11p2 (3)

April 4, 2019

1 Q2.1

1. Use matplotlib to show scatterplots of each variable

```
In [238]: from matplotlib import pyplot as plt
    import numpy as np
    import pandas as pd
    import csv

# you can also use pandas to load the data
    data = pd.read_csv('happiness.csv')

In [239]: colnames = pd.read_csv('happiness.csv', nrows=1).columns.tolist()
    print(colnames)

['country', 'happiness_rank', 'happiness_score', 'economy', 'family', 'health', 'freedom', 'ge!

In [241]: #x = data.iloc[:, 1]
    #y = data.iloc[:, 2] can do with iloc
    #plt.scatter(x,y)
    data.plot.scatter(x='happiness_rank', y='happiness_score', title="happiness_rank valipht.show()
```


2 trend:

the above plot clearly show the linear trend h_score and h_rank are dependent with each other

Trend:Clear linear growing trend with significant potential bias from the trendline. Very probably important, though outliers may cause issues.

Trend:probably shows linear trend.

In [137]: data.plot.scatter(x='health', y='happiness_score', title="health value in happiness_score')
 plt.show()

Trend: could be quadratic usefull for high happiness_score

Trend:it shows linear trend well having low freedom shows less h_score

In [139]: data.plot.scatter(x='generosity', y='happiness_score', title="generosity value in happiness_score")

probably it shows exponential trend

their is probably linear relation between h_score an cooruption,while corruption high their is h_score more

In [154]: data.plot.scatter(x='internet_access_population[%]', y='happiness_score', title="internet_above")

their is clear linear trend between h_score and internet_access.

in this plot the quadratic trend shown

it probaly shows linear trend

In [221]: data.plot.scatter(x='surplus_deficit_GDP[%]', y='happiness_score', title="surplus_deficit_gdpp", y='happiness_score', title="surplus_deficit_gdp", y='happiness_score', titl

thier it shows a quadratic trend

could be a quadratic trend

In [149]: data.plot.scatter(x='GDP_per_capita[\$]', y='happiness_score', title="GDP value in happiness_score")

Low GDP suggest logarithmic trend, but this trend rapidly disappears as the distance increases.

no clear trend. Probably useless as there is no hint of a trend.

In [151]: data.plot.scatter(x='military_expenditures[%]', y='happiness_score', title="military_plt.show()

could be quadratic trend

In [153]: data.plot.scatter(x='population', y='happiness_score', title="population value in happiness_score")

no trend is shown clear here

IMPORTANT FACTORS: Reasons moastly discussed individual at discription, the most clear factors that should give reasonably good result with the Happiness_rank,economy,family,freedom,internet access population slightly less usefull that can moastly be used for excluding score would be military_expenditure,gdp,family_income,surplus_deficit,cellular value,generocity probably useless are population, inflation,

3 Q2.2

Load data and set up packages

```
#from sklearn.preprocessing import Imputer
          data = pd.read_csv('happiness.csv')
          le = preprocessing.LabelEncoder()
          data = data.apply(le.fit transform)
          \#x = preprocessing.scale(data.iloc[:, 3:18])
          #y = preprocessing.scale(data.iloc[:, 2])
          normalizer = Normalizer().fit(data)
          data = normalizer.transform(data)
          print(data)
          #print(x.shape)
[[0.22205601 0.
                        0.3202731 \dots 0.01067577 \dots 0.02135154 \dots 0.08327101
 [0.08238308 0.00222657 0.33175888 ... 0.01113285 0.04230482 0.0957425 ]
  [0.12578859 \ 0.00441363 \ 0.32660897 \ \dots \ 0.00220682 \ 0.07282497 \ 0. 
 [0.44110763 0.49300265 0.00648688 ... 0.
                                                   0.12973754 0.41516012]
 [0.08890068 0.61826383 0.00404094 ... 0.
                                                   0.15759666 0.31115238]
 [0.09235783 0.54704252 0.
                                   ... 0.
                                                0.09235783 0.15629786]]
In [244]: missing_values = ["n/a", "na", "--"]
          data = pd.read_csv("happiness.csv", na_values=missing_values)
          print(data.isnull().sum())
country
happiness_rank
                                   0
happiness_score
economy
                                   0
family
                                   0
                                   0
health
freedom
                                   0
generosity
                                   0
corruption
dystopia_residual
                                   3
internet_access_population[%]
cellular subscriptions
                                   0
surplus deficit GDP[%]
                                   0
familiy_income_gini_coeff
                                  14
GDP_per_capita[$]
inflation_rate[%]
                                   0
military_expenditures[%]
                                  15
map_reference
                                   0
biggest_official_language
                                   0
                                   0
population
```

```
dtype: int64
```

dataset have missing values, above values is showing in which feature how many missing values was their.

Check the dataset for missing values and, if any are found, address them programmatically

```
In [289]: data = pd.read_csv('happiness.csv')
          le = preprocessing.LabelEncoder()
          data = data.apply(le.fit_transform)
          x = preprocessing.scale(data.iloc[:, 3:18].values)
          y = preprocessing.scale(data.iloc[:, 2].values)
          normalizer = Normalizer().fit(data)
          data = normalizer.transform(data)
          print(data)
[[0.22205601 0.
                         0.3202731 \dots 0.01067577 \ 0.02135154 \ 0.08327101
 [0.08238308 \ 0.00222657 \ 0.33175888 \ \dots \ 0.01113285 \ 0.04230482 \ 0.0957425 \ ]
  [0.12578859 \ 0.00441363 \ 0.32660897 \ \dots \ 0.00220682 \ 0.07282497 \ 0. 
 [0.44110763 0.49300265 0.00648688 ... 0.
                                                     0.12973754 0.41516012]
 [0.08890068 0.61826383 0.00404094 ... 0.
                                                     0.15759666 0.31115238]
 [0.09235783 0.54704252 0.
                                 ... 0.
                                                     0.09235783 0.15629786]]
```

C:\Users\Srilu\Anaconda3\lib\site-packages\sklearn\utils\validation.py:475: DataConversionWarn warnings.warn(msg, DataConversionWarning)

3.1 Linear model

```
print(xTrain.shape)
          print(xTest.shape)
          print(yTrain.shape)
          print(yTest.shape)
          lm.score(xTest,yTest)
          #ypredictions = lm.fit(xTrain ,yTrain).predict(xTest)
(93, 15)
(62, 15)
(93,)
(62,)
In [324]: lm = model1
          lm.fit(xTrain,yTrain)
          ypredictions = lm.predict(xTest)
          data = pd.DataFrame({'actual':yTest, 'predicted': ypredictions})
          data
          plt.scatter(yTest,ypredictions)
```

Out[324]: <matplotlib.collections.PathCollection at 0x21e65ae03c8>


```
print("cross:", score)
    score1 = cross_val_score(model1, x, y, scoring='r2', cv=rkf).mean()
    print("r2=", score1)
    #score_linear = metrics.r2_score(yTest, ypredictions)
    #print('r2 = ', score_linear)

MSE = 0.034685335649298855
cross: [0.95974719 0.96542273 0.94965564 0.95807237 0.93867103]
r2= 0.9543137913170767
```

the linear model has R2 value 0.954 which is impressive

3.2 Quadratic model

{text results here}

3.3 Gaussian model

the R2score is 0.903 prettymuch equal to all models

3.4 Comparison

where as R2 score are pretty much similar, where as linear model is best fit preferable while MSE are taken into consideration