Machine Language Category ALL REG FIN (languages = sets of strings) (5-toles) Find the smallest DFA whose language matches {a,b} v {b,c} = {a,b,c} Sa, 63 + (b, c3 = 5 (0,a) (0,6) Union (1,6) (1,6) 5 a e X u Y iff a e X or a e Y Total [ends in 1] L()= X EREG · Fdq L(d3) = XUY? If so, then XUY EREG (oddorends in 1) REG is closed union Xereg, YEREG, JAGREG, A=XUY $X \in REG$ iff $\exists dx \in DFA$, L(dx) = X $\forall dx \in DFA$, $dy \in DFA$, $\exists d_A \in DFA$, $L(d_A) = L(dx) \cup L(d_Y)$ Input: dx: PFA = (Qx, E, Box, Sx, Fx) Jae4, P(a) dy: DFA = (Qy, E, Box, Sy, Fx) constructive: gave a, Prove P(a) Output: da: DFA = (QA, E, BOA, SA, FA) TYAGU, TP(a) $S_A((g_X,g_Y),\alpha) =$ GA= Qx × Qy $\begin{array}{lll} & \mathcal{S}_{OR} = \left(\mathcal{G}_{OX} \right), \ \mathcal{S}_{OY} \\ & \mathcal{S}_{R} & \mathcal{Q}_{R} \times \mathcal{E} \Rightarrow \mathcal{Q}_{R} = \left(\mathcal{G}_{X} \times \mathcal{Q}_{Y} \right) \times \mathcal{E} \Rightarrow \left(\mathcal{G}_{X} \times \mathcal{Q}_{Y} \right) \\ & \mathcal{S}_{Y} \left(\mathcal{G}_{Y} \right), \ \mathcal{S}_{Y} \left(\mathcal{G}_{Y} \right$ FA = Fx x Fy (Fx x Qy) U (Ox x Fy)

X accepts

Regular	Languages	are closed under the
	Regular	Operations
Union:	\cup	(we proved)
Intersect:	<u> </u>	(me proved = . Fx x Fy)
Complement	C	(FA = Fx, we proved)
Reversal:	R	`
Star :	*	hard proofs
Concat:		

Road map: Define BlahFA prove concat on BlahFA (very easy) & Show that BlahFA = DFA (medium) & AA We like BlahFA! Use BlahFA to Make DFA-PL

Talk about smallest Union