Regular Expressions CSE 2233

Regular Languages

Regular Language:

- A language is called a regular language if some finite automaton(DFA) recognizes it.
- A language is regular if and only if some nondeterministic finite automaton(NFA) recognizes it.
- If a language is described by a regular expression(RE), then it is also regular.

Regular Operations

- 3 operations are defined on languages called Regular Operations.
- Here, the name Regular Operations is just a name that has been chosen for these 3 operations.
- Regular Operations are used to study properties of the Regular Languages.

Definition:

Let Σ be an alphabet and A,B $\subseteq \Sigma^*$ be languages. Then the regular operations are as follows:

- Union: The language A∪B ⊆ Σ* is defined as, A∪B = { w | w ∈ A or w ∈ B }
- Concatenation: The language AB ⊆ Σ* is defined as, AB = { wx | w ∈ A and x ∈ B }
- Kleene star/ Star: The language A* is defined as, A* = { x₁x₂ xk | k≥0 and each xi ∈ A }

Regular Operations - Example

```
Let,
```

```
Alphabet \Sigma = \{a, b, c, ... ..., z\}
Language A = \{good, bad\} \subseteq \Sigma^*
Language B = \{boy, girl\} \subseteq \Sigma^*
```

Then,

```
A∪B = { good, bad, boy, girl }

AB = { goodboy, goodgirl, badboy, badgirl }

A* = { ε, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, ... ... }
```

Regular Languages – Closure Property

- The regular languages are closed with respect to the regular operations:
 - if A, B $\subseteq \Sigma^*$ are regular languages, then the languages A \cup B, AB, and A* are also regular.
- There are many other operations on languages aside from the regular operations under which the regular languages are also closed.
 - Subtraction:

The language $A \setminus B \subseteq \Sigma^*$ is defined as, $A \setminus B = \{ w \mid w \in A \text{ and } w \notin B \} = A \cap \overline{B}$

Complement:

The language $\overline{A} \subseteq \Sigma^*$ is defined as, $\overline{A} = \{ w \mid w \in \Sigma^* \text{ and } w \notin A \} = \Sigma^* \setminus A$

Intersection:

The language $A \cap B \subseteq \Sigma^*$ is defined as, $A \cap B = \{ w \mid w \in A \text{ and } w \in B \} = \overline{A \cup B}$

Reverse:

The language $A^R \subseteq \Sigma^*$ is defined as, $A^R = \{ w_k w_{k-1} \dots w_2 w_1 \mid w = w_1 w_2 \dots w_k \in A \}$

Regular Expressions

Arithmetic Expressions:

- We use the operations + and x to build up expressions such as (5+3)x4
- The value of arithmetic expression is the number 32.

Regular Expression:

- We use regular operations to build up expressions describing languages called Regular Expressions.
- The value of regular expression is a language.
- For example, (0∪1)0*

Note:

REs have an important role in computer science applications. It provides powerful methods to describe different string patterns in UNIX commands, modern programming languages, text editors etc.

Regular Expressions – Definition

Regular Expression:

R is a regular expression if R is

- a for some a in the alphabet Σ,
- ▶ ε,
- φ,
- (R₁ ∪ R₂), where R₁ and R₂ are regular expressions,
- $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- (R₁*), where R₁ is a regular expression.

Regular Expressions – Precedence Order

Precedence of Regular Operations:

- Parentheses
- Star
- Concatenation
- 4. Union

So according to the precedence sequence: $(ab U a)^* = ((a) (b)) U (a))^*$

RE – Practices

Language, L(R)	Regular Expression
{ w w contains a single 1 }	0* 1 0*
{ w w consists of exactly three 1's }	0* 1 0* 1 0* 1 0*
{ w w has at least a single 1 }	(0 1)* 1 (0 1)*
{ w w contains at least three 1's }	(0 1)* 1 (0 1)* 1 (0 1)* 1 (0 1)*
{ w w has at most one 1 }	0* 0* 1 0*
{ w w contains an even number of 1's }	(0* 1 0* 1 0*)* 0*
{ w the number of 1's withing w can be evenly divided by 3 }	(0 [*] 1 0 [*] 1 0 [*] 1 0 [*]) [*] 0 [*]
{ w w is a string of even length }	$(\Sigma\Sigma)^*$, here $\Sigma = (0 \mid 1)$
{ w the length of w is a multiple of 3 }	$(\Sigma\Sigma\Sigma)^*$, here $\Sigma = (0 \mid 1)$

RE - Practices

Language, L(R)	Regular Expression
{ w w starts with 101 }	101 (0 1)*
{ w w contains the string 001 as a substring }	(0 1)* 001 (0 1)*
{ w w ends with 3 consecutive 1's }	(0 1)* 111
{ w w doesn't end with 11 }	$arepsilon \mid 0 \mid 1 \mid (0 \mid 1)^{*} \ (00 \mid 01 \mid 10)$
{ w w ends with an even nonzero number of 0's }	((0 1)* 1 ε) 00 (00)*
{ w w starts and ends with the same symbol }	$0 \mid 1 \mid 0\Sigma^*0 \mid 1\Sigma^*1$, here $\Sigma = (0 \mid 1)$
{ w w has at least 3 characters and the 3 rd character is 0 }	(0 1) (0 1) 0 (0 1)*
{ w every zero in w is followed by at least one 1 }	1* (01+)*
{ w w consists of alternating zeros and ones }	$(1 \mid \varepsilon) (01)^* (0 \mid \varepsilon)$

RE - Practices

Language, L(R)	Regular Expression
{ 01, 10 }	01 10
01* 1*	(0 ε) 1 [*]
{ ε, 0, 1, 01 }	$(0 \mid \varepsilon) (1 \mid \varepsilon)$
φ	$R\phi$
{ε}	ϕ^{\star}
{ w w starts with 0 and has odd length or, starts with 1 and has even length }	0 ((0 1) (0 1))* 1 (0 1) ((0 1) (0 1))*

RE > NFA

▶ R = a for some a ∈ Σ. Then L(R) = { a }, and the following NFA recognizes L(R)

R = ε . Then L(R) = { ε } and the following NFA recognizes L(R)

R = ϕ . Then L(R) = ϕ , and the following NFA recognizes L(R)

- R = R₁ U R₂, so L(R) = L(R₁) U L(R₂) = NFA₁ recognizes L(R₁) U NFA₂ recognizes L(R₂)
- Arr R = R₁ o R₂ = R₁R_{2 =} = L(R₁) o L(R₂) = NFA₁ recognizes L(R₁) o NFA₂ recognizes L(R₂)
- R = R₁* = L(R₁)* = (NFA₁ recognizes L(R₁))*

RE → NFA : Example 1

Convert the following RE to equivalent NFA:

(ab U a)*

a → a → C

b → b €

ab \xrightarrow{a} $\xrightarrow{\varepsilon}$ \xrightarrow{b}

 $ab \cup a$ $\xrightarrow{\varepsilon}$ \xrightarrow{a} \xrightarrow{b} \xrightarrow{b}

 $(ab \cup a)^* \longrightarrow \underbrace{\varepsilon} \xrightarrow{a} \underbrace{\delta} \xrightarrow{b} \underbrace{\delta}$

RE > NFA : Practices

```
(aUb)*aba
• (0 \cup 1) * 0 0 0 (0 \cup 1) * = \Sigma * 0 0 0 \Sigma * \text{ where } \Sigma = \{0, 1\} = 0 \cup 1
(((00)*(11))U01)*
(01U001U010)*
a(abb)*Ub
a+U(ab)+
(a U b<sup>+</sup>) a<sup>+</sup> b<sup>+</sup> [ Hint: replace a<sup>+</sup> with (a a*) ]
1* ( 0 1+)*
(ΣΣΣ)*
• 0 Σ* 0 U 1 Σ* 1 U 0 U 1
φ*
(0 U ε) 1*
```

DFA → GNFA → RE

Steps to follow:

GNFA

- A GNFA is a nondeterministic finite automaton(NFA) in which each transition is labeled with a regular expression over the alphabet set instead of only members of the alphabet or ε.
- A single initial state with all possible outgoing transitions and no incoming transitions.
- A single final state without outgoing transitions but all possible incoming transitions. The accept state is not the same as the start state.
- A single transition between every two states, including self loops.

GNFA - Formal Definition

A generalized nondeterministic finite automaton is a 5 tuple, $(Q, \Sigma, \delta, q_{start}, q_{accept})$, where

- Q is the finite set of states
- \triangleright Σ is the input alphabet
- δ : (Q {q_{accept}}) x (Q {q_{start}}) $\rightarrow \mathcal{R}$ is the transition function

[if you travel from state a ϵ (Q - {q_{accept}}) to state b ϵ (Q - {q_{start}}) then this relation will generate $\mathcal R$ regular expression]

- q_{start} is the start state and
- q_{accept} is the accept state

GNFA - State Minimization Rule

Removing q_{rip} state,

DFA -> GNFA: Steps to Follow

- Add a new start state with an ε arrow to the old start state
- Add a new accept state with ε arrows from the old accept states to this new accept state
- If any arrows have multiple labels, replace each with a single arrow whose label is the union of the previous labels
- Add arrows labeled ϕ between states that had no arrows. [better no to show this in the diagram, for simplicity]

GNFA → RE : Algorithm

CONVERT(G):

- Let k be the number of states of G.
- If k=2, then G must consist of a start state, an accept state, and a single arrow connecting them and labeled with a regular expression R
 - Return the expression R.
- If k>2, we select any state q_{rip} ∈ Q different from q_{start} and q_{accept} and let G' be the GNFA (Q', Σ, δ', q_{start}, q_{accept}), where

$$Q' = Q - \{q_{rip}\}$$

and for any $q_i \in Q' - \{q_{accept}\}\$ and any $q_j \in Q' - \{q_{start}\}\$, let

$$\delta'(q_i, q_i) = (R_1) (R_2)*(R_3) U (R_4)$$

for
$$R_1 = \delta(q_i, q_{rip})$$
, $R_2 = \delta(q_{rip}, q_{rip})$, $R_3 = \delta(q_{rip}, q_j)$, and $R_4 = \delta(q_i, q_j)$

Compute CONVERT(G') and return this value.

GNFA → RE : Removing State 2

Here, 2 is associated with states 1 and a. All possible combinations are (1,1), (1,a), (a,a), (a,1). But there will be no outgoing from a, so no need to consider (a,a) and (a,1) states.

For (1,1), R = a U (b (aUb)*
$$\phi$$
)) = a

GNFA → RE : Removing State 2

Here, 2 is associated with states 1 and a. All possible combinations are (1,1), (1,a), (a,a), (a,1). But there will be no outgoing from a, so no need to consider (a,a) and (a,1) states.

For (1,a), R =
$$\phi$$
 U (b (aUb)* ε) = b(aUb)*

GNFA → RE : Removing State 1

DFA → GNFA → RE : Example 2

DFA → GNFA → RE : Practices

Practice 1

Practice 2