k-NN

一. 实验要求:

- a) 1) Develop a k-NN classifier with Euclidean distance and simple voting
- b) 2) Perform 5-fold cross validation, find out which k performs the best (in terms of accuracy)
- c) 3) Use PCA to reduce the dimensionality, then perform 2) again. Does PCA improve the accuracy? Which dimensionality is better?
 - \equiv . Plus (at most 3/10)
- a) Try other distance metrics or distance-based voting $(+0.5^{\sim}1)$
 - b) Try other dimensionality reduction methods (+1~2)
 - c) Perform feature selection (+1)

How to set the k value, if not using cross validation? Verify your idea (+3)

二. 实验步骤:

要求 1:采用欧氏距离来并编写一个 k-nn 分类器。

首先我们先把数据加载进去,并且可视化数据,这里我们是采用了read_csv函数先把数据读出来,然后在使用 descirbe 函数去统计每个特征集的各个值。

具体代码如下:

```
import math
import pandas

from sklearn.preprocessing import PolynomialFeatures
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
url="wine.data"
names=['Label','A1','A2','A3','A4','A5','A6','A7','A8','A9','A10','A11','A12','A13']
dateset=pandas.read_csv(url_names=names)
origindata=dateset.iloc[range(0,178),range(1,14)]
print(origindata.describe())
```

实验结果:

C. 1036	13 (3apt1115 (A	naconaas (py cin	JII.CAC C	., oscis, supting,	DC3KCOP/ _ 14K11 1/2/1
	A1	A2		A12	A13
count	178.000000	178.000000		178.000000	178.000000
mean	13.000618	2.336348		2.611685	746.893258
std	0.811827	1.117146		0.709990	314.907474
min	11.030000	0.740000		1.270000	278.000000
25%	12.362500	1.602500		1.937500	500.500000
50%	13.050000	1.865000		2.780000	673.500000
75%	13.677500	3.082500		3.170000	985.000000
max	14.830000	5.800000		4.000000	1680.000000

采用欧式距离做简单的 knn 选择。具体代码如下:

```
##knn 欧氏距离
| def euclideanKnn(x train,x test,y train,y test):
| knn = KNeighborsClassifier(n_neighbors=3, metric='euclidean')
| knn.fit(x_train, y_train)
| print(knn.score(x_test, y_test))
```

实验结果: 分类准确率为1.0

要求 2: 执行 5 折交叉验证,找出在准确性方面表现最好的 k 具体实现代码:

实验结果:从实验结果可以看出 k 值在 8 的的时候最大,分类的准确率最高,所以我们使用 k 值为 8,准确率为: 0.966940469。

要求 3: 采用 PCA 降维

首先采用 pca 降维, 然后重复要求二。得到最大的值。 代码如下:

```
pca=PCA(n_components=6)
x_pca=pca.fit_transform(x)
fiveFolder(x_pca_y)
```

实验结果如下: 从实验结果可以看出来在采用 pca 进行降维了以后我们的准确率发生了变化,现在在 k 取 19 的时候最大,准确率为 0.9780780708.

要求 4: 采用不同距离的 KNN

这里我们另外选取两种距离方式,一种曼哈顿距离,一种切尔雪夫距离; 具体代码:

```
def otherDistanceKNN(x train,x test,y train,y test):
    knn = KNeighborsClassifier(n_neighbors=3, metric='manhattan')
    knn.fit(x_train, y_train)
    print(knn.score(x_test, y_test))
    knn = KNeighborsClassifier(n_neighbors=3, metric='chebyshev')
    knn.fit(x_train, y_train)
    print(knn.score(x_test, y_test))
```

实验结果:从实验结果中我们可以看出来,曼哈顿距离的准确率为 1.0. 切尔雪夫的距离为 0.93333。

1.0 0.93333333333333333

要求 5: 采用 LDA 进行降维:

具体代码如下:

```
lda=LinearDiscriminantAnalysis();
x_lda=lda.fit_transform(x,y)
fiveFolder(x_lda, y)
```

实验结果:从实验结果可以看出来,使用LDA降维比PCA的效果好许多。

要求 5: 使用 BAGGING 方法寻找最佳 k 值

除了 K 折交叉验证法,我们还可以利用委员会算法寻找最佳 K 值。Bagging 是其代表,其基本思想是 i. 对一个单独数据集,利用 bootstrap (放回抽样)产生 M 个自助数据集。ii. 对每一个 K 值,我们利用这 M 个自助数据集训练 M 个独立模型 iii. 对每一个实例,委员会预测为 M 个独立模型的平均值。

具体代码如下:

```
##使用BAGGING方法寻找最佳k值

| def baggingKNN(x,y):
| k_rane = [i+1 for i in range(20)] |
| k_ranges = [str(i) for i in k_rane] |
| scores = [] |
| for k in k_rane:
| bagging_BaggingClassifier(KNeighborsClassifier(n_neighbors=k), |
| max_samples=0.9_n_estimators=11_bootstrap=True) |
| bagging.fit(x_y) |
| scores.append(bagging.score(x_y)) |
| print(scores) |
| print(max(scores)) |
| print(scores.index(max(scores))) |
| pltScores(k_rane_k_ranges_scores)
```

实验结果: 我们发现 K=1 时,取到最高准确率。这是因为 K=1 时,模型方差很大,但是加和求平均后偏置很小,从而产生了预测效果的提升。利用 bagging 算法,我们选取 K=6,此时准确率为 0.983

.

.参考文献 [1]李航 统计学习方法