

Работа с собственным корпусом Частотные списки, коллокации, ключевые слова

Ольга Ляшевская ** olesar@yandex.ru

Пользовательские корпуса

Несколько примеров

- корпус твиттера / отзывов booking.com
- корпус Михаила Шолохова
- корпус школьных сочинений
- корпус речей президентов США

Обычно отличаются

- размером (сильно больше или сильно меньше, чем BNC)
- доступностью (для себя)
- разметкой (под свои исследовательские задачи)

Please!

Обработка данных для корпуса

Стандартная

- препроцессинг текстов (дубликаты, опечатки, служебная информация)
- метаразметка
- разбиение на предложения, токены
- лемматизация
-

Любой этап может быть пропущен, в зависимости от нужд исследования

Need more corpus **
please!

Частотные списки

- Составляются для
 - всего корпуса
 - о подкорпусов отдельных авторов, жанров, периодов и т. п.
 - о для зоны заголовков, рифмовки в поэзии и т. п.

Л.Н.Толстой, Анна Каренина

1и 12	851	99 лицо	275	999 можете	27	9999 вытянул	2
2 не 6	474	100 сказать	275	1000 мои	27	10000 вытянуть	2
3 что 6	070	101 этот	272	1001 Москвы	27	10001 выучить	2
4в 5	689	102 вас	271	1002 несомненно	27	10002 выучиться	2
5 он 5	526	103 Левина	271	1003 новым	27	10003 выходившей	2
6 на 3	584	104 раз	271	1004 ног	27	10004 выходу	2
						6	OLO

Закон Ципфа

Если все слова упорядочить по убыванию частоты, то частота n-ного слова окажется примерно обратно пропорциональна его рангу (порядковому номеру).

Например, второе по частоте слово встреча примерно в два раза реже, чем первое, треты три раза реже, чем первое, и т. п.

$$freq(w) * rank(w)^{\gamma} = Const$$

Кстати, на материале больших веб-корпусов этот закон выполняется примерно для половины слов. Для морфологически богатых языков (ср. также словоформы - леммы) скорость убывает иначе. ү - поправка Бенуа Мандельброта (1965) к закону Джорджа Кингсли Ципфа (1949). Он выделил голову (стоп-слова), среднюю часть и хвост (гапаксы) - broken power law.

Ловушки частотных данных

- слова, часто встречающиеся в одном тексте (*веснянка, whelk*)
- стоп-слова: часто встречаются во всех текстах (u, μa , $\nu = 0$)
- все частотные меры пытаются оценить, насколько слово характерно для данного подкорпуса и насколько оно нехарактерно для контрастного подкорпуса

Значимая лексика (лексические маркеры): ремарки у Достоевского (Шайкевич и др. 2003)

- ввернуть, вставить, ввязаться, включить, подсказать
- заторопиться, протянуть, поспешить, скороговоркой, впопыхах
- проворчать, промямлить, промычать, прошамкать

Значимая лексика

• частотная мера keyness

• Add-N version:

$$K = \frac{f_{foc} / T_{foc} + N}{f_{ref} / T_{ref} + N}$$

 $f_{
m foc}$ -- количество вхождений слова в фокусном подкорпусе $T_{
m foc}$ -- объем фокусного корпуса $f_{
m ref}$ -- количество вхождений слова в референсном подкорпусе $T_{
m ref}$ -- объем референсного корпуса

• мера логарифмического правдоподобия LL

	Подкорпус	Другие тексты	Весь корпус
Частота	a	b	a+b
Размер	С	d	c+d

На основе этой матрицы значение отношения правдоподобия G^2 (LL-score) можно вычислить как:

$$= 2(a \ln(\frac{a}{EI}) + b \ln(\frac{b}{E2}));$$
где $EI = c\frac{a+b}{c+d}; E2 = d\frac{a+b}{c+d}$

Здесь a, b, c, d — наблюдаемые величины, а E1 и E2 — ожидаемый показатель в сравниваемых подкорпусах (см. Rayson & Garside 2000).

Частотные меры

• TF*IDF

TF*ICTF (term frequency – inverse collection term-frequency)

$$TF*ICTF = \frac{f_d}{F_d} * \log \frac{F_D}{f_D},$$
 где

 f_d – количество анализируемых словоформ/лемм (term) в документе,

 F_d — количество всех словоформ/лемм в анализируемом документе,

 F_{D} – общее количество словоформ/лемм контрастном подкорпусе,

 f_{D} – количество анализируемых слов/лемм контрастном подкорпусе.

• модифицированная

TF*ICTF' =
$$(0.5 + 0.5 \frac{f_d}{F_d}) * \log \frac{F_D - F_d}{f_D - f_d}$$
, где

 $F_D - F_d$ — объем контрастного подкорпуса без объема документа, в которую входит единица, для которой вычисляется вес,

 $f_D - f_d$ – количество анализируемой словоформы в контрастном подкорпусе, кроме количества словоформы в документе, в которую входит анализируемая единица⁹.

Меры дистрибуции появления единицы

- Документная частота
- Range (число секций корпуса, в которых встретилось слово, нп. k = 100)
- Коэффициент D Жуйяна

$$D = 100 \times \left(1 - \frac{\sigma}{\bar{v}\sqrt{n}}\right)$$
,где $\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(v_i - \bar{v})^2}$; $U = fD$ (D модифиц.)

• Коэффициент DP Гриса $DP = \frac{\sum_{i=1}^{n} |O_i - E_i|}{2}$, где O_i , E_i - наблюдаемая и ожидаемая частота в каждом сегменте (могут быть разного размера)

Меры дистрибуции появления единицы

ARF (Averaged Reduced Frequency)

Не больше v сегментов начиная с $(n_{i-1}+1)$ -го по n_i -й содержат слово x

то же количество секций, что и в Range, но разбиение скользит по корпусу, начинаясь с каждого следующего слова

Частотные списки

- Могут представлять
 - словоформы, лексемы (леммы)
 - части речи, пунктуацию
 - о буквы, сочетания букв
 - сочетания слов (биграммы, триграммы для форм и лемм)
 - о (синтаксические) конструкции более сложные запросы
 - пары синтаксически связанных слов (синтаксические биграммы)

N-граммы

И долго буду тем любезен я народу

• биграмма: сочетание словоформ, не всегда информативна

И долго буду тем любезен я народу

- синтаксическая биграмма: сочетание связанных синтаксическим отношением словоформ или лемм
- могут отличаться в зависимости от выбранного способа анализа:

Коллокации

Связанные (несвободные) сочетания слов, характеризуют язык, текст, жанр

N-грамы корпуса на шкале:

случайные сочетания (*и в, красный же...*)
свободные сочетания (вы были)
коллокации (ставить условие, резкий рост)
неоднословные номинации и термины
(Иван Грозный, транспортное средство)
фраземы (идиомы) (ничего себе,
всего доброго)

Коллокации

Можно также опросить носителей языка: характерные сочетания

между молог	пом и
тогда	вопрос, когда же закончится конфликт?
красный как	
К ЧИС	лу сторонников оппозиции

Интересный лингвистический материал:

- лексическая сочетаемость
- лексическая избирательность конструкций
- "легкие" (семантически почти пустые) глаголы и другие слова-функции
- идиоматика

Коллокации

Связанные (несвободные) сочетания слов, характеризуют язык, текст, жанр

N-грамы корпуса на шкале:

случайные сочетания (и в, красный же...)

свободные сочетания (вы были)

коллокации (ставить условие, резкий рост)

неоднословные номинации и термины

(Иван Грозный, транспортное средство)

фраземы (идиомы) (ничего себе, всего доброго)

редкие N-грамы

частые N-грамы

Сила коллокации

Сила связности коллокаций: насколько коллокации не случайны? Самые популярные статистические меры, позволяющие ранжировать выше редкие N-грамы:

взаимная информация (MI, PMI, MI³): $MI(n,c) = log_2 \frac{f(n,c) \times N}{f(n) \times f(c)}$

 $t - score = \frac{f(n,c) - \frac{f(n) \times f(c)}{N}}{\sqrt{f(n,c)}}$ t-score:

f(n,c)	f(n)
f(c)	N

логарифмическое правдоподобие:

• логарифмическое правдоподобие: logDice:
$$\log Dice = 14 + \log_2 \frac{2f(n,c)}{f(n) + f(c)}$$

Ресурсы и литература

- AntConc и его производные (для Windows, MacOS, Linux)
- Ляшевская О. Н., Шаров С. А. Введение к частотному словарю современного русского языка (2011) <u>PDF</u>
- Шайкевич А. Я., В. М. Андрющенко, Н. А. Ребецкая. Статистический словарь языка Достоевского (2003). Введение. <u>PDF</u>
- Захаров В. П., Хохлова М. В. Анализ эфффективности статистических методов выявления коллокаций в текстах на русском языке (2010) <u>PDF</u>

