AD-A022 543

SPECIAL DATA COLLECTION SYSTEM (SDCS) EVENT REPORT, KASHMIR-TIBET BORDER REGION, 19 MAY 1975

K. J. Hill, et al

Teledyne Geotech

Prepared for:

Air Force Technical Applications Center

23 January 1976

DISTRIBUTED BY:

SDCS-ER-75-53

SPECIAL DATA COLLECTION SYSTEM EVENT REPORT Kashmir-Tibet Border Region, 19 May 1975

K.J. Hill, M.S. Dawkins, R.R. Baumstark, and M.D. Gillespie Alexandria Laboratories Teledyne Geotech, 314 Montgomery Street, Alexandria, Virginia 22314

January 1976

APPROVEO FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Sponsored By

The Defense Advanced Research Projects Agency
Nuclear Monitoring Research Office

1400 Wilson Boulevard, Arlington, Virginia 2220

RC.

ARPA Order No. 2897

Monitored By

VELA Seismological Center

312 Montgomery Street, Alexandria, Virginia 22314

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

Disclaimer: Neither the Defense Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which has been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary. The views and conclusions presented are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the Air Force Technical Applications Center, or the US Government.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER 2. GOVT ACCESSION NO. 1. REPORT NUMBER SDCS-ER-75-53 S. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Technical SPECIAL DATA COLLECTION SYSTEM (SDCS) Kashmir-Tibat Border Region, 19 May 1975 4. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(+) 7. AUTHOR(e) Hill, K. J., Dawkins, M. S., Baumstark, R. R., F08606-74-C-0013 and Gillespie, M. D. 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS Teledyne Geotech T/4703 314 Montgomery Street Alexandria, Virginia 22314 12. REPORT DATE 11. CONTROLLING OFFICE NAME AND ADDRESS 23 January 1976 Defense Advanced Research Projects Agency 13. NUMBER OF PAGES Nuclear Monitoring Research Office 1400 Wilson Blvd.-Arlington, Virginia

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 1J. SECURITY CLASS. (of this report) Unclassified VELA Seismological Center 312 Montgomery Street 15a. DECLASSIFICATION DOWNGRADING SCHEDULE Alexandria, Virginia 22314 16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 17. DISTRIBUTION STATEMENT (of the Abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde il necessery and identity by block number) 20. ABSTPACT (Continue on reverse side if necessary and identify by block number)

SDCS EVENT REPORT No. 53

Kashmir-Tibet Border Region, 19 May 1975.

This event report contains seismic data from the Special Data Collection System (SDCS), and other sources for the above event. Published epicenter information from seismic observations is:

Enter ton

	"P" Arrival	Origin Time	Lat.	Long.	m _b	Ms	
NORSAR LASA PDE Hagfors	19:56:40.2 20:01:21.5 19:56:30.4	19:47:52 19:47:48 19:47:46.2 19:48:01	36 N 35.5N 35.2N 39 N	081 E 078.7E 080.8E 082 E	5.4 6.0 N/A 5.7	N/A N/A N/A 5.2	

Using SDCS stations, LASA and NORSAR, the epicenter location and magnitudes become

19:47:43.8 35.4N 080.7E 5.3 4.8

All SDCS stations were operational during this period.

Short-period signals associated with this event were recorded at WH2YK, HN-ME, LASA and NORSAR. RK-ON, FN-WV and CPSO did not record short-period "P" arr_vals and were not included in this report. Horizontal SP channels at WH2YK and HN-ME were rotated.

Long-period signals were recorded at WH2YK, RK-ON, FN-WV, CPSO, ALPA, LASA and NORSAR. HN-ME did not record long-period signal arrivals and was not included in this report. Horizontal LP channels at WH2YK, RK-ON, and CPSO were rotated. Horizontal LP channels at FN-WV were not rotated due to unknown instrument orientation.* Validity of the ALPA, LASA and NORSAR long-period vertical beams is questionable and horizontal beams were not included because of program recovery problems.

Scaling factors on plots are millimicrons at 1 Hz (not corrected for instrument response) with the exception of LASA and NORSAR short-period plots. LASA SP scaling factors are millimicrous per inch. Scaling factors are not reported for NORSAR short-period.

^{*} Due to operational problems the instrument hole look was repositioned and the known orientation lost. Situation corrected 24 May 75 when the instrument was moved to a new borehole.

STATION DESCRIPTION

SITE	LOCATION	SITE COORDINATES DEG MN SECS	ELEVATION METERS	INSTRUMENTATION SHORT-PERIOD LONG-	ITATION LONG-PERIOD
ALPA	Alaska	65 14 00.0 N 147 44 36.0 W	979	None	31300
CPSO	McMinnville, Tennessee	35 35 41.4 N 085 34 13.5 W	574	6480 V 7515 H	SL210 V SL220 H
FN-WV	Franklin, West Virginia	38 32 58.0 N 079 30 47.0 W	910	KS36000	KS36000
FSF7	Billings, Montana	46 41 19.0 N 106 13 20.0 W	744	HS10	7505A V 8700C H
HN-ME	Houlton, Maine	46 09 43.0 N 067 59 09.0 W	213	18300	SL210 V SL220 H
NORSAR	Kjeller, Norway	60 49 25.4 N 010 49 56.5 E	379	HS10	7505A V 8700C H
RK-0N	Red Lake, Ontario	50 50 20.0 N 093 40 20.0 W	366	18300	SL210 V SL220 H
WH2YK	White Horse, Yukon	60 41 41.0 N 154 58 02.0 W	855	18300	SL210 V SL220 H

HYPOCENTER DETERMINATION

INPUT	FOR	EVENT	19 AAY	75
19:47:48.0		.500N	78.70CE	OKM.

		RESI	DUALS	DIST.	AZ.	
STA.	ARRIVAL	CAIC	REST	REST	REST	
NAO	19 56 40.2	-0.0	-0.0	50.2	323.2	
WH2YF	19 59 53.5	0.0	0.0	79.9	17.0	
	20 01 03.2	0.0	0.0	94.1	338. 8	
HN-ME	20 01 03.2	-0.0	-0.0	98.1	4.8	

67 HERRIN TRAVEL TIME TABLES

	CRIGIN	LAT.	LCNG.	CEPIE	(KM)	SDV	II	STA
NO	CONVERGENCE 19:47:58.4 19:47:43.8	35.917N	80.643E	93.	CAIC	0.0		4

CALC						RE:	5 T				
		1 .	2					1 .	2		
	1		-	0			1			0	
0		0.	0		0	0		0.	0		0
					•	•	•		•	•	•
0		0.	0		0	C		0.	0		0
	0			0			0	•		0	
		0.	0	Ĭ				0.	0		

CHI2 COVERAGE ELLIPSE: 95 FER CENT CCNF.. IEVEL, SDV= 0.94
HAJCF 225.6KH. HINOR 54.4KH. AZ= 10 AREA= 38527 SQ.KH. REST

DATA SUMMARY

INPUT FOR EVENT 19 MAY 75 19:47:48.0 35.500N 78.700E OKM.

		A	RRI	VAL				MA	GNITU	DE			
STA.	PHASE		TI	II	INST	PER	AZI.	ne		MS	DIR	DIST	
NAC	EP	19	56	40.2	AP	1.0	139.	5.5	4			50.2	
NAC	LR	20	18	33.0	IPZ	23.0	19.		4.	10		50.2	
ALFA	IR	20	35	56.0	IPZ	20.0	44.		4.	63		72.9	
WH2YK	EP	19	59	53.5	SPZ	0.8	19.	4.69	9			79.9	
WH2YK	IÇ	20	32	36.0	IPT	25.0	52.						
WH2YK	LR	20	36	40.0	LPZ	22.0	70.		4.1	B7		79.9	
RK-ON	LR	20	47	11.0	LFZ	21.0	151.		5.			94.0	
HN-ME	EP	20	01	03.2	SPZ	1.0	21.	5. 13				94.1	
LAC	EP	20	01	21.5	AB	1.6	32.	5.7	1			98.1	
LAC	LR	20	48	29.0	LFZ	22.0	41.		4.	72		98.1	
FN-WV	LR	20	52	59.0	LFZ	20.0	57.		4.1	89		104.2	
CPO	LR	20	57	33.0	IFZ	18.0	85.		5.0	80		108.2	
ORI	GIN	I	AT.	1	LONG.	CEPT	H (KM)	MAG	SDV	STA	LPMAG	LPSDV	LPSTA
19:	47:43.8	35.	. 386	98 MC	.728E	0.	REST	5.27	0.46	4	4.80	0.4	7

-5-

NURSAR EVENT FILE 1975 MAY 19

EPX NO. 50900 RRR. 19.56.44.2 35.8N 80.6E 5.3MB DIST = 49.8 AZT = 87.0 AMP = 63.0 PER = 1.2

= 5 SECONDS

-9-

ORESTEDIO DE LE COLO DE LOS LOS COLOS DE LA COLOS DE COLOS DE COLOS DE LOS DESENDOS DE LOS DESENDOS DE LA COLOS DEL LA COLOS DE LA COLOS DEL LA COLOS DE LA COLOS DEL LA COLOS DE LA COLOS DEL LA COLOS DELA COLOS DEL LA COLOS DELA COLOS DEL LA COLOS DEL LA COLOS DEL LA COLOS DEL LA COLOS DEL L 2 MIN

In July Wyllbary man

687.37 E. Joseph Word Word William Many Market

In I am My Why Why My My My My Miller and the second of th

The Indian Word William Mander of the Company of th

HER OF THE CONTROLL OF THE CONTROL OF THE CONTR

2 MIN

ARRAY LONG PERIOD VERTICAL BEAMS 19 MAY 75

