Function Lab

For this exercise, you will write a function and test it with a series of arguments.

Program Requirements

Write a function with two parameters, \boldsymbol{a} and \boldsymbol{b} . It returns true if \boldsymbol{a} is a power of \boldsymbol{b} . That is, if there is some number n such that $\boldsymbol{a}=\boldsymbol{b}^n$. For example, 27 is a power of 3 since 27 = 3^3 , but 27 is not a power of 9; 16 is a power of 4 since $16=4^2$, 16 is also a power of 2 since $16=2^4$, but 16 is not a power of 8, even though it is a multiple of 8.

You are to use the following algorithm: **a** is a power of **b**, if **a** is divisible by **b** and **a/b** is divisible by **b**.

Remember to check for the two default causes (\boldsymbol{a} is a power of \boldsymbol{a} and $\boldsymbol{1}$ is a power of \boldsymbol{a}).

Required tests

Check your function with the following values:

Α	В	Return Value
5	5	True
25	5	True
125	25	False
1	13	True
64	4	True
27	9	False
256	2	True