

Análise de dados multivariados I

Escalonamento

Multidimensional

CAPÍTULO 9

Escalonamento Multidimensional

Análise de Dados: Modelagem Multivariada para Tomada de Decisões. Luiz Paulo FÁVERO, Patrícia BELFIORE, Fabiana Lopes DE SILVA e Betty Lilian CHAN, Rio de Janeiro: Elsevier, 2009.

O ideal é acharmos uma representação gráfica dos objetos de modo que o estresse seja o menor possível.

JOHNSON e WICHERN (2007)

Neste tópico:

- Utilização do escalonamento multidimensional.
- Forma do banco de dados.
- Dados de percepção, preferência e similaridade.
- Medidas de similaridade e dissimilaridade.
- Tipos de escalonamento multidimensional.
- Interpretar as representações gráficas.

1 Apresentação do Capítulo:

O EMD é uma técnica de interdependência que permite mapear distâncias entre objetos.

Será apresentado os EMD's não métrico e métrico.

Objetivos do capítulo:

- Introduzir conceitos do EMD.
- Aplicação da técnica.
- Discutir os resultados obtidos.

2 Introdução ao EMD

- O EMD é de fácil aplicação.
- A técnica é apropriada para representar graficamente *n* elementos em um espaço de dimensão menor do que o original, levando-se em conta a distância ou a similaridade que os elementos têm entre si.

Observação: Na análise de cluster hierárquicos pelo SPSS, no rodapé da matriz de proximidade gerada existe a informação de que aquelas distâncias euclidianas formam uma matriz de dissimilaridades (this is a dissimilarity matrix).

Analogia entre o EMD e o uso de um mapa.

Arquivo: cidadesBrasileiras.sav

Suponha que não temos a configuração geográfica, mas temos a informação das distâncias entre cidades

Pela técnica é criado um novo sistema de coordenadas que facilita a interpretação das proximidades dos objetos

Euclidean distance model

Disposição das distâncias entre 15 cidades brasileiras

3 Modelagem do Escalonamento Multidimensional

- Para N objetos de uma matriz de similaridade temos
 M = N (N-1) / 2 distâncias (ou dissimilaridades) entre pares de objetos.
- A similaridade entre pares de objetos é tal que:

$$S_{i_1 j_1} < S_{i_2 j_2} < \dots < S_{i_M j_M}$$

- A distância ou dissimilaridade é tal que:

$$d_{i_1j_1} > d_{i_2j_2} > \dots > d_{i_Mj_M}$$

Ex. Uma matriz de Similaridades de pares de quatro estímulos (objetos)

Similaridades	Estímulo 1	Estímulo 2	Estímulo 3	Estímulo 4
Estímulo 1	-			
Estímulo 2	4	-		
Estímulo 3	1	6	-	
Estímulo 4	3	5	2	-

Dissimilaridades
$$\delta_{ij} = (M+1) - s_{ij}$$

Ex. Matriz de dissimilaridades de pares de quatro estímulos (objetos)

Dissimilaridades	Estímulo 1	Estímulo 2	Estímulo 3	Estímulo 4
Estímulo 1	-			
Estímulo 2	3	-		
Estímulo 3	6	1	-	
Estímulo 4	4	2	5	-

A partir de uma **Matriz de Dissimilaridades** $-\Delta$ (por exemplo,

para
$$n = 4$$
)

$$\Delta = egin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} & \delta_{14} \ \delta_{21} & \delta_{22} & \delta_{23} & \delta_{24} \ \delta_{31} & \delta_{32} & \delta_{33} & \delta_{34} \ \delta_{41} & \delta_{42} & \delta_{43} & \delta_{44} \end{pmatrix}$$

A matriz X corresponde à solução com duas dimensões: $X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ x_{41} & x_{42} \end{bmatrix}$

$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ x_{41} & x_{42} \end{pmatrix}$$

Uma fórmula geral para distância é a distância de Minkowski:

$$d_{ij} = \left(\sum_{p=1}^{m} (x_{ip} - x_{jp})^{q}\right)^{1/q}$$

A estimação das distâncias correspondentes à todos os objetos proporciona uma nova matriz, matriz D.

$$D = \begin{pmatrix} d_{11} & d_{12} & d_{13} & d_{14} \\ d_{21} & d_{22} & d_{23} & d_{24} \\ d_{31} & d_{32} & d_{33} & d_{34} \\ d_{41} & d_{42} & d_{43} & d_{44} \end{pmatrix}$$

A solução do EMD deve ser tal que exista uma correspondência máxima entre as distâncias de objetos provenientes da matriz Δ e as distâncias obtidas pela matriz D.

Kruskal (1964) propôs uma medida de adequação de ajuste para avaliar o quanto as distâncias derivadas dos dados de dissimilaridades $f(\delta_{ij})$ se aproximam daquelas originais fornecidas pelos respondentes (transformadas).

Medida: STRESS (STandardized Residual Sum of Squares)

$$Stress = \sqrt{\frac{\sum_{i} \sum_{j} (f(\delta_{ij}) - d_{ij})^{2}}{\sum_{i} \sum_{j} d_{ij}^{2}}}$$

Quanto maior o valor do STRESS, pior o ajuste

Valores de referência para o STRESS

STRESS	Adequação do Ajuste
20%	Pobre
10%	Razoável
5%	Bom
2,5%	Excelente
0%	Perfeito

Outra medida: SSTRESS - coeficiente de Young, encontrado no algoritmo ALSCAL (SPSS).

$$SStress = \sqrt{\frac{\sum_{i} \sum_{j} \left(f^{2}(\delta_{ij}) - d_{ij}^{2}\right)^{2}}{\sum_{i} \sum_{j} d_{ij}^{4}}}$$

Ainda para medir a qualidade do ajuste: índice RSQ. Correlação quadrática (R²) entre as distâncias originais e as derivadas dos dados de dissimilaridade.

$$RSQ = \frac{\left[\sum_{i}\sum_{j}\left[f(\delta_{ij}) - f(\delta..)\right].\left[d_{ij} - d..\right]\right)^{2}}{\left[\sum_{i}\sum_{j}\left[f(\delta_{ij}) - f(\delta..)\right]^{2}\right].\left[\sum_{i}\sum_{j}\left[d_{ij} - d..\right]^{2}\right]}$$

Os subscritos (..) representam a média do elemento correspondente ao sub-índice.

Pesquisa: Avaliar a percepção entre "proximidades" de marcas de automóveis, para uma quantidade de seis marcas. (Note que não estamos falando em termos de distâncias)

Marca	Nome				
1	Peugeot				
2	Renault				
3	Citroën				
4	Toyota				
5	Honda				
6	Fiat				

Dados em escala ordinal. Dados de preferência ou percepção quanto à proximidade dos pares que estão sendo avaliados.

4.1 Preparação da Modelagem

A partir da pesquisa obtivemos uma hierarquia de similaridades, apresentada abaixo.

	Peugeot	Renault	Citroën	Toyota	Honda	Fiat
Peugeot						
Renault	14					
Citroën	3	4				
Toyota	12	10	7			
Honda	13	11	6	15		
Fiat	8	9	5	2	1	

Matriz de Similaridades entre pares de Marcas

As medidas de dissimilaridades são então obtidas da tabela

anterior:

•		Peugeot	Renault	Citroën	Toyota	Honda	Fiat
Pe	ugeot						
Re	nault	2					
Cit	troën	13	12				
To	yota	4	6	9			
Н	onda	3	5	10	1		
F	iat	8	7	11	14	15	

Matriz de Dissimilaridades entre pares de Marcas

Esta análise é mais direta. Por ex. as marcas mais próximas são Toyota e Honda.

No SPSS: arquivo Marcas Automoveis.sav

É importante escolher o mapa perceptual (group plots)

4.2 análise dos resultados

Medidas de qualidade do ajuste

Stress	SStress	RSQ	
0,00366	0,0049	0,99992	

Coordenadas de cada estímulo, para duas dimensões

Configuration derived in 2 dimension							
Stimulus Coordinat							
		Dimen	sion				
Stimulus Number	Stimulus Nama	1	2				
Sumulus Number	Stimulus Name	1	2				
1	Peugeot	0,2063	0,9503				
2	Renault	-0,1189	0,8071				
3	Citroën	-0,4406	-1,8678				
4	Toyota	1,0589	-0,2192				
5	Honda	1,2549	-0,0139				
6	Fiat	-1,9605	0,3435				

Representação Gráfica das coordenadas (bi-dimensional)

Derived Stimulus Configuration

Euclidean distance model

Gráfico de Ajuste Linear entre as distâncias derivadas dos dados de dissimilaridades e as distâncias originais transformadas. RSQ alto.

Scatterplot of Linear Fit Euclidean distance model

Relação entre as distâncias derivadas dos dados de dissimilaridades e a posição inicial do Ranking. Ajuste melhor para maiores números no ranking

Relação entre as distâncias originais transformadas (disparidades) e a posição inicial do Ranking. O gráfico está na forma de escada

Transformation Scatterplot Euclidean distance model

- No EMD métrico os dois últimos gráficos não são oferecidos pelo software, pois não se trabalha com medidas na forma de ranking. Trabalha-se com medidas de distâncias ou dissimilaridades propriamente ditas, e não com medidas de preferência ou percepção.
- No EMD métrico os dados devem estar em uma escala quantitativa. As distâncias ou correlações devem ser calculadas com variáveis padronizadas.
- No EMD não métrico os diferentes mapas são definidos por diferentes percepções, no EMD as diferenças estão baseadas nas variáveis.
 - Ex. duas pessoas podem apresentar grande similaridade entre altura e peso e enorme dissimilaridade entre renda e nível de escolaridade.

Exemplo: Dez maiores grupos supermercadistas brasileiros no ano de 2006. Arquivo **Ex Supermercados.sav**

Este banco de dados não é a base para a entrada do software para a elaboração do EMD. Precisa ser transformado em uma matriz de dissimilaridades ou distâncias

Análise de cluster: Fornece medida de dissimilaridade

Proximity Matrix

					Euclidear	Distance				
Case	1:CBD	2:Wal-Mart	3:Carrefour	4:G Barbosa	5:Zaffari	6:DMA	7:lrmãos Bretas	8:Prezunic	9:Angeloni	10:Coop
1:CBD	,000	1,584	1,254	5,344	5,346	5,159	5,278	5,451	5,489	5,548
2:Wal-Mart	1,584	,000	,812	4,137	4,120	3,981	4,072	4,241	4,269	4,335
3:Carrefour	1,254	,812	,000	4,115	4,115	3,937	4,050	4,222	4,261	4,321
4:G Barbosa	5,344	4,137	4,115	,000	,101	,251	,120	,117	,157	,237
5:Zaffari	5,346	4,120	4,115	,101	,000	,293	,122	,135	,157	,229
6:DMA	5,159	3,981	3,937	,251	,293	,000	,185	,338	,382	,431
7:Irmãos Bretas	5,278	4,072	4,050	,120	,122	,185	,000	,187	,235	,285
8:Prezunic	5,451	4,241	4,222	,117	,135	,338	,187	,000	,076	,128
9:Angeloni	5,489	4,269	4,261	,157	,157	,382	,235	,076	,000	,121
10:Coop	5,548	4,335	4,321	,237	,229	,431	,285	,128	,121	,000

This is a dissimilarity matrix