信号処理備忘録

motchy

2019 年 11 月 16 日 \sim 2025 年 1 月 28 日 ver 0.15.-wip

目次

第1部	表記法	ŀ
第 1.1 章	数学記号	(
第 1.2 章	量の次元の扱い	,
第 1.3 章	連続座標信号の表現	8
第1.4章	離散座標信号の表現	9
第2部	時間軸の操作	10
第 2.1 章 2.1.1 2.1.2	時間のシフトとスケーリングの適用順序 結論 機械的に導く方法	1
第3部	微分	12
第 3.1 章	複素数値信号の絶対値の 2 乗の微分	13
第4部	畳み込み	14
第 4.1 章 4.1.1 4.1.2	畳み込みの微分 関係式 使いどころ	1.
第 4.2 章 4.2.1	巡回畳み込み ※回畳み込みの可換則	
第 4.3 章 4.3.1 4.3.2	諸定理 線形変換と畳み込みの順序交換 4.3.1.1 動機 4.3.1.2 理論 数値実験	18 18 18
第5部	·····································	19
第 5.1 章	巡回相関	20
第6部	Fourier 級数と Fourier 変換	21
第 6.1 章 6.1.1 6.1.2	Fourier 級数展開 基底関数 Fourier 係数	2: 2: 2:
第 6.2章 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	Fourier 変換 基底関数 Fourier 変換の定義 逆 Fourier 変換 調波数表示された Fourier 変換との関係 6.2.4.1 逆変換により元の関数に戻ること 関数とその Fourier 変換の偶奇性 積と畳み込みとの関係 6.2.6.1 積の Fourier 変換 6.2.6.2 畳み込みの Fourier 変換 実部または虚部のみの Fourier 変換 実際または虚部のみの Fourier 変換 Fourier 変換の関係式の早見表 ラロアロマクタの	2: 2: 2: 2: 2: 2: 2: 2: 2:
筆63音	サンブリング定理	26

第 6.4 章 6.4.1	離散時間 Fourier 変換 (DTFT)	28 28
6.4.1 $6.4.2$	定義	28
6.4.3	6.4.2.1 呼称について	28 28
6.4.4	逆離散時間 Fourier 変換 (IDTFT)	29
0.45	6.4.4.1 IDTFT が DTFT の逆変換であること	29
6.4.5	積と畳み込みとの関係	29 29
	6.4.5.2 積の DTFT	29
	6.4.5.3 畳み込みの DTFT	30
	6.4.5.4 積の IDTFT	30 30
6.4.6	定数関数1の DTFT	30
6.4.7 $6.4.8$	単一周波数波の DTFT の導出	32 33
0.4.6	6.4.8.1 補足: 式 (1) のもう一つの導出	33
6.4.9	システムの伝達関数と正弦波入力の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
6.4.10	Gaussian ノイズの DTFT	35 35
	6.4.10.2 Fourier 変換との関係	35
第 6.5 章	離散 Fourier 変換 (DFT)	36
6.5.1 $6.5.2$	<u> </u>	36 36
6.5.3	Hermite な離散座標信号の DFT は実数である	36
6.5.4	6.5.3.1 系: Hermite な離散座標信号の IDFT は実数である	37 37
6.5.5	巡回相関の DFT	37
6.5.6	巡回畳み込みの DFT	38
6.5.7	Gaussian ノイズの DFT	38
第 6.6 章	高速 Fourier 変換 (FFT)	40
6.6.1	長さが 2 のべき乗でない信号の DFT を長さが 2 のべき乗の信号の FFT に帰着する方法	40
第 6.7 章 6.7.1	離散 Cosine 変換 (DCT) DCT 基底の正規直交性を導出するための補題	
0.7.1	101 金銭の正元直入正と寺山するための信息・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
第7部	Hilbert 変換	43
213 · HIP		-0
第 7.1 章	Hilbert 変換の変数変換	44
第 7.2 章	sin, cos の Hilbert 変換	15
弟 7.2 早	sin, cos の Hilbert 変換	45
第 7.3 章	Hilbert 変換の Fourier 変換	46
第8部	Laplace 変換	17
第 8.1 章 8.1.1	複素指数関数入力に対する伝達関数の作用	
6.1.1	条: 正弦波入力に対する伝達関数の作用	40
第9部	Z变换	50
אם ט מא		,0
第 9.1 章	基礎理論	51
9.1.1	最終値定理	
9.1.2	複素指数関数入力に対する伝達関数の作用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
第10部	B 周波数変換	53
20 то п	P	JJ
第 10.1 章	ヘテロダイン	54
10.1.1	ACTOR TO THE ACTOR AND ACTOR AND ACTOR AND ACTOR AND ACTOR A	
	10.1.1.1 計算	54 54
	7,1,,	-
第11部	B 離散時間領域	55
H	Company with a less two	
	オーバー・サンプリング	56
11.1.1	オーバー・サンプリングされた信号の DTFT	56 56
	11.1.1.2 導出	56
	11.1.1.3 正規化角周波数で比較する	56 56
	11.1.1.4 数值例	56
第 11.2 章	アンダー・サンプリング	57
	アンダー・サンプリングされた信号の DTFT	57
	11.2.1.1 主張	57

	11.2.1.2 11.2.1.3 11.2.1.4	導出 正規化角 数値例	自周波数	で比較で	する .							 	 	 	 	 	 	 	58
第 11.3 章 11.3.1 11.3.2	主張 .	dentity										 	 	 	 	 	 	 	60
第 11.4 章 11.4.1	DTFT 11.4.1.1	動機 方法	FT を用	いた有	限長信	号の補	間 					 	 	 	 	 	 	 	62 62 62
第 12 部	阝フィ	ルタ																	65
第 12.1 章 12.1.1												 	 	 	 	 	 	 	
第 12.2 章 12.2.1 12.2.2	連続時間 係数畳み 12.2.2.1	孫のフィ 込み型 F DTFT 12.2.2.1 12.2.2.1 DTFT 12.2.2.2 12.2.2.2	ルタ処理 の課題 .1 誤差 .2 誤差 .1 誤差 .1 信号 .1 信号 .12.2.2	里を離れて 2 の 差の実 差の実 差の実 要の実 と 2.2.2.1 2.2.2.2	数 時間 計 分 がが 最 い の 偶 、 Rem	で観測化でででであるがでではノーがのがからででする	したと 場合い場合 いる最小 の係数が アルゴリ	きの描化 もズム	辰る 無い らん らん らん かい かい かい らん はん かい はん	波数物	特性)決定								6
12.2.3	CIC up 12.2.3.1 12.2.3.2	周波数料 差分器と 12.2.3.2 12.2.3.2 12.2.3.2	er 持性 :積算器 :1 差分 :2 積算 :3 積質	に必要が分器のと 算器のと	なビッ ビット報 ビット報	ト幅 畐 (解析 畐 (数値	「的な方 [的な方	法) 法)				 	 	 		 		 	
12.2.4	CIC do	wn-sam 周波数特 差分器と	pler 特性 :積算器	に必要が	・・・・ なビッ	ト幅 .						 	 	 	 	 	 	 	74 74 75
第 13 部		時間																	76
	0 次ホー 13.1.1.1 13.1.1.2 13.1.1.3 inverse 13.1.2.1	ルドされ 動機 主導出 -sinc-filt 背景 係数の建	た離散 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	寺間信号 ・・・・ ・・・・	けの周波 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	数特性 						 	 	 		 			
第 13.2 章 13.2.1	オーバー オーバー 13.2.1.1 13.2.1.2	・サンプ 動機 オーバー 13.2.1.2 13.2.1.2	リングで -・サン .1 主張 .2 導品	された信 プリン: 張 出	言号の居 グされた	制波数特	性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・・・ }の D	TFT			 	 	 		 	 	 	82 82 82 82
	10.2.1.0	13.2.1.3 13.2.1.3 13.2.1.3	.1 主張	長								 	 	 	 	 	 	 	83 83
第 14 部	『連続	時間	領域	から	離散	(時間	領域	ずへ	の移	衍									86
第 14.1 章 14.1.1	積分の離 Euler 注 14.1.1.1 14.1.1.2 14.1.1.3	背景 導出							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	 · ·	 · ·	 	 · ·	 	 	 	87 87 87
第 15 部	『解書	対時間:	系を	介L.	た谁	続田	宇門3	<u>s</u>											90
第 15.1 章												 	 	 	 	 	 	 	

第 15.2 章 15.2.1	入力に 0 次ホールド機構を加えた連続時間システムの z 変換	
15.2.2 15.2.3	主張	92
第 15.3 章 15.3.1	O 次ホールドされた正弦波の周波数特性	
15.3.2 15.3.3	導出	
第16部	了。	97
第 16.1 章 16.1.1	NCO	
10.1.1	16.1.1.1 主張	
	16.1.1.2 導出 16.1.1.3 数值例	
	通信への応用	
16.2.1	恒文復調	
	Nyquist ISI 基準 帯域制限された信号が一定時間間隔で無限に配置されると定数になる	100
16.2.3	宿域制限された信号が一定時間間隔で無限に配直されると定数になる	10.
第 16.3 章 16.3.1	信号検出	
	世 直付足にがりる COS 類似度による方法と取良近似による方法の寺画性	
	16.3.1.2 手法 2: 最良近似	
	16.3.1.3 手法 1,2 の寺岬性	103
第 17 部	3 その他 1	04
第 17.1 章	信号値の統計	
17.1.1 $17.1.2$	ACCUPATION OF THE CONTRACT OF	
-,	NEW TOTAL PROPERTY OF THE STATE	
	Heaviside の階段関数 積分表示 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
17.2.1	惧刀衣小	100
参考文献 .		107

第1部

表記法

第 1.1 章

数学記号

- F: 体
- ℤ: 整数全体の集合
- ℝ: 実数全体の集合
- ℂ: 複素数全体の集合
- x[i]:ベクトル x の第 i 成分
- $\boldsymbol{a} \oslash \boldsymbol{b} \ (d \in \mathbb{N}, \ \boldsymbol{a}, \boldsymbol{b} \in \mathbb{F}^d, \ b_i \neq 0 \text{ for all } i): [a_1/b_1, \dots, a_d/b_d]^\top$
- $a\%b~(a,b\in\mathbb{Z},~b\ne0)$: a を b で割った余り。符号に 2 通り考えられるが、本書では結果を 0 以上 |a| 未満とする定義を採用する。
- a%b $(d \in \mathbb{N}, a, b \in \mathbb{Z}^d, b_i \neq 0 \text{ for all } i): [a_1\%b_1, \dots, a_d\%b_d]^\top$
- $x \le y \ (d \in \mathbb{N}, \ x, y \in \mathbb{R}^d) : \Leftrightarrow x_i \le y_i \text{ for all } i_\circ \ge, <, >$ についても同様。

第 1.2 章

量の次元の扱い

本書では数学との整合性と普遍性を重視して写像の引数は全て無次元量とし、座標や時間も無次元量とする。本書で述べられる定理は量の次元や計量単位に依存せず、応用し易い。

しかし、記号に量の次元を含めない姿勢を実用の場で徹底するのは難しい。例えば何らかの開発プロジェクトに於いては、 記号に次元を含めておく方が説明が簡便になるし、次元解析にも役立つ。量の次元と数学との整合性を保つ現実的な方針は 次のようであろう。

- 物理量を表す記号には必ず次元の量を含める
- 写像の引数は必ず無次元量とする
- 量の次元をもつ量を写像の引数の位置に'書く'ときは、その量を計量単位の倍数で表したときの係数を引数と'する'ものと約束する。

第1.3章

連続座標信号の表現

連続的な座標値 $x\in\mathbb{R}^{d_1}$ $(d_1\in\mathbb{N})$ から \mathbb{R}^{d_2} $(d_2\in\mathbb{N})$ への写像を d_1 次元連続座標信号という。信号値は全ての座標に対して定義される必要はない。

例えばカセットテープレコーダーに記録された音声信号は $d_1=d_2=1$ のものである。信号 f の位置 ${m x}=[x_1,x_2,\ldots,x_{d_1}]^{\sf T}$ での値を $f({m x})$ や $f(x_1,\ldots,x_{d_1})$ で表す。

第1.4章

離散座標信号の表現

離散的な座標値 $x\in\mathbb{Z}^{d_1}$ $(d_1\in\mathbb{N})$ から \mathbb{R}^{d_2} $(d_2\in\mathbb{N})$ への写像を d_1 次元離散座標信号という。信号値は全ての座標に対して定義される必要はない。

例えば離散的な時刻での電圧のサンプリングデータは $d_1=d_2=1$ のものである (この場合の「座標」は時間軸上での座標という意味になる)。 また、コンピュータのディスプレイに映る 2 次元カラー画像は $d_1=2, d_2=3$ のものである。

信号 f の位置 $\boldsymbol{x} = [x_1, x_2, \dots, x_{d_1}]^\top$ での値を $f(\boldsymbol{x})$ や $f(x_1, \dots, x_{d_1})$ で表す。

第2部 時間軸**の**操作

第 2.1 章

時間のシフトとスケーリングの適用順序

2.1.1 結論

解り易さと信号処理に於ける登場頻度の理由から 1 次元の連続座標信号であって、座標軸がとくに時間であるもの(連続時間信号)を考える。今 $x:\mathbb{R}\to\mathbb{R}$ をそのような信号とする。これに対して次の 2 つの操作を行った結果は異なる。

- 1. 時間を $d \in \mathbb{R}$ だけ遅らせて得られる信号を時間軸方向に $a\ (a>0)$ 倍に引き延ばす
- 2. 時間軸方向に a (a>0) 倍に引き延ばして得られる信号を時間的に d だけ遅らせる

正しい結果は次の通りである。

- 1. x(t/a-d)
- 2. x((t-d)/a)

冷静に考えれば納得できるが、時々混乱することがある。そのときは次のようにして機械的に考えて導くとよい。

2.1.2 機械的に導く方法

記号を次のように定義する。

- $V: \{x \mid x : \mathbb{R} \to \mathbb{C}\}$: 実数から複素数への写像のベクトル空間
- $f_{\text{del}}: x \in V \mapsto (t \in \mathbb{R} \mapsto x(t-d)) \in V$: V から V への汎関数であり、連続時間信号を、時間的に d だけ遅らせた 連続時間信号に対応させる。
- $f_{\rm scl}: x \in V \mapsto (t \in \mathbb{R} \mapsto x(t/a)) \in V$: V から V への汎関数であり、連続時間信号を、時間軸方向に a 倍に引き延ばした連続時間信号に対応させる。

まず 2.1.1 の 1 を導いてみる。結果として得られる連続時間信号は次式である。

 $(f_{\rm scl} \circ f_{\rm del})(x) = f_{\rm scl}(f_{\rm del}(x)) = f_{\rm scl}(t \in \mathbb{R} \mapsto x(t-d)) = \tau \in \mathbb{R} \mapsto [(t \in \mathbb{R} \mapsto x(t-d))](\tau/a) = \tau \in \mathbb{R} \mapsto x(\tau/a-d)$ 同様にして 2.1.1 の 2 も導ける。

 $(f_{\text{del}} \circ f_{\text{scl}})(x) = f_{\text{del}}(f_{\text{scl}}(x)) = f_{\text{del}}(t \in \mathbb{R} \mapsto x(t/a)) = \tau \in \mathbb{R} \mapsto [(t \in \mathbb{R} \mapsto x(t/a))](\tau - d) = \tau \in \mathbb{R} \mapsto x((\tau - d)/a)$

第3部

微分

第 3.1 章

複素数値信号の絶対値の 2 乗の微分

些細な公式だが、反復アルゴリズに登場することがあるので記しておく。

複素数値信号 $x: \mathbb{R} \to \mathbb{C}$ について次が成り立つ。

$$\frac{\mathrm{d}}{\mathrm{d}\,t}|x(t)|^2=2\mathrm{Re}\left(x(t)\overline{x'(t)}\right)=2\mathrm{Re}\left(x'(t)\overline{x(t)}\right)$$

 $Proof. |x(t)|^2 = x(t)\overline{x(t)}$ であることを用いて容易に示せる。

第4部

畳み込み

第 4.1 章

畳み込みの微分

4.1.1 関係式

微分可能な複素数値信号 $x_1, x_2: \mathbb{R} \to \mathbb{C}$ に畳み込みが存在するとき、次が成り立つ。

$$\frac{\mathrm{d}}{\mathrm{d}\,t}(x_1*x_2)(t) = {x_1}'*x_2 = x_1*x_2'$$

Proof.

まず次式が成り立つ。

$$\frac{\mathrm{d}}{\mathrm{d}t}(x_1 * x_2)(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) \mathrm{d}\tau = \int_{-\infty}^{\infty} x_1(\tau) \frac{\mathrm{d}}{\mathrm{d}t} x_2(t-\tau) \mathrm{d}\tau$$
$$= \int_{-\infty}^{\infty} x_1(\tau) x_2'(t-\tau) \mathrm{d}\tau = (x_1 * x_2')(t)$$

 $x_1 * x_2 = x_2 * x_1$ を用いて上記と同様の計算を行うと次式が成り立つ。

$$\frac{\mathrm{d}}{\mathrm{d}\,t}(x_1*x_2)(t) = (x_1'*x_2)(t)$$

4.1.2 使いどころ

例えばディジタル信号処理で役立つときがある。前記の関係式の離散座標版も同様に成り立つ。(a) 長い入力信号に (b) (それに比べて短い) 時間的に変化しない信号(典型的には FIR フィルタの係数)を畳み込むとき、後者の時間微分(典型的には差分で近似)を予め計算しておいて (a) と畳み込めば、微分のオンライン計算が不要になる。

第 4.2 章

巡回畳み込み

 $\Omega \coloneqq \{0,1,\dots,N_1-1\} \times \{0,1,\dots,N_2-1\} \times \dots \times \{0,1,\dots,N_d-1\}$ とする。f,g を周期が (N_1,\dots,N_d) であるような離散座標信号 $f,g:\Omega \to \mathbb{C};\; \pmb{n} = [n_1,n_2,\dots,n_d]^{\top} \mapsto f(\pmb{n}),g(\pmb{n})$ とする。 $\pmb{N} \coloneqq [N_1,\dots,N_d]^{\top}$ とする。f と g の巡回畳 み込み $f \underset{\mathrm{cyc}}{*} g$ を次式で定義する。

$$\left(f\underset{\mathrm{cyc}}{*}g\right)(\boldsymbol{n}) \coloneqq \sum_{\boldsymbol{m}\in\Omega} f(\boldsymbol{m})g((\boldsymbol{n}-\boldsymbol{m})\%\boldsymbol{N})$$

4.2.1 巡回畳み込みの可換則

 Ω, f, g の定義を 4.2 と同じものとするとき、次が成り立つ。

$$f \underset{\text{cyc}}{*} g = g \underset{\text{cyc}}{*} f$$

Proof.

$$\left(g \underset{\text{cyc}}{*} f\right)(n) = \sum_{m \in \Omega} g(m) f((n-m)\%N)
= \sum_{m_1=0}^{N_1-1} \sum_{m_2 \in \Omega_2} g(m_1, m_2) f((n_1-m_1)\%N_1, (n_2-m_2)\%N_2)$$
(4.2.1.1)

ここに $\boldsymbol{n}_i \coloneqq [n_i, \dots, n_d]^\top (\boldsymbol{m}_i, \boldsymbol{N}_i$ も同様), $\Omega_i \coloneqq \{0, 1, \dots, N_i - 1\} \times \dots \times \{0, 1, \dots, N_d - 1\}$ である。

$$(1) = \sum_{m_1=0}^{n_1} \sum_{\mathbf{m}_2 \in \Omega_2} g(m_1, \mathbf{m}_2) f(n_1 - m_1, (\mathbf{n_2} - \mathbf{m_2}) \% \mathbf{N_2})$$

$$+ \sum_{m_1=n_1+1}^{N_1-1} \sum_{\mathbf{m}_2 \in \Omega_2} g(m_1, \mathbf{m}_2) f(n_1 + N_1 - m_1, (\mathbf{n_2} - \mathbf{m_2}) \% \mathbf{N_2})$$

$$= \sum_{l_1=n_1}^{0} \sum_{\mathbf{m}_2 \in \Omega_2} g(n_1 - l_1, \mathbf{m}_2) f(l_1, (\mathbf{n_2} - \mathbf{m_2}) \% \mathbf{N_2})$$

$$+ \sum_{l_1=N_1-1}^{n_1+1} \sum_{\mathbf{m}_2 \in \Omega_2} g(n_1 + N_1 - l_1, \mathbf{m}_2) f(l_1, (\mathbf{n_2} - \mathbf{m_2}) \% \mathbf{N_2})$$

$$= \sum_{l_1=n_1}^{0} \sum_{\mathbf{m}_2 \in \Omega_2} g((n_1 - l_1) \% N_1, \mathbf{m}_2) f(l_1, (\mathbf{n_2} - \mathbf{m_2}) \% \mathbf{N_2})$$

$$+ \sum_{l_1=N_1-1}^{n_1+1} \sum_{\mathbf{m}_2 \in \Omega_2} g((n_1 - l_1) \% N_1, \mathbf{m}_2) f(l_1, (\mathbf{n_2} - \mathbf{m_2}) \% \mathbf{N_2})$$

$$= \sum_{l_1=0}^{N_1-1} \sum_{\mathbf{m}_2 \in \Omega_2} g((n_1 - l_1) \% N_1, \mathbf{m}_2) f(l_1, (\mathbf{n_2} - \mathbf{m_2}) \% \mathbf{N_2})$$

同様の変形を繰り返すと最終的に次のようになる。

$$\left(g \underset{\text{cyc}}{*} f\right)(\boldsymbol{n}) = \sum_{\boldsymbol{l} \in \Omega} g((\boldsymbol{n} - \boldsymbol{l})\% \boldsymbol{N}) f(\boldsymbol{l}) = \left(f \underset{\text{cyc}}{*} g\right)(\boldsymbol{n})$$

第 4.3 章

諸定理

4.3.1 線形変換と畳み込みの順序交換

4.3.1.1 動機

画像処理に於いてカーネルとの畳み込みを実行してから線形変換を施す場合と、事前に画像とカーネルの両方に線形変換を施してから畳み込む場合の結果の違いに関心がある。

4.3.1.2 理論

 $d\in\mathbb{N}$ とし、 $f:x\in\mathbb{R}^d\mapsto f(x)\in\mathbb{R}$ を d 次元信号とする。線形変換を表す正則行列を A とし、A による変換を T_A と表す。 T_A による変換は次式を以て定義する。

$$T_A(f)(\boldsymbol{x}) = f(A^{-1}\boldsymbol{x})$$

 $G: x \in \mathbb{R}^d \mapsto G(x) \in \mathbb{R}$ を d 次元信号とする。このとき次式が成り立つ。

$$T_A(G) * T_A(f) = |A|T_A(G * f)$$

Proof.

 μ を Jordan 測度とする。

4.3.2 数值実験

Mathematica による例が「線形変換と畳み込み.nb」にある。

第5部

相関

第5.1章

巡回相関

 $\Omega \coloneqq \{0,1,\ldots,N_1-1\} \times \{0,1,\ldots,N_2-1\} \times \cdots \times \{0,1,\ldots,N_d-1\}$ とする。f,g を周期が (N_1,\ldots,N_d) であるような離散座標信号 $f,g:\Omega \to \mathbb{C};\; \boldsymbol{n} = [n_1,n_2,\ldots,n_d]^{\top} \mapsto f(\boldsymbol{n}),g(\boldsymbol{n})$ とする。 $\boldsymbol{N} \coloneqq [N_1,\ldots,N_d]^{\top}$ とする。f と g の巡回相関 cycCorrel (f,g) を次式で定義する。

$$\operatorname{cycCorrel}\left(f,g\right) := \sum_{\boldsymbol{m} \in \Omega} f(\boldsymbol{m}) \overline{g((\boldsymbol{m}-\boldsymbol{n})\% \boldsymbol{N})} = \sum_{\boldsymbol{m} \in \Omega} \overline{f(\boldsymbol{m})} g((\boldsymbol{m}+\boldsymbol{n})\% \boldsymbol{N})$$

第6部

Fourier 級数と Fourier 変換

第6.1章

Fourier 級数展開

6.1.1 基底関数

Fourier 級数展開の基底関数は Fourier 変換や DFT のものと違って正規化されていないため、美しさに欠ける。 $d\in\mathbb{N},\ W_l>0\ (l=1,2,\ldots,d),\ \mathbf{k}\in\mathbb{Z}^d$ とする。次式で定義される、 $\mathbf{x}\in\mathbb{R}^d$ に関する連続座標信号を、区間 $\prod_{l=1}^d[-W_l,W_l]$ に於ける第 \mathbf{k} 基底関数という。

$$W(\boldsymbol{k}, \boldsymbol{x}) := \exp i \sum_{l=1}^{d} k_{l} \frac{x_{l}}{W_{l}} \pi$$

6.1.2 Fourier 係数

 $d\in\mathbb{N},\ W_l>0\ (l=1,2,,\ldots,d),\ \Omega\coloneqq\prod_{l=1}^d[-W_l,W_l],\ \pmb{k}\in\mathbb{Z}^d$ とする。 $f:\pmb{x}\in\mathbb{R}\mapsto f(\pmb{x})\in\mathbb{R}$ を、第 l 座標に関して周期が $2W_l$ であるような周期関数とする。次式で定義する、 \pmb{k} に関する離散座標信号を f の第 \pmb{k} Fourier 係数という。

$$c(f, \boldsymbol{k}) \coloneqq \left(\prod_{l=1}^d 2W_l\right)^{-1} \int_{\Omega} \overline{W(\boldsymbol{k}, \boldsymbol{x})} f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$$

第6.2章

Fourier 変換

6.2.1 基底関数

 $d \in \mathbb{N}, x, \omega \in \mathbb{R}^d$ とする。次のものを d 次元 Fourier 変換に於ける基底関数という。

$$W(\boldsymbol{\omega}, \boldsymbol{x}) \coloneqq (2\pi)^{-d/2} \exp i \boldsymbol{\omega}^{\top} \boldsymbol{x}$$

6.2.2 Fourier 変換の定義

 $d\in\mathbb{N},\; \omega\in\mathbb{R}^d$ とする。 $f:\mathbb{R}^d\to\mathbb{C}$ に対して、次式で定義される、 ω に関する連続座標信号を f の Fourier 変換という。

$$\mathcal{F}(f)(\boldsymbol{\omega}) \coloneqq \int_{\mathbb{R}^d} \overline{W(\boldsymbol{\omega}, \boldsymbol{x})} f(\boldsymbol{x}) \mathrm{d}^d \boldsymbol{x} = (2\pi)^{-d/2} \int_{\mathbb{R}^d} \exp(-i\boldsymbol{\omega}^\top \boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d}^d \boldsymbol{x}$$

6.2.3 逆 Fourier 変換

 $d\in\mathbb{N},\ x\in\mathbb{R}^d$ とする。 $F:\mathbb{R}^d\to\mathbb{C}$ に対して、次式で定義される、x に関する連続座標信号を F の逆 Fourier 変換という。

$$\mathcal{F}^{-1}\left(F\right)(\boldsymbol{x}) \coloneqq \int_{\mathbb{R}^d} W(\boldsymbol{\omega}, \boldsymbol{x}) F(\boldsymbol{\omega}) \mathrm{d}^d \boldsymbol{\omega} = (2\pi)^{-d/2} \int_{\mathbb{R}^d} \exp(i\boldsymbol{\omega}^\top \boldsymbol{x}) F(\boldsymbol{\omega}) \mathrm{d}^d \boldsymbol{\omega}$$

6.2.4 周波数表示された Fourier 変換との関係

上述の Fourier 変換の定義はその数学的対称性の美しさから、理学系で主に用いられる。一方、工学系では Fourier 変換結果の定義域を角周波数ではなく周波数にとることがしばしばある。本書では 2 種類の Fourier 変換を区別するために、周波数を定義域とする Fourier 変換を「周波数表示された Fourier 変換」と呼び分けることにする。

 $d\in\mathbb{N},~x,f\in\mathbb{R}^d$ とする。 $g:\mathbb{R}^d\to\mathbb{C}$ に対して、次式で定義される、f に関する連続座標信号を g の周波数表示された Fourier 変換という。

$$\tilde{\mathcal{F}}(g)(\boldsymbol{f}) \coloneqq \int_{\mathbb{R}^d} \exp(-i2\pi \boldsymbol{f}^{\top} \boldsymbol{x}) g(\boldsymbol{x}) \mathrm{d}^d \boldsymbol{x}$$

また、 $G:\mathbb{R}^d \to \mathbb{C}$ に対して、次式で定義される、 ${m x}$ に関する連続座標信号を G の周波数表示された逆 Fourier 変換という。

$$ilde{\mathcal{F}}^{-1}(G)(oldsymbol{x})\coloneqq\int_{\mathbb{R}^d}\exp(i2\pioldsymbol{f}^{ op}oldsymbol{x})G(oldsymbol{f})\mathrm{d}^doldsymbol{f}$$

6.2.4.1 逆変換により元の関数に戻ること

通常の Fourier 変換が $\mathcal{F}^{-1}(\mathcal{F}(f))(x) = f(x)$ を満たすことを既知として、周波数表示された Fourier 変換が $\tilde{\mathcal{F}}^{-1}(\tilde{\mathcal{F}}(g))(x) = g(x)$ を満たすことは $\omega = 2\pi f$ なる変数変換をを用いて確かめられる。

$$G(\boldsymbol{f}) := \tilde{\mathcal{F}}(g)(\boldsymbol{f}) = (2\pi)^{d/2} \mathcal{F}(g)(\boldsymbol{\omega})$$

$$\tilde{\mathcal{F}}^{-1}(G)(\boldsymbol{x}) = \int_{\mathbb{R}^d} G(\boldsymbol{f}) \exp(i2\pi \boldsymbol{f}^{\top} \boldsymbol{x}) d^d \boldsymbol{f} = \int_{\mathbb{R}^d} (2\pi)^{d/2} \mathcal{F}(g)(\boldsymbol{\omega}) \exp(i\boldsymbol{\omega}^{\top} \boldsymbol{x}) \det\left(\frac{1}{2\pi} I_d\right) d^d \boldsymbol{\omega}$$

$$= (2\pi)^{-d/2} \int_{\mathbb{R}^d} \mathcal{F}(g)(\boldsymbol{\omega}) \exp(i\boldsymbol{\omega}^{\top} \boldsymbol{x}) d^d \boldsymbol{\omega} = \mathcal{F}^{-1}(\mathcal{F}(g))(\boldsymbol{x}) = g(\boldsymbol{x})$$

6.2.5 関数とその Fourier 変換の偶奇性

 $f: \mathbb{R} \to \mathbb{C}$ とする。このとき次が成り立つ

- 1. f が偶関数であることと $\mathcal{F}(f)$ が偶関数であることは同値である。
- 2. f が奇関数であることと $\mathcal{F}(f)$ が奇関数であることは同値である。

Proof.

1を示す。2も全く同様にして示せる。

 (\Rightarrow)

 $\omega \in \mathbb{R}$ とする。

$$\mathcal{F}(f)(-\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(i\omega x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(-x) \exp(-i\omega(-x)) dx$$
$$= \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{-\infty} f(y) \exp(-i\omega y) dy \quad (変数変換 \ x = -y \ を施した)$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) \exp(-i\omega y) dy = \mathcal{F}(f)(\omega)$$

 (\Leftarrow)

Fourier 変換の対称性から ⇒ と全く同様にして示せる。

6.2.6 積と畳み込みとの関係

簡単のため 1 次元の場合について示す。 $f,g:\mathbb{R}\to\mathbb{C}$ とし、 $F=\mathcal{F}(f),\ G=\mathcal{F}(g)$ とする。

6.2.6.1 積**の** Fourier 変換

$$\mathcal{F}(fg)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)g(t)e^{-i\omega t}dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathcal{F}^{-1}(F)(t)g(t)e^{-i\omega t}dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\tilde{\omega})e^{i\tilde{\omega}t}d\tilde{\omega}\right)g(t)e^{-i\omega t}dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\tilde{\omega}) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(t)e^{-i(\omega\tilde{\omega})t}dtd\tilde{\omega}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\tilde{\omega})G(\omega - \tilde{\omega})d\tilde{\omega} = \frac{1}{\sqrt{2\pi}} (F * G)(\omega)$$

6.2.6.2 畳み込みの Fourier 変換

$$\begin{split} \mathcal{F}(f*g)(\omega) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)g(t-\tau)\mathrm{d}\tau \exp(-i\omega t)\mathrm{d}t \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau) \exp(-i\omega\tau)g(t-\tau) \exp(-i\omega(t-\tau))\mathrm{d}\tau \mathrm{d}t \\ &= \int_{-\infty}^{\infty} f(\tau) \exp(-i\omega\tau) \bigg(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(t-\tau) \exp(-i\omega(t-\tau))\mathrm{d}t \bigg) \mathrm{d}\tau \\ &= \sqrt{2\pi} F(\omega) G(\omega) \end{split}$$

6.2.7 実部または虚部のみの Fourier 変換

簡単のため 1 次元の場合を扱う。

 $x: \mathbb{R} \to \mathbb{C}, \ x_{\mathrm{R}} = \mathrm{Re}(x), \ x_{\mathrm{I}} = \mathrm{Im}(x), \ X = \mathcal{F}(x), \ X_{\mathrm{R}} = \mathrm{Re}(X), \ X_{\mathrm{I}} = \mathrm{Im}(X), \ \omega \in \mathbb{R}$ とする。次が成り立つ。

1.
$$X_{\rm R}(\omega) = \frac{1}{2}X(\omega) + \frac{1}{2}\overline{X(-\omega)}$$

2.
$$X_{\rm I}(\omega) = \frac{1}{2i}X(\omega) - \frac{1}{2i}\overline{X(-\omega)}$$

3.
$$X(\omega) = X_{\rm R}(\omega) + iX_{\rm I}(\omega)$$

Proof.

2は1と同様にして示せる。3は1と2を用いて容易に示せる。そこで1のみを示す。

$$X_{R}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{2} \left(x(t) + \overline{x(t)} \right) \exp(-i\omega t) dt = \frac{1}{2} X(\omega) + \frac{1}{2} \times \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \overline{x(t) \exp(-i(-\omega)t)} dt$$
$$= \frac{1}{2} X(\omega) + \frac{1}{2} \times \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) \exp(-i(-\omega)t) dt = \frac{1}{2} X(\omega) + \frac{1}{2} \overline{X(-\omega)}$$

6.2.8 Fourier 変換の関係式の早見表

数学寄りの分野では角周波数を用いた形式が、通信分野では周波数を用いた形式が使われ、混乱しやすいので一覧表に整理しておく。簡単のため、連続時間信号の場合について記す。まず記号を次のように定義する。

- ω , $f \in \mathbb{R}$
- $x, y : \mathbb{R} \to \mathbb{C}$
- X,Y:x,y の Fourier 変換(各周波数表示、周波数表示のどちらであるかは文脈に依る)

以上の定義の下で次の表に示す関係が成り立つ。

表 6.2.1 Fourier 変換の関係式の早見表

関係式	角周波数表示	周波数表示					
変換の定義	$X(\omega) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) \exp(-i\omega t) dt$	$X(\omega) := \int_{-\infty}^{\infty} x(t) \exp(-i2\pi f t) dt$					
逆変換	$x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} X(\omega) \exp(i\omega t) d\omega$	$x(t) = \int_{-\infty}^{\infty} X(\omega) \exp(i2\pi f t) df$					
積の Fourier 変換	$\mathcal{F}(xy)(\omega) = \frac{1}{\sqrt{2\pi}}(X * Y)(\omega)$	$\mathcal{F}(xy)(f) = (X * Y)(f)$					
畳み込みの Fourier 変換	$\mathcal{F}(x*y)(\omega) = \sqrt{2\pi}X(\omega)Y(\omega)$	$\mathcal{F}(x * y)(f) = X(f)Y(f)$					
時間反転 + 複素共役の Fourier 変換	$\mathcal{F}(\overline{t\mapsto x(-t)})(\omega) = \overline{X(\omega)}$	$\mathcal{F}(\overline{t \mapsto x(-t)})(f) = \overline{X(f)}$					
Parseval の等式	$\int_{-\infty}^{\infty} x(t) \overline{y(t)} dt = \int_{-\infty}^{\infty} X(\omega) \overline{Y(\omega)} d\omega$	$\int_{-\infty}^{\infty} x(t) \overline{y(t)} dt = \int_{-\infty}^{\infty} X(f) \overline{Y(f)} df$					

25

第6.3章

サンプリング定理

 $d\in\mathbb{N},\ W_l>0\ (l=1,2,,\ldots,d),\ \Omega\coloneqq\prod_{l=1}^d[-W_l,W_l]$ とする。 $f:\mathbb{R}^d\to\mathbb{R}$ の Fourier 変換 $\mathcal{F}(f)(\pmb{\omega})$ が存在してその台が Ω に含まれるとき、次式が成り立つ。

$$f(oldsymbol{x}) = \sum_{oldsymbol{x} \in \mathbb{Z}^d} f\left(\pi rac{n_1}{W_1}, \dots, \pi rac{n_d}{W_d}
ight) \prod_{l=1}^d \operatorname{sinc} W_l\left(x_l - \pi rac{n_l}{W_l}
ight)$$

つまり f の各点での評価値を沢山集めて f を任意の精度で近似できる。 角周波数 W_l のかわりに周波数 $F_l=W_l/(2\pi)$ を使うと上式は次式になる。

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{n} \in \mathbb{Z}^d} f\left(\frac{n_1}{2F_1}, \dots, \frac{n_d}{2F_d}\right) \prod_{l=1}^d \operatorname{sinc} 2\pi F_l\left(x_l - \frac{n_l}{2F_l}\right)$$

Proof.

 $\mathcal{F}(f)(\omega)$ の台が超直方体 Ω に含まれるから $\mathcal{F}(f)(\omega)$ は Fourier 級数展開できる。第 n Fourier 係数を $c(\mathcal{F}(f),n)$ とすると

$$\mathcal{F}(f)(\boldsymbol{\omega}) = \sum_{\boldsymbol{n} \in \mathbb{Z}^d} c(\mathcal{F}(f), \boldsymbol{n}) \exp i \sum_{l=1}^d n_l \frac{\omega_l}{W_l} \pi$$

となる。 $c(\mathcal{F}(f), \mathbf{n})$ は次式で求まる。

$$\begin{split} c(\mathcal{F}(f), \boldsymbol{n}) &= \left(\prod_{l=1}^{d} 2W_l\right)^{-1} \int_{\Omega} \mathcal{F}(f, \boldsymbol{\xi}) \exp(-i) \sum_{l=1}^{d} n_l \frac{\boldsymbol{\xi}_l}{W_l} \pi \mathrm{d} \boldsymbol{\xi} \\ &= (2\pi)^{d/2} \left(\prod_{l=1}^{d} 2W_l\right)^{-1} (2\pi)^{-d/2} \int_{\mathbb{R}^d} \mathcal{F}(f, \boldsymbol{\xi}) \exp i \sum_{l=1}^{d} \left(\frac{-n_l}{W_l} \pi\right) \boldsymbol{\xi}_l \mathrm{d} \boldsymbol{\xi} \\ &= (2\pi)^{d/2} \left(\prod_{l=1}^{d} 2W_l\right)^{-1} \mathcal{F}^{-1} \left(\mathcal{F}(f), -\pi \boldsymbol{n} \oslash \boldsymbol{W}\right) \\ &= (2\pi)^{d/2} \left(\prod_{l=1}^{d} 2W_l\right)^{-1} f\left(-\pi \boldsymbol{n} \oslash \boldsymbol{W}\right) \end{split}$$

f は $\mathcal{F}(f)$ の Fourier 逆変換で次のようにして求まる。

$$f(\boldsymbol{x}) = \mathcal{F}^{-1}(\mathcal{F}(f), \boldsymbol{x}) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} \mathcal{F}(f)(\boldsymbol{\omega}) \exp i\boldsymbol{\omega}^{\top} \boldsymbol{x} d\boldsymbol{\omega} = (2\pi)^{-d/2} \int_{\Omega} \mathcal{F}(f)(\boldsymbol{\omega}) \exp i\boldsymbol{\omega}^{\top} \boldsymbol{x} d\boldsymbol{\omega}$$

$$= (2\pi)^{-d/2} \int_{\Omega} \sum_{\boldsymbol{n} \in \mathbb{Z}^d} c(\mathcal{F}(f), \boldsymbol{n}) \left(\exp i \sum_{l=1}^d n_l \frac{\omega_l}{W_l} \pi \right) \exp i\boldsymbol{\omega}^{\top} \boldsymbol{x} d\boldsymbol{\omega}$$

$$= (2\pi)^{-d/2} \sum_{\boldsymbol{n} \in \mathbb{Z}^d} \int_{\Omega} c(\mathcal{F}(f), \boldsymbol{n}) \exp i\boldsymbol{\omega}^{\top} (\boldsymbol{x} + \pi \boldsymbol{n} \oslash \boldsymbol{W}) d\boldsymbol{\omega}$$

$$= (2\pi)^{-d/2} \sum_{\boldsymbol{n} \in \mathbb{Z}^d} \int_{\Omega} (2\pi)^{d/2} \left(\prod_{l=1}^d 2W_l \right)^{-1} f(-\pi \boldsymbol{n} \oslash \boldsymbol{W}) \exp i\boldsymbol{\omega}^{\top} (\boldsymbol{x} + \pi \boldsymbol{n} \oslash \boldsymbol{W}) d\boldsymbol{\omega}$$

$$= \left(\prod_{l=1}^d 2W_l \right)^{-1} \sum_{\boldsymbol{n} \in \mathbb{Z}^d} f(-\pi \boldsymbol{n} \oslash \boldsymbol{W}) \int_{\Omega} \exp i\boldsymbol{\omega}^{\top} (\boldsymbol{x} + \pi \boldsymbol{n} \oslash \boldsymbol{W}) d\boldsymbol{\omega}$$

ここで

$$\begin{split} \int_{\Omega} \exp i\boldsymbol{\omega}^{\top} \left(\boldsymbol{x} + \pi \boldsymbol{n} \oslash \boldsymbol{W} \right) \mathrm{d}\boldsymbol{\omega} &= \prod_{l=1}^{d} \int_{-W_{l}}^{W_{l}} \exp i \left(x_{l} + \pi \frac{n_{l}}{W_{l}} \right) \omega_{l} \mathrm{d}\omega_{l} \\ &= \prod_{l=1}^{d} \frac{1}{i \left(x_{l} + \pi \frac{n_{l}}{W_{l}} \right)} \left[\exp i \left(x_{l} + \pi \frac{n_{l}}{W_{l}} \right) W_{l} - \exp(-i) \left(x_{l} + \pi \frac{n_{l}}{W_{l}} \right) W_{l} \right] \\ &= \prod_{l=1}^{d} 2W_{l} \frac{\sin \left(x_{l} + \pi \frac{n_{l}}{W_{l}} \right) W_{l}}{\left(x_{l} + \pi \frac{n_{l}}{W_{l}} \right) W_{l}} = \prod_{l=1}^{d} 2W_{l} \prod_{l=1}^{d} \sin W_{l} \left(x_{l} + \pi \frac{n_{l}}{W_{l}} \right) \end{split}$$

であるから

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{n} \in \mathbb{Z}^d} f\left(-\pi \boldsymbol{n} \oslash \boldsymbol{W}\right) \prod_{l=1}^d 2W_l \operatorname{sinc}\left(x_l + \pi \frac{n_l}{W_l}\right) W_l = \sum_{\boldsymbol{n} \in \mathbb{Z}^d} f\left(\pi \boldsymbol{n} \oslash \boldsymbol{W}\right) \prod_{l=1}^d \operatorname{sinc} W_l \left(x_l - \pi \frac{n_l}{W_l}\right)$$
$$= \sum_{\boldsymbol{n} \in \mathbb{Z}^d} f\left(\pi \frac{n_1}{W_1}, \dots, \pi \frac{n_d}{W_d}\right) \prod_{l=1}^d \operatorname{sinc} W_l \left(x_l - \pi \frac{n_l}{W_l}\right)$$

第 6.4 章

離散時間 Fourier 変換 (DTFT)

6.4.1 直観的な説明

離散時間 Fourier 変換 (Discrete Time Fourier Transform; DTFT) とは、直観的には、離散座標信号を、連続的な周波数をもつ無数の離散時間信号の重ね合わせとして表現するものである。

6.4.2 定義

 $d \in \mathbb{N}, T_{s}(\in \mathbb{R}^{d}) > \mathbf{0}$ とする。 $f : \mathbb{Z}^{d} \to \mathbb{C}$ に対して、次式で定義される、 $\boldsymbol{\omega} \in \mathbb{R}^{d}$ に関する連続座標信号を f の離散時間 Fourier 変換という。

$$\mathrm{DTFT}(f)(\boldsymbol{\omega}) \coloneqq \sum_{\boldsymbol{n} \in \mathbb{Z}^d} f(\boldsymbol{n}) \exp(-i(\boldsymbol{\omega} \odot \boldsymbol{T}_\mathrm{s})^\top \boldsymbol{n})$$

 ω は各軸方向の角周波数をまとめて表したベクトルであり、 $T_{\rm s}$ は各軸方向のサンプリング周期である。DTFT は ω に関する周期関数であり、その周期は $2\pi 1 \oslash T_{\rm s}$ である。

6.4.2.1 呼称について

本書では関数の引数を時間や周波数に限定せず、より一般に座標と呼ぶ姿勢をとっている。しかし DTFT は電気・電子系の信号処理の分野で発展したため、離散 "時間"という呼称が浸透しており、これに敢えて逆らって離散 "座標"と呼ぶのは本書と工学応用の相性を悪くするだけで無益である。そこで、DTFT のような、歴史的な理由で呼称が定着しているものについては慣例に従うことにする。

6.4.3 連続座標信号との関係

連続座標信号 $f_{\rm c}:\mathbb{R}^d\to\mathbb{C}$ をサンプリング周期 ${m T}_{\rm s}\coloneqq[T_{{\rm s},1},T_{{\rm s},2},\ldots,T_{{\rm s},d}]^{\top}\in\mathbb{R}^d$ すなわち周波数 ${m f}_{\rm s}\coloneqq[f_{{\rm s},1},f_{{\rm s},2},\ldots,f_{{\rm s},d}]^{\top}\coloneqq[1/T_{{\rm s},1},1/T_{{\rm s},2},\ldots,1/T_{{\rm s},d}]^{\top}\in\mathbb{R}^d$ でサンプリングした離散座標信号を $f_{\rm d}:{m n}\in\mathbb{Z}^d\mapsto f_{\rm c}({m T}^{\top}{m n})$ とする。 $f_{\rm d}$ の DTFT に於ける多次元の角周波数 ${m \omega}$ を周波数 ${m f}$ を用いて ${m \omega}\coloneqq2\pi{m f}$ と表す。

 $m{n}$ の第 k 要素 n_k が 1 だけ変化すると、元の連続座標信号の対応する座標は T_k だけ変化し、DTFT のカーネル関数 $\exp(i(m{\omega}\odot m{T}_{\mathrm{s}})^{\top}m{n})$ の偏角は $\omega_k T_{\mathrm{s},k} = 2\pi f_k T_{\mathrm{s},k}$ だけ変化する。つまり DTFT の定義域に於ける周波数 $m{f}$ の第 k 成分に対応する元の連続座標信号の周波数の第 k 成分は f_k であり、スケールは保たれている。

DTFT の定義で述べたように、DTFT は周期が $2\pi 1 \oslash T_{\rm s}$ であるから、一意に区別できる角周波数は $-\pi \oslash T_{\rm s} \leq \omega < \pi \oslash T_{\rm s}$ 、つまり一意に区別できる周波数は $-f_{\rm s}/2 \leq f < f_{\rm s}/2$ である。この事実と、先程述べた DTFT と元の連続座標信号との周波数の関係から、DTFT に於いて一意に区別できる周波数に対応する元の連続座標信号の周波数 \tilde{f} は $-f_{\rm s}/2 \leq \tilde{f} < f_{\rm s}/2$ である。

6.4.4 逆離散時間 Fourier 変換 (IDTFT)

 $d \in \mathbb{N}, \ T_{\mathbf{s}}(\in \mathbb{R}^d) > \mathbf{0}, \ \Omega := \prod_{k=1}^d [-\pi/T_{\mathbf{s},k},\pi/T_{\mathbf{s},k})$ とする。 $F : \mathbb{R}^d \to \mathbb{C}$ に対して、次式で定義される、 $\mathbf{n} \in \mathbb{Z}^d$ に関する離散座標信号を F の逆離散時間 Fourier 変換 (Inverse DTFT; IDTFT) という。

$$\text{IDTFT}(F)(\boldsymbol{n}) := \frac{\prod_{k=1}^{d} T_{\text{s},k}}{(2\pi)^{d}} \int_{\Omega} F(\boldsymbol{\omega}) \exp(i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\text{s}})^{\top} \boldsymbol{n}) d\boldsymbol{\omega}$$

6.4.4.1 IDTFT が DTFT の逆変換であること

厳密な導出はここでは述べないが、 $\sum_{m{n}\in\mathbb{Z}^d}f(m{n})$ が絶対収束する場合は $\mathrm{IDTFT}(\mathrm{DTFT}(f))(m{n})=f(m{n})$ となることを簡単に証明できる。 \sum と \int の順序交換が簡単に行えるからである。

6.4.5 積と畳み込みとの関係

以下では既出の記号の定義は上書きしない限り引き継ぐ。 $f,g:\mathbb{Z}^d\to\mathbb{C}$ に対してその DTFT を $F(\omega),G(\omega)$ とする。

6.4.5.1 時間領域, 周波数領域の畳み込みの定義

時間領域の畳み込みを次で定義する:

 $f,g:\mathbb{Z}^d\to\mathbb{C}$ に対してその畳み込み f*g を次式で定義する。

$$(f*g)(oldsymbol{n}) := \sum_{oldsymbol{m} \in \mathbb{Z}^d} f(oldsymbol{m}) g(oldsymbol{n} - oldsymbol{m})$$

周波数領域の畳み込みを次で定義する:

 $F,G:\mathbb{R}^d\to\mathbb{C}$ に対してその畳み込み F*G を次式で定義する。

$$(F * G)(\boldsymbol{\omega}) := \frac{\prod_{k=1}^{d} T_{s,k}}{(2\pi)^{d}} \int_{\Omega} F(\tilde{\boldsymbol{\omega}}) G(\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}) d\tilde{\boldsymbol{\omega}}$$

6.4.5.2 **積の** DTFT

f, g の積の DTFT は次式で求まる。

$$\begin{aligned} \operatorname{DTFT}(fg)(\boldsymbol{\omega}) &= \sum_{\boldsymbol{n} \in \mathbb{Z}^d} f(\boldsymbol{n}) g(\boldsymbol{n}) \exp(-i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\operatorname{s}})^{\top} \boldsymbol{n}) = \sum_{\boldsymbol{n} \in \mathbb{Z}^d} \operatorname{IDTFT}(F)(\boldsymbol{n}) g(\boldsymbol{n}) \exp(-i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\operatorname{s}})^{\top} \boldsymbol{n}) \\ &= \sum_{\boldsymbol{n} \in \mathbb{Z}^d} \left(\frac{\prod_{k=1}^d T_{\operatorname{s},k}}{(2\pi)^d} \int_{\Omega} F(\tilde{\boldsymbol{\omega}}) \mathrm{e}^{i(\tilde{\boldsymbol{\omega}} \odot \boldsymbol{T}_{\operatorname{s}})^{\top} \boldsymbol{n}} \mathrm{d}\tilde{\boldsymbol{\omega}} \right) g(\boldsymbol{n}) \exp(-i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\operatorname{s}})^{\top} \boldsymbol{n}) \\ &= \frac{\prod_{k=1}^d T_{\operatorname{s},k}}{(2\pi)^d} \int_{\Omega} F(\tilde{\boldsymbol{\omega}}) \left(\sum_{\boldsymbol{n} \in \mathbb{Z}^d} g(\boldsymbol{n}) \mathrm{e}^{-i((\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}) \odot \boldsymbol{T}_{\operatorname{s}})^{\top} \boldsymbol{n}} \right) \mathrm{d}\tilde{\boldsymbol{\omega}} \\ &= \frac{\prod_{k=1}^d T_{\operatorname{s},k}}{(2\pi)^d} \int_{\Omega} F(\tilde{\boldsymbol{\omega}}) G(\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}) \mathrm{d}\tilde{\boldsymbol{\omega}} = (F * G)(\boldsymbol{\omega}) \end{aligned}$$

6.4.5.3 **畳み込みの** DTFT

f, g の畳み込みの DTFT は次式で求まる。

$$\begin{aligned} \text{DTFT}(f*g)(\boldsymbol{\omega}) &= \sum_{\boldsymbol{n} \in \mathbb{Z}^d} \sum_{\boldsymbol{m} \in \mathbb{Z}^d} f(\boldsymbol{m}) g(\boldsymbol{n} - \boldsymbol{m}) \exp(-i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\mathrm{s}})^{\top} \boldsymbol{n}) \\ &= \sum_{\boldsymbol{m} \in \mathbb{Z}^d} f(\boldsymbol{m}) \exp(-i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\mathrm{s}})^{\top} \boldsymbol{m}) \sum_{\boldsymbol{n} \in \mathbb{Z}^d} g(\boldsymbol{n} - \boldsymbol{m}) \exp(-i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\mathrm{s}})^{\top} (\boldsymbol{n} - \boldsymbol{m})) \\ &= F(\boldsymbol{\omega}) G(\boldsymbol{\omega}) \end{aligned}$$

6.4.5.4 積の IDTFT

DTFT の可逆性から直ちに言えるが、敢えて直接計算してみる。

$$\begin{split} \text{IDTFT}(FG)(\boldsymbol{n}) &= \frac{\prod_{k=1}^{d} T_{\text{s},k}}{(2\pi)^{d}} \int_{\Omega} F(\boldsymbol{\omega}) G(\boldsymbol{\omega}) \exp(i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\text{s}})^{\top} \boldsymbol{n}) \mathrm{d}\boldsymbol{\omega} \\ &= \frac{\prod_{k=1}^{d} T_{\text{s},k}}{(2\pi)^{d}} \int_{\Omega} \left(\text{DTFT}(f)(\boldsymbol{\omega}) \right) G(\boldsymbol{\omega}) \exp(i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\text{s}})^{\top} \boldsymbol{n}) \mathrm{d}\boldsymbol{\omega} \\ &= \frac{\prod_{k=1}^{d} T_{\text{s},k}}{(2\pi)^{d}} \int_{\Omega} \left(\sum_{\boldsymbol{m} \in \mathbb{Z}^{d}} f(\boldsymbol{m}) \exp(-i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\text{s}})^{\top} \boldsymbol{m}) \right) G(\boldsymbol{\omega}) \exp(i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\text{s}})^{\top} \boldsymbol{n}) \mathrm{d}\boldsymbol{\omega} \\ &= \sum_{\boldsymbol{m} \in \mathbb{Z}^{d}} f(\boldsymbol{m}) \frac{\prod_{k=1}^{d} T_{\text{s},k}}{(2\pi)^{d}} \int_{\Omega} G(\boldsymbol{\omega}) \exp(i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\text{s}})^{\top} (\boldsymbol{n} - \boldsymbol{m})) \mathrm{d}\boldsymbol{\omega} \\ &= \sum_{\boldsymbol{m} \in \mathbb{Z}^{d}} f(\boldsymbol{m}) g(\boldsymbol{n} - \boldsymbol{m}) = (f * g)(\boldsymbol{n}) \end{split}$$

6.4.5.5 畳み込みの IDTFT

DTFT の可逆性から直ちに言えるが、敢えて直接計算してみる。

$$\begin{split} & \operatorname{IDTFT}(F * G)(\boldsymbol{n}) \\ &= \frac{\prod_{k=1}^{d} T_{\mathrm{s},k}}{(2\pi)^{d}} \int_{\boldsymbol{\omega} \in \Omega} (F * G)(\boldsymbol{\omega}) \exp(i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\mathrm{s}})^{\top} \boldsymbol{n}) \mathrm{d}\boldsymbol{\omega} \\ &= \frac{\prod_{k=1}^{d} T_{\mathrm{s},k}}{(2\pi)^{d}} \int_{\boldsymbol{\omega} \in \Omega} \left(\frac{\prod_{k=1}^{d} T_{\mathrm{s},k}}{(2\pi)^{d}} \int_{\tilde{\boldsymbol{\omega}} \in \Omega} F(\tilde{\boldsymbol{\omega}}) G(\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}) \mathrm{d}\tilde{\boldsymbol{\omega}} \right) \exp(i(\boldsymbol{\omega} \odot \boldsymbol{T}_{\mathrm{s}})^{\top} \boldsymbol{n}) \mathrm{d}\boldsymbol{\omega} \\ &= \frac{\prod_{k=1}^{d} T_{\mathrm{s},k}}{(2\pi)^{d}} \int_{\tilde{\boldsymbol{\omega}} \in \Omega} \left(\frac{\prod_{k=1}^{d} T_{\mathrm{s},k}}{(2\pi)^{d}} \int_{\boldsymbol{\omega} \in \Omega} G(\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}) \exp(i((\boldsymbol{\omega} - \tilde{\boldsymbol{\omega}}) \odot \boldsymbol{T}_{\mathrm{s}})^{\top} \boldsymbol{n}) \mathrm{d}\boldsymbol{\omega} \right) \\ &F(\tilde{\boldsymbol{\omega}}) \exp(i(\tilde{\boldsymbol{\omega}} \odot \boldsymbol{T}_{\mathrm{s}})^{\top} \boldsymbol{n}) \mathrm{d}\tilde{\boldsymbol{\omega}} \\ &= \frac{\prod_{k=1}^{d} T_{\mathrm{s},k}}{(2\pi)^{d}} \int_{\tilde{\boldsymbol{\omega}} \in \Omega} g(\boldsymbol{n}) F(\tilde{\boldsymbol{\omega}}) \exp(i(\tilde{\boldsymbol{\omega}} \odot \boldsymbol{T}_{\mathrm{s}})^{\top} \boldsymbol{n}) \mathrm{d}\tilde{\boldsymbol{\omega}} \\ &= f(\boldsymbol{n}) g(\boldsymbol{n}) \end{split}$$

6.4.6 定数関数 1 の DTFT

簡単のため1次元の場合について考察する。工学系の学生を対象とする講義では、

DTFT(1)(ω) = $(2\pi/T_{\rm s})$ $\sum_{m\in\mathbb{Z}}\delta(\omega-2m\pi/T_{\rm s})(\delta$ は Dirac のデルタ関数) を詳細を割愛して結果として受け入れさせる場合が多いと思う。IDTFT $\left((2\pi/T_{\rm s})\sum_{m\in\mathbb{Z}}\delta(\omega-2m\pi/T_{\rm s})\right)(x)=1$ の確認は簡単であり、DTFT の可逆性から DTFT(1)(ω) = $(2\pi/T_{\rm s})\sum_{m\in\mathbb{Z}}\delta(\omega-2m\pi/T_{\rm s})$ を受け入れる説明がなされると思う。

ここでは Dirichlet 積分を用いて DTFT(1)(ω) = $(2\pi/T_{\rm s})\sum_{m\in\mathbb{Z}}\delta(\omega-2m\pi/T_{\rm s})$ を直接的に導出してみる。 DTFT の定義から次式が成り立つ。

$$DTFT(1)(\omega) = \lim_{N \to \infty} \sum_{m=-N}^{N} e^{i\omega T_s m} = \frac{\sin(N+1/2)\omega T_s}{\sin(\omega T_s/2)}$$

最右辺は等比数列の和の公式を用いた後、分母と分子に $\mathrm{e}^{-i\omega/2}$ を掛けて整理すると得られる。これが $N\to\infty$ で $(2\pi/T_\mathrm{s})\sum_{m\in\mathbb{Z}}\delta(\omega-2m\pi/T_\mathrm{s})$ として振る舞うことを確かめる。 $2\pi/T_\mathrm{s}$ 周期性については明らかだから、 $[-\pi/T_\mathrm{s},\pi/T_\mathrm{s})$ の範囲で $(2\pi/T_\mathrm{s})\delta(\omega)$ として振る舞うことを確かめれば十分である。示すべきことは次の通りである。

 $d\in\mathbb{N}$ とする。区間 $\Omega\subseteq[-\pi/T_{\mathrm{s}},\pi/T_{\mathrm{s}})$ 上で連続な任意の関数 $f:\Omega\to\mathbb{C}^d$ を考える。h>0 を $[-h,h)\subseteq\Omega$ となるように任意にとる。このとき次式が成り立つ。

$$\lim_{N \to \infty} \int_{-h}^{h} \frac{\sin(N + 1/2)xT_{s}}{\sin(xT_{s}/2)} f(x) dx = \frac{2\pi}{T_{s}} f(0)$$

Proof.

極限をとる前の積分を I_N とおく。 $y=xT_{\rm s}/2$ と変数変換すると次式を得る。

$$I_N = \frac{2}{T_s} \int_{-hT_s/2}^{hT_s/2} \frac{\sin(2N+1)y}{\sin y} f(2y/T_s) dy = \frac{2}{T_s} \int_{-hT_s/2}^{hT_s/2} \frac{\sin(2N+1)y}{y} \frac{y}{\sin y} f(2y) dy$$

後に現れる Dirichlet 積分の性質から $N\to\infty$ で積分の主要部分が x=0 近傍に集中することがこの時点で推察できる。そこで、十分に小さい正数 d' を $0< d'< hT_{\rm s}/2$ となるようにとり、積分区間を $[-hT_{\rm s}/2,-d']\cup[-d',d']\cup[d',hT_{\rm s}/2]$ と分割する。

 $[-hT_{\rm s}/2,-d'],[d',hT_{\rm s}/2]$ に於いて $f(2y/T_{\rm s})/\sin y$ は一様連続であるので $N\to\infty$ でこの 2 つの区間に於ける $(f(2y/T_{\rm s})\sin(2N+1)y)/\sin y$ の積分は 0 に収束する。証明の方針としては、 $\sin(2N+1)y$ の符号が変化する点で積分区間を細分し、各区間内で $f(2y/T_{\rm s})/\sin y$ を定数で近似して全体の積分を近似すると、一様連続性から近似値と真の積分の差が 0 に収束し、かつ近似値が 0 に収束する。

つまり任意に小さい $\varepsilon > 0$ に対して、d' に依存して決まる十分大きい自然数 N_1 が存在して次式が成り立つ。

$$N \ge N_1 \Rightarrow \left| \frac{2}{T_{\rm s}} \int_{[-hT_{\rm s}/2, -d'] \cup [d', hT_{\rm s}/2]} \frac{\sin(2N+1)y}{\sin y} f(2y/T_{\rm s}) \mathrm{d}y \right| < \varepsilon$$

次に [-d',d'] に於ける積分を評価する。 $y\to 0$ で $y/\sin y\to 1$, $f(2y/T_{\rm s})\to f(0)$ であるから、d' を十分小さくとりなおすことで $|f(2y/T_{\rm s})y/\sin y-f(0)|<\varepsilon$ となり次式が成り立つ。

$$\left| \frac{2}{T_{\rm s}} \int_{-d'}^{d'} \frac{\sin(2N+1)y}{y} \frac{y}{\sin y} f(2y/T_{\rm s}) dy - \frac{2}{T_{\rm s}} f(0) \int_{-d'}^{d'} \frac{\sin(2N+1)y}{y} dy \right| < \frac{2\varepsilon}{T_{\rm s}} \left| \int_{-d'}^{d'} \frac{\sin(2N+1)y}{y} dy \right|$$

最後に Dirichlet 積分を用いて $(\sin(2N+1)y)/\sin y$ の積分を評価する。

$$\int_{-d'}^{d'} \frac{\sin(2N+1)y}{y} dy = 2 \int_{0}^{d'} \frac{\sin(2N+1)y}{y} dy = 2 \int_{0}^{(2n+1)d'} \frac{\sin z}{z} dz \to \pi \text{ as } n \to \infty$$

すなわちd'に依存して決まる十分大きい自然数 N_2 が存在して次式が成り立つ。

$$N \ge N_1 \Rightarrow \left| \int_{-d'}^{d'} \frac{\sin(2N+1)y}{y} dy - \pi \right| < \varepsilon$$

以上より、d'>0を十分に小さくとり、 $N\geq \max(N_1,N_2)$ とすれば次式が成り立つ。

$$\left| I_{N} - \frac{2\pi}{T_{s}} f(0) \right| = \underbrace{\left(\frac{2}{T_{s}} f(0) \int_{-d'}^{d'} \frac{\sin(2N+1)y}{y} dy - \frac{2\pi}{T_{s}} f(0) \right)}_{(1)} + \underbrace{\left(\frac{2}{T_{s}} \int_{-d'}^{d'} \frac{\sin(2N+1)y}{y} \frac{y}{\sin y} f(2y) dy - \frac{2}{T_{s}} f(0) \int_{-d'}^{d'} \frac{\sin(2N+1)y}{y} dy \right)}_{(2)} + \underbrace{\frac{2}{T_{s}} \int_{[-h/2, -d'] \cup [d', h/2]} \frac{\sin(2N+1)y}{\sin y} f(2y) dy}_{(3)}$$

$$\leq |(1)| + |(2)| + |(3)| < \frac{2f(0)}{T_{s}} \varepsilon + \frac{2\varepsilon}{T_{s}} (\pi + \varepsilon) + \varepsilon$$

6.4.7 単一周波数波の DTFT の導出

 $T_{\mathrm{s}}>0$ とする。 $\sin(\omega_0 T_{\mathrm{s}} n + \phi)~(\omega_0 \in \mathbb{R}, n \in \mathbb{Z})$ の DTFT は 6.4.6 の結果を用いて次のようにして得られる。

$$DTFT(\sin(\omega_0 T_s n + \phi))(\omega) = \frac{1}{2i} \sum_{m \in \mathbb{Z}} \left(\exp(i(\omega_0 T_s m + \phi) - \exp(-i(\omega_0 T_s m + \phi))) \exp(-i\omega T_s m) \right)$$

$$= \frac{1}{2i} \sum_{m \in \mathbb{Z}} \left(e^{i\phi} \exp(i(\omega_0 - \omega) T_s m) - e^{-i\phi} \exp(i(-\omega_0 - \omega) T_s m) \right)$$

$$= \frac{1}{2i} e^{i\phi} \sum_{m \in \mathbb{Z}} \delta(\omega_0 - \omega - 2\pi m/T_s) - \frac{1}{2i} e^{-i\phi} \sum_{m \in \mathbb{Z}} \delta(-\omega_0 - \omega - 2\pi m/T_s)$$

$$= \frac{1}{2i} e^{i\phi} \sum_{m \in \mathbb{Z}} \delta(-(\omega - \omega_0) - 2\pi m/T_s) - \frac{1}{2i} e^{-i\phi} \sum_{m \in \mathbb{Z}} \delta(-(\omega + \omega_0) - 2\pi m/T_s)$$

$$= \frac{1}{2i} e^{i\phi} \frac{2\pi}{T_s} \sum_{m \in \mathbb{Z}} \delta(\omega - \omega_0 - 2\pi m/T_s) - \frac{1}{2i} e^{-i\phi} \frac{2\pi}{T_s} \sum_{m \in \mathbb{Z}} \delta(\omega + \omega_0 - 2\pi m/T_s)$$

$$= \frac{\pi}{T_s i} \sum_{m \in \mathbb{Z}} \left(e^{i\phi} \delta(\omega - \omega_0 - 2\pi m/T_s) - e^{-i\phi} \delta(\omega + \omega_0 - 2\pi m/T_s) \right)$$

上の結果を利用して、 $\cos(\omega_0 T_{\mathrm{s}} n + \phi)$ の DTFT は次式となる。

$$\begin{aligned} \text{DTFT}(\cos(\omega_0 T_{\rm s} n + \phi))\omega &= \text{DTFT}(\sin(\omega_0 T_{\rm s} n + \phi + \pi/2))(\omega) \\ &= \frac{\pi}{T_{\rm s} i} \sum_{m \in \mathbb{Z}} \left(\mathrm{e}^{i(\phi + \pi/2)} \delta(\omega - \omega_0 - 2\pi m/T_{\rm s}) - \mathrm{e}^{-i(\phi + \pi/2)} \delta(\omega + \omega_0 - 2\pi m/T_{\rm s}) \right) \\ &= \frac{\pi}{T_{\rm s} i} \sum_{m \in \mathbb{Z}} \left(i e^{i\phi} \delta(\omega - \omega_0 - 2\pi m/T_{\rm s}) + i e^{-i(\phi)} \delta(\omega + \omega_0 - 2\pi m/T_{\rm s}) \right) \\ &= \frac{\pi}{T_{\rm s}} \sum_{m \in \mathbb{Z}} \left(\mathrm{e}^{i\phi} \delta(\omega - \omega_0 - 2\pi m/T_{\rm s}) + \mathrm{e}^{-i(\phi)} \delta(\omega + \omega_0 - 2\pi m/T_{\rm s}) \right) \end{aligned}$$

6.4.8 エイリアシングとの関係

簡単のため 1 次元の場合について考察する。 $d\in\mathbb{N}$ とする。連続時間信号 $f:\mathbb{R}\to\mathbb{C}^d$ をサンプリング周期 $T_{\mathbf{s}}$ でサンプリングした信号 $\tilde{f}:\mathbb{N}\to\mathbb{C}^d$ の DTFT を求める。 $F:=\mathcal{F}(f)$ とする。

このように、DTFT $\left(\tilde{f}\right)$ は F をスケーリングして $2\pi/T_{\rm s}$ 周期で重ね合わせたものになる。f が帯域制限信号である、すなわちある $\omega_0 \geq 0$ が存在して F の台が $[-\omega_0,\omega_0]$ の範囲に収まるとき、 $T_{\rm s}$ を十分に小さくとれば、DTFT $\left(\tilde{f}\right)$ の一意に区別可能な角周波数の区間 $[-\pi/T_{\rm s},\pi/T_{\rm s}]$ で DTFT $\left(\tilde{f}\right)$ は $(\sqrt{2\pi}/T_{\rm s})F$ と一致する。逆に $T_{\rm s}$ が大きいとき、 $[-\pi/T_{\rm s},\pi/T_{\rm s}]$ の区間の端部付近で $F(\omega+2\pi/T_{\rm s})$ や $F(\omega-2\pi/T_{\rm s})$ が 0 でない値をとる。つまりサンプリングする前の連続時間信号には存在しなかった高周波成分が現れる。この現象を "Aliasing" (エイリアシング) と呼ぶ。

エイリアシングが生じない条件は、 $-\omega_0+2\pi/T_{\rm s}>\omega_0$ すなわち $T_{\rm s}<\pi/\omega_0$ である。周波数で表現するなら、帯域制限区間の端部の周波数 $f_0:=\omega_0/(2\pi)$,サンプリング周波数 $f_{\rm s}:=1/T_{\rm s}$ を用いて $f_{\rm s}>2f_0$ である。

6.4.8.1 補足: 式(1)のもう一つの導出

$$\begin{split} \mathrm{DTFT}\Big(\hat{f}\Big)(\omega) &= \sum_{n=-\infty}^{\infty} f(nT_\mathrm{s}) \mathrm{e}^{-i\omega T_\mathrm{s} n} = \sum_{n=-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) \delta(t-nT_\mathrm{s}) \mathrm{d}t \right) \exp(-i\omega T_\mathrm{s} n) \\ &= \int_{-\infty}^{\infty} f(t) \sum_{n=-\infty}^{\infty} \delta(t-nT_\mathrm{s}) \exp(-i\omega T_\mathrm{s} n) \mathrm{d}t = \int_{-\infty}^{\infty} f(t) \sum_{n=-\infty}^{\infty} \delta(t-nT_\mathrm{s}) \exp(-i\omega t) \mathrm{d}t \\ &= \int_{-\infty}^{\infty} f(t) \exp(-i\omega t) \sum_{n=-\infty}^{\infty} \delta(t-nT_\mathrm{s}) \mathrm{d}t \\ &= \int_{-\infty}^{\infty} f(t) \exp(-i\omega t) \frac{1}{T_\mathrm{s}} \sum_{n=-\infty}^{\infty} \exp\left(itn\frac{2\pi}{T_\mathrm{s}}\right) \mathrm{d}t \quad (6.4.6 \, \text{を用いた}) \\ &= \frac{1}{T_\mathrm{s}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \exp(-i\omega t) \exp\left(itn\frac{2\pi}{T_\mathrm{s}}\right) \mathrm{d}t \\ &= \frac{1}{T_\mathrm{s}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \exp\left(\left[-i\left(\omega-n\frac{2\pi}{T_\mathrm{s}}\right)t\right]\right) \mathrm{d}t \\ &= \frac{\sqrt{2\pi}}{T_\mathrm{s}} \sum_{n=-\infty}^{\infty} F\left(\omega-n\frac{2\pi}{T_\mathrm{s}}\right) \end{split}$$

6.4.9 システムの伝達関数と正弦波入力の関係

サンプリング時間を $T_{\rm s}>0$ とする。実数値の入力に対して実数値を出力するシステムの伝達関数が $H:\omega\in\mathbb{R}\mapsto H(\omega)\in\mathbb{C}$ であるとき、このシステムに単一周波数の正弦波 $f(n):=\sin(\omega_0T_{\rm s}n+\phi)$ $(-\pi/T_{\rm s}\leq\omega_0\leq\pi/T_{\rm s})$ を入力したときの出力 g(n) は次式となる。

$$g(n) = |H(\omega_0)| \sin(\omega_0 T_s n + \phi + \operatorname{Arg}(H(\omega_0)))$$

 $\omega_0<-\pi/T_{\mathrm{s}},\pi/T_{\mathrm{s}}<\omega_0$ のときは $\tilde{\omega}_0:=(\omega_0+\pi/T_{\mathrm{s}})\%(2\pi/T_{\mathrm{s}})-\pi/T_{\mathrm{s}}$ とすると $\sin(\omega_0T_{\mathrm{s}}n+\phi)=\sin(\tilde{\omega}_0T_{\mathrm{s}}n+\phi)$ となるので、 $-\pi/T_{\mathrm{s}}\leq\omega_0\leq\pi/T_{\mathrm{s}}$ の場合のみを考慮すればよい。

(直接的で長い証明)

Proof.

システムのインパルス応答を $h(n) (\in \mathbb{R}) = \mathrm{IDTFT}(H)(n)$ とすると g(n) = (h * f)(n) と表される。

$$\begin{split} g(n) &= (h*f)(n) = \sum_{m=-\infty}^{\infty} h(m)f(n-m) = \sum_{m=-\infty}^{\infty} \left(\frac{T_s}{2\pi} \int_{-\pi/T_s}^{\pi/T_s} H(\omega) \exp(i\omega T_s m) \mathrm{d}\omega\right) f(n-m) \\ &= \frac{T_s}{2\pi} \int_{-\pi/T_s}^{\pi/T_s} H(\omega) \sum_{m=-\infty}^{\infty} \exp(i\omega T_s m) f(n-m) \mathrm{d}\omega \\ &= \frac{T_s}{2\pi} \int_{-\pi/T_s}^{\pi/T_s} \frac{1}{2i} H(\omega) \sum_{m=-\infty}^{\infty} \exp(i\omega T_s m) \left(\exp(i(\omega_0 T_s (n-m)+\phi))\right) \\ &- \exp(-i(\omega_0 T_s (n-m)+\phi))\right) \mathrm{d}\omega \\ &= \frac{T_s}{2\pi} \int_{-\pi/T_s}^{\pi/T_s} \frac{1}{2i} H(\omega) \sum_{m=-\infty}^{\infty} \left(\exp(i(\omega_0 T_s n+\phi)) \exp(i(\omega-\omega_0) T_s m)\right) \\ &- \exp(-i(\omega_0 T_s n+\phi)) \exp(i(\omega+\omega_0) T_s m)\right) \mathrm{d}\omega \\ &= \frac{T_s}{2\pi} \int_{-\pi/T_s}^{\pi/T_s} \frac{1}{2i} H(\omega) \sum_{m=-\infty}^{\infty} \left(\exp(i(\omega_0 T_s n+\phi)) \frac{2\pi}{T_s} \delta(\omega-\omega_0-2\pi m/T_s)\right) \\ &- \exp(-i(\omega_0 T_s n+\phi)) \frac{2\pi}{T_s} \delta(\omega+\omega_0-2\pi m/T_s)\right) \mathrm{d}\omega \\ &= \frac{1}{2i} \int_{-\pi/T_s}^{\pi/T_s} H(\omega) \left(\exp(i(\omega_0 T_s n+\phi)) \delta(\omega-\omega_0) - \exp(-i(\omega_0 T_s n+\phi)) \delta(\omega+\omega_0)\right) \mathrm{d}\omega \\ &= \frac{1}{2i} \left(H(\omega_0) \exp(i(\omega_0 T_s n+\phi)) - H(-\omega_0) \exp(-i(\omega_0 T_s n+\phi))\right) \\ &= \frac{1}{2i} \left(H(\omega_0) \exp(i(\omega_0 T_s n+\phi)) - \overline{H(\omega_0)} \exp(i(\omega_0 T_s n+\phi)\right)\right) \\ &(h(n) \in \mathbb{R}^{\frac{1}{2}} \mathcal{O} \mathcal{T} H(-\omega_0) = \overline{H(\omega_0)}) \\ &= \mathrm{Re} \left(H(\omega_0)\right) \operatorname{Im} \left(\exp(i(\omega_0 T_s n+\phi))\right) + \operatorname{Im} \left(H(\omega_0)\right) \operatorname{Re} \left(\exp(i(\omega_0 T_s n+\phi))\right) \\ &= \operatorname{Re} \left(H(\omega_0)\right) \sin(\omega_0 T_s n+\phi) + \operatorname{Im} \left(H(\omega_0)\right) \operatorname{Re} \left(\exp(i(\omega_0 T_s n+\phi))\right) \\ &= \operatorname{Re} \left(H(\omega_0)\right) \sin(\omega_0 T_s n+\phi) + \operatorname{Im} \left(H(\omega_0)\right) \operatorname{Re} \left(\exp(i(\omega_0 T_s n+\phi))\right) \\ &= \operatorname{Re} \left(H(\omega_0)\right) \sin(\omega_0 T_s n+\phi) + \operatorname{Im} \left(H(\omega_0)\right) \operatorname{Re} \left(\exp(i(\omega_0 T_s n+\phi)\right)\right) \\ &= \operatorname{Re} \left(H(\omega_0)\right) \sin(\omega_0 T_s n+\phi) + \operatorname{Im} \left(H(\omega_0)\right) \operatorname{Re} \left(\exp(i(\omega_0 T_s n+\phi)\right)\right) \\ &= \operatorname{Re} \left(H(\omega_0)\right) \sin(\omega_0 T_s n+\phi) + \operatorname{Im} \left(H(\omega_0)\right) \operatorname{Re} \left(\exp(i(\omega_0 T_s n+\phi)\right)\right) \\ &= \operatorname{Re} \left(H(\omega_0)\right) \sin(\omega_0 T_s n+\phi) + \operatorname{Im} \left(H(\omega_0)\right) \operatorname{Re} \left(\exp(i(\omega_0 T_s n+\phi)\right)\right) \end{aligned}$$

(DTFT を経由した短い証明)

Proof.

f,g の DTFT を F,G とすると

$$G(\omega) = H(\omega)F(\omega) = H(\omega)\frac{\pi}{T_{\rm s}i}\sum_{m\in\mathbb{Z}} \left(\mathrm{e}^{i\phi}\delta(\omega - \omega_0 - 2\pi m/T_{\rm s}) - \mathrm{e}^{-i\phi}\delta(\omega + \omega_0 - 2\pi m/T_{\rm s}) \right)$$

これを逆変換して

$$\begin{split} g(n) &= \text{IDTFT}(G)(n) \\ &= \frac{T_{\text{s}}}{2\pi} \int_{-\pi/T_{\text{s}}}^{\pi/T_{\text{s}}} H(\omega) \frac{\pi}{T_{\text{s}} i} \sum_{m \in \mathbb{Z}} \left(e^{i\phi} \delta(\omega - \omega_0 - 2\pi m/T_{\text{s}}) - e^{-i\phi} \delta(\omega + \omega_0 - 2\pi m/T_{\text{s}}) \right) \exp(i\omega T_{\text{s}} n) d\omega \\ &= \frac{1}{2i} \left(H(\omega_0) \exp\left(i(\omega_0 T_{\text{s}} n + \phi)\right) - H(-\omega_0) \exp\left(-i(\omega_0 T_{\text{s}} n + \phi)\right) \right) \end{split}$$

この先は「直接的で長い証明」と同じである。

6.4.10 Gaussian ノイズの DTFT

6.4.10.1 エネルギー・スペクトラム密度の性質

複素数の Gaussian 乱数の DTFT は周波数に依らない分布をもつことを示す。Gaussian ノイズが White である (スペクトラムが平坦である) と言われる理由はここにある。

 $N\in\mathbb{N},\ \sigma>0$ とする。連続時間信号 $X:\mathbb{R}\to\mathbb{C}$ は確率変数であるとする。これをサンプリング周期 $T_{\mathrm{s}}>0$ でサンプリングした N 個の確率変数 $X_n=X(nT_{\mathrm{s}})\ (n=0,1,\ldots,N-1)$ は互いに独立であり、自身の実部と虚部も独立であり、それぞれ $N(0,\sigma)$ に従うとする。数列 $\{X_n\}$ の DTFT を $Y:\mathbb{R}\to\mathbb{C}$ とすると、 $|Y(\omega)|^2/(N\sigma^2)$ は χ_2^2 に従う。

Proof.

 $[\operatorname{Re}(X_n),\operatorname{Im}(X_n)]^{ op}\sim N(\mathbf{0},\sigma I_2)$ である。ここに I_2 は 2 次の単位行列である。 $Y(\omega)=\sum_{n=0}^{N-1}X_n\mathrm{e}^{-j\omega T_\mathrm{s}n}$ であるが、 $X_n\mathrm{e}^{-j\omega T_\mathrm{s}n}$ は X_n を $-\omega T_\mathrm{s}n$ だけ回転させたものであり、これもまた $N(\mathbf{0},\sigma I_2)$ に従う。正規分布の再生性から $Y(\omega)$ は $N(\mathbf{0},\sqrt{N}\sigma I_2)$ に従う。 $Y(\omega)/(\sqrt{N}\sigma)$ の実部と虚部は独立でそれぞれ標準正規分布に従うので、 $|Y(\omega)|^2/(N\sigma^2)$ は χ_2^2 に従う。

6.4.10.2 Fourier 変換との関係

通信工学で現れる Gaussian ノイズの電力密度という言葉について説明を試みる。時間の不連続関数とも思えるノイズに対する Fourier 変換を通常の方法で定義できない。ここでは、サンプリング周波数が極めて高い測定器を用いて計算される DTFT 由来のスペクトラムを考えることにする。産業応用上はこのような測定結果を用いるので、極限を数学的に厳密に扱わなくても実用上困ることはない。注目する時間区間 (測定器で言えば Gate time) $I:=[t_0,t_1]$ に於いて確率変数としての連続時間ノイズ信号 X(t) を周期 $T_{\rm s}$ でサンプリングした $N=\lfloor (t_1-t_0)/T_{\rm s}\rfloor$ 個のデータ $X_n:=X(nT_{\rm s})$ に対して、区間 I に於ける平均スペクトラムを次式で定義する。

$$Y(f) := \frac{1}{t_1 - t_0} \sum_{n=0}^{N-1} \frac{t_1 - t_0}{N} X_n \exp\left(-j2\pi f n T_{\rm s}\right)$$

上式は $T_{\rm s} \to +0$ のとき、X の台を I に制限した Fourier 変換の $1/(t_1-t_0)$ 倍に近付く (X が Riemann 可積分かどうか疑わしいので「一致する」とは言い難い)。6.4.10.1 の証明と同様にして $Y(\omega)$ の実部と虚部はそれぞれ独立に正規分布 $N(0,\sigma)$ に従い、 $|Y(\omega)|^2/\sigma^2$ は χ^2_2 分布に従うことがわかる。

第 6.5 章

離散 Fourier 変換 (DFT)

6.5.1 基底

 $d \in \mathbb{N}, \ N_l \in \mathbb{N} \ (l=1,2,\ldots,d), \ {\pmb k}, {\pmb n} \in \mathbb{Z}^d$ とする。次式で定義される、 ${\pmb n}$ に関する離散座標信号を d 次元 DFT の第 ${\pmb k}$ 基底ベクトルという。

$$W(\boldsymbol{k}, \boldsymbol{n}) \coloneqq \left(\prod_{l=1}^{d} N_l\right)^{-1/2} \exp i \left(\sum_{l=1}^{d} \frac{k_l n_l}{N_l} 2\pi\right)$$

6.5.2 DFT **の定義**

 $d \in \mathbb{N}, \ N_l \in \mathbb{N} \ (l=1,2,\ldots,d), \ \mathbf{k} \in \mathbb{Z}^d$ とする。 $\Omega \coloneqq \{0,1,\ldots,N_1-1\} \times \{0,1,\ldots,N_2-1\} \times \cdots \times \{0,1,\ldots,N_d-1\}$ とする。f を周期が (N_1,N_2,\ldots,N_d) であるような離散座標信号 $f:\mathbb{Z}^d \to \mathbb{C}; \ \mathbf{n} = [n_1,n_2,\ldots,n_d]^\top \mapsto f(\mathbf{n})$ とするとき、次式で定義される、 \mathbf{k} に関する離散座標信号を f の離散 Fourier 変換 (Discrete Fourier Transform; DFT) という。

$$\mathrm{DFT}(f)\left(oldsymbol{k}
ight)\coloneqq\sum_{oldsymbol{n}\in\Omega}\overline{W(oldsymbol{k},oldsymbol{n})}f(oldsymbol{n})$$

6.5.3 Hermite な離散座標信号の DFT は実数である

 d, N_l, k, Ω, f の定義は 6.5.2 と同じものとする。f にさらに Hermite 性: $\overline{f(n)} = f(-n)$ を要請するとき、DFT(f)(k) は実数となる。

Proof.

$$\begin{split} 2\mathrm{Im}\left(\mathrm{DFT}(f)\left(\boldsymbol{k}\right)\right) &= \mathrm{DFT}(f)\left(\boldsymbol{k}\right) - \overline{\mathrm{DFT}(f)\left(\boldsymbol{k}\right)} \\ &= \sum_{\boldsymbol{n} \in \Omega} \overline{W(\boldsymbol{k}, \boldsymbol{n})} f(\boldsymbol{n}) - \sum_{\boldsymbol{n} \in \Omega} W(\boldsymbol{k}, \boldsymbol{n}) \overline{f(\boldsymbol{n})} \end{split}$$

ここで $\boldsymbol{n}_{\mathrm{M}}\coloneqq [N_1,\ldots,N_d]^{\top}$ とすると、

$$\overline{W(\boldsymbol{k},\boldsymbol{n})} = W(\boldsymbol{k},-\boldsymbol{n}) = W(\boldsymbol{k},\boldsymbol{n}_{\mathrm{M}}-\boldsymbol{n})$$

また、fの Hermite 性の仮定より

$$\overline{f(n)} = f(-n) = f(n_{\mathrm{M}} - n)$$

以上より

$$\begin{aligned} 2\mathrm{Im}\left(\mathrm{DFT}(f)\left(\boldsymbol{k}\right)\right) &= \sum_{\boldsymbol{n}\in\Omega} W(\boldsymbol{k},\boldsymbol{n}_{\mathrm{M}}-\boldsymbol{n})f(\boldsymbol{n}) - \sum_{\boldsymbol{n}\in\Omega} W(\boldsymbol{k},\boldsymbol{n})f(\boldsymbol{n}_{\mathrm{M}}-\boldsymbol{n}) \\ &= \sum_{\boldsymbol{n}\in\Omega} W(\boldsymbol{k},\boldsymbol{n}_{\mathrm{M}}-\boldsymbol{n})f(\boldsymbol{n}) - \sum_{\boldsymbol{n}\in\Omega} W(\boldsymbol{k},\boldsymbol{n}_{\mathrm{M}}-\boldsymbol{n})f(\boldsymbol{n}) \\ &\quad (\{(\boldsymbol{n},\boldsymbol{n}_{\mathrm{M}}-\boldsymbol{n})|\boldsymbol{n}\in\Omega\} = \{(\boldsymbol{n}_{\mathrm{M}}-\boldsymbol{n}),\boldsymbol{n}|\boldsymbol{n}\in\Omega\}$$
を用いた)

6.5.3.1 系: Hermite な離散座標信号の IDFT は実数である

6.5.3 と同様にして示せる。

6.5.4 巡回畳み込みの DFT は DFT の積に比例する

 $d, N_l, \mathbf{k}, \Omega$ の定義は 6.5.2 と同じものとする。 f, g を周期が (N_1, N_2, \ldots, N_d) であるような離散座標信号 $f, g: \mathbb{Z}^d \to \mathbb{C}; \ \mathbf{n} = [n_1, n_2, \ldots, n_d]^\top \mapsto f(\mathbf{n}), g(\mathbf{n})$ とするとき、次が成り立つ。

$$\mathrm{DFT}\!\left(f\underset{\mathrm{cyc}}{*}g\right)(\boldsymbol{k}) = \left(\prod_{l=1}^{d}N_{l}\right)^{1/2}\mathrm{DFT}\!\left(f\right)(\boldsymbol{k})\,\mathrm{DFT}\!\left(g\right)(\boldsymbol{k})$$

Proof.

 $\mathbf{N} \coloneqq [N_1, \dots, N_d]^{\top}$ とする。

$$DFT\left(f \underset{\text{cyc}}{*} g\right)(\mathbf{k}) = \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n})} \left(f \underset{\text{cyc}}{*} g\right)(\mathbf{n}) = \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n})} \sum_{\mathbf{m} \in \Omega} f(\mathbf{m}) g((\mathbf{n} - \mathbf{m}) \% \mathbf{N})$$

$$= \sum_{\mathbf{m} \in \Omega} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \left(\prod_{l=1}^{d} N_{l}\right)^{1/2} \overline{W(\mathbf{k}, \mathbf{m}) W(\mathbf{k}, \mathbf{n} - \mathbf{m})} g((\mathbf{n} - \mathbf{m}) \% \mathbf{N})$$

$$= \left(\prod_{l=1}^{d} N_{l}\right)^{1/2} \sum_{\mathbf{m} \in \Omega} \overline{W(\mathbf{k}, \mathbf{m})} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, (\mathbf{n} - \mathbf{m}) \% \mathbf{N})} g((\mathbf{n} - \mathbf{m}) \% \mathbf{N})$$

$$= \left(\prod_{l=1}^{d} N_{l}\right)^{1/2} \sum_{\mathbf{m} \in \Omega} \overline{W(\mathbf{k}, \mathbf{m})} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n})} g(\mathbf{n})$$

$$= \left(\prod_{l=1}^{d} N_{l}\right)^{1/2} DFT(f)(\mathbf{k}) DFT(g)(\mathbf{k})$$

6.5.5 巡回相関の DFT

 $d, N_l, \mathbf{k}, \Omega$ の定義は 6.5.2 と同じものとする。f, g を周期が (N_1, N_2, \ldots, N_d) であるような離散座標信号 $f, g: \mathbb{Z}^d \to \mathbb{C}; \ \boldsymbol{n} = [n_1, n_2, \ldots, n_d]^\top \mapsto f(\boldsymbol{n}), g(\boldsymbol{n})$ とする。f と g の巡回相関を $R_{f,g}(n) = \operatorname{cycCorrel}(f,g)(\boldsymbol{n})$ とする。このとき、次が成り立つ。

$$\mathrm{DFT}(R_{f,g})\left(\boldsymbol{k}\right) = \left(\prod_{l=1}^{d} N_{l}\right)^{1/2} \mathrm{DFT}(f)\left(\boldsymbol{k}\right) \overline{\mathrm{DFT}(g)\left(\boldsymbol{k}\right)}$$

Proof.

 $\mathbf{N} \coloneqq [N_1, \dots, N_d]^{\top} \ \texttt{E} \, \texttt{J} \, \texttt{S} \, .$

$$DFT(R_{f,g})(\mathbf{k}) = \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n})} \sum_{\mathbf{m} \in \Omega} f(\mathbf{m}) \overline{g((\mathbf{m} - \mathbf{n})\% \mathbf{N})}$$
$$= \sum_{\mathbf{m} \in \Omega} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \overline{W(\mathbf{k}, \mathbf{n}) g((\mathbf{m} - \mathbf{n})\% \mathbf{N})}$$
(1)

ここで $\overline{W(k,n)}$ を変形して次式を得る。

$$\overline{W(\boldsymbol{k},\boldsymbol{n})} = W(\boldsymbol{k},-\boldsymbol{n}) = \left(\prod_{l=1}^{d} N_l\right)^{1/2} W(\boldsymbol{k},\boldsymbol{m}-\boldsymbol{n})W(\boldsymbol{k},-\boldsymbol{m})$$
$$= \left(\prod_{l=1}^{d} N_l\right)^{1/2} W(\boldsymbol{k},(\boldsymbol{m}-\boldsymbol{n})\%\boldsymbol{N})\overline{W(\boldsymbol{k},\boldsymbol{m})}$$

これを式(1)に適用して次式を得る。

$$DFT(R_{f,g})(\mathbf{k}) = \left(\prod_{l=1}^{d} N_l\right)^{1/2} \sum_{\mathbf{m} \in \Omega} \overline{W(\mathbf{k}, \mathbf{m})} f(\mathbf{m}) \sum_{\mathbf{n} \in \Omega} \overline{\overline{W(\mathbf{k}, (\mathbf{m} - \mathbf{n})\% \mathbf{N})} g((\mathbf{m} - \mathbf{n})\% \mathbf{N})$$
$$= \left(\prod_{l=1}^{d} N_l\right)^{1/2} DFT(f)(\mathbf{k}) \overline{DFT(g)(\mathbf{k})}$$

6.5.6 巡回畳み込みの DFT

 $d, N_l, \mathbf{k}, \Omega$ の定義は 6.5.2 と同じものとする。f, g を周期が (N_1, N_2, \ldots, N_d) であるような離散座標信号 $f, g: \mathbb{Z}^d \to \mathbb{C}; \ \mathbf{n} = [n_1, n_2, \ldots, n_d]^\top \mapsto f(\mathbf{n}), g(\mathbf{n})$ とするとき、次が成り立つ。

$$DFT\left(f \underset{\text{cyc}}{*} g\right)(\mathbf{k}) = \left(\prod_{l=1}^{d} N_l\right)^{1/2} DFT(f)(\mathbf{k}) DFT(g)(\mathbf{k})$$

Proof.

6.5.5 と同じ要領で示せる。

6.5.7 Gaussian ノイズの DFT

 $F(n) \in \mathbb{C}$ (n = 0, 1, ..., N - 1) は互いに独立で、複素正規分布 $N(0, \sigma^2)$ に従うとする $\left(\mathbf{p}(f) = \frac{1}{2\pi\sigma^2} \exp{\frac{-\operatorname{Re}(f)^2 - \operatorname{Im}(f)^2}{2\sigma^2}} = \frac{1}{2\pi\sigma^2} \exp{\frac{-|f|^2}{2\sigma^2}}\right)$ 。これのDFT を $G(k) = \operatorname{DFT}(F)(k)$ とするとき、G(k)(k = 0, 1, ..., N - 1) もまた互いに独立で、複素正規分布 $N(0, \sigma^2)$ に従う。

Proof.

$$P \in \mathbb{C}^{N \times N}, \ P_{k,n} \coloneqq W(k,n) \coloneqq \frac{1}{\sqrt{N}} \exp i \frac{kn}{N} 2\pi \ (k,n \in \{0,1,\ldots,N-1\})$$
$$\boldsymbol{F} \coloneqq [F(0),F(1),\ldots,F(N-1)]^{\top}, \ \boldsymbol{G} \coloneqq [G(0),G(1),\ldots,G(N-1)]^{\top}$$

と定義すると

$$G = P^*F$$

となる。

$$\Pr(\mathbf{G} = \mathbf{g} \in \mathbb{C}^{N}) = \Pr(P^{*}\mathbf{F} = \mathbf{g}) = \Pr(\mathbf{F} = P\mathbf{g})$$

$$= \prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}} \exp \frac{-|(P\mathbf{g})[i]|^{2}}{2\sigma^{2}} = \left(\prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}}\right) \exp \sum_{i=0}^{N-1} \frac{-|(P\mathbf{g})[i]|^{2}}{2\sigma^{2}}$$

$$= \left(\prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}}\right) \exp \frac{-||P\mathbf{g}||_{2}^{2}}{2\sigma^{2}} = \left(\prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}}\right) \exp \frac{-||\mathbf{g}||_{2}^{2}}{2\sigma^{2}}$$

$$= \prod_{i=0}^{N-1} \frac{1}{2\pi\sigma^{2}} \exp \frac{-|g_{i}|^{2}}{2\sigma^{2}}$$

第6.6章

高速 Fourier 変換 (FFT)

6.6.1 長さが 2 のべき乗でない信号の DFT を長さが 2 のべき乗の信号の FFT に帰着 する方法

N を 2 のべき乗でない自然数とする。長さ N の信号 x の DFT

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) \exp\left(2\pi i \frac{-kn}{N}\right) \quad k = 1, 2, \dots, N-1$$

を長さが 2 のべき乗である信号の FFT に帰着する方法を考える。 $\forall a,b \in \mathbb{R},\ ab = \frac{a^2+b^2-(a-b)^2}{2}$ を用いて上の式を次のように変形する。

$$X(k) = \frac{1}{\sqrt{N}} \exp\left(\pi i \frac{-k^2}{N}\right) \sum_{n=0}^{N-1} x(n) \exp\left(\pi i \frac{-n^2}{N}\right) \exp\left(\pi i \frac{(k-n)^2}{N}\right)$$

$$= \frac{1}{\sqrt{N}} \exp\left(\pi i \frac{-k^2}{N}\right) \sum_{n=0}^{N-1} u(n) v(k-n)$$
where $u(n) := x(n) \exp\left(\pi i \frac{-n^2}{N}\right)$, $v(n) := \exp\left(\pi i \frac{n^2}{N}\right)$

$$\therefore X(k) \sqrt{N} \exp\left(\pi i \frac{k^2}{N}\right) = (u * v)(k)$$

u*v を、長さが 2 のべき乗の信号に対して使える FFT, IFFT を用いて計算する。そのために長さが 2 のべき乗の信号同士の**巡回畳み込み**の中に u*v が部分的に現れるような状況を以下のようにして作り出す。

 $N_2 := \min\{a | \exists b \in \mathbb{N}, a = 2^b \geq 2N\}$ とする。長さ N_2 の信号 u_2, v_2 を以下のように定義する。

$$u_2(n) \coloneqq \begin{cases} u(n) & (n \in [0, N-1]) \\ 0 & (n \in [N, N_2 - 1]) \end{cases}$$
$$v_2(n) \coloneqq \begin{cases} v(n) & (n \in [0, N-1]) \\ 0 & (n \in [N, N_2 - N]) \\ v(N_2 - n) & (n \in [N_2 - N + 1, N_2 - 1]) \end{cases}$$

 u_2 は u の後ろに 0 を並べて長さ N_2 に拡張した信号である。 v_2 は長さ N_2 の 0 が並んだ信号の前部を v で塗り替え、後部を v の第 $1\sim N-1$ 要素をコピーして順番を逆にしたもので塗り替えた信号である。下の図は u_2,v_2 を視覚的に表現したものである。

図 6.6.1.1 u_2, v_2 の構造

このようにすると $u_2 * v_2$ の先頭 N 要素が u * v と一致する。

$$FFT(u_2 * v_2) = \sqrt{N_2} FFT(u_2) FFT(v_2)$$

より

$$\operatorname{IFFT}(\sqrt{N_2} \operatorname{FFT}(u_2) \operatorname{FFT}(v_2))$$

により u_2*v_2 を高速に計算し、結果の先頭 N 要素を切り出せば u*v を得る。得られた u*v の第 k 要素に $\frac{1}{\sqrt{N}}\exp\left(\pi i\frac{-k^2}{N}\right)$ を掛ければ x の DFT が得られる。 v_2 の FFT や $\frac{1}{\sqrt{N}}\exp\left(\pi i\frac{-k^2}{N}\right)$ $(k=0,1,\ldots,N-1)$ は初回の計算結果を保存しておけば別の信号の DFT の計算で再利用できる。

第 6.7 章

離散 Cosine 変換 (DCT)

6.7.1 DCT 基底の正規直交性を導出するための補題

 $M \in \mathbb{Z}, \ N \in \mathbb{N}$ とする。さらに M は 2N の倍数ではないとする。このとき次式が成り立つ。

$$\sum_{n=0}^{N-1} \cos \frac{M(n+1/2)}{N} \pi = 0$$

Proof. (証明1複素指数関数を用いる証明)

(証明2複素数を用いない証明(所謂「望遠鏡和」を使う))

第7部 Hilbert **変換**

第7.1章

Hilbert 変換の変数変換

Hilbert 変換の定義式は次式である。

$$H(u)(t) := \frac{1}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} \frac{u(\tau)}{t - \tau} d\tau$$

これは次式と等しい。

$$\text{p.v. } \int_{-\infty}^{\infty} \frac{u(t-\tau)}{\tau} d\tau$$

Proof.

$$H(u)(t) := \frac{1}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} \frac{u(\tau)}{t - \tau} d\tau$$

$$= \frac{1}{\pi} \lim_{\varepsilon \to +0} \left[\underbrace{\int_{-\infty}^{t-\varepsilon} \frac{u(\tau)}{t - \tau} d\tau}_{(1.1)} + \underbrace{\int_{t+\varepsilon}^{\infty} \frac{u(\tau)}{t - \tau} d\tau}_{(1.2)} \right]$$

$$(1)$$

変数変換 $t-\tau=\tilde{\tau}$ を施して次式を得る。

$$(1.1) = \frac{1}{\pi} \int_{\varepsilon}^{\infty} \frac{u(t - \tilde{\tau})}{\tilde{\tau}} d\tilde{\tau}, \quad (1.2) = \frac{1}{\pi} \int_{-\infty}^{-\varepsilon} \frac{u(t - \tilde{\tau})}{\tilde{\tau}} d\tilde{\tau}$$

これらを(1)に適用して主張が示される。

第 7.2 章

sin, cos の Hilbert 変換

$$H(t\mapsto \sin\omega t)(t) = \mathrm{sgn}(\omega)\sin(\omega t - \pi/2), \quad H(t\mapsto \cos\omega t)(t) = \mathrm{sgn}(\omega)\cos(\omega t - \pi/2)$$

Proof.

sin の Hilbert 変換について示す。他方は同様にして示せる。7.1 より次式が成り立つ。

$$\begin{split} H(t \mapsto \sin \omega t)(t) &= \frac{1}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} \frac{\sin \omega (t-\tau)}{\tau} \mathrm{d}\tau = \frac{1}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} \frac{\sin \omega t \cos \omega \tau - \cos \omega t \sin \omega \tau}{\tau} \mathrm{d}\tau \\ &= -\frac{\cos \omega t}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} \frac{\sin \omega \tau}{\tau} \mathrm{d}\tau = -(\cos \omega t) \operatorname{sgn}(\omega) = \operatorname{sgn}(\omega) \sin(\omega t - \pi/2) \end{split}$$

最後から 3 番目の等号の成立には、 $(\cos x)/x$ の $[a,\infty)$ (a>0) に於ける定積分が存在することを用いた。最後から 2 番目の等号の成立には Dirichlet 積分を用いた。

第 7.3 章

Hilbert 変換の Fourier 変換

 $x: \mathbb{R} \to \mathbb{C}$ を連続時間信号とし、 $\hat{x} = \mathrm{H}(x), \; X = \mathcal{F}(x)$ とする。次式が成り立つ。

$$\mathcal{F}(\hat{x})(\omega) = -i\operatorname{sgn}(\omega)X(\omega)$$

Proof.

$$\begin{split} \mathcal{F}(\hat{x})(\omega) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} \frac{x(t-\tau)}{\tau} \mathrm{d}\tau \mathrm{e}^{-i\omega t} \mathrm{d}t \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} x(t-\tau) \mathrm{e}^{-i\omega(t-\tau)} \frac{\mathrm{e}^{-i\omega\tau}}{\tau} \mathrm{d}\tau \mathrm{d}t \\ &= \frac{1}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-i\omega\tau}}{\tau} \bigg(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t-\tau) \mathrm{e}^{-i\omega(t-\tau)} \mathrm{d}t \bigg) \mathrm{d}\tau \\ &= \frac{1}{\pi} \text{ p.v. } \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-i\omega\tau}}{\tau} X(\omega) \mathrm{d}\tau \\ &= X(\omega) \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{-i\sin\omega\tau}{\tau} \mathrm{d}\tau = -i\operatorname{sgn}(\omega) X(\omega) \end{split}$$

第8部

Laplace 変換

第8.1章

複素指数関数入力に対する伝達関数の作用

 $A>0,\ \omega\in\mathbb{R}$ とする。連続時間信号 $f:\mathbb{R}\to\mathbb{C}$ を次のように定める。

$$f(t) = \begin{cases} Ae^{i\omega t} & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

 $H:s\in\mathbb{C}\mapsto H(s)\in\mathbb{C}$ を proper で既約な有理関数とする。また、H の極の実部は全て負であるとする。伝達関数が H(s) である連続時間システムに信号 f を入力した時の出力を g とすると、十分大きい t に対して $g(t)\sim H(i\omega)f(t)$ となる。

Proof.

 $N_{
m p}$ を H(s) の分母多項式の相異なる零点の個数とし、それら零点を $p_0,\dots,p_{N_{
m p}}$ とする。零点 p_k の次数を $N_{
m p,k}$ とし、H(s) の部分分数展開を

$$H(s) = c_0 + \sum_{k=1}^{N_p} \sum_{l=1}^{N_{p,k}} \frac{c_{k,l}}{(s - p_k)^l}$$

残りの項、すなわち $1/(s-i\omega)$ に比例する項は $AH(i\omega)/(s-i\omega)=H(i\omega)F(s)$ となる。以上より、十分大きい t に対して $g(t)\sim \mathcal{L}^{-1}(H(i\omega)F(s))(t)=H(i\omega)f(t)$ となる。

8.1.1 系: 正弦波入力に対する伝達関数の作用

 $A>0, \ \omega\in\mathbb{R}$ とする。連続時間信号 $f_1,f_2:\mathbb{R}\to\mathbb{R}$ を次のように定める。

$$f_1(t) = \begin{cases} A\cos\omega t & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

$$f_2(t) = \begin{cases} A \sin \omega t & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

H を直前の定理と同じように定める。伝達関数が H(s) である連続時間 \mathbf{g} システムに信号 f_1, f_2 を入力した時の出力をそれぞれ g_1, g_2 とすると、十分大きい t に対して

$$g_1(t) \sim |H(i\omega)| \cos(\omega t + \text{Arg}(H(i\omega)))$$

 $g_2(t) \sim |H(i\omega)| \sin(\omega t + \text{Arg}(H(i\omega)))$

となる。

Proof.

 f_1 について示す。 f_2 も同様に示せる。 $f_1(t)=\mathrm{Re}\left(A\mathrm{e}^{i\omega t}\right)$ であり、実数システムだから出力は $A\mathrm{e}^{i\omega t}$ を入力したときの出力の実部と等しい。直前の定理の結果を用いて

$$g_1(t) = \operatorname{Re}\left(H(i\omega)Ae^{i\omega t}\right) = \operatorname{Re}\left(|H(i\omega)|e^{i\operatorname{Arg}(H(i\omega))}Ae^{i\omega t}\right) = |H(i\omega)|\cos(\omega t + \operatorname{Arg}(H(i\omega)))$$

Proof. (直接的な証明)

 f_1 について示す。 f_2 も同様に示せる。直前の定理の証明の(1) までは同じである。 f_1,g_1 の Laplace 変換をそれぞれ F_1,G_1 とすると

$$F_1(s) = \frac{As}{s^2 + \omega^2} = \frac{A}{2} \left(\frac{1}{s + i\omega} + \frac{1}{s - i\omega} \right)$$

であるから、 $G_1(s)=H(s)F(s)$ の部分分数展開のうち $1/(s+i\omega),\ 1/(s-i\omega)$ に比例する項を詳しく調べれば良い。 $1/(s+i\omega)$ の係数は

$$G(s)X(s)(s+i\omega)|_{s\to -i\omega} = AG(-i\omega)/2$$

となり、 $1/(s-i\omega)$ の係数は

$$G(s)X(s)(s-i\omega)|_{s\to i\omega} = AG(i\omega)/2$$

となる。よってこれらの項の和は

$$\begin{split} &\frac{AG(-i\omega)/2}{s+i\omega} + \frac{AG(i\omega)/2}{s-i\omega} = \frac{A}{2} \left(\frac{G(-i\omega)}{s+i\omega} + \frac{G(i\omega)}{s-i\omega} \right) \\ &= \frac{A}{2} \times \frac{1}{s^2 + \omega^2} \left(G(-i\omega)(s-i\omega) + G(i\omega)(s+i\omega) \right) \\ &= \frac{As}{s^2 + \omega^2} \times \frac{1}{2} \left(G(i\omega) + G(-i\omega) \right) + \frac{A\omega}{s^2 + \omega^2} \times \frac{-1}{2i} \left(G(i\omega) - G(-i\omega) \right) \end{split} \tag{8.1.1.1}$$

G(s) は有理式なので $G(-i\omega) = \overline{G(i\omega)}$ となることに注意して

$$\frac{1}{2}(G(i\omega) + G(-i\omega)) = |G(i\omega)| \frac{1}{2} \left(e^{i\operatorname{Arg}(G(i\omega))} + e^{-i\operatorname{Arg}(G(i\omega))} \right) = |G(i\omega)| \cos\operatorname{Arg}(G(i\omega))$$

同様に

$$\frac{-1}{2i}(G(i\omega) - G(-i\omega)) = -|G(i\omega)| \sin \operatorname{Arg}(G(i\omega))$$

以上より、

$$(1) = |G(i\omega)| \left(\cos \operatorname{Arg}(G(i\omega)) \frac{As}{s^2 + \omega^2} - \sin \operatorname{Arg}(G(i\omega)) \frac{A\omega}{s^2 + \omega^2} \right)$$
$$g(t) \sim \mathcal{L}^{-1}((1))(t) = |G(i\omega)| \left(\cos \operatorname{Arg}(G(i\omega)) \cos \omega t - \sin \operatorname{Arg}(G(i\omega)) \sin \omega t \right)$$
$$= |G(i\omega)| \cos (\omega t + \operatorname{Arg}(G(i\omega)))$$

第9部

Z変換

第9.1章

基礎理論

9.1.1 最終値定理

X(z) $(z \in \mathbb{C})$ を離散時間信号 x(n) $(n \in \mathbb{Z}, \ \forall n < 0, x(n) = 0)$ の Z 変換とする。 $\lim_{n \to \infty} x(n)$ が存在するとき次が成り立つ。

$$\lim_{z \to 1} (z - 1)F(z) = \lim_{n \to \infty} x(n)$$

但し上式に於ける $\lim_{z\to 1}$ では z が実軸上で右側から 1 に近づくことを意味する。

Proof.

 $\alpha=\lim_{n\to\infty}x(n)$ とする。発想としては、十分大きい $N\in\mathbb{N}$ に対して $\sum_{k=N+1}^\infty x(k)z^{-k}\sim\sum_{k=N+1}^\infty \alpha z^{-k}=\alpha z^{-N}rac{1}{z-1}$ となることを利用する。

任意の $\varepsilon \in (0,1)$ に対してある $N \in \mathbb{N}$ が存在して $\forall n \geq N, |x(n) - \alpha| < \varepsilon$ となる。

9.1.2 複素指数関数入力に対する伝達関数の作用

 $A>0,\ \omega\in\mathbb{R}$ とする。離散時間信号 $x:\mathbb{R}\to\mathbb{C}$ を次のように定める。

$$x(n) = \begin{cases} Ae^{i\Omega n} & (n \ge 0) \\ 0 & (n < 0) \end{cases}$$

 $H:z\in\mathbb{C}\mapsto H(z)\in\mathbb{C}$ を、1/z を変数とした有理式として既約であるような有理関数とする。また、H の極の絶対値は全て 1 未満であるとする。伝達関数が H(z) である離散時間システムに信号 x を入力した時の出力を y とすると、十分大きい n に対して $y(n)\sim H(e^{i\Omega})x(n)$ となる。

Proof.

 $N_{
m p}$ を H(s) の相異なる極の個数とし、それら極を $p_0,\dots,p_{N_{
m p}}$ とする。極 p_k の次数を $N_{
m p,k}$ とし、H(z) の部分分数展開を

$$H(z) = c_0 + \sum_{k=1}^{N_p} \sum_{l=1}^{N_{p,k}} \frac{c_{k,l}}{(1 - p_k z^{-1})^l}$$

とする。ここに $c_0, c_{k,l}$ $(k=1,\ldots,N_{\rm p},l=1,\ldots,N_{\rm p,k})$ は適当な複素数である。x,y の Z 変換をそれぞれ X,Y とすると $Y(z)=H(z)F(z)=AH(z)/(1-{\rm e}^{i\Omega}z^{-1})$ である。これの部分分数展開に現れる、 $1/(1-p_kz^{-1})^l$ $(k=1,\ldots,N_{\rm p},l=1,\ldots,N_{\rm p,k})$ に比例する項は逆 Z 変換すると n の多項式と公比 p_k の等比級数の積となり、 $n\to\infty$ で 0 に収束する。(この ことは Z 変換の性質:時間シフト $\mathcal{Z}[x(n+k)]=z^kX(z)$ 、および Z 領域微分 $\mathcal{Z}[nx(n)]=-z\frac{{\rm d}}{{\rm d}z}\mathcal{Z}[x(n)]$ を繰り返し用いることで分かる)

残りの項、すなわち $1/(1-\mathrm{e}^{i\Omega}z^{-1})$ に比例する項は $AH(\mathrm{e}^{i\Omega})/(1-\mathrm{e}^{i\Omega}z^{-1})=H(\mathrm{e}^{i\Omega})X(z)$ となる。

第 10 部

周波数変換

第 10.1 章

ヘテロダイン

元の信号が実数値か複素数値か、変換後の出力を複素数値のまま扱えるのか、それとも実数しか扱えないのか、状況設定 次第で何通りも考えられるが、ここでは登場頻度が高いケースについて記す。

10.1.1 連続時間複素数値信号を上方変換して実数値信号を送信し、受信側で複素数値信号を復元する

無線通信で使われる手法である。

10.1.1.1 計算

 $I_0,Q_0:\mathbb{R}\to\mathbb{R},\ x_0:\mathbb{R}\to\mathbb{C};t\in\mathbb{R}\mapsto I_0(t)+iQ_0(t),\ \omega>0$ とする。 x_0 は所謂ベースバンド信号である。送信側は次式で上方変換された信号を x_1 作る。

$$x_1(t) = x(t)\exp(i\omega t) = I_0(t)\cos\omega t - Q_0(t)\sin\omega t + i(Q_0(t)\cos\omega t + I_0(t)\sin\omega t)$$

無線通信に於いては x_1 の実部が送信される。受信側では次式で下方変換された信号 x_2 を得る。

$$\begin{aligned} x_2(t) &= \text{Re}\,(x_1(t)) \exp(-i\omega t) \\ &= \frac{1}{2} [I_0(t)(1 + \cos 2\omega t) + Q_0(t) \sin 2\omega t - i(I_0(t) \sin 2\omega t - Q_0(t)(1 - \cos 2\omega t))] \end{aligned}$$

これに LPF を掛けて $2\omega t$ で振動する成分を除去して次の信号を得る。

$$x_3(t) := \frac{1}{2}(I_0(t) + iQ_0(t))$$

10.1.1.2 サイドバンドの考察

送信された $\mathrm{Re}(x_1)$ は実時間信号だからスペクトラムは偶関数である。前述の受信側の操作ではスペクトラムの右半分を原点に向かって ω だけ平行移動させ、LPF で高周波を消している。

第 11 部 離散時間領域

第 11.1 章

オーバー・サンプリング

11.1.1 オーバー・サンプリングされた信号の DTFT

11.1.1.1 主張

記号を次のように定義する。

- $R \in \mathbb{N}, R > 2$: $\forall x \in \mathbb{N}$
- $x_d: \mathbb{Z} \to \mathbb{C}:$ 離散時間信号
- $T_{\rm s} > 0: x_{\rm d}$ のサンプル周期
- $y_d: x_d$ を R 倍にオーバー・サンプリングした離散時間信号。 つまり $y_d(n) = x_d(n/R)$ for $R \mid n, 0$ for $R \nmid n$ 。
- $X_{\rm d}: x_{\rm d}$ O DTFT
- $Y_{\rm d}:y_{\rm d}$ ODTFT

このとき $Y_{\rm d}(\omega)=X_{\rm d}(\omega)$ となる(オーバー・サンプリング前の DTFT と完全に一致する)。

11.1.1.2 導出

$$Y_{\rm d}(\omega) = \sum_{n=-\infty}^{\infty} y_{\rm d}(n) \exp(-i\omega n T_{\rm s}/R) = \sum_{m=-\infty}^{\infty} y_{\rm d}(mR) \exp(-i\omega (mR) T_{\rm s}/R)$$
$$= \sum_{m=-\infty}^{\infty} x_{\rm d}(m) \exp(-i\omega m T_{\rm s}) = X_{\rm d}(\omega)$$

11.1.1.3 正規化角周波数で比較する

前述の通り $X_{\rm d}$ と $Y_{\rm d}$ は完全に一致する。しかしフィルタ設計に於いてはしばしばアップ・サンプリング後の第 1 Nyquist 領域に関心がある、すなわち横軸が正規化角周波数で表されたスペクトラムに関心がある。この場合は $X_{\rm d}$ と $Y_{\rm d}$ のグラフの見た目が異なる。両者をそれぞれ正規化角周波数で表示すると次式となる。

$$\tilde{X}_{\mathrm{d}}(\Omega) := X_{\mathrm{d}}(\Omega/T_{\mathrm{s}}), \quad \tilde{Y}_{\mathrm{d}}(\Omega) := Y_{\mathrm{d}}(\Omega/(T_{\mathrm{s}}/R)) = Y_{\mathrm{d}}(R\Omega/T_{\mathrm{s}})$$

正規化角周波数で表示されたグラフでは、オーバー・サンプリングされた信号のスペクトラムは元の信号のスペクトラムを 横軸方向に 1/R に縮小した形になる。

11.1.1.4 数值例

サンプリング前の連続時間信号が $x(t)=e^{-\frac{n^2}{800}}\cos\left(\frac{\pi n}{5}\right)$ の場合の数値例が Mathematica ノートブック zero_pad_effect_for_DTFT.nb にある。

第 11.2 章

アンダー・サンプリング

11.2.1 アンダー・サンプリングされた信号の DTFT

11.2.1.1 主張

記号を次のように定義する。

- $R \in \mathbb{N}, R \ge 2$: $P > \emptyset$ $P > \emptyset$
- $x_d: \mathbb{Z} \to \mathbb{C}$: 離散時間信号
- $T_{\rm s} > 0: x_{\rm d}$ のサンプル周期
- $y_{\rm d}:x_{\rm d}$ を 1/R にアンダー・サンプリングした離散時間信号。つまり $y_{\rm d}(n)=x_{\rm d}(nR)$ 。
- $X_{\rm d}: x_{\rm d} \mathcal{O} {\rm DTFT}$
- $Y_{\rm d}:y_{\rm d}$ ODTFT

このとき $Y_{\rm d}$ は次式で表される。

$$Y_{\rm d}(\omega) = \frac{1}{R} \sum_{n=0}^{R-1} X_{\rm d} \left(\omega - n \frac{2\pi}{RT_{\rm s}} \right)$$

 $Y_{\rm d}$ は ω に関する $2\pi/(RT_{\rm s})$ 周期関数となり、 $Y_{\rm d}$ の第 1 Nyquist 領域は $S_{\rm N,Y}\coloneqq [-\pi/(RT_{\rm s}), -\pi/(RT_{\rm s}))$ となる。

全体に 1/R が掛けられているが、振幅が 1/R になるわけではない。DTFT の内積計算の対象となる点の数が 1/R に減ったことに起因する。

 $X_{\rm d}$ の台のうち $x_{\rm d}$ の第 1 Nyquist 領域 $S_{{
m N},X}\coloneqq [-\pi/T_{
m s},\pi/T_{
m s})$ にある部分を S_X とする。エイリアシングが生じない必要十分条件は $S_X\subset S_{{
m N},X}$ である。ここで言うエイリアシングとは、 S_X を $2\pi/(RT_{
m s})$ の整数倍ずつ平行移動しながら無限に複製したものを考えたとき、複製された S_X 同士に重なりが生じることを指す。

11.2.1.2 導出

$$Y_{d}(\omega) = \sum_{n=-\infty}^{\infty} y_{d}(n) \exp(-i\omega nRT_{s}) = \sum_{n=-\infty}^{\infty} x_{d}(nR) \exp(-i\omega nRT_{s})$$

$$= \sum_{m=-\infty}^{\infty} u(m)x_{d}(m) \exp(-i\omega mT_{s}) \quad \text{where} \quad u(m) := \begin{cases} 1 & (m \in R\mathbb{Z}) \\ 0 & (\text{otherwise}) \end{cases}$$

$$= \text{DTFT}(ux_{d})(\omega)$$

$$= \frac{T_{s}}{2\pi} \int_{-\pi/T_{s}}^{\pi/T_{s}} X_{d}(\omega - \tilde{\omega})U(\tilde{\omega})d\tilde{\omega} \quad \text{where} \quad U(\omega) := \frac{2\pi}{RT_{s}} \sum_{m=-\infty}^{\infty} \delta\left(\omega - n\frac{2\pi}{RT_{s}}\right)$$

$$= \frac{1}{R} \int_{-\pi/T_{s}}^{\pi/T_{s}} X_{d}(\omega - \tilde{\omega}) \sum_{n=-\infty}^{\infty} \delta\left(\tilde{\omega} - n\frac{2\pi}{RT_{s}}\right)d\tilde{\omega}$$

$$(11.2.1.1)$$

被積分関数の $X_{\rm d}$ とデルタ関数列を次の図に示す。

図 11.2.1.1 X_d とデルタ関数列 (R=2)

 $X_{
m d}$ が $2\pi/T_{
m s}$ 周期関数であること、式 (11.2.1.1) の積分範囲が $[-\pi/T_{
m s},\pi/T_{
m s}]$ であること、および R が偶数の場合に積分範囲の両端点で生じる、デルタ関数の中心から左右半分と $X_{
m d}$ との積の積分を考慮すると、式 (11.2.1.1) は次式と等しいことが解る。

$$Y_{\rm d}(\omega) = \frac{1}{R} \sum_{n=-\lfloor R/2 \rfloor}^{\lfloor R/2 \rfloor} \int_{-\pi/T_{\rm s}}^{\pi/T_{\rm s}} X_{\rm d}(\omega - \tilde{\omega}) \delta\left(\tilde{\omega} - n \frac{2\pi}{RT_{\rm s}}\right) d\tilde{\omega}$$

$$= \frac{1}{R} \sum_{n=0}^{R-1} X_{\rm d} \left(\omega - n \frac{2\pi}{RT_{\rm s}}\right)$$
(11.2.1.2)

また同時に、 $Y_{
m d}$ が ω に関する $2\pi/(RT_{
m s})$ 周期関数であることも解る。

エイリアシングが生じないことと $S_X \subset S_{N,X}$ が同値であることが解る。 $Y_{
m d}$ を次の図に示す。

図 11.2.1.2 $Y_{\rm d}$

11.2.1.3 正規化角周波数で比較する

フィルタ設計に於いてはしばしばダウン・サンプリング後の第 1 Nyquist 領域に関心がある、すなわち横軸が正規化角周波数で表されたスペクトラムに関心がある。この場合は $Y_{\rm d}$ のグラフの見た目が異なる。正規化角周波数で表示すると次式となる。

$$\tilde{Y}_{\rm d}(\Omega) := Y_{\rm d}(\Omega/(RT_{\rm s}))$$

正規化角周波数で表示されたグラフでは、アンダー・サンプリングされた信号のスペクトラムは元の信号のスペクトラムを式 (11.2.1.2) に従って複製して並べた後、横軸方向に R に拡大した形になる。

11.2.1.4 数值例

いくつかの数値例が下記の Mathematica ノートブックにある。下記の x はサンプリング前の連続時間信号である。

- DTFT_of_under-sampled_signal.nb: $x(t)=A\exp(-t^2/(2\sigma^2))$ DTFT_of_under-sampled_signal_example2.nb: $x(t)=e^{-12.5t^2}\cos(10\pi t)$

第 11.3 章

Noble Identity

11.3.1 主張

 $N\in\mathbb{N},\ H:\mathbb{Z}\to\mathbb{C}$ とする。伝達関数 H をもつ離散時間系 S_H と N 倍オーバー・サンプラ $\uparrow N$ または 1/N アンダー・サンプラ $\downarrow N$ が連結された系に於いて、 $S_H,\uparrow N,\downarrow N$ の前後関係の交換について次の図の関係が成り立つ。記号 \equiv は左右の系が等価であることを表す。

図 11.3.1.1 Noble Identity

11.3.2 導出

Proof.

(オーバー・サンプリングの場合)

図 11.3.1.1 の下段に着目する。システム S_H のインパルス応答を $h:\mathbb{Z}\to\mathbb{C}$ とする。 S_H は因果的なシステムであるとする $(\forall n<0,\ h(n)=0)$ 。 z 変換が $\tilde{H}:z\mapsto H(z^N)$ で与えられるシステム $S_{\tilde{H}}$ のインパルス応答を $\tilde{h}:\mathbb{Z}\to\mathbb{C}$ とすると、z 変換の定義から次式が成り立つ。

$$\tilde{h}(n) = \begin{cases} h(n/N) & (N \mid n) \\ 0 & (N \nmid n) \end{cases}$$
 (1)

図の左側のシステムに於いて、入力を $x:\mathbb{Z}\to\mathbb{C}$ 、 S_H の出力を $x_{\mathrm{L},1}:\mathbb{Z}\to\mathbb{C}$ 、最終出力を $y_{\mathrm{L}}:\mathbb{Z}\to\mathbb{C}$ とすると次式が成り立つ。

$$x_{L,1}(n) = (h * x)(n) = \sum_{m=0}^{\infty} h(m)x(n-m)$$

$$y_{L}(n) = \begin{cases} x_{L,1}(n/N) & (N \mid n) \\ 0 & (N \nmid n) \end{cases}$$

$$= \begin{cases} \sum_{m=0}^{\infty} h(m)x(n/N-m) & (N \mid n) \\ 0 & (N \nmid n) \end{cases}$$

図の右側のシステムに於いて、 $\uparrow N$ の出力を $x_{R,1}$ 、最終出力を y_R とすると次式が成り立つ。

$$\begin{split} x_{\mathrm{R},1}(n) &= \begin{cases} x(n/N) & (N \mid n) \\ 0 & (N \nmid n) \end{cases} \\ y_{\mathrm{R}}(n) &= (\tilde{h} * x_{\mathrm{R},1})(n) = \sum_{m=0}^{\infty} \tilde{h}(m) x_{\mathrm{R},1}(n-m) \\ &= \sum_{l=0}^{\infty} \tilde{h}(lN) x_{\mathrm{R},1}(n-lN) = \sum_{l=0}^{\infty} h(l) x_{\mathrm{R},1}(n-lN) \\ &= \begin{cases} \sum_{l=0}^{\infty} h(l) x(n/N-l) & (N \mid n) \\ 0 & (N \nmid n) \end{cases} \end{split}$$

 $y_{\rm L}$ と $y_{\rm R}$ は一致する。

(アンダー・サンプリングの場合)

図 11.3.1.1 の上段に着目する。断りの無い限り、「(オーバー・サンプリングの場合)」で定義した記号の意味を引き継ぐ。図 の左側のシステムに於いて、入力を $x:\mathbb{Z}\to\mathbb{C}$ 、 $\downarrow N$ の出力を $x_{\mathrm{L},1}:\mathbb{Z}\to\mathbb{C}$ 、最終出力を $y_{\mathrm{L}}:\mathbb{Z}\to\mathbb{C}$ とすると次式が成り立つ。

$$x_{L,1}(n) = x(nN)$$

$$y_L(n) = \sum_{m=0}^{\infty} h(m)x_{L,1}(n-m) = \sum_{m=0}^{\infty} h(m)x((n-m)N)$$

図の右側のシステムに於いて、 $\mathbf{S}_{\tilde{H}}$ の出力を $x_{\mathrm{R},1}$ 、最終出力を y_{R} とすると次式が成り立つ。

$$x_{\rm R,1}(n) = \sum_{m=0}^{\infty} \tilde{h}(m)x(n-m) = \sum_{l=0}^{\infty} h(lN)x(n-lN)$$
$$y_{\rm R}(n) = x_{\rm R,1}(nN) = \sum_{l=0}^{\infty} h(lN)x((n-l)N)$$

 $y_{\rm L}$ と $y_{\rm R}$ は一致する。

第 11.4 章

補間

11.4.1 DTFT と IDTFT を用いた有限長信号の補間

11.4.1.1 動機

有限長の離散時間信号(例えば係数畳み込み型 FIR フィルタ係数)が与えられたとき、その信号を連続時間信号に拡張して、任意の時刻での値を求めたいときがある。例えば FIR フィルタのインパルス応答が離散時間信号として既知であるとき、非整数の時刻に於ける合理的な値を考えたい。

11.4.1.2 方法

台有界な離散時間信号 $x_d:\mathbb{Z}\to\mathbb{C}$ の DTFT を $X_d:\mathbb{R}\to\mathbb{C}$ とする。但し引数は正規化角周波数である。連続時間信号 $\hat{x}:\mathbb{R}\to\mathbb{R}$ を次式で定義する。

$$\hat{x}(t) := |\mathrm{IDTFT}(X_{\mathrm{d}})(n)|_{n \to t} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_{\mathrm{d}}(\Omega) \exp(i\Omega t) \mathrm{d}\Omega$$

 \hat{x} は全ての離散時刻に於いて x_{d} と(証明するまでもなく明らかに)一致する連続関数である。

例えば $x_{\rm d}$ が既知であって、それをある時間 $d\in(0,1)$ だけ仮想的に遅らせた(サンプリング時刻が仮想的に d だけ早まった)離散時間信号は $n\in\mathbb{Z}\mapsto \hat{x}(n-d)$ である。

11.4.1.3 数値例

 $N=33,~\alpha=0.4$ とし、有限長の離散時間信号 $h:\mathbb{Z}\to\mathbb{R}$ を次式で定義する。これは視覚的な解り易さから [1] 式 (8.41) から流用したものである。

$$h(n) = \begin{cases} \alpha & (n = (N-1)/2) \\ \alpha \operatorname{sinc}((N-1)/2 - \pi)\alpha\pi & (n \in \{0, 1, 2, \dots, N-1\} \setminus \{(N-1)/2\}) \\ 0 & (\text{otherwise}) \end{cases}$$

次の図はhとそのDTFTである。

図 11.4.1.1 h

図 11.4.1.2 h の DTFT。横軸は正規化角周波数

これを前小節の方法で実時間信号に拡張したものを \tilde{h} とする。次の図は h と \tilde{h} を重ねて描いたものである。

新たな離散時間信号 $h^\dagger:(d,n)\in\mathbb{R}\times\mathbb{Z}\mapsto \tilde{h}(n-d)$ を定義する。 h^\dagger は h を仮想的に d だけ遅らせたものである。

この数値例を計算した Mathematica notebook が下記のファイル名で保存されている。Git リポジトリ内でファイル名検索すれば発見できるであろう。notebook 中では前記 N が N_{tp} となっている。 Interpolation_with_DTFT_and_IDTFT.nb

第 12 部

フィルタ

第 12.1 章

連続時間フィルタ

12.1.1 諸注意

12.1.1.1 複素係数フィルタは実,虚経路単独の実係数フィルタと後段の重み付き和とは等価でない

数式を書けば直ぐに解ることではあるが、このことについて一度も考えたことが無ければ即答できないかもしれない。 系 1 は複素数値インパルス応答 $h: \mathbb{R} \to \mathbb{C}$ をもつシステムである。入力信号 $x: \mathbb{R} \to \mathbb{C}$ に対して出力信号 $y: \mathbb{R} \to \mathbb{C}$ は y = h*x である。h の実部と虚部をそれぞれ $h_{\mathrm{R}}, h_{\mathrm{I}}$ とすると $y = h_{\mathrm{R}}*\mathrm{Re}\,(x) - h_{\mathrm{I}}*\mathrm{Im}\,(x) + i(h_{\mathrm{R}}*\mathrm{Im}\,(x) + h_{\mathrm{I}}*\mathrm{Re}\,(x))$ である。

系 2 は実数値インパルス応答 \tilde{h}_{R} , $\tilde{h}_{\mathrm{I}}:\mathbb{R}\to\mathbb{R}$ を持つ 2 つの経路を持ち、その後段に実数値のゲイン a_{R} , b_{R} , a_{I} , b_{I} がある。入力信号 $x:\mathbb{R}\to\mathbb{C}$ に対して出力信号 $y:\mathbb{R}\to\mathbb{C}$ は $y=a_{\mathrm{R}}h_{\mathrm{R}}*\mathrm{Re}\,(x)+b_{\mathrm{R}}h_{\mathrm{I}}*\mathrm{Im}\,(x)+i(a_{\mathrm{I}}h_{\mathrm{R}}*\mathrm{Re}\,(x)+b_{\mathrm{I}}h_{\mathrm{I}}*\mathrm{Im}\,(x))$ である。

系 1 の方が系 2 よりも自由度が高いので、系 2 で系 1 を常には表現できない。

第 12.2 章

離散時間フィルタ

離散時間フィルタは次のように分類される。

- 1. FIR 型
 - (a) 係数畳み込み型
 - (b) 上記以外 (例えば CIC フィルタ)
- 2. IIR 型

本書では主張の正確さを重視し、努めて 1b と 1a を区別して呼ぶ。

12.2.1 連続時間系のフィルタ処理を離散時間系で観測したときの振る舞い

ここでは、連続時間系でフィルタ処理を行った結果を離散時間系で観測したときの振る舞いを考える。この問題は実用上興味深い。物理系の状態をセンサでコンピュータに取り込み、有益な計算をする状況がこれに当てはまる。具体的には、無線受信機の直交分離出力である IQ 信号 (連続時間信号) を ADC で一定周期でサンプリングして CPU に取り込んで復調の計算を行う状況が考えられる。

 $h: \mathbb{R} \to \mathbb{R}$ を連続時間信号とする。 $H: \mathbb{C} \to \mathbb{C}$ を h の Laplace 変換とする。インパルス応答が h である連続時間フィルタを連続時間系の複素正弦波信号 $x(t) = A \exp i(\omega_0 t + \phi)$ $(A > 0, \omega_0, \phi \in \mathbb{R})$ に適用した出力を y = h*x とする。x, y をサンプリング周期 $T_{\rm s}$ でサンプリングした離散時間信号を $x_{\rm d}: n \in \mathbb{Z} \mapsto x(nT_{\rm s}), y_{\rm d}: n \in \mathbb{Z} \mapsto y(nT_{\rm s})$ とする。このとき次式が成り立つ。

$$\mathrm{DTFT}(y_{\mathrm{d}})(\boldsymbol{\omega}) = H(i\omega_0)\mathrm{DTFT}(x_{\mathrm{d}})(\boldsymbol{\omega})$$

Proof.

$$DTFT(y_{d})(\boldsymbol{\omega}) = \sum_{m=-\infty}^{\infty} y(nT_{s}) \exp(-inT_{s}\boldsymbol{\omega}) = \sum_{m=-\infty}^{\infty} (h*x)(nT_{s}) \exp(-inT_{s}\boldsymbol{\omega})$$

$$= \sum_{m=-\infty}^{\infty} \left(\int_{-\infty}^{\infty} h(\tau)x(nT_{s} - \tau) d\tau \right) \exp(-inT_{s}\boldsymbol{\omega})$$

$$= \int_{-\infty}^{\infty} h(\tau) \sum_{m=-\infty}^{\infty} x(nT_{s} - \tau) \exp(-inT_{s}\boldsymbol{\omega}) d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau) \sum_{m=-\infty}^{\infty} A \exp i(\omega_{0}(nT_{s} - \tau) + \phi) \exp(-inT_{s}\boldsymbol{\omega}) d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau) \exp(-i\omega_{0}\tau) \sum_{m=-\infty}^{\infty} A \exp i(\omega_{0}nT_{s} + \phi) \exp(-inT_{s}\boldsymbol{\omega}) d\tau$$

$$= DTFT(x_{d})(\boldsymbol{\omega}) \int_{-\infty}^{\infty} h(\tau) \exp(-i\omega_{0}\tau) d\tau = DTFT(x_{d})(\boldsymbol{\omega}) H(i\omega_{0})$$

12.2.2 係数畳み込み型 FIR フィルタの設計

12.2.2.1 DTFT の誤差 2 乗積分最小化

ここではフィルタ係数が複素数であり、個数が指定された条件下で、所望の周波数特性に対して DTFT の誤差の重み付き 2 乗積分が最小になるように係数を決定する方法を記す。

この方法は係数の個数について偶奇を区別せず、係数の添え字に関する対称性も指定していないため、線形位相特性は保証されない(意図的に線形位相特性を狙う方法については [1] 「8.3.1 線形位相 FIR フィルタの設計法」に詳細がある)。周波数特性の補正のための逆特性フィルタの設計のように、所望のフィルタの周波数特性が必ずしも線形位相特性を持たない場面を想定している。

この方法で作られたフィルタの振幅周波数特性にはリップルが生じる可能性がある(激しさは所望の周波数特性の不連続性の強さに依る)。その際の緩和策として [1] 「8.3.2 窓関数を用いた設計法」が適用できると期待される。

12.2.2.1.1 誤差の重みが一様である場合

ここでは全ての周波数に於いて誤差の重みを1としたときの最適係数を導く。

 $N\in\mathbb{N}$ 個の複素数 h_0,h_1,\ldots,h_{N-1} を係数とする FIR フィルタの周波数特性(フィルタ係数列の DTFT)を $H:\mathbb{R}\to\mathbb{C}$ と記し、所望の周波数特性を $H_{\mathrm{ideal}}:\mathbb{R}\to\mathbb{C}$ と記す。但し H と H_{ideal} の引数はサンプル周波数について正規化された角周波数である($\pi/2$ が Nyquist 周波数に対応する)。 $\mathbf{h}\coloneqq[h_0,h_1,\ldots,h_{N-1}]^{\mathsf{T}}$ として次式で定義される H と H_{ideal} の誤差 2 乗積分の評価関数

$$J(\boldsymbol{h}) := \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\Omega) - H_{\text{ideal}}(\Omega)|^2 d\Omega$$
 (1)

の最小点 h_{opt} は次式である。

$$\boldsymbol{h}_{\mathrm{opt}}[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{\mathrm{ideal}}(\Omega) \mathrm{e}^{i\Omega k} \mathrm{d}\Omega \ (k = 0, 1, \dots, N - 1) = \mathrm{IDTFT}(H_{\mathrm{ideal}})(k)$$

とくに H_{ideal} が Hermite 対称であるとき(実数値信号の周波数特性)は $m{h}_{\mathrm{opt}} \in \mathbb{R}^N$ となる。

Proof.

(最小点の導出)

$$J(\boldsymbol{h}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (H(\Omega) - H_{\text{ideal}}(\Omega)) \left(\overline{H(\Omega) - H_{\text{ideal}}(\Omega)} \right) d\Omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{k=0}^{N-1} h_k e^{-i\Omega k} - H_{\text{ideal}}(\Omega) \right) \left(\sum_{l=0}^{N-1} \overline{h_l} e^{i\Omega l} - \overline{H_{\text{ideal}}(\Omega)} \right) d\Omega$$

$$= \frac{1}{2\pi} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} h_k \overline{h_l} \int_{-\pi}^{\pi} e^{i\Omega(l-k)} d\Omega - \frac{1}{2\pi} \sum_{k=0}^{N-1} h_k \int_{-\pi}^{\pi} \overline{H_{\text{ideal}}(\Omega)} e^{-i\Omega k} d\Omega$$

$$- \frac{1}{2\pi} \sum_{l=0}^{N-1} \overline{h_l} \int_{-\pi}^{\pi} H_{\text{ideal}}(\Omega) e^{i\Omega l} d\Omega + \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{\text{ideal}}(\Omega)|^2 d\Omega$$

$$= \|\boldsymbol{h}\|_2^2 - \frac{1}{2\pi} 2 \operatorname{Re} \left(\sum_{k=0}^{N-1} h_k \int_{-\pi}^{\pi} \overline{H_{\text{ideal}}(\Omega)} e^{-i\Omega k} d\Omega \right) + \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{\text{ideal}}(\Omega)|^2 d\Omega$$

$$(2)$$

ここで v_k (k = 0, 1, ..., N - 1) を次式で定義し、 $\mathbf{v} := [v_0, v_1, ..., v_{N-1}]^{\mathsf{T}}$ とする。

$$v_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{\text{ideal}}(\Omega) e^{i\Omega n} d\Omega$$

式 (2) の第 3 項は h に依存しないので無視し、第 2 項までを取り出して次の評価関数を得る。

$$J_2(\mathbf{h}) := \|\mathbf{h}\|_2^2 - 2\text{Re}(\mathbf{v}^*\mathbf{h}) = \|\mathbf{h} - \mathbf{v}\|_2^2 - \|\mathbf{v}\|_2^2$$

これの最小点がvであるから主張が従う。

 $(H_{ ext{ideal}}$ が Hermite 対称であるときは $oldsymbol{h}_{ ext{opt}} \in \mathbb{R}^N$ となること)

$$m{h}_{
m opt}[k] = rac{1}{2\pi} \left[\underbrace{\int_{-\pi}^{0} H_{
m ideal}(\Omega) {
m e}^{i\Omega k} {
m d}\Omega}_{(3)} + \int_{0}^{\pi} H_{
m ideal}(\Omega) {
m e}^{i\Omega k} {
m d}\Omega
ight]$$

式(3)に変数変換を施すと次式を得る。

$$(3) = \int_0^{\pi} H_{\text{ideal}}(-\Omega) e^{-i\Omega k} d\Omega = \overline{\int_0^{\pi} H_{\text{ideal}}(\Omega) e^{i\Omega k} d\Omega}$$

よって次式を得る。

$$\boldsymbol{h}_{\mathrm{opt}}[k] = \frac{1}{\pi} \mathrm{Re} \left(\int_0^{\pi} H_{\mathrm{ideal}}(\Omega) \mathrm{e}^{i\Omega k} \mathrm{d}\Omega \right) \in \mathbb{R}$$

12.2.2.1.2 誤差の重みが一様ではない場合

ここでは、誤差の重みが周波数に依存する場合の最適係数を導く。

 $w:\mathbb{R}\to\mathbb{R}$ は非負であり、w>0 となる区間が $[-\pi,\pi]$ に少なくとも 1 つ存在するものとする。式 (1) を変更し、次の評価関数を考える。

$$J(\boldsymbol{h}) := \frac{1}{2\pi} \int_{-\pi}^{\pi} w(\Omega) |H(\Omega) - H_{\text{ideal}}(\Omega)|^2 d\Omega$$
 (4)

これの最小点 h_{opt} は次式である。

$$\boldsymbol{h}_{\mathrm{opt}}[n] = \sum_{k=0}^{N-1} \frac{1}{4\pi^2} \Biggl(\int_{-\pi}^{\pi} w(\Omega) \mathrm{e}^{i\Omega(n-k)} \mathrm{d}\Omega \Biggr) \Biggl(\int_{-\pi}^{\pi} w(\tilde{\Omega}) H_{\mathrm{ideal}}(\tilde{\Omega}) \mathrm{e}^{i\tilde{\Omega}k} \mathrm{d}\tilde{\Omega} \Biggr)$$

とくに $H_{ ext{ideal}}$ が Hermite 対称であり(実数値信号の周波数特性)、かつ w が偶関数であるときは $m{h}_{ ext{opt}} \in \mathbb{R}^N$ となる。

Proof.

(最小点の導出)

式(1)と同じ要領で式変形を行うと次式を得る。

$$J(\boldsymbol{h}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} w(\Omega) (H(\Omega) - H_{\text{ideal}}(\Omega)) (\overline{H(\Omega) - H_{\text{ideal}}(\Omega)}) d\Omega$$

$$= \frac{1}{2\pi} \sum_{l=0}^{N-1} \sum_{k=0}^{N-1} h_k \overline{h_l} \int_{-\pi}^{\pi} w(\Omega) e^{i\Omega(l-k)} d\Omega - \frac{1}{2\pi} 2 \operatorname{Re} \left(\sum_{k=0}^{N-1} h_k \int_{-\pi}^{\pi} w(\Omega) \overline{H_{\text{ideal}}(\Omega)} e^{-i\Omega k} d\Omega \right)$$

$$+ \frac{1}{2\pi} \int_{-\pi}^{\pi} w(\Omega) |H_{\text{ideal}}(\Omega)|^2 d\Omega$$
(5)

 $N \times N$ Hermite 対称行列 A を、第 (l,k) 要素が次式で定義されるものとする。

$$A[l,k] := \frac{1}{2\pi} \int_{-\pi}^{\pi} w(\Omega) e^{i\Omega(l-k)} d\Omega$$

また v_n $(n=0,1,\ldots,N-1)$ を次式で定義し、 $\boldsymbol{v}\coloneqq [v_0,v_1,\ldots,v_{N-1}]^\top$ とする。

$$v_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} w(\Omega) H_{\text{ideal}}(\Omega) e^{i\Omega n} d\Omega$$

上記を式 (5) に適用し、h に依存しない項を無視すると次の評価関数を得る。

$$J_2(\boldsymbol{h}) \coloneqq \boldsymbol{h}^* A \boldsymbol{h} - 2 \operatorname{Re} \left(\boldsymbol{v}^* \boldsymbol{h} \right)$$

証明していないが A は正定値であると期待され*1、以下ではそう仮定する。すると $J_2(h)$ は h の狭義凸 2 次形式であり、最小点が存在する。それは h が微小量 Δh 変化するときの J_2 の増分 $\Delta J_2(h)$ が 0 となる h である。

$$\Delta J_2(\boldsymbol{h}) = \boldsymbol{h}^* A \Delta \boldsymbol{h} + \Delta \boldsymbol{h}^* A \boldsymbol{h} - 2 \operatorname{Re} \left(\boldsymbol{v}^* \Delta \boldsymbol{h} \right) + \underset{\|\Delta \boldsymbol{h}\|_2 \to 0}{o} (\|\Delta \boldsymbol{h}\|_2) = 2 \operatorname{Re} \left((\boldsymbol{h}^* A - \boldsymbol{v}^*) \Delta \boldsymbol{h} \right)$$

 $\Delta J_2(\mathbf{h}) = 0 \iff \mathbf{h} = A\mathbf{v}$ であるから主張が従う。

 (H_{ideal}) が Hermite 対称であり(実数値信号の周波数特性)、かつ w が偶関数であるときは $\boldsymbol{h}_{\text{opt}} \in \mathbb{R}^N$ となること) 重みが一様である場合(section 12.2.2.1.1)の導出と同じ要領で $A \in \mathbb{R}^{N \times N}, \ \boldsymbol{v} \in \mathbb{R}^N$ であることが容易に示せて $\boldsymbol{h}_{\text{opt}} = A\boldsymbol{v} \in \mathbb{R}^N$ である。

12.2.2.2 DTFT の誤差の実部と虚部の∞ノルム最小化

フィルタ係数が複素数であり、個数が指定された条件下で、所望の周波数特性に対して DTFT の誤差の実、虚部それぞれの偶、奇対称成分の L^∞ -ノルムが最小になるように係数を決定する方法を記す。H が線形位相特性をもち、かつ偶対称か奇対称のいずれかである場合(\bigstar 1)には Remez のアルゴリズムが知られている(例えば [5] の remez 関数)。ここでは H が \bigstar 1 の条件を満たさない場合にも Remez のアルゴリズムを 4 回独立に実行してフィルタ係数を決定する方法を示す。また特殊ケースとして、入力信号が実数(従ってフィルタ係数も実数)である場合に Remez のアルゴリズムを 2 回独立に 実行してフィルタ係数を決定する方法も示す。議論の見通しを良くするため、まず特殊ケースを導き、これを拡張して最終的な結論を導く。

12.2.2.2.1 前提

以下では周波数特性の補償用フィルタのように、null を含まない穏やかな特性を持つフィルタを主な関心の対象としている。そのため以下ではフィルタ係数の個数 $N_{tp} \in \mathbb{N}$ は奇数であるとする。そうでない場合も以下で述べる手法がそのまま使える。

12.2.2.2.2 信号が実数の場合

まず信号が実数であり、従ってフィルタ係数も実数である場合について述べる。入力信号が実数であるから H_{id} は Hermite 対称である。

■12.2.2.2.2.1 **偶,奇対称の係数がもたらす周波数特性** Remez のアルゴリズムの適用を考える準備として、添え字に関して偶対称と奇対称な係数がもたらす周波数特性を見ておく。いま、 $h_{\rm es}:\mathbb{Z}\to\mathbb{R}$ と $h_{\rm os}:\mathbb{Z}\to\mathbb{R}$ をそれぞれ次式を満たす偶対称と奇対称(「対称」とは、中央の係数を中心にして言う)のフィルタ係数であって、係数列の長さが $N_{\rm tp}\in\mathbb{N}$ であるとする。

$$h_{\rm es}(m) = \begin{cases} h_{\rm es}(N_{\rm tp} - 1 - m) & (m = 0, 1, \dots, (N_{\rm tp} - 1)/2) \\ 0 & (\text{otherwise}) \end{cases}$$

$$h_{\rm os}(m) = \begin{cases} -h_{\rm os}(N_{\rm tp} - 1 - m) & (m = 0, 1, \dots, (N_{\rm tp} - 1)/2) \\ 0 & (\text{otherwise}) \end{cases}$$

(上の条件から $h_{os}((N_{tp}-1)/2)=0$ である。)

 $H_{\mathrm{es}},\ H_{\mathrm{os}}$ をそれぞれ $h_{\mathrm{es}},\ h_{\mathrm{os}}$ に対応する周波数特性とする(但し引数は正規化角周波数)と、簡単な計算を経て次式を

 $^{^{*1}}$ w が偶関数であれば、区間 $[-\pi,\pi]$ に於ける w の Fourier 級数展開を考えると A が巡回行列となって固有値が容易に計算でき、正定性を示せるように思える。試してはいない。

得る。

$$H_{\rm es}(\Omega) = \exp\left(-i\frac{N_{\rm tp} - 1}{2}\Omega\right) \left[h_{\rm es}\left(\frac{N_{\rm tp} - 1}{2}\right) + 2\sum_{m=0}^{(N_{\rm tp} - 1)/2 - 1}h_{\rm es}(m)\cos\Omega\left(\frac{N_{\rm tp} - 1}{2} - m\right)\right]$$

$$H_{\rm os}(\Omega) = 2i\exp\left(-i\frac{N_{\rm tp} - 1}{2}\Omega\right)\sum_{m=0}^{(N_{\rm tp} - 1)/2 - 1}h_{\rm os}(m)\sin\Omega\left(\frac{N_{\rm tp} - 1}{2} - m\right)$$

両者とも線形位相特性である(その和については一般にそうならない)。さらに $H_{\rm os}$ は $H_{\rm es}$ に比べて位相が $\pi/2$ だけ進んでいる。 $\exp\left(-i\frac{N_{\rm tp}-1}{2}\Omega\right)$ は因果律を満たすためにフィルタ係数の 0 番目の添え字の位置を時刻の基準にとった為の位相の線形な遅れである。後述する Remez のアルゴリズムはこのような線形な位相遅れの部分が取り除かれた実数値関数を引数として受け取るため、適切に配慮すれば問題ない。この位相遅れの部分を無視すれば $H_{\rm es}$ は偶対称、 $H_{\rm os}$ は奇対称である。

■12.2.2.2.2.2 Remez のアルゴリズムによる係数の決定 $H_{\rm id}$ の実部と虚部をそれぞれ $H_{\rm id,r}$, $H_{\rm id,i}$ とする。 $H_{\rm id}$ が Hermite 対称であるから $H_{\rm id,r}$ は偶対称、 $iH_{\rm id,i}$ は奇対称である。12.2.2.2.2.1 の考察に従って $H_{\rm id,r}$, $iH_{\rm id,i}$ をそれぞれ近似する偶対称と奇対称の係数を求めればよいと解る。

[5] の remez 関数は近似対象の周波数特性として偶対称と奇対称の実数値関数の両方を扱える(neg オプションで選択)。 さらにその関数をユーザが定義した関数オブジェクトで指定できる。実装の都合上、奇対称の周波数特性を与えて得られる 出力は実数係数であるが、これを DTFT すると、偶対称の周波数特性から得られる出力に比べて位相が $\pi/2$ 進んだ結果になる。つまり remez 関数に $H_{\mathrm{id,i}}$ を与えて得られる係数の DTFT が近似するのは $H_{\mathrm{id,i}}$ ではなく $iH_{\mathrm{id,i}}$ である。

上記の remez 関数を使って $H_{\mathrm{id,r}}$, $iH_{\mathrm{id,i}}$ を近似する係数 $h_{\mathrm{es,opt}}$, $h_{\mathrm{os,opt}}:\mathbb{Z}\to\mathbb{R}$ が求まる。両者の和 $h_{\mathrm{opt}}\coloneqq h_{\mathrm{es,opt}}+h_{\mathrm{os,opt}}$ が所望の係数である。

 $h_{\mathrm{es,opt}},\ h_{\mathrm{os,opt}},\ h_{\mathrm{opt}}$ に対応する周波数特性をそれぞれ $H_{\mathrm{es,opt}},\ H_{\mathrm{os,opt}},\ H_{\mathrm{opt}}$ とする $(H_{\mathrm{os,opt}}(\Omega)\in i\mathbb{R}$ に注意)。 $h_{\mathrm{es,opt}},\ h_{\mathrm{os,opt}},\ h_{\mathrm{opt}}$ の近似誤差、即ち次式で表される L^{∞} -ノルム

$$\begin{aligned} \mathbf{e}_{\mathrm{es}} &\coloneqq \|H_{\mathrm{es,opt}} - H_{\mathrm{id,r}}\|_{\infty} = \max_{\Omega \in [-\pi,\pi]} |H_{\mathrm{es,opt}}(\Omega) - H_{\mathrm{id,r}}(\Omega)| \\ \mathbf{e}_{\mathrm{os}} &\coloneqq \|H_{\mathrm{os,opt}} - iH_{\mathrm{id,i}}\|_{\infty} = \max_{\Omega \in [-\pi,\pi]} |H_{\mathrm{os,opt}}(\Omega) - iH_{\mathrm{id,i}}(\Omega)| \\ \mathbf{e}_{\mathrm{opt}} &\coloneqq \|H_{\mathrm{opt}} - H_{\mathrm{id}}\|_{\infty} = \max_{\Omega \in [-\pi,\pi]} |H_{\mathrm{opt}}(\Omega) - H_{\mathrm{id}}(\Omega)| \end{aligned}$$

に三角不等式を適用して次式を得る。

$$e_{\rm opt} = ||H_{\rm opt} - H_{\rm id}||_{\infty} = ||H_{\rm es,opt} - H_{\rm id,r} + (H_{\rm os,opt} - iH_{\rm id,i})||_{\infty} \le e_{\rm es} + e_{\rm os}$$

Remez のアルゴリズム 1 回分の誤差の高々 2 倍程度に収まる。

12.2.2.2.3 信号が複素数の場合

フィルタ係数も複素数であるとする。このときは $H_{\rm id}$ は Hermite 対称とは限らないが、次のように Hermite 対称, 歪 Hermite 対称 (Skew-Hermitian) な 2 つの関数 $H_{\rm id,H}$, $H_{\rm id,SH}$ の和に分解できる。

$$H_{\mathrm{id}}(\Omega) = H_{\mathrm{id},\mathrm{H}}(\Omega) + H_{\mathrm{id},\mathrm{SH}}(\Omega)$$
 where $H_{\mathrm{id},\mathrm{H}}(\Omega) \coloneqq \frac{1}{2} \Big(H_{\mathrm{id}}(\Omega) + \overline{H_{\mathrm{id}}(-\Omega)} \Big), \quad H_{\mathrm{id},\mathrm{SH}}(\Omega) \coloneqq \frac{1}{2} \Big(H_{\mathrm{id}}(\Omega) - \overline{H_{\mathrm{id}}(-\Omega)} \Big)$

 $H_{\mathrm{id,H}}$ の実部と虚部をそれぞれ $H_{\mathrm{id,H,r}}$, $H_{\mathrm{id,H,i}}$ とすると前者は偶対称、後者は奇対称である。また $H_{\mathrm{id,SH}}$ の実部と虚部をそれぞれ $H_{\mathrm{id,SH,r}}$, $H_{\mathrm{id,SH,i}}$ とすると前者は奇対称、後者は偶対称である。これら 4 つに対して Remez のアルゴリズムを使って、近似するためのフィルタ係数(実数値)を求めて(適宜、虚数単位を掛けながら)和をとれば所望の係数となる。

設計するフィルタ係数を $h:\mathbb{Z}\to\mathbb{R}$ とし、それらの実部と虚部をそれぞれ $h_{\rm r},\ h_{\rm i}$ とする。 $h_{\rm r}$ によって $H_{\rm id,H}$ を近似し、 $h_{\rm i}$ によって $H_{\rm id,SH}$ を近似する。

 $h_{\rm r}$ を偶対称,奇対称な 2 つの成分に分解し、それぞれを $h_{\rm r,es}$, $h_{\rm r,os}$ とする。この分解は常に可能である。具体的には $h_{\rm r}$ とその左右反転の和の 1/2 倍を $h_{\rm r,es}$ とし、 $h_{\rm r}$ とその左右反転の差の 1/2 倍を $h_{\rm r,os}$ とすればよい。 $h_{\rm r,es}$, $h_{\rm r,os}$ については 12.2.2.2.2.2 と同じ方法で最適値 $h_{\rm r,es,opt}$, $h_{\rm r,os,opt}$ が求まる。

次に h_i の最適値を求める。 h_i を偶対称,奇対称な 2 つの成分に分解し、それぞれを $h_{i,es}$, $h_{i,os}$ とする。天下り的であるが(妥当性は以降の解説で直ぐに解る)Remez のアルゴリズムを使って $h_{i,es}$ によって $H_{id,SH,i}$ を近似して最適値を $h_{i,es,opt}$ とし、 $h_{i,os}$ によって $-iH_{id,SH,r}$ を近似して最適値を $h_{i,os,opt}$ とする。

 $h_{\text{r,es,opt}}, h_{\text{r,os,opt}}, h_{\text{i,es,opt}}, h_{\text{i,os,opt}}$ に対応する周波数特性を $H_{\text{r,es,opt}}, H_{\text{r,os,opt}}, H_{\text{i,es,opt}}, H_{\text{i,os,opt}}$ とする $(H_{\text{r,os,opt}}(\Omega), H_{\text{i,os,opt}}(\Omega) \in i\mathbb{R}$ に注意)。 最終的な最適係数は $h_{\text{opt}} = h_{\text{r,es,opt}} + h_{\text{r,os,opt}} + i(h_{\text{i,es,opt}} + h_{\text{i,os,opt}})$ である。 それに対応する周波数特性 H_{opt} は次式である。 但し因果律を満たすために生じる位相遅れ $\exp\left(-i\frac{N_{\text{tp}}-1}{2}\Omega\right)$ は無害であるから無視する。

$$H_{\rm opt} = H_{\rm r,es,opt} + H_{\rm r,os,opt} + i(H_{\rm i,es,opt} + H_{\rm i,os,opt}) = H_{\rm r,es,opt} + H_{\rm r,os,opt} + iH_{\rm i,es,opt} + iH_{\rm i,os,opt}$$

$$\approx H_{\rm id,H,r} + iH_{\rm id,H,i} + iH_{\rm id,SH,i} + H_{\rm id,SH,r} = H_{\rm id}$$

 $h_{
m r,es,opt},\ h_{
m r,os,opt}, h_{
m i,es,opt},\ h_{
m i,os,opt},\ h_{
m opt}$ の近似誤差、即ち次式で表される L^∞ -ノルム

$$\begin{split} \mathbf{e}_{\mathrm{r,es}} &\coloneqq \|H_{\mathrm{r,es,opt}} - H_{\mathrm{id,H,r}}\|_{\infty} = \max_{\Omega \in [-\pi,\pi]} |H_{\mathrm{r,es,opt}}(\Omega) - H_{\mathrm{id,H,r}}(\Omega)| \\ \mathbf{e}_{\mathrm{r,os}} &\coloneqq \|H_{\mathrm{r,os,opt}} - iH_{\mathrm{id,H,i}}\|_{\infty} = \max_{\Omega \in [-\pi,\pi]} |H_{\mathrm{r,os,opt}}(\Omega) - iH_{\mathrm{id,H,i}}(\Omega)| \\ \mathbf{e}_{\mathrm{i,es}} &\coloneqq \|H_{\mathrm{i,es,opt}} - H_{\mathrm{id,SH,i}}\|_{\infty} = \max_{\Omega \in [-\pi,\pi]} |H_{\mathrm{i,es,opt}}(\Omega) - H_{\mathrm{id,SH,i}}(\Omega)| \\ \mathbf{e}_{\mathrm{i,os}} &\coloneqq \|H_{\mathrm{i,os,opt}} + iH_{\mathrm{id,SH,r}}\|_{\infty} = \max_{\Omega \in [-\pi,\pi]} |H_{\mathrm{i,os,opt}}(\Omega) + iH_{\mathrm{id,SH,r}}(\Omega)| \\ \mathbf{e}_{\mathrm{opt}} &\coloneqq \|H_{\mathrm{opt}} - H_{\mathrm{id}}\|_{\infty} = \max_{\Omega \in [-\pi,\pi]} |H_{\mathrm{opt}}(\Omega) - H_{\mathrm{id}}(\Omega)| \end{split}$$

に三角不等式を適用して次式を得る。

$$\begin{aligned} \mathbf{e}_{\text{opt}} &= \|H_{\text{opt}} - H_{\text{id}}\|_{\infty} \\ &= \|H_{\text{r,es,opt}} - H_{\text{id,H,r}} + (H_{\text{r,os,opt}} - iH_{\text{id,H,i}}) + i(H_{\text{i,es,opt}} - H_{\text{id,SH,i}}) + (iH_{\text{i,os,opt}} - H_{\text{id,SH,r}})\|_{\infty} \\ &\leq \mathbf{e}_{\text{r,es}} + \mathbf{e}_{\text{r,os}} + \mathbf{e}_{\text{i,es}} + \mathbf{e}_{\text{i,os}} \end{aligned}$$

Remez のアルゴリズム 1 回分の誤差の高々 4 倍程度に収まる。

12.2.3 CIC up-sampler

R はアップ・サンプリング・レートを表し、N は差分器と積算器それぞれの段数を表す。

FPGA, ASIC による実装を前提として加算器(組み合わせ論理回路)の直後に Flip-flop を置く。Web 情報の多くはこれによる遅延を考慮しておらず、本書の結果と異なる数式を導いているが、影響があるのは遅延量だけであり、本質は変わらない。

12.2.3.1 周波数特性

差分器 1 つの漸化式は y(n)=x(n-1)-x(n-2) であり、伝達関数は $(z^{-1})(1-z^{-1})$ である。ここに $x,y:\mathbb{Z}\to\mathbb{C}$ は差分器への入力と出力である。同様に記号を流用して積算器の入出力 1 つの漸化式は y(n)=y(n-1)+x(n-1) であり、伝達関数は $(z^{-1})/(1-z^{-1})$ である。Noble Identity を用いて R 倍オーバー・サンプラを最前段に移動させると、R 倍オーバー・サンプラの後ろの伝達関数は次式である。

$$H_{\text{C,I}}(z) = z^{-N(R+1)} \left(\frac{1-z^{-R}}{1-z^{-1}}\right)^N = z^{-N(R+1)} \left(\sum_{n=0}^{R-1} z^{-n}\right)^N$$

これは、長さ R の区間の和をとるブロックを N 段従属接続して N(R+1) だけ遅延させる操作と等価である。この系に対して R 倍にオーバー・サンプルした結果を入力して得られる出力が CIC up-sampler の出力である。

CIC up-sampler の出力の絶対値が最大となるのは、入力のビット幅が許す範囲の絶対値最大(この値を $x_{\rm MAX}$ とおく)の定数列が入力された場合であり、値は次式である。

$$x_{\text{MAX}}R^{N-1}$$
 (12.2.3.1)

このことから直ちに解るが、CIC up-sampler の直流ゲインは \mathbb{R}^{N-1} である。

入力と出力の DTFT をそれぞれ $X_{\rm NAF}(\Omega), Y_{\rm NAF}(\Omega)$ (Ω は正規化角周波数) とする。 $H_{\rm C,I}(z)$ に於いて $z=\exp(-i\Omega)$ とし、11.1.1 を適用し、周波数特性として次式を得る。

$$Y_{\text{NAF}}(\Omega) = \exp(-iN(R+1)\Omega) \frac{(1 - \exp(-iR\Omega))^{N}}{R(1 - \exp(-i\Omega))^{N}} X_{\text{NAF}}(R\Omega)$$
$$= \exp\left(-i\frac{\Omega}{2}N(3R+1)\right) \left(\frac{\sin(R\Omega/2)}{\sin(\Omega/2)}\right)^{N} X_{\text{NAF}}(R\Omega)$$

正規化周波数で表現しなおして $X_{\rm NF}(F)=X_{\rm NAF}(2\pi F), Y_{\rm NF}(F)=Y_{\rm NAF}(2\pi F)$ とすれば次式を得る。

$$Y_{\rm NF}(F) = \exp\left(-i\frac{2\pi F}{2}N(R-1)\right) \left(\frac{\sin(R2\pi F/2)}{\sin(2\pi F/2)}\right)^{N} X_{\rm NF}(RF)$$
$$= \exp(-i\pi N(3R+1)F) \left(\frac{\sin(\pi RF)}{\sin(\pi F)}\right)^{N} X_{\rm NF}(RF)$$
(12.2.3.2)

この式は $F\to 0$ の極限で $R^NX_{\rm NF}(0)$ となる。しかし入力を直流としたときに出力の絶対値が R^N 倍になるわけではない。なぜならば既に述べたように、Noble Identity を用いて移動したオーバー・サンプラが、伝達関数に含まれる長さ R の区間 和の 1 つと相殺するからである。周波数特性と「振幅特性」(すぐ後に明かされるように、この単語は正しく定義されないので敢えて「」付きで示した)が一致しない原因は単純で、オーバー・サンプルという非線形な操作を加えた結果、正弦波入力に対する出力が正弦波とならないからである。この状況では「振幅特性」自体が定義できない。アップ・サンプルによって正弦波が緻密になって出力されたように見えても、それは「そう見える」だけであり、厳密には正弦波ではなく広がりをもったスペクトラムをもつ信号に変わっている。

12.2.3.2 差分器と積算器に必要なビット幅

12.2.3.2.1 差分器のビット幅

差分器の出力の絶対値が最大となるのは、入力のビット幅が許す範囲の最大振幅の交代列が入力された場合である。よって、差分器の出力のビット幅は入力のそれの 2 倍を確保すればよく、N 段目の差分器の出力のビット幅は初段の入力のビット幅 + N とすればよい。

12.2.3.2.2 積算器のビット幅 (解析的な方法)

CIC up-sampler の入力のビット幅を B とする。まず、式 (12.2.3.1) より最終段の積算器(第 N 積算器)の出力のビット幅は $B+(N-1)\log_2 R$ を確保すれば必要十分である。

最終段より前の積算器については必要十分なビット幅を解析的に求めることはできないが、十分な値であれば次のように して求められる。

第 (N-1) 積算器の出力のビット幅を考える。第 2 差分器から第 (N-1) 積算器までに注目すると、これはステージ数 N-1 の CIC up-sampler となっている。このことと、元の第 1 差分器の出力の絶対値の最大値がビット幅 B+1 で収容 できることから、第 (N-1) 積算器の出力はビット幅 $B+1+(N-2)\log_2 R$ を確保すれば十分である。(元の第 1 差分器 の出力が最大値で一定していることはあり得ないことは容易に解る。この点を無視して上限で評価しており、故に「必要な」ビット幅からの乖離がある。)

同様にして次々に内側の小さい CIC up-sampler を考えてゆくと、十分なビット幅が求まる。

12.2.3.2.3 積算器のビット幅(数値的な方法)

最終段については既に述べたように解析的に求められるのでここでは扱わない。

Noble Identity を用いて R 倍オーバー・サンプラを最前段に移動した後、第 1 差分器から第 $n \in \{1,2,...,N-1\}$ 段の積算器までの部分系の伝達関数を考えると次式を得る。

$$\frac{(1-z^{-R})^N}{(1-z^{-1})^n} = (1-z^{-R})^{N-n} \left(\sum_{n=0}^{R-1} z^{-n}\right)^n$$

上式のうち、 $\sum_{n=0}^{R-1} z^{-n}$ 1 つ分については、この系の前段に移動された R 倍オーバー・サンプラと相殺し、ビット幅増加に寄与しない。よって、ビット幅の増加に寄与する部分は次式である。

$$\frac{(1-z^{-R})^N}{(1-z^{-1})^n} = (1-z^{-R})^{N-n} \left(\sum_{n=0}^{R-1} z^{-n}\right)^{n-1}$$
(12.2.3.3)

これは抽出された部分系の有限インパルス応答の z 変換である。この系の応答の絶対値が最大となるような作為的な入力に対する応答を収容できるビット幅を確保すればよい。そのような最悪の応答は 式 (12.2.3.3) を計算機代数システムを用いて z^{-1} の多項式として展開し、係数の絶対値の総和をとることで得られる。

12.2.3.3 CIC up-sampler 補償フィルタ

式 (12.2.3.2) より、アップ・サンプリングにより $X_{\rm NF}$ には F に依存する因子が掛かる。これをできるだけ補正するために、CIC up-sampler の直前で前記の因子の逆特性を近似する畳み込み型 FIR フィルタ(以下単に「FIR フィルタ」と呼ぶ)の適用を考える(F に依存しないスケーリング因子 1/R は容易に補正できるので、今は無視する)。このフィルタの周波数特性を $H_{\rm C.NF}$ とすると次式が成り立つ。

$$Y_{\rm NF}(F) = \exp(-i\pi N(3R+1)F) \left(\frac{\sin(\pi RF)}{\sin(\pi F)}\right)^N H_{\rm C,NF}(RF) X_{\rm NF}(RF)$$

 $H_{\mathrm{C,NF}}(F)$ に求められるのは $F \in [-1/2,1/2]$ の範囲で次式を近似することである。

$$\exp\left(i\pi N \frac{R-1}{R}F\right) \left(\frac{\sin(\pi F/R)}{\sin(\pi F)}\right)^{N} \tag{12.2.3.4}$$

R が大きいとき、 $\sin(\pi F/R) \sim \pi F/R$ として 式 (12.2.3.4) の振幅特性が(F に依存しないスケールの違いを除いて) $1/\mathrm{sinc}(\pi F)^N$ に漸近する。

 $H_{\mathrm{C,NF}}$ が周期 1 の関数であることから、[-1/2,1/2] の区間全体で上式を近似することはできない(端点で微分不可能になる)。現実には、 $\alpha[-1/2,1/2]$ ($0<\alpha<1$) の範囲を Remez のアルゴリズム等で近似する。 α が 1 に近づく程、必要な係数が増える。式 (12.2.3.2) が示すように CIC up-sampler の位相特性が線形なので Remez のアルゴリズムでは振幅の補正だけを気にして係数設計してよい(生成される畳み込み型 FIR フィルタ(以下単に「FIR フィルタ」と呼ぶ)の位相特性も線形なので合成系の位相特性も線形となる)。

アップ・サンプリングを全て CIC up-sampler で行うのではなく、一部を CIC up-sampler の前段のゼロ埋めと FIR フィルタ (「FIR フィルタ 1」と呼ぶ) に分担させ、そのフィルタに後段の CIC up-sampler の補正フィルタを兼任させる (合成する) こともしばしば行われる。例えば、FIR フィルタ 1 の直前で x2 zero-padding を行う場合、フィルタ 1 では $0.8 \times [-1/4,1/4]$ の領域で 式 (12.2.3.4) を近似し、 $[-1/2,-1/2+0.8/4] \cup [1/2-0.8/4,1/2]$ の領域を阻止帯とするように Remez のアルゴリズムで係数を計算する。

12.2.4 CIC down-sampler

R はダウン・サンプリング・レートを表し、N は差分器と積算器それぞれの段数を表す。12.2.3 と同様に加算器(組み合わせ論理回路)の直後に Flip-flop を置く。

12.2.4.1 周波数特性

Noble Identity を用いて R 倍アンダー・サンプラを最終段に移動させると、12.2.3.1 と同様にして、1/R 倍アンダー・サンプラより前の伝達関数は次式である。

$$H_{\rm I,C}(z) = z^{-N(R+1)} \left(\frac{1-z^{-R}}{1-z^{-1}}\right)^N = z^{-N(R+1)} \left(\sum_{n=0}^{R-1} z^{-n}\right)^N$$

これは、長さ R の区間の和をとるブロックを N 段従属接続して N(R+1) だけ遅延させる操作と等価である。この系の出力を 1/R でサンプリングした結果が CIC down-sampler の出力である。よって、系の出力の絶対値が最大となるのは、絶対値が最大の定数 $(x_{\rm MAX}$ とする) を入力し続けたときであり、そのときの出力の絶対値は $R^Nx_{\rm MAX}$ である。このことから直ちに解るが、直流ゲインは R^N である。

入力の DTFT を $X_{\rm NAF}(\Omega)$ (Ω は正規化角周波数) とする。1/R 倍アンダー・サンプラより前の出力の DTFT を $\tilde{Y}_{\rm NAF}(\Omega)$ とする。 $H_{\rm LC}(z)$ に於いて $z=\exp(-i\Omega)$ とすると次式が成り立つ。

$$\tilde{Y}_{\text{NAF}}(\Omega) = \exp(-iN(R+1)\Omega) \frac{(1 - \exp(-iR\Omega))^{N}}{(1 - \exp(-i\Omega))^{N}} X_{\text{NAF}}(\Omega)$$
$$= \exp\left(-i\frac{\Omega}{2}N(3R+1)\right) \left(\frac{\sin(R\Omega/2)}{\sin(\Omega/2)}\right)^{N} X_{\text{NAF}}(\Omega)$$

正規化周波数で表現しなおして $X_{\rm NF}(F)=X(2\pi F), \tilde{Y}_{\rm NF}(F)=\tilde{Y}_{\rm NAF}(2\pi F)$ とすれば次式を得る。

$$\tilde{Y}_{NF}(F) = \exp(-i\pi N(3R+1)F) \left(\frac{\sin(\pi RF)}{\sin(\pi F)}\right)^N X_{NF}(F)$$

これと 11.2.1 より、1/R 倍アンダー・サンプラの出力を正規化周波数で表現した周波数特性は次式である。

$$Y_{NF}(F) = \frac{1}{R} \sum_{n=0}^{R-1} \tilde{Y}_{NF}((F-n)/R)$$

$$= \frac{1}{R} \sum_{n=0}^{R-1} \exp(-i\pi N(F-n)(3R+1)/R) \left(\frac{\sin(\pi(F-n))}{\sin(\pi(F-n)/R)}\right)^{N} X_{NF}((F-n)/R)$$
(12.2.4.1)

11.2.1 でも述べられているが、全体に掛けられている 1/R は DTFT の内積計算の対象となる点の数が 1/R に減ったこと に由来しており、振幅が 1/R になるわけではない。

12.2.4.2 差分器と積算器に必要なビット幅

入力は固定小数点数であるが、全体を適当に 2 のべき乗倍したものとして見直して符号付整数として扱っても系としては 等価なので、以後そうする。入力側(サンプル・レートが高い側)から入力される符号付整数のビット幅を B とする。

先の議論から、最終段の出力のビット幅は $[1 + \log_2(R^N 2^{B-1})] = B + [N \log_2 R]$ あれば十分であることが判る。

積算器はオーバー・フローし得るが、溢れた桁を捨てる操作が modulo 演算であることと、最終段の出力のビット幅を考えれば、最終段より左側の全ての段のビット幅を最終段と等しくしておけば問題ない(無限のビット幅を持つ仮想的な系と同じ出力が得られる)ことが判る。

12.2.4.3 CIC down-sampler 補償フィルタ

式 (12.2.4.1) より、ダウン・サンプリングにより $X_{\rm NF}$ には F に依存する因子が掛かる。これをできるだけ補正するために、CIC down-sampler の直後で前記の因子の逆特性を近似する畳み込み型 FIR フィルタの適用を考える(F に依存しないスケーリング因子 1/R は容易に補正できるので、今は無視する)。ダウン・サンプリング後に補償用フィルタを掛けるので第 1 Nyquist 領域のみに関心を払えばよい(とうより、それを超えてできることはない)。第 1 Nyquist 領域のみを抽出し、補償用フィルタの周波数特性を $H_{\rm C.NF}$ とすると次式が成り立つ。

$$Y_{\rm NF}(F) = H_{\rm C,NF}(F) \frac{1}{R} \exp(-i\pi NF(3R+1)/R) \left(\frac{\sin(\pi F)}{\sin(\pi F/R)}\right)^N X_{\rm NF}(F/R)$$

 $H_{\text{C.NF}}(F)$ に求められるのは $F \in [-1/2, 1/2]$ の範囲で次式を近似することである。

$$\exp(i\pi NF(3R+1)/R)\left(\frac{\sin(\pi F/R)}{\sin(\pi F)}\right)^{N} \tag{12.2.4.2}$$

この式は偏角の差を除いて 式 (12.2.3.4) と一致するため、補償用フィルタの設計手法は CIC up-sampler 補償フィルタと同じものを適用できる。

第13部

離散時間領域から連続時間領域への移行

第 13.1 章

0次ホールド

13.1.1 0 次ホールドされた離散時間信号の周波数特性

13.1.1.1 動機

離散時間信号を仮に量子化誤差なく DA 変換できた場合の周波数スペクトラムを計算したい。

13.1.1.2 主張

 $x_{\rm d}:\mathbb{Z}\to\mathbb{C}$ を離散時間信号とする。 $X_{\rm d}$ を $x_{\rm d}$ の DTFT とする。 $T_{\rm s}>0$ をサンプル周期として $x_{\rm d}$ の 0 次ホールドで生成した階段状の連続時間信号を x とする。 $u:\mathbb{R}\to\{0,1\}$ を幅 $T_{\rm s}$ のパルスとする。

$$u(t) = \begin{cases} 1 & 0 \le t < T_{\rm s} \\ 0 & \text{otherwise} \end{cases}$$

x は次式で表される。

$$x(t) = \sum_{n = -\infty}^{\infty} x_{\rm d}(n)u(t - nT_{\rm s})$$

次の図は $T_{\rm s}=1, x_{\rm d}(n)=\sin(2\pi n/12)~(0\leq n\leq 24),~x_{\rm d}(n)=0~(n<0,24< n)$ の例である。

以上の下、x の Fourier 変換 X は次式である。

$$X(\omega) = \frac{T_{\rm s}}{\sqrt{2\pi}} \exp\left(-i\frac{T_{\rm s}}{2}\omega\right) \left(\operatorname{sinc}\frac{T_{\rm s}}{2}\omega\right) X_{\rm d}(\omega)$$

 $X_{
m d}(\omega)$ が $2\pi/T_{
m s}$ 周期関数であることに注意すれば、 $X_{
m d}(\omega)$ の第 1 Nyquist 領域の形状が位相回転 $\exp(-i\omega nT_{
m s})$ とレベル 減衰 $\sin \omega T_{
m s}/2$ を伴いつつ周期的に無限に繰り返されていることがわかる。次の図は 13.1.1.1 に対応する X の例である。

図 13.1.1.2 X の例。横軸は正規化角周波数

13.1.1.3 導出

Proof.

$$X(\omega) = \mathcal{F}\left(\sum_{n=-\infty}^{\infty} x_{\rm d}(n)u(t-nT_{\rm s})\right)(\omega) = \sum_{n=-\infty}^{\infty} x_{\rm d}(n)\mathcal{F}(u(t-nT_{\rm s}))(\omega)$$
(1)

ここで次式が成り立つ。

$$\mathcal{F}(u(t - nT_{s}))(\omega) = \exp(-i\omega nT_{s})\mathcal{F}(u)(\omega) = \exp(-i\omega nT_{s})\frac{1}{\sqrt{2\pi}}\int_{0}^{T_{s}} \exp(-i\omega t)dt$$

$$= \frac{i}{\omega\sqrt{2\pi}}(\exp(-i\omega T_{s}) - 1)\exp(-i\omega nT_{s})$$

$$= \frac{i}{\omega\sqrt{2\pi}}\exp(-i\omega nT_{s})\exp(-i\omega T_{s}/2)(\exp(-i\omega T_{s}/2) - \exp(i\omega T_{s}/2))$$

$$= \frac{i}{\omega\sqrt{2\pi}}\exp(-i\omega nT_{s})\exp(-i\omega T_{s}/2)(-2i)\sin\frac{\omega T_{s}}{2}$$

$$= \frac{2}{\omega\sqrt{2\pi}}\exp(-i\omega nT_{s})\exp(-i\omega T_{s}/2)\sin\frac{\omega T_{s}}{2}$$

$$= \frac{T_{s}}{\sqrt{2\pi}}\exp(-i\omega nT_{s})\exp(-i\omega T_{s}/2)\sin\frac{\omega T_{s}}{2}$$

これを式(1)に適用して次式を得る。

$$X(\omega) = \sum_{n=-\infty}^{\infty} x_{\rm d}(n) \frac{T_{\rm s}}{\sqrt{2\pi}} \exp(-i\omega n T_{\rm s}) \exp(-i\omega T_{\rm s}/2) \operatorname{sinc} \frac{\omega T_{\rm s}}{2}$$

$$= \frac{T_{\rm s}}{\sqrt{2\pi}} \exp(-i\omega T_{\rm s}/2) \operatorname{sinc} \frac{\omega T_{\rm s}}{2} \sum_{n=-\infty}^{\infty} x_{\rm d}(n) \exp(-i\omega n T_{\rm s})$$

$$= \frac{T_{\rm s}}{\sqrt{2\pi}} \exp\left(-i\frac{T_{\rm s}}{2}\omega\right) \left(\operatorname{sinc} \frac{T_{\rm s}}{2}\omega\right) X_{\rm d}(\omega)$$

13.1.2 inverse-sinc-filter

13.1.2.1 背景

離散時間信号を DA 変換した結果の Fourier 変換には次式で表される変化が積の形で含まれることを 13.1.1 で述べた。

$$\operatorname{sinc} \frac{T_{\mathrm{s}}}{2}\omega = \operatorname{sinc} \frac{\Omega}{2}$$

ここに $T_{\rm s}$ はサンプリング周期, Ω は正規化角周波数である。変化の中には上式の他に $\exp\left(-i\frac{T_{\rm s}}{2}\omega\right)$ という項も含まれるが、これは一定の群遅延が加わる(線形位相特性)だけであり、実用上無害なので無視する。次の図は $\left|\operatorname{sinc}\frac{\Omega}{2}\right|$ をプロットしたものである。

図 13.1.2.1 量子化誤差のない DA 変換結果の sinc 状ゲイン歪み

上の図から、第 1 Nyquist 領域の端 $-\pi$, π で約 -3dB のゲイン低下が生じていることが解る。実は 0 次ホールドで出力する直前に、上手く設計された 10 タップ程度の畳み込み型 FIR フィルタを掛けてこの影響を緩和し、下図のようなゲイン特性に変更できる。このフィルタは「inverse-sinc フィルタ」と呼ばれる。

図 13.1.2.2 inverse-sinc フィルタによって緩和されたゲイン歪み (凡例の 3 つ目の曲線)

inverse-sinc フィルタは $[-\pi,\pi]$ で sinc 状歪みの逆特性を近似するフィルタである。DA 変換の対象とする信号は通常、サンプリング定理を念頭に置いてスペクトラムが $[-\pi,\pi]$ の領域に収まる信号であるから、上述の補正が十分に機能する。以下ではこのフィルタの設計方法の 1 つを述べる。

13.1.2.2 係数の導出

大雑把に言えば、フィルタ係数に対応する DTFT が $[-\pi,\pi]$ で $1/\mathrm{sinc}(\Omega/2)$ を近似するように最小二乗法で係数を決定する。

フィルタ係数 $a:\mathbb{Z}\to\mathbb{R}$ は偶対称な実数値関数とし、非零の係数の個数を奇数とする。数式で述べれば $N\in\mathbb{N},\ \forall n\in\mathbb{Z}$ $a(-n)=a(n), \forall n>N$ a(n)=0 である。この制約条件が唯一の方法ではないだろうが、後に見るようにこれで十分な性能を得られる。

a の DTFT を A とする。すなわち

$$A(\Omega) = \sum_{n=-N}^{N} a(n) \exp(-i\Omega n) = a(0) + 2\sum_{n=1}^{N} a(n) \cos(\Omega n) = \boldsymbol{v}(\Omega)^{\top} \boldsymbol{a}$$

ここに $\boldsymbol{v}(\Omega) \coloneqq [1, 2\cos\Omega, \dots, 2\cos N\Omega]^{\top} \in \mathbb{R}^{N+1}, \ \boldsymbol{a} = [a(0), \dots, a(N)]^{\top} \in \mathbb{R}^{N+1}$ である。 $[-\pi, \pi]$ で A が $1/\operatorname{sinc}(\Omega/2)$ を近似するように次式を最小化する a を求める。

$$\int_{-\pi}^{\pi} \|A(\Omega) - 1/\operatorname{sinc}(\Omega/2)\|_{2}^{2} d\Omega \tag{1}$$

被積分関数の中身を展開すると次式を得る。

$$\|A(\Omega) - 1/\operatorname{sinc}(\Omega/2)\|_2^2 = \boldsymbol{a}^\top \boldsymbol{v}(\Omega) \boldsymbol{v}(\Omega)^\top \boldsymbol{a} - \frac{2}{\operatorname{sinc}(\Omega/2)} \boldsymbol{v}(\Omega)^\top \boldsymbol{a} + 1/\operatorname{sinc}(\Omega/2)^2$$

これを式(1)に適用すると次式を得る。

$$(1) = \boldsymbol{a}^{\top} M \boldsymbol{a} - 2 \boldsymbol{m}^{\top} \boldsymbol{a} + \int_{-\pi}^{\pi} 1/\operatorname{sinc}(\Omega/2)^{2} d\Omega$$
 (2)

ここに M, m は次式で定義される数である。

$$M \coloneqq \int_{-\pi}^{\pi} \boldsymbol{v}(\Omega) \boldsymbol{v}(\Omega)^{\top} d\Omega = 2\pi \operatorname{diag}(1, 2, 2, \dots, 2), \quad \boldsymbol{m} = \int_{-\pi}^{\pi} \boldsymbol{v}(\Omega)^{\top} / \operatorname{sinc}(\Omega/2) d\Omega$$

m は数値計算で求める。式 (2) の中で a に依存しない項を無視すると、最小化すべき関数は次式である。

$$f_{\text{cost}}(\boldsymbol{a}) = \boldsymbol{a}^{\top} M \boldsymbol{a} - 2 \boldsymbol{m}^{\top} \boldsymbol{a}$$

これは狭義凸関数であり $(\nabla f_{\rm cost})({m a})=2(M{m a}-{m m})$ なので f を最小化する ${m a}$ を ${m a}_{\rm opt}$ とするとこれは $M^{-1}{m m}={\rm diag}(m_0,m_1/2,\ldots,m_N/2)/(2\pi)$ である。ここに m_i $(i=0,1,\ldots,N)$ は ${m m}$ の第 i 要素である。

13.1.2.3 数值例

N=5 のとき $\boldsymbol{a}_{\mathrm{opt}} \approx [1.166240, -0.106996, 0.034475, -0.016454, 0.009530, -0.006189]^{\top}$ を得る。次の図はこの係数をプロットしたものである。

図 13.1.2.3 inverse-sinc フィルタの係数 (N=5)

次の図は、この係数に対応するフィルタのインパルス応答の DTFT と $1/\mathrm{sinc}(\Omega/2)$ を比較したものである。

図 13.1.2.4 inverse-sinc フィルタのインパルス応答の DTFT

このフィルタを使ってゲイン歪みを緩和したのが先に挙げた図 13.1.2.2 である。

第 13.2 章

オーバー・サンプリング

13.2.1 オーバー・サンプリングされた信号の周波数特性

13.2.1.1 動機

離散時間信号をオーバー・サンプリングして DAC で出力したときの周波数スペクトラムを計算したい。DAC の量子化誤差は無視する。

13.2.1.2 オーバー・サンプリングされた離散時間信号の DTFT

DAC の出力を考える前に、まずは離散時間の領域での様子を調べる。結果は驚くほど単純なものになる。記号を次のように定義する。

- $R \in \mathbb{N}, R \ge 2$: $\forall x \in \mathbb{N}$
- $x_{d,1}: \mathbb{Z} \to \mathbb{C}:$ 離散時間信号
- $T_s > 0: x_{d,1}$ のサンプル周期
- $X_{d,1}: x_{d,1} \mathcal{O} DTFT$
- $x_{d,2}:x_{d,1}$ を R 倍にオーバー・サンプリング (元の信号のサンプル同士の間に R-1 個の 0 を追加) した離散時間 信号
- $X_{d,2} : x_{d,2} \oslash DTFT$

13.2.1.2.1 主張

 $X_{\mathrm{d},2}(\omega) = X_{\mathrm{d},1}(\omega)$ が成り立つ。

13.2.1.2.2 導出

Proof.

 $x_{
m d,1}$ のサンプリング周期が $T_{
m s}/R$ であることに注意する。

$$X_{\rm d,2}(\omega) = \sum_{n=-\infty}^{\infty} x_{\rm d,2}(n) \exp(-i\omega n T_{\rm s}/R) = \sum_{m=-\infty}^{\infty} x_{\rm d,2}(mR) \exp(-i\omega m R T_{\rm s}/R)$$
$$= \sum_{m=-\infty}^{\infty} x_{\rm d,1}(m) \exp(-i\omega m T_{\rm s}) = X_{\rm d,1}(\omega)$$

一般に、サンプリング周期が $T_{\rm s}/R$ である離散時間信号の DTFT は $2\pi R/T_{\rm s}$ 周期関数であり、当然 $x_{\rm d,2}$ についてもそれは成り立っている。その上でさらに、 $x_{\rm d,2}$ については DTFT が $x_{\rm d,1}$ のそれと完全に一致して $2\pi/T_{\rm s}$ 周期関数にもなっている。

13.2.1.3 オーバー・サンプリングされた信号をそのまま DAC 出力した場合

13.2.1.3.1 主張

記号を次のように定義する。

• $R \in \mathbb{N}, R > 2$: $\forall x \in \mathbb{N}$

• $x_{d,1}: \mathbb{Z} \to \mathbb{C}:$ 離散時間信号

• $T_{\rm s} > 0: x_{\rm d,1}$ のサンプル周期

• $X_{d,1} : x_{d,1} \oslash DTFT$

• $x_{d,2}: x_{d,1}$ を R 倍にオーバー・サンプリング (元の信号のサンプル同士の間に R-1 個の 0 を追加) した離散時間 信号

• $x_1:T_s$ をサンプル周期として $x_{d,1}$ の 0 次ホールドで生成した階段状の連続時間信号

• $x_2:T_{
m s}/R$ をサンプル周期として $x_{
m d,2}$ の 0 次ホールドで生成した階段状の連続時間信号

 $u_1: \mathbb{R} \to \{0,1\}$ を幅 T_s のパルスとする。

$$u_1(t) = \begin{cases} 1 & 0 \le t < T_s \\ 0 & \text{otherwise} \end{cases}$$

 $u_2: \mathbb{R} \to \{0,1\}$ を幅 T_s/R のパルスとする。

$$u_2(t) = \begin{cases} 1 & 0 \le t < T_s/R \\ 0 & \text{otherwise} \end{cases}$$

 x_1 は次式で表される。

$$x_1(t) = \sum_{n=-\infty}^{\infty} x_{d,1}(n)u_1(t - nT_s)$$

 x_2 は次式で表される。

$$x_2(t) = \sum_{n = -\infty}^{\infty} x_{d,2}(n)u_2(t - nT_s/R) = \sum_{m = -\infty}^{\infty} x_{d,2}(Rm)u_2(t - mT_s) = \sum_{n = -\infty}^{\infty} x_{d,1}(n)u_2(t - nT_s)$$

次の図は $T_{\mathrm{s}}=1, R=4, x_{\mathrm{d},1}(n)=\sin(2\pi*n/12)~(0\leq n\leq 24),~x_{\mathrm{d},1}(n)=0~(n<0,24< n)$ の例である。

図 13.2.1.1 x_1, x_2 の例

以上の下、 x_2 の Fourier 変換 X_2 は次式である。

$$X_2(\omega) = \frac{T_s}{R\sqrt{2\pi}} \exp\left(-i\frac{T_s}{2R}\omega\right) \left(\operatorname{sinc}\frac{T_s}{2R}\omega\right) X_{d,1}(\omega)$$

13.2.1.3.2 導出

Proof.

$$X_2(\omega) = \mathcal{F}\left(\sum_{n=-\infty}^{\infty} x_{\mathrm{d},1}(n)u_2(t-nT_{\mathrm{s}})\right)(\omega) = \sum_{n=-\infty}^{\infty} x_{\mathrm{d},1}(n)\mathcal{F}(u_2(t-nT_{\mathrm{s}}))(\omega)$$

ここで 13.1.1 と同様にして次式が成り立つ。

$$\mathcal{F}(u_2(t - nT_s))(\omega) = \frac{T_s}{R\sqrt{2\pi}} \exp(-i\omega nT_s) \exp\left(-i\frac{\omega T_s}{2R}\right) \operatorname{sinc}\frac{\omega T_s}{2R}$$

よって次式が成り立つ。

$$\begin{split} X_{2}(\omega) &= \sum_{n=-\infty}^{\infty} x_{\mathrm{d},1}(n) \frac{T_{\mathrm{s}}}{R\sqrt{2\pi}} \exp(-i\omega n T_{\mathrm{s}}) \exp\left(-i\frac{\omega T_{\mathrm{s}}}{2R}\right) \operatorname{sinc} \frac{\omega T_{\mathrm{s}}}{2R} \\ &= \frac{T_{\mathrm{s}}}{R\sqrt{2\pi}} \exp\left(-i\frac{\omega T_{\mathrm{s}}}{2R}\right) \left(\operatorname{sinc} \frac{\omega T_{\mathrm{s}}}{2R}\right) \sum_{n=-\infty}^{\infty} x_{\mathrm{d},1}(n) \exp(-i\omega n T_{\mathrm{s}}) \\ &= \frac{T_{\mathrm{s}}}{R\sqrt{2\pi}} \exp\left(-i\frac{\omega T_{\mathrm{s}}}{2R}\right) \left(\operatorname{sinc} \frac{\omega T_{\mathrm{s}}}{2R}\right) X_{\mathrm{d},1}(\omega) \end{split} \tag{a}$$

13.2.1.3.3 考察

オーバー・サンプリング前の信号 x_1 については 13.1.1 より、その Fourier 変換は次式である。

$$X_1(\omega) = \frac{T_s}{\sqrt{2\pi}} \exp\left(-i\frac{T_s}{2}\omega\right) \left(\operatorname{sinc}\frac{T_s}{2}\omega\right) X_{d,1}(\omega)$$
 (b)

式 (a),(b) を見比べると $X_{\rm d,1}$ を共通して含んでおり、それ以外の箇所でオーバー・サンプリングにより $T_{\rm s}$ が $T_{\rm s}/R$ に置き換わっていることがわかる。このことから、オーバー・サンプリングにより高調波の位置は変わらず、広域の減衰や位相回転が緩やかになることがわかる。次の図は 13.2.1.1 に対応する DTFT と Fourier 変換の絶対値の例である。

図 13.2.1.2 $X_{\mathrm{d,1}}$ の例。横軸は正規化角周波数。

図 13.2.1.3 X_1, X_2 の例。横軸は正規化角周波数。

第 14 部

連続時間領域から離散時間領域への移行

第 14.1 章

積分の離散近似

この部は文献 [2] に動機付けられて書いたものであり、その内容を再確認、深堀りしたもの、また派生して考えたことを記している。

14.1.1 Euler 法

14.1.1.1 背景

物理系をディジタル計算機で制御するにあたり、積分を Euler 法で近似することがある。本節では正弦波を Euler 法で近似的に積分した際の出力の窓関数付き Fourier 変換を導出し、高周波領域での位相変化、エイリアシングについて考察する。

14.1.1.2 導出

 $f_0>0$ とし、連続時間の複素正弦波信号 $u:t\in\mathbb{R}\mapsto \exp(i2\pi f_0t)$ を考える。これを時刻 0 から $t\geq 0$ まで積分した信号は $v(t)=\left(\exp(i2\pi f_0t)-1\right)/(i2\pi f_0)$ である。15.3 と同様に、矩形窓を通した、周波数表示された v の Fourier 変換を考える(窓の幅をサンプリング周期の整数倍に限っても影響が少ないことの説明は 15.3 で述べられている)。 $N\in\mathbb{N}$ とし、窓の幅を $T=NT_s$ とする。v の窓付き Fourier 変換を窓の幅で規格化したものは次式である。但し計算は容易なので過程は省略した。

$$V(f) = \frac{1}{T} \int_0^T v(t) \exp(-i2\pi f t) dt$$

$$= \frac{1}{i2\pi f_0 T} \left\{ \frac{1}{i2\pi (f - f_0)} \left[1 - \exp(-i2\pi (f - f_0)T) \right] + \frac{1}{i2\pi f} \left(\exp(-i2\pi f T) - 1 \right) \right\}$$

次に、u の積分をサンプリング周期 $T_{\rm s}>0$ の Euler 法で近似したものを考える。Euler 法で積分した結果の離散時間信号を $x_{\rm dd}:\mathbb{Z}\to\mathbb{C}$ とすると、これは漸化式 $x_{\rm dd}(n)=x_{\rm dd}(n-1)+T_{\rm s}u\big((n-1)T_{\rm s}\big)$ に従う。但し初期条件として $x_{\rm dd}(0)=0$ と する。この漸化式を解き、次式を得る。

$$x_{\rm dd}(n) = T_{\rm s} \frac{1 - \exp(i2\pi f_0 n T_{\rm s})}{1 - \exp(i2\pi f_0 T_{\rm s})}$$

これを 0 次ホールドして得られる連続時間信号を $x_{
m d}(t)\coloneqq x_{
m dd}(\lfloor t/T_{
m s}\rfloor\,T_{
m s})$ とする。先ほど v に対して行ったのと同様に窓付き Fourier 変換 $X_{
m d}$ を計算すると、次式を得る。但し計算は容易なので過程の多くを省略した。

$$\begin{split} X_{\mathrm{d}}(f) &= \frac{1}{T} \int_{0}^{T} x_{\mathrm{d}}(t) \exp(-i2\pi f t) \mathrm{d}t = \sum_{k=0}^{N-1} \frac{1}{T} \int_{kT_{\mathrm{s}}}^{(k+1)T_{\mathrm{s}}} x_{\mathrm{d}}(t) \exp(-i2\pi f t) \mathrm{d}t \\ &= \frac{1}{i2\pi f N} \times \frac{1 - \exp(-i2\pi f T_{\mathrm{s}})}{1 - \exp(i2\pi f_{0}T_{\mathrm{s}})} \left\{ \frac{1 - \exp(-i2\pi f T_{\mathrm{s}}N)}{1 - \exp(-i2\pi f T_{\mathrm{s}})} - \frac{1 - \exp(-i2\pi (f - f_{0})T_{\mathrm{s}}N)}{1 - \exp(-i2\pi (f - f_{0})T_{\mathrm{s}})} \right\} \end{split}$$

v中の、周波数が f_0 である成分の振幅と位相を調べる。 $f \to f_0$ の極限に関して次式が成り立つ。

$$\lim_{f \to f_0} V(f) = \frac{1}{i2\pi f_0} \left[1 + \frac{\exp(-i2\pi f_0 T) - 1}{i2\pi f_0 T} \right]$$

次に x_d 中の、周波数が f_0 である成分の振幅と位相を調べる。但し、 f_0T_s <1と仮定する。次式が成り立つ。

$$\lim_{f \to f_0} X_{\rm d}(f) = \frac{1}{i2\pi f_0 N} \times \frac{1 - \exp(-i2\pi f_0 T_{\rm s})}{1 - \exp(i2\pi f_0 T_{\rm s})} \left\{ \frac{1 - \exp(-i2\pi f_0 T_{\rm s} N)}{1 - \exp(-i2\pi f_0 T_{\rm s})} - N \right\}$$

サンプリング周波数が十分高い、すなわち $f_0T_{
m s}\ll 1$ であるとき、次の近似式が成り立つ。

$$\begin{split} \lim_{f \to f_0} X_{\rm d}(f) &\approx \frac{1}{i2\pi f_0 N} \times (-1) \left[\frac{1 - \exp(-i2\pi f_0 T_{\rm s} N)}{i2\pi f_0 T_{\rm s}} - N \right] \\ &= \frac{1}{i2\pi f_0} \left[1 + \frac{\exp(-i2\pi f_0 T_{\rm s} N) - 1}{i2\pi f_0 T_{\rm s} N} \right] = \frac{1}{i2\pi f_0} \left[1 + \frac{\exp(-i2\pi f_0 T) - 1}{i2\pi f_0 T} \right] \\ &= \lim_{f \to f_0} V(f) \end{split}$$

14.1.1.3 数值例

今、 $f_0=10,\ T_{\rm s}=10^{-2},\ N=200$ とする。 $f=f_0$ に於ける v の振幅と位相の組は $(1/(20\pi),\ -\pi/2)\approx (1.59\times 10^{-2},-1.57)$ である。一方、 $x_{\rm d}$ の振幅と位相の組はおよそ $(1.59\times 10^{-2},-2.20)$ である。

次の図は f_0 近傍でのエネルギー・スペクトラム密度 V, X_d を示したものである。

図 14.1.1.1 元の周波数の近傍でのエネルギー・スペクトラム密度

低周波領域では絶対値が良く一致していることがわかる。

次に高調波を見る。次の図はサンプリング周波数の3倍の範囲まで V, X_a を示したものである。

図 14.1.1.2 高調波を含むエネルギー・スペクトラム密度

低周波の領域では $V, X_{\rm d}$ が重なって判別できない。また、サンプリング周波数の整数倍の位置に高調波が生じていることが判る。

この数値例を計算した Mathematica notebook および MATLAB スクリプトが下記のファイル名で保存されている。Git リポジトリ内でファイル名検索すれば発見できるであろう。

- $\bullet \ \ spectrum_of_integralsine-wave_by_Euler-method.nb$
- $\bullet \ \ spectrum_of_integral_sine_wave_by_Euler_method.m$

第 15 部

離散時間系を介した連続時間系

第 15.1 章

背景

この部は文献 [2] に動機付けられて書いたものであり、その内容を再確認、深堀りしたもの、また派生して考えたことを記している。

第 15.2 章

入力に 0 次ホールド機構を加えた連続時間システムの z 変換

15.2.1 背景

実用上、物理系をディジタル計算機で制御するために、連続系である制御対象と入力の間に「AD 変換器」 $(0 \ \gamma$ ホールド回路 + 量子化器)、「演算回路」、「DA 変換器」 $(0 \ \gamma$ ホールド回路) が追加される。本節では、連続時間システムの入力に $(0 \ \gamma$ ホールド機構を追加したときのシステムの出力のうち、サンプリング時間の整数倍の時点に於いて出力が厳密に一致する離散時間システムの $(0 \ \gamma$ 変換を導出する。

15.2.2 主張

連続時間システムのインパルス応答を $h: \mathbb{R} \to \mathbb{C}$ とし、そのラプラス変換を $H: \mathbb{C} \to \mathbb{C}$ とする。但しシステムは因果的である、すなわち h(t)=0 (t<0) とする。入力信号をサンプリング周期 $T_{\rm s}>0$ で 0 次ホールドして与えるときの出力を $y_{\rm d}: \mathbb{R} \to \mathbb{C}$ とする。このとき、システムの z 領域の伝達関数は $(1-z^{-1})H_{\rm dd}(z)$ となる。ここに $H_{\rm dd}(z)$ は H(s)/s の逆ラプラス変換を周期 $T_{\rm s}$ でサンプリングして得られる離散時間信号の z 変換である。つまり、この z 領域の伝達関数の出力は $T_{\rm s}$ の整数倍の時刻で連続時間システムの出力 $y_{\rm d}$ と厳密に一致する。

$$U(s)$$
 → $H(s)$ → $Y(s)$ 連続系
$$U(s)$$
 → $U_{\rm d}(s)$ → $U_{\rm d}(s)$ → $U_{\rm d}(s)$ → $U_{\rm d}(s)$ → $U_{\rm dd}(z)$ → $U_{\rm dd}$

図 15.2.2.1 連続時間系と、入力に 0 次ホールドを付加した系

15.2.3 導出

連続時間システムへの入力を $u: \mathbb{R} \to \mathbb{C}$ とする。但し u(t) = 0 (t < 0) とする。周期 T_s で 0 次ホールドされた入力信号を $u_d: t \in \mathbb{R} \to u(|t/T_s|T_s)$ とする。Heaviside の単位ステップ関数を u_H とすると u_d は次式で表せる。

$$u_{\rm d}(t) = \sum_{k=0}^{\infty} u(kT_{\rm s}) \left(u_{\rm H}(t - kT_{\rm s}) - u_{\rm H}(t - (k+1)T_{\rm s}) \right)$$

これのラプラス変換を U_d とすると次式で表される。

$$U_{\rm d}(s) = \sum_{k=0}^{\infty} u(kT_{\rm s}) e^{-kT_{\rm s}s} \frac{1 - e^{-T_{\rm s}s}}{s}$$

これに対する出力 $y_{\rm d}$ のラプラス変換を $Y_{\rm d}$ とすると、次式である。

$$Y_{\rm d}(s) = \sum_{k=0}^{\infty} u(kT_{\rm s}) {\rm e}^{-kT_{\rm s}s} \frac{1 - {\rm e}^{-T_{\rm s}s}}{s} H(s) = \sum_{k=0}^{\infty} u(kT_{\rm s}) {\rm e}^{-kT_{\rm s}s} \left(1 - {\rm e}^{-T_{\rm s}s}\right) H_{\rm d}(s)$$
 where $H_{\rm d}(s) \coloneqq H(s)/s$

 $H_{\mathrm{d}}(s)$ の逆ラプラス変換を h_{d} とすると、 y_{d} は次式である。

$$y_{\rm d}(t) = \sum_{k=0}^{\infty} u(kT_{\rm s})(h_{\rm d}(t-kT_{\rm s}) - h_{\rm d}(t-(k+1)T_{\rm s}))$$

離散時間信号 $h_{\mathrm{dd}}, y_{\mathrm{dd}}$ を $h_{\mathrm{dd}}: n \in \mathbb{Z} \mapsto h_{\mathrm{d}}(nT_{\mathrm{s}}), y_{\mathrm{dd}}: n \in \mathbb{Z} \mapsto y_{\mathrm{d}}(nT_{\mathrm{s}})$ とすると y_{dd} は次式である。

$$y_{\rm dd}(n) = y_{\rm d}(nT_{\rm s}) = \sum_{k=0}^{\infty} u(kT_{\rm s})(h_{\rm d}((n-k)T_{\rm s}) - h_{\rm d}((n-k-1)T_{\rm s}))$$
$$= \sum_{k=0}^{\infty} u(kT_{\rm s})(h_{\rm dd}(n-k) - h_{\rm dd}(n-k-1))$$

離散時間信号 $u_{\rm dd}$ を $u_{\rm dd}$: $n\in\mathbb{Z}\mapsto u_{\rm d}(nT_{\rm s})$ で定義する。 $u_{\rm dd},h_{\rm dd},y_{\rm dd}$ の z 変換をそれぞれ $U_{\rm dd},H_{\rm dd},Y_{\rm dd}$ とすると次式を得る。

$$Y_{\mathrm{dd}}(z) = \sum_{n=0}^{\infty} y_{\mathrm{dd}}(n) z^{-n} = \sum_{k=0}^{\infty} u_{\mathrm{d}}(kT_{\mathrm{s}}) \sum_{n=0}^{\infty} ((h_{\mathrm{dd}}(n-k) - h_{\mathrm{dd}}(n-k-1))) z^{-n}$$

$$= \sum_{k=0}^{\infty} u_{\mathrm{d}}(kT_{\mathrm{s}}) \left[z^{-k} \sum_{n=0}^{\infty} h_{\mathrm{dd}}(n-k) z^{-(n-k)} - z^{-k-1} \sum_{n=0}^{\infty} h_{\mathrm{dd}}(n-k-1) z^{-(n-k-1)} \right]$$

$$= \sum_{k=0}^{\infty} u_{\mathrm{d}}(kT_{\mathrm{s}}) \left[z^{-k} \sum_{n=k}^{\infty} h_{\mathrm{dd}}(n-k) z^{-(n-k)} - z^{-k-1} \sum_{n=k+1}^{\infty} h_{\mathrm{dd}}(n-k-1) z^{-(n-k-1)} \right]$$

$$= \left(\sum_{k=0}^{\infty} u_{\mathrm{d}}(kT_{\mathrm{s}}) z^{-k} \right) (1-z^{-1}) H_{\mathrm{dd}}(z) = U_{\mathrm{dd}}(z) (1-z^{-1}) H_{\mathrm{dd}}(z)$$

第 15.3 章

0次ホールドされた正弦波の周波数特性

15.3.1 背景

既に述べたように、信号処理や制御工学では実用上、入力と制御対象の間に0次ホールド回路と演算回路が挟まった形になる。技術書の中にはこれをステップ入力に対するラプラス変換の積分と時間遅れとして表してゲインや位相を考えているものもあるが、これは厳密には正しくない。なぜなら、0次ホールド回路に正弦波を入れた際、通過した信号は細かいステップの集まりであり、元の正弦波に近いものの、完全な正弦波ではないからである。「ゲイン」や「位相変化」を厳密に定義できない。厳密には、Fourier 変換してスペクトラムについて考える必要がある。とはいえ、無限に続く減衰しない信号のFourier 変換は通常の関数の意味では存在しないし (超関数になる)、現実の測定器は窓関数で時間制限した信号の Fourier 変換を近似的に計算している。そこで本記事では窓関数付きの Fourier 変換の結果ついて考察する。

15.3.2 導出

 $f_0>0$ とし、連続時間の複素正弦波信号 $x:t\in\mathbb{R}\mapsto \exp(i2\pi f_0t)$ を考える。サンプリング周期を $T_{\mathrm{s}}>0$ とする。この周期で x を 0 次ホールドした信号を $x_{\mathrm{d}}:t\in\mathbb{R}\mapsto x(\lfloor t/T_{\mathrm{s}}\rfloor T_{\mathrm{s}})$ とする。次の図は x と x_{d} の実部を示したものである。

図 15.3.2.1 元の信号とその 0 次ホールド

上の図より、 $x_{\rm d}$ の基本周波数成分 (周波数成分に於ける f_0 に対応する成分) が x のそれより遅れることが予想される。このことを矩形窓を通した、周波数表示された Fourier 変換で考察する。 $N\in\mathbb{N}$ とし、窓の幅を $T=NT_{\rm s}$ とする。窓の幅を $T_{\rm s}$ の整数倍に選んでいるが、非整数倍の場合でも幅を十分に大きくとれば小数部分に対応する区間の積分の 1/T 倍は無視できるほど小さくなり、最も近い整数倍の幅を用いた結果と殆ど一致する。x の窓付き Fourier 変換を窓の幅で規格化したものは次式である。

$$X(f) = \frac{1}{T} \int_0^T x(t) \exp(-i2\pi f t) dt = \frac{1}{i2\pi (f - f_0)T} (1 - \exp(-i2\pi (f - f_0)T))$$

 $x_{\rm d}$ の窓付き Fourier 変換は次式である。

$$\begin{split} X_{\mathrm{d}}(f) &= \frac{1}{T} \int_{0}^{T} x_{\mathrm{d}}(t) \exp(-i2\pi f t) \mathrm{d}t = \frac{1}{T} \sum_{k=0}^{N-1} \int_{kT_{\mathrm{s}}}^{(k+1)T_{\mathrm{s}}} x_{\mathrm{d}}(t) \exp(-i2\pi f t) \mathrm{d}t \\ &= \frac{1}{T} \sum_{k=0}^{N-1} \exp(i2\pi f_{0}kT_{\mathrm{s}}) \int_{kT_{\mathrm{s}}}^{(k+1)T_{\mathrm{s}}} \exp(-i2\pi f t) \mathrm{d}t \\ &= \frac{1}{T} \sum_{k=0}^{N-1} \exp(i2\pi f_{0}kT_{\mathrm{s}}) \frac{1}{i2\pi f} \exp(-i2\pi f kT_{\mathrm{s}}) \left(1 - \exp(-i2\pi f T_{\mathrm{s}})\right) \\ &= \frac{1 - \exp(-i2\pi f T_{\mathrm{s}})}{i2\pi f} \frac{1}{T} \underbrace{\sum_{k=0}^{N-1} \exp(i2\pi (f_{0} - f)kT_{\mathrm{s}})}_{(\mathrm{A})} \\ &= \frac{1 - \exp(-i2\pi f T_{\mathrm{s}})}{i2\pi f} \frac{1}{NT_{\mathrm{s}}} \exp(i\pi (f_{0} - f)(N - 1)T_{\mathrm{s}}) \frac{\sin \pi (f - f_{0})NT_{\mathrm{s}}}{\sin \pi (f - f_{0})T_{\mathrm{s}}} \end{split}$$

最後の式を導くために、(A) に等比数列の和の公式を適用し、分母・分子それぞれ \sin が生じるように複素指数関数を括り出して整理した。

 $x_{
m d}$ 中の、周波数が f_0 である成分の振幅と位相を調べる。 $f
ightarrow f_0$ の極限に関して次式が成り立つ。

$$\lim_{f \to f_0} X_{\rm d}(f) = \frac{1 - \exp(-i2\pi f_0 T_{\rm s})}{i2\pi f_0 T_{\rm s}}$$

これより、上式に相当する振幅と位相の変化が生じる。サンプリングが十分に高速、すなわち $f_0T_{\rm s}\ll 1$ であるとき上式は 1 に近づくので、振幅と位相の変化は無くなってゆく。

次に、高調波領域を調べる。 $|X_{\rm d}(f)|$ は $1/T_{\rm s}$ 周期関数と 1/|f| の積であるので、 $|f| < T_{\rm s}/2$ の部分の縮小コピーが高周波領域に於いて $1/T_{\rm s}$ 毎に現れる。これが高調波成分である。

15.3.3 数值例

今、 $f_0=10,\ T_{\rm s}=10^{-2},\ N=200$ とする。 $f=f_0$ に於ける振幅と位相は $|X_{\rm d}(f_0)|\approx 0.9836,\ \angle X_{\rm d}(f_0)\approx -18.00^\circ$ となる。次の図は f_0 近傍でのエネルギー・スペクトラム密度 $X,X_{\rm d}$ を示したものである。

図 15.3.3.1 元の周波数の近傍でのエネルギー・スペクトラム密度

低周波領域では両者が良く一致していることがわかる。

次に高調波を見る。次の図はサンプリング周波数の3倍の範囲まで $X, X_{\rm d}$ を示したものである。

図 15.3.3.2 高調波を含むエネルギー・スペクトラム密度

サンプリング周波数の整数倍の位置に高調波が生じていることが判る。

この数値例を計算した Mathematica notebook および MATLAB スクリプトが下記のファイル名で保存されている。Git リポジトリ内でファイル名検索すれば発見できるであろう。

- $\bullet \hspace{0.1in} {\rm spectrum_of_zeroorderheldsinewave.nb}$
- $\bullet \ \ spectrum_of_zero_order_held_sine_wave.m$

第 16 部

応用

第 16.1 章

NCO

16.1.1 位相の下位ビット切り捨てとスプリアス

数値制御発振器 (Numerical Controlled Oscillator; NCO) の Look-up table (LUT) のサイズを減らすために位相の下位ビットを切り捨てて出力した場合、(離散時間信号として) スプリアスを生じる。ここでは簡単のため、周波数が最小(1 クロックでの位相の増加が 1)の正弦波について考える。

16.1.1.1 主張

 $N,W\in\mathbb{N},\ N>W$ とする。位相加算器の語長が N であり、1 クロックあたりの位相の増加は 1 であるとする。位相の下位 W ビットを切り捨てた場合、DFT に於いて周波数が $1+2^{N-W}m$ $(m\in\mathbb{Z},\ 0< m\geq 2^{W-1})$ のスプリアスが生じる。

16.1.1.2 導出

Proof.

NCO の出力は次式である。

$$x_W(n) = \exp\left(i\frac{2^W \lfloor n/2^W \rfloor}{2^N} 2\pi\right)$$

これの DFT は次式である。

$$\begin{split} X_W(k) &= \frac{1}{\sqrt{2^N}} \sum_{n=0}^{2^N-1} x_W(n) \exp \left(-ik\frac{n}{2^N} 2\pi\right) \\ &= \frac{1}{\sqrt{2^N}} \sum_{m=0}^{2^{N-W}-1} \exp \left(i\frac{2^W m}{2^N} 2\pi\right) \sum_{l=0}^{2^W-1} \exp \left(-ik\frac{2^W m + l}{2^N} 2\pi\right) \\ &= \frac{1}{\sqrt{2^N}} \sum_{l=0}^{2^W-1} \exp \left(-ik\frac{l}{2^N} 2\pi\right) \sum_{m=0}^{2^{N-W}-1} \exp \left(-i(k-1)\frac{m}{2^{N-W}} 2\pi\right) \\ &= \frac{1}{\sqrt{2^N}} \frac{1 - \exp \left(-ik\frac{2^W}{2^N} 2\pi\right)}{1 - \exp \left(-ik\frac{2^M}{2^N} \pi\right)} \frac{1 - \exp \left(-i(k-1)2\pi\right)}{1 - \exp \left(-i(k-1)\frac{2\pi}{2^{N-W}}\right)} \\ &= \frac{1}{\sqrt{2^N}} \frac{\exp \left(-ik\frac{2^W}{2^N} \pi\right) \exp \left(ik\frac{2^W}{2^N} \pi\right) - \exp \left(-ik\frac{2^W}{2^N} \pi\right)}{\exp \left(ik\frac{2^W}{2^N} \pi\right) - \exp \left(-ik\frac{2^W}{2^N} \pi\right)} \frac{\exp \left(-i(k-1)\pi\right)}{\exp \left(-i(k-1)\frac{\pi}{2^{N-W}}\right)} \\ &\times \frac{\exp \left(i(k-1)\pi\right) - \exp \left(-i(k-1)\pi\right)}{\exp \left(i(k-1)\frac{\pi}{2^{N-W}}\right) - \exp \left(-i(k-1)\frac{\pi}{2^{N-W}}\right)} \\ &= \frac{1}{\sqrt{2^N}} \exp \left(ik\frac{1-2^W}{2^N} \pi\right) \frac{\sin \left(\frac{k}{2^N-W} \pi\right)}{\sin \left(\frac{k}{2^N-W} \pi\right)} \exp \left(i(k-1)\left(\frac{1}{2^{N-W}} - 1\right)\pi\right) \frac{\sin \left((k-1)\pi\right)}{\sin \left(\frac{k}{2^{N-W}} \pi\right)} \end{split}$$

但し、上式に於いて \sin/\sin の部分で 0/0 の不定形が生じるような k の値 k' に対しては、値域を一時的に実数に広げて $k \to k'$ の極限を取る。このようにしても等式が成り立つことは、k' に対して Σ を直接計算することで容易に確かめられる。

 $\sin((k-1)\pi)/\sin(\frac{k-1}{2^{N-W}}\pi)$ は k に関する 2^{N-W} 周期関数であり、 $k=1+2^{N-W}m$ $(m\in\mathbb{Z},\ 0< m\geq 2^{W-1}$ のときに 2^{N-W} となり、それ以外では 0 である。

16.1.1.3 数值例

次の図は N=8, W=0,2 の例である。

図 16.1.1.1 NCO の出力の実部

 $\boxtimes 16.1.1.2 \quad \log_{10} X_W$

第 16.2 章

通信への応用

16.2.1 直交復調

16.2.1.1 直交復調は正の周波数側にある信号を取り出して中心周波数を 0 にする

キャリア周波数を f_c 、入力である実時間信号を $x: \mathbb{R} \to \mathbb{R}$ とすると、直交復調器は $x(t)(\cos(2\pi f_c t) - i\sin(2\pi f_c t))$ を LPF に通してベースバンドの外側の周波数成分を取り除く。その結果、ベースバンド信号として $X = \mathcal{F}(x)$ の正の周波数 側の信号(複素数値信号)が得られる。

そうなる理由を説明する。LPF に入力される前の信号の周波数表示された Fourier 変換は次式である。

$$(X * (\delta_{-f_c} + \delta_{f_c})/2)(f) - i(X * (\delta_{-f_c} - \delta_{f_c})/(2i))(f)$$

ここに $\delta_a \ (a \in \mathbb{R})$ は Dirac のデルタ関数を時間軸方向に -a だけシフトしたものである。計算を進めると次式を得る。

$$\frac{1}{2}(X(f - f_{\rm c}) + X(f + f_{\rm c})) - \frac{1}{2}(X(f - f_{\rm c}) - X(f + f_{\rm c})) = X(f + f_{\rm c})$$

x は実数値関数であるから X は Hermite 対称である。つまり適当な $X_+:\mathbb{R}\to\mathbb{C}$ が存在して、 $X(f)=X_+(f)+\overline{X_+(-f)}$ である。さらに X_+ の台は f_c を中心とするベースバンド帯域幅に制限されている。よって $X(f+f_c)$ を LPF に通した結果は $X_+(f)$ である。

16.2.2 Nyquist ISI 基準

これは大雑把に言うと Fourier 変換が存在する連続時間信号 $h: \mathbb{R} \to \mathbb{C}$ が時刻 0 を除いて、ある周期 $T_{\rm s}>0$ (${\rm s}$ symbol の意味) の整数倍の時刻で 0 になるための必要十分条件である。限定された周波数帯域を使って通信する際に受信側で情報を正しく復元するために重要な性質であり、詳細は [3] にある。数式で表すと次である。

$$h(nT_{\rm s}) = \begin{cases} 1 & n = 0 \\ 0 & n \in \mathbb{Z} \setminus \{0\} \end{cases} \iff \forall f \in \mathbb{R}, \ \frac{1}{T_{\rm s}} \sum_{n = -\infty}^{\infty} H(f - n/T_{\rm s}) = 1$$

ここに H は h の Fourier 変換である。[3] には \Rightarrow の証明のみがある。本書では \Leftarrow を証明する。

Proof.

$$1 = \frac{1}{T_{\rm s}} \sum_{n = -\infty}^{\infty} H(f - n/T_{\rm s}) = \frac{1}{T_{\rm s}} \sum_{n = -\infty}^{\infty} \int_{-\infty}^{\infty} h(t) \exp(-i2\pi (f - n/T_{\rm s})t) dt$$
$$= \frac{1}{T_{\rm s}} \int_{-\infty}^{\infty} h(t) \exp(-i2\pi ft) \sum_{n = -\infty}^{\infty} \exp(i2\pi nt/T_{\rm s}) dt$$
(1)

ここで次の関係式を使う (6.4.6 の派生版)。

$$\sum_{n=-\infty}^{\infty} \exp(i2\pi nt/T_{\rm s}) = 2\pi T_{\rm s} \sum_{n=-\infty}^{\infty} \delta(2\pi t - 2\pi T_{\rm s}n) = T_{\rm s} \sum_{n=-\infty}^{\infty} \delta(t - nT_{\rm s})$$

これを式(1)に適用して次式を得る。

$$1 = \int_{-\infty}^{\infty} h(t) \exp(-i2\pi f t) \sum_{n=-\infty}^{\infty} \delta(t - nT_{\rm s}) dt = \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} h(t) \exp(-i2\pi f t) \delta(t - nT_{\rm s}) dt$$
$$= \sum_{n=-\infty}^{\infty} h(nT_{\rm s}) \exp(-i2\pi f nT_{\rm s})$$

右辺は f に関する周期 $1/T_{\rm s}$ の関数の Fourier 級数であり、 $h(nT_{\rm s})$ は Fourier 係数である。左辺が 1 であることから $h(0)=1,\ h(nT_{\rm s})\ (n\neq 0)=0$ である(より丁寧に論じるなら、前記の式の両辺に $\exp(i2\pi fkT_{\rm s})\ (k\in\mathbb{Z})$ を掛けて区間 $[-1/(2T_{\rm s}),1/(2T_{\rm s})]$ で積分する。その結果が k にどう依存するかを調べる)。

16.2.3 帯域制限された信号が一定時間間隔で無限に配置されると定数になる

T>0 とする。連続時間信号 $h:\mathbb{R}\to\mathbb{C}$ の Fourier 変換 H の台が有界であり、H(f)=0 $(|f|\geq 1/T)$ であるとき、次が成り立つ。

$$\sum_{n=-\infty}^{\infty} h(t - nT) = H(0)/T$$

例えば位相変調による通信の目的で設計された回路に於いて、シンボル周期と同じ時間間隔で同じ大きさのパルスを Raised-Cosine フィルタに入力し続けると出力は一定の値になる。直感的には Raised-Cosine フィルタのインパルス応答が 見えるように思えるが、そうはならない。

Proof.

$$\sum_{n=-\infty}^{\infty} h(t-nT) = \sum_{n=-\infty}^{\infty} \mathcal{F}^{-1}(H)(t-nT) = \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} H(f) \exp(i2\pi f(t-nT)) df$$

$$= \int_{-\infty}^{\infty} H(f) \exp(i2\pi ft) \sum_{n=-\infty}^{\infty} \exp(-i2\pi fnT) df$$
(1)

ここで次の関係式を使う (6.4.6 の派生版)。

$$\sum_{n=-\infty}^{\infty} \exp(-i2\pi f nT) = \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(-2\pi f - 2\pi n/T) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta(-f - n/T)$$
$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta(f + n/T) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

これを式(1)に適用して次式を得る。

$$\sum_{n=-\infty}^{\infty} h(t-nT) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} H(f) \exp(i2\pi f t) \delta(f-n/T) df$$
$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} H(n/T) \exp(i2\pi n t/T) = H(0)/T$$

最後の等号は h の帯域制限の前提による。

第 16.3 章

信号検出

16.3.1 位置特定に於ける cos 類似度による方法と最良近似による方法の等価性

複素数列で表される受信信号 $\{s_i\}$ の中から特定のパターン (「参照信号」と呼ぶ) を見つけ出したい時がある。例えば無線通信に於いては送信機から「同期ワード (Sync Word, SW)」と呼ばれる数十 bit 分の変調信号が一定周期で送出されており、これが「フレーム」と呼ばれる単位の区切り位置の決定に使われる。受信機は常に SW を探索し、フレームの区切り位置を絶えずトラッキングする必要がある。なぜならば、送信機、受信機に搭載されているクロック発生器には僅かだが誤差があり、受信機から見た送信機の送出する信号の時間軸は少しずつズレていくからである。

今、受信信号列の全体的な位相には関心が無いものとする。つまり、信号全体に大きさ 1 の複素定数を乗算する操作は受信側の信号処理にとって影響がないものとする。現実の無線機で言えば、例えば $\pi/4$ シフト QPSK がそうである。

受信信号から参照信号を検出する方法として、直観的に次の2つの方法を思いつくだろう。

16.3.1.1 手法 1: cos 類似度の絶対値の最大化

参照信号の長さを $L \in \mathbb{N}$, 参照信号を $\boldsymbol{d} \in \mathbb{C}^L$, 受信信号中のテスト領域を $\boldsymbol{s}^{(i)} \coloneqq [s_i, s_{i+1}, \dots, s_{i+L-1}]^{\top} \in \mathbb{C}^L$ とするとき、 $\boldsymbol{d} \succeq \boldsymbol{s}^{(i)}$ の cos 類似度の複素数版

$$\frac{\bm{d}^* \bm{s}^{(i)}}{\|\bm{d}\|_2 \big\| \bm{s}^{(i)} \big\|_2}$$

の位相を無視し、絶対値の 2 乗 (2 乗を使うのは、平方根の計算を無くして計算量を抑える為) で評価する。 $\| \boldsymbol{d} \|_2$ は $\boldsymbol{s}^{(i)}$ に依存しないので評価値同士の大小比較に必要ないから取り除く。すると評価関数 c として次式を得る。

$$c(i) = \frac{|\boldsymbol{d}^* \boldsymbol{s}^{(i)}|^2}{\|\boldsymbol{s}^{(i)}\|_2^2}$$

これが最大となる i を参照信号の存在位置と見做す。

16.3.1.2 手法 2: 最良近似

16.3.1.1 で定義した記号をここでも用いる。受信信号中の参照信号は「参照信号 + ゲイン変化 + 位相回転 + ノイズ」の形で存在している。そこで、参照信号に定数 α を掛けて $s^{(i)}$ との差を取った絶対値の 2 乗を参照信号の L-2 ノルムの 2 乗で正規化した値が最小となるように α を選び、そのときの差の絶対値の 2 乗が最小になるような位置をもって参照信号の存在位置と見做す。評価関数 \tilde{c} は次式である。

$$\tilde{c}(i) = \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \min_{\alpha \in \mathbb{C}} \left\|\alpha \boldsymbol{d} - \boldsymbol{s}^{(i)}\right\|_{2}^{2}$$

正規化する理由は、テスト領域の強度の影響を減らすためである。テスト領域の形が参照信号と大きく異なっていても、テスト領域の強度が小さければ $\min_{\alpha\in\mathbb{C}}\left\|lpha d-s^{(i)}\right\|_2^2$ は小さくなり、誤った推定結果を導き得る。上の最小化問題の解は解析的に求められる。 $f(lpha)\coloneqq\left\|lpha d-s^{(i)}\right\|_2^2$ について微小な $\Delta lpha$ を考え、 $f(lpha+\Delta lpha)-f(lpha)$ の変化量の $\Delta lpha$ の 1 次の項が 0 に

なるような $^{\alpha}$ が解である。これは次式である。

$$\mathring{\alpha} = \frac{\boldsymbol{d}^* \boldsymbol{s}^{(i)}}{\|\boldsymbol{d}\|_2^2}$$

よって $\tilde{c}(i)$ は次式である。

$$ilde{c}(i) = rac{1}{\left\|oldsymbol{s}^{(i)}
ight\|_{2}^{2}} \left\|oldsymbol{s}^{(i)} - rac{oldsymbol{d}^{*}oldsymbol{s}^{(i)}}{\left\|oldsymbol{d}
ight\|_{2}^{2}} oldsymbol{d}
ight\|_{2}^{2}$$

16.3.1.3 手法 1,2 の等価性

実は手法1と2は等価である。すなわち次の命題は真である。

$$\frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}}\left\|\boldsymbol{s}^{(i)} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}}\boldsymbol{d}\right\|_{2}^{2} < \frac{1}{\left\|\boldsymbol{s}^{(j)}\right\|_{2}^{2}}\left\|\boldsymbol{s}^{(j)} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(j)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}}\boldsymbol{d}\right\|_{2}^{2} \iff \frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} > \frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(j)}\right|^{2}}{\left\|\boldsymbol{s}^{(j)}\right\|_{2}^{2}}$$

これを示す。

$$\begin{split} \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \left\|\boldsymbol{s}^{(i)} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \boldsymbol{d} \right\|_{2}^{2} &= \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \left[\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2} + \frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{d}\right\|_{2}^{4}} \left\|\boldsymbol{d}\right\|_{2}^{2} - \frac{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \boldsymbol{s}^{(i)^{*}} \boldsymbol{d} - \frac{\overline{\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \boldsymbol{d}^{*}\boldsymbol{s}^{(i)} \right] \\ &= \frac{1}{\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2}} \left[\left\|\boldsymbol{s}^{(i)}\right\|_{2}^{2} + \frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} - 2\frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \right] \\ &= 1 - \frac{\left|\boldsymbol{d}^{*}\boldsymbol{s}^{(i)}\right|^{2}}{\left\|\boldsymbol{d}\right\|_{2}^{2}} \end{split}$$

であり、

$$1 - \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(i)}|^2}{\|\boldsymbol{d}\|_2^2} < 1 - \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(j)}|^2}{\|\boldsymbol{d}\|_2^2} \iff \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(i)}|^2}{\left\|\boldsymbol{s}^{(i)}\right\|_2^2} > \frac{|\boldsymbol{d}^*\boldsymbol{s}^{(j)}|^2}{\left\|\boldsymbol{s}^{(j)}\right\|_2^2}$$

であることから命題が真であることがわかる。

第 17 部

その他

第 17.1 章

信号値の統計

信号に対し、その値の統計を定義できる場合がある。ここでは、連続時間の正弦波信号に対してその値の統計を考える。

17.1.1 連続時間正弦波信号値の確率密度関数

周期 T>0, 振幅 A>0 の正弦波信号 $x:t\in\mathbb{R}\mapsto A\sin(2\pi t/T)$ を考える。x の確率密度関数 p は次式である。

$$p(x) = \begin{cases} \frac{1}{A\pi\sqrt{1 - (x/A)^2}} & (|x| \le A) \\ 0 & (|x| > A) \end{cases}$$

Proof.

1周期の範囲で統計を求めればよい。累積分布関数 $P(x)=|\{t|-T/2\leq t\leq T/2, x(t)\leq x\}|/T$ を考える。まず P(x)=0 (x<-A), P(x)=1 (x>A) は明らか。

 $-A \leq x \leq 0$ の場合を考える。 $x(t) \leq u$ $(-A \leq u \leq 0)$ を満たす $t \in [-T/2, T/2]$ は $-T/2 - \frac{T}{2\pi} \arcsin(u/A) \leq t \leq \frac{T}{2\pi} \arcsin(u/A)$ を満たす全ての t であるから、 $P(x) = 1/2 + \frac{1}{\pi} \arcsin(x/A)$ $(-A \leq x \leq 0)$ である。次に $0 \leq x \leq A$ の場合を考えると、x のグラフの対称性から $P(x) = 1 - P(-x) = 1/2 + \frac{1}{\pi} \arcsin(x/A)$ $(0 \leq x \leq A)$ であることが解る。結局 $P(x) = 1/2 + \frac{1}{\pi} \arcsin(x/A)$ $(|x| \leq A)$ である。これを x について微分して $x \in A$ を得る。

17.1.2 連続時間正弦波信号値の分散

周期 T>0, 振幅 A>0 の正弦波信号 $x:t\in\mathbb{R}\mapsto A\sin(2\pi t/T)$ を考える。x の分散は $A^2/2$ である。

Proof.

求めたい分散は次式である。

$$\int_{-A}^{A} x^{2} p(x) dx = 2 \int_{0}^{A} x^{2} p(x) dx = \int_{0}^{A} \frac{2x^{2}}{\pi A \sqrt{1 - (x/A)^{2}}} dx$$
 (1)

ここで

$$\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{1 - (x/A)^2} = -\frac{x}{A^2\sqrt{1 - (x/A)^2}}$$

を用いて(1)を変形して次式を得る。

$$(1) = \int_0^A \left(\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{1 - (x/A)^2} \right) (-2xA/\pi) \mathrm{d}x = \left[\sqrt{1 - (x/A)^2} (-2xA/\pi) \right]_0^A + \int_0^A \sqrt{1 - (x/A)^2} \frac{2A}{\pi} \mathrm{d}x$$

 $x = A \sin \theta$ なる変数変換を用いて $(1) = A^2/2$ を得る。

第 17.2 章

Heaviside の階段関数

17.2.1 積分表示

Hを Heaviside の階段関数とする。次式が成り立つ。

$$H(x) = \lim_{\varepsilon \to +0} \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{1}{t - i\varepsilon} e^{ixt} dt$$

Proof.

複素積分を用いて示す。 $R>\varepsilon,\ f(z):=\mathrm{e}^{ixz}/(z-i\varepsilon)$ とする。f の極は $i\varepsilon$ であり、位数 1, 留数 1 である。x>0 のとき、積分路を $C_{\mathrm{A}}:C_{1}+C_{2},\ C_{1}:=[-R,R],\ C_{2}:=Re^{i\theta},\ \theta:0\to\pi$ として f を C_{A} 上で積分する。留数定理から次式が成り立つ。

$$\int_{C_{\mathbf{A}}} f(z) dz = 2\pi i \quad \therefore \int_{-R}^{R} f(z) dz = 2\pi i - \int_{C_{2}} f(z) dz$$

[4]VI.1.2.9 と同様にして $\int_{C_2} f(z) dz \to 0$ as $R \to \infty$ であるので $\lim_{R \to \infty} \int_{-R}^R f(z) dz = 2\pi i$ である。 x < 0 のとき、積分路を $C_{\rm B} : -C_1 + C_3$, $C_3 := Re^{i\theta}$, $\theta : -\pi \to 0$ として f を $C_{\rm B}$ 上で積分する。 $C_{\rm B}$ が囲む領域に f の極が無いので、留数定理から次式が成り立つ。

$$\int_{C_{\mathbf{B}}} f(z) \mathrm{d}z = 0 \quad \therefore \int_{-R}^{R} f(z) \mathrm{d}z = \int_{C_{3}} f(z) \mathrm{d}z$$

 C_2 上の積分の評価と同様にして $\int_{C_3} f(z) \mathrm{d}z \to 0$ as $R \to \infty$ であるので $\lim_{R \to \infty} \int_{-R}^R f(z) \mathrm{d}z = 0$ である。以上より定理の主張が従う。

参考文献

- [1] 飯國洋二 (2009)『基礎から学ぶ信号処理』培風館
- [2] 本田 昭, 城谷 聡美 (2008)『図解と演習で学ぶ ディジタルサーボの理論と実践』日刊工業新聞社
- [3] Nyquist ISI criterion https://en.wikipedia.org/wiki/Nyquist_ISI_criterion
- [4] motchy (2022)『数学備忘録 v0.12.0』https://github.com/motchy869/Mathematics-Memorandum/releases/tag/v0.12.0
- [5] DSP.jl https://docs.juliadsp.org/dev/