Universal Algebra Week 3

James Newman Winter 2019

Definition. An algebra $\langle A, F \rangle$ is the reduct of an algebra $\langle A, F^* \rangle$ to \mathcal{F} if $\mathcal{F} \subseteq \mathcal{F}^*$, and F is the reduction of F^* to \mathcal{F} .

Theorem. Given $n \geq 1$, find equations Σ for semigroups such that Σ will hold in a semigroup $\langle S, \cdot \rangle$ iff $\langle S, \cdot \rangle$ is a reduct of a group $\langle S, \cdot, ^{-1}, 1 \rangle$ of exponent n (i.e. every element of S is such that its order divides n).

Proof. Assume $n \geq 1$ and $\langle S, \cdot \rangle$ is a semigroup which satisfies the equations in Σ where Σ contains

$$x^{n+1} = x$$
 and,

$$x^n = y^n$$

for all $x, y \in S$. Define $x^{-1} = x^{n-1}$ for all $x \in S$, and $1 = c^n$ for an arbitrary $c \in S$. Then for any $x, y \in S$,

- (i) G1 holds because it is a semigroup.
- (ii) $1 \cdot x = c^n \cdot x = x^n \cdot x = x^{n+1} = x = x^{n+1} = x \cdot x^n = x \cdot c^n = x \cdot 1$. Thus $1 \cdot x = x = x \cdot 1$, that is G2 holds.
- (iii) $x \cdot x^{-1} = x \cdot x^{n-1} = x^n = c^n = 1 = c^n = x^n = x^{n-1} \cdot x = x^{-1} \cdot x$. Thus $x \cdot x^{-1} = 1 = x^{-1} \cdot x$, that is G3 holds.

Furthermore is easy to see that since $x^n = 1$, the order of x must divide n. Since G1-3 hold, the semigroup $\langle S, \cdot \rangle$ is a reduct of the group $\langle S, \cdot, ^{-1}, 1 \rangle$.

In the other direction, assume $\langle S, \cdot, ^{-1}, 1 \rangle$ is a group where the order of every element divides n. Then for any x, the order of x is i where ij = n for some j. So $x^n = x^{ij} = (x^i)^j = 1^j = 1$. Thus for any $x, y \in S$,

- (i) $x^{n+1} = x^n \cdot x = 1 \cdot x = x$, and
- (ii) $x^n = 1 = y^n$.

Thus the reduct semigroup $\langle S, \cdot \rangle$ satisfies Σ .

Definition. Two elements a, b of a bounded lattice $\langle L, \wedge, \vee, 0, 1 \rangle$ are complements if $a \vee b = 1$ and $a \wedge b = 0$. In this case, each of a, b is the complement of the other. A complemented lattice is a bounded lattice in which every element has a complement.

Theorem. In a bounded distributive lattice any element has at most one complement.

Proof. Assume $\langle L, \wedge, \vee, 0, 1 \rangle$ is a bounded distributive lattice. Furthermore take any elements $a, b, c \in L$ such that both b and c are complements of a. That is $a \wedge b = 0$, $a \vee b = 1$, $a \wedge c = 0$, and $a \vee c = 0$. Then

$b = b \vee (b \wedge a)$	Lattice absorbtion
$b = b \vee (a \wedge b)$	Lattice commutativity
$=b\vee 0$	$a \wedge b = 0$
$=b\vee (a\wedge c)$	$a \wedge c = 0$
$= (b \vee a) \wedge (b \vee c)$	Distributive Lattice
$=(a\vee b)\wedge (b\vee c)$	Lattice commutativity
$= 1 \wedge (b \vee c)$	$a \lor b = 1$
$= (a \vee c) \wedge (b \vee c)$	$a \lor c = 1$
$= (c \vee a) \wedge (c \vee b)$	Lattice commutativity
$= c \lor (a \land b)$	Distributive Lattice
$= c \vee 0$	$a \wedge b = 0$
$= c \vee (c \wedge 0)$	Bounded Lattice
= c	Lattice absorbtion

Therefore b=c and thus there is at most 1 complement of any element a in a bounded distributive lattice.

Theorem. If $\langle B, \wedge, \vee, ', 0, 1 \rangle$ is a Boolean algebra and $a, b \in B$, define $a \to b$ to be $a' \lor b$. Then $\langle B, \wedge, \vee, \to, 0, 1 \rangle$ is a Heyting algebra.

Proof. Assume $\langle B, \wedge, \vee,', 0, 1 \rangle$ is a Boolean algebra and define $a \to b$ as $a' \lor b$ for all $a, b \in B$. Then for any $x, y, z \in B$

- (H1) Follows from B1.
- (H2) Follows from B2.
- (H3) $x \rightarrow x = x' \lor x = 1$

(H4)

$$(x \to y) \land y = (x' \lor y) \land y$$
$$= y \land (x' \lor y)$$
$$= y \land (y \lor x')$$
$$= y$$

Furthermore

$$x \wedge (x \to y) = x \wedge (x' \vee y)$$
$$= (x \wedge x') \vee (x \wedge y)$$
$$= 0 \vee (x \wedge y)$$
$$= x \wedge y$$

(H5)

$$x \to (y \land z) = x' \lor (y \land z)$$
$$= (x' \lor y) \land (x' \lor z)$$
$$= (x \to y) \land (x \to z)$$

And