Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors

Émile Pierret a , supervised by Bruno Galerne a,b Mathematical Imaging and Random Geometry Workshop, Nice November 25^th 2024

^a Institut Denis Poisson – Université d'Orléans, Université de Tours, CNRS

^b Institut universitaire de France (IUF)

Introduction

Focus on the VP-SDE: the forward process

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}$$
(1)

where β_t is an affine non-decreasing function. We denote $(p_t)_{0 < \leq t \leq T}$ the density of x_t .

Focus on the VP-SDE: the forward process

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}$$
(1)

where β_t is an affine non-decreasing function. We denote $(p_t)_{0<\leqslant t\leqslant T}$ the density of x_t .

The strong solution of Equation (1) is:

$$x_t = e^{-B_t} x_0 + \eta_t, \quad 0 \leqslant t \leqslant T. \tag{2}$$

with
$$\eta_t \sim \mathcal{N}(\mathbf{0}, (1 - e^{-2B_t}) \mathbf{I}), B_t = \int_0^t \beta_u du$$
.

Focus on the VP-SDE: the forward process

$$dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dw_t, \quad 0 \leqslant t \leqslant T, \quad x_0 \sim p_{\text{data}}$$
(1)

where β_t is an affine non-decreasing function. We denote $(p_t)_{0<\leqslant t\leqslant T}$ the density of x_t .

The strong solution of Equation (1) is:

$$x_t = e^{-B_t} x_0 + \eta_t, \quad 0 \leqslant t \leqslant T. \tag{2}$$

with
$$\eta_t \sim \mathcal{N}(\mathbf{0}, (1 - e^{-2B_t}) \mathbf{I}), B_t = \int_0^t \beta_u du$$
.

Consequently, if $t \to +\infty$, $x_{\infty} \sim \mathcal{N}_0$

Probability-flow ODE

The marginals $(p_t)_{0 \leqslant t \leqslant T}$ associated with the backward SDE

$$dy_t = -\beta_t \left[y_t + 2 \nabla_y \log p_t(y_t) \right] dt + \sqrt{2\beta_t} d\overline{w}_t, \quad 0 \leqslant t \leqslant T, \quad y_T \sim p_T$$
 (3)

Probability-flow ODE

The marginals $(p_t)_{0\leqslant t\leqslant T}$ associated with the backward SDE

$$dy_t = -\beta_t \left[y_t + 2 \nabla_y \log p_t(y_t) \right] dt + \sqrt{2\beta_t} d\overline{w}_t, \quad 0 \leqslant t \leqslant T, \quad y_T \sim p_T$$
(3)

are the same as those of this ODE

$$dy_t = -\beta_t \left[y_t + \nabla_y \log p_t(y_t) \right] dt, \qquad 0 \leqslant t \leqslant T, \quad y_T \sim p_T.$$
 (4)

Study of the convergence

$$dy_t = -\beta_t \left[y_t + 2\nabla_y \log p_t(y_t) \right] dt + \sqrt{2\beta_t} d\overline{w}_t,$$
or
$$\text{where } 0 \le t \le T, \quad y_T \sim p_T.$$

$$dy_t = -\beta_t \left[y_t + \nabla_y \log p_t(y_t) \right] dt,$$
(5)

Sampling a distribution using diffusion models implies different choices and error types:

$$dy_{t} = -\beta_{t} \left[y_{t} + 2\nabla_{y} \log p_{t}(y_{t}) \right] dt + \sqrt{2\beta_{t}} d\overline{w}_{t},$$
or
$$where \quad 0 \leq t \leq T, \quad \underbrace{y_{T} \sim p_{T}}_{y_{T} \sim \mathcal{N}(\mathbf{0}, I)}.$$

$$dy_{t} = -\beta_{t} \left[y_{t} + \nabla_{y} \log p_{t}(y_{t}) \right] dt,$$
(5)

Sampling a distribution using diffusion models implies different choices and error types:

• p_T , which is unknown, is replaced by $\mathcal{N}(\mathbf{0}, \mathbf{I})$ \rightarrow initialization error

$$dy_{t} = -\beta_{t} \left[y_{t} + 2\nabla_{y} \log p_{t}(y_{t}) \right] dt + \sqrt{2\beta_{t}} d\overline{w}_{t},$$
or
$$\text{where} \quad \bigvee_{\epsilon} \leqslant t \leqslant T, \quad y_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \tag{5}$$

$$dy_{t} = -\beta_{t} \left[y_{t} + \nabla_{y} \log p_{t}(y_{t}) \right] dt,$$

Sampling a distribution using diffusion models implies different choices and error types:

- p_T , which is unknown, is replaced by $\mathcal{N}(\mathbf{0}, \mathbf{I})$ \rightarrow initialization error
- In fact, another time ε to consider them on $[\varepsilon, T] \to \text{truncation error}$

$$dy_{t} = -\beta_{t} \left[y_{t} + 2\nabla_{y} \log p_{t}(y_{t}) \right] dt + \sqrt{2\beta_{t}} d\overline{w}_{t},$$
or
$$\text{where } \varepsilon \leqslant t \leqslant T, \quad y_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \tag{5}$$

$$dy_{t} = -\beta_{t} \left[y_{t} + \nabla_{y_{t}} \log p_{t}(y_{t}) \right] dt,$$

Sampling a distribution using diffusion models implies different choices and error types:

- p_T , which is unknown, is replaced by $\mathcal{N}(\mathbf{0}, \mathbf{I})$ \rightarrow initialization error
- In fact, another time ε to consider them on $[\varepsilon, T] \to \text{truncation error}$
- ullet A scheme to discretize the equations ullet discretization error

$$dy_{t} = -\beta_{t} [y_{t} + 2 \underbrace{\nabla_{y} \log p_{t}(y_{t})}_{s_{\theta}(t, y_{t})}] dt + \sqrt{2\beta_{t}} d\overline{w}_{t},$$
or
$$\text{where } \varepsilon \leqslant t \leqslant T, \quad y_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \tag{5}$$

$$dy_{t} = -\beta_{t} [y_{t} + \underbrace{\nabla_{y} \log p_{t}(y_{t})}_{s_{\theta}(t, y_{t})}] dt,$$

Sampling a distribution using diffusion models implies different choices and error types:

- p_T , which is unknown, is replaced by $\mathcal{N}(\mathbf{0}, \mathbf{I})$
 - → initialization error
- In fact, another time ε to consider them on $[\varepsilon, T]$
 - → truncation error

• A scheme to discretize the equations

→ discretization error

- ullet A model/neural network s_{ullet} to learn the score
- → score approximation error

$$dy_{t} = -\beta_{t}[y_{t} + 2s_{\theta}(t, y_{t})]dt + \sqrt{2\beta_{t}}d\overline{w}_{t},$$
or
$$\text{where } \varepsilon \leqslant t \leqslant T, \quad y_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

$$dy_{t} = -\beta_{t}[y_{t} + s_{\theta}(t, y_{t})]dt,$$
(5)

Sampling a distribution using diffusion models implies different choices and error types:

- p_T , which is unknown, is replaced by $\mathcal{N}(\mathbf{0}, \mathbf{I})$
- → initialization error
- In fact, another time ε to consider them on $[\varepsilon, T]$
 - → truncation error

• A scheme to discretize the equations

- → discretization error
- A model/neural network so to learn the score

→ score approximation error

Restriction to the Gaussian case

Claims

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible)

Claims

Gaussian assumption: $p_{\rm data}$ is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible) In this case,

$$\nabla \log p_t(x) = -\Sigma_t^{-1} x, \quad 0 < t \leqslant T$$
 (6)

with $\Sigma_t = e^{-2B_t} \Sigma + (1 - e^{-2B_t}) I$.

Claims

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible) In this case,

$$\nabla \log p_t(x) = -\Sigma_t^{-1} x, \quad 0 < t \leqslant T$$
 (6)

with $\Sigma_t = e^{-2B_t} \Sigma + (1 - e^{-2B_t}) I$.

Proposition 3: LLineartiy of the score

he three following propositions are equivalent:

- (i) $x_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ for some covariance $\mathbf{\Sigma}$.
- (ii) $\forall t > 0, \nabla_x \log p_t(x)$ is linear w.r.t x.
- (iii) $\exists t > 0, \nabla_x \log p_t(x)$ is linear w.r.t x.

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible)

Proposition 4: Solution to the equations under Gaussian assumption

Under Gaussian assumption, the strong solution to SDE (??) can be written as:

$$y_t^{\text{SDE}} = e^{-(B_T - B_t)} \Sigma_t \Sigma_T^{-1} y_T + \xi_t, \quad 0 \leqslant t \leqslant T$$
(7)

Under Gaussian assumption, the solution to ODE (4) can be written as:

$$y_t^{\mathsf{ODE}} = \mathbf{\Sigma}_T^{-1/2} \mathbf{\Sigma}_t^{1/2} y_T, \quad 0 \leqslant t \leqslant T, \tag{8}$$

with $\Sigma_t = e^{-2B_t} \Sigma + (1 - e^{-2B_t}) I$.

Explicit solution of the backward SDE

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible)

If
$$y_T \sim p_T = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_T)$$
,

$$\Sigma_t^{\text{SDE}} = \Sigma_t^{\text{ODE}} = \Sigma_t, \quad 0 \leqslant t \leqslant T.$$

Explicit solution of the backward SDE

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible)

If
$$y_T \sim p_T = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_T)$$
,

$$\Sigma_t^{\text{SDE}} = \Sigma_t^{\text{ODE}} = \Sigma_t, \quad 0 \leqslant t \leqslant T.$$

If
$$y_T \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$$
,

$$\Sigma_t^{\text{SDE}} = \Sigma_t + e^{-2(B_T - B_t)} \Sigma_t^2 \Sigma_T^{-2} (I - \Sigma_T), \quad 0 \leqslant t \leqslant T.$$

$$oldsymbol{\Sigma}_t^{\mathsf{ODE}} = oldsymbol{\Sigma}_T^{-1} oldsymbol{\Sigma}_t$$

Explicit solution of the backward SDE

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible)

If
$$y_T \sim p_T = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_T)$$
,

$$\Sigma_t^{\mathsf{SDE}} = \Sigma_t^{\mathsf{ODE}} = \Sigma_t, \quad 0 \leqslant t \leqslant T.$$

If $y_T \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$,

$$\Sigma_t^{\mathsf{SDE}} = \Sigma_t + e^{-2(B_T - B_t)} \Sigma_t^2 \Sigma_T^{-2} (I - \Sigma_T), \quad 0 \leqslant t \leqslant T.$$

$$oldsymbol{\Sigma}_t^{\mathsf{ODE}} = oldsymbol{\Sigma}_T^{-1} oldsymbol{\Sigma}_t$$

Under initialization error, the SDE and the ODE does not have the same marginals!

Proposition 5: Marginals of the generative processes under Gaussian assumption

Under Gaussian assumption,

$$\mathbf{W}_2(p_t^{\mathsf{SDE}}, p_t) \leqslant \mathbf{W}_2(p_t^{\mathsf{ODE}}, p_t) \tag{7}$$

which shows that at each time $0 \leqslant t \leqslant T$ and in particular for t=0 which corresponds to the desired outputs of the sampler, the SDE sampler is a better sampler than the ODE sampler when the exact score is known.

Truncation error

$$dy_t = -\beta_t [y_t + 2s_\theta(t, y_t)] dt + \sqrt{2\beta_t} d\overline{w}_t,$$
or
$$where \quad \varepsilon \leqslant t \leqslant T, \quad y_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \tag{8}$$

$$dy_t = -\beta_t [y_t + s_\theta(t, y_t)] dt,$$

Sampling a distribution using diffusion models implies different choices and error types:

- p_T , which is unknown, is replaced by $\mathcal{N}(\mathbf{0}, \mathbf{I})$
- → initialization error
- In fact, another time ε to consider them on $[\varepsilon, T]$ \rightarrow truncation error

• A scheme to discretize the equations

- \rightarrow discretization error
- ullet A model/neural network $s_{ heta}$ to learn the score
- → score approximation error

Truncation error under Gaussian assumption

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible) In this case,

$$\nabla \log p_t(x) = -\Sigma_t^{-1} x, \quad 0 < t \leqslant T$$
(9)

with
$$\Sigma_t = e^{-2B_t} \Sigma + (1 - e^{-2B_t}) I$$
.

Truncation error under Gaussian assumption

Gaussian assumption: $p_{\rm data}$ is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible) In this case,

$$\nabla \log p_t(x) = -\Sigma_t^{-1} x, \quad 0 < t \leqslant T$$
(9)

with $\Sigma_t = e^{-2B_t} \Sigma + (1 - e^{-2B_t}) I$. At time t = 0,

$$\Sigma_0 = \Sigma$$

Truncation error under Gaussian assumption

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible) In this case,

$$\nabla \log p_t(x) = -\Sigma_t^{-1} x, \quad 0 < t \leqslant T$$
(9)

with $\Sigma_t = e^{-2B_t} \Sigma + (1 - e^{-2B_t}) I$. At time t = 0,

$$\Sigma_0 = \Sigma$$

Consequently, $\nabla \log p_0(x)$ is not defined in general.

Discretization schemes

SDE schemes	Euler- Maruyama (EM)	$ \left\{ \begin{array}{ll} \tilde{\boldsymbol{y}}_{0}^{\Delta,EM} & \sim \mathcal{N}_{0} \\ \tilde{\boldsymbol{y}}_{k+1}^{\Delta,EM} & = \tilde{\boldsymbol{y}}_{k}^{\Delta,EM} + \Delta_{t}\beta_{T-t_{k}} \left(\tilde{\boldsymbol{y}}_{k}^{\Delta,EM} - 2\boldsymbol{\Sigma}_{T-t_{k}}^{-1} \tilde{\boldsymbol{y}}_{k}^{\Delta,EM} \right) + \sqrt{2\Delta_{t}\beta_{T-t_{k}}} z_{k}, \ z_{k} \sim \mathcal{N}_{0} \end{array} \right. $	(10)
	Exponential integrator (EI)	$ \begin{cases} & \tilde{\boldsymbol{y}}_{0}^{\Delta,\mathrm{El}} & \sim \mathcal{N}_{0} \\ & \tilde{\boldsymbol{y}}_{k+1}^{\Delta,\mathrm{El}} & = \tilde{\boldsymbol{y}}_{k}^{\Delta,\mathrm{El}} + \gamma_{1,k} \left(\tilde{\boldsymbol{y}}_{k}^{\Delta,\mathrm{El}} - 2\boldsymbol{\Sigma}_{T-t_{k}}^{-1} \tilde{\boldsymbol{y}}_{k}^{\Delta,\mathrm{El}} \right) + \sqrt{2\gamma_{2,k}} z_{k}, \ z_{k} \sim \mathcal{N}_{0} \\ & \text{where } \gamma_{1,k} = \exp(B_{T-t_{k}} - B_{T-t_{k+1}}) - 1 \text{ and } \gamma_{2,k} = \frac{1}{2} (\exp(2B_{T-t_{k}} - 2B_{T-t_{k+1}}) - 1) \end{cases} $	(11)
ODE schemes	Explicit Euler	$ \left\{ \begin{array}{ll} \widehat{\boldsymbol{y}}_{0}^{\Delta, Euler} & \sim \mathcal{N}_{0} \\ \widehat{\boldsymbol{y}}_{k+1}^{\Delta, Euler} & = \widehat{\boldsymbol{y}}_{k}^{\Delta, Euler} + \Delta_{t} f(t_{k}, \widehat{\boldsymbol{y}}_{k}^{\Delta, Euler}) & \text{with } f(t, y) = \beta_{T-t} y - \beta_{T-t} \boldsymbol{\Sigma}_{T-t}^{-1} y \end{array} \right. $	(12)
	Heun's method	$ \begin{cases} \hat{\boldsymbol{y}}_0^{\Delta, \text{Heun}} & \sim \mathcal{N}_0 \\ \hat{\boldsymbol{y}}_{k+1/2}^{\Delta, \text{Heun}} & = \hat{\boldsymbol{y}}_k^{\Delta, \text{Heun}} + \Delta_t f(t_k, \hat{\boldsymbol{y}}_k^{\Delta, \text{Heun}}) \text{with } f(t, y) = \beta_{T-t} y - \beta_{T-t} \boldsymbol{\Sigma}_{T-t}^{-1} y \\ \hat{\boldsymbol{y}}_{k+1}^{\Delta, \text{Heun}} & = \hat{\boldsymbol{y}}_k^{\Delta, \text{Heun}} + \frac{\Delta_t}{2} \left(f(t_k, \hat{\boldsymbol{y}}_k^{\Delta, \text{Heun}}) + f(t_{k+1}, \hat{\boldsymbol{y}}_{k+1/2}^{\Delta, \text{Heun}}) \right) \end{cases} $	(13)

Errors study

Gaussian assumption: p_{data} is a centered Gaussian distribution $\mathcal{N}(\mathbf{0}, \Sigma)$. (Σ is not necessarily invertible)

Conclusion

Conclusion

- The simple Gaussian setting gives good insights on the error types.
- We find results already observed empirically for more general data distributions [Karras et al. 2022]¹.
- The computation of exact 2-Wasserstein error is fast and a low amount of storage.
- The score approximation error remains the highest error type.
- We consider our work as lower bound of diffusion models convergence.
- Pending question: Link between Gaussian distributions results and more general distributions?

 $^{^{1}}$ Tero Karras et al. (2022). "Elucidating the Design Space of Diffusion-Based Generative Models". In: Proc. NeurIPS

Conclusion

- The simple Gaussian setting gives good insights on the error types.
- We find results already observed empirically for more general data distributions [Karras et al. 2022]¹.
- The computation of exact 2-Wasserstein error is fast and a low amount of storage.
- The score approximation error remains the highest error type.
- We consider our work as lower bound of diffusion models convergence.
- Pending question: Link between Gaussian distributions results and more general distributions?

Thank you for your attention!

¹Tero Karras et al. (2022). "Elucidating the Design Space of Diffusion-Based Generative Models". In: *Proc. NeurIPS*

References

- Choi, Jooyoung et al. (2021). "ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models". In: ILVR. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14367—14376. URL: https://openaccess.thecvf.com/content/ICCV2021/html/Choi_ILVR_Conditioning_Method_for_Denoising_Diffusion_Probabilistic_Models_ICCV_2021_paper.html (visited on 2022-11-28).
- Chung, Hyungjin et al. (2022). "Improving Diffusion Models for Inverse Problems using Manifold Constraints". In: Advances in Neural Information Processing Systems (NeurIPS).
- Karras, Tero et al. (2022). "Elucidating the Design Space of Diffusion-Based Generative Models". In: *Proc. NeurIPS*.
- Lugmayr, Andreas et al. (2022). "RePaint: Inpainting using Denoising Diffusion Probabilistic Models". In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11451—11461. URL: https://api.semanticscholar.org/CorpusID:246240274.
- Song, Yang et al. (2021). "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=PxTIG12RRHS.

To the restoration problems ?

My thesis title: Stochastic super resolution using deep generative models

To the restoration problems ?

My thesis title: Stochastic super resolution using deep generative models

ightarrow We need to use **conditional** diffusion model !

How to perform conditional simulation?

What is the link with solving inverse problems $oldsymbol{v} = oldsymbol{A} x + \sigma oldsymbol{arepsilon}$?

How to perform conditional simulation?

What is the link with solving inverse problems $\boldsymbol{v} = \boldsymbol{A}\boldsymbol{x} + \sigma\boldsymbol{\varepsilon}$?

A large literature [Song et al. 2021², Lugmayr et al. 2022³, Chung et al. 2022⁴, Choi et al. 2021⁵] uses the Bayes formula

$$\nabla_x \log p_t(x_t \mid \boldsymbol{v}) = \nabla_x \log p_t(\boldsymbol{v} \mid x_t) + \nabla_x \log p_t(x_t). \tag{14}$$

where $\nabla_x \log p_t(x_t)$ is the unconditional score. Consequently, studying the unconditional case provides information for the conditional one.

https://openaccess.thecvf.com/content/ICCV2021/html/Choi_ILVR_Conditioning_Method_for_Denoising_Diffusion_Probabilistic_Models_ICCV_2021_paper.html (visited on 2022-11-28)

²Yang Song et al. (2021). "Score-Based Generative Modeling through Stochastic Differential Equations". In: International Conference on Learning Representations. URL: https://openreview.net/forum?id=PxTIG12RRHS

³Andreas Lugmayr et al. (2022). "RePaint: Inpainting using Denoising Diffusion Probabilistic Models". In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11451–11461. URL: https://api.semanticscholar.org/CorpusID:246240274

⁴Hyungjin Chung et al. (2022). "Improving Diffusion Models for Inverse Problems using Manifold Constraints". In: Advances in Neural Information Processing Systems (NeurIPS)

⁵ Jooyoung Choi et al. (2021). "ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models". In: ILVR. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14367–14376. URL:

Ablation study

	Continuous		N = 50		N = 250		N = 500		N = 1000	
	p_T	\mathcal{N}_0	p_T	\mathcal{N}_0	p_T	\mathcal{N}_0	p_T	\mathcal{N}_0	p_T	\mathcal{N}_0
$\varepsilon = 0$	0	6.7E-4	4.77	4.77	0.65	0.65	0.31	0.31	0.15	0.16
$\varepsilon = 10^{-5}$	2.5E-3	2.6E-3	4.77	4.77	0.65	0.65	0.31	0.31	0.16	0.16
$\sum_{\mathbf{H}} \begin{vmatrix} \varepsilon = 10 \\ \varepsilon = 10^{-3} \end{vmatrix}$	0.17	0.17	4.67	4.67	0.69	0.69	0.39	0.39	0.27	0.27
$\varepsilon = 10^{-2}$	1.35	1.35	4.56	4.56	1.69	1.69	1.50	1.50	1.42	1.42
$ \varepsilon = 0$	0	6.7E-4	2.81	2.81	0.57	0.57	0.30	0.30	0.16	0.16
$c - 10^{-5}$	2.5E-3	2.6E-3	2.81	2.81	0.57	0.57	0.30	0.30	0.16	0.16
\Box $\varepsilon = 10^{-3}$	0.17	0.17	2.91	2.91	0.66	0.66	0.41	0.41	0.28	0.28
$\varepsilon = 10^{-2}$	1.35	1.35	3.93	3.93	1.76	1.76	1.55	1.55	1.45	1.45
$\varepsilon = 0$	0	0.07	1.72	1.78	0.38	0.44	0.19	0.26	0.10	0.17
_	2.5E-3	0.07	1.72	1.78	0.38	0.44	0.20	0.26	0.10	0.17
$\frac{1}{2} \varepsilon = 10^{-5}$ $\varepsilon = 10^{-3}$	0.17	0.19	1.72	1.78	0.42	0.48	0.27	0.32	0.21	0.25
$\varepsilon = 10^{-2}$	1.35	1.36	2.21	2.25	1.41	1.43	1.37	1.38	1.36	1.37
$\varepsilon = 0$	0	0.07	7.09	7.09	0.72	0.73	0.21	0.22	0.05	0.09
_	2.5E-3	0.07	6.48	6.48	0.64	0.65	0.18	0.20	0.05	0.09
$ \begin{array}{c c} $	0.17	0.19	0.56	0.57	0.13	0.15	0.16	0.18	0.17	0.19
$\varepsilon = 10^{-2}$	1.35	1.36	1.37	1.38	1.35	1.36	1.35	1.36	1.35	1.36