CS 51 Homework 1

Jessie Li

September 21, 2024

Q1

The circuit should output 1 if and only if three of four inputs are 1. Some screenshots of my circuit demonstrating this behavior are shown below:

Figure 1: Output should be 0 since only two inputs are 1.

Figure 2: Output is 1 when three of the four inputs are 1.

Testing

To test, I followed Logisim Test Vectors¹ to create a test vector test_q1.txt covering all 16 possible input combinations and verified that the circuit outputs 1 when exactly three inputs are 1, 0 otherwise.

$\mathbf{Q2}$

\mathbf{A}

An XOR circuit should output 1 when the two inputs are different (captured by the top half of my circuit) and 0 when they are the same (bottom half of my circuit). My XOR circuit uses 12 transistors in total.

(a)
$$a = 0$$
, $b = 0$ ($c = 0$)

(b)
$$a = 0, b = 1 (c = 1)$$

(c)
$$a = 1, b = 0 (c = 1)$$

(d)
$$a = 1, b = 1 (c = 0)$$

 $^{^{1}}$ www.youtube.com/watch?v=GdDnEPFlXbI

Testing

As in Q1, I loaded a test vector test_q2.txt with the four cases shown above to confirm that the output of my XOR circuit was correct for each pair of inputs.

В

In class, we saw that an alternative approach to automated testing was using a counter to iterate through all possible input combinations. For Q2B, I decided decided to follow Getting started with Logisim - A Basic Counter² and Command-line verification³ and hook my XOR subcircuit to a counter to demonstrate its functionality.

Figure 4: Sample circuit in main using my styled XOR circuit.

²www.youtube.com/watch?v=I0ohV3kFtBw

 $^{^3}$ www.cburch.com/logisim/docs/2.6.0/en/guide/verify/index.html