Лекция ПМИ-20 12.01.21

Первообразная и неопределенный интеграл

Рассмотрим функцию y = f(x), которая определена на некотором конечном или бесконечном промежутке $D \subseteq \mathbf{R}$ (интервал, отрезок, полуинтервал).

Определение. Функция y = F(x), определенная на этом же промежутке, называется **первообразной функцией** функции f на D, если

- 1) функция F непрерывна на D;
- 2) во всех внутренних точках x промежутка D функция F имеет производную и F'(x) = f(x), т.е. $(\forall x \in D)(\exists F'(x)) : F'(x) = f(x)$.

Пример 1. Найти первообразную функцию функции $f(x) = \cos 2x$.

Теорема 1. Если F – первообразная функции f на промежутке D, то всякая функция $\Phi(x) = F(x) + C, x \in D$ так же является первообразной функции f.

Теорема 2. Любые две первообразные одной функции, на одном промежутке отличаются друг от друга на константу.

Теорема 3. Любая непрерывная на промежутке функция имеет на нем первообразную.

Пример 2. Найти первообразную функцию F(x) функции

$$f(x) = \begin{cases} \frac{1}{x^2 + 1}, & x \le 0\\ 1 - \sin x, & x > 0. \end{cases}$$

$$F(x) = \begin{cases} arctgx, & x < 0 \\ x + \cos x, & x > 0. \end{cases}$$

$$F(x) = \begin{cases} arctgx + 1, & x \le 0 \\ x + \cos x, & x > 0. \end{cases}$$

Определение: Совокупность всех первообразных функции f, определенных на некотором промежутке D, называется **неопределенным интегралом** от функции f на этом промежутке и обозначается $\int f(x) dx$.

знак \int - называется *интегралом*, f(x) - подынтегральная функция, f(x)dx - подынтегральное выражение.

Основные свойства неопределенного интеграла:

$$\int d(f(x)) = F(x) + C;$$

$$d\left(\int f(x)dx\right) = f(x)dx;$$

$$\int (k \cdot f(x)) dx = k \cdot \int f(x) dx;$$

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx;$$

$$\int f(g(x))d(g(x)) = F(g(x)) + C.$$

Таблица основных интегралов

$$\int dx = x + C;$$

2
$$\int x^{k} dx = \frac{x^{k+1}}{k+1} + C, \quad k \neq -1;$$

$$\int \frac{1}{x} dx = \ln|x| + C;$$

$$\int a^x dx = \frac{a^x}{\ln a} + C; \qquad 4a \quad \int e^x dx = e^x + C;$$

$$\int \sin x \, dx = -\cos x + C;$$

$$\int \cos x \, dx = \sin x + C;$$

$$\int \frac{1}{x^2 + a^2} dx = \begin{bmatrix} \frac{1}{a} \arctan \frac{x}{a} + C \\ -\frac{1}{a} \arctan \frac{x}{a} + C \end{bmatrix};$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \begin{bmatrix} \arcsin \frac{x}{a} + C \\ \arccos \frac{x}{a} + C \end{bmatrix};$$

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C;$$

10
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left| \sqrt{x^2 \pm a^2} + x \right| + C;$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C;$$

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C;$$

• Табличное интегрирование

Непосредственное применение таблицы основных интегралов.

Пример 3. Найти интеграл
$$\int \left(x^5 + \frac{4}{x^3} - \sqrt[3]{x^2} - 7\right) dx .$$

$$\int \left(x^5 + \frac{4}{x^3} - \sqrt[3]{x^2} - 7\right) dx = \int \left(x^5 + 4 \cdot x^{-3} - x^{\frac{2}{3}} - 7\right) dx =$$

$$= \int x^5 dx + 4 \int x^{-3} dx - \int x^{\frac{2}{3}} dx - 7 \int dx = \frac{x^{5+1}}{5+1} + 4 \cdot \frac{x^{-3+1}}{-3+1} - \frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1} - 7x + C =$$

$$= \frac{x^6}{6} + 4 \cdot \frac{x^{-2}}{-2} - \frac{x^{\frac{5}{3}}}{\frac{5}{2}} - 7x + C = \frac{x^6}{6} - \frac{2}{x^2} - \frac{3x\sqrt[3]{x^2}}{5} - 7x + C.$$

• Метод подстановки

(замена переменной или внесение под знак дифференциала)

Теорема 4. Если функции y = f(x), x = g(t) непрерывны соответственно на промежутках D и $T, \ g(T) = D$, дифференцируемы во всех своих внутренних точках и существует $\int f(x)dx$, тогда существует $\int f(g(t)) \cdot g'(t)dt$, причем $\int f(g(t)) \cdot g'(t)dt = |x = g(t), dx = g'(t)dt| = F(x) + C = F(g(t)) + C$

Пример 4. Найти интеграл $\int \frac{e^{3x}}{\sqrt{e^{6x}-7}} dx$.

$$f(x)dx = d(F(x)), \text{ r.e. } e^{3x}dx = d\left(\frac{e^{3x}}{3}\right).$$

$$\int \frac{e^{3x}}{\sqrt{e^{6x} - 7}} dx = \int \frac{d\left(\frac{e^{3x}}{3}\right)}{\sqrt{\left(e^{3x}\right)^2 - \left(\sqrt{7}\right)^2}} = \frac{1}{3} \int \frac{d\left(e^{3x}\right)}{\sqrt{\left(e^{3x}\right)^2 - \left(\sqrt{7}\right)^2}} =$$

$$= \frac{1}{3} \ln \left| \sqrt{e^{6x} - 7} + e^{3x} \right| + C.$$

• Метод разложения

Необходимо преобразовать подынтегральную функцию на сумму функций, к которым можно применить табличное интегрирование.

Пример 5. Найти интеграл
$$\int \frac{dx}{x^4 + 4x^2 + 3}.$$

$$\int \frac{dx}{x^4 + 4x^2 + 3} = \frac{1}{2} \int \left(\frac{(x^2 + 3) - (x^2 + 1)}{(x^2 + 3)(x^2 + 1)} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{2} \int \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 3} \right) dx = \frac{1}{x^2 + 3} + \frac{1}{x^2 + 3} + \frac{1}{x^2 + 3} + \frac{1}{x^2 + 3} + \frac$$

$$= \frac{1}{2} \left(\arctan x - \frac{1}{\sqrt{3}} \arctan \frac{x}{\sqrt{3}} \right) + C.$$

• Интегрирование по частям

Теорема 5. Если функции y = U(x), y = V(x) непрерывны на некотором промежутке, дифференцируемы во всех его внутренних точках и на этом промежутке существует $\int U(x) \cdot V'(x) dx$, то на нем существует $\int U'(x) \cdot V(x) dx$, причем $\int U(x) \cdot V'(x) dx = U(x) V(x) - \int U'(x) \cdot V(x) dx$

• Метод неопределенных коэффициентов

Для вычисления интеграла искусственно вводятся неопределенные изначально коэффициенты, которые находятся математическими методами и приводят к табличным или выше описанным методам решения.