Alexander Golovnev

Outline

Balanced Graphs

Ramsey Numbers

Existence of Ramsey Numbers

The Clique Number and the Independence Number of C_5 are 2.

Consider an arbitrary vertex v of G

Outline

Balanced Graphs

Ramsey Numbers

Existence of Ramsey Numbers

 1950s, The Hungarian sociologist S. Szalai studies friendship between children

- 1950s, The Hungarian sociologist S. Szalai studies friendship between children
- Observes: in any group of 20 children, there are 4 mutual friends or 4 children s.t. no 2 are friends

- 1950s, A Hungarian sociologist S. Szalai studies friendship between children
- Observes: in any group of 20 children, there are 4 mutual friends or 4 children s.t. no 2 are friends

- 1950s, A Hungarian sociologist S. Szalai studies friendship between children
- Observes: in any group of 20 children, there are 4 mutual friends or 4 children s.t. no 2 are friends
- Consults Erdös, Turán and Sós

- 1950s, A Hungarian sociologist S. Szalai studies friendship between children
- Observes: in any group of 20 children, there are 4 mutual friends or 4 children s.t. no 2 are friends
- Consults Erdös, Turán and Sós
- This holds in any group of 18 and more people

• For two integers k, ℓ , the Ramsey Number $R(k, \ell)$ is the minimum number, s.t. every graph with at least $R(k, \ell)$ vertices must have

- For two integers k, ℓ , the Ramsey Number $R(k, \ell)$ is the minimum number, s.t. every graph with at least $R(k, \ell)$ vertices must have
 - either a clique of size k

- For two integers k, ℓ , the Ramsey Number $R(k, \ell)$ is the minimum number, s.t. every graph with at least $R(k, \ell)$ vertices must have
 - either a clique of size k
 - ullet or an independent set of size ℓ

- For two integers k, ℓ , the Ramsey Number $R(k, \ell)$ is the minimum number, s.t. every graph with at least $R(k, \ell)$ vertices must have
 - either a clique of size k
 - ullet or an independent set of size ℓ
- R(3,3)=6

- For two integers k, ℓ , the Ramsey Number $R(k, \ell)$ is the minimum number, s.t. every graph with at least $R(k, \ell)$ vertices must have
 - either a clique of size k
 - ullet or an independent set of size ℓ
- R(3,3)=6
- R(4,4)=18

- For two integers k, ℓ , the Ramsey Number $R(k, \ell)$ is the minimum number, s.t. every graph with at least $R(k, \ell)$ vertices must have
 - either a clique of size k
 - ullet or an independent set of size ℓ
- R(3,3)=6
- R(4,4)=18
- $43 \le R(5,5) \le 48$

Outline

Balanced Graphs

Ramsey Numbers

Existence of Ramsey Numbers

• Does $R(k, \ell)$ exist for all values of k, ℓ ?

- Does $R(k, \ell)$ exist for all values of k, ℓ ?
- How do we know that all large graphs have either a large Clique or a large IS?

- Does $R(k, \ell)$ exist for all values of k, ℓ ?
- How do we know that all large graphs have either a large Clique or a large IS?
- Ok, $R(k,\ell)$ exists for $k \leq 3$ and $\ell \leq 3$

- Does $R(k, \ell)$ exist for all values of k, ℓ ?
- How do we know that all large graphs have either a large Clique or a large IS?
- Ok, $R(k, \ell)$ exists for $k \le 3$ and $\ell \le 3$
- We will prove $R(k, \ell) \le R(k 1, \ell) + R(k, \ell 1)$

- Does $R(k, \ell)$ exist for all values of k, ℓ ?
- How do we know that all large graphs have either a large Clique or a large IS?
- Ok, $R(k, \ell)$ exists for $k \le 3$ and $\ell \le 3$
- We will prove $R(k, \ell) \le R(k 1, \ell) + R(k, \ell 1)$
- This gives an upper bound on $R(k, \ell)$ for all k, ℓ

- Does $R(k, \ell)$ exist for all values of k, ℓ ?
- How do we know that all large graphs have either a large Clique or a large IS?
- Ok, $R(k, \ell)$ exists for $k \leq 3$ and $\ell \leq 3$
- We will prove $R(k, \ell) \le R(k 1, \ell) + R(k, \ell 1)$
- This gives an upper bound on $R(k, \ell)$ for all k, ℓ
- Therefore, $R(k, \ell)$ always exists!

Ramsey's Theorem

Theorem (Ramsey's Theorem)

$$R(k,\ell) \leq R(k-1,\ell) + R(k,\ell-1).$$

Ramsey's Theorem

Theorem (Ramsey's Theorem)

$$R(k,\ell) \leq R(k-1,\ell) + R(k,\ell-1).$$

Proof:

• Consider a graph G on $R(k-1,\ell)+R(k,\ell-1)$ vertices

Ramsey's Theorem

Theorem (Ramsey's Theorem)

$$R(k,\ell) \leq R(k-1,\ell) + R(k,\ell-1).$$

Proof:

- Consider a graph G on $R(k-1,\ell)+R(k,\ell-1)$ vertices
- We'll prove G contains either a k-Clique or an ℓ-Independent Set

Ramsey's Theorem

Theorem (Ramsey's Theorem)

$$R(k,\ell) \leq R(k-1,\ell) + R(k,\ell-1).$$

Proof:

- Consider a graph G on $R(k-1,\ell)+R(k,\ell-1)$ vertices
- We'll prove G contains either a k-Clique or an ℓ -Independent Set
- Pick an arbitrary vertex v. A set of neighbors of v, B — the remaining vertices

• *A* – neighbors of *v*, *B* – not neighbors

• A – neighbors of v, B – not neighbors

•
$$|A| + |B| + 1 = R(k-1,\ell) + R(k,\ell-1)$$

• A – neighbors of v, B – not neighbors

•
$$|A| + |B| + 1 = R(k-1,\ell) + R(k,\ell-1)$$

• Either $|A| \geq R(k-1,\ell)$ or $|B| \geq R(k,\ell-1)$

• Either $|A| \ge R(k-1,\ell)$ or $|B| \ge R(k,\ell-1)$

- Either $|A| \ge R(k-1, \ell)$ or $|B| \ge R(k, \ell-1)$
- In the 1st case:

- Either $|A| \ge R(k-1, \ell)$ or $|B| \ge R(k, \ell-1)$
- In the 1st case:
 - Either *A* has an *ℓ*-IS—done!

- Either $|A| \ge R(k-1, \ell)$ or $|B| \ge R(k, \ell-1)$
- In the 1st case:
 - Either A has an ℓ-IS—done!
 - Or $A \cup v$ has a k-Clique—done!

- Either $|A| \ge R(k-1, \ell)$ or $|B| \ge R(k, \ell-1)$
- In the 1st case:
 - Either A has an ℓ -IS—done!
 - Or $A \cup v$ has a k-Clique—done!
- In the 2nd case:

- Either $|A| \ge R(k-1, \ell)$ or $|B| \ge R(k, \ell-1)$
- In the 1st case:
 - Either A has an ℓ-IS—done!
 - Or $A \cup v$ has a k-Clique—done!
- In the 2nd case:
 - Either B has a k-clique—done!

- Either $|A| \ge R(k-1, \ell)$ or $|B| \ge R(k, \ell-1)$
- In the 1st case:
 - Either A has an ℓ-IS—done!
 - Or $A \cup v$ has a k-Clique—done!
- In the 2nd case:
 - Either B has a k-clique—done!
 - Or $B \cup v$ has a ℓ -IS—done!

If $|A| \ge R(k-1,\ell)$, A contains a k-1-Clique

If $|A| \ge R(k-1,\ell)$, A contains a k-1-Clique

If $|A| \geq$ $R(k-1,\ell)$, A contains a *k* − 1-Clique Then $|A| \cup v$ contains a k-Clique

