Problems on Algebraic operations of Lattice -Lattice theory

Lattice Theory

Theorem 0.1

If the meet operation is distributive over join operation in a lattice, then the join operation is also distributive over meet operation and vice versa.

Proof.

Given

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \tag{1}$$

To prove

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) \tag{2}$$

Proof continues...

Consider

$$(a \lor b) \land (a \lor c) = [(a \lor b) \land a] \lor [(a \lor b) \land c] \qquad (applying (1))$$

$$= a \lor [(a \lor b) \land c] \qquad (absorption \ law)$$

$$= a \lor [c \land (a \lor b)] \qquad (commutative \ law)$$

$$= a \lor [(c \land a) \lor (c \land b)] \qquad (Distributive \ law)$$

$$= [a \lor (c \land a)] \lor (c \land b) \qquad (associate \ law)$$

$$= a \lor (c \land b) \qquad (absorption)$$

$$= a \lor (b \land c) \qquad (commutative)$$

By principle of duality, we obtain that if join is distributive over meet then meet also distributive over join operation.

Problems

1) Let a and b be two elements in a lattice (A, \leq) . Show that $a \land b = b$ if and only if $a \lor b = a$.

Solution: Let

$$a \wedge b = b \tag{3}$$

To prove $a \lor b = a$

$$a \lor (a \land b) = a$$
 (Absorption)
 $a \lor b = a$ (by(3))

Let

$$a \lor b = a$$
 (4)

To prove $a \wedge b = b$

$$b \land (a \lor b) = b$$
 (Absorption)
 $b \lor a = b$ (by(4))
 $a \lor b = b$ (Commutative)

2) Let a, b, c be elements in a lattice (A, \leq) . Show that if $a \leq b$, then $a \vee (b \wedge c) \leq b \wedge (a \vee c)$.

Solution: First we show that $a \le b \land (a \lor c)$ and $b \land c \le b \land (a \lor c)$.

Given $a \le b$ and by Theorem 1, $a \le a \lor c$.

By Theorem 2,

$$a \wedge a \leq b \wedge (a \vee c)$$

$$a \leq b \wedge (a \vee c)$$
 (5)

We know that $b \leq b$ and $c \leq a \vee c$.

By Theorem 2,

$$b \wedge c \leq b \wedge (a \vee c) \tag{6}$$

From equation (5) and (6),

$$a \lor (b \land c) \le [b \land (a \lor c)] \lor [b \land (a \lor c)]$$

$$a \lor (b \land c) \le b \land (a \lor c) \qquad (By idempotent law)$$

- 3) Let a, b, c be elements in a Lattice (A, \leq) . Show that
- $(a \wedge b) \vee (a \wedge c)] \leq a \wedge (b \vee c).$

Solution: We know that $a \le a \lor b$ (Thm 1) and $a \le a \lor c$.

From Theorem 2,

$$a \wedge a \leq (a \vee b) \wedge (a \vee c)$$

$$a \leq (a \vee b) \wedge (a \vee c)$$
 (7)

We know that $b \le a \lor b$ and $c \le a \lor c$. From Theorem 2,

$$b \wedge c \leq (a \vee b) \wedge (a \vee c) \tag{8}$$

Using equation (7) and (8) and Theorem 2,

$$a \lor (b \land c) \le [(a \lor b) \land (a \lor c)] \lor [(a \lor b) \land (a \lor c)]$$

$$a \lor (b \land c) \le [(a \lor b) \land (a \lor c)] \qquad (idempotent \ law)$$

4) Let (A, \vee, \wedge) be an algebraic system, where \wedge and \vee are binary operations satisfying absorption property. Show that \wedge and \vee also satisfies idempotent law.

Solution: Given for all $a, b \in A$,

$$a \lor (a \land b) = a$$
 and $a \land (a \lor b) = a$

Then to prove $a \lor a = a$ and $a \land a = a$. Consider

$$a \lor a = a \lor (a \land (a \lor b))$$

 $a \lor a = a$ (Absorption)

Consider

$$a \wedge a = a \wedge (a \vee (a \wedge b))$$

 $a \wedge a = a$ (Absorption)

5) Let (A, \leq) be a distributive lattice. Show that if $a \wedge x = a \wedge y$ and $a \vee x = a \vee y$ for some $a \in A$, then x = y.

Solution: Consider $x \vee (a \wedge x) = x$ (Absorption) $x \vee (a \wedge y) = x$ ($a \wedge x = a \wedge y$ and $a \vee x = a \vee y$) $(x \vee a) \wedge (x \vee y) = x$ (Distribution) $(a \vee x) \wedge (x \vee y) = x$ (Commutative) $(a \vee y) \wedge (x \vee y) = x$ y $\vee (a \wedge x) = x$ (Distribution) $y \vee (a \wedge y) = x$ y $\vee (a \wedge y) = x$ (Absorption).

6) Show that a lattice is distributive if and only if for any elements a, b, c in the lattice, $(a \lor b) \land c \le a \lor (b \land c)$.

Solution: Assume that lattice is distributive. Then

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) \tag{9}$$

We know that $c \le a \lor c$ and $a \lor b \le a \lor b$. $(a \lor b) \land c \le (a \lor b) \land (a \lor c)$ (Thm 2) $(a \lor b) \land c \le a \lor (b \land c)$ (From eqn (9)) Conversely, suppose

$$(a \lor b) \land c \le a \lor (b \land c), \tag{10}$$

to prove
$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
.
 $(a \lor b) \land (a \lor c) \le a \lor (b \land (a \lor c))$ (by eqn (10))
 $(a \lor b) \land (a \lor c) \le a \lor ((a \lor c) \land b)$ (by commutative law)
 $(a \lor b) \land (a \lor c) \le a \lor (a \lor (c \land b))$ (by eqn (10))
 $(a \lor b) \land (a \lor c) \le (a \lor a) \lor (c \land b)$ (by associative)

$$(a \lor b) \land (a \lor c) \le a \lor (c \land b)$$
 (by idempotent) (11)

From Problem (3), we have

$$a \vee (b \wedge c) \leq (a \vee b) \wedge (a \vee c). \tag{12}$$

From eqns (11) and (12), we get

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c).$$

- 7) Let (A, \lor, \land) be an algebraic system where \lor and \land are binary operations satisfying the commutative, associative and absorption laws. Define a binary operations \le on A as follows: for all $a, b \in A$, $a \le b$ if and only if $a \land b = a$.
 - ① Show that \leq is partial ordering relation.
 - **②** Show that $a \lor b$ is least upper bound of a and b in (A, \le) .
- **3** Show that $a \wedge b$ is greatest lower bound of a and b in (A, \leq) .

Solution: a) From problem 4, we have proved that if \vee and \wedge satisfies absorption law, then \vee and \wedge also satisfies idempotent law.

By idempotent law, we have $a \land a = a \implies a \le a \implies '' \le$ " is reflexive.

To prove antisymmetry,

If $a \le b$ and $b \le a$,

we have,

$$a \wedge b = a \tag{13}$$

$$b \wedge a = b \tag{14}$$

By commutative law, equation (14) becomes

$$a \wedge b = b \tag{15}$$

From eqns (13) and (15), $a = b \implies " \le$ " is antisymmetric.

To prove transitive law,

if
$$a \le b$$
 and $b \le c$, then $a \land b = a$ and $b \land c = b$.

$$a = a \wedge b = a \wedge (b \wedge c)$$

$$= (a \wedge b) \wedge c$$

$$= a \wedge c \implies a \leq c \implies '' \leq$$
 " is transitive.

Therefore $'' \leq "$ is Partial ordering relation.

b) To prove $a \lor b$ is lub of a and b.

First we will show that $a \lor b$ is upper bound of a and b.

From absorption law,

$$a \wedge (a \vee b) = a \implies a \leq a \vee b$$
 (16)

Similarly,

$$b \wedge (a \vee b) = b \implies b \leq a \vee b \tag{17}$$

From equations (16) and (17), $a \lor b$ is an upper bound of a and b.

Suppose d is an other upper bound of a and b, i.e, $a \le d$ and $b \le d$. Then we should prove $a \lor b \le d$. Given $a \land d = a$, $b \land d = b$. To prove $(a \lor b) \land d = a \lor b$. $a \lor b = (a \lor b) \land ((a \lor b) \land d)$ (absorption). $a \lor b = (a \lor b) \land ((a \lor (b \land d)) \land d)$ (because $b = b \land d$). $a \lor b = (a \lor b) \land ((a \lor [(b \land d) \land d])$ (associative). $a \lor b = (a \lor b) \land (a \lor d)$ (absorption). $a \lor b = (a \lor b) \land ((a \land d) \lor d)$ (because $a = a \land d$). $a \lor b = (a \lor b) \land d$ (absorption).