Aayush Gupta (309601)

Lab 2 (Edisp)

Task 1:

case	Fs	T[ms	N	N_1	Amax	K _{nu}	F _n at null	F at null
]				11		
$x_1[n]$	1000	2	2	2000	1000	10	3	0.001
	MHz					00		
$x_2[n]$	10kHz	2	2	20	10	10	3	0.1
x ₃ [n]	10KHz	4	4	40	20	20	3	0.05

Here,

$$N=T*F_s; N_1=N/2; F_n=k/signal length; F_1=F_n*1e^6; F_{2,3}=F_n*1e^4;$$

Case #1 (Fs = 1 MHz,
$$T = 2 \text{ ms}$$
)

Case #2 (Fs = 10 kHz, T = 2 ms)

Case #3 (Fs = 10 kHz, T = 2 ms)

The greater sample frequecy and higher density spectrum of the signal is due to greater number of samples N.

In case 2 and case 3 we have highest amplitude and in the case of the 3^{rd} frequency it had a greater period at T = 4ms. And in the case 2 the physical frequency were lower although the samples were more in case 2.

Task 2-

Signal a) 512 points square impulse

Signal b)
Number of zero crossings = 255

Signal c)

Signal d)
Sine wave with non-integer number of periods

Signal e)

Signal f)
f) A 32-point square impulse beginning at n =0

Signal g) g) A 32-point square impusle beginning at n = Ns > 0

Task 3

Through the application of FFT a fluctuating point is produced with two peaks on the ends.

And due to application IFFT to the those signals, we obtained signals with repeating peaks.

Task 5 N = 1024, $F_s = 48kHz$, Fn = 1/64~Hz

Task 6-

Window type	Mainlobe width	First sidelobe	Highest sidelobe	Sidelobes change with f
	Normalized freq.	dB below mainl.	dB below mainl.	describe shortly
rectangular	0.1	0.6	0.6	Decreases with higher f
hamming	0.24	0.66	0.71	Decreases with higher f

here, zero-padding and then hamming windowing (20log10 scale) was applied to obtain a better and more precise version of the plot of input signal.