Public-Key Cryptography

February 3, 2022

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

© xkcd.com

Homework 1 & Today

- Homework 1
 - available on Blackboard
 - based on cryptography lectures, requires Python or Java programming
 - due February 20th (Sunday) at 11:59pm
- Today: public-key encryption

Where do secret keys come from?

- · RSA
- ElGamal, elliptic curves

Feedback: https://forms.gle/JGbNCmCsU69iWaTv8

Secret-Key Encryption

- Sender and receiver know the secret key → can encrypt/decrypt
- Attacker does not know the secret key → cannot encrypt/decrypt
- Exchanging or agreeing on a key
 - either using a <u>secure side channel</u>
 - · or <u>before</u> communicating over the insecure channel

Practical Problem: Key Exchange

How or when can the two endpoints exchange a secret key?

Public-Key Cryptography

- In 1976, Whitfield Diffie and Martin Hellman proposed a fundamentally different approach to cryptography
 - first documented discovery was by British intelligence agency in 1970
- Public-key cryptography: instead of using a single secret key, use a pair of private and public keys
 - also called asymmetric-key cryptography
- Only the private key needs to be secret, the public key does not
- Public-key cryptography solves multiple problems
 - public-key encryption → key exchange
 - digital signatures → non-repudiation

Public-Key Encryption

- Everyone knows the public key → sender can encrypt
- Receiver knows the private key → receiver can decrypt
- Attacker does not know the private key → attacker cannot decrypt
- Public key can be published
 - attacker may know the public key

Public-Key Encryption Application Example

Secure against passive attacks

Public-Key Encryption Scheme

- A public-key encryption system is a triplet of algorithms (G, E, D)
 - Key generation G(): randomized algorithm, outputs (PU, PR)
 - Encryption E(PU, M): takes public key PU and plaintext M, outputs ciphertext C
 - Decryption D(PR, C): takes private key PR and ciphertext C, outputs plaintext M
- Requirements
 - for every (PU, PR) that was output by G, D(PR, E(PU, M)) = M
 - G is efficiently computable, E is efficiently computable given PU and M, and D is efficiently computable given PR and C
 - given only PU and C, an attacker cannot efficiently compute M

Symmetric vs. Asymmetric-Key Encryption in Practice

	Symmetric-key encryption	Asymmetric-key encryption
Typical design	series of substitutions and permutations	hard mathematical problems
Key	completely random	special structure, expensive to generate
Recommended key size	128 - 256 bits	2048 - 15360 bits
Performance	fast	slow

RSA Encryption

RSA Cryptosystem

- Developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman
 - in 1973, Clifford Cocks, an English mathematician working for a British intelligence agency, described an equivalent system (however, this was classified until 1997)
- For their work on public-key cryptography, Rivest, Shamir, and Adleman received a Turing Award in 2002
- One of the most widely accepted and implemented general-purpose approach to public-key encryption
- Idea
 - represent fixed-length plaintext M and ciphertext C as numbers
 - encryption: $C = M^e \mod n$
 - decryption: $M = C^d \mod n$, where private key d is such that $(M^e)^d = M \mod n$

RSA Mathematical Background

- Prime: an integer p > 1 is a prime number if its only positive divisors are 1 and p
- Greatest common divisor: gcd(a, b) of integers a and b is the largest positive integer c that is a divisor of both a and b
 - a and b are <u>relatively prime</u> if gcd(a, b) = 1
 - if a and m are relatively prime, then a has a multiplicative inverse a-1 in modulo m
- Integer factorization problem:
 decompose a non-prime number into a product of smaller integers
 - widely believed to be a computationally hard problem (cannot be solved efficiently, i.e., in polynomial time)
 - however, this hardness has not been proven

RSA Key Generation

- 1. pick two large and random prime numbers p and q, $p \neq q$
- 2. calculate $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$
- 3. calculate Euler's totient function $\phi(n) = (p 1) \cdot (q 1)$
- 4. pick e such that $gcd(e, \phi(n)) = 1$ and $1 < e < \phi(n)$
- 5. calculate d, so that $d \cdot e = 1 \mod \phi(n)$ (d is the multiplicative inverse e^{-1} of e in $\mod \phi(n)$)
- 6. let the public key be PU = (e, n)
- 7. let the private key be PR = (d, n)

RSA Encryption and Decryption

- Encryption:
 given plaintext M (M < n), the ciphertext is C = M^e mod n
- Decryption: given ciphertext C (C < n), the plaintext is M = C^d mod n
- Consistency proof:

$$C^{d} \mod n = (M^{e})^{d} \mod n = M^{(e \cdot d)} \mod n$$

since $\mathbf{d} \cdot \mathbf{e} = 1 \mod \Phi(\mathbf{n})$, we have that $\mathbf{d} \cdot \mathbf{e} = 1 + \Phi(\mathbf{n}) \cdot \mathbf{i}$, where \mathbf{i} is some integer

$$C^d \mod n = M^{(1 + \varphi(n) \cdot i)} \mod n = M \cdot M^{(\varphi(n) \cdot i)} \mod n$$

$$= M \cdot (M^{\Phi(n)})^i \mod n = M \cdot 1^i \mod n = M \mod n$$

Euler's theorem: if a and n are relatively prime, then $a^{\phi(n)} = 1 \mod n$

RSA Example

Key generation

- pick two prime numbers, p = 17 and q = 11
- calculate $n = p \cdot q = 17 \cdot 11 = 187$
- calculate $\phi(n) = (p 1)(q 1) = 16 \cdot 10 = 160$
- pick e = 7, which satisfies $1 = gcd(e, \phi(n)) = gcd(7, 160)$
- calculate d = 23, so that $1 = d \cdot e = 23 \cdot 7 = 161 = 1 \mod \phi(n)$

Encryption

• given plaintext M = 88, the ciphertext is 88^7 = 11 mod 187 (we can compute it as $88^4 \cdot 88^2 \cdot 88 \mod 187$)

Decryption

• given ciphertext C = 11 and d = 23, the plaintext is $11^{23} = 88^{7.23} = 88^{161} = 88 \cdot 88^{160} = 88 \mod 187$

Security of RSA

RSA assumption:

given a public key (n, e) generated at random and a ciphertext C chosen at random, the probability of an attacker finding $C^{1/e}$ mod nusing an efficient algorithm is negligible

- Most efficient known method is factoring the modulus n into p and q, and then computing d such that $d \cdot e = 1 \mod \phi(n)$
 - hence, finding an RSA private key is at least as easy as integer factorization

We do not know

- if finding an RSA private key is at least as hard as integer factorization (it is probably easier)
- if integer factorization is actually hard (it is suspected to be hard)

RSA Factoring Challenge

RSA Laboratories published a list of RSA moduli in 1991

Number of Bits	Number of Decimal Digits	Year Achieved
330	100	1991
576	174	2003
640	193	2005
768	232	2009

 According to NIST, 15360-bit RSA keys are equivalent to 256-bit symmetric keys in strength

RSA Conclusion

Security

- · best known attack (if implemented properly): integer factorization of modulus n
- · 768-bit keys have been broken, 1024-bit keys might become breakable soon
- comparable symmetric-key security (e.g., AES)

Symmetric (e.g., AES)	RSA
80 bits	1024 bits
128 bits	3072 bits
256 bits	15360 bits

- Efficiency: very slow
 - → use it to encrypt a secret key, and then switch to symmetric-key encryption

ElGamal Encryption

ElGamal Encryption

- Proposed in 1984 by Taher Elgamal
- Developed from the public-key cryptographic key exchange proposed by Diffie and Hellman in 1976
- Security is based on the difficulty of computing discrete logarithms
 - · <u>discrete logarithm problem</u>: given **g**, **y**, and **p**, find an **x** that satisfies

$$y = g^X \mod p$$

widely believed to be a computationally hard problem

ElGamal Key Generation

- 1. pick a large prime q
- 2. pick an integer $\alpha < \mathbf{q}$ such that α is a primitive root of \mathbf{q}
- 3. pick an integer X such that 1 < X < q 1
- 4. compute $Y = \alpha^X \mod q$
- 5. let the public key be $PU = (q, \alpha, Y)$
- 6. let the private key be $PR = (q, \alpha, X)$

^{*} α is a primitive root if α , α^2 , α^3 , ..., $\alpha^{(q-1)}$ are different mod q

ElGamal Encryption and Decryption

Key generation:

- public key $PU = (q, \alpha, Y)$
- private key be $PR = (q, \alpha, X)$

where
$$Y = \alpha^X \mod q$$

- Encryption: given plaintext M (M < q),
 - 1. pick a random integer k such that 0 < k < q 1
 - 2. compute $K = Y^k \mod q$
 - 3. let the ciphertext be (C₁, C₂), where

$$C_1 = \alpha^k \mod q$$

$$C_2 = K \cdot M \mod q$$

- Decryption: given ciphertext (C₁, C₂),
 - 1. compute $K = C_1^X \mod q$
 - 2. compute $M = C_2 \cdot K^{-1} \mod q$
- Consistency: $K = C_1^X = (\alpha^k)^X = (\alpha^X)^k = Y^k = K \mod q$

ElGamal Example

Key generation

- pick prime q = 19, primitive root α = 10, and integer X = 5
- compute $Y = \alpha^X = 10^5 = 100000 = 3 \mod 19$
- Encryption: given plaintext M = 17
 - pick k = 6 and compute $K = Y^k = 3^6 = 729 = 7 \mod 19$
 - compute $C_1 = \alpha^k = 10^6 = 1000000 = 11 \mod 19$
 - compute $C_2 = K \cdot M = 7 \cdot 17 = 119 = 5 \mod 19$

Decryption

- compute $K = C_1^X = 11^5 = 161051 = 7 \mod 19$
- compute $K^{-1} = 7^{-1} = 11 \mod 19$
- compute $M = C_2 \cdot K^{-1} = 5 \cdot 11 = 55 = 17 \mod 19$

ElGamal Security and Efficiency

- Computing discrete logarithm is widely believed to be a computationally hard problem
 - · recovering private key X: requires computing the logarithm of Y to base α in modulo q
 - recovering factor k: requires computing the logarithm of C_1 to base α in modulo q
- Efficiency
 - ciphertext is twice as long as the plaintext
 - encryption requires two exponentiations, while decryption requires only one
 → decryption is faster

Elliptic Curve Cryptography

Elliptic Curve Cryptography

Problem with public-key cryptography based on modular arithmetic

Symmetric (e.g., AES)	RSA
80 bits	1024 bits
128 bits	3072 bits
256 bits	15360 bits

- very long keys, heavy processing load
- Idea: replace modular arithmetic with operations over elliptic curves
- Elliptic Curve Cryptography (ECC)
 - first suggested in 1985, but had not been widely used before the mid 2000s
 - 160-bit ECC key is comparable in security to a 1024-bit RSA public key
 - NIST and NSA endorsed ECC as a recommended approach, even for most classified information

Elliptic Curves

• Elements: points (x, y) that satisfy

$$y^2 = x^3 + ax + b$$

where x and y are coordinates, a and b are parameters

Elliptic Curve Operation

- Operation +
 - operation P + Q:
 draw a line through P and
 Q, find the third point of
 intersection -(P + Q), and
 mirror that point vertically
 to get P + Q
 - inverse element -P: mirror point P vertically
 - operation P + P: -2 -1 0 1 2 draw the tangent line and find the other point of intersection, ...

in other words, arithmetics with this operation "works as expected"

Discrete Logarithm Problem for Elliptic Curves

Reminder: with modular multiplication, it is difficult to find X such that

$$Y = \alpha^X \mod q$$

given Y, α , and q

- in other words, it is difficult to determine the "number of operations"
- · Discrete logarithm problem for elliptic curves: find k such that

$$Q = k \cdot P$$

given Q and P

• where
$$k \cdot P = P + P \dots + P$$

k terms

 We can "generalize" ElGamal encryption to elliptic curves in a straightforward manner

Comparison of Key Sizes

Symmetric-key algorithm	RSA	ECC
80	1024	160 - 223
112	2048	224 - 255
192	7680	384 - 511
256	15360	512+

however, ECC might be more vulnerable to quantum computing attacks

Conclusion of Encryption

Types of Encryption

Next lecture:

Integrity