

Energy-Harvesting Wireless Sensor Node for IoT Networks

Robert Flechas Jennifer Hellar Nathaniel Morris Rachel Nguyen Brady Taylor Robyn Torregrosa Rice ECE Capstone Design Team 2018-2019 | chariot.rice2018@gmail.com

A Modular IoT Node

The Problem: Internet of Things (IoT) devices are becoming more prominent solutions to monitoring a wide array of environments. A powerful, flexible architecture is needed for these sensing devices.

Our Solution: We have created a self-powered, modular, and compact device that can easily be deployed in different environments, collect data from different sensor types, and communicate that data with other nodes in a network.

Design Criteria

	Our Docian	
	Our Design	
Modularity	Distinct energy harvesting, communications, and sensing modules	
Self-powered	Produces >12 mW in direct sunlight	
Networking Capabilities	Supports wireless transmitters with <30 mA peak current	
Sensing Capabilities	Supports sensors with <5 mA peak current	
Scalable (small)	40mm x 35mm x 20mm	

A Versatile Design for the Internet-of-Things Revolution

ENERGY HARVESTING BOARD

- Solar-powered 3.3 V output
- Small, high-capacity Li-Ion battery, for low-light intervals
- High-efficiency energy-harvesting battery charger
- Battery voltage tracker for dynamic power system management

WIRELESS COMMUNICATIONS BOARD

- Adjustable Wireless Transmission Schemes (Bluetooth, WiFi, ...)
- External power supply controlled by processor board
- Optional connection for higher range antenna
- Range: 119 meters

SENSOR BOARD

- Programmed to only acquire sensor data and transmit when there is sufficient power
- Retains programming and data during power loss
- Support for various sensor protocols (I2C, SPI, UART, ...)

Sense and

Transmit

Every 4 sec

Every 4 min

Small Footprint, Huge Potential

Our design accomplished our primary goals of versatility, modularity, and low-power. Future work will involve developing node-to-node network protocols, robust power management techniques, and novel programming methods for a potentially pinless package. The CHARIOT node will be compressed into a System-in-Package, rapidly customizable for a variety of applications.

Acknowledgements

We would like to thank our faculty sponsors Gene Frantz, Erik Welsh, and Ray Simar, for their financial and technical assistance. Special thanks to Dr. Gary Woods for his invaluable guidance and mentorship.

Energy-Harvesting Wireless Sensor Node for IoT Networks

Robert Flechas Jennifer Hellar Nathaniel Morris Rachel Nguyen Brady Taylor Robyn Torregrosa Rice ECE Capstone Design Team 2018-2019 | chariot.rice2018@gmail.com

dynamic sleep adjustment

Schemes (Bluetooth, ZigBee, ...)

processor board

sensor protocols

higher gain antenna

Modular IoT Node

We have created a self-powered, modular, and compact device that can easily be deployed in different environments, collect data from different sensor types, and communicate that data with other nodes in a network, all with minimal redesign.

Design Criteria

Criteria	Our Design	
Modularity	Distinct energy harvesting, communications, and sensing modules	
Self-powered	Produces >12 mW in direct sunlight	
Networking Capabilities	Supports wireless transmitters with <30 mA peak current	
Sensing Capabilities	Supports sensors with <5 mA peak current	
Scalable (small)	40mm x 35mm x 20mm	

CHARIOT Node

System Diagram

Demonstrated Performance

Conditions	Charge Current	Time to Fully Charge Battery*	Sense and Transmit
Sunny	30 mA	5 hours	Every 3 sec
Cloudy/Shaded	5 mA	22 hours	Every 20 sec
Indoor (Direct Light)	5 mA	22 hours	Every 20 sec

*Dependent on weather and time of day

Small Footprint, Huge Potential

Our design accomplished our primary goals of versatility, modularity, and low-power. Future work will involve developing node-to-node network protocols, robust power management techniques, and novel programming methods for a potentially pinless package. The CHARIoT node will be compressed into a System-in-Package, rapidly customizable for a variety of applications.

Acknowledgements

We would like to thank our faculty sponsors Gene Frantz, Erik Welsh, and Ray Simar, for their financial and technical assistance. Special thanks to Dr. Gary Woods for his invaluable guidance and mentorship.