Homework 12 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

May 10, 2024

- 1. (a) Since *E* is Jordan region, *E* is bounded and for all $\varepsilon^* > 0$, we can find a grid *g* s.t. Vol($\partial E, g$) $< \varepsilon^*$.
 - i. If $x \in \partial \operatorname{int}(E)$, $D(x, \varepsilon) \cap \operatorname{int}(E) \neq \emptyset$ and $D(x, \varepsilon) \cap (M \setminus \operatorname{int}(E)) \neq \emptyset$.

Thus, $D(x, \varepsilon) \cap E \neq \emptyset$ and $D(x, \varepsilon) \cap (M \setminus \text{int}(E)) \neq \emptyset$.

If $D(x, \varepsilon) \cap (M \setminus E) \neq \emptyset$, then $x \in \partial E$.

If $D(x,\varepsilon)\cap (M\setminus E)=\emptyset$, $D(x,\varepsilon)\subseteq E$. Then, $D(x,\varepsilon)\cap (E\setminus \mathrm{int}(E))\neq \emptyset$, that is, $D(x,\varepsilon)\cap \partial E\neq \emptyset$

 \emptyset . If $x \in \text{int}(E)$, then exists $\varepsilon > 0$ s.t. $D(x, \varepsilon) \subseteq \text{int}(E) \cap \partial E = \emptyset$. Thus, $x \in \partial E$.

Therefore, $x \in \partial \operatorname{int}(E) \implies x \in \partial E$. Then, $\operatorname{Vol}(\partial \operatorname{int}(E)) \leq \operatorname{Vol}(\partial E) = 0$.

(b) Since $cl(E) = int(E) \cup \partial E$ and $int(E) \subseteq E \subseteq cl(E)$,

 $\operatorname{Vol}(\operatorname{cl}(E)) \leq \operatorname{Vol}(\operatorname{int}(E)) + \operatorname{Vol}(\partial E) = \operatorname{Vol}(\operatorname{int}(E)) \leq \operatorname{Vol}(E) \leq \operatorname{Vol}(\operatorname{cl}(E)).$

Therefore, Vol(cl(E)) = Vol(int(E)) = E.

(c)

- (\Longrightarrow) From (b), we know Vol(int(E)) = Vol(E) > 0, then we can find a set of rectangles R_n s.t. $\sum |R_n| > 0$ and $\bigcup R_n \subseteq \operatorname{int}(E)$. Therefore, $\operatorname{int}(E) \neq \emptyset$.
- (\iff) Since $\operatorname{int}(E)$ is non-empty, for any $x_0 \in \operatorname{int}(E)$, there exists $\varepsilon > 0$ s.t. $D(x_0, \varepsilon) \subseteq \operatorname{int}(E)$. Then, we can find a small rectangle R with each length is $\frac{\varepsilon}{2}$ and R is contained in $D(x_0, \varepsilon)$. Thus, $\operatorname{Vol}(\operatorname{int}(E)) > \left(\frac{\varepsilon}{2}\right)^2 > 0$.
- (d) Since f is continuous, for any $x_0 \in [a,b]$, we can find a sequence $x_k \to x_0$ s.t. $f(x_k) \to f(x_0)$. That is, $A = \{(x, f(x)) \mid x \in [a,b]\}$ is closed. And since $\partial A \subseteq A$, $Vol(\partial A) \le Vol(A)$.

Since f is continuous on [a,b] is compact, for all $\varepsilon>0$, we can find $\delta>0$ s.t. $|x-y|<\delta$ implies That $|f(x)-f(y)|<\frac{\varepsilon}{b-a}$. Then, we can find a finite increasing sequence $\{x_i\mid x_i\in [a,b]\}_{i=1}^N$ s.t. $[a,b]\subseteq D(x_i,\frac{\delta}{2})$. Therefore, for any $y=f(x),y\in D(f(x_i),\frac{\varepsilon}{b-a})$ for some i. Then, take $u_0=a,u_i\in D(x_i,\frac{\delta}{2})\cap D(x_{i+1},\frac{\delta}{2}),u_N=b$, and we can get $[a,b]=\cup [u_i,u_{i+1}]$. Thus, $A\subseteq \bigcup_{i=0}^N [u_i,u_{i+1}]\times D(\xi_i,\frac{\varepsilon}{b-a})$ for some $\xi_i\in \{f(x)\mid x\in [u_i,u_i=1]\}$ with the sum of the rectangles is $\frac{\varepsilon}{b-a}\cdot (b-a)=\varepsilon$. Hence, $\operatorname{Vol}(A)=0$ and $\operatorname{Vol}(\partial A)=0$.

- (e) Yes. Since f is integrable, for any $\varepsilon > 0$, we can find an partition P s.t. $|U(f,P)-L(f,P)| < \varepsilon$. That is, $\sum_{i=0}^{N} (\sup_{x \in [x_i, x_{i+1}]} \{f(x)\} \inf_{x \in [x_i, x_{i+1}]} \{f(x)\}) \cdot (x_{i+1} x_i) < \varepsilon$, and each one of the summation is a rectangle that contains all (x, f(x)) in the interval. Thus, $\operatorname{Vol}(A) = 0$ and $\operatorname{Vol}(\partial A) = 0$.
- 2. (a) For $x \in \partial E_1 \cap E_2$, $x \in \text{cl}(E_1 \cap E_2) \cap \text{cl}(M \setminus E_1 \cap E_2)$. Then, if $E_1 \cap E_2$ is not Jordan region, $\text{Vol}(E_1 \cap E_2) = a > 0$.