Week 14: Whole-cell models; Digital evolution

- Genome-scale metabolic models
 - Reconstruction
 - Flux balance analysis
- Artificial life

Glycolysis:

$$2 \text{ ATP} + 2 \text{ADP} + 2 \text{ Pi} \quad 4 \text{ ATP}$$

$$C_6 H_{12} O_6 + 2 \text{ NAD} \longrightarrow 2 C_3 H_4 O_3 + 2 \text{ NADH}$$
glucose pyruvate

Oxidative decarboxylation:

Genome-scale metabolic network reconstruction & model

Genome-scale metabolic network **reconstruction**:

- A collection of biochemical transformation derived from the genome annotation and the literature of a particular organism.
- Formed based on an organism-specific knowledge base.
- A network reconstruction is unique to an organism.

Genome-scale metabolic network **model**:

 Derived from a reconstruction by converting it into a mathematical form (i.e., an in silico model) and by assessing its phenotypic properties computationally.

Genome-scale metabolic network reconstruction & model

3. Directing hypothesis-driven discovery

A Metabolic GENRE aided in determining pathway usage and discovering a novel citramalate synthase gene in *G. sulfurreducens*. GENREs have also helped study the effects of transposons on downstream genes, and identify transc riptional timing patterns in *S. cerevisiae*.

2. Guidance of metabolic engineering

Metabolic GENREs guided efforts to engineer malate and succinate producing strains of *S. cerevisiae* and *M. succiniciproducens*. GENREs have also helped determine ways to increase the respiration rate of *G. sulfurreducens* and scale-up vaccine production against *N. meningitides*.

Draft construction

Genome databases

Comprehensive Microbial

http://cmr.jcvi.org/cgi-bin/CMR/CmrHomePage.cgi

Resource (CMR)

Genomes OnLine Database (GOLD) http://www.genomesonline.org/

TTGR

http://www.tigr.org/db.shtml

NCBI Entrez Gene

http://www.ncbi.nlm.nih.gov/sites/entrez

SEED database³²

http://theseed.uchicago.edu/FIG/index.cgi

Biochemical databases

KEGG⁴¹ http://www.genome.jp/kegg/

BRENDA⁴² http://www.brenda-enzymes.info/

Transport DB89 http://www.membranetransport.org/

PubChem86 http://pubchem.ncbi.nlm.nih.gov/

Transport Classification Database (TCDB)

http://www.tcdb.org/

pK Plugin http://www.chemaxon.com/product/pka.html

 pK_a DB

http://www.acdlabs.com/products/phys chem lab/ pka/

1. Draft reconstruction

1 Obtain genome annotation.

2l Identify candidate metabolic functions.

3l Obtain candidate metabolic reactions.

4 Assemble draft reconstruction.

5l Collect experimental data.

Organism-specific databases

Ecocyc⁴³ http://ecocyc.org/

PyloriGene³⁷ http://genolist.pasteur.fr/PyloriGene

Gene Cards http://www.genecards.org/

Protein localization databases

PSORT⁴⁷ http://www.psort.org/psortb/

http://www.cs.ualberta.ca/~bioinfo/PA/Sub/ PA-SUB⁴⁸

Bio-numbers

CvberCell Database (CCDB)88

http://redpoll.pharmacy.ualberta.ca/CCDB/cqi-bin/ STAT_NEW.cqi

B10NUMB3R5

http://bionumbers.hms.harvard.edu/

Thiele & Palsson (2010) Nat. Protoc.

Refinement of draft construction

2. Refinement of reconstruction

- 6l Determine and verify substrate and cofactor usage.
- 7l Obtain neutral formula for each metabolite.
- 8l Determine the charged formula.
- 9l Calculate reaction stoichiometry.
- 10l Determine reaction directionality.
- 111 Add information for gene and reaction localization.
- 12l Add subsystems information.
- 13l Verify gene-protein-reaction association.
- 14l Add metabolite identifier.
- 15l Determine and add confidence score.
- 16l Add references and notes.
- 17l Flag information from other organisms.
- 18l Repeat Steps 6 to 17 for all genes.
- 19l Add spontaneous reactions to the reconstruction.
- 20l Add extracellular and periplasmic transport reactions.
- 211 Add exchange reactions.
- 22l Add intracellular transport reactions.
- 23l Draw metabolic map (optional).
- 24–32l Determine biomass composition.
 - 33l Add biomass reaction.
 - 34l Add ATP-maintenance reaction (ATPM).
- 35l Add demand reactions.
- 36l Add sink reactions.
- 37l Determine growth medium requirements.

Thiele & Palsson (2010) Nat. Protoc.

Refinement of draft construction

Mass & charge balancing; Filling-in H⁺ & water; adjusting metabolites to a particular pH

Refinement of draft construction

Subcellular localization

Compartment	Commonly used symbol [#]	Achaea	Bacteria	Eukaryotic pathogens ^a	Fungi ^b	Photosynthetic eukarya°	Baker's yeast	Human
Extracellular space	[e]							
Periplasm	[p]							
Cytoplasm	[c]							
Nucleus	[n]							
Mitochondrion	[m]							
Chloroplast	[h]							
Lysosome*	[1]							
Vacuole	[v]							
Golgi apparatus	[g]							
Endoplasmatic	[r]							

Gene-protein-reaction associations

Refinement of draft construction

Chemical composition of a cell

Cellular component	Cellular content %(wt/wt)					
Protein	55					
RNA	20.5					
DNA	3.1					
Lipids	9.1					
Lipopolysaccharides	3.4					
Peptidoglycan	2.5					
Glycogen	2.5					
Polyamines	0.4					
Other	3.5					
Total	100.00					

Identification of missing functions

Refinement of draft construction

Evidence type	Confidence score	Examples
Biochemical data	4	Direct evidence for gene product function and biochemical reaction: protein purification, biochemical assays, experimentally solved protein structures and comparative gene-expression studies (e.g., Chhabra <i>et al.</i> ⁹⁵)
Genetic data	3	Direct and indirect evidence for gene function: knockout characterization, knock-in characterization and overexpression
Physiological data	2	Indirect evidence for biochemical reactions based on physiological data: secretion products or defined medium components serve as evidence for transport and metabolic reactions
Sequence data	2	Evidence for gene function: genome annotation and SEED annotation ³²
Modeling data	1	No evidence is available, but reaction is required for modeling. The included function is a hypothesis and needs experimental verification. The reaction mechanism may be different from the included reaction(s)
Not evaluated	0	

Genome-scale metabolic network reconstruction & model

Genome-scale metabolic network **reconstruction**:

- A collection of biochemical transformation derived from the genome annotation and the literature of a particular organism.
- Formed based on an organism-specific knowledge base.
- A network reconstruction is unique to an organism.

Genome-scale metabolic network **model**:

 Derived from a reconstruction by converting it into a mathematical form (i.e., an in silico model) and by assessing its phenotypic properties computationally.

Flux balance analysis (FBA)

FBA: metabolic network \rightarrow linear programming optimization problem.

The main constraints in FBA: steady-state mass conservation of metabolites.

- Relies on balancing metabolic fluxes
- Is based on the fundamental law of mass conservation
- Is performed under steady-state conditions (an example of constraint...)
- Requires information only about:
 - a. the stoichiometry of metabolic pathways,
 - b. metabolic demands, and
 - c. a few strain specific parameters
- Does NOT require enzymatic kinetic data

The results of FBA on a metabolic network of the top six reactions of glycolysis.

- The predicted flux through each reaction is proportional to the width of the line.
- **Red springy arrow**: Objective function; **Red bars**: Constraints on α -D-glucose and β -D-glucose import.

Non-lethal gene deletion in a metabolic network.

 Flux through the objective function is halved but is still present.

Lethal gene deletion in a metabolic network.

 No flux through the objective function → pathway is no longer functional.

1. Reaction network formalism

Chemical reactions

<u>Internal</u>	Exchange
$R1: -1 A \rightarrow 1 B$	R4: 1 A
$R2: -1 B \rightarrow 1 C$	<i>R</i> 5: −1 B
R3: -1 C → 1 B	R6: −1 C
	<i>R</i> 7: 1 C

	<i>R</i> 1	R2	R3	R4	R5	R6	R7
Α	-1	0	0	1	0	0	0
В	1	-1	1	0	-1	0	0
С	0	1	-1	0	0	-1	1

1. Reaction network formalism

	_ <i>R</i> 1	R2	R3	R4	R5	R6	R7 _
Α	-1	0	0	1	0	0	0 0 1
В	1	-1	1	0	-1	0	0
С	0	1	-1	0	0	-1	1]

2. FBA formulation

$$\frac{\mathrm{d}C}{\mathrm{d}t} = \mathbf{S}\mathbf{v}$$

Concentration

: Time

Stoichiometric matrix

: Flux vector

$$Sv = 0$$

LP formulation

Objective: $\max Z = \mathbf{c} \cdot \mathbf{v}$

Constraints:

$$\begin{bmatrix} V_1 \\ \vdots \\ V_7 \end{bmatrix} = \mathbf{0}$$

$$0 \le v_1, \dots, v_7 \le 10$$