Cálculo I

3 de Septiembre de 2012

1. Sean A y B conjuntos no vacíos de números reales positivos, verificando que $\inf A>0$ y B está mayorado. Probar que el conjunto

$$A^{-1}B = \{\frac{b}{a}: a \in A, b \in B\}$$

está mayorado y calcular su supremo.

2. Estudiar la convergencia de la sucesión $\{x_n\}$ definida por:

$$x_1=2, \quad x_{n+1}=2-\frac{1}{x_n} \quad \forall \ n \in \mathbb{N}$$

3. Estudiar la convergencia de la serie

$$\sum_{n>1} \frac{2^n n!}{n^n}$$

4. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y supongamos que existe un número real positivo c tal que

$$|f(x) - f(t)| \ge c|x - t| \quad \forall x, t \in \mathbb{R}.$$

Demostrar que $f(\mathbb{R}) = \mathbb{R}$.

(Indicación: Probar que la función f es inyectiva y por tanto estrictamente monótona)

5. Sea $a \ge 1$. Probar que existe alguna solución real de la ecuación

$$\log(x) = (x - a)^2$$

1

Cálculo I

3 de Septiembre de 2012

- 1. Desarrollar uno de los dos temas siguientes:
 - lacktriangle Teorema de Complitud de \mathbb{R} .
 - Teorema del valor intermedio para funciones continuas
- 2. Decir si las siguientes afirmaciones son verdaderas o falsas, razonando la respuesta:
 - (a) Dados $a, b \in \mathbb{R}$ tales que |ab| < |a|, se tiene que b < 1.
 - (b) Toda función definida en un conjunto numerable es continua.
 - (c) Toda sucesión acotada de números reales admite una sucesión parcial de Cauchy.
 - (d) Sea $\{a_n\}$ una sucesión de positivos tal que $\sum_{n\geq 1} a_n$ es una serie convergente. Entonces la serie $\sum_{n\geq 1} \frac{a_n^2}{1+a_n}$ es convergente.
 - (e) Toda función continua e inyectiva es estrictamente monótona.