$\underline{\mathbf{Auteur}}: \mathbf{Abdoulaye} \ \mathbf{DABO}$

Diplômé de la licence de Mathématiques (Université Cheikh Anta Diop de Dakar - F.S.T)

Sommaire

1	Gén	néralité sur les polynômes	2
2	Poly	ynômes du second degré	2
3	Équ	Équations du second degré	
	3.1	Résolution d'une éqution du second degré	2
	3.2	Factorisation	3
	3.3	Signe	3

1 Généralité sur les polynômes

Définition 1.1

— On appelle polynôme toute expression de la forme $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

òu a_n , a_{n-1} ,...., a_1 , a_0 sont des réels appelés **coéfficients** du polynôme.

Le plus grand exposant de x est appelé de $\operatorname{\mathbf{degr\'e}}$ du polynôme.

Les $a_i x^i$ $i \in \{n, n-1,1, 0\}$ sont appelés **monômes**.

— On pose $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

On dit qu'un réel x_0 est une racine du polynôme P si x_0 annule P i.e $P(x_0) = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_1 x_0 + a_0 = 0$

Si x_0 est une racine de P alors P s'écrit sous la forme $P(x) = (x - x_0)Q(x)$ où Q est polynôme de degré n - 1.

Exemple 1

 x^3+2x^2-1 est polynôme de degré 3 et -1 est une racine de ce polynôme car $(-1)^3+2(-1)^2-1=-1+2-1=0$.

2 Polynômes du second degré

Définition 2.1

On appelle polynôme ou trinôme du second degré tout polynôme de degré égale à 2.

Elles s'écrivent sous la forme $ax^2 + bx + c$ où a, b et c sont des réels avec $a \neq 0$.

On appelle discriminant du trinôme $ax^2 + bx + c$, le nombre réel $\Delta = b^2 - 4ac$.

Exemple 2

 $x^2 + x + 1$; $x^2 - 9$ et $2x^2 + 3x$ sont des polynôme du second degré.

3 Équations du second degré

Définition 3.1

Une équation du second degré est une équation de la forme $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \neq 0$.

3.1 Résolution d'une éqution du second degré

Soit $ax^2 + bx + c$ un trinôme.

• Si $\Delta < 0$, l'équation $ax^2 + bx + c = 0$ n'a pas de solution dans \mathbb{R}

- Si $\Delta > 0$, l'équation $ax^2 + bx + c = 0$ admet deux solutions distinctes : $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$
- \bullet Si $\Delta=0,$ l'équation $ax^2+bx+c=0$ une unique solution $x_0=-\frac{b}{2a}$ qui est racine double.

3.2 Factorisation

Soit $P(x) = ax^2 + bx + c$ un trinôme et x_1, x_2 les racines de P .

P peut s'écrire sous la forme $P(x) = a(x - x_1)(x - x_2)$.

Si en particulier $x_1 = x_2 = x_0$ alors $P(x) = a(x - x_0)^2$.

3.3 Signe

Soit $P(x) = ax^2 + bx + c$ un trinôme et x_1, x_2 les racines de P .

On suppose que $x_1 < x_2$.

- P est du signe de a sur $]x_1; x_2[$.
- \bullet P est du signe contraire de a] $-\infty; x_1[\cup]x_2; +\infty[$.

Merci de signaler toutes erreurs via WhatsApp: +221777426690