Lecture 1:

Course Intro: Overview

Computer Graphics CMU 15-462/662

TODAY: Overview Computer Graphics

- **■** Two main objectives:
 - Try to understand broadly what computer graphics is about
 - "Implement" our 1st algorithm for making images of 3D shapes

Q: What is computer graphics?

Probably an image like this comes to mind:

Q: ...ok, but more fundamentally: What is computer graphics—and why do we need it?

Early computer (ENIAC), 1945

punch card (~120 bytes)

There must be a better way!

Sketchpad (Ivan Sutherland, 1963)

2021: 8k monitor 7680x4320 (~130MB)

Coming down the pipe...

2021 virtual reality headset: 2x 2160x2160 @ 90Hz => 2.3GB/s

Why visual information?

About 30% of brain dedicated to visual processing...

...eyes are highest-bandwidth port into the head!

What is computer graphics?

com • put • er graph • ics /kəm pyoodər grafiks/ n. The use of computers to synthesize visual information.

CMU 15-462/662

What is computer graphics?

com·put·er graph·ics /kəmˈpyoodər grayks/n.

The use of computers to synthesize visual information.

digital information

CMU 15-462/662

Graphics has evolved a lot since its early days... no longer just about turning on pixels!

Turning digital information into sensory stimuli

(sound)

(touch)

com • put • er graph • ics /kəm 'pyoodər 'grafiks/ *n*. The use of computers to synthesize and manipulate **sensory** information.

(...What about taste? Smell?!)

Turning digital information into physical matter

Definition of Graphics, Revisited

com • put • er graph • ics /kəm ˈpyoodər ˈgrafiks/ *n*. The use of computation to turn **digital information** into **sensory stimuli**.

Even this definition is too narrow...

SIGGRAPH 2021 Technical Papers Trailer

Computer graphics is everywhere!

Entertainment (movies, games)

Entertainment

Not just cartoons!

Art and design

Industrial design

Computer aided engineering (CAE)

Courtery : BMW

Architecture

Scientific/mathematical visualization

Medical/anatomical visualization

C2012 ROBERT HUNECKE

ROBERTHUNECKE.COM

Communication

Foundations of computer graphics

- All these applications demand sophisticated theory & systems
- Theory
 - **basic representations** (how do you digitally encode shape, motion?)
 - sampling & aliasing (how do you acquire & reproduce a signal?)
 - numerical methods (how do you manipulate signals numerically?)
 - radiometry & light transport (how does light behave?)
 - perception (how does this all relate to humans?)

-

Systems

- parallel, heterogeneous processing
- graphics-specific programming languages

-

ACTIVITY: modeling and drawing a cube

- Goal: generate a realistic drawing of a cube
- Key questions:
 - Modeling: how do we describe the cube?

- Rendering: how do we then visualize this model?

CMU 15-462/662

ACTIVITY: modeling the cube

- Suppose our cube is...
 - centered at the origin (0,0,0)
 - has dimensions 2x2x2
 - edges are aligned with x/y/z axes
- QUESTION: What are the coordinates of the cube vertices?

```
A: (1, 1, 1) E: (1, 1, -1) B: (-1, 1, 1) F: (-1, 1, -1) C: (1, -1, 1) G: (1, -1, -1) D: (-1, -1, 1) H: (-1, -1, -1)
```

QUESTION: What about the edges?

```
AB, CD, EF, GH, AC, BD, EG, FH, AE, CG, BF, DH
```

ACTIVITY: drawing the cube

Now have a digital description of the cube:

```
      VERTICES

      A: (1, 1, 1)
      E: (1, 1, -1)

      B: (-1, 1, 1)
      F: (-1, 1, -1)

      AB, CD, EF, GH,

      C: (1, -1, 1)
      G: (1, -1, -1)

      AC, BD, EG, FH,

      D: (-1, -1, 1)
      H: (-1, -1, -1)

      AE, CG, BF, DH
```

- How do we draw this 3D cube as a 2D (flat) image?
- Basic strategy:
 - 1. map 3D vertices to 2D points in the image
 - 2. connect 2D points with straight lines
- ...Ok, but how?

Perspective projection

- Objects look smaller as they get further away ("perspective")
- Why does this happen?
- Consider simple ("pinhole") model of a camera:

Perspective projection: side view

- Where exactly does a point p = (x,y,z) end up on the image?
- Let's call the image point q=(u,v)

Perspective projection: side view

- Where exactly does a point p = (x,y,z) end up on the image?
- Let's call the image point q=(u,v)

- Assume camera has unit size, origin is at pinhole c
- Then v/1 = y/z, i.e., vertical coordinate is just the slope y/z
- Likewise, horizontal coordinate is u=x/z

ACTIVITY: now draw it!

- Repeat the same simple algorithm 12 times
 - Once for each edge
 - Assume camera is at c=(2,3,5)
 - Convert (X,Y,Z) of both endpoints to (u,v):
 - 1. subtract camera c from vertex (X,Y,Z) to get (x,y,z)
 - 2. divide (x,y) by z to get (u,v)—write as a fraction
 - Draw line between (u1,v1) and (u2,v2)

Your Assignment for the next three minutes (write this down!)

If your first (preferred) name begins with

```
you have edge AB
- B, C, or D
               you have edge CD
- E, F, or G
                you have edge EF
 H, or Ja
                you have edge GH
                you have edge AC
- Je, Ji, Jo
- Ju, K, Z
                you have edge BD
 L, M
                you have edge EG
 N, O, P
               you have edge FH
 Q, R, Sa, Sc
                you have edge AE
- Se, Sh, T
                you have edge CG
                you have edge BF
   V, W, X
               you have edge DH
```

ACTIVITY: output on graph paper

ACTIVITY: How did you do?

2D coordinates:

A: 1/4, 1/2

B: 3/4, 1/2

C: 1/4, 1

D: 3/4, 1

E: 1/6, 1/3

F: 1/2, 1/3

G: 1/6, 2/3

H: 1/2, 2/3

ACTIVITY: Previous year's result

Success! We turned purely <u>digital</u> information into purely <u>visual</u> information, using a completely <u>algorithmic</u> procedure.

digital information

But wait... How do we draw lines on a computer?

Close up photo of pixels on a modern display

Output for a raster display

- Common abstraction of a raster display:
 - Image represented as a 2D grid of "pixels" (picture elements) **
 - Each pixel can can take on a unique color value

^{**} We will strongly challenge this notion of a pixel "as a little square" soon enough. But let's go with it for now. ;-)

"Rasterization": process of converting a continuous object to a discrete representation on a raster grid (pixel grid)

Light up all pixels intersected by the line?

Diamond rule (used by modern GPUs): light up pixel if line passes through associated diamond

Is there a right answer? (consider a drawing a "line" with thickness)

How do we find the pixels satisfying a chosen rasterization rule?

- Could check every single pixel in the image to see if it meets the condition...
 - O(n²) pixels in image vs. at most O(n) "lit up" pixels
 - must be able to do better! (e.g., work proportional to number of pixels in the drawing of the line)

Incremental line rasterization

- Let's say a line is represented with integer endpoints: (u1,v1), (u2,v2)
- Slope of line: s = (v2-v1)/(u2-u1)
- Consider an easy special case:
 - u1 < u2, v1 < v2 (line points toward upper-right)
 - 0 < s < 1 (more change in x than y)

Assume integer coordinates are at pixel centers

```
v = v1;
for(u=u1; u<=u2; u++)
{
    v += s;
    draw(u, round(v))
}</pre>
```

Easy to implement... <u>not</u> how lines are drawn in modern software/hardware!

We now have our first complete graphics algorithm!

Digital information

VERTICES A: (1, 1, 1) B: (-1, 1, 1)C: (1,-1,1)D: (-1, -1, 1)E: (1, 1, -1)F: (-1, 1, -1)G: (1,-1,-1)H: (-1, -1, -1)**EDGES** AB, CD, EF, GH, AC, BD, EG, FH, AE, CG, BF, DH **CAMERA** C = (2,3,5)

Visual information

This is fundamentally what computer graphics is all about...

So far, just made a simple line drawing of a cube.

For more realistic pictures, will need a <u>much</u> richer model of the world:

GEOMETRY MATERIALS LIGHTS CAMERAS MOTION

• • •

Will see all of this (and more!) as our course progresses.

Learn by making/doing!

Build up "Scotty3D" package for modeling/rendering/animation

Assignment 1: Rasterization

Motivation: display images like these!

Assignment 2: Geometric Modeling

Motivation: create models like these!

Assignment 3: Photorealistic Rendering

Motivation: render images like these!

Assignment 4: Animation

(cribbed from Alec Jacobson)

Motivation: make animations like these!

Gallery of past student projects

https://www.youtube.com/watch?v=yJ5eY3EIImA

A little bit more detail..

Meet our staff!

- Course web page: http://15462.courses.cs.cmu.edu/spring2022/
- Piazza page: https://piazza.com/class/kydbag6zstjxr

Staff

Alan Lee
[soohyun3 at andrew]
Office hours:
TBD
Location: See Piazza

Mia Tang
[xinrant at andrew]
Office hours:
TBD
Location: See Piazza

Joyce Zhang
[jxzhang at andrew]
Office hours:
TBD
Location: See Piazza

Sanjay Salem
[svsalem at andrew]
Office hours:
TBD
Location: See Piazza

[dizeng at andrew]
Office hours:
TBD
Location: See Piazza

pring 2022	Schedule	Mar 9	SPRING BREAK
Jan 19	Course Introduction	Mar 14 Mar 16	Spatial Data Structures Color / Radiometry
Jan 24	Math Review Part I (Linear Algebra) Assignment 0.0 OUT	11101	Assignment 2.5 DUE (March 18) Assignment 3.0 OUT (March 18)
Jan 26	Math Review Part II (Vector Calculus) Assignment 0.0 DUE	Mar 21	The Rendering Equation
	Assignment 0.5 OUT	Mar 23	A3 PathTracer Specifics
Jan 31	Drawing a Triangle Assignment 0.5 DUE Assignment 1.0 OUT	Mar 28	Numerical Integration Assignment 3.0 DUE Assignment 3.5 OUT
Feb 2	Coordinate Spaces and Transformations	Mar 30	Monte Carlo Ray Tracing
Feb 7	3D Rotations and Complex Representations	Apr 4	Variance Reduction
Feb 9	Perspective Projection and Texture Mapping Assignment 1.0 DUE Assignment 1.5 OUT	Apr 6	More Variance Reduction Assignment 3.5 DUE
Feb 14	Depth and Transparency	Apr 11	Introduction to Animation Assignment 4.0 OUT
Feb 16	Intro to Geometry / Manifolds / Local Operations on Manifolds Assignment 1.5 DUE	Apr 13	Dynamics and Time Integration
	Assignment 2.0 OUT	Apr 18	Introduction to Optimization
Feb 21	Midterm Review	Apr 20	Physically-Based Animation and PDEs
Feb 23	MIDTERM EXAM		Assignment 4.0 DUE Assignment 4.5 OUT
Feb 28	Midterm Revisited / Subdivision	Apr 25	Final Review
Mar 2	Geometric Queries Assignment 2.0 DUE Assignment 2.5 OUT	Apr 27	Course WrapUp Assignment 4.5 DUE (April 29)
Mar 7	SPRING BREAK	TBD	FINAL EXAM

Grading and Collaboration Policy

■ See the course info website — http://15462.courses.cs.cmu.edu/spring2022/courseinfo

What is a Mini Homework?

- Written assignments to supplement lectures and projects
- Roughly once per week
- Can be done in groups of two or three
- Will typically be released on Monday and due the following Monday
- The first one will be out soon!

See you next time!

- Before diving in, we'll do a math review & preview
 - Linear algebra, vector calculus
 - Help make the rest of the course easier!

