Automatic Speech Recognition for sEMG Silent Speech

Tada Makepeace

School of Computing Final Year Research Project

May 3, 2022

Abstract

No more than 300 words summarizing this dissertation.

Consent to share

I consent for this project to be archived by the University Library and potentially used as an example project for future students.

Table of Contents

\mathbf{A}	bstra	ct		i
\mathbf{A}	ckno	wledge	ements	vi
1	Intr	\mathbf{coduct}	ion	1
	1.1	Projec	et Background	1
2	Res	earch		3
	2.1	List of	f Research Questions	3
	2.2	Resear	rch Design	3
		2.2.1	Design Decisions	3
		2.2.2	Research Requirements	3
3	Lite	erature	e Review	4
	3.1	Кеу Т	Cerms - Silent Speech	4
	3.2	Machi	ne Learning Background	6
		3.2.1	Digital Voicing of Silent Speech	6
	3.3	Silent	Speech Interfaces for Speech Restoration: A Review	7
	3.4	Propo	sed Directions for Research	7
		3.4.1	Text Classification	7
		3.4.2	Data Augmentation	7
		3.4.3	Improving Existing Models	8
	3.5	Conne	ectionist Temporal Classification (CTC)	9

4	App	proaches		10
	4.1	Data Preprocessing		10
		4.1.1 Audio Speech Features		10
	4.2	Data Augmentation via EMG	Synthesis	11
		4.2.1 Related Work		11
	4.3	Training an ASR System on R	aw Voiced EMG Signals	11
		4.3.1 Related Work		11
		4.3.2 Viability Experiment .		12
	4.4	Fine Tuning Speech Recognition	on on Model Predictions	12
		4.4.1 Related Work		12
		4.4.2 Closed Vocabulary Dat	aset	13
		4.4.3 Open Vocabulary (Para	ıllel-Only) Dataset	14
		4.4.4 Open Vocabulary Full (Parallel and Non-Parallel) Dataset	15
${f A}$	Pro	oject Initiation Document		17
В	Eth	nics Review		28
\mathbf{C}	Dee	epSpeech2 ASR Model		31
D	Нур	perparameters		34
	D.1	DeepSpeech2 Audio Hyperpara	umeters	34
	D.2	Silent Speech Transduction Hy	perparameters	35
		D.2.1 Initial Fine Tuning Exp	periments	35
Re	efere	ences		36

List of Tables

4.1	DeepSpeech2 Closed Vocab Finetuned Results	13
4.2	DeepSpeech2 Open Vocabulary Parallel Finetuned Results	15
4.3	DeepSpeech2 Open Vocabulary Full Dataset Finetuned Results	16
D.1	DeepSpeech2 Audio Model Hyperparameters	34
D 2	SOTA Silent Speech Transduction Model	35

List of Figures

Acknowledgements

Thanks.

Chapter 1

Introduction

1.1 Project Background

The problem I will investigate is how to classify electrical signals from a person's facial muscles captured using non-invasive surface electromyography (sEMG) into text without them speaking (i.e. silently articulated speech). I believe this project is worth working on because non-invasive silently articulated speech devices are a human computer interface which offer unique benefits which other methods do not. A non-exhaustive list of examples is provided below:

Privacy of conversation: Typical speech recognition systems have users broadcast what they're saying to the environment (e.g. issuing commands to an Amazon Alexa device) and therefore privacy is not maintained. A silent speech device does not require the user to say anything aloud, rather they're only required to slightly move their facial muscles to mouth out what they would like to say.

Eavesdropping: Voice interfaces are always listening in on conversations, when not desired, only to be visibly activated later on by a specific trigger-word such as 'Ok Google'. A silent speech device could avoid this entirely

by providing a physical mechanism for the user to start recording what they would like to say instead.

Attention Requiring: Existing voice interaction devices have low usability as they require the user to pay full attention to what they're saying and how the device is responding. Also, proximity to the device is required as using any voice system from far away reduces it's effectiveness. Silent speech systems would avoid this issue as they would be directly recording what the user is intending to say directly from the electrodes which are attached to the skin of the user.

The above examples will benefit all users of silent speech systems. However, these systems could also uniquely benefit users who have medical issues which make regular speech difficult such as people who suffer from Multiple Sclerosis with Dysphonia. There has already been promising research into using silent speech devices to help individuals with varying levels of speech impairments which can benefit from silent speech systems, and further research into healthy or unhealthy people will benefit all future users of silent speech systems. (Kapur et al., 2020)

Chapter 2

Research

2.1 List of Research Questions

• Can fine tuning an ASR model on transduction predictions improve performance on multiple downstream tasks?

Measurable: WER of final system compared to SOTA for text classification

Measurable: WER of final system compared to SOTA for speech synthesis

• Can modern neural network compression techniques improve the realtime performance of silent speech systems? Measurable: Inference time of text classification in milliseconds Measurable: Inference time of full speech synthesis in milliseconds Measurable: Memory requirements of transduction model in megabytes

2.2 Research Design

2.2.1 Design Decisions

2.2.2 Research Requirements

Chapter 3

Literature Review

3.1 Key Terms - Silent Speech

• Word Error Rate (WER): Metric used in speech recognition systems which accounts for differences in length of a recognised word sequence and a reference word sequence. WER is derived from Levenshtein distance which is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is essentially the minimum number of single-character edits (including insertions, deletions or substitutions) required to change one word into another. Another term for it is the "edit distance".

$$WER = \frac{S+D+I}{N} = \frac{S+D+I}{S+D+C}$$

Where each term means:

S: Number of substitutions

D: Number of deletions

I: Number of insertions

C: Number of correct words

N: Number of words in the reference (N = S+D+C) (Levenshtein, 1966)

• Mel-Scale: Perceptual scale of pitches judged by listeners to be equal

in distance from one another.

$$m = 2595 \log_{10} \left(1 + \frac{f}{700} \right)$$

(O'Shaughnessy, 1987)

- Silent Speech Interface (SSI): "A silent speech interface (SSI) is a system enabling speech communication to take place where an audible acoustic signal is unavailable. By acquiring sensor data from elements of the human speech production process, an SSI produces a digital representation of speech which can be synthesized directly, interpreted as data or routed into a communications network" (Denby et al., 2010).
- Mel-Frequency Cepstrum Co-efficient (MFCCs): Representation of the short-term power spectrum of a sound, based on a linear cosine transform
- Surface Electromyography (sEMG): Non-invasive, computer-based technique that records the electrical impulses placed on the surface of the skin overlying the nerve at rest (i.e. static) and during activity (i.e. dynamic).
- *n-gram*: "An n-gram is a contiguous sequence of *n* items from a given sample of text or speech" (Broder et al., 1997). Each item can be a phoneme, syllable, letter, word or other common token used in speech applications such as byte-pair encoding where the most common pair of consecutive bytes of data is replaced with a byte which doesn't occur within the data.

3.2 Machine Learning Background

3.2.1 Digital Voicing of Silent Speech

Original Paper

Paper from University of California, Berkely students David Gaddy and Dan Klein. The paper digitally voices silent speech from silently mouthed words which are converted to audible speech based on EMG sensor measurements which capture muscle movements.

Paper creates ML system to convert sEMG facial measurements that capture muscle impulses into synthesised speech. First paper to train from EMG collected during silently articulated speech. Introduces method of training on silent EMG by transferring audio targets from vocalised to to silent signals. Their method improves intelligibility of audio generated from silent EMG compared to baseline which only uses vocalised data. Decreased transcription WER from 64% to 4% in closed vocabulary condition. Decreased transcription WER from 88% to 68% on open vocabulary condition. Open-sourcing of silent and vocalised facial EMG measurements, accompanying training audio. (Gaddy and Klein, 2020)

An Improved Model for Voicing Silent Speech

Evolution of Digital Voicing paper which improves model performance compared to previous work. Model learns its own input features directly from EMG signals instead of hand-crafted features in prior work. New model uses convolutional layers to extract features from the signals. Transformer-encoder layers used to propagate signals across longer distances instead of bi-directional LSTM layers. Additional signal introduced during learning by introducing auxillary task of predicting phoneme labels in addition to predicting speech audio features. On open vocabulary intelligibility evaluation, the new model improves the absolute WER by 25.8%. (Gaddy and Klein, 2021)

Establishes new SOTA performance via 3 main improvements:

- Replace LSTMs with Transformer-Encoder: Model bi-directional triple stacked 1024-unit LSTM layer replaced with 6 transformer-encoder layer to predict EEG features found using CNN over 1 second to predict speech along with phoneme loss signal. Ablation shows WER go from 42.2% to 45.2% when this is removed.
- Introduce Phoneme Loss: Introduced auxiliary phoneme prediction task to as additional output of self-attention transformer-encoder. This signal is used to improve the performance of the network by learning to predict the phoneme of the speech which is being detected and also regularises training. Ablation shows WER go from 42.2% to 51.7% when this is removed.
- Replace hand-designed features with convolution features: Uses CNN block based on ResNet to extract features from EMG signals which are end-to-end trainable instead of using hand-crafted features to improve the representational power of the network. Ablation shows WER go from 42.2% to 46% when this is removed.

(Gaddy and Klein, 2021)

3.3 Silent Speech Interfaces for Speech Restoration: A Review

3.4 Proposed Directions for Research

3.4.1 Text Classification

3.4.2 Data Augmentation

It might be possible to use GANs (Generative Adversarial Networks) or VAEs (Variational Auto Encoders) to create a model which can generate more data

samples.

One possible data augmentation method for sEMG based silent speech is to reverse a SOTA transduction model. Existing transduction models for EMG to speech use either EMG features or raw EMG data and transduce it into speech features (typically mel spectrograms or MFCCs). However, it may be possible to predict the EMG data from the mel spectrograms.

3.4.3 Improving Existing Models

Model Improvements

Recently there has been more research into silent speech models which can directly produce text from muscle activity. One paper introduces a sequence-to-sequence voice reconstruction model and training regime called *SSRNet* to address what they call the sEMG2V problem in a tonal language.

combines multiple methods into one to achieve strong performance in synthesizing speech in Mandarin Chinese from EMG signals. The authors of this paper propose a complex architecture, where the model is based on the FastSpeech (Ren et al., 2019) neural network architecture.

The FastSpeech neural network architecture is to convert text, it it's phone-mic representation into mel spectrograms. Compared to other speech synthesis models, FastSpeech includes novel neural network components. These include a Feed-Forward Transformer, FFT Block, Length Regulator and Duration Predictor. The purpose of these neural network blocks is to improve the ability of the model to correctly predict the duration of a phoneme. This is particularly important because for text to speech models, it is difficult to determine the alignment of the inputs to the outputs as the only information which is provided is text, which does not contain timing information.

The authors of the

3.5 Connectionist Temporal Classification (CTC)

For any speech recognition task, a model must know the alignment between the input (e.g. audio, EMG features, etc.) and the target transcription. On the surface, this makes training any speech recognition model difficult.

Without having the alignments between the input and the transcription, simpler approaches aren't available to us, such as mapping a single character to a fixed number of inputs. This is because people's rates of speech vary, regardless of the input modality (e.g. audio, EMG features, etc). Another option is to hand-label the alignments between the input and the text transcriptions. This would produce a performant model, however, hand-labeling the alignments is time consuming, especially for larger datasets.

Connectionist Temporal Classification (CTC) is a method to train a model without knowing the alignment between the input and the output and is especially well suited to labeled datasets such as speech recognition. It was originally proposed in a 2006 paper (Graves et al., 2006) and specifically dealt with training recurrent neural networks (RNN) (Sherstinsky, 2020).

Chapter 4

Approaches

This chapter will describe the main dataset used for this research, why it was chosen, the main EMG signals of interest from the dataset, methods of feature selection and visualisation and the machine learning approaches used to transcribe the EMG data into a text transcription.

4.1 Data Preprocessing

4.1.1 Audio Speech Features

For the purposes of the fine tuning experiments, the ground truth audio files are preprocessed into mel spectrograms rather than MFCCs as in the original two papers (Gaddy and Klein, 2020, Gaddy and Klein, 2021). The reason for this is because mel spectrograms contain more raw data than MFCCs which makes them more appropriate for speech recognition and also the vocoder used for this paper uses mel spectrograms as the input, as do most SOTA vocoders.

4.2 Data Augmentation via EMG Synthesis

One approach for improving the performance of any machine learning model is to synthesize more data. This is particularly useful if the original dataset is small and there are methods to synthesize more data.

4.2.1 Related Work

Previous approaches have used various deep learning techniques to synthesize more EMG data to train EMG deep learning models. One approach (J. J. Bird et al., 2021) uses a GPT-2 (Radford et al., 2018) like model to synthesis EMG signals for simple action recognition such as grasp and release (actions common to robotic prosthetics and manipulators). The inclusion of synthesized EMG data during the training process improved the overall gesture recognition accuracy from 68.29% to 89.5%.

Another related paper from the same author experiments with LSTM and GPT-2 models for synthesizing more speech for a speaker recognition task. The best model found by the authors for this task was a 3-layer, 128 hidden dimension LSTM network (J. Bird et al., 2020).

4.3 Training an ASR System on Raw Voiced EMG Signals

4.3.1 Related Work

Researchers from MIT (Wadkins, 2019) working on a dataset recorded using the MIT AlterEgo system (Kapur, 2018) trained a 20-word vocabulary, 200-sentence dataset for speech recognition. They achieved a 14.8% WER by training the model on a CNN with CTC model using greedy decoding (choosing the word with the highest probability at each time step). When they applied a language model on the word predictions the WER is further reduced to 10.7%.

However, this research used a relatively small vocabulary and utterance size compared to available open-source silent speech datasets. This means that the method may not actually scale to larger datasets which means that exploring the viability of classifying text directly from EMG signals is a useful line of research.

4.3.2 Viability Experiment

An experiment was devised to determine how well a model could predict text from a related EMG recording.

4.4 Fine Tuning Speech Recognition on Model Predictions

4.4.1 Related Work

The intuition behind fine tuning a speech recognition model on the predicted mel spectrograms from the transduction model comes from the literature for speech recognition. Typical speech recognition models suffer from a loss of accuracy when they are only trained on clean audio data and then evaluated on a noisy dataset (Amodei et al., 2015). For example, in the DeepSpeech2 paper the authors trained their speech recongition model on different fractions of a dataset.

Their results showed that the performance of a model trained on a clean dataset when evaluated on a dataset of clean audio compared to noisy audio showed a larger gap when trained on less data. When the authors trained their model on 1% of the entire dataset (120 hours), the WER for the clean dataset was 29.23 whereas for the noisy dataset it was 50.97%. However when they trained on the full dataset (12,000 hours), the clean audio WER was 8.46% compared to 13.59% for the noisy dataset.

The results from their paper show a strong relationship between datasize

and affect on evaluation performance on a noisy dataset. For this reason, this paper researches the affect of providing predicted speech from the SOTA silent speech transduction model to a speech recognition model to improve it's performance for speech recognition and speech synthesis (Amodei et al., 2015).

This issue is also reflected in the transduction task. The state-of-the-art transduction model within the Improved Voicing (Gaddy and Klein, 2021) paper will always produce audio outputs with artefacts because of the final vocoder layer and because the mel spectrograms will always at best be an approximation.

This becomes problematic if you want to use the transduction model as a basis for a speech recognition system as most pre-trained speech recognition systems are trained on clean audio datasets which means that naively applying a speech recognition system on top of the transduction model will result in reduced performance.

However this also opens up a new possibility, use the error correcting properties of speech recognition systems to improve the synthesis of speech.

4.4.2 Closed Vocabulary Dataset

The closed vocabulary dataset is the first dataset used to determine how much better a speech recognition model can be improved by training on the predicted mel spectrograms from an already trained transduction model.

The WER of the closed vocabulary ASR model trained only on the training dataset of the closed vocab dataset is 37%. This means that we would not expect the WER of the model, when it's evaluated on transduced examples, to perform better than the ground truth word-error rate.

Table 4.1: DeepSpeech2 Closed Vocab Finetuned Results

Dataset	CER	WER
Ground Truth (GT)	87.10	100.50
Voiced	51.27	87.33
Silent	38.80	78.10
Silent, Voiced	35.26	75.33
Silent, Voiced, GT	35.72	70.83

The above results do not use phonemeic prediction and only use greedy decoding in the decoder. DeepSpeech2 is also not the SOTA model for speech recognition which also reduces the performance. This means that the best WER of 70.83% could be improved upon a lot more.

For the combined silent, voiced and GT condition, the model is pre-trained on the ground truth model and and then fine-tuned on the predictions of the silent and voiced utterances.

Here we can see that training on predictions from both modalities from scratch is better than training on a single modality only. However the model is only evaluated on silent EMG text classifications which means that for this experiment, training on silent and voiced predicted speech improves the performance when evaluating on only the silent EMG predictions.

This may be because both of the individual datasets are small (only 400 utterances) so doubling the dataset to 800 utterances gives the model far more examples to learn from, even though the voiced examples diverge from the silent examples.

4.4.3 Open Vocabulary (Parallel-Only) Dataset

The next dataset used is the parallel voiced and silent EMG data. This is used because it's smaller than using the entire open vocabulary condition dataset in one go which makes training the individual ASR models and the transduction model faster.

The WER of the ASR model trained only on the training dataset of the open

vocabulary parallel voiced audio is 64.47%.

Table 4.2: DeepSpeech2 Open Vocabulary Parallel Finetuned Results

Dataset	\mathbf{CER}	\mathbf{WER}
Ground Truth (GT)	66.70	110.49
Voiced	156.29	100.00
Silent	44.21	84.19
Silent, Voiced	42.11	85.30
Voiced, GT	43.06	84.65
Silent, GT	41.24	83.97
Silent, Voiced, GT	41.02	81.69

Due to the results of the closed vocabulary training condition and time constraints, training on the voiced portion of the open vocabulary parallel mel spectrogram predictions wasn't conducted.

There is one interesting difference in this training run compared to the closed vocabulary dataset. Training on the silent EMG and voiced EMG conditions together reduces performance. This may be because training on both together was better on training on just the silent EMG signals for the closed vocabulary dataset because the silent EMG dataset only contained 400 data samples so doubling the dataset to 800 data samples, even though the vocalised samples are sub-optimal, is better. However, here the silent EMG dataset is comprised of 2,778 data samples which means that the difference between the silent EMG and voiced EMG predicted mel spectrograms is reducing the performance of the ASR model more than having a larger overall dataset is beneficial.

4.4.4 Open Vocabulary Full (Parallel and Non-Parallel) Dataset

This dataset is the full entire dataset, not including the closed vocabulary dataset. The experiments for this dataset include the same experiments for the previous two datasets. However, extra experiments are added for

the additional non-parallel vocal EMG mel spectrogram predictions. The parallel silent and voiced mel spectrogram predictions are included here to show how predicted speech features from a model trained with more data improve the predictions of the same dataset. This has the effect of making the predicted mel spectrograms closer to the ground truth mel spectrograms which means the model is better able to classify the text as the dataset for the entire training regime is closer to the same underlying distribution.

The WER for the ground truth model evaluted on the audio is 45%. This means that we wouldn'expect the model to have a lower WER than this value.

Table 4.3: DeepSpeech2 Open Vocabulary Full Dataset Finetuned Results

Dataset	\mathbf{CER}	WER
Ground Truth (GT)	61.99	100.74
Voiced	_	-
Silent	-	-
Silent, Voiced	-	-
Silent, Voiced, GT	32.48	68.26

Appendix A

Project Initiation Document

School of Computing Project Initiation Document

Tada Makepeace sEMG Silent Speech Research Research Project

1. Basic details

Student name: Tada Makepeace

Draft project title: sEMG Silent Speech Research

Course: BSc Computer Science

Project supervisor: Dr Dalin Zhou

Client organisation: N/A

Client contact name: N/A

2. Degree suitability

This project satisfies the criteria for my course as it involves using computer science to solve a novel problem. This project relies on using a custom electronic device, i.e. a surface electromyography (sEMG) device to record electrical signals from a person's facial muscles to be able to convert their speech articulations to either digitally voiced speech (reproducing their voice) or text, without the user having to produce sound or strongly move their facial muscles. This project provides a novel way for humans and computers to interact with one another, in other words, it proposes a novel brain-computer interface (BCI).

This project uses a computer based information processing architecture to process the signals acquired from the BCI device by preprocessing multiple channels of sEMG signals which are recorded from the device and converting the data into a format which is suitable for processing. This is performed by removing the noise from the signal and converting the new data into features which can be used in a machine learning transduction (sEMG to digitally voiced speech) or classification architecture (sEMG to text). Then the features extracted from the processed multi-channel sEMG signal can be used to either reproduce the user's voice as they are speaking, or to just classify the signal into text.

The entire project from end to end uses computer science methods to acquire surface electromyography (sEMG) signals from a user's facial muscles, preprocess the data into a suitable representation as features for a machine learning system and then either feed these features into a transduction model or classification model.

3. Outline of the project environment and problem to be solved

The problem I will investigate is how to classify electrical signals from a person's facial muscles captured using non-invasive surface electromyography (sEMG) into text without them speaking (i.e. silently articulated speech). I believe this project is worth working on because non-invasive silent speech devices are a brain-computer interface which offers unique benefits which other methods do not. A non-exhaustive list of examples is provided below:

Privacy of conversation: Typical speech recognition systems have users broadcast what they're saying to the environment (e.g. issuing commands to an Amazon Alexa device) and therefore privacy is not maintained. A silent speech device does not require the user to say anything aloud, rather they're only required to slightly move their facial muscles to mouth out what they would like to say.

Eavesdropping: Voice interfaces are always listening in on conversations, when not desired, only to be visibly activated later on by a specific trigger-word such as "Ok Google". A silent speech device could avoid this entirely by providing a physical mechanism for the user to start recording what they would like to say instead.

Attention requiring: Existing voice interaction devices have low usability as they require the user to pay full attention to what they're saying and how the device is responding. Also, proximity to the device is required as using any voice system from far away reduces it's effectiveness. Silent speech systems would avoid this issue as they would be directly recording what the user is intending to say directly from the electrodes which are attached to the surface of the skin of the user.

The advantages above will benefit all users of sEMG silent speech systems. However, these systems could also uniquely benefit users who have medical issues which make regular speech difficult such as people who suffer from Multiple Sclerosis with Dysphonia. There has already been promising research into using silent speech devices to help individuals with varying levels of speech impairments which can benefit from silent speech systems, and further research into healthy or unhealthy people will benefit all future users of silent speech systems.

4. Project aim and objectives

The overall aim of this project is to contribute to open-source research concerning sEMG based silent speech systems. This means creating an improved model for sEMG silent speech and acquiring an EMG dataset from participants, including myself, and then open-sourcing the acquired data from each participant who consents to having their data shared in public.

The first and most important objective which will lead to achieving this objective is a combination of using the literature review and open-source code with their datasets to achieve a machine learning model which outperforms the state-of-the-art according to at least a single metric. My initial literature review before starting this project has highlighted the following metrics as being of interest: inference time (milliseconds between the model receiving an input and producing an output) and WER (word-error-rate, a raw measure of the accuracy of the model).

So my initial objectives will be replicating the results of existing sEMG silent speech approaches which are open-source, then creating a model which can either produce a better WER, or to create a model with a similar WER and decrease the inference time of the model. The inference time of the model is important as it can become very uncomfortable for a user using a silent speech system if the system takes more than a few hundred milliseconds to respond. The metrics which I'm optimising along may change depending on how the pilot studies and initial research progress or the direction of research may change entirely.

The second objective is to acquire an OpenBCI device and use it to first acquire EMG data from myself as I will be able to acquire the most data from myself, and then additionally, to acquire EMG data from other participants. The purpose of acquiring data from other participants is to increase the robustness of the model against different people speaking, and this may lead to discoveries for generalising sEMG silent speech technology across different users.

My last objective will be to release my final model and EMG dataset (from consenting participants) as open-source. This means releasing the code and weights of my final model on GitHub, and the EMG dataset using a reliable storage provider who will provide access to the dataset long-term. The specifics regarding the open-sourcing of the model need to be determined as the project progresses, as if the participant refuses to consent to sharing their data, the weights within the trained model would still implicitly contain their data. Related to this objective, I aim to make the model and dataset releases as reproducible as possible by including the code, model, data (consenting participants data, parameters (along with hyperparameters) and environment setup (i.e. using containerisation, etc.) available.

5. Project deliverables

Information system artefacts: Open-source sEMG Silent Speech Machine Learning System Datasets: Open-source sEMG Silent Speech Dataset (My own sEMG dataset and participants who consent to share their data publically), closed-source sEMG Silent Speech Dataset (Participants who do not consent to share their data publically) Documentation: Project report

For this research project, the information system artefact will be the machine learning system itself trained with user data and used in conjunction with an OpenBCI device attached to the skin of a user. And the documents which will be produced are the project report which describes the research undertaken, relating to the information system artefact and acquiring data from participants.

6. Project constraints

The key constraint for this project is that it is dependent on using an sEMG device to record EMG data from participants. This requires participants to be physically attached to the device (non-invasively) to make the recordings which means that data can only be gathered from one participant at a time. Also, the data collection process from each participant is time consuming as it may require hours of data from each participant (not including setup, briefing and other mandatory stages). This will limit how many participants can be used within the research because it will take a lot of each individual's time. I will mitigate this by strongly focusing on collecting data from myself in the early stages. This will guarantee I have enough data to train my system and will reduce the amount of data required from other participants.

7. Project approach

The background research I will do for this project will involve how to acquire and set up a surface EMG device as I have no prior experience with EMG / EEG acquisition. However, once I have completed this step, my previous experience in digital signal processing (working with audio datasets with ASR), will help along with looking at the <u>Digital Voicing of Silent Speech</u> code repository to figure out the rest.

I will establish the research direction of this project by finding prior research during my literature review and identifying directions for future research, as well as trying to replicate previous findings for open-source projects which have code and data available. From these open-source projects and the literature, I attempt to implement new methods after reproducing old ones, either by reimplementing methods from one domain into sEMG silent speech, or by innovating entirely new methods. I will also be performing ablation studies (removing components of a system to determine their contribution) during my project to justify the contribution of individual components and the summary of this will be included in the writeup with full details included in the appendix.

After this, I will use my findings from the previous stage in combination with the data I will acquire from participants to create a new model which improves on the metrics found within my literature review. Which metrics I choose will be guided mainly by the initial model prototyping stage as well as the data acquisition stage. The data acquisition stage will be guided by the literature review and initial attempts at improving on different metrics (word-error rate, inference time in ms, etc).

The methodology I will be using in this project will be a combination of the iterative and incremental approaches as that is the current recommended methodology for MLOps (machine learning operations) projects. Although this project is more of an academic research project than an industry service focused one, I still need to create a working demo of my final model (ideally with the OpenBCI device).

This means that I will need a stable working model as I am going along and as I complete the data acquisition stage and parts of my training infrastructure are finalised (e.g. feature selection, training pipeline, data quality checking, etc.), I will be creating automated systems to allow me to just adjust my model or other parts of the system and then start new training runs. The key idea behind the management of this project's artefacts is CACE (changing anything changes everything). This means that tracking code, datasets and models (along with model parameters) is imperative along with combinations of those three is imperative.

8. Literature review plan

The main starting point for my research is the <u>Digital Voicing of Silent Speech</u> paper by David Gaddy and Dan Klein and their further paper <u>An Improved Model for Voicing Silent Speech</u> which improves upon their initial paper. This paper provides the greatest depth of explanation out of any paper along with an accompanying dataset and working code. I will also refer to meta-review papers which sample the entire landscape for sEMG Silent Speech, and silent speech research in general (including fMRI research as taking signals directly from the scalp may also be beneficial).

I will also refer to other seminal works in this field such as the MIT AlterEgo paper released by Arnav Kapur and colleagues as Kapur also released a 60 page thesis which goes into great detail about the biological, biosensing and machine learning aspects of the problem. The paper released by Kapur and colleagues also describes a Convolutional Neural Network (CNN) based model, which is typically used in complex Digital Signal Processing (DSP) problems such as automated speech recognition (ASR) as CNN based models are highly suitable for DSP due to the convolution theorem.

From these papers, I will research papers which are related in the fields of ASR (due to the high overlap between EMG to speech transduction), encoding data into latent space (due to several recent sEMG related papers finding success with this and particularly performant

general models which encode information into latent space and can be used to perform multiple tasks by querying this latent space representation of data).

After reviewing these papers and related fields and methods, I will collate the most relevant methods and any other relevant findings, and I will trial different methods on the open-source dataset released in the <u>Digital Voicing of Silent Speech</u> paper to find what is successful. From this, I will use this information to inform the construction of my own machine learning model which I will use firstly on the <u>Digital Voicing of Silent Speech</u> dataset, then on my own acquired data.

9. Facilities and resources

The main hardware I need for this project is an OpenBCI device which is a relatively cheap, open-source device which is used to record EEG signals and can also be used for recording EMG signals. Depending on which device is used for research, the cost of the device along with electrodes, will be around £500, give or take £150. However, I will need to get this device shipped from either China or the USA, which means I need to account for shipping time as well during this project. The estimated shipping times are around 1 month so this device will need to be ordered as soon as possible in case the shipping is delayed, or the device and it's related components have an issue.

The second most important hardware I need is a modern GPU as I will be training machine learning models using 10s of GBs worth of data. Fortunately I have an RTX 3060 Ti at home which is suitable for at least prototyping machine learning models and I have also built my own library for utilising preemptible (interruptible) cloud processing devices, which means I can use cloud computing for 20% of the price. However, my local GPU should suffice for this project.

10. Log of risks

Description	Impact	Likelihood	Mitigation	First indicator
COVID-19 infection risk between research team and participants	Severe Likely		Ask participants if they have any symptoms of COVID-19: high temperature, cough, loss of taste	Either the research team starts displaying COVID-19 systems or a participant does after gathering data
EMG dataset data loss	Severe	Unlikely	I will set up automatic encrypted	I am unable to access a part of

			at rest backups for all of the data I gather both locally and on external storage providers	my gathered data or there is a change in size of the original dataset
OpenBCI hardware is damaged during testing (electrodes, main device, etc.)	Severe	Unlikely	I will personally store the OpenBCI device in my home and only take it out when acquiring data. I will also acquire more electrodes than necessary for backup.	Device is either unusable or shows other signs of reporting faulty data or working improperly.
Ten20 Conductive Paste electrode paste allergy	Severe	Depends on the participant	I will not accept any participants who carry a risk of an allergic reaction to the electrode paste. This includes anyone with a history of skin allergies or a history of sensitivity to cosmetics or lotions.	Any persistent redness, soreness, burning, itching, or swelling on the skin.

My plan for reviewing risks will be identifying what risks have already occurred and what new risks may occur based on changes between different revisions of the risk assessment checklist (e.g. if I am unable to acquire a certain electrode paste and have to get a different brand, checking with the manufacturers guidance on skin irritation, etc.)

11. Project plan

Page: 9

12. Legal, ethical, professional, social issues (mandatory)

The main security implication of this project is the generation of EMG and possibly audio data unique to each participant. Secure storage and processing of this data is the main security concern and will be achieved by only processing the data on my local device or a trusted cloud computing provider. The data itself will only be named with a unique number instead of any personally identifiable information so if the data is lost, it is not easily identifiable. This will ensure that only I know whose data the unique numbers correspond with. This security obligation is also consistent with the data protection legal requirement.

However, as I intend to open-source as much of this project, including the code and dataset, I will be releasing the data from participants who consent to having their data released publically. This will be added as an additional option in the <> document provided to participants. Participants are fully within their rights to not consent to having their data shared and it will not be included in the open-source model or dataset release. At a minimum I will be releasing the dataset and model which I record of myself, which will likely comprise a large portion of the collected data.

Appendix B

Ethics Review

Certificate of Ethics Review

Project title: sEMG Silent Speech Research

Name:	Tada Makepeace	User ID:	904749	Application date:	14/10/2021 16:55:45	ER Number:	TETHIC-2021-101306

You must download your referral certificate, print a copy and keep it as a record of this review.

The FEC representative(s) for the School of Computing is/are Philip Scott, Matthew Dennis

It is your responsibility to follow the University Code of Practice on Ethical Standards and any Department/School or professional guidelines in the conduct of your study including relevant guidelines regarding health and safety of researchers including the following:

- University Policy
- Safety on Geological Fieldwork

It is also your responsibility to follow University guidance on Data Protection Policy:

- General guidance for all data protection issues
- University Data Protection Policy

Which school/department do you belong to?: School of Computing

What is your primary role at the University?: Undergraduate Student

What is the name of the member of staff who is responsible for supervising your project?: **Dr Dalin Zhou** Is the study likely to involve human subjects (observation) or participants?: Yes

Will peoples' involvement be limited to just responding to questionnaires or surveys, or providing structured feedback during software prototyping?: No

Will the study involve National Health Service patients or staff?: No

Do human participants/subjects take part in studies without their knowledge/consent at the time, or will deception of any sort be involved? (e.g. covert observation of people, especially if in a non-public place): No

Will you collect or analyse personally identifiable information about anyone or monitor their communications or on-line activities without their explicit consent?: No

Does the study involve participants who are unable to give informed consent or in are in a dependent position (e.g. children, people with learning disabilities, unconscious patients, Portsmouth University students)?: No Are drugs, placebos or other substances (e.g. food substances, vitamins) to be administered to the study participants?: No

Will blood or tissue samples be obtained from participants?: No

Is pain or more than mild discomfort likely to result from the study?: No

Could the study induce psychological stress or anxiety in participants or third parties?: No

Will the study involve prolonged or repetitive testing?: Yes

Will financial inducements (other than reasonable expenses and compensation for time) be offered to participants?: No

Are there risks of significant damage to physical and/or ecological environmental features?: No

Are there risks of significant damage to features of historical or cultural heritage (e.g. impacts of study techniques, taking of samples)?: No

Does the project involve animals in any way?: No

Could the research outputs potentially be harmful to third parties?: No

Could your research/artefact be adapted and be misused?: No

Does your project or project deliverable have any security implications?: No

I confirm that I have considered the implications for data collection and use, taking into consideration legal requirements (UK GDPR, Data Protection Act 2018 etc)

I confirm that I have considered the impact of this work and and taken any reasonable action to mitigate potential misuse of the project outputs

I confirm that I will act ethically and honestly throughout this project

Supervisor Review

As supervisor, I will ensure that this work will be conducted in an ethical manner in line with the University Ethics Policy.					
Supervisor's signature:	Dalin Zhou	Date:	19/10/21		

Faculty Ethics Committee Review	
Faculty Ethics Committee Member's signature:	Date:

Appendix C

DeepSpeech2 ASR Model

```
SpeechRecognitionModel(
  (cnn): Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
  (rescnn_layers): Sequential(
    (0): ResidualCNN(
      (cnn1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (cnn2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (dropout1): Dropout(p=0.1, inplace=False)
      (dropout2): Dropout(p=0.1, inplace=False)
      (layer_norm1): CNNLayerNorm(
        (layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
      )
      (layer_norm2): CNNLayerNorm(
        (layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
      )
    )
    (1): ResidualCNN(
      (cnn1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (cnn2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (dropout1): Dropout(p=0.1, inplace=False)
      (dropout2): Dropout(p=0.1, inplace=False)
```

```
(layer_norm1): CNNLayerNorm(
      (layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
   )
    (layer_norm2): CNNLayerNorm(
      (layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
   )
 )
  (2): ResidualCNN(
    (cnn1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (cnn2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (dropout1): Dropout(p=0.1, inplace=False)
    (dropout2): Dropout(p=0.1, inplace=False)
    (layer_norm1): CNNLayerNorm(
      (layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
   )
   (layer_norm2): CNNLayerNorm(
      (layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
   )
 )
(fully_connected): Linear(in_features=2048, out_features=512, bias=True)
(birnn_layers): Sequential(
  (0): BidirectionalGRU(
    (BiGRU): GRU(512, 512, batch_first=True, bidirectional=True)
    (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
 (1): BidirectionalGRU(
    (BiGRU): GRU(1024, 512, bidirectional=True)
    (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  (2): BidirectionalGRU(
```

```
(BiGRU): GRU(1024, 512, bidirectional=True)
      (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
    (3): BidirectionalGRU(
      (BiGRU): GRU(1024, 512, bidirectional=True)
      (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
    (4): BidirectionalGRU(
      (BiGRU): GRU(1024, 512, bidirectional=True)
      (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
  )
  (classifier): Sequential(
    (0): Linear(in_features=1024, out_features=512, bias=True)
    (1): GELU()
    (2): Dropout(p=0.1, inplace=False)
    (3): Linear(in_features=512, out_features=29, bias=True)
 )
)
```

Appendix D

Hyperparameters

Throughout the course of this research, many different machine learning models were trained to evaluate their performance on tasks. During these experiments, the hyperparameters of the individual models were tweaked to improve the performance of the models on the individual tasks. This section lists the final hyperparameters of the individual networks.

D.1 DeepSpeech2 Audio Hyperparameters

Table D.1: DeepSpeech2 Audio Model Hyperparameters

Hyperparameter	Description	Value
n_cnn_layers	Number of CNN block layers	3
n_rnn_layers	Number of RNN block layers	5
n_class	Number of model classes	Vocabulary size
n_feats	Number of CNN block features	128
stride	CNN stride value	2
dropout	Dropout value	0.1
learning_rate	Initial learning rate	5e-4
batch_size	Examples per single minibatch	5

D.2 Silent Speech Transduction Hyperparameters

D.2.1 Initial Fine Tuning Experiments

The hyperparameters for the transduction model were reduced from the original SOTA model due to hardware constraints. In the Additional Reproducability Information of the Improved Voicing (Gaddy and Klein, 2021) paper, they state that to train the full model takes roughly 12 hours on an Nvidia Quadro RTX 6000 which has 24GB VRAM. The GPU I was experimenting on only had 8GB VRAM which meant that I had to halve the number of transformer layers and reduce the hidden dimension size.

Table D.2: SOTA Silent Speech Transduction Model

Hyperparameter	Description	Value
$n_{transformer_layers}$	Number of Transformer Encoder layers	3
stride	ResNet Block stride value	1
learning_rate	Initial learning rate	1e-3
batch_size	Examples per single minibatch	32
epochs	Number of full dataset training iterations	80
$model_size$	Size of hidden dimension for transformer encoder	512

References

- Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Chen, J., Chrzanowski, M., Coates, A., Diamos, G., Elsen, E., Engel, J., Fan, L., Fougner, C., Han, T., Hannun, A., Jun, B., LeGresley, P., Lin, L., ... Zhu, Z. (2015). Deep speech 2: End-to-end speech recognition in english and mandarin. arXiv. https://doi.org/10.48550/ARXIV.1512.02595
- Bird, J., Faria, D., Ekárt, A., Premebida, C., & Ayrosa, P. (2020). Lstm and gpt-2 synthetic speech transfer learning for speaker recognition to overcome data scarcity.
- Bird, J. J., Pritchard, M., Fratini, A., Ekárt, A., & Faria, D. R. (2021). Synthetic biological signals machine-generated by gpt-2 improve the classification of eeg and emg through data augmentation. *IEEE Robotics and Automation Letters*, 6(2), 3498–3504. https://doi.org/10.1109/LRA.2021.3056355
- Broder, A. Z., Glassman, S. C., Manasse, M. S., & Zweig, G. (1997). Syntactic clustering of the web [Papers from the Sixth International World Wide Web Conference]. Computer Networks and ISDN Systems, 29(8), 1157–1166. https://doi.org/https://doi.org/10.1016/S0169-7552(97)00031-7
- Denby, B., Schultz, T., Honda, K., Hueber, T., Gilbert, J., & Brumberg, J. (2010). Silent speech interfaces [Silent Speech Interfaces]. Speech Communication, 52(4), 270–287. https://doi.org/https://doi.org/10.1016/j.specom.2009.08.002

- Gaddy, D., & Klein, D. (2020). Digital voicing of silent speech.
- Gaddy, D., & Klein, D. (2021). An improved model for voicing silent speech.
- Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks, In *Proceedings of the 23rd international conference on machine learning*, Pittsburgh, Pennsylvania, USA, Association for Computing Machinery. https://doi.org/10.1145/1143844. 1143891
- Kapur, A. (2018). Human-machine cognitive coalescence through an internal duplex interface.
- Kapur, A., Sarawgi, U., Wadkins, E., Wu, M., Hollenstein, N., & Maes, P. (2020). Non-Invasive Silent Speech Recognition in Multiple Sclerosis with Dysphonia (A. V. Dalca, M. B. McDermott, E. Alsentzer, S. G. Finlayson, M. Oberst, F. Falck, & B. Beaulieu-Jones, Eds.). In A. V. Dalca, M. B. McDermott, E. Alsentzer, S. G. Finlayson, M. Oberst, F. Falck, & B. Beaulieu-Jones (Eds.), Proceedings of the machine learning for health neurips workshop, PMLR. http://proceedings.mlr.press/v116/kapur20a.html
- Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady, 10, 707.
- O'Shaughnessy, D. (1987). Speech communication: human and machine. Addison-Wesley.
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2018).

 Language models are unsupervised multitask learners. https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
- Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., & Liu, T.-Y. (2019).

 Fastspeech: Fast, robust and controllable text to speech. arXiv. https://doi.org/10.48550/ARXIV.1905.09263
- Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. *Physica D: Nonlinear*

 $Phenomena,\ 404,\ 132306.\ https://doi.org/10.1016/j.physd.2019.\\ 132306$

Wadkins, E. J. (2019). A continuous silent speech recognition system for alterego, a silent speech interface (Doctoral dissertation). Massachusetts Institute of Technology.