Math 415 - Lecture 21

Networks and linear algebra

Wednesday October 14th 2015

Textbook reading: Chapter 2.5.

Suggested practice exercises: Chapter 2.5: 1, 2, 6.

Strang lecture: Lecture 12: Graphs, Networks, Incidence Matrices

1 Review

Recall that if $V \subset \mathbb{R}^n$ is a subspace, V^{\perp} is the *orthogonal complement* of V, the subspace of all vectors \mathbf{x} perp to all vectors of V.

Theorem 1. Fundamental Theorem of Linear Algebra.

- $\dim(V) + \dim(V^{\perp}) = \dim(\mathbb{R}^n) = n$.
- $\operatorname{Col}(A)^{\perp} = \operatorname{Nul}(A^T)$.
- $\operatorname{Nul}(A)^{\perp} = \operatorname{Col}(A^T)$.

2 A new perspective on Ax = b

To see if $A\mathbf{x} = \mathbf{b}$ has a solution, check that

Direct approach: $b \in Col(A)$

Indirect approach: $\mathbf{b} \perp Nul(A^T)$

The indirect approach means:

if
$$\mathbf{y}^T A = \mathbf{0}$$
, then $\mathbf{y}^T \mathbf{b} = 0$.

Example 2. Let $A =$ Solution (old).	$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$. For which b does A x = b have a solution?	
Solution (new).		

3 Application: Directed graphs

3.1 Set up

- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- Arrow indicates direction of flow
- No edges from a node to itself

Definition 3. Let G be a graph with m edges and n nodes. The edge-node incidence matrix of G is the $m \times n$ matrix A with

$$A_{i,j} = \begin{cases} -1, & \text{if edge } i \text{ leaves node } j \\ +1, & \text{if edge } i \text{ enters node } j \\ 0, & \text{otherwise} \end{cases}$$

Example 4. Give the edge-node incidence matrix of our graph.

Sol	ution.
\mathbf{SO}	աստու

3.2 Meaning of the null space

Theorem 5. dim(Nul(A)) is the number of connected subgraphs.

- For large graphs, disconnection may not be visually apparent
- ullet But, we can always find out by computing dim(Nul(A)) using Gaussian elimination!

Example 6. Determine the number of connected subgraphs.

Solution.

$$A\mathbf{x} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -x_1 + x_3 \\ -x_2 + x_3 \\ -x_2 + x_4 \\ -x_3 + x_4 \end{bmatrix}$$

Example 7. Give a basis for Nul(A) for this graph:

Solution.					

3.3 Meaning of left null space

The \mathbf{y} in $\mathbf{y}^T A$ is assigning values to each edge. (Think: assigning currents to edges, so that \mathbf{y} describes a flow pattern.)

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, A^{T} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}$$

$$A^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}$$

Idea. So: $A^T \mathbf{y} = 0 \iff$ at each node, (directed) values assigned to edges add to zero.

When thinking of currents, this is Kirchhoff's first law: at each node, incoming and outgoing currents balance. Flow in = Flow out.

What is the simplest way to balance current?

Assign current in a loop! We have two loops:

$$edge_1 \rightarrow edge_3 \rightarrow -edge_2$$
 and $edge_3 \rightarrow edge_5 \rightarrow -edge_4$

Example8. Solve $A^T\mathbf{y}=0$ for our graph. Recall

$$A^T = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Sal	${f lution}.$	
$\mathcal{O}_{\mathbf{U}}$	uuion.	,

Theorem 9. In general, $dim(Nul(A^T))$ is the number of (independent) loops.

For large graphs, we now have a nice way to computationally find all loops.

4 Summary/Outlook

- * We described a network by using a matrix A.
- * The Null space Nul(A) has as dimension the number of connected components of the network.
- * The Left Null Space $Nul(A^T)$ has as dimension the number of independent loops.
- * The column space Col(A) and row space $Col(A^T)$ also have "geometric" meaning in terms of the network, see the book and Strang's lecture.

5 Practice problems

Example 10. Give a basis for $Nul(A^T)$ for the following graph:

S	Solution.						

Example~11. Draw the graph with edge-node incidence matrix

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

Give a basis for Nul(A) and $Nul(A^T)$.

Solution.