СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО ЗАДАНИЯМ 7

1	ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ			
1	$\sin^2\alpha + \cos^2\alpha = 1$			
2	$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$			
3	$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$			
4	$\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = 1$			

СИНУС

ТАНГЕНС

противолежащий катет

гипотенуза

противолежащий катет прилежащий катет

ОРМУЛЫ	ФОРМУЛЫ ДВОЙНОГО УГЛА	
	1	$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$
	2	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $\cos 2\alpha = 2\cos^2 \alpha - 1$ $\cos 2\alpha = 1 - 2\sin^2 \alpha$
	3	$\cos 2\alpha = 2\cos^2\alpha - 1$
	4	$\cos 2\alpha = 1 - 2\sin^2\alpha$
	_	

$\cos \alpha = \frac{\text{косинус}}{\text{прилежащий катет}}$ $\frac{\text{котангенс}}{\text{котангенс}}$

	NOTALLI ELIC
ata a —	прилежащий катет
cig a –	противолежащий катет
	cosα
$\operatorname{ctg} \alpha =$	$\sin \alpha$

ФОРМУЛЫ ПРИВЕДЕНИЯ 1 ШАГ

Если в скобочке нечётное количество $\frac{\pi}{2}$, то функция меняется на кофункцию

Если в скобочке сколько-то π , то функция остаётся прежней **пример**•

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$tg(\pi + \alpha) = tg\alpha$$

2 ШАГ

Определяем знак по указанной в скобочках четверти (смотреть на изначальную функцию, а не на изменившуюся)

ПРИМЕР:

$$\sin\left(\frac{3\pi}{2} + \alpha\right)$$

Это IV четверть, в ней синус
имеет знак минус, поэтому
 $\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$

ЛОГАРИФМЫ

ОПРЕДЕЛЕНИЕ ЛОГАРИФМА	ОСНОВНОЕ ЛОГАРИФМИЧЕСКОЕ	ОДЗ ЛОГАРИФМА	СВОЙСТВА ЛОГАРИФМОВ
Если $\log_a b = c$, то $a^c = b$	$a^{\log_a b} = b$	(a>0)	$ 1 \log_a b + \log_a c = \log_a (b \cdot c)$
		Для $\log_a b$ $\begin{cases} a \neq 1 \\ b > 0 \end{cases}$	$2 \log_a b - \log_a c = \log_a \frac{b}{c}$
			$3 \log_a b^m = m \cdot \log_a b$
			$ 4 \log_{a^n} b = \frac{1}{n} \cdot \log_a b$
			$6 \log_a b = \frac{\log_c b}{\log_c a}$

СТЕПЕНИ

	СТЕПЕНИ		
1	$a^n \cdot a^m = a^{n+m}$		
2	$a^n : a^m = a^{n-m}$		
3	$(a^n)^m = a^{n \cdot m}$		
4	$a^n \cdot b^n = (a \cdot b)^n$		
5	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$		
6	$a^{0} = 1$		
7	$a^{-n} = \frac{1}{a^n}$		
8	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$		

3 tg(-x) = -tg x4 ctg(-x) = -ctg x

КОРНИ

KOPHU

1
$$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$$

2 $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$

3 $(\sqrt{a})^2 = a$

4 $\sqrt{a^2} = |a|$

5 $\sqrt[n]{a^m} = a^{\frac{m}{n}}$

ФОРМУЛЫ СОКРАЩЁННОГО УМНОЖЕНИЯ

ФСУ					
1	$a^2 - b^2 = (a - b)(a + b)$				
2	$(a-b)^2 = a^2 - 2ab + b^2$				
3	$(a+b)^2 = a^2 + 2ab + b^2$				
4	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$				
5	$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$				
6	$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$				
7	$(a + b)^3 = a^3 + 2a^2b + 2ab^2 + b^3$				

модули

КАК РАСКРЫВАТЬ МОДУЛИ

Если внутримодульное выражение положительное, то просто опускаем модуль **ПРИМЕР:**

$$y = |2 - 1| = 2 - 1$$

Если внутримодульное выражение отрицательное, то раскрываем модуль, меняя все знаки внутри модуля на противоположные

пример:

$$y = |1 - 2| = -1 + 2$$