Common Core 5th Grade Curriculum

Albert Ye

August 25, 2023

1 Lecture 1

Definition 1

An integer $p \neq 0, 1, -1$ is **prime** if the only integers which divide p are ± 1 and $\pm p$.

Recall that the integers $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}, \mathbb{N} = \{0, 1, 2, 3, \dots\}.$

Theorem 2 (Twin Prime Conjecture)

There are infinitely many $p \in \mathbb{N}$ such that p is prime and p+2 is prime.

Yitang Zhang proved bounded gaps between primes, so there are infinitely many prime p, p + N.

Theorem 3 (Goldbach Conjecture)

Every even number can be written as the sum of two primes.

Vinagradar proved that every odd number can be written as the sum of 3 primes. The proof should use something called sieves.

Proposition 4

There are infinitely many primes.

Proof. Suppose not and p_1, \ldots, p_n are all the primes. Then, let $p_1 \cdots p_n + 1 = N$.

As we will see, every integer admits a unique decomposition into a product of primes.

1.1 Counting Primes

Let $\pi(x): N \to \mathbb{N}$ return the number of primes p such that 0 .

Then, $\pi(x)$ is unbounded: $\lim_{x\to\infty} \pi(x) = \infty$.

Theorem 5 (Prime Number Theorem)

$$\lim \frac{\pi(x)}{x/\log x} = 1.$$

In other words, $\pi(x) \to \frac{x}{\log x}$;

A better approximation is $\text{Li}(x) = \int_2^x \frac{dt}{\log t}$. The error for Li(x) is $|\pi(x) - \text{Li}(x)| = O(\log x \sqrt{x})$.

1.2 Prime Factorization

Theorem 6 (Uniqueness of Prime Factorization)

Every integer $0 \neq n \in \mathbb{Z}$ can be written as

$$n = (-1)^{Z(n)} \prod_{p \text{ prime}} p^{a_p} \qquad a_p \in \mathbb{N},$$

where all but finitely many a_p are zero, $\epsilon(n) = \begin{cases} 0 & n > 0 \\ 1 & n < 0 \end{cases}$.

To prove this, we first look at a lemma:

Lemma 1.2.1

If $a, b \in \mathbb{Z}$ and b > 0, there exist integers q, r such that a = qb + r and $0 \le r < b$.

Proof. Consider the set of integers of the form $\{a - xb | x \in \mathbb{Z}\} = S$. The set S contains infinitely many positive integers, so contains a least positive integer r = a - qb.

Remark 7

This property does not hold for $S \subset \mathbb{Q}$. Consider $S = \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$.

The rest of the proof will follow later.

Definition 8

Let a_1, \ldots, a_n be integers. Denote (a_1, \ldots, a_n) to be the set $\{b_1 a_1 + \cdots + b_n a_n | b_i \in \mathbb{Z}\}$.

2 Lecture 2

2.1 Prime Factorization, cont.

Recall the theorem of uniqueness of prime factorizations. Also recall that a prime number p is an integer $\neq 0$, so that the only divisors of p are ± 1 and $\pm p$.

Definition 9

If $0 \neq a \in \mathbb{Z}$ and $p \in \mathbb{Z}$ is prime, let $\operatorname{ord}_p a$ denote the largest integer n such that $p^n | a$, i.e. $a = p^n b$.

We define $\operatorname{ord}_p 0 = \infty$.

Lemma 2.1.1

If $a, b \in \mathbb{Z}$, then there exists $d \in \mathbb{Z}$ such that (d) = (a, b). Recall Definition 8 for (a_1, a_2, \dots, a_n) .

Proof. Let d be the smallest integer > 0 in (a, b). We claim that (d) = (a, b). As $d \in (a, b)$, we see that $(d) \subseteq (a, b)$. We have to show that $(a, b) \subseteq (d)$.

Take $c \in (a, b)$, then we see from 1.2.1 that c = qd + r with $0 \le r < d$. Then $r = c - qd \in (a, b)$. By minimality of d, we see that r = 0, so c = qd implie $c \in (d)$.

Definition 10

If $a, b \in \mathbb{Z}$, then a greatest common divisor d of a, b is an integer which divides a, b such that any other integer c with that property satisfies c|d.

Remark 11

If we insist $d \ge 0$, then it is unique. Because if $c, d \ge 0$ are both gcd(a, b), then c|d and d|c, which implies $c = \pm d$, but because of positivity we must have c = d.

Proposition 12

If $a, b \in \mathbb{Z}$, then the d appearing in 2.1.1 s.t. d = (a, b) is a greatest common divisor of a, b.

Proof. If (d) = (a, b), then $a \in (d) = d\mathbb{Z} \implies d|a$. If $c \in \mathbb{Z}$ is any common divisor of a and b, then c divides an + bm for all $m, n \in \mathbb{Z}$. As $d \in (a, b)$, d has this form, so c|d.

Thus, by definition, d must be the greatest common divisor.

Definition 13

We say that $a, b \in \mathbb{Z}$ are **relatively prime** if (a, b) = 1.

In other words, the only nonzero integers that divide a and b are ± 1 .

Lemma 2.1.2

Suppose a|bc, and (a,b) = 1. Then, a|c.

Proof. (a,b)=1 implies 1=an+bm for some n,m. So c=acn+bcm. Notice that the right term contains bc and the left term contains a, so c must be divisible by a.

Corollary 14

If p is prime and p|ab, then p|a or p|b.

Proof. If (p, a) = p, then we're done as p|a.

Suppose instead that (p, a) = 1. From 2.1.2, we have p|b.

We take the contrapositive to see that if a prime p doesn't divide a or b, then it doesn't divide ab.

Proposition 15

Fix a prime p. If $a, b \in \mathbb{Z}$, then $\operatorname{ord}_p ab = \operatorname{ord}_p a + \operatorname{ord}_p b$.

Proof. Let $\operatorname{ord}_p a = n$, $\operatorname{ord}_p b = m$. Then, we see that $a = p^n c$, $b = p^m d$ where $p \not | c$, $p \not | d$. So $ab = p^n c \cdot p^m d = p^{n+m}(cd)$. We know that p cannot divide cd from 14, so $\operatorname{ord}_p ab = n + m$.

Now, we can finally prove Theorem 6.

Proof of 6. Fix $n \in \mathbb{Z}$ and suppose that $n = (-1)^{\epsilon(n)} \prod_{p} p^{a_p}$.

Then, fix a prime q. We see that

$$\operatorname{ord}_q n = 0 + \sum_p a_p \operatorname{ord}_q p = a_q.$$

This is because $\operatorname{ord}_q p = \begin{cases} 1 & q = p \\ 0 & q \neq p \end{cases}$. This implies that the only factors that will contribute to $\operatorname{ord}_q n$ are the terms of q, of which there are a_q .

Hence, a_p for each prime p is determined solely by n, so the prime factorization is unique.