

CSC380: Principles of Data Science

Probability 4

Xinchen Yu

Outline

- Multivariate Random Variables
 - Joint distribution vs. Marginal distribution
 - Independence of RVs
- Expectation and Variance Revisited
 - Covariance, correlation
- Example multivariate RVs
- Law of Large Numbers
- Central Limit Theorem

Multivariate Random Variables

Multivariate RVs: example

- X: people -> their genders
- Y: people -> their class year
- We'd like to answer questions such as: does X and Y have a correlation?
 - I.e., is a student in higher class year more likely to be male?
- We call (X, Y) a random vector, or a multivariate RV, and will study its joint distribution

Joint distribution of discrete RVs

 The joint PMF (probability mass function) of discrete random variables X, Y:

$$f(x,y) = P(X = x, Y = y)$$

Examples

Alexandra

$$P(X = \text{Fem}, Y = \text{Soph}) = \frac{1}{4}$$

Dharuvika

$$P(X = \text{Fem}, Y = \text{Jun}) = \frac{1}{4}$$

. . .

Joint distribution of discrete RVs

- X: # of cars owned by a randomly selected household
- Y: # of computers owned by the same household

Joint pmf shown with a table

		У					
х	1	2	3	4			
1	0.1	0	0.1	0			
2	0.3	0	0.1	0.2			
3	0	0.2	0	0			

- Probability that a randomly selected household has ≥ 2 cars and ≥ 2 computers?
 - $P(X \ge 2, Y \ge 2) = 0.5$

Marginal distributions

Given joint distribution of (X, Y), need distribution of one of them, say X.

Named the marginal distribution of X.

How to find
$$P(X = x)$$
?
 Using law of total probability:

$$f_1(x) = \sum f(x,y)$$
 x
 1
 0.1
 0
 0.1
 0
 0.1
 0
 0.1
 0
 0.1
 0
 0.1
 0
 0.1
 0
 0.1
 0
 0.1
 0
 0.1
 0.2
 0.3
 0
 0.2
 0.2
 0

This operation is called marginalization ('marginalizing out variable Y', or variable elimination)

Marginal distributions

		у					
	x	1	2	3	4	Total	
	1	0.1	0	0.1	0	0.2	
	2	0.3	0	0.1	0.2	0.6	f_1 : marginal distribution of λ
	3	0	0.2	0	0	0.2	j_1 : marginal distribution of λ
•	Total	0.4	0.2	0.2	0.2	1.0	•

 f_2 : marginal distribution of Y

$$f_1(X = 1) = \sum_{y} f(1, y) = 0.1 + 0 + 0.1 + 0 = 0.2$$

Joint distribution of continuous RVs

• Any continuous random vector (X,Y) has a joint probability density function (PDF) f(x,y), such that for all C,

$$P((X,Y) \in C) = \iint_C f(x,y) \, dx \, dy$$

f(x,y): represent a 2D surface double integral: the *volume* under the surface

Properties:

- f is nonnegative
- $\iint_{R^2} f(x, y) dx dy = 1$ (R^2 = the whole x-y plane)

$$P((X,Y) \in R^2) = 1$$

 Dartboard with center (0,0) and radius 1; dart lands uniformly at random on the board

• What is the joint PDF of (X, Y)?

Fact: the PDF is

$$f(x,y) = \begin{cases} c, x^2 + y^2 \le 1\\ 0, \text{ otherwise} \end{cases}$$

This is called "the Uniform distribution over the unit disk"

X

The PDF of X, Y is

$$f(x,y) = \begin{cases} c, x^2 + y^2 \le 1\\ 0, \text{ otherwise} \end{cases}$$

Can we find c?

Observe: volume under f(x,y) is πc (cylinder) which must also be 1

Therefore, $c = 1/\pi$

Marginal distribution of continuous RV

Given joint distribution of continuous RV (X,Y), how to find X's PDF f_1 ?

Fact (marginalization)
$$f_1(x) = \int_R f(x, y) dy$$

Replacing summation with integration in the continuous case ('marginalizing / integrating out variable Y')

How about Y's PDF f_2 ?

Marginalize out X

The PDF of X, Y is

$$f(x,y) = \begin{cases} \frac{1}{\pi}, x^2 + y^2 \le 1\\ 0, \text{ otherwise} \end{cases}$$

What is the marginal distribution over *X*?

$$f_1(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy$$

How to find this integral?

For a fixed $x \in [-1, 1]$, we can think of f(x) is the area of the slice:

- height: $\frac{1}{\pi}$, width: $2 \cdot \sqrt{1 x^2}$ $f_1(x) = \frac{2}{\pi} \cdot \sqrt{1 x^2}$

• In summary,

$$f(x) = \begin{cases} \frac{2}{\pi} \cdot \sqrt{1 - x^2}, & x \in [-1, 1] \\ 0, & \text{otherwise} \end{cases}$$

X's distribution is NOT Uniform([-1,1])! Actually makes sense: X closer to 1 is harder to be hit

Joint distribution of more than 3 RVs

- We can consider the joint distribution of more than 3 random variables,
 - E.g. (A,B,C), A = gender, B = class year, C = blood type
- Discrete RVs: can still define joint PMFs

a	b	\boldsymbol{c}	P(A=a,B=b,C=c)
0	0	0	0.06
0	0	1	0.09
0	1	0	0.08
0	1	1	0.12
1	0	0	0.06
1	0	1	0.24
1	1	0	0.10
1	1	1	0.25

Marginalization

P(A = a, B = b, C = c)

- What is the distribution of *A*?
 - Need to find P(A = 0) and P(A = 1)

Given the joint distribution of (A, B, C)

$$P(A = 0) = \sum_{b,c} P(A = 0, B = b, C = c)$$

Marginalization: summing over irrelevant variables

- What is the joint distribution of (A, B)?
 - Need to find P(A = 0, B = 0), ..., P(A = 1, B = 1)

$$P(A = 0, B = 0) = \sum_{i=1}^{n} P(A = 0, B = 0, C = c)$$

Marginalization for continuous RVs

Suppose joint PDF of (A, B, C) is f(a, b, c)

What is the PDF of A?

$$f_A(a) = \iint_{R^2} f(a,b,c) \ db \ dc$$

• What is the joint PDF of (A, B)? $f_{A,B}(a,b) = \int_{R} f(a,b,c)dc$

Marginalization: summing over irrelevant variables

These operations generalize to joint PDFs of more RVs...

Plan

- Multivariate RVs
 - $f_1(x) = \sum_{y} f(x, y)$ for discrete X, Y
 - $f_1(x) = \int_R^x f(x, y) dy$ for continuous X, Y
- Independence of RVs
- Conditional distribution of RVs
- Mean of conditional distribution
- Finding distribution of X + Y when they are independent

Independence of RVs

Independence of two RVs

• RVs X,Y are independent (denoted by $X \perp\!\!\!\perp Y$) if $f(x,y) = f_1(x) \cdot f_2(y), \quad \textit{for all } x,y$ PMF or PDF Marginal of X Marginal of Y

• E.g. for discrete
$$X, Y,$$

 $P(X = 3, Y = 4) = P(X = 3) \cdot P(Y = 4)$

Therefore, $\{X = 3\}$ and $\{Y = 4\}$ are independent events

In class activity: checking independence of RVs

• Which of these PMFs correspond to independent $X \perp\!\!\!\perp Y$?

	Y = 0	Y = 1	
X=0	1/4	1/4	1/2
X=1	1/4	1/4	1/2
	1/2	1/2	1

X, Y independent

Need to check:

$$f_1(0)f_2(0) = f(0,0),$$

(4 equalities)

X, Y not independent

E.g.
$$f_1(0)f_2(1) = \frac{1}{4}$$
, whereas $f(0,1) = 0$

only one counterexample suffices to disprove independence!

Independence is invariant under transformations

Fact If X, Y are independent, then f(X), g(Y) are also independent

E.g. X = tomorrow's temperature (in Celsius); Y = tomorrow's NVIDIA stock price (in \$)

f(X) = tomorrow's temperature (in Fahrenheit); g(Y) = tomorrow's NVIDIA stock price (in cents)

Independence of more than two RVs

• RVs $X_1, ..., X_n$ are independent if their joint PMF or PDF satisfy

$$f(x_1,x_2,\dots,x_n)=f_1(x_1)f_2(x_2)\dots f_n(x_n),$$
 PMFs or PDFs Marginal for X_1 Marginal for X_n for all x_1,\dots,x_n

This captures many real-world applications:

- Independent trials: each X_i is Bernoulli(p)
 - Flip 10 coins: $x_1, x_2, ..., x_{10}$

True or False?

 If I flip 10 coins independently, it is more likely that I see HTTHTHHTHT than HHHHHHHHHH

False

$$f(\text{HTTHTHHTHT}) = f_1(H) \cdot \dots \cdot f_{10}(T) = \frac{1}{2_{10}^{10}}$$

 $f(\text{HHHHHHHHHHH}) = f_1(H) \cdot \dots f_{10}(H) = \frac{1}{2_{10}^{10}}$

Independence of more than two RVs

Fact If $X_1, ..., X_n$ are independent, then

- any subset X_{i_1}, \dots, X_{i_n} are independent
 - E.g. X_1, X_3, X_7 are independent

- any disjoint subset $(X_{i_1}, ..., X_{i_m}), (X_{j_1}, ..., X_{j_l})$ are independent
 - E.g. (X_1, X_2) is independent of X_3
 - (X_1, X_3) is independent of (X_2, X_4)

Conditional distributions of RVs

Conditional distributions (discrete)

• X, Y have joint PMF f. Y has marginal PMF f_2

Conditional PMF of
$$X$$
 given $Y=y$:
$$g_1(x|y)=\frac{f(x,y)}{f_2(y)}$$
 Same as $\frac{P(X=x,Y=y)}{P(Y=y)}=P(X=x\mid Y=y)$

• $g_1(x|y)$ is viewed as a function of x: "the conditional distribution of X given Y = y"

In-class activity (discrete case)

Example X=0: car not stolen, X=1: car stolen

Joint PMF of X, Y, find P(X = 0|Y = 1)

Stolen X	1	2	3	4	5	Total
0	0.129	0.298	0.161	0.280	0.108	0.976
1	0.010	0.010	0.001	0.002	0.001	0.024
Total	0.139	0.308	0.162	0.282	0.109	1.000

Solution

$$P(X = 0|Y = 1) = \frac{P(X = 0, Y = 1)}{P(Y = 1)} = \frac{0.129}{0.139} = 0.928$$

In-class activity (discrete case)

Example X=0: car not stolen, X=1: car stolen

Joint PMF of *X*, *Y*:

brand Y						
Stolen X	1	2	3	4	5	Total
0	0.129	0.298	0.161	0.280	0.108	0.976
1	0.010	0.010	0.001	0.002	0.001	0.024
Total	0.139	0.308	0.162	0.282	0.109	1.000

Find the table of the conditional PMF of *X* given *Y*

Solution

	Brand Y					
Stolen X	1	2	3	4	5	
0	0.928	0.968	0.994	0.993	0.991	
1	0.072	0.032	0.006	0.007	0.009	

Conditional distributions (continuous)

- X, Y have joint PDF f. Y has marginal PDF f_2
- Conditional PDF of X given Y:

$$g_1(x|y) = \frac{f(x,y)}{f_2(y)}$$

Example Conditional distribution of *X* given Y = 0.6:

Answer: Uniform([-0.8, +0.8]), $f(x) = \frac{1}{0.8+0.8} = \frac{1}{1.6}$

Recap: Uniform Distribution

• $X \sim \text{Uniform}([a, b])$

$$f(x) = \begin{cases} 0, & y < a \\ \frac{1}{b-a}, & y \in [a, b] \\ 0, & y > b \end{cases}$$

Conditional distributions & independence

Fact *X*,*Y* are independent

 \Leftrightarrow for all y, g(x|y) are all equal to f(x) Here, g, f are PMF or PDF depending on the types of X,Y

Assume Y can only take the value 1, 2, and 3. We say X,Y are independent when

- f(X = x) = g(X = x | Y = 1), and
- f(X = x) = g(X = x | Y = 2), and
- f(X = x) = g(X = x | Y = 3)

In other words, knowing *Y* does not change our belief on *X*

In-class activity

Joint PMF

		J	Brand)				
Stolen X	1	2	3	4	5	Total	L
0	0.129	0.298	0.161	0.280	0.108	0.976	
1	0.010	0.010	0.001	0.002	0.001	0.024	
						f(x)	

conditional PMF of X, Y

		Brand Y					
Stolen X	1	2	3	4	5		
0	0.928	0.968 0.032	0.994	0.993	0.991		
1	0.072	0.032	0.006	0.007	0.009		
	g(x 1)	g(x 2))				

Question: are *X*,*Y* independent?

$$g(x = 0|1) = 0.928$$

 $f(x = 0) = 0.976$

Not equal, so not independent

Independence: visualization

Left: X, Y independent;

Right: X, Y not independent

True or False?

 If I flip a fair coin repeatedly, and my first 2 trials are both tails. Then my third throw will have a higher chance of showing head.

This is asking
$$g_3(H \mid TT) = P(X_3 = H | X_1 = T, X_2 = T)$$

Since X_3 is independent of $X_1, X_2 = P(X_3 = H) = 1/2$
so the claim is false

- This is known as the gambler's fallacy
 - Prior losses do not increase the chance of future win

Conditional expectation

Definition The mean of the conditional distribution of X given Y = y, is called the *conditional expectation* of X given Y = y, denoted as $E[X \mid Y = y]$.

$$E[X | Y = y]$$
 can be found by:

- $\sum_{x} x \cdot g(x|y)$, if X is discrete
- $\int_{-\infty}^{+\infty} x \cdot g(x|y) dx$, if X is continuous

Conditional PDF

Independence: visualization

• Left: *X*, *Y* independent;

Right: *X*, *Y* not independent

Which one is larger, E[Y|X=-1] or E[Y|X=+1]? The former

Recap

• RVs $X_1, ..., X_n$ are independent if their joint PMF or PDF satisfy $f(x_1, x_2, ..., x_n) = f_1(x_1) f_2(x_2) ... f_n(x_n),$

Conditional PDF of X given Y:

$$g_1(x|y) = \frac{f(x,y)}{f_2(y)}$$

• X,Y are independent \Leftrightarrow for all y, $g(x \mid y) = f(x)$

Independence: visualization

Which one is larger, E[Y|X=-1] or E[Y|X=+1]? Answer: compare the mean of the conditional distribution, so the former has higher mean

Conditional expectation

Example Roll 2 fair dice. Expected value of die 1 given that their sum is 5?

Solution X: outcome of die 1; Y: sum of 2 dice, $E[X \mid Y = 5]$

Let's find the conditional distribution of X given Y = 5 first.

$$g_1(x \mid 5) = P(X = x \mid Y = 5)$$

$$= \frac{P(X = x, Y = 5)}{P(Y = 5)}$$
 When is this nonzero?

Conditional expectation

$$g_1(x | 5) = P(X = x | Y = 5)$$
 When is this nonzero?

$$= \frac{P(X = x, Y = 5)}{P(Y = 5)}$$

$$= \frac{P(X = x, Y = 5)}{P(Y = 5)} = \frac{1}{4}$$

Thus, the conditional distribution of X given Y = 5 is

X	1	2	3	4
P(X=x Y=5) = $g_1(x 5)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Therefore,
$$E[X \mid Y = 5]$$
 is $\frac{1}{4}(1+2+3+4) = 2.5$

Finding distributions of RVs

Assume Z = r(X, Y) = X + Y, how to find distribution of Z?

Example: Total cost Z = X + Y, where X = food expenses, Y = transportation cost

Step 1: find potential values of Z

Step 2: find the probability that Z takes each possible value

Example Suppose $X \sim \text{Uniform}(\{1,2\}), Y \sim \text{Uniform}(\{1,2,3\}),$ and $X \perp\!\!\!\perp Y$. Find the distribution of Z = X + Y.

Solution

Step 1: what values can *X* + *Y* take? 2, 3, 4, 5

Step 2: for each possible value, what is the probability?

Example Suppose $X \sim \text{Uniform}(\{1,2\}), Y \sim \text{Uniform}(\{1,2,3\}),$ and $X \perp\!\!\!\perp Y$. Find the distribution of Z = X + Y.

Solution

Step 2: what is the probability that Z takes 2? 3? 4? 5?

$$P(Z = 2) = P(X = 1, Y = 1) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

$$P(Z = 3) = P(X = 1, Y = 2) + P(X = 2, Y = 1) = \frac{1}{3}$$

• • •	Z	2	3	4	5
	P(Z=z)	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

• If we are only interested in finding E[r(X,Y)], we can bypass finding r(X,Y)'s distribution using the rule of lazy statistician

• E.g. when *X,Y* are discrete:

$$E[r(X,Y)] = \sum_{x,y} r(x,y) \cdot P(X=x,Y=y)$$

Similar formulae hold for more than 3 RVs / continuous RVs

Example Suppose $X \sim \text{Uniform}(\{1,2\}), Y \sim \text{Uniform}(\{1,2,3\}),$ and $X \perp\!\!\!\perp Y$. Z = X + Y. Find the E[Z]

Z	2	3	4	5
P(Z=z)	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

$$E[r(X,Y)] = \sum_{x,y} r(x,y) \cdot P(X = x, Y = y)$$

$$= (1+1) \cdot P(X = 1, Y = 1) + \dots + (2+3) \cdot P(X = 2, Y = 3)$$

$$= 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{3} + 4 \cdot \frac{1}{3} + 5 \cdot \frac{1}{6} = \frac{7}{2}$$

Expectation and Variance revisited

Recap: expectation and variance

Mean

- $E[a \cdot X] = a \cdot E[X]$
- $E[a \cdot X + b] = a \cdot E[X] + b$
- $E[X \cdot Y] = E[X] \cdot E[Y]$ when X, Y are independent

Variance

- $Var(X) = E[(X \mu)^2] = E[X^2] (E[X])^2$
- $Var(a \cdot X) = a^2 \cdot Var(X)$

Plan

- E[X+Y]?
- Var[X + Y]?

Linearity of expectation

Fact Expectation of sum is sum of expectations

$$E[X_1 + X_2] = E[X_1] + E[X_2]$$

Example: betting on two games

Note: generalizes to n variables

This property, together with the previously known E[aX + b] = aE[X] + b, are called the *linearity of expectation*

Linearity of expectation

Example Proportion of R balls is p = 20%

- Randomly sample n = 100 balls with replacement
- X: number of R balls in the sample.
- Let $X_i = 1$ if *i*-th ball is \mathbb{R} , and 0 otherwise
- E[X] = ?

Solution

$$\Rightarrow X = X_1 + \cdots + X_n$$

Each X_i has expectation p

$$\Rightarrow E[X] = E[X_1] + \dots + E[X_n] = np = 20$$

Red balls
Blue balls

Linearity of Variance?

Is
$$Var[X + Y] = Var[X] + Var[Y]$$
?

- It depends...
 - when Y = -X.

$$Var[X + Y] = 0$$

$$Var[Y] = Var[-1 \cdot X] = 1^2 \cdot Var[X] = Var[X]$$

- => Left-hand side < Right-hand side
- when Y = X, Var[X + Y] = Var[2X] = 4 Var[X] Var[Y] = Var[X]
 - => Left-hand side > Right-hand side
- Extra correction is needed to balance the equation: covariance!

Covariance

• Covariance of X, Y: numerical measure of the degree to which X, Y vary together. Let $E[X] = \mu_X$, $E[Y] = \mu_Y$:

$$\operatorname{Cov}(X,Y) = \operatorname{E}[(X - \mu_{X})(Y - \mu_{Y})]$$

$$= E[XY] - \mu_{X}\mu_{Y}$$

$$Y$$

$$X$$

$$\operatorname{Cov}(X,Y) > 0$$

$$\operatorname{Cov}(X,Y) < 0$$

$$\operatorname{Cov}(X,Y) < 0$$

Positive correlation: *X*, *Y* simultaneously large or small

Calculating covariance

Fact (alternative formula)
$$Cov(X,Y) = E[XY] - \mu_{\chi}\mu_{\chi}$$

Example Find Cov(
$$X,Y$$
) given PMF $X=0$ $Y=1$ $X=0$ $X=0$

$$E[XY] = \sum_{x,y} xy \ P(X = x, Y = y) = 0 \cdot 0 \cdot \frac{1}{2} + 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2}$$

$$\mu_x = \frac{1}{2}, \ \mu_y = \frac{1}{2}$$

$$Cov(X, Y) = \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

Properties of Covariance

Let
$$E[X] = \mu_x$$
, $E[Y] = \mu_y$,

$$Cov(X,Y) = E[(X - \mu_x)(Y - \mu_y)]$$
$$= E[XY] - \mu_x \mu_y$$

Properties

- $Cov(X,X) = E[(X \mu_x)^2] = Var[X]$
- $\cdot \quad Cov(X + a, Y + b) = Cov(X, Y)$

• Cov(cX, dY) = cd Cov(X, Y)

Covariance is invariant to shifting

Covariance is sensitive to scaling

Correlation coefficient

• Covariance is sensitive to scaling, e.g. Cov(100X, Y) = 100 Cov(X, Y)

· Better measure, independent of changes in scales

Correlation of
$$X, Y = \rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

Standard deviation (i.e. square root variance) of X and Y

Measures linear association of X, Y. Always in [-1,1].

Correlation coefficient

• Example instances of $\rho(X,Y)$:

 $\sigma_Y = 0$, making $\rho(X, Y)$ undefined

Property of Variance – Corrected formula

Fact

$$Var[X + Y] = Var[X] + Var[Y] + 2 \cdot Cov(X, Y)$$

Sanity check:

- When Y = -X: 2Cov(X, Y) = -2 Var[X]
 - LHS = RHS = 0

Cov(X,Y) =
$$E[X \cdot Y] - \mu_X \mu_Y$$

= $E[X \cdot -X] - E[X] \cdot E[-X]$
= $-E[X^2] + (E[X])^2 = -Var[X]$

- When Y = X: 2Cov(X, Y) = 2Var[X]
 - LHS = RHS = 4 Var[X]
- What happens when X, Y are independent?

Independent RVs: important properties

Fact When $X \perp\!\!\!\perp Y$, E[XY] = E[X]E[Y]. As a result,

$$Cov(X,Y) = E[XY] - E[X]E[Y] = 0$$

$$Var(X + Y) = Var[X] + Var[Y]$$

independence

Justification

$$E[XY] = \sum_{x} \sum_{y} x y f(x,y) = \sum_{x} \sum_{y} x y f_1(x) f_2(y)$$
$$= \sum_{x} x f_1(x) \sum_{y} y f_2(y) = \sum_{x} x f_1(x) \mu_y = \mu_x \mu_y$$

Gaussian is closed under addition

Fact If $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, and $X \perp \!\!\!\perp Y$, then Z = X + Y is also Gaussian.

Find the parameters of Z's distribution: $Z \sim N(?,?)$

$$E[Z] = E[X + Y] = E[X] + E[Y] = \mu_X + \mu_Y$$

$$Var[X + Y] = Var[X] + Var[Y] = \sigma_X^2 + \sigma_Y^2$$

Thus,
$$Z \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Gaussian is closed under addition

Example Suppose X_1, X_2, X_3 are 3 independent measurements of the length of a table (in cm), which follow distribution $N(40, 0.1^2)$. Find the distribution of sample mean true length of table _____1

$$\bar{X} = \frac{1}{3} (X_1 + X_2 + X_3)$$

Solution

$$X_1 + X_2 \sim N(80, 2 \times 0.1^2)$$
Since $X_2 \perp \!\!\! \perp X_1$

$$(X_1 + X_2) + X_3 \sim N(120, 3 \times 0.1^2)$$

$$Var[a \cdot X] = a \cdot E[X]$$

$$Var[a \cdot X] = a^2 \cdot Var[a \cdot X]$$

Since $X_3 \perp (X_1, X_2)$ (and thus $X_3 \perp X_1 + X_2$)

Gaussian is closed under addition

Example Suppose X_1, X_2, X_3 are 3 independent measurements of the length of a table (in cm), which follow distribution $N(40, 0.1^2)$. Find the distribution of sample mean

$$\bar{X} = \frac{1}{3} (X_1 + X_2 + X_3)$$

Solution

$$X_1 + X_2 + X_3 \sim N(120, 3 \times 0.1^2)$$

$$\frac{1}{3}(X_1 + X_2 + X_3) \sim N\left(\frac{120}{3}, \frac{3 \times 0.1^2}{3^2}\right) = N\left(40, \frac{0.1^2}{3}\right)$$

Averaging over multiple measurements reduces measurement error!

In class exercise: a concrete counterexample

- Does zero covariance imply independence?
 - No: covariance only measures strength of linear relationship between X, Y

In class exercise: a concrete counterexample

X,Y are not independent

$$Cov(X,Y) = 0$$

Counterexample $X \sim \text{Uniform}(\{-1,0,1\})$. $Y = X^2$. Check independence and find covariance.

Step 1: Fill out the PMF table for X and Y

	x=-1	x=0	x=1
y=0			
y=1			

In class exercise: a concrete counterexample

Example $X \sim \text{Uniform}(\{-1,0,1\}). Y = X^2.$

Why are *X*, *Y* not independent?

• $Y \mid X = 0$ and $Y \mid X = 1$ have different distributions

Why is	Cov	(X,	Y)	=	0?
--------	-----	-----	----	---	----

- $\cdot \quad \mu_x = 0, \mu_y = \frac{2}{3}$
- $E[XY] = E[X^3] = 0$
- $\cdot \quad Cov(X,Y) = E[XY] \mu_x \mu_y = 0$

	x=-1	x=0	x=1
y=0	0	1/3	0
y=1	1/3	0	1/3

The covariance matrix

The *covariance matrix* of RVs *A*, *B* is a 2x2 array, with its entries being

Matrix: 2d array of elements

The covariance matrix of RVs $(X_1, ..., X_n)$ is a nxn array, with its entries being

(we will see examples soon..)

$$Cov(X_1, X_1)$$
 ... $Cov(X_1, X_n)$
 \vdots \vdots \vdots $Cov(X_n, X_n)$

Aside: visualizing correlations between variables

Useful tool: Pair plot

Example iris data each data point has 4 features

$$X_1, X_2, X_3, X_4$$

