Primeira Lista-Aula - Disciplina : Eletrônica - PSI 2306

Exercício 1 – Um transistor TBJ apresenta uma corrente de base de 7,5 μ A e uma corrente de coletor de 940 μ A. Determine os valores de β (ganho de corrente em configuração emissor-comum) e α (ganho de corrente em configuração base-comum).

Respostas: $\beta = 125,3$ $\alpha = 0,992$

Exercício 2 – Um certo transistor bipolar opera com a junção base-emissor polarizada diretamente e com a junção base-coletor polarizada reversamente. Sendo suas correntes de coletor e de emissor 9,5mA e 10mA respectivamente, Determine os valores de i_B , α e β .

Respostas: $i_B = 0.5 \text{mA}$ $\alpha = 0.95$ $\beta = 19$

Exercício 3 – No circuito da figura abaixo, quando a junção base-emissor conduz $V_{BE} = 0.7V$, supondo β muito elevado calcule a corrente I_1 e a tensão V_1 .

Respostas: $I_1 = 1mA$ $V_1 = -0.7V$

Exercício 4 – No circuito da figura abaixo, quando a junção base-emissor conduz $V_{BE} =$ - 0,7V, supondo β muito elevado calcule a corrente do gerador de corrente (I_G) e a tensão na base do transistor (V_B) na condição em que a tensão de coletor é igual a - 8V.

Respostas: $I_G = 1mA$ $V_B = 1V$

Exercício 5 – Dado o circuito abaixo, determine a corrente I_C , a tensão V_{CE} e o modo de operação do TBJ para as duas seguintes condições: a) $\beta = 50$ e b) $\beta = 150$.

Respostas: a) $I_C = 0.965 \text{mA}$ $V_{CE} = 10.35 \text{V}$ modo ativo

b) $I_C = 1,98 mA$ $V_{CE} = 0,2V$ modo saturado

Exercício 6 – No circuito a seguir, assuma que $V_{BE} = 0.7V$. Determine as correntes e tensões de base, emissor e coletor nas seguintes condições: a) $\beta = \infty$, b) $\beta = 100$.

$$Respostas: \ a) \quad I_B \approx 0 \quad \ I_C = 1 mA \quad \ \ I_E = 1 mA \quad \ \ V_B = \text{--} \ 2,5 V \quad V_C = 0 V \qquad V_E = \text{--} \ 3,2 V$$

b)
$$I_B = 8.5 \mu A$$
 $I_C = 850 \mu A$ $I_E = 858.5 \mu A$ $V_B = -3.46 V$ $V_C = 1.5 V$ $V_E = -4.16 V$

Exercício 7 – No circuito abaixo determine os valores de V_B, V_E e V_C para as seguintes condições: a) $R_B = 100k\Omega$, b) $R_B = 10k\Omega$ e c) $R_B = 1k\Omega$. Considere que o TBJ tenha $\beta = 100 \text{ e V}_{BE} = 0.7 \text{V}.$

Respostas: a)
$$V_B = 2,86V$$
 $V_E = 2,16V$ $V_C = 2,86V$

$$V_E = 2,16V$$

$$V_{\rm C} = 2,86V$$

b)
$$V_B = 3{,}19V$$
 $V_E = 2{,}49V$ $V_C = 2{,}69V$

$$V_{\rm E} = 2,49 \, \text{V}$$

$$V_{\rm C} = 2,69 \, \rm V$$

c)
$$V_B = 3,73V$$
 $V_E = 3,03V$ $V_C = 3,23V$

$$V_{\rm E} = 3.03 \, V_{\rm E}$$

$$V_C = 3.23V$$