FR 2 696 744 - A1

19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) N° de publication :

(à n'utiliser que pour les commandes de reproduction)

21 N° d'enregistrement national :

92 12163

2 696 744

(51) Int Ci⁵: C 07 D 401/06, 207/26, A 61 K 31/445, 31/495(C 07 D 401/06, 207:26, 211:32)

(12)

DEMANDE DE BREVET D'INVENTION

A1

- (22) Date de dépôt : 12.10.92.
- (30) Priorité :

- (71) Demandeur(s) : Société dite: LABORATOIRES JACQUES LOGEAIS — FR.
- 43 Date de la mise à disposition du public de la demande : 15.04.94 Bulletin 94/15.
- 56 Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.
- Références à d'autres documents nationaux apparentés :
- Philippe, Pairet Michel, Renaud Alain et Vo Van Tri.

Inventeur(s): Benharkate Marguerite, Lefèvre

- (73) Titulaire(s) :
- 74 Mandataire : Cabinet Lavoix.
- 54 Dérivés de 2-pyrrolidone, leur procédé de préparation et leurs applications en thérapeutique.
- (57) L'invention a pour objet de nouveaux dérivés de 2pyrrolidone de formule générale I:

où A représente un atome d'azote ou un groupe

CH-, et

Q un groupe diphénylméthylène lorsque A est un atome d'azote, diphénylcarbinol ou phénylcarbonyle lorsque A est un groupe

CH-

Ces composés sont utiles en thérapeutique en tant qu'antagonistes $\mathsf{5HT}_2$.

L'invention concerne de nouveaux dérivés de 2-pyrrolidone et leurs applications en thérapeutique dans les disfonctionnements liés aux récepteurs de la sérotonine de type 5HT₂.

5

10

15

20

25

30

Les récepteurs 5 HT₂ sont largement répandus dans le corps humain, aussi bien dans le système nerveux central, qu'en périphérie. Il a été montré en particulier que la stimulation des récepteurs 5HT₂ provoquait au niveau central un effet anxiogène, au niveau du système vasculaire une contraction des muscles lisses, l'agrégation plaquettaire et favorisait la formation d'oedème par augmentation de la perméabilité capillaire.

Par ces mêmes récepteurs, la sérotonine induit également une contraction des muscles lisses du système respiratoire, gastrointestinal et urogénital.

Un antagoniste 5HT₂ est donc potentiellement capable de s'opposer à ces différents phénomènes, et de posséder par conséquent des activités antihypertensives, antimigraineuses, antiagrégantes plaquettaires, antiischémiques en favorisant la circulation collatérale, antiallergiques en diminuant la perméabilité capillaire, antiasthmatiques en réduisant le spasme bronchique et également spasmolytiques au niveau gastrointestinal ou urogénital.

De nombreux composés sont connus pour antagoniser les effets de la sérotonine sur les récepteurs $5\mathrm{HT}_2$:

- des dérivés de tétrahydrothiéno [3,2-d]pyrimidine-2,4-dione (US-A-4 835 157) tels que :

- des dérivés de quinazolinedione (EP-A-13 612) tels que la kétansérine :

- des dérivés de diphénylcarbinol pipéridine (EP-A-301
 936) tels que des composés de formule :

20

25

dans laquelle R_a est un atome d'hydrogène ou un groupe méthyle et R_b est un groupe 2-pyrimidinyle.

Par ailleurs, dans WO-A-8805435, on a décrit des dérivés de 4-diphénylmáthyl pipérazine de formule :

dans laquelle R est un groupe hétérocyclique, comme possédant des propriétés antiallergiques. Aucune 35 activité 5HT₂ n'a été mentionnée. Enfin, le brevet européen EP-A-136 658 décrit des composés de formule générale :

5

$$0 \xrightarrow{R_1} R_2$$

10

15

dans laquelle R_1 est un atome d'hydrogène ou un groupe alkyle, R_2 est un noyau phényle ou pyridyle et NR_3R_4 peut former un cycle pipérazine éventuellement substitué en 4- par un méthyle, comme ayant une activité nootrope et antihypoxique.

La présente invention vise à fournir de nouveaux composés antagonistes des récepteurs à la sérotonine $5\mathrm{HT}_2$.

La présente invention a ainsi pour objet des composés de formule I

25

20

$$0 \longrightarrow N \longrightarrow A-Q$$
(I)

dans laquelle :

- A est un atome d'azote >N-, et alors Q représente un groupe diphénylméthylène Z_1 R_1

30

dans lequel R_1 et R_2 sont choisis indépendamment l'un de l'autre parmi un atome d'hydrogène et un atome d'halogène,

- ou bien A est un groupe \supset CH-, et alors Q représente, soit un groupe phénylcarbonyle Z_2 , soit un groupe diphénylcarbinol Z_3

 \mathbf{z}_2

dans lequel R_3 est choisi parmi un atome d'hydrogène, un atome d'halogène et un groupe alkoxy en C_1 - C_3 .

 z_3

5

10

25

30

35

20 dans lequel R_1 et R_2 ont la même signification que précédemment,

et leurs sels avec des acides pharmaceutiquement acceptables.

Les "sels d'addition avec des acides pharmaceutiquement acceptables" désignent les sels qui donnent les propriétés biologiques des bases libres, sans avoir d'effet indésirable. Ces sels peuvent être notamment ceux formés avec des acides minéraux, tels que l'acide chlorhydrique, l'acide bromhydrique, l'acide sulfurique, l'acide nitrique, l'acide phosphorique; des sels métalliques acides, tels que l'orthophosphate disodique et le sulfate monopotassique, et des acides organiques, tels que l'acide formique, l'acide acétique, l'acide propionique, l'acide glycolique, l'acide oxalique, l'acide fumarique, l'acide maléique, l'acide citrique, l'acide fumarique, l'acide maléique, l'acide citrique, l'acide

malonique, l'acide méthane sulfonique, l'acide lactique, l'acide succinique, l'acide tartrique.

La présente invention englobe les stéréoisomères contenus dans la formule générale I.

5

10

15

20

25

Les composés préféréés sont les composés de formule I dans laquelle A représente un groupe CH- et Q un groupe Z_2 , R_3 étant un atome d'halogène, de préférence un atome de fluor.

Les composés de formule générale I peuvent être obtenus par condensation entre une pipérazine ou une pipéridine de formule II et un dérivé de pyrrolidone de formule III, selon le schéma

où A-Q ont la même signification que précédemment, et où Liv représente un groupe partant tels que trifluorométhanesulfonate, halogène ou de préférence un groupe tosylate.

La réaction peut être effectuée dans un solvant tel que l'éthanol chauffé au reflux en présence d'une base telle que l'éthylate de sodium et la triéthylamine.

Les dérivés activés III peuvent être préparés à partir de l'alcool correspondant IV

par action par exemple du chlorure de tosyle dans la pyridine.

L'alcool IV peut être obtenu par réduction de

5 l'ester V

10

15

20

25

par l'action du borohydrure de sodium dans le méthanol ou l'éthanol à température ambiante.

L'ester de formule V peut être obtenu par action de la néopentylamine sur l'itaconate de diméthyle.

Les énantiomères peuvent être obtenus à partir de l'acide 1-(2,2-diméthylpropyl)-pyrrolidine-2-one-4-carboxylique (VI) par dédoublement, en effectuant des cristallisations sélectives des sels diastéréoisomères obtenus avec une base optiquement active, telle que la quinine. L'acide VI optiquement pur est alors converti en ester V et est traité comme dans la suite des réactions déjà décrites pour fournir les composés de formule générale I optiquement purs. L'acide VI peut également être réduit directement en alcool IV par un réducteur tel que I₂-NaBH₄.

Les exemples suivants illustrent la prépara-30 tion des composés de formule I :

EXEMPLE 1

Préparation de la 1-(2,2-diméthylpropyl)-4-(4-diphénylméthyl pipérazinométhyl)-2-pyrrolidone.

La 1-(2,2-diméthylpropyl)-4-(tosyloxyméthyl) 2-pyrrolidone (20,9 g; 0,0615 mole) et la N-diphénylméthyl pipérazine (15,5 g; 0,0615 mole) sont dissoutes dans 120 ml d'éthanol et 15 ml de triéthylamine. La solution est chauffée au reflux sous agitation pendant 24 heures. Le milieu est évaporé à sec, repris par du dichlorométhane, lavé à l'eau. Après séchage sur Na_2SO_4 et évaporation de la phase organique, le résidu est recristallisé dans l'isopropanol pour donner 14,2 g (57 %) du produit attendu. $F = 144^{\circ}$ C.

EXEMPLE 2

Préparation du fumarate de 1-(2,2-diméthyl-propyl)-4-(4-diphénylméthylpipérazinométhyl)-2-pyrrolidone.

Le produit précédent (2,1 g; 0,005 mole) est dissous dans 70 ml d'éthanol. L'acide fumarique (0,58 g; 0,005 mole) est ajouté en solution dans 25 ml d'éthanol. La solution est concentrée sous vide et le résidu trituré dans l'éther. Les cristaux obtenus sont collectés par filtration : on obtient 2,3 g. F = 187° C (dec.).

EXEMPLE 3

Préparation de la 1-(2,2-diméthylpropyl)-4-25 (4-diphénylméthyl pipérazinométhyl)-2-pyrrolidone lévogyre.

Le produit est obtenu selon la méthode décrite dans l'exemple 1 à partir de diphénylméthyl pipérazine (1,5 g; 5,9 mmoles) et de la (2,2-diméthylpropyl)-4-tosyloxyméthyl pyrrolidine-2-one lévogyre (2g; 5,9 mmoles). Le produit est recristallisé dans l'acétone puis l'éther isopropylique. F: 143-145° C.

 $\left[\alpha\right]_D^{24}$: - 14,4° (c=2, éthanol).

30

5

10

15

EXEMPLE 4

Préparation de la 1-(2,2-diméthylpropyl)-4-[4-(4-fluorobenzoyl) pipéridinométhyl]-2-pyrrolidone.

Le paratoluènesulfonate de 4-(4-fluoroben-zoyl) pipéridine (11,5 g; 28,8 mmoles) est ajouté à une solution d'éthanolate de sodium préparée à partir de 0,67 g de sodium et 200 ml d'éthanol. A ce mélange sont ajoutées la 1-(2,2-diméthylpropyl)-4-tosyloxyméthyl 2-pyrrolidone (10 g; 29,4 mmoles) et la triéthylamine (20 ml).

Après 24 heures de chauffage au reflux du solvant, le milieu est évaporé à sec et repris par du dichlorométhane. L'insoluble est filtré et la phase organique lavée avec une solution aqueuse saturée en chlorure de sodium. Après séchage sur Na₂SO₄ le solvant est chassé sous vide. Le résidu est purifié sur une colonne de silice en éluant par l'acétone. Le produit est ensuite recristallisé dans l'éther isopropylique. On obtient 5,6 g (52 %). F: 114-115,5° C.

20

5

10

15

EXEMPLE 5

Préparation de la 1-(2,2-diméthylpropyl)-4-(4-fluorobenzoyl pipéridinométhyl)-2-pyrrolidone lévogy-re.

Le paratoluènesulfonate de 4-(4-fluorobenzoyl) pipéridine (1,82 g; 4,8 mmoles) est traité par la
triéthylamine (3 ml) dans l'éthanol (35 ml). Au mélange
est ajoutée le 1-(2,2-diméthylpropyl)-4-tosyloxyméthyl
2-pyrrolidone lévogyre (1,36 g; 4 mmoles). Le milieu

réactionnel est chauffé au reflux pendant 24 heures.
Après évaporation du solvant, le résidu est repris par
le dichlorométhane. La phase organique est lavée par une
solution de soude 1M, séchée sur Na₂SO₄ et évaporée. Le
résidu est purifié sur une colonne de silice en éluant
par l'acétone. Le produit est recristallisé dans l'éther

isopropylique:on obtient 0,62 g, 41 %. F = 91,5-92,5° C. $[\alpha]_D^{23} = -24,9° \text{ (c=2, CHCl}_3)$

EXEMPLE 6

Préparation de la 1-(2,2-diméthylpropyl)-4-[4-(diphénylhydroxyméthyl) pipéridinométhyl]-2-pyrrolidone.

Le produit est préparé selon les conditions décrites à l'exemple 4 à partir du chlorhydrate de 4-(diphénylhydroxyméthyl) pipéridine (22,38 g; 73,6 mmoles) et de la 1-(2,2-diméthylpropyl)-4-tosyloxyméthyl-2-pyrrolidone (25 g; 73,6 mmoles). Le produit est purifié sur colonne de silice en éluant à l'acétone et recristallisé dans un mélange éther isopropylique-éthanol 6:1. F = 154-156° C.

15

10

Les caractéristiques des composés de formule I obtenus par la méthode décrite dans les exemples précédents, sont données dans les tableaux I et II.

20

TABLEAU I Composés de formule I où A est N- et Q est Z_1

Exemple	R ₁	R ₂	F °C	Sel
7	Cl	H	221-223,5	2 HCl
8	F	F	112-119	base

25

TABLEAU II Composés de formule I où A est $\CH-$ et \C est \C_2

Exemple	R ₃	f °C	Sel
9	OCH ₃	108-112	base

Le mode opératoire permettant d'obtenir les dérivés de formule générale III, où Liv est un groupe tosylate, est donné ci-après à titre d'exemple.

5

EXEMPLE A

1-(2,2-diméthylpropyl)-4-(tosyloxyméthyl)-2-pyrrolidone.

a) 1-(2,2-diméthylpropyl)-4-méthoxycarbonyl-

10 <u>2-pyrrolidone</u>

A une solution de néopentylamine (87 g; 1 Mole) dans du méthanol (50 ml) refroidie entre 8 et 16° C, est ajouté de l'itaconate de diméthyle (158 g; 1 mole).

La réaction est agitée une nuit à température ambiante, puis le solvant évaporé sous vide. Le résidu est distillé sous pression réduite : Eb (0,5 mm) : 111° C, on obtient 160 g (75 %).

20 b) <u>1-(2,2-diméthylpropyl)-4-(hydroxyméthyl)-</u> <u>2-pyrrolidone</u>

Une solution du produit obtenu à l'étape précédente (130 g; 0,61 mole) dans du méthanol (900 ml) est refroidi à 6°C. Le borohydrure de sodium (118 g; 3,1 mole) est ajouté par petites quantités pour garder la réaction à une température comprises entre 6 et 20°C. En fin d'addition la réaction est abandonnée 12 heures à température ambiante, puis portée 1 heure à 55°C. Le milieu réactionnel est ensuite concentré, repris par de l'eau, puis extrait au dichlorométhane. La phase organique est séchée puis évaporée. le résidu est distillée, Eb/0,5 = 154°C, on obtient 70,7 g (62 %) de produit.

25

c) <u>1-(2,2-diméthylpropyl)-4-(tosyloxymétyl)-</u> 2-pyrrolidone

A une solution de l'alcool obtenu à l'étape précédente (67,7 g; 0,366 mole) dans la pyridine (75 ml) et refroidie vers 8° C, est additionné lentement du chlorure d'acide para-toluène sulfonique (76,4 g; 0,4 mole). Après 12 heures d'agitation à température ambiante, le milieu réactionnel est dilué par le dichlorométhane, puis versé sur une solution d'acide chlorhydrique 6N glacée (100 ml). La phase organique est décantée, séchée (Na_2SO_4) concentrée sous vide. Le résidu est cristallisé dans l'éther isopropylique et collecté par filtration : on obtient 109 g (88 %), F = 91° C.

15 EXEMPLE B

5

10

35

1-(2,2-diméthylpropyl)-4-tosyloxyméthyl-2-pyrrolidone lévogyre.

a) <u>1-(2,2-diméthylpropyl)-4-carboxy-2-pyrro-</u> <u>lidone</u>

L'ester obtenu à l'exemple A a) (23,5 g; 0,11 mole) est dissous dans une solution d'éthylate de sodium obtenu à partir de 2,6 g de sodium et 90 ml d'éthanol. De l'eau est ajoutée (25 ml). Après 24 heures d'agitation, de l'éther (150 ml) est ajouté à la suspension.

L'insoluble est essoré puis dissous dans l'eau. La solution est acidifiée par l'acide chlorhydrique. Le solide qui précipite est essoré, puis séché sous vide en présence de P₂O₅. F(inst.) = 93-97° C.

b) <u>1-(2,2-diméthylpropyl)-4-carboxy 2-pyrro-</u> 30 <u>lidone lévoqyre</u>

L'acide obtenu à l'étape précedente (25 g; 0,125 mole) et de la quinine (40,7 g; 0,125 mole) sont portés au reflux dans un mélange acétate d'éthyle-éthanol (600 ml) (13/1). Le solide obtenu après refroidissement est recristallisé quatre fois dans un mélange acétate

d'éthyle-éthanol (10:1).

Le sel obtenu (18,5 g) est mis en suspension dans l'eau (200 ml). Le milieu est acidifié par 35 ml d'acide chlorhydrique concentré, puis extrait par du dichlorométhane. La phase organique est séchée, puis évaporée pour donner un solide (6,6 g). F = 140-159° C.

$$[\alpha]_{D}^{23} = -12.8^{\circ} \text{ (c=4, \'ethanol)}.$$

L'isomère dextrogyre peut être obtenu à partir des eaux mères de la première cristallisation, en évaporant le filtrat à sec et en recristallisant dans un mélange éthanol-eau.

c) <u>1-(2,2-diméthylpropyl)-4-hydroxyméthyl-2-</u> pyrrolidone <u>lévogyre</u>

L'acide optiquement actif obtenu à l'étape précédente (3,3 g) en suspension dans 15 ml de THF est ajouté à une suspension de NaBH₄ (0,76 g). Après une heure d'agitation à température ambiante, une solution d'iode (3,1 g) dans 10 ml de THF est ajoutée goutte à goutte. Après une heure d'agitation, le milieu est hydrolysé par une solution d'acide chlorhydrique 3N (10 ml). L'insoluble est éliminé par filtration et le filtrat évaporé à sec. Le résidu est repris par du dichlorométhane, lavé par de l'eau, puis par une solution saturée de NaCl. Après séchage, le solvant est évaporé. Le résidu est purifié par chromatographie sur colonne de SiO₂ en éluant par un système acétate d'éthyle-méthanol (9:1): on obtient un produit solide. F = 44-50° C.

$$[\alpha]_D^{24} = -18,25^{\circ} \text{ (c=4, \'ethanol)}.$$

d) 1-(2,2-diméthylpropyl)-4-tosyloxyméthyl-

30 <u>2-pyrrolidone lévogyre</u>

Le produit est obtenu dans les mêmes conditions que celles décrites dans l'exemple A c). On obtient un solide. F = 85-98,5° C.

$$[\alpha]_D^{24} = -4,2^{\circ} \text{ (c=4, EtOH)}.$$

35

5

10

15

20

On donnera ci-après des résultats d'essais pahrmacologiques qui montrent que les composés de formule I sont capables de s'opposer in vitro et in vivo aux effets de la sérotonine. Ils montrent également qu'ils sont capables de s'opposer à des réactions d'hypersensibilité, ou d'hyperperméabilité capillaire qui sont des modèles de réaction allergique.

Activité in vitro : aorte isolée de lapin réserpiné

Le test a été effectué selon la méthode de E. Apperley [Br. J. Pharmacol., (1976), <u>56</u>, 211-221]. Les courbes de contraction isométrique sont réalisées pour des doses cumulées de sérotonine en absence, puis en présence d'antagonistes à 3 concentrations différentes. Les résultats sont exprimés en pA₂ (tableau III), obtenus à partir de la droite de Schild. Le pA₂ représente l'affinité des composés vis-à-vis du récepteur 5HT₂. Il correspond au logarithme, changé de signe, de la concentration molaire d'antagoniste qui nécessite le doublement de la concentration d'agoniste pour obtenir le même niveau de contraction de l'aorte qu'en l'absence d'antagoniste.

TABLEAU III Activité sur organe isolé

	Exemples	pA ₂
	2	8,75
	3	8,50
	4	9,18
	5	9,41
į	6	8,22
	7	7,72
4	8	7,33
	9	7,34

Activité in vivo, rats amyélés

L'hypertension artérielle induite par une dose de sérotonine (30 $\mu g/kg$ i.v.) en présence d'antagonistes (administrés i.v. à des doses cumulées) est étudiée sur des rats amyélés selon la méthode de Gillepsie et Muir. Les résultats sont représentés en ED_{50} , dose d'antagoniste qui diminue de 50 % l'hypertension induite par la sérotonine (tableau IV).

TABLEAU IV
Inhibition de l'hypertension induite par la sérotonine sur des rats amyélés

5	Exemples	ED ₅₀ mg/kg i.v.
	2	0,03-0,1
	3	0,03
	4	0,001
	5	0,001
10	6	0,1
	7	0,03-0,1
	8	0,1
	9	0,003
i		

20

25

30

Hyperperméabilité capillaire

Le test des papules induites par la sérotonine est réalisé selon la méthode de M.L. Cohen [Life Sciences, (1989), <u>44</u>, 957-961].

L'administration de sérotonine (0,3 µg) par voie intradermique abdominale, chez des rats Wistar, induit une extravasation plasmatique mise en évidence par le bleu Evans i.v. et quantifiée par le dosage du colorant au niveau de la papule. Le produit à étudier est administré par voie i.p. 20 minutes avant l'injection de sérotonine et 40 minutes avant le prélèvement des papules. Elles sont placées à 64° C, 24 heures dans du formamide.

Après centrifugation, la densité optique du surnageant est mesurée à 620 nm. Les résultats sont exprimés en pourcentage d'inhibition de l'extravasation.

TABLEAU V
Inhibition de l'hyperperméabilité capillaire induite par la sérotonine

5	Exemples	Dose mg/kg i.p.	Inhibition %
	2	3	63 ***
	3	3	41 ***
	4	0,03	69 ***
	5	0,03	76 ***
10	6	0,01	52 ***
	7	3	89 ***
	8	3	70 ***
	9	1	47 ***

20

25

30

Anaphylaxie cutanée passive

Le test est réalisé selon la méthode de E. Bitteau [J. Pharmacologie Paris, (1979), 10, 69-72]. des rats Wistar sont sensibilisés par injection d'anticorps antialbumine par voie intradermique au niveau abdominal. 72 heures après, ils reçoivent par voie veineuse de l'albumine. L'extravasation plasmatique est mise en évidence comme dans le test décrit précédemment par administration de bleu Evans et prélèvement des papules abdominales 30 minutes plus tard. L'expression des résultats représente l'inhibition d'extravasation plasmatique induite par l'injection i.p. des produits à étudier 30 minutes avant administration d'albumine.

TABLEAU VI Inhibition de l'anaphylaxie cutanée passive

induite par l'albumine

	Doses mg/kg i.p.	Protection en pourcent
Exemple 4	0,1	0
	0,3	41 %
	1	61 %

Les composés de formule I possèdent également une activité antagoniste des récepteurs à la sérotonine au niveau du système nerveux central. Cette activité est mise en évidence par le test suivant :

Inhibition du syndrome au 5HTP

L'administration de 5-hydroxytryptamine et de carbidopa provoque une élévation importante de la concentration cérébrale de sérotonine. Le rat ainsi traité présente des stéréotypies (secousse de la tête) reliées à une activation des récepteurs 5HT₂. L'inhibition de ces stéréotypies par le produit à étudier est exprimée en pourcentage. Les résultats sont regroupés dans le tableau VII.

15

20

TABLEAU VII
Inhibition du syndrome au 5HTP

Exemples	Dose mg/kg i.p.	Inhibition en pourcent
2	0,3	56 **
3	0,3	75 ***
4	0,01	. 83 ***
5	0,003	61 *
6	0,03	55 *

Les composés selon l'invention s'opposent aux effets de la sérotonine au niveau des récepteurs 5HT₂.

Les composés sont actifs sur l'animal en particulier sur des modèles d'allergie et présentent également une activité centrale.

Les composés selon l'invention peuvent donc être utiles pour le traitement des allergies, de l'asthme, de l'hypertension, des troubles liés à la microcirculation comme le syndrome de Raynaud et la formation d'oedème, mais aussi pour le traitement de la migraine, de la dépression, de l'anxiété.

Les composés peuvent être administrés chez l'homme par voie entérale ou parentérale à des posologies journalières de 1 à 500 mg.

REVENDICATIONS

1 - Composés de formule

5

$$0 \longrightarrow N \longrightarrow A - Q$$

10 dans laquelle:

- A est un atome d'azote N-, et alors Q représente un

groupe diphénylméthylène Z₁

15

dans lequel ${\bf R_1}$ et ${\bf R_2}$ sont choisis indépendamment l'un de 20 l'autre parmi un atome d'hydrogène et un atome d'halogène,

- ou bien A est un groupe CH-, et alors Q représente, soit un groupe phénylcarbonyle \mathbb{Z}_2 , soit un groupe

diphénylcarbinol Z3 25

$$z_2$$

30

dans lequel R_3 est choisi parmi un atome d'hydrogène, un atome d'halogène et un groupe alkoxy en C_1 - C_3 ,

dans lequel R_1 et R_2 ont la même signification que précédemment,

et leurs sels avec des acides pharmaceutiquement accep-10 tables.

2 - Composés de formule I selon la revendication 1 dans laquelle A représente un groupe CH- et Q un groupe Z_2 , R_3 étant un atome d'halogène.

3 - Composés de formule I selon la revendication 2 dans laquelle R_3 est un atome de fluor.

4 - Procédé de préparation d'un composé selon la revendication 1, consistant à effectuer une condensation entre un composé de formule :

20

25

15

HN A
$$-Q$$
 II

dans laquelle A et Q ont la signification donnée à la revendication 1, avec un dérivé de pyrrolidone de formule :

30

35

dans laquelle Liv est un groupe partant.

5 - Composition thérapeutique comprenant, à titre de principe actif, un composé selon l'une quelconque des revendications 1 à 3.

Nº d'enregistrement national

INSTITUT NATIONAL

de la

PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FR 9212163 FA 477307

	Citation du document avec indication, en cas de	hecoin	concernées de la demande	
atégorie	des parties pertinentes	nezam,	examinée	
Y	EP-A-0 266 563 (BOEHRINGER INGE * exemples 7,8 *	LHEIM KG.)	1-5	
Y	BE-A-842 970 (RICHARDSON-MERREL * exemples 3,4 *	INC.)	1-5	
A,D	EP-A-0 301 936 (SYNTHELABO) * exemples 17-21 *		1-5	
A,D	EP-A-O 013 612 (JANSSEN PHARMACI N.V.) * tableau 1, pages 24-26 *	EUTICA	1-5	
l,D	US-A-4 835 157 (PRESS J.B. ET Al * abrégé *	L.)	1-5	
	WO-A-8 805 435 (DAINIPPON PHARM CO. LTD.) * tableau 3 *	ACEUTICAL	1-5	
				DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
l				
	·			C07D A61K
	,			
	Date d'achivement 23 MARS		t	Executation D.
,,				
X : parti Y : parti	culièrement pertinent à lui seul culièrement pertinent en combinaison avec un	T: théorie ou principe E: document de breve à la date de dépôt de dépôt ou qu'à u D: cité dans la deman	t bénéficiant d'u et qui n'a été pi ne date postérie	me date antérieure nblié qu'à cette date

2