

国家级物理实验教学示范中心

National Demonstration Center for Experimental Physics Education (Jilin University)

实验成绩	
教师签字	
批改日期	

实 验 报 告

普通物理实验

实验	题目:	万用表的设计及使用						
学	院:	数学学院						
学	号:	10230524						
姓	名:	黎瀚文						
组	别:							
15.1	间·	2024年 11 日 13 日 昆베二 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						

1 实验内容

- 1. 组装一个 $R_{\rm p}=1200~\Omega$ 的电阻表,对表盘进行标定并测量其电阻
- 2. 用电阻箱作标准电阻对电阻表的表盘进行标定,标定至少九个点
- 3. 用自制的电阻表测量三个电阻的阻值,并与指针万用表和数字万用表测得的结果进 行比较
- 4. 测量电路如图所示,滑线变阻器的滑键调至中心位置,分别取 $R_1=100~\Omega$ 、 $R_2=200~\Omega$, $R_1=R_2=20k~\Omega$ 两组数据,用指针万用表和数字万用表测量 U_{R_1} 、 U_{R_2} 、 U_{AC} 、 U_{CB} 、 U_{AB}
- 5. 测量电路如图,取 $R_1 = R_2 = 150 \Omega$,用指针万用表不同量程和数字万用表电流档分别测量 I_1 、 I_2 、I 的值

2 原始数据

表 1: 标定

I	/mA	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2
I	R_x/Ω	116.6	283.1	484.2	794.3	1174.7	1787.5	2713.2	4742.5

表 2: 比较不同表的测试结果

电阻 R	R_1	R_2	R_3
自制电阻表电流	0.731~mA	0.372~mA	0.329~mA
自制电阻表	425Ω	1984 Ω	2401 Ω
指针万用表	400 Ω	1900 Ω	$2380~\Omega$
数字万用表	$422~\Omega$	1982 Ω	2404 Ω

表 3: 万用表电压档的使用

电阻值 R_1 、 R_2	表	U_{R_1}	U_{R_2}	U_{AC}/V	U_{CB}/V	U_{AB}/V
$R_1 = 100.0 \ \Omega, R_2 = 200.0 \ \Omega$	指针式	0.18 V	0.36~V	0.57	0.85	1.40
$R_1 = 100.0 \text{ st}, R_2 = 200.0 \text{ st}$	数字	$181.0 \ mV$	$355.3 \ mV$	0.536	0.873	1.410
$R_1 = R_2 = 20k \ \Omega$	指针式	0.252~V	0.252~V	0.65	0.749	1.39
$R_1 = R_2 = 20\kappa \ \Omega$	数字	$324.0 \ mV$	$324.0 \ mV$	0.648	0.761	1.410

表 4: 万用表电流档的使用 $(R_1 = R_2 = 150 \Omega)$

表	I_1/mA	I_2/mA	I/mA
指针式 5mA	1.71	4.47	超出量程
指针式 50mA	1.7	4.5	6.2
数字	1.78	4.57	6.34

3 数据处理及分析

3.1 电阻表的设计过程和各参量的值

用数字万用表和指针式万用表测得电源电动势 ϵ 均为 1.414V,同时测得电流表内阻为 $205.2~\Omega$,此时由于组装中值电阻 $R_{+}=1200~\Omega$,故电路图如图所示

$$I_0 = \frac{\epsilon}{R_{\oplus}} = \frac{1.414}{1200} A = 1.18 \ mA$$

$$R_0(I_g - I_0) = R_0 I_0$$

$$R_0 = \frac{R_g I_g}{I_0 - I_g} = \frac{205.2 \times 1}{1.18 - 1} \Omega = 1150.9 \Omega$$

得到 $R_0 = 1150.9 \Omega$ 此时 $R_x = 0 \Omega$,同时

$$R_3 = R_{\oplus} - \frac{R_0 R_g}{R_0 + R_g} = 1200 - \frac{1150.9 \times 205.2}{1150.9 + 205.2} \ \Omega = 1025.9 \ \Omega$$

计算得 $R_0 = R_3 =$ 按照图中图连接电路图,并测得当按指定 $R_x = 0$, $R_3 = 1025.9$ Ω 连接电路时表头指针恰好满偏,故由此判定在一定程度上其表的内阻恰为 1200 Ω

此时若电池电动势变化范围为 $\epsilon \in [1.3 \ V, 1.6 \ V]$

同上计算得到当电动势 $\epsilon=1.3~V$ 时, $R_0=2462.4~\Omega$, $R_3=1010.6~\Omega$; 当电动势 $\epsilon=1.6~V$ 时, $R_0=615.6~\Omega$, $R_3=1046.1~\Omega$

故其变化范围为 $R_0 \in [615.6 \ \Omega, 2462.4 \ \Omega]$, $R_3 \in [1010.6 \ \Omega, 1046.1 \ \Omega]$

3.2 标定曲线

对于上述原始数据中标定数据,使用 MATLAB 进行曲线拟合

拟合曲线 $f(x) = a/x^b + c$ 系数和 95% 置信边界

	值	下限	上限
a	1.1615e+03	998.1996	1.3248e+03
b	1.0101	0.9411	1.0791
c	-1.1692e+03	-1.3714e+03	-966.9999

其中拟合优度为 R 方 = 0.9998, 调整 R 方 = 0.9998, 拟合曲线可视为充分接近

3.3 用电阻箱做标准电阻标定表盘

标定时电流的测量值和理论值存在一定的误差

- 1. 电流计每个刻度之间差距为 0.04*mA*, 若指针在两个刻度线中间,则肉眼难以读出具体数值,造成读数误差
- 2. 将 R_0 和 R_3 接入按理论值接入电路后,电流计恰好满偏,此时将 $R_x = 1200~\Omega$ 接入电路恰好半偏便直接进行后续操作与计算,没有对 R_3 以及 R_0 做微小扰动进行检验,造成微小误差。

3.4 用自制电表测三个电阻并与指针式、数字万用表测量结果进行比较

比较不同表的测试结果

电阻 R	R_1	R_2	R_3
自制电阻表电流	0.731~mA	0.372~mA	$0.329 \ mA$
自制电阻表	$425~\Omega$	1984 Ω	2401 Ω
指针万用表	400 Ω	1900 Ω	2380 Ω
数字万用表	422 Ω	1982 Ω	2404 Ω

- 1. 测量结果中,数字万用表电阻档的测量结果最为精确,测得结果稳定时读数,确保 了读数不随电路稳定状态而发生变化
- 2. 指针式万用表电阻档的测量结果需要估读,故存在一定的读数误差
- 3. 自制电阻表在标定时存在一定的误差,且标定样本数较小,故拟合曲线与真实的 I R 曲线存在一定的误差
- 4. 经过上述分析,三者精确度:自制电阻表 < 指针式万用表 (电阻档) < 数字万用表 (电阻档)

3.5 万用表电压档分析仪表接入误差的影响

万用表电压档的使用

电阻值 R_1 、 R_2	表	U_{R_1}	U_{R_2}	U_{AC}/V	U_{CB}/V	U_{AB}/V
$R_1 = 100.0 \ \Omega, R_2 = 200.0 \ \Omega$	指针式	0.18 V	0.36 V	0.57	0.85	1.40
	数字	$181.0 \ mV$	$355.3 \ mV$	0.536	0.873	1.410
$R_1 = R_2 = 20k \ \Omega$	指针式	0.252~V	0.252~V	0.65	0.749	1.39
$1\iota_1 - 1\iota_2 - 20\kappa \ \iota_1$	数字	$324.0 \ mV$	$324.0 \ mV$	0.648	0.761	1.410

经过网络搜索可知,指针式万用表电压档内阻为 $10k~\Omega$ 数量级,而数字万用表电压档的内阻为 $10M~\Omega$

- 1. 当 $R_1 = 100 \Omega$, $R_2 = 200 \Omega$ 时,其串联构成的电阻远小于两电表的电阻,故电表的分流可以忽略不计,故 $U_{R_1} = \frac{1}{2}U_{R_2}$, $U_{R_1} + U_{R_2} \approx U_{AC}$
- 2. 当 $R_1 = R_2 = 20k$ Ω ,指针式万用表的内阻与电阻 R_1 、 R_2 的差别不大,其分流不能 忽略,当 R_1 、 R_2 与指针式万用表并联时测得 R_1 、 R_2 两端电压明显降低, $U_{R_1} + U_{R_2} < U_{AC}$,数字式电压表内阻仍然远大于 $R_1 + R_2 = 40k$ Ω ,从而 $U_{R_1} + U_{R_2} = U_{AC}$ 。

3.6 分析电流表内阻对测量结果的影响

万用表电流档的使用 $(R_1 = R_2 = 150 \Omega)$

表	I_1/mA	I_2/mA	I/mA
指针式 5mA	1.71	4.47	超出量程
指针式 50mA	1.7	4.5	6.2
数字	1.78	4.57	6.34

查找得指针式万用表电流档量程为 5mA 阻值约为 $25~\Omega$,量程为 5mA 阻值约为 $2.5~\Omega$ 。当电流表接入电路时,此时测 I_1 时,即实际作用为增大了 R_1+R_2 的阻值。实验中滑动变阻器中值电阻远大于 $R_1+R_2=200~\Omega$,则改变接入电路时,整体电阻减小,从而导致电流增大,而测得分路 I_1 减小;而测 I_2 接入电路时相当于增大了中值电阻阻值,从而与上述过程相反,增大了 I_2 的测量值;测量干路电流 I 时,等价于整个电路整体阻值变大,而导致测得电流变小。综上电流表内阻测量结果小于实际值。

4 思考题

4.1 使用指针式万用表测电阻的注意事项;如何正确选择电阻表量程和记录测量结果 的有效数字

注意事项

- 1. 更换档位时重新调零
- 2. 选择适当的量程使测量电阻时,指针尽可能指向表盘的中央位置
- 3. 试验台上其余物体避免与被测量元件有接触,以免引入其余电阻

正确选择电阻表量程

测量时应尽可能使指针指向表盘中央位置,使测量结果更加准确 正确记录测量结果的有效数字

应当读到表盘记录的最小分度值的下一位,若最小分度值以5结尾,则读到同一位

4.2 判断电源电压下降时中值电阻的变化

当电源电压从 1.414~V 下降到 1.3~V 时中值电阻发生了变化。当电动势 ϵ 下降时,表头指针不满偏,此时需要增大 R_0 使电流表分压增加,从而使指针满偏。故中值电阻增大

4.3 不能用电阻表测电源内阻或灵敏电流计内阻的原因

若用电阻表测量电源内阻,则会使电阻表和电源同时产生电动势,从而使内部电源 的测量收到干扰 若使用电阻表测量灵敏电流计内阻,则电阻表调整测量量程选择超出范围时可能容易超出电流计量程,从而烧坏电流计

4.4 判断能否用电阻表检测电容的好坏以及检测方法

可以检测,在电阻表接到电容两端后,若指针右偏后又左偏并最后停留在 ∞ 处则说明电容是好的,否则电容已经损坏

4.5 判断改变 R_3 大小能否补偿电动势下降的变化,以及实际使用过程中采用改变并联 电阻 R_0 补偿电源电动势变化的原因

改变 R_3 大小能补偿电动势下降的变化,因为当电源电动势下降时表头指针不满偏,若此时减小 R_3 阻值,则会使表头分压增大,从而满偏

电阻 R_0 的变化和指针的偏转是同步变化的,同时由于并联表头,故改变其值对中值电阻的影响较小