Estimación en áreas pequeñas

Métodos indirectos basados en modelos Fay Herriot

Andrés Gutiérrez Comisión Económica para América Latina y el Caribe

2019

€018) Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.

€018) Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.

- ©018) Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.
- (2015) Rao, J.N.K y Isabel Molina. Small Area Estimation. Second ed. Wiley Series in Survey Methodology.

• Los estimadores para áreas basados en modelos se consideran modelos indirectos porque usan información de otras áreas.

- Los estimadores para áreas basados en modelos se consideran modelos indirectos porque usan información de otras áreas.
- Los estimadores basados en modelos incorporan la heterogeneidad que no puede ser explicada por las variables auxiliares coleccionadas.

- Los estimadores para áreas basados en modelos se consideran modelos indirectos porque usan información de otras áreas.
- Los estimadores basados en modelos incorporan la heterogeneidad que no puede ser explicada por las variables auxiliares coleccionadas.
- Esto se realiza incorporando efectos aleatorios de las áreas en los modelos de interés.

 Como veremos, los efectos aleatorios ofrece a los estimadores la buena propiedad de poder escribirse como estimadores compuestos que tienden a un estimador directo con tamaño muestral suficiente.

- Como veremos, los efectos aleatorios ofrece a los estimadores la buena propiedad de poder escribirse como estimadores compuestos que tienden a un estimador directo con tamaño muestral suficiente.
- Como es muy difícil acceder a todas las variables auxiliares que expliquen la heterogeneidad entre las áreas, los estimadores con efectos aleatorios basados en modelos son más realistas que los modelos sintéticos.

BLUP/EBLUP basado en el modelo Fay-Herriot

• El modelo FH enlaza indicadores de las áreas δ_d , $d=1,\ldots,D$, asumiendo que varían respeto a un vector de p covariables, \mathbf{x}_d , de forma constante.

- El modelo FH enlaza indicadores de las áreas δ_d , $d=1,\ldots,D$, asumiendo que varían respeto a un vector de p covariables, \mathbf{x}_d , de forma constante.
- Viene dado por

$$\delta_d = \mathbf{x}_d' \boldsymbol{\beta} + u_d, \quad d = 1, \dots, D$$

- El modelo FH enlaza indicadores de las áreas δ_d , $d=1,\ldots,D$, asumiendo que varían respeto a un vector de p covariables, \mathbf{x}_d , de forma constante.
- Viene dado por

$$\delta_d = \mathbf{x}_d' \boldsymbol{\beta} + u_d, \quad d = 1, \dots, D$$

 u_d es el término de error, o el efecto aleatorio, diferente para cada área dado por

$$u_d \stackrel{iid}{\sim} (0, \sigma_u^2)$$

• Sin embargo, los verdaderos valores de los indicadores δ_d no son observables.

- Sin embargo, los verdaderos valores de los indicadores δ_d no son observables.
- Entonces, usamos el estimador directo $\hat{\delta}_d^{DIR}$ para δ_d , lo que conlleva un error debido al muestro.

- Sin embargo, los verdaderos valores de los indicadores δ_d no son observables.
- Entonces, usamos el estimador directo $\hat{\delta}_d^{DIR}$ para δ_d , lo que conlleva un error debido al muestro.
- $\hat{\delta}_d^{DIR}$ todavía se considera insesgado bajo el diseño muestral.

Podemos definir, entonces,

$$\hat{\delta}_d^{DIR} = \delta_d + e_d, \quad d = 1, \dots, D,$$

donde e_d es el error debido al muestreo, $e_d \stackrel{ind}{\sim} (0, \psi_d)$.

Podemos definir, entonces,

$$\hat{\delta}_d^{DIR} = \delta_d + e_d, \quad d = 1, \dots, D,$$

donde e_d es el error debido al muestreo, $e_d \stackrel{ind}{\sim} (0, \psi_d)$.

• Dichas varianzas $\psi_d = \text{var}_{\pi}(\hat{\delta}_d^{DIR}|\delta_d)$, $d=1,\ldots,D$, se estiman con los microdatos de la encuesta.

Podemos definir, entonces,

$$\hat{\delta}_d^{DIR} = \delta_d + e_d, \quad d = 1, \dots, D,$$

donde e_d es el error debido al muestreo, $e_d \stackrel{ind}{\sim} (0, \psi_d)$.

- Dichas varianzas $\psi_d = \text{var}_{\pi}(\hat{\delta}_d^{DIR}|\delta_d)$, $d=1,\ldots,D$, se estiman con los microdatos de la encuesta.
- Por tanto, el modelo se hace,

$$\hat{\delta}_d^{DIR} = \mathbf{x}_d' \boldsymbol{\beta} + u_d + e_d, \quad d = 1, \dots, D$$

• Minimizando el ECM bajo el modelo, obtenemos el mejor predictor lineal insesgado (best linear unbiased predictor, BLUP) para $\delta_d = \mathbf{x}_d' \boldsymbol{\beta} + u_d$.

- Minimizando el ECM bajo el modelo, obtenemos el mejor predictor lineal insesgado (best linear unbiased predictor, BLUP) para $\delta_d = \mathbf{x}_d' \boldsymbol{\beta} + u_d$.
- ullet El BLUP bajo el modelo FH de δ_d viene dado por

$$\tilde{\delta}_d^{FH} = \mathbf{x}_d' \tilde{\boldsymbol{\beta}} + \tilde{u}_d$$

- Minimizando el ECM bajo el modelo, obtenemos el mejor predictor lineal insesgado (best linear unbiased predictor, BLUP) para $\delta_d = \mathbf{x}_d' \boldsymbol{\beta} + u_d$.
- ullet El BLUP bajo el modelo FH de δ_d viene dado por

$$\tilde{\delta}_d^{FH} = \mathbf{x}_d' \tilde{\boldsymbol{\beta}} + \tilde{\boldsymbol{u}}_d$$

 $oldsymbol{ ilde{eta}}$ viene dado por

$$\tilde{\boldsymbol{\beta}} = \left(\sum_{d=1}^{D} \gamma_d \mathbf{x}_d \mathbf{x}_d'\right)^{-1} \sum_{d=1}^{D} \gamma_d \mathbf{x}_d \hat{\delta}_d^{DIR}$$

Siendo

$$\gamma_d = \sigma_u^2/(\sigma_u^2 + \psi_d)$$

• En el BLUP del modelo FH,

$$\tilde{u}_d = \gamma_d (\hat{\delta}_d^{DIR} - \mathbf{x}_d' \tilde{\boldsymbol{\beta}})$$

es el BLUP de u_d .

• En el BLUP del modelo FH,

$$\tilde{u}_d = \gamma_d (\hat{\delta}_d^{DIR} - \mathbf{x}_d' \tilde{\boldsymbol{\beta}})$$

es el BLUP de u_d .

• Si sustituimos $\tilde{u}_d=\gamma_d(\hat{\delta}_d^{DIR}-\mathbf{x}_d'\tilde{\boldsymbol{\beta}})$ en el BLUP bajo el modelo FH, obtenemos

$$ilde{\delta}_d^{FH} = \gamma_d \hat{\delta}_d^{DIR} + (1 - \gamma_d) \mathbf{x}_d' ilde{eta}$$

Note que

$$\tilde{\delta}_d^{FH} = \gamma_d \hat{\delta}_d^{DIR} + (1 - \gamma_d) \mathbf{x}_d' \tilde{\boldsymbol{\beta}},$$

es una combinación lineal convexa del estimador directo y del estimador sintético de regresión a nivel de área.

Note que

$$\tilde{\delta}_d^{FH} = \gamma_d \hat{\delta}_d^{DIR} + (1 - \gamma_d) \mathbf{x}_d' \tilde{\boldsymbol{\beta}},$$

es una combinación lineal convexa del estimador directo y del estimador sintético de regresión a nivel de área.

• Si la varianza muestral ψ_d es pequeña comparada con la heterogeneidad no explicada σ_u^2 , $\gamma_d = \sigma_u^2/(\sigma_u^2 + \psi_d)$ es cercano a uno.

Note que

$$\tilde{\delta}_d^{FH} = \gamma_d \hat{\delta}_d^{DIR} + (1 - \gamma_d) \mathbf{x}_d' \tilde{\boldsymbol{\beta}},$$

es una combinación lineal convexa del estimador directo y del estimador sintético de regresión a nivel de área.

- Si la varianza muestral ψ_d es pequeña comparada con la heterogeneidad no explicada σ_u^2 , $\gamma_d = \sigma_u^2/(\sigma_u^2 + \psi_d)$ es cercano a uno.
- Entonces, cuando el tamaño muestral del área es grande (ψ_d pequeña), el BLUP $\tilde{\delta}_d^{FH}$ se acerca al estimador directo.

Note que

$$\tilde{\delta}_{d}^{FH} = \gamma_{d} \hat{\delta}_{d}^{DIR} + (1 - \gamma_{d}) \mathbf{x}_{d}' \tilde{\boldsymbol{\beta}},$$

es una combinación lineal convexa del estimador directo y del estimador sintético de regresión a nivel de área.

- Si la varianza muestral ψ_d es pequeña comparada con la heterogeneidad no explicada σ_u^2 , $\gamma_d = \sigma_u^2/(\sigma_u^2 + \psi_d)$ es cercano a uno.
- Entonces, cuando el tamaño muestral del área es grande (ψ_d pequeña), el BLUP $\tilde{\delta}_d^{FH}$ se acerca al estimador directo.
- Por tanto, no necesitamos saber si el área es pequeña para usar este estimador.

• Habitualmente, no sabemos el verdadero valor de σ_u^2 de los efectos aleatorios u_d .

- Habitualmente, no sabemos el verdadero valor de σ_u^2 de los efectos aleatorios u_d .
- Sea $\hat{\sigma}_u^2$ un estimador consistente para σ_u^2 .

- Habitualmente, no sabemos el verdadero valor de σ_u^2 de los efectos aleatorios u_d .
- Sea $\hat{\sigma}_u^2$ un estimador consistente para σ_u^2 .
- Entonces, obtenemos el BLUP empírico (empirical BLUP, EBLUP) de δ_d ,

$$\hat{\delta}_d^{FH} = \hat{\gamma}_d \hat{\delta}_d^{DIR} + (1 - \hat{\gamma}_d) \mathbf{x}_d' \hat{\boldsymbol{\beta}}$$

donde

$$\hat{\gamma}_d = \hat{\sigma}_u^2 / (\hat{\sigma}_u^2 + \psi_d)$$

у

$$\hat{\boldsymbol{\beta}} = \left(\sum_{d=1}^{D} \hat{\gamma}_{d} \mathbf{x}_{d} \mathbf{x}_{d}'\right)^{-1} \sum_{d=1}^{D} \hat{\gamma}_{d} \mathbf{x}_{d} \hat{\delta}_{d}^{DIR}$$

• En un área no muestreada, la varianza del estimador directo ψ_d tiende a infinito y γ_d tiende a cero

- En un área no muestreada, la varianza del estimador directo ψ_d tiende a infinito y γ_d tiende a cero
- Tomando el valor límite $\gamma_d=0$, obtenemos el estimador sintético de regresión,

$$\hat{\delta}_d^{FH} = \mathbf{x}_d' \hat{\boldsymbol{\beta}}$$

BLUP/EBLUP basado en el modelo Fay-Herriot: Sesgo y ECM

• Si se conocen los parámetros del modelo β y σ_u^2 , el ECM del BLUP $\tilde{\delta}_d^{FH}$ viene dado por

$$\mathsf{MSE}(\tilde{\delta}_d^{FH}) = \gamma_d \psi_d \le \psi_d = \mathsf{var}_{\pi}(\hat{\delta}_d^{DIR} | \delta_d)$$

• Si se conocen los parámetros del modelo β y σ_u^2 , el ECM del BLUP $\tilde{\delta}_d^{FH}$ viene dado por

$$\mathsf{MSE}(\tilde{\delta}_d^{FH}) = \gamma_d \psi_d \le \psi_d = \mathsf{var}_{\pi}(\hat{\delta}_d^{DIR} | \delta_d)$$

 En ese caso, el BLUP bajo el modelo FH no puede ser menos eficiente que el estimador directo.

• Si se conocen los parámetros del modelo β y σ_u^2 , el ECM del BLUP $\tilde{\delta}_d^{FH}$ viene dado por

$$\mathsf{MSE}(\tilde{\delta}_d^{FH}) = \gamma_d \psi_d \le \psi_d = \mathsf{var}_{\pi}(\hat{\delta}_d^{DIR} | \delta_d)$$

- En ese caso, el BLUP bajo el modelo FH no puede ser menos eficiente que el estimador directo.
- En la práctica, no se dispone de estos valores, y el ECM crece.

• Si se conocen los parámetros del modelo β y σ_u^2 , el ECM del BLUP $\tilde{\delta}_d^{FH}$ viene dado por

$$\mathsf{MSE}(\tilde{\delta}_d^{FH}) = \gamma_d \psi_d \le \psi_d = \mathsf{var}_{\pi}(\hat{\delta}_d^{DIR} | \delta_d)$$

- En ese caso, el BLUP bajo el modelo FH no puede ser menos eficiente que el estimador directo.
- En la práctica, no se dispone de estos valores, y el ECM crece.
- Sin embargo, este crecimiento tiende a cero con un aumento en el número de áreas D.

 Este estimador usa los pesos del diseño muestral a través del estimador directo.

- Este estimador usa los pesos del diseño muestral a través del estimador directo.
- Entonces, es consistente bajo el diseño muestral cuando n_d crece.

- Este estimador usa los pesos del diseño muestral a través del estimador directo.
- Entonces, es consistente bajo el diseño muestral cuando n_d crece.
- Su sesgo absoluto bajo el diseño muestral viene dado por:

$$(1 - \gamma_d)|\delta_d - \mathbf{x}_d'\boldsymbol{\beta}| \le |\delta_d - \mathbf{x}_d'\boldsymbol{\beta}|$$

 Un estimador insesgado de segundo orden del ECM (llamado el estimador Prasad-Rao) viene dado por

$$\mathsf{mse}_{PR}(\hat{\delta}_d^{FH}) = g_{d1}(\hat{\sigma}_u^2) + g_{d2}(\hat{\sigma}_u^2) + 2g_{d3}(\hat{\sigma}_u^2)$$

donde

$$g_{1d}(\sigma_u^2) = \gamma_d \psi_d$$

• Las otras ecuaciones incluidas en el estimador vienen dadas por

$$g_{2d}(\sigma_u^2) = (1 - \gamma_d)^2 \mathbf{x}_d' \left(\sum_{d=1}^D (\sigma_u^2 + \gamma_d) \mathbf{x}_d \mathbf{x}_d' \right)^{-1} \mathbf{x}_d,$$

У

$$g_{3d}(\sigma_u^2) = (1 - \gamma_d)^2 (\sigma_u^2 + \psi_d)^{-1} \overline{\operatorname{var}}(\hat{\sigma}_u^2),$$

donde

$$\overline{\operatorname{var}}(\hat{\sigma}_u^2) = \mathcal{I}^{-1}(\sigma_u^2) = 2\left\{\sum_{d=1}^D (\sigma_u^2 + \psi_d)^{-2}\right\}^{-1}$$

para un estimador REML y ${\mathcal I}$ es la información Fisher

• Las otras ecuaciones incluidas en el estimador vienen dadas por

$$g_{2d}(\sigma_u^2) = (1 - \gamma_d)^2 \mathbf{x}_d' \left(\sum_{d=1}^D (\sigma_u^2 + \gamma_d) \mathbf{x}_d \mathbf{x}_d' \right)^{-1} \mathbf{x}_d,$$

У

$$g_{3d}(\sigma_u^2) = (1 - \gamma_d)^2 (\sigma_u^2 + \psi_d)^{-1} \overline{\text{var}}(\hat{\sigma}_u^2),$$

donde

$$\overline{ ext{var}}(\hat{\sigma}_u^2) = \mathcal{I}^{-1}(\sigma_u^2) = 2 \left\{ \sum_{d=1}^D (\sigma_u^2 + \psi_d)^{-2} \right\}^{-1}$$

para un estimador REML y ${\mathcal I}$ es la información Fisher

• $g_{2d}(\sigma_u^2)$ y $g_{3d}(\sigma_u^2)$ tienden a *cero* cuando el número de áreas D suficientemente grande.

BLUP/EBLUP de $F_{\alpha d}$ basado en el modelo Fay-Herriot

• También podemos escribir el modelo FH en términos del estimador \hat{F}_{od}^{DIR} , donde

$$\hat{F}_{\alpha d}^{DIR} = \mathbf{x}_d' \boldsymbol{\beta} + u_d + e_d, \quad d = 1, \dots, D$$

BLUP/EBLUP de $F_{\alpha d}$ basado en el modelo Fay-Herriot

• También podemos escribir el modelo FH en términos del estimador \hat{F}_{od}^{DIR} , donde

$$\hat{F}_{\alpha d}^{DIR} = \mathbf{x}_d' \boldsymbol{\beta} + u_d + e_d, \quad d = 1, \dots, D$$

• Como ya se ha mencionado, u_d es el efecto aleatorio del grupo d y e_d es la diferencia que viene de $\hat{F}_{\alpha d}^{DIR} = F_{\alpha d} + e_d$.

BLUP/EBLUP de $F_{\alpha d}$ basado en el modelo Fay-Herriot

• También podemos escribir el modelo FH en términos del estimador \hat{F}_{od}^{DIR} , donde

$$\hat{F}_{\alpha d}^{DIR} = \mathbf{x}_d' \boldsymbol{\beta} + u_d + e_d, \quad d = 1, \dots, D$$

- Como ya se ha mencionado, u_d es el efecto aleatorio del grupo d y e_d es la diferencia que viene de $\hat{F}_{\alpha d}^{DIR} = F_{\alpha d} + e_d$.
- Por tanto, el BLUP de $F_{\alpha d} = \mathbf{x}_d' \boldsymbol{\beta} + u_d$ sería

$$\tilde{F}_{\alpha d}^{FH} = \mathbf{x}_d' \tilde{\boldsymbol{\beta}} + \tilde{\boldsymbol{u}}_d$$

$BLUP/EBLUP F_{\alpha d}$ basado en el modelo Fay-Herriot

• En el BLUP
$$\tilde{F}_{\alpha d}^{FH} = \mathbf{x}_d' \tilde{\boldsymbol{\beta}} + \tilde{\boldsymbol{u}}_d,$$

$$\tilde{\boldsymbol{u}}_d = \gamma_d (\hat{F}_{\alpha d}^{DIR} - \mathbf{x}_d' \tilde{\boldsymbol{\beta}})$$
 y
$$\tilde{\boldsymbol{\beta}} = \left(\sum_{d=1}^D \gamma_d \mathbf{x}_d \mathbf{x}_d'\right)^{-1} \sum_{d=1}^D \gamma_d \mathbf{x}_d \hat{F}_{\alpha d}^{DIR}$$

• Indicadores objetivos: Parámetros generales.

- Indicadores objetivos: Parámetros generales.
- Requerimientos de datos:

- Indicadores objetivos: Parámetros generales.
- Requerimientos de datos:
 - Datos agregados, e.g.medias poblacionales de las p covariables para las áreas $d=1,\ldots,D$

Ventajas:

- Ventajas:
 - Suele mejorar la eficiencia del estimador directo.

- Ventajas:
 - Suele mejorar la eficiencia del estimador directo.
 - Incorpora heterogeneidad no explicada entre las áreas.

- Ventajas:
 - Suele mejorar la eficiencia del estimador directo.
 - Incorpora heterogeneidad no explicada entre las áreas.
 - Es un estimador compuesto que tiende al estimador directo cuando el tamaño muestral es suficientemente grande.

Ventajas:

- Suele mejorar la eficiencia del estimador directo.
- Incorpora heterogeneidad no explicada entre las áreas.
- Es un estimador compuesto que tiende al estimador directo cuando el tamaño muestral es suficientemente grande.
- Usan datos agregados, por lo que no se ve excesivamente afectado por datos atípicos aislados.

• Ventajas:

- Ventajas:
 - Con datos agregados, hay un beneficio de confidencialidad de los microdatos.

Ventajas:

- Con datos agregados, hay un beneficio de confidencialidad de los microdatos.
- Si para un área d, el peso dado al estimador directo $\hat{\delta}_d^{DIR}$ es positivo, se usan los pesos muestrales w_{di} a través del estimador directo. Como consecuencia, es consistente bajo el diseño.

Ventajas:

Ventajas:

 Para estimadores directos lineales, se aplica el Teorema Central del Límite para las áreas con tamaño muestral suficiente. Por tanto, el modelo siempre tendrá una mínima bondad de ajuste para áreas de tamaño muestral suficiente.

Ventajas:

- Para estimadores directos lineales, se aplica el Teorema Central del Límite para las áreas con tamaño muestral suficiente. Por tanto, el modelo siempre tendrá una mínima bondad de ajuste para áreas de tamaño muestral suficiente.
- El estimador Prasad-Rao que vimos para el ECM es eficiente e insesgado bajo el diseño cuando se promedia a lo largo de muchas áreas.

Ventajas:

- Para estimadores directos lineales, se aplica el Teorema Central del Límite para las áreas con tamaño muestral suficiente. Por tanto, el modelo siempre tendrá una mínima bondad de ajuste para áreas de tamaño muestral suficiente.
- El estimador Prasad-Rao que vimos para el ECM es eficiente e insesgado bajo el diseño cuando se promedia a lo largo de muchas áreas.
- Se puede estimar en áreas no muestreadas.

- Desventajas:
 - Se basan en un modelo lineal y es necesario analizar dicho modelo.

- Se basan en un modelo lineal y es necesario analizar dicho modelo.
- Las varianzas muestrales de los estimadores directos, ψ_d , se asumen conocidas, pero en la práctica es necesario estimarlas. Esto puede tener el mismo problema de áreas pequeñas. El estimador del ECM no incluye el error asociado a ψ_d .

- Se basan en un modelo lineal y es necesario analizar dicho modelo.
- Las varianzas muestrales de los estimadores directos, ψ_d , se asumen conocidas, pero en la práctica es necesario estimarlas. Esto puede tener el mismo problema de áreas pequeñas. El estimador del ECM no incluye el error asociado a ψ_d .
- El número de observaciones es el número de áreas, lo que suele ser menor que el número de individuos. Esto reduce la eficiencia.

- Desventajas:
 - A la hora de estimar indicadores que dependen de una variable común (e.g. $F_{\alpha d}$), se requiere una modelización y búsqueda de variables auxiliares para cada uno de los indicadores por separado.

- A la hora de estimar indicadores que dependen de una variable común (e.g. $F_{\alpha d}$), se requiere una modelización y búsqueda de variables auxiliares para cada uno de los indicadores por separado.
- El estimador Prasad-Rao de ECM es correcto bajo normalidad de e_d y u_d, no es insesgado bajo el diseño para el ECM bajo el diseño en un área concreta.

- Desventajas:
 - Una vez se ha ajustado el modelo a nivel de área, los estimadores $\hat{\delta}_d^{FH}$ no se pueden desagregar para subáreas dentro de las áreas.

- Desventajas:
 - Una vez se ha ajustado el modelo a nivel de área, los estimadores $\hat{\delta}_d^{FH}$ no se pueden desagregar para subáreas dentro de las áreas.
 - Requiere un reajuste para verificar la propiedad de "benchmarking".

Estimador FH: Hombres y Mujeres en Montevideo

	ı		
sec2	ntotal	Hombres	Mujeres
2	121	18839	12564
1	167	21682	17790
3	186	16801	16987
4	319	24552	21687
6	320	28744	23370
5	495	23046	22366
21	3165	11180	10441
13	3556	10892	10744
18	3950	38237	34490
11	3963	11092	10467
17	4373	8763	8154
10	6302	24574	22802

Estimador FH: Hombres y Mujeres en Montevideo Ingresos de hombres y mujeres en Montevideo con el estimador FH

Andrés Gutiérrez Comisión Económica para América Latina y el Caribe Estimación en áreas pequeñas

Comparando los estimadores: Hombres

sec2	ntotal	HT	FH
2	121	13277	12564
1	167	18694	17790
3	186	15951	16987
4	319	21965	21687
6	320	23314	23370
5	495	22414	22366
21	3165	10435	10441
13	3556	10742	10744
18	3950	34943	34490
11	3963	10473	10467
17	4373	8167	8154
10	6302	22823	22802

$Comparando\ los\ estimadores$: $Hombres\$ Ingresos de hombres en Montevideo: HT (directo) y FH

Andrés Gutiérrez Comisión Económica para América Latina y el Caribe Estimación en áreas pequeñas

Comparando los estimadores: Mujeres

sec2	ntotal	HT	FH
2	121	13277	12564
1	167	18694	17790
3	186	15951	16987
4	319	21965	21687
6	320	23314	23370
5	495	22414	22366
21	3165	10435	10441
13	3556	10742	10744
18	3950	34943	34490
11	3963	10473	10467
17	4373	8167	8154
10	6302	22823	22802

Comparando los estimadores: Mujeres Ingresos de mujeres en Montevideo: HT (directo) y FH

Andrés Gutiérrez Comisión Económica para América Latina y el Caribe Estimación en áreas pequeñas $BLUP/EBLUP\ basado\ en\ el\ modelo\ Fay-Herriot$

¡Gracias!

Email: andres.gutierrez@cepal.org