Neuvième partie

Les cristaux

1 Structure des solides cristallins parfaits

Groupement formulaire

- Un cristal est la répétition d'un motif élémentaire appelé groupement formulaire.
- Un GF peut être un atome, un ion atomique ou une molécule.
- La position du motif dans le réseau est appelée noeud du réseau.

Maille élémentaire

La maille élémentaire est la plus petite unité qui se répète dans les trois directions de l'espace. Elle est définie par 3 vecteurs élémentaires et 3 angles.

Une maille simple contient un seul groupement formulaire alors qu'une maille multiple contient en contient plusieurs. Le nombre de groupement formulaire est appelé multiplicité de la maille.

Décompte des groupements formulaires

La multiplicité Z est définie par : $Z = \rho V N_A/M$

- Un GF à l'intérieur d'une maille compte pour 1
- Un GF sur une face compte pour 1/2
- Un GF sur une arrête compte pour 1/4
- Un GF sur un sommet compte pour 1/8

2 Différents types d'arrangements cristallins

Systèmes cristallins

7 systèmes cristallins

Quadratique

$$a = b \neq c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

Monoclinique

 $\alpha = \beta = \gamma \neq 90^{\circ}$ ou rhomboédrique

$$a \neq b \neq c$$

 $\alpha = \gamma = 90^{\circ}$

 $\beta \neq 120^{\circ}$

Orthorhombique

$$a \neq b \neq c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

Hexagonal

 $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$

 $a = b \neq c$

Triclinique

maille simple (Z=1) les groupements sont aux sommets

maille centrée (Z=2)

un GF supplémentaire est situé au centre de la maille

Réseaux de Bravais

14 réseaux de Bravais

	Cubique	simple, centrée, faces centrées
	Quadratique	simple, centrée
ĺ	Orthorombique	simple, centrée, base centrée, faces centrées
	Hexagonale	simple
	Rhomboérique	simple
Ì	Monoclinique	simple, base centrée
Ì	Tricinique	simple

Emplifements compacts

Notion de compacité

La compacité traduit les forces de cohésion du cristal. Une grande compacité permet de maximiser les forces de cohésion du cristal.

Compacité =
$$\frac{\text{Volume des sphères}}{\text{Volume de la maille}} = \frac{4/3\pi R^3 \times Z}{V}$$

Empilements compacts et non compacts

Deux types d'empilements :

— empilements compacts (une sphère est tangente avec toutes ses voisines)

— empilement de type hexagonal compact, Compacité = 74%

— empilement de type cubique faces centrées, Compacité = 74%

- empilement de type cubique centré, Compacité = 68%
- empilement de type cubique simple , Compacité = 52%
- empilements non compacts (les sphères sont tangentes dans certaines directions uniquement

4 Cristaux constitués d'atome différents

Même dans des empilements compacts, il existe des espaces vides entre les sphères. On peut y placer des entitées chimiques plus petites. Ce sont les sites interstitiels.

Cubique faces centrées

4 sites octaédriques

1 au centre de la maille + 12 au milieu des arêtes

8 sites tétraédriques

les sites tétraédriques sont dans la maille. Ils ne sont pas partagés par les mailles voisines

représentation éclatée

représentation compacte