Задача 1. «Радар-спидометр»

Скорость автомобиля сотрудники милиции измеряют дистанционно, с помощью радаровлокаторов. Принципы работы таких дистанционных спидометров могут быть различными. В данной задаче рассматриваются некоторые из них.

Во всех случаях будем считать, что милицейская машина \boldsymbol{a} и машина \boldsymbol{b} , скорость которой измеряют, движутся вдоль одной прямой: первая с постоянной

скоростью u, вторая с постоянной скоростью v. Скорость сигналов, посылаемых радаром - c.

Считаем, что в начальный момент времени машина a находится в начале координат, а машина на расстоянии x_0 от нее.

Часть 1. Импульсная локация.

Радар посылает короткие электромагнитные импульсы, следующие с интервалом au , и улавливает отраженные от машины $m{b}$ импульсы, измеряя при этом время между ними au_1 .

- 1.1 Запишите законы движения обоих автомобилей $x_a(t), x_b(t)$, постройте графики этих законов движения.
- 1.2 Постройте графики законов движения двух последовательно испущенных импульсов. Рассчитайте и укажите на графике: времена $t_k^{(0)}$ и $x_k^{(0)}$ координаты точек в момент испускания; времена $t_k^{(1)}$ и $x_k^{(1)}$ координаты точек в момент их отражения импульсов; времена $t_k^{(2)}$ и $x_k^{(2)}$ координаты точек в момент возвращения импульсов к локатору. Запишите также закон движения посланных и отраженных импульсов $x_1(t)$ и $x_2(t)$.
- 1.3 Рассчитайте время τ_1 между приходами в радару двух последовательных отраженных импульсов. Получите приближенную формулу для этого времени, считая, что скорости автомобилей значительно меньше скорости распространения импульсов u,v << c.
- 1.4 Рассчитайте численное относительного изменения времени между посланными и принятыми импульсами $\frac{\Delta \tau}{\tau}$. Проведите численную оценку этой величины, задав самостоятельно разумные скорости автомобилей и импульсов.

Часть 2. Гармоническая локация.

Рассмотрим случай, когда радар посылает гармоническую электромагнитную волну с частотой v_0 и принимает отраженную волну, определяя при этом частоту принятого сигнала v_2 .

- 2.1 Рассчитайте значения длин волн посланной $\,\lambda_{\!_{1}}\,$ и отраженной $\,\lambda_{\!_{2}}\,$ волн.
- 2.2 Определите частоту v_2 принятого сигнала. Найдите относительное изменение частоты $\frac{v_2-v_0}{v_0}$, считая, что скорости автомобилей значительно меньше скорости распространения импульсов u,v << c.

Часть 3. Реальные измерения.

Как и в части два считаем, что локатор посылает гармоническую волну с частотой v_0 и принимает отраженную волну. Затем принятый сигнал складывается с ослабленным сигналом, который посылает локатор.

- 3.1 Покажите что амплитуда сумма двух сигналов, посылаемого и принятого отраженного, испытывает периодические изменения (биения). Считайте, что амплитуды этих сигналов выравниваются. Запишите закон изменения амплитуды суммарного сигнала с течением времени. Найдите период биений.
- 3.2 Получите приближенное выражение для относительной скорости автомобиля , выразив ее через измеряемый период биений. Является ли измеренное указанным способом значение скорости мгновенной (в стогом смысле) скоростью?
- 3.3 Пусть относительная скорость автомобиля равна $10\frac{\kappa M}{vac}$, а длина волны посылаемой неподвижным радаром равна $\lambda_0 = 20\,cM$. Оцените относительное смещение автомобилей за минимально возможное время измерений.

Задача 2. Сферический баллон.

Тонкостенный сферический баллон изготовлен из стали и используется для хранения газообразного кислорода. Параметры баллона:

радиус в недеформированном состоянии $R_0 = 1.0 \, \mathrm{m}$; толщина стенок $h = 1.0 \, \mathrm{mm}$;

плотность стали
$$\rho = 7,9 \cdot 10^3 \frac{\kappa z}{m^3};$$
 модуль Юнга стали $E = 2,1 \cdot 10^{11} \, \Pi a$;

предел прочности на разрыв $\sigma_{nn} = 5.6 \cdot 10^8 \, \Pi a$;

работа выхода электронов из стали равна $A_{\rm sol} = 4,3\, \Im \epsilon$.

Атмосферное давление $p_{_{amm}}=1{,}0~amm=1{,}0\cdot10^5~\Pi a$, комнатную температуру считать равной $t_0=20^{\circ}C$. Молярная масса кислорода $M=32\cdot10^{-3}~\frac{\kappa c}{moлb}$.

электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\Phi}{M}$;

скорость света $c = 3.0 \cdot 10^8 \frac{M}{c}$;

заряд электрона $e = 1,6 \cdot 10^{-19} \, \text{Kn}$;

постоянная Планка $h = 6.63 \cdot 10^{-34} \, \text{Дж} \cdot c$.