Application of Reinforcement Learning to Unsupervised Control of Complex Systems

AlphaZero annihilated AlphaGo 100-0.

AlphaGo was trained on games played by humans, whereas AlphaZero just taught itself how to play.

Lecture Materials

• https://github.com/earlaleluya/RL-CrashCourse

Learning Outcomes

By the end of this lecture,

- 1. You can describe the core concepts of reinforcement learning (agent, environment, action, reward, state, and policy).
- 2. You can apply reinforcement learning on a simple environment (i.e. cart pole balancing problem)
- 3. You can adapt reinforcement learning to your research problems by defining states, actions, and rewards.

Outline

- Paradigms of Machine Learning (Supervised, Unsupervised, and Reinforcement Learning)
- Core Concepts (agent, environment, action, reward, state, and policy)
- Cart Pole Balancing Simulation
 - Exploration and Exploitation
 - Q-learning algorithm
 - SARSA algorithm
- Open Forum

Paradigms of Machine Learning

Supervised Learning

"Uses labeled data to make predictions"

Paradigms of Machine Learning

Unsupervised Learning

Hey baby! Can you sort these Lego blocks?

"Finds hidden patterns and structures in unlabeled data"

Paradigms of Machine Learning

Reinforcement Learning

"An agent learns through **trial and error** to make decisions in a dynamic environment to **maximize long-term rewards**."

Core Concept

Core Concept

Cart Pole Balancing Simulation

Discussion Focus:

- 1. More emphasis on how the algorithms (i.e., Q-learning and SARSA) work, rather than on preparing the simulation's environment and codebase.
- 2. More discussion on how each component functions in the RL workflow, rather than on emphasizing the practicality and sophistication; (to appreciate RL from a simple example)

Environment

Required Parameters:

x: cart position in meters

 θ : pole angle in radians

examples\python\environment.py

```
class Environment:
    def draw plot(self, x, theta, pole length=2, episode=0, step=0, epsilon=0):
        self.ax.clear()
        # Ground robot body
        pxg = [x+1, x-1, x-1, x+1, x+1]
        pyg = [0.25, 0.25, 1.25, 1.25, 0.25]
        # Ground Robot wheels
        pxw1, pyw1 = self.plot circle(x-0.5, 0.125, 0.125, 0.125)
        pxw2, pyw2 = self.plot_circle(x+0.5, 0.125, 0.125, 0.125)
        # Pole
        pxp = [x, x + pole_length * np.sin(theta)]
        pyp = [1.25, 1.25 + pole_length * np.cos(theta)]
        # Plot
        self.ax.plot(pxg, pyg, 'k-')
                                           # ground robot body
        self.ax.plot(pxw1, pyw1, 'k')
                                           # circle 1
        self.ax.plot(pxw2, pyw2, 'k')
                                           # circle 2
        self.ax.plot(pxp, pyp, 'r-')
                                           # pole
        # Display x and theta values
       self.ax.set_title(f"Episode {episode}, Step {step}:\nx = {x:.2f}, theta = {theta:.2f}\n epsilon
= {epsilon:.2f}")
        self.ax.axis([-6, 6, 0, 6])
        self.ax.set_aspect('equal', adjustable='box') # keep proportions
        self.fig.canvas.draw()
        plt.pause(0.001)
```

Task 1: Try replacing the value of x and theta env.draw_plot(x=-2, theta=0.52) then, env.draw_plot(x=2, theta=-0.52)

State

x: cart position in meters

 \dot{x} : cart velocity in meters per τ second

 θ : pole angle in radians

 $\dot{\theta}$: pole angular velocity in radians per τ second

State value (integer),
$$|s| = x_{bin} \cdot n_{bins}^3 + \dot{x}_{bin} \cdot n_{bins}^2 + \theta_{bin} \cdot n_{bins} + \theta_{bins}$$

Example, assume $n_{bins} = 4$ and $x_{bounds} = [-5, 5]$

examples\python\state.py

```
class State:
                # cart position in meters
   X = 0
   x dot = 0 # cart velocity
    theta = 0 # pole angle in radians
    theta_dot = 0 # pole angular velocity per 'tau' second
    def __init__(self, n_states, noise=0.01):
        self.n_states = n_states
       self.noise = noise
        self.reset()
        self.bounds = {
            'x': [-5.0, 5.0],
            'x_dot': [-1.0, 1.0],
            'theta': [np.deg2rad(-12), np.deg2rad(12)],
            'theta_dot': [-1.0, 1.0] # 1 rad/tau = 57.3 deg/tau
        self.n bins = int(round(self.n states ** 0.25)) # 4th root of n states
    def compute_state_value(self):
        if self.is_fail():
            return -1
       x_bin = self.discretize(self.x, 'x')
       x dot bin = self.discretize(self.x dot, 'x dot')
        theta_bin = self.discretize(self.theta, 'theta')
        theta_dot_bin = self.discretize(self.theta_dot, 'theta_dot')
        return (x_bin * self.n_bins**3) + (x_dot_bin * self.n_bins**2) + (theta_bin * self.n_bins) +
theta_dot_bin
    def is_fail(self):
        robot_exceeds_left = (self.x < self.bounds['x'][0])</pre>
        robot_exceeds_right = (self.x > self.bounds['x'][1])
        pole_falls_at_left = (self.theta < self.bounds['theta'][0])</pre>
        pole_falls_at_right = (self.theta > self.bounds['theta'][1])
        return (robot_exceeds_left or robot_exceeds_right or pole_falls_at_left or pole_falls_at_right)
```

Task 2: Try replacing the values of any of the state parameters (x, x_dot, theta, theta_dot)

```
Example:
```

Question: What do we represent the state with a singular scalar integer?

Reward

```
class Reward:

def compute_reward(self, state_value): # R_{t+1}
    if state_value > 0: # no fail
        reward = 1.0
    else: # fail
        reward = 0.0
    return reward
```

```
Task 3: Try replacing the state parameter values. Note: 1.0 means no-fail, while 0.0 means fail.

Example:

state.x = 5.1

state.x_dot = 0

state.theta = 0

state.theta_dot = 0

Question: What if we modify the reward system where 0.0 for every time step the pole remains balanced, while -1.0 when the pole falls?
```

Action

What is exploration and exploitation tradeoff?

```
class Action:
    def __init__(self):
        self.actions = ['left', 'right']

def decide(self, epsilon, agent, state):
    if np.random.rand() < epsilon: # implements epsilon-greedy
        self.action = self.explore()
    else:
        self.action = self.exploit(agent, state)
    return self.action

def explore(self):
    return random.choice(self.actions)

def exploit(self, agent, state):
    return self.actions[agent.best_action_idx(state)]</pre>
```

examples\python\action.py

Agent (Q-learning algorithm)

examples\python\q.py class Q: def __init__(self, n states, n actions, alpha, gamma, data path=None, save path=None): self.Q = np.zeros((n states, n actions)) if data path is None else self.load csv(data path) self.alpha = alpha self.gamma = gamma def update(self, state, action, next state, next reward): if next state < 0: # fail</pre> self.Q[state,action] = ((1-self.alpha)*(self.Q[state,action])) + (self.alpha*(next reward+ (self.gamma*0))) else: # no fail self.0[state,action] = ((1-self.alpha)*(self.0[state,action])) + (self.alpha*(next reward+ (self.gamma*np.max(self.Q[next state]))))

$$Q^{new}(s_t, a_t) = \underbrace{(1 - \alpha)Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha[r_{t+1} + \gamma \cdot \max_{a} Q(s_{t+1}, a)]}_{\text{learned value}}$$

Where.

- α is the learning rate γ is the discount rate
- r_{t+1} is the reward $\max_{a} Q(s_{t+1}, a)$ is the maximum expected future reward

Agent (SARSA algorithm)

class SARSA: def update(self, state, action, next_state, next_action, next_reward): if next_state < 0: # fail target = next_reward # No future reward if failed else: # no fail target = next_reward + self.gamma * self.Q[next_state, next_action] self.Q[state, action] = (1 - self.alpha) * self.Q[state, action] + self.alpha * target</pre>

$$Q^{new}(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \cdot Q(s_{t+1}, a_{t+1})]$$
old value learned value

Where,

- α is the learning rate
- r_{t+1} is the reward
- γ is the discount rate

Q-learning algorithm

This is the big picture! To generate an optimal Q table.

	action0	action1		action0	action1
state0	0	0	state0	0.501232	0.766755
state1	0	0	state1	0.510511	0.0502303
state2	0	0	state2	0	0.000648321
state3	0	0	state3	0.513589	0.846939
state4	0	0	state4	0.0930823	0.795683
	0	0		0.311592	0.545304
	0	0		0.648021	0.982138
state255	0	0	state255	0.568814	0.874563
Initial Q table Optimal Q table				Q table	

https://github.com/earlaleluya/RL-CrashCourse

Initially, you choose an action randomly.

Question: At some time t, how will you choose an action?

Left	Right	_
0	0	
0	0	
0	0	At some time <i>t</i>
0	0	
0	0	
0	0	
0	0	
0	0	

state6

state7

Apply force F towards what direction?

 $r_{t+1} = 1.0$, if pole stays balanced $r_{t+1} = 0.0$, if pole falls

How will you impose a reward system?

 $Q^{new}(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \cdot \max_{a} Q(s_{t+1}, a)]$

	Left	Right	
state0	0	0	
state1	0	0	
state2	0	0.846939	
state3	0	0	
state4	0	0	
state5	0	0	
state6	0	0	
state7	0	0	

At some time *t*

Let us go to the next step.

Apply force F towards what direction?

 $r_{t+1} = 1.0$, if pole stays balanced $r_{t+1} = 0.0$, if pole falls

Applying the same reward system...

$$Q^{new}(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \cdot \max_{a} Q(s_{t+1}, a)]$$

Explore new states and algorithms

- We explore different **states** for the cartpole simulation.
 - $S = \{s_{bin}\}$
 - $S = \{x, \dot{x}, \theta, \dot{\theta}\}$
 - $S = I^{H \times W \times C}$
- Baseline RL algorithms
- Where do we go from here? You write your code using the template uploaded in GitHub.

First, the State is:

Represented the four variables $(x, \dot{x}, \theta, \dot{\theta})$ with a single scalar value,

$$S = \{s_{bin}\}$$
 where,
$$s_{bin} = x_{bin} \cdot n_{bins}^3 + \dot{x}_{bin} \cdot n_{bins}^2 + \theta_{bin} \cdot n_{bins} + \theta_{bins}$$

	action0	action1	
state0	0	0	
state1	0	0	
state2	0	0	
state3	0	0	
state4	0	0	
	0	0	
	0	0	
$state_{N-1}$	0	0	

Next, using $S = \{x, \dot{x}, \theta, \dot{\theta}\}$

Instead of a single value, we define state based on the actual parameters.

- Discretized bins: $S = \{s_{bin}\}$
- Continuous state representation: $S = \{x, \dot{x}, \theta, \dot{\theta}\}$

The state space is $S \subset \mathbb{R}^4$, meaning there are infinitely many possible states.

- A Q-table is impossible here because you need infinite rows.
- Instead, we replace it with a function approximator, can be Linear Function or Neural Networks; formally:

$$Q(s,a) \approx f_{\vartheta}(s,a)$$

where f_{ϑ} is parameterized function with weights ϑ .

Lastly, using $S = I^{H \times W \times C}$

- Raw visual input is the only available observation.
- The state space is $S \subset \{0,1,\cdots,255\}^{H\times W\times C}$. Thus, we use function approximator:

$$Q(s,a) \approx f_{\vartheta}(s,a)$$

where f_{ϑ} is parameterized function with weights ϑ .

Deep Q Network

```
Algorithm 1 Deep O-learning with Experience Replay
  Initialize replay memory \mathcal{D} to capacity N
  Initialize action-value function Q with random weights
  for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t=1. T do
            With probability \epsilon select a random action a_t
            otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
            Execute action a_t in emulator and observe reward r_t and image x_{t+1}
            Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
            Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
            Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
           Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
            Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
       end for
  end for
```

Source: Playing Atari with Deep Reinforcement Learning

Source: <u>Human-level control through deep</u> reinforcement learning

Baseline RL Algorithms

• <u>Stable-baseline3</u> is a set of reliable implementations of RL algorithms in DyTorch

Py Forch.						
	Name	Вох	Discrete	MultiDiscrete	MultiBinary	Multi Processing
	ARS ¹	~	✓	×	×	✓
	A2C	~	~	✓	✓	✓
	CrossQ ¹	~	×	×	×	✓
	DDPG	~	×	×	×	✓
	DQN	×	V	×	×	✓
	HER	~	✓	×	×	✓
	PPO	~	✓	✓	✓	✓
	QR-DQN ¹	×	~	×	×	✓
	RecurrentPPO ¹	~	✓	✓	✓	✓
	SAC	~	×	×	×	✓
	TD3	~	×	×	×	✓
	TQC 1	V	×	×	X	✓

TRPO 1

Maskable PPO 1