AKADEMIA GÓRNICZO-HUTNICZA Im. Stanisława Staszica w Krakowie

Wydział Zarządzania, Kierunek Informatyka i Ekonometria

Łukasz Pyrek

Badanie wpływu wybranych czynników na wyniki egzaminów uczniów 8 klasy w stanie Massachusetts

Spis treści

CEL	PROJEKTU	2
1.	Opis danych	3
2.	Statystyki opisowe	4
3.	Wykres zależności zmiennych	6
4.	Analiza korelacji	7
5.	Model ściśle liniowy	8
W	Vady modelu	9
6.	Próba poprawy modelu	10
a.	Redukcja ilości zmiennych – Metoda Helwiga i metoda krokowo-wsteczna	10
b	Zmiana postaci funkcyjnej modelu	11
c.	Wartości odstające	12
7.	Testowanie własności modelu	13
a.	Współczynnik determinacji	14
b.	Efekt katalizy	14
c.	Normalność rozkładu składnika losowego	14
d	. Istotność zmiennych	15
e.	Testy dodanych (pominiętych zmiennych)	15
f.	Obserwacje odstające	15
g.	Test liczby serii	16
h	Test RESET	17
i.	Testowanie heteroskedastyczności	18
j.	Test Chowa	19
k.	. Współliniowość	20
l.	Koincydencja	21
m	ı. Interpretacja parametrów modelu	22
n	. Predykcja wraz z 95% przedziałem ufności	23
8.	Podsumowanie	24
Rih	liografia	25

CEL PROJEKTU

Celem projektu jest wyznaczenie najważniejszych determinant wyników egzaminów 8-klasistów. W tym celu następuje próba dopasowania modelu ekonometrycznego za pomocą klasycznej metody najmniejszych kwadratów.

1. Opis danych

Dane zawierają średnie wyniki dla poszczególnych dystryktów publicznych szkół podstawowych w Massachusetts w 1998 roku. Wyniki testu pochodzą z testu Massachusetts Comprehensive Assessment System (MCAS), przeprowadzonego wiosną 1998 roku w publicznych szkołach w Massachusetts. Test jest sponsorowany przez Departament Edukacji Massachusetts i jest obowiązkowy dla wszystkich szkół publicznych. Dane analizowane tutaj dotyczą ogólnego wyniku całkowitego, który jest sumą wyników z części testu z języka angielskiego, matematyki i nauk przyrodniczych.

Dane dotyczące stosunku uczniów do nauczycieli, procenta uczniów otrzymujących dofinansowane lunch, a także procenta uczniów, którzy wciąż uczą się angielskiego, są średnimi dla każdego dystryktu szkół podstawowych z roku szkolnego 1997-1998 i zostały uzyskane od Departamentu Edukacji Massachusetts. Dane dotyczące średniego dochodu dystryktu pochodzą z Narodowego Spisu Powszechnego z 1990 roku.

Próbki zawierające braki danych zostały usunięte przed analizą w celu zapewnienia czystości i spójności danych.

Serie danych użytych w modelu

Zmienna objaśniana:

totsc8: Wynik ósmoklasistów (matematyka+język angielski+nauki przyrodnicze)

Zmienne objaśniające:

regday: Wydatki na ucznia, zwykłe

speced: Procent uczniów ze specjalnymi potrzebami edukacyjnymi

lnchpct: Procent osób uprawnionych do lunchu w cenie obniżonej lub bezpłatnego

percap: Dochód na osobę (roczny, w tys. dolarów)

Dane pochodzą z podręcznika do ekonometrii: Stock and Watson, *Introduction to Econometrics*.

Udostępnione na oficjalnej stronie programu Gretl: https://gretl.sourceforge.net/gretl data.html

2. Statystyki opisowe

Należy mieć na uwadze, że pojedyncza obserwacja w tym zestawie danych jest średnią wartością z danego dystryktu.

Tabela 1. Statystyki opisowe zmiennej totsc8

Średnia	Mediana	Minimalna	Maksymalna
698,41	698	641	747
Odch.stand.	Wsp. zmienności	Skośność	Kurtoza
21,053	0,030144	-0,19802	-0,091792
Percentyl 5%	Percentyl 95%	Zakres Q3-Q1	Brakujące obs.
661	731,9	27	0

Średni wynik egzaminu 8-klasistów w stanie wynosił 698,41. Odchylenie standardowe wynosi 21, co wskazuje na niewielkie rozproszenie się danych w okól średniej. Skośność i kurtoza jest bliska zeru, oraz mediana jest równa średniej więc można podejrzewać, że te dane pochodzą z rozkładu normalnego.

Tabela 2. Statystyki opisowe zmiennej regday

Średnia	Mediana	Minimalna	Maksymalna
4709,7	4525	3023	8759
Odch.stand.	Wsp. zmienności	Skośność	Kurtoza
867,32	0,18416	1,4688	3,3974
Percentyl 5%	Percentyl 95%	Zakres Q3-Q1	Brakujące obs.
3693,5	6368,3	892,75	0

Średnie wydatki na ucznia wynosiły 4709. Odchylenie standardowe wynosi 867. Rozkład zmiennej jest prawostronnie skośny. 95% percentyl wynosi 6368, maksymalna osiągana wartość 8759. Wskazuje to na występowanie nie wielkiej ilości dystryktów które średnio wydają znacząco więcej na ucznia. Współczynnik zmienności wynosi 18% co oznacza niską zmienność.

Tabela 3. Statystyki opisowe zmiennej speced

Średnia	Mediana	Minimalna	Maksymalna
16,053	15,55	10,4	26
Odch.stand.	Wsp. zmienności	Skośność	Kurtoza
3,2651	0,2034	0,60885	0,18229
Percentyl 5%	Percentyl 95%	Zakres Q3-Q1	Brakujące obs.
11,3	22,075	4,275	0

Zmienna ta jest wyrażona w procentach.

Średnio 16% uczniów posiada specjalne potrzeby edukacyjne. Obserwacje są rozrzucone wokół średniej o około 3 punkty procentowe. Współczynnik zmienności wynosi 20% co oznacza niską zmienność.

Tabela 4. Statystyki opisowe zmiennej lnchpct

Średnia	Mediana	Minimalna	Maksymalna
16,057	11,2	0,4	76,2
Odch.stand.	Wsp. zmienności	Skośność	Kurtoza
15,951	0,99343	1,8422	3,2532
Percentyl 5%	Percentyl 95%	Zakres Q3-Q1	Brakujące obs.
2,01	53,87	15,9	0

Zmienna ta jest wyrażona w procentach.

Średnio 16% uczniów jest uprawnionych do lunchu w cenie obniżonej lub bezpłatnego. Obserwacje są rozrzucone wokół średniej o około 16 punktów procentowych. Współczynnik zmienności wynosi 100% co oznacza bardzo wysoką zmienność. Rozkład zmiennej jest prawostronnie skośny oraz mediana jest znacząco mniejsza od średniej. Wskazuje to na większą ilość obserwacji mniejszych od średniej oraz skoncentrowanie wartości odstających w prawym ogonie.

Tabela 5. Statystyki opisowe zmiennej percap

Średnia	Mediana	Minimalna	Maksymalna
18,739	17,313	9,686	
Odch.stand.	Wsp. zmienności	Skośność	Kurtoza
5,6191	0,29986	1,6498	3,6834
Percentyl 5%	Percentyl 95%	Zakres Q3-Q1	Brakujące obs.
12,712	30,713	5,2183	0

Dane te pochodzą z 1990 roku, natomiast pozostałe z 1998 r.

Średni dochód na osobę wynosi 18,7tys. dolarów rocznie. Obserwacje są rozrzucone wokół średniej o około 5,6tys. Współczynnik zmienności wynosi 30% co oznacza przeciętną zmienność. Rozkład zmiennej jest prawostronnie skośny oraz wartość mediany jest niewiele mniejsza od średniej wskazuje to na skoncentrowanie wartości odstających w prawym ogonie.

3. Wykres zależności zmiennych

Wykres 1. Wykres zależności zmiennych

Analizując wykresy, można zaobserwować silną korelację między zmiennymi *lnchpct* oraz *percap* a zmienną objaśnianą. Wydaje się, że to głównie te zmienne będą odgrywały kluczową rolę w modelu. Jednakże, ważne jest zauważenie, że te zmienne nie wykazują liniowej zależności. W rzeczywistości, rozrzut danych dla tych zmiennych formuje krzywą. Wobec tego, możliwym krokiem do podjęcia może być transformacja tych zmiennych. Przekształcenia mogą pomóc w uwzględnieniu nieliniowości w zależności między tymi zmiennymi a zmienną objaśnianą.

Możemy też się spodziewać ewentualnego problemu ze współliniowością zmiennych "lnchpct" i "percap"

Natomiast, na podstawie analizy wykresów pozostałych zmiennych, nie wydają się one wykazywać silnej zależności z zmienną objaśnianą.

4. Analiza korelacji

regday	speced	Inchpct	percap	totsc8	
	Corr: 0.030	Corr: -0.071	Corr: 0.518***	Corr: 0.260***	regday
Corr: 0.030		Corr: 0.202**	Corr: -0.171*	Corr: -0.263***	speced
Corr: -0.071	Corr: 0.202**		Corr: -0.574***	Corr: -0.834***	Inchpct
Corr: 0.518***	Corr: -0.171*	Corr: -0.574***		Corr: 0.777***	percap
Corr: 0.260***	Corr: -0.263***	Corr: -0.834***	Corr: 0.777***		totsc8

Tabela 6. Macierz korelacji zmiennych

Tabela również informuje o wyniku testu na istotność statystyczną korelacji z następującym zestawem hipotez:

$$H_0$$
: $corr = 0$
 H_1 : $corr \neq 0$

Gwiazdki przy wartości korelacji oznaczają przedział w jakim znajduje się p-value policzone dla testu dla danej korelacji:

- *** p-value < 0.001
- ** p-value < 0.01
- * p-value < 0.05

UWAGA: Wszystkie testy przeprowadzone w tym projekcie zakładają poziom istotności równy 5%.

Na początku skupmy się na korelacji zmiennej objaśnianej *totsc8* ze zmiennymi objaśniającymi. Jak można było wnioskować na podstawie wykresu rozrzutu zmiennych, największa korelacja występuje ze zmiennymi *lnchpct* i *percap*, jest to pożądany efekt. Głownie te zmienne będą objaśniały *totsc8*. Pozostałe zmienne posiadają istotną statystycznie wartość korelacji rzędu 0.26 (na moduł). Jest to stosunkowo niewielka wartość natomiast nie oznacza to, że zmienne te nie mają wpływu na zmienną objaśnianą.

Natomiast jeżeli chodzi o korelacje pomiędzy zmiennymi objaśniającymi, chcemy, aby była ona jak najmniejsza. Jedynie zmienna *percap* cechuje się znaczącą wartością współczynnika korelacji z pozostałymi zmiennymi. Wynosi ona kolejno 0.518 ze zmienną *regday* oraz -0.574 ze zmienną *lnchpct*. Oznacza to, że możemy spodziewać się problemów ze współliniowością, która będzie testowana w dalszej części analizy.

5. Model ściśle liniowy

Szacujemy następujący model liniowy:

$$totsc8 = \beta_0 + \beta_1 regday + \beta_2 speced + \beta_3 lnchpct + \beta_4 percap$$
Równanie 1. Model 1

Do estymacji parametrów wykorzystamy Klasyczną Metodę Najmniejszych Kwadratów (KMNK).

	Estymacja KMNK, ależna (Y): tot		ane obse	erwacje 1-180	1		
	współczynnik	błąd stan	dardowy	t-Studenta	wart	ość p	
const regday	687,710 -0,000201686	5,01395 0,00093		137,2 -0,2166	4,86 0,82	0e-180 288	***
speced lnchpct	-0,472067 -0,745203	0,20505 0,05281		-2,302 -14,11	0,02	225 2e-030	**
percap	1,66470	0,17530		9,496	-	le-017	***
_	t.zm.zależnej	698,4111		and.zm.zależ	-	21,052	
	ratów reszt	13258,53		andardowy re		8,7041	
F(4, 175)	rm. R-kwadrat	0,832880 218,0385		wany R-kwadr p dla testu		0,8296 7,65e	
, ,		-642,3585		.p dia testu .nform. Akaik		1294,7	- 1
	es. Schwarza	1310,682	-	lannana-Quinn	1	1301,1	- 1

Tabela 7. Estymacja Modelu 1

UWAGA: * - *p-value* < 0.1; ** - *p-value* < 0.05; *** - *p-value* < 0.01 Na wstępie należy zbadać poprawność modelu. Po analizie okazuje się, że model posiada następujące wady:

Wady modelu

Brak normalności rozkładu reszt.

Jednym z założeń poprawnej interpretacji współczynnika R² oraz testów statystycznych analizujących model jest normalność rozkładu reszt.

```
Rozkład częstości dla uhat, obserwacje 1-180
liczba przedziałów = 13, średnia = 5,36855e-014, odch.std. = 8,7042
     Przedziały
                    średnia liczba częstość skumulowana
  1,11%
                                              3,89%
                                               9,44% *
                                              27,22% *****
                                              48,33% ******
                                               66,67% *****
                                               79,44% ****
                                               88,33% ***
                                               96,11% **
                                               97,78%
                                               98,89%
                                              99,44%
                                       0,56% 100,00%
Hipoteza zerowa: dystrybuanta empiryczna posiada rozkład normalny. Test Doornika-
Hansena (1994) - transformowana skośność i kurtoza.:
Chi-kwadrat(2) = 10,268 z wartością p 0,00589
```

Tabela 8. Test Doornika-Hansena na normalność rozkładu reszt modelu 1

Brak poprawnej postaci funkcyjnej.

Test RESET Ramseya wykazał, że istnieje inna postać funkcyjna która lepiej opisuje model.

Estymacja K	równanie regresji MNK, wykorzystane eżna (Y): totsc8	dla testu specyfik obserwacje 1-180	acji RESET				
współczynnik błąd standardowy t-Studenta wartość p							
const	-60037 , 7	24501,5	-2,450	0,0153	**		
regday	0,0267565	0,0107663	2,485	0,0139	**		
speced	62,7267	25,2912	2,480	0,0141	**		
lnchpct	98,7289	39,8910	2,475	0,0143	**		
percap	-220,757	88,9982	-2,480	0,0141	**		
yhat^2	0,190866	0,0775501	2,461	0,0148	**		
yhat^3 -9,08388e-05 3,74673e-05 -2,424 0,0164 **							
Statystyka testu: F = 3,710002,							
z wartoscią	p = P(F(2,173) >	3,/1) = 0,0264					

Tabela 9. Test RESET Ramseya dla modelu 1

6. Próba poprawy modelu

a. Redukcja ilości zmiennych – Metoda Helwiga i metoda krokowo-wsteczna

W celu poprawy modelu zredukuje ilość zmiennych w modelu (wyeliminuje nieistotne).

```
Najlepsza kombinacja:
regday speced lnchpct percap
0 0 1 1
Integralna pojemność informacyjna: 0,82481
```

Tabela 10. Dobór zmiennych metodą Helwiga

```
Sekwencyjna eliminacja nieistotnych zmiennych przy dwustronnym obszarze krytycznym, alfa = 0,05

Wyeliminowano nieistotną zmienną: regday |(wartość p = 0,829)

Test porównawczy z Modelem 1

Hipoteza zerowa: parametr regresji jest równy zero dla regday Statystyka testu: F(1, 175) = 0,0469049, wartość p 0,828791

Pominięcie zmiennych poprawiło 3 z 3 kryteriów informacyjnych (AIC, BIC, HQC).
```

Tabela 11. Dobór zmiennych metodą krokowo-wsteczną

Dobór zmiennych objaśniających

Metoda Helwiga: *Inchpct, percap*

Metoda krokowo wsteczna: *Inchpct, percap, speced*

Modele z powyższymi kombinacjami zmiennych objaśniających nadal posiadają te same wady co model wyjściowy, natomiast redukcja zmiennych poprawiła kryteria informacyjne, prostotę modelu oraz nieznacznie zmniejszyła współczynnik determinacji R^2 (pomijalne wartości rzędu 0.005).

Różnica kryteriów informacyjnych oraz wsp. R² pomiędzy kombinacją zmiennych (*Inchpct, percap*) *a (Inchpct, percap, speced*) jest nieznacząca.

Z powodu następnych transformacji oraz ułatwienia prób poprawy modelu decyduję się na następujący dobór zmiennych: *lnchpct, percap*

b. Zmiana postaci funkcyjnej modelu

Wyniki Testu RESET Ramseya wskazują, że istnieje inna postać funkcyjna modelu która lepiej pasuje do danych. Wynika to z tego, że występuje nieliniowa zależność między zmiennymi objaśniającymi a zmienną objaśnianą.

Wykres 2. Wykres rozrzutu zmiennych totsc8 i lnchpct

Wykres 3. Wykres rozrzutu zmiennych totsc8 i percap

W celu wyjaśnienia nieliniowej zależności należy zmienić równanie modelu poprzez np. transformacje zmiennych. Okazuje się, że samo logarytmowanie lub podniesienie zmiennych do kwadratu nie rozwiązuje problemu. Decyduję się więc na dodanie dodatkowych zmiennych do równania. Po kilku próbach dopasowania odpowiedniego modelu decyduje się na następujący:

$$totsc8 = \beta_0 + \beta_1 \ percap + \beta_2 \ lnchpct + \ \beta_3 \ lnchpct_sq$$
 Równanie 2. Model 2

 $gdzie lnchpct sq = lnchpct^2$

Model 2: Estymacja KMNK, wykorzystane obserwacje 1-180 Zmienna zależna (Y): totsc8						
	współczynnik	błąd st	tandardowy	t-Studenta	wartość p	
const	687,116	3,92	2794	174,9	2,64e-199	***
percap	1,46244	0,1	51675	9,642	6,26e-018	***
lnchpct	-1,21656	0,14	14740	-8,405	1,40e-014	***
lnchpct_sq	0,00670445	0,00	0201732	3,323	0,0011	***
Średn.aryt.zm	.zależnej 698	3,4111	Odch.stand	.zm.zależnej	21,05268	
Suma kwadrató	w reszt 128	368,62	Błąd stand	ardowy reszt	8,550859	
Wsp. determ.	R-kwadrat 0,8	337795	Skorygowan	y R-kwadrat	0,835030	
F(3, 176)	303	,0157	Wartość p	dla testu F	2,98e-69	
Logarytm wiar	ygodności -639	6721	Kryt. info	rm. Akaike'a	1287,344	
Kryt. bayes.	Schwarza 130	00,116	Kryt. Hann	ana-Quinna	1292,523	

Tabela 12. Estymacja modelu 2

Współczynnik determinacji R² dla Modelu 2 jest o około 0.05 większy od R² dla modelu 1 oraz w przybliżeniu 0.1 większy od współczynnika dla liniowego modelu dla tych samych zmiennych: $totsc8 = \beta_0 + \beta_1 \ percap + \beta_2 \ lnchpct$.

Wszystkie z 3 kryteriów informacyjnych się poprawiły (AIC, BIC, HQC) w porównaniu do tych dwóch modeli.

Test RESET Ramseya dla Modelu 2:

```
Statystyka testu: F = 0,340487,
z wartością p = P(F(2,174) > 0,340487) = 0,712
```

Tabela 13. Test RESET Ramseya dla Modelu 2

Test nie odrzuca hipotezy zerowej o poprawności funkcyjnej modelu.

c. Wartości odstające

Model 2 nadal nie spełnia założenia o normalności rozkładu reszt:

```
Hipoteza zerowa: dystrybuanta empiryczna posiada rozkład normalny.Test Doornika-
Hansena (1994) - transformowana skośność i kurtoza.:
Chi-kwadrat(2) = 6,667 z wartością p 0,03568
```

Tabela 14. Test Doornika-Hansena na normalność rozkładu reszt modelu 2

Przeanalizujmy wykres pudełkowy oraz wykres kwantylowy (Q-Q) reszt:

Wykres 4. Wykres pudełkowy reszt modelu 2

Wykres 5. Wykres Q-Q reszt modelu 2

uhat	totsc8	percap	Inchpct	Inchpct_sq
28,22274	740	17,937	1,3	1,69

Tabela 15. Wartości obserwacji z największą resztą modelu 2.

Jak widać jedna obserwacja odstaje, jest to największa wartość reszt modelu.

Spróbujmy usunąć tę obserwacje i teraz przetestować normalność rozkładu reszt.

```
Hipoteza zerowa: dystrybuanta empiryczna posiada rozkład normalny.Test Doornika-
Hansena (1994) - transformowana skośność i kurtoza.:
Chi-kwadrat(2) = 4,380 z wartością p 0,11193
```

Tabela 16. Test Doornika-Hansena dla modelu 2 po usunieciu wartości odstającej

Po usunięciu jednej obserwacji, test nie odrzuca hipotezy zerowej dotyczącej normalności rozkładu.

Ostatecznie udało się skonstruować model, który uwzględnia nieliniową zależność danych oraz spełnia założenia MNK i założenie o normalności rozkładu reszt. Dzięki temu przeprowadzona dalej analiza będzie mogła zostać poprawnie interpretowana.

7. Testowanie własności modelu

Finalnie następujący wyestymowany model będzie poddany analizie:

$$totsc8 = 685,222 + 1,51645 \ percap - 1,14542 \ lnchpct + 0,0059 \ lnchpct_sq$$
 Równanie 3. Wyestymowany Model 3

Model 3: Estymacja KMNK, wykorzystane obserwacje 1-179 Zmienna zależna (Y): totsc8								
	współczynnik	błąd sta	andardowy	t-Studenta	wartość p			
const	685,222	3,850	985	177,9	1,09e-199	***		
percap	1,51645	0,148011 10,25		10,25	1,36e-019	***		
lnchpct	-1,14542	0,141956		-8,069	1,09e-013	***		
lnchpct_sq	0,00587719	0,001	197218	2,980	0,0033	***		
Średn.aryt.zm	.zależnej 698	,1788 (Odch.stand	d.zm.zależnej	20,87904			
Suma kwadrató	w reszt 120	48,58 E	3łąd stano	lardowy reszt	8,297532			
Wsp. determ. R-kwadrat		0,844727 Skorygowa		ny R-kwadrat	0,842065			
F(3, 175)		,3498 N	Wartość p	dla testu F	1,62e-70			
Logarytm wiar	ygodności -630	,7238 I	<pre>(ryt. info</pre>	orm. Akaike'a	1269,448			
Kryt. bayes.	Schwarza 128	2,197 H	Kryt. Hanr	nana-Quinna	1274,617			

Tabela 17. Estymacja Modelu 3

a. Współczynnik determinacji

Współczynnik determinacji R^2 wynosi 0.844, natomiast skorygowany R^2 0.842, oznacza to, że model wyjaśnia około 84% zmienności, oraz nie jest przeparametryzowany.

b. Efekt katalizy

Ważnym aspektem jest zbadanie występowania efektu katalizy, czyli możliwości występowania pary zmiennych która powoduje zawyżenie współczynnika determinacji, pomimo tego, że charakter i siła powiązań zmiennych objaśniających i zmiennej objaśnianej nie uzasadniają takiego wyniku.

```
Zmienna "lnchpct_sq" jest katalizatorem ze zmienną "lnchpct"
Natężenie: 0,047972
Względne natężenie: 5,679044%
```

Tabela 18. Efekt katalizy dla Modelu 3

Efekt katalizy jest nieznacząco różny od zera więc można stwierdzić, że efekt katalizy jest nieistotny lub że nie występuje.

c. Normalność rozkładu składnika losowego.

Wykres 4. Histogram wraz estymowanym wykresem gęstośći rozkładu reszt modelu 3.

Tabela 19. Test Doornika-Hansena dla reszt modelu 3.

Testy nie odrzucają hipotezy zerowej o normalności rozkładu składnika losowego.

Normalność nie jest wymaganą właściwością składnika losowego, ale umożliwia korzystanie z testów statystycznych weryfikujących pozostałe własności składnika losowego, dlatego dążyliśmy do uzyskania tej własności.

d. Istotność zmiennych.

Test t-studenta:

$$H_0$$
: $\alpha_j = 0$
 H_1 : $\alpha_i \neq 0$

Test F:

$$H_0$$
: $\alpha_1 = \cdots = \alpha_k = 0$
 H_1 : conajmniej jeden parametr jest różny od zera

	t-Studenta	wartość p
const	177,9	1,09e-199 ***
percap	10,25	1,36e-019 ***
lnchpct	-8,069	1,09e-013 ***
lnchpct_sq	2,980	0,0033 ***
Wartość p	dla testu i	F 1,62e-70

Tabela 20. Wyniki testów t-studenta i testu F na istotność zmiennych.

Testy odrzucają hipoteze zerową o nieistotności zmiennych.

Zmienne modelu cechują się duża istotnością, świadczy o tym bardzo niskie p-value zarówno dla testów t-studenta dla istotności pojedyńczych zmiennych jak i testu F dla istotności całego podzbioru zmiennych.

e. Testy dodanych (pominiętych zmiennych).

```
Hipoteza zerowa: parametry regresji dla wskazanych zmiennych są równe zero regday, speced
Statystyka testu: F(2, 173) = 0,918396, wartość p 0,401096
Dodanie zmiennych poprawiło 0 z 3 kryteriów informacyjnych (AIC, BIC, HQC).
```

Tabela 21. Wyniki testu dodanych zmiennych dla modelu 3.

Test nieodrzuca hipotezy zerowej o nieistotności parametrów regday i speced

Dobór zmiennych jest odpowiedni. Zmienne nieuwzględnione w modelu są nieistotne.

f. Obserwacje odstające.

Uprzednio usunęliśmy najbardziej odstającą obserwację, aby poprawić właściwości modelu.

Wykres 5. Wykres pudełkowy reszt modelu 3

Analizując wykres pudełkowy można stwierdzić, że nie występują znaczące wartości odstające.

g. Test liczby serii

Estymacja modelu za pomocą KMNK jest równoważne z założeniem o liniowej zależności zmiennej objaśnianej od zmiennej objaśniającej. Weryfikacja tego założenia jest niezbędna do prawidłowej interpretacji współczynnika determinacji.

 H_0 : postać modelu jest dobrze dobrana; model jest liniowy H_1 : $\sim H_1$

Gretl dla testu serii podaje hipoteze zerową jako "próba jest losowa", jest to równoważne z powyższą hipotezą.

```
Liczba serii (R) dla zmiennej 'e' = 94
Test niezależności oparty na liczbie dodatnich i ujemnych serii.
Hipoteza zerowa: próba jest losowa, dla R odpowiednio N(90,5, 6,67083),
test z-score = 0,524672, przy dwustronym obszarze krytycznym p = 0,599811
```

Tabela 22. Test serii dla modelu 3

Nie odrzucamy hipotezy zerowej o liniowości modelu. Model jest poprawny.

h. Test RESET

Podobnej informacji co test serii dostarcza test RESET Ramseya. Test ten upewnia nas czy wybrana postać modelu jest dobrze dobrana do opisu zmienności danej zmiennej objaśnianej, a dokładnie stosowany jest w celu sprawdzenia, czy to liniowa postać modelu (względem funkcji kwadratowej lub sześciennej) jest najlepszym możliwym do wybrania modelem.

Wcześniej postaraliśmy się, aby ten model był poprawny funkcyjnie.

 H_0 : postać funkcyjna modelu jest dobrze dobrana H_1 : $\sim H_0$

Pomocnicze równanie regresji dla testu specyfikacji RESET Estymacja KMNK, wykorzystane obserwacje 1-179 Zmienna zależna (Y): totsc8				
	współczynnik	błąd standardowy	t-Studenta	wartość p
const percap lnchpct lnchpct_sq yhat^2 yhat^3	-26907,0 -89,4549 67,8299 -0,348066 0,0884059 -4,32731e-05	50911,0 171,398 129,623 0,667855 0,160356 7,58073e-05	-0,5285 -0,5219 0,5233 -0,5212 0,5513 -0,5708	0,5978 0,6024 0,6014 0,6029 0,5821 0,5689
Statystyka testu: F = 0,671662, z wartością p = P(F(2,173) > 0,671662) = 0,512				

Tabela 23. Test RESET dla modelu 3

Test nie odrzuca hipotezy zerowej o poprawności funkcyjnej modelu. Model jest dobrze dobrany.

i. Testowanie heteroskedastyczności

Występowanie heteroskedastyczności składnika losowego w modelu wiąże się z niespełnieniem założeń MNK. Przeprowadzimy test White'a oraz Breuscha-Pagana które mają ten sam zestaw hipotez:

```
Test White'a na heteroskedastyczność reszt (zmienność wariancji resztowej)
Estymacja KMNK, wykorzystane obserwacje 1-179
Zmienna zależna (Y): uhat^2
Z powodu ścisłej współliniowości pominięto zmienną: sq_lnchpct

współczynnik błąd standardowy t-Studenta wartość p

const 188,253 196,269 0,9592 0,3388
percap -10,1814 13,0454 -0,7805 0,4362
lnchpct -2,71846 16,3315 -0,1665 0,8680
lnchpct_sq -0,262047 0,557705 -0,4699 0,6391
sq_percap 0,188989 0,210261 0,8988 0,3700
X2_X3 0,323576 0,592216 0,5464 0,5855
X2_X4 0,000281238 0,00872054 0,03225 0,9743
X3_X4 0,00611857 0,00983963 0,6218 0,5349
sq_lnchpct_sq -3,97087e-05 6,63651e-05 -0,5983 0,5504

Wsp. determ. R-kwadrat = 0,042000

Statystyka testu: TR^2 = 7,517951,
z wartością p = P(Chi-kwadrat(8) > 7,517951) = 0,481914
```

Tabela 25. Test White'a na heteroskedastyczność reszt dla modelu 3

```
Test Breuscha-Pagana na heteroskedastyczność
Estymacja KMNK, wykorzystane obserwacje 1-179
Zmienna zależna (Y): standaryzowane uhat^2 (odporna wariancja Koenkera)

współczynnik błąd standardowy t-Studenta wartość p

const -4,01402 43,0797 -0,09318 0,9259
percap 0,893598 1,65581 0,5397 0,5901
lnchpct -1,08717 1,58808 -0,6846 0,4945
lnchpct_sq 0,00936574 0,0220629 0,4245 0,6717

Wyjaśniona suma kwadr. = 28559,1

Statystyka testu: LM = 3,327208,
z wartością p = P(Chi-kwadrat(3) > 3,327208) = 0,343874
```

Tabela 24. Test Breuscha-Pagana na heteroskedastyczność reszt modelu 3

 H_0 : $\sigma_i^2 = \sigma^2$; homoskedastyczność składnika losowego H_1 : $\sigma_i^2 \neq \sigma^2$; heteroskedastyczność składnika losowego

Oba testy nie odrzucają hipotezy zerowej o homoskedastycznośći reszt. Reszty nie są heteroskedastyczne.

i. Test Chowa

Test Chowa pozwala na statystyczną identyfikację zmiany strukturalnej parametrów, czyli zbadanie stabilności parametrów. Punktem wyjścia jest wybór punktu załamania strukturalnego. W praktyce jest to punkt względem, którego dzielimy dane na dwie podpróbki, a następnie estymujemy 2 modele dla każdej z podpróbki i badamy czy parametry tych modeli istotnie się róznią:

 H_0 : W szystkie parametry modelu są takie same; stabilność parametrów H_1 : C onajmniej jeden parametr się rózni; C brak stabilności parametrów

Obserwując nasze dane ciężko się doszukać jakiegoś specficznego punktu załamania strukturalnego, więc decyduję się na podzielenie danych na dwie równe podpróbki.

Pomocnicze równanie regresji dla testu Chowa Estymacja KMNK, wykorzystane obserwacje 1-179						
Zmienna zależna		•				
	współczynnik	błąd standardowy	t-Studenta	a wartość p		
const	694,474	6,48465	107,1	1,17e-158	***	
percap	1,32503	0,174108	7,610	1,76e-012	***	
lnchpct	-2,63665	1,48197	-1,779	0,0770	*	
<pre>lnchpct_sq</pre>	0,0865762	0,123451	0,7013	0,4841		
splitdum	-21,1337	10,6749	-1,980	0,0493	**	
sd_percap	0,771775	0,427949	1,803	0,0731	*	
sd_lnchpct	1,65813	1,50277	1,103	0,2714		
sd_lnchpct_sq	-0,0821749	0,123488	-0,6654	0,5067		
Średn.aryt.zm.za	ależnej 698,17	'88 Odch.stand.zm	n.zależnej	20,87904		
Suma kwadratów reszt 11720,72		72 Błąd standard	Błąd standardowy reszt		8,279023	
Wsp. determ. R-kwadrat 0,848953		53 Skorygowany F	Skorygowany R-kwadrat		0,842769	
F(7, 171) 137,2992		92 Wartość p dla	Wartość p dla testu F		9,31e-67	
Logarytm wiarygodności -628,2546		46 Kryt. inform.	Kryt. inform. Akaike'a		1272,509	
Kryt. bayes. Sch	warza 1298,0	008 Kryt. Hannana	a-Quinna	1282,849		
Test Chowa na zmiany strukturalne przy podziale próby w obserwacji 90 F(4, 171) = 1,19584 z wartością p 0,3145						

Tabela 26. Test Chowa na stabilność parametrów dla modelu 3

Test nie odrzuca hipotezy zerowej o stabilnośći parametrów. Parametry modelu są stabilne.

k. Współliniowość

Problem współlinowości zmiennych objaśniających może powodować zawyżenie błedów standardowych wspołczynników. W celu badania wspóliniowości skorzystamy ze współczynnika VIF (Variance inflation factor).

```
Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji
VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0
Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji

percap 1,798
lnchpct 13,266
lnchpct_sq 10,901

VIF(j) = 1/(1 - R(j)^2), gdzie R(j) jest współczynnikiem korelacji wielorakiej
pomiędzy zmienną 'j' a pozostałymi zmiennymi niezależnymi modelu.
```

Tabela 27. Ocena wspólliniowości VIF dla zmiennych modelu 3

Wartości współczynnika powyżej 10 oznaczają wysoką współliniowość danych. Występuje ona pomiędzy zmienną *lnchpct* oraz *lnchpct_sq*, jest to tak zwana wspóliniowość strukturalna (spowodowana jest użyciem dodatkowej zmiennej, która została stworzona na podstawie już istniejącej).

Możemy usunąc problem współliniowości. Gdy wycentrujemy zmienną lnchpct, czyli odejmiemy od niej jej średnią, problem współliniowości będzie umiarkowany, a model będzie wyglądał następująco:

```
Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji
VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0
Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji

percap 1,798
lnchpct_cen 4,727
lnchpct_cen 3,395

VIF(j) = 1/(1 - R(j)^2), gdzie R(j) jest współczynnikiem korelacji wielorakiej
pomiędzy zmienną 'j' a pozostałymi zmiennymi niezależnymi modelu.
```

Tabela 28. Ocena spółliniowości VIF dla wycentrowanych zmiennych

```
współczynnik błąd standardowy t-Studenta wartość p

const 668,267 2,68242 249,1 3,67e-225 ***
percap 1,51645 0,148011 10,25 1,36e-019 ***
lnchpct_cen -0,955714 0,0847374 -11,28 1,60e-022 ***
lnchpct_cen_sq 0,00587719 0,00197218 2,980 0,0033 ***

Średn.aryt.zm.zależnej 698,1788 Odch.stand.zm.zależnej 20,87904
Suma kwadratów reszt 12048,58 Błąd standardowy reszt 8,297532
Wsp. determ. R-kwadrat 0,844727 Skorygowany R-kwadrat 0,842065
F(3, 175) 317,3498 Wartość p dla testu F 1,62e-70
Logarytm wiarygodności -630,7238 Kryt. inform. Akaike'a 1269,448
```

Tabela 29. Model z wycentrowanymi zmiennymi

Analizując model dla wycentrowanych zmiennych można zauważyć, że p-value dla *lnchpct_sq* pozostaje takie samo, a dla pozostałych zmiennych dalej są bliskie zeru. Znaki przy wyestymowanych parametrach również pozostają bez zmian. Problem współliniowości też nie wpływa na dopasowanie modelu, progrozowane wartości czy też przedziały ufności. Z tego powodu ignoruje problem współliniowości i uznaje go za nieistotny. Pozostaje przy wyjściowym modelu ze zmiennymi nie wycentrowanymi.

l. Koincydencja

Koincydencja występuje, gdy znak przy współczynniku korelacji zmiennej objaśnianej ze zmienną objaśniającą jest taki sam, co znak przy wyestymowanym parametrze przy tej zmiennej objaśniającej, tj.:

$$sgn\left(r(x_j,y)\right) = sgn(\beta_j)$$

Równanie 4. Warunek koincydencji

totsc8 percap lnchpct lnchpct_sq 1,0000 0,7868 -0,8347 -0,7095 to	totsc8
--	--------

Tabela 30. Współczynniki korelacji pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi

	współczynnik
const	685,222
percap	1,51645
lnchpct	-1,14542
lnchpct_sq	0,00587719

Tabela 31. Współczynniki parametrów modelu 3

Jak widać zmienna *lnchpct_sq* nie jest koincydentna, jednak ma ona na celu wyjaśnienie nieliniowej zależności między zmiennymi, widać to dobrze na wykresie rozrzutu zmiennej lnchpct i totsc8 na którą zostały nałożone 2 modele, badany kwadratowy oraz ściśle liniowy bez zmiennej lnchpct_sq, gdzie percap jest stałe i przyjmuje wartość średnią.

$$totsc8 = 685,222 + 1,51645 \overline{percap} - 1,14542 lnchpct + 0,0059 lnchpct_sq$$

 $totsc8 = 678,424 + 1,51645 \overline{percap} - 0,746954lnchpct$

Wykres 6. Wykres rozrzutu zmiennych totsc8 i lnchpct z dwoma modelami regresji

Jak widać na wykresie dla naszego badanego modelu wraz ze wzrostem wartości zmiennej *lnchpct* zmienna *totsc8* maleje, więc zgadza się to ze współczynnikiem korelacji. Można stwierdzić, że model jest koincydentny.

m. Interpretacja parametrów modelu

 $totsc8 = 685,222 + 1,51645 percap - 1,14542 lnchpct + 0,0059 lnchpct_sq$

- 1,51645 percap wzrost rocznych dochodów na osobę o 1000 dolarów powoduje wzrost wyniku testów ośmioklasistów o około 1,5 punktów, ceteris paribus;
- -1,14542 *lnchpct* + 0,0059 *lnchpct_sq* ciężej interpretować nieliniowy wpływ zmiennej lnchpct na totsc8.

Wzrost procenta osób uprawnionych do lunchu w cenie obniżonej lub bezpłatnego o jeden punkt procentowy powoduje zmiane wyniku testów ośmioklasistów o około -1,14542 + 2 * 0,0059 *lnchpct*, ceteris paribus.

Jak widać wartość jaką wzrost zmiennej o jeden punkt procentowy wpływa na zmienną objaśnianą zależy od wartości zmiennej którą przyjmuje. Wraz z wiekszą wartością zmiennej lnchpct ma ona mniejszy wpływ na zmienną *totsc8*, widać to wyraźnie na poprzednim wykresie.

Warto również zwrócić uwage dla interpretacji, gdy zmienna *lnchpct* przyjmuje wartość średnią:

Wzrost procenta osób uprawnionych do lunchu w cenie obniżonej lub bezpłatnego o jeden punkt procentowy powoduje zaniżenie wyników testów ośmioklasistów o średnio 1 punkt ceteris paribus.

n. Predykcja wraz z 95% przedziałem ufności

Wykres 7. Prognoza punktowa wraz z 95% przedziałem ufności

Średni błąd predykcji ME	=	-6,2877e-014
Pierwiastek błędu średniokwadr. RMSE	=	8,2043
Średni błąd absolutny MAE	=	6,5028
Średni błąd procentowy MPE	=	-0,01368
Średni absolutny błąd procentowy MAPE	=	0,92747
Współczynnik Theila (w procentach) Ul	=	0,0058731
Udział obciążoności predykcji UM	=	0
Udział niedost. elastyczności UR	=	0
Udział niezgodności kierunku UD	=	1

Tabela 32. Błędy prognoz

Model średnio myli się o około 6.5 punktów. Przeprowadzmy również predykcje punktową dla wartości średnich:

Prognoza punktowa	696,691		
Wariancja prognozy	69,4831		
Błąd prognozy	8,33565		
95% przedział ufności	<680,239; 713,142>		

8. Podsumowanie

Celem projektu było wyznaczenie najważniejszych determinant wyników egzaminów uczniów 8 klasy w stanie Massachusetts oraz stworzenie modelu wyjaśniający te zależności.

Udało się stworzyć poprawny wielomianowy model liniowy względem parametrów, który spełnia wszystkie założenia poprawności modelu, posiadający wysoki współczynnik R² oraz niskimi błędami predykcji.

Wyniki pokazały, że główne zmienne objaśniające, tj. "lnchpct" (procent osób uprawnionych do lunchu w cenie obniżonej lub bezpłatnego) oraz "percap" (dochód na osobę), wykazywały silną korelację z wynikami egzaminów.

Pozostałe zmienne objaśniające, takie jak "regday" (wydatki na ucznia) i "speced" (procent uczniów ze specjalnymi potrzebami edukacyjnymi), wykazywały słabszą korelację z wynikami egzaminów.

Bibliografia

- 1. Skrypt do przedmiotu Ekonometria I, M. Rubaszek *et al.*, Szkoła Główna Handlowa w Warszawie, https://web.sgh.waw.pl/~mrubas/Econometrics/pdf/El_TallPL.pdf
- 2. Reducing Structural Multicollinearity STAT 501, Eberly College of Science, https://online.stat.psu.edu/stat501/lesson/12/12.6, [dostęp: 30.06.2023]
- 3. Nonlinear relationships Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/stats2/l61.pdfm [dostep: 30.06.2023]
- 4. WARTOŚCI RESZTOWE W PROCESIE REGRESJI, D. Ampuła, Wojskowy Instytut Techniczny Uzbrojenia