Tout savoir sur le K nearest neighbors

Partie 1 : La théorie

Présenté par **Morgan Gautherot**

Problème de classification

	Nb d'e-mails ouverts (x_1)	Nb de produits achetés (x_2)	Panier moyen (x_3)	Ouverture de l'e- mail (y)
1	12	3	120	1
2	0	1	40	0
3	30	10	1800	1
4	14	5	799	1
m	25	2	260	0

Jeu d'entraînement pour la prédiction de prix de maison

Utiliser les distances

Panier moyen

- 1. Sélectionnez le nombre de k voisins
- 2. Calculez la distance
- 3. Prenez les K voisins les plus proches
- 4. Attribuez la prédiction au nouveau point

Sur-apprentissage

Sous-apprentissage

Augmentation de la valeur de K

Valeurs aberrantes

K est une valeur impaire

$$K = 6$$

3 rouge

3 Bleu

- 1. Sélectionnez le nombre de k voisins
- 2. Calculez la distance
- 3. Prenez les K voisins les plus proches
- 4. Attribuez la prédiction au nouveau point

Qu'est ce qu'une distance?

$$d(x,y) = \sum_{i=1}^{n} (y_i - x_i)^2$$

$$d(x,y) = (\sum_{i=1}^{m} |x_i - y_i|)$$

$$d(x,y) = (\sum_{i=1}^{n} |x_i - y_i|)^{1/p}$$

Standardisation des données

$$x_{std} = \frac{x - mean(x)}{std(x)}$$

- 1. Sélectionnez le nombre de k voisins
- 2. Calculez la distance
- 3. Prenez les K voisins les plus proches
- 4. Attribuez la prédiction au nouveau point

K plus proche voisins

K = 5

Panier moyen

K plus proche voisins

K = 5

Multidimensional binary search trees used for associative searching

Author: Jon Louis Bentley Authors Info & Claims

Communications of the ACM, Volume 18, Issue 9 • Sept. 1975 • pp 509-517 • https://doi.org/10.1145/361002.361007

Five Balltree Construction Algorithms

Title	Five Balltree Construction Algorithms	
Publication Type	Technical Report	
Year of Publication	1989	
Authors	Omohundro, S.	
Other Numbers	562	
Abstract	Balltrees are simple geometric data structures with a wide range of practical applications to geometric learning tasks. In this report we compare 5 different algorithms for constructing balltrees from data. We study the trade-off between construction time and the quality of the constructed tree. Two of the algorithms are on-line, two construct the structures from the data set in a top down fashion, and one uses a bottom up approach.	
URL	http://www.icsi.berkeley.edu/ftp/global/pub/techreports/1989/tr-89-063.pdf	

K plus proche voisins

K = 5

- 1. Sélectionnez le nombre de k voisins
- 2. Calculez la distance
- 3. Prenez les K voisins les plus proches
- 4. Attribuez la prédiction au nouveau point

La prédiction pour la classification

K = 5

3 rouge

2 Bleu

La prédiction pour la régression

$$K = 5$$

79k

Surface

Avantages et inconvénients

- Facile à comprendre
- Facile à adapter
- Très peu d'hyperparamètre

- Ne scale pas bien
- Souffre de la curse of dimensionality
- Surentraîne facilement