UVOT:

Telescope aperture: 30cm

FoV: 17 by 17 arcmin

Plate scale: 1 arcsec/pixel for

lenticular filters

Waverange: 1600-8000A

Colors: figure below

Table 1. Summary of the observing log

	Start Time	End Time	$r_{ m h}$	Δ	$\mathrm{d}r_{\mathrm{h}}$	$\operatorname{S-T-O}$	UVW1 $T_{\rm exp}$	$V T_{\rm exp}$
			(AU)	(AU)	(km/s)	(°)	(s)	(s)
Sep 27 UT	2019-09-27T03:06:26.000	2019-09-27T14:38:55.000	2.56	-23.54	3.1	17.31	8204.59 (8204.59)	3099.12 (2712.24)
Nov 01 UT	$2019\text{-}11\text{-}01\mathrm{T}14\text{:}07\text{:}07.000$	2019-11-02T01:37:46.000	2.17	-14.43	2.42	24.24	7203.27 (5486.77)	3097.79 (1935.43)
Dec 01 UT	2019-12-01T03:17:14.000	$2019\hbox{-}12\hbox{-}01\mathrm{T}21\hbox{:}16\hbox{:}55.000$	2.01	-3.0	2.04	28.12	8147.0 (5071.03)	3091.99 (385.74)

C₂ X <- carbon-chain depleted

H₂O <- OH <- UVW1(total) - <u>UVW1(solar reflection)</u> [Scaled by V(total)]

Table 1. Summary of the observing log

	Start Time End Time		$r_{ m h}$	Δ	$\mathrm{d}r_{\mathrm{h}}$	S-T-O UVW1 $T_{\rm exp}$		$V T_{exp}$	
			(AU)	(AU)	(km/s)	(°)	(s)	(s)	
Sep 27 UT	2019-09-27T03:06:26.000	2019-09-27T14:38:55.000	2.56	-23.54	3.1	17.31	8204.59 (8204.59)	3099.12 (2712.24)	
Nov 01 UT	$2019\text{-}11\text{-}01\mathrm{T}14\text{:}07\text{:}07.000$	2019-11-02T01:37:46.000	2.17	-14.43	2.42	24.24	7203.27 (5486.77)	3097.79 (1935.43)	
Dec 01 UT	2019-12-01T03:17:14.000	2019-12-01T21:16:55.000	2.01	-3.0	2.04	28.12	8147.0 (5071.03)	3091.99 (385.74)	

- Carried out every observation by multiple exposures to remove smearing
- Discarded exposures heavily contaminated by background stars
- Aligned and co-added the left exposures to increase SNR

a is the ratio of continuum count rates as measured with the two filter $(\alpha=0.093)$ for un-reddened solar spectrum, α for other reddening can also be calculated)

photometry

subtract V from UVW1 image

β can be estimated by a model of OH spectrum

4 g-factor

Nmol within the aperture

5 got Nmol for a series of annuli within the aperture (80 000km) ↓

column density profile

(6) adjust reddening (α) to fit vectorial model water production rate

$\Delta T_{\rm peri}$	rFoV	Filter	C_{filter}	$m_{ m filter}$	$Flux_{filter}$	C_{OH}	reddening
(days)	(arcsec/km)		$(\mathrm{cts}\mathrm{s}^{-1})$	(mag)	$({\rm erg}{\rm s}^{-1}cm^{-2})$	$(cts s^{-1})$	(%)
-72.2	36/8.1E+04	V	$1.5 {\pm} 0.4$	17.4 ± 0.3	(3.7 ± 1.0) E-1	$3 0.0 \pm 0.1$	0
		UVW1	0.14 ± 0.07	7 19.7 ± 0.6	$(1.4\pm0.4)E-1$	2	
-36.7	46/8.1E+04	V	7.4 ± 0.6	15.7 ± 0.1	(1.8 ± 0.2) E-1	0.4 ± 0.1	7
		UVW1	1.0 ± 0.1	17.5 ± 0.1	(5.4 ± 0.5) E-1	2	
-7.0	54/8.0E+04	V	5.1 ± 1.1	16.1 ± 0.2	(1.2 ± 0.3) E-1	$2 1.4 \pm 0.1$	18
		UVW1	1.7 ± 0.1	16.9 ± 0.1	(2.7 ± 0.6) E-1	2	
ol	$Q_{\rm H_2O}$	activ	e area ac	tive radius	$Af \rho$ p	hase corr	$A(0)f\rho$
l)	(mol s^{-1})	(k	m^2)	(km)	(m)	(0 deg)	(m)
)E+30	$(0.1\pm2.5)E+2$	26 0.0	±0.4 (0.03 ± 0.55	$0.46 {\pm} 0.04$	0.55	0.84 ± 0.06
)E+31	$(4.6\pm1.5)E+2$	26 0.5	± 0.2 (0.20 ± 0.03	$0.49 {\pm} 0.02$	0.46	1.05 ± 0.05
	-72.2 -36.7 -7.0	(days) (arcsec/km) -72.2 $36/8.1E+04$ -36.7 $46/8.1E+04$ -7.0 $54/8.0E+04$ ol $Q_{\rm H_2O}$ (l) (mol s ⁻¹) (E+30 $(0.1\pm2.5)E+2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(days) (arcsec/km) (cts s ⁻¹) (mag) (erg s ⁻¹ cm ⁻²) (72.2 $36/8.1E+04$ V 1.5 ± 0.4 17.4 ± 0.3 $(3.7\pm1.0)E-1$ UVW1 0.14 ± 0.07 19.7 ± 0.6 $(1.4\pm0.4)E-1$ (1.8±0.2)E-1 UVW1 1.0 ± 0.1 17.5 ± 0.1 $(5.4\pm0.5)E-1$ (5.4±0.5)E-1 (7.0 $54/8.0E+04$ V 5.1 ± 1.1 16.1 ± 0.2 $(1.2\pm0.3)E-1$ UVW1 1.7 ± 0.1 16.9 ± 0.1 $(2.7\pm0.6)E-1$ (1.9 (mol s ⁻¹) (km ²) (km) (m) (m) (2.7±0.6) (0.1±2.5)E+26 0.0 ± 0.4 0.03 ± 0.55 0.46 ± 0.04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

