Escola de Engenharia Elétrica, Mecânica e de Computação Universidade Federal de Goiás

Laboratório de Microprocessadores e Microcontroladores

Experimento 4:

Motor de Passo e Motor de Corrente Contínua

Alunos:	Matrícula:	
	·	

Prof. Dr. José Wilson Lima Nerys

Goiânia, 1° semestre de 2019

SUMÁRIO

1	Mot	or de Passo	3
		Conceitos Básicos	
		Acionamento do Motor de Passo	
2	Mot	or de Corrente Contínua	4
	2.3	Conceitos Básicos	4
	2.4	Variação de Velocidade	5
	2.5	Medição Digital de Velocidade	6
3	Ativ	idades do Experimento 4	8
	3.1	Motor de passo	8
	3.2	Motor de Corrente Contínua	1

1 Motor de Passo

1.1 Conceitos Básicos

O motor de passo consiste de um estator contendo bobinas que são acionadas usando corrente contínua e um rotor de ímã permanente, que gira a cada mudança das bobinas acionadas.

A Fig. 1 ilustra, de maneira simplificada, o funcionamento de um motor de passo. Ela mostra 4 bobinas concentradas; na prática, as bobinas são distribuídas ao longo do estator. O passo do motor, que corresponde ao ângulo de rotação a cada mudança das bobinas acionadas depende dessa distribuição das bobinas ao longo do estator. Um ângulo de passo comum é 1.8°, o que significa que são necessários 200 passos para que o motor complete uma volta de rotação.

Tabela 1: valores para acionamento do motor de passo - passo completo

Passo	\mathbf{P}_3	\mathbf{P}_2	\mathbf{P}_{1}	$\mathbf{P_0}$	HEX
1	0	0	0	1	01
2	0	0	1	0	02
3	0	1	0	0	04
4	1	0	0	0	08
5	0	0	0	1	01

Fig. 1: Esquema do motor de passo e tabela de acionamento

A Tabela 1 mostra um exemplo de valores que devem ser enviados aos pinos de acionamento de cada bobina. Nesse exemplo as bobinas são acionadas individualmente, mas elas também podem acionadas de duas em duas.

1.2 Acionamento do Motor de Passo

O esquema da Fig. 1 é o circuito típico utilizado no acionamento de motor de passo, entretanto, há pastilhas integradas que são também utilizadas para essa função. Um circuito integrado que pode ser usado para esse fim é o ULN2803A, mostrado na Fig. 2. Trata-se de um conjunto de transistores do tipo darlington, com capacidade de corrente de 500 mA. Cada uma das 4 bobinas do motor é ligada a uma das saídas (OUT) e ao terminal comum (COM), que é conectado à fonte de alimentação do motor de passo, que não precisa, necessariamente, ser a mesma do microcontrolador.

Fig. 2: Driver para motor de passo - ULN2803A

2 Motor de Corrente Contínua

2.3 Conceitos Básicos

A Fig. 3 mostra o circuito básico de um motor de corrente contínua, onde os enrolamentos de campo e de armadura são alimentados de forma independente. As expressões básicas também são dadas.

Fig. 3: Motor de Corrente Contínua

O motor de corrente contínua consiste de um enrolamento de campo estacionário e um enrolamento de armadura rotativo. O enrolamento de campo pode ser acionado por corrente contínua, ou ainda consistir de um estator de ímã permanente, não sendo necessário alimentação. A armadura é acionada com corrente contínua através de escovas e um anel comutador.

A Fig. 4 mostra um circuito para acionamento do motor de corrente em um único sentido de rotação. Um pulso alto na base do transistor BC548 leva o transistor BD139 à saturação, o que aciona o motor. Um pulso baixo leva esse transistor ao corte, quando então a corrente do motor decresce circulando pelo diodo 1N4001.

Fig. 4: Driver para acionamento do motor CC num único sentido

A Fig. 5 mostra uma configuração denominada de Ponte H, que permite o acionamento em ambos os sentidos de rotação. As chaves A, B, C e D são normalmente transistores do tipo MOSFET ou IGBT. Para o acionamento em um dos sentidos as chaves A e B são acionadas; para o acionamento no sentido contrário as chaves C e D são acionadas. A lógica de acionamento dessas chaves não deve permitir o acionamento simultâneo das chaves A e D e das chaves C e B, o que resultaria num curto-circuito da fonte de alimentação. O driver de acionamento em ponte H usado no laboratório (**L298N** – Diagrama na Fig. 6) permite o acionamento de um motor com corrente de até 1,5 A através de dois pinos de comando e segue a lógica da Tabela 2.

É importante observar que os diodos são fundamentais para o retorno da corrente, quando qualquer uma das chaves é desligada. No momento de desligamento das chaves, há energia armazenada nas indutâncias do motor; sem os diodos as chaves poderiam ser danificadas por sobretensão.

Fig.5: Driver para acionamento do motor CC em ambos os sentidos

Tabela 2: Pinos de controle da ponte H

Tuoc	rubeiu 2. r mos de controle du ponte rr			
In 1	In 2	Efeito		
0	0	Motor parado		
0	1	Gira no sentido direto		
1	0	Gira no sentido reverso		
1	1	Motor parado		

Figura 6: Diagrama de blocos parcial do L298N

2.4 Variação de Velocidade

Uma forma de variar a velocidade do motor CC é variando a tensão de armadura. Uma forma de variar a tensão de armadura é usar modulação PWM, que consiste na definição de um período de acionamento fixo e, dentro desse período, estabelecer um período ligado e outro desligado. A Fig. 7 ilustra esse processo. O motor usado é de 12 V e, portanto, a tensão de alimentação deve variar de zero a 12 V para obter-se variação de velocidade de zero até o valor máximo. Isso é feito chaveando-se um transistor a uma frequência alta, por exemplo, 5 kHz, que corresponde a um período de 0,2 ms ou 200 µs.

Fig. 7: Geração do sinal PWM para controle do motor de contrente contínua

Pode-se preferir definir o período como 255 μ s, por exemplo, o que corresponde a uma frequência de chaveamento de 3,92 kHz. A variação de velocidade pode então ser obtida variando-se o período ligado (T_{ON}) de 0 a 255 μ s, ao mesmo tempo em que o período desligado (T_{OFF}) deve variar de 255 μ s a 0, para manter constante o período total (T). Essa contagem do período ligado e desligado pode ser feita através de um dos temporizadores do 8051, operando no modo 2 (modo de recarga automática).

O microcontrolador 8051 possui dois temporizadores/contadores, que podem operar em 4 modos diferentes: modo de 13 bits (modo 0), modo de 16 bits (modo 1), modo de 8 bits com recarga automática (modo 2) e 2 modos independentes de 8 bits (modo 3). O modo de recarga automática (modo 2) pode ser usado para gerar o sinal PWM para o controle do motor CC. Nesse modo a contagem é feita através de TL (a primeira contagem começa no valor inicial de TL) e o valor de TH é usado para definir o início da próxima contagem. Se o temporizador começa sempre no valor dado em TL e vai até FFh (255), e sendo $T_{ON} = T - T_{OFF}$, e sendo ainda escolhido T = 255, o procedimento usado no programa é:

- 1. Para o período ligado faz-se TL = T_{OFF}; dessa forma, o temporizador conta de T_{OFF} até 255, o que corresponde ao período ligado;
- 2. Para o período desligado faz-se $TL = T_{ON}$; dessa forma, o temporizador conta de T_{ON} até 255, o que corresponde ao período desligado.
- 3. No início do programa desliga-se o motor (CLR P2.2 e CLR P2.3) e faz-se $TL = T_{ON} = 09H$, o que faz com que o temporizador, na primeira contagem já conte o período desligado, que começa em T_{ON} e vai até 255.
- 4. Após fazer TL = T_{ON}, encontra-se o complemento de T_{ON} (CPL A), ou seja, T_{OFF}, e carrega-se em TH. Dessa forma, a próxima contagem começará em T_{OFF}, o que significa que o temporizador contará o período ligado.
- 5. Cada vez que a subrotina de controle é executada define-se o próximo valor de recarga, TH.
- 6. Para aumentar a velocidade aumenta-se o período ligado Ton. Para diminuir aumenta-se Toff.

2.5 Medição Digital de Velocidade

Estão disponíveis no laboratório dois tipos de fotosensores: um com nível lógico normalmente alto e outro com nível lógico normalmente baixo. Os dois modelos são mostrados na Fig. 6. O primeiro tipo foi montado com um circuito auxiliar modulador que diminui a influência da luz ambiente sobre o fotosensor. Esse circuito emite uma luz de cerca de 1 kHz, que ao ser refletida satura o fototransistor. É utilizado o decodificador de frequência **NE567**. O segundo modelo não usa circuito modulador.

(b)

Fig. 6: Sensor de presença (a) com circuito auxiliar modulador e (b) sem circuito modulador

A diferença básica entre os sensores usados, além do circuito de modulação, está no encapsulamento. Em um deles (Fig. 7a) o encapsulamento faz com que o fototransistor fique normalmente cortado (sem presença de luz); ele entra em saturação quando a luz do **LED** é refletida em um obstáculo. Assim, o sinal de saída V_o passa de nível lógico alto para baixo, na presença de um obstáculo

No outro tipo de encapsulamento (Fig. 7b) a luz do **LED** incide diretamente sobre o fototransistor, fazendo com que ele fique normalmente saturado, ou seja, o sinal de saída V_o fica inicialmente em nível lógico baixo; na presença de um obstáculo entre os dois componentes o fototransistor é levado ao corte e o sinal de saída vai para o nível lógico alto.

Fig, 7: (a) fototransistor normalmente cortado e (b) fototransistor normalmente saturado

Pode-se fazer uso do fotosensor da Fig. 7(b) para medir a velocidade de um motor de forma digital, associando-se ao fotosensor uma roda com **60 furos** (Fig. 8). O sinal resultante do fotosensor, com a rotação da roda de 60 furos, é uma onda quadrada (Fig. 9). Esse sinal pode ser conectado a um dos dois pinos de interrupção. A interrupção deve ser configurada para atuar por transição (na passagem de nível lógico 1 para 0). A cada interrupção o registrador com o número atualizado de pulsos é incrementado em 1.

Fig. 8: conjunto fotosensor/roda de 60 furos

Fig. 9: Sinal de saída do sensor de velocidade

A medição de velocidade é feita estabelecendo-se um tempo de amostragem, ou seja, um tempo fixo em que o registro de pulsos é lido. Mostra-se a seguir que o fato de ter 60 furos na roda faz com que o número de pulsos registrados por segundo (frequência) seja correspondente à velocidade em rotações por minuto (rpm).

1 rotação/segundo → 60 furos/segundo → 60 rpm = 60 furos/s → X rpm = X furos/s

1 rotação/segundo → 60 rotações/minuto

$$\omega$$
 (rpm) $\equiv f(Hz)$

Um tempo de amostragem menor que 1 segundo pode ser adotado, e é aconselhável em muitas aplicações. Sendo assim, deve-se fazer a devida transformação de número de furos lidos no tempo de amostragem para rotações por minuto.

3 Atividades do Experimento 4

As atividades deste experimento estão estruturadas de modo a serem realizadas simulações seguidas de uso do kit didático real.

3.1 Motor de passo

3.1.1 Simulação e Operação no Kit Didático

No código da Tabela 3 o pino P3.3 é usado para ligar/desligar o motor de passo e o pino P3.2 é usado para inverter o sentido de rotação do motor.

Tabela 3: Inversão do sentido de rotação de motor de passo

Linha	Rótulo	Instrução	Linha	Rótulo	Instrução	Linha	Rótulo	Instrução
1		ORG 00H	12	HORA:	MOV P2,A	23	ATRASO:	MOV R0, #200
2		LJMP INICIO	13		LCALL ATRASO	24	V2:	MOV R1, #200
3			14		RL A	25		DJNZ R1,\$
4		ORG 30H	15		SJMP V1	26		DJNZ R0, V2
5	INICIO:	MOV SP,#2FH	16			27		RET
6		MOV A,#11H	17	ANTI-H:	MOV P2,A	28		
7			18		LCALL ATRASO	29		END
8	V0:	JB P3.3,\$	19		RR A	30		
9		JNB P3.3,\$	20		JB P3.3, V1	31		
10			21		JNB P3.3,\$	32		
11	V1:	JB P3.2,ANTI_H	22		SJMP V0	33		

Simule no simulador digital o código da Tabela 3 e, em seguida, grave o código em um microcontrolador e verifique seu funcionamento no kit real.

Questão 1: Explique a finalidade das duas instruções, em sequência, nas linhas 8 e 9 e nas linhas 20 e 21.

Questão 2: Qual é a finalidade da instrução da linha 11?

Questão 3: Como o motor de passo é desligado no código apresentado?

3.1.2 Operação com Interrupção

O código da Tabela 4 é parcial e deve ser executado, inicialmente, no kit real, de modo a permitir a identificação do ângulo que corresponde a cada passo do motor. Assim, o código permite acionar o motor por uma rotação correspondente a 100 passos, a cada chamada da interrupção externa zero.

Tabela 4: Acionamento do motor 100 passos no sentido anti-horário.

Ord	Rótulo	Instrução
1		ORG 00H
2		LJMP INICIO
3		
4		ORG 03H
5		LJMP ANTI_HORA
6		
7		ORG 30H
8	INICIO:	MOV SP,#2FH
9		MOV IE,#81H
10		MOV TCON,#01H
11		MOV A,#11H
12		
13		SJMP \$
14		

Ord	Rótulo	Instrução
15	ANTI_HORA:	MOV R7,#100
16	V1:	MOV P2,A
17		LCALL ATRASO
18		RL A
19		DJNZ R7,V1
20		CLR IE0
21		RETI
22		
23	ATRASO:	MOV R0, #200
24	V3:	MOV R1, #200
25		DJNZ R1,\$
26		DJNZ R0, V3
27		RET
28	_	END

Ângulo de rotação em 100 passos	Ângulo de cada passo

Use o ângulo do motor de passo, calculado na atividade anterior, para completar a Tabela 5 (linha 15) de forma que o motor de passo gire 1 volta + 90° no sentido horário. Execute o código no simulador digital e no kit real.

Tabela 5: Rotação do motor de passo

Ord	Rótulo	Instrução
1		ORG 00H
2		LJMP INICIO
3		
4		ORG 13H
5		LJMP HORARIO
6		
7		ORG 30H
8	INICIO:	MOV SP,#2FH
9		MOV IE,#84H
10		MOV TCON,#04H
11		MOV A,#11H
12		
13		SJMP \$
14		

Ord	Rótulo	Instrução
15	HORARIO:	MOV R7,#
16	V1:	MOV P2,A
17		LCALL ATRASO
18		RR A
19		DJNZ R7,V1
20		CLR IE1
21		RETI
22		
23	ATRASO:	MOV R0, #200
24	V3:	MOV R1, #200
25		DJNZ R1, \$
26		DJNZ R0, V3
27		RET
28		END

Questão 4: Qual é a finalidade da instrução CLR IE1 na linha 20?

3.1.3 Operação com Temporizador

O código dado na Tabela 6 aciona o motor de passo com o temporizador zero no modo 1. O temporizador é usado para contar 1 s. Inicialmente o programa entra em um laço infinito, aguardando o pino **P3.2** mudar do nível alto para o nível baixo. Após a chave em P3.2 ser pressionada, o motor gira em um sentido por 10 s; para por 5 s; gira no sentido contrário por 10 s e volta para o laço de espera.

Tabela 5: acionamento do motor de passo com temporização

	Tabela 5: acionamento do motor de passo com ter			
Ord	Rótulo	Mnemônicos		
1		ORG 00H		
2		LJMP INICIO		
3				
4		ORG 0BH		
5		LJMP TEMPO_R7s		
6				
7		ORG 30H		
8	INICIO:	MOV SP,#2FH		
9		MOV IE,#82H		
10		MOV TMOD,#01H		
11		MOV TH0,#HIGH(19455)		
12		MOV TL0,#LOW(19455)		
13		MOV R0,#20		
14				
15	LIGA:	JB P3.2,\$		
16				
17		CLR TR0		
18		CLR F0		
19		MOV R7,#10		
20		SETB TR0		
21		MOV A,#11H		
22				
23	DIRETO:	MOV P2,A		
24	Motor no	LCALL ATRASO		
25	sentido direto	RL A		
26	(10 s)	JNB F0,DIRETO		
27				
28				
29				

Ord	Rótulo	Mnemônicos
30		
28		CLR TR0
29	3.6	CLR F0
30	Motor parado	MOV R7,#5
31	por 5 s	SETB TR0
32		JNB F0,\$
33		,
34		CLR TR0
35		CLR F0
36		MOV R7,#10
37		SETB TR0
38		
39	REVERSO:	MOV P2,A
40	Motor no	LCALL ATRASO
41	sentido reverso	RR A
42	(10 s)	JNB F0,REVERSO
43		
44		SJMP LIGA
45		
46	ATRASO:	MOV R6,#150
47	V1:	MOV R5,#250
48		DJNZ R5,\$
49		DJNZ R6,V1
50		RET
51		
52	TEMPO_R7s:	DJNZ R0,SAI
53		MOV R0,#20
54		DJNZ R7,SAI
55		SETB F0
56	SAI:	MOV TH0,#HIGH(19455)
57		MOV TL0,#LOW(19455)
58		RETI
59		
60		END

Questão 5: Explique como funciona a subrotina TEMPO_R7s e a função do registrador R7 nessa subrotina.

Questão 6: Qual é a função da flag F0 nesse programa?

Questão 7: Por que a flag F0 é zerada nas linhas 18, 29 e 35?

3.2 Motor de Corrente Contínua

O código da Tabela 6 deve ser executado apenas no kit real. Trata-se de um código para leitura da velocidade de um motor de corrente contínua. O programa faz a leitura digital da velocidade de um motor, em rotações por minuto, e mostra o resultado em um display LCD. No método utilizado o timer 0 é usado como gerador do tempo de amostragem, de 1 s, para leitura do registrador que guarda a velocidade.

Tabela 6: Programa que faz a leitura digital de velocidade de um motor de corrente contínua

				de velocidade de um motor de corrente contínua			
Linha	Label	Instruções		inha	Label	3	
1		LCD EQU P0		69	INICIA_LCD:	MOV A,#38H	
2		EN BIT P3.7		70		LCALL INSTR_WR	
3		RW BIT P3.6		71		MOV A,#38H	
4		RS BIT P3.5		72		LCALL INSTR_WR	
5		OFFSET EQU 14h		73		MOV A,#0EH	
6		RPM_L EQU 10h		74		LCALL INSTR_WR	
7		RPM_H EQU 11H		75		MOV A,#06H	
8				76		LCALL INSTR_WR	
9		ORG 00H		77		MOV A,#01H	
10		LJMP INICIO		78		LCALL INSTR_WR	
11				79		RET	
12		ORG 0BH		80			
13		LJMP AMOSTRA		81	TEXTO_WR:	SETB EN	
14				82		CLR RW	
15		ORG 13H		83		SETB RS	
16		LJMP SPEED		84		MOV LCD,A	
17			-	85		CLR EN	
18		ORG 30H	-	86		LCALL ATRASO_LCD	
19	INICIO:	MOV SP,#2FH		87		RET	
20		MOV IE,#10000110B		88			
21		MOV TCON,#04H		89	LINHA1:	MOV A,OFFSET	
22		MOV IP,#00000100B		90	211 (111 111	MOVC A,@A+DPTR	
23		MOV TMOD,#01H		91		CJNE A,#0FFH,ENVIA	
24		MOV TH0,#HIGH(19455)		92		MOV Offset,#00	
25		MOV TL0,#LOW(19455)	-	93		RET	
26		MOV R0,#20		94			
27		LCALL ATRASO_LCD	1	95	ENVIA:	LCALL TEXTO_WR	
28		LCALL INICIA_LCD		96		INC OFFSET	
29		LCALL ATRASO_LCD	1	97		SJMP LINHA1	
30		MOV DPTR,#MSG1	1	98			
31		LCALL LINHA1		99	MOSTRA:	MOV A,#198	
32		LCALL ATRASO_LCD		00		LCALL INSTR_WR	
33		SETB TR0		01		LCALL ATRASO_LCD	
34		SJMP \$	-	02		MOV A,#0f0h	
35				103		ANL A,RPM_H	
36	AMOSTRA:	MOV TH0,#HIGH(19455)	-	04		SWAP A	
37		MOV TL0,#LOW(19455)	-	105		ORL A,#30H	
38		DJNZ R0,SAI2		06		LCALL TEXTO_WR	
39		CLR EA		07		LCALL ATRASO_LCD	
40		LCALL MOSTRA		08			
41		MOV R0,#20		09		MOV A,#0fh	
42		MOV RPM L,#0		10		ANL A,RPM_H	
43		MOV RPM_H,#0		11		ORL A,#30H	
44	SAI2:	SETB EA		12		LCALL TEXTO_WR	
45	5/112.	RETI		113		LCALL ATRASO LCD	
46				14		Zeribb iiii ibo_beb	
47	SPEED:	MOV A,RPM_L		15		MOV A,#0f0h	
48	DI LLD.	ADD A,#1		16		ANL A,RPM_L	
49		DA A		17		SWAP A	
50		MOV RPM_L,A		18		ORL A,#30H	
51		JNC SAI		19		LCALL TEXTO_WR	
52		511C 5/11		20		LCALL ATRASO LCD	
53		MOV A,RPM_H	-	21		LCALL ATRASO_LCD	
54		ADD A,#1	-	121		MOV A #0fb	
			-			MOV A,#0fh	
55		DA A	-	23		ANL A,RPM_L	
56		MOV RPM_H,A	J []	24		ORL A,#30H	

57	SAI:	NOP
58		RETI
59		
60	INSTR_WR:	SETB EN
61		CLR RW
62		CLR RS
63		MOV LCD,A
64		LCALL ATRASO_LCD
65		CLR EN
66		RET
67		
68		

125		LCALL TEXTO_WR
126		LCALL ATRASO_LCD
127		RET
128		
129	ATRASO_LCD:	MOV R4,#10
130	V6:	MOV R5,#80
131		DJNZ R5,\$
132		DJNZ R4,V6
133		RET
134		
135	MSG1:	DB 'Velocidade (rpm)', 0ffh
136		END

Questão 8: Alimente o motor de corrente contínua com os três valores indicados na tabela e anote a velocidade registrada no LCD e a frequência do sinal no osciloscópio.

	Caso 1	Caso 2	Caso 3
Tensão no motor CC (V)	3,3 V	5,0 V	12,0 V
Frequência do sinal (Hz)			
Leitura no LCD (rpm)			

Questão 9: Explique o funcionamento da subrotina "AMOSTRA", da Linha 36 à Linha 45.

Questão 10: Explique o funcionamento da subrotina "SPEED", da Linha 47 à Linha 58.