Homework #5 - Solutions

1. Sincich, 4.88

Using Table IV, Appendix B:

- a. $P(z \ge z_0) = .05$ $A_1 = .5 - .05 = .4500$ Looking up the area .4500 in Table IV gives $z_0 = 1.645$.
- b. $P(z \ge z_0) = .025$ $A_1 = .5 - .025 = .4750$ Looking up the area .4750 in Table IV gives $z_0 = 1.96$.
- c. $P(z \le z_0) = .025$ $A_1 = .5 - .025 = .4750$ Looking up the area .4750 in Table IV gives z = 1.96. Since z_0 is to the left of 0, $z_0 = -1.96$.
- d. $P(z \ge z_0) = .10$ $A_1 = .5 - .1 = .4$ Looking up the area .4000 in Table IV gives $z_0 = 1.28$.
- e. $P(z > z_0) = .10$ $A_1 = .5 - .1 = .4$ $z_0 = 1.28$ (same as in d)

2. Sincich, 4.94

The random variable x has a normal distribution with $\mu = 50$ and $\sigma = 3$.

a.
$$P(x \le x_0) = .8413$$

So,
$$A_1 + A_2 = .8413$$

Since $A_1 = .5$, $A_2 = .8413 - .5 = .3413$. Look up the area .3413 in the body of Table IV, Appendix B; $z_0 = 1.0$.

To find x_0 , substitute all the values into the z-score formula:

b.
$$P(x > x_0) = .025$$

So, $A = .5000 - .025 = .4750$

Look up the area .4750 in the body of Table IV, Appendix B; $z_0 = 1.96$.

To find x_0 , substitute all the values into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

$$1.96 = \frac{x_0 - 50}{3}$$

$$x_0 = 50 + 3(1.96) = 55.88$$

c.
$$P(x > x_0) = .95$$

So, $A_1 + A_2 = .95$. Since $A_2 = .5$, $A_1 = .95 - .5 = .4500$. Look up the area .4500 in the body of Table IV, Appendix B; (since it is exactly between two values, average the z-scores). $z_0 \approx -1.645$.

To find x_0 , substitute into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

$$-1.645 = \frac{x_0 - 50}{3}$$

$$x_0 = 50 - 3(1.645) = 45.065$$

d.
$$P(41 \le x < x_0) = .8630$$

$$z = \frac{x - \mu}{\sigma} = \frac{41 - 50}{3} = -3$$

$$A_1 = P(41 \le x \le \mu) = P(-3 \le z \le 0)$$

= $P(0 \le z \le 3)$
= .4987

 $A_1 + A_2 = .8630$, since $A_1 = .4987$, $A_2 = .8630 - .4987 = .3643$. Look up .3643 in the body of Table IV, Appendix B; $z_0 = 1.1$.

To find x_0 , substitute into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

$$1.1 = \frac{x_0 - 50}{3}$$

$$x_0 = 50 + 3(1.1) = 53.3$$

e.
$$P(x < x_0) = .10$$

So
$$A = .5000 - .10 = .4000$$

Look up area .4000 in the body of Table IV, Appendix B; $z_0 = 1.28$. Since z_0 is to the left of 0, $z_0 = -1.28$.

To find x_0 , substitute all the values into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

$$-1.28 = \frac{x_0 - 50}{3}$$

$$x_0 = 50 - 1.28(3) = 46.16$$

f.
$$P(x > x_0) = .01$$

So
$$A = .5000 - .01 = .4900$$

Look up area .4900 in the body of Table IV, Appendix B; $z_0 = 2.33$. To find x_0 , substitute all the values into the z-score formula:

$$z = \frac{x - \mu}{\sigma}$$

$$2.33 = \frac{x_0 - 50}{3}$$

$$x_0 = 50 + 2.33(3) = 56.99$$

3. Sincich, 4.102. NHTSA crash safety tests.

Let x = driver's head injury rating. The random variable x has a normal distribution with $\mu = 605$ and $\sigma = 185$. Using Table IV, Appendix B,

a.
$$P(500 < x < 700) = P\left(\frac{500 - 605}{185} < z < \frac{700 - 605}{185}\right) = P(-0.57 < z < 0.51)$$

= $P(-0.57 < z < 0) + P(0 < z < 0.51) = .2157 + .1950 = .4107$

b.
$$P(400 < x < 500) = P\left(\frac{400 - 605}{185} < z < \frac{500 - 605}{185}\right) = P(-1.11 < z < -0.57)$$

= $P(-1.11 < z < 0) - P(-0.57 < z < 0) = .3665 - .2157 = .1508$

c.
$$P(x < 850) = P\left(z < \frac{850 - 605}{185}\right) = P(z < 1.32) = .5 + P(0 < z < 1.32)$$

= .5 + .4066 = .9066

d.
$$P(x > 1,000) = P\left(z > \frac{1,000 - 605}{185}\right) = P(z > 2.14) = .5 - P(0 < z < 2.14)$$

= .5 - .4838 = .0162

- 4. Sincich, 4.114. Industrial filling process.
- a. Let x = quantity injected per container. The random variable x has a normal distribution with μ and $\sigma = .2$.

$$P(x < 10) = P\left(z < \frac{10 - 10}{.2}\right) = P(z < 0.0) = .5$$

$$P(x \ge 10) = P\left(z \ge \frac{10-10}{.2}\right) = P(z \ge 0.0) = .5$$

- b. Since the container needed to be reprocessed, it cost \$10. Upon refilling, it contained 10.60 uni with a cost of 10.60(\$20) = \$212. Thus, the total cost for filling this container is \$10 + \$212 = \$212. Since the container sells for \$230, the profit is \$230 \$222 = \$8.
- c. Let x = quantity injected per container. The random variable x has a normal distribution with μ 10.10 and $\sigma = .2$. The expected value of x is $E(x) = \mu = 10.10$. The cost of a container with 10. units is 10.10(\$20) = \$202. Thus, the expected profit would be the selling price minus the cost \$230 \$202 = \$28.

5. Sincich, 5.18.

a.
$$\mu_{\overline{x}} = \mu = 20$$
, $\sigma_{\overline{x}} = \sigma / \sqrt{n} = 16 / \sqrt{64} = 2$

b. By the Central Limit Theorem, the distribution of is approximately normal. In order for the Central Limit Theorem to apply, n must be sufficiently large. For this problem, n = 64 is sufficiently large.

c.
$$z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} = \frac{15.5 - 20}{2} = -2.25$$

d.
$$z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} = \frac{23 - 20}{2} = 1.50$$

6. Sincich, 5.24. Salary of a travel management professional.

- (a) 96850
- (b) $30000/\sqrt{50} = 4242.641$
- (c) approximately normal
- (d) z = (89500 96850) / (4242.641) = -1.73
- (e) 0.0418

7. Sincich, 5.30. Surface roughness of pipe.

a. Since the sample size is small, we also have to assume that the distribution from which the sample was drawn is normal. $\mu_{\overline{x}} = \mu = 1.8$, $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{.5}{\sqrt{20}} = .1118$

$$P(\overline{x} \ge 1.85) = P\left(z \ge \frac{1.85 - 1.8}{.1118}\right) = P(z \ge 0.45) = .5 - .1736 = .3264$$
(using Table IV, Appendix B)

b. Using MINITAB, the descriptive statistics are:

Descriptive Statistics: Rough

From this output, the value of \bar{x} is 1.881.

c. For $\bar{x} = 1.881$:

$$P(\overline{x} \ge 1.881) = P\left(z \ge \frac{1.881 - 1.8}{.1118}\right) = P(z \ge 0.72) = .5 - .1736 = .3264$$

Since this probability is so high, observing a sample mean of $\bar{x} = 1.881$, is not unusual. The assumptions in part a appear to be valid.

8. A Pepsi machine in a Burger King store can be regulated so that it dispenses an average of μ ounces per cup. If the amount dispensed is normally distributed with standard deviation 0.2 ounces, what should be the setting for μ so that 8 ounce cups will overflow only 1% of the time?

Let X be the amount dispensed from the machine. We want to find μ such that P(X > 8) = 0.01. Thus,

$$P\left(\frac{X-\mu}{0.2} > \frac{8-\mu}{0.2}\right) = 0.01$$

 $P\left(Z > \frac{8-\mu}{0.2}\right) = 0.01,$

so that

$$\frac{8-\mu}{0.2} = 2.3263,$$

and hence

$$\mu = 8 - (0.2)(2.3263)$$

= 7.53474.

• • • • • • • • •