Experiment 2

August 12, 2020

AIM:

Addition of two 8 bit numbers and

- 1. Sum is also 8 bit number
- 2. Sum is 16 bit number

SOFTWARE USED:

GNUSim 8085

THEORY:

The Intel 8085 is an 8-bit microprocessor produced by Intel and introduced in March 1976. It is a software-binary compatible with the more-famous Intel 8080 with only two minor instructions added to support its added interrupt and serial input/output features.

INSTRUCTIONS IN 8085:

An instruction of a computer is a command given to the computer to perform a specified operation on given data. In microprocessor, the instruction set is the collection of the instructions that the microprocessor is designed to execute.

The programmer writes a program in assembly language using these instructions. These instructions have been classified into the following groups:

- 1. Data Transfer Group
- 2. Arithmetic Group
- 3. Logical Group
- 4. Branch Control Group
- 5. I/O and Machine Control Group

These are briefly explained below

1. Data Transfer Group

Instructions, which are used to transfer data from one register to another register, from memory to register or register to memory, come under this group. Examples are: MOV, MVI, LXI, LDA, STA etc. When an instruction of data transfer group is executed, data is transferred from the source to the destination without altering the contents of the source

2. Arithmetic Group

The instructions of this group perform arithmetic operations such as addition, subtraction; increment or decrement of the content of a register or memory. Examples are: ADD, SUB, INR, DAD etc.

3. Logical Group

The Instructions under this group perform logical operation such as AND, OR, compare, rotate etc. Examples are: ANA, XRA, ORA, CMP, and RAL etc.

4. Branch Control Group

This group includes the instructions for conditional and unconditional jump, subroutine call and return, and restart. Examples are: JMP, JC, JZ, CALL, CZ, RST etc.

5. I/O and Machine Control Group

This group includes the instructions for input/output ports, stack and machine

control. Examples are: IN, OUT, PUSH, POP, and HLT etc

ALGORITHM

- a) Sum is 8 bit
- Get address of first number in H-L pair
- First number in accumulator
- Increment content of H-L pair
- Add first and second number
- Store sum in 2503 H
- Stop
- b) Sum is 16 bit
- Address of first number in H-L pair
- MSBs of sum in in register C. Initial value=00
- First number in accumulator
- Address of Second number in H-L pair
- Add the two numbers
- Is carry? If no, go to label AHEAD
- If yes, increment C
- LSB of sum in 2503 H
- MSB of sum in accumulator
- MSB of sum in 2504 H
- Stop

FLOW CHART:

a) Sum is 8 bit

```
graph TB
st([Start]) --> op1[Load H-L pair with first operands memory address]
op1 --> op2[Move the first operand from memory to accumulator]
op2 --> op3[Increament H-L pair to point next memory location]
op3 --> op4[Add with A]
op4 --> op5[Increment H-L pair]
```

```
op5 --> op6[Move the result from accumulator to memory]
op6 --> Stop
  b) Sum is 16 bit
graph TB
st[Start]-->op1[Load H-L pair with first operands memory address]
op1 --> op2[move the first operand from memory to accumulator]
op2 --> op3[Increament H-L pair to point next memory location]
op3 --> op4[Initialize register C = 00]
op4 -->op5[Add M with A]
op5 --> cond{If Carry ?}
cond -->|yes|op6[Increment register C]
op6 -->op7[Increment H-L pairt]
op7 -->op8[Move the result to memory]
op8 -->op9[Increment H-L pair and move carry from register C to memory]
op9 --> Stop
cond -->|no|op7
st=>start: Start
e=>end: Stop
op1=>operation: Load H-L pair with first operands memory address
op2=>operation: move the first operand from memory to accumulator
op3=>operation: Increament H-L pair to point next memory location
op4=>operation: Add with A
op5=>operation: Increment H-L pair
op6=>operation: Move the result from accumulator to memory
st->op1->op2->op3->op4->op5->op6->e
  b) Sum is 16 bit
st=>start: Start
e=>end: Stop
op1=>operation: Load H-L pair with first operands memory address
op2=>operation: move the first operand from memory to accumulator
op3=>operation: Increament H-L pair to point next memory location
op4=>operation: Initialize register C = 00
op5=>operation: Add M with A
cond=>condition: if carry ?
op6=>operation: Increment register C
op7=>operation: Increment H-L pairt
op8=>operation: Move the result to memory
op9=>operation: Increment H-L pair and move carry from register C to memory
st->op1->op2->op3->op4->op5->cond
cond(yes)->op6->op7->op8->op9->e
cond(no)-
op6[Increment register C]
op7[Increment H-L pairt]
op8[Move the result to memory]
op9[Increment H-L pair and move carry from register C to memory]
```

PROGRAM AND OUTPUT:

a) Sum is 8 bit

			Addressing		T-
Add	Mnemo Op	Comments	Mode	Machine Cycle	States
2000	LXI 2501H H	Load H-L pairs with address 2501H	Immediate	Opcode fetch + 2 Memory read	10
2003	MOV A, M	Move first operand from memory to accumulator	Indirect	Opcode fetch + Memory read	7
2004	INX H	Increment H-L pair	Register	Opcode fetch	6
2005	ADD M	Add M with A	Register	Opcode fetch + Memory read	7
2006	INX H	Increment H-L pair	Register	Opcode fetch	6
2007	MOV M, A	Move contents of Accumulator to memory add sotred in H-L Pair	Indirect	Opcode fetch + memory write	7
2008	HLT	HALT	-	Opcode fetch	4

Output

Data:

2501- 04 H

2502- 02 H

Result:

2503- 06 Н

b) Sum is 16 bit

				Addressing		T-
Add	Mn	Op	Comments	Mode	Machine Cycle	States
2000	LXI H	2501 H	Load H-L pair with Address 300H	Immediate	Opcode fetch and 2 memory read	10
2003	MVI C	00	Initialize C register with zero value	Immediate	Opcode fetch + memory read	7
2005	MOV A, M		Move first operand form memory to A	Indirect	Opcode fetch + memory read	7
2006	INX H		Increment H-L Pair	Register	Opcode fetch	6
2007	ADD M		Add M with A	Indirect	Opcode fetch + memory read	7
2008	JNC	AHEAI	Jump to label if no carry	Immediate	Opcode fetch $+ 2$ memory read	10
2008	INR	\mathbf{C}	Increment reg C	Register	Opcode fetch	4
2000	STA	2503H	Load data of accumulator to memory	Direct	Opcode fetch + 2 memory read + 2 memory write	13
200F	MOV A, C		Move content of C register to accumulator	Register	Opcode fetch	4
2010	STA	2504H	Load data of accumulator to memory	Direct	Opcode fetch + 2 memory read + 2 memory write	13
2013	HLT		HALT	-	Opcode	4

Output

Data:

2501- 98 H

2502- 9A H

Result:

2503- 32 H, LSBs of sum

2504- 01 H, MSBs of sum

Result:

The sum of two 8 bit numbers in 8085 is obtained for both the cases when

- 1) Sum of the numbers is 8 bit
- 2) Sum of the numbers is 16 bit.