5 ЗАСТОСУВАННЯ ТА АНАЛІЗ МЕТОДІВ ЧИСЕЛЬНОГО ІНТЕГРУВАННЯ

1 Постановка задачі

Необхідно знайти визначений інтеграл для функції $f(x) = x^4 + x^3 + 7x^2 - 3x - 1$ на інтервалі [0;2], користуючись методом трапецій та методом Сімсона та порівняти точність вказаних методів в залежності від кількості ітерацій.

2 Аналітичний розв'язок задачі

$$\int_{0}^{2} (x^{4} + x^{3} + 7x^{2} - 3x - 1)dx = \frac{1}{5}x^{5} + \frac{1}{4}x^{4} + \frac{7}{3}x^{3} - \frac{3}{2}x^{2} - x\Big|_{0}^{2} = 21.0667$$

3 Алгоритм методу чисельного інтегрування

Вибираючи значення n будемо користуватись наступною формулою для метода трапецій:

$$I_n = h\left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(a+ih)\right), \ h = \frac{b-a}{n}$$

При цьому похибка обчислень згідно теорої не має перевищувати:

$$|E(f)| \le \frac{(b-a)^3}{12n^2} \max_{x \in [a,b]} |f''(x)|, \frac{(b-a)^3}{12n^2} = \frac{nh^3}{12}$$

В нашому випадку: $f''(x) = 12x^2 + 6x + 14$, $\max_{x \in [0,2]} |f''(x)| = f''(2) = 74$ Метод Сімсона будуємо за настпуною формулою:

$$I_{Simps,n} = \sum_{i=0}^{n/2-1} \frac{h}{3} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})] =$$

$$= \frac{h}{3} [f(a) + 4f(a+h) + 2f(a+2h) + \dots + 4f(b-h) + f(b)]$$

При цьому похибка обчислень згідно теорої не має перевищувати:

$$|E(f)| \le \frac{(b-a)}{288} h^3 \max_{x \in [a,b]} |f^{(3)}(x)|$$

В нашому випадку: $f^{(3)}(x) = 24x + 6$, $\max_{x \in [0,2]} \left| f^{(3)}(x) \right| = f^{(3)}(2) = 54$

4 Результати експерименту

Результати роботи методів в залежності від n були виведені у файл, було отримано наступні значення. Для метода трапецій:

n	Оцінене значення	Похибка	Теоретична похибка
100	21.069066656	0.00239998933333041	0.004933333333333333
200	21.067266666000005	0.0005999993333354325	0.00123333333333333333
300	21.066933333201654	0.00026666653498352844	0.0005481481481481482
400	21.06681666625005	0.00014999995833520074	0.00030833333333333333
500	21.066762666649616	9.599998294618217E-05	0.000197333333333333333
600	21.06673333332511	6.666665844079489E-05	0.00013703703703703705
700	21.06671564625406	4.897958739036312E-05	0.00010068027210884355
800	21.066704166664067	3.7499997397105744E-05	7.708333333333334E-05
900	21.066696296294676	2.9629628006233588E-05	6.090534979423868E-05
1000	21.06669066665604	2.3999998933987854E-05	4.933333333333E-05

Для метода Сімсона:

n	Оцінене значення	Похибка	Теоретична похибка
100	21.066666709333337	4.266666664420882E-08	3E-06
200	21.066666669333333	2.666663334593977E-09	3.75E-07
300	21.066666667193424	5.267537517283927E-10	1.111111111111114E-07
400	21.06666666683334	1.666684568135679E- 10	4.6875E-08
500	21.06666666673493	6.825828791079402E-11	2.4E-08
600	21.066666666699593	3.292299766144424E-11	1.38888888888892E-08
700	21.066666666684444	1.7774226535038906E-11	8.746355685131195E-09
800	21.06666666667709	1.042010921992187E-11	5.859375E-09
900	21.066666666673168	6.497913318526116E-12	4.115226337448559E-09
1000	21.066666666670944	4.273914555597003E-12	3E-09

5 Аналіз роботи програми та висновки

Бачимо, що точність методів стрімко зростає по мірі росту n, а також, що метод Сімсона є значно точніший метода трапецій.

6 Лістинг програми

```
using System;
{\tt 3} namespace Integration
4 {
      public class Function
6
           public static double a = 0;
          public static double b = 2;
          public static double F(double x)
9
10
               return x * x * x * x + x * x + 7 * x * x - 3 *
11
      x - 1;
12
          }
           public static double MaxFSecondDerevative()
13
14
```

```
// 12x^2 + 6x + 14, x0 = 2
15
               return 74;
16
          }
17
18
          public static double MaxFThirdDerevative()
19
               // 24x + 6
20
               return 54;
21
          }
22
           public static double MaxFFourthDerevative()
23
24
               // 24
25
               return 24;
26
           }
27
           public static double IntF(double x)
28
29
               return x * x * x * x * x / 5 + x * x * x / 4 +
30
      7 * x * x * x / 3 - 3 * x * x / 2 - 1 * x;
          }
31
           public static double IntFDef()
32
           {
33
               return IntF(b) - IntF(a);
34
           }
35
      }
36
37 }
using System;
2 using System.IO;
4 namespace Integration
5 {
      class Integration
6
           public delegate double Func(double x);
8
           public static double IntegrateTrapeze(double a, double
9
      b, int n, Func f)
10
           {
               var h = (b - a) / n;
11
               var sum = 0.5 * (f(a) + f(b));
12
               for (int i = 1; i < n; i++)
13
                   sum += f(a + i * h);
14
               return sum * h;
15
           }
16
17
          public static double IntegrateSimson(double a, double b
      , int n, Func f)
           {
18
               var h = (b - a) / n;
19
               var sum = (f(a) + 4 * f(a + h) + f(b));
20
               for (int i = 1; i < n / 2; i++)
21
```

22

sum += 2 * f(a + (2 * i) * h) + 4 * f(a + (2 *

```
i + 1) * h);
               return sum * h / 3;
23
24
           }
25
           public static void TestIntegrationTrapeze()
26
27
               StreamWriter outp = new StreamWriter("
28
      output_trapeze.txt");
               var real = Function.IntFDef();
29
               outp.WriteLine("Real value: {0}", real);
30
               outp.WriteLine("n\testimated value\tdifference\
31
      tdifference theory");
               for(int i = 100; i \le 1000; i+=100)
32
               {
33
                   var h = (Function.b - Function.a) / i;
34
35
                   var res = Integration.IntegrateTrapeze(Function
      .a, Function.b, i, Function.F);
                   outp.WriteLine("\{0\}\t\{1\}\t\{2\}\t\{3\}", i, res,
36
      Math.Abs(real - res), Function.MaxFSecondDerevative() * i *
       h * h * h / 12);
               }
37
               outp.Close();
38
           }
39
           public static void TestIntegrationSimson()
40
41
           {
               StreamWriter outp = new StreamWriter("output_simson
42
      .txt");
               var real = Function.IntFDef();
43
               outp.WriteLine("Real value: {0}", real);
44
               outp.WriteLine("n\testimated value\tdifference\
45
      tdifference theory");
               for(int i = 100; i \le 1000; i+=100)
46
47
                   var h = (Function.b - Function.a) / i;
48
                   var res = Integration.IntegrateSimson(Function.
49
      a, Function.b, i, Function.F);
                   outp.WriteLine("\{0\}\t\{1\}\t\{2\}\t\{3\}", i, res,
      Math.Abs(real - res),
                        Function.MaxFThirdDerevative() * (Function.
51
      b - Function.a) * h * h * h / 288);
               }
52
53
               outp.Close();
           }
54
55
      }
56 }
```

```
using System;
namespace Integration
```

```
class Program
class Program
full teacher to the class of the clas
```