Logické programy Deklarativní interpretace

Petr Štěpánek

S využitím materialu Krysztofa R. Apta

2006

Logické programování 7

1

Algebry. (Interpretace termů)

Algebra J pro jazyk termů L obsahuje

- Neprázdnou množinu D, která se nazývá doména.,
- Pro každý n-ární funkční symbol f jazyka L zobrazení $f_I: D^n \to D$.

Ohodnocení proměnných σ je zobrazení, které každé proměnné x přiřazuje hodnotu $\sigma(x)$ z domény D.

Interpretaci (*hodnoty*) *termů* při ohodnocení proměnných σ definujeme obvyklým způsobem..

Říkáme, že term t je základní (ground), jestliže neobsahuje proměnné.

Logické programování 7

2

- je-li term t proměnná x, jeho hodnota je $\sigma(x)$ ε D,
- je-li t složený term $f(t_1, ..., t_n)$ jeho hodnota $\sigma(t)$ je . $f_J(\sigma(t_1), ..., \sigma(t_n))$ ε D .

Pro každou konstantu c platí $\sigma(c) = c_J$. Hodnoty konstant nezáleží na ohodnocení proměnných.

To také platí pro každý základní term t jeho hodnota $\sigma(t)$ není závislá na ohodnocení proměnných σ .

Příklad. (Zamýšlené a bizarní algebry)

a) standardní model N (interpretace) přirozených čísel je algebra (struktura) $N = \langle N, 0_N, +_N, \cdot_N \rangle$ s množinou přirozených čísel N jako doménou a obvyklou interpretací nuly, sčítání a násobení.

Logické programování 7

3

b) bizární, ale vyhovující definici algebry, je interpretace jazyka přirozených čísel

 $C = \langle \mathbf{C}, 0_c, +_c, \cdot_c \rangle$, kde doménou je množina komplexních čísel, nula je interpretována jako nula v komplexních číslech, sčítání definuje rovnost $c +_c d = c \cdot \pi d$ a násobení $c \cdot_c d = c + i d$.

Definice. (Interpretace jazyka)

Interpretace jazyka programů L obsahuje algebru J s doménou D, rozšířenou o interpretaci predikátových symbolů:

ke každém<mark>u n-árnímu predikátovému symbolu p je přiřazena rela</mark>ce p_I , která je podmnožinou D^n .

Říkáme, že I je definována nad J, D je doménou I a z praktických důvodů pak označujeme zobrazení f_I jako f_I .

Sémantika jazyka programů se definuje obvyklým způsobem, jenom formulí je v definici méně.

Nechť L je jazyk programů. Souhrnným názvem výraz budeme označovat atomy, dotazy, rezultanty a klauzule definované v jazyce L.

Budeme definovat vztah pravdivosti (splňování) $I \models_{\sigma} E$ mezi interpretací I jazyka L, ohodnocením proměnných σ v doméně interpretace I a výrazem E. Je-li $I \models_{\sigma} E$ říkáme, že výraz E je pravdivý v interpretaci I při ohodnocení σ .

- je-li $p(t_1, ..., t_n)$ atom, potom $I =_{\sigma} p(t_1, ..., t_n) \text{ jestliže } (\sigma(t_1), ..., \sigma(t_n)) \in p_I$
- je-li A_1, A_2, \dots, A_n dotaz $I \models_{\sigma} A_1, A_2, \dots, A_n \text{ jestliže } I \models_{\sigma} A_i, \text{ pro všechna } i, 1 \leq i \leq n$

Logické programování 7

5

• je-li
$$\mathbf{A} \leftarrow \mathbf{B}$$
 rezultanta, potom
$$I \models_{\sigma} \mathbf{A} \leftarrow \mathbf{B} \text{ jestliže } I \models_{\sigma} \mathbf{A} \text{ za předpokladu } I \models_{\sigma} \mathbf{B}$$

speciálně, je-li
$$H \leftarrow \mathbf{B}$$
 klauzule, potom $I \models_{\sigma} H \leftarrow \mathbf{B}$ jestliže $I \models_{\sigma} H$ za předpokladu $I \models_{\sigma} \mathbf{B}$ a pro jednotkovou klauzuli $H \leftarrow I \models_{\sigma} H \leftarrow$ jestliže $I \models_{\sigma} H$

Říkáme, že výraz E je pravdivý v interpretaci I, je-li pravdivý při všech ohodnoceních proměnných. Přitom prázdný dotaz \Box je pravdivý ve všech interpretacích.

Pokud výraz E není pravdivý v I, píšeme $I \neq E$. jestliže

Poznámka. Je-li výraz E základní (bez proměnných), pak pro každou interpretaci I a libovolná dvě ohodnocení σ , τ platí

$$I \models_{\sigma} E$$
 právě když $I \models_{\tau} E$

odtud plyne, že základní výraz *E* je pravdivý v interpretaci *I*, je-li pravdivý při alespoň jednom ohodnocení.

Definice. (Univerzální a existenční uzávěr)

Je-li E výraz, zavedeme pojem univerzálního uzávěru $\forall E$ a existenčního uzávěru $\exists E$, které budeme používat jen při sémantické analýze programů.

Jejich sémantiku definujeme takto

 $I \models \forall E$ jestliže platí $I \models_{\sigma} E$ pro všechna ohodnocení σ , $I \models \exists E$ jestliže platí $I \models_{\sigma} E$ pro alespoň jedno σ .

Pro každý výraz E platí $I = \forall E$ právě když I = E

používat Logické programování 7

7

Definice. (Modely)

Je-li S množina výrazů (nebo jejich uzávěrů), říkáme, že interpretace I je model S, jestliže všechny výrazy z S jsou pravdivé v I.

Speciálně, I je model programu P jestliže všechny klauzule programu P jsou pravdivé v I.

Definice. (Sémantický důsledek, sémantická ekvivalence)

Jsou-li dány dvě množiny výrazů (nebo jejich uzávěrů) S a T stejného, jazyka

(i) říkáme, že T je sémantický důsledek S nebo, že S sémanticky implikuje T a píšeme $S \models T$, jestliže každý model S je také modelem T. Pokud některá množina sestává z jediného prvku, vynecháváme závorky $\{\}$ a zmíněnou množinu nahradíme tímto prvkem .

(ii) říkáme, že S a T jsou sémanticky ekvivalentní, jestliže současně platí $S \models T$ a $T \models S$. Jinými slovy S a T jsou sémanticky ekvivalentní, právě když mají stejné modely.

Lemma.

Jsou-li E , F výrazy, S , T , U množiny výrazů a ${\bf A}$, ${\bf B}$, ${\bf C}$ dotazy, potom platí

- (i) $E = E\theta$ pro všechny substituce θ
- (ii) $E\theta = \exists E$ pro všechny substituce θ
- (iii) jsou-li E a F variantami, potom $E \models F$ a $F \models E$
- (iv) $S \cup \{E\} = E$
- (v) S = T a T = U implikuje S = U
- (vi) je-li $E \models F$, potom $S \models E$ implikuje $S \models F$

Logické programování 7

9

(vii) je-li
$$S \models A \leftarrow B$$
, potom $S \models A$, $C \leftarrow B$, $C = C$, $A \leftarrow C$, B platí pro každé C , (viii) je-li $S \models A \leftarrow B$ a $S \models B \leftarrow C$, potom $S \models A \leftarrow C$.

Označení.

Je-li dán jazyk L , výraz E a množina výrazů S jazyka L ,

- (i) množinu všech instancí výrazu E označujeme inst(E), podobně množinu instancí všech výrazů z množiny S označíme inst(S),
- (ii) množinu všech základních (ground) instancí výrazu E (tedy instancí, které neobsahují proměnné) označujeme ground(E) a množinu všech základních instancí všech výrazů z množiny S označíme ground(S).

Korektnost SLD-rezoluce.

Lemma. (Rezultanty)

(i) Nechť $Q = \theta/c => Q_1$ je SLD-derivační krok a r je odpovídající rezultanta. Potom

$$c \models r$$

(ii) Mějme SLD-derivaci $P \cup \{Q\}$ s posloupností R_0, \dots, R_n, \dots odpovídajících rezultant . Potom pro každé i > 0 platí

$$P \mid = R_i$$

Důkaz. Předpokládejme, že $Q:=\mathbf{A}$, B, \mathbf{C} , kde B je vybraný atom z Q. Předpokládejme, že $H\leftarrow\mathbf{B}$ je použitá vstupní klauzule. Potom

$$Q_1 = (\mathbf{A}, \mathbf{B}, \mathbf{C})\theta$$
 a $r = (\mathbf{A}, \mathbf{B}, \mathbf{C})\theta \leftarrow (\mathbf{A}, \mathbf{B}, \mathbf{C})\theta$

Logické programování 7

11

Nyní $c \models H\theta \leftarrow \mathbf{B}\theta$ a také $c \models B\theta \leftarrow \mathbf{B}\theta$, protože θ unifikuje H a B.

K oběma stranám druhé klauzule můžeme přidat konjunkce $\, \mathbf{A} \boldsymbol{\theta} \,$ a $\, \mathbf{C} \boldsymbol{\theta} \,$.

Dostáváme

tedy
$$c \models (\mathbf{A}, B, \mathbf{C})\theta \leftarrow (\mathbf{A}, \mathbf{B}, \mathbf{C})\theta$$
 $c \models r$.

(ii) Předpokládejme, že

$$Q \equiv Q_0 = \theta_1 \Rightarrow Q_1 \dots Q_n = \theta_{n+1} \Rightarrow Q_{n+1} \dots$$
U.D. derivace. Tyrzení dokazujeme indukcí

je uvažovaná SLD-derivace. Tvrzení dokazujeme indukcí.

Pro i=0 je rezolventa R_0 tautologií, je pravdivá i bez předpokladu c. Případ i=1 byl dokázán v (i) protože R_1 je rezultanta odpovídající rezolučnímu kroku $Q_0 = \theta_1 => Q_1$.

Indukční krok. Předpokládáme, že platí $P = R_i$ pro rezultantu stupně i, (a rezultanty nižších stupňů). K rezultantě R_{i+1} vede i+1 rezoluční krok $Q_i = \theta_{n+1} => Q_{i+1}$.

Tomuto rezolučnímu kroku je přiřazena (malá) rezultanta

$$r_i = Q_i \theta_{i+1} \leftarrow Q_{i+1} \tag{1}$$

 $r_i = Q_{\mathbf{i}} \theta_{i+1} \leftarrow Q_{i+1}$ Přitom podle definice rezultanty stupně i platí

$$R_i = Q_0 \, \theta_1 \dots \, \theta_i \leftarrow Q_i$$

odkud

$$R_i \theta_{i+1} = Q_0 \theta_1 \dots \theta_i \theta_{i+1} \leftarrow Q_i \theta_{i+1} \tag{2}$$

a podle definice rezultanty stupně i + 1 je

$$R_{i+1} = Q_0 \theta_1 \dots \theta_i \theta_{i+1} \leftarrow Q_{i+1} \tag{3}$$

protože $P \models r_i$ podle (i) a z indukčního předpokladu také $P \models R_i$, je i implikace (2) sémantickým důsledkem programu P. Složením implikací (1) a (2) dostaneme rezultantu (3), pro kterou nakonec platí $P \models R_{i+1}$.

Logické programování 7

13

Věta. (Korektnost SLD-rezoluce)

Předpokládejme, že exisuje úspěšná SLD-derivace $P \cup \{Q\}$ s vypočtenou odpovědní substitucí θ . Potom $P = Q\theta$.

Důkaz. Předpokládejme, že $\theta_1, \dots, \theta_n$ je posloupnost použitých mgu. Podle lemmatu o rezultantách, pro poslední rezultantu dané SLD-derivace platí $P = Q\theta_1 \dots \theta_n \leftarrow \square$. A vypočtená odpovědní substituce $\theta = \theta_1, \dots, \theta_n \mid Var(Q)$, to znamená, že jsme dokázali $P \models Q\theta$.

Důsledek.

Předpokládejme, že existuje úspěšná SLD-derivace $P \cup \{Q\}$. Potom platí $P \models \exists Q$.

Úplnost SLD-rezoluce.

Definice. (Korektní instance)

Předpokládejme, že $P \models Q\theta$. Potom $\theta \mid Var(Q)$ nazýváme korektní odpovědní substituce pro dotaz Q a $Q\theta$ nazýváme korektní instance.

Korektní instance nemusí být nutně vypočtená, intuitivně spíš odpovídá "uhodnutému" řešení.

Věta. (Silná forma věty o úplnosti SLD-rezoluce)

Nechť $P \models Q\theta$. Potom pro každé výběrové pravidlo **R** existuje úspěšná SLD-derivace pro $P \cup \{Q\}$ podle **R** s vypočtenou odpovědní substitucí η taková, že $Q\eta$ je obecnější než $Q\theta$.

Bez důkazu.

Logické programování 7

15

Silná forma věty o úplnosti SLD-rezoluce ukazuje, že nelze ztotožnit korektní a vypočtené odpovědní instance.

Příklad.

Mějme jazyk, který obsahuje (unární) predkát p a alespoň jednu konstantu a.

Je-li $P = \{p(y)\}$ program a Q = p(x) dotaz, potom $\{y/a\}$ je korektní odpovědní substituce, ale $\{y/x\}$ je vypočtená odpovědní substituce.

Silná forma věty o úplnosti je důležitá, protože spolu s větou o korektnosti SLD-rezoluce ukazuje, že mezi deklarativní a procedurální interpretací logických programů existuje úzký vztah nezávisle na volbě výběrového pravidla.

Tato korespondence však není zcela dokonalá, protože vypočtené a korektní odpovědní substituce nemusí být totožné.

Něco o modelech

V deklarativních interpretacích hrají důležitou roli dva typy modelů (interpretací) termové a Herbrandovy modely.

Mějme jazyk L, množinu všech termů jazyka L nazveme termovým univerzem jazyka L a označíme TU_L . Protože jsme předpokládali, že L má nekonečně mnoho proměnných, je i TU_L nekonečná množina.

Množinu všech atomických formulí (atomů) jazyka L nazveme termovou bázi jazyka L a označíme TB_{I} .

Definice. (Termová algebra)

Termová algebra pro jazyk L obsahuje

- doménu TU_L ,
- pro každý n-ární funkční symbol *f* jeho kanonickou interpretaci

Logické programování 7

17

tedy zobrazení $(TU_L)^n$ do TU_L takové, že n-tici termů t_1, \ldots, t_n přiřazuje term $f(t_1, \ldots, t_n)$.

Termovou interpretací I jazyka L je každá interpretace L nad termovou algebrou L. Tedy každému n-árnímu predikátovému symbolu p je přířazena relace $p_L \subseteq (TU_L)^n$.

Termovým modelem množiny výrazů S je termová interpretace, která je modelem S.

Poznámka. Protože interpretace funkčních symbolů je jednoznačně určena, každému jazyku *L* je přiřazena jediná termová algebra.

Termová interpretace jazyka L je tedy jadnoznačně určena interpretací predikátových symbolů.

To znamená, že je zde přirozený vzájemně jednozačný vztah mezi termovými interpretacemi a podmnožinami termové báze (TB_L) , který lze vyjádřit zobrazením, které každé termové interpretaci I přiřazuje množinu atomů

$$\{p(t_1, ..., t_n) \mid p \text{ je n-ární predikát a } (t_1, ..., t_n) \in p_I \}$$

Můžeme tedy termové interpretace pro L ztotožnit s (případně prázdnými) podmožinami termové báze TB_L . Ohodnocení proměnných σ v termovém univerzu TU_L přiřazuje každé proměnné x term z TU_L .

Je-li X konečná množina proměnných, restrikcí $\sigma \mid X$ dostáváme sub stituci.

Lemma. (Termové interpretace)

Je-li *I* termová interpretace, potom pro každý atom A a klauzuli *c*

(i)
$$I = A$$
 právě když $A(\sigma \mid Var(A)) \in I$

Logické programování 7

19

(ii)
$$I = A$$
 právě když $inst(A) \subseteq I$

(iii)
$$I = c$$
 právě když pro všechny instance $A \leftarrow B_1, \dots, B_n$ ε $inst(c)$ $\{B_1, \dots, B_n\} \subseteq I$ implikuje $A \varepsilon I$.

Důkaz. (i) pro libovolný term t a konečnou množinu proměnných X takovou, že $Var(t) \subseteq X$, se indukcí podle složitosti termu t dokáže $\sigma(t) = t \ (\sigma \mid X)$. To znamená, že hodnota, kterou termu t přiřadí ohodnocení σ je rovna instanci, která vznikne použitím substituce $(\sigma \mid X)$ na term t.

Pro atom $A = p(t_1, ..., t_n)$ dostáváme

$$\begin{split} I =_{\sigma} p(t_1, \dots, t_n) & \text{právě když} \\ & (t_1\theta, \dots, t_n\theta) \in p_I \quad \text{právě když} \\ & p(t_1, \dots, t_n)\theta \in I \\ \text{kde } \theta = (\sigma \mid Var(A)) \,. \end{split}$$

- (ii) bezprostředně vyplývá z (i).
- (iii) Podle (i)

$$I \mid =_{\sigma} A \leftarrow B_1, \dots, B_n$$
 právě když
$$\{B_1\theta, \dots, B_n\theta\} \subseteq I \text{ implikuje } A\theta \in I$$

kde $\theta = (\sigma \mid Var(A \leftarrow B_1, ..., B_n))$. Tvrzení (iii) plyne z definice pravdivosti klauzule.

Poznámka. Tvrzení (ii) z předchozího lemmatu ukazuje, že v obecném případě nemůžeme ztotožnit termovou interpretaci s množinou atomů, které jsou v ní pravdivé. K tomu je zapotřebí ještě další podmínka.

Definice. (Termové interpretace uzavřené na substituce)

Termová interpretace je *uzavřená na substituce* jestliže $A \in I$ implikuje $inst(A) \subseteq I$.

Nyní platí: je-li I termová interpretace uzavřená na substituce, potom

$$I = \{A \mid A \text{ je atom a} \mid I = A\}$$

Logické programování 7

21

Popíšeme specifickou konstrukci termových modelů programů.

Definice. (Implikační stromy)

(i) *Implikační strom* vzhledem k programu P, je konečný strom, jehož uzly jsou atomy. Pro každý uzel A a jeho bezprostřední následníky B_1, \ldots, B_n patří klauzule $A \leftarrow B_1, \ldots, B_n$ do inst(P).

Speciálně , je-li A list implikačního stromu, jednotková klauzule $A \leftarrow$ je prvkem inst(P) .

(ii) Říkáme, že atom *A má implikační strom* vzhledem k *P*, je-li *A* kořenem nějakého implikačního stromu vzhledem k *P*. Říkáme, že *implikační strom je základní*, jestliže všechny jeho uzly jsou základní atomy.

Poznámka. Stejný atom může být kořenem několika implikačních stromů vzhledem k programu P. Je-li jednotková klauzule $A \leftarrow$ prvkem inst(P), pak atom A je kořenem jednoprvkového implikačního stromu.

Příklad.

Atom happy má tento základní implikační strom vzhledem k programu SUMMER.

Logické programování 7

23

Lemma. (Termový model C(P))

Termová interpretace

$$C(P) = \{ A \mid A \text{ má implikační strom vzhledem k } P \}$$
 je modelem programu P .

Důkaz. Podle tvrzení (iii) lemmatu o termových interpretacích stačí pro každou klauzuli

$$A \leftarrow B_1, \dots, B_n \ z \ inst(P)$$

ukázat, že

$$\{B_1, \dots, B_n\} \subseteq C(P)$$
 implikuje $A \in C(P)$.

To však znamená, že A má implikační strom vzhledem k P. C(P) je tedy modelem P.

Věta. (Nejmenší termový model)

C(P) je nejmenší termový model programu P.

Důkaz. Nechť I je termový model P. Potom I je také model inst(P). Ukážeme, že

$$A \in C(P)$$
 implikuje $I = A$.

Tvrzení věty potom plyne z (ii) v lemmatu o termových interpretacích.

Postupujeme indukcí podle počtu uzlů i v implikačním stromu atomu A vzhledem k programu P.

Pro i = 1 je jednotková klauzule $A \leftarrow \text{prvkem } inst(P), \text{ tedy } I \mid= A$.

Indukční krok. Předpokládejme, že A je kořenem implikačního stromu vzhledem kP, který má $i \geq 1$ uzlů. Potom pro nějaké $n \geq 1$ atomy B_1, \ldots, B_n je klauzule $A \leftarrow B_1, \ldots, B_n$, prvkem inst(P) a

Logické programování 7

25

každé B_j , $1 \leq j \leq n$ má implikační strom vzhledem k P s $k_j < i$.

Z indukční hypotézy potom $I \mid= B_j$, pro každé $1 \leq j \leq n$. Ovšem podle $I \mid= A \leftarrow B_1$, ..., B_n , tedy $I \mid= A$.

Věta. (Sémantická ekvivalence)

Pro libovolný atom A platí

$$P \models A$$
 právě když $C(P) \models A$.

Poznámka. Tento výsledek ukazuje ukazuje, že model C(P) je sémanticky ekvivalentní deklarativní interpretaci programu P. Nejprve dokažeme následující lemma.

Lemma.

Je-li atom A pravdivý ve všech termových modelech programu P, potom $P \mid = A$.

Důkaz. Nechť
$$I$$
 je model P . Potom pro každou kaluzuli $H \leftarrow B_1$, ..., B_n z $inst(P)$ platí $I \mid = B_1$,..., $I \mid = B_n$, implikuje $I \mid = H$ (1)

To proto, že I je také model $\operatorname{inst}(P)$, takže pro všechna ohodnocení proměnných σ platí, že $I \models_{\sigma} B_1$, ..., B_n implikuje $I \models_{\sigma} H$.

Nyní nechť $I_T = \{A \mid A \text{ je atom takový, že } I \models A \}$ označuje termovou interpretaci odpovídající I. Z (iii) Lemmatu o termových interpretacích a (1) dostáváme, že I_T také model (P).

Navíc, podle (ii) z Lemmatu o termových interpretacích plyne, že v obou interpretacích I a I_T jsou pravdivé stejné atomy. Odtud plyne tvrzení lemmatu.

Důkaz Věty. Zvolme pevně jeden atom A. Ukázali jsme, že C(P) je model P, tedy z $P \models A$ plyne $C(P) \models A$. Opačná implikace bezprostředně

Logické programování 7

27

tvrzení (ii) Lemmatu o termových interpretacích, předchozího lemmatu a faktu, že C(P) je nejmenší termový model P.

Mějme dvě SLD-derivace

$$\xi := Q_0 = \theta_1/c_1 => Q_1 \dots Q_n = \theta_{n+1}/c_{n+1} => Q_{n+1} \dots$$

$$\xi' := Q_0' = \theta_1'/c_1 => Q_1' \dots Q_n' = \theta_{n+1}'/c_{n+1} => Q_{n+1}' \dots$$

Říkáme, že tyto SLD-derivace jsou podobné jestliže platí

$$\xi := Q_0 = \theta_1/c_1 => Q_1 \dots Q_n = \theta_{n+1}/c_{n+1} => Q_{n+1} \dots$$

$$\xi' := Q_0' = \theta_1'/c_1 => Q_1' \dots Q_n' = \theta_{n+1}'/c_{n+1} => Q_{n+1}' \dots$$

Logické programování 7

29