苏州大学《线性代数》课程试卷库(第十一卷)共 4 页									
学院_	院专业				成绩				
年级_	年级学号						日期		
题号	_		=	四	五.	六	七	八	九
得分									
一 、选择题: (本题 15 分,每小题 3 分)									
1. 设 $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & -1 & 3 & 2 \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$									
2. 119		:	: : #	加且人			[J	
	$ \lambda_n $	0	0 0						
(A) 0 (B) $\lambda_1 \lambda_2 \cdots \lambda_n$ (C) $(-1)^{\frac{n(n-1)}{2}} \lambda_1 \lambda_2 \cdots \lambda_n$ (D) $-\lambda_1 \lambda_2 \cdots \lambda_n$									
3. 假设 A 是 3 阶方阵, 特征值分别为 0, 1, 2, 则 []									
(A) 矩阵 A 的秩 $r(A) = 3$ (B) 行列式 $ A^T A = 1$									
(C) 行列式 $ A+E =0$ (D) 矩阵 $(A+E)^{-1}$ 的特征值分别为 $1,\frac{1}{2},\frac{1}{3}$									
4. 已知 n 维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m(m>2)$ 线性无关,则 []									

- (B) m>n 。 (C) 对任意n维向量 β ,有 $\alpha_1,\alpha_2,\cdots,\alpha_m,\beta$ 线性相关。
- (D) $\alpha_1, \alpha_2, \cdots, \alpha_m (m > 2)$ 中任意两个向量均为线性无关。
- 5. 设矩阵 $A_{m \times n}$ 的秩r(A) = m < n, B 为 n阶方阵,则 []

(A) 对任意一组数 k_1,k_2,\cdots,k_m 都有 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$ 。

- (A) $A_{m \times n}$ 的任意 m 阶子式均不为零。 (B) 当秩 r(B) = n 时有秩 r(AB) = m。
- (C) $A_{m \times n}$ 的任意m个列向量均线性无关。(D) $\left| A^{T} A \right| \neq 0$

二、**填空题:**(本题 15 分,每小题 3 分)

- 2. 已知A, B为 4 阶方阵,且|A| = -2,|B| = 3,则 $|A^{-1}B^{-1}| = ______$ 。
- 3. 设A,B为可逆矩阵,则 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} =$ ________。
- 4. 当t =_____时,向量组 $\alpha_1 = (0, 4, 2-t), \alpha_2 = (2, 3-t, 1),$ $\alpha_3 = (1-t, 2, 3)$ 线性相关。
- 5. 若 3 阶矩阵 A 的特征值为 $\lambda_1 = 2, \lambda_2 = 3, \lambda_3 = 1$,则 $|A| = _______$ 。

三、(本题 10 分) 已知
$$D = \begin{vmatrix} 1 & 0 & -3 & 7 \\ 0 & 1 & 2 & 1 \\ -3 & 4 & 0 & 3 \\ 1 & -2 & 2 & -1 \end{vmatrix}$$

求: (1) D的代数余子式 A_{12} (2) $A_{11} + A_{21} + 2A_{31} + 2A_{41}$

$$(2) \quad A_{11} + A_{21} + 2A_{31} + 2A_{41}$$

四、(本题 10 分) 已知
$$A = \begin{bmatrix} -4 & -3 & 1 \\ -5 & -3 & 1 \\ 6 & 4 & -1 \end{bmatrix}$$
, 且 $A^2 - AB = E$, 求: B

五、(本题 10 分) 设向量组
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$

- (1) 求它的一个极大无关组和秩,并将其余向量由极大无关组线性表示。
- (2) 求向量组的一个正交向量组。

六、(本題 10 分) 已知 $\alpha_1 = (1, 4, 0, 2)^T$, $\alpha_2 = (2, 7, 1, 3)^T$, $\alpha_3 = (0, 1, -1, a)^T$, $\beta = (3, 10, b, 4)^T$

试讨论 (1) a,b取何值时, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示;

(2) a,b取何值时, β 可以由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,并写出此表达式。

七、(本题 10 分) 已知
$$\xi = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 是矩阵 $A = \begin{bmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{bmatrix}$ 的一个特征向量,利

用此条件 (1) 确定常数 a,b;

(2) 确定特征向量 ξ 对应的特征值 λ

八、(本题 10 分)将二次型 $f = 3y^2 + 4z^2 + 6xy + 2xz$ 化为标准型。

九、(本题 10 分)证明题

设A 是n 阶正交矩阵,且|A| < 0 , 证明: |A+E| = 0