Задания

3 февраля 2020 г.

- 1. Докажите, что два определения уравнителей, приводившихся в лекции, эквивалентны.
- 2. Морфизм $h: B \to B$ называется идемпотентным, если $h \circ h = h$. Докажите следующие факты:
 - (a) Если $f:A\to B$ и $g:B\to A$ такие, что $g\circ f=id_A,$ то $h=f\circ g$ является идемпотентным.
 - (b) Если в категории есть уравнители, то обратное верно. Конкретно, для любого идемпотентного морфизма $h:B\to B$ существуют $f:A\to B$ и $g:B\to A$ такие, что $g\circ f=id_A$ и $f\circ g=h$.
- 3. Докажите, что любой расщепленный мономорфизм регулярен.
- 4. Мономорфизм $f:A\to B$ называется *сильным*, если для любой коммутативного квадрата, где $e:C\to D$ является эпиморфизмом,

существует стрелка $D \to A$ такая, что диаграмма выше коммутирует. Докажите, что любой регулярный мономорфизм силен.

- 5. Мономорфизм $f:A\to B$ называется экстремальным, если для любого эпиморфизма $e:A\to C$ и любого морфизма $g:C\to B$ таких, что $g\circ e=f$, верно, что e изоморфизм.
 - Докажите, что любой сильный мономорфизм экстремален.
- 6. Докажите, что если в категории все мономорфизмы регулярны, то она сбалансирована. Можно ли усилить это утверждение?
- 7. Докажите, что в **Set** все мономорфизмы регулярны.
- 8. Докажите, что в **Ab** все мономорфизмы регулярны.
- 9. Докажите следующие факты про пулбэки мономорфизмов:

- (а) Докажите, что пулбэк мономорфизма также является мономорфизмом.
- (b) Докажите, что пулбэк регулярного мономорфизма также является регулярным мономорфизмом.
- 10. Докажите следующие факты про пулбэки эпиморфизмов:
 - (a) Докажите, что пулбэк сюръективной функции в ${f Set}$ также является сюръективной функцией.
 - (b) Докажите, что предыдущее утверждение не верно в категории моноидов для эпиморфизмов. Другими словами, необходимо привести пример эпиморфизма в категории моноидов, некоторый пулбэк которого не является эпиморфизмом.
- 11. Пусть в диаграмме вида

правый квадрат является пулбэком. Докажите, что левый квадрат является пулбэком тогда и только тогда, когда внешний прямоугольник является пулбэком.

- 12. Пусть $f:A\to B$ и $g:B\to C$ морфизмы в некоторой категории, а $D\hookrightarrow C$ некоторый подобъект C. Докажите, что $(g\circ f)^{-1}(D)\simeq f^{-1}(g^{-1}(D))$.
- 13. Докажите, что если в категории существуют терминальный объект и пулбэки, то в ней существуют все конечные пределы.