Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Схемотехника

К ЗАЩИТЕ ДОПУСТИТЬ А.И. Стракович

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

БЕСПРОВОДНАЯ КОЛОНКА С УПРАВЛЕНИЕМ ЖЕСТАМИ

БГУИР КП 1-40 02 01 201ПЗ

Студент Н.Г. Альхимович

Руководитель Ассистент кафедры ЭВМ

А.И. Стракович

Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет: КСиС. Кафедра: ЭВМ.

Специальность: 40 02 01 «Вычислительные машины, системы и сети».

Специализация: 400201-01 «Проектирование и применение локальных

компьютерных сетей».

	>>	_ 2023 г.
		Б.В. Никульшин
Зав	едуют	ций кафедрой ЭВМ
УΤ	ВЕРЖ	ДАЮ

ЗАДАНИЕ по курсовому проекту студента Альхимович Нины Геннальевны

- 1 Тема проекта: «Беспроводная колонка с управлением жестами»
- 2 Срок сдачи студентом законченного проекта: 1 декабря 2023 г.
- 3 Исходные данные к проекту:
 - **3.1** Микроконтроллер ESP32-WROOM-32E.
 - 3.2 Инфракрасные датчики движения HC-SR505.
 - **3.3** Ультразвуковой датчик расстояния HC-SR04.
 - **3.4** Bluetooth-динамики AIYIMA.
 - 3.5 Источник питания.
- **4** Содержание пояснительной записки (перечень подлежащих разработке вопросов):

Введение 1. Обзор литературы. 2. Разработка структуры устройства. 3. Обоснование выбора узлов, элементов функциональной схемы устройства.

- 4. Разработка принципиальной электрической схемы устройства. 5. Разработка программного обеспечения. Заключение. Список использованных источников. Приложения.
- **5** Перечень графического материала (с точным указанием обязательных чертежей):

- 5.1 Беспроводная колонка с управлением жестами. Схема структурная.
- **5.2** Беспроводная колонка с управлением жестами. Схема функциональная.
- **5.3** Беспроводная колонка с управлением жестами. Схема принципиальная.

КАЛЕНДАРНЫЙ ПЛАН

Наименование этапов	Объем	Срок	
курсового проекта	этапа,	выполнения	Примечания
курсового проскта	%	этапа	
Обзор литературы	15	01.09 - 20.09	
Разработка структурной схемы	15	21.09 - 04.10	
Разработка функциональной схемы	20	05.10 - 23.10	
Разработка принципиальной схемы	15	24.10 - 05.11	
Разработка программного	15	06.11 – 15.11	
обеспечения	13	06.11 – 13.11	
Создание макета устройства	10	16.11 - 23.11	
Оформление пояснительной	10	24 11 01 12	
записки и графического материала	10	24.11 – 01.12	
Защита курсового проекта		07.12 - 19.12	

Дата выдачи задания: 14.09.2023 г.	
Руководитель	А.И. Стракович
ЗАДАНИЕ ПРИНЯЛ К ИСПОЛНЕНИЮ	

СОДЕРЖАНИЕ

введение	5
1 ОБЗОР ЛИТЕРАТУРЫ	6
1.1 Обзор аналогов	6 6
1.2 Состав устройства	8
1.3 Микроконтроллеры	8
1.4 Динамики	8
1.5 Датчики движения	9
1.6 Датчики расстояния	10
2 РАЗРАБОТКА СТРУКТУРЫ УСТРОЙСТВА	11
2.1 Постановка задачи	11
2.2 Определение компонентов структуры устройства	11
2.3 Взаимодействие компонентов устройства	11
3 ОБОСНОВАНИЕ ВЫБОРА УЗЛОВ, ЭЛЕМЕНТОВ ФУНКЦИОНА. СХЕМЫ УСТРОЙСТВА	льной 13
3.1 Обоснование выбора микроконтроллера	13
3.2 Обоснование выбора динамиков	13
3.3 Обоснование выбора датчиков движения	13
3.4 Обоснование выбора датчиков расстояния	14
4 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ УСТРОЙСТВА	
4.1 Расчет мощности элементов схемы	15
4.2 Микроконтроллер	16
4.3 Динамики	
4.4 Инфракрасные датчики движения	
4.5 Ультразвуковой датчик расстояния	16

ВВЕДЕНИЕ

Данный курсовой проект посвящен разработке микропроцессорного устройства на базе микроконтроллера. В качестве темы была выбрана беспроводная колонка с управлением жестами. Разрабатываемый проект посредством Bluetooth подключается к устройству (к примеру, смартфону), на котором будет выбираться и включаться необходимый аудиофайл для последующего воспроизведения. Контроль устройства будет осуществляться при помощи жестов, распознаваемых датчиками, такие операции, как:

- приостановку/возобновление прослушивания;
- перематывание композиций;
- изменение уровня громкости.

Хотя подобных беспроводных колонок на рынке представлено большое множество. В частности, лидирующие позиции в сфере занимают продукты таких компаний, как JBL, Marshall, Beats и пр. Подавляющим большинством товаров из обозначенной области, как правило, необходимо управлять через физическое взаимодействие с устройством.

Однако такой способ управления в определенного рода ситуациях может быть ограничен или неудобен. Собственно особенность и актуальность предлагаемой разработки заключается в том, что непосредственный контакт и расположение вплотную к колонке не требуется. Можно рассмотреть следующие примеры, которые отражают пользу описываемого устройства:

- если прямой подход к колонке затруднен или органы управления находятся вне зоны досягаемости пользователя;
- если определение положения управляющих кнопок или регуляторов производится владельцем устройства посредством органов зрения, а не осязания, то в ситуациях, требующих повышенной внимательности и концентрации, это может послужить отвлекающим фактором в отличие от предлагаемого способа;
- реализуемый метод взаимодействия позволит устранить проблему износа части механических деталей колонки, в частности кнопок, которая неизбежна в случае с традиционным подходом изготовления колонок.

Таким образом, разработка беспроводной колонки с управлением жестами нацелена на создание прототипа устройства, которое обеспечит более удобный и адаптированный под потребности пользователя функционал, а также, как курсовой проект, позволит получить навыки проектирования и реализации устройства.

1 ОБЗОР ЛИТЕРАТУРЫ

1.1 Обзор аналогов

1.1.1 Sony LF-S50G Wireless Speaker

Sony LF-S50G Wireless Speaker — это беспроводная колонка, которая подключается к сети Wi-Fi с целью управления, а также доступа ко всем «умным» устройствам. Она может воспроизводить музыку, контролировать совместимое домашнее оборудование, используя как голосовые команды посредством функции Google Assistant, так и бесконтактные жесты. Устройство изображено на рисунке 1.1.1.

Рисунок 1.1.1 – Sony LF-S50G Wireless Speaker

1.1.2 Bastron Bluetooth Speaker with hand gesture control

Bastron Bluetooth Speaker — это уникальная беспроводная колонка, которая поддерживает управление жестами. Колонка имеет дизайн Magic Cube, в который не входит ни единая кнопка, изготовлена из полного алюминия и закаленного стекла. Встроенный аккумулятор на 2000 mAh обеспечивает длительное время работы. Колонка также оснащена встроенным микрофоном и функцией hands-free. Ее изображение приведено на рисунке 1.1.2.

Рисунок 1.1.2 – Bastron Bluetooth Speaker

1.1.3 Gesture Control Bluetooth Speaker Arduino

Gesture Control Bluetooth Speaker Arduino — это Bluetooth-колонка, управляемая жестами, разработанная с использованием Arduino. Она представляет собой компактное устройство, которое позволяет пользователю управлять музыкой, просто проводя рукой над динамиком. Включение производится с помощью жеста взмаха рукой. При отсутствии использования производится автоматическое отключение. Колонка представлена на рисунке 1.1.3.

Рисунок 1.1.3 – Gesture Control Bluetooth Speaker Arduino

1.2 Состав устройства

В соответствии с описанным ранее, разрабатываемое микропроцессорное устройство выполняет функции воспроизведения музыки, которое управляется посредством жестов. Таким образом осуществляется приостановка и продолжение проигрывания, перемотка аудиозаписей и регуляция громкости звучания. Для реализации указанных задач устройство должно включать следующие компоненты:

- микроконтроллер;
- динамики;
- датчики движения;
- ультразвуковой датчик расстояния;
- аккумулятор;
- плата регулятора напряжения.

1.3 Микроконтроллеры

Микроконтроллеры предназначены для обработки информации и управления процессами обмена ею в составе микропроцессорной системы. Самыми широко используемыми моделями являются ESP32-WROOM-32E и Raspberry Pi 4, сравнение характеристик которых приведено в таблице 1.2.1.

Таблица 1.2.1 – Сравнение характеристик ESP32-WROOM-32E и Raspberry Pi

Параметр сравнения	ESP32-WROOM-32E	Raspberry Pi 4		
Вид процессора	ESP32-D0WD-V3	Broadcom BCM2711		
Процессор	16 МГц	от 1,5 ГГц до 1,8 ГГц		
Объем постоянной	4/8/16 МБ	от 512 МБ до 32 ГБ		
памяти	4/ 0/ 10 IVID	01 312 WID ДО 32 I B		
Объем оперативной	520 КБ SRAM	256 ME 9 FF		
памяти	320 KB SKAW	от 256 МБ до 8 ГБ		
GPIO	26	26		
U (GPIO)	от 3,0 В до 3,6 В	3,3 B		
Аудиовыходы	Нет	HDMI, аудио разъем		
Поддержка Bluetooth	Да	Да		
	UART, SPI, SDIO, I2C,			
Интерфейсы	LED PWM, Motor	Bluetooth, BLE, USB		
интерфейсы	PWM, I2S, IR, ADC,	Bluetootii, BLE, OSB		
	DAC			

1.4 Динамики

Для беспроводного воспроизведения звука необходимы динамики, коих существует достаточное количество аналогов. Для сравнения приведены

продукты компаний Aiyima и SOTAMIA в таблице 1.3.1. Их изображения приведены на рисунках 1.3.1 и 1.3.2.

Таблица 1.3.1 – Сравнение характеристик динамиков Aiyima и SOTAMIA

Параметр сравнения	Bluetooth-динамики AIYIMA	Bluetooth-динамики SOTAMIA
Количество каналов	1	2
Пиковая мощность	10 Вт	8-10 B _T
Источник питания	Нет	Нет
Суммарная мощность	до 25 Вт	до 25 Вт
Количество полос	Широкополосная	Широкополосная
Сопротивление	4 Ом	4/8 Ом

Рисунок 1.3.1 – Bluetooth-динамики AIYIMA

Рисунок 1.3.2 – Bluetooth-динамики SOTAMIA

1.5 Датчики движения

Датчики движения в общем случае реагируют на перемещение объектов и используются для контроля окружающей обстановки или автоматического запуска требуемых действий в ответ на перемещение объектов. В данном случае они будут применены для обнаружения жестов и их распознавания для дальнейших манипуляций воспроизведения. Такого рода датчики бывают различных видов: инфракрасные, ультразвуковые, радиоволновые, фотоэлектрические. таблице 1.4.1 представлены В характеристики инфракрасного сенсора лучевого прерывания QT50CM и датчика движения HC-SR505.

Таблица 1.4.1 – Сравнение характеристик сенсора QT50CM и датчика HC-SR505

Параметр сравнения	QT50CM	HC-SR505	
Рабочее расстояние	50 см	3 м	
Напряжение питания	3,3-5,5 B	4,5 - 20 B	
Время ответа	<2 mc	2-3 c	
Рабочий диапазон температур	от -25°C до 60°C	от -20°C до +80°C	

1.6 Датчики расстояния

Датчики расстояния, что исходит из названия, используются для измерения расстояния до объектов. В контексте данного проекта такой датчик необходимо для манипуляций громкостью воспроизведения музыки. Из множества различных датчиков: ультразвуковых, инфракрасных, лазерных, емкостных — для сравнения были выбраны датчики расстояния RCWL-1005 и HC-SR04. Их характеристики приведены в таблице 1.5.1.

Таблица 1.5.1 – Сравнение характеристик датчиков RCWL-1005 и HC-SR04

Параметр сравнения	RCWL-1005	HC-SR04	
Рабочее расстояние	от 25 см до 4,5 м	от 2 см до 3,5 м	
Рабочее напряжение	2.8 - 5.5 B	5 B	
Потребляемый ток	2 мА	до 15 мА	

2 РАЗРАБОТКА СТРУКТУРЫ УСТРОЙСТВА

2.1 Постановка задачи

В рамках данного курсового проекта требуется разработать беспроводную колонку с управлением жестами. Помимо соответствия стандартному назначению: воспроизведению музыки посредством Bluetooth-подключения к устройству, с которого будут включаться нужные композиции, будут реализованы следующие функции:

- остановка воспроизведения;
- продолжение воспроизведения;
- перемотка композиций в обе стороны, что будет распознаваться инфракрасными датчиками движения;
- увеличение или уменьшение громкости в зависимости от направления жеста и его амплитуды, что будет анализироваться ультразвуковым датчиком расстояния.

2.2 Определение компонентов структуры устройства

В соответствии с функциями, определенными в подразделе выше, должны быть выбраны компоненты, которые смогут обеспечить выполнение поставленных задач. Они перечислены ниже:

- 1. Микроконтроллер главный элемент схемы, отвечающий за обработку поступающей с датчиков информации и отправку управляющих сигналов.
- 2. Динамики для осуществления основной функции устройства воспроизведения звука.
 - 3. Модуль питания источник питания схемы.
- 4. Датчики движения датчики, которые улавливают производимые жесты и определяют их значение.
- 5. Датчик расстояния датчик, который определяет размах производимого для управления громкостью жеста.
 - 6. Модуль управления.

2.3 Взаимодействие компонентов устройства

С помощью модуля управления в виде кнопки происходит перевод устройства в рабочее состояние. После чего для его дальнейшего использования необходимо посредством Bluetooth-соединения подключиться к устройству, с которого будет производиться включение воспроизведения.

Звук будет выводиться через динамики.

Когда будет происходить управление жестами (запрос на паузу или продолжение воспроизведения, перемотку), датчики движения будут

анализировать полученные данные и в зависимости от вида, посылать тот или иной сигнал контроллеру, после чего будет осуществляться нужная пользователю манипуляция.

Если датчик расстояния зафиксирует вход производимого жеста в установленный диапазон, определенное значение будет передано микроконтроллеру и в зависимости от его величины должно произвестись соответствующее увеличение или уменьшение (зависит от направления жеста) громкости музыки.

Благодаря модулю питания осуществляется питание всех необходимых элементов схемы, представленной в приложении А.

3 ОБОСНОВАНИЕ ВЫБОРА УЗЛОВ, ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ УСТРОЙСТВА

3.1 Обоснование выбора микроконтроллера

Оба рассматриваемых микроконтроллера являются высокопроизводительными модулями, поддерживающими выполнение задач разного уровня сложности и нагрузки: от сетей маломощных датчиков до наиболее затратных задач, таких как звуковое кодирование, потоковое воспроизведение музыки, декодирование MP3.

В рамках разрабатываемого курсового проекта повышенные мощности не требуются, однако при выборе микроконтроллера учитывались такие параметры, как:

- поддержка Bluetooth, поскольку ее отсутствие потребовало бы включение в схему дополнительно Bluetooth-модуля;
 - стоимость микроконтроллера.

было сказано выше, уже такие возможности производительности, какие предлагает микроконтроллер Raspberry Pi 4, для данного устройства не требуются, а стоимость микроконтроллера серии ESP32 является более доступной для некоммерческих проектов, то выбор остановлен микроконтроллере ESP32-WROOM-32E, ЧЬИ характеристики удовлетворяют заданным целям. Также, стоит отметить, что выбранный модуль предлагает больший выбор сред разработки для написания программ, нежели продукт Raspberry.

3.2 Обоснование выбора динамиков

Главным требованием при выборе динамиков для будущего устройства является удовлетворительное качество звука и поддержка беспроводного подключения, которое позволит разработанному устройству быть более компактным и простым в подключении и настройке. Такие характеристики, как максимальная мощность и сопротивление находятся практически в одном диапазоне и обладающие ими динамики совместимы с выбранным микроконтроллером. Соответственно в проекте планируется использовать динамики AIYIMA, так как отзывы потребителей свидетельствуют о лучшем качестве звука, предоставляемом этим видов динамиков.

3.3 Обоснование выбора датчиков движения

На основании данных таблицы 1.4.1 предыдущего раздела рабочий диапазон датчика HC-SR505 представляется более удобным в использовании, чем первый аналог. Также, этот датчик обладает большим углом обнаружения

(100 градусов против 10). Таким образом, в проекте будет применяться датчик HC-SR505 в том числе из-за доступности его приобретения.

3.4 Обоснование выбора датчиков расстояния

Хотя оба датчика могут быть использованы в целях, намеченных данным проектом, а именно: определении расстояния от руки человека до устройства, что будет использовано для определения желаемого изменения уровня громкости воспроизводимой музыки беспроводной колонкой; однако RCWL-1005 имеет более низкое рабочее напряжение и ток, а также поддерживает несколько режимов вывода. В то время как HC-SR04 имеет больший диапазон измерения и большую точность. Тем не менее, ключевым фактором, влияющим на окончательный выбор в сторону датчика HC-SR04, является наличие у датчика RCWL-1005 минимального диапазона в 25 см, что может создать трудности для работы устройства.

4 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ УСТРОЙСТВА

4.1 Расчет мощности элементов схемы

Мощность, которую потребляет разрабатываемое устройство, складывается из мощностей, потребляемых его составными компонентами. Итоговая мощность элементов схемы устройства приведена в таблице 4.1.1.

Таблица 4.1.1 – Расчет мощности элементов схемы устройства

No	Блок	Количество	U, B	I, MA	Р, мВт
1	Микроконтроллер ESP32-WROOM- 32E	1	3,3	240	792
2	Bluetooth- динамики AIYIMA	2			
3	Датчик движения HC-SR505	2	5	0,06	0,6
4	Датчик расстояния НС- SR04	1	5	15	75
Суммарная мощность, мВт				867,6	

Структуру схемы составляют:

- микроконтроллер ESP32-WROOM-32E;
- 2 Bluetooth-динамика;
- 2 датчика движения HC-SR505;
- датчик расстояния HC-SR04.

В результате, потребляемую мощность можно рассчитать следующим образом:

$$P_{\text{потр}} = I_1 \cdot U_1 + 2 \cdot I_2 \cdot U_2 + 2 \cdot I_3 \cdot U_3 + I_4 \cdot U_4 = 3,3 \cdot 240 + 2 \cdot \cdot + 2 \cdot 5 \cdot 0,06 + 5 \cdot 15 = (4.1.1)$$

Тогда максимальная потребляемая мощность с учетом поправочного коэффициента:

$$P_{\text{norp}}^{max} = 0.2 \cdot P_{\text{norp}} = \tag{4.1.2}$$

Потребляемый ток примет следующее значение:

$$I_{\text{потр}} = \frac{P_{\text{потр}}}{U} = \tag{4.1.3}$$

4.2 Микроконтроллер

Сведения об используемом микроконтроллере ESP32-WROOM-32E были приведены в подразделах 1.3 и 3.1. К нему подключаются все компоненты схемы через цифровые входы и выходы.

4.3 Динамики

Сведения об используемых динамиках были приведены в подразделах 1.4 и 3.2.

Микроконтроллер обеспечивает воспроизведение звука, связываясь с управляющим устройством посредством встроенной поддержки Bluetooth.

4.4 Инфракрасные датчики движения

Сведения об используемых датчиках HC-SR505 были приведены в подразделах 1.5 и 3.3.

Подключение осуществляется следующим образом:

- VCC: подключается к +5B;
- GND: подключается к земле;
- OUT: это цифровой выходной сигнал, который можно подключить к любому GPIO на ESP32.

4.5 Ультразвуковой датчик расстояния

Сведения об используемом датчике HC- SR04 были приведены в подразделах 1.6 и 3.4.

Подключение осуществляется следующим образом:

- VCC: подключается к +5В;
- GND: подключается к земле;
- Trig (Trigger): это входной пин, который можно подключить к любому GPIO на ESP32;
- Echo: это выходной пин, который также можно подключить к любому GPIO на ESP32.