本节内容

图的存储

邻接表法

邻接表法 (顺序+链式存储)


```
//"顶点"
typedef struct VNode{
    VertexType data; //顶点信息
    ArcNode *first; //第一条边/弧
}VNode,AdjList[MaxVertexNum];
```

对比: 树的孩子表示法

孩子表示法:顺序存储各个节点,每个结点中保存孩子链表头指针

邻接表法

点相连的边/弧?

边结点的数量是|E|, 整体空间复杂度为 O(|V| + |E|)

王道考研/CSKAOYAN.COM

邻接表法

只要确定了顶 点编号,图的 邻接矩阵表示 方式唯一

	Α	В	C	D	Ę	F	
Α	0	1	1	1	0	0	
В	1	0	0	0	1	1	
С	1	0	0	0	1	0	
D	1	0	0	0	0	1	
EC	0	1	1	0	0	0	
F	0	1	0	1	0	0	

知识回顾与重要考点

邻接矩阵

	Α	В	С	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	0	0	1	1
С	1	0	0	0	1	0
D	1	0	0	0	0	1
Ε	0	1	1	0	0	0
F	0	1	0	1	0	0

	邻接表	邻接矩阵	
空间复杂度	无向图 O(V + 2 E);有向图O(V + E)	O(V ²)	
适合用于	存储稀疏图	存储稠密图	
表示方式	不唯一	唯一	
计算度/出度/入度	计算有向图的度、入度不方便, 其余很方便	必须遍历对应行或列	
找相邻的边	找有向图的入边不方便,其余很方便	必须遍历对应行或列	

欢迎大家对本节视频进行评价~

学员评分: 6.2.2 邻接表法

△ 公众号:王道在线

i b站:王道计算机教育

→ 抖音:王道计算机考研