

Description

The VSM58N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 60V, I_D = 58A$ $R_{DS(ON)} < 16m\Omega @ V_{GS} = 10V$ (Typ:13m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- LED backlighting
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM58N06-T2	VSM58N06	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	58	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	41	Α
Pulsed Drain Current	I _{DM}	120	Α
Maximum Power Dissipation	P _D	85	W
Debating factor		0.57	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	290	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.76	°C/W	
---	----------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =30A	-	13	16	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =30A	30	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	- V _{DS} =25V,V _{GS} =0V,	-	2498	-	PF
Output Capacitance	Coss		-	185	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	80	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}		-	12	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, I_D =2A, R_L =1 Ω V_{GS} =10V, R_{GEN} =3 Ω	-	5.2	-	nS
Turn-Off Delay Time	$t_{d(off)}$		-	38	-	nS
Turn-Off Fall Time	t _f		-	27	-	nS
Total Gate Charge	Qg	- V _{DS} =30V,I _D =30A,	-	36	-	nC
Gate-Source Charge	Q _{gs}		-	9.9	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6.6	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =30A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	58	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =30A	-	35		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)		47		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: $Tj=25\,^{\circ}\text{C}$, $V_{DD}=30\text{V}$, $V_{G}=10\text{V}$,L=0.5mH, $Rg=25\Omega$

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 ID Current- JunctionTemperature

Figure 11 Normalized Maximum Transient Thermal Impedance