Chapter 4

In Exercises 1–8 write a method (SSS, SAS, ASA, AAS, or HL) that can be used to prove the two triangles congruent.

1.

2.

3.

4

5.

6.

7. Given: $\overline{PO} \perp \text{plane } X$; OT = OS

8. Given: $\overline{PO} \perp \text{plane } X$; PT = PS

Indicate the best answer by writing the appropriate letter.

9. In $\triangle RXT$, $\angle R \cong \angle T$, RT = 2x + 5, RX = 5x - 7, and TX = 2x + 8. What is the perimeter of $\triangle RXT$?

10. If $\triangle DEF \cong \triangle PRS$, which of these congruences must be true?

a.
$$\overline{DF} \cong \overline{PS}$$

b.
$$\overline{EF} \cong \overline{PR}$$

c.
$$\angle E \cong \angle S$$

d.
$$\angle F \cong \angle R$$

11. In $\triangle ABC$, AB = AC, $m \angle A = 46$, and \overline{BD} is an altitude. What is the measure of $\angle CBD$?

a. 23

b. 44

c. 67

d. 134

12. An equiangular triangle cannot be which of the following?

a. equilateral

b. isosceles

c. scalene

d. acute

13. Point X is equidistant from vertices T and N of scalene $\triangle TEN$. Point X must lie on which of the following?

a. bisector of $\angle E$

b. perpendicular bisector of \overline{TN}

c. median to \overline{TN}

d. the altitude to \overline{TN}

14. Given: $\overline{AB} \parallel \overline{DC}$; $\overline{AB} \cong \overline{CD}$; $\angle 1 \cong \angle 2$

To prove that $\overline{DE} \cong \overline{BF}$, what would you prove first?

a. $\triangle ADE \cong \triangle CBF$

b. $\triangle ABF \cong \triangle CDE$

c. $\triangle ABC \cong \triangle CDA$

d. cannot be proved

