IN THE CLAIMS:

Kindly replace the claims with the following:

- . 1. (Currently Amended)A method of noise filtering an image sequence (V1), characterized in that the method comprises comprising the steps of:
- determining (11) statistics in at least one image of the image sequence (V1); and

calculating (14) at least one filtered pixel value (P_t) from a set of original pixel values (P_t, M_i) obtained from the at least one image, wherein the original pixel values (P_t, M_i) are weighted (13) under control (12, α) of the statistics (11).

2. (Currently Amended) [A] <u>The</u> method as claimed in claim 1, wherein the step of calculating comprises:

weighting (13) the set of original pixel values (P_i, M_i) under control $(12, \alpha)$ of the statistics (11) to obtain a weighted set of pixel values (P_i, N_i) ; and

furnishing the weighted set of pixel values (P_t, N_i) to a static filter, in which [static filter] the at least one filtered pixel value (P_t) is calculated from the weighted set of pixel values (P_t, N_i) .

- 3. (Currently Amended) [A] The method as claimed in claim 1, wherein the statistics (11) include a spatial and/ or temporal spread (S) of the set of original pixel values (P_t, M_i) .
- 4. (Currently Amended) [A] The method as claimed in claim 3, wherein the spatial and/ or temporal spread (S) is a sum of absolute differences, a given absolute difference being obtained by subtracting an average pixel value from a given original pixel value (P_t , M_i).
- 5. (Currently Amended) [A] The method as claimed in claim 1, wherein the set of original pixel values (P_t, M_i) include a central pixel value (P_t) and spatially and/or

temporally surrounding pixel values (M_i) , wherein as a result of the noise filtering, the central pixel value (P_i) is replaced by the filtered pixel value (P_i) .

- 6. (Currently Amended) [A] The method as claimed in claim 2, wherein the set of weighted pixel values (P_t, N_i) is obtained by taking for each pixel in the set of original pixels (P_t, M_i) , a combination of a portion α of the original pixel value (P_t, M_i) and a portion $1-\alpha$ of a central pixel value (P_t) .
- 7. (Currently Amended) [A] The method as claimed in claim 1, wherein the statistics (11) are furnished to a look-up table (12), from which look-up table (12) a control signal (α) is obtained, which control signal (α) controls the weighting (13).
- 8. (Currently Amended) [A] The method as claimed in claim 2, wherein the at least one filtered pixel value (P_t) is obtained by calculating (14) a median of the weighted set of pixel values (P_t, N_i) .
- 9. (Currently Amended) [A] The method as claimed in claim 2, wherein the at least one filtered pixel value (P_t') is obtained by calculating (14) an average of the weighted set of pixel values (P_t,N_t).
- 10. (Currently Amended) [A] <u>The</u> method as claimed in claim 9, the method <u>further comprising</u>:

determining (41) a spatial spread (S_{spat}) calculated from spatially displaced original pixel values (P_t , M_i) in the set of original pixel values (P_t , M_i , P_{tl} , P_{t2});

determining (42) a temporal spread (S_{temp}) calculated from temporally displaced original pixel values (P_t, P_{tI}, P_{t2}) in the set of original pixel values (P_t, M_i, P_{tI}, P_{t2}); and

weighting (46) the spatially displaced original pixel values (P_t, M_i) under control (43) of the spatial spread (S_{spat}) and the temporally displaced original pixel values (P_t, P_{t1}, P_{t2}) under control (44,45) of the temporal spread (S_{temp}) .

- 11. (Currently Amended) [A] <u>The</u> method as claimed in claim 10, wherein the weighted temporally displaced original pixel values (WP_1, WP_2) are divided (a) to lessen their weight in the filtering (47).
- 12. (Currently Amended) [A] The method as claimed in claim 10, wherein the temporally displaced original pixel values include two original pixel values (P_{tl} , P_{t2}) from different fields in a same frame (F_0) and at least one original pixel value of a previous frame (F_{-1}).
- 13. (Currently Amended) [A] <u>The</u> method as claimed in claim 12, wherein filtered temporally displaced pixel values are used rather than temporally displaced original pixel values.
- 14. (Currently Amended) A method of encoding (1) an image sequence (VI), wherein the image sequence (VI) is noise filtered according to a method as claimed in elaim 1. comprising the steps of:

encoding a plurality of filtered images, wherein the filtered images are obtained by the steps of:

determining statistics in each image of the image sequence (V1); and

calculating a filtered pixel value (P_t) from a set of original pixel values (P_t,M_i) obtained from each image, wherein the original pixel values (P_t,M_i) are weighted (13) under control (12, α) of the statistics (11).

15. (Original)A device for noise filtering an image sequence, the device comprising:

computing means (11) for determining statistics in at least one image of the image sequence (VI); and

filtering means (14) for calculating at least one filtered pixel value (P_t ') from a set of original pixel values (P_t , M_i) obtained from the at least one image, wherein the original pixel values (P_t , M_i) are weighted (13) under control (12, α) of the statistics (11).

16. (Currently Amended)A device for encoding (1) an image sequence (V1), the device comprising:

receiving means for receiving filtered images, wherein the filtered images of the image sequence created by a device comprising: a device for noise filtering as claimed in claim 15.

computing means (11) for determining statistics in each image of the image sequence (V1); and

filtering means (14) for calculating a filtered pixel value (P_t) from a set of original pixel values (P_t,M_t) obtained from each image, wherein the original pixel values (P_t,M_t) are weighted (13) under control (12, α) of the statistics (11).