苏州大学 高等数学一(下)期中试卷 共6页

考试形式: 闭卷

院系	年级	专业		
学号	姓名	成绩		
持别提醒:请	将答案填写在答题	弧纸上, 若填写在	试卷纸上无效.	
一. 选择题:	(每小题3分, 共	失15分)		
. 已知 ā, b 均为	单位向量,且 $\vec{a} \cdot \vec{b} = \frac{1}{2}$	a, \overline{b} 为邻边的 ³	平行四边形的面积为 ()
A. $\frac{\sqrt{2}}{2}$ B.	$\frac{\sqrt{3}}{2} \qquad C. \ \frac{\sqrt{2}}{3}$	D. $\frac{\sqrt{2}}{5}$		
2.设函数 $z = f(x)$,y)在点(x ₀ ,y ₀)处存	在对 x,y 的偏导数,则	$\mathbb{U}(\qquad) = f_x(x_0, y_0)$	
$A. \lim_{\Delta x \to 0} \frac{f(x_0 - 2\lambda)}{x_0 + 2\lambda}$	$\frac{\Delta x, y_0) - f(x_0, y_0)}{\Delta x}$	B. $\lim_{\Delta x \to 0} \frac{f(x_0, y_0) - y_0}{f(x_0, y_0)}$	$\frac{f(x_0 - \Delta x, y_0)}{\Delta x}$	
C. $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x)}{f(x_0 + \Delta x)}$	$\frac{(x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta x}$	D. $\lim_{x \to x_0} \frac{f(x, y) - f(x)}{x - x_0}$	(x_0, y_0)	
3. 点(x ₀ , y ₀)使	$f_x(x,y) = 0 \coprod f_y(x,y)$	= 0 成立, 则()		
A. (x_0, y_0) 是 $f($	(x, y) 的极值点	B. (x_0, y_0) 是 $f(x, y)$)的极大值点	
C. (x_0, y_0) 是 f	(x, y) 的极小值点	D. (x_0, y_0) 可能是 f	(x, y) 的极值点	
4. 函数 $f(x,y)$:	= xe ^y 在点(1,1)处的梯	度为()		
A. $\vec{ei} + \vec{ej}$	B. $\vec{ei} - \vec{ej}$	C. ei	D. \vec{ej}	
5. 己知 $I_1 = \iint_{x^2+y^2}$	$ xy dxdy, I_2 = \iint_{ x + y \le 1} xy dxdy$	$ xy dxdy, I_3 = \iint_{\substack{ x \le 1 \ y \le 1}} xy dx$	dy ,则 I_1 , I_2 , I_3 的大小关系	为(
A. $I_1 < I_2 < I_3$	B. $I_2 < I_1 < I_3$	C. $I_3 < I_1 < I_2$	D. $I_3 < I_2 < I_1$	
二. 填空题	: (每小题 3 分,	共15分)		
1. 由曲线 L:{	$3x^2 + 2y^2 = 12$, 绕 y 轴	旋转一周得到的旋转	声曲面方程为	

2. 极限
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)^2 e^{x^4y^4}} =$$

3. 曲面
$$x^2 + 2y^2 + 3z^2 = 21$$
在点 $P(1,-2,2)$ 的法线方程为______

4. 己知函数
$$f(x,y) = \int_0^{xy} e^{-t^2} dt$$
, 则 $\frac{1}{y} \cdot \frac{\partial f}{\partial x} + \frac{1}{x} \cdot \frac{\partial f}{\partial y} = \underline{\hspace{1cm}}$

5. 设平面区域
$$D = \{(x, y) | x^2 \le y \le 2 - x^2\}$$
,则二重积分 $\iint_D x^3 y^2 d\sigma =$ ______

三. 解下列各题: (每小题 8 分, 共 40 分)

1. 求通过点
$$M(1,2,3)$$
 与直线 $L:\begin{cases} x+y+z-1=0, \\ 2x+y-2=0 \end{cases}$ 的平面方程.

2. 设函数
$$u = \left(\frac{y}{x}\right)^z$$
,求d u .

3. 已知
$$z = z(x, y)$$
 是由方程 $e^z + xyz + x - 1 = 0$ 所确定的函数,求 $\frac{\partial^2 z}{\partial x^2}\Big|_{\substack{x=0\\y=0}}$

4. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$$
 在点 $P(1, -2, 1)$ 处的切线和法平面方程.

5. 计算二重积分
$$\iint_D \frac{x+y}{x^2+y^2} dxdy$$
, 其中 $D = \{(x,y) | x^2+y^2 \le 1, x+y \ge 1\}$.

四.解下列各题: (每小题 10 分,共 30 分)

1. 求函数u = x + y + z 在球面 $x^2 + y^2 + z^2 = 1$ 上的外法线方向的方向导数,并问此方向导数在何处最大,何处最小?

2. 设二元函数
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, x^2 + y^2 \neq 0\\ 0, x^2 + y^2 = 0 \end{cases}$$
 , 讨论:

- (1) f(x,y)在点(0,0)是否连续;
- (2) f(x,y)在点(0,0)的两个偏导数是否存在;
- (3) f(x,y)在点(0,0)是否可微.
- 3. 求球体 $x^2 + y^2 + z^2 \le 4a^2$ 被圆柱面 $x^2 + y^2 = 2ax(a > 0)$ 所截得的(含在圆柱面内的部分)立体的体积.

参考答案

一、选择题

- **1.** B

- **2.** B **3.** D **4.** A **5.** B

二、填空题

- $3x^2 + 3z^2 + 2y^2 = 12$
- 3. $\frac{x-1}{1} = \frac{y+2}{-4} = \frac{z-2}{6}$

三、解答题

- 1. 8x+3y-2z-8=0
- 2. $du = (\frac{y}{x})^z \left(-\frac{z}{x} dx + \frac{z}{y} dy + \ln \frac{y}{x} dz\right)$
- **3.** −1
- 4. 切线: $\begin{cases} \frac{x-1}{1} = \frac{z-1}{-1} \\ y = -2 \end{cases}$ 法平面: x-z=0
- 5. $\iint_D \frac{x}{x^2 + y^2} d\sigma = \int_0^1 dy \int_{1-y}^{\sqrt{1-y^2}} \frac{x}{x^2 + y^2} dx = \int_0^1 -\frac{1}{2} \ln(2y^2 2y + 1) dy = 1 \frac{\pi}{4}$

$$\iint_D \frac{x+y}{x^2+y^2} d\sigma = 2 - \frac{\pi}{2}$$

四、解答题

- 1. $\frac{\partial u}{\partial x} = x + y + z$, $\pm (\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$ 处最大, $(-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3})$ 处最小
- 2. (1) $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$ 连续 (2) $f_x(0,0) = f_y(0,0) = 0$

 - (3) $\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta z dz}{Q} = 0$,所以可微
- 3. $\frac{32}{3}a^3(\frac{\pi}{2}-\frac{2}{3})$