CH365 Chemical Engineering Thermodynamics

Lesson 25

3rd Law and Entropy from the Microscopic Viewpoint

What is Entropy?

Implications

$$\eta = \frac{|W|}{|Q_H|} = 1 - \frac{T_C}{T_H}$$
(Eq. 5.8)

Third Law of Thermodynamics

The absolute entropy is zero for all perfect crystalline substances at absolute zero temperature.

$$S = S(T) = \int_{0}^{T_{f}} \frac{(C_{P})_{S}}{T} dT + \frac{\Delta H_{f}}{T_{f}} + \int_{T_{f}}^{T_{v}} \frac{(C_{P})_{L}}{T} dT + \frac{\Delta H_{V}}{T_{V}} + \int_{T_{V}}^{T} \frac{(C_{P})_{G}}{T} dT$$
(Eq. 5.40)

This equation allows calculation of absolute entropy.

Statistical Interpretation

- ideal gas
 - molecules do not interact
 - internal energy resides within the individual molecules

ch. 3, p. 79, (Eq. 3.13a) $dU = C_{V}dT$

Recall:

$$dH = C_{\mathbf{P}} dT$$

definition of C_P:

$$C_{P} \equiv \left(\frac{\partial H}{\partial T}\right)_{P}$$

$$\Delta U = C_V \Delta T = 0$$

But if $\Delta U=0$, then T does not change.

$$\Delta S = -R \cdot ln \left(\frac{P_{after}}{P_{before}} \right) = R \cdot ln(2)$$

Result of *classical* thermodynamics

more ordered \rightarrow less random \rightarrow less disordered

- immediately after opening
- molecules are not randomly distributed over the total volume
- crowded into half the space

less ordered → more random → more disordered

Increasing disorder (or decreasing structure) on the molecular level corresponds to increasing entropy.

Expression for disorder postulated by J.W. Gibbs and L. Boltzmann, 1878.

Quantitative Expression of Disorder

more ordered = less random = less disordered

All molecules are in one of the two states.

$$\Omega_{\text{initial}} = \frac{N_A!}{(N_A!)(0!)}$$

$$= \frac{18!}{(18!)(0!)}$$

$$= 1$$

less ordered = more random = more disordered

$$\Omega_{\text{final}} = \frac{N_{\text{A}}!}{\left(\frac{N_{\text{A}}}{2}!\right)\left(\frac{N_{\text{A}}}{2}!\right)}$$
$$= \frac{18!}{9! \cdot 9!}$$
$$= 48,620$$

$$\Omega_1 = \frac{18!}{(17!)(1!)} = 18$$

$$\Omega_2 = \frac{18!}{(16!)(2!)} = 153$$

unbounded as N_A increases

for the 18 particles, $\Omega_{\text{final}} = 48,620$

How about $N_A = 10^{23}$?

;

more ordered = less random = less disordered

- immediately after opening
- molecules are not randomly distributed over the total volume
- crowded into half the space

less ordered = more random = more disordered

Increasing disorder (or decreasing structure) on the molecular level corresponds to increasing entropy.

Questions?

Homework

A nuclear power plant generates 750 MW; the reactor temperature is 315 deg C and a river with water temperature of 20 deg C is available.

- (a) What is the maximum possible thermal efficiency of the plant, and what is the minimum rate at which heat must be discarded to the river?
- (b) If the actual thermal efficincy of the plant is 60% of the maximum, at what rate must heat be discarded to the river, and what is the temperature rise of the river if it has a flow rate of 165 cubic meters per second?

Ethylene vapor is cooled at atmospheric pressure from 830 to 35 deg C by direct heat transfer to the surroundings at 25 deg C. With respect to this surroundings temperature, what is the lost work of the process in kJ/mol?

Show that the same result is obtained as the work which can be derived from reversible heat engines operating with the ethylene vapor as the heat source and the surroundings as the sink.

The heat capacity of ethylene is given in Table C.1 of App. C.

Ethylene vapor is cooled at atmospheric pressure from 830 to 35 deg C by direct heat transfer to the surroundings at 25 deg C. With respect to this surroundings temperature, what is the lost work of the process in kJ/mol?

Ethylene vapor is cooled at atmospheric pressure from 830 to 35 deg C by direct heat transfer to the surroundings at 25 deg C. With respect to this surroundings temperature, what is the lost work of the process in kJ/mol? Show that the same result is obtained as the work which can be derived from reversible heat engines operating with the ethylene vapor as the heat source and the surroundings as the sink. The heat capacity of ethylene is given in Table C.1 of App. C.

A Carnot engine operates between temperature levels of 600 K and 300 K. It drives a Carnot refrigerator, which provides cooling at 250 K and discards heat at 300 K. Determine a numerical value for the ratio of heat extracted by the refrigerator ("cooling load") to the heat delivered to the engine ("heating load").

Problem 5.17 - COP

absorbs $\left Q_{H}^{E}\right $, discards $\left Q_{C}^{E}\right $, and produces $\left W\right $	absorbs $\left Q_{\text{C}}^{\text{R}}\right $, discards $\left Q_{\text{H}}^{\text{R}}\right $, and consumes $\left W\right $
$\left \mathbf{W} \right = \left \mathbf{Q}_{H}^{E} \right - \left \mathbf{Q}_{C}^{E} \right $ (page 175)	$ W = Q_H^R - Q_C^R $ 1st Law
$\eta \equiv \dfrac{\left W\right }{\left Q_H^E\right }$ (Eq. 5.2) definition of efficiency	$\omega \equiv \frac{\left Q_{\text{C}}^{\text{R}} \right }{\left W \right } \qquad \begin{array}{c} \text{(page 179)} \\ \text{definition of coefficient of performance (or COP)} \end{array}$
$\eta = \frac{\left \mathbf{Q}_{H}^{E} \right - \left \mathbf{Q}_{C}^{E} \right }{\left \mathbf{Q}_{H}^{E} \right }$	$\omega = \frac{\left Q_{C}^{R}\right }{\left Q_{H}^{R}\right - \left Q_{C}^{R}\right } \Rightarrow \frac{1}{\omega} = \frac{\left Q_{H}^{R}\right - \left Q_{C}^{R}\right }{\left Q_{C}^{R}\right } = \frac{\left Q_{H}^{R}\right }{\left Q_{C}^{R}\right } - 1$
$\frac{\left Q_{C}^{E}\right }{\left Q_{H}^{E}\right } = \frac{T_{C}^{E}}{T_{H}^{E}}$ (Eqn. 5.4) introduce Kelvin scale and simplify for ideal gases	$\frac{\left Q_{H}^{R}\right }{\left Q_{C}^{R}\right } = \frac{T_{H}^{R}}{T_{C}^{R}}$ (page 179) introduce Kelvin scale and simplify for ideal gases
$\eta = 1 - \frac{T_C^E}{T_H^E}$	$\frac{1}{\omega} = \frac{T_H^R}{T_C^R} - 1 = \frac{T_H^R - T_C^R}{T_C^R} \implies \omega = \frac{T_C^R}{T_H^R - T_C^R}$