Reduced Phase space quantization Ref: 0711.0119 0711.0115 Motivation: issnes of canonical LQG: (1) 2 = 0, 2, I = 0 hard to solve, have quantum anomaly (2) $H = \int d^3x \left(NC + N^aC_a\right) = 0$ on the constraint surface > problem of time (time evolution is gauge transf.)

> issue of unitarity in quantum throng idea: Guartize the reduced phase spone advantojes; uncommained phase space P · remove constraints & gauge Jave obits (A, E, matter POF) classically Comparison surface · introduce physical-time + physical Hamiltonian reduced phase space Pred. functions on Prod are game in observables (Dirac ubservables) deparametrized gravity model (gravity t matter) 1. gravity + Brown-Kuchax (BK) dust: 5 = 5GR + SBK SBK [P, Jm, T, Si, Wi] = - 1 [dix [ldety] [gmu Um U, +1] Lagrangian

Lagrangian (dyst dessity)

```
Dirac observables (functions on Pred)
          H f function on P (unconstrained phase space)
 finite
gange transf & (f) := & f
                                  ditt. group on P generoted by Sdx ( Box Cxx+ Bix Zxy)
         f(\tau, \vec{\sigma}) := \left[ \chi_{\vec{\sigma}}(f) \right] \chi_{\vec{\sigma}}(\tau) = \tau, \, d_{\vec{\sigma}}(z_i) = \tau_i
                                  there determine \beta(\vec{x}) = \tau - T(\vec{x})
                                                              \vec{\beta}(\vec{x}) = \vec{\sigma} - \vec{S}(\vec{x})
 · f(T, T) is a Dirac observable
                        \{c^{\mathsf{tot}},f\}\approx 0
                                                                       f is gaye inv. on the
                                                                        Constraint surface
                         \{C_a,f\}\approx 0
                                                                         -> f : a function
                                                                              on Prod
  · f is parametrized by values of dust fields (clock fields)
                              (T, S') dust reference frame
                             T of physical physical time space
      Example:
                            745 (xm)
         \frac{1}{1}(\tau, \hat{\tau}) = \left[ \frac{1}{1} \left( \frac{1}{1} \omega_{\alpha}(x^{\dagger}) \right) \right]_{\beta^{\circ} = \tau - \tilde{\tau}(x)}, \hat{\beta} = \hat{\sigma} - \hat{\beta}(x)
                                                         (p°, p)=0 if we set T(x) = T }

S(x) = T
```

$$= \left[\begin{array}{c} q_{ab} (x^{\mu}) \\ T(x) = \tau \\ \overline{S}(x) = \overline{\sigma} \end{array}\right]$$

evaluate gravity fields at point x where dust fields take values $T(x) = \tau \cdot \vec{S}(x) = \vec{r}$

· Pira observables are continuted relationally, taking dust fields as references

or
$$\{E_{\alpha}^{\dagger}(\tau,\vec{\sigma}) \mid A_{k}(\tau,\vec{\tau}')\} = \frac{k\beta}{2} S_{k}^{\dagger} S_{\alpha} S_{\alpha}^{(3)}(\vec{\sigma},\vec{\sigma}')$$

here a, b are $SO(2)$ indices

Campical conjugate pairs in Pred.

constraint (A.F), T, 5]

· Physical Hamiltonian

$$|+=\int d^3\sigma h(\tau,\sigma) = \int C(\tau,\sigma)^2 - 4^{i\tilde{j}}(\tau,\sigma) C_i(\sigma) C_j(\sigma)$$

$$C(\tau,\vec{\sigma}) = -\frac{1}{k} \operatorname{tr} \left(F_{ij}(\tau,\sigma) \underbrace{\begin{bmatrix} E^{i}(\tau,\sigma), E^{j}(\tau,\sigma) \end{bmatrix}}_{\text{det } f(\tau,\sigma)} \right) + \dots$$

$$q^{ij} = e_a^i e_a^i$$

before we call it Cj $\frac{\partial}{\partial \tau} f(\tau, \sigma) = \{ f(\tau, \sigma), H \},$ H governous physical the evolution the dynamics is free of Hamiltonian & differ, constraints · quantization, Y; cubic lattice in the space of F (dust space 5) $f(\tau, \vec{r}) \longrightarrow h(e) \longrightarrow \hat{h}(e)$ $f(\tau, \vec{r}) \longrightarrow p^{a}(e) \longrightarrow \hat{p}^{a}(e) = \frac{i \cdot l_{p}^{2}}{2} \hat{R}_{e}^{a} \qquad \text{of Dirac observables}$ Gause constraint ~> Ily: Hilbert space of gauge inv.

0- Fi + 2abr Aj Fi = 0

| basis: Spin-networks Physical Hilbert space physical Hamiltonian H ~> A GHz H= \(\bigcap \) $\sqrt{|\hat{O}|} = (\hat{O}^{\dagger}\hat{O})^{\frac{1}{4}}$ Reduced phase space quantization makes LQG similar to lattice gauge theory With a more complicated Hamiltonian H is self-adj -> dynamics is manifestly huitany,
problem of time is resolved

there is no gravem constraint to be solved we resolve the problem of constraints.

we resolve the problem of anotrajuts.
is complicated, but the quantum dynamics can be studied.
·
See. e.g. 1910. 63763
2005,00988
or my recent ILQGS talk
•