Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of claims:

Claim 1 (currently amended). A semiconductor chip, comprising:

an active top side;

semiconductor component structures and contact areas disposed on said active top side;

a buffer having a protective layer of a mechanically damping material, said protective layer having a free surface, said buffer:

being disposed between said contact areas and above said semiconductor component structures; and

having a hard coating at said free surface of said protective layer, said hard coating forming a free surface of said buffer.

Amdt. Dated December 30, 2004

Reply to Office action of October 14, 2004

Claim 2 (original). The semiconductor chip according to claim 1, wherein said buffer has said coating in areas.

Claim 3 (original). The semiconductor chip according to claim 1, wherein said coating includes a hard metal selected from one of the group consisting of a chromium-nickel alloy, an oxide ceramic, and a nitride ceramic.

Claim 4 (original). The semiconductor chip according to claim 1, wherein said buffer has a substantially circular contour with a diameter of between approximately 50 and approximately 500 μ m and a thickness of between approximately 2 and approximately 50 μ m.

Claim 5 (original). The semiconductor chip according to claim 1, wherein said buffer has a substantially angular contour with a respective side length of between approximately 50 and approximately 500 μ m and a thickness of between approximately 2 and approximately 50 μ m.

Claim 6 (original). The semiconductor chip according to claim 1, wherein:

said active top side has a centroid; and

Amdt. Dated December 30, 2004

Reply to Office action of October 14, 2004

said buffer is disposed in a region of said centroid.

Claim 7 (original). The semiconductor chip according to claim 1, wherein:

said active top side has a centroid; and

said buffer is a plurality of buffer bodies distributed uniformly around a region of said centroid.

Claim 8 (currently amended). A semiconductor chip, comprising:

an active top side;

semiconductor component structures and contact areas disposed on said active top side;

a buffer having a protective layer of a mechanically damping material, said protective layer having a free surface, said buffer:

being disposed between said contact areas and above said semiconductor component structures; and

having a mechanically protective coating at said free surface of said protective layer, said mechanically protective coating forming a free surface of said buffer.

Claim 9 (currently amended). A semiconductor wafer, comprising:

a plurality of semiconductor chips disposed in rows and columns, each of said semiconductor chips having:

an active top side;

semiconductor component structures and contact areas disposed on said active top side;

a buffer having a protective layer of a mechanically damping material, said protective layer having a free surface, said buffer:

being disposed between said contact areas and above said semiconductor component structures; and

having a hard coating at said free surface of said protective layer, said hard coating forming a free surface of said buffer.

Claim 10 (withdrawn). A method for producing a semiconductor wafer, which comprises:

disposing forming semiconductor component structures and
contact areas in rows and columns on an active top side of a
semiconductor chip;

providing a buffer with having a protective layer of a mechanically damping material with a free surface and with a protective layer having a hard coating at the free surface of the protective layer, the hard coating forming a free surface of the buffer; and

applying the buffer between the contact areas and to above the semiconductor component structures.

Claim 11 (withdrawn). A method for producing a semiconductor wafer, which comprises:

disposing forming semiconductor component structures and contact areas in rows and columns on an active top side of the semiconductor wafer;

providing a buffer with having a protective layer of a mechanically damping material with a free surface and with a protective layer having a mechanically protective coating at the free surface of the protective layer, the mechanically protective coating forming a free surface of the buffer; and

applying the buffer between the contact areas and to above the semiconductor component structures.

Claim 12 (withdrawn). A method for producing a semiconductor chip, which comprises:

disposing forming semiconductor component structures and contact areas on an active top side of the semiconductor chip;

providing a buffer with having a protective layer of a mechanically damping material with a free surface and with a protective layer having a hard coating at the free surface of the protective layer, the hard coating forming a free surface of the buffer; and

Amdt. Dated December 30, 2004

Reply to Office action of October 14, 2004

applying the buffer between the contact areas and above the semiconductor component structures.

Claim 13 (withdrawn). A method for producing a semiconductor chip, which comprises:

disposing forming semiconductor component structures and contact areas on an active top side of the semiconductor chip;

providing a buffer with having a protective layer of a mechanically damping material with a free surface and with a protective layer having a mechanically protective coating at the free surface of the protective layer, the mechanically protective coating forming a free surface of the buffer; and

applying the buffer between the contact areas and above the semiconductor component structures.

Claim 14 (withdrawn). The method according to claim 10, which further comprises carrying out the application step by:

applying a layer of a mechanically damping material; and

subsequently patterning the damping material layer to form buffer bodies in semiconductor chip positions by one of:

Amdt. Dated December 30, 2004

Reply to Office action of October 14, 2004

photolithography and etching; and

laser removal.

Claim 15 (withdrawn). The method according to claim 14, which further comprises providing the damping material layer as a plastic layer.

Claim 16 (withdrawn). The method according to claim 12, which further comprises carrying out the application step by:

applying a layer of a mechanically damping material; and

subsequently patterning the damping material layer to form buffer bodies in semiconductor chip positions by one of:

photolithography and etching; and

laser removal.

Claim 17 (withdrawn). The method according to claim 16, which further comprises providing the damping material layer as a plastic layer.

Claim 18 (withdrawn). The method according to claim 14, which further comprises carrying out the step of applying the buffer bodies in the semiconductor chip positions by printing the damping material layer thereon by one of jet printing technology, screen printing technology, and mask printing technology.

Claim 19 (withdrawn). The method according to claim 16, which further comprises carrying out the step of applying the buffer bodies in the semiconductor chip positions by printing the damping material layer thereon by one of jet printing technology, screen printing technology, and mask printing technology.

Claim 20 (withdrawn). The method according to claim 10, which further comprises carrying out the applying step by applying a multilayer coating to the semiconductor wafer and subsequently patterning the coating to form buffer bodies.

Claim 21 (withdrawn). The method according to claim 14, which further comprises carrying out the applying step by applying a multilayer coating to the semiconductor wafer and subsequently patterning the coating to form buffer bodies.

Claim 22 (withdrawn). The method according to claim 18, which further comprises carrying out the applying step by applying a multilayer coating to the semiconductor wafer and subsequently patterning the coating to form buffer bodies.

Claim 23 (withdrawn). A method for mounting <u>semiconductor</u> chips on supports, which comprises:

providing semiconductor chips with active top sides and passive rear sides;

disposing forming semiconductor component structures and contact areas on the active top sides;

providing a buffer with a protective layer of a mechanically damping material, the protective layer having a free surface, and with a hard coating at the free surface of the protective layer, the hard coating forming a free surface of the buffer;

disposing forming the buffer between the contact areas and above the semiconductor component structures;

mounting the semiconductor chips on circuit carriers by:

providing a first transport film with an adhesive top side having a given adhesive strength;

adhesively bonding the semiconductor chips by their passive rear sides on the adhesive top side;

providing a second transport film with an adhesive strength greater than the given adhesive strength;

applying the second transport film to the active top side of the semiconductor chips;

removing the first transport film from the passive rear sides of the semiconductor chips;

supplying the semiconductor chips on the second transport film to a circuit carrier populating device;

successively lifting off the semiconductor chips from the second transport film in the populating device at a lift-off position by at least one piercing tool penetrating through the second transport film and acting on the buffer disposed on the semiconductor chip; and

Amdt. Dated December 30, 2004

Reply to Office action of October 14, 2004

positioning the semiconductor chips with the semiconductor chip contacts onto corresponding contact pads of the circuit carrier.

Claim 24 (withdrawn). The method according to claim 23, which further comprises turning the first transport film with the semiconductor chips through 180° before applying the second transport film.

Claim 25 (withdrawn). The method according to claim 23, which further comprises turning a composite including the first transport film, the second transport film, and the semiconductor chips disposed between the first and second transport films through 180° before removing the first transport film from the passive rear sides of the semiconductor chips.