Homework 1

Stephanie Schneider AA 274 - Principles of Robotic Autonomy

January 24, 2018

Problem 1.

Part (i)

a)	J= Sot [x + V(t)2 + w(t)2] dt 270			
	$\chi(0)=0$ $q(0)=0$ $\theta(0)=-\pi/2$ tf free			
	x (+1)=5 y (+1)=5 + +(+1)=-1-/2			
	control inputs v(t) = 0.5 m/s			
	$u=(v,w)$ $ w(t) \leq 1$ rad/s			
	× (+) = V(05+)			
	y (+) = Vsino			
	$\dot{\theta}(+) = \omega$			
	let t = t/tf			
	$d\tau = \frac{1}{tf}dt$ $\frac{dx}{dt} = -t_f \frac{df}{dt}$			
	J= 50 (2+ v2+ w2) tfdt			
	$H = t_f (\lambda + v^2 + \omega^2) + [P_1 P_2 P_3] \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} t_f$			
	9			
	= tf (7+ V2+ W2 + Pix+ Pzy + Pzy)			
D	H = tf (n+ v2 + w2 + p, vcoso + pzvsin+ P3w)			
	· ·			
	$\vec{x} = [x, y, \theta] + f$			
	P = -3H = -3H/3×			
	$ \dot{\vec{x}} = [\dot{x}, \dot{q}, \dot{\theta}] + f $ $ \dot{\vec{p}} = -\frac{\partial H}{\partial \vec{x}} = \begin{bmatrix} -\frac{\partial H}{\partial x} \\ -\frac{\partial H}{\partial q} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -\frac{\partial H}{\partial \theta} \end{bmatrix} = \begin{bmatrix} 0 \\ P_1 VSIN\theta - P_2 VCOS\theta \end{bmatrix} $			
	$\frac{\partial H}{\partial u} = 0 = \left[\frac{\partial H}{\partial v} \right] = \left[\frac{2 + f V + P_1 + f \cos \theta + P_2 + f \sin \theta}{2 + f \omega} \right]$ $2 + f \omega + P_3 + f$			
27	2 V+P, (05++ PISING=0 ZW+P3=0			
A	$V = \frac{1}{2}(-P_1(0S\Theta - P_2SIN\Theta)) \qquad \omega = -\frac{P_3}{2}$			

Part (ii)

See P1_optimal_control.py. $\lambda = 0.249$

Part (iii)

Since lambda is integrated over time, using the largest feasible lambda allocates more cost to a solution that takes more time. Therefore, by maximizing lambda, we force the optimal solution to minimize elapsed time.

Part (iv)

Part (v)

Problem 2.

Part (i)

In the problem definition, the matrix J is only invertible under the condition that V > 0. Therefore, we cannot set V(tf) = 0 because that violates the condition for differential flatness.

Part (ii)

See P2_differential_flatness.py.

Part (iii)

$\dot{S}(t) = V(t)$ $S(0) = 0$	$\tilde{V}(s) = \frac{ds}{d\tau}$ $T(s=0)=0$		
$\tau(s) = \int_0^s \frac{ds'}{\tilde{v}(s')}$	≈ (s) ≈	$\frac{\omega(\varsigma)}{V(\varsigma)} \tilde{V}(\varsigma)$	4
(1) (s) \ \(\in \text{(s)} \) \(\in \text{(s)} \) \(\in \text{(s)} \) \(\in \text{(s)} \)	$(\widetilde{V}(s) \leq$	$\frac{\omega(s)}{v(s)}$	
$\dot{S}(t) = V(t)$ $S(t) = \int_{0}^{tf} V(t) dt$			
i v			

Part (iv)

Part (v)

Stephanie Schneider

Problem 3.

Part (i)

$$\rho = \sqrt{x^2 + y^2}$$

$$\alpha = atan2(y, x) - \theta + \pi$$

$$\delta = \alpha + \theta$$

$$V = k_1 * \rho * cos(\alpha)$$

$$\omega = k_2 * \alpha + k_1 * cos(\alpha) * sinc(\frac{\alpha}{\pi}) * (\alpha + k_3 * \delta)$$

See $P3_pose_stabilization.py$.

Part (ii)

forward arguments: $5\ 10\ -1.57\ 10$

reverse arguments: $5\ 10\ 1.57\ 15$

parallel arguments: $4\ 5\ -1.57\ 20$

Problem 4.

Part (i)

Part (ii)

 $See \ {\tt P4_trajectory_tracking.py}.$

Part (iii)

See P4_trajectory_tracking.py.

Part (iv)

Problem 5.

Part (i)

 $See \ {\tt random_strings.bag}$

Part (ii)

rosbag play filename.bag.

This will publish all the messages recorded in filename.bag. In order to see the contents of the messages, you must subscribe to them, e.g. with rostopic echo <topic>.

Part (iii)

see turtlebot.bag