Vanishing in positive characteristic

1 Preliminaries

Let **A** be an abelian category. The category $C(\mathbf{A})$ of complexes in **A** is defined as follows: the objects are complexes X^{\bullet} in **A**, and the morphisms are morphisms of complexes. For every $X^{\bullet} \in \mathrm{Obj}(C(\mathbf{A}))$, the object X^n is the n-th component of the complex, and the morphism $d^n: X^n \to X^{n+1}$ is the differential.

1

We denote X[k] by the complex obtained by shifting X^{\bullet} by k, that is,

$$X[k]^n = X^{n+k}, \quad d_{X[k]}^n = (-1)^k d_{X^{\bullet}}^{n+k}.$$

Given a morphism $f: X^{\bullet} \to Y^{\bullet}$ in C(A), we define the map cone $Cone(f)^{\bullet} \in C(A)$ by

$$\operatorname{Cone}(f)^n = X^{n+1} \oplus Y^n, \quad \operatorname{d}^n_{\operatorname{Cone}(f)} = \left[\begin{array}{c} \operatorname{d}^{n+1}_X \\ f^{n+1} & \operatorname{d}^n_Y \end{array} \right],$$

Using the notation of shifting, we can also write

$$\operatorname{Cone}(f)^{\bullet} = \left(X[1]^{\bullet} \oplus Y^{\bullet}, \begin{bmatrix} \operatorname{d}_{X[1]} & \\ f[1] & \operatorname{d}_{Y} \end{bmatrix} \right).$$

Yang: Check that the cone is a complex.

The category K(A) is defined by

$$\mathrm{Obj}(\mathsf{K}(\mathbf{A})) = \mathrm{Obj}(\mathsf{C}(\mathbf{A})), \quad \mathrm{Hom}_{\mathsf{K}(\mathbf{A})}(X^{\bullet}, Y^{\bullet}) = \mathrm{Hom}_{\mathsf{C}(\mathbf{A})}(X^{\bullet}, Y^{\bullet})/\{\mathrm{homotopy}\}.$$

A homomorphism $f^{\bullet}: X^{\bullet} \to Y^{\bullet}$ is said to be a *quasi-isomorphism* if the induced map $H^{n}(f^{\bullet}): H^{n}(X^{\bullet}) \to H^{n}(Y^{\bullet})$ is an isomorphism for all n.

Example 1. Let **A** be an abelian category and **A** an object in **A**. Let $A \stackrel{i}{\to} I^{\bullet}$ be an injective resolution of **A**. Then the complex I^{\bullet} is a complex in C(A), and the morphism

$$\cdots \longrightarrow 0 \longrightarrow A \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow^{i}$$

$$\cdots \longrightarrow 0 \longrightarrow I^{0} \xrightarrow{d^{0}} I^{1} \xrightarrow{d^{1}} I^{2} \longrightarrow \cdots$$

is a quasi-isomorphism in K(A).

Definition 2. A triangle in K(A) (or C(A)) is a diagram of the form

$$X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \xrightarrow{h} X[1]^{\bullet}$$

such that f, g, and h are morphisms of complexes.

Date: August 3, 2025, Author: Tianle Yang, My Homepage

For every $f^{\bullet}: X^{\bullet} \to Y^{\bullet}$ in C(A), we can construct a triangle

$$X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \to \operatorname{Cone}(f^{\bullet})^{\bullet} \to X[1]^{\bullet},$$

where the morphism $Y^{\bullet} \to \operatorname{Cone}(f^{\bullet})^{\bullet}$ is the natural inclusion, and the morphism $\operatorname{Cone}(f^{\bullet})^{\bullet} \to X[1]^{\bullet}$ is the natural projection. The triangle which is isomorphic to the above triangle in $\mathsf{K}(\mathbf{A})$ is called distinguished triangle.

Definition 3 (Truncation functor). The truncated functor $\tau^{>0}$: $K(A) \to K(A)$ is defined by

$$\tau^{>0}(X^\bullet)^n = \left(\cdots \to 0 \to \operatorname{coker} d^0 \to X^1 \to X^2 \to \cdots\right).$$

Yang: On cohomological level, we have

$$H^n(\tau^{>0}(X^{\bullet})) = \begin{cases} 0, & n \le 0, \\ H^n(X^{\bullet}), & n > 0. \end{cases}$$

Definition 4 (Derived category). Let **A** be an abelian category. The *derived category* **D(A)** is defined by the following universal property: for any

Proposition 5. Let **A** be an abelian category with enough injectives. Then for every object $X \in D^+(A)$, there exists an isomorphism $X \to I$ in $D^+(A)$ such I^n is an injective object in **A** for all n.

Definition 6. Such an isomorphism $X \to I$ is called an *injective resolution* of X.

Definition 7 (Right Derived functor). Let **A** and **B** be abelian categories and $F : \mathbf{A} \to \mathbf{B}$ a left exact functor. The *right derived functor* of F is a datum (T, α) fitting into the following diagram

$$\begin{array}{ccc}
\mathsf{K}^{+}(\mathbf{A}) & \xrightarrow{\mathsf{K}^{+}(F)} & \mathsf{K}^{+}(\mathbf{B}) \\
\downarrow & & \downarrow & \downarrow \\
\mathsf{D}^{+}(\mathbf{A}) & \xrightarrow{T} & \mathsf{D}^{+}(\mathbf{B})
\end{array}$$

that satisfies for every additive functor $G: D^+(A) \to D^+(B)$ preserving distinguish triangles and the shifting $X \mapsto X[1]$, the map

is bijective.

Such functor is unique up to isomorphism, and denoted by RF.

Proposition 8. Let **A** be an abelian category with enough injectives, and $F : \mathbf{A} \to \mathbf{B}$ a left exact functor. Then the right derived functor $\mathsf{R}F$ is given by

$$RF(X^{\bullet}) = F(I^{\bullet}),$$

where I^{\bullet} is an injective resolution of X^{\bullet} .

2 An example

Fix a base ring $T = \mathbb{Z}_p[[u]]$ for some prime p > 0 and let x = (p, T) be the maximal ideal of T. Let $Z = \mathbb{P}^1_T$ be the projective line over T. Choose a covering of Z by two affine open subschemes $U_0 = \operatorname{Spec}(T[v])$ and $U_1 = \operatorname{Spec}(T[1/v])$. Let $I = (p, T, v) \subset T[v]$ be the ideal of the closed point $z \in U_0 \subset Z$.

Let $\pi: X = \mathrm{Bl}_p Z \to Z$ be the blow-up of Z at the point z. We try to describe it explicitly. Consider the blow-up $\mathrm{Proj}\,T[v][pW,uW,vW]$ of U_0 at the point z, where W is a formal variable to denote grading. It is covered by

$$\begin{split} &U_{01} = \operatorname{Spec}\left(T[v]\left[\frac{uW}{pW}, \frac{vW}{pW}\right]\right) \cong, \\ &U_{02} = \operatorname{Spec}\left(T[v]\left[\frac{pW}{uW}, \frac{vW}{uW}\right]\right) \cong, \\ &U_{03} = \operatorname{Spec}\left(T[v]\left[\frac{pW}{vW}, \frac{uW}{vW}\right]\right) \cong. \end{split}$$

Reduce to the special fiber, they become

$$\begin{split} &U_{01,x} = \operatorname{Spec}\left(\mathbb{F}_p\left[\frac{uW}{pW}, \frac{vW}{pW}\right]\right), \\ &U_{02,x} = \operatorname{Spec}\left(\mathbb{F}_p\left[\frac{pW}{uW}, \frac{vW}{uW}\right]\right), \\ &U_{03,x} = \operatorname{Spec}\left(\mathbb{F}_p[v]\left[\frac{pW}{vW}, \frac{uW}{vW}\right] / (v\frac{pW}{vW}, v\frac{uW}{vW})\right) \cong \operatorname{Spec}\left(\mathbb{F}_p[v, \alpha, \beta] / (v\alpha, v\beta)\right). \end{split}$$

Glue these three affine schemes and $U_{1,x}$ together, we obtain the special fiber X_x , which consists of two components $\mathbb{P}^1_{\mathbb{F}_p}$ and $\mathbb{P}^2_{\mathbb{F}_p}$ meeting at one point. It follows that the exceptional divisor E of the blow-up $\pi: X \to Z$ is isomorphic to $\mathbb{P}^2_{\mathbb{F}_p}$.

Reduce to the fiber p = 0, we have

$$\begin{split} &U_{01,p} = \operatorname{Spec}\left(\mathbb{F}_p\left[\frac{uW}{pW}, \frac{vW}{pW}\right]\right), \\ &U_{02,p} = \operatorname{Spec}\left(\mathbb{F}_p[[u]]\left[\frac{pW}{uW}, \frac{vW}{uW}\right] / \left(u\frac{pW}{uW}\right)\right), \\ &U_{03,p} = \operatorname{Spec}\left(\mathbb{F}_p[[u]]\left[v, \frac{pW}{vW}, \frac{uW}{vW}\right] / \left(v\frac{pW}{vW}, v\frac{uW}{vW} - u\right)\right). \end{split}$$

Let $\mathcal{L} := \pi^* \mathcal{O}_Z(1)$ be the pullback of the line bundle $\mathcal{O}_Z(1)$ on Z. Yang: Then \mathcal{L} is nef and big. We use this example to compute

4

$$\mathsf{R}\Gamma_{x}(\mathsf{R}\Gamma(X_{p=0},\mathcal{L}))$$

Definition 9. Let X be a scheme and \mathcal{F} a coherent sheaf on X. For $s \in \Gamma(X,\mathcal{F})$, we define the support of s to be the closed subset $\{x \in X \mid s_x \neq 0\}$. Let $Y \subset X$ be a closed subset. The section with support in Y is defined to be the set

$$\Gamma_Y(X,\mathcal{F}) = \{s \in \Gamma(X,\mathcal{F}) \mid \operatorname{Supp} s \subset Y\}.$$

Compute $\mathsf{R}\Gamma_{x}(\mathsf{R}\Gamma(Z_{p=0},\mathcal{O}_{Z}(1)))$