Statistical Field Theory

Cian Luke Martin

2024-10-13

Contents

1	Lecture: Introduction	1
	From Spins to Fields 2.1 The Ising Model	1 1

1 Lecture: Introduction

11/10/2024

Motivation

This course concerns itself with **universality**: the idea that different physical systems can exhibit the same behaviour.

For example, a liquid gas system has a critical temperature, below which a first order phase transition can be found between liquid and gas. Above it there is no such distinction and one can only move continuously.

Experiments suggest that as a function of the temperature, the density is given by $|\rho^{\pm} - \rho_c| \propto |T - T_C|^{\beta}$ with $\beta \approx 0.327$ for $T \approx T_C$.

Another example is ferromagnets for which one also has a **critical temperature** called the Curie temperature T_C .

For $T > T_C$, M = 0, and for $T \le T_C$ $M \propto (T_C - T)^{\beta}$ where the critical exponent β is as observed for gases.

In this course we will be studying the classical statistical mechanics of fields.

2 From Spins to Fields

2.1 The Ising Model

The Ising model is a simple model for a magnet. In d spatial dimensions, consider a lattice with N sites.

On the *i*th site we have a "spin" $S_i \in \{-1,1\}$. The configuration $\{s_i\}$ has energy

$$E = -B\sum_{i}^{s_{i}} -J\sum_{\langle ij\rangle} s_{i}s_{j}, \tag{1}$$

where B represents an external magnetic field and J represents an interaction strength. Naturally, one should ask how the physics depends on B, J and the temperature T.

For:

- J > 0, the spins prefer to be aligned: $\uparrow \uparrow$ or $\downarrow \downarrow$. This is a **ferromagnet**.
- J < 0, the spins prefer to be anti-aligned: $\uparrow \downarrow$ or $\downarrow \uparrow$. This is an **anti-ferromagnet**. We will assume and fix J > 0.
- For B > 0 spins prefer \uparrow
- For B < 0 spins prefer \downarrow
- At low temperature, the system wants to minimise energy. This leads to an ordered state where all spins will align due to the lower energy preferenced state.
- At high temperature, entropy dominates which leads to a disordered state.

Recall that in the **canonical ensemble**, the probability of a given configuration $\{s_i\}$ is

$$p\left[s_{i}\right] = \frac{1}{Z}e^{-\beta E\left[s_{i}\right]},\tag{2}$$

where $\beta = \frac{1}{T}$, $k_B = 1$ and Z is the **partition function**.

Definition 2.1: The partition function is given by

$$Z(T,B) = \sum_{\{s_i\}} e^{-\beta E[s_i]}.$$
(3)

Definition 2.2: The thermodynamic free energy $F_{\text{thermo}}(T,B) = \langle E \rangle - TS = -T \log Z$

Definition 2.3: The magnetisation is

$$m = \frac{1}{N} \left\langle \sum_{n=1}^{N} s_i \right\rangle \in [-1, 1]. \tag{4}$$

Note. The average $\langle X \rangle$ is an average over the probability distribution $p[s_i]$ at a fixed T.

Magnetisation is an **order parameter** as it can distinguish between ordered phases $(m \neq 0)$ and disordered phases where $m \approx 0$. We can expand the expectation value in m such that

$$m = \sum_{\{s_i\}} \frac{1}{Z} e^{-\beta[E_i]} \frac{1}{N} \sum_i s_i = \frac{1}{N\beta} \frac{\partial}{\partial \beta} \log Z.$$
 (5)

Therefore we want to compute the partition function as it will allow us to derive these observables.

This is easy in d=1. This is hard in d=2 and there is no general solution for generic lattices. For a square lattice with B=0 it is possible and was famously solved by Onsager (winning him some famous prize). $d \ge 3$ are intractable analytically.

Our aim is to approximate in a way that correctly captures the long-distance behaviour.

We can define m for any $\{s_i\}$ by $m = \frac{1}{N} \sum s_i$, now no longer taking a statistical average. We can then write the partition function as

$$Z = \sum_{m} \sum_{\{s_i\} \mid m} e^{-\beta E[s_i]} =: \sum_{m} e^{-\beta F(m)}.$$
 (6)

The spacing in allowed values of m is $\frac{2}{N}$. For $N \gg 1$ we can approximate m as continuous however and thus write the partition function as

$$Z \approx \frac{N}{2} \int_{-1}^{1} \mathrm{d}m \, e^{-\beta F(m)}. \tag{7}$$

We call F(m) the **effective free energy** which depends on T, B and critically, m. This contains more information than F_{thermo} .

Let $f(m) = \frac{1}{N}F(m)$ and thus

$$Z \propto \int_{-1}^{1} \mathrm{d}m \, e^{-\beta N f(m)}. \tag{8}$$

For N large, $\beta f(m) \sim \mathcal{O}(1)$ as it is an **intensive** property (doesn't scale with the system). Performing a saddle point approximation, we can replace f(m) by it's minimum where

$$\left. \frac{\partial f}{\partial m} \right|_{m=m_{\min}} = 0,\tag{9}$$

which gives us a partition function of

$$Z \propto e^{-\beta N f(M_{\min})},$$
 (10)

which gives us a thermodynamic free energy of

$$F_{\text{thermo}}(T, B) \approx F\left(M_{\min}(T, B), T, B\right).$$
 (11)

Even with the saddle point approximation, computing F(m) is hard. One such approach is to use the **mean field approximation** where we replace each spin by the average of the field, $s_i \to m$. This gives

$$E = -\beta \sum_{i} m - J \sum_{\langle ij \rangle} m^2 = -BNm - \frac{1}{2} N J q m^2, \tag{12}$$

where q is the number of nearest neighbours. q = 2d + 2 for a square lattice in d dimensions.

Therefore in the mean field approximation, the partition function becomes

$$Z \approx \sum_{m} \Omega(m) e^{-\beta E[n]},$$
 (13)

where $\Omega(m)$ is the number of configurations with $\frac{1}{N}\sum s_i = m$.