— QUIZ 4 —

AMATH 352: Applied Linear Algebra & Numerical Analysis

© Ryan Creedon, University of Washington

Due to Gradescope March 6, 2023 at 11:59pm PST

This quiz should take ~ 1 hour to complete, but you have all day to turn it in.

Follow all directions carefully. Credit will not be given for work that does not follow directions. You are $\underline{\text{not}}$ allowed to work with other students or use your notes, homework assignments, MATLAB, or external sources. Please submit your work to Quiz 4 on Gradescope. Only .pdf files will be accepted.

Sally hopes you enjoy this quiz!

Name:			
Student ID:			

Problem	Points	Score
1	10	
2	5	
3	5	
4	5	
5	5	

Total

1. (10 points total) Answer the following true-false questions.
(a) (1 point) Consider the shift-up operator:
$f\left(\begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} x_3 \\ \vdots \\ x_n \\ 0 \end{pmatrix}.$
The shift-up operator is a linear transformation from \mathbb{R}^n to \mathbb{R}^n .
True False
(b) (1 point) The canonical matrix representation for a linear transformation in the plane that first projects onto the line $y = x$ and then rotates 90° clockwise is $\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$.
True False
(c) (1 point) Recall the canonical matrix representation for the linear transformation that rotates the plane by θ radians counter-clockwise: $\mathbf{A} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$
$ \left(\sin(\theta) - \cos(\theta) \right)^{\tau} $ This matrix never has real eigenvalues for $0 < \theta < 2\pi$.
True False
(d) (1 point) Let $\mathbf{A} \in \mathbb{R}^{5\times 3}$. If $\operatorname{Rank}(\mathbf{A}) = 3$, then $\operatorname{Nullity}(\mathbf{A}) = 2$.
True False
(e) (1 point) If $\mathbf{A} \in \mathbb{R}^{n \times n}$, then the only vector in the intersection of Null(\mathbf{A}) and Range(\mathbf{A}) is the zero vector.
True L False L

(f)	(1 point) If $\mathbf{A} \in \mathbb{R}^{n \times n}$ and Nullity $(\mathbf{A}) \ge 1$, then $\lambda = 0$ is an eigenvalue of \mathbf{A} .
	True False
(g)	(1 point) The area of the parallelogram with sides $\mathbf{u} = (2,1)^T$ and $\mathbf{v} = (-1,4)^T$ is 9.
	True False
(h)	(1 point) If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable with eigenvalues λ_j for $1 \le j \le n$, then $\det(\mathbf{A}) = \lambda_1 \cdots \lambda_n$.
	True False
(i)	(1 point) If (λ, \mathbf{v}) is an eigenpair of \mathbf{A} , then $(\lambda + 1, \mathbf{v})$ is an eigenpair of $\mathbf{A} + \mathbf{I}$.
	True False
(j)	(1 point) There exists an eigenvalue λ of $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that its geometric multiplicity is greater than its algebraic multiplicity.
	True False

2. (5 points total) Consider the following matrix:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & -1 & 3 & 1 \\ 4 & 0 & 1 & 1 \\ 0 & 2 & 1 & -1 \end{pmatrix}.$$

(a) (4 points) Compute det(A) either by Laplace expansion or Gaussian elimination (your choice).

$$\det(\mathbf{A}) = \Box$$

(b) (1 point) Prove the following statement or provide a counterexample:

For any
$$\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$$
, $\det (\mathbf{A}^2 - \mathbf{B}^2) = \det (\mathbf{A} - \mathbf{B}) \det (\mathbf{A} + \mathbf{B})$.

3. (5 points total) Let

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 4 & 0 \\ 3 & -2 & 8 \end{pmatrix}.$$

(a) (4 points) Find a basis \mathcal{B}_N for the nullspace of \mathbf{A} and a basis \mathcal{B}_R for the range of \mathbf{A} .

$${\cal B}_{
m N} = \left\{ egin{array}{c} {\cal B}_{
m R} = \left\{ egin{array}{c} {\cal B$$

(b) (1 point) What is $Rank(\mathbf{A})$ and $Nullity(\mathbf{A})$?

$$Rank(\mathbf{A}) = \square$$
 $Nullity(\mathbf{A}) = \square$

4 (5 points total) Consider the following matrix:

$$\mathbf{A} = \begin{pmatrix} 1/2 & 3/2 & 0 \\ 3/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(a) (1.5 points) Using the characteristic polynomial, determine the eigenvalues of **A**. Arrange your eigenvalues so that $\lambda_1 \geq \lambda_2 \geq \lambda_3$ to ensure we all arrive at the same conclusions in the boxes below.

$$\lambda_1 = \square$$
 $\lambda_2 = \square$ $\lambda_3 = \square$

(b) (1.5 points) Obtain the corresponding eigenvectors $\mathbf{x}_1, \mathbf{x}_2$, and \mathbf{x}_3 .

$$\mathbf{x}_1 = egin{pmatrix} \square \\ \square \\ \square \end{pmatrix} \quad \mathbf{x}_2 = egin{pmatrix} \square \\ \square \\ \square \end{pmatrix} \quad \mathbf{x}_3 = egin{pmatrix} \square \\ \square \\ \square \end{pmatrix}$$

(c) (2 points) Find a spectral decomposition of $\bf A$ of the form ${\bf Q}{\bf \Lambda}{\bf Q}^T$, where $\bf Q$ is an orthogonal matrix.

$$\mathbf{Q} = egin{pmatrix} igcup & igcu$$

5. (5 points total) Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & -2 \\ -2 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

(a) (3 points) Obtain a spectral decomposition for ${\bf A}$ of the form ${\bf X}{\bf \Lambda}{\bf X}^{-1}.$

$$\mathbf{X} = egin{pmatrix} oxed{\square} & oxed{\square}$$

(b) (2 points) For $x \in \mathbb{R}$, the hyperbolic sine is defined as

$$\sinh(x) = \frac{1}{2} \left(e^x - e^{-x} \right).$$

Use your spectral decomposition from (a) to compute $\sinh(\mathbf{A})$.

$$\sinh(\mathbf{A}) = \begin{pmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \\ \Box & \Box & \Box \end{pmatrix}$$