Álgebra 1 - Turma D $-1^{\circ}/2016$

6^a Lista de Exercícios – Anéis

Prof. José Antônio O. Freitas

Anéis

Exercício 1: Consideremos em $\mathbb{Z} \times \mathbb{Z}$ as operações \oplus e \otimes definidas por

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
$$(a,b) \otimes (c,d) = (ac-bd,ad+bc).$$

Mostre que $(\mathbb{Z} \times \mathbb{Z}, \oplus, \otimes)$ é um anel comutativo e com unidade.

Exercício 2: Considere as operações \star e \odot em $\mathbb Q$ definidas por

$$x \star y = x + y - 3$$
$$x \odot y = x + y - \frac{xy}{3}.$$

Mostre que $(\mathbb{Q}, \star, \odot)$ é um anel comutativo e com unidade.

Exercício 3: Prove que são anéis:

- a) O conjunto \mathbb{Z} com a adição usual e o produto $x \otimes y = 0$, para todo $x, y \in \mathbb{Z}$.
- b) O conjunto \mathbb{Q} com as operações $x \oplus y = x + y 1$ e $x \odot y = x + y xy$.
- c) O conjunto $\mathbb{Z} \times \mathbb{Z}$ com as operações:

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
$$(a,b) \otimes (c,d) = (ac,ad+bc).$$

Quais destes anéis são comutativos. Quais têm unidade.

Exercício 4: Ache os elementos inversíveis dos seguintes anéis:

1.
$$(\mathbb{Q}, \oplus, \otimes)$$
 onde $a \oplus b = a + b - 1$ e $a \otimes b = a + b - ab$;

2.
$$(\mathbb{Z} \times \mathbb{Z}, \star, \odot)$$
 onde $(a, b) \star (c, d) = (a + c, b + d)$ e $(a, b) \odot (c, d) = (ac, ad + bc)$.

Exercício 5: Determinar quais dos seguintes subconjuntos de Q são subanéis:

(a)
$$\mathbb{Z}$$
 (c) $C = \left\{ \frac{a}{b} \in \mathbb{Q} \mid a \in \mathbb{Z}, \ b \in \mathbb{Z}, \ 2|b \right\}$

(b)
$$B = \{x \in \mathbb{Q} \mid x \notin \mathbb{Z}\}$$
 (d) $D = \left\{\frac{a}{2^n} \in \mathbb{Q} \mid a \in \mathbb{Z} \in n \in \mathbb{Z}\right\}$

Exercício 6: Quais dos conjuntos abaixo são subanéis de $M_2(\mathbb{R})$?

$$L_{1} = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$L_{2} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

$$L_{3} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$L_{4} = \left\{ \begin{pmatrix} 0 & a \\ c & b \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Exercício 7: Determine todos os subanéis do anel $(\mathbb{Z}_{16}, \oplus, \otimes)$.

Exercício 8: Verifique se $L = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ é um subanel do anel \mathbb{R} .

Exercício 9: Ache todos os ideais do anel \mathbb{Z}_4 , do anel \mathbb{Z}_{12} e do anel \mathbb{Z}_{16} .

Exercício 10: Mostre que a interseção de quaisquer dois ideais de um anel comutativo é sempre um conjunto não vazio. Mostre que esse conjunto não vazio é um ideal também.

Exercício 11: Ache os ideais primos dos anéis \mathbb{Z}_2 , \mathbb{Z}_4 , \mathbb{Z}_5 , \mathbb{Z}_8 e \mathbb{Z}_{10} . O ideal $\{\overline{0}\}$ do anel \mathbb{Z}_4 é primo?

Exercício 12: As seguintes afirmações são verdadeiras ou falsas?

a) $2\mathbb{Z} \subseteq 4\mathbb{Z}$;

e) $3\mathbb{Z} \cap 7\mathbb{Z} = 21\mathbb{Z}$;

b) $3\mathbb{Z} \subseteq 7\mathbb{Z}$;

f) $n\mathbb{Z} \cap m\mathbb{Z} = mn\mathbb{Z}$;

c) $8\mathbb{Z} \subseteq 2\mathbb{Z}$;

g) $2\mathbb{Z} \cup 3\mathbb{Z} = 6\mathbb{Z}$;

d) $2\mathbb{Z} \cap 8\mathbb{Z} = 8\mathbb{Z}$;

h) $2\mathbb{Z} \cup 8\mathbb{Z} = 2\mathbb{Z}$;

Exercício 13: Seja p um número primo. Seja A um ideal de \mathbb{Z} , tal que $p\mathbb{Z} \subseteq A$. Mostre que $A = \mathbb{Z}$ ou $A = p\mathbb{Z}$.

Exercício 14: Sejam m, n inteiros positivos. Mostre que a interseção $m\mathbb{Z} \cap n\mathbb{Z}$ é um ideal de \mathbb{Z} .

Exercício 15: É verdadeiro ou falso que a união de dois ideais de \mathbb{Z} é um ideal de \mathbb{Z} ?

Exercício 16: Sejam A e B dois ideais de \mathbb{Z} . Definimos a soma de ideais

$$A + B = \{a + b \mid a \in A, b \in B\}$$

quando a varia sobre todos os elementos de A e b varia sobre todos os elementos de B. Mostre que a soma de dois ideais de \mathbb{Z} é um ideal de \mathbb{Z} .

Exercício 17: Considere os anéis \mathbb{Z} e $\mathbb{Z} \times \mathbb{Z}$. Verifique se são homomorfismos:

(a)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
 dado por $f(x, y) = (0, y)$

(b)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
 dado por $f(x, y) = y$

(c)
$$f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
 dado por $f(x) = (2x, 0)$

(d)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
 dado por $f(x, y) = (-y, -x)$

(e) $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ dado por f(x) = (0, x)

Exercício 18: Determine o kernel dos homomorfismos do Exercício 17.

Exercício 19: Seja $f: A \to B$ um homomorfismo de anéis. Mostre que:

- (a) Se C é um subanel de A, então f(C) é um subanel de B.
- (b) Se D é um subanel de B, então $f^{-1}(D)$ é um subanel de A.
- (c) Se I é um ideal de A, então f(I) é um ideal de B.
- (d) Se J é um ideal de B e f sobrejetora, então $f^{-1}(J)$ é um ideal de A.

Exercício 20: Dê um exemplo de anéis A e B e um homomorfismo $f:A\to B$ tal que $f(1_A)\neq 1_B$.

Exercício 21: Sejam os anéis $A = \{a + b\sqrt{-2} \mid a, b \in \mathbb{Q}\}\ e\ B = M_2(\mathbb{Q}).$

(a) Mostre que $f: A \to B$ dada por

$$f(a+b\sqrt{-2}) = \begin{pmatrix} a & -2b \\ b & a \end{pmatrix}$$

é um homomorfismo.

(b) f é um isomorfimo?

Exercício 22: É verdadeiro ou falso: \mathbb{Z} e \mathbb{Z}_m para m > 1 são anéis isomorfos.

Exercício 23: Considere os seguintes anéis: $(\mathbb{R}, +, \cdot)$ e $(\mathbb{R}, \oplus, \odot)$, sendo $a \oplus b = a + b + 1$ e $a \odot b = a + b + ab$. Mostre que $f : \mathbb{R} \to \mathbb{R}$ dado por f(x) = x + 1, para todo $x \in \mathbb{R}$, é um isomorfimos de $(\mathbb{R}, \oplus, \odot)$ em $(\mathbb{R}, +, \cdot)$.

Exercício 24: Seja A um anel de integridade. Mostre que se $x \in A$ é tal que $x^2 = 1$, então x = 1 ou x = -1.

Exercício 25: Seja A é um anel de integridade. Mostre que se $x \in A$ é tal que $x^2 = x$, então x = 0 ou x = 1.

Exercício 26: Seja A um anel com unidade tal que $x^2 = x$ para todo $x \in A$. Mostre que A é um anel de integridade se, e somente se, $A = \{0, 1\}$.