Teoria qualitativa de equações diferenciais

Maria Joana Torres

2018/19

Teoria qualitativa de ED0's de primeira ordem autónomas

Ideia:

Estamos interessados no comportamento qualitativo do PVI

$$x' = f(x), \quad x(0) = x_0$$

Exemplo:

$$x' = -x, \qquad x(0) = x_0$$

A solução maximal que satisfaz o PVI é a função $x\colon \mathbb{R} \to \mathbb{R}$ definida por

$$x(t) = x_0 e^{-t}.$$

Notação:

- ullet $x(t;x_0) \leadsto$ solução do PVI, isto é, solução que passa que no ponto $(0,x_0)$
- $I_{x_0} \rightsquigarrow \text{intervalo maximal da solução } x(t; x_0).$

Ponto de equilíbrio / solução estacionária

Consideremos a equação diferencial

$$x' = f(x)$$

Definição:

Dizemos que x^* é um **ponto de equilíbrio** de f se $f(x^*) = 0$.

De modo claro, se x^* é um ponto de equilíbrio de f então

$$x(t) = x^*$$

é solução da equação, chamada a solução de equilíbrio ou estacionária.

Dizemos que um ponto de equilíbrio x^* é estável (ou que a solução de equilíbrio $x(t)=x^*$ é estável) se para todo o x_0 perto de x^* , a solução $x(t;x_0)$ permanece perto de x^* para todo o $t\geq 0$, isto é, dado $\epsilon>0$ existe $\delta>0$ tal que para $|x_0-x^*|<\delta$, a solução do PVI

$$\begin{cases} x' = f(x) \\ x(0) = x_0 \end{cases}$$

é tal que $|x(t;x_0)-x^*|<\epsilon$, para todo o $t\geq 0$.

Se além disso,

$$\lim_{t \to +\infty} x(t; x_0) = x^*$$

para todo o x_0 perto de x^* , então dizemos que o ponto x^* (ou que a solução de equilíbrio $x(t)=x^*$) é assimptoticamente estável.

Um ponto de equilíbrio que não é estável diz-se instável.

Estabilidade de pontos de equilíbrio \leadsto Exemplo

Exemplo:

Consideremos a equação diferencial

$$x' = -x$$

De modo claro $x^* = 0$ é o único ponto de equilíbrio de f(x) = -x.

A solução do PVI

$$\begin{cases} x' = -x \\ x(0) = x_0 \end{cases}$$

é

$$x(t; x_0) = x_0 e^{-t}, \quad t \in \mathbb{R}.$$

Consequentemente,

$$\lim_{t \to +\infty} x(t; x_0) = 0,$$

para todo o $x_0 \in \mathbb{R}$.

Então, $x^* = 0$ é um ponto de equilíbrio assimptoticamente estável.

Estabilidade de pontos de equilíbrio --> Critério

Teorema (estabilidade de pontos de equilíbrio):

Suponhamos que f é de classe C^1 e que x^{\ast} é um ponto de equilíbrio de f. Então

- 1. x^* é assimptoticamente estável se $f'(x^*) < 0$;
- 2. x^* é instável se $f'(x^*) > 0$.

Estabilidade de pontos de equilíbrio --> Exemplo

Exemplo:

Consideremos a equação diferencial

$$x' = x(1 - x^2)$$

De modo claro, existem 3 pontos de equilíbrio: $0, \pm 1$

Uma vez que

$$f'(x) = 1 - 3x^2$$

temos que

$$f'(0)=1\quad \mathrm{e}\quad f'(\pm 1)=-2$$

Então, o ponto de equilíbrio 0 é instável e os pontos de equilíbrio -1 e 1 são assimptoticamente estáveis.

Retrato de fase

Um retrato de fase é a representação geométrica das soluções de uma EDO.

Em EDO escalares, o retrato de fase é de dimensão 1.

Os retratos de fase são muito úteis no estudo do comportamento qualitativo das soluções.

Eles revelam informação crucial tal como pontos de equilíbrio estáveis/instáveis e os limites das soluções quando $t \to \pm \infty$.

Exemplo:

Consideremos a equação diferencial

$$x' = x(1-x)$$

Existem dois pontos de equilíbrio x=0 e x=1. O primeiro é instável e o segundo é assimptoticamente estável. O espaço de fase é:

Teoria qualitativa de sistemas de equações diferenciais autónomas

Consideremos a equação linear de segunda ordem

$$x'' + ax' + bx = 0$$

Se
$$y=x'$$
, então $y'=x''=-bx-ax'=-bx-ay$

Então obtemos o sistema de equações diferenciais

$$\begin{cases} x' = y \\ y' = -bx - ay \end{cases}$$

Podemos escrever estas equações usando notação matricial:

$$X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \qquad \mathrm{e} \qquad A = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix}$$

Então o sistema é equivalente a uma edo linear planar:

$$X' = AX$$

Objetivo: resolver o seguinte PVI

$$X' = AX, \quad X(0) = X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \quad (*)$$

onde

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Exemplo: Seja $A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$. Então X' = AX é

$$\begin{cases} x' = ax \\ y' = dy \end{cases}$$

Portanto a solução é: $x(t)=e^{at}x_0$ e $y(t)=e^{dt}y_0$, porque as equações não são acopladas.

ED0s planares

Exercício:

Encontre a solução do PVI, supondo que

$$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

sugestão: resolva primeiro a y-equação e depois resolva a x-equação.

Mudança de variáveis

Objetivo da mudança de variáveis: transformar a matriz A numa matriz em que podemos resolver o PVI.

Consideremos a mudança de variáveis:

$$X(t) = P Z(t)$$

onde P é uma matriz 2×2 (que não depende de t) e que é invertível.

Como $Z(t) = P^{-1}X(t)$, temos que

$$Z'(t) = P^{-1}X'(t) = P^{-1}AX(t) = P^{-1}APZ(t)$$

Seja

$$J = P^{-1}AP$$

Então o PVI inicial (*) é equivalente a

$$Z' = JZ, \quad Z(0) = Z_0$$

onde $Z_0 = P^{-1}X_0$.

Mudança de variáveis

 $1. \ \ {\rm se} \ J \ {\rm \acute{e}} \ {\rm uma} \ {\rm matriz} \ {\rm do} \ {\rm tipo}$

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

então podemos resolver o PVI para a variável ${\it Z}$

2. usamos a relação $X(t) = P\,Z(t)$ para obter a solução do PVI original (*)

Objetivo dos próximos slides:

encontrar uma matriz de mudança de variável $P\!\!$, que nos fornece uma matriz J o mais simples possível!

Valores próprios e vetores próprios

Dado um vetor não-nulo $v \in \mathbb{C}^2$, dizemos que v é um vetor próprio de A se

$$Av = \lambda v$$

para algum escalar λ .

A constante λ é chamada um valor próprio de A.

O par (λ, v) é chamado um par próprio de A.

De modo claro, um par próprio satisfaz $(A-\lambda I)v=0$. Como $v\neq 0$, isto significa que a matriz $A-\lambda I$ não é invertível. Consequentemente, os valores próprios de A são caracterizados pela seguinte equação

$$\det(A - \lambda I) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0,$$

onde $\operatorname{tr}(A)$ é o traço de A, i.e., $\operatorname{tr}(A) = a + d$, a soma da diagonal de A.

$$\det(A - \lambda I) = \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0$$

$$\Leftrightarrow \quad \lambda = \frac{\mathsf{tr}(A)}{2} \pm \sqrt{\left(\frac{\mathsf{tr}(A)}{2}\right)^2 - \det(A)}$$

Distinguimos 3 casos:

- (1) valores próprios reais e distintos: $\lambda_1 \neq \lambda_2$ e $\lambda_1, \lambda_2 \in \mathbb{R}$. Isto acontece quando $\left(\frac{\operatorname{tr}(A)}{2}\right)^2 > \det(A)$.
- (II) valores próprios iguais: $\lambda_1=\lambda_2.$ Isto acontece quando $\left(\frac{\operatorname{tr}(A)}{2}\right)^2=\det(A).$
- (III) valores próprios complexos conjugados: $\lambda_1 = \alpha + \beta i$ e $\lambda_2 = \alpha \beta i$, onde $\alpha, \beta \in \mathbb{R}$

Isto acontece quando $\left(\frac{\mathsf{tr}(A)}{2}\right)^2 < \det(A)$.

Vetores próprios generalizados

Dado um vetor não-nulo $v \in \mathbb{C}^2$, dizemos que v é um vetor próprio generalizado de A se

$$(A - \lambda I)^p v = 0 \quad \text{e} \quad (A - \lambda I)^{p-1} v \neq 0$$

para algum escalar λ e para algum inteiro positivo $p \in \{1,2\}.$

Os vetores próprios são vetores próprios generalizados com p=1.

Seja v_2 um vetor próprio generalizado (com p=2). Então a seguinte cadeia

$$v_2 \xrightarrow[A-\lambda I]{} v_1 \xrightarrow[A-\lambda I]{} 0$$

chama-se uma cadeia de vetores próprios generalizados.

o vetor

$$v_1 = (A - \lambda I)v_2$$

é um vetor próprio de A correspondente ao valor próprio λ

• os elementos da cadeia v_1 , v_2 são linearmente independentes.

algoritmo: para calcular a matriz de mudança de variavel P.

(I) valores próprios reais e distintos: resolvemos as seguintes equações para encontrar vetores v_1 e v_2 ,

$$Av_1 = \lambda_1 v_1$$
 e $Av_2 = \lambda_2 v_2$.

Cada equação é resolúvel, mas tem uma infinidade de soluções, i.e., se v_1 é solução da primeira equação, então αv_1 com $\alpha \in \mathbb{R}$ é também solução da mesma equação.

É comum escolher soluções não-nulas v_1 e v_2 que têm a espressão mais simples possível.

Definimos a matriz P como tendo na primeira coluna o vetor v_1 e na segunda coluna o vetor v_2 , i.e.,

$$P = (v_1|v_2)$$

Porque v_1 e v_2 são soluções das equações acima, temos que

$$\boxed{AP = PJ \quad \text{onde} \quad J = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}}$$

- (II) valores próprios iguais: Seja λ o único valor próprio. Temos dois casos:
 - (1) se A é diagonal, i.e., $A=\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, então

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 e $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

são vetores próprios de A. Então tomamos $P=(v_1|v_2)$, i.e., P=I.

De modo claro

$$AP = PJ$$
 onde $J = A$

(2) se A não é diagonal, então primeiro determinamos um vetor próprio v_1 resolvendo a equação

$$Av_1 = \lambda v_1$$

Depois determinamos um vetor próprio generalizado v_2 resolvendo a eq.

$$(A - \lambda I)v_2 = v_1$$

Definimos então $P=(v_1|v_2)$. Um cálculo simples mostra que

$$\boxed{AP = PJ \quad \text{onde} \quad J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}}$$

(I) valores próprios complexos conjugados: seja $\lambda_1 = \alpha + \beta i$. Resolvemos a equação

$$Av = (\alpha + \beta i)v$$
.

Tal como anteriormente, esta equação tem uma infinidade de soluções. Contudo, porque λ é complexo, v também será complexo, i.e., podemos decompor v nas partes real e imaginária $v=v_1+v_2i$, onde $v_1,v_2\in\mathbb{R}$. Definimos então

$$P = (v_1|v_2)$$

Como anteriormente, um cálculo simples mostra que

$$\boxed{AP = PJ \quad \mathsf{e} \quad J = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}}$$

Formas normais de Jordan

Em qualquer dos 3 casos acima, a matriz de mudança de variáveis $P=(v_1|v_2)$ é sempre invertível, i.e., $\det(P)\neq 0$. Podemos escrever

$$J = P^{-1}AP$$

onde J é uma matriz pertencente a um dos seguintes tipos:

onde $\lambda_1, \lambda_2, \alpha, \beta \in \mathbb{R}$.

Estes 3 tipos de matrizes são chamadas formas normais de Jordan.

Teorema (Forma normal de Jordan):

Dada uma matriz A de dimensão 2×2 , existe uma matriz invertível P tal que $J=P^{-1}AP$ é uma forma normal de Jordan.

Observações:

- 1. A matriz P é calculada usando o algoritmo descrito anteriormente.
- 2. As matrizes J e A têm os mesmos valores próprios:

$$det(J - \lambda I) = det(P^{-1}AP - \lambda I)$$

$$= det(P^{-1}(A - \lambda I)P)$$

$$= det(P^{-1}) det(A - \lambda I) det(P)$$

$$= det(A - \lambda I)$$

Consideremos o PVI

$$Z' = JZ, \quad Z(0) = Z_0$$

onde J é uma forma normal de Jordan.

Em coordenadas escrevemos:

$$Z(t) = \begin{pmatrix} z_1(t) \\ z_2(t) \end{pmatrix}$$
 e $Z_0 = \begin{pmatrix} z_{10} \\ z_{20} \end{pmatrix}$

A solução do PVI é a seguinte:

(i) Suponhamos $J=\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. Então o PVI é equivalente a

$$\begin{cases} z'_1 = \lambda_1 z_1, & z_1(0) = z_{10} \\ z'_2 = \lambda_2 z_2, & z_2(0) = z_{20} \end{cases}$$

Então $z_1(t)=e^{\lambda_1 t}z_{10}$ e $z_2(t)=e^{\lambda_2 t}z_{20}$ são soluções de cada equação escalar. Portanto, a solução do PVI é:

$$Z(t) = \begin{pmatrix} e^{\lambda_1 t} & 0\\ 0 & e^{\lambda_2 t} \end{pmatrix} Z_0$$

(ii) Suponhamos $J=\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. Então o PVI é equivalente a

$$\begin{cases} z'_1 = \lambda z_1 + z_2, & z_1(0) = z_{10} \\ \\ z'_2 = \lambda z_2, & z_2(0) = z_{20} \end{cases}$$

A solução da 2ª edo é $z_2(t)=e^{\lambda t}z_{20}$. Substituindo na 1ª edo, obtemos a seguinte equação diferencial para z_1 :

$$z_1' = \lambda z_1 + e^{\lambda t} z_{20}$$

Esta equação é linear. Resolvendo esta equação obtemos

$$z_1(t) = e^{\lambda t} z_{10} + t e^{\lambda t} z_{20}$$

Escrevendo em notação matricial obtemos

$$Z(t) = e^{\lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} Z_0$$

(iii) Suponhamos
$$J=egin{pmatrix} lpha & eta \ -eta & lpha \end{pmatrix}$$
. Então o PVI é equivalente a
$$\begin{cases} z_1'=\alpha z_1+\beta z_2, & z_1(0)=z_{10} \end{cases}$$

$$\begin{cases} z_1' = \alpha z_1 + \beta z_2, & z_1(0) = z_{10} \\ z_2' = -\beta z_1 + \alpha z_2, & z_2(0) = z_{20} \end{cases}$$

Seja
$$w(t)=z_1(t)-iz_2(t)$$
. Então
$$\begin{aligned} w'&=&z_1'(t)-iz_2'(t)\\ &=&\alpha z_1+\beta z_2-i(-\beta z_1+\alpha z_2)\\ &=&\alpha(z_1-iz_2)+\beta(z_2+iz_1)\\ &=&\alpha(z_1-iz_2)+i\beta(z_1-iz_2)\\ &=&(\alpha+i\beta)(z_1-iz_2)\\ &=&(\alpha+i\beta)w \end{aligned}$$

O PVI

$$w' = (\alpha + i\beta)w, \quad w(0) = z_{10} - iz_{20}$$

tem solução

$$w(t) = e^{(\alpha + i\beta)t} (z_{10} - iz_{20})$$

$$w(t) = e^{(\alpha + i\beta)t} (z_{10} - iz_{20})$$

Usando a fórmula de Euler, obtemos

$$\begin{array}{lcl} w(t) & = & e^{(\alpha+i\beta)t}(z_{10}-iz_{20}) \\ & = & e^{\alpha t}(\cos(\beta t)+i\mathrm{sen}(\beta t))(z_{10}-iz_{20}) \\ & = & e^{\alpha t}[\cos(\beta t)z_{10}+\mathrm{sen}(\beta t)z_{20}+i(\mathrm{sen}(\beta t)z_{10}-\cos(\beta t)z_{20})] \end{array}$$

Porque $w(t)=z_1(t)-iz_2(t)$ concluímos que

$$\left\{ \begin{array}{l} z_1(t) = e^{\alpha t} (\cos(\beta t) z_{10} + \sin(\beta t) z_{20}) \\ \\ z_2(t) = e^{\alpha t} (-\sin(\beta t) z_{10} + \cos(\beta t) z_{20}) \end{array} \right.$$

Escrevendo em notação matricial obtemos

Objectivo: recordemos que o objectivo é resolver o seguinte PVI

$$X' = AX, \quad X(0) = X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \quad (*)$$

onde A é uma matriz 2×2 .

 Pelo Teorema da forma normal de Jordan existe uma matriz invertível P t.g.

$$J = P^{-1}AP$$

é uma forma normal de Jordan.

• Mudando as variáveis X=PZ, transformamos o PVI (*) em $Z'=JZ, \quad Z(0)=Z_0$ onde $Z_0=P^{-1}X_0$.

ullet Se Z(t) é a solução do PVI em forma normal de Jordan, então

$$X(t) = PZ(t)$$

é a solução do PVI (*).

Solução do PVI inicial

Teorema:

Sejam λ_1 e λ_2 os valores próprios de A.

Denotemos por ${\cal P}$ a matriz dada pelo Teorema da forma normal de Jordan. Então:

1. Se $\lambda_1 \neq \lambda_2$ e λ_1 e λ_2 são reais ou se $\lambda_1 = \lambda_2$ e A é diagonal, então o PVI (*) tem solução

$$X(t) = P \begin{pmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{pmatrix} P^{-1} X_0$$

2. Se $\lambda_1 = \lambda_2$ e A não é diagonal, então o PVI (*) tem solução

$$X(t) = e^{\lambda t} P \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} P^{-1} X_0$$

3. Se $\lambda_1=\alpha+i\beta$ e $\lambda_2=\alpha-i\beta$, então o PVI (*) tem solução

$$X(t) = e^{\alpha t} P \begin{pmatrix} \cos(\beta t) & \sin(\beta t) \\ -\sin(\beta t) & \cos(\beta t) \end{pmatrix} P^{-1} X_0$$

Retratos de fase

Um retrato de fase é a representação geométrica das soluções de uma EDO.

No caso planar, o retrato de fase é de dimensão 2.

No plano-(x,y), um conjunto de condições iniciais é representado por uma curva diferente (com setas) ou um ponto (no caso de pontos de equilíbrio).

Os retratos de fase são muito úteis no estudo do comportamento qualitativo das soluções.

Pontos de equilíbrio

De entre as soluções de $X^\prime=AX$, os pontos de equilíbrio são as mais simples:

Definição:

Dizemos que X^* é um ponto de equilíbrio se $AX^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

De modo claro, a origem $X^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ é um ponto de equilíbrio.

Proposição:

A origem é o único ponto de equilíbrio se e só se $\det(A) \neq 0$. Além disso,

- se a parte real dos valores próprios é negativa, então a origem é assimptoticamente estável.
- 2. se a parte real dos valores próprios é positiva, então a origem é instável.

Pontos de equilíbrio

Exemplo:

Seja

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

Então todo o ponto $X^*=\begin{pmatrix} 0\\y \end{pmatrix}$ com $y\in\mathbb{R}$ é um ponto de equilíbrio. Portanto neste caso existem infinitos pontos de equilíbrio. Reparemos que $\det(A)=0$.

Retratos de fase

Vamos esboçar os retratos de fase para cada PVI em forma normal de Jordan,

$$X' = JX, \quad X(0) = X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

onde J é de tipo (i) - (iii).

Retratos de fase: forma normal de Jordan $J = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

Consideremos a forma normal de Jordan $J=\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. A solução do PVI é:

$$x(t) = e^{\lambda_1 t} x_0$$
$$y(t) = e^{\lambda_2 t} y_0$$

$$y(t) = e^{\lambda_2 t} y_0$$

Dependendo dos sinais dos valores próprios temos os seguintes planos de fase:

Retratos de fase: forma normal de Jordan $J=\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

 $\lambda_1 < 0 < \lambda_2$ sela

 $0<\lambda_2<\lambda_1$ fonte

$$\lambda_2 < \lambda_1 < 0$$
 poço

Retratos de fase: forma normal de Jordan $J=\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

$$\lambda_1 = \lambda_2 < 0$$

$$\lambda_1 = \lambda_2 > 0$$
 fonte

Retratos de fase: forma normal de Jordan $J=egin{pmatrix} \lambda & 1 \ 0 & \lambda \end{pmatrix}$

(ii) Consideremos a forma normal de Jordan $J=\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. A solução do PVI é:

$$x(t) = e^{\lambda t} x_0 + t e^{\lambda t} y_0$$
$$y(t) = e^{\lambda t} y_0$$

Dependendo do sinal de λ temos os seguintes planos de fase:

Retratos de fase: forma normal de Jordan $J=\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$

$$\begin{array}{c} \lambda > 0 \\ \text{n\'o inst\'avel} \end{array}$$

 $\begin{array}{c} \lambda < 0 \\ \text{n\'o est\'avel} \end{array}$

Retratos de fase: forma normal de Jordan $J=\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$

(iii) Consideremos a forma normal de Jordan $J=\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$. A solução do PVI é:

$$x(t) = e^{\lambda t} \cos(\beta t) x_0 + e^{\lambda t} \sin(\beta t) y_0$$

$$y(t) = -e^{\lambda t} \operatorname{sen}(\beta t) x_0 + e^{\lambda t} \cos(\beta t) y_0$$

Dependendo dos sinais de α e β temos os seguintes planos de fase:

Retratos de fase: forma normal de Jordan $J=egin{pmatrix} lpha & eta \ -eta & lpha \end{pmatrix}$

Observemos que o centro é estável mas não é assimptoticamente estável.

Para $\beta<0$ a rotação em torno da origem é no sentido contrário ao dos ponteiros do relógio.

Transformação do retrato de fase

 Se a matriz A não é uma forma normal de Jordan, então o retrato de fase do PVI associado pode ser obtido usando a matriz P

Exemplo:

Consideremos o PVI: X' = AX, $X(0) = X_0$, onde

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

A matriz A não é uma forma normal de Jordan. Para determinar a forma normal de Jordan, determinamos os valores próprios de A,

$$\lambda_1 = 1, \quad \lambda_2 = -1$$

A forma normal de Jordan é

$$J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

A seguir determinamos os vetores próprios associados e construímos a matriz P

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Transformação do retrato de fase

No plano-Z, o PVI é $Z^\prime=JZ$, $Z(0)=Z_0$ e o seu retrato de fase é o seguinte:

Transformação do retrato de fase

Para determinar o retrato de fase no plano-X vemos o modo como P transforma os eixos do plano-Z. Usando X=PZ obtemos que

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = P \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{e} \quad \begin{pmatrix} 1 \\ -1 \end{pmatrix} = P \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Então:

- 1. o eixo-x no plano-X é transformado num eixo gerado pelo vector (1,1)
- 2. o eixo-y no plano-X é transformado num eixo gerado pelo vector (1,-1)

Na verdade, não é uma coincidência que estes são os vetores próprios de A! Então o retrato de fase é o seguinte:

Consideremos o sistema de edo's

$$\begin{cases} x' = f_1(x, y) \\ y' = f_2(x, y) \end{cases}$$

com $X^* = (x^*, y^*)$ um ponto de equilíbrio do sistema (isto é, $f_1(x^*, y^*) = f_2(x^*, y^*) = 0$).

A linearização do sistema em torno de X^* é o sistema linear definido pelo Jacobiano Df_{X^*} de (f_1,f_2) em X^* .

O Teorema de Hartman-Grobman afirma que, se os valores próprios do sistema linearizado têm parte real não nula (sistema hiperbólico) o campo linearizado é "localmente equivalente" ao linearizado.

É natural esperar que as populações de duas espécies diferentes isoladas evoluam de acordo com a equação logística:

$$\begin{cases} x' = x(A - ax) \\ y' = y(B - dy) \end{cases}$$

(com A, B, a e d positivos).

Em particular, cada uma destas populações irá evoluir para uma população constante: para a primeira x=A/a e para a segunda y=B/d. A seguinte figura ilustra o retrato de fase de cada espécie.

No entanto, como os recursos são limitados, ambas as espécies estarão em desvantagem pela presença da outra:

$$\begin{cases} x' = x(A - ax - by) \\ y' = y(B - cx - dy) \end{cases}$$

(com $b \in c$ positivos).

Exemplo:

$$\begin{cases} x' = x(8 - 4x - y) \\ y' = y(3 - 3x - y) \end{cases}$$

O Jacobiano de f num ponto de equilíbrio $X^* = (x^*, y^*)$ é:

$$Df(X^*) = \begin{pmatrix} \partial f_1/\partial x & \partial f_1/\partial y \\ \partial f_2/\partial x & \partial f_2/\partial y \end{pmatrix}_{|(x^*,y^*)|}$$

No exemplo, temos que:

$$Df(x,y) = \begin{pmatrix} 8 - 8x - y & -x \\ -3y & 3 - 3x - 2y \end{pmatrix}$$

Exemplo (Teorema de Grobman-Hartman):

Figura (lado esquerdo): plano de fase para o sistema linearizado perto da origem.

Figura (lado direita): plano de fase para o sistema não linear perto da origem.

Exemplo: Os pontos de equilíbrio são (estamos a supor $x \ge 0$ e $y \ge 0$):

Temos que:

- $Df(0,0) = \begin{pmatrix} 8 & 0 \\ 0 & 3 \end{pmatrix} \leadsto$ os valores próprios são $\lambda_1 = 8$ e $\lambda_2 = 3 \leadsto$ a origem é uma fonte
- $Df(2,0)=\begin{pmatrix} -8 & -2 \\ 0 & -3 \end{pmatrix}$ \leadsto os valores próprios são $\lambda_1=-8$ e $\lambda_2=-3$ \leadsto a origem é um poço
- $Df(0,3)=\begin{pmatrix} 5 & 0 \\ -9 & -3 \end{pmatrix} \leadsto$ os valores próprios são $\lambda_1=5$ e $\lambda_2=-3 \leadsto$ a origem é uma sela

Exemplo:

Figura (à direita): espaço de fase do sistema de Lotka-Volterra do exemplo.