Module 2: Supplementary Slides

Using Substitution

An Integral Involving b^u

$$\int b^u \, du = \frac{1}{\ln(b)} b^u + C$$

$$y = b^u = e^{\ln(b^u)} = e^{u\ln(b)} \Rightarrow y' = \ln(b)e^{u\ln(b)} = b^u\ln(b)$$

Example: Find $\int 2^{3-x} dx$.

Solution:
$$u = 3 - x \Rightarrow \int 2^{3-x} dx = -\int 2^u du = -\frac{2^{3-x}}{\ln(2)} + C$$

Example

Repeated Integration by Parts

Solve $\int x^2 e^{2x+1} dx$.

Solution

$$u = x^{2}$$

$$dv = e^{2x+1} dx$$

$$du = 2x dx$$

$$v = e^{2x+1}/2$$

$$\int x^2 e^{2x+1} dx = \frac{x^2 e^{2x+1}}{2} - \int \frac{e^{2x+1}}{2} (2x) dx = \frac{x^2 e^{2x+1}}{2} - \int x e^{2x+1} dx$$

$$\int xe^{2x+1} dx = \frac{xe^{2x+1}}{2} - \int \frac{e^{2x+1}}{2} dx = \frac{xe^{2x+1}}{2} - \frac{e^{2x+1}}{4} + C_1$$

$$\int x^2 e^{2x+1} dx = \frac{x^2 e^{2x+1}}{2} - \frac{x e^{2x+1}}{2} + \frac{e^{2x+1}}{4} + C = \frac{e^{2x+1}}{2} \left(x^2 - x + \frac{1}{2}\right) + C$$

Creating Loops in R

Creating Loops

```
for (variable in vector) {
  expressions
}
while (condition) {
}
```


Recursive or Nested Functions

Creating Recursive Functions

```
f=function (n) {
  f(n-1) can be called within the function
}
```

```
f=function(n) {
   if (n==0) {y=1};
   if (n>0) {y=n*f(n-1)};
   if(n<0) {y="Give a positive number!"};
   return (y);}

f=function(n) {
   if (n==1) {y=1};
   if (n>0) {y=n^2+f(n-1)};
   if (n<0) {y="Give a positive number!"};
   return (y);}</pre>
```


Example

Creating Recursive Functions

Calculate the below sum in R by creating a recursive function:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n \left(4 - \left(\frac{2k}{n} \right)^2 \right) \frac{2}{n}$$

Solution:

```
n=1000;
f=function(k) {
  if (k==0) {y=0};
  if (k>0) {y=(4-(2*k/n)^2)*2/n+f(k-1)};
  if (k<0) {y="Give a positive number!"};
  return (y);}
f(1000)</pre>
```


The Definite Integral

Some Important Summations

$$\sum_{k=1}^{n} f(k) = f(1) + f(2) + \dots + f(k)$$

$$\sum_{k=1}^{n} [f(k) \pm g(k)] = \sum_{k=1}^{n} f(k) \pm \sum_{k=1}^{n} g(k)$$

$$\sum_{k=1}^{n} cf(k) = c \sum_{k=1}^{n} f(k)$$

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{m} a^{k} n^{k}}{n^{m}} = \lim_{n \to \infty} \frac{a_{m} n^{m} + a_{m-1} n^{m-1} + \dots + a_{1}}{n^{m}} = a^{m}$$

$$\sum_{k=1}^{n} 1 = 1 + 1 + \dots + 1 = n$$

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

The Definite Integral

Recap: Definite Integral as a Limit of a Sum

$$S = \int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}) \Delta x$$
$$\Delta x = \frac{b-a}{n}, \qquad x_{k} = k\Delta x, \qquad f(x_{k}) = f(k\Delta x)$$

Example: Find $S = \int_0^1 2x dx$

Solution

$$\Delta x = \frac{b - a}{n} = \frac{1 - 0}{n} = \frac{1}{n}, \qquad x_k = k\Delta x = \frac{k}{n}, \qquad f(x_k) = 2x_k = \frac{2k}{n}$$

$$S = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \, \Delta x = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{2k}{n}\right) \left(\frac{1}{n}\right) = \lim_{n \to \infty} \frac{2}{n^2} \sum_{k=1}^{n} k = \lim_{n \to \infty} \left[\frac{2}{n^2} \frac{n(n+1)}{2}\right] = 1$$

Four subregions of R.

Example

Definite Integral as a Limit of a Sum

Find the area of the region bounded by $f(x) = 4 - x^2$ between x = 0 and x = 2.

n subintervals and corresponding rectangles

Solution

Since the length of [0,2] is 2, $\Delta x = \frac{2}{n}$. Considering inscribed rectangles, $x_k = \frac{2}{n}k$.

Summing the areas, we get

$$S_n = \sum_{k=1}^n f(x_k) \, \Delta x = \sum_{k=1}^n \left(4 - \left(\frac{2k}{n} \right)^2 \right) \frac{2}{n}$$
$$= \frac{8}{n} n - \frac{8}{n^3} \frac{n(n+1)(2n+1)}{6} = 8 - \frac{4}{3} \left(\frac{(n+1)(2n+1)}{n^2} \right)$$

We take the limit of S_n as $n \to \infty$:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(8 - \frac{4}{3} \left(\frac{(n+1)(2n+1)}{n^2} \right) \right) = 8 - \frac{8}{3} = \frac{16}{3}$$

n subintervals and corresponding rectangles

Hence, the area of the region is $\frac{16}{3}$.

Example

Definite Integral as a Limit of a Sum

Integrate f(x) = x - 5 from x = 0 to x = 3

Solution

Since the length of [0,3] is 3, $\Delta x = \frac{3}{n}$. Considering inscribed rectangles, $x_k = \frac{3}{n}k$. Summing the areas, we get

$$S_n = \sum_{k=1}^n f(x_k) \, \Delta x = \sum_{k=1}^n \left(\frac{3k}{n} - 5 \right) \left(\frac{3}{n} \right) = \frac{9(n+1)}{2n} - 15 = \frac{9}{2} \left(1 + \frac{1}{n} \right) - 15$$

We take the limit of S_n as $n \to \infty$:

$$\int_0^3 (x-5)dx = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{9}{2} \left(1 + \frac{1}{n} \right) - 15 \right) = \frac{9}{2} - 15 = -\frac{21}{2}$$

Remark: Since $f(x) \le 0$ for all x, the definite integral has become a negative number.

The Fundamental Theorem of Integral Calculus: Proof

The Fundamental Theorem of Integral Calculus

Fundamental Theorem of Integral Calculus

If f is continuous on the interval [a, b] and F is any antiderivative of f on [a, b], then

a)
$$\frac{d}{dx} \left(\int_a^x f(t) dt \right) = f(x)$$

b)
$$\int_a^b f(x)dx = F(b) - F(a)$$

If $f(x) \ge 0$ on [a, b] then $\int_a^b f(x) dx$ represents the area under the curve.

Properties of The Definite Integrals:

•
$$\int_{a}^{a} f(x)dx = 0$$
•
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

•
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{b}^{c} f(x)dx$$

Part a)
$$A(x) = \int_a^x f(t)dt \Rightarrow \frac{d}{dx} \left(\int_a^x f(t)dt \right) = f(x)$$

$$\frac{d}{dx}\left(\int_{a}^{x} f(t)dt\right) = \frac{dA(x)}{dx} = \lim_{\Delta x \to 0} \frac{A(x + \Delta x) - A(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{a}^{x + \Delta x} f(t)dt - \int_{a}^{x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = \lim_{\Delta$$

Since f(t) is within the closed interval $[x, x + \Delta x]$, by Extreme Value Theorem, it has at least one absolute maximum and at least one absolute minimum in the interval $[x, x + \Delta x]$. Suppose x_{max} and x_{min} are the maximizer and minimizer points. So, the area $\int_{x}^{x+\Delta x} f(t)dt$ is between the areas of the two rectangles shown in the picture. Then, we have:

$$f(x_{min})\Delta x \le \int_{x}^{x+\Delta x} f(t)dt \le f(x_{max})\Delta x$$

$$\Rightarrow \lim_{\Delta x \to 0} f(x_{min}) \le \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t) dt}{\Delta x} \le \lim_{\Delta x \to 0} f(x_{max})$$

Noticing that since $x \le x_{min} \le x_{max} \le x + \Delta x$, then $\lim_{\Delta x \to 0} f(x_{min}) = \lim_{\Delta x \to 0} f(x_{max}) = f(x)$. Hence:

$$f(x) \le \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} \le f(x) \Rightarrow \frac{dA(x)}{dx} = \lim_{\Delta x \to 0} \frac{\int_{x}^{x + \Delta x} f(t)dt}{\Delta x} = f(x)$$

Part b)

$$\frac{d}{dx}\left(\int_{a}^{x} f(t)dt\right) = f(x) \Rightarrow \int_{a}^{x} f(t)dt = F(x) + C$$

Choosing the initial value x = a gives

$$\int_{a}^{a} f(t)dt = 0 = F(a) + C \Rightarrow C = -F(a)$$

Hence, $\int_a^x f(t)dt = F(x) - F(a)$ or with a more common notation:

The area under the curve in the interval $[a, b] = \int_a^b f(x) dx = F(b) - F(a)$

Remark: The above result means that any continuous function f(x) is integrable (i.e., its antiderivative does exist). The reason is that the area under f(x) always exists, which necessitates the existence of the value F(b) - F(a), and by so, the existence of F(x).

Leibniz Integral Rule

Leibniz Integral Rule

$$\frac{d}{dx} \left(\int_{u_1(x)}^{u_2(x)} f(t, x) dt \right) = f(u_2) \frac{du_2}{dx} - f(u_1) \frac{du_1}{dx} + \int_{u_1(x)}^{u_2(x)} f_x'(t, x) dt$$

Example: Find the derivative of $F(x) = \int_{x}^{x^2} xe^{t} dt$.

Solution:

$$\frac{dF}{dx} = \frac{d}{dx} \left(\int_{x}^{x^{2}} xe^{t} dt \right) = xe^{x^{2}} (2x) - xe^{x} + \int_{x}^{x^{2}} e^{t} dt = 2x^{2}e^{x^{2}} - xe^{x} + e^{x^{2}} - e^{x}$$

$$= e^{x^2} (2x^2 + 1) - e^x (x+1) = e^x [e^x (2x^2 + 1) - (x+1)]$$

Average Value of a Function

Average Value of a Function

The average value of a function f(x) is given by:

$$\bar{f} = \frac{\int_{a}^{b} f(x) dx}{b - a}$$

Example.

Find the average value of the function $f(x) = x^2$ over the interval [1,2].

Solution.

$$\bar{f} = \frac{1}{2-1} \int_{1}^{2} x^{2} dx = \frac{2^{3}}{3} - \frac{1^{3}}{3} = \frac{7}{3}$$

