envolvido nas reações

químicas

pode ser liberado ou ramo da química que estuda o calor absorvido

libera calor

$\Delta H < zero$

 $C + O_2 \longrightarrow CO_2 + CALOR$ $C + O_2 - CALOR \longrightarrow CO_2$

absorve calor

 $\Delta H > zero$

 $CaCO_2 + CALOR \longrightarrow CaO + CO_2$ $CaCO_2 \longrightarrow CaO + CO_2 - CALOR$

REAÇÃO EXOTÉRMICA

ENERGIA

∆H é a variação de entalpia

o reagente sempre produtos

> os reagentes serão o de mais baixa energia e os produtos serão os de mais alta energia

que parte dos reagentes

até o ponto mais alto é a

ENERGIA DE ATIVAÇÃO

da reação

é a energia mínima

necessária para uma

reação começar

a ocorrer

REAÇÃO ENDOTÉRMICA

CALCULO DE ENTALPIA

uma substância simples mais estável, sempre apresentará

ENTALPIA

 $Cu_2O_{(s)} + \frac{1}{2} O_{2(g)} \longrightarrow 2CuO_{(s)}$

 $\Delta H = H_{produtos}$

TERMOQUIMUSA

ENERGIA DE ATIVAÇÃO O aumento de energia

des complica

no seu estado fundamental entalpia igual a zero

entalpia

precisamos

uma tabela

CI - CI = 242 kJ

 $H-CI=431 \, kJ$

para inverter a reação, você precisa mudar o sinal do ∆H

para multiplicar ou dividir a reação, para igualar o número de mols, você precisa multiplicar

os valores de entalpia de ligação são tabelados H-H=436~kJ

ou dividir o ∆H

 $C + \frac{1}{2}O_{2} \longrightarrow CO \qquad \Delta H_{1} = -110kJ$

 $CO + \frac{1}{2}O_{2} \longrightarrow CO_{2} \Delta H_{2} = -283kJ$

 $\Delta H_2 = \Delta H_1 + \Delta H_2$

 $C + O_2 \longrightarrow CO_2 \quad \Delta H_{global} = ?$

 $C + \frac{1}{2}O_{2} \longrightarrow CO \qquad \Delta H_{1} = -110kJ$ $CO + \frac{1}{2}O_{2} \longrightarrow CO_{2} \Delta H_{2} = -283kJ$

 $C + O_2 \longrightarrow CO_2 \qquad \Delta H_{global} = -393kJ$

DE FORMAÇÃO o valor da entalpia de ligação virá sem sinal

> REAGENTE colocar sinal positivo

PRODUTO colocar sinal negativo

 $+436kJ +242kJ \longrightarrow 2(-431kJ) = -862kJ$

basta calcular a entalpia do reagente separadamente da entalpia do produto e somar esses dois resultados para chegar na entalpia da reação

olhar para as ligações

cuidado com o número

de mols, você precisa sempre

multiplicar por ele!