Probability 1

Lecture 4: Discrete Random Variables - Part 1

Dr. Daniel Flores-Agreda,

(based on the notes of Prof. Davide La Vecchia)

Spring Semester 2021

Objectives

- Define the concept of a Random Variable
- Explore the features of Discrete Random Variables
 - Distribution and Probability Mass Function (PMF)
 - Cumulative Distribution Function (CDF)
 - Expectation and Variance
- (If time allows it) Start presenting some important Discrete Distributions.

Outline

- What is a Random Variable?
- Discrete random variables
- Cumulative Distribution Function
- Distributional Summaries

- What is a Random Variable?
- Discrete random variables
- Cumulative Distribution Function
- Distributional Summaries

Let's say we have a Random Experiment with different outcomes.

Definition (Informal)

A Random Variable X is a variable that takes on different numerical values according to the outcomes of a random experiment.

The probability of the numerical values will result from the probabilities of the outcomes.

To define a random variable, we need:

- 1. a list of all possible numerical values
- 2. the probability of each numerical value

Example (Rolling the dice - Again)

- Roll a single die, and record the number of dots on the top side.
- The list of all possible outcomes is the number shown on the die.
 - i.e. the possible outcomes are 1, 2, 3, 4, 5 and 6
- \bullet If we say each outcome is equally likely, then the probability of each outcome must be 1/6

Example (Flipping coins - Again)

- Flip a coin 10 times, and record the number of times T (tail) occurs
- The possible outcomes are

For each number we associate a probability

- The probabilities are determined by the assumptions made about the coin flips, e.g.
 - what is the probability of a 'tail' on a single coin flip
 - whether this probability is the same for every coin flip
 - whether the 10 coin flips are 'independent' of each other

Flores-Agreda, La Vecchia S110015 Spring Semester 2021

Example

- Measure the time taken by school students to complete a test.
- Every student has a maximum of 2 hours to finish the test.
- Let X = completion time (in minutes).
- The possible values of the random variable X are contained in the interval

$$(0,120] = \{x : 0 < x \le 120\}.$$

 We then need to associate probabilities with all events we may wish to consider, such as

$$P({X \le 15})$$
 or $P({X > 60})$.

A more formal definition

- Suppose we have:
 - a. A sample space S "for the events"
 - b. A probability measure (Pr) "for the events" in S
- Let X(s) be a function that takes an element $s \in S$ to a number x

Example (Rolling two dice)

Experiment: We already know that the sample space S is given by:

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

- let $i \in \{1, ..., 6\}$ denote the outcome of Die 1
- let $j \in \{1, \dots, 6\}$ denote the outcome of Die 2

Every pair
$$(i,j) = s_{ij} \in S$$
 has a probability $1/36$

For every element or subset of S we can compute a probability with $Pr(\cdot)$

Example (continued)

Let us define $X(s_{ij})$ as the sum of the outcomes in both dice:

$$X(s_{ij}) = X(i,j) = i + j$$
, for $i = 1, ..., 6$, and $j = 1, ..., 6$

Consequences:

- $X(\cdot)$ maps S into D.
- The sample space D is given by

$$D = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

where, for instance:

2 is related to the pair (1,1),

3 is related to the pairs (1,2) and (2,1), etc etc.

Every element or subset of D we can compute a probability with $P(\cdot)$

Example (continued)

 To each element (event) in D we can attach a probability, using the probability of the corresponding event(s) in S. For instance,

$$P(2) = Pr(1,1) = 1/36$$
, or $P(3) = Pr(1,2) + Pr(2,1) = 2/36$.

• How about the P(7)?

$$P(7) = Pr(3,4) + Pr(2,5) + Pr(1,6) + Pr(4,3) + Pr(5,2) + Pr(6,1) = 6/36.$$

• The latter equality can also be re-written as

$$P(7) = 2(Pr(3,4) + Pr(2,5) + Pr(1,6)) = 6 Pr(3,4),$$

Exercise

What is P(9)? What is P(13)? [Hint: does 13 belong to D?]

A(n) even more formal characterisation

Let us formalise all these ideas:

• Let D be the set of all values x that can be obtained by X(s), for all $s \in S$:

$$D = \{x : x = X(s), s \in S\}$$

- D is a **list of all possible numbers** x that can be obtained, and thus is a **sample space for** X. Remark that the random variable is X while x represents its realization (non random).
- D can be either an uncountable interval
 - X is a continuous random variable, or
- D can be discrete or countable
 - X is a **discrete** random variable

Moreover, because P is defined from Pr, it is also a probability measure on D. For each A:

$$P(A) = Pr(\{s \in S : X(s) \in A\})$$

where P and Pr stand for "probability" on D and on S, respectively. Hence:

- 1. $P(A) \ge 0$
- 2. $P(D) = Pr(\{s \in S : X(s) \in D\}) = Pr(S) = 1$
- 3. If A_1, A_2, A_3 ... is a sequence of events such that

$$A_i \cap A_j = \emptyset$$

for all $i \neq j$ then

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right).$$

(From now on, we'll be dropping the colors.)

Example (Geometric random variable)

Experiment: rolling a die until a 6 appears.

- Let X = "number of rolls until we get a 6"
- $D = \{1, 2, 3, \ldots, n, \ldots\} \equiv \mathbb{N}.$

$$P({X = 1}) = Pr(6' \text{ on the 1st roll}) = \frac{1}{6}$$

$$P({X = 2}) = Pr(\text{no '6' on the 1st roll and '6' on the 2nd roll}) = \frac{5}{6} \cdot \frac{1}{6} = \frac{5}{36}$$

$$P({X = 3}) = Pr$$
 (no '6' on either the 1st nor 2nd roll and '6' on the third roll)
= $\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} = \frac{25}{216}$

:

$$P(\{X=n\})=Pr(\mathsf{no}$$
 '6' on the first $n-1$ rolls and '6' on the last roll)

$$= \left(\frac{5}{6}\right)^{n-1} \cdot \frac{1}{6}$$

:

16 / 36

Example (continued)

• Rather than list the possible values of X along with the associated probabilities in a table, we can provide a formula that gives the required probabilities.

$$P({X = n}) = {\left(\frac{5}{6}\right)}^{n-1} \frac{1}{6}$$
 for $n = 1, 2, ...$

Exercise

Show that

$$\sum_{n=1}^{\infty} \left(\frac{5}{6}\right)^{n-1} \frac{1}{6} = 1.$$

Discrete random variables

- What is a Random Variable?
- Discrete random variables
- Cumulative Distribution Function
- 4 Distributional Summaries

Discrete random variables

Discrete random variables are often associated with the process of counting. More generally:

Definition (Probability of a Discrete Random Variable)

Suppose X can take the values $x_1, x_2, x_3, \ldots, x_n$.

The probability of x_i is

$$p_i = P(\{X = x_i\})$$

and we must have $p_1+p_2+p_3+\cdots+p_n=1$ and all $p_i\geq 0$. These probabilities may be put in a table

x _i	$P(\{X=x_i\})$
<i>x</i> ₁	p_1
<i>x</i> ₂	p_2
<i>X</i> 3	<i>p</i> ₃
:	i:
Xn	p _n
Total	1

19 / 36

Discrete random variables

- For a discrete random variable X, any table listing all possible nonzero probabilities provides the entire Probability Distribution.
- The **probability mass function** p(a) of X is defined by

$$p_a = p(a) = P(\{X = a\})$$

and this is positive for at most a countable number of values of a.

For instance, $p_1 = P(\{X = x_1\})$, $p_2 = P(\{X = x_2\})$, and so on. That is, if X must assume one of the values $x_1, x_2, ...$, then

$$p(x_i) \ge 0$$
 for $i = 1, 2, ...$
 $p(x) = 0$ otherwise. (1

Clearly, we must have

$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

- What is a Random Variable?
- Discrete random variables
- 3 Cumulative Distribution Function
- Distributional Summaries

The Cumulative Distribution Function (CDF) is a table listing the values that X can take, along with

$$F_X(a) = P(\lbrace X \leq a \rbrace) = \sum_{\mathsf{all} \ x \leq a} p(x).$$

If the random variable X takes on values $x_1, x_2, x_3, \ldots, x_n$ listed in increasing order $x_1 < x_2 < x_3 < \cdots < x_n$, the CDF is a step function, that it its value is constant in the intervals $(x_{i-1}, x_i]$ and takes a step/jump of size p_i at each x_i :

Xi	$F_X(x_i) = P\left(\{X \le x_i\}\right)$
<i>x</i> ₁	ρ_1
<i>X</i> ₂	$p_1 + p_2$
<i>X</i> 3	$p_1 + p_2 + p_3$
:	:
Xn	$p_1+p_2+\cdots+p_n=1$

22 / 36

Example

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 4/35 & 0 \le x < 1 \\ 22/35 & 1 \le x < 2 \\ 34/35 & 2 \le x < 3 \\ 1 & x \ge 3. \end{cases}$$

Example (continued)

... or graphically, you get a step function ...

Remark

Suppose $a \le b$. Then, because the event $\{X \le a\}$ is contained in the event $\{X \le b\}$, namely

$${X \le a} \subseteq {X \le b},$$

it follows that

$$F_X(a) \leq F_X(b),$$

so, the probability of the former is less than or equal to the probability of the latter.

In other words, $F_X(x)$ is a nondecreasing function of x.

Definition (Quantiles)

The CDF can be inverted to define the value x of X that corresponds to a given probability α , namely $\alpha = P(X \le x)$, for $\alpha \in [0, 1]$.

The inverse CDF $F_X^{-1}(\alpha)$ or **quantile of order** α , $Q(\alpha)$, is the smallest realisation of X associated to a CDF greater or equal to α In formula, the α -quantile $Q(\alpha)$ is the smallest number satisfying:

$$F_X[F_X^{-1}(\alpha)] = P[X \le \underbrace{F_X^{-1}(\alpha)}_{Q(\alpha)}] \ge \alpha, \text{ for } \alpha \in [0, 1].$$

By construction, a quantile of a discrete random variable is a realization of X^a

^aMore to come in future chapters

26 / 36

Example (cont'd, graphically)

...calling (only for this slide) R the rv, r its realizations and $F_R(r)$ its CDF at r...

- What is a Random Variable?
- Discrete random variables
- Cumulative Distribution Function
- Distributional Summaries

For a discrete random variable, it is useful to provide values that describe some **attributes** of its distribution

Definition

The **Expectation**, a.k.a. **Expected** or **Mean** value, of the distribution is (roughly speaking) its center.

$$E[X] = p_1x_1 + p_2x_2 + \cdots + p_nx_n = \sum_{i=1}^n p_ix_i,$$

and constitutes a measure of location.

Definition

The Square root of the Variance, or Standard Deviation, of the distribution

$$s.d(X) = \sqrt{Var(X)}$$

$$= \sqrt{p_1(x_1 - E[X])^2 + p_2(x_2 - E[X])^2 + \dots + p_n(x_n - E[X])^2}$$

is a measure of spread a.k.a. 'variability' or 'dispersion').

Distribution 2 is 'more spread' than Distribution 1

If X is a discrete random variable and a is any real number, then:

$$E [\alpha X] = \alpha E [X]$$

$$E [\alpha + X] = \alpha + E [X]$$

$$Var (\alpha X) = \alpha^{2} Var (X)$$

$$Var (\alpha + X) = Var (X)$$

Exercise

Let us very the first property: $E[\alpha X] = \alpha E[X]$. From the intro lecture we know that, for every $\alpha_i \in \mathbb{R}$,

$$\sum_{i=1}^{n} \alpha_{i} X_{i} = \alpha_{1} X_{1} + \alpha_{2} X_{2} + \dots + \alpha_{n} X_{n}.$$

So, the required result follows as a special case, setting $\alpha_i = \alpha$, for every i, and applying the definition of Expectation. Verify this and the other properties as an exercise. [Hint: set $\alpha_i = \alpha p_i$.]

Definition

Consider two discrete random variables Then, X and Y are **independent** if

$$P(\{X = x\} \cap \{Y = y\}) = P(\{X = x\}) \cdot P(\{Y = y\})$$

for all values x that X can take and all values y that Y can take.

• If X and Y are two discrete random variables, then

$$E[X + Y] = E[X] + E[Y]$$

• If X and Y are also independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
 (2)

Remark

Note that Eq. (2) does not (typically) hold if X and Y are NOT independent—more to come on this later on...

Recall that the expectation of X was defined as

$$E[X] = \sum_{i=1}^{n} p_i x_i$$

Now, suppose we are interested in a function m of the random variable X, say m(X). We define

$$E[m(X)] = p_1 m(x_1) + p_2 m(x_2) + \cdots p_n m(x_n).$$

Remark

Notice that the variance is a special case of expectation where,

$$m(X) = (X - E[X])^2$$
.

Indeed,

$$Var(X) = E[(X - E[X])^2].$$

Exercise

Show that

$$Var(X) = E[X^2] - E[X]^2$$
.

Wrap-up (to this point)

- A Random Variable maps events from the Sample Space of the Events onto a set of numerical values.
- This entails a new sample space and a new probability measure $P(\cdot)$
- When the mapping is onto a countable set the Random Variable is Discrete.
- A Discrete Random Variable is endowed of a **Probability Distribution**, which is a **listing of the probabilities of each value**.
- This Distribution can be displayed as a table or as functions: Probability Mass Function (PMF) or Cumulative Distribution Function (CDF).
- A Distribution has a "gravity center" The Expectation.
- A Distribution has a measure of "spread" with respect to this center: the Standard Deviation, which depends on the Variance.

Thank You for your Attention! "See you" Next Week