GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training

Какой может быть начальная инициализация весов

насемплировать веса из какого-нибудь распределения

взять предобученные веса

обучить начальную инициализацию

Какие-нибудь распределения

Распределение с нулевым средним и ограниченной дисперсией

$$w \sim \mathcal{N}(0,1)$$
 $w \sim \mathcal{U}[-1,1]$

Инициализация Ксавьера

$$w \sim \mathcal{U}\left[-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right] \quad w \sim \mathcal{U}\left[-\frac{\sqrt{6}}{\sqrt{n+m}}, \frac{\sqrt{6}}{\sqrt{n+m}}\right]$$

Инициализация Хе (Кейминга)

$$w \sim \mathcal{N}\left(0, \sqrt{\frac{2}{n}}\right)$$

Обучить инициализацию

Алгоритм Metalnit

Гипотеза: градиентный спуск работает лучше если мы берем начальную точку из области пространства, которая имеет небольшую локальную кривизну

Идея: нормировать веса, чтобы попасть в такую гладкую Область

Плюсы: работает

Минусы: очень долгий

Хотим: быстрый

Обучить инициализацию

Алгоритм GradInit

идея:

нормируем веса в каждом из слоев модели

$$W_1,..,W_M,\ w_{ij}$$
 — матрицы весов $w_{ij} \sim \mathcal{N}(0,1)$ $\{lpha_1,...,lpha_M\},\ lpha_i=1$ $\{lpha_1W_1,...,lpha_MW_M\},$ — инициализация

алгоритм:

градиентным спуском найдем такие альфы, чтобы первые шаги градиентного спуска уменьшали функцию потерь настолько, насколько это возможно

в процессе градиентного спуска мы не изменяем матрицы весов

Алгоритм GradInit

Более формально:

$$\begin{cases} L(\tilde{S}, \Theta_m - \eta \cdot \mathcal{A}[g_{s,\theta_m}]) \to \min_{\alpha} \\ \|g_{s,\theta_m}\|_{p_{\mathcal{A}}} \leqslant \gamma \end{cases}$$

$$\Theta_m = \{\alpha_1 W_1, \dots, \alpha_M W_M\}$$

L — функция потерь

 \mathcal{A} — метод спуска: SGD или Adam

 η — learning rate для метода спуска для исходной модели

 g_{s,θ_m} — градиент функции потерь

 γ — нормировочная константа для нормы градиента

 $p_{\mathcal{A}}$ — норма, соотв. методу спуска в исходной задаче

Алгоритм GradInit

$$\begin{aligned} & \boldsymbol{m}_{1} \leftarrow \boldsymbol{1} \\ & \textbf{for } t = 1 \textbf{ to } T \textbf{ do} \\ & \text{Sample } S_{t} \text{ from training set.} \\ & L_{t} \leftarrow \frac{1}{|S_{t}|} \sum_{x_{k} \in S_{t}} \ell(x_{k}; \boldsymbol{\theta}_{\boldsymbol{m}_{t}}), \ \boldsymbol{g}_{t} \leftarrow \nabla_{\boldsymbol{\theta}} L_{t} \\ & \textbf{if } \|\boldsymbol{g}_{t}\|_{p_{\mathcal{A}}} > \gamma \ \textbf{ then} \\ & \boldsymbol{m}_{t+1} \leftarrow \boldsymbol{m}_{t} - \tau \nabla_{\boldsymbol{m}_{t}} \|\boldsymbol{g}_{t}\|_{p_{\mathcal{A}}} \\ & \textbf{else} \\ & \text{Sample } \tilde{S}_{t} \text{ from training set.} \\ & \tilde{L}_{t+1} \leftarrow \frac{1}{|\tilde{S}_{t}|} \sum_{x_{k} \in \tilde{S}_{t}} \ell(x_{k}; \boldsymbol{\theta}_{\boldsymbol{m}_{t}} - \eta \mathcal{A}[\boldsymbol{g}_{t}]) \\ & \boldsymbol{m}_{t+1} \leftarrow \boldsymbol{m}_{t} - \tau \nabla_{\boldsymbol{m}_{t}} \tilde{L}_{t+1} \\ & \text{Clamp } \boldsymbol{m}_{t+1} \text{ using } \underline{\alpha} \end{aligned}$$

Алгоритм GradInit

Подробнее про некоторые параметры

- батчи
- шаг алгоритма
- нижняя граница для m
- шаг спуска модели и гамма

Зачем нужно ограничение?

Почему ограничение а не штраф?

$$L(\tilde{S}, \Theta_M - \eta \cdot \mathcal{A}[g_{s,\theta_m}]) + \lambda \|g_{s,\theta_m}\|_{p_{\mathcal{A}}} \to \min_m$$

$$\begin{aligned} & \boldsymbol{m}_1 \leftarrow \mathbf{1} \\ & \textbf{for } t = 1 \textbf{ to } T \textbf{ do} \\ & \text{Sample } S_t \text{ from training set.} \\ & L_t \leftarrow \frac{1}{|S_t|} \sum_{x_k \in S_t} \ell(x_k; \boldsymbol{\theta}_{\boldsymbol{m}_t}), \ \boldsymbol{g}_t \leftarrow \nabla_{\boldsymbol{\theta}} L_t \\ & \textbf{if } \|\boldsymbol{g}_t\|_{p_{\mathcal{A}}} > \gamma \quad \textbf{then} \\ & \boldsymbol{m}_{t+1} \leftarrow \boldsymbol{m}_t - \tau \nabla_{\boldsymbol{m}_t} \|\boldsymbol{g}_t\|_{p_{\mathcal{A}}} \\ & \textbf{else} \\ & \text{Sample } \tilde{S}_t \text{ from training set.} \\ & \tilde{L}_{t+1} \leftarrow \frac{1}{|\tilde{S}_t|} \sum_{x_k \in \tilde{S}_t} \ell(x_k; \boldsymbol{\theta}_{\boldsymbol{m}_t} - \eta \mathcal{A}[\boldsymbol{g}_t]) \\ & \boldsymbol{m}_{t+1} \leftarrow \boldsymbol{m}_t - \tau \nabla_{\boldsymbol{m}_t} \tilde{L}_{t+1} \\ & \text{Clamp } \boldsymbol{m}_{t+1} \text{ using } \underline{\alpha} \end{aligned}$$

Model	$\frac{ \tilde{S} \cap S }{ S }$	Acc_1	Acc_{best}
VGG-19	0	21.9 ± 4.4	94.5 ± 0.1
w/o BN	0.5	$\textbf{29.3} \pm \textbf{0.6}$	$\textbf{94.7} \pm \textbf{0.02}$
(20.03 M)	1	28.7 ± 1.0	94.5 ± 0.1

Эксперименты

Table 3: First epoch (Acc_1) and best test accuracy over all epochs (Acc_{best}) for models on CIFAR-10. We report the mean and standard error of the test accuracies in 4 experiments with different random seeds. Best results in each group are in bold.

Mode (# Para		VGG-19 w/o BN (20.03M)	VGG-19 w/ BN (20.04M)	ResNet-110 w/o BN (1.72M)	ResNet-110 w/ BN (1.73M)	ResNet-1202 w/ BN (19.42M)
Kaiming	$egin{array}{ c c c c c c c c } Acc_1 & Acc_{best} & & & & \\ \hline \end{array}$	$\begin{vmatrix} 29.1 \pm 1.5 \\ 94.5 \pm 0.1 \end{vmatrix}$	$12.6 \pm 0.6 \\ 94.4 \pm 0.1$	16.1 ± 2.1 94.2 ± 0.1	23.2 ± 0.9 95.0 ± 0.2	12.9 ± 2.8 94.4 ± 0.6
+1 epoch (Const. LR)	$egin{array}{ c c c c c c c c } Acc_1 & Acc_{best} & & & & \\ \hline \end{array}$	$\begin{vmatrix} 37.2 \pm 1.1 \\ 94.4 \pm 0.1 \end{vmatrix}$	19.6 ± 4.0 94.5 ± 0.1	21.0 ± 3.8 93.9 ± 0.4	$32.5 \pm 3.8 \\ 94.7 \pm 0.3$	12.6 ± 2.8 94.0 ± 0.4
+1 epoch (Warmup)	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 37.4 \pm 1.2 \\ 94.4 \pm 0.1 \end{vmatrix}$	53.5 ± 2.9 94.7 ± 0.1	19.8 ± 0.5 94.1 ± 0.1	48.7 ± 1.1 95.1 ± 0.1	28.1 ± 1.3 95.4 ± 0.2
MetaInit	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	35.1 ± 0.6 94.6 ± 0.1	14.6 ± 2.2 94.2 ± 0.1	29.0 ± 1.5 94.8 ± 0.1	11.7 ± 1.6 95.0 ± 0.5
GradInit	$ig egin{array}{c} Acc_1 \ Acc_{best} \end{array}$	29.3 ± 0.6 94.7 ± 0.1	47.8 ± 1.8 95.1 ± 0.1	36.2 ± 0.8 94.6 ± 0.1	38.2 ± 0.9 95.4 ± 0.1	29.0 ± 1.1 96.2 ± 0.1

Эксперименты

Figure 3: BLEU scores for the Post-LN Transformer without learning rate warmup using Adam on IWSLT-14 DE-EN under different learning rates η_{max} (y axis) and β_2 (x axis). Each result is averaged over 4 experiments.

спасибо за внимание