9)
$$\equiv 7(78 \text{ VA}) \text{ V} (7C \text{ V} (7AN3))$$
 (Fuse 7 him, De Horgon)
 $\equiv (8RA) \text{ V} (7C \text{ V} (7AN3))$

()

A	B	C	G	H	$G \to H$	$G \wedge H$	$G \lor H$
0	0	0	0	1	1	0	1
0	0	1	1	0	0	0	1
0	1	0	0	1	1	0	1
0	1	1	1	0	9	0	1
1	0	0	0	0	1	0	0
1	0	1	1	0	0	0	7
1	1	0	1	0	0	0	1
1	1	1	0	1	7	0	1

1.

G	erfüllbar	unerfüllbar	allgemeingültig
ja	Z		
nein		□	∠

$G \wedge H$	erfüllbar	unerfüllbar	allgemeingültig
ja		X	
nein	×		

2.

			U
	$G \models H$	$G \wedge H \models H$	$H \equiv \neg G$
ja			
nein	Q	<u>K</u>	X

d)

 \bullet Seien F und Gzwei beliebige Formeln. $F\equiv G$ genau dann, wenn

	wahr	falsch
Mit DPLL ein Modell für $(F \to G) \land (G \to F)$ hergeleitet werden kann.	R	
$(F \wedge \neg G) \vee (G \wedge \neg F)$ unerfüllbar ist.	X	
$F \leftrightarrow G$ allgemeingültig ist. \square		X
G allgemeingültig ist.		Ø

• Sei F eine beliebige Formel. F ist allgemeingültig genau dann, wenn

	wahr	falsch
es eine allgemeingültige Formel G gibt, mit $F \models G$.		
mit Resolution nicht die leere Klausel für F hergeleitet werden kann.		
$F \vee \neg F$ unerfüllbar ist.		X
$\neg F \models F$		Ø

Aufgabe 2.

 $\pi = \langle \rho, \alpha, \kappa, s, \tau, v, w, x \rangle$

a) F est ein Homfornd will celle Klarseln haben maximal ein negestes Konstont 5) F= 55p->6,5->54,5p->R),59->U4,5 R->x4, 55097,58,0007,59,000077

() 3->57-15+ do cintigo Falit

- (1) Maxisen (5) in redute Seite
- (2) HOUILLY (5) IN LINGE SUH
- (3) Makiner (8), in richte Seite 3->4 R->X

 (4) Makiner (9) In linke SUH
 - (4) MOHINM (9) An linue SUH
 - (5) Mohimen (n) in lethe Seite (6) Mohim (n) in lihing Seite groking ist Fettig!

e) F-iot Enfullson well keepe Implikation Xull War morhint! Em Modell: A(5) = A(g) = A(u) = 1 and A(p) = A(n) = A(x) = A(w) = 0 Aufgahez. ~= \$ } R, Y Y, \$ U, 7 W Y, \$ 7 U, W } , \$ 184, \$ 7 P, 94, < P,7RY, SR,7W \, , 57Q,7P7 > ab) XKist millet enforcement eil ist um Falam Noben (- K, n K, n. n L n Km) 15t 1) Nu gfin le D-a mitempleet cu'ci: Resolut, re: 5 4,7 WY 57 V, W? 2 => midralbor des cause Formel night enfiller Augabe 4 F= (7AVC) 1 (7A) 1 (7B) 1 (AV7C) (C) (1) ~ (7B) (71) g (7A) (7B) n(7c) Es 1st esfullbon weil 7B wed 7C Kommen waln Sum (2.B A(3)=0 md A(c)=0)

5) 2PLL ...

Ausdruck	Nichts	Term	Atom	Literal	Klausel	Formel	NNF	PNF
$\exists x \ (\neg p(h(b,x)))$				X	X	X	X	X
$\forall x \exists y \ (g(q(y), x) \approx f(x))$	X			,				
$\neg p(g(x)) \lor q(x,x)$				Χ	X	X	χ	X
$\neg q(f(b), g(f(a)))$				X	X	X	X	X
$\neg q(g(y))$	Χ							
$\neg \forall x \ \forall y \ (h(y, x) \approx f(x))$						X		
$g(f) \approx x$	×							
$g(x) \approx x$			X	X	X	X	X	X
$p(\neg f(x), x)$	X							
$p(g(b)) \to q(x, a)$			X	X	X	X		
$q(h(x,b),z) \lor \forall z \ p(y)$,			×		
$q(y,a) \wedge q(b,y) \wedge y$	Х							

(p(V)y,a) U n(x,b)) n (p(X)5,a) V7p(x,x,6) V7g(x,x,6)

6. Fx ty (((x,a) 1 (2(x,a,x,b) ~ p(x,y,x))) (1(x,x))

7 P(XA) B9(& D(XXX))

Found 11st in KNT =>

Formel = $\{ \langle - \rangle, n(x,a) \rangle, \langle - \rangle, \mathcal{Q}(x,a,x,b), \rho(x,y,x) \rangle$

5 p(x1519) -1 > (x1x) 7

Aufgabe 6.

$$\begin{array}{ccc} & & & & \\ & & & \\ & &$$

$$z A(p) \left(S(3) + \sqrt{5} \right)$$

$$5)$$
 A^{2} $(S(X+Y) = S(X) + 5)$

$$= A(B) \left(5(10 + 5) = 5(10) + 5 \right)$$

$$= A(B) (3 = 13 + 5)$$

Van b) =) Time +x+y

= A(p) (34(p(10+4)))

=> 10-29 muss un grade sem!

=> Falsel 10-2 y Komm niemals ~ y seln =) Falst

e) A(B) (Yx Yg ((X=5(Y)N 7p(X))->p(g)) = A(B) (Yx+y ((x = y+3 N7p(x)) -> p(y))

=> My xxy so doss xxy+3 N = {10, n/1, 5/2, +/3}, U |W |X, y + X Aufgobs 7. a) \(\(\lambda \), \(\gamma \) = \(\gamma \), \(\gamma \) = \(\gamma \), \(\gamma \) \(\gamma \), \(\gamma \)

tr.,=51.3. anh Failure

2(-) = 5(--) ? Clash Failure 5) { + (u, w, +(u, +,a)) = +(s(x, 5), s(x, u), +(w, 2, x)) => < u = 5(x,y), W= 5(x,u), +[u,t,a)= +(w,7x)} => < n = S(X,y), w= S(X, S(X,y)), + (S(X,y), Z,a) = + (w,7,X) / => { u= 5(k,y), w= S(x,S(x,y)), + (S(x,y), 7,9) = + (S(x,S(x,y)), 7, x) => \ \ \(\frac{2}{5} \text{ S(x, y)} \) \(\text{ W} = \text{ S(x, S(x, y))} \) \(\text{ S(x, y)} \) \(\tex

Aufgabo 8.

an 1. 5 p(s(n), s(y), x), p(f(a), g(b), y), rp (f(a), f(b), y)} f(x) = f(a), f(b) = f(b), x=25 $\chi = \alpha$, y = 5, $\chi = 4$ $\chi = \alpha$, $\chi = 5$) ($\alpha = 5$) Closh Failline 2.5 p(f(x), (191) X), p(7, f(7), y), 5(f(x), f(4), x)/ $S(x) \stackrel{?}{=} 7$, $S(y) \stackrel{?}{=} S(x)$, $X \stackrel{?}{=} y$

 $f(x) \stackrel{?}{=} 7$, $f(y) \stackrel{?}{=} f(9)$, $X \stackrel{?}{=} y$ $2 \stackrel{?}{=} f(x) = f(y) \stackrel{?}{=} f(f(x)), \quad x \stackrel{?}{=} y$ $f(y) \stackrel{?}{=} f(f(y))$ $f(y) \stackrel{?}{=} f(f(y))$ $f(y) \stackrel{?}{=} f(f(y))$ $f(y) \stackrel{?}{=} f(f(y))$ 3. \2(\f(\x)),\5,\g),2(\f(\f),\f(a),\f),\(\frac{2}{3}\),\(\frac{1}\),\(\frac{1}\),\(\frac{1}{3}\),\(\frac{1}\),\(\frac{1}\),\(\frac{1}\),\(\fr 72(x,7,x) $f(f(x)) \stackrel{?}{=} X \rightarrow SCAN Failure$ 1.5(16)(x,y), 75(9(x)), 75(9)75(g(x)) 75(g) y = (g(X) 2. 5 S(S(G)), 7 N(a, X/G)7 =) vann nidtt dere leen klossel Zeben

New Section 19 Page