Computer Vision SS 2011

Skript

(Work in Progress)

Simon Hawe & Martin Kleinsteuber

Skript: Manuel Wolf

Inhaltsverzeichnis

1	Einf	führung	1
	1.1	Was ist ein Bild?	1
	1.2	Wie entsteht ein Bild?	1
		1.2.1 Bild durch (dünne) Linse	1
		1.2.2 Einfaches Kameramodell: Die Lochkamera	1
		1.2.3 Perspektive Projektion	2
	1.3	Homogene Koordinaten	2
2	Fea	ture Point Extraction	5
	2.1	Corner and Line Detection	5
		2.1.1 Wiederholung Lineare Algebra	5
		2.1.2 Harris-Edge/Corner-Detector	6
3	Bild	I, Urbild und Co-Bild von Linien und Punkten	9
4	Epi	polargeometrie	11
	4.1	Euklidische Transformationen (Wdh.)	11
	4.2	Epipolargeometrie (Kernstrahl-Geometrie)	11
	4.3	Rechenbeispiele	12
5	8-P	unkt-Algorithmus	15
	5.1	Wiederholung: Mathe	15
	5.2		15
	5.3	Lin. Alg. Review	16
	E 1	Daga Dagayami	10

1 Einführung

1.1 Was ist ein Bild?

Eine Funktion $I:\Omega\subset\mathbb{R}^2\mapsto\mathbb{R}$ heißt monochromatisches Bild. oft: Ω rechteckig (CCD-Sensor, Charge-coupled-device) Bei digitalen Bildern ist sowohl Ω als auch der Wertebereich diskret und endlich, z.B. $\Omega=[1640]\times[1480]\cap\mathbb{Z}^2, I(x,y)\in[0,255]\cap\mathbb{Z}$

Physikalische Interpretation: I(x,y) ist Bestrahlungsstärke (in $\frac{W}{m^2}$).

- Bild als Graph von I
- Digitale Bilder als Matrix
- Darstellung mit Grauwerten \rightarrow ("reales" Bild)

1.2 Wie entsteht ein Bild?

1.2.1 Bild durch (dünne) Linse

- 1. Strahlen durch 0 werden nicht abgelenkt
- 2. Strahlen parallel zur optischen Achse laufen durch den Brennpunkt

$$\frac{Z}{z} = \frac{B}{b} = \frac{f}{z - f}$$

$$\Rightarrow \frac{z}{Z} = \frac{z}{f} - 1$$

$$\Rightarrow \frac{1}{Z} + \frac{1}{z} = \frac{1}{f}$$
(Strahlensatz)
(Gleichung für die dünne Linse)

1.2.2 Einfaches Kameramodell: Die Lochkamera

Annahme: Öffnung $\approx 0 \longrightarrow$ alle Strahlen gehen durch das optische Zentrum, d.h. Bildpunkte sind immer in der Brennebene.

$$p \in \mathbb{R}^3$$
 mit Koordinaten $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ relativ zu $0, p' = \begin{bmatrix} x' \\ y' \\ f \end{bmatrix}$ auf Brennebene. $\frac{y'}{f} = \frac{y}{z} \Rightarrow y' = \frac{f}{z} \cdot y$ Analog: $x' = \frac{f}{z} \cdot x$

1.2.3 Perspektive Projektion

Durch Identifikation der Brennebene mit \mathbb{R}^2 hat das Bild von p die Koordinaten $\begin{bmatrix} x' \\ y' \end{bmatrix} = \frac{f}{z} \begin{bmatrix} x \\ y \end{bmatrix}$

Definition 1.1. Die Abbildung $\Pi: \mathbb{R}^3 \to \mathbb{R}^2$, $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \frac{f}{z} \begin{bmatrix} x \\ y \end{bmatrix}$ heißt *ideale perspektive Projektion*.

Diskussion: Wann ist diese Gleichung gültig?

ightarrow Bei zu kleinem z gehen die Koordinaten der Bildpunkte gegen unendlich; das Modell ergibt keinen Sinn mehr.

1.3 Homogene Koordinaten

Definition 1.2. Sei
$$x=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix}\in\mathbb{R}^n$$
. Dann heißen $\begin{bmatrix}x_1\\\vdots\\x_n\\1\end{bmatrix}\in\mathbb{R}^{n+1}$ die homogenen Koordinaten

von x.

Frage: Was sind die Urbilder von $\begin{bmatrix} x \\ y \end{bmatrix}$ unter der idealen perspektiven Projektion?

$$\Pi^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = \left\{ \lambda \cdot \begin{bmatrix} x \\ y \\ f \end{bmatrix} | \lambda \in \mathbb{R} \right\}$$

Jedem Punkt im \mathbb{R}^n kann eine Gerade (homogene Koordinaten) im \mathbb{R}^{n+1} zugeordnet werden. Umgekehrt klappt es auch, falls nicht für alle Punkte der Geraden gilt $x_{n+1} = 0$.

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} I_n | 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{bmatrix} \text{, } I_n : (n \times n)\text{-Einheitsmatrix}$$

 $=: \Pi_0$ heißt "kanonische Projektion".

Beispiel 1.3. Die perspektive Projektion eines Punktes liefert $\begin{bmatrix} x' \\ y' \end{bmatrix} = \frac{f}{z} \begin{bmatrix} x \\ y \end{bmatrix}$

bzw.:
$$z \cdot \begin{bmatrix} x' \\ y' \end{bmatrix} = f \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$
.

Der Übergang zu homogenen Koordinaten liefert:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{f}{z}x \\ \frac{f}{z}y \\ 1 \end{bmatrix} = \frac{1}{z} \begin{bmatrix} fx \\ fy \\ z \end{bmatrix} = \frac{1}{z} \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{z} \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \Pi_0 \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

1.3 Homogene Koordinaten

Wir erhalten somit das geometrische Modell einer idealen Kamera:

$$z \cdot \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \Pi_0 \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

2 Feature Point Extraction

Idee:

Zwei Bilder von einem Objekt. Finde Korrespondenzen eines markanten Merkmals (Feature) des ersten Bildes im zweiten.

Mögliche Anwendungen: Tiefeninformationen aus Stereokameras (analog zum menschlichen Auge), Bewegung zwischen zwei Bildern, ...

Wie findet man solche Merkmale? → Kanten und Ecken.

2.1 Corner and Line Detection

Idee:

kleiner Bildausschnitt, Verschiebung um u.

Inmitten Fläche: Bild ändert sich nie.

Am Rand: Bild ändert sich, außer Bild wird entlang der Kante verschoben.

An Ecke: Bild ändert sich immer.

Benötigte Mathematik:

• LinAlg:

- Eigenwerte
- Eigenwertzerlegung reeller symmetrischer Matrizen
- Positiv-semidefinite Matrizen
- Calculus
 - Taylor-Approximation 1. Ordnung

2.1.1 Wiederholung Lineare Algebra

Lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}^m A \in \mathbb{R}^{m \times n}, x \mapsto A \cdot x$

$$Ker A = \{x \in \mathbb{R}^n \mid Ax = 0\}$$
$$Bild A = \{Ax \mid x \in \mathbb{R}^n\}$$

2 Feature Point Extraction

Definition 2.1. Transponierte von A: $A^T \in \mathbb{R}^{n \times m}$

Eigenschaften: $(Bild\ A)^{\perp} = Ker\ A^T$

(⊥: orthogonales Komplement)

Betrachte $A \in \mathbb{R}^{n \times n}$.

$$A: \mathbb{R}^n \to \mathbb{R}^n$$

Definition 2.2. Falls $A \cdot x = \lambda \cdot x$ für ein $\lambda \in \mathbb{R}, x \in \mathbb{R}^n \setminus \{0\}$,

dann heißt x Eigenvektor von A zum Eigenwert λ .

Beobachtung: Nicht jede reelle Matrix hat reelle Eigenwerte und -vektoren.

$$(\mathbf{z.B.}\ A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})$$

Definition 2.3. Falls eine Basis des \mathbb{R}^n aus Eigenvektoren besteht, z.B. $[v_1,...,v_n]=:V$:

Definition 2.3. Falls eine Basis des
$$\mathbb{R}^n$$
 aus Eigenvektoren bestent, Z.B. $[v_1, ..., v_n] =: V:$

$$A \cdot [v_1 \dots v_n] = [A \cdot v_1 \dots A \cdot v_n] = [\lambda_1 \cdot v_1 \dots \lambda_n \cdot v_n] = [v_1 \dots v_n] \cdot \underbrace{\begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}}_{=: D}$$

 $\Rightarrow A = V \cdot D \cdot V^{-1}$ heißt Eigenwertzerlegung von A.

Definition 2.4. $A \in \mathbb{R}^{n \times n}, A = A^T$ (symmetrisch)

und $x^T A x \ge 0, \forall x \in \mathbb{R}^n \to A$ heißt positiv semidefinit.

Falls $x^T Ax > 0, x \neq 0 \rightarrow positiv definit$

Beispiel 2.5. $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ ist positiv definit. Zur Überprüfung: Berechne Eigenvektoren.

Satz: Wenn A positiv definit, dann gilt:

 \mathbb{R}^n besitzt Basis aus Eigenvektoren von A.

Alle Eigenwerte von A sind > 0 (semidefinit: > 0).

$$A = A^T$$

Allgemein: $A = A^T$, dann besitzt A eine reelle Eigenwertzerlegung.

Eigenvektoren zu unterschiedlichen Eigenwerten sind orthogonal, d.h. V kann so gewählt wer-

den, dass: $A = V \cdot D \cdot V^{-1}, v_i^T \cdot v_j = 0$

oBdA.
$$||v_i|| = 1$$
, d.h. V ist orthogonale Matrix $(V^TV = I_n)$. $\Rightarrow V^{-1} = V^T$
 $\hookrightarrow A = V \cdot D \cdot V^T$, V orthogonal, $V \in O(n) = \{V \in \mathbb{R}^{n \times n} | V^TV = I_n\}$

2.1.2 Harris-Edge/Corner-Detector

Sei $I:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ ein Bild. Sei $W(x)\subset\Omega$ ein "Fenster" um $x\in\Omega$.

Betrachte:
$$S(u) = \sum_{\tilde{x} \in W(x)} (I(\tilde{x}) - I(\tilde{x} + u))^2$$

$$I(\tilde{x}+u) \overset{Taylor}{\approx} \nabla I(\tilde{x}) \cdot u + I(\tilde{x})$$
 , $\nabla I(\tilde{x})$: Gradient von I bei \tilde{x} .

$$\begin{split} S(u) &\approx \sum_{\tilde{x} \in W(x)} (\underbrace{\nabla I(\tilde{x})}_{\left[\frac{\partial I}{\partial x_1}(\tilde{x}) - \frac{\partial I}{\partial x_2}(\tilde{x})\right]} \cdot \underbrace{u_1}_{\left[u_1\right]}^2 \\ &= \sum_{\tilde{x} \in W(x)} u^T \cdot \nabla I(\tilde{x})^T \cdot \nabla I(\tilde{x}) \cdot u \\ &= u^T \cdot \underbrace{\left(\sum_{\tilde{x} \in W(x)} \nabla I(\tilde{x})^T \cdot \nabla I(\tilde{x})\right)}_{-:G} \cdot u \quad , G(x) \in \mathbb{R}^{2 \times 2} \text{ ist symmetrisch und } pos. \text{ } semidefinit. \end{split}$$

Beobachtung:

homogene Fläche:
$$G(x) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Kante: EW von
$$G(x)$$
 : $\begin{bmatrix} \lambda & 0 \\ 0 & 0 \end{bmatrix}$

$$\begin{split} G(x) &= V \cdot \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \cdot V^T \hookrightarrow S(u) \approx \underbrace{u^T \cdot V}_{=:\tilde{u}} \cdot \begin{bmatrix} \lambda & 0 \\ 0 & 0 \end{bmatrix} \cdot \underbrace{V^T \cdot u}_{=:\tilde{u}^T} \\ &= \tilde{u}_1^2 \cdot \lambda_1 + \tilde{u}_2^2 \cdot \lambda_2 \end{split}$$

Falls $\lambda_1, \lambda_2 = 0$: $S(u) \approx 0$ für alle \tilde{u} , somit für alle u. \longrightarrow Homogene Fläche.

Falls
$$\lambda_1 \neq 0, \lambda_2 = 0$$
: $S(u) \approx 0$ für $\tilde{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot s, s \in \mathbb{R}$, g.d.w. u Eigenvektor von $G(x)$ zum Eigenwert 0 ist.

 \longrightarrow Kante entlang x+u.

Falls
$$\lambda_1 \neq 0, \lambda_2 \neq 0$$
: $S(u) \approx 0$ nur für $u = 0$ \longrightarrow Ecke.

Anmerkung: Es kann hier zusätzlich ein Gewichtungsfaktor $w(\tilde{x})$ verwendet werden.

(sehr naive) Approximierung des Gradienten:
$$f'(x) = h \xrightarrow{lim} 0 \xrightarrow{f(x+h)-f(x)} h \xrightarrow{h=1} \frac{\partial}{\partial x} I(x,y) \approx I(x+1,y) - I(x,y)$$

3 Bild, Urbild und Co-Bild von Linien und Punkten

Definition 3.1. $x, y \in \mathbb{R}^n$ 0 schreibe $x \sim y$ falls $\exists \lambda \in \mathbb{R}$ mit $x = \lambda y$.

$$\text{Gerade im Raum: } L^{(hom)} = \{ \begin{bmatrix} p1\\p2\\p3\\1 \end{bmatrix} + \lambda \cdot \begin{bmatrix} v1\\v2\\v3\\0 \end{bmatrix} | \lambda \in \mathbb{R} \}$$

Für homogene Koordinaten in der BE gilt: $x \sim \Pi_0 \cdot L^{(hom)}$. $\Pi_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Definition 3.2. Das Urbild eines Punktes x in der BE ist die Menge der Punkte im Raum, die über die Projektion auf x abgebildet werden. $preimage(x) = \Pi_0^{-1}(x)$

Feststellung: Urbild eines Punktes / einer Geraden sind Untervektorräume in \mathbb{R}^3 .

Definition 3.3. Das Co-Bild eines Punktes / einer Geraden ist das orthogonale Komplement des Urbildes.

Bild, Urbild und Co-Bild von Punkten / Geraden sind einander eindeutig zuzuordnen, also äquivalente Darstellungen.

Bild = Urbild
$$\cap$$
 BE
Urbild = \langle Bild \rangle = $($ Co-Bild $)^{\perp}$
Co-Bild = Urbild $^{\perp}$

Sei $\langle l \rangle$ das Co-Bild der Geraden L und sei $x \in \Pi(L)$, dann gilt: $x^T \cdot l = 0 = l^T \cdot x$.

Definition 3.4. Sei
$$l \in \mathbb{R}^3$$
, $l = [l_1 l_2 l_3]$, dann $\hat{l} \in \mathbb{R}^{3 \times 3}$, $\hat{l} = \begin{bmatrix} 0 & -l_3 & l_2 \\ l_3 & 0 & -l_1 \\ -l_2 & l_1 & 0 \end{bmatrix}$.

Es gilt: für $a \in \mathbb{R}^3$ $\hat{l} \cdot a = l \times a$

3 Bild, Urbild und Co-Bild von Linien und Punkten

$$Ker \ \hat{l} = \langle l \rangle \\ Bild \ \hat{l} = Bild \ \hat{l}^T = (Ker \ \hat{l})^{\perp} = \langle l \rangle^{\perp}$$

Es gilt:

	Bild	Urbild	Co-Bild
Punkt	$< x > \cap BE$	< x >	$<\hat{x}>$
Linie	$ < \hat{l} > \cap BE$	$<\hat{l}>$	< l >

4 Epipolargeometrie

4.1 Euklidische Transformationen (Wdh.)

Rotationen: werden beschrieben durch Matrizen der speziellen orthogonalen Gruppe $SO(n) = \{X \in \mathbb{R}^{n \times n} | X^T X = I_n, det X = 1\}$

$$\{X \in \mathbb{R}^{n \times m} | X^T X = I_n, det X = 1\}$$
Bemerkung: ist $A = A^T$, so $\exists X \in SO(n)$ mit $X^T A X = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{bmatrix}$

(weil $det[x_1, ..., -x_n] = -det[x_1, ..., x_n]$).

Bemerkung: $X_1, X_2 \in SO(n)$, dann:

- 1. $X_1 \cdot X_2 \in SO(n)$
- 2. (i.a.) $X_1X_2 \neq X_2X_1$
- 3. $X_1^T = X_1^{-1}$
- 4. $X_1^{-1} \in SO(n)$

Definition 4.1. Die Abbildung $g: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto Rx + T$ mit $R \in SO(n), T \in \mathbb{R}^n$ heißt euklidische Transformation.

Bemerkung: $\|g(x) - g(y)\|_2 = \|x - y\|_2$ für alle $x, y \in \mathbb{R}^n$.

Beispiel 4.2.
$$g_1(x)=R_1x+T_1, g_2=R_2x+T_2$$
 $g_2\circ g_1(x)=R_2(R_1x+T_1)+T_2=\underbrace{R_2R_1}_{\tilde{R}}x+\underbrace{R_2T_1+T_2}_{\tilde{T}}$ ist wieder eine euklidische Transformation.

In homogenen Koordinaten lässt sich g beschreiben durch Matrix-Vektor-Multiplikation, nämlich: $g(x^{(hom)}) = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} \cdot x^{(hom)}$

4.2 Epipolargeometrie (Kernstrahl-Geometrie)

Aufnahme eines Objektes aus verschiedenen Perspektiven.

-> Epipolargeometrie beschreibt die Beziehung zwischen den Bildern.

Annahme: Zwei identische kalibrierte Kameras mit relativer Pose (R,T): $g:x\mapsto Rx+T$ Wenn $X_1\in\mathbb{R}^3$ Koordinaten eines Punktes p bezüglich Kameraframe 1, und $X_2\in\mathbb{R}^3$ Koordinaten desselben Punktes bezüglich Kameraframe 2, dann gilt $X_2=R\cdot X_1+T$.

Ziel: Zusammenhang finden zwischen Bild von p in Kamera 1 und Kamera 2.

Seien x_1 , x_2 die Bildpunkte von p in homogenen Koordinaten.

$$\lambda_1 \cdot x_1 = X_1, \lambda_2 \cdot x_2 = X_2, \lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}$$
, also:

$$\lambda_{2} \cdot x_{2} = R \cdot \lambda_{1} \cdot x_{1} + T$$

$$\Rightarrow \lambda_{2} \cdot \hat{T} \cdot x_{2} = \hat{T} \cdot R \cdot \lambda_{1} \cdot x_{1}$$

$$\Rightarrow 0 = \lambda_{1} x_{2}^{T} \hat{T} R x_{1} \stackrel{\lambda_{1} \neq 0}{\Rightarrow} \begin{bmatrix} x_{1}^{T} \hat{T} R x_{1} = 0 \end{bmatrix}$$

$$\times T(\rightarrow \hat{T}), T = \begin{bmatrix} t_{1} \\ t_{2} \\ t_{3} \end{bmatrix}, \hat{T} = \begin{bmatrix} 0 & -t_{3} & t_{2} \\ t_{3} & 0 & -t_{1} \\ -t_{2} & t_{1} & 0 \end{bmatrix}$$

$$\Rightarrow \lambda_{2} \cdot \hat{T} \cdot x_{2} = \hat{T} \cdot R \cdot \lambda_{1} \cdot x_{1}$$

$$\Rightarrow 0 = \lambda_{1} x_{2}^{T} \hat{T} R x_{1} \stackrel{\lambda_{1} \neq 0}{\Rightarrow} \begin{bmatrix} x_{2}^{T} \hat{T} R x_{1} = 0 \end{bmatrix}$$

Definition 4.3. Die Matrix $E:=\hat{T}\cdot R\in\mathbb{R}^{3\times 3}$ heißt *essentielle Matrix*. Die Gleichung $x_2^T\cdot\hat{T}R\cdot x_1=0$ heißt epipolare Bedingung (epipolar constraint).

Definition 4.4. Seien o_1, o_2 Ursprünge der beiden Koordinatensysteme.

- 1. Die Ebene, in der p, o_1, o_2 liegen, heißt *Epipolarebene* von p. (Falls $o_1 = 0$, so ist die Epipolarebene gegeben durch $\langle x1, T \rangle$).
- 2. $\Pi_1(o_2) =: e_1, \Pi_2(o_1) =: e_2$ heißen *Epipole*.
- 3. Der Schnitt der Epipolarebene von p mit der BE_1 (BE_2) ist eine Linie l_1 (l_2). Diese heißt *Epipolarlinie* von p.

Satz: Sei $E=\hat{T}\cdot R$ die essentielle Matrix, die die relative Pose zwischen den Kameras beschreibt.

 x_1 Bildpunkt von p in Kamera 1, x_2 Bildpunkt von p in Kamera 2. d.h. $x_2^T E x_1 = 0$. Dann gilt:

1.
$$e_2^T E = 0, Ee_1 = 0$$
 (d.h. $e_2 \sim T, e_1 \sim R^T T$)

2.
$$l_2 \sim Ex_1, l_1 \sim E^T x_2$$

3.
$$l_i^T \cdot e_i = 0, l_i^T \cdot x_i = 0$$
 für $i = 1, 2$

4.3 Rechenbeispiele

Anmerkung: Verschiedene Koordinatensysteme beachten!

- T ist im Koordinatensystem 2.
- x_1 , e_1 , bzw. x_2 , e_2 sind in ihrem jeweiligen Koordinatensystem (1 bzw. 2).
- $R \cdot x_1$, $R \cdot e_1$ bzw. $R^T \cdot x_2$, $R^T \cdot e_2$ sind die Punkte im jeweils anderen Koordinatensystem (2 bzw. 1).

Abbildung 4.1: Epipolargeometrie

(1) Veranschaulichung der epipolaren Bedingung $\left| x_2^T \cdot \hat{T} \cdot R \cdot x_1 = 0 \right|$

$$\begin{split} x_2^T \cdot \hat{T} \cdot R \cdot x_1 &= 0 \Leftrightarrow x_2 \perp T \times \underbrace{R \cdot x_1}_{\sim \overline{o_1 p} \text{ in KS } 2} \\ \text{Beobachtung: } \dim \left\langle x_2, T, R \cdot x_1 \right\rangle &= 2 \quad \text{,....liegen in einer Ebene". } \checkmark \text{(siehe Bild 4.1)} \end{split}$$

(2) Zeige: a)
$$Ee_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 und b) $e_2^T E = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

$$E = \hat{T} \cdot R$$

a)
$$E \cdot e_1 = \hat{T} \cdot R \cdot e_1 = T \times Re_1 = \vec{0}$$
 (T und Re_1 selbe Richtung, siehe Bild 4.1)

b)
$$(e_2^T E)^T = E^T e_2 = (R^T \hat{T}^T) e_2 = -R^T \hat{T} e_2 = -R^T \cdot (T \times e_2) = -R^T \vec{0} = \vec{0}$$

 $\Rightarrow e_2^T E = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

(3) Zeige: $l_1 \sim E^T x_2$ und $l_2 \sim E x_1$

$$\begin{split} &l_1 = e_1 \times x_1 \text{, also } l_1 \in \langle e_1, x_1 \rangle^{\perp} \\ &\textbf{z.Z.: } E^T x_2 \in \langle e_1, x_1 \rangle^{\perp} \text{, also } 1) \ x_1 \bot E^T x_2 \text{ und } 2) \ e_1 \bot E^T x_2 \\ &1) \ x_1^T E^T x_2 = x_2^T E x_1 \overset{\text{epip. Bed.}}{=} 0 \ \checkmark \\ &2) \ e_1^T E^T x_2 = (Ee_1)^T x_2 \overset{\textbf{(2)a)}}{=} \vec{0}^T x_2 = 0 \ \checkmark \\ &\Rightarrow E^T x_2 \in \langle e_1, x_1 \rangle^{\perp} \Rightarrow E^T x_2 \sim l_1. \end{split}$$

Für $l_2 \sim Ex_1$ analog.

(4) Zeige:
$$l_i^T e_i = 0$$

4 Epipolargeometrie

$$\begin{split} & \text{Für } i = 1 \text{:} \\ & l_1 \sim E^T x_2 \text{ (3)} \Leftrightarrow l_1 = \lambda \cdot \left(E^T x_2 \right) \\ & l_1^T e_1 = \lambda \cdot \left(E^T x_2 \right)^T \cdot e_1 = \lambda x_2^T E e_1 \overset{\text{(2)a)}}{=} \lambda x_2^T \vec{0} = 0. \end{split}$$

Für i=2 analog.

(5) Zeige:
$$l_i^T x_1 = 0$$

Für
$$i=1$$
:
$$l_1^Tx_1=\lambda(E^Tx_2)^Tx_1=\lambda x_2^TEx_1\stackrel{\text{epip. Bed.}}{=}\lambda\cdot 0=0$$

Für i=2 analog.

5 8-Punkt-Algorithmus

Was können wir mit der essentiellen Matrix anfangen?

Drastische Reduktion des Suchraums für korrespondierende Punkte (Linie statt ganzes Bild). Waagerechtes Ausrichten der Epipolarlinien.

5.1 Wiederholung: Mathe

Benötigte Werkzeuge:

- (Matrix-)Normen, konkret: Frobeniusnorm
- Kroneckerprodukt
- Singulärwertzerlegung

5.2 8-Punkt-Algorithmus

Gegeben (x_i, y_i) , i = 1...n korrespondierende Bildpunkte (in homogenen Koordinaten). Aufgabe: Finde E.

Es gilt:
$$y_i^T \cdot E \cdot x_i \quad \forall i = 1...n. (*)$$

Bemerkung: E kann höchstens bis auf skalares Vielfaches bestimmt werden.

$$\begin{aligned} & \text{Umschreibe: } y^T E x = y^T \underbrace{\left[e_1, e_2, e_3\right]}_E x \\ &= y^T \cdot \left[t_1 e_1, t_2 e_2, t_3 e_3\right] \quad (\text{mit } x = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix}) \\ &= \left[y^T \cdot t_1 \cdot e_1, y^T \cdot t_2 \cdot e_2, y^T \cdot t_3 \cdot e_3\right] = \underbrace{\left[y^T \cdot t_1, y^T \cdot t_2, y^T \cdot t_3\right]}_{\in \mathbb{R}^{1 \times 9}} \underbrace{\begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}}_{\in \mathbb{R}^9} \\ &= (x \underbrace{\bigotimes_{\text{Kroneckerprodukt}}}_{\text{Kroneckerprodukt}} y)^T \cdot \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} \end{aligned}$$

5 8-Punkt-Algorithmus

(*) wird also zu:

$$D^T \cdot \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = 0, \quad D = [x_1 \otimes y_1, ..., x_n \otimes y_2] \in \mathbb{R}^{9 \times n}$$

- (1) Wegen Skalierungsinvarianz verlange, dass $||E||_F = \left\| \begin{bmatrix} e_1 \\ e_2 \\ e_2 \end{bmatrix} \right\| = 1.$
- (2) Finde $\eta \in \mathbb{R}^q$ mit Norm $\|\eta\| = 1$ so, dass $\|D^T\eta\|_2$ minimal wird.

Lösung:

 $\min_{\|\eta\|=1} \left\|D^T \eta \right\|_2^2 = \min_{\|\eta\|=1} \eta^T \cdot DD^T \eta \Rightarrow \eta \text{ ist normierter Eigenvektor von } DD^T \text{ zum } \eta$ kleinsten Eigenwert.

nächstes Problem: projeziere die Matrix $H := [\eta_1, \eta_2, \eta_3]$ auf die näheste essentielle Matrix (d.h. auf eine mit Rang = 2 und 2 gleichen Singulärwerten).

Sei
$$H=U\begin{bmatrix}\sigma_1&&&\\&\sigma_2&&\\&&\sigma_3\end{bmatrix}V^T$$
 SVD von H. Erhalte Schätzung für E mittels:

$$E := U \begin{bmatrix} \hat{\sigma} & & \\ & \hat{\sigma} & \\ & & 0 \end{bmatrix} V^T , \hat{\sigma} := \frac{1}{2} (\sigma_1 + \sigma_2)$$

bzw., wegen Skalierungsinvarianz:

$$E := U \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix} V^T$$

5.3 Lin. Alg. Review

Sei $A \in \mathbb{R}^{n \times k}$, $(k \le n)$

Dann existiert $U \in O(n), V \in O(k)$ (orthogonale Matrizen) und $\sigma_1 \ge ... \ge \sigma_n \ge 0$ mit

$$A = U \cdot \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_k & \end{bmatrix} V^T$$
 (Singulärwertzerlegung SVD)

$$\text{Bemerkung: } V^T(A^TA)V = \begin{bmatrix} \sigma_1^2 & & & & \\ & \ddots & & \\ 0 & & \sigma_n^2 \end{bmatrix}, U^T(AA^T)U = \begin{bmatrix} \sigma_1^2 & & & & & \\ & \ddots & & & \\ & & \sigma_n^2 & & \\ & & & 0 & \\ & & & \ddots & \\ 0 & & & & 0 \end{bmatrix}$$

^{*} i.a. nur numerische Approximation bestimmbar.

* U, V nicht eindeutig, aber
$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_k \end{bmatrix}$$
 schon!

Satz: $E \in \mathbb{R}^{3 \times 3} \setminus \{0\}$ ist essentielle Matrix genau dann, wenn

$$E = U \cdot \begin{bmatrix} \sigma \\ \sigma \\ 0 \end{bmatrix} \cdot V^T, \text{ mit } U, V \in SO(3).$$
 (Beweis: Ma [1], Theorem 5.5)

Beispiel: SVD von
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} =: A$$

$$A = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mp 1 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}}_{V^{T}}$$

Achtung: Entweder U oder $V \notin SO(3)$ (det = -1).

Aber: $U, V \in SO(3)$ immer konstruierbar, z.B. für $U \notin SO(3)$:

$$E = U \cdot \begin{bmatrix} \sigma \\ \sigma \\ 0 \end{bmatrix} \cdot V^T = U \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \sigma \\ \sigma \\ 0 \end{bmatrix} V^T. \text{ (analog für V)}$$

d.h. wir können annehmen, dass $U, V \in SO(3)$.

* $\mathbb{R}^{n \times k}$ ist reeller Vektorraum mit Skalarprodukt.

$$\mathbb{R}^{n \times k} \times \mathbb{R}^{n \times k} \longmapsto \mathbb{R}, (A, B) \mapsto tr(A \times B^{T})$$

*
$$tr(A\times B^T)=tr(B^T\times A)=tr(B\times A^T)=tr(A^T\times B)$$
 dadurch ist Norm erklärt: $\|A\|_F=[tr(A^TA)]^{1/2}$ (Frobenius-Norm)

$$\begin{split} * & \left\| UAV^T \right\|_F = \left\| A \right\|_F \text{ für } U \in O(n), V \in O(n) \\ \Rightarrow & \left\| A \right\|_F = (\Sigma |\sigma_i^2)^{1/2}, \sigma_i \text{ Singulärwerte von A}. \end{split}$$

Satz: Sei
$$A \in \mathbb{R}^{n \times k}$$
 mit SVD $A = U \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T, \Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_k \end{bmatrix}$

Sei
$$M^{(l)} = \{X \in \mathbb{R}^{n \times k} | rk(X) \le l\}$$

Dann gilt:

1)
$$A^{trunc} \in M^{(l)}$$

2) Für alle
$$X \in M^{(l)}$$
 gilt: $\|A - X\|_F \ge \|A - A^{trunc}\|_F$

5.4 Pose Recovery

Wir haben E, wie bekommen wir nun R, \hat{T} ?

$$\begin{split} & \text{Sei } E = U \cdot \underbrace{\begin{bmatrix} \sigma & \\ & \sigma & \\ & 0 \end{bmatrix}}_{\Sigma} \cdot V^T, \quad U, V \in SO(3). \\ & \text{Sei } \hat{T}_1 = U \cdot \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \Sigma \cdot U^T, \, R_1 = U \cdot \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot V^T \\ & \text{und } \hat{T}_2 = U \cdot \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \Sigma \cdot U^T, \, R_2 = U \cdot \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot V^T \end{split}$$

Es gibt genau zwei euklidische Transformationen die zu E gehören, nämlich: $(\hat{T}_1, R_1), (\hat{T}_2, R_2).$ (Beweis in Ma [1])

Bemerkung: Erhält man also E über 8-Punkt-Algorithmus, ist \hat{T} bis auf Skalierung bestimmt. Festlegen von $\left\|\hat{T}\right\|_{F}=1$ $\hat{=}$ Festlegen der Längeneinheit.

Gegeben (durch 8-Punkt-Algo) also
$$\pm E$$
.
$$E = U \Sigma V^T$$
 SVD von $-E = U(-\Sigma)V^T = \underbrace{U \begin{bmatrix} -1 \\ -1 \\ \end{bmatrix}}_{\tilde{U}} \Sigma V^T$

$$\hat{T}_3 := \tilde{U} \cdot \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \Sigma \cdot \tilde{U}^T = \hat{T}_1$$

$$R_3 = \tilde{U} \cdot \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \Sigma \cdot V^T = R_2$$

$$\hat{T}_4 = \hat{T}_2, R_4 = R_1$$

also 4 euklidische Bewegungen:

$$(\hat{T}_1, R_1), (\hat{T}_2, R_2)$$
 $(\hat{=}E)$
 $(\hat{T}_1, R_2), (\hat{T}_2, R_1)$ $(\hat{=} - E)$

5.4 Pose Recovery

Nur ein Paar erfüllt die Gleichung $\lambda_2 y=\lambda_1 Rx+T$ mit $\lambda_1,\lambda_2>0$. \to Ausprobieren.

Literaturverzeichnis

[1] Yi Ma, Stefano Soatto, Jana Kosecka, and S. Shankar Sastry. *An Invitation to 3-D Vision: From Images to Geometric Models*. Springer Verlag.