Inteligência Computacional Atividade 02 - Momentos de HU

Marrielly Chrystina Martines¹

¹Ciência da Computação - Universidade Tecnológica Federal do Paraná (UTFPR) Campo Mourão - PR

marrielly@alunos.utfpr.edu.br

Resumo. Utilizando uma amostra de imagens de duas bases de dados, formas e folhas, este artigo descreverá a implementação do segundo projeto da disciplina de Inteligência Computacional e mostrará as taxas de acertos obtidas utilizando os Momentos Invariantes de HU, calculando a distância entre o template e a imagem de entrada, e discutirá as vantagens e desvantagens de usar o método de Template Matching.

1. General Information

Para verificar as taxas de sucesso entre cada execução e avaliar a eficiência da técnica de Template Matching, o projeto requer o desenvolvimento de um código que calcula os 7 momentos de HU entre uma coleção de imagens das bases de dados fornecidas. As bibliotecas Numpy, Scipy e OpenCV foram utilizadas juntamente com a linguagem de programação Python.

2. Etapa A

Primeiramente, a biblioteca Random foi usada para escolher 10 imagens aleatórias de cada classe da base de dados de formas - "circle", "triangle", "square" e "star". Em seguida, uma imagem "modelo" e três imagens de entrada pertencentes à mesma classe foram selecionadas. Com isso, foram determinadas a distância euclidiana entre a imagem de entrada e o modelo e os Momentos Invariantes da HU. O procedimento foi repetido, desta vez utilizando três imagens de diferentes classes, preservando o mesmo template. Para demonstração dos resultados do cálculo da distância, as classes de template escolhidas foram "circle" e "star".

Template Class	Entries Class	Result(1)	Result(2)	Result(3)
Circle	Circle	2.34661980e-04	1.55301793e-04	2.72551884e-06
Circle	Square	1.00818340e-04	2.24364697e-05	8.72442624e-07
Circle	Star	0.00015866	0.00020845	0.00016892
Circle	Triangle	0.0001166	0.00010911	0.00012299

Template Class	Entries Class	Result(1)	Result(2)	Result(3)
Star	Circle	0.00039416	0.0003148	0.00016222
Star	Square	0.00026032	0.00013706	0.00015862
Star	Star	8.34822555e-07	4.89532338e-05	9.42384513e-06
Star	Triangle	4.28927245e-05	5.03868735e-05	3.65114338e-05

Fica evidente que a execução da classe "circle" como modelo rendeu resultados menos desejáveis do que a execução da classe "star": no primeiro exemplo, a computação produziu dois falsos positivos para a classe "square", mas, no segundo caso, todas três execuções identificaram corretamente a classe.

Embora os elementos da classe "star" tenham qualidades mais distintas, o cálculo dos Momentos de HU é invariável à rotação, translação e escala, o que explica um resultado bem-sucedido. No entanto, as medidas estatísticas de distribuição de pontos assumem que valores de zero compartilhados aproximam dois objetos, mesmo que isso nem sempre seja o caso, porque ausências compartilhadas não implicam em aumento de similaridade entre classes. Isso explicaria porquê o template de classe "círculo" não obtém os resultados esperados.

3. Etapa B

Os mesmos processos que na etapa anterior foram seguidos nesta, usando a base de dados de folhas e escolhendo três imagens de cada classe ("Acer Capillipes", "Acer mono" e "Acer Opalus"). Os resultados foram os seguintes:

Template Class	Entries Class	Result(1)	Result(2)	Result(3)
Acer Capillipes	Acer Capillipes	0.00000000e+00	1.03526840e-05	5.04581525e-06
Acer Capillipes	Acer Mono	0.00017902	0.00025202	0.00024556
Acer Capillipes	Acer Opalus	7.28411352e-05	7.83754044e-05	5.46954382e-05

Template Class	Entries Class	Result(1)	Result(2)	Result(3)
Acer Mono	Acer Capillipes	0.00017902	0.00018938	0.00018407
Acer Mono	Acer Mono	0.00000000e+00	7.30008945e-05	6.65409379e-05
Acer Mono	Acer Opalus	0.00010618	0.00010065	0.00012433

Template Class	Entries Class	Result(1)	Result(2)	Result(3)
Acer Opalus	Acer Capillipes	7.28411352e-05	8.31938182e-05	7.78869437e-05
Acer Opalus	Acer Mono	0.00010618	0.00017918	0.00017272
Acer Opalus	Acer Opalus	0.00000000e+00	5.53427216e-06	1.81456970e-05

Como pode ser visto na tabela, diferentemente da base de formas, as folhas produzem resultados mais aceitáveis em cálculos para todas as classes. Nesta premissa, é interessante notar que as imagens estavam na mesma rotação, translação e escala que as outras na mesma classe. Isso pode ter influenciado as medições estatísticas da distribuição de pontos, ocasionando menos falsos positivos.

4. Template Matching

Deve-se notar que o emprego do método de Template Matching em conjunto com os Momentos Invariantes de Hu pode ajudar a identificar com precisão algumas classes em que, sem ele, as diferenças de rotação, tradução e escala resultariam frequentemente em falsos positivos. No entanto, devido à suposição de que ausências comuns indicam um aumento na semelhança, pode prejudicar as classes que antes eram simples de identificar.