10 – DATA WAREHOUSING

CS 1656

Introduction to Data Science

Alexandros Labrinidis – http://labrinidis.cs.pitt.edu
University of Pittsburgh

What is a Data Warehouse?

- a system used for reporting and data analysis, integrating data from one or more disparate sources and creating a central repository of data, a data warehouse (DW).
 - stores current and historical data and is used for creating trending reports for senior management reporting, such as annual and quarterly comparisons.
 - the data stored in the warehouse is uploaded from the operational systems (such as marketing, sales, etc.)

[Source: http://en.wikipedia.org/wiki/Data warehouse]

"A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."— W. H. Inmon

[Source: Data Mining Concepts and Techniques, 3rd Edition]

Data Warehouse: Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse: Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, records from online transaction processing (OLTP) systems
- Data cleaning and data integration techniques applied
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse: Time-Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element"

Data Warehouse: Non-Volatile

 A physically separate store of data transformed from the operational environment

- Operational updates of data do not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs OLAP

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function day to day operations		decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive ad-hoc	
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size 100MB-GB 100GB-TB		100GB-TB
metric	transaction throughput	query throughput, response

[Source: Data Mining Concepts and Techniques, 3rd Edition]

Why a separate data warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP (Online Transaction Processing): access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP (Online Analytical Processing): complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - data consolidation: DW requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Data Warehouse: A Multi-Tiered Architecture

Data Lakes

just-go-greece.com

Data lake vs Data Warehouse

Amount of data

- Data lake stores ALL or at least most application data
- Data warehouse stores only data relevant to its purpose

Type of data

- Data lake stores raw, unprocessed data
- Data warehouse stores data in specified processed format

Purpose

- Data lake data can have broad range of applications(data mining, ML, future usage)
- Data warehouse usually has specific purpose (BI, decision support)

Performance

- Data lake is fast to store, takes enormous amount of storage
- Data warehouse has preprocessing, data consume less space

Extraction, Transformation, Loading (ETL)

Data extraction

get data from multiple, heterogeneous, and external sources

Data cleaning

detect errors in the data and rectify them when possible

Data transformation

convert data from legacy or host format to warehouse format

Load

 sort, summarize, consolidate, compute views, check integrity, and build indices and partitions

Refresh

propagate the updates from the data sources to the warehouse

SHOW ME THE DATA!

So, what does the data look like?

http://data.cs1656.org/coffee-chain.xlsx

[Source: http://www.tableausoftware.com]

Dimension Attributes:

- Date
- Location (area code, market, state)
- Attributes about customers (market size)
- Attributes about products (product, product line, product type, type)

Measure Attributes (can be aggregated upon):

- Inventory
- Cost
- Sales
- Profit

Dimension Attributes

- Some dimension attributes could be organized using a concept hierarchy
 - i.e., sequence of mappings from low-level concepts to higher-level concepts
- Concept hierarchy examples:
 - Location:
 - City → County → Province or State → Country → All
 - Time:
 - Second → Minute → Hour → Day → Month → Quarter → Year → All
 - Second → Minute → Hour → Day → Week → Year → All

Location Hierarchy Example

Aggregation Function Types

- <u>Distributive</u>: if the result derived by applying the function to *n* aggregate values is the same as that derived by applying the function on all the data without partitioning
 - E.g., count(), sum(), min(), max()
- Algebraic: if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function
 - E.g., avg(), min_N(), standard_deviation()
- Holistic: if there is **no constant bound** on the storage size needed to describe a sub-aggregate.
 - E.g., median(), mode(), rank()

HOW TO SUMMARIZE

Crosstab Definition

- A cross-tab is a table where
 - values for one of the dimension attributes form the row headers
 - values for another dimension attribute form the column headers
 - other dimension attributes are listed on top
 - values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.
 - totals for every row and column are also pre-computed

Crosstab Example

size: all

color

item-name

	dark	pastel	white	Iotal
skirt	8	35	10	53
dress	20	10	5	35
shirt	14	7	28	49
pant	20	2	5	27
Total	62	54	48	164

Understanding Question / Table

• Fill out the blanks in the following crosstab:

	June	July	August	September	All months
Blue	10			15	45
Red		15		20	65
Green		5	5		
All colors	30	30	30	45	135

Understanding Question / Q1

 Question: What is the correct value for the total number of sales of RED cars for the month of AUGUST?

- Possible Answers:
 - Fill-in

Understanding Question / Q1 ANS

 Question: What is the correct value for the total number of sales of RED cars for the month of AUGUST?

- Correct Answer:
 - 15

	June	July	August	September	All months
Blue	10			15	45
Red		15		20	65
Green		5	5		
All colors	30	30	30	45	135

Understanding Question / Q1 ANS

 Question: What is the correct value for the total number of sales of RED cars for the month of AUGUST?

- Correct Answer:
 - 15

	June	July	August	September	All months
Blue	10	10	10	15	45
Red	15	15	15	20	65
Green	5	5	5	10	25
All colors	30	30	30	45	135

Generalization of Crosstab for multiple dimensions

 Generalization of cross-tab for more than two dimensions is a data cube

3-dimensional data cubes are "easy" to visualize

 Crosstab can be used as two-dimensional views of any n-dimensional data cube

Data Cube Example

- Axes represent different dimension attributes
 - E.g., color, size, item name
- Cells hold one measure attribute
 - E.g., total sales
 - Called facts
- Real data cubes have >> 3 dimensions

OLAP OPERATIONS

Typical OLAP Operations

- Roll-up aggregate data further
 - Eliminate a dimension (e.g., eliminate color) OR
 - Climb up a concept hierarchy (e.g., go from months to quarters)
- Drill-down reverse of roll-up provide more details
 - Introduce additional dimensions OR
 - Climb down a concept hierarchy (e.g., from county to city)
- Slice
 - Select on one dimension of data cube → subcube
- Dice
 - Select on two or more dimension of data cube
 subcube
- Pivot (rotate)
 - Rotate data axes to provide alternate visual representation

Roll-up Example

Number of Autos Sold

	PA	ОН	MD	Total
Jul	45	33	30	108
Aug	50	36	42	128
Sep	38	31	40	109
Total	133	100	112	345

Number of Autos Sold

	PA	ОН	MD	Total
>	133	100	112	345

Roll up by Month

Jul	Aug	Sep	Total
108	128	109	345

Roll up by State

Drill-Down Example 1

Number of Autos Sold

	PA	ОН	MD	Total
Jul	45	33	30	108
Aug	50	36	42	128
Sep	38	31	40	109
Total	133	100	112	345

Number of Autos Sold

PA	ОН	MD	Total
133	100	112	345

Drill Down by Month

<u>/</u>	Jul	Aug	Sep	Total
	108	128	109	345

Drill down by State

Drill-Down Example 2

Number of Autos Sold

	PA	ОН	MD	Total
Jul	45	33	30	108
Aug	50	36	42	128
Sep	38	31	40	109
Total	133	100	112	345

Number of Autos Sold

PA	ОН	MD	Total
133	100	112	345

Roll up by Month

Drill down by Color

Number of Autos Sold

	PA	ОН	MD	Total
Red	40	29	40	109
Blue	45	31	37	113
Gray	48	40	35	123
Total	133	100	112	345

Understanding Questions / Q2-Q4

 Question: Assume the data cube from the handout and that we perform a roll-up operation on item-name and then a slice operation with the condition size=medium.
 Which of the following questions can be answered with the resulting sub-cube?

Possible Answers:

- Yes/No Number of dresses sold in medium size
- Yes/No Number of clothes items sold in medium size that are pastel in color
- Yes/No Number of clothes items sold that are large size