Bayesian Classification: Why?

- A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance</u>: A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

Total probability Theorem:
$$P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$$

Bayes' Theorem:
$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Let X be a data sample ("evidence"): class label is unknown
- Let H be a hypothesis that X belongs to class C
- $^{\circ}$ Classification is to determine P(H|X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X
- P(H) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed
- P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that **X** will buy computer, the prob. that X is 31..40, medium income

Prediction Based on Bayes' Theorem

Given training data X, posteriori probability of a hypothesis H,
 P(H|X), follows the Bayes' theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Informally, this can be viewed as
 posteriori = likelihood x prior/evidence
- Predicts **X** belongs to C_i iff the probability $P(C_i|\mathbf{X})$ is the highest among all the $P(C_k|\mathbf{X})$ for all the k classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labe and each tuple is represented by an n-D attribute vector $\mathbf{X} = (x_1, x_2, ..., x_n)$
- Suppose there are m classes $C_1, C_2, ..., C_m$.
- Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i|\mathbf{X})$
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Naïve Bayes Classifier

 A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes)

$$P(\mathbf{X} \mid C_i) = \prod_{k} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, $P(x_k|C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is continous-valued, $P(x_k|C_i)$ is usually computed based or Gaussian distribution with a mean μ and standard deviation σ

and
$$P(x_k|C_i)$$
 is

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$P(\mathbf{X} \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <= 30,

Income = medium,

Student = yes

Credit_rating = Fair)

			,		
	age	income	student	<mark>credit_rating</mark>	_com
	<=30	high	no	fair	no
	<=30	high	no	excellent	no
,	3140	high	no	fair	yes
	>40	medium	no	fair	yes
	>40	low	yes	fair	yes
	>40	low	yes	excellent	no
	3140	low	yes	excellent	yes
	<=30	medium	no	fair	no
	<=30	low	yes	fair	yes
	>40	medium	yes	fair	yes
	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
	3140	high	yes	fair	yes
	>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- $\mathbf{Compute} \ P(X|C_i)$ for each class

$$P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$$

$$P(age = "\le 30" \mid buys_computer = "no") = 3/5 = 0.6$$

P(income = "medium" | buys_computer = "no") =
$$2/5 = 0.4$$

$$P(student = "yes" | buys_computer = "yes") = 6/9 = 0.667$$

P(student = "yes" | buys_computer = "no") =
$$1/5 = 0.2$$

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

$$P(X|C_i)$$
: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 $P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019$$

 $P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys_computer = yes")

Avoiding the Zero-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding I to each case
 Prob(income = low) = I/1003
 Prob(income = medium) = 991/1003
 Prob(income = high) = II/1003
 - The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)