МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информационных систем и технологий Кафедра «Измерительно-вычислительные комплексы»

Отчет по лабораторной работе №4 по дисциплине «Методы искусственного интеллекта»

Выполнила

ст. гр. ИСТбд-41 Карташова М.В.

Проверил:

Шишкин В.В.

Задание:

- 1. Создать симулированный набор данных и записать его на диск в виде csv файла со следующими параметрами:
- продукт;
- сладость;
- хруст;
- -класс.

продукт	сладость	хруст	класс
Яблоко	7	7	Фрукт
салат	2	5	Овощ
бекон	1	2	Протеин
банан	9	1	Фрукт
орехи	1	5	Протеин
рыба	1	1	Протеин
сыр	1	1	Протеин
виноград	8	1	Фрукт
морковь	2	8	Овощ
апельсин	6	1	Фрукт

Подготовить для классификации несколько примеров в соответствии с хруст

Овощи

Фрукты

Протеин

2. Запрограммировать метрический классификатор по методу k-NN. Для проверки решить ту же задачу методом k-NN библиотеки sklearn.

Сладость

- 3. Прочитать сгенерированный набор данных. Настроить классификатор. Провести эксперимент по классификации с контролем для подготовленных примеров.
- 4. По возможности результаты визуализировать.

- 5. Ввести в набор данных и примеры продукты еще одного класса (возможно изменив набор параметров) и повторить эксперимент.
- 6. По результатам эксперимента подготовить отчет по лабораторной работе.

Ход выполнения работы:

1. Был сгенерирован csv файл, в котором находятся данные из задания, плюс еще несколько примеров, соответствующие рисунку из задания. Здесь классу 0 соответствуют фрукты, 1 — овощи, 2 — протеин.

	Α	В	С	
1	продукт,сладость,хруст,класс			
2	яблоко,7,7,0			
3	салат,2,5,1			
4	бекон,1,2,2			
5	банан,9,1,0			
6	орехи,1,5,2			
7	рыба,1,1,2	2		
8	сыр,1,1,2			
9	виноград,	8,1,0		
10	морковь,2	2,8,1		
11	апельсин,6,1,0			
12	ананас,7,2,0			
13	гранат,6,3,0			
14	яйца,1,2,2			
15	капуста,2,9,1			
16	красная икра,1,3,2			
17	редис,3,10,1			
18	кабочок,2,6,1			
19	персик,7,4,0			
20	творог,2,2,2			
21	тыква,4,6,1			
วว				

Рис.1. Файл dataset1.csv

2. Далее был запрограммирован метрический классификатор по методу k-NN. Его необходимо было настроить, для более точного прогнозирования класса. Так например, при тестовой выборке в 40% и K=5, результатом программы было следующее:

u:\uocuments\mии\tab4\venv\5cripts\pytnon.exe u:/uocuments/mии/tab4/main.py Точность метрического классификатора, когда тестовая выборка составляет 40.0 % данных при k= 5 : 0.5

Рис.2. Результат классификатора при тестовой выборке в 40% и К=5

Методом подбора значений, получилось добиться результата работы классификатора, со 100% точностью:

Точность метрического классификатора, когда тестовая выборка составляет 20.0 % данных при k= 3 : 1.0

Рис.3. Результат классификатора при тестовой выборке в 20% и К=3

3. Далее написана функция, решающая ту же задачу методом k-NN библиотеки sklearn.

Точность классификатора sclearn, когда тестовая выборка составляет 20.0 % данных при k= 3 : 1.0

Рис.4. Результат классификатора sklearn при тестовой выборке в 20% и K=3

4. Затем был сгенерирован второй аналогичный по структуре сsv файл, но теперь в нем присутствуют больше записей, так как добавлен новый класс продуктов: 3 — сладости. Таким образом классу 0 соответствуют фрукты, 1 — овощи, 2 — протеин, 3 - сладости.

	Л	ט	C
1	продукт,сладость,хруст,класс		
2	яблоко,7,7,0		
3	салат,2,5,1		
4	бекон,1,2,2		
5	пахлава,10,7,3		
6	банан,9,1,0		
7	орехи,1,5,2		
8	помадная конфета,10,1,3		
9	рыба,1,1,2	2	
10	сыр,1,1,2		
11	виноград	,8,1,0	
12	чурчхела,9,3,3		
13	капуста,2,	9,1	
14	морковь,2,8,1		
15	козинаки,9,10,3		
16	апельсин,6,1,0		
17	вафли,8,9,3		
18	гранат,6,3,0		
19	яйца,1,2,2		
20	красная икра,1,3,2		
21	редис,3,10,1		
22	кабочок,2,6,1		
23	чакчак,10,8,3		
24	персик,7,4,0		
25	творог,2,2,2		
26	тыква,4,6,1		
27			

Рис.5. Файл dataset2.csv

Данный класс располагается по отношению к другим следующим образом:

5. Далее результаты работы классификаторов получилось визуализировать.

Рис.6. Визуализация работы метрического классификатора на наборе с 3 классами при тестовой выборке в 20% и K=3

Рис.7. Визуализация работы классификатора sklearn на наборе с 4 классами при тестовой выборке в 20% и K=3

Данные рисунки полностью соответствуют графику распределения из задания (для 3 классов) и графику, спроектированному в л.р. для нового класса (для 4 классов).

Вывод: в данной лабораторной работе я реализовала алгоритм k ближайших соседей, а также научилась пользоваться методами библиотеки sklearn для тех же целей; затем визуализировала результаты. Метод knn — это алгоритм машинного обучения с учителем, который можно использовать для решения задач классификации. Он относит объекты к классу, которому принадлежит большинство из k его ближайших соседей в пространстве признаков.