

# FINAL CAPSTONE

## Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

# **Executive Summary**

The following methodologies were used for this analysis

- Data Collection (SpaceX API and Web Scraping)
- Data Wrangling
- EDA with Data Visualization
- EDA with SQL
- Interactive Map of launch sites
- Dashboard with plotly dash
- Predictive Analysis

#### Introduction

This project requires predicting the success rate of future Falcon 9 launches. In this way, the company can more accurately estimate the launch costs for each rocket.

Information will be collected from the SpaceX API and using Web Scraping on Wikipedia articles. Later, all the raw data obtained will be processed in order to build accurate classification models.

# **METHODOLOGY**

#### **Data Collection**

The data was mainly collected from the SpaceX API and using web scraping to collect Falcon 9 historical launch records from a Wikipedia page titled List of Falcon 9 and Falcon Heavy launches



# Data Collection - SpaceX API

In this stage we will make a get request to the SpaceX API and clean the request data. The steps of the stage it can be summarized in the flowchart below



# Data Collection - Scraping

Web scraping was used to collect Falcon 9 historical launch records from a Wikipedia page titled List of Falcon 9 and Falcon Heavy launches. Data it is extracted from tables in the html code then is parsed and converted into a Pandas data frame.



# **Data Wrangling**

In this stage, we performed some Exploratory Data Analysis (EDA) to find some patterns in the data and determine what would be the label for training models. In the data set, there are several different cases where the booster did not land successfully. Sometimes a landing was attempted but failed due to an accident; for example, "True" means the mission outcome was successfully landed while "False" means the mission outcome was unsuccessfully landed.

We mainly converted those outcomes into Training Labels with 1 means the booster successfully landed and 0 means it was unsuccessful.

# **Data Wrangling**

The steps of the stage it can be summarized in the flowchart below



#### **EDA** with Data Visualization

#### Payload Mass VS Flight Number



#### Launch Site VS Flight Number



#### **EDA** with Data Visualization

#### Payload Mass VS Launch Site



#### Orbit VS Flight Number



## **EDA** with Data Visualization





#### **EDA** with SQL

- %sql select distinct(LAUNCH\_SITE) from SPACEXDATASET
- %sql select \* from SPACEXDATASET where LAUNCH\_SITE like 'CCA%' limit 5
- %sql select SUM(payload\_mass\_\_kg\_) from SPACEXDATASET where CUSTOMER = 'NASA (CRS)'
- %sql select avg(payload\_mass\_\_kg\_) from SPACEXDATASET where booster\_version LIKE 'F9 v1.1%'
- %sql select min(date) from SPACEXDATASET where landing outcome = 'Success (ground pad)'
- %sql select \* from SPACEXDATASET where landing\_\_\_outcome = 'Success (drone ship)' and (payload\_mass\_\_kg\_ between 4000 and 6000)
- %sql select mission\_outcome, COUNT(\*) from SPACEXDATASET group by mission\_outcome
- %sql select booster\_version, payload\_mass\_\_kg\_ from SPACEXDATASET where payload\_mass\_\_kg\_ = (select max(payload\_mass\_\_kg\_) from SPACEXDATASET)
- %sql select date, booster\_version, launch\_site, landing\_\_outcome from SPACEXDATASET where landing\_\_outcome = 'Failure (drone ship)' and (date like '2015%')
- %sql select landing\_\_outcome,count(landing\_\_outcome) as landing\_outcome\_COUNT from SPACEXDATASET where DATE between '2010-06-04' and '2017-03-20' group by landing\_\_outcome

# Build an Interactive Map with Folium

For this stage a map of the USA was used. Subsequently, markers for the different launch site locations were created and added. Names were also added to the markers to be able to identify them.

A characteristic that can be highlighted is that the places are differentiated by color, in this way if a launch was successful or failed you can know.

On the map you can also see the distance between each launch site and also if there are any railway near those sites.

# Build a Dashboard with Plotly Dash

Two charts were used for the dashboard, the first is a pie chart that shows the number of successful launches depending on the place. The second chart is a scatter chart that shows the relationship between the payload mass and the outcome for the launch site.

At the top of the dashboard there is a drop-down menu to be able to select the launch site that will display the pie chart. Below the pie chart is a slider to select the payload mass range. Both graphs are dynamic and change the information in real time thanks to the callback functions.

# Predictive Analysis (Classification)

For this stage, the dataset was standardized with all the information, then all the data was separated so that different samples could be used both for training and for tests.

We proceeded to create different types of objects to be able to run the tests in the different methods. The same samples were used to test the different models to ensure reliability in the results.

The models tested were: Logistic Regression, Support Vector Machine, decision tree and k nearest neighbors

After testing them all it was possible to conclude that none has a great difference with respect to another, practically all these algorithms give the same result

# INSIGHTS DRAWN FROM ETA

# Flight Number vs. Launch Site





In this plot we can see the relationship between the two features, it can be seen how the success rate increases as the number of flights increases.

# Payload vs. Launch Site

CCAFS SLC 40

14000

PayloadMass

2000



In this plot you can see how the payload is related to the launch success rate.

VAFB SLC 4E

Launch Site

KSC LC 39A

# Success Rate vs. Orbit Type



It can be seen that the ES-L1,
GEO, HEO and SSO orbits have a
higher success rate than the
other orbits.

# Flight Number vs. Orbit Type



In the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

# Payload vs. Orbit Type



It can be seen that Heavy payloads have a negative influence on GTO orbits and positive on GTO and Polar LEO (ISS) orbits.

# Launch Success Yearly Trend



It can be seen that the success rate since 2013 kept increasing till 2020

#### All Launch Site Names

```
In [4]: %sql select distinct(LAUNCH_SITE) from SPACEXDATASET

* ibm_db_sa://qmf11403:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/bludb
Done.

Out[4]: launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E
```

You can see the 5 launch sites

# Launch Site Names Begin with 'CCA'

| *      | sql select | * from SP            | ACEXDATASET wh                 | nere LAUNCH_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SITE like 'CCA%' limit 5                                      |                  |           |                          |                 |                    |
|--------|------------|----------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------|-----------|--------------------------|-----------------|--------------------|
|        | * ibm db   | sa://gmf1            | 1403:***@54a2f                 | 15b-5c0f-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.data                | bases.appdomain. | cloud:327 | 33/bludb                 |                 |                    |
|        | Done.      | 55 15                | \$25                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 754b 43 88                                                    | 2018             |           |                          |                 |                    |
| ıt[5]: | DATE       | timeutc_             | booster_version                | launch_site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | payload                                                       | payload_masskg   | orbit     | customer                 | mission_outcome | landing_outcome    |
|        | 2010-06-04 | 18:45:00             | F9 v1.0 B0003                  | CCAFS LC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dragon Spacecraft Qualification Unit                          | c                | LEO       | SpaceX                   | Success         | Failure (parachute |
|        | 2010-12-08 | 15:43:00             | F9 v1.0 B0004                  | CCAFS LC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dragon demo flight C1, two CubeSats, barrel of Brouere cheese | 0                | LEO (ISS) | NASA (COTS) NRO          | Success         | Failure (parachute |
|        | 2012-05-22 | 07:44:00             | F9 v1.0 B0005                  | CCAFS LC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dragon demo flight C2                                         | 525              | LEO (ISS) | NASA (COTS)              | Success         | No attemp          |
|        | 2012-10-08 | 00:35:00             | F9 v1.0 B0006                  | CCAFS LC-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SpaceX CRS-1                                                  | 500              | LEO (ISS) | NASA (CRS)               | Success         | No attemp          |
|        | 2012-10-08 | 00:35:00<br>15:10:00 | F9 v1.0 B0006<br>F9 v1.0 B0007 | CONTRACTOR | SpaceX CRS-1 SpaceX CRS-2                                     |                  | LEO (ISS) | NASA (CRS)<br>NASA (CRS) | Success         | No<br>No           |

# **Total Payload Mass**

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [6]: %%sql select SUM(payload_mass__kg_) from SPACEXDATASET where CUSTOMER = 'NASA (CRS)'

* ibm_db_sa://qmf11403:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/bludb Done.

Out[6]: 1

45596
```

# Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

In [7]: %%sql select avg(payload_mass_kg_) from SPACEXDATASET where booster_version LIKE 'F9 v1.1%'

* ibm_db_sa://qmf11403:***@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/bludb Done.

Out[7]: 1
2534
```

# First Successful Ground Landing Date



#### Successful Drone Ship Landing with Payload between 4000 and 6000

| [9]: %% | sql select | * from SP  | ACEXDATASET wh  | nere landing | _outcome = 'Succe     | ess (drone ship)  | and   | (payload_masskg_       | between 4000 an | d 6000)             |
|---------|------------|------------|-----------------|--------------|-----------------------|-------------------|-------|------------------------|-----------------|---------------------|
| 2000    | * ibm_db   | _sa://qmf1 | 1403:***@54a2f  | 15b-5c0f-46  | df-8954-7e38e612c2    | lbd.c1ogj3sd0tgtu | 01qde | 00.databases.appdoma   | ain.cloud:32733 | /bludb              |
|         | Done.      |            |                 |              |                       |                   |       |                        |                 |                     |
| Out[9]: | DATE       | time_utc_  | booster_version | launch_site  | payload               | payload_masskg_   | orbit | customer               | mission_outcome | landing_outcome     |
|         | 2016-05-06 | 05:21:00   | F9 FT B1022     | CCAFS LC-40  | JCSAT-14              | 4696              | GTO   | SKY Perfect JSAT Group | Success         | Success (drone ship |
|         | 2016-08-14 | 05:26:00   | F9 FT B1026     | CCAFS LC-40  | JCSAT-16              | 4600              | GTO   | SKY Perfect JSAT Group | Success         | Success (drone ship |
|         | 2017-03-30 | 22:27:00   | F9 FT B1021.2   | KSC LC-39A   | SES-10                | 5300              | GTO   | SES                    | Success         | Success (drone ship |
|         | 2017-10-11 | 22:53:00   | F9 FT B1031.2   | KSC LC-39A   | SES-11 / EchoStar 105 | 5200              | GTO   | SES EchoStar           | Success         | Success (drone ship |

#### Total Number of Successful and Failure Mission Outcomes



# **Boosters Carried Maximum Payload**



#### 2015 Launch Records

# List the failed landing\_outcomes in drone ship, their booster versions, and launch site names for in year 2015 In [12]: %%sql select date, booster\_version, launch\_site, landing\_outcome from SPACEXDATASET where landing\_outcome = 'Failure (drone ship)' and (date like '2015%') \* ibm\_db\_sa://qmf11403:\*\*\*@S4a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/bludb Done. Out[12]: DATE booster\_version launch\_site landing\_outcome 2015-01-10 F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship) 2015-04-14 F9 v1.1 B1015 CCAFS LC-40 Failure (drone ship)

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

In [23]: %sql SELECT LANDING\_OUTCOME,count(LANDING\_OUTCOME) as LANDING\_OUTCOME\_COUNT from SPACEXDATASET where DATE between '2010-06-04' and '2017-03-20' group by LANDING\_OUTCOME

\* ibm\_db\_sa://qmf11403:\*\*\*@54a2f15b-5c0f-46df-8954-7e38e612c2bd.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32733/bludb

Out[23]: landing\_outcome landing\_outcome\_count

Controlled (ocean) 3

Failure (drone ship) 5

Failure (parachute) 2

No attempt 10

Precluded (drone ship) 1

Success (ground pad) 3

Uncontrolled (ocean) 2

# LAUNCH SITES AND PROXIMITIES ANALYSIS

# Launch Sites Map



# Color-labeled launch outcomes



# BUILD A DASHBOARD WITH PLOTLY DASH

#### Success ratio launches for all sites



#### Success ratio launches for KSC LC-39A



## Payload vs. Launch Outcome scatter plot for all sites









# PREDICITIVE ANALYSIS (CLASSIFIACTION)

# **Classification Accuracy**



Practically all these algorithms give the same result

#### **Confusion Matrix**



We see that decision tree can distinguish between the different classes. We see that the major problem is false positives.

#### Conclusions

After carrying out numerous tests with the different samples of the dataset in each of the classification methods, it can be concluded that for this case any method can be used, since any one will give the same result.

The built model can be used to predict the success rate of future launches, having an accuracy rate of 83%

# **Appendix**

```
| The content of the content population of the content of the cont
```

```
page actions because the site of the control of the
```

# **THANKYOU**