Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Вычислительные комплексы»

Выполнил студент В. А. Рыженко

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург, 2020 г.

Содержание

1.	Постановка задачи	3
	1.1. Задача 1	3
	1.2. Задача 2	3
2.	Теория	3
	2.1. Определение	3
	2.2. Теорема	
	2.3. Теорема. (признак Бекка)	4
3.	Реализация	4
4.	Результаты	4
	4.1. Задача 1	4
	4.2. Задача 2	5
5.	Приложения	5

1. Постановка задачи

1.1. Задача 1

Имеем 2х2 матрицу А (1)

$$\begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix} \tag{1}$$

Пусть все элементы матрицы a_{ij} имеют теперь радиус ε :

$$rad\mathbf{a}_{ij} = \varepsilon.$$
 (2)

Получаем

$$\begin{pmatrix}
[1 - \varepsilon, 1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon] \\
[1.1 - \varepsilon, 1.1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon]
\end{pmatrix}$$
(3)

Определить, при каком радиусе ε матрица (3) содержит особенные матрицы.

1.2. Задача 2

Имеем ихи матрицу А (1.2) $\begin{pmatrix} 1 & [0,\varepsilon] & \dots & [0,\varepsilon] \\ [0,\varepsilon] & 1 & \dots & [0,\varepsilon] \\ & \dots & \dots \\ [0,\varepsilon] & [0,\varepsilon] & \dots & 1 \end{pmatrix}$ Определить, при каком радиусе ε матрица (1.2) содержит особенные матрицы.

2. Теория

2.1. Определение

Интервальная матрица $\mathbf{A} \in \mathbb{IR}^{nxn}$ называется неособенной, если неособенны все точечные матрицы $A \in \mathbf{A}$. Интервальная матрица называется особенной, если она содержит особенную точечную матрицу.

2.2. Теорема

Теорема. Пусть интервальная матрица $\mathbf{A} \in \mathbb{IR}^{nxn}$ такова, что её середина $mid\mathbf{A}$ неособенна и

$$\max_{1 \le j \le n} (rad\mathbf{A} \cdot |(mid(\mathbf{A})^{-1}|)_{jj} \ge 1$$
(4)

Tогда A — особенная.

2.3. Теорема. (признак Бекка).

Пусть интервальная матрица $\mathbf{A} \in \mathbb{IR}^{nxn}$ такова, что ее середина $mid\mathbf{A}$ неособенна и

$$\rho(rad\mathbf{A} \cdot (mid(\mathbf{A})^{-1}) < 1 \tag{5}$$

Тогда А неособенна.

3. Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки Visual Code. Исходный код лабораторной работы приведён в приложении.

4. Результаты

4.1. Задача 1

Для решения задачи воспользуемся 2.2. Для А имеем

$$mid\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix}$$

$$rad\mathbf{A} = \begin{pmatrix} \varepsilon & \varepsilon \\ \varepsilon & \varepsilon \end{pmatrix}$$

 $det(mid\mathbf{A}) \neq 0$, следовательно матрица удовлетворяет условию теоремы. Получаем следующее:

$$rad\mathbf{A} \cdot (mid(\mathbf{A})^{-1} = \begin{pmatrix} \varepsilon & \varepsilon \\ \varepsilon & \varepsilon \end{pmatrix} \cdot \begin{pmatrix} 10 & 10 \\ 11 & 10 \end{pmatrix} = \begin{pmatrix} 21\varepsilon & 20\varepsilon \\ 21\varepsilon & 20\varepsilon \end{pmatrix}$$

Отсюда получаем, что матрица будет особенной при $\varepsilon \geq \frac{1}{21}$

Проверим с помощью программы определитель, получим следующее:

Enter eps:

0.048

$$\det = (-0.2968, 0.0968)$$

Уточним нижнюю границу, сдвигая ε на $\Delta \varepsilon = -0.001$ ю Получим слудующий результат:

end eps =
$$0.025$$

det = $(-0.2025, 0.0025)$

4.2. Задача 2

Рассмотри решение на примере матрицы 3x3. Применим криетрий Бека2.3 и получим следующий результат:

```
end eps = 1.29
pho = 4.657
det = (-0.6641, 1)
```

Уточним полученное значение аналогично прошлой задаче, получим:

```
end eps = 0.58
det = (-0.0092, 1.3902)
```

5. Приложения

Репозиторий на GitHub с релизацией: github.com.