Exercice 1:

Soit E un ensemble. Si X et Y sont deux parties de E, on note $X \triangle Y$ la partie de E définie par :

$$X \triangle Y = (X \cup Y) \setminus (X \cap Y).$$

- 1. (a) Faire un dessin représentant X et Y et hachurer la partie $X \triangle Y$ de E.
 - (b) Montrer: $\forall (X,Y) \in \mathcal{P}(E)^2$, $X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$.
- 2. Soit $A \in \mathcal{P}(E)$ et f_A l'application de $\mathcal{P}(E)$ dans $\mathcal{P}(E)$ définie par :

$$\forall X \in \mathcal{P}(E), \ f_A(X) = X\Delta A.$$

- (a) Montrer: $\forall X \in \mathcal{P}(E)$, $(X\Delta A)\Delta A = X$. Que cela signifie-t-il sur l'application $f_A \circ f_A$?
- (b) En déduire que f_A est bijective et expliciter la bijection réciproque f_A^{-1} .

Exercice 2 :

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une application dont on a représenté le graphe ci-dessous :

1. f est-elle injective? Justifier votre réponse. f semble-t-elle surjective?

On considère $g: \begin{bmatrix} \mathbb{R}_+ \to [-1,1] \\ x \mapsto f(x) \end{bmatrix}$. L'application g est-elle injective? Semble-t-elle surjective?

- 2. On admet que $f(x) = \sin(\pi \sqrt{x})$ pour tout $x \ge 0$.
 - (a) Étudier les variations de f sur [0,4].
 - (b) Déterminer un intervalle $I \subset [0,4]$ tel que $h: \begin{vmatrix} I \to [-1,1] \\ x \mapsto f(x) \end{vmatrix}$ réalise une bijection de I sur [-1,1] . Déterminer la bijection réciproque h^{-1}

Exercice 3:

Soit $f(x,y) = \ln\left(\frac{1-x^2}{1+y}\right)$ où $(x,y) \in \mathbb{R}^2$.

- 1. Déterminer le domaine de définition D_f de f (on mettra en évidence une réunion de produits cartésiens).
- 2. Déterminer la ligne de niveau 0 de f, c'est-à-dire l'ensemble des réels $(x,y) \in D_f$ tels que f(x,y) = 0. Représenter graphiquement cette ligne de niveau.
- 3. Déterminer le domaine de définition D_g de la fonction $g:t\mapsto f(0,t)$ et étudier ses variations sur D_g (en précisant les limites aux bornes).
- 4. L'application $D_f \longrightarrow \mathbb{R}$ est-elle injective? Surjective? Justifier.