MAT0206 - Prova 2

Matheus T. de Laurentys, 9793714

November 21, 2020

Provas Auxiliares:

 $\mathbb{Q} \setminus \mathbb{Z}$ é denso em \mathbb{R} :

[Por contradição] Seja $(a,b) \subset \mathbb{R}$ tal que $\nexists x \in \mathbb{Q} \setminus \mathbb{Z}$ tal que $x \in (a,b)$. Como \mathbb{Q} é denso, então existe $x \in \mathbb{Z}$ tal que $x \in (a,b)$. Se existir outro inteiro no intervalo, então existe y; |x-y|=1 no intervalo. Então $[x,y] \in (a,b)$ e isso implica que $\frac{b-a}{2} \in (a,b)$. Como $\frac{b-a}{2} \in \mathbb{Q} \setminus \mathbb{Z}$, tem-se contradição.

Dessa forma, ha apenas um inteiro em (a,b). Nesse caso, todavia, tem-se $(a,z) \cup (z,b) \subset (a,b)$ sem inteiros. Como $\mathbb Q$ é denso em $\mathbb R$, então $\exists q \in \mathbb Q$ tal que $q \in (a,x)$. Isso contradiz a suposição, pois $q \in (a,b)$. Tem-se então que $\nexists (a,b) \subset \mathbb R$ tal que $\nexists x \in \mathbb Q \setminus \mathbb Z$ tal que $x \in (a,b)$. Sendo assim, $\mathbb Q \setminus \mathbb Z$ é denso em $\mathbb R$.

Q.1:

 $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ sequências de números reais.

 $A = \text{limsup } x_n \in B = \text{limsup } y_n.$

a) $\lim \inf (-x_n) = -A$

Como visto em aula, limsup x_n é o maior limite de qualquer subsequência convergente de $(x_n)_{n\in\mathbb{N}}$ e liminf x_n o menor desses limites.

Considere a sequência (B, \ldots, A) , de pontos que são limites de subsequências de $(x_n)_{n\in\mathbb{N}}$, ordenada de maneira não decrescente.

Se $x \in \mathbb{R}$ é limite de subsequência de (x_n) , então -x é limite de sequência de $(-x_n)$. Se $x \in \mathbb{R}$ é limite de subsequência de $(-x_n)$, então -x é limite de sequência de (x_n)

[Prova] Tome $(z_n)_{n\in\mathbb{N}}$ subsequência de $(x_n)_{n\in\mathbb{N}}$ tal que $\lim_{n\to+\infty}(z_n)=x$. Então $(a_n)_{n\in\mathbb{N}}$, dada por $\forall i\in\mathbb{N}, a_i=-z_i$, é subsequência de $(-x_n)_{n\in\mathbb{N}}$ tal que $\lim_{n\to+\infty}(a_n)=-x$, pois $\forall \epsilon>0, \exists a_i\in(a_n)_{n\in\mathbb{N}}$ tal que $|a_i-(-x)|<\epsilon$. Isso é verdadeiro pois $\forall \epsilon>0, \exists z_i\in(z_n)_{n\in\mathbb{N}}$ tal que $|z_i-x|<\epsilon$. Essa mesma prova também mostra que se $x\in\mathbb{R}$ é limite de subsequência de $(-x_n)$, então -x é limite de sequência de (x_n)

Sendo assim, $(-B, \ldots, -A)$ é a sequência de pontos que são limites de subsequências de $(-x_n)_{n\in\mathbb{N}}$. Toma-se então a sequência ordenada $(-A, \ldots, -B)$ de tais limites. Como liminf é o menor desses limites, então liminf $(-x_n) = -A$.

b) Seja $\lim_{n \to +\infty} (x_n) = x_0$. Mostre limsup $(x_n - y_n) \ge x_0 - B$.

Como $\lim_{n\to+\infty}(x_n)=x_0$, então a sequência é convergente e, assim, tem apenas um ponto de limite, x_0 . Logo, limsup $(x_n)=x_0$. Pode-se, então , re-escrever limsup $(x_n-y_n)\geq x_0-B$ como limsup $(x_n-y_n)\geq \limsup(x_n)-\limsup(y_n)=A-B$.

[Por contradição] Suponha que limsup $(x_n - y_n) < A - B$. Tome $\epsilon = A - B -$ limsup $(x_n - y_n)$. $\epsilon > 0$

Como existem subsequências de $(x_n)_{n \in \mathbb{N}}$ e $(y_n)_{n \in \mathbb{N}}$ tais que seus limites sejam $\limsup(x_n)$ e $\limsup(y_n)$, então $\forall N \in \mathbb{N}, \exists n \geq \mathbb{N}, |x_n - A| < \frac{\epsilon}{4}$ e $|y_n - B| < \frac{\epsilon}{4}$. Sendo assim, $A - \frac{\epsilon}{4} < x_n' < A + \frac{\epsilon}{4}$ e $B - \frac{\epsilon}{4} < y_n' < B + \frac{\epsilon}{4}$.

Temos então que

$$A-B-\frac{\epsilon}{2}=A-\frac{\epsilon}{4}-(B-\frac{\epsilon}{4}) < x_n'-y_n' < A+\epsilon-B-\epsilon = A-B$$

Como ϵ

a

Q.2:

a) $X_{\alpha} := \{m + n \cdot \alpha; m \in \mathbb{Z} \text{ e } n \in \mathbb{Z}\}\ \text{e } \alpha \text{ irracional. Sejam } f : \mathbb{R} \to \mathbb{R} \text{ e } g : \mathbb{R} \to \mathbb{R}$ contínuas. $\forall x \in X, f(x) = g(x)$. Prove f = g.

[Por contradição] $\exists x_0 \in \mathbb{R}; f(x_0) \neq g(x_0).$

Seja $\epsilon < f(x_0) - g(x_0), \epsilon \neq 0$. Considere que $\epsilon > 0$, sem perda de generalidade. Como f - g tambem é contínua então $\exists \delta > 0$ tal que $\forall x \in (x_0 - \delta, x_0 + \delta), f(x) - g(x) \in (f(x_0) - g(x_0) - \epsilon, f(x_0) - g(x_0) + \epsilon)$. Sendo assim, existe uma vizinhança $V = (f(x_0) - g(x_0) - \epsilon, f(x_0) - g(x_0) + \epsilon)$ de x_0 tal que $\forall x \in V, |f(x) - g(x)| \geq f(x_0) - g(x_0) - \epsilon > 0$. A segunda designaldade vale pela escolha de ϵ .

Porem, como os irracionais são densos em \mathbb{R} , então $\exists \alpha \in V, \alpha$ é irracional. Isso contradiz o fato de $\forall x$ irracional, f(x) = g(x). Logo, $\nexists x_0 \in \mathbb{R}$; $f(x_0) \neq g(x_0)$. Sendo assim $\forall x \in \mathbb{R}$, f(x) = g(x) e isso mostra que f = g.

b) a) é verdadeiro caso α seja racional?

Sim, esse caso tambem é verdadeiro e, na verdade, a prova é a mesma.

Segue, de qualquer forma, a prova desse caso.

[Por contradição] $\exists x_0 \in \mathbb{R}; f(x_0) \neq g(x_0).$

Seja $\epsilon < f(x_0) - g(x_0), \epsilon \neq 0$. Considere que $\epsilon > 0$, sem perda de generalidade. Como f - g tambem é contínua então $\exists \delta > 0$ tal que $\forall x \in (x_0 - \delta, x_0 + \delta), f(x) - g(x) \in (f(x_0) - g(x_0) - \epsilon, f(x_0) - g(x_0) + \epsilon)$. Sendo assim, existe uma vizinhança $V = (f(x_0) - g(x_0) - \epsilon, f(x_0) - g(x_0) + \epsilon)$ de x_0 tal que $\forall x \in V, |f(x) - g(x)| \geq f(x_0) - g(x_0) - \epsilon > 0$. A segunda designaldade vale pela escolha de ϵ .

Porem, como os racionais são densos em \mathbb{R} , então $\exists \alpha \in V, \alpha$ é racional. Isso contradiz o fato de $\forall x$ racional, f(x) = g(x). Logo, $\nexists x_0 \in \mathbb{R}$; $f(x_0) \neq g(x_0)$. Sendo assim $\forall x \in \mathbb{R}$, f(x) = g(x) e isso mostra que f = g.

c) $f: \mathbb{R} \to \mathbb{R}$ contínua. Existe $g: \mathbb{R} \to \mathbb{R}$ descontínua em todos os pontos com $\forall x \in X, f(x) = g(x)$ e α irracional?

Antes, provar que $\mathbb{Q} \setminus \mathbb{Z} \subset \mathbb{R} \setminus X_{\alpha}$:

[Por contradição] Suponha $q \in \mathbb{Q} \setminus \mathbb{Z}$ e $q \notin \mathbb{R} \setminus X_{\alpha}$.

Como $q \in \mathbb{Q}, q \in \mathbb{R}$. Sendo assim, $q \in X_{\alpha}$. Isso significa que $q = \frac{a}{b} = m + n\alpha$, sendo $a, n, m \in \mathbb{Z}, b \in \mathbb{N}, b \neq 1$. Se esse fosse o caso, $a = b.m + b.n.\alpha \rightarrow (a - b.m) = b.n.\alpha$. Como $(a - b.m) \in \mathbb{Z}, b.n.\alpha \in \mathbb{Z}$. Como α irracional, $\nexists z \in \mathbb{Z}$ tal que $z.\alpha \in Z$,

mostrando que $b.n.\alpha \notin \mathbb{Z}$. Sendo assim, $q \notin X_{\alpha}$, e, consequentemente, $q \in \mathbb{R} \setminus X_{\alpha}$. Isso mostra que $\mathbb{Q} \setminus \mathbb{Z} \subset \mathbb{R} \setminus X_{\alpha}$.

Para a questão. Sim, existe tal g. Tome g dada por:

$$\begin{cases} f(x), & \text{se } x \in X_{\alpha} \\ f(x) + 10, & c.c. \text{ Note que isso inclui } \mathbb{Q} \setminus \mathbb{Z} \end{cases}$$
 [Por contradição] Seja $x_0 \in \mathbb{R}$ tal que g é contínua em x_0 .

Como g contínuaem x_0 , então $\forall \epsilon > 0, \exists \delta > 0$ tal que $\forall x \in (x_0 - \delta, x_0 + \delta),$ $g(x) \in (g(x_0) - \epsilon, g(x_0) + \epsilon)$. Seja, então , algum $\epsilon > 0$ e $\epsilon < 10$. Como $C = \mathbb{Q} \setminus \mathbb{Z}$ denso em \mathbb{R} , qualquer que seja $\delta > 0$, $\exists q \in C$ tal que $q \in (x_0 - \delta, x_0 + \delta)$. Como $g(q) = g(x_0) + 10, g(q) \notin (g(x_0) + \epsilon, g(x_0) + \epsilon)$. Isso contradiz o fato de g ser contínua em x_0 . Sendo assim, g é descontínua em todos os pontos.

Q.3 Sejam A e B conjuntos compactos tais que $A \neq \emptyset, B \neq \emptyset, A \subset \mathbb{R}, B \subset \mathbb{R}$. $d(A, B) = \inf\{|a - b|; a \in A \in B\}$

a)
$$(A \cap B = \emptyset) \Rightarrow d(A, B) > 0$$

[Por contradição] Sejam $a \in A, b \in B$ tais que |a - b| = 0.

Tome $\epsilon > 0$. Como |a - b| = 0, $b \in (a - \epsilon, a + \epsilon)$. Sendo assim, $a \in \partial B$. Como B é fechado, tem-se contradiçãopois conjuntos fechados contem sua fronteira (visto em L4 E10c). Sendo assim, $\nexists a \in A, b \in B$ tais que |a - b| = 0. Assim, $|a - b| \neq 0$. Como $|a-b| \geq 0, \forall a, b \in \mathbb{R}$, então d(A, B) > 0.

$$\mathbf{b})(A \cap B = \emptyset) \Rightarrow \exists a \in A, b \in B; d(A, B) = |a - b|$$

Tem-se que $\forall a \in A, b \in B, d(A, B) \leq |a - b|$ imediatamente pois $\forall a \in A, b \in B$, $|a-b| \in |a-b|; a \in A, b \in B \in \forall x \in X. \text{ inf } X \leq x \text{ por definição.}$

[Por contradição] Seja, $\forall a \in A, b \in B, D = d(A, B) < |a - b|$.

Como D é infimo, então existe uma sequência de |a-b|; $a \in A, b \in B$ cujo limite é D. Seja $(x_n)_{n\in\mathbb{N}}$ uma tal sequência Tome $\epsilon>0, \exists N\in\mathbb{N}, \forall n\geq N, |x_n-D|<\epsilon.$ Por definição $x_n = |a-b|, a \in A, b \in B$. Porem, se fixado $\epsilon = d(A,B) - |a-b|$, então existem $a \in A, b \in B \text{ com } |(a-b)-D| < d(A,B)-|a-b|,$

c) De exemplos de $A, B \subset \mathbb{R}$ fechados tais que $A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset, d(A, B) = 0$. Tome $A = \mathbb{N}$ e $B = \{n + \frac{1}{n}; n \in \mathbb{N}\}$. Ambos tem apenas pontos isolados, e por isso, são fechados. Assim, $\inf\{|n-n+\frac{1}{n}|\}=\inf\{|\frac{1}{n}|\}=0.$

Mantendo B, pode-se tomar $A' = A \setminus \{n_1, n_2, \dots, n_k; n_i \in \mathbb{N} \text{ quaisquers}\}.$ Mantendo A, pode-se tomar $B' = \{n + f : \frac{1}{n} \ n \in \mathbb{N}, f \text{ limitada}\}$

EXTRA

a) f tem a propriedade (U) $\iff \forall (x_n)_{n\in\mathbb{N}}$ em X com $\lim_{n\to+\infty}(x_n)=x_0$ tem-se limsup $f(x_n)\leq f(x_0)$.

[Por contradição] Seja $(x_n)_{n\in\mathbb{N}}$ em X com $\lim_{n\to+\infty}(x_n)=x_0$, mas limsup $f(x_n)>f(x_0)$. Seja $(y_n)_{n\in\mathbb{N}}$ subsequência de $(x_n)_{n\in\mathbb{N}}$ tal que $L=\lim f(y_n)>f(x_0)$. Seja

 $\alpha = \frac{L - f(x_0)}{2}$. Tome $0 < \epsilon < \alpha$. Como f tem propriedade U, $\exists \delta > 0$ tal que $\forall x \in (x_0 - \delta, x_0 + \delta), f(x) \in (f(x_0) - \epsilon, f(x_0) + \epsilon).$ Porem, pela escolha de ϵ , tem-se uma vizinhança $V=(x_0-\delta,x_0+\delta)$ de x_0 tal que $\nexists x\in V, f(x)\in$

 $(L - \alpha, L + \alpha)$, contradizendo o fato de L ser limite. Sendo assim $\nexists (x_n)_{n \in \mathbb{N}}$ em X com $\lim_{n \to +\infty} (x_n) = x_0$, mas limsup $f(x_n) > f(x_0)$. Logo, $\forall (x_n)_{n \in \mathbb{N}}$ em X com $\lim_{n \to +\infty} (x_n) = x_0$, limsup $f(x_n) \leq f(x_0)$

 (\Leftarrow)

[Por contradição] Seja $\epsilon > 0$ de forma que $\not\equiv \delta > 0$ tal que $\forall x \in (x_0 - \delta, x_0 + \delta) \cap X$, $f(x) < f(x_0 - \delta, x_0 + \delta) \cap X$, $f(x) < f(x_0 - \delta, x_0 + \delta) \cap X$, forme alguma sequência $(x_n)_{n \in \mathbb{N}}$ em X com $\lim_{n \to +\infty} (x_n) = x_0$. Tome, então , $(y_n)_{n \in \mathbb{N}}$ subsequência de $(x_n)_{n \in \mathbb{N}}$ tal que $L = \lim_{n \to +\infty} f(y_n) \leq f(x_0)$. Porem, como essa subsequência converge para L, então $\exists N \in \mathbb{N}$ tal que $\forall n > N, |f(x_n) - L| < \epsilon$. Isso

 $(y_n)_{n\in\mathbb{N}}$ subsequência de $(x_n)_{n\in\mathbb{N}}$ tal que $L=\lim f(y_n)\leq f(x_0)$. Porem, como essa subsequência converge para L, então $\exists N\in\mathbb{N}$ tal que $\forall n\geq N, |f(x_n)-L|<\epsilon$. Isso implica que $L-\epsilon< f(x_n)< L+\epsilon$. Porem, como $L\leq f(x_0)$, entao $f(x_n)\leq f(x_0)+\epsilon$. Isso contradiz a escolha de tal ϵ . Por fim, isso mostra que $\forall \epsilon>0 \exists \delta>0; \forall x\in (x_0-\delta,x_0+\delta)\cap X, f(x)< f(x_0)+\epsilon$).

Nota: Poderia ser qualquer f contínuaem $x_0 = 0$.

b) Note que se f limitada superiormente, então ela assume valor máximo em X, pois ela é definida em X.

Tome $x_0 = \sup X$ e $\epsilon > 0$. Pela definição, existe vizinhança de x_0 com f limitada. Tomando $x_i < x_0$ nessa vizinhança, tem-se outra vizinhança limitada.

Pode-se combrir os conjunto X com tais vizinhança. Porem, como visto em aula, toda familia de abertos cobrindo um compacto tem uma subfamilia finita que tambem o cobre. Tal familia mostra que f é limitada superiormente pois sejam $x, y \in (a, b), f(x) < f(y) + \epsilon_1, f(y) < f(x) + \epsilon_2$.