\mathbf{R}^n 中平行四边形的面积

叶卢庆*

2015年1月23日

在此我们探讨 \mathbf{R}^n 中平行四边形的面积. 设 $\mathbf{a}=(a_1,a_2,\cdots,a_n)\in\mathbf{R}^n,\mathbf{b}=(b_1,b_2,\cdots,b_n)\in\mathbf{R}^n$,我们来计算 \mathbf{R}^n 中以 \mathbf{a},\mathbf{b} 为邻边张成的平行四边形 S 的面积. 易得其面积的平方为

$$||\mathbf{a}||^2 ||\mathbf{b}||^2 - (\mathbf{a} \cdot \mathbf{b})^2 = (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2) - (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 = \sum_{1 \le i \le j \le n} (a_ib_j - a_jb_i)^2.$$
(1)

我们惊讶地发现, $(a_ib_j-a_jb_i)^2$ 是 \mathbf{a} , \mathbf{b} 张成的平行四边形在 x_iOx_j 坐标平面的正投影得到的平行四边形的面积的平方,这样,我们可以认为式(1)表达的,和勾股定理很类似,可以看作是面积之间的"勾股定理"

下面我们从几何角度来阐述式(1). 设平行四边形 S 所在的平面与坐标平面 x_iOx_j 的夹角为 $\alpha_{i,j}$. 平行四边形 S 正投影到 x_iOx_j 平面上,得到平行四边形 $S_{i,j}$. 然后平行四边形 $S_{i,j}$ 反过来又正投影到平行四边形 S 所在平面上. 易得 $S_{i,j}$ 在 S 平面上正投影所得的图形 $S'_{i,j}$ 是完全含于 S 的,且 $S'_{i,j}$ 也是个平行四边形. 且 $S'_{i,j}$ 的面积为 $S\cos^2\alpha_{i,j}$. 且由于 \mathbf{R}^n 中过二维平面外一点有且仅有一条直线与平面垂直,因此当 $m \neq i, m \neq j, w \neq i, w \neq j$ 这四种情况只要发生一种,便有图形 $S'_{i,j} \cap S'_{m,n}$ 的面积为 S 0. 而且 $S_{i,j} \cap S'_{i,j} = S$. 于是,

$$\sum_{1 \le i < j \le n} S \cos^2 \alpha_{ij} = S.$$

也即,

$$\sum_{1 \le i < j \le n} \left(S \cos \alpha_{ij} \right)^2 = S^2.$$

这就是式(1). 这样我们就给出了式(1)的几何解释.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:yeluqingmathematics@gmail.com