

Descripción General

- Diseño, desarrollo y prueba de un sistema de control para un prototipo de robot submarino ROV (Remote Operated Vehicle) de 3 grados de libertada
- Entorno de simulación UWSim-ROS en Ubuntu, con capacidad de conexión a Matlab
- Desarrollar un algoritmo de control para la profundidad y orientación del ROV:
 - ✓ Modelo dinámico existente
 - ✓ Evaluar la utilización de algún esquema de control
 - ✓ El modelo de ROV podrá ser alguno entre PoseiBot, OpenRov, Girona 500 u otro equivalente

Importancia

- Operación
- Sistema de control
- Controladores: Profundidad y Orientación
- Desarrollos previos

Fases del Proyecto

Fase 1

 Modelado dinámico del robot submarino

Fase 2

 Simulación y verificación del modelo en Matlab (o equivalente)

Fase 3

 Desarrollo de controlador de profundidad y orientación

Fase 4

Pruebas de controladores

Cronograma

- Fase 1: 8 semanas
- Fase 2: 4 semanas
- Fase 3: 8 semanas
- Fase 4: 6 semanas

Meses	1	2	3	4	5	6
Fase 1						
Fase 2						
Fase 3						
Fase 4				_		
Documentación						

Sistemas de referencias para un vehículo marino

- Sistemas de referencia centrados en tierra
 - ✓ ECI (i-frame)
 - ✓ ECEF(e-frame)
- Sistemas de referencia geográficos
 - ✓ NED (n-frame)
 - ✓ BODY (b-frame)

Sistemas de referencias para un vehículo marino

TRASLACIÓN	FUERZA	VELOCIDAD LINEAL	POSICIÓN
Avance	Х	u	х
Desp. lateral	Υ	v	У
Arfada	Z	w	z

ROTACIÓN	MOMENTO	VELOCIDAD ANGULAR	ÁNGULO
Balanceo (roll)	К	р	ф
Cabeceo (pitch)	М	q	θ
Guiñada (yaw)	N	r	ψ

Definiciones vectoriales

El movimiento de un vehículo marino en 6D0F se describe de la siguiente forma:

•
$$\eta = [x, y, z, \phi, \theta, \psi]$$
 (Vector posición y orientación)

•
$$v = [u, v, w, p, q, r]$$
 (Vector velocidad lineal y angular)

•
$$\tau = [X, Y, Z, K, M, N]$$
 (Vector Fuerzas y momentos)

El movimiento de un vehículo marino en 3DOF se describe de la siguiente forma:

•
$$\eta = [x, y, \psi]$$
 (Vector posición y orientación)

•
$$v = [u, v, r]$$
 (Vector velocidad lineal y angular)

•
$$\tau = [X, Y, N]$$
 (Vector Fuerzas y momentos)

Dinámica

La ecuación dinámica (directa) no lineal que rige el comportamiento de un robot viene dado por la siguiente expresión:

$$Mv + C(v)v + D(v)v + g(\eta) = \tau$$

Donde:

- M, es la matriz de inercia del robot (incluyendo el efecto de masa añadida en el caso de Robots Submarinos)
- C (v), es la matriz de coriolis y términos centrípetos (incluyendo el efecto de masa añadida en el caso de Robots Submarinos)
- D(v), es la matriz de amortiguamiento (Damping)
- g (η), es el vector de fuerzas y momentos restaurativos: gravitacional (y rotación, en el caso de Robots Submarinos)

Matriz de Inercia

$$M_{RB} = \begin{bmatrix} m & 0 & 0 & 0 & 0 & 0 \\ 0 & m & 0 & 0 & 0 & 0 \\ 0 & 0 & m & 0 & 0 & 0 \\ 0 & 0 & 0 & I_x & -I_{xy} & -I_{xz} \\ 0 & 0 & 0 & -I_{yx} & I_y & -I_{yz} \\ 0 & 0 & 0 & -I_{zx} & -I_{zy} & I_z \end{bmatrix}$$

Donde:

- m= masa del cuerpo
- Ix, ly e lz= momentos (másicos) de inercia
- Índices mezclados (o mixtos) se denominan productos másicos de inercia.

Matriz de Coriolis

$$C_{RB}(\nu) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -mw \\ 0 & 0 & 0 & mv \\ 0 & mw & -mv & 0 & \dots \\ -mw & 0 & mu & I_{yz}q + I_{xz}p - I_{z}r \\ mv & -mu & 0 & -I_{yz}r - I_{xy}p + I_{y}q \\ \end{bmatrix}$$

$$mw & -mv \\ 0 & mu \\ -mu & 0 \\ -I_{yz}q - I_{xz}p + I_{z}r & I_{yz}r + I_{xy}p - I_{y}q \\ 0 & -I_{xz}r - I_{xy}q + I_{x}p \\ I_{xz}r + I_{xy}q - I_{x}p & 0 \end{bmatrix}$$
Si el robot es simétrico y se mueve a baja velocidad in que la contribución de los elementos fuera de la diagon pueden ser despreciados

Matriz de Inercia de Masa Añadida

$$M_A = - \begin{bmatrix} X_{\dot{u}} & X_{\dot{v}} & X_{\dot{w}} & X_{\dot{p}} & X_{\dot{q}} & X_{\dot{r}} \\ Y_{\dot{u}} & Y_{\dot{v}} & Y_{\dot{w}} & Y_{\dot{p}} & Y_{\dot{q}} & Y_{\dot{r}} \\ Z_{\dot{u}} & Z_{\dot{v}} & Z_{\dot{w}} & Z_{\dot{p}} & Z_{\dot{q}} & Z_{\dot{r}} \\ K_{\dot{u}} & K_{\dot{v}} & K_{\dot{w}} & K_{\dot{p}} & K_{\dot{q}} & K_{\dot{r}} \\ M_{\dot{u}} & M_{\dot{v}} & M_{\dot{w}} & M_{\dot{p}} & M_{\dot{q}} & M_{\dot{r}} \\ N_{\dot{u}} & N_{\dot{v}} & N_{\dot{w}} & N_{\dot{p}} & N_{\dot{q}} & N_{\dot{r}} \end{bmatrix}$$

Si el robot es simétrico y se mueve a baja velocidad implica que la contribución de los elementos fuera de la diagonal pueden ser despreciados

$$M_A = -diag\left(egin{array}{cccc} X_{\dot{m{u}}} & Y_{\dot{m{v}}} & Z_{\dot{m{w}}} & K_{\dot{m{p}}} & M_{\dot{m{q}}} & N_{\dot{m{r}}} \end{array}
ight)$$

Matriz de Coriolis de masa añadida

$$C_{A}(\nu) = \begin{bmatrix} 0 & 0 & 0 & 0 & -Z_{\dot{w}}w & Y_{\dot{v}}v \\ 0 & 0 & 0 & Z_{\dot{w}}w & 0 & X_{\dot{u}}u \\ 0 & 0 & 0 & -Y_{\dot{v}}v & -X_{\dot{u}}u & 0 \\ 0 & -Z_{\dot{w}}w & Y_{\dot{v}}v & 0 & -N_{\dot{r}}r & M_{\dot{q}}q \\ Z_{\dot{w}}w & 0 & -X_{\dot{u}}u & N_{\dot{r}}r & 0 & -K_{\dot{p}}p \\ -Y_{\dot{v}}v & X_{\dot{u}}u & 0 & -M_{\dot{q}}q & K_{\dot{p}}p & 0 \end{bmatrix}$$

 Matriz de amortiguamiento hidrodinámico

Para vehículos que se muevan a 6 DOF a alta velocidad puede ser altamente no lineal y acoplado. Sin embargo si se asume que el vehículo tiene un movimiento no acoplado, tiene 3 planos de simetría se puede decir que:

donde (Xu, Yv, Zw, Kp, Mq, Nr) son los coeficientes de amortiguamiento lineales y Xu|u|, Yv|v|, Zw|w|, Kp|p|, Mq|q|, Np|p|son los coeficientes de amortiguamiento cuadrático

$$D(\nu) = -diag \left(X_u + X_{u|u|} |u|, Y_v + Y_{v|v|} |v|, Z_w + Z_{w|w|} |w|, \dots K_p + K_{p|p|} |p|, M_q + M_{q|q|} |q|, N_r + N_{r|r|} |r| \right)$$

 Vector de fuerzas y momentos restaurativos

$$\mathbf{g}\left(\eta
ight) = egin{bmatrix} (\mathbf{W} - \mathbf{B}) \, s_{ heta} \ -(\mathbf{W} - \mathbf{B}) \, c_{ heta} s_{\phi} \ -(\mathbf{W} - \mathbf{B}) \, c_{ heta} c_{\phi} \ -z_{B} \mathbf{B} c_{ heta} s_{\phi} \ -z_{B} \mathbf{B} s_{\theta} \ 0 \end{bmatrix}$$

Considerando

$$\mathbf{r_G} = [x_G, y_G, z_G]$$

 $\mathbf{r_B} = [x_B, y_B, z_B]$

Fuerzas y momentos

$$\tau_{RB} = \tau_A + \tau_D + \tau_f + \tau_p + w$$

 au_A : Fuerzas por masas inerciales adicionales.

 au_D : Fuerzas y momentos hidrodinámicos de amortiguamiento (Damping).

 au_f : Fuerza y momentos por las superficies de control de ascensión.

τ_p: Fuerzas y momentos de propulsión

w: Perturbaciones medio ambientales.

Parámetros recopilados para los diferentes Submarinos

	Datos de los Submarinos			
Descripcion	Girona 500	PoseiBot	OpenROV	
num_actuators	5	4	3	
dynamics/period	0.001	0.001	0.001	
dynamics/uwsim_p eriod	0.001	0.001	0.001	
dynamics/mass	98	85		
dynamics/gravity_c enter	[0.0, 0.0, 0.05]	[0.0, 0.0, 0.0]		
dynamics/g	9.81	9.81	9.81	
dynamics/radius	0.286 0.1963			
dynamics/ctf	0.00006835	0.00006835	0.00006835	
dynamics/ctb	0.00006835	0.00006835	0.00006835	
actuators_tau	[0.2, 0.2, 0.2, 0.2, 0.2]	[0.2, 0.2, 0.2, 0.2]	[0.2, 0.2, 0.2]	
actuators_maxsat	[1, 1, 1, 1, 1]	[1, 1, 1 ,1,]	parametro de los motores (Ricardo)	
actuators_minsat	[-1, -1, -1, -1, -1]	[-1, -1, -1, -1]		
	[1500, 1500, 1500, 1500,			
actuators_gain	1500]	en que valor siguiente entra	trifasico	
dynamics/dzv	0.05	0		
dynamics/dv:	0.35	0		
dynamics/dh	0.4	0		
dynamics/density	1000	1000	1000	

Parámetros recopilados para los diferentes Submarinos

dynamics/tensor	[8.0, 0.0, 0.0, 0.0, 8.0, 0.0, 0.0, 0.0,		
[.0, .0, .0, -130.0, -130.0, - dynamics/damping 130.0]		no fueron calculados porque eran valores muy bajos	
[-148.0, -148.0, -148.0, -180.0, quadratic_damping-180.0, -180.0]		no fueron calculados porque eran valores muy bajos	
[98.0, 0.0, 0.0, 0.0, 4.9, -0.		[85.0, 0.0, 0.0, 0.0, 0.0, 0.0,	
dynamics/Mrb	0.0, 98.0, 0.0, -4.9, 0.0, 0.0,	0.0, 85.0, 0.0, 0.0, 0.0, 0.0,	
	0.0, 0.0, 98.0, 0.0, -0.0, 0.0,	0.0, 0.0, 85.0, 0.0, 0.0, 0.0,	
	0.0, -4.9, 0.0, 8.0, 0.0, 0.0,	0.0, 0.0, 0.0, 2.835, -1,81×10-3, -2,47×10-1,	gabriel
	4.9, 0.0, -0.0, 0.0, 8.0, 0.0,	0.0, 0.0, 0.0, -1,81×10-3, 8.122, -3,16×10-3,	
	-0.0, 0.0, 0.0, 0.0, 0.0, 8.0]	0.0, 0.0, 0.0, -2,47×10-1, -3,16×10-3 6.177]	
dynamics/Ma	[49.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[-28.0572, 0.0, 0.0, 0.0, 0.0, 0.0,	
	0.0, 49.0, 0.0, 0.0, 0.0, 0.0,	0.0, -51.5692, 0.0, 0.0, 0.0, 0.0,	
	0.0, 0.0, 49.0, 0.0, 0.0, 0.0,	0.0, 0.0, -51.5692, 0.0, 0.0, 0.0,	
	0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	
	0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	0.0, 0.0, 0.0, 0.0, -0.1396, 0.0,	
	0.0, 0.0, 0.0, 0.0, 0.0, 0.0]	0.0, 0.0, 0.0, 0.0, 0.0, -0.1396]	

Trabajo a nivel General

- Generara un modelo dinámico con UWSIM que sea compatible con el OpenROV
- Probar distintos algoritmos para diferentes ambientes del modelo dinámico del OpenROV
- Realizar pruebas y simulaciones utilizando datos y características del OpenROV, en distintos ambientes por medio de algoritmos de visión de computadora
- Probar los algoritmos que se necesiten
- Validar el modelo q se está corriendo en el simulador
- Probarlos en la plataforma real

Trabajo a nivel General

Plan de Actividades

Corto Plazo

- Estudiar detalladamente el modelo Dinámico del Profesor Novel: Como está estructurado, analizar las funciones que aplican para el buen funcionamiento del modelo, descartar los parámetros que no aplican para la implementación del Modelo OpenRov
- Trabajar en base al modelo previamente elaborado
- Realizar las pruebas pertinentes del modelo elaborado, para observar y analizar su funcionamiento

