ITCS 531: Linear Algebra - Linear maps and matrices

Rob Egrot

What is a linear map?

Definition 1

Let V and W be vector spaces over the same field \mathbb{F} . A function $T:V\to W$ is a *linear map* if the following linearity conditions are satisfied:

- 1. T(u+v) = T(u) + T(v) for all $u, v \in V$.
- 2. $T(\lambda v) = \lambda T(v)$ for all $v \in V$ and for all $\lambda \in \mathbb{F}$.
- Think of an equation y = ax defining a straight line through the origin in the Euclidean plane.
- Think of two real numbers x_1 and x_2 . Then, at the point $x_1 + x_2$, the value of y is given by $a(x_1 + x_2) = ax_1 + ax_2$.
- Similarly, if b is another real number then the value of y at the point bx_1 is given by $a(bx_1)$, which is equal to $ba(x_1)$.
- Linear maps 'behave like' straight lines.

Examples of linear maps

Definition 2 $(\mathcal{L}(V, W))$

If V and W are vector spaces over the same field, then we denote the set of all linear maps from V to W by $\mathcal{L}(V,W)$.

Example 3

- 1. A straight line y = ax can be thought of as a linear map from \mathbb{R} (or any other field \mathbb{F}) to itself.
- 2. For any vectors spaces V and W over the same field, define the **zero map** $0: V \to W$ by 0(v) = 0 for all $v \in V$.
- 3. For any vector space V define the **identity map** $I:V\to V$ by I(v)=v for all $v\in V$.
- 4. Remember $\mathbb{R}[x]$ is the vector space of polynomials over \mathbb{R} with the variable x. The map $D: \mathbb{R}(x) \to \mathbb{R}(x)$ defined by taking first derivatives is a linear map.

Linear maps and zero

Lemma 4

If $T: V \to W$ is a linear map, then T(0) = 0.

Proof.

0 = 0 + 0, so, by linearity,

$$T(0) = T(0+0) = T(0) + T(0),$$

and so by subtracting T(0) from both sides we see T(0) = 0 as required.

Defining linear maps

- ▶ Given arbitrary vector spaces V and W (over the same field), how can we define a linear map T between them?
- ▶ Do we have to specify the value T(v) for every vector $v \in V$?
- Fortunately the answer to this is no, at least, it is no so long as we know a basis for *V*.

Proposition 5

Let V be a finite dimensional vector space over \mathbb{F} , and let (v_1,\ldots,v_n) be a basis for V. Let W be another vector space over \mathbb{F} . Then for any $w_1,\ldots,w_n\in W$, there is a unique linear map $T:V\to W$ such that $T(v_i)=w_i$ for all $i\in\{1,\ldots,n\}$.

Defining linear maps - proof

- ▶ By the definition of a basis, given an element $v \in V$ we have $v = a_1v_1 + ... + a_nv_n$ for some $a_1, ..., a_n \in \mathbb{F}$.
- ► Then the requirement that T is linear tells us what value T must take at on v.
- ► I.e.

$$T(v) = a_1 T(v_1) + \ldots + a_n T(v_n) = a_1 w_1 + \ldots + a_n w_n.$$

▶ It's straightforward to show that *T* defined in this way is a linear map (we just have to check the two conditions from definition 1).

More on defining linear maps

▶ Proposition 5 tells us that a linear map from a finite dimensional vector space *V* is completely determined by what it does to the basis vectors of *V*.

- Also, a linear map can take any values on the basis vectors of V.
- ▶ I.e. if $\{v_1, \ldots, v_n\}$ provides a basis for V, then the set of linear maps $\mathcal{L}(V, W)$ is in bijection with the set of functions from $\{v_1, \ldots, v_n\}$ to W.

Composition of linear maps

Definition 6

If $S \in \mathcal{L}(U, V)$, and $T \in \mathcal{L}(V, W)$, then it's easy to check that the composition $TS \in \mathcal{L}(U, W)$, where TS is defined by TS(u) = T(S(u)) for all $u \in U$.

Null spaces

Definition 7

Given $T \in \mathcal{L}(V, W)$, the *null space* of T, denoted $\operatorname{null} T$, is defined by

$$\operatorname{null} T = \{ v \in V : T(v) = 0 \}.$$

Lemma 8

 $\operatorname{null} T$ is a subspace of V.

Proof.

This is exercise 3.3.

Null spaces

Lemma 9

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if $\text{null } T = \{0\}$.

Proof.

- Clearly if T is injective then only 0 can be mapped to 0 by T, so we have the forward implication.
- ► For the converse, suppose *T* is not injective.
- ▶ Then there are $u, v \in V$ with $u \neq v$ and T(u) = T(v).
- ▶ But then by linearity of T we have T(u-v) = T(u) T(v) = 0, and so $u-v \in \text{null } T$.

Range

Definition 10

Given $T \in \mathcal{L}(V, W)$, the range of T is defined by

$$ran T = \{T(v) : v \in V\}.$$

Lemma 11

If $T \in \mathcal{L}(V, W)$ then ran T is a subspace of W.

Proof.

We just need to check the conditions for being a subspace are satisfied:

- 1. Since 0 = T(0) we have $0 \in \operatorname{ran} T$.
- 2. T(u) + T(v) = T(u + v), so ran T is closed under vector addition.
- 3. $\lambda T(v) = T(\lambda v)$, so ran T is closed under scalar multiplication.

The Rank-Nullity theorem

Theorem 12

Let V be finite dimensional, and let $T \in \mathcal{L}(V, W)$. Then $\operatorname{ran} T$ is finite dimensional, and

 $\dim V = \dim \operatorname{ran} T + \dim \operatorname{null} T$.

In other words, the dimension of V is equal to the rank of T plus the nullity of T.

The Rank-Nullity theorem - proof

- ▶ Let $(u_1, ..., u_m)$ be a basis for null T.
- \blacktriangleright Extend (u_1, \ldots, u_m) to a basis $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ for V.
- ▶ We will show $(T(v_1), ..., T(v_n))$ is a basis for ran T.
- First check $(T(v_1), \ldots, T(v_n))$ is linearly independent.
- Suppose $0 = a_1 T(v_1) + \ldots + a_n T(v_n)$. Then $T(a_1 v_1 + \ldots + a_n v_n) = 0$, by the linearity of T.
- But this means $a_1v_1 + \ldots + a_nv_n \in \text{null } T$, and so there are b_1, \ldots, b_m with $a_1v_1 + \ldots + a_nv_n = b_1u_1 + \ldots + b_mu_m$. I.e.

$$a_1v_1 + \ldots + a_nv_n - b_1u_1 - \ldots - b_mu_m = 0,$$

As $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ is a basis for V (and so is linearly independent), the only way this can happen is if

$$a_1 = \ldots = a_n = b_1 = \ldots = b_m = 0.$$

In particular we have $a_1 = \ldots = a_n = 0$, and so $(T(v_1), \ldots, T(v_n))$ is indeed linearly independent.

The Rank-Nullity theorem - proof continued

- ▶ We must show that $(T(v_1), ..., T(v_n))$ spans ran T.
- If $w \in \operatorname{ran} T$ then, by definition of range, there must be $v \in V$ with w = T(v).
- Since $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ is a basis for V, it follows that there must be $a_1, \ldots, a_m, b_1, \ldots, b_n$ with

$$v = a_1u_1 + \ldots + a_mu_m + b_1v_1 + \ldots + b_nv_n.$$

▶ Since $u_i \in \text{null } T$ for all $i \in \{1, ..., m\}$, and so $T(u_i) = 0$, we have

$$w = T(v) = b_1 T(v_1) + \ldots + b_n T(v_n).$$

▶ So $w \in \text{span}(T(v_1), ..., T(v_n))$ as required.

Matrices

An $m \times n$ matrix over a field \mathbb{F} is an array of elements of \mathbb{F} . We can express matrices explicitly, using the following form:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Here the element a_{ij} is the one in the *i*th row and the *j*th column. We sometimes use the shorthand (a_{ij}) to express a matrix of the form above.

Matrix algebra - scalar multiplication

Given an $m \times n$ matrix A over \mathbb{F} , and $\lambda \in \mathbb{F}$, we define the scalar product λA to be

```
\begin{bmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \dots & \lambda a_{2n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{bmatrix}
```

Matrix algebra - matrix addition

Given $m \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$ over the same field \mathbb{F} , we define the sum A + B to be

$$\begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & \dots & a_{2n} + b_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

Matrix algebra - matrix multiplication

- ▶ Let $A = (a_{ij})$ be an $m \times n$ matrix over \mathbb{F} .
- ▶ Let $B = (b_{jk})$ be an $n \times p$ matrix over \mathbb{F} .
- ▶ Define the matrix product AB to be the $m \times p$ matrix (c_{ik}) .
- ▶ Here for each $i \in \{1, ..., m\}$ and $k \in \{1, ..., p\}$, the entry c_{ik} is defined by

$$c_{ik} = \sum_{j=1}^n a_{ij} b_{jk}.$$

▶ I.e. the element c_{ik} is defined using the *i*th row of A, and the kth column of B.

Matrix algebra - matrix multiplication of a vector

In particular, if A is an $m \times n$ matrix, and v is a $n \times 1$ matrix (so v a column vector in \mathbb{F}^n), then the product Av is calculated using:

$$Av = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} b_1 a_{11} + b_2 a_{12} + \dots + b_n a_{1n} \\ b_1 a_{21} + b_2 a_{22} + \dots + b_n a_{2n} \\ \vdots \\ b_1 a_{m1} + b_2 a_{m2} + \dots + b_n a_{mn} \end{bmatrix}$$

Matrices define linear maps

- Matrix multiplication as defined here is quite mysterious. However, as we shall soon see, it is actually extremely natural.
- ▶ Every $m \times n$ matrix over \mathbb{F} defines a linear map $\mathbb{F}^n \to \mathbb{F}^m$.
- ▶ That is, an $m \times n$ matrix over \mathbb{F} takes a vector from \mathbb{F}^n and transforms it into a vector from \mathbb{F}^m .
- Moreover, this transformation is linear (easy to check).
- ► The correspondence between linear maps and matrices actually goes both ways.
- ▶ I.e. every linear map between finite dimensional vector spaces can be represented by a matrix.

- Let $T \in \mathcal{L}(V, W)$, and suppose V and W are both finite dimensional.
- Let (v_1, \ldots, v_n) be a basis for V, and let (w_1, \ldots, w_m) be a basis for W.
- ▶ The map T is defined by what it does to v_1, \ldots, v_n .
- As $(w_1, ..., w_m)$ is a basis for W, each $T(v_j)$ can be written as a linear combination of elements of $\{w_1, ..., w_m\}$.
- From this we can calculate the matrix associated with T with respect to the bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) .

▶ For each $j \in \{1, ..., n\}$, we have

$$T(v_j) = a_{1j}w_1 + \ldots + a_{mj}w_m. \tag{\dagger}$$

Let $A = (a_{ij})$ be the matrix defined using the a_{ij} defined in (\dagger) , with $i \in \{1, ..., m\}$.

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

- Given a column vector that has 1 in it's jth place and 0 everywhere else.
- ▶ What happens when we multiply this vector with *A*?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

• We can interpret the vector below as the element v_j of V.

And the vector below as the element of W defined by $a_{1j}w_1 + \ldots + a_{mj}w_m$. I.e. $T(v_j)$.

$$\begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

Why? Because this is how we defined the a_{ii} values.

- ▶ So this matrix multiplication transforms v_i into $T(v_i)$.
- ▶ This is true for all $j \in \{1, ..., n\}$, so the matrix A corresponds to the action of T on every basis vector v_i .
- Note that

$$A(au+bv)=aAu+bAv=aTu+bTv=T(au+bv)$$
 for all $u,v\in V$ and $a,b\in \mathbb{F}$.

- So A corresponds to the action of T on every element of V.
- ightharpoonup A represents T with respect to the choice of bases for V, W.
- Different bases will produce a different matrix.

- ▶ This tells us why matrix multiplication is defined like it is.
- We can think of the product AB of two matrices as being the list of vectors we get from applying the transformation defined by A to each of the columns of B.
- From this perspective, the *j*th column of *AB* is the result of applying *A* to the *j*th column of *B*.

Composition of linear maps and matrices

A nice property of correspondence between matrices and linear maps is that it also extends to compositions of linear maps.

Proposition 13

Let $S \in \mathcal{L}(U,V)$ and let $T \in \mathcal{L}(V,W)$. Let (u_1,\ldots,u_n) , (v_1,\ldots,v_m) and (w_1,\ldots,w_p) be bases for U,V and W respectively. Suppose that B is the matrix of T with respect to (v_1,\ldots,v_m) and (w_1,\ldots,w_p) , and that A is the matrix of S with respect to (u_1,\ldots,u_n) and (v_1,\ldots,v_m) . Then BA is the matrix of TS with respect to (u_1,\ldots,u_n) and (w_1,\ldots,w_p) .

Proof.

Exercise 3.4.

Thinking about linear maps

- Linear maps are linear transformations of space.
- ▶ I.e., transformations of space that keep straight lines straight.
- ▶ Think of Euclidean space \mathbb{R}^3 .
- ▶ The vectors (1,0,0), (0,1,0) and (0,0,1) define a *unit cube*.
- ▶ If $A = (a_{ij})$ is a 3×3 matrix, then A acting on the vectors (1,0,0), (0,1,0) and (0,0,1) produces three new vectors.
- ▶ These vectors also define a shape in Euclidean space. This shape is the result of transforming the unit cube by the transformation defined by *A*.
- ► The linearity of *A* means it can stretch vectors, and change their directions, but it can't bend them.

Thinking about linear maps

Example 14

Let A be the real valued matrix

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

- ▶ Think of A as a linear transformation of the Euclidean plane.
- \blacktriangleright What does A do to (1,0)?
- ▶ A takes (1,0) to (0,1), and A takes (0,1) to (-1,0).
- ▶ If (1,0) and (0,1) have their usual meanings as vectors in \mathbb{R}^2 , then this corresponds to an anticlockwise rotation by $\frac{\pi}{2}$ radians (90°) .

Determinants

- A determinant is a value calculated from a square matrix.
- We understood the action of a matrix by looking at its effect on a 'unit cube', e.g. in \mathbb{R}^3 .
- The determinant of a matrix corresponds to the 'volume' of the unit cube after being transformed.
- ► This makes intuitive sense in 3 dimensions, and generalizes to other dimensions.
- ► The determinant can be positive or negative, so it gives us more information than just the volume of the transformed unit cube.
- This is known as a signed volume.

Determinants and inverses

Definition 15

A linear map $T \in \mathcal{L}(V, W)$ is *invertible* if there is a map $T^{-1} \in \mathcal{L}(W, V)$ such that the map $T^{-1}T$ is the identity map on V, and the map T^{-1} is the identity map on W.

- ▶ A map $T: V \rightarrow W$ should be invertible so long as no information is 'lost' during the transformation.
- ► A linear map *T* is invertible if and only if the corresponding matrix is invertible.
- Can check whether a matrix is invertible by finding its determinant (invertible iff non-zero).
- Determinant is zero iff volume of transformed unit cube becomes zero iff linear transformation 'loses a dimension'
- ▶ I.e. iff not invertible.