Топлинно разширение на течности и твърди тела. Максимална плътност на водата

Лабораторно упражнение №3.8

Виолета Кабаджова, ККТФ, фак. номер: 3PH0600026

Физически Факултет, Софийски Университет "Св. Климент Охридски" 18 май 2023 г.

1 Теоритична част

Размерите на реалните физични тела променят размерите си, и съответно обема си с промяна на температурата. При твърдите тела това изменение може да бъде изотропно (във всички направления) или анизотропно (само в отделни напревления), докато при течности и газове то е единствено изотропно. Големината на изменение на обема зависи от началната температура T_0 и от налягането p и при фиксирано налягане се определя чрез производната $\left(\frac{\partial V}{\partial T}\right)_p$.

Относителносто изменение на обема се определя по формула 1 и се нарича топлинен коефициент на обемно разширение β , $[\beta] = K^{-1}$. При фиксирано налягане той числено е равен на разширението на единица обем при нарастване на температурата с един градус, като стойността му е най-малка за твърди тела и най-голяма за газове. Тъй като за течности и газове изменението на обема е назначително за промяна на температурата или налягането в малки граници, то записваме уравнение 1 във вида 2.

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{n} \tag{1}$$

$$\beta = \frac{1}{V} \frac{\Delta V}{\Delta T} \tag{2}$$

2 Експериментална част

2.1 Експериментална установка

Експериментът изследва разширението на вода, налята в съд, подобен на представения в схема 1, към който има закрепена разграфена капилярка. Стъкленицата се пълни с вода до най-долното стъпало на скалата на капилярката, след което се загрява на водна баня, обемът на водата се разширява, при което се покачва нивото ѝ в капилярката, като разликата ѝ Δh се отчита от скалата.

2.2 Извеждане на работна формула

Тъй като сечението на капилярката е с кръгла форма, обемът на височина h се намира по формула 3.

Фигура 1: Схема на опитна постановка

$$\Delta V = S\Delta h = \pi r^2 \Delta h \tag{3}$$

Освен течността в стъкленицата, самата стъкленица също се разширява при голяма температурна амплитуда с коефициент на обемно разширение β_C . Извеждаме работната ни формулата 4 посредством формула 2, откъдето следва, че $\Delta V_T = \beta_T V_T \Delta T$, $\Delta V_C = \beta_C V_C \Delta T$.

$$\beta_T = \frac{1}{V\Delta T} (\beta_C V\Delta T + \pi r^2 \Delta h) \tag{4}$$

2.3 Задача 1: Определяне обема на изследваната течност

Масата на течността определяме по формула 5, където m_1 - масата на напълнената с вода стъкленица, m_2 - масата на празната стъкленица, ρ - плътността на водата. Взимаме $\rho=997\frac{kg}{m^3}$. За ΔV взимаме в предвид единствено инструменталната грешка при измерване на масите: $\Delta V=\left(\frac{\Delta m_1}{m_1}+\frac{\Delta m_2}{m_2}\right)$.

$$V = \frac{m_1 - m_2}{\rho} = (49.4 \pm 0.3) \cdot 10^{-6} m^3 \tag{5}$$

2.4 Задача 2: Измерване на коефициента на обемно разширение на дестилирана вода

Поставяме измерителната клетка във водна баня, за да се загрее течността. След това цялата система се отстранява от нагревателя и се оставя да се охлажда (т.е. нивото на течността в капилярката да започне се понижава). Измерват се температурите на течността за всеки два милиметра разлика на капилярната скала и измерванията записваме в таблица 1 и пресмятаме β_T за всяка двойка.

N	$h_i, [mm]$	$T_i, [\deg C]$	$\beta_{Ti} \cdot 10^{-3}, [K^{-1}]$
0	80	56.5	0.40 ± 0.04
1	78	55.6	0.44 ± 0.05
2	76	54.8	0.34 ± 0.04
3	74	53.7	0.26 ± 0.02
4	72	52.1	0.27 ± 0.03
5	70	50.6	0.56 ± 0.06
6	68	50	0.34 ± 0.04
7	66	48.9	0.40 ± 0.04
8	64	48	0.49 ± 0.05
9	62	47.3	0.44 ± 0.05
10	60	46.5	0.40 ± 0.05

Таблица 1: Измервания и резултати

На фиг. 2 е представена зависимостта $\Delta h(\Delta T)$, от която определяме стойността на β_T по графичен път посредством наклона на правата. Изчисляваме $\beta_T = \frac{dh}{dT} = 0.002$ и заместваме стойността във формула 4, която преобразуваме във вида, показан в уравнение 6, като получаваме $\beta_T = (0.37 \pm 0.01) \cdot 10^{-3} K^{-1}$. И на графиката, и таблично наблюдаваме отклонение спрямо останалите стойности около измервания 3, 4, 5. Заключваме, че в него момент са допуснати допълнителни човешки грешки по време на измерванията и е добре измерването да бъде повторено.

$$\beta_T = \beta_C + \pi r^2 \frac{\Delta h}{\Delta T} \tag{6}$$

Фигура 2: Зависимостта $\Delta h(\Delta T)$