

wav2tok: Deep Sequence Tokenizer for Audio Retrieval

Vipul Arora

Department of Electrical Engineering Indian Institute of Technology Kanpur, India {adhiraj, vipular}@iitk.ac.in

Sequence Retrieval aims at retrieving sequences similar to a query sequence, with the constraint that

an ordered alignment exists between the query and the target sequence.

Sequence Retrieval aims at retrieving sequences similar to a query sequence, with the constraint that

an ordered alignment exists between the query and the target sequence.

Speech Search

Sequence Retrieval aims at retrieving sequences similar to a query sequence, with the constraint that

an ordered alignment exists between the query and the target sequence.

Speech Search

Music Search

A model mapping audio $\mathcal X$ to discrete tokens $\tilde{\mathcal T}$

$$\mathcal{X} \longrightarrow \text{wav2tok} \longrightarrow \tilde{\mathcal{T}}$$

A model mapping audio \mathcal{X} to discrete tokens $\tilde{\mathcal{T}}$

Model learns the tokens un-supervised from pairs of similar audio

Motivation

Audio to Tokens

Fast approximate substring matching algorithms for detecting substrings of tokens in a long string

Motivation

Preserving Languages with no written form

Bo, (Tribal Language in Andaman Islands, extinct February 2010) [1]

Baghati (Solan, Himachal Pradesh)
[1]

Khoisan, (Kalahari Desert, Tanzania) [2]

Sfyria (Greece) [2]

^[1] https://www.tribuneindia.com/news/archive/features/when-a-language-faces-extinction-584691

^[2] https://peakd.com/top10languages/@calmbrain/10-extraordinary-languages-that-do-not-involve-speaking

Motivation

Bird Language Acquisition

Better monitoring for wildlife conservation

Preserving Languages with no written form

Bo, (Tribal Language in Andaman Islands, extinct February 2010) [1]

Khoisan, (Kalahari Desert, Tanzania) [2]

Baghati (Solan, Himachal Pradesh)
[1]

Sfyria (Greece) [2]

 $[\]hbox{[1]} \ \underline{\text{https://www.tribuneindia.com/news/archive/features/when-a-language-faces-extinction-584691}$

^[2] https://peakd.com/top10languages/@calmbrain/10-extraordinary-languages-that-do-not-involve-speaking

Compressor C

Token Classifier Network (g)

Encoder (f)

Discrete Tokens

$$egin{array}{lll} ext{Discrete} & e_1 \mapsto 1 & ext{Finite} \ ext{Representations} & e_2 \mapsto 2 & \leftarrow ext{alphabet} \ E = \{e_1, \dots, e_K\} & \dots & & \mathbb{A} = \{1, 2, \dots, K\} \end{array}$$

Training

Trained on pairs of similar sequences $(\mathcal{X}, \mathcal{X}')$

Expectation Maximization (EM) algorithm like training,

E-Step

Token Classifier Network (g)

$$E = \{e_1, \dots, e_K\}$$

E-Step

$$\mathcal{X} \mapsto \tilde{\mathcal{T}}, \mathcal{X}' \mapsto \tilde{\mathcal{T}}'$$
 $\mathcal{L} = \mathcal{L}_m(\mathcal{X}, \mathcal{X}') + \alpha \mathcal{L}_{ctc}(\mathcal{X}, \tilde{\mathcal{T}}') + \beta \mathcal{L}_{ctc}(\mathcal{X}', \tilde{\mathcal{T}})$

$$\mathcal{X} \mapsto ilde{\mathcal{T}}, \mathcal{X}' \mapsto ilde{\mathcal{T}}'$$
 $\mathcal{L} = \mathcal{L}_m(\mathcal{X}, \mathcal{X}') + \alpha \mathcal{L}_{ctc}(\mathcal{X}, ilde{\mathcal{T}}') + \beta \mathcal{L}_{ctc}(\mathcal{X}', ilde{\mathcal{T}})$
Likelihood Loss

Likelihood Loss

Likelihood Loss

Likelihood Loss

We use the CTC forward backward algorithm [3]

Contrastive Loss

Contrastive Task

Experiments

Experiments

Table 1: Quality of Tokenization

	Vanilla query	Time Stretched query	Pitch Shifted query		
Model	V	TS	PS	Search Time	Infer
	(MRR)	(MRR)	(MRR)	(s)	(s)
MIDI ED	0.75	0.64	0.72	3.84	0.62
Relative Note DTW	0.84	0.74	0.8	0.02	0.62
wav2vec2-O ED	0.72	0.72	0.71	0.01	0.43
wav2vec2-Multi ED	0.82	0.82	0.82	0.01	1.2
wav2tok ED	0.84	0.84	0.84	0.04	0.14

Audio to MIDI with SOTA melody extraction algorithm [6]

Table 1: Quality of Tokenization

	Vanilla query	Time Stretched query	Pitch Shifted query		
Model	V	TS	PS	Search Time	Infer
	(MRR)	(MRR)	(MRR)	(s)	(s)
-MIDI ED	0.75	0.64	0.72	3.84	0.62
Relative Note DTW	0.84	0.74	0.8	0.02	0.62
wav2vec2-O ED	0.72	0.72	0.71	0.01	0.43
wav2vec2-Multi ED	0.82	0.82	0.82	0.01	1.2
wav2tok ED	0.84	0.84	0.84	0.04	0.14

[6] Justin Salamon and Emilia Gomez. Melody extraction from polyphonic music signals using pitch 'contour characteristics. IEEE transactions on audio, speech, and language processing, 20(6): 1759–1770, 2012.

Audio to MIDI with SOTA melody extraction algorithm [6]

MIDI [6] to Relative Note sequence [7]

MIDI: 55,..,55,56,...,78

to

Notes: (55,0.1s), (56,0.3s), ...

to

Relative notes: (0,0.1s),(+3, 0.3s),...

Table 1: Quality of Tokenization

	Vanilla query	Time Stretched query	Pitch Shifted query		
Model	V	TS	PS	Search Time	Infer
	(MRR)	(MRR)	(MRR)	(s)	(s)
– MIDI ED	0.75	0.64	0.72	3.84	0.62
- Relative Note DTW	0.84	0.74	0.8	0.02	0.62
wav2vec2-O ED	0.72	0.72	0.71	0.01	0.43
wav2vec2-Multi ED	0.82	0.82	0.82	0.01	1.2
wav2tok ED	0.84	0.84	0.84	0.04	0.14

^[6] Justin Salamon and Emilia Gomez. Melody extraction from polyphonic music signals using pitch 'contour characteristics. IEEE transactions on audio, speech, and language processing, 20(6): 1759–1770, 2012.

^[7] Naziba Mostafa and Pascale Fung. A note based query by humming system using convolutional neural network. In INTERSPEECH, pp. 3102–3106, 2017.

Audio to MIDI with SOTA melody extraction algorithm [6] MIDI [6] to Relative Note sequence [7]	Table 1:	Qualit Vanilla query	y of To Time Stretched query	kenizat Pitch Shifted query	ion	,
MIDI : 55,,55,56,,78	Model	v	TS	PS	Search Time	Infer
Notes: (55,0.1s), (56,0.3s),		(MRR)	(MRR)	(MRR)	(s)	(s)
to Relative notes: (0,0.1s),(+3, 0.3s),	— MIDI ED	0.75	0.64	0.72	3.84	0.62
Tiolain's hotes. (6,8.16);(16, 6.66);	— Relative Note DTW	0.84	0.74	0.8	0.02	0.62
wav2vec 2.0 base model	-wav2vec2-O ED	0.72	0.72	0.71	0.01	0.43
pretrained on 960h LibriSpeech and	wav2vec2-Multi ED	0.82	0.82	0.82	0.01	1.2
Finetuned on TIMIT [8]	wav2tok ED	0.84	0.84	0.84	0.04	0.14

^[6] Justin Salamon and Emilia Gomez. Melody extraction from polyphonic music signals using pitch 'contour characteristics. IEEE transactions on audio, speech, and language processing, 20(6): 1759–1770, 2012.

^[7] Naziba Mostafa and Pascale Fung. A note based query by humming system using convolutional neural network. In INTERSPEECH, pp. 3102–3106, 2017.

^[8] wav2vec 2.0: A Framework for Self-Supervised ... - NIPS papers

Audio to MIDI with SOTA melody extraction algorithm [6]

MIDI [6] to Relative Note sequence [7]

MIDI: 55,..,55,56,...,78

to

Notes: (55,0.1s), (56,0.3s), ...

to

Relative notes: (0,0.1s),(+3, 0.3s),...

wav2vec 2.0 base model pretrained on 960h LibriSpeech and Finetuned on TIMIT [8]

Multi-Lingually (53 languages) pretrained wav2vec 2.0 large model and Finetuned on Common Voice [9]

Table 1: Quality of Tokenization

	Vanilla query	Time Stretched query	Pitch Shifted query		
Model	V	TS	PS	Search Time	Infer
	(MRR)	(MRR)	(MRR)	(s)	(s)
– MIDI ED	0.75	0.64	0.72	3.84	0.62
- Relative Note DTW	0.84	0.74	0.8	0.02	0.62
-wav2vec2-O ED	0.72	0.72	0.71	0.01	0.43
wav2vec2-Multi ED	0.82	0.82	0.82	0.01	1.2
wav2tok ED	0.84	0.84	0.84	0.04	0.14

^[6] Justin Salamon and Emilia Gomez. Melody extraction from polyphonic music signals using pitch 'contour characteristics. IEEE transactions on audio, speech, and language processing, 20(6): 1759–1770, 2012.

^[7] Naziba Mostafa and Pascale Fung. A note based query by humming system using convolutional neural network. In INTERSPEECH, pp. 3102–3106, 2017.

^[8] wav2vec 2.0: A Framework for Self-Supervised ... - NIPS papers

^[9] Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, and Michael Auli. Unsupervised cross-lingual representation learning for speech recognition. CoRR, abs/2006.13979, 2020. URL https://arxiv.org/abs/2006.13979, 2020. URL

Table 2: Some Variations

	Vanilla query	Time Stretched query	Pitch Shifted query
Madal	V	TS	PS
Model	(MRR)	(MRR)	(MRR)
log-mel DTW	0.72	0.7	0.67
vq-log-mel ED	0.71	0.6	0.62
wav2tok+MIR1K ED	0.72	0.64	0.67
wav2tok ED	0.84	0.84	0.84

Table 2: Some Variations

		Vanilla query	Time Stretched query	Pitch Shifted query
K-Means over log-mel features	Model	V (MRR)	TS (MRR)	PS (MRR)
reditires	log-mel DTW	0.72	0.7	0.67
	-vq- log-mel ED	0.71	0.6	0.62
	wav2tok+MIR1K ED	0.72	0.64	0.67
8	wav2tok ED	0.84	0.84	0.84

Table 2: Some Variations

	1able 2. S	Vanilla query	Time Stretched query	Pitch Shifted query
K-Means over log-mel features	Model	V (MRR)	TS (MRR)	PS (MRR)
Todalaroo	log-mel DTW	0.72	0.7	0.67
	-vq- log-mel ED	0.71	0.6	0.62
wav2tok trained on MIR-1K polyphonic music audio	-wav2tok+MIR1K ED	0.72	0.64	0.67
	wav2tok ED	0.84	0.84	0.84

[9] Garofolo, John S., et al. TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium, 1993. [10] V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 2015, pp. 5206-5210, doi: 10.1109/ICASSP.2015.7178964.

Table 4: Spoken Term Detection

Model	ED	Search Time	DTW	Search Time
	(F1)	(s)	(F1)	(s)
log-mel DTW	1 0 	(0 -)	0.41	0.003
wav2vec2-O	0.61	0.29	0.43	0.23
wav2vec2-Multi	0.63	0.72	0.48	0.66
wav2tok	0.65	0.064	0.52	0.09
wav2tok+Libri	0.63	0.004	0.44	0.1

Table 4: Spoken Term Detection

Spoken Term Detection system based on [11]

S-DTW over Posteriorograms generated by SOTA ASRs

Model	ED	Search Time	DTW	Search Time
	(F1)	(s)	(F1)	(s)
log-mel DTW	-		0.41	0.003
wav2vec2-O	0.61	0.29	0.43	0.23
- wav2vec2-Multi	0.63	0.72	0.48	0.66
wav2tok	0.65	0.064	0.52	0.09
wav2tok+Libri	0.63	0.004	0.44	0.1

Thank You!