Math 240A, Fall 2019 Solution to Problems of HW#7 B.Li, Nov. 2019

(1) Suppose E is ν -null. Let $X = |\mathcal{V} \cup \mathcal{N}|$ be a Hahn decamposition for \mathcal{V} , where \mathcal{V} , $\mathcal{N} \in \mathcal{N}_E$ are disjoint, $|\mathcal{V}|$ is ν -positive and $|\mathcal{V}| \nu$ -negative. Then, $|\mathcal{V}'(A)| = \mathcal{V}(A, \mathcal{V})|$ and $|\mathcal{V}'(A)| = -\mathcal{V}(A, \mathcal{N})|$ for any $|A| \in \mathcal{M}_E$, and $|\mathcal{V}| = -\mathcal{V}(A, \mathcal{N})|$ with $|\mathcal{V}' \perp \mathcal{V}| = 1$ is the Jordan de composition of $|\mathcal{V}|$. Since |E| is $|\mathcal{V}| = 1$, $|\mathcal{V}(E, \mathcal{V}|) = 0$, $|\mathcal{V}(E, \mathcal{N})| = 0$. Thus, $|\mathcal{V}|(E)| = |\mathcal{V}'(E)| + |\mathcal{V}'(E)| = |\mathcal{V}(E, \mathcal{V}|) - |\mathcal{V}(E, \mathcal{N}|) = 0$.

Suppose non |V|(E)=0. Then $v^{\dagger}(E)=0$, $\tilde{v}(E)=0$. Thus, for any $F\in M_{E}$, $F\subseteq E$, $o\leq v^{\dagger}(F)\leq v^{\dagger}(E)=0$, $S_{0}, v^{\dagger}(F)=0$. Similarly, $\tilde{v}(F)=0$. Thus, $\tilde{v}(F)=v^{\dagger}(F)-\tilde{v}(F)=0$. Hence, E is \tilde{v} -null.

(2) Suppose VIA. Then JE, FEME, X=EUF, ENF=4

£ is V-null and f is unull. By (1), |V|(E)=0

and |u|(f)=0. Hence, 05V+(E)=|V|(E)=0 i.e., V*(E)=0

Similarly, V*(E)=D. Since V*, V* are positive measures

£ is V*-null and V-null. Thus, V*I a and VIA.

Conversely, assume V*I u and V-I u Then,

there exist E*, E*, F*, F* EME, X= F* UF*, E* NF*=4,

E*is V*-null i.e., V*(E*)=0, F*is u-null i.e., by (1)

|u|(f*)=D Similarly, X=F* UF*, E* NF=+, V*(E*)=0

and |u|(F*)=0. Let F=F*UF* EME and E=E*PEEME.

Since E* NF*= & and ENF*= &, ENF=(E*)PEEME.

= $(E^{\dagger} N E^{\dagger} N F^{-}) U (E^{\dagger} N E^{\dagger} N F^{-}) = \phi$ Since $E^{\dagger} = F^{\dagger} e^{\dagger} = F^{\dagger} e^{\dagger}$

2 (1) Let X=PUN be a Hahn decomposition for V. pis

V-positive. N v-negative, PNN=\$\Phen v^t(E)=UEAP)

and v(E)=-V(ENN). Since ENPCPE and ENPSE.

V^t(E) \in \text{sup} \gamma v(F): F=M and F=E}. On the

other hand, if F=EM, F=:E, then

 $V(F)=v^{\dagger}(F)-v^{\dagger}(F)=v^{\dagger}(F)=v^{\dagger}(F))=v^{\dagger}(F))=v^{\dagger}(F)=v^{\dagger}(F)$ Hence, $v^{\dagger}(E)=\sup\{v(F):F\in \mathcal{V}_{E},F\subseteq E\}$

Similarly, V(F)=-V(FNN)=-inf{V(F):FEPEFFE} If FFP and FEE, then

 $\nu(F) = \nu^{+}(F) - \nu^{-}(F) \ge -\nu(F) \ge -\nu(F)$. Hence $\nu(F) \ge -\inf \{\nu(F) : F \in \mathcal{V}_{+} \text{ and } F \subseteq F\}$. F, nally, $\nu^{-}(F) = \inf \{\nu(F) : F \in \mathcal{V}_{+} \text{ and } F \subseteq F\}$.

(2) If $E = \int_{\xi_{-}}^{\xi_{-}} E_{j}$ nich $E_{j} \in M(j-1, -n)$ disjoint then $\sum_{j=1}^{\infty} |V(E_{j})| \le \sum_{j=1}^{\infty} |V(E_{j})| = |V| (\bigcup_{j=1}^{\infty} E_{j}) = |V| (E_{j})$ Hence, $|V(E_{j})| \le \sup_{j=1}^{\infty} |V(E_{j})| = \inf_{j=1}^{\infty} E_{j} = \lim_{j \to \infty} E$

E=E, VE_L and $|V|(E)=V^{\dagger}(E)+V(E)=V(E)P)-V(E)W$ $\leq |V(E, NP)|(T|V(E,N))| = |V(E,N)|+|V(E_L)|$. Hence. $|V|(E) \leq \sup \{ \sum_{i=1}^{n} |V(E_i)| : n \in M, E, \dots E_n \in M, \text{disjo.} \text{int} \}$ and $E = \bigcup_{i=1}^{n} E_i : I$.

The two inequalities imply the equality as desired.

- 3. (1) Let $v = v^+ v^- n$ ith $v^+ \perp v^-$ be the Jordan decomposition for v. Then $L'(v) = L'(v^+) \wedge L'(v^-)$.

 If $f \in L'(v)$, then $f \in L'(v^+) \wedge L'(v^-)$. Hence $\int |f| d|v| = \int |f| dv^+ + \int |f| dv^- < \infty, i.e., f \in L'(|v|)$ Conversely, $f \in L'(|v| \implies \int |f| d|v| < \infty$ Thus $\int |f| d|v| = \int |f| dv^+ + \int |f| dv^- < \infty \quad and (f \in L'(v^+) \wedge L(v^-))$ = L'(v).

 - (3). Let $E \in ME$ If $f: X \to C$ (or R): s measurable and $|f| \le 1$ then $|f| dv | \le |f| d|v| = |f| d|v| = |v| (E)$.

 Let $X = |f| \lor V$ be a Hahn decomposition with $|f| \lor V$ psiture, negative sets for V disjoint. Let |f| = |f| = |f| = 1. and |f| = |f| = |f| = 1.

 Thence $|V|(E) = \sup \{|f| \le |f| \le |f| \le |f| \le |f| \le |f|$.

4. (1) YEEPE: IN(E) | = [If I du = [If I du < 00, since fel (u)) So, V(F) = 10 clearly V(4)=0. Let Fj F ME(j=12...) be disjoint, and let E= O, E, E M. Then, Estau = State of du = S (Ex.) Ist du = 1 XOF, IFIdu = 5 XE IFIdu = Elflowers. V(E)= Stdn= SXET dn= & XEE; t du $= \int \left(\sum_{i=1}^{\infty} X_{i}\right) f \operatorname{cle} = \int \sum_{i=1}^{\infty} \left(X_{i} f\right) \operatorname{d} u$ = I Steff du = I f du = I V(Ej)
Hence v is a signed measure. (2) P= {f=0} N= {f<0}. X=PUN is a Hahr decomposition for V, as P, N disjoint and they are positive, negative for V, respectively $v^{+}(E = V(E \cap P) = \int_{E} f du = \int_{E} f du$ 1 V ((E) = V (E /+ V(E) . 50) = (E)=) f = du A : eds= fde. 5. (1) → (2) Let EEM. Suppose VECU. If M(E)= 0 then for a Hahn decausesition X= DUN (disjoint) for V (P.N: positive, nagathe for V respectibely) we have u(E/P)=0, u(E/N)=0. But vecus. 50, V+(E)=V(ENP)=0, V(E)=V(ENN)=0. Hence 1V/(F)=v+(E)+v-(E)=0, i.e., 1V/<<1.

(2) => (3) If E ∈ M and u(E)=0, Then |V|(E)=0 by (2) Hence V'(E) = V'(E)+V(E)=|V|(E)=0 Similarly, V(E)=0. So, V' << u and V << u.

(3) \Rightarrow (1). Let $E \in M_E$ and u(E) = 0. Then, by (3). $v^{\dagger}(E) = v^{\dagger}(E) \Rightarrow 0$. Hence $|V(E)| = |v^{\dagger}(E) - v^{\dagger}(E)|$ $\leq |v^{\dagger}(E)| + |v^{\dagger}(E)| = 0$. i.e., $v \ll el$.

6. Let \$>0. Since fn→ fin L(M). Here exists N∈N such that S[fn-f|du < E/2 Yn>N. Since all f, fi, ", fn ∈ L(M), there exists d>0 such that for any E ∈ M with u(E) < S. [|f|du < Ξ, S|f|du < E (J=1,..., N).

Therefore, for any n E/N since SImilar

= SIm-flow flflow, ne have

[Ith ohn = max { SIthlan, ... { Ithlow, ... {

Hence Etulias is uniformly integrable.

7. (1) If EFM and u(E)=0, then E=\$ Hence m(\$)=0, i.e., m<= U.

Suppose $\exists f \in L(u)$ such that dm = fdu. Let $X \in X = [0,1]$ and $E = \{x\} \in \mathcal{B}_{[0,1]}$. Then $o = m(F) = \{fdu = \{x\} \in \mathcal{B}_{[0,1]}\}$. Then $f = m(F) = \{fdu = \{x\} \in \mathcal{B}_{[0,1]}\}$. So f = o an [0,1]. But then $f = m(X) = \{fdu = 0, a$. Contradiction. So, no $f \in L(u)$ will satisfy dm = fdu.

(2) Suppose M=1+p for some signed measures I and p that p and p

8. Since I=u+V and vecu, we have that seemed and that de = du+dV. Since uces and f= du we have 1= du - du+dv = du + f

Thus 1-f= $\frac{da}{dt}$. We show that $f \in I$ una.e., or equivalently, λ -a.e., If there existed $E \in M_E$ with u(E)>0 (equivalently $\lambda(E)>0$) such that $f \neq I$ an E. Then, by the fact that $I-f=\frac{da}{dt}$ $\int_{E} (I-f)du = \int_{E} \frac{da}{dt} dt = \int_{E} du = u(E)>0$. But, $\int_{E} (I-f)du \leq 0$ Since $I-f \leq 0$ on E. This is a contradiction. Thus, $f \in I$ una.e. Hence

But f = dr = since vil >0. Thus, dr = dr dr = f / dr = 1-f.

9. Note that D= Up is a finite measure on (X, Ne). Define 1: Ne → (by 1 ()=)= f fdu = f fdv for any E ∈ M where f ∈ L'(v) Since f (-L'(1) and v= M/A IFEFH and V(E)= M(E)=0. Thus L<< V. By the Lebesgue-Radon-Nikodym Theorem, I g (-L(V) such that de=gdv. i.e., 1(E)= [gdv hence ffdu=fgdv YEFA. In particular g is Pt-measurable Suppose hEL'(V) and f g dv = fhdv=ftda VEER Then, setting u=g-hGL(v), we have Eudv=0 VEER. Hence u=0, 1-e, g=4, v-a-e. 10. By Proposition 3.13, If CL'(121) such that If 1=1 1VI-a.e. and dv = fd1VI. Since V(X)=|V(X),

By Proposition 3.13, $1 \neq CL'(1V)$ such that |f|=1 1V|-a.e. and dV = fdIVI. Since V(X)=|V(X)|, we get $|V|(X)=V(X)=\int fdIVI = \int RefdIVI$ $+i\int ImfdIVI$.

Since |V|(X) is a real number, $\int ImfdIVI = 0$, and $\int RefdIVI = |VI(X)| = \int dIVI$.

Consequently, $\int (I-Ref)dIVI = 0$. But |fI|=1. |VI-a.e. So, $Ref \leq 1$ |VI-a.e. and $|I-Ref| \geq 0$ |VI-a.e.Thus, by $\int (I-Ref)dIVI = 0$, we have |I-Ref| = 0 |VI-a.e. $\int Ince||fI|=1$ |VI-a.e. $|III| = \int (Ref)^2 + (Imf)^2$, we have |IIII| = 0 |VII-a.e. |III| = 0 |VI-a.e. |IIII| = 0 |VI-a.e. |IIII| = 0 |VI-a.e. |IIII| = 0 |VI-a.e. |IIII| = 0 |VIIII| = 0.