13-7 Do Now: Transformations, symmetry

Use only a compass and straightedge for these constructions. [Leave all construction marks.]

1. In the circle below, \overline{AB} is a chord. Using a compass and straightedge, construct a perpendicular bisector of \overline{AB} , and hence, a diameter of the circle.

2. Given the points A, B, and C as shown, construct the parallelogram ABCD.

 \mathop{B}_{\bullet}

 $\bullet C$

3. Construct the line of reflection used when $\triangle ABC$ is reflected onto $\triangle A'B'C'$.

4. The vertices of $\triangle JKL$ have the coordinates J(-4,4), K(2,-2), and L(2,4), as shown. Apply a dilation to $\triangle JKL \rightarrow \triangle J'K'L'$, centered on (2,1) with a scale factor $k=\frac{4}{3}$. Draw the image $\triangle J'K'L'$ on the set of axes below, labeling the vertices.

5. What transformation(s) map $\triangle ABC$ onto $\triangle DEF$, shown below? Fully specify the transformations.

- 6. A translation maps $A(5,-1) \to A'(5,7)$. What is the image of B(-1,7) under the same translation?
- 7. Circle YES or NO to indicate whether the given transformation maps the pentagon onto itself.
 - (a) Yes No A rotation of 60° clockwise around the pentagon's center.
 - (b) Yes No A reflection over \overrightarrow{AD}
 - (c) Yes No A reflection over a line through the midpoint of \overline{AE} and C.
 - (d) Yes No A rotation of 144° counterclockwise around the pentagon's center.

True

False

- 8. What is the equation of a line resulting when the line $y = \frac{1}{3}x 3$ is dilated by a factor of 3 centered at the origin?
- 9. Directed line segment DE has endpoints D(-4, -2) and E(1, 8). Point F divides \overline{DE} such that DF:FE is 2:3. What are the coordinates of F?

10. The figure shows a rectangle (not a square).

Which transformations carry the rectangle onto itself? Mark each True or False.

- (a) A reflection one of the longer sides
- (b) A reflection over the dashed diagonal True False
- (c) A clockwise rotation of 90° about the intersection of the diagonals True False
- (d) A clockwise rotation of 180° about the intersection of the diagonals True False
- 11. What is the smallest non-zero angle of rotation about its center that would map the nonagon onto itself?

13.7 Exit Note Quiz: Transformations, symmetry

Use only a compass and straightedge for these classical constructions, showing all construction marks.

1. In the circle below, \overline{AB} is a chord. Using a compass and straightedge, construct a perpendicular bisector of \overline{AB} , and hence, a diameter of the circle.

2. Given the points A, B, and C as shown, construct the parallelogram ABCD.

 $\bullet C$

 A^{\bullet}

3. Construct the line of reflection used when $\triangle ABC$ is reflected onto $\triangle A'B'C'$.

4. The vertices of $\triangle JKL$ have the coordinates J(-4,1), K(2,-2), and L(2,4), as shown. Apply a dilation to $\triangle JKL \rightarrow \triangle J'K'L'$, centered on (-2,2) with a scale factor k=1.5. Draw the image $\triangle J'K'L'$ on the set of axes below, labeling the vertices.

5. What transformation(s) map $\triangle ABC$ onto $\triangle DEF$, shown below? Fully specify the transformations.

- 6. A translation maps $A(6,-2) \to A'(-2,6)$. What is the image of B(-2,6) under the same translation?
- 7. Circle YES or NO to indicate whether the given transformation maps the hexagon onto itself.
 - (a) Yes No A rotation of 120° counterclockwise around point D.
 - (b) Yes No A reflection over \overrightarrow{AE}
 - (c) Yes No A reflection over a line through the midpoints of \overline{BC} and \overline{EF} .
 - (d) Yes No A rotation of 60° clockwise around the hexagon's center.

- 8. What is the equation of a line resulting when the line y = -2x + 4 is dilated by a factor of $\frac{3}{2}$ centered at the origin?
- 9. Directed line segment DE has endpoints D(-2,-1) and E(4,8). Point F divides \overline{DE} such that DF:FE is 1:2. What are the coordinates of F?

10. The figure shows a rectangle (not a square).

Which transformations carry the rectangle onto itself? Mark each True or False.

(a) A reflection over the solid diagonal

True False

(b) A reflection over the dashed diagonal

True False

(c) A clockwise rotation of 360° about the intersection of the diagonals True False

- (d) A clockwise rotation of 180° about the intersection of the diagonals True
- False
- 11. What is the smallest non-zero angle of rotation about its center that would map the pentagon onto itself?

