Homework 8&9 of Stochastic Processes

姓名: 林奇峰 学号: 19110977 2019 年 11 月 13 日

1 Exercise 5.6

A town starts a mosquito control program and rv Z_n is the number of mosquitos at the end of the nth year $(n=0,1,2,\ldots)$. Let X_n be the growth rate of the mosquito population in year n; i.e., $Z_n = X_n Z_{n-1}$; $n \ge 1$. Assume that $\{X_n; n \ge 1\}$ is a sequence of IID rv s with the PMF $\Pr\{X=2\} = 1/2$; $\Pr\{X=1/2\} = 1/4$; $\Pr\{1/4\} = 1/4$. Suppose that Z_0 , the initial number of mosquitos, is some known constant and assume for simplicity and consistency that Z_n can take on non-integer values.

- (a) Find $E[Z_n]$ as a function of n and find $\lim_{n\to\infty} E[Z_n]$.
- (b) Let $W_n = \log_2 X_n$. Find $E[W_n]$ and $E[\log_2(Z_n/Z_0)]$ as a function of n.
- (c) There is a constant α such that $\lim_{n\to\infty} (1/n)[\log_2(Z_n/Z_0)] = \alpha$ WP1. Find α and explain how this follows from the SLLN.
- (d) Using (c), show that $\lim_{n\to\infty} Z_n = \beta$ WP1 for some β and evaluate β .
- (e) Explain carefully how the result in (a) and the result in (d) are compatible. What you should learn from this problem is that the expected value of the log of a product of IID rv s might be significant than the expected value of the product itself.

Solutions:

(a)

$$\begin{split} \mathbf{E}[Z_n] &= \mathbf{E}[Z_0 \prod_{i=1}^n X_i] \\ &= Z_0 \prod_{i=1}^n \mathbf{E}[X_i] \qquad \text{from the fact that } \{X_n; n \geq 1\} \text{ is a sequence of IID rv s} \\ &= Z_0 \cdot \left(\frac{19}{16}\right)^n \end{split}$$

since each rv X_i is IID and $\mathrm{E}[X_i] = 2 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{4} = \frac{19}{16}$.

$$\lim_{n\to\infty} \mathrm{E}[Z_n] = \lim_{n\to\infty} Z_0 \cdot \left(\frac{19}{16}\right)^n = \infty$$

(b)

$$E[W_n] = \frac{1}{2} \cdot \log_2 2 + \frac{1}{4} \cdot \log_2 \frac{1}{2} + \frac{1}{4} \cdot \log_2 \frac{1}{4}$$

$$= -\frac{1}{4}$$

$$Z_n/Z_0 = X_n \cdot X_{n-1} \cdots X_1 \cdot Z_0/Z_0 = \prod_{i=1}^n X_i$$

$$\downarrow \downarrow$$

$$\log_2(Z_n/Z_0) = \sum_{i=1}^n \log_2 X_i$$

$$= \sum_{i=1}^n W_i$$

$$\downarrow \downarrow$$

$$E[\log_2(Z_n/Z_0)] = \sum_{i=1}^n E[W_i]$$

$$= -\frac{n}{4}$$

From the fact that $\{X_n; n \geq 1\}$ is a sequence of IID rv s and thus $W_n; n \geq 1$ is also a sequence of IID rv s.

(c) Since

$$\lim_{n \to \infty} (1/n) [\log_2(Z_n/Z_0)] = \lim_{n \to \infty} \frac{1}{n} \cdot -\frac{n}{4}$$

$$= \lim_{n \to \infty} -\frac{1}{4}$$

$$= -\frac{1}{4}$$

We can obtain that $\alpha = -\frac{1}{4}$.

According to Theorem 5.2.3 (SLLN), For each integer $n \ge 1$, let $S_n = X_1 + \cdots + X_n$, where X_1, X_2, \ldots are IID rv s satisfying $E[|X|] < \infty$. Then

$$\Pr\left\{\omega: \lim_{n \to \infty} \frac{S_n(\omega)}{n} = \overline{X}\right\} = 1$$

We can see that, under this case, $S_n = \sum_{i=1}^n W_i$ where W_i is IID rv and it satisfies $\mathrm{E}[|W_i|] = -\frac{1}{4} < \infty$. The result shows that

$$\Pr\left\{\omega: \lim_{n \to \infty} \frac{S_n(\omega)}{n} = \overline{X} = -\frac{1}{4}\right\} = 1$$

holds.

(d) TO-DO

(e) TO-DO

2 Exercise 5.11

Let $Y(t) = S_{N(t)+1} - t$ be the residual life at time t of a renewal process. First consider a renewal process in which the interarrival time has density $f_X(x) = e^{-x}$; $x \ge 0$, and next consider a renewal process with density

$$f_X(x) = \frac{3}{(x+1)^4}, \quad x \ge 0$$

For each of the above densities, use renewal-reward theory to find:

- (a) the time average of Y(t);
- (b) the time average of $Y^2(t)$ (i.e., $\lim_{Y\to\infty} (1/T) \int_0^T Y^2(t) dt$). For the exponential density, verify your answers by finding E[Y(t)] and $E[Y^2(t)]$ directly.

3 Exercise 5.14

Let $F_Z(z)$ be the fraction of time over the limiting interval $(0, \infty)$ that the age of a renewal process is at most z. Show that $F_Z(z)$ satisfying

$$F_Z(z) = \frac{1}{\overline{X}} \int_{x=0}^z \Pr\{X > x\} dx$$
 WP1.

Hint: Follow the argument in Example 5.4.7.