BANCO DE DADOS

ESTRUTURA DE UM SGBD RELACIONAL

Prof. Fabiano Papaiz IFRN

 Após modelarmos conceitualmente o nosso banco de dados, o próximo passo será construir o Modelo Lógico desse banco

o Relembrando:

- O Modelo Lógico é uma descrição do banco de dados de forma dependente da implementação em um SGBD
- O modelo lógico registra como os dados serão armazenados no SGBD, com sua organização em tabelas, colunas (ou campos), relacionamentos etc.

- Mas primeiramente devemos entender como um SGBD Relacional é estruturado
- Estudaremos somente os SGBDs Relacionais, que são os mais comumente utilizados para o desenvolvimento da maioria dos sistemas
- Existem outros tipos de SGBD, como por exemplo:
 - Orientado a Objetos
 - NoSQL (Not only SQL) que são orientados a:
 - Chave-Valor
 - Colunas
 - Documentos
 - Grafos etc

- Um SGBD Relacional, ou Banco de Dados Relacional, é composto por tabelas (ou relações)
- Uma tabela é um conjunto não ordenado de registros (ou linhas ou tuplas) e identificada por um nome de tabela
- Cada registro é composto por uma série de campos (ou colunas) e cada campo é identificado por um nome de campo

	Produto		
o Tabela	codigo	descricao	valor_venda
o Campos (Colunas)	1	Computador	2500
• Registros (Linhas) <	2	Impressora	350

 O conceito básico para estabelecer relacionamentos entre registros de tabelas (mesma tabela ou tabelas diferentes) é o da chave (do inglês key)

Os 3 tipos mais comuns de chaves são:

Chave Primária (Primary Key)

Chave Estrangeira (Foreign Key)

Chave Alternativa (Alternate Key)

Chave Primária (Primary Key)

- Chave Primária (Primary Key)
- É um <u>campo</u> ou <u>combinação mínima de campos</u> cujos valores <u>distinguem um registro dos demais</u> registros dentro da mesma tabela

Produto		
codigo	descricao	valor_venda
1	Computador	2500
2	Impressora	350

Neste exemplo, a chave primária da tabela Produto é o campo codigo, pois os valores deste campo identificam unicamente cada registro dessa tabela.
 **Não irão existir 2 produtos com o mesmo código.

- Chave Primária (Primary Key)
- Qual deve ser a chave primária para a tabela de dependentes dos funcionários exibida abaixo?

Dependente			
cod_funcionario	cod_dependente	nome	tipo
101	1	João	filho
101	2	Maria	esposa
102	1	José	esposo
103	1	Ana	esposa
103	2	José	filho

- Chave Primária (Primary Key)
- Qual deve ser a chave primária para a tabela de dependentes dos funcionários exibida abaixo?

Dependente			
cod_funcionario	cod_dependente	nome	tipo
101	1	João	filho
101	2	Maria	esposa
102	1	José	esposo
103	1	Ana	esposa
103	2	José	filho

 Inicialmente já podemos descartar os campos nome e tipo, pois poderão haver valores repetidos nestas colunas (como José e filho)

- Chave Primária (Primary Key)
- Qual deve ser a chave primária para a tabela de dependentes dos funcionários exibida abaixo?

Dependente			
cod_funcionario	cod_dependente	nome	tipo
101	1	João	filho
101	2	Maria	esposa
102	1	José	esposo
103	1	Ana	esposa
103	2	José	filho

 Também não podemos usar apenas o campo cod_funcionario, pois existem valores repetidos (101 e 103) para linhas diferentes, pois um mesmo funcionário pode ter mais de 1 dependente

- Chave Primária (Primary Key)
- Qual deve ser a chave primária para a tabela de dependentes dos funcionários exibida abaixo?

Dependente			
cod_funcionario	cod_dependente	nome	tipo
101	1	João	filho
101	2	Maria	esposa
102	1	José	esposo
103	1	Ana	esposa
103	2	José	filho

 Para o campo cod_dependente também podem existir valores repetidos (1 e 2) para linhas diferentes, pois para cada funcionário este código inicia do valor 1

- Chave Primária (Primary Key)
- Qual deve ser a chave primária para a tabela de dependentes dos funcionários exibida abaixo?

Dependente			
cod_funcionario	cod_dependente	nome	tipo
101	1	João	filho
101	2	Maria	esposa
102	1	José	esposo
103	1	Ana	esposa
103	2	José	filho

 Solução: usar os campos cod_funcionario e cod_dependente de forma combinada para definir a chave primária. Assim, podemos garantir que não irão ocorrer valores repetidos para este conjunto de campos

- Chave Primária (Primary Key)
- Através da chave primária, definimos uma restrição de integridade de unicidade para a tabela e, com isso, o SGBD irá nos garantir que não ocorram valores repetidos para os campos que compõem a chave

Produto		
codigo	descricao	valor_venda
1	Computador	2500
2	Impressora	350

Dependente			
cod_funcionario	cod_dependente	nome	tipo
101	1	João	filho
101	2	Maria	esposa
102	1	José	esposo
103	1	Ana	esposa
103	2	José	filho

Chave Estrangeira (Foreign Key)

- Chave Estrangeira (Foreign Key)
- É o mecanismo pelo qual o SGBD Relacional implementa os relacionamentos entre os registros das tabelas, podendo ser entre tabelas diferentes ou dentro de uma mesma tabela

- O campo ou conjunto de campos que compõem a <u>chave estrangeira devem necessariamente ser</u> <u>chave primária em outra tabela ou dentro da própria</u> <u>tabela</u>
 - A chave estrangeira deve fazer referência a uma chave primária

- Chave Estrangeira (Foreign Key)
- Exemplo de chave estrangeira entre tabelas diferentes

- Chave Estrangeira (Foreign Key)
- Exemplo de chave estrangeira em uma mesma tabela, também conhecido como auto-relacionamento

Funcionario		
<u>codigo</u>	nome	cod_func_gerente
1 📢=======	José	
2	Maria	1
3	Ana	1
4 ◀======	João	
5	Paula	4
6	Antônio	4
chave		chave

chave primária

chave estrangeira

- Chave Estrangeira (Foreign Key)
- o Impõe as seguintes *Restrições de Integridade* dos dados:
- 1. Na inclusão de um registro que contém uma chave estrangeira
 - O valor inserido na chave estrangeira deverá existir em algum registro na tabela da chave primária referenciada
- 2. Na alteração do valor de uma chave estrangeira
 - O novo valor da chave estrangeira deverá existir em algum registro na tabela da chave primária referenciada
- 3. Na exclusão de um registro que contém a chave primária referenciada por uma chave estrangeira
 - Um registro não poderá ser excluído se a sua chave primária estiver sendo utilizada por uma chave estrangeira

Chave Alternativa (Alternate Key)

- Chave Alternativa (Alternate Key)
- Em alguns casos, mais de um campo (ou campos) pode servir para distinguir um registro dos demais existentes em uma tabela
- Assim, teremos mais de uma opção para escolha da chave primária de uma tabela

Aluno		
matricula	nome	cpf
2017001	José	111.222.333-44
2017002	Maria	777.888.999-00
2017003	João	555.666.777-88

Qual campo devemos utilizar como chave primária? Qualquer um deles irá servir!

- Chave Alternativa (Alternate Key)
- Dentre as opções disponíveis, escolhemos uma para ser a chave primária da tabela e as outras opções restantes serão então denominadas como chaves alternativas

Aluno		
<u>matricula</u>	nome	cpf
2017001	José	111.222.333-44
2017002	Maria	777.888.999-00
2017003	João	555.666.777-88

Chave primária

Chave alternativa

- Neste exemplo, tanto o campo matricula como o cpf poderão ser usados para distinguir um registro dos demais
- Mas <u>a chave alternativa não poderá ser utilizada como uma</u> <u>chave estrangeira</u>, apenas a chave primária

Domínios e Valores Vazios (*Null*)

- Domínios e Valores Vazios (Null)
- Quando uma tabela é definida, devemos definir também qual o <u>conjunto de valores que cada um dos seus</u> <u>campos poderão assumir</u>
 - Alfanúmérico, numérico, booleano, data, hora etc
- Ao conjunto de valores definidos para um campo (ou coluna) damos o nome de domínio do campo (ou domínio da coluna)
- Além de definir o domínio para o campo, devemos também definir se ele poderá ou não receber "valores vazios" (null em inglês)
 - Se um campo de um registro está vazio (null) significa que este campo não recebeu nenhum valor do seu domínio

- Domínios e Valores Vazios (Null)
- Os campos onde não são admitidos valores vazios são chamados de campos obrigatórios
- Os campos que aceitam valores vazios são chamados de campos opcionais

- Domínios e Valores Vazios (Null)
- Geralmente os SGBD's exigem que todos os campos da chave primária sejam obrigatórios (não vazios)
- o Para as demais chaves, como a estrangeira, isso não é exigido.

Restrições de Integridade

Restrições de Integridade

- Já vimos que umas das vantagens de se utilizar um SGBD está no fato deste garantir automaticamente a integridade dos dados
 - Integridade dos Dados = Dados Corretos e Consistentes

 Um SGBD irá nos oferecer meios para definirmos quais restrições de integridade desejaremos impor aos dados armazenados

- Restrições de Integridade
- As restrições de integridade são classificadas nas seguintes categorias:
 - Integridade de Domínio: o valor de um campo deverá obeceder à definição dos valores admitidos para ele (domínio de campo)
 - Integridade de Vazio: indica se o valor de um campo poderá ou não receber valores vazios (null)
 - Integridade de Chave: irá garantir que os valores da chave primária e da chave alternativa serão únicos para cada registro
 - Integridade referencial: irá garantir que os valores dos campos que são chaves estrangeiras deverão existir na chave primária da tabela referenciada

Modelo Lógico de um Banco de Dados

- Finalizando, um Modelo Lógico que represente a Especificação (ou Esquema) de um Banco de Dados Relacional deverá conter no mínimo as seguintes definições:
- Tabelas que compõe o banco de dados
- 2. Campos que estas tabelas possuem
- 3. Restrições de integridade, sendo elas:
 - Integridade de Domínio (valores permitidos para os campos)
 - Integridade de Vazio (campos obrigatórios ou opcionais)
 - Integridade de Chave (primária e alternativa)
 - Integridade Referencial (chaves estrangeiras)

FIM