Asymptotic Nontation:

 Θ tight bound

O upper bound

 Ω lower bound

o loose upper bound

 ω loose lower bound

Def: let $f, g : \mathbb{N} \to \mathbb{R}$

1.
$$f(n) \in O(g(n)) \iff \exists c > 0 \exists n_0, s.t. \forall n \ge n_0, f(n) \le cg(n)$$

2.
$$f(n) \in \Omega(g(n)) \iff \exists c > 0 \exists n_0, s.t. \forall n \geq n_0, f(n) \leq cg(n)$$

3.
$$f(n) \in \Theta(g(n)) \iff f(n) \in \Omega(g(n)), f(n) \in O(g(n))$$

4.
$$f(n) \in o(g(n)) \iff \forall c > 0 \exists n_0, s.t. \forall n \ge n_0, f(n) \le cg(n)$$

5.
$$f(n) \in \omega(g(n)) \iff \forall c > 0 \exists n_0, s.t. \forall n \ge n_0, f(n) \ge cg(n)$$

e.g.

$$f(n) = 2n^2 + 8n - 10 \le 2n^2 + 8n \le 10n^2, \forall n \ge 1$$

$$f(n) = 2n^2 + 8n - 10 \ge 2n^2 - 10 \ge n^2, \forall n \ge \sqrt{10}$$

Thus,
$$2n^2 + 8n - 10 \in \Theta(n^2)$$

$$f(n) = 3n + 2 \le 4n, \forall n \ge 2, 4n \le cn^2, \forall n \ge \frac{4}{c}$$

Thus,
$$3n + 2 \in o(n^2)$$
, $n_0 = max\{2, \frac{4}{c}\}$

Facts (connection with limits)

let
$$h = \lim_{x \to \infty} \frac{f(n)}{g(n)}$$
, then:

1.
$$f(n) \in o(g(n)) \iff h = 0$$

2.
$$f(n) \in \omega(g(n)) \iff h = \infty$$

3.
$$f(n) \in O(g(n)) \iff h < \infty$$

4.
$$f(n) \in \Omega(g(n)) \iff h > 0$$

e.g. Taking limits using L'Hopital's Rule

$$2^n \in \omega(n^2) \leftarrow \lim_{n \to \infty} \frac{2^n}{n^2} = \lim_{n \to \infty} \frac{2^n \ln 2}{2n} = \lim_{n \to \infty} \frac{2^n \ln 2 \ln 2}{2} = \infty$$

Ex. f(n) vs g(n) 1.01^n vs n^{100} (exponential vs polynomial): $1.01^n = \omega(n^{100})$ $(\log n)^{100}$ vs $n^{0.01}$ (polylog vs polynomial): $(\log n)^{100} = o(n^{0.01})$ $n^3 + \frac{2^n}{10}$ vs $n^2 + \frac{3^n}{10}$ (drop lower order terms and constant factors): $n^3 + \frac{2^n}{10} = o(n^2 + \frac{3^n}{10})$ n! vs (n+1)! (factorial growth rate changes when $n \to n+1$): n! = o((n+1)!) $2^{\log_5 n}$ vs $2^{\log_6 n}$ ($a^{\log_b n} = a^{\frac{\log_a n}{\log_a b}} = n^{\log_b a}$) n vs $n^{1+\sin n}$ NONE! since $n^{1+\sin n}$ oscillates

Commonly seen complexity: $Good \rightarrow Bad$

 $...n..n \log n...n^2...n^3...1.01^n...2^n...100^n...n!...$

Slower: ... 100^n ...n!... n^n ... 2^{n^2} ... $2^{n!}$... $2^{2^{2^{n}}}$...

Faster: $1...\log\log\log n...\log\log n...(\log n)^{100}...n^{0.01}...\sqrt{n}...n...$

$$\log n! \in \Omega(n \log n)$$

$$2^{\sqrt{\log n}} \in o(n^{0.01}) \text{ since } \lim_{n \to \infty} \frac{2^{\sqrt{\log n}}}{n^{0.01}} = \lim_{n \to \infty} \frac{2^{\sqrt{\log n}}}{2^{0.01 \log n}} = \lim_{n \to \infty} 2^{\sqrt{\log n} - 0.01 \log n} = 2^{-\infty} = 0$$

Remark: asymptotic notations can be used in equations and interpreted from left to right.

e.g.
$$n^2 = O(n^3) = O(n^4)$$
, $2n^3 + 3n + 4 = 2n^3 + o(n^2) = O(n^3)$

Summations:

$$\sum_{i=1}^{n} i^d = \Theta(n^{d+1}) \ \forall \ d \ge 0$$

$$\sum_{i=1}^{n} c^i = \frac{c^{n+1} - 1}{c - 1} = \Theta(c^n) \ \forall \ c \ge 1$$

$$\sum_{i=1}^{n} \frac{1}{i} = \ln n + \Theta(1) \ (\text{take integral})$$

$$\sum_{i=1}^{n} \log i = \log n! = n \log n - \Theta(n) \ (\text{take integral})$$