清华大学本科生考试试题专用纸

期中考试课程 随机数学与统计 (A卷) 2022年4月22日

学号: ______ 姓名: _____ 班级: _____

一. (20 分) 设事件
$$A, B$$
 满足 $P(A) = \frac{1}{2}, P(B \mid A) = \frac{1}{4}, P(A \mid B) = \frac{1}{3}$,

$$\Rightarrow X = \begin{cases} 1, & A$$
发生 $\\ 0, & A$ 不发生 \end{cases} $Y = \begin{cases} 1, & B$ 发生 $\\ 0, & B$ 不发生 \end{cases}

- (1) 试问 A, B 是否独立? X, Y 是否独立? 为什么?
- (2) 记 $Z = X^2 + Y^2$, 试求Z的分布以及它的矩母函数 $M_Z(u)$;
- (3) 设 X_1, \dots, X_n 独立同分布,且与X具有相同的分布,

试求
$$P(X_1 = 1 | \sum_{i=1}^n X_i = 3)$$
。

二.(20 分) 设随机变量 X_1, \dots, X_n, \dots 独立同分布,满足 $P(X_1 = 2) = P(X_1 = -2) = \frac{1}{2}$,

记
$$S_n = \sum_{i=1}^n X_i$$
 , $n \ge 1$ $S_0 = 0$;

- (1) $idA = \{X_1 + X_2 = 0\}, B = \{X_2 + X_3 = 4\}$, 试求事件 A 与 B 的相关系数 $r_{A,B}$;
- (2) 试求 $P(S_4 = 4)$ 以及 $Cov(S_4, S_{2022})$ 。

三. (20 分) 有三枚不同的硬币 C_1, C_2, C_3 ,正面出现的概率分别为 p_1, p_2, p_3 ,现考虑两种不同的抛掷策略:

策略一: 先从三枚硬币中随机选一枚, 再用这枚硬币进行独立重复抛掷;

策略二:每次抛掷时,都是随机地从三枚硬币中选一枚来进行抛掷。

记 N 为前 n 次抛掷中正面出现的次数,试在上述两种策略下分别求出 N 的数学期望。

四. (20分) 设 $X \sim Ge(p_1), Y \sim Ge(p_2)$ (均为几何分布)相互独立,

- (1) 试求P(X = Y);
- (2) 证明: P(Y > X + n | Y > X) = P(Y > n) $\forall n = 1, 2, \dots;$
- (3) 试求 $E(X \mid X < Y)$ 。
- 五. (20 分) 设 $\{N_t:t\geq 0\}$ 为强度为 $\lambda>0$ 的 Poisson 过程,随机变量序列 Y_1,\cdots,Y_n,\cdots 独立同分布,且均与 $\{N_t:t\geq 0\}$ 相互独立。记 $EY_1=\mu,EY_1^2=\gamma^2<\infty,$

 - (2) 试求 $E[\prod_{i=1}^{N_t} Y_i]$ 。
- 附加题. (5分)设 $X_0, X_1, \dots, X_n, \dots$ 独立同分布,且

$$P(X_i = k) = p_k, k = 1, 2, \dots, m.$$

$$\sum_{k=1}^{m} p_k = 1$$

记 $N = \min\{n > 0, X_n = X_0\}$,试求EN。