Teoría de Galois

Hoja 1. Anillos, polinomios y cuerpos.

A lo largo de todo el curso por anillo entenderemos un anillo unitario y conmutativo. Entenderemos que todo homomorfismo de anillos $\varphi \colon R \to S$ satisface $\varphi(1_R) = 1_S$.

Repaso de Teoría de Anillos

- 1. * Sea R un anillo finito. Demuestra que todo elemento no nulo de R es o bien un elemento invertible, o bien un divisor de cero. Decide de manera razonada si la afirmación sigue siendo cierta si R es infinito.
- **2.** Sea R un anillo y $a \in R$, escribimos $(a) = \{ar : r \in R\} = aR \subseteq R$. Demuestra que:
 - a) (a) es un ideal de R.
 - **b)** (a) = R si, y solo, si $a \in \mathcal{U}(R)$.
 - c) R es un cuerpo si, y solo si, sus únicos ideales son $\{0\}$ y R.
- **3.** Sea R un dominio de integridad y $a, b \in R$. Prueba que (a) = (b) si, y solo si, existe un $c \in \mathcal{U}(R)$ tal que a = bc.
- **4.** Sean $I \subseteq J$ ideales en un anillo R. Demuestra que:
 - a) $J/I \subseteq R/I$ es un ideal.
- **b)** (Teorema de Isomorfía) Sea $\varphi \colon R \to S$ un homomorfismo de anillos. Prueba que $\ker(\varphi)$ es un ideal de R, $\varphi(R)$ es un subanillo de S y $R/\ker(\varphi) \cong \varphi(R)$.
 - c) El anillo cociente (R/I)/(J/I) es isomorfo a R/J. Sugerencia: usa el teorema de isomorfía.
- d) (Teorema de correspondencia) Existe una correspondencia entre los ideales de R que contienen a I y los ideales del anillo cociente R/I.
- **5.** Sea n un número natural. Prueba que $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ es un cuerpo si, y solo si, n es primo.
- **6.** Dados $I = \{(3x, y) : x, y \in \mathbb{Z}\}$ y $J = \{(a, 0) : a \in \mathbb{Z}\}$, demuestra que I es un ideal maximal y J es un ideal primo no maximal de $\mathbb{Z} \times \mathbb{Z}$.
- 7. Dado un dominio de integridad R. Se dice que un elemento $0 \neq a \in R$ es irreducible si $a \notin \mathcal{U}(R)$ y siempre que a = bc se tiene que $b \in \mathcal{U}(R)$ o $c \in \mathcal{U}(R)$. Se dice que $0 \neq a \in R$ es primo si $a \notin \mathcal{U}(R)$ e I = (a) es un ideal primo de R, es decir, siempre que $bc \in I$ se tiene que $b \in I$ o $c \in I$.
 - a) Demuestra que los elementos primos en R son irreducibles.
- **b)** Prueba que si R es un dominio de ideales principales, entonces el recíproco del apartado anterior también es cierto, es decir, todo elemento irreducible en R es primo.
- 8. Demuestra que el conjunto $S = \{\bar{0}, \bar{2}, \bar{4}, \bar{6}, \bar{8}\}$ con las operaciones suma y producto módulo 10 es un anillo. ¿Cuál es su unidad? ¿Es un cuerpo?
- **9.** Sea $d \in \mathbb{Z}$, $1 \neq d \neq e^2$ con $e \in \mathbb{Z}$, consideramos el subanillo

$$\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$$

Definimos la aplicación $N: \mathbb{Z}[\sqrt{d}] \to \mathbb{Z}$ como $N(a+b\sqrt{d}) = a^2 - db^2$. Demuestra que N cumple:

- (i) N(x) = 0 si, y solo si, x = 0.
- (ii) N(xy) = N(x)N(y).
- (iii) $x \in \mathcal{U}(\mathbb{Z}[\sqrt{d}])$ si, y solo si, $N(x) = \pm 1$. Sugerencia: nota que $N(a + b\sqrt{d}) = (a + b\sqrt{d})(a b\sqrt{d})$.
- **10.** Halla las unidades de $\mathbb{Z}[i]$ y $\mathbb{Z}[\sqrt{3}i]$. Decide si todo número primo $p \in \mathbb{Z}$ es primo en $\mathbb{Z}[i]$. Sugerencia: considera primos de la forma $p = a^2 + b^2$ para $a, b \in \mathbb{Z}$.
- 11. Prueba que $\mathbb{Z}[\sqrt{3}i]$ no es un dominio de ideales principales. Demuestra que $\mathbb{Z}[\sqrt{3}i]$ tampoco es un dominio de factorización única.

Sugerencia: prueba que 2, $1+\sqrt{3}i$ y $1-\sqrt{3}i$ son elementos irreducibles en $\mathbb{Z}[\sqrt{3}i]$. Nota que

$$(1+\sqrt{3}i)(1-\sqrt{3}i)=4=2\cdot 2$$
,

en particular en $\mathbb{Z}[\sqrt{3}i]$ hay elementos irreducibles que no son primos.

- **12.** * ¿Cuántos elementos tiene el anillo $\mathbb{Z}[i]/(2i)$? ¿Se trata de un cuerpo? Sugerencia: nota que $(2i) = (2) = 2\mathbb{Z}[i]$.
- **13.** Sea $R = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Considera el anillo S = R/2R.
 - a) Calcula cuántos elementos tiene S.
 - b) Encuentra todos los subanillos de S.
 - c) Encuentra todos los ideales de S.
- **14.** Demuestra que si $\varphi \colon R \to S$ es un homomorfismo de anillos y $a \in \mathcal{U}(R)$, entonces $\varphi(a) \in \mathcal{U}(S)$. ¿Es cierto el recíproco?
- **15.** Sea $\varphi \colon R \to S$ un homomorfismo de anillos biyectivo. Prueba que si $a \in R$ es irreducible, entonces $\varphi(a) \in S$ es irreducible. ¿Qué ocurre si solo asumes que φ es sobreyectivo? Sugerencia: considera el epimorfismo evalución $e_1 \colon \mathbb{Q}[x] \to \mathbb{Q}$ para responder a la segunda pregunta.
- **16.** Demuestra que:
 - a) No existe ningún homomorfismo de anillos (cuerpos) $\varphi \colon \mathbb{Q} \to \mathbb{Z}_p$ para ningún primo $p \in \mathbb{Z}$.
 - b) No existe ningún homomorfismo de anillos (cuerpos) $\varphi \colon \mathbb{R} \to \mathbb{Q}$.

Anillos de polinomios

- 17. Prueba que $I = (2, x) \subseteq \mathbb{Z}[x]$ no es un ideal principal. En particular, $\mathbb{Z}[x]$ no es un dominio de ideales principales.
- 18. Demuestra que si R es un dominio de integridad y $f(x), g(x) \in R[x]$ son polinomios no nulos entonces el grado del producto es la suma de los grados. ¿Qué ocurre si R no es un dominio de integridad? Concluye que el anillo de polinomios R[x] es un dominio de integridad si, y solo, si R es un dominio de integridad.
- 19. Sea R un dominio de integridad. Demuestra que los únicos elementos invertibles de R[x] son los elementos de R que son invertibles. ¿Sucede lo mismo si R no es un dominio de integridad? Sugerencia: para la segunda parte considera $\mathbb{Z}_4[x]$.
- **20.** (Homomorfismo evaluación) Sea R un anillo y $a \in R$, prueba que la aplicación $e_a : R[x] \to R$ definida por $p \mapsto p(a)$ es un homomorfismo de anillos sobreyectivo. Si R es un cuerpo, concluye que $\ker(e_a)$ es un ideal maximal de R[x].

- **21.** Fijado un entero $n \in \mathbb{Z}$ con $n \geq 2$, demuestra que el anillo cociente $\mathbb{Z}[x]/n\mathbb{Z}[x]$ es isomorfo a $\mathbb{Z}_n[x]$. Concluye que el ideal $n\mathbb{Z}[x]$ es primo si, y solo si, n es un número primo.
- **22.** ** Demuestra que en $\mathbb{Z}[x]$ el ideal (5, x+2) es maximal y que el anillo cociente $\mathbb{Z}[x]/(5, x+2)$ es isomorfo al cuerpo \mathbb{Z}_5 .

Sugerencia: prueba que $\mathbb{Z}[x]/(5,x+2) \cong \mathbb{Z}_5[x]/(x+2)$ y que $(x+2) = \ker(e_{-2})$.

- **23.** ¿Cuántos elementos tiene el anillo $\mathbb{Z}_3[x]/(x^2+x+1)$? ¿Se trata de un cuerpo? Sugerencia: usa el algoritmo de la división.
- **24.** Sea $p \in \mathbb{Q}[x]$ dado por $p(x) = (x^2 + 1)(x^4 + 2x + 2)$. Escribimos $R = \mathbb{Q}[x]/(p)$ y $\bar{f} = f + (p)$.
 - a) Describe los ideales en R. ¿Es R un cuerpo?
 - b) Decide justificadamente si \overline{x} y $\overline{x+1}$ son divisores de cero en R.
- c) Decide si \overline{x} y $\overline{x+1}$ son elementos invertibles en R y, en caso afirmativo, encuentra sus inversos. Sugerencia: el teorema del máximo común divisor y el algoritmo de la división son relevantes.
- **25.** Halla un generador de $I = (x^3 + 1, x^2 + 1)$ en $\mathbb{Z}_2[x]$.
- **26.** Sea K un cuerpo. Demuestra que si $p \in K[x]$ es un polinomio no nulo de grado n entonces p tiene, a lo sumo, n raíces.

Sugerencia: usa inducción sobre el grado y el algoritmo de división en K[x].

27. Demuestra que si K es un cuerpo infinito y $f,g\in K[x]$ son tales que f(a)=g(a) para todo $a\in K$, entonces f=g. ¿Qué ocurre si K es finito?

Sugerencia: para la segunda parte, considera $f(x) = x^p - x$ en $\mathbb{Z}_p[x]$.

28. Si $f \in \mathbb{Z}[x]$ y $r/s \in \mathbb{Q}$ es una raíz de f con (r,s) = 1, entonces s divide al coeficiente director de f y r divide al término independiente de f. En particular, las raíces racionales de polinomios enteros mónicos son números enteros.

Criterios de irreducibilidad

- **29.** Considera un cuerpo K. Demuestra los siguientes enunciados:
- a) (Teorema de Ruffini) Sean $p \in K[x]$ y $a \in K$. Entonces p(a) = 0 si, y solo si, p(x) = (x a)q(x) con $q \in K[x]$.
 - b) Todo polinomio de grado uno en K[x] es irreducible.
 - c) Todo polinomio de grado dos o tres en K[x] es irreducible si, y solo si, no tiene raíces en K.
- **30.** Enumera todos los polinomios irreducibles de grado 1, 2, 3 y 4 de $\mathbb{Z}_2[x]$ y $\mathbb{Z}_3[x]$.
- **31.** ¿Cuántos elementos tiene el anillo $\mathbb{Z}_3[x]/(x^2+1)$? ¿Se trata de un cuerpo?
- **32.** Sea R un anillo y sea $a \in R$. Si $f(x) = a_0 + a_1 x + \dots + a_n x^n \in R[x]$, definitions $f(x+a) = a_0 + a_1 (x+a) + \dots + a_n (x+a)^n \in R[x]$.
 - a) Demuestra que f(x) es irreducible si, y solo si, q(x) = f(x+a) es irreducibles.
- **b)** Usa este resultado para probar que los polinomios $\Phi_p(x) = x^{p-1} + \cdots + x + 1$ son irreducibles para todo p primo.

Sugerencia: prueba que $\Phi_p(x)(x-1) = x^p - 1$ y, a continuación, demuestra que $\Phi_p(x+1)$ es irreducible usando el criterio de Einsestein.

El polinomio Φ_p es el p-ésimo polinomio ciclotómico.

- **33.** Sea $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ en K[x] con $a_0 \cdot a_n \neq 0$. Prueba que f es irreducible si, y solo si, $\tilde{f}(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$ es irreducible.
- **34.** Decimos que un polinomio $f(x) \in \mathbb{Z}[x]$ es primitivo si el máximo común divisor de sus coeficientes es 1.
- a) Prueba que un homomorfismo de anillos $f: R \to S$ se extiende de manera natural a un homomorfismo de anillos $R[x] \to S[x]$. En particular, si p es un primo, la reducción de coeficientes módulo p define un homomorfismo de anillos $\mathbb{Z}[x] \to \mathbb{Z}_p[x]$.
- **b)** Demuestra que en $\mathbb{Z}[x]$ el producto de dos polinomios primitivos es primitivo. Sugerencia: usa el apartado anterior.
- c) (Lema de Gauss) Sea $f(x) \in \mathbb{Z}[x]$ un polinomio de grado $n \geq 2$. Prueba que si f(x) es reducible como polinomio en $\mathbb{Q}[x]$, entonces es reducible como polinomio en $\mathbb{Z}[x]$.
- d) Sea $f(x) \in \mathbb{Z}[x]$ mónico y se $p \in \mathbb{Z}$ un primo. Consideramos $\bar{f}(x) \in \mathbb{Z}_p[x]$ la imagen de f via el homomorfismo de anillos $\mathbb{Z}[x] \to \mathbb{Z}_p[x]$. Demuestra que si $\bar{f}(x)$ es irreducible en $\mathbb{Z}/p\mathbb{Z}[x]$, entonces f(x) es irreducible en $\mathbb{Q}[x]$.
 - e) Aplica el criterio anterior para deducir que $x^3 + x + 1$ es irreducible en $\mathbb{Q}[x]$.
- **35.** Discute la irreducibilidad del polinomio $x^5 + 11x^2 + 15$ en $\mathbb{Q}[x]$. Sugerencia: usar reducción de coeficientes módulo p = 2 y probar que el polinomio resultante es irreducible en $\mathbb{Z}_2[x]$.
- **36.** ** Prueba que el polinomio $x^4 + 1$ es irreducible en $\mathbb{Q}[x]$ pero reducible en $\mathbb{Z}_p[x]$ para todo primo p. Sugerencia: deja los casos en que p es impar para más adelante.
- **37.** Decide razonadamente si los siguientes polinomios son reducibles en $\mathbb{Q}[x]$:

$$f_1(x) = x^4 + 3x + 6$$
, $f_2(x) = x^3 + 11^{11}x + 13^{13}$, $f_3(x) = x^5 - 9x^2 + 1$.

- **38.** Demuestra que para cada $n \ge 1$ hay infinitos polinomios en $\mathbb{Q}[x]$ irreducibles de grado n.
- **39.** Demuestra que todo polinomio irreducible en $\mathbb{R}[x]$ tiene grado 1 o 2. Factoriza $x^4 1$ como producto de polinomios mónicos irreducibles en $\mathbb{R}[x]$, $\mathbb{C}[x]$, $\mathbb{Z}_2[x]$ y $\mathbb{Z}_3[x]$.

Cuerpos

Cuando p es un número primo, el anillo $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ tiene estructura de cuerpo. Cuando pensamos en \mathbb{Z}_p como cuerpo, es común usar la notación \mathbb{F}_p .

- **40.** Sea K un cuerpo de característica p. Demuestra que no existe ningún homomorfismo de anillos (cuerpos) $\varphi \colon K \to \mathbb{Q}$ para ningún primo $p \in \mathbb{Z}$.
- **41.** (Frobenius) Sea K un cuerpo de característica p, probar que

$$(a+b)^p = a^p + b^p,$$

para todo $a, b \in K$. En particular, la aplicación Frob: $K \to K$ dada por $a \mapsto a^p$ es un homomorfismo de anillos inyectivo. Además, Frob fija el cuerpo primo de K.

- **42.** Si n > 0 no es un cuadrado. Demuestra que:
 - a) $\mathbb{F}_3[\xi] = \{a + b\xi \mid a, b \in \mathbb{F}_3, \ \xi^2 = -1\}$ es un cuerpo. ¿Ha aparecido antes en esta hoja de problemas?
 - **b)** $\mathbb{Q}[\sqrt{n}] := \{a + b\sqrt{n} : a, b \in \mathbb{Q}\}$ es un subcuerpo de \mathbb{R} .
 - c) $\mathbb{Q}[\sqrt{-n}] := \{a + b\sqrt{-n} : a, b \in \mathbb{Q}\}$ es un subcuerpo de \mathbb{C} .
 - d) No existe ningún homomorfismo de anillos (cuerpos) $\varphi \colon \mathbb{Q}[i] \to \mathbb{Q}[\sqrt{2}].$
 - e) Existen infinitos homomorfismos de anillos (cuerpos) $\varphi \colon \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$.