VISION TRANSFORMERS

What is Vision Transformer?

Input Image Processing

Input Image

Size: 512 x 512 x 3

Transform

Patches

Size: 32 x 32 x 3 **Num Patches:** 256

Input Image Processing

THEORY

Input Image: H x W x C.

Patch Size: Ph x Pw

Number of patches (N): (H x W) / (Ph x Pw)

Transformed Input: (N, Ph x Pw x C)

H x W = Image height x width

C = Image channels

Ph x Pw = Patch height x width

N = Number of patches

EXAMPLE

Input Image: 200 x 200 x 3

Patch Size: 25 x 25

Number of patches (N):

 $= (200 \times 200) / (25 \times 25)$

= 64

Transformed Input:

 $= (64, 25 \times 25 \times 3)$

= (256, 1875)

Transformer Encoder

Norm: Layer Normalization.

MLP: Uses GELU activation function.

ViT Variants

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M