平成 29 年度 中間試験問題・解答

試験実施日 平成 29 年 12 月 7 日 6 時限

出題者記入欄

試 験 科 目 名 線形代数学 II	出題者名佐藤弘康				
試 験 時 間 <u>60</u> 分	平常授業	集日 <u>月</u> 曜日 <u>1</u> 時限			
持ち込みについて 可	√ [\ □]	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください			
教科書 · 参考書 · ノート (手書きのみ · コピーも可) · 電卓 · 辞書 その他 ()					
本紙以外に必要とする用紙 解答用紙 0 枚 計算用紙 0 枚					
通信欄					

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

	371-7111 H HB 2 111113
採 点 欄	評 価

 $egin{aligned} egin{aligned} egin{aligned} \vec{a} &= \begin{pmatrix} 1 \\ -1 \\ \end{pmatrix}, \vec{b} &= \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \vec{r} &= \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ とする.次の

(1) ベクトル $\vec{a}+2\vec{b}-\vec{r}$ の 成分 と 大きさ を求めなさい.

(2) \vec{a} と \vec{b} のなす角を θ とするとき, $\cos \theta$ の値を求め なさい.

(3) $\vec{a} + k\vec{b}$ と $\vec{a} - \vec{b}$ が直交するような k の値 を求めな さい.

(4) $3\vec{x} - 2\vec{y} = \vec{a}, \vec{x} - \vec{y} = \vec{b}$ を満たす \vec{x}, \vec{y} を求めなさい.

2 次の問に答えなさい.

$$(1) \left| \begin{array}{cc} 1 & 4 \\ -2 & 2-x \end{array} \right| = 0 \ を満たす \, x \ を求めなさい.$$

$$\begin{vmatrix} 1 & 3 & -2 \\ -2 & -6 & 4 \\ 0 & 2 & 2 \end{vmatrix} = 0$$
である.その理由を述べな

- とし、行列 $B=\left(\begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array} \right)$ によって表される 1 次変換 を q とする. 次の問に答えなさい.
 - (1) f による点 P(3,2) の像を求めなさい.

(2) g による点 Q の像が 点 P(3,2) であるとする. この とき、点Qの座標を求めなさい.

(3) 合成変換 $f \circ g$ による点 P(3,2) の像を求めなさい.

1 次変換 f によって, 点 (1,1) は点 (1,-2) に移り, 点 (1,-1) は点 (3,1) に移るとする. このとき, f を表す行 列を求めなさい.

 $oxed{3}$ 行列 $A=\left(egin{array}{cc} 1 & 3 \ 2 & -1 \end{array}
ight)$ によって表される 1 次変換を f とする. f の逆変換 f^{-1} があれば, f^{-1} を表す行列を求めなさい.

> $oxedge{6}$ xy-平面内の方程式 2x-3y=4 で表される直線を ℓ と する. 次の行列によって表される 1 次変換によって, ℓ が どのような図形に移るか詳細に述べなさい.

$$(1) \left(\begin{array}{cc} 1 & 2 \\ 3 & 2 \end{array}\right)$$

$$(2) \left(\begin{array}{cc} 2 & -3 \\ -4 & 6 \end{array}\right)$$