15 Funktorialität der Konstruktion

Satz 38 (orig. 35). Sei $f: X \to Y$ eine stetige Abbildung zwischen irreduzibler affiner algebraischen Mengen. Es sind äquivalent:

- (i) f ist ein Morphismus affiner algebraischen Mengen.
- (ii) $\forall g \in \Gamma(Y)$ gilt $g \circ f \in \Gamma(X)$.
- (iii) f ist ein von Räumen von Funktionen, d.h. für alle $U \subseteq Y$ offen und alle $g \in \mathcal{O}_Y(U)$ gilt $g \circ f \in \mathcal{O}_X(f^{-1}(U))$.

Beweis.

- $(i) \Leftrightarrow (ii)$ Satz 29.
- $(iii) \Rightarrow (ii)$ U := Y + Satz 33.
- $(ii) \Rightarrow (iii)$

Betrachte $\varphi : \Gamma(Y) \to \Gamma(X)$, $h \mapsto h \circ f$. Aufgrund des Verklebungsaxioms reicht es, die Bedingung für U von der Form $\mathcal{D}(g)$ zu zeigen: Es gilt:

$$f^{-1}(\mathcal{D}(g)) = \{ x \in X \mid \underbrace{g(f(x))}_{=\varphi(g)(x)} \neq 0 \} = \mathcal{D}(\varphi(g))$$

Deswegen induziert φ :

$$H \longmapsto H \circ f$$

$$\mathcal{O}_Y(\mathcal{D}(g)) \longrightarrow \mathcal{O}_X(D(\varphi(g)))$$

$$\Gamma(Y)_g \longrightarrow \Gamma(X)_{\varphi(g)}$$

$$\frac{h}{g} \longmapsto \frac{h \circ f}{(g \circ f)^n}$$

mit $h \circ f \in \Gamma(X)$ nach Voraussetzung und $\varphi(g) = g \circ f \in \Gamma(X)$ nach Voraussetzung.

Insgesamt haben wir:

Theorem 39 (orig. 36). Die obige Konstruktion definiert einen volltreuen Funktor

 $\{irred.\ aff.\ abg.\ Mengen\ \ddot{u}ber\ k\} \rightarrow \{R\ddot{a}ume\ mit\ Funktionen\ \ddot{u}ber\ k\}$