Problem 1. (30 points)

Grade:.....

Consider the following two graph algorithms. Each algorithm takes two input: a connected graph G=(V,E), and a weight function w that maps each edge in E to a unique positive integer. Each algorithm returns a subset T of E.

Algorithm A	Algorithm B
$S \leftarrow$ Sort the edges in E in a list,	$S \leftarrow \text{Put the edges in } E \text{ in a list,}$
by decreasing order of their weights.	in an arbitrary order.
T = E	$T = \emptyset$
for $i=1$ to $ S $ do	for $i=1$ to $ S $ do
if $T \setminus \{S[i]\}$ is a connected graph then	if $T \cup \{S[i]\}$ has no cycle then
$T = T \setminus \{S[i]\}$	$T = T \cup \{S[i]\}$
return T	return T

For each algorithm, check whether it finds a minimum spanning tree (MST) in a given graph.

- (a) Does Algorithm A find an MST (i.e., is T an MST in G)? **Yes** or **No** If Algorithm A is an MST algorithm:
 - 1) give an example and show the value of T at each step of the algorithm, and
 - 2) analyze the asymptotic time complexity of Algorithm A (do not forget to analyze the running time of checking whether $T \setminus \{S[i]\}$ is connected).

If Algorithm A is not an MST algorithm: give a counterexample and show the value of ${\cal T}$ at each step.

- (b) Does Algorithm B find an MST (i.e., is T an MST in G)? **Yes** or **No** If Algorithm B is an MST algorithm:
 - 1) give an example and show the value of T at each step of the algorithm, and
 - 2) analyze the asymptotic time complexity of Algorithm A (do not forget to analyze the running time of checking whether $T \cup \{S[i]\}$ has a cycle).

If Algorithm B is not an MST algorithm: give a counterexample and show the value of ${\cal T}$ at each step.