

1
1
```

Capítulo 4

Espaços vectoriais

Tal como nos resultados apresentados anteriormente, \mathbb{K} denota \mathbb{R} ou \mathbb{C} .

4.1 Definição e exemplos

Definição 4.1.1. Um conjunto não vazio V é um espaço vectorial sobre \mathbb{K} (ou espaço linear) se lhe estão associadas duas operações, uma adição de elementos de V e uma multiplicação de elementos de \mathbb{K} por elementos de V, com as seguintes propriedades:

- 1. Fecho da adição: $\forall_{x,y \in V}, x + y \in V$;
- 2. Fecho da multiplicação por escalares: $\forall x \in V, \alpha \in \mathbb{K}, \alpha x \in V$;
- 3. Comutatividade da adição: x + y = y + x, para $x, y \in V$;
- 4. Associatividade da adição: x + (y + z) = (x + y) + z, para $x, y, z \in V$;
- 5. Existência de zero: existe um elemento de V, designado por 0, tal que x + 0 = x, para $x \in V$;
- 6. Existência de simétricos: $\forall_{x \in V}, x + (-1)x = 0$;
- 7. Associatividade da multiplicação por escalares: $\forall_{\alpha,\beta\in\mathbb{K},x\in X}, \alpha\left(\beta x\right) = \left(\alpha\beta\right)x;$
- 8. Distributividade: $\alpha(x+y) = \alpha x + \alpha y \ e \ (\alpha+\beta) \ x = \alpha x + \beta x, \ para \ x,y \in V \ e \ \alpha,\beta \in \mathbb{K};$
- 9. Existência de identidade: 1x = x, $para todo x \in V$.

Se V é um espaço vectorial sobre \mathbb{K} , um subconjunto não vazio $W \subseteq V$ que é ele também um espaço vectorial sobre \mathbb{K} diz-se um subespaço vectorial de V.

Por forma a aligeirar a escrita, sempre que nos referirmos a um subespaço de um espaço vectorial queremos dizer subespaço vectorial.

Dependendo se o conjunto dos escalares \mathbb{K} é \mathbb{R} ou \mathbb{C} , o espaço vectorial diz-se, respectivamente, real ou complexo.

Apresentam-se, de seguida, alguns exemplos comuns de espaços vectoriais.

- 1. O conjunto $\mathcal{M}_{m \times n}$ (\mathbb{K}) das matrizes $m \times n$ sobre \mathbb{K} , com a soma de matrizes e produto escalar definidos no início da disciplina, é um espaço vectorial sobre \mathbb{K} .
- 2. Em particular, \mathbb{K}^n é um espaço vectorial.
- 3. O conjunto {0} é um espaço vectorial.
- 4. O conjunto das sucessões de elementos de \mathbb{K} , com a adição definida por $\{x_n\} + \{y_n\} = \{x_n + y_n\}$ e o produto escalar por $\alpha\{x_n\} = \{\alpha x_n\}$, é um espaço vectorial sobre \mathbb{K} . Este espaço vectorial é usualmente denotado por $\mathbb{K}^{\mathbb{N}}$.
- 5. Seja $V = \mathbb{K}[x]$ o conjunto dos polinómios na indeterminada x com coeficientes em \mathbb{K} . Definindo a adição de vectores como a adição usual de polinómios e a multiplicação escalar como a multiplicação usual de um escalar por um polinómio, V é um espaço vectorial sobre \mathbb{K} .
- 6. Dado $n \in \mathbb{N}$, o conjunto $\mathbb{K}_n[x]$ dos polinómios de grau inferior a n, com as operações definidas no exemplo anterior, é um espaço vectorial sobre \mathbb{K} .
- 7. Seja $V = \mathbb{K}^{\mathbb{K}}$ o conjunto das aplicações de \mathbb{K} em \mathbb{K} (isto é, $V = \{f : \mathbb{K} \to \mathbb{K}\}$). Definindo, para $f, g \in V, \alpha \in \mathbb{K}$, a soma e produto escalar como as aplicações de \mathbb{K} em \mathbb{K} tais que, para $x \in \mathbb{K}$,

$$(f+g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha (f(x)),$$

V é desta forma um espaço vectorial sobre \mathbb{K} .

- 8. O conjunto \mathbb{C} é um espaço vectorial sobre \mathbb{R} . \mathbb{R} [resp. \mathbb{C}] é também um espaço vectorial sobre ele próprio.
- 9. Seja V um espaço vectorial sobre \mathbb{K} e S um conjunto qualquer. O conjunto V^S de todas as funções de S em V é um espaço vectorial sobre \mathbb{K} , com as operações

$$(f+g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha (f(x)),$$

onde $f, g \in V^S, \alpha \in \mathbb{K}$.

10. Dado um intervalo real]a,b[, o conjunto C]a,b[de todas as funções reais contínuas em]a,b[, para as operações habituais com as funções descritas acima, é um espaço vectorial sobre \mathbb{R} . O conjunto $C^k]a,b[$ das funções reais com derivadas contínuas até à ordem k no intervalo]a,b[e o conjunto $C^{\infty}]a,b[$ das funções reais infinitamente diferenciáveis no intervalo]a,b[são espaços vectoriais reais.

Teorema 4.1.2. Seja V um espaço vectorial sobre \mathbb{K} e $W \subseteq V$. Então W é um subespaço de V se e só se as condições seguintes forem satisfeitas:

- 1. $W \neq \emptyset$;
- 2. $u, v \in W \Rightarrow u + v \in W$:

3. $v \in W, \alpha \in \mathbb{K} \Rightarrow \alpha v \in W$.

Observe que se W é subespaço de V então **necessariamente** $0_v \in W$. Alguns exemplos:

- 1. Para qualquer $k \in \mathbb{N}$, $C^{\infty}[a, b[$ é um subespaço de $C^k[a, b[$, que por sua vez é um subespaço de C[a, b[.
- O conjunto das sucessões reais convergentes é um subespaço do espaço das sucessões reais.
- 3. $\mathbb{K}_n[x]$ é um subespaço de $\mathbb{K}[x]$.
- 4. o conjunto das matrizes $n \times n$ triangulares inferiores (inferiores ou superiores) é um subespaço de $\mathcal{M}_n(\mathbb{K})$, onde $\mathcal{M}_n(\mathbb{K})$ denota o espaço vectorial das matrizes quadradas de ordem n sobre \mathbb{K} .

4.2 Independência linear

Sejam V um espaço vectorial sobre \mathbb{K} e $\{v_i\}_{i\in I}\subseteq V, \{\alpha_i\}_{i\in I}\subseteq \mathbb{K}$. Se

$$v = \sum_{i=1}^{n} \alpha_i v_i,$$

diz-se que v é uma combinação linear dos vectores v_1, \ldots, v_n . Neste caso, dizemos que v se pode escrever como combinação linear de v_1, \ldots, v_n .

Definição 4.2.1 (Conjunto linearmente independente). Um conjunto não vazio $\{v_i\}_{i\in I}\subseteq V$ diz-se linearmente independente se

$$\sum_{i \in I} \alpha_i v_i = 0 \Longrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0.$$

Um conjunto diz-se linearmente dependente se não for linearmente independente.

Por abuso de linguagem, tomaremos, em algumas ocasiões, vectores linearmente independentes para significar que o conjunto formado por esses vectores é linearmente independente.

O conceito de dependência e independência linear é usualmente usado de duas formas.

(i) Dado um conjunto não vazio $\{v_i\}$ de n vectores linearmente dependentes, então é possível escrever o vector nulo como combinação linear não trivial de v_1, \ldots, v_n . Ou seja, existem escalares $\alpha_1, \ldots, \alpha_n$, algum ou alguns dos quais não nulos, tais que

$$0 = \sum_{i=n}^{n} \alpha_i v_i.$$

Seja α_k um coeficiente não nulo dessa combinação linear. Então

$$v_k = \sum_{i=1, i \neq k}^n \left(-\alpha_k^{-1} \alpha_i \right) v_i.$$

Concluindo, dado um conjunto de vectores linearmente dependentes, então pelo menos um desses vectores é uma combinação linear (não trivial) dos outros vectores.

(ii) Dado um conjunto não vazio $\{v_i\}$ de n vectores linearmente independentes, da relação

$$0 = \sum_{i=n}^{n} \alpha_i v_i$$

podemos concluir de forma imediata e óbvia que $\alpha_1 = \cdots = \alpha_n = 0$. Esta implicação será muito útil ao longo desta disciplina.

Algumas observações:

1. Considerando o espaço vectorial $\mathbb{K}[x]$, o conjunto dos monómios $\{1, x, x^2, \dots\}$ é constituído por elementos linearmente independentes. Já $1, x, x^2, x^2 + x + 1$ são linearmente dependentes, visto

$$1 + x + x^2 - (x^2 + x + 1) = 0.$$

- 2. Em $\mathbb{K}_n[x]$, quaisquer n+1 polinómios são linearmente dependentes.
- 3. Em \mathbb{R}^3 , consideremos os vectores $\alpha = (1, 1, 0), \beta = (1, 0, 1), \gamma = (0, 1, 1), \delta = (1, 1, 1)$. Estes quatro vectores são linearmente dependentes (pois $\alpha + \beta + \gamma 2\delta = 0$), apesar de quaisquer três deles serem linearmente independentes.

Teorema 4.2.2. Sejam v_1, \ldots, v_n elementos linearmente independentes de um espaço vectorial V. Sejam ainda $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{K}$ tais que

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n.$$

Então $\alpha_i = \beta_i$, para todo $i = 1, \dots, n$.

Demonstração. Se $\alpha_1 v_1 + \cdots + \alpha_n v_n = \beta_1 v_1 + \cdots + \beta_n v_n$ então

$$(\alpha_1 - \beta_1) v_1 + \dots + (\alpha_n - \beta_n) v_n = 0,$$

pelo que, usando o facto de v_1, \ldots, v_n serem linearmente independentes, se tem $\alpha_i - \beta_i = 0$, para todo $i = 1, \ldots, n$.

O resultado anterior mostra a *unicidade* da escrita de um vector como combinação linear de elementos de um conjunto linearmente independente, caso essa combinação linear exista.

Teorema 4.2.3. Seja A um subconjunto não vazio de um espaço vectorial V sobre \mathbb{K} . Então o conjunto de todas as combinações lineares de elementos de A é um subespaço vectorial de V.

Demonstração. Seja A' o conjunto de todas as combinações lineares de elementos de A. A' é obviamente não vazio visto $A \neq \emptyset$. Sejam $u, v \in A'$. Ou seja,

$$u = \sum_{i \in I} \alpha_i a_i, \ v = \sum_{j \in J} \beta_j a_j,$$

para alguns $\alpha_i, \beta_j \in \mathbb{K}$, com $a_i \in A$. Note-se que

$$u + v = \sum_{i \in I} \alpha_i a_i + \sum_{j \in J} \beta_j a_j$$

e portanto u+v é assim uma combinação linear de elementos de A – logo, $u+v \in A'$. Para $\kappa \in \mathbb{K}$, temos que $\kappa u = \sum_{i \in I}^n \kappa \alpha_i a_i$ e portanto $\kappa u \in A'$.

Tendo em conta o teorema anterior, podemos designar o conjunto das combinações lineares dos elementos de A como o espaço gerado por A. Este espaço vectorial (subespaço de V) denota-se por $\langle A \rangle$.

Quando o conjunto A está apresentado em extensão, então não escrevemos as chavetas ao denotarmos o espaço gerado por esse conjunto. Por exemplo, se $A = \{v_1, v_2, v_3\}$, então $\langle A \rangle$ pode-se escrever como $\langle v_1, v_2, v_3 \rangle$. Por notação, $\langle \emptyset \rangle = \{0\}$.

É importante referir os resultados que se seguem, onde V indica um espaço vectorial.

- 1. Os vectores não nulos $v_1, v_2, \ldots, v_n \in V$ são linearmente independentes se e só se, para cada $k, v_k \notin \langle v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n \rangle$.
- 2. Sejam $A, B \subseteq V$.
 - (a) Se $A \subseteq B$ então $\langle A \rangle \subseteq \langle B \rangle$.
 - (b) $\langle A \rangle = \langle \langle A \rangle \rangle$.
 - (c) $\langle A \rangle$ é o menor (para a relação de ordem \subseteq) subespaço de V que contém A.

4.3 Bases de espaços vectoriais finitamente gerados

Definição 4.3.1. Seja V um espaço vectorial.

Um conjunto \mathcal{B} linearmente independente tal que $\langle \mathcal{B} \rangle = V$ é chamado de base de V.

A demonstração do resultado que se segue envolve, no caso geral, diversos conceitos matemáticos (nomeadamente o Lema de Zorn) que ultrapassam em muito os propósitos desta disciplina. No entanto, o resultado garante, para qualquer espaço vectorial, a existência de um conjunto linearmente independente \mathcal{B} que gere o espaço vectorial.

Teorema 4.3.2. Todo o espaço vectorial tem uma base.

Dizemos que V tem $dimens\~ao$ finita, ou que é finitamente gerado, se tiver uma base com um número finito de elementos. Caso contrário, diz-se que V tem $dimens\~ao$ infinita.

V tem dimensão finita nula se $V = \{0\}$.

De ora em diante, apenas consideraremos espaços vectoriais finitamente gerados. Por vezes faremos referência à base v_1, v_2, \ldots, v_n para indicar que estamos a considerar a base $\{v_1, v_2, \ldots, v_n\}$.

Definição 4.3.3. Uma base ordenada $\mathcal{B} = \{v_1, \dots, v_m\}$ é uma base de V cujos elementos estão dispostos por uma ordem fixa¹. Chamam-se componentes ou coordenadas de $u \in V$ na base $\{v_1, \dots, v_m\}$ aos coeficientes escalares $\alpha_1, \dots, \alpha_m$ da combinação linear

$$u = \sum_{k=1}^{m} \alpha_k v_k.$$

As coordenadas de u na base \mathcal{B} são denotadas² por

$$(u)_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

Recordemos que, se $\mathcal{B} = \{v_1, \dots, v_m\}$ é uma base de V, em particular são linearmente independentes, e portanto dado $v \in V$, os coeficientes de v na base \mathcal{B} são únicos.

Teorema 4.3.4. Se um espaço vectorial tem uma base com um número finito n de elementos, então todas as bases de V têm n elementos.

Demonstração. Seja V um espaço vectorial e v_1, \ldots, v_n uma base de V. Seja w_1, \ldots, w_m outra base de V com m elementos.

Como v_1, \ldots, v_n é base de V, existem $\alpha_{ji} \in \mathbb{K}$ para os quais

$$w_i = \sum_{j=1}^n \alpha_{ji} v_j.$$

¹De uma forma mais correcta, \mathcal{B} não deveria ser apresentado como conjunto, mas sim como um n-uplo: (v_1, \ldots, v_m) . Mas esta notação poder-se-ia confundir com a usada para denotar elementos de \mathbb{R}^n , por exemplo. Comete-se assim um abuso de notação, tendo em mente que a notação escolhida indica a ordem dos elementos da base pelos quais foram apresentados.

²A notação adoptada não significa que $u \in \mathbb{R}^n$.

Note-se que

$$\sum_{i=1}^{m} x_{i} w_{i} = 0 \Leftrightarrow \sum_{i=1}^{m} x_{i} \sum_{j=1}^{n} \alpha_{ji} v_{j} = 0$$

$$\Leftrightarrow \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} \alpha_{ji} v_{j} = 0$$

$$\Leftrightarrow \sum_{j=1}^{n} \left(\sum_{i=1}^{m} x_{i} \alpha_{ji} \right) v_{j} = 0$$

$$\Leftrightarrow \sum_{i=1}^{m} x_{i} \alpha_{ji} = 0, \text{ para todo } j$$

$$\Leftrightarrow \left[\alpha_{ji} \right] \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix} = 0$$

e que

$$\sum_{i=1}^{m} x_i w_i = 0 \Leftrightarrow x_1 = x_2 = \dots = x_m = 0.$$

Portanto,

$$\left[\begin{array}{c} \alpha_{ji} \end{array}\right] \left[\begin{array}{c} x_1 \\ \vdots \\ x_m \end{array}\right] = 0$$

é um sistema determinado, pelo que

$$m = \operatorname{car}\left(\left[\begin{array}{c} \alpha_{ji} \end{array}\right]\right) \leq n.$$

Trocando os papéis de $\langle v_1, \ldots, v_n \rangle$ e de $\langle w_1, \ldots, w_m \rangle$, obtemos $n \leq m$. Logo, n = m. \square

Definição 4.3.5. Seja V um espaço vectorial. Se existir uma base de V com n elementos, então diz-se que V tem dimensão n, e escreve-se $\dim V = n$.

Corolário 4.3.6. Seja V um espaço vectorial com $\dim V = n$. Para m > n, qualquer conjunto de m elementos de V é linearmente dependente.

Demonstração. A demonstração segue a do teorema anterior.

Considerando o espaço vectorial $\mathbb{K}_n[x]$ dos polinómios com coeficientes em \mathbb{K} e grau não superior a n, uma base de $\mathbb{K}_n[x]$ é

$$\mathcal{B} = \left\{1, x, x^2, \dots, x^n\right\}.$$

De facto, qualquer polinómio de $\mathbb{K}_n[x]$ tem uma representação única na forma $a_n x^n + \cdots + a_1 x + a_0$ e portanto B gera $\mathbb{K}_n[x]$, e \mathcal{B} é linearmente independente. Logo, dim $\mathbb{K}_n[x] = n + 1$. Como exercício, mostre que

$$\mathcal{B}' = \{1, x + k, (x + k)^2, \dots, (x + k)^n\},\$$

para um $k \in \mathbb{K}$ fixo, é outra base de $\mathbb{K}_n[x]$.

Considere agora o conjunto $\{\Delta_{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$, onde Δ_{ij} é a matriz $m \times n$ com as entradas todas nulas à excepção de (i,j) que vale 1. Este conjunto é uma base do espaço vectorial $\mathcal{M}_{m \times n}(\mathbb{K})$ das matrizes $m \times n$ sobre \mathbb{R} , pelo que dim $\mathcal{M}_{m \times n}(\mathbb{R}) = mn$.

Teorema 4.3.7. Seja V um espaço vectorial com dim V = n.

- 1. Se v_1, \ldots, v_n são linearmente independentes em V, então v_1, \ldots, v_n formam uma base de V.
- 2. Se $\langle v_1, \ldots, v_n \rangle = V$, então v_1, \ldots, v_n formam uma base de V.

Demonstração. (1) Basta mostrar que $\langle v_1, \ldots, v_n \rangle = V$. Suponhamos, por absurdo, que v_1, \ldots, v_n são linearmente independentes, e que $\langle v_1, \ldots, v_n \rangle \subsetneq V$. Ou seja, existe $0 \neq w \in V$ para o qual $w \notin \langle v_1, \ldots, v_n \rangle = V$. Logo, v_1, \ldots, v_n, w , são linearmente independentes, pelo que em V existem n+1 elementos linearmente independentes, o que contradiz o corolário anterior.

(2) Basta mostrar que v_1, \ldots, v_n são linearmente independentes. Suponhamos que v_1, \ldots, v_n são linearmente dependentes e que $A = \{v_1, \ldots, v_n\}$. Então pelo menos um deles é combinação linear dos outros. Ou seja, existe v_k tal que $v_k \in \langle v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n \rangle$. Se $v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n$ não forem linearmente independentes, então repetimos o processo até obtermos $B \subsetneq A$ linearmente independente. Vamos mostrar que $\langle B \rangle = \langle A \rangle$, recordando que $\langle A \rangle = V$. Seja $C = A \setminus B$; isto é, C é o conjunto dos elementos que se retiraram a A de forma a obter o conjunto linearmente independente B. Portanto,

$$v_i \in C \Rightarrow v_i = \sum_{v_j \in B} \beta_{ij} v_j.$$

Seja então $v \in V = \langle A \rangle$. Ou seja, existem α_i 's para os quais

$$\begin{split} v &=& \sum_{v_i \in A} \alpha_i v_i \\ &=& \sum_{v_i \in B} \alpha_i v_i + \sum_{v_i \in C} \alpha_i v_i \\ &=& \sum_{v_i \in B} \alpha_i v_i + \sum_i \alpha_i \sum_{v_j \in B} \beta_{ij} v_j \\ &=& \sum_{v_i \in B} \alpha_i v_i + \sum_i \sum_{v_j \in B} \alpha_i \beta_{ij} v_j \in \langle B \rangle. \end{split}$$

Portanto, B é uma base de V com m < n elementos, o que é absurdo.

Corolário 4.3.8. Sejam V um espaço vectorial e W_1, W_2 subespaços vectoriais de V. Se $W_1 \subseteq W_2$ e dim $W_1 = \dim W_2$ então $W_1 = W_2$

Demonstração. Se $W_1 \subseteq W_2$ e ambos são subespaços de V então W_1 é subespaço de W_2 . Seja $\mathcal{B} = \{w_1, \ldots, w_r\}$ uma base de W_1 , com $r = \dim W_1$. Segue que \mathcal{B} é linearmente independente em W_2 . Como $r = \dim W_1 = \dim W_2$, temos um conjunto linearmente inpedente com r elementos. Por (1) do teorema, \mathcal{B} é base de W_2 , o portanto $W_1 = \langle \mathcal{B} \rangle = W_2$.

Corolário 4.3.9. Seja V um espaço vectorial e A um conjunto tal que $\langle A \rangle = V$. Então existe $B \subseteq A$ tal que B é base de V.

Demonstração. A demonstração segue o mesmo raciocínio da demonstração de (2) do teorema anterior.

4.4 \mathbb{R}^n e seus subespaços (vectoriais)

Nesta secção³, debruçamo-nos sobre \mathbb{R}^n enquanto espaço vectorial real. Repare que as colunas de I_n formam uma base de \mathbb{R}^n , pelo que dim $\mathbb{R}^n = n$. Mostre-se que de facto geram \mathbb{R}^n . Se se denotar por e_i a coluna i de I_n , é imediato verificar que $(x_1, x_2, \ldots, x_n) = \sum_{i=1}^n x_i e_i$. Por outro lado, $\sum_{i=1}^n \alpha_i e_i = 0$ implica $(\alpha_1, \alpha_2, \ldots, \alpha_n) = (0, 0, \ldots, 0)$, e portanto $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$. O conjunto $\{e_i\}_{i=1,\ldots,n}$ é chamado base canónica de \mathbb{R}^n .

Teorema 4.4.1. Se A é uma matriz $m \times n$ sobre \mathbb{R} , o núcleo N(A) é um subespaço vectorial de \mathbb{R}^n .

Demonstração. Basta mostrar que, dados elementos x,y de \mathbb{R}^n tais que Ax = Ay = 0, também se tem A(x+y) = 0 e $A(\lambda x) = 0$, para qualquer $\lambda \in \mathbb{R}$. Note-se que A(x+y) = Ax + Ay = 0 + 0 = 0, e que $A(\lambda x) = \lambda Ax = \lambda 0 = 0$.

Considere, a título de exemplo, o conjunto

$$V = \{(x, y, z) \in \mathbb{R}^3 : z = 2x - 3y\} = \{(x, y, 2x - 3y) : x, y \in \mathbb{R}\}.$$

Este conjunto é um subespaço de \mathbb{R}^3 . De facto, escrevendo a condição z=2x-3y como 2x-3y-z=0, o conjunto V iguala o núcleo da matriz $A=\begin{bmatrix}2&-3&-1\end{bmatrix}$, pelo que V é um subespaço de \mathbb{R}^3

Octave

Vamos agora usar o octave para esboçar o conjunto V definido acima. Vamos considerar $x,y\in[-2;2]$ e tentar que o octave encontre os pontos $(x,y,2x-3y)\in\mathbb{R}^3$. Como é óbvio, x,y não poderão percorrer todos os elementos do intervalo [-2;2]. Vamos, em primeiro lugar, definir os vectores x,y com os racionais de -2 a 2 com intervalo de 0.1 entre si. Não se esqueça de colocar ; no fim da instrução, caso contrário será mostrado o conteúdo desses vectores (algo desnecessário). Com o comando meshgrid pretende-se construir uma matriz quadrada onde x,y surgem copiados. Finalmente, define-se Z=2*X-3*Y e solicita-se a representação gráfica. Para obter a representação gráfica precisa de ter o gnuplot instalado.

> x=[-2,0.1,2];

³De facto, o que é afirmado pode ser facilmente considerado em \mathbb{C}^n .

```
> y=[-2,0.1,2];
> [X,Y]=meshgrid (x,y);
> Z=2*X-3*Y;
> surf(X,Y,Z)
```

Verifique se a sua versão do gnuplot permite que rode a figura. Clique no botão esquerdo do rato e arraste a figura. Para sair do gnuplot, digite q.

Como é óbvio, o uso das capacidades gráficas ultrapassa em muito a representação de planos. O seguinte exemplo surge na documentação do octave:

```
tx = ty = linspace (-8, 8, 41)';
[xx, yy] = meshgrid (tx, ty);
r = sqrt (xx .^2 + yy .^2) + eps;
tz = sin (r) ./ r;
mesh (tx, ty, tz);
```

O conjunto $U=\left\{(x,y,z)\in\mathbb{R}^3:x-2y+\frac{1}{2}z=0=-x+y+2z\right\}$ é um subespaço de \mathbb{R}^3 , já que $U=N\left(\left[\begin{array}{ccc}1&-2&\frac{1}{2}\\-1&1&2\end{array}\right]\right)$. O subespaço U é dado pela intersecção do plano dado pela equação $x-2y+\frac{1}{2}z=0$ com o plano dado pela equação -x+y+2z=0.

Octave

Para obtermos a representação gráfica dos dois planos, vamos fazer variar x, y de -3 a 3, com intervalos de 0.1. O comando hold on permite representar várias superfícies no mesmo gráfico.

```
> x=[-3:0.1:3];
> y=x;
> [X,Y]=meshgrid (x,y);
> Z1=-2*X+4*Y;
> Z2=1/2*X-1/2*Y;
> surf(X,Y,Z1)
> hold on
> surf(X,Y,Z2)
```

Em vez de x=[-3:0.1:3]; poderíamos ter usado o comando linspace. No caso, x=linspace(-3,3,60). A sintaxe é linspace(ponto_inicial,ponto_final,numero_de_divisoes).

Vejamos como poderemos representar a recta U que é a intersecção dos dois planos referidos atrás. Repare que os pontos $(x,y,z)\in\mathbb{R}^3$ da recta são exactamente aqueles que satisfazem

as duas equações, ou seja, aqueles que são solução do sistema homogéneo $A[x\,y\,z]^T=0$, onde $A=\left[\begin{array}{ccc} 1 & -2 & \frac{1}{2} \\ -1 & 1 & 2 \end{array}\right].$

```
> A=[1 -2 1/2; -1 1 2]
  1.00000 -2.00000
                       0.50000
 -1.00000
             1.00000
                       2.00000
> rref (A)
ans =
  1.00000
             0.00000 - 4.50000
  0.00000
             1.00000 -2.50000
> solucao=[-(rref (A)(:,3));1]
solucao =
 4.5000
 2.5000
  1.0000
```

De facto, o comando rref (A) diz-nos que $y-\frac{5}{2}z=0=x-\frac{9}{2}z$, ou seja, que as soluções do homogéneo são da forma $(\frac{9}{2}z,\frac{5}{2}z,z)=z(\frac{9}{2},\frac{5}{2},1)$, com $z\in\mathbb{R}$. Ou seja, as soluções de $A[x\,y\,z]^T=0$ são todos os múltiplos do vector solucao. Outra alternativa seria a utilização do comando null(A).

```
> t=[-3:0.1:3];
> plot3 (solucao(1,1)*t, solucao(2,1)*t,solucao(3,1)*t);
```

O gnuplot não permite a gravação de imagens à custa do teclado ou do rato. Podemos, no entanto, imprimir a figura para um ficheiro.

```
> print('grafico.eps','-deps')
> print('grafico.png','-dpng')
```

No primeiro caso obtemos um ficheiro em formato *eps* (encapsulated postscript), e no segundo em formato PNG. A representação dos dois planos será algo como a figura seguinte:

Como é óbvio, não estamos condicionados a \mathbb{R}^3 . Por exemplo, o conjunto

$$W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 - 2x_3 = 0 = x_1 - x_2 + 4x_4\}$$

é um subespaço de \mathbb{R}^4 . De facto, repare que $W=N\left(\left[\begin{array}{ccc} 1 & 0 & -2 & 0 \\ 1 & -1 & 0 & 4 \end{array}\right]\right)$.

Teorema 4.4.2. Sejam $v_1, \dots, v_n \in \mathbb{R}^m$ e $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}_{m \times n}$ (as colunas de A são os vectores $v_i \in \mathbb{R}^m$). Então $\{v_1, \dots, v_n\}$ é linearmente independente se e só se car(A) = n.

Demonstração. Consideremos a equação Ax=0, com $x=[x_1\,x_2\,\cdots\,x_n]^T$. Ou seja, consideremos a equação

$$A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = 0.$$

Equivalentemente,

$$x_1v_1 + x_2v_2 + \dots + x_nv_n = 0.$$

Ou seja, a independência linear de v_1, \ldots, v_n é equivalente a $N(A) = \{0\}$ (isto é, 0 ser a única solução de Ax = 0). Recorde que Ax = 0 é possível determinado se e só se car(A) = n.

Octave _

Com base no teorema anterior, vamos mostrar que

são linearmente independentes. Tal é equivalente a mostrar que $\operatorname{car}\left[\begin{array}{ccc} u & v & w \end{array}\right]=3$:

ans = 3

Para y = (1, -6, -7, -11), os vectores u, v, y não são linearmente independentes:

ans = 2

Teorema 4.4.3. Dados $v_1, \ldots, v_m \in \mathbb{R}^n$, seja A a matriz $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_m \end{bmatrix} \in \mathcal{M}_{n \times m}(\mathbb{R})$ cujas colunas são v_1, \ldots, v_m . Então $w \in \langle v_1, \ldots, v_m \rangle$ se e só se Ax = w tem solução.

Demonstração. Escrevendo Ax = w como

$$\begin{bmatrix} v_1 \dots v_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = w,$$

temos que Ax=w tem solução se e só se existirem $x_1,x_2,\ldots,x_m\in\mathbb{R}$ tais que

$$x_1v_1 + x_2v_2 + \dots + x_mv_m = w,$$

isto é,
$$w \in \langle v_1, \dots, v_m \rangle$$
.

Definição 4.4.4. Ao subespaço $CS(A) = \{Ax : x \in \mathbb{R}^n\}$ de \mathbb{R}^m chamamos imagem de A, ou espaço das colunas de A. Por vezes, CS(A) é denotado também por R(A) e por Im(A). O espaço das colunas da A^T designa-se por espaço das linhas de A e denota-se por RS(A).

Octave

Considerando u,v,w,y como no exemplo anterior, vamos verificar se $y\in \langle u,v,w\rangle$. Para $A=\begin{bmatrix}u&v&w\end{bmatrix}$, tal é equivalente a verificar se Ax=y tem solução.

```
> u=[1; 2; 3; 3]; v=[2; 0; 1; -1]; w=[0; 0; -1; -3];
octave:23> A=[u v w]
A =

1     2     0
2     0     0
3     1     -1
3     -1     -3
```

Ou seja, se $\operatorname{car} A = \operatorname{car} \left(\left[\begin{array}{c|c} A & y \end{array} \right] \right)$.

De uma forma mais simples,

Já o vector (0,0,0,1) não é combinação linear de u,v,w, ou seja, $(0,0,0,1) \notin \langle u,v,w \rangle$. De facto, $\operatorname{car} A \neq \operatorname{car} \left(\left[\begin{array}{c|c} A & 0 \\ 0 & 0 \\ 1 & 1 \end{array} \right] \right)$:

Vejamos qual a razão de se denominar "espaço das colunas de A" a CS(A). Escrevendo $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ através das colunas de A, pela forma como o produto de matrizes foi definido, obtemos

$$A \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n.$$

O teorema anterior afirma que $b \in CS(A)$ (i.e., Ax = b é possível) se e só se b for um elemento do espaço gerado pelas colunas de A.

A classificação de sistemas de equações lineares como impossível, possível determinado ou possível indeterminado, ganha agora uma nova perspectiva geométrica.

Por exemplo, consideremos a equação matricial $A[x\,y\,z]^T=b$, com $A=\begin{bmatrix}2&4&-8\\1&2&-4\\2&3&5\end{bmatrix}$

e
$$b=\begin{bmatrix}14\\7\\10\end{bmatrix}$$
. O sistema é possível, já que $car(A)=car([A\,b])$, mas é indeterminado pois $car(A)<3$.

Octave _

Depois de definirmos A e b no octave,

```
> rank(A)
ans = 2
> rank([A b])
ans = 2
```

As colunas de A, que geram CS(A), não são linearmente independentes. Como Ax = b é possível temos que $b \in CS(A)$, mas não sendo as colunas linearmente independentes, b não se escreverá de forma única como combinação linear das colunas de A. O sistema de equações tem como soluções as realizações simultâneas das equações 2x + 4y - 8z = 14, x + 2y - 4z = 7 e 2x + 3y + 5z = 10. Cada uma destas equações representa um plano de \mathbb{R}^3 , e portanto as soluções de Ax = b são exactamente os pontos de \mathbb{R}^3 que estão na intersecção destes planos.

Octave

Vamos representar graficamente cada um destes planos para obtermos uma imagem do que será a intersecção.

```
> x=-3:0.5:3;
> y=x;
> [X,Y]=meshgrid(x,y);
> Z1=(14-2*X-4*Y)/(-8);
> surf(X,Y,Z1)
> Z2=(7-X-2*Y)/(-4);
> Z3=(10-2*X-3*Y)/(5);
> hold on
> surf(X,Y,Z2)
> surf(X,Y,Z3)
```

A intersecção é uma recta de \mathbb{R}^3 , e portanto temos uma infinidade de soluções da equação Ax=b.

No entanto, o sistema $Ax=c=\begin{bmatrix}0&1&0\end{bmatrix}^T$ é impossível, já que $car(A)=2\neq 3=car([A\,c])$. A intersecção dos planos dados pelas equações do sistema é vazia.

Considere agora $A=\begin{bmatrix}1&1\\1&0\\-1&1\end{bmatrix}$ e $b=\begin{bmatrix}0\\1\\0\end{bmatrix}$. O facto de Ax=b ser impossível (compare a característica de A com a de $[A\,b]$) significa que $b\not\in CS(A)$. Ora $CS(A)=\langle (1,1,-1),(1,0,1)\rangle$, ou seja, CS(A) é o conjunto dos pontos de \mathbb{R}^3 que se escrevem da forma

$$(x,y,z)=\alpha(1,1,-1)+\beta(1,0,1)=(\alpha+\beta,\alpha,-\alpha+\beta),\,\alpha,\beta\in\mathbb{R}.$$

Octave _

- > alfa=-3:0.5:3; beta=a;
- > [ALFA,BETA]=meshgrid(alfa,beta);
- > surf(ALFA+BETA, ALFA, -ALFA+BETA)

Com alguns cálculos, podemos encontrar a equação que define CS(A). Recorde que se pretende encontrar os elementos $\begin{bmatrix} x & y & z \end{bmatrix}^T$ para os quais existem $\alpha, \beta \in \mathbb{R}$ tais que

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ -1 & 1 \end{array}\right] \left[\begin{array}{c} \alpha \\ \beta \end{array}\right] = \left[\begin{array}{c} x \\ y \\ z \end{array}\right].$$

Usando o método que foi descrito na parte sobre resolução de sistemas lineares,

$$\begin{bmatrix} 1 & 1 & | & x \\ 1 & 0 & | & y \\ -1 & 1 & | & z \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 1 & | & x \\ 0 & -1 & | & y - x \\ 0 & 0 & | & z - x + 2y \end{bmatrix}.$$

Como o sistema tem que ter soluções α, β , somos forçados a ter z = x - 2y.


```
> x=-3:0.5:3; y=x;
> [X,Y]=meshgrid(x,y);
> surf(X,Y,-2*Y+X); hold on; plot3([0],[1],[0],'x')
```

Ora Ax = b é impossível, pelo que $b \notin CS(A)$. Ou seja, b não é um ponto do plano gerado pelas colunas de A.

Se A for invertível, então $CS(A) = \mathbb{R}^n$ (neste caso, tem-se necessariamente m = n). De facto, para $x \in \mathbb{R}^n$, podemos escrever $x = A(A^{-1}x)$, pelo que, tomando $y = A^{-1}x \in \mathbb{R}^n$, temos $x = Ay \in CS(A)$. Portanto,

$$\mathbb{R}^n \subseteq CS(A) \subseteq \mathbb{R}^n$$
.

Se A, B são matrizes reais para as quais AB existe, temos a inclusão $CS(AB) \subseteq CS(A)$. De facto, se $b \in CS(AB)$ então ABx = b, para algum x. Ou seja, A(Bx) = b, pelo que $b \in CS(A)$.

Se B for invertível, então CS(AB) = CS(A). Esta igualdade fica provada se se mostrar que $CS(A) \subseteq CS(AB)$. Para $b \in CS(A)$, existe x tal que $b = Ax = A(BB^{-1})x = (AB)B^{-1}x$, e portanto $b \in CS(AB)$.

Recordemos, ainda, que para A matriz real $m \times n$, existem matrizes P, L, U permutação, triangular inferior com 1's na diagonal (e logo invertível) e escada, respectivamente, tais que

$$PA = LU$$
.

Ou seja,

$$A = P^{-1}LU.$$

Finalmente, e a comprovação deste facto fica ao cargo do leitor, as linhas não nulas de U, matriz obtida de A por aplicação do método de eliminação de Gauss, são linearmente independentes.

Para A, P, L, U definidas atrás,

$$RS(A) = CS(A^{T}) = CS(U^{T}(P^{-1}L)^{T}) = CS(U^{T}) = RS(U).$$

Ou seja, o espaço das linhas de A e o das linhas de U são o mesmo, e uma base de RS(A) são as linhas não nulas de U enquanto elementos de \mathbb{R}^n . Temos, então,

$$RS(A) = RS(U)$$
 e dim $RS(A) = car(A)$

Seja QA a forma normal de Hermite de A. Portanto, existe uma matriz permutação $P_{\rm erm}$ tal que $QAP_{\rm erm} = \begin{bmatrix} I_r & M \\ \hline 0 & 0 \end{bmatrix}$, onde $r = {\rm car}(A)$. Repare que $CS(QA) = CS(QAP_{\rm erm})$, já que o conjunto gerador é o mesmo (ou ainda, porque $P_{\rm erm}$ é invertível). As primeiras r colunas de I_m formam uma base de $CS(QAP_{\rm erm}) = CS(QA)$, e portanto dim CS(QA) = r. Pretendemos mostrar que dim $CS(A) = {\rm car}(A) = r$. Para tal, considere o lema que se segue:

Lema 4.4.5. Seja Q uma matriz $n \times n$ invertível $e \ v_1, v_2, \dots, v_r \in \mathbb{R}^n$. Então $\{v_1, v_2, \dots, v_r\}$ é linearmente independente se e só se $\{Qv_1, Qv_2, \dots, Qv_r\}$ é linearmente independente.

Demonstração. Repare que
$$\sum_{i=1}^{r} \alpha_i Q v_i = 0 \Leftrightarrow Q\left(\sum_{i=1}^{r} \alpha_i v_i\right) = 0 \Leftrightarrow \sum_{i=1}^{r} \alpha_i v_i = 0.$$

Usando o lema anterior,

$$\dim CS(A) = \dim CS(QA) = r = \operatorname{car}(A).$$

Sendo U a matriz escada de linhas obtida por Gauss, U é equivalente por linhas a A, e portanto $\dim CS(U) = \dim CS(A) = \operatorname{car}(A)$.

Octave

Considere os vectores de \mathbb{R}^3

$$> u=[1; 0; -2]; v=[2; -2; 0]; w=[-1; 3; -1];$$

Estes formam uma base de \mathbb{R}^3 , já que $CS(\begin{bmatrix} u & v & w \end{bmatrix}) = \mathbb{R}^3$. Esta igualdade é válida já que $CS(\begin{bmatrix} u & v & w \end{bmatrix}) \subseteq \mathbb{R}^3$ e $\mathrm{car}(\begin{bmatrix} u & v & w \end{bmatrix}) = \dim CS(\begin{bmatrix} u & v & w \end{bmatrix}) = 3$:

A =

Já os vectores u,v,q, com q=(-5,6,-2) não são uma base de \mathbb{R}^3 . De facto,

1 2 -5 0 -2 6

> rank(A)
ans = 2

e portanto $\dim CS(\left[\begin{array}{cc}u&v&q\end{array}\right])=2\neq 3=\dim\mathbb{R}^3.$ As colunas da matriz não são linearmente independentes, e portanto não são uma base do espaço das colunas da matriz $\left[\begin{array}{cc}u&v&q\end{array}\right].$

A questão que se coloca aqui é: como obter uma base para CS(A)?

Octave

Suponha que V é a matriz escada de linhas obtida da matriz A^T . Recorde que $RS(A^T) = RS(V)$, e portanto $CS(A) = CS(V^T)$. Portanto, e considerando a matriz $A = [u \ v \ q]$ do exemplo anterior, basta-nos calcular a matriz escada de linhas associada a A^T :

-5.00000 0.00000 0.00000 6.00000 1.20000 0.00000 -2.00000 -2.40000 0.00000

As duas primeiras colunas de V' formam uma base de CS(A).

Em primeiro lugar, verifica-se que as r colunas de U com pivot, digamos $u_{i_1}, u_{i_2}, \dots, u_{i_r}$ são

linearmente independentes pois
$$\begin{bmatrix} u_{i_1} & u_{i_2} & \dots & u_{i_r} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_r \end{bmatrix} = 0$$
 é possível determinado.

Em segundo lugar, vamos mostrar que as colunas de A correpondentes às colunas de Ucom pivot são também elas linearmente independentes. Para tal, alertamos para a igualdade

com prvot sao também eras infearmente independentes. Para tai, aiertamos para a igualdade
$$U\left[\begin{array}{cccc} e_{i_1} & \dots & e_{i_r} \end{array}\right] = \left[\begin{array}{cccc} u_{i_1} & u_{i_2} & \dots & u_{i_r} \end{array}\right], \text{ onde } e_{i_j} \text{ indica a } i_j\text{-\'esima coluna de } I_n. \text{ Tendo}$$
 $U=L^{-1}PA$, e como $\left[\begin{array}{cccc} u_{i_1} & u_{i_2} & \dots & u_{i_r} \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_r \end{array}\right] = 0$ é possível determinado, segue que,

pela invertibilidade de
$$L^{-1}P$$
, a equação $A\left[\begin{array}{ccc} x_1 \\ e_{i_1} \\ \end{array}, \ldots, \begin{array}{ccc} e_{i_r} \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_r \end{array}\right] = 0$ admite apenas a

solução nula. Mas $A \left[\begin{array}{ccc} e_{i_1} & \dots & e_{i_r} \end{array} \right]$ é a matriz constituída pelas colunas i_1,i_2,\dots,i_r de A, pelo que estas são linearmente independentes, em número igual a r = car(A). Visto $\dim CS(A) = r$, essas colunas constituem de facto uma base de CS(A).

Seja A a matriz do exemplo anterior:

> A

Vamos agora descrever esta segunda forma de encontrar uma base de CS(A). Como já vimos, car A=2, pelo que as colunas de A não formam uma base de CS(A) pois não são linearmente independentes, e $\dim CS(A) = 2$. Façamos a decomposição PA = LU:

$$-2$$
 0 -2

Uma base possível para CS(A) são as colunas de A correspondendo às colunas de u que têm pivot. No caso, a primeira e a segunda colunas de A formam uma base de CS(A).

Finalmente, como $car(A^T)=\dim CS(A^T)=\dim RS(A)=car(A)$, temos a igualdade $car(A)=car(A^T).$

Repare que N(A) = N(U) já que Ax = 0 se e só se Ux = 0. Na resolução de Ux = 0, é feita a separação das incógnitas em básicas e em livres. Recorde que o número destas últimas é denotado por nul(A). Na apresentação da solução de Ax = 0, obtemos, pelo algoritmo para a resolução da equação somas de vectores, cada um multiplicado por uma das incógnitas livres. Esses vectores são geradores de N(A), e são em número igual a n-r, onde $r = \operatorname{car}(A)$. Queremos mostrar que nul $(A) = \dim N(A)$. Seja QA a forma normal de Hermite de A; existe P permutação tal que $QAP = \begin{bmatrix} I_r & M \\ \hline 0 & 0 \end{bmatrix} = H_A$, tendo em mente que $r \leq m, n$. Como Q é invertível, segue que N(QA) = N(A). Sendo H_A a matriz obtida de QA fazendo trocas convenientes de colunas, tem-se nul $(H_A) = \operatorname{nul}(QA) = \operatorname{nul}(A)$. Definamos a matriz quadrada, de ordem n, $G_A = \begin{bmatrix} I_r & M \\ \hline 0 & 0 \end{bmatrix}$. Como $H_AG_A = H_A$ segue que $H_A(I_n - G) = 0$, e portanto as colunas de $I_n - G$ pertencem a $N(H_A)$. Mas $I_n - G = \begin{bmatrix} 0 & M \\ \hline 0 & I_{n-r} \end{bmatrix}$ e as suas últimas n-r colunas são linearmente independentes (já que $\operatorname{car}\left(\begin{bmatrix} M \\ I_{n-r} \end{bmatrix}\right) = \operatorname{car}\left(\begin{bmatrix} I_{n-r} \\ M \end{bmatrix}\right) = \operatorname{car}\left(\begin{bmatrix} I_$

$$\operatorname{nul}(A) = \dim N(A).$$

Como n = car(A) + nul(A), obtemos, finalmente,

$$n = \dim CS(A) + \dim N(A).$$

Octave

Vamos aplicar os resultados desta secção num caso concreto. Considere o subespaço W de \mathbb{R}^3 gerado pelos vectores (1,2,1),(2,-3,-1),(3,1,2),(4,1,2),(5,0,4). Como temos 5 vectores de um espaço de dimensão 3, eles são necessariamente linearmente dependentes. Qual a dimensão de W? W é o espaço das colunas da matriz A, cujas colunas são os vectores dados:

```
> A=[1 2 3 4 5; 2 -3 1 1 0; 1 -1 2 2 4];
```

Ora dim CS(A) = car(A).

```
2.00000-3.000001.000001.000000.000000.000003.500002.500003.500005.000000.000000.000001.142861.000003.2857
```

Ou seja, $\dim W=3$. Como $W\subseteq\mathbb{R}^3$ e têm a mesma dimensão, então $W=\mathbb{R}^3$. Ou seja, as colunas de A geram \mathbb{R}^3 . As colunas de A que formam uma base para W são aquelas correspondentes às colunas de U que têm pivot; neste caso, as três primeiras de U. Uma base $\mathcal B$ para W é o conjunto formado pelos vectores $v_1=(1,2,1), v_2=(2,-3,-1), v_3=(3,1,2)$. Vamos agora calcular as coordenadas de b=[0; -2; -2] nesta base. Tal corresponde a resolver a equação $\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} x=b$:

> coord=inverse(B)*b
coord =

1

1.00000 1.00000 -1.00000

-3

Ou seja,
$$(0,-2,-2)_{\mathcal{B}}=\left[\begin{array}{c}1\\1\\-1\end{array}\right]$$
 .

4.4.1 Brincando com a característica

Nesta secção vamos apresentar alguns resultados importantes que se podem deduzir facilmente à custa de car(A) + nul(A) = n, onde A é uma matriz $m \times n$. Pressupõe-se que B é uma matriz tal que AB existe.

- 1. $car(AB) \leq car(A)$. Como vimos na secção anterior, $CS(AB) \subseteq CS(A)$, pelo que dim $CS(AB) \leq \dim CS(A)$.
- 2. Se B é invertível então car(A) = car(AB).
- 3. $N(B) \subseteq N(AB)$. Se $b \in N(B)$ então Bb = 0. Multiplicando ambos os lados, à esquerda, por A obtemos ABb = 0, pelo que $b \in N(AB)$.
- 4. $\operatorname{nul}(B) \leq \operatorname{nul}(AB)$.
- 5. $N(A^TA) = N(A)$. Resta mostrar que $N(A^TA) \subseteq N(A)$. Se $x \in N(A^TA)$ então $A^TAx = 0$. Multiplicando ambos os lados, à esquerda, por x^T obtemos $x^TA^TAx = 0$, pelo $(Ax)^TAx = 0$. Seja $(y_1, \ldots, y_n) = y = Ax$. De $y^Ty = 0$ obtemos $y_1^2 + y_2^2 + \ldots y_n^2 = 0$. A soma de reais não negativos é zero se e só se cada parcela é nula, pelo que cada $y_i^2 = 0$, e portanto $y_i = 0$. Ou seja, y = 0, donde segue que Ax = 0, ou seja, que $x \in N(A)$.
- 6. $\operatorname{nul}(A^T A) = \operatorname{nul}(A)$.
- 7. $car(A^TA) = car(A) = car(AA^T)$. De $car(A) + \text{nul}(A) = n = car(A^TA) + \text{nul}(A^TA)$ e $\text{nul}(A^TA) = \text{nul}(A)$ segue que $car(A^TA) = car(A)$. Da mesma forma, $car(A^T) = car(AA^T)$. Como $car(A) = car(A^T)$, obtemos $car(A) = car(AA^T)$.
- 8. Se car(A) = n então $A^T A$ é invertível. $A^T A$ é uma matriz $n \times n$ com característica igual a n, pelo que é uma matriz não-singular, logo invertível.

4.4.2 Aplicação a sistemas impossíveis

Como motivação, suponha que se quer encontrar (caso exista) a recta r de \mathbb{R}^2 que incide nos pontos (-2,-5),(0,-1),(1,1). Sendo a recta não vertical, terá uma equação da forma y=mx+c, com $m,c\in\mathbb{R}$. Como r incide nos pontos indicados, então necessariamente

$$-5 = m \cdot (-2) + c, \ -1 = m \cdot 0 + c, \ 1 = m \cdot 1 + c.$$

A formulação matricial deste sistema de equações lineares (nas incógnitas $m \in c$) é

$$\begin{bmatrix} -2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 1 \end{bmatrix}.$$

O sistema é possível determinado, pelo que a existência da recta e a sua unicidade está garantida. A única solução é (m, c) = (2, 1) e portanto a recta tem equação y = 2x - 1.

No entanto, se considerarmos como dados os pontos (-2, -5), (0, 0), (1, 1), facilmente chegaríamos à conclusão que não existe uma recta incidente nos três pontos. Para tal, basta mostrar que o sistema de equações dado pelo problema (tal como fizemos no caso anterior) é impossível. Obtemos a relação

$$b \not\in CS(A)$$
,

onde
$$A = \begin{bmatrix} -2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 e $b = \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}$. Suponha que os pontos dados correspondem a leituras

de uma certa experiência, pontos esses que, teoricamente, deveriam ser colineares. Ou seja, em algum momento houve um desvio da leitura em relação ao que se esperaria. Desconhece-se qual ou quais os pontos que sofreram incorrecções. Uma solução seria a de negligenciar um dos pontos e considerar os outros dois como correctos. É imediato concluir que este raciocínio pode levar a conclusões erróneas. Por exemplo, vamos pressupor que é o primeiro dado que está incorrecto (o ponto (-2, -5)). A rectas que passa pelos pontos (0, 0), (1, 1) tem como equação y = x. Ora se o erro esteve efectivamente na leitura do ponto (0, 0) (que deveria ser (0, -1)) então o resultado correcto está bastante distante do que obtivémos. O utilizador desconhece qual (ou quais, podendo haver leituras incorrectas em todos os pontos) dos dados sofreu erros. Geometricamente, a primeira estratégia corresponde a eliminar um dos pontos e traçar a recta que incide nos outros dois. Uma outra que, intuitivamente, parece a mais indicada, será a de, de alguma forma e com mais ou menos engenho, traçar uma recta que se tente aproximar o mais possível de todos os pontos, ainda que não incida em nenhum deles!

Vamos, de seguida, jusar todo o engenho que dispomos para encontrar a recta que se

aproxima o mais possível dos pontos (-2, -5), (0, 0), (1, 1).

Sabendo que $b \notin CS(A)$, precisamos de encontrar $b' \in CS(A)$ por forma a que b' seja o ponto de CS(A) mais próximo de b. Ou seja, pretendemos encontrar $b' \in CS(A)$ tal que $d(b,b') = \min_{c \in CS(A)} d(c,b)$, onde d(u,v) = ||u-v||. O ponto b' é o de CS(A) que minimiza a distância a b. Este ponto b' é único e é tal que b-b' é ortogonal a todos os elementos de CS(A). A b' chamamos projecção ortogonal de b sobre (ou ao longo) de CS(A), e denota-se por $proj_{CS(A)}b$.

Apresentamos, de seguida, uma forma fácil de cálculo dessa projecção, quando as colunas de A são linearmente independentes. Neste caso, A^TA é invertível e a projecção de b sobre CS(A) é dada por

$$b' = A(A^T A)^{-1} A^T b.$$

Octave

Aconselhamos que experimente o código seguinte no octave e que manipule o gráfico por forma a clarificar que $b \notin CS(A)$:

```
x=[-2;0;1]; y=[-5; 0; 1];b=y;
A=[x [1;1;1]]
alfa=-6:0.5:6;beta=alfa;
[AL,BE]=meshgrid (alfa,beta);
Z=0.5*(-AL+3*BE);
mesh(AL,BE,Z)
hold on
```

```
plot3([-5],[0],[1],'x')
projb=A*inv(A'*A)*A'*b;
plot3([projb(1,1)],[projb(2,1)],[projb(3,1)],'o')
axis ([-6, 6,-6, 6, -6,6], "square")
legend('CS(A)','b','projeccao de b');
xlabel ('x');ylabel ('y');zlabel ('z');
```

Calculou-se projb a projecção de b sobre CS(A).

Pretendemos agora encontrar x por forma a que Ax = b', ou seja, x por forma a que a distância de Ax a b seja a menor possível. Repare que se Ax = b é impossível, então essa distância será, seguramente, não nula. A equação Ax = b' é sempre possível, já que $b' = A(A^TA)^{-1}A^Tb \in CS(A)$; ou seja, b' escreve-se como Aw, para algum w (bastando tomar $w = (A^TA)^{-1}A^Tb$). No entanto, o sistema pode ser indeterminado, e nesse caso poderá interessar, de entre todas as soluções possíveis, a que tem norma mínima. O que acabámos por expôr, de uma forma leve e ingénua, denomina-se o $m\acute{e}todo\ dos\ m\'{i}nimos\ quadrados$, e a x solução de Ax = b' de norma minimal, denomina-se a solução no sentido dos mínimos quadrados de norma minimal.

Octave _

Vamos agora mostrar como encontrámos a recta que melhor se ajustava aos 3 pontos apresentados no início desta secção.

```
x=[-2;0;1]; y=[-5; 0; 1];b=y;
A=[x [1;1;1]]
xx=-6:0.5:6; solminq=inv(A'*A)*A'*b
yy=solminq(1,1)*xx+solminq(2,1);
plot(x,y,'x',xx,yy); xlabel ('x');ylabel ('y');
```

Para mudar as escalas basta fazer set(gca, "XLim", [-4 4]); set(gca, "YLim", [-6 6]), ou em alternativa axis ([-4, 4,-6, 3], "square");. Para facilitar a leitura dos pontos, digite grid on.

Uma forma alternativa de encontrar x solução de $Ax = proj_{CS(A)}b$ seria solminq=A\b em vez de solminq=inv(A'*A)*A'*b.

Ao invés de procurarmos a recta que melhor se adequa aos dados disponíveis, podemos procurar o polinómio de segundo, terceiro, etc, graus. Se os dados apresentados forem pontos de \mathbb{R}^3 , podemos procurar o plano que minimiza as somas das distâncias dos pontos a esse plano. E assim por diante, desde que as funções que definem a curva ou superfície sejam lineares nos parâmetros. Por exemplo, $ax^2 + bx + c = 0$ não é uma equação linear em x mas é-o em a e b.

No endereço http://www.nd.edu/~powers/ame.332/leastsquare/leastsquare.pdf pode encontrar informações adicionais sobre o método dos mínimos quadrados e algumas aplicações.

Em enacit1.epfl.ch/cours_matlab/graphiques.html pode encontrar alguma descrição das capacidades gráficas do *Gnu-octave* recorrendo ao *GnuPlot*.

Exemplo 4.4.6. O exemplo que de seguida apresentamos baseia-se no descrito em [3, pag.58] Suponha que se está a estudar a cinética de uma reacção enzimática que converte um substrato S num produto P, e que essa reacção segue a equação de Michaelis-Menten,

$$r = \frac{k_2[E]_0[S]}{K_m + [S]},$$

onde

- 1. $[E]_0$ indica concentração enzimática original adicionada para iniciar a reacção, em gramas de E por litro,
- 2. r é o número de gramas de S convertido por litro por minuto (ou seja, a velocidade da reacção),
- 3. k_2 é o número de gramas de S convertido por minuto por grama de E.

Depois de se efectuar uma série de experiências, obtiveram-se os dados apresentados na tabela seguinte, referentes à taxa de conversão de gramas de S por litro por minuto:

[S] g s/l	$[E]_0 = 0.005 \text{ g}_E/\text{l}$	$[E]_0 = 0.01 \text{ g}_E/\text{l}$
1.0	0.055	0.108
2.0	0.099	0.196
5.0	0.193	0.383
7.5	0.244	0.488
10.0	0.280	0.569
15.0	0.333	0.665
20.0	0.365	0.733
30.0	0.407	0.815

Re-escrevendo a equação de Michaelis-Menten como

$$\frac{[E]_0}{r} = \frac{K_m}{k_2} \frac{1}{[S]} + \frac{1}{k_2},$$

obtemos um modelo linear

$$y = b_1 x + b_0$$

com

$$y = \frac{[E]_0}{r}, x = \frac{1}{[S]}, b_0 = \frac{1}{k_2}, b_1 = \frac{K_m}{k_2}.$$

Denotemos os dados x e y por x_i e y_i , com $i=1,\ldots,8$. Este sistema de equações lineares tem a representação matricial

$$A \left[\begin{array}{c} b_1 \\ b_0 \end{array} \right] = y = \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_8 \end{array} \right]$$

$$\operatorname{com} A = \left[\begin{array}{cc} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_8 & 1 \end{array} \right]. \text{ A única solução de } A^T A \left[\begin{array}{c} b_1 \\ b_0 \end{array} \right] = y \text{ indica-nos a solução no sentido dos }$$

mínimos quadrados da equação matricial, e daqui obtemos os valores de k_2 e de K_m .

Octave _

Vamos definir S, r1 e r2 como os vectores correspondentes às colunas da tabela:

```
> S=[1;2;5;7.5;10;15;20;30];
> r1=[0.055;0.099;0.193;0.244;0.280;0.333;0.365;0.407];
> r2=[0.108;0.196;0.383;0.488;0.569;0.665;0.733;0.815];
> x=1./S;
> y1=0.005./r1;
> y2=0.01./r2;
```

Definimos também os quocientes respeitantes a y. A notação a./b indica que se faz a divisão elemento a elemento do vector b. Finalmente, definimos a matriz do sistema. Usou-se ones (8) para se obter a matriz 8×8 com 1's nas entradas, e depois seleccionou-se uma das colunas.

```
> A=[x ones(8)(:,1)]
A =
```

```
1.000000
           1.000000
0.500000
           1.000000
0.200000
          1.000000
0.133333
           1.000000
0.100000
           1.000000
0.066667
           1.000000
0.050000
           1.000000
0.033333
           1.000000
```

```
> solucao1=inv(A'*A)*A'*y1
solucao1 =
```

0.0813480

```
0.0096492
```

```
> solucao2=inv(A'*A)*A'*y2
solucao2 =
    0.0831512
    0.0094384
```

Recorde que se poderia ter usado solucao1=A\y1. Daqui obtemos valores para k_2, K_m para cada uma das experiências. Vamos denotá-los, respectivamente, por k21 Km 1 k 22 Km 2.

```
> k21=1./solucao1(2,1)
k21 = 103.64
> k22=1./solucao2(2,1)
k22 = 105.95
> Km1=solucao1(1,1)*k21
Km1 = 8.4306
> Km2=solucao2(1,1)*k22
Km2 = 8.8098
> s=0:0.1:35;
> R1=(k21.*0.005*s)./(Km1+s);
> R2=(k22.*0.01*s)./(Km2+s);
> plot(s,R1,S,r1,'o',s,R2,S,r2,'o')
> grid on; legend('E0=0.005','','E0=0.01','');
```


Capítulo 5

Valores e vectores próprios

5.1 Motivação e definições

Considere a matriz $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$. Para $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, obtemos $Ab = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Mas se tomarmos $c = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, temos que Ac = 2c. Ou seja, Ac é um múltiplo de c.

Dada uma matriz complexa A quadrada, $n \times n$, um vector $x \in \mathbb{C}^n$ não nulo diz-se um vector próprio de A se $Ax = \lambda x$, para algum $\lambda \in \mathbb{C}$. O complexo λ é denominado valor próprio, e dizemos que x é vector próprio associado a λ . O conjunto dos valores próprios de A é denotado por $\sigma(A)$ e é chamado de espectro de A.

No exemplo apresentado atrás, temos que $2 \in \sigma(A)$ e que $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ é vector próprio associado ao valor próprio 2.

Uma questão que colocamos desde já é:

Como encontrar $\sigma(A)$?

Ora, sendo A uma matriz complexa $n \times n$ e se λ é valor próprio de A então existe $x \in \mathbb{C}^n \setminus \{0\}$ para o qual $Ax = \lambda x$. Ou seja, $\lambda I_n x - Ax = \lambda x - Ax = 0$, o que equivale a $(\lambda I_n - A)x = 0$. Como $x \neq 0$, tal significa que a equação $(\lambda I_n - A)x = 0$ é consistente e que tem

solução não nula. Isto é, a matriz quadrada $\lambda I_n - A$ tem característica estritamente inferior ao número de colunas, o que acontece se e só se não é invertível, ou de forma equivalente, o seu determinante é nulo. Os valores próprios de A são os escalares λ que tornam $\lambda I_n - A$ uma matriz singular, ou seja, que satisfazem $|\lambda I_n - A| = 0$. Ora $|\lambda I_n - A|$ é um polinómio em λ , usando o teorema de Laplace, denominado polinómio característico de A, e denotado por Δ_A . Os valores próprios de A são as raizes do polinómio característico Δ_A , ou seja, as soluções da equação $\Delta_A(\lambda) = 0$. Esta equação é chamada a equação característica de A.

Determinar os valores próprios de uma matriz equivalente a determinar as raizes do seu polinómio característico. Usando o teorema de Laplace, este polinómio tem grau igual à ordem da matriz A, que assumimos $n \times n$, e é mónico: o coeficiente de λ^n de $\Delta_A(\lambda)$ é 1. Pelo Teorema Fundamental da Álgebra, sendo o grau de Δ_A igual a n este tem n raizes (contando as suas multiplicidades) sobre \mathbb{C} . Ou seja, a matriz A do tipo $n \times n$ tem então n valores próprios (contando com as suas multiplicidades). Sabendo que se $z \in \mathbb{C}$ é raiz de Δ_A então o conjugado \bar{z} de z é raiz de Δ_A , segue que se $\lambda \in \sigma(A)$ então $\bar{\lambda} \in \sigma(A)$. Em particular, se A tem um número ímpar de valores próprios (contado as suas multiplicidades) então tem pelo menos um valor próprio real. Isto é, $\sigma(A) \cap \mathbb{R} \neq \emptyset$. A multiplicidade algébrica de um valor próprio λ é a multiplicidade da raiz λ de Δ_A .

Vimos no que se discutiu acima uma forma de determinar os valores próprios de uma matriz. Dado um valor próprio λ ,

Como determinar os vectores próprios associados a $\lambda \in \sigma(A)$?

Recorde que os vectores próprios associados a $\lambda \in \sigma(A)$ são as soluções $n\~ao$ -nulas de $Ax = \lambda x$, ou seja, as soluções $n\~ao$ nulas de $(\lambda I_n - A)x = 0$. Isto é, os vectores próprios de A associados a λ são os elementos $n\~ao$ nulos de $N(\lambda I_n - A)$. Recorde que o núcleo de qualquer matriz é um espaço vectorial, e portanto $N(\lambda I_n - A)$ é o espaço vectorial dos vectores próprios de A associados a λ juntamente com o vector nulo, e denomina-se espaço próprio de A associado a λ . A multiplicidade geométrica de λ é a dimensão do espaço próprio associado a λ , isto é, dim $N(\lambda I_n - A)$.

O resultado seguinte resume o que foi afirmado na discussão anterior.

Teorema 5.1.1. Sejam A uma matriz $n \times n$ e $\lambda \in \mathbb{C}$. As afirmações seguintes são equivalentes:

- 1. $\lambda \in \sigma(A)$;
- 2. $(\lambda I_n A)x = 0$ é uma equação possível indeterminada;
- 3. $\exists_{x \in \mathbb{C}^n \setminus \{0\}} Ax = \lambda x$;
- 4. λ é solução de $|\tilde{\lambda}I_n A| = 0$.

Para a matriz considerada acima, $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$, o seu polinómio característico é

 $\Delta_A(\lambda) = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda + 2 \end{vmatrix} = \lambda^2 + \lambda - 6$, cujas raizes são -3, 2. Portanto, $\sigma(A) = \{-3, 2\}$, e cada valor próprio de A tem multiplicidade algébrica igual a 1.

Teorema 5.1.2. Sejam A uma matriz quadrada e $\lambda \in \sigma(A)$ com multiplicidade algébrica ν_{λ} e multiplicidade geométrica η_{λ} . Então

 $\nu_{\lambda} \geq \eta_{\lambda}$.

Octave

Defina a matriz A no Octave:

1 2 2 -2

Os coeficientes do polinómio característico de A, por ordem decrescente do expoente de λ , são obtidos assim:

1 1 -6

Ou seja, $\Delta_A(\lambda)=\lambda^2+\lambda-6$. As raizes de Δ_A são os elementos de $\sigma(A)$:

-3

2

A multiplicidade algbébrica de cada um deles é 1.

Os valores próprios de uma matriz dada são calculados de forma directa fazendo uso de

Resta-nos determinar vectores próprios associados a cada um destes valores próprios. Recorde que os vectores próprios associados a -3 [resp. 2] são os elementos não nulos de $N(-3I_2-A)$ [resp. $N(2I_2-A)$], pelo que nos basta pedir uma base para cada espaço próprio:

```
> null(-3*eye(2)-A)
ans =
     0.44721
    -0.89443
> null(2*eye(2)-A)
ans =
     0.89443
     0.44721
```

Ora a dimensão de cada um desses espaços vectoriais é 1, pelo que, neste caso, as multiplicidades algébrica e geométrica de cada um dos valores próprios são iguais. Mais adiante mostraremos uma forma mais expedita de obtermos estas informações.

5.2 Propriedades

Nos resultados que se seguem descrevemos algumas propriedades dos valores própios.

Teorema 5.2.1. Dada uma matriz quadrada A,

$$\sigma(A) = \sigma(A^T).$$

Demonstração. Recorde que $|\lambda I - A| = |(\lambda I - A)^T| = |\lambda I - A^T|$.

Teorema 5.2.2. Os valores próprios de uma matriz triangular (inferior ou superior) são os seus elementos diagonais.

Demonstração. Seja $A = [a_{ij}]$ triangular superior, $n \times n$. Ora $\sigma(A)$ é o conjunto das soluções de $|\lambda I_n - A|$. Mas $\lambda I_n - A$ é de novo uma matriz triangular superior já que λI_n é diagonal. Portanto $|\lambda I_n - A|$ é o produto dos seus elementos diagonais, ou seja, $(\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn})$, que tem como raizes $a_{11}, a_{22}, \ldots, a_{nn}$.

Teorema 5.2.3. Uma matriz A, quadrada, é invertível se e só se $0 \notin \sigma(A)$.

Demonstração. Sejam A uma matriz quadrada de ordem n e $\Delta_A(\lambda) = \lambda^n + c_1\lambda^{n-1} + \cdots + c_{n-1}\lambda + c_n$ o polinómio característico de A. Ora $0 \in \sigma(A)$ se e só se 0 é raiz de Δ_A , ou de forma equivalente, $c_n = 0$.

Por definição, $\Delta_A(\lambda) = |\lambda I_n - A|$. Tomando $\lambda = 0$ obtemos $(-1)^n |A| = |-A| = c_n$. tal implica que |A| = 0 se e só se $c_n = 0$. Portanto A não é invertível se e só se $c_n = 0$ o que por sua vez vimos ser equivalente a $0 \in \sigma(A)$.

Teorema 5.2.4. Sejam A uma matriz quadrada e $k \in \mathbb{N}$. Se $\lambda \in \sigma(A)$ e x é vector próprio associado a λ então $\lambda^k \in \sigma(A^k)$ e x é vector próprio de A^k associado a λ^k .

Demonstração. Se $\lambda \in \sigma(A)$ e x é vector próprio associado a λ então $Ax = \lambda x$. Desta igualdade segue que, para qualquer $k \in \mathbb{N}$, se tem

$$A^k x = A^{k-1} A x = A^{k-1} \lambda x = \lambda A^{k-1} x = \dots = \lambda^k x$$

e portanto $\lambda \in \sigma(A^k)$ e x é vector próprio de A^k associado a λ^k .

Recordamos que uma matriz $N, n \times n$, se diz nilpotente se existir um natural k para o qual $N^k = 0_{n \times n}$.

Alertamos ainda para o facto de $\sigma(0_{n\times n}) = \{0\}$; isto é, a matriz nula só tem um valor próprio: o zero.

Corolário 5.2.5. Se N é uma matriz nilpotente então $\sigma(N) = \{0\}$.

Demonstração. Suponha que k é tal que $N^k = 0_{n \times n}$. Seja $\lambda \in \sigma(N)$. Então λ^k é valor próprio de $N^k = 0_{n \times n}$; portanto, $\lambda^k = 0$, do que segue que $\lambda = 0$.

Terminamos esta secção com duas observações, omitindo a sua prova:

- (i) O determinante de uma matriz iguala o produto dos seus valores próprios.
- (ii) O traço de uma matriz (ou seja, a soma dos elementos diagonais de uma matriz) iguala a soma dos seus valores próprios.

5.3 Matrizes diagonalizáveis

Nesta secção, vamo-nos debruçar sobre dois problemas, que aliás, e como veremos, estão relacionados. Assume-se que A é uma matriz $n \times n$ sobre \mathbb{C} . Essas questões são:

- # 1. Existe uma base de \mathbb{C}^n constituída por vectores próprios de A?
- # 2. Existe uma matriz U invertível para a qual $U^{-1}AU$ é uma matriz diagonal?

Recordamos a noção de semelhança entre matrizes. As matriz A e B dizem-se semelhantes, e denota-se por $A \approx B$, se existir uma matriz invertível U para a qual $B = U^{-1}AU$. Repare que as matrizes A, B são necessariamente quadradas.

É óbvio que se $A \approx B$ então $B \approx A$; de facto, se $B = U^{-1}AU$ então $UBU^{-1} = A$.

Definição 5.3.1. Uma matriz quadrada A diz-se diagonalizável se existir uma matriz diagonal D tal que $A \approx D$. Isto é, $A = UDU^{-1}$, para alguma matriz U invertível. À matriz U chamamos matriz diagonalizante.

É óbvio que uma matriz diagonal é diagonalizável, bastando tomar a matriz identidade como matriz diagonalizante.

O resultado seguinte não só nos caracteriza as matrizes diagonalizáveis, mas também, à custa da sua prova, obtemos um algoritmo para encontrar a matriz diagonal e a a respectiva matriz diagonalizante.

Teorema 5.3.2. Uma matriz $n \times n$ é diagonalizável se e só se tiver n vectores próprios linearmente independentes.

Demonstração. Em primeiro lugar, assumimos que A é diagonalizável; ou seja, existe uma

matriz
$$U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$$
 invertível tal que $U^{-1}AU = D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$.

Como é óbvio, de $U^{-1}AU = D$ segue que AU = UD. Portanto,

$$\begin{bmatrix} Au_1 & Au_2 & \cdots & Au_n \end{bmatrix} = AU = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 u_1 & \lambda_2 u_2 & \cdots & \lambda_n u_n \end{bmatrix}$$

e portanto

$$\begin{cases}
Au_1 &= \lambda_1 u_1 \\
Au_2 &= \lambda_2 u_2 \\
\vdots &\vdots \\
Au_n &= \lambda_n u_n
\end{cases}$$

Como U é invertível, então não pode ter colunas nulas, pelo que $u_i \neq 0$. Portanto, $\lambda_1, \lambda_2, \ldots, \lambda_n$ são valores próprios de A e u_1, u_2, \ldots, u_n são respectivos vectores próprios. Sendo U invertível, as suas colunas são linearmente independentes, e portanto A tem n vectores próprios linearmente independentes.

Reciprocamente, suponha que A tem n vectores próprios linearmente independentes. Sejam eles os vectores u_1,u_2,\ldots,u_n , associados aos valores próprios (não necessariamente distintos) $\lambda_1,\lambda_2,\ldots,\lambda_n$. Seja U a matriz cujas colunas são os vectores próprios considerados acima. Ou seja, $U=\begin{bmatrix}u_1&u_2&\cdots&u_n\end{bmatrix}$. Ora esta matriz quadrada $n\times n$ tem característica igual a n, pelo que é invertível. De

$$\begin{cases}
Au_1 &= \lambda_1 u_1 \\
Au_2 &= \lambda_2 u_2 \\
\vdots &\vdots \\
Au_n &= \lambda_n u_n
\end{cases}$$

segue que $\begin{bmatrix} Au_1 & Au_2 & \cdots & Au_n \end{bmatrix} = \begin{bmatrix} \lambda_1 u_1 & \lambda_2 u_2 & \cdots & \lambda_n u_n \end{bmatrix}$ e portanto

$$A\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}.$$

Multiplicando ambas as equações, à esquerda, por $\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}^{-1}$, obtemos

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}^{-1} A \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}.$$

Realçamos o facto da demonstração do teorema nos apresentar um algoritmo de diagonalização de uma matriz $n \times n$ com n vectores linearmente independentes. De facto, de

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}^{-1} A \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \text{ obtemos}$$

$$A = \left[\begin{array}{cccc} u_1 & u_2 & \cdots & u_n \end{array} \right] \left[\begin{array}{cccc} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{array} \right] \left[\begin{array}{cccc} u_1 & u_2 & \cdots & u_n \end{array} \right]^{-1}.$$

Uma matriz diagonalizante é a matriz cujas colunas são os vectores próprios linearmente independentes dados, e a matriz diagonal correspondente é a matriz cuja entrada (i,i) é o valor próprio λ_i correspondente à coluna i (e portanto ao i–ésimo vector próprio) da matriz diagonalizante.

Para a matriz $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$, vimos atrás que $\sigma(A) = \{-3, 2\}$. Será A diagonalizável? Um vector próprio associado ao valor próprio -3 é um elemento não nulo de $N(-3I_2 - A)$. Encontrar um vector próprio associado a -3 é equivalente a encontrar uma solução não nula de $(-3I_2 - A)x = 0$. Fica ao cargo do leitor verificar que $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ é vector próprio associado ao valor próprio -3, e fazendo o mesmo raciocínio, que $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ é vector próprio associado ao valor próprio 2. Ora estes dois vectores são linearmente independentes, visto car $\begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix} = 2$. Portanto, a matriz A é diagonalizável, sendo a matriz diagonalizante $U = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$ e a matriz diagonal $\begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix}$.

Octave _____

A diagonalização, se possível, pode ser obtida de forma imediata como Octave:

Aqui, a matriz q, ou seja, o primeiro argumento de saída de eig, indica uma matriz diagonalizante, e o segundo argumento, i.e., e, indica a matriz diagonal cujas entradas diagonais são os valores próprios. Repare, ainda, que a coluna i de q é um vector próprio associado ao valor próprio que está na entrada (i,i) de e. Façamos, então, a verificação:

```
> q*e*inverse (q)
ans =

1.0000  2.0000
2.0000  -2.0000
```

Considere agora a matriz $B=\begin{bmatrix}0&0\\1&0\end{bmatrix}$. Esta matriz é nilpotente, pelo que $\sigma(B)=\{0\}$. O espaço próprio associado a 0 é N(-B)=N(B). Ora $\operatorname{car}(B)=1$, pelo que $\operatorname{nul}(B)=1$, e portanto a multiplicidade geométrica do valor próprio 0 é 1 (repare que a multiplicidade algébrica do valor próprio 0 é 2). Ou seja, não é possível encontrar 2 vectores próprios linearmente independentes.

ave _____

Considere a matriz C=[2 1; 0 2]. Sendo triangular superior, os seus valores próprios são os elementos diagonais da matriz. Isto é, $\sigma(C)=\{2\}$. Repare que a multiplicidade algébrica do valor próprio 2 é 2.

2

Repare que $\operatorname{car}(2*I_2-C)=\operatorname{car}\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]=1$, pelo que $\operatorname{nul}(2*I_2-C)=1$. Logo, não é possível encontrar 2 vectores próprios de C linearmente independentes, e portanto C não é diagonalizável.

- 1 NaN
- 0 NaN

e =

- 2 0
- 0 2

É, todavia, apresentada uma base do espaço próprio de C associado ao valor próprio 2, nomeadamente a primeira coluna da matriz q.

Considere agora a matriz $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -2 & 2 \\ 0 & 0 & -3 \end{bmatrix}$.

Octave

Para A=[1 2 1;2 -2 2; 0 0 -3] tem-se $\sigma(A)=\{-3,2\}$, sendo as multiplicidades algébricas de -3 e 2, respectivamente, 2 e 1.

2

-3

-3

Como $car(-3I_3-A)=2$, temos que $nul(-3I_3-A)=1$, e portanto a multiplicidade geométrica do valor próprio -3 é 1. Portanto, a matriz não é diagonalizável pois não é possível encontrar 3 vectores próprios linearmente independentes.

0.89443 -0.44721

NaN

0.44721 0.89443 NaN 0.00000 0.00000 NaN

e =

2 0 0

0 -3 0

0 0 -3

A primeira coluna de q é um vector próprio associado a 2 e a segunda coluna de q é um vector próprio associado a -3

O que se pode dizer em relação à independência linear de um vector próprio associado a -3 e um vector próprio associado a 2?

Teorema 5.3.3. Sejam v_1, v_2, \ldots, v_k vectores próprios associados a valores próprios $\lambda_1, \lambda_2, \ldots, \lambda_k$ distintos entre si. Então $\{v_1, v_2, \ldots, v_k\}$ é um conjunto linearmente independente.

Demonstração. Suponhamos que $\{v_1, v_2, \ldots, v_k\}$ é um conjunto linearmente dependente, sendo v_1, v_2, \ldots, v_k vectores próprios associados a valores próprios $\lambda_1, \lambda_2, \ldots, \lambda_k$ distintos entre si. Pretendemos, desta forma, concluir um absurdo.

Seja r o menor inteiro para o qual o conjunto $\{v_1, v_2, \ldots, v_r\}$ é linearmente independente. Ora $r \geq 1$ já que $v_1 \neq 0$ (pois é v_1 é vector próprio) e r < k já que o conjunto dos vectores próprios é linearmente dependente. Sendo o conjunto $\{v_1, v_2, \ldots, v_{r+1}\}$ linearmente dependente, existem escalares $\alpha_1, \alpha_2, \ldots, \alpha_r, \alpha_{r+1}$ não todos nulos para os quais

$$\sum_{i=1}^{r+1} \alpha_i v_i = 0$$

o que implica que $A\sum_{i=1}^{r+1}\alpha_iv_i=\sum_{i=1}^{r+1}\alpha_iAv_i=0$, e portanto

$$\sum_{i=1}^{r+1} \alpha_i \lambda_i v_i = 0.$$

Por outro lado, $\sum_{i=1}^{r+1} \alpha_i v_i = 0$ implica que $\lambda_{r+1} \sum_{i=1}^{r+1} \alpha_i v_i = 0$ e portanto

$$\sum_{i=1}^{r+1} \alpha_i \lambda_{r+1} v_i = 0.$$

Fazendo a diferença das duas equações, obtemos $\sum_{i=1}^{r+1} \alpha_i (\lambda_i - \lambda_{r+1}) v_i = 0$, e portanto $\sum_{i=1}^r \alpha_i (\lambda_i - \lambda_{r+1}) v_i = 0$. Como $\{v_1, v_2, \dots, v_r\}$ é linearmente independente, segue que $\alpha_i (\lambda_i - \lambda_{r+1}) = 0$, o que implica, e visto $\lambda_i - \lambda_{r+1} \neq 0$ já que os valores próprios são distintos, que $\alpha_i = 0$, com $i = 1 \dots, r$. Mas $\sum_{i=1}^{r+1} \alpha_i v_i = 0$, o que juntamente com as igualdades $\alpha_i = 0$, com $i = 1 \dots, r$, leva a que $\alpha_{r+1} v_{r+1} = 0$. Como $v_{r+1} \neq 0$ já que é vector próprio, segue que $\alpha_{r+1} = 0$. Tal contradiz o facto de existirem escalares $\alpha_1, \alpha_2, \dots, \alpha_r, \alpha_{r+1}$ não todos nulos para os quais $\sum_{i=1}^{r+1} \alpha_i v_i = 0$.

Alertamos para o facto do recíproco do teorema ser falso. Repare que a matriz identidade I_n tem 1 como único valor próprio, e a dimensão de $N(I_n - I_n)$ ser n, e portanto há n vectores próprios linearmente independentes associados a 1.

Se uma matriz $n \times n$ tem os seus n valores próprios distintos então, pelo teorema, tem n vectores próprios linearmente independentes, o que é equivalente a afirmar que a matriz é diagonalizável.

Corolário 5.3.4. Uma matriz com os seus valores próprios distintos é diagonalizável.

Mais uma vez alertamos para o facto do recíproco do corolário ser *falso*. Isto é, há matrizes diagonalizáveis que têm valores próprios com multiplicidade algébrica *superior* a 1.

Octave

Considere a matriz A=[0 0 -2; 1 2 1; 1 0 3]. Esta matriz tem dois valores próprios distintos.

```
> A=[0 0 -2; 1 2 1; 1 0 3];
> eig(A)
ans =

2
1
2
```

Repare que o valor próprio 2 tem multiplicidade algébrica igual a 2, enquanto que a multiplicidade algébrica do valor próprio 1 é 1. Pelo teorema anterior, um vector próprio associado a 2 e um vector próprio associado a 1 são linearmente independentes. Repare que a multiplicidade geométrica de 2 é também 2, calculando rank(2*eye(3)-A).

```
> rank(2*eye(3)-A)
ans = 1
```

Como a característica de $2I_3-A$ é 1 então $\mathrm{nul}(2I_3-A)=2$, e portanto existem dois vectores próprios linearmente independentes associados a 2. Uma base do espaço próprio associado a 2 pode ser obtida assim:

```
> null(2*eye(3)-A)
ans =

-0.70711   0.00000
   0.00000   1.00000
   0.70711   0.00000
```

Estes juntamente com um vector próprio associado ao valor próprio 1 formam um conjunto linearmente independente, pois vectores próprios associados a valor próprios distintos são linearmente independentes. Ou seja, há 3 vectores próprios linearmente independentes, donde segue que a matriz A é diagonalizável.

```
> [v,e]=eig (A)
                       0.70656
   0.00000 -0.81650
   1.00000
             0.40825
                       0.03950
   0.00000
             0.40825 -0.70656
e =
     0
       0
  0
    1
       0
    0
        2
> v*e*inverse(v)
ans =
  -0.00000
             0.00000 -2.00000
   1.00000
             2.00000
                       1.00000
   1.00000
             0.00000
                       3.00000
```

Capítulo 6

Transformações lineares

6.1 Definição e exemplos

Definição 6.1.1. Sejam V, W espaços vectoriais sobre \mathbb{K} . Uma transformação linear ou aplicação linear de V em W é uma função $T: V \to W$ que satisfaz, para $u, v \in V, \alpha \in \mathbb{K}$,

1.
$$T(u+v) = T(u) + T(v)$$
;

2.
$$T(\alpha u) = \alpha T(u)$$
.

Para $F, G: \mathbb{R}^2 \to \mathbb{R}^4$ definidas por

$$F(x,y) = (x - y, 2x + y, 0, y)$$

 \mathbf{e}

$$G(x,y) = (x^2 + y^2, 1, |x|, y),$$

tem-se que F é linear enquanto G não o é. De facto, para $u_1=(x_1,y_1), u_2=(x_2,y_2)$ e $\alpha\in\mathbb{K}$, temos $F(u_1+u_2)=F(x_1+x_2,y_1+y_2)=(x_1+x_2-y_1-y_2,2x_1+2x_2+y_1+y_2,0,y_1+y_2)=(x_1-y_1,2x_1+y_1,0,y_1)+(x_2-y_2,2x_2+y_2,0,y_2)=F(u_1)+F(u_2),$ e $F(\alpha u_1)=F(\alpha x_1,\alpha y_1)=(\alpha x_1-\alpha y_1,2\alpha x_1+\alpha y_1,0,\alpha y_1)=\alpha(x_1-y_1,2x_1+y_1,0,y_1)=\alpha F(u_1),$ enquanto que $G(-(1,1))=G(-1,-1)=((-1)^2+(-1)^2,1,|-1|,-1)=(2,1,1,-1)\neq -(2,1,1,1)=-G(1,1)$

Apresentamos alguns exemplos clássicos de transformações lineares:

- 1. Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $T_A : \mathbb{K}^n \to \mathbb{K}^m$ definida por $T_A(x) = Ax$. A aplicação T_A é uma transformação linear. Ou seja, dada uma matriz, existe uma transformação linear associada a ela. No entanto, formalmente são entidades distintas. Mais adiante, iremos ver que qualquer transformação linear está associada a uma matriz.
- 2. Seja $V = C^{\infty}(\mathbb{R})$ o espaço vectorial sobre \mathbb{R} constituído pelas funções reais de variável real infinitamente (continuamente) diferenciáveis sobre \mathbb{R} . Seja $D: V \to V$ definida por D(f) = f'. Então, usando noções elementares de análise, é uma transformação linear.

- 3. A aplicação $F: \mathbb{K}_n[x] \to \mathbb{K}_{n-1}[x]$ definida por F(p) = p', onde $p \in \mathbb{K}_n[x]$ e p' denota a derivada de p em ordem a x, é uma transformação linear.
- 4. Sejam $A \in \mathcal{M}_{n \times p}(\mathbb{K})$ e $F : \mathcal{M}_{m \times n}(\mathbb{K}) \to \mathcal{M}_{m \times p}(\mathbb{K})$ definida por F(X) = XA. Usando as propriedades do produto matricial, F é uma transformação linear.
- 5. A aplicação $Trans: \mathcal{M}_{m\times n}(\mathbb{K}) \to \mathcal{M}_{n\times m}(\mathbb{K})$ definida por $Trans(A) = A^T$ é uma transformação linear.
- 6. Seja V um espaço vectorial arbitrário sobre \mathbb{K} . As aplicações $I,O:V\to V$ definidas por I(v)=v e O(v)=0 são transformações lineares. Denominam-se, respectivamente, por transformação identidade e transformação nula.

Definição 6.1.2. Seja T uma transformação linear do espaço vectorial V para o espaço vectorial W.

- 1. Se V = W, diz-se que T é um endomorfismo de V.
- 2. A um homomorfismo injectivo de V sobre W chama-se monomorfismo de V sobre W; a um homomorfismo sobrejectivo de V sobre W chama-se epimorfismo de V sobre W; a um homomorfismo bijectivo de V sobre W chama-se isomorfismo de V sobre W; a um endomorfismo bijectivo de V chama-se automorfismo de V.
- 3. V e W são ditos isomorfos, e representa-se por $V \cong W$, se existir uma transformação linear de V em W que seja um isomorfismo.

6.2 Propriedades das transformações lineares

Proposição 6.2.1. Sejam V,W espaços vectoriais sobre \mathbb{K} e $T\colon V\to W$ uma transformação linear. Então

- 1. $T(0_v) = 0_w \text{ para } 0_v \in V, \ 0_w \in W;$
- 2. $T(-v) = -T(v), \forall v \in V;$

3.
$$T(\sum_{i=0}^{n} \alpha_i v_i) = \sum_{i=1}^{n} \alpha_i T(v_i), \ v_i \in V, \ \alpha_i \in \mathbb{K};$$

4. Se $v_1, v_2, ..., v_n$ são vectores de V linearmente dependentes, então $T(v_1), T(v_2), ..., T(v_n)$ são vectores de W linearmente dependentes.

Demonstração. As afirmações 1–3 seguem da definição de transformação linear. Mostremos (4).

Se $v_1, v_2, ..., v_n$ são vectores de V linearmente dependentes então um deles, digamos v_k , escreve-se como combinação linear dos restantes:

$$v_k = \sum_{i=0, i \neq k}^n \alpha_i v_i.$$

Aplicando T a ambos os membros da equação,

$$T(v_k) = T\left(\sum_{i=0, i\neq k}^n \alpha_i v_i\right) = \sum_{i=1, i\neq k}^n \alpha_i T(v_i),$$

e portanto $T(v_k)$ escreve-se como combinação linear de $T(v_1), T(v_2), T(v_{k-1}), \ldots, T(v_{k+1}), \ldots, T(v_n)$. Segue que $T(v_1), T(v_2), \ldots, T(v_n)$ são vectores de W linearmente dependentes. \square

Em geral, uma transformação ${\bf n \tilde{a}o}$ preserva a independência linear. Por exemplo, a transformação linear

$$\begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ T: & (x,y) & \longrightarrow & (0,y). \end{array}$$

As imagens da base canónica de \mathbb{R}^2 não são linearmente independentes.

Recordamos que, apesar de indicarmos uma base como um conjunto de vectores, é importante a ordem pela qual estes são apresentados. Ou seja, uma base é um n-uplo de vectores. Por forma a não ser confundida por um n-uplo com entradas reais, optámos por indicar uma base como um conjunto. É preciso enfatizar esta incorrecção (propositadamente) cometida.

Teorema 6.2.2. Sejam V, W espaços vectoriais, $\{v_1, \ldots, v_n\}$ uma base de V e $w_1, \ldots, w_n \in W$ não necessariamente distintos. Então existe uma única transformação linear $T: V \to W$ tal que

$$T(v_1) = w_1, T(v_2) = w_2, \dots, T(v_n) = w_n.$$

Demonstração. Se $\{v_1, \ldots, v_n\}$ é uma base de V, então todo o elemento de v escreve-se de forma única como combinação linear de v_1, \ldots, v_n . Isto é, para qualquer $v \in V$, existem $\alpha_i \in \mathbb{K}$ tais que

$$v = \sum_{i=1}^{n} \alpha_i v_i.$$

Seja $T: V \to W$ definida por

$$T\left(\sum_{i} \alpha_{i} v_{i}\right) = \sum_{i} \alpha_{i} w_{i}.$$

Obviamente, $T(v_i) = w_i$. Observe-se que T é de facto uma aplicação pela unicidade dos coeficientes da combinação linear relativamente à base. Mostre-se que T assim definida é

linear. Para $\alpha \in \mathbb{K}$, $u = \sum_i \beta_i v_i$ e $w = \sum_i \gamma_i v_i$,

$$T(u+w) = T\left(\sum_{i} \beta_{i} v_{i} + \sum_{i} \gamma_{i} v_{i}\right)$$

$$= T\left(\sum_{i} (\beta_{i} + \gamma_{i}) v_{i}\right)$$

$$= \sum_{i} (\beta_{i} + \gamma_{i}) w_{i}$$

$$= \sum_{i} \beta_{i} w_{i} + \sum_{i} \gamma_{i} w_{i}$$

$$= T(u) + T(w)$$

e

$$T(\alpha u) = T(\alpha \sum_{i} \beta_{i} v_{i})$$

$$= T(\sum_{i} \alpha \beta_{i} v_{i})$$

$$= \sum_{i} \alpha \beta_{i} w_{i}$$

$$= \alpha \sum_{i} \beta_{i} w_{i} = \alpha T(u).$$

Portanto, T assim definida é linear.

Mostre-se, agora, a unicidade. Suponhamos que T' é uma aplicação linear que satisfaz $T'(v_i) = w_i$, para todo o i no conjunto dos índices. Seja $v \in V$, com $v = \sum_i \alpha_i v_i$. Então

$$T'(v) = T\left(\sum_{i} \alpha_{i} v_{i}\right)$$

$$= \sum_{i} T'(v_{i})$$

$$= \sum_{i} \alpha_{i} w_{i}$$

$$= \sum_{i} \alpha_{i} T(v_{i})$$

$$= T\left(\sum_{i} \alpha_{i} v_{i}\right) = T(v).$$

Portanto, T = T'.

Teorema 6.2.3. Todo o espaço vectorial de dimensão n sobre o corpo \mathbb{K} é isomorfo a \mathbb{K}^n .

Demonstração. Seja $\{v_1,v_2,...,v_n\}$ uma base de V e v um vector qualquer de V. Então $v=\alpha_1v_1+\alpha_2v_2+...+\alpha_nv_n,\ \alpha_i\in\mathbb{K}$. Vamos definir uma transformação T,

$$\begin{array}{ccc} V & \longrightarrow & \mathbb{K}^n \\ T : & v & \longrightarrow & (\alpha_1, \alpha_2, ..., \alpha_n) \end{array}.$$

Pretendemos mostrar que esta aplicação é um isomorfismo de espaços vectoriais.

(a) A aplicação T é bijectiva.

Primeiro, verificamos que T é injectiva, i.e., que

$$T(u) = T(v) \Longrightarrow u = v, \ \forall \ u, v \in V.$$

Ora,

$$T(u) = T(v) \iff T(\sum_{i=1}^{n} \alpha_{i} v_{i}) = T(\sum_{i=1}^{n} \beta_{i} v_{i})$$

$$\iff (\alpha_{1}, \alpha_{2}, ..., \alpha_{n}) = (\beta_{1}, \beta_{2}, ..., \beta_{n})$$

$$\iff \alpha_{i} = \beta_{i}$$

$$\iff \sum_{i=1}^{n} \alpha_{i} v_{i} = \sum_{i=1}^{n} \beta_{i} v_{i}$$

$$\iff u = v.$$

Mostramos, agora, que T é sobrejectiva, i.e., que

$$\forall x \in \mathbb{K}^n, \exists w \in V : f(w) = x.$$

Temos sucessivamente,

f é sobrejectiva $\iff \forall x \in \mathbb{K}^n, \exists w \in V : f(w) = x \iff \forall (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{K}^n, \exists w = \delta_1 v_1 + \delta_2 v_2 + ... + \delta_n v_n \in V : T(\delta_1 v_1 + \delta_2 v_2 + ... + \delta_n v_n) = (\delta_1, \delta_2, ..., \delta_n).$

(b) A aplicação T é linear.

$$T(u+v) = T(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n + \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n)$$

$$= T[(\alpha_1 + \beta_1) v_1 + (\alpha_2 + \beta_2) v_2 + \dots + (\alpha_n + \beta_n) v_n]$$

$$= (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_n + \beta_n)$$

$$= (\alpha_1, \alpha_2, \dots, \alpha_n) + (\beta_1, \beta_2, \dots, \beta_n)$$

$$= T(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n) + T(\beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n)$$

$$= T(u) + T(v)$$

e

$$T(\alpha u) = T(\alpha(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n))$$

$$= T((\alpha \alpha_1) v_1 + (\alpha \alpha_2) v_2 + \dots + (\alpha \alpha_n) v_n)$$

$$= (\alpha \alpha_1, \alpha \alpha_2, \dots, \alpha \alpha_n)$$

$$= \alpha(\alpha_1, \alpha_2, \dots, \alpha_n)$$

$$= \alpha T(\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n)$$

$$= \alpha T(u)$$

Corolário 6.2.4. Sejam U e V dois espaços vectoriais sobre mesmo corpo \mathbb{K} . Se U e V têm a mesma dimensão, então U e V são isomorfos.

Por exemplo, o espaço vectorial $\mathcal{M}_{2\times 3}(\mathbb{R})$ é isomorfo a \mathbb{R}^6 . De facto, considerando a base de $\mathcal{M}_{2\times 3}(\mathbb{R})$

$$\left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right], \left[\begin{array}{cccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right], \left[\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right], \left[\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right], \left[\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right],$$

as coordenadas de $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ é o vector (a, b, c, d, e, f). Definindo a aplicação $T: \mathcal{M}_{2\times 3}(\mathbb{R}) \to \mathbb{R}^6$ definida por $T\left(\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}\right) = (a, b, c, d, e, f)$, é linear e é bijectiva. Logo, $\mathcal{M}_{2\times 3}(\mathbb{R}) \cong \mathbb{R}^6$.

Da mesma forma, o espaço vectorial $\mathbb{R}_2[x]$ dos polinómios de grau não superior a 2, juntamente com o polinómio nulo, é isomorfo a \mathbb{R}^3 . Fixando a base de $\mathbb{R}_2[x]$ constituída pelos polinómios p,q,r definidos por $p(x)=1,q(x)=x,r(x)=x^2$ e a base canónica de \mathbb{R}^3 a transformação linear que aplica p em (1,0,0),q em (0,1,0) e r em (0,0,1) é um isomorfismo de $\mathbb{R}_2[x]$ em \mathbb{R}^3 .

Pelo exposto acima, é fácil agora aceitar que $\mathcal{M}_{m \times n}(\mathbb{R}) \cong \mathbb{R}^{mn}$ ou que $\mathbb{R}_n[x] \cong \mathbb{R}^{n+1}$.

Para finalizar esta secção, note que \mathbb{C} , enquanto espaço vectorial sobre \mathbb{R} , é isomorfo a \mathbb{R}^2 . De facto, 1 e i formam uma base de \mathbb{C} , enquanto espaço vectorial sobre \mathbb{R} . São linearmente independentes (a+bi=0 força a=b=0) e todo o complexo z escreve-se como a+bi, com $a,b\in\mathbb{R}$. O isomorfismo pode ser dado pela transformação linear que aplica 1 em (1,0) e i em (0,1).

6.3 Matriz associada a uma transformação linear

Iremos concluir que todas as transformações lineares de $\mathbb{K}^n \to \mathbb{K}^m$ podem ser representadas por matrizes do tipo $m \times n$. Como motivação, consideramos alguns exemplos.

Sejam e_1, e_2, e_3 elementos da base canónica B_1 de \mathbb{R}^3 e e_1^*, e_2^* os elementos da base canónica B_1^* de \mathbb{R}^2 . Seja ainda $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$T(e_1) = a_{11}e_1^* + a_{21}e_2^*$$

 $T(e_2) = a_{12}e_1^* + a_{22}e_2^*$
 $T(e_3) = a_{13}e_1^* + a_{23}e_2^*$

Recorde que a transformação linear está bem definida à custa das imagens dos vectores de uma base.

Se
$$x = (x_1, x_2, x_3) \in \mathbb{R}^3$$
, então

$$T(x) = T(x_1e_1 + x_2e_2 + x_3e_3) = x_1T(e_1) + x_2T(e_2) + x_3T(e_3)$$

$$= x_1 \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} + x_3 \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = Ax$$

Por outras palavras, a transformação linear definida atrás pode ser representado à custa de uma matriz $A \in \mathcal{M}_{2\times 3}(\mathbb{R})$, que tem como colunas as coordenadas em relação a B_1^* das imagens dos vectores $e_i \in \mathbb{R}^3, i=1,2,3$ por T. Desta forma, dizemos que nas condições do exemplo anterior, a matriz A é a representação matricial de T relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 .

Por exemplo, considere a aplicação linear T definida por

$$T(1,0,0) = (4,-1) = 4(1,0) - 1(0,1)$$

 $T(0,1,0) = (-2,5) = -2(1,0) + 5(0,1)$
 $T(0,0,1) = (3,-2) = 3(1,0) - 2(0,1)$

A matriz que representa T em relação às bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 é $A=\begin{bmatrix} 4 & -2 & 3 \\ -1 & 5 & -2 \end{bmatrix}$. Para todo $v\in\mathbb{R}^3$, T(v)=Av.

Repare que os cálculos envolvidos foram simples de efectuar já que usámos as bases canónicas dos espaços vectoriais. Tal não será, certamente, o caso se usarmos outras bases que não as canónicas. Neste caso, teremos que encontrar as coordenadas das imagens dos elementos da base do primeiro espaço vectorial em relação à base fixada previamente do segundo espaço vectorial. Vejamos o exemplo seguinte:

Sejam $\{u_1, u_2, u_3\}$ base B_2 de \mathbb{R}^3 e $\{v_1, v_2\}$ base B_2^* de \mathbb{R}^2 . Se $x \in \mathbb{R}^3$, então $x = \xi_1 u_1 + \xi_2 u_2 + \xi_3 u_3$, e consequentemente

$$T(x) = \xi_1 T(u_1) + \xi_2 T(u_2) + \xi_3 T(u_3).$$

Por outro lado, $T(u_i) \in \mathbb{R}^2$, i = 1, 2, 3, logo, podemos escrever estes vectores como combinação linear de v_1 e v_2 . Assim,

$$T(u_1) = b_{11}v_1 + b_{21}v_2$$

$$T(u_2) = b_{12}v_1 + b_{22}v_2$$

$$T(u_3) = b_{13}v_1 + b_{23}v_2.$$

Verificamos, então, que,

$$T(x) = \xi_1(b_{11}v_1 + b_{21}v_2) + \xi_2(b_{12}v_1 + b_{22}v_2) + \xi_3(b_{13}v_1 + b_{23}v_2)$$

= $(\xi_1b_{11} + \xi_2b_{12} + \xi_3b_{13}v_1) + (\xi_1b_{21} + \xi_2b_{22} + \xi_3b_{23}v_2)$
= $\alpha_1v_1 + \alpha_2v_2$

116

onde

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$

Dizemos, agora, que $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$ é a matriz de T relativamente às bases B_2 e B_2^* de \mathbb{R}^3 e \mathbb{R}^2 , respectivamente.

Passamos de seguida a expôr o caso geral.

Sejam $B_1 = \{u_1, u_2, ..., u_n\}$ uma base de $U, B_2 = \{v_1, v_2, ..., v_n\}$ uma base de V, e

$$T: U \rightarrow V$$

$$x \to T(x) = \sum_{i=1}^{n} x_j T(u_i).$$

O vector $T(u_j)$ pode ser escrito – de modo único – como combinação linear dos vectores $v_1, v_2, ..., v_m$. Assim

$$T(u_j) = \sum_{i=1}^{m} a_{ij} \cdot v_i, \quad j = 1, ..., n.$$

Logo

$$T(x) = \sum_{j=1}^{n} x_j T(u_j) = \sum_{j=1}^{n} \left[\sum_{i=1}^{m} a_{ij} v_i \right] = \sum_{j=1}^{n} \left[a_{1j} x_j \right] v_1 + \sum_{j=1}^{n} \left[a_{2j} x_j \right] v_2 + \dots + \sum_{j=1}^{n} \left[a_{mj} x_j \right] v_m = \sum_{j=$$

$$\sum_{j=1}^{n} \varphi v_i.$$

Verificamos, assim, que existe entre as coordenadas $(x_1, x_2, ..., x_n)$ de x (relativa à base B_1), em U, e as coordenadas $(\varphi_1, \varphi_2, ..., \varphi_m)$ de T(x) (relativa à base B_2) em V. Tal ligação exprime-se pelas seguintes equações

$$\varphi_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, 2, ..., m.$$

O que se pode ser escrito como a equação matricial seguinte:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & b_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \vdots \\ \varphi_m \end{bmatrix}$$

Assim, concluímos:

Teorema 6.3.1. Se fixamos uma base de U e uma base de V, a aplicação linear $T: U \longrightarrow V$ fica perfeitamente definida por $m \times n$ escalares. Ou seja, a aplicação linear $T: U \longrightarrow V$ fica perfeitamente definida por uma matriz do tipo $m \times n$

$$M_{B_1,B_2}(T)$$

cujas colunas são as coordenadas dos transformados dos vectores da base de U, em relação à base de V.

Vimos, então, que dada uma transformação linear $G: \mathbb{K}^n \to \mathbb{K}^m$, existe uma matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que $G = T_A$. Mais, se $\{e_1, \ldots, e_n\}$ e $\{f_1, \ldots, f_m\}$ são as bases canónicas, respectivamente, de \mathbb{K}^n e \mathbb{K}^m , então a matriz A é tal que a coluna i de A são as coordenadas de $G(e_i)$ em relação à base $\{f_1, \ldots, f_m\}$. No entanto, se se considerarem bases que não as canónicas, então é preciso ter um pouco mais de trabalho.

Por exemplo, considere¹ a base B_1 de \mathbb{R}^3 constituída pelos vectores (0,1,1), (1,1,0), (1,0,1), e a base B_2 de \mathbb{R}^2 constituída pelos vectores (2,1), (1,2). Vamos calcular a matriz G que representa $T: \mathbb{R}^3 \to \mathbb{R}^2$, com T(x,y,z) = (x-y,x+y+z), nas bases apresentadas. Em primeiro lugar, calculamos as imagens dos elementos da base escolhida:

$$T(0,1,1) = (-1,2) = v_1$$

 $T(1,1,0) = (0,2) = v_2$
 $T(1,0,1) = (1,2) = v_3$

Agora, encontramos as coordenadas de v_1, v_2, v_3 relativamente à base de \mathbb{R}^2 que fixámos. Ou seja, encontramos as soluções dos sistemas possíveis determinados²

$$Ax = v_1, Ax = v_2, Ax = v_3,$$

onde $A=\begin{bmatrix}2&1\\1&2\end{bmatrix}$. A matriz que representa T em relação às bases apresentadas é $G=\begin{bmatrix}u_1&u_2&u_3\end{bmatrix}$, onde u_1 é a única solução de $Ax=v_1,\,u_2$ é a única solução de $Ax=v_2$ e u_3 é a única solução de $Ax=v_3$.

Octave

```
> v1=[-1;2]; v2=[0;2]; v3=[1; 2];
> A=[2 1; 1 2];
> x1=A\v1
x1 =
    -1.3333
    1.6667
> x2=A\v2
x2 =
```

¹Verifique que de facto formam uma base!

²Consegue explicar por que razão os sistemas são possíveis determinados?

Fixadas as bases dos espaços vectoriais envolvidos, a matriz associada à transformação linear G será, doravante, denotada por [G].

Antes de passarmos ao resultado seguinte, consideremos as transformações lineares

$$H: \begin{tabular}{lll} \mathbb{R}^2 &\to &\mathbb{R}^3 & $G: \begin{tabular}{lll} \mathbb{R}^3 &\to &\mathbb{R} \\ & (x,y) &\mapsto & $(x-y,y,0)$ & (r,s,t) &\mapsto & $2r-s+t$ \\ \end{tabular}$$

Obtemos, então,

$$G \circ H(x,y) = 2(x-y) - 1 \cdot y + 1 \cdot 0$$

$$= \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x-y \\ y \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= [G][H] \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto, $[G \circ H] = [G][H]$.

Vejamos o que podemos afirmar em geral:

Teorema 6.3.2. Sejam U,V,W espaços vectoriais sobre \mathbb{K} e $H:U\to V, G:V\to W$ duas transformações lineares. Então

1. $G \circ H$ é uma transformação linear;

2.
$$G \circ H = T_{[G][H]} \ e \ [G \circ H] = [G] \ [H]$$
.

Demonstração. A demonstração de (1) fica como exercício. Para mostrar (2), observe-se que, para qualquer $u \in U$,

$$G \circ H(u) = G(H(u)) = G([H]u) = [G][H]u = T_{[G][H]}u.$$

Fechamos, assim, como iniciámos: a algebrização do conjunto das matrizes. As matrizes não são mais do que representantes de um certo tipo de funções (as transformações lineares) entre conjuntos muitos especiais (espaços vectoriais). Se a soma de matrizes corresponde à soma de tranformações lineares (em que a soma de funções está definida como a função definida pela soma das imagens), o produto de matrizes foi apresentado como uma operação bem mais complicada de efectuar. No entanto, a forma como o produto matricial foi definido corresponde à *composição* das transformações lineares definidas pelas matrizes.

Este último capítulo explica, ainda, a razão pela qual não demos ênfase a espaços vectoriais reais de dimensão finita que não os da forma \mathbb{R}^n . Mostrámos que todo o espaço vectorial finitamente gerado (ou seja, que tenha uma base com um número finito de elementos) é isomorfo a algum \mathbb{R}^n . Já os não finitamente gerados pertencem a outra divisão: são bem mais difíceis de estudar, mas em compensação têm aplicações fantásticas, como o processamento digital de imagem.

Como epílogo, deixamos a seguinte mensagem: a parte interessante da matemática só agora está a começar!

Bibliografia

- [1] F. R. Dias Agudo, *Introdução à álgebra linear e geometria analítica*, Escolar Editora, 1996.
- [2] Howard Anton, Chris Rorres, *Elementary linear algebra : applications version*, John Wiley & Sons, 1994.
- [3] Kenneth J. Beers, Numerical Methods for Chemical Engineering, Applications in Matlab®, Cambridge University Press, 2007.
- [4] I. S. Duff, A. M. Erisman, J. K. Reid, *Direct methods for sparse matrices*, Oxford University Press, 1989.
- [5] Bruce A. Finlayson, Introduction to Chemical Engineering Computing, Wiley, 2006.
- [6] Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, *Linear Algebra (2nd edition)*, Prentice-Hall International, Inc., 1989.
- [7] Emília Giraldes, Vitor Hugo Fernandes, M. Paula Marques Smith, Curso de álgebra linear e que analítica, McGraw-Hill, 1995.
- [8] David R. Hill, David E. Zitarelli, Linear algebra labs with MATLAB, Prentice Hall, 1996
- [9] Roger Horn, Charles Johnson, Matrix Analysis, Cambridge University Press, 1985.
- [10] Peter Lancaster, Miron Tismenetsky, *The Theory of Matrices*, second edition with applications, Academic Press, 1985.
- [11] Christopher Lawrence, Dirk Eddelbuettel, Quantian: A Comprehensive Statistical Computing Environment, http://dirk.eddelbuettel.com/papers/quantian-tpm.pdf.
- [12] P.J.G. Long, *Introduction to Octave*, Department of Engineering, University of Cambridge, 2005, www-mdp.eng.cam.ac.uk/CD/engapps/octave/octavetut.pdf
- [13] Luís T. Magalhães, Álgebra Linear como introdução à matemática aplicada, IST, 1987.
- [14] Guillem Borrell i Nogueras, Introducción informal a Matlab y Octave, http://torroja.dmt.upm.es:9673/Guillem_Site/
- [15] J. M. Powers, *Method of least squares*, University of Notre Dame, 2003, http://www.nd.edu/~powers/ame.332/leastsquare/leastsquare.pdf

122 BIBLIOGRAFIA

[16] Ana Paula Santana, João Filipe Queiró, Álgebra Linear e Geometria Analítica, Departamento de Matemática, Universidade de Coimbra, 2003, http://www.mat.uc.pt/~jfqueiro/ALGA2003.pdf

- [17] Hubert Selhofer, Introduction to GNU Octave, http://math.iu-bremen.de/oliver/teaching/iub/resources/octave/octave-intro.pdf.
- [18] Gilbert Strang, Linear algebra and its applications, Academic Press, 1976.
- [19] Maria Raquel Valença, Métodos numéricos, INIC, 1990.