Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Лабораторная работа «Задача коммивояжера, машина Тьюринга»

Работу выполнил Учащийся группы ПИН-33 Карпеченков Михаил Владимирович Под руководством Волкова Александра Сергеевича

Алгоритм решение методом ветвей и границ:

Начальное приведение матрицы стоимости. Матрица стоимости называется приведенной, если она имеет в каждой строке и каждом столбце хотя бы один нуль. Операция приведения заключается в вычитании из элементов каждой строки (столбца) минимального элемента этой строки (столбца) — константы приведения. Сумма констант приведения образует нижнюю граничную оценку стоимости любого возможного тура.

Вычисление функции штрафа. Функция штрафа – это множество чисел, вычисленных для каждого нуля приведенной матрицы посредством суммирования двух минимальных чисел, из той строки и того столбца, в которых расположен нулевой элемент.

Выбор ребра ветвления. Для ветвления необходимо выбирать ребро, которому соответствует максимальная функция штрафа. Если существует несколько одинаковых максимальных значений функции штрафа, то выбор среди них может быть произвольным.

Вычисление граничной оценки для ветви, соответствующей *невключению ребра в тур*. Эта оценка вычисляется как сумма граничной оценки, соответствующей предыдущему узлу дерева перебора, и выбранного значения функции штрафа.

Вычисление граничной оценки для ветви, соответствующей *включению ребра в тур*. Для вычисления граничной оценки необходимо:

- вычеркнуть в матрице стоимости строку и столбец, соответствующие выбранному ребру;
- скорректировать полученную матрицу таким образом, чтобы устранить возможность досрочного завершения тура (устранить циклы);
- осуществить приведение (если необходимо) полученной матрицы, и если константа приведения отлична от нуля, то сложить эту константу с граничной оценкой предыдущего узла.

Проверка на окончание решения. Если скорректированная матрица имеет размер 2×2 , и если узел дерева, которому соответствует эта матрица, имеет минимальную граничную оценку, то решение задачи заканчивается: два оставшихся нуля этой матрицы соответствуют двум последним ребрам, которые включаются в тур непосредственно, при этом, очевидно, стоимость тура не изменяется.

3. Составить программу решения задачи коммивояжера для графа, заданного матрицей смежности:

	1	2	3	4	5
1	∞	7	12	25	10
2	10	8	9	5	11
3	13	8	∞	6	4
4	6	11	15	8	15
5	5	9	12	17	∞

Вывод программы объемен, поэтому вставлю текстом:

STEP 1

GRAPH:

V | 1 2 3 4 5

1 | M 7 12 25 10

2 | 10 M 9 5 11

3 | 13 8 M 6 4

4 | 6 11 15 M 15

5 | 5 9 12 17 M

Finding and counting di:

di: [0, 5, 4, 6, 5];

--

On this STEP Graph:

V | 1 2 3 4 5

1 | M 7 12 25 10

2 | 5 M 4 0 6

3 | 9 4 M 2 0

4 | 0 5 9 M 9

5 | 0 4 7 12 M

Finding and counting dj:

dj: [0, 4, 4, 0, 0];

5 | 0 4 7 12 M 5 | 0-0 4-4 7-4 12-0 M 5 | 0 0 3 12 M

 $di \mid 0 \ 4 \ 4 \ 0 \ 0$ $di \mid 0 \ 4 \ 4 \ 0 \ 0$

On this STEP Graph:

V | 1 2 3 4 5

- 1 | M 3 8 25 10
- 2 | 5 M 0 0 6
- 3 | 9 0 M 2 0
- 4 | 0 1 5 M 9
- 5 | 0 0 3 12 M

Finding <marks> of zeros:

V | 1 2 3 4 5

- 1 | M 3 8 25 10
- 2 | 5 M 0(3) 0(2) 6
- 3 | 9 0(0) M 2 0(6)
- 4 | 0(1) 1 5 M 9
- 5 | 0(0) 0(0) 3 12 M

Choosing the largest <mark>:

0(6)

Found path:

3 -> 5

[3->5]

Deleting the row and column with the highest <mark> at zero.

V | 1 2 3 4

- 1 | M 3 8 25
- $2 \mid 5 \mid M \mid 0 \mid 0$
- $4\mid 0 \quad 1 \quad 5 \quad M$
- 5 | 0 0 M 12

Path at the moment:

3->5

STEP 2

GRAPH:

V | 1 2 3 4

- 1 | M 3 8 25
- 2 | 5 M 0 0
- 4 | 0 1 5 M
- 5 | 0 0 M 12

Finding and counting di:

di: [0, 0, 0, 0];

 $V \,|\, \, 1 \ \ \, 2 \ \ \, 3 \ \ \, 4 \,|\, di \qquad \quad V \,|\, \, 1 \ \ \, 2 \ \ \, 3 \ \ \, 4 \,|\, di \qquad \quad V \,|\, \, 1 \ \ \, 2 \ \ \, 3 \ \ \, 4$

.-----

On this STEP Graph:

$$V \mid 1 \mid 2 \mid 3 \mid 4$$

1 | M 3 8 25

2 | 5 M 0 0

4 | 0 1 5 M

5 | 0 0 M 12

Finding and counting dj:

dj: [0, 0, 0, 0];

On this STEP Graph:

Finding <marks> of zeros:

Choosing the largest <mark>:

0(12)

Found path:

$$[3->5, 2->4]$$

Deleting the row and column with the highest <mark> at zero.

$$V \mid 1 \mid 2 \mid 3$$

5 | 0 M M

Path at the moment:

3->5 -> 2->4

STEP 3

GRAPH:

V | 1 2 3

1 | M 3 8

4 | 0 1 5

5 | 0 M M

Finding and counting di:

di: [0, 0, 0];

 $1 \mid M \quad 3 \quad 8 \mid 0 \implies 1 \mid M \quad 3-0 \quad 8-0 \mid 0 \implies 1 \mid M \quad 3 \quad 8$

4 | 0 1 5 | 0 4 | 0-0 1-0 5-0 | 0 4 | 0 1 5

5 | 0 M M | 0 5 | 0-0 M M | 0 5 | 0 M M

On this STEP Graph:

V | 1 2 3

1 | M 3 8

Finding and counting dj:

dj: [0, 1, 5];

On this STEP Graph:

Finding <marks> of zeros:

V	1	2	3	
1	M	2	3	
4	0(0)	0(2)	0(3)	
5 0(2	2147483647	')	M	M

Choosing the largest <mark>:</mark>
0(2147483647)
Found path:
5 -> 1
[3->5, 2->4, 5->1]
Deleting the row and column with the highest <mark> at zero.</mark>
V 2 3

1 2 M
$4 \mid 0 \mid 0$
Path at the moment:
3->5 -> 2->4 -> 5->1
STEP 4
GRAPH:
V 2 3
1 2 M
$4 \mid 0 \mid 0$
Finding and counting di:

di: [2, 0];

$$1 \mid 2 \mid M \mid 2 \implies 1 \mid 2-2 \mid M \mid 2 \implies 1 \mid 0 \mid M$$

On this STEP Graph:

$$4 \mid 0 \mid 0$$

Finding and counting dj:

dj: [0, 0];

$$4 \mid 0 \quad 0 \quad => \quad 4 \mid 0 - 0 \quad 0 - 0 \quad => \quad 4 \mid 0 \quad 0$$

$$dj \mid 0 \quad 0 \qquad dj \mid 0 \quad 0$$

On this STEP Graph:

$$1 \mid 0 \mid M$$

$$4 \mid 0 \mid 0$$

Finding and counting di:

di: [0];

$$V \mid 3 \mid di$$
 $V \mid 3 \mid di$ $V \mid 3$

 \Rightarrow ------
 $4 \mid 0 \mid 0$ $4 \mid 0-0 \mid 0$ $4 \mid 0$

On this STEP Graph:

Finding and counting dj:

dj: [0];

$$V \mid 3$$
 $V \mid 3$ $V \mid 3$
 $4 \mid 0 \Rightarrow 4 \mid 0 \Rightarrow 4 \mid 0$
 $dj \mid 0$ $dj \mid 0$

On this STEP Graph:

Finding <marks> of zeros:

Choosing the largest <mark>:

Found path:

Sum of Path: 36

Process finished with exit code 0