

Throttling como alternativa para incremento da Disponibilidade em Energy Drive IoT com capacidade de Coleta Energética

Paulo Henrique de Queiroz Lopes

Natal-RN Fevereiro de 2024

Paulo Henrique de Queiroz Lopes

Throttling como alternativa para incremento da Disponibilidade em Energy Drive IoT com capacidade de Coleta Energética

Qualificação de Mestrado apresentada ao Programa de Pós-graduação em Sistemas e Computação do Departamento de Matemática Aplicada da Universidade Federal do Rio Grande do Norte como requisito parcial para a obtenção do grau de Mestre em Sistemas e Computação.

Linha de Pesquisa: Sistemas Integrados e Distribuídos

Orientador

Prof. Dr. Gibeon Soares de Aquino Junior

UFRN – Universidade Federal do Rio Grande do Norte

DIMAP – Departamento de Informática e Matemática Aplicada

CCET – Centro de Ciências Exatas e da Terra

PPGSC – Programa de Pós-Graduação em Sistemas e Computação

Natal-RN Fevereiro de 2024 Qualificação de Mestrado sob o título *Throttling como alternativa para incremento da Disponibilidade em Energy Drive IoT com capacidade de Coleta Energética* apresentada por Paulo Henrique de Queiroz Lopes e aceita pelo Programa de Pós-graduação em Sistemas e Computação do Departamento de Informática e Matemática Aplicada da Universidade Federal do Rio Grande do Norte, sendo aprovada por todos os membros da banca examinadora abaixo especificada:

Prof. Dr. Gibeon Soares de Aquino Junior Orientador Departamento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte

> Título e nome do professor Examinador SIGLA – Institutição SIGLA – Institutição

> Título e nome do professor Examinador SIGLA – Institutição SIGLA – Institutição

> Título e nome do professor Examinador SIGLA – Institutição SIGLA – Institutição

Texto de dedicatória. asdasdasdasdas

Agradecimentos

Agradeça a quem você desejar e da forma que você desejar. Este espaço pertence ao aluno e deve ter sua livre expressão de gratidão a quem desejar.

"Not all those who wander are lost."

J. R. R. Tolkien

Throttling como alternativa para incremento da Disponibilidade em Energy Drive IoT com capacidade de Coleta Energética

Autor: Paulo Henrique de Queiroz Lopes Orientador: Prof. Dr. Gibeon Soares de Aquino Junior

Resumo

resumo do trabalho em português.

Palavras-chave: palavra_1; palavra_2; palavra_3.

Research Title in English

Author: Aluno da Silva

Supervisor: Título e nome do seu orientador

Abstract

Research abstract fully in English.

 $\textit{Keyword_s} \colon \textbf{Word_1}; \, \textbf{Word2}; \, \textbf{Word_n}.$

Lista de ilustrações

Figura 1 – Aqui vou colocar uma figura apresentando os dois grupos da taxonomia	17
Figura 2 – Aqui vou colocar uma figura da taxonomia proposta	18
Figura 3 – Aqui vou colocar uma figura power-neutral	21
Figura 4 – Aqui vou colocar uma figura energy-neutral	22
Figura 5 – Aqui vou colocar uma figura A e B com as diferentes atuações do limiar.	25
Figura 6 – Aqui vou colocar uma figura sobre entrada energética e ciclo de carga	26

Lista de tabelas

Lista de Abreviaturas

API Application Programming Interface

BTI Bacharelado em Tecnologia da Informação

SLA Service Level Agreement

IoT Internet of Things

RFID Radio Frequency IDentification

EN Energy-Neutral Operation

MDP Markov Decision Process

EHS Energy Harvesting System

Sumário

	Capítulo 1	L3
1	INTRODUÇÃO	13
1.1	Aqui vai uma seção da Introdução	13
1.2	Sobre o LateX	13
Capítulo 2		13
2	CONCEITOS RELACIONADOS	L4
Capítulo 3	1	L 5
3	TRABALHOS RELACIONADOS	۱6
Capítulo 4		۱6
4	TAXONOMIA	17
4.1	Organização	۱7
4.2	Taxonomia Proposta	18
4.3	Agentes IoT	١9
4.3.1	Node Provedor	19
4.3.2	Node Cliente	19
4.4	Operações	١9
4.5	Recursos Energéticos	20
4.5.1	Capacidade de Coleta	21
4.5.2	Capacidade de Armazenamento	23
4.6	Throttling	24
4.6.1	Atuação: Limiar, Ciclo de Carga e Meios	24
4.6.1.1	Meios	26
4.6.2	Implementação: Observáveis e Motivadores	27
Capítulo 5	5	28
5	FUNDAMENTAÇÃO TEÓRICA	29
	REFERÊNCIAS	31

ANEXOS	33	
ANEXO A – TITULO DESTE ANEXO	34	

1 Introdução

Neste capítulo serão colocados textos de exemplo ou indicações para a *contrução* de uma Dissertação de mestrado em LateX. Uma parte será voltada à estrutura do documento e questões específicas relacionadas à ciência, e outra será dedicada a comandos simples e "tricks" usados na construção do meu documento original.

Todo este template é apenas uma modularização e tentativa de simplificação do modelo disponível em https://github.com/abntex/abntex2/wiki/Download. Caso eu esqueça ou algum detalhe passe em branco, a dissertação inteira está disponível em https://v1.overleaf.com/read/gpkgdnttndgf.

Acredito também que este modelo sirva para outros programas, mas seu direcionamento principal, como já citado, é para o PPgSW - IMD - UFRN (??).

1.1 Aqui vai uma seção da Introdução

1.2 Sobre o LATEX

2 Conceitos Relacionados

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.

Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

3 Trabalhos Relacionados

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

4 Taxonomia

Seguindo a análise dos trabalhos mencionados no Capítulo 3, verifica-se a necessidade de classificar dos conceitos mais recorrentes atrelados ao uso do padrão throttling em redes IoT com dirigidas energética. Além disso, é preciso levar em consideração a orientação do trabalho junto aos critérios de disponibilidade definidos por (AVIZIENIS et al., 2004), base para categorização dos elementos propostos nesta taxonomia.

4.1 Organização

Inicialmente, as classes foram distribuídos acomodando os elementos envolvidos de acordo com os critérios que os definem, a seguir, conforme apresenta a Figura 1.

Figura 1 – Aqui vou colocar uma figura apresentando os dois grupos da taxonomia

Nas ramificações à esquerda, encontram-se categorias que representam as características principais relacionadas aos elementos presentes em ambientes *Internet of Things* (IoT) com restrições significativas de energia. Em (KANSAL et al., 2007) percebeu-se a necessidade de classificar estes elementos como pertencentes a uma relação de compartilhamento dos recursos disponíveis, sensores, atuadores e até mesmo os energéticos. Para isto, na taxonomia de (AVIZIENIS et al., 2004) há uma divisão clara entre os agentes envolvidos e sua natureza em dois agrupamentos principais: um grupo denominado usuários ou clientes, que atua ativamente ou de forma passiva solicitando recursos ou quando notificado, consumindo os estados ofertados do segundo grupo, os provedores. Aos nodes provedores, cabe a responsabilidade de compartilhar seus recursos com os nodes consumidores através de uma interface conhecida de acordo com o protocolo de comunicação pré-estabelecido entre as partes.

Toda interação deve seguir um padrão de operação, esta é realizada de acordo com o qual se destina, como visto no trabalho de (KHAIRNAR; MEHTA, 2015) é apresentado uma operação como a medida pelas quais mensagens são trocadas entre nodes para um determinado fim. Sendo assim, os elementos classificadores encontrados são: *Agentes*, *Recursos* e *Operações*.

Ademais, à direita, acomoda-se os elementos envolvidos no processo de adequação do comportamento da de um node através da adoção do padrão *Throttling*. Nesta, dois ramos principais são apresentados, *Atuação* e *Implementação* respectivamente. Sobre *Atuação*, agrupa-se os elementos envolvidos no processo de controle do consumo dos recursos do node: *Limiar - Thresholding*, *Ciclos de Carga* e *Meios* estado diretamente relacionados à ação de limitar a taxa de resposta dos serviços, (KHAIRNAR; MEHTA, 2015), (KHAN et al., 2015) e (SUDEVALAYAM; KULKARNI, 2011) abordam questões que podem particularmente serem observadas para os elementos orientados energeticamente. A *Implementação* é sugerida de maneira à assegurar que os critérios *Observáveis* e seus *Motivadores* sejam agentes orientadores no processo de restrição às operações e incremento da disponibilidade do node.

4.2 Taxonomia Proposta

A Figura apresenta em resumo a taxonomia proposta e os pontos abordados no processo de uso do padrão throttling como alternativa para garantir disponibilidade nos nodes presentes em uma rede IoT dirigida a energia. O objetivo principal é dispor os elementos ligados ao tema de maneira visual e contemplar a organização dos tópicos envolvidos. Com isso, obter:

- Visão sobre os elementos envolvidos em uma rede IoT dirigida a energia e apresentar o Throttling como mecanismo regulador do comportamento observando suas características energéticas;
- Organizar as classes de conhecimento relacionadas acomodando-as de acordo com o contexto de inserção;
- 3. Suporte às definições de uso do padrão *Throttling* ligados ao contexto de redes IoT dirigida a energia.

Figura 2 – Aqui vou colocar uma figura da taxonomia proposta

A taxonomia detalhada apresenta suas classes nos termos em que foram encontrados na literatura dentro contexto de estudo, conforme Figura 2.

4.3 Agentes loT

Todo agente (node) presente é uma entidade computacional que carrega a capacidade intrínseca de interagir com outros agentes, que por definição possuem propriedades fundamentais como: funcionalidade, performance, dependabilidade e segurança como a definição já encontrada em (AVIZIENIS et al., 2004). Dado contexto, para um ambiente IoTs é fundamental considerar também a capacidade comunicar-se com outras entidades, almejando o compartilhamento de recursos (LI; XU; ZHAO, 2015), observando, além disso, suas características energéticas.

4.3.1 Node Provedor

Qualquer entidade computacional no momento em que oferta um estado ou atende uma solicitação de recurso pode ser considerada provedor. Em geral, um provedor poderá ofertar mais de uma funcionalidade através de serviços, sendo cada uma atendida mediante o uso dos recursos durante a progressão de estados internos do provedor e seu resultado percebido como estado externo, disponível através de uma interface na forma de eventos ou a contraparte das solicitações de nodes clientes.

4.3.2 Node Cliente

Um node cliente ou usuário é a entidade que por meio de sua interface, recebe o estado externo de nodes provedores. Clientes ocasionalmente podem consumir um ou mais recursos de um mesmo provedor, mas também é possível interagir com mais de um provedor a depender da operação em execução. Enquanto cliente, o node estará interessado em realizar atividades segundo as particularidades a que se destina sua operação.

4.4 Operações

Operações consiste no fluxo de mensagens comunicáveis entre nodes clientes e provedores. Uma operação é realizada quando um cliente através de mensagens solicita estado de um provedor, de outra maneira, também é possível um provedor ativamente disponibilizar um estado, dito externo para que um possível cliente possa utiliza-lo.

Mensagem é a unidade atômica de informação que independente do seu formato é utilizada para as mais diversas ações de acordo com o que se destina a rede colaborativa, uma mensagem pode carregar ações como inicialização, controle, monitoramento, coleta,

processamento ou armazenamento de dados. A depender da funcionalidade, um cliente quando ativo, deve enviar mensagens de solicitação aos provedores os quais reativamente respondem via interface preestabelecida, caso a operação aconteça através de eventos, o provedor deve autonomamente disponibilizará suas informações para todos que tenham interesse.

Para cobrir uma operação, múltiplas mensagens podem ser solicitadas na forma de composição de serviço (AOUDIA et al., 2019), nesse cenário um node cliente solicita mensagens distintas à um ou vários nodes provedores para compor este serviço. Em todo caso, como encontrado na revisão (KAHLOUL; BENHARZALLAH; AOUDIA, 2019) a abordagem das operações encontrada nos serviços puramente virtuais não acomodam por completo a natureza operacional dos agentes IoTs. Para tal, precisa-se considerar o estado dos nodes e seus recursos pois estes se encontram diretamente em um meio físico e precisam lidar com as particularidades inerentes a um ambiente dinâmico e seus desafios.

4.5 Recursos Energéticos

Um Recurso descreve um componente ou capacidade que um dado node possui para realizar suas operações. Isto inclui seus componentes físicos ou virtuais que uma vez embarcados ao dispositivo contribuem em cooperação para os mais diversos fins, coleta, monitoramento, automação industrial, assistência a medicina entre outros. Um Recurso infere sobre as capacidades dos elementos dispostos na rede, a configuração do dispositivo esta fortemente ligado à atividade fim que se destina. Para este trabalho, os recursos como processamento, armazenamento ou capacidade de transmissão estão omitidos pois expressam diretamente o universo de possibilidades onde um agente IoT se encontra. Entretanto, em uma rede IoTs dirigida à energia, aspectos energéticos devem ser detalhados

Recursos energéticos refere-se a dois grupos: da capacidade de coleta do node e a capacidade de armazenamento e disponibilização da energia previamente coletada. Arquitetura de sistemas dirigidos a energia com capacidade de coleta são projetados para usar estes recursos de maneira eficiente como descrito em (PRAUZEK et al., 2018) sua aplicação é especialmente útil em cenários onde a energia para alimentar os componentes eletrônicos é escassa. Um recurso energético é propriamente uma fonte natural ou artificial de energia que de maneira apropriada pode ser convertida em energia utilizável para garantir a realização das operações.

No cenário proposto, assume um papel importante pois é essencial para garantir o funcionamento continuo e autônomo dos nodes envolvidos, cabendo ao agente suas ações de coleta, transformar, armazenamento e utilização o recurso energético, projetado de maneira a aproximar-se do estado onde as operações tendem a uma neutralidade energética

Energy-Neutral Operations (ENs), conceito apresentado por (KANSAL et al., 2007) e mais a frente em (MERRETT; AL-HASHIMI, 2017) com a abordagem da neutralidade de força-energética, de acordo com suas respectivas capacidades.

4.5.1 Capacidade de Coleta

De acordo com o trabalho de (SUDEVALAYAM; KULKARNI, 2011), a capacidade de coleta refere-se à habilidade do elemento em extrair e transformar um recurso energético disponível no ambiente. Seu objetivo é manter ou estender o tempo de funcionamento do node, atendendo totalmente ou parcialmente às suas necessidades energéticas.

Sistemas de coleta energética possuem três conceitos fundamentais: Carga, a Arquitetura de Coleta e entrada energética. A Carga é destinada a atividade que esta consumindo energia, este é oriundo de um componente demandante de energia para operar, sejam sensores, transmissores ou atuadores, apresentados como uma composição de recursos. A Arquitetura de Coleta indica quais mecanismos, deve descrever seus componentes, meios de conversão e unidades de armazenamento. Atualmente é possível destacar três modelos básicos de arquitetura:

• Coleta e Usa (Harvest-Use): Neste modelo, toda energia coletada é oferecida diretamente ao node continuamente. Conforme (MERRETT; AL-HASHIMI, 2017), um node não precisaria de um buffer energético, ou apenas o minimo possível para mante-lo operacional, desde que seu funcionamento for orientado as características da neutralidade força-energética. Assim, a energia coletada deve satisfazer os valores de operação plena ou pelo menos o minimo necessário para o funcionamento depreciado. Por isso, caso a energia coletada não seja suficiente, o node prontamente adaptará o fornecimento dos seus recursos buscando enquadrar-se a disponibilidade energética corrente para, posteriormente, caso o nível de fornecimento energético alcance os níveis desejados, tenha sua operação restabelecida. Em alguns casos, quando prontamente é detectado níveis energéticos abaixo do necessário até para o funcionamento adaptado no node, o mesmo, poderá executar alguma rotinas de checkpoint para caso tenha sua operação integralmente interrompida, possa mediante ter sua necessidade energética suprida em momento futuro, retornar para um estado desejado, como sistemas intermitentes já mencionados em (SLIPER et al., 2020).

Figura 3 – Aqui vou colocar uma figura power-neutral

• Coleta, Armazena e Usa (*Harvest-Store Use*): Dispositivos inseridos em um dado ambiente coletam energia do meio para seu uso. Todavia, estes nodes precisam lidar com o dinamismo da natureza energética coletada. Para tal, embarca-se ao node a capacidade de armazenar a energia coletada em um *buffer* para posteriormente disponibilizar esta entrada para uso nos ciclos de carga do node. Este modelo visa contornar os dados problemas com variações em performance encontradas pelo EHS seja pela depreciação do modelo de coleta ou até mesmo devido à escassez de energia disponível para coleta no meio em dado momento.

Figura 4 – Aqui vou colocar uma figura energy-neutral

Sobre os ambientes onde nos nodes operam, diversas técnicas podem ser utilizadas para a extração de energia disponível, a conversão de energia renovável solar e eólica, a captura da força *piezo-elétrica*, termodinâmica, entre outros. A adequação da estratégia de coleta e seus detalhes devem ser projetados de acordo com o meio onde node se encontra e a natureza da fonte energética que visa-se coletar. Em geral, a divisão das características dos ambientes já descrito em (SHAIKH; ZEADALLY, 2016) pode ser utilizada para categoriza-las de acordo com seus ambientes, sendo assim se encontram em:

- Não controladas mas previsíveis: A produção energética não pode ser controlada nos momentos desejados, mas o comportamento pode ser modelado para prever a disponibilidade num dado momento com alguma margem de acerto. Por exemplo, no trabalho de (LEE; PARK, 2018) fontes energéticas baseadas em energia energia solar, que tem sua origem não controladas, todavia existem modelos capazes de prever disponibilidade energética para colheita de acordo com sua sazonalidade durante ciclos diurnos.
- Não controladas e não previsíveis: A fonte energética não pode ser controlada para gerar energia quando desejado e não é fácil prever usando um modelo quando será possível. A extração energética originada pela vibração de ambientes internos é um exemplo de tal fonte energética como descrito em (WEI; JING, 2017), todavia definir padrões de sazonalidade das vibrações pode tornar o processo de coleta impraticável;
- Completamente controlada: Neste contexto, a energia é gerada apenas quando necessário, como visto em alguns sistemas *piezoelétrico* onde através da interação humana para geram energia quando necessário.

• Parcialmente controlada: O processo de geração energética é sensível à ação de terceiros porém a quantidade exata de energia gerada não pode ser prevista com exatidão. Fontes baseadas em Radio Frequência converte a transmissão de ondas de radio em energia utilizável, por exemplo, (SHAIKH; ZEADALLY, 2016) decorre como tags *Radio Frequency IDentification* (RFID) conseguem ser visualizadas por um leitor. Todavia, a quantidade de energia coletada sofre impactos diretos das características de propagação no meio disposto, barreira, distancia até a fonte e capacidade da antena de transmissão.

4.5.2 Capacidade de Armazenamento

A capacidade de armazenamento trata de propriedades como conversão, força e taxa de carregamento e descarga em relação a fonte energética em uso com o objetivo de utilizar essa energia em momento apropriado.

É bem conhecido que o fator energético é um desafio para redes com restrições energéticas e capacidade de coleta, pois claramente caso a energia de um node seja esgotada o mesmo não será capaz de cumprir seu papel a menos que o fornecimento energético seja restabelecido ou algum mecanismo de armazenamento possa cobrir parcial ou totalmente a diferença energética necessária para a operação.

Baterias, super capacitores ou modelos híbridos estão presentes no contexto de dispositivos com fortes restrições energéticas e capacidade de coleta, para estes a atuação busca estar de acordo com as condições físicas e necessidade de conservação da energia. É possível distinguir três padrões de armazenamento para as capacidade energética presente em um dispositivo que busca o estado de operação neutra onde se observa a relação entre a saída energética e o gasto energético do node dado o momento. Segundo o modelo de uso proposto, a habilidade para coleta e a necessidade de disponibilidade definida no SLA, os nodes provedores encontram sua capacidade de armazenamento em um dos casos:

- Node provedor sem reserva energética: Aqui não existe a necessidade estrita da gestão de recursos elétricos pois caso não exista energia suficiente o node irá adaptar-se na tentativa de alinhar a necessidade energética ao fornecido momentaneamente, em outros casos, sua operação se comportará como um sistema transiente, preparados para interromper suas atividades e, ao reestabelecer sua entrada energética disponível, retornar a partir de um ponto previamente estabelecido. Neste caso, é considerável existir uma pequena reserva, suficiente para conseguir armazenar um estado adequado ou ação semelhante.
- Node provedor com reserva energética: Neste caso, um node carrega em si a capacidade de armazenar energia coletada em um buffer. A gestão energética deve ocorrer para que a energia coletada seja previamente armazenada para ai sim, ser disponibilizado

em ciclos de carga. Aqui os nodes operam em um regime de Coleta, Armazenamento e Uso, já descrito anteriormente.

4.6 Throttling

Aplicar o padrão *Throttling* consiste basicamente em restringir o uso de recursos de acordo com limiares de utilização estabelecidos. Seu objetivo é proteger um dispositivo do estado de sobrecarga, evitando que consumidores excessivamente solicitantes coloquem um node provedor em um estado de sobrecarga, evitando possíveis falhas e a exaustão prematura de recursos (MARTINEKUAN, 2019). Com isso, a estratégia permite que provedores consigam operar dentro de termos definidos por um acordo de funcionamento conhecido como *Service Level Agreement* (SLA), protegendo este provedor de assumir um estado de sobrecarga onde precise atender mais solicitações do que o adequado para sua capacidade.

Na taxonomia, o uso do *Throttling* é candidato à colaborar nas atividades que buscam aumentar disponibilidade do node provedor, conservando recursos energéticos e suas observações a respeito de características ou limitações do próprio dispositivo. Para tal, é preciso que limiares sejam estritamente adequados ao que se aplica, capacidade de transmissão, recursos disponíveis ou esperados pelo node. Definir limiares de operação realísticos para o node provedor é um desafio relevante para sistemas com estratégia de coleta de energia (KHAIRNAR; MEHTA, 2015), (LIU et al., 2016) e (ZHANG et al., 2018), entregando capacidade de decisão sobre ciclos de carga enquanto se objetiva maximizar o tempo de vida do próprio node.

4.6.1 Atuação: Limiar, Ciclo de Carga e Meios

Em sistemas IoT orientados aos fatores energéticos, a atuação do padrão é dada ao monitorar a taxa de solicitações no decorrer de um espaço de tempo, nesse intervalo, denominado Ciclo de Carga. Durante um ciclo nodes clientes podem fazer requisições ao provedor. Do ponto de vista da disponibilização dos recursos, durante um ciclo de carga, um node pode assumir abordagem de equidade entre os solicitantes ou algum critério de prioridade e privilégio, onde um solicitante qualquer teria suas requisições atendidas mediante negação do serviço para outro node cliente com menor prioridade, caso necessário.

Uma vez definido um limiar de atuação, sua ação pode ser inteiramente linear ou constante, onde durante todo funcionamento do node o mesmo valor limiar é aplicado, independente de outros fatores, outra possibilidade é definir vários limiares que agem adaptativamente de acordo com os diversos estados mapeados, tão logo determinado cenário seja alcançado, o node pode ajustar seu limiar de atuação para conservar seus

recursos visando manter-se funcional. O comportamento do limiar de atuação passa pela analise cuidadosa da natureza do node provedor e operações esperadas. Em síntese:

Limiar constante: Seu valor é fixado e estabelecido enquanto o node é projetado.
Este limiar pode ser determinado considerando fatores como testes de desempenho,
características do ambiente onde será inserido e requisitos operacionais. Todavia,
uma vez definido, o limiar permanecerá constante ao longo de todo o tempo das
atividades do node.

Por exemplo, considere um node com uma dada capacidade de processar mensagens, este pode estabelecer um limiar constante para o máximo de requisições processáveis simultaneamente. Sendo assim, em toda operação, caso esse limiar de requisições seja atingido, o node irá ativamente optar por rejeitar ou atrasar o atendimento até que o valor de requisições retorne ao nível aceitado.

Esta abordagem, é bastante útil caso se conheça bem as capacidades do node e não se espera uma grande variação nas condições de operação ao longo do tempo. Embora oferte equidade do ponto de vista dos solicitantes (que tem suas requisições atendidas segundo os mesmos critérios independente do estado do node provedor), não se garante que uso dos recursos será adequado caso ocorra mudanças repentinas ou flutuações significativas nos termos de funcionamento deste provedor.

• Limiar adaptável: Nesta abordagem, o comportamento do node é ajustado dinamicamente, por isso um node pode assumir um comportamento mais adequado ao observar suas condições de funcionamento através do monitoramento ou auto-análise dos recursos do node, permitindo atender as solicitações dos nodes clientes, com performance adequada aos termos de operação que se encontre. Por exemplo, dado um sistema de segurança que geralmente possui nodes equipados com câmeras. Este provedor, deve enviar imagens capturadas por seus sensores para algum solicitante, seja uma central que passivamente recebe as gravações ou outra forma de node demandante. Dado uma mudança observada em seus termos de funcionamento, o node poderá ter faixas de limiares distintas adequando-se ao estado encontrado, conservando-se e garantido seu funcionamento dentro do SLA estabelecido.

Figura 5 – Aqui vou colocar uma figura A e B com as diferentes atuações do limiar.

Graças a isso, o node com limiar adaptável será capaz de operar em diferentes faixas de operações, depreciando seus serviços com a mudança de comportamento, seja

para interromper ou reduzir sua taxa da transmissão e assim permanecer operando mitigando riscos funcionais enquanto se encontre neste estado. Uma vez que os recursos observáveis se restabeleçam, o node pode assumir comportamento de uso acentuado dos recursos disponíveis permitido pelo novo valor estipulado para o limiar de consumo adequado. Esta capacidade de adaptação, permite que nodes provedores mantenham algum equilíbrio entre conservação de recursos e performance, garantindo suas funcionalidades nos termos das condições operacionais.

Ciclo de Carga, refere-se as atividades suportadas que consomem algum recurso energético do node dentro de um intervalo de tempo. Dado uma sistema com coleta de energia, um ciclo de carga durará pelo menos até que a próxima entrada energética coletada esteja disponível. Uma carga é qualquer atividade que requer o consumo energético, seja sensoriamento, atuação, transmissão de dados entre outros. O mecanismo de throttling irá atuar regulando o uso de recursos durante um ciclo, caso necessário, depreciando ativamente as operações de acordo com o projetado, visando adequar estas atividades de carga e o consumo energético ao cenário encontrado pelo provedor até que a próxima entrada energética esteja disponível e possa ser novamente adaptado em concordância com o novo cenário a que se encontra.

Figura 6 – Aqui vou colocar uma figura sobre entrada energética e ciclo de carga.

4.6.1.1 Meios

Um node provedor com a capacidade de adaptar seu comportamento em virtude das condições que se encontram, podem se valer de diversas estratégias para tal, as quais podem variar de acordo com a aplicação do node na rede. Para isso, os nodes podem agir:

- (M_1) Rejeitando requisições individualmente de nodes clientes excessivamente demandantes.
- (M_2) Desabilitando ou degradar componentes não críticos em detrimento de outros essenciais.
- (M_3) Executando operações em estado limitado.

Reconhecendo as restrições energéticas como componente central na definição da taxonomia, podemos definir duas estratégicas fundamentais, se valendo dos meios já elencados. São elas:

- 1. Observando unicamente sua entrada energética.
- 2. Observando entrada energética e capacidade de reserva.

4.6.2 Implementação: Observáveis e Motivadores

A implementação deve passar por decisões arquiteturais que impactam diretamente o comportamento do node provedor bem como na eficiência de toda rede IoT. É importante destacar que a atuação dos mecanismos de ajuste do comportamento precisam ser eficientes o bastante para que dado limiar atingido, o processo de adequação de comportamento do node provedor seja devidamente alterado, mitigando, assim, perdas desnecessárias ou não previstas, causadas por ajuste inapropriados do comportamento deste agente em questão, onde este se pode se encontrar em modo de operação fora do esperado, este modo de operação tem a capacidade de criar um cenário de esgotamento energético ou sobrecarga de atividades para outros elementos da rede colaborativa, por exemplo.

Qualquer aspecto que gere impacto ou que tenha capacidade de influenciar o comportamento neutro-energético do node com capacidade de coleta energética deve ser levado em consideração em sua implementação. Estes aspecto podem ter seus valores pré-estabelecidos, porém é comum enfrentar situações onde os valores tidos como justificadores de um comportamento não sejam suficientemente adequados, seja por uma falha na previsibilidade de um recurso ou evento não tolerável. Por exemplo, é relativamente comum um cenário onde nodes que exploram energia solar diurnalmente enfrentem alguma escassez energética motivados por eventos climáticos não previstos. Com isso, colocam em risco sua disponibilidade, pois caso seja mantido o comportamento dito adequado e previamente estabelecido podem levar o node a um alterações em sua disponibilidade não previstas ou perdas em performance.

No contexto de dispositivos com capacidade de coleta energética, fatores préestabelecidos são comumente encontrados, ciclos de recarga na forma de capacidade de
coleta, a capacidade de armazenamento do node e a sazonalidade da fonte energética
coletável. O conjunto dos valores desses fatores presentes no node, indicam o estado
energético deste agente. Dado um estado energético esperado, pode-se previamente definir
como o node se comportará. Mesmo assim, também vale ressaltar que estes elementos
energéticos estão relacionados às variações e toda sorte de situações que o node provedor
enfrenta enquanto agente em campo. Diversos esforços foram realizados para melhorar a
maneira como um agente observa seu estado energético e define seu comportamento, mas
para que seja possível adequar-se concretamente à estes fatores encontrados, o agente deve
ter a capacidade de analisar as operações e o cenário onde se encontra, tanto individualmente
quanto, se possível, em conjunto com outros elementos colaboradores. Assim, é possível
realizar ajustes prontamente nos limiares de atuação, tão logo perceba-se que os valores

estimados previamente e o seu estado esperado divirjam causando comportamento fora do desejado.

Desta forma, a mudança de comportamento do node motiva-se em: tão logo quanto os fatores de tomada de decisão forem descobertos, adequar-se para que estes fatores divergentes, aqueles descobertos em execução, sejam mitigados pois encontram-se como elementos que potencializam um risco a operação-neutra buscada pelo node ou rede colaborativa.

No trabalho (ZHANG et al., 2018), equipamentos capazes estão dispostos em cenário de disponibilidade energética previsível onde é necessário em prever a quantidade futura de energia coletável disponível para recarga. O problema foi apresentado na forma de um *Markov Decision Process* (MDP) onde os dispositivos podem adequar seu comportamento de acordo com expectativa energética vindoura para recarga.

Por fim, na taxonomia, busca-se cobrir aspectos inerentes ao comportamento de operações em acordo com a neutralidade energética do node é imprescindível, a implementação das possíveis soluções que visem atender esse requisito deve observar atores estabelecidos, o contexto de uso do node, a natureza de coleta e sua finalidade ligado a capacidade e potencial de coleta para possíveis ciclos de recarga energética e por fim, sua capacidade de armazenamento, características e uso desta reserva energética.

- Observáveis
- Motivadores

5 Fundamentação Teórica

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.

Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Referências

AOUDIA, I. et al. Service composition approaches for internet of things: a review. *International Journal of Communication Networks and Distributed Systems*, v. 22, 01 2019. Citado na página 20.

AVIZIENIS, A. et al. Basic concepts and taxonomy of dependable and secure computing. *IEEE Transactions on Dependable and Secure Computing*, v. 1, n. 1, p. 11–33, jan. 2004. ISSN 1545-5971. Disponível em: http://ieeexplore.ieee.org/document/1335465/>. Citado 2 vezes nas páginas 17 e 19.

KAHLOUL, L.; BENHARZALLAH, S.; AOUDIA, I. Service composition approaches for Internet of Things: a review. *International Journal of Communication Networks and Distributed Systems*, v. 23, n. 1, p. 1, 2019. ISSN 1754-3916, 1754-3924. Disponível em: http://www.inderscience.com/link.php?id=10017271. Citado na página 20.

KANSAL, A. et al. Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, v. 6, n. 4, p. 32, set. 2007. ISSN 1539-9087, 1558-3465. Disponível em: <https://dl.acm.org/doi/10.1145/1274858.1274870>. Citado 2 vezes nas páginas 17 e 21.

KHAIRNAR, P.; MEHTA, N. Discrete-rate adaptation and selection in energy harvesting wireless systems. *IEEE Transactions on Wireless Communications*, v. 14, n. 1, p. 219–229, 2015. Publisher: Institute of Electrical and Electronics Engineers Inc. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84921364757&doi=10.1109%2fTWC.2014.2337296&partnerID=40&md5=05e2f699bfe37e504c08495825bbe46f. Citado 3 vezes nas páginas 17, 18 e 24.

KHAN, J. et al. Energy management in Wireless Sensor Networks: A survey. Computers and Electrical Engineering, v. 41, n. C, p. 159–176, 2015. Publisher: Elsevier Ltd. Disponível em: . Citado na página 18.

LEE, Y.; PARK, M. Energy management for solar-powered IoT devices with performance adjustment. *International Journal of Smart Grid and Clean Energy*, p. 22–30, 2018. ISSN 23154462, 23733594. Disponível em: http://www.ijsgce.com/index.php?m=content&c=index&a=show&catid=77&id=406. Citado na página 22.

LI, S.; XU, L.; ZHAO, S. The internet of things: a survey. Information Systems Frontiers, v. 17, n. 2, p. 243–259, 2015. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925468156&doi=10.1007%2fs10796-014-9492-7&partnerID=40&md5=dd6cf3fbddb72b2d691e33e60aa3d01a>. Citado na página 19.

LIU, W. et al. Energy Harvesting Wireless Sensor Networks: Delay Analysis Considering Energy Costs of Sensing and Transmission. *IEEE Transactions on Wireless Communications*, p. 1–1, 2016. ISSN 1536-1276. Disponível em: http://ieeexplore.ieee.org/document/7435327/. Citado na página 24.

Referências 32

MARTINEKUAN. Throttling pattern - Azure Architecture Center. 2019. Disponível em: https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling. Citado na página 24.

- MERRETT, G. V.; AL-HASHIMI, B. M. Energy-driven computing: Rethinking the design of energy harvesting systems. In: *Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.* Lausanne, Switzerland: IEEE, 2017. p. 960–965. ISBN 978-3-9815370-8-6. Disponível em: http://ieeexplore.ieee.org/document/7927130/>. Citado na página 21.
- PRAUZEK, M. et al. Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review. *Sensors*, v. 18, n. 8, p. 2446, jul. 2018. ISSN 1424-8220. Disponível em: http://www.mdpi.com/1424-8220/18/8/2446. Citado na página 20.
- SHAIKH, F. K.; ZEADALLY, S. Energy harvesting in wireless sensor networks: A comprehensive review. *Renewable and Sustainable Energy Reviews*, v. 55, p. 1041–1054, mar. 2016. ISSN 13640321. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032115012629. Citado 2 vezes nas páginas 22 e 23.
- SLIPER, S. T. et al. Energy-driven computing. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, v. 378, n. 2164, p. 20190158, fev. 2020. ISSN 1364-503X, 1471-2962. Disponível em: https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0158. Citado na página 21.
- SUDEVALAYAM, S.; KULKARNI, P. Energy Harvesting Sensor Nodes: Survey and Implications. *IEEE Communications Surveys & Tutorials*, v. 13, n. 3, p. 443–461, 2011. ISSN 1553-877X. Disponível em: http://ieeexplore.ieee.org/document/5522465/>. Citado 2 vezes nas páginas 18 e 21.
- WEI, C.; JING, X. A comprehensive review on vibration energy harvesting: Modelling and realization. *Renewable and Sustainable Energy Reviews*, v. 74, p. 1–18, jul. 2017. ISSN 13640321. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1364032117300837. Citado na página 22.
- ZHANG, Y. et al. Toward a Perpetual IoT System: Wireless Power Management Policy With Threshold Structure. *IEEE Internet of Things Journal*, v. 5, n. 6, p. 5254–5270, dez. 2018. ISSN 2327-4662, 2372-2541. Disponível em: https://ieeexplore.ieee.org/document/8493154/>. Citado 2 vezes nas páginas 24 e 28.

ANEXO A - Titulo deste anexo

