Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

Кафедра ЭВМ

Отчет о лабораторной работе №4

«Исследование многоканальных СМО при росте суммарной производительности и неизменной суммарной производительности при увеличении числа каналов»

по дисциплине «Моделирование»

Выполнили:

ст. гр. 245

бригада №4

Сокол Илья

Лапин Кирилл

Проверил:

доц. каф. ЭВМ

Саблина В.А.

Цель работы: сравнения характеристик многоканальных СМО, моделирующих параллельные вычисления.

Практическая часть:

Задание 1. Построение GPSS модели n-канальной CMO M/M/N с общей очередью

Построим GPSS модель n-канальной CMO M/M/N с общей очередью представленная на рисунке 1:

Рисунок 1 – Графическое представление n-канальной CMO M/M/N

Функции распределения интервала прихода заявок и длительности обслуживания заявок — экспоненциальные. Среднее значение длительности обслуживания заявок $v_{\rm cp}$ каждым ОА определяется вариантом задания, где $\overline{v}=400$. Регулируя $\lambda=1/{\rm T}_{\rm cp}$ зададим коэффициент загрузки всей СМО $\rho=\lambda v_{\rm cp}=0$,9. Коэффициент загрузки каждого ОА $\rho_1=\rho/N$. Время моделирования должно обеспечивать прохождение через СМО не менее 100000 заявок.

Рассчитаем интенсивность обслуживания одного канала:

$$\mu = \frac{1}{v_{\rm cp}} = \frac{1}{400} = 0.0025;$$

Интенсивность входного потока:

$$\lambda = \frac{\rho}{v_{\rm cp}} = \frac{0.9}{400} = 0.00225;$$

Средний период между поступлениями заявок:

$$T_{\rm cp} = \frac{1}{\lambda} = \frac{1}{0,00225} = 444.444$$

Вероятность простоя P_0 :

$$P_0 = \frac{2 - \rho}{2 + \rho} = \frac{1.1}{2.9} = 0.3793;$$

Среднее время ожидания \overline{w} :

$$\overline{w} = \frac{\rho^2 \overline{v}}{4 - \rho^2} = 101.6;$$

Коэффициент загрузки каждого ОА:

$$R_1 = \rho_1 = \frac{\rho}{n} = \frac{0.9}{2} = 0.45;$$

Средняя длина очереди:

$$\overline{l} = \lambda \overline{w} = 101.6 * 0.00225 = 0.2286$$
:

Среднее время пребывания заявки в СМО:

$$\overline{u} = \overline{w} + \overline{v} = 101.6 + 400 = 501.6$$
;

Коэффициент мультипрограммирования СМО или среднее число заявок, находящихся внутри СМО:

$$\overline{m} = \lambda \overline{u} = 0.00225 * 501.6 = 1,1286;$$

В результате получим GPSS модель и результат её работы (рисунок 2):

```
Transit TABLE M1,0,25,30 ; Transit time = ucp
EXPON FUNCTION RN1, C24
0,0/.1,.104/.2,.222/.3,.335/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
.8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
MKU STORAGE 2
                 ; Число каналов N=2
GENERATE 444.444, FN$EXPON; Интервал между приходами заявок ~ Exp(444.444)
                  ; Заявка встаёт в очередь «ОСН», если все каналы заняты
OUEUE OCH
                   ; Попытка захватить один из свободных каналов MKU
ENTER MKU
DEPART OCH ; Убирается из очереди после захвата канала
ADVANCE 400, FN$EXPON; Время обслуживания ~ Exp(400)
LEAVE MKU ; Заявка освобождает канал после обслуживания
TABULATE Transit ; Запись статистики времени пребывания заявки в системе TERMINATE 1 ; Завершение заявки
START 46666667 ; Время моделирования для прохождения ≥100000 заявок
```

	START TIME 0.000	END TIME 44264919.909	BLOCKS FA	CILITIES S	STORAGES 1
	NAME EXPON MKU OCH TRANSIT	100 100 100	VALUE 001.000 002.000 003.000		
LABEL	1 2 3 4 5 6 7	QUEUE ENTER DEPART ADVANCE LEAVE TABULATE	ENTRY COUNT 100000 100000 100000 100000 100000 100000 100000		0
QUEUE	MAX (O 100000 71749	(0) AVE.CONT 0.235	. AVE.TIME 103.945	AVE.(-0) RETRY 367.932 0
STORAGE MKU	CAP.	REM. MIN. MAX. 1	100000 1	0.902 0.	451 0 0
TABLE TRANSIT	MEAN 503.43	STD.DEV. 1 480.110	- 25 - 50 - 75 - 100 - 125 - 150 - 175 - 200 - 225 - 250 - 375 - 300 - 325 - 350 - 400 - 425 - 450 - 450 - 525 - 500 - 525 - 575 - 600 - 625 - 675 - 700	.000 .000 .000 .000 .000 .000 .000 .00	### TREQUENCY CUM.% #### 4463
FEC XN 100001	PRI BD: 0 44265394	r ASSEM CURI .814 100001	RENT NEXT	PARAMETER	VALUE

Рисунок 2 – Результат работы 2-х канальной СМО

По результатам моделирования GPSS было получено: среднее время пребывания заявки в системе $\overline{u}=503.43$; среднее время ожидания в очереди $\overline{w}=103.95$; средняя длина очереди $\overline{l}=0.235$; коэффициент загрузки одного канала $\rho_1=0.451$, а через систему прошло около 100000 заявок. Эти данные подтверждают корректную работу модели и соответствие теоретическим ожиданиям для двухканальной СМО с общей очередью.

2. Изменение числа каналов СМО

STORAGE

Изменим число каналов СМО от 1 до 4 зафиксируем \overline{l} , l_{max} , \overline{w} , \overline{u} , \overline{m} (рисунок 3-6). Полученные значения представлены в таблице 1.

QUEUE OCH	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 81 9 100009 10064 8.411 3732.386 4150.005 0	
STORAGE MKU	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 1 0 0 1 100001 1 0.898 0.898 0 8	
TABLE TRANSIT	MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.% 4131.004 4292.229	
Рису	нок 3 – Отчеты моделирования для модели с 1 каналом	
QUEUE OCH	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RE 16 0 100000 71749 0.235 103.945 367.932	TRY 0

MKU 2 2 0 2 100000 1 0.902 0.451 0 0

CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.% TRANSIT 503.431 480.110 0

Рисунок 4 – Отчеты моделирования для модели с 2 каналами

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY OCH 9 0 100000 92743 0.031 13.591 187.276 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY MKU 3 3 0 3 100000 1 0.903 0.301 0 0

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.% TRANSIT 413.203 406.080 0

Рисунок 5 – Отчеты моделирования для модели с 3 каналами

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY OCH 7 0 100000 98539 0.004 1.931 132.138 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY MKU 4 4 0 4 100000 1 0.903 0.226 0 0

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.% TRANSIT 401.526 401.221 0

Рисунок 6 – Отчеты моделирования для модели с 4 каналами

Таблица 1 – Изменение характеристик от числа каналов

Экспериментальные	ī	l_{max}	\overline{w}	\overline{u}	\overline{m}
1 канал	8.411	81	3732.386	4131.004	9.294
2 канала	0.235	16	103.95	503.431	1.132
3 канала	0.031	9	13.591	413.203	0.929
4 канала	0.004	7	1.931	401.526	0.903

Рассчитаем теоретические значения характеристик по полученным отчетам от 1 до 4 каналов с использованием формулы $\overline{v} = \frac{{}^{AVE.C.}}{\lambda}$ (таблица 2):

Таблица 2 – Теоретический расчет характеристик от числа каналов

Теоретические	\overline{v}	Ī	\overline{w}	<u>u</u>	\overline{m}
1 канал	399.111	7.923	3521.5	3920.611	8.821
2 канала	400.88	0.238	106.1	506.98	1.140
3 канала	401.333	0.035	14.03	415.363	0.938
4 канала	401.333	0.004	1.945	403.278	0.907

Построим графики по полученным данным (рисунок 7)

Рисунок 7 – График функций для п-канальной СМО

В результате анализа зависимостей средних характеристик СМО от числа каналов n было показано, что увеличение числа каналов существенно

l, среднюю ДЛИНУ очереди среднее время снижает ожидания \overline{w} и среднее время пребывания заявки \overline{u} , а также уменьшает коэффициент мультипрограммирования \overline{m} , что отражает улучшение пропускной способности системы. При увеличении количества каналов с 3 до 4 параметры приблизительно равны, то есть наличие 4 канала мало влияет на производительность СМО. Модельные и теоретические значения практически совпадают, с минимальными расхождениями. Наиболее заметное различие наблюдается при одном канале, где вероятность образования очереди максимальна. В целом результаты подтверждают корректность модели и соответствие теоретическим ожиданиям для СМО М/М/N с общей очередью.

3. Анализ характеристик СМО от числа обслуживающих каналов при неизменной суммарной вычислительной производительности системы

Рассчитаем среднее значение длительности обслуживания заявок $\overline{v_i}$ каждым OA_i зависящее от числа каналов n (таблица 3):

$$\overline{v_i} = n * \overline{v},$$

где i — номер канала;

Таблица 3 – Среднее значение длительности обслуживания заявок $\overline{v_i}$

Кол-во	$\overline{v_i}$
каналов	
1	400
2	800
4	1600
8	3200
16	6400

Изменяя количество каналов, а также значения $\overline{v_i}$ (первый параметр ADVANCE 400, FN\$EXPON) для соответствующего набора каналов

зафиксируем значения \overline{l} , \overline{w} , \overline{u} , \overline{m} (рисунок 8-12). Полученные значения представлены в таблице 4, причем $\lambda = \frac{\rho_n}{\overline{v_i}} = \frac{0.9*n}{n*\overline{v}} = \frac{0.9}{400} = 0.00225$.

Таблица 4 – Изменение характеристик от числа каналов при $\rho_n = 0.9*n$

Экспериментальные	ī	l_{max}	\overline{w}	\overline{u}	\overline{m}
1 канал	8.411	81	3732.386	4131.004	9.294
2 канала	7.273	61	3223.596	4021.522	9.05
4 канала	6.587	72	2931.268	4520.633	10.17
8 каналов	5.976	53	2648.233	5840.752	13.14
16 каналов	6.589	85	2914.532	9310.890	20.95

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY OCH 81 9 100009 10064 8.411 3732.386 4150.005 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY MKU 1 0 0 1 100001 1 0.898 0.898 0 8

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.% TRANSIT 4131.004 4292.229 0

Рисунок 8 – Отчеты моделирования для модели с 1 каналом при

$$\rho_n = 0.9 * n$$

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY OCH 61 0 100001 14704 7.273 3223.596 3779.298 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY MKU 2 1 0 2 100001 1 1.800 0.900 0 0

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.% TRANSIT 4021.522 3601.286 0

Рисунок 9 – Отчеты моделирования для модели с 2 каналами при

$$\rho_n = 0.9 * n$$

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
OCH 72 0 100002 22544 6.587 2931.268 3784.408 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
MKU 4 2 0 4 100002 1 3.571 0.893 0 0

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.%
TRANSIT 4520.633 4082.121 0

Рисунок 10 – Отчеты моделирования для модели с 4 каналами при

$$\rho_n = 0.9 * n$$

QUEUE	MAX CONT	. ENTRY ENT	RY(0) AVE.CONT.	AVE.TIME A	VE.(-0) RETRY
OCH	53 1	100008 30	312 5.976	2648.233 3	799.996 0
STORAGE	CAP. REM	. MIN. MAX.	ENTRIES AVL.	AVE.C. UTIL.	RETRY DELAY
MKU	8 0	0 8	100008 1	7.204 0.901	. 0 0
TABLE	MEAN	STD.DEV.	RANGE	RETRY FR	REQUENCY CUM.%
TRANSIT	5840.752 46	74.958		0	

Рисунок 11 – Отчеты моделирования для модели с 8 каналами при

 $\rho_n = 0.9 * n$

Рисунок 12 – Отчеты моделирования для модели с 16 каналами при

$$\rho_n = 0.9 * n$$

Выполним всё то же самое, только при $ho_n = 0.5*n$. Для этого рассчитаем по новой характеристики СМО.

Интервал между приходами заявок:

$$\lambda = \frac{\rho_n}{\overline{v}} = \frac{0.5 * n}{n * 400} = 0.00125;$$

$$T_{\rm cp} = \frac{1}{\lambda} = \frac{1}{0.00125} = 800.$$

В результате получим следующий код на GPSS:

```
Transit TABLE M1,0,25,30; Transit time = ucp
EXPON FUNCTION RN1, C24
0,0/.1,.104/.2,.222/.3,.335/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
.8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
                   ; Число каналов n=1,2,4,8,16
GENERATE 800, FN$EXPON; Интервал между приходами заявок ~ Exp(800)
QUEUE OCH
                  ; Заявка встаёт в очередь «ОСН», если все каналы заняты
                   ; Попытка захватить один из свободных каналов MKU
ENTER MKU
                  ; Убирается из очереди после захвата канала
DEPART OCH
ADVANCE 400, FN$EXPON; Время обслуживания ~ Exp(400*n)
           ; Заявка освобождает канал после обслуживания
LEAVE MKU
                 ; Запись статистики времени пребывания заявки в системе
TABULATE Transit
                  ; Завершение заявки
TERMINATE 1
START 100000
                  ; Время моделирования для прохождения ≥100000 заявок
```

Изменяя количество каналов, а также значения $\overline{v_i}$ (первый параметр ADVANCE 400, FN\$EXPON) для соответствующего набора каналов

зафиксируем значения \overline{l} , \overline{w} , \overline{u} , \overline{m} (рисунок 13-17). Полученные значения представлены в таблице 5.

Таблица 5 – Изменение характеристик от числа каналов при $ho_n = 0.5*n$

Экспериментальные	ī	l_{max}	\overline{w}	\overline{u}	\overline{m}
1 канал	0.516	16	410.108	810.223	1.013
2 канала	0.333	14	256.421	1063.521	1.329
4 канала	0.176	14	140.052	1738.039	2.173
8 каналов	0.062	12	49.501	3248.898	4.061
16 каналов	0.011	13	8.593	6404.449	8.006

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY OCH 16 0 100000 49357 0.516 410.108 809.802 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY MKU 1 1 0 1 100000 1 0.503 0.503 0 0

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.% TRANSIT 810.223 812.210 0

Рисунок 13 – Отчеты моделирования для модели с 1 каналом при

$$\rho_n = 0.5 * n$$

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY OCH 14 0 100000 66440 0.333 265.421 790.886 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY MKU 2 2 0 2 100000 1 1.001 0.500 0 0

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.% TRANSIT 1063.521 990.688 0

Рисунок 14 – Отчеты моделирования для модели с 2 каналами при

$$\rho_n = 0.5 * n$$

 QUEUE
 MAX CONT. ENTRY ENTRY (0) AVE.CONT. AVE.TIME
 AVE.(-0) RETRY

 OCH
 14
 0 100002 82320
 0.176
 140.052
 792.078
 0

 STORAGE
 CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
 MKU
 4
 2
 0
 4
 100002
 1
 2.006
 0.501
 0
 0

 TABLE
 MEAN STD.DEV. RANGE
 RETRY FREQUENCY CUM.%

 TRANSIT
 1738.039
 1665.574
 0

Рисунок 15 – Отчеты моделирования для модели 4 каналами при

$$\rho_n = 0.5 * n$$

QUEUE	MAX CO	ONT. ENTRY	ENTRY(0)	AVE.CONT.	AVE.TIME .	AVE.(-0) RETRY
OCH	12	0 100002	93976	0.062	49.501	821.472 0
STORAGE MKU		REM. MIN. 1 6 0			AVE.C. UTIL 4.020 0.50	. RETRY DELAY
TABLE TRANSIT	MEAN 3248.898	STD.DEV 3217.534	. R	ANGE	RETRY F	REQUENCY CUM.%

Рисунок 16 – Отчеты моделирования для модели с 8 каналами при

$$\rho_n = 0.5 * n$$

QUEUE		Y ENTRY(0) . 4 99035			AVE.(-0) RETRY 886.788 0
STORAGE MKU		MAX. ENTR 16 1000			IL. RETRY DELAY
TABLE TRANSIT	MEAN STD.DE 6404.449 6413.491		NGE	RETRY 0	FREQUENCY CUM.%

Рисунок 17 – Отчеты моделирования для модели с 16 каналами при

$$\rho_n = 0.5 * n$$

Используя код на языке Python, посчитаем все теоретические значения характеристик при $\rho_n = 0.5*n$ и $\rho_n = 0.9*n$. Код представлен ниже:

```
import math
import pandas as pd
# Среднее время обслуживания
v1 = 400
# Функция для вычисления РО
def calc_p0(rho, n):
    # Сумма членов от 0 до п
    sum terms = 0
    for i in range(0, n + 1):
        term = (rho ** i) / math.factorial(i)
        sum_terms += term
    # Последний член формулы
    last_term = (rho ** (n + 1)) / (math.factorial(n) * (n - rho))
    return 1 / (sum_terms + last_term)
# Функция для расчёта параметров
def mmn characteristics(n):
    # Интенсивность входного потока
    lambd = 0.9 / v1 \# Для pN = <math>0.9 * N
    # Среднее время обслуживания для N-канальной системы
    vi_avg = n * v1
    # Интенсивность обслуживания одного канала
    mu = 1 / vi_avg
    # Коэффициент загрузки системы pN
    rhoN = lambd * vi_avg
    # Коэффициент загрузки для формул
    rho = rhoN
    # Вероятность пустой системы Р0
    P0 = calc_p0(rho, n)
    # Среднее время ожидания в очереди w
    w = (P0 * rho ** n) / (math.factorial(n - 1) * mu * (n - rho) ** 2)
    # Среднее время обслуживания
    <u>v_serv</u> = 1 / mu
```

```
# Среднее время пребывания в системе и
   u = w + v_serv
   # Среднее число заявок в очереди 1
   l = lambd * w
   # Среднее число заявок в системе m
   m = lambd * u
   return 1, w, u, m, P0
# Количество каналов
N_{values} = [1, 2, 4, 8, 16]
# Для pN = 0.9·N
data = []
for n in N_values:
   # Рассчёт всех характеристик
   1, w, u, m, P0 = mmn_characteristics(n)
   data.append([n, 1, w, u, m])
result = pd.DataFrame(data, columns=["N", "lcp", "wcp", "ucp", "mcp"])
# Округление значений
result["lcp"] = result["lcp"].round(3)
result["wcp"] = result["wcp"].round(3)
result["ucp"] = result["ucp"].round(3)
result["mcp"] = result["mcp"].round(3)
print(result)
```

В результате получим следующие значения представленные в таблицах 6 и 7.

Таблица 6 – Теоретические характеристики при $ho_n=0.9*n$

Теоретические	ī	\overline{w}	\overline{u}	\overline{m}
1 канал	8.100	3600.000	4000.000	9.000
2 канала	7.674	3410.526	4210.526	9.474
4 канала	7.090	3151.013	4751.013	10.690
8 каналов	6.314	2806.132	6006.132	13.514
16 каналов	5.322	2365.374	8765.374	19.722

Таблица 7 – Теоретические характеристики при $ho_n=0.5*n$

Теоретические	Ī	\overline{w}	\overline{u}	\overline{m}
1 канал	0.500	400.000	800.000	1.000
2 канала	0.333	266.667	1066.667	1.333
4 канала	0.174	139.130	1739.130	2.174
8 каналов	0.059	47.235	3247.235	4.059
16 каналов	0.009	7.215	6407.215	8.009

В результате получим графики с теоретическими и экспериментальными значениями параметров для $\rho_n=0.9*n$ и $\rho_n=0.5*n$ соответственно (рисунок 18-19):

Рисунок 18 – Графики с теоретическими и экспериментальными значениями

Рисунок 19 — Графики с теоретическими и экспериментальными значениями $\text{при } \rho_n = 0.5*n$

Сравнительный анализ графиков для коэффициентов загрузки $\rho_n = 0.5*n$ и $\rho_n = 0.9*n$ показывает принципиально различное поведение системы. При высокой нагрузке ($\rho_1 = 0.9$) средняя длина очереди и среднее время ожидания существенно выше, что отражает значительную загрузку

наблюдаются достаточно сильные каналов, расхождения теоретическими и экспериментальными значениями, особенно при большом количестве каналов. В то же время при умеренной нагрузке ($\rho_1 = 0.5$) система работает практически в идеальном режиме: очереди минимальны, а среднее время пребывания остаётся небольшим, ожидания И заявок И экспериментальные значения хорошо согласуются с теоретическими.

Отсюда можно сделать вывод, что при высокой нагрузке и большом числе каналов СМО с неизменной суммарной вычислительной производительностью становится нестабильной, поскольку в условиях высокой загрузки значительно увеличивает чувствительность системы к случайным выбросам входного потока, что приводит к существенным отклонениям экспериментальных от теоретических данных.

4. Выбор оптимальных параметров

Выберем оптимальное количество каналов СМО с неизменной суммарной вычислительной производительностью на основе полученных графиков (рисунок 18-19) параметров системы от числа каналов.

Для системы с $\rho_1=0.9$ оптимальным количеством каналов будет являться n=8, поскольку при увеличении числа каналов среднее число заявок в очереди \overline{l} растет вместе с временем ожидания \overline{w} , что свидетельствует о потере эффективности системы.

Для системы с $\rho_1=0.5$ оптимальным количеством каналов будет являться n=16, поскольку все параметры системы являются минимальными и стабильными из-за достаточного запаса производительности, что позволяет компенсировать случайные выбросы входного потока.

Вывод

В ходе работы было изучено влияние числа каналов и коэффициента загрузки на характеристики многоканальной СМО, моделирующей параллельные вычисления.