MAT4003 Assignment 4

1

(a)

Check in $\mathbb{Z}_{11}^*=\{1,2,3,\ldots,10\}.$ There are $\phi(10)=4$ primitive roots. Since

$$1^1 \equiv 3^5 \equiv 4^5 \equiv 5^5 \equiv 9^5 \equiv 10^1 \equiv 1 \pmod{11}$$
,

the remaining four $\boxed{2,6,7,8}$ are all the primitive roots modulo 11.

(b)

Check in $\mathbb{Z}_{26}^*=\{1,3,5,7,9,11,15,17,19,21,23,25\}$. There are $\phi(\phi(26))=4$ primitive roots. Since

$$1^1 \equiv 3^3 \equiv 5^4 \equiv 9^3 \equiv 17^6 \equiv 21^4 \equiv 23^6 \equiv 25^1 \equiv 1 \pmod{26},$$

all primitive roots modulo 26 are $\boxed{7,11,15,19}$.

2

(a)

Write $22 = 2^1 11^1$.

$$5^{22/2} = 5^{11} \equiv 22 \not\equiv 1 \pmod{23}$$

 $5^{22/11} \equiv 5^2 \equiv 2 \not\equiv 1 \pmod{23}$.

Therefore by p. 16 of Lecture Notes of Section $4, \lceil 5 \rceil$ is a primitive root of 23.

(b)

Note that $529=23^2$. Since 5 is a primitive root of 23, by Theorem (4.12) either 5 or 5+23=28 must be a primitive root of 529. But $28^{22}\equiv 1\pmod{529}$. Therefore $\boxed{5}$ is a primitive root of 529.

3

Claim. 3 is such a number.

Proof. $7^k:$ For k=1 we use the algorithm on p. 16 of Lecture Notes of Section 4. Factor $6=2^13^1$. Then $3^{6/2}\equiv 3^3\equiv 6\not\equiv 1\pmod{7}; 3^{6/3}\equiv 3^2\equiv 2\not\equiv 1\pmod{7}.$ Therefore 3 is a primitive root modulo 7. Similarly for k=2, factor $48=2^43^1$. Then $3^{48/2}\equiv 3^{24}\equiv 22\not\equiv 1\pmod{49}; 3^{48/3}\equiv 3^{16}\equiv 3\not\equiv 1\pmod{49}.$ Thus 3 is also a primitive root modulo 7^2 . It follows from Theorem (4.13) that 3 is a primitive root modulo p^k for all $k\geq 1$.

 $2(7^k)$: Given any k, we have proved that 3 is a primitive root modulo 7^k . Now we want to show that $n:=\operatorname{ord}_{2.7^k}3=\phi(2\cdot 7^k)=6\cdot 7^{k-1}=\phi(7^k)$.

Since 3 is a primitive root of 7^k , we have $3^{\phi(7^k)} \equiv 1 \pmod{7^k}$. Note that $3^{\phi(7^k)} \equiv 1^{\phi(7^k)} \equiv 1 \pmod{2}$, and $(2,7^k) = 1$. It follows from CRT that $3^{\phi(7^k)} \equiv 1 \pmod{2 \cdot 7^k}$. Therefore $n | \phi(7^k)$. Also by definition of n, $3^n \equiv 1 \pmod{2 \cdot 7^k}$. Again using CRT we have $3^n \equiv 1 \pmod{7^k}$. It follows that $\operatorname{ord}_{7^k} 3 = \phi(7^k) | n$. Finally $n = \phi(7^k)$. \square

4

Consider p = 4, which is not a prime. And let f(x) := 2x. Then the congruence

$$f(x) = 2x \equiv 0 \pmod{4}$$

has *two* incongruent solutions, namely $x_{1,2} \equiv 0, 2 \pmod{4}$, instead of one.

5

Consider $x \in \{0, 1, \dots p-1\}$. Clearly $x \equiv 1$ is not a solution to the congruence as $p-1 \equiv -1 \not\equiv 0 \pmod{p}$. For $x \not\equiv 1$, congruence becomes

$$\frac{x^{p-1}-1}{x-1}\equiv 0\pmod{p}.$$

Multiplying x-1 on both sides yields

$$x^{p-1} \equiv 1 \pmod{p}$$
,

which by FLT is true for any x coprime to p. In this case $x \equiv 2, 3, \dots, p-1 \pmod{p}$. Therefore

$$x \equiv 2, 3, \cdots, p-1 \pmod{p}$$
.

6

Lemma. Let p be prime with $p \ge 5$. If g is a primitive root modulo p, then g^{-1} is a primitive root modulo p with $g \not\equiv g^{-1} \pmod{p}$.

Proof. We prove the contrapositive. Assume g to be such that g^{-1} is not a primitive root modulo p. Then $(g^{-1})^x \equiv 1 \pmod p$ for some $x < \phi(p) = p - 1$. But then $g^x \equiv (g^{-1})^x g^x \equiv (gg^{-1})^x \equiv 1 \pmod p$. So g is not a primitive root either. Moreover, if g is a primitive root modulo p, then since $p \geq 5$, $|g| \not\equiv 1 \pmod p$. It follows from Lemma (2.12) that $g^2 \not\equiv 1 \pmod p$, whence $g \not\equiv g^{-1} \pmod p$. \square

Let p be prime with $p \ge 5$. There are precisely $\phi(\phi(p)) = \phi(p-1)$ primitive roots modulo p. It follows from Lemma above that those $\phi(p-1)$ roots can be partitioned into $\phi(p-1)/2$ pairs of mutual inverses modulo p.

7

Let g be the primitive root modulo p. Then $\{g, g^2, \dots g^{p-1}\}$ forms a reduced residue system modulo p, by Theorem (4.6). It follows that

$$S_k = \sum_{n=1}^{p-1} n^k \equiv \sum_{n=1}^{p-1} g^{kn} \equiv \frac{g^k - g^{kp}}{1 - g^k} \pmod{p}.$$
 (1)

If (p-1)|k, k = m(p-1),

$$S_k = \sum_{n=1}^{p-1} g^{(p-1)mn} \equiv \sum_{n=1}^{p-1} 1^{mn} \equiv p-1 \equiv -1 \pmod p.$$

If $(p-1) \not| k$, multiply $g^k - 1$ on both sides of (1):

$$(g^k-1)S_k \equiv g^{kp}-g^k \equiv g^k-g^k \equiv 0 \pmod{p}.$$

By Theorem (4.1), $g^k \not\equiv 1 \pmod p$. Canceling $g^k - 1$ gives $S_k \equiv 0 \pmod p$. So

$$S_k \equiv egin{cases} -1 & ext{ if } (p-1)|k, \ 0 & ext{ otherwise.} \end{cases}$$

8

Suppose some odd prime p divides 2^m-1 . Then $2^m\equiv 1\pmod p$. By Theorem (4.1), $\operatorname{ord}_p 2|m$. Since m is odd, $\operatorname{ord}_p 2$ is odd. Assume some odd prime q divides 2^n+1 . Then $2^n\equiv -1\pmod q$. So $\operatorname{ord}_q 2\not\mid n$. Also $2^{2n}\equiv 1\pmod q$. It follows that $\operatorname{ord}_q 2|2n$, whence $\operatorname{ord}_q 2|2$. So $\operatorname{ord}_p 2\neq\operatorname{ord}_q 2$, and $p\neq q$. Since 2^m-1 and 2^n+1 share no common prime factor, by FTA, $(2^m-1,2^n+1)=1$.

9

By Corollary (4.2), $\operatorname{ord}_n a = (n-1)|\phi(n)$. So $n-1 \leq \phi(n)$. But $\phi(n) \leq n-1$. Therefore $\phi(n) = n-1$. n is a prime. \square

10

Denote the sequence as (a_n) .

Lemma 1. (a_n) is periodic with period p(p-1).

Proof. If p|n, then $n \equiv 0 \pmod{p}$,

$$(n+t)^{n+t} \equiv (0+0)^{n+t} \equiv 0^n \equiv n^n \pmod{p}.$$

Assume $p \not\mid n$. Then by FLT,

$$(n+t)^{n+t} \equiv n^{n+p(p-1)} \equiv n^n 1^p \equiv n^n \pmod{p}$$
. \square

Lemma 2. If (a_n) is periodic with a period of h, then p(p-1)|h.

Proof. Write $h = pq + r, 0 \le r < p$. Since h is period, it holds for all $n \ge 1$

$$(n+h)^{n+h} \equiv (n+r)^{n+h} \equiv n^n \pmod{p}.$$

Specifically, with n := p, we have

$$r^{p+h} \equiv 0 \pmod{p}.$$

Since r < p, (r, p) = 1. So $(r^{p+h-1}, p) = 1$. Canceling r^{p+h-1} yields

$$r\equiv 0\pmod p\implies r=0\implies p|h.$$

Also write $h = (p-1)q' + r', 0 \le r' < p-1$. Then for all positive integers n, k

$$(n+kh)^{n+kh} \equiv n^n \pmod p$$

Let $k := sp, s \ge 1$, we have

$$n^{n+kh} \equiv n^n \pmod{p} \implies n^{kh} \equiv 1 \pmod{p}.$$

By FLT,

$$n^{kh}\equiv [(n^{p-1})^{q'}n^{r'}]^k\equiv n^{kr'}\equiv n^{sr'}\equiv 1\pmod{p}.$$

Let g be a primitive root of p, and set n := g. Pick s := 1 and 2, we have

$$g^{r'} \equiv g^{2r'} \equiv 1 \pmod{p} \implies 1 \equiv 2 \pmod{\operatorname{ord}_p g^{r'}}.$$

Thus $\operatorname{ord}_p g^{r'} = \frac{\operatorname{ord}_p g}{(\operatorname{ord}_p g, r')} = \frac{p-1}{(p-1, r')} = 1$. So (p-1, r') = p-1. But $0 \le r' < p-1$, whence r' = 0, (p-1)|h. Since (p, p-1) = 1, we have p(p-1)|h. \square

Let t:=p(p-1), and s be the smallest period of (a_n) . We wish to show t=s. Since t and s are both periods of (a_n) , it holds for all $n\geq 1$ that $a_n=a_{n+xt+ys}$, where xt+ys>0. By Bézout's Lemma, d:=(s,t) gives another period of (a_n) . This forces d=s, whence s|t. By Lemma 2, we also have t|s. Therefore t=s. \square

11

Lemma. Let p be a prime. Then $x^2 \equiv 1 \pmod{p^k} \iff x \equiv \pm 1 \pmod{p^k}$.

Proof. Consider $f(x):=x^2-1\equiv 0\pmod p$. By Lagrange's Theorem, there are exactly two solutions $x_{1,2}\equiv \pm 1\pmod p$. $f'(x_1)\equiv 2-1\equiv 1\not\equiv 0\pmod p$. By Hensel's Lemma, $x_1\equiv 1\pmod p$ can be uniquely lifted to modulo p^k . Now $f'(x_2)\equiv -3\pmod p$. If $p\not\equiv 3$, then $f'(x_2)\not\equiv 0\pmod p$. Again by Hensel's Lemma x_2 can be uniquely lifted to a root modulo p^k . Suppose p=3. To lift x_2 to modulo 3^2 , we try $-1+3\equiv 2,-1+2\cdot 3\equiv 5,-1+3\cdot 3\equiv 8\pmod 9$, with only $f(8)\equiv 0\pmod 9$. In general, if $x\equiv 3^k-1\pmod 3^k$ is the only solution to $f(x)\equiv 0\pmod 3^k$, then among the lifted $x,x+3^k,x+2\cdot 3^k\pmod {3^{k+1}}$,

$$f(x) \equiv 3^{2k} - 2 \cdot 3^k \equiv 3^k \pmod{3^{k+1}}$$
 $f(x+3^k) \equiv f(2 \cdot 3^k - 1) \equiv -3^k \pmod{3^{k+1}}$ $f(x+2 \cdot 3^k) \equiv f(3^{k+1} - 1) \equiv 0 \pmod{3^{k+1}}.$

Only $f(3^{k+1}-1)\equiv 0\pmod{3^{k+1}}$. By induction, x_2 is uniquely lifted to modulo 3^k . Thus for any odd prime $p, f(x)\equiv 0\pmod{p^k}$ has exactly two solutions. Since $x\equiv \pm 1\pmod{p^k}$ are two solutions, the lemma follows. \square

Let g be a primitive root of n. Then

$$\prod_{i\in\mathbb{Z}_+^*}i\equiv\prod_{i=1}^{\phi(n)}g^i\equiv g^{1+2+\cdots+\phi(n)}\stackrel{n\geq 2}{=}g^{\phi(n)/2}\pmod{n}.$$

If n=2 or 4. Primitive roots are 1 and 3 respectively. We have

$$\prod_{i\in\mathbb{Z}_2^*}i\equiv 1^1\equiv -1\pmod{2}; \prod_{i\in\mathbb{Z}_4^*}i\equiv 3^{2/2}\equiv -1\pmod{4}.$$

If $n = p^k$, where p is an odd prime. Then $\phi(n) = p^k - p^{k-1}$,

$$\prod_{i\in \mathbb{Z}_n^*} i\equiv g^{rac{p-1}{2}p^{k-1}}\pmod{p^k}.$$

Since $(g^{(p-1)/2})^2 \stackrel{\mathrm{FLT}}{\equiv} 1 \pmod{p^k}$, by Lemma, $g^{(p-1)/2} \equiv 1$ or $-1 \pmod{p^k}$. But $g^{(p-1)/2} \equiv 1$ is impossible as g is a primitive root modulo n. Therefore

$$\prod_{i\in\mathbb{Z}_n^k}i\equiv (-1)^{p^{k-1}}\equiv -1\pmod{p^k}.$$

If $n=2p^k$, where p is any odd prime. Then $\phi(n)=\phi(p^k)=p^k-p^{k-1}$. The argument coincides with the last case. Therefore in all cases,

$$\prod_{i\in \mathbb{Z}_+^*}i\equiv -1\pmod{n}.$$