

<u>AUT</u>omotive <u>Open System AR</u>chitecture

Peter Bolz CDG-SMT/ESB2

Presentation Goal

Provide some <u>Top Level</u> information to support the audience in answering the question:

What is AUTOSAR and in which areas could it influence my work?

Sales .. Project handling .. Function development .. SW development .. SW integration .. Application .. HW development .. Processes ..

AUTOSAR overview

Content

- Objectives, partners, organization
- Technical approach
 - Methodology
 - ECU SW Architecture
 - Application Interfaces
- AUTOSAR communication patterns
- Roadmap
- Business cases
- AUTOSAR at Bosch
- AUTOSAR at DGS
- → Links

The challenge

- Master growing complexity by networking of functions
- Flexible E/E architectures
- Flexible exchangeability between supplier's and manufacturer's applications
- Increase of quality inline with high reliability of the E/E system
- Reduce effort
- Enable global shared development

→ Solution: Reuse and sharing of software

→ Strategy: Standardization of system and software structure

Goals of **AUT SAR**

Scalability, Relocatability and Re-Use

of Basic Software & Application Software Components across world-leading OEMs and Suppliers.

<u>AUT</u>omotive <u>Open</u> <u>System AR</u>chitecture

- → Cooperate on standards
- Compete on innovations / implementations

AUTOSAR is mainly a SW topic!

AUTOSAR partners

Cross Divisional Group - Software, Methods and Tools

AUTOSAR project

Project organization

AUTOSAR project

Work package structure in Phase III

AUTOSAR overview

Content

- Objectives, partners, organization
- Technical approach
 - Methodology
 - ECU SW Architecture
 - Application Interfaces
- AUTOSAR communication patterns
- Roadmap
- Business cases
- AUTOSAR at Bosch
- AUTOSAR at DGS
- → Links

AUTOSAR technical approach

Top-down development approach!

AUTOSAR technical approach

The standard covers

AUTOSAR output: Specifications

- Methodology
 - Vehicle SW system modelling and partitioning
 - ECU configuration, implementation and integration
- → ECU SW-Architecture
 - Allowing HW independent Application SW
 - Standardized ECU Basic SW
 - Conformance tests for SW
- Application Interfaces
 - Domain specific partitioning and definition of signal

From VFB to ECU

Virtual Functional Bus (VFB)

- Independent of specific ECU, bus protocol, ...
- Independent of programming language
- global system optimization possible

Mapping to ECU network

Runtime Environment

- ECU specific instantiation of the VFB
- Connecting application and Basic SW
- Has to ensure that SW-Cs can communicate, regardless where a SW-C is mapped

Methodology

AUTOSAR Methodology and Tooling

The AUTOSAR methodology

- defines activities, work products and their logical relationship
- does NOT prescribe a precise order of activities or iterations
- is NOT a complete process description
- is NOT a business model with "roles" and "responsibilities"
- defines XML as description format

Common formats (common "language")

=> Equal interpretations

AUTOSAR XML (ARXML)

```
<?xml version="1.0" encoding="UTF-8"?>
AUTOSAR
                                <autosar.org/3.1.2">
                                  <TOP-LEVEL-PACKAGES>
                                    <AR-PACKAGE>
→TOP-LEVEL-PACKAGES
                                     <SHORT-NAME>Package ShortName
                                      <ELEMENTS>
                                        <INTEGER-TYPE>
    AR-PACKAGE
                                        </INTEGER-TYPE>
                                        <SENDER-RECEIVER-INTERFACE>
        ELEMENTS
                                        </SENDER-RECEIVER-INTERFACE>
                                        <CLIENT-SERVER-INTERFACE>
        INTEGER-TYPE
                                        </CLIENT-SERVER-INTERFACE>
        SENDER-RECEIVER-INTERFACE
                                      </ELEMENTS>
        CLIENT-SERVER-INTERFACE
                                    </AR-PACKAGE>
                                  </TOP-LEVEL-PACKAGES>
                                </AUTOSAR>
```


AUTOSAR XML

AUTOSAR describes everything tool readable in XML

Some major Methodology differences to MSR

MSR/MDX (MEDC17)	AUTOSAR
ECU centric approch	Vehicle wide approach
Single instantiation	Multiple instatiation of SWCs
Implicit Binding via names	Explicit Binding via connectors
SW-VARIABLE	Port prototype + Port-Interface + DataElement / Operation Prototypes
1:1:1-relationship MSR model - SW-Variable – A2L Display name	No 1:1:1-relationship between model (=.arxml), code and display names.
1 global name space per element type (e.g. variable und parameter are allowed to have same name)	Individual name spaces via AUTOSAR packages (AR-PACKAGE)

AUTOSAR technical approach - SW-Architecture

exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Internal | CDG-SMT/ESB2-Bolz | 22.09.2010 | 903 10 11 135 | © Robert Bosch GmbH 2007. All rights reserved, also regarding any disposal,

AUTOSAR technical approach - SW Architecture

Cross Divisional Group - Software, Methods and Tools

exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Internal | DGS-EC/ESB2-Bolz | 22.09.2010 | 903_10_11_135 | @ Robert Bosch GmbH 2007. All rights reserved, also regarding any disposal,

AUTOSAR technical approach - SW-Architecture

Release 3.1 Basic-SW Modules

AUTOSAR techn. approach - Application interfaces

Functional interfaces (e.g. BatteryVoltage or EngineSpeed)

Goals

→ Standardization of (often used) "signals" with all required details (type, range, unit, default display name, …) for all vehicle domains

Not addressed

Application SW functionality and architecture

AUTOSAR techn. approach - Application interfaces

Standardization of functional interfaces

- → Physical/logical interfaces of sensors and actuators
- → Mechanism: Port-BluePrints

AR4.0 example: EngineSpeed

PortBluePrint: EngSpd

PortInterface: EngN1

DataPrototype: EngN

ApplDataType: N1

DataConstraint: 0..16383.5

Unit: Rpm

IntendedResolution: 0.5

(No CompuMethod)

AUTOSAR overview

Content

- Objectives, partners, organization
- Technical approach
 - Methodology
 - ECU SW Architecture
 - Application Interfaces
- AUTOSAR communication
- Roadmap
- Business cases
- AUTOSAR at Bosch
- AUTOSAR at DGS
- → Links

AUTOSAR communication

SW-Components communicate via "Ports"

Virtual on the VFB

ECU I

SW-C AR

SW-C AR

Basic Software

ECU m

SW-C AR

RTE

Basic Software

ECU m

SW-C AR

SW-C AR

RTE

Basic Software

as well as

via RTE in the ECU

Gateway

Communication via Ports

AUTOSAR communication

SWC communication – only via RTE!

Example: SWC with 1 Runnable

```
Inclusion of SWC specific include file
# include "Rte Swc1.h"
                                                           generated by RTE generator
                                                           declaring all types and interfaces
void Run1 (void)
                                              DataElement name
    Std_ReturnType status;
    status = Rte_Write_PortX_DataX(47);
                                                          Explicit Sender-Receiver Write call
    status = Rte Call_PortY_SetEventStatus(PASSED);
                                                                         Client-Server call
                            Port
                                      Operation
                           name
                                       name
```


AUTOSAR communication

```
Interfaces.arxml
Swc1.arxml
                                            <AR-PACKAGE>
<APPLICATION-SOFTWARE-COMPONENT-TYPE>
                                               <SHORT-NAME>Interfaces</SHORT-NAME>
  <SHORT-NAME>Swc1</SHORT-NAME>
                                               <ELEMENTS>
 <PORTS>
                                                 <SENDER-RECEIVER-INTERFACE>
   <P-PORT-PROTOTYPE>
                                                   <SHORT-NAME>IFaceX</SHORT-NAME>
    <SHORT-NAME>PortX</SHORT-NAME>
                                                   <IS-SERVICE>false</IS-SERVICE>
    <PROVIDED-INTERFACE-TREF DEST="SENDER-
                                                   <DATA-ELEMENTS>
      RECEIVER-INTERFACE">/Interfaces/IfaceX
                                                     <DATA-ELEMENT-PROTOTYPE>
      </PROVIDED-INTERFACE-TREF>
                                                      <SHORT-NAME> DataX </SHORT-NAME>
   </P-PORT-PROTOTYPE>
                                                       <TYPE-TREF DEST="INTEGER-
                                                        TYPE">/DataTypes/TypeX</TYPE-TREF>
Rte Swc1.h
                                                      <IS-QUEUED>false</IS-QUEUED>
#define Rte Write PortX DataX( data )
                                                     </DATA-ELEMENT-PROTOTYPE>
     ((Rte Rx 000378 DataX = data), RTE E OK)
                                                   </DATA-ELEMENTS>
                                                 </SENDER-RECEIVER-INTERFACE>
Swc1.c (User code)
void Run1 (void) {
   Std ReturnType status;
   status = Rte Write PortX DataX (47);
   if (status == RTE E OK)
    { ... }
```


AUTOSAR communication - RTE

RTE generator creates the RTE SW layer

and the Header files for all SW-Components!

ARXML = AUTOSAR XML

AUTOSAR overview

Content

- Objectives, partners, organization
- Technical approach
 - Methodology
 - ECU SW Architecture
 - Application Interfaces
- AUTOSAR communication patterns
- Roadmap
- Business cases
- AUTOSAR at Bosch
- AUTOSAR at DGS
- → Links

AUTOSAR releases / roadmap

AUTOSAR releases / roadmap

New in AUTOSAR rel. 4.0 (compared to 3.1)

- Math-, bit-, ipol-, phys.-, crypto- libraries
- A2L file generation methodology => calibration approach usable
- Variant handling
- More standardized application interfaces
- Safety (Memory/Timing protection, end-to-end protection)
- Dual-Core support
- Timing Model
- Conformance tests for Base SW
- COM stack improvements including new protocols (XCP, TCP/IP, ..)
- → ..

AUTOSAR overview

Content

- Objectives, partners, organization
- Technical approach
 - Methodology
 - ECU SW Architecture
 - AUTOSAR communication patterns
 - Application Interfaces
- Roadmap
- Business cases
- AUTOSAR at Bosch
- AUTOSAR at DGS
- → Links

OEM interests: Save overall costs

Application SW

- Reuse in ECUs of different suppliers
- Reuse over ECU generations

Basic SW

- Reduced BSW maintenance effort
 - AUTOSAR maintains the standard, no need for own standard core
 - Common behavior of ECUs (special focus on network communication)
 - "cherry picking" of BSW modules

→ Process, Tools and Quality

- Common "language" eases SW exchange and interface discussions
- Commonly used tools
- Promote development at small ECU suppliers

• ..

AUTOSAR business cases

Some DGS customers interests /approaches

PSA PEUGEOT CITROËN

- Establish an own AUTOSAR based ASW platform
 - Integrate AUTOSAR ASW unmodified in ECUs from different suppliers
 - AUTOSAR ASW created by PSA and several ECU suppliers
 - Less test and calibration effort
 - Source code sharing
- → ECU supplier is responsible for BSW which must only provide AUTOSAR interfaces to ASW (ICC1 model)
- Bosch has to guarantee coexistence of legacy MEDC17 SW and AUTOSAR SW

ICC1..3 = AUTOSAR BSW Implementation Conformance Classes

AUTOSAR business cases

Some DGS customers interests

DAIMLER

Autosar rel.

- Establish an own AUTOSAR based ASW platform
 - Integrate Daimler AUTOSAR ASW unmodified in ECUs from different suppliers
 - Object code sharing
- → ECU supplier shall provide AUTOSAR compliant BSW
 - COM stack (ICC3)
 - other BSW services (currently ICC1, later ICC3)
- Bosch has to guarantee coexistence of legacy MEDC17 SW and AUTOSAR SW

ICC1..3 = AUTOSAR BSW Implementation Conformance Classes

AUTOSAR business cases

AUTOSAR Busines cases

AUTOSAR core partner exploitation plan

Core Partner	2008	2009	2010	2011	2012
BMW Group	■ ≈10 AUTOSAR BSW modules as part of Std Core in vehicles, tool / serial support in place			■ Powertrain-, Chassis-, Safety-, Body- ECUs use AUTOSAR architecture	
(BOSCH	■ Body Computer with subset of AUTOSAR specs incorporated ■ Instrument Cluster with subset of AUTOSAR specs incorporated	■ ACC ECU using AUTOSAR architecture. ■ Powertrain EDC/ME(D)17 ECUs using AUTOSAR architecture ■ Domain Control Unit using AUTOSAR BSW	■ Chassis ECU using AUTOSAR architecture ■ Body Computer using AUTOSAR architecture		
Ontinental S	■ Complete BSW Stack as Product ■ AUTOSAR Configuration Tool	■ Body ECUs using AUTOSAR architecture ■ Powertrain ECUs using AUTOSAR architecture	■ Chassis ECUs using AUTOSAR architecture		■ Engine Systems Platform based on AUTOSAR architecture
DAIMLER			■ First usage of AUTOSAR modules in vehicles	■ First AUTOSAR compatible ECUs in vehicles	Introduction of AUTOSAR architecture and methodology in vehicles
Ford		■ 1-2 AUTOSAR conformant ECUs; first use of conformant tools/methodology	■ Continuous roll-out of ECUs into vehicle architecture increased use of conformant tools / methodology		
OPEL Acres a Materia Corpusy			■ First usage of AUTOSAR modules	First use of AUTOSAR architecture ECU	
PSA PEUGEOT CITROËN		■ Powertrain ECU using AUTOSAR architecture	■ Body ECU using AUTOSAR architecture		
TOYOTA			■ First usage of AUTOSAR modules		■ AUTOSAR Architecture ECU
VOLKSWAGEN AG		■ First AUTOSAR modules in series production		■ First complete ECUs in series production	

Cross Divisional Group - Software, Methods and Tools

- Objectives, partners, organization
- Technical approach
 - Methodology
 - ECU SW Architecture
 - Application Interfaces
- AUTOSAR communication
- Roadmap
- Business cases
- AUTOSAR at Bosch
- AUTOSAR at DGS
- → Links

AUTOSAR at BOSCH

AUTOSAR - BOSCH Application Plan**

Instrument Cluster subset of AUTOSAR specs incorporated

SOP 2008

EDC/ME(D)17 ECU using AUTOSAR architecture

SOP 2009

ACC subset of AUTOSAR specs incorporated SOP 2009

Glow Control Unit subset of AUTOSAR specs incorporated

SOP 2009

Instrument Cluster using AUTOSAR BSW*

SOP 2012

FAS subset of AUTOSAR specs incorporated

SOP 2011

Body ECU subset of AUTOSAR specs incorporated

SOP 2011

Chassis DCU using AUTOSAR architecture

SOP 2009

ESP
Using AUTOSAR BSW*
& Application Interfaces
SOP 2010

Transmission Control Unit using AUTOSAR BSW*

SOP 2010

Airbag ECU Using AUTOSAR BSW* & Application Interfaces

SOP 2010

* CUBAS: Bosch AUTOSAR Base-SW ** selected products

AUTOSAR players at BOSCH

- C/AI (Corporate / Automotive Integration)
 - Central AUTOSAR coordination at Bosch
 - Bosch Project leader in AUTOSAR gremium
- CDG-SMT (Cross Divisional Group Software Methods Tools)
 - Bosch internal joint venture between CC and DGS-EC
 - Provides
 - AUTOSAR Base Software for Bosch ECUs
 - AUTOSAR Tools and Methods

Bosch Divisions and Product Units

Cross Divisional Group - Software Methods Tools

Definition of the Development of shared Chassis PT **ΔUTØ**SΔR SW and provision of the Function Function required Methods & Tools **Function Function** &Tool SW Structure CDG-Product (A) **(Z)** Method Interface layer DG-Product SW Provide **UBK-wide** common **Basis-SW** parts of SW-Base System **Operating System** Hardware

- Objectives, partners, organization
- Technical approach
 - Methodology
 - ECU SW Architecture
 - Application Interfaces
- AUTOSAR communication
- Roadmap
- Business cases
- AUTOSAR at Bosch
- AUTOSAR at DGS
- → Links

AUTOSAR at DGS

DGS series projects with AUTOSAR

Domain	Power Train, Electronic Diesel Control	
Features	Relocatability, reuse and sharing of ASW components	
AUTOSAR enabling technology	Implementing an RTE into exiting EDC17 Usage of standardized Application SW Interfaces Usage of standardized memory- and compiler settings	

SOP 2009

AUTOSAR at DGS

Stepwise Migration to AUTOSAR

MEDC17:

- Stepwise Migration to AUTOSAR
- Integration of AUTOSAR and legacy
 SW from RB and OEM
 - → "Mixed mode approach"

Close collaboration between OEM and supplier required!

MEDC18:

- Development of an AUTOSAR compliant ECU
- > AUTOSAR Basic SW
- Mixed mode approach in Application SW

Step1

Step2

AUTOSAR

DGS-EC AUTOSAR Migrationpath (platform)

CUBAS = Common UBK Basic SW

AUTOSAR

Buildup AUTOSAR competence at DGS-EC/NE2

ESB2 = AUTOSAR competence centure at DGS AR AP = **A**UTOSA**R A**nsprech**P**artner PE SW PD = Pilot Experte SW Product Designer PE SW-D = Pilot Experte SW Developer

Cross Divisional Group - Software, Methods and Tools

- Objectives, partners, organization
- Technical approach
 - Methodology
 - ECU SW Architecture
 - Application Interfaces
- AUTOSAR communication
- Roadmap
- Business cases
- AUTOSAR at Bosch
- AUTOSAR at DGS
- → Links

AUTOSAR releases

Links

→ Official AUTOSAR webside http://www.autosar.org/

→ C/AI
http://www.intranet.bosch.de/c/ai/documents/projects/autosar.html

- → Bosch copy of AUTOSAR specifications \\SI8256\AUTOSAR\$\SVN3-COPY\22_Releases
- → CDG-SMT (In organization below CC/EE)

 https://inside-ws.bosch.com/FIRSTspiritWeb/permlink/wcms_cc_cb_-cdg_smt_pg_about_1-EN
- → CUBAS
 \\bosch.com\dfsrb\DfsDE\DIV\CDG\Prj\CUBAS\01_CUBAS_ProjectMgmt\CUBAS_Intranet\index.htm

- → Objectives, partners, organization
- → Technical approach
 - Methodology
 - ECU SW Architecture
 - Application Interfaces
- → AUTOSAR communication
- → Roadmap
- → Business cases
- → AUTOSAR at Bosch
- → AUTOSAR at DGS
- → Links

Presentation Goal Has it been reached?

Provide some top level information to support the audience in answering the question:

What is AUTOSAR and in which areas could it influence my work?

Sales .. Project handling .. Function development .. SW development .. SW integration .. Application .. HW development .. Processes ..

