# Verslag Practicum 1:

Arnout Coenegrachts, r0665757
27 maart 2020

De input data is telkens een willekeurig gegenereerde lijst met integers van 0 tot en met 99.

### 1 Aantal vergelijkingen

In dit eerste deel van het practicum, zijn het aantal vergelijkingen tussen 2 elementen van een lijst geteld bij 3 verschillende sorteeralgoritmen, namelijk selection sort, insertion sort en quick sort. Voor elk sorteeralgoritmen zijn er lijsten met een lengte van 1 tot en met 100 elementen gesorteerd. Voor elke lengte zijn er 3 verschillende lijsten gegenereerd, waardoor elk sorteeralgoritme dus 300 lijsten gesorteerd heeft. Een grafiek met de data van de 3 verschillende sorteeralgoritmen kan gezien worden in figuur 4 op het einde van deze sectie.

#### 1.1 Selection Sort

Omdat selection sort telkens het volledige ongesorteerde deel van de lijst afloopt om het minimum te vinden, zou het aantal vergelijkingen gelijk moeten blijven voor elke lijst van dezelfde grootte, ongeacht de inhoud. Het verwachte aantal vergelijkingen wordt gegeven door N(N-1)/2 of  $\sim N^2/2$ . In figuur 1 is het  $\sim N^2/2$  model geplot in het blauw en de waardes bekomen door de experimenten geplot met kruisjes in het rood, paars en licht blauw. Op deze figuur is duidelijk te zien dat het model zoals verwacht goed overeenkomt met de waardes van de experimenten, en dat de werkelijke waardes voor de 3 experimenten exact hetzelfde zijn. De data staat in de appendix in tabel 1.

#### 1.2 Insertion Sort

Bij insertion sort zijn er 3 gevallen te onderscheiden. Het slechtste geval is wanneer de lijst van groot naar klein gesorteerd is waardoor de kleinere elementen van achteraan helemaal naar voor moeten verplaatst worden, wat veel vergelijkingen oplevert. In dit geval verwacht men  $\sim N^2/2$ , wat even veel vergelijkingen zijn als bij selection sort. In het beste geval is de lijst al gesorteerd van klein naar groot, waardoor er N-1 of  $\sim N$  vergelijkingen nodig zijn, namelijk om de volledige lijst af te lopen. In het gemiddelde geval verwacht men  $\sim N^2/4$  vergelijkingen, omdat elk element gemiddeld tot in de helft van de lijst verplaatst moet worden. Deze drie gevallen zijn geplot in figuur 2, samen met de waardes van de experimenten. Het



Figure 1: Het aantal vergelijkingen tussen 2 elementen van een lijst bij het sorteren via selection sort.

slechtste geval, beste geval en gemiddelde geval zijn geplot met een rode, groene en blauwe lijn respectievelijk. De bekomen data is geplot in rode, paarse en licht blauwe kruisjes. We kunnen op de figuur duidelijk zien dat alle data geconcentreerd is rond het gemiddelde geval, en dat het bij de grotere waardes steeds verder van de 2 extreme gevallen wegblijft. Dit is ook logisch, omdat het aantal elementen dat al op de juiste plaats staat of dat naar de andere kant van de lijst moet gaan heel klein gaat zijn. De data staat in de appendix in tabel 2.

#### 1.3 Quick Sort

Bij quick sort zijn er ook 3 gevallen te onderscheiden. Het slechtste geval is wanneer het pivot telkens het grootste of het kleinste element is van de lijst, waardoor alle elementen terug in 1 lijst komen te staan. In dit geval verwacht men  $\sim N^2/2$  vergelijkingen. In het beste geval wordt de lijst telkens in 2 gedeeld, en dan verwacht men  $\sim Nlog_2(N)$  vergelijkingen. In het gemiddelde geval verwacht men  $\sim 1.39Nlog_2(N)$ . Deze drie gevallen zijn geplot in figuur 3, samen met de waardes van de experimenten. Het slechtste geval, beste geval en gemiddelde geval zijn geplot met een rode, groene en blauwe lijn respectievelijk. De bekomen data is geplot in rode,



Figure 2: Het aantal vergelijkingen tussen 2 elementen van een lijst bij het sorteren via insertion sort.

paarse en licht blauwe kruisjes. Op de figuur is te zien dat de data geconcentreerd is vlak boven het gemiddelde geval, wat aangeeft dat het slechtste geval zich een significant aantal keer meer heeft voor gedaan dan het beste geval. Tegen dit slechtste geval kan men zich beschermen door de lijst telkens willekeurig van volgorde te laten wisselen wanneer er een nieuwe partitie gemaakt wordt, maar dit is niet gedaan omdat anders het aantal vergelijkingen dat nodig is om eenzelfde lijst te sorteren niet altijd hetzelfde zou zijn, wat een vereiste was van dit practicum. De data staat in de appendix in tabel 3.

#### 2 Doubling Ratio

In dit deel van het practicum, wordt de hoeveelheid tijd die er nodig is om elk sorteer algoritme uit te voeren gemeten, terwijl de lengte van de lijst die gesorteerd wordt telkens verdubbelt wordt. De tijdsmeting wordt gebeurt door nanoTime van Java. We passen om 2 opeenvolgende metingen telkens de volgende formule toe:

$$\frac{T(2N)}{T(N)} \sim 2^b \tag{1}$$



Figure 3: Het aantal vergelijkingen tussen 2 elementen van een lijst bij het sorteren via quick sort.

Deze formule zegt ons dat deze verhouding voor grote N gaat convergeren naar een macht van 2. Hierdoor kunnen we de looptijd van nog grotere lijsten trachten te voorspellen.

#### 2.1 Insertion Sort

Aangezien bij het gemiddelde geval het aantal vergelijkingen bij insertion sort gegeven wordt door  $\sim N^2/4$ , geeft de formule van de doubling ratio (1) aan dat de verhouding zal convergeren naar  $4=2^2$ . In figuur 5 is het zichtbaar dat vanaf een lijst-grootte van  $10^4$  elementen, de verhouding rond 4 blijft. De data staat in de appendix in tabel 4. De grootste meting hiervan had een lengte van N=128000 en duurde  $1.756 \times 10^{10}$  nanoseconden, ofwel 17.56 seconden. Om de tijd van een meting met een 8 keer zo lange rij te bepalen, gebruiken we de volgende vergelijking:

$$\frac{T(8N)}{T(N)} = \frac{T(8N)}{T(4N)} \times \frac{T(4N)}{T(2N)} \times \frac{T(2N)}{T(N)}$$
 (2)

Voor insertion sort is de oplossing hiervan  $2^6 = 64$ . De sortering van een lijst van N = 1024000 zou dus  $2^6 \times 17.56 = 1123.84$  seconden duren, wat ongeveer 19 minuten is.



Figure 4: De data van de 3 verschillende sorteer algoritmes. De data van selection sort, insertion sort en quick sort zijn geplot als groene bolletjes; rode x-en; en blauwe kruisjes respectievelijk

#### 2.2 Quick Sort

Aangezien bij het gemiddelde geval het aantal vergelijkingen bij quick sort gegeven wordt door  $\sim 1.39Nlog_2(N)$ , geeft de formule (1) de volgende oplossing:

$$\frac{T(2N)}{T(N)} = \frac{1.39 \times 2Nlog_2(2N)}{1.39 \times Nlog_2(N)} = \frac{2N(1 + log_2(N))}{Nlog_2(N)} = 2 \times \left(1 + \frac{1}{log_2(N)}\right)$$

We verwachten dus dat de verhouding zal convergeren naar een getal net groter dan 2, want voor grote N wordt de term  $1/log_2(N)$  heel klein. In figuur 6 is het duidelijk dat vanaf een lijst grootte van  $10^6$  elementen, de verhouding net boven 2 blijft. De data staat in de appendix in tabel 5. De grootste meting hiervan had een lengte van N=65536000 en duurde  $1.588\times 10^{10}$  nanoseconden, ofwel 15.88 seconden. Om de tijd van een meting met een 8 keer zo lange rij te bepalen, gebruiken we opnieuw vergelijking (2). Voor quick sort is de oplossing van deze vergelijking  $2^3=8$ . De sortering van een lijst van N=524288000 zou dus  $2^3\times 15.88=127.04$  seconden duren, wat ongeveer 2 minuten is.



Figure 5: De data van het doubling ratio experiment voor insertion sort

### 2.3 Algoritme met $\sim N^5$

Voor een algoritme met  $\sim N^5$ , wordt de doubling ratio berekend als volgt:

$$\frac{T(2N)}{T(N)} = \frac{(2N)^5}{N^5} = 2^5 = 32$$

Als de invoer dus 2 keer zou lang zou zijn, dan verwachten we een tijdsduur die 32 keer zo lang is.

## 3 Appendix



Figure 6: De data van het doubling ratio experiment voor insertion sort

Table 1: Aantal vergelijkingen voor selection sort voor lijsten met een lengte tussen 1 en 100elementen

| N              | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|----------------|------|------|------|------|------|------|------|------|------|------|
| Experiment1    | 0    | 1    | 3    | 6    | 10   | 15   | 21   | 28   | 36   | 45   |
| Experiment2    | 0    | 1    | 3    | 6    | 10   | 15   | 21   | 28   | 36   | 45   |
| Experiment3    | 0    | 1    | 3    | 6    | 10   | 15   | 21   | 28   | 36   | 45   |
| $\overline{N}$ | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   |
| Experiment1    | 55   | 66   | 78   | 91   | 105  | 120  | 136  | 153  | 171  | 190  |
| Experiment2    | 55   | 66   | 78   | 91   | 105  | 120  | 136  | 153  | 171  | 190  |
| Experiment3    | 55   | 66   | 78   | 91   | 105  | 120  | 136  | 153  | 171  | 190  |
| $\overline{N}$ | 21   | 22   | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30   |
| Experiment1    | 210  | 231  | 253  | 276  | 300  | 325  | 351  | 378  | 406  | 435  |
| Experiment2    | 210  | 231  | 253  | 276  | 300  | 325  | 351  | 378  | 406  | 435  |
| Experiment3    | 210  | 231  | 253  | 276  | 300  | 325  | 351  | 378  | 406  | 435  |
| $\overline{N}$ | 31   | 32   | 33   | 34   | 35   | 36   | 37   | 38   | 39   | 40   |
| Experiment1    | 465  | 496  | 528  | 561  | 595  | 630  | 666  | 703  | 741  | 780  |
| Experiment2    | 465  | 496  | 528  | 561  | 595  | 630  | 666  | 703  | 741  | 780  |
| Experiment3    | 465  | 496  | 528  | 561  | 595  | 630  | 666  | 703  | 741  | 780  |
| $\overline{N}$ | 41   | 42   | 43   | 44   | 45   | 46   | 47   | 48   | 49   | 50   |
| Experiment1    | 820  | 861  | 903  | 946  | 990  | 1035 | 1081 | 1128 | 1176 | 1225 |
| Experiment2    | 820  | 861  | 903  | 946  | 990  | 1035 | 1081 | 1128 | 1176 | 1225 |
| Experiment3    | 820  | 861  | 903  | 946  | 990  | 1035 | 1081 | 1128 | 1176 | 1225 |
| $\overline{N}$ | 51   | 52   | 53   | 54   | 55   | 56   | 57   | 58   | 59   | 60   |
| Experiment1    | 1275 | 1326 | 1378 | 1431 | 1485 | 1540 | 1596 | 1653 | 1711 | 1770 |
| Experiment2    | 1275 | 1326 | 1378 | 1431 | 1485 | 1540 | 1596 | 1653 | 1711 | 1770 |
| Experiment3    | 1275 | 1326 | 1378 | 1431 | 1485 | 1540 | 1596 | 1653 | 1711 | 1770 |
| $\overline{N}$ | 61   | 62   | 63   | 64   | 65   | 66   | 67   | 68   | 69   | 70   |
| Experiment1    | 1830 | 1891 | 1953 | 2016 | 2080 | 2145 | 2211 | 2278 | 2346 | 2415 |
| Experiment 2   | 1830 | 1891 | 1953 | 2016 | 2080 | 2145 | 2211 | 2278 | 2346 | 2415 |
| Experiment3    | 1830 | 1891 | 1953 | 2016 | 2080 | 2145 | 2211 | 2278 | 2346 | 2415 |
| $\overline{N}$ | 71   | 72   | 73   | 74   | 75   | 76   | 77   | 78   | 79   | 80   |
| Experiment1    | 2485 | 2556 | 2628 | 2701 | 2775 | 2850 | 2926 | 3003 | 3081 | 3160 |
| Experiment 2   | 2485 | 2556 | 2628 | 2701 | 2775 | 2850 | 2926 | 3003 | 3081 | 3160 |
| Experiment3    | 2485 | 2556 | 2628 | 2701 | 2775 | 2850 | 2926 | 3003 | 3081 | 3160 |
| $\overline{N}$ | 81   | 82   | 83   | 84   | 85   | 86   | 87   | 88   | 89   | 90   |
| Experiment1    | 3240 | 3321 | 3403 | 3486 | 3570 | 3655 | 3741 | 3828 | 3916 | 4005 |
| Experiment2    | 3240 | 3321 | 3403 | 3486 | 3570 | 3655 | 3741 | 3828 | 3916 | 4005 |
| Experiment3    | 3240 | 3321 | 3403 | 3486 | 3570 | 3655 | 3741 | 3828 | 3916 | 4005 |
| $\overline{N}$ | 91   | 92   | 93   | 94   | 95   | 96   | 97   | 98   | 99   | 100  |
| Experiment1    | 4095 | 4186 | 4278 | 4371 | 4465 | 4560 | 4656 | 4753 | 4851 | 4950 |
| Experiment 2   | 4095 | 4186 | 4278 | 4371 | 4465 | 4560 | 4656 | 4753 | 4851 | 4950 |
| Experiment 3   | 4095 | 4186 | 4278 | 4371 | 4465 | 4560 | 4656 | 4753 | 4851 | 4950 |

Table 2: Aantal vergelijkingen voor insertion sort voor lijsten met een lengte tussen 1 en 100elementen

| N              | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|----------------|------|------|------|------|------|------|------|------|------|------|
| Experiment1    | 0    | 1    | 3    | 5    | 7    | 11   | 15   | 18   | 20   | 30   |
| Experiment2    | 0    | 1    | 2    | 5    | 8    | 9    | 18   | 17   | 14   | 24   |
| Experiment3    | 0    | 1    | 2    | 6    | 10   | 12   | 17   | 15   | 25   | 25   |
| $\overline{N}$ | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   |
| Experiment1    | 40   | 34   | 48   | 50   | 47   | 78   | 70   | 82   | 104  | 86   |
| Experiment2    | 25   | 44   | 54   | 58   | 72   | 94   | 72   | 71   | 130  | 100  |
| Experiment3    | 28   | 43   | 40   | 51   | 69   | 73   | 88   | 66   | 91   | 104  |
| $\overline{N}$ | 21   | 22   | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30   |
| Experiment1    | 133  | 119  | 139  | 137  | 130  | 199  | 177  | 216  | 238  | 248  |
| Experiment 2   | 117  | 135  | 118  | 148  | 179  | 195  | 180  | 228  | 161  | 238  |
| Experiment3    | 118  | 123  | 173  | 141  | 159  | 212  | 189  | 193  | 208  | 251  |
| $\overline{N}$ | 31   | 32   | 33   | 34   | 35   | 36   | 37   | 38   | 39   | 40   |
| Experiment1    | 266  | 251  | 302  | 298  | 308  | 431  | 308  | 341  | 429  | 458  |
| Experiment2    | 213  | 287  | 321  | 309  | 300  | 336  | 341  | 320  | 477  | 340  |
| Experiment3    | 272  | 322  | 304  | 350  | 318  | 348  | 301  | 372  | 433  | 416  |
| $\overline{N}$ | 41   | 42   | 43   | 44   | 45   | 46   | 47   | 48   | 49   | 50   |
| Experiment1    | 527  | 419  | 493  | 571  | 563  | 584  | 604  | 649  | 476  | 700  |
| Experiment2    | 429  | 337  | 525  | 603  | 513  | 595  | 612  | 592  | 664  | 791  |
| Experiment3    | 445  | 359  | 525  | 432  | 539  | 503  | 485  | 573  | 551  | 596  |
| $\overline{N}$ | 51   | 52   | 53   | 54   | 55   | 56   | 57   | 58   | 59   | 60   |
| Experiment1    | 736  | 688  | 763  | 733  | 803  | 814  | 920  | 866  | 940  | 920  |
| Experiment2    | 767  | 864  | 699  | 740  | 846  | 752  | 819  | 981  | 965  | 1059 |
| Experiment3    | 631  | 618  | 614  | 664  | 787  | 741  | 750  | 904  | 803  | 953  |
| $\overline{N}$ | 61   | 62   | 63   | 64   | 65   | 66   | 67   | 68   | 69   | 70   |
| Experiment1    | 917  | 819  | 1155 | 1139 | 1005 | 1204 | 1081 | 1201 | 1161 | 1236 |
| Experiment2    | 777  | 957  | 932  | 1155 | 999  | 1203 | 969  | 1224 | 1174 | 1288 |
| Experiment3    | 991  | 931  | 933  | 1146 | 1101 | 1114 | 1143 | 1192 | 1308 | 1239 |
| $\overline{N}$ | 71   | 72   | 73   | 74   | 75   | 76   | 77   | 78   | 79   | 80   |
| Experiment1    | 1229 | 1202 | 1394 | 1328 | 1460 | 1645 | 1324 | 1426 | 1497 | 1891 |
| Experiment2    | 1184 | 1319 | 1212 | 1357 | 1636 | 1380 | 1579 | 1727 | 1806 | 1496 |
| Experiment3    | 1230 | 1430 | 1358 | 1494 | 1629 | 1573 | 1505 | 1500 | 1661 | 1475 |
| $\overline{N}$ | 81   | 82   | 83   | 84   | 85   | 86   | 87   | 88   | 89   | 90   |
| Experiment1    | 1602 | 1686 | 1675 | 2019 | 1757 | 1817 | 1905 | 1943 | 2370 | 2040 |
| Experiment2    | 1512 | 1839 | 1671 | 1799 | 1840 | 2040 | 1707 | 1738 | 1837 | 1929 |
| Experiment3    | 1680 | 1649 | 1629 | 1717 | 1651 | 1866 | 1980 | 2156 | 1874 | 1931 |
| $\overline{N}$ | 91   | 92   | 93   | 94   | 95   | 96   | 97   | 98   | 99   | 100  |
| Experiment1    | 2060 | 2403 | 2184 | 2182 | 2196 | 2320 | 2146 | 2671 | 2304 | 2579 |
| Experiment2    | 2416 | 2271 | 2413 | 2137 | 2328 | 2420 | 2315 | 2353 | 2638 | 2647 |
| Experiment3    | 2001 | 2542 | 2147 | 2142 | 2280 | 2154 | 2367 | 2207 | 2399 | 2495 |
|                | •    |      |      |      |      |      |      |      |      |      |

Table 3: Aantal vergelijkingen voor quick sort voor lijsten met een lengte tussen 1en 100elementen

| N                        | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Experiment1              | 0   | 3   | 4   | 9   | 10  | 15  | 20  | 24  | 26  | 35  |
| Experiment 2             | 0   | 3   | 6   | 7   | 11  | 16  | 25  | 23  | 27  | 34  |
| Experiment3              | 0   | 3   | 6   | 11  | 10  | 14  | 22  | 23  | 29  | 33  |
| $\overline{N}$           | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| Experiment1              | 39  | 61  | 43  | 51  | 53  | 65  | 91  | 72  | 88  | 95  |
| Experiment 2             | 39  | 41  | 43  | 50  | 59  | 70  | 67  | 84  | 92  | 83  |
| Experiment3              | 35  | 47  | 55  | 45  | 90  | 69  | 63  | 88  | 76  | 81  |
| $\overline{N}$           | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  |
| Experiment1              | 90  | 98  | 109 | 120 | 113 | 115 | 132 | 155 | 143 | 150 |
| Experiment 2             | 81  | 115 | 128 | 112 | 110 | 143 | 149 | 146 | 158 | 151 |
| Experiment3              | 107 | 124 | 122 | 134 | 138 | 136 | 126 | 141 | 182 | 136 |
| $\overline{N}$           | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| $\overline{Experiment1}$ | 154 | 199 | 189 | 158 | 201 | 208 | 239 | 228 | 223 | 278 |
| Experiment 2             | 161 | 188 | 187 | 230 | 177 | 195 | 262 | 206 | 212 | 292 |
| Experiment3              | 161 | 186 | 172 | 219 | 212 | 233 | 196 | 273 | 233 | 268 |
| N                        | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  |
| Experiment1              | 235 | 244 | 225 | 250 | 291 | 252 | 262 | 255 | 287 | 343 |
| Experiment 2             | 253 | 281 | 251 | 247 | 275 | 299 | 330 | 304 | 289 | 338 |
| Experiment3              | 240 | 246 | 268 | 249 | 230 | 240 | 294 | 282 | 305 | 364 |
| N                        | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| Experiment1              | 314 | 372 | 413 | 319 | 377 | 369 | 336 | 359 | 440 | 361 |
| Experiment 2             | 417 | 378 | 317 | 324 | 292 | 374 | 327 | 341 | 369 | 392 |
| Experiment3              | 290 | 335 | 346 | 324 | 375 | 367 | 312 | 368 | 389 | 397 |
| $\overline{N}$           | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  |
| Experiment1              | 388 | 423 | 449 | 446 | 471 | 389 | 432 | 420 | 465 | 445 |
| Experiment 2             | 355 | 368 | 437 | 444 | 420 | 453 | 442 | 401 | 460 | 453 |
| Experiment3              | 382 | 399 | 446 | 445 | 474 | 482 | 562 | 459 | 453 | 505 |
| $\overline{N}$           | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| $\overline{Experiment1}$ | 503 | 514 | 472 | 466 | 576 | 473 | 535 | 652 | 587 | 549 |
| Experiment 2             | 534 | 473 | 441 | 455 | 590 | 510 | 504 | 529 | 525 | 554 |
| Experiment3              | 473 | 453 | 467 | 442 | 535 | 480 | 526 | 497 | 516 | 581 |
| N                        | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  |
| $\overline{Experiment1}$ | 687 | 545 | 556 | 629 | 539 | 568 | 557 | 621 | 629 | 643 |
| Experiment2              | 494 | 603 | 571 | 585 | 632 | 589 | 639 | 692 | 650 | 636 |
| Experiment3              | 549 | 564 | 543 | 571 | 593 | 603 | 629 | 623 | 562 | 656 |
| $\overline{N}$           | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |
| $\overline{Experiment1}$ | 618 | 776 | 739 | 655 | 816 | 853 | 675 | 700 | 739 | 726 |
| Experiment2              | 781 | 651 | 617 | 822 | 748 | 658 | 916 | 741 | 732 | 787 |
| Experiment3              | 628 | 742 | 694 | 740 | 711 | 635 | 666 | 792 | 682 | 721 |

Table 4: De tijd die nodig is om insertion sort uit te voeren bij verdubbelende lijst-grootte en de bijhorende doubling ratio.

| N      | T(N)[ns]               | T(2N)/T(N) |
|--------|------------------------|------------|
| 250    | $1.457 \times 10^{6}$  | 1.505      |
| 500    | $2.366 \times 10^{6}$  | 1.623      |
| 1000   | $5.190 \times 10^{6}$  | 2.193      |
| 2000   | $8.883 \times 10^{6}$  | 1.712      |
| 4000   | $2.760 \times 10^{7}$  | 3.107      |
| 8000   | $6.986 \times 10^{7}$  | 2.531      |
| 16000  | $2.761 \times 10^{8}$  | 3.952      |
| 32000  | $1.089 \times 10^{9}$  | 3.945      |
| 64000  | $4.377 \times 10^9$    | 4.018      |
| 128000 | $1.756 \times 10^{10}$ | 4.012      |

Table 5: De tijd die nodig is om quick sort uit te voeren bij verdubbelende lijst-grootte en de bijhorende doubling ratio.

| N        | T(N)[ns]               | T(2N)/T(N) |
|----------|------------------------|------------|
| 250      | $3.371 \times 10^{5}$  | 0.795      |
| 500      | $3.397 \times 10^{5}$  | 1.008      |
| 1000     | $6.352 \times 10^5$    | 1.87       |
| 2000     | $4.333 \times 10^{5}$  | 0.682      |
| 4000     | $1.618 \times 10^{6}$  | 3.734      |
| 8000     | $3.471 \times 10^{6}$  | 2.145      |
| 16000    | $7.633 \times 10^6$    | 2.199      |
| 32000    | $1.189 \times 10^{7}$  | 1.557      |
| 64000    | $6.977 \times 10^6$    | 0.587      |
| 128000   | $1.589 \times 10^{7}$  | 2.278      |
| 256000   | $4.712 \times 10^7$    | 2.964      |
| 512000   | $8.615 \times 10^7$    | 1.828      |
| 1024000  | $1.755 \times 10^{8}$  | 2.037      |
| 2048000  | $3.731 \times 10^{8}$  | 2.126      |
| 4096000  | $7.905 \times 10^{8}$  | 2.119      |
| 8192000  | $1.684 \times 10^9$    | 2.13       |
| 16384000 | $3.604 \times 10^9$    | 2.141      |
| 32768000 | $7.539 \times 10^9$    | 2.092      |
| 65536000 | $1.589 \times 10^{10}$ | 2.107      |