Consumidores

Roberto González ITAM

Preferencias y Utilidad

Preferencias

- Las personas tenemos *preferencias* sobre bienes
- Las *preferencias* nos indican un orden (ranking) sobre los bienes o canastas de consumo
- Pero, ¿cómo podemos expresar esas preferencias con un método formal?

Hagamos supuestos sobre las preferencias...

Normalmente en Eco trabajamos con números y funciones, ¿por qué no buscamos cómo pasar las preferencias a una función?

• Completas Preferencias completas significa que si le preguntamos a una consumidora qué prefiere entre la canasta A y la B entonces él sabe si le gusta más A, si le gusta más B o si le gustan exactamente igual

• Transitivas Si entre las canastas A, B y C la consumidora prefiere A a B y prefiere B a C entonces la consumidora prefiere A a C

• Monótonas Si a la consumidora le doy un poco más de un bien entonces ella es al menos igual de feliz que antes

Monotonicidad estricte -> Mas de ambos bienes hacen más feliz al consumidor

Monotonicidad Mébil -> Mas de al menos uno de los bienes lo hace igual o mas feliz (Mango, Higo)

$$(M=S, H=2) < (M=10, H=2)$$

Depende de qué firta (M=5, H=2) ? (M=2, H=5)

 Convexas La consumidora es al menos igual de feliz si le damos una canasta más balanceada —comparado con su felicidad cuando le damos canastas con mucho de un bien y poco del otro—.

más balanceada — comparado con su felicidad cuando le damos canastas comucho de un bien y poco del otro—.

(M=100, H=0) (M=0, H=100) (M=50, H=50)

Refiere esta parque tiene un poco de ambos

(M=50, H=50) =
$$\frac{1}{2}$$
 A + $\frac{1}{2}$ B

= $\left(\frac{1}{2}(100), \frac{1}{2}(0)\right) + \left(\frac{1}{2}(0), \frac{1}{2}(100)\right)$

= $(50, 0) + (6, 50)$

 Convexas La consumidora es al menos igual de feliz si le damos una canasta más balanceada —comparado con su felicidad cuando le damos canastas con mucho de un bien y poco del otro—.

Utilidad

$$f(x) = a + b X$$

Si se cumplen los supuestos que definimos antes, entonces ese ranking —nuestras preferencias sobre bienes— se puede representar con funciones de utilidad.

$$U(X,Y) = X Y(0)$$
 $U(2,3) = 6$ $U(4,2) = 8$ $U(1,1) = 1$
 $U(X,Y) = X + Y$
 $U(X,Y) = \min\{X,Y\}$

Utilidad y Utilidad Marginal

- Utilidad Total Es el nivel de felicidad que obtiene la consumidora dada una canasta de consumo
 - OJO: El número en sí **no** nos importa. Nos interesa el orden que damos a distintas canastas de consumo
- **Utilidad Marginal** Es la magnitud en la que cambia nuestra utilidad total cuando cambiamos el consumo de un bien en 1 unidad *caeteris paribus*

¹Hacer gráfica de U arriba de gráfica de UMg (en función de cantidad consumida)

Objetivo de consumidores

Maximizar su felicidad (utilidad) eligiendo cuánto consumir de cada bien i.e. eligiendo una canasta de consumo

Restricción Presupuestal

¿Qué pasa si no hay restricciones? Ejemplo

- Una consumidora
- Dos bienes en la economía
- Felicidad de la consumidora aumenta con el consumo de estos bienes y su objetivo es maximizar su felicidad
- ¿Cuánto decide consumir de cada bien? Supón que en la economía hay una cantidad \bar{q}_1 de bien 1 y una cantidad \bar{q}_2 de bien 2

Restricción Presupuestal

Las personas no solo actúan con base en su objetivo, también es importante tener en cuenta las limitaciones a la hora de tomar decisiones.

Nuestras decisiones de consumo están limitadas por:

- Ingreso que tenemos B = budget (I = hore.)
- Precios que enfrentamos P_x , P_4 , P_2 , P_3 , ...

Restricción Presupuestal

Supongamos que solo hay 2 bienes en la economía, X, Y con precios P_X , P_Y , respectivamente. Sea B el ingreso de la consumidora y denotemos con q_X y q_Y a

las cantidades de consumo de bien
$$X$$
 y bien Y

$$P_X P_X + P_Y P_Y \leftarrow Gasto \leq Ingreso$$

$$4x R + 4y R \leq B$$

 $4y R \leq B - 4x R$

$$4y \leq \frac{B}{R} - 4 \times \frac{R}{R}$$

$$P_X q_X + P_Y q_Y \le B$$

