Performance characterization of 2D CNN features for partial video copy detection

Van-Hao LE, Mathieu Delalandre, <u>Hubert Cardot</u> firstname.lastname@univ-tours.fr

LIFAT Laboratory, University of Tours, France

September 26th, 2023

Outline

- 1 Introduction
- Objectives of our work
- 3 Our work
- 4 Main results
- **5** Conclusions and Perspectives

Introduction

▶ Partial video copy detection (PVCD) aims at finding short segment(s) which have transformed into long video(s).

short segments

long videos which have transformed

- ▶ PVCD includes several application domains (copyright protection, video retrieval, etc.) [Han, 2021; Jiang, 2021; Tan, 2022].
- ▶ PVCD uses 2D CNN features, their characterization is little discussed for the PVCD task [Kordopatis-Zilos, 2017; Hu, 2019].

Objectives of our work

- ▶ (i) We report large-scale experiments to compare 2D CNN features:
 - \triangleright comparison of 9 types of features with standard P/R and F_1 scores,
 - our conclusions and results are consistent with the CV state-of-the-art.
- ▶ (ii) We propose a method to characterize the goodness of key-frames:
 - ▶ a goodness criterion, time-series modelling & key-frames characterization,
 - highlights the difficulties of 2D CNN features for specific degradations.

Our work (1/2)

▶ Video datasets: VCDB [Jiang, 2016], SVD [Jiang, 2019], VCSL [He, 2022], and STVD [Le, 2022] which was selected¹.

Tab. 1 STVD Dataset (The h and s stand for in hours and in seconds).

Datasets	Degradation	Duration	References	Positive pairs	Timestamps
STVD	synthetic	10,660 h	243	1,688 K	$\frac{1}{30}$ s

Tab. 2 Pre-processing of the STVD dataset for our experiments.

Videos	60%	40%	Total	Total
	training	testing	frames	frames
Negative videos	259,050 f	172,700 f	431,750 f	259,050 f
Copied segments	16,200 f	10,800 f	27,000 f	486,000 f
	(i)			(ii)

▶ **Protocols**: (i) standard P/R, F_1 scores using the Cosine similarity, (ii) a proposed protocol .

¹fine control of degradations, large-scale, balanced positive / negative distribution, accurate timestamping

Our work (2/2)

▶ Goodness criterion: $\phi(X) \ge 0$ using Cosine similarity (SC) is given

X is a feature vector

$$\phi(\tilde{X}) = SC_{\min}(X, \{\tilde{X}_1, \dots, \tilde{X}_m\}) - SC_{\max}(X, \{Y_1, \dots, Y_{n_1}\}, \{X_1^*, \dots, X_{n_2}^*\})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\tilde{X} \text{ is near-duplicate of } X \qquad \qquad Y \text{ is negative,}$$

 \tilde{X} is near-duplicate of X

 $X^* \neq X$ has a different reference

6/12

► Time-series modelling:

▶ **Key-frame categorization**: in 5 categories based on automatic thresholds, Not Consistent (NC), Worst (W), Not Separable (NS), Partially Separable (PS), Fully Separable (FS).

Main results (1/2)

- ► Large-scale experiments to characterize these 2D CNN features:
 - ▶ 9 CNN features (3 models × 3 methods²),
 - ▶ 4.4 **M** vectors, 445 **B** matchings.
- Comparison of 2D CNN features results.

Tab. 3 Top F_1 scores

	Last FC	MAC	R-MAC
ResNet50-v1	0.926	0.828	0.823
Inception-v1	0.923	0.738	0.782
VGG-16	0.894	0.922	0.918

- Our results highlight and be consistent with the state-of-the-art:
 - ▶ the separability of features is not achieved (even if $F_1 \simeq 0.93$),
 - ► recent 2D CNN (ResNet-50) outperform [He, 2016],
 - correlation between 2D CNN & methods (VGG & MAC) [Cools, 2022].

²Last Fully Connected (Last FC), Maximum Activations of Convolutions (MAC) and Regional-MAC (R-MAC)

Main results (2/2)

- ▶ A proposed method to characterize key-frames using 2D CNN features:
 - ▶ a goodness criterion, time-series modelling & key-frames categorization.
 - $ho \simeq 0.8$ **M** feature vectors, $\simeq 244$ **B** matchings.
- ▶ Results of key-frames categorization.

(NC-Not consistent, W-Worst, NS-Not separable, PS-Partially Separable, FS-Fully Separable.)

Total	NC	W	NS	PS	FS
100 %	13.7 %	8.2 %	65 %	9.6 %	3.5 %

- Our results highlight:
 - an 'easy' categorization of key-frames,
 - a quantitative analysis of the goodness of key-frames,
 - \triangleright only a small amount of 'good' key-frames ($\simeq 13\%$ in PS, FS),
 - ▶ difficulties to detect 'bad' key-frames (≈ 22% in NC, W).

'good' key-frames

'bad' kev-frames

Conclusions & Perspectives

- ▶ Our contributions for performance characterization of 2D CNN features
 - ▶ We report large-scale experiments to characterize 2D CNN features:
 - 9 CNN features, 4.4 M vectors, 445 B matchings,
 - ▶ ResNet-50 outperforms, correlation CNN & methods.
 - ▶ We propose a method for the characterization of key-frames:
 - goodness criterion, time-series, categorization,
 - 0.8 M vectors, 244 B matchings,
 - categorization and analysis, performance limits of features.
- ▶ Our perspectives to further improve the PVCD performance:
 - protocol of automatic labeling for scalable frame classification,
 - robust key-frame selection and learning of 2D CNN features.

Thank you for your attention!

References

- Cheng, H., P. Wang, and C. Qi (2021). "CNN features based unsupervised metric learning for near-duplicate video retrieval". In: Open-access repository (arXiv). 2105.14566v1.
- Cools, A., M.A. Belarbi, and S.A. Mahmoudi (2022). "A Comparative Study of Reduction Methods Applied on a Convolutional Neural Network". In: Electronics 11, p. 1422.
- Han, Z. (2021). "Video similarity and alignment learning on partial video copy detection". In: ACM International Conference on Multimedia (MM), pp. 4165–4173.
- He, K. (2016). "Deep residual learning for image recognition". In: Conference on computer vision and pattern recognition (CVPR), pp. 770–778.
- He, S. (2022). "A Large-scale Comprehensive Dataset and Copy-overlap Aware Evaluation Protocol for Segment-level Video Copy Detection". In: Computer Vision and Pattern Recognition (CVPR), pp. 21086–21095.
- He, S. (2023). "TransVCL: Attention-enhanced Video Copy Localization Network with Flexible Supervision". In: AAAI Conference on Artificial Intelligence (AAAI).
- Hu, Y. et al (2019). "STRNN: End-to-end deep learning framework for video partial copy detection". In: Journal of Physics: Conference Series.
- Jiang, C. (2021). "Learning segment similarity and alignment in large-scale content based video retrieval". In: ACM International Conference on Multimedia (MM), pp. 1618–1626.
- Jiang, Q.Y. (2019). "SVD: A large-scale short video dataset for near-duplicate video retrieval". In: International Conference on Computer Vision (ICCV), pp. 5281–5289.

References

- Jiang, Y.G. and J. Wang (2016). "Partial copy detection in videos: A benchmark and an evaluation of popular methods". In: IEEE Transactions on Big Data 2.1, pp. 32–42.
- Kordopatis-Zilos, G. (2017). "Near-duplicate video retrieval with deep metric learning". In: International Conference on Computer Vision Workshops (ICCV), pp. 347–356.
- Le, V.H., M. Delalandre, and D. Conte (2022). "A large-Scale TV Dataset for partial video copy detection". In: International Conference on Image Analysis and Processing (ICIAP). Vol. 13233. Lecture Notes in Computer Science (LNCS), pp. 388–399.
- Tan, W., H. Guo, and R. Liu (2022). "A fast partial video copy detection using KNN and global feature database". In: Winter Conference on Applications of Computer Vision (WACV), pp. 2191–2199.