STA231C High-Dimensional Statistics Notes

Zhi Zhang

March 2020

Contents

1	Mea	asure of Concentration	3	
	1.1	Subgaussian Random Variable	9	
	1.2	Subexp random variable		
	1.3	Gaussian random vectors		
	1.4	Quadratic forms in subG r.v.		
	1.5	Concentration Inequalities that are based only on moments		
2	Uni	form Laws of Large Numbers	Ę	
	2.1	basic	Ę	
	2.2	Empirical Risk Minimization	Ę	
	2.3	Glivenko–Cantelli Theorem		
3	Met	tric Entropy	7	
	3.1	Dudley Entropy Integral	7	
	3.2	Sudakov-Fernique-Sleplan's Inequality		
	3.3	Gordon's inequality		
4	Random Matrices and Covariance Estimation			
	4.1	Notation	ç	
	4.2	covariance estimation		
	4.3	Extreme eigenvalues of Wishart Matrices		
	4.4	structure Σ		
	4.5	random matrices		
	4.6	Matrix Chernoff		
5	Spa	rse Linear Models	13	
	5.1	Backgrounds	13	
		Noisiness model RNSP	13	

Measure of Concentration

1.1 Subgaussian Random Variable

Definition 1.1.1. We say a r.v. X with mean μ is subG with parameter $\sigma ge0$ if

$$\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \le e^{\frac{\lambda^2\sigma^2}{2}}$$

Johnson-Lindenstrauss lemma: random projection approximately preserve euclidean distance

1.2 Subexp random variable

Martingale methods tower property, strip step

$$f(x) - \mathbb{E}[f(x)] \sim \operatorname{subexp}(||v||_2, ||\alpha||_{\infty})$$

$$\mathbb{P}(|f(x) - \mathbb{E}[f(x)]| \geq t) \leq 2\exp\{-\min\left(\frac{t^2}{2||v||^2}, \frac{t}{2||\alpha_\infty||}\right)\}$$

Azuma-Hoeffding inequality, as long as the martingale difference bounded. We use it to prove bounded difference property.

The bounded difference inequality, McDiarmid's inequality, how to handle non-linear functions of independent random variables.

1.3 Gaussian random vectors

Gaussian concentration inequality

$$\mathbb{P}(|f(z) - \mathbb{E}[f(z)]| \ge t) \le 2e^{\frac{-t^2}{2L^2}}$$

$$\mathbb{P}(|f(x) - \mathbb{E}[f(x)]| \ge t) \le 2e^{\frac{-t^2}{2L^2||\sigma||_{op}}}$$

control of the largest singular value of the covariance matrix.

Fubini's theorem

Orthogonal linear map to the Gaussian r.v. preserve the Gaussian property

1.4 Quadratic forms in subG r.v.

$$\mathbb{P}(|X^{\top}AX - \mathbb{E}[X^{\top}AX]| \ge t) \le small(t)$$

Theorem 1.4.1 (Hassan Wright Inequality).

$$\mathbb{P}\left(|X^{\top}AX - \mathbb{E}[X^{\top}AX]| \ge t\right) \le 2\exp\left(-c\min\left(\frac{t^2}{\tau^4 \|A\|_p^2}, \frac{t}{\tau^2 \|A\|_{op}}\right)\right)$$
$$\mathbb{E}\left[X^{\top}AX\right] = \operatorname{tr}(A)$$

1.5 Concentration Inequalities that are based only on moments

how can we develop concentration Inequalities for r.v that don't have mgf?

$$\mathbb{P}\left(\left|S - \mathbb{E}\left[S\right]\right| \ge t\right) \le \frac{\mathbb{E}\left[\left|S - \mathbb{E}\left[S\right]\right|^r\right]}{r^t}$$

Rosenthal inequality allows higher order moments to be bounded in terms of variances.

Theorem 1.5.1 (Khinehines Theorem).

$$\left\| \sum_{k=1}^{n} a_k \epsilon_k \right\|_r \le c\sqrt{r} \left\| \sum_{k=1}^{n} a_k \epsilon_k \right\|_2$$

book "decoupling" by Víctor De la Peña and Evarist Gine Masdeu

Uniform Laws of Large Numbers

2.1 basic

Theorem 2.1.1 (Glivenko–Cantelli Thm, fundamental theorem of statistics). $let \hat{F}_n(t) = \frac{1}{n} \sum_{k=1}^n \mathbb{1}\{x_k \leq t\}$

$$||h - g||_{\infty} = \sup_{t \in R} |h(t) - g(t)|$$

$$||\hat{F}_n - F||_{\infty} \to 0$$

$$||\hat{F}_n - F|| = ||\hat{P}_n - P||_{T}$$

2.2 Empirical Risk Minimization

$$R(\theta, \theta^*) = \int \log \left(\frac{p_{\theta^*}(x)}{p_{\theta}(x)} \right) p_{\theta^*}(x) dx = D_{KL}(p_{\theta^*}||p_{\theta})$$

If $\hat{\theta}$ is obtained by ERM(eg. MLE), how can we show the excess risk $\epsilon(\hat{\theta}, \hat{\theta}^*)$ is small?

$$\epsilon(\hat{\theta} - \theta^*) \le 2 \left\| \hat{P}_n - P \right\|_{\mathcal{F}}$$
$$\mathbb{E} \left[\left\| \hat{P}_n - P \right\|_{\mathcal{T}} \right] + \sigma$$

holds with $prob \ge 1 - \exp\left(-\frac{n\sigma^2}{2b^2}\right)$

Definition 2.2.1 (Rademacher Complexity).

$$\operatorname{Rm}(\mathcal{F}) = \mathbb{E}\left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right| \right]$$

measure how large the class of the function

Lemma 2.2.1.

$$\mathbb{E}\left[\left\|\hat{P}_n - P\right\|_{\mathcal{T}}\right] \le 2\operatorname{Rm}\left(\mathcal{F}\right)$$

bounded difference property

$$|G(x_1,\dots,x_n)-G(x_1,x_k',\dots,x_n)|\leq \frac{2b}{n}$$

Fact 2.2.1. moving sup inside the \mathbb{E} makes the expectation bigger jessen inequality, moving out the expectation out of a convex function creates an upper bound

Fact 2.2.2. Rm $(\mathcal{F}) \to 0$ is a sufficient condition for \mathcal{F} to be a GC class

2.3 Glivenko-Cantelli Theorem

Lemma 2.3.1. $f(x) = \mathbb{1}\{x \le t\}$, implies

$$\|\hat{F}_n - F\|_{\infty} \le c\sqrt{\frac{\log(n+1)}{n}} + \delta$$

with prob
$$\geq 1 - \exp\left(\frac{-n\delta^2}{2}\right)$$

Remark 2.3.1. Dvoretzky–Kiefer–Wolfowitz inequality, $P(\|\hat{F}_n - F\|_{\infty} \ge t) \le 2e^{-2nt^2}$

Metric Entropy

Fact 3.0.1. For any $T\mathbb{R}$, if B(1) is the unit ball for a general norm $\|\|$, then $N(\delta, \rho, B(1)) \leq \left(\frac{1}{\delta} + 1\right)^d$ provided $\rho(\theta, \theta') = \|\theta - \theta'\|$, likewise, the metric entropy looks like $d\log(\frac{1}{\delta})$ as $\delta \to 0$

ideal, the class of function is as complex as the ball in the space.

Fact 3.0.2. Examples of metric entropy of sets of functions

$$\mathcal{F} = \{g : [0,1] \to [R] | |g(x) - gx' \le L|x - x'| \}$$

then

$$\log N(\delta, \|\|_{\infty}, \mathcal{F}) \asymp \frac{L}{\delta}$$

where

$$||g - g'||_{\infty} = \sup_{x \in [0,1]} |g(x) - g'(x)|$$

Goal: bound things like $\mathbb{E}[\sup_{\theta \in T} X_{\theta}]$, T is the metric space with metric ρ

3.1 Dudley Entropy Integral

Goal: bound $\mathbb{E}\left[\sup_{\theta\in T}X_{\theta}\right]$ or $\mathbb{E}\left[\sup_{\theta,\theta'\in T}(X_{\theta}-X_{\theta'})\right]$

Definition 3.1.1. we say a process $\{X_{\theta}\}_{{\theta}\in T}$ is subG with a metric ρ , if $X_{\theta}-X_{{\theta}'}\sim subG(\rho({\theta},{\theta}'))$, equivalently, the

$$\mathbb{E}\left[e^{\lambda(X_{\theta}-X_{\theta'})}\right] \le e^{\frac{\lambda^2\rho^2(\theta,\theta')}{2}}$$

Example 3.1.1. Let $z \sim N(0, I_d)$ as standard Gaussian vector, $T = unitl_2ballB_2(1)$, $\rho = ||\cdot||_2$, and $X_\theta = \langle Z, \theta \rangle$, then $\{X_\theta\}$ is subG

$$X_{\theta} - X_{\theta'} = \langle Z, \theta - \theta' \rangle \sim N(0, \|\theta - \theta'\|_2^2)$$

$$\mathbb{E}\left[\sup_{\theta \in T} X_{\theta}\right] \le \int_{0}^{D} \sqrt{\log N(\delta, \rho, T) d\delta}$$

where D = dim(T)

Remark 3.1.1.

$$\mathbb{E}\left[\sup_{\theta,\theta'} X_{\theta} - X_{\theta'}\right] \le C$$

implies

$$\mathbb{E}\left[\sup_{\theta} X_{\theta}\right] \le C$$

Fact 3.1.1.

$$\mathbb{E}\left[\sup_{\theta,\theta'} X_{\theta} - X_{\theta'}\right] = \left\|\sup_{\theta,\theta'} X_{\theta} - X_{\theta'}\right\|_{L_{1}}$$

weakly convergence for empirical process

Example 3.1.2. control of Gaussian weights

$$G(T) \le \inf_{\delta \in [0,D]} |\sqrt{d\delta} + D\sqrt{\log N(\delta, \rho, T)}|$$

sum of squares of d Gaussian r.v. is d

Jensen's Inequality put inside "E" into a concave function (sqrt), or put outside E into a convex function (abs) gets an upper bound

Theorem 3.1.1 (Dudley entropy integral). Let $\{X_{\theta}\}_{{\theta}\in T}$ be a zero-mean subG process, with ρ , and D=diam(T) then

$$\mathbb{E}\left[\sup_{\theta \in T} X_{\theta}\right] \leq \int_{0}^{D} \sqrt{\log N(\delta, \rho, T)} d\delta$$

note: the larger of the δ , the smaller of points needed to pick from T to composite the δ cover.

Fact 3.1.2. If Z_1, \dots, Z_m are subG(1) r.v.s, with all $\mathbb{E}[Z_i] = 0$ for $i = 1, \dots, m$, then $\mathbb{E}[max_{1 \le i \le m}] Z_i \lesssim \sqrt{\log(m)}$ Fact 3.1.3.

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i}\epsilon_{i}f(x_{i})\right]\right] \leq \frac{1}{\sqrt{n}}\,\mathbb{E}\left[\sup_{f\in\mathcal{F}}X_{f}\right]$$

$$\lesssim \frac{1}{\sqrt{n}}\int_{0}^{D}\sqrt{\log N(\delta,\rho,\mathcal{F})}d\delta$$
Duadley gives
$$\lesssim \frac{1}{\sqrt{n}}\int_{0}^{D}\sqrt{c(b,\mu)\log N(1+2\log(\frac{b}{\delta}))}d\delta$$

$$\lesssim \frac{c'(b,\mu)}{\sqrt{n}}$$

3.2 Sudakov-Fernique-Sleplan's Inequality

Fact 3.2.1.

$$\phi(x) = \max_{j} x_{j}$$

the smoothed version of maximum

$$\phi_{\beta}(x) = \frac{1}{\beta} \log \left(\sum_{j=1}^{d} e^{\beta x_j} \right)$$
$$\phi(x) \le \phi_{\beta}(x) \le \phi(x) + \frac{\log(d)}{\beta}$$

Example 3.2.1 (Application: Gaussian Contraction Inequality).

Fact 3.2.2. For independent random variables X and Y, the variance of their sum or difference is the sum of their variances: $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$ $\sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2$

3.3 Gordon's inequality

Gordon's inequality allows us to control $\mathbb{E}[\sigma_{min}(A)]$, provided we can compare with another Gaussian matrix B, think $Y_{u,v} = u^T B v$.

Fact 3.3.1.

$$\sigma_{min}(A) = \inf_{u \in U} \sup_{v \in V} u^T A v$$

Random Matrices and Covariance Estimation

4.1 Notation

 $\Sigma \succeq 0$

For any sym matrix A

$$\lambda_{min}(A)I_d \leq A \leq \lambda_{max}I_d$$

$$\sigma_j(M) = \sqrt{\lambda_j(M^T M)}$$

Coward Fischer Formula

$$\lambda_{max}(A) = \sup_{\|u\|_2 = 1} u^T A u$$

$$\lambda_{inf}(A) = \inf_{\|u\|_2 = 1} u^T A u$$

$$\sigma_{max}(M) = \sup_{\|v\|_2 = 1} \|Mv\|_2 = \sup_{\|u\|_2 = 1} \sup_{\|v\|_2 = 1} u^T M v$$

$$\sigma_{min}(M) = \inf_{\|v\|_2 = 1} \|Mv\|_2 = \sup_{\|u\|_2 = 1} \inf_{\|v\|_2 = 1} u^T M v$$

$$||x||_2 = \sup_{||u||_2 = 1} u^T x$$

$$||M||_{op} = \sigma_{max}(M)$$

$$\|A\|_{op} = \max_{j} |\lambda_j(A)| = \sup_{\|u\|_2 = 1} |u^T A u|$$

Theorem 4.1.1 (Weyl's thm).

$$|\lambda_j(A) - \lambda_j(B)| \le ||A - B||_{op}$$

$$|\sigma_j(M) - \sigma_j(M')| \le ||M - M'||_{op}$$

Fact 4.1.1. swap ping trick, suppose $M \in \mathbb{R}^{n \times d}$ $M' \in \mathbb{R}^{n \times d}$, then MM' has the same non-zero eigenvalues as M'M

4.2 covariance estimation

Population

$$\Sigma_{ij} = \operatorname{cov}(x_{1i}, x_{1j})$$

$$\mu = \mathbb{E}[x_1]$$

$$\Sigma = \mathbb{E}[(x - \mu)(x - \mu)^T]$$

Sample:

$$\hat{\Sigma} = 1/(n-1) \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$
$$\bar{x} = 1/n \sum_{i=1}^{n} nx_i$$

Assume $\mu = 0$

$$\hat{\Sigma} = 1/(n) \sum_{i=1}^{n} (x_i)(x_i)^T$$

useful simplification b/c it allows to be written as a sum of ind rank-1 random matrices.

4.3 Extreme eigenvalues of Wishart Matrices

Theorem 4.3.1.

$$\mathbb{P}\left(\sqrt{\lambda_{max}(\hat{\Sigma})} \ge \sqrt{\lambda_{max}(\Sigma)(1+\delta)} + \sqrt{\operatorname{tr}(\Sigma)/n}\right) \le e^{-n\delta^2/2}$$

Proof. part1: show $\sqrt{\lambda_{max}(\hat{\Sigma})}$ concentrates around $\mathbb{E}\left[\sqrt{\lambda_{max}(\hat{\Sigma})}\right]$ applying the G. concentration inequality to a certain lipschitz function

Claim 4.3.1.

$$f(z) = \Sigma_{max}(\frac{1}{\sqrt{n}}\Sigma^{1/2}Z^T)$$

is a lipschitz function

part2: upper bound

Fact 4.3.1.

$$\hat{\Sigma} = 1/n\Sigma^{1/2}Z^TZ\Sigma^{1/2}$$

Corollary 4.3.1.

$$\left\| \hat{\Sigma} - \Sigma \right\|_{op} \le (2\epsilon + \epsilon^2) \left\| \Sigma \right\|_{op}$$

holds w.p. at least $1 - 2e^{-n\delta^2/2}$

$$\epsilon = \sqrt{d/n} + \delta$$

Fact 4.3.2.

$$\mathbb{E}\left[\left\|g\right\|_{2}\right] = \mathbb{E}\left[\sqrt{\left\|g\right\|_{2}^{2}}\right] \leq \sqrt{\mathbb{E}\left[\left\|g\right\|_{2}^{2}\right]} = \sqrt{n}$$

Fact 4.3.3.

$$||M||_{op} \leq maxl_1 norm of a row of M$$

Claim 4.3.2. If every row of $adj(\Sigma)$ has at most s non-zeros, then $||adj(\Sigma)||_{op} \leq s$

4.4. STRUCTURE Σ

4.4 structure Σ

shareholding operator

$$Tr(M) = M_{i,j}, if|M_{ij} \ge \lambda| = 0, otherwise$$

the issue is that the $Tr(\hat{\Sigma})$ may not be P.S.D

Theorem 4.4.1. Assume the previous setting for subG data still holds, for any $\delta > 0$, let $\lambda = \lambda_n = \frac{8\sqrt{\log(d)}}{\sqrt{n}} + \delta$, then the event

 $||T_{\lambda}(\hat{\Sigma}) - \Sigma|| \le 2 ||adj(\Sigma)||_{op} \lambda_n$

holds wp at least $1 - 8\exp(-\frac{n}{16})(\delta \cup \delta^2)$

if Σ has at most s non-zeros per row, then $\|adj(\Sigma)\|_{op} \leq s$

$$\left\| T_{\lambda}(\hat{\Sigma}) - \Sigma \right\| \le 2 \left(8\sigma^2 \sqrt{\frac{s^2 \log(d)}{n}} + \delta \sigma^2 \right)$$

Bhatia book at matrix analysis tarce inequalities

4.5 random matrices

Definition 4.5.1. mgf:

$$\phi_Q(t) = \mathbb{E}\left[\exp(tQ)\right] \in \mathbb{R}^{d \times d}$$

Definition 4.5.2 (subG matrix). V will play role of σ^2 in $subG(\sigma)$

$$\phi_Q(t) \leq e^{\frac{t^2V}{2}}, t \in \mathbb{R}$$

Definition 4.5.3 (operator monotonicity). $f : \mathbb{R} \to \mathbb{R}$ iff

$$A \leq B \rightarrow f(A) \leq f(B)$$

$$f(x) = \log(x)$$

is operator monotonicity but

$$f(x) = e^x$$

is not op mono. Even thought $f(x) = e^x$ is not op mono, we still get

$$\operatorname{tr}(\exp(A)) \leq \operatorname{tr}(\exp(B))$$

if f is non-decreasing function

$$\operatorname{tr}(f(A)) \preceq \operatorname{tr}(f(B))$$

4.6 Matrix Chernoff

Theorem 4.6.1.

$$\mathbb{P}(\lambda_{max}(Q) \ge \delta) \le \operatorname{tr}(\phi_Q(t))e^{-t\delta}$$

$$\mathbb{P}\left(\lambda_{min}(Q) \ge \delta\right) \le \operatorname{tr}(\phi_Q(-t))e^{-t\delta}$$

$$\mathbb{P}\left(\|Q\|_{op} \ge \delta\right) \le [\operatorname{tr}(\phi_Q(t)) + \operatorname{tr}(\phi_Q(-t))]e^{-t\delta}$$

Lemma 4.6.1. $S_n = Q_1 + \cdots + Q_n$

$$\operatorname{tr}(\phi_{S_n}(t)) \le \operatorname{tr}(\exp(\sum_{i=1}^n \log \phi_{Q_i}(t)))$$

Theorem 4.6.2 (Matrix Hoeffding). Let $Q_1, \dots Q_n$ be independent mean 0 sym random matrices in $\mathbb{R}^{d \times d}$ then for any $\delta > 0$, we have

$$\mathbb{P}\left(\left\|\sum_{i=1}^{n} Q_{i}\right\|_{op} \ge \delta\right) \le 2de^{-\frac{n\delta^{2}}{2\|V\|_{op}}}$$

Sparse Linear Models

5.1 Backgrounds

when d > n, the model is not identifiable, and the $X^T X$ will not be invertible.

To eliminate the identifiable issue, if we assume θ^* lines in a special set of parameters Θ_0 , then it is possible that $\theta^* + v \notin \Theta_0$, for any $v \in null(X)$, $v \neq 0$, the set Θ_0 will correspond to sparse or approximately sparse vectors in \mathbb{R}^d

$$\|\theta^*\|_0 = card\{j \in \{1, \dots d\} | \theta_i^* \neq 0\}$$

5.2 Noisiness model, RNSP

$$y = X\theta^*$$

all-subsets regression, non-convex, we replace the zero norm with l_1 norm. l_1 norm is the one with smallest q that is convex.

c(s) corresponds approximately sparse vectors with support s.

Remark 5.2.1. key question: If $\hat{\theta}$ is the solution to the l_1 minimization problem, when does the $\hat{\theta} = \theta^*$, the answer is this can be determined in terms of the "restricted null space property" of X

If

$$null(X) \cap c(s) = 0$$

then such X satisfies "RNBP" (restricted null space basis pursuit).

Theorem 5.2.1. For any $\theta^* \in \mathbb{R}^d$ with support S the BP solution is unique and given by $\hat{\theta} = \theta^*$ iff the design matrix X satisfies the RNSP with respect to S.