

Department of Electrical and Computer Engineering North South University

Senior Design Project Enhancing Ocular Disease Diagnosis in Fundus Images with CNN Models and Deep Learning Approaches

Md. Marop Hossain ID# 2013982042

Md. Zunayed Islam Pranto ID# 1921609642

Faculty Advisor:

Dr. Mohammad Ashrafuzzaman Khan

Assistant Professor

ECE Department

Methodology

System Design

Figure: System Design Diagram.

Data collection

We collected a large dataset of Ocular Disease Intelligent Recognition (ODIR) is a structured ophthalmic database of **5,000 patients** with age, color fundus photographs from left and right eyes and doctors' diagnostic keywords from doctors.

This dataset is meant to represent a "real-life" set of patient information collected by Shanggong Medical Technology Co., Ltd. from different hospitals/medical centers in China.

In these institutions, fundus images are captured by various cameras in the market, such as Canon, Zeiss and Kowa, resulting in varied image resolutions. Annotations were labeled by trained human readers with quality control management. They classify patient into eight labels including:

- Normal (N),
- Diabetes (D),
- Glaucoma (G),
- Cataract (C),
- Age related Macular Degeneration (A),
- Hypertension (H),
- Pathological Myopia (M),
- Other diseases/abnormalities (O)

In this project, we have mainly conducted research on the three common types of disease, such as diabetes retinopathy, glaucoma, and cataract.

CLASSES	IMAGE NO
Cataract	1038
Diabetic retinopathy	1098
Glaucoma	1007
Normal	1074
Total image count	4217

Table: Image Distribution

Dataset Splitting

I split the dataset into three subsets: training, validation, and test sets. The training set (50%) was used to train the model, a validation set (25%) was used to monitor the model's performance during training, and a test set (25%) was used to evaluate the model's performance on unseen data.

DIVIDED SET	IMAGE NO
Training set (50%)	2108
Validation set (25%)	1052
Testing set (25%)	1057
Total image count	4217

Table: Dataset Distribution.

1.1.2 Deep learning algorithm

The next step was to choose a deep learning algorithm to train the model. A variety of deep learning algorithms could be used for image classification, but convolutional neural networks (CNNs) were particularly well-suited for this task. CNNs are a type of neural network that are able to learn spatial features from images.

We used CNN and four deep learning-based models for targeted ocular disease diagnosis. For this project, we trained cutting-edge classification algorithms such as **EfficientNetV2S**, **DenseNet- 121**, **ResNet-50**, and **ResNeXt-50** on the ODIR dataset consisting of **4217** fundus images that belonged to **4 different classes** such as **normal**, **cataract**, **glaucoma**, and **diabetic retinopathy**. Each of these classes represented a different ocular disease.

Our CNN model architecture involved convolutional layers, activation functions (ReLU and softmax), max-pooling layers, dropout layers, hidden fully connected layers, and the output layer. The model also used the Adam and RMSProp optimizers and a categorical cross-entropy loss function. Hyperparameters such as batch size, learning rate, and the number of epochs were also used.

1.1.3 Hyperparameter choice and training

After we had chosen a deep learning algorithm, the next step was to select the hyperparameters for the model. Hyperparameters were parameters that controlled the training process, such as the learning rate and the number of epochs. We chose the hyperparameters using a process called grid search. Once the hyperparameters had been chosen, we trained the model on the training set.

Hyperparameter	EfficientNetV2S	ResNet50	DenseNet121	ResNeXt50
Data Augmentation	RandomFlip(horizont al), RandomRotation(0.1) , RandomContrast(0.1)	RandomFlip(horizo ntal), RandomRotation(0. 1), RandomContrast(0. 1),	RandomFlip(hori zontal), RandomRotation(0.1), RandomContrast(0.1), RandomCrop(hei ght=160,width=160)	RandomFlip(horizo ntal), RandomRotation(0. 1), RandomContrast(0. 1), RandomCrop(heigh t=160,width=160), RandomZoom(0.2)

Input shape	(160, 160, 3)	(160, 160, 3)	(160, 160, 3)	(160, 160, 3)
Base Model	EfficientNetV2S	ResNet50(pre-trained)	DenseNet121(pre -trained)	ResNeXt50(pre-trained)
Base Model Trainable	True	True	True	True
Re-scaling	1./255	1./255	1./255	1./255
Batch Normalization	Yes	Yes	Yes	Yes
Dense Layer Units	256	256	256	256
Dense Layer Activation	ReLU	ReLU	ReLU	ReLU
Kernel Regularizer	L2(0.016)	L2(0.001)	L2(0.001)	L2(0.001)
Bias Regularizer	L1(0.006)	L1(0.001)	L1(0.001)	L1(0.001)
Activity Regularizer	L1(0.006)	L1(0.001)	L1(0.001)	L1(0.001)
Dropout Rate	40%	50%	40%	50%
Optimizer	Adamax(LR=0.001)	Adam(LR=0.0001)	Adam(LR=0.00 001)	Adam(LR=0.000 1)
Loss Function	Categorical Cross- Entropy	Categorical Cross-Entropy	Categorical Cross-Entropy	Categorical Cross-Entropy
Number of Epochs	200	200	300	250
Early Stop Epochs (before overfitting)	88	82	131	41
Best Epoch (model return after complete execution)	78	72	121	31
Model Checkpoint	yes	yes	yes	yes
Early Stopping	monitor='val_loss', mode='min', verbose=1, patience=10, min_delta=0.001	monitor='val_loss', mode='min', verbose=1, patience=10, min_delta=0.001	monitor='val_1 oss', mode='min', verbose=1, patience=10, min_delta=0.00	monitor='val_los s', mode='min', verbose=1, patience=10, min_delta=0.001
Learning Rate	ReduceLRonPlatea	ReduceLRonPlate	ReduceLRonPl	ReduceLRonPlat

Scheduler	u(monitor='val_los s, factor=0.2, patience=3, verbose=1, mode='min' min_lr=0.00001)	au(monitor='val_l oss, factor=0.2, patience=3, verbose=1, mode='min' min_lr=0.00001)	ateau(monitor=' val_loss, factor=0.2, patience=5, verbose=1, mode='min' min_lr=0.00001)	eau(monitor='val _loss, factor=0.2, patience=3, verbose=5, mode='min' min_lr=0.00001)
Learning Rate	initial : 0.001	initial : 0.0001	initial : 0.00001	initial : 0.0001
CSV Logger	yes	yes	yes	yes

Table 3.1.6: Different types of Hyperparameter of all models.

Investigation/Experiment, Result, Analysis

We investigated the performance of four deep learning models, EfficientNetV2S, ResNet50, DenseNet121 and ResNext50, on an ocular disease project. We trained all models with data augmentation and evaluated their performance on a held-out validation set.

Result:

Model	Training						
	Best Epoch	AUC	Precision	Recall	F1-score	categorical accuracy	Loss
EfficientNetV2S	78/200	1.00	1.00	0.99	0.99	1.00	0.18
ResNet50	73/200	1.00	0.99	0.99	0.99	0.99	0.34
DenseNet121	121/300	0.99	0.99	0.99	0.99	0.99	0.47
ResNeXt50	31/250	0.99	0.95	0.92	0.93	0.94	0.78

Table: Performance accuracy during training of four models

	EfficientNetV2S	ResNet50	DenseNet121	ResNeXt50
Categorical accuracy	100%	99.96%	99.16%	94.35%
validation categorical accuracy	98.58%	98.39%	84.03%	64.92%
AUC percentage difference	7.67%	3.98%	2.79%	11.11%
Accuracy percentage difference	1.42%	1.56%	15.24%	31.19%
Total testing images	1057	1057	1057	1057

Misclassified test images 23	32	163	377
------------------------------	----	-----	-----

	97.82%	96.98 %	84.59%	64.33%
on the test set				

Table: accuracy comparison of training, testing, and validation sets of four models

EfficientNetV2S

EfficientNetV2S training and validation accuracy:

Figure: Training and validation accuracy Graph of EfficientNetV2S

EfficientNetV2S confusion matrix:

Figure: confusion matrix of EfficientNetV2S

EfficientNetV2S Classification report:

	Precision	Recall	F1-score	Support
Cataract	1.0000	0.9962	0.9981	260
Diabetic Retinopathy	0.9683	1.0000	0.9839	275
Glaucoma	0.9714	0.9407	0.9558	253
Normal	0.9740	0.9704	0.9704	269
Micro Avg	0.9782	0.9782	0.9782	1057
Macro Avg	0.9784	0.9777	0.9779	1057
Weighted Avg	0.9783	0.9782	0.9781	1057
Samples Avg	0.9782	0.9782	0.9782	1057

Table: Classification report of EfficeintNetV2S

ResNet50

ResNet50 training and validation accuracy:

Figure: Training and validation accuracy Graph of ResNet50

ResNet50 confusion matrix:

Figure: confusion matrix of ResNet50

ResNet50 Classification report:

	precision	recall	f1-score	support
cataract	1.0000	0.9962	0.9981	260
diabetic_retinopathy	0.9649	1.0000	0.9821	275
glaucoma	0.9868	0.8893	0.9356	253
normal	0.9333	0.9888	0.9603	269
micro avg	0.9697	0.9697	0.9697	1057
macro avg	0.9713	0.9686	0.9690	1057
weighted avg	0.9708	0.9697	0.9693	1057
samples avg	0.9697	0.9697	0.9697	1057

Table: Classification report of ResNet50

DenseNet121

DenseNet121 training and validation accuracy:

Figure: Training and validation accuracy Graph of DenseNet121

DenseNet121 confusion matrix:

Figure: confusion matrix of DenseNet121

DenseNet121 Classification report:

	precision	recall	f1-score	support
cataract	0.9219	0.9538	0.9376	260
diabetic retinopathy	0.9483	1.0000	0.9735	275
glaucoma	0.6566	0.9447	0.7747	253
normal	0.9851	0.4907	0.6551	269
micro avg	0.8458	0.8458	0.8458	1057
macro avg	0.8780	0.8473	0.8352	1057
weighted avg	0.8813	0.8458	0.8360	1057
samples avg	0.8458	0.8458	0.8458	1057

Table: Classification report of DenseNet121

ResNeXt50

ResNeXt50 training and validation accuracy:

Figure: Training and validation accuracy Graph of ResNeXt50

ResNeXt50 confusion matrix:

Figure: confusion matrix of ResNeXt50

ResNeXt50 Classification report:

	Precision	Recall	F1-score	Support
Cataract	0.8333	0.5769	0.6818	260
Diabetic retinopathy	0.8482	0.6909	0.7615	275
Glaucoma	0.5051	0.5929	0.5455	253
Normal	0.5337	0.7063	0.608	269
Micro avg	0.6433	0.6433	0.6433	1057
Macro avg	0.6801	0.6418	0.6492	1057
Weighted avg	0.6824	0.6433	0.6511	1057
Samples avg	0.6433	0.6433	0.6433	1057

Table: Classification report of ResNeXt50

Analysis

We evaluated the performance of four deep learning models (ResNet50, EfficientNetV2S, DenseNet121, and ResNeXt50) for the classification of ocular diseases diagnosis. We tested the

models on a dataset of **1057 fundus images**, labeled with one of four classes: **cataract**, **diabetic retinopathy**, **glaucoma**, **and normal**.

As you saw, [section 4.2, Table 4.2 (b): accuracy comparison of training, testing, and validation sets of four models] EfficientNetV2S achieved the highest accuracy on the testing and validation sets, which were 97.82% and 98.58%, respectively. ResNet50 also performed well, with a testing accuracy of 96.98% and a validation accuracy of 98.39%. DenseNet121 and ResNeXt50, on the other hand, performed significantly worse, with testing accuracy of 84.58% and 64.33% and validation accuracy of 84.03% and 64.92%, respectively.

Also, we can see that ResNet50 and EfficientNetVS2 outperformed the other models in our project, with categorical accuracies of **99.95%** and **100%**, respectively. *This indicates that they were able to correctly classify almost all of the images in the dataset.* DenseNet121 performed slightly worse, with a categorical accuracy of 99.15%, while ResNeXt-50 had the lowest categorical accuracy at 94.35%.

- EfficientNetV2S misclassified **23 test images**, resulting in a prediction accuracy of 97.82%.
- ResNet50 misclassified **32 test images**, resulting in a prediction accuracy of 96.97%.
- DenseNet121 misclassified **163 test images**, resulting in a prediction accuracy of 84.58%.
- ResNeXt-50 misclassified **377 test images**, resulting in a prediction accuracy of 64.33%.
- EfficientNetV2S had the best precision and recall values [section 4.2, Table 4.2 (a): Performance accuracy during training of four models], followed by ResNet50 and DenseNet121. ResNeXt-50 had the lowest precision and recall values.

EfficientNetV2S vs. ResNet50 for Glaucoma and Normal Image Prediction [section 4.2, 4.2.1 EfficientNetV2S (EfficientNetV2S confusion matrix) and 4.2.2 ResNet50 (ResNet50 confusion matrix)]

Now, we compared the performance of our two best state-of-the-art deep learning models, EfficientNetV2S and ResNet50, on a four-class classification task of normal, cataract, diabetic retinopathy, and glaucoma images. Using the validation set, ResNet50 correctly predicted cataract, diabetic retinopathy, and normal class images but misclassified 16 glaucoma images. EfficientNetV2S, on the other hand, correctly predicted all cataract, diabetic retinopathy, and

glaucoma images but misclassified 14 normal images. Based on these results, we concluded that ResNet50 is not well suited for predicting glaucoma images, while EfficientNetV2S is not well suited for predicting normal images.