AM 5650 Nonlinear Dynamics Assignment -2

Due: Feb 24, 2025

- 1. Sketch the phase portraits of the following systems:
 - (a) $\dot{r} = r(1 r^2)(9 r^2), \ \dot{\theta} = 1$
 - (b) $\dot{r} = r^3 4r$, $\dot{\theta} = 1$.
- 2. Consider $\ddot{x} + a\dot{x}(x^2 + \dot{x}^2 1) + x = 0$, where a > 0.
 - (a) Find and classify all the fixed points.
 - (b) Show that the system has a circular limit cycle, and find its amplitude and period.
 - (c) Determine the stability of the limit cycle.
- 3. Show that $\dot{x} = -x + 2y^3 2y^4$, $\dot{y} = -x y + xy$ has no periodic solutions. (Hint: Choose a, m and n such that $V = x^m + ay^n$ is a Lyapunov function.
- 4. Consider $\dot{x} = x y x(x^2 + 5y^2)$, $\dot{y} = x + y y(x^2 + y^2)$.
 - (a) Classify the fixed point at the origin.
 - (b) Rewrite the system in polar coordinates.
 - (c) Determine the circle of maximum radius r_1 , centered on the origin such that all trajectories have a radially outward component on it.
 - (d) Determine the circle of minimum radius r_2 , centered on the origin such that all trajectories have a radially inward component on it.
 - (e) Prove that the system has a limit cycle somewhere in the trapping region $r_1 \leq r \leq r_2$.
 - (f) Using numerical integration, compute the limit cycle and verify that it lies in the trapping region constructed in the previous step.
- 5. Let $\dot{x} = f(x, y)$, $\dot{y} = g(x, y)$ be a smooth vector field defined on the phase plane.
 - (a) Show that is this is a gradient system, then $\partial f/\partial y = \partial g/\partial x$.
 - (b) Is the above condition also sufficient?
 - (c) If f(x,y) = y + 2xy, $g(x,y) = x + x^2 y^2$, prove that closed orbits cannot exist.
 - (d) Find potential function V.
 - (e) Sketch the phase portrait.
- 6. Consider the two-dimensional system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} r^2\mathbf{x}$, where $r = ||\mathbf{x}||$ and \mathbf{A} is a 2×2 constant real matrix with complex eigenvalues $\alpha \pm i\omega$. Prove that there exists at least one limit cycle for $\alpha > 0$ and that there are none for $\alpha < 0$.

Due: Feb 24, 2025

- Date: February 17, 2025 **Assignment -2**
 - 7. Consider the system $\dot{r} = r(1-r^2) + \mu r \cos \theta$, $\dot{\theta} = 1$. Using the Poincare-Benedixson theorem, show that a closed orbit exists for all $\mu < 1$, and it lies somewhere in the annulus $0.999\sqrt{1-\mu} < r < 1.001\sqrt{1+\mu}$. (This was shown in the class). Now using the computer, plot the phase portrait for various values of $\mu > 0$. Is there a critical value μ_c at which the closed orbits ceases to exist? If so, estimate it. If not, prove that a closed orbit exists for all $\mu > 0$.
 - 8. There is a theorem which states that: Let \bar{v} be an equilibrium of $\dot{\mathbf{v}} = \mathbf{f}(\mathbf{v})$. If the real part of each eigenvalue of $\mathbf{Df}(\bar{\mathbf{v}})$ is strictly negative, then $\bar{\mathbf{v}}$ is asymptotically stable. If the real part of at least one eigenvalue is strictly positive, then $\bar{\mathbf{v}}$ is unstable.

Now the one dimensional system $\dot{x} = -x^3$ has an equilibrium at x = 0. Decide whether x = 0 is an asymptotically stable. Does this equation have unique solutions? Find all solutions that satisfy x(0) = 1.

9. Consider the forced damped Duffing oscillator given by $\ddot{x} + 0.1\dot{x} - x + x^3 =$ $2\sin t$. Show that the corresponding undamped unforced system has a double well potential. Plot the potential function.

Write a computer program to plot numerical solutions of the forced damped double-well in the $(x-\dot{x})$ -plane. In particular, locate and plot the attracting periodic orbit of period 2π and the two attracting periodic orbits of period 6π that lie in the region $-5 \le x$, $\dot{x} \le 5$.

10. Use the method of nullclines to determine the global behaviour of solutions for the following system

$$\dot{x} = 3x(1-x) - xy
\dot{y} = 5y(1-y) - 2xy.$$

Describe sets of initial conditions that evolve to distinct final states.