Antoni Pawlak

401480

Laboratorium 13: MPI

Cel ćwiczenia

- Analiza wydajności programów równoległych
- Zaznajomienie z metrykami tj. Przyspieszenie i efektywność
- Kompilacja programu MPI

Wykonanie

Przygotowania

- 1. <u>Utworzenie katalogów roboczych i pobranie plików ze strony</u>
- 2. <u>Uworzenie arkusza kalkulacyjnego</u>

Zadanie 1 – całka

1. Kompilujemy program

gcc -fopenmp calka_omp.c -o calka

2. Wywołujemy program z wartościami zmiennej środowiskowej OMP_NUM_THREADS

export OMP NUM THREADS=8 && time ./calka

3. <u>Wyniki pomiarów</u>

1 wątek				
Nr pomiaru		Czas [s]		1 watek
	1		0,68	
	2		0,70	
	3		0,68	
ŚREDNIA			0,69	
2 wątki				
Nr pomiaru		Czas [s]		2 watki
	1		0,35	
	2		0,35	
	3		0,34	
ŚREDNIA			0,35	
4 wątki				
Nr pomiaru		Czas [s]		4 watki
	1		0,20	
	2		0,24	
	3		0,27	
ŚREDNIA			0,24	
8 wątków				
Nr pomiaru		Czas [s]		8 watkow
	1		0,19	
	2		0,20	
	_		0.10	
	3		0,19	

Zadanie 2 – vector

1. Kompilujemy program

<u>make</u>

2. Wywołujemy make run z różnymi flagami -np

Makefile

run: moj_program

\$(MPI_run) -np 8 moj_program

terminal

<u>make run</u>

3. Wyniki pomiarów

1 wątek				
Nr pomiaru		Czas [s]		
ivi poimara	1	Czus [s]	0,21	
	2		0,21	
	3		0,21	
ŚREDNIA	_		0,21	
SILDINIA			0,21	
2 wątki				
Nr pomiaru		Czas [s]		2 watki
Ni poimaru	1	Czas [s]	0,10	2 Walki
	2		0,10	
	3			
ŚREDNIA	3		0,10	
SKEDNIA			0,10	
4				
4 wątki		6-1		4
Nr pomiaru		Czas [s]		4 watki
	1		0,08	
,	2		0,07	
			0,07 0,07	
ŚREDNIA	2		0,07	
ŚREDNIA	2		0,07 0,07	
ŚREDNIA 8 wątków	2		0,07 0,07	
ŚREDNIA	2	Czas [s]	0,07 0,07	8 watkow
ŚREDNIA 8 wątków	2	Czas [s]	0,07 0,07	8 watkow
ŚREDNIA 8 wątków	3	Czas [s]	0,07 0,07 0,07	8 watkow
ŚREDNIA 8 wątków Nr pomiaru	2 3	Czas [s]	0,07 0,07 0,07 0,09	8 watkow
ŚREDNIA 8 wątków Nr pomiaru	1 2	Czas [s]	0,07 0,07 0,07 0,07	8 watkow
ŚREDNIA 8 wątków	1 2	Czas [s]	0,07 0,07 0,07 0,09 0,08 0,08	8 watkow

Wyniki

Całka

Tabela z wynikami pomiarów wydajności zrównoleglenia

N watków	S(p)	р	E	t
1	1,00	1,00	1,00	0,69
2	1,97	2,00	0,98	0,35
4	2,89	4,00	0,72	0,24
8	3,58	8,00	0,45	0,19

Wektor

Tabela z wynikami pomiarów wydajności zrównoleglenia

N watków	S(p)	р	E	t
1	1,00	1,00	1,00	0,21
2	2,06	2,00	1,03	0,10
4	2,84	4,00	0,71	0,07
8	2,57	8,00	0,32	0,08

Analiza wyników

Czas wykonania

- zwiększając liczbę procesów obserwujemy spadek czasu wykonania
- najbardziej znaczący jest spadek przy przejściu z 1 na 2 procesy
- przeskok z 4 na 8 procesów daje bardzo niewielkie korzyści

Przyspieszenie

- całka:
 - zwiększając liczbę procesów rośnie przyspieszenie
 - o dla dwóch procesów przyspieszenie jest bliskie idealnego
 - o dalsze zwiększanie coraz bardziej oddala się od przyspieszenia idealnego
- vector:
 - o nie obserwujemy ciągłego wzrostu przyspieszenia
 - o przy przeskoku z 4 na 8 procesów przyspieszenie maleje

Efektywność

- W obu przypadkach efektywność jest najwyższa dla 2 wątków
- Dalsze zwiększanie ilości watków obniża efektywność

Podsumowanie

- Rozważając dobór ilości wątków do wykonania naszego oprogramowania równoległego
 należy brać pod uwagę więcej niż jedną metrykę wydajności, bo nawet jeżeli spada czas to
 nie koniecznie musi to być robione w sposób wydajny
- Zbyt duża liczba procesów nie jest dobra, zasada im więcej tym lepiej tutaj nie działa. Dzieje się tak dlatego, że w pewnym momencie overhead tworzenia i zarządzania procesami staje się większy niż zyski jakie dostajemy ze zrównoleglania