Machine Maintenance Prediction

Olabisi Matthew 01.02.2024

Table of contents

Objectives

02 Insights from Data

03 Prediction

O4 Conclusion

05 What next?

Objectives

Our aim

To understand the relationship between service hours and maintenance needs in order to optimize operational efficiency and minimize downtime as opposed traditional reactive measures

The goal

Empower businesses to schedule maintenance activities strategically and ultimately enhancing overall productivity and reducing operational disruptions

Data insights

Data Collection

This was done using embedded sensors and telemetry systems integrated into each machine

Machine characteristics

Boost pressure, Energy fuel rate, Engine Load, Engine oil pressure, Engine rpm, Ground speed, Haul distance, Payload, Tank fuel level, Gear select and Service hours for 11,500 samples

Visualizing relationships

Visualizing relationships II

What does our correlation matrix say?

ML models for prediction

- Linear regression
- Random forest (max_depth=5, min_sample_split=5, n_estimators=20, cv=5)
- K-nearest neighbor (n_neighbors=5, pl= 1, weight=uniform, cv=5)

Prediction with linear regression

Prediction with random forest

Prediction with knn

Conclusion

Model performances were bad and no insights could be drawn from the dataset

There was pretty nothing to predict seeing that our variables show a really low correlation with our target variable

What next?

Hone my data analysis skills and explore more datasets

Thanks

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**