The Constantly Changing Hubble Constant

Lorne Whiteway lorne.whiteway@star.ucl.ac.uk

Astrophysics Group Department of Physics and Astronomy University College London

Presentation to the Mid Kent Astronomical Society
12 November 2021
You are invited to go to www.menti.com and enter code
14 11 05 9

The Universe is expanding!

- ▶ But what does this actually mean?
- ► How do we know it is expanding?
- ► Why is it expanding?
- ► How fast is it expanding?
- ► How do we know how fast it is expanding?
- Is the expansion rate changing?

How do we know?

- Everywhere we look, distant galaxies are receding; more distant galaxies are receding faster.
- ➤ So either we are at the centre of a cosmic conspiracy, or all the space between all the galaxies is expanding.

Is the solar system expanding? Are we expanding?

Go to www.menti.com (code 14 11 05 9) and choose:

- 1. Yes, a lot
- 2. Yes, but only a tiny amount
- 3. No

Is the solar system expanding? Are we expanding?

Go to www.menti.com (code 14 11 05 9) and choose:

- 1. Yes, a lot
- 2. Yes, but only a tiny amount
- 3. No ✓

Is the solar system expanding? Are we expanding?

➤ Other forces - molecular forces between the molecules in your body, and gravitational forces between the Sun and the planets - are far more than strong enough to overcome the effect of cosmic expansion.

 Gravity is even strong enough to keep the Andromeda Galaxy from receding from us.

► It's only the furthest objects - where gravity becomes negligible - that recede.

What does recession velocity actually mean?

- We say 'distant galaxies are moving away from us'. This is informal language.
- ► They aren't really moving, they just appear to be because the intervening space is expanding.
- Sometimes this distinction is important for example, the recession velocity can exceed the speed of light.

Which 'Ed' first had the idea that the Universe is expanding?

Go to www.menti.com (code 14 11 05 9) and choose:

- 1. Edmond Halley
- 2. Edwin Hubble
- 3. Edgar Allan Poe

Which 'Ed' first had the idea that the Universe is expanding?

Go to www.menti.com (code 14 11 05 9) and choose:

- 1. Edmond Halley
- 2. Edwin Hubble
- 3. Edgar Allan Poe ✓

History

In 1848 Edgar Allan Poe published Eureka, which included a description of expanding space.

Expansion is not obvious without large telescopes and so isn't usually part of pre-modern cosmologies. Full understanding only came in the 20th century.

- ► For every additional distance of one megaparsec, there's an additional recession velocity of about 70 kilometers per second.
- ➤ So the expansion speed is about 70 kilometers per second per megaparsec.
- ➤ One megaparsec is about three million light years. It's the typical distance between galaxies.
- ▶ 70 kilometers per second is about 150,000 miles per hour.

Start with a distance:

Start with a distance:

13.5 million years later it will be 1% longer:

Start with a distance:

13.5 million years later it will be 1% longer:

Continental drift is about six times faster...

H_0

- ► The current expansion rate is called the *Hubble constant* or *Hubble parameter* and is denoted ${}^{\prime}H_0{}^{\prime}$.
- ► The 'H' commemorates Edwin Hubble (1889-1953), who was one of the first to measure it.

► The '0' refers to today. The expansion rate was different in the distant past.

Why does the Universe expand?

- Science is not so good with 'why?' questions...
- ► There's an *initial condition*: the Universe started expanding at the Big Bang.
- ➤ The later behaviour of the expansion (does it slow down? speed up?) then depends, essentially via gravity, on what's in the Universe.

General relativity, our modern theory of gravity, is due to Einstein (1916).

Credit: Paul Ehrenfest

▶ Remember mass and energy are the same $(E = mc^2)$.

Mass/Energy bends spacetime, essentially changing distances and angles.

➤ This 'changing of distances and angles' works locally; the distorted spacetime governs how objects move, and this leads e.g. to the apple falling from the tree.

- ➤ This 'changing of distances and angles' works locally; the distorted spacetime governs how objects move, and this leads e.g. to the apple falling from the tree.
- But it also works on the Universe as a whole mass/energy can cause distances to change everywhere in the Universe - and in particular can lead to increasing distances everywhere. This is the expansion that we see.

Contents of Universe control expansion

 It was Alexander Friedmann (Александр Александрович Фри́дман) (1888-1925) who first realised this (1922).

Credit: Public domain

What if we go backwards in time?

▶ George Lamaître (1894-1966) realised that if the Universe was expanding then it must, at an earlier stage, have been very small; he thereby invented the idea of the 'Big Bang'.

Credit: Public domain

How do we measure the expansion rate?

- ► In theory it's easy: find a distant galaxy, measure its recession velocity and its distance, and take the ratio.
- Example: a galaxy is receding at 1600 kilometers per second and is 20 megaparsecs away; then H₀ is 80 kilometers per second per megaparsec.

Can use redshift to measure recession velocity

- ► Light from distant galaxies gets streeeetched by the expansion; this makes it turn redder.
- It's fairly easy to measure the amount of red-shifting, as spectral lines are a convenient reference point. The redshift then immediately gives the velocity.

V M Slipher

➤ The first redshifts for galaxies (known then as nebulae) were made in 1912 by Vesto Slipher (1875 - 1969) at the Lowell Observatory in Flagstaff Arizona.

Recession velocity for galaxy M77

From Slipher's 1917 'Lowell Observatory Bulletin 80':

These recent spectrograms have been measured for radial velocity. The results for the four spectrograms — two of 1913 and two of 1917 — are as follows:

```
      Plate 1913, November 6,
      Velocity -1060 km.

      Plate 1913, November 22, 23,
      Velocity -1150

      Plate 1917, November 6, 7, 8,
      Velocity -1080

      Plate 1917, November 12 to 16, two prisms
      Velocity -1130 s

      Velocity -1145 c
      Velocity -1135 c

      Mean Velocity
      -1120 km.
```

Modern value (from NASA/IPAC Extragalactic database):

BASIC DATA for MESSIER 077 (Back to INDEX)

```
Helio. Radial Velocity : 1137 +/- 3 km/s
Redshift : 0.003793 +/- 0.000010 <u>2014/NRAS.440..696A</u>
```

Can use Cepheids to measure distance

Cosmic distances can be estimated using variable stars called *Cepheids*. We know how much light they produce (it's related to their period) - so they are *standard* candles. Their observed brightness then tells us their distance

The brightness/period relation was discovered by Henrietta Swan Leavitt (1868 - 1921) at Harvard.

Credit: Public Domain

How far away is that Cepheid?

A and B are two identical Cepheids; A is 100 parsecs distant; B is 4% of the brightness of A. How far is B?

Go to www.menti.com (code 14 11 05 9) and choose:

- 1. 500 parsecs
- 2. 2500 parsecs
- 3. 4 parsecs

How far away is that Cepheid?

A and B are two identical Cepheids; A is 100 parsecs distant; B is 4% of the brightness of A. How far is B?

Go to www.menti.com (code 14 11 05 9) and choose:

- 1. 500 parsecs ✓
- 2. 2500 parsecs
- 3. 4 parsecs

Recession velocity vs distance relationship

- It was Lamaitre who first suggested a linear relationship between recession velocity and distance.
- Hubble then provided supporting evidence he used the 100 inch telescope at Mt Wilson to spot Cepheids in a range of galaxies.

Credit: Edwin Hubble Papers

Hubble's plot - from 1929 PNAS paper

What value for H_0 does this plot give?

Go to www.menti.com (code 14 11 05 9) and choose:

- 1. 70 km per second per megaparsec
- 2. 100 km per second per megaparsec
- 3. 500 km per second per megaparsec

What value for H_0 does this plot give?

Go to www.menti.com (code 14 11 05 9) and choose:

- 1. 70 km per second per megaparsec
- 2. 100 km per second per megaparsec
- 3. 500 km per second per megaparsec √

Falling estimates of H_0 1920 - 1980

Distances had been underestimated

Several revisions (distance up, H_0 down) followed:

- 1. Two types of Cepheids
- 2. Interstellar absorption of light
- 3. Scott effect (visible galaxies tend to be brighter than average)

4. Regions of hot gas were being misidentified as bright stars

Hubble Space Telescope

► The Hubble Space Telescope was built (in part) to measure H_0 .

Lead investigatorWendy Freedman.

- Used supernovae as additional standard candles.
- $ightharpoonup H_0 = 72 \pm 8$ kilometers per second per megaparsec.

More recent values - diverging opinion

More recent values - diverging opinion

Credit: W. Freedman

- ▶ Blue results use standard candles: $H_0 = 74 \pm 1.4$ kilometers per second per megaparsec.
- Red results use data from the early Universe: 67.4 ± 0.6 kilometers per second per megaparsec.

H_0 from early Universe data

- ➤ For 300,000 years after the Big Bang, the Universe was opaque. Then it became transparent, and we can today observe (red-shifted) light from then (the *Cosmic Microwave Background*).
- ➤ The distance that light could travel in those 300,000 years can be seen statistically in these observations. Trigonometry then gives us the distance the light has travelled.
- ► Redshift is easy the spectrum has a prominent peak.
- ightharpoonup Finally, correct for the evolution of H_0 from then to now.

Hubble tension

Credit: W. Freedman

- ► Should we be worried by the discrepancy?
- ▶ It could require that a revision to our theory. But it might also just be a systematic error in one of the measurements.

Where to find this document

➤ You can find the presentation at https://tinyurl.com/bycke8v6

Image credits

- Hubble Deep Field: Source: NASA. From https://en.wikipedia.org/wiki/File:Hubble_ultra_deep_field_high_rez_edit1.jpg
- M31: Source: David Dayag. Licensed under the Creative Commons Attribution-Share Alike 4.0
 International license https://creativecommons.org/licenses/by-sa/4.0/deed.en. From
 https://upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Andromeda_Galaxy_560mm_FL.jpg/1024px-Andromeda_Galaxy_560mm_FL.jpg.
- Poe: Source: Public domain. From https://en.wikipedia.org/wiki/Edgar_Allan_Poe#/media/File: Edgar_Allan_Poe,_circa_1849,_restored,_squared_off.jpg
- 4. Hubble: Source: Public domain (by Johan Hagemeyer (1884-1962)). From https: //commons.wikimedia.org/wiki/File:Studio_portrait_photograph_of_Edwin_Powell_Hubble.JPG
- Einstein: Source: Public domain. From https://upload.wikimedia.org/wikipedia/commons/ thumb/c/c3/08608_einstein_1916.jpg/512px-08608_einstein_1916.jpg
- Curved spacetime: Source: Mysid. Licensed under the Creative Commons Attribution-Share
 Alike 3.0 Unported license https://creativecommons.org/licenses/by-sa/3.0/deed.en. From
 https://commons.wikimedia.org/wiki/File:Spacetime_lattice_analogy.svg
- Friedmann: Source: Public domain. From https://upload.wikimedia.org/wikipedia/commons/6/62/Aleksandr_Fridman.png
- Lemaître: Source: Public domain. From https://upload.wikimedia.org/wikipedia/commons/ thumb/5/51/Georges_Lema%C3%AEtre_1930s.jpg/512px-Georges_Lema%C3%AEtre_1930s.jpg
- Redshift: Source: Georg Wiora. Llicensed under the Creative Commons Attribution-Share Alike 2.5 Generic license https://creativecommons.org/licenses/by-sa/2.5/deed.en. From https://commons.wikimedia.org/wiki/File:Redshift.svg
- Slipher: Source: Lowell Archive. Licensed under the Creative Commons Attribution-Share Alike 4.0 International license https://creativecommons.org/licenses/by-sa/4.0/deed.en. From https://upload.wikimedia.org/wikipedia/commons/a/a7/N.M._Slipher.gif, converted to png