Claims:

Arkidian.

1. Use of compounds of formula (I):

$$(R^{1})_{n} \xrightarrow{X} (R^{2})_{m}$$

$$(I)$$

$$R^{4} \longrightarrow R^{3}$$

79

5 wherein

- X is sulfur, oxygen, sulfinyl (S=O), sulfonyl (SO₂), NR^a, or CR^bR^c;
- R^a hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, or C₂-C₆-alkynyl, wherein the carbon atoms in these groups may be substituted by 1 to 3 groups R[#]
 - R* halogen, cyano, nitro, hydroxy, mercapto, amino, C₁-C₆-alkylcarbonylamino, carboxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₂-C₆-alkynyloxy, C₁-C₆-haloalkoxy, or C₁-C₆-alkylthio;

phenyl or benzyl, each unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkoxy groups;

 R^b , R^c are each independently hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkinyl, C_1 - C_6 -hydroxyalkyl, wherein the carbon atoms in these groups may be substituted by 1 to 3 groups $R^\#$, or

phenyl, unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy groups, or

CR^bR^c represents C=O or C=CRⁱR^k, wherein Rⁱ and R^k each independently are hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, or C₃-C₆-cycloalkyl;

 R^1,R^2 are each independently halogen, hydroxy, mercapto, amino, cyano, nitro, $C_1\text{-}C_6\text{-}alkyl,\ C_1\text{-}C_6\text{-}alkoxy,\ C_1\text{-}C_6\text{-}alkylamino,\ di(C_1\text{-}C_6\text{-}alkyl)amino,\ C_1\text{-}C_8\text{-}alkylthio,\ C_2\text{-}C_6\text{-}alkenyl,\ C_2\text{-}C_6\text{-}alkenyloxy,\ C_2\text{-}C_6\text{-}alkynylamino,\ C_2\text{-}C_6\text{-}alkynyloxy,\ C_2\text{-}C_6\text{-}alkynylamino,\ C_2\text{-}C_6\text{-}a$

15

10

20

25

30

alkynylthio, C₁-C₆-alkylsulfonyl, C₁-C₆-alkylsulfoxyl, C₂-C₆-alkenylsulfonyl, C₂-C₆-alkynylsulfoxyl, formyl, C₁-C₆-alkylcarbonyl, hydroxycarbonyl, C₁-C₆alkoxycarbonyl, carbonyloxy, C₁-C₆-alkylcarbonyloxy, phenyloxy, C₁-C₆alkylcarbonylamino, C(O)NR^dR^e, or (SO₂)NR^dR^e, wherein the carbon atoms in the aliphatic and aromatic groups may be substituted by 1 to 3 groups R# 5 and wherein R^d and R^e are each independently groups as listed for R^a; or C(=NORf)-G_p-Rf, wherein Rf and Rf are each independently hydrogen or C₁-C₆-alkyl, G is oxygen, sulfur or NR^f and p is 0 or 1; or 10 a mono- or bicyclic 5- to 10-membered aromatic ring system which may contain 1 to 4 heteroatoms selected from oxygen, sulfur and nitrogen and which is unfused or fused to the aromatic group to which it is bonded and which, when unfused, is bonded directly or through an oxygen, sulfur, C1-C₆-alkyl, or C₁-C₆-alkoxy linkage, and which is unsubstituted or substituted 15 with any combination of 1 to 5 groups R#; or C₃-C₁₂-cycloalkyl, which is bonded directly or through an oxygen, sulfur or C₁-C₆-alkyl linkage, and which is unsubstituted or substituted with any com-20 bination of 1 to 5 groups R#; R³,R⁴ are each independently hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆alkylamino, C₁-C₆-alkoxy, C₃-C₆-cycloalkyl, wherein the carbon atoms in these groups may be substituted with any combination of 1 to 3 groups R#, 25 or $C(O)R^g$, $C(O)NR^hR^i$, or $C(S)NR^hR^i$, R^{g} hydrogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, or phenyl or benzyl, each unsubstituted or substituted with any combination of 1 to 5 halogen, 1 to 3 C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-30 alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy groups; Rh,Ri are each independently groups as listed for Ra; 35

40

or R3 and R4 together with the nitrogen atom to which they are attached form a saturated or partially saturated mono- or bicyclic 5- to 10-membered ringsystem containing 1 to 3 heteroatoms selected from nitrogen and oxygen or 5-membered hetaryl containing 1 to 4 nitrogen atoms, wherein the carbon and/or nitrogen atoms in the satu5

10

15

rated, partially saturated or aromatic rings are unsubstituted or substituted with any combination of 1 to 4 groups selected from amino, C₁- C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyloxy, C_2 - C_6 -alkynyloxy, C_1 - C_6 -alkylthio, C_2 - C_6 -alkenylthio, C_2 - C_6 -alkynylthio, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₂-C₆-alkenylamino, C₂-C₆alkynylamino, C₁-C₆-hydroxyalkyl, hydroxycarbonyl-C₁-C₄-alkyl, C₁-C₆-alkoxycarbonyl-C₁-C₄-alkyl, formyl-C₁-C₄-alkyl, formyl-C₁-C₄alkoxy, C₁-C₆-alkylcarbonyl-C₁-C₄-alkoxy, C₃-C₆-cycloalkyl, which is bonded directly or via an oxygen, sulfur or C₁-C₆-alkyl linkage, and C₅-C₈-cycloalkenyl, wherein the carbon atoms in these aliphatic groups can be substituted by 1 to 4 groups selected from halogen, cyano, hydroxy and nitro; or phenyl or benzyl which may be substituted by halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl; or R³ and R⁴ together form the chains -(CH₂)₂N⁺(O⁻)(CH₂)₂- or -

 $(CH_2)_3N^+(O^-)(CH_2)_2-;$

is 0, 1, 2, 3 or 4; m

20 is 0, 1, 2, 3 or 4;

> or the enantiomers or diastereomers, salts or esters thereof for combatting insects, arachnids, or nematodes.

- 25 2. A method for controlling insects, arachnids or nematodes comprising contacting an insect, arachnid or nematode or their food supply, habitat or breeding grounds with a pesticidally effective amount of compounds of formula I as defined in claim 1 or compositions comprising them.
- 30 3. A method for protecting growing plants from attack or infestation by insects, arachnids or nematodes comprising contacting a plant, or soil or water in which the plant is growing, with a pesticidally effective amount of compounds of formula I as defined in claim 1 or compositions comprising them.

35

4. Compounds of formula I-A

$$(R^1)_n$$
 S
 $(R^2)_m$
 $N-(CH_2)_o$
 R^2

wherein

5 R¹,F

R¹,R² are each independently halogen, hydroxy, mercapto, amino, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₈-alkylthio, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, C₂-C₆-alkenylamino, C₂-C₆-alkenylthio, C₂-C₆-alkynyl, C₂-C₆-alkynyloxy, C₂-C₆-alkynylamino, C₂-C₆-alkynylthio, C₁-C₆-alkylsulfonyl, C₂-C₆-alkenylsulfonyl, formyl, or C₁-C₆-alkylcarbonyl, wherein the carbon atoms in the aliphatic and aromatic groups may be substituted by 1 to 3 groups selected from halogen, cyano, nitro, hydroxy, mercapto, amino, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₂-C₆-alkynyloxy, C₁-C₆-alkynyloxy, C₁-C₆-alkylthio;

15

10

R^z is hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-hydroxyalkyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyl-C₁-C₆-alkyl, or C₅-C₈-cycloalkenyl, wherein the carbon atoms in these aliphatic groups can be substituted by 1 to 4 groups selected from halogen, cyano, hydroxy and nitro; and wherein the group [N-R^z] may be present as amine oxide [N⁺(O⁻)-R^z];

20

m is 1, 2, 3, or 4;

n is 1, 2, 3, or 4; and

o is 1 or 2.

25 5.

Compounds of formula I-A according to claim 4 wherein R^1 and R^2 each independently are halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, methoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylthio, C_2 - C_6 -alkenylthio, or C_2 - C_6 -alkynylthio.

5

10

6. Compounds of formula I-B

$$(R^1)_n^{\frac{7}{8}}$$
 $(I-B)$
 $(R^2)_m$
 $(I-B)$

wherein R^z and the indices n, m, and o are as defined for formula I-A in claim 6 and R^1 and R^2 each independently are halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, methoxy, C_1 - C_6 -haloalkoxy, C_1 - C_8 -alkylthio, C_1 - C_6 -haloalkylthio, C_2 - C_6 -alkenylthio, or C_2 - C_6 -alkynylthio, with the proviso that when R^1 is 2-chloro then R^2 is not 8-chloro or 8-methoxy; and when R^1 is 4-chloro then R^2 is not 8-chloro; and when R^1 is 4-methyl then R^2 is not 7-, 8-, or 9-chloro.

7. Compounds of formula I-C

$$(R^{1})_{n}$$
 $(R^{2})_{n}$
 $(R^{2})_{m}$
 $(R^{2})_{m}$

wherein R^a is hydrogen or C₁-C₆-alkyl and the further variables and indices are as defined for formula I-B in claim 8, with the proviso that

15 not both of R¹ or R² are halogen and when R¹ is 2-chloro then R² is not 8-methyl, 8-methylthio, or 8-methoxy; and when R¹ is 2-methoxy, then R² is not 8-chloro; and when R¹ is 2-methyl then R² is not 8-chloro.

20 8. Compounds of formula I-D

$$(R^{1})_{n} \xrightarrow{6} R^{b} R^{c} \xrightarrow{4} \xrightarrow{3} (R^{2})_{m}$$

$$(I-D)$$

$$N = (CH_{2})_{o}$$

$$N = R^{z}$$

wherein R^b and R^c are each independently hydrogen, methyl or CR^bR^c represents C=CH₂, and the further variables and the indices are as defined for formula I-B in claim 8.

5 9. Compositions comprising compounds of formula I-A, I-B, I-C, and/or I-D as defined in claims 4 to 8 or the enantiomers or diastereomers, salts or esters thereof and an agronomically acceptable carrier.