

USN	1	М	S			Γ			
5511	l •	i "-" _	L	L	L	i	l. — .	L	LL

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU) BANGALORE – 560 054

SEMESTER END EXAMINATIONS - DEC 2013 / JAN 2014

Course & Branch : B.E.- Civil Engineering

Semester : V

Subject : Structural Analysis-II

Max. Marks: 100

Subject Code

: CV501

Duration : 3 Hrs

Instructions to the Candidates:

- · Answer one full question from each unit.
- Any data missing can be assumed suitably.

UNIT ~ I

1. Analyze the continuous beam shown in fig-1 by slope deflection method. (20) The support B sinks by 8mm. Draw BMD, take $EI = 10 \times 10^6 \text{ Nm}^2$

 a) Analyze the frame shown in fig-2 by slope deflection method and draw (20) BMD.

UNIT-II

3. Analyze the continuous beam shown in fig-3 by moment distribution (20) method and draw BMD.

4. Analyze the frame shown in fig-4 by moment distribution method and (20) draw BMD where EI is constant.

UNIT-III

5. Analyze the continuous beam shown in fig-5 by flexibility matrix method and draw SFD. What will be the change in the forces, if supports B and C settle down by 200/EI and 100/EI.

CV501

6. Analyze the plane truss shown in fig-6 by flexibility matrix method Take (20) $A=1200 \text{mm}^2$

7. a) Analyze the beam shown in fig-7 by stiffness matrix method. Draw SFD & (20) BMD

8. a) Using displacement method analyze the frame shown in fig-8.Draw BMD (20)

(80)

UNIT-V

9. a) Determine the shape factor for T-section shown in fig-9(a).

b) Determine the collapse load of a fixed beam shown in fig-9(b), subjected (12) to load W at $1/3^{rd}$ span.

10. Analyze the continuous beam shown in fig-10 by equilibrium method. (20)
Draw plastic BMD. All the loads are service loads, use partial safety
factor of 1.5
