```
In [68]: import pandas as pd
import itertools
import numpy as np
import random
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from IPython.display import display, HTML
from sklearn.preprocessing import StandardScaler
import warnings
import matplotlib.pyplot as plt
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns', 70)
```

Overview

Objective

Form a team of players whose total yearly salary for the 2021-22 season fits within a
range using advanced statistics as the independent variables and the number of wins
produced by that team as the dependent variable in a regression task

Dataset Source

- https://www.basketball-reference.com
 https://www.basketball-reference.com
- Downloaded the csv files for each required feature and did some preprocessing

Dataset

Relevant dataframes

- adv_stats: contains advanced statistics for each player
- standard stats: contains standard statistics for each player
- salaries: contains the 2021-22 salaries for each player
- combined_data: adv_stats + salaries

```
In [86]: adv_stats = pd.read_excel("adv_stats_with_dup.xlsx").drop("Rk", axis=1)
full_salaries = pd.read_excel("salaries.xlsx").drop("Rk", axis=1).rena
standings = pd.read_excel("standings.xlsx")

salaries = full_salaries[["Player", "2021-22 Salary"]]

combined_data = pd.merge(adv_stats, full_salaries[["Player", "2021-22
print("Player Information")
print(list(combined_data.columns))

Player Information
['Player', 'Pos', 'Age', 'Tm', 'G', 'MP', 'PER', 'TS%', '3PAr', 'FTr'
, '0RB%', 'DRB%', 'TRB%', 'AST%', 'STL%', 'BLK%', 'TOV%', 'USG%', '0W
S', 'DWS', 'WS', 'WS/48', '0BPM', 'DBPM', 'BPM', 'VORP', '2021-22 Salary']

In [3]: # display(combined_data)
# display(combined_data[combined_data["Tm"] == "TOT"])
```

Parameters

- min_games_played: minimum number of games played for a player
- min_min_played: minimum number of average minutes for a player
- desired_yearly_sal_min: minimum total yearly salary for a team
- desired_yearly_sal_max: maximum total yearly salary for a team
- combos_considered: how many different combinations of players considered during the testing stage
- num_players: number of players in a team
- position matters: whether we care about the positions of players
- teams considered: how many teams are considered in the combinations generated

```
In [4]: min_games_played = 41
    min_min_played = 25
    desired_yearly_sal_min = 500000000
    desired_yearly_sal_max = 700000000

combos_considered = 30000
    num_players = 5
    position_matters = True
    teams_considered = 30000
```

Data Parsing

This is an area that could be modified based on basketball knowledge and research

Assumptions made:

- Players that played on multiple teams in a season do not adequately contribute to the wins of the respective teams
- Players that play a desired number of games and minutes contribute to a team's wins

```
In [5]: parsed_data = combined_data[combined_data["Tm"] != "TOT"]
# parsed_data = parsed_data[parsed_data["G_x"] >= min_games_played]
# parsed_data = parsed_data[parsed_data["MP_x"] >= min_min_played].res
# parsed_data = parsed_data.drop("Pos_x", axis=1).drop("Age_x", axis=1)
# parsed_data = parsed_data.drop("Pos_y", axis=1).drop("Age_y", axis=1)

parsed_data = parsed_data[parsed_data["G"] >= min_games_played]
parsed_data = parsed_data[parsed_data["MP"] >= min_min_played].reset_i
parsed_data = parsed_data.drop("G", axis=1).drop("MP", axis=1)
# parsed_data = parsed_data.sort_values(by=['Pos']).reset_index(drop=1)

players_considered = len(parsed_data)

if position_matters:
    temp = parsed_data.groupby('Pos')
    data_by_positions = [x for _, x in temp]
```

In []: # display(standings)

Generating Training Data

- 1. Training data is generated based on the 2021-22 season standings
- 2. Given a list of players and their statistics and salaries, iterate through each player and determine the team, number of minutes played, and number of games played by that player
- 3. Group players according to team, and keep players that fit the criteria of games played and minutes played
- 4. Generate all combinations of teams (based on the num_players parameter), average out their advanced statistics to get independent variables and assigned their number of wins as the number of wins from their respective team in the 2021-22 season standings

```
In [7]: | teams = standings["Team"]
        team wins = standings["Wins"]
        players_dict = {}
        for i in range(len(parsed_data)):
            team = parsed data.iloc[i]["Tm"]
            if team not in players_dict:
                players dict[team] = [i]
            else:
                players_dict[team].append(i)
In [8]: | temp_data = parsed_data
        parsed_data = parsed_data.drop("Tm", axis=1)
        parsed data = parsed data.drop("Pos", axis=1)
In [9]: different teams = []
        teams_dict = {"MIA": "Miami Heat", "NOP": "New Orleans Pelicans", "MEM
        for key, value in players_dict.items():
            wins = standings[standings["Team"] == teams dict[key]]["Wins"].val
            different_teams.append((wins, list(itertools.combinations(value, r
        X = []
        y = []
        for i in range(len(different_teams)):
            team = different_teams[i][1]
            for j in range(len(team)):
                players = list(team[j])
                averages = parsed_data.iloc[players].mean(axis=0).tolist()[:-1
                X.append(averages)
                y.append(different_teams[i][0])
```

30

Generating Testing Data

The testing data is more like hold out data. It is not from the same distribution as the training data since we want to know teams that haven't been formed before and for which we don't have historical data regarding wins.

- 1. Generate a set of n person teams
 - Since there are a lot of possible combinations of say 5 person teams, we select 5 random numbers instead from the list of possible player indices
 - We won't be able to generate all possible teams, and if we only generated a subset of all combinations, then we are likely to only consider a small number of players
 - Using random numbers helps us with this
- 2. Average the teams statistics and filter the yearly salaries to fit within the desired range

```
In [10]: |data_len = len(parsed_data)
         # start index
         def get_five():
             random_set = []
             if position_matters:
                 for i in range(len(data_by_positions)):
                     random_index = random.randint(0, len(data_by_positions[i])
                     while random_index in random_set:
                          random index = random.randint(0, len(data by positions
                     new_index = data_by_positions[i].iloc[random_index].name
                     random_set.append(new_index)
             else:
                 for i in range(num_players):
                     random_index = random.randint(0, data_len - 1)
                     while random_index in random_set:
                          random_index = random.randint(0, data_len - 1)
                     random_set.append(random_index)
             return random_set
         all_combos = [get_five() for i in range(teams_considered)]
```

```
In [11]: salaries = parsed_data["2021-22 Salary"].tolist()
         players = parsed data["Player"]
         team salaries = []
         for i in range(len(all combos[:combos considered])):
             total sal = 0
             for j in range(num players):
                 total_sal += salaries[all_combos[i][j]]
             if total_sal <= desired_yearly_sal_max and total_sal >= desired_ye
                 team_salaries.append((total_sal, all_combos[i]))
         extra_test_X = []
         extra teams X = []
         for sal in team_salaries:
             players = sal[1]
             averages = parsed_data.iloc[players].mean(axis=0).tolist()[:-1]
             extra test X.append(averages)
             extra teams X.append(players)
         print(len(extra_test_X))
         print(extra teams X[0])
```

8876 [203, 217, 152, 136, 43]

Use a regression model to predict the number of wins of each test instance

Right now I only use linear regression, but this is an area that could use improvements

```
# scaler.transform(true_test_X)
true_pred_y = model.predict(true_test_X)
# print(true_test_y[:10])
# print(true_pred_y[:10])
print(mean_squared_error(true_test_y, true_pred_y))
31.616684206177883
```

```
In [14]: # scaler.transform(extra_test_X)
    extra_pred_y = model.predict(extra_test_X)
```

Printing results

The following results are shown:

- The top-n teams that achieved the most number of wins based on predictions
- The worst team with the lowest number of wins based on predictions
- The average statistics of that team
- The number of players in the top 10 teams based on season standings
- The number of players in the bottom 10 teams based on season standings

```
In [15]: | def get_pred_info(y_pred, top_n=1, get_worst=False):
             if get_worst:
                 index = np.argmin(y pred)
                 players = extra_teams_X[index]
                 num_wins = y_pred[index]
                 stats = pd.merge(temp_data[["Player", "Tm", "Pos"]], parsed_da
                   stats = pd.merge(parsed_data.iloc[players], combined_data[["
                   stats = parsed_data.iloc[players]
         #
                 averages = pd.DataFrame({"Averages": stats.mean(axis=0).round(
                 total salary = int(stats.sum(axis=0)["2021-22 Salary"].tolist(
                 player_names = stats["Player"].tolist()
                 return stats, averages, player_names, total_salary, int(np.rou
             else:
                 indices = np.argpartition(y_pred, -top_n)[-top_n:]
                 sorted_indices = indices[np.argsort(y_pred[indices])]
                 info = []
                 for i in range(len(sorted_indices) - 1, -1, -1):
                     index = sorted indices[i]
                     players = extra_teams_X[index]
                     num_wins = y_pred[index]
                     stats = pd.merge(temp_data[["Player", "Tm", "Pos"]], parse
                       stats = parsed_data.iloc[players]
                     averages = pd.DataFrame({"Averages": stats.mean(axis=0).rd
                     total_salary = int(stats.sum(axis=0)["2021-22 Salary"].tol
                     player names = stats["Player"].tolist()
                     info.append([stats, averages, player_names, total_salary,
                 return info
```

```
In [16]:
```

```
top_10_teams = set(standings["Team"][:10])
bot 10 teams = set(standings["Team"][-10:])
print("----- NBA Moneyball -----
params = {"Players Considered": players considered, "Position Matters"
params df = pd.DataFrame({"Parameters": params}).T
display(params df)
display(standings.T)
print("\n")
print("----- Results (Top-n Teams and Worst T
info = get_pred_info(extra_pred_y, top_n=5)
for i in range(len(info)):
    stats, averages, player_names, total_salary, num_wins = info[i]
   player_teams = set(map(lambda s : teams_dict[s], stats["Tm"]))
   top_overlap = len(player_teams.intersection(top_10_teams))
   bot_overlap = len(player_teams.intersection(bot_10_teams))
   print("\n")
   print("Rank" + str(i + 1))
   print("Most number of wins: " + str(num_wins))
   print("Total yearly salary: " + str("${:,}".format(total_salary)))
   print("Players in top 10 teams: " + str(top_overlap))
    print("Players in bottom 10 teams: " + str(bot_overlap))
   display(stats)
   display(averages)
print("\n")
stats, averages, player_names, total_salary, num_wins = get_pred_info(
print("Worst Team")
print("Least number of wins: " + str(min(extra_pred_y)))
print("Total yearly salary: " + str(total_salary))
player teams = set(map(lambda s : teams dict[s], stats["Tm"]))
top_overlap = len(player_teams.intersection(top_10_teams))
bot overlap = len(player teams.intersection(bot 10 teams))
print("Players in top 10 teams: " + str(top_overlap))
print("Players in bottom 10 teams: " + str(bot overlap))
display(stats)
display(averages)
# print("\n")
# print("Average number of wins: " + str(sum(pred_y)/len(pred_y)))
```

----- NBA Moneyball ------

Min Min Salary Salary Size

		Games Played	Minute Playe		Players sidered	Position Matters	Range (Max)	•		of am
Param	neters	41	2	:5	272	False	\$70,000,000	\$50,000,000)	5
	0	1	2	3	4	5	6	7	8	
Team	Phoenix Suns	Memphis Grizzlies	Golden State Warriors	Miami Heat	Dallas Mavericks	Boston Celtics	Milwaukee Bucks	Philadelphia 76ers	Utah Jazz	De Nug
Wins	64	56	53	53	52	51	51	51	49	

----- Results (Top-n Teams and Worst Team) -

Rank 1

Most number of wins: 60

Total yearly salary: \$50,164,532

Players in top 10 teams: 3 Players in bottom 10 teams: 0

	Play	er	Tm	Pos	Age	PER	TS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%
0	LaMe Ba	lo all	СНО	PG	19	17.5	0.539	0.388	0.246	4.6	17.9	11.1	33.9	2.7
1	Ke Bazemo		GSW	SF	31	10.6	0.564	0.469	0.199	2.1	16.0	9.1	11.1	2.4
2	Dev Book		РНО	SG	24	19.2	0.587	0.288	0.305	1.7	12.1	7.0	20.6	1.2
3	Jarre Vanderb		MIN	PF	21	16.2	0.612	0.021	0.432	10.8	24.7	17.5	9.3	2.7
4	Robe William		BOS	С	23	25.7	0.719	0.008	0.283	14.9	25.6	20.2	14.2	2. ⁻
		Age	e PEF	R TS	% 3I	PAr F	Tr OR	B% D	RB%	TRB% A	AST% S	TL% BI	LK% T	OV %
Av	erages	23.6	6 17.8	8 0	.6	0.2	0.3	6.8	19.3	13.0	17.8	2.2	3.2	15.2

Rank 2

Most number of wins: 60

Total yearly salary: \$50,993,133

Players in top 10 teams: 3
Players in bottom 10 teams: 0

	Player	Tm	Pos	Age	PER	TS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%
0	Bruce Brown	BRK	PG	24	16.1	0.604	0.139	0.277	8.9	17.2	13.3	9.8	1.9
1	Damion Lee	GSW	SG	28	11.8	0.636	0.708	0.161	2.2	15.4	8.9	9.1	1.7
2	Royce O'Neale	UTA	SF	27	9.9	0.599	0.706	0.117	4.4	18.0	11.5	10.4	1.2
3	Bobby Portis	MIL	С	25	19.9	0.598	3 0.263	0.122	9.9	25.3	17.9	7.4	1.8
4	Pascal Siakam	TOR	PF	26	17.7	0.547	0.256	0.313	5.0	17.6	11.1	20.5	1.5
	,	Age P	PER 1	ΓS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%	BLK%	TOV%

6.1

18.7

12.5

11.4

1.6

1.4

11.0

Rank 3

Most number of wins: 60

Total yearly salary: \$63,752,077

Players in top 10 teams: 2 Players in bottom 10 teams: 0

Averages 26.0 15.1 0.6 0.4 0.2

	Player	Tm	Pos	Age	PER	TS%	3 PA r	FTr	ORB%	DRB%	TRB%	AST%	STL%
0	LaMelo Ball	СНО	PG	19	17.5	0.539	0.388	0.246	4.6	17.9	11.1	33.9	2.7
1	John Konchar	MEM	SG	24	14.8	0.608	0.406	0.217	6.4	17.3	11.8	10.7	2.5
2	Kawhi Leonard	LAC	SF	29	26.0	0.622	0.280	0.325	3.6	17.4	10.7	24.9	2.3
3	Kelly Olynyk	MIA	С	29	12.1	0.549	0.646	0.106	4.4	21.1	12.9	11.7	1.7
4	Dean Wade	CLE	PF	24	11.3	0.573	0.685	0.125	3.4	16.8	9.9	8.9	1.4
		Age P	ER T	'S% :	3PAr	FTr O	RB%	DRB%	TRB%	AST%	STL%	BLK%	TOV%
Av	erages 2	25.0 1	6.3	0.6	0.5	0.2	4.5	18.1	11.3	18.0	2.1	1.5	11.4

Rank 4

Most number of wins: 59

Total yearly salary: \$64,778,089

Players in top 10 teams: 2 Players in bottom 10 teams: 2

	Player	Tm	Pos	Age	PER	TS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%
0	Jimmy Butler	MIA	SF	31	26.5	0.607	0.139	0.565	6.3	17.1	11.8	35.1	3.
1	Robert Covington	POR	PF	30	11.2	0.553	0.699	0.122	2.8	19.8	11.1	6.8	2.1
2	T.J. McConnell	IND	PG	28	16.9	0.583	0.098	0.098	3.3	12.1	7.7	34.3	3.4
3	Bobby Portis	MIL	С	25	19.9	0.598	0.263	0.122	9.9	25.3	17.9	7.4	1.8
4	Anfernee Simons	POR	SG	21	12.3	0.589	0.703	0.142	1.3	12.5	6.8	11.4	3.0

	Age	PER	TS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%	BLK%	TOV%
Averages	27.0	17.4	0.6	0.4	0.2	4.7	17.4	11.1	19.0	2.3	1.6	11.9

Rank 5

Most number of wins: 59

Total yearly salary: \$53,492,617

Players in top 10 teams: 2 Players in bottom 10 teams: 1

	Player	Tm	Pos	Age	PER	TS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%
0	Deandre Ayton	PHO	С	22	20.3	0.653	0.029	0.252	12.4	26.3	19.5	6.8	1.0
1	LaMelo Ball	СНО	PG	19	17.5	0.539	0.388	0.246	4.6	17.9	11.1	33.9	2.7
2	Sterling Brown	HOU	SG	25	11.1	0.597	0.642	0.093	3.2	16.8	9.7	8.4	1.5
3	Joe Ingles	UTA	SF	33	15.9	0.672	0.722	0.160	1.6	11.8	6.9	24.0	1.2
4	Marcus Morris	LAC	PF	31	14.5	0.614	0.507	0.152	2.7	14.5	8.8	5.6	1.1

Age PER TS% 3PAr FTr ORB% DRB% TRB% AST% STL% BLK% TOV%

Averages	26.0	15.9	0.6	0.5	0.2	4.9	17.5	11.2	15.7	1.5	1.4	12.7

Worst Team

Least number of wins: 25.710530411719333

Total yearly salary: 57248729 Players in top 10 teams: 1 Players in bottom 10 teams: 3

	Player	Tm	Pos	Age	PER	TS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%
0	Carmelo Anthony	POR	PF	36	14.6	0.547	0.418	0.198	2.0	11.8	6.8	9.2	1.3
1	Khem Birch	ORL	С	28	14.1	0.517	0.100	0.407	12.3	14.2	13.2	8.0	1.6
2	Amir Coffey	LAC	SG	23	10.1	0.585	0.544	0.369	2.9	9.4	6.3	7.4	1.3
3	Jerami Grant	DET	SF	26	16.9	0.556	0.353	0.368	2.1	13.2	7.6	14.3	0.9
4	Donovan Mitchell	UTA	PG	24	21.3	0.569	0.423	0.290	3.1	10.6	7.0	26.7	1.4

	Age	PER	TS%	3PAr	FTr	ORB%	DRB%	TRB%	AST%	STL%	BLK%	TOV%	
Averages	27.4	15.4	0.6	0.4	0.3	4.5	11.8	8.2	13.1	1.3	1.6	9.2	

Comparing Currently Successful Teams with Predicted Rank 1 Team

```
In [64]: stats, predicted_avgs, player_names, total_salary, num_wins = info[0]
In [18]: cols = np.array(parsed_data.columns)

In [90]: suns_starters = ["Devin Booker", "Chris Paul", "Mikal Bridges", "Deand warrs_starters = ["Steph Curry", "Klay Thompson", "Draymond Green", "Cheat_starters = ["Jimmy Butler", "Bam Adebayo", "Duncan Robinson", "PJ
subset = parsed_data[parsed_data["Player"].isin(suns_starters)]
subset_avgs_suns = pd.DataFrame(subset.mean(axis=0).round(1))
```

```
subset = parsed data[parsed data["Player"].isin(heat starters)]
subset avgs heat = pd.DataFrame(subset.mean(axis=0).round(1))
subset = parsed_data[parsed_data["Player"].isin(warrs_starters)]
subset_avgs_warrs = pd.DataFrame(subset.mean(axis=0).round(1))
fig, axes = plt.subplots(3, 3, figsize=(15, 15))
row = 0
col = 0
fig.suptitle("Team Averages, Higher is Better", fontsize=20)
for column in parsed_data.iloc[:, 2:23]:
    if column in ["PER", "TS%", "ORB%", "DRB%", "TRB%", "BLK%", "STL%"
    x = ["Suns", 'Heat', 'Warriors', "Predicted"]
        y = [subset avgs suns.loc[column].values[0], subset avgs heat.
        axes[row, col].bar(x, y, color=['orange', 'red', 'blue', 'blad
        axes[row, col].set title(column)
        col += 1
        if col == 3:
            col = 0
            row += 1
print("\n")
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
row = 0
col = 0
fig.suptitle("Team Averages, Lower is Better", fontsize=20)
for column in parsed_data.iloc[:, 2:23]:
    if column in ["TOV%"]:
        x = ["Suns", 'Heat', 'Warriors', "Predicted"]
        y = [subset_avgs_suns.loc[column].values[0], subset_avgs_heat.
        axes[0].bar(x, y, color=['orange', 'red', 'blue', 'black'])
        axes[0].set title(column)
    if column in ["2021-22 Salary"]:
        x = ["Suns", 'Heat', 'Warriors', "Predicted"]
        y = [subset_avgs_suns.loc[column].values[0], subset_avgs_heat.
        axes[1].bar(x, y, color=['orange', 'red', 'blue', 'black'])
        axes[1].set title(column)
print("\n")
```

Team Averages, Higher is Better

Looking at Distribution of Players in Predicted Teams

In [38]:

```
fig, axes = plt.subplots(2, 3, figsize=(15, 15))
row = 0
col = 0
fig.suptitle("Players Currently in Top, Middle, or Bottom Teams from 2
for i in range(len(info)):
    stats, averages, player names, total salary, num wins = info[i]
   player teams = set(map(lambda s : teams dict[s], stats["Tm"]))
   top_overlap = len(player_teams.intersection(top_10_teams))
   bot overlap = len(player teams.intersection(bot 10 teams))
   if top_overlap == 0:
        sizes = [bot_overlap * 10, 100 - (bot_overlap * 10)]
        axes[row, col].pie(sizes, labels=["In Bottom-10", "In Mid-Tier
   elif bot overlap == 0:
        sizes = [top\_overlap * 10, 100 - (top\_overlap * 10)]
        axes[row, col].pie(sizes, labels=["In Top-10", "In Mid-Tier"],
   else:
        sizes = [top_overlap * 10, bot_overlap * 10, 100 - (bot_overla
       axes[row, col].pie(sizes, labels=["In Top-10", "In Bottom-10",
   axes[row, col].set title("Predicted Rank " + str(i + 1) + " Team")
   col += 1
   if col == 3:
        col = 0
        row += 1
stats, averages, player_names, total_salary, num_wins = get_pred_info(
player_teams = set(map(lambda s : teams_dict[s], stats["Tm"]))
top_overlap = len(player_teams.intersection(top_10_teams))
bot_overlap = len(player_teams.intersection(bot_10_teams))
axes[1, 2].set title("Predicted Worst Team")
if top overlap == 0:
    sizes = [bot_overlap * 10, 100 - (bot_overlap * 10)]
   axes[1, 2].pie(sizes, labels=["In Bottom-10", "In Mid-Tier"], cold
elif bot overlap == 0:
    sizes = [top_overlap * 10, 100 - (top_overlap * 10)]
   axes[1, 2].pie(sizes, labels=["In Top-10", "In Mid-Tier"], colors=
else:
   sizes = [top_overlap * 10, bot_overlap * 10, 100 - (bot_overlap *
   axes[1, 2].pie(sizes, labels=["In Top-10", "In Bottom-10", "In Mic
```

Players Currently in Top, Middle, or Bottom Teams from 2021-22 Season

