

Détection de cycles

Question 1. La première version de la fonction itere utilise le fait que $x_n = f^n(x_0) = f \circ f^{n-1}(x_0)$, la seconde que $x_n = f^n(x_0) = f^{n-1} \circ f(x_0)$. Nous apprendrons plus tard que cette seconde version possède un avantage sur la première.

Question 2. On montre sans peine que pour tout $n \in \mathbb{N}$, $y_n = x_{2n}$. Mais :

```
x_{2n} = x_n \iff (n \geqslant \mu \text{ et } 2n \equiv n \mod \lambda) \iff (n \geqslant \mu \text{ et } \lambda \text{ divise } n)
```

donc l'algorithme de Floyd se termine et retourne le plus petit multiple de λ qui soit supérieur ou égal à μ .

La suite des itérés de x_i est une suite périodique : sa pré-période est nulle et sa période égale à λ ; la fonction floyd2 appliquée à x_i retourne donc la valeur de λ . D'où la fonction :

```
let periode f x0 =
let xi = floyd1 f x0 in floyd2 f xi ;;
```

Puisque i est un multiple de λ on a $x_{i+\mu} = x_{\mu}$. Il suffit donc pour trouver μ de comparer les suites des itérés de x_0 et de x_i jusqu'à trouver une valeur commune.

Question 3. On définit la fonction :

http://info-llg.fr/ page 1

On prouve sans peine que les valeurs prises par i sont les entiers de la forme $i = 2^n - 1$ et que pour un tel entier j prend toutes les valeurs de l'intervalle $[2^n, 2^{n+1} - 1]$.

Mais $x_i = x_j \iff (i \ge \mu \text{ et } \lambda \text{ divise } j - i)$, avec $1 \le j - i \le 2^n$. Notons donc n_0 le plus petit entier vérifiant $2^n - 1 \ge \mu$ et $2^n \ge \lambda$. L'algorithme de Brent se termine lorsque $i = 2^{n_0} - 1$ et $j = \lambda + i$.

Il y a deux avantages à appliquer l'algorithme de Brent plutôt que celui de Floyd : il n'est nécessaire que de faire un seul parcours pour obtenir la valeur de λ puisqu'une fois obtenues les valeurs de i et j on a $\lambda = j - i$, et en outre, à chaque étape un seul calcul de f est effectué, contre trois pour l'algorithme de Floyd.