Paires Adjacentes

On dit qu'un tableau b_1, b_2, \dots, b_m est **bon**, si $b_i \neq b_{i+1}$ pour tout i tel que $1 \leq i \leq m-1$.

On vous donne un **bon** tableau de n entiers strictement positifs $a_1, a_2, a_3, \ldots, a_n$.

Vous pouvez appliquer des opérations de la forme suivante sur ce tableau :

• Choisir n'importe quel indice i $(1 \le i \le n)$ et un nombre x $(1 \le x \le 10^9)$, puis mettre a_i à la valeur x. Après cette opération, le tableau doit rester **bon**.

Vous voulez appliquer plusieurs opérations de telle manière que le tableau final contienne exactement deux valeurs distinctes. Déterminez le plus petit nombre d'opérations nécessaire pour atteindre cet objectif.

Entrée

La première ligne contient l'entier t $(1 \le t \le 10^5)$, le nombre de tests. La description des tests suit.

La première ligne de chaque test contient un unique entier n $(2 \le n \le 2 \cdot 10^5)$ - la longueur du tableau.

La deuxième ligne de chaque test contient n entiers a_1, a_2, \ldots, a_n $(1 \le a_i \le n)$ - les éléments du tableau. Il est garanti que $a_i \ne a_{i+1}$ pour $1 \le i \le n-1$ (autrement dit, le tableau est **bon**).

Il est garanti que la somme des n sur l'ensemble des tests ne dépasse pas $2 \cdot 10^5$.

Sortie

Pour chaque test, affichez un unique entier - le plus petit nombre d'opérations requis pour obtenir un tableau dans lequel il y a exactement deux valeurs distinctes.

Exemple

Entrée:

```
2
5
4 5 2 4 5
2
1 2
```

Sortie:

```
3
0
```

Commentaires

Pour le premier test, l'une des suites d'opérations optimales est :

```
(4,5,2,4,5) 	o (2,5,2,4,5) 	o (2,5,2,4,2) 	o (2,5,2,5,2).
```

Pour le deuxième test, le tableau contient déjà exactement deux valeurs distinctes, donc la réponse est 0.

Score

- 1. (20 points) : La somme des n sur tous les tests ne dépasse pas 100
- 2. (10 points) : La somme des n sur tous les tests ne dépasse pas 500
- 3. (25 points) : La somme des n sur tous les tests ne dépasse pas 4000
- 4. (45 points): Aucune contrainte supplémentaire