IN THE CLAIMS

Claims 1-35 (Cancelled).

Claim 36 (Previously presented): A bio

A biodegradable, oxidized cellulose ester having the

following general formula I or II:

I.

$$\bigcup_{||}^{O} \bigcup_{||}^{O} \bigcup_{||}^{$$

wherein:

X is selected from the group consisting of H, Na, K, Ca, NH₄, and NEt₃H;

whereby R is $(CH_2)_nCOOH$, where n is 2 to 4;

w is 0.1-1.0;

x is 0.1-2.0; and

n is 30-1500.

and

Π.

$$\bigcup_{\substack{|||\\|||\\||||\\|||}} \bigcup_{\substack{|||\\||\\||\\|||\\|||\\||}} \bigcup_{\substack{|||\\||\\||\\||\\||}} \bigcup_{\substack{|||\\||\\||\\||}} \bigcup_{\substack{|||\\||\\||}} \bigcup_{\substack{|||\\||\\||}} \bigcup_{\substack{|||\\||\\||}} \bigcup_{\substack{|||\\||\\||}} \bigcup_{\substack{|||\\||\\||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{|||\\||\\||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{|||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{||||}} \bigcup_{\substack{|||\\||}} \bigcup_{\substack{||||}} \bigcup_{\substack$$

wherein:

X is selected from the group consisting of H, Na, K, Ca, NH₄, and NEt₃H;

R' and R" are each selected from the group consisting of: H; CF_3 ; $(CH_2)_nCH_3$, where n is from 0 to 18; $(CH_2)_nCOOH$, where n is from 1 to 8; CY=CZCOOH, where Y and Z are independently selected from the group consisting of hydrogen, methyl, branched alkyl having from 1 to 20 carbon atoms and from one to three *cis* or *trans* double bonds; branched alkenyl

having from 1 to 20 carbon atoms and having from one to three *cis* or *trans* double bonds; CY-CH₂, where Y is H, methyl, or phenyl; CH=CHY, where Y is C_6H_5 ; CH=CYCOOH, where Y is H or CH_3 ; $(CH_2)_8CH=CH(CH_2)_8CH_3$; or $C_6H_{(2-6)}(COOH)_{0-4}$, $CH_2CH(COOH)CH_2$ -COOH;

```
w is 0.1-1.0;
x' is 0.1-1.9;
y is 0.1-1.9; and
n is 30-850;
```

said biodegradable oxidized cellulose ester having an acid number of at least 133.

Claims 37-40 (Cancelled).