ESERCIZI DEL CORSO "CALCULUS I" - FOGLIO 3

INFORMATICA 22/23

Esercizi da fare usando gli strumenti disponibili dopo le prime 6 lezioni: definizioni di iniettività e surgettività, operazioni tra funzioni, funzioni composte, funzioni inverse. Monotonia, funzioni potenza, esponenziale e logaritmo, funzioni trigonometriche.

1. **Esercizio.** Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^2 + 1$.

Sia $g_a : \mathbb{R} \to \mathbb{R}$ la funzione definita da $g_a(x) = x + a$ con $a \in \mathbb{R}$.

- 1) Trovare un valore a in modo che $(f \circ g_a)(3) = 2$.
- 2) Trovare un valore a in modo che $(g_a \circ f)(3) = 2$.

Disegnare i grafici delle funzioni $(f \circ g_a)$ e $(g_a \circ f)$ per i due valori di a trovati.

Sia $h_a : \mathbb{R} \to \mathbb{R}$ la funzione definita da $h_a(x) = ax$ con $a \in \mathbb{R}$.

- 3) Determinare se esiste a in modo che $(f \circ h_a)(1) = 1$.
- 4) Determinare se esiste a in modo che $(f \circ h_a)(2) = 2$.
- 5) Determinare se esiste a in modo che $(h_a \circ f)(1) = 1$.

Disegnare i grafici delle funzioni $(f \circ h_a)$ e $(h_a \circ f)$ per i valori di a trovati.

- 2. **Esercizio.** Sia $g_a : \mathbb{R} \to \mathbb{R}$ la funzione definita da $g_a(x) = x + a$. Sia f la funzione logaritmo definita da $f(x) = \log(x)$ e sia h la funzione esponenziale definita da $h(x) = \exp(x)$.
 - 1) Calcolare il valore di a in modo che $f \circ g_a$ passi per l'origine (0,0) e calcolare l'inversa di $f \circ g_a$.
 - 2) Calcolare il valore di a in modo che $g_a \circ h$ passi per l'origine (0,0) e calcolare l'inversa di $g_a \circ h$.

1

3. **Esercizio.** Consideriamo le funzioni f definite da:

$$f(x) = \exp(x)$$
 $f(x) = \sqrt{x}$

$$f(x) = \log(x)$$

$$f(x) = \frac{1}{x+1}$$

Calcolare il dominio di ciascuna funzione e delle funzioni

$$g(x) = \frac{1}{f(x)}$$
 e $h(x) = f(x)f(x)$.

Fare un grafico qualitativo delle funzioni $g \in h$.

4. **Esercizio.** Sia f la funzione definita da

$$f(x) = \frac{1}{\log(x - a)}$$

Al variare di a, determinare il dominio e fare un grafico qualitativo.

5. **Esercizio.** Sia f la funzione definita da

$$f(x) = \frac{1}{1 + e^{-ax}}$$

Al variare di a, determinare il dominio e fare un grafico qualitativo.

6. Esercizio. Date le funzioni trigonometriche definite da:

$$f(x) = \sin(x)$$
 $f(x) = \cos(x)$ $f(x) = \tan(x)$

Dire qual é il dominio, se sono iniettive e/o surgettive, se sono monotone (crescenti o descrescenti) e disegnare il grafico. Considerare le funzioni

$$g(x) = -x g(x) = 2x g(x) = x + 3$$

e disegnare il grafico delle funzioni composte $f \circ g$ per ogni $f \in g$.

7. **Esercizio.** Al variare di a, siano date le funzioni:

$$f(x) = \sin(x+a)$$
 con $a \in \mathbb{R}$
$$h(x) = \arctan(ax)$$
 con $a \ge 0$
$$g(x) = \cos(ax)$$
 con $a \ge 0$
$$k(x) = (\cos(x))^a$$
 con $a = 1, 2, \dots$

Dire qual é il dominio, iniettività e surgettività, monotonia, al variare dei valori del parametro a.