### Data Structure and Algorithm

# Graph

### หัวข้อในวันนี้





- Depth First Search
- Breadth First Search
- \*Topological Sort



### นิยามกราฟ

💠 กราฟ คือเซ็ตของโหนค(Vertex) และเส้นเชื่อม (Edge)



- ❖ โหนด แสดงถึง Object เช่น ชื่อเมือง, สถานที่ท่องเที่ยว
- \* เส้นเชื่อม (Edge) แสดงความสัมพันธ์ของ 2 โหนด มีความหมายแล้วแต่การนิยาม เช่น ระยะทาง, เวลา



### นิยามกราฟ

$$G = (V,E)$$

$$\mathbf{V} = \{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}$$

 $E = \{(A,B,3),(A,D,4),(A,C,2),(B,D,1)\}$ 





จงแสดง V และ E ของกราฟนี้

$$V(G) =$$

$$E(G) =$$

#### Graph VS. Tree

- 💸กราฟเป็น Super Set ของต้นไม้
- Tree ต้องมี parent Node เพียงโหนดเดียว, แต่ Graph ไม่จำเป็น
- 💠 บางโหนดอาจ<mark>ไม่มี</mark>เส้นเชื่อมได้ เช่น บางเมืองไม่มีสายการบิน



## ประโยชน์ของกราฟ (Routing การหาเส้นทาง)

### สายการบิน (การเชื่อมต่อของสายการบิน ตารางบิน)





## ประโยชน์ของกราฟ (Routing การหาเส้นทาง)

- Network (การเชื่อมต่อของอุปกรณ์ Router)
- เพื่อใช้ในการรับส่งข้อมูลในเครือข่าย



## ประโยชน์ของกราฟ (Algorithm Design)

🌺 Map Coloring คือวิธีการระบายสีในแผนที่โดยใช้สีน้อยที่สุด



## ตัวอย่างอื่น

| Graph            | Nodes               | Edges                  |
|------------------|---------------------|------------------------|
| transportation   | street intersection | r highways             |
| communication    | computers           | fiber optic cables     |
| World Wide Web   | web pages           | hyperlinks             |
| social           | people              | relationships          |
| food web         | species             | predator-prey          |
| software systems | functions           | function calls         |
| scheduling       | tasks               | precedence constraints |
| circuits         | gates               | wires                  |

#### Directed & Undirected Graph

- Undirected Graph คือกราฟที่เส้นเชื่อมไม่มีลูกศรกำกับทิศทาง
- \*หมายถึงความสัมพันธ์ของ 2 โหนดแบบ<mark>ไปและกลับ</mark>





Undirected Graph แสดงโหนด และเส้นเชื่อมของกราฟรูปหนึ่ง

Undirected Graph แสดงสายการบินของ Air Asia

#### Directed & Undirected Graph

- Directed Graph คือกราฟที่เส้นเชื่อมมีลูกศรกำกับทิศทาง
- 💠 เช่น Edge แสดงค่าโดยสารที่มีราคา ไป-กลับไม่เท่ากัน
- 💠 หรือ ค่าโทรศัพท์ไทยไปสิงคโปร์ แพงกว่าสิงคโปร์โทรหาไทย



Undirected Graph แสดงค่า อัตราค่าโทรศัพท์ระหว่างประเทศ (เป็นราคาสมมติเท่านั้น)

### Unweighted Graph (กราฟไม่มีน้ำหนัก)

- 💠 ไม่ระบุข้อมูลหรือค่าบางอย่าง (แตกต่างจากสิ่งอื่นๆ)
  - เช่น ถนนที่เชื่อมเมือง 2 เมืองแต่ไม่ระบุระยะทาง
  - ผังรถไฟฟ้าใต้ดิน แต่ไม่ระบุราคาค่าโดยสารระหว่างสถานี
  - หรือมองว่าค่าข้อมูลเหล่านั้นมีค่าเท่ากันหมด
- 💠 อาจเป็น Directed หรือ Undirected Graph ก็ได้



**Unweighted & Undirected Graph** 



**Unweighted & directed Graph** 

#### Weighted Graph (กราฟมีน้ำหนัก)

- เส้นเชื่อมระบุข้อมูลหรือค่าบางอย่างที่ต้องการบ่งชื้
  - เช่น ถนนที่เชื่อมเมือง 2 เมืองพร้อมระบุระยะทางระหว่างเมือง
  - อาจเป็น Directed หรือ Undirected Graph ก็ได้



Weighted & Undirected Graph



Weighted & directed Graph

### อินดีกรีและเอาท์ดีกรี

- ❖แต่ละ โหนดจะมีจำนวนเส้นเชื่อมระหว่าง โหนด ไม่เท่ากัน
- In-degree แสดงจำนวนเส้นเชื่อมที่<mark>เข้า</mark>มายังโหนดนั้นๆ
- Out-degree แสดงจำนวนเส้นเชื่อมที่ออกจากโหนดนั้นไป
- 💠 ใน Undirected Graph จำนวน In-degree และ Out-degree จะเท่ากัน





**Undirected Graph** 

**Directed Graph** 

### Complete Graph (กราฟสมบูรณ์)

💠 กราฟที่ทุกโหนดมีเส้นเชื่อมถึงโหนดอื่นๆ ทั้งหมด



กราฟมีทิศทาง

จำนวน Edge = N\*(N-1)

เช่น 3\*(3-1) =6



กราฟไม่มีทิศทาง

จำนวน Edge = 
$$\frac{N*(N-1)}{2}$$

เช่น 5\*(5-1) / 2 = 10

#### List of important graph terminology

| Vertices/Nodes       | Edges           | Set $V$ ; size $ V $ |
|----------------------|-----------------|----------------------|
| Un/Weighted          | Un/Directed     | Sparse               |
| Path                 | Cycle           | Isolated             |
| Self-Loop            | Multiple Edges  | Multigraph           |
| DAG                  | Tree/Forest     | Eulerian             |
| Set $E$ ; size $ E $ | Graph $G(V, E)$ | -                    |

| Set $E$ ; size $ E $ | Graph $G(V, E)$ |
|----------------------|-----------------|
| Dense                | In/Out Degree   |
| Reachable            | Connected       |
| Simple Graph         | Sub-Graph       |
| Bipartite            | Complete        |

#### **Graph Representation**





| Adjancency Matrix | Adjacency List | Edge List |
|-------------------|----------------|-----------|
| 0123456           | 0:12           | 0: 01     |
| 00250000          | 1:023          | 1: 02     |
| 12071000          | 2:014          | 2: 10     |
| 25700400          | 3: 1 4         | 3: 12     |
| 30100300          | 4:235          | 4: 13     |
| 40043090          | 5:46           | 5: 20     |
| 50000908          | 6: 5           | 6: 21     |
| 60000080          |                | 7: 24     |
|                   |                | 8: 3 1    |
|                   |                | 9: 34     |
|                   |                | 10: 4 2   |
|                   |                | 11:43     |

#### **Adjacency Matrix (Undirected Graphs)**

- Adjacency matrix. n-by-n matrix with  $A_{uv} = 1$  if (u, v) is an edge.
  - Two representations of each edge.
  - Space proportional to n<sup>2</sup>.
  - Checking if (u, v) is an edge takes  $\Theta(1)$  time.
  - Identifying all edges takes  $\Theta(n^2)$  time.



|   | _ |   | _ |   | _ |   |   |   |
|---|---|---|---|---|---|---|---|---|
|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 4 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 5 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 7 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 8 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |

#### **Graph Representation: Adjacency Matrix (Directed Graphs)**

Adjacency matrix. n-by-n matrix with  $A_{uv} = 1$  if (u, v) is an edge.

- One representations of each edge.
- $\blacksquare$  Space proportional to  $n^2$ .
- Checking if (u, v) is an edge takes  $\Theta(1)$  time.
- Identifying all edges takes  $\Theta(n^2)$  time.



|   | 1 | 2 |   |   | 5      | 6 | 7 |
|---|---|---|---|---|--------|---|---|
| 1 | 0 | 1 | 0 | 0 | 0      | 1 | 1 |
| 2 | 0 | 0 | 1 | 0 | 0      | 0 | 1 |
| 3 | 0 | 0 | 0 | 0 | 0      | 0 | 1 |
| 4 | 0 | 0 | 1 | 0 | 1      | 0 | 1 |
| 5 | 0 | 0 | 0 | 0 | 0      | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 1      | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 1<br>1 | 1 | 0 |

### Adjacency Matrix

```
#define MaxNodes 50
struct node {
       int info;
};
struct edge {
       int adj;
struct graph {
       struct node nodes[MaxNodes];
       struct edge edges[MaxNodes][MaxNodes];
};
struct graph g;
```

#### **Graph Representation: Adjacency List**

#### Adjacency list. Node indexed array of lists.

Two representations of each edge.

- degree = number of neighbors of v
- Let degree  $n_v$  be the numbers of incident edges of v
- Then  $O(\sum_{v \in V} n_v) = 2m$
- Space takes  $\Theta(m+n)$ .
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes  $\Theta(m + n)$  time.





#### **Graph Representation: Adjacency List**

Adjacency list. Node indexed array of lists.

- One representations of each edge.

  degree = number of neighbors of v
  - Let degree n<sub>v</sub> be the numbers of incident edges of v
  - Then  $O(\sum_{v \in V} n_v) = m$
- Space takes  $\Theta(m+n)$ .
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes  $\Theta(m + n)$  time.





#### **Exercise**

- 💠 ให้เขียนโปรแกรมเพื่อรับ input กราฟแบบต่าง ๆ โดยเป็นกราฟที่มี weight ดังนี้
  - aักษณะข้อมูล adjacency matrix ใช้ array
  - aักษณะข้อมูล adjacency list ใช้ vector
  - ลักษณะข้อมูล edge list
     ใช้ queue
- 💠 ให้พิมพ์ข้อมูลทั้งหมด อยู่ในรูป matrix
- งให้ download input จาก facebook group

### การท่องไปในกราฟ

- \* คือการ<mark>ค้นหาเส้นทาง</mark>จากโหนดหนึ่ง ไปยังโหนดที่ต้องการในกราฟ
- หากหาเส้นทางได้ไปยังโหนดได้ แสดงว่าโหนดเริ่มต้นสามารถเชื่อมต่อกับ โหนดนั้นได้ เช่นหาเส้นทางการบินจากกรุงเทพ ไปยัง Dallas อเมริกา
- 💠 ในกราฟ อาจมีบางโหนดที่ไม่สามารถเชื่อมกันก็เป็นได้
- 💠 2 បិតិ Breadth-first Search, Depth-first Search



โหนด F สามารถเดินทางไปยัง B ได้หรือไม่?

#### อาจมีบางโหนดที่ไม่สามารถเชื่อมกันก็เป็นได้



E

- 💠 ใน Directed Graph
- หากเริ่มจาก B: B->C, B->F, B -> C -> E แต่ไม่
   สามารถไปถึง D ได้
- 💠 หากเริ่มจาก F : ไม่สามารถเชื่อมกับ โหนดอื่นๆ ได้เลย

- ❖ ใน Undirected Graph โหนคที่เชื่อมกันสามารถ เข้าถึงกันได้หมด
- \* หากเริ่มจาก B: สามารถเข้าถึงได้ทุกโหนด ยกเว้น A
- \* หากเริ่มจาก A : ไม่สามารถเชื่อมกับ โหนคอื่นๆ ได้เลย เพราะ A ไม่เชื่อมต่อกับใครเลย

#### โหนด F สามารถเดินทางไปยัง B ได้หรือไม่?

#### Breadth-first Search

- คือการค้นหาโหนดใดในกราฟ โดยดูในแนวกว้างก่อน
- 🔷 ใช้ Queue เป็นเครื่องมือในการช่วยค้นหา
- 💠 ตัวอย่างการหาโหนด E เริ่มจากโหนด B





#### **Implementing BFS using Queue**



```
BFS(s)
  set Discovered[s] = true and set Discovered[v] = false for all other v
  init a queue L to consist of s only
  set the current BFS tree T = \emptyset
  set d[s] = 0
  while L is not empty
     u = L.dequeue()
     for each edge (u, v) incident to u
        if Discovered[v] is false then
          set Discovered[v] = true
          add edge (u, v) to the tree T
          L.enqueue (v)
          set d[v] = d[u] + 1
        end if
     end for
  end while
```

### Breadth-first Search (ตัวอย่าง)

เริ่มจาก B ต้องการค้นหา E

| B C C | F |
|-------|---|
|       |   |

### <u>Step</u>

Step 1: Queue =  $\{B\}$ 

Step 3: สำหรับโหนด C ที่เชื่อมอยู่กับโหนด B

Node Queue

Queue = 
$$\{B\}$$

### Breadth-first Search (ตัวอย่าง)

<u>Step</u> Node Queue Step 5: Cไม่ใช่ endVertex จับใส่ Queue **Queue={C}** Step 6: สำหรับโหนด F ที่เชื่อมอยู่กับโหนด B **Queue={C}** Step 7: Fไม่ใช่ endVertex จับใส่ Queue Queue={C,F} Step 8: หยิบโหนด C ออกมาสร้างโหนด Queue={F}

### Breadth-first Search (ตัวอย่าง)

Step Node Queue

Step 9: สำหรับโหนด E ที่เชื่อมอยู่กับโหนด C

ย เมากานหม ธ มหาคนเกิดหมา

Node E คือ endVertex

ดังนั้นให้คืนค่าและจบการค้นหา



Queue =  $\{F\}$ 



### Breadth-first Search (แบบฝึกหัด)

จากรูปขวามือให้สร้างภาพขั้นตอนการค้นหาจากโหนด D ไปยัง โหนด E โดยใช้ Breadth-first Search



### Breadth-first Search (แบบฝึกหัด)

จากรูปขวามือให้สร้างภาพขั้นตอนการค้นหาจากโหนด C ไปยัง โหนด G โดยใช้ Breadth-first Search



### Breadth-first Search (แบบฝึกหัด)

จากรูปขวามือให้สร้างภาพขั้นตอนการค้นหาจากโหนด I ไปยัง โหนด B โดยใช้ Breadth-first Search



#### **Exercise**

- o่าน input file ที่รับข้อมูลกราฟไปเพื่อหา BFS จาก node 5 ไปยังnodeต่าง ๆ
- Input file
  บรรทัดแรก คือ จำนวนโหนด จำนวนedge
  บรรทัดถัดไปเป็น nodeเริ่มต้น nodeปลายทางของ edge
  ทั้งหมด
- 💸 กำหนดให้ใช้ adjacency list

#### Depth-First Search

- ❖ คือการค้นหาโหนดใดในกราฟ โดยดูในแนวลึกก่อน
- 💠 ใช้ Stack เป็นเครื่องมือในการช่วยค้นหา
- 💠 ตัวอย่างการหาโหนด E เริ่มจากโหนด B





## ภาพ Step การค้นหาของ Depth-First Search



#### **Algorithm: Depth-first Search**

1. Push(Stack,startVertex)

- /\*กำหนดค่าใน Stack\*/
- 2.ให้ทำจนพบโหนด endVertex หรือ Stack มีค่าว่าง
  - 2.1 X = Pop(Stack) //หยิบค่าใน Stack ออกมา
  - 2.2 ถ้า X = endVertex ให้คืนค่าและจบการค้นหา
  - 2.3 <u>ถ้าไม่</u>
    - 2.3.1 เซ็ตสถานะว่า โหนด X ถูกค้นหามาแล้ว
    - 2.3.2 หาทุกโหนดที่เชื่อมต่อกับ X ไว้ใน List
    - 2.3.3 Push(Stack, ทุกโหนด List แบบกลับลำดับ)

#### **Implementing DFS**

end while

```
DFS(s)
 init all Explored[i] = false
 init a stack S
                  // add stack S with one element s
 S.push(s)
 while stack S is not empty
  u = S.pop()
                    // take node u from top of stack S
  if Explored[u] = false
      set Explored[u] = true
      for each edge (u, v) incident to u
        S.push(v)
                       // add v to top of stack S
      end for
                                                   u =
   end if
```





stack S

40

## Depth-first Search (ตัวอย่าง)

เริ่มจาก B ต้องการค้นหา E

| B | D | F |
|---|---|---|
| _ |   | _ |

### <u>Step</u>

Step 1:

 $Stack = \{B\}$ 

Step 2: ยังไม่พบโหนด และ Stack ยังไม่ว่าง

Step 3: X =Pop(Stack) //ค่าของ X คือโหนด B

Step 4: X ไม่ใช่ โหนดที่ต้องการค้นหา ให้กำหนดว่า B เป็นโหนดที่ค้นหามาแล้ว Node Stack

 $Stack = \{B\}$ 

 $Stack = \{B\}$ 

Stack = {ว่าง**}** 

Stack = {ว่าง**}** 

# Depth-first Search(ตัวอย่าง)

| !       | <u>Step</u>                                                           | Node | <u>Stack</u>                |
|---------|-----------------------------------------------------------------------|------|-----------------------------|
| Step 5: | $\mathbf{List} = \{\mathbf{C, F}\}$ //หาทุกโหนดที่ต่อกับ $\mathbf{X}$ | В    | Stack = {ว่าง <b>}</b>      |
| Step 6: | Push(Stack, List กลับลำดับ)                                           | В    | $Stack = \{F,C\}$           |
| Step 7: | X =Pop(Stack) //ค่าของ X คือโหนด C                                    | В    | $Stack = \{F\}$             |
| Step 8: | X ไม่ใช่ โหนดที่ต้องการค้นหา<br>ให้กำหนดว่า C เป็นโหนดที่ค้นหามาแล้ว  | В    | <b>Stack</b> = { <b>F</b> } |
|         |                                                                       | C    |                             |

### Depth-first Search (ตัวอย่าง)



Step 12: X คือโหนดที่ค้นหา ให้คืนค่าและหยุดการค้นหา

 $Stack = \{F\}$ 

# Depth-first Search(ตัวอย่าง)



## Depth-first Search (แบบฝึกหัด)

จากรูปขวามือให้สร้างภาพขั้นตอนการค้นหาจากโหนด D ไปยัง โหนด E โดยใช้ Depth-first Search



## Depth-first Search (แบบฝึกหัด)

จากรูปขวามือให้สร้างภาพขั้นตอนการค้นหาจากโหนด C ไปยัง โหนด G โดยใช้ Depth-first Search



## Depth-first Search (แบบฝึกหัด)

จากรูปขวามือให้สร้างภาพขั้นตอนการค้นหาจากโหนด I ไปยัง โหนด B โดยใช้ Depth-first Search



#### **Exercise**

oาน input file ที่รับข้อมูลกราฟ โดยใช้ DFS เพื่อพิมพ์ component ต่างๆ ของกราฟ และสรุปจำนวน component ทั้งหมด

### Input file

บรรทัดแรก คือ จำนวนโหนด บรรทัดถัดไปเป็นข้อมูล โหนดแรก เริ่มด้วยจำนวน neighbor ของโหนด ตามด้วย neighborของnode ตามด้วยน้ำหนัก ข้อมูลโหนดถัดไป ก็จะอยู่บรรทัดถัดไปตามลำดับ

💠 กำหนดให้ใช้ adjacency list

#### Directed Acyclic Graphs (DAG)

- An DAG is a directed graph that contains no directed cycles.
- Example. Precedence constraints: edge  $(v_i, v_j)$  means  $v_i$  must precede  $v_i$ .
- Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as  $v_1, v_2, ..., v_n$  so that for every edge  $(v_i, v_j)$  we have i < j.



#### **Exercise**

อ่าน input file ที่รับข้อมูล directed acyclic graph โดยใช้ DFS เพื่อพิมพ์ topological sort

## Input file

บรรทัดแรก คือ จำนวนโหนด บรรทัดถัดไปเป็นข้อมูล โหนดแรก เริ่มด้วยจำนวน neighbor ของโหนด ตามด้วย neighborของnode ตามด้วยน้ำหนัก ข้อมูลโหนดถัดไป ก็จะอยู่บรรทัดถัดไปตามลำดับ

💠 กำหนดให้ใช้ adjacency list