Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 12 giugno 2023

Il parametro b è uguale a:

(il resto della divisione del proprio numero di matricola per 4)+1.

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (7 punti)

Sia
$$W = \{(x_1, x_2, x_3, x_4) | (2x_1 - x_2 + x_3)^2 = x_4^2\} \subseteq \mathbb{R}^4$$
.

a) Si stabilisca se W è chiuso rispetto alla somma e/o al prodotto per scalari (fornendo controesempi in caso di risposta negativa).

[chiuso rispetto al prodotto per scalari e non rispetto alla somma]

b) Sia $\mathbf{u} = \mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3$. Si determini una applicazione lineare $L : \mathbb{R}^4 \to \mathbb{R}^4$, tale che $L(\mathbf{u}) = \mathbf{0}$ e Im $L = \langle \mathbf{e}_1 - \mathbf{e}_3, 5\mathbf{e}_2 + \mathbf{e}_4, \mathbf{e}_3 + 4\mathbf{e}_4 \rangle$. Si verifichi che Ker $L \subseteq W$ e si scriva la matrice associata ad L rispetto alle basi canoniche di dominio e codominio.

Esercizio 2. (9.5 punti)

Si considerino le applicazioni lineari $F_k : \mathbb{R}^4 \to \mathbb{R}^3$ definite da:

$$F_k(x_1, x_2, x_3, x_4) = (x_1 + x_2 - 2x_4, -14x_1 + kx_3 + 4kx_4, 5x_1 + kx_2 + x_3 - 10x_4),$$
al variare di $k \in \mathbb{R}$.

a) Si determini la dimensione di Im (F_k) , al variare di k.

$$[\dim (\operatorname{Im} (F_k)) = 2 \text{ per } k = 7, \dim (\operatorname{Im} (F_k)) = 3 \text{ per } k \neq 7]$$

- b) Si determini un valore a di k tale che Ker (F_a) abbia dimensione 2, e si completi una base di Ker (F_a) a una base di \mathbb{R}^4 .
- c) Si stabilisca se esistono valori di k tali che il vettore $\mathbf{e}_1 + \mathbf{e}_2 + 3\mathbf{e}_3 + \mathbf{e}_4$ appartenga a Ker (F_k) . [k=2]
- d) Posto k = 0, si determini la matrice associata ad F_0 rispetto alla base canonica di \mathbb{R}^4 e alla base $\mathcal{B} = \{\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_2, \mathbf{e}_1 + 2\mathbf{e}_3\}$ di \mathbb{R}^3 .

Esercizio 3. (9.5 punti)

Sia $T_k: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T_k(\mathbf{e}_1) = 9\mathbf{e}_2, \quad T_k(\mathbf{e}_2) = -\mathbf{e}_1 + 2k\mathbf{e}_2, \quad T_k(\mathbf{e}_3) = \mathbf{e}_1 - \mathbf{e}_2 + k\mathbf{e}_3$$

e sia A_k la matrice ad essa associata rispetto alla base canonica in dominio e codominio.

- a) Si stabilisca per quali valori a di k si ha che T_k è diagonalizzabile. [Autovalori $k,k\pm\sqrt{k^2-9}$, diag per k<-3 e k>3]
- b) Posto k=5, si scrivano tutte le matrici diagonali simile ad A_5 e si calcoli l'autospazio relativo all'autovalore di A_5 di modulo maggiore.
- c) Si stabilisca se esistono valori di k tali che il vettore $\mathbf{e}_1 + 2\mathbf{e}_2 5\mathbf{e}_3$ sia autovettore di T_k . [k = -7]
- d) Posto k=0 si determini, se possibile, una applicazione lineare $G: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $G \circ T_0$ sia suriettiva. [non esiste]

Esercizio 4. (4 punti)

- a) Si stabilisca se la congruenza $39x \equiv_{81} 52$ ammette soluzioni intere.[no]
- b) Si stabilisca se $[-7]_{25} \subseteq [18]_{50}$. [no]

Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 12 giugno 2023

Il parametro b è uguale a:

(il resto della divisione del proprio numero di matricola per 4)+1.

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (7 punti)

Sia
$$W = \{(x_1, x_2, x_3, x_4) | (x_1 - 2x_2 + x_4)^2 = x_3^2\} \subseteq \mathbb{R}^4$$
.

a) Si stabilisca se W è chiuso rispetto alla somma e/o al prodotto per scalari (fornendo controesempi in caso di risposta negativa).

[chiuso rispetto al prodotto per scalari e non rispetto alla somma]

b) Sia $\mathbf{u} = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_4$. Si determini una applicazione lineare $L : \mathbb{R}^4 \to \mathbb{R}^4$, tale che $L(\mathbf{u}) = \mathbf{0}$ e Im $L = \langle \mathbf{e}_1 - \mathbf{e}_3, 5\mathbf{e}_2 + \mathbf{e}_4, \mathbf{e}_3 + 4\mathbf{e}_4 \rangle$. Si verifichi che Ker $L \subseteq W$ e si scriva la matrice associata ad L rispetto alle basi canoniche di dominio e codominio.

Esercizio 2. (9.5 punti)

Si considerino le applicazioni lineari $F_k : \mathbb{R}^4 \to \mathbb{R}^3$ definite da:

$$F_k(x_1, x_2, x_3, x_4) = (x_1 + x_2 - 2x_4, 15x_1 + kx_3 + 6kx_4, -8x_1 + kx_2 + x_3 + 16x_4),$$
al variare di $k \in \mathbb{R}$.

a) Si determini la dimensione di Im (F_k) , al variare di k.

$$[\dim (\operatorname{Im} (F_k)) = 2 \text{ per } k = -5, \dim (\operatorname{Im} (F_k)) = 3 \text{ per } k \neq -5]$$

- b) Si determini un valore a di k tale che Ker (F_a) abbia dimensione 2, e si completi una base di Ker (F_a) a una base di \mathbb{R}^4 .
- c) Si stabilisca se esistono valori di k tali che il vettore $-4\mathbf{e}_1 + 6\mathbf{e}_2 36\mathbf{e}_3 + \mathbf{e}_4$ appartenga a Ker (F_k) . [k = -2]
- d) Posto k = 0, si determini la matrice associata ad F_0 rispetto alla base canonica di \mathbb{R}^4 e alla base $\mathcal{B} = \{\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_2, \mathbf{e}_1 + 2\mathbf{e}_3\}$ di \mathbb{R}^3 .

Esercizio 3. (9.5 punti)

Sia $T_k: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T_k(\mathbf{e}_1) = 16\mathbf{e}_3, \quad T_k(\mathbf{e}_2) = \mathbf{e}_1 + k\mathbf{e}_2 - \mathbf{e}_3, \quad T_k(\mathbf{e}_3) = -\mathbf{e}_1 + 2k\mathbf{e}_3$$

e sia A_k la matrice ad essa associata rispetto alla base canonica in dominio e codominio.

- a) Si stabilisca per quali valori a di k si ha che T_k è diagonalizzabile. [Autovalori $k,k\pm\sqrt{k^2-16}$, diag per k<-4 e k>4]
- b) Posto k=5, si scrivano tutte le matrici diagonali simile ad A_5 e si calcoli l'autospazio relativo all'autovalore di A_5 di modulo maggiore.
- c) Si stabilisca se esistono valori di k tali che il vettore $\mathbf{e}_1 12\mathbf{e}_2 14\mathbf{e}_3$ sia autovettore di T_k . [k=2]
- d) Posto k=0 si determini, se possibile, una applicazione lineare $G: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $G \circ T_0$ sia suriettiva. [non esiste]

Esercizio 4. (4 punti)

- a) Si stabilisca se la congruenza $35x \equiv_{56} 14$ ammette soluzioni intere. [si]
- b) Si stabilisca se $[-11]_{30} \subseteq [19]_{60}$. [no]