Fundamentals of Programming Languages

Definition of PLs

Lecture 03

sl. dr. ing. Ciprian-Bogdan Chirila

Lecture outline

- The definition of PLs
- Syntax
- Syntax grammars
- Syntax diagrams
- Semantics
- Operational semantics
- Attributed grammars
- Axiomatic semantics
- Denotational semantics

The PL

- Is a formal notation
- The form and meaning are described by a set of rules
- The rules establish
 - program correctness
 - what will happen during execution
- Syntactical rules -> PL syntax
- Semantic rules -> PL semantics

PL definition

- L=<Sm,St,f:St->Sm>
- Sm is the language semantics
- St is the language syntax
- f is the association function of syntax to certain semantics

Formal definition method of PLs

- defining an alphabet A out of base symbols
- defining A* set containing all possible symbol strings which may be constructed from the elements of A
- a set of rules to select the set of correct programs
- the semantic specification of each element

$$P \subset A^*$$

$$p \in P$$

The syntax

- Syntax rules generate an infinite set of sentences
- Only a subset of them are semantically correct
- Sentences are made out of symbols
- Symbols are made out of characters respecting the lexical rules
- Lexical rules belong to the PL syntax
- All symbols form the PL vocabulary
 - Identifiers, keywords
 - begin, end in Pascal
 - → +, ++, <=, in C</p>
 - Integer literals, float literals, string literals

Grammars

- All syntactical rules of a language form the grammar
- How to write a grammar?
- BNF Bachus Naur Form
 - Used for Algol 60
- Extended BNF –EBNF
 - Metalanguage
 - A language used to define another language

EBNF

```
::= defined as
| or
| and > used for non-terminals
[ and ] used for optional sequences
{ and } used for sequences repeated zero or more times
```

The syntax

- The syntax is a set of EBNF relations or rules
- A relation defines
 - A non-terminal specified at left hand side of ::=
 - Non-terminals and terminals at the right hand side of ::=
- Terminals are language symbols
- Each right hand side used non-terminal must be defined in a different relation
- A complete grammar must define all non-terminals
- One non-terminal is defined as the starting symbol of the grammar
- Usually is called program>

The program

- A string of symbols or terminals
- Is syntactically correct if the symbol string can be derived based on the grammar rules beginning from the starting symbol

Grammar example

Program example

```
prog example;
    a:=2*(x+3);
    b:=a-1
end.
```

- Is syntactically correct if it can be derived based on the rules and starting from the cprogram> non-terminal
- The derivation process can be better illustrated drawing a tree where
 - The root is the starting symbol
 - The inner nodes are non-terminals
 - The leaves are terminals
- Syntax tree

The derivation process

Syntactic analysis

- To check the syntactical correctness of a program
- Bottom-up
 - To start from the symbols
 - To replace right hand side sequences with rules
 - To repeat until the starting symbol is reached
- Top-down
 - To begin at the starting symbol
 - To replace non-terminals according to the grammar rules

Syntax diagrams

Syntax diagrams

- A symbols succession is correct if it can be generated by traversing the diagram from the beginning to the end
- Meeting a rectangle
 - the corresponding non-terminal must be verified
- Meeting a circle/ellipse
 - the corresponding terminal must be found

Regular expressions

- Lexical rules can be expressed using regular expressions
- Each regular expression e denotes a set of strings S formed with the letters of an alphabet A applying a set of operators

Regular expressions

- Let us suppose that S, S1, S2 are sets of strings
- Reunion

$$S_1 \cup S_2 = \{s \mid s \in S_1 \text{ or } s \in S_2\}$$

- Product or Catenation $S_1S_2 = \{s_1s_2 \mid s_1 \in S_1 \text{ and } s_2 \in S_2\}$
- Power

$$S^{n} = \begin{cases} \{\varepsilon\} & n = 0, \varepsilon \text{ the empty string} \\ S^{n-1}S & \forall n \in \mathbb{N}, n \ge 1 \end{cases}$$

Regular expressions

- Note the Kleene closure or Star $S^* = \bigcup_{i=0}^{\infty} S^i$
- Positive closure or Plus $S^+ = \bigcup_{i=1}^{\infty} S^i$

- e.g.
 - ► L={A,B,C,...Z,a,b,...,z}
 - **■** C={0,1,...,9}

Defining new sets

- lacktriangle the set of all letters and digits $L \cup D$
- all two length strings where
 LD
 - the first character is letter
 - the second character is digit
- the set of strings of 4 letters L^4
- lacktriangleright the set of strings of letters of any length including the empty length string $oldsymbol{L}^*$
- the set of digit strings containing at least a digit

The construction of a regular expression

- Starting from an alphabet A
- ε is a regular expression
- a is a regular expression
- e1, e2, e regular expressions denoting the string sets \$1, \$2,
 \$
- on these sets we can apply several operators
- the result will be a regular expression

Regular expression operators

- Reunion (e1) | (e2) denote the set \$1 U \$2
- Product or catenation (e1)(e2) denoting the set \$1\$2
- Star (e)* denoting the set (S)*
- all operators are left-associative
- the priority
 - from high to low
 - star, product, reunion

Regular expression operators

- One or more
 - Plus "+" operator
 - ee* is equivalent to e+
- Zero or one
 - The question mark "?" operator
- Character classes
 - The notation [c1c2c3c4] will designate the c1 | c2 | c3 | c4 regular expression
 - a | b | ... | z will become [a-z]

Example

- letter(letter | digit)*
 - Regular expression for identifiers
 - L(LUC)* from previous examples
- digit->[0-9]
- letter->[A-Z, a-z]
- identifier -> letter(letter | digit)*
- digits->digit+
- exponent->((E | e)(+ | -)?digits)?
- fraction->(.digits)?
- number-> digits fraction exponent
- when names are used in the right hand side -> regular definition

The semantics

- Semantic rules
 - The meaning associated to correct syntactical constructions
- Describing syntax
 - BNF
 - EBNF
- Describing semantics
 - Coexist a series of methodologies
 - In research for one fully satisfiable

The semantics of a PL

- Is described in natural language
 - text, drawings, diagrams
- More or less exact or rigorous
- Good for learning
- Ambiguities are clarified by experiments

Why formal description of semantics?

- PLs
 - large spreading
 - tend to be complex and diverse
- because applications
 - are complex, large, diverse
 - demand high reliability
- the solution: formal, mathematical notation
 - With no ambiguities
 - Difficult access
 - Needs special preparing to decipher the formalism

Formalisms advantages

- Avoiding gaps in language definition
 - Gaps are probable in the informal definition
- Reference documentation for the programmer
 - The programmer may clarify problems when reading the informal definition
- Reference documentation for the implementation
 - For the PL implementation team
 - Used for implementation validation and homologation

Formalisms advantages

- Formal base for automated program checking
 - Formal checking algorithms need a rigorous PL definition
- Implementation independence
 - The formalisms guarantee that is independent of the implementation

Appreciations criteria for formal methods

- Completeness
 - The method capability of covering all syntax and semantic issues
- Simplicity
 - The ease of model creation no matter how complex the language is

Appreciations criteria for formal methods

- Clarity
 - understanding definitions easily
 - natural PL description
- Expressivity on errors
 - the method capability of detecting program errors

Appreciations criteria for formal methods

- Changeability
 - The method capability of defining places where restrictions or options are left free to implementers
- Modifiability
 - The method capability of easily making modifications in the previous PL description
 - Important in the PL definition phase

Formal methods for PL semantics

- 2 methods
 - Intuitive
 - Based on program translation concepts
- 2 methods
 - Mathematical
 - With a strong theoretical base
- methods comparison
 - using the presented criteria

Operational semantics

- Is defined by the effect its constructions make over a real or virtual processor
- The instruction semantics is denoted by
 - Knowing the computer state
 - Executing an instruction
 - Examining the new computer state

Operational semantics

- Real computer architectures are very complex
- Virtual machines are used instead
- Software interpreter executing virtual instructions
- Virtual machines can be designed such as PL semantics can be easily expressed with virtual instructions
- The set of virtual instructions must be simple enough to be implemented on any hardware machine

Applying the operational method

- Defining and implementing a virtual machine VM
- A translator converting the instructions of the L language into the instructions of the virtual machine VM
- State changes produced on the virtual machine by executing the virtual code resulted by translating L language instructions defines the instruction semantics

The structure of a virtual machine VM

Virtual machine run

- Virtual processor
 - Instruction pointer IP
- Code memory C
- Data memory D
- VM cycle
 - Execute the instruction pointed by IP
 - If the instruction does not change IP, the IP register will be incremented and will denote the next instruction in C

Program example

```
for i:=first to last do

begin

loop: if i>last goto out

end;

i:=i+1

goto loop

out: ...
```

Operational description

- Was used for the first time in the IBM Vienna subsidiary
- Was used to define PL/I 1969
- VDL Vienna Definition Language
- Good for both programmers and implementers
- Is not based on a complicated mathematical formalism
- Is based on translation algorithms
- The PL semantic is defined in the terms of a different known low level language

Attributed grammars

- Used when the translation process is coordinated by a grammar
- The semantics can be specified by attaching semantic attributes to the grammar symbols
 - Terminals
 - Non-terminals
- Proposed by Donald Knuth 1968

Attributed grammars

- The attribute values are computed through expressions or functions called semantic rules associated to the grammar rules
- The evaluation of semantic rules means semantic analysis
- This process is also called syntax directed translation
- There are several associations possible between semantic rules and grammar relations
 - syntax directed definitions SDD

Syntax directed definition

- Is a generalization of a grammar
- To each symbol we attach a set of attributes
- Results an attributed grammar
- Attribute representation
 - Numbers
 - Strings
 - Types
 - Memory locations
- Attributes are computed during the development of the syntactic tree
- The attribute value is computed using a semantic rule associated with the production

Example SDD for an office calculator

```
<line>::=<expression>nl

<expression>::=<expression>+<term> | <term>
<term>::=<term>*<factor> | <factor>
<factor>::=(<expression>) | number
```

- the definition associates to each nonterminal (<expression>, <term>, <factor>) an attribute having integer value named val
- For each production we compute the val attribute associated with the left hand-side non-terminal based on the values of the val attribute from right-hand side nonterminals

SDD for the office calculator

Grammar production	Semantic rules
<m>>::=<expression>nl</expression></m>	print(<expression>.val)</expression>
<pre><expression>::=<expressio n1="">+<term></term></expressio></expression></pre>	<pre><expression.val>:=<expression 1="">.val+<term>.val</term></expression></expression.val></pre>
<expression>::=<term></term></expression>	<expression>.val:=<term>.val</term></expression>
<term>::=<term1>*<factor></factor></term1></term>	<term>.val:=<term1>.val*<fact or="">.val</fact></term1></term>
<term>::=<factor></factor></term>	<term>.val:=<factor>.val</factor></term>
<factor>::=(<expression>)</expression></factor>	<factor>.val:=<expression>.val</expression></factor>
<factor>::=number</factor>	<factor>.val:=number.lexval</factor>

SDD for the office calculator

- number atom has an attribute named lexval
- the starting rule prints out the value of the <expression>

Annotated syntax tree

- is a syntax tree which shows the nodes attributes
- The process is called syntax tree annotation
- A definition using only synthesized attributes is called an Sattributed definition

Example of annotated syntax tree

Axiomatic semantic

- To translate a correct construction into a mathematical meta-language
- A notation having well defined mathematical rules
- To determine a set of translation rules between
 - language construction domain
 - mathematical formulae meta-language

Axiomatic semantic metalanguage

- C.A.R. Hoare 1969
- Has its roots in mathematical logic
- Based on predicates computation
- Predicates
 - Are logic expressions applied on program variables
 - Used to express states in the computing process

Preconditions and postconditions

- Instruction S
- Predicate P
 - that must be true after executing S
 - is called postcondition for S
- Predicate Q
 - is true
 - S is executed normally
 - Postcondition P is true
 - Is called precondition for S and P

Example

- Notation
 - Q {S} P
- Example
 - S: x:=y+1 (integers)
 - P: x>0 $y=3 \{x:=y+1\} x>0$
 - Q: y=3
 - -----

Example

- For
 - instruction S
 - postcondition P
- there are multiple (an infinite) preconditions available
- One of them is called the weakest precondition
- All preconditions Q imply the weakest precondition W
- For any true Q, W is also true

Axiomatic semantic

- $ightharpoonup \forall$ precondition Q \rightarrow W (implication relationship)
- $p \rightarrow q$ (means anytime p is true also q is true)
- y=3 -> y>-1 is TRUE
- y>0 -> y>-1 is TRUE
- y>-5 -> y>-1 is FALSE
- Only the weakest precondition is important
- To express the construction effect by predicate transformation
- To define the axsem function
 - axsem(S,P)=W
 - S language construction
 - P postcondition
 - W weakest precondition
- To define a language means defining axsem for all constructions

axsem for assignment instruction

- axsem{x:=E,P}-> P_{x->E}
- P_{x->E} is the predicate P where all appearances of x were replaced by E
- In order that predicate P to be true after x got the value of E, before the assignment the predicate obtained replacing x by E must be true
- $P_{x->E} \{x:=E\} P$
- \rightarrow y>-1 {x:=y+1} x>0
 - in x>0 we replace x with y+1
 - \rightarrow y+1>0 or y>-1
 - the semantic of the assignment is that if y>-1 then x>0

Example

- We will use the axsem function to find out in which conditions x:=x+3 will produce a result x>8
- \rightarrow axsem(x:=x+3,x>8)=x>5
 - in x>8 we replace x by x+3
 - x+3>8 and x>5
 - if x>5 then after the assignment x>8
 - the semantic of the assignment is that if x>5 then x>8

axsem for an instruction sequence

- considering
- \rightarrow axsem(S1,P)=Q
- \blacksquare asxem(S2,Q)=R
- for the sequence \$2;\$1
- axsem(S2;S1,P)=R
- the postcondition created by \$2 becomes precondition for \$1
- R S2 Q
- Q S1 P
- after sequencing we got R S2 Q S1 P or R S2;S1 P

axsem for if instruction

- if B then L1 else L2 endif
- B condition
- L1,L2 instruction sequences
- axsem(instr-if,P)=

```
B => axsem(L1,P)
```

and

not $B \Rightarrow axsem(L2,P)$

Example

- if x>=y then max:=x else max:=y endif
- if the sequence computes max correctly
- then (x>=y and max=x) or (y>=x and max=y) must be true
- P is this postcondition, what is the precondition?
- (x>=y)=>((x>=y and x=x) or (y>x and x=y)) and not(x>=y)=>((x>=y and y=x) or (y>x and y=y))=true

Denotational semantic

- Scott 1970
- S=<mem,i,o>
 - mem is a function representing the memory
 - Mem:Id->Z U {undef}
 - Id is the set of all identifiers
 - Z is the set of all integers
 - undef is the value of an undefined indentifier
 - i,o input and output sequences
 - their values can be integers sequences or void sequence

Denotational semantic

- Using this representation each language construction is expressed as a function
- Functions show the modifications of the language construction produced on the system state
- All functions + all composition rules represents the semantic definition of the language
- Mathematical metalanguage for denotational semantic is the functional calculus

Arithmetical expression

- dsemEx:EX x S -> Z U {error}
 - S the set of states
 - EX the set of expressions
- dsemEx(E,s)=error
 - if s=<mem,i,o> and mem(v)=undef for a variable v from E; else
- \rightarrow dsemEx(E,s)=e
 - if s=<mem,i,o> and e is the result of E expression evaluation after replacing each v identifier from E with mem(v)
- we assumed that expression have
 - no collateral effects
 - no overflows
 - no type errors

Assignment instruction

- dsemAS:AS x S -> S U {error}
 - AS: the set of assignment instructions
 - dsemAs(x:=E,s)=error
 - if dsemEx(E,s)=error; else
 - \rightarrow dsemAs(x:=E,s)=s'
 - where s=<mem,i,o>, s'=<mem',i',o'>
 - i'=i, o'=o
 - \rightarrow mem'(y)=mem(y) for any y \neq x
 - \rightarrow mem'(x)=dsemEx(E,s)

Read instruction

- x<-read</p>
- dsemRd:RDxS->S U {error}
 - RD the set of read instructions
 - dsemRd(x<-read,s)=error</p>
 - if s=<mem,i,o> and i is void; else
 - dsemRd(x<-read,s)=s'</p>
 - Where s=<mem,i,o> s'=<memi,i',o'>
 - 0= 0' i=li'
 - \rightarrow mem'(y)=mem(y) for all y \neq x
 - mem'(x)=

Instruction sequence

- dsemIS:ISxS->S U {error}
 - SI is the set of al instruction sequences
 - In case of a void list ε
 - \rightarrow dsemIs(ϵ ,s)=s
 - In case of a list T;L
 - dsemIs(T;L,s)=error
 - if dsem(T,s)=error; else
 - desem(T;L,s)=dsem(s(L,dsem(T,s))
 - Dsem describes the semantic of T

If instruction

- if B then L1 else L2 end if
- B is an expression
 - = 0 false
 - ≠ 0 true
- L1,L2 instruction sequences

If instruction

- dsemIf:IFxS->S U {error}
- IF is the set of all if instructions
- dsemIf(if B then L1 else L2 end if, s)=error
 - if dsemEx(B,s)=error; else
- dsemIf(if B then L1 else L2 end if, s)
 - =dsemSi(L1,s) if dsemEx(B,s) \(\neq 0 \); else
 - =dsemSi(L2,1)

While instruction

- while B do L end while
- B is an expression
 - = 0 false
 - ≠ 0 true
- L instruction sequence
- dsemWhile:WHILE x S->S U {eroare}
 - WHILE the set of all while instructions

While instruction

```
dsemWhile(while B do L end while, s)=error
  if dsemEx(B,s)=error; else
dsemWhile(while B do L end while, s)=s
  if dsemEx(B,s)=0; else
dsemWhile(while B do L end while, s)=error
  if dsemIS(L,s)=error; else
dsemWhile(while B do L end while, dsemIs(L,s))
```