Introduction to Enumerative Geometry

Jan. 11 - Jan. 22, 2021

Recap:

o Chow Ring (Integer hn. comb.

of med. subvarieties of

X wo duto vertical

equivebree.

· CH(P") = Z[3]/n+1

Lecture 2: Grassiannians: Introduction and G(2,4)

- Definitions
- Tautological and quotient bundle

- Schubert calculus in G(2,4)
- Examples

Grassmannians

The k-th Grassmannian in V is the variety of k-dimensional subspaces in V:

$$G(k, V) = \{E \subseteq V : E \text{ lin. subspace, } \dim E = k\}.$$

The Grassmannian has a natural Plücker embedding

$$E = \langle v_1, \dots, v_k \rangle \mapsto v_1 \wedge \dots \wedge v_k = \underbrace{Z(1)}_{O(K)} \bigvee_{O(K)} \underbrace{V_{O(K)}}_{O(K)}$$

$$\downarrow V \subseteq V \\ \downarrow V \subseteq V \\$$

First properties

If dim V = N there is a natural isomorphism

$$G(k,V) \to G(n-k,V^*)$$

$$E \mapsto E^{\perp}$$

$$E = \left\{ \alpha \in V^{\Re} : \alpha \in \mathbb{Z} \right\} \quad \text{anvihileon of } E$$

$$\text{in } V^{\Re}.$$

Vector bundle: An algebraic veriety \overline{f} with a \longrightarrow X of map $\pi: \overline{f} \longrightarrow X$ such that all filers speak k of π are sosphic to hucer speces all of the Seure dumenous k Then at $p \in X$: $\overline{f} = \overline{\pi}'(p)$

Tautological and quotient bundle

Universal property of Grassmannian

"Every vector bundle is the pullback of the some tautological bundle".

Tangent bundle of G(k, V)

The tangent bundle TG(k, V) of G(k, V) is isomorphic to $S^{\vee} \otimes Q$. TG(k,V) = vector budle whose fiber at E is 1G(x,V) Sketch of of; The fibers of $S' \otimes Q$ are $(S' \otimes Q) = E'' \otimes V/E = E = How(E, V/E)$. Fin EEG(K,V) = PNV. Tangent vectors at E core Λ (0) where $\Lambda(t)$ is a curve in G(x,V) with $\Lambda(0)=E$. If $E \leq v_1, ..., v_k$ then $\Lambda(t) = v_1(t) \wedge ... \wedge v_k(t)$ where $v_j(0) = v_j$ Viltl curve in

Tangent bundle – cont'd

Tangent vectors how the form:

W, N V2N -- NVx + -- + V, N -- NVx - NWx

Now if
$$\varphi: E - o \bigvee_E define$$

V, H) = V, + $t \varphi(v_j)$ and $pick \bigwedge(t) = v_i(t) \wedge ... \wedge v_k(t)$

This defines a map $E \otimes \bigvee_E - o \bigvee_E (v_i(v_i))$

Two maps φ, ψ give same tangent vector if $\varphi - \psi \in E$

Flags and Schubert classes

Let V be a vector space of dimension n. A $\underline{complete}$ \underline{flag} in V is a nested sequence of vector spaces:

$$0=F_0\subseteq F_1\subseteq\cdots\subseteq F_n=V$$

with dim $F_k = k$.

Schubert varieties are subvarieties of G(k, V) consisting of planes with "non-generic intersection" with the planes of a fixed flag.

Fix dim
$$V = 4$$
 and $k = 2$.

Fix dim V = 4 and k = 2.

Consider a complete flag $F_{ullet}=\left(0=F_{0}\subseteq F_{1}\subseteq F_{2}\subseteq F_{3}\subseteq \underbrace{F_{4}=V}\right)$ in V.

Fix dim V = 4 and k = 2.

Consider a complete flag $F_{\bullet} = (0 = F_0 \subseteq F_1 \subseteq F_2 \subseteq F_3 \subseteq F_4 = V)$ in V.

For $0 \le a, b \le 2$, we define a Schubert variety in G(2,4)

$$\Sigma_{a,b} = \left\{ \Lambda : \text{dim} (\Lambda \cap F_{3-a}) \geq 1_{\textbf{p}} \, \text{dim} (\Lambda \cap F_{4-b}) \geq 2 \right\}.$$

Fix dim V = 4 and k = 2.

Consider a complete flag $F_{\bullet} = (0 = F_0 \subseteq F_1 \subseteq F_2 \subseteq F_3 \subseteq F_4 = V)$ in V.

For $0 \le a, b \le 2$, we define a Schubert variety in G(2,4) $\emptyset \ge \emptyset$

$$\Sigma_{\mathsf{a},\mathsf{b}} = \left\{ \Lambda : \mathsf{dim} \big(\Lambda \cap F_{\mathsf{3-a}} \big) \geq 1, \mathsf{dim} \big(\Lambda \cap F_{\mathsf{4-b}} \big) \geq 2 \right\}.$$

Explicitly

$$\begin{split} &\Sigma_{0,0} = G(1,3); \\ &\Sigma_{1,0} = \{\Lambda: \Lambda \cap F_2 \neq 0\}; \text{flux} \ \, \Lambda \cap \overline{f_2} \ \, \geq \Delta \\ &\Sigma_{2,0} = \{\Lambda: F_1 \subseteq \Lambda\}; \\ &\Sigma_{1,1} = \{\Lambda: \Lambda \subseteq F_3\}; \\ &\Sigma_{2,1} = \{\Lambda: \overline{F_1} \subseteq \Lambda \subseteq F_3\}; \text{flux} \ \, \Lambda \cap \overline{f_2} \geq 1 \\ &\Sigma_{2,2} = \{\Lambda: \overline{\Lambda} = F_2\}. \end{split}$$

$$\begin{split} & \Sigma_{0,0} = \textit{G}(1,3); \\ & \Sigma_{1,0} = \{\Lambda : \Lambda \cap \textit{F}_2 \neq 0\}; \\ & \Sigma_{2,0} = \{\Lambda : \textit{F}_1 \subseteq \Lambda\}; \\ & \Sigma_{1,1} = \{\Lambda : \Lambda \subseteq \textit{F}_3\}; \\ & \Sigma_{2,1} = \{\Lambda : \textit{F}_1 \subseteq \Lambda \subseteq \textit{F}_3\}; \\ & \Sigma_{2,2} = \{\Lambda : \Lambda = \textit{F}_2\}. \end{split}$$

If
$$a \le a'$$
, $b \le b'$, then
$$\Sigma_{a,b} \supseteq \Sigma_{a',b'}.$$

$$\Sigma_{a,b} \supseteq \Sigma_{a',b'}.$$

$$\begin{split} & \Sigma_{0,0} = G(1,3); \\ & \Sigma_{1,0} = \{\Lambda : \Lambda \cap F_2 \neq 0\}; \\ & \Sigma_{2,0} = \{\Lambda : F_1 \subseteq \Lambda\}; \\ & \Sigma_{1,1} = \{\Lambda : \Lambda \subseteq F_3\}; \\ & \Sigma_{2,1} = \{\Lambda : F_1 \subseteq \Lambda \subseteq F_3\}; \\ & \Sigma_{2,2} = \{\Lambda : \Lambda = F_2\}. \end{split}$$

If $a \le a'$, $b \le b'$, then

$$\Sigma_{a,b} \supseteq \Sigma_{a',b'}.$$

The Schubert cell associated to (a, b) is

$$\Sigma_{a,b}^{\circ} = \Sigma_{a,b} \setminus \bigcup_{\substack{(a',b') \geq (a,b) \\ \alpha \geq a \quad b \geq b \\ \text{(of least one shirt)}}} \Sigma_{a',b'}$$

$$\begin{split} & \Sigma_{0,0} = G(1,3); \\ & \Sigma_{1,0} = \{\Lambda : \Lambda \cap F_2 \neq 0\}; \\ & \Sigma_{2,0} = \{\Lambda : F_1 \subseteq \Lambda\}; \\ & \Sigma_{1,1} = \{\Lambda : \Lambda \subseteq F_3\}; \\ & \Sigma_{2,1} = \{\Lambda : F_1 \subseteq \Lambda \subseteq F_3\}; \\ & \Sigma_{2,2} = \{\Lambda : \Lambda = F_2\}. \end{split}$$

If $a \le a'$, $b \le b'$, then

$$\Sigma_{a,b} \supseteq \Sigma_{a',b'}$$
.

The Schubert cell associated to (a, b) is

$$\Sigma_{a,b}^{\circ} = \Sigma_{a,b} \setminus \bigcup_{(a',b')>(a,b)} \Sigma_{a',b'}$$

By definition, the Schubert cells define a stratification of G(2,4).

The Schubert cell Σ_1° is isomorphic to \mathbb{A}^3 .

Pf/
$$\xi^{\circ} = \frac{1}{2} \Lambda \in G(2,4)$$
: $\Lambda \cap F_{2} \neq 0$, $F_{1} \not= \Lambda$ }

 $\xi^{\circ} = \frac{1}{2} \Lambda \in G(2,4)$: $\Lambda \cap F_{2} \neq 0$, $F_{1} \not= \Lambda$ }

We show $\xi^{\circ} = A^{3}$:

Fix H hyperplene in V such that $F_{1} \in H$
 $f_{2} \not= H$

Note: $H \cap F_{3}$ has due 2: due $H \cap F_{3} \geq 3+3-4=2$

but $H \neq F_{3}$ because $F_{2} \not= H$.

Marcher:

$$A = PF_2 \setminus PF_1 = P^1 \setminus P_0$$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$

Given $A \in \mathcal{L}_1$ define $A = A \cap F_2$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1 \setminus P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) = P^1$
 $A = PH \setminus P(H \cap F_3) =$

In general

$$\operatorname{codim}_{G(2,4)} \Sigma_{a,b} = a + b \qquad = 2 \cdot (\angle_1 - 2) = \angle_1$$

and $\Sigma_{a,b}^{\circ}$ is isomorphic to an affine space.

In general

$$\operatorname{\mathsf{codim}}_{G(2,4)}\Sigma_{a,b}=a+b$$

and $\Sigma_{a,b}^{\circ}$ is isomorphic to an affine space.

Therefore the Schubert cells form an affine stratification of G(2,4).

The Chow ring CH(G(2,4)) is generated by the classes of the Schubert varities $\sigma_{a,b} = [\Sigma_{a,b}].$

Transversality of Schubert varieties

Let F_{\bullet}, E_{\bullet} be two flags. They are transverse if

$$\frac{\operatorname{codim}(F_i \cap E_j) = \max\{n - (i+j), 0\}}{\operatorname{dim} E_i \cap F_j = i+j - n} \quad \text{or} \quad E_i \cap F_j = 0$$

Transversality of Schubert varieties

Let F_{\bullet} , E_{\bullet} be two flags. They are *transverse* if

$$\operatorname{codim}(F_i \cap E_j) = \max\{n - (i+j), 0\}.$$

Fact: Schubert varieties defined by transverse flags intersect transversely.

Transversality of Schubert varieties

Let F_{\bullet} , E_{\bullet} be two flags. They are *transverse* if

$$\operatorname{codim}(F_i \cap E_j) = \max\{n - (i+j), 0\}.$$

Fact: Schubert varieties defined by transverse flags intersect transversely.

We can use transverse flags to determine the product structure.

Product structure in CH(G(2,4))

We have $\sigma_{a,b} \in CH^{a+b}(G(2,4))$ and they satisfies these relations:

$$\sigma_{1}^{2} = \sigma_{1,1} + \sigma_{2}$$

$$\sigma_{1}\sigma_{1,1} = \sigma_{1}\sigma_{2} = \sigma_{2,1}$$

$$\sigma_{1}\sigma_{2,1} = \sigma_{2,2}$$

$$\sigma_{1,1}^{2} = \sigma_{2}^{2} = \sigma_{2,2}$$

$$\sigma_{2}\sigma_{1,1} = 0$$

$$\mathcal{L}_{2}(F_{\bullet}) = \{\Lambda : F_{\bullet} \leq \Lambda\}$$

$$\mathcal{E}_{2}(E_{\bullet}) = \{\Lambda : E_{\bullet} \leq \Lambda\}$$

$$\mathcal{O}_{2} \cdot \mathcal{O}_{2} = \{\mathcal{E}_{2}(F_{\bullet})\} \cdot \{\mathcal{E}_{2}(E_{\bullet})\} = \{\mathcal{E}_{2}(F_{\bullet}) \cap \mathcal{E}_{2}(E_{\bullet})\} = \{\mathcal{E}_{1}, F_{\bullet}, E_{\bullet} \leq \Lambda\}$$

$$[\{\lambda_{1}, F_{\bullet}\}] = [\mathcal{E}_{22}] = \mathcal{O}_{22}$$

$$\sigma_1 \cdot \sigma_2 = \sigma_{2,1}$$

$$\mathcal{E}_{2}(E_{\cdot}) = \{\Lambda : E_{\cdot} \leq \Lambda \}$$

Want to determine the intersection X= E, (F.) n E, (E.)

Pefre a fleg:
$$P = (E_1 \subseteq P_2 \subseteq E_1 + F_2)$$

$$dux = 1$$
 and $dux \in_{2i}(P_i) = 1$, $\xi(P_i)$ vireducible.

We show:
$$X \leq \mathcal{Z}_{2,1}(P)$$

$$\sigma_1 \cdot \sigma_1 = \sigma_2 + \sigma_{1,1}$$

$$\frac{1}{2}$$
 We sew $\frac{1}{2} = \frac{1}{22}$. Shuiterly $\frac{1}{2} = \frac{1}{22}$.

Same argument shows b=1.

Example 1

How many lines in \mathbb{P}^3 meet four given lines in general position?

Note: Projectively
$$G(2,L) = \frac{1}{2} \Lambda$$
: PA is a line $\int_{in}^{3} P^{3} \int_{in}^{3} P^{3} \int$

62

Example 2

Let C_1, \ldots, C_4 be four curves in \mathbb{P}^3 , $\deg(C_i) = d_i$, in general position. How many lines in \mathbb{P}^3 meet all of them?

many lines in
$$\mathbb{P}^3$$
 meet all of them?

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$
a subvar. of codom 1 in $G(2,4)$ (Chow)
form)

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$
a subvar. of codom 1 in $G(2,4)$ (Chow)
$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma(C) = \{ \Lambda : \mathbb{P} \Lambda \cap C \neq \emptyset \}$$

$$\Gamma$$

$$f(T(C)) = m \cdot \sigma$$
, for some m because $CH(G(2, \omega)) = c\sigma$.

$$\begin{aligned} & \text{w=deg}\left(\left[\Upsilon(C)\right] \cdot \sigma_{21}\right) = \text{deg}\left(\left[\Upsilon(C) \cap \sum_{z} \left(F_{z}\right)\right] = \\ & \text{deg}\left(\left[\Lambda\right] \cdot \left[P\Lambda \cap C \neq \emptyset_{1}\right]\right) \\ & \text{fights } F_{2} = \Lambda \subseteq F_{3} \end{aligned}$$

Example 2 - cont'd

This number is the number of lines in PFz such That:

- · PA = PF3

RA is spermed by Po and an elt of CnPF3

How many of These lines? # (Cn Pf3) = dg(C)=d

How many lines weet C1, ..., C4:

deg([T(C1)]...[T(C1)]) = d,5, -d,5, = d, d, (6)= = 2 d, du.

Variety of secant lines

not contained in hyperphone

Let $C \subseteq \mathbb{P}^3$ be a smooth non-degenerate curve of degree d and genus g. Let

$$\mathfrak{s}(\mathit{C}) = \overbrace{\{\Lambda \in \mathit{G}(2,4) : \mathbb{P}_{\!\!\!A} = \langle \mathit{p},\mathit{q} \rangle \text{ for some } \mathit{p},\mathit{q} \in \mathit{C}\}.}$$

What is the class of $\mathfrak{s}(C)$?

is retional and generically finite.

Moreover
$$S(C) = JuY$$
 so codu $S(C) = 2$

Variety of secant lines - cont'd

Variety of secant lines - cont'd

Common secant lines

Let C_1 , C_2 be two twisted cubics in \mathbb{P}^3 in general position. How many lines are secant to both of them?

Variety of tangent lines

Let $S\subseteq \mathbb{P}^3$ be a surface of degree $d\geq 2$. Let

$$\mathfrak{t}(S) = \{ \Lambda \in G(2,4) : \mathbb{P}L \text{ is tangent to } S \}.$$

What is the class of $\mathfrak{t}(S)$?

Variety of tangent lines

Variety of tangent lines

Common tangent lines

Let S_1, \ldots, S_4 be four surfaces of degrees d_1, \ldots, d_4 , in general position. How many lines are tangent to all of them?