ĆWICZENIA 3 – TEORIA (Funkcja jednej zmiennej, własności)

Przykład : Obliczyć wartość funkcji $f(x) = \sqrt{x+2} - \frac{\sqrt{x}}{x-2}$ dla x=1 oraz x=4.

$$f(1) = \sqrt{1+2} - \frac{\sqrt{1}}{1-2} = \sqrt{3} - \frac{1}{(-1)} = \sqrt{3} + 1$$

$$f(4) = \sqrt{4+2} - \frac{\sqrt{4}}{4-2} = \sqrt{6} - \frac{2}{2} = \sqrt{6} - 1$$

Przykład : Znaleźć miejsca zerowe funkcji $y = f(x) = x^2 - 9$.

Zauważ, że
$$y = f(x) = x^2 - 9 = (x-3)(x+3)$$
.

Miejscem zerowy nazywamy każdy punkt x, dla którego f(x)=0.

$$f(x) = 0 \Leftrightarrow x^2 - 9 = 0$$

$$(x-3)(x+3)=0$$
 dla $x=3$ lub $x=-3$

Miejscami zerowymi powyższej funkcji są x=3 lub x=-3.

DZIEDZINA FUNKCJI

<u>UWAGA</u> Pamiętaj o następujących zasadach określania dziedziny funkcji:

- 1) Wyrażenie pod pierwiastkiem stopnia parzystego jest nieujemne, czyli np. dla $\sqrt{1-x}$, $1-x \ge 0$, stąd $x \le 1$.
- 2) W wyrażeniu logarytmicznym podstawa logarytmu musi być większa od 0 i różna od 1, a wykładnik większy od 0, np. dla $\log_{(x^2-2)}(x+5)$, $x^2-2>0$ oraz $x^2-2\neq 1$, a x+5>0
- 3) W wyrażeniach typu $\frac{x+2}{x^2-4}$, w mianowniku nie może być 0, czyli $x^2-4\neq 0$

Przykład : Wyznaczyć dziedzinę funkcji $f(x) = \sqrt{x-2} \log_{x-1} \frac{x^2+2}{x+7}$.

- 1) $x-2 \ge 0 \Rightarrow x > 2$
- 2) $x-1>0 \Rightarrow x>0$ i $(x-1)\neq 1 \Rightarrow x\neq 2$ zatem $x\in (0,2)\cup (2,\infty)$
- 3) Korzystając z faktu, że znak ilorazu dwóch funkcji jest taki sam jak znak ich iloczynu mamy, że:

1

$$\frac{x^2+2}{x+7} > 0 \Longrightarrow \left(x^2+2\right)\left(x+7\right) > 0 \Longrightarrow \left(x+7\right) > 0 \Longrightarrow x > -7$$

4)
$$x + 7 \neq 0 \Rightarrow x \neq -7$$

Wybieramy x spełniające jednocześnie warunki 1), 2), 3) i 4). Zatem $D = (2, \infty)$

ĆWICZENIA 3 – TEORIA (Funkcja jednej zmiennej, własności)

Przykład :Wyznaczyć dziedzinę funkcji $f(x) = \frac{\sin x}{x-1}$. $D \subset \mathbb{R}/\{1\}$

Przykład: Uzasadnić, że funkcja $f(x) = \sqrt{x} + 1$ jest różnowartościowa.

Mamy pokazać, że $\forall x_1, x_2 \in D$ $\forall x_2, x_2 \in D$ $\forall x_2, x_3 \in D$ $\forall x_1, x_2 \in D$ $\forall x_2, x_3 \in D$ $\forall x_3, x_4 \in D$ $\forall x_4, x_4 \in D$ $\forall x_$

Przykład: Sprawdzić, czy dana funkcja jest parzysta: $f(x) = \frac{3x^2}{(x-2)(2+x)}$.

$$f(-x) = \frac{3(-x)^2}{(-x-2)(2+(-x))} = \frac{3x^2}{((-x)^2-2)^2} = \frac{3x^2}{(x-2)(2+x)} = f(x)$$
. Funkcja parzysta.

Przykład: Sprawdzić, czy funkcja $f(x) = x^3$ jest rosnąca: w **R**.

Niech $x_1, x_2 \in \mathbf{R}$, $x_1 < x_2$.

$$f(x_2) - f(x_1) = (x_2)^3 - (x_1)^3 = (x_2 - x_1) [(x_2)^2 + x_1 x_2 + (x_1)^2]$$

Zauważmy, że pierwszy czynnik jest dodatni, a drugi nieujemny (równy 0 dla $x_1, x_2 = 0$). Stąd $f(x_2) - f(x_1) > 0$, co oznacza, że funkcja jest rosnąca.

Przykład: Sprawdzić, czy funkcja $g(x) = \frac{1}{x}$ jest malejąca $(0, \infty)$ w **R**.

Niech $x_1, x_2 \in (0, \infty)$, $x_1 < x_2$.

 $g(x_2) - g(x_1) = \frac{1}{x_2} - \frac{1}{x_1} = \frac{x_1 - x_2}{x_1 x_2} < 0$, gdyż licznik ułamka jest ujemny, a mianownik dodatni.

Zatem g jest malejąca w rozważanym przedziale.

Przykład: Określić funkcje złożone $f \circ f$, $f \circ g$, $g \circ f$, $g \circ g$, jeżeli $f(x) = 4 + \sin x$, $g(x) = \sqrt{x}$.

$$(f \circ f)(x) = f(f(x)) = f(4 + \sin x) = 4 + \sin(4 + \sin x)$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = 4 + \sin(\sqrt{x})$$

$$(g \circ f)(x) = g(f(x)) = g(4 + \sin x) = \sqrt{(4 + \sin x)}$$

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{x}) = \sqrt{\sqrt{x}} = \sqrt[4]{x}$$

ĆWICZENIA 3 – TEORIA (Funkcja jednej zmiennej, własności)

FUNKCJA ODWROTNA

Przykład

- Przypisanie numeru PESEL każdemu (żyjącemu) Polakowi można odwrócić w naturalny sposób: znajdując Polaka według numeru PESEL.
- Funkcją odwrotną do funkcji liczbowej danej wzorem y(x) = 3x jest funkcja $x(y) = \frac{y}{3}$.
- Funkcją odwrotną do funkcji danej wzorem $h(x) = \frac{1}{x} \operatorname{dla} x \neq 0$ jest ona sama, tzn. $h^{-1}(x) = \frac{1}{x}$.

Przykład

Zbudujemy funkcję odwrotną do funkcji określonej wzorem f(x) = 2x - 6.

Funkcja f^{-1} określona jest przez wzór x = 2y - 6

(w napisie y = 2x - 6 zamieniliśmy rolami

zmienne). Po wyliczeniu y mamy y = x/2 + 3. Zatem $f^1 = x/2 + 3$

