## Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

## **Dynamic Programming**

Total points 10

| The value of any state under an optimal policy is the value of that state under a non-optimal policy. [Select all that apply]                                     | 1/1 point   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Strictly greater than                                                                                                                                             |             |
| Greater than or equal to                                                                                                                                          |             |
| <ul> <li>Correct         Correct! This follows from the policy improvement theorem.     </li> </ul>                                                               |             |
| ☐ Strictly less than                                                                                                                                              |             |
| Less than or equal to                                                                                                                                             |             |
| 2. If a policy is greedy with respect to the value function for the equiprobable random policy, then it is <b>guaranteed</b> to be an optimal policy.             | 1/1 point   |
| False                                                                                                                                                             |             |
| ○ True                                                                                                                                                            |             |
| <ul> <li>Correct</li> <li>Correct! Only policies greedy with respect to the optimal value function are guaranteed to be optimal.</li> </ul>                       |             |
|                                                                                                                                                                   |             |
| 3. Let $v_\pi$ be the state-value function for the policy $\pi$ . Let $\pi'$ be greedy with respect to $v_\pi$ . Then $v_{\pi'} \geq v_\pi$ .                     | 1/1 point   |
| ○ False                                                                                                                                                           |             |
| ① True                                                                                                                                                            |             |
| <ul> <li>Correct         Correct! This is a consequence of the policy improvement theorem.     </li> </ul>                                                        |             |
|                                                                                                                                                                   |             |
| 4. What is the relationship between value iteration and policy iteration? [Select all that apply]                                                                 | 1 / 1 point |
| Policy iteration is a special case of value iteration.                                                                                                            |             |
| Value iteration and policy iteration are both special cases of<br>generalized policy iteration.                                                                   |             |
| ○ Correct Correct!                                                                                                                                                |             |
| Value iteration is a special case of policy iteration.                                                                                                            |             |
| 5. The word synchronous means "at the same time". The word asynchronous means "not at the same time". A dynamic programming algorithm is: [Select all that apply] | 1 / 1 point |
| Synchronous, if it systematically sweeps the entire state space at each iteration.                                                                                |             |
| Correct Correct! Only algorithms that update every state exactly once at each iteration are synchronous.                                                          |             |
| Asynchronous if it does not undate all states at each iteration                                                                                                   |             |

| Correct! Only                                              | ly algorithms that update every                                                                                                                       | state exactly once at each iterat                                        | ion are synchronous.                                 |             |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|-------------|
| ✓ Asynchronous                                             | s, if it updates some states more                                                                                                                     | e than others.                                                           |                                                      |             |
| Correct! Only                                              | ly algorithms that update every                                                                                                                       | state exactly once at each iterat                                        | ion are synchronous.                                 |             |
| 6. All Generalized Pol                                     | olicy Iteration algorithms are syn                                                                                                                    | chronous.                                                                |                                                      | 1/1 point   |
| False                                                      |                                                                                                                                                       |                                                                          |                                                      |             |
| Correct Correct! A Ge                                      | ieneralized Policy Iteration algor                                                                                                                    | ithm can update states in a non                                          | n-systematic fashion.                                |             |
| 7. Which of the follow                                     |                                                                                                                                                       |                                                                          |                                                      | 1/1 point   |
|                                                            | s methods generally scale to large methods generally scale to large                                                                                   |                                                                          |                                                      |             |
|                                                            | methods generally scale to large                                                                                                                      | state spaces better than asym                                            | ondas medicasi                                       |             |
| less often. If                                             | rnchronous methods can focus un<br>fithe state space is very large, as<br>we whereas even just one synchr                                             | ynchronous methods may still b                                           |                                                      |             |
| ☐ They learn from ☐ They compute ☑ They use a mo ☑ Correct | programming algorithms consider trial and error interaction.  The eoptimal value functions.  The policy.  The definition of a planning of the policy. |                                                                          | t all that apply]                                    | 1/1 point   |
| left}, which determ<br>agent off the grid in               | ninistically cause the correspond                                                                                                                     | ling state transitions, except tha<br>d. The right half of the figure sh | lows the value of each state under                   | 1 / 1 point |
| Actions                                                    | T     1     2     3       4     5     6     7       8     9     10     11       12     13     14     T       15                                       | R = -1 on all transitions                                                | T -142022.<br>-14182020.<br>-20201814.<br>-222014. T |             |
| <ul><li>q(11, down)</li></ul>                              |                                                                                                                                                       |                                                                          |                                                      |             |
| $\bigcirc q(11, \text{down})$                              |                                                                                                                                                       |                                                                          |                                                      |             |
| $\bigcirc q(11, \text{down})$                              |                                                                                                                                                       |                                                                          |                                                      |             |
|                                                            |                                                                                                                                                       |                                                                          |                                                      |             |

Correct
Correct! Moving down incurs a reward of -1 before reaching the terminal state, after which the episode is over.

-22.

T

-14. -20.

-18. | -20. | -20.

-20. -18. -14

-20. -14.

10. Consider the undiscounted, episodic MDP below. There are four actions possible in each state, A = {up, down, right, left}), which deterministically cause the corresponding state transitions, except that actions that would take the agent off the grid in fact leave the state unchanged. The right half of the figure shows the value of each state under the equiprobable random policy. If  $\pi$  is the equiprobable random policy, what is v(15)? Hint: Recall the Beliman equation  $v(s) = \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a)[r+\gamma v(s')]$ .



|                           | 1    |
|---------------------------|------|
| R = -1 on all transitions | -14. |
|                           | -20. |
|                           | -22. |

| 0 | v(15) | = - | -23 |
|---|-------|-----|-----|

$$v(15) = -22$$

$$v(15) = -24$$

$$v(15) = -25$$

$$\bigcirc \ v(15) = -21$$

## **⊘** Correct

Correct! We can get this by solving for the unknown variable v(15). Let's call this unknown x. We solve for x in the equation x=1/4(-21)+3/4(-1+x). The first term corresponds to transitioning to state 13. The second term corresponds to taking one of the other three actions, incurring a reward of -1 and staying in state x.