# Kısıtlı Türkçe Veri Üzerinde Derin Öğrenme Deep Learning on Limited Turkish Data

Selim F. Tekin<sup>1,3</sup>, Selim F. Yılmaz<sup>1</sup> ve Ismail Balaban<sup>2,3</sup>

<sup>1</sup>Elektrik ve Elektronik Mühendisliği Bölümü, Bilkent Üniversitesi, Ankara, Türkiye

{tekin, syilmaz}@ee.bilkent.edu.tr

<sup>2</sup>Çoklu Ortam Bilişimi Bölümü, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye

ismail.balaban@metu.edu.tr

<sup>3</sup>DataBoss A.S., Ankara, Türkiye

{furkan.tekin, ismail.balaban}@data-boss.com.tr



## 1. Giriş

- Gözetimli öğrenme tekniği ile geliştirilen derin öğrenme modelleri, duygu tespitinde yüksek başarı elde edilmektedir.
- Ancak, derin öğrenme modellerinin yüksek başarı sağlayabilmesi için yüksek miktarda etiketli veriye ihtiyaç duymaktadır.
- Bu bildiri, etiketlenmiş veri eksikliği problemini hedef almaktadır.
- Performansı artırmak amacıyla, veri kümesi sözlük temelli eğitim tekniği ile çoğaltılmıştır. Sonra derin öğrenme modeli eğitilmiştir.

# 2. Yapılmış Çalışmalar

- Duygu tespiti üzerine yapılan çalışmalar:
  - Güdümlü öğrenmede yüksek miktarda etiketli veriye ihtiyaç duymaktadır.
  - Güdümsüz öğrenmede methodlar eğitim setindeki tanım kümesi dağılımını öğrenebilmekte fakat test setindeki farklılığı yakalayamamaktadır
- Kısıtlı veri problem üzerine yapılmış çalışmalar kısıtlı performans artışı sağlamaktadır:
  - Eğitilmiş kelime vektörleri
  - Eğitilmiş dönüştürücüler
  - Özyükleme, zayıf güdümleme tekniği



#### 3. Problem Tanımı

• Etiketli veri kümesi  $D_L$ :  $\{x_i, y_i\}_{i=1}^N$  kullanılarak öğrenilmek istenilen fonksiyon

$$f(x_i) = y_i$$

gösterilmektedir.  $x_i$  burada girdi *tweet* metnini ifade ederken  $y_i \in \{0, 1\}$  girdiye ait etiket kümesini ifade etmektedir.

- Her girdi bir sözlüğe ait kelimelerden  $w_j$  oluşmaktadır  $x_i$ :  $\{w_j\}_{j=1}^S w_j \in K$ .
- K sözlüğü ifade ederken, S girdi uzunluğunu temsil etmektedir.

#### 3. Problem Tanımı

- Her bir kelimenin matematik karşılığı olarak kelime vektörleri oluşturulmuştur.
- Sözlük her bir kelimeye ait d boyutunda kelime vektörlerinden oluşmaktadır.  $K \in \mathbb{R}^{d \times M}$
- Bildirideki amaç f (.) fonksiyonuna yaklaşmaktır. Fonksiyon bir olasılık dağılımından geldiği kabul edilmektedir. Fonksiyona yaklaşımda elde edilecek tahmin olasılıkları,  $\hat{y}$ , kayıp fonksiyonunu hesaplamakta kullanılacaktır.

#### 3. Problem Tanımı

• Kayıp fonksiyonu olarak ikili çapraz entropi kullanılacaktır,

$$\mathcal{L} = -\sum_{k=1}^{C=2} y_{i,k} \log(f(x_i))$$

- Bu fonksiyon, verinin mini balyaları kullanılarak Stokastik Gradyan İnişi (SG I) ile optimize edilecektir.
- sentetik veri kümesi  $D_U$  gösterilmektedir.  $D_U$ :  $\{x_i, y_i\}_{i=1}^{N'}$
- Bildiride amaç,  $D_L \cup D_U$  üzerinde eğitilen modelin, sadece  $D_L$  üzerinde eğitilen modelden daha iyi performans göstermesidir.

- Dört aşamadan oluşmaktadır:
  - 1. Test kümesinin oluşturulması. Verinin sözlük temelli yöntem ile çoğaltılması.
  - 2. Verinin ön işlemden geçmesi.
  - 3. Modele verilen her *tweet* cümlesi belirli bir dizi uzunlukta kelime vektörlerine dönüştürülmesi.
  - 4. Verinin Çift Yönlü Kısa-Uzun Hafızalı Bellek modelinde eğitilmesidir.



• Etiketli veri artırımı *tweet* içeriklerinde sıkça kullanılan metinsel emojilere göre gerçekleştirilmiştir.

ASCII Emoji ve Etiketleri

| Emoji                  | Sınıf   |
|------------------------|---------|
| :),:)),:-),=),:D,:d,:P | pozitif |
| :(,:((,:-(,:/,:S,:s    | negatif |

- Ön işleme
  - URL, sosyal medya etiketi(#); kişi, lokasyon atıfları, yirmi karakterden fazla ve de üç karakterden az olan kelimeler, noktalama işaretleri ve de sayılar çıkartılmıştır. Bunlara ek olarak gereksiz kelime, *stopword*, olarak adlandırılan kelimeler çıkartılmıştır.
  - Ikinci verinin etiketlemesi metinsel emoji ifadelerine göre yapıldığı için, bu ifadeler metinlerden çıkartılmıştır.



- Gömme vektörleri
  - Kullanılan kelime gömme vektörleri *Fasttext* modelinin ürünüdür. Bu model *skipgram* modelinin geliştirilmiş ve genişletilmiş halidir.
  - Fasttext kullanılarak her bir kelimenin 300 boyutlu vektörel hali elde edilmiştir.
  - Her bir tweet 15 kelime uzunluğuna "<pad>" simgesi ile tamamlanmıştır.







# 5. Deneyler

- Veri kümesi
  - Etiketli veri: 6000 tweet içermektedir, 3000 tanesi negatif, 1552 tanesi pozitif geri kalanı nötrdür.
  - Sentetik veri: 22000 tweet içermektedir. 12000 tanesi pozitif, 10000 tanesi negatifdir.
  - Sadece pozitif ve negatif veriler kullanılmıştır.
- Performans karşılaştırması için eğri altı alan (EAA) değerlendirme ölçütü kullanılmıştır.



# 5. Deneyler

- Kullanılan yöntemin makine öğrenmesi metotlarındaki performansını gözlemlemek amacıyla iki farklı model üzerinde deneyler yapılmıştır.
  - Doğrusal Destek Vektör Makineleridir (DDVM).
  - Rastgele Karar Ağaçlarıdır(RKA).

Modeller ve F1, Kesinlik, Eğri Altı Alan Değerleri

| Modeller - | Kısıtlı Veri Kümesi |             | Çoğaltılmış Veri Kümesi |       |             |        |
|------------|---------------------|-------------|-------------------------|-------|-------------|--------|
|            | F1(%)               | Kesinlik(%) | EAA(%)                  | F1(%) | Kesinlik(%) | EAA(%) |
| DDVM       | 65.0                | 79.0        | 87.0                    | 69.0  | 75.0        | 82.0   |
| RKA        | 56.0                | 76.0        | 82.0                    | 61.0  | 73.0        | 80.0   |
| ÇY-UKSB    | 68.0                | 76.0        | 77.0                    | 71.0  | 77.0        | 83.0   |



# 5. Deneyler





### 6. Sonuçlar

- Grafikte görüldüğü gibi, çoğaltılmış veri kümesi ile eğitilmiş model performansı, kısıtlı veri kümesi ile eğitilmiş modele göre yüksektir.
- ÇY-UKSB modelinde gözlemlenen başarı artışının sebebi, modelin daha çok veri gözlemleyerek kelimeler arasındaki örüntüyü daha iyi öğrenmesi ve bu örüntünün kelimenin sınıfı ile olan bağıntısını çözmesi olarak gösterilebilir.



## 6. Sonuçlar

- Temel modellerin başarı gösterememesinin sebebi olarakeğitim verisine katılan sözlük temelli etiketlenmiş verinin gürültü katması gösterilebilir.
- Bu metotların çizdikleri hiper düzlemin veri çokluğuna göre değişiklik göstermektedir. Bu hiper düzlem çoğunlukta olan veriyi ayrıştırmada başarılı olabilir fakat test veri setinin ortalama özelliklerini yansıtmada başarılı olamamaktadır.
- Kelime vektörlerinin ortalamasının alınması, kelimeler arası anlam ve örüntü kaybına sebep olmaktadır



# Teşekkürler

