The Ninth Grade Math Competition Class

Exponents

Anthony Wang

1. Find
$$5^{-3}5^{5}5^{1}$$
.

$$5^{-3+5+1}-5^3=125$$

1. $a^{m} \cdot a^{n} = a^{m+n}$ 2. $a^{m} = a^{m-n}$ 3. $a^{n} = \frac{1}{a^{n}}$ 4. $(a^{m})^{n} = a^{m}$

2. Find $\frac{3^43^{-2}}{3^53^{-1}}$.

$$3^{4+(-2)}-5^{-(-1)}=3^{-2}=\frac{1}{9}$$

3. Find
$$4^{x+1}$$
 if 2^x is 9.

$$2^{x} = 9 \qquad \qquad 4^{x+1} = ?$$

$$(2^{x})^{2} = 81 \qquad (2^{2})^{x+1} = 2^{2x+2}$$

$$4^{x} = 81^{4} \qquad (2^{2})^{x} = 2^{2x+2}$$

$$4^{x} = 81^{4} \qquad (2^{2})^{x} = 2^{2x+2}$$

$$2^{x} = 81^{4} \qquad (2^{2})^{x} = 2^{2x+2}$$

4. If $8^x = 27$, what is 4^{2x-3} .

$$8^{\times} = 27$$

$$(2^{3})^{\times} = 27$$

$$(2^{3})^{\frac{1}{2}} = 27$$

$$(2^{3})^{\frac{1}{2}} = 27^{\frac{1}{3}} = (3^{\frac{3}{3}})^{\frac{1}{3}}$$

$$2^{\times} = 3$$

$$(2^{2})^{2\times -3} = 2^{4\times -6}$$

$$2^{4\times } = 81$$

$$2^{4\times -6} = \frac{81}{2^{6}} = \frac{81}{64}$$

$$(-2)^{-2} + -2^{-2}$$

6. Simplify the expression $81^{-2^{-2}}$.

7. Find x if $2^{16^x} = 16^{2^x}$.

and
$$x$$
 if $2^{16^x} = \underline{16}^{2^x}$.

$$2^{16^x} = (2^4)^{2^x}$$

$$2^{16^x} = 2^{16^x}$$

8. Solve for
$$n: \sqrt{1 + \sqrt{2 + \sqrt{n}}} = 2$$
.

$$1+\sqrt{2+\sqrt{n}} = 4$$
 $\sqrt{2+\sqrt{n}} = 3$
 $2+\sqrt{n} = 9$
 $\sqrt{n} = 7$
 $n = 49$

9. Find, with a rational common denominator, the sum

$$4 \int_{125}^{2} + \frac{3}{2} + \frac{3}{2} + \frac{5}{2} - \frac{5}{2}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{2 \int_{6}^{2} + \frac{5}{2} - \frac{5}{2}}{12}$$

$$4 \int_{125}^{2} + \frac{5}{2} - \frac{5}{2}$$

$$1 \int_{125}^{2} + \frac{5}{2} - \frac{5}{2}$$

$$1 \int_{125}^{2} + \frac{5}{2} - \frac{5}{2} - \frac{5}{2}$$

$$2 \int_{125}^{2}$$

10. What is the difference between $\underline{x^2 = 9}$ and $\underline{x} = \sqrt{9}$?

4=3

$$\chi^{2} = 9$$

$$\chi = 3$$

$$\chi = -3$$

11. Suppose that $y = \frac{3}{4}x$ and $x^y = y^x$, the quantity x + y can be expressed as a rational number $\frac{r}{s}$, where r and s are relatively prime positive integers. Find r + s.

$$\begin{pmatrix} 34 \\ 4 \end{pmatrix} = \begin{pmatrix} 34 \\ 4 \end{pmatrix} \begin{pmatrix} 34 \\$$

$$| = (\frac{3}{4})^{4} \times (\frac{3}{4})^{4} = (\frac{3}{4})^{4} \times (\frac{3}{3})^{4} = (\frac{3}{3}$$

12. The formula $N = 8 * 10^8 * x^{-\frac{3}{2}}$ gives, for a certain group, the number of individuals whose income exceeds x dollars. What is the smallest possible value of the lowest income of the wealthiest 800 individuals?

13. Solve for x in the equation $2^{3333} - 2 + 2^{1113} + 2 = 2^{2223} + 1$

$$\frac{1}{4} \cdot \frac{333}{233} + 4 \cdot 2^{||| \times} = 2 \cdot 2^{||| \times}$$

$$\frac{1}{4} (2^{||| \times})^3 + 4 \cdot 2^{||| \times} = 2 \cdot (2^{||| \times})^2$$

$$\frac{1}{4} y^3 + 4 y = 2 y^2$$

$$\frac{1}{4} y^2 + 4 = 2y$$

$$\frac{1}{4} y^2 +$$