CAP 5415 Computer Vision Fall 2011

Dr. Mubarak Shah

Univ. of Central Florida

www.cs.ucf.edu/~vision/courses/cap5415/fall2012

Office 247-F HEC

Filtering

Lecture-2

General

- Binary
- Gray Scale
- Color

Binary Images

Gray Level Image

Gray Scale Image

Color Image Red, Green, Blue Channels

Image Histogram

Image Noise

- Light Variations
- Camera Electronics
- Surface Reflectance
- Lens

Image Noise

- I(x,y): the true pixel values
- n(x,y): the noise at pixel (x,y)

$$\hat{I}(x, y) = I(x, y) + n(x, y)$$

Gaussian Noise

$$n(x, y) = e^{\frac{-n^2}{2\sigma^2}}$$

Image Derivatives & Averages

Definitions

- Derivative: Rate of change
 - Speed is a rate of change of a distance
 - Acceleration is a rate of change of speed
- Average (Mean)
 - Dividing the sum of N values by N

Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

$$v = \frac{ds}{dt}$$
 speed $a = \frac{dv}{dt}$ acceleration

Examples

$$y = x^{2} + x^{4}$$

$$y = \sin x + e^{-x}$$

$$\frac{dy}{dx} = 2x + 4x^{3}$$

$$\frac{dy}{dx} = \cos x + (-1)e^{-x}$$

Discrete Derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Discrete Derivative Finite Difference

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Forward difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

Central difference

Example

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0 $f''(x) = 0$ 5 -10 5 15 20 5

Derivative Masks

Backward difference	[-1	1]
Forward difference	[1	-1]
Central difference	[-1	0 1]

Derivatives in 2 Dimensions

Given function

Gradient vector

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude

$$\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction

$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

Derivatives of Images

Derivative masks

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$f_x \Rightarrow \frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad f_y \Rightarrow \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Derivatives of Images

Correlation

 \otimes

$$f \otimes h = \sum_{k} \sum_{l} f(k,l) h(i+k,j+l)$$

f = Image

f = Kernel

f

f_1	f_2	f_3
f_4	f_5	f_6
f ₇	f ₈	f_9

h

h_1	h ₂	h ₃	
h_4	h_5	h_6	
h ₇	h ₈	h ₉	

 $f * h = f_1 h_1 + f_2 h_2 + f_3 h_3 + f_4 h_4 + f_5 h_5 + f_6 h_6$

$$+f_7h_7+f_8h_8+f_9h_9$$

Convolution

$$f * h = \sum_{k} \sum_{l} f(k,l)h(i-k,j-l)$$

f = Image

h = Kernel

h ₇	h ₈	h ₉
h_4	h_5	h_6
h_1	h_2	h_3

Y-flip

X - flip

	h_1	h_2	h_3
_	h_4	h_5	h_6
	h ₇	h ₈	h ₉

f_1	f_2	f_3
f_4	f_5	f_6
f_7	f_8	f_9

$$\begin{array}{c|cccc} h_9 & h_8 & h_7 \\ h_6 & h_5 & h_4 \\ h_3 & h_2 & h_1 \\ \end{array}$$

 $f * h = f_1 h_0 + f_2 h_8 + f_3 h_7$ $+ f_4 h_6 + f_5 h_5 + f_6 h_4$ $+ f_7 h_3 + f_8 h_2 + f_9 h_1$

Convolution

$$f(x,y) * h = f(x+1,y+1)h(-1,-1) + f(x,y+1)h(0,-1) + f(x-1,y+1)h(1,-1) + f(x+1,y)h(-1,0) + f(x,y)h(0,0) + f(x-1,y)h(1,0)$$
$$f(x+1,y-1)h(-1,1) + f(x,y-1)h(0,1) + f(x-1,y-1)h(1,1)$$

$$f * h = \sum_{i=-1}^{1} \sum_{j=-1}^{1} f(x-i, y-i)h(i, j)$$

Coordinates

-1,0	0,1	1,1
-1,0	0,0	1,0
-1,-1	0,-1	1,-1

Averages

Mean

$$I = \frac{I_1 + I_2 + \dots I_n}{n} = \frac{\sum_{i=1}^{n} I_i}{n}$$

Weighted mean

$$I = \frac{w_1 I_1 + w_2 I_2 + \ldots + w_n I_n}{n} = \frac{\sum_{i=1}^{n} w_i I_i}{n}$$

Gaussian Filter

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

$$g(x,y) = e^{\frac{-(x^2+y^2)^2}{2o^2}}$$

$$g(x) = [.011 \quad .13 \quad .6 \quad 1 \quad .6 \quad .13 \quad .011]$$

$$\sigma = 1$$

Properties of Gaussian

- Most common natural model
- Smooth function, it has infinite number of derivatives
- Fourier Transform of Gaussian is Gaussian.
- Convolution of a Gaussian with itself is a Gaussian.
- There are cells in eye that perform Gaussian filtering.

Filtering

 Modify pixels based on some function of the neighborhood

Linear Filtering

 The output is the linear combination of the neighborhood pixels

1	3	0
2	10	2
4	1	1

Image

 \otimes

Kernel

Filter Output

0	0	0
0	1	0
0	0	0

Alper Yilmaz, Mubarak Shah, UCF

0	0	0
0	0	1
0	0	0

Alper Yilmaz, Mubarak Shah, UCF

1	1	1
1	1	1
1	1	1

Alper Yilmaz, Mubarak Shah, UCF

	1	1	1	1	1
5	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1

Alper Yilmaz, Mubarak Shah, UCF

Blurring Examples

filtered

Filtering Gaussian

Gaussian vs. Smoothing

Gaussian Smoothing

Smoothing by Averaging

Alper Yilmaz, Mubarak Shah, UCF

Noise Filtering

Gaussian Noise

After Averaging

After Gaussian Smoothing Alper Yilmaz, Mubarak Shah, UCF

- conv: 1-D Convolution.
 - C = conv(A, B) convolves vectors A and B.
- conv2: Two dimensional convolution.
 - C = conv2(A, B) performs the 2-D convolution of matrices A and B.

- filter2: Two-dimensional digital filter.
 - Y = filter2(B,X) filters the data in X with the 2-D FIR filter in the matrix B.
 - The result, Y, is computed using 2-D correlation and is the same size as X.
 - filter2 uses CONV2 to do most of the work. 2-D correlation is related to 2-D convolution by a 180 degree rotation of the filter matrix.

- gradient: Approximate gradient.
 - [FX,FY] = gradient(F) returns the numerical gradient of the matrix F. FX corresponds to dF/dx,
 FY corresponds to dF/dy.
- mean: Average or mean value.
 - For vectors, mean(X) is the mean value (average) of the elements in X.

- special: Create predefined 2-D filters
 - H = fspecial(TYPE) creates a two-dimensional filter H of the specified type. Possible values for TYPE are:
 - 'average' averaging filter;
 - 'gaussian' Gaussian lowpass filter
 - 'laplacian' filter approximating the 2-D Laplacian operator
 - 'log' Laplacian of Gaussian filter
 - 'prewitt' Prewitt horizontal edge-emphasizing filter
 - 'sobel'
 Sobel horizontal edge-emphasizing filter
 - Example: H=fspecial('gaussian',7,1) creates a 7x7 Gaussian filter with variance 1.