CHM 333 – Spring 2013 Review Sheet – Exam 4

Glycolysis	Know structures and reactions
Degradative	Enzyme Types and Names
Cytosol	Recognize reaction types
Fates of Pyruvate	Overall Reaction
Overall Reaction	
Structure (Glucose, Pyruvate)	Lipid Metabolism
Enzymes Types and Names	Localization
Regulatory Steps	Translocation
ATP Formation, Use	Absorption of Dietary Lipids
Cofactors Used, Generated	Lipases
Investment Vs. Dividend Phase	Chylomicrons
Entry of Other Carbohydrates	Bile salts
into Glycolysis	Micelles
Know structures and reactions	Mobilization of stored fat
Recognize reaction types	
Regulation	Fatty Acid β -Oxidation = DEGRADATION
	Three Stages
Glycogen Metabolism:	Fatty-acyl-CoA
Storage & Degradation	Fatty-acyl-CoA Translocation into Mitochondria
Gluconeogenesis	Role of Carnitine
How Different From Glycolysis	Cofactors Used/Generated (NADH
Regulation	& FADH ₂)
Cori Cycle	Overall Reaction
Overall Reaction	Number of cycles and number of
	Acetyl-CoA generated per lipid
Ethanol Metabolism	Counting ATP
	Ketone Bodies
Pyruvate Dehydrogenase Complex	Atkins' Diet
Location	Diabetes
Translocation	
All Cofactors Used/Generated	$FAD/FADH_2 = 1.5 ATP$
Regulation	$NAD^+/NADH = 2.5 ATP$
TCA Cycle	Electron Transport Chain (ETC) &
Two Purposes	Oxidative Phosphorylation
Differences between Glycolysis	Complex I, II, III, IV
and TCA cycle	Succinate dehydrogenase = Complex II
Location	Cytochrome c
Cofactors Used/Generated	Coenzyme Q
ATP Used/Generated	Role of oxygen
Regulatory Steps	

Entry and passage of electrons from NADH through ETC

Entry and passage of electrons from FADH₂ through ETC

How many protons pumped per ETC Complex

How to arrive at 2.5 ATP/NADH & 1.5 ATP/FADH₂

Generation of proton gradient across the inner mitochondrial membrane

 F_0F_1 ATP Synthase F_0 = proton pore F_1 = ATP synthesis subunit How electron transport chain is coupled to ATP synthesis

How uncouplers work 2,4-dinitrophenol UCP1 and hibernation

Respiratory inhibitors