Σύγκριση και πρόσημα

Σύγκριση αριθμών

$$\square$$
 $a > \beta \Leftrightarrow a - \beta > 0$

$$\square$$
 $a < \beta \Leftrightarrow a - \beta < 0$

- ightharpoonup Διπλή ανισότητα : $A < B < \Gamma$

Πρόσημα

- \square Aν a > 0 και $\beta > 0$ τότε $a + \beta > 0$.
- \blacksquare Aν a < 0 και $\beta < 0$ τότε $a + \beta < 0$.

- $a^2 > 0$ για κάθε $a \in \mathbb{R}$.

΄Αθροισμα τετραγώνων

- $a^2 + \beta^2 > 0$, για κάθε $a, \beta \in \mathbb{R}$.
- $a^2 + \beta^2 = 0 \Leftrightarrow a = 0 \text{ Kat } \beta = 0.$
- $a_1^{2\kappa_1} + a_2^{2\kappa_2} + \ldots + a_v^{2\kappa_v} = 0 \Leftrightarrow$
- $a^2 + \beta^2 > 0 \Leftrightarrow a \neq 0 \text{ if } \beta \neq 0.$
- $a_1^{2\kappa_1} + a_2^{2\kappa_2} + \ldots + a_n^{2\kappa_n} > 0 \Leftrightarrow$

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΦΙΛΟΜΑΘΕΙΑ

💡 Ιακώβου Πολυλά 24 - Πεζόδρομος

😝 Φροντιστήριο Φιλομάθεια

Η έννοια του διαστήματος

$$[a, \beta] = \{ x \in \mathbb{R} \mid a \le x \le \beta \}$$

Είδη διαστημάτων

Διάστημα	Ανισότητα	Σχήμα	Περιγραφή
$[a,\beta]$	$a \le x \le \beta$	$a \qquad \beta \qquad x$	Κλειστό a, eta
(a,β)	$a < x < \beta$	$a \qquad \beta \qquad x$	Ανοιχτό a, β
$[a,\beta)$	$a \le x < \beta$	$a \qquad \beta \qquad x$	Κλειστό a ανοιχτό β
$(a,\beta]$	$a < x \le \beta$	$\xrightarrow{a} \xrightarrow{\beta} x$	Ανοιχτό a κλειστό β
$[a, +\infty)$	$x \ge a$	\xrightarrow{a} x	Κλειστό α συν άπειρο
$(a, +\infty)$	x > a	$\stackrel{\longrightarrow}{a}$ x	Ανοιχτό <i>α</i> συν άπειρο
$(-\infty, a]$	$x \le a$	$\xrightarrow{a} x$	Μείον άπειρο <i>a</i> κλειστό
$(-\infty, a)$	x < a	\xrightarrow{a} x	Μείον άπειρο <i>a</i> ανοιχτό

- Οι a, β ονομάζονται άκρα του διαστήματος.
- Τα ±∞ δεν είναι πραγματικοί αριθμοί.
- **Μήκος** διαστήματος: μ = β a
- **Κέντρο** διαστήματος: $x_0 = \frac{a+\beta}{2}$
- Ακτίνα διαστήματος: $\rho = \frac{\beta a}{2}$

Σύμβολα διάταξης

- < : μικρότερο ίσο • < : μικρότερο
- > : μεγαλύτερο > : μεγαλύτερο ίσο
- ▶ Πράξεις
- \triangle Av $a > \beta \Leftrightarrow a + \nu > \beta + \nu$
- Av $a > \beta \Leftrightarrow a \nu > \beta \nu$
- **Δ** Aν $\gamma > 0$ τότε $a > \beta \Leftrightarrow a \cdot \gamma > \beta \cdot \gamma$ και $\frac{a}{\gamma} > \frac{\rho}{\gamma}$
- **Δ** Aν $\gamma < 0$ τότε $a > \beta \Leftrightarrow a \cdot \gamma < \beta \cdot \gamma$ και $\frac{a}{\gamma} < \frac{\beta}{\gamma}$
- \triangle Aν $a, \beta > 0$ και $\nu \in \mathbb{N}^*$ τότε $a > \beta \Leftrightarrow a^{\nu} > \beta^{\nu}$
- \triangle Aν $a, \beta \in \mathbb{R}$ και ν : περιττός τότε $a > \beta \Leftrightarrow a^{\nu} > \beta^{\nu}$
- **2** Aν $a, \beta \ge 0$ τότε $a > \beta \Leftrightarrow \sqrt[\nu]{a} > \sqrt[\nu]{\beta}$
- **Δ** Aν a, β ομόσημοι τότε $a > \beta \Leftrightarrow \frac{1}{a} < \frac{1}{\beta}$

Πράξεις κατά μέλη

- Πρόσθεση κατά μέλη
- $A > \beta$ kai $\gamma > \delta \Rightarrow a + \gamma > \beta + \delta$
- $A_1 > B_1 \text{ KM} A_2 > B_2 \text{ KM} \dots \text{ KM} A_n > B_n \Rightarrow$ $\Rightarrow a_1 + a_2 + ... + a_v > \beta_1 + \beta_2 + ... + \beta_v$
- Πολλαπλασιασμός κατά μέλη
- $\mathbf{Z} a > \beta \quad \text{kat} \quad \gamma > \delta \Rightarrow a \cdot \gamma > \beta \cdot \delta \quad , \quad \text{me} \ a, \beta, \gamma, \delta > 0$
- $A_1 > B_1 \text{ KMI } A_2 > B_2 \text{ KMI } \dots \text{ KMI } A_N > B_N \Rightarrow$ $\Rightarrow a_1 \cdot a_2 \cdot \ldots \cdot a_{\nu} > \beta_1 \cdot \beta_2 \cdot \ldots \cdot \beta_{\nu} \ \mu\epsilon \ a_i, \beta_i > 0$
- Δεν αφαιρούμε ούτε διαιρούμε ανισότητες κατά μέλη.