janvier 2014

Numéro d'anonymat :

## Examen de langages et automates (première session)

Tout document personnel autorisé Durée : 2 heures

# REMPLIR LES CADRES ET RENDRE CE DOCUMENT AINSI COMPLETE UN EXCÈS DE REPONSES FAUSSES SERA SANCTIONNÉ PAR DES POINTS NÉGATIFS

#### Exercice 1:

a) Appliquer la méthode de variation des états d'entrée pour trouver une expression régulière dont le langage associé soit le même que le langage associé à l'automate suivant :



R0 = aR0 + bR1

R1 = a R2

 $R2 = b R3 + \varepsilon$ 

 $R3 = a R2 + b R4 + \epsilon$ 

 $R4 = b R4 + \varepsilon$ 

Résolution (non unique) :

R4 = b\*

R1 et R2 sont remplacées par leur « valeur » dans les deux équations donnant R0 et R3

 $R0 = a R0 + ba R2 = a R0 + ba (b R3 + \epsilon) = a R0 + ba b R3 + ba$ 

 $R3 = a (bR3 + \epsilon) + b b^* + \epsilon = abR3 + a + bb^* + \epsilon$ 

 $==> R3 = (ab)*(a + bb* + \varepsilon)$ 

 $==> R0 = a* (ba b R3 + ba) = a* (ba b (ab)*(a + bb* + \epsilon) + ba)$ 

Résultat recherché: R0

Remarque : L'expression régulière la plus simple est a\*(ba)<sup>+</sup>b\* en calculant :

R4 = b\*

 $R3 = aR2 + b^{+} + \epsilon = aR2 + b^{*}$ 

 $R2 = bR3 + \varepsilon = b(aR2 + b^*) + \varepsilon = baR2 + bb^* + \varepsilon = baR2 + b^+ + \varepsilon = baR2 + b^* = (ba)^*b^*$ 

R1 = a(ba)\*b\*

 $R0 = aR0 + bR1 = a*bR1 = a*ba(ba)*b* = a*(ba)^{+}b*$ 

b) Éliminer les ε-transitions dans l'automate suivant en appliquant précisément la méthode générale vue en cours, en explicitant obligatoirement les calculs intermédiaires, et en indiquant finalement les états non accessibles ou non co-accessibles à éliminer :



#### Calcul des ε-fermetures :

$$\hat{\varepsilon}(0) = \{0, 1, 4, 3, 6, 7\} \qquad \hat{\varepsilon}(1) = \{1, 3, 7\} \qquad \hat{\varepsilon}(2) = \{2\} \qquad \hat{\varepsilon}(3) = \{3, 1, 7\} \qquad \hat{\varepsilon}(4) = \{4, 6, 7\}$$

$$\hat{\varepsilon}(5) = \{5\}$$
  $\hat{\varepsilon}(6) = \{6, 4, 7\}$   $\hat{\varepsilon}(7) = \{7, \}$ 

$$\delta(\{0\},a) = \delta(\{0,1,4,3,6,7\},a) = \{2\}$$
 Expliciter ces calculs des  $\delta(\{e\},\alpha)$  est non obligatoire

 $\delta(\{0\},b) = \{5\}$ 

$$\delta(\{1\},a) = \{2\}$$

$$\delta(\{1\},b) = \{\}$$

$$\delta(\{2\},a) = \{\}$$

$$\delta(\{2\},b) = \{3\}$$

$$\delta(\{3\},a) = \{2\}$$

$$\delta(\{3\},b) = \{\}$$

$$\delta(\{4\},a) = \{\}$$

$$\delta(\{4\},b) = \{5\}$$

$$\delta(\{5\},a) = \{6\}$$

$$\delta(\{5\},b) = \{\}$$

$$\delta(\{6\},a) = \{\}$$

$$\delta(\{6\},b) = \{5\}$$

état terminaux :  $\{0, 1, 3, 4, 6, 7\}$  car leur  $\varepsilon$ -fermeture contient l'état 7

Les états non accessibles ou non co-accessibles à éliminer sont les états 1, 4 et 7.

### Exercice 2:

Rappel éventuellement utile :  $A \subseteq B \Rightarrow \delta^*(A, m) \subseteq \delta^*(B, m)$ 

Soit  $A = (\sum, E, I, F, \delta)$  un automate indéterministe sans  $\epsilon$ -transitions, dont tous les états sont accessibles.

Soit  $A_s = (\sum, E, I_s, F, \delta)$  avec  $I_s = \{e \in E \mid \exists m \in \sum^* \text{ tel que } e \in \delta^*(I, m) \}$ 

a) Prouver que  $I \subseteq I_s$ 

Pour tout i dans I, il faut montrer que i est dans Is, c'est-à-dire trouver un m tel que  $i \in \delta^*(I, m)$  Il suffit de prendre  $m=\epsilon$  car  $\delta^*(I, \epsilon) = I$  et on a bien  $i \in \delta^*(I, \epsilon) = I$ 

b) Expliquer pourquoi tous les états de A<sub>s</sub> sont des états initiaux.

Quelque soit e un état de As, il est supposé accessible. Donc il existe m tel que  $e \in \delta^*(I, m)$ . Il en découle que  $e \in I$ s (par définition de Is) et donc que e est un état initial.

c) Prouver que  $L(A) \subseteq L(A_s)$ 

```
m \in L(A) ==> \delta^*(I, m) \cap F \neq \{\}
==> \delta^*(Is, m) \cap F \neq \{\} \quad \text{car } I \subseteq Is
==> m \in L(As)
```

d) Prouver que  $m \in L(A) \Rightarrow |\nabla s \text{ suffixe de } m, s \in L(A_s)|$ 

```
Hypothèse : m \in L(A)
Soit s un suffixe quelconque de m. Posons m = m'.s
```

$$m \in L(A) ==> \delta^*(I, m) \cap F \neq \{\}$$

$$==> \delta^*(I, m'.s) \cap F \neq \{\}$$

$$==> \delta^*(\delta^*(I, m'), s) \cap F \neq \{\}$$

$$==> \delta^*(Is, s) \cap F \neq \{\}$$

$$==> s \in L(As)$$

e) Prouver que  $s \in L(A_s) \Rightarrow [\exists m' \text{ tel que } m = m'.s \text{ et } m \in L(A)]$ 

```
s \in L(As) ==> Il \text{ existe un \'etat i tel que } \delta^*(i,s) \cap F \neq \{\}
Or \text{ tous les \'etats sont accessibles : il existe un mot m' tel que } i \in \delta^*(I,m')
On \text{ a alors : } \delta^*(I,m'.s) = \delta^*(\delta^*(I,m'),s) \supseteq \delta^*(i,s)
et
\delta^*(i,s) \cap F \neq \{\} ==> \delta^*(I,m'.s) \cap F \neq \{\}
==> m'.s \in L(A)
==> Il \text{ existe } m = m'.s \text{ avec } m \in L(A)
```

f) En notant **suff(L(A))** l'ensemble des suffixes des mots de L(A), déduire des questions précédentes que l'on a l'égalité :  $suff(L(A)) = L(A_c)$ 

```
s \in suff(L(A)) ==> il existe m \in L(A) tel que m = m'.s
==> s \in L(As) \qquad (c'est la question d)
et
s \in L(As) \qquad ==> Il existe m' tel que m = m'.s et m \in L(A) \qquad (c'est la question e)
==> s \quad est un suffixe d'un mot m qui est dans L(A)
==> s \in suff(L(A))
```

g) Soit  $A=(\sum, E, I, F, \delta)$  un automate indéterministe **quelconque** sans  $\epsilon$ -transitions. Décrire comment construire l'automate  $A_D$  qui reconnaît tous les préfixes des mots de L(A) et uniquement eux.

Enlever les états non co-accessibles et rendre terminal tous les états accessibles : Remarque : on peut rendre terminal tous les états et pas juste ceux qui sont accessibles. Plus formellement (non demandé) :  $A_p = (\sum, E_p, I_p, F_p, \delta) \text{ avec}$   $avec E_p = \{e \in E \mid \exists \text{ m tel que } \delta^*(e, m) \cap F \neq \{\} \}$   $et I_p = E_p \cap I$   $et F_p = \{e \in E_p \mid \exists \text{ m tel que } e \in \delta^*(I, m) \}$ 

#### Exercice 3:

Soient les 2 grammaires suivantes d'axiome S, d'alphabet {a, b} et définies par les productions :

- a) Montrer que ces grammaires sont ambiguës.



b) Pour clarifier l'écriture, on notera  $\rightarrow$  les dérivations pour la grammaire  $G_1$  et  $\rightarrow$  les dérivations pour la grammaire  $G_2$ .

Prouver que si  $S \stackrel{*}{\underset{1}{\longrightarrow}} m$  est une chaîne de dérivations pour la grammaire  $G_1$  alors il existe une chaîne de dérivations  $S \stackrel{*}{\underset{2}{\longrightarrow}} m$  pour la grammaire  $G_2$ .

La preuve devra contenir un raisonnement par induction sur la longueur de la chaîne de dérivations dans G<sub>1</sub>.

Soit  $\Pi(n) = \left(S \stackrel{\leq n}{\xrightarrow{}} m \Rightarrow S \stackrel{*}{\xrightarrow{}} m\right)$ 

 $\Pi(1)$  est vraie car :  $S \stackrel{\leq 1}{\rightarrow} m \Rightarrow m = \epsilon$  et on a bien  $S \stackrel{*}{\rightarrow} \epsilon$ 

Hypothèse :  $\Pi(n)$  vrai et  $n \ge 1$ 

Montrons que  $\Pi(n+1)$  est vrai.

 $S \stackrel{n+1}{\rightarrow} m = S \stackrel{1}{\rightarrow} SaS \stackrel{n}{\rightarrow} m$  ou  $S \stackrel{1}{\rightarrow} SbS \stackrel{n}{\rightarrow} m$  ou  $S \stackrel{1}{\rightarrow} \epsilon \stackrel{n}{\rightarrow} m$ 

Le dernier cas est impossible et on ne traite que le premier cas avec SaS car le cas SbS est le même en remplaçant « a » par « b ». .

==>  $m = m_1 am_2$  et  $S \stackrel{\leq n}{\rightarrow} m_1$  et  $S \stackrel{\leq n}{\rightarrow} m_2$  (lemme fondamental)

==>  $m = m_1 am_2$  et  $S \stackrel{\leq n}{\rightarrow} m_1$  et  $S \stackrel{\leq n}{\rightarrow} m_2$  (Hypothèse de récurrence)

==> il existe pour  $G_2$  une chaîne de dérivations :  $S \stackrel{1}{\Rightarrow} SS \stackrel{1}{\Rightarrow} SSS \stackrel{1}{\Rightarrow} SSS \stackrel{*}{\Rightarrow} m_1 a m_2$ 

 $==> S \stackrel{*}{\Rightarrow} m$ 

c) Prouver par un raisonnement par induction que  $\forall k \leq n$ ,  $a^k \in L_{G_1}$  où  $L_{G_1}$  est le langage associé à la grammaire  $G_1$ .

Soit  $\Pi(n) = (\forall k \le n, \ a^k \in L_{G_1})$   $\Pi(0)$  est vrai car  $a^0 = \varepsilon$  et on  $a : S \to \varepsilon$  donc  $\varepsilon \in L_{G_1}$ . Hypothèse :  $\Pi(n)$  vrai et  $n \ge 0$ . Montrons que  $\Pi(n+1)$  est vrai. On a :  $S \to S a S$   $\to a^n a S \qquad (car \ a^n \in L_{G_1} par H.R.)$   $\to a^{n+1}$ Donc  $a^{n+1} \in L_{G_1}$