REMARKS

Applicants respectfully request reconsideration of the present application in view of the reasons that follow. Claims 1 and 3-14 are now pending in this application. Claims 4-9, 12, and 13 have been withdrawn from consideration.

Priority

Applicant notes that acknowledgement of Applicant's claim for foreign priority was made in the Office Action Summary sheet of the Office Action under "Priority under 35 U.S.C. § 119" but that a box was not checked to indicate that a certified copy of the priority documents had been received.

This issue was raised in the previous reply of March 15, 2010 but it has not been addressed by the Office.

Applicant respectfully requests that the Office check all of these boxes in the next Office correspondence, including an indication of receipt of a certified copy of the priority documents.

Rejection under 35 U.S.C. § 103

Claims 1, 3, 10, 11, and 14 are rejected under 35 U.S.C. § 103(a) as allegedly being unpatentable over U.S. Patent No. 4,416,755 to Ceasar *et al.* (hereafter "Ceasar") in view of U.S. Patent No. 6,197,134 to Kanzaki *et al.* (hereafter "Kanzaki") and 6,800,182 to Mitsui *et al.* (hereafter "Mitsui"). This rejection is respectfully traversed.

Ceasar discloses a method and apparatus for coating a substrate with a semiconducting material and discloses an example of a target that includes high purity, undoped polycrystalline silicon. See Ceasar at col. 1, lines 13-16, and col. 8, lines 31-34. The Office states on page 3 of the Office Action that Ceasar does not disclose or suggest crystal orientation ratios, such as those recited in claim 1. Claims 3, 10, 11, and 14 depend from claim 1.

Kanzaki discloses that face-centered cubic metals suitable for use as target materials can have orientations satisfying the relation $I_{(220)}/I_{(111)} \le 1.0$, with $I_{(220)}$ representing the intensity of the (220) face and $I_{(111)}$ representing the intensity of the (111) face. See Kanzaki at col. 1, lines 8-10, and col. 2, lines 9-18.

However, Ceasar and Kanzaki are silent in regard to relative density of a target. Therefore, the combination of Ceasar and Kanzaki does not render claims 1, 3, 10, 11, and 14 to be unpatentable because the combination of Ceasar and Kanzaki does not disclose or suggest a sputtering target consisting essentially of, among other things, Si, wherein the target comprises Si sintered material having a relative density in a range of 70% or more and 95% or less, as recited in claim 1.

Mitsui discloses a sputtering target that comprises SiC and metallic Si. See Mitsui at col. 1, lines 64-67. The Office argues on page 3 of the Office Action that it would have been obvious to modify the target of Ceasar and Kanzaki "to form a target with a relative density of 80%, as disclosed by Mitsui."

The Office argues on page 5 of the Office Action that Mitsui is relied upon for its disclosure of "Si containing targets" but "Mitsui is not relied upon for its disclosure of a specific target composition. However, as noted on page 3 of the Office Action, the Office clearly relies upon Mitsui to provide a teaching of relative density with its argument to modify the target of Ceasar and Kanzaki "to form a target with a relative density of 80%, as disclosed by Mitsui."

The Office cites claim 12; col. 5, line 48; col. 4, lines 50-52; and the abstract of Mitsui in support of its argument. The abstract of Mitsui states that a sputtering target includes SiC and metallic Si but is silent in regard to the relative density of the target. Col. 4, lines 50-52, of Mitsui is silent in regard to the relative density of a sputtering target.

Claim 12 of Mitsui recites a target, according to claim 1 of Mitsui, that has a relative density of at least 60%. However, claim 1, which claim 12 depends from, provides a target that comprises SiC and metallic Si. Therefore, the relative density recited and disclosed in claim 12 is not a relative density for a sputtering target consisting essentially of Si, as recited

in claim 1, and is not applicable to such a sputtering target because a sputtering target comprising SiC and metallic Si is different from a sputtering target consisting essentially of Si, as recited in claim 1.

In col. 5, line 39, to col. 6, line 41, Mitsui discloses an example in which SiC powder is sintered to provide a SiC <u>preform</u> that has a relative density of about 81%. See Mitsui at col. 5, lines 39-48.

However, this a <u>preform</u> made of SiC and does not consist essentially of Si, as recited in claim 1. Nor is this a sputtering target because Mitsui specifically states in col. 5, lines 48-51, that the "sintered product was immersed in metallic Si melted at 1600°C. in vacuo to have metallic Si impregnated to obtain a target comprising SiC and metallic Si as the main components" (emphasis added). Mitsui discloses other targets in its comparative examples, such as a Si target in example 2 of Mitsui, which is a comparative example, but Mitsui teaches against such a target due its poor performance due to cracking, unstable discharge, and need for use of low power.

In other words, the Office relies upon the teachings of Mitsui to provide the feature of a relative density but the teaching of Mitsui is for a preform, not a target, because Mitsui discloses that a target is provided only once metallic Si has been impregnated into the preform. However, the target provided by Mitsui comprises SiC and metallic Si and is not a sputtering target consisting essentially of Si, as recited in claim 1. The arguments by the Office have considered the teachings of Mitsui in piecemeal by focusing solely on Mitsui's disclosure of a relative density without considering what object the relative density of Mitsui represents, which is not a sputtering target consisting essentially of Si, as recited in claim 1. The teachings of Mitsui simply do not factually support the Office's conclusion that it would have been obvious to provide a sputtering target consisting essentially of Si with the relative density recited in claim 1.

Therefore, Mitsui does not remedy the deficiencies of Ceasar and Kanzaki because Mitsui also does not disclose or suggest a sputtering target consisting essentially of, among other things, Si, wherein the target comprises Si sintered material having a relative density in a range of 70% or more and 95% or less, as recited in claim 1. Instead, Mitsui discloses only relative densities for targets comprising <u>SiC and Si</u> and for SiC <u>preforms</u>, which have not yet been made into sputtering targets.

One of ordinary skill in the art would understand that a target comprising SiC and Si has different characteristics than a Si target. Mitsui discusses silicon targets and notes that they have relatively low film-forming speeds and are susceptible to cracking. See Mitsui at col. 1, lines 16-43. Mitsui states that the SiC and Si target of Mitsui provides a high film-forming speed and suppresses cracking. See Mitsui at col. 1, lines 55-61, and col. 2, lines 4-34. As a result, the SiC and Si target of Mitsui is not a target consisting essentially of Si, as recited in claim 1, because a SiC and Si target affects the basic and novel characteristics of a Si target, as disclosed by Mitsui. One of ordinary skill in the art would not have looked to the teachings of Mitsui when considering a modification to a Si target due to these differences between a Si target and a target comprising SiC and Si.

As discussed in paragraphs 0024-0027 of Applicant's specification, a relative density of 70% to 95% and a sputtering surface having a ratio $(I_{(111)}/I_{(220)})$ of peak intensity $(I_{(111)})$ of (111) face to peak intensity $(I_{(220)})$ of (220) face of Si is in a range of 1.8 ± 0.3 advantageously provides a Si target with an improved film forming speed, with the relative density not exceeding 95% because higher densities correlate to orientations in particular crystal plans, and the relative density not being less than 70% to provide a target with a sufficient strength.

The Office argues on page 4 of that the teachings of Kanzaki could be applied to silicon because it is an fcc material. However, the teachings of Kanzaki regard an fcc metal target formed by a melting process, not a target comprising Si sintered material, as recited in claim 1. In other words, Kanzaki does not disclose or suggest controlling the crystal face of an fcc metal target that is a sintered material, as recited in claim 1.

In addition, the examples of Kanzaki regard copper materials, not silicon. Kanzaki does not disclose or suggest controlling the $(I_{(111)}/I_{(220)})$ intensity ratio for silicon. Applicant notes that the sputtering conditions for a silicon target differs from those for a copper target, particularly since silicon has an atomic weight (28.1) that is significantly different from that

of copper (63.5). Therefore, Kanzaki does not disclose or suggest that a silicon target has a ratio $(I_{(111)}/I_{(220)})$ of peak intensity $(I_{(111)})$ of (111) face to peak intensity $(I_{(220)})$ of (220) face of Si is in a range of 1.8 ± 0.3 , as recited in claim 1, and does not remedy the deficiencies of Ceasar.

As discussed in paragraphs 0014-0019 of Applicant's specification, when a silicon oxide film is formed with a conventional Si sputtering target that has a high orientation property with respect to a particular crystal plane, such as the (111) face, dispersion tends to cause an in-plane distribution of a film thickness because sputtered particles have a particular flight angle and a deposited degree of the sputter particles is variable depending on a position with the sputtered silicon oxide film. The sputtering target of claim 1 advantageously controls the peak intensity ratio of $(I_{(111)}/I_{(220)})$ to be in the range of 1.8 ± 0.3, which indicates a non-orientation state of Si.

For at least the reasons discussed above, the combination of Ceasar, Kanzaki, and Mitsui does not render claim 1 to be unpatentable. Reconsideration and withdrawal of this rejection is respectfully requested.

Conclusion

Applicant submits that the present application is now in condition for allowance. Favorable reconsideration of the application is respectfully requested.

The Examiner is invited to contact the undersigned by telephone if it is felt that a telephone interview would advance the prosecution of the present application.

The Commissioner is hereby authorized to charge any additional fees which may be required regarding this application under 37 C.F.R. §§ 1.16-1.17, or credit any overpayment, to Deposit Account No. 19-0741. Should no proper payment be enclosed herewith, as by a check being in the wrong amount, unsigned, post-dated, otherwise improper or informal or even entirely missing or a credit card payment form being unsigned, providing incorrect information resulting in a rejected credit card transaction, or even entirely missing, the Commissioner is authorized to charge the unpaid amount to Deposit Account No. 19-0741. If

any extensions of time are needed for timely acceptance of papers submitted herewith, Applicants hereby petition for such extension under 37 C.F.R. §1.136 and authorizes payment of any such extensions fees to Deposit Account No. 19-0741.

Respectfully submitted,

Date <u>November</u> 22, 2010

FOLEY & LARDNER LLP Customer Number: 22428

Telephone: 202-295-4011 Facsimile: 202-672-5399 Pavan K. Agarwal
Attorney for Applicant

Kevin L. McHenry Attorney for Applicant Registration No. 62,582

Registration No. 40,888