KOSHA GUIDE

D - 62 - 2018

체크밸브 설치에 관한 기술지침

2018. 11.

한 국 산 업 안 전 공 단

안전보건기술지침의 개요

- O 작성자 : 조필래, 이향직
- O 제·개정 경과
 - 2018년 10월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - NP-5479, Electric Power Research Institute, "Application Guide for Check Valves in Nuclear Power Plants", 1993
 - API Std. 594, "Check Valves: Flanged, Lug, Wafer and Butt-welding", 2004
 - ANSI/AWWA C518-13, "Dual-Disc Swing-Check Valves for Waterworks Service", 2013
 - PIP PNC00001, Process Industry Practices(PIP), "Pipe Support Criteria for ASME B31.3 Metallic Piping", 2009
 - Peter Smith & R.W Zappe, "Valve Selection Handbook", 5판, 2004
 - FCD ADAMS8007-00, Flowserve Co., "Check valve selection guide", 2004
 - Kay A. Modi, "Check Valves as Safeguards: Friend or Foe in Process Hazard Analysis", 2017
 - Bullutin 796, "APCO Check valve guide", 2012
 - 하이스텐, "밸브공학(Valve mechanical)", 2015
 - Brian Nesbitt, Valves Manual International, "Handbook of Valves and Actuators", 2007
 - T. Christopher Dickenson, "Valves, Piping, and Pipelines Handbook", 3관, 1999
 - Philip L. Skusen, "Valve Handbook", 2판, 2004
 - 국·내외 엔지니어링사 적용기준

O 기술지침의 적용 및 문의

- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 교정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2018년 11월 05일

제 정 자 : 한국산업안전보건공단 이사장

체크밸브 설치에 관한 기술지침

1. 목 적

이 지침은 배관의 역류방지를 위해 설치하는 체크밸브 설치에 필요한 사항을 정하는데 그 목적이 있다.

2. 적용범위

이 지침은 유체의 역류방지를 위해 체크밸브가 필요한 모든 종류의 배관에 적용될 수 있다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "체크밸브 (Check valve)"라 함은 배관 상에서 오직 한 방향으로 흐름을 유지해야 할 필요가 있는 경우에 역류를 방지하기 위하여 사용하는 밸브를 말하며, 역지밸브 또는 넌리턴밸브(Non-Return valve)라고도 말한다.
 - (나) "수격현상 (Water hammer)"이라 함은 유체의 움직임을 갑자기 멈추게 하거나 유체의 방향이 갑자기 바뀌게 될 때 순간적으로 높은 압력이 발생하는 현상을 말하며, 이 때 발생되는 압력은 배관계통에 소음과 진동을 일으켜 문제를 발생시킬 수 있다.
 - (다) "슬램 (Slam)"이라 함은 체크밸브의 디스크가 닫힐 때 '쾅'하고 닫히는 현상을 말한다.
 - (라) "최소유속 (Minimum flow velocity)"이라 함은 유체가 체크밸브 속을 통과할 때 밸브의 디스크가 완전개방 상태(Fully opened)를 유지하도록

요구되는 최소의 유체속도를 말한다.

(2) 기타 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 동법시행령, 동법시행규칙, 산업안전보건 기준에 관한 규칙에서 정하는 바에 따른다.

4. 일반사항

4.1 체크밸브의 기능

체크밸브는 역류방지 및 과도한 압력강하 없이 유체를 흐르게 해야 하므로 이를 만족시키기 위해서는 아래와 같은 사항이 필요하다.

- (1) 디스크는 쉽게 열려야 하고, 상대적으로 낮은 유속에서도 디스크가 정지위 치에 견고히 유지되어야 한다.
- (2) 체크밸브 전후단의 압력강하는 허용범위 내에 있어야 한다.
- (3) 디스크는 감소된 유속 및 부분 개방상태에서도 상대적으로 안정해야 한다.
- (4) 디스크는 역류속도가 높은 전이압력을 유발시킬 정도로 충분히 크기 전에 닫혀야 한다.
- (5) 디스크는 가능한 한 누설이 발생되지 않도록 기밀성이 좋아야 한다.

4.2 체크밸브의 종류

일반적으로 체크밸브는 아래와 같이 구분된다.

4.2.1 스윙 체크밸브(Swing check valve)

(1) 스윙 체크밸브는 밸브 디스크가 힌지 핀을 지지점으로 하는 암에 의해 원호 모양의 운동을 하면서 밸브가 개폐되는 구조의 체크밸브이다.

(2) 스윙 체크밸브의 구조와 특성은 <부록> 1항에 설명되어 있다.

4.2.2 리프트 체크밸브(Lift check valve)

- (1) 리프트 체크밸브는 밸브 디스크가 밸브 몸통 또는 뚜껑에 설치된 가이드에 의해 밸브 시트에 대하여 수직으로 작동하는 구조의 체크밸브이다.
- (2) 리프트 체크밸브의 구조 및 특성은 <부록> 2항에 설명되어 있다.

4.2.3 틸팅 디스크 체크밸브(Tilting disc check valve)

- (1) 틸팅 디스크 체크밸브는 스윙 체크밸브와 유사한 구조이나 유체의 흐름저항이 적고 스윙 길이가 짧아 스윙 체크밸브보다 빨리 닫힐 수 있어 디스크의 슬램현상이 감소되는 구조의 밸브이다.
- (2) 틸팅 디스크 체크밸브의 구조 및 특성은 <부록> 3항에 설명되어 있다.

4.2.4 웨이퍼 디스크 체크밸브(Wafer disc check valve)

- (1) 웨이퍼 디스크 체크밸브는 반원판 모양인 2개의 밸브 디스크가 스프링과 함께 하나의 힌지 핀에 의하여 개폐되는 구조의 체크밸브이다.
- (2) 이 밸브는 폴딩 디스크 체크밸브(Folding disc check valve), 듀얼 플레이트 체크밸브(Dual plate check valve), 듀오 체크밸브(DUO-Check valve), 더 블 도아 체크밸브(Double door check valve), 플래퍼 체크밸브(Flapper check valve) 등으로도 불린다.
- (3) 웨이퍼 디스크 체크밸브의 구조와 특성은 <부록> 4항에 설명되어 있다.

4.2.5 스톱 체크밸브(Stop check valve)

(1) 스톱 체크밸브는 스톱밸브와 체크밸브의 기능을 겸비한 구조의 체크밸브이다.

(2) 스톱 체크밸브의 구조와 특성은 <부록> 5항에 설명되어 있다.

4.2.6 인라인 체크밸브(In-line check valve)

- (1) 인라인 체크밸브는 일종의 리프트 체크밸브의 형태로써 볼(ball)이나 풀 가이드 디스크(Full guide disc)를 스프링으로 유지하는 구조의 체크밸브이다.
- (2) 인라인 체크밸브의 구조와 특성은 <부록> 6항에 설명되어 있다.

4.2.7 사일런트 타입 체크밸브(Silent type check valve)

- (1) 사일런트 타입 체크밸브는 유체흐름에 수직으로 설치된 원형의 디스크에 스프링의 작용으로 기밀을 유지하는 구조의 체크밸브이다.
- (2) 사일런트 타입 체크밸브의 구조와 특성은 <부록> 7항에 설명되어 있다.

4.2.8 노즐 체크밸브(Nozzle check valve)

- (1) 노즐 체크밸브는 밸브가 열릴 때에 유로가 유선형의 노즐로 구성되어 압력 손실이 낮으며, 스프링의 압축력에 의해 디스크가 신속하게 닫히는 구조의 체크밸브이다.
- (2) 노즐 체크밸브는 축류(Axial flow) 체크밸브로도 불린다.
- (3) 노즐 체크밸브의 구조와 특성은 <부록> 8항에 설명되어 있다.

4.3 체크밸브 선정 시 고려사항

체크밸브는 다른 밸브와는 달리 한번 설치되면 보수 등의 문제를 간과하기 쉬우므로 최초선정 시 주의가 필요하며, 선정 시 고려할 사항은 아래와 같다.

- (1) 디스크 완전 개방 및 정지위치에서 견고한 디스크 지지를 위한 유량
- (2) 최대유량에서 압력강하 정도

- (3) 부분개방 시의 디스크의 안정성 및 상류측(Upstream) 변동에 대한 디스크 의 민감성
- (4) 시스템의 역류율에 대한 체크밸브의 닫힘속도
- (5) 기밀의 유효성 및 유지보수의 용이성
- (6) 캐비테이션 억제
- (7) 체크밸브의 설치위치 등

4.4 체크밸브 설치 시의 고려사항

- (1) 체크밸브의 몸체에는 유체의 흐름방향이 표시되어야 한다.
- (2) 체크밸브를 완전히 개방시킬 정도의 유량이 흐르지 않으면 체크밸브에 과도한 마모가 발생될 수 있다.
- (3) 스윙 체크밸브를 수직배관에 설치할 때 유량이 위쪽으로 흐르는 지점에 설치하여야 한다. 만약 아래로 흐르는 지점에 설치할 경우 완전히 닫히지 않을 수 있다.
- (4) 체크밸브는 차단밸브 대신 기밀의 목적으로 사용되지 않아야 한다.
- (5) 웨이퍼 체크밸브 및 스윙 체크밸브는 왕복동 펌프 및 왕복동 압축기의 인입 학과 토출측 또는 이와 유사한 맥동이 발생되는 곳에는 적절하지 않다.
- (6) 스윙 체크밸브는 병렬로 설치된 펌프 또는 압축기 시스템의 토출측에는 적절하지 않다.
- (7) 수직배관에 설치된 체크밸브는 유체가 위로 흐르도록 설치되어야 하며, 체크밸브 위에는 내부유체를 드레인할 수 있는 드레인밸브 또는 드레인 홀 (Hole)을 설치할 필요가 있다.
- (8) 저압의 유체가 고압의 시스템으로 흐르도록 의도된 경우, 저압측에 체크밸브가 설치되어야 하며, 이 체크밸브의 압력등급(Pressure rating)은 고압측의 등급을 따라야 한다.

- (9) 고압시스템의 갑작스런 압력강하로 인해 저압측의 유체가 의도되지 않게 고압시스템으로 유입될 수 있으면, 고압시스템에도 체크밸브가 설치할 수 있다.
- (10) 펌프 등의 토출측에 압력계기, 체크밸브 및 차단밸브가 필요한 경우에는 펌프 등에서 압력계기, 체크밸브 및 차단밸브의 순서로 설치하는 것이 좋다.
- (11) 간헐적인 서비스용 체크밸브 또는 일체형 시스템(Skid-mounted system) 에 설치된 체크밸브를 제외하곤, 호칭경 80A(NPS 3) 이상인 모든 체크밸브의 상류측과 하류측에는 난류영향 배제(Turbulance-free)를 위한 아래와 같은 최소거리 이내에는 배관 핏팅류(엘보우, 레듀셔, 티 등) 또는 유량제한장치(오리피스, 콘트롤밸브 등)를 설치하지 않는 것이 좋다. 이 거리는 체크밸브 종류 및 제작업체에 따라 다를 수 있다.
 - (가) 상류측 : 배관지름의 5배 거리
 - (나) 하류측: 배관지름의 2배 거리

5. 체크밸브 설치대상

5.1 일반적인 설치대상

- (1) 일반적으로 역류방지 또는 역류최소화를 위해 아래와 같은 장소에는 체크 밸브를 설치를 검토할 필요가 있다.
 - (가) 역류 가능성이 있는 펌프의 토출측. 단, 펌프에 최소유량배관(Minimum flow line)이 설치된 경우에는 최소유량배관의 설치지점 후단에 설치하여 펌프 가동정지 시에 최소유량배관을 통한 역류도 함께 방지하는 것이 좋다.
 - (나) 압축기 토출측
 - (다) 탱크트럭, 레일카 또는 선박에서 저정탱크로 하역할 때의 하역배관(저장 탱크에서 탱크트럭 등으로 흐르지 않도록 설치할 필요가 있는 경우)

- (라) 저장탱크에서 탱크트럭, 레일카 또는 선박으로 출고할 때 한 방향으로 흐르도록 의도된 균압배관(저장탱크에서 탱크트럭 등으로 흐르지 않도 록 설치할 필요가 있는 경우)
- (마) 공정배관 또는 공정설비에 연결된 모든 유틸리티(스팀, 질소, 공기 등) 배관의 연결부
- (바) 가열로(Fired-heater) 등의 튜브 파열 시에 역류 방지가 필요한 경우
- (사) 반응기 등의 설비에 2개 이상의 배관을 통해 서로 다른 물질이 공급될 때 각 공급물질의 오염(또는 역류)을 방지할 필요가 있는 경우
- (아) 탑조류(Column)의 리플럭스(Reflux) 라인의 역류로 인한 펌프 보호가 필 요한 경우
- (자) 플레어 헤더라인의 연결부 중 역류방지가 필요한 경우
- (차) 기타 상호연결된 배관의 역류방지가 필요한 곳
- (2) (1)항의 설치대상 중 공정특성 또는 운전특성 등을 고려하여 체크밸브 설치를 생략할 수 있다.

5.2 주요설비별 세부적인 사항

5.2.1 왕복동 펌프, 왕복동 압축기 및 진공펌프

- (1) 왕복동 펌프 및 왕복동 압축기의 토출측에 체크밸브가 필요하며, 일반적으로 설비 제조자에 의해 일체형(Built-in) 체크밸브가 설치되어 제공된다.
- (2) 진공펌프의 인입측에 체크밸브가 필요하며, 일반적으로 설비 제조자에 의해 일체형 체크밸브가 설치되어 제공된다.

5.2.2 원심펌프, 로타리펌프 및 기어펌프

(1) 아래와 같은 경우에는 펌프의 역류방지를 위해 체크밸브 설치를 검토할 필요가 있다.

- (가) 역류로 인한 펌프의 보호가 필요할 때
- (나) 가스의 역류 가능성이 있을 때
- (다) 정상운전조건에서 토출측 액체의 기화 가능성이 있을 때
- (라) 정상적인 펌프의 차압보다 더 큰 차압이 예상될 때
- (마) 이송되는 물질이 펌프 케이싱의 설계조건(온도, 압력)을 초과하는 다른 유체와 만날 수 있을 때
- (2) 체크밸브 설치 시 세부적으로 고려할 사항을 아래와 같다.
 - (가) 유체(액체 또는 기체)가 역류될 수 있는 시스템 내로 이송할 경우에는 로타리 펌프, 수직형 원심펌프, 수평형 다단 원심펌프의 개별 토출측 배 관에는 체크밸브가 각각 필요하다.
 - (나) 토출측의 압력 또는 유량이 펌프의 역회전 손상을 일으킬 수 있는 곳에는 수평형 원심펌프 또는 예비펌프의 공통배관에도 체크밸브가 필요하다.
 - (다) 병렬로 운전되는 펌프에는 개별적인 체크밸브가 필요하다.
 - (라) 단단 또는 다단펌프에서 펌프 토출측 최종지점의 압력이 펌프 인입측 압력 이하인 펌프 시스템에는 체크밸브가 필요하지 않다.
 - (마) 펌프의 최소유량배관(Minimum flow line)이 없는 비중 0.6 (15 ℃) 이하인 가벼운 탄화수소를 이송하는 다단펌프의 토출측에는 각 단마다 체크밸브가 필요하다.
 - (바) 펌프 인입측 압력보다 높은 곳으로 연결된 공통 토출배관에는 체크밸브 가 필요하다.
 - (사) 용량 50 %로 2대 또는 3대의 펌프를 운전하는 시스템에는 개별 펌프의 토출측마다 체크밸브가 필요하다.
 - (아) 다음과 같은 경우에는 개별 펌프마다 체크밸브가 필요하다.
 - ① 냉각탑 펌프
 - ② 자동운전되는 펌프
 - ③ 체크밸브 미설치로 인한 펌프의 고장이 공정 상 문제를 일으킬 수 있는 경우

5.2.3 원심압축기 및 로타리 압축기

- (1) 역회전으로 인해 압축기 또는 구동기의 손상을 초래할 우려가 있는 경우에 는 토출측에 체크밸브가 필요하다.
- (2) 압축기 토출측에서 유체가 오염될 때 압축기의 손상을 초래하거나, 압축기 인입측 또는 압축기 저단 토출측의 유체를 오염시킬 우려가 있을 경우에는 토출측에 체크밸브가 필요하다.
- (3) 압축기 후단에서 유체의 온도(고온 또는 저온)가 압축기 설계온도를 초과할 수 있는 경우에는 체크밸브가 필요하다. 이때 고온은 압축기 토출측 용기의 최대운전온도로 가정하고, 저온은 토출온도 및 토출압력에서 인입압력으로 등엔탈피과정으로 교축(Throttled)되는 것으로 가정하여 계산될 수 있다.
- (4) 압축기 토출측의 역류로 인해 압축기 인입측 또는 저단측에 과압이 발생될 수 있는 경우에는 체크밸브가 필요하다.
- (5) 병렬로 설치된 압축기에는 개별 압축기의 토출측에는 체크밸브가 필요하다.

5.2.4 배관

- (1) 아래와 같은 배관에는 역류방지를 위해 체크밸브 설치를 검토할 필요가 있다.
 - (가) 역류가 발생되면 공정 또는 운전상의 문제가 일어날 수 있는 배관
 - (나) 공정설비 또는 공정배관과 연결된 스팀, 질소, 공기 등의 유틸리티 배관
 - (다) 스팀트랩의 2차측이 집합관으로 연결되어 있을 때 다른 트랩에서 배출 된 응축수가 역류될 가능성이 있는 경우
- (2) 유틸리티 배관의 체크밸브 설치위치는 아래와 같다.
 - (가) 유틸리티 배관에 체크밸브를 설치할 경우 <그림 1>과 같이 체크밸브 전단에는 내부물질을 배출하기 위한 드레인밸브를 설치할 필요가 있다.
 - (나) 차단밸브를 1개만 설치할 경우에는 차단밸브 후단에 체크밸브를 설치하는 것이 좋다.

(나) 차단밸브를 2개 설치할 경우에는 차단밸브 사이에 체크밸브를 설치하는 것이 좋다.

[그림 1] 배관용 체크밸브의 설치 위치

- (3) 공정배관에 유틸리티 배관을 연결할 경우 배관의 등급은 <그림 1> 및 <그림 2>와 같이 체크밸브 또는 체크밸브 후단의 차단밸브까지 공정측 배관의 등급으로 설치하여야 한다. 단, 유틸리티 배관의 등급이 공정측 배관의 등급보다 높을 경우에는 공정측 배관에 접속되는 최종 밸브까지 유틸리티 배관의 등급으로 설치하여야 한다.
- (4) 치환 등의 목적으로 유틸리티 배관을 설치하여 특정 시기에만 사용하고 평상 시에 사용하지 않을 경우에는 <그림 2>와 같이 체크밸브 전단에 스펙터클 블라인드를 설치하여 체크밸브를 통한 누설을 방지할 수 있으며, 드레인밸브의 위치는 필요에 따라 스펙터클 블라인드 전단 또는 후단에 설치할수 있다.

[그림 2] 스펙터클 블라인드를 적용한 체크밸브의 설치 위치

[부록]

체크밸브(check valve)의 종류별 특성

체크밸브는 외양 및 작동 특성별로 스윙 체크밸브, 리프트 체크밸브, 틸팅 디스크 체크밸브, 폴딩 디스크 체크밸브, 인라인 체크밸브, 스톱 체크밸브 등으로 구분될 수 있다.

1. 스윙 체크밸브(Swing check valve)

1.1 구조

스윙 체크밸브는 <그림 1>과 같이 유체의 흐름량(유속)에 따라 힌지핀을 중심으로 디스크가 디스크가 들려서 개방되고, 유체가 정지하면 밸브 출구측의 압력과 디스크의 무게에 의해 닫히는 구조이다.

[그림 1] 스윙 체크밸브의 구조

1.2 특성

- (1) 체크밸브 중에서 가장 널리 쓰이고 있는 형식으로써 간단한 구조와 신뢰성 있는 동작을 특징으로 하며, 외부형태에 따라 T형, Y형 및 웨이퍼(Wafer) 형이 있으나, 대부분은 T형이다.
- (2) 유체흐름의 중심과 힌지 핀의 거리가 다른 종류의 체크밸브보다 길어 유체계통의 손상에 의한 급격한 역류 발생 시 밸브닫힘(디스크 닫힘)시간이 비교적 길게 되고, 밸브 디스크와 힌지 핀을 연결하는 디스크와 암 등에 큰충격력이 작용된다.
- (3) 디스크와 시트의 접촉 형식은 금속 대 금속, 금속 대 탄성질의 합성고무, 금속 대 합성고무링이 삽입된 금속판 등이 있다.
- (4) 스윙의 각도를 압력손실이 허용되는 범위 내에서 가능한 한 작게 하면 유 체의 역류 시 보다 신속하게 밸브를 닫을 수 있다.
- (5) 밸브가 닫힐 때 발생되는 슬램(Slam)현상과 불규칙한 유체흐름 시 디스크 의 빈번한 운동으로 인한 힌지 핀의 마모가 예상된다.
- (6) 밸브 구조상 완벽한 기밀 유지가 곤란하다.
- (7) 제작이 용이하여 저압에서 고압까지, 소형에서 대형까지 제작할 수 있으며, 압력손실이 적다.
- (8) 심한 와류가 발생하는 배관에서는 디스크가 한계각도 이상으로 회전하여 로드 핀이 파손되거나 디스크의 너트 연결부가 파손될 수 있다.
- (9) 디스크가 몸체 시트에 평면으로 접촉되므로 밸브가 닫힐 때 높은 소음(슬 램현상)이 발생될 수 있다.
- (10) 수직배관에 설치할 경우 해머링 현상이 발생되기 쉬우므로 가급적 사용하지 않는 것이 좋다.

2. 리프트 체크밸브(Lift check valve)

2.1 구조

- (1) 글로브밸브의 외양과 비슷하며 디스크 모양에 따라 피스톤 또는 포펫 (Poppet)형식과 볼 형태의 것이 있으며, 스프링을 적용한 것도 있다.
- (2) <그림 2>는 리트프 체크밸브의 예이다.

[그림 2] 리프트 체크밸브

2.2 특성

- (1) 스윙 체크밸브에 비하여 유체의 속도가 비교적 빠른 조건에서 사용할 수 있으며 내누설 특성이 양호하다.
- (2) 디스크와 안내면에서의 고착 가능성과 디스크가 제자리 회전하는 현상인 스피닝 (Spinning) 문제가 있다.
- (3) 맥동이 있는 유체나 비교적 유속이 높은 배관계통에 적합한 구조를 갖고 있다.
- (4) 비교적 간단하고 신뢰성 높은 구조이므로 스윙 체크밸브의 적용이 곤란한 경우 넓게 쓰인다.
- (5) 유속이 낮은 배수계통이나 단순한 중력흐름(Gravity flow)인 경우에는 신중을 기하여야 한다.
- (6) 밸브 몸체와 디스크의 안내면이 원활하지 않으면 밸브가 닫히지 않는 고착

(Cock 또는 Stick)현상이 발생될 수 있으므로 이러한 현상을 완화시키기 위해서는 스프링을 채택한 체크밸브(Spring loaded check valve)로 변경하는 것이 좋다.

- (7) 유체가 디스크 및 시트를 통과할 때 생기는 와류에 의해 디스크가 제자리 회전하는 스피닝(Spinning)이 생길 수 있는 경우에는 디스크 상부의 챔버와 밸브 출구 사이를 연결하는 바이패스 배관을 설치하여 디스크가 열릴 때 디스크 상부 챔버의 잔류 유체가 빠져 나가는 구조의 리프트 체크밸브를 선정할 필요가 있다.
- (8) 적정한 배관유속이 유지되지 않을 경우 유체의 파동에 의한 힌지 핀이나 디스크 핀 같은 구동부(Moving Part)의 점진적인 마모가 발생될 수 있고, 이로 인해 체크밸브의 내부 누설 등의 성능저하가 발생될 수 있다.

3. 틸팅 디스크 체크밸브(Tilting disc check valve)

3.1 구조

기본적인 구조는 스윙 체크밸브와 유사하나, 유체의 흐름저항이 적고 스윙 길이가 짧아 스윙 체크밸브보다 빨리 닫힐 수 있어 디스크의 슬램현상이 감소되는 구조이며, <그림 3>과 같다.

[그림 3] 틸팅 디스크 체크밸브

3.2 특성

- (1) 스윙 체크밸브와 리프트 체크밸브의 장점을 절충하여 슬램(Slam)현상에 의한 영향을 최소화시킨 구조의 밸브이다.
- (2) 균일한 흐름이 예상되는 곳에 사용하도록 권장된다.
- (3) 압력 및 온도가 높고 유속이 빠른 고에너지 유체계통에서 적응성이 높은 밸브이다.

4. 웨이퍼 디스크 체크밸브(Wafer-type disc check valve)

4.1 구조

- (1) 체크밸브의 디스크를 두 개로 분리하여 디스크 두 개가 동시에 열리고 닫히는 구조의 체크밸브이며, 기본적인 구조는 <그림 4>와 같다.
- (2) 이 밸브는 폴딩 디스크 체크밸브(Folding disc check valve), 듀얼 플레이트 체크밸브(Dual plate check valve), 듀오 체크밸브(DUO-Check valve), 더블 도아 체크밸브(Double door check valve), 플래퍼 체크밸브(Flapper check valve) 등으로 불리고 있다.

[그림 4] 웨이퍼 디스크 체크밸브(Wafer-type disc check valve)

4.2 특성

- (1) 동일 배관 크기에 있어서 경량, 소형으로 설계제작이 가능하여 가격, 배관설치비, 공간절약, 운송 등 경제적인 효과가 다른 체크밸브보다 훨씬 유리하다.
- (2) 디스크를 스프링의 힘으로 유지하므로 스프링의 상수를 조절하면 디스크의 열림 최소요구 속도를 조절할 수 있다.
- (3) 매우 미세한 차압상태에서도 개폐를 할 수 있어서 계통의 요구사항대로 설계가 가능하다.
- (4) 스프링의 힘을 이용하기 때문에 디스크가 신속하게 닫힐 수 있다.
- (5) 스프링으로 두 개의 핀을 폐쇄시키는 구조이므로 스프링 손상 시 밸브의 기능에 문제가 발생되며, 스프링의 손상 가능성은 스윙 체크밸브의 힌지 핀 또는 힌지의 손상 가능성에 비하여 높아 신뢰도 측면에서는 스윙 체크밸브보다 낮다.
- (6) 유체의 흐름이 불균일한 경우에는 계통 운전 중 계속 스프링에 피로응력이 축적되므로 맥동이 예상되는 배관계통에는 신중하게 적용할 팔요가 있다.
- (7) 완전히 개방시킬 수 있는 최소유속(Minimum flow velocity)이 스윙 체크밸브에 비하면 높기 때문에 저속유체에는 적용하기 곤란하다.
- (8) 디스크 하나로 유체흐름을 제어하는 것보다 디스크 두 개로 힘을 나누어 유체흐름을 제어할 수 있어 밸브 구조를 단순하고 작게 할 수 있다.
- (9) 닫힐 때의 모멘트 길이가 일반 스윙 체크밸브나 리프트 체크밸브보다 작기 때문에 신속히 닫힌다.
- (10) 밸브의 메카니즘상 스프링의 피로문제가 있다.

5. 인라인 체크밸브(In-line check valve)

5.1 구조

(1) 인라인 체크밸브는 일종의 리프트 체크밸브의 형태로써 볼(Ball)이나 풀 가

이드 디스크(Full guide disc)를 스프링으로 유지하는 체크밸브이고, 소형경량이고 스윙 체크밸브에 비하여 밸브 면간 길이가 절반 이하인 밸브이다.

(2) <그림 5>는 볼을 갖는 인라인 체크밸브이다.

[그림 5] 인라인 체크밸브

5.2 특성

- (1) 인라인 체크밸브는 구조상 배관 라인을 분해하지 않고서는 내부부품 (Internals)을 교체 또는 수리할 수 없다.
- (2) 인라인 체크밸브는 거의 대부분이 스프링을 갖고 있지만 일부 인-라인 체크밸브의 경우 스프링이 없는 경우도 있다.
- (3) 스프링 가압방식의 인-라인 체크밸브는 유로의 역류정도를 스프링 에너지로 어느 정도 흡수할 수 있어 압력의 급격한 변동이나 수격현상의 영향을 줄일 수 있어 공기압축기 출구 배관의 맥동(Pulsation) 흐름과 같은 계통에 적용할 수 있다.
- (4) 발전소의 주급수 배관과 같은 고에너지 배관의 체크밸브로 쓰인다.

6. 스톱 체크밸브(Stop check valve)

6.1 구조

(1) 글로브밸브와 체크밸브를 한데 묶어 두 가지 기능을 각각 수행할 수 있도록 만든 구조의 밸브이다.

(2) 종류로는 T-타입, Y-타입, 앵글 타입 및 경사형(Inclined type)이 있으며, <그림 6>은 스윙 디스크 스톱 체크밸브의 예이며, <그림 7>은 Y-타입 피스톤 리프트 스톱 체크밸브의 예이다.

[그림 6] 스윙 디스크 스톱 체크밸브

[그림 7] Y-타입 피스톤 리프트 스톱 체크밸브

6.2 특성

- (1) 리프트 체크밸브의 기능과 스톱밸브의 차단기능을 동시에 갖고 있는 밸브이다.
- (2) 일반적으로 스톱 체크밸브의 형식은 스윙 체크밸브 형식과 리프트 체크밸브 형식이 있다.
- (3) 구조의 안정성 및 운전 신뢰성의 이유로 중소형의 스톱 체크밸브는 리프트 체크밸브 형식으로 거의 제작되며, 대형의 경우에만 스윙 체크밸브 형식을 채택된다.
- (4) 중력이 체크밸브의 중요한 역할을 하므로 체크밸브의 위치와 방향을 항상 고려해야 한다.

7. 사일런트 타입 체크밸브(Silent type check valve)

7.1 구조

(1) 사일런트 타입 체크밸브는 <그림 8>과 같이 유체흐름에 수직으로 설치된 원형의 디스크에 스프링의 작용으로 기밀을 유지하는 구조이다.

<그림 8> 사일런트 타입 체크밸브(Silent type check valve)

7.2 특성

- (1) 디스크가 상대적으로 가볍고 디스크의 이동거리(Stroke)가 짧고, 스프링의 압축력이 작용하기 때문에 신속하게 닫힌다.
- (2) 밸브를 통과할 때의 압력강하가 비교적 적은 편이다.
- (3) 밸브를 닫는데 중력에 의존되지 않기 때문에 수직 또는 수평방향 모두에 설치될 수 있다.

8. 노즐 체크밸브(Nozzle check valve)

8.1 구조

- (1) 밸브가 열릴 때에 유로가 유선형의 노즐로 구성되어 압력손실이 낮으며, 스 프링의 압축력에 의해 디스크가 신속하게 닫히는 구조의 체크밸브이며, 축 류(Axial flow) 체크밸브로도 불리며, 구조는 <그림 9>와 같다.
- (2) 노즐 체크밸브는 접촉되는 표면은 밸브 몸체 내에 가공된 환상형의 링이며, 개폐 요소(Closing element)는 가볍고, 밸브 중심과 평행하게 움직이는 스프 링이 작용되는 환상형의 링이다.

<그림 9> 노즐 체크밸브(Nozzle check valve)

KOSHA GUIDE

D - 62-2018

8.2 특성

- (1) 노즐 체크밸브는 유체흐름방향으로 설치되어 압력강하가 작고, 신속히 닫히 므로 발전소나 급수시스템에 주로 사용된다.
- (2) 접촉되는 지름이 크고 유체가 유선형으로 흐르기 때문에 제한된 압력강하로 완전 개방상태를 유지하는데 짧은 이동거리(Stroke)가 요구된다.
- (3) 이동거리가 짧은 가벼운 디스크에 스프링 압축력이 작용되기 때문에 신속하게 밸브를 닫을 수 있다.
- (4) 밸브를 닫는데 중력에 의존되지 않기 때문에 수직 또는 수평방향 모두에 설치될 수 있다.