Note

$$\tau_\alpha' = \frac{\mathrm{d} \mathrm{E}(v|u>\alpha)}{\mathrm{d} \alpha} = \frac{\mathrm{d}}{\mathrm{d} \alpha} \frac{\mathrm{E}\left\{v(u>\alpha)\right\}}{1-\alpha} = \frac{\tau_\alpha - \mu_\alpha}{1-\alpha} \ , \quad \mu_\alpha \equiv \mathrm{E}(v|u=\alpha) \ .$$

Hence $\mu_{\alpha} = \tau_{\alpha} - (1 - \alpha)\tau_{\alpha}'$ and τ_{α} is monotonic if μ_{α} is monotonic.

Suppose τ_{α} is given on a equispaced grid of [0, 1], with values denoted $\tau_0, \tau_1, \dots, \tau_{n-1}$. Then the copula can be simulated using

$$v_i = \hat{P}\{\Phi^-(\mu_i) + \epsilon_i\}$$
, $\epsilon_i \sim N(0, \sigma_i^2)$, $\mu_i = \tau_i - (n-i)(\tau_i - \tau_{i-1})$

with $\tau_0 = 1/2$, $\sigma_i = ?$. Here \hat{P} computes the empirical percentiles and ensures the empirical distribution of the v_i is uniform.