GE23131-Programming Using C-2024

	Test	Expected	Got	
~	printf("%d", myFunc(1))	1	1	~
/	printf("%d", myFunc(2))	0	0	~
/	printf("%d", myFunc(10))	1	1	~
/	printf("%d", myFunc(25))	0	0	~
_	printf("%d", myFunc(200))	1	1	~

Passed all tests! ✓

Question **2**Correct
Marked out of 1.00

F Flag question

Find the number of ways that a given integer, **X**, can be expressed as the sum of the **N**th powers of unique, natural numbers.

For example, if $\mathbf{X} = \mathbf{13}$ and $\mathbf{N} = \mathbf{2}$, we have to find all combinations of unique squares adding up to $\mathbf{13}$. The only solution is $2^2 + 3^2$.

Function Description

 $Complete \ the \ powerSum \ function \ in \ the \ editor \ below. \ It \ should \ return \ an \ integer \ that \ represents \ the \ number \ of \ possible \ combinations.$

powerSum has the following parameter(s):

X: the integer to sum to

N: the integer power to raise numbers to

Input Format

The first line contains an integer **X**.

The second line contains an integer N.

Constraints

 $1 \le X \le 1000$

 $2 \le N \le 10$

Output Format

Output a single integer, the number of possible combinations calculated.

Sample Input 0

10

2

Sample Output 0

1

Explanation 0

If X = 10 and N = 2, we need to find the number of ways that 10 can be represented as the sum of squares of unique numbers.

$$10 = 1^2 + 3^2$$

This is the only way in which ${\it 10}$ can be expressed as the sum of unique squares.

Sample Input 1

100

2

Sample Output 1

3

Finish review