Analyse Fonctionnelle pour Physiciens

Baptiste Claudon September 21, 2020

Contents

I Espaces Fonctionnels	
I. Le théorème de Stone-Weierstrass	3
II. Complétion des espaces L^p	4
II Mesures et intégrales	
III. Séparation et partition	4

Part I

Espaces Fonctionnels

I. LE THÉORÈME DE STONE-WEIERSTRASS

Théorème 1. Théorème de Diniz Soit (f_n) une suite de fonctions réelles et continues définies sur un compact $K \subset \mathbb{R}^n$ et convergent simplement et de manière monotone vers $f \in C(K,\mathbb{R})$. Alors cette suite converge uniformément vers f.

Preuve. Choisir, sans perte de généralité que (f_n) est décroissante et converge simplement vers 0. Soit $\epsilon > 0$. Poser pour $n \in \mathbb{N}$.

$$V_n = \{ x \in K : f_n(x) \le \epsilon \} \tag{1}$$

Par continuité des fonctions de la suite, tous ces ensembles sont des ouverts. Puisque la suite tend vers 0, on a :

$$K = \bigcup_{n \in \mathbb{N}} V_n = K \tag{2}$$

K étant compact, il existe un nombre $F \in \mathbb{N}$ tel que

$$K = \bigcup_{n=0}^{F} V_n = K \tag{3}$$

Puisque la suite est monotone décroissante, on a que m < n implique $V_m \subseteq V_n$, donc $V_F = K$.

Définition 1. Soit F une famille de fonctions définies sur un ensemble $X \subset \mathbb{R}^n$. On dit que F sépare X si :

$$\forall x, y \in X, x \neq y, \exists f \in F : f(x) \neq f(y) \tag{4}$$

Définition 2. On dit que F ne s'annule pas sur X si :

$$\forall x \in X \exists f \in F : f(x) \neq 0 \tag{5}$$

Définition 3. Si B est un sous-ensemble d'une \mathbb{K} -algèbre A, alors la \mathbb{K} -algèbre engendrée par B, $\mathcal{A}_{\mathbb{K}}(B)$ est la plus petite \mathbb{K} -algèbre contenant B.

Théorème 2. Théorème de Stone-Weierstrass Soit $X \subset \mathbb{R}^n$ un ensemble compact et soit $F \subseteq C(X, \mathbb{R})$ une famille de fonctions qui sépare X et qui ne s'annule pas sur X. Alors l'algèbre réelle $\mathcal{A}_{\mathbb{K}}(F)$ engendrée par F est uniformément dense dans $C(X, \mathbb{R})$:

$$\overline{\mathcal{A}_{\mathbb{K}}(F)}^{||\cdot||_{\infty}} = C(X, \mathbb{R}) \tag{6}$$

La preuve est laissée en exercice.

Corrolaire 1. Soit $X \subset \mathbb{R}^n$ un ensemble compact et $F \subseteq C(X,\mathbb{C})$ une famille de fonction qui sépare X, invariante sous conjugaison complexe et qui ne s'annule pas sur X. Alors l'algèbre complexe $\mathcal{A}_{\mathbb{C}}(F)$ engendrée par F est uniformément dense dans $C(X,\mathbb{C})$.

Preuve. On a $F = F^*$ car :

$$F^* \subseteq F = (F^*)^* \subseteq F^* \tag{7}$$

Comme F sépare X et ne s'annule pas sur X, $G=(F+F^*)\cup i(F-F^*)$ ne s'annule pas sur X non plus et sépare aussi X. Or $F\subseteq C(X,\mathbb{R})$ et par le théorème de Stone-Weierstrass 2, $C(X,\mathbb{R})=\overline{\mathcal{A}_{\mathbb{R}}(G)}$. Comme $C(X,\mathbb{C})=C(X,\mathbb{R})+iC(X,\mathbb{R})$ et que $\overline{\mathcal{A}_{\mathbb{R}}(G)},i\overline{\mathcal{A}_{\mathbb{R}}(G)}\subset\overline{\mathcal{A}_{\mathbb{C}}(G)}$, on a que $C(X,\mathbb{C})=\overline{\mathcal{A}_{\mathbb{C}}(G)}$. Or : $\mathcal{A}_{\mathbb{C}}(G)=\mathcal{A}_{\mathbb{C}}(F)$.

Corrolaire 2. Soit $X \subset \mathbb{R}$ un ensemble compact. L'ensemble $\mathbb{C}[X]$ est uniformément dense dans $C(X,\mathbb{C})$.

Proposition 1. $\mathbb{C}[X] = \mathcal{A}_{\mathbb{C}}(\{1, id_X\})$ vérifie les hypothèses du corollaire I.

Corrolaire 3. Soit I = [a, b] un intervalle fermé de \mathbb{R} . L'algèbre engendrée sur les complexes par F défini comme :

$$F = e^{2\pi n i \frac{x-a}{x-b}}, x \in I, n \in \mathbb{N}$$
(8)

est uniformément dense dans $V = \{f : f \in C([a,b],\mathbb{C}), f(a) = f(b)\}.$

Proposition 2. La fonction φ définie par :

$$\varphi: [a, b] \to \partial B_1(0, x) \mapsto e^{2\pi n i \frac{x-a}{x-b}}$$

$$\tag{9}$$

induit un homéomorphisme isométrique $\Phi: C(\partial B_1(0), \mathbb{C}) \to V, f \mapsto f \circ \varphi$. Or, $C(\partial B_1(0), \mathbb{C}) = overline \mathcal{A}_{\mathbb{C}}(\{1, z \mapsto z, z \mapsto z^*\})$ puisque $\{1, z \mapsto z, z \mapsto z^*\}$ satisfait les hypothèses du corollaire I et $F = \Phi|_{\mathcal{A}_{\mathbb{C}}(\{1, z \mapsto z, z \mapsto z^*\})}$.

II. COMPLÉTION DES ESPACES L^p

Définition 4. Une mesure μ définie sur une σ -algèbre $\Sigma \subseteq \mathcal{P}(\mathbb{R}^n)$ borélienne est dite intérieurement régulière si :

$$\forall E \in \Sigma, \mu(E) = \sup\{\mu(K) : K \text{ compact et } K \subset E\}$$
(10)

Elle est dite extérieurement-régulière si

$$\forall E \in \Sigma, \mu(E) = \inf\{\mu(V) : V \text{ ouvert et } V \subset E\}$$
(11)

Elle est enfin régulière si elle est simultanément extérieurement et intérieurement régulière, et localement finie si :

$$\forall x \in \mathbb{R}^n, \exists \text{ un ouvert } U \in \Sigma : \mu(U) < \infty$$
 (12)

Théorème 3. Soit μ une mesure régulière et localement finie, $f \in L^p(\mathbb{R}^n, \mu)$ pour $1 \le p < \infty$ et $\epsilon > 0$. Alors :

$$\exists \varphi \in C_c(\mathbb{R}^n) : ||f - \varphi||_p < \epsilon \tag{13}$$

Preuve laissée en exercice.

Théorème 4. Si μ est une mesure régulière et localement finie, l'espace de Hilbert $L^2(\mathbb{R}^n, \mu)$ est séparable.

Preuve. Soit $f \in C_c(\mathbb{R}^n)$. Des fonctions qui sont des combinaisons linéaires du type $\sum_{k=1}^m \alpha_k \chi_{E_k}$ pour $E_k = \times_{j=1}^n]a_j, b_j]$ approchent f uniformément dans $C_c(\mathbb{R}^n)$. Par conséquent, pour une mesure régulière et localement finie, les fonctions de ce type approchent f dans $L^2(\mathbb{R}^n, \mu)$. On pourrait donc choisir les α_k, a_k, b_k rationnels pour approcher f par une famille dénombrable.

Part II

Mesures et intégrales

III. SÉPARATION ET PARTITION

Pour $A \subseteq \mathbb{R}^n$ et $x \in \mathbb{R}^n$, poser $d : \mathbb{R}^n \times \mathcal{P}(\mathbb{R}^n) \to \mathbb{R}^+$:

$$(x,A) \mapsto \inf\{|x-y| : y \in A\} \tag{14}$$

Théorème 5. Soit $A \subseteq \mathbb{R}^n$. Alors la fonction $d_A : \mathbb{R}^n \to \mathbb{R}^+$:

$$x \mapsto d(x, A) \tag{15}$$

est continue.

Preuve laissée en exercice.

Définition 5. Un ensemble de \mathbb{R}^n est dit relativement compact si sa fermeture est compact.

Lemme 1. Soit un compact $K \subset \mathbb{R}^n$. Il existe alors un ouvert U relativement compact tel que $K \subset U$.

Preuve. Si $K = \emptyset$, prendre $U = B_1(x), x \in \mathbb{R}^n$. Sinon, considérer la famille d'ouverts $\{B_1(x)\}_{x \in K}$ qui recouvre K. Extraire une sous-famille finie $F \subset K$ qui recouvre K. L'ouvert :

$$U = \bigcup_{x \in F} B_1(x) \tag{16}$$

satisfait aux exigences du lemme.

Définition 6. Soient $K \subset V \subseteq \mathbb{R}^n$, avec K compact et V ouvert. On dit qu'une fonction $f \in C_c(\mathbb{R}^n, [0, 1])$ sépare K de $\mathbb{R}^n \setminus V$ et note $K \prec f \prec V$, si $f^{-1}\{1\}$ est un voisinage de K et si $\text{supp}(f) \subset V$.

Lemme 2. Lemme d'Urysohn Soient $K \subset V \subseteq \mathbb{R}^n$, avec K compact et V ouvert. Il existe alors une fonction f telle que $K \prec f \prec V$.

Preuve. Par le lemme 1, il existe un ouvert U contenant K relativement compact. Remplaçant si nécessaire V par $V \cap U$, on peut supposer que V est relativement compact. La fonction :

$$g(x) = \frac{d(x, \mathbb{R}^n \backslash V)}{d(x, \mathbb{R}^n \backslash V) + d(x, K)}$$
(17)

est manifestement définie pour tout $x \in \mathbb{R}^n$ et continue (exercice). De plus, $g|_K = 1$ et $g|_{\mathbb{R}^n \setminus V} = 0$. Soient alors les ouverts $W = g^{-1}[2/3, 1]$ et $U = g^{-1}[1/3, 1]$. Clairement, $K \subset W \subset \overline{U} \subset V$ et la fonction :

$$f(x) = \frac{d(x, \mathbb{R}^n \setminus U)}{d(x, \mathbb{R}^n \setminus U) + d(x, W)}$$
(18)

satisfait aux critères du lemme.

Définition 7. Soit K un compact de \mathbb{R}^n et $\{V_n\}_{1 \leq n \leq m}$ une collection finie d'ensembles ouverts qui recouvrent K. Une famille de m fonctions $f_n \prec V_n$ telles que :

$$\sum_{n=1}^{m} f_n(x) = 1, \forall x \in K \tag{19}$$

est appelée une partition de K subordonnée au recouvrement $\{V_n\}_{1 \le n \le m}$.

Corrolaire 4. Soit $K \subset \mathbb{R}^n$ compact et $\{V_n\}_{1 \leq n \leq m}$ une collection finie d'ensembles ouverts qui recouvrent K. Il existe alors une partition de K subordonnée à $\{V_n\}_{1 \leq n \leq m}$.

Preuve. Soit $x \in K$. Il existe V_{n_x} du recouvrement tel que $x \in V_n$. Par le lemme d'Urysohn 2, il existe une fonction g_x telle que $\{x\} \prec g_x \prec V_{n_x}$. L'ensemble $K_x = g_x^{-1}\{1\}$ est alors un voisinage compact de $\{x\}$. Comme K est compact et puisque $\{K_x\}_{x \in K}$ recouvre K, il existe une sous-collection finie $\{K_{x_j}\}_{j=1,\dots,p}$ qui recouvre K. Pour chaque V_n du recouvrement initiale, poser :

$$C_n = \bigcup_{K_{x_j} \subset V_n, 1 \le i \le p} K_{x_j} \tag{20}$$

Tous les C_n sont compacts et leur collection recouvre K. De plus, $C_n \subset V_n$, n=1,...,m. Une nouvelle application du lemme d'Urysohn livre alors m fonctions h_n telles que $C_n \prec h_n \prec V_n$. Poser alors $f_1 = h_1$ et $f_n = h_n \prod_{k=1}^{n-1} (1-h_k)$, pour $n \geq 2$. Clairement, $f_n \prec V_n$ pour n=1,...,m et :

$$\sum_{n=1}^{m} f_n = 1 - \prod_{n=1}^{m} (1 - h_n)$$
(21)

De plus, si $x \in K$, $x \in C_n$ pour au moins un n, de sorte que $h_n(x) = 1$, c'est-à-dire la propriété espérée.