

Modul Betriebssysteme (bsys-iC)

Feedback aus der Hausaufgabe

Was ist Ihnen aufgefallen?

Gab es grundlegende neue Erkenntnisse?

Was hat gefehlt?

Wieviel Zeit haben Sie aufgewendet?

OSDem

Lektion 2: Aufbau & Blockstruktur eines Betriebssystems, Abgrenzung zu anderen HW/SW-Komponenten

Inhalt

- Die Blockstruktur eines Betriebssystems und Aufgabenzuordnung zu funktionalen Blöcken
- Anforderungen & Aufgabenteilung zwischen Betriebssystem und Hardware / Peripherie
- Anforderungen & Aufgabenteilung zwischen Betriebssystem und darauf aufbauender Middleware, Datenbanken und Applikationen

Motivation

Anforderungen an das Betriebssystem

- Start des Systems
- Laden und Unterbrechen von Programmen (Laufzeitumgebung)
- Methoden für die Interprozesskommunikation
- Verwaltung der Prozessorzeit
- Verwaltung des primären und sekundären Speicherplatzes für das Betriebssystem und seine Anwendungen
- Verwaltung der angeschlossenen Geräte, Netzwerke etc.
- Schutz des Systemkerns und seiner Ressourcen vor nicht intendierter Benutzung
- Benutzerführung, Rollen & Rechte
- Einheitliche Schnittstelle für die System- & Anwendungsprogrammierung
- Ereignisprotokollierung

Logische Blockstruktur

Dateisystem

- Struktur des Dateisystems (Baum, Graph, flach, ...)
- Strukturelemente (Directories)
- Zugriffsrechte auf Directories & Dateien
- Anlage, Suche, Manipulation, Löschen von Dateien
- Verwaltung von Datenblöcken auf Speichermedien
- Kombination von Dateisystemen (mounting)
- Benutzerschnittstelle und Navigation
- Backup / Restore

- Prozess-Steuersystem (System- und Benutzer-Prozesse bzw. Threads)
 - Prozesse kreieren
 - Prozesse starten
 - Prozesse schedulen, Warteschlangen, Ressourcenverbrauch
 - Prozesse stoppen / unterbrechen
 - Prozesse terminieren (freiwillig / wegen Fehler)
 - Prozesskommunikation (Prozess-Prozess und Kern-Prozess / Prozess-Kern)
 - Zuordnung von Hauptspeicher und anderen geteilten Ressourcen
 - Ein-/Auslagerung von Prozessen
 - Prozesse und ihre Zustände anzeigen

- System Call Interface
 - Einzige Schnittstelle zwischen Kern und Benutzer
 - Normierung der Syntax & Semantik (POSIX 1003)
 - Parametrisierung und Übergabe
 - Übergabe der Kontrolle → Betriebsmodi

Programmierung

- Wahl der Programmiersprache / Systempräferenz
- System-/Applikationsnahe Bibliotheksfunktionen
- Programmierumgebung
 - Editor
 - Compiler
 - Assembler
 - Linker
 - Loader
 - Debugger
- Bundling" in einer Applikation (z.B. Eclipse)

Benutzerschnittstelle

- Textuelle Basis-Schnittstelle mit Kommando-Interpreter (Shell) → Konsole
- Programmierbarkeit (Scripting, Pipelining, I/O-Redirection) der Benutzerschnittstelle
- Graphische Benutzerschnittstelle (GUI) mit Abstraktion der unterliegenden Komplexität & Syntax für Nicht-Systemspezialisten
- Austauschbarkeit der Shell und der Systembefehle (Applikationen)

Betriebssystem und Hardware / Peripherie

- Das Betriebssystem muss:
 - die F\u00e4higkeiten der Hardware optimal ausnutzen (z.B. Mehrprozessor-Architektur)
 - die Komplexität und Inhomogenität der Hardware und Peripherie verbergen (z.B. einheitlicher Systemaufruf für Daten Lesen oder Schreiben)
 - die Hardware und Peripherie vor unerlaubter Nutzung (Durchgriff auf die Hardwaresteuerung) schützen
- Peripheriegeräte sind per Definition unterschiedlich, sollen aber möglichst einfach und einheitlich in das System integrierbar sein.

Das Filesystem als generelle Schnittstelle

- Die Idee von Unix (inzwischen auch in anderen Betriebssystemen verwendet):
 - Das Dateisystem ist die einheitliche Schnittstelle für möglichst viele (alle) Subsysteme:
 - Dateien, Directories
 - Prozesssynchronisation (Lock Files, ...)
 - Prozesskommunikation (Pipes, Sockets)
 - Peripheriegeräte (Device Special Files)
 - Kommunikationsprotokolle (TCP/IP, ...)
 - Prozesse (/proc Dateisystem)
 - Bedingt eine zusätzliche Abstraktionsschicht

Betriebssystem und darauf aufbauende Komponenten

Middleware

- Aus Sicht des Betriebssystems sind Middleware-Komponenten Applikationselemente, d.h. sie laufen primär im "user space" ab und machen Systemaufrufe wie andere Applikationen auch.
- Intern können Middleware-Umgebungen (Java, .NET usw.) betriebssystem-typische Aufgaben (Ressourcenverwaltung, Scheduling usw.) wahrnehmen (jedoch innerhalb des Prozess-Adressraums).

Datenbanken

 Meist ebenfalls im "user space", jedoch oft mit speziellen, intern geschützten Zugriffen auf das Dateisystem, Hauptspeicher etc.

Applikationen

Laufen im "user space", Systemaufrufe wo nötig, Scheduling

Pause

Übung (ca. 30 min.)

- Aufgabe(n) gemäss separatem Aufgabenblatt
- Lösungsansatz: Einzelarbeit oder Gruppen von max. 3 Personen
- Hilfsmittel: beliebig
- Besprechung möglicher Lösungen in der Klasse (es gibt meist nicht die eine «Musterlösung»)

Übungsbesprechung (ca. 15 min.)

- Stellen Sie Ihre jeweilige Lösung der Klasse vor.
- Zeigen Sie auf, warum ihre Lösung korrekt, vollständig und effizient ist.
- Diskutieren Sie ggf. Design-Entscheide, Alternativen oder abweichende Lösungsansätze.

Gibt es Unklarheiten? Stellen Sie Fragen.

Pause

Die Unix-Schichtenarchitektur

Maurice Bach: The Design of the Unix Operating System

Die Linux-Schichtenarchitektur

Die Linux Kernel-Matrix

Die Microsoft Windows-Schichtenarchitektur

Win NT: http://www.softlookup.com/tutorial/winnt/02fig04.gif

Hardware interfaces

(Buses, I/O devices, interrupts, interval timers, DMA, memory cache control, and so on)

http://p.blog.csdn.net/images/p_blog_csdn_net/hongmy525/339986/o_WinNtKernel2-3.bmp

Die IBM z/OS-Schichtenarchitektur

http://www.bsi.bund.de/gshb/deutsch/bilder/baust/db03107_01_e07.jpg

http://www.linuxfocus.org/Deutsch/March2004/article328.shtml

Zusammenfassung der Lektion 2 und Hausaufgabe

- Die Blockstruktur eines Betriebssystems und Zuordnung funktionale Elemente zu den einzelnen Blöcken.
- Abgrenzung und Aufgabenteilung zwischen Betriebssystem, Hardware, Peripherie, Middleware, Datenbanken und Applikationen.
- Hausaufgabe:
 - Repetieren Sie den Stoff dieser Lektion.
 - Studieren Sie die Webseite "http://en.wikipedia.org/wiki/Unix".
 - Beschäftigen Sie sich mit dem Demonstrator "OSDem"