

Contextual Defeasible Ontologies

Arina Britz

abritz@sun.ac.za

MML 2018

Knowledge Representation

- Explicit domain representation
- Formal semantics
- Reasoning tasks search guided by domain knowledge
 - ▶ instance checking / retrieval
 - classification
 - entailment / implications
 - consistency checking
 - justification / diagnosis
 - **.** . . .
- Subfields of KR
 - SAT
 - Constraint Satisfaction
 - Conceptual Graphs
 - ► Description Logics
 - Answer Set Programming
 - **•** ...

Web Ontology Language

- Build formal ontologies
- Attach formal meaning to data and structured domains
- W3C open standards
 - RDF(S) data standard,
 - SPARQL query language,
 - OWL2 web ontology language, including OWL2 DL

Description Logics

- The satisfiability problem for first-order logic is undecidable (Church 1936, Turing 1937)
- 2-variable fragment of FOL is decidable:
 - unary predicates C(x) concept expressions
 - ▶ binary predicates r(x, y) roles
- Guarded fragment closed under boolean composition and limited guarded quantification:
 - $\forall y [r(x,y) \to C(y)]$
 - $ightharpoonup \exists y [r(x,y) \land C(y)]$
 - $\blacktriangleright \ \forall x [C(x) \to D(x)]$

Description Logic Concepts

Concept Language – \mathcal{ALC}

$$C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \forall r.C \mid \exists r.C$$

Example

Intern \sqcap Employee; \exists acc.Parking; \neg \exists acc.Parking

Description Logic Axioms

- Subsumption statements: $C \sqsubseteq D$
- Read: 'C is subsumed by D'
- FOL translation: $\forall x [C(x) \rightarrow D(x)]$

$$\mathcal{KB} = \left\{ \begin{array}{c} \text{Intern} \sqsubseteq \text{Employee}, \\ \text{Employee} \sqsubseteq \exists \text{acc.Parking}, \\ \text{Intern} \sqsubseteq \neg \exists \text{acc.Parking}, \\ \text{Intern} \sqcap \text{Technician} \sqsubseteq \exists \text{acc.Parking} \end{array} \right\}$$

Description Logic Axioms

- Subsumption statements: $C \sqsubseteq D$
- Read: 'C is subsumed by D'
- FOL translation: $\forall x [C(x) \rightarrow D(x)]$

$$\mathcal{KB} = \left\{ \begin{array}{c} \text{Intern} \sqsubseteq \text{Employee}, \\ \text{Employee} \sqsubseteq \exists \text{acc.Parking}, \\ \text{Intern} \sqsubseteq \neg \exists \text{acc.Parking}, \\ \text{Intern} \sqcap \text{Technician} \sqsubseteq \exists \text{acc.Parking} \end{array} \right\}$$

- There can be no interns
- Classical logic is explosive and monotonic
- Requires prior knowledge of exceptions
- Even with prior knowledge, entailment remains monotonic

Commonsense Reasoning

- Semantic representation
 - mental states desire, beliefs, intentions
 - exceptions, contradictions
 - preference, subjectivity, context
- Inference
 - non-monotonic reasoning, belief revision
 - abductive and inductive reasoning
- Applications
 - domains legal, medical, biological, etc.
 - semantic web; internet of things
 - image understanding
 - cognitive robotics

Defeasible Description Logic Axioms

- Defeasible subsumption statements: $C \subseteq D$; $C \subseteq_r D$
- Read: 'C is normally subsumed by D (in the context r)'
- FOL translation: can be done

$$\mathcal{KB} = \left\{ \begin{array}{c} \text{Intern} \sqsubseteq \text{Employee}, \\ \text{Employee} \sqsubseteq \exists \text{acc.Parking}, \\ \text{Intern} \sqsubseteq \neg \exists \text{acc.Parking}, \\ \text{Intern} \sqcap \text{Technician} \sqsubseteq \exists \text{acc.Parking} \end{array} \right\}$$

Defeasible Description Logic Axioms

- Defeasible subsumption statements: $C \subseteq D$; $C \subseteq_r D$
- Read: 'C is normally subsumed by D (in the context r)'
- FOL translation: can be done

$$\mathcal{KB} = \left\{ \begin{array}{c} \text{Intern} \sqsubseteq \text{Employee}, \\ \text{Employee} \sqsubseteq \exists \text{acc.Parking}, \\ \text{Intern} \sqsubseteq \neg \exists \text{acc.Parking}, \\ \text{Intern} \sqcap \text{Technician} \sqsubseteq \exists \text{acc.Parking} \end{array} \right\}$$

- Defeasible DLs are non-explosive
- Defeasible subsumption is non-monotonic
- Preferential semantics
- Entailment remains monotonic
- Cannot build reasoner using classical DL reasoner as black box

Postulates

$$(Cons) \top \not\sqsubseteq_{r} \bot \qquad (Ref) \ C \sqsubseteq_{r} C \qquad (LLE) \frac{C \equiv D, \ C \sqsubseteq_{r} E}{D \sqsubseteq_{r} E}$$

$$(And) \frac{C \sqsubseteq_{r} D, \ C \sqsubseteq_{r} E}{C \sqsubseteq_{r} D \sqcap E} \qquad (Or) \frac{C \sqsubseteq_{r} E, \ D \sqsubseteq_{r} E}{C \sqcup D \sqsubseteq_{r} E} \qquad (RW) \frac{C \sqsubseteq_{r} D, \ D \sqsubseteq E}{C \sqsubseteq_{r} E}$$

$$(CM) \frac{C \sqsubseteq_{r} D, \ C \sqsubseteq_{r} E}{C \sqcap D \sqsubseteq_{r} E} \qquad (RM) \frac{C \sqsubseteq_{r} D, \ C \not\sqsubseteq_{r} \neg E}{C \sqcap E \sqsubseteq_{r} D}$$

- \bullet \sqsubseteq_r is preferential if it satisfies Cons, Ref, LLE, And, Or, RW, CM
- \bullet \sqsubseteq_r is rational if it is preferential and satisfies RM

Rational Closure

- Modular semantics
- Presumption of typicality
- Non-monotonic entailment
- Defeasible entailment checking reduced to iterated classical entailment checks
- Complexity as for classical DL entailment

Theorem

Let \mathcal{KB} be a knowledge base having a modular model. $C \sqsubseteq_r D$ is in the rational closure of \mathcal{KB} iff $\mathcal{KB} \models_{\mathsf{rat}} C \sqsubseteq_r D$.

Work in progress

- implementation
- modelling, application, integration

 Britz, K and Varzinczak, I. Rationality and context in defeasible subsumption. In: Proceedings of the 10th International Symposium on Foundations of Information and Knowledge Systems, Budapest, Hungary, May 14-18, 2018. To appear.

Thank you!