Assignment Project Exam Help

https://eduassistpro.github.

Add WeChataedu_assist_pr

Today's Class

- https://eduassistpro.github.
- Black-Scholes Option Pricing Add WeChat edu_assist_pr

Random Number Generators

```
Assignment Project Exam Help
```

- https://eduassistpro.github.
- trnd (nu, m, n): student t-distribution ran decrees by tree We Chat edu_assist_pr
- ▶ randg(m,n): standard Gamma random nu
- (m, n) defined the output matrix size, m-by-n, that stores the simulated numbers.

Examples: Normal & Student-t

► Simulate 100 × 1 standard Normal random variables

Assisgrament Projectes Exemp.22 Help

```
https://eduassistpro.github.
```

Set Seeds for Random Generator

- Assisometimes we want to be the same sequeles of rendom numbers productive results.
 - https://eduassistpro.github.

```
1 % sensitive ariom now greater hat edu_assist_prediction as sist_prediction as sist_pred
```

Simulate Asset Prices

Assignments price of Particular stock at a future time t iHelp

https://eduassistpro.github.

$$S_1 = \mu + \sigma * \epsilon_1$$

Add WeChat edu_assist_pr

- ▶ In expectation, $E(\Delta S) = E[\sigma * (\epsilon_2 \epsilon_1)] = 0$ since both ϵ_1 and ϵ_2 are random draws from $\mathcal{N}(0,1)$.
- ▶ We need the time dimension variations.

Normal Stock Price Model

▶ We assume the stock price follows a stochastic process

- https://eduassistpro.github.

$$R_t^{net} = R_t - 1 = \mu \Delta t + \sigma \sqrt{\Delta t} \epsilon$$

Consider stock with annual return of 0.15 and annual volatility of $Assi_{sock}^{000} perceptive to price flat Experimental for the latest price for the price flat Experiment for the latest price with <math>\Delta t = \frac{1}{250}$ years $\Delta t = \frac{1}{250}$

```
https://eduassistpro.github.
   % Set up parameters & initialize the price vector
   mu = 0.15;
       redd We Chat edu_assist_
10
11
12
   eps = randn(1,N);
13
14
   % Simulate stock prices
   S = S0*(1 + mu*tgrid + sigma*sgrt(tgrid).*eps);
16
   plot(tgrid, S)
17
   legend( 'S')
   xlabel('Time(yr)')
19
   vlabel('Asset Price($)')
```

```
nment Project Exam Help
  https://eduassistpro.github.
11
13
14
15
   % Simulate 3 random numbers epsilon
16
  * state destrict Wechat.edu_assist
17
18
21
   S3 = S0 * (1 + mu3 * tgrid + sigma3 * sgrt(tgrid).* eps(3,:
  plot(tgrid, S1, '-', tgrid, S2,':', tgrid, S3,'--')
  legend( 'S1', 'S2', 'S3')
  xlabel('Time(yr)')
  vlabel('Asset Price($)')
```

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Log-Normal Stock Price Model

▶ Issues with Normal stock price: negative stock prices

Assignment Project Exam Help

https://eduassistpro.github.

Add
$$W_{r_t}^{\ln(S_t)} = \ln(S_0) + (\mu - \frac{1}{2} - \frac{1}{2}$$

```
mul = 0.05; sigmal = 0.6;
   mu2 = 1.2; sigma2 = 0.6;
   https://eduassistpro.github.
10
   N = length(tgrid);
   S1 = zeros(1,N); S2 = zeros(1,N); S3 = zeros(1,N);
12
   S0 = 1:
13
                              designatoriedu_assist
15
17
   S3=S0*exp((mu3-0.5*(sigma3^2))*tgrid+sigma3*sgrt(tgri
18
   plot(tgrid, S1, '-', tgrid, S2,':', tgrid, S3,'--')
   legend( 'S1', 'S2', 'S3')
19
20
   xlabel('Time(vr)')
21
   vlabel('Asset Price($)')
```

Log-Normal Stock Price Model

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Options Pricing

- \triangleright V(S,t) is the value of an option
 - ightharpoonup C(S,t): Call options give the right to purchase the underlying asset

Assignment Pith agreed price to by xam Help future expiry date with agreed price to sell the underlying asset at left future expiry date with agreed price today.

- https://eduassistpro.github.
- ▶ T is the maturity of the contract (i.e. the future ex
- Add WeChat edu_assist_pr
- $ightharpoonup \sigma$ is the volatility of the underlying stock.

With above notation, the payoffs of European Calls and Puts at the expire date is:

$$C(S, T) = \max(S - K, 0)$$
 $P(S, T) = \max(K - S, 0)$

Option Pricing Simulation

Assignment = 1000 Ceto X211 Help

▶ Calculate the expected price of an European Call and Put option on

https://eduassistpro.github.

- Note: in the previous exercises, we simulate over a great defer fut ve Chat edu_assist_predictions.
- ▶ Note: this exercise is different as we simulate at only one time point in the future (ie, the maturity date *T*), but with different 10,000,000 scenarios.

Option Pricing Exercises 1

Options Price 2: The Black-Scholes Formula

▶ The price of a call option is given by

Assignment Project Exam Help

https://eduassistpro.github.

$$Add \ W_{d_2 = d_1 - \sigma\sqrt{T}}^{d_2 = \ln(S/K) + (1 - \sigma\sqrt{T})} edu_assist_pr$$

▶ and $N(d_1)$ and $N(d_2)$ denotes the standard cumulative normal probability for the values of d_1 and d_2 . It is the probability that a random draw from a normal distribution.

Option Pricing Exercises

Assignment Project Exam Help

Create a function perform the Black-Scholes Formula to determine

https://eduassistpro.github.

 Currently, the normal stock price proces based method;

Ade difference mongathe that colors and assist_processes;

Option Pricing Exercises 2: Function

```
% Input: S: spot stock price
          K: strike pr
          T: maturit
           tps://eduassistpro.github.
11
12
      phi = 1:
   elseif strcmp(CallorPut, 'Put') == 1
14
      phi = -1:
15
   else
                          eChat edu_assist_
16
17
18
19
20
   Ndl = normcdf(phi*dl.0.1):
21
22
   d2 = d1 - sigma.* sgrt(T):
23
   Nd2 = normcdf(phi*d2.0.1);
24
25
   price = phi.*S.*Nd1 - phi.*K.*exp(-r * T).*Nd2;
```

26 end

Option Pricing Exercises 2: Main Command

```
2 S = 1
3 K 1
4 T 1
5 r 0ttps://eduassistpro.github.
6 S 7 % p
8 % call functions to calculate the price of the option
9 CallPrice = BlackScholesPrice(S, K, T, r, sigma, 'Call');
10 PutPrice = BlackScholesPrice(S, K, T, r, sigma, 'Put');
11 % tpuntf on put 1
12 fprick('Colput of Weel 11 is hart content.

12 fprick('Colput of Weel 11 is hart content.

13 K 1
14 Total for the collum assist product of Weel 11 is hart content.
```

Take Away

Assignment Project Exam Help

```
https://eduassistpro.github.
```

simulation. Will there be any difference betwee based of the small tion versus the Black-Shot_assist_pr