In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\DELL\Downloads\loan1 (1).csv")
df
```

Out[2]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [3]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9

Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Home Owner	10 non-null	object
1	Marital Status	10 non-null	object
2	Annual Income	10 non-null	int64
3	Defaulted Borrower	10 non-null	object

dtypes: int64(1), object(3)
memory usage: 452.0+ bytes

```
In [4]:
```

```
df['Marital Status'].value_counts()
```

Out[4]:

Marital Status Single 4 Married 4 Divorced 2

Name: count, dtype: int64

In [5]:

```
df['Annual Income'].value_counts()
```

Out[5]:

```
Annual Income
125
       1
100
       1
70
       1
       1
120
95
       1
       1
60
220
       1
85
       1
75
       1
90
Name: count, dtype: int64
```

In [6]:

```
convert = {"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
print(df)
```

	Home	Owner	Marital Status	Annual Income	Defaulted	Borrower
0		1	Single	125		No
1		0	Married	100		No
2		0	Single	70		No
3	1 Married		120		No	
4		0 Divorced		95		Yes
5		0 Married		60		No
6		1	Divorced	220		No
7		0	Single	85		Yes
8		0	Married	75		No
9		0	Single	90		Yes

In [7]:

```
convert={"Marital Status":{"Single":1,"Married":2,"Divorced":3}}
df=df.replace(convert)
print(df)
```

	Home Owner	Marital Status	Annual Income	Defaulted	Borrower
0	1	1	125		No
1	0	2	100		No
2	0	1	70		No
3	1	2	120		No
4	0	3	95		Yes
5	0	2	60		No
6	1	3	220		No
7	0	1	85		Yes
8	0	2	75		No
9	0	1	90		Yes

In [8]:

```
convert={"Defaulted Borrower":{"No":0,"Yes":1}}
df=df.replace(convert)
print(df)
```

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	0
1	0	2	100	0
2	0	1	70	0
3	1	2	120	0
4	0	3	95	1
5	0	2	60	0
6	1	3	220	0
7	0	1	85	1
8	0	2	75	0
9	0	1	90	1

In [9]:

```
x=["Home Owner","Marital Status","Annual Income"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["Defaulted Borrower"]
```

In [10]:

```
x_train,x_test,y_train,y_test = train_test_split(all_inputs,all_classes,test_size=0.25)
```

In [11]:

```
clt=DecisionTreeClassifier(random_state=0)
```

```
In [ ]:
clt.fit(x_train,y_train)
Out[12]:
         DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
In [ ]:
score=clt.score(x_test,y_test)
print(score)
Drug Dataset
In [ ]:
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
In [ ]:
df=pd.read_csv(r"C:\Users\DELL\Downloads\drug200.csv")
In [ ]:
df.info()
In [ ]:
df.isnull().sum()
In [35]:
import matplotlib.pyplot as plt
import seaborn as sns
```

In [36]:

df['Age'].value_counts()

Out[36]:

out	36]:
Age	
47	8
23	
28	7 7 7
49	7
39	6
32	6
50	5
37	5
58	5 5 5 4 4
60	5
22	5
34	4
72	4
51	4
42	4
26	4
24	4
74	4
67	4
68	4
61	4
56	4
20	4
36	4
45	4
41	4
31	4
43	4
65	4
57	4
53	3 3
40	
70	3
59	3
16	3
38	3 3 3
15	3
69	3
35	3
18	3
64	3
52	2
55	2
62	2
19	2
29	2
66 72	2
73	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
46 48	2
48 54	ک 1
54 17	1
17 33	1
	1
63 30	1 1
3U	
21	1

Name: count, dtype: int64

25

1

```
In [37]:
s=np.array(df['Age'])
s.sort()
print(s)
[15 15 15 16 16 16 17 18 18 18 19 19 20 20 20 20 21 22 22 22 22 23 23
 23 23 23 23 24 24 24 24 25 26 26 26 26 28 28 28 28 28 28 28 29 29 30
 31 31 31 31 32 32 32 32 32 32 33 34 34 34 35 35 35 36 36 36 36 37 37
 37 37 38 38 38 39 39 39 39 39 39 40 40 40 41 41 41 41 42 42 42 42 43
 43 43 43 45 45 45 45 46 46 47 47 47 47 47 47 47 47 48 48 49 49 49 49 49
 49 49 50 50 50 50 50 51 51 51 51 52 52 53 53 53 54 55 55 56 56 56 56 57
 57 57 57 58 58 58 58 58 59 59 59 60 60 60 60 61 61 61 61 62 62 63 64
 64 64 65 65 65 65 66 66 67 67 67 68 68 68 68 69 69 69 70 70 70 72 72
 72 72 73 73 74 74 74 74]
In [38]:
np.mean(df['Age'])
Out[38]:
44.315
In [39]:
df['BP'].value_counts()
Out[39]:
BP
2
     77
0
     64
1
     59
Name: count, dtype: int64
In [40]:
df['Sex'].value counts()
Out[40]:
Sex
Μ
     104
      96
Name: count, dtype: int64
In [41]:
df['Cholesterol'].value_counts()
Out[41]:
Cholesterol
     103
      97
Name: count, dtype: int64
```

```
In [42]:
```

```
df['Drug'].value_counts()

Out[42]:
Drug
```

591454

1 23

3 16

2 16

Name: count, dtype: int64

In [43]:

```
s=pd.crosstab(df['Drug'],df['Sex'])
print(s)
```

Sex	F	M
Drug		
1	9	14
2	6	10
3	7	9
4	27	27
5	47	11

In [44]:

```
s.plot(kind='bar', stacked=True, color=['green','yellow'],grid=False)
```

Out[44]:

<Axes: xlabel='Drug'>

In [45]:

```
s=pd.crosstab(df['Sex'],df['Cholesterol'])
print(s)
s.plot(kind='bar',stacked=True,color=['red','blue'],grid=False)
plt.xlabel('Sex')
plt.ylabel('Cholestrol')
plt.title('Comparision between Sex and Cholestrol')
```

```
Cholesterol 0 1
Sex
F 47 49
M 50 54
```

Out[45]:

Text(0.5, 1.0, 'Comparision between Sex and Cholestrol')

In [46]:

```
s=pd.crosstab(df['Sex'],df['BP'])
print(s)
s.plot(kind='bar',stacked=True,color=['red','blue','green'],grid=False)
plt.xlabel('Sex')
plt.ylabel('BP')
plt.title('Comparision between Sex and BP')
```

```
BP 0 1 2
Sex
F 28 30 38
M 36 29 39
```

Out[46]:

Text(0.5, 1.0, 'Comparision between Sex and BP')

In [47]:

```
convert={"BP":{"LOW":0,"HIGH":2,"NORMAL":1}}
df=df.replace(convert)
print(df)
```

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	F	2	1	25.355	5
1	47	М	0	1	13.093	3
2	47	М	0	1	10.114	3
3	28	F	1	1	7.798	4
4	61	F	0	1	18.043	5
				• • •		
195	56	F	0	1	11.567	3
196	16	М	0	1	12.006	3
197	52	М	1	1	9.894	4
198	23	М	1	0	14.020	4
199	40	F	0	0	11.349	4

[200 rows x 6 columns]

In [48]:

```
convert={"Cholesterol":{"HIGH":1,"NORMAL":0}}
df=df.replace(convert)
print(df)
```

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	F	2	1	25.355	5
1	47	М	0	1	13.093	3
2	47	М	0	1	10.114	3
3	28	F	1	1	7.798	4
4	61	F	0	1	18.043	5
				• • •		
195	56	F	0	1	11.567	3
196	16	Μ	0	1	12.006	3
197	52	М	1	1	9.894	4
198	23	Μ	1	0	14.020	4
199	40	F	0	0	11.349	4

[200 rows x 6 columns]

```
In [49]:
```

```
convert={"Drug":{"drugY":5,"drugC":3,"drugX":4,"drugA":1,"drugB":2}}
df=df.replace(convert)
print(df)
```

```
Age Sex
               ΒP
                    Cholesterol
                                   Na_to_K Drug
      23
                 2
                                    25.355
0
            F
                                                 5
                                1
1
      47
            Μ
                 0
                                1
                                    13.093
                                                 3
2
      47
            Μ
                 0
                                1
                                    10.114
                                                 3
3
            F
                                     7.798
                                                 4
      28
                 1
                                1
4
      61
            F
                 0
                                1
                                    18.043
                                                 5
                                        . . .
                                    11.567
195
      56
                                1
                                                 3
196
      16
                 0
                                1
                                    12.006
                                                 3
            Μ
197
      52
            Μ
                 1
                                1
                                     9.894
                                                 4
198
      23
            Μ
                 1
                                0
                                    14.020
                                                 4
199
      40
            F
                 0
                                    11.349
                                                 4
```

[200 rows x 6 columns]

In [50]:

```
x=[ 'Cholesterol', 'BP', 'Age']
y=["drugY" , "drugA", "drugB", "drugC"]
all_inputs=df[x]
all_classes=df["Drug"]
```

In [51]:

```
x_train,x_test,y_train,y_test = train_test_split(all_inputs,all_classes, test_size=0.4)
clt = DecisionTreeClassifier (random_state=0)
clt.fit(x_train,y_train)
clt.score(x_test,y_test)
print(score)
```

1.0

In []:

In []: