```
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv("/content/Food-Truck-LineReg.csv",names=['x','y'])

data

D
```

₽		х	У
	0	6.1101	17.59200
	1	5.5277	9.13020
	2	8.5186	13.66200
	3	7.0032	11.85400
	4	5.8598	6.82330
	92	5.8707	7.20290
	93	5.3054	1.98690
	94	8.2934	0.14454
	95	13.3940	9.05510
	96	5.4369	0.61705

97 rows × 2 columns

data.plot(x="x",y="y",style="o")

<matplotlib.axes._subplots.AxesSubplot at 0x7fa9733f66d0>


```
# we need to find the mean of x and y
x_mean = data["x"].mean()
y_mean = data["y"].mean()
print(x_mean,y_mean)
```

8.15979999999999 5.839135051546393

```
# we need to have other things in the table
data["X"] = data["x"] - x_mean
data["Y"] = data["y"] - y_mean
data["X*Y"] = data["X"] * data["y"]
data["X^2"] = data["X"]**2
data["Y^2"] = data["Y"]**2
```

data

```
Y^2
                              Χ
                                                    х*ү
                                                              X^2
                        У
          6.1101 17.59200 -2.0497 11.752865 -36.058322
                                                         4.201270 138.129834
      1
          5.5277 9.13020 -2.6321 3.291065 -24.031599
                                                         6.927950
                                                                    10.831108
          8.5186 13.66200 0.3588 7.822865 4.901926 0.128737
      2
                                                                   61.197216
      3
         7.0032 11.85400 -1.1566 6.014865 -13.710336 1.337724 36.178600
\ensuremath{\text{\#}} we need to have the summation of all these
summation_x_y = data["X*Y"].sum()
summation_x_x = data["X^2"].sum()
summation\_y\_y = data["Y^2"].sum()
# correlation
correlation = summation_x_y/(summation_x_x*summation_y_y)**0.5
      OE 13 20/0 0 05510 5 23/2 3 215065 /7 20620/ 27 206250 10 3/2/31
correlation
     0.837873232526341
\# we need to find out the Standard deviation of x and y
import statistics
std_dev_x = statistics.stdev(data["x"])
std_dev_y = statistics.stdev(data["y"])
print(std_dev_x,std_dev_y)
     3.8698835278823314 5.510262255231544
# we need to find the slope
m = correlation * (std_dev_y/std_dev_x)
c = y_mean - m*x_mean
С
     -3.8957808783118555
data["y_prediction"] = m * data["x"] + c
data
```

	x	у	Х	Υ	X*Y	X^2	Y^2	y_prediction			
0	6.1101	17.59200	-2.0497	11.752865	-36.058322	4.201270	138.129834	3.393774			
1	5.5277	9.13020	-2.6321	3.291065	-24.031599	6.927950	10.831108	2.698951			
2	8.5186	13.66200	0.3588	7.822865	4.901926	0.128737	61.197216	6.267196			
3	7.0032	11.85400	-1.1566	6.014865	-13.710336	1.337724	36.178600	4.459272			
4	5.8598	6.82330	-2.3000	0.984165	-15.693590	5.290000	0.968581	3.095158			

92	5.8707	7.20290	-2.2891	1.363765	-16.488158	5.239979	1.859855	3.108162			
93	5.3054	1.98690	-2.8544	-3.852235	-5.671407	8.147599	14.839715	2.433740			
94	8.2934	0.14454	0.1336	-5.694595	0.019311	0.017849	32.428413	5.998524			
95	13.3940	9.05510	5.2342	3.215965	47.396204	27.396850	10.342431	12.083712			
96	5.4369	0.61705	-2.7229	-5.222085	-1.680165	7.414184	27.270172	2.590624			
97 rows × 8 columns											

```
plot1 = plt.scatter(data["x"],data["y"])
plot2 = plt.plot(data["x"],data["y_prediction"])
```

```
# we need to find sse , ssr , sst and r2

ssr = ((data["y_prediction"] - y_mean)**2).sum()

ssr

2046.3146047180417

50 75 100 125 150 175 200 225

sse = ((data["y"]- data["y_prediction"])**2).sum()

sse

868.5324469391848

sst = sse + ssr

sst

2914.8470516572265

r2 = correlation**2
```

Colab paid products - Cancel contracts here