Методы оптимизации. Семинар 8. Сопряжённые функции

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

22 октября 2019 г.

Напоминание

- Субградиент и субдифференциал
- Условный субдифференциал
- Способы вычисления субдифференциалов

Определение

Снова сопряжённое?

- Ранее были рассмотрены сопряжённые (двойственные) множества и, в частности, конусы
- Сейчас будут рассмотрены сопряжённые (двойственные) функции
- Далее будет введена двойственная оптимизационная задача

Определение

Пусть $f: \mathbb{R}^n \to \mathbb{R}$. Функция $f^*: \mathbb{R}^n \to \mathbb{R}$ называется сопряжённой функцией к функции f и определена как $f^*(\mathbf{y}) = \sup_{\mathbf{x} \in dom \ f} (\mathbf{y}^\mathsf{T} \mathbf{x} - f(\mathbf{x})).$

Область определения f^* — это множество таких \mathbf{y} , что супремум конечен.

Свойства

- Сопряжённая функция f^* всегда выпукла как супремум линейных функций независимо от выпуклости f
- Неравенство Юнга-Фенхеля: $\mathbf{y}^\mathsf{T}\mathbf{x} \leq f(\mathbf{x}) + f^*(\mathbf{y})$ Обобщение квадратичного случая: $\mathbf{y}^\mathsf{T}\mathbf{x} \leq \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{x} + \frac{1}{2}\mathbf{y}^\mathsf{T}\mathbf{y}$
- Если f дифференцируема, то $f^*(\mathbf{y}) = \nabla f^\mathsf{T}(\mathbf{x}^*)\mathbf{x}^* f(\mathbf{x}^*)$, где \mathbf{x}^* даёт супремум.
- ullet Если f выпукла и замкнута, то $f^{**}=f$

Геометрический смысл

Примеры

- 1. Линейная функция: $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}\mathbf{x} + b$
- 2. Отрицательная энтропия: $f(x) = x \log x$
- 3. Индикаторная функция множества $S\colon I_S(x)=0$ iff $x\in S$
- 4. Норма: f(x) = ||x||.
- 5. Квадрат нормы: $f(x) = \frac{1}{2} ||x||^2$

Операции с сопряжёнными функциями

- ullet Разделение переменных: $f(x_1,x_2)=g(x_1)+h(x_2)$ и $f^*(y_1,y_2)=g^*(y_1)+h^*(y_2)$
- ullet Сдвиг аргумента: $f(\mathbf{x}) = g(\mathbf{x} \mathbf{a})$ и $f^*(\mathbf{y}) = \mathbf{a}^\mathsf{T} \mathbf{y} + g^*(\mathbf{y})$
- ullet Суперпозиция с обратимым линейным преобразованием: $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$ и $f^*(\mathbf{y}) = g^*(\mathbf{A}^{-\mathsf{T}}\mathbf{y})$
- Инфимальная конволюция (свёртка инфимумом): $f(x) = (h\Box g)(x) = \inf_{u+v=x} (h(u) + g(v))$ и $f^*(y) = h^*(y) + g^*(y)$

Moreau-Yosida envelope

- f(x) выпуклая, но *негладкая*
- Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_2^2 \right) (\mathbf{x})$$

- Функция Хьюбера $M_{\lambda f}$ для модуля
 - f(x) = |x|
 - $M_{\lambda f}(x) = \begin{cases} \frac{x^2}{2\lambda} & |x| \le \lambda \\ |x| \lambda/2 & |x| \ge \lambda \end{cases}$

Упражнение

- Нарисуйте на одном графике f(x) и $M_{\lambda f}(x)$
- ullet Получите выражение $M_{\lambda f}$ для $f(\mathbf{x}) = \|\mathbf{x}\|_1$

Почему получилась гладкая функция?

- $M_{\lambda f}({\bf x})$ выпукла
- $M^*_{\lambda f}(\mathbf{y}) = f^*(\mathbf{y}) + rac{\lambda}{2} \|\mathbf{y}\|_2^2$ сильно выпукла с параметром λ
- $M_{\lambda f} = M_{\lambda f}^{**} = (f^* + \frac{\lambda}{2} || \cdot ||_2^2)^*$
- Сопряжённая функция к сильно выпуклой функции является гладкой $\Rightarrow M_{\lambda f}$ гладкая функция и

$$M'_{\lambda f}(\mathbf{x}) = \frac{1}{\lambda}(\mathbf{x} - \mathbf{u}^*), \quad \mathbf{u}^* = \operatorname*{arg\,min}_{\mathbf{u}} \left(f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2 \right)$$

Важное свойство

Множество точек минимума f и $M_{\lambda f}$ совпадает.

Резюме

- Сопряжённые функции
- Неравенство Юнга-Фенхеля и другие свойства
- Сглаживание негладких функций
- Примеры