Matematická logika

přednáška čtvrtá

Miroslav Kolařík

Zpracováno dle textu R. Bělohlávka: Matematická logika – poznámky k přednáškám, 2004.

a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika pro informatiky II, Olomouc 2006.

Spornost a bezespornost

Definice

Množina formulí T se nazývá **sporná** (nekonzistentní), jestliže je z ní dokazatelná jakákoliv formule. Není-li T sporná (tj. existuje formule, která není z T dokazatelná), nazývá se **bezesporná** (konzistentní).

Lemma

Následující tvrzení jsou ekvivalentní:

- (i) Množina formulí *T* je sporná;
- (ii) $T \vdash \varphi$ a $T \vdash \neg \varphi$ pro nějakou formuli φ ;
- (iii) $T \vdash \neg (\vartheta \Rightarrow \vartheta)$.

Důkaz: "(i) \Rightarrow (ii)": Pokud je T sporný systém formulí, pak je z něj dokazatelná jakákoliv formule, tedy i formule φ a $\neg \varphi$.

"(ii) \Rightarrow (iii)": Nechť $T \vdash \varphi$ a $T \vdash \neg \varphi$. Dle (a $_\vdash$) máme $\vdash \neg \varphi \Rightarrow (\varphi \Rightarrow \neg(\vartheta \Rightarrow \vartheta))$, z monotonie dokazatelnosti $T \vdash \neg \varphi \Rightarrow (\varphi \Rightarrow \neg(\vartheta \Rightarrow \vartheta))$. Dvojnásobným použitím MP dostaneme $T \vdash \neg(\vartheta \Rightarrow \vartheta)$.

"(iii) \Rightarrow (i)": Nechť φ je libovolná formule. Platí $\vdash \neg(\vartheta \Rightarrow \vartheta) \Rightarrow ((\vartheta \Rightarrow \vartheta) \Rightarrow \varphi)$ opět dle (a_{\vdash}) . Z monotonie dokazatelnosti $T \vdash \neg(\vartheta \Rightarrow \vartheta) \Rightarrow ((\vartheta \Rightarrow \vartheta) \Rightarrow \varphi)$. Dále platí, že $T \vdash \vartheta \Rightarrow \vartheta$; z předpokladu $T \vdash \neg(\vartheta \Rightarrow \vartheta)$ tedy dvojnásobným použitím MP máme $T \vdash \varphi$.

O důkazu sporem

Důkaz sporem je populární dokazovací princip v informatice a matematice. Sporem se snadno dokazuje například tvrzení: "prvočísel je nekonečně mnoho" nebo " $\sqrt{2} \notin \mathbb{Q}$ " atd. Při dokazování postupujeme tak, že předpokládáme neplatnost tvrzení a dojdeme ke sporu, čímž dokážeme platnost daného tvrzení.

Následující věta ukazuje, že intuitivní důkaz sporem má ve VL svou formalizaci.

Věta o důkazu sporem

Nechť T je množina formulí, nechť φ je libovolná formule. Pak platí: $T \vdash \varphi$, právě když $T, \neg \varphi$ je sporná množina.

Důkaz: Nechť $T \vdash \varphi$. Pak zřejmě $T, \neg \varphi \vdash \varphi$ a triviálně též $T, \neg \varphi \vdash \neg \varphi$, což dle (ii) předchozí Lemmy znamená, že $T, \neg \varphi$ je sporná množina.

Naopak, předpokládáme-li, že $T, \neg \varphi$ je sporná množina, pak je z $T, \neg \varphi$ dokazatelná formule $\neg(\vartheta \Rightarrow \vartheta)$ dle (iii) předchozí Lemmy. Užitím VoD máme $T \vdash \neg \varphi \Rightarrow \neg(\vartheta \Rightarrow \vartheta)$. Jelikož $(\neg \varphi \Rightarrow \neg(\vartheta \Rightarrow \vartheta)) \Rightarrow ((\vartheta \Rightarrow \vartheta) \Rightarrow \varphi)$ je axiom dle (A3), pak z monotonie dokazatelnosti a užitím MP dostáváme $T \vdash (\vartheta \Rightarrow \vartheta) \Rightarrow \varphi$. Dále $\vdash \vartheta \Rightarrow \vartheta$, odkud opětovným užitím monotonie dokazatelnosti a MP máme $T \vdash \varphi$.

Věta o nahrazení

Označení: Jsou-li $\varphi, \varphi_1, \ldots, \varphi_n$ formule a p_1, \ldots, p_n po dvou různé výrokové symboly, označíme symbolem $\varphi(p_1/\varphi_1, \ldots, p_n/\varphi_n)$ formuli, která vznikne z formule φ nahrazením všech výskytů symbolů p_1, \ldots, p_n po řadě formulemi $\varphi_1, \ldots, \varphi_n$.

Věta o nahrazení

Pro libovolné formule $\varphi, \varphi_1, \ldots, \varphi_n$ a libovolné po dvou různé výrokové symboly p_1, \ldots, p_n platí, že z $\vdash \varphi(p_1, \ldots, p_n)$ plyne $\vdash \varphi(p_1/\varphi_1, \ldots, p_n/\varphi_n)$.

Důkaz: Jednoduchý, zkuste si ho!

Věta o ekvivalenci

Vznikne-li formule ψ z formule φ nahrazením jejích podformulí $\varphi_1,\ldots,\varphi_n$ po řadě formulemi ψ_1,\ldots,ψ_n , pak

 $\varphi_1 \Leftrightarrow \psi_1, \ldots, \varphi_n \Leftrightarrow \psi_n \vdash \varphi \Rightarrow \psi.$

 $Z \vdash \varphi$ tedy plyne $\varphi_1 \Leftrightarrow \psi_1, \dots, \varphi_n \Leftrightarrow \psi_n \vdash \psi$.

Věta o důkazu rozborem případů

Pro množinu formulí T a formule φ, ψ, χ platí $T, \varphi \lor \psi \vdash \chi$, právě když $T, \varphi \vdash \chi$ a $T, \psi \vdash \chi$.

Věta o neutrální formuli (VoNF)

Věta o neutrální formuli (VoNF)

Pro množinu formulí T a formule φ a ψ platí $T \vdash \psi$, právě když $T, \varphi \vdash \psi$ a $T, \neg \varphi \vdash \psi$.

Důkaz: Dle předchozí věty je $T, \varphi \lor \neg \varphi \vdash \psi$, právě když $T, \varphi \vdash \psi$ a $T, \neg \varphi \vdash \psi$. Dále však platí, že $T, \varphi \lor \neg \varphi \vdash \psi$, právě když $T \vdash \psi$ (neboť $\varphi \lor \neg \varphi$ je zkratkou za $\neg \varphi \Rightarrow \neg \varphi$, což (jak víme) je dokazatelná formule; pro dokazatelnou formuli α je vždy $T, \alpha \vdash \beta$, právě když $T \vdash \beta$), a tím je důkaz hotov.

Viděli jsme formule, které jsou v našem axiomatickém systému dokazatelné. Brzy se lehce přesvědčíme, že každá dokazatelná formule je tautologií.

Nabízí se otázka, zda také naopak je každá tautologie dokazatelná. Uvidíme, že ano (a uvidíme i více). Jinými slovy, naše axiomy a odvozovací pravidlo jsou zvoleny tak vhodně, že umožňují dokázat všechny tautologie, ale žádné další formule (tj. formule, které jsou někdy nepravdivé).

Poznámka: Pokud bychom označili Fml množinu všech formulí jazyka VL, ve kterém pracujeme, pak potenční množina 2^{Fml} je vlastně množinou všech systémů formulí ($T \in 2^{\mathrm{Fml}}$ potom znamená, že T je systém formulí). Syntaktické vyplývání je tedy relace $\vdash \subseteq 2^{\mathrm{Fml}} \times \mathrm{Fml}$, přitom $T \in 2^{\mathrm{Fml}}$ je v relaci \vdash s $\varphi \in \mathrm{Fml}$, právě když je φ dokazatelná z T. Stejně tak sémantické vyplývání lze chápat jako relaci $\models \subseteq 2^{\mathrm{Fml}} \times \mathrm{Fml}$, kde $T \in 2^{\mathrm{Fml}}$ je v relaci \models s $\varphi \in \mathrm{Fml}$, právě když φ sémanticky plyne z T.

Následující tvrzení ukazuje, že ⊢⊆⊨.

Věta o korektnosti

Pro libovolnou množinu formulí T a formuli φ platí, že je-li $T \vdash \varphi$, pak $T \models \varphi$. Speciálně tedy, každá dokazatelná formule je tautologií.

Důkaz: Nejprve pro $T=\emptyset$. Každý axiom je tautologie (o čemž se lze snadno přesvědčit tabelací). Dále zřejmě platí, že jsou-li φ a $\varphi\Rightarrow\psi$ tautologie, je i ψ tautologie. Indukcí tedy dostáváme, že každý člen důkazu je tautologie. Tedy každá dokazatelná formule je tautologie.

Je-li $T \neq \emptyset$, pak z $T \vdash \varphi$ plyne, že pro nějaké $\psi_1, \ldots, \psi_n \in T$ je $\psi_1, \ldots, \psi_n \vdash \varphi$. Opakovaným (n-násobným) použitím VoD odtud dostaneme $\vdash \psi_1 \Rightarrow (\psi_2 \Rightarrow (\ldots (\psi_n \Rightarrow \varphi) \ldots))$, z čehož dle výše dokázaného plyne $\models \psi_1 \Rightarrow (\psi_2 \Rightarrow (\ldots (\psi_n \Rightarrow \varphi) \ldots))$. Nyní n-násobně použijeme "sémantické verze" VoD a dostaneme $\psi_1, \ldots, \psi_n \models \varphi$, z čehož plyne $T \models \varphi$.

Důsledek

Sporný systém formulí není splnitelný.

Důkaz: Pokud je T sporný systém, pak $T \vdash \neg(\vartheta \Rightarrow \vartheta)$, tedy (dle VoK) $T \models \neg(\vartheta \Rightarrow \vartheta)$. Odtud dostáváme, že $\neg(\vartheta \Rightarrow \vartheta)$ musí být pravdivá při každém ohodnocení, při kterém jsou pravdivé všechny formule z T. Ale $\neg(\vartheta \Rightarrow \vartheta)$ je kontradikce, tedy neexistuje žádné ohodnocení e, při kterém by byly všechny formule z T pravdivé. Tím jsme prokázali, že sporný systém formulí není splnitelný.

Poznámka: Korektnost lze využít k prokázání faktu, že některá formule není dokazatelná z jistého systému předpokladů. Reformulací korektnosti totiž dostáváme, že pokud φ sémanticky neplyne z T, pak φ není ze systému T ani dokazatelná. K tomu, abychom prokázali, že $T \nvdash \varphi$ tedy stačí ukázat $T \nvdash \varphi$, což je výrazně jednodušší než prokázat "neexistenci důkazu", protože důkazů, jakožto konečných posloupností formulí, je obecně nekonečně mnoho.

Příklad

Prokážeme, že $p\Rightarrow q \nvdash \neg p\Rightarrow q$. Z Věty o korektnosti VL stačí ukázat, že $p\Rightarrow q \nvdash \neg p\Rightarrow q$. To jest zbývá najít pravdivostní ohodnocení e takové, že $\parallel p\Rightarrow q\parallel_{e}=1$, ale $\parallel \neg p\Rightarrow q\parallel_{e}=0$. S využitím vlastností logické operace \rightarrow zřejmě stačí vzít pravdivostní ohodnocení e, kde e(p)=0 a e(q)=0. Tím je důkaz hotov.

Shrneme-li předchozí poznatky, zavedli jsme dva druhy vyplývání: \models , \vdash a již víme, že každá formule dokazatelná z prázdného systému je tautologie a obecněji $T \vdash \varphi$ implikuje $T \models \varphi$, neboli: "to co je dokazatelné z nějakého systému, z tohoto systému rovněž sémanticky plyne". Ukážeme, že to platí i obráceně.

Před důkazem věty o úplnosti zavedeme následující značení. Pro formuli φ a ohodnocení e je

$$\varphi^{e} = \left\{ \begin{array}{c} \varphi, & \mathsf{pokud} \parallel \varphi \parallel_{e} = 1 \\ \neg \varphi, & \mathsf{pokud} \parallel \varphi \parallel_{e} = 0. \end{array} \right.$$

Churchovo lemma (ChL)

Pro libovolnou formuli $\varphi(p_1,...,p_n)$ platí $p_1^e,...,p_n^e \vdash \varphi^e$.

Důkaz: Tvrzení dokážeme strukturální indukcí přes složitost formule φ .

- I. Nechť φ je výrokový symbol p. Pak je tvrzení zřejmé $(p^e \vdash p^e)$.
- II. Nechť tvrzení platí pro φ . Ukažme, že pak platí i pro $\neg \varphi$, tj., že $p_1^e, \dots, p_n^e \vdash (\neg \varphi)^e$. Rozlišme dva případy, $\parallel \varphi \parallel_e = 0$ a $\parallel \varphi \parallel_e = 1$. Pro $\parallel \varphi \parallel_e = 0$ je $\varphi^e = \neg \varphi$ a $(\neg \varphi)^e = \neg \varphi$. Požadované tvrzení $p_1^e, \dots, p_n^e \vdash (\neg \varphi)^e$ tedy přímo plyne z předpokladu. Pro $\parallel \varphi \parallel_e = 1$ je $\varphi^e = \varphi$ a $(\neg \varphi)^e = \neg \neg \varphi$. Máme tedy dokázat, že $p_1^e, \dots, p_n^e \vdash \neg \neg \varphi$. To však plyne z předpokladu: $p_1^e, \dots, p_n^e \vdash \varphi$ a z (c_\vdash) : $\vdash \varphi \Rightarrow \neg \neg \varphi$ pomocí MP.

- III. Nechť tvrzení platí pro φ a ψ . Ukažme, že pak platí i pro $\varphi \Rightarrow \psi$, tj., že $p_1^e, \ldots, p_n^e \vdash (\varphi \Rightarrow \psi)^e$. Mohou nastat následující případy:
 - $\| \varphi \|_e = 0$: Pak je $\| \varphi \Rightarrow \psi \|_e = 1$, tedy $(\varphi \Rightarrow \psi)^e = \varphi \Rightarrow \psi$. Podle předpokladu máme $p_1^e, \dots, p_n^e \vdash \neg \varphi$. Dle (a_{\vdash}) je $\vdash \neg \varphi \Rightarrow (\varphi \Rightarrow \psi)$, odkud pomocí MP dostaneme požadované $p_1^e, \dots, p_n^e \vdash \varphi \Rightarrow \psi$.
 - || ψ ||_e= 1: Pak je || φ ⇒ ψ ||_e= 1, tedy opět
 (φ ⇒ ψ)^e = φ ⇒ ψ. Dle předpokladu máme p₁^e,...,p_n^e ⊢ ψ.
 Z (A1): ψ ⇒ (φ ⇒ ψ) a MP dostaneme požadované
 p₁^e,...,p_n^e ⊢ φ ⇒ ψ.
 - $\| \varphi \|_e = 1$ a $\| \psi \|_e = 0$: Pak $\| \varphi \Rightarrow \psi \|_e = 0$, tedy $(\varphi \Rightarrow \psi)^e = \neg(\varphi \Rightarrow \psi)$. Podle předpokladu je $p_1^e, \dots, p_n^e \vdash \varphi$ a $p_1^e, \dots, p_n^e \vdash \neg \psi$. Použitím $(e_\vdash) : \vdash \varphi \Rightarrow (\neg \psi \Rightarrow \neg(\varphi \Rightarrow \psi))$ a dvojnásobným použitím MP dostaneme požadované $p_1^e, \dots, p_n^e \vdash \neg(\varphi \Rightarrow \psi)$.

Věta o úplnosti, slabá verze

Věta o úplnosti, slabá verze

Pro libovolnou **konečnou** množinu T formulí a formuli φ platí, že z $T \models \varphi$ plyne $T \vdash \varphi$. Speciálně, každá pravdivá formule je dokazatelná.

Důkaz: Tvrzení dokážeme nejprve pro případ $T=\emptyset$. Nechť tedy $\models \varphi$. Pro každé ohodnocení e tedy platí $\varphi^e=\varphi$ (protože podle předpokladu je $\parallel \varphi \parallel_e=1$). Jsou-li p_1,\ldots,p_n všechny výrokové symboly z φ , je dle ChL

$$p_1^e, p_2^e, \ldots, p_n^e \vdash \varphi.$$

Uvažujme nyní ohodnocení e', které se od e liší právě v hodnotě, kterou přiřazuje symbolu p_1 . Předpokládejme, že $e(p_1)=1$ a $e'(p_1)=0$ (případ $e(p_1)=0$ a $e'(p_1)=1$ se ošetří symetricky). Dle ChL je opět

$$\textit{p}_{1}^{\textit{e'}},\textit{p}_{2}^{\textit{e'}},\ldots,\textit{p}_{n}^{\textit{e'}}\vdash\phi.$$

Protože je však podle předpokladu $p_2^e = p_2^{e'}, \ldots, p_n^e = p_n^{e'}, p_1^e = p_1$ a $p_1^{e'} = \neg p_1$, dostáváme

$$p_1, p_2^e, \dots, p_n^e \vdash \varphi$$
 a $\neg p_1, p_2^e, \dots, p_n^e \vdash \varphi$,

odkud dle VoNF máme

$$p_2^e,\ldots,p_n^e\vdash\varphi.$$

Opakovaným použitím právě provedené úvahy postupně dostaneme

$$p_3^e, \ldots, p_n^e \vdash \varphi$$

až po

$$p_n^e \vdash \varphi$$

a nakonec

$$\vdash \varphi$$
.

Nechť nyní $T = \{\varphi_1, \dots, \varphi_n\}$. Podle sémantické verze VoD dostaneme z $T \models \varphi$, že $\models \varphi_1 \Rightarrow (\dots(\varphi_n \Rightarrow \varphi))$. Odtud podle právě dokázaného plyne $\vdash \varphi_1 \Rightarrow (\dots(\varphi_n \Rightarrow \varphi))$, odkud pomocí VoD dostáváme $\varphi_1, \dots, \varphi_n \vdash \varphi$, tj. požadované $T \vdash \varphi$. Tím je důkaz hotov.

Věta o kompaktnosti

Pro důkaz tzv. silné verze věty o úplnosti (ta se neomezuje na konečné \mathcal{T}) potřebujeme následující větu:

Věta o kompaktnosti

- (1) Množina *T* formulí je splnitelná, právě když je splnitelná každá konečná podmnožina množiny *T*.
- (2) Pro každou formuli φ je $T \models \varphi$, právě když existuje konečná $S \subseteq T$ tak, že $S \models \varphi$.

Věta o úplnosti, silná verze

S použitím věty o kompaktnosti již snadno dokážeme silnou verzi věty o úplnosti.

Věta o úplnosti, silná verze

Pro libovolnou množinu T formulí a formuli φ platí, že z $T \models \varphi$ plyne $T \vdash \varphi$.

Důkaz: Je-li $T \models \varphi$, pak dle věty o kompaktnosti (2) existuje konečná $S \subseteq T$ tak, že $S \models \varphi$. Dle slabé verze věty o úplnosti je $S \vdash \varphi$, a z toho samozřejmě plyne $T \vdash \varphi$.

Uvědomme si, že věta o úplnosti je velmi netriviální tvrzení: Z toho, že nějaká formule má při všech (intuitivně zcela přirozeně definovaných) možných ohodnoceních pravdivostní hodnotu 1 plyne, že je dokazatelná pomocí tří (jednoduchých a intuitivně přijatelných) axiomů a jednoho (jednoduchého a intuitivně přijatelného) odvozovacího pravidla. Pojem pravdivého tvrzení, tak jak je formalizován v rámci VL, je tedy plně syntakticky charakterizovatelný (a navíc velmi jednoduchým způsobem).

Následující věta ukazuje další vztah dvojice pojmů, jednoho sémantického (splnitelnost) a druhého syntaktického (bezespornost), které spolu na první pohled nesouvisí.

Věta

Množina *T* formulí je splnitelná, právě když je bezesporná.

Důkaz: Nechť je T splnitelná. Pak existuje ohodnocení e, ve kterém jsou pravdivé všechny formule z T. Kdyby byla T sporná, pak by pro libovolnou formuli φ bylo $T \vdash \varphi$ a $T \vdash \neg \varphi$, a tedy dle VoK $T \models \varphi$ a $T \models \neg \varphi$. To znamená, že při každém ohodnocení, při kterém jsou pravdivé všechny formule z T (jedním z nich je e), je pravdivá jak formule φ , tak formule $\neg \varphi$. To je ale pochopitelně nemožné.

Nechť T je bezesporná. Pak existuje formule φ , pro kterou neplatí $T \vdash \varphi$, tj. (podle úplnosti) neplatí $T \models \varphi$. To ale znamená, že existuje ohodnocení, ve kterém není pravdivá φ , a přitom jsou pravdivé všechny formule z T. Tedy T je splnitelná.