PCT/EP200 4 / 0 1 1 4 6 0 24.((.04

PRIORITY DOCUMENT UBMITTED OR TRANSMITTED IN

REC'D 28 DEC 2004

Ministero delle Attività Produttive

Direzione Generale per lo Sviluppo Produttivo e la Competitività

Ufficio Italiano Brevetti e Marchi

Ufficio G2

Autenticazione di copia di documenti relativi alla domanda di brevetto per: INVENZIONE INDUSTRIALE N. MI 2003 A 002085.

Si dichiara che l'unita copia è conforme ai documenti originali depositati con la domanda di brevetto sopra specificata, i cui dati risultano dall'accluso processo verbale di deposito.

ROMA li.... 1.2. NOV. 2004 Dr.ssa Paola Giuliano

IL FUNZIONARIO

Dr. 55a fraola Giuliano

BEST AVAILABLE COPY

* **MODULO** A (1/2) AL MINISTERO DELLE ATTIVITA' PRODUTTIVE DOMANDA DI BREVETTO PER INVENZIONE INDUSTRIALE N. 20034002085 UFFICIO ITALIANO BREVETTI E MARCHI (U.I.B.M.) A. RICHIEDENTE/I A1 POLIMERI EUROPA S.p.A. COGNOME E NOME O DENOMINAZIONE COD.FISCALD A3 01768800748 (PF/PG) NATURA GIURIDICA A4 BRINDISI - Via E. Fermi, 4 INDIRIZZO COMPLETO A1 COGNOME E NOME O DENOMINAZIONE Cod.Fiscale (PF / PG) A2 NATURA GIURIDICA PARTITA IVA INDIRIZZO COMPLETO B. RECAPITO OBBLIGATORIO B0 $(\mathbf{D} = \mathsf{DOMICILIO}$ elettivo, $\mathbf{R} = \mathsf{RAPPRESENTANTE}$ IN MANCANZA DI MANDATARIO COGNOME E NOME O DENOMINAZIONE **B**1 **B2** Indirizzo В3 CAP/ Località/Provincia "PROCEDIMENTO PER LA PREPARAZIONE DI 1-OTTENE" C₁ C. TITOLO 10,33 Euro Vell IIU D. INVENTORE/I DESIGNATO/I (DA INDICARE ANCHE SE L'INVENTORE COINCIDE CON IL RICHIEDENTE) D1 DELLEDONNE Daniele Собноме в Номе D2 NAZIONALITÀ D1 COGNOME E NOME RIVETTI Franco Nazionalità D2 D1 Содноме в Номв D2 NAZIONALITÀ Содноме в Номе D1 D2 Nazionalità GRUPPO SOTTOGRUPPO CLASSE SOTTOCLASSE ;C C 07 E4 E1 E. CLASSE PROPOSTA F. PRIORITA' DERIVANTE DA PRECEDENTE DEPOSITO ESEGUITO ALL'ESTERO F2 F1 Tipo STATO O ORGANIZZAZIONE F4 F3 DATA DEPOSITO NUMERO DOMANDA F2 F1 Tipo

STATO O ORGANIZZAZIONE

NUMERO DOMANDA

F1

STATO O ORGANIZZAZIONE

F2

NUMERO DOMANDA

F3

DATA DEPOSITO

F4

STATO O ORGANIZZAZIONE

NUMERO DOMANDA

F3

DATA DEPOSITO

F4

G. CENTRO ABILITATO DI
RACCOLTA COLTURE DI
MICROORGANISMI

FIRMA DEL / DEI
RICHIEDENTE / I

RICHIEDENTE / I

MARIGATATIO TING: GI ambattista CAVALIERE

RICHIEDENTE / I

MARIGATATIO TING: GI ambattista CAVALIERE

1 MODULO A (2/2) I. MANDATARIO DEL RICHIEDENTE PRESSO L'UIBM LA/E SOTTOINDICATA/E PERSONA/E HA/HANNO ASSUNTO IL MANDATO A RAPPRESENTARE IL TITOLARE DELLA PRESENTE DOMANDA INNANZI ALL'UFFICIO ITALIANO BREVETTI E MARCHI CON L'INCARICO DI EFFETTUARE TUTTI GLI ATTI AD ESSA CONNESSI, CONSAPEVOLEJI DELLE SANZIONI PREVISTE DALL'ART.76 DEL D.P.R. 28/12/2000 N.45S. NUMERO ISCRIZIONE ALBO COGNOME II 445 BM BORDONARO Salvatore; 495 BM CAVALIERE Giambattista; 566 BM CIONI Paolo; E NOME; ENITECNOLOGIE SpA DENOMINAZIONE STUDIO 13 Via F. Maritano, 26 INDIRIZZO '20097 - SAN DONATO MILANESE (MI) CAP/ Località/Provincia L ANNOTAZIONI SPECIALI M. DOCUMENTAZIONE ALLEGATA O CON RISERVA DI PRESENTAZIONE N. Es. ALL. N. Es. Ris. N. PAG. PER ESEMPLARE TIPO DOCUMENTO PROSPETTO A, DESCRIZ., RIVENDICAZ. 24 DISEGNI (OBBLIGATORI SE CITATI IN 0 DESCRIZIONE) DESIGNAZIONE D'INVENTORE DOCUMENTI DI PRIORITÀ CON 0 TRADUZIONE IN ITALIANO AUTORIZZAZIONE O ATTO DI CESSIONE n (SI/NO) Lèttera d'Incarico PROCURA GENERALE RIFERIMENTO A PROCURA GENERALE SI IMPORTO VERSATO ESPRESSO IN LETTERE DUECENTONOVANTUNO/80.-ATTESTATI DI VERSAMENTO Euro FOGLIO AGGIUNTIVO PER I SEGUENTI PARAGRAFI (BARRARE I PRESCELTI) DEL PRESENTE ATTO SI CHIEDE COPIA SI AUTENTICA? (Si/No) SI CONCEDE ANTICIPATA ACCESSIBILITÀ AL NO PUBBLICO? (SI/No) DATA DI COMPILAZIONE 23/10/2003 FIRMA DEL/DEI RICHIEDENTE/I VERBALE DI DEPOSITO NUMERO DI DOMANDARI 2003A002085 C.C.I.A.A. Di Cop. 27 OTT. 2003 , il/i richiedente/i sopraindicato/i ha/hanno presentato a me sottoscritto IN DATA LA PRESENTE DOMANDA, CORREDATA DI N. FOGLI AGGIUNTIVI, PER LA CONCESSIONE DEL BREVETTO SOPRA RIPORTATO. N. Annotazioni Varie DELL'UFFICIALE ROGANTE

CVRREN O

L'UFFICIALE ROGANTE

SI MAURIZIO

• PROSPETTO MODULO A DOMANDA DI BREVETTO PER INVENZIONE INDUSTRIALE

UMERO DI DOMANDA:	<u>'</u>	3 4 0 0 2 0 8 5	DATA DI DEPOSITO	D: 270	T. 2003
RICHIEDENTE/I COGNI OLIMERI EUROPA S.P.A	OME E NOME O DENOM BRINDISI VIA E. F	MINAZIONE, RESIDENZA O STATO);		
				the same to be the same of the	
TITOLO ROCEDIMENTO PER LA PR	EPARAZIONE DI 1	LOTTENE			
COCEDIVIENTO I DIC DA LIC	LI AKAZIONE DI I	-OTTENE			
<u> </u>					· · · · · ·
	Sezione	CLASSE	SOTTOCLASSE	GRUPPO	SOTTOGRUPPO
CLASSE PROPOSTA	,c	.07	c	*	, , , , , , ,
n una o più fosfine monodenta un secondo stadio (b) in cui s nel primo stadio il solvente po	ite trisostituite, in un i effettua l'idrogenaz	solvente polare aprotico opz zione catalitica parziale di 1.7	1,7-ottadiene in presenza di un cata ionalmente addizionato di una base ottadiene a 1-ottene; il suddetto pr	e organica:	
RuXmLn.	atore è scelto tra i co	mplessi di rutenio non suppo	nte; rtati di formula generale (II)	ROAD OF THE PARTY	WANGE OF THE PARTY
RuXmLn.	atore è scelto tra i co	mplessi di rutenio non suppo	nte; rtati di formula generale (II)	1/23.E	ITO THE TO
DISEGNO PRINCIPA	atore è scelto tra i co	mplessi di rutenio non suppo	nte; rtati di formula generale (II)	1633 E	ITO THE TO
RuXmLn.	atore è scelto tra i co	mplessi di rutenio non suppo	nte; rtati di formula generale (II)	1633 E	ITO THE TO
DISEGNO PRINCIPA	atore è scelto tra i co	mplessi di rutenio non suppo	nte; rtati di formula generale (II)	1633 E	ITO CONTROL OF THE PARTY OF THE

"PROCEDIMENTO PER LA PREPARAZIONE DI 1-OTTENE"

POLIMERI EUROPA S.p.A.

Via E. Fermi, 4 BRINDISI

DESCRIZIONE

La presente invenzione riguarda un procedimento per la preparazione di 1-ottene da butadiene in due passaggi, più esattamente un primo stadio di bis-idrodimerizzazione catalitica a 1,7-ottadiene in presenza di un donatore di idrogeno, in un solvente polare aprotico scelto tra le uree cicliche disostituite, ed un secondo stadio di riduzione parziale e selettiva di 1,7-ottadiene con idrogeno a 1-ottene in presenza di un sistema catalitico comprendente un complesso di rutenio non supportato.

1-ottene trova vasta applicazione nel campo della produzione del polietilene lineare a bassa densità (LLDPE), un copolimero ottenuto a partire da etilene e 1-olefine, in quanto impartisce migliori caratteristiche meccaniche e di saldabilità al manufatto. Inoltre trova applicazione nel campo dei plastificanti previa idroformilazione, riduzione ad alcooli lineari ed esterificazione.

La sintesi di 1-ottene a partire da butadiene è conosciuta nello stato dell'arte.

In alcuni brevetti è descritta la sintesi di 1-ottene da butadiene mediante un procedimento a tre stadi. In US-A-5,030,792 in un primo passaggio si realizza la telomerizzazione catalitica di butadiene con acido acetico per dare 2,7-ottadienil acetato; quest'ultimo in un secondo stadio è idrogenato ad acetato di n-

飜 200 3 A O O 2 O 8 5

M

ottile il quale, a sua volta, in un terzo stadio, è pirolizzato a 1-ottene. Questo tipo di processo è penalizzato dall'elevato numero di stadi di reazione, ed è inoltre caratterizzato da problemi di corrosione di materiali comuni legati all'impiego dell'acido acetico.

WO 92/10450 descrive la telomerizzazione catalitica di butadiene con un alcole come metanolo o etanolo per dare 2,7-ottadieniletere. Quest'ultimo in un secondo stadio è idrogenato ad ottiletere il quale, a sua volta, in un terzo stadio, è pirolizzato a 1-ottene. Anche questo tipo di processo, pur evitando l'impiego di acidi carbossilici corrosivi, è penalizzato dall'elevato numero degli stadi di reazione e da una selettività globale inferiore.

Infine, WO 03/31378 descrive la sintesi di 1-ottene in due soli passaggi a partire da butadiene secondo lo schema di equazioni (1) e (2)

2
$$+$$
 HCOOH $\xrightarrow{\text{catalizzatore}}$ + CO₂ (1)

$$+ H_2 \xrightarrow{\text{catalizzatore}}$$
 (2)

Nel primo stadio del processo descritto si realizza la bisidrodimerizzazione catalitica di butadiene ad 1,7-ottadiene con un agente riducente come acido formico. Nel secondo stadio si realizza l'idrogenazione catalitica parziale di 1,7 ottadiene ad 1-ottene.

a ff

Il processo descritto in WO 03/31378 sebbene abbia il vantaggio, rispetto ai processi precedenti, di ridurre a due il numero di stadi necessari per produrre 1-ottene da butadiene, soffre di numerosi inconvenienti ed in particolare della necessità di impiegare, sia nel primo che nel secondo stadio, elevate quantità di costosi metalli nobili come catalizzatori.

Il primo stadio del processo di WO -03/31378 è realizzato secondo una reazione nota nella letteratura, ossia la bisidrodimerizzazione del butadiene in presenza di acido formico e catalizzatori a base di palladio e fosfine. La reazione descritta è in tutti i casi scarsamente selettiva, con formazione di miscele di 1,6-ottadiene e 1,7-ottadiene; inoltre le rese e l'efficienza catalitica sono basse.

Inoltre, sempre nel primo stadio, risulta necessario impiegare elevate quantità di catalizzatore che pongono il problema del costo e del recupero del catalizzatore stesso. Se si diminuisce la concentrazione del catalizzatore a valori inferiori la selettività ad 1,7-ottadiene diminuisce.

Da quanto sopra riportato appare la necessità di un procedimento più efficiente di idrodimerizzazione del butadiene, che consenta di raggiungere elevate conversioni e selettività ad 1,7-ottadiene anche operando con ridotte concentrazioni di metallo nobile.

secondo stadio del consiste nell'idrogenazione parziale di 1,7-ottadiene ad 1-ottene. La reazione, così come descritta in WO 03/31378, cioè condotta con un catalizzatore supportato a base di rutenio in fase eterogenea, soffre di una estremamente bassa attività del catalizzatore. reazione Infatti vi sono richiesti tempi di molto dell'ordine di oltre 24 ore, per ottenere una conversione del 1,7ottadiene del 70% ed una selettività ad 1-ottene del 60%, ed inoltre non è evita completamente la formazione di olefine isomere. Anche in questo caso la quantità di catalizzatore impiegato (ossia rutenio supportato) è decisamente elevata, motivo della attività bassa catalitica del catalizzatore utilizzato.

Anche per questo stadio è quindi sentita l'esigenza di una più efficiente e più selettiva riduzione parziale del 1,7-ottadiene, pur operando con basse quantità di catalizzatore.

E' stato ora trovato un procedimento per la preparazione di 1ottene a partire da butadiene che supera gli inconvenienti
soprariportati.

In accordo con ciò, la presente invenzione riguarda un procedimento in due stadi per la preparazione di 1-ottene a partire da butadiene che comprende:

** un primo stadio (a) in cui si effettua la bisidrodimerizzazione del butadiene a 1,7-ottadiene in presenza di un catalizzatore a base di un complesso di palladio con una o più fosfine monodentate trisostituite, in un solvente polare aprotico opzionalmente addizionato di una base organica; il suddetto primo stadio essendo condotto in presenza di un donatore d'idrogeno, preferibilmente acido formico;

** un secondo stadio (b) in cui si effettua l'idrogenazione catalitica parziale di 1,7 ottadiene, recuperato al termine del primo stadio, a 1-ottene; la suddetta idrogenazione essendo effettuata in solvente inerte, sotto pressione d'idrogeno o miscele d'idrogeno ed azoto, in presenza di un catalizzatore; il suddetto processo essendo caratterizzato dal fatto che:

(i) nel primo stadio il solvente polare aprotico è scelto tra le uree cicliche disostituite di formula generale (I)

in cui n è da 1 a 8; preferibilmente da 2 a 3;

 R_1 e R_2 , uguali o diversi tra loro, sono scelti tra H e radicale alchilico C_1 - C_6 , preferibilmente R_1 = R_2 =H;

 R_3 e R_4 , uguali o diversi tra loro, sono scelti tra radicali alchilici C_1 - C_{16} , preferibilmente C_1 - C_3 ;

(ii) nel secondo stadio il catalizzatore è scelto tra i complessi di rutenio non supportati di formula generale (II)

(II) RuX_mL_n , dove:

X è scelto tra Cl, Br, I, CH3COO, H, =C(H)Ph;

L è scelto tra i leganti neutri, monodentati o bidentati;

n è da 2 a 4;

mèdala3.

Tipici esempi di uree cicliche disostituite di formula generale (I) sono la dimetil etilen urea (n=2; $R_1=R_2=H$; $R_3=R_4=CH_3$) e la dimetil propilen urea (n=3; $R_1=R_2=H$; $R_3=R_4=CH_3$).

Utilizzando nel primo stadio i particolari solventi della presente invenzione, ossia le uree cicliche disostituite, è possibile, a parità di tutte le altre condizioni, aumentare la conversione del butadiene e la selettività ad 1,7-ottadiene. Ne consegue che è possibile diminuire la quantità del catalizzatore impiegato fino a concentrazioni estremamente ridotte, senza penalizzare la conversione del butadiene e la selettività ad 1,7-ottadiene, che si mantengono elevate.

Sempre per quanto riguarda il primo stadio (a), ossia la bis-1,7-ottadiene, adbutadiene del idrodimerizzazione catalizzatore a base di palladio può essere preformato o formato in situ. In quest'ultimo caso il catalizzatore viene formato in situ a partire da un sale di palladio e da una o più fosfine. Nella forma di attuazione preferita, il sale di palladio è scelto tra i carbossilati di palladio, ancor più preferibilmente è scelto tra Pd(Me₃CCOO)₂ e Pd(acetato)₂. Per quanto concerne la fosfina, sono trifenilfosfina, tri(o-tolil)fosfina, tipici esempi sulfonatofenil) difenilfosfina, tricicloesil fosfina, fosfina, trietil fosfina, triisopropil fosfina, tributil fosfina,

e le fosfine miste metil difenil fosfina, dimetilfenil fosfina, singolarmente o in combinazione fra di loro. Preferita è la trifenilfosfina. Nel caso della formazione in situ del complesso di palladio, il rapporto molare tra le fosfine ed il palladio è compreso tra 1 e 100, preferibilmente da 2 a 40.

Nella forma di attuazione preferita il complesso di palladio è preformato ed è costituito da uno o più complessi di palladio di formula generale PdX₂(PR₃)₂ in cui X= Cl, Br, acetato, e R₃ è un radicale idrocarbilico C₁-C₁₆, preferibilmente scelto tra fenile, o-tolile, metile, tricicloesile, etile, isopropile, butile, e relative miscele. Preferiti sono i complessi PdCl₂(PEt₃)₂, PdCl₂(PCy₃)₂, PdCl₂(PBut₃)₂, PdCl₂(PiPr₃)₂ dove Et = etile, Cy = cicloesile, iPr = isopropile, But = n-butile.

Per quanto concerne la base organica opzionalmente utilizzabile nel primo stadio, tipici esempi sono le piridine, le N-alchilmorfoline, le trialchilammine. Nella forma di attuazione preferita la base organica è la trietilammina.

Il primo stadio viene condotto in presenza di un donatore d'idrogeno, preferibilmente in rapporto stechiometrico 1:2 molare rispetto al butadiene, vedi equazione (1), o leggermente inferiore. Preferibilmente il donatore di idrogeno è acido formico.

Il butadiene è impiegato in rapporto ponderale iniziale da 1:10 a 10:1 rispetto al solvente, più preferibilmente da 1:5 a 5:1.

Il donatore di idrogenza, preferibilmente l'acido formico, è impiegato, in una forma di attrazione preferita, in rapporto stechiometrico (ossia 1/2 molare) rispetto al butadiene, o leggermente inferiore allo stechiometrico.

Il rapporto molare fra la base organica, ad esempio trietilammina, ed il donatore di idrogeno, ad esempio acido formico, può variare da 0 a 1.5, più preferibilmente da 0.2 a 1.3, ed ancora più preferibilmente da 0.4 a 0.8.

Lo stadio (a) è condotto a temperature fra 50 e 120°C, preferibilmente fra 70 e 100°C, preferibilmente in pressione di azoto compresa fra 0.5 e 2 MPa, più preferibilmente fra 0.8 e 1.5 MPa.

Indicativamente la durata della reazione dello stadio (a) è compresa fra 10 e 180 minuti, più preferibilmente fra 15 e 120 minuti.

Secondo il procedimento sopradescritto, nel primo stadio è possibile migliorare la selettività ad 1,7 ottadiene pur in presenza di ridotte quantità di catalizzatore, ad esempio tali che il rapporto molare iniziale butadiene/palladio sia compreso fra 5.000 e 1.000.000, preferibilmente sia compreso fra 20.000 e 200.000, senza penalizzare significativamente la conversione del butadiene, che si mantiene elevata.

Al termine del primo stadio, il prodotto di reazione 1,7ottadiene può essere recuperato secondo tecniche convenzionali.
Più in particolare, in una realizzazione preferita

dell'invenzione, il prodotto di reazione viene separato per smiscelazione, sfruttando il fatto che 1,7-ottadiene non è miscibile in tutti i rapporti con le uree cicliche disostituite.

La fase superiore idrocarburica, costituita prevalentemente da 1,7-ottadiene, può essere purificata dai residui non idrocarburici per lavaggio con acqua; il 1,7-ottadiene viene successivamente purificato con metodi convenzionali, ad esempio per distillazione.

Il secondo stadio del processo, cioè l'idrogenazione catalitica parziale di 1,7 ottadiene a 1-ettene, è condotto in presenza di un catalizzatore costituito da un complesso di rutenio. Preferibilmente il catalizzatore è scelto tra i complessi di rutenio di formula RuX_mL_n , dove: m è da 1 a 3, n è da 2 a 4; X = Cl, Br, I, CH₃COO, H, =C(H)Ph; L = legante neutro monodentato come ad esempio: PPh3 (Trifenilfosfina), PCy3 (Tricicloesil fosfina), P(o-CH₃C₆H₄)₃ (triorto-tolil fosfina), CO (ossido di carbonio); oppure L = legante neutro bidentato come: difenilfosfina etano (dppe), dipiridile (bipy), 1,10-fenantrolina (Phen), 4,7-difenilsingolarmente o anche 1,10-fenantrolina (bato), usati combinazione fra di loro.

Più in particolare sono preferiti i complessi di Rutenio quali: $RuCl_2(PPh_3)_3$, $RuCl_2(PPh_3)_4$, $RuCl_2(CO)(PPh_3)_3$, $RuHCl(PPh_3)_3$, $RuHCl(CO)(PPh_3)_3$, $RuCl_2(dppe)_2$, $RuCl_2(PCy_3)_3$, $RuCl_2(CO)_2(PPh_3)_2$, $(PCy_3)_2Cl_2Ru=C(H)Ph$, $[Ru(CO)_2Cl_2]_x$. Fra i catalizzatori più preferiti è usato il catalizzatore $RuCl_2(PPh_3)_x$, con x = 3 o 4.

Il complesso di rutenio è aggiunto alla miscela di reazione in rapporto molare, rispetto a 1,7-ottadiene, compreso fra 1/100 e 1/500000, preferibilmente fra 1/1000 e 1/150000 più preferibilmente fra 1/5000 e 1/50000.

Lo stadio (b) può essere condotto in un solvente o nel diene puro, preferibilmente in presenza di solvente. Solventi adatti sono gli alcoli di formula generale R-OH, dove R è un radicale alchilico contenente da 1 a 6 atomi di carbonio; gli eteri R-O-R', ove R e R' hanno il significato sopradescritto per R; gli eteri ciclici contenenti sino a 6 atomi di carbonio, gli idrocarburi alifatici lineari o ramificati contenenti da 5 a 16 atomi di carbonio; gli idrocarburi parzialmente o totalmente alogenati contenenti da 1 a 3 atomi di carbonio, gli idrocarburi aromatici o alchilaromatici contenenti sino a 9 atomi di carbonio; i chetoni contenenti fino a 6 atomi di carbonio. Preferibilmente i solventi sono scelti tra metanolo, etanolo, propanolo e relative miscele.

Possono essere altresì usati come solventi miscele di solventi non completamente miscibili tra di loro, come ad esempio metanolo ed idrocarburi alifatici C₈-C₁₆. L'uso di tali miscele solventi semplifica la separazione del catalizzatore dalla miscela di reazione data la maggiore affinità del catalizzatore per la fase alcolica. In una forma di realizzazione ancor più preferita, il secondo stadio viene condotto in soluzione metanolica e 1-ottene (assieme all'eventuale 1,7-ottadiene non reagito e all'eventuale ottano co-prodotto) può essere estratto dalla miscela di reazione

con un idrocarburo alifatico C_8 - C_{16} , preferibilmente con dodecano, mediante estrazione liquido - liquido secondo tecniche convenzionali, lasciando nella soluzione metanolica il catalizzatore che può essere riciclato alla reazione. Dalla miscela idrocarburica 1-ottene viene poi recuperato e purificato con tecniche convenzionali.

Quando è impiegato un solvente, il diene è contenuto nel solvente nel rapporto fra 5 e 90% in peso, più preferibilmente fra 10 e 80% in peso.

La reazione dello stadio (b) è generalmente condotta ad una temperatura compresa fra 0°C e 150 °C, preferibilmente fra 5°C e 60°C. Questo intervallo rappresenta il campo di temperature nel quale il sistema catalitico presenta il minimo di attività di isomerizzazione del doppio legame compatibile con una buona velocità di idrogenazione.

La reazione è generalmente condotta sotto pressione d'idrogeno o miscele d'idrogeno ed azoto, preferibilmente in presenza di solo idrogeno, ad una pressione compresa fra 0.05 e 10 MPa, preferibilmente fra 0.1 e 3 MPa.

Indicativamente il tempo di reazione è compreso fra 2 e 200 minuti, più preferibilmente fra 5 e 60 minuti.

Per limitare la reazione consecutiva di idrogenazione di 1ottene a ottano, la reazione è preferibilmente condotta a
conversione parziale di 1,7-ottadiene inferiore a 80%,
preferibilmente compresa fra 40 e 60%.

Quando il valore della conversione è compreso in questo intervallo si ottengono selettività ad 1-ottene generalmente comprese fra 75 e 90%. Inoltre operando secondo l'invenzione gli altri isomeri del 1-ottene e del 1,7-ottadiene risultano normalmente assenti.

I seguenti esempi sono riportati per una migliore comprensione della presente invenzione.

ESEMPI

Sintesi di 1,7-ottadiene

Esempi da 1 a 14 (catalizzatore formato in situ)

In un'autoclave di Hastelloy C di 300 ml di volume, dotata di un sistema per l'agitazione meccanica e di un sistema per riscaldamento, sono posti, nell'ordine indicato e nella tipologia e quantità specificate in Tabella 1 o di seguito, il solvente, la base organica (se presente), 7 ml di acido formico (concentrazione butadiene, quantità stechiometrica rispetto al in 99%peso) trifenilfosfina come legante e Pd(CH3COO)2 come catalizzatore. Infine, con l'autoclave chiusa, si addizionano 20 g di butadiene. Si pressurizza l'autoclave con azoto a 1 MPa e si inizia il riscaldamento alla temperatura di 90 °C per il tempo indicato in Tabella 1. Alla fine si raffredda l'autoclave, si tratta il contenuto con acqua e bicarbonato di sodio e si estrae cicloesano. I prodotti sono quantificati per gas cromatografia con il metodo dello standard interno. La conversione del butadiene e

le selettività riferite al butadiene convertito sono riportate in Tabella 1.

TABELLA 1

	Rapp. Mol.	Solvente	NEt₃	Tempo	Rapp. Mol.	Conv.	Sel.%,	Sel.% 1,7-	
	PPh₃/Pd	ml	мі	min	nin BD/Pd		1,6-ott.	ott.	
Es.1 comp 2		DMF 45	15	90	1829	65	22	76	
Es. 2 comp	2	DMA 45	15	180	1627	24	74	21	
Esempio 3	2	DMPU 45	15	60	1813	78	13	84	
Es.4 comp.	21	DMF 60	0	120	5475	63	10	88	
Es.5 comp.	20	NMP 60	0	60	6326	49	- 93	6	
Es.6 comp.	19	TMU 60	0	60	5922	2	12	83	
Es.7 comp.	19	THF 60	0	120	4208	64	15	77	
Esemplo 8	20	DMPU 60	0	120	5759	71	9	90	
Es.9 comp	19	DMF 45	15	120	4863	60	9	88	
Esemplo 10	22	DMPU 45	15	120	5415	78	9	89	
Es.11 comp	21	DMF 45	15	90	23526	61	10	89	
Esempio 12	20	DMEU 45	15	90	24449	67	9	90	
Es.13 comp	20	DMF 45	15	90	53972	42	10	89	
Esempio 14	20	DMEU 15	15	90	48355	58	9	90	

NMP = N-metil pirrolidone; THF = tetraidrofurano; TMU = tetrametil urea; DMEU = dimetil etilenurea; DMPU = dimetil propilen urea.

La tabella 1 chiaramente mostra come, operando con uree cicliche come solvente a parità di altre condizioni, la conversione del butadiene incrementi, mentre la selettività ad 1,7-ottadiene rimanga uguale o migliori.

Esempi da 15 a 20 (catalizzatore preformato) $\frac{\partial}{\partial x_{ij}} \frac{\partial}{\partial x_{ij}} \frac{\partial x_{ij}}{\partial x_{ij}} \frac{\partial}{\partial x_{ij$

gyl

In un'autoclave di Hastelloy C di 300 ml di volume, dotata di un sistema per l'agitazione meccanica e di un sistema per riscaldamento, sono posti, nell'ordine indicato e nella tipologia e quantità specificate in Tabella 2 o di seguito, 45 ml di solvente, 15 ml di trietil ammina, 7 ml di acido formico (concentrazione 99%peso) in quantità stechiometrica rispetto al butadiene, ed il catalizzatore nel rapporto molare rispetto al butadiene specificato in Tabella 2. Infine, con l'autoclave g di butadiene. Si pressurizza addizionano 20 l'autoclave con azoto a 1 MPa e si inizia il riscaldamento alla temperatura di 90°C per 120 minuti. Alla fine si raffredda l'autoclave e si tratta il contenuto con acqua e bicarbonato di sodio, poi si estraggono i prodotti con cicloesano. I prodotti sono quantificati per gas cromatografia con il metodo dello standard interno. La conversione del butadiene e le selettività riferite al butadiene convertito sono riportate in Tabella 2.

TABELLA 2

	catalizzatore	Solvente ^(a)	rapporto	Conv.%	Sel.% 1,6-	Sel.% 1,7-
			molare	BD	ottadiene	ottadiene
			BD/Pd			
Esemplo 15	PdCl ₂ (PBu ₃) ₂	DMF	104405	38	. 6	94
comparativo						
Esempio 16	PdCl ₂ (PBu ₃) ₂	DMEU	105871	49	3	97
Esempio 17	PdCl ₂ (PEt ₃) ₂	DMF	104138	35	7 .	93
comparativo					-	
Esempio 18	PdCl ₂ (PEt ₃) ₂	DMEU	104383	38	5	95
Esempio 19	PdCl ₂ (PCy ₃) ₂	DMF	101215	18	6	94
comparativo						
Esemplo 20	PdCl ₂ (PCy ₃) ₂	DMEU	119159	34	4	96

PBu₃ = Tri-n-butilfosfina; PEt₃ = Trietil fosfina; PCy₃ Tricicloesil fosfina

tabella 2 chiaramente mostra come, a parità đi altre condizioni, operando con uree cicliche come solvente ed usando palladio preformati, incrementino si catalizzatori di conversione del butadiene e, in misura inferiore, anche selettività ad 1,7-ottadiene.

Idrogenazione di 1,7-ottadiene ad 1-ottene

Esempi da 21 a 25

In un pallone di vetro di 250 ml di volume messo sotto Argon sono posti, 100/ml di metanolo, la quantità di 1,7-ottadiene (1,7da raggiungere il rapporto 1,7-OD/catalizzatore OD) di desiderato Tabella 3 mmolicome riportato in 0.01 1 3.11V

catalizzatore, nell'ordine. La soluzione è ben miscelata fino alla completa dissoluzione del catalizzatore, quindi è trasferita mediante un ago d'acciaio, sfruttando la differenza di pressione, in un'autoclave di Hastelloy C di 300 ml di volume, dotata di per l'agitazione meccanica e per il riscaldamento, preventivamente posta sotto vuoto. La pressione di nell'autoclave è portata ad un livello appena superiore all'atmosferico. Si riscalda (o si raffredda) l'autoclave alla temperatura desiderata, poi si introduce idrogeno pressurizzando l'autoclave alla pressione di 2 MPa e collegandola ad un sistema ripristino dell'idrogeno consumato. Lа reazione di iniziata. A tempi predeterminati si campiona dall'autoclave e si analizza per gas cromatografia con il metodo dello standard la determinazione del 1,7-ottadiene residuo dei interno per prodotti 1-ottene ed 1-ottano e per gli isomeri dienici e 1,7-ottadiene Lе selettività sono riferite alconvertito. I risultati ottenuti sono riportati in Tabella 3.

TABELLA 3

Catalizzatore	Rapporto	T	t	conv. %	sel. %	sel. %	Sel. %
	Molare	°C	min	1,7-OD	1-Ottene	Ottano	Isomeri
	OD/ Cat.						
sempio 21 RuCl2(PPh3)4	18789	55	2	32%	90%	9%	90
		52	5	37%	88%	11%	0%
		50	10	48%	82%	17%	0%
		50	20	91%	62%	38%	0%
sempio 22 RuCl2(PPh3)4	19683	8	5	9%	96%	4%	0%
Semplo 22		11	10	45%	83%	17%	0%
		14	15	88%	52%	48%	0%
		8	25	98%	27%	73%	0%
Ssempio 23 RuCl ₂ (PPh ₃) ₄	41335	8	5	14%	95%	5%	0%
		8	10	23%	93%	7%	0%
		7	20	38%	88%	12%	0%
		7	40	62%	78%	22%	0%
		5	80	81%	62%	38%	0%
Esempio 24 RuCl ₂ (PPh ₃) ₄ (a)	9254	25	5	39%	84%	16%	0%
		24	15	65%	76%	24%	0%
		23	35	70%	69%	31%	90
		23	95	84%	60%	39%	0%
Esempio 25 RuCl ₂ (=C(H)C ₆ H ₅)(PCy ₃) ₂	19934	31	5	9%	94%	6%	0%
		30	15	11%	93%	88	9%
		30	45	24%	89%	11%	0&
		30	75	30%	86%	14%	1%

⁽a) Eseguita in una soluzione di metanolo/dodecano 1/1 in volume

La tabella 3 mostra come, operando secondo l'invenzione, in soluzione di metanolo la reazione d'idrogenazione di 1,7-ottadiene a 1-ottene avvenga in pochi minuti, in funzione della

concentrazione del catalizzatore, in assenza di isomerizzazione di 1,7-ottadiene ed 1-ottene.

RIVENDICAZIONI

1. Procedimento in due stadi per la preparazione di 1-ottene a partire da butadiene che comprende:

** un primo stadio (a) in cui si effettua la bisidrodimerizzazione del butadiene a 1,7-ottadiene in presenza di un
catalizzatore a base di un complesso di palladio con una o più
fosfine monodentate trisostituite, in un solvente polare aprotico
opzionalmente addizionato di una base organica; il suddetto primo
stadio essendo condotto in presenza di un donatore d'idrogeno;

** un secondo stadio (b) in cui si effettua l'idrogenazione catalitica parziale di 1,7 ottadiene, recuperato al termine del primo stadio, a 1-ottene; la suddetta idrogenazione essendo effettuata in solvente inerte, sotto pressione d'idrogeno o miscele d'idrogeno ed azoto, in presenza di un catalizzatore; il suddetto processo essendo caratterizzato dal fatto che:

(i) nel primo stadio il solvente polare aprotico è scelto tra le uree cicliche disostituite di formula generale (I)

$$R_4-N$$
 $(R_1R_2C)-N$
 R_3

in cui n è da 1 a 8;

 R_1 e R_2 , uguali o diversi tra loro, sono scelti tra H e radicale alchilico C_1 - C_6 ;

 R_3 e R_4 , uguali o diversi tra loro, sono scelti tra radicali alchilici C_1 - C_{16} ;

- (ii) nel secondo stadio il catalizzatore è scelto tra i complessi di rutenio non supportati di formula generale (II)
- (II) RuX_mL_n , dove:

X è scelto tra Cl, Br, I, CH_3COO , H, =C(H)Ph;

L è scelto tra i leganti neutri, monodentati o bidentati;

m è da 1 a 3;

n è da 2 a 4.

- 2. Procedimento secondo la rivendicazione 1, in cui nel composto di formula generale (I) n è da 2 a 3; $R_1=R_2=H$; $R_3=R_4=CH_3$.
- 3. Procedimento secondo la rivendicazione 1, in cui il complesso di palladio nello stadio (a) è un complesso preformato avente la formula generale $PdX_2(PR_3)_2$ in cui X= Cl, Br, acetato, e R_3 è un radicale idrocarbilico C_1 - C_{16} .
- 4. Procedimento secondo la rivendicazione 1, in cui la base organica utilizzata nello stadio 1 è la trietilammina.
- 5. Procedimento secondo la rivendicazione 1, in cui il butadiene è impiegato in rapporto ponderale iniziale rispetto al solvente da 1:10 a 10:1.
- 6. Procedimento secondo la rivendicazione 5, in cui il butadiene è impiegato in rapporto ponderale rispetto al solvente da 1:5 a 5:1.

- 7. Procedimento secondo la rivendicazione 1, in cui il donatore di idrogeno è in rapporto stechiometrico 1:2 molare rispetto al butadiene.
- 8. Procedimento secondo la rivendicazione 1, in cui il donatore di idrogeno è acido formico.
- 9. Procedimento secondo la rivendicazione 1, in cui il rapporto molare fra la base organica ed il donatore di idrogeno varia da 0 a 1.5, più preferibilmente da 0.2 a 1.3, ed ancora più preferibilmente da 0.4 a 0.8.
- 10. Procedimento secondo la rivendicazione 1, in cui lo stadio (a) è condotto a temperature fra 50 e 120°C, preferibilmente fra 70 e 100°C.
- 11. Procedimento secondo la rivendicazione 1, in cui nel complesso RuX_mL_n m è da 2 a 3; n è da 2 a 4; X è scelto tra Cl e =CHPh; L è una fosfina.
- 12. Procedimento secondo la rivendicazione 11, in cui X=Cl, m=2, n=4, $L=PPh_3$.
- 13. Procedimento secondo la rivendicazione 11, in cui m=3, n=2, $L=PCy_3$.
- 14. Procedimento secondo la rivendicazione 1, in cui il complesso di rutenio nello stadio (b) è presente nella miscela di reazione in rapporto molare, rispetto a 1,7-ottadiene, compreso fra 1/100 e 1/500000, preferibilmente fra 1/1000 e 1/150000 più preferibilmente fra 1/50000 e 1/50000.

- 15. Procedimento secondo la rivendicazione 1, in cui 1,7-ottadiene è contenuto nel solvente nel rapporto fra 5 e 90% in peso, più preferibilmente fra 10 e 80% in peso.
- 16. Procedimento secondo la rivendicazione 1, in cui lo stadio (b) è condotto ad una temperatura compresa fra 0°C e 150°C, preferibilmente fra 5°C e 60°C.
- 17. Procedimento secondo la rivendicazione 1, in cui lo stadio (b) viene condotto in presenza di miscele d'idrogeno ed azoto, preferibilmente in presenza di solo idrogeno, ad una pressione compresa fra 0.05 e 10 MPa, preferibilmente fra 0.1 e 3 MPa.

Il Mandatario Ing. Giambattista CAVALIERE

27 OTT. 2003

01

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

□ OTHER: _____