| Санкт-Петербургский государственный электротехнический университет им. |
|------------------------------------------------------------------------|
| В.И. Ульянова (Ленина)                                                 |

Разработка алгоритма обнаружения свободных парковочных мест рядом с жилыми домами с использованием нейросетей

Выполнила: Костебелова Елизавета Константиновна, гр. 0303

Руководитель: Борисенко Константин Алексеевич, к.т.н., доцент

#### Цель и задачи

**Актуальность:** повышение удобства поиска парковки для автомобилей в городах с применением нейросетей

**Цель**: Упростить автолюбителям поиск парковки во дворах жилых домов

#### Задачи:

- 1. Разбор аналогов и выбор нейросетей
- 2. Выбор метрик для оценки моделей
- 3. Определение алгоритма обучения
- 4. Создание и обработка датасета
- 5. Обучение моделей нейросетей и составление сравнительной характеристики полученных результатов

## Разбор аналогов и выбор нейросетей

Таблица 1. Сравнение аналогов.

| Критерий/Аналог      | Учёт       | Актуальные данные о  | Применение          |
|----------------------|------------|----------------------|---------------------|
|                      | бесплатных | количестве свободных | детектирования по   |
|                      | парковок   | парковочных мест     | фото или видео      |
| «Парковки Санкт-     | Не ведётся | Доступны             | Не применяется      |
| Петербург»           |            |                      |                     |
| «Яндекс.Парковки»    | Ведётся    | Не всегда актуальны  | Не применяется      |
|                      |            |                      |                     |
| «Умные               | Ведётся    | Доступны             | Применяется, но     |
| парковки»            |            |                      | присутствуют частые |
|                      |            |                      | затруднения         |
| «Парковки            | Не ведётся | Доступны             | Не применяется      |
| России»              |            |                      |                     |
| «GetPark: паркшеринг | Не ведётся | Доступны             | Не применяется      |
| сервис»              |            |                      |                     |
|                      |            |                      |                     |
|                      |            |                      | 3                   |

## Выбор метрик для оценки моделей

• Intersection over Union, IoU — отношение площадей ограничивающих рамок  $S(A \cap P)$ 

 $IoU = \frac{S(A \cap B)}{S(A \cup B)},$ 



где A и B — предсказанная ограничивающая рамка и настоящая ограничивающая рамка соответственно

• mean Average Precision, mAP — усреднённая по всем категориям величина средней точности (англ. Average Precision, AP)

$$AP = \int_0^1 p(r)dr$$
,  $mAP = \overline{AP}$ ,

где p — точность, r — полнота из предположения, что ограничивающая рамка определена верно, если  $IoU \geq 0.5$ 

- mAP50 средняя точность, рассчитанная при пороге IoU = 0.5.
- mAP50: 95 средняя точность при различных порогах IoU, от 0.5 до 0.95, с шагом 0.05.

## Определение алгоритма обучения



## Создание и обработка датасета

Тренировочный набор составляет 1122 фотографии, а проверочный – 180.



Изображение во время облачной погоды



Изображение во время солнечной погоды



Изображение во время дождливой погоды

## Обучение моделей

Параметры системы: Профессор – Intel(R) Core(TM) i5-10300H CPU @ 2.50GHz.

Оперативная память – 16,0 ГБ.

Видеокарта – NVIDIA GeForce GTX 1650.

Параметры для обучения YOLO:

Эпохи обучения (epochs) – 50.

Размер пакета (batch) – 16.

Размер изображений (image\_size) - 640.

Параметры для обучения Faster R-CNN: Эпохи обучения (epochs) – 50.

Размер пакета (batch) -2.



Результат детектирования обученной модели YOLO Small



Результат детектирования обученной модели Faster R-CNN ResNet-50

Составление сравнительной характеристики полученных результатов. Модели YOLO.



Сравнительная диаграмма метрик оценки качества обучения

Модель Small имеет лучшие показатели относительно точности и времени обучения.

Для визуализации и отслеживания обучения трёх моделей, использовался фреймворк

для изучения экспериментов машинного обучения — ClearML.

8

## Составление сравнительной характеристики полученных результатов. Модели Faster R-CNN.



Сравнительные графики изменения метрик оценки качества обучения

Модель ResNet-50 обладает лучшими показателями, за исключением времени обучения модели.

Для отслеживания и визуализации процесса глубокого обучения использовался набор инструментов машинного обучения Weights & Biases.

# Составление сравнительной характеристики полученных результатов.

Таблица 2. Сравнение моделей.

| Модель/Критерий           | mAP50 | mAP50:95 | Время обучения    |
|---------------------------|-------|----------|-------------------|
| YOLO Nano                 | 73.8% | 56%      | 7 часов 2 минуты  |
| YOLO Small                | 84.1% | 69.3%    | 15 часов 6 минут  |
| YOLO Medium               | 83.8% | 69.8%    | 28 часов 3 минуты |
| Faster R-CNN<br>ResNet-50 | 73%   | 67.3%    | 10 часов 58 минут |
| Faster R-CNN<br>VGG16     | 53.9% | 22.6%    | 1 час 35 минут    |

#### Заключение

- Было успешно обучено несколько нейросетей детектированию нового объекта «parking»
- Исследованы и оценены по выбранным метрикам обученные модели нейросетей YOLO и Faster R-CNN
- Проведено сравнение результатов скорости обучения и качества способности обнаружения каждой модели
- Сделан вывод о том, что модель YOLO Small демонстрирует наилучшие показатели точности обнаружения свободных парковочных мест при относительно низком времени обучения
- Для достижения более высокой точности обнаружения требуется использование вычислительной техники с большей мощностью

Дальнейшие исследования могут быть направлены на оптимизацию модели YOLO Small для повышения точности обнаружения, а также на разработку приложений, использующих обученную модель, для определения свободных парковочных мест во дворах жилых домов.

## Апробация работы

## Запасные слайды

#### Результаты обучения моделей YOLO из научных статей

Table 2: Comparison of Object Detection Metrics

| Model   | P     | R     | F1-<br>score | Acc   |
|---------|-------|-------|--------------|-------|
| YOLOv8s | 1.000 | 0.975 | 0.987        | 0.975 |
| YOLOv8m | 1.000 | 0.925 | 0.961        | 0.925 |
| YOLOv3  | 1.000 | 0.900 | 0.947        | 0.900 |

"Real-Time Car Parcing Detection with Deep Learning in Different Lighting Scenarios" Авторы: Fatema H. Yusuf and Mohab A. Mangoud



"Train YOLOv8 on Custom Dataset – A Complete Tutorial" Автор: Sovit Rath

# Время, затраченное на детектирование объектов на одной фотографии

#### YOLO Nano:

real:0,609s

• user: 0,257s

sys: 0,056s

#### YOLO Small:

real: 0,623s

user: 0,258s

• sys: 0,059s

#### YOLO Medium

real: 0,638s

user: 0,282s

• sys: 0,060s

#### Faster r-cnn ResNet50:

• real: 0,629s

• user: 0,550s

sys: 0,078s

#### Faster r-cnn VGG16:

real: 0,608s

user: 0,542s

sys: 0,072s

real – общее время, затраченное программой.

user – время, затраченное программой в пользовательском режиме.

sys – время, затраченное программой в режиме ядра.