6 pts

Etudier les branches infinies de l'arc Γ .

Contrôle d'analyse I N°3

Durée : 1 heure 45 minutes Barème sur 20 points	
$NOM:$ Groupe \square $PRENOM:$	
 1. On considère la fonction f définie par f(x) = x √x + 9. a) Déterminer et caractériser les extrema et les points remarquables du graphe de f. b) Le graphe de f admet-il un point d'inflexion ? 	5 pts
2. On considère la fonction f définie par $f(x) = \sqrt[3]{(x+1)^2(x^2+ax-3)}$, $a \in \mathbb{R}$ et la courbe Γ d'équation $y = f(x)$. Déterminer le paramètre réel a de sorte que la courbe Γ n'admette pas de point de rebroussement. Déterminer alors les points remarquables du graphe de f .	5,5 pt
3. On considère l'arc paramétré Γ défini par $\begin{cases} x(t) = t^4 - 4t^3 + 6t^2 - 4t \\ y(t) = t^3 - 3t^2 + 3t \end{cases}$ Montrer que l'arc Γ admet un point stationnaire, puis représenter localement l'arc Γ au voisinage de ce point.	3,5 pt
4. On considère l'arc paramétré Γ défini par $\begin{cases} x(t) = \ln(t^2) \\ y(t) = \ln[\operatorname{Sh}(t)] \end{cases}$	