Sum-of-Squares Programming in Julia with JuMP

Benoît Legat*, Chris Coey[†], Robin Deits[†], Joey Huchette[†] and Amelia Perry[†]

* UCLouvain, [†] MIT

Sum-of-Squares Programming

Nonnegative quadratic forms into sum of squares unique

$$(x_1, x_2, x_3)$$

$$p(x) = x^{\top}Qx$$

$$x_1^2 + 2x_1x_2 + 5x_2^2 + 4x_2x_3 + x_3^2 = x^{\top} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 5 & 2 \\ 0 & 2 & 1 \end{bmatrix} x$$

$$p(x) \ge 0 \ \forall x \Longleftrightarrow Q \succeq 0 \quad \begin{bmatrix} \text{cholesky} \end{bmatrix}$$

$$(x_1 + x_2)^2 + \underbrace{\qquad}_{(2x_2 + x_3)^2} \qquad x^{\top} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}^{\top} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} x$$

Nonnegative polynomial into sum of squares

When is nonnegativity equivalent to sum of squares?

Determining whether a polynomial is nonnegative is NP-hard.

Hilbert 1888 Nonnegativity of p(x) of n variables and degree 2d is equivalent to sum of squares in the following three cases:

• 2d = 2: Quadratic polynomials

• n = 2, 2d = 4: Bivariate quartics

Motzkin 1967 First explicit example:

$$x_1^4 x_2^2 + x_1^2 x_2^4 + 1 - 3x_1^2 x_2^2 \ge 0 \quad \forall x$$

but is **not** a sum of squares.

Manipulating Polynomials

Two implementations: TypedPolynomials and DynamicPolynomials.

One common independent interface: MultivariatePolynomials.

@polyvar y # one variable
@polyvar x[1:2] # tuple/vector

Build a vector of monomials:

 $X = monomials(x, 2) # [x1^2, x1*x2, x2^2]$

 $X = monomials(x, 0:2) # [x1^2, x1*x2, x2^2, x1, x2, y]$

Polynomial variables

By hand, with an integer variable **a**:

@variable(model, a, Int)
@variable(model, b)
p = a*x^2 + (a+b)*y^2*x + b*y^3

From a polynomial basis, e.g. the *scaled monomial* basis, with integer coefficients:

Polynomial constraints

Constrain $p(x,y) \ge q(x,y) \ \forall x,y$ such that $x \ge 0, y \ge 0, x+y \ge 1$ using the scaled monomial basis.

S = @set x >= 0 && y >= 0 && x + y >= 1 @constraint(model, p >= q, domain = S, basis = ScaledMonomialBasis)

Interpreted as:

@constraint(model, p - q in SOSCone(), domain
basis = ScaledMonomialBasis)

To use DSOS or SDSOS [1]:

@constraint(model, p - q in DSOSCone())
@constraint(model, p - q in SDSOSCone())

SOS on algebraic domain

The domain S is defined by equalities and inequalities q_i . The equalities form an algebraic variety V. We then search for Sum-of-Squares polynomials s_i such that

 $p(x) - q(x) \equiv s_0(x) + s_1(x)q_1(x) + \cdots \pmod{V}$ Groebner basis of V is computed to do the division.

Dual value

The dual of the constraint is a PSD matrix of moments μ . The **extractatoms** function attempts to find an *atomic* measure with these moments by solving an algebraic system.

Bridging Automatic reformulation of a constraint into an equivalent form supported by the solver. In particular, reformulates SOS constraints into PSD constraints (except Alfonso.jl implementing [2]).

Caching Cache of the problem data in case the solver do not support a modification (can be disabled).

References

- [1] Amir Ali Ahmadi and Anirudha Majumdar. "DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization". In: arXiv preprint arXiv:1706.02586 (2017).
- [2] D. Papp and S. Yıldız. "Sum-of-squares optimization without semidefinite programming". In: ArXiv e-prints (Dec. 2017). arXiv: 1712.01792 [math.OC].