MUX/DEC Sequential logic design

Vikas Dhiman for ECE275

December 1, 2023

1 Objectives

1. Design combinational circuits using multiplexers and decoders

2 Design combinational circuit using multiplexers [1, Section 2.8.1]

2.1 Review: 2to1 Multiplexer (MUX)

2.2 Wider multiplexers

Draw the symbol for a 4:1 MUX, an 8:1 MUX and a 2^N : 1 MUX and write corresponding Boolean expressions.

Remark 1. A $2^N : 1$ MUX can be used to program any N-input logic function.

Example 2. Design a circuit for $Y = A\bar{B} + \bar{B}\bar{C} + \bar{A}BC$ using a 4:1 MUX and NOT gates only.

Remark 2. A $2^{N-1}:1$ MUX can be used to program any N-input logic function, if we use literals on the input side.

Example 3. Design a circuit for $Y = \bar{A}C + \bar{A}B + B\bar{D}$ using a 8:1 MUX and NOT gates only. Also design using 4:1 MUX and other gates. fewest gates.

3 Encoders and Decoders

Example 4. Draw the symbol and the truth table for 2:4 decoder. Also write the logic expressions.

Example 5. Draw the symbol and the truth table for 3:8 decoder, 4:16 decoder and $N: 2^N$ decoder. Also write the logic expressions.

