Report No: CCISE181114302

FCC REPORT

(Bluetooth)

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: EKO Ara 5.7 A5719

Trade mark: EKO

FCC ID: 2AC7IEKONARA

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Nov., 2018

Date of Test: 30 Nov., to 21 Dec., 2018

Date of report issued: 25 Dec., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Dec., 2018	Original

Tested by:	Cover Chen	Date:	25 Dec., 2018
Paviowed by:	Test Engineer	Date:	25 Dec., 2018
Reviewed by:	0° ()/// ()/	Date:	

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		3
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T.	
	5.3 TEST ENVIRONMENT AND TEST MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 LABORATORY FACILITY	_
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	
6	6 TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT	8
	6.2 CONDUCTED EMISSIONS	9
	6.3 CONDUCTED OUTPUT POWER	
	6.4 20DB OCCUPY BANDWIDTH	
	6.5 CARRIER FREQUENCIES SEPARATION	
	6.6 HOPPING CHANNEL NUMBER	
	6.7 DWELL TIME	
	6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9.1 Conducted Emission Method	
	6.9.2 Radiated Emission Method	
	6.10 Spurious Emission	
	6.10.1 Conducted Emission Method	
	6.10.2 Radiated Emission Method	
7	7 TEST SETUP PHOTO	53
8		

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna Requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Spurious Emission	15.205 & 15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp
Address:	8228 NW 30th Terrace. Doral, Miami, FL 33122
Manufacturer/Factory:	INTERGLOBE CONNECTION LTD
Address:	RM 1101 11F SAN TOI BLDG 139 CONNAUGHT RD CENTRAL HK

5.2 General Description of E.U.T.

O.E Ochicial Descriptio	6. 2.6
Product Name:	Mobile Phone
Model No.:	EKO Ara 5.7 A5719
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-2.93 dBi
Power supply:	Rechargeable Li-ion Battery DC3.85V-2500mAh
AC adapter:	Model: Ara 5.7 B5719 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
			•••				•••	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	2421MHz	39	2441MHz	59	2461MHz			
Remark: Ch	Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.							

Report No: CCISE181114302

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	\	ersion: 6.110919	b

Report No: CCISE181114302

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is -2.93 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto		
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the log	arithm of the frequency.		
Test setup:	Reference	Plane		
	AUX Equipment E.U.T EMI Receiver Remark			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

Test by: Carey Test mode: BT Tx mode: Line Test frequency: 150 kHz ~ 30 MHz Phase: Line Test voltage: AC 120 V/60 Hz Environment: Temp: 22	
Test voltage: AC 120 V/60 Hz Environment: Temp: 22	FCC PART15 B QF
80 Level (dBuV) 70 60 50 40 20 20 30 20 30 20 30 30 30 3	FCC PART15 B QF
70 60 50 40 30 20 20 30 20 30 8	FCC PART15 B AV
70 60 40 30 20 20 8	FCC PART15 B AV
60 50 40 30 20 20 30 20 30 30 30 30 30 30 30 30 30 3	FCC PART15 B AV
30 20 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	FCC PART15 B AV
30 20 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	FCC PART15 B AV
30 20 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.00
30 20 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11
30 20 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A.
20 May	M
20 May	the of the same
A CONTRACTOR OF THE PROPERTY O	THE THE TANK
10	1
	mount !
0.15 .2 .5 1 2 5 1	20
Trace: 7 Frequency (MHz)	
Read LISN Cable Limit Ov	er
Freq Level Factor Loss Level Line Lim	it Remark
MHz dBuV dB dB dBuV dBuV	TE
1 0.182 29.57 0.73 10.77 41.07 64.42 -23.	dB
2 0.194 11.34 0.73 10.76 22.83 53.84 -31. 3 0.299 11.30 0.74 10.74 22.78 50.28 -27	

	MHz	dBu∀	<u>ab</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.182	29.57	0.73	10.77	41.07	64.42	-23.35	QP
2	0.194	11.34	0.73	10.76	22.83			Average
3	0.299	11.30	0.74	10.74	22.78		-27.50	
2 3 4 5 6 7 8 9	0.510	29.55	0.76	10.76	41.07	56.00	-14.93	QP
5	0.510	15.87	0.76	10.76	27.39	46.00	-18.61	Average
6	1.016	30.29	0.78	10.87	41.94	56.00	-14.06	QP
7	2.540	25.73	0.78	10.94	37.45	56.00	-18.55	QP
8	2.678	12.13	0.78	10.93	23.84	46.00	-22.16	Average
9	4.549	32.60	0.76	10.87	44.23	56.00	-11.77	QP
10	5.085	17.56	0.76	10.85	29.17	50.00	-20.83	Average
11	18.135	31.34	0.70	10.92	42.96	60.00	-17.04	QP
12	19.021	13.97	0.70	10.92	25.59	50.00	-24.41	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	EKO Ara 5.7 A5719	
Test by:	Carey	Test mode:	BT Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%	
	AC 120 V/60 Hz AC 120 V/60 Hz AC 120 V/60 Hz Read LISN Ca Level Factor I		FCC PART15 B QP FCC PART15 B AV 10 20 30 It Over the Limit Remark	
1 0.198 2 0.294 3 0.502 4 0.502 5 0.839 6 1.117 7 2.225 8 2.225 9 4.622 10 5.085 11 17.944 12 18.135	19.85	0.74 31.23 50.4 0.76 44.49 56.0 0.76 35.42 46.0 0.82 30.22 46.0 0.88 42.35 56.0 0.95 39.60 56.0 0.95 27.08 46.0 0.86 45.18 56.0 0.85 30.12 50.0 0.92 38.84 60.0	71 -21.28 QP 11 -19.18 Average 10 -11.51 QP 10 -10.58 Average 10 -15.78 Average 10 -13.65 QP 10 -16.40 QP 10 -18.92 Average 10 -10.82 QP 10 -19.88 Average 10 -21.16 QP 10 -25.84 Average	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
	GFSK mode						
Lowest channel	4.19	30.00	Pass				
Middle channel	3.73	30.00	Pass				
Highest channel	3.00	30.00	Pass				
π/4-DQPSK mode							
Lowest channel	3.77	21.00	Pass				
Middle channel	3.31	21.00	Pass				
Highest channel	2.45	21.00	Pass				
	8DPSK mode						
Lowest channel	3.92	21.00	Pass				
Middle channel	3.34	21.00	Pass				
Highest channel	2.55	21.00	Pass				

Test plot as follows:

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Toot channel	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	828	1128	1170	
Middle	828	1128	1170	
Highest	830	1128	1170	

Test plot as follows:

6.5 Carrier Frequencies Separation

olo Garrior i roqueriolog			
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	a) 0.025MHz or the 20dB bandwidth (whichever is greater)b) 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result				
	GFSK						
Lowest	1004	828.00	Pass				
Middle	1000	828.00	Pass				
Highest	1004	828.00	Pass				
π/4-DQPSK mode							
Lowest	1000	752.00	Pass				
Middle	1004	752.00	Pass				
Highest	1000	752.00	Pass				
8DPSK mode							
Lowest	1000	780.00	Pass				
Middle	1000	780.00	Pass				
Highest	1004	780.00	Pass				

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	828	828.00
π/4-DQPSK	1128	752.00
8DPSK	1170	780.00

Test plot as follows:

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak						
Limit:	0.4 Second						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Hopping mode						
Test results:	Pass						

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12672		
GFSK	DH3	0.26592	0.4	Pass
	DH5	0.31040		
	2-DH1	0.12928		
π/4-DQPSK	2-DH3	0.26656	0.4	Pass
	2-DH5	0.31125		
	3-DH1	0.12864		
8DPSK	3-DH3	0.26592	0.4	Pass
	3-DH5	0.31211		

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.396*(1600/ (2*79)) * 31.6=126.72ms

DH3 time slot=1.662*(1600/ (4*79)) * 31.6=265.92ms

DH5 time slot=2.910*(1600/ (6*79)) * 31.6=310.40ms

Test plot as follows:

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB 558074
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test Distance:	3m							
Receiver setup:	Frequency Detector RBW VBW Remai						Remark	
	Above 1GHz	Peak		1MHz	3MHz		Peak Value	
	Above IGHZ	RMS		1MHz	31\	ИHz	Average Value	
Limit:	Frequen	су	Lim	nit (dBuV/m @3	3m)		Remark	
	Above 10	∑ ⊔-7		54.00		A۱	verage Value	
	Above 10	71 12		74.00		Į.	Peak Value	
Test setup:	Horn Antenna Tower AE EUT Antenna Tower Ground Reference Plane Test Receiver Pie- Amptier Controller							
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 							
Test Instruments:	Refer to sectio	n 5.8 for d	etails					
Test mode:	Non-hopping n	node						
Test results:	Passed							

GFSK Mode:

Product	t Name:	Mobile Phone Carey				oduct Mod	lel:	EKO Ara 5.7 A5719					
Test By	<i>r</i> :					Carey Test mode: DH			Carey Test mode: DH1 Tx mode			rey Test mode: DH1 Tx mode	
est Ch	nannel:	Lowest ch	annel		Po	olarization:		Vertical					
est Vo	ltage:	AC 120/60	OHz		Er	nvironment	:	Temp: 24°C	Huni: 57%				
	aval (dDul//m)				·								
110	evel (dBuV/m)												
100													
									0				
80								FCC P	ART 15 (PK)				
60								FCC P	ART 15 (AV)				
	m	~~~	man	m	m	vann.	man	my	my				
40								- 1					
20													
0	240 2220			2250					2402				
2	310 2320			2350 Frequ	uency (MHz)			2403				
	Linear Linear	ReadA	ntenna	Cable	Preamp		Limit	Over					
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark				
	MHz	dBu₹	<u>dB</u> /m	<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>					
1	2390.000	15.96	27.37	4.69	0.00			-24.30					
2	2390,000	8.25	27.37	4.69	0.00				Average				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct	Name: Mobile Phone				Pr	oduct Mod	del:	EKO Ara 5.7 A5719																					
est By:		Carey Test mode: DH1				Carey Test mode: DH1			Carey Test mode: DH1 T>			Carey Test mode: DH			Carey Test mode: DH1			Carey Test mode: DH1 Tx m			Carey Test mode:			Test mode:			DH1 Tx mode		
est Cha	annel:	Lowest ch	annel		Po	olarization	:	Horizontal																					
est Vol	ltage:	AC 120/60)Hz		Er	nvironmen	t:	Temp: 24°	C Huni: 57%																				
14	avol /dPu\//m\				•		•																						
110	evel (dBuV/m)																												
100																													
80								FCC F	PART 15 (PIK)																				
60								FCC P	PART 15 (AV)																				
N	many	mm	~~~	www	M	www	m	my	mon																				
40																													
20																													
023	310 2320			2350 Frequ	uency (MHz	1			2403																				
		ReadA	ntenna	- 220 COCOCO COCOCO		45	Limit	Over																					
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark																				
	MHz	dBu₹		₫₿	<u>ab</u>	dBuV/m	dBu√/m	<u>d</u> B																					
	2390.000	16.14	27.37	4.69	0.00			-24.12																					
1 2		8.10	27.37	4.69	0.00				Average																				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone		Pr	oduct Mod	el:	EKO Ara 5	.7 A5719
Test By:	Carey	Carey Highest channel				DH1 Tx mode Vertical	
Test Channel:	Highest channel				,		
Test Voltage:	AC 120/60Hz		Er	nvironment	:	Temp: 24℃	Huni: 57%
110 Level (dBuV/m) 100 80 60 40	1						PART 15 (PK) PART 15 (AV)
0 ₂₄₇₈ Free	ReadAnten Level Facto dBuV dB/	na Cable or Loss	Factor		Line	Over Limit ā	2500 Remark

Remark:

2

2483.500

2483.500

16.37

8.37

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.57

27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81

4.81

0.00 50.45

74.00 -23.55 Peak

0.00 42.45 54.00 -11.55 Average

Produc	ct Name:	Mobile Phone			Р	roduct Mod	odel: EKO Ara 5.7 A5719			
Test B	y:	Carey			T	est mode:	DH1 Tx mode			
Test C	hannel:	annel: Highest channel			Р	olarization		Horizontal		
Test V	oltage:	AC 120/6	0Hz		E	nvironmen	t:	Temp: 24°0	Huni: 57%	, D
110 100	evel (dBuV/m)									
80								FCC	PART 15 (PK)	
60			~		~			FCC	PART 15 (AV)	
40										
20										
02	478								250	00
_	.470			Freq	uency (MH	z)			250	
	Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		Remark	
	MHz	dBu∜	₫B/m	₫B	₫B	dBuV/m	dBu√/m	dB		-
1 2	2483.500 2483.500	16.83 8.82	27.57 27.57	4.81 4.81	0.00 0.00	50.91 42.90	74.00 54.00	-23.09 -11.10	Peak Average	
Pomor										

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

π/4-DQPSK mode

roduct	t Name:	Mobile Pl	none		Product Model: EKO Ara 5.7		.7 A5719		
est By:	:	Carey			Te	st mode:	2	2DH1 Tx mo	ode
est Ch	annel:	Lowest ch	annel		Ро	larization:	,	Vertical	
est Vo	Itage:	AC 120/60)Hz		En	vironment:	-	Temp: 24℃	Huni: 57%
Le	vel (dBuV/m)				•				
110									
80								FCC	PART 15 (PIK)
60	~	\ma	0		_	~ ~ ~		FCC	PART 15 (AV)
40	Marriage.	v · · · · ·		~~~~	a contract	7 12 17	- //	0	2
20									
023	10 2320			2350 Freq	uency (MH	z)			24
	Freq	ReadA Level	ntenna Factor	Cable	Preamp		Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2390.000	16.84	27.37 27.37	4.69	0.00	50.58	74.00	-23.42	Peak

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

nel:	Carey Lowest ch	nannel		Te	est mode:		2DH1 Tx m	node
	Lowest ch	annel					2DH1 Tx mode	
		idi ii ioi		P	olarization		Horizontal	
je:	AC 120/60	0Hz		E	nvironmen	t:	Temp: 24°0	Huni: 57%
dRu\//m\								
dbaviiiij								
							FCC	PART 15 (PK)
							ECC.	PART 15 (AV)
~~~	~~~~	~~~~	ma	mm	mm	mym	homma	www.
							2	
2320	1481		2350	(0.001)				2403
			Freq	uency (MH2	Z)			
225								2
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∀	dB/m		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
					40.45	T. 00	04.00	
390.000	15.66	27.37	4.69	0.00	49.40	20 1111	-'20 KH	Pools
	Freq	2320  ReadA Freq Level	2320  ReadAntenna Freq Level Factor	2320 2350 Freq ReadAntenna Cable Freq Level Factor Loss	2320 2350 Frequency (MHz  ReadAntenna Cable Preamp Freq Level Factor Loss Factor	2320 2350 Frequency (MHz)  ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level	2320 2350 Frequency (MHz)  ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line	2320  2350 Frequency (MHz)  ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile Phone	Product Model:	EKO Ara 5.7 A5719
Test By:	Carey	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
110 Level (dBuV/m)			



	Freq		Antenna Factor						
	MHz	—dBu∇		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile Phone		Product Model:	EKO Ara 5	5.7 A5719
Test By:	Carey		Test mode:	iode	
Test Channel:	Highest channel		Polarization:		
Test Voltage:	AC 120/60Hz		Environment:	Temp: 24°C	Huni: 57%
110 Level (dBuV/m) 100 80 40 20 0 2478	1				C PART 15 (PK) C PART 15 (AV)
		Frequency	(MHz)		
Freq	ReadAntenna Level Factor	Cable Prea Loss Fact	mp I or Level	Limit Over Line Limit	Remark
MHz	$-\overline{dB}u\overline{V} - \overline{dB}/\overline{m}$	dB	dB dBuV/m dE	BuV/m dB	

0.00 52.53 74.00 -21.47 Peak

0.00 44.20 54.00 -9.80 Average

### Remark:

1 2

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2483.500 18.45 27.57 4.81

2483.500 10.12 27.57

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

4.81



## 8DPSK mode

oduct	Ict Name: Mobile Phone				Pr	roduct Mod	el:	EKO Ara 5.7 A5719		
st By	<b>/</b> :	Carey			Те	est mode:		3DH1 Tx m	ode	
st Ch	nannel:	Lowest ch	annel		Po	olarization:		Vertical		
st Vo	oltage:	AC 120/60	)Hz		Er	nvironment	:	Temp: 24℃	Huni: 57%	
Lo	evel (dBuV/m)									
110	ever (dbdv/iii)									
100										
									_	
80								FCC	PART 15 (PK)	
								F00	DADTAFAR	
60								FLL	PART 15 (AV)	
60	mmy	many	mm	man	mm	v~~~	ww			
60 7 40	mmy	money	mm	mm	m,	v~~~	ww		PART 15 (AV)	
7	mmm	man	m	mm	~~~	v	ww	·····	PART 15 (AV)	
7	www	Lorente	v	m		v	~~	**************************************	PART 15 (AV)	
40	www	London	~~~~	m	-m	v	~~	2	PART 15 (AV)	
40 20	240 2220	m	~~~~	2250		~~~~~	ww	**************************************		
40 20	310 2320	Lorente	m	2350 Freq	Juency (MH		ww	***************************************	24	
40 20	310 2320	Roadú	ntenna	Freq	juency (MH	95	Tinit	***************************************		
40 20			intenna Factor	Freq Cable	uency (MH Preamp	95	Limit Line	Over	24	
40 20				Freq Cable	puency (MH Preamp Factor		Line	Over Limit	24	
40 20	Freq	Level	Factor	Freq Cable Loss dB	Preamp Factor dB	Level	Line dBuV/m	Over Limit	24 Remark	

# Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



roduct	: Name:	Mobile P	hone		P	Product Model: EKO Ara 5.7 A		5.7 A5719	
est By:		Carey			Т	est mode:		3DH1 Tx	mode
est Ch	annel:	Lowest ch	nannel		Р	olarization	n:	Horizonta	I
est Vol	Itage:	AC 120/6	0Hz		E	nvironmer	nt:	Temp: 24	°C Huni: 57%
Le	vel (dBuV/m)								
110	ron (abarrin)								
100									
80								FC	C PART 15 (PK)
-									1000
60								T.C.	
60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mn.	AA 0.0	~ ~^~	mmy	M	~~~~	FC	C PART 15 (AV)
~	~~~~	~~~~	~~~	m	mmy	M	~~~	FC	C PART 15 (AV)
60 ~~	m	mm	~~~	mm	mmy	~~~~	~~~	FC	C PART 15 (AV)
~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~~~	mm	mm	M	www	FC 	C PART 15 (AV)
~	~~~~~~	~~~	~~~	mm	~~~~	V	www	FC	C PART 15 (AV)
40	~~~~~	~~~	~~~	www	~~~~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~~~~	FC	C PART 15 (AV)
40	10 2220	~~~~	~~~	7250	^m~~	~~~~~	~~~	FC	The state of the s
40	10 2320	~~~~	~~~	2350 Free	) quency (Mi	Hz)	~~~~	FC	240
40	10 2320	~~~	~~~	Free	quency (MI		~~~~		The state of the s
40				Fred Cable	quency (Mi Preamp		Limit Line	Over	240
40	Freq	Level	Factor	Free Cable Loss	quency (Mi Preamp Factor	Level	Line	Over Limit	240
40				Fred Cable	quency (Mi Preamp Factor		Line	Over Limit	240
40	Freq MHz	Level	Factor  dB/m	Cable Loss dB	quency (MH Preamp Factor dB	Level	Line dBuV/m	Over Limit	240 Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile Phone	Product Model:	EKO Ara 5.7 A5719
Test By:	Carey	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%
110 Level (dBuV/m)			



	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	₫B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile P	hone		P	roduct Mod	lel:	EKO Ara (	5.7 A5719	
Test By:	Carey			To	est mode:		3DH1 Tx m	DH1 Tx mode	
Test Channel:	Highest c	hannel		P	olarization:		Horizontal		
Test Voltage:	AC 120/6	0Hz		E	nvironmen	t:	Temp: 24℃ Huni: 57%		
110 Level (dBuV/m 100 80						~		PART 15 (PK)	
20									
⁰ 2478	-		Freq	uency (MF	Hz)			2500	
Fr		intenna Factor				Limit Line		Remark	
<u>M</u>	Hz dBuV	dB/m	₫B	d₿	dBuV/m	dBu√/m	dB		
1 2483.5 2 2483.5		27.57 27.57	4.81 4.81	0.00 0.00			-22.38 -10.38	Peak Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.10 Spurious Emission

# 6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					



## Test plot as follows:









## 6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	5 209	)			
Test Method:	ANSI C63.10: 2						
Test Frequency Range:	9 kHz to 25 GH;						
Test Distance:	3m	_					
Receiver setup:	Frequency	Detect	or	RBW	VBV	V Remark	
receive cetap:	30MHz-1GHz	Quasi-p		120kHz	300kH		
	00111112	Peak		1MHz	3MH	·	
	Above 1GHz	RMS		1MHz	3MH		
Limit:	Frequenc	l		it (dBuV/m @	l	Remark	
	30MHz-88M	•		40.0	,	Quasi-peak Value	
	88MHz-216MHz 43.5 Quasi-peak Value						
	216MHz-960			46.0		Quasi-peak Value	
	960MHz-1GHz 54.0 Quasi-peak Value						
		_		54.0		Average Value	
	Above 1GI	Hz		74.0		Peak Value	
Test setup:	Below 1GHz  74.0  Peak Value  Antenna Tower  Search Antenna  RF Test Receiver  Tum Table  Antenna  RF Test Receiver						
	Above 1GHz	d Plane ——					
AE EUT Horn Antenns  Antenns  Ground Reference Plane  Test Receiver Repeated Controller  Amplier Controller							
Test Procedure:	/1.5m(above	1GHz) ab	ove t	the ground a	a 3 me	ole 0.8m(below 1GHz) eter chamber. The table on of the highest	

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





	<ol> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> </ol>
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	<ol><li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li></ol>
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	<ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.</li> <li>9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.</li> </ol>



# Measurement Data (worst case):

## **Below 1GHz:**

Toduct	Name:	Mobile Phone Carey				oduct Mode	el:	EKO Ara 5.7 A5719 BT Tx mode		
est By:						st mode:				
est Fre	quency:	30 MHz ~	1 GHz		Ро	larization:		Vertical  Temp: 24°C Huni: 5		
est Volt	tage:	AC 120/6	0Hz		En	vironment:				
Lev	el (dBuV/m)									
80 264		1								
70										
60										
00								FCC PAR	T15 CLAS	B
50										
200										_
40						5				
- 1						, L				
30								6		
30	2		- An	, Mari	<b>t</b>			6	a wherether wife of the sale	profer.
20	Mary Mary Mary Mary Mary Mary Mary Mary		A Marine	L. Landon	الم		h. h. who was week.	Souther But model of	Milandahadipatora	pode
20 W	Marine Ma	hadenha	Market Market	John Mari	MANAMA	han While	hadrodynesis	market Library	replaced the Apatonia	broke
1.	Marini Maran Marini Mar	hadany		Voltandar.	Marin	hang lilihilar	had who produced the	S Complete	Miller Address	broke
20 N	Marin Marin Stranger	hadalaha	Jan Marie Ma	John Marie	Marind	dament Whiteler	hadred-reedway.h			
20 W	phonon the second secon	hadanba	100	Freq	200 uency (MH	Z)	hombred-week-style	500		
20 N	Many Many Many Many Many	ReadA	unt enna	Cable	uency (MH: Preamp	1000	Limit	500 Over		1000
20 N	50 Freq		unt enna	Cable	uency (MH:	1000		500 Over		
20 N		ReadA	unt enna	Cable	uency (MH Preamp Factor	1000	Limit Line	500 Over		
20 10 10 0 30	Freq MHz	ReadA Level	Intenna Factor ——dB/m	Cable Loss dB	uency (MH: Preamp Factor dB	Level	Limit Line dBuV/m	500 Over Limit	Remark	
20 10 10 0 30	Freq MHz 30.531 52.760	ReadA Level dBuV 39.89 36.07	tntenna Factor dB/m 10.73 13.60	Cable Loss dB 0.78 1.29	uency (MH: Preamp Factor dB 29.98 29.81	Level dBuV/m 21.42 21.15	Limit Line dBuV/m 40.00 40.00	500 Over Limit ———————————————————————————————————	Remark	
20 10 10 0 30	Freq MHz 30.531 52.760 98.487	ReadA Level dBuV 39.89 36.07 41.35	tntenna Factor dB/m 10.73 13.60 11.45	Cable Loss dB 0.78 1.29 1.97	uency (MH: Preamp Factor dB 29.98 29.81 29.54	Level dBuV/m 21.42 21.15 25.23	Limit Line dBuV/m 40.00 40.00 43.50	500 Over Limit ———————————————————————————————————	Remark  QP QP QP	
20 N	Freq MHz 30.531 52.760	ReadA Level dBuV 39.89 36.07	tntenna Factor dB/m 10.73 13.60	Cable Loss dB 0.78 1.29	uency (MH: Preamp Factor dB 29.98 29.81	Level dBuV/m 21.42 21.15	Limit Line dBuV/m 40.00 40.00	500 Over Limit ———————————————————————————————————	Remark 	

### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



roduct l	Name:	Mobile Phone Carey				oduct Mod	el:	EKO Ara 5.7 A5719		
est By:						st mode:		BT Tx mode		
Test Frequency:		30 MHz ~ 1 GHz				larization:		Horizontal		
		AC 120/60	OHz		En	vironment		Temp: 24℃ Huni: 57%		
80 Leve	el (dBuV/m)									
00										
70										
60										
00								FCC PAR	T15 CLASS	В
50										
40						4				
40										
30						5		ę		
1					3		a licar	1 h	AND THE PARTY OF STREET	Was and
30 20			Maria	j	3	Januar II	Mully heart	Wanted Market Com	garden between	grand .
20	house of the high his way and you	Mayor Mayor	and the same	Water state of the	January 1	James House	Mahaha	wat man	hame hame	ward .
1	house to the figure his way with our	and and apple	and the same	Maryan	January 1	hand hand	Mulliphysoll	wat human	gager and his house, the department	ward of
20	tragger the top the way of the sur-	Mayou to make	100	Way and Market M	200 Jency (MHz	land had	Mala Marie de la constitución de	500		1000
10		114	100		iency (MHz		Timit	500		1000
10		ReadA		Cable	uency (MHz Preamp		Limit Line	500 Over		1000
10	50	ReadA	100 Intenna	Cable	uency (MHz Preamp Factor		Line	500 Over		1000
10 0 30	50 Freq MHz	Read! Level	100 Antenna Factor	Cable Loss dB	uency (MHz Preamp Factor dB	Level	Line	500 Over Limit	Remark	1000
10 0 30	50 Freq MHz 31.510 156.458	ReadA Level dBuV 38.29 38.93	100 Antenna Factor dB/m 10.95 8.93	Cable Loss dB 0.85 2.56	Preamp Factor dB 29.97 29.16	Level dBuV/m 20.12 21.26	Line dBuV/m 40.00 43.50	500 Over Limit ———————————————————————————————————	Remark QP QP	1000
10 0 30	50 Freq MHz 31.510 156.458 210.048	ReadA Level dBuV 38.29 38.93 35.37	100 Antenna Factor dB/m 10.95 8.93 11.90	Cable Loss dB 0.85 2.56 2.86	ency (MHz Preamp Factor dB 29.97 29.16 28.77	Level dBuV/m 20.12 21.26 21.36	Line dBuV/m 40.00 43.50 43.50	500 Over Limit ———————————————————————————————————	RemarkQP QP QP QP	1000
10	50 Freq MHz 31.510 156.458	ReadA Level dBuV 38.29 38.93	100 Antenna Factor dB/m 10.95 8.93	Cable Loss dB 0.85 2.56	Preamp Factor dB 29.97 29.16	Level dBuV/m 20.12 21.26 21.36	Line dBuV/m 40.00 43.50 43.50 46.00	500 Over Limit ———————————————————————————————————	Remark QP QP	1000

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



## **Above 1GHz:**

Above 1GHZ			<b>T</b>		, ,					
				annel: Lowe						
				tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804	47.13	35.99	6.80	41.81	48.11	74.00	-25.89	Vertical		
4804	47.03	35.99	6.80	41.81	48.01	74.00	-25.99	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	37.81	35.99	6.80	41.81	38.79	54.00	-15.21	Vertical		
4804.00	37.08	35.99	6.80	41.81	38.06	54.00	-15.94	Horizontal		
				annel: Midd						
		1 a . 1		tector: Peak	Value		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	47.86	36.38	6.86	41.84	49.26	74.00	-24.74	Vertical		
4882.00	47.53	36.38	6.86	41.84	48.93	74.00	-25.07	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	37.67	36.38	6.86	41.84	39.07	54.00	-14.93	Vertical		
4882.00	37.33	36.38	6.86	41.84	38.73	54.00	-15.27	Horizontal		
				annel: Highe						
		1		tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	47.69	36.71	6.91	41.87	49.44	74.00	-24.56	Vertical		
4960.00	47.73	36.71	6.91	41.87	49.48	74.00	-24.52	Horizontal		
			Dete	ctor: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	37.84	36.71	6.91	41.87	39.59	54.00	-14.41	Vertical		
4960.00	37.10	36.71	6.91	41.87	38.85	54.00	-15.15	Horizontal		
				-	-	-	-	-		

### Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.