CSF364 Design & Analysis of Algorithms

ALGORITHM DESIGN TECHNIQUES

Matrix-Chain Multiplication: Problem Definition

Example - Matrix-Chain Multiplication

- Consider the following expression:
 - M₁ * M₂ * M₃
 o where M_i is a matrix of dimensions p_{i-1} * p_i for j = 1 to 3
- Matrix Multiplication is associative
 - i.e. (M₁ * M₂) * M₃ = M₁ * (M₂ * M₃)
 Exercise: Prove this.
- Then the above expression can be evaluated
 - either as (M₁ * M₂)* M₃
 - o using $(p_0 * p_1 * p_2) + (p_0 * p_2 * p_3)$ scalar multiplications
 - or as M₁ * (M₂ * M₃)
 - o using $(p_1 * p_2 * p_3) + (p_0 * p_1 * p_3)$ scalar multiplications

Example - Matrix-Chain Multiplication

- Consider the following generalized expression:
 - M₁ * M₂ * ... * M_n
 o where M_j is a matrix of dimensions p_{j-1} * p_j for j = 1 to n

• Problem:

- Given the above expression, how do we minimize the number of scalar multiplications?
 - o This depends on the way the expression is parenthesized (which determines the order of evaluation)

Openition:

- Given a chain $(M_1 * M_2 * ... * M_n)$ of n matrices, where for j = 1 to n, M_j is a matrix of dimensions $p_{j-1} * p_j$
- find the optimal parenthesization
 - o i.e. the parenthesization resulting in minimal number of scalar multiplications

EXAMPLE - McM - Brute Force Solution

- Algorithm BF_MCM:
 - Find all possible parenthesizations
 - For each possible parenthesization, count the scalar multiplications required.
 - Find the minimum among these counts.
- o Time Complexity:
 - O(Par(n)) where Par(n) is the number of possible parethesizations.
 - Each parenthesization is a parse tree: e.g.

EXAMPLE - McM - Brute Force Solution

- What is Par(n)?
 - A chain of n matrices can be split between the k^{th} and $(k+1)^{st}$ matrices for any k = 1, 2, ...n-1;
 - Then the sub-chains can be parenthesized independently
- o Thus Par(n) =
 - 1 if n=1
 - $\sum_{k=1 \text{ to } n-1} Par(k) * Par(n-k)$ if n>=2
- Par(n) grows at the same rate as B(n)
 - where B(n) is the number of different binary trees with n nodes and
 - $B(n) = \Omega (4^n / n^{3/2})$ // see Problem 12-4 in Cormen et. al.
- o Conclusion: Time taken by BF_MCM is exponential in n.