Overview of Demand in Taiwan's Wholesale Fruit Market

Presented by Group 7

Content

	1414"
U	Introduction

- **02** Literature Review
- 03 Data
- 04 Test
- 05 Conclusion

Introduction

- Ahmadi-Esfahani, Stanmore (1997)
- Fruit is the highest in the annual agricultural products consumption (115.21 kg) per capita in 2022
- Banana, pineapple, belt fruit and guava are common in the consumption market, such as self-usage, present, worshipping

LITERATURE REVIEW

01

LITERATURE 1

Zheng, Henneberry, Zhao, Gao (2019) find that as per capita incomes continue to grow, the shares of spending on foods at home are expected to decline, while both urbanization and population aging continue their upward trends, at-home food budget shares of foods with animal origins and fruits would be on the rise.

LITERATURE REVIEW

02 LITERATURE 2: 魯真、葉敬軒(2000)

- Analysis target: pineapples, papayas, belt fruits, grapes, and pears.
- Variables: Population of Taiwan (expect Lienchiang County and Kinmen County) (Demographic Variables), Nominal Retail Price.
 Used wholesale market transaction volume, fruits production, and fresh fruits import volume to generate the fruits consumption share per household.
- The Interesting Findings: pineapples and grapes are substitute while grapes and pears were complementary.

DATA

- Prices
- Expenditure Share
- Demographic Variables (D.V.)
- 資料期間:2017 2021

樣本層級:縣市

county	縣市
yr	年
bana_p	香蕉批發市場價格
belt_p	蓮霧批發市場價格
guva_p	芭樂批發市場價格
pine_p	鳳梨批發市場價格
bana_w	香蕉支出份額
belt_w	蓮霧支出份額
guva_w	芭樂支出份額
pine_w	鳳梨支出份額
houses	縣市總家戶數
h_people_1	1人家戶占比
h_people_2	2人家戶占比
h_people_3	3人家戶占比
h_people_4	4人家戶占比
h_people_5	5人以上家戶占比
household_inc	c家戶平均可支配所得
h_child_ratio	扶幼比
h_old_ratio	扶老比
urbanisation	都市化程度

DATA Prices

- 產品:香蕉、蓮霧、鳳梨、芭樂(番石榴)
- 資料來源:農產品交易批發市場
- 批發市場價格
- 單位:新台幣元/公斤

DATA Prices

Variable	Obs	Mean	Std. dev.	Min	Max
bana_p	65	25.15749	5.553938	11.96	41.84
belt_p	65	54.61741	14.8396	28.78	96.97
guva_p	65	28.93635	5.536976	19.04	40.86
pine_p	65	20.51127	3.81075	12.51	28.9

DATA <u>Expenditure Share</u>

- 計算步驟:
 - 各縣市各品項水果的交易總價值 該年度各項水果總產值
 - 2. 各縣市平均每戶的各品項水果之支出金額

3. 各水果支出份額

各品項水果平均每戶之支出金額 四項水果平均每戶之支出金額

DATA <u>Expenditure Share</u>

Variable	Obs	Mean	Std. dev.	Min	Max
bana_w	65	.2678888	.0611039	.1198342	.4160408
belt_w	65	.1935439	.0673681	.0432835	.3422748
guva_w	65	.2716958	.100488	.0682526	.4891333
pine_w	65	.2668715	.0864731	.1145856	.4596021

DATA D. V. - Households

● 支出資料:

資料來源:行政院家庭收支調查 家戶平均食品及非酒精飲料科支出

● 人口特徵:

資料來源:內政部人口統計資料、行政院家庭收支調查

- 1. 各家戶人數比例
- 2. 家戶平均可支配所得
- 3. 年齡結構(扶幼比、扶老比)
- 4. 都市化程度

DATA D. V. - Households

DATA D. V. - Urbanisation

- 都市化地區 行政院主計總處
 - 一個具有二萬人以上之聚居地,其人口密度達每平方公里三百人以上者。
 - 2. 不同市、鎮、鄉之二個以上毗鄰聚居地, 其人口數合計達二萬人以上, 且平均人口密度達每平方公里三百人以上者。
- 鄒克萬、黃書偉(2003)

地方空間自我相關分析(LISA)

DATA D. V. - Urbanisation

- ●「人口數 > 20000 且人口密度達 300人/平方公里」
 - 定義該地區為1、反之為0
- 都市化程度 <u></u> 各縣市為1之鄉政市區數 各縣市總鄉政市區數

● 越接近 1 表示該縣市都市化程度越高

 人口: 1000 人口密度: 10

 人口: 30000 人口密度: 300
 人口: 40000 人口密度: 100

 人口: 40000 人口密度: 600
 人口密度: 600

範例之地區都市化程度 = 0.4 ◀

DATA D. V.

Variable	Obs	Mean	Std. dev.	Min	Max
houses	65	584133.3	475550.3	82869	1620906
h_people_1	65	.3332308	.0333123	.25	.39
h_people_2	65	.2035385	.0105224	.18	.22
h_people_3	65	.1798462	.0096002	.16	.19
h_people_4	65	.1452308	.0150112	.11	.17
h_people_5	65	.1373846	.0337397	.09	.25
household_~e	65	1007556	183316.7	746774.9	1430572
h_child_ra~o	65	18.21631	2.534352	14.39	24.45
h_old_ratio	65	25.25	6.905353	15.5	43.17
urbanisation	65	.6909846	.3031832	.059	1

Endogenous TEST

aidsills bana_w belt_w guva_w pine_w, prices(bana_p belt_p guva_p pine_p) expenditure(exp) ivexpenditure(ln_house_income) intercept(h_people_1 h_people_2 h_people_3 h_people_4 h_people_5 h_child_ratio h_old_ratio urbanisation) symmetry

	Coefficient	Std. em.	Z	P> z	[95% conf.	interval]
bana_w						
garma_lnbana_p	1088314	.8471385	-2.31	9.921	2012055	0164572
garma_lnbelt_p	.0257088	. 0 3 2 394	Ø.79	8.427	0377822	.0891998
garma_lnguva_p	.988657	.8557883	Ð.16	Ð.877	1 0 85 2 93	.1178433
garma_lnpine_p	.8744655	.8615291	1.21	Ð.226	8461293	.1950604
beta_lnx	.0258683	.010782	2.49	0.016	. 0 84736	. 8478887
<pre></pre>	0306715	.0123259	-2.49	0.01 3	0548298	0865137
belt_w						
garma_lnbana_p	.0257088	. 0 443832	0.58	Ð.562	0612808	.1126984
garma_lnbelt_p	.1033877	.0319812	3.23	9. 9 91	.0407058	.1660697
garma_lnguva_p	.0352779	.85 48498	8.64	Ð.52Ð	0722257	.142781
garma_lnpine_p	1643745	.8689736	-2.79	0.0 07	2838896	044868
beta_lnx	002853	.0107165	-8.27	8.798	023857	.01815
rho_vexp	0047406	.0128244	-0.37	0.712	029876	.020394
guva_w						
garma_lnbana_p	.988657	.8573951	Ø.15	9.889	1038352	.121149
garma_lnbelt_p	.0352779	.8414471	Ø.85	Ø.395	845957	.116512
garma_lnguva_p	.844972	.0710858	Ø.63	Ø.527	0943535	.184297
garma_lnpine_p	088907	.0791314	-1.12	Ð.261	2449918	.066187
beta_lnx	.8825343	. 0 1388 05	Ð.18	Ð.855	024671	.029739
nho_vexp	0007644	. 0 1663	-0.05	0. 963	0333585	.0318 2 9
pine_w						
 gamma_lnbana_p	.8744655	.8496745	1.50	0.134	0228948	.171825
garma_lnbelt_p	1643745	.0352788	-4.66	9.999	2335197	095229
garma_lnguva_p	088907	.0596955	-1.49	0.136	285988	.02809
garma_lnpine_p	.178816	.8678472	2.64	9.998	.8458379	.31179
beta_lnx	0255496	.0116889	-2.19	0.029	8484437	002655
rho_vexp	.0361765	.0132571	2.73	0. 0 06	.0101931	.9621

test rho_vexp

- (3) [guva_w]rho_vexp → Ø
- (4) [pine_w]rho_vexp + 0 Constraint 4 dropped

chi2(3) - 11.22 Prob > chi2 - 0.0106

Reject hypothesis of endogeneity

Homogeneity <u>TEST</u>

aidsills bana_w belt_w guva_w pine_w, prices(bana_p belt_p guva_p pine_p) expenditure(exp) ivexpenditure(ln_house_income) intercept(h_people_1 h_people_2 h_people_3 h_people_4 h_people_5 h_child_ratio h_old_ratio urbanisation) iteration(0)

INSTRUMENTAL REGRESSION(S)

h people 5

h_child_ratio

h_old_ratio

urbanisation

-28.99288

-.1076562

-.0230604

.9601666

-15.60193

	Source	22	df	MS	Number of obs	-	65
_					F(13, 51)	•	12.09
	Model	133.779066	13	10.2986974	Prob > F	-	9.9999
	Residual	43.413527	51	.851245628	R-squared	-	0.7550
_					Adj R-squared	-	Ð.6925
	Total	177.192593	64	2.76863426	Root MSE	-	.92263

Coefficient Std. err. P> | z | [95% conf. interval] lnbana_p 3.815546 .7611747 5.01 0.000 2.323671 5.307421 Inbelt p 1.852736 .6528178 8.187 -.226763 2.332236 lnguva_p -.4539867 1.072516 -0.42 0.672 -2.555999 1.648185 .1151952 1.251979 Inpine p 0.09 Ø.927 -2.338638 2.569829 In house income 1.954756 1.984792 Ø.98 -1.935188 Ø.325 5.844699 h_people_1 19.48348 -9.94598 -0.51 0.610 -48.13291 28.24895 h_people_2 2.378363 27.27529 -51.08023 55.83695 Ø.931 h_people_3 -38.69877 33.7752 -184.8969 -1.15 O. 252 27.4994 h_people_4 55.47287 29.08084 0.056 -1.524525 112.4793 1.91

-1.68

-2.81

-1.18

-0.52

0.093

8.844

Ø.237

8.483

0.605

-62.85936

-.212576

-.0612899

-1.291224

-74.78297

4.873684

-.0027364

.0151691

3.211557

43.49911

17.27914

.0535315

.0195052

1.14869

30.15415

AIDS - LINEARIZED WITH STONE PRICE INDEX
UNCONSTRAINED ESTIMATES

Equation	Obs	Parms	RMSE	"R-sq"	F(14,	50)	Prob > F
bana_w	65	14	.0443122	0.5891		5.12	0.0000
belt_w	65	14	.0502525	0.5653		4.64	0.0000
guva_w	65	14	.0625084	0.6977		8.24	0.0000
pine_w	65	14	.0462608	0.7764	1	2.40	0.0000

HCMOGENEITY TEST: Chi2(3) = 1.35 Prob > chi2 = 0.7182

The result shows the rejection of the hypothesis of homogeneity, meaning 4 fruits are not homogeneous.

Symmetry TEST

aidsills bana_w belt_w guva_w pine_w, prices(bana_p belt_p guva_p pine_p) expenditure(exp) ivexpenditure(ln_house_income) intercept(h_people_1 h_people_2 h_people_3 h_people_4 h_people_5 h_child_ratio h_old_ratio urbanisation) homogeneity

AIDS - PROPER ESTIMATION WITH FIXED ALPHA_0 = 0
HOMOGENEITY CONSTRAINED ESTIMATES

Equation	Obs	Parms	RMSE	"R- sq"	F(14,	50)	Prob > F
bana_w	65	14	.0443552	0.5801		5.42	0.0000
belt_w	65	14	.0517946	0.5290		4.41	0.0000
guva_w	65	14	.0676546	0.6388		6.94	0.0000
pine_w	65	14	.0496023	0.7378		11.04	0.0000

SYMMETRY TEST: Chi2(3) = 3.07 Prob > chi2 = 0.3804

```
// another test of symmetry :
quietly test [bana_w]gamma_Inbelt_p = [ belt_w ] gamma_Inbana_p,
notest
quietly test [ bana_w]gamma_Inguva_p = [ guva_w ] gamma_Inbelt_p
, notest accumulate
test[belt_w]gamma_Inguva_p=[guva_w]gamma_Inbelt_p,accumulate
```

. // Do NOT Reject, Probably Symmetry

The result shows DO NOT rejection of the hypothesis of symmetry, meaning the estimation of pi on wj is equal to the estimation of pj on wi.

FINDINGS

INSTRUMENTAL REGRESSION(S)

Source	55	df	MS
Model Residual	133.779066 43.4135 2 7	13 51	10.2906974 .851245628
Total	177.192593	64	2.76863426

Number of obs 12.89 F(13, 51) Prob > F 0.0000 0.7550 R-squared Adj R-squared Ø.6925 Root MSE .92263

aidsills bana_w belt_w guva_w pine_w, prices(bana_p belt_p guva_p pine_p) expenditure(exp) ivexpenditure(In_house_income) intercept(h_people_1 h_people_2 h_people_3 h_people_4 h_people_5 h_child_ratio h_old_ratio urbanisation) symmetry

Presented by Group 7

lnexp	Coefficient	Std. err.	z	P> z	[95% conf.	. interval]
lnbana_p	3.815546	.7611747	5.01	9.999	2.323671	5.387421
lnbelt_p	1.052736	.6528178	1.61	0.107	226763	2.332236
lnguva_p	4539867	1.072516	-8.42	Ø.672	-2.555999	1.648185
lոքւne_p	.1151952	1.251979	8.89	Ø.927	-2.338638	2.569829
ln_house_income	1.954756	1.984702	0.98	Ð.325	-1.935188	5.844699
h_people_1	-9.94598	19.48348	-0.51	9.619	-48.13291	28.24895
h_people_2	2.378363	27.27529	0.09	Ø.931	-51.08023	55.83695
h_people_3	-38.69877	33.7752	-1.15	Ð.252	-184.8969	27.4994
h_people_4	55.47287	29.08084	1.91	0.056	-1.524525	112.47 8 3
h_people_5	-28.99288	17.27914	-1.68	0.093	-62.85936	4.873684
h_child_ratio	1076562	.0535315	-2.01	8.844	212576	0027364
h_old_ratio	0230604	.0195052	-1.18	Ð.237	0612899	. 0 151691
urbanisation	.9601666	1.14869	8.84	0.403	-1.291224	3.211557
_cons	-15.60193	30.15415	-0.52	0.605	-74 .782 97	43.49911

Iteration	•	1	Criterion	•	.12779966
Iteration	•	2	Criterion	•	.89971488
Iteration	•	3	Criterion	-	4.596e-86

AIDS - PROPER ESTIMATION WITH FIXED ALPHA_0 - 8

National Taiwan University

Equation	Obs	Parms	RMSE	"R-sq"	F(14,	58)	Prob > F
bana_w	65	14	.8443552	0.5801		5.42	9.9999
belt_w	65	14	.8517946	0.5290		4.41	9.9999
guva_w	65	14	.8676546	0.6388		6.94	9.9999
pine_w	65	14	.8496823	Ð.7378	:	11.84	9.9999

	Coefficient	Std. err.	z	P> z
bana_w				
garma_lnbana_p	1088314	.8471385	-2.31	8.821
garma_lnbelt_p	.0257088	. 0 3 2 394	Ø.79	8.427
garma_lnguva_p	.088657	.0557083	Ø.16	Ð.877
garma_lnpine_p	.0744655	.8615291	1.21	Ø.226
beta_lnx	.0258683	.010782	2.49	9.916
rho_vexp	0306715	.8123259	-2.49	0.013
alpha_h_people_1	.2749641	.9586729	Ø.29	Ø.775
alpha_h_people_2	1475795	1.348922	-0.11	Ð.912
alpha_h_people_3	2.514329	1.884249	1.39	Ð.163
alpha_h_people_4	.6859347	1.516665	8.45	Ð.651
alpha_h_people_5	.7919849	.8842781	0.90	0.370
alpha_h_child_ratio	. 0 83152	.8029083	1.88	Ð.278
alpha_h_old_ratio	.8884824	.8989186	8.44	8.661
alpha_urbanisation	2679579	.849951	-5.36	9.999
alpha_cons	7483736	.8662471	-0.86	0.388
belt_w				
_ garma_lnbana_p	.0257088	.8443832	0.58	8.562
garma_lnbelt_p	.1033877	.0319812	3. 2 3	9.991
garma_lnguva_p	.0352779	.8548498	Ø.64	8.528
garma_lnpine_p	1643745	.8689736	-2.79	8.887
beta_lnx	002853	.0107165	-8.27	8.798
rho_vexp	0047406	.8128244	-0.37	8.712
alpha_h_people_1	1681857	.956956	-0.17	Ø.867
alpha_h_people_2	-2.763656	1.339303	-2.86	0.039
alpha_h_people_3	-1.013961	1.899711	-0.56	Ø.573
alpha_h_people_4	-3.622655	1.514622	-2.39	0.017
alpha_h_people_5	0144338	.8822386	-0.02	Ø.987
alpha_h_child_ratio	.0034872	.8929918	1.29	Ð.229
alpha_h_old_ratio	089961	.8889157	-0.07	Ø.947
alpha_urbanisation	.1588586	.8498824	3.03	0.002
alpha_cons	1.281738	.8644195	1.48	Ø.138

	Coefficient	Std. err.	z	P> z
guva_w				
garma_lnbana_p	.988657	.8573951	Ð.15	9.889
garma_lnbelt_p	.0352779	.8414471	Ð.85	Ø.395
garma_lnguva_p	.844972	.0710858	0.63	0.527
garma_lnpine_p	088907	.0791314	-1.12	Ø.261
beta_lnx	.002 5343	.0138805	Ð.18	Ø.855
cho_vexp	0007644	.01663	-0.05	Ø.963
alpha_h_people_1	3.266991	1.242314	2.63	0.009
alpha_h_people_2	-4.35644	1.738619	-2.51	0.012
alpha_h_people_3	1629986	2.337485	-8.87	Ø.945
alpha_h_people_4	4.989293	1.966388	2.54	0.011
alpha_h_people_5	-1.329262	1.145267	-1.15	8.249
alpha_h_child_ratio	.0038496	.8937663	1.82	0.307
alpha_h_old_ratio	.989776	.8911883	Ð.65	8.514
alpha_urbanisation	0664653	.8646429	-1.03	0.304
alpha_cons	5789671	1.122139	-8.52	0.606
pine_w				
garma_lnbana_p	.0744655	.8496745	1.50	Ø.134
garma_lnbelt_p	1643745	.0352788	-4.66	9.999
garma_lnguva_p	088907	.2596955	-1.49	Ø.136
garma_lnpine_p	.178816	.8678472	2.64	9.998
beta_lnx	0255496	.0116889	-2.19	0.029
rho_vexp	.0361765	.8132571	2.73	0.006
alpha_h_people_1	-3.380869	1.055815	-3.20	0.001
alpha_h_people_2	7.267675	1.477558	4.92	9.999
alpha_h_people_3	-1.33836	1.987515	-Ð.67	0.501
alpha_h_people_4	-2.052573	1.671914	-1.23	0.220
alpha_h_people_5	.5427988	.9738489	₽.56	Ø.577
alpha_h_child_ratio	01 0 4888	.8832883	-3.28	9.991
alpha_h_old_ratio	0011174	.8818895	-1.11	0.268
alpha_urbanisation	.1835646	.8549489	3.34	9.991
alpha_cons	1.845683	.9535672	1.19	0.273

Elasticity - Price & Budget

PREDICTED SHARES, BUDGET AND (UN)COMPENSATED OWN-PRICE ELASTICE

	shares b/se	budget b/se	u_price b/se	c_price b/se
bana_w	8.271***	1.896***	-1.389***	-1.893***
	(0.005)	(0.040)	(0.160)	(8.154)
belt_w	Ø.193***	0.985***	-8.461***	-0.271
	(0.006)	(0.056)	(0.167)	(0.166)
guva_w	ව. 272***	1.889***	-0.837***	-0.562**
	(8.888)	(0.051)	(0.259)	(0.263)
pine_w	8.264***	0.983***	-0.259	-0.020
	(0.006)	(0.045)	(8.247)	(0.248)

^{*} p<0.1, ** p<0.85, *** p<0.81

Budget:

- All of fruits consumption are significantly influenced by household budget.
 - When the budget increase 1%, all of fruits consumption will increase almost 1%.

Uncompensated Price:

• Consumers who buy banana, belt fruit, and guava are significantly negative sensitive with the prices, where banana consumption would decrease 1.39%, belt fruit will decrease 0.46%, and guava will decrease 0.837% when the price increase 1%.

Compensated Price:

 Consumers who buy banana and guava are significantly negative sensitive with the prices, where banana consumption would decrease 1.09%, and guava will decrease 0.562% when the price increase 1%.

Elasticity - Cross Price

UNCOMPENSATED CROSS-PRICE ELASTICITIES

	bana_p b/se	belt_p b/se	guva_p b/se	pine_p b/se
bana_w	-1.389***	0.072	9.919	Ð.211
	(0.160)	(0.119)	(0.202)	(9.221)
belt_w	Ð.131	-0.461***	Ð.186	-9.841***
	(0.225)	(0.167)	(0.281)	(0.311)
guva_w	0.033	Ð.127	-0.837***	-0.333
	(0.207)	(0.1 53)	(0.259)	(0.285)
pine_w	Ð. 269	-8.599***	-8.314	-0.259
	(0.180)	(0.133)	(0.225)	(8.247)

	bana_p b/se	belt_p b/se	guva_p b/se	pine_p b/se
bana_w	-1.093***	0.284**	0.308	0.501**
	(0.154)	(0.119)	(0.204)	(0.223)
belt_w	0.398*	-0.271	0.454	-0.580*
	(0.217)	(0.166)	(0.285)	(0.313)
guva_w	0.306	0.323**	-0.562**	-0.066
	(0.199)	(0.153)	(0.263)	(0.287)
pine_w	0.513***	-0.425***	-0.068	-0.020
. –	(0.173)	(0.133)	(0.227)	(0.248)

^{*} p<0.1, ** p<0.05, *** p<0.01

Uncompensated:

• Belt fruit and pineapple are complementary, which the consumption share of pineapple would decrease 0.6% when belt fruits price increase 1%, and when the pineapple price increase 1%, the belt fruit consumption share would decrease 0.84%.

Compensated:

- Belt fruit and pineapple are still complementary.
- Banana and pineapple are substitute, which the pineapple consumption share would increase around 0.5% when banana price increase 1%, vice versa.
- Banana and belt fruit are weakly significant complementary, which banana consumption share would increase 0.294% when the belt fruit price increase 1% at 5% significance level, and when the banana price increase 1%, the belt fruit consumption share would increase 0.398% at 10% significance level.

Conclusion

- Belt fruit and pineapple are complementary due to the most production are in different season, and consumers are not sensitive to the price.
- Banana and pineapple are substitute, since both of them have the most production during summer.
- Banana and belt fruit are weakly significant complementary, while banana production is high in summer, and belt fruit is in winter.

REFERENCES

Ahmadi-Esfahani, F.Z. and Stanmore, R.G. (1997). Demand for vegetables in a Chinese wholesale market. *Agribusiness*, 13: 549-559. https://doi.org/10.1002/(SICI)1520-6297(199709/10)13:5

Zheng, Z, Henneberry, SR, Zhao, Y, Gao, Y. (2019). Predicting the changes in the structure of food demand in China. *Agribusiness*, 35: 301–328. https://doi.org/10.1002/agr.21592

魯真、葉敬軒(2000),水果需求彈性之測定,農產運銷論叢,第五期,頁177-191。

鄒克萬、黃書偉(2003), 台灣地區所得空間公平性變遷之研究。規劃學報, (30), 47-57。 https://doi.org/10.6404/JP.200312.0047

農業部(2022), 農業統計年報. https://kmweb.moa.gov.tw/redirect_files.php?id=251638