NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Professor Lee Soo Teck

solutions prepared by Tay Jun Jie, Nah Jiaming Joseph

MA2108 Mathematical Analysis I

AY 2008/2009 Sem 2

Question 1

Firstly, note that $a_n \geq 0 \ \forall n \in \mathbb{N}$. Consider $|a_{n+2} - a_{n+1}|$.

$$|a_{n+2} - a_{n+1}| = \left| \left(2 + \frac{7}{a_n + 4} \right) - \left(2 + \frac{7}{a_n + 4} \right) \right|$$

$$= 7 \left| \frac{a_n - a_{n+1}}{(a_{n+1} + 4)(a_n + 4)} \right|$$

$$\leq \frac{7}{16} |a_{n+1} - a_n|$$

Therefore (a_n) is contractive and converges. Let $\lim_{n\to\infty} a_n = a$.

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \left(2 + \frac{7}{a_n + 4} \right)$$

$$\Rightarrow a = 2 + \frac{7}{a + 4}$$

$$\Rightarrow a^2 + 2a - 15 = 0$$

$$\Rightarrow (a + 5)(a - 3) = 0$$

$$\Rightarrow a = -5 \quad \text{or} \quad a = 3$$

Since $a_n \ge 0$, we have $a \ge 0$. Therefore, we conclude with a = 3.

Question 2

(a) (i)

$$\lim_{n \to \infty} \frac{\frac{3n+5}{1-n^2+2n^3}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{3n^3 + 5n^2}{1 - n^2 + 2n^3}$$
$$= \lim_{n \to \infty} \frac{3 + 5/n}{1/n^3 - 1/n + 2}$$
$$= \frac{3}{2} > 0$$

By the limit comparision test, we conclude that $\sum_{n=1}^{\infty} \frac{3n+5}{1-n^2+2n^3}$ converges since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

(ii)

$$\lim_{n \to \infty} \left| \frac{3^n}{\left(1 + \frac{1}{2n}\right)^{4n^2}} \right|^{1/n} = \lim_{n \to \infty} \frac{3}{\left(1 + \frac{1/2}{n}\right)^{4n}}$$
$$= \frac{3}{(e^{1/2})^4}$$
$$= \frac{3}{e^2} < 1$$

By the root test, we conclude that $\sum_{n=1}^{\infty} \frac{3^n}{\left(1+\frac{1}{2n}\right)^{4n^2}}$ converges.

(b) (i) By hypothesis, $a_n \leq a_{n+1} \ \forall n \geq K_1$.

$$\Rightarrow a_{K_1} \le a_{K_1+1} \le \dots \le a_n \qquad \forall n \ge K_1$$

 $\Rightarrow \lim_{n\to\infty} a_n \neq 0$. Therefore, we conclude that $\sum_{n=1}^{\infty} a_n$ diverges.

(ii) By hypothesis, $a_{n+1} < ra_n \ \forall n \ge K_2$.

$$\Rightarrow a_n < ra_{n-1} < \dots < r^{n-K_2}a_{K_2} = Cr^n$$
 where $C = \frac{a_{K_2}}{r^{K_2}}$

 $\sum_{n=1}^{\infty} Cr^n$ is a geometric series with 0 < r < 1, thus it converges. Therefore, we conclude that $\sum_{n=1}^{\infty} a_n$ converges by the comparision test.

Question 3

(a) Let $M = \limsup a_n$. Hence $\forall \varepsilon > 0$, there are infinitely many n's such that $M - \varepsilon < a_n \le M + \varepsilon$. Consider $M - \frac{1}{k} < a_n \le M + \frac{1}{k}$ where $k \in \mathbb{N}$. For k = 1, pick a_n such that $M - 1 < a_n \le M + 1$ and define $a_{n_1} := a_n$. For k = 2, pick a_m such that $M - \frac{1}{2} < a_m \le M + \frac{1}{2}$ and $m > n_1$. Note that such an m always exists due to existence of infinitely many i's such that $M - \frac{1}{2} < a_i \le M + \frac{1}{2}$. Define $a_{n_2} := a_m$ and continue to define a_{n_k} inductively. Then $\{a_{n_k}\}$ is a subsequence of $\{a_n\}$ with the following property.

$$M - \frac{1}{k} < a_{n_k} \le M + \frac{1}{k} \qquad \forall k \in \mathbb{N}$$

Since $\lim_{k\to\infty} M - \frac{1}{k} = M = \lim_{k\to\infty} M + \frac{1}{k}$,

$$\lim_{k \to \infty} a_{n_k} = M$$

by squeeze theorem.

(b) (i) For each $n \in \mathbb{N}$, $-1 \le \sin(n\pi/4) \le 1$.

$$\Rightarrow -\frac{2n^2+3}{\sqrt{4n^4+5n^3-1}} \le x_n \le \frac{2n^2+3}{\sqrt{4n^4+5n^3-1}}$$

Now, let (x_{n_k}) be a convergent subsequence tending to x.

$$\Rightarrow -1 = \lim_{k \to \infty} -\frac{2n_k^2 + 3}{\sqrt{4n_k^4 + 5n_k^3 - 1}} \le \lim_{k \to \infty} x_{n_k} = x \le \lim_{k \to \infty} \frac{2n_k^2 + 3}{\sqrt{4n_k^4 + 5n_k^3 - 1}} = 1$$

Hence 1 and -1 are an upper bound and lower bound for $C(x_n)$ respectively. Furthermore,

$$x_n = \begin{cases} \frac{2n^2 + 3}{\sqrt{4n^4 + 5n^3 - 1}} & \text{if } n = 8k + 2\\ -\frac{2n^2 + 3}{\sqrt{4n^4 + 5n^3 - 1}} & \text{if } n = 8k - 2 \end{cases}$$

So $x_{8k+2} \to 1$ and $x_{8k-2} \to -1$. Therefore, we conclude that $\limsup x_n = 1$ and $\liminf x_n = -1$

(ii) Since $\limsup x_n \neq \liminf x_n$, we conclude that (x_n) diverges.

Question 4

(a) Consider
$$\left| \frac{x^2 - 3x + 1}{2x - 1} + 1 \right|$$
.

$$\left| \frac{x^2 - 3x + 1}{2x - 1} + 1 \right| = \left| \frac{x^2 - x}{2x - 1} \right|$$

$$= |x - 1| \left| \frac{x}{2x - 1} \right|$$

$$= |x - 1| \left| \frac{1}{2} + \frac{1}{2(2x - 1)} \right|$$

If $|x - 1| < \frac{1}{4}$, then

$$-\frac{1}{4} < x - 1 < \frac{1}{4}$$

$$\Rightarrow -\frac{1}{2} < 2x - 2 < \frac{1}{2}$$

$$\Rightarrow \frac{1}{2} < 2x - 1 < \frac{3}{2}$$

$$\Rightarrow \frac{2}{3} < \frac{1}{2x - 1} < 2$$

$$\Rightarrow \frac{4}{3} < \frac{1}{2} + \frac{1}{2(2x - 1)} < \frac{3}{2}$$

Now, let $\varepsilon > 0$ be given and let $\delta = \min\left(\frac{2\varepsilon}{3}, \frac{1}{4}\right)$. If $0 < |x - 1| < \delta$,

$$\Rightarrow \left| \frac{x^2 - 3x + 1}{2x - 1} + 1 \right| < \frac{3}{2} |x - 1| < \frac{3}{2} \frac{2\varepsilon}{3} = \varepsilon$$

Therefore, we conclude that $\lim_{x\to 1} \frac{x^2-3x+1}{2x-1} = -1$.

(b) (i) Let
$$f(x) = x \cos\left(\frac{x}{x-1}\right)$$
. Consider $x_n = 1 + \frac{1}{2n\pi-1}$.

$$\Rightarrow x_n \to 1 \quad \text{and} \quad \frac{x_n}{x_n - 1} = 2n\pi$$

$$\Rightarrow \cos\left(\frac{x_n}{x_n - 1}\right) = 1$$

$$\Rightarrow \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n = 1$$

Now, suppose $y_n = 1 + \frac{1}{(2n-1)\frac{\pi}{2}-1}$.

$$\Rightarrow y_n \to 1 \quad \text{and} \quad \frac{y_n}{y_n - 1} = (2n - 1)\frac{\pi}{2}$$
$$\Rightarrow \cos\left(\frac{y_n}{y_n - 1}\right) = 0$$
$$\Rightarrow \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} 0 = 0$$

Therefore, by the divergent criterion, we conclude that $\lim_{x\to 1} x \cos\left(\frac{x}{x-1}\right)$ does not exist.

(ii)
$$-(x-1)^2 \le (x-1)^2 \cos\left(\frac{x}{x-1}\right) \le (x-1)^2$$

Since $\lim_{x\to 1} -(x-1)^2 = 0 = \lim_{x\to 1} (x-1)^2$, by the squeeze theorem, we conclude that

$$\lim_{x \to 1} (x - 1)^2 \cos\left(\frac{x}{x - 1}\right) = 0$$

Question 5

(a) Let $c \in \mathbb{R}$, (x_n) be a rational sequence such that $x_n \to c$, (y_n) be an irrational sequence such that $y_n \to c$.

$$\Rightarrow \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n - 1 = c - 1 \quad \text{and}$$
$$\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} 2y_n - 3 = 2c - 3$$

If $c \neq 2$, then $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(y_n)$. Hence $\lim_{x\to c} f(x)$ does not exist by the divergent criterion and is not continuous on $\mathbb{R}-\{2\}$. Now, let $\varepsilon > 0$ be given and let $\delta = \frac{\varepsilon}{2}$. If $0 < |x-2| < \delta$,

$$\Rightarrow |f(x) - f(2)| = \begin{cases} |(x - 1) - 1| & \text{if } x \text{ is rational} \\ |(2x - 3) - 1| & \text{if } x \text{ is irrational} \end{cases}$$
$$= \begin{cases} |x - 2| & \text{if } x \text{ is rational} \\ 2|x - 2| & \text{if } x \text{ is irrational} \end{cases}$$
$$< \varepsilon$$

Hence, $\lim_{x\to 2} f(x) = f(2)$ and we conclude that f is continuous only at 2.

(b) Since M - g(a) > 0, $\exists \delta > 0$ such that

$$|g(x) - g(a)| < M - g(a) \qquad \forall x \in (a - \delta, a + \delta)$$

$$\Rightarrow g(x) < (M - g(a)) + g(a) = M \qquad \forall x \in (a - \delta, a + \delta)$$

Question 6

(a) Let $x_n = n^{1/n} - 1$.

$$\Rightarrow n = (1+x_n)^n \ge 1 + \frac{n(n-1)}{2}x_n^2$$
 by binomial theorem $\Rightarrow x_n^2 \le \frac{2}{n}$ $\Rightarrow |x_n| \le \sqrt{\frac{2}{n}}$

Since $\lim_{n\to\infty} \sqrt{\frac{2}{n}} = 0$,

$$\Rightarrow \lim_{n \to \infty} |x_n| = 0$$

by squeeze theorem. Therefore, we conclude that $\lim_{n\to\infty} x_n = 0$, that is

$$\lim_{n \to \infty} n^{1/n} = 1$$

(b) Firstly, observe that $\{x_n\}$ is increasing. Now, suppose that $\{x_n\}$ is bounded above.

$$\Rightarrow \exists M \in \mathbb{R} \quad \text{s.t.} \quad x_n \leq M \ \forall n \in \mathbb{N}$$
$$\Rightarrow \frac{1}{x_n} \geq \frac{1}{M} \ \forall n \in \mathbb{N}$$

Furthermore, by Monotone Convergence Theorem, $\{x_n\}$ converges. For each $k \in \mathbb{N}$, we have:

$$x_{k+1} - x_k = \frac{1}{kx_k}$$

$$x_k - x_{k-1} = \frac{1}{(k-1)x_{k-1}}$$

$$\vdots$$

$$x_2 - x_1 = x_2 - 1 = \frac{1}{x_1}$$

Summing the equations, we get:

$$x_{k+1} - 1 = \sum_{i=1}^{k} \frac{1}{ix_i}$$

$$\Rightarrow x_{k+1} = 1 + \sum_{i=1}^{k} \frac{1}{ix_i} \ge \frac{1}{M} \sum_{i=1}^{k} \frac{1}{i}$$

Since $\sum_{i=1}^{\infty} \frac{1}{i}$ diverges, we deduce that $\{x_{k+1}\}$ is unbounded above, contradicting our assumption. We conclude that $\{x_k\}$ diverges.

Question 7

(a) Observe that h is increasing. Let $x \in (0,1)$ and let $\varepsilon > 0$ be given. Since g is continuous on [0,1], it is continuous on (0,1) too. That is,

$$\exists \delta > 0 \text{ s.t. } \forall y \in (x - \delta, x + \delta), |g(y) - g(x)| < \frac{\varepsilon}{2}$$

Consider the following cases on $y \in (x - \delta, x + \delta)$.

Case 1
$$y \in [x, x + \delta) \cap (0, 1)$$

Consequently,

$$h(x) \le h(y) \le h(y) + \varepsilon$$

Now, we are required to prove $h(y) - \varepsilon < h(x)$. Let $t \in [0, y]$. Then

$$\forall t \in [0, x], \quad g(t) - \varepsilon < g(t) \le h(x) \quad \text{ and }$$

$$\forall t \in [x, y], \quad g(t) - \varepsilon < g(x) - \frac{\varepsilon}{2} < g(x) \le h(x)$$

$$\Rightarrow \forall t \in [0, y], g(t) - \varepsilon < h(x)$$

$$\Rightarrow h(y) - \varepsilon = \sup\{g(t) - \varepsilon \mid 0 \le t \le y\} \le h(x)$$

$$|h(x) - h(y)| \le \varepsilon$$

Case 2 $y \in (x - \delta, x]$

Consequently,

$$h(y) < h(x) < h(x) + \varepsilon$$

Now, we are required to prove $h(x) - \varepsilon < h(y)$. Let $s \in [0, x]$. Then

$$\forall s \in [0, y], \quad g(s) - \varepsilon < g(s) \le h(y)$$
 and $\forall s \in [y, x], \quad g(s) - \varepsilon < g(x) - \frac{\varepsilon}{2} < g(y) \le h(y)$

$$\Rightarrow \forall s \in [0, x], \ g(s) - \varepsilon < h(y)$$

$$\Rightarrow h(x) - \varepsilon = \sup\{g(s) - \varepsilon \mid 0 \le s \le x\} \le h(y)$$

$$\therefore |h(x) - h(y)| \le \varepsilon$$

 $\Rightarrow \forall y \in (x - \delta, x + \delta), |h(x) - h(y)| \leq \varepsilon.$ Therefore, we conclude that h is continuous on (0, 1).

(b) Let $c_0 \in \mathbb{R}$. Let $P(n): c_n = 1 + \frac{c_0 - 1}{2^n}$ and $f(c_n) = f(c_{n-1})$ where $n \in \mathbb{N}$. Consider P(1). By definition, $\exists c_1 \in \mathbb{R}$ such that $c_1 = \frac{1 + c_0}{2} = 1 + \frac{c_0 - 1}{2}$ and $f(c_1) = f(c_0)$. Thus P(1) is true. Suppose that P(k) is true for some $k \in \mathbb{N}$. Consider P(k+1). By definition, $\exists c_{k+1} \in \mathbb{R}$ such that $c_{k+1} = \frac{1 + c_k}{2}$ and $f(c_{k+1}) = f(c_k)$.

$$\Rightarrow c_{k+1} = \frac{1+c_k}{2}$$

$$= \frac{1}{2} + \frac{1}{2} \left(1 + \frac{c_0 - 1}{2^k} \right) \quad \text{by induction hypothesis}$$

$$= 1 + \frac{c_0 - 1}{2^{k+1}}$$

 $\therefore P(k)$ is true $\Rightarrow P(k+1)$ is true. By induction, P(n) is true $\forall n \in \mathbb{R}$.

$$\Rightarrow c_n \to 1 \quad \text{and} \quad f(c_0) = f(c_1) = f(c_2) = \dots = f(c_n)$$
$$\Rightarrow f(c_0) = \lim_{n \to \infty} f(c_0) = \lim_{n \to \infty} f(c_n) = f\left(\lim_{n \to \infty} c_n\right) = f(1)$$

Therefore, we conclude that f is a constant function on \mathbb{R} .

Question 8

(a) Let $n \in \mathbb{N}$. Define $g : \left[0, 1 - \frac{1}{n}\right] \to \mathbb{R}$ by $g(x) = f(x) - f\left(x + \frac{1}{n}\right)$. Since f is continuous on $\left[0, 1 - \frac{1}{n}\right]$

Suppose $\forall t \in [0, 1 - \frac{1}{n}], g(t) \neq 0$. If $\exists t_1, t_2 \in [0, 1 - \frac{1}{n}]$ such that $g(t_1) > 0, g(t_2) < 0$. Then $\exists t_0 \in [0, 1 - \frac{1}{n}]$ such that $g(t_0) = 0$ by Intermediate Value Theorem. This will contradict $g(t) \neq 0 \forall t \in [0, 1 - \frac{1}{n}]$, thus

either
$$g(t) > 0$$
 $\forall t \in \left[0, 1 - \frac{1}{n}\right]$
or $g(t) < 0$ $\forall t \in \left[0, 1 - \frac{1}{n}\right]$

WLOG, suppose that $g(t) > 0 \ \forall t \in \left[0, 1 - \frac{1}{n}\right]$.

$$\Rightarrow g(0), g\left(\frac{1}{n}\right), \dots, g\left(1 - \frac{1}{n}\right) > 0$$
$$\Rightarrow f(0) > f\left(\frac{1}{n}\right) > f\left(\frac{2}{n}\right) > \dots > f(1)$$

Contradicting the definition of f. Thus $\exists x_n \in \left[0, 1 - \frac{1}{n}\right]$ such that $g(x_n) = 0$. That is

$$f(x_n) = f\left(x_n + \frac{1}{n}\right)$$

(b) Let $\varepsilon > 0$ be given. Since $\lim_{x \to \infty} g(x) = 1$,

$$\Rightarrow \exists M > 0 \text{ s.t. } x > M \Rightarrow |g(x) - 1| < \frac{\varepsilon}{2}$$

Since g is continuous at x = M,

$$\Rightarrow \exists \delta_1 > 0 \text{ s.t. } |x - M| < \delta_1 \Rightarrow |g(x) - g(M)| < \frac{\varepsilon}{2}$$

Now, f is continuous on [0, M] implies f is uniformly continuous on [0, M].

$$\Rightarrow \exists \delta_2 > 0 \text{ s.t. } \forall y_1, y_2 \in [0, M], |y_1 - y_2| < \delta_2 \Rightarrow |g(y_1) - g(y_2)| < \varepsilon$$

Let $\delta = \min(\delta_1, \delta_2)$ and let $u, v \in [0, \infty)$ with $|u - v| < \delta$. Consider the following cases on u and v:

Case 1 $u, v \in [M, \infty)$

$$\Rightarrow |g(u) - g(v)| \le |g(u) - 1| + |g(v) - 1| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Case 2 $u, v \in [0, M]$

$$\Rightarrow |g(u) - g(v)| < \varepsilon$$

Case 3 $u \in [0, M], v \in (M, \infty)$

$$\Rightarrow M \in [u, v]$$

Since $|u - v| < \delta$,

$$\Rightarrow |u - M| < \delta \le \delta_2 \quad \text{and} \quad |v - M| < \delta \le \delta_2$$
$$\Rightarrow |g(u) - g(v)| \le |g(u) - g(M)| + |g(v) - g(M)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Case 4 $v \in [0, M], u \in (M, \infty)$

Similar to Case 3.

 $\Rightarrow \forall u, v \in [0, \infty), |g(u) - g(v)| < \varepsilon.$ That is, g is uniformly continuous on $[0, \infty)$.

Page: 7 of 7