

Digital Logic

Lecture 6

2nd Stage
Computer Science Department
Faculty of Science
Soran University

Topics covered

- Karnaugh Maps (K-Maps)
 - -2, 3, and 4 variable maps
 - Simplification using K-Maps

Karnaugh Maps (K-map)

A K-map is a collection of squares

- Each square represents a minterm
- The collection of squares is a graphical representation of a Boolean function
- Adjacent squares differ in the value of one variable
- Alternative algebraic expressions for the same function are derived by recognizing patterns of squares

The K-map can be viewed as

A reorganized version of the truth table

Some uses of K-maps

Provide a means for:

- Finding optimum or near optimum
 - SOP and POS canonical forms, and
 - two-level AND/OR and OR/AND circuit implementations for functions with small numbers of variables.
- Visualizing concepts related to manipulating Boolean expressions.
- Demonstrating concepts used by computer-aided design programs to simplify large circuits

Two Variable Maps

A 2-variable Karnaugh Map:

- Note that minterm m0 and minterm m1 are "adjacent" and differ in the value of the variable y
- Similarly, minterm m0 and
 minterm m2 differ in the x variable.

- Also, m1 and m3 differ in the x variable as well.
- Finally, m2 and m3 differ in the value of the variable y

MSB (Most significant bit)

LSB (Least significant bit)

K-Map and Truth Tables

- The K-Map is just a different form of the truth table.
- Example Two variable function:
 - We choose a,b,c and d from the set $\{0,1\}$ to implement a particular function, F(x,y).

Function Table

Input Values		Function Value
X	У	F(x,y)
0	0	a
0	1	b
1	0	С
1	1	d

✓ V	K-Map	
X	y = 0	y = 1
x = 0	a	b
x = 1	С	d

K-Map Function Representation

• Example: F(x,y) = x

• For function F(x,y), the two adjacent cells containing 1's can be combined using the Minimization Theorem:

$$F(x, y) = x \overline{y} + x y = x$$

K-Map Function Representation

• Example: G(x,y) = x + y

Three Variable Maps

• A three-variable K-map:

V 7	•	•	1	~
X	yz=00	yz=01	yz=11	yz=10
x=0	m_0	m_1	m_3	m_2
x=1	m_4	m_5	m_7	m_6

• Where each minterm corresponds to the product terms:

X YZ	yz=00	yz=01	yz=11	yz=10
x=0	$\overline{x}\overline{y}\overline{z}$	$\overline{x}\overline{y}z$	$\frac{1}{x}yz$	\overline{x} \overline{y} \overline{z}
x=1	x y z	$x\overline{y}z$	хух	x y Z

• Note that if the binary value for an <u>index</u> differs in one bit position, the minterms are adjacent on the K-Map

Three-Variable Maps

• Example Shapes of 2-cell Rectangles:

Three-Variable Maps

• Example Shapes of 4-cell Rectangles:

Three Variable Maps

- K-Maps can be used to simplify Boolean functions by systematic methods. Terms are selected to cover the "1s"in the map.
- Example: Simplify $F(x, y, z) = \Sigma_m(1, 2, 3, 5, 7)$

$$F(x, y, z) = z + \overline{x} y$$

Example Functions

• By convention, we represent the minterms of F by a "1" in the map

• Example:

$$F(x, y, z) = \Sigma_m(2,3,4,5)$$

0	1	³ 1	² 1
41	⁵ 1	7	6

LSB

• Example:

$$G(x, y, z) = \Sigma_m(3,4,6,7)$$

0	1	³ 1	2
41	5	⁷ 1	⁶ 1

Combining Squares

- By combining squares, we reduce number of literals in a product term, reducing the literal cost, thereby reducing the other two cost criteria
- On a 3-variable K-Map:
 - One square represents a minterm with three variables
 - Two adjacent squares represent a product term with two variables
 - Four "adjacent" terms represent a product term with one variable
 - Eight "adjacent" terms is the function of all ones (no variables) = 1.

Example: Combining Squares

• Example: Let

$$F = \Sigma m(2,3,6,7)$$

			3	J
	0	1	³ 1	² 1
X	4	5	⁷ 1	⁶ 1
,		Z		

• Applying the Minimization Theorem three times:

$$F(x,y,z) = \overline{x} y z + x y z + \overline{x} y \overline{z} + x y \overline{z}$$

$$= yz + y\overline{z}$$

$$= y$$

• Thus the four terms that form a 2×2 square correspond to the term "y".

Three-Variable K-Maps

$$f = \sum (0,4) = \overline{B} \overline{C}$$

$$f = \sum (4,5) = A \overline{B}$$

$$f = \sum (0,1,4,5) = \overline{B}$$

$$f = \sum (0,1,2,3) = \overline{A}$$

$$f = \sum (0,4) = \overline{A} C$$

$$f = \sum (4,6) = A\overline{C}$$

$$f = \sum (0,2) = \overline{A} \overline{C}$$

$$f = \sum (0,2,4,6) = \overline{C}$$

Three-Variable K-Maps

• Example: Design a 3-input (A,B,C) digital circuit that will give at its output (X) a logic 1 only if the binary number formed at the input has more ones than zeros.

	I	nput	S	Output
	Α	В	С	X
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Four Variable Terms

- Four variable maps can have rectangles corresponding to:
 - A single 1 = 4 variables, (i.e. Minterm)
 - Two 1s = 3 variables,
 - Four 1s = 2 variables
 - Eight 1s = 1 variable,
 - Sixteen 1s = zero variables (i.e.
 Constant "1")

Four-Variable Maps

• Example Shapes of Rectangles:

Four-Variable Maps

• Example Shapes of Rectangles:

Four-Variable Maps

$$f = \sum (0,8) = \overline{B} \bullet \overline{C} \bullet \overline{D}$$

\ C[)			
AB	00	01	11	10
00	0	0	0	0
01	0	1	0	0
11	0	1	0	0
10	0	0	0	0

$$f = \sum (5,13) = B \bullet \overline{C} \bullet D$$

$$f = \sum (13,15) = A \bullet B \bullet D$$

$$f = \sum (4,6) = \overline{A} \bullet B \bullet \overline{D}$$

$$f = \sum (2,3,6,7) = \overline{A} \bullet C$$

$$f = \sum (4,6,12,14) = B \bullet \overline{D}$$

$$f = \sum (2,3,10,11) = \overline{B} \bullet C$$

$$f = \sum (0,2,8,10) = \overline{B} \bullet \overline{D}$$

More Examples

Try:

Use Karnaugh Maps to simplify the following Boolean functions to a minimum number of literals.

1)
$$F(x, y, z) = xyz + \overline{x}y + xy\overline{z}$$

2)
$$Y = \overline{(A \oplus B)} \cdot (\overline{A} \otimes \overline{B})$$

3)
$$Y = A + (\overline{B} + C) + \overline{(B.\overline{C}) + \overline{A}}$$

Exercise -5

Use Karnaugh Map method to simplify the following logic diagram.

Deadline: November 8, 2022 @ 11:59 PM

Homework 6

Use Karnaugh Map method to simplify each of the following to a minimum number of literals.

1)
$$F = \overline{(C.(B\bar{A})) \overline{(B \oplus \bar{C})}}$$

2)
$$F(A,B,C,D) = \Sigma m(0,2,6,8,10,14)$$

7	``
~	
	_ /
	_

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Deadline: November 11, 2022 @ 11:59 PM