Formalization of Requirements for CPS and NTSS

Anonymous Author

1 Requirement Formalization

1.1 Autopilot

```
R1.4.1:
Textual:
Steady state roll commands shall be tracked within 1 degree.
Formalisation:
(forall tc in [ 1 , T ]:
  ( Tk(tc) != Tk(tc-1) ) implies
  ( exists t2 in [ tc , T ]:
forall t in [ t2 , T ]:
Phi(t) - PhiRef(t) <= 1
))));
R1.6:
The maximum roll angle (Phi) allowed shall be 30 deg \pm10%
Formalisation:
forall t in [ 0 , T ]:
Phi(t) \le 33 and Phi(t) \ge -33
)
);
R12.1:
Textual:
When the autopilot is enabled, the aircraft altitude should reach the desired altitude
within 500 seconds in calm air
Formalisation:
(forall tc in [ 1 , T ]:
( APEng(tc) = 1 ) implies
( exists t2 in [ tc , T ]:
```

```
forall t in [ t2 , T ]:
(
  alt(t) - ALTRef(t) >= 0
)
)
)
)
);
```

1.2 Finite State Machine

R1:

```
Textual:
```

Exceeding sensor Limits shall latch an autopilot pullup when the pilot is not in control (not Standby) and the system is Supported without failures (not Apfail).

```
Formalisation:
  (forall t in [ 0 , T ]:
  (
   (
    Standby(t) = 0 and Apfail(t) = 0 and Supported(t) = 1 and Limits(t) = 1
) implies
  pullup(t) = 1
)
);
```

1.3 Non Linear Guidance

R6:

Textual:

The change in the magnitude of the output over one frame of execution with T sample period shall not exceed the quantity of the combined velocity of the target plus the velocity of the vehicle multiplied by T

```
Formalization:
(
    forall t in [ 1 , T ]:
(
    ( xtarg[1](t) = xtarg[1](t-1) and xtarg[2](t) = xtarg[2](t-1) and xtarg[3](t) = xtarg[3](t-1) and yout[1](t) = Xap2[1](t) and yout[2](t) = Xap2[2](t) and yout[3](t) = Xap2[3](t) and yout[1](t-1) = Xap2[1](t-1) and yout[2](t-1) = Xap2[2](t-1) and yout[3](t-1) = Xap2[3](t-1)) implies

(
    ( ( yout[1](t) - yout[1](t-1) ) * ( yout[1](t) - yout[1](t-1) ) ) +
    ( ( yout[2](t) - yout[2](t-1) ) * ( yout[2](t) - yout[2](t-1) ) ) +
    ( ( yout[3](t) - yout[3](t-1) ) * ( yout[3](t) - yout[3](t-1) ) )
```

```
) <= 0.0004 * (
            (vv[1](t) + vt[1](t)) * (vv[1](t) + vt[1](t)) +
           (vv[2](t) + vt[2](t)) * (vv[2](t) + vt[2](t)) +
           (vv[3](t) + vt[3](t)) * (vv[3](t) + vt[3](t))
   )
)
);
     Regulator
1.4
R7:
Textual:
The Inner Loop Pitch Regulator Shall not command transient changes in angular roll
acceleration greater than 50 deg/sec2/sec
Formalisation:
   forall t in [ 1 , T ]:
mcvdt_cmd_fcs_dps2(t) - mcvdt_cmd_fcs_dps2(t-1) <= 0.5</pre>
);
1.5
     Tustin
R1:
Textual:
When Reset is True and the Initial Condition (ic) is bounded by the provided Top and
Bottom Limits (BL <= ic <= TL),
the Output (yout) shall equal the Initial Condition (ic).
Formalisation:
   forall t in [ 0 , T ]:
( Reset(t) = 1 and Ic(t) \le tl(t) and Ic(t) \ge bl(t) implies yout(t) = Ic(t)) and
( Reset(t) = 1 and Ic(t) \le tl(t) and tl(t) \ge bl(t) implies yout(t) = tl(t) ) and
( Reset(t) = 1 and Ic(t) \le bl(t) and tl(t) \ge bl(t) implies yout(t) = bl(t) ) and
( Reset(t) = 1 and Ic(t) \le bl(t) and tl(t) \le bl(t) implies yout(t) = bl(t))
)
```

R2:

);

Textual:

The Output (yout) shall be bounded by the provided Top and Bottom limits (TL and BL) Formalisation:

```
(
    forall t in [ 0 , T ]:
(
( tl(t) >= bl(t) implies ( bl(t) <= yout(t) and yout(t) <= tl(t) ) ) and
( tl(t) < bl(t) implies ( tl(t) <= yout(t) and yout(t) <= bl(t) ) )
);</pre>
```

R4a:

Textual:

Over a 10 second computational duration at an execution frequency of 10 hz, the Output should equal the sine of time t, sin, where time is defined as a vector from 0 to 10 by increments of 0.1 seconds within a +/- 0.1 tolerance for an input equal to the cosine of time t, cos, with the sample delta time T = 0.1 seconds when in normal mode of operation. Formalisation:

```
(
    forall t in [ 0 , T ]:
    (
        (
        ( tl(t) >= bl(t) and ( yout(t) >= bl(t) and yout(t) <= tl(t) )) or
( bl(t) >= tl(t) and ( yout(t) >= tl(t) and yout(t) <= bl(t) ))
) implies
|yout(T) - 10 | <= 0.1</pre>
```

R4b:

Textual:

Over a 10 second computational duration at an execution frequency of 10 hz, the Output should equal the sine of time t, sin, where time is defined as a vector from 0 to 10 by increments of 0.1 seconds within a +/- 0.1 tolerance for an input equal to the cosine of time t, cos, with the sample delta time T = 0.1 seconds when in normal mode of operation. Formalisation:

```
(
    forall t in [ 0 , T ]:
    (
        ( tl(t) >= bl(t) and yout(t) >= bl(t) and yout(t) <= tl(t) ) or
( bl(t) >= tl(t) and yout(t) >= tl(t) and yout(t) <= bl(t) )
) implies
|yout(t) - sinsig(t) | <= 0.1</pre>
```

));

1.6 NTSS

Textual: Good network connectivity should be maintained even when high traffic flows through different priority classes.

Formalization:

$$\mathcal{R} = \begin{cases} \overline{mos}_n & \text{if } \bigwedge_{i=1..n} \overline{mos}_i < \overline{mosTh}_i, \\ 1 + \overline{mos}_{n-1} & \text{if } \overline{mos}_n \geq \overline{mosTh}_n \land \bigwedge_{i=1..n-1} \overline{mos}_i < \overline{mosTh}_i, \\ 2 + \overline{mos}_{n-2} & \text{if } \bigwedge_{i \in \{n-1,n\}} \overline{mos}_i \geq \overline{mosTh}_i \land \bigwedge_{i \in \{1..n-2\}} \overline{mos}_i < \overline{mosTh}_i, \\ \dots & \dots & \dots \\ n & \text{if } \bigwedge_{i=1..n} \overline{mos}_i \geq \overline{mosTh}_i \end{cases}$$

2 Input Specification for CPS and NTSS

Table 1: Input Specification for CPS and NTSS

Subject: 101109		
Input Name	Type	Range
Xin	Double	[-20,20]
TL	Double	[-10,10]
BL	Double	[-10,10]
IC	Double	[-20,20]

Subject: NLG		
Input Name	Type	Range
$\overline{X_{targ}}$	Double	[-100,100]
X_v	Double	[-100,100]
V_v	Double	[-100,100]
V_{targ}	Double	[-100,100]
r	Double	[0,100]

Subject: REG		
Input Name	Type	Range
beta_adc_deg	Double	[0,5]
vtas_adc_kts	Double	[0,5]
lev_md_fos_dps	Double	[0,5]
hdg_des_deg	Double	[0,5]
mev_emd_fes_dps	Double	[0,5]
alt_des_ft	Double	[0,5]
nev_cmd_fcs_dps	Double	[0,5]
xev_cmd_fcs_fps	Double	[0,5]
airspeed_des_fps	Double	[0,5]
hcv_cmd_fcs_fps	Double	[0,5]
lcv_fcs_dps	Double	[0,5]
mcv_fcs_dps	Double	[0,5]
ncv_fcs_dps	Double	[0,5]
dcv_fcs_fps	Double	[0,5]
zcv_cmd_fcs_fps	Double	[0,5]
betadot	Double	[0,5]

Subject: FSM		
Input Name	Type	Range
standby	Boolean	{0,1}
apfail	Boolean	$\{0,1\}$
supported	Boolean	$\{0,1\}$
limits	Boolean	$\{0,1\}$

Subject: AP1AP3		
Input Name	Type	Range
AP Eng	Boolean	{0,1}
HDG Mode	Boolean	$\{0,1\}$
ALT Mode	Boolean	$\{0,1\}$
HDG Ref	Double	[-180,180]
Turn knob	Double	[0,45]
ALT Ref	Double	[0,1000]
Pitch wheel	Double	[-30,30]
Throttle	Double	[0,1]

Subject: NTSS		
Input Name	Type	Range
Class0	Integer	$[0, \text{thresh}_0]$
Class1	Integer	$[0, \text{thresh}_1]$
Class2	Integer	$[0, \text{thresh}_2]$
Class3	Integer	$[0, \text{thresh}_3]$
Class4	Integer	$[0, \text{thresh}_4]$
Class5	Integer	$[0, \text{thresh}_5]$
Class6	Integer	$[0, \text{thresh}_6]$
Class7	Integer	$[0, \text{thresh}_7]$