Zestaw 1

Legenda:

Gra (rozgrywka) składa się z tur (kolejek)

A - gracz A

B - gracz B

a - kapitał gracza A

b - kapitał gracza B

 p_A - prawdopodobieństwo wygrania tury przez gracza A

 p_B - prawdopodobieństwo wygrania tury przez gracza B

 q_A - prawdopodobieństwo przegrania tury przez gracza A

 q_B - prawdopodobieństwo przegrania tury przez gracza B

Zadanie A "Ruina gracza dla 2 graczy A,B"

Zał.: a = 50

b = 50

Szukane:

Oraz porównanie z wynikiem analitycznym

Zadanie B "Ruina gracza dla 2 graczy A,B"

Zał.: $a+b = 100 p_A = 0.5$

Szukane:

Zadanie C "Liczba tur (L) do ukończenia gry"

$$b = 50$$

$$p_A = 1/5; 1/2; 4/5$$

Szukane:

Dla każdego p_A

Oraz średnia długość gry

Zadanie D "Trajektoria liczby wygranych dla jednego z dwóch graczy A,B"

$$a+b=20$$
 $p_A=1/5$; $1/2$; $4/5$

Szukane:

Dla każdego p_A

Liczba wygranych przez wybranego gracza

Trajektorie dla 3 gier najlepiej na jednym wykresie

Dodatkowe Zadanie E "Maksymalna długość rozgrywki - L_{MAX}"

Zał.: a = 50 b = 50

Szukane:

 L_{MAX} z 1000 gier

Dodatkowe Zadanie F "Kapitał (k) gracza A po N turach"

Zał.: a = 50

b = 50

 $p_A = 0.2$

N = 1; 10; 50; 60; 70; 80

Szukane:

Dla każdego N

Podpowiedź: Trzeba przeprowadzić wiele rozgrywek aby móc wyznaczyć prawdopodobieństwo