UNCLASSIFIED

AD 282 658

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

62-4-5 REPORT NO. TDR-69(2240-51)TR-2

CATALOGED BY ASTIA
AS AD No. 282658

The Aerospace Corporation Computer
Programs for the Solution
of Multielement Chemical Equilibria

28 JUNE 1962

Prepared by

S. A. GREENE

Materials Sciences Laboratory

and

H. J. VALE

Computation and Data Processing Center

Prepared for DEPUTY COMMANDER AEROSPACE SYSTEMS

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

Inglewood, California

LABORATORIES DIVISION • ATROSPACE CORPORATION

CONTRACT NO. AF 04(695)-69

THE AEROSPACE CORPORATION COMPUTER PROGRAMS FOR THE SOLUTION OF MULTIELEMENT CHEMICAL EQUILIBRIA

Prepared by

S. A. Greene Materials Sciences Laboratory

and

H. J. Vale Computation and Data Processing Center

> AEROSPACE CORPORATION El Segundo, California

Contract No. AF 04(695)-69

28 June 1962

Prepared for

DEPUTY COMMANDER AEROSPACE SYSTEMS
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Inglewood, California

THE AEROSPACE CORPORATION COMPUTER PROGRAMS FOR THE SOLUTION OF MULTIELEMENT CHEMICAL EQUILIBRIA

28 June 1962

Prepared

S A Greene

Preparedo

Approved

Sol Skolnik, Head

Department of Chemistry

Materials Sciences Laboratory

Approved B

B. A. Troesch, Head Computation and Data

Processing Center

AEROSPACE CORPORATION El Segundo, California

ABSTRACT

Work has been completed on a generalized method for the analytical solution of complex multielement chemical equilibria under all conditions of pressure, temperature, and mass balance. The programs are written for the IBM 7090 and use a unique technique of majors and minors to guarantee automatic convergence. Variations of the basic solution method are applied to problems in chemical synthesis, thermal stability, and chemical compatibility. The programs are also used to obtain theoretical rocket propellant performance and Mollier diagrams.

CONTENTS

ľ.

NOM	IENCI	LATURE	vii					
I.	INTRODUCTION							
II.	OUT	LINE OF PROGRAM	2					
	A.	Basic Equations	3					
	B.	Minors Technique	4					
	C.	Majors Technique	5					
	D.	Program Construction	6					
III.	THE	CRMODYNAMIC DATA	10					
	A.	JANAF Thermochemical and Thermodynamic Data Tables	10					
	В.	Calculation of Thermodynamic Data	15					
	C.	Determination of Thermochemical Data	16					
	D.	Thermodata Tape Monitor Programs	16					
IV.	PRO	OGRAM APPLICATIONS	17					
	Α.	Chemical Synthesis	17					
	В.	High Temperature Stability	24					
	C.	Composition of Flames	29					
	D.	Problems Which Contain Many Elements	32					
	E.	Mollier Diagrams	32					
	F.	Calculation of the Velocity of Sound	47					
	G.	Theoretical Rocket Propellant Calculations	52					

TABLES

1	Elements Contained on Thermodynamic Data Tape	11
2	Example of Tabular Data Contained on Thermodata Tape	12
3	JANAF Thermodynamic Data Table	13
4	Data Table Documentation	14
5	Problem Definition and Input Verification	18
6	Products Selected from Thermodata Tape N2/O2	19
7	Equilibration of N ₂ and O ₂ at 6000 K	20
8	Equilibration of N ₂ and O ₂ at 3500 K	21
9	Equilibration of N ₂ and O ₂ at 2700 K	22
10	Equilibration of N ₂ and O ₂ at 2600 K	23
11	Equilibration of BeO and N ₂ at 3000 K	25
12	Equilibration of BeO and N ₂ at 2300 K	26
13	Equilibration of BeO and H ₂ O at 3000 K	27
14	Equilibration of BeO and H ₂ O at 2300 K	28
15	Composition of $C_2F_4 + 2O_2$ Flame at 2100 K	30
16	Composition of $C_2F_4 + 2O_2$ Flame at 2000 K	31
17	Equilibration of ClO ₃ F and LiBH ₄ at 6000 K	33
18	Equilibration of ClO ₃ F and LiBH ₄ at 1200 K	35
19	Equilibration of ClO ₃ F and LiBH ₄ at 500 K	37
20	Input Verification of Mollier Diagram Program System	
_•	is C ₂ N ₂ F ₈ /NH ₄ ClO ₄ /LiAlH ₄	39
21	Products Selected from Thermodata Tape	4.0
	$C_2N_2F_8/NH_4ClO_4/LiAlH_4$	40
22	Printout of Mollier Diagram Program	43
23	Comparison of Frozen and Shifting γ in O_2/H_2 Mixtures (60 psia)	49
24	Problem Definition and Input Verification	59
25	Products Selected from Thermodata Tape AlH ₃ /O ₂	60
26	Thermodynamic Conditions for Each of 24 Expansion Planes	61
27	Optimum Specific Impulse Tabulation	64
28	Altitude Specific Impulse	65
29	Example with Three Condensed Phases	68

FIGURES

1	Program Construction	7
2	Mollier Diagram	51

NOMENCLATURE

a	speed of sound
a _{i, j}	number of atoms of ith element in jth chemical constituent
A	area
С	specific heat
c*	characteristic velocity
$\mathbf{c}_{\mathbf{p}}^{\mathbf{t}}$	total specific heat of mixtures
C	molar heat capacity
$\mathtt{c}_{\mathbf{F}}$	thrust coefficient
(c _j)	coefficient matrix of the jth constituent based on element columns (column matrix)
$(C. M.)^{-1}$	inverted coefficient matrix of major products based on element rows
F	free energy
g	gravitational constant
h	specific enthalpy
Н	molar enthalpy
$\Delta H_{\mathbf{f}}$	heat of formation
H _o	arbitrary constant associated with elements
${f H}_{f T}^{f o}$	sum of sensible energy and heat of formation
Is	specific impulse
J	mechanical equivalent of heat
ĸ	equilibrium constant

(

weight flow rate m molecular weight M moles N weight of gas or solid pressure p (p_m) partial pressure matrix of major products based on element rows (row matrix) R gas constant S molar entropy specific entropy T temperature velocity u specific volume weight fraction of gases isentropic exponent Υ area ratio density total number of atoms of ith element in system $\sigma_{\mathbf{i}}$ Superscripts

g gaseous species
s condensed species

Subscripts

e exit conditions

g gaseous species

p constant pressure

: (

- s condensed species
- t throat conditions
- v constant volume

I. INTRODUCTION

The position of equilibrium in complex (multielement) chemical systems can be computed from first principles. Given selected thermodynamic and thermochemical data associated with reactants and all possible products, the distribution between products and reactants may be uniquely determined at all pressures, temperatures, and stoichiometries. Required data include: heat capacity, entropy, and heat of formation of products and reactants.

The thermodynamic equations that describe systems which contain many elements cannot be solved in closed form and require iterative procedures. These procedures use thermodynamic properties of constituents as input data. It is the purpose of this report to outline the capabilities and applications of a unique computational procedure for the solution of multielement chemical equilibria. The approach uses a technique of majors and minors to assure automatic convergence.

II. OUTLINE OF PROGRAM

Computer programs which solve complex chemical equilibria may be divided into two categories. One type defines equilibria between constituents and their atomic gases; the other, between the constituents which are present in major quantity and the remainder of the products. These are known as methods of minors and majors, respectively.

The former has the advantage of being general in approach, but it is logically complex. It also leads to numerical difficulties at low temperatures where the concentrations of atomic gases become vanishingly small. The latter has the advantage of rapid and certain convergence provided products are selected which are indeed present in major quantity. However, during expansion (and cooling) of equilibrium products, the major products generally change and provision must be made to examine and reselect major products.

The program system described herein combines the flexibility of the minors approach with the convergence advantages of the majors technique. The detailed logic and numerical methods utilized by the program will not be presented here, but they will be the subject of a future report. The calculational procedure is qualitatively the following:

a) The problem is solved at 3000 K using the minors technique. At 3000 K, the concentration of atomic gases is adequately high and convergence is assured.

Since iterative procedures are utilized, it is necessary to initiate the problem with an estimate of the concentrations of atomic gases. These estimates are stored internally within the program and obviate guesses by the program user. Mass balance and pressure balance equations are applied, and the solution at 3000 K is attained even though the initial atomic gas concentration guesses may be incorrect by factors of 10^{10} .

b) When initial convergence has been attained, a generalized major product selection routine is given control. A set of major products may be defined as that list of products in which each element appears at least once and which contains the majority of the elements. As many major products are chosen as there are elemental types. Only gaseous products are considered as candidates. The routine can select a new set of major products at any time during the problem solution.

A. Basic Equations

(

Some of the basic equations which are solved in the program may be represented by the following:

1. Conservation of Atomic Types (Mass Balance)

$$\sigma_{i} = \sum_{j=1}^{\beta} a_{i,j} n_{j}$$
 (1)

2. Conservation of Pressure

$$p = \sum_{j=1}^{\beta} p_j$$
 (2)

3. Chemical Equilibrium

$$K_{j} = \frac{p_{j}}{\prod_{i=1}^{n} (p_{i}) a_{i, j}}$$
(3)

The mathematically rigorous definition will be presented in the previously mentioned, future report.

or using matrix notation for the generalized major product solution

$$\ln K_{j} = \ln p_{j} - (C.M.)^{-1} (C_{j}) (p_{m})$$

and, since

$$\Delta F = \Delta H - T \Delta S = -RT \ln K$$
 (4)

we have

$$\ln K_i = \frac{-\Delta H}{RT} + \frac{\Delta S}{R}$$
 (5)

4. Conservation of Static Enthalpy

$$h = \sum_{j=1}^{\beta} n_j (H_T^0)_j$$
 (6)

B. Minors Technique

Using the method of minors, equilibrium constants for constituents are computed in terms of equilibrium between the constituents and their atomic gases. To illustrate, consider the system H, O, OH, and H₂O; equilibria are set up in terms of

$$OH = O + H \tag{7}$$

$$H_2O = O + 2H \tag{8}$$

The thermodynamic state of the system is fixed by specifying the total amounts of the elements, σ_i , and the total pressure, p. The state of the system can be redefined in terms of pressure, temperature, and concentrations of atomic gases, from which the concentration of the chemical constituents may be computed.

For solution at a given temperature, estimates of the concentration of atomic gases are made from which concentration of constituents follow; the mass balance and total pressure restraints are, of course, taken into account. The equilibrium constants for OH and $\rm H_2O$ are, respectively,

$$\ln K_{OH} = -\left[\frac{(H_{T}^{o})_{OH} - (H_{T}^{o})_{H} - (H_{T}^{o})_{O}}{RT}\right] + \left[\frac{(s_{T}^{o})_{OH} - (s_{T}^{o})_{H} - (s_{T}^{o})_{O}}{R}\right]$$
(9)

$$\ln K_{H_2O} = -\left[\frac{(H_T^o)_{H_2O} - 2(H_T^o)_H - (H_T^o)_O}{RT}\right] + \left[\frac{(S_T^o)_{H_2O} - 2(S_T^o)_H - (S_T^o)_O}{R}\right]$$
(10)

From the In K, values, the partial pressures of the jth chemical constituents are computed using Eq. (3). Where the problem is one of combustion at constant pressure, and a flame temperature is sought, the restraint of Eq. (6) must be considered.

Estimates of concentration (and temperature, when necessary) are repeated until convergence is obtained; the iteration controls and sequencing are complex and are beyond the scope of this report.

C. Majors Technique

(

Each element in a problem requires a major product, and all elements must be represented in the major products at least once. If we select H₂O and H as the major products in the system H, O, OH, and H₂O, then

$$H_2O - H - OH$$
 (11)

$$H_2O - 2H = O$$
 (12)

and all products are represented. Equations (9) and (10) then become

$$\cdot \ln K_{OH} = -\left[\frac{(H_{T}^{o})_{OH} - (H_{T}^{o})_{H_{2}O} + (H_{T}^{o})_{H}}{RT} \right]$$

$$+ \left[\frac{(S_{T}^{o})_{OH} - (S_{T}^{o})_{H_{2}O} + (S_{T}^{o})_{H}}{R} \right]$$
(13)

$$\ln K_{H_2O} = -\left[\frac{(H_T^o)_O - (H_T^o)_{H_2O} + 2(H_T^o)_H}{RT}\right] + \left[\frac{(S_T^o)_O - (S_T^o)_{H_2O} + 2(S_T^o)_H}{R}\right]$$
(14)

For each nonmajor product, one equilibrium constant needs to be computed.

D. Program Construction

The program 18 coded in the FORTRAN system and will run on any IBM 7090 EDPM with two on-line channels of at least 7-tape units per channel. The program will consider up to 150 chemical constituents and a maximum of 15 chemical elements per problem.

Each complete program consists of an input or precomputation section, the main computation program, and an output program. A schematic is shown in Fig. 1.

When the program recognizes the chemical elements involved in the problem, the thermodata tape is searched, and all constituents which contain these elements are transferred into core with their corresponding tabular thermodynamic data. A program sophistication allows the program user to specify these constituents which are to be considered, if he so desires.

Fig. 1. Program Construction

The technique for the solution of chemical equilibria is sufficiently general and independent of application so that it may be incorporated into a variety of special purpose programs. To date, the following computation programs are included:

1) Chemical Equilibria,

(

- 2) Adiabatic Flame Composition,
- 3) Mollier Diagrams, and
- 4) Theoretical Rocket Propellant Performance.

In the FORTRAN programming system, all main programs form chain links and use the same program library and thermodynamic data reference tapes.

The precomputation, or input, program produces the mass balance and data verification sheets. The input data consists of the following information:

- tape unit specification of all tapes including input, output, data library, and program library;
- 2) titles;
- 3) control indicators to select the proper computation program;
- 4) ingredient formulation consisting of name, elements, and coefficients contained and heat of formation of the ingredient;
- 5) combination ratio of ingredients: either moles of each, mole per cent, weight per cent, or mixture ratio;
- 6) specifically included or excluded constituents optional; and
- 7) any specific data applicable to the computation chain involved, such as enthalpy-entropy boundaries in the Mollier diagram.

All control is internal within each computational program; no computer console settings are required. The only special treatment involved is the loading of the thermodynamic reference tape and the program library. All iteration loops are checked for iteration limits, and an exit procedure is initiated in case of excessive loopings.

The programs named above use a basic solution block consisting of four subroutines. These perform the functions of examining major products, building and solving the iteration matrices, and applying the matrix answers. The same subroutines are used in all main calculation programs. The varying types of solutions are obtained by means of control indicators set in the main program and used in the basic block. The basic block can construct and solve any of the following equation systems:

- constant temperature solution of mass balance and pressure balance equations;
- 2) solution of mass and pressure balance equations plus an enthalpy balance-seeks a flame temperature;
- system (1) plus entropy balance (isentropic expansion to assigned pressure);
- 4) constant total enthalpy solution and entropy balance (expansion to assigned mach number);
- 5) constant entropy point solution (to obtain $(\partial p/\partial \rho)_s$ for acoustic velocity determinations); and
- 6) constant pressure point solution (to obtain $(\partial n/\partial T)_p$ for C_p determination).

The only program using all the available matrices is the Rocket Propellant Performance Program. The Chemical Equilibria, Mollier Diagram, and Adiabatic Flame Composition Programs use combinations of (1) and (2).

III. THERMODYNAMIC DATA

From Eqs. (9) and (10) we see that thermodynamic data required for the solution of equilibrium constants include entropy and enthalpy. Since

$$H_{T}^{o} = \Delta H_{f}^{o} + \int_{o}^{T} C_{p} \Delta T$$
 (15)

we find that H_T^0 is the sum of the sensible enthalpy and chemical energy (heat of formation). Aside from entropy, we require heat capacity and heat of formation data.

Data which are currently available to the Computer Program include the important products of the elements listed in Table 1. While ionic species are not yet included, provision has been made for their incorporation (E is electron). Data on the thermodynamic data tape are composed of heat of formation and heat capacity, enthalpy, and entropy in tabular form from 0 to 6000 K in 100 deg increments. Table 2 illustrates a dump of a constituent contained on the tape.

A. JANAF Thermochemical and Thermodynamic Data Tables

In order to furnish Department of Defense contractors with consistent tables of thermodynamic and thermochemical data, the Joint Army-Navy-Air Force Thermochemical Panel was established in 1960. Under AF 33(616)-6149 and numerous other contracts, thermodynamic data were to be compiled, generated, evaluated, and disseminated in tabular form and on IBM cards. Main contributors include the Dow Chemical Co. (who issue the Tables), National Bureau of Standards, U. S. Bureau of Mines (Bartlesville), and the University of Wisconsin. Table 3 illustrates the format of the tables, while Table 4 shows data documentation observed on their reverse side.

Table 1
Elements Contained on Thermodynamic Data Tape

C

				# # # # # # # # # # # # # # # # # # #								146
		39986	2.21359921 1.86579999 2.05544999		54669952 52509918 18759918	99981 99954	100 100 100 100 100 100 100 100 100 100	.50000050 .02899961 .66699962		61.48099995 MUMBER OF PRODUCTS=278		
	AEROSPACE CORP.	H 34-72039986	0 N		MG 253.54669952 AL 233.62509918 SI 250.18759918	K -20.0289981 CA -44.55899954	· · · · · · · · · · · · · · · · · · ·	8R 2.50006660 RB -19.02899961 ZR 389.6699962		NUMBER OF ELEMENTS=30 NUMBER OF PR	#1 #1	
WA. 29, 1992			·						1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NUMBER		

Table 2 Example of Tabular Data Contained on Thermodata Tape

· · · · · · · · · · · · · · · · · · ·	NEW WIN	STATE INDICATOR 1	S I CP H S 1.0 E 2.922 - 2000.00 25.752 +3.097 131.748 - 4.100.00 25.814 97.264 06.230 - 2100.00 25.759 45.672 133.004 - 4.200.00 25.815 99.845	91.102 • 2600.00 25.7 96.530 • 2700.00 25.7	3.964 • 3200.00 25.802 74.034 143.865 • 5300.00 25.822 120 16.398 • 3300.00 25.804 76.616 144.659 • 5400.00 25.823 130 18.624 • 3400.00 25.806 77.197 145.429 • 5500.00 25.823 133	126.006 • 3800.00 25.811 89.520 148.300 • 5900.00 25.825 143.741 1 127.565 • 6000.00 25.825 144.323 1
			~ • •	3 91.102 6 96.530 7 101.051	.427 113.964 • .981 116.398 • .539 118.624 •	5 126.006 • 6 127.565 •
MAR 29, 1962			48.00 15.860 150.00 17.861 150.00 17.861 200.00 20.538	796.15 22.943 100.00 24.007 100.00 24.007 100.00 24.943	1000.00 25.509 17 1100.00 25.564 19 1200.00 25.607 22	1800.00 25.705 32.80 1700.00 25.720 35.37

Table 3 JANAF Thermodynamic Data Table

Beryllium (Be)

(Ideal Gas) Mol. Wt. = 9.013

()

	•	cal. mole ⁻¹ d	- ,		keal. molo ⁻¹ -	,	
T, *K.	C;	5*	-(F*-H***)/T	HH.	▲H;	△F †	Log K
•	-000	•000	INFINITE -	1.461	77.241	77.741	INFINITE
100	4.900	27.110	14.962 -	. 964	77.728	79.029	+ 163.060
200 206	4,960	30.561	12.000 -	.400	78.007	72.177	- 78.867
296	4,960	72.545	17.545	•000	70.255	49.731	- 50.745
100	4.968	32.576	32.545 32.740	• 009 • 504	76.257 76.315	69.175 66.137	- 50.392 - 36.134
100	4.960	35.114	39-108	1.003	70. 307	43.093	- 27.576
•00	4.968	34.019	33.520	1.500	78.262	40.053	- 21.671
700	4.968	36.785	13.033	1.996	78.187	\$7.024	- 17.801
900	4.968 4.968	37.449	34.332 34.711	2.493 2.990	78.089 77.969	54.007 51.004	- 14.751 - 12.389
000	4,966	30.557	35.070	3.407	77.025	40.015	- 10.491
100	4.968	39.031	35.400	3.984	77.658	45.042	- 0.941
200	4.960	39.463	35.720	4.481	77.466	42.085	- 7.664
300	4.960	39.861	30.032	4.077	77-291	39-146	- 6.501
1400 1500	4.968	40.229	16.310 16.501	5.474 5.071	77.012 7 6. 748	36.223 33.316	- 5.654
1 600	4.940	40.892	36.850	4.468	73.704	30.511	- 4-167
700	4.960	41-193	37.097	6.965	73.510	27.017	- 3.576
1800	4.968	41.477	37-332	7.461	73.30	25.135	- 5.052
900	4.960	41.746	37.557	7.050	73.103	22.464	- 2.504
000	4.969	42-001	97.779	0.435	72.002	19.804	- 2-164
1 1 0 0 1 7 0 0	4.969	42.243	37.980 38.179	9.449	72.676 72.454	17.155 14.516	- 1.785
2 300	4.972	42.695	36.971	9.946	72.220	11.000	- 1.134
1400	4.974	42.907	18.556	10.443	71.000	9.271	844
1500	4.977	44-110	38.794	10-941	71.741	4.661	501
1600	4.907	41.306	10.704	11.430	71.521	4.043	- +342
? ? 99			39.072	11.937 T2.437	71.270	1:373	
1900	5.007	45-051	19.390	12.037	-900	•000	.000
000	5.021	44.021	30.541	13.436	.000	.000	.000
100	5.037	44.186	39.600	13-941	.000	•000	•000
300	5.097	44.346	19.632	14.446	.000	.000	.000
3 300 3 400	5.001 5.109	44.502	19.971 40.106	14.999	.000	• 000 • 000	•000
3500	5-142	44.802	40.238	15.075	•000	•000	•000
3600	5.179	44.948	40.367	16.491	.000	.000	.000
1700	9.221	45.090	40,493	17-010	.000	•000	•000
3000	9.200	45-230	40.616	17-539	•000	.000	.000
900 4000	9.320 9.37 0	45.346	40.736	18.064	•000	•000	•000
100	5.440	45.637	40.968	19.140	.000	.000	•900
200	5.508	45.766	41.061	19.007	.000	.000	•000
100	5.501	45.899	41.192	20.242	.000	.009	.000
400	5.658	46-078	41.300	30.000	•000	•000	.000
1500	5.741	46.196	41.404	23.374	•000	.000	•000
4 600 4 7 9 0	5.020 5.019	44.203	41.911 41. 6 14	55-930	•000	•000	.000
1800	6.014	44.535	41.715	23.134	• 900	•000	.000
1900	0.113	44.660	41.815	23.742	.000	•000	.000
9000	0.219	44.789	41.91?	24.390	.000	.009	.000
100	0.320	44.900	42-010	74.905	•000	•000	.000
5 200 5 100	6.426 6.336	47.033	42.105 42.100	25.623 26.271	•000 •000 •000	-000	•000
3 400	4.450	47.194	42.292	26.930	- 000	• 000	.000
3300	4.761	47.402	47.304	27.601	.000	.000	.000
1400	4.677	47.525	42.475	28.203	.000	.000	.000
700	4.991	47,648	42.564	20.076	.000	.000	-000
9 000 9 000	7-100	47.771	42.653	29-661	-000	•000	•000
• • • • • • • • • • • • • • • • • • •	7.224 7. 340	47,899	47.741 47.070	30.390	.000	.006	.000
		~~					

NAF THERMOCHEMICAL DATA

Table 4 Data Table Documentation

BERYLLIUM (Be)

(IDEAL GAS)

MOL. WT. - 9.013

 $\Delta H_{FO}^{o} = 77.241 \text{ kcal. mole}^{-1}$ Ground State Configuration 1 S.

 $\Delta H_{1298.15}^{\circ} = 78.25 \pm 0.5 \text{ kcal. mole}^{-1}$ $3_{298.15}^{\circ} = 32.545 \text{ cal. deg.}^{-1} \text{ mole}^{-1}$

Electronic Levels and Multiplicaties

€ 1, cm1	<u>6,</u>	€1, cm1	<u>61</u>	ϵ_1 , cm. ⁻¹	<u> </u>
0.0	1	67943	15	73089	3
21 980	9	68 781	5	73141	1
42565	3	69009	3	73520	5
52082	3	69322	1	73608	1
54677	1	69634	9	73803	15
56432	5	70606	15	73867	5
58 791	9	71002	5	73930	1
59696	9	71162	3	74071	15
60187	3	71320	1	74117	5
62054	15	71483	9	74163	1
64428	5	71499	1	74269	15
64507	3	72030	15	74301	5
65245	1	72251	5	74416	15
65949	9	72355	3	74443	5
67228	3	72448	1	73430	15
		72862	15		
		73017	5		

Nest of Formation.

Derived from a third law analysis of the vapor pressure data. See Be crystal for references.

Meet Capacity and Entropy.

Electronic levels and multiplication from C. E. Moore, Motl. Bur. Standards Circ. 467 (1949).

These data are used almost exclusively. Data are updated biannually by the Panel, and working meetings are held triannually. Information on almost 550 solid, liquid, and gaseous constituents are available over the 0 to 6000K range or where applicable.

While the tabular data are currently available only to 6000 K, no difficulties are anticipated in extending this range. The Tables may simply be extended by appropriate calculation or a simple routine utilized within the computational program which would extrapolate data to temperatures greater than 6000 K. There is no limit to the maximum temperature, provided ionic species are considered.

B. Calculation of Thermodynamic Data

The bases for thermodynamic data calculation are standard to statistical mechanics.

Assignments for ideal monoatomic gases include translation and electronic contributions.

For ideal diatomic gases, contributions from translation, rotation, vibration, and electronic transitions are included. When available, spectroscopic constants are utilized; otherwise, appropriate molecular models are used. Anharmonicity corrections are made when adequate data are available.

For linear polyatomic molecules, anharmonic corrections are neglected.

The rigid rotator, harmonic oscillator approximation is utilized for nonlinear polyatomic molecules, and anharmonic corrections are neglected.

Thermodynamic data of condensed phases rest upon either measured or estimated heat capacity data. Heats of transition are either experimentally determined or theoretically estimated and are included in enthalpy and entropy totals.

[&]quot;The present computation system automatically adds a charge balance equation when ionic species are included in the problem.

C. Determination of Thermochemical Data

Generally, the most important thermodynamic or thermochemical datum is the heat of formation of the constituent. Heats of formation are directly obtained from calorimetric measurements or indirectly from bond energy contributions as estimated from spectroscopic data or calorimetric data. Second law heats are utilized as indirect estimates when necessary.

D. Thermodata Tape Monitor Programs

Programs which maintain and update the thermodata tape are independent of the calculational program. The monitor routines will alter any of the data as given in Table 2 as well as add or delete elements or constituents. In every case of data alteration, the tape identification number is updated as the first action. Where different individuals require their specific data tapes, a number of tapes may be written.

IV. PROGRAM APPLICATIONS

The development of the capability to predict chemical equilibria in systems under analytical or experimental investigation is a valuable adjunct to problems involving chemical synthesis, materials development and testing, laboratory flames, chemical propulsion, and aerodynamics. Whenever possible, thermodynamic calculations should be applied to experimental programs. Consideration of the thermodynamics of the situation can save a great deal of experimentation in terms of a priori analysis.

A. Chemical Synthesis

0

Experimental attempts to create new molecules through synthesis or high temperature equilibration can be placed on a sound basis by computing the equilibrium composition of products under specified reaction conditions. For illustrative purposes, consider the synthesis of nitric oxide (NO) by the high temperature equilibration (over a catalyst) of an arbitrarily chosen equimolar mixture of nitrogen and oxygen. (See Tables 5 - 10.) Input data to the program include the following which must be specified:

- 1) molar or weight concentrations of reactants;
- 2) total pressure(s) at equilibration; and
- 3) temperature(s) at equilibration.

For an example (only a few points are illustrated), 69 temperatures from 6000 to 300 K were computed at a total pressure of 1 atm in 2.6 min. Between 6000 and 1000 K, temperature increments were 100 K; 1000 to 500 K, increments were 50 K; and 500 to 298. 16 K, increments were 25 K.

Table 5 shows the problem definition and mass balance sheets followed by an automatic statement of the products selected for consideration and their heats of formation (Table 6). Tables 7 - 10 show the computed equilibria at various temperatures. Included are their reactant and product concentrations and their individual heat capacities (CP), enthalpies, entropies, and free

Table 5
Problem Definition and Input Verification

CHENICAL SYNTHESIS	MOLE PERCENT 50.00000000	MASS BALANCE (MOLES/GN) 0.3332447E-01		OF FORMATION (KCAL/MOLE)= 0. OF EDRHATTON (KCAL/NOTE)
AEROSPACE CORPORATION Example	FANT MOLES 1.00000000	MASS 8 1.0000		NUMBER OF ELEMENTS 1 PEAT OF FORMATION (KCAL/MOLE)- KUMBER OF ELEMENTS 1 PEATE OF FORMATION (KCAL/MOLE)-
	CCMPCNENT WEIGHT PERCENT N2 N2 N6.68033 N6.680833 N6.680833	ELEWENTS H O	JAPUT VERIEICATION	COMPONENT N2 7 N 2.0000 7 N 2.0000 7 N 2.0000

Table 6 Products Selected from Thermodata Tape ${
m N_2/O_2}$

-

	112.96504402 59.55014181 21.59.91818 6.011505 6.0110088 19.49022865 0.	**
	HEAT OF FORMATION 113 HEAT OF FORMATION 5 HEAT OF FORMATION 7 HEAT OF FORMATION 19 HEAT OF FORMATION 19 HEAT OF FORMATION 33 HEAT OF FORMATION 33	
DSEN ARE THE FOLLEWING	NO NO NO N20 C2 C3 C3	
******* PRODUCTS CH		

Table 7 Equilibration of N_2 and O_2 at 6000 K

CHENICAL SYNTHESIS		H-TS	366.9698
CHEN	9809 7.1189	ENTROPY 51,0215 54,6517 75,1673 86,6732	69.9966 7 1 6200 7 1 1000
EXAPPLE	PRESSURE (ATM) 1.0000 SYSTEP ENTHALPY (KCAL/GH) 1.6096 SYSTEP ENTHALPY (KCAL/GH) 1.6096 SYSTEP ENTROPY (CAL/GH-DEGE 3.1899 SYSTEP GAS CP 0.33923	CP ENTHALPY 6.1000 144.6299 5.3234 76.5893 9.3128 75.7274 13.8657 90.1947	
	PRE SYSTEP E SYSTEP EN SYSTEP EN	DLCT MOLE FRACTICN 0.118530%5 0.018454207 0.01134531	0.25086433 0.000CC039 0.00499743 0.000CC000
JAPE NO 7/11/61		PRODUC N O NO NO	N2 N20 028

Table 8 Equilibration of N_2 and O_2 at 3500 K

(

CHEMICAL SYNTHESIS	33	ENTHALPY ENTROPY H-TS	48.8670 50.8695 70.2430 79.2188	30.3832
EXAPPLE	PRESSURE (ATM) 1.0000 TEPPERATURE (DEG K) 3500.00 TEP ENIMALPY (KCAL/GP) 1.70 EM ENTROPY (CAL/GM-DEG) 2.5 SYSTEM GAS CP 0.31220	5	5.0855 5.0412 9.0458 13.7798	14.7067 9.7620 13.8326
	PRESS TEMPERA SYSTEM ENTR SYSTEM ENTR	MOLE FRACTION	0.25614004 0.25614005 0.06762285 0.0076057	0.00000259 0.274c4840 0.274c4840
19/11/2		PRODUCT	K 0 2 2 2	02
9 41	and the first rest			

Table 9 Equilibration of N_2 and O_2 at 2700 K

(

	SYSTEM GAS CP 0.30336 PRODLCT MOLE FRACTION CP ENTHALPY ENTROPY H-TS	NO 0.03821791 8.9285 45.5722 67.9105 -137.7862 NO2 0.000C0073 13.6931 44.6165 75.6531 -159.6468 N2 0.47479122 8.8006 23.2881 62.8229 -146.3338
--	---	--

C

Table 10 Equilibration of N_2 and O_2 at 2600 K

s presentable	All Market Mary		
CHENICAL SYNTHESIS		8	95
ENICAL		H-TS	-140.0662
5		ENTROPY 67.5739	
	1.0000 .30213	ENTHALPY ••••6803	22.4091
EXAMPLE	PRESSURE (ATM) 1.000 SYSTEM GAS CP 0.30213	CP 8-9103	8.7792
	PRES	FRACTION 63321340	17942264 1
		NCT MOLE F	0
		PRODUCT NO NO	NZ I

energies (H-TS). System enthalpies, entropies, and heat capacities (frozen equilibria) are also tabulated. From the example, it was concluded that a maximum concentration of NO for the given stoichiometry end pressure would be attained at approximately 3500 K.

It should be noted that the program can yield adiabatic flame temperatures. Since the enthalpy* of NO at 298.16 K is

$$h = \frac{\Delta H_f + H_o^o}{M}$$

$$= \frac{+ 21.60 + [(1) (1.89) + (1) (2.06)]}{30}$$

$$= 0.85$$
(16)

0.85 kcal/gm, we would calculate that the adiabatic decomposition flame temperature of NO (initially at 298.16 K) is between 2600 and 2700 K (see Tables 9 and 10). Plots of system H vs T over small temperature intervals are linear, and linear interpolation is justified.

B. High Temperature Stability

In many cases it is desired to predict the thermal stability or compatibility of refractories or other materials at elevated temperatures in reactive and inert atmospheres. Tables 11 - 14 illustrate thermodynamic computations of the refractory beryllium oxide in gaseous nitrogen and water vapor. The calculations refer to the stoichiometries

Stability - BeO +
$$N_2$$

Compatibility - BeO + H_2 O

in closed systems and predict the distribution of products which would be

^{*}ΔH_f from Table 6 and H_O from Table 1.

Table 11 Equilibration of BeO and $m N_2$ at 3000 K

			74 (14) 10 (14) 10 (14)				a yesini
1			dur		an e r		
E							
Smont.	∓ -75	2-1590 11-4894	-85.7739	303 - 51 12. 5632		96. 84 00 65. 2593	
			***		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
	ENTROPY	50.0v.)	100.0176	0960°L1 6659°99 7769°71		18.6747	
				7			•
0000-1	ENTHALPY	121:5	214.2786	57.6335 40.2583 40.7308		152. 86 41 36.7120	
	w	1 2		- 6 -			
PRESSURE (ATM)	5	2*00*c	19.6799	6.9773 13.7334		7.5000	an a l
PAGESSU	8	- ·		v	(X)	. 4	
	FRACTION	16246000 16246000	00027947	0.00042605 0.00042605 0.0006000	20 20 20 20 20 20 20 20 20 20 20 20 20 2	+850134	
	MOLE	00	0.0	000			***
	PRODUCT				enter		, I
	PRO	0 6 6 6	0£202	ME 606 NO NO2			
		and the second	we.		, i		\.\.\.

Table 12 Equilibration of BeO and $\rm N_2$ at 2300 K

C

STABILLITY		ENTROPY H-TS	7 6 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
EXAMPLE	PRESSURE (ATM) 1.0000 TEMPERATURE (BEG KI 2300.00 TYSIEM ENTRIPY (CAL/GR DEG) 1.63 SYSTEM ENTRIPY (CAL/GR DEG) 1.63	CP ENTHALPY	4.9124 [18. 19.] 4.9797 [1.6350] 8.9637 [180.6317] 19.5481 200.5430 21.1412 [20.5430] 21.1412 [20.5430] 21.1412 [20.5430] 21.1412 [20.5430] 21.1412 [20.5430] 21.1412 [20.5430] 21.1412 [20.5430] 21.1412 [20.5430] 21.1412 [20.5430] 21.1413 [20.5430] 21.1414 [20.5430] 21.1415 [20.5430
	PRESIDENT CONTROLL OF CONTROL OF C	PRODUCT MOLE FRACTION	0.0000001 0.00000019 0.00000001 0.00000001 0.00000000 0.00000000
TAPE 42 3720/62		¥ d	8 E E E E E E E E E E E E E E E E E E E

Table 13 Equilibration of BeO and $\rm H_2O$ at 3000 K

(

BEIDHIZ 0.00024693 25.4312 106.4619 96.3781 -183.835 HZO 0.34987881 13.1300 43.6948 68.3292 -161.2928 BEO 0.000006698 9.0667 186.9448 66.1427 -11.4834 DE 202 0.000030470 19.6799 214.2788 100.0176 -85.7739 DE 202 0.00030470 19.6799 214.2788 100.0176 -85.7739 DE 202 0.00000120 11.617 24.1516 12.9857 12.1518 DE 504 0.000002120 66.8561 337.6335 222.8522 -330.9231 02 0.000002120 66.8561 337.6335 222.8522 -330.9231 03 0.000000000 13.8047 75.6593 85.7902 -181.7114	
	OWING C. 06024693 27. 6912 IDG. 6419 96.7781 0 0.34987881 13.1300 43.6948 68.3292 0 0.00006698 9.0667 186.9448 66.1427 202 0.00030470 19.6799 214.2788 100.0176 803 0.00030470 19.6799 214.2788 100.0176 404 0.00082787 11.196 11.266 11.266 505 0.00002120 66.8561 337.6335 222.852 0.00002120 66.8561 337.6535 67.9797 0.00000000 13.8047 75.6593 85.7902

Equilibration of BeO and $\rm H_2O$ at 2300 K Table 14

TAPE

							1														
COMPATIBILITY		H-15	10.4085	120.9307	-40.5359	126.4326	-20.4231	-13.6551	-21.6026	-117.9288	-114.6113	34.0136	-17.5075	-78.5812	-97.4345	-133.9851	-180.8567	-129.6358	-122.8834	109.2457	-44.4720
		ENTROPY	31.5424	42.6955	48.7700	58.3485	14.0095	59.0639	46-1712	89.9163	64.9241	63.7470	94.8046	119.5868	143.4614	177.3572	205.1475	65.4904	. 82.1311	16.6819	25.3134
	1.0000 K1 2300.00 L/GM 1.1691 M-DEG) 2.117 0.29046	ENTHALPY	96.7561	219-1303	71.6350	260.6341	149.7986	62.1918	84.5911	88.8786	34.7142	180.6317	200.5430	196-4684	232.5267	273.9357	290.9825	20.9920	66.0182	1419-141	2052-61
EXAMPLE	PRESSURE (ATM) 1.00 EMPERATURE (DEG K1 230 EM ENTHALPY (KCAL/GM) M ENTROPY (CAL/GM-DEG) SYSTEM GAS CP 0.2904	65	4.9681	4.9717	4.9797	9.0251	12.9609	8.4710	8-4219	24.6401	12.4826	8.9637	19.5481	31.1472	42.7463	54,6851	66.3691	9.1940	13.7319	7.5000	15,2650
	PRES SYSTEM EN SYSTEM ENT SYSTEM ENT SYSTEM	MOLE FRACTION	0.00071371	0.00000000	0.00023155		0.00003609	0.00448672		0.00005935	0.48290771	0.0000000	0.0000000	0.00000310	0.00000001	0.00000000	0.0000000		0.00000000		
3/28/62		PRODUCT	I	36	, ວ	BEH	BEOH	· · · · · · · · · · · · · · · · · · ·	H2	8F (OH)2	H20	960	BE202	8E303	85404	8E505	8E606	02	03	CONC	960 COND
. 24																				P	,

observed after an infinite length of time. The tables show that in nitrogen condensed BeO decomposition proceeds through the formation of the gaseous BeO polymers. In water vapor, the gaseous hydroxides play a major role. The partial pressures of the constituents are simply their mole fractions multiplied by the total pressure.

C. Composition of Flames

The computer programs can be of great value to problems which investigate flame phenomena. Input data to the program would consist of oxidizer and fuel stoichiometry and ambient pressure. These conditions would define a premixed flame or a rocket exhaust jet. The actual flame temperature at a given stoichiometry and pressure would easily be calculable from the thermodynamic and thermochemical data of the oxidizer and fuel.

Tables 15 and 16 list the flame compositions of the system tetrafluoroethylene-oxygen ($C_2F_4 + 2O_2$) at ambient pressure. The calculations were made in support of a laboratory program which will investigate the flame in order to give insight into the phenomonology of Teflon ablation in air. One of the surprising results is the extremely high concentration of fluorine atoms. For a given stoichiometry and pressure, this program does not automatically compute the adiabatic flame temperature; these would be hand calculated as shown in Section IV. A., Chemical Synthesis. Oxidizer and fuel enthalpy is 1.00 kcal/gm which yields an adiabatic flame temperature between 2000 - 2100 K.

Calculations, such as those illustrated in Tables 15 and 16, would appear to be an aid toward the prediction of the radiative signatures of rocket exhaust jets. Since the flame composition and temperature is predicted, the concentration of the emitters from first principles has been established. These calculations are, of course, based on thermodynamic equilibrium and do not recognize the existence of excited emitters or other nonequilibrium phenomena.

Table 15 Composition of C_2F_4 + $2O_2$ Flame at 2100 K

(

PRESSURE (ATH) 1.0000 PRESSURE (ATH) 1.0000 SYSTEM FRINGE (ATH) 1.0000 PRODUCT MOLE FRACTION CP ENTHALPY ENTROPY C
--

Table 16 Composition of C_2F_4 + $2O_2$ Flame at 2000 K

COMPOSITION OF FLAME	PRESSURE (ATM) 1.00000 SYSTEM GAS CP 0.29409	PRODUCT MOLE FRACTION CP ENTHALPY ENTROPY H-TS	F3 0.00012941 19.5045 87.4732 94.4888 F4 0.06008898 25.2259 39.5021 103.3663 E4 0.06008898 25.2259 39.5021 103.3663 E 8.8390 394.9572 64.3808	U3 0.00000000 13.6757 61.9065 80.2157 -98.5249 F2 0.00038378 9.2043 78.0056 64.6930 -51.3804 C SOLID 0 5.7577 100.5232 9.7202 81.0827	
100 S - 128		98	353	Manager at 1	

For the premixed flame, the specification of oxidizer and fuel stoichiometry is reasonable since one expects and observes predicted flame temperatures, radiation, and compositions. However, many processes of interest to the aerospace sciences, such as ablation, must be approximated by a diffusion flame. There is transport of material through the boundary layer, and the flame stoichiometry is not well defined. However, flame temperatures near the theoretical maximum are often observed in diffusion flames although there is no true final flame temperature.

D. Problems Which Contain Many Elements

Tables 17 - 19 illustrate a problem which contains six elements. As seen from the Tables, condensed phases may appear and disappear. Computation time is somewhat increased over that with fewer elements; there are no increased computational difficulties.

E. Mollier Diagrams

(

Isobaric and isothermal curves on an enthalpy-entropy plane for a given stoichiometry result in a Mollier diagram. Such diagrams are of general utility in power-plant design and thermodynamic analysis. Mollier diagrams are usually presented for single constituents, but the computer routines described in this report are general in nature. Thus, data for the Mollier diagrams can be easily and automatically computed for systems which contain numerous constituents.

Printouts from the current Mollier Diagram Program are illustrated in Tables 20 - 22 and are produced at various pressure and temperature intervals specified by the program user. In practice, points are generated by computing points at equally spaced temperatures along an isobar. When computations have been completed for a temperature range and pressure, the program proceeds to the next pressure. The following data are printed out at each pressure and temperature:

Table 17 Equilibration of CIO_3F and $LiBH_4$ at 6000 K

NAW GLENENTS		M-TS 29.2183 -231.3391 -240.4390	-19-5748 -45-0555 -310-33-7	-486.2470 -382.0144 -146.4459	-310-400 -323-4235 -44-9505	-445-7304 -445-7304 -207-0731 -421-7923
		ENTAGPY 21.5340 53.2547 53.2404	53.17.8 106.8963 67.6558	136.4087	7.2.3703 7.2.703 7.2.841 7.5.5337	136-173 136-173 73-3037 94-9432
	1 1.0000	336.790 90.593 79.0044	375.662	333.9650 84.0362 399.4451	[35.5407 [43.2809 366.2439	305.3110 232.7430 147.9011
EXAMPLE	PRESSURE (ATM) 1.000 SYSTEM GAS CP 0.47670	S.1684 5.3234 4.9721	9.7471	31.436 13.8585 13.8585 19.6700	9.7552 9.7552 10.8840	31.7447 9.1702 14.0556
		MOLE FRACTION 0.05543164 0.26133049 0.07563834	0.000001112	0.000000#9 0.000000#9	0-00112143 0-00041737 0-00000209	0.02203544
		PRODUCT	20 8 4 4 5 6	1,1202A2 N20 N20	LIF LIG. LIG.	11363 90 90 90
						The second secon

Table 17 (continued)

Equilibration of ClO₃F and LiBH₄ at 6000 K

	Sp.									į									i i					i . P			
																			. !					h			
nai př.							ladi Maria											原 路	i F								
	ा ; ज											ا اور دوا اور دوا الطف		i !											1		
editi	22.01.12	-3140	-4171	363.3589		ì	1	-351-7353	-0134	.2807				0640	.7600	.7494				7000	-8375	. 8018				1076	1,04
	T	-365	-572	-363		1	7	-351	-549	155		ţ	1	-896	-398	-391					-266	7				2	î
· · ·	ij	594	388	544	1	3		540	247	503				822	010	848				171	136	358	3		3	100	2
	13-3251	96.8	124.1	91.4		113.4	1	0-001	125.5	74.3	1.211	1	111	218.7	80.6	74.8898				200	73.5	28.5			200	1.17	1004-001
.*	•											196								•	_	-				•	<u> </u>
	£.139	5.902	2.415	5.367	1	5.56	1.377	3.588	135	1.442		1.372	. 543	5.644	1.846	1.589	112.111			718.7	7.604	169-4127		7	192		016.
	21.2	21:	17.	18		3	E.	241	20	9	N	7	N	7	ě	'n				ě	17.	91	2		N	7	
	9291	6171	1361	1568	213	***	1003	1867	1487	9.5540	101	233	5115	1742	0669	10.2790	13.18		Ž.	121	9	920	8	8	3-0000		22.000
		14.1	19.6	14.1		3		14.8	19.6	6	2	7.52	49	6.0	6	10-2	B			6	20.1	9		1	2		32.1
	Q	2	0	6	! !	•	•	0	0	~		0		l .	6	0			V	_			·		!		
	.016910.	-000cccc	00000000	.000000	00000	0.00000000	-0000815	0000000000	.00000000	. 0000000	10000000	00000) - -		00055	0.00017820	00000	. 000000	0000000	. 000000				4,			
	10.0	000	0.00	0.00	8.8	8.8	00.0	0.00	0.00	00.0	9.00	90-0	6	0	00.00	0.00	3	3	8	000	•	•		ď	ė,	.	•
					1																	010	8	9			
			~	1									£3	13) }		,				ວັ	<u>0</u>	D	2	J	2	ت
	4	BFCL	BFCL	0F.2	BFZCE	BF3	9 CF	BCL2	BCL 3	82	8202	8203	8 30 3	8 30 3CL	נוס	20	60	3	7	2	501	ב	1	רוכד	1120		8203
																	1										

Table 18 Equilibration of ${\rm ClO}_3{\rm F}$ and ${\rm LiBH}_4$ at 1200 K

NANY ELEMENTS		#-15 54-1144 125-1990 262-1990 11-5211	0.82 (% 10.00 (%) 10.00 (%) 10.00 (%)		# ************************************	2.5.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
		ENTROPY 34-3102 43-5683 43-5683 45-5292	45.2013 51.839 66.989 51.3163 76.5195	23.844 21.845 81.803 81.803 57.4403	100 - 200 -	59.001/2 10.001/2 100.002 59.0628 71.501*
	(AFR) 1.0000 FOR A CALL CONSIDER CENTRAL DECEMBER GAS CP 0.20548	ENTHAL PY 91, 2911 173, 4657 314, 7809 66, 1561	35.0689 26 20 20 4 311.3595 91.2904		9069 90362	119.7529 153.0976 109.8064 77.5220
EXAMPLE	RESSURE ENTIAL ENTIAL ENTIAL SYSTEN			2 7.55478 2 7.5578 10.5578 10.5343		9.3019 3 30.5756 6.3247 6 13.9127
		MOLE FRACTION OF PROCESSOR OF OCCOCCOO	0.00000000 0.00081556	0.0000000 0.0000000 0.0000000	0.00003C64 0.00003C64 0.00633576	0.0000183
29/2/		PACOUCT	F186 F186 F186 64 M802	OH 11202M2 11202M2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	25 25 25 25 25 25 25 25 25 25 25 25 25 2
1.PE 43						

Table 18 (continued) Equilibration of ClO_3F and $LiBH_4$ at 1200 K

33.3112 	485-4627 10. 5964	-60.4592 -1.000	70221 1162231 170.0271 15.3413
68.0042 86.5018 82.5259 62.5872 76.2717	59.5924 60.0813 133.0970 140.0596	59.7364 13.8131 63.8123 60.6528 65.3691	17.8361 27.8361 26.156 33.4786 8.1611 54.9789
114.9162 46.1370 14.5076 230.4661 177.4614	556.9736 234.0459 163.5131 94.0041	11.2245 11.2245 11.2245 11.4247 17.9096	73.0520 137.0204 28.626 95.1550 179.0024 179.026
13.8492 18.8438 18.9562 6.8948 14.4868	8.3219 19.1217 22.9640 46.8639 47.2005	8.9060 8.5270 8.5270 8.9558 9.0158	20.7400 6.8680 15.3186 14.4600 27.6000 6.5010 32.0000
0.0000000 0.00001474 0.00584034 0.	0.00000000 0.00136311	0.00000019 0.00000019 0.00000000	0. 0.17017145 0.01005007 0.011341250
	2 2 202		100 COND 11 LIQUID 11 LIQUID 11 COND 120 COND 120 COND 120 COND
	0.00000000 13.8492 114.9162 68.0042 0.00584034 18.5542 14.5074 82.5259 0.00584034 18.5542 14.5074 82.5279 0.00584034 14.4888 177.4614 76.2717	0.00000000 13.8492 114.9162 68.0042 69.0042 0.009000000 13.8492 114.9162 68.0042 69.0042 60.0094744 18.5538 14.5978 86.5978 62.5678 6.00000000 19.3081 109.3066 93.8193 60.0000002 22.9640 163.5121 68.7321 69.0041 133.0970 0.00000000 47.2005 180.6678 140.0596	# 2

Table 19 Equilibration of ClO_3F and $LiBH_4$ at 500 K

(]

AMY E EMENTS		N-TS	2.0704 11.1202 3.6527	6.3115 6.1272	1.00 3.00 6.16	101 021 021
		ENTROPY IN-TS	2 3	~	51.0716 55.0970 55.0973 51.6133 51.541	01.3525 91.010 \$2.2633 150.170 \$0.1335 30.22021
EXAMPLE	RESSURE (ATM) 1.0000 SYSTEM GAS CP 0.24322	CP ENTHALPY		7.0492 48.2632 19.334 171.3633 8.4156 15.39534 10.0476 299.0417	1687 W3768 5204 919785 9430 313.3463	.1724 133.4443 .2301 104.3114 .0442 04.3209
EXA	PAESSURE (ATV)	MOLE FRACTION	0. 0. 0. 0.00000000	0. 0.29436745 0	0. 0. 0.0000000	26.00.00.00.00.00.00.00.00.00.00.00.00.00
29/2/7		PRODUCT	0 7 7 8 8 8 8 8 8 8	L (202H2 N20 M20 M30	116 110 112 112	200 00 00 00 00 00 00 00 00 00 00 00 00
TAPE 43						

Table 19 (continued) Equilibration of ClO_3F and $LiBH_4$ at 500 K

|--|

Input Verification of Mollier Diagram Program System Is $C_2N_2F_8/NH_4ClO_4/LiAlH_4$ Table 20

	KCAL/MOLE)= 0.	
tel	NUMBER OF ELEMENTS 3 MEAT OF FORMATION (KCAL/MOLE)= NUMBER OF ELEMENTS 3 MEAT OF FORMATION (KCAL/MOLE)=	
	NUMBER OF ELEMENTS NUMBER OF ELEMENTS	
1.	C2 42 F3	
•	COMPONENT C2 V	

Table 21 Products Selected from Thermodata Tape $C_2N_2F_8/NH_4ClO_4/LiAlH_4$

(_

52.09024620 37.35074234	18.66126733 78.59363123 26.9k370773	31.148.36339	81-27510736 14-08901262	10.05754995 -22.05139447 -1.46.7777100	-102.95657539 -54.12521935 42.47289829	M -11.04597392 M -17.925.3498 M 12.88809947	
HEAT OF FORMATION HEAT OF FORMATION	HEAT OF FORMATION HEAT OF FORMATION HEAT OF FORMATION	HEAT OF FORMATION HEAT OF FORMATION	5 5 5	HEAT OF FORMATION	886	HEAT OF FORMATION HEAT OF FORMATION HEAT OF FORMATION	
1.7	ר א ל	N.CH N.CH N.CH N.CH	NH NNO	CH NCL	CH2F2 CA2F2 CAM2 MH2	MH3 CH4 CH4	

Table 21 (continued)
Products Selected from Thermodata Tape $C_2N_2F_8/NH_4ClO_4/LiAlH_4$

16. 2004 18. 301814937 -37. 60570145 -215. 64668846 15. 64668846 16. 787818 17. 7878	-44.09119392 -44.09119392 -74.77216461 -71.77709389 -171.93890773 -217.958171844 -217.95817184	-51-30/822265 -30-89197540 189-82765579 107-88692700 -0-00000024	-36.87511928 25.85765376 0.
	OF FORMATION TOF FORMATION TOF FORMATION TOF FORMATION TOF FORMATION	TOF FORMATION TOF FORMATION TOF FORMATION TOF FORMATION TOF FORMATION TOF FORMATION	UF FORMATION T OF FORMATION
		# # # # # # # # # # # # # # # # # # #	
L126 L126 L126 L126 L126 L126 L126 L126	487 769 769 769 769 769 769 769	CZ P.Z AL 2C2 C3 C3 MAN N20	M. ZV CL.0 62

Products Selected from Thermodata Tape $C_2N_2F_8/NH_4ClO_4/LiAlH_4$

# # #	OF FORMATION OF FORMATION OF FORMATION OF FORMATION	HEAT OF FORMATION -283.70128632 HEAT OF FORMATION -10.20645714 HEAT OF FORMATION -14.90002060 HEAT OF FORMATION -0.00004032	OF FORMATION OF FORMATION OF FORMATION OF FORMATION OF FORMATION OF FORMATION		
ALF ALF ALF	ALFCL2		LIOH COND LI LIQUID LI LIQUID LI LIQUID LIZO COND LIZO COND	S LI	

Table 22 Printout of Mollier Diagram

C

Table 22 (continued)
Printout of Mollier Diagram Program

7 39	95 /				55	95	
1.92306907 107	1.91845532 10					1.67206364 107	
PRESENT 0000 ***9%780%2	0000 6.4.5473081 PRESENT	RESENT RESENT RESENT	AESENT RESENT RESENT	AESENT RESENT 827185877 900	13	MESENT 0000 1-10526317	
500.16 3 COND 1650.00 COND	1600.00 COND COND	0170S 017017 01702	110010 SOL10 COWO	SOLTO P	1350.00	1300.000 1300.000	
ALN 41.20 999,99992	111 111 2000 000 2000 000	ACIA LICE LICE	ALM ALM ALM	AL203	266646-646 EDZTY	AA. 500	100

Table 22 (continued)
Printout of Mollier Diagram Program

(

PRESENT PRESEN	PRESENT PRESENT PRESENT PRESENT PRESENT	PRESENT PRESENT PRESENT	NESENI Resent Resent	MESENT RESENT RESENT	AESENT RESENT RESENT
0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	1190/10 SOL 10 COS COS COS COS COS COS COS COS COS COS	01 105 11 010010 12 0000	1 (1901) 1000 1000	1 10010 2040 20410	01 NOS 0 000 0 000 0 000
2000 000		NIV TOLO		VICE VICE VICE VICE VICE VICE VICE VICE	TIN NAM

Column	Datum
1	Pressure
2	Temperature
3	Enthalpy
4	Entropy
5	Indicator
6	Point Number

When condensed phases appear, the program notes their presence and identifies them (see Table 22).

The subscript COND refers to a constituent whose thermodynamic data over the range 0 to 6000 K is associated with both solid and liquid phases. The data list the melting point to the nearest 100 deg, and the entropy, heat capacity, and enthalpy are discontinuous. System composition data are deleted in order to reduce the amount of output but may be produced as an option. The temperature interval selected for each isobar is identical, facilitating the construction of isotherms on the diagram.

Applications of Mollier diagrams of complex systems are numerous. In the aerospace sciences, obvious application involves determination of theoretical rocket propellant performance and the solution of a host of aerodynamic problems. Most important in the latter case is ablation and the calculation of the thermodynamic and transport properties of flowing, reacting gas mixtures. Since the viscosity and thermal conductivity of a gas mixture is of importance, gas composition must be known before its transport properties can be computed. The ability to treat flow with chemical reaction is mandatory for the solution of contemporary aerodynamic problems.

While each point computed by the Mollier Diagram Program is an equilibrium one, shifting equilibrium parameters such as heat capacity, isentropic exponent, and speed of sound necessary for some aerodynamic calculations are not computed. The program could be modified to compute these

parameters, but computer time would be increased sharply. However, the following section will illustrate how the parameters may be derived from the current program which will be modified slightly.

F. Calculation of the Velocity of Sound

The velocity of sound is

$$\mathbf{a} = \sqrt{\left(\frac{\partial \mathbf{p}}{\partial \rho}\right)_{\mathbf{s}}} = \sqrt{\frac{\mathbf{p}}{\rho} \left(\frac{\partial \ln \mathbf{p}}{\partial \ln \rho}\right)_{\mathbf{s}}} \tag{17}$$

and y the isentropic exponent is

$$\gamma = \left(\frac{\partial \ln p}{\partial \ln \rho}\right)_{s} = -\frac{v}{p} \left(\frac{\partial p}{\partial \rho}\right)_{s}$$
 (18)

Using the Bridgman formulas, Eq. (18) is

$$Y = -\frac{v}{p} \frac{\frac{C_p}{T}}{\frac{C_p}{T} \left(\frac{\partial v}{\partial p}\right)_T - \left(\frac{\partial v}{\partial T}\right)_p^2}$$
(19)

Since

$$pv = \frac{RT}{M} \tag{20}$$

differentiation yields

$$p dv + v dp = \frac{R}{M} dt - \frac{RT}{M^2} dM$$
 (21)

and substitution in Eq. (19)

$$\gamma = \frac{c_{p}}{c_{p} \left[1 + \left(\frac{\partial \ln M}{\partial \ln p}\right)_{T}\right] - \frac{R}{M} \left[1 - \left(\frac{\partial \ln M}{\partial \ln T}\right)_{p}\right]^{2}}$$
(22)

where c_n , the shifting equilibrium heat capacity, is

$$c_{p} = \left(\frac{\partial h}{\partial T}\right)_{p} \simeq \frac{h_{2} - h_{1}}{T_{2} - T_{1}}$$
 (23)

For a nonreacting gas mixture (frozen equilibrium)

$$\left(\frac{\partial \ln M}{\partial \ln p}\right)_{T} = \left(\frac{\partial \ln M}{\partial \ln T}\right)_{p} = 0 \tag{24}$$

and Eqs. (22) and (17) are reduced to

$$\gamma = \frac{c_p}{c_p - \frac{R}{M}}$$
 (25)

and

$$a^2 = pv \gamma = \frac{RT}{M} \gamma \tag{26}$$

Molecular weight changes are primarily caused by reassociation of high temperature species; the degree of dissociation is related exponentially to temperature and is much less sensitive to pressure. At static temperatures below, e.g., 1500 K, molecular weight changes become negligible and Eq. (25) may be utilized. At temperatures below approximately 1500 K, frozen and shifting equilibrium parameters are essentially identical. Table 23 illustrates values for frozen and shifting γ in the oxygen/hydrogen system.

	Y		
T(^o K)	Shifting	Frozen	
1183	1.3395	1. 3396	
1514	1.3077	1.3079	
2089	1.2550	1.2649	
2329	1.2267	1.2510	
2828	1.1605	1.2265	
3015	1.1386	1.2182	
3217	1.1174	1.2077	
	<u> </u>		

In order to evaluate the shifting equilibrium isentropic exponent and the speed of sound for areas on a Mollier diagram, we need information on

1) enthalpy

(

- 2) molecular weight
- 3) pressure
- 4) temperature
- 5) volume

These will be tabulated for each point; for a given isobar, the molecular weight, enthalpy, and specific volume will be found on the printout. The speed of sound and isentropic exponent may then be evaluated graphically.

A section of a Mollier diagram is illustrated in Fig. 2, and we wish to calculate the isentropic exponent in the area of p_1 and T_1 from Eq. (22). Evaluation of $(\partial \ln M)/(\partial \ln p)_T$ and $(\partial \ln M)/(\partial \ln T)_p$ would be made over the interval p_0 , $T_1 - p_2$, T_1 and p_1 , $T_2 - p_1$, T_0 , respectively, as $(\Delta \ln M)/(\Delta \ln T)_p$. c_p is simply read from the printout as the difference in h between p_1 , $T_2 - p_1$, T_0 . For the speed of sound we need, in addition, pv at p_1 , T_1 . Since the data are printed out along an isobar

$$v = \frac{RT}{Mp} \tag{27}$$

Use of Correct M When System Contains Condensed Phases

Let

$$\gamma = \frac{c_p}{c_y} \tag{28}$$

and for a system which contains a condensed phase

$$\gamma = \frac{N_g c_p^g + N_g c_p^s}{N_g c_v^g + N_g c_v^s}$$
 (29)

Fig. 2. Mollier Diagram

Since

$$N_{s}c_{v}^{s} = N_{s}c_{p}^{s} \tag{30}$$

and

$$c_{\mathbf{p}} - c_{\mathbf{v}} = \frac{R}{M} \tag{31}$$

then Eq. (29) is

$$\gamma = \frac{N_{g}c_{p}^{g} + N_{s}c_{p}^{s}}{N_{g}c_{p}^{g} - N_{g}\frac{R}{M} + N_{s}c_{p}^{s}} = \frac{c_{p}^{t}}{c_{p}^{t} + X_{g}\frac{R}{M}}$$
(32)

where

 $c_{\mathbf{p}}^{\mathbf{t}}$ = total specific heat of mixtures

N = weight of gas or solid

 $X_g = weight fraction of gases$

M = molecular weight of mixture

Thus, the M used in a two-phase system is actually M/X_{σ} .

G. Theoretical Rocket Propellant Performance Calculations

The solution of complex chemical equilibria is a fundamental requirement for the computation of theoretical rocket propellant performance. Every parameter of performance may be computed from a thermodynamic analysis of combustion products at selected pressure planes within the thrust chamber.

1. Performance Parameters

Generally, performance parameters which characterize a given propellant system are

- a) I specific impulse
- b) c* characteristic velocity

- c) C_F thrust coefficient
- d) e area ratio

Items (a) and (c) are a function of the area ratio, and it is usually desired that they be tabulated at numerous pressure ratios in order to predict altitude and vacuum performance. Also, it is advantageous to include tabular material for the calculation of performance resulting from nonoptimum expansion.

2. Specific Impulse

Specific impulse is defined and calculated from the relation

$$I_{s} = \frac{u_{e}}{g} + \frac{A_{e}}{m} (p_{e} - p_{o})$$
 (33)

Optimum specific impulse is established when the static pressure at the nozzle exit is equal to the ambient pressure, and Eq. (33) is

$$I_{\text{opt}} = \frac{u_{\text{e}}}{g} \tag{34}$$

When the thrust chamber is at a high altitude and the ambient pressure approaches a vacuum, Eq. (33) is

$$I_{vac} = \frac{u_e}{g} + \frac{A_e p_e}{\dot{m}}$$
 (35)

Both I_{opt} and I_{vac} are a function of the nozzle expansion ratio (ϵ); the latter is defined by

$$\epsilon = \frac{A_e}{A_t} \tag{36}$$

Because the rocket engine is a heat engine in which the kinetic energy of the jet is created at the expense of combustion product enthalpy, it can easily be shown that

$$I_{\text{opt}} = \sqrt{\frac{2 \text{ J}}{g}} \sqrt{h_{\text{c}} - h_{\text{e}}}$$
 (37)

The calculation of I_{opt} from Eq. (37) involves the difference in combustion product enthalpy between the chamber and the exit pressure plane. The calculation proceeds on the basis of selecting a chamber pressure and assigning the ambient pressure to the pressure at the exit plane of the nozzle. Calculations are made with the following assumptions:

- a) Propellants are injected into a combustion chamber at a prescribed chamber pressure.
- b) Propellants are transformed adiabatically and isenthalpically into their combustion products at the prescribed chamber pressure.
- c) Combustion is complete, and a mixture results which can be described by the perfect gas law.
- d) Combustion products enter a de Laval nozzle; the contraction ratio (A_e/A_t) is infinite, and the velocity of gases entering the convergent portion of the throat is negligible.
- e) Jet velocity at the throat is equal to the local speed of sound.
- f) Expansion through the nozzle is adiabatic isentropic, frictionless, and one-dimensional.
- g) Condensed phases exhibit a negligible volume and are in thermal equilibrium with gas particles while travelling with their identical velocities.

The expansion process may be treated exactly by the methods of classical thermodynamics with the assumptions of either frozen or shifting

equilibrium. For the former, we assume the composition of the chamber combustion products to be invariant with position in the nozzle. With the assumption of shifting equilibrium, combustion product composition continually changes and is required to reflect the temperature change during the nozzle expansion process. All performance parameters may be computed for the conditions of frozen and shifting equilibrium.

3. Area Ratio (ε)

Thrust chamber geometry is best characterized by the area ratio, ϵ . Utilizing the equation for the continuity of mass

$$\rho uA = \dot{m} \tag{38}$$

Eq. (36) becomes

$$\epsilon = \frac{(\rho u)_t}{(\rho u)_e} \tag{39}$$

The perfect gas law is

$$\rho = \frac{pM}{RT} \tag{40}$$

and € is then

$$\epsilon = \frac{\left(\frac{pMu}{T}\right)_{t}}{\left(\frac{pMu}{T}\right)_{e}}$$
(41)

 ϵ is seen to involve the evaluation of the properties of combustion products at the throat and exit pressure plane.

Procedures for evaluating throat properties are somewhat complicated, since the throat position is not uniquely known but encompasses only basic thermodynamics. The significance of Eq. (41) is that from a thermodynamic analysis of combustion products at selected stations in the thrust

chamber, data on the design of thrust chambers may be deduced. Given a propellant stoichiometry and enthalpy, chamber pressure, and exit pressure, an optimum impulse can be computed and the area ratio of the thrust chamber which is required to produce that exit pressure may also be computed.

Substituting Eqs. (34), (36), and (38) into Eq. (33)

$$I_{\epsilon} = I_{opt} + \frac{\epsilon}{(\rho u)_{t}} (p_{e} - p_{o})$$
 (42)

from which can be computed the specific impulse at any area ratio (viz, exit pressure) and for all conditions of nonoptimum expansion, $p_e \neq 0$. The special case, I_{vac} , namely, $p_o = 0$, is also included. The term $A_e/m = \epsilon/(\rho u)_t$ can be expressed in more tractable terms. From Eqs. (34), (38), and (40),

$$\frac{A_e}{m} = \left(\frac{RT}{pMu}\right)_e = \left(\frac{RT}{pM}\right)_e \frac{1}{I_{opt} g}$$
 (43)

Thus, nonoptimum specific impulse can be computed but without specification of ϵ . However, the specification of the area ratio for optimum or nonoptimum specific impulse will always involve the determination of throat properties since ϵ can only be derived from Eq. (41).

4. Derived Performance Parameters - Thrust Coefficient and Characteristic Velocity

For reasons peculiar to the experimental evaluation of a propellant system in a thrust chamber, it is convenient to define parameters which yield insight into the efficiencies of the combustion and expansion process. Three parameters associated with the thrust chamber which may be experimentally measured are the chamber pressure, throat area, and propellant weight flow. As an excellent approximation for a given throat area, the chamber pressure is directly proportional to the propellant weight flow,

$$P_c = \frac{\dot{m}}{A_t}$$
 (44)

Note that the term $p_c A_t / \dot{m}$ has the dimension of seconds, which are those of specific impulse; and we intuitively conclude that the term could be proportional to specific impulse. Utilizing the acceleration of gravity we find the familiar proportionately constant c^*

$$c^* = \frac{P_c A_t g}{\dot{m}} \tag{45}$$

to have the dimensions of velocity.

The characteristic velocity, c*, has appeared quite often in the rocket literature and has been the source of much misunderstanding. Much of the confusion associated with the interpretation of c* could be avoided if its lack of fundamental significance could be kept in mind. Unfortunately, c* is neither the velocity of the jet at the throat nor at the exit plane, and the product of chamber pressure and throat area has no particular significance. We find Eq. (45) to be a general equation which states that for a given throat area and chamber pressure, propellant systems with higher c* require less flow rate to produce a given chamber pressure. Equations (44) and (45) are statements of a relationship between chamber pressure and propellant flow rate for a given propellant system. The value of the parameter c* is that while Eq. (45) may be evaluated experimentally, it may also be evaluated theoretically from a thermodynamic analysis of the propellants, and the results can be compared. Thus, one obtains an experimental indication of whether the particular design of hardware (injector or thrust chamber) permits the realization of near theoretical results. Use of Eqs. (38), (40), and (45) yields

$$c^* = p_c \left(\frac{RT}{pM}\right)_t \frac{g}{u_t}$$
 (46)

 c^* is a single valued function of propellant stoichiometry inlet conditions and chamber pressure and is independent of processes which take place beyond the throat. I is a function of propellant stoichiometry and chamber

pressure but includes the contribution of the expansion process. We define the coefficient of thrust

$$C_{\mathbf{F}} = \frac{I_{\mathbf{s}}\mathbf{g}}{c^*} \tag{47}$$

and

$$I_{\mathbf{g}} = \frac{\mathbf{c}^* C_{\mathbf{F}}}{\mathbf{g}} \tag{48}$$

We define c^* and C_F to approximately separate the combustion and expansion efficiencies. Like I_s and c^* , C_F may be computed for both frozen and shifting equilibrium.

In general, c*, which is determined experimentally, is less than c* theoretical, while the reverse is true for the thrust coefficient. The reason is that combustion is usually not complete in the chamber and will occur to some extent in the nozzle. The result is a somewhat lower than theoretical chamber pressure. Hence, the experimental c* is lower than theoretical, while the enthalpy converted to velocity in the nozzle is augmented by an additional enthalpy of combustion. It should be realized that the thrust coefficient is determined indirectly; thrust, chamber pressure, and propellant weight flow are measured directly, and the thrust coefficient is computed.

5. Theoretical Rocket Performance Printout

Tables 24 - 28 illustrate the output format of the Shifting Equilibrium Theoretical Rocket Performance Programs. Input data, such as propellant chemical formulas and heats of formation, are reiterated. Mass balance sheets are then produced, and propellant components are listed in weight per cent, moles, and mole per cent. A list of the combustion products selected and their heats of formation (kcal/mole) follows.

Table 24
Problem Definition and Input Verification

	MOLE PERCENT	LES/GN)
619		MASS BALANCE (MOLES/GN)
REFERENCE DOBBINS P 619	MOLES	MOLES 0.6743
3+02	WEIGHT PERCENT	•
CASE C ALM	COMPONENT	GLEFENTS
1681		

Table 25 Products Selected from Thermodata Tape ${
m AlH_3/O_2}$

	52.09024620 59.55014181 18.59360[21 10.05754999 -2.0792427[-57.79524899 -17.79524899 -36.87511876 0.00292587	106.14785035 -400.606.49872 -0.00000191
	HEAT OF FORMATION	HEAT OF FORMATION	
PRODUCTS CHOSEN ARE THE FOLLOWING		0.2	GIO CLOND
PRCOUCTS CHOSEN	1088 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AL202	AESON MESON

Table 26
Thermodynamic Conditions for Each of 24 Expansion Planes

(

	. 1
FORTER BRIDGES YOUNGER PERSONALAR TO THE TOTAL OF THE TOT	
4/2/62	
PE 4:	
IRV TA	
I BAAR	
OATA L100	13 14 14
V 0 V	100
THERMC DATA LIBRARY	

TABLE ONE TIC CONDITIONS FOR EACH EXPANSION PLANE (A.) (A.		7289.5 7099.0 6993.8 2.619 2.619 2.619	1.613 1.449 1.350	
TIONS FOR EACH EXPANSION 100 2.619 2.619 1.864 1.857 1.864 1.857 1.864 1.857	TABLE ONE Lane		1.802	0.42029
TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	THERMOCVMARIC CONDITIONS FOR EACH EXPANSION P	•	1.00	0.0

,				
1	*1000°C		0.57284 0.57284 0.00000	
all and a second	666	1 1 1	666	1
1			0.00294 0.58233 0.00000	4
	000		000	
	0.00695 0.00695 0.00041		0.60378 0.60378 0.00001	
	000		000	
8 2	0.01288 0.00073	043 ()	63110 	
7.53 X 2.000 X 2.000 X 1.000 X	000		0.00750 0.63110 0.00003	1000 1 10000 1 20000 1 10000 1 10000 1 10000 1 10000 1 10000 1 10000 1 10000 1 10000 1 10000 1 10000 1 10000 1
25	522 085		2 2 2	
9 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.01522 0.00085		0.64048	
	35.5		02 02 03	
6.09.17	0.01715	11 M 2 7 57 10 0	0.64780 0.00005	
 :	80	22:	9 9	
LLANT	0.01908	\$350 \$350 \$350 \$350 \$350 \$350 \$350 \$350	0.65486	jr.
GRAMS PROPELLANT	0.01964		0.65683	
			00	
PER 1				
			<u> </u>	
8				
COMPOSITION-MCLES PER 100	₽		AL 20 C2	
3		97		

Table 26 (continued)
The rmodynamic Conditions for Each of 24 Expansion Planes

	, (4 -4 -4			401					.	1		q	t e	, i
				6556. 2.61		0.5210			0°000°0	0.0000	, E	0-0462	0000	1 9 miles
				2.619		30			5 66 011	200				
				6604. 2-61		0.5200			0.04566	0.00002		0.0003	0.000	
				6633.5 2.619		0.51931			0.04626	0.00002		0.00036	1000000	
			i	•										
			,	6666.9 2.619)	0.51823			0.04693	0.00003		0.00045	0.00001	
HINCHEL PERCON				0.6	3 2. 3 3		,							
				6707.0 2.619	900-1	0.51669			0.04769	0.00003		0.00057	0.00001	
			TABLE ONE	6824.1 2.619		0.51053			0.04960	90000-0		0.00105	0.00002	
			TAB	89								Ĭ	. 0	
SHIFTING COOPEIDS			EXPANSION	6867.7 2.619		0.50759	LANT	1103773 1103773	0.05023	0.0000		0.00127	0.00002 0.00002	
	29/2/4	1	EACH EXP	61			PROPELLANT		_	_				
	7 0.81		FOR EA	6922.2		0.50340	GRAMS		0.05098	0.00010		0.00159	0.00003	
	TAPE 4		CNS	2	į	¥.5	_ n							
			COACITI	OEG		8	COMPOSITION-MCLES PER 1CO						•	9
	17 118	7	NAMIC	CAL/GRI	CAL/GH	MCLES	CN-ACL			_			_ ~	
	THERMC DATA LIBRARY		THERPOEYNA	2 %		ONO COMO	P05171		AL S	ALCH		VIC.	AL 202	
	716	·W	Ī			***	5							

1

Table 26 (continued)
Thermodynamic Conditions for Each of 24 Expansion Planes

		2.619 0.576	0.52277		0.00000 0.00000 0.00102	0.55449	0.00001
		6010.9 2.619 0.602	0.52300		0.00000 0.00000 0.00182	0.55597	0.00001
		6074.5 2.619 0.650	0.523721			0.55520	0.00001
		9	0.52326				100000
A HOSINA	ONE	9	n o				00000
	TABLE ONE	.6 6231.2 19 2.619 19 0.790	6 0.52278		0 0.00001 0 0.00000 5 0.00199	\$ 0.55510 0.00000	
4/2/62	EACH EXPANSION	1.9 6352.6 19 2.619 153 0.769	06 0.52236	NOPE NOPE	0. 0.00001 01 0.00000 02 0.00245	01 0.55605 00 0.00000	
43	FOR	6480.9 2.619 0.853	0.5220	1CO GRAMS	0.00001	0.0000	
THERMS DATA LIBRARY TAPE	MIC CONDITIONS	1CAL/GP) 1CAL/GP—DEG K. 1CAL/GP)	MG 687100 GR	5 M			
THEAMS DATE	DWERING YN.		4 0WO2	50me051710m	ALCH	AL 202 AL 202 AL 202	
THERMO DAT	THERMOT YNAM I C		A ONOD	COMPOSITION—PICLES	ALCH	AL20 AL20 AL202 AL2	

Table 27 Optimum Specific Impulse Tabulation

C

										4
		to earn	0. 33.15		179.46 221.19 240.79	269.89 200.15 294.15	9 - 1 9 - 1	320.48	371.57 378.95 343.47	
			0.1765		0.9577 1.1777 1.2832	1.4370 1.5342 1.5462		1.7064	1.97 84 2.0177 2.0439	ma
			0. 2.3403		1.2481 1.8885 2.4914	4-1303 6-0949 7-0197		14.2280	100.7116 140.1726 177.1835	
	2387	a Caracana	1-1163 1-1162		1-1154 1-1169 1-1185	1.1222 1.1256 1.1270		1.1349	1.1543 1.1612 1.1659	
	TABLE TWO Co = 6042 FT/SEC		7661.27	100 P 1	7289.46 7098.95 6993.77	6824.13 6707.01 6666.86	an Salah and	6480.89	6074.53 6010.86 5967.72	
4/2/62		*	3 6 03.7 3791.4		3435.9 3239.1 3126.3	2936-1 2797-1 2747-7		2505.0	2076.4 1968.8 1882.6	
RV TAPE 43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gunt.	1690-0000		293.9188 144.9586 97.9729	48.9867 29.3920 24.4933		10.0000	 1.0000 0.6667 0.5000	س ا
THERMS GATA LIBRARY TAPE			1.6400		3.4C23 6.9C46 10.2069	20.4137 34.0229 40.8275	٠	100.000	1000,0000 1900,0000 2000,0000	
E S				ļ						

Table 28 Altitude Specific Impulse

		27.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1.7376 1.7602 1.7796	1.0247 1.0345 1.0461	2763 2856 2836 2826	. 9152
	Au The State of the State of th	1.2047		1.6760 1.6892 1.7033	1.7501	1.7067
		276.88	326.35 330.59 334.22	342.70 342.54 345.54 346.72	352.50 354.15 355.64 355.64 357.33 357.33	359.71
		0.38	1.50	2.25 2.45 2.44 2.63	3.19 3.38 3.57 3.57 5.61 5.41	15.4
		TABLE THREE 50.63 42.58	32.32 31.12 30.13	21.92 21.29 26.82	25.74 25.45 25.19 25.19 24.30	24.14
4/2/62		226.25	294.03 299.47 304.10	314.78 317.25 319.90	326.76 328.69 330.45 332.65	335.56
AY TAPE 43		7.4192	40.6800 40.2773 56.1055	00.7187 09.4599 00.0377	124.0584 132.8278 141.6450 161.6450 168.0478	106.6984
THERMC DATA LIBRARY TAPE		2.000c 3.000c	7.0000 2.0000	12.0000 13.0000 14.0000	17.0000 18.0000 19.0000 22.0000	0000-82

Table 28 (continued) Altitude Specific Impulse

		1-

75		ا مور الله
		1
		india. Halada Halada
, pet		
114		
7		
	•	KJ.
	/62	
en dh	121	
· Tag 1	4	
		1
	Ç	12 14
	Ü	
	4	
57	-	
	É	1
	Ĩ	1"1
-		1.0
	5	Y.
	3	¥
	THERMC DATA LIBRARY TAPE	
	¥	
	Ī	
	_	

		1.9328		1.9620		1.9643		1.9016 1.9047 1.9075	2007	2.000
	a made y	1.8064 1.8124 1.8182		1.8387 1.8432		-8432 -8469 -8504		9 7 <u>6</u>	1970	3.53
										7.2
		363.00 364.02 365.00		368.49 369.25		369.29 369.90 370.49		372.2 372.7 373.2	374.8	375.30 375.77
		5.07 5.26 5.45		6.20		6.95 7.14 7.32		8.08 8.26	92.63	9.20
TABLE THREE		23.74 23.63 23.52	200	23.15 23.07		23.11 23.03 22.96	1	22.63 22.55	16.5	22.15
TABL		2 2		2		2 2 2		2 2 2 2 2 2	N N	77 22
		339.26 340.39 341.48	345.44	345.33	tend als tends and the second	346.18 346.86 347.53	77 677	350.11 350.73	352.50	353.63
	* 4	5770 5639 5645		7037 7277		5509 1335 065	602	1029 C81	463	
	and and	213.5 222.5 231.5	258.6	267.7 276.7	1 /	300.63 309.83 319.00	347.20	356.8	395.64	415.49
		27.0000 28.0000 29.0000	32.0000	33.0000 34.000c		255	42.0000	43.0000	*7.0000	0000-64
							7			

The problem solved in the tables illustrates the typical three-table shifting equilibrium output format. While the selection of the chamber pressure is infinitely variable, computations are executed at 24 pressure ratios (Table 26). The initial pressure is that within the combustion chamber whereas the fifth pressure locates the exact position and conditions at the throat. At every pressure, the temperature, enthalpy, entropy, heat capacity, isentropic exponent (GAMMA), product molecular weights, and the concentration of combustion products are printed.

Table 27 lists the rocket performance data. Characteristic velocity is tabulated as is optimum specific impulse, expansion ratio (EPSILON), and thrust coefficient (CF) as a function of pressure ratio.

Table 28 lists altitude performance parameters as a function of 50 unit area ratios and is utilized to read the thrust coefficient (CF EPS) and specific impulse (I EPS) for an ambient pressure of zero as a function of area ratio. Optimum specific impulse (I OPT) is tabulated at the unit area ratio. The table affords the rapid and accurate calculation of specific impulse under any set of optimum and nonoptimum area ratios and altitude conditions. The exact equation for these effects is

I EPS = I OPT + A - Bp_o

$$= \frac{u_e}{g} + \left(\frac{RT}{Mu}\right)_e - \left(\frac{RT}{pMu}\right)_e p_o$$

$$= I OPT + \frac{p_e c^* \epsilon}{p_o g} - \frac{p_o c^* \epsilon}{p_o g}$$
(49)

Table 29 illustrates a portion of the thermodynamic properties of the propellant system N_2O_4 with BeH₂. Solution was obtained with the presence of three condensed phases.

Table 29

(

Example with Three Condensed Phases

	197		10522.9 3.816 3.770	3.84402		0.03757 0.01431 0.00000	0-00010 0-00000 0-00000	0.00000	
			10653.9 3.816 3.795	3.80511		0.04732 0.02359 0.00000	0.00010	0.00001)
			10676.2 3.816 3.280	3.86514		0.05607 0.02922 0.00000	0.00029 0.00001 0.00001	0.00001	
			11105.1 3.816 3.005	3.91102		0.07082 0.03701 0.00000	0.0004	0.00001 0.00001 0.00310	
		4, 112, 1	111177.6 3.816 2.990	3.09015		0.07817 0.04181 0.00000	0.00059	0.00001	111
			11233.6 3.816 2.977	3.88864		0.08409 0.04574 0.00000	0.00069	0.00001	
16.2		FOR EACH EXPANSION	11286.7 3.816 2.964	3.07984	PELL ANT	0.00987	0.00079 0.00004 0.00003	0.00001	
43 4/2/62		FOR EACH	11301.0 3.816 2.960	3.07746	PER 100 GRANS PROPELLANT	0.09150 0.05075 0.00000	0.00082	0.00001	
GRARY TAPE		C CONDITION	2) 2066 K) 3)	1.5 cm	· w	*			
THERME CATA LIGRARY TAPE 43		THERPOCYMANIC CONDITIONS	T 1CAL/GP S 1CAL/GP CP 1CAL/GP		COMPOSITION-MCLE	196 196 196 196 196 196 196 196 196 196	N20 N43 860	5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

DE 3412 CCND

CND 0-44165 0-44171 0-44193 0-44216 0-44246

ACKNOWLEDGEMENT

l.

The authors are indebted to R. L. Wilkins of the Aerodynamics and Propulsion Research Laboratory for frequent helpful discussions.

	Aerospace Corporation, El Segundo, California. THE AEROSPACE CORPORATION COMPUTER PROCRAMS FOR THE SOLUTION OF MULTIELE- MENT CHEMICAL EQUILIBRA. (UNCLÁSSIFIED 28 June 1962. [78]p. incl. illus. (Report TDR-69(2240-51)TR-2: DCAS-TDR-62-138) (Contract AF 04(695)-69)	Work has been completed on a generalized method for the analytical solution of complex multielement chemical equilibria under all conditions of pressure. temperature, and mass balance. The programs are written for the IBM 7090 and use a unique :echnique of majors and minors to guarantee automatic convergence. Variations of the basic solution method are applied to problems in chemical southersis, thermal stability, and chemical compatibility. Sis, thermal stability, and chemical compatibility. Trocket propellant performance and Mollier diagrams.
	Aerospace THE AEROS PROGRAMS MENT CHE! TILLE), pre 28 June 1962 (Report TDR	Work has be for the analy chemical equential equenture are written in nique of maj convergence method are sis, thermal The program rocket prope
UNCLASSIFIED		UNCLASSIFIED
	Activation Corporation, El Segundo, California, THE AEROSPACE CORPORATION COMPUTER PROGRAMS FOR THE SOLUTION OF MULTIELE-NIFVI CHEMICAL EQUILIBRIA. (UNCLASSIFIED TILLE) prepared by S. A. Greene and H. J. Vale, 25 Juny 1962, 1979, 1003, 111us, DCAS, TDR. e2-138) (Corport AF 04(e25)-e3)	A richar brond ampleted on a generalized method if the analysis adjution of complet multielement about the analysis adjution of complet multielement are miles equitable and mass balance. The programs recommended in the IBM T0-30 and use a unique technique of mayors and minors to guarantee automatic analysis are applied to problems in chemical synthesis, thermal stability, and themical compatibility. The programs are also used to obtain theoretical recompliant perignans.

UNCLASSIFIED	UNCLASSTED	
	Aerospace Corporation, El Segundo. Cainfornia. THE AEROSPACE CORPORATION COMPUTER PROGRAMS FOR THE SOLUTION OF MULTIELE-MENT CHEMICAL EQUILIBRIA. (UNCLASSIFIED TITLE), prepared by S. A. Greene and H. J. Vale. 28 June 1962. [78] p. incl. illus. (Report TDR-69(2240-51) TR-2: DCAS-TDR-62-136) (Contract AF 04(695)-69) Unclassified report Work has been completed on a generalized method for the analytical solution of complex multielement chemical equilibria under all conditions of pressure, temperature, and mass balance. The programs are written for the IBM 7090 and use a unique echnique of majors and minors to guarantee automatic convergence. Variations of the basic solution method are applied to problems in chemical switheast, thermal stability, and chemical compatibility. The programs are also used to obtain theoretical rocket propellant performance and Mollier diagrams.	

UNCLASSETED		
	Aerospace Corporation, El Segundo, California. THE AEROSPACE CORPORATION COMPUTER PROGRAMS FOR THE SOLUTION OF MULTIELE- MENT CHEMICAL EQUILIBRIA. (UNCLASSIFIED TITLE), prepared by S. A. Greene and H. J. Vale. 28 June 1985, [78]p. incl. illus. (Report TDR-69(12240-51)TR-2: DCAS-TDR-62-138) (Contract AF 04(695)-69)	Work has been completed on a generalized method

CHCLASSIFIED

CHIESSAID UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

	H M H 8 8 0	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
UNCLASSIFIED		UNCLASSIFIED
	Arr spair Corporation, El Segundo, California. THE AEROSPACE CORPORATION COMPUTER PROCRAMS FOR THE SOLUTION OF MULTIELE- MENT CHEMICAL EQUILIBRIA. "INCLASFIFIED fillion, organization of the care fill Vace. At the 10.2 and 10.240.51) The CASTIDR-62-138) (Contract AF 04(935)-93) Unclassified report	Wirk has been completed on a generalized method for the analytical solution of complex multiclement chemical equilibria under all conditions of pressure; temperature, and mass balance. The programs are written for the IBM 7040 and use a unique technique of majors and minors to guarantee automatic contracts and minors to guarantee automatic minth dare applied to problems in chemical synthesis. Thermal stability and chemical compatibility. The programs are also used to obtain theoretical rocket propeliant performance and Mollier diagrams.

UNCLASSIFIED	
	Aerospace Corporation, El Segundo, California. THE AEROSPACE CORPORATION COMPUTER PROGRAMS FOR THE SOLUTION OF MULTIELE- MENT CHEMICAL EQUILIBRIA. (UNCLASSIFIED ITLE), prepared by S. A. Greene and H. J. Vale. 28 June 1962. [78]p. incl. illus. (Report TDR-69(2240-51)TR-2: DCAS-TDR-62-138) (Contract AF 04(695)-69)

UNCLASSIFIED

Arr space Corporation, El Segundo, California. HEE AEROSPACE CORPORATION COMPUTER PROGRAMS FOR THE SOLUTION OF MULLIELE-MENT CHEMICAL EQUILIBRIA. (UNCLASSIFIED ITLE) prepared by S. A. Greene and H. J. Vale. 2. June. 162. [73] p. 102. ilius. (Rep. 1. IDR-0-4240-51)TR-2. DCAS-IDR-62-138) (C. price AE 04(r-35)-69). Unclassified report.

Wirk has been completed on a generalized method

CHILASSIFIED

CACLASSIFIED

temperature, and mass balance. The programs are written for the IBM 7090 and use a unique technique of majors and minors to guarantee automatic convergence. Variations of the basic solution method are applied to problems in chemical synthesis, thermal stability, and chemical compatibility. The programs are also used to obtain theoretical rocket propellant performance and Mollier diagrams. Work has been completed on a generalized method for the analytical solution of complex multielement chemical equilibria under all conditions of pressure.

CHITISSTEIE

UNCLASSIFIED

trebe an evitical solution of complex multiclement on mass balance. The programs treperation of pressure, temperation and mass balance. The programs treperation of the programs are arithmeter to the programs of a vergence. Variations of the basic solution misch divide a complete to problems in chemical synthesis, thermal stability, and chemical compatibility. The programs are also used to obtain theoretical ricket propeliant perforgance and Mollier diagrams.

UNCLASSIFIED CHIESSELECT CHICHASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

アンフィキのことをは、そうことはこれはは 神ののなるない