## **BRAC UNIVERSITY**

## **Department of Computer Science and Engineering**

Examination: Semester Final Semester: Fall 2022
Duration: 1 Hour 40 Minutes Full Marks: 40

## CSE 422: Artificial Intelligence

Answer 4 out of 5 from the following questions. Figures in the right margin indicate marks.

| Name: | ID: | Section: |
|-------|-----|----------|

1. CO6

You have been given a dataset containing 8 rows and four features ("unique\_id", "colour", "size", and "tail\_length"). Each row represents a rat, and you are interested in finding the value of the label "has disease". Your goal is to build a decision tree from the table below:

| unique_id | colour | size  | tail_length | has_disease |
|-----------|--------|-------|-------------|-------------|
| #1        | black  | large | 5.6         | NO          |
| #28       | white  | large | 2.2         | YES         |
| #3        | black  | small | 3.8         | YES         |
| #34       | black  | small | 4.2         | YES         |
| #26       | black  | large | 1.2         | NO          |
| #11       | white  | small | 1.4         | NO          |
| #32       | black  | small | 2.3         | YES         |
| #13       | white  | large | 3.5         | NO          |

a. Among the columns "colour", and "size", which would you choose as the root node of your decision tree if you used Information Gain (IG) to construct the tree? **Construct** a decision tree using these two variables.

4

2

2

b. Why is "unique\_id" a bad choice for root node? **Explain**.

c. If you want to use "tail\_length" as a node while building the decision tree, what must you do beforehand? **Explain**.

- d. Given two variables  $X = \{$ outcome of an unbiased dice that can be rolled to obtain an integer value between 1 and 6 with equal probability $\}$  and  $Y = \{$ outcome of an unbiased coin that can be tossed with an equal probability of heads and tails $\}$ , **Identify** which is larger: entropy of X or entropy of Y?
- 2. CO5 a. In the table below, you are given a dataset containing 9 rows and 3 features  $X_1$ ,  $X_2$ ,  $X_3$ . Y is the label. Using naive bayes classifier, **Determine** the most likely value of Y if  $X_1 = 1$ ,  $X_2 = a$ ,  $X_3 = q$ . You don't need to use any kind of smoothing or normal distribution. Just derive the probabilities from frequencies.

| $X_1$ | $X_2$ | $X_3$ | Y |
|-------|-------|-------|---|
| 1     | a     | p     | 0 |
| 2     | b     | r     | 1 |
| 3     | b     | p     | 1 |
| 3     | c     | q     | 1 |
| 2     | c     | r     | 0 |
| 1     | b     | q     | 1 |
| 2     | a     | p     | 0 |
| 3     | a     | r     | 1 |
| 3     | b     | q     | 0 |

- 3. CO5
- Suppose X is a discrete random variable whose domain is exhaustive and mutually exclusive. Now the domain of  $X = \{A, B, C\}$ . Assume P(A) = 0.5 and P(B) = 0.3, then **determine** (i) P(C) and (ii)  $P(A \cup B)$ .
- b. Suppose two coins are tossed simultaneously. Assume Event A = the 1st coin coming up heads and Event B = the 2nd coin coming up tails. Now **determine** the value of  $P(A \cap B)$ .

c.

|    | A   |     | A'  |     |
|----|-----|-----|-----|-----|
|    | В   | B'  | В   | B'  |
| С  | 0.1 | 0.2 | 0.2 | Y   |
| C' | X   | 0.1 | 0.1 | 0.1 |

Using the given table answer the following questions:

- (i) Assume the events A and B showcase absolute independence and P(B|A) = 0.5. Now **determine** the value of X
- (ii) Using the ans obtained from (I), **determine** the value of Y
- (iii) Using the ans obtained from (I) and (II), **determine** the value of  $P(A|B\cap C)$

2 2

3

1

1

3

3

4. CO3



Consider the constraint graph of a problem above, where each region has to be filled up with either 1, 2, or 3. No two adjacent regions can have the same digit.

a. **Formulate** the variable, domain, constraint, and the goal of the problem

2

b. Based on the variable ordering procedure, mention the order of variables to be assigned with digit. **Provide** adequate explanation for your ordering.

th 4

2

c. Consider that node B already has digit 1 and all the other nodes are empty. If you are to provide digit to node D next, which digit should you pick? **Identify** your choice based on value selection procedure.

oes the 2

d. If node B has digit 1, node D has digit 2, and rest of the nodes are unassigned, does the constraint graph remain arc consistent? Why or why not? **Explain.** 

5. CO6

| X | у  |
|---|----|
| 2 | 41 |
| 4 | 64 |
| 3 | 57 |

- a. Considering the data points above, let's say the hypothesis of a regression is y = 10x + 20. In this case, **Estimate** the amount of error based on an appropriate error function.
- b. What procedure you can follow to reduce the amount of error produced? **Discuss** in brief.
- c. How is logistic regression different than regular linear regression? **Discuss**.

4

3