CLAIMS

1

2

3

4

5

6

7

1

2

3

We claim:

L	1. A method of controlling rate distortion in a video compression and
2	encoding system, said method comprising:
3	selecting a distortion value D near a desired distortion value;
1	determining a quantizer value Q using said distortion value D;
5	calculating a Lagrange multiplier lambda using said quantizer value Q; and
5	encoding a pixelblock using said Lagrange multiplier lambda and said quantizer
7	value Q.

2. The method as claimed in claim 1, said method further comprising: increasing said Lagrange multiplier lambda when a buffer exceeds an overflow threshold value and increasing said quantizer value Q if said Lagrange multiplier lambda exceeds a maximum lambda threshold; and decreasing said Lagrange multiplier lambda when a buffer falls below an undererflow threshold value and decreasing said quantizer value Q if said Lagrange multiplier lambda falls below a minimum lambda threshold.

3. The method as claimed in claim 2, said method further comprising: recalculating said Lagrange multiplier lambda if said quantizer value Q is adjusted.

. 1	4. The method as claimed in claim 2, said method further comprising
2	wherein said Lagrange multiplier lambda is increased or decreased by an amount
3	dependent upon said quantizer value Q.
1	5. The method as claimed in claim 1, said method further comprising:
2	calculating a visual mask value M; and
3	increasing said Lagrange multiplier lambda when said visual mask value M times
4	said Lagrange multiplier lambda is less than a maximum threshold for said
5	Lagrange multiplier lambda.
. •	
1	6. The method as claimed in claim 5 wherein said maximum
2	threshold for said Lagrange multiplier lambda is dependent upon said quantizer value Q.
1	7. The method as claimed in claim 5, said method further comprising:
2	increasing said Lagrange multiplier lambda when a buffer exceeds an overflow
3	threshold value and increasing said quantizer value Q if said Lagrange
4	multiplier lambda exceeds a maximum lambda threshold; and
-	mandina minore evoces a mentiment minoriolal min

decreasing said Lagrange multiplier lambda when a buffer falls below an

undererflow threshold value and decreasing said quantizer value Q if said

Lagrange multiplier lambda falls below a minimum lambda threshold.

5

6

7

1	8. The method as claimed in claim 7, said method further comprising:
2	recalculating said Lagrange multiplier lambda if said quantizer value Q is
3	adjusted.

1 9. A computer-readable medium, said computer-readable medium 2 containing a set of computer instructions for implementing a method of controlling rate 3 distortion in a video compression and encoding system with the following steps: 4 selecting a distortion value D near a desired distortion value; 5 determining a quantizer value Q using said distortion value D; calculating a Lagrange multiplier lambda using said quantizer value Q; and 6 7 encoding a pixelblock using said Lagrange multiplier lambda and said quantizer 8 value Q.

1 10. The computer-readable medium as claimed in claim 9 wherein said 2 set of computer instructions further implement the steps of: 3 increasing said Lagrange multiplier lambda when a buffer exceeds an overflow threshold value and increasing said quantizer value Q if said Lagrange 4 5 multiplier lambda exceeds a maximum lambda threshold; and 6 decreasing said Lagrange multiplier lambda when a buffer falls below an 7 undererflow threshold value and decreasing said quantizer value Q if said 8 Lagrange multiplier lambda falls below a minimum lambda threshold.

DHJ

1	11. The computer-readable medium as claimed in claim 10 wherein
2	said set of computer instructions further implement the steps of:
3	recalculating said Lagrange multiplier lambda if said quantizer value Q is
4	adjusted.
1	12. The computer-readable medium as claimed in claim 10 wherein
2	said Lagrange multiplier lambda is increased or decreased by an amount dependent upon
3	said quantizer value Q.
•	
1	13. The computer-readable medium as claimed in claim 9 wherein said
2	set of computer instructions further implement the steps of:
3	calculating a visual mask value M; and
4	increasing said Lagrange multiplier lambda when said visual mask value M times
5	said Lagrange multiplier lambda is less than a maximum threshold for said
6	Lagrange multiplier lambda.
•	
1	14. The computer-readable medium as claimed in claim 13 wherein
2	said maximum threshold for said Lagrange multiplier lambda is dependent upon said
3	quantizer value Q.

1	15. The computer-readable medium as claimed in claim 13 wherein
2	said set of computer instructions further implement the steps of:
3	increasing said Lagrange multiplier lambda when a buffer exceeds an overflow
4	threshold value and increasing said quantizer value Q if said Lagrange
5	multiplier lambda exceeds a maximum lambda threshold; and
6	decreasing said Lagrange multiplier lambda when a buffer falls below an
7	undererflow threshold value and decreasing said quantizer value Q if said
8	Lagrange multiplier lambda falls below a minimum lambda threshold.

1 16. The computer-readable medium as claimed in claim 15 wherein
2 said set of computer instructions further implement the steps of:
3 recalculating said Lagrange multiplier lambda if said quantizer value Q is
4 adjusted.