

日本国特許庁 JAPAN PATENT OFFICE

01. 7. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 7月 2日

REC'D 1 9 AUG 2004

PCT

出 願 番 号 Application Number:

特願2003-190446

[ST. 10/C]:

[JP2003-190446]

出 願 人 Applicant(s):

松下電器産業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 8月 5日

特許庁長官 Commissioner, Japan Patent Office ふ 17

【書類名】

特許願

【整理番号】

2054051181

【提出日】

平成15年 7月 2日

【あて先】

特許庁長官殿

【国際特許分類】

H05B 33/00

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

小野 雅行

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

堀 賢哉

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

名古 久美男

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

青山 俊之

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

長谷川 賢治

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

小田桐 優

【特許出願人】

【識別番号】

000005821

【住所又は居所】 大阪府門真市大字門真1006番地

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】

100086405

【弁理士】

【氏名又は名称】

河宮 治

【選任した代理人】

【識別番号】 100098280

【弁理士】

【氏名又は名称】 石野 正弘

【手数料の表示】

【予納台帳番号】 163028

《納付金額》

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9602660

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 発光素子及び表示装置

【特許請求の範囲】

【請求項1】 互いに対向している正孔注入電極と電子注入電極と、

前記正孔注入電極と電子注入電極との間に挟まれており、前記正孔注入電極の 側から前記電子注入電極の側に向って順に積層されている、正孔輸送層、発光体 層、及び電子輸送層と

を備え、

前記発光体層は、表面の少なくとも一部を有機材料で被覆されている無機蛍光 体層を含むことを特徴とする発光素子。

【請求項2】 互いに対向しており、少なくとも一方が透明または半透明である第1及び第2基板と、

前記第1及び第2基板の間に挟まれており、前記第1基板の側から前記第2基板の側に向って順に積層されている、正孔注入電極と、正孔輸送層と、発光体層と、電子輸送層と、電子注入電極と

を備え、

前記発光体層は、表面の少なくとも一部を有機材料で被覆されている無機蛍光 体層を含むことを特徴とする発光素子。

【請求項3】 前記無機蛍光体層は、半導体母体結晶よりなる蛍光体であることを特徴とする請求項1又は2に記載の発光素子。

【請求項4】 前記有機材料は、前記無機蛍光体薄膜の表面の少なくとも一部に化学吸着していることを特徴とする請求項3に記載の発光素子。

【請求項5】 前記有機材料は、正孔輸送性を有する導電性有機材料であり、且つ、前記正孔輸送層と対向する前記無機蛍光体層の表面に化学吸着していることを特徴とする請求項4に記載の発光素子。

【請求項6】 前記有機材料は、電子輸送性を有する導電性有機材料であり、且つ、前記電子輸送層と対向する前記無機蛍光体層の表面に化学吸着していることを特徴とする請求項4に記載の発光素子。

【請求項7】 前記有機材料として正孔輸送性を有する導電性有機材料と電

子輸送性を有する導電性有機材料を有し、前記正孔輸送性を有する導電性有機材料が前記無機蛍光体層の前記正孔輸送層と対向する表面に化学吸着し、且つ、前記電子輸送性を有する導電性有機材料が前記無機蛍光体層の前記電子輸送層と対向する表面に化学吸着していることを特徴とする請求項4に記載の発光素子。

【請求項8】 前記正孔注入電極と前記正孔輸送層との間に挟まれた正孔注 入層をさらに備えることを特徴とする請求項1又は2に記載の発光素子。

【請求項9】 前記電子注入電極と前記電子輸送層との間に挟まれた電子注入層をさらに備えることを特徴とする請求項1又は2に記載の発光素子。

【請求項10】 前記発光体層と前記電子輸送層との間に挟まれた正孔プロック層をさらに備えることを特徴とする請求項1又は2に記載の発光素子。

【請求項11】 前記正孔注入電極に接続された薄膜トランジスタをさらに備えることを特徴とする請求項1又は2に記載の発光素子。

【請求項12】 前記電子注入電極に接続された薄膜トランジスタをさらに備えることを特徴とする請求項1又は2に記載の発光素子。

【請求項13】 前記薄膜トランジスタは、有機材料を含む薄膜により構成された有機薄膜トランジスタであることを特徴とする請求項11又は12に記載の発光素子。

【請求項14】 請求項11から13のいずれか一項に記載の複数の発光素子が2次元配列されている発光素子アレイと、

前記発光素子アレイの面に平行な第1方向に互いに平行に延在している複数のx電極と、

前記発光素子アレイの面に平行であって、前記第1方向に直交する第2方向に 平行に延在している複数のy電極と

を備え、

前記発光素子アレイの前記薄膜トランジスタは、前記x電極及び前記y電極と それぞれ接続されていることを特徴とする表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、発光ディスプレイや、通信、照明などに用いられる各種光源として 使用可能な発光素子及び該発光素子を用いた表示装置に関する。

[0002]

【従来の技術】

近年、平面型の表示装置の中で、エレクトロルミネッセンス(EL)素子に期待が集まっている。このEL素子は、自発発光性を有し視認性に優れ、視野角が広く、応答性が速いなどの特徴を持つ。また、現在開発されているEL素子には、発光体として無機材料を用いた無機EL素子と発光体として有機材料を用いた有機EL素子がある。

[0003]

硫化亜鉛等の無機蛍光体を発光体とする無機EL素子は、106 V/c mもの高電界で加速された電子が蛍光体の発光中心を衝突励起し、それらが緩和する際に発光する。1974年に猪口らによって提案された二重絶縁構造の素子が高い輝度と長寿命を持つことを示し、車載用ディスプレイ等への実用化がなされた。

[0004]

無機蛍光体は一般に、絶縁物結晶を母体結晶として、その中に発光中心となる無機材料をドープしたものである。この母体結晶は化学的に安定であるものが用いられるため、無機EL素子は信頼性が高く、寿命も3万時間以上を実現している。しかしながら、絶縁物結晶中には電子が浸透しにくく、また入射電子が表面に蓄積することによって帯電を生じ、後続電子が反発してしまうことから、励起源として高エネルギー電子を衝突させる必要がある。従って、無機EL素子は、高信頼性で長寿命という特徴を有する反面、その駆動に高い交流電圧を必要とすることから、薄膜トランジスタを使用したアクティブマトリックス方式での駆動ができないという課題があり、テレビ等の表示デバイスとしては実用化が進んでいない。

[0005]

また、特公昭54-8080号公報に記載の技術によれば、発光層にZnSを主体とし、Mn, Cr, Tb, Eu, Tm, Yb等の遷移金属元素や希土類元素をドープすることによって、発光輝度の向上が図られたものの、平均輝度は40

 $0 c d/m^2$ 未満であり、TV等の表示デバイスとしては不十分であった。

[0006]

一方、有機材料を発光体とする有機EL素子は、電極から注入された正孔と電子が励起子を形成し、それらが基底状態に遷移する際に発光する。1987年にTangらによって提案された正孔輸送層と有機発光層とを順次積層した2 層構成の素子(例えば、非特許文献 1 参照。)により、10 V以下の駆動電圧で、輝度が1000 c d/m 2 以上の発光が得られるとされており、これがきっかけとなって、今日に至るまで、活発な研究開発が進められてきた。

[0007]

以下、現在一般に検討されている有機EL素子について、図5を用いて説明する。この有機EL素子50は、透明基板51上に透明の正孔注入電極52、正孔輸送層53、発光体層56、電子注入電極58の順に積層して形成されている。なお、正孔注入電極52と正孔輸送層53との間に正孔注入層を設けたり、発光体層56と電子注入電極58との間に電子輸送層57を設けたり、さらに発光体層56と電子輸送層57との間に正孔ブロック層を設けたり、電子輸送層57と電子注入電極58との間に電子注入層を設けたりすることもある。

[8000]

正孔注入電極としては、透明導電膜であるITO(インジウム錫酸化物) 膜等が用いられる。ITO膜はその透明性を向上させ、あるいは抵抗率を低下させる目的で、スパッタリング法、エレクトロンビーム蒸着法、イオンプレーティング法等によって成膜される。

[0009]

正孔輸送層としては、N, N'ービス(3ーメチルフェニル)-N, N'ージフェニルベンジジン(TPD)等、Tang6の用いたジアミン誘導体が用いられる。これらの材料は一般に透明性に優れ、80nm程度の膜厚でもほぼ透明である。

[0010]

発光体層としては、Tangらの報告と同様に、トリス(8-キノリノラト) アルミニウム(Alq3)等の電子輸送性発光材料を真空蒸着により数十nmの

膜厚に形成して用いる構成が一般的である。種々の発光色を実現するなどの目的で、発光体層は比較的薄膜とし、電子輸送層を20nm程度積層した、所謂ダブルヘテロ構造が採用されることもある。

[0011]

電子注入電極としては、Tangらの提案したMgAg合金あるいはAlLi合金等、仕事関数が低く電子注入障壁の低い金属と、比較的仕事関数が大きく安定な金属との合金、又はLiF等種々の電子注入層とAl等との積層電極が用いられることが多い。

[0012]

また、各画素の駆動に低温ポリシリコン薄膜トランジスタを用いた有機EL表示装置が知られている(例えば、非特許文献2参照。)。

[0013]

【非特許文献1】

Applied Physics Letters, 51, 1987, P913

【非特許文献2】

Journal of the Society for Information Display, vol. 8, No. 2, p93-97

[0014]

従来の有機EL素子は、発光体となる有機材料が、水分や酸素の存在下で電界の印加や光照射等により、分子結合が切断され、発光性能が低下するという欠点があった。従って、連続駆動あるいは長期保存によって、実用に耐えられないという課題があった。この課題に対して、特開2003-59665号公報に記載されているように、発光体として信頼性の高い無機材料を用いるハイブリッド型の有機EL素子が提案されている。

[0015]

【発明が解決しようとする課題】

発光素子をテレビ等の表示デバイスとして利用する場合、その寿命は少なくとも3万時間程度は必要とされる。また、薄膜トランジスタによるアクティブマト

リックス駆動を可能とするために、低電圧で駆動できることが必要とされている。従来の有機EL素子では、低電圧駆動が可能である反面、発光体として有機材料を用いているため、十分な寿命は得られていない。一方の、従来の無機EL素子では、長寿命である反面、駆動に高電圧を要する。また、従来提案されているハイブリッド型の発光素子の場合、直流低電圧で無機蛍光体を発光させることができたものの、無機蛍光体の優れた発光特性、信頼性を十分に活かしきれていない。このように、発光体の材料を問わず、高輝度であることと高信頼性、長寿命であることを同時に満足させることは困難であった。

[0016]

本発明の目的は、低電圧駆動が可能な高輝度、且つ、長寿命の発光素子と、その発光素子を用いた表示装置を提供することである。

[0017]

【課題を解決するための手段】

本発明に係る発光素子は、互いに対向している正孔注入電極と電子注入電極と

前記正孔注入電極と電子注入電極との間に挟まれており、前記正孔注入電極の 側から前記電子注入電極の側に向って順に積層されている、正孔輸送層、発光体 層、及び電子輸送層と

を備え、

前記発光体層は、表面の少なくとも一部を有機材料で被覆されている無機蛍光体薄膜を含むことを特徴とする。

[0018]

本発明に係る発光素子は、互いに対向しており、少なくとも一方が透明または 半透明である第1及び第2基板と、

前記第1及び第2基板の間に挟まれており、前記第1基板の側から前記第2基板の側に向って順に積層されている、正孔注入電極と、正孔輸送層と、発光体層と、電子輸送層と、電子注入電極と

を備え、

前記発光体層は、表面の少なくとも一部を有機材料で被覆されている無機蛍光

体層を含むことを特徴とする。

[0019]

また、前記無機蛍光層は、半導体母体結晶よりなることを特徴とする。

[0020]

またさらに、前記有機材料は、前記無機蛍光体層表面に化学吸着により被覆されていることを特徴とする。さらには、前記有機材料は、正孔輸送性を有する導電性有機材料であって、前記正孔輸送層と対向する前記無機蛍光体層の表面に化学吸着していることを特徴とする。さらには、前記有機材料は、電子輸送性を有する導電性有機材料であって、前記電子輸送層と対向する前記無機蛍光体層の表面に化学吸着していることを特徴とする。さらには、前記正孔輸送性を有する導電性有機材料と、電子輸送性を有する導電性有機材料とが、前記無機蛍光体層の、それぞれ前記正孔輸送層と対向する表面、前記電子輸送層と対向するの表面に化学吸着していることを特徴とする。

[0021]

またさらに、前記正孔注入電極と前記正孔輸送層との間に挟まれた正孔注入層をさらに備えることを特徴とする。

[0022]

またさらに、前記電子注入電極と前記電子輸送層との間に挟まれた電子注入層をさらに備えることを特徴とする。

[0023]

またさらに、前記発光体層と前記電子輸送層との間に挟まれた正孔ブロック層をさらに備えることを特徴とする。

[0024]

またさらに、前記正孔注入電極又は前記電子注入電極に接続された薄膜トランジスタをさらに備えることを特徴とする。さらには、前記薄膜トランジスタは、有機材料を含む薄膜により構成された有機薄膜トランジスタであることを特徴とする。

[0025]

本発明に係るアクティブマトリックス型表示装置は、前記複数の発光素子が2

次元配列されている発光素子アレイと、前記発光素子アレイの面に平行な第1方向に互いに平行に延在している複数のx電極と、前記発光素子アレイの面に平行であって、前記第1方向に直交する第2方向に平行に延在している複数のy電極とを備え、前記発光素子アレイの前記薄膜トランジスタは、前記x電極及び前記y電極とそれぞれ接続されていることを特徴とする。

[0026]

【発明の実施の形態】

以下、本発明の実施の形態に係る発光素子および該発光素子を用いた表示装置 について添付図面を用いて説明する。なお、図面において実質的に同一の部材に は同一の符号を付している。

[0027]

(実施の形態1)

本発明の実施の形態1に係る発光素子について、図1を用いて説明する。図1は、この発光素子の光取り出し方向に垂直な断面図である。この発光素子10は、発光体として無機蛍光体層4を用いている。この発光素子10は、透明基板1と、該透明基板1の上に設けられた正孔注入電極2と、該正孔注入電極2に対向して設けられた電子注入電極8と、該透明正孔注入電極2と該電子注入電極8の間に挟まれている、電子輸送性有機材料5が表面に化学吸着された無機蛍光体層4とを備える。さらに詳細には、この発光素子10は、該正孔注入電極2と該無機蛍光体層6との間に正孔輸送層3を、該電子輸送性有機材料5が表面に化学吸着された無機蛍光体層4と該電子注入電極8との間に電子輸送層7を備える。また、光は、矢印で示したように、基板1の側から取り出される。なお、前述の構成に加えて、正孔注入電極2と正孔輸送層3との間に正孔注入層又は導電層等を備えていてもよい。また、発光体層6と電子輸送層7との間に正孔ブロック層又は導電層等を備えていてもよい。さらに、電子輸送層7と電子注入電極8との間に電子注入層又は導電層等を備えていてもよい。

[0028]

次に、発光素子10の各構成部材について詳細に説明する。

まず、透明基板1について説明する。透明基板1は、その上に形成する各層を

支持できるものであればよい。また、無機蛍光体層 4 内で生じた発光を取り出せるように透明又は半透明の材料であればよい。透明基板 1 としては、例えば、コーニング 1 7 3 7 等のガラス基板、又は、ポリエステル等の樹脂フィルム等を用いることができる。通常のガラスに含まれるアルカリイオン等が発光素子へ影響しないように、無アルカリガラスやセラミックス基板やシリコン基板を用いてもよい。また、ガラス表面にイオンバリア層としてアルミナ等をコートしてもよい。樹脂フィルムは耐久性、柔軟性、透明性、電気絶縁性、防湿性の材料を用いればよく、ポリエチレンテレフタレート系やポリクロロトリフルオロエチレン系とナイロン 6 の組み合わせやフッ素樹脂系材料等を使用できる。なお、電子注入電極 8 の面から光を取り出す場合には、透明基板 1 は必ずしも透明でなくてもよい

[0029]

次に、正孔注入電極2について説明する。正孔注入電極2としては、透過性を 有し、且つ仕事関数の高い金属が用いられ、特に、ITO(インジウム錫酸化物)膜が用いられる。他には、酸化錫、Ni, Au, Pt, Pd、Cr、Mo、W 、Ta、Nb等、又はこれらの合金を用いることができる。さらには、ポリアニ リン等の導電性樹脂を用いることもできる。ITO膜はその透明性を向上させ、 あるいは抵抗率を低下させる目的で、スパッタリング法、エレクトロンビーム蒸 着法、イオンプレーティング法等の成膜方法で成膜できる。また成膜後に、抵抗 率や仕事関数制御の目的でプラズマ処理などの表面処理を施してもよい。透明な 正孔注入電極2の膜厚は必要とされるシート抵抗値と可視光透過率から決定され るが、発光素子10では比較的駆動電流密度が高く、配線抵抗が問題となるため 、シート抵抗値を小さくするため100nm以上の厚さで用いられることが多い 。なお、この発光素子10では、正孔注入電極2あるいは電子注入電極8の少な くとも一方の電極を透明ないし半透明にすることにより、面発光を取り出すこと ができる。また、電子注入電極8の面から光を取り出す場合には、正孔注入電極 2は必ずしも透明でなくてもよい。さらに、正孔注入電極2と電子注入電極8の 両方を透明ないし半透明にすることにより、両面から発光を取り出すこともでき る。

[0030]

次に、正孔輸送層3について説明する。正孔輸送層3としては、正孔輸送性を 備える有機材料が用いられ、大きく分けて、低分子系材料と高分子系材料とが挙 げられる。正孔輸送性を備える低分子系材料としては、N. N'ーピス (3-メ チルフェニル)-N, N'-ジフェニルベンジジン(TPD)、N, N'-ビス (α ーナフチル)-N, N'ージフェニルベンジジン (NPD) 等、Tangらの 用いたジアミン誘導体、特に日本国特許第2037475号に開示されたQ1-G-Q2構造のジアミン誘導体等が挙げられる。なお、Q1及びQ2は、別個に 窒素原子及び少なくとも3個の炭素鎖(それらの少なくとも1個は芳香族のもの)を有する基である。Gは、シクロアルキレン基、アリーレン基、アルキレン基 又は炭素ー炭素結合からなる連結基である。また、正孔輸送性を備える高分子系 材料としては、π共役ポリマーやσ共役ポリマー、さらに低分子系で正孔輸送性 を示す分子構造を分子鎖中に組み込んだポリマー等があり、例えばアリールアミ ン系化合物等が組み込まれる。具体的には、ポリーパラーフェニレンビニレン誘 導体(PPV誘導体)、ポリチオフェン誘導体(PAT誘導体)、ポリパラフェ ニレン誘導体(PPP誘導体)、ポリアルキルフェニレン(PDAF)、ポリア セチレン誘導体(PA誘導体)、ポリシラン誘導体(PS誘導体)等が挙げられ るが、中でもポリーN-ビニルカルバゾール(PVK)は、10-6cm2/V sと極めて高いホール移動度を示す。他の具体例としては、ポリエチレンジオキ シチオフェン (PEDOT) やポリメチルフェニルシラン (PMPS) 等がある

[0031]

また、非導電性ポリマーに低分子系の正孔輸送性材料を分子分散させた形態も同様に可能である。分子分散系での具体例としては、テトラフェニルジアミン(TPD)をポリカーボネート中に高濃度で分子分散させた例があり、そのホール移動度は $10^{-4}\sim10^{-5}$ c m 2/V s 程度である。

[0032]

正孔輸送層3の成膜方法としては、低分子系材料としては真空蒸着法を、高分子系材料としてはインクジェット法、ディッピング、スピンコート、その他各種

の塗布方法を使用することができる。

[0033]

次に、無機蛍光体層4について説明する。無機蛍光体層4としては、可視光域 に吸収をもたず、且つ電気抵抗の低い蛍光体であることが好ましい。蛍光体は、 一般に半絶縁性の半導体よりなる単一又は複数の母体結晶と、発光中心として、 遷移金属イオン (Mn²⁺、Cr³⁺、Cu⁺、Ag⁺等) や希土類イオン (E u³⁺、Eu²⁺、Tb³⁺、Ce³⁺、Nd³⁺、Pr³⁺等)といった単一 又は複数の賦活剤が添加され構成される。さらに、共賦活剤として、CIやAI 、I等を添加してもよい。母体結晶としては、大別して硫化物系、酸化物系が用 いられ、硫化物系では、第12族-第16族化合物半導体(例えば2nS)、第 2族-第16族化合物半導体(例えばCaS)、及びこれらのガリウム硫化物(例えばCaGa2S4)、アルミニウム硫化物(例えばBaAl2S4)等があ り、一方の酸化物系では、金属酸化物(例えばZnO)、金属複合酸化物(例え ばZn₂SiО4)等がある。単一の母体結晶として特に抵抗の低い例としては ZnO, (Zn, Mg) O, ZnCa2O4, In2O3, SnO2, CaT i03等が挙げられ、それぞれの蛍光体の例としては、ZnO:Zn(発光色は Blue-Green), (Zn, Mg) O: Zn (Blue), ZnGa20 $4:Mn^{2}+(Green), In_{2}O_{3}:Eu^{3}+(Red), SnO_{2}:E$ u³⁺ (Red)、CaTiO3:Pr³⁺ (Red) 等がある。さらに、例え ばZnSのように比較的抵抗の高い母体結晶を低抵抗化するために、In2O3 等の高導電性材料を混合してもよい。また、賦活剤の濃度は、一般に最適濃度が あり、ある濃度以上では濃度消光により発光強度は減少する。これは、発光中心 間で、量子力学的な共鳴によって一方向から他方へ励起エネルギーが伝達され、 非発光部分に届けられるためと考えられている。

[0034]

次に、無機蛍光体層 4 の表面に化学吸着させる電子輸送性有機材料層 5 について説明する。電子輸送性有機材料 5 としては、電子輸送性を備えたものであればよく、単一又は複数の材料からなる層であってよい。さらに、電子輸送性有機材料 5 としては大きく分けて、低分子系材料と高分子系材料とが挙げられる。

[0035]

電子輸送性を備える低分子系材料としては、オキサジアゾール誘導体、トリアゾール誘導体、スチリルベンゼン誘導体、シロール誘導体、1,10-フェナントロリン誘導体、キノリノール系金属錯体等やこれらの2量体、3量体が挙げられる。中でも2-(4-ビフェニル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、3-(4-ビフェニル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(TAZ)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)、Alq3等が主として用いられる。また、電子輸送性を備える高分子系材料としては、ポリー[2-(6-シアノー6-メチルペプチロキシ)-1,4-フェニレン](CN-PPV)やポリキノキサリン、または低分子系で電子輸送性を示す分子構造を分子鎖中に組み込んだポリマー等が挙げられる。

[0036]

次に、無機蛍光体層 4 の表面に電子輸送性有機材料 5 を化学吸着させる方法について説明する。化学吸着の方法としては、例えば、まず、電子輸送性有機材料 5 にカルボン酸基(一COOH)を導入し、無機蛍光体層 4 の表面の水酸基(一OH)とエステル結合させて固定化する方法がある。エステル化は、電子輸送性有機材料 5 を溶剤に溶解又は分散させ、この溶液又は分散液に無機蛍光体層 4 を浸漬させることによって行うことができるが、これに限定されるものではない。以上の処理によって、表面に電子輸送性有機材料 5 を化学吸着させた無機蛍光体層 4 を形成できる。なお、表面に電子輸送性有機材料 5 を化学吸着させた後に、加熱や酸又は塩基処理等の後処理を行ってもよい。

[0037]

さらに、電子輸送性有機材料 5 と無機蛍光体層 4 の表面との化学吸着は、無機 蛍光体層 4 を水分等の影響から保護し、化学的安定性を向上させる効果がある。

[0038]

次に、電子輸送層 7 について説明する。電子輸送層 7 としては、電子輸送性を備える有機材料が用いられ、前述の電子輸送性有機材料 5 に用いられるものと同一のものが挙げられる。

[0039]

電子輸送層 7 の成膜方法としては、低分子系材料としては真空蒸着法を、高分子系材料としてはインクジェット法、ディッピング、スピンコート、その他各種の塗布方法を使用することができる。

[0040]

次に、電子注入電極8について説明する。電子注入電極8としては、仕事関数が低く電子注入障壁の少ないアルカリ金属やアルカリ土類金属と、比較的仕事関数が大きく安定なAl、Agなどの金属との合金を用いることができる。この合金からなる電子注入電極8は、安定でかつ電子注入が容易である。この電子注入電極8としては、例えば、MgAg、AlLiなどを用いることができる。また、他の電子注入電極8としては、有機層側に低仕事関数の金属薄膜を形成し、その上に保護電極として安定な金属からなる金属膜を積層とする構成や、LiF膜やAl203膜の薄膜を形成した後にA1膜を比較的厚く形成する積層構成など、種々の電極を用いることができる。さらに、電子注入電極8の側から光を取り出す場合は、前述の内容に加えて透明又は半透明であればよく、例えば、MgAgを10nm程度の薄層として電子注入電極8を形成し、さらにその上に保護層を設けて用いられる。

[0041]

次に、このようにして作成された発光素子10における発光の機構について説明する。電子輸送性有機材料5は、電子輸送を担うπ電子雲が大きく広がった分子構造を持つ。前述したように、電子輸送性有機材料5は無機蛍光体層4の表面に対して化学吸着し、且つ母体結晶の導電性が高いため、電子輸送性有機材料5のπ電子雲の広がりが無機蛍光体層4の表面にまで作用し、注入障壁に阻害されることなく電子注入が起きる。無機蛍光体層4中に注入された電子は、発光中心近傍まで移動し、ドナー準位に捕獲され、正孔注入電極より注入された正孔と再結合する際に発光する過程と、再結合エネルギーの移動によって、希土類イオン等の殻内電子遷移が生じ、これが緩和する際に発光する過程とが混在しているものと考えられる。

[0042]

(実施の形態2)

本発明の実施の形態2に係る発光素子について、図2を用いて説明する。図2は、この発光素子20の電極構成を示す斜視図である。この発光素子20は、透明正孔注入電極2に接続された薄膜トランジスタ11をさらに備える。薄膜トランジスタ11には、x電極12とy電極13とが接続されている。また、薄膜トランジスタを用いることによって発光素子20にメモリ機能を持たせることができる。この薄膜トランジスタ11としては、低温ポリシリコンやアモルファスシリコン薄膜トランジスタ等が用いられる。さらに、有機材料を含む薄膜により構成された有機薄膜トランジスタであってもよい。

[0043]

(実施の形態3)

本発明の実施の形態 3 に係る表示装置について、図 3 と図 4 を用いて説明する 。図3は、この表示装置30の互いに直交するx電極12とy電極13とによっ て構成されるアクティブマトリクスを示す概略平面図である。また、図4はこの 表示装置30におけるx電極12と平行で、且つ発光面に垂直な断面図である。 この表示装置30は、薄膜トランジスタ11を有するアクティブマトリクス型表 示装置である。このアクティブマトリクス型表示装置30は、図2に示した前述 の複数の発光素子が2次元配列されている発光素子アレイと、該発光素子アレイ の面に平行な第1方向に互いに平行に延在している複数のx電極12と、該発光 素子アレイの面に平行であって、第1方向に直交する第2方向に平行に延在して いる複数のy電極13とを備える。この発光素子アレイの薄膜トランジスタ11 は、x電極12及びy電極13とそれぞれ接続されている。一対のx電極12と y 電極 1 3 とによって特定される発光素子が一つの画素となる。このアクティブ マトリクス表示装置30によれば、上述のように、各画素の発光素子を構成する 無機蛍光体層4は、表面に電子輸送性有機材料5を担持している。これにより、 無機蛍光体層4への電子注入が効率的に発生し、無機蛍光体層4を発光させるこ とができるので、低電圧駆動で高輝度、長寿命の表示装置が得られる。また、無 機蛍光体粒子4を、その発光色に応じて各画素41a(R)、41b(G)、4 1c(B)ごとに配置させることにより3原色フルカラー表示装置となる。なお

、すべての画素41に単一色を発する無機蛍光体4を用い、且つ、光取り出し面の前方にカラーフィルター又は色変換層を設けることにより、他の3原色フルカラー表示装置を得ることもできる。

[0044]

次に、このアクティブマトリクス型表示装置30の製造方法を図4を用いて説明する。透明基板1上に薄膜トランジスタ11を形成した後、実施の形態1の発光素子10と同様に、透明正孔注入電極2を形成し、次いで、例えばインクジェット法を用いて正孔輸送層3を形成する。さらに、例えば、高周波スパッタリング法により無機蛍光体層4を形成する。電子輸送層7を塗布形成する。その後、例えば真空蒸着法を用いて電子注入電極8を形成する。カラーの表示装置の場合、無機蛍光体層4を形成する際に、例えば真空蒸着法を用いて、画素ピッチに合せてメタルマスクを位置合わせすることにより、各画素(R)41a、画素(G)41b、画素(B)41cに色分けして形成する。この工程に先立ち、各画素を区分する画素分離領域42を形成してもよい。尚、上述の製造方法は一例であり、これに限定されるものではない。

[0045]

【実施例】

次に、具体的な実施例に基づいてさらに詳細に説明する。

[0046]

(実施例1)

本発明の実施例1に係る発光素子について図1を用いて説明する。この発光素子では、実施の形態1に係る発光素子と同一の構成を有しているので、その構成についての説明を省略する。この発光素子では、透明な正孔注入電極2を形成した透明基板1として、市販のITO膜付ガラス基板を用いた。また、無機蛍光体層4には、ZnOを用いた。ここでZnOには、Zn過剰部分が格子欠陥として存在し、この格子欠陥が発光中心として機能すると考えられており、希土類イオン等の賦活剤を必要としない。無機蛍光体層4の表面に化学吸着させる電子輸送性有機材料5としては、PBD誘導体を用いた。さらに、正孔輸送層3としてはPEDOTを、電子輸送層7にはAlq3を、電子注入電極としては、Alを用

いた。

[0047]

次に、この発光素子の製造方法について説明する。この発光素子は、以下の工程によって製造される。

- (a) 透明な正孔注入電極2を形成した透明基板1として、市販のITO膜付ガラス基板を準備した。これをアルカリ洗剤、水、アセトン、イソプロピルアルコール (IPA) を用いて超音波洗浄し、次いで沸騰したIPA溶液から引き上げて乾燥した。最後に、UV/O3洗浄した。
- (b)次に、PEDOTをクロロホルムに溶解させ、スピンコート法によりIT O膜付ガラス基板上に塗布し、正孔輸送層3とした。膜厚は100nmとした。
- (c)次に、高周波スパッタリング法により、ZnOの薄膜を形成し、無機蛍光体層 4 とした。膜厚は 100nmとした。これを基板 A とする。
- (d) 次に、基板Aをエタノール中に浸漬し、連続攪拌しながら、その中にPB D誘導体を投入し一晩放置する。これによって、無機蛍光体薄膜4の表面に電子 輸送性有機材料5を化学吸着させた。
- (e)次に、真空蒸着法により前記電子輸送性有機材料5の上にAlq3を積層し、電子輸送層7とした。膜厚は50nmとした。
- (f) 次に、真空蒸着法により前記電子輸送層7上にAlを積層し、電子注入電極8とした。膜厚は200nmとした。
- (g)次に、低湿度・低酸素濃度環境下で、ガラス板とエポキシ接着剤によりパッケージングして発光素子を得た。

[0048]

このようにして作製した発光素子に直流電圧を印加して評価したところ、20 Vで発光輝度が420cd/m²を示した。これは以下に示す比較例1に比べて高かった。また、この発光素子を200cd/m²の初期輝度で寿命試験を実施したところ、輝度半減寿命は17000時間であった。これは比較例1に比べて長かった。

[0049]

(実施例2)

本発明の実施例2に係る表示装置について、図4を用いて説明する。この表示 装置は、実施の形態3に係る表示装置30と同様に薄膜トランジスタ11を有す るが、RGBの3色の画素(R)41a、画素(G)41b、画素(B)41c を有する点で相違している。各画素(R)41a、画素(G)41b、画素(B))41cでは、無機蛍光体層4をそれぞれ対応する色に変えている。

[0050]

この表示装置30の製造方法について説明する。この表示装置30は、実施の 形態1に係る発光素子を2次元的配列させているものであるので、実施の形態1 に係る発光素子の製造方法と実質的に同様に行うことができる。この表示装置3 0の製造方法では、それぞれの画素41a、41b、41cごとに異なる無機蛍 光体層4を使用する。

[0051]

(比較例1)

実施例1と同様に、正孔輸送層3まで形成した後、真空蒸着法により、Alq3に3-(2-ベンゾチアゾリル)-7-ジエチルアミノクマリン (クマリン6)をドープさせた発光体層6を形成し、次いで、実施例1と同様に電子輸送層7、電子注入電極8を形成した後、パッケージングして発光素子を得た。

[0052]

このようにして作製した発光素子に直流電圧を印加して評価したところ、8Vで発光輝度が310cd $/m^2$ を示した。この発光素子を、実施例1と初期の輝度が同じになる条件下で寿命試験を実施したところ、輝度半減寿命は8000時間であった。

[0053]

(実施の形態4)

本発明の実施の形態4に係る発光素子について、図6を用いて説明する。図6は、この発光素子の光取り出し方向に垂直な断面図である。この発光素子60は、実施の形態1に係る発光素子と比較すると、電子輸送性有機材料5の代わりに正孔輸送性有機材料6が無機蛍光体層4に化学吸着している点で相違する。さらに詳細には、この発光素子60は、無機蛍光体層4の2面の界面のうち、正孔注

入電極2と対向する側に正孔輸送性有機材料6が化学吸着している。またさらには、この発光素子60は、実施の形態1に係る発光素子と比較すると、正孔輸送層3が接着層として機能する点で相違する。なお、その他の構成部材については実質的に同一なので、説明を省略する。

[0054]

正孔輸送性有機材料 6 としては、正孔輸送性を備える有機材料が用いられ、前述の正孔輸送層 3 に用いられるものと同一のものが挙げられる。また、無機蛍光体層 4 の表面に正孔輸送性有機材料 6 を化学吸着させる方法については、前述の、無機蛍光体層 4 の表面に電子輸送性有機材料 5 を化学吸着させる方法と、実質的に同一なので、説明を省略する。

[0055]

また、正孔輸送層3としては、前述の正孔輸送性有機材料6が吸着している無機蛍光体層4と正孔注入電極2との接着層として機能する高分子系材料が含まれていることが好ましい。この正孔輸送層3としては、前述の正孔輸送層3に用いられるもののうち、正孔輸送性を備える高分子系材料、及び非導電性ポリマーに低分子系の正孔輸送性材料を分子分散させた形態を用いることができる。

(0056)

次に、本発明の実施の形態 4 に係る発光素子の製造方法について説明する。この発光素子は、以下の工程によって製造される。

- (a) 基板9を準備する。
- (b) 次に、前記基板9の上に、例えば真空蒸着法を用いて、電子注入電極8を 形成する。
- (c) 次に、前記電子注入電極8の上に、例えば真空蒸着法を用いて、電子輸送 層7を形成する。
- (d) 次に、前記電子輸送層7の上に、例えば高周波スパッタリング法を用いて、無機蛍光体層4を形成する。
- (e) 次に、前記無機蛍光体層 4 の表層面に、実施例 1 と同様にして、正孔輸送性有機材料 6 を化学吸着させる。これを基板 C とする。
 - (f)透明基板1を準備する。

- (g) 次に、前記透明基板1の上に、例えばスパッタリング法を用いて、正孔注 入電極2を形成する。
- (h) 次に、前記正孔注入電極2の上に、例えばスピンコート法を用いて、正孔輸送層3を形成する。これを基板Dとする。
- (i) 正孔輸送層3の成膜直後に、基板Cの、基板9の上の表面の少なくとも一部を正孔輸送性有機材料6で被覆されている無機蛍光体層4を、基板D、の透明基板1の上の正孔輸送層3と互いに対向させて重ね合わせ、基板Cと基板Dとを貼り合わせる。これによって発光素子60を作成する。

[0057]

なお、前述の正孔輸送性有機材料6の化学吸着、正孔輸送層3の成膜、基板A と基板Bとの貼り合わせは、乾燥雰囲気下で行うことが望ましく、さらに低酸素 雰囲気下で行うことがより望ましい。これにより、動作電圧の低下、高効率化、 長寿命化等の特性改善を図ることができる。

[0058]

(実施の形態5)

本発明の実施の形態 5 に係る発光素子について、図7を用いて説明する。図7は、この発光素子の光取り出し方向に垂直な断面図である。この発光素子70は、実施の形態 4 に係る発光素子と比較すると、電子輸送性有機材料 5 が無機蛍光体層 4 に、さらに化学吸着している点で相違する。さらに詳細には、この発光素子70は、無機蛍光体層 4 の2 面の界面のうち、正孔注入電極2と対向する界面に正孔輸送性有機材料 6 が、電子注入電極7と対向する界面に電子輸送性有機材料 5 が化学吸着している。なお、その他の構成部材については、実施の形態1 に係る発光素子及び実施の形態 4 に係る発光素子に実質的に同一なので、説明を省略する。

[0059]

次に、本発明の実施の形態 5 に係る発光素子の製造方法について説明する。この発光素子は、以下の工程によって製造される。

- (a) KC1基板を準備する。
- (b) 次に、前記KC1基板の上に、例えば髙周波スパッタリング法を用いて、

無機蛍光体層4を形成する。

- (e) 次に、前記無機蛍光体層 4 の表層面に、実施の形態 4 に係る発光素子と同様にして、正孔輸送性有機材料 6 を化学吸着させる。これを基板 E とする。
 - (f)透明基板1を準備する。
- (g) 次に、前記透明基板1の上に、例えばスパッタリング法を用いて、正孔注 入電極2を形成する。
- (h) 次に、前記正孔注入電極2の上に、例えばスピンコート法を用いて、正孔輸送層3を形成する。これを基板Fとする。
- (i)正孔輸送層3の成膜直後に、基板Eの、表面の少なくとも一部を正孔輸送性有機材料6で被覆されている無機蛍光体層4を、基板Fの、透明基板1の上の正孔輸送層3と互いに対向させて重ね合わせ、基板Eと基板Fとを貼り合わせる。
- (j) 次に、前記基板Eの側からKClを水中に溶出させて取り除き、前記無機 蛍光体4の表面を露出させる。
- (k)次に、露出した前記無機蛍光体4の表層面の上に、実施例1と同様にして、電子輸送性有機材料5を化学吸着させ、さらに、電子輸送層7、電子注入電極8を形成する。
- (1)前記電子注入電極8の上に保護層を形成する。これによって発光素子70 を作成する。

[0060]

(実施の形態 6)

本発明の実施の形態 6 に係る発光素子について、図8を用いて説明する。図8は、この発光素子の光取り出し方向に垂直な断面図である。この発光素子80は、実施の形態 1 に係る発光素子と比較すると、光の取り出し方向及び駆動電源の極性が逆になっている点で相違する。さらに、この発光素子80は、前述の駆動電源の極性に応じて、正孔注入電極、電子注入電極、正孔輸送層、及び電子輸送層の積層構成が逆になっている点で相違する。またさらには、この発光素子80は、電子輸送層7が接着層として機能する点で相違する。また、光は、矢印で示したように、透明基板1の側から取り出される。なお、その他の構成部材につい

ては実質的に同一なので、説明を省略する。

[0061]

電子輸送層7としては、電子輸送性有機材料5が吸着している無機蛍光体層4と電子注入電極8との接着層として機能する高分子系材料が含まれていることが好ましい。この電子輸送層7としては、前述の実施の形態1に係る発光素子の電子輸送層7に用いられるもののうち、電子輸送性を備える高分子系材料、及び非導電性ポリマーに低分子系の電子輸送性材料を分子分散させた形態を用いることができる。

[0062]

次に、本発明の実施の形態6に係る発光素子の製造方法について説明する。この発光素子は、以下の工程によって製造される。

- (a) 透明基板1を準備する。
- (b) 次に、前記透明基板1の上に、例えばスパッタリング法を用いて、正孔注 入電極2を形成する。
- (c) 次に、実施例1と同様にして、前記正孔注入電極2の上に、正孔輸送層3 、無機蛍光体層4を形成し、さらに、前記無機蛍光体層4の表面に、電子輸送性 有機材料5を化学吸着させる。これを基板Gとする。
- (d) 基板9を準備する。
- (e) 次に、前記基板9の上に、例えば真空蒸着法を用いて、電子注入電極8を 形成する。
- (f)次に、前記電子注入電極8の上に、例えばスピンコート法を用いて、電子輸送層7を形成する。これを基板Hとする。
- (g)電子輸送層7の成膜直後に、基板Gの透明基板1の上の表面の少なくとも一部を電子輸送性有機材料5で被覆されている無機蛍光体層4を、基板Hの基板9の上の電子輸送層3と互いに対向させて重ね合わせ、基板Gと基板Hとを貼り合わせる。これによって発光素子80を作成する。

[0063]

なお、前述の電子輸送性有機材料6の化学吸着、電子輸送層3の成膜、基板E と基板Fとの貼り合わせは、乾燥雰囲気下で行うことが望ましく、さらに低酸素

雰囲気下で行うことがより望ましい。

[0064]

(実施の形態 7)

本発明の実施の形態7に係る発光素子について、図9を用いて説明する。図9は、この発光素子の光取り出し方向に垂直な断面図である。この発光素子90は、実施の形態4に係る発光素子と比較すると、光の取り出し方向及び駆動電源の極性が逆になっている点で相違する。さらに、この発光素子90は、前述の駆動電源の極性に応じて、正孔注入電極、電子注入電極、正孔輸送層、及び電子輸送層の積層構成が逆になっている点で相違する。また、光は、矢印で示したように、透明基板1の側から取り出される。なお、その他の構成部材については実質的に同一なので、説明を省略する。

[0065]

次に、本発明の実施の形態7に係る発光素子の製造方法について説明する。この発光素子は、以下の工程によって製造される。

- (a) 実施の形態4に係る発光素子と同様に、基板9の上に、電子注入電極8、電子輸送層7、無機蛍光体層4を形成し、さらに、前記無機蛍光体層4の表面に、正孔輸送性有機材料6を化学吸着させる。これを基板Iとする。
- (b) 実施の形態4と係る発光素子と同様に、透明基板1の上に、正孔注入電極2、正孔輸送層3を形成する。これを基板]とする。
- (i) 正孔輸送層3の成膜直後に、基板Iの基板9の上の表面の少なくとも一部を正孔輸送性有機材料6で被覆されている無機蛍光体層4を、基板Jの透明基板1の上の正孔輸送層3と互いに対向させて重ね合わせ、基板Iと基板Jとを貼り合わせる。これによって発光素子90を作成する。

[0066]

(実施の形態8)

本発明の実施の形態8に係る発光素子について、図10を用いて説明する。図10は、この発光素子の光取り出し方向に垂直な断面図である。この発光素子100は、実施の形態5に係る発光素子と比較すると、光の取り出し方向及び駆動電源の極性が逆になっている点で相違する。さらに、この発光素子100は、前

述の駆動電源の極性に応じて、正孔注入電極、電子注入電極、正孔輸送層、及び電子輸送層の積層構成が逆になっている点で相違する。またさらには、この発光素子100は、正孔輸送層3に加えて、電子輸送層7についても接着層として機能する点で相違する。また、光は、矢印で示したように、透明基板1の側から取り出される。なお、その他の構成部材については実質的に同一なので、説明を省略する。

[0067]

次に、本発明の実施の形態 8 に係る発光素子の製造方法について説明する。この発光素子は、以下の工程によって製造される。

- (a) 実施の形態 5 に係る発光素子の正孔輸送性有機材料 6 を化学吸着させる方法と同様にして、KCl基板の上に、無機蛍光体層 4 を形成し、前記の無機蛍光体層 4 の表面に、電子輸送性有機材料 5 を化学吸着させる。これを基板 K とする。
- (c)実施の形態6に係る発光素子と同様にして、基板9の上に、電子注入電極 8、電子輸送層7を形成する。これを基板しとする。
- (d)電子輸送層7の成膜直後に、基板Kの、表面の少なくとも一部を電子輸送性有機材料5で被覆されている無機蛍光体層4を、基板Lの、基板9の上の電子輸送層7と互いに対向させて重ね合わせ、基板Kと基板Lとを貼り合わせる。
- (e) 次に、実施の形態5に係る発光素子と同様にして、前記無機蛍光体4の表面を露出させ、その上に、正孔輸送性有機材料6を化学吸着させる。これを基板Mとする。
- (f) 実施の形態7に係る発光素子と同様にして、透明基板1の上に、正孔注入電極2、正孔輸送層3を順次形成する。これを基板Nとする。
- (g) 正孔輸送層3の成膜直後に、基板Mの、表面の少なくとも一部を正孔輸送性有機材料6で被覆されている無機蛍光体層4を、基板Nの、透明基板1の上の正孔輸送層3と互いに対向させて重ね合わせ、基板Mと基板Nとを貼り合わせる。これによって発光素子100を作成する。

[0068]

なお、以上の説明では、無機蛍光体層 4 を除いて、有機材料からなる層が 2 層

構成の例を示したが、これらの層が2層以上からなる構成であってもよい。

[0069]

【発明の効果】

以上説明したように、本発明に係る構成の発光素子によれば、発光体層として、少なくとも一部を導電性有機材料で被覆した無機蛍光体層を用いている。このために、従来の有機EL素子並みの低電圧駆動でありながら、長寿命で信頼性の高い発光素子を提供することができる。

【図面の簡単な説明】

- 【図1】 本発明の実施の形態1に係る発光素子の発光面に垂直な断面図である。
 - 【図2】 本発明の実施の形態2に係る発光素子の斜視図である。
- 【図3】 本発明の実施の形態3に係る発光素子を用いた表示装置の平面概略図である。
- 【図4】 本発明の実施の形態3に係る発光素子を用いた表示装置の発光面に垂直な断面図である。
 - 【図5】 従来の有機EL素子の発光面に垂直な断面図である。
- 【図6】 本発明の実施の形態4に係る発光素子の発光面に垂直な断面図である。
- 【図7】 本発明の実施の形態5に係る発光素子の発光面に垂直な断面図である。
- 【図8】 本発明の実施の形態6に係る発光素子の発光面に垂直な断面図である。
- 【図9】 本発明の実施の形態7に係る発光素子の発光面に垂直な断面図である。
- 【図10】 本発明の実施の形態8に係る発光素子の発光面に垂直な断面図である。

【符号の説明】

1 透明基板、2 正孔注入電極、3 正孔輸送層、4 無機蛍光体層、5 電子輸送性有機材料、6 正孔輸送性有機材料、7 電子輸送層、8 電子注入電

極、10 発光素子、11 薄膜トランジスタ、12 x電極、13 y電極、20 発光素子、30 表示装置、40 表示装置、41a 画素(R)、41 b 画素(G)、41c 画素(B)、42 画素分離領域、50 有機EL素子、51 透明基板、52正孔注入電極、53 正孔輸送層、56 発光体層、58 電子注入電極、60 発光素子、70 発光素子、80 発光素子、90 発光素子、100 発光素子

【書類名】 図面

【図1】

[図2]

【図3】

[図4]

【図5】

【図6】

【図7】

[図8]

【図9】

【図10】

【書類名】 要約書

【要約】

【課題】 低電圧駆動が可能であって、高輝度、且つ、長寿命の発光素子と、その発光素子を用いた表示装置を提供する。

【解決手段】 本発明に係る発光素子10は、互いに対向している正孔注入電極2と電子注入電極8と、前記正孔注入電極と電子注入電極との間に挟まれており、前記正孔注入電極の側から前記電子注入電極の側に向って順に積層されている、正孔輸送層3、発光体層4、及び電子輸送層7とを備え、前記発光体層は、表面の少なくとも一部を有機材料5で被覆されている無機蛍光体層4を含む。

【選択図】 図1

特願2003-190446

出 願 人 履 歴 情 報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所 名

大阪府門真市大字門真1006番地

松下電器産業株式会社