Math 1710. Tutorial 3 (Sketch of the solutions)

1(a). Region: y = 2 - |x|, y = 0; rotation about the x-axis.

Use the Washer Method (and symmetry):

outer radius = 2 - x, inner radius = 0, $0 \le x \le 2$. Volume = $2 \int_0^2 \pi (2 - x)^2 dx$.

1(b). Region: $y = \frac{2}{x}$, y = 0, x = 1, x = 4; rotation about y = -1.

Use the Washer Method:

outer radius = $\frac{2}{x} + 1$, inner radius = 1, $1 \le x \le 4$.

$$Volume = \int_{1}^{4} \pi \left(\left(\frac{2}{x} \right)^{2} - 1^{2} \right) dx.$$

1(c). Region: $y = x^{2/5} x = 1$, y = 0; rotation about the y-axis.

Use the Washer Method (the axis of rotation is vertical \Rightarrow use integration along the y-axis):

$$y = x^{2/5} \Rightarrow x = y^{5/2}$$

outer radius = 1, inner radius = $y^{5/2}$

outer radius = 1, inner radius =
$$y^{5/2}$$
, $0 \le y \le 1$.
Volume = $\int_0^1 \pi \left(1^2 - \left(y^{5/2}\right)^2\right) dy$.

1(d). Region: $y = \ln x$, $y = (x - 1) \ln 2$; rotation about x = -1.

Use the Washer Method (the axis of rotation is vertical \Rightarrow use integration along the

y-axis):

$$y = \ln x \Rightarrow x = e^{y}, \quad y = (x - 1) \ln 2 \Rightarrow x = \frac{y}{\ln 2} + 1;$$

$$Points \ of \ intersection: \ x = 1, \ x = 2 \Rightarrow y = 0, \ y = \ln 2.$$

$$outer \ radius = \left(\frac{y}{\ln 2} + 1\right) + 1, \ inner \ radius = e^{y} + 1, \quad 0 \le y \le \ln 2.$$

$$Volume = \int_{0}^{\ln 2} \pi \left(\left(\frac{y}{\ln 2} + 2\right)^{2} - (e^{y} + 1)^{2}\right) dy.$$

1(e). Region: $y = \sqrt{\sin x}$, $y = \frac{1}{\sqrt{2}}$, $0 \le x \le \pi$; rotation about the x-axis.

Use the Washer Method:

Points of intersection:
$$\begin{cases} y = \sqrt{\sin x}, \\ y = \frac{1}{\sqrt{2}}, \end{cases} \Rightarrow \sqrt{\sin x} = \frac{1}{\sqrt{2}} \Rightarrow \sin x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}.$$

$$outer\ radius = \sqrt{\sin x},\ inner\ radius = \frac{1}{\sqrt{2}}, \quad \frac{\pi}{6} \le x \le \frac{5\pi}{6}.$$

$$Volume = \int_{\pi/6}^{5\pi/6} \pi \left(\left(\sqrt{\sin x} \right)^2 - \left(\frac{1}{\sqrt{2}} \right)^2 \right) dx.$$

2(a). Region: $y = \sqrt[3]{x}$, x = 8, y = 0; rotation about the x-axis.

It might be easier to use the Washer method, but just for illustration we will use Cylindrical Shells method:

$$y = \sqrt[3]{x} \Rightarrow x = y^3, \quad 0 \le y \le 2.$$

 $radius \ of \ cylindrical \ shell = y, \ height \ of \ cylindrical \ shell = 8 - y^3, \quad 0 \leq y \leq 2.$

$$Volume = \int_0^2 2\pi y \left(8 - y^3\right) dy.$$

2(b). Region: $x = (y-2)^2$, y = x; rotation about y = -1.

Use Cylindrical Shells method:

Points of intersection:
$$\begin{cases} x = (y-2)^2, \\ y = x, \end{cases} \Rightarrow y = (y-2)^2 \Rightarrow y^2 - 5y + 4 = 0 \Rightarrow y = 1, 4.$$

 $radius \ of \ cylindrical \ shell = y+1, \ height \ of \ cylindrical \ shell = y-(y-2)^2, \quad 1 \leq y \leq 4.$

Volume =
$$\int_{1}^{4} 2\pi (y+1) (y-(y-2)^{2}) dy$$
.

2(c). Region: x + y = 4, $y = 2\sqrt{x-1}$, y = 0; rotation about the x-axis.

Use Cylindrical Shells method:

$$y = 2\sqrt{x - 1} \Rightarrow x = \frac{y^2}{4} + 1.$$

Points of intersection:
$$\begin{cases} x = \frac{y^2}{4} + 1, \\ x + y = 4, \end{cases} \Rightarrow \frac{y^2}{4} + 1 = 4 - y \Rightarrow y^2 + 4y - 12 = 0 \Rightarrow y = 2, (-6 \le 0).$$

radius of cylindrical shell = y, height of cylindrical shell = $(4 - y) - \left(\frac{y^2}{4} + 1\right)$, $0 \le y \le 2$.

Volume =
$$\int_0^2 2\pi y \left((4 - y) - \left(\frac{y^2}{4} + 1 \right) \right) dy$$
.

2(d). Region: xy = 9, x + y = 10, x = 3 (larger region); rotation about x = -2.

Use Cylindrical Shells method:

$$y = \frac{9}{x}, \quad y = 10 - x.$$

Points of intersection:
$$\begin{cases} xy = 9, \\ x + y = 10, \end{cases} \Rightarrow x = 1, 9 \text{ (we are interested in } x = 9)$$

$$radius of cylindrical shell = x + 2, height of cylindrical shell = (10 - x) - \frac{9}{x}, \quad 3 \le x \le 9.$$

Volume =
$$\int_{3}^{9} 2\pi(x+2) \left((10-x) - \frac{9}{x} \right) dx$$
.