合肥工业大学 2009 级硕士研究生《数值分析》试卷(A)

班	级	学号		以 绩	
	. 判断题 (下列各题, 你认为亚 题 2 分,共 10 分)	E确的,请在题后的	括号内打"√",﴿	错误的打"×",	
1.	若 $f(x) = x^5 - 2x^3 + 3$,则 $f[0,$	[1, 2, 3, 4, 5] = 5!.		())
2.	若 $\int_a^b f(x) dx \approx \sum_{i=0}^n A_i f(x_i)$ 是插	值型求积公式,则它	它的代数精度正如	好是n. ())
3.	若 n 阶方阵 A 是严格对角占优	化的,则解方程组 <i>A</i>	x = b 的 Jacobi x	迭代法收敛。 ())
4.	设 x^* 是方程 $f(x) = 0$ 的根,则	求 x^* 的 Newton 迭作	代法至少是平方中	收敛的。())
5.	解常微分方程初值问题的二阶	介 Runge-Kutta 方法	的局部截断误差	是 <i>O</i> (h³),其	,
	中 h 是步长.			())
 2. 3. 4. 	填空题(每空 2 分,共 20 3 近似数 $x^* = 3.120$ 关于准确值 ———————————————————————————————————	x = 3.12065 有	ge 插值基函数, ,n). =16.4446,用三 	则 E点数值微分	

三(本题满分10分) 已知列表函数

\mathcal{X}_{i}	-1	0	1	2
$f(x_i)$	0	-5	-6	3

用差商法求满足上述插值条件的 Newton 插值多项式 (要求写出差商表)。

四(本题满分 10 分) 求 c_0, c_1 和 x_1 , 使下列求积公式

$$\int_0^1 f(x) \, \mathrm{d}x \approx c_0 f(0) + c_1 f(x_1)$$

具有尽可能高的代数精度。

五(本题满分10分) 对于下列方程组

$$\begin{cases} 4x_1 - 2x_2 + x_3 = 2, \\ 2x_1 + 6x_2 + 3x_3 = 3, \\ x_1 + 2x_2 + 4x_3 = 5, \end{cases}$$

建立 Gauss-Seidel 迭代公式,写出相应的迭代矩阵,并用迭代矩阵的范数判断所建立的 Gauss-Seidel 迭代公式是否收敛。

六(本题满分 10 分) 分别用两点古典 Gauss 公式及 Simpson 公式计算 $I = \int_0^1 \frac{\sin x}{1+x} \, \mathrm{d}x$ 的近似值。

七(本题满分 10 分) 已知方程 $xe^x - 1 = 0$ 在 $x_0 = 0.5$ 附近有一个实根 x^* .

- (1) 取初值 $x_0 = 0.5$,用 Newton 迭代法求 x^* (只迭代两次)。
- (2) 取初值 $x_0 = 0.5$, $x_1 = 0.6$, 用弦截法求 x^* (只迭代两次)。

八(本题满分 10 分) 分别用 Euler 方法及改进的 Euler 方法求下列初值问题(取 步长 h = 0.5)

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = y - \frac{2x}{y}, & 0 < x \le 1, \\ y(0) = 1. \end{cases}$$

2

九(本题满分 10 分) 设 s(x) 是 [0,2] 上的三次自然样条:

$$s(x) = \begin{cases} s_0(x) = 2x^3 - 3x + 4, & 0 \le x < 1, \\ s_1(x) = a(x-1)^3 + b(x-1)^2 + c(x-1) + 3, & 1 \le x \le 2. \end{cases}$$

求a,b,c.

合肥工业大学 2010 级硕士研究生《数值分析》试卷(A)

班级	 5 学与	클	成绩

一、填空题(每空2分,共20分)

- 1. 近似数 $x^* = 2.315$ 关于准确值 x = 2.31565 有______位有效数字,相对误差是
- 3. 设函数 f(0.9) = -1.2178, f(1) = -1, f(1.1) = -0.6018, 用三点数值微分公式计算 f'(1) 的近似值为_______.
- 4. 设 $A = \begin{bmatrix} -2 & 3 \\ 4 & -5 \end{bmatrix}$,则 $\|A\|_1 = \underline{\hspace{1cm}}$,Cond $(A)_{\infty} = \underline{\hspace{1cm}}$.
- 5. 设 x^* 是方程f(x) = 0的3重实根,则求 x^* 的改进的 Newton 迭代公式为

二(本题满分8分)对下列方程组

$$\begin{cases} 2x_1 + 6x_2 + 3x_3 = 3, \\ x_1 + 2x_2 + 4x_3 = 5, \\ 4x_1 - 2x_2 + x_3 = 2 \end{cases}$$

建立收敛的 Jacobi 迭代公式和收敛的 Gauss-Seidel 迭代公式,并说明理由。

三(本题满分10分) 已知列表函数

\mathcal{X}_{i}	0	1	2	3
$f(x_i)$	0	-5	-6	3

用差商法求满足上述插值条件的 Newton 插值多项式 (要求写出差商表)。

四(本题满分 16 分) (1) 确定 x_1 , x_2 , A_1 , A_2 , 使下面的求积公式为 Gauss 型求积公式

$$\int_{-1}^{1} f(x) dx \approx A_1 f(x_1) + A_2 f(x_2).$$

(2) 分别用两点古典 Gauss 公式及 Simpson 公式计算 $I = \int_{-1}^{1} e^{x} \sin x \, dx$ 的近似值。

五(本题满分 10 分) 已知方程 $x^3 - 2x - 1 = 0$ 在 $x_0 = 1.5$ 附近有一个实根 x^* .

- (1) 取初值 $x_0 = 1.5$,用 Newton 迭代法求 x^* (只迭代两次)。
- (2) 取初值 $x_0 = 1.5$, $x_1 = 1.6$, 用弦截法求 x^* (只迭代两次)。

六(本题满分 10 分) 求拟合下列表中数据的 1 次最小二乘多项式,取权 ρ_i = 1, i = 0,1,2,3.

i	0	1	2	3
X_i	1	2	3	4
\mathcal{Y}_i	1.3	3.5	4.2	5.0

七(本题满分 16 分) (1) 设初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y), \\ y(t_0) = y_0. \end{cases}$$

证明 Euler 方法是求解上述初值问题的仅有一阶精度的数值方法。

(2) 用改进的 Euler 方法求下列初值问题(取步长h = 0.5)

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{3y}{1+t}, & 0 < t \le 1, \\ y(0) = 1. \end{cases}$$

下面2题任意选做1题。

八(本题满分 10 分) 设S(x) 是[0,2]上的三次自然样条:

$$S(x) = \begin{cases} S_0(x) = 1 + 2x - x^3, & 0 \le x < 1, \\ S_1(x) = 2 + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & 1 \le x \le 2. \end{cases}$$

求b,c,d.

八 (本题满分 10 分) 设迭代矩阵 M 的某种范数 $\|M\| = q < 1$, 证明迭代公式

$$x^{(k+1)} = M x^{(k)} + d$$
, $k = 0, 1, 2, \cdots$

对任意初值 $x^{(0)}$ 都收敛到线性方程组x = Mx + d的解 x^* ,且有估计式

$$\|\boldsymbol{x}^* - \boldsymbol{x}^{(k)}\| \le \frac{q}{1-q} \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)}\|,$$

其中 $M \in \mathbf{R}^{n \times n}$, $\mathbf{x}^*, \mathbf{x}, \mathbf{x}^{(k)}, \mathbf{d} \in \mathbf{R}^n$, $k = 0, 1, 2, \cdots$.

合肥工业大学 2011 级硕士研究生《数值分析》试卷(A)

班级	姓名	学号	成绩
– 、	判断题 (下列各题, 你认为分, 共 10 分)	正确的,请在题后的括号	内打"√",错误的打"×",每题 2
1.	,	則 $f[0,1,2,3,4,5] = f^{(5)}(\xi)$),其中 <i>ξ</i> 介于0,1,2,3,4,5之间,
	f [0,1,2,3,4,5] 是 f(x) 关于		
2			直接求解方程组 $Ax = b$,无须选
	主元素。		()
3.	若 $f(a)f(b) < 0$,则方程 f	f(x) = 0在区间 (a,b) 内至少	少有一个根。 (
4.	若函数 $f(x)$ 是多项式,则'	它的 Lagrange 插值多项式	
5.	解常微分方程初值问题的D	四阶 Runge-Kutta 方法的局	品部截断误差是 $O(h^5)$,其中 h 是
	步长。		(
二、:	填空题(每空 2 分,共 10 分	})	
1.	近似数 $x^* = 3.200$ 关于准确	自值 x = 3.200678 有	_位有效数字。
2.	设 $A = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$,则 $Cond(A)$	$(A)_1 = \underline{\hspace{1cm}}.$	
3.	设函数 $f(2.6) = 13.4673, j$	$f(2.7) = 14.8797, \ f(2.8) =$	16.4446, 用三点数值微分公式
	计算 <i>f</i> ′(2.7) = <u>14.8865</u>		
		-	
4.	设函数 $f(x) = \sin 2x$, p_2	(x) 是 $f(x)$ 的以 1, 2, 3 为 $=$	节点的二次 Lagrange 插值多项
	式,则余项 $f(x) - p_2(x) =$	=	
5	二元函数 $f(x, y)$ 在区域 D)上关于立满早Lingabita多	公 什里。
3.	-儿函数 $f(x,y)$ 在区域 D	· 上大 1 y im 足 Lipsciitz 身	(江龙:
= (本题满分 12 分) 对下列方程	⊒ <i>4</i> H	
= (
		$\begin{cases} 5x_1 + 2x_2 + x_3 = -12, \\ -x_1 + 4x_2 + 2x_3 = 20, \\ 2x_1 - 3x_2 + 10x_3 = 3 \end{cases}$	
		$\begin{cases} -x_1 + 4x_2 + 2x_3 = 20, \\ 2x_1 + 2x_2 + 10, \\ 2x_1 + 2x_2 + 10, \\ 2x_2 + 2x_3 = 20, \end{cases}$	
		$2x_1 - 3x_2 + 10x_3 = 3$	

阵,并用迭代矩阵的范数判断所建立的 Jacobi 迭代格式是否收敛(4分)。

建立 Jacobi 迭代格式(4分)和 Gauss-Seidel 迭代格式(4分),写出 Jacobi 迭代格式的迭代矩

四(本题满分10分)已知列表函数

X_i	0	1	2	3
$f(x_i)$	-7	-4	5	26

用差商法求满足上述插值条件的 Newton 插值多项式 (要求写出差商表)。

五(本题满分14分)(1) 直接验证梯形求积公式具有1次代数精度。(4分)

(2) 分别用 Simpson 公式和两点古典 Gauss 公式计算 $I = \int_0^1 \frac{\sin x}{1+x} \, \mathrm{d}x$ 的近似值。(10 分)

六(本题满分 12 分). 设 x^* 是方程f(x) = 0的单根,f(x)是可导函数。

- (1) 证明求 x^* 的 Newton 迭代法至少是平方收敛的。(6 分)
- (2) 若 $f(x) = xe^x 1$, 取初值 $x_0 = 0.5$, $x_1 = 0.6$, 用弦截法求 x^* (只迭代两次)。 (6 分)

七(本题满分10分) 求拟合下列表中数据的1次最小二乘多项式,取权 ρ_i =1,i=0,1,2,3.

i	0	1	2	3
X_i	-1	0	1	2
y_i	-0.2	0.9	1.9	3.0

八(本题满分 12 分) (1) 设初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y), \\ y(t_0) = y_0. \end{cases}$$

证明 Euler 方法是求解上述初值问题的一阶精度的数值方法。(6分)

(2) 用改进的 Euler 方法求下列初值问题(取步长 h = 0.5)(6 分)

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = y - \frac{2t}{y}, & 0 < t \le 1, \\ y(0) = 1. \end{cases}$$

下面2题任意选做1题。

九(**本题满分 10 分**) 设 S(x) 是函数 f(x) 在区间 [0,2] 上满足第一类边界条件的三次样条:

$$S(x) = \begin{cases} S_0(x) = 1 + 2x - x^3, & 0 \le x < 1, \\ S_1(x) = 2 + b(x - 1) + c(x - 1)^2 + (x - 1)^3, & 1 \le x \le 2. \end{cases}$$

求b,c和f'(2).

九(本题满分10分)证明复化梯形求积公式的递推公式

$$T_{2n} = \frac{1}{2}T_n + \frac{h_n}{2}\sum_{i=0}^{n-1}f(x_{i+\frac{1}{2}}),$$

其 中 积 分 区 间 为 [a,b] , 步 长 $h_n=\frac{b-a}{n}$, $x_i=a+i\cdot h_n$, $i=0,1,\cdots,n$, $x_{i+\frac{1}{2}}=\frac{1}{2}(x_i+x_{i+1})$, $i=0,1,\cdots,n-1$, T_n 和 T_{2n} 分别是将 [a,b] n 等分和 2n 等分时关于 积分 $\int_a^b f(x)\mathrm{d}x$ 的复化梯形求积公式。

合肥工业大学 2012 级硕士研究生《数值分析》试卷(A)

一、填空题(每空2分,共20分)

- 2. 设 $x^* = 3$ 是方程 $x^3 7x^2 + 15x = 9$ 的 2 重实根,则求 x^* 的改进的 Newton 迭代公式为
- 4. 三次样条 $S(x) = \begin{cases} S_0(x), & 0 \le x < 1, \\ S_1(x), & 1 \le x \le 2 \end{cases}$ 在结点 x = 1 处的连续性条件是_____
- 5. 设函数 f(0.9) = -1.2, f(1) = -1.0, f(1.1) = 0.5, 用三点数值微分公式计算 f'(1) 的近似值为_____.
- 6. 已知求积节点 $(x_i, f(x_i)), i = 0, 1, \dots, n$,设 $I = \int_a^b \rho(x) f(x) dx$, $I_n = \sum_{i=0}^n A_i f(x_i)$,

若
$$I - I_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} \int_a^b \omega_n(x) dx$$
,其中 ξ 介于 x_0, x_1, \dots, x_n 之间, $\omega_n(x) = \prod_{i=0}^n (x - x_i)$;

则求积公式
$$I_n = \sum_{i=0}^n A_i f(x_i)$$
 至少具有____次代数精度。

7. 四阶 Runge-Kutta 方法的局部截断误差是____ ,其整体截断误差是

二(本题满分10分)已知线性方程组

$$\begin{cases} -4x_1 + x_2 + 2x_3 = 2, \\ 2x_1 + 5x_2 - x_3 = 0, \\ 3x_1 - 2x_2 + 6x_3 = -1. \end{cases}$$

- (1) 分别写出求解上述方程组的 Jacobi 迭代格式和 Gauss—Seidel 迭代格式的迭代矩阵 B_J 和 B_G .(4分)
- (2) 计算范数 $\|B_J\|_1$ 和 $\|B_G\|_1$, 判断求解上述方程组的 Jacobi 迭代格式和 Gauss–Seidel 迭代格式是否收敛? (4 分)
 - (3) 若都收敛,哪个迭代格式收敛速度得更快? (2分)

三(本题满分 10 分) 用下列表中的数据求插值多项式 p(x) ,使之满足 $p(x_i) = f(x_i)$, i = 0,1,2 ,和 $p'(x_0) = f'(x_0)$. (要求写出差商表)

\mathcal{X}_{i}	0	1	2
$f(x_i)$	1	3	11
$f'(x_i)$	1		

四(本题满分 12 分) (1) 设 $I = \int_0^3 f(x) dx$. 已知 $f(0) = f(3) = \alpha (\alpha 未知), f(1) = 2,$

f(2) = 2.5,用 n = 3 (即将积分区间[0,3]分成 3 段)的复化梯形求积公式计算 I,得 5.5;用 Simpson 求积公式计算 I,得 5,求 α 和 f(1.5). (7 分)

(2) 用上述 2 点古典 Gauss 公式计算 $I = \int_0^1 x \sin x \, dx$ 的近似值。(5 分)

五(本题满分 10 分). 已知方程 $2x^3 + 3x - 7 = 0$.

- (1) 取初值 $x_0 = 0.8$,用 Newton 迭代法求 x_2 . (5 分)
- (2) 取初值 $x_0 = 0.8$, $x_1 = 0.9$, 用弦截法求 x_3 .(5分)

六(本题满分 10 分) 求拟合下列表中数据的 1 次最小二乘多项式 $p_1(x)$,取权 $\rho_i=1$, i=0,1,2,3,并计算总误差 Q.

i	0	1	2	3
\mathcal{X}_{i}	-1	0	1	2
y_i	-0.5	0.6	1.4	2.5

七(本题满分 10 分) 用改进的 Euler 方法求下列初值问题(取步长h = 0.5)

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}t} = -y(1+ty), & 0 < t \le 1, \\ y(0) = 1. \end{cases}$$

八(本题满分12分) 设函数 $\varphi(x)$ 在 [a,b] 上具有一阶连续导数,且满足;

- (1) 当 $x \in [a,b]$ 时, $a \le \varphi(x) \le b$;
- (2) 存在常数0 < L < 1, 对 $\forall x \in [a,b]$, 都有 $|\varphi'(x)| \le L$;

证明

- (1) 函数 $\varphi(x)$ 在区间[a,b]上存在唯一不动点 x^* ; (4分)
- (2) 对任何初值 $x_0 \in [a,b]$, 由迭代格式 $x_k = \varphi(x_{k-1})$ 生成的序列 $\{x_k\}$ 都收敛于 x^* ;(4分)

(3)
$$|x^* - x_k| \le \frac{L}{1 - L} |x_k - x_{k-1}| . (45)$$

九(本题满分 6 分) 设函数 $f(x)=\sin 2x$, $p_2(x)$ 是 f(x) 的以 0,0.05,0.1 为节点的二次 Lagrange 插值多项式,求 $p_2(0.03)$ 至少有几位有效数字?($\sin 0.06=0.059964\cdots$;要求用 Lagrange 插值余项公式求。)