Chapter 1 Section 2 Exercises

1. How many substrings aab are in ww^Rw , where w=aabbab.

Solution. Because

$$w^R = babbaa, \qquad ww^R w = aabbabbabbaaaabbab,$$

there are two substrings aab in ww^Rw .

2. Use induction on n to show that $|u^n| = n|u|$ for all strings u and all n.

Proof.

1. Basis

If n = 0, then

$$|u^1| = |u|, \qquad 1 \cdot |u| = |u|.$$

Therefore,

$$|u^1| = 1 \cdot |u|.$$

2. Inductive Assumption

Assume that for $i = 0, 1, 2, \dots, n$

$$|u^i| = i \cdot |u|.$$

3. Inductive Step

For i = n + 1,

$$|u^{n+1}| = |u^n u| = |u^n| + |u| = n \cdot |u| + |u| = (n+1)|u|.$$

Thus, $|u^n| = n|u|$ for all strings u and all n.

3. The reverse of a string, introduced informally above, can be defined more precisely by the recursive rules

$$a^R = a,$$

$$(wa)^R = aw^R,$$

for all $a \in \Sigma, w \in \Sigma^*$. Use this to prove that

$$(uv)^R = v^R u^R,$$

for all $u, v \in \Sigma^+$.

Proof.

1. Basis

For |v|=1, suppose that $v=a, a \in \Sigma$

$$(uv)^R = (ua)^R = au^R = v^R u^R.$$

2. Inductive Assumption

Suppose that for $|v| = 1, 2, \dots, n$

$$(uv)^R = v^R u^R.$$

3. Inductive Step

For i = n + 1, suppose that $v = wa, a \in \Sigma$

$$(uv)^R = (uwa)^R = a(uw)^R = aw^R u^R = v^R u^R.$$

Thus,

$$(uv)^R = v^R u^R,$$

for all $u, v \in \Sigma^+$.

4. Prove that $(w^R)^R = w$ for all $w \in \Sigma^*$.

Proof.

1. Basis

For |w| = 0, which means that $w = \lambda$,

$$(\lambda^R)^R = (\lambda)^R = \lambda = w.$$

2. Inductive Assumption

Suppose that for $|w| = 1, 2, \dots, n$

$$(w^R)^R = w.$$

3. Inductive Step

For i = n + 1, suppose that $w = va, a \in \Sigma$

$$(w^R)^R = ((va)^R)^R = (av^R)^R = (v^R)^R a = va = w.$$

Thus, $(w^R)^R = w$ for all $w \in \Sigma^*$.

5. Let $L = \{ab, aa, baa\}$. Which of the following strings are in L^* : abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaaa? Which strings are in L^4 ?

Solution.

$$abaabaaabaa = ab|aa|baa|ab|aa \in L^5;$$
 $aaaabaaaa = aa|aa|baa|aa \in L^4;$ $baaaaabaaaab \notin L^*;$ $baaaaabaa = baa|aa|ab|aa \in L^4.$

6. Let $\Sigma = \{a, b\}$ and $L = \{aa, bb\}$. Use set notation to describle \overline{L} .

Solution.

$$\overline{L} = \{\lambda, a, b, ab, ba\} \cup \{w \in \{a, b\}^+ : |w| \ge 3\}.$$

7. Let L be any language on a nonempty alphabet. Show that L and \overline{L} cannot both be finite. **Proof.** Suppose that both L and \overline{L} are finite. Therefore, $L \cup \overline{L}$ is also finite. However, $L \cup \overline{L} = \Sigma^*$ is an infinite set, which leads to a contradiction. Thus, L and \overline{L} cannot both be finite. **8.** Are there languages for which $\overline{L^*} = (\overline{L})^*$?

Solution. No, because

$$\overline{L^*} = \Sigma^* - (L^0 \cup L^1 \cup L^2 \cup \cdots),$$
$$(\overline{L})^* = (\Sigma^* - L)^0 \cup (\Sigma^* - L)^1 \cup (\Sigma^* - L)^2 \cup \cdots.$$

Thus, $\lambda \notin \overline{L^*}$ and $\lambda \in (\overline{L})^*$. There is no language for which $\overline{L^*} = (\overline{L})^*$.

9. Prove that

$$(L_1L_2)^R = L_2^R L_1^R$$

for all languages L_1 and L_2 .

Proof. $\forall u \in L_1 \text{ and } \forall v \in L_2, \text{ then }$

$$uv \in L_1L_2 \quad \Rightarrow \quad (uv)^R \in (L_1L_2)^R.$$

In addition,

$$(uv)^R = v^R u^R, \quad u^R \in L_1^R, \quad v^R \in L_2^R \quad \Rightarrow \quad v^R u^R \in L_2^R L_1^R.$$

Therefore,

$$(L_1 L_2)^R = L_2^R L_1^R$$

for all languages L_1 and L_2 .

10. Show that $(L^*)^* = L^*$ for all languages.

Proof. $\forall i \in \mathbb{N}^+$, we need to prove that $(L^*)^i = L^*$.

1. Basis

For i=0, which means that $(L^*)^0=\lambda$, so $(L^*)^0=\lambda$.

For
$$i = 1$$
, $(L^*)^1 = L^*$.

For i=2,

$$(L^*)^2 = L^*L^*$$

$$= L^*(L^0 \cup L^1 \cup L^2 \cup \cdots)$$

$$= L^*L^0 \cup L^*L^1 \cup L^*L^2 \cup \cdots$$

$$= L^*.$$

2. Inductive Assumption

Suppose that for $i = 1, 2, \cdots, n$

$$(L^*)^i = L^*.$$

3. Inductive Step

For
$$i = n + 1$$
,

$$(L^*)^{n+1} = (L^*)^n L^* = L^* L^* = (L^*)^2 = L^*.$$

To sum up,

$$(L^*)^* = (L^*)^0 \cup (L^*)^1 \cup (L^*)^2 \cup \dots = \lambda \cup L^* \cup L^* \cup \dots = L^*.$$

5