EXPERIMENT NUMBER: 5

EXPERIMENT NAME: Design of a 2 to 4 line active HIGH outputs Decoder.

AIM: To design a 2 to 4 line Decoder with active HIGH outputs using logic gates and verify it.

APPARATUS REQUIRED:

S1. No.	COMPONENT	SPECIFICATION	QUANTITY
1.	AND GATE	IC 7408	1
2.	NOT GATE	IC 7404	1
3.	IC TRAINER KIT	-	1
4.	CONNECTING WIRES	-	AS REQUIRED

THEORY:

A decoder is a combinational circuit that connects the binary information from 'n' number of input lines to a maximum of 2n unique output lines. Decoder is also called a minterm generator/Maxterm generator. A minterm generator is a decoder with active HIGH outputs and is constructed using AND and NOT gates. Maxterm generator is designed with OR and NOT gates and has active LOW outputs.

TRUTH TABLE:

INPUT		ОИТРИТ			
A	В	D ₀	\mathbf{D}_1	$\mathbf{D_2}$	D ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

From the truth table, we get the output expressions as:

$$D_o = \overline{A} \overline{B}$$

$$D_1 = \overline{A} B$$

$$D_2 = A \overline{B}$$

$$D_3 = A B$$

CIRCUIT DIAGRAM OF A 2 TO 4 LINE DECODER WITH ACTIVE HIGH OUTPUTS:

DESIGN PROCEDURE:

- 1. Truth table of 2 to 4 line decoder with active HIGH outputs is prepared.
- 2. K-maps for all the output variables (D₀, D₁, D₂ and D₃) are drawn.
- 3. Simplified expressions for the output variables are obtained using manual simplification.
- 4. Circuit diagram is drawn as per the simplified expressions of the output variables obtained in step 3.

PRACTICAL PROCEDURE:

- 1. ICs are placed properly on the bread board of the IC trainer kit.
- 2. Connections are made as per the designed circuit diagram.
- 3. Power supply to the board is turned ON.
- 4. Circuit is verified as per the truth table of the circuit.

Student's worksheet 1

INPUT		ОИТРИТ			
A	В	\mathbf{D}_{0}	\mathbf{D}_1	$\mathbf{D_2}$	D ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Student's observation and conclusion:

- The 2 binary inputs labelled A and B are decoded into one of 4 outputs, hence the description
 of 2-to-4 binary decoder. Each output represents one of the minterms of the 2 input variables,
 (each output = a minterm).
- The binary inputs A and B determine which output line from D₀ to D₃ is "HIGH" at logic level "1" while the remaining outputs are held "LOW" at logic "0" so only one output can be active (HIGH) at any given point of time. Here, D₀ is kept "HIGH" since $D_0 = \overline{A} \cdot \overline{B}$ ($\overline{A} = \overline{B} = 1$).

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature: Rishabh

Student's worksheet 2

INPUT		OUTPUT			
A	В	$\mathbf{D_0}$	\mathbf{D}_1	$\mathbf{D_2}$	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Student's observation and conclusion:

- Here D₂ is held "HIGH" at logic level "1" while the remaining outputs are held "LOW" at logic level "0", since $D_2 = A \cdot \overline{B}$ ($A = \overline{B} = 1$).
- The 2 binary inputs labelled A and B are decoded into one of 4 outputs, hence the description of 2-to-4 binary decoder. Each output represents one of the minterms of the 2 input variables, (each output = a minterm).
- If a binary decoder receives n inputs (usually grouped as a single Binary or Boolean number) it activates one and only one of its 2ⁿ outputs based on that input with all other outputs deactivated.

Name: Rishabh Chauhan Reg. No.: 201900307

Digital Signature: Rishabh

Student's worksheet 3

INPUT		OUTPUT			
A	В	$\mathbf{D_0}$	$\mathbf{D_1}$	$\mathbf{D_2}$	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Student's observation and conclusion:

- Here D₁ is held "HIGH" at logic level "1" while the remaining outputs are held "LOW" at logic level "0", since $D_1 = \overline{A}$. B ($\overline{A} = B = 1$).
- The 2 binary inputs labelled A and B are decoded into one of 4 outputs, hence the description
 of 2-to-4 binary decoder. Each output represents one of the minterms of the 2 input variables,
 (each output = a minterm).
- If a binary decoder receives n inputs (usually grouped as a single Binary or Boolean number) it
 activates one and only one of its 2ⁿ outputs based on that input with all other outputs
 deactivated.

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature: Rishabh

Student's worksheet-4

INPUT		OUTPUT			
A	В	$\mathbf{D_0}$	\mathbf{D}_1	$\mathbf{D_2}$	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Student's observation and conclusion:

- Here D_3 is held "HIGH" at logic level "1" while the remaining outputs are held "LOW" at logic level "0", since $D_3 = A \cdot B$ (A = B = 1).
- The 2 binary inputs labelled A and B are decoded into one of 4 outputs, hence the description
 of 2-to-4 binary decoder. Each output represents one of the minterms of the 2 input variables,
 (each output = a minterm).
- If a binary decoder receives n inputs (usually grouped as a single Binary or Boolean number) it activates one and only one of its 2 outputs based on that input with all other outputs deactivated.

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature: Rishabh