Билеты по матану, семестр 3

23 октября 2018 г.

Содержание

1	Опр	ределения и формулировки	2
	1.1	Признак Абеля равномерной сходимости функционального ряда	2
	1.2	Равномерная сходимость функционального ряда	2
	1.3	Формулировка критерия Больцано-Коши для равномерной сходимости	2
	1.4	Степенной ряд, радиус сходимости степенного ряда, формула Адамара	2
	1.5	Экспонента как функция комплексного аргумента	2
	1.6	Метод суммирования средними арифметическими	2
	1.7	Метод суммирования Абеля-Пуассона	2
	1.8	Частная производная второго порядка, k -го порядка	3
	1.9	Классы $C^r(E)$	3
	1.10	Мультииндекс и обозначения с ним	3
	1.11	Формула Тейлора (различные виды записи)	3
	1.12	n-й дифференциал	3
	1.13	Норма линейного оператора	3
	1.14	Положительно-, отрицательно-, незнако- определенная квадратичная форма	4
	1.15	Локальный максимум, минимум, экстремум	4
	1.16	Диффеоморфизм	4
	1.17	Формулировка теоремы о локальной обратимости	4
	1.18	Формулировка теоремы о локальной обратимости в терминах систем уравнений	4
	1.19	Формулировка теоремы о неявном отображении в терминах систем уравнений	4
	1.20	Простое k-мерное гладкое многообразие в \mathbb{R}^m	5
	1.21	Относительный локальный максимум, минимум, экстремум	5
	1.22	Формулировка достаточного условия относительного экстремума	5
	1.23	Касательное пространство к k-мерному многообразию в \mathbb{R}^m	5
	1.24	Независимый набор функций	5
	1.25	Кусочно-гладкий путь	5
	1.26	Интеграл векторного поля по кусочно-гладкому пути	5
	1.27	Потенциал, потенциальное векторное поле	6
	1.28	Локально потенциальное векторное поле	6
	1.29	Похожие пути	6
	1.30	Интеграл локально-потенциального векторного поля по произвольному пути	6
	1.31	Гомотопия путей свзанная и петельная	6
	1.32	Односвязная область	6
	1.33	Полукольцо, алгебра, сигма-алгебра	6
	1.34	Объем	7
		1.34.1 Конечная аддитивность	7
		1.34.2 Объем	7

	1.35	Ячейка	7
	1.36	Классический объем в \mathbb{R}^m	7
	1.37	Мера, пространство с мерой	7
	1.38	Дискретная мера	7
	1.39	Формулировка теоремы о непрерывности сверху	7
	1.40	Формулировка теоремы о лебеговском продолжении меры	8
	1.41	Полная мера	8
	1.42	Сигма-конечная мера	8
	1.43	Мера Лебега, измеримое по Лебегу множество	8
	1.44	Борелевская сигма-алгебра	8
	1.45	Формулировка теоремы о мерах, инвариантных относительно сдвигов	8
	1.46	Ступенчатая функция	8
	1.47	Разбиение, допустимое для ступенчатеой функции	8
	1.48	Измеримая функция	9
_	_		
2		ремы	9
	2.1	Признак Дирихле равномерной сходимости функционального ряда	
	2.2	Непрерывная дифференцируемость гамма функции	
	2.3	Теорема о круге сходимости степенного ряда	
	2.4	Теорема о непрерывности степенного ряда	
	2.5	Теорема о дифференцировании степенного ряда. Следствие об интегрировании. Пример	
	2.6	Свойства экспоненты	
	2.7	Метод Абеля суммирования рядов. Следствие	
	2.8	Единственность разложения функции в ряд	
	2.9	Разложение бинома в ряд Тейлора	
		Пример функции, у которой ряд Тейлора расходится при $x \neq 0$	
		Теорема о разложимости функции в ряд Тейлора	
		Теорема Таубера	
		Теорема Коши о перманентности метода средних арифметических	
		Преобразование Абеля степенного ряда	
		Теорема о связи суммируемости по Чезаро и по Абелю–Пуассону	
		Независимость частных производных от порядка дифференцирования	
		Полиномиальная формула	
		Лемма о дифференцировании «сдвига»	
		Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)	
		Теорема о пространстве линейных отображений	
		Лемма об условиях, эквивалентных непрерывности линейного оператора	
		Теорема Лагранжа для отображений	
		Теорема об обратимости линейного отображения, близкого к обратимому	
		Теорема о непрерывно дифференцируемых отображениях	
		Лемма об оценке квадратичной формы и об эквивалентных нормах	
	2.26	Теорема Ферма. Необходимое условие экстремума. Теорема Ролля	
		2.26.1 Теорема Ферма	
		2.26.2 Необходимое условие экстремума	
	0.07	2.26.3 Теорема Роддя	
		Достаточное условие экстремума	
		Лемма о «почти локальной инъективности»	
		Теорема о сохранении области	
	∠.30	Следствие о сохранении области для отображений в пространство меньшей размерности	20

2.31	Теорема о диффеоморфизме	20
	Теорема о неявном отображении	20
2.33	Теорема о задании гладкого многообразия системой уравнений	21
2.34	Следствие о двух параметризациях	21
2.35	Необходимое условие относительного локального экстремума	22
2.36	Вычисление нормы линейного оператора с помощью собственных чисел	22
2.37	Лемма о корректности определения касательного пространства	23
2.38	Касательное пространство в терминах векторов скорости гладких путей	23
2.39	Теорема о функциональной зависимости	23
2.40	Простейшие свойства интеграла векторного поля по кусочно-гладкому пути	24
2.41	Обобщенная формула Ньютона—Лейбница	24
2.42	Характеризация потенциальных векторных полей в терминах интегралов	25
2.43	Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре	25
	2.43.1 Необходимое условие потенциальности гладкого поля	
	2.43.2 Лемма Пуанкаре	25
2.44	Лемма о гусенице	26
2.45	Лемма о равенстве интегралов по похожим путям	26
2.46	Лемма о похожести путей, близких к данному	26
2.47	Равенство интегралов по гомотопным путям	27
2.48	Теорема о резиночке	27
2.49	Теорема Пуанкаре для односвязной области	27
2.50	Свойства объема: усиленная монотонность, конечная полуаддитивность	28
2.51	Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности	28
2.52	Теорема о непрерывности снизу	28
	Счетная аддитивность классического объема	29
2.54	Лемма о структуре открытых множеств и множеств меры $0 \ldots \ldots \ldots \ldots \ldots \ldots$	29
	Пример неизмеримого по Лебегу множества	30
2.56	Регулярность меры Лебега	30
	Лемма о сохранении измеримости при непрерывном отображении	31
2.58	Лемма о сохранении измеримости при гладком отображении. Инвариантность меры Лебега относи-	
	тельно сдвигов	31
2.59	Инвариантность меры Лебега при ортогональном преобразовании	31
	Лемма «о структуре компактного оператора»	32
	Теорема о преобразовании меры Лебега при линейном отображении	32
	Теорема об измеримости пределов и супремумов	33
2.63	Характеризация измеримых функций с помощью ступенчатых	33

1 Определения и формулировки

1.1 Признак Абеля равномерной сходимости функционального ряда

 $a_n, b_n : E \subset \mathbb{R} \to \mathbb{R}$.

 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ равномерно сходится на E, если:

- 1. $\sum_{n=1}^{\infty} a_n(x)$ равномерно сходится на E.
- 2. Последовательность $b_n(x)$ равномерно ограничена на E и монотонна для всех $x \in E$.

1.2 Равномерная сходимость функционального ряда

Функциональный ряд $\sum f_n(x)$ сходится равномерно к f(x), если последовательность его частичных сумм равномерно сходится к f(x).

1.3 Формулировка критерия Больцано-Коши для равномерной сходимости

Ряд $\sum f_n(x)$ равномерно сходится на E тогда и только тогда, когда

$$\forall \epsilon > 0 \ \exists N : \forall m \ge n \ge N, x \in E \mid \sum_{k=n}^{m} f_k(x) \mid < \epsilon$$

1.4 Степенной ряд, радиус сходимости степенного ряда, формула Адамара

- 1. $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ степенной ряд.
- 2. $R \in [0; +\infty]$: при $|x x_0| < R$ ряд сходится, при $|x x_0| > R$ ряд расходится радиус сходимости степенного ряда.
- 3. Формула Адамара:

$$R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$$

1.5 Экспонента как функция комплексного аргумента

$$exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

1.6 Метод суммирования средними арифметическими

$$\sum_{k=0}^{\infty} a_n$$
 — ряд. $S_n = \sum_{k=0}^n a_n$.

Сумма ряда по методу средних арифметических:

$$S = \lim_{n \to +\infty} \frac{1}{n+1} \sum_{k=0}^{n} S_k$$

1.7 Метод суммирования Абеля-Пуассона

 $\sum_{n=0}^{\infty}a_{n}$ — ряд. Его сумма по Абелю-Пуассону:

$$S = \lim_{x \to 1-0} \sum_{n=0}^{\infty} a_n x^n$$

4

1.8 Частная производная второго порядка, *k*-го порядка

 $f: E \subset \mathbb{R}^m \to \mathbb{R}, \ a \in E, \ U(a) \in E.$

 $\exists f'_{x_i}$ в U(a) — частная производная f по переменной x_i .

Если в $a \exists (f'_{x_i})'_{x_k}$, то она называется частной производной второго порядка по x_i и x_k в точке $a (f''_{x_i x_k}(a))$.

Аналогично — частные производные высших порядков.

1.9 Классы $C^r(E)$

 $E \in \mathbb{R}^m$ — открыто.

Класс функций $C^r(E), r \in \mathbb{N}$ — класс функций на E, у которых существуют все частные производные порядка r и они непрерывны.

 $C^0(E) = C(E)$ — непрерывные на E функции.

$$C^{\infty}(E) = C^{0}(E) \cap C^{1}(E) \cap C^{2}(E) \cap \dots$$

1.10 Мультииндекс и обозначения с ним

 $i = (i_1, \dots, i_m), i_k \in \mathbb{Z}_+$ — мультииндекс.

1. $|i| = i_1 + \dots + i_m$ — высота мультииндекса.

2.
$$i! = i_1! \dots i_m!$$

3.
$$x^i = x_1^{i_1} \dots x_m^{i_m}$$

4.
$$f^{(i)} = \frac{\partial^{|i|} f}{\partial x^i} = \frac{\partial^{|i|} f}{\partial x_1^{i_1} \dots \partial x_m^{i_m}}$$

1.11 Формула Тейлора (различные виды записи)

 $E\subset \mathbb{R}^m,\,f\in C^{r+1}(E),\,x\in E,\,(x+h)\in U(x)\subset E,\,\theta\in (0;1)$

$$f(x+h) = \sum_{|k| \le r} \frac{f^{(k)}(x)}{k!} h^k + \sum_{|k|=r+1} \frac{f^{(k)}(x+\theta h)}{k!} h^k$$

$$f(x+h) = \sum_{|k| \le r} \frac{f^{(k)}(x)}{k!} h^k + o(|h|^r)$$

$$f(x+h) = \sum_{s=0}^{r} \frac{d^{s}(a,h)}{s!} + \frac{d^{r+1}(a,\theta h)}{(r+1)!}$$

1.12 п-й дифференциал

$$d^{n}f(x,h) = \sum_{|k|=n} \frac{n!}{k!} f^{(k)}(x)h^{k}$$

1.13 Норма линейного оператора

$$L \in \mathcal{L}_{m,n}$$

$$||L|| = \sup_{|x|=1} |Lx|$$

1.14 Положительно-, отрицательно-, незнако- определенная квадратичная форма

 $Q:\mathbb{R}^m o \mathbb{R}.$ $Q(x) = \sum_{i=1}^m \sum_{j=1}^m a_{ij} x_i x_j$ — квадратичная форма.

- 1. Q(x) положительно определённая форма, если $\forall x \neq 0 \ Q(x) > 0$.
- 2. Q(x) отрицательно определённая форма, если $\forall x \neq 0 \ Q(x) < 0$.
- 3. Q(x) незнакоопределённая форма, если $\exists x : Q(x) > 0$ и $\exists x : Q(x) < 0$.
- 4. Q(x) положительно определённая вырожденная форма, если $\forall x \neq 0 \ Q(x) \geq 0, \ \exists x \neq 0 : Q(x) = 0.$
- 5. Q(x) отрицательно определённая вырожденная форма, если $\forall x \neq 0 \ Q(x) \leq 0, \ \exists x \neq 0 : Q(x) = 0.$

1.15 Локальный максимум, минимум, экстремум

 $f: E \subset \mathbb{R}^m \to \mathbb{R}$.

- 1. $x_0 \in E$ точка локального максимума, если $\exists U(x_0) : \forall x \in U(x_0) \cap E \ f(x) \leq f(x_0)$.
- 2. $x_0 \in E$ точка локального минимума, если $\exists U(x_0) : \forall x \in U(x_0) \cap E \ f(x) \geq f(x_0)$.
- 3. $x_0 \in E$ точка строгого локального максимума, если $\exists U(x_0) : \forall x \in U(x_0) \cap e \setminus \{x_0\} \ f(x) < f(x_0)$.
- 4. $x_0 \in E$ точка строгого локального минимума, если $\exists U(x_0) : \forall x \in U(x_0) \cap e \setminus \{x_0\} \ f(x) > f(x_0)$.
- 5. $x_0 \in E$ точка (строгого) локального экстремума, если она является точкой (строгого) локального максимума или минимума.

1.16 Диффеоморфизм

 $F: E \in \mathbb{R}^m \to \mathbb{R}^n$ — диффеоморфизм, если F обратимо, F и F^{-1} дифференцируемы.

1.17 Формулировка теоремы о локальной обратимости

 $F: E \subset \mathbb{R}^m \to \mathbb{R}^m$, E открыто, $F \in C^1(E, \mathbb{R}^m)$, $x_0 \in E$, $det F'(x_0) \neq 0$. Тогда $\exists U(x_0) \subset E$, такое что F, суженное на $U(x_0)$ — диффеоморфизм.

1.18 Формулировка теоремы о локальной обратимости в терминах систем уравнений

$$\begin{cases} f_1(x_1,\ldots,x_m)=y_1\\ \vdots\\ f_m(x_1,\ldots,x_m)=y_m\\ f_i\in C^1.\ \exists x^0-\text{ решение},\ det(\frac{\partial f_i}{\partial x_j}(x^0))\neq 0.\\ \text{Тогда } \exists U(x^0),V(y_0):\forall y\in V(y_0)\ \exists !\ \text{решение}\ x\in U(x^0)\ \text{и }x_i(y)-\text{гладкие}. \end{cases}$$

1.19 Формулировка теоремы о неявном отображении в терминах систем уравнений

$$F: E\subset\mathbb{R}^{m+n}\to\mathbb{R}^n, F=(f_1,\ldots,f_n), f_i\in C^1(E)$$

$$\begin{cases} f_1(x_1,\ldots,x_m,y_1,\ldots,y_n)=0\\ \vdots\\ f_n(x_1,\ldots,x_m,y_1,\ldots,y_n)=0 \end{cases}$$

$$(a,b)=(x_1,\ldots,x_m,y_1,\ldots,y_n) - \text{решение. } \det(\frac{\partial f_i}{\partial y_j})\neq 0.$$
 Тогда $\exists U(a)\in\mathbb{R}^m, U(b)\in\mathbb{R}^n: \forall (x_1,\ldots,x_m)\in U(a)$ решение системы от (y_1,\ldots,y_n) в $U(b)$ единственно.

1.20 Простое k-мерное гладкое многообразие в \mathbb{R}^m

 $M \subset \mathbb{R}^m$ — простое k-мерное многообразие в \mathbb{R}^m , если \exists область $E \subset \mathbb{R}^k$, $\Phi : E \to \mathbb{R}^m : \Phi(E) = M$, Φ — гомеоморфизм (непрерывное, обратимое, обратное непрерывно).

M — гладкое k-мерное многообразие класса C^r , если $\Phi \in C^r$.

1.21 Относительный локальный максимум, минимум, экстремум

 $f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}$

 $\Phi:E\to\mathbb{R}^n$

 $M_{\Phi} = x \in E : \Phi(x) = 0$

 $x_0 \in M_\Phi$ — точка относительного локального максимума, если $\exists U(x_0): \forall x \in U(x) \cap M_\Phi$ $f(x) \leq f(x_0)$.

Аналогчино: минимум, экстремум, строгий экстремум.

1.22 Формулировка достаточного условия относительного экстремума

 $f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}, \ \Phi: E \subset \mathbb{R}^n, \ f, \Phi \in C^1.$

 $a \in E$ — подозрительная на экстремум точка: $\Phi(a) = 0$, $\exists \lambda \in \mathbb{R}^n : G'(a) = f'(a) - \lambda \Phi'(a) = 0$.

Пусть $rank \Phi'(a) = k$ реализуется на последних k столбцах.

 $h=(h_1,\dots,h_{m+n})$ — такой вектор, что $\Phi'(a)h=0.$ $h=(h_x,h_y),$ $h_y=\Psi(h_x)$ — линейно.

 $G(x) = f(x) - \lambda \Phi(x)$. Квадратичная форма: $Q(h_x) = d^2 G(a, (h_x, \Psi(h_x)))$.

- 1. Q положительно определённая $\Rightarrow a$ точка относительного локального минимума.
- $2. \ Q$ отрицательно определённая $\Rightarrow a$ точка относительного локального максимума.
- 3. Q незнакоопределённая $\Rightarrow a$ не экстремум.

${f 1.23}$ Касательное пространство к k-мерному многообразию в ${\Bbb R}^m$

 $M\subset \mathbb{R}^m-k$ -мерное многообразие, $\Phi:\mathbb{R}^k\to \mathbb{R}^m$ — параметризация.

 $x_0 \in M, u_0 = \Phi^{-1}(x_0).$

Касательное пространство к M в точке x_0 — это множество $\{\Phi'(u_0)h:h\in\mathbb{R}^k\}$

1.24 Независимый набор функций

 $f_1, \ldots, f_n : E \subset \mathbb{R}^m \to \mathbb{R}. \ F = (f_1, \ldots, f_n).$

Функции f_1,\ldots,f_n независимы в окрестности $U(x_0)\subset E,$ если $(y_0=F(x_0))$:

 $\exists V(y_0): \forall G: V(y_0) \to \mathbb{R}$ — непрерывна, выполнение тождества $G(F(x)) \equiv 0$ при $x \in U(x_0)$ возможно только при $G \equiv 0$.

1.25 Кусочно-гладкий путь

Путь $\gamma:[a,b] \to \mathbb{R}^m$, такой что \exists дробление $a=t_0 < t_1 < \cdots < t_n = b$: γ гладкий на каждом отрезке дробления.

1.26 Интеграл векторного поля по кусочно-гладкому пути

 $E\subset\mathbb{R}$ — открытое. γ — кусочно-гладкий путь в $E,\,V$ — векторное поле в E. Интеграл V по γ :

$$I(V,\gamma) = \int_a^b V(\gamma(t)) \cdot \gamma'(t) dt = \int_a^b \sum_{i=1}^m V_i(\gamma(t)) \gamma_i'(t) dt = \int_a^b \sum_{i=1}^m V_i(\gamma(t)) d\gamma_i(t)$$

Обозначение: $\int_a^b V d\gamma$.

1.27 Потенциал, потенциальное векторное поле

E — область в \mathbb{R}^m . $V: E \to \mathbb{R}^m$ — непрерывное векторное поле. V потенциально в E, если $\exists f: E \to \mathbb{R} \in C^1(E): \forall x \in E \ V(x) = grad \ f$.

1.28 Локально потенциальное векторное поле

E — область в \mathbb{R}^m . $V: E \to \mathbb{R}^m$ — непрерывное векторное поле. V — локально потенциальное в E, если $\forall x \in E \ \exists U(x)$: V потенциально в U.

1.29 Похожие пути

Пути $\gamma_1, \gamma_2: [a,b] \to E$ (E — область), если у них есть общая «гусеница»: \exists шары B_1, \ldots, B_n , дробление $a=t_0 < t_1 < \cdots < t_n = b: \forall \ \gamma_i([t_{j-1}, t_j]) \subset B_j$. Замечания:

- 1. Можно требовать, что радиусы $< \delta$.
- 2. Можно требовать, чтобы в шарах некоторое внкторное поле было потенциальным.
- 3. Любой путь похож на ломаную.

1.30 Интеграл локально-потенциального векторного поля по произвольному пути

Интеграл локально-потенциального векторного поля V в E по произвольному пути γ — это его интеграл по похожему на него кусочно-гладкому пути.

1.31 Гомотопия путей свзанная и петельная

 $\gamma_0,\gamma_1:[a,b] o E$ — пути. $\Gamma:[a,b] imes[0,1] o E$ — непрерывно. $\Gamma(t,0)=\gamma_0(t),\,\Gamma(t,1)=\gamma_1(t).$

 Γ — гомотопия.

Если $\forall s \in [0,1]$ $\Gamma(a,s) = \gamma_0(a) = \gamma_1(a)$, $\Gamma(b,s) = \gamma_0(b) = \gamma_1(b)$, то это связанная гомотопия. Если $\forall s \in [0,1]$ $\Gamma(a,s) = \Gamma(b,s)$, то это петельная гомотопия.

1.32 Односвязная область

Область E односвязная, если $\forall \gamma$ — замкнутый путь в E \exists петельная гоотопия γ в постоянный путь (точку).

1.33 Полукольцо, алгебра, сигма-алгебра

Семейство подмножеств $\mathbb P$ множества X — полукольцо, если:

- 1. $\emptyset \in \mathbb{P}$.
- 2. Если $A, B \in \mathbb{P}$, то $A \cap B \in \mathbb{P}$.
- 3. Если $A, B \in \mathbb{P}$, то $A \setminus B = \bigcup_{k=1}^n C_k$, где $C_k \in \mathbb{P}$, дизъюнктны.

Семейство подмножеств $\mathbb A$ множества X — алгебра, если:

- 1. $\emptyset \in \mathbb{A}$.
- 2. Если $A \in \mathbb{A}$, то $X \setminus A \in \mathbb{A}$.
- 3. Если $A, B \in \mathbb{A}$, то $A \cup B \in \mathbb{A}$.

Семейство подмножеств $\mathbb A$ множества $X-\sigma$ -алгебра, если:

- 1. $\emptyset \in \mathbb{A}$.
- 2. Если $A \in \mathbb{A}$, то $X \setminus A \in \mathbb{A}$.
- 3. Если $A_1, A_2, \dots \in \mathbb{A}$, то $\bigcup A_k \in \mathbb{A}$.

1.34 Объем

1.34.1 Конечная аддитивность

 $\mu:\mathbb{P}\to\overline{\mathbb{R}}$ (\mathbb{P} — полукольцо) — конечно аддитивна, если

- 1. $\mu(\emptyset) = 0$.
- 2. $+\infty$ и $-\infty$ не могут оба включаться в область значений μ .
- 3. Если $A_1, \ldots, A_k \in \mathbb{P}$, дизъюнктны, $\bigcup A_i \in \mathbb{P}$, то $\mu(\bigcup A_i) = \sum \mu(A_i)$.

1.34.2 Объем

 $\mu:\mathbb{P} \to \mathbb{R} \; (\mathbb{P} -$ полукольцо) — объём, если:

- 1. $\forall A \ \mu(a) \geq 0$.
- $2.~\mu$ конечно аддитивна.

1.35 Ячейка

 $a, b \in \mathbb{R}^n$, $a < b \ (\forall k \ a_k < b_k)$.

Ячейка — параллелепипед $[a,b) = [a_1,b_1) \times \cdots \times [a_n,b_n]$.

 \emptyset — тоже ячейка.

Множество всех ячеек — \mathbb{P}_n

1.36 Классический объем в \mathbb{R}^m

$$v: \mathbb{P}_n \to \mathbb{R}_+$$
. $v[a,b) = \prod_{k=1}^n (b_k - a_k), v(\emptyset) = 0$.

1.37 Мера, пространство с мерой

 $\mu: \mathbb{P} \to \mathbb{R} \ (\mathbb{P} - \text{полукольцо}) - \text{мера, если:}$

- 1. μ объём.
- 2. Счётная аддитивность: $A_1,A_2,\dots\in\mathbb{P},$ дизъюнктны, $\bigcup A_i\in\mathbb{P},$ тогда $\mu(\bigcup A_i)=\sum \mu(A_i).$

Пространство с мерой — тройка (X, \mathbb{A}, μ) : X — множество, \mathbb{A} — σ -алгебра подмножеств X, μ — мера на \mathbb{A} .

1.38 Дискретная мера

$$x_1, x_2, \dots \in X, h_1, h_2, \dots \in [0, +\infty].$$

 $\mu(A) = \sum_{x_i \in A} h_i.$

1.39 Формулировка теоремы о непрерывности сверху

A — алгебра подмножеств X, μ — конечный объём на A. Тогда эквивалентно:

- 1. μ мера.
- 2. Если $A_1, A_2, \dots \in \mathbb{A}, \forall k \ A_k \supset A_{k+1}, A = \bigcap A_k \in \mathbb{A}, \text{ то } \mu(A_n) \to \mu(A).$

1.40 Формулировка теоремы о лебеговском продолжении меры

 \mathbb{P}_{0} — полукольцо подмножеств X, μ_{0} — σ -конечная мера на \mathbb{P}_{0} .

Тогда $\exists \sigma$ -алгебра \mathbb{A} и мера μ на \mathbb{A} , что:

- 1. $\mathbb{P}_0 \subset \mathbb{A}$ и μ продолжение μ_0 .
- 2. μ полная мера.
- 3. μ минимальная: если найдётся σ -алгебра \mathbb{A}_1 и мера μ_1 на ней, удовлетворяющие (1) и (2), то $\mathbb{A} \subset \mathbb{A}_1$ и μ_1 продолжение μ .
- 4. Если \mathbb{P} полукольцо, $\mathbb{P}_0 \subset \mathbb{P} \subset \mathbb{A}$, $\overline{\mu}$ мера на \mathbb{P} , являющаяся продолжением μ_0 , то $\overline{\mu}$ сужение μ .
- 5. $\forall A \in \mathbb{A} \ \mu(A) = \inf_{(P_1, P_2, \dots \in \mathbb{P}_0, A \subset \bigcup P_i)} \sum \mu(P_i).$

1.41 Полная мера

Мера, заданная на полукольце \mathbb{P} , называется полной, если любое подмножество множества меры 0 также принадлежит \mathbb{P} .

1.42 Сигма-конечная мера

 μ — мера на полукольце $\mathbb P$ над X. Если $X=\bigcup_{k=1}^\infty X_k$, где $X_k\in\mathbb P$ и $\mu(X_k)<+\infty$, то мера μ σ -конечная.

1.43 Мера Лебега, измеримое по Лебегу множество

 \mathbb{P}_n — полукольцо ячеек в \mathbb{R}^n , μ — классический объём.

Мера Лебега — это лебеговское продолжение меры μ из теоремы о лебеговском продолжении меры на σ -алгебру \mathfrak{M}^n .

Элементы \mathfrak{M}^n — измеримые по Лебегу множества.

1.44 Борелевская сигма-алгебра

Борелевская σ -алгебра над метрическим пространством X — это минимальная по включению σ -алгебра, содержащая все открытые подмножества X.

1.45 Формулировка теоремы о мерах, инвариантных относительно сдвигов

 μ — мера в \mathbb{R}^m на \mathfrak{M}^m .

- 1. $\forall A \in \mathfrak{M}^m, V \in \mathbb{R}^m \ \mu(A) = \mu(A+V).$
- 2. Если $A \in \mathfrak{M}^m$ ограничено, то $\mu(A) < +\infty$.

Тогда $\exists k \geq 0$, что $\mu = k\lambda_m \ (\lambda_m - \text{мера Лебега}).$

1.46 Ступенчатая функция

Функция $f: x \to \mathbb{R}$ называется ступенчатой, если \exists конечное разбиение $X = X_1 \sqcup \cdots \sqcup X_n$, что f константна на каждом X_i .

1.47 Разбиение, допустимое для ступенчатеой функции

Разбиение $X=X_1\sqcup\cdots\sqcup X_n$ — допустимое для ступенчатой функции f, если f константна на каждом X_i .

1.48 Измеримая функция

 (X, \mathbb{A}, μ) — пространство с мерой.

Функция $f:E\subset X\to \overline{\mathbb{R}}$ $(E\in\mathbb{A})$ — измеримая на E, если для любого $a\in\mathbb{R}$ множество $\{x\in E:f(x)< a\}$ измеримо.

2 Теоремы

2.1 Признак Дирихле равномерной сходимости функционального ряда

 $a_n, b_n : E \subset \mathbb{R} \to \mathbb{R}.$

 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ равномерно сходится на E, если:

- 1. Частичные суммы $\sum a_n(x)$ равномерно ограничены на E.
- 2. $\forall x \ b_n(x)$ монотонно, $b_n(x)$ равномерно сходится к 0.

Доказательство:

- 1. Доказываем по критерию Коши: $\forall \epsilon > 0 \ \exists K : \forall M > N > K, \forall x \ |\sum_{k=N}^M a_n(x)b_n(x)| < \epsilon.$
- 2. Преобразование Абеля: $\sum_{k=N}^{M} a_k b_k = A_M b_M A_{N-1} b_N + \sum_{k=N}^{M-1} (b_k b_{k+1}) A_K$.
- 3. $|A_M b_M A_{N-1} b_N + \sum_{k=N}^{M-1} (b_k b_{k+1}) A_K| \le C_A (|b_M| + |b_N| + \sum_{k=N}^{M-1} |b_k b_{k+1}|) \le C_A (|b_M| + 2|b_N|).$ $\exists \text{To} < \epsilon \text{ HCHM}.$

2.2 Непрерывная дифференцируемость гамма функции

 $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ — непрерывно дифференцируема.

Доказательство:

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{k=1}^{\infty} (1 + \frac{z}{k})e^{-\frac{z}{k}}$$
$$-ln\Gamma(z) = lnz + \gamma z + \sum_{k=1}^{\infty} \underbrace{(ln(1 + \frac{z}{k}) - \frac{z}{k})}_{u_k(z)}$$
$$u'_k(z) = \frac{-z}{k(z+k)}$$

Ряд $\sum u_k'(z)$ равномерно сходится в окрестности любой точки, значит, $\sum u_k(z)$ непрерывно дифференцируем. Всё остальное в $ln\Gamma(z)$ тоже диифференцируемо.

2.3 Теорема о круге сходимости степенного ряда

$$A(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 — степенной ряд.

Возможны три случая:

- 1. A сходится только в z_0 .
- 2. A сходится на \mathbb{C} .
- 3. $\exists R \in (0, \infty)$: A сходится при $|z z_0| < R$ и расходится при $|z z_0| > R$.

- 1. Признак Коши для ряда $\sum b_n$: если $\overline{\lim} \sqrt[n]{|b_n|} < 1$, ряд сходится, если > 1, расходится.
- 2. $\overline{\lim} \sqrt[n]{|a_n(z-z_0)^n|} = (\overline{\lim} \sqrt[n]{|a_n|})|z-z_0|.$
- 3. Дальше просто.

2.4 Теорема о непрерывности степенного ряда

 $\sum_{n=0}^{\infty}c_{n}(z-z_{0})^{n}$ — степенной ряд. R>0 — радиус сходимости.

- 1. $\forall 0 < r < R$ ряд сходится равномерно в круге $B(z_0, r)$.
- 2. $f(z) = \sum_{n=0}^{\infty} c_n (z z_0)^n$ непрерывна на $B(z_0, R)$.

Доказательство:

- 1. (а) Признак Вейрштрасса. $z \in B(z_0, r)$. $|a_n(z z_0)^n| \le |a_n| r^n$.
 - (b) $\sum |a_n| r^n$ сходится, так как $\sum |a_n| (z-z_0)^n$ сходится при $z=z_0+r$.
- 2. Непрерывность следует из равномерной сходимости.

2.5 Теорема о дифференцировании степенного ряда. Следствие об интегрировании. Пример.

 $(A):f(z)=\sum_{n=0}^{\infty}c_n(z-z_0)^n$ — степенной ряд. R>0 — радиус сходимости. $(A'):\sum_{n=1}^{\infty}nc_n(z-z_0)^{n-1}.$

$$(A'): \sum_{n=1}^{\infty} nc_n(z-z_0)^{n-1}$$

Тогда:

- 1. Радиус сходимости A' равен R.
- 2. $f'(z) = \sum_{n=1}^{\infty} nc_n(z-z_0)^{n-1}$.

Следствие:

$$(A)$$
: $\sum_{n=0}^{\infty} \frac{1}{n+1} c_n (z-z_0)^{n+1}$.

- 1. Радиус сходимости 'A равен R.
- 2. $\int_{z_0}^{z} f(t)dt = \sum_{n=0}^{\infty} \frac{1}{n+1} c_n (z-z_0)^{n+1}$.

Доказательство:

- 1. $R' = \frac{1}{\overline{\lim} \sqrt[n]{(n+1)a_{n+1}}} = R$ (несложно).
- 2. Ряд из производных равномерно сходится, значит, исходный ряд дифференцируем и имеет такие производные.
- 3. Про интеграл изи.

2.6 Свойства экспоненты

1.
$$exp(0) = 1$$

2.
$$exp \in C^{\infty}(\mathbb{C}), exp' = exp$$

3.
$$exp(z_1 + z_2) = exp(z_1) \cdot exp(z_2)$$

4.
$$exp(\overline{z}) = \overline{exp(z)}$$

5.
$$\forall z \ exp(z) \neq 0$$

Пусть exp(ix) = Cosx + iSinx, exp(ix) = T $(x \in \mathbb{R})$.

6.
$$Cosx = \frac{exp(ix) + exp(-ix)}{2} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

7.
$$Sinx = \frac{exp(ix) - exp(-ix)}{2i} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!}$$

8.
$$T(x+y) = T(x) \cdot T(y)$$

9.
$$Cos(x + y) = Cosx \cdot Cosy - Sinx \cdot Siny$$

10.
$$Sin(x + y) = Sinx \cdot Cosy + Cosx \cdot Siny$$

11.
$$|T(x)| = 1$$

12.
$$T'(x) = iT(x)$$

Доказательство:

- 1. Очевидно.
- 2. Взять и продифференцировать.

3.
$$exp(z_1 + z_2) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z_1^k z_2^{n-k}}{k!(n-k)!} = exp(z_1) \cdot exp(z_2).$$

- 4. Очевидно.
- 5. Если $exp(z_0) = 0$, то $exp(0) = exp(-z+z) = exp(-z) \cdot 0 = 0$, а это не так.
- 6. Взять и посчитать.
- 7. Взять и посчитать.
- 8. Из пункта 3.
- 9. Взять и посчитать.
- 10. Взять и посчитать.
- 11. Взять и посчитать.
- 12. Взять и продифференцировать.

2.7 Метод Абеля суммирования рядов. Следствие

 $\sum_{n=0}^{\infty} a_n$ — сходится.

Тогда
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 корректно задана на $(-1;1)$ и $\lim_{x\to 1-0} f(x) = \sum_{n=0}^{\infty} a_n$.

Доказательство:

- 1. $\sum a_n x^n$ сходится при x=1, значит, $R\geq 1$. Доказать: f(x) непрерывна на [0,1].
- 2. $\sum a_n x^n$ равномерно сходится на [0,1], потому что $\sum a_n$ равномерно сходится относительно x, x^n монотонна и ограничена (прихнак Абеля).

2.8 Единственность разложения функции в ряд

Если функция f раскладывается в степенной ряд в $U(x_0)$, то разложение единственно.

Доказательство:

Коэффициенты однозначно определяются производными всех порядков f в точке x_0 .

2.9 Разложение бинома в ряд Тейлора

$$(1+x)^{a} = 1 + ax + \frac{a(a-1)}{2}x^{2} + \dots = \sum_{n=0}^{\infty} C_{a}^{n}x^{n}, |x| < 1$$

$$C_{a}^{n} = \frac{a(a-1)\cdots(a-n+1)}{n!}$$

Доказательство:

- 1. Рассмотрим ряд $f(x) = \sum_{n=0}^{\infty} C_a^n x^n$
- 2. По правилу Даламбера, $R=\lim |\frac{c_n}{c_{n+1}}|=\lim |\frac{n+1}{a-n}|=1.$
- 3. Продифференцируем его: $f'(x) = \sum_{n=0}^{\infty} \frac{a(a-1)\cdots(a-n)}{n!} x^n$.
- 4. Домножаем на (1+x): $(1+x)f'(x) = a + \sum_{n=1}^{\infty} \left(\frac{a(a-1)\cdots(a-n)}{n!} + \frac{a(a-1)\cdots(a-n+1)}{(n-1)!}\right)x^n = \sum_{n=0}^{\infty} a^{\frac{a(a-1)\cdots(a-n+1)}{n!}} = af(x)$.
- 5. Пусть $g(x) = \frac{f(x)}{(1+x)^a}$. $g'(x) = \frac{f'(x)(1+x)^a a(1+x)^{a-1}f(x)}{(1+x)^{2a}} = \frac{f'(x)(1+x) af(x)}{(1+x)^{a+1}} = 0$.
- 6. Производная g равна нулю, поэтому $g \equiv const = g(0) = 1$. Поэтому $f(x) = (1+x)^a$.

2.10 Пример функции, у которой ряд Тейлора расходится при $x \neq 0$

$$f(t) = \int_0^\infty \frac{e^{-x} dx}{1 + t^2 x}$$

Доказательство:

- 1. $\frac{1}{1+t^2x}=1-t^2x+(t^2x)^2+\cdots+(-t^2x)^n+\frac{(-t^2x)^{n+1}}{1+t^2x}$. Доказательство: домножить всё на $1+t^2x$.
- 2. Домножим на e^{-x} и проинтегрируем по x.

$$f(t) = \int_0^\infty e^{-x} dx + \dots + (-1)^n t^{2n} \int_0^\infty e^{-x} x^n dx + (-1)^{n+1} t^{2n+2} \int_0^\infty \frac{e^{-x} x^{n+1}}{1 + t^2 x}.$$

3. Остаток тут $o(t^{2n+1})$, поэтому это ряд Тейлора. Члены ряда тут последовательные факториалы, поэтому он расходится.

2.11 Теорема о разложимости функции в ряд Тейлора

$$f \in C^{\infty}((x_0 - h; x_0 + h))$$

f разложима в ряд Тейлора в окрестности x_0 тогда и только тогда, когда

$$\exists \delta, c, A > 0 : \forall n, |x - x_0| < \delta |f^{(n)}(x)| \le cA^n n!$$

Доказательство:

1. ←

(a)
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\overline{x})}{(n+1)!} (x - x_0)^{n+1}$$
.

- (b) Остаток должен $\to 0$. $\left| \frac{f^{(n+1)}(\overline{x})}{(n+1)!} (x-x_0)^{n+1} \right| \le c(A|x-x_0|)^{n+1} \to 0$ (в некоторой окрестности x_0).
- $2. \Rightarrow$

(а) Рассмотрим точку $x_1 \neq x_0$, $f(x_1) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x_1 - x_0)^k$. Ряд сходится, поэтому слагаемые ограничени по модулю: $\forall k \mid \frac{f^{(k)}(x_0)}{k!} (x_1 - x_0)^k \mid \leq c$.

(b)
$$b = \frac{1}{|x_1 - x_0|}$$
. Тогда $|f^{(k)}(x_0)| \le ck!b^k$.

(c) Пусть
$$x \in B(x_0, \frac{1}{2b})$$
. $f^{(n)}(x) = \sum_{k=n}^{\infty} \frac{f^{(k)}(x_0)}{(k-n)!} (x-x_0)^{k-n}$.

$$|f^{(n)}(x)| \le \sum_{k=n}^{\infty} \frac{|f^{(k)}(x_0)|}{(k-n)!} |x-x_0|^{k-n} \le \sum_{k=n}^{\infty} \frac{ck!b^k}{(k-n)!} |x-x_0|^{k-n} = cb^n \sum_{k=n}^{\infty} k(k-1) \cdots (k-n+1)(b|x-x_0|)^{k-n} = cb^n \frac{n!}{(1-b|x-x_0|)^{n+1}} \le \frac{cb^n n!}{(\frac{1}{2})^{n+1}} = 2c(2b)^n n!$$

2.12 Теорема Таубера

$$\lim_{x\to 1-0}\sum a_nx^n=A,\ a_n=o(\frac{1}{n}).$$
 Тогда $\sum a_n=A.$

Доказательство:

1. $\delta_n = \max_{k > n} |k \cdot a_k|$ (достигается, т.к. $\to 0$). $\delta_n \to 0$.

2.
$$\sum_{n=1}^{N} a_n - A = \left(\sum_{n=1}^{N} a_n - \sum_{n=1}^{N} a_n x^n\right) - \sum_{n=N+1}^{\infty} a_n x^n + \left(\sum_{n=1}^{\infty} a_n x^n - A\right).$$

3.
$$\left|\sum_{n=1}^{N} a_n - A\right| \le \sum_{n=1}^{N} |a_n| |1 - x^n| + \sum_{n=N+1}^{\infty} \frac{|na_n| x^n}{n} + \left|\sum_{n=1}^{\infty} a_n x^n - A\right|$$
(3).

4. Неравенство Бернулли: $1 - x^n \le n(1 - x)$.

$$(3) \le N\delta_1(1-x) + \frac{\delta_{N+1}}{(N+1)(1-x)} + |\sum_{n=1}^{\infty} a_n x^n - A|$$
(4).

5. $\epsilon > 0$. $N \to \infty$. x такое, что $(1-x)N = \epsilon$.

(a)
$$\delta_{N+1} < \epsilon^2$$
 HCHM.

(b)
$$|\sum a_n x^n - A| < \epsilon$$
 HCHM.

Тогда (4)
$$\leq \epsilon \delta_1 + \frac{\epsilon^2 N}{(N+1)\epsilon} + \epsilon \leq \epsilon (\delta_1 + 2).$$

2.13 Теорема Коши о перманентности метода средних арифметических

Если ряд сходится к S, то его сумма по методу средних арифметических равна S.

1.
$$\forall \epsilon > 0 \ \exists N : \forall n > N \ |S_n - S| < \epsilon$$
.

2.
$$|\sigma_n - S| = \left|\frac{1}{n+1} \sum_{k=0}^n S_k - S\right| \le \frac{1}{n+1} \sum_{k=0}^n |S_k - S|$$
 (2).

3. При
$$n > N$$
: (2) $< \frac{\sum_{k=0}^{N} |S_k - S|}{n+1} + \sum_{k=N+1}^{n} \frac{\epsilon}{n+1}$. HCHM это $< 2\epsilon$.

2.14 Преобразование Абеля степенного ряда

$$\sum_{n=0}^{\infty} a_n x^n = (1-x) \sum_{n=0}^{\infty} A_n x^n$$

 $A_n = \sum_{k=0}^n a_k$ — частчиные суммы, |x| < min(1, R)

Доказательство:

- 1. Рассмотрим произведение $\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \frac{1}{1-x}$.
- 2. При |x| < min(1,R), $(\sum_{n=0}^{\infty} a_n x^n) \cdot \frac{1}{1-x} = (\sum_{n=0}^{\infty} a_n x^n) \cdot (\sum_{n=0}^{\infty} x^n) = \sum_{n=0}^{\infty} A_n x^n$.
- 3. Поэтому $\sum_{n=0}^{\infty} a_n x^n = (1-x) \sum_{n=0}^{\infty} A_n x^n$.

2.15Теорема о связи суммируемости по Чезаро и по Абелю-Пуассону

Если сумма ряда по методу средних арифметических равна A, то и его сумма по методу Абеля равна A.

Доказательство:

- 1. $A_n = \sum_{k=1}^n a_k, \ \sigma_n = \frac{1}{n+1} \sum_{k=0}^n A_k. \ \sigma_n \to A.$
- 2. $\sum a_k$ сходится по Чезаро, поэтому $a_k = o(k)$:
 - (a) $\lim \frac{a_n}{n} = \lim \frac{A_n A_{n-1}}{n} = \lim \frac{((n+1)\sigma_n n\sigma_{n-1}) (n\sigma_{n-1} (n-1)\sigma_{n-2})}{n} = \lim \frac{(n+1)A 2nA + (n-1)A}{n} = 0.$
- 3. $f(x) = \sum a_k x^k$ имеет радиус сходимости $R \ge 1$:
 - (a) $\overline{\lim} \sqrt[n]{o(n)} < 1$.
 - (b) $R = \frac{1}{\overline{\lim} \sqrt[n]{o(n)}} \ge 1.$
- 4. $\sum a_k x^k = (1-x) \sum A_k x^k = (1-x)^2 \sum (k+1) \sigma_k x^k$.
- 5. $(1-x)^2 \sum (k+1)x^k = 1$, значит, $(1-x)^2 \sum (k+1)Ax^k = A \ (\sigma_k \to A)$.
- 6. $f(x) A = (1-x)^2 \sum_{k=0}^{\infty} (k+1)(\sigma_k A)x^k = (1-x)^2 \sum_{k=0}^{\infty} (k+1)(\sigma_k A)x^k + (1-x)^2 \sum_{k=N+1}^{\infty} (k+1)(\sigma_k A)x^k$
 - (a) $N: |\sigma_k A| < \epsilon$

$$|(1-x)^2 \sum_{k=N+1}^{\infty} (k+1)(\sigma_k - A)x^k| \le \epsilon$$

- (b) При $1>x>x_0,\, |(1-x)^2\sum_{k=0}^N (k+1)(\sigma_k-A)x^k|<\epsilon$
- (c) Таким образом, при $x \to 1 0$ $f(x) \to A$.

Независимость частных производных от порядка дифференцирования

$$f: E \subset \mathbb{R}^2 \to \mathbb{R}, f \in C^2(E)$$

 $a \in E$

Тогда
$$f_{xy}^{\prime\prime}(a)=f_{yx}^{\prime\prime}(a)$$

Общий вид:

$$f: E \subset \mathbb{R}^m \to \mathbb{R}, f \in C^k(E)$$

$$a \in E$$

$$i_1, \dots, i_k$$
 — набор индексов, $i_r \in \{1, \dots, m\}$

$$j_1, \ldots, j_k$$
 — его перестановка

$$j_1,\dots,j_k$$
 — его перестановка Тогда $\frac{\partial^k}{\partial x_{i_1}\dots\partial x_{i_m}}f(a)=\frac{\partial^k}{\partial x_{j_1}\dots\partial x_{j_m}}f(a)$

1. Пусть
$$\Delta^2 f(h,k) = f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0)$$
.

2.
$$\alpha(h) = \Delta^2 f(h,k)$$
 при фиксированном k .
$$\alpha(0) = 0. \ \alpha(h) = \alpha(h) - \alpha(0) = \alpha'(\overline{h})h \ (\text{теорема Лагранжа по } h)$$

$$= (f_x'(x_0 + \overline{h}, y_0 + k) - f_x'(x_0 + \overline{h}, y_0))h = f_{xy}''(x_0 + \overline{h}, y_0 + \overline{k})hk \ (\text{теорема Лагранжа по } k)$$

3.
$$\beta(k)=\Delta^2 f(h,k)$$
 при фиксированном h . Аналогично:
$$\beta(k)=f''_{ux}(x_0+\overline{\overline{h}},y_0+\overline{\overline{k}})hk$$

- 4. При фиксированных h и k: $f''_{xy}(x_0 + \overline{h}, y_0 + \overline{k})hk = f''_{yx}(x_0 + \overline{\overline{h}}, y_0 + \overline{\overline{k}})hk$ При $(h, k) \to 0$, по непрерывности $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$.
- 5. Про высшие порядки простое следствие.

2.17 Полиномиальная формула

$$a_1, \dots, a_m \in \mathbb{R}, r \in \mathbb{N}_0$$

$$(a_1 + \dots + a_m)^r = \sum_{|j|=r} \frac{r!}{j!} a^j$$

Доказательство: Индукция по r. Взять и посчитать.

2.18 Лемма о дифференцировании «сдвига»

$$f: E \subset \mathbb{R}^m \to \mathbb{R}, \ E$$
 открыто, $f \in C^r(E), \ h \in \mathbb{R}^m, \ a \in E$ $\forall t \in (-\epsilon; \epsilon) \ a + th \in E, \ \phi(t) = f(a + th)$ Тогда $\forall k \leq r, k \in \mathbb{N} \ \phi^{(k)}(0) = \sum_{|i| = k} rac{k!}{i!} h^i rac{\partial^k f}{\partial x^i}(a)$

Доказательство: Индукция по k.

- 1. База: k = 0. $\phi(0) = f(a)$.
- 2. Шаг.

$$(\sum_{|i|=k} \frac{k!}{i!} h^i \frac{\partial^k f}{\partial x^i} (a+th))_t' = \sum_{j=1}^m \sum_{|i|=k} \frac{k!}{i!} h^i \frac{\partial^{k+1} f}{\partial x^i \partial x_j} (a+th) h_j =$$

$$= \sum_{j=1}^m \sum_{|i|=k+1, i_j \ge 1} \frac{k! i_j}{i!} h^i \frac{\partial^{k+1} f}{\partial x^i} (a+th) = \sum_{|i|=k+1} \frac{(k+1)!}{i!} h^i \frac{\partial^{k+1} f}{\partial x^i} (a+th)$$

2.19 Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)

$$E \subset \mathbb{R}^m$$
, $f \in C^{r+1}(E)$, $a \in E$, $x \in B(a) \subset E$
Тогда $\exists \theta \in (0;1)$:

Лагранж:

$$f(x) = \sum_{|k| \le r} \frac{f^{(k)}(a)}{k!} (x - a)^k + \sum_{|k| = r+1} \frac{f^{(k)}(a + \theta(x - a))}{k!} (x - a)^k$$

Пеано:

$$f(x) = \sum_{|k| \le r} \frac{f^{(k)}(a)}{k!} (x - a)^k + o(|x - a|^r)$$

Доказательство:

$$x = a + h, \ \phi(t) = f(a + th)$$

$$\phi(1) = \sum_{k=0}^{r} \frac{\phi_{(k)}(0)}{k!} + \frac{\phi^{r+1}(\theta)}{(r+1)!}$$

Применяем лемму о дифференцировании сдвига:

$$f(a+h) = \sum_{s=0}^{r} \sum_{|k|=s} \frac{f^{(k)}(a)}{k!} h^k + \sum_{|k|=r+1} \frac{f^{(k)}(a+\theta h)}{k!} h^k$$

Остаток — $o(|h|^r)$.

2.20 Теорема о пространстве линейных отображений

- 1. В $\mathcal{L}_{m,n} ||L||$ это норма.
- 2. $L \in \mathcal{L}_{m,n}, M \in \mathcal{L}_{n,p}$. Тогда $||ML|| \le ||L|| \cdot ||M||$.

Доказательство:

- 1. По определению нормы
 - (a) $||L|| \ge 0$, $||L|| = 0 \Leftrightarrow L = 0$ очевидно.
 - (b) $||\lambda L|| = |\lambda| \cdot ||L||$ очевидно.
 - (c) $|(L_1 + L_2)x| \le |L_1x| + |L_2x| \le (||L_1|| + ||L_2||)|x|$ $\sup_{|x|=1} |(L_1 + L_2)x| \le ||L_1|| + ||L_2||$
- 2. $|MLx| \leq ||M|| \cdot ||L|| \cdot |x|$ $\sup_{|x|=1} |MLx| \leq ||M|| \cdot ||L||$

2.21 Лемма об условиях, эквивалентных непрерывности линейного оператора

X,Y — нормированные пространства. $A\in \mathscr{L}(X,Y)$. Следующие утверждения эквивалентны:

- 1. A ограничен (||A|| кончена)
- 2. A непрерывен в 0
- 3. A непрерывен в X
- 4. A равномерно непрерывен в X

Доказательство:

- 1. $(4) \Rightarrow (3), (3) \Rightarrow (2)$ очевидно.
- 2. (2) \Rightarrow (1). A непрерывен в 0: $\forall \epsilon > 0 \ \exists \delta > 0 : \forall x : |x| < \delta \ |Ax| < \epsilon.$

$$\epsilon = 1$$
. $\exists \delta > 0 : \forall x : |x| < \delta |Ax| < 1$.

Домножим x на $\frac{2}{\delta}$. $\forall x: |x| < 2$ $|Ax| \leq \frac{2}{\delta}$. Норма ограничена.

3. $1 \Rightarrow 4$. Определение равномерной непрерывности:

$$\forall \epsilon > 0 \ \exists \delta (= \frac{\epsilon}{||A||}) > 0 : \forall x_1, x_2 : |x_1 - x_2| < \delta \ |Ax_1 - Ax_2| < \epsilon.$$

Так и есть.

2.22 Теорема Лагранжа для отображений

 $F: E \subset \mathbb{R}^m \to \mathbb{R}^n$, E открыто, F дифференцируема на E. $[a;b] \subset E$ $([a;b] = \{a+(b-a)t|t \in [0;1]\})$. Тогда $\exists c \in [a;b]: |F(b)-F(a)| \leq ||F'(c)|| \cdot |b-a|$.

Доказательство:

$$\phi(t) = F(a + (b - a)t), t \in [0, 1]. \ \phi'(t) = F'(a + (b - a)t) \cdot (b - a).$$

Теорема Лагранжа: $\exists t \in [0,1] : \phi(1) - \phi(0) = \phi'(t)$.

$$\exists c \in [a, b] : F(b) - F(a) = F'(c) \cdot (b - a).$$

$$|F(b) - F(a)| \le ||F'(c)|| \cdot |b - a|.$$

2.23 Теорема об обратимости линейного отображения, близкого к обратимому

 $L \in \Omega_m$ (обратимый линейный оператор $\mathbb{R}^m \to \mathbb{R}^m$).

$$M \in \mathcal{L}_{m,m}, ||L - M|| < \frac{1}{||L^{-1}||}$$

Тогда:

- $1. \ M$ обратим
- 2. $||M^{-1}|| \le \frac{1}{||L^{-1}||^{-1} ||L M||}$
- 3. $||L^{-1} M^{-1}|| \le \frac{||L^{-1}|| \cdot ||L M||}{||L^{-1}||^{-1} ||L M||}$

Доказательство:

- 1. (a) $A \in \mathcal{L}_{m,m}$. Если $\exists c > 0 : \forall x |Ax| \ge c|x|$, то A обратим, и $||A^{-1}|| \le \frac{1}{c}$.
 - і. Обратим, потому что $Ker\ A = \{0\}.$
 - іі. Ограничение на норму несложно выводится.
 - (b) $|L^{-1}Lx| = |x| \Rightarrow ||L^{-1}|| \cdot |Lx| \ge |x| \Rightarrow |Lx| \ge ||L^{-1}||^{-1}|x|$.
 - (c) Mx = Lx + (M L)x.

$$|Mx| \ge |Lx| - |(M-L)x| \ge |Lx| - ||M-L|| \cdot |x| \ge ||L^{-1}||^{-1} \cdot |x| - ||M-L|| \cdot |x| = (||L^{-1}||^{-1} - ||M-L||)|x| = c|x|,$$
 $c > 0.$

Значит, M обратим.

2. $|Mx| \ge (||L^{-1}||^{-1} - ||M - L||) \cdot |x|$.

$$||M^{-1}|| \le (||L^{-1}||^{-1} - ||M - L||)^{-1}.$$

$$3. \ ||L^{-1}-M^{-1}|| = ||L^{-1}(M-L)M^{-1}|| \leq ||L^{-1}|| \cdot ||M-L|| \cdot ||M^{-1}|| \leq \frac{||L^{-1}|| \cdot ||M-L||}{||L^{-1}||^{-1} - ||M-L||}.$$

2.24 Теорема о непрерывно дифференцируемых отображениях

$$F: E \subset \mathbb{R}^m \to \mathbb{R}^l, F': E \to \mathcal{L}_{m,l}$$

Следующие утверждения эквивалентны:

- 1. $F \in C^1(E)$ (все частные производные непрерывны).
- 2. F' непрерывно.

- 1. $(1) \Rightarrow (2)$
 - (a) Фиксируем $a \in E$. $||F'(a) F'(b)|| \le \sqrt{\sum (\frac{\partial f_i}{\partial x_i}(a) \frac{\partial f_i}{\partial x_i}(b))^2}$
 - (b) Доказать: $\forall \epsilon > 0 \; \exists \delta > 0 : \forall b : |a-b| < \delta \; ||F'(a) F'(b)|| < \epsilon.$ $\delta : \forall b \in B(a,\delta), i,j \; |\frac{\partial f_i}{\partial x_j}(a) \frac{\partial f_i}{\partial x_j}(b)| < \frac{\epsilon}{\sqrt{ml}} \text{существует по непрерывности частных производных.}$

2. (2)
$$\Rightarrow$$
 (1)
$$|\frac{\partial f_i}{\partial x_i}(a) - \frac{\partial f_i}{\partial x_i}(b)| \leq \sqrt{\sum_{i=1}^l (\frac{\partial f_i}{\partial x_i}(a) - \frac{\partial f_i}{\partial x_i}(b))^2} = |(F'(a) - F'(b)) \cdot (0 \dots 1 \dots 0)| \leq ||F'(a) - F'(b)||$$

2.25 Лемма об оценке квадратичной формы и об эквивалентных нормах

- 1. Q положительно определённая квадратичная форма в \mathbb{R}^m . Тогда $\exists c_Q > 0: \forall h \; |Qh| \geq c_Q |h|^2$
- 2. $p: \mathbb{R}^m \to \mathbb{R}$ норма. Тогда $\exists c_1, c_2 > 0: \forall x \ c_1 |x| \le p(x) \le c_2 |x|$

Доказательство:

- 1. S(0,1) единичная сфера, компакт. Q достигает минимума на $S.\ c_Q$ этот минимум.
- 2. (а) Докажем непрерывность p(x) (e^k базисные векторы): $p(x-y) = p(\sum_{k=1}^m (x_k-y_k)e^k) \leq \sum_{k=1}^m |x_k-y_k| p(e^k) \leq \sqrt{(\sum |x_k-y_k|^2)(\sum p_k^2)} = M|x-y|.$ Применяется неравенство Коши-Буняковского.
 - (b) p(x) непрерывна: $c_1 = min_{x \in S(0,1)}p(x), c_2 = max_{x \in S(0,1)}p(x).$

2.26 Теорема Ферма. Необходимое условие экстремума. Теорема Ролля

2.26.1 Теорема Ферма

 $f:E\subset\mathbb{R}^m o\mathbb{R},\ x_o\in Int(E)$ — точка экстремума. f диффференцируема в x_0 . Тогда $orall l\in\mathbb{R}^m, |l|=1$ $\frac{\partial f}{\partial l}(x_0)=0$

Доказательство:

$$\phi(t) = f(x_0 + tl). \frac{\partial f}{\partial l}(x_0) = \phi'(0).$$

 $\phi'(0)$, так как это экстремум.

2.26.2 Необходимое условие экстремума

В условиях теоремы Ферма: все частные производные f в x_0 равны 0.

Доказательство:

Из теоремы Ферма: частные производные — это производные по направлениям координатных осей.

2.26.3 Теорема Ролля

 $f:K\subset\mathbb{R}^m\to\mathbb{R}.\ K$ — компакт, f непрерывна на K, дивверенцируема на Int(K). f постоянна на границе K. Тогда $\exists x_0\in Int(K): grad\ f(x_0)=0.$

Доказательство:

Функция достинает минимума и максимума на компакте. В этих точках grad = 0.

2.27 Достаточное условие экстремума

$$f:E\subset\mathbb{R}^m\to\mathbb{R},\ f\in C^2(E).$$
 $x_0\in Int(E).\ grad\ f(x_0)=0.\ Q(h)=d^2f(x_0)(h).$ Тогда:

1. Если Q положительно определённая, то x_0 — локальный минимум.

- 2. Если Q отрицательно определённая, то x_0 локальный максимум.
- 3. Если Q незнакоопределённая, то x_0 не экстремум.

Доказательство:

$$f(x_0 + h) - f(x_0) = \frac{1}{2}d^2f(x_0, h) + o(|h|^2) = \frac{1}{2}Q(h) + o(|h|^2).$$

- 1. При $h \neq 0$ Q(h) > 0. $Q(h) \geq c_Q |h|^2$. $\frac{1}{2} c_Q |h|^2 + o(|h|^2) > 0$ в некоторой окрестности.
- 2. Аналогично.
- 3. $h_1, h_2: Q(h_1) > 0, Q(h_2) < 0.$ $k \to 0.$ $Q(kh_1) = k^2 Q(h_1).$ $\frac{1}{2} k^2 Q(h_1) + o(|h|^2) > 0$ в некоторой окрестности. Аналогично с h_2 .

2.28 Лемма о «почти локальной инъективности»

 $F:E\subset\mathbb{R}^m\to\mathbb{R}^m$ — дифференцируемо в $x_0\in E.$

E — открытое.

 $det F'(x_0) \neq 0$

Тогда $\exists c, \delta > 0 : \forall h, |h| < \delta |F(x_0 + h) - F(x_0)| > c|h|.$

Доказательство:

$$|F(x_0+h)-F(x_0)|=|F'(x_0)h+o(h)|\geq |F'(x_0)h|-|o(h)|\geq c|h|+o(|h|)>\frac{c}{2}$$
 (в некоторой окрестности).

2.29 Теорема о сохранении области

 $F: E \subset \mathbb{R}^m \to \mathbb{R}^m$, E открыто.

F дифференцируемо в $E, \forall x \in E \ det \ F'(x) \neq 0$

Тогда F(E) открыто.

Доказательство:

- 1. $x_0 \in E, y_0 = F(x_0)$. Проверим, что y_0 внутренняя точка F(E).
- 2. По лемме: $\exists c, \delta > 0 : \forall h : |h| \leq \delta, |F(x_0 + h) F(x_0)| \geq c|h|.$ $x = x_0 + h.$ При $x \in S(x_0, \delta)$ $F(x) \neq F(x_0).$
- 3. $r = \frac{1}{2} dist(y_0, F(S(x_0, \delta)))$. Проверить: $B(y_0, r) \subset F(E)$.
- 4. Фиксируем $y \in B(y_0, r)$. $g(x) = |F(x) y|^2$, $x \in \overline{B(x_0, \delta)}$. Минимум g достигается в этом шаре: При $x \in S(x_0, \delta)$ $g(x) \ge r^2$. При $x = x_0$ $g(x_0) = |y_0 y|^2 < r^2$.
- 5. $g(x) = (f_1(x) y_1)^2 + \dots + (f_m(x) y_m)^2$. Пусть в точке x достигается минимум, там производные равны 0:

$$\begin{cases}
0 = \frac{\partial g}{\partial x_1} = 2((f_1(x) - y_1) \frac{\partial f_1}{\partial x_1} + \dots + (f_m(x) - y_m) \frac{\partial f_m}{\partial x_1}) \\
\vdots \\
0 = \frac{\partial g}{\partial x_m} = 2((f_1(x) - y_1) \frac{\partial f_1}{\partial x_m} + \dots + (f_m(x) - y_m) \frac{\partial f_m}{\partial x_m})
\end{cases}$$

Система от переменных $(f_i(x)-y_i)$. Матрица невырождена (это F'(x)). Значит, решение только при $f_i(x)-y_i=0$ при всех i.

2.30 Следствие о сохранении области для отображений в пространство меньшей размерности

 $F: E \subset \mathbb{R}^m \to \mathbb{R}^l, \, l < m, \, E$ открыто, $F \in C^1(E)$.

 $\forall x \ rank \ F'(x) = l.$

Тогда F(E) открыто.

Доказательство:

- 1. $x_0 \in E, y_0 = F(x_0)$. $rank \ F'(x_0) = l$. Пусть он реализуется на первых l столбцах.
- 2. $det(\frac{\partial f_i}{\partial x_j})_{i,j=1...l} \neq 0$ в $U(x_0)$.
- 3. Пусть $\widetilde{F}(x) = (f_1, \dots, f_l, x_{l+1}, \dots, x_m) \ (E \to \mathbb{R}^m).$ det $\widetilde{F} = \det F \neq 0$. $\widetilde{F}(U(x_0))$ открыто в \mathbb{R}^m , а $F(U(x_0))$ проекция на \mathbb{R}^l .

2.31 Теорема о диффеоморфизме

 $T \in C^r(E \subset \mathbb{R}^m, \mathbb{R}^m) \ (r \in \mathbb{N} \cup \{\infty\}).$

T обратимо, невырождено. Тогда:

- 1. $T^{-1} \in C^r$
- 2. $(T^{-1})'(y_0) = (T'(x_0))^{-1} (T(x_0) = y_0)$

Доказательство:

Индукция по r.

- 1. База: r = 1.
 - (a) $S = T^{-1}$. S непрерывно по теореме о сохранении области (топологическое определение непрерывности).
 - (b) $A = T'(x_0)$. По лемме, $\exists c, \delta > 0 : \forall x \in B(x_0, \delta) |T(x) T(x_0)| \ge c|x x_0|$. $T(x) T(x_0) = A(x x_0) + \alpha(x)|x x_0| (\lim_{x \to x_0} \alpha(x) = 0)$.
 - (c) $y y_0 = A(S(y) S(y_0)) + \alpha(S(y))|S(y) S(y_0)|.$ $S(y) - S(y_0) = A^{-1}(y - y_0) - A^{-1}\alpha(S(y))|S(y) - S(y_0)|.$
 - $(\mathrm{d}) \ \ \Pi \mathrm{pu} \ S(y) S(y_0) < \delta \colon A^{-1} \alpha(S(y)) |S(y) S(y_0)| \leq ||A^{-1}|| \cdot |\alpha(S(y))| \cdot \tfrac{1}{c} |y y_0| = o(|y y_0|).$
 - (е) Значит, $S'(y_0) = A^{-1}$. Гладкость: S' непрерывна, так как $S'(y) = T'(S(y))^{-1}$.
- 2. (Кохась сказал, что это не нужно) Шаг: $S'(y) = T'(S(y))^{-1}$. $S \in C^{r-1}$ по индукционному предположению. Если $T \in C^r$, то $T' \in C^{r-1}$, $T'^{-1} \in C^{r-1}$, $S \in C^r$.

2.32 Теорема о неявном отображении

 $F:E\subset\mathbb{R}^{m+n}\to\mathbb{R}^n,\,E$ открыто, $F\in C^r.$

$$(a,b) \in E \ (a \in \mathbb{R}^m, \ b \in \mathbb{R}^n), \ F(a,b) = 0, \ det \ F'_b(a,b) \neq 0.$$

Тогда

$$\exists U(a) \subset \mathbb{R}^m, V(b) \subset \mathbb{R}^n: \exists ! \phi: U \to V \in C^r: \forall x \in U \ F(x, \phi(x)) = 0$$

При этом

$$\phi' = -(F_y'(x, \phi(x)))^{-1} \cdot F_x'(x, \phi(x))$$

1. $\Phi: E \to \mathbb{R}^{m+n}$. $\Phi(x,y) = (x, F(x,y))$.

$$\Phi' = \begin{pmatrix} E & 0 \\ F'_x & F'_y \end{pmatrix}$$
. $\det \Phi = \det F'_y$. $\det \Phi'(a, b) \neq 0$

- 2. По теореме о локальной обратимости, $\exists U(a,b) (= P(a) \times Q(b)) : \Phi : U \to \mathbb{R}^{m+n}$ диффеоморфизм. $V = \Phi(U)$ открытое.
- 3. $\Psi: V \to U = \Phi^{-1}$. $\Phi(x, y) = (x, F(x, y))$. $\Psi(u, v) = (u, H(u, v))$ $(H: V \to Q)$.
- 4. $\phi(x) = H(x, 0_n)$. $F(x, \phi(x)) = F(x, H(x, 0_n))$. $\Phi(x, H(x, 0_n)) = (x, 0) \Rightarrow F(x, \phi(x)) = 0$.
- 5. Единственность. $(x,y) \in U$. F(x,y) = 0. $(x,y) = \Psi(\Phi(x,y)) = \Psi(x,F(x,y)) = \Psi(x,0) = (x,\phi(x))$.
- 6. Формула. $F(x, \phi(x)) = 0$.

$$F_x' + F_y' \phi'(x) = 0.$$

$$\phi' = -(F_y')^{-1}F_x'$$

2.33 Теорема о задании гладкого многообразия системой уравнений

 $M \in \mathbb{R}^m$, $r \in \mathbb{N} \cup \{\infty\}$, 1 < k < m.

 $\forall p \in M$ эквивалентно:

- 1. $\exists U(p) \subset \mathbb{R}^m : M \cap U(p)$ простое k-мерное C^r гладкое многообразие.
- 2. $\exists U(p) \subset \mathbb{R}^m, f_1, \dots, f_{m-k} : U \to \mathbb{R} \in C^r : \forall x \ x \in U(p) \cap M \Leftrightarrow \forall i \ f_i(x) = 0$

Доказательство:

- 1. $(1) \Rightarrow (2)$
 - (a) Параметризация: $\Phi: E \subset \mathbb{R}^k \to \mathbb{R}^m, \ \Phi \in C^r, \ \Phi(t^0) = p, \ rank \ \Phi'(t) = k \ (t \in E).$
 - (b) Пусть $det(\frac{\partial \Phi_j}{\partial t_j})_{i,j=1...k} \neq 0$ при $t=t^0$. $L: \mathbb{R}^m \to \mathbb{R}^k \text{проекция } (L(x,y)=x). \ L\circ \Phi(t) \text{невырожденное}.$
 - (c) $\exists W(t_0)$ такое, что $L \circ \Phi : W(t_0) \to \mathbb{R}^k$ обратимо. $\Psi : V \to W = (L \circ \Phi)^{-1}. \ V = (L \circ \Phi)(W).$
 - (d) $\Phi:W\to M$ гомеоморфизм. $\Phi(W)$ открыто в M. Тогда $\exists U\subset (V\times\mathbb{R}^{m-k})$ открытое, $U\cap M=\Phi(W)$.
 - (e) $L:\Phi(W)\to V$ биекция. Поэтому $\exists H:V\to\mathbb{R}^{m-k},\, \forall x\in V\,\,(x,H(x))\in M.\,\,(x,H(x))=\Phi(\Psi(x))\in C^r.$
 - (f) Построим f_1, \ldots, f_{m-k} : $f_i(x_1, \ldots, x_m) = h_i(x_1, \ldots, x_k) - x_{k+i}$.
 - (g) rankF' = k, потому что F' = (H' E).
- $2. (2) \Rightarrow (1)$

Это просто теорема о неявном отображении.

2.34 Следствие о двух параметризациях

 $M \subset \mathbb{R}^m$ — простое k-мерное C^r — гладкое многообразие.

 $p \in M$, U(p) — окрестность p в \mathbb{R}^m .

 $\Phi_1: E_1 \subset \mathbb{R}^k \to U(p) \cap M, \Phi_2: E_2 \subset \mathbb{R}^k \to U(p) \cap M$ — две C^r — параметризации M.

Тогда $\exists \Psi: E_1 \to E_2$ — диффеоморфизм, $\Phi_1 = \Phi_2 \circ \Psi$

- 1. $\Psi = \Phi_2^{-1} \circ \Phi_1$ обратимое отображение. Осталось доказать дифференцируемость и невырожденность.
- 2. Докажем это в точке $t_2 \in E_2$. Как и в доказательстве теоремы о задании гладкого многообразия системой уравнений, $\exists W_2(t_2)$ окрестность t_2 , L проекция $\Phi_2(W_2)$ на $V \subset \mathbb{R}^k$.
- 3. $W_1 = \Psi^{-1}(W_2)$ окрестность $t_1 = \Psi^{-1}(t_2)$. $(L \circ \Phi_i) : E_i \to V$ непрерывние биекции.
- $4. \ \ \Psi = \underbrace{(L \circ \Phi_2)^{-1}}_{\text{диффеоморфизм}} \circ \underbrace{(L \circ \Phi_1)}_{\text{дифференцируемо}}.$
- 5. Ψ дифференцируемо, докажем невырожденность. $\Phi_1 = \Phi_2 \circ \Psi$. $\Phi_1' = \Phi_2' \Psi'$. $rank \Phi_1' = rank \Phi_2' = k$, поэтому и $rank \Psi' = k$.

2.35 Необходимое условие относительного локального экстремума

 $f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}, \ \Phi: E \to \mathbb{R}^n, \ f, \Phi \in C^1.$

 $a \in E, \Phi(a) = 0$ — точка относительного локального экстремума f.

 $rank \Phi'(a) = n.$

Тогда $\exists \lambda \in \mathbb{R}^n : f'(a) - \lambda \Phi'(a) = 0$

Доказательство:

- 1. $rank \ \Phi'(a) = n$ пусть реализуется на последних n столбцах.
- 2. a=(x,y). $\exists P(x)\subset\mathbb{R}^m, Q(y)\subset\mathbb{R}^n, \phi:P\to Q$: $\Phi(x,\phi(x))=0$ параметризация многообразия.
- 3. $g: P \to \mathbb{R}, g(x) = f(x, \phi(x)).$
- 4. $(x, \phi(x)) = a$. Тогда, поскольку это экстремум, g'(x) = 0.

$$g'(x) = f(x, \phi(x))'_{x} = f'_{x} + f'_{y}\phi' = 0$$

5. $\Phi(x, \phi(x)) = 0$

 $\Phi'_x + \Phi'_u \phi' = 0$. Возьмём $\lambda \in \mathbb{R}^n$.

$$f_x' - \lambda \Phi_x' + (f_y' - \lambda \Phi_y')\phi' = 0$$

6. Подберём такое λ , что второе слагаемое равно 0 (это можно сделать, так как Φ'_y невырожденное).

 $f_x' - \lambda \Phi_x' = 0$, всё получается.

2.36 Вычисление нормы линейного оператора с помощью собственных чисел

 $A \in \mathscr{L}_{m,n}$. $\lambda_1, \ldots, \lambda_m$ — собственные числа $A^T A$.

Тогда $||A|| = max\sqrt{\lambda_i}$.

- 1. $|Ax|^2 = \sum_{k=1}^n (\sum_{i=1}^m a_{ki}x_i)^2 = \sum_{k=1}^n \sum_{i=1}^m \sum_{j=1}^m a_{ki}a_{kj}x_ix_j = \sum_{i=1}^m (\sum_{k=1}^m a_{ki}(\sum_{j=1}^n a_{kj}x_j))x_i = \langle A^TAx, x \rangle$.
- 2. $||A|| = \sup_{|x|=1} |Ax| = \sup_{|x|=1} \sqrt{\langle A^T A x, x \rangle}$.
- 3. $B_{[n \times n]} = A^T A$ симметричная. Все собственные числа вещественны.
- 4. $\sup_{|x|=1}\langle Bx,x\rangle$. Метод множителей Лагранжа:

$$G(x) = \langle Bx, x \rangle - \lambda(x^2 - 1) = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} x_i x_k - \lambda(x^2 - 1). \ \lambda \in \mathbb{R}. \ G'(x) = 0.$$

$$\begin{cases} 2(\sum_{i=1}^{n} b_{1i}x_i - \lambda x_1) = 0 \\ \vdots \\ 2(\sum_{i=1}^{n} b_{ni}x_i - \lambda x_n) = 0 \\ x_1^2 + \dots + x_n^2 - 1 = 0 \end{cases}$$

$$\begin{cases} Bx - \lambda x = 0 \\ x \in S(0, 1) \end{cases}$$

- 5. Таким образом, максимум может достигаться только если x собственный вектор, максимум равен собственному числу.
- 6. $||A|| = \sqrt{\langle A^T A x, x \rangle} = max \sqrt{\lambda_i}$.

2.37 Лемма о корректности определения касательного пространства

M-k-мерное гладкое многообразие в \mathbb{R}^m , $p \in M$. Касательное пространство к M в точке p не зависит от выбора параметризации.

Доказательство:

Пусть Φ_1, Φ_2 — параметризации. По теореме о двух параметризациях, $\Phi_1 = \Phi_2 \circ \Psi$.

$$\Phi_1(t_1) = \Phi_2(t_2) = p. \ \Phi_1' = \Phi_2' \Psi'.$$

$$\Phi'_1(\mathbb{R}^k) = (\Phi'_2 \Psi')(\mathbb{R}^k) = \Phi'_2(\mathbb{R}^k).$$

Такио образом, касательные пространства, порождённые двумя параметризациями, совпадают.

2.38 Касательное пространство в терминах векторов скорости гладких путей

M-k-мерное гладкое многообразие в $\mathbb{R}^m,\ p\in M,\ v\in \mathbb{R}^m.$ $v\in T_p(M)$ тогда и только тогда, когда \exists путь $\gamma:[-\epsilon,\epsilon]\to M$ такой, что $\gamma(0)=p$ и $\gamma'(0)=v.$

Доказательство:

 $\Phi: E \subset \mathbb{R}^k \to \mathbb{R}^m$ — параметризация. $\Phi(t_0) = p$.

- 1. ←
 - (a) Пусть $\phi(t) = \Phi^{-1}(\gamma(t))$ соответствующий путь в E.
 - (b) Путь гладкий, так как, в терминах доказательства теоремы о задании многообзация системой уравнений, $\Phi^{-1} = \Psi \circ L \text{гладкое отображение}.$
 - (c) $\gamma'(t) = \Phi(\phi(t))' = \Phi'(\phi(t)) \cdot \phi'(t)$. $\gamma'(0) \in T_n(M)$.
- $2. \Rightarrow$
 - (a) $v \in T_p(M) \Rightarrow \exists w \in \mathbb{R}^k : \Phi'(t_0)w = v$.
 - (b) Рассмотрим путь $\gamma(t) = \Phi(t_0 + wt)$. $\gamma'(0) = \Phi'(t_0)w$, что и требовалось.

2.39 Теорема о функциональной зависимости

$$f_1,\dots,f_n: E\subset \mathbb{R}^m o \mathbb{R} \in C^1, \ F=(f_1,\dots,f_n).$$
 $rank \ F'(x) \le k$ при $x\in E, \ rank \ F'(x_0)=k$, реализуется на $det(\frac{\partial f_i}{\partial x_j})_{i,j=1\dots k}.$ $y_0=F(x_0).$ Тогда $\exists U(x_0),V(y_0),g_{k+1},\dots,g_n: V\to \mathbb{R}$ такие, что $\forall i\in \{k+1,\dots,n\}, x\in U(x_0)\ f_i(x)=g_i(f_1(x),\dots,f_k(x)).$ Доказательство:

- 1. Обозначение: $x = (x_1, \dots, x_k, x_{k+1}, \dots, x_m) = (\overline{x}, \overline{\overline{x}}).$
- 2. $\Phi: E \to \mathbb{R}^m$. $\Phi(x) = (f_1(x), \dots, f_k(x), x_{k+1}, \dots, x_m)$. $\det \Phi'(x_0) \neq 0 \Rightarrow \exists U(x_0) \colon \Phi \text{ на } U(x_0) \text{диффеоморфизм (теорема о локальной обратимости)}.$
- 3. $\widetilde{F}=F\circ\Phi^{-1}$. $\widetilde{F}(w)=(\overline{w},\Theta(w))$. $rank\ \widetilde{F}'=rank\ (F'(\Phi^{-1})')=rank\ F'\leq k\ (\text{потому что }\Phi^{-1}\text{ невырождено}).$

4.
$$w_0 = \Phi(x_0)$$
. $\widetilde{F}'(w_0) = \begin{pmatrix} E_{[k \times k]} & 0 \\ \Theta'_{\overline{w}}(w_0) & \Theta'_{\overline{\overline{w}}}(w_0) \end{pmatrix}$.

- 5. Ранг $\widetilde{F}'(w_0)$ не больше k, и он достигается на $E_{[k\times k]}$. Значит, $\Theta'_{\overline{\overline{w}}}(w_0)=0$, и Θ функция только от \overline{w} . $\widetilde{F}(w)=(\overline{w},\Theta(\overline{w}))$ тоже функция только от \overline{w} .
- 6. $F = \overline{F} \circ \Phi$. $F(x) = (f_1(x), \dots, f_k(x), \Theta(f_1(x), \dots, f_k(x)))$. Тогда $g_{k+i} = \Theta_i$.

2.40 Простейшие свойства интеграла векторного поля по кусочно-гладкому пути

V — векторное поле на $E,\,\gamma:[a,b] o E$ — путь.

- 1. Линейность по V.
- 2. Аддитивность при дроблении промежутка.
- 3. $\phi:[p,q]\to[a,b],\,\gamma_1=\gamma\circ\phi,\,\phi(p)=a,\,\phi(q)=b.$ Тогда интегралы по γ и γ_1 равны.
- 4. Интеграл по обратному пути равен минус интегралу по прямому.
- 5. $|I(V,\gamma)| \leq \max_{t \in [a,b]} |V(\gamma(t))| \cdot len(\gamma)$.

Доказательство:

- 1. Очевидно.
- 2. Очевидно.
- 3. $\int_{p}^{q} \langle V(\gamma(\phi(t))), \gamma(\phi(t))' \rangle dt = \int_{p}^{q} \langle V(\gamma(\phi(t))), \gamma'(\psi(t)) \rangle \psi'(t) dt = \int_{a}^{b} \langle V(\gamma(t_{1}), \gamma'(t_{1})) \rangle dt.$
- 4. $\int_a^b \langle V(\gamma(a+b-t)), \gamma(a+b-t)' \rangle dt = \int_a^b \langle V(\gamma(a+b-t), \gamma'(a+b-t)) \cdot (-1) dt = -\int_a^b \langle V(\gamma(t_1), \gamma'(t_1)) \rangle dt = \int_a^b \langle V(\gamma(a+b-t), \gamma'(a+b-t)) \rangle dt = \int_a^b \langle V(\gamma(a+b-t), \gamma'(a+$
- $5. \ |\int_a^b \langle V, \gamma' \rangle dt| \leq \int_a^b |\langle V, \gamma' \rangle| dt \leq \int_a^b |V| \cdot |\gamma'| dt \leq \max_{t \in [a,b]} |V(\gamma(t))| \int_a^b |\gamma'| dt = \max_{t \in [a,b]} |V(\gamma(t))| \cdot len(\gamma).$

2.41 Обобщенная формула Ньютона-Лейбница

 $V:E\subset\mathbb{R}\to\mathbb{R}$ — потенциальное векторное поле. f — потенциал. $\gamma:[a,b]\to E$ — кусочно-гладкий путь. Тогда $I(V,\gamma)=f(\gamma(b))-f(\gamma(a))$

Доказательство:

Пусть γ гладкий (иначе — по кусочкам).

$$\int_{a}^{b} \sum_{i=1}^{m} V_{i}(\gamma(t)) \gamma'_{i}(t) dt = \int_{a}^{b} \sum_{i=1}^{m} f'_{i}(\gamma(t)) \gamma'_{i}(t) dt = \int_{a}^{b} f_{i}(\gamma(t))'_{t} dt = f(\gamma(b)) - f(\gamma(a))$$

2.42 Характеризация потенциальных векторных полей в терминах интегралов

 $V:E\subset\mathbb{R}^m\to\mathbb{R}^m$. Эквивалентно:

- 1. V потенциальное.
- 2. $\forall a, b \in E$ интеграл по пути из a в b не зависит от пути.
- 3. Интеграл по любой кусочно-гладкой петле равен 0.

Доказательство:

- 1. $(1) \Rightarrow (2)$: по обобщённой формуле Ньютона-Лейбница.
- 2. $(2) \Rightarrow (3)$: интеграл по любой петле из точки a равен интегралу по постоянному пути в точке a, а он равен 0.
- 3. $(3) \Rightarrow (2)$:
 - (a) $\gamma_1, \gamma_2 : [a, b] \to E, \gamma_1(a) = \gamma_2(a), \gamma_1(b) = \gamma_2(b).$
 - (b) Рассмотрим петлю: сначала γ_1 , потом обратный к γ_2 . $I(V,\gamma_1)+I(V,rev(\gamma_2))=0 \Rightarrow I(V,\gamma_1)=I(V,\gamma_2).$
- 4. $(2) \Rightarrow (1)$:
 - (a) $x_0 \in E$. $f(x) = I(V, \gamma)$, где γ любой путь из x_0 в x. Докажем, что f потенциал.
 - (b) $f_1'(x) = \lim_{h \to 0} \frac{f(x+e_1h)-f(x)}{h}$.
 - (c) $\gamma:[0,1]\to E.$ $\gamma(t)=x+e_1ht.$ $f(x+e_1h)-f(x)=I(V,\gamma)=\int_0^1\langle V(\gamma(t)),\gamma'(t)\rangle dt=h\int_0^1V_1(x+the_1)dt=hV_1(x+che_1)$ ($c\in[0,1]$ теорема о среднем значении).
 - (d) При $h \to 0$ $ch \to 0$, $\frac{f(x+he_1)-f(x)}{h} = V_1(x+che_1) \to V_1(x)$.
 - (е) То же самое для всех остальных координат.

2.43 Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре

2.43.1 Необходимое условие потенциальности гладкого поля

 $V:E\subset\mathbb{R}^m\to\mathbb{R}^m$ — гладкое векторное поле, потенцильное.

Тогда $\forall x \in E$ матрица V'(x) симметрична:

$$\forall i, k \in \{1, \dots, m\} \ \frac{\partial V_i}{\partial V_k} = \frac{\partial V_k}{\partial V_i} \ (*).$$

Доказательство:

$$f$$
 — потенциал. $V_i = f_i'$. $(V_i)_k' = (f_i')_k' = f_{ik}'' = (V_k)_i'$.

2.43.2 Лемма Пуанкаре

 $V: E \subset \mathbb{R}^m \to \mathbb{R}^m, E$ — выпуклая область. V — гладкое, удовлетворяет условию (*) из необходимого условия потенциальности.

Тогда V потенциально.

- 1. $a \in E$. Пусть $f(x) = I(V, \gamma_x)$, где $\gamma_x : [0, 1] \to E$, $\gamma(t) = a + t(x a)$ прямой путь из a в x. Докажем, что f потенциал.
- 2. $\gamma' = x a$

3.
$$f(x) = \int_0^1 \sum_{k=1}^m V_k(a + t(x - a))(x_k - a_k)dt$$
.

4.

$$f'_{x_j} = \int_0^1 V_j(a + t(x - a))dt + \int_0^1 \sum_{k = 1}^m \frac{\partial V_k}{\partial x_j} (a + t(x - a)) \cdot t \cdot (x_k - a_k)dt = \int_0^1 (tV_j(a + t(x - a)))'_t dt = 1 \cdot V_j(x) - 0 \cdot V_j(a) = V_j$$

2.44 Лемма о гусенице

 $\gamma:[a,b] \to E \subset \mathbb{R}^m$ — непрерывный путь в области.

 \exists дробление $a = t_0 < t_1 < \dots < t_n = b$ и шары $B_1, \dots, B_n \subset E$, такие что $\forall i \ \gamma[t_{i-1}, t_i] \subset B_i$.

На шары B_i можно накладывать ограничения: чтобы заданное локально потенциальное поле V было потенциальным в них.

Доказательство:

- 1. Для каждого $t \in [a,b]$ возьмём подходящий шар $B_t = B(\gamma(t), r_t)$.
- 2. $\alpha_t = \inf\{s \in [a, t] : \gamma([s, t]) \subset B_t\}.$

 $\beta_t = \sup\{s \in [t, b] : \gamma([t, s]) \subset B_t\}.$

Пусть $\alpha_t < \widetilde{\alpha}_t < t < \widetilde{\beta}_t < \beta_t$. Тогда $\gamma((\widetilde{\alpha}_t, \widetilde{\beta}_t)) \in B_t$.

B t = a: $[a, \widetilde{\beta}_a)$. B t = b: $(\widetilde{\alpha}_b, b]$.

- 3. [a,b] покрыт такими интервалами. Поскольку [a,b] компакт, существует конечное подпокрытие. Уберём вложенные интервалы. Получили покрытие интервалами $(\widetilde{\alpha}_1,\widetilde{\beta}_1),\dots,(\widetilde{\alpha}_n,\widetilde{\beta}_n)$ и соответствующее покрытие шарами.
- 4. $t_0 = a, t_n = b.$ $i \in 1, \ldots, n-1, t_i \in (\widetilde{\alpha}_{i-1}, \widetilde{\beta}_{i-1}) \cap (\widetilde{\alpha}_i, \widetilde{\beta}_i).$

2.45 Лемма о равенстве интегралов по похожим путям

V — локально потенциальное векторное поле на E.

 $\gamma_1, \gamma_2 : [a, b] \to E$ — пути с совпадающими концами, V-похожие, кусочно-гладкие.

Тогда интегралы по ним равны.

Доказательство:

- 1. Рассмотрим общую V-гусеницу. В шаре B_i определён потенциал ϕ_i . Пусть они определены так, что на пересечении шаров B_i и B_{i-1} потенциалы ϕ_i и ϕ_{i-1} совпадают.
- 2. Рассмотрим дробление $a = t_0 < t_1 < \dots < t_n = b$, такое что $\forall i \in 1, \dots, n-1 \ \gamma_1(t_i) \in B_i \cap B_{i+1}$.
- 3. $I(V, \gamma_1) = \sum_{i=1}^n I(V, \gamma_1|_{[t_{i-1}, t_i]}) = \sum_{i=1}^n (\phi_i(\gamma_1(t_i)) \phi_i(\gamma_1(t_{i-1}))) = \phi_n(\gamma_1(b)) \phi_1(\gamma_1(a)).$
- 4. То же самое для γ_2 . Значит, они равны.

2.46 Лемма о похожести путей, близких к данному

 $\gamma:[a,b]\to E$. Тогда $\exists \delta>0: \forall \gamma_1,\gamma_2:[a,b]\to E$, такие что $\forall t\in[a,b]\ |\gamma_i(t)-\gamma(t)|<\delta\ \gamma_1$ и γ_2 похожи.

Доказательство:

Нужно взять такое δ , что δ -окрестность γ на $[t_{i-1}, t_i]$ помещается в B_i для всех i.

2.47 Равенство интегралов по гомотопным путям

V — локально потенциальное векторное поле на E.

 $\gamma_0, \gamma_1: [a,b] \to E$ — связанно гомотопные пути в E.

Тогда интегралы по ним равны.

Доказательство:

- 1. $\Gamma : [a, b] \times [0, 1]$ гомотопия. $\gamma_s(t) = \Gamma(t, s)$.
- 2. $\Phi(s) = I(V, \gamma_s)$.
- 3. Γ непрерывна, $[a, b] \times [0, 1]$ компакт, поэтому Γ равномерно непрерывна.
- 4. Рассмотрим γ_s . По лемме, $\exists \delta_s > 0$ такая, что любой путь $\overline{\gamma} : [a, b] \to E, \forall t \ |\overline{\gamma}(t) \gamma_s(t)| < \delta_s$ похож на γ_s . Γ равномерно непрерывно: $\forall \epsilon > 0 \ \exists \delta > 0 : \forall s_1, s_2, |s_1 - s_2| < \delta \ |\Gamma(t, s_1) - \Gamma(t, s_2)| < \epsilon$. Подставим $\epsilon = \delta_s$: $\exists \delta > 0 : \forall s_1, |s_1 - s| < \delta |\Gamma(t, s_1) - \Gamma(t, s)| < \delta_s$.
- 5. $\forall s_1 \in (s-\delta,s+\delta) \cap [0,1]$ γ_{s_1} похож на γ_s , поэтому Φ постоянна в окрестности s.
- 6. $\forall s \in [0,1]$ Ф постоянна в окрестности s. Поэтом Ф константа, и $\Phi(0) = \Phi(1)$.

2.48 Теорема о резиночке

Область $E = \mathbb{R}^2 \setminus \{(0,0)\}$ не является односвязной.

Доказательство:

1. Рассмотрим векторное поле $V(x,y) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}).$

$$(V_1)'_y = \frac{-(x^2+y^2)+2y^2}{(x^2+y^2)^2} = \frac{y^2-x^2}{(x^2+y^2)^2}$$
$$(V_2)'_x = \frac{(x^2+y^2)-2x^2}{(x^2+y^2)^2} = \frac{y^2-x^2}{(x^2+y^2)^2}$$

$$(V_2)'_x = \frac{(x^2+y^2)-2x^2}{(x^2+y^2)^2} = \frac{y^2-x^2}{(x^2+y^2)^2}$$

 $(V_1)'_u = (V_2)'x$, поэтому V локально потенциальное.

- 2. Рассмотрим замкнутый путь $\gamma:[0,2\pi]\to E, \ \gamma(t)=(\cos(t),\sin(t)).$ $I(V,\gamma)=\int_0^{2\pi}(\frac{-\sin(t)}{\cos^2(t)+\sin^2(t)}(-\sin(t))+\frac{\cos(t)}{\cos^2(t)+\sin^2(t)}\cos(t))dt=\int_0^{2\pi}(\sin^2(t)+\cos^2(t))dt=2\pi\neq 0.$
- 3. Интеграл по замкнутому пути не равен 0, поэтому поле не потенциально. При этом поле локально потенциально, поэтому по теореме Пуанкаре для односвязной области E не односвязна.

2.49 Теорема Пуанкаре для односвязной области

E — односвязная область в \mathbb{R}^m , V — локально потенциальное векторное поле в E. Тогда V потенциально.

- 1. γ петля в E. Область односвязна, поэтому она гомеоморфна точке, поэтому интеграл по ней 0.
- 2. Интеграл по любой петле 0, поэтому поле потенциально.

2.50 Свойства объема: усиленная монотонность, конечная полуаддитивность

 $v:\mathbb{P} o \overline{\mathbb{R}}$ — объём. Тогда:

- 1. Усиленная монотонность. $A_1, A_2 \cdots \in \mathbb{P}$, дизъюнктны, $\bigcup A_i \subset B \in \mathbb{P}$. Тогда $\sum v(A_i) \leq v(B)$.
- 2. Конечная полуаддитивность. $A_1, \ldots, A_n \in \mathbb{P}, A \subset \bigcup A_i, A \in \mathbb{P}$. Тогда $v(A) \leq \sum v(A_i)$.
- 3. $A, B, A \setminus B \in \mathbb{P}, v(B) < +\infty$. Тогда $v(A \setminus B) \geq v(A) v(B)$

Доказательство:

- 1. (а) Докажем для конченого набора. $B \setminus \bigcup A_k = \bigcup_{i=1}^N C_i \ (C_i \in \mathbb{P}, \text{ дизъюнктны})$. Это нетрудно выводится из определения полукольца.
 - (b) $B = (\bigcup A_i) \cup (\bigcup C_i)$. По аддитивности, $v(B) \ge \sum v(A_i)$.
 - (c) Устремляем n к ∞ : $\forall k \ v(B) \ge \sum_{i=1}^k A_i \Rightarrow v(B) \ge \sum_{i=1}^\infty A_i$.
- 2. (a) Пусть $B_i = A_i \cap A$.
 - (b) $C_1 = B_1, C_{i+1} = B_{i+1} \setminus (B_1 \cup \cdots \cup B_i), \forall i \ C_i = \bigsqcup_{j=1}^{N_i} D_{ij} \in \mathbb{P}, C_i \subset A_i.$
 - (c) $A = \bigsqcup_{i,j} D_{ij} \Rightarrow v(A) = \sum v(D_{ij}) = \sum_{i=1}^{n} v(C_i) \le \sum_{i=1}^{n} v(A_i)$.
- 3. $v(A \setminus B) = v(A) v(A \cap B) \ge V(A) V(B)$.

2.51 Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности

 $v:\mathbb{P} o \overline{\mathbb{R}}$ — объём. Тогда эквивалентны:

- 1. *v* мера.
- 2. v удовлетворяет свойству счётной полуаддитивности: $A, A_1, A_2, \dots \in \mathbb{P}, A \subset \bigcup A_i$. Тогда $v(A) \leq \sum v(A_i)$.

Доказательство:

- 1. (1) \Rightarrow (2): совпадает с доказательством конечной полуаддитивности объёма.
 - (a) Пусть $B_i = A_i \cap A$.
 - (b) $C_1 = B_1, C_{i+1} = B_{i+1} \setminus (B_1 \cup \cdots \cup B_i), \forall i \ C_i = \bigsqcup_{i=1}^{N_i} D_{ij} \in \mathbb{P}, C_i \subset A_i.$
 - (c) $A = \bigsqcup_{i,j} D_{ij} \Rightarrow v(A) = \sum v(D_{ij}) = \sum_{i=1}^{\infty} v(C_i) \le \sum_{i=1}^{\infty} v(A_i)$.
- 2. $(2) \Rightarrow (1)$.
 - (а) Докажем счётную аддитивность: $A, A_1, A_2, \dots \in \mathbb{P}, A = \coprod A_i$.
 - (b) $v(A) \leq \sum v(A_i)$ по счётной полуаддитивности.
 - (c) $v(A) \geq \sum v(A_i)$ по усиленной монотонности объёма.

2.52 Теорема о непрерывности снизу

 \mathbb{A} — алгебра подмножеств X, μ — объём на \mathbb{A} . Тогда эквивиалентно:

- 1. μ мера.
- 2. Если $A_1, A_2, \dots \in \mathbb{A}$, $\forall k \ A_k \subset A_{k+1}, \ A = \bigcup A_k \in \mathbb{A}$, то $\mu(A_n) \to \mu(A)$.

- 1. $(1) \Rightarrow (2)$:
 - (a) $B_1 = A_1, B_2 = A_2 \setminus A_1, \dots, B_i = A_i \setminus A_{i-1}, \dots$ Bec $B_i \in A$.

- (b) $A = \bigsqcup_{i=1}^{\infty} B_i \Rightarrow \mu(A) = \sum_{i=1}^{\infty} \mu(B_i)$.
- (c) $\mu(A_k) = \sum_{i=1}^k \mu(B_i)$ частичные суммы, поэтому $\mu(A_k) \to \mu(A)$.
- 2. $(2) \Rightarrow (1)$:
 - (a) $C, C_1, C_2, \dots \in \mathbb{A}, C = \bigsqcup C_i$. Доказать: $\mu(C) = \sum \mu(C_i)$.
 - (b) Пусть $D_1 = C_1$, $D_2 = C_1 \sqcup C_2, \ldots, D_i = \bigsqcup_{j=1}^i C_j$. $D_i \in \mathbb{A}$, $\mu(D_i) = \sum_{j=1}^i \mu(C_j)$.
 - (c) $D_i \subset D_{i+1}, \bigcup D_i = C$. По непрерывности снизу: $\mu(D_n) \to \mu(C)$. $\sum_{i=1}^n \mu(C_i) \to \mu(C)$. $\sum_{i=1}^\infty \mu(C_i) = \mu(C)$.

2.53 Счетная аддитивность классического объема

Если $\Delta, \Delta_1, \Delta_2, \dots \in \mathbb{P}_n$ (ячейки), Δ_i дизъюнктны, $\Delta = \bigcup \Delta_i$, то $v(\Delta) = \sum v(\Delta_i)$.

Доказательство:

- 1. $\Delta = [a, b), \Delta_i = [a_i, b_i).$
- 2. $[a, \widetilde{b}] \subset [a, b), vol[a, \widetilde{b}] \ge \mu[a, b) \epsilon$.
- 3. Пусть для каждого Δ_i : $(\widetilde{a}_i, b_i) \supset [a_i, b_i), vol(\widetilde{a}_i, b_i) \leq \mu[a_i, b_i) + \frac{\epsilon}{2^i}$.
- 4. $[a, \widetilde{b}]$ компакт, покрытый открытыми множествами (\widetilde{a}_i, b_i) . Существует конечное подпокрытие $[a, \widetilde{b}] \subset \bigcup_{k=1}^n (\widetilde{a}_{i_k}, b_{i_k})$.
- 5. $[a,\widetilde{b})\subset\bigcup_{k=1}^n [\widetilde{a}_{i_k},b_{i_k})$. По конечной полуаддитивности объёма, $\underbrace{\mu[a,\widetilde{b})}_{\geq \mu[a,b)-\epsilon}\leq \sum_{k=1}^n \underbrace{\mu[\widetilde{a}_{i_k},b_{i_k})}_{\leq \mu[a_{i_k},b_{i_k})+\frac{\epsilon}{2^{i_k}}}$.
- 6. $\mu[a,b) \epsilon \le \sum_{k=1}^{n} \mu[a_{i_k}, b_{i_k}) + \frac{\epsilon}{2^{i_k}} < \sum_{k=1}^{n} \mu[a_{i_k}, b_{i_k}) + \epsilon$.
- 7. $\mu[a,b) 2\epsilon \le \sum_{k=1}^{n} \mu[a_{i_k}, b_{i_k}) \le \sum_{i=1}^{\infty} \mu[a_i, b_i).$
- 8. Устремляем ϵ к 0, получаем счётную полуаддитивность.
- 9. Из счётной полуаддитивности объёма следует счётная аддитивность по теореме об эквивалентности счетной аддитивности и счетной полуаддитивности.

2.54 Лемма о структуре открытых множеств и множеств меры 0

Рациональный куб — такая ячейка [a,b), что все a_k и b_k рациональны и все $b_k - a_k$ равны.

- 1. $E \subset \mathbb{R}^m$ открытое. Тогда E прредставимо в виде $E = \bigsqcup Q_i$ не более чем счётное количество рациональных кубов, замыкание каждого из которых содержится в E.
- 2. $E\in\mathfrak{M}^m,\,\lambda_m(E)=0$. Тогда $\forall\epsilon>0$ $\exists Q_1,Q_2\dots$ рациональные кубы, $E\subset\bigcup_{i=1}^\infty Q_i,\,\sum_{i=1}^\infty \mu(Q_i)<\epsilon$.

- 1. (a) Для каждого x из E выберем \widetilde{Q}_x подходящий под условие рациональный куб, содержащий x.
 - (b) Всего рациональных кубов счётное число, поэтому E покрывается $\bigcup_{i=1}^{\infty} \widetilde{Q}_i$.
 - (c) Сделаем объединение дизъюнктным. $Q_{1,1}=\widetilde{Q}_1,$ далее $\widetilde{Q}_i\setminus (\widetilde{Q}_1\cup\cdots\cup\widetilde{Q}_{i-1})=\bigsqcup_{k=1}^{N_i}Q_{i,k}$:
 - і. $\widetilde{Q}_i \setminus (\widetilde{Q}_1 \cup \dots \cup \widetilde{Q}_{i-1})$ разбивается на ячейки, причём они рациональны.
 - іі. Рациональную ячейку можно разбить на рациональные кубы: рассмотрим t общий знаменатель всех a_k, b_k , разобъём на кубы со стороной $\frac{1}{t}$.

- ііі. Разбиение конечно.
- (d) $E = \coprod Q_{i,k}$.
- 2. (a) Дан ϵ . $\lambda_m(E) = 0 \Leftrightarrow \inf_{(P_1, P_2, \dots \in \mathbb{P}_m, E \subset \bigcup P_i)} \sum \mu(P_i) = 0$.
 - (b) Тогда существует такой набор $P_1, P_2, \ldots,$ что $\sum \mu(P_i) < \frac{\epsilon}{2}$.
 - (c) $P_i = [a_i, b_i)$. Пусть $B_i = (\tilde{a}_i, b_i)$, при этом $\mu(B_i) \le 2\mu(P_i)$.
 - (d) E покрыт $\bigcup B_i$ открытое множество меры меньше ϵ .
 - (е) Это открытое множество представимо в виде объединения рациональных кубов.

2.55 Пример неизмеримого по Лебегу множества

Введём на [0,1] отношение эквивалентности: $x \sim y$, если $x-y \in \mathbb{Q}$.

Из каждого класса эквивалентности выберем по элементу (тут мы пользуемся аксииомой выбора). Полученное множество E неизмеримо по Лебегу.

Доказательство:

Рассмотрим сдвиги этого множества на все рациональные числа из [-1,1]. Они дизъюнктны, покрывают [0,1] и содержатся в [-1,2].

- 1. Если $\mu(E) = 0$, то $\mu[0,1] = 0$, это не так.
- 2. Если $\mu(E) > 0$, то $\mu[-1, 2] = \infty$, это не так.

2.56 Регулярность меры Лебега

 $A \in \mathfrak{M}^m$. Тогда

$$\lambda_m(A) = \inf\{G: G \supset A, G \text{ открытое}\} = \sup\{F: F \subset A, F \text{ замкнутое}\} = \sup\{K: K \subset A, K \text{ компактное}\}$$

- 1. Докажем, что $\forall \epsilon > 0 \; \exists \; \text{открытое} \; G_{\epsilon} \supset A : \lambda_m(G_{\epsilon} \setminus A) < \epsilon.$
 - (a) Пусть $\lambda_m(A) < +\infty$.
 - i. $\lambda_m(A) = \inf_{(P_1, P_2, \dots \in \mathbb{P}_m, A \subset \bigcup P_i)} \sum \mu(P_i)$.
 - ії. Тогда есть $P_1, P_2, \dots \in \mathbb{P}_m, \ A \subset \bigcup P_i, \sum \mu(P_i) < \lambda_m(A) + \frac{\epsilon}{2}.$
 - і
іі. Для всех P_i построим $\widetilde{P}_i\supset P_i$ открытое, $\lambda_m(\widetilde{P}_i)\leq \lambda_m(P_i)+\frac{\epsilon}{2^{i+1}}.$
 - iv. $G_{\epsilon} = \bigcup \lambda_m(\widetilde{P}_i)$. $\lambda_m(G_{\epsilon}) \leq \lambda_m(A) + \epsilon$.
 - (b) Пусть $\lambda_m(A) = +\infty$.
 - і. $\mathbb{R}^m = \bigsqcup Q_i$ единичные кубы. $A_i = A \cap Q_i, \ A = \bigsqcup A_i, \ \lambda_m(A_i) \le 1$.
 - іі. Для каждого *i* построим открытое G_i : $A_i \subset G_i$, $\lambda_m(G_i \setminus A_i) \leq \frac{\epsilon}{2^i}$.
 - iii. $G_{\epsilon} = \bigcup G_i \supset A$. $\lambda_m(G_{\epsilon}) \leq \lambda_m(A) + \epsilon$.
- 2. Докажем, что $\forall \epsilon > 0 \; \exists$ замкнутое $F_{\epsilon} \subset A$: $\lambda_m(A \setminus F_{\epsilon}) < \epsilon$.
 - (a) $A \setminus F_{\epsilon} = F_{\epsilon}^c \setminus A^c, F_{\epsilon}^c \supset A^c$.
 - (b) $\lambda_m(A \setminus F_{\epsilon}) = \lambda_m(F_{\epsilon}^c \setminus A^c).$
 - (c) По (1), найдётся такое открытое $F_{\epsilon}^{c},$ что это выполняется.
 - (d) Дополнение к открытому замкнуто.
- 3. (a) $\lambda_m(A) = \sup\{F : F \subset A, F \text{ замкнутое}\}.$
 - (b) Любое F представляется как объединение счётного числа компактов $K_i = F \cap \overline{B(0,i)}$.
 - (c) Поэтому $\lambda_m(A) = \sup\{K : K \subset A, K \text{ компактное}\}.$

2.57 Лемма о сохранении измеримости при непрерывном отображении

 $T: \mathscr{O} \subset \mathbb{R}^m \to \mathbb{R}^m$ — непрерывно, $\forall E \in \mathfrak{M}^m, E \subset \mathscr{O}, \lambda_m(E) = 0$ выполнено $\lambda_m(T(E)) = 0$. Тогда $\forall A \in \mathfrak{M}^m, A \subset \mathscr{O}$ $T(A) \in \mathfrak{M}^m$.

Доказательство:

- 1. A измеримо $\Leftrightarrow A = \bigcup K_i \cup N$, где K_i компакты, N множество меры 0.
- 2. $T(A) = \bigcup T(K_i) \cup T(N)$.
 - (а) Непрерывный образ компакта компакт.
 - (b) T(N) имеет меру 0.
- 3. Поэтому T(A) измеримо.

2.58 Лемма о сохранении измеримости при гладком отображении. Инвариантность меры Лебега относительно сдвигов

- 1. $T:\mathscr{O}\subset\mathbb{R}^m\to\mathbb{R}^m\in C^1,\,\mathscr{O}$ открыто. Тогда $\forall A\in\mathfrak{M}^m,A\subset\mathscr{O}$ выполнено $T(A)\in\mathfrak{M}^m.$
- 2. $\forall A \in \mathfrak{M}^m, v \in \mathbb{R}^m$ выполнено $A + v \in \mathfrak{M}^m, \lambda_m(A + v) = \lambda_m(A)$.

Доказательство:

- 1. (a) E можно покрыть счётным числом компактов K_i , которые содержатся в \mathscr{O} . Например, можно взять замкнутые кубы, покрывающие \mathscr{O} .
 - (b) Докажем, что для всех $A \cap K_i$ $T(A \cap K_i)$ имеет меру ноль. Из этого будет следовать, что T(A) имеет меру ноль.
 - (c) Далее считаем, что A покрыто одним компактом $K \subset \mathscr{O}$.
 - (d) На компакте K существует глобальная константа Липшица L для T, равная $\max ||T'||$.
 - (e) $\forall \epsilon > 0 \ \exists C_1, C_2, \ldots$ кубы $[a_i, b_i] \subset K, \ A \subset \bigcup C_i, \sum \lambda_m(C_i) < \epsilon$.
 - (f) r_i длины сторон кубов. $\sup_{x \in C_i} |x a_i| = r_i \sqrt{m}$. Тогда из условия Липшица: $T(C_i) \subset \overline{B}(T(a_i), Lr_i \sqrt{m}) \Rightarrow \lambda_m(T(C_i)) \leq (2Lr_i \sqrt{m})^m = \lambda_m(C_i) \cdot const.$
 - (g) Получается, что $\lambda_m(T(\bigcup C_i)) \leq \epsilon \cdot const.$ Значит, мера T(A) равна нулю.
 - (h) T непрерывно и переводит множества меры ноль во множества меры ноль, поэтому оно сохраняет измеримость.
- 2. (a) Сдвиг гладкое отображение, поэтому $A + v \in \mathfrak{M}^m$.
 - (b) $\lambda_m(A) = \inf_{(P_1, P_2, \dots \in \mathbb{P}_m, A \subset [1P_i)} \sum \mu(P_i)$. Классический объём инвариантен относительно сдвига.

2.59 Инвариантность меры Лебега при ортогональном преобразовании

Если T — ортогональный линейный оператор (сохраняет скаларное произведение) и $E \in \mathfrak{M}^m$, то $T(E) \in \mathfrak{M}^m$, $\lambda_m(T(E)) = \lambda_m(E)$.

- 1. $T(E) \in \mathfrak{M}^m$, потому что T гладкое.
- 2. Пусть $\mu(E) = \lambda_m(T(E))$. μ мера на \mathfrak{M}^m , поскольку T биекция.
- 3. μ инвариантна относительно сдвигов: $\mu(A+v)=\lambda_m(T(A+v))=\lambda_m(T(A)+Tv)=\lambda_m(T(A))=\mu(A)$.

- 4. По теореме о мерах, инвариантных относительно сдвигов, $\mu \equiv c \lambda_m$.
- 5. Рассмотрим шар B = B(0,1). $\lambda_m(B) \neq 0$. $T(B) = B \Rightarrow \mu(B) = \lambda_m(B) \Rightarrow c = 1$.
- 6. $\mu \equiv \lambda_m \Rightarrow \lambda_m(T(E)) = \lambda_m(E)$.

2.60 Лемма «о структуре компактного оператора»

 $V: \mathbb{R}^m \to \mathbb{R}^m$ — невырожденный линейный оператор.

Тогда \exists ортонормированные базисы $\{g_i\}$, $\{h_i\}$ в \mathbb{R}^m , $s_1,\ldots,s_m>0$, такие что $\forall x\in\mathbb{R}^m$ $Vx=\sum_{k=1}^m s_k\langle x,g_k\rangle h_k$, $|\det V|=\prod_{k=1}^\infty s_k$.

Доказательство:

- 1. $W = V^T V$ симметричен относительно главной диагонали, поэтому все собственные W числа вещественны, а из собственных векторов W можно составить базис $\{g_i\}$.
- 2. Все собственные числа $\lambda_i > 0$: $\lambda_i = \langle Wg_i, g_i \rangle = \langle V^TVg_i, g_i \rangle = \langle Vg_i, Vg_i \rangle > 0$.
 - (a) Переход $\langle V^TVg_i,g_i\rangle=\langle Vg_i,Vg_i\rangle$ описан в вычислении нормы оператора через собственные числа.
- 3. $s_i = \sqrt{c_i}$. $h_i = \frac{1}{s_i} V g_i$.
- 4. $\{h_i\}$ OHB: $\langle h_i, h_j \rangle = \frac{1}{s_i s_i} \langle V g_i, V g_j \rangle = \frac{1}{s_i s_i} \langle W g_i, g_j \rangle = \frac{1}{s_i s_i} c_i \langle g_i, g_j \rangle = \delta_i^j$.
- 5. $\sum_{k=1}^{m} s_k \langle x, g_k \rangle h_k = \sum_{k=1}^{m} \langle x, g_k \rangle V g_i = V \sum_{k=1}^{m} \langle x, g_i \rangle g_i = V x.$
- 6. $(\det V)^2 = \det V^T V = \det W = \lambda_1 \cdot \dots \cdot \lambda_m$.

2.61 Теорема о преобразовании меры Лебега при линейном отображении

 $V \in \mathcal{L}_{m,m}$.

Тогда $\forall A \subset \mathfrak{M}^m \ VA \in \mathfrak{M}^m \ и \ \lambda_m(VA) = |det \ V|\lambda_m(A).$

- 1. Если det V = 0, то Im(V) имеет размерность < m, VA лежит в пространстве размерности меньше m и потому имеет меру ноль.
- 2. Далее $det \ V \neq 0$. V невырожденный.
- 3. По теореме о структуре компактного оператора, $Vx = \sum_{k=1}^{m} s_k \langle x, g_k \rangle h_k$, где $\{g_i\}$, $\{h_i\}$ ортонормальные базисы, $s_i > 0$, $\prod_{k=1}^{m} s_i = |\det V|$.
- 4. Пусть $\mu(A) = \lambda_m(VA)$. Это мера на \mathfrak{M}^m . μ инвариантно относительно сдвигов, поэтому $\exists k : \mu \equiv k \lambda_m$.
 - (a) Тут μ введена так же, как в теореме об инвариантности меры Лебега относительно ортогонального преобразования.
- 5. Q единичный куб со сторонами на g_i . $\lambda_m(Q)=1$.
- 6. $Vg_i = s_i h_i$, поэтому VQ параллелепипед, построенный на векторах $s_i h_i$.
- 7. $\mu(Q) = \lambda_m(VQ) = \prod_{k=1}^m s_i = |\det V| \Rightarrow k = |\det V|$.

2.62 Теорема об измеримости пределов и супремумов

 $f_n:X o\overline{\mathbb{R}}$ измеримы на X. Тогда:

- 1. $\sup_{n\in\mathbb{N}} f_n(x)$, $\inf_{n\in\mathbb{N}} f_n(x)$ измеримы.
- 2. $\overline{\lim}_{n\to+\infty} f_n(x)$, $\underline{\lim}_{n\to+\infty} f_n(x)$ измеримы.
- 3. Если $f_n(x)$ поточечно сходится к g(x), то g(x) измерима.

Доказательство:

- 1. (a) $h(x) = \sup_{n \in \mathbb{N}} f_n(x) \ X(h > a) = \bigcup_{n \in \mathbb{N}} X(f_n > a)$ измеримо.
 - (b) inf аналогично.
- 2. (a) $\overline{\lim}_{n\to+\infty} f_n(x) = \lim_{n\to+\infty} y_n(x), y_n(x) = \sup_{k>0} f_{n+k}(x).$
 - (b) $\forall x y_n(x)$ монотонно убывает, поэтому $\overline{\lim}_{n\to+\infty} y_n(x) = \inf_{n\in\mathbb{N}} y_n(x)$ измеримо по пункту 1.
 - (с) <u>lim</u> аналогично.
- 3. Обычный предел, если он существует, равен верхнему и нижнему.

2.63 Характеризация измеримых функций с помощью ступенчатых

 (X, A, μ) — пространство с мерой.

f — измеримая функция на $X, \forall x \ f(x) \geq 0$. Тогда \exists ступенчатые функции f_n , такие что:

- 1. $\forall x \ 0 \le f_n(x) \le f_{n+1}(x) \le f(x)$.
- 2. $f_n(x)$ поточечно сходится к f(x).

Доказательство:

- 1. $n \in \mathbb{N}$. Пусть $e_{n,k} = X(\frac{k}{n} \le f < \frac{k+1}{n})$ при $k \in \{0,1,\dots,n^2-1\}, \, e_{n,n^2} = X(n \le f).$
- 2. $e_{n,0},e_{n,1},\ldots,e_{n,n^2}$ разбиение X. Пусть $g_n=\frac{k}{n}$ при $x\in e_{n,k}.$
- 3. $\lim_{n \to +\infty} g_n(x) = f(x).$
- 4. $f_n(x) = max(g_1(x), \dots, g_n(x)).$

<u>Замечание:</u> я чёт не понимаю, почему тут не используется измеримость f. Возможно, требуется, чтобы f_n были измеримыми (в определении ступенчатой функции этого нет), а это действительно следует из измеримости f.