Differentiation Rules Benchmark # 2

Period: Date:

1.	$\frac{d}{dx} \Big[f(x) \pm g(x) \Big]$
----	--

$$2. \qquad \frac{d}{dx} \Big[q(x)^n \Big]$$

3.
$$\frac{d}{dx} \left[\frac{p(x)}{q(x)} \right]$$

4.
$$c$$
 is a constant
$$\frac{d}{dx} [c \cdot g(x)]$$

5.
$$\frac{d}{dx} [g(f(x))]$$

$$6. \qquad \frac{d}{dx} \Big[\sin \big(t(x) \big) \Big]$$

7.
$$\frac{d}{dx} \Big[\cot \big(r(x) \big) \Big]$$

8.
$$\frac{d}{dx} [w(x) \cdot d(x)]$$

9.
$$\frac{d}{dx} \left[\operatorname{arccot}(b(x)) \right]$$

10.
$$c$$
 is a constant
$$\frac{d}{dx}[c]$$

11.
$$\frac{d}{dx}[|s(x)|]$$

12.
$$\frac{d}{dx} \Big[\cos \big(n(x) \big) \Big]$$

13.
$$\frac{d}{dx} \Big[\operatorname{arccsc} \big(h(x) \big) \Big]$$

14.	$\frac{d}{dx}[x]$	
15.	$\frac{d}{dx}\Big[\tan\big(m(x)\big)\Big]$	
16.	$\frac{d}{dx} \Big[\sec(q(x)) \Big]$	
17.	$\frac{d}{dx} \Big[a^{f(x)} \Big]$	
18.	$\frac{d}{dx}\Big[\ln\big(g(x)\big)\Big]$	
19.	$\frac{d}{dx}\Big[\arccos\big(p(x)\big)\Big]$	
20.	$rac{d}{dx}\Big[e^{h(x)}\Big]$	
21.	$\frac{d}{dx}\Big[\csc\big(v(x)\big)\Big]$	
22.	$\left(f^{\scriptscriptstyle -1}\right)'(d)$	
23.	$\frac{d}{dx} \Big[\arcsin \Big(h(x) \Big) \Big]$	
24.	$\frac{d}{dx} \Big[\log_a \big(b(x) \big) \Big]$	
25.	$\frac{d}{dx} \Big[\operatorname{arcsec} \big(d \big(x \big) \big) \Big]$	
26.	$\frac{d}{dx} \Big[\arctan\big(r(x)\big)\Big]$	