THE UNIVERSAL MODEL OF COMPUTATION BASED ON FUNCTIONS

Background

 λ -Calculus is an incredibly powerful mathematical model of computation; a formal system of logic capable of reducing computation down to just function definition and application. Developed by Alonzo Church in the 1930s, λ -Calculus is often described as the 'basis of almost all functional programming', playing a huge role in computer science as we know it today.

Church Encoding

Identity and Successor functions can be used to encode Church Numerals, as below.

$$I = \lambda x.x$$
 $S = \lambda n.\lambda f.\lambda x.f(n f x)$

$0 = \lambda s. \lambda z. z$	$3 = \lambda s. \lambda z. s (s (s z))$
$1 = \lambda s. \lambda z. s z$	$4 = \lambda s.\lambda z.s$ (s (s (s z)
$2 = \lambda s. \lambda z. s (s z)$	$5 = \lambda s.\lambda z.s$ (s (s (s z))

E.g. β-Reduction: Successor of 0

S0 = $S(\lambda f. \lambda x. x)$

= λn . λy . λx . $y(nyx)(\lambda f$. λx . x)

= λy . λx . $y((\lambda f. \lambda x. x)yx)$

= λy . λx . $y((\lambda x. x)x)$

 $= \lambda y. \lambda x. y(x)$

← α-equivalent to 1

Boolean Algebra

Mimicking the logic of conditional statements, we define the following Church Booleans.

true = $\lambda a.\lambda b.a$

← Chooses 1st argument

false = $\lambda a.\lambda b.b$

← Chooses 2nd argument

Logic Gates

not = $\lambda p.\mathbf{p}$ false true and = $\lambda p.\lambda q.\mathbf{p} \neq \mathbf{p}$ or = $\lambda p.\lambda q.\mathbf{p} \neq \mathbf{q}$ xor = $\lambda p.\lambda q.\mathbf{p} \pmod{q}$ Result: if **p** is true If **p** is false

Additional Useful Functions

- **double** = $\lambda n.\lambda f.\lambda x.n(\lambda x.f(f x)) x$
- add = $\lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)$
- **multiply** = λ m. λ n. λ f. λ x.m (n f) x
- **iszero** = λ n.n (λ y.false) true

Finding predecessors & performing subtraction:

- **pred** = λ n. λ f. λ x.n (λ g.(λ h.h (g f))) (λ u.x) (λ u.u)
- minus = λa. λb.b pred a

Predicates

Minus, the function above, returns no –ve result. Hence, less than or equal, greater than or equal, and equal can be defined as follows.

- leq = λm. λn.(iszero (minus m n))
- eq = λ m. λ n.(and (leq m n) (leq n m))
- $geq = \lambda m. \lambda n. (or (eq m n) (not(leq m n)))$

The Y-Combinator

Recursion requires a method of infinitely looping until a base case is reached. Haskell Curry discovered the 'Y-combinator', which uses self-application to encode recursive functions in λ -Calculus.

$$Y = \lambda f.(\lambda x.f(x x)) (\lambda x.f(x x))$$

E.g. Recursion in Euclid's Algorithm

Recall that Euclid's algorithm calculates the greatest common divisor of 2 inputs recursively.

$$\gcd(a,b) = \begin{cases} a & a = b \\ \gcd(a-b,b) & a > b \\ \gcd(a,b-a) & b > a \end{cases}$$

Encoding this in λ -Calculus, we use many previously defined functions and predicates. This includes the Y-Combinator to allow for recursion.

 $gcd = y (\lambda f.\lambda a.\lambda b.eq a b (a) (geq a b (f (minus a b)(b)) (f (a)(minus b a))))$

Conclusion & Turing Completeness

 λ -Calculus is an abstract mathematical theory, simply and powerfully capturing a functional notion of computation. Alternatively, Turing Machines, created by Church's student Alan Turing, capture a state-based model of computation. Fascinatingly, these systems are equivalent, as outlined in the Church-Turing hypothesis. λ -Calculus is a Turing Complete system and can be used to emulate a Turing Machine.

References: Lambda Calculus – Graham Hutton on Computerphile Modern Computation, A Unified Approach – S.S. Chandra

