Esto prueba la ecuación (6.1.23). Para probar la unicidad, suponga que $\mathbf{v} = \mathbf{h}_1 - \mathbf{p}_1 = \mathbf{h}_2 - \mathbf{p}_2$, donde \mathbf{h}_1 , $\mathbf{h}_2 \in H$ y \mathbf{p}_1 , $\mathbf{p}_2 \in H^{\perp}$. Entonces $\mathbf{h}_1 - \mathbf{h}_2 = \mathbf{p}_1 - \mathbf{p}_2$. Pero $\mathbf{h}_1 - \mathbf{h}_2 \in H$ y $\mathbf{p}_1 - \mathbf{p}_2 \in H^{\perp}$, de manera que $\mathbf{h}_1 - \mathbf{h}_2 \in H \cap H^{\perp} = \{\mathbf{0}\}$. Así, $\mathbf{h}_1 - \mathbf{h}_2 = \mathbf{0}$ y $\mathbf{p}_1 - \mathbf{p}_2 = \mathbf{0}$, lo que completa la prueba.

EJEMPLO 6.1.9 Descomposición de un vector en \mathbb{R}^3

En
$$\mathbb{R}^3$$
, sea $\pi = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x - y + 3z = 0 \right\}$. Exprese el vector $\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$ en términos de $\mathbf{h} + \mathbf{p}$, donde

 $\mathbf{h} \in \pi \, \mathbf{y} \, \mathbf{p} \in \pi^{\perp}$

SOLUCIÓN • Una base ortonormal para
$$\pi$$
 es $B_1 = \left\{ \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{-6}{\sqrt{70}} \\ \frac{3}{\sqrt{70}} \\ \frac{5}{\sqrt{70}} \end{pmatrix} \right\}$, y del ejemplo 6.1.7, $\mathbf{h} = \operatorname{proy}_{\pi} \mathbf{v} = \begin{pmatrix} \frac{1}{7} \\ -\frac{4}{7} \\ -\frac{2}{7} \end{pmatrix} \in \pi$. Entonces
$$\mathbf{p} = \mathbf{v} - \mathbf{h} = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} - \begin{pmatrix} \frac{1}{7} \\ -\frac{4}{7} \\ -\frac{2}{7} \end{pmatrix} = \begin{pmatrix} \frac{20}{7} \\ -\frac{10}{7} \\ \frac{30}{7} \end{pmatrix} - \in \pi^{\perp}.$$
 Observe que $\mathbf{p} \cdot \mathbf{h} = 0$. El siguiente teorema es muy útil en estadística y otras áreas de aplicación. Se dará una aplicación

El siguiente teorema es muy útil en estadística y otras áreas de aplicación. Se dará una aplicación de este teorema en la siguiente sección y se aplicará una versión amplificada de este resultado en la sección 6.3.

Teorema 6.1.8 Teorema de aproximación de la norma

Sea H un subespacio de \mathbb{R}^n y sea \mathbf{v} un vector en \mathbb{R}^n . Entonces proy $_H$ \mathbf{v} es la mejor aproximación para v en H en el siguiente sentido: si h es cualquier otro vector en H, entonces

$$|\mathbf{v} - \operatorname{proy}_{H} \mathbf{v}| < |\mathbf{v} - \mathbf{h}| \tag{6.1.25}$$

Demostración

Del teorema 6.1.7, $\mathbf{v} - \text{proy}_H \mathbf{v} \in H^{\perp}$. Se escribe

$$\mathbf{v} - \mathbf{h} = (\mathbf{v} - \text{proy}_H \mathbf{v}) + (\text{proy}_H \mathbf{v} - \mathbf{h})$$

El primer término de la derecha está en H^{\perp} , mientras que el segundo está en H; así,

$$(\mathbf{v} - \operatorname{proy}_{H} \mathbf{v}) \cdot (\operatorname{proy}_{H} \mathbf{v} - \mathbf{h}) = 0$$
 (6.1.26)