

TRUY XUẤT THÔNG TIN

CHƯƠNG V - MỘT SỐ MÔ HÌNH TRUY XUẤT THÔNG TIN KHÁC

NỘI DUNG TRÌNH BÀY

- ***NHƯỢC ĐIỂM CỦA MÔ HÌNH VECTOR**
- **♦MÔ HÌNH LSI**
- **❖MÔ HÌNH XÁC SUẤT**

***CÁCH TIẾP CẬN**

- Truy vấn thông tin là một quá trình không chắc chắn
 - Ngữ nghĩa câu truy vấn
 - Tài liệu thỏa truy vấn.
- Lý thuyết xác suất
 - Cở sở của suy luận không chắc chắn
 - Ước lượng khả năng tài liệu liên quan đến truy vấn

***CÁCH TIẾP CẬN**

- Các mô hình xác suất
 - Các mô hình điển hình: BIM, Two Poisson, BM11, BM25
 - Mô hình ngôn ngữ
 - Mang Bayes (Bayesian networks)

Các mô hình xác suất là những mô hình đã cũ nhưng có hiệu quả cao.

❖NGUYÊN LÝ XẾP HẠNG

- Bài toán: cho một truy vấn q và một tập tài liệu D,
 xác định thứ tự các tài liệu trong D theo truy vấn q.
- Sự liên quan giữa tài liệu và truy vấn được thể hiện bằng một biến ngẫu nhiên nhị phân R
 - R_{d,q}=1 nếu tài liệu *d* liên quan với *q*
 - R_{d,q}=0 nếu tài liệu *d* không liên quan với *q*
- Kết quả xếp hạng được sắp xếp giảm dần theo xác suất của sự liên quan p(R_{d,q}=1) hay p(R=1|d,q)

❖NGUYÊN LÝ XÉP HẠNG

- Các mô hình vấn thông tin theo xác suất cần giải quyết:
 - Xác định các giá trị ước lượng tốt nhất.
 - Phương pháp tính toán xác suất liên quan giữa tài liệu d và truy vấn q

***PHÁT BIỂU BÀI TOÁN**

- Tài liệu $d = \{td_1, td_2, \dots td_m\}$
 - td_i là term thứ i của tài liệu d
 - p(td_i='tù') là xác suất term thứ i của tài liệu d có giá trị là 'tù'
- Truy vấn q = $\{tq_1, tq_2, \dots tq_n\}$
 - tq_i là term thứ i của truy vấn q
 - p(tq_i='tù') là xác suất term thứ i của truy vấn q có giá trị là 'tù'
- Sự liên quan R ∈ {0,1}

***PHÁT BIỂU BÀI TOÁN**

Xác suất tài liệu d có liên quan với truy vấn q là p(R=1|d, q)

❖MỘT SỐ CÔNG THỰC XÁC SUẤT

 Xác suất của hai sự kiện A, B xảy ra đồng thời là p(A,B). Nếu A và B độc lập thì

$$p(A,B) = p(A) * p(B)$$

- Xác suất có điều kiện P(A|B) là xác suất sự kiện A nếu trước đó có sự kiện B xảy ra.
- p(A,B,C) = p(A) * p(B|A) * p(C|A, B)
- $p(A) = p(A,B) + p(A, \neg B)$
- $p(A) = p(A,B=b_1) + p(A,B=b_2) + ... + p(A,B=b_m)$

❖MỘT SỐ CÔNG THỰC XÁC SUẤT

Công thức Bayes:

$$p(A|B) = p(A) * p(B|A) / p(B)$$

 $p(A|B) = p(A) * p(B|A) / [\Sigma_{X \in \{A, \neg, A\}} p(B|X) * p(X)]$

- Tỉ lệ Odds:

$$O(A) = p(A) / p(\neg A) = p(A) / (1-p(A))$$

log-odds:

$$\log(O(A)) = \log(p(A)) - \log(1-p(A))$$

*XÉP HẠNG THEO MÔ HÌNH XÁC SUẤT

- Giả thiết: sự liên quan của các tài liệu với một câu truy vấn là độc lập.
- Ước lượng xác suất của sự liên quan p(R=1|d, q) theo:
 - Tần suất của term
 - Tần suất của tài liệu
 - Độ dài của văn bản
- Đặt r là R=1 và ¬r là R=0: các tài liệu được xếp hạng theo thứ tự giá trị p(r|d, q) giảm dần.
- Thay vì xếp hạng theo giá trị p(r|d,q), có thể xếp hạng theo giá trị odds(p(r|d,q))

*XÉP HẠNG THEO MÔ HÌNH XÁC SUẤT

- Thay vì xếp hạng theo giá trị p(r|d,q), có thể xếp hạng theo giá trị odds(p(r|d,q)).
- → Xếp hạng theo giá trị

$$p(d|r,q)/p(d|-r,q)$$

Giá trị p(d|r,q) và p(d|¬r,q) được ước lượng tùy theo mô hình.

***BOOLEAN INDEPENDENCE MODEL** (BIM)

Tần số của mỗi term là 0 (không xuất hiện) và 1 (có xuất hiện)

- 1) Giả thiết độc lập:
- Các term trong một tài liệu và một truy vấn độc lập với nhau
- Xác suất của một term xuất hiện trong các tài liệu liên quan không ảnh hưởng đến xác suất của các term khác trong các tài liệu liên quan

***BOOLEAN INDEPENDENCE MODEL** (BIM)

- 1) Giả thiết độc lập:
- Giả thiết này đơn giản hóa việc tính toán và khá hiệu quả.

$$p(d|q,r) = \prod_{i \in [1,m]} p(td_i|q,r)$$
$$p(d|q,\neg r) = \prod_{i \in [1,m]} p(td_i|q,\neg r)$$

***BOOLEAN INDEPENDENCE MODEL** (BIM)

- 2) Các term của câu truy vấn là yếu tố duy nhất xác định sự liên quan giữa tài liệu và truy vấn:
- Với term td_i∉q thì p(td_i|q,r) không phụ thuộc vào
 r:

$$p(td_i|q,r) = p(td_i|q,\neg r)$$

→ Chỉ cần tính xác suất các term trong truy vấn q

$$p(d|q,r) = \prod_{td \in q} p(td|q,r)$$
$$p(d|q,\neg r) = \prod_{td \in q} p(td|q,\neg r)$$

***BOOLEAN INDEPENDENCE MODEL** (BIM)

Dựa trên hai giả thiết trên, sự liên quan được thể hiện qua giá trị:

$$\prod_{td \in q} p(td|r,q)/p(td|\neg r,q)$$

Việc ước lượng giá trị p(td|r,q) và p(td|¬r,q) được thực hiện theo hai trường hợp:

- Trường hợp không có ngữ liệu mẫu
- Trường hợp có ngữ liệu mẫu

*BOOLEAN INDEPENDENCE MODEL (BIM)

- Trường hợp không có ngữ liệu mẫu Sử dụng hai giả thiết:
- Term của truy vấn xuất hiện hay không xuất hiện trong tài liệu liên quan là như nhau:

$$p(tq_i|r,q)=0.5$$

- Xác suất term xuất hiện trong tài liệu không liên quan (N_{td}: số tài liệu chứa td, N: tổng số tài liệu)

$$p(td|\neg r,q)=N_{td}/N$$

***BOOLEAN INDEPENDENCE MODEL** (BIM)

- Trường hợp không có ngữ liệu mẫu
- Độ liên quan giữa tài liệu và truy vấn:

$$rel(d,q) = \prod_{td \in q} p(td|r,q)/p(td|\neg r,q)$$
$$= \prod_{td \in q} 0.5*N/N_{td}$$

Sử dụng độ đo log-odds:

$$rel(d,q) = \Sigma_{td \in q} log(0.5*N/N_{td})$$

→ Trọng số của mỗi term là w_{td}=log(0.5*N/N_{td})

***BOOLEAN INDEPENDENCE MODEL** (BIM)

Ví dụ: Tính độ liên quan giữa truy vấn q và các tài liệu sau theo mô hình BIM

d₁ Romeo and Juliet

d₂ Juliet: Oh happy dagger

d₃ Romeo died by dagger

q: die dagger

***BOOLEAN INDEPENDENCE MODEL** (BIM)

	Romeo	Juliet	happy	dagger	die
d(td r,q)	0.5	0.5	0.5	0.5	0.5
d(td -r,q)	2/3	2/3	1/3	2/3	1/3
W _{td}	-0.41	-0.41	0.58	-0.41	0.58

rel(
$$d_1,q$$
)=?
rel(d_2,q)=-0.41
rel(d_3,q)=0.17

***BOOLEAN INDEPENDENCE MODEL** (BIM)

- Trường hợp có ngữ liệu mẫu
- r_{td} là số tài liệu liên quan chứa term td
- N_R là tổng số tài liệu liên quan
- Ước lượng các xác suất

$$p(td|r,q) = r_{td}/N_R$$
$$p(td|\neg r,q) = (N_{td}-r_{td})/(N-N_R)$$

***BOOLEAN INDEPENDENCE MODEL** (BIM)

- Trường hợp có ngữ liệu mẫu
- Để tránh trường hợp r_{td}=0 và r_{td}=N_{td}, thực hiện smoothing:

$$p(td|r,q) = (r_{td}+0.5)/(N_R+1)$$
$$p(td|\neg r,q) = (N_{td}-r_{td}+0.5)/(N-N_R+1)$$

- Độ liên quan:

rel(d,q)

$$= \Sigma_{td \in q} \log([(r_{td} + 0.5)^*(N - N_R + 1)]/[(N_{td} - r_{td} + 0.5)^*(N_R + 1)])$$

***BOOLEAN INDEPENDENCE MODEL** (BIM)

- Trường hợp có ngữ liệu mẫu
- Trọng số của mỗi term:

$$W_{td} = log([(r_{td} + 0.5)*(N-N_R+1)]/[(N_{td}-r_{td}+0.5)*(N_R+1)])$$

***BOOLEAN INDEPENDENCE MODEL** (BIM)

Ví dụ: Tính độ liên quan giữa truy vấn q và các tài liệu sau theo mô hình BIM. Biết N=30, $N_R=6$, $r_{die}=3$, $r_{dagger}=4$, $N_{die}=15$, $N_{dagger}=16$.

d₁ Romeo and Juliet

d₂ Juliet: Oh happy dagger

d₃ Romeo died by dagger

q: die dagger

***TWO POISSON MODEL**

Tần số của term là số lần xuất hiện của term trong tài liệu

→ Xác suất term td xuất hiện k lần trong tài liệu d là p(td=k|d)

Để ước lượng xác suất p(td=f|d,r), giả thiết td tuân theo quy luật phân phối Poisson, khi đó:

$$p(td=k|d) = \lambda^{k*}e^{-\lambda}/k!, k=0,1,2,...$$

Giá trị λ được ước lượng như sau

$$\lambda = count(td)/N_{term}$$

***TWO POISSON MODEL**

Ví dụ phân phối xác suất Poisson

***TWO POISSON MODEL**

Tuy nhiên, một quy luật Poisson không thể hiện đúng thực tế nên sử dụng hai quy luật phân phối Poisson, gọi là Elite (E) và non-Elite(\neg E): $p(td=k|r,d)=u^*\lambda^{k*}e^{-\lambda}/k!+(1-u)^*\mu^{k*}e^{-\mu}/k!,\ k=0,1,2,...$ $p(td=k|\neg r,d)=v^*\lambda^{k*}e^{-\lambda}/k!+(1-v)^*\mu^{k*}e^{-\mu}/k!,\ k=0,1,2,...$ Trong đó:

- u là xác suất tài liệu là Elite và có liên quan
- v là xác suất tài liệu là Elite và không liên quan

***TWO POISSON MODEL**

Vì vấn đề ước lượng các tham số u, v, λ và μ , Robertson và Walker đề xuất một cách xấp xỉ theo hình dạng của hàm tính trọng số term sao cho:

- $w_{td} = 0$ nếu k=0
- w_{td} đồng biến với k
- w_{td} có dạng log-odds
- Công thức đề nghị: $w'_{td} = [k/(k_1+k)]*w_{td}$
- Với w_{td} là trọng số được tính như mô hình BIM