

COVID-19 Impact To U.S. Economy

- **01** 2602190816 Kimberly Kayla Dewi
- 02 2602197305 Callista Serena Ekaputri
- 03 2602199582 Fiona Maharani Nugraha
- 04 2602203794 Janice Ashley Kurniawan
- 05 2602227775 Keitaro Alexander Herman

Group 5 - LB09 - Data Mining and Visualization

Outline

- Introduction
- General Characteristics
- Descriptive Statistics
- Exploratory Visualization
- Explanatory Visualization

- Predictive Model
- Linear Regression
- 08 Discussion
- 09 Conclusion

1.1 Prediction

--- How will the U.S. economy develop after COVID-19?

1.2 Problem Statement

--- How will U.S. economic developments occur in the future?

1.2.1 Problem Statement

The spread of COVID-19 has had severe economic consequences. Therefore, it is necessary to carry out an analysis regarding the impact of COVID-19 on the U.S. economy based on Year, Gross Domestic Products, GDP per Capita, and Growth.

Knowing the effect of these variables on the economy can assist in planning economic policies and improving people's welfare during the COVID-19 pandemic.

That concludes our main problem, how will U.S. economic developments occur in the future?

1.3 Solution

--- We have to make predictions on how this economy will develop after COVID-19.

1.4 Objective

To understand the impact of COVID-19 on the U.S. economy. It is hoped that this analysis can provide helpful information for planning economic policies and improving people's welfare during the COVID-19 pandemic.

1.5 Data Description

The data used is U.S. economic data taken from a trusted and valid source, data.world.

This data includes the value of the variable year, Gross Domestic Products (gdp), GDP per capita (gdp_per_capita), growth.

Data were obtained in the form of tables and CSV files which were then processed and analyzed with RStudio. This analysis will involve Exploratory and Explanatory Data Analysis, Regression (Predictive Model), Correlation, and Data Visualization.

Head Data

year <dbl></dbl>	gdp <dbl></dbl>	gdp_per_capita <dbl></dbl>	growth <dbl></dbl>
2020	20893	63028	-0.0340
2019	21372	65095	0.0229
2018	20527	62805	0.0292
2017	19479	59915	0.0226
2016	18695	57867	0.0167
2015	18206	56763	0.0271

Tail Data

year <dbl></dbl>	gdp <dbl></dbl>	gdp_per_capita <dbl></dbl>	growth <dbl></dbl>
1998	9062	32854	0.0448
1997	8577	31459	0.0445
1996	8073	29968	0.0377
1995	7639	28691	0.0268
1994	7287	27695	0.0403
1993	6858	26387	0.0275

The data type for each column

```
year gdp gdp_per_capita
"numeric" "numeric" "numeric"
growth
"numeric"
```

Data Characteristics

Data Attribute

Unique data in each column

year <dbl></dbl>	gdp <dbl></dbl>	gdp_per_capita <dbl></dbl>	growth <dbl></dbl>
2020	20893	63028	-0.0340
2019	21372	65095	0.0229
2018	20527	62805	0.0292
2017	19479	59915	0.0226
2016	18695	57867	0.0167
2015	18206	56763	0.0271
2003	11456	39490	0.0280
2002	10929	37998	0.0170
2001	10581	37134	0.0095
2000	10250	36330	0.0408

Basic Summary

variable <chr></chr>	type <chr></chr>	levels <dbl></dbl>	topLevel <chr></chr>
year	tbl_df	17	1993
gdp	tbl_df	17	6858
gdp_per_capita	tbl_df	17	26387
growth	tbl_df	17	-0.034

topCount <dbl></dbl>	topFrac <dbl></dbl>	missFreq <dbl></dbl>	missFrac <dbl></dbl>
1	0.059	0	0
1	0.059	0	0
1	0.059	0	0
1	0.059	0	0

The amount of empty data per column

			Q.
year	gdp_gdp_pe	r_capita	growth
0	0	0	0

Percentage of data completeness for each column

Percentage of data completeness for each column

variable <chr></chr>	type <chr></chr>	levels <dbl></dbl>	topLevel <chr></chr>	topCount <dbl></dbl>
year	tbl_df	17	1993	1
gdp	tbl_df	17	\$10,250.95B	1
gdp_per_capita	tbl_df	17	26387	1
growth	tbl_df	17	-0.034	1

4 rows | 1-5 of 8 columns

03 Descriptive Statistics

Summary

year gdp
Min. :1993 Length:17
1st Qu.:1997 Class :character
Median :2001 Mode :character
Mean :2005
3rd Qu.:2016

Max. :2020

growth

Min. :-0.03400

1st Qu.: 0.02260

Median: 0.02750

Mean : 0.02643

3rd Qu.: 0.04030

Max. : 0.04790

gdp_per_capita Min. :26387 1st Qu.:31459 Median :37134 Mean :42823 3rd Qu.:57867 Max. :65095

03 Descriptive Statistics

Variance

```
gdp
                       year
               1.002353e+02 5.475771e+04
year
               5.475771e+04 3.001968e+07
gdp
gdp_per_capita 1.432623e+05 7.850447e+07
              -1.073526e-01 -5.698717e+01
growth
              gdp_per_capita
                                    growth
                1.432623e+05 -1.073526e-01
year
                7.850447e+07 - 5.698717e+01
gdp
gdp_per_capita 2.054229e+08 -1.467406e+02
growth
               -1.467406e+02 3.632397e-04
```

Standard Deviation

```
year gdp gdp_per_capita growth 1.001176e+01 5.479022e+03 1.433258e+04 1.905885e-02
```


03 Descriptive Statistics

Data Anomalies/Outlier

Full Summary Logistic for gdp_per_capita

```
Call:
glm(formula = gdp ~ ., family = "poisson", data = gdpTrain)
Deviance Residuals:
   Min
             1Q Median
                                      Max
-3.9912 -1.6298 -0.3952 0.7722 4.9350
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.201e+01 8.885e+00 -9.231 < 2e-16 ***
              4.562e-02 4.494e-03 10.152 < 2e-16 ***
year
gdp_per_capita -2.531e-06 3.025e-06 -0.837
                                             0.403
               1.183e+00 1.735e-01 6.820 9.12e-12 ***
growth
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 26988.7 on 11 degrees of freedom
Residual deviance: 73.9 on 8 degrees of freedom
AIC: 217.86
Number of Fisher Scoring iterations: 3
```


Exponentiating the Logistic Full Outcome

(Intercept) year gdp_per_capita growth 2.410675e-36 1.046682e+00 9.999975e-01 3.264810e+00

Exponentiating the Logistic Ref Outcome

```
Call:
glm(formula = gdp ~ growth, family = "poisson", data = gdpTrain)
Deviance Residuals:
           1Q Median
  Min
                                 Max
-57.77 -37.83 -17.55 36.71 55.62
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 9.783270 0.003161 3095.32 <2e-16 ***
                      0.101617 -90.61 <2e-16 ***
           -9.207385
growth
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 26989 on 11 degrees of freedom
Residual deviance: 19602 on 10 degrees of freedom
AIC: 19742
Number of Fisher Scoring iterations: 4
```


Exponentiating the Logistic Ref Outcome

(Intercept) growth 1.773455e+04 1.002960e-04

Accuracy Model

"Accuracy model 1 is 0.2" [1] "Accuracy model 2 is 0.2"

07 Linear Regression

GDP in America in 1993-2020

07 Linear Regression

GDP in America in 1913-1923

08 Discussion

In the predictive model, in 1998-2000 there was a decline in the economy as happened with the dataset above, which will have the same behavior, namely returning to recover in 2 years.

At the very end wherein 2020, where the initial outbreak of COVID-19 also experienced the same decline as the previous year.

This forms a habit in economic data where if there is a crisis related to the economy, it will recover within 2 years.

09 Conclusion

Based on data obtained from 100 years ago, if there was a crisis that shook a country enough, recovery would occur in approximately 2 years.

This occurs from the evidence of the Spanish flu 100 years ago and the economic crisis in 1998.

According to predictions, the U.S. economy will recover in mid-2023.

THANK

