гогенических средств — дыхательных упражнений и дозированной гиповентиляции в виде задержек дыхания. При этом эргогенические средства следует применять дифференцированно, в соответствии с игровой специализацией футболистов, так как эти средства обладают различной направленностью воздействия.

Дыхательные упражнения, направленные на увеличение легочных объемов, силы и выносливости дыхательной мускулатуры, обеспечивающие повышение уровня аэробных возможностей организма, целесообразны в тренировке полузащитников и защитников. Гиповентиляция в виде дозированных задержек дыхания, совершенствующая устойчивость к гипоксии, оптимизирующая развитие анаэробных механизмов энергообеспечения и мобилизующая аэробный механизм энергообеспечения, важна в тренировочных программах нападающих, полузащитников и вратарей. Дифференцированное, в соответствии с игровой специализацией, использование эргогенических средств в тренировке юных футболистов позволяет усиливать тренировочный эффект от применения традиционных тренирующих воздействий и обеспечивает акцентированное и целенаправленное развитие доминантных для каждого игрового амплуа компонентов функциональных возможностей.

ЛИТЕРАТУРА

- 1. Кириллов, А.А. Исследование физической работоспособности футболистов : автореф. дис. ... канд. пед. наук / Кириллов А.А. М., 1978. 18 с.
- 2. Солопов, И.Н. Оптимизация адаптации посредством направленных воздействий на дыхательную функцию / И.Н.Солопов // Проблемы оптимизации функциональной подготовленности спортсменов. Вып. 2. Волгоград, 2006. С. 4-13.
- 3. Шамардин, А.И. Оптимизация функциональной подготовленности футболистов / А.И. Шамардин. Волгоград : [б.и.], 2000. 276 с.

СТОХАСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РОЗЫГРЫША МЯЧА В ТЕННИСЕ

Николай Петрович Штуркин, заведующий кафедрой,

Северо-Кавказская межотраслевая академия повышения квалификации, подготовки и переподготовки кадров г. Краснодар

Аннотация

В работе предложена стохастическая модель розыгрыша мяча в теннисе. Модель относится к вероятностным моделям, типичным для представлений, принятых в теории массового обслуживания и теории игр.

Ключевые слова: стохастическая модель, теннис, розыгрыш мяча.

STOCHASTIC MODELLING OF BALL PLAYOFF IN TENNIS

Nikolay Petrovich Shturkin, managing faculty,

The North-Caucasian Interbranch Academy of Improvement of Professional Skill,
Preparations and Retrainings of Personnel,
Krasnodar

Abstract

In the work stochastic model of draw of ball in tennis is offered. Model will concern to probabilistic models typical for representations of games taken in theory of queuing and theory.

Key words: stochastic models, tennis, draw of a ball.

ВВЕДЕНИЕ

В литературе, освещающей анализ турнирной практики теннисистов, приводятся как экспертные оценки результатов турниров, так и прогнозы их возможных исходов [4, 3]. Количественные оценки ограничены в основном статистическими данными результатов турнира и рейтинговыми оценками уровня игры теннисистов. Модельные

представления исходят из количественных оценок уровня игры теннисиста в контексте абстрактного представления процесса самой игры. Примером классификации теннисистов по уровню игры может служить [1] классификационная система Национальной теннисной рейтинговой программы (NTRP) представляющая разные уровни Лиги USTA (Теннисной ассоциации США). Оценкой потенциальных возможностей теннисиста могут быть модельные параметры, отражающие уровень его мастерства.

Моделирование в теннисе является трудно формализуемой задачей, допускающей различные подходы. Элементарный фрагмент игры — розыгрыш мяча, в своей сущности, является единством случайного и не случайного. Не случайное - это техническое мастерство, уровень физической подготовки, психологической устойчивости и многое другое. Именно множество этих факторов, подверженных изменениям во времени и трудно предсказуемых, заставляют учитывать вероятностный характер розыгрыша мяча.

ПОСТАНОВКА ЗАДАЧИ

Предлагается динамическая, стохастическая модель розыгрыша мяча в виде случайного процесса изменения состояний игровых ситуаций.

Параметрами модели являются интенсивности потоков характерных действий теннисистов. Теннисист рассматривается как генератор потоков трех видов: потока не вынужденных ошибок, потока активностей, приводящих к вынужденной ошибке противника, и потока стабильностей, действий удержания мяча в игре.

Опишем стратегию розыгрыша мяча в терминах теории игр.

Всякая претендующая на адекватность игровая математическая модель должна отражать присущие ей черты конфликта и стратегии действий игроков с целью перевода игровой системы в выгодное для игрока поглощающее состояние. Формализация содержательного описания конфликта представляет собой его математическую модель, которую назовем игрой.

Представим розыгрыш мяча в виде системы характерных ситуационных игровых состояний «А», «В», «VА», «VВ», представленных в виде графа (рис. 1).

Ограничимся упрощенным представлением игры, когда будущая игровая ситуация зависит от настоящей и не зависит от предыдущей игровой ситуации. Такая формализация допускает моделирование игрового процесса марковским случайным процессом. Допуская так же однородность, ординарность и отсутствие последействия для потоков активностей, стабильностей и не вынужденных ошибок, определим эти потоки как пуассоновские [2].

Рис. 1. Граф характерных ситуационных игровых состояний

На рис. 1 использованы следующие обозначения: A – состояние системы, определяемое действиями игрока "A":

- выигрыш игрока "A" и переход системы в поглощающее состояние VA, определяемое интенсивностью потока активностей a_{β} ;

- переход системы в состояние B, определяемое действиями игрока "B", с интенсивностью стабильности a_{σ} ;
- проигрыш игрока "A" (выигрыш игрока "B"), переход в поглощающее состояние VB с интенсивностью не вынужденных ошибок а,;

Аналогично опишем состояние системы В, определяемое действиями игрока "В":

- выигрыш игрока "В" и переход системы в поглощающее состояние VB, определяемое интенсивностью потока активностей b_{β} ;
- переход системы в состояние ${\rm \ddot{A}}$, определяемое действиями игрока "A", с интенсивностью стабильности ${\rm \dot{b}}_a$:
- проигрыш игрока "В" (выигрыш игрока "A"), переход в поглощающее состояние VA с интенсивностью не вынужденных ошибок b_v;

Примем для упрощения анализа интенсивности потоков в промежуток времени розыгрыша мяча постоянным, не зависящим от времени. В общем случае интенсивность потока может быть функцией времени.

Воспользовавшись разработанным аппаратом анализа марковских процессов, опишем граф рис 1. системой дифференциальных уравнений Колмогорова [2] относительно функций вероятностей $p_a(t)$, $p_b(t)$, $p_{vb}(t)$, $p_{va}(t)$ пребывания системы в соответствующих состояниях.

Начальные условия: $p_a(0)$ = ηa ; $p_b(0)$ = ηb ; $p_{vb}(t)$ =0; $p_{va}(t)$ =0;

где: ηа =1; ηb=0 подача игрока "A"; ηа =0; ηb=1 подача игрока "B".

$$\begin{split} \frac{d}{dt}p_a(t) &= b_\alpha \cdot p_b(t) - (a_{\alpha+}a_{\beta+}a_{\gamma}) \cdot p_a(t) \\ \frac{d}{dt}p_b(t) &= a_\alpha \cdot p_a(t) - (b_\alpha + b_\beta + b_\gamma) \cdot p_b(t) \\ \frac{d}{dt}p_{\nu b}(t) &= a_\gamma \cdot p_a(t) + b_\beta \cdot p_b(t) \\ p_a(t) &+ p_b(t) + p_{\nu a}(t) + p_{\nu b}(t) = 1 \end{split}$$

АНАЛИЗ РЕЗУЛЬТАТОВ

Благодаря своей предельной простоте стохастическая модель розыгрыша мяча, представленная системой уравнений (1), имеет аналитическое решение. Качественно решение описывается переходным и установившимся процессом. С течением времени вероятностные процессы стремятся к своим асимптотическим значениям. Представляют практический интерес асимптотические значения вероятностей поглощающих состояний VA и VB. Обозначим их, соответственно, значениями:

 $D_{"A"}$ – вероятность выигрыша игрока "A";

 $D_{B''}$ – вероятность выигрыша игрока "В".

Из решения уравнений (1) следует, что в рамках принятых модельных представлений вероятности выигрыша мяча игроками "A" и "B" асимптотически стремятся к величинам:

$$\begin{split} D_{\text{"}_{A}\text{"}} = & \frac{\eta a \cdot (a_{\beta} \cdot B + b_{\gamma} \cdot a_{\alpha}) + \eta b \cdot (a_{\beta} \cdot b_{\alpha} + b_{\gamma} \cdot A)}{A \cdot B - a_{\alpha} \cdot b_{\alpha}}; D_{\text{"}_{B}\text{"}} = 1 - D_{\text{"}_{A}\text{"}}; \\ \text{где: } A = & a_{\alpha} + a_{\beta} + a_{\gamma}; \ B = & b_{\alpha} + b_{\beta} + b_{\gamma}. \end{split}$$

Представляют интерес так же временные параметры розыгрыша мяча в зависимости от коэффициентов интенсивностей потоков характерных действий теннисистов.

Разработана программа анализа поведения стохастической модели. Результаты исследования модели представлены в таблице.

Таблица

Результаты исследования модели

							- 7 1		
№ п/п роз. мяча	a_{α}	a_{eta}	a_{γ}	b_{α}	b_{β}	b_{γ}	ηа	$D_{"A}$ "	Время розы- грыша (услов- ные единицы)
1	0,43	0,45	0,28	0,45	0,51	0,35	1	0,558	3,2
2	0,43	0,45	0,28	0,45	0,51	0,35	0	0,459	2,95
3	0,33	0,16	0,43	0,50	0,49	0,18	1	0,271	3,9
4	0,33	0,16	0,43	0,50	0,49	0,18	0	0,269	3,9
5	0,71	0,12	0,11	0,74	0,14	0,09	1	0,467	10,45
6	0,71	0,12	0,11	0,74	0,14	0,09	0	0,449	4,0
7	0,79	0,05	0,09	0,77	0,06	0,09	1	0,473	16,35

Рассмотренные в таблице варианты вероятностей розыгрыша мяча близки к представлениям, принятым в экспертной практике. Так, вариант №2 демонстрирует преимущество подающего игрока "В", несмотря на его, более высокий индекс (коэффициент) не вынужденных ошибок.

ВЫВОДЫ

Представлена стохастическая модель, основанная на представлениях ситуационных состояний розыгрыша мяча и интенсивностей потоков характерных действий теннисистов. Анализ поведения модели показал, что стохастическая модель адекватно отражает интуитивные представления, принятые в экспертной оценке уровня игры теннисиста, а именно:

- 1. Игроки с высоким индексом «активности» β и низким индексом «не вынужденных ошибок» γ выигрывают с большей вероятностью.
- 2. Высокий индекс «стабильности» α обоих игроков и низкие индексы «активности» и «не вынужденных ошибок» приводят к увеличению времени розыгрыша мяча.
- 3. Вероятность выигрыша подающего увеличивается даже при неблагоприятном для него сочетании индексов «активности» и «не вынужденных ошибок».

ЛИТЕРАТУРА

- 1. Шварц, Б.К. Теннис для всех : национальная теннисная рейтинговая программа (НТРП) / Бретт К. Шварц, Крис А. Дазет ; [пер. с англ. Т.А. Бобровой]. М. : ACT : Actpenb, 2006. 270 с. : ил.
- 2. Вентцель, Е.С. Теория случайных процессов и ее инженерные приложения / Е.С. Вентцель, Л.А. Овчаров. М.: Высшая школа, 2000. 477 с.: ил.
- 3. Голенко, В.А. Азбука тенниса / В.А. Голенко, А.П. Скородумова, Ш.А. Тарпищев. М.: Терра Спорт, 1999. 127 с.: ил. (Первый шаг).
- 4. Листратов, И.А. Мертвая зона / И.А. Листратов. М. : Галерия, 1999. XX c.
- Тарпищев, Ш.А. Самый долгий матч / Ш.А. Тарпищев. М.: Вагриус, 1999.
 382 с.