Tutorial: Kernel Methods

Chih-Wei Chang B00201037 Chung-Yen Hung B00201015

November 27, 2014

Abstract

Here comes the Abstract

1 Introduction to Kerenl Method

- 1.1 What Is Kernel and Kernel Trick
- 1.2 Why Use Kernel and How Kernel Can Be Used

2 Common Kernel

2.1 Hilber Space and RKHS

Definition 2.1 (Inner Product Space). An inner product space \mathcal{X} is a vector space with an associated inner product $\langle \cdot, \cdot \rangle : \mathcal{X} \to \mathbb{R}$ that satisfies:

- Symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
- Linearity: $\langle a \cdot \mathbf{x}, \mathbf{y} \rangle = a \cdot \langle \mathbf{x}, \mathbf{y} \rangle$ and $\langle \mathbf{w} + \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{w}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle$
- Positive Semi-Definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$

The inner product space is strict if $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ iff $\mathbf{x} = 0$

Definition 2.2 (Hilbert Space). A strict inner product space \mathcal{F} is a Hilbert space if it is:

- Complete: Every Cauchy sequence $\{h_i \in \mathcal{F}\}_{i=1}^{\infty}$ converges to an element $h \in \mathcal{F}$
- Separable: There is a countable subset $\hat{\mathcal{F}} = \{h_i \in \mathcal{F}\}_{i=1}^{\infty}$ such that for all $h \in \mathcal{F}$ and $\epsilon > 0$, there exists $h_i \in \hat{\mathcal{F}}$ such that $||h_i h|| < \epsilon$.

The interval [0,1], the reals \mathbb{R} , the complex numbers \mathbb{C} and Euclidean spaces \mathbb{R}^D are all Hilber spaces.

- 2.2 Kerenl Function
- 2.3 Polynomial Kernel
- 2.4 Gaussian Kernel
- 3 Kernel Machines
- 3.1 Kernel PCA
- 3.2 Kernel SVM
- 3.3 Kerenl Ridge Regression
- 3.4 Kernel Logistic Regression
- 4 Output Kernel
- 4.1 Kernel in Output Space
- 4.2 PLST and CPLST
- 4.3 Other Possible Output Kernel Techniques
- 5 Conclusion

Here comes the Conclusion