TEHNICI DE OPTIMIZARE Curs 2

Andrei Pătrașcu

Departament Informatică Universitatea din București

Cuprins

- Modele de optimizare continuă fără constrângeri. Condiții de extrem
- Existență și unicitate. Mulţimi izo(sub-)nivel. Convexitate tare
- Metoda Gradient

Optimizare fără constrângeri

$$(MfC): \min_{x} f(x)$$

Aspecte în formularea şi rezolvarea (OfC):

- definiţia (verificarea) unei soluţii
- existenţa unei soluţii
- unicitatea soluţiei
- calculul unei soluţii (algoritm iterativ)

Definiție (Minim local/global)

Punctul x^* se numeşte **minim local** dacă: există $\epsilon > 0$ astfel încât

$$f(x^*) \le f(x)$$
 $\forall x \in \{x : ||x - x^*|| \le \epsilon\}$

Mai mult, dacă $f(x^*) \le f(x)$, $\forall x \in \text{dom}(f)$, atunci x^* este **minim global**.

Teoremă (Fermat)

Presupunem funcția f diferențiabilă. Fie x^* un punct de minim al $f(\cdot)$ din \mathbb{R}^n , atunci:

$$\nabla f(x^*) = 0.$$

Teoremă (Fermat)

Presupunem funcția f diferențiabilă. Fie x^* un punct de minim al $f(\cdot)$ din \mathbb{R}^n , atunci:

$$\nabla f(x^*)=0.$$

Demonstraţie: Presupunem $\nabla f(x^*) \neq 0$. Atunci:

$$f(x^* - \tau \nabla f(x^*)) = f(x^*) - \tau \|\nabla f(x^*)\|^2 + o(\tau \nabla f(x^*))$$

= $f(x^*) - \tau \left(\|\nabla f(x^*)\|^2 + \frac{1}{\tau} o(\tau) \right) < f(x^*),$

pentru $\tau > 0$ suficient de mic, prin definiţia lui $o(\tau)$. Ultima inegalitate intră în contradicție cu presupunerea că x^* este punct de minim.

Teoremă (Fermat)

Presupunem funcția f diferențiabilă. Fie x^* un punct de minim al $f(\cdot)$ din \mathbb{R}^n , atunci:

$$\nabla f(x^*)=0.$$

Observăm că demonstrația teoremei de mai sus oferă o perspectivă asupra calculării unei direcții de descreștere a funcției f.

Idee

Dacă $\nabla f(x) \neq 0$ (i.e. x nu este punct de extrem), atunci $x - \tau \nabla f(x)$ asigură descreşterea funcției f, pentru pasul τ suficient de mic.

Minimizare pătratică:

$$\min_{x \in \mathbb{R}^n} \ \frac{1}{2} x^T P x + q^T x + r$$

- Problema este rezolvată prin setul de ecuații: $Px^* + q = 0$
- $P \succ 0$, atunci avem soluţie unică $x^* = -P^{-1}q$;
- dacă $Px^* + q = 0$ nu are soluţie atunci f este nemărginită inferior.

Problema aproximării liniare:

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2$$

 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ sunt datele problemei.

- Există cel puţin o soluţie $\nabla f(x^*) := A^T (Ax^* b) = 0$
- Dacă $b \in Im(A)$ atunci $Ax^* = b$ (interpolare)
- Dacă $b \notin Im(A)$ atunci $A^TAx^* = A^Tb$ (aproximare).

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Puncte critice:
$$\nabla f(x^*) = \begin{bmatrix} x_1^* \\ (x_2^*)^3 - x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Puncte critice:
$$\nabla f(x^*) = \begin{bmatrix} x_1^* \\ (x_2^*)^3 - x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_{(1)}^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $x_{(2)}^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $x_{(3)}^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

Condiții suficiente de ordin I

Teoremă

Presupunem funcția f convexă și diferențiabilă în x^* . Dacă $\nabla f(x^*) = 0$ atunci x^* este minim global al funcției f.

Condiții suficiente de ordin I

Teoremă

Presupunem funcția f convexă și diferențiabilă în x^* . Dacă $\nabla f(x^*) = 0$ atunci x^* este minim global al funcției f.

Demonstrație: Din definția funcțiilor convexe avem:

$$f(x) \geq f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*).$$

Condiţia $\nabla f(z) = 0$ este satisfăcută de orice punct staţionar:

- a: punct de minim (local)
- b: punct şa (inflexiune)
- c: punct de maxim (local)

Derivata de ordin I nu oferă informații despre natura punctului staționar! Este necesar să apelăm la derivate de ordin superior.

Teoremă

Presupunem funcţia f este dublu diferenţiabilă. Fie x^* un punct de minim al $f(\cdot)$ din \mathbb{R}^n , atunci:

$$\nabla^2 f(x^*) \succeq 0.$$

Demonstraţie: Ştim că $\nabla f(x^*) = 0$, atunci deducem pentru orice $d \in \mathbb{R}^n$ şi $\tau > 0$ suficient de mic:

$$f(x^*) \le f(x^* + \tau d) = f(x^*) + \frac{\tau^2}{2} \langle \nabla^2 f(x^*) d, d \rangle + o(\tau^2)$$

 $\langle \nabla^2 f(x^*) d, d \rangle \ge \frac{o(\tau^2)}{\tau^2}.$

Luând $\tau \to 0$ atunci partea dreaptă se anulează și obţinem $\nabla^2 f(x^*) \succeq 0$.

Condiții suficiente de ordin II

Teoremă

Presupunem funcția f este dublu diferențiabilă. Dacă $\nabla f(x^*) = 0$ și:

$$\nabla^2 f(x^*) \succ 0$$

atunci x* este minim local.

Conditii suficiente de ordin II

Teoremă

Presupunem funcția f este dublu diferențiabilă. Dacă $\nabla f(x^*) = 0$ și:

$$\nabla^2 f(x^*) \succ 0$$

atunci x* este minim local.

Demonstrație: Pentru orice $d \in \mathbb{R}^n$ și $\tau > 0$ suficient de mic:

$$\begin{split} f(x^* + \tau d) &= f(x^*) + \frac{\tau^2}{2} \langle \nabla^2 f(x^*) d, d \rangle + o(\tau^2 || d ||^2) \\ &\geq f(x^*) + \frac{\tau^2}{2} \lambda_{\min} || d ||^2 + o(\tau^2 || d ||^2) \\ &= f(x^*) + \tau^2 || d ||^2 \left(\frac{\lambda_{\min}}{2} + \frac{o(\tau^2 || d ||^2)}{\tau^2 || d ||^2} \right), \end{split}$$

unde λ_{\min} reprezintă valoarea proprie minimă a matricii $\nabla^2 f(x^*)$. Pentru ausufficient de mic avem $\frac{\lambda_{\min}}{2} + \frac{o(\tau^2 \|d\|^2)}{\tau^2 \|d\|^2} \geq 0$.

Conditii suficiente de ordin II

Observație

Sub condițiile necesare de ordin I și II $(\nabla f(x^*) = 0, \nabla^2 f(x^*) \succeq 0)$, dacă cele suficiente nu au loc (matricea $\nabla^2 f(x^*)$ nu este pozitiv definită) atunci x^* nu este neapărat minim local.

Exemplu: Fie $f(x) = x^3$, atunci x = 0 satisface condițiile necesare, insă:

$$f^{\prime\prime}(x^*)=0,$$

 $x^* = 0$ este punct şa.

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Puncte critice:
$$\nabla f(x^*) = \begin{bmatrix} x_1^* \\ (x_2^*)^3 - x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Puncte critice:
$$\nabla f(x^*) = \begin{bmatrix} x_1^* \\ (x_2^*)^3 - x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_{(1)}^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $x_{(2)}^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $x_{(3)}^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Puncte critice:
$$\nabla f(x^*) = \begin{bmatrix} x_1^* \\ (x_2^*)^3 - x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} 1 & 0 \\ 0 & 3x_2^2 - 1 \end{bmatrix}$$

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Puncte critice:
$$\nabla f(x^*) = \begin{bmatrix} x_1^* \\ (x_2^*)^3 - x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\nabla^2 f(x_{(1)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \nabla^2 f(x_{(2)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad \nabla^2 f(x_{(3)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Puncte critice:
$$\nabla f(x^*) = \begin{bmatrix} x_1^* \\ (x_2^*)^3 - x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\nabla^2 f(x_{(1)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \nabla^2 f(x_{(2)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad \nabla^2 f(x_{(3)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

punct staționar min. local nesingular min. local nesingular

Concluzii asupra condițiilor de optimalitate

 În cazurile liniar-pătratice, condiţiile de optimalitate ajută direct la determinarea unei soluţii

Concluzii asupra condițiilor de optimalitate

- În cazurile liniar-pătratice, condiţiile de optimalitate ajută direct la determinarea unei soluții
- În general, rezolvarea condițiilor de optimalitate (determinarea unui punct are satisface relațiile de egalitate/inegalitate) are, adesea, aceeași dificultate ca și problema originală

Concluzii asupra condițiilor de optimalitate

- În cazurile liniar-pătratice, condiţiile de optimalitate ajută direct la determinarea unei soluţii
- În general, rezolvarea condiţiilor de optimalitate (determinarea unui punct are satisface relaţiile de egalitate/inegalitate) are, adesea, aceeaşi dificultate ca şi problema originală
- Care este utilitatea acestora în aceste cazuri neliniare?
 - Condițiile de optimalitate reflectă proprietăti ale punctelor de extrem
 - Aduc intuiţie asupra construţiei de algoritmi iterativi pentru rezolvarea problemei originale

Cuprins

- Modele de optimizare continuă fără constrângeri. Condiţii de extrem
- Existență și unicitate. Mulţimi izo(sub-)nivel. Convexitate tare
- Metoda Gradient

Teoremă (Weierstrass)

Fie funcţia f continuă şi mulţimile sub-nivel $S_f(\alpha) = \{x : f(x) \le \alpha\}$ nevide şi mărginite. Atunci există un punct de minim global al funcţiei f.

Condiţia mărginirii pare esenţială: e.g. f(x) = x, $f(x) = \frac{1}{1+x^2}$

Teoremă (Weierstrass)

Fie funcția f continuă și mulțimile sub-nivel $S_f(\alpha) = \{x : f(x) \leq \alpha\}$ nevide și mărginite. Atunci există un punct de minim global al funcției f.

Cu toate acestea, dacă $f(x) = ||Ax - b||_2^2$ atunci:

- f atinge minim-ul pe \mathbb{R}^n
- S_f(α) nu este necesar mărginită!

Definiție

Un punct de optim este **local unic** dacă într-o vecinătate a acestuia nu mai există ale puncte de optim.

Definiție

Un punct de optim este **local unic** dacă într-o vecinătate a acestuia nu mai există ale puncte de optim.

E.g.
$$\min\{2, |x|\}, \frac{1}{\frac{1}{2} + e^{10(x-2)}} - \frac{1}{\frac{1}{2} + e^{10(x+2)}}$$

Definiție

Un punct de optim este **local unic** dacă într-o vecinătate a acestuia nu mai există ale puncte de optim.

Definiție

Un punct de minim x^* este **nesingular** dacă: $\nabla f(x^*) = 0, \nabla^2 f(x^*) > 0$.

Modele de optimizare continuă fără constrângeri

Definiţie

Un punct de optim este **local unic** dacă într-o vecinătate a acestuia nu mai există ale puncte de optim.

Definiţie

Un punct de minim x^* este **nesingular** dacă: $\nabla f(x^*) = 0, \nabla^2 f(x^*) > 0$.

Teoremă (Unicitate)

Un punct de minim x^* nesingular este local unic.

Exemplu

Fie funcţia
$$f(x) = f(x_1, x_2) := \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 - \frac{1}{2}x_2^2$$

Puncte critice:
$$\nabla f(x^*) = \begin{bmatrix} x_1^* \\ (x_2^*)^3 - x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_{(1)}^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $x_{(2)}^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $x_{(3)}^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

$$\nabla^2 f(x) = \begin{bmatrix} 1 & 0 \\ 0 & 3x_2^2 - 1 \end{bmatrix}$$

$$\nabla^2 f(x_{(1)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \nabla^2 f(x_{(2)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad \nabla^2 f(x_{(3)}^*) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

punct staţionar

min. local nesingular

min. local nesingular

Condiționare: mulțimi subnivel

Definiţie

Mulţimile subnivel şi izonivel ale funcţiei f de parametru $\alpha > 0$ sunt:

$$S_f(\alpha) := \{ x \in dom \ f : \ f(x) \le \alpha \}$$

$$S_f^{\circ}(\alpha) := \{ x \in dom \ f : \ f(x) = \alpha \}.$$

- $S_f^{\circ}(\alpha)$ reprezintă frontiera mulţimii $S_f(\alpha)$
- Observăm $S_f(\alpha) \subseteq S_f(\beta)$ pentru $\alpha \leq \beta$.
- Pentru funcţiile f convexe, $S_f(\alpha)$ sunt convexe.
- Nu sunt întodeauna mărginite.

Condiţionare: mulţimi subnivel

Definiție

Mulţimile subnivel şi izonivel ale funcţiei f de parametru $\alpha > 0$ sunt:

$$S_f(\alpha) := \{x \in dom \ f : \ f(x) \le \alpha\}$$

$$S_f^{\circ}(\alpha) := \{ x \in dom \ f : \ f(x) = \alpha \}.$$

Condiționare: mulțimi subnivel

Definiție

Mulţimile subnivel şi izonivel ale funcţiei f de parametru $\alpha > 0$ sunt:

$$S_f(\alpha) := \{x \in dom \ f : \ f(x) \le \alpha\}$$

$$S_f^{\circ}(\alpha) := \{ x \in dom \ f : \ f(x) = \alpha \}.$$

Mulţimi subnivel

Remarcă

Dacă f este convexă, atunci $S_f(\alpha)$ este convexă pentru oricare $\alpha \geq f^*$.

- $\{x \in \mathbb{R}^n : \|Ax b\|_2 \le 1\}$
- $\{(x,t) \in \mathbb{R}^{n+1} : ||x||_2 \le t\}$

Denumim *lățimea* unei mulțimi convexe $C \subseteq \mathbb{R}^n$ pe direcția v(||v|| = 1):

$$W(C, v) = \sup_{z \in C} v^{T}z - \inf_{z \in C} v^{T}z.$$

Denumim *lăţimea* unei mulţimi convexe $C \subseteq \mathbb{R}^n$ pe direcţia $v(\|v\| = 1)$:

$$W(C, v) = \sup_{z \in C} v^{T}z - \inf_{z \in C} v^{T}z.$$

Lățimea maximă și minimă a lui C sunt date de:

$$W_{\sf max}(C) = \sup_{\|v\|=1} \ W(C,v) \qquad W_{\sf min}(C) = \inf_{\|v\|=1} \ W(C,v).$$

Denumim *lăţimea* unei mulţimi convexe $C \subseteq \mathbb{R}^n$ pe direcţia v(||v|| = 1):

$$W(C, v) = \sup_{z \in C} v^T z - \inf_{z \in C} v^T z.$$

Lăţimea maximă şi minimă a lui C sunt date de:

$$W_{\max}(C) = \sup_{\|v\|=1} W(C, v) \qquad W_{\min}(C) = \inf_{\|v\|=1} W(C, v).$$

Numărul de condiționare al mulțimii C:

$$\kappa(C) = rac{W_{\mathsf{max}}(C)^2}{W_{\mathsf{min}}(C)^2},$$

redă o măsură a excentricității mulțimii C.

Fie $E=\{v: (x-c)P^{-1}(x-c)\leq 1\}, P\succ 0$, atunci lăţimea mulţimii E în direcţia v este

$$\sup_{z \in E} v^{T}z - \inf_{z \in E} v^{T}z = (\|P^{1/2}v\| + v^{T}c) - (-\|P^{1/2}v\| + v^{T}c)$$
$$= 2\|P^{1/2}v\|.$$

Atunci

$$W_{\max}(E) = 2\lambda_{\max}(P)^{1/2}$$
 $W_{\min}(E) = 2\lambda_{\min}(P)^{1/2}$.

şi

$$\kappa(E) = \frac{\lambda_{\mathsf{max}}(P)}{\lambda_{\mathsf{min}}(P)}.$$

Clase de funcții

- Funcţii diferenţiabile (∇f Lipschitz); e.g. $D, X \to \|DX Y\|_F^2$
- ullet Funcţii convexe diferenţiabile (abla f Lipschitz); e.g. $X o \|AX Y\|_F^2$
- Funcţii convexe nediferenţiabile; e.g. $X \to \|AX Y\|_1$

Există clase mai "puternice"?

Clase de funcţii

Reamintim definițiile (echivalente) ale funcțiilor convexe S:

• Ordin 0:
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \forall \alpha \in [0, 1], x, y$$

Reamintim definițiile (echivalente) ale funcțiilor convexe S:

• Ordin 0:
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \forall \alpha \in [0, 1], x, y$$

• Ordin 1:
$$f(x) \ge f(y) + \nabla f(y)^T (x - y), \ \forall x, y$$

Reamintim definițiile (echivalente) ale funcțiilor convexe S:

• Ordin 0:
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \forall \alpha \in [0, 1], x, y$$

• Ordin 1:
$$f(x) \ge f(y) + \nabla f(y)^T (x - y), \ \forall x, y$$

• Ordin 2: $\nabla^2 f(x) \succeq 0 \ \forall x$

Definiție

O funcție $f \in S^{\sigma}$ este σ -tare convexă dacă satisface:

Ordin 0:

$$f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y) - \alpha(1-\alpha)\frac{\sigma}{2}||x-y||^2, \ \forall \alpha \in [0,1], x, y$$

- Ordin 1: $f(x) \ge f(y) + \nabla f(y)^T (x y) + \frac{\sigma}{2} ||x y||^2$, $\forall x, y$
- Ordin 2: $\nabla^2 f(x) \succeq \sigma I_n \ \forall x$

Exemple:

- $x \to (c^T x)^2 + \frac{1}{2} ||x||_2^2$
- $x \to \|Ax b\|_2^2 + \|x\|_2^2$

Considerăm $y = x^*$ (punct de optim):

$$f(x) \ge f(x^*) + \nabla f(x^*)^T (x - x^*) + \frac{\sigma}{2} ||x - x^*||^2, \quad \forall x$$

= $f^* + \frac{\sigma}{2} ||x - x^*||^2, \quad \forall x.$

Funcţia $f \in S^{\sigma}$ are *creştere pătratică*:

$$f(x)-f^*\geq \frac{\sigma}{2}\|x-x^*\|^2.$$

Dacă $f \in \mathcal{S}_L^{\sigma}$ atunci:

$$\frac{L}{2}\|x-x^*\|^2 \ge f(x) - f^* \ge \frac{\sigma}{2}\|x-x^*\|^2, \ \forall x.$$

$$H_1 = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 4 & 0 \\ 0 & 10^- 4 \end{bmatrix}$$

Cuprins

- Modele de optimizare continuă fără constrângeri. Condiţii de extrem
- Existență și unicitate. Mulţimi izo(sub-)nivel. Convexitate tare
- Metoda Gradient

Definim generic un algoritm iterativ: inițializăm $x^0 \in \mathbb{R}^n$ și iterăm

$$x^{k+1} = T(x^k, x^{k-1}, \cdots, x^0)$$

până când criteriul de oprire ales este satisfăcut.

• un algoritm iterativ de optimizare primește informații precum: punctul de inițializare x^0 , funcția obiectiv f (și alte informații legate de f), acuratețea ϵ dorită, etc.

Definim generic un algoritm iterativ: iniţializăm $x^0 \in \mathbb{R}^n$ şi iterăm

$$x^{k+1} = T(x^k, x^{k-1}, \cdots, x^0)$$

până când criteriul de oprire ales este satisfăcut.

- un algoritm iterativ de optimizare primeşte informaţii precum: punctul de iniţializare x⁰, funcţia obiectiv f (şi alte informaţii legate de f), acurateţea ε dorită, etc.
- datele se folosesc pentru a executa iteraţia T, care defineşte un set de operaţii asupra întregului istoric $\{x^0,\cdots,x^k\}$.

Definim generic un algoritm iterativ: iniţializăm $x^0 \in \mathbb{R}^n$ şi iterăm

$$x^{k+1} = T(x^k, x^{k-1}, \cdots, x^0)$$

până când criteriul de oprire ales este satisfăcut.

- un algoritm iterativ de optimizare primeşte informaţii precum: punctul de iniţializare x⁰, funcţia obiectiv f (şi alte informaţii legate de f), acurateţea ε dorită, etc.
- datele se folosesc pentru a executa iteraţia T, care defineşte un set de operaţii asupra întregului istoric $\{x^0, \dots, x^k\}$.
- deoarece nu se va executa un număr infinit de iteraţii, orice algoritm iterativ va răspunde la întrebarea: "Când poate fi considerat x^k o aproximare suficient de precisă a unui punct de optim?"

```
Algorithm 1: Algoritm de ordin I (x^0, \epsilon, ...):

Data: k := 0

while _criteriu oprire = fals do

Calculează: d^k \in \text{span}\{\nabla f(x^k), \nabla f(x^{k-1}), \cdots, \nabla f(x^0)\}

Actualizează x^{k+1} pe baza d^k şi \{x^k, x^{k-1}, \cdots, x^0\}

k := k+1

end
```


Algoritmi de ordin I

Majoritatea algoritmilor de ordin I realizează un model aproximativ local (pătratic) al funcției obiectiv $\mathcal{A}(x;x^k,\cdots,x^0;f)$. Aplicarea lui T reprezintă este echivalentă cu determinarea soluției optimă a acestuia, i.e

$$\min_{x} \mathcal{A}(x; x^{k}, \cdots, x^{0}; f).$$

Algoritmi de ordin I

Majoritatea algoritmilor de ordin I realizează un model aproximativ local (pătratic) al funcției obiectiv $\mathcal{A}(x;x^k,\cdots,x^0;f)$. Aplicarea lui T reprezintă este echivalentă cu determinarea soluției optimă a acestuia, i.e

$$\min_{x} \mathcal{A}(x; x^{k}, \cdots, x^{0}; f).$$

$$\min_{x \in \mathbb{R}^n} f(x)$$

Dacă f este diferenţiabilă şi $\nabla f(x) \neq 0$. Atunci:

$$f(x - \tau \nabla f(x)) = f(x) - \tau \|\nabla f(x)\|^2 + o(\tau \nabla f(x))$$

= $f(x) - \tau \left(\|\nabla f(x)\|^2 + \frac{1}{\tau}o(\tau)\right) < f(x),$

pentru $\tau > 0$ suficient de mic, prin definiţia lui $o(\tau)$. Ultima inegalitate intră în contradicţie cu presupunerea că x^* este punct de minim.

Metoda Gradient

Aproximarea pătratică în xk

$$f(x) \approx \mathcal{A}(x; x^k; f) := f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2} (x - x^k)^T H_k(x - x^k)$$

Alegerea matricii Hessiane H_k determină calitatea aproximării! Pentru alegerea $H_k = \alpha_k I_n(\alpha_k > 0)$, modelul se simplifică :

$$f(x) \approx \mathcal{A}(x; x^k; f) := f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2\alpha_k} ||x - x^k||^2$$

Figure: $f(x) = \ln (1 + e^{-2x+1}) + \ln (1 + e^{2x+1})$; $x^0 = \frac{1}{2}$, $\alpha_0 = 1/4$

Metoda Gradient

Considerăm:

$$x^{k+1} = \arg\min_{x} f(x^{k}) + \nabla f(x^{k})^{T} (x - x^{k}) + \frac{1}{2\alpha_{k}} ||x - x^{k}||^{2}$$

Din condițiile de ordin I avem:

$$\nabla f(x^k) + \frac{1}{\alpha_k} (x^{k+1} - x^k) = 0$$
$$\frac{1}{\alpha_k} (x^{k+1} - x^k) = -\nabla f(x^k)$$
$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

Metoda Gradient

Intuim următorul algoritm: iniţializăm x^0

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$$

unde $\alpha_k \ge 0$ se numește **lungimea pasului** iterației.

Metoda Gradient a fost introdusă în 1847 de către Auguste Cauchy pentru rezolvarea unui sistem neliniar cu 6 necunoscute:

A. Cauchy, *Méthode générale pour la résolution des systèmes d'équations simultanées.* C.R. Acad. Sci. Paris, 25: 536-538, 1847.

Algorithm 2: Metoda Gradient $(x^0, \epsilon, \{\alpha_k\}_{k \geq 0})$:

```
Data: k := 0

while <u>criteriu oprire = fals</u> do

Calculează: \nabla f(x^k)

x^{k+1} = x^k - \alpha_k \nabla f(x^k)

k := k + 1

end
```

- pas constant: $\alpha_k = \alpha$
- cea mai abruptă pantă: $\alpha_k = \arg\min_{\alpha} f(x^k \alpha \nabla f(x^k))$
- adaptiv

Metoda Gradient - criterii de oprire

Evaluarea calității unei iterații se poate realiza în mai multe moduri (pe baza acurateții $\epsilon > 0$):

Metoda Gradient - criterii de oprire

Evaluarea calității unei iterații se poate realiza în mai multe moduri (pe baza acurateții $\epsilon > 0$):

•
$$f(x^k) - f^* \le \epsilon \iff x^k \in S_f(f^* + \epsilon)$$

Metoda Gradient - criterii de oprire

Evaluarea calității unei iterații se poate realiza în mai multe moduri (pe baza acurateții $\epsilon > 0$):

$$\|x^k - x^*\| \le \epsilon \iff x^k \in B(x^*; \epsilon)$$

•
$$f(x^k) - f^* \le \epsilon \Leftrightarrow x^k \in S_f(f^* + \epsilon)$$

•
$$\|\nabla f(x)\| \leq \epsilon$$

Convergență generală

Teoremă (Polyak)

Fie f diferențiabilă pe \mathbb{R}^n cu gradientul ∇f continuu Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

De asemenea, presupunem $\min_x f(x) > -\infty$ şi $0 < \alpha < \frac{1}{2L}$. Atunci şirul generat de Metoda Gradient $x^{k+1} = x^k - \alpha \nabla f(x^k)$ satisface:

$$\lim_{k\to\infty} \nabla f(x^k) = 0,$$

$$\sin f(x^{k+1}) \leq f(x^k).$$

Convergență generală

Demonstraţie pe scurt: Pentru simplitate $\alpha_k = \frac{1}{L}$. Din continuitatea Lipschitz avem

$$f(x^{k+1}) \leq f(x^k) + \nabla f(x^k)^T (x^{k+1} - x^k) + \frac{L}{2} ||x^{k+1} - x^k||^2$$

$$\leq f(x^k) - \frac{1}{2L} ||\nabla f(x^k)||^2.$$

Este evidentă descreşterea $f(x^{k+1}) \le f(x^k)$. Trecând termenul normei în partea stângă avem:

$$\frac{1}{2L} \|\nabla f(x^k)\|^2 \le f(x^k) - f(x^{k+1}) \quad \forall k \ge 0$$

$$\frac{1}{2L} \sum_{i=0}^{k-1} \|\nabla f(x^i)\|^2 \le \sum_{i=0}^{k-1} f(x^i) - f(x^{i+1}) = f(x^0) - f(x^{k+1})$$

$$\le f(x^0) - f^*.$$

Prin trecerea la limită $k \to \infty$ obţinem rezultatul.

Consecințe și limite

Teorema (Polyak). Fie f diferențiabilă pe \mathbb{R}^n cu gradientul ∇f continuu Lipschitz: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$. De asemenea, presupunem $\min_X f(x) > -\infty$ şi $0 < \alpha < \frac{1}{2I}$. Atunci şirul generat de Metoda Gradient $x^{K+1} = x^K - \alpha \nabla f(x^K)$ satisface:

$$\lim_{k\to\infty} \nabla f(x^k) = 0,$$

 Nu este necesară convexitatea (in acest caz, MG converge la un punct staţionar)

Teorema (Polyak). Fie f diferențiabilă pe \mathbb{R}^n cu gradientul ∇f continuu Lipschitz: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$. De asemenea, presupunem $\min_X f(x) > -\infty$ şi $0 < \alpha < \frac{1}{2I}$. Atunci şirul generat de Metoda Gradient $x^{K+1} = x^K - \alpha \nabla f(x^K)$ satisface:

$$\lim_{k\to\infty} \nabla f(x^k) = 0,$$

- Nu este necesară convexitatea (in acest caz, MG converge la un punct staţionar)
- Este necesară continuitatea Lipschitz și o aproximare a constantei L

Teorema (Polyak). Fie f diferenţiabilă pe \mathbb{R}^n cu gradientul ∇f continuu Lipschitz: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$. De asemenea, presupunem $\min_X f(x) > -\infty$ și $0 < \alpha < \frac{1}{2I}$. Atunci șirul generat de Metoda Gradient $x^{k+1} = x^k - \alpha \nabla f(x^k)$ satisface:

$$\lim_{k\to\infty} \nabla f(x^k) = 0,$$

$$\operatorname{si} f(x^{k+1}) \leq f(x^k).$$

- Nu este necesară convexitatea (in acest caz, MG converge la un punct staţionar)
- Este necesară continuitatea Lipschitz şi o aproximare a constantei L
- Fără o alegere limitată a pasului, MG poate diverge (exemplu!)

Teorema (Polyak). Fie t diferenţiabilă pe \mathbb{R}^n cu gradientul ∇t continuu Lipschitz: $\|\nabla t(x) - \nabla t(y)\| \le L\|x - y\|$. De asemenea, presupunem $\min_X t(x) > -\infty$ și $0 < \alpha < \frac{1}{2L}$. Atunci șirul generat de Metoda Gradient $x^{k+1} = x^k - \alpha \nabla t(x^k)$ satisface:

$$\lim_{k\to\infty} \nabla f(x^k) = 0,$$

$$\operatorname{si} f(x^{k+1}) \leq f(x^k).$$

- Nu este necesară convexitatea (in acest caz, MG converge la un punct staţionar)
- Este necesară continuitatea Lipschitz şi o aproximare a constantei L
- Fără o alegere limitată a pasului, MG poate diverge (exemplu!)
- Când pasul este variabil, inegalitatea descreşterii devine:

$$f(x^{k+1}) \le f(x^k) - \alpha_k \left(1 - \frac{L\alpha_k}{2}\right) \|\nabla f(x^k)\|^2.$$

Teorema (Polyak). Fie f diferențiabilă pe \mathbb{R}^n cu gradientul ∇f continuu Lipschitz: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$. De asemenea, presupunem $\min_X f(x) > -\infty$ şi $0 < \alpha < \frac{1}{2l}$. Atunci şirul generat de Metoda Gradient $x^{k+1} = x^k - \alpha \nabla f(x^k)$ satisface:

$$\lim_{k\to\infty} \nabla f(x^k) = 0,$$

• În cazul $S_t(f(x^0))$ mărginită, avem în plus convergența unui subșir al x^k la un punct staţionar al lui f (contrar, $f(x) = \frac{1}{1+||x||^2}$)

Teorema (Polyak). Fie f diferenţiabilă pe \mathbb{R}^n cu gradientul ∇f continuu Lipschitz: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$. De asemenea, presupunem $\min_X f(x) > -\infty$ și $0 < \alpha < \frac{1}{2T}$. Atunci șirul generat de Metoda Gradient $x^{K+1} = x^K - \alpha \nabla f(x^K)$ satisface:

$$\lim_{k \to \infty} \nabla f(x^k) = 0,$$

 $\operatorname{si} f(x^{k+1}) \le f(x^k).$

- În cazul $S_f(f(x^0))$ mărginită, avem în plus convergența unui subșir al x^k la un punct staționar al lui f (contrar, $f(x) = \frac{1}{1 + ||x||^2}$)
- Garanții de convergență către un minim local/global nu există!

Teorema (Polyak). Fie f diferențiabilă pe \mathbb{R}^n cu gradientul ∇f continuu Lipschitz: $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$. De asemenea, presupunem $\min_X f(x) > -\infty$ și $0 < \alpha < \frac{1}{2I}$. Atunci șirul generat de Metoda Gradient $x^{k+1} = x^k - \alpha \nabla f(x^k)$ satisface:

$$\lim_{k \to \infty} \nabla f(x^k) = 0,$$

- În cazul $S_f(f(x^0))$ mărginită, avem în plus convergența unui subșir al x^k la un punct staționar al lui f (contrar, $f(x) = \frac{1}{1+||x||^2}$)
- Garanţii de convergenţă către un minim local/global nu există!
- Rata de convergenţă MG, în general, poate fi foarte pesimistă, e.g. pentru $f(x) = \frac{1}{x}$, cu $x \ge 1$, MG devine $x^{k+1} = x^k + \frac{1}{(x^k)^2}$, care implică $|f'(x^k)| = O(1/k^{2/3})$.

Convergență generală

$$\min_{x \in \mathbb{R}^2} \ \frac{1}{2} x^T A x - b^T x$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}, \ b = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Teoremă (Rată de convergență (convexitate))

Fie f convexă cu gradientul ∇f continuu Lipschitz:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

De asemenea, presupunem $\min_x f(x) > -\infty$ şi $0 < \alpha < \frac{1}{2L}$. Atunci şirul generat de Metoda Gradient $x^{k+1} = x^k - \alpha \nabla f(x^k)$ satisface:

$$f(x^k) - f^* \le \frac{L\|x^0 - x^*\|^2}{2k} \quad \forall k \ge 0.$$

Demonstraţie pe scurt: Pentru simplitate $\alpha_k = \frac{1}{L}$. Din continuitatea Lipschitz avem

$$f(x^{k+1}) \le f(x^k) + \nabla f(x^k)^T (x^{k+1} - x^k) + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$\le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|^2.$$

Este evidentă descreşterea $f(x^{k+1}) \le f(x^k)$. Folosim următoarele observaţii:

(i)
$$x^k = x^0 - \sum_{i=1}^{k-1} \nabla f(x^i)$$

(ii)
$$\frac{1}{2} \| \sum_{i} a^{i} \|^{2} = \frac{1}{2} \sum_{i} \| a^{i} \|^{2} + \sum_{i} (a^{i})^{T} \left(\sum_{j=0}^{i-1} (a^{j})^{T} \right)$$

(iii)
$$\max_{z} z^{T} a - \frac{\alpha}{2} \|z\|^{2} = \frac{1}{2\alpha} \|a\|^{2}$$

Demonstraţie pe scurt: din continuitatea Lipschitz avem pentru $k \ge 0$

$$f(x^{k+1}) \leq f(x^k) + \nabla f(x^k)^T (x^{k+1} - x^k) + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$\leq f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|^2$$

$$\leq f(x^*) + \nabla f(x^k)^T (x^k - x^*) - \frac{1}{2L} \|\nabla f(x^k)\|^2$$

$$\stackrel{(i)}{=} f(x^*) + \nabla f(x^k)^T (x^0 - x^*) - \frac{1}{L} \nabla f(x^k)^T \left(\sum_{j=0}^{k-1} \nabla f(x^j)\right) - \frac{1}{2L} \|\nabla f(x^k)\|^2.$$

Însumăm inegalitățile cu indecșii $i=0,\cdots,k$.

Demonstraţie pe scurt: Însumăm inegalităţile cu indecşii $i = 0, \dots, k$:

$$\sum_{i=1}^{k-1} f(x^{i+1}) - f(x^*) \le \left[\sum_{i=1}^{k-1} \nabla f(x^i) \right]^T (x^0 - x^*)$$

$$- \frac{1}{L} \sum_{i=1}^{k-1} \nabla f(x^i)^T \left(\sum_{j=0}^{i-1} \nabla f(x^j) \right) - \frac{1}{2L} \sum_{i=1}^{k-1} \|\nabla f(x^i)\|^2$$

$$\stackrel{(ii)}{=} \left[\sum_{i=1}^{k-1} \nabla f(x^i) \right]^T (x^0 - x^*) - \frac{1}{2L} \|\sum_{i=1}^{k-1} \nabla f(x^i)\|^2$$

$$\stackrel{(iii)}{\leq} \frac{L}{2} \|x^0 - x^*\|^2.$$

În final, observând $\sum_{i=1}^{k-1} f(x^{i+1}) - f(x^*) \ge k(f(x^k) - f^*)$ obţinem rata de mai sus.

Consecințe

 Rolul ratei de convergență: determinarea complexității rezolvării (OfC) până la o precizie fixată, e.g.

$$f(x^k) - f^* \le \mathcal{O}\left((C/k)\right) < \epsilon \implies$$

 $\operatorname{dupa} k \ge \mathcal{O}\left(\frac{C}{\epsilon}\right) \operatorname{atingem} f(x) - f^* \le \epsilon.$

Consecințe

 Rolul ratei de convergenţă: determinarea complexităţii rezolvării (OfC) până la o precizie fixată, e.g.

$$f(x^k) - f^* \le \mathcal{O}\left((C/k)\right) < \epsilon \implies$$

 $\text{dupa } k \ge \mathcal{O}\left(\frac{C}{\epsilon}\right) \text{ atingem } f(x) - f^* \le \epsilon.$

- Clase de rate de convergenţă:
 - subliniară: e.g $\mathcal{O}(C/k)$
 - liniară: e.g $\mathcal{O}\left(C \cdot (\frac{1}{2})^k\right)$
 - superliniară: e.g $\mathcal{O}\left(C \cdot \left(\frac{1}{2}\right)^{k^2}\right)$
 - pătratică: e.g $\mathcal{O}\left(C \cdot (\frac{1}{2})^{2^k}\right)$

$$\min_{x \in \mathbb{R}^2} \frac{1}{2} ||Ax - b||_2^2$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\min_{x \in \mathbb{R}^2} \ \frac{1}{2} ||Ax - b||_2^2$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0.02 \end{bmatrix}$$

Referințe

- B. Polyak, <u>Introduction to Optimization</u>, Optimization Software Inc., New York, 1987
- D. Bertsekas, <u>Nonlinear Programming</u>, Third Edition. Athena Scientic, 2016.
- Y. Nesterov, <u>Introductory Lectures on Convex Optimization</u>, Kluwer, 2004.
- Hiriart-Urruty, Jean-Baptiste, and Claude Lemaréchal. Convex analysis and minimization algorithms I: Fundamentals. Vol. 305. Springer science & business media, 1996.
- www.desmos.com

