Assignment 3 Taniya Hussain 21BKT0083

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Task 1 & 2: Download the Dataset and Load the dataset

df=pd.read_csv("penguins_size.csv")
df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass
0	Adelie	Torgersen	39.1	18.7	181.0	375
1	Adelie	Torgersen	39.5	17.4	186.0	380
2	Adelie	Torgersen	40.3	18.0	195.0	325
3	Adelie	Torgersen	NaN	NaN	NaN	N
4	Adelie	Torgersen	36.7	19.3	193.0	345

df.shape

(344, 7)

Task 3: Perform the Below Visualizations

1. Univariate Analysis

df.corr()

<ipython-input-5-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only ir
 df.corr()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
culmen_length_mm	1.000000	-0.235053	0.656181	0.595110
culmen_depth_mm	-0.235053	1.000000	-0.583851	-0.471916
flipper_length_mm	0.656181	-0.583851	1.000000	0.871202
body_mass_g	0.595110	-0.471916	0.871202	1.000000

sns.aistpiot(at.cuimen_iengtn_mm)

<ipython-input-6-24e9b5890c61>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.culmen_length_mm)
<Axes: xlabel='culmen_length_mm', ylabel='Density'>

sns.distplot(df.culmen depth mm)

<ipython-input-7-4b07ffb4fe44>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.culmen_depth_mm)
<Axes: xlabel='culmen_depth_mm', ylabel='Density'>

sns.distplot(df.flipper_length_mm)

<ipvthon-input-10-4c42e92ff055>:1: UserWarning:

sns.distplot(df.body_mass_g)

<ipython-input-11-176964dae727>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.body_mass_g)
<Axes: xlabel='body_mass_g', ylabel='Density'>

plt.pie(df.species.value_counts(),labels=['Chinstrap','Adelie','Gentoo'],autopct='%1.1f%%'
plt.title("Species of Penguins")

Text(0.5, 1.0, 'Species of Penguins')

Species of Penguins

plt.pie(df.island.value_counts(),labels=['Dream','Torgersen','Biscoe'],autopct='%1.1f%%')
plt.title("Islands these penguins live in Antarctica")

Text(0.5, 1.0, 'Islands these penguins live in Antarctica')

Islands these penguins live in Antarctica

plt.pie(df.sex.value_counts(),labels=['MALE','FEMALE','NAN'],autopct='%1.1f%%')
plt.title("Species of Penguins")

 \Box

Text(0.5, 1.0, 'Species of Penguins')

Species of Penguins

sns.barplot(x=df.body_mass_g.value_counts().index,y=df.body_mass_g.value_counts())

<Axes: ylabel='body_mass_g'>

2. Bivariate Analysis

sns.lineplot(x=df.body_mass_g,y=df.culmen_length_mm)

<Axes: xlabel='body_mass_g', ylabel='culmen_length_mm'>

sns.lineplot(x=df.body_mass_g,y=df.culmen_depth_mm)

sns.scatterplot(x=df.body_mass_g,y=df.flipper_length_mm)

<Axes: xlabel='body_mass_g', ylabel='flipper_length_mm'>

sns.pairplot(df)

Task 4: Perform descriptive statistics on the dataset.

df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

sns.boxplot(df.culmen_length_mm)

sns.boxplot(df.culmen_depth_mm)

sns.boxplot(df.flipper_length_mm)

sns.boxplot(df.body_mass_g)

Task 5: Check for Missing values and deal with them.

3000 -

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	species	344 non-null	object
1	island	344 non-null	object
2	culmen_length_mm	342 non-null	float64
3	culmen_depth_mm	342 non-null	float64
4	flipper_length_mm	342 non-null	float64
5	body_mass_g	342 non-null	float64
6	sex	334 non-null	object

dtypes: float64(4), object(3)
memory usage: 18.9+ KB

df.isnull().any()

species False
island False
culmen_length_mm True
culmen_depth_mm True
flipper_length_mm True
body_mass_g True
sex True
dtype: bool

df.isnull().sum()

species 0
island 0
culmen_length_mm 2
culmen_depth_mm 2
flipper_length_mm 2
body_mass_g 2

ex

10

dtype: int64

```
df['culmen_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True)

df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True)

df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace=True)

df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace=True)

df['sex'].fillna(df['sex'].mode(),inplace=True)
```

Task 6: Find the outliers and replace them outliers

df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass
0	Adelie	Torgersen	39.10	18.7	181.0	375
1	Adelie	Torgersen	39.50	17.4	186.0	380
2	Adelie	Torgersen	40.30	18.0	195.0	325
3	Adelie	Torgersen	44.45	17.3	197.0	405
4	Adelie	Torgersen	36.70	19.3	193.0	345

sns.boxplot(df.culmen_length_mm)

sns.boxplot(df.culmen_depth_mm)

sns.boxplot(df.flipper_length_mm)

sns.boxplot(df.body_mass_g)

There are no outliners as we can see from the boxplot, hence we dont have to replace

Task 7: Check the correlation of independent variables with the target

df.corr()

<ipython-input-59-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only i
 df.corr()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
culmen_length_mm	1.000000	-0.235000	0.655858	0.594925
culmen_depth_mm	-0.235000	1.000000	-0.583832	-0.471942
flipper_length_mm	0.655858	-0.583832	1.000000	0.871221
body_mass_g	0.594925	-0.471942	0.871221	1.000000

sns.heatmap(df.corr(),annot=True)

out-60-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame. ip(df.corr(),annot=True)

Task 8: Check for Categorical columns and perform encoding.

from sklearn.preprocessing import LabelEncoder

```
le = LabelEncoder()#label encoding
```

```
df.sex = le.fit_transform(df.sex)
df.island = le.fit_transform(df.island)
df.species = le.fit_transform(df.species)
```

df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_{
0	0	2	39.10	18.7	181.0	3750.0
1	0	2	39.50	17.4	186.0	3800.0

df.corr().body_mass_g.sort_values(ascending=False)

```
body_mass_g 1.000000
flipper_length_mm 0.871221
species 0.747547
culmen_length_mm 0.594925
sex 0.337485
culmen_depth_mm -0.471942
island -0.558500
Name: body_mass_g, dtype: float64
```

Task 9: Split the data into dependent and independent variables

```
y=df['body_mass_g']
y
0 3750.0
1 3800.0
2 3250.0
```

ddf=df

3 4050.0 4 3450.0 ... 339 4050.0 340 4850.0

341 5750.0342 5200.0

343 5400.0

Name: body_mass_g, Length: 344, dtype: float64

```
x=ddf.drop(columns=['body_mass_g'],axis=1)
x.head
```

<bound< th=""><th>method ND</th><th>Frame.head of</th><th>species</th><th>island culmen_leng</th><th>th_mm</th></bound<>	method ND	Frame.head of	species	island culmen_leng	th_mm
culmen	_depth_mm	flipper_leng	th_mm \		
0	0	2	39.10	18.7	181.0
1	0	2	39.50	17.4	186.0
2	0	2	40.30	18.0	195.0
3	0	2	44.45	17.3	197.0
4	0	2	36.70	19.3	193.0
• •	• • •	• • •	• • •	• • •	• • •
339	2	0	44.45	17.3	197.0
340	2	0	46.80	14.3	215.0
341	2	0	50.40	15.7	222.0
342	2	0	45.20	14.8	212.0
343	2	0	49.90	16.1	213.0

sex 0 2

```
1 1 2 1 3 3 4 1 1 ... ... 339 3 340 1 341 2 342 1 343 2
```

[344 rows x 6 columns]>

Task 10: Scaling the data

```
from sklearn.preprocessing import MinMaxScaler
scale =MinMaxScaler()
```

```
x_scaled= pd.DataFrame(scale.fit_transform(x),columns =x.columns)
x_scaled.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	sex
0	0.0	1.0	0.254545	0.666667	0.152542	0.666667
1	0.0	1.0	0.269091	0.511905	0.237288	0.333333
2	0.0	1.0	0.298182	0.583333	0.389831	0.333333
3	0.0	1.0	0.449091	0.500000	0.423729	1.000000
4	0.0	1.0	0.167273	0.738095	0.355932	0.333333
4						•

Task 11: Split the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x_scaled,y,test_size=0.3,random_state=10)
```

Task 12: check the training and testing data shape.

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	sex
258	1.0	0.0	0.432727	0.059524	0.610169	0.333333
332	1.0	0.0	0.414545	0.250000	0.694915	0.333333
121	0.0	1.0	0.203636	0.797619	0.440678	0.666667
61	0.0	0.0	0.334545	0.952381	0.389831	0.666667

y_train.shape

(240,)

x_test.shape

(104, 6)

✓ 0s completed at 8:55 PM