Homework #6 (NEURL-GA 3042, Fall 2022)

A firing-rate model of working memory and decision-making Due date: Sunday November 20

Consider a population rate model of a recurrent neural circuit, described in Wang (2002) and Wong and Wang (2006). The code in Python can be found at https://github.com/xjwanglab/book/tree/master/wong2006.

The model has two excitatory neural assemblies. Their mutual interactions are effectively inhibitory through a shared pool of inhibitory neurons (not explicitly present in the reduced two-variable rate model). Let r_1 and r_2 be their respective population-firing rates, and the total synaptic input current I_i and the resulting firing rate r_i of the neural population i obey the following input-output relationship (F - I curve):

$$r_i = F(I_i) = \frac{aI_i - b}{1 - \exp(-d(aI_i - b))}$$
(1)

which captures the current-frequency function of a leaky integrate-and-fire neuron. The parameter values are $a=270~{\rm Hz/nA},\,b=108~{\rm Hz},\,d=0.154~{\rm sec}.$

Assume that the 'synaptic drive variables' s_1 and s_2 obey

$$\frac{ds_1}{dt} = F(I_1)\gamma(1 - s_1) - s_1/\tau_s$$
 (2)

$$\frac{ds_2}{dt} = F(I_2)\gamma(1 - s_2) - s_2/\tau_s$$
 (3)

where $\gamma = 0.641$. $I_1 = g_E s_1 - g_I s_2 + I_{b1} + g_{ext} \mu_1$, $I_2 = g_E s_2 - g_I s_1 + I_{b2} + g_{ext} \mu_2$. The synaptic time constant $\tau_s = 100$ ms. The synaptic coupling strengths $g_E = 0.2609$ nA, $g_I = 0.0497$ nA and $g_{ext} = 0.00052$ nA. Stimulus-selective inputs to populations 1 and 2 are governed by unitless parameters μ_1 and μ_2 , respectively. I_b is the background input which has a mean (I_0) and a noise component described by an Ornstein-Uhlenbeck process:

$$\tau_0 \frac{dI_{b1}}{dt} = -(I_{b1} - I_0) + \eta_1(t)\sqrt{\tau_0 \sigma^2}$$
(4)

$$\tau_0 \frac{dI_{b2}}{dt} = -(I_{b2} - I_0) + \eta_2(t)\sqrt{\tau_0 \sigma^2}$$
 (5)

where $I_0 = 0.3255$ nA, filter time constant $\tau_0 = 2$ ms, and noise amplitude $\sigma = 0.02$ nA; $\eta(t)$ is a Gaussian white-noise with zero mean and unit standard deviation.

Caution: F(I) is given in Hz, but in the s-equations, it should be divided by 1000 so that it has the unit of 1/msec.

- (1) Consider first a delayed response task.
- (a) First, run the model simulation for 500-1000 msec without stimulus ($\mu_1 = \mu_2 = 0$). With the initial condition $s_1 = s_2 = 0$, show that the system is at a resting state, and determine the firing rate at that state.
- (b) After the system has settled in the resting state, show a stimulus ($\mu_1 = 35$, $\mu_2 = 0$) for a brief period of time (say 300 msec), followed by a delay 'memory period' (say for 3 sec). Do you see a 'persistent activity' state, if so with what r_1 and r_2 values in Hz? Repeat the simulation with $\mu_1 = 0$, $\mu_2 = 35$, do you observe another memory state and what are the corresponding r_1 and r_2 in Hz?

Find a way (using a second transient input at the end of the delay period) to switch the system from a memory state back to the resting state.

- (c) Display time courses of $s_1(t)$ and $s_2(t)$, as well as firing rates $r_1(t) = F(I_1)$ and $r_2(t) = F(I_2)$. Also, plot s_1 against s_2 , or r_1 against r_2 that traces a trajectory (each point corresponds to a moment in time) in the two-dimensional 'state space'. Describe what you observe.
- (d) Repeat (b) but now show stimulus 1 as a cue ($\mu_1 = 35$, $\mu_2 = 0$) briefly first, and during the delay show stimulus 2 as a distractor ($\mu_1 = 0$, $\mu_2 = 35$), what do you see?
- (e) Decrease the value of g_E incrementally (by steps of 0.01 nA), and show that persistent activity disappears when the recurrent excitation is below a critical value. What is this critical level of recurrent excitation?
- (2) 'Coin-tossing' simulations with $\mu_1 = \mu_2 = \mu_0 = 30$ (c' = 0). In a decision-making simulation, both μ_1 and μ_2 are presented for a time interval, say from $t_1 = 500$ ms to $t_2 = 1500$ ms ($T = t_2 t_1 = 1$ sec), and your total simulation time should be much longer (say 3 sec). The decision choice is determined according to which of the two active attractors wins the competition.

In different (n) trials (each with a different seed for the random number generator, but always with the same initial condition $s_1 = s_2 = 0.1$), what do you observe? Do you see 50-50 decision outcome if n is large, say n=100-500?

(3) Stimulus-specific stimuli are given by μ_1 and μ_2 . The 'coherence level' is

- defined as $c' = (\mu_1 \mu_2)/(\mu_1 + \mu_2)$. For example, if $\mu_1 = 0.84$ and $\mu_2 = 0.8$, then c' = 0.0244 or 2.44%. Repeat (2) with several c' = 0.032, 0.064, 0.128, 0.256, 0.512, 0.85, 1.0 (for example, with $\mu_1 = \mu_0(1 + c')$ and $\mu_2 = \mu_0(1 c')$). Plot the 'psychometric function', namely the percentage of correct decisions (choice=1 is correct if $\mu_1 > \mu_2$) as a function of $\log(c')$.
- (4) Reaction time task. Set a firing threshold $\theta = 15$ Hz. In any trial, the decision is made whenever one of the two neural populations reaches this threshold first. Run simulations over many trials for each c' as in (3).
 - (a) Show sample time courses of firing rates for different coherence levels.
- (b) Plot the psychometric function, namely the trial-averaged reaction time as a function of $\log(c')$.
- (c) Calculate the standard deviation of the reaction time, as a function of c'. Is the RT standard deviation proportional to its mean?
- (d) Bonus: explore how the decision performance depends on time integration of sensory information, by computing the psychometric curve with varing durations of stimulus presentation (T = 100, 300, 500, 800 ms).

References

- [1] Wong K-F and Wang X-J (2006) A recurrent network mechanism for time integration in perceptual decisions. J. Neurosci 26, 1314-1328.
- [2] Wang X-J (2002) Probabilistic decision making by slow reverberation in neocortical circuits. Neuron 36, 955-968.
- [3] Roitman JD and Shadlen MN (2002) Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J Neurosci 22, 9475-9489.
- [4] Gold, JI and Shadlen MN (2007). The neural basis of decision making. Annu. Rev. Neurosci. 30, 535-574.
- [5] Wang X-J (2008) Decision making in recurrent neural circuits. Neuron 60, 215-234.