Capítulo 6

Coloração de arestas

1 Introdução

Neste capítulo só trataremos de grafos sem laços. Uma parte desse material baseia-se no texto "Uma introdução à Teoria dos Grafos" (organizado para a II Bienal da SBM de 2004 – veja a lista de referências).

Uma coloração das arestas de um grafo é uma atribuição de cores às suas arestas tal que arestas adjacentes recebem cores diferentes. Mais formalmente, podemos dizer que uma coloração das arestas de um grafo G é uma partição de A(G) em emparelhamentos. Se $\{E_1, \ldots, E_k\}$ é uma tal coloração, dizemos que cada emparelhamento E_i (possivelmente vazio) é uma cor e k é o número de cores. Dizemos também que esta é uma k-aresta-coloração de G. Note que se G admite uma k-aresta-coloração, então isto quer dizer que é possível colorir as arestas de G com no máximo k cores.

Exemplo:

Dizemos que um grafo G é k-aresta-colorível se G admite uma k-aresta-coloração. [Note que se G é k-aresta-colorível, então G é p-aresta-colorível para todo p > k.]

2 Colorações mínimas

É fácil encontrar uma coloração das arestas de um grafo: basta colorir cada aresta com uma cor diferente.

PROBLEMA DE INTERESSE: Dado um grafo, obter uma coloração com poucas cores; ou melhor ainda, obter uma com o menor número possível de cores.

Uma coloração de arestas é **mínima** se o número de cores usadas por essa coloração é o menor possível, ou seja, se não existe outra coloração que use menos cores. O **índice cromático** de um grafo é o número de cores de uma coloração de arestas mínima. O índice cromático de um grafo G é denotado por $\chi'(G)$. Dizemos que um grafo G é k-aresta-cromático se $\chi'(G) = k$.

Exercício E6.1. Mostre que $\chi'(G) \leq 2\Delta(G) - 1$ para todo grafo G.

Índice cromático dos circuitos e dos grafos completos

$$\chi'(C_n) = \begin{cases} 2 & \text{se } n \text{ \'e par,} \\ 3 & \text{se } n \text{ \'e impar.} \end{cases}$$

Exercício E6.2. Mostre que para $n \ge 2$ tem-se que

$$\chi'(K_n) = \begin{cases} n-1 & \text{se } n \text{ \'e par,} \\ n & \text{se } n \text{ \'e impar.} \end{cases}$$

3 Delimitação inferior

Uma delimitação inferior simples mas importante do índice cromático é a seguinte.

Delimitação 6.1. Em todo grafo G tem-se que $\chi'(G) \geq \Delta(G)$.

A desigualdade acima decorre da seguinte observação: para qualquer coloração de arestas $\{E_1, \ldots, E_k\}$ de G, temos que $k \geq g(v)$ para qualquer vértice v.

Essa delimitação inferior tem a seguinte consequência imediata: se uma coloração de arestas usa apenas Δ cores então ela é mínima.

Como veremos abaixo, todo grafo bipartido G admite uma coloração com apenas $\Delta(G)$ cores. Mas a coloração de muitos grafos não-bipartidos exige mais que $\Delta(G)$ cores.

PERGUNTA INTERESSANTE: Como convencer alguém de que um certo grafo G requer mais do que $\Delta(G)$ cores? Há alguma objeto (subestrutura do grafo) que podemos exibir nesses casos, para convencer de que uma certa coloração exibida é mínima?

Infelizmente, não temos uma boa resposta para essa pergunta.

Exercício E6.3. Mostre que $\chi'(G) = 4$ se G é o grafo de Petersen.

EXERCÍCIO E6.4. Mostre que todo grafo bipartido k-regular admite uma coloração das arestas com apenas k cores.

Exercício E6.5. Exiba uma família de grafos G para os quais $\chi'(G) > \Delta(G)$.

EXERCÍCIO E6.6. Mostre que $\chi'(G) > \Delta(G)$ se G é um grafo k-regular com número ímpar de vértices.

Exercício E6.7 Mostre que $\chi'(G) > \Delta(G)$ se |V(G)| é impar e $|A(G)| > \frac{\Delta(G)}{2} \left(|V(G)| - 1\right)$.

4 Grafos bipartidos

O índice cromático de grafos bipartidos tem uma delimitação superior que coincide com a delimitação inferior 6.1 vista anteriormente. Ou seja, tal resultado fornece precisamente o índice cromático de um grafo bipartido. Ela foi estabelecida por König em 1916.

```
Teorema 6.2. (König, 1916) Se G é um grafo bipartido então \chi'(G) \leq \Delta(G).
```

Provas. [Prova 1 – Exercício para casa: usar o resultado visto no exercício E27 da Lista 8: se G é um grafo bipartido então G tem um emparelhamento que cobre todos os vértices de grau $\Delta(G)$.]

[Prova 2.] Por indução em |A(G)|. Seja m := |A(G)|. Se m = 0 o resultado é imediato. Suponha então que m > 0 e escolha arbitrariamente uma aresta xy de G. Considere o grafo G' = G - xy. Como $\Delta(G') \le \Delta(G)$, pela hipótese de indução segue que G' tem uma k-aresta-coloração, digamos $C := \{E_1, E_2, \ldots, E_k\}$, onde $k \le \Delta(G)$. Vamos mostrar que é possível obter uma k-coloração para G, atribuindo-se uma das cores em C à aresta xy (eventualmente após uma recoloração das arestas de G').

Como $g_{G'}(x) < k$, então existe uma cor em C, digamos E_i , que não incide em x.

- (a) Se E_i não incide em y, então podemos dar a cor E_i à aresta xy, e manter as demais cores definidas por C, obtendo dessa forma uma k-aresta-coloração de G. (Ou seja, só trocamos E_i por $E_i \cup \{xy\}$.)
- (b) Suponha então que E_i incide em y. Como $g_{G'}(y) < k$, então pelo menos uma cor em C, digamos E_j , não incide em y. Seja $H := G[E_i \cup E_j]$ o subgrafo de G induzido pelas arestas de cores E_i ou E_j . (Os componentes de H são circuitos ou caminhos alternadamente de cor E_i e E_j .)

Seja Y o componente de H que contém o vértice y. Afirmamos que x não pertence a Y. De fato, se isso ocorresse, então existiria em H um caminho de y a x, cuja aresta inicial pertenceria a E_i e cuja aresta final pertenceria a E_j (já que em x não incide uma aresta de E_i). Neste caso, esse caminho teria comprimento par, e concatenando-o com a aresta xy teríamos um circuito ímpar em G, uma contradição (já que G é bipartido). Portanto, x não pertence ao componente Y. Neste caso, uma k-coloração de G pode ser obtida a partir de C permutando-e as cores E_i e E_j no componente Y, e atribuindo-se a cor E_i à aresta xy. Mais formalmente, definimos $E_i := (E_i \triangle A(Y)) \cup \{xy\}$ e $E_j := E_j \triangle A(Y)$, e mantemos os demais emparelhamentos (cores) inalterados.

OBSERVAÇÃO: A prova acima nos fornece um algoritmo polinomial para encontrar uma coloração mínima de um grafo bipartido.

Se G é um grafo bipartido então $\chi'(G) = \Delta(G)$.

5 Grafos arbitrários

Teorema 6.3. (Vizing, 1964) Se G é um grafo simples, então $\chi'(G) \leq \Delta(G) + 1$.

Prova. Por indução em |A(G)|. Seja m:=|A(G)|. Se m=0 o resultado é imediato. Suponha então que m>0 e escolha arbitrariamente uma aresta α de G. Considere o grafo $G'=G-\alpha$. Como $\Delta(G') \leq \Delta := \Delta(G)$, pela hipótese de indução segue que G' tem uma $(\Delta+1)$ -aresta-coloração, digamos C. Vamos mostrar que é possível atribuir uma das cores em C à aresta C.

Suponha que $\alpha=u\,v_1$. Como $g_{G'}(u)<\Delta+1$ e $g_{G'}(v_1)<\Delta+1$, existem cores em \mathcal{C} , digamos E_u e E_1 tais que

 E_u não incide em ue

 E_1 não incide em v_1 .

Vamos construir uma sequência de arestas $(u v_1, u v_2, ...)$ e uma sequência de cores $(E_1, E_2, ...)$ tais que

 E_i não incide em v_i e

 $u v_{i+1}$ tem a cor E_i .

Suponha que temos as seqüências $(uv_1, uv_2, \ldots, uv_i)$ e (E_1, E_2, \ldots, E_i) . Se existir aresta uv de cor E_i tal que $v \notin \{v_2, \ldots, v_i\}$, chamamos de v_{i+1} o vértice v e tomamos uma cor E_{i+1} que não incide em v_{i+1} . Estendemos desta forma as duas seqüências, e repetimos este processo enquanto for possível.

Como g(u) é finito, tal extensão não vai ser sempre possível. Suponha então que, tendo construído as seqüências

$$(u v_1, u v_2, \dots, u v_k)$$
 e

$$(E_1,E_2,\ldots,E_k),$$

não pudemos mais estender a seqüência das arestas. Vejamos as razões que impediram tal extensão.

(a) Não existe aresta uv com a cor E_k .

Neste caso, podemos recolorir as arestas $u v_i$, $1 < i \le k$, atribuindo à aresta $u v_i$ a cor E_i . Atribuímos à aresta $u v_1$ a cor E_1 .

(b) Existe aresta uv com a cor E_k , mas $v = v_j$ para algum j < k.