

Elementaran uvod u neuronske mreže

Feedforward neuronska mreža

Feedforward neuronska mreža

- Osnovni tip neuronskih mreža
- Korišćenje više skrivenih slojeva je počelo tek nakon pojave adekvatnog hardvera
- Efikasna u rješavanju regresionih i klasifikacionih problema na struktuiranim podacima
- Identifikovanje "globalnih" pravilnosti (u kontekstu čitavog ulaza)
- Slike ili nizovi?

- Osnovna primjena computer vision
- Analiziraju se blokovi susjednih piksela slike (local patterns lokalne pravilnosti)
- Automatski izvlače pravilnosti bez obzira na lokaciju ili oblik u kojima se pojavljuju
- Iz njih se kreira nova informacija koja je predmet obrade u sljedećem koraku i na višem nivou apstrakcije

- Da li je praktično koristiti deep feedforward neuronske mreže za rješavanje computer vision problema (image classification, object detection)?
- Broj čvorova input layer-a bi mogao biti preveliki
- Identifikujemo globalne pravilnosti (global patterns), odnosno moramo imati u skupu za treniranje baš takve slike
- Konvolucione neuronske mreže rješavaju oba problema

Na primjer: Sobel filteri detektuju ivice na slici

-1	0	1
-2	0	2
-1	0	1

1	2	1
0	0	0
-1	-2	-1

https://setosa.io/ev/image-kernels/

Osnovni princip konvolucije:

• Osnovni princip konvolucije:

0	50	0	29
0	80	31	2
33	90	0	75
0	9	0	95

-1	0	1
-2	0	2
-1	0	1

0	50	0	29
0	80	31	2
33	90	0	75
0	9	0	95

29	?
?	?

Padding:

- Konvolucijom slike 4*4 pomoću filtera 3*3 dobijamo sliku 2*2
- Međutim, ukoliko sliku dopunimo nulama "sa svake strane" (same padding), na izlazu imamo sliku istih dimenzija inicijalne slike:

0	0	0	0	0	0
0	0	50	0	29	0
0	0	80	31	2	0
0	33	90	0	75	0
0	0	9	0	95	0
0	0	0	0	0	0

- Susjedni pikseli obično nose istu ili sličnu informaciju
- Nakon konvolucije, najvjerovatnije će susjedni pikseli izlaza takođe nositi sličnu informaciju
- Pooling veličine 2 transformiše sliku na sljedeći način (maxpooling):

0	50	0	29
0	80	31	2
33	90	0	75
0	9	0	95

Max, Min, Avg

 Posljednji sloj konvolucione neuronske mreže je obično klasičnog tipa (fully connected) sa softmax aktivacijom (izlaz iz posljednjeg sloja preračunava u vjerovatnoće)

Cost (loss) funkcija koja se uobičajeno koristi, ako je posljednji sloj sa softmax aktivacijom:
crossentropy loss

$$L_{\text{CE}} = -\sum_{i=1}^{n} t_i \log(p_i)$$
, for n classes,

where t_i is the truth label and p_i is the Softmax probability for the i^{th} class.

Primjer

Notebook: 10 – tensorflow example

Rekurentne neuronske mreže

- Osnovna karakteristika: hidden state ("memorija" o prethodno obrađenom elementu niza)
- Obradom svakog sljedećeg elementa se ažurira hidden state
- Daje dobre rezultate u radu sa kraćim nizovima
- LSTM, GRU

Rekurentne neuronske mreže

Transformers

- Sequence-to-sequence modelling
- Rad sa dugačkim nizovima
- Self-attention mehanizam fokusiranje samo na relevantne dijelove nizova
- "Context aware" pravi se razlika između riječi koje se isto pišu, a imaju drugo značenje
- Arhitektura prilagođena paralelnom izvršavanju

Autoencoders

- Kreiranje interne reprezentacije skupa podataka (slike, tekst, struktuirani podaci, ...)
 - latent space
- Rekonstrukcija originalnog podatka iz kreirane reprezentacije (eventualno uz uvođenje stohastičkih elemenata)

Generative Adversarial Networks (GANs)

- Generisanje slika, teksta, podataka na bazi očekivanih karakteristika
- Očekivane karakteristike i pravilnosti se uče na bazi pripremljenih primjera

Primjer

Literatura

- Neural networks and deep learning Michael Nielsen
- Unsupervised Feature Learning and Deep Learning Tutorial (stanford.edu)
- deep learning notes.pdf (stanford.edu)
- CS229: Machine Learning (stanford.edu)
- Syllabus (stanford.edu)
- Deep Learning with Python Francois Chollet
- Hands-On Machine Learning Aurélien Géron
- Designing Machine Learning Systems Chip Huyen

Korisni blogovi

- Jay Alammar
- Yoshua Bengio
- Chip Huyen
- Sebastian Raschka
- understanding-the-basics-of-neural-networks-for-beginners
- <u>activation-functions-and-their-derivatives-a-quick-complete-guide</u>
- convolutional-neural-networks-explained
- <u>all-you-need-to-know-about-attention-and-transformers-in-depth-understanding-part-1</u>
- <u>all-you-need-to-know-about-attention-and-transformers-in-depth-understanding-part-2</u>