

The backpropagation algorithm

Andrew M. Saxe

Experimental Psychology University of Oxford

Backpropagation from 30,000ft

 Learning algorithm for arbitrary, deep, complicated neural networks

- You've used it!
 - Google/Microsoft/Yahoo voice recognition, image search, machine translation, ...
- The core idea behind many psychology & neuroscience models

Backpropagation from 30,000ft

Can be written down in one line of math:

$$\Delta W = -\lambda \frac{\partial E}{\partial W}$$

- Sort of like Newton's laws
 - Three simple equations
 - But endless implications and consequences
- Need to understand it intuitively at many levels

Two meanings

- "Backprop" technically refers to a specific algorithm
- But often used as shorthand for a much broader framework with a galaxy of associated ideas and commitments
- Important not to confuse backprop-the-algorithm with backprop-the-framework—this has caused trouble in the past
- Your job is to learn backprop-the-framework

Levels of analysis

- Computational level
 - Learning as optimization
 - Gradient descent

- Algorithmic level
 - Backprop-the-algorithm
- Implementation level

Today

Build up to learning in arbitrary deep network

- 1. One parallel layer
- 2. Many serial layers
- 3. Nonlinearities
- 4. The general case

The pattern associator

 $i \in R^{N_1}$

 $t \in \mathbb{R}^{N_2}$ $o \in \mathbb{R}^{N_2}$

One layer learning

Forward propagation

Target Feedback

Error signal

Lots of choices

How can we choose?

 Maybe: make small change that most rapidly decreases the error

Lots of choices

How can we choose?

 Maybe: make small change that most rapidly decreases the error

This is called Gradient Descent

Gradient Descent Learning

 Make small change in weights that most rapidly improves task performance

• Change each weight in proportion to the gradient of the error $\Delta W = -\lambda \frac{\partial E}{\partial W}$

Optimization view of learning

 The network and training data together define an error function, say, squared error

$$E(t,w,i) = (t-o)^2$$

 Learning is just minimizing this function w.r.t. w

$$w^* = \operatorname{argmin}_w E(t, w, i)$$

Gradient Descent $\Delta W = -\lambda \frac{\partial E}{\partial W}$

$$\Delta W = -\lambda \frac{\partial E}{\partial W}$$

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

Delta rule derivation

$$E = (t - o)^{2}$$

$$= (t - \sum w_{j}i_{j})^{2}$$

$$= (t - wi)^{2}$$
Row vector

Delta rule derivation

$$E = (t - o)^{2}$$

$$= (t - \sum_{j=1}^{\infty} w_{j} i_{j})^{2}$$

$$= (t - wi)^{2}$$

$$= (t - wi)^{2}$$

$$\frac{\partial E}{\partial w_k} = -2(t - o) \frac{\partial E}{\partial w_k} o$$

$$= -2(t - o) \sum_{k=0}^{\infty} \frac{\partial E}{\partial w_k} w_j i_j$$

$$= -2(t - o) i_k$$

Delta rule derivation

$$E = (t - o)^{2}$$

$$= (t - \sum w_{j}i_{j})^{2}$$

$$= (t - wi)^{2}$$

$$= (t - wi)^{2}$$

$$\frac{\partial E}{\partial w_{k}} = -2(t - o)\frac{\partial E}{\partial w_{k}}o$$

$$= -2(t - o)\sum \frac{\partial E}{\partial w_{k}}w_{j}i_{j}$$

$$= -2(t - o)i_{k}$$

Delta rule: $\Delta w = \lambda (t - o)i^T = \lambda ei^T$

What about deep networks?

Delta rule only makes sense for one layer!

 How can we learn in deep, multilayer networks?

What about deep networks?

Delta rule only makes sense for one layer!

 How can we learn in deep, multilayer networks?

 Why would we want deep, multilayer networks?

Why deep networks?

 Shallow networks can't represent any function, eg, XOR

Anatomically and physiologically, the brain is deep

Empirically, deep networks just work better

Two fundamental topologies

Parallel

Serial

Two fundamental topologies

Parallel

Serial

Gradient descent learning rule:

Delta rule

333

Many layer learning

Forward propagation

Target Output "Hidden" layers Input

$$o = w_4 w_3 w_2 w_1 i = \left(\prod w_k \right) i$$

Target feedback

Error signal

Target Output "Hidden" layers Input

1
5
-.42
-1.2
3
-.4
-.4
-.1
Increase?

Error = .5

How to fix?

How to fix?

How to fix?

Must consider effect of all upstream weights to know how to change any given weight!

In a deep network, weights are coupled

Two fundamental topologies

Parallel

$$o = \sum w_j i_j$$

Sum of variables

Weights are independent

Serial

$$o = \left(\prod w_k\right)i$$

Product of variables

Weights are coupled

The solution: Backpropagation

 Send a signal from the output of the network back down towards the input

 This signal will encode how changing a weight will propagate to the output

Then use delta-like rule as usual

The solution: Backpropagation

 $\Delta w_i = \lambda \delta_{i+1} h_i$

Forward propagation

Target feedback

Error signal

Learning rule:

$$\Delta w_j = \lambda \delta_{j+1} h_j$$

Learning rule:

$$\Delta w_j = \lambda \delta_{j+1} h_j$$

Derivation as gradient descent

$$\frac{\partial}{\partial w_2} (t - o)^2 = -2(t - o) \frac{\partial}{\partial w_2} w_4 w_3 w_2 w_1 i$$

$$= -2(t - o) w_4 w_3 w_1 i$$

$$\delta_3 \qquad h_2$$

Learning rule:

$$\Delta w_j = \lambda \delta_{j+1} h_j$$

Delta vs Backprop

Delta rule:

$$\Delta w = \lambda e i^T$$

Backprop:

$$\Delta w_j = \lambda \delta_{j+1} h_j$$

(where *j* indexes the layer)

- Requires actual error and input
- Restricted to one layer

- Uses backpropagated error and hidden layer activity
- Works in deep network
- Both implement gradient descent

Nonlinearities

So far have just looked at linear networks

 Linear networks cannot represent complicated functions (like XOR)

 Introduce neural nonlinearity or "activation function"

Activation function

Gradient learning with nonlinearities

$$\frac{\partial E}{\partial w_k} = -2(t - o)\frac{\partial E}{\partial w_k} f\left(\sum w_j i_j\right)$$
$$= -2(t - o)f'(n)\frac{\partial E}{\partial w_k} \sum w_j i_j$$
$$= -2(t - o)f'(n)i_k$$

Scaled delta rule: $\Delta w = \lambda e f'(n) i^T$

Beyond the chain...

Now for the general case: a mixture of serial and parallel structure with nonlinearities

Matrix notation

Andrew Saxe

Matrix notation

Andrew Saxe 56

Putting the pieces together

Single layer parallel: the delta rule

Multilayer serial: backpropagation

Nonlinearities: scale by derivative

Putting the pieces together

Forward prop input to compute hidden activities, net inputs, output

Back prop error to compute *deltas*

Learning rule: $\Delta W^j = \lambda \delta_{j+1} h_j^T$

$$\delta_D = -(t-o) \bullet f'(n_D)$$

$$\delta_{j} = \left[\left(W^{j} \right)^{T} \delta_{j+1} \right] \bullet f'(n_{j})$$

Learning rule: $\Delta W^j = \lambda \delta_{j+1} h_j^T$

Summary

- Computational level
 - Optimization view of learning
 - Gradient descent
- Algorithmic level
 - Backprop-as-algorithm
- Implementation level
 - Haven't touched on it
 - Not obvious how to implement in the brain, but some ideas exist (e.g. Lillicrap et al., 2016)