First-order predicate logic (FOPL)

Simon Charlow (simon.charlow@rutgers.edu)

October 14, 2015

1 Introducing FOPL by example

We begin with statements of predication (and statements built from statements of predication):

- I. Bob is human human bob
- 2. z is French and not German french $z \land \neg german z$

And we can add relations to the mix:

- Mary saw John saw(mary, john)
- 2. if x is French, then x didn't show y to Steve french $x \Rightarrow \neg show(x, y, steve)$

We also have quantified statements:

- I. Something stinks $\exists x. stinks x$
- 2. z likes everything $\forall y$. likes(z, y)
- 3. Everyone is French and German $\forall z$. french $z \land german z$

Restricted quantification is built from \exists and \land , or \forall and \Rightarrow (Exercise: Why *these* pairings? Why not \exists and \Rightarrow , or \forall and \land ?):

- 1. A cat meowed $\exists x. cat x \land meowed x$
- 2. Every cat meowed $\forall z. cat z \Rightarrow meowed z$
- 3. A linguist likes a philosopher $\exists x. linguist x \land \exists y. philosopher y \land likes(x, y)$ $\exists x. \exists y. linguist x \land philosopher y \land likes(x, y)$

¹I omit some parentheses because $a \wedge (b \wedge c)$ is equivalent to $(a \wedge b) \wedge c$. Also, similarly to the λ calculus, we will always assume that the scope of $\exists \nu$ and $\forall \nu$ extend as far to the right as possible.

We can also represent some cardinality statements:

- I. At least two things are blue $\exists x. \exists y. x \neq y \land blue x \land blue y$
- 2. At least three boys are French $\exists x.\ boy x \land \exists y.\ boy y \land \exists z.\ boy z \land x \neq y \land y \neq z \land x \neq z \land french x \land french y \land french z$

2 Negation and duality

Quantified statements can be negated:

- 1. Nothing is blue (i.e. it's false something is blue) $\neg \exists x. blue x$
- 2. Not every linguist came: $\neg \forall x$. *linguist* $x \Rightarrow came x$

And just as ∨ and ∧ are DeMorgan duals with respect to negation...

I.
$$\neg(\phi \lor \psi) = \neg\phi \land \neg\psi$$

2.
$$\neg(\phi \land \psi) = \neg\phi \lor \neg\psi$$

... So are \exists and \forall :

I.
$$\neg \exists \nu . \phi = \forall \nu . \neg \phi$$

2.
$$\neg \forall \nu. \phi = \exists \nu. \neg \phi$$

So we can represent our first two negated statements equivalently as follows:

- 1. Nothing is blue (i.e. it's false something is blue) $\neg \exists x. blue x = \forall x. \neg blue x$
- 2. Not every linguist came:

```
\neg \forall x. \ linguist \ x \Rightarrow came \ x = \exists x. \ \neg (linguist \ x \Rightarrow came \ x)
= \exists x. \ linguist \ x \land \neg came \ x \qquad \qquad [since \ \neg (\varphi \Rightarrow \psi) = \neg (\neg \varphi \lor \psi) = \varphi \land \neg \psi]
```

3 Scope ambiguity

Representing scope ambiguity of the quantifiers and negation:

- I. John didn't see a famous linguist $\neg \exists x. famous x \land linguist x \land see(john, x)$ $\exists x. famous x \land linguist x \land \neg see(john, x)$
- 2. Every boy isn't french $\forall x. boy x \Rightarrow \neg french x$ $\neg \forall x. boy x \Rightarrow french x$

(Some of these representations could be given equivalently by appealing to duality w.r.t. negation.)

Notice the placement of the negation with respect to the restriction. What's wrong with the following?

$$\exists x. \neg (famous x \land linguist x \land see(john, x))$$

Representing scope ambiguities with two quantifiers

```
1. A linguist met every philosopher \exists x. linguist x \land (\forall y. philosopher y \Rightarrow met(x, y)) \ \forall y. philosopher y \Rightarrow (\exists x. linguist x \land met(x, y))
```

Each of these cases has a *surface-scope* interpretation, on which the order of the operators corresponds to their linear order in the English sentence, and an *inverse-scope* interpretation, on which the order of the operators is the reverse of their linear order in the English sentence.

In general, a sentence with n operators (drawn from \neg , \exists , \forall) will have n! scope renderings.

Not all of these interpretations will always be distinct. For example, two quantifiers of the same kind are scopally commutative:

```
1. \exists v. \exists u. \phi = \exists u. \exists v. \phi
```

2. $\forall \nu$. $\forall u$. $\phi = \forall u$. $\forall \nu$. ϕ

4 FOPL as semantic metalanguage

We can use FOPL to regiment our semantic metalanguage.

For example, here is one way to notate a property that holds of an x iff x saw a linguist:

$$\lambda x$$
. $\exists y$. $linguist y \wedge saw(x,y)$

Keep this in mind. We'll be seeing more of it in the coming weeks.

5 Syntax of FOPL

Vocabulary:

- **Terms**: an infinite stock of **variables**: x, y, z, ...
- A collection of n-ary **predicates**: runs, likes, gave, ...
- The propositional logic **connectives**: \neg , \wedge , \vee , \Rightarrow . Plus punctuation: ., (, and).
- An existential quantifier \exists , and a universal quantifier \forall .

Complex formulas. The WFF of propositional logic is the smallest set such that:

- Predicates applied to the appropriate number of terms are in WFF. E.g., left x, saw(x, y), ... These are the atomic formulas.
- If φ is in WFF, then $\neg \varphi$ is in WFF.
- If φ and ψ are in WFF, then $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, and $(\varphi \Rightarrow \psi)$ are all in WFF.
- If φ is in WFF, then $(\exists v. \varphi)$ and $(\forall v. \varphi)$ are in WFF, for any variable v.

As before, we adopt the convention of omitting outermost parentheses. I also like (as above) to omit parentheses when doing so doesn't create ambiguity (cf. fn. 1), but whether you do so is up to you.

6 Semantics of FOPL

As in propositional logic, we need a way to assign values to variables. This time, however, the variables denote things of type e:

•
$$\llbracket v \rrbracket^g = gv$$

Proper names and predicates will be valued by $[\cdot]^g$ in the way we've done in class (though notice that the meaning of relations is given as the characteristic function of a set of ordered pairs):

- $[bob]^g = B$
- $[left]^g = \lambda x$. Left x
- $[likes]^g = \lambda(x,y)$. LIKES (x,y)
- ..

Predications are evaluated by finding the values of the predicate and its arguments, and then applying the former to the latter:

- $[P \nu]^g = [P]^g [\nu]^g$
- $[R(v,u)]^g = [R]^g ([v]^g, [u]^g)$
- •

The meanings of the connectives are unchanged from propositional logic:

- $\bullet \ \llbracket \neg \phi \rrbracket^g = 1 \llbracket \phi \rrbracket^g$
- $\llbracket \phi \wedge \psi \rrbracket^g = \text{Min} \{ \llbracket \phi \rrbracket^g, \llbracket \psi \rrbracket^g \}$
- $\llbracket \phi \lor \psi \rrbracket^g = \text{Max} \{ \llbracket \phi \rrbracket^g, \llbracket \psi \rrbracket^g \}$
- $\llbracket \phi \Rightarrow \psi \rrbracket^g = \text{Max} \{ \llbracket \neg \phi \rrbracket^g, \llbracket \psi \rrbracket^g \}$

Finally, the meanings of the quantifiers rely on assignment modification:

- $[\exists v. \phi]^g = \text{Max} \{ [\phi]^{g[v \to x]} : x \in e \}$
- $\llbracket \forall \nu. \phi \rrbracket^g = \text{Min} \{ \llbracket \phi \rrbracket^{g[\nu \to \chi]} : \chi \in e \}$

Relies on minimal assignment modification:

• $g[v \rightarrow x]$ is the assignment h such that hv = x, and for any $u \neq v$, hu = gu.

Mnemonically, you can think of $g[\nu \to x]$ as "the assignment mapping ν to x, but otherwise just like g".

Essentially, existential quantification is like a huge disjunction (if α or b or c or ... makes ϕ true, then $\exists \nu$. ϕ is true), and universal quantification is like a huge conjunction (if α and b and c and ... make ϕ true, then $\forall \nu$. ϕ is true).