Pregunta 1 (2,5 puntos)

Justifique si son ciertas o falsas las siguientes afirmaciones:

a)
$$\exists x \in \mathbb{R} \ (x^2 - 1 = 0 \ \land \ x^2 - 2 = 0)$$

b)
$$(\exists x \in \mathbb{R} \ (x^2 - 1 = 0)) \land (\exists x \in \mathbb{R} \ (x^2 - 2 = 0))$$

c)
$$\forall x \in \mathbb{R} \ (x^2 - 1 \neq 0 \ \lor \ x^2 - 2 \neq 0)$$

d)
$$\exists a \in \mathbb{R} \ \forall \varepsilon > 0 \ (|a| < \varepsilon)$$

e)
$$\exists a > 0 \ \forall \varepsilon > 0 \ (a < \varepsilon)$$

Pregunta 2 (2,5 puntos)

Sean \mathcal{R} y \mathcal{S} dos relaciones de orden total en un conjunto E. Se definen en E las relaciones:

$$x \Im y$$
 si y sólo si $x \Re y \wedge x \Im y$

$$x \Omega y$$
 si y sólo si $x \mathcal{R} y \vee x \mathcal{S} y$

Determine si las relaciones \mathcal{T} y \mathcal{Q} son reflexivas, antisimétricas, transitivas y en su caso, si la relación de orden resultante es de orden total.

Pregunta 3 (2,5 puntos)

Sean E y F dos conjuntos y $f \colon E \longrightarrow F$ una aplicación. Sean $A \subset E$ y $B \subset F$. Demuestre que

$$f^{-1}(B) \cap A \subset f^{-1}(B \cap f(A))$$

siendo f^{-1} la relación inversa de f. Muestre que la inclusión

$$f^{-1}(B \cap f(A)) \subset f^{-1}(B) \cap A$$

no es siempre cierta.

Pregunta 4 (2,5 puntos)

Resuelva en \mathbb{C} la ecuación: $z^n = \overline{z}$.