## Cours de systèmes d'exploitation centralisés

## **Gestion de la mémoire virtuelle Séance 2**

**N.TEMGLIT, M.RAHMANI** 

© 2023-2024

### Rappel (pagination simple)



# Rappel: Pagination à deux niveaux



#### 2.4 Table de pages inverse

 Quand l'espace d'adressage virtuel est très grand → table de pages très grande.

**Exemple**: Adresse virtuelle 64 bits

- ✓ Si page =  $2^{12}$  octets et entrée =  $2^{2}$  octets →
- ✓ Nombre d'entrées de la table de pages=  $2^{64}/2^{12} = 2^{52}$  entrées
- ✓ Taille de la table de page d'un processus=  $2^{52}*2^2 = 2^{54}$  octets.
- ✓ La plupart des machines actuelles(Intel) disposent de mémoire physique ne dépassant pas les 64 Giga-octets (2³6 octets). → Toute la mémoire centrale de la machine ne suffit pas pour charger une seule table de pages!
- La traduction des adresses virtuelles à l'aide d'une table de pages inverse est une deuxième solution au problème de la taille des tables de pages (pour réduire l'espace occupé par les tables de pages.

- 4 -

### Table de page inverse

Table de page inverse MC (n cases) (n entrées)

 La table de page inverse décrit l'espace physique ou réel et non pas l'espace virtuel.

- Le système dispose d'une seule table des cases que l'on appelle table de pages inverse qui décrit l'espace d'adressage physique (mémoire principale). →
  - Dans cette table, il y a une entrée par page physique ou case.
  - Une entrée de la table de pages inverse contient essentiellement:
    - ✓ L'identificateur PID du processus qui utilise la case et
    - ✓ La page P qui occupe la case(P appartient au processus PID).

|        | Info | PID | Page | Chainage |
|--------|------|-----|------|----------|
| case 0 |      |     |      |          |
| case 1 |      |     |      |          |
| case i |      |     |      |          |
|        |      |     |      |          |
| case k |      |     |      |          |
|        |      |     |      |          |

Table de pages inverse

- Le nombre d'entrées de la table de pages inverse est égal au nombre de cases de la mémoire centrale : Il est indépendant de la taille de l'espace d'adressage virtuel.
- La recherche d'une page P d'un processus PID est réalisée à l'aide d'une fonction de hachage (avec éventuellement un chaînage des entrées qui correspondent au même résultat de la fonction de hachage).
- Adresse virtuelle: le MMU dispose du PID du processus, en plus de l'adresse virtuelle.

| Page | Déplacement |
|------|-------------|
|------|-------------|

Exemples de machines utilisant des tables de pages inverses:
 Le HP Spectrum, l'IBM System/38 et l'IBM RISC System/6000.

#### Traduction d'une adresse virtuelle en adresse réelle



#### **Inconvénients:**

Traduction des adresses plus compliquée:
 Utilisation d'une fonction de hachage →
 Un ou plusieurs chainages →

· Partage de pages plus difficile à implémenter au niveau système.

#### 2.5 Choix de la taille des pages

- La taille des cases d'une machine donnée est fixée par le constructeur.
- Le concepteur de systèmes d'exploitation choisit une taille de pages en fonction de ses objectifs
  - La taille choisie peut être différente de celle qui existe sur le matériel (ou fixé par le constructeur).
- Pour le choix de la taille de page optimale on doit tenir compte des paramètres suivants:

#### 1. fragmentation interne

 La pagination permet de pallier le problème de la fragmentation externe : la mémoire est allouée par case.

- L'allocation par page fait apparaître de nouveau la fragmentation interne : La dernière page d'un espace virtuel est, en moyenne, utilisée à moitié, mais occupe une case entière.
- Dans un même espace virtuel on peut séparer le code et les données, on aura donc deux sections:
   Une section de code et une section de données.
- Pour des raisons de protection, chaque section commence sur une frontière de page → on aura, en moyenne, deux demi-pages de fragmentation interne.
- La fragmentation augmente avec le nombre de sections commençant sur une frontière de page.
- Plus les pages sont petites, plus la fragmentation interne est réduite.

#### 2. Taille de la table des pages

 La taille de la table de page est proportionnelle à la taille de l'espace virtuel.

Pour réduire la taille de la table de pages, on doit utiliser des pages de taille assez grande.

• On peut constater que les paramètres (1) et (2) sont contradictoires.

#### 3. Temps de lecture/écriture d'une page

 Le temps, de lecture/écriture d'une page à partir d'une mémoire secondaire, fait intervenir le temps de positionnement des têtes de lecture/écriture et le temps de recherche (délai de rotation) qui

Piste0

Cylindre\_

sont indépendants de la quantité d'information à lire ou à écrire.

Temps d'une entrée/sortie=temps de positionnement

+ délai de rotation + temps de transfert

 Remarque: Dans cette formule, on néglige le temps passé dans la file d'attente de la mémoire secondaire. <u>T</u>êtes de Lecture Ecriture

Déplacement

#### **Exemple:** Disque 10000 tours/minute

- Temps moyen de positionnement : 4,5 ms
- Délai de rotation(1/2 tour) pour un disque ayant une vitesse de 10000 tours/minute = 3 ms
- Taux de transfert : 75 Méga-octets/seconde;
  Transfert d'une page de 4ko= 4k/75Mo = 0,05181ms →0,052ms
- Temps moyen d'une entrée/sortie = 4,5 + 3 + 0,052 = 7,352 ms.
- Le temps de transfert est proportionnel à la taille de la page, mais il ne constitue qu'une faible partie du temps total de lecture/écriture(0,052 sur 7,352).
- Pour réduire le temps d'entrée/sortie, il est donc préférable d'utiliser de grandes pages (réduit le nombre d'E/S).

#### 4. Allocation de la mémoire principale

- Pour une mémoire physique donnée, la taille des pages détermine le nombre de cases à allouer.
- Utiliser des pages plus petites sur des machines dont la mémoire physique est petite > plus de cases à allouer, optimise le degrés de multiprogrammation.

#### **Exemples de tailles de pages**

| Machine                 | Taille de pages          |
|-------------------------|--------------------------|
| IBM/370                 | 2ko et 4ko               |
| DEC Vax 8800            | 512 octets               |
| Motorola 68030          | 256 octets à 32 k octets |
| Intel 80386             | 4ko                      |
| Intel 80x86(IA32)       | 4ko, 2Mo et 4Mo          |
| IA32e (Intel 32-64bits) | 4ko, 2Mo et 1Go          |
| Sun UltraSPARC          | 8ko à 4Mo                |

#### Résumé

| 1) | Fragmentation interne                          | Petite taille |
|----|------------------------------------------------|---------------|
| 2) | Taille de la table de pages                    | Grande taille |
| 3) | Temps de lecture/écriture                      | Grande taille |
| 4) | Allocation des cases : petite Mémoire centrale | Petite taille |

#### 2.7 Protection de la mémoire paginée

- La protection d'une page peut être :
  - Page en lecture/écriture,
  - Page en lecture seule,
  - Page en lecture/exécution.
- A chaque page sont associés des bits de protection qui font partie de la table de pages.

#### **Exemples:**

- IBM/370 : Verrou=4 bits/page et Clé = 4bits
- CII-10070 : Verrou=2 bits/page et Clé = 2bits

#### 2.8 Partage du code et des données (partage de pages)

 La pagination permet de partager, entre plusieurs processus, des pages de code ou de données.

#### **Exemple**: Editeur de texte partagé

- Un système supporte 40 utilisateurs,
- Espace virtuel d'un processus = 70k octets
  - > 20 ko : code (éditeur de textes) et
  - > 50 ko : espace de données.
- On suppose que l'espace virtuel d'un processus est entièrement chargé en mémoire centrale.
- Pour ces 40 utilisateurs on aura besoin de : (20+50)\*40=2800ko.

|        | Processus1 | Processus2 | Processus40 |  |
|--------|------------|------------|-------------|--|
| Page0  | Editeur    | Editeur    | Editeur     |  |
| Page1  | Editeur    | Editeur    | Editeur     |  |
| Page2  | Editeur    | Editeur    | Editeur     |  |
| Page3  | Editeur    | Editeur    | Editeur     |  |
| Page4  | Editeur    | Editeur    | Editeur     |  |
| Page5  | Données    | Données    | Données     |  |
| • • •  |            |            |             |  |
| Page17 | Données    | Données    | Données     |  |

- Si l'éditeur est partageable(réentrant) →
  Il peut alors être partagé par les 40 utilisateurs →
  - On ne charge qu'une seule copie du code de l'éditeur en mémoire centrale.
  - Chaque processus a ces propres données.

#### Comment réaliser le partage des pages ?

 Le partage est réalisé en plaçant dans la table de pages de chacun des processus les N° de cases correspondant à notre éditeur de texte.

Les N° de cases sont les mêmes dans toutes les tables de pages qui partagent ces cases.

Les N° de pages peuvent être différents.

|   | ble de<br>iges de<br><b>P0</b> | s de <b>Mémoire centrale</b> |         |         | Table de<br>pages de<br><b>P39</b> |         |  |   |      |
|---|--------------------------------|------------------------------|---------|---------|------------------------------------|---------|--|---|------|
| 0 |                                | Case0                        |         |         |                                    |         |  | 0 | 1000 |
| 1 |                                |                              |         |         |                                    |         |  | 1 | 1001 |
| 2 | 1000                           | Case1000                     | Editeur | Editeur |                                    |         |  | 2 | 1005 |
| 3 | 1001                           | Case1004                     |         | Editeur | Editeur                            | Editeur |  | 3 | 1006 |
| 4 | 1005                           |                              |         |         |                                    |         |  | 4 | 1007 |
| 5 | 1006                           |                              |         |         |                                    |         |  | 5 |      |
| 6 | 1007                           |                              |         |         |                                    |         |  |   |      |
|   |                                |                              |         |         |                                    |         |  |   |      |
| n |                                |                              |         |         |                                    |         |  | k |      |