

Data Sheet

K8T800 Desktop North Bridge

Revision 1.24
September 29, 2004

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2002-2004 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8235, VT8237 and K8T800 may only be used to identify products of VIA Technologies.

Athlon 64™, AMD-K8™ and ClawHammer™ are registered trademarks of Advanced Micro Devices Corporation.

HyperTransport™ is a licensed trademark of the HyperTransport Technology Consortium.

Windows XP™, Windows 2000™, Windows ME™, Windows 98™ and Plug and Play™ are registered trademarks of Microsoft Corporation.

PCI™ is a registered trademark of the PCI Special Interest Group.

AGP™ is a registered trademark of the AGP Special Interest Group.

PS/2™ is a registered trademark of International Business Machines Corporation.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies, Inc. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated

USA Office:

940 Mission Court

Fremont, CA 94539

USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654

Web: <http://www.viatech.com>

VIA Technologies Incorporated

Taiwan Office:

1st Floor, No. 531

Chung-Cheng Road, Hsin-Tien

Taipei, Taiwan ROC

Tel: (886-2) 2218-5452

Fax: (886-2) 2218-5453

Web: <http://www.via.com.tw>

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	4/23/03	Initial external release (same as internal review release rev 0.71 except for fix of V-Link voltage typographical error in note 2 under "Absolute Max" electrical specs)	DH
1.1	6/9/03	Changed product name to K8T800	DH
1.11	6/30/03	Fixed south bridge strap names in VAD pin definitions Corrected voltages for VCCATX, VCCARX, VCCSUS	DH
1.12	7/9/03	Fixed trademarks list; Fixed MHz, MT/s terminology in feature bullets Fixed missing block diagrams and incorrect document revision in page footers Changed south bridge to VT8237	DH
1.2	10/9/03	Changed cover page and page heading formats Updated feature bullets, overview and block diagram to match Product Brief	AT
1.21	10/28/03	Fixed grammatical and format errors in feature bullets and overview Added system power management support in the feature bullets	AT
1.22	11/20/03	Removed strapping information from the V-Link pin description table Added a strap pins table Updated Function 0 RxB2 [6-5, 2-0]	AT
1.23	2/27/04	Minor updates on product features and overview sections Corrected signal HTSTOP# description in pin description table Updated Strap Pins table Corrected voltages for VCCATX	AT
1.24	9/29/04	Added HyperTransport trademark notice Spelled out corp. to corporation in legal page Renamed HTSTOP# to LDTSTOP# Updated D0 Rx57 register name Added lead-free mechanical package diagram	SV

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS.....	II
LIST OF FIGURES	IV
LIST OF TABLES	IV
PRODUCT FEATURES	1
K8T800 SYSTEM OVERVIEW	3
K8T800 OVERVIEW	3
SYSTEM POWER MANAGEMENT	4
PINOUTS.....	5
PIN LISTS	6
PIN ARRANGEMENT.....	8
PIN DESCRIPTIONS.....	9
Strap Pin Descriptions.....	15
REGISTERS.....	16
REGISTER OVERVIEW	16
MISCELLANEOUS I/O.....	20
CONFIGURATION SPACE I/O	20
DEVICE 0 REGISTER DESCRIPTIONS.....	21
Device 0 Host Bridge Header Registers	21
Device 0 Host Bridge Device-Specific Registers.....	23
V-Link Control	23
HyperTransport Host Control	26
HyperTransport Arbitration Control	29
Interrupt Control & Configuration	29
BIOS ROM & Memory Hole Control	30
HyperTransport Buffer / FIFO Control	31
Extended Power Management Control	31
PCI Bus Control	32
GART / Graphics Aperture	34
AGP 2.0 Registers	35
AGPMiscellaneous Control	35
AGP 3.0 Registers	37
AGP 2.0 / 3.0 Registers	39
V-Link Compensation / Drive Control	41
Power Management Control	41
HyperTransport Control	42
HyperTransport I/O	45
DRAM Above 4G Control	46
AGP / V-Link Control	47
BIOS Scratch	47
Miscellaneous Registers	47
DEVICE 1 REGISTER DESCRIPTIONS.....	48
Device 1 PCI-to-PCI Bridge Header Registers	48

Device 1 PCI-to-PCI Bridge Device-Specific Registers	50
AGP Bus Control.....	50
AGP Bus Control (continued)	52
Power Management.....	52
ELECTRICAL SPECIFICATIONS	53
ABSOLUTE MAXIMUM RATINGS	53
SUPPLY CURRENT AND POWER CHARACTERISTICS.....	53
DC CHARACTERISTICS	54
AGP Signal Levels	55
AC TIMING SPECIFICATIONS.....	56
MECHANICAL SPECIFICATIONS.....	62

LIST OF FIGURES

FIGURE 1. SYSTEM BLOCK DIAGRAM.....	3
FIGURE 2. BALL DIAGRAM (TOP VIEW).....	5
FIGURE 3. GRAPHICS APERTURE ADDRESS TRANSLATION.....	34
FIGURE 4. AGP 3.0 (8X) SIGNAL LEVELS	55
FIGURE 5. TIMING DIAGRAM – HYPERTRANSPORT SETUP / HOLD AND DATA VALID	57
FIGURE 6. TIMING DIAGRAM – AGP 8X SIDEband ADDRESS TIMING	59
FIGURE 7. TIMING DIAGRAM – AGP 8X DATA TRANSFER TIMING.....	59
FIGURE 8. TIMING DIAGRAM – AGP 4X TRANSMIT TIMING.....	60
FIGURE 9. TIMING DIAGRAM – AGP 4X RECEIVE TIMING	60
FIGURE 10. TIMING DIAGRAM – AGP 8X TRANSMIT SOURCE-SYNCHRONOUS TIMING	60
FIGURE 11. TIMING DIAGRAM – AGP 8X RECEIVE SOURCE-SYNCHRONOUS TIMING	60
FIGURE 12. MECHANICAL SPECIFICATIONS – HSBGA-578 BALL GRID ARRAY PACKAGE.....	62
FIGURE 13. LEAD-FREE MECHANICAL SPECIFICATIONS – HSBGA-578 BALL GRID ARRAY PACKAGE.....	63

LIST OF TABLES

TABLE 1. PIN LIST (<u>NUMERICAL ORDER</u>).....	6
TABLE 2. PIN LIST (<u>ALPHABETICAL ORDER</u>)	7
TABLE 3. PIN DESCRIPTIONS	9
TABLE 4. REGISTERS	16
TABLE 5. SYSTEM MEMORY MAP.....	46
TABLE 6. VGA/MDA MEMORY/IO REDIRECTION	50
TABLE 7. ABSOLUTE MAXIMUM RATINGS.....	53
TABLE 8. SUPPLY CURRENT AND POWER CHARACTERISTICS – INTERNAL AND INTERFACE DIGITAL LOGIC	53
TABLE 9. SUPPLY CURRENT AND POWER CHARACTERISTICS – ANALOG AND REFERENCE VOLTAGES ..	53
TABLE 10. DC CHARACTERISTICS – HYPERTRANSPORT	54
TABLE 11. DC CHARACTERISTICS – V-LINK	54
TABLE 12. DC CHARACTERISTICS – AGP	55
TABLE 13. DC CHARACTERISTICS – RESET, POWER OK, SUSPEND STATUS AND TEST	55
TABLE 14. AC TIMING MIN / MAX CONDITIONS.....	56
TABLE 15. AC CHARACTERISTICS – HYPERTRANSPORT CPU INTERFACE RECEIVE.....	57
TABLE 16. AC CHARACTERISTICS – HYPERTRANSPORT CPU INTERFACE TRANSMIT	57
TABLE 17. AC CHARACTERISTICS – HYPERTRANSPORT CPU INTERFACE RESET / STOP	58
TABLE 18. AC CHARACTERISTICS – AGP 8X	59
TABLE 19. AC CHARACTERISTICS – V-LINK INTERFACE	61
TABLE 20. AC CHARACTERISTICS –RESET, POWER OK AND SUSPEND.....	61

K8T800 NORTH BRIDGE

800MHz AMD Opteron / Athlon 64 HyperTransport Interface
533 MB / Sec V-Link Interface
8x / 4x AGP Bus

PRODUCT FEATURES

- **Defines Highly Integrated Solutions for Performance Desktop PC Designs**

- High performance North Bridge with HyperTransport interface to AMD Opteron / Athlon 64 CPU plus AGP 8x bus to external Graphics Controller and high-speed V-Link interface to South Bridge
- Combines with VIA VT8235 / VT8237 V-Link South Bridge for integrated 10/100 LAN, Audio, ATA133 IDE, LPC, USB 2.0 ports and Serial ATA (VT8237)
- 35 x 35 mm BGA package (Ball Grid Array) with 578 balls and 1.27mm ball pitch
- 2.5V core, 0.22 u process

- **High Performance HyperTransport CPU Interface**

- Processor interface via HyperTransport interface
- 800 / 600 / 400 / 200 MHz clock rates with 1600 / 1200 / 800 / 400 MT/s (Mega-Transfers per second) in both directions simultaneously (up to 6.4 GB/sec using 16-bit data transfer mode)
- 8 or 16-bit control / address / data transfer both directions (transmit and receive may be different widths and / or speeds)
- Default 8-bit / 200 MHz operation on startup with speedup to dual 16-bit, 800 MHz operation under software control
- Supports isochronous AGP-to-CPU and PCI-to-CPU transactions

- **Full Featured Accelerated Graphics Port (AGP) Controller**

- AGP v3.0 compliant 8x / 4x transfer mode with Fast Write support
- 1.5V AGP I/O interface
- Pipelined split-transaction long-burst transfers up to 2.1 GB / Sec (4 bytes x 533 MHz)
- Supports Side Band Addressing (SBA) mode
- Supports Flush / Fence commands
- Supports DBI (Dynamic Bus Inversion)
- Pseudo-synchronous AGP and CPU interfaces with optimal skew control
- Thirty-two level read and write request queue
- One-ninety-two level (quadwords) read data FIFO (1,536 bytes)
- Sixty-four level (quadwords) write data FIFO (512 bytes)
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
- VPX-64 / VPX-II support (see separate VIA VT8101 and VT8102 data sheets)

- **High Bandwidth 533 MB/Sec V-Link Host Controller**

- Supports 66 MHz, 4x and 8x transfer modes, V-Link Host interface with total bandwidth of 533 MB/sec
- Half duplex transfers with separate command / strobe for 4x8 bit mode and full duplex for 8x4 bit mode
- Request / Data split transaction
- Transaction assurance for V-Link Host to Client access eliminates V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to minimize data wait-state / throttle transfer latency
- Highly efficient V-Link arbitration with minimum overhead)

- **Advanced System Power Management Support**

- ACPI 2.0 and PCI Bus Power Management 1.1 compliant
- Supports LDTSTOP# (HyperTransport Bus Stop) protocol
- Low-leakage I/O pads

K8T800 SYSTEM OVERVIEW

The K8T800 North Bridge is a high performance, cost-effective and energy efficient North Bridge for the implementation of 64-bit capable server, workstation and desktop personal computer systems based on AMD Opteron / Athlon 64 processors.

Figure 1. System Block Diagram

A complete 64-bit Opteron / Athlon 64 chip set consists of the K8T800 North Bridge and the VT8237 V-Link South Bridge. The K8T800 provides superior performance between the CPU / HyperTransport, V-Link interface and AGP 8x bus with pipelined, burst and concurrent operation. The VT8237 is a highly integrated peripheral controller, it includes V-Link-to-PCI / V-Link-to-LPC controllers and integrates Serial ATA and Ultra DMA IDE controllers, USB2.0 host controller, 10/100Mb networking MAC, AC97 and system power management controllers. Its internal bus structure is based on a 66 MHz PCI bus that provides 2x bandwidth compared to previous generation PCI bridge chips.

K8T800 Overview

The K8T800 interfaces to the AMD Opteron / Athlon 64 processor via the HyperTransport interface with data transfer rate of 1.6 GT/sec, 1.2 GT/sec, 800 MT/sec or 400 MT/sec each direction (input and output), simultaneously, providing a total maximum data transfer bandwidth of 6.4 GB/sec. Isochronous AGP-to-CPU and PCI Master-to-CPU transactions are supported for time constraint, periodic data transmissions.

The AGP controller is AGP v3.0 compliant with up to 2.1GB/second data transfer rate capability. It supports pseudo-synchronous AGP and HyperTransport interface for optimal system performance. Deep read (1536 bytes) and write (512 bytes) FIFO are integrated for optimal bus utilization and minimum data transfer latency.

The K8T800 North Bridge interfaces to the South Bridge through the high speed 8x 66 MHz (533 MB / Sec) V-Link interface. Deep pre-fetch and post write buffers are included to allow for concurrent CPU and V-Link operation. The combined K8T800 North Bridge and VT8237 South Bridge system supports enhanced PCI bus commands such as "Memory-Read-Line", "Memory-Read-Multiple" and "Memory-Write-Invalid" commands to minimize snoop overhead. In addition, advanced features are supported such as CPU write-back forward to PCI master and CPU write-back merged with PCI post write buffers to minimize

PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

System Power Management

For sophisticated system power management, the K8T800 supports LDTSTOP# (HyperTransport Bus Stop) protocol to minimize power consumption during suspend system states (S1 and S3). Coupled with the VT8237 South Bridge chip, a complete power conscious PC main board can be implemented with no external glue logic.

PINOUTS

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26			
A	NC	NC	NC	NC	NC	NC	NC	GND	VCC HT	VCC HT	G CLK	LDT STOP#	TCAD 1	TCAD 1#	TCAD 3	TCAD 3#	TCAD 4	TCAD 4#	TCAD 6	TCAD 6#	T CTL	T CTL#	GND	VCC HT	VCC HT	VCC HT			
B	NC	NC	NC	NC	NC	NC	NC	GND	VCC VCC	HT HT	HT RST#	TCAD 0	GND	TCAD 2	GND	TCLK 0	GND	TCAD 5	GND	TCAD 7	GND	GND	VCC HT	VCC HT	VCC HT	VCC HT			
C	NC	NC	NC	NC	NC	NC	NC	GND	VCC VCC	HT HT	HT	TCAD 0#	TCAD 9#	TCAD 2#	TCAD 11#	TCLK 0#	TCAD 12#	TCAD 5#	TCAD 14#	TCAD 7#	TCAD TX	VCCA TX	VCC HT	VCC HT	VCC HT	RT COMP			
D	NC	NC	NC	NC	NC	NC	GND	GND	VCC VCC	HT HT	HT	GND	TCAD 9	GND	TCAD 11	GND	TCAD 12	GND	TCAD 14	GND	TCAD 15#	VCC HT	VCC HT	VCC HT	RP COMP	RN COMP			
E	NC	NC	NC	NC	GND	GND	NC	GND	VCC VCC	HT HT	HT	TCAD 8	TCAD 8#	TCAD 10	TCAD 10#	TCLK 1	TCLK 1#	TCAD 13	TCAD 13#	TCAD 15	VCC HT	VCC HT	VCC HT	VCC RX	GND RX				
F	NC	NC	NC	NC	NC	NC	NC	GND	GND	VCC	VCC HT	VCC HT	GND	GND	VCC HT	VCC HT	GND	VCC HT	VCC HT	VCC HT	R CTL	R CTL#	GND						
G	GND	NC	NC	NC	NC	NC	NC	G6	G7	G8	9	10	11	12	13	14	15	16	17	18	G19	G20	VCC HT	VCC HT	RCAD 15#	RCAD 15			
H	GND	GND	NC	NC	NC	NC	NC	H6	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	H	VCC HT	RCAD 14#	GND	RCAD 6	RCAD 6#	RCAD 7			
J	NC	GND	GND	NC	NC	NC	NC	J	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	J	GND	RCAD 14	RCAD 13#	RCAD 13	GND	RCAD 5#	RCAD 5		
K	NC	NC	NC	NC	GND	NC	NC	K	GND	GND	GND	GND	GND	GND	GND	GND	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	RCLK 1#	RCLK 1	RCLK 0#	RCLK 0
L	NC	NC	NC	NC	NC	NC	NC	L	GND	GND	GND	GND	GND	GND	GND	GND	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT
M	NC	NC	NC	NC	NC	NC	NC	M	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT
N	NC	NC	NC	NC	NC	NC	NC	N	GND	GND	GND	GND	GND	GND	GND	GND	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	
P	NC	NC	NC	NC	NC	GND	NC	P	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	
R	GND	GND	GND	GND	GND	GND	GND	R	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT		
T	GND QQ	VCC AGP	VCC AGP	T	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT						
U	VCC QQ	VCC AGP	VCC AGP	U	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT	VCC HT						
V	AGP PCMP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	GND	VCC AGP	V	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL		
W	AGP NCMP	VCC AGP	VCC AGP	VCC AGP	VCC AGP	GND	VCC AGP	W6	VCC AGP	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL		
Y	G AGP8X DT#	VCC AGP	Y6	VCC AGP	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VCC	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL						
AA	ST1	ST0	G GNT	VCC AGP	VCC AGP	VCC AGP	VCC AGP	AA6	7	8	9	10	11	12	13	14	15	16	17	18	AA20	VCC	VCC	VCC	VCC	VCC	VCC		
AB	ST2	GND	GND	GND	GND	GND	VCC AGP	VCC AGP	GND	GND	VCC AGP	VCC AGP	VCC AGP	VCC AGP	GND	GND	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL		
AC	G WBF	SBA 0#	SBA 1#	G DBIL	G DBIH	AGP VREF	G BE3	GND	G FRM	G IRDY	G DSEL	G STOP	AGP VREF	G TRDY	G SERR	G PAR	DE BUG	VCC VL	VCC VL	VCC VL	VCC VL	VCC VL	GND	GND	GND	GND	VCC SUS	TEST IN	
AD	SBA 2#	SBA 3#	SBA 5#	GD31	GD27	G RBF	GD25	GD23	GD19	GD16	G BE2	GD13	GD10	GD9	G BE0	GD5	GD4	GD1	VL PCOMP	VAD 0	VAD 1	DN STB#	DN CMD	VAD 6	RE SET#	SUS ST#			
AE	SBSS SBSS#	GND	SBA 6#	GD30	GND	GD26	GDS1F GDS1	GND	GD22	GD17	GND	GD15	GD11	GND	GDS0F GDS0	GD6	GND	GD2	VAD 4	GND	V BE#	GND	V PAR	VAD 5	VL VREF	DN STB#	UP STB#	PWR OK	
AF	SBSS SBS	SBA 4#	SBA 7#	GD29	GD28	GD24	GDS1S GDS1#	GD21	GD20	GD18	G BE1	GD14	GD12	GD8	GDS0S GDS0#	GD7	GD3	GD0	V PAR	VAD 5	VL VREF	DN STB#	UP STB#	VAD 2	VAD 7	UP CMD			

Pin Lists
Table 1. Pin List (Numerical Order)

Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Names	Pin #	Pin Name
A11 I	GCLK	E12 O	TCAD8	N22 I	RCAD11	AD01 I	SBA2#	AF01 I	SBSF / SBS
A12 I	LDTSTOP#	E13 O	TCAD8#	N23 I	RCAD10#	AD02 I	SBA3#	AF02 I	SBA4#
A13 O	TCAD1	E14 O	TCAD10	N24 I	RCAD10	AD03 I	SBA5#	AF03 I	SBA7#
A14 O	TCAD1#	E15 O	TCAD10#	N26 I	RCAD2#	AD04 IO	GD31	AF04 IO	GD29
A15 O	TCAD3	E16 O	TCLK1	P22 I	RCAD9#	AD05 IO	GD27	AF05 IO	GD28
A16 O	TCAD3#	E17 O	TCLK1#	P24 I	RCAD1	AD06 I	GRBF	AF06 IO	GD24
A17 O	TCAD4	E18 O	TCAD13	P25 I	RCAD1#	AD07 IO	GD25	AF07 IO	GDS1S / GDS1#
A18 O	TCAD4#	E19 O	TCAD13#	P26 I	RCAD2	AD08 IO	GD23	AF08 IO	GD21
A19 O	TCAD6	E20 O	TCAD15	R22 I	RCAD9	AD09 IO	GD19	AF09 IO	GD20
A20 O	TCAD6#	E25 P	VCCARX	R23 I	RCAD8#	AD10 IO	GD16	AF10 IO	GD18
A21 O	TCTL	E26 P	GNDARX	R24 I	RCAD8	AD11 IO	GBE2	AF11 IO	GBE1
A22 O	TCTL#	F24 I	RCTL	R26 I	RCAD0#	AD12 IO	GD13	AF12 IO	GD14
B11 O	HTRST#	F25 I	RCTL#	T01 P	GNDQQ	AD13 IO	GD10	AF13 IO	GD12
B12 O	TCAD0	G23 I	RCAD15#	T26 I	RCAD0	AD14 IO	GD9	AF14 IO	GD8
B14 O	TCAD2	G24 I	RCAD15	U01 P	VCCQQ	AD15 IO	GBE0	AF15 IO	GDS0S / GDS0#
B16 O	TCLK0	G26 I	RCAD7#	V01 AI	AGPPCOMP	AD16 IO	GD5	AF16 IO	GD7
B18 O	TCAD5	H22 I	RCAD14#	W01 AI	AGPNCOMP	AD17 IO	GD4	AF17 IO	GD3
B20 O	TCAD7	H24 I	RCAD6	Y01 I	GREQ	AD18 IO	GD1	AF18 IO	GD0
C12 O	TCAD0#	H25 I	RCAD6#	Y02 I	AGP8XDT#	AD19 AI	VLPCOMP	AF19 IO	VPAR
C13 O	TCAD9#	H26 I	RCAD7	AA01 O	ST1	AD20 IO	VAD0	AF20 IO	VAD5
C14 O	TCAD2#	J22 I	RCAD14	AA02 O	ST0	AD21 IO	VAD1	AF21 P	VLVREF
C15 O	TCAD11#	J23 I	RCAD13#	AA03 O	GGNT	AD22 O	DNSTB#	AF22 O	DNSTB
C16 O	TCLK0#	J24 I	RCAD13	AB01 O	ST2	AD23 O	DNCMD	AF23 I	UPSTB#
C17 O	TCAD12#	J26 I	RCAD5#	AC01 I	GWBF	AD24 IO	VAD6	AF24 IO	VAD2
C18 O	TCAD5#	K22 I	RCAD12#	AC02 I	SBA0#	AD25 I	RESET#	AF25 IO	VAD7
C19 O	TCAD14#	K24 I	RCAD4	AC03 I	SBA1#	AD26 I	SUSST#	AF26 I	UPCMD
C20 O	TCAD7#	K25 I	RCAD4#	AC04 IO	GDBIL	AE01 I	SBSS / SBS#		
C21 P	GNDATX	K26 I	RCAD5	AC05 IO	GDBIH / GPIPE#	AE03 I	SBA6		
C22 P	VCCATX	L22 I	RCAD12	AC06 P	AGPVREF	AE04 IO	GD30		
C26 AI	RTCOMP	L23 I	RCLK1#	AC07 IO	GBE3	AE06 IO	GD26		
D13 O	TCAD9	L24 I	RCLK1	AC09 IO	GFRM	AE07 IO	GDS1F / GDS1		
D15 O	TCAD11	L26 I	RCLK0#	AC10 IO	GIRDY	AE09 IO	GD22		
D17 O	TCAD12	M22 I	RCAD11#	AC11 IO	GDSEL	AE10 IO	GD17		
D19 O	TCAD14	M24 I	RCAD3	AC12 IO	GSTOP	AE12 IO	GD15		
D21 O	TCAD15#	M25 I	RCAD3#	AC13 P	AGPVREF	AE13 IO	GD11		
D25 AI	RPCOMP	M26 I	RCLK0	AC14 IO	GTRDY	AE15 IO	GDS0F / GDS0		
D26 AI	RNCOMP			AC15 IO	GSERR	AE16 IO	GD6		
				AC16 IO	GPAR	AE18 IO	GD2		
				AC17 IO	DEBUG	AE19 IO	VAD4		
				AC25 P	VCCSUS	AE21 IO	VBE#		
				AC26 I	TESTIN	AE23 I	UPSTB		
						AE24 IO	VAD3		
						AE26 I	PWROK		

NC (71 pins): A1-7, B1-7, C1-7, D1-5,7, E1-4,7, F1-6, G2-5, H3-5, J1,4-5, K1-3,5, L1-5, M1-5, N1-5, P1-4

VCCAGP (38 pins): M8, N8, T2-5,8-9, U2-5,8-9, V2-4,8-13, W2-4,9, Y3-5, AA4-5, AB7-8,11-14

VCCVL (16 pins): V14-17, W15-18, AB17-20, AC18-21

VCCHT (79 pins): A9-10,24-26, B9-10,23-26, C9-11,23-25, D9-11,22-24, E9-11,21-24, F10-11,15-16,19-23, G21-22, H21, J10-17, K18,21, L18,21, M18, N18,21, P18,21, R18, T18,21-25, U18,21-26, V21-26

VCC (44 pins): F9, H8-12,15-16, J8, K19, L19, M19, P8, R8,19, T19, U19, V18-19, W10-14,19, Y20-26, AA21-26, AB21-26

GND (147 pins): A8,23, B8,13,15,17,19,21-22, C8, D6,8,12,14,16,18,20, E5-6,8, F7-8,12-14,17-18,26, G1,25, H1-2,23, J2-3,18,21,25, K4,10-17,23, L10-17,25, M10-17,21,23, N10-17,25, P5,10-17,23, R1-5,10-17,21,25, T10-17, U10-17, V5, W5,21-26, AB2-6,9-10,15-16, AC8,22-24, AE2,5,8,11,14,17,20,22,25

Table 2. Pin List (Alphabetical Order)

Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Names	Pin #	Pin Name
Y02 I	AGP8XDT#	AF06 IO	GD24	T26 I	RCAD0	AD25 I	RESET#	B12 O	TCAD0	AC26 I	TESTIN
W01 AI	AGPNCOMP	AD07 IO	GD25	R26 I	RCAD0#	D26 AI	RNCOMP	C12 O	TCAD0#	AF26 I	UPCMD
V01 AI	AGPPCOMP	AE06 IO	GD26	P24 I	RCAD1	D25 AI	RPCOMP	A13 O	TCAD1	AE23 I	UPSTB
AC06 P	AGPVREF	AD05 IO	GD27	P25 I	RCAD1#	C26 AI	RTCOMP	A14 O	TCAD1#	AF23 I	UPSTB#
AC13 P	AGPVREF	AF05 IO	GD28	P26 I	RCAD2	AC02 I	SBA0#	B14 O	TCAD2	AD20 IO	VAD0
AC17	DEBUG	AF04 IO	GD29	N26 I	RCAD2#	AC03 I	SBA1#	C14 O	TCAD2#	AD21 IO	VAD1
AD23 O	DNCMD	AE04 IO	GD30	M24 I	RCAD3	AD01 I	SBA2#	A15 O	TCAD3	AF24 IO	VAD2
AF22 O	DNSTB	AD04 IO	GD31	M25 I	RCAD3#	AD02 I	SBA3#	A16 O	TCAD3#	AE24 IO	VAD3
AD22 O	DNSTB#	AC05 IO	GDBIH / GPIPE#	K24 I	RCAD4	AF02 I	SBA4#	A17 O	TCAD4	AE19 IO	VAD4
AD15 IO	GBE0	AC04 IO	GDBIL	K25 I	RCAD4#	AD03 I	SBA5#	A18 O	TCAD4#	AF20 IO	VAD5
AF11 IO	GBE1	AE15 IO	GDS0F / GDS0	J26 I	RCAD5	AE03 I	SBA6#	B18 O	TCAD5	AD24 IO	VAD6
AD11 IO	GBE2	AF15 IO	GDS0S / GDS0#	AE07 IO	GDS1F / GDS1	AF03 I	SBA7#	C18 O	TCAD5#	AF25 IO	VAD7
AC07 IO	GBE3	AE07 IO	GDS1F / GDS1	H24 I	RCAD6	AF01 I	SBSF / SBS	A19 O	TCAD6	AE21 IO	VBE#
A11 1	GCLK	AF07 IO	GDS1S / GDS1#	H25 I	RCAD6#	AE01 I	SBSS / SBS#	A20 O	TCAD6#	E25 P	VCCARX
AF18 IO	GD0	AC11 IO	GDSEL	H26 I	RCAD7	AA02 O	ST0	B20 O	TCAD7	C22 P	VCCATX
AD18 IO	GD1	AC09 IO	GFRM	G26 I	RCAD7#	AA01 O	ST1	C20 O	TCAD7#	U01 P	VCCQQ
AE18 IO	GD2	AA03 O	GGNT	R24 I	RCAD8	AB01 O	ST2	E12 O	TCAD8	AC25 P	VCCSUS
AF17 IO	GD3	AC10 IO	GIRDY	R23 I	RCAD8#	AD26 I	SUSST#	E13 O	TCAD8#	AD19 AI	VLPCOMP
AD17 IO	GD4	E26 P	GNDARX	R22 I	RCAD9			D13 O	TCAD9	AF21 P	VLVREF
AD16 IO	GD5	C21 P	GNDATX	P22 I	RCAD9#			C13 O	TCAD9#	AF19 IO	VPAR
AE16 IO	GD6	T01 P	GNDQQ	N24 I	RCAD10			E14 O	TCAD10		
AF16 IO	GD7	AC16 IO	GPAR	N23 I	RCAD10#			E15 O	TCAD10#		
AF14 IO	GD8	AD06 I	GRBF	N22 I	RCAD11			D15 O	TCAD11		
AD14 IO	GD9	Y01 I	GREQ	M22 I	RCAD11#			C15 O	TCAD11#		
AD13 IO	GD10	AC15 IO	GSERR	L22 I	RCAD12			D17 O	TCAD12		
AE13 IO	GD11	AC12 IO	GSTOP	K22 I	RCAD12#			C17 O	TCAD12#		
AF13 IO	GD12	AC14 IO	GTRDY	J24 I	RCAD13			E18 O	TCAD13		
AD12 IO	GD13	AC01 I	GWBF	J23 I	RCAD13#			E19 O	TCAD13#		
AF12 IO	GD14	B11 O	HTRST#	J22 I	RCAD14			D19 O	TCAD14		
AE12 IO	GD15	A12 I	LDTSTOP#	H22 I	RCAD14#			C19 O	TCAD14#		
AD10 IO	GD16	AE26 I	PWROK	G24 I	RCAD15			E20 O	TCAD15		
AE10 IO	GD17			G23 I	RCAD15#			D21 O	TCAD15#		
AF10 IO	GD18			M26 I	RCLK0			B16 O	TCLK0		
AD09 IO	GD19			L26 I	RCLK0#			C16 O	TCLK0#		
AF09 IO	GD20			L24 I	RCLK1			E16 O	TCLK1		
AF08 IO	GD21			L23 I	RCLK1#			E17 O	TCLK1#		
AE09 IO	GD22			F24 I	RCTL			A21 O	TCTL		
AD08 IO	GD23			F25 I	RCTL#			A22 O	TCTL#		

NC (71 pins): A1-7, B1-7, C1-7, D1-5,7, E1-4,7, F1-6, G2-5, H3-5, J1-4,5, K1-3,5, L1-5, M1-5, N1-5, P1-4

VCCAGP (38 pins): M8, N8, T2-5,8-9, U2-5,8-9, V2-4,8-13, W2-4,9, Y3-5, AA4-5, AB7-8,11-14

VCCVL (16 pins): V14-17, W15-18, AB17-20, AC18-21

VCCHT (79 pins): A9-10,24-26, B9-10,23-26, C9-11,23-25, D9-11,22-24, E9-11,21-24, F10-11,15-16,19-23, G21-22, H21, J10-17, K18,21, L18,21, M18, N18,21, P18,21, R18, T18,21-25, U18,21-26, V21-26

VCC (44 pins): F9, H8-12,15-16, J8, K19, L19, M19, P8, R8,19, T19, U19, V18-19, W10-14,19, Y20-26, AA21-26, AB21-26

GND (147 pins): A8,23, B8,13,15,17,19,21-22, C8, D6,8,12,14,16,18,20, E5-6,8, F7-8,12-14,17-18,26, G1,25, H1-2,23, J2-3,18,21,25, K4,10-17,23, L10-17,25, M10-17,21,23, N10-17,25, P5,10-17,23, R1-5,10-17,21,25, T10-17, U10-17, V5, W5,21-26, AB2-6,9-10,15-16, AC8,22-24, AE2,5,8,11,14,17,20,22,25

Pin Arrangement

Pinouts for the K8T800 North Bridge chip were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX and NLX) were also considered and can typically follow the same general component placement. If desired by the PCB layout engineer, for better routing, the North Bridge chip can be oriented 45 degrees clockwise rotated from the position shown below.

Pin Descriptions
Table 3. Pin Descriptions

“HyperTransport” Transmit Interface			
Signal Name	Pin #	I/O	Signal Description
TCAD15 / TCAD15#	E20, D21	O	Transmit Differential Control / Address / Data Pair 15.
TCAD14 / TCAD14#	D19, C19	O	Transmit Differential Control / Address / Data Pair 14.
TCAD13 / TCAD13#	E18, E19	O	Transmit Differential Control / Address / Data Pair 13.
TCAD12 / TCAD12#	D17, C17	O	Transmit Differential Control / Address / Data Pair 12.
TCAD11 / TCAD11#	D15, C15	O	Transmit Differential Control / Address / Data Pair 11.
TCAD10 / TCAD10#	E14, E15	O	Transmit Differential Control / Address / Data Pair 10.
TCAD9 / TCAD9#	D13, C13	O	Transmit Differential Control / Address / Data Pair 9.
TCAD8 / TCAD8#	E12, E13	O	Transmit Differential Control / Address / Data Pair 8.
TCAD7 / TCAD7#	B20, C20	O	Transmit Differential Control / Address / Data Pair 7.
TCAD6 / TCAD6#	A19, A20	O	Transmit Differential Control / Address / Data Pair 6.
TCAD5 / TCAD5#	B18, C18	O	Transmit Differential Control / Address / Data Pair 5.
TCAD4 / TCAD4#	A17, A18	O	Transmit Differential Control / Address / Data Pair 4.
TCAD3 / TCAD3#	A15, A16	O	Transmit Differential Control / Address / Data Pair 3.
TCAD2 / TCAD2#	B14, C14	O	Transmit Differential Control / Address / Data Pair 2.
TCAD1 / TCAD1#	A13, A14	O	Transmit Differential Control / Address / Data Pair 1.
TCAD0 / TCAD0#	B12, C12	O	Transmit Differential Control / Address / Data Pair 0.
TCLK0 / TCLK0#	B16, C16	O	Transmit Differential Clock Pair 0. Clock for TCAD 0-7.
TCLK1 / TCLK1#	E16, E17	O	Transmit Differential Clock Pair 1. Clock for TCAD 8-15.
TCTL / TCTL#	A21, A22	O	Transmit Differential Control.

“HyperTransport” Receive Interface			
RCAD15 / RCAD15#	G24, G23	I	Receive Differential Control / Address / Data Pair 15.
RCAD14 / RCAD14#	J22, H22	I	Receive Differential Control / Address / Data Pair 14.
RCAD13 / RCAD13#	J24, J23	I	Receive Differential Control / Address / Data Pair 13.
RCAD12 / RCAD12#	L22, K22	I	Receive Differential Control / Address / Data Pair 12.
RCAD11 / RCAD11#	N22, M22	I	Receive Differential Control / Address / Data Pair 11.
RCAD10 / RCAD10#	N24, N23	I	Receive Differential Control / Address / Data Pair 10.
RCAD9 / RCAD9#	R22, P22	I	Receive Differential Control / Address / Data Pair 9.
RCAD8 / RCAD8#	R24, R23	I	Receive Differential Control / Address / Data Pair 8.
RCAD7 / RCAD7#	H26, G26	I	Receive Differential Control / Address / Data Pair 7.
RCAD6 / RCAD6#	H24, H25	I	Receive Differential Control / Address / Data Pair 6.
RCAD5 / RCAD5#	K26, J26	I	Receive Differential Control / Address / Data Pair 5.
RCAD4 / RCAD4#	K24, K25	I	Receive Differential Control / Address / Data Pair 4.
RCAD3 / RCAD3#	M24, M25	I	Receive Differential Control / Address / Data Pair 3.
RCAD2 / RCAD2#	P26, N26	I	Receive Differential Control / Address / Data Pair 2.
RCAD1 / RCAD1#	P24, P25	I	Receive Differential Control / Address / Data Pair 1.
RCAD0 / RCAD0#	T26, R26	I	Receive Differential Control / Address / Data Pair 0.
RCLK0 / RCLK0#	M26, L26	I	Receive Differential Clock Pair 0. Clock for RCAD 0-7.
RCLK1 / RCLK1#	L24, L23	I	Receive Differential Clock Pair 1. Clock for RCAD 8-15.
RCTL / RCTL#	F24, F25	I	Receive Differential Control.

“HyperTransport” Control			
HTRST#	B11	O	HyperTransport Reset. Connect to RESET# pin of K8 CPU. 2.5V swing. Active when the RESET# input is active.
LDTSTOP#	A12	I	HyperTransport Stop. Connect to South Bridge SLP# pin.

“Transmit” pins should be connected to the K8 CPU “In” pins. “Receive” pins should be connected to the K8 CPU “Out” pins. See the HyperTransport specs and the specs for the K8 CPU models to be supported for additional information.

AGP Bus Interface			
Signal Name	Pin #	I/O	Signal Description
GD[31:0]	(see pin list)	IO	Address / Data Bus. Address is driven with GDS assertion for AGP-style transfers and with GFRM# assertion for PCI-style transfers.
GBE[3:0] (GBE[3:0#] for 4x mode)	AC7 AD11 AF11 AD15	IO	Command / Byte Enable. (Interpreted as C/BE# for AGP 2x/4x and C#/BE for 8x). For AGP cycles these pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using GPIPE# (2x/4x only as GPIPE# isn't used in 8x mode). These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data. For PCI cycles, commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GPAR	AC16	IO	AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0].
GDBIH / GPIPE# GDBIL	AC5 AC4	IO	Dynamic Bus Inversion High / Low. AGP 8x transfer mode only. Driven by the source to indicate whether the corresponding data bit group (GDBIH for GD[31:16] and GDBIL for GD[15:0]) needs to be inverted on the receiving end (1 on GDBIx indicates that the corresponding data bit group should be inverted). Used to limit the number of simultaneously switching outputs to 8 for each 16-pin group. Pipelined Request. Not used by AGP 8x. Asserted by the master (external graphics controller) to indicate that a full-width request is to be enqueued by the target (North Bridge). The master enqueues one request each rising edge of GCLK while GPIPE# is asserted. When GPIPE# is deasserted no new requests are enqueued across the AD bus. Note: See RxAE[1] for GPIPE# / GDBIH pin function selection.
GDS0F (GDS0 for 4x), GDS0S (GDS0# for 4x)	AE15 AF15	IO	Bus Strobe 0. Source synchronous strobes for GD[15:0] (the agent that is providing the data drives these signals). GDS0 provides timing for 2x data transfer mode; GDS0 and GDS0# provide timing for 4x mode. For 8x transfer mode, GDS0 is interpreted as GDS0F ("First" strobe) and GDS0# as GDS0S ("Second" strobe).
GDS1F (GDS1 for 4x), GDS1S (GDS1# for 4x)	AE7 AF7	IO	Bus Strobe 1. Source synchronous strobes for GD[31:16] (i.e., the agent that is providing the data drives these signals). GDS1 provides timing for 2x data transfer mode; GDS1 and GDS1# provide timing for 4x transfer mode. For 8x transfer mode, GDS1 is interpreted as GDS1F ("First" strobe) and GDS1# as GDS1S ("Second" strobe).
GFRM (GFRM# for 4x)	AC9	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator. Interpreted as active high for 8x.
GIRDY (GIRDY# for 4x)	AC10	IO	Initiator Ready. (Interpreted as active low for PCI/AGP2x/4x and high for AGP 8x). For AGP write cycles, the assertion of this pin indicates that the master is ready to provide <i>all</i> write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For AGP read cycles, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is <i>never</i> allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. For PCI cycles, asserted when the initiator is ready for data transfer.
GTRDY (GTRDY# for 4x)	AC14	IO	Target Ready. (Interpreted as active low for PCI/AGP2x/4x and high for AGP 8x). For AGP cycles, indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfer for both read and write transactions. For PCI cycles, asserted when the target is ready for data transfer.
GDSEL (GDSEL# for 4x mode)	AC11	IO	Device Select (PCI transactions only). This signal is driven by the North Bridge when a PCI initiator is attempting to access main memory. It is an input when the chip is acting as PCI initiator. Not used for AGP cycles. Interpreted as active high for AGP 8x.

AGP Bus Interface (continued)

Signal Name	Pin #	I/O	Signal Description
GSTOP (GSTOP# for 4x)	AC12	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction. Interpreted as active high for AGP 8x.
AGP8XDT#	Y2	I	AGP 8x Transfer Mode Detect. Low indicates that the external graphics card can support 8x transfer mode. Value is visible in AGP3.0 Status register Rx84[3].
GRBF (GRBF# for 4x)	AD6	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF# is asserted, the North Bridge will not return low priority read data to the graphics controller.
GWBF (GWBF# for 4x)	AC1	I	Write Buffer Full.
SBA[7:0]# (SBA[7:0] for 4x)	(see pin list)	I	Side Band Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (North Bridge). These pins are ignored until enabled.
SBSF (SBS for 4x), SBSS (SBS# for 4x)	AF1 AE1	I	SideBand Strobe. Driven by the master to provide timing for SBA[7:0]. SBS is used for AGP 2x while SBS and SBS# are used together for AGP 4x. For 8x mode, the strobe mechanism works differently with SBS interpreted as SBSF ("First" strobe) and SBS# as SBSS ("Second" strobe).
ST[2:0]	AB1 AA1 AA2	O	Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. <ul style="list-style-type: none"> 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the target (North Bridge logic) and inputs to the master (graphics controller).
GREQ (GREQ# for 4x)	Y1	I	Request. Master (graphics controller) request for use of the AGP bus.
GGNT (GGNT# for 4x)	AA3	O	Grant. Permission is given to the master (graphics controller) to use the AGP bus.
GSERR (GSERR# for 4x)	AC15	IO	AGP System Error.

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Only one of the two will be used; the signals associated with the other will not be used. GRBF# has an internal pullup to maintain it in the deasserted state in case it is not implemented on the master device. AGP 8x mode allows only SBA (GPIPE# isn't used in 8x mode).

Note: AGP 8x signal levels are 0V and 0.8V. AGP 8x mode maintains most signals at a low level when inactive resulting in no current flow.

V-Link Interface			
Signal Name	Pin #	I/O	Signal Description
VAD[7:0]	(see pin list)	IO	Address / Data Bus. Also used to pass strap information from the South Bridge to the North Bridge (the physical strap is not on the North Bridge VAD pin but is on the indicated pin of the South Bridge with the information passed over to the North Bridge at reset time).
VPAR	AF19	IO	Parity.
VBE#	AE21	IO	Byte Enable.
UPCMD	AF26	I	Command from Client (South Bridge) to Host (North Bridge).
UPSTB	AE23	I	Strobe from Client to Host.
UPSTB#	AF23	I	Complement Strobe from Client to Host.
DNCMD	AD23	O	Command from Host (North Bridge) to Client (South Bridge).
DNSTB	AF22	O	Strobe from Host to Client.
DNSTB#	AD22	O	Complement Strobe from Host to Client.

Clock, Reset, Power Control and Test

Signal Name	Pin #	I/O	Signal Description
GCLK	A11	I	AGP Clock. 66 MHz clock for AGP logic.
RESET#	AD25	I	Reset. Input from the South Bridge chip. 3.3V tolerant input. When asserted, this signal resets the chip and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options. In addition, HTRST# is driven active to reset the K8 CPU.
PWROK	AE26	I	Power OK. Driven by South Bridge PWROK output from the power supply PWRGOOD input to the South Bridge.
SUSST#	AD26	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pull-up to disable.
TESTIN	AC26	I	Test In. This pin is used for testing and must be left unconnected or tied high (4.7K Ω to 2.5V) on all board designs.
DEBUG	AC17		Debug.
NC	(see pin list)		No Connect. Reserved for graphics functions in pin-compatible "K8M800" chipset North Bridge.

Reference Voltages			
Signal Name	Pin #	I/O	Signal Description
VLVREF	AF21	P	V-Link Voltage Reference. $0.625V \pm 2\%$ derived using a resistive voltage divider ($3K \Omega$ to $2.5V$ and $1K \Omega$ to ground). See Design Guide for details.
AGPVREF	AC6, AC13	P	AGP Voltage Reference. $0.5 V_{CCQQ}$ ($0.75V$) for AGP 2.0 (4x transfer mode) and $0.23 V_{CCQQ}$ ($0.35V$) for AGP 3.0 (8x transfer mode). See the Design Guide for additional information and circuit implementation details..

Compensation			
Signal Name	Pin #	I/O	Signal Description
RPCOMP	D25	AI	Host CPU P-Channel Compensation. Connect 50Ω 1% resistor to GND.
RNCOMP	D26	AI	Host CPU N-Channel Compensation. Connect 50Ω 1% resistor to VCCHT.
RTCOMP	C26	AI	Host CPU Compensation. Connect 100Ω 1% resistor to VCCHT.
VLPCOMP	AD19	AI	V-Link P-Channel Compensation. Connect 360Ω 1% resistor to ground.
AGPNCOMP	W1	AI	AGP N-Channel Compensation. Connect 60.4Ω 1% resistor to VCCAGP.
AGPPCOMP	V1	AI	AGP P-Channel Compensation. Connect 60.4Ω 1% resistor to GND.

Analog Power / Ground			
Signal Name	Pin #	I/O	Signal Description
VCCATX	C22	P	Analog Power for HT Transmit. $3.3V \pm 5\%$. Connect through a ferrite bead for isolation of digital switching noise.
GNDATX	C21	P	Analog Ground for HT Transmit. Connect to main ground plane through a ferrite bead for isolation of digital switching noise.
VCCARX	E25	P	Analog Power for HT Receive. $2.5V \pm 5\%$. Connect through a ferrite bead for isolation of digital switching noise.
GNDARX	E26	P	Analog Ground for HT Receive. Connect to main ground plane through a ferrite bead for isolation of digital switching noise.

Digital Power / Ground			
Signal Name	Pin #	I/O	Signal Description
VCCHT	(see pin lists)	P	Power for HyperTransport I/O Interface Logic. Voltage is HT Interface dependent (typically $1.2V$).
VCCVL	(see pin lists)	P	Power for V-Link I/O Interface Logic. $2.5V \pm 5\%$
VCCAGP	(see pin lists)	P	Power for AGP Bus I/O Interface Logic. $1.5V \pm 5\%$
VCCQQ	U1	P	AGP Quiet Power. $1.5V \pm 5\%$. Connect to VCCAGP (see Design Guide)
GNDQQ	T1	P	AGP Quiet Ground. Connect to main ground plane.
VCCSUS	AC25	P	Suspend Power. $2.5V \pm 5\%$. Used to sustain the on-chip 256-byte SRAM.
VCC	(see pin lists)	P	Power for All Other Internal Logic. $2.5V \pm 5\%$
GND	(see pin lists)	P	Digital Ground. Connect to main ground plane.

Strap Pin Descriptions
Strap Pins

(External pullup / pulldown straps are required to select "H" / "L")

Signal	Actual Strap Pin	Function	Description	Status Bit
VAD7	VT8235-CD: SDCS3# VT8235-CE: SDCS3# VT8237: PDCS3#	Test Mode	L: Disable H: Enable Pull down for normal operation. VAD7 is sampled during system initialization; The actual strapping pin is located on the South Bridge chip.	-
VAD6	VT8235-CD: SDA2 VT8235-CE: SDA2 VT8237: PDA2	Auto-Configure	L: Disable H: Enable VAD6 is sampled during system initialization; The actual strapping pin is located on the South Bridge chip.	Rx51[7]
VAD5	VT8235-CD: SDA1 VT8235-CE: SDA1 VT8237: PDA1	External Loop Test Mode	L: Disable H: Enable Pull down for normal operation. VAD5 is sampled during system initialization; The actual strapping pin is located on the South Bridge chip.	-
VAD4	VT8235-CD: SDA0 VT8235-CE: SDA0 VT8237: PDA0	-reserved-	-	-
VAD3	VT8235-CD: SA19 VT8235-CE: Strap_VAD3 VT8237: GPIOD	Fast Command	Check Design Guide for details.	Rx53[7]
VAD2	VT8235-CD: SA18 VT8235-CE: Strap_VAD2 VT8237: GPIOB	Initial HT Bus Width	L: 8-bit Pull down for normal operation. VAD2 is sampled during system initialization; The actual strapping pin is located on the South Bridge chip.	-
VAD[1:0]	VT8235-CD: SA[17:16] VT8235-CE: Strap_VAD[1:0] VT8237: GPIOA, GPIOC	Initial HT Bus Frequency	LL: 200MHz Pull down for normal operation. VAD[1:0] are sampled during system initialization; The actual strapping pin is located on the South Bridge chip.	-

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), RWC (or just WC) (Read / Write 1's to Clear individual bits) and W1 (Write Once then Read / Only after that). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

The graphics registers are described in a separate document.

Table 4. Registers

I/O Ports

Port #	I/O Port	Default	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

Device 0 Registers - Host Bridge
Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3188	RO
5-4	Command	0006	RW
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
B	Base Class Code	06	RO
C	-reserved-	00	—
D	Latency Timer	00	RW
E	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	-reserved-	00	—
2D-2C	Subsystem Vendor ID	0000	W1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	—
34	Capability Pointer	AGP 2.0:	A0
	(CAPPTR)	AGP 3.0:	80
35-3F	-reserved-	00	—

Device-Specific Registers

Offset	V-Link Control	Default	Acc
40	V-Link Revision ID	00	RO
41	V-Link NB Capability	19	WC
42	V-Link NB Downlink Command	88	RW
43	V-Link NB Uplink Max Req Depth	80	RW
44	V-Link NB Uplink Buffer Size	82	RO
45	V-Link NB Bus Timer	44	RW
46	V-Link NB Misc Control	00	RW
47	V-Link Control	00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	19	WC
4A	V-Link SB Downlink Status	88	RO
4B	V-Link SB Uplink Max Req Depth	80	RW
4C	V-Link SB Uplink Buffer Size	82	RW
4D	V-Link SB Bus Timer	44	RW
4E	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Device-Specific Registers (continued)

Offset	HyperTransport Host Control	Default	Acc
50	HT Host Control 1	00	RW
51	HT Host Control 2	00	RW
52	256-Byte SRAM Base Address	00	RW
53	HT Initialization 1	00	RW
54	HT Initialization 2	00	RW
55	Arbitration Control 1	08	RW
56	Arbitration Control 2	00	RW
57	System Memory Ending Address	01	RW

Offset	Interrupt Control & Configuration	Default	Acc
58	Capability ID	08	RO
59	Next Pointer	68	RO
5A	Interrupt Register Index	00	RW
5B	Capability Type	80	RO
5F-5C	Interrupt Register Data	0000 0000	RO

Offset	HyperTransport Arbitration Ctrl	Default	Acc
60	HT Arbitration Control	00	RW

Offset	BIOS ROM Control	Default	Acc
61	C-ROM Shadow Control	00	RW
62	D-ROM Shadow Control	00	RW
63	E/F-ROM Shadow, Mem Hole, SMI	00	RW

Offset	HyperTransport Buffer Control	Default	Acc
64	HT Buffer / FIFO Control 1	00	RW
65	HT Buffer / FIFO Control 2	00	RW
66	HT Buffer / FIFO Control 3	00	RW
67	HT Buffer / FIFO Control 4	00	RW

Offset	Extended Power Management Ctrl	Default	Acc
68	Power Management Capability	01	RO
69	Power Management Next Pointer	00	RO
6A	Power Management Capabilities I	02	RO
6B	Power Management Capabilities II	00	RO
6C	Power Management Control/Status	00	RW
6D	Power Management Status	00	RO
6E	PCI-to-PCI Bridge Support Extension	00	RO
6F	Power Management Data	00	RO

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	WC
72	-reserved-	00	—
73	PCI Master Control	00	RW
74	-reserved-	00	—
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7F	-reserved-	00	—

Device 0 Device-Specific Registers (continued)

Offset	AGP 2.0 Control (RxFD[1]=1)	Default	Acc
83-80	AGP 2.0 GART/LB Control	0000 0000	RW
84	AGP 2.0 Graphics Aperture Size	00	RW
85	AGP Buffer / Packet Control	01	RW
86	PCI Master R/W Merge Timers	4F	RW
87	-reserved-	00	—
8B-88	AGP 2.0 GART Table Base	0000 0000	RW
8C-9F	-reserved-	00	—
A3-A0	AGP 2.0 Capabilities	0020 C002	RO
A7-A4	AGP 2.0 Status	1F00 0201	RO
AB-A8	AGP 2.0 Command	0000 0000	RW

Registers A0-AB in the AGP 2.0 register group in the table above are actually offsets from CAPPTR (Rx34) which (with Rx34 = A0h for AGP 2.0) result in the offsets listed above.

Offset	AGP 3.0 Control (RxFD[1]=0)	Default	Acc
83-80	AGP 3.0 Capabilities	0033 C002	RO
87-84	AGP 3.0 Status	1F00 0A03	RO
8B-88	AGP 3.0 Command	1F00 0000	RW
8F-8C	AGP 3.0 Isochronous Status	0000 0000	—
93-90	AGP 3.0 GART / TLB Control	0000 0000	RW
97-94	AGP 3.0 Graphics Aperture Size	0001 0F00	RW
9B-98	AGP 3.0 GART Table Base Low	0000 0000	RW
9F-9C	AGP 3.0 GART Table Base High	0000 0000	RW
A0-AB	-reserved-	00	—

Registers 80-AB in the AGP 3.0 register group in the table above are actually offsets from CAPPTR (Rx34) which (with Rx34 = 80h for AGP 3.0) result in the offsets listed above.

Offset	AGP 2.0 / 3.0 Control	Default	Acc
AC	AGP Control	00	RW
AD	AGP Latency Timer	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	AGP 3.0 Control	00	RW
B0	AGP Pad Control / Status	8x	RW
B1	AGP Drive Strength	63	RW
B2	AGP Pad Drive / Delay Control	08	RW
B3	AGP Strobe Output Drive Control	00	RW

Offset	V-Link Compensation / Drive Ctrl	Default	Acc
B4	V-Link NB Compensation Control	00	RW
B5	V-Link NB Strobe Drive Control	00	RW
B6	V-Link NB Data Drive Control	00	RW
B7	-reserved-	00	—
B8	V-Link SB Compensation Control	00	RW
B9	V-Link SB Strobe Drive Control	00	RW
BA	V-Link SB Data Drive Control	00	RW
BB	-reserved-	00	—

Device 0 Device-Specific Registers (continued)

Offset	Power Management Control	Default	Acc
BC	Power Management Mode	00	RW
BD	-reserved-	00	—
BE	Dynamic Clock Stop	00	RW
BF	-reserved-	00	—

Offset	HyperTransport Control	Default	Acc
C3-C0	Link Command	0060 5808	RW
C7-C4	Link Configuration & Control	xx11 0020	RW
CB-C8	Link End	0000 00D0	RO
CF-CC	Link Frequency Capability	0035 0022	RW
D3-D0	-reserved-	0000 0000	—
D7-D4	Link Enumeration Scratchpad	0000 0000	RW

Offset	HyperTransport I/O	Default	Acc
D8	Transmit Data Rise / Fall Delay	00	RW
D9	Transmit Clock Rise / Fall Delay	00	RW
DA	Transmit Data Drive Control	00	RW
DB	Transmit Clock Drive Control	00	RW
DC	Transmit Autocomp Result	00	RW
DD	Receive Data / Clock Rise/Fall Delay	00	RW
DE	Receive Terminator Value	22	RW
DF	Receive Terminator Autocomp Status	00	RW

Offset	UMA Control (reserved)	Default	Acc
E0-E3	-reserved-	00	—

Offset	DRAM Above 4G Control	Default	Acc
E4	Low Top Address Low	00	RW
E5	Low Top Address High	FF	RW
E6	SMM / APIC Decoding	01	RW
E7	-reserved-	00	—

Offset	AGP / V-Link Control	Default	Acc
E8	AGP Output Delay	00	RW
E9	AGP / V-Link Receive Strobe Delay	00	RW
EA	V-Link Output Delay	00	RW
EB	AGP SBA Termination Control	00	RW
EC	AGP Isochronous Control 1	00	RW
ED	AGP Isochronous Control 2	00	RW
EE	AGP Master Isoch Read Timer	00	RW
EF	AGP Master Isoch Write Timer	00	RW

Offset	Test, BIOS Scratch, Miscellaneous	Default	Acc
F0-F2	Reserved (Do Not Program)	00	RW
F3-F4	BIOS Scratch Registers	00	RW
F5-FC	Reserved (Do Not Program)	00	RW
FD	AGP 2.0 / 3.0 Select	00	RW
FE-FF	Reserved (Do Not Program)	00	RW

Device 1 Registers - PCI-to-PCI Bridge
Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	B188	RO
5-4	Command	0007	RW
7-6	Status	0230	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
A	Sub Class Code	04	RO
B	Base Class Code	06	RO
C	-reserved-	00	—
D	Latency Timer	00	RO
E	Header Type	01	RO
F	-reserved- (Built In Self Test)	00	—
10-17	-reserved-	00	—
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	Secondary Latency Timer	00	RO
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	RW
28-33	-reserved-	00	—
34	Capability Pointer	80	RO
35-3D	-reserved-	00	—
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	08	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	22	RW
44	Reserved (Do Not Program)	00	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48	AGP / PCI2 Error Reporting	00	WC
49-7F	-reserved-	00	—

Offset	Power Management	Default	Acc
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	—

Miscellaneous I/O

One I/O port is defined (Port 22).

Port 22 – PCI / AGP Arbiter Disable RW

- 7-2 Reserved** always reads 0
- 1 AGP Arbiter Disable**
 - 0 Respond to GREQ# signal default
 - 1 Do not respond to GREQ# signal
- 0 PCI Arbiter Disable**
 - 0 Respond to all REQ# signals default
 - 1 Do not respond to any REQ# signals, including PREQ#

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 76.

Configuration Space I/O

All on-chip registers (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration Address RW

- 31 Configuration Space Enable**
 - 0 Disabled default
 - 1 Convert configuration data port writes to configuration cycles on the PCI bus
- 30-24 Reserved** always reads 0
- 23-16 PCI Bus Number**
 - Used to choose a specific PCI bus in the system
- 15-11 Device Number**
 - Used to choose a specific device in the system (devices 0 and 1 are defined)
- 10-8 Function Number**
 - Used to choose a specific function if the selected device supports multiple functions (only function 0 is defined).
- 7-2 Register Number (also called the "Offset")**
 - Used to select a specific DWORD in the configuration space
- 1-0 Fixed** always reads 0

Port CFF-CFC - Configuration Data RW

Refer to PCI Bus Specification Version 2.2 for further details on operation of the above configuration registers.

Device 0 Register Descriptions

Device 0 Host Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number and device number equal to zero.

Device 0 Offset 1-0 - Vendor ID (1106h) RO

15-0 **ID Code** (reads 1106h to identify VIA Technologies)

Device 0 Offset 3-2 - Device ID (3188h) RO

15-0 **ID Code** reads 3188h to identify the K8T800

Device 0 Offset 5-4 -Command (0006h) RW

15-10	Reserved always reads 0
9	Fast Back-to-Back Cycle Enable RO 0 Fast back-to-back transactions only allowed to the same agent..... default 1 Fast back-to-back transactions allowed to different agents
8	SERR# Enable RO 0 SERR# driver disabled..... default 1 SERR# driver enabled (SERR# is used to report ECC errors).
7	Address / Data Stepping RO 0 Device never does stepping..... default 1 Device always does stepping
6	Parity Error Response RW 0 Ignore parity errors & continue..... default 1 Take normal action on detected parity errors
5	VGA Palette Snoop RO 0 Treat palette accesses normally..... default 1 Don't respond to palette accesses on PCI bus
4	Memory Write and Invalidate Command RO 0 Bus masters must use Mem Write..... default 1 Bus masters may generate Mem Write & Inval
3	Special Cycle Monitoring RO 0 Does not monitor special cycles..... default 1 Monitors special cycles
2	PCI Bus Master RO 0 Never behaves as a bus master 1 Can behave as a bus master..... default
1	Memory Space RO 0 Does not respond to memory space 1 Responds to memory space..... default
0	I/O Space RO 0 Does not respond to I/O space default 1 Responds to I/O space

Device 0 Offset 7-6 – Status (0210h)..... RWC

15	Detected Parity Error	0 No parity error detected..... default 1 Error detected in either address or data phase. This bit is set even if error response is disabled (command register bit-6). write one to clear
14	Signaled System Error (SERR# Asserted) always reads 0
13	Signaled Master Abort	0 No abort received default 1 Transaction aborted by the master write one to clear
12	Received Target Abort	0 No abort received default 1 Transaction aborted by the target write one to clear
11	Signaled Target Abort always reads 0 0 Target Abort never signaled
10-9	DEVSEL# Timing	00 Fast 01 Medium always reads 01 10 Slow 11 Reserved
8	Data Parity Error Detected	0 No data parity error detected default 1 Error detected in data phase. Set only if error response enabled via command bit-6 = 1 and this chip was initiator of the operation in which the error occurred..... write one to clear
7	Fast Back-to-Back Capable always reads 0
6	User Definable Features always reads 0
5	66MHz Capable always reads 0
4	Supports New Capability list always reads 1
3-0	Reserved always reads 0

Device 0 Offset 8 - Revision ID (0nh) RO

7-0	Chip Revision Code always reads 0nh
-----	---------------------------	------------------------

Device 0 Offset 9 - Programming Interface (00h) RO

7-0	Interface Identifier always reads 00h
-----	-----------------------------	------------------------

Device 0 Offset A - Sub Class Code (00h) RO

7-0	Sub Class Code reads 00 to indicate Host Bridge
-----	-----------------------	--

Device 0 Offset B - Base Class Code (06h) RO

7-0	Base Class Code	.. reads 06 to indicate Bridge Device
-----	------------------------	---------------------------------------

Device 0 Offset D - Latency Timer (00h) RW

Specifies the latency timer value in PCI bus clocks.

7-3	Guaranteed Time Slice for CPU default=0
2-0	Reserved (fixed granularity of 8 clks) ..	always read 0 These bits are writeable but read 0 for PCI specification compatibility. The programmed value may be read back in Rx75[6-4] (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)
Device 0 Offset E - Header Type (00h).....RO

7-0 Header Type Code reads 00: single function

Device 0 Offset F - Built In Self Test (BIST) (00h).....RO

7 BIST Supported reads 0: no supported functions
6-0 Reserved always reads 0

**Device 0 Offset 13-10 - Graphics Aperture Base (AGP 2.0)
(00000008h) RW**

This register is interpreted per the following definition if RxFD[1]=1 (AGP 2.0 registers enabled).

31-28 Upper Programmable Base Address Bits def=0

27-20 Lower Programmable Base Address Bits def=0

These bits behave as if hardwired to 0 if the corresponding AGP 2.0 Graphics Aperture Size register bit (Device 0 Offset 84h) is 0.

27	26	25	24	23	22	21	20	(Base)
7	6	5	4	3	2	1	0	(Size)
RW	1M							
RW	2M							
RW	4M							
RW	8M							
RW	16M							
RW	32M							
RW	64M							
RW	128M							
RW	256M							
RW	512M							
RW	RW	0	0	0	0	0	0	1G
RW	0	0	0	0	0	0	0	2G-max
0	0	0	0	0	0	0	0	4G

19-4 Reserved always reads 0

3 Prefetchable **always reads 1**

Indicates that the locations in the address range defined by this register are prefetchable.

2-1 Type always reads 0

Indicates the address range in the 32-bit address space.

0 Memory Space always reads 0

Indicates the address range in the memory address space.

Device 0 Offset 13-10 - Graphics Aperture Base (AGP 3.0)
(00000008h) RW

This register is interpreted per the following definition if RxFD[1]=0 (AGP 3.0 registers enabled). This register may only be read if AGP 3.0 register Rx90[8] = 1.

31-22 Programmable Base Address Bits.....def=0

These bits behave as if hardwired to 0 if the corresponding AGP 3.0 Graphics Aperture Size register bit (Device 0 Offset 94h) is 0.

31	30	29	28	-	-	27	26	25	24	23	22	(Base)
11	10	9	8	7	6	5	4	3	2	1	0	(Size)
RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	RW	4M
RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	RW	8M
RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	RW	16M
RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	RW	32M
RW	RW	RW	RW	0	0	RW	RW	0	0	0	0	64M
RW	RW	RW	RW	0	0	RW	0	0	0	0	0	128M
RW	RW	RW	RW	0	0	0	0	0	0	0	0	256M
RW	RW	RW	RW	0	0	0	0	0	0	0	0	512M
RW	RW	0	0	0	0	0	0	0	0	0	0	1G
RW	0	0	0	0	0	0	0	0	0	0	0	2G-max
0	0	0	0	0	0	0	0	0	0	0	0	4G

21-4 Reserved always reads 0

3 Prefetchable **always reads 1**

Indicates that the locations in the address range defined by this register are prefetchable.

2-1 Type always reads 0

Indicates the address range in the 32-bit address space.

0 Memory Space always reads 0

Indicates the address range in the memory address space.

Device 0 Offset 2D-2C – Subsystem Vendor ID..... W1/R

15-0 Subsystem Vendor ID default = 0000h
This register may be written once and is then read only.

Device 0 Offset 2F-2E – Subsystem ID W1/R

15-0 Subsystem ID default = 0000h
This register may be written once and is then read only.

Device 0 Offset 34 - Capability Pointer (CAPPTR)..... RO

Contains an offset from the start of configuration space.

7-0 AGP Capability List Pointer always reads A0h

Device 0 Host Bridge Device-Specific Registers

These registers are normally programmed once at system initialization time.

V-Link Control

Device 0 Offset 40 – V-Link Specification ID (00h).....RO

7-0 **Specification Revision**..... always reads 00

Device 0 Offset 41 – NB V-Link Capability (19h)WC

7	V-Link Parity Error Detected by NBWC
0	No V-Link Parity Error Detected.....default
1	V-Link Parity Error Detected (write 1 to clear)
6	Reserved always reads 0
5	16-bit Bus Width Supported by NBRO
0	Not Supported
1	Supported
4	8-Bit Bus Width Supported by NBRO
0	Not Supported
1	Supported.....default
3	4x Rate Supported by NBRO
0	Not Supported
1	Supported.....default
2	2x Rate Supported by NBRO
0	Not Supported
1	Supported
1	Reserved always reads 0
0	8x Rate Supported by NBRO
0	Not Supported
1	Supported.....default

Device 0 Offset 42 – NB Downlink Command (88h)RW

7-4	DnCmd Max Request Depth (0=1 DnCmd).. def = 8
3-0	DnCmd Write Buffer Size (doublewords)..... def = 8

Device 0 Offset 43 – NB Uplink Max Req Depth (80h)...RO

7-4	UpCmd Max Request Depth (0=1 UpCmd).. def = 8
	Indicates the maximum allowable number of outstanding UPCMD requests
3-0	Reserved always reads 0

Device 0 Offset 44 – NB Uplink Buffer Size (82h).....RO

7-4	UpCmd P2C Write Buffer Size (max lines).. def = 8
3-0	UpCmd P2P Write Buffer Size (max lines) .. def = 2

Device 0 Offset 45 –NB V-Link Bus Timer (44h)..... RW

7-4	Timer for Normal Priority Requests from SB
0000	Immediate
0001	1*4 VCLKs
0010	2*4 VCLKs
0011	3*4 VCLKs
0100	4*4 VCLKs..... default
0101	5*4 VCLKs
0110	6*4 VCLKs
0111	7*4 VCLKs
1000	8*4 VCLKs
1001	16*4 VCLKs
1010	32*4 VCLKs
1011	64*4 VCLKs
11xx	Own the bus for as long as there is a request
3-0	Timer for High Priority Requests from SB
0000	Immediate
0001	1*2 VCLKs
0010	2*2 VCLKs
0011	3*2 VCLKs
0100	4*2 VCLKs..... default
0101	5*2 VCLKs
0110	6*2 VCLKs
0111	7*2 VCLKs
1000	8*2 VCLKs
1001	16*2 VCLKs
1010	32*2 VCLKs
1011	64*2 VCLKs
11xx	Own the bus for as long as there is a request

Device 0 Offset 46 – NB V-Link Misc Control (00h).....RW

7	Downstream High Priority
0	Disable High Priority Down Commandsdef
1	Enable High Priority Down Commands
6	Downlink Priority
0	Treat Downlink Cycles as Normal Priority .def
1	Treat Downlink Cycles as High Priority
5-4	Combine Multiple STPGNT Cycles Into One V-Link Command
* 00	Compatible, 1 command per V-Link cmd....def
01	2 commands per V-Link command
10	3 commands per V-Link command
11	4 commands per V-Link command
3-2	V-Link Master Access Ordering Rules
00	High priority read, pass normal read (not pass write)default
01	Read (high/normal) pass write (HR>LR>W)
1x	Read / write in order
1-0	Reserved always reads 0

Device 0 Offset 47 – V-Link Control (00h).....RW

7	Parity Error on SERR# Reported via NMI
0	Disabledefault
1	Enable
6	Parity Error on SERR# Reported to SB via Vlink
0	Disabledefault
1	Enable
5-4	Reserved always reads 0
3	Down Strobe Dynamic Stop
0	Disabledefault
1	Enable
2	Auto-Disconnect
0	Disabledefault
1	Enable
1	V-Link Disconnect Sequence for STPGNT cycle
0	Disabledefault
1	Enable
0	V-Link Disconnect Sequence for HALT Cycle
0	Disabledefault
1	Enable

Device 0 Offset 48 – NB/SB V-Link Configuration (18h)RW

7	V-Link Parity Check
0	Disable..... default
1	Enable
6	Rest Bus Width Support
0	Disable..... default
1	Enable
5	16-bit Bus Width
0	Disable..... default
1	Enable
4	8-Bit Bus Width
0	Disable
1	Enable..... default
3	4x Rate
0	Disable
1	Enable..... default
2	2x Rate
0	Disable..... default
1	Enable
1	Reserved always reads 0
0	8x Rate
0	Disable..... default
1	Enable

Device 0 Offset 49 – SB V-Link Capability (19h) WC

7	V-Link Parity Error Detected by SB..... WC
0	No parity error detected..... default
1	Parity error detected
6	Reserved always reads 0
5	16-bit Bus Width Supported by SB..... RO
0	Not Supported..... default
1	Supported
4	8-Bit Bus Width Supported by SB..... RO
0	Not Supported
1	Supported..... default
3	4x Rate Supported by SB..... RO
0	Not Supported
1	Supported default
2	2x Rate Supported by SB..... RO
0	Not Supported..... default
1	Supported
1	Reserved always reads 0
0	8x Rate Supported by SB..... RO
0	Not Supported
1	Supported default

Device 0 Offset 4A – SB Downlink Status (88h) RO

- 7-4 DnCmd Max Request Depth (0=1 DnCmd).. def = 8
 3-0 DnCmd Write Buffer Size (doublewords).... def = 8

Device 0 Offset 4B – SB Uplink Command (80h).....RW

- 7-4 UpCmd Max Request Depth (0=1 UpCmd).. def = 8
 Indicates the maximum allowable number of outstanding UPCMD requests
 3-0 Reserved always reads 0

Device 0 Offset 4C – SB Uplink Command (82h).....RW

- 7-4 UpCmd P2C Write Buffer Size (max lines).. def = 8
 3-0 UpCmd P2P Write Buffer Size (max lines) .. def = 2

Device 0 Offset 4D – SB V-Link Bus Timer (44h).....RW

- 7-4 Timer for Normal Priority Requests from NB
 0000 Immediate
 0001 1*4 VCLKs
 0010 2*4 VCLKs
 0011 3*4 VCLKs
 0100 4*4 VCLKs default
 0101 5*4 VCLKs
 0110 6*4 VCLKs
 0111 7*4 VCLKs
 1000 8*4 VCLKs
 1001 16*4 VCLKs
 1010 32*4 VCLKs
 1011 64*4 VCLKs
 11xx Own the bus for as long as there is a request
- 3-0 Timer for High Priority Requests from NB
 0000 Immediate
 0001 1*2 VCLKs
 0010 2*2 VCLKs
 0011 3*2 VCLKs
 0100 4*2 VCLKs default
 0101 5*2 VCLKs
 0110 6*2 VCLKs
 0111 7*2 VCLKs
 1000 8*2 VCLKs
 1001 16*2 VCLKs
 1010 32*2 VCLKs
 1011 64*2 VCLKs
 11xx Own the bus for as long as there is a request

Device 0 Offset 4E – CCA Master Priority (00h)..... RW

- 7 1394 High Priority
 0 Low priority..... default
 1 High priority
- 6 LAN / NIC High Priority
 0 Low priority..... default
 1 High priority
- 5 Reserved always reads 0
- 4 USB High Priority
 0 Low priority..... default
 1 High priority
- 3 Reserved always reads 0
- 2 IDE High Priority
 0 Low priority..... default
 1 High priority
- 1 AC97-ISA High Priority
 0 Low priority..... default
 1 High priority
- 0 PCI High Priority
 0 Low priority..... default
 1 High priority

Device 0 Offset 4F – SB V-Link Misc Control (00h)..... RW

- 7 Upstream Command High Priority
 0 Disable high priority up commands..... default
 1 Enable high priority up commands
- 6-4 Reserved always reads 0
- 3 Up Strobe Dynamic Stop
 0 Disable..... default
 1 Enable
- 2-1 Reserved always reads 0
- 0 Down Cycle Wait for Up Cycle Write Flush
 (Except Down Cycle Post Write)
 0 Disable..... default
 1 Enable

HyperTransport Host Control
Device 0 Offset 50 - HT Host Control 1 (00h) RW

- 7 In-Order Processing CPU-to-PCI / CPU-to-AGP Requests or HyperTransport Ordering Rule**
 - 0 Disable default
 - 1 Enable
- 6 PCI Master Read Ready / PCI Master Write Ready In-Order Response**
 - 0 Disable default
 - 1 Enable
- 5 AGP Master Read Ready / AGP Master Write Ready In-Order Response**
 - 0 Disable default
 - 1 Enable
- 4 AGP Read Outstanding Request Queue Depth**
 - 0 16-Level default
 - 1 32-Level
- 3 EOI Cycle to AGP**
 - 0 Disable default
 - 1 Enable
- 2-0 Number of Outstanding PCI-to-CPU Requests on HyperTransport Bus**

Device 0 Offset 51 - HT Host Control 2 (00h) RW

- 7 ROMSIP Support..... RO from VAD6 Strap**
 - 0 Disable default
 - 1 Enable
- 6 Set Isochronous Request Bit for PCI-to-CPU Requests with PCI MSIO**
 - 0 Disable default
 - 1 Enable
- 5 Set Isochronous Request Bit for AGP-to-CPU Requests with AGP High Priority**
 - 0 Disable default
 - 1 Enable
- 4 Set Isochronous Request Bit for All PCI-to-CPU Requests**
 - 0 Disable default
 - 1 Enable
- 3 Set Isochronous Request Bit for All AGP-to-CPU Requests**
 - 0 Disable default
 - 1 Enable
- 2 Non-Posted CPU-to-PCI Response from PCI Will Wait For Previous PCI-to-CPU Write PCI Write Flush**
 - 0 Disable default
 - 1 Enable
- 1 Non-Posted CPU-to-AGP Response from AGP Will Wait For Previous AGP-to-CPU AGP Write Flush**
 - 0 Disable default
 - 1 Enable
- 0 256-Byte SRAM Access**
 - 0 Disable default
 - 1 Enable

Device 0 Offset 52 - SRAM Base Address (00h) RW

7-0 256-Byte SRAM Base Address default = 00h

Device 0 Offset 53 - HT Initialization 1 (00h).....RW		
7	CPU Fast Command.....RO	
0	Disable	default set per VAD3 strap info
1	Enable	
6-4	HT 400 Init Counter ..	default per ROMSIP[57:55]
3	AGP Isochronous Read Outstanding Request Queue Depth	
0	16-Level	default
1	32-Level	
2-0	HT 200 Init Counter ..	default per ROMSIP[54:52]

Device 0 Offset 54 - HT Initialization 2 (00h).....RW		
7	Set / Clear Isoc Bit For Isoc AGP Request	
0	Clear	default
1	Set	
6-4	HT 800 Init Counter.....	default per ROMSIP[63:61]
3	Reserved	always reads 0
2-0	HT 600 Init Counter.....	default per ROMSIP[60:58]

Device 0 Offset 55 - Arbitration Control 1 (08h).....RW	
7	AGP Read Length Can Be 1QW or 8QW (Not 1 / 2 / 4 / 8QW) for AGP Performance
0	Disabledefault
1	Enable
6	AGP Byte Enable Write Type
0	Issue Byte writes for all BE writes.....default
1	Issue DW writes for all BE writes
5	When PCI-to-CPU Write Cycles With All Byte Enables Set, HyperTransport Controller May:
0	Issue Byte Write.....default
1	Issue DoubleWord Write
4	AGP Read 8QW Access from HT
0	Disabledefault
1	Enable
3	Allow CPU CF8 / CFC I/O Cycle
0	Disable (Don't Allow)
1	Enable (Allow).....default
2	PCI Master Access Could Be Bursting
0	Only 1 request before data phasedefault
1	Could have 4 request pipeline before data phase
1	Reduce 1T Latency for AGP Access
0	Disabledefault
1	Enable
0	LDTSTOP# Connection Sequence Change
0	100 usec for PLL lock timer.....default
1	1 usec for PLL lock timer

Device 0 Offset 56 - Arbitration Control 2 (00h) RW	
7	Clear CPU-to-PCI Read Response PassPW Bit
0	Disable default
1	Enable
6	Set CPU-to-PCI Target Done PassPW Bit
0	Disable default
1	Enable
5	Clear CPU-to-PCI Target Done PassPW Bit
0	Disable default
1	Enable
4	Legacy NMI Encoding for MT[3]
0	Disable default
1	Enable
3	Legacy External Interrupt Encoding for MT[3]
0	Disable default
1	Enable
2	Reduce 1T Latency for FW Cycle
0	Disable default
1	Enable
1	K8 CRC Error Checking W1R†
0	Disable default
1	Enable
0	AGP Over 4G Error Checking W1R†
0	Disable default
1	Enable

† “W1R” indicates “write once, then read only”

Device 0 Offset 57 – System Memory Ending Address (01h).....RW	
6	System Memory Ending Address (HA[31:24])..... default = 01h

HyperTransport Arbitration Control

Device 0 Offset 60 - HT Arbitration Control (00h).....RW
7 PCI Master (PCI1 & PCI2) Requests Can Pass Other Writes If The CPU Write Channel Is Full
0 Disabledefault
1 Enable
6 AGP Non-Isoc Requests Can Pass Other Writes If The CPU Write Channel Is Full
0 Disabledefault
1 Enable
5 Extend Arbitration Based on PCI Master Request
0 Disabledefault
1 Enable
4 Extend Arbitration Based on AGP Non-Isoc Req
0 Disabledefault
1 Enable
3 Extend Arbitration Based on AGP Isoc Request
0 Disabledefault
1 Enable
2 PCI Master Request Can Be High Priority in Upstream Arbitration
0 Disabledefault
1 Enable
1 AGP Non-Isoc Request Can Be High Priority in Upstream Arbitration
0 Disabledefault
1 Enable
0 AGP Isoc Request Can Be High Priority in Upstream Arbitration
0 Disabledefault
1 Enable

Interrupt Control & Configuration

Device 0 Offset 58 - Capability ID (08h)..... RO
Device 0 Offset 59 - Next Pointer (68h)..... RO
Device 0 Offset 5A - Interrupt Register Index (00h) RW
Device 0 Offset 5B - Capability Type (80h)..... RO
Device 0 Offset 5F-5C - Interrupt Register Data RO
31-24Always reads 0F8h
23-16 Vector
15-8 Destination
7 Reservedalways reads 0
6 Destination Mode
5 Trigger Mode
4-2 MT
1 Interrupt Polarity
0 Interrupt Mask

BIOS ROM & Memory Hole Control
Device 0 Offset 61 - Shadow RAM Control 1 (00h).....RW

7-6 CC000h-CFFFFh
00 Read/write disable.....default
01 Write enable
10 Read enable
11 Read/write enable
5-4 C8000h-CBFFFh
00 Read/write disable.....default
01 Write enable
10 Read enable
11 Read/write enable
3-2 C4000h-C7FFFh
00 Read/write disable.....default
01 Write enable
10 Read enable
11 Read/write enable
1-0 C0000h-C3FFFh
00 Read/write disable.....default
01 Write enable
10 Read enable
11 Read/write enable

Device 0 Offset 62 - Shadow RAM Control 2 (00h).....RW

7-6 DC000h-DFFFFh
00 Read/write disable.....default
01 Write enable
10 Read enable
11 Read/write enable
5-4 D8000h-DBFFFh
00 Read/write disable.....default
01 Write enable
10 Read enable
11 Read/write enable
3-2 D4000h-D7FFFh
00 Read/write disable.....default
01 Write enable
10 Read enable
11 Read/write enable
1-0 D0000h-D3FFFh
00 Read/write disable.....default
01 Write enable
10 Read enable
11 Read/write enable

Device 0 Offset 63 - Shadow RAM Control 3 (00h).....RW

7-6 E0000h-EFFFFh
00 Read/write disable default
01 Write enable
10 Read enable
11 Read/write enable
5-4 F0000h-FFFFFh
00 Read/write disable default
01 Write enable
10 Read enable
11 Read/write enable
3-2 Memory Hole
00 None default
01 512K-640K
10 15M-16M (1M)
11 14M-16M (2M)

1 Disable A,BK SMRAM Direct Access

0 Enable A,BK DRAM Access

SMI Mapping Control:

Bits	<u>SMM</u>		<u>Non-SMM</u>	
	Code	Data	Code	Data
00	DRAM	DRAM	PCI	PCI
01	DRAM	DRAM	DRAM	DRAM
10	DRAM	PCI	PCI	PCI
11	DRAM	DRAM	DRAM	DRAM

HyperTransport Buffer / FIFO Control
Device 0 Offset 64 – HT Buffer Control 1 (00h).....RW

- 7-4 AGP Master Isochronous Request Timer.... def=0h
(programmed in units of 16 HT clocks)
- 3-2 HT Parking Arbitration for PCI / AGP / Isoch
AGP Requests
 - 00 Park at Previous Busdefault
 - 01 Park at PCI Master
 - 10 Park at AGP Master
 - 11 Park at AGP Isoch Request
- 1 MG FIFO Data Depth
 - 0 64 QWdefault
 - 1 128 QW
- 0 FW Data Depth
 - 0 16 QWdefault
 - 1 32 QW

Device 0 Offset 65 – HT Buffer Control 2 (00h).....RW

- 7-4 PCI Master Timer..... default = 0h
(programmed in units of 16 HT clocks)
- 3-0 PCI Master Promotion Timer..... default = 0h
(programmed in units of 16 HT clocks)

Device 0 Offset 66 – HT Buffer Control 3 (00h).....RW

- 7-4 AGP Master Timer default = 0h
(programmed in units of 16 HT clocks)
- 3-0 AGP Master Promotion Timer default = 0h
(programmed in units of 16 HT clocks)

Device 0 Offset 67 – HT Buffer Control 4 (00h).....RW

- 7-0 AGP Master Isoch Request Timer default = 00h
(programmed in units of 16 HT clocks)

Extended Power Management Control
Device 0 Offset 68 – Power Management Capability ID RO

- 7-0 Capability IDalways reads 01h

Device 0 Offset 69 – Power Management Next Pointer.. RO

- 7-0 Next Pointeralways reads 00h ("Null" Pointer)

Device 0 Offset 6A – Power Mgmt Capabilities I RO

- 7-0 Power Management Capabilities ..always reads 02h

Device 0 Offset 6B – Power Mgmt Capabilities II RO

- 7-0 Power Management Capabilities ..always reads 00h

Device 0 Offset 6C – Power Mgmt Control / Status RW

- 7-2 Reservedalways reads 0
- 1-0 Power State
 - 00 D0default
 - 01 -reserved-
 - 10 -reserved-
 - 11 D3 Hot

Device 0 Offset 6D – Power Management Status..... RO

- 7-0 Power Management Status.....always reads 00h

Device 0 Offset 6E – PCI-to-PCI Bridge Support Ext.... RO

- 7-0 P2P Bridge Support Extensionsalways reads 00h

Device 0 Offset 6F – Power Management Data..... RO

- 7-0 Power Management Dataalways reads 00h

PCI Bus Control

These registers are normally programmed once at system initialization time.

Device 0 Offset 70 - PCI Buffer Control (00h).....RW

7	CPU to PCI Post-Write	
0	Disable	default
1	Enable	
6	Reserved	always reads 0
5-4	PCI Master to DRAM Prefetch	
00	Always prefetch	default
x1	Never prefetch	
10	Prefetch only for Enhance command	
3	Reserved	always reads 0
2	PCI Master Read Buffering	
0	Disable	default
1	Enable	
1	Delay Transaction	
0	Disable	default
1	Enable	
0	Reserved	always reads 0

Device 0 Offset 71 - CPU to PCI Flow Control (48h)..RWC

7	Retry StatusRWC	
0	No retry occurred	default
1	Retry occurred	
6	Retry Timeout Action	
0	Retry forever (record status only)	
1	Flush buffer or return FFFFFFFFh for readsdefault
5-4	Retry Count and Retry Backoff	
00	Retry 2 times, backoff CPU	default
01	Retry 16 times	
10	Retry 4 times	
11	Retry 64 times	
3	PCI Burst	
0	Disable	
1	Enable	default
2	Reserved	always reads 0
1	Compatible Type#1 Configuration Cycles	
0	Disable (fixed AD31).....default	
1	Enable	
0	IDSEL Control	
0	AD11, AD12	default
1	AD30, AD31	

Device 0 Offset 73 - PCI Master Control (00h).....RW

7	Reservedalways reads 0
6	PCI Master 1-Wait-State Write	
0	Zero wait state TRDY# response.....default	
1	One wait state TRDY# response	
5	PCI Master 1-Wait-State Read	
0	Zero wait state TRDY# response.....default	
1	One wait state TRDY# response	
4	WSC#	
0	Disable.....default	
1	Enable	
3-1	Reservedalways reads 0
0	PCI Master Broken Timer Enable	
0	Disable.....default	
1	Enable. Force into arbitration when there is no FRAME# 16 PCICLK's after the grant.	

Device 0 Offset 75 - PCI Arbitration 1 (00h)RW

7	Arbitration Mode
0	REQ-based (arbitrate at end of REQ#) ..default
1	Frame-based (arbitrate at FRAME# assertion)
6-4	Latency Timer read only, reads Rx0D bits 2:0
3	Reserved always reads 0
2-0	PCI Master Bus Time-Out (force into arbitration after a period of time)
000	Disable default
001	1x16 PCICLKs
010	2x16 PCICLKs
011	3x16 PCICLKs
100	4x16 PCICLKs
...	...
111	7x16 PCICLKs

Device 0 Offset 76 - PCI Arbitration 2 (00h) RW

7	I/O Port 22 Access
0	CPU access to I/O address 22h is passed on to the PCI bus default
1	CPU access to I/O address 22h is processed internally
6	Reserved always reads 0
5-4	Master Priority Rotation Control
00	Disable default
01	Grant to CPU after every PCI master grant
10	Grant to CPU after every 2 PCI master grants
11	Grant to CPU after every 3 PCI master grants
<u>Setting 01:</u> the CPU will always be granted access after the current bus master completes, no matter how many PCI masters are requesting.	
<u>Setting 10:</u> if other PCI masters are requesting during the current PCI master grant, the highest priority master will get the bus after the current master completes, but the CPU will be guaranteed to get the bus after that master completes.	
<u>Setting 11:</u> if other PCI masters are requesting, the highest priority will get the bus next, then the next highest priority will get the bus, then the CPU will get the bus.	
In other words, with the above settings, even if multiple PCI masters are continuously requesting the bus, the CPU is guaranteed to get access after every master grant (01), after every other master grant (10) or after every third master grant (11).	
3-2	Select REQn# to REQ4# mapping
00	REQ4# default
01	REQ0#
10	REQ1#
11	REQ2#
1	Reserved always reads 0
0	REQ4# is High Priority Master
0	Disable default
1	Enable

GART / Graphics Aperture

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a “physical page” address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the “aperture size”) which is programmable in the K8T800.

This scheme is shown in the figure below.

Figure 3. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a “Translation Lookaside Buffer” or TLB) is utilized to enhance performance. The TLB in the K8T800 contains 16 entries. Address “misses” in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the “Graphics Aperture” (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc) for AGP 2.0 and 4MB to 2GB for AGP 3.0. The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register groups (Rx84 and 88 respectively for AGP 2.0 and Rx94 and 98 for AGP 3.0) along with various control bits.

AGP 2.0 Registers

AGP 2.0 registers Rx80-AB are enabled if RxFD[1] = 1 and AGP 3.0 registers Rx80-AB are enabled if RxFD[1] = 0.

Device 0 Offset 83-80 – AGP 2.0 GART/TLB Control...RW

31-16	Reserved	always reads 0
15-8	Reserved (test mode status)	RO
7	Flush Page TLB		
	0	Disable default
	1	Enable	

6-0 **Reserved (always program to 0)** RW

Note: For any master access to the Graphics Aperture range, snoop will not be performed.

Device 0 Offset 84 – AGP 2.0 Graphics Aperture Size ..RW

7-0 **Graphics Aperture Size**

11111111	1M
11111110	2M
11111100	4M
11111000	8M
11110000	16M
11100000	32M
11000000	64M
10000000	128M
00000000	256M

AGPMiscellaneous Control

Offset 85 – AGP Buffer / Packet Control (01h)..... RW

7-6	Delay Read Response Buffer Release		
	00	No Delay default
	01	Delay 1T (2T Rate)	
	01	Delay 2T (3T Rate)	
	11	Delay 3T (4T Rate)	
5	Sequence ID Value for AGP Isochronous Video Display		
	0	SeqID = 0 default
	1	SeqID = 1	
4-3	Reserved	always reads 0
2	Value of PASSPW Bit in AGP Master Upstream Request Packet		
1	Value of Sequence ID in PCI/AGP Master Upstream Request Packet		
0	Soc Bit in CPU-to-PCI Response Packet Same as Corresponding Request Packet		
	0	Always Clear	
	1	Same default

Offset 86 – PCI Master R/W Merge Timers (4Fh) RW

7	Reserved	always reads 0
6-4	PCI Master Read Merge Timer		
	Used for waiting for the next request.		
	000	Disable	
	001	1 tick (7.5ns per tick)	
	010	2 ticks	
	011	3 ticks	
	100	4 ticks default
	101	5 ticks	
	110	6 ticks	
	111	7 ticks	
3-0	PCI Master Write Merge Timer		
	Used for waiting for the next request.		
	0000	Disable	
	0001	1 tick (each tick = 60 nsec)	
	0010	2 ticks	
	0011	3 ticks	
	
	1111	15 ticks default

Offset 8B-88 – AGP 2.0 GART Table Base.....RW

31-12 Graphics Aperture Translation Table Base.
 Pointer to the base of the translation table in system memory used to map addresses in the aperture range (the pointer to the base of the "Directory" table).

11-2 Reserved always reads 0

1 Graphics Aperture

- 0 Disabledefault
- 1 Enable

Note: To disable the Graphics Aperture, set this bit to 0 and set all bits of the Graphics Aperture Size to 0. To enable the Graphics Aperture, set this bit to 1 and program the Graphics Aperture Size to the desired aperture size.

0 Reserved always reads 0

Device 0 Offset A3-A0 - AGP 2.0 Capabilities (0020C002h)

.....**RO**

31-24 Reserved always reads 00

23-20 Major Specification Revision ... always reads 0010b
 Major rev # of AGP spec that device conforms to

19-16 Minor Specification Revision ... always reads 0000b
 Minor rev # of AGP spec that device conforms to

15-8 Pointer to Next Item always reads C0 (last item)

7-0 AGP Capability ID
 (always reads 02 to indicate it is AGP)

Device 0 Offset A7-A4 - AGP 2.0 Status (1F000201h)RO

31-24 Maximum AGP Requests always reads 1Fh
 Max # of AGP requests the device can manage (32)

23-10 Reserved always reads 0s

9 Supports SideBand Addressing **always reads 1**

8-6 Reserved always reads 0s

5 Addresses Above 4G Supported always reads 0†

4 Fast Write Supported always reads 0†

3 Reserved always reads 0s

2 4X Rate Supported always reads 0†

1 2X Rate Supported always reads 0†

0 1X Rate Supported **always reads 1**

†Writable if RxFD[0] = 1.

Device 0 Offset AB-A8 - AGP 2.0 CommandRW

31-24 Request Depth (reserved for target).. always reads 0s

23-10 Reserved always reads 0s

9 SideBand Addressing Enable

- 0 Disable..... default
- 1 Enable

8 AGP Enable

- 0 Disable..... default
- 1 Enable

7-6 Reserved always reads 0s

5 4G Enable

- 0 Disable..... default
- 1 Enable

4 Fast Write Enable

- 0 Disable..... default
- 1 Enable

3 Reserved always reads 0s

2 4X Mode Enable

- 0 Disable..... default
- 1 Enable

1 2X Mode Enable

- 0 Disable..... default
- 1 Enable

0 1X Mode Enable

- 0 Disable..... default
- 1 Enable

AGP 3.0 Registers

AGP 3.0 registers Rx80-AB are enabled if RxFD[1] = 0 and AGP 2.0 registers Rx80-AB are enabled if RxFD[1] = 1.

Device 0 Offset 83-80 - AGP 3.0 Capabilities (0035C002h)

	RO
31-24	Reserved always reads 0
23-20	Major Specification Revision	... always reads 0011b Major rev # of AGP spec that device conforms to
19-16	Minor Specification Revision	... always reads 0101b Minor rev # of AGP spec that device conforms to
15-8	Pointer to Next Item always reads C0 (last item)
7-0	AGP Capability ID	(always reads 02 to indicate it is AGP)

Device 0 Offset 87-84 - AGP 3.0 Status (1F000A03h)RO

31-24	Maximum AGP Requests always reads 1Fh Max # of AGP requests the device can manage (32)
23-16	Reserved always reads 0s†
15-13	Optimum Async Request Size always reads 0s† Suggested setting is 010b or $2^{(2+4)}=64$ Bytes for 8QW access
12-10	Calibration Cycle Setting	
000	4 ms	
001	16 ms	
010	64 ms default†
011	256 ms	
9	Supports SideBand Addressing always reads 1
8	Reserved always reads 0†
7	64-Bit GART Entries always reads 0
6	CPU GART Translation Supported always reads 0
5	Addresses Above 4G Supported always reads 0
4	Fast Write Supported always reads 0
3	AGP 8x Detected Set from AGP8XDT# pin
2	4X Rate Supported Reads 0 if bit-3 = 1 Reads 1 if bit-3 = 0
1	2X Rate Supported always reads 1
0	1X Rate Supported always reads 1

†Writable if RxFD[0] = 1.

Device 0 Offset 8B-88 - AGP 3.0 Command RW

31-24	Request Depth	(reserved for target)....always reads 0
23-13	Reserved always reads 0
12-10	Calibration Cycle Select default = 0
9	SideBand Addressing	
0	Disable default
1	Enable	
8	AGP	
0	Disable default
1	Enable	
7-6	Reserved always reads 0
5	Addresses Over 4G	
0	Disable default
1	Enable	
4	Fast Write	
0	Disable default
1	Enable	
3	Reserved always reads 0
2-0	Transfer Mode Select default = 000b <u>Rx84[3] = 0 (8x mode not detected via AGP8XDT#)</u>
001	1x data transfer rate	
010	2x data transfer rate	
100	4x data transfer rate	
	<u>Rx84[3] = 1 (8x mode detected via AGP8XDT#)</u>	
000	-reserved default
001	4x data transfer rate	
010	8x data transfer rate	

Device 0 Offset 8F-8C - AGP 3.0 Isochronous Status.... RW

31-24	Reserved always reads 0
23-16	Max Asynchronous & Isochronous Bandwidth	...default = half of DRAM Bandwidth Backdoor Regs
15-8	Maximum Number of Isochronous Transactions in a Single Isochronous Period default = 0
7-6	Isochronous Payload Sizes Supported	
00	256, 128, 64, 32 bytes default
01	256, 128, 64 bytes	
10	256, 128 bytes	
11	256 bytes	
5-3	Max Latency for Isochronous Data Transfer	(in units of 1 usec)..... default = 0
2	Reserved always reads 0
1-0	Isochronous Error Code	
00	No Error default
01	Isoch Request Overflow	
1x	-reserved-	

Device 0 Offset 93-90 - AGP 3.0 GART / TLB Control.RW

31-10 Reservedalways reads 0s
9 Calibration Cycle
 0 Disabledefault
 1 Enable
8 Graphics Aperture Base Register (Rx13-10) Read
 0 Disabledefault
 1 Enable
7 GART TLB
 0 Disable (TLB entries are invalidated)....default
 1 Enable
6-0 Reservedalways reads 0s

Device 0 Offset 97-94 - AGP 3.0 Graphics Aperture SizeRW

31-28 Aperture Page Size Selectdefault = 0000b
 Only 4K pages are allowed
27 Reservedalways reads 0s
26-16 Page Size Supporteddefault = 001h
 If bit-n of this field is 1, indicates support of $2^{(n+12)}$ page size. Must be set to 001h (field bit-0 set) to indicate only 4K pages allowed.
15-12 Reservedalways reads 0s
11-0 Aperture Sizedefault = 0

111100111111	4MB
111100111110	8MB
111100111100	16MB
111100111000	32MB
111100110000	64MB
111100100000	128MB
111100000000	256MB
111000000000	512MB
110000000000	1GB
100000000000	2GB <= Max supported
000000000000	4GB <= Do not program

Device 0 Offset 9B-98 - AGP 3.0 GART Table Base Lo RW

31-12 GART Base Address [31:12]default = 0
11-0 Reservedalways reads 0s

Device 0 Offset 9F-9C - AGP 3.0 GART Table Base Hi RW

31-0 GART Base Address [63:32]default = 0
 This register should be programmed to all zeros since memory over 4GB is not supported.

AGP 2.0 / 3.0 Registers
Device 0 Offset AC - AGP Control (00h) RW

- 7 **AGP Disable**
 - 0 Enable default
 - 1 Disable
- 6 **AGP Read Synchronization**
 - 0 Disable default
 - 1 Enable
- 5 **AGP Read Snoop DRAM Post-Write Buffer**
 - 0 Disable default
 - 1 Enable
- 4 **GREQ# Priority Becomes Higher When Arbiter is Parked at AGP Master**
 - 0 Disable default
 - 1 Enable
- 3 **GGNT Assertion**
 - 0 Assert when 1 block of data is back default
 - 1 Assert when all data of this request is back
- 2 **Fence / Flush**
 - 0 Disable (low priority reads and writes will be executed out of order) default
 - 1 Enable (low priority reads and writes will be executed in order)
- 1 **AGP Arbitration Parking**
 - 0 Disable default
 - 1 Enable (GGNT# remains asserted until either GREQ# de-asserts or data phase ready)
- 0 **AGP to PCI Master or CPU to PCI Turnaround Cycle**
 - 0 2T or 3T Timing default
 - 1 1T Timing

Device 0 Offset AD – AGP Latency Timer (02h)..... RW

- 7 **AGP Performance Improvement**
 - 0 Disable default
 - 1 Enable
- 6 **Pipe Mode Performance Improvement**
 - 0 Disable default
 - 1 Enable
- 5 **AGP Data Input Enable (for Power Saving)**
 - 0 AGP data input always enabled default
 - 1 AGP data input only enabled when necessary to avoid redundant transitions
- 4 **AGP Performance Improvement**
 - 0 Disable default
 - 1 Enable
- 3-0 **AGP Data Phase Latency Timer** default = 02h

Device 0 Offset AE – AGP Misc Control (00h) RW

- 7-2 **Reserved** always reads 0
- 1 **GDBIH / GPIPE# Mux Function**
 - 0 From GDBIH (0.95) default
 - 1 From GPIPE# (0.9)
- 0 **CPU GART Read, AGP GART Write Coherency**
 - 0 Disable default
 - 1 Enable

Device 0 Offset AF – AGP 3.0 Control (00h)..... RW

- 7 **CPU / PCI Master GART Access**
 - 0 Disable default
 - 1 Enable
- 6 **AGP Calibration**
 - 0 Disable default
 - 1 Enable
- 5 **Mix Coherent / Non-coherent Accesses**
 - 0 Disable default
 - 1 Enable
- 4 **Reserved** always reads 0
- 3 **DBI Function**
 - 0 Disable (DBI input masked and all outputs assume DBI=0) default
 - 1 Enable
- 2 **DBI Output for AGP Transactions**
 - 0 Disable default
 - 1 Enable
- 1 **DBI Output for Frame Transactions Including Fast-Write**
 - 0 Disable default
 - 1 Enable
- 0 **DBI Output from Frame Transactions**
 - 0 Disable default
 - 1 Enable

Device 0 Offset B0 – AGP Pad Control / Status (8xh)....RW

- 7 AGP 4x Strobe VREF Control**
 - 0 STB VREF is STB# and vice versa
 - 1 STB VREF is AGPREF**default**
 - 6 AGP 4x Strobe & GD Pad Drive Strength**
 - 0 Drive strength set to compensation circuit default**default**
 - 1 Drive strength controlled by RxB1[7-0]
 - 5-3 AGP Compensation Circuit N Control Output.RO**
 - 2-0 AGP Compensation Circuit P Control Output.RO**
- Note: N = low drive, P = high drive

Device 0 Offset B1 – AGP Drive Strength (63h).....RW

- 7-4 AGP Output Buffer Low Drive Strength.....def=6**
- 3-0 AGP Output Buffer High Drive Strength.....def=3**

Device 0 Offset B2 – AGP Pad Drive / Delay (08h).....RW

- 7 GD/GBE/GDS, SBA/SBS Control**
 - 0 SBA/SBS = no cap**default**
 - GD/GBE/GDS = no cap
 - 1 SBA/SBS = **cap**
 - GD/GBE/GDS = **cap**
- 6-5 GD / GBE Receive Strobe Delay**
 - 00 None**default**
 - 01 Delay by 0.15 ns
 - 10 Delay by 0.30 ns
 - 11 Delay by 0.45 ns
- 4 GD[31:16] Staggered Delay**
 - 0 None**default**
 - 1 GD[31:16] delayed by 1 ns
- 3 AGP Slew Rate Control**
 - 0 Disable
 - 1 Enable.....**default**
- 2 SBA Receive Strobe Delay**
 - 0 None**default**
 - 1 Delay by 0.15 ns
- 1-0 GDS Output Delay**
 - 00 None**default**
 - 01 Delay by 0.15 ns
 - 10 Delay by 0.30 ns
 - 11 Delay by 0.45 ns

(GDS1 & GDS1# will be delayed an additional 1ns if bit-4 = 1)

Device 0 Offset B3 – AGP Strobe Drive Strength.....RW

- 7-4 AGP Strobe Output Low Drive Strength.....def=0**
- 3-0 AGP Strobe Output High Drive Strengthdef=0**

V-Link Compensation / Drive Control
Device 0 Offset B4 – V-Link NB Compensation Ctrl (00h)RW

- 7-5** V-Link Autocomp Output Value – High Drive . RO
4 Reserved always reads 0
3-1 V-Link Autocomp Output Value – Low Drive .. RO
0 Compensation Select
 0 Auto Comp (use values in bits 7-5, 3-1) default
 1 Manual Comp (use values in RxB5, B6)

Device 0 Offset B5 – V-Link NB Strobe Drive Ctrl (00h)RW

- 7-5** V-Link Strobe Pullup Manual Setting (High)
4 Reserved always reads 0
3-1 V-Link Strobe Pulldown Manual Setting (Low)
0 Reserved always reads 0

Device 0 Offset B6 – V-Link NB Data Drive Ctrl (00h).RW

- 7-5** V-Link Data Pullup Manual Setting (High)
4 Reserved always reads 0
3-1 V-Link Data Pulldown Manual Setting (Low)
0 Reserved always reads 0

Device 0 Offset B8 – V-Link SB Compensation Ctrl (00h)RW

- 7-5** V-Link Autocomp Output Value – High Drive . RO
4 Reserved always reads 0
3-1 V-Link Autocomp Output Value – Low Drive .. RO
0 Compensation Select
 0 Auto Comp (use values in bits 7-5, 3-1) default
 1 Manual Comp (use values in RxB9, BA)

Device 0 Offset B9 – V-Link SB Strobe Drive Ctrl (00h)RW

- 7-5** V-Link Strobe Pullup Manual Setting (High)
4 Reserved always reads 0
3-1 V-Link Strobe Pulldown Manual Setting (Low)
0 Reserved always reads 0

Device 0 Offset BA – V-Link SB Data Drive Ctrl (00h).RW

- 7-5** V-Link Data Pullup Manual Setting (High)
4 Reserved always reads 0
3-1 V-Link Data Pulldown Manual Setting (Low)
0 Reserved always reads 0

Power Management Control
Device 0 Offset BC – Power Management Mode (00h) . RW

- 7** Dynamic Power Management
 0 Disable..... default
 1 Enable
6-0 Reserved always reads 0

Device 0 Offset BE – Dynamic Clock Stop Control (00h)RW

- 7** Host Interface Power Management
 0 Disable..... default
 1 Enable
6 Reserved always reads 0
5 V-Link Interface Power Management
 0 Disable..... default
 1 Enable
4 AGP Interface Power Management
 0 Disable..... default
 1 Enable
3 PCI #2 Interface Power Management
 0 Disable..... default
 1 Enable
2 Reserved always reads 0
1 V-Link Configuration Power Management
 0 Disable..... default
 1 Enable
0 Reserved always reads 0

HyperTransport Control**Device 0 Offset C3-C0 – Link Command (0060 5808h).RW**

- 31-29 **Slave / Primary Interface Type**..... default = 0, RO
28-26 **Reserved** always reads 0
25-21 **Unit ID Count**..... **default = 3, RO**
Specifies the number of UnitIDs used by the chip
20-16 **Base Unit ID [4:0]** default = 0
Specifies the link-protocol base UnitID. Internal logic uses this value to determine the UnitIDs for link requests and response packets. When a new value is written to this field, the response includes a UnitID that is based on the new value.
15-8 **Capabilities Pointer** **default = 58h, RO**
7-0 **Capabilities ID** **default = 08h, RO**
Specifies the capabilities ID for the link configuration space

Device 0 Offset C7-C4 – Link Configuration & Control
 (xx1 0020h).....RW

31	Reservedalways reads 0
30-28	Link Width Outdefault per CPU straps† Specifies the operating width of the outgoing link. 000 8 bitsdefault 001 16 bits (Device A, 0C4h only) 01x -reserved- 100 2 bits 101 4 bits 110 -reserved- 111 0 bits (not connected)
27	Reservedalways reads 0
26-24	Link Width Indefault per CPU straps† Specifies the operating width of the incoming link. 000 8 bitsdefault 001 16 bits (Device A, 0C4h only) 01x -reserved- 100 2 bits 101 4 bits 110 -reserved- 111 0 bits (not connected)

† The default values of the above fields depend on the widths of the links of the connecting devices per the HyperTransport link specification. These fields are cleared by PWROK but not by RESET#. After the field is updated, the link width does not change until either RESET# is asserted or a link disconnect sequence occurs via LDTSTOP# (HyperTransport Stop).

23	Reservedalways reads 0
22-20	Max Link Width Out default = 001b, RO Specifies the operating width of the outgoing link to be 16 bits wide for side A and 8 bits wide for side B.
19	Reservedalways reads 0
18-16	Max Link Width In default = 001b, RO Specifies the operating width of the incoming link to be 16 bits wide for side A and 8 bits wide for side B.
15	Reservedalways reads 0
14	Extended Control Time During Initialization‡	Specifies the time in which HT[B,A]CTL is held asserted during the initialization sequence that follows LDTSTOP# assertion after HT[B,A]CTL is detected asserted. 0 At least 16 bit timesdefault 1 About 50 microseconds

‡This bit is cleared by PWROK but not by RESET#

13	Link High Impedance Enable‡	0 During the LDTSTOP# disconnect sequence, the link transmit signals are driven but to undefined states and the link receive signals are assumed to be driven.default 1 During the LDTSTOP# disconnect sequence, the link transmit signals are set to high impedance states and the link receivers are configured for high impedance inputs (power is cut to the receiver differential amps and it is guaranteed that there are no high-current paths in the receive circuits).
12-10	Reservedalways reads 0
9-8	CRC Error Detected on Incoming Link‡..... RWC	Bit-9 applies to the link upper byte (DevA, C4h only) Bit-8 applies to the link lower byte
7	Transmitter Off	0 Ondefault 1 Off
6	End of Chain	0 Not EOCdefault 1 EOC
5	Initialization Complete RO Set by hardware after low-level link initialization has completed successfully. If there is no device on the other end of the link or the device on the other end is unable to properly perform link initialization, then this bit is not set. This bit is cleared by RESET# or after the link disconnect sequence completes after the assertion of LDTSTOP#.
4	Link Failure‡ RWC	This bit is set by hardware when a CRC error is detected on the link (if enabled by bit-1 below) or if the link is not used in the system.
3	CRC Error Command	This bit may be used to check the CRC failure detection logic of the device on the other side of the link. 0 Transmitted CRC values match the values calculated per the link specification.default 1 Link transmission logic generates erroneous CRC values
2	Reservedalways reads 0
1	CRC Flood Enable	0 CRC errors do not result in sync packets and do not set the link fail bitdefault 1 CRC errors result in sync packets to the outgoing link and set the link fail bit
0	Reservedalways reads 0

‡This bit is cleared by PWROK but not by RESET#

Device 0 Offset CB-C8 – Link End (0000 00D0h) RO

- 31-8 Reserved** always reads 0
7 Transmitter Off always reads 1
 Hardwired high to indicate that there is no subordinate HyperTransport link.
6 End of HyperTransport Chain always reads 1
 Hardwired high to indicate that there is no subordinate HyperTransport link.
5 Reserved always reads 0
4 Link Failure always reads 1
 Hardwired high to indicate that there is no subordinate HyperTransport link.
3-0 Reserved always reads 0

Device 0 Offset CF-CC – Link Frequency Capability (0035 0022h)..... RW

- 31-16 Link Frequency Capability** def=0035h, RO
 These bits indicate that the link supports 200, 400, 600 and 800 MHz link frequencies.

- 15-12 Reserved** always reads 0
11-8 Link Frequency RW
 Specifies the link frequency. The two msbs of this field default to 00b. The two lsbs of this field are latched from VAD[1:0] on the rising edge of PWROK (but not by RESET#) to set the default value (normally 00b for 200 MHz operation). After this field is updated, the link frequency does not change until either RESET# is asserted or a link disconnect sequence occurs via LDTSTOP# (HyperTransport Stop).
 0000 200 MHz ...lsbs default per straps VAD[1:0]
 0010 400 MHz
 0100 600 MHz
 0101 800 MHz
 all other values are reserved

- 7-5 Link Major Revision** default = 001b, RO
4-0 Link Minor Revision default = 00010b, RO
 These fields are hardwired to indicate support of revision 1.02 of the HyperTransport link specification.

Device 0 Offset D7-D4 – Link Enumeration Scratchpad (0000 0000h) RW

- 31-16 Reserved** always reads 0
15-0 Enumeration Scratchpad default = 0000h
 No internal hardware is controlled by these bits. These bits are cleared by PWROK but not by RESET#.

HyperTransport I/O
Device 0 Offset D8 – Transmit Data Rise / Fall Delay
(00h).....RW

- 7-6 Positive Data Signal Rising Edge Delay def=0
 5-4 Positive Data Signal Falling Edge Delay def=0
 3-2 Negative Data Signal Rising Edge Delay def=0
 1-0 Negative Data Signal Falling Edge Delay def=0

Device 0 Offset D9 – Transmit Clock Rise / Fall Delay
(00h).....RW

- 7-6 Positive Clock Signal Rising Edge Delay def=0
 5-4 Positive Clock Signal Falling Edge Delay def=0
 3-2 Negative Clock Signal Rising Edge Delay def=0
 1-0 Negative Clock Signal Falling Edge Delay def=0

Device 0 Offset DA – Transmit Data Drive Ctrl (00h)...RW

- 7 Data Coarse Delay default = 0
 6-4 Data Pullup Drive Control default = 0
 3 Reserved always reads 0
 2-0 Data Pulldown Drive Control default = 0

Device 0 Offset DB – Transmit Clck Drive Ctrl (00h)...RW

- 7 Clock Coarse Delay default = 0
 6-4 Clock Pullup Drive Control default = 0
 3 Reserved always reads 0
 2-0 Clock Pulldown Drive Control default = 0

Device 0 Offset DC – Transmit Autocomp Result (00h) RW

- 7 Transmit Autocomp Select
 0 Manual default
 1 Automatic
 6-4 Transmit Pullup Drive Strength From Autocomp default = 0
 3 Reserved always reads 0
 2-0 Transmit Pulldown Drive Strength From Autocomp default = 0

Device 0 Offset DD – Receive Data / Clock Rise / Fall
Delay (00h) RW

- 7-6 Data Input Rising Edge Delay default = 0
 5-4 Data Input Falling Edge Delay default = 0
 3-2 Clock Input Rising Edge Delay default = 0
 1-0 Clock Input Falling Edge Delay default = 0

Device 0 Offset DE – Receive Terminator Value (22h) . RW

- 7 Autocomp Termination Value
 0 Manual default
 1 Automatic
 6-4 Data Receive Termination Value default = 010b
 3 Reserved always reads 0
 2-0 Clock Receive Termination Value default = 010b

Device 0 Offset DF – Receive Terminator Autocomp Status (00h)..... RW

- 7 TCAD / RCAD High / Low Byte Delay Control
 0 Configure / read low byte (TCAD[7:0] / RCAD[7:0]) delay control default
 1 Configure / read high byte (TCAD[15:8] / RCAD[15:8]) delay control
 The registers include RxD8, D9, DD
 6-4 Receive Termination Autocomp Value...default = 0
 3-2 Receive PLL Feedback Delay Fine Tune
 00 Lead 0.1 ns default
 01 Aligned
 10 Lag 0.1 ns
 11 Lag 0.2 ns
 1-0 Receive Clock Delay
 00 1T (200 MHz)..... default
 01 2T
 10 3T
 11 Illegal setting - do not use

DRAM Above 4G Control

Device 0 Offset E4 – Low Top Address Low (00h).....RW

7-4 **Low Top Address Low** default = 0

3-0 DRAM Granularity

- 0 16M Total DRAM less than 4Gdefault
- 1 32M Total DRAM less than 8G
- 2 64M Total DRAM less than 16G
- 3 128M Total DRAM less than 32G
- 4 256M Total DRAM less than 64G
- 5-7 -reserved-

Device 0 Offset E5 – Low Top Address High (FFh).....RW

7-0 **Low Top Address High** default = FFh

Device 0 Offset E6 – SMM / APIC Decoding (01h).....RW

7-6 **Reserved** always reads 0

5 APIC Lowest Interrupt Arbitration

- 0 Disabledefault
- 1 Enable

4 I/O APIC Decoding

- 0 FECXXXX accesses go to PCIdefault
- 1 FEC00000 to FEC7FFFF accesses go to PCI
- FEC80000 to FECFFFFFF accesses go to AGP

3 MSI (Processor Message) Support

- 0 Disable (master access to FEExxxxx will go to PCI)default
- 1 Enable (master access to FEExxxxx will be passed to host side to do snoop)

2 Top SMM

- 0 Disabledefault
- 1 Enable

1 Reserved always reads 0

0 Compatible SMM

- 0 Disable
- 1 Enabledefault

Table 5. System Memory Map

Space	Start	Size	Address Range	Comment
DOS	0	640K	00000000-0009FFFF	Cacheable
VGA	640K	128K	000A0000-000BFFFF	Used for SMM
BIOS	768K	16K	000C0000-000C3FFF	Shadow Ctrl 1
BIOS	784K	16K	000C4000-000C7FFF	Shadow Ctrl 1
BIOS	800K	16K	000C8000-000CBFFF	Shadow Ctrl 1
BIOS	816K	16K	000CC000-000CFFFF	Shadow Ctrl 1
BIOS	832K	16K	000D0000-000D3FFF	Shadow Ctrl 2
BIOS	848K	16K	000D4000-000D7FFF	Shadow Ctrl 2
BIOS	864K	16K	000D8000-000DBFFF	Shadow Ctrl 2
BIOS	880K	16K	000DC000-000DFFFF	Shadow Ctrl 2
BIOS	896K	64K	000E0000-000EFFFF	Shadow Ctrl 3
BIOS	960K	64K	000F0000-000FFFFFF	Shadow Ctrl 3
Sys	1MB	—	00100000-DRAM Top	Can have hole
Bus	D Top		DRAM Top-FFFFEFFFF	
Init	4G-64K	64K	FFFEEEEEE-FFFFFFFFFF	000Fxxxx alias

AGP / V-Link Control

Device 0 Offset E8 – AGP Output Delay.....RW

- 7-6 AGP Data Output Rise Delay (GD).....def=0
- 5-4 AGP Data Output Fall Delay (GD)def=0
- 3-2 AGP Data Strobe Output Rise Delay (GDS) . def=0
- 1-0 AGP Data Strobe Output Fall Delay (GDS).. def=0

Device 0 Offset E9 – AGP / VL Receive Strobe Delay ...RW

- 7-6 AGP Strobe Receive Rise Delay (GDS)..... def=0
- 5-4 AGP Strobe Receive Fall Delay (GDS) def=0
- 3-2 V-Link Strobe Receive Rise Delay (UPSTB) . def=0
- 1-0 V-Link Strobe Receive Fall Delay (UPSTB).. def=0

Device 0 Offset EA – V-Link Output Delay.....RW

- 7-6 V-Link Data Output Rise Delay (VAD)..... def=0
- 5-4 V-Link Data Output Fall Delay (VAD)..... def=0
- 3-2 V-Link Strobe Output Rise Delay (DNSTB) . def=0
- 1-0 V-Link Strobe Output Fall Delay (DNSTB).. def=0

Device 0 Offset EB – AGP SBA Termination Control...RW

- 7-3 Reserved always reads 0
- 2-0 SBA Termination Manual Control..... default = 0

Device 0 Offset EC – AGP Isochronous Control 1RW

- 7-4 Reserved always reads 0
- 3 Isoch Read Shares Master AGP FIFO When No Asynch Read is Allocated
 - 0 Disabledefault
 - 1 Enable
- 2 Isoch Read Will Snoop Command FIFO
 - 0 Disabledefault
 - 1 Enable
- 1 Issue Request to Arbitor for GGNT
 - 0 When data from entire transaction is rcvd ...def
 - 1 When 1 block of data is received
- 0 Reserved always reads 0

Device 0 Offset ED – AGP Isochronous Control 2RW

- 7 Reserved always reads 0
- 6 Hold Last AGP Data (GD Pins)
 - 0 Disabledefault
 - 1 Enable
- 5-0 Fill Isoch Request Queue by VXD After Checking the Value of Isoch Status Bits for Error Report in the Capability Header (Rx8C[1-0]).

Device 0 Offset EE – AGP Master Isoch Read Timer... RW

- 7-0 AGP Master High Priority Counter for Isoch Request to Assert High Priority Signal to DRAM Controller for Isoch Reads

Device 0 Offset EF – AGP Master Isoch Write Timer.. RW

- 7-0 AGP Master High Priority Counter for Isoch Request to Assert High Priority Signal to DRAM Controller for Isoch Writes

BIOS Scratch

Device 0 Offset F3-F4 – BIOS Scratch Registers RW

- 7-0 No hardware function default = 0

Miscellaneous Registers

Device 0 Offset FD – AGP 2.0 / 3.0 Select..... RW

- 7-3 Reservedalways reads 0
- 2 AGP Capability Pointer (Rx34) Value
 - 0 Rx34 = A0h (AGP 2.0)..... default
 - 1 Rx34 = 80h (AGP 3.0)
- 1 Compatible Rx80-AF
 - 0 AGP 3.0 registers at Rx80-B3 default
 - 1 AGP 2.0 registers at Rx80-B3
- 0 AGP Status Register Write
 - 0 Disable (AGP 3.0 Rx84 is RO) default
 - 1 Enable (AGP 3.0 Rx84 is RW)

Device 1 Register Descriptions

Device 1 PCI-to-PCI Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and device number equal to one.

Device 1 Offset 1-0 - Vendor ID (1106h) RO

15-0 **ID Code** (reads 1106h to identify VIA Technologies)

Device 1 Offset 3-2 - Device ID (B188h) RO

15-0 **ID Code** (reads B188h to identify the PCI-to-PCI Bridge device)

Device 1 Offset 5-4 – Command (0007h) RW

15-10 **Reserved** always reads 0

9 **Fast Back-to-Back Cycle Enable** RO

0 Fast back-to-back transactions only allowed to the same agent.....default

1 Fast back-to-back transactions allowed to different agents

8 **SERR# Enable** RO

0 SERR# driver disabled.....default

1 SERR# driver enabled
(SERR# is used to report ECC errors).

7 **Address / Data Stepping** RO

0 Device never does stepping.....default

1 Device always does stepping

6 **Parity Error Response** RW

0 Ignore parity errors & continue.....default

1 Take normal action on detected parity errors

5 **Reserved** always reads 0

4 **Memory Write and Invalidate Command** RO

0 Bus masters must use Mem Write.....default

1 Bus masters may generate Mem Write & Inval

3 **Special Cycle Monitoring** RO

0 Does not monitor special cycles.....default

1 Monitors special cycles

2 **Bus Master** RW

0 Never behaves as a bus master

1 Enable to operate as a bus master on the primary interface on behalf of a master on the secondary interfacedefault

1 **Memory Space** RW

0 Does not respond to memory space

1 Enable memory space accessdefault

0 **I/O Space** RW

0 Does not respond to I/O space

1 Enable I/O space accessdefault

Device 1 Offset 7-6 - Status (Primary Bus) (0230h).... RWC

15 **Detected Parity Error** always reads 0

14 **Signaled System Error (SERR#)** always reads 0

13 **Signaled Master Abort**

0 No abort received default

1 Transaction aborted by the master with Master-Abort (except Special Cycles).....

.....**write 1 to clear**

12 **Received Target Abort**

0 No abort received default

1 Transaction aborted by the target with Target-Abort**write 1 to clear**

11 **Signaled Target Abort** always reads 0

10-9 **DEVSEL# Timing**

00 Fast

01 Medium**always reads 01**

10 Slow

11 Reserved

8 **Data Parity Error Detected** always reads 0

7 **Fast Back-to-Back Capable** always reads 0

6 **User Definable Features** always reads 0

5 **66MHz Capable****always reads 1**

4 **Supports New Capability list****always reads 1**

3-0 **Reserved** always reads 0

Device 1 Offset 8 - Revision ID (00h) RO

7-0 **Chip Revision Code** (00=First Silicon)

Device 1 Offset 9 - Programming Interface (00h) RO

This register is defined in different ways for each Base/Sub-Class Code value and is undefined for this type of device.

7-0 **Interface Identifier** always reads 00

Device 1 Offset A - Sub Class Code (04h) RO

7-0 **Sub Class Code**. reads 04 to indicate PCI-PCI Bridge

Device 1 Offset B - Base Class Code (06h) RO

7-0 **Base Class Code**.. reads 06 to indicate Bridge Device

Device 1 Offset D - Latency Timer (00h) RO

7-0 **Reserved** always reads 0

Device 1 Offset E - Header Type (01h) RO

7-0 **Header Type Code**..... reads 01: PCI-PCI Bridge

Device 1 Offset 18 - Primary Bus Number (00h).....RW

7-0 Primary Bus Number default = 0

This register is read write, but internally the chip always uses bus 0 as the primary.

Device 1 Offset 19 - Secondary Bus Number (00h).....RW

7-0 Secondary Bus Number default = 0

Note: AGP must use these bits to convert Type 1 to Type 0.

Device 1 Offset 1A - Subordinate Bus Number (00h)....RW

7-0 Primary Bus Number default = 0

Note: AGP must use these bits to decide if Type 1 to Type 1 command passing is allowed.

Device 1 Offset 1B – Secondary Latency Timer (00h)RO

7-0 Reserved always reads 0

Device 1 Offset 1C - I/O Base (F0h).....RW

7-4 I/O Base AD[15:12] default = 1111b

3-0 I/O Addressing Capability default = 0

Device 1 Offset 1D - I/O Limit (00h).....RW

7-4 I/O Limit AD[15:12] default = 0

3-0 I/O Addressing Capability default = 0

Device 1 Offset 1F-1E - Secondary Status.....RO

15-0 Secondary Status

Rx44[4] = 0: these bits read back 0000h

Rx44[4] = 1: these bits read back same as Rx7-6

Device 1 Offset 21-20 - Memory Base (FFF0h).....RW

15-4 Memory Base AD[31:20] default = FFFh

3-0 Reserved always reads 0

Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW

15-4 Memory Limit AD[31:20] default = 0

3-0 Reserved always reads 0

Device 1 Offset 25-24 - Prefetchable Mem Base (FFF0h) RW

15-4 Prefetchable Memory Base AD[31:20] default = FFFh

3-0 Reserved always reads 0

**Device 1 Offset 27-26 - Prefetchable Memory Limit
(0000h)**RW****

15-4 Prefetchable Memory Limit AD[31:20] default = 0

3-0 Reserved always reads 0

Device 1 Offset 34 - Capability Pointer (80h)RO****

Contains an offset from the start of configuration space.

7-0 AGP Capability List Pointer always reads 80h

Device 1 Offset 3F-3E – PCI-to-PCI Bridge Control

(0000h)**RW**

15-4 Reserved always reads 0

3 VGA-Present on AGP

0 Forward VGA accesses to PCI Bus default

1 Forward VGA accesses to AGP Bus

Note: VGA addresses are memory A0000-BFFFFh and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-3DFh (10-bit decode). "Mono" text mode uses B0000-B7FFFh and "Color" Text Mode uses B8000-BFFFFh. Graphics modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses 3Cx-3Dxh. If an MDA is present, a VGA will not use the 3Bxh I/O addresses and B0000-B7FFFh memory space; if not, the VGA will use those addresses to emulate MDA modes.

2 Block / Forward ISA I/O Addresses

0 Forward all I/O accesses to the AGP bus if they are in the range defined by the I/O Base and I/O Limit registers (device 1 offset 1C-1D)

..... default

1 Do not forward I/O accesses to the AGP bus that are in the 100-3FFh address range even if they are in the range defined by the I/O Base and I/O Limit registers.

1-0 Reserved always reads 0

Device 1 PCI-to-PCI Bridge Device-Specific Registers
AGP Bus Control
Device 1 Offset 40 - CPU-to-AGP Flow Control 1 (00h) RW

- 7 CPU-to-AGP Post Write**
 0 Disable default
 1 Enable
- 6 CPU-to-AGP One Wait State Burst Write**
 0 Disable default
 1 Enable
- 5-4 Read Prefetch Control**
 00 Always prefetch default
 x1 Never prefetch
 10 Prefetch only for Enhance command
- 3 Reserved** always reads 0
- 2 MDA Present on AGP**
 0 Forward MDA accesses to AGP default
 1 Forward MDA accesses to PCI
- Note: Forward despite IO / Memory Base / Limit
- Note: MDA (Monochrome Display Adapter) addresses are memory addresses B0000h-B7FFFh and I/O addresses 3B4-3B5h, 3B8-3BAh and 3BFh (10-bit decode). 3BC-3BE are reserved for printers.
- Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA accesses are forwarded to the PCI bus).
- 1 AGP Master Read Caching**
 0 Disable default
 1 Enable
- 0 AGP Delay Transaction**
 0 Disable default
 1 Enable

Table 6. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	VGA	MDA	Axxxx,	B0000	3Cx,	
VGA	MDA	is on	is on	B8xxx	-B7FFF	3Dx	3Bx
Pres.	Pres.			Access	Access	I/O	I/O
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device 1 Offset 41 - CPU-to-AGP Flow Control 2 (08h) RW

- 7 Retry Status**
 0 No retry occurred default
 1 Retry Occurred write 1 to clear
- 6 Retry Timeout Action**
 0 No action taken except to record status def
 1 Flush buffer for write or return all 1s for read
- 5-4 Retry Count**
 00 Retry 2, backoff CPU default
 01 Retry 4, backoff CPU
 10 Retry 16, backoff CPU
 11 Retry 64, backoff CPU
- 3 CPU-to-AGP Bursting Timeout**
 0 Disable
 1 Enable default
- 2 Reserved** always reads 0
- 1 CPU-to-PCI/AGP Cycles Invalidate PCI/AGP Buffered Read Data**
 0 Disable default
 1 Enable
- 0 Reserved** always reads 0
- Device 1 Offset 42 - AGP Master Control (00h) RW**

7 Reserved (Must Be Programmed to 1) def = 0
 When this bit is set, the chip will automatically resolve the problem of AGP master cycles being blocked by PCI Master Cycles.

6 AGP Master One Wait State Write
 0 Disable default
 1 Enable

5 AGP Master One Wait State Read
 0 Disable default
 1 Enable

4 Break Consecutive PCI Master Accesses
 0 Disable default
 1 Enable

3 Reserved always reads 0

2 Claim I/O R/W and Memory Read Cycles
 0 Disable default
 1 Enable

1 Claim Local APIC FEEEx xxxx Cycles
 0 Disable default
 1 Enable

0 Snoop Write Enable 2T Rate, Support Host Side Snoop Cycles at 2T Rate
 0 Disable default
 1 Enable

Device 1 Offset 43 - AGP Master Latency Timer (22h) RW

7-4	Host to AGP Time slot
0	Disable (no timer)
1	16 GCLKs
2	32 GCLKsdefault
...	...
F	128 GCLKs
3-0	AGP Master Time Slot
0	Disable (no timer)
1	16 GCLKs
2	32 GCLKsdefault
...	...
F	128 GCLKs

Device 1 Offset 45 – Fast Write Control (72h) RW

7	Force Fast Write Cycle to be QW Aligned
	(if Rx45[6] = 0)
0	Disable..... default
1	Enable
6	Merge Multiple CPU Transactions Into One Fast Write Burst Transaction
0	Disable
1	Enable..... default
5	Merge Multiple CPU Write Cycles To Memory Offset 23-20 Into Fast Write Burst Cycles
	(if Rx45[6] = 0)
0	Disable
1	Enable..... default
4	Merge Multiple CPU Write Cycles To Prefetchable Memory Offset 27-24 Into Fast Write Burst Cycles (if Rx45[6] = 0)
0	Disable
1	Enable..... default
3	Assert GSTOP# When CPU Has An Open AGP Request and Master Timeout
0	Disable..... default
1	Enable
2	Fast Write Burst 4T Max (No Slave Flow Control)
0	Disable..... default
1	Enable
1	Fast Write Fast Back to Back
0	Disable
1	Enable..... default
0	Fast Write Initial Block 1 Wait State
0	Disable..... default
1	Enable

Rx45 CPU Write CPU Write

Bits	Address	Address	Fast Write Cycle Alignment
7-4	in Mem1	in Mem2	Fast Write Cycle Alignment
x1xx	-	-	QW aligned, burstable
0000	-	-	DW aligned, nonburstable
x010	0	0	n/a
0010	0	1	DW aligned, non-burstable
x010	1	-	QW aligned, burstable
x001	0	0	n/a
x001	-	1	QW aligned, burstable
0001	1	0	DW aligned, non-burstable
x011	0	0	n/a
x011	1	-	QW aligned, burstable
x011	0	1	QW aligned, burstable
1000	-	-	QW aligned, non-burstable
1010	0	1	QW aligned, non-burstable
1001	1	0	QW aligned, non-burstable

AGP Bus Control (continued)
Device 1 Offset 47-46 – PCI-to-PCI Bridge Device ID...RW

15-0 PCI-to-PCI Bridge Device ID default = 0000

Device 1 Offset 48 – AGP / PCI2 Error ReportingWC

7 AGP Cycle Data Parity ErrorWC
0 Parity Error did not occur.....default
1 Parity error occurredwrite 1 to clear
6 PCI #2 GSERR ErrorWC
0 Parity Error did not occur.....default
1 Parity error occurredwrite 1 to clear
5 Reserved always reads 0
4 Generate Parity Error on AGP Data Parity Error
0 Disabledefault
1 Enable
3-2 Reserved always reads 0
1 Generate Parity Error on PCI #2 Data Parity Error
0 Disabledefault
1 Enable
0 Generate Parity Error on PCI #2 Address Parity Error
0 Disabledefault
1 Enable

Power Management
Device 1 Offset 80 – Capability ID (01h) RO

7-0 Capability IDalways reads 01h

Device 1 Offset 81 – Next Pointer (00h)..... RO

7-0 Next Pointer: Nullalways reads 00h

Device 1 Offset 82 – Power Mgmt Capabilities 1 (02h).. RO

7-0 Power Mgmt Capabilitiesalways reads 02h

Device 1 Offset 83 – Power Mgmt Capabilities 2 (00h).. RO

7-0 Power Mgmt Capabilitiesalways reads 00h

Device 1 Offset 84 – Power Mgmt Ctrl/Status (00h).... RW

7-2 Reserved
1-0 Power State
00 D0default
01 -reserved-
10 -reserved-
11 D3 Hot

Device 1 Offset 85 – Power Mgmt Status (00h)..... RO

7-0 Power Mgmt Statusdefault = 00

Device 1 Offset 86 – P2P Br. Support Extensions (00h). RO

7-0 P2P Bridge Support Extensionsdefault = 00

Device 1 Offset 87 – Power Management Data (00h) RO

7-0 Power Management Datadefault = 00

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 7. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T _C	Case Operating Temperature	0	85	°C	1
T _S	Storage Temperature	-55	125	°C	1
V _{IN}	Input Voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2
V _{OUT}	Output Voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The HyperTransport CPU interface is CPU dependent (typically 1.2V). V-Link is 1.5V. AGP is 1.5V (4x transfer mode) or 0.8V (8x transfer mode).

Supply Current and Power Characteristics

T_C = 0-85°C, V_{RAIL} = V_{CC} ± 5%, V_{CORE} = 2.5V ± 5%, GND=0V

Table 8. Supply Current and Power Characteristics – Internal and Interface Digital Logic

Symbol	Parameter	Typ	Max	Unit	Condition
I _{CC}	Power Supply Current – VCC	–	76	mA	All conditions
I _{SUS}	Power Supply Current – VCCSUS	1.0	1.1	uA	All conditions
I _{CCHT}	Power Supply Current – VCCHT	–		mA	8-bit, 200 MHz
I _{CCVL}	Power Supply Current – VCCVL	–	1.8	mA	4x transfer mode
I _{CCVLIDLE}	Power Supply Current – VCCVL	–	8	uA	Idle
I _{CCG}	Power Supply Current – VCCAGP	–	16	mA	No AGP cycles active
I _{CCQQ}	Power Supply Current – VCCQQ	–		mA	No AGP cycles active
P _D	Power Dissipation – Entire Chip	–		W	Max operating frequency

Table 9. Supply Current and Power Characteristics – Analog and Reference Voltages

Symbol	Parameter	Typ	Max	Unit	Condition
I _{CCGREF}	Power Supply Current – AGPVREF	–	2.4	mA	No AGP cycles active
I _{CCVREF}	Power Supply Current – VLVREF	–	5.0	mA	4x transfer mode
I _{CCATX}	Power Supply Current – VCCATX			mA	8-bit, 200 MHz
I _{CCARX}	Power Supply Current – VCCARX			mA	8-bit, 200 MHz

DC Characteristics

T_C = 0-85°C, GND = 0V, V_{CC} = 2.5V ±5%, V_{CCHT} = 1.2V±5%, V_{CCAGP} = 1.5V±5% (4x) or 0.8V±5% (8x), V_{CCVL} = 2.5V±5%

Table 10. DC Characteristics – HyperTransport

Symbol	Parameter	Min	Typ	Max	Unit	Condition / Signal
V _{HTIL}	Single-Ended Input Low Voltage	-0.30	–	0.7	V	LDTSTOP#
V _{HTIH}	Single-Ended Input High Voltage	1.7	–	V _{CC} + 0.3	V	LDTSTOP#
V _{HTOL}	Single-Ended Output Low Voltage	–	–	0.7	V	HTRST#
V _{HTOH}	Single-Ended Output High Voltage	1.7	–	–	V	HTRST#
I _{HTIL}	Single-Ended Input Leakage	–	–	±500	uA	V _{CC} = Max, V _I = Gnd or V _{CC}
V _{HTOD}	Differential Output Voltage†	495	600	715	mV	TCADx, TCLKx, TCTLx
V _{HTID}	Differential Input Voltage†	300	600	900	mV	RCADx, RCLKx, RCTLx
Delta V _{HTID}		-125	0	125	mV	
V _{ICM}	Input Common Mode Voltage	450	600	800	mV	
Delta V _{ICM}		-110	0	110	mV	
T _R	Differential Signal Rise Time	2		8	V/ns	
T _F	Differential Signal Fall Time	-2		-8	V/ns	

For Reference Only – See HyperTransport Standard documents for detailed specifications

†HyperTransport differential I/O assumes N>P = logical 0 and P>N = logical 1.

Table 11. DC Characteristics – V-Link

Symbol	Parameter	Min	Max	Unit	Condition
V _{VIL}	Input Low Voltage	-0.50	0.8	V	
V _{VIH}	Input High Voltage	2.0	V _{CC} + 0.5	V	
V _{VOL}	Output Low Voltage	-	0.55	V	I _{OL} = 4.0 mA
V _{VOH}	Output High Voltage	2.4	–	V	I _{OH} = -1.0 mA
I _{VIL}	Input Leakage Current	–	±10	uA	0 < V _{IN} < V _{CCVL}

Table 12. DC Characteristics – AGP

Symbol	Parameter	Min	Max	Unit	Condition
V_{AIL4x}	Input Low Voltage – 4x Transfer Mode	-0.50		V	
V_{AIH4x}	Input High Voltage – 4x Transfer Mode		$V_{CC} + 0.5$	V	
V_{AOL4x}	Output Low Voltage – 4x Transfer Mode	-		V	$I_{OL} = x.x \text{ mA}$
V_{AOH4x}	Output High Voltage – 4x Transfer Mode		-	V	$I_{OH} = -x.x \text{ mA}$
V_{AIL8x}	Input Low Voltage – 8x Transfer Mode	-0.50		V	
V_{AIH8x}	Input High Voltage – 8x Transfer Mode		$V_{CC} + 0.5$	V	
V_{AOL8x}	Output Low Voltage – 8x Transfer Mode	-		V	$I_{OL} = x.x \text{ mA}$
V_{AOH8x}	Output High Voltage – 8x Transfer Mode		-	V	$I_{OH} = -x.x \text{ mA}$
I_{AIL}	Input Leakage Current	-	± 10	uA	$0 < V_{IN} < V_{CCAGP}$
I_{AOZ}	Tristate Leakage Current	-	± 20	uA	$0.55 < V_{OUT} < V_{CCAGP}$

For Reference Only – See AGP 3.0 Standard documents for detailed specifications

AGP Signal Levels

AGP 3.0 (8x transfer mode) specifies a 0.8V voltage swing, end-terminated and referenced to ground as opposed to AGP 2.0 (4x transfer mode), which specified a rail-to-rail 1.5V series-terminated voltage swing.

This change permits a higher data rate and a common signaling voltage, which can be realized in multiple generations of silicon technology. The figure below shows the relationship between the VCCQQ and GNDQQ rails and the corresponding output voltage swing for AGP 3.0-compatible 8x transfer mode.

Figure 4. AGP 3.0 (8x) Signal Levels
Table 13. DC Characteristics – Reset, Power OK, Suspend Status and Test

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input Low Voltage	-0.50	0.8	V	
V_{IH}	Input High Voltage	2.0	3.8	V	3.3V Tolerant
I_{IL}	Input Leakage Current	-	± 10	uA	$0 < V_{IN} < V_{CC}$

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 14. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
2.5V Power (Internal Logic)	2.375	2.625	Volts
1.5V Power (VCCQQ for 4x transfer mode)	1.425	1.575	Volts
0.8V Power (VCCQQ for 8x transfer mode)	0.76	0.84	Volts
Case Temperature	0	85	°C

Drive strength for selected output pins is programmable and may effect AC timing specifications.

Table 15. AC Characteristics – HyperTransport CPU Interface Receive

Symbol	Parameter	Setup	Hold	Unit
T _{RLS4} , T _{RLH4}	RCAD0-7, RCTL / RCTL# input relative to RCLK0 / RCLK0# - 400 MT/s	300	300	pS
T _{RLS8} , T _{RLH8}	RCAD0-7, RCTL / RCTL# input relative to RCLK0 / RCLK0# - 800 MT/s	200	200	pS
T _{RLS12} , T _{RLH12}	RCAD0-7, RCTL / RCTL# input relative to RCLK0 / RCLK0# - 1.2 GT/s	150	150	pS
T _{RLS16} , T _{RLH16}	RCAD0-7, RCTL / RCTL# input relative to RCLK0 / RCLK0# - 1.6 GT/s	120	120	pS
T _{RHS4} , T _{RHH4}	RCAD8-15 input relative to RCLK1 / RCLK1# - 400 MT/s	300	300	pS
T _{RHS8} , T _{RHH8}	RCAD8-15 input relative to RCLK0 / RCLK0# - 800 MT/s	200	200	pS
T _{RHS12} , T _{RHH12}	RCAD8-15 input relative to RCLK0 / RCLK0# - 1.2 GT/s	150	150	pS
T _{RHS16} , T _{RHH16}	RCAD8-15 input relative to RCLK0 / RCLK0# - 1.6 GT/s	120	120	pS

Table 16. AC Characteristics – HyperTransport CPU Interface Transmit

Symbol	Parameter	Min	Max	Unit
T _{TLD4}	TCAD0-7, TCTL / TCTL# output delay from TCLK0 / TCLK0# - 400 MT/s	650	1800	pS
T _{TLD8}	TCAD0-7, TCTL / TCTL# output delay from TCLK0 / TCLK0# - 800 MT/s	325	950	pS
T _{TLD12}	TCAD0-7, TCTL / TCTL# output delay from TCLK0 / TCLK0# - 1.2 GT/s	220	625	pS
T _{TLD16}	TCAD0-7, TCTL / TCTL# output delay from TCLK0 / TCLK0# - 1.6 GT/s	180	475	pS
T _{THD4}	TCAD8-15 output delay from TCLK1 / TCLK1# - 400 MT/s	650	1800	pS
T _{THD8}	TCAD8-15 output delay from TCLK1 / TCLK1# - 800 MT/s	325	950	pS
T _{THD12}	TCAD8-15 output delay from TCLK1 / TCLK1# - 1.2 GT/s	220	625	pS
T _{THD16}	TCAD8-15 output delay from TCLK1 / TCLK1# - 1.6 GT/s	180	475	pS

Termination resistor values: $R_{TT} = 100 \Omega \pm 10\%$, $R_{ON} = 50 \Omega \pm 10\%$

Figure 5. Timing Diagram – HyperTransport Setup / Hold and Data Valid

Table 17. AC Characteristics – HyperTransport CPU Interface Reset / Stop

Symbol	Parameter	Min	Max	Unit
T_{HRPW}	HTRST# Input Pulse Width		–	uS
T_{HSPW}	LDTSTOP# Input Pulse Width		–	uS
	CPU STPGNT# to LDTSTOP#	32	–	uS
	LDTSTOP# to SUSST# Asserted	32	–	uS
	Resume Event to SUSST# Deasserted	1250	–	uS
	SUSST# Deasserted to LDTSTOP# Deasserted	32	–	uS

Table 18. AC Characteristics – AGP 8x

Symbol	Parameter	Min	Max	Unit
T_{GS8}	Data / Control Input Setup Time Relative to Strobe – 8x Transfer Mode	250	–	pS
T_{GH8}	Data / Control Input Hold Time Relative to Strobe – 8x Transfer Mode	250	–	pS
T_{GS4}	Data / Control Input Setup Time Relative to Strobe – 4x Transfer Mode	500	–	pS
T_{GH4}	Data / Control Input Hold Time Relative to Strobe – 4x Transfer Mode	500	–	pS
T_{GDV8}	Data / Control Output Valid Relative to Strobe – 8x Transfer Mode	-550	650	pS
T_{GDV4}	Data / Control Output Valid Relative to Strobe – 4x Transfer Mode	-1000	1000	pS

Figure 6. Timing Diagram – AGP 8x Sideband Address Timing

Figure 7. Timing Diagram – AGP 8x Data Transfer Timing

Note 1: This waveform represents two differential strobes

Note 2: Data refers to any of the 2x/4x capable signal groups: GD[31:0], GBE[3:0]# or SBA[7:0]

Figure 8. Timing Diagram – AGP 4x Transmit Timing

Figure 9. Timing Diagram – AGP 4x Receive Timing

Note 1: This waveform represents two differential strobes

Note 2: Data refers to any of the 2x/4x capable signal groups: GD[31:0], GBE[3:0]# or SBA[7:0]

Figure 10. Timing Diagram – AGP 8x Transmit Source-Synchronous Timing

Figure 11. Timing Diagram – AGP 8x Receive Source-Synchronous Timing

Table 19. AC Characteristics – V-Link Interface

Symbol	Parameter	Min	Max	Unit	Condition
T _{VUS4}	VADn, VPAR, VBE#, UPCMD <u>Input Setup</u> to UPSTB / UPSTB#	500	–	pS	4x mode
T _{VUH4}	VADn, VPAR, VBE#, UPCMD <u>Input Hold</u> From UPSTB / UPSTB#	500	–	pS	4x mode
T _{VUS8}	VADn, VPAR, VBE#, UPCMD <u>Input Setup</u> to UPSTB / UPSTB#	250	–	pS	8x mode
T _{VUH8}	VADn, VPAR, VBE#, UPCMD <u>Input Hold</u> From UPSTB / UPSTB#	250	–	pS	8x mode
T _{VDD4}	VADn, VPAR, VBE#, DNCMD <u>Output Delay</u> from DNSTB / DNSTB#	–650	750	pS	4x mode
T _{VDD8}	VADn, VPAR, VBE#, DNCMD <u>Output Delay</u> from DNSTB / DNSTB#	–1100	1100	pS	8x mode
T _{VUP4}	UPSTB / UPSTB# Input Pulse Width			nS	4x mode
T _{VUF4}	UPSTB / UPSTB# Input Frequency		266	MHz	4x mode
T _{VUP8}	UPSTB / UPSTB# Input Pulse Width			nS	8x mode
T _{VUF8}	UPSTB / UPSTB# Input Frequency		533	MHz	8x mode
T _{VDP4}	DNSTB / DNSTB# Output Minimum Pulse Width			nS	4x mode
T _{VDF4}	DNSTB / DNSTB# Output Frequency		266	MHz	4x mode
T _{VDP8}	DNSTB / DNSTB# Output Minimum Pulse Width			nS	8x mode
T _{VDF8}	DNSTB / DNSTB# Output Frequency		533	MHz	8x mode

Table 20. AC Characteristics –Reset, Power OK and Suspend

Symbol	Parameter	Min	Max	Unit
T _{RLPU}	RESET# Low On Power Up	0	–	msec
T _{RLPW}	RESET# Low Pulse Width from PWROK	7	–	msec
T _{PLPU}	PWROK Low On Power Up After Power Supply Voltages Stable	50	–	msec
T _{SLPW}	SUSST# Low Pulse Width	1.2	–	msec
T _{VCSC}	Primary Voltages Removed After SUSST# Goes Low	64	–	usec
T _{VCSH}	Primary Voltages Stable (PWROK) Before SUSST# Returns High	250	–	usec

MECHANICAL SPECIFICATIONS

Figure 12. Mechanical Specifications – HSBGA-578 Ball Grid Array Package

Figure 13. Lead-Free Mechanical Specifications – HSBGA-578 Ball Grid Array Package

