Eine Woche, ein Beispiel 79 Steenrod algebra

The Steenrod algebra has been studied for decades. As usual, I make no claim to originality.

For calculating the Steenrod algebra in compute, you can get it from this link: https://math.berkeley.edu/~kruckman/adem/

The original article by José Adem: The Iteration of the Steenrod Squares in Algebraic Topology https://www.pnas.org/doi/10.1073/pnas.38.8.720

The survey talk(recommend):

 $http://www.math.uni-bonn.de/people/daniel/2022/algtop/Steenrod_Squares.pdf$

A combinatorial method for computing Steenrod squares: https://www.sciencedirect.com/science/article/pii/S0022404999000067

Chinese collections on Steenrod algebra: https://www.zhihu.com/question/265308226

Problems in the Steenrod Algebra:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3bao259a7d1afc849fb1796d5oo2bc9c7eab1b5a

1. binomial coefficient mod p 2. Adem relations

https://en.wikipedia.org/wiki/Adams_operation

3. Steenrod algebra

1. binomial coefficient mod p

(m+h) N mod 2	o	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Is	16	17	18	19	20	ય	22	23	24	25	26	27	28	29	30	31	
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
'	1	0	1	0	1	Ò	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	
2	1	1	0	0	_	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	
3	1	0	0	Ò	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	
4	1	1	1	1	0	0		0		1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	
5	1	0	1	0	0	0		0		0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	
6	1	1	0	0	-		0			1	0	0	0		-	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	
7	1	0	0	0	0	0	0	0	1		0					0		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
8	1	1	1	1	1	1	1	1	0		0					0	_	1	1	1	1	1	1	1	0	0	0	0	0	0	•	0	
9	1	0	1	0	1	0	1	0	0	0	0	0	0	0			1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	
lo	1	1	0	0	1	1	0	0	0	0	0	0	0		0		1	1	0	0	1	1	0	0	0	0	0	0	0	0	•	0	
11	1	0	0	0	1	0	0	0	0	0	0	0			0		1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
12	1	1	1	1	•	0	0	0	0	0	0		-		0		1	1	1	1	0	0	0	0	0	0	0	0	0	0	•		
13	1	0	1	0	0	0	0	0	0	0	0	0	0	0		0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
14	1	1	0	0	0	0	0	0	0	0	0	0	0			0		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15	1			0	0	0	0	0	0	0	0	0	0	0		0					0	0			0	0	0	0	0	_		-	
16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		0			0	0	0	0	0	0	0	0	0	0	•	0	1
17	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(8	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0		
19	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0		0			0	0	0	0	0	0	•			-	0			
20	1	1	1	1	0		0	0	1	1	1	1	0		0		-	0		0	0	0	0	0	0	0	0	0	0	0	•	0	
2	1	0	1	0	0	0	0	0	7	0	1	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	
22	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	Ŋ	•	0	
23	1	<u> </u>	0	U	0	U	0	0	Τ_	<u> </u>	0	0	0	U	0	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0	0	U	

period

 $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$

We conclude from table (or Chu-Vandermonde identity) the following practical formula:

Prop. Let $a = \sum_{n \ge 0} a_n z^n$, $b = \sum_{n \ge 0} b_n z^n$, $a_n, b_n \in \{0,1\}$. We get $\binom{a+b}{a} \equiv 0 \mod 2 \iff \exists n \in \mathbb{N}_{\geq 0} \text{ st } a_n = b_n = 1$

Eq. $a = (11011010100)_2$, $b = (100000110)_2$, then $\binom{a+b}{a} \equiv 0 \mod 2 \quad \text{since} \quad \binom{100100000100}{1000000110}$

Rmk Similarly one can show for $a = \sum_{n \geq 0} a_n p^n$, $b = \sum_{n \geq 0} b_n p^n$, $a_n, b_n \in \{0, 1, ..., p-1\}$, $\binom{a+b}{a} \equiv \prod_{n \geq 0} \binom{a_n+b_n}{a_n} \mod p$

Rmk. It is possible to define $\binom{a+b}{a} \in \mathbb{F}_p$ for $a,b \in \mathbb{Z}[\frac{1}{p}]$. One may want to:

O Verify if the usual formulas in
https://en.wikipedia.org/wiki/Binomial_coefficient work;

@ Find a combinatorical explanation of it.

https://en.wikipedia.org/wiki/%CE%9B-ring

 $\lambda^n: \mathbb{Z} \longrightarrow \mathbb{Z} \qquad \times \mapsto {x \mapsto (x \choose n)}$ is the unique 1-ring on Z.

2. Adem relations

Def (Steenrod squares) see [wiki Steenrod algebra] for detail.

$$Sq^{k} \cdot H^{*}(-; \mathbb{Z}/_{2\mathcal{U}}) \longrightarrow H^{*+k}(-; \mathbb{Z}/_{2\mathcal{U}})$$

 $Sq^{*} = Sq^{*} + Sq^{*} + Sq^{*} + \cdots$
 $Sq^{*} = Id_{H^{*}(-; \mathbb{Z}/_{2\mathcal{U}})}$

$$\nabla$$

$$Sq^3 \neq Sq'Sq'Sq'$$
 $Sq \neq Sq'$

Prop (Adem relations)

For 0<a<2b, we have a formula

$$Sq^{a} Sq^{b} = \sum_{\substack{j=0 \ 1/2}}^{\lfloor 6/2 \rfloor} {\binom{b-j-1}{a-2j}} Sq^{a+b-j} Sq^{j}$$

$$= \sum_{\substack{j=0 \ a-2j}}^{\lfloor 9/2 \rfloor} {\binom{(b-a+j-1)+(a-2j)}{a-2j}} Sq^{a+b-j} Sq^{j}$$

Here we list first several terms: $(b > \frac{a}{2})$