

PY32F072 Datasheet

32-bit ARM® Cortex®-M0+ Microcontroller

Puya Semiconductor (Shanghai) Co., Ltd

ARM® 32-bit Cortex®-M0+ Microcontroller

Features

- Core
 - ARM® 32-bit Cortex®-M0+ CPU
 - Up to 72 MHz operating frequency
- Memories
 - Maximum 128K/ 96K/ 64K/ 32K bytes Flash memory
 - Maximum 16K/ 12K/ 8K/ 4K bytes SRAM
- Clock management
 - Internal 4/8/16/22.12/24 MHz high speed clock (HSI)
 - Internal 32.768 kHz low speed clock (LSI)
 - External 4 to 32 MHz high speed crystal oscillator (HSE)
 - External 32.768 kHz low-speed crystal oscillator (LSE)
 - PLL (supports 2/3 multiplication of HSI or HSE)
- Power management and reset
 - Operating voltage: 1.7 to 5.5 V
 - Low power modes : Sleep and Stop
 - Power-on/power- down reset (POR/PDR)
 - Brown-out reset (BOR)
 - Programmable voltage detection (PVD)
- General-purpose input and output (I/O)
 - Up to 58 I/Os, all available as external interrupts
 - Drive current 8 mA
- 7-channel DMA controller
- Two 12-bit ADC
 - Up to 16 external input channels
 - Input voltage conversion range: 0 to V_{CCA}
- Two 12-bit DAC, supports 2 channels
- 3 analog comparators

- 3-channel operational amplifier
- Support 8 * 36 / 4 * 40 LCD
- 13 timers
 - One 16-bit advanced-control timer (TIM1)
 - One 32-bit general-purpose timer (TIM2)
 - Five 16-bit general-purpose timers (TIM3/14/15/16/17)
 - Two basic timers (TIM6/TIM7)
 - A low power timer (LPTIM)
 - A independent watchdog timer (IWDT)
 - A window watchdog timer (WWDT)
 - A SysTick timer
- RTC
- Communication interfaces
 - Two serial peripheral interfaces (SPI) with
 I²S function
 - Four universal synchronous/asynchronous
 Transceivers (USARTs), support automatic
 baud rate detection, two of USARTs support ISO7816, LIN and IrDA
 - Two I²C interfaces supporting standard mode (100 KHz), Fast mode (400 KHz), 7bit/10-bit addressing mode and SMBus
 - USB 2.0 full-speed interface
 - CAN 2.0 standard communication interface
- Hardware CRC-32 module
- Hardware 32-bit divider
- Unique UID
- Serial wire debug (SWD)
- Operating temperature: -40 to 85°C
- Package: LQFP64, LQFP48, QFN64, QFN48,QFN32

Content

=,	eature	S	2
١.	. Intr	oduction	6
2.	. Fun	nctional Overview	8
	2.1.	Arm®-Cortex®-M0+ core	8
	2.2.	Memories	8
	2.3.	Boot modes	9
	2.4.	Clock system	9
	2.5.	Power management	
	2.5.		11
	2.5.	2. Power monitoring	11
	2.5.	3. Voltage regulator	13
	2.5.	·	
	2.6.	Reset	
	2.6.		
	2.6.	2. System reset	13
	2.7.	General-purpose inputs and outputs (GPIOs)	
	2.8.	Hardware divider (DIV)	
	2.9.	Direct memory access controller (DMA)	
	2.10.	Interrupts and events	
	2.10		
	2.10	0.2. Extended interrupt/event controller (EXTI)	16
	2.11.	Analog-to-digital converter (ADC)	16
	2.12.	Digital-to-analog converter (DAC)	
	2.13.	Comparators (COMP)	17
	2.14.	Operational amplifier (OPA)	17
	2.15.	Liquid crystal display (LCD) controller	17
	2.16.	Timer	18
	2.16	6.1. Advanced-control timer (TIM1)	18
	2.16	6.2. General-purpose timers	19
	2.16	6.3. Basic timers (TIM6/TIM7)	19
	2.16	6.4. Low power timer (LPTIM)	20
	2.16	6.5. Independent watchdog (IWDG)	20
	2.16	6.6. System window watchdog (WWDG)	20
	2.16	6.7. SysTick timer	20
	2.17.	Real-time clock (RTC)	20
	2.18.	Cyclic redundancy check cell(CRC)	21
	2.19.	Clock check system (CTC)	21
	2.20.	System configuration controller (SYSCFG)	21
	2.21.	Debug support (DBG)	22

	2.22. Ir	nter-integrated circuit interface (I ² C)	.22
	2.23. U	Iniversal synchronous/asynchronous receiver transmitter (USART)	.23
	2.24. S	erial peripheral interface (SPI)	.24
	2.25. U	ISB2.0 full-speed module	.25
	2.26. C	AN	.25
	2.27. S	erial wire debug (SWD)	.26
3.	. Pin Con	figuration	. 27
	3.1. Por	tA alternate function mapping	.38
	3.2. Por	tB alternate function mapping	.39
	3.3. Por	tC alternate function mapping	.40
	3.4. Por	tF alternate function mapping	.40
4.	•	Мар	
5.	. Electric	al Characteristics	.46
	5.1. Par	ameter conditions	.46
	5.1.1.	Minium and maximum values	.46
	5.1.2.	Typical values	.46
		olute maximum ratings	
	5.3. Ope	erating conditions	
	5.3.1.	General operating conditions	.47
	5.3.2.	Operating conditions at power-up / power-down	.47
	5.3.3.	Embedded reset and LVD module features	.47
	5.3.4.	Operating current characteristics	.48
	5.3.5.	Wake-up time for low power mode	.50
	5.3.6.	External clock source characteristics	.50
	5.3.7.	Internal high frequency clock source HSI characteristics	.53
	5.3.8.	Internal low frequency clock source LSI characteristics	.53
	5.3.9.	Phase locked loop (PLL) characteristics	.53
	5.3.10.	Memory characteristics	.54
	5.3.11.	EFT characteristics	.54
	5.3.12.	ESD & LU characteristics	.54
	5.3.13.	Port characteristics	.55
	5.3.14.	NRST pin characteristics	.55
	5.3.15.	ADC characteristics	.56
	5.3.16.	DAC characteristics	.56
	5.3.17.	Comparator characteristics	.57
	5.3.18.	Operational amplifier characteristics	.58
	5.3.19.	Temperature sensor characteristics	.58
	5.3.20.	Built-in reference voltage characteristics	.59
	5.3.21.	Built-in reference voltage	.59
	5 3 22	Timer characteristics	59

8.	Ver	on History	69
7.	Ord	ring Information	68
(6.5.	QFN32 package size	67
(5.4.	QFN48 package size	66
(5.3.	_QFP48 package size	65
(5.2.	QFN64 package size	64
(5.1.	_QFP64 package size	63
6.	Pac	age Information	63
	5.3.	3. Communication port characteristics	60

1. Introduction

PY32F072 series microcontrollers incorporate high-performance ARM® 32-bit Cortex®-M0+ core, wide operating range voltage, embedded memories with up to 128 Kbytes flash and 32 Kbytes SRAM, frequency up to 72 MHz, and contains various products in different package types. The chip integrates multi-channel I²C, SPI, USART and other communication peripherals, one 12-bit ADC, two DAC, 13 timers, one USB 2.0, one CAN 2.0, three comparators, three operational amplifiers, and one LCD driver.

PY32F072 series microcontrollers 's operate in the temperature range from -40 to 85°C and with operating voltages from 1.7 to 5.5 V. The chip provides sleep and stop low-power operating modes, which can meet different low-power applications.

The devices are suitable for various application scenarios, such as controllers, portable devices, PC peripherals, gaming and GPS platforms, industrial applications.

Table 1-1 PY32F072 series device features and peripheral counts

Perip	herals	PY32F072R1 BT6	PY32F072R1 BU6	PY32F072C1 BT6	PY32F072C1 BU6	PY32F072K1 BU6					
Flash mer	nory (Kbyte)	128	128	128	128	128					
SRAM	l (Kbyte)	16	16	16	16	16					
	Advanced			1 (16-bit)							
	General		5 (16-bit)								
	pupose	1(32-bit)									
Timers	Basic			2							
	low power			1							
	SysTick			1							
	Watchdog			2							
	SPI[I ² S]			2[2]							
Comm.	I ² C			2							
inter-	USART	4									
faces	CAN			1							
	USB			1							
	MA	7ch									
	TC	Yes									
	PIOs	58	58	42	42	28					
	it ADC	1	1 (16 + 8)	1 (10 + 8)	1 (10 + 8)	1					
(externa	l + internal)	(16 + 8)	(10 + 8)								
D	AC	2									
(Cha	annels)	(2)									
Comp	parators		3								
C	PA			3							
L	CD			1							
Max. CPU	J frequency			72 MHz							
Operatir	ng Voltage		1.7 - 5.5 V								
Operati	ng Temp.	- 40 ~ 85 °C									
Pac	ckage	LQFP64	QFN64	LQFP48	QFN48	QFN32					

Figure 1-1 System block diagram

2. Functional Overview

2.1. Arm®-Cortex®-M0+ core

The Arm® Cortex® -M0+ is an entry-level Arm 32-bit Cortex processor designed for a wide range of embedded applications. It provides developers with significant benefits, including:

- Simple structure, easy to learn and program
- Ultra-low power consumption, energy-saving operation
- Reduced code density and more

Cortex-M0+ processor is a 32-bit core optimized for area and power consumption and is a 2-stage pipeline Von Neumann architecture. The processor offers high-end processing hardware, including single-cycle multipliers, through a streamlined but powerful instruction set and an extensively optimized design. Moreover, it delivers the superior performance expected from a 32-bit architecture computer, with a higher coding density than other 8 and 16-bit microcontrollers.

The Cortex-M0+ is tightly coupled with a Nested Vectored Interrupt Controller (NVIC).

2.2. Memories

The on-chip integrated SRAM is accessed by bytes (8 bits), half-word (16 bits) or word (32 bits).

The on-chip integrated Flash consists of two different physical areas:

- Main flash area contains application and user data
- Information area has 14 Kbytes, and it includes the following parts:
 - Option bytes
 - UID bytes
 - System memory

The protection of Flash main memory includes the following mechanisms:

- Read protection (RDP) prevents outside access.
- Wrtie protection (WRP) prevents unwanted write operation (confuse by program memory pointer from PC). The minimum protection unit for write protection is 8 Kbytes.
- Option byte write protection is a special design for unlock.

2.3. Boot modes

At startup, the BOOT0 pin and boot selector option bit nBOOT are used to select one of the three boot options in the following table:

Table 2-1 Boot configuration

Boot mode	e configuration	Mode				
nBOOT1 bit	BOOT0 pin					
Х	0	Main Flash as the boot area				
1	1	System memory as the boot area				
0	1	SRAM as the boot area				

The Boot loader is located in the System memory and is used to download the Flash program through the USART interface.

2.4. Clock system

At startup, the default system clock frequency is HSI 8 MHz, and after the program is operating the system clock frequency and system clock source can be reconfigured. The high frequency clocks that can be selected are:

- A 4/8/16/22.12/24 MHz configurable internal high precision HSI clock
- A 32.768 kHz configurable internal LSI clock
- A 4 to 32 MHz HSE clock, and used to enable the CSS function to detect HSE. If CSS fails, the hardware will automatically convert the system clock to HSI, and software configures the HSI frequency. Simultaneously, CPU NMI interrupt is generated.
- A 32.768 kHz LSE clock.
- PLL clock has HSI and HSE sources. If the HSE source is selected, when CSS is enabled and CSS fails, the PLL and HSE will be turned off, and the hardware selects the system clock source as HSI.

The AHB clock can be divided based on the system clock, and the APB clock can be divided based on the AHB clock. AHB and APB clock frequencies up to 72 MHz.

Figure 2-1 System Clock Structure Diagram

2.5. Power management

2.5.1. Power block diagram

Figure 2-2 Power block diagram

Power supply No. Power value **Describe** The chip is supplied power through the power pins. 1 V_{CC} 1.7 to 5.5 V VR supplies power to the main logic circuits and SRAM inside the chip. When the MR is powered, it outputs 1.2 V. According 2 1.2/1.0 V ± 10 % to the software configuration, when entering the stop mode it VDDD powered by MR or LPR, and the LPR output is determined to be 1.2 V or 1.0 V. 3 1.7 to 5.5 V The chip is supplied analog power through the power pins. VCCA

Table 2-2 Power Block Diagram

2.5.2. Power monitoring

2.5.2.1. Power on reset (POR/PDR)

The power-on reset (POR) and power-down reset (PDR) module is designed in the chip to provide power-on and power-off reset for the chip. The module keeps working in all modes.

2.5.2.2. Brown-out reset (BOR)

In addition to POR/ PDR, BOR (brown-out reset) is also implemented. BOR can only be enabled and disabled through the option byte.

When the BOR is turned on, the BOR threshold can be selected by the Option byte, and both the rising and falling detection points can be configured individually.

Figure 2-3 POR/PDR/BOR threshold

2.5.2.3. Programmable voltage detection (PVD)

Programmable voltage detector (PVD) module can be used to detect the V_{CC} power supply and the voltage of the PB7 pin, and the detection point is configured through the register. When V_{CC} is higher or lower than the detection point of PVD, the corresponding reset flag is generated.

This event is internally connected to line 16 of EXTI, depending on the rising/falling edge configuration of EXTI line 16, when V_{CC} rises above the detection point of PVD, or V_{CC} falls below the detection point of PVD, an interrupt is generated. In the service program, users can perform urgent shutdown tasks.

Figure 2-4 PVD threshold

2.5.3. Voltage regulator

The regulator has two operating modes:

- Main regulator (MR) is used in normal operating mode.
- Low power regulator (LPR) can be used in Stop mode where the power demand is reduced.

2.5.4. Low-power mode

In addition to the normal operating mode, the chip has 2 low-power modes:

- Sleep mode: Peripherals can be configured to keep working when the CPU clock is off (NVIC, SysTick, etc.). It is recommended only to enable the modules that must work, and close the module after the module works.
- Stop mode: In this mode, the contents of SRAM and registers are maintained, HSI and HSE are turned off, and most modules of clocks in the VDD domain are stopped. GPIO, PVD, COMP output, RTC and LPTIM can wake up stop mode.

2.6. Reset

Two resets are designed in the chip: power reset and system reset.

2.6.1. Power reset

A power reset occurs in the following situations:

- Power-on/power-down reset (POR/PDR)
- Brown-out Reset (BOR)

2.6.2. System reset

A system reset occurs when the following events occur:

- Reset of NRST pin
- Windowed watchdog reset (WWDG)

- Independent watchdog reset (IWDG)
- SYSRESETREQ software reset
- Option byte load reset (OBL)
- Power reset (POR/PDR, BOR)

2.7. General-purpose inputs and outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function, locking mechanism will freeze I/Os configuration function.

2.8. Hardware divider (DIV)

Hardware divider is a 32-bit signed/unsigned integer hardware divider.

DIV feture:

- Configurable signed/unsigned integer division calculation
- 32-bit dividend, 32-bit divisor
- Output 32-bit quotient and 32-bit remainder
- Division zero warning flag, division end flag
- 8 clock cycles to complete a division operation
- Write the divisor register to trigger the division operation to start
- Automatically wait for the end of the calculation when reading the quotient register/remainder register

2.9. Direct memory access controller (DMA)

Direct memory access (DMA) is used to provide high-speed data transfer between peripherals and memory or between memory and memory. Data can be moved quickly through DMA without CPU intervention, which saves CPU resources for other operations. The DMA controller has seven channels, each dedicated to managing requests for memory access from one or more peripherals. There is also a mediator to coordinate the priority of individual DMA requests.

The main functions are as follows:

- Single AHB master
- Support peripherals to memory, the memory to the peripherals, memory to memory and peripherals to peripheral data transmission
- On-chip memory devices, such as FLASH, an SRAM, AHB and APB peripherals, as the source and target
- All DMA channel can be independent configuration:
 - Each channel is associated either with a DMA request signal from a peripheral or with a software trigger in a memory-to-memory transfer. This configuration is done by software.

- The priority between requests is programmable by software (4 levels per channel: very high, high, medium, low) and, in equal cases, by hardware (such as a request for channel 1 taking precedence over a request for channel 2).
- The transfer sizes of the source and destination are independent (byte, half word, word), simulating packing and unpacking. The source and destination addresses must be aligned by data size.
- Programmable data transmission: 0 ~ 65535
- Each channel generates an interrupt request. Each interrupt request is caused by one of three DMA events: transfer completion, half-transfer, or transfer error.

2.10. Interrupts and events

The PY32F072 handles exceptions through the Cortex-M0+ processor's embedded a nested vectored interrupt controller (NVIC) and an extended interrupt/event controller (EXTI).

2.10.1. Nested vectored interrupt controller (NVIC)

NVIC is a tightly coupled IP inside the Cortex-M0+ processor. The NVIC can handle NMI (Non-Maskable Interrupts) and maskable external interrupts from outside the processor and Cortex-M0+ internal exceptions. NVIC provides flexible priority management.

The tight coupling of the processor core to the NVIC greatly reduces the delay between an interrupt event and the initiation of the corresponding interrupt service routine (ISR). The ISR vectors are listed in a vector table, stored at a base address of the NVIC. The vector table base address determines the vector address of the ISR to execute, and the ISR is used as the offset composed of serial numbers.

If a high-priority interrupt event occurs and a low-priority interrupt event is just waiting to be serviced, the later-arriving high-priority interrupt event will be serviced first. Another optimization is called tail-chaining. When returning from a high-priority ISR and then starting a pending low-priority ISR, unnecessary pushes and pops of processor contexts will be skipped. This reduces latency and improves power efficiency.

NVIC features:

- Low latency interrupt handling
- Level 4 interrupt priority
- Supports one NMI interrupt
- Support 32 maskable external interrupts
- Supports 10 Cortex-M0+ exceptions
- High-priority interrupts can interrupt low-priority interrupt responses
- Support tail-chaining optimization
- Hardware interrupt vector retrieval

2.10.2. Extended interrupt/event controller (EXTI)

EXTI adds flexibility to handle physical wire events and generates wake-up events when the processor wakes up from stop mode.

The EXTI controller has multiple channels, including a maximum of 16 GPIOs, 1 PVD output, 3 COMP outputs, RTC and LPTIM wake-up signals. GPIO, PVD and COMP can be configured to be triggered by a rising edge, falling edge or double edge. Any GPIO signal can be configured as EXTI0 to 15 channel through the select signal.

- Each EXTI line can be independently masked through registers.
- The EXTI controller can capture pulses shorter than the internal clock period.
- Registers in the EXTI controller latch each event. Even in stop mode, after the processor wakes up from stop mode, it can identify the wake-up source or identify the GPIO and event that caused the interrupt.

2.11. Analog-to-digital converter (ADC)

The chip has a 12-bit SARADC. The module has up to 24 channels to be measured, including 16 external channels and 8 internal channels. The reference voltage can be selected with precision voltage (1.5 V, 2.048 V or 2.5 V) or the power supply voltage.

- The conversion mode of each channel can be set to single, continuous, sweep, discontinuous mode. Conversion results are stored in left or right-aligned 16-bit data registers.
- An analogue watchdog allows the application to detect if the input voltage exceeds a user-defined high or low threshold.
- The ADC has been implemented to operate at a low frequency, resulting in lower power consumption.
- At the end of sampling, conversion, and continuous conversion, an interrupt request is generated when the conversion voltage exceeds the threshold when simulating the watchdog.

2.12. Digital-to-analog converter (DAC)

Digital/analog conversion module (DAC) is a 12-bit digital input, voltage output digital/analog converter. The DAC can be configured in 8-bit or 12-bit mode, or can be used in conjunction with a DMA controller. When the DAC is operating in 12-bit mode, the data can be left justified or right justified. The DAC module has two output channels, each with a separate converter. In dual-DAC mode, the two channels can be converted independently, or they can be converted simultaneously and update the output of the two channels synchronously. The main features are as follows:

- 12 mode data left or right aligned
- synchronous update functionality
- waveform generating noise
- triangle waveform generation

- dual DAC channel or respectively at the same time
- each channel has the DMA function
- support DMA underflow error detection
- external triggers the transformation

2.13. Comparators (COMP)

Three general purpose comparators are integrated in the chip, namely COMP1/2/3. These two or three modules can be used as separate modules or combined with timer.

Comparators can be used as follows:

- Triggered by analog signal to generate low-power mode wake-up function.
- Analog signal conditioning
- Cycle by cycle current control loop when connected with PWM output from timer

2.14. Operational amplifier (OPA)

The OPA1/2/3 module can be flexibly configured and is suitable for simple amplifiers. The three internal opamps can be cascaded using external resistors.

OPA features are summarized as follows:

- Three independently configured operational amps
- OPA input range is 0 to AV_{CC}, output range is 0.1 V to AV_{CC} 0.2 V (demand) to simulate a module, a programmable gain
- Can be configured for the following models
- General operational mode (general purpose OPA)
- DAC voltage follower

2.15. Liquid crystal display (LCD) controller

The LCD controller is a digital controller/driver for monochrome passive liquid crystal displays (LCDS), with up to 8 common terminals (COM) and 40 segment terminals (SEG) to drive 160 (4 * 40) or 288 (8 * 36) LCD image elements. The exact number of terminals depends on the device pins described in the data manual. LCD functions are summarized as follows:

- Highly flexible frame rate control
- Support static, 1/2, 1/3, 1/4, 1/6, and 1/8 of a duty ratio
- Support 1/2, 1/3 bias voltage
- Up to 16 registers LCD data RAM
- By software configuration of LCD contrast
- 3 kinds of waveform generation
 - internal resistance pressure resistance, external pressure, external capacitance partial pressure

- by way of internal resistance of the software configuration partial pressure power consumption, so as to match the capacitance charge needed for the LCD panel
- Support low power consumption modes: LCD controller can be on the run, Sleep and stop mode for display
- Configurable frame interrupt
- Support LCD flashing function and configuration of multiple flicker frequency
- Unused LCD segments and public pin can be configured to digital or analog functions

2.16. Timer

The characteristics of different timers of PY32F072 series are shown in the following table:

Capture Comple-Timer Counter **Prescaler** Timer **DMA** Counter type /compare mentary type resolution factor channels outputs Up, down, Integer from Advanced TIM1 3 16-bit center Support 4 1 to 65536 control aligned Up, down, General Integer from TIM2 32-bit center Support 4 1 to 65536 purpose aligned Up, down, Integer from TIM3 16-bit Support 4 center 1 to 65536 aligned Integer from TIM14 16-bit Up 1 General 1 to 65536 purpose Integer from 2 TIM15 16-bit Up 1 1 to 65536 TIM16. Integer from 16-bit Up Support 1 1 TIM17 1 to 65536 TIM6, Integer from Up Basic 16-bit Support TIM7 1 to 65536

Table 2-3 Timer features comparsion

2.16.1. Advanced-control timer (TIM1)

The advanced-control timer (TIM1) is consist of a 16-bit auto-reload counter driven by a programmable prescaler. It can be used in various scenarios, including pulse length measurement of input signals (input capture) or generating output waveforms (output compare, output PWM, complementary PWM with dead-time insertion).

TIM1 includes 4 independent channels:

- Input capture
- Output comparison
- PWM generation (edge or center-aligned mode)
- Single pulse mode output

If TIM1 is configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers by the Timer Link feature for synchronization or event chaining.

TIM1 supports the DMA function.

2.16.2. General-purpose timers

2.16.2.1. TIM2/TIM3

The general-purpose timers TIM2/TIM3 are consist of 32/16-bit auto-reload counters and a 32/16-bit prescaler. There are four independent channels each for input capture/output compare, PWM or one-pulse mode output.

- They can work with the TIM1 by the Timer Link.
- TIM2/TIM3 supports DMA function.
- This timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
- The counter can be frozen in debug mode.

2.16.2.2. TIM14

- The general-purpose timer (TIM14) is consist of a 16-bit auto-reload counter driven by a programmable prescaler.
- TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.
- The counter can be frozen in debug mode.

2.16.2.3. TIM15/TIM16/TIM17

- The general-purpose timer (TIM15, TIM16 and TIM17) is consist of a 16-bit auto-reload counter driven by a programmable prescaler.
- TIM16/TIM17 features one single channel for input capture/output compare, PWM or one-pulse mode output.
- TIM15 features two single channel for input capture/output compare, PWM or one-pulse mode output.
- TIM15/TIM16/TIM17 have complementary outputs with dead time.
- TIM15/TIM16/TIM17 supports DMA function.
- The counter can be frozen in debug mode.

2.16.3. Basic timers (TIM6/TIM7)

- The basic timer (TIM6/TIM7) is consist of a 16-bit auto-reload upcounter driven by their programmable prescaler respectively.
- Synchronization circuit to trigger DAC.
- Generate interrupt/DMA request on update event (counter overflow).

2.16.4. Low power timer (LPTIM)

- LPTIM is a 16 -bit upcounter with a 3-bit prescaler and only support a single count.
- LPTIM can be configured as a stop mode wake-up source.
- The counter can be frozen in debug mode.

2.16.5. Independent watchdog (IWDG)

Independent watchdog (IWDG) is integrated in the chip, and this module has the characteristics of high-security level, accurate timing and flexible use. IWDG finds and resolves functional confusion due to software failure and triggers a system reset when the counter reaches the specified timeout value.

- The IWDG is clocked by LSI, so even if the main clock fails, it can keep working.
- IWDG is the best suited for applications that require the watchdog as a standalone process outside of the main application and do not have high timing accuracy constraints.
- Controlling of option byte can enable IWDG hardware mode.
- IWDG is the wake-up source of stop mode, which wakes up stop mode by reset.
- The counter can be frozen in debug mode.

2.16.6. System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability, and the counter can be frozen in debug mode.

2.16.7. SysTick timer

SysTick timer is dedicated to real-time operating systems, but could also be used as a standard downcounter.

SysTick Features:

- 24-bit down counter
- Auto-reload capability
- Maskable system interrupt generation when the counter reaches 0

2.17. Real-time clock (RTC)

The real-time clock is an independent counter. It has a set of continuous counting counters, which can provide a clock calendar function under the corresponding software configuration. Modifying the value of the counter can reset the current time and date of the system.

- RTC is a 32-bit programmable counter with a prescale factor of up to 2²⁰ bits.
- The RTC counter clock source can be LSE/LSI and the stop wake-up source.
- RTC can generate alarm interrupt, second interrupt and overflow interrupt (maskable).
- RTC supports clock calibration.
- RTC can be frozen in debug mode.

2.18. Cyclic redundancy check cell(CRC)

CRC computing unit is based on a fixed generation polynomial to obtain 32-bit CRC computing results. In other applications, CRC technology is mainly used to verify the correctness and integrity of data transmission or data storage. CRC cell contains one 32-bit data register:

- When writing to this register, as an input register, you can enter new data to perform CRC calculations.
- When the register is read, the result of the last CRC calculation is returned.
- Each time a data register is written, the result of the calculation is a combination of the previous CRC calculation and the new calculation (CRC calculation is performed on the entire 32-bit word rather than byte by byte).
- You can RESET register CRC_DR to 0xFFFF by setting the reset bit of register CRC_CR. This operation does not affect the data in register CRC_IDR.
- The initial CRC value can be configured.

2.19. Clock check system (CTC)

The clock calibration controller (CTC) uses hardware to automatically calibrate the RC crystal oscillator (HSI) when the internal configuration is 16 MHz, and uses the PLL (48 M) after 3 times the frequency as the clock source of the USBD module. The CTC module calibrates the HSI clock frequency based on an external high-precision reference signal source, and adjusts the calibration value automatically or manually to obtain an accurate PLL48 M clock.

The CTC module performs the following functions:

- Three external reference sources: GPIO, LSE clock, USBD_SOF.
- Provide software reference synchronization pulse.
- Hardware calibration automatically, no software operation.
- 16 bits calibration counter with reference source capture and overload capabilities.
- 8 bits clock calibration base value for frequency evaluation and automatic calibration.
- Flag bits and interrupts that indicate the state of clock calibration: calibration success state (CKOKIF), Warning state (CKWARNIF), and error state (ERRIF).

2.20. System configuration controller (SYSCFG)

The SYSCFG module provides the following functions:

- The filtering function on the IO pin of the _I²C type was enabled or disabled
- Enable or disable filtering on all I/O pins
- Remap trigger sources for some Dmas to different DMA channels
- Remap memory at the beginning of the code interval (Boot)
- Manages the TIMERs ETR or brake input

2.21. Debug support (DBG)

The MCU DBG module assists the debugger with the following functions:

- Support sleep mode, stop mode and standby mode
- When the CPU enters the HALT mode, the control timer or watchdog stops counting or continues counting
- Block I²C1 and I²C2 SMBUS timeouts when the CPU is in HALT mode
- Block CAN's receive register from updating allocation tracking pins when the CPU enters HALT
- The MCUDBG register also provides chip ID encoding. This ID encoding can be accessed by a JTAG or SW debug interface, or by a user program.

2.22. Inter-integrated circuit interface (I²C)

I²C (inter-integrated circuit) bus interface connects the microcontroller and the serial I²C bus. It provides multi-master capability and controls all I²C bus specific sequences, protocols, arbitration and timing. Standard mode (Sm) and fast mode (Fm) are supported.

I2C Features:

- Two I²C Interface, support slave and master mode
- Multi-host function : can be master or slave
- Support different communication speeds
 - Standard Mode (Sm): Up to 100 kHz
 - Fast Mode (Fm): up to 400 kHz
- As master
 - Generate Clock
 - Generation of Start and Stop
- As slave
 - Programmable I²C address detection
 - Dual-address capability that responds to two secondary addresses
 - Discovery of the Stop bit
- 7-bit/10-bit addressing mode
- General call
- Status flag
 - Transmit/receive mode flags

- Byte transfer complete flag
- I²C busy flag bit
- Error flag
 - Master a rbitration loss
 - ACK failure after address/data transfer
 - Start/Stop error
 - Overrun/Underrun (clock stretching function disable)
- Optional clock stretching
- Single-byte buffer with DMA capability
- Software reset
- Analog noise filter function
- Support SMBus

2.23. Universal synchronous/asynchronous receiver transmitter (USART)

PY32F072 contains 4 USARTs, supports ISO7816, LIN, IrDA.

The USARTs provide a flexible method for full-duplex data exchange with external devices using the industry-standard NRZ asynchronous serial data format. The USART utilizes a fractional baudrate generator to provide a wide range of baudrate options.

It supports simultaneous one-way communication and half-duplex single-wire communication, and it also allows multi-processor communication.

Automatic baudrate detection is supported.

High-speed data communication can be achieved by using the DMA method of the multi-buffer configuration.

USARTs features:

- Full-duplex asynchronous communication
- NRZ standard format
- Configurable 16 times or 8 times oversampling for increased flexibility in speed and clock tolerance
- Programmable baudrate shared by transmit and receive, up to 4.5 Mbit/s
- Automatic baudrate detection
- Programmable data length of 8 or 9 bits
- Configurable stop bits (0.5,1,1 or 2 bits)
- Synchronous mode and clock output function for synchronous communication
- Single-wire half-duplex communication
- Independent transmit and receive enable bits
- Hardware flow control
- Receive/transmit bytes by DMA buffer
- Detection flag

- Receive full buffer
- Send empty buffer
- End of transmission
- Parity control
 - Send check digit
 - Check the received data
- Flagged interrupt sources
 - CTS change
 - Send empty register
 - Send completed
 - Receive full data register
 - Bus idle detected
 - Overflow error
 - Frame error
 - Noise operation
 - Error detection
- Multiprocessor communication
 - If the address does not match, enter silent mode
- Wake-up from silent mode: by idle detection and address flag detection

2.24. Serial peripheral interface (SPI)

PY32F072 contains two SPIs. SPIs allow the chip to communicate with external devices in half-duplex, full-duplex, and simplex synchronous serial communication. This interface can be configured in master mode and provides the communication clock (SCK) for external slave devices. The interface can also work in a multi-master configuration.

The SPI features are as follows:

- Master or slave mode
- 3-wire full-duplex simultaneous transmission
- 2-wire half-duplex synchronous transmission (with bidirectional data line)
- 2-wire simplex synchronous transmission (no bidirectional data line)
- 8-bit or 16-bit transmission frame selection
- Support multi-master mode
- 8 master mode baud rate prescale factors (max fpclk/2)
- Slave mode frequency (max fpclk/4)
- Both master and slave modes can be managed by software or hardware NSS: dynamic change of master/slave operating mode
- Programmable clock polarity and phase
- Programmable data order, MSB first or LSB first
- Dedicated transmit and receive flags that can trigger interrupts
- SPI bus busy status flag

- Motorola mode
- Interrupt-causing master mode faults, overloads
- Two 32-bit Rx and Tx FIFOs with DMA capability

2.25. USB2.0 full-speed module

PY32F072 contains 1 USB 2.0 full speed module. USB peripheral implements the interface between USB2.0 full speed bus and APB1 bus. Support USB suspend/restore operation, can stop the device clock to achieve low power consumption. The main features are as follows:

- Comply with the technical specifications of USB 2.0 full speed devices
- It can be configured with 1 to 6 USB endpoints
- CRC(cyclic redundancy check) generation/check, reverse non-return to zero (NRZI) encoding/decoding and bit filling
- Support control transmission/synchronous transmission/batch transmission/interrupt transmission
- Supports a dual buffer mechanism for batch/synchronous endpoints
- USB suspend and restore operations are supported
- Frame lock clock pulse generation
- Dedicated 1024-byte packet cache storage

2.26. CAN

PY32F072 contains one CAN communication interface module. The Controller Area Network (CAN) bus is a bus standard that can realize the communication between microprocessors or devices without a host.

The CAN bus controller CAN handle data sending and receiving on the bus. In this product, the CAN controller has 12 groups of filters. Filters are used to select messages for the application to receive. The application program in the CAN controller can Transmit 1 Primary Transmit Buffer (PTB) and 3 Secondary Transmit buffers (PTB) STB) sends the sending data to the bus, and the sending scheduler determines the sending order of the mailboxes. The bus data is obtained through three Receive buffers (RB). Three STBS and three RB can be interpreted as a level 3 FIFO and a Level 3 FIFO, where the FIFO is completely hardware controlled. The CAN bus controller also supports Time-trigger communication.

- Fully support ISO11898-1 CAN2.0A/ CAN2.0B protocol
- CAN2.0 supports a maximum communication baud rate of 1M bit/s
- The baud rate ranges from 1 to 1/256. The baud rate is flexibly configured
- Three receive buffers
 - FIFO mode
 - Error or unreceived data does not overwrite stored messages
- One high priority primary send buffer PTB
- Three sub-send buffers STB

- FIFO mode
- Priority arbitration mode
- 12 separate sets of filters
 - It supports 11-bit standard ID and 29-bit extended ID
 - Programmable ID CODE bit and MASK bit
- Silent mode support
- Supports loopback mode
- Supports capturing transmission error types and locating quorum failure locations
- Programmable error warning value
- Support ISO11898-4 time trigger CAN and receive time stamp

2.27. Serial wire debug (SWD)

The ARM SWD interface allows serial debugging tools to be connected to the PY32F072.

3. Pin Configuration

Figure 3-1 LQFP64 PY32F072R1xT6 Pinout1 (Top view)

Figure 3-2 QFN64 PY32F072R1xU6 Pinout1 (Top view)

Figure 3-3 LQFP48 PY32F072C1xT6 Pinout1 (Top view)

Figure 3-4 QFN48 PY32F072C1xU6 Pinout1 (Top view)

Figure 3-5 QFN32 PY32F072K1xU6 Pinout1 (Top view)

Table 3-1 Pin Definition Terminology and Symbols

3,7										
Na	ıme	Symbol	Definition							
		S	Supply pin							
Die	4	G	Ground pin							
Pin	type	I	Input-only pin							
		I/O	Input/output pin							
		COM	Normal 5V I/O with analog input and output function							
1/0 -4		RST	Reset pin, with internal weak pull-up resistor, without analog input and output function							
I/O Sti	ructure	COM_F	I/O, I ² C Fm+ capable with analog input and output function							
		COM_U	GPIO 5V tolerant with USB PHY function							
No	otes		Unless otherwise specified, all ports are used as floating inputs between and after reset							
Pin	Alternate functions		Function selected by GPIOx_AFR register							
function	Additional functions	-	Directly selected or enabled through peripheral registers							

Table 3-2 pin definition

	pa	ackaç	ge						Port Functi	ions
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	Additional functions
1	1	1	1	1	PF9	1/0	COM		-	-
2	2	2	2		PC13	I/O	СОМ		SPI1_SCK/I ² S1_CK	
		2		•	PCIS	1/0	COM		TIM1_BKIN	-

Table Tabl		pa	ickaç	ge						Port Funct	ions
4	LQFP64 R1			QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	
S	3	3	3	3	1	PC14	I/O	COM		TIM1_BKIN2	OSC32_IN
S	4	4	4	4	2	PC15	I/O	COM		TIM15_BKIN	OSC32_OUT
S										CTC_SYNC	
11	5	5	5	5	_		1/0	COM		USART2_TX	OSC IN
Composition		5	5	3		OSC_IN	1/0	COIVI		TIM1_BKIN	000_111
Tim1_CH1N										TIM14_CH1	
Time						DE4				USART2_RX	
TIM15_CH1N TIM1_CH2 TIM1_CMP2_INN0, SEG27 TIM15_CH1 TIM1_CH2 TIM15_CH1 TIM15_CH2	6	6	6	6	-		I/O	COM		TIM1_CH1N	OSC_OUT
To To To To To To To To						000_001				TIM15_CH1N	
MCO										TIM1_CH2	
Second S	7	7	7	7	3	PF2-NRST	I/O	RST	(1)	EVENTOUT	-
SPI1_MISO/FS1_MCK										MCO	
SPI1_MISO/PS1_MCK COMP1_INPO, COMP2_INNO, SEG27										EVENTOUT	ADC IN10
SARTZ_CTS	0		0			DCO	1/0	COM		SPI1_MISO/I2S1_MCK	
SART3_RTS EVENTOUT SPI1_MOSI/PS1_SD COMP1_INP1, COMP1_INP1, COMP2_INN1, SEG26	8	-	ð	-	-	PCU	1/0	COM		USART2_CTS	
SPI1_MOSI/P\$1_SD									\mathcal{X}	USART3_RTS	SEG27
9 - 9 - 9 - PC1										EVENTOUT	
10										SPI1_MOSI/I ² S1_SD	
10	9	-	9	-	-	PC1	I/O	СОМ		USART2_RTS	
10										USART3_CTS	
10										TIM15_CH1	
10							1			EVENTOUT	
10										SPI2_MISO/I ² S2_MCK	
11	10	-	10	-	-	PC2	1/0	СОМ		USART3_TX	
11										USART3_RX	
11										TIM15_CH2	
11										EVENTOUT	ADC INI13
USART3_RX USART3_TX SEG24	44		4.4			DCa	1/0	COM		SPI2_MOSI/I ² S2_SD	
12 8 12 8 4 V _{SSA} G 13 9 13 9 5 V _{CCA} S Analog power supply USART2_CTS ADC_IN0, COMP1_INP4, COMP1_INN0, COMP2_INP0, COMP2_INN4, SEG23 15 11 15 11 7 PA1 I/O COM USART2_RTS EVENTOUT USART2_RTS COMP1_INP5, COMP1_INP5, COMP1_INP5, COMP1_INN1,	11		11	-		PC3	1/0	COM		USART3_RX	
13 9 13 9 5 V _{CCA} S Analog power supply										USART3_TX	SEG24
14 10 14 10 6 PA0 I/O COM USART2_CTS ADC_INO, COMP1_INP4, COMP1_INNO, COMP2_INP0, COMP2_INP0, COMP2_INN4, SEG23 SPI2_SCK EVENTOUT ADC_IN1, COMP1_INP5, COMP1_INN1,	12	8	12	8	4	V_{SSA}	G			Ground	
14 10 14 10 6 PA0 I/O COM TIM2_CH1_ETR COMP1_INP4, COMP1_INN0, COMP2_INP0, COMP2_INP0, COMP2_INN4, SEG23 SPI2_SCK EVENTOUT USART2_RTS COMP1_INP5, COMP1_INP5, COMP1_INP5, COMP1_INP5, COMP1_INP5, COMP1_INP5, COMP1_INP5, COMP1_INN1,	13	9	13	9	5	V_{CCA}	S			Analog power	supply
14 10 14 10 6 PA0 I/O COM TIM2_CH1_ETR USART4_TX COMP1_INNO, COMP2_INPO, COMP2_INPO, COMP2_INN4, SEG23 15 11 15 11 7 PA1 I/O COM EVENTOUT USART2_RTS COMP1_INP5, COMP1_INN1,										USART2_CTS	
14 10 14 10 6		40		4.0	_	DAG	1/0	0014		TIM2_CH1_ETR	
SEG23 SPI2_SCK S	14	10	14	10	ь	PAU	I/O	COM		USART4_TX	COMP2_INP0,
SPI2_SCK EVENTOUT ADC_IN1, COMP1_INP5, COMP1_INN1,										COMP1_OUT	
15 11 15 11 7 PA1 I/O COM USART2_RTS COMP1_INP5, COMP1_INN1,										SPI2_SCK	SEGZS
15 11 15 11 7 PA1 I/O COM USART2_RTS COMP1_INP5, COMP1_INN1,										EVENTOUT	
COMP1_INN1,	15	11	15	11	7	PA1	I/O	СОМ			
										TIM2_CH2	COMP1_INN1, COMP2_INP1,

	pa	ackaç	ge						Port Funct	ions							
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	Additional functions							
									USART4_RX	COMP2_INN5,							
									TIM15_CH1N	SEG22							
									I ² C1_SMBA								
									SPI1_SCK/I ² S1_CK								
									SPI2_MOSI								
									TIM15_CH1								
									USART2_TX	ADC_IN2,							
16	12	16	12	8	PA2	I/O	СОМ		TIM2_CH3	COMP1_INP6, COMP1_INN2,							
10	12	10	12	0	I AZ	1/0	CON		COMP2_OUT	COMP2_INP2,							
									SPI1_MOSI/I ² S1_SD	SEG21							
									SPI2_MISO								
									EVENTOUT								
									TIM15_CH2	ADC_IN3,							
17	13	17	13	9	PA3	I/O	СОМ		USART2_RX	COMP1_INP7, COMP1_INN3,							
17	13	17	13	3	1 //3	1/0	COIVI		TIM2_CH4	COMP2_INP3,							
							,	\times	SPI2_MISO	SEG20							
									SPI2_NSS/I ² S2_WS								
									EVENTOUT								
18	-	18	-	-	PF3	I/O	COM_F		I ² C1_SCL	-							
									I ² C2_SCL								
19	_	19	_	_	PF4	I/O	COM_F		I ² C1_SDA	_							
10		10			114	2)	COM_I		I ² C2_SDA								
									EVENTOUT								
									SPI1_NSS/I ² S1_WS	ADC_IN4,							
									USART2_CK	DAC_OUT1, COMP1_INP8,							
20	14	20	14	10	PA4	I/O	COM		TIM14_CH1	COMP1_INP6, COMP1_INN4,							
									SPI2_MOSI	COMP2_INP4,							
									USART2_TX	SEG19							
									PVD_OUT								
									EVENTOUT	ADC_IN5, DAC_OUT2,							
21	15	21	15	11	PA5	I/O	СОМ		SPI1_SCK/ I ² S1_CK	COMP1_INP9, COMP1_INN5, COMP2_INP5,							
						, ,			TIM2_CH1_ETR	COMP3_INP0, COMP3_INN0,							
									USART3_TX	SEG18, OPA2 OUT							
									EVENTOUT	ADC_IN6,							
									SPI1_MISO/I ² S1_MCK	COMP1_INP10 COMP1_INN6,							
22	16	22	16	12	PA6	I/O	СОМ		TIM3_CH1								
																TIM1_BKIN	OPA2_INN, SEG17
									USART3_CTS	JEO17							

	pa	ackaç	ge						Port Funct	ions	
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	Additional functions	
									TIM16_CH1		
									COMP1_OUT		
									EVENTOUT		
									SPI1_MOSI/I ² S1_SD	ADC_IN7,	
									TIM3_CH2	COMP1_INP11	
23	17	23	17	13	PA7	I/O	COM		TIM1_CH1N	COMP1_INN7,	
									TIM14_CH1	OPA2_INP, SEG16	
									TIM17_CH1	SECTO	
									COMP2_OUT		
									EVENTOUT	· ·	
									USART3_TX		
									COMP3_OUT	ADC_IN14,	
24	-	24	-	-	PC4	I/O	COM		SPI1_NSS/I ² S1_WS	COMP1_INN8,	
									USART1_TX	SEG15	
									TIM2_CH1_ETR		
							\	\times	IR_OUT		
									USART3_RX		
0.5		0.5			DOS	1/0	0014		SPI1_MOSI/I ² S1_SD	ADC_IN15,	
25	-	25	-	-	PC5	I/O	СОМ		USART1_RX	COMP1_INN9, SEG14	
									TIM2_CH2		
									EVENTOUT		
									TIM3_CH3		
									TIM1_CH2N	ADC_IN8,	
26	18	26	18	14	PB0	1/0	СОМ		USART3_CK	COMP2_INN6,	
									COMP1_OUT	SEG13	
									SPI1_NSS/I ² S1_WS		
									USART3_RX		
									EVENTOUT	450 1110	
									TIM14_CH1	ADC_IN9, COMP2_INP6,	
27	19	27	19	15	PB1	I/O	СОМ		TIM3_CH4	COMP2_INN7,	
21	19	21	19	13	ГВТ	1/0	COM		TIM1_CH3N	COMP3_INP1,	
	X								USART3_RTS	COMP3_INN1, SEG12	
									COMP3_OUT	02012	
									EVENTOUT	COMP2_INP7,	
28	20	28	20	-	PB2	I/O	СОМ		SPI2_MISO	COMP2_INN8,	
									USART3_TX	SEG11	
									I ² C2_SCL		
									TIM2_CH3	COMPO INIDO	
29	21	29	21	-	PB10	I/O	COM_F		USART3_TX	COMP2_INP8, SEG10	
									SPI2_SCK/I ² S2_CK		
									COMP1_OUT		

	pa	ackaç	ge						Port Funct	ions
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	Additional functions
									USART2_RTS	
									I ² C1_SCL	
									EVENTOUT	
									I ² C2_SDA	
									TIM2_CH4	001100 11100
30	22	30	22	_	PB11	I/O	COM_F		USART3_RX	COMP3_INP8, COMP3_INN4,
30	~~	50			1 511	1/0	OOW_I		COMP2_OUT	SEG9
									SPI2_MOSI	
									USART2_CTS	
									I ² C1_SDA	
31	23	31	23	16	V_{SS}	G			Ground	
32	24	32	24	17	Vcc	S			Digital power	supply
									EVENTOUT	
									SPI2_NSS/I ² S2_WS	COMP2_INP9,
33	25	33	25	-	PB12	I/O	COM		TIM1_BKIN	OPA3_INN,
							· ·	\times	USART3_CK	SEG8
									TIM15_BKIN	
									EVENTOUT	
									SPI2_SCK/I ² S2_CK	
									TIM1_CH1N	COMP2_INP10
34	26	34	26	_	PB13	I/O	COM_F		USART3_CTS	,
		0.			1 210	","	00111_1		I ² C2_SCL	OPA3_INP, SEG7
									MCO	SEGI
									TIM15_CH1N	
									I ² C1_SCL	
									EVENTOUT	
									SPI2_MISO/I ² S2_MCK	COMP2_INP11
									TIM15_CH1	, COMP3_INP9,
35	27	35	27	-	PB14	I/O	COM_F		TIM1_CH2N	COMP3_INN5,
									USART3_RTS	OPA3_OUT,
									I ² C2_SDA	SEG6
									I ² C1_SDA	
									EVENTOUT	
0.0	00	00	00		DD 45	1.0			SPI2_MOSI/I ² S2_SD	0505
36	28	36	28	-	PB15	I/O	COM		TIM15_CH2	SEG5
									TIM1_CH3N	
									TIM15_CH1N	
									TIM3_CH1	
37	-	37	-	-	PC6	I/O	СОМ		SPI2_SCK/I ² S2_CK	SEG4
									USART4_RX	
									TIM2_CH3	

	pa	ackaç	ge						Port Funct	ions	
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	Additional functions	
									TIM3_CH2	001100 111010	
38	_	38	_	_	PC7	I/O	СОМ		SPI2_MISO/I ² S2_MCK	COMP3_INP13 COMP3_INN8,	
		00			101	1, 0	COM		USART4_TX	SEG3	
									TIM2_CH4		
									TIM3_CH3		
39	-	39	_	_	PC8	I/O	СОМ		SPI2_MOSI/I ² S2_SD	SEG2	
									USART4_CTS		
									TIM1_CH1		
									TIM3_CH4		
									SPI2_NSS/I ² S2_WS		
40	-	40	-	-	PC9	I/O	COM		I ² S1_CKIN	SEG1	
									USART4_RTS		
									TIM1_CH2		
									EVENTOUT		
							(MCO		
									USART1_CK	SEG0,	
41	29	41	29	18	PA8	I/O	COM		TIM1_CH1	OPA1_OUT	
									CTC_SYNC		
									SPI2_NSS		
									USART1_TX		
									EVENTOUT		
									TIM15_BKIN		
									USART1_TX		
42	30	42	30	19	PA9	I/O	COM_F		TIM1_CH2	COM0, OPA1_INP	
									I ² C1_SCL	OFAT_INF	
									SPI2_MISO MCO		
									I ² C2_SCL		
									EVENTOUT		
									TIM17_BKIN		
									USART1_RX		
43	31	43	31	20	PA10	I/O	COM_F		TIM1_CH3	COM1,	
43	31	73	01	20	17(10	1/0	OOW_I		I ² C1_SDA	OPA1_INN	
									SPI2_MOSI		
									I ² C2_SDA		
									EVENTOUT		
									USART1_CTS	1100 514	
44	32	44	32	21	PA11	I/O	COM_		TIM1_CH4	_ USB_DM, COM2,	
7-7	J <u>_</u>	τ- τ	52	_ '	. /	., 0	U		COMP1_OUT	CAN_RX	
									SPI1_MISO/I ² S1_MCK	-	
45	33	45	33	22	PA12	I/O			EVENTOUT	USB_DP,	
70	-55	10	55		17112	., 🔾			2.551	555_51 ,	

	pa	ackaç	ge						Port Functions		
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	Additional functions	
									USART1_RTS	COM3, CAN_TX	
							COM		TIM1_ETR	CAN_IX	
							COM_ U		COMP2_OUT		
									SPI1_MOSI/I ² S1_SD		
									I ² S1_CKIN		
	34	46	34	23	PA13	I/O	СОМ	(2)	EVENTOUT		
									SWDIO		
46									IR_OUT		
40									USART1_RX		
									COMP3_OUT		
									PVD_OUT		
47	35	47	35	24	PF5	I/O	СОМ		TIM1_BKIN2	RTC_OUT	
48	36	48	36	-	PF6	I/O	COM		USART1_CTS	-	
									EVENTOUT		
					PA14	I/O	СОМ	(2)	SWCLK	-	
49	37	49	37	25					USART2_TX		
									USART1_TX		
									PVD_OUT		
	38			-	PA15	I/O	СОМ		EVENTOUT	_	
									SPI1_NSS/I ² S1_WS		
			38						USART2_RX		
50		50							TIM2_CH1_ETR	-	
									USART4_RTS		
									USART3_RTS_DE_C		
									USART4_TX		
51	-	51	-	-	PC10	I/O	COM		USART3_TX	COM4/SEG39	
									TIM1_CH3		
									USART4_RX		
52	-	52	-)->	PC11	I/O	COM		USART3_RX	COM5/SEG38	
									TIM1_CH4		
									USART4_CK		
53	-	53	-	-	PC12	I/O	COM		USART3_CK	COM6/SEG37	
									TIM14_CH1		
	-	54	-	-	PF7	I/O	СОМ		TIM3_ETR	COM7/SEG36	
54									USART3_RTS		
									TIM1_CH1N		
									EVENTOUT		
55	39	55	39		PB3	I/O	СОМ		SPI1_SCK/I ² S1_CK	COMP2_INN9,	
33	აყ	J	აყ	-	FD3	1/0	COIVI		TIM2_CH2	SEG35/VLCDH	
									USART1_RTS_DE_C		

package									Port Funct	ions			
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	Additional functions			
									TIM1_CH2				
	40				PB4	I/O	СОМ		EVENTOUT	COMP1_INP12 COMP2_INP12 SEG34/VLCD3			
		56	40	26					SPI1_MISO/I ² S1_MCK				
									TIM3_CH1				
56									USART1_CTS				
									USART1_CK				
									TIM1_CH2N				
									TIM17_BKIN				
					PB5	I/O	СОМ		SPI1_MOSI/I ² S1_SD	COMP1_INP13 SEG33/VLCD2			
									TIM3_CH2				
									TIM16_BKIN				
				27					I ² C1_SMBA				
57	41	57	41						USART1_CK				
									COMP2_OUT				
									USART1_RTS				
								\times	USART1_TX				
									TIM1_CH3N				
	42			28	PB6		COM_F		EVENTOUT				
		58	42			I/O			USART1_TX				
									I ² C1_SCL				
58								COM_F		TIM16_CH1N	COMP1_INP14 COMP2_INP14		
30									OGW_I	OGWI_I		SPI2_MISO	SEG32/VLCD1
												USART3_CTS	
									TIM1_CH3				
									I ² C2_SCL				
	43	59	43	29	PB7	I/O	COM_F		EVENTOUT				
										USART1_RX			
										I ² C1_SDA	מאר מאר		
59									TIM17_CH1N	PVD_IN, COMP2_INP15			
									USART4_CTS	SEG31			
									SPI2_MOSI	-			
									I ² C2_SDA				
									TIM1_CH1				
60	44	60	44	30	PF8/BOOT	I/O	СОМ	(3)		SEG30			
	45			5 31	PB8	I/O	COM_F		EVENTOUT	SEG29, CAN_RX			
61			45						I ² C1_SCL				
		61							I ² C2_SCL				
									TIM16_CH1				
									SPI2_SCK				
									USART1_TX				
									USART3_TX				

	pa	package						Port Funct	ions		
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	Reset	Ports Type	Ports structure	Notes	Alternate functions	Additional functions	
									TIM15_BKIN		
									TIM1_CH1N		
									EVENTOUT		
									IR_OUT		
									I ² C1_SDA		
62	46	62	46	32	PB9	I/O	COM_F		TIM17_CH1	SEG28,	
02	40	02	40	32	РБЭ	1/0	CON_F		SPI2_NSS/I ² S2_WS	CAN_TX	
									USART1_RX		
									USART3_RX		
									I ² C2_SDA		
63	47	63	47	-	V _{SS}	G	-		Ground		
64	48	64	48	-	Vcc	S	-		Digital power	supply	

- 1. Configure by option bytes to choose PF2 or NRST.
- 2. After reset, PA13 and PA14 are configured as SWDIO and SWCLK AF functions, the former has an internal pull-up resistor and the latter has an internal pull-down resistor activated.
- 3. BOOT0 defaults to digital input mode and pull-down is enable.

3.1. PortA alternate function mapping

Table 3-3 PortA alternate function mapping

D44	450	AF1	AFO	AF3	AF4			457	1		AF40	AF44	AF12	AF13	AF14	AF15
PortA	AF0		AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PA0	-	USART2_CTS	TIM2_CH1_ETR	-	USART4_TX	-	-	COMP1_OUT	SPI2_SCK	-	-	-	-	-	-	-
PA1	EVENTOUT	USART2_RTS	TIM2_CH2	-	USART4_RX	TIM15_CH1N	I ² C1_SMBA	-	SPI1_SCK/ I ² S1_CK	SPI2_MOSI	-	-	-	-	1	-
PA2	TIM15_CH1	USART2_TX	TIM2_CH3	-	-	-	-	COM2_OUT	SPI1_MOSI/ I ² S1_SD	SPI2_MISO	-	-	-	-	-	-
PA3	TIM15_CH2	USART2_RX	TIM2_CH4	-	-		-	EVENTOUT	SPI2_MSIO	SPI2_NSS/ I ² S2_WS	-	-	-	-	-	-
PA4	SPI1_NSS/ I ² S1_WS	USART2_CK	-	-	TIM14_CH1	-	-	EVENTOUT	SPI2_MOSI	USART2_TX	-	-	PVD_OUT	-	-	-
PA5	SPI1_SCK/ I ² S1_CK	-	TIM2_CH1_ETR	-	-	-	-	EVENTOUT			USART3_TX	-	-	-	-	-
PA6	SPI1_MISO/ I ² S1_MCK	TIM3_CH1	TIM1_BKIN	-	USART3_CTS	TIM16_CH1	EVENTOUT	COMP1_OUT		-	-	-	-	-	-	-
PA7	SPI1_MOSI/ I ² S1_SD	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH1	EVENTOUT	COMP2_OUT	-	-	-	-	-	-	-	-
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT	CTC_SYNC		- 7	-	SPI2_NSS	-	USART1_TX	-	-	-	-	-
PA9	TIM15_BKIN	USART1_TX	TIM1_CH2	-	-	-	I ² C1_SCL	EVENTOUT	SPI2_MISO	MCO	-	-	-	I ² C2_SCL	-	-
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	-	-		I ² C1_SDA	EVENTOUT	SPI2_MOSI	-	-	-	-	I ² C2SDA	-	-
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	-	CAN_RX			COMP1_OUT	SPI1_MISO/ I ² S1_MCK	-	-	TIM1_BKIN2	-	-	-	-
PA12	EVENTOUT	USART1_RTS	TIM1_ETR	-	CAN_TX		-	COMP2_OUT	SPI1_MOSI/ I ² S1_SD	I ² S1_CKIN	-	-	-	-	-	-
PA13	SWDIO	IROUT	-	-		-	-	EVENTOUT	-	USART1_RX	-	COMP3_OUT	PVD_OUT	-	-	-
PA14	SWCLK	USART2_TX	-	-			-	EVENTOUT	-	USART1_TX	-	-	PVD_OUT	-	-	-
PA15	SPI1_NSS/ I ² S1_WS	USART2_RX	TIM2_CH1_ETR	EVENTOUT	USART4_RTS			EVENTOUT			USART3_RT S_DE_CK					

3.2. PortB alternate function mapping

Table 3-4 Port B alternate function mapping

PortB	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	-	USART3_CK	-	-	COMP1_OUT	SPI1_NSS/ I ² S1_WS	-	USART3_RX		-	-	-	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-	USART3_RTS	-	-	EVENTOUT	-	-		COMP3_OUT	-	-	-	-
PB2	ı	-	•	-	-	-	-	EVENTOUT	SPI2_MIS O		USART3_TX	-	-	-	-	-
PB3	SPI1_SCK/ I ² S1_CK	EVEN- TOUT	TIM2_CH2	-	USART1_RTS	-		EVENTOUT	-			TIM1_CH2	-	-	-	-
PB4	SPI1_MISO/ I ² S1_MCK	TIM3_CH1	EVENTOUT	-	USART1_CTS	TIM17_BKIN	-		. (TIM1_CH2N	-	USART1_CK	-	-
PB5	SPI1_MOSI/ I ² S1_SD	Tim3_CH2	TIM16_BKIN	I ² C1_SMBA	USART1_CK	-	-	COM2_OUT		USART1_RTS	-	TIM1_CH3N	-	USART1_TX	-	-
PB6	USART1_TX	I ² C1_SCL	TIM16_CH1N	-	-	-	-	EVENTOUT	SPI2_MIS O		USART3_CTS	TIM1_CH3	-	I ² C2_SCL	-	-
PB7	USART1_RX	I ² C1_SDA	TIM17_CH1N	-	USART4_CTS	-		EVENTOUT	SPI2_MOS	-	-	TIM1_CH1	-	I ² C2_SDA	-	-
PB8	-	I ² C1_SCL	TIM16_CH1	-	CAN_RX	-	-	EVENTOUT	SPI2_SCK	USART1_TX	USART3_TX	TIM15_BKIN	-	I ² C2_SCL	TIM1_CH1N	-
PB9	IR_OUT	I ² C1_SDA	TIM17_CH1	EVENTOUT	CAN_TX	SPI2_NSS/ I ² S2_WS			-	USART1_RX	USART3_RX	-	-	I ² C2_SDA	-	-
PB10	-	I ² C2_SCL	TIM2_CH3	-	USART3_TX	SPI2_SCK/ I ² S2_CK	-	COMP1_OUT	-	USART2_RTS	-	-	-	I ² C1_SCL	-	-
PB11	EVENTOUT	I ² C2_SDA	TIM2_CH4	-	USART3_RX			COMP2_OUT	SPI2_MOS	USART2_CTS	-	-	-	I ² C1_SDA	-	-
PB12	SPI2_NSS/ I ² S2_WS	EVEN- TOUT	TIM1_BKIN	-	USART3_CK	TIM15_BKIN		-	-	-	-	-	-	-	-	-
PB13	SPI2_SCK/ I ² S2_CK	-	TIM1_CH1N	-	USART3_CTS	l ² C2_SCL	-	EVENTOUT	-	MCO	-	TIM15_CH1N	-	I ² C1_SCL	-	-
PB14	SPI2_MISO/ I ² S2_MCK	TIM15_CH 1	TIM1_CH2N		USART3_RTS	I ² C2_SDA	-	EVENTOUT	-	-	-	TIM15_CH1	-	I ² C1_SDA	-	-
PB15	SPI2_MOSI/ I ² S2_SD	TIM15_CH 2	TIM1_CH3N	TIM15_CH1N	7.3	-	-	EVENTOUT	-	-	-	-	-	-	-	-

3.3. PortC alternate function mapping

Table 3-5 PortC alternate function mapping

PortC	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PC0	EVENTOUT	-	-	-	-	-	-	-	SPI1_MISO/I ² S1_MCK	USART2_CTS	USART3_RTS	-	-	-	-	-
PC1	EVENTOUT	-	-	-	-	-	-	-	SPI1_MOSI/I ² S1_SD	USART2_RTS	USART3_CTS	TIM15_CH1	-	-	-	-
PC2	EVENTOUT	SPI2_MISO/I ² S2_MCK	-	-		-	-	-	-	USART3_TX	USART3_RX	TIM15_CH2	-	1	-	-
PC3	EVENTOUT	SPI2_MOSI/I ² S2_SD	-	-		-	-	-	-	USART3_RX	USART3_TX	-	-	-	-	-
PC4	EVENTOUT	USART3_TX	-	-		-	-	COMP3_OUT	SPI1_NSS/I ² S1_WS	USART1_TX	-	TIM2_CH1_ETR	IR_OUT	1	-	-
PC5	-	USART3_RX	-	-		-	-	-	SPI1_MOSI/I ² S1_SD	USART1_RX	-	TM2_CH2	-	-	-	-
PC6	TIM3_CH1	-	-	-		-	-	-	SPi2_SCK/I ² S2_CK	-	USART4_RXD	TIM2_CH3	-	-	-	-
PC7	TIM3_CH2	-	-	-		-	-	-	SPI2_MISO/I ² S2_MCK	-	USART4_TX	TIM2_CH4	-	-	-	-
PC8	TIM3_CH3	-	-	-		-	-	-	SPI2_MOSI/I ² S2_SD	-	USART4_CTS	TIM1_CH1	-	-	-	-
PC9	TIM3_CH4	-	-	-		-	-	-	SPI2_NSS/I ² S2_WS	I ² S1_CKIN	USART4_RTS	TIM1_CH2	-	-	-	-
PC10	USART4_TX	USART3_TX	-	-	-	-	-	-	-	-	-	TIM1_CH3	-	-	-	-
PC11	USART4_RX	USART3_RX	-	-		-	-		-	-	-	TIM1_CH4	-	-	-	-
PC12	USART4_CK	USART3_CK	-	-	-	-		-	-	-	-	TIM14_CH1	-	-	-	-
PC13	-	-	-	-	-	-	-		SPI1_SCK/I ² S1_CK	-	-	TIM1_BKIN	-	-	-	-
PC14	-	-	-	-	-	-	-	1.	-	-	-	TIM1_BKIN2	-		-	-
PC15	-	-	-	-	•	-	-	-	-	-	-	TIM15_BKIN	-	•	-	-

3.4. PortF alternate function mapping

Table 3-7 PortF alternate function mapping

PortC	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PC0	EVENTOUT	-	-	ì	-	-	-	-	SPI1_MISO/I2S1_MCK	USART2_CTS	USART3_RTS	-	ı	-	-	-
PC1	EVENTOUT	-	-		-		-	-	SPI1_MOSI/I2S1_SD	USART2_RTS	USART3_CTS	TIM15_CH1	-	-	-	-
PC2	EVENTOUT	SPI2_MISO/I2S2_MCK		-	-		-	-	-	USART3_TX	USART3_RX	TIM15_CH2	-	-	-	-
PC3	EVENTOUT	SPI2_MOSI/I2S2_SD	-	-	-	-	-	-	-	USART3_RX	USART3_TX	-	-	-	-	-

PortC	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PC4	EVENTOUT	USART3_TX	-	-	-	-	-	COMP3_OUT	SPI1_NSS/I2S1_WS	USART1_TX	-	TIM2_CH1_ETR	IR_OUT	-	-	-
PC5	-	USART3_RX	-	-	-	-	-	-	SPI1_MOSI/I2S1_SD	USART1_RX	-	TM2_CH2	-	-	-	-
PC6	TIM3_CH1	-	-	-	-	-	-	-	SPi2_SCK/I2S2_CK	-	USART4_RXD	TIM2_CH3	-	-	-	-
PC7	TIM3_CH2	-	-	-	-	-	-	-	SPI2_MISO/I2S2_MCK	-	USART4_TX	TIM2_CH4	-	-	-	-
PC8	TIM3_CH3	-	-	-	-	-	-	-	SPI2_MOSI/I2S2_SD	-	USART4_CTS	TIM1_CH1	-	-	-	-
PC9	TIM3_CH4	-	-	-	-	-		-	SPI2_NSS/I2S2_WS	I2S1_CKIN	USART4_RTS	TIM1_CH2	-	-	-	-
PC10	USART4_TX	USART3_TX	-	-	-	-		-	-	-	-	TIM1_CH3	-	-	-	-
PC11	USART4_RX	USART3_RX	-	-	-	-	-	-	-		-	TIM1_CH4	-	-	-	-
PC12	USART4_CK	USART3_CK	-	-	-	-	-	-	-		-	TIM14_CH1	-	-	-	-
PC13	-	-	-	-	-	-	-	-	SPI1_SCK/I2S1_CK	· ·	-	TIM1_BKIN	-	-	-	-
PC14	-	-	-	-	-	-	-	-			-	TIM1_BKIN2	-	-	-	-
PC15	-	-	-	-	-	-	-	-		-	-	TIM15_BKIN	-	-	-	-

4. Memory Map

Figure 4-1 Memory map

Table 4-1 Memory boundary address

Туре	Boundary Address	Size	Memory Area	Description
	0x2000 4000-0x3FFF FFFF	-	Reserved	
SRAM	0x2000 0000-0x2000 3FFF	16 KBytes	SRAM	If the hardware power-up configuration of the SRAM is 16 KBytes, then the SRAM address space is 0x2000 0000-0x2000 3FFF
	0x1FFF 3400-0x1FFF FFFF	-	Reserved	-
Code				Flash Verify Value,
5546	0x1FFF 3300-0x1FFF 33FF	256 Bytes	FT infor1 bytes	Analog和 Flash Trimming,
				Debug ID.

Туре	Boundary Address	Size	Memory Area	Description
	0x1FFF 3200-0x1FFF 32FF	256 Bytes	FT infor0 bytes	Normal TS DATA, High TS DATA, HSI Re-Trim data, Flash/sram size configuration.
	0x1FFF 3100-0x1FFF 31FF	256 Bytes	Option bytes	option bytes information, IP enable ⁽¹⁾
	0x1FFF 3000-0x1FFF 30FF	256 Bytes	UID bytes	Unique ID
	0x1FFF 0000-0x1FFF 2FFF	12 KBytes	System memory	boot loader
	0x0802 0000-0x1FFE FFFF	-	Reserved	-
	0x0800 0000-0x0801 FFFF	128 KBytes	Main flash memory	-
	0x0002 0000-0x07FF FFFF	-	Reserved	
			Selected based on Boot configuration,	7/0
	0x0000 0000-0x0001 FFFF	128 KBytes	1) Main flash memory	
			2) System memory	
			3) SRAM	

Except the above address, other is marked as reserved, which cannot be written, read as 0, and a response error is generated.

Table 4-2 Peripheral register boundary address⁽¹⁾

Bus	Boundary Address	Size	Peripheral
	0xE000 000-0xE00F FFFF	1Mbytes	M0+
	0x5000 1800 - 0x5FFF FFFF	256 MB	Reserved
	0x5000 1400 - 0x5000 17FF	1 KB	GPIOF
	0x5000 1000 - 0x5000 13FF	1 KB	Reserved
IOPORT	0x5000 0C00 - 0x5000 0FFF	1 KB	Reserved
	0x5000 0800 - 0x5000 0BFF	1 KB	GPIOC
	0x5000 0400 - 0x5000 07FF	1 KB	GPIOB
	0x5000 0000 - 0x5000 03FF	1 KB	GPIOA
	0x4002 4000 - 0x4FFF FFFF	256 MB	Reserved
	0x4002 3C00 – 0x4002 3FFF	1 KB	Reserved
	0x4002 3800 -0x4002 3BFF	1 KB	DIV
	0x4002 3400 - 0x4002 37FF	1 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
AHB	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AND	0x4002 2000 - 0x4002 23FF	1 KB	FLASH
	0x4002 1C00 - 0x4002 1FFF	1 KB	Reserved
	0x4002 1800 - 0x4002 1BFF	1 KB	EXTI
	0x4002 1400 - 0x4002 17FF	1 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC ⁽²⁾
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved

Bus	Boundary Address	Size	Peripheral
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 5C00 - 0x4001 FFFF	41 KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1 KB	DBG
	0x4001 4C00 - 0x4001 57FF	3 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	Reserved
	0x4001 2400 - 0x4001 27FF	1 KB	ADC
	0x4001 0400 - 0x4001 23FF	8 KB	Reserved
	0x4001 0300 - 0x4001 03FF		OPA
	0x4001 0200 - 0x4001 02FF	1 KB	COMP
	0x4001 0000 - 0x4001 01FF	X	SYSCFG
	0x4000 8000- 0x4000 FFFF	32 KB	Reserved
	0x4000 7C00 - 0x4000 7FFF	1 KB	LPTIM1
APB	0x4000 7800 - 0x4000 7BFF	1 KB	Reserved
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR ⁽³⁾
	0x4000 6C00 - 0x4000 6FFF	1 KB	СТС
	0x4000 6800 - 0x4000 6BFF	1 KB	Reserved
	0x4000 6400 - 0x4000 67FF	1 KB	CAN
	0x4000 6000 - 0x4000 63FF	1 KB	USB SRAM
	0x4000 5C00 - 0x4000 5FFF	1 KB	USB
	0x4000 5800 - 0x4000 5BFF	1 KB	I ² C2
	0x4000 5400 - 0x4000 57FF	1 KB	I ² C1
	0x4000 5000 - 0x4000 53FF	1 KB	Reserved
	0x4000 4C00 - 0x4000 4FFF	1 KB	USART4
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC

Bus	Boundary Address	Size	Peripheral
	0x4000 2400 - 0x4000 27FF	1 KB	LCD
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1800 - 0x4000 1FFF	2 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

- 1. In the above table, the reserved address cannot be written, read back is 0, and a hardfault is generated
- 2. Not only supports 32 bits word access, but also supports halfword and byte access.
- 3. Not only supports 32 bits word access, but also supports halfword access.

5. Electrical Characteristics

5.1. Parameter conditions

Unless otherwise specified, all voltages are referenced to Vss.

5.1.1. Minium and maximum values

Unless otherwise specified, the mimimum and maximum values are guaranteed in the worest condotions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_{A(max)}$ (given by the selected temperature range).

Data based on electrical characterization results, design simulations and/or technology charateristics are indicated in the table footnotes and are not tested in production. Based on charaterization, the minimum and maximum values refer to sample tests and represent the mean vaule plus or minus three times the standard deviation.

5.1.2. Typical values

Unless otherwise specified, typical data is based on $T_A = 25$ °C and $V_{CC} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by cgaracterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than equal to the value indicated.

5.2. Absolute maximum ratings

Stresses above the absolute maximum ratings listed in following tables may cause permanent damage to the device. These are stress ratings only and functional opeartion of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 5-1 Voltage characteristics (1)

Symbol	Ratings	Minimum	Maximum	Unit
Vcc	External mains power supply	-0.3	6.25	V
V _{IN}	Input voltage of other pins	-0.3	V _{CC} +0.3	V

Power supply V_{CC} and ground V_{SS} pins must always be connected to the external power supply within the allowable range.

Table 5-2 Current characteristics

Symbol	Describe	Maximum	Unit
Ivcc	Flowing into V _{CC} pin (supply current) ⁽¹⁾	300	Λ
I _{VSS}	Total current flowing out of V _{SS} pin (outflow current) ⁽¹⁾	300	mA

Symbol	Describe	Maximum	Unit
	Output sink current of COM IO(2)	20	
IIO(PIN)	Source current for all IOs	-20	

- 1. Power supply V_{CC} and ground V_{SS} pins must always be connected to the external power supply within the allowable range.
- 2. These I/O types refer to the terms and symbols defined by pins.

Table 5-3 Thermal characteristics

Symbol	Describe	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
To	Range of operating temperature	-40 to +85	°C

5.3. Operating conditions

5.3.1. General operating conditions

Table 5-4 General operating conditions

Symbol	Parameter	Condition	Minimum	Maximum	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	72	MHz
f _{PCLK}	Internal APB Clock frequency		0	72	MHz
Vcc	Standard operating voltage	-	1.7	5.5	V
Vcca	Operating voltage of analog circuit	Must be the same as Vcc	1.7	5.5	V
V _{IN}	I/O input voltage	-	-0.3	Vcc+0.3	V
T _A	Ambient temperature	_	-40	85	Ç
TJ	Junction temperature	-	-40	105	°C

5.3.2. Operating conditions at power-up / power-down

Table 5-5 Operating conditions at power-up / power-down

Symbol	Parameter	Condition	Minimum	Maximum	Unit
tvcc	V _{CC} rise time rate	-	0	8	- 0.7
	Vcc fall time rate	-	20	8	us/V

5.3.3. Embedded reset and LVD module features

Table 5-6 Embedded reset module features

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
		PLS[2:0]=000 (Rising edge)	1.7	1.8	1.9	V
		PLS[2:0]=000 (Falling edge)	1.6	1.7	1.8	V
V_{PVD}	Programmable voltage detector level selection	PLS[2:0]=001 (Rising edge)	1.9	2	2.1	V
detector level	detector lever selection	PLS[2:0]=001 (Falling edge)	1.8	1.9	2	V
		PLS[2:0]=010 (Rising edge)	2.1	2.2	2.3	V

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
		PLS[2:0]=010 (Falling edge)	2	2.1	2.2	V
		PLS[2:0]=011 (Rising edge)	2.3	2.4	2.5	V
		PLS[2:0]=011 (Falling edge)	2.2	2.3	2.4	V
		PLS[2:0]=100 (Rising edge)	2.5	2.6	2.7	V
		PLS[2:0]=100 (Falling edge)	2.4	2.5	2.6	V
		PLS[2:0]=101 (Rising edge)	2.7	2.8	2.9	V
		PLS[2:0]=101 (Falling edge)	2.6	2.7	2.8	V
		PLS[2:0]=110 (Rising edge)	2.9	3	3.1	V
		PLS[2:0]=110 (Falling edge)	2.8	2.9	3	V
		PLS[2:0]=111 (Rising edge)	3.1	3.2	3.3	V
		PLS[2:0]=111 (Falling edge)	3	3.1	3.2	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
	Power-on/power-off reset	Rising edge	1.5	1.6	1.7	V
VPOR/PDR	threshold	Falling edge	1.45	1.55	1.65	V
V _{PDRhyst} (1)	PDR hysteresis	-	-	20	-	mV
		BOR_LEV[2:0]=000 (Rising edge)	1.7	1.8	1.9	V
		BOR_LEV[2:0]=000 (Falling edge)	1.6	1.7	1.8	V
		BOR_LEV[2:0]=001 (Rising edge)	1.9	2	2.1	V
		BOR_LEV[2:0]=001 (Falling edge)	1.8	1.9	2	V
		BOR_LEV[2:0]=010 (Rising edge)	2,1	2.2	2.3	V
		BOR_LEV[2:0]=010 (Falling edge)	2	2.1	2.2	V
		BOR_LEV[2:0]=011 (Rising edge)	2.3	2.4	2.5	V
	BOR Indicates the	BOR_LEV[2:0]=011 (Falling edge)	2.2	2.3	2.4	V
V _{BOR}	threshold voltage	BOR_LEV[2:0]=100 (Rising edge)	2.5	2.6	2.7	V
		BOR_LEV[2:0]=100 (Falling edge)	2.4	2.5	2.6	V
		BOR_LEV[2:0]=101 (Rising edge)	2.7	2.8	2.9	V
		BOR_LEV[2:0]=101 (Falling edge)	2.6	2.7	2.8	V
		BOR_LEV[2:0]=110 (Rising edge)	2.9	3	3.1	V
		BOR_LEV[2:0]=110 (Falling edge)	2.8	2.9	3	V
		BOR_LEV[2:0]=111 (Rising edge)	3.1	3.2	3.3	V
		BOR_LEV[2:0]=111 (Falling edge)	3	3.1	3.2	V
V_BOR_hyst	BOR hysteresis voltage	_	-	100	-	mV

^{1.} Guaranteed by design, not tested in production.

5.3.4. Operating current characteristics

Table 5-7 Operating mode current

			Condi	tion					
Symbol	Sys- tem clock	Frequency	Code	Run	Periph- eral clock	FLASH sleep	Typical (1)	Maxi- mum	Unit
	PLL -	72 MHz	- While ⁽¹⁾	Flash	ON	DISABLE	8.37	-	
		72 IVITIZ			OFF	DISABLE	4.60	-	
	FLL	48 MHz			ON	DISABLE	6.54	-	
I _{DD} (run)					OFF	DISABLE	4.01	•	mA
		HSI 24 MHz			ON	DISABLE	3.82	ı	
	HSI				OFF	DISABLE	2.60	•	
		16 MHz			ON	DISABLE	2.78	-	

			Condi	ition						
Symbol	Sys- tem clock	Frequency	Code	Run	Periph- eral clock	FLASH sleep	Typical (1)	Maxi- mum	Unit	
					OFF	DISABLE	1.90	-		
		8 MHz			ON	DISABLE	1.80	-		
					OFF	DISABLE	1.21	-		
			4 MII-	4 MHz			ON	DISABLE	1.04	-
		4 IVITZ			OFF	DISABLE	0.87	-		
		22 760 1/11-			ON	DISABLE	350.2	_		
	1.01	32.768 kHz			OFF	DISABLE	293.2	-		
	LSI	20.700 1.11-			ON	ENABLE	276.7		uA	
		32.768 kHz			OFF	ENABLE	224.6	-		

1. Data is based on assessment results and is not tested in production.

Table 5-8 Sleep mode current

		Cond	ition		Typical			
Symbol	System clock	Frequency	Peripheral clock	FLASH sleep	Typical (1)	Maximum	Unit	
		72MHz	ON	DISABLE	6.16	-		
	DLI	/ ZIVITIZ	OFF	DISABLE	2.13	-]	
	PLL	48MHz	ON	DISABLE	4.57	-		
		40111112	OFF	DISABLE	1.82	-		
			24MHz	ON	DISABLE	2.12	-	
		24111112	OFF	DISABLE	0.89	-	mA	
		SI 8MHz	ON	DISABLE	1.56	-		
	HSI		OFF	DISABLE	0.71	-		
I _{DD} (sleep)			ON	DISABLE	1.01	-		
			OFF	DISABLE	0.53	-		
		40411-	ON	DISABLE	0.74	-		
		4MHz	OFF	DISABLE	0.46	-		
		22.760kHz	ON	DISABLE	349.4	-		
	1.01	32.768kHz	OFF	DISABLE	292.5	-		
	LSI	LSI 22.769kUz	ON	ENABLE	278.4	-	uA	
		32.768kHz	OFF	ENABLE	224.4	-		

1. Data is based on assessment results and is not tested in production.

Table 5-9 Stop mode current

				Typical				
Symbol	Vcc	V_{DD}	MR/LPR	LSI	Peripheral clock	(1)	Maximum	unit
		1.2V	MR	-	-	130.30	-	
			LPR	ON	RTC+IWDG+LPTIM	6.60	-	
					ON	IWDG	6.70	-
I _{DD} (stop)	1.7 to 5.5V	1.2V			LPTIM	6.70	-	uA
(Stop)			LFIX		RTC	6.60	-	
				OFF	No	6.50	-	
		1.0V		ON	RTC+IWDG+LPTIM	5.80	-	

_			Typical					
Symbol	Vcc	V _{DD}	MR/LPR	LSI	Peripheral clock	(1)	Maximum	unit
					IWDG	5.80	-	
					LPTIM	5.70	-	
					RTC	5.70	-	
				OFF	No	5.50	-	

^{1.} Data is based on assessment results and is not tested in production.

5.3.5. Wake-up time for low power mode

Table 5-10 Low power mode wake-up time

Symbol	Paran	neters ⁽¹⁾	Condition		Typical (2)	Maximum	Unit
twusleep	Wake-up from	om sleep	-		7		CPU Cy- cles
	Wake-up Powered Execute program in Flash, HSI (24 MHz) as system clock			3.5	-		
twustop	from stop	Powered	Execute program	VDD=1.2V	7	-	us
	mode	by LPR	in Flash, HSI as system clock	VDD=1.0V	7	-	

- 1. The wake-up time is measured from the wake-up time until the first instruction is read by the user program.
- 2. Data is based on assessment results and is not tested in production.

5.3.6. External clock source characteristics

5.3.6.1. External high-speed clock

In bypass mode of HSE (the HSEBYP of RCC_CR is set), when the high-speed start-up circuit in the chip stops working, the corresponding I/O is used as a standard GPIO.

Figure 5-1 External high-speed clock timing diagram

Table 5-11 External high-speed clock features

Symbol	Parameters ⁽¹⁾	Minimum	Typical	Maximum	Unit
f _{HSE_ext}	User external clock source frequency	0	8	32	MHz

Symbol	Parameters ⁽¹⁾	Minimum	Typical	Maximum	Unit
V _{HSEH}	Input pin high level voltage	0.7Vcc	-	Vcc	V
V _{HSEL}	Input pin low level voltage	Vss	-	0.3Vcc	V
tw(HSEH) tw(HSEL)	Enter high or low time	15	-	-	ns
t _{r(HSE)}	Enter the rise/fall time	-	-	20	ns

^{1.} Guaranteed by design, not tested in production.

5.3.6.2. External low-speed clock

In the bypass mode of LSE (the LSE BYP of RCC_BDCR is set), the low-speed start-up circuit in the chip stops working, and the corresponding I/O is used as a standard GPIO.

Figure 5-2 External low-speed clock timing diagram

Symbol	Parameters ⁽¹⁾	Minimum	Typical	Maximum	Unit
f _{LSE_ext}	User external clock frequency	-	32.768	1000	KHz
V_{LSEH}	Input pin high level voltage	0.7V _{CC}	-	-	V
V _{LSEL}	Input pin low level voltage	-	1	0.3Vcc	V
tw(LSEH) tw(LSEL)	Enter high or low time	450	-	-	ns
$t_{r(LSE)}$ $t_{f(LSE)}$	Enter the rise/fall time	-	-	50	ns

Table 5-12 External low-speed clock characteristics

1. Guaranteed by design, not tested in production .

5.3.6.3. External high-speed crystal

The high-speed external (HSE) clock can be supplied with a ~32 MHz crystal/ceramic resonator oscillator. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time.

Symbol	Parameter	Condition ⁽¹⁾	Minimum (2)	Typical	Maximum (2)	Unit
f _{OSC_IN}	Oscillation fre- quency	-	1	-	32	MHz
		During startup	-	ı	5.5	
		$V_{CC} = 3 \text{ V}, \text{ Rm} = 30 \Omega, \\ C_L = 10 \text{ pF}@8 \text{ MHz}$	-	0.58	-	
	LICE summent	$V_{CC} = 3 \text{ V}, \text{ Rm} = 45 \Omega,$ $C_L = 10 \text{ pF}@8 \text{ MHz}$	-	0.59	-	
I _{DD} ⁽⁴⁾	HSE current consumption	$V_{CC} = 3 \text{ V}, \text{ Rm} = 30 \Omega, \\ C_L = 5 \text{ pF}@48 \text{ MHz}$	-	0.89	-	mA
		$V_{CC} = 3 \text{ V}, \text{ Rm} = 30 \Omega,$ CL = 10 pF@48 MHz	-	1.14		
		$V_{CC} = 3 \text{ V}, \text{ Rm} = 30 \Omega,$ $C_L = 20 \text{ pF}@48 \text{ MHz}$	-	1.94		
tsu(HSE)(3)(4)	Chartery Times	fosc_in = 32 MHz	-	2	-	
	tsu(HSE) ⁽³⁾⁽⁴⁾	Startup Time	f _{OSC IN} = 4 MHz	-	2	

Table 5-13 External high-speed crystal characteristics

- 1. Crystal/ceramic resonator characteristics are based on the manufacturer's datasheet.
- 2. Guaranteed by design, not tested in production.
- t_{SU(HSE)} is the startup time from enable (by software) to when the clock oscillation reaches a stable state, measured for a standard crystal/resonator, which can vary considerably from one crystal/resonator to another.
- 4. Data is based on assessment results and is not tested in production.

5.3.6.4. External low speed crystal

The low-speed external (LSE) clock can be supplied with a 32.768 KHz crystal resonator oscillator. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time.

Symbol	Parameter	Condition ⁽¹⁾	Minimum ⁽²⁾	Typical	Maximum (2)	Unit
		LSE_DRIVER [1:0] = 00	-	250	-	
1 (4)	LSE current	LSE_DRIVER [1:0] = 01	-	560	-	A
I _{DD} ⁽⁴⁾	consumption	LSE_DRIVER [1:0] = 10	-	920	-	nA
		LSE_DRIVER[1:0] = 11	-	1260 -		
t _{SU(LSE)} (3)(4)	Startup Time	-	-	3	-	s

Table 5-14 External low-speed crystal feature

- 1. Crystal/ceramic resonator characteristics are based on the manufacturer's datasheet.
- 2. Guaranteed by design, not tested in production.
- t_{SU(LSE)} is the startup time from enable (by software) to when the clock oscillation reaches a stable, measured for a standard crystal/resonator, which may vary greatly from crystal to resonator.
- 4. Data is based on assessment results and is not tested in production.

5.3.7. Internal high frequency clock source HSI characteristics

Table 5-15 Internal high frequency clock source characteristics

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
fнsı	HSI frequency	-	-	4.0 8.0 16.0 22.12 24.0		MHz
		$V_{CC} = 1.7 \text{ to } 5.5 \text{ V},$ $T_A = 25 \text{ C}$	-1 ⁽²⁾	-	1(2)	
ΔT _{emp (HSI)}	HSI frequency temperature drift	$V_{CC} = 1.7 \text{ to } 5.5 \text{ V},$ $T_A = 0 \text{ to } 85 \text{ C}$	-2 ⁽²⁾	-	2(2)	%
		$V_{CC} = 1.7 \text{ to } 5.5 \text{ V},$ $T_A = -40 \text{ to } 85 \text{ C}$	-4 ⁽²⁾	-	2 ⁽²⁾	
f _{TRIM} ⁽¹⁾	HSI fine-tuning accuracy	-	-	0.1	-	%
$\Delta T_{\text{emp(HSI)}}$	HSI frequency tempera- ture drift	-	45(1)	-	55 ⁽¹⁾	%
tStab (HSI)	HSI stabilization time	-	-	2	4 ⁽¹⁾	us
		4 MHz		110	-	
f _{TRIM} ⁽¹⁾	HSI fine-tuning accuracy	8 MHz	-	120	-	uA
		16 MHz	_	170	-	
		22.12 MHz, 24 MHz	-	210	-	

- 1. Guaranteed by design, not tested in production.
- 2. Data is based on assessment results and is not tested in production.

5.3.8. Internal low frequency clock source LSI characteristics

Table 5-17 Internal low frequency clock characteristics

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
f _{LSI}	LSI frequency	-	-	32.768	-	KHz
$\Delta T_{emp(LSI)}$		V _{CC} = 3.3 V, T _A = 25 °C	-3	-	+3	
	LSI frequency tempera- ture drift	$V_{CC} = 1.7 \text{ to } 5.5 \text{ V},$ $T_A = 0 \text{ to } 85 \text{ °C}$	-10 ⁽²⁾	-	10 ⁽²⁾	%
		$V_{CC} = 1.7 \text{ to } 5.5 \text{ V},$ $T_A = -40 \text{ to } 85 ^{\circ}\text{C}$	-20 ⁽²⁾	-	20(2)	
f _{TRIM} ⁽¹⁾	LSI fine-tuning accuracy	-	-	0.2	-	%
t _{Stab(LSI)} (1)	LSI stabilization time	-	-	150	-	us
I _{DD(LSI)} ⁽¹⁾	LSI current consumption	-	-	210	-	nA

- 1. Guaranteed by design, not tested in production.
- 2. Data is based on assessment results and is not tested in production.

5.3.9. Phase locked loop (PLL) characteristics

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
f _{PLL_IN}		T _A = 25 °C, V _{CC} = 3.3 V PLL * 2	16 ⁽¹⁾	-	24 ⁽¹⁾	N 41 1
	input frequency	T _A = 25 °C, V _{CC} = 3.3 V PLL * 3	22.12(1)	-	24(1)	MHz
f _{PLL_OUT}	Output frequency	$T_A = 25 ^{\circ}\text{C}, V_{CC} = 3.3 \text{V}$	32(1)	-	72	MHz
Jitter	Period jitter	-	-	-	0.3(1)	ns
tLOCK	Latch time	f _{PLL_IN} = 24 MHz	-	15	40(1)	us

^{1.} Guaranteed by design, not tested in production.

5.3.10. Memory characteristics

Table 5-17 Memory characteristics

Symbol	Parameter	Condition	Typical	Maximum (1)	Unit
t _{prog}	Page program	-	1.0	1.5	ms
t _{ERASE}	Page/sector/mass erase	-	3.0	4.5	ms
	Page programe	-	2.1	2.9	mA
IDD	Page/sector/mass erase	-	2.1	2.9	mA

^{1.} Guaranteed by design, not tested in production.

Table 5-18 Memory erase times and data retention

Symbol	Parameter	Condition	Minimum ⁽¹⁾	Unit
N _{END}	Erase and write times	T _A = -40 to 85 °C	100	kcycle
t _{RET}	Data retention period	10 Kcycle T _A = 55 °C	20	Year

^{1.} Data is based on assessment results and is not tested in production.

5.3.11. EFT characteristics

Symbol	Parameter	Condition	Grade	Typical	Unit
EFT to IO	-	IEC61000-4-4	В	2	kV
EFT to Power		IEC61000-4-4	В	4	kV

5.3.12. ESD & LU characteristics

Table 5-19ESD & LU characteristics

Symbol	Parameter	Condition	Typical	Unit
Vesd(HBM)	Static discharge voltage (human body model)	ESDA/JEDEC JS-001-2017	7.5	KV
V _{ESD(CDM)}	Static discharge voltage (charging equipment model)	ESDA/JEDEC JS-002-2018	1	KV
V _{ESD(MM)}	Static discharge voltage (machine model)	JESD22-A115C	200	V

Symbol	Parameter	Condition	Typical	Unit
LU	Static latch-up	JESD78E	200	mA

5.3.13. Port characteristics

Table 5-20 IO static characteristics

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
ViH	Input high level voltage	$V_{CC} = 1.7 \text{ to } 5.5 \text{ V}$	0.7Vcc	-	-	V
VIL	Input low level voltage	$V_{CC} = 1.7 \text{ to } 5.5 \text{ V}$	-	-	0.3Vcc	V
$V_{hys}^{(1)}$	Schmitt hysteresis voltage	-	-	200		mV
I _{lkg}	Input leakage current	-	-	-	1	υA
R _{PU}	Pull-up resistor	-	30	50	70	kΩ
R _{PD}	Pull-down resistor	-	30	50	70	kΩ
$C_{IO}^{(1)}$	Pin capacitance	-	-	5	-	pF

1. Guaranteed by design, not tested in production.

Table 5-21 Output voltage characteristics

Symbol	Parameters ⁽¹⁾	Condition	Minimum	Maximum	Unit
Vol	COM IO output low	$I_{OL} = 8 \text{ mA}, V_{CC} \ge 2.7 \text{ V}$	1	0.4	V
Vol	level	$I_{OL} = 4 \text{ mA}, V_{CC} = 1.8 \text{ V}$	1	0.5	V
V _{OL} ⁽³⁾	Output low level volt-	$I_{OL} = 8 \text{ mA}, V_{CC} \ge 2.7 \text{ V}$	-	0.4	V
V _{OL} ⁽³⁾	age for an I/O pin	$I_{OL} = 4 \text{ mA}, V_{CC} = 1.8 \text{ V}$	-	0.4	V
Vон	COM IO output high	Iон = 8 mA, V _{CC} ≥ 2.7 V	Vcc-0.4	-	V
V _{OH}	level	$I_{OH} = 4 \text{ mA}, V_{CC} = 1.8 \text{ V}$	V _{CC} -0.5	-	V
V _{OH} (3)	Output high level volt-	I _{OL} = 8 mA, V _{CC} ≥ 2.7 V	Vcc-0.4		V
V _{OH} (3)	age for an I/O pin	$I_{OL} = 4 \text{ mA}, V_{CC} = 1.8 \text{ V}$	Vcc-0.4		V

- 1. IO types can refer to the terms and symbols defined by the pins.
- 2. Data is based on assessment results and is not tested in production.

5.3.14. NRST pin characteristics

Table 5-22NRST pin characteristics

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
V _{IH}	Input high level voltage	$V_{CC} = 1.7 \text{ to } 5.5 \text{ V}$	0.7V _{CC}	-	-	V
VIL	Input low level voltage	$V_{CC} = 1.7 \text{ to } 5.5 \text{ V}$	-	1	0.2Vcc	V
$V_{hys}^{(1)}$	Schmitt hysteresis voltage	-	-	300	-	mV
I_{lkg}	Input leakage current	-	-	-	1	uA
RPU ⁽¹⁾	Pull-up resistor	-	30	50	70	kΩ
RPD ⁽¹⁾	Pull-down resistor	-	30	50	70	kΩ
C _{IO} _	Pin capacitance	-	-	5	-	pF

1. Guaranteed by design, not tested in production.

5.3.15. ADC characteristics

Table 5-23ADC characteristics

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
Icc	Current consumption	@0.75MSPS	-	0.4	-	mA
C _{IN} ⁽¹⁾	Internal sample and hold capacitors	-	-	5	8	pF
_	F _{ADC} Convert clock frequency	$V_{CC} = 1.7 \text{ to } 2.3 \text{ V}$	1	4	8(2)	MHz
FADC	Convert clock frequency	$V_{CC} = 2.3 \text{ to } 5.5 \text{ V}$	1	8	16 ⁽²⁾	MHz
t _{samp} (1)	-	$V_{CC} = 1.7 \text{ to } 2.3 \text{ V}$	3.5* Tclk	-	41.5* Tclk	
t _{conv} (1)	-	-	1	12*Tclk		
t _{eoc} (1)	-	-	•	0.5*Tclk		
DNL ⁽²⁾	RT	-	-	±1	-1~1.5	LSB
INL ⁽²⁾	RT	-	-	-	±3	LSB
Offset ⁽²⁾	RT	-	-	±1.5	±3	LSB

- 1. Guaranteed by design, not tested in production.
- 2. Data is based on assessment results and is not tested in production.

5.3.16. DAC characteristics

Table 5-24 DAC characteristics

Table 3-24 DAG Glial acteristics							
Symbol	Parameter	Minimum	Typical	Maximum	Unit	Comments	
V _{DDA}	Analog supply voltage	2.2	-	5.5	V	-	
R _{LOAD} (1)	Resistive load vs. Vssa with buffer ON	5		-	kΩ		
NEOAD	Resistive load vs. V _{CCA} with buffer ON	15	-	-	kΩ		
Ro ⁽¹⁾	Impedance output with buffer OFF		-	15	kΩ	The minimum resistive load between DAC_VOUT and Vss to have a 1% accuracy is 1.5 $\mbox{M}\Omega$.	
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC.	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} - 0.2	V		
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output excursion of the DAC.	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{DDA} – 10 mV	V		
	DAC DC current con-	-	-	600	μA	With no load, middle code (0x800) on the inputs	
I _{DDA} ⁽¹⁾	DAC DC current consumption in quiescent-mode (2)	-	-	700	μА	With no load, worst code (0xF1C) at V _{REF} + = 3.6 V in terms of	

Symbol	Parameter	Minimum	Typical	Maximum	Unit	Comments
						DC consumption on the in-
						puts
DNL ⁽²⁾	Differential linearity er-	-	-	±1	LSB	Given for the DAC in 10 bits configuration
DIVL	ror	-	-	±3	LSB	Given for the DAC in 12 bits configuration
INL ⁽²⁾	Integral linearity error	-	-	±1	LSB	Given for the DAC in 10 bits configuration
IIVE	integral integral to			±4	LSB	Given for the DAC in 12 bits configuration
Offset ⁽²⁾	offset error	-	-	±3	LSB	Given for the DAC in 10 bits
Oliset.	offset error	-	-	±12	LSB	Given for the DAC in 12 bits
Gain error ⁽²⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12 bits configuration
tsettling ⁽²⁾	Settling time (full scale: for a 10 bits input code transition between the lowest and the highest input codes when DAC_OUT reaches finalvalue ±1LSB	-	4	10	μѕ	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the inputcode (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$
twakeup ⁽²⁾	Wakeup time from off state	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
P _{SRR+} ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

5.3.17. Comparator characteristics

Table 5-25 Comparator characteristics⁽¹⁾

Symbol	Parameter	Cond	ition	Minimum	Typical	Maximum	Unit
Vin	Input voltage range	-	_		-	Vcc	V
Vsc	Scaler offset voltage	-		-	±5	± 10	mV
IDD(SCALER)	Scaler static consumption	-		-	0.8	1	uA
tstart_scaler	Scaler startup time	-		-	100	200	us
	Startup time to reach	High-speed mod	le	-	-	5	
tstart	propagation delay specification	Medium-speed r	node	-	-	15	us
		200 mV step,	High-speed mode	-	40	70	ns
	Draw a satism dalay	100 mV over- drive	Medium- speed mode	-	0.9	2.3	us
t _D	Propagation delay	>200 mV step,	High-speed mode	-	-	85	ns
		100 mV over- drive	Medium- speed mode	-	-	3.4	us
V _{offset}	Offset error		·	-	±5	-	mV
	Lhyatayasia	No hysteresis		-	0	-	\/
V _{hys}	Hysteresis	With hysteresis	·	-	20	-	mV

Symbol	Parameter	Cond	tion	Minimum	Typical	Maximum	Unit
		Medium-speed	Static	-	5	-	uA
		mode, no deglitcher	With 50 KHz and ±100 mv overdrive square sig- nal	-	6	-	uA
		Medium-speed	Static	-	7	-	uA
I _{DD}	Consumption	mode, with deglitcher	With 50 KHz and ±100 mv overdrive square sig- nal	-	8		uA
		I Each and add	Static	-	250		uA
		High-speed mode, no deglitcher	With 50 KHz and ±100 mv overdrive square sig- nal		250	ŀ	uA

^{1.} Guaranteed by design, not tested in production.

5.3.18. Operational amplifier characteristics

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
Vi	Input voltage	-	0	-	AVcc	V
Vo	The output voltage	-	0.1	-	AV _{CC} - 0.2	V
lo	Output current	-	-	-	2.2	mA
R∟	load time	-	5K	-	-	Ω
t _{start}	initialization time	-	-	-	20	us
Vio	Input offset voltage	-		±6	-	mV
PM	Phase margin	-	-	80	-	Deg
UGBW	unity gain width	-	_	10	-	MHz
SR	Slew rate	-	-	8	-	V/us

5.3.19. Temperature sensor characteristics

Table 5-26 Temperature sensor characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
T _L ⁽¹⁾	V _{TS} linearity with temperature	-	±1	±2	°C
Avg_Slope(1)	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30 °C (±5 °C)	0.742	0.76	0.785	V
t _{START} (1)	Start up time entering in continuous mode	-	70	120	us
t _{s_temp} (1)	ADC sampling time when reading the temperature	9	-	-	us

- 1. Guaranteed by design, not tested in production.
- 2. Data is based on assessment results and is not tested in production.

5.3.20. Built-in reference voltage characteristics

Table 5-27 Built-in reference voltage characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
V _{REFINT}	Internal reference voltage	1.17	1.2	1.23	V
t _{start_vrefint}	Start time of internal reference voltage	-	10	15	us
T _{coeff}	Temperature coefficient	-	-	100 ⁽¹⁾	ppm/°C
I _{vcc}	Current consumption from V _{CC}	-	12	20	uA

^{1.} Guaranteed by design, not tested in production.

5.3.21. Built-in reference voltage

Symbol	Parameter	Condition	Minimum	Typical	Maximum	Unit
V _{REF25}	Internal 2.5V reference voltage	T _A =25°C,V _{CC} =3.3V	2.475	2.5	2.525	V ⁽¹⁾
V _{REF25}	Start time of internal reference voltage	T _A =-40 ~ 85°C, V _{CC1} =1.7 ~ 5.5V	2.463	2.5	2.525	V ⁽¹⁾
V _{REF2048}	Internal 2.048V reference voltage	T _A =25°C,V _{CC} =3.3V	2.028	2.048	2.068	
	Start time of internal reference voltage	T _A =-40 ~ 85°C, V _{CC1} =1.7 ~ 5.5V	2.020	2.048	2.076	
V _{REF15}	Internal 2.5V reference voltage	T _A =25°C,V _{CC} =3.3V	1.485	1.5	1.515	V
V _{REF15}	Current consumption from Vcc	T _A =-40 ~ 85°C, V _{CC1} =1.7 ~ 5.5V	1.477	1.5	1.519	V ⁽¹⁾
T _{coeff}	Internal 2.5V/1.5V temperature coeffi- cient	T _A =-40 ~ 85°C	-	-	120	ppm/° C

5.3.22. Timer characteristics

Table 5-28 Timer characteristics

Symbol	Parameter	Condition	Minimum	Maximum	Unit
_	Timer resolution time	-	1	-	t _{TIMxCLK}
tres(TIM)		f _{TIMxCLK} = 72 MHz	13.889	-	ns
	Timer external clock frequency on CH1 to CH4	-	1	f _{TIMxCLK} /2	N41.1-
f _{EXT}		f _{TIMxCLK} = 72 MHz	1	24	MHz
Restim	Timer resolution	TIM1/3/14/15/16/17	1	16	Bit
tcounter	16 bits counter clock period	-	1	65536	tтімхськ

Symbol	Parameter	Condition	Minimum	Maximum	Unit	
		f _{TIMxCLK} = 72 MHz	0.013889	913	us	

Table 5-29LPTIM characteristics (clock selection LSI)

Prescaler	PRESC[2:0]	Minimum overflow	Maximum overflow	Unit
/1	0	0.0305	1998.848	
/2	1	0.0610	3997.696	
/4	2	0.1221	8001.9456	
/8	3	0.2441	15997.3376	
/16	4	0.4883	32001.2288	ms
/32	5	0.9766	64002.4576	
/64	6	1.9531	127998.3616	
/128	7	3.9063	256003.2768	

Table 5-30IWDG characteristics (clock selection LSI)

Prescaler	PR[2:0]	Minimum overflow	Maximum overflow	Unit
/4	0	0.122	499.712	
/8	1	0.244	999.424	
/16	2	0.488	1998.848	
/32	3	0.976	3997.696	ms
/64	4	1.952	7995.392	
/128	5	3.904	15990.784	
/256	6 or 7	7.808	31981.568	

Table 5-31 WWDG characteristics (Clock selection 4 8MHz PCLK)

Prescaler	WDGTB[1:0]	Minimum overflow	Maximum overflow	Unit
1*4096	0	0.085	5.461	
2*4096	1	0.171	10.923	
4*4096	2	0.341	21.845	ms
8*4096	3	0.683	43.691	

5.3.23. Communication port characteristics

5.3.23.1. I²C bus interface features

The I²C interface meets the timing requirements of the I²C-bus specification and user manual:

• Standard-mode (Sm): 100 kbit/s

• Fast-mode (Fm): 400 kbit/s

The I^2C timings requirements is guaranteed by design, provided the I^2C peripheral is properly configured and the I^2C CLK frequency is greater than the minimum required in the table below.

Table 5-32 Minimum I²C CLK frequency

Symbol	Parameter	Condition	Minimum	Unit
f _{I2CCLK(min)}	Minimum I ² C CLK frequency	Standard-mode	2	MHz

Symbol	Parameter	Condition	Minimum	Unit
		Fast-mode	9	

I²C SDA and SCL pins have analogue filtering, see table below.

Table 5-33 I²C filter characteristics

Symbol	Parameter	Minimum	Maximum	Unit
taf	Lmiting duration of spikes suppressed by the filter (spikers shorter than the limiting duration are suppressed)	50	260	ns

5.3.23.2. Serial peripheral interface (SPI) characteristics

Table 5-34 SPI characteristics

Symbol	Parameter	Condition	Minimum	Maximum	Unit
fsck	SPI clock fre-	Master mode	4	12	N 41 1—
1/t _{c(SCK)}	quency	Slave mode	-	12	MHz
$t_{r(SCK)}$	SPI clock rise	Capacitive load:		6	ns
t _{f(SCK)}	and fall time	C = 15 pF			
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-	ns
th(NSS)	NSS hold time	Slave mode	2Tpclk + 10	-	ns
t _{w(SCKH)}	SCK high and	Master mode, presc = 4	Tpclk*2 - 2	Tpclk*2 + 1	ns
t _{w(SCKL)}	low time	masser meas, press			
t _{su(MI)}	Data input	Master mode, presc = 4	Tpclk + 5 ⁽¹⁾	-	ns
t _{su(SI)}	setup time	Slave mode, presc = 4	5	-	2
t _{h(MI)}	Data input hold	Master mode	5	-	
t _{h(SI)}	time	Slave mode	Tpclk + 5	-	ns
t _{a(SO)}	Data output access time	Slave mode, presc = 4	0	3Tpclk	ns
t _{dis(SO)}	Data output disable time	Slave mode	2Tpclk + 5	4Tpclk + 5	ns
$t_{v(SO)}$	Data output valid time	Slave mode (after enable edge), presc = 4	0	1.5Tpclk ⁽²⁾	ns
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6	ns
t _{h(SO)}	Data output	Slave mode, presc = 4	0(3)	-	20
t _{h(MO)}	hold time	Master mode	2	-	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	45	55	%

- 1. The Master generates a 1 pclk receive control signal before the receive edge.
- 2. Slave has a maximum of 1 pclk based on the sending edge of SCK delay, considering IO delay, etc., define 1.5 pclk.
- 3. Between the receiving edge and the sending edge, the slave updates the data before the sending edge.

Figure 5-3 SPI timing diagram – slave mode and CPHA=0

Figure 5-4 SPI timing diagram – slave mode and CPHA=1

Figure 5-5 SPI timing diagram - master mode

6. Package Information

6.1. LQFP64 package size

6.2. QFN64 package size

6.3. LQFP48 package size

6.4. QFN48 package size

6.5. QFN32 package size

7. Ordering Information

8. Version History

Version	Date	Updated record
V1.0	2023.08.31	1. Initial version
V1.1	2024.01.16	1. Updated Table 1-1 / 3-2 / 5-17 / 5-21

Puya Semiconductor Co., Ltd.

IMPORTANT NOTICE

Puya reserve the right to make changes, corrections, enhancements, modifications to Puya products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information of Puya products before placing orders.

Puya products are sold pursuant to terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice and use of Puya products. Puya does not provide service support and assumes no responsibility when products that are used on its own or designated third party products.

Puya hereby disclaims any license to any intellectual property rights, express or implied.

Resale of Puya products with provisions inconsistent with the information set forth herein shall void any warranty granted by Puya.

Any with Puya or Puya logo are trademarks of Puya. All other product or service names are the property of their respective owners.

The information in this document supersedes and replaces the information in the previous version.

Puya Semiconductor Co., Ltd. - All rights reserved