568

1.
$$ye^{xy} - xe^{xy} + ye^{yz}$$
.

- **3.** 3.
- **5.** div V > 0 en el primer y el tercer cuadrantes, div V < 0 en el segundo y cuarto cuadrantes.
- 7. $\nabla \cdot \mathbf{F} = 0$; si \mathbf{F} representa un fluido, no se produce ni expansión ni compresión; el área de un rectángulo pequeño sigue siendo la misma.

- **9.** $3x^2 x^2 \cos{(xy)}$.
- **11.** $y \cos(xy) + x^2 \sin(x^2y)$.
- **13.** 0.
- **15.** $(10y 8z)\mathbf{i} + (6z 10x)\mathbf{j} + (8x 6y)\mathbf{k}$.
- **17.** $-\sin x$.
- **19.** *x*.
- **21.** (a) $\nabla \cdot (\nabla \times \mathbf{F}) = \nabla \cdot (0, -z, 2xy) = 0.$
 - (b) No, puesto que $\nabla \times \mathbf{F} \neq \mathbf{0}$.
- **23.** (a) $ze^{xz} + x\cos(xy) + 2x^5y^3z$.
 - (b) $(3x^5y^2z^2, xe^{xz} 5x^4y^3z^2, y\cos(xy)).$
- **25.** (a) No tiene sentido.
- (b) No tiene sentido.
- (c) No tiene sentido.
- (d) Campo vectorial.
- (e) No tiene sentido.
- (d) Función escalar.
- **27.** $\nabla \cdot \mathbf{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z} = 0$ dado que f, g y h no dependen de x, y y z, respectivamente.
- **29.** $\nabla \times \nabla f = \mathbf{0}$.
- **31.** $\nabla \times \nabla f = \mathbf{0}$.
- **33.** $\nabla \times \mathbf{F} \neq \mathbf{0}$.
- **35.** Sea $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$, calcular ambos lados de la identidad.
- **37.** (a) $2xy\mathbf{i} + x^2\mathbf{j}$.

- (b) $(3y^2xz, 4xz y^3z, 0)$.
- (c) $(-y^3zx^3, 2x^2y^4z, 2x^3z^2 2xy)$.
- (d) $4x^2yz^2 + x^2$.
- **39.** No.
- **41.** Separar cada expresión en sus partes real e imaginaria y después tratar la cantidad resultante como un campo vectorial en \mathbb{R}^2 . Calcular directamente su rotacional y divergencia. En (a), $\mathbf{F} = (x^2 y^2)\mathbf{i} 2xy\mathbf{j}$; en (b), $\mathbf{F} = (x^3 3xy^2)\mathbf{i} + (y^3 3x^2y)\mathbf{j}$; y en (c), $\mathbf{F} = (e^x \cos y)\mathbf{i} (e^x \sin y)\mathbf{j}$. Demostrar que $\nabla \cdot \mathbf{F} = 0$ y $\nabla \times \mathbf{F} = 0$ en cada caso.

Ejercicios de repaso del Capítulo 4

1. $\mathbf{v}(1) = (3, -e^{-1}, -\pi/2); \mathbf{a}(1) = (6, e^{-1}, 0);$

$$s(1) = \sqrt{9 + e^{-2} + \frac{\pi^2}{4}}; \mathbf{l}(t)$$

= $(2, e^{-1}, 0) + (t - 1)(3, -e^{-1}, -\pi/2).$

- **3.** $\mathbf{v}(0) = (1, 1, 0); \mathbf{a}(0) = (1, 0, -1);$ $s = \sqrt{2}; l(t) = (1, 0, 1) + t(1, 1, 0).$
- **5.** Vector tangente: $\mathbf{v} = -(1/\sqrt{2})\mathbf{i} + (1/\sqrt{2})\mathbf{j} + \mathbf{k}$. Vector aceleración: $\mathbf{a} = -(1/\sqrt{2})(\mathbf{i} + \mathbf{j})$.
- 7. m(2,0,-1).
- **9.** (a) $\mathbf{v} = (-\sin t, \cos t, \sqrt{3}),$ $\mathbf{a} = (-\cos t, -\sin t, 0).$
 - (b) $\mathbf{l}(t) = (1, 0, 0) + t(0, 1, \sqrt{3}).$ (c) 4π .

11.
$$\nabla \times \mathbf{F} = \left(\frac{4Ayz}{\sqrt{x^2 + y^2 + z^2}} - \frac{4Ayz}{\sqrt{x^2 + y^2 + z^2}}, \frac{4Axz}{\sqrt{x^2 + y^2 + z^2}} - \frac{4Axz}{\sqrt{x^2 + y^2 + z^2}}, \frac{4Axy}{\sqrt{x^2 + y^2 + z^2}} - \frac{4Axy}{\sqrt{x^2 + y^2 + z^2}}\right) = (0, 0, 0).$$

- **13.** $\int_{1}^{4} \sqrt{1 + \frac{4}{9}t^{-2/3} + \frac{4}{25}t^{-6/5}} dt.$
- **15.** (a) $\mathbf{v} = (-2t \operatorname{sen}(t^2), 2t \cos(t^2), 0); s = 2t.$
 - (b) $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0\right)$.
 - (c) $\sqrt{5\pi/3}$.