ϕ^4 Theory with Path-Integral MC on the Lattice

Projects for Computational Physics

Lukas Bayer & Jan Glowacz

March 2021

Table of Contents

- Theory
 - ϕ^4 Theory
 - Correlation Functions
 - Metrics
- Discretization
 - Classic Parametrization
 - Alternative Parametrization
- Algorithm
 - Setup

- First Measurements
 - A Colourful Image
 - Thermalization Analysis
- Correlators
 - 2-point Correlators
 - Effective Mass
- 6 Effective Potential
 - Unbroken Symmetry
 - Broken Symmetry

ϕ^4 Theory

- real, scalar fields
- simplest interacting quantum field theory
- toy model for studying the principles of QFT
- describes self-interacting part the Higgs field

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) \underbrace{-\frac{1}{2} \mu^{2} \phi^{2} - \frac{\lambda}{4!} \phi^{4}}_{-V(x)} \quad [7]$$

Theory

Spontaneous Symmetry Breaking

$$V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{\lambda}{4!}\phi^4$$

 $\lambda < 0$: potential unbounded from below \rightarrow unphysical

$$\lambda>0, \mu^2>0$$
: \mathcal{Z}_2 symmetry preserved, vacuum expectation value $\langle\phi\rangle=0$

 $\lambda > 0, \mu^2 < 0$: \mathcal{Z}_2 symmetry spontaneously broken, field develops vev $\langle \phi \rangle \neq 0$

Example potentials

Correlation Functions in Minkowski Space-Time

$$C_{n} := \langle \Omega | T (\phi(x_{1}) \dots \phi(x_{n})) | \Omega \rangle = \lim_{t \to \infty (1 - i\epsilon)} \frac{\int \mathcal{D}[\phi] \phi(x_{1}) \dots \phi(x_{n}) \exp \left(i \int_{-t}^{+t} d^{4}x \mathcal{L} \right)}{\int \mathcal{D}[\phi] \exp \left(i \int_{-t}^{+t} d^{4}x \mathcal{L} \right)}$$
[3]

ullet $|\Omega
angle$ vacuum of the interacting theory

Lukas Baver & Jan Glowacz

- the functional integral $\int \mathcal{D}[\phi]$ runs over all possible fields $\phi(x)$
- ullet complex shift in time integration o exponential damping o vacuum at infinite |t|

Wick Rotations

Rotate time to imaginary axis

$$t = -i\tau$$

$$(\partial_{\mu}\phi)(\partial^{\mu}\phi) = (\partial_{t}\phi)^{2} - (\nabla\phi)^{2} = -\left((\partial_{\tau}\phi)^{2} + (\nabla\phi)^{2}\right) =: -\left(\partial^{E}\phi\right)^{2}$$

Reminder:

Minkowski metric
$$s^2 = t^2 - x^2 - y^2 - z^2$$

Euklidean metric $(s^E)^2 = \tau^2 + x^2 + y^2 + z^2$

Correlation Functions in Euklidean Space-Time

Define Euklidean action:

$$S^{E}[\phi] := -iS[\phi] = -i \int d^{4}x \mathcal{L} = \int d^{4}x^{E} \left(\frac{1}{2} \left(\partial^{E} \phi\right)^{2} + \frac{1}{2} \mu^{2} \phi^{2} + \frac{\lambda}{4!} \phi^{4}\right)$$
[3]

Correlation function in Euklidean Space-Time:

$$C_n := \langle \Omega | T \left(\phi(x_1^E) \dots \phi(x_n^E) \right) | \Omega \rangle = \frac{\int \mathcal{D}[\phi] \phi(x_1^E) \dots \phi(x_n^E) \exp\left(-S^E[\phi] \right)}{\int \mathcal{D}[\phi] \exp\left(-S^E[\phi] \right)} \quad [3]$$

Partition function:

$$Z := \int \mathcal{D}[\phi] \, \mathrm{e}^{-S^E[\phi]}$$

7/26

Space-time lattice:

- periodic boundary conditions
- d dimensions, directions \hat{e}_k with $k = 1 \dots d$
- $N = \prod_{k=1}^{d} n_k$ lattice sites x_i with $i = 1 \dots N$
- lattice spacings a_k , volume element $v = \prod_{k=1}^d a_k$

Derivative:

$$\partial_k \phi(x_i) = \frac{\phi(x_i + a_k \hat{e}_k) - \phi(x_i)}{a_k}$$

Action:

$$S[\phi] = v \cdot \sum_{i=1}^{N} \left(\frac{(\phi(x_i + a_k \hat{e}_k) - \phi(x_i))^2}{2a_k^2} + \frac{1}{2}\mu^2 \phi(x_i)^2 + \frac{\lambda}{4!}\phi(x_i)^2 \right)$$

Alternative Parametrization

Working on uniform, 4-dim. lattice $(a_k = a \forall k, d = 4)$ Introduce dimensionless field φ and dimensionless lattice parameters κ, α :

$$\varphi = \frac{\sqrt{2}\kappa}{a}\phi$$

$$a^{2}\mu^{2} = \frac{1-2\alpha}{\kappa} - 8$$

$$\lambda = \frac{6\alpha}{\kappa}$$

Action:

$$S[\varphi] = \sum_{i=1}^{N} \left(-2\kappa \sum_{k=1}^{4} \left[\varphi(x_i) \varphi(x_i + a\hat{e}_k) \right] + \varphi(x_i)^2 + \alpha \left[\varphi(x_i)^2 - 1 \right]^2 \right) \quad [5]$$

Discretization

Integration:

$$\int \mathcal{D}[\phi] \to \text{finite sum over field configurations}$$

Exponential varies rapidly \rightarrow importance sampling from Boltzmann distribution:

$$P(\phi_
u) = rac{1}{Z} e^{-S[\phi_
u]} = rac{\exp\left(-S[\phi_
u]
ight)}{\int \mathcal{D}[\phi] \, \exp\left(-S[\phi]
ight)}$$

Estimate for n-point correlation function:

$$\bar{C}_n = \frac{1}{M} \sum_{\nu=1}^M \left[\phi_{\nu}(x_1) \dots \phi_{\nu}(x_n) \right]$$

Metropolis-Hastings Algorithm

- **1** Initialize lattice with constant initial field strength $\phi_{\rm ini}$ at all sites
- **②** Sweep over the lattice by performing the following steps at every lattice site x_j
 - **3** Sample from a uniform distribution $\Delta \phi \in [-\delta_{\max}, \delta_{\max}]$
 - **2** Propose variation of the field $\phi(x_j) \to \phi'(x_j) = \phi(x_j) + \Delta \phi$.
 - **3** Calculate change in the action ΔS
 - **1** Accept with probability $\rho = \min(1, e^{-\Delta S})$, otherwise reject
- **3** Calculate an interesting quantity (e.g. product of fields $[\phi_{\nu}(x_1) \dots \phi_{\nu}(x_n)]$)
- Repeat the steps 2 and 3 several times
- Average over stored values = estimate for the physical quantity

Setup

- Markov chain Monte Carlo simulation using Metropolis-Hastings algorithm
- Change of field per sweep limited to $\Delta\phi\in[-\delta_{\rm max},\delta_{\rm max}] \to {\sf acceptance} \sim 70\,\%$
- Lattice size $n = 10 \rightarrow$ relative uncertainty of 0.7 %

A Colourful Image

Plot of ϕ in dependence of t and x on a 2 dimensional lattice with $\mu^2=-1$ and $\lambda=1$

Lukas Bayer & Jan Glowacz

Lukas Bayer & Jan Glowacz

Plot of $|\langle \phi \rangle|$ in dependence of the amount of sweeps and varying $\phi_{\rm ini}$ with $\mu^2 = -1$ and $\lambda = 1$

Varying λ with $\mu^2=1$ and $\phi_{\mathrm{ini}}=0.1$

Varying μ^2 with $\lambda=1$ and $\phi_{\rm ini}=0.1$

Plots of $|\langle \phi \rangle|$ in dependence of the amount of sweeps and varying parameters

Varying λ with $\mu^2=-1$ and $\phi_{\rm ini}=0.1$

Varying
$$\lambda$$
 with $\mu^2 = -1$ and $\phi_{\rm ini} = 0.1$

Plots of $|\langle \phi \rangle|$ in dependence of the amount of sweeps and varying λ

Alternative Parametrization

Plot of $|\langle \varphi \rangle|$ in dependence of the amount of sweeps and varying $\phi_{\rm ini}$ with $\kappa=\alpha=1$

Alternative Parametrization

Varying κ with $\alpha=1$ and $arphi_{
m ini}=0.1$

Varying lpha with $\kappa=1$ and $arphi_{
m ini}=0.1$

Plots of $|\langle \varphi \rangle|$ in dependence of the amount of sweeps and varying parameters

18 / 26

2-point Correlators and Effective Mass

Sum over correlation functions of 2 points, separated by time t

$$ilde{C}_2(t) = \sum_{i=1}^N ra{\Omega} \phi(t, ec{x_i}) \phi(0, ec{x_i}) \ket{\Omega}$$

Relation to effective (renormalized) mass of the field:

$$\tilde{C}_2(t) = A \cdot e^{-m_{\text{eff}}|t|} + \dots$$
 [6]

For large $t \gg 1$:

$$m_{ ext{eff}} pprox \log \left(rac{ ilde{C}_2(t)}{ ilde{C}_2(t+1)}
ight)$$

2-point Correlators

Normalized 2-point correlators for the classic parametrization, $\mu^2=\lambda=1$

Effective Mass

Plot of $m_{\rm eff}$ in dependence of μ^2 for varying λ

Effective Potential

Through renormalization effective potential becomes:

$$V_{\text{eff}}(\phi) = \frac{1}{2} m_{\text{eff}}^2 Z_{\phi}^{-1} \phi^2 + \frac{\lambda_{\text{r}}}{4!} Z_{\phi}^{-2} \phi^4$$
 [2]

Trick: add external source J

$$U(\phi) := V_{\text{eff}}(\phi) - J\phi$$

 $\langle \phi \rangle = \langle \phi \rangle (J) \to J = J(\langle \phi \rangle)$

vev found at minimum of potential

$$rac{\partial U}{\partial \phi}\left(\langle \phi
angle
ight) = 0 = rac{\partial V_{ ext{eff}}}{\partial \phi}\left(\langle \phi
angle
ight) - J\left(\langle \phi
angle
ight)$$

$$V_{\text{eff}} = \int_0^\phi \mathrm{d}\langle \phi \rangle J(\langle \phi \rangle)$$

Unbroken Symmetry

Effective potential $V_{
m eff}$

Measurements for the effective potential with $\mu^2=\lambda=1$

Broken Symmetry

Measurements for the effective potential with $\mu^2=-1$ and $\lambda=2$

Citations I

M Creutz and B Freedman.

A statistical approach to quantum mechanics.

Annals of Physics, 132(2):427-462, 1981.

M Jansen and K Nickel.

 ϕ^4 theory on the lattice.

HISKP. March 2011.

Hans Jockers.

Lecture notes on advanced quantum field theory, 2020.

University of Bonn.

Thomas Luu.

Lecture on computational physics, 2020.

University of Bonn.

Citations II

Axel Maas.

Lecture notes on lattice quantum field theory, 2017.

KFU Graz.

Istvan Montvay and Gernot Münster.

Quantum Fields on a Lattice.

Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1994.

Michael E Peskin and Daniel V Schroeder.

An introduction to quantum field theory.

Westview, Boulder, CO, 1995.

Includes exercises.