

Persistence -> file -> text (characters) -> binary -> images/audio/video

Overview

- RDBMS stands for <u>Relational Database Management System</u>
- It is a database management system (DBMS) that is based on the relational model as introduced by E. F. Codd.
- It is the basis for SQL, and for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access
- It stores data in a row-based table structure which connects related data elements
- It includes functions that maintain the security, accuracy, integrity and consistency of the data

Advantages

Flexibility

- Updating data is more efficient since the changes only need to be made in one place
- Many applications can share the data stored in RDBMS

Maintenance

- Database administrators can easily maintain, control and update data in the database
- Backups also become easier since automation tools included in the RDBMS automate these tasks

Data structure

 The table format used in RDBMSes is easy to understand and provides an organized and structural manner through which entries are matched by firing queries

MS SQL Server

Overview

- SQL Server is a relational database management system, or RDBMS, developed and marketed by Microsoft
- Similar to other RDBMS software, SQL Server is built on top of SQL, a standard programming language for interacting with the relational databases
- SQL server is tied to Transact-SQL, or T-SQL, the Microsoft's implementation of SQL that adds a set of proprietary programming constructs
- SQL Server works exclusively on Windows environment for more than 20 years
- In 2016, Microsoft made it available on Linux
- SQL Server 2017 became generally available in October 2016 that ran on both Windows and Linux

SQL Server Architecture

Database Engine

- The core component of the SQL Server is the Database Engine
- The Database Engine consists of a relational engine that manages database files, pages, pages, index, etc
- The database objects such as stored procedures, views, and triggers are also created and executed by the Database Engine
- Relational Engine (Query Processor)
 - The Relational Engine contains the components that determine the best way to execute a query
 - The relational engine is also known as the query processor.
 - The relational engine requests data from the storage engine based on the input query and processed the results
 - Some tasks of the relational engine include querying processing, memory management, thread and task management, buffer management, and distributed query processing

Storage Engine

 The storage engine is in charge of storage and retrieval of data from the storage systems such as disks and SAN.

SQLOS

- Under the relational engine and storage engine is the SQL Server Operating System or SQLOS
- SQLOS provides many operating system services such as memory and I/O management
- Other services include exception handling and synchronization services

Services and Tools

 Microsoft provides both data management and business intelligence (BI) tools and services together with SQL Server

Data management tools:

- SQL Server includes SQL Server Integration Services (SSIS), SQL Server Data Quality Services, and SQL Server Master Data Services
- To develop databases, SQL Server provides SQL Server Data tools; and to manage, deploy, and monitor databases SQL Server has SQL Server Management Studio (SSMS)

Data analysis tools:

- SQL Server offers SQL Server Analysis Services (SSAS)
- SQL Server Reporting Services (SSRS) provides reports and visualization of data
- The Machine Learning Services technology appeared first in SQL Server 2016 which was renamed from the R Services

SQL Server Editions

- SQL Server has four primary editions that have different bundled services and tools
- Two editions are available free of charge:
 - SQL Server Developer edition for use in database development and testing.
 - SQL Server Expression for small databases with the size up to 10 GB of disk storage capacity
- For larger and more critical applications, SQL Server offers the Enterprise edition that includes all SQL server's features
- SQL Server Standard Edition has partial feature sets of the Enterprise Edition and limits on the Server regarding the numbers of processor core and memory that can be configured

Foundation

Table

- The data in an RDBMS is stored in database objects which are called as tables
- This table is basically a collection of related data entries and it consists of numerous columns and rows

spensa

Field

- Every table is broken up into smaller entities called fields
- The fields in the CUSTOMERS table can consist ID, NAME, AGE, ADDRESS and SALARY
- A field is a column in a table that is designed to maintain specific information about every record in the table

•	ID	Name	Age	Address	
•	1	ρι	20	pune	
	2	P2	21	mumbai	From (record)
	·				
		7			
		field (column		

Record or Row

- A record is also called as a row of data is each individual entry that exists in a table
- A records shows information about an entity
- A record will split the information in fields or columns

Relationship

- Relationship is a link between two tables
- Relationship can be created using primary and foreign keys

Data Types

CRUD Operations

Create Table Operation

```
CREATE TABLE Customers (
  Id INT IDENTITY PRIMARY KEY,
  Name VARCHAR(50),
  Age INT,
  Address VARCHAR(255),
  Salary FLOAT
);
```

```
CREATE TABLE Products (
   Id INT IDENTITY PRIMARY KEY,
   Title VARCHAR(50),
   Price FLOAT,
   Description VARCHAR(512),
   Company VARCHAR(50)
);
```


Read Operation

```
SELECT [ID]

,[NAME]
,[AGE]
,[ADDRESS]
,[SALARY]

FROM [MyDB].[dbo].[Customers]
```

⊿ F	RESULTS					₩+\\+R
	ID	NAME	AGE	ADDRESS	SALARY	1
7	2	customer 2	14	mumbai	10.6	₹}
	<u>; </u>				<u>!</u>	→ <u>></u>

Update Operation

```
UPDATE [MyDB].[dbo].[Customers]

SET

[NAME] = 'New Customer Name'

WHERE

[ID] = 2
```

⊿ R	ESULTS					%+\\+R
	ID	NAME	AGE	ADDRESS	SALARY	1
1	2	New Customer Name	14	mumbai	10.6	₹}
		į.		;	ŧ.	→

Delete Operation

```
DELETE FROM [MyDB].[dbo].[Customers]
WHERE
   [ID] = 2
```


SQL

- SQL stands for Structured Query Language
- It is a database computer language, used for storing, manipulating and retrieving data stored in a relational database
- SQL is the standard language for Relational Database System
- All the Relational Database Management Systems (RDMS) like MySQL, MS Access, Oracle, Sybase, Informix, Postgres and SQL Server use SQL as their standard database language
- Also, they are using different dialects
 - MS SQL Server using T-SQL,
 - Oracle using PL/SQL,
 - MS Access version of SQL is called JET SQL (native format) etc.

Applications of SQL

- Allows users to access data in the relational database management systems
- Allows users to describe the data
- Allows users to define the data in a database and manipulate that data
- Allows to embed within other languages using SQL modules, libraries & pre-compilers
- Allows users to create and drop databases and tables
- Allows users to create view, stored procedure, functions in a database
- Allows users to set permissions on tables, procedures and views

SQL Statements

- These SQL commands are mainly categorized into following categories
 - DDL Data Definition Language
 - DQL Data Query Language
 - DML Data Manipulation Language
 - DCL Data Control Language
 - TCL Transaction Control Language

DDL (Data Definition Language)

- Commands that can be used to define the database schema
- It simply deals with descriptions of the database schema and is used to create and modify the structure of database objects in the database.
- These commands are normally not used by a general user, who should be accessing the database via an application
- List of DDL commands:
 - <u>CREATE</u>: This command is used to create the database or its objects (like table, index, function, views, store procedure, and triggers).
 - DROP: This command is used to delete objects from the database.
 - ALTER: This is used to alter the structure of the database.
 - TRUNCATE: This is used to remove all records from a table, including all spaces allocated for the records are removed
 - COMMENT: This is used to add comments to the data dictionary
 - RENAME: This is used to rename an object existing in the database

DQL (Data Query Language)

- DQL statements are used for performing queries on the data within schema objects
- The purpose of the DQL Command is to get some schema relation based on the query passed to it
- It is a component of SQL statement that allows getting data from the database and imposing order upon it
- List of DQL:
 - SELECT
 - It is used to retrieve data from the tables
 - This command allows getting the data out of the database to perform operations with it
 - When a SELECT is fired against a table or tables the result is compiled into a further temporary table, which is displayed or perhaps received by the program i.e. a front-end.

DML(Data Manipulation Language)

- The SQL commands that deals with the manipulation of data present in the database
- It includes most of the SQL statements
- It is the component of the SQL statement that controls access to data and to the database
- Basically, DCL statements are grouped with DML statements
- List of DML commands:
 - INSERT : It is used to insert data into a table.
 - UPDATE: It is used to update existing data within a table.
 - DELETE: It is used to delete records from a database table.
 - LOCK: Table control concurrency.
 - CALL: Call a PL/SQL or JAVA subprogram.
 - EXPLAIN PLAN: It describes the access path to data.

DCL (Data Control Language)

- DCL includes commands such as GRANT and REVOKE which mainly deal with the rights, permissions, and other controls of the database system
- List of DCL commands:
 - GRANT: This command gives users access privileges to the database
 - REVOKE: This command withdraws the user's access privileges given by using the GRANT command

TCL (Transaction Control Language)

- TCL commands deal with the transactions
- List of TCL commands
 - COMMIT: Commits a Transaction
 - ROLLBACK: Rollbacks a transaction in case of any error occurs
 - SAVEPOINT: Sets a savepoint within a transaction
 - **SET TRANSACTION:** Specify characteristics for the transaction

