Лабораторная работа № 5

Тема: Численные методы многомерной минимизации нулевого порядка.

Цель работы: Приобретение практических навыков для решения задач многомерной минимизации различными численными методами нулевого порядка.

Постановка задачи

Требуется найти безусловный минимум функции многих переменных $y = f(x_1, \ldots, x_n)$, то есть такую точку $x^* \in \mathbb{R}^n$, что $f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$.

Методы последовательной безусловной оптимизации

В данной лабораторной работе изучаются следующие методы оптимизации нулевого порядка:

- 1. разностный аналог градиентного метода
- 2. метод циклического покоординатного спуска
- 3. метод случайного покоординатного спуска
- 4. метод случайного поиска
- 5. метод Хука-Дживса
- 6. метод минимизации по правильному симплексу
- 7. метод деформируемого многогранника (Нелдера-Мида)

Задание

- 1. Составить программу поиска минимума функции в соответствии с методами, указанными в таблице ниже (язык программирования выбрать самостоятельно).
- 2. Найти координаты и значение функции в точке минимума заданным методом.
- 3. Сравнить сходимость методов по числу вычислений функции для двух различных начальных точек и для различных величин, характеризующих точность вычислений.
- 4. Проанализировать полученные результаты и сделать выводы по достигнутой точности и количеству вычислений функции.

Содержание отчёта

- 1. Титульный лист, который должен включать:
 - название учреждения, где выполнена работа;
 - номер лабораторной работы;
 - название лабораторной работы;
 - номер варианта;
 - Ф.И.О. студента, выполнившего работу;

- изображение подписи рядом с фамилией;
- номер учебной группы;
- Ф.И.О. преподавателя;
- год и место выполнения.
- 2. Цель работы.
- 3. Формулировка задачи с указанием номера варианта.
- 4. Листинги программ в виде текста (скриншоты программного кода вставлять не допускается).
- 5. Результаты вычислений.
- 6. Графическое представление траекторий движения к экстремуму, полученных соответствующим методом (выполнение этого пункта не обязательно, даёт дополнительные +2 балла).
- 7. Выводы.

Варианты заданий

	Методы	Функция
1.	1, 5	$f(x_1, x_2) = x_1^4 - x_1 x_2 + x_2^4 + 3x_1 - 2x_2 + 1$
2.	2, 6	$f(x_1, x_2) = [(x_2 + 1)^2 + x_1^2] \times [x_1^2 + (x_2 - 1)^2]$
3.	3, 7	$f(x_1, x_2) = x_1^4 + x_2^4 - 2x_1^2 + 4x_1x_2 - 2x_2^2 + 3$
4.	4, 5	$f(x_1, x_2) = x_1^4 + x_1 x_2 + 0.5 x_2^2 + 5$
5.	1, 6	$f(x_1, x_2) = (x_1 - 5)^2(x_2 - 4)^2 + (x_1 - 5)^2 + (x_2 - 4)^2 + 1$
6.	2, 7	$f(x_1, x_2) = x_1^4 + x_1 x_2 + x_2^4 - 3x_1 - 6x_2$
7.	3, 5	$f(x_1, x_2) = 100(x_2 - \sin(x_1))^2 + x_2^2 + x_1^2$
8.	4, 6	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + x_2^2 + x_1^2$
9.	1, 7	$f(x_1, x_2) = 100(x_2 - \cos(x_1))^2 + (x_2 - 1)^2 + x_1^2$
10.	2, 5	$f(x_1, x_2) = 100(x_2 - x_1^3)^2 + x_2^2 + x_1^2$
11.	3, 6	$f(x_1, x_2) = 10(1 - x_1^2 - x_2^2)^2 + x_2^2$
12.	4, 7	$f(x_1, x_2) = 10(1 - x_1^2 - x_2^2)^2 + x_1^2$
13.	,	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_1 - 1)^2 + x_2^2$
14.	1, 6	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_2 - 1)^2 + x_1^2$
15.	2, 7	$f(x_1, x_2) = 100(1 + x_1^2 - 2x_2^2)^2 + (x_1 - 1)^2 + (x_2 - 1)^2$
16.	3, 5	$f(x_1, x_2) = 100(x_2^2 - 3x_1^2 - 1)^2 + (x_1 - 1)^2 + (x_2 - 2)^2$
17.	4, 6	$f(x_1, x_2) = 100(x_2 - \sin(x_1))^2 + (x_1 - x_2^2)^2 + x_2^2$
18.	1, 7	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$
19.	2, 5	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (1 - x_2)^2$
20.	3, 6	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (2 - x_2 - x_1^2)^2$
21.	4, 7	$f(x_1, x_2) = 100(x_1 - x_2^2)^2 + (x_1^2 - x_2)^2$
22.	1, 5	$f(x_1, x_2) = 3x_1^4 + 2x_2^4 - 2x_1x_2$
23.	2, 6	$f(x_1, x_2) = 3x_1^4 - x_1x_2 + x_2^4 - 7x_1 - 8x_2 + 2$
24.	3, 7	$f(x_1, x_2) = 4x_1^4 + 3x_2^4 - 4x_1x_2 + x_1$
25.	1, 5	$f(x_1, x_2) = 3x_1^4 + x_1x_2 + 2x_2^4 - x_1 - 4x_2$
26.	2, 6	$f(x_1, x_2) = 4x_1^4 - 6x_1x_2 - 34x_1 + 5x_2^4 + 42x_2 + 7$
27.	$\frac{3}{4}$	$f(x_1, x_2) = 4 - 3x_1 - 9x_2 + x_1^4 + x_1x_2 + x_2^4$
28.	4, 5	$f(x_1, x_2) = (x_1 + x_2)^2 + \sin^2(x_1 + 2) + x_2^2$
29.	$\frac{1}{2}, \frac{6}{7}$	$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + x_2^2 + x_1^2$
30.		$f(x_1, x_2) = 100(x_2 - \cos(x_1))^2 + (x_2 - 1)^2 + x_1^2$ $f(x_1, x_2) = 100(1 - x_2^2 - x_2^2)^2 + (x_1 - x_2^2 - x_2^2)^2 + x_2^2$
31.		$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_1 - 1)^2 + x_2^2$
32.	4, 6	$f(x_1, x_2) = 100(1 - x_1^2 - x_2^2)^2 + (x_2 - 1)^2 + x_1^2$