Homework 1

ECE 590

Zhe Fan || zf70@duke.edu October 29, 2022

Question 1: Prove that:

$$\forall P, Q \in \mathbb{B}.P \to Q \leftrightarrow \neg P \lor Q$$

Proof is here:

Definiation: None Lemmas and Axioms:

- 1. $A_{LEM} \forall P. \neg P \lor P$
- 2. Demorgan'sLaws:

2.1
$$P \lor Q = \neg (\neg P \land \neg Q)$$

$$2.2 \ P \land Q = \neg (\neg P \lor \neg Q)$$

3. Contrapositive: $P \Rightarrow Q = \neg Q \Rightarrow \neg P$

Proof Goal:

$$\forall P,Q \in \mathbb{B}.P \to Q \leftrightarrow \neg P \vee Q$$

Step: 1. $\forall P,Q \in \mathbb{B}.P \to Q \leftrightarrow \neg P \lor Q$ Pick any P and Q, and...

1.1
$$\forall P, Q \in \mathbb{B}. (P \to Q) \to \neg P \lor Q$$

Assume $P \to Q$ and...

1.1.1
$$\neg P \lor P$$

By U_{spec} of A_{LEM} .

1.1.2
$$\neg P \lor Q$$

By cases on $P \lor \neg P$:
case 1: P :

By MP on assumption 1.1.

1.1.2.2
$$\neg P \lor Q$$

By or-intro on case 1 and 1.2.1.1.

case 2: $\neg P$:

1.1.2.2
$$\neg P \lor Q$$

By or-intro on assumption 1.1.

1.2
$$\forall P, Q \in \mathbb{B}. \neg P \lor Q \to (P \to Q)$$

Assume $(\neg P \lor Q)$ and...

1.2.1
$$P \to Q$$

- a. Assume P, and...
- b. By contradiction, assume $\neg Q$ and...

1.2.1.1
$$P \land \neg Q$$

By and-intro on assumption 1.2.1.a and 1.2.1.b.

1.2.1.2
$$\neg (\neg P \lor Q)$$

By Demorgan's law on 1.2.1.1..

1.2.1.3 *False* (\bot)

Contradiction between 1.2.1.2 and assumption $(\neg P \lor Q)$.

1.3 $\forall P, Q \in \mathbb{B}. (P \to Q) \leftrightarrow \neg P \lor Q$

Iff-intro on 1.1 and 1.2.

Question 2: Prove that:

$$(\forall x \in \mathbb{Z}. f(x) \to g(x)) \leftrightarrow \neg (\exists x \in \mathbb{Z}. \neg (f(x) \to g(x)))$$

Proof is here:

Definiation: None

Lemmas and Axioms:

1. Demorgan's Laws:

1.1
$$P \lor Q = \neg (\neg P \land \neg Q)$$

1.2
$$P \wedge Q = \neg (\neg P \vee \neg Q)$$

Proof Goal:

$$(\forall x \in \mathbb{Z}. f(x) \to g(x)) \leftrightarrow \neg (\exists x \in \mathbb{Z}. \neg (f(x) \to g(x)))$$

Step: 1.
$$(\forall x \in \mathbb{Z}.f(x) \to g(x)) \leftrightarrow \neg (\exists x \in \mathbb{Z}.\neg (f(x) \to g(x)))$$
 Pick any $x \in \mathbb{Z}$, and...

1.1
$$(\forall x \in \mathbb{Z}.f(x) \to g(x)) \to \neg (\exists x \in \mathbb{Z}.\neg (f(x) \to g(x)))$$

Assume $(\forall x \in \mathbb{Z}.f(x) \to g(x))$ and...

1.1.1
$$\neg (\exists x \in \mathbb{Z}. \neg (f(x) \rightarrow g(x)))$$

By contradition, assume $\exists x \in \mathbb{Z}. \neg (f(x) \rightarrow g(x))$

1.1.1.1
$$\neg (f(a) \to g(a))$$

By exists-elim on assumption 1.1.1.

1.1.1.1.1
$$(f(a) \to g(a))$$

By forall-elim on assumption 1.1.

1.1.1.1.2
$$False(\bot)$$

Contradiction between 1.1.1.1 and 1.1.1.1.

1.2
$$\neg (\exists x \in \mathbb{Z}. \neg (f(x) \to g(x))) \to (\forall x \in \mathbb{Z}. f(x) \to g(x))$$

Assume $\neg (\exists x \in \mathbb{Z}. \neg (f(x) \to g(x)))$ and...
Pick any x, and...

1.2.1
$$(\forall x \in \mathbb{Z}.f(x) \rightarrow g(x))$$

Assume f(x), and...

By contradicton, assume $\neg g(x)$

1.2.1.1
$$\neg (\exists x \in \mathbb{Z}. \neg (\neg f(x) \lor g(x)))$$

Using meaning of implication on assumption 1.2.

- **1.2.1.2** $\neg (\exists x \in \mathbb{Z}. f(x) \land \neg g(x))$ Using Demorgan's Laws Based on 1.2.1.1
- **1.2.1.3** $f(x) \land \neg g(x)$ Using and-intro based on assumption 1.2.1
- **1.2.1.4** $\exists x \in \mathbb{Z}. f(x) \land \neg g(x)$ By exists intro on 1.2.1.3 with witness x=x.
- **1.2.1.5** $False(\bot)$ Contradiction between assumption 1.2.1.3. and 1.2.1.4.
- **1.3** $(\forall x \in \mathbb{Z}.f(x) \to g(x)) \leftrightarrow \neg (\exists x \in \mathbb{Z}.\neg (f(x) \to g(x)))$ Iff-intro on 1.1 and 1.2.

Question 3: Prove that:

$$\forall n \in \mathbb{N}. \sum_{i=0}^{n} i^3 = \frac{1}{4} n^2 (n+1)^2$$

Proof is here:

Definiation: None

Lemmas and Axioms: None

Proof Goal:

$$\forall n \in \mathbb{N}. \sum_{i=0}^{n} i^3 = \frac{1}{4} n^2 (n+1)^2$$

Step: 1.
$$\forall n \in \mathbb{N}. \sum_{i=0}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$$

By weak induction on n . Cases:

Base: 0

Goal:
$$\sum_{i=0}^{0} i^3 = \frac{1}{4}0^2 (0+1)^2$$

Proof: $0 = 0$ (trivial)

Base: 1.

Goal:
$$\sum_{i=0}^{1} i^3 = \frac{1}{4} 1^2 (1+1)^2$$

Proof: $1 = 1$ (trivial)

Ind.

IH:
$$\sum_{i=0}^{n} i^3 = \frac{1}{4} n^2 (n+1)^2$$

Goal: $\sum_{i=0}^{n+1} i^3 = \frac{1}{4} (n+1)^2 ((n+1)+1)^2$
Proof:

1.3.1

$$\sum_{i=0}^{n+1} i^3 = \sum_{i=0}^{n} i^3 + (n+1)^3$$
 Definition of summation.

1.3.2

$$\sum_{i=0}^{n+1} i^3 = \frac{1}{4} n^2 (n+1)^2 + (n+1)^3$$
 Substitution of IH on 1.3.1.

1.3.3

$$\frac{1}{4}n^2 (n+1)^2 + (n+1)^3 = \frac{1}{4}(n+1)^2 ((n+1)+1)^2$$
Because $\frac{1}{4}n^2 (n+1)^2 + (n+1)^3$

$$= (n+1)^2 \left[\frac{1}{4}n^2 + (n+1)\right]$$

$$= \frac{1}{4}(n+1)^2 (n^2 + 4n + 4)$$

$$= \frac{1}{4} (n+1)^2 ((n+1)+1)^2$$

Question 4: Prove that:

$$\forall A, B, C \in P(\mathbb{Z}).A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$$

Proof is here:

Definiation:

1. $\forall A, B \in P(\mathbb{Z}).A \subseteq B$ is equivalent to $\forall x. (x \in A \rightarrow x \in B)$

Lemmas and Axioms: None

Proof Goal:

$$\forall A, B, C \in P(\mathbb{Z}).A \subseteq B \land B \subseteq C \to A \subseteq C$$

Step: 1. $\forall A, B, C \in P(\mathbb{Z}).A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$ Pick any A, B and C, and...

1.1 $A \subseteq C$

Assume $A \subseteq B \land B \subseteq C$ and...

1.1.1 $\forall x. (x \in A \to x \in C)$

Pick any x and...

1.1.1.1 $x \in A \to x \in C$

Using Definition 1 and universal-elim on 1.1.1.

Assume $x \in A$.

1.1.1.1.1 *A* ⊂ *B*

Using and-elim on assumption 1.1.

1.1.1.1.2 $x \in A \to x \in B$

Using Definition 1 and universal-elim on 1.1.1.1.1.

1.1.1.1.3 $x \in B$

By implication-elim with assumption 1.1.1.1 on 1.1.1.1.2.

1.1.1.1.4 *B* ⊂ *C*

Using and-elim on assumption 1.1.

1.1.1.1.5 $x \in B \to x \in C$

Using Definition 1 and universal-elim on 1.1.1.1.4.

1.1.1.1.6 $x \in C$

By implication-elim with 1.1.1.1.3 on 1.1.1.1.5.

Question 5:

Definiation:

- 1. D_i : Dragons on the island.
- 2. $ged(D_i)$: If dragon D_i is green eyed, $ged(D_i)$ is true, otherwise is false.
- (a) The oracle's proposition: 'There is at least one dragon on thisisland with green eyes' means that:

$$\exists D_i.ged(D_i)$$

(b) This particular dragon(D_0)'s proof is here:

Axioms:

1. at least one dragon is green-eyed:

$$\exists D_i.ged(D_i)$$

2. all dragons except D_0 are not green-eyed:

$$\forall D_i. (\neg (D_i = D_0) \rightarrow \neg ged(D_i))$$

3. $A \lor (B \land \neg B) \leftrightarrow A$

Proof Goal:

$$ged(D_0)$$

Step: 1. $ged(D_0)$

1.1 $ged(D_x)$

By exists-elim on assumption axiom 1.

- **1.2** $\forall D_i. (D_i = D_0 \lor \neg ged(D_i))$ By meaning of implication on axiom 2.
- **1.3** $D_x = D_0 \lor \neg ged(D_x)$ By universal-elim on 1.2.

- **1.4** $D_x = D_0 \lor \neg ged(D_x) \land ged(D_x)$ By and-intro on 1.1 and 1.3
- 1.5 $D_x = D_0$ Using axiom 3 on 1.4.
- **1.6** $ged(D_0)$ By MP on 1.1 and 1.5.
- (c) Under the scenario above (only D_0 has green eyes), what happens to the red eyed dragons?:

At 1st midnight, only one dragon turn into butterfly, so all red eyed dragons know that that dragon is the only green-eyed one, so they all turn into butterflies at next midnight.

(d)

i All green-eyed dragons will turn into butterflies on the Nth day, and all red-eyed dragons will turn into butterflies on the (N+1)thday.

ii
$$\forall n \in \mathbb{N}. |\{d|ged(d)\}| = n \rightarrow (\forall D_i. (i < n \rightarrow bfly(D_i) = n) \land (i \ge n \rightarrow bfly(D_i) = n + 1))$$

iii Proof:

Axioms:

1. at least one dragon is green-eyed:

$$\exists D_i.ged(D_i)$$

2. all dragons except n dragons (n>1) are not green-eyed:

$$\forall D_i. \left(\neg \left((D_i = D_0) \lor (D_i = D_1) \lor \dots \lor (D_i = D_{n-1}) \right) \to \neg ged(D_i) \right)$$
 and it is equivalent to

$$\forall D_i. \left((D_i = D_n) \lor (D_i = D_{n+1}) \lor \dots \lor (D_i = D_{99}) \to \neg ged(D_i) \right)$$

3.
$$\neg (A \lor B) \to C \leftrightarrow (\neg A \to C) \lor (\neg B \to C)$$

4. If there are n green-eyed dragon, then there won't be any dragon turning into butterfly before nth midnight:

$$\forall n \in \mathbb{N}. |\{d|ged(d)\}| = n \rightarrow \forall D_i. \neg (bfly(D_i) = n - 1)$$

Step: 1.
$$\forall n \in \mathbb{N}. |\{d|ged(d)\}| = n \rightarrow (\forall D_i. (i < n \rightarrow bfly(D_i) = n) \land (i \ge n \rightarrow bfly(D_i) = n + 1))$$

Assume $\forall n \in \mathbb{N}. |\{d|ged(d)\}| = n$.
By weak induction on n . Cases:

Base: 2

Goal: $(\forall D_i. (i < 2 \rightarrow bfly(D_i) = 2) \land (i \ge 2 \rightarrow bfly(D_i) = 3))$ Proof:

1.2.1 $\forall D_i. (i < 2 \rightarrow bfly(D_i) = 2)$ Assume i < 2, and...

1.2.1.1 $\forall D_i. (\neg ((D_i = D_0) \lor (D_i = D_1)) \to \neg ged(D_i))$ By axiom 2, and...

1.2.1.2 $\forall D_i. ((D_i = D_0) \lor (D_i = D_1) \lor \neg ged(D_i))$ By meaning of implication on 1.2.1.1. Assume $\forall D_i. (D_i = D_0) \rightarrow ged(D_i).$

1.2.1.3 $\neg (bfly(D_0) = 1)$ By axiom 4.

1.2.1.4 $ged(D_1)$ Based on 1.2.1.3

1.2.1.5 $bfly(D_0) = 2 \wedge bfly(D_1) = 2$ Based on assumption 1.2.1.2 and 1.2.1.4.

1.2.2 $\forall D_i. (i \geq 2 \to bfly(D_i) = 3)$ Assume $i \geq 2$, and...

1.2.2.1 $\forall D_i$. $((D_i = D_n) \lor (D_i = D_{n+1}) \lor \lor (D_i = D_{99}) \to \neg ged(D_i))$ By axiom 2, and...

1.2.2.2 $\forall D_i. ((D_i = D_n) \rightarrow \neg ged(D_i)) \land \forall D_i. ((D_i = D_{n+1}) \rightarrow \neg ged(D_i)) \land .. \land \forall D_i. ((D_i = D_{99}) \rightarrow \neg ged(D_i))$ By axiom3.

1.2.2.3 $\neg ged(D_n) \wedge \neg ged(D_{n+1}) \wedge ... \wedge \neg ged(D_{99})$ Based on the proof in (b).

1.2.2.4 $bfly(D_n) = 3 \land bfly(D_{n+1}) = 3 \land ... \land bfly(D_{99}) = 3$ Based on 1.2.1.5 and 1.2.2.3.

Ind.

IH:
$$\forall n \in \mathbb{N}$$
. $|\{d|ged(d)\}| = n \rightarrow (\forall D_i. (i < n \rightarrow bfly(D_i) = n) \land (i \ge n \rightarrow bfly(D_i) = n + 1))$
Proof: $\forall n \in \mathbb{N}$. $|\{d|ged(d)\}| = n + 1 \rightarrow$

$$(\forall D_i. (i < n+1 \to bfly(D_i) = n+1) \land (i \ge n+1 \to bfly(D_i) = n+1+1))$$

1.3.1 $\forall D_i. (i < n+1 \to bfly(D_i) = n+1)$

Assume i < n + 1, and...

- **1.3.1.1** $\forall D_i. (\neg ((D_i = D_0) \lor (D_i = D_1) \lor ... \lor (D_i = D_n)) \to \neg ged(D_i))$ By axiom 2, and...
- **1.3.1.2** $\forall D_i. ((D_i = D_0) \lor (D_i = D_1) \lor ... \lor (D_i = D_n) \lor \neg ged(D_i))$ By meaning of implication on 1.3.1.1. Assume $\forall D_i. (D_i = D_0) \lor (D_i = D_1) \lor ... \lor (D_i = D_{n-1}) \to ged(D_i).$
- **1.3.1.3** $\neg (bfly(D_0) = n)$ By axiom 4.
- **1.3.1.4** $ged(D_n)$ Based on 1.2.1.3
- **1.3.1.5** $bfly(D_0) = n + 1 \wedge bfly(D_1) = n + 1 \wedge ... \wedge bfly(D_n) = n + 1$
- **1.3.2** $\forall D_i. (i \geq n \rightarrow bfly(D_i) = n + 1)$ Assume $i \geq n$, and...
 - **1.3.2.1** $\forall D_i$. $((D_i = D_n) \lor (D_i = D_{n+1}) \lor \lor (D_i = D_{99}) \to \neg ged(D_i))$ By axiom 2, and...
 - **1.3.2.2** $\forall D_i. ((D_i = D_n) \rightarrow \neg ged(D_i)) \land \forall D_i. ((D_i = D_{n+1}) \rightarrow \neg ged(D_i)) \land ... \land \forall D_i. ((D_i = D_{99}) \rightarrow \neg ged(D_i))$ By axiom3.
 - **1.3.2.3** $\neg ged(D_n) \wedge \neg ged(D_{n+1}) \wedge ... \wedge \neg ged(D_{99})$ Based on the proof in (b).
 - **1.3.2.4** $bfly(D_n) = n + 1 \wedge bfly(D_{n+1}) = n + 1 \wedge ... \wedge bfly(D_{99}) = n + 1$ Based on 1.3.1.5 and 1.3.2.3.