- 1 Answer the following:
 - a. Find $u \in \mathbb{R}$ such that $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$.
 - b. Describe how you would find all $w \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ such that $\mathbb{Q}(w) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$.
- **Solution** a. One such value of u would be $u = \sqrt{2} + \sqrt[3]{5}$. By calculating the various powers of $\sqrt{2} + \sqrt[3]{5}$, it's easy to see that $\{1, \sqrt{2}, \sqrt[3]{5}, \sqrt[3]{5}, \sqrt{2}\sqrt[3]{5}, \sqrt{2}\sqrt[3]{5}\}$ is a basis for $\mathbb{Q}(u)$, which is the same basis as for $\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$, so they are the same.
 - b. I would look at linear combinations of the basis elements, and check to see if their powers can give me the rest of the basis elements.
 - **2** If $a, b \in K$ are algebraic over F and are of degree m, n, respectively, with gcd(m, n) = 1, show that [F(a, b) : F] = mn.

Solution We have:

$$[F(a,b):F] = [F(a,b):F(a)]m = [F(a,b):F(b)]n$$

Because gcd(m, n) = 1, we know that $mn \mid [F(a, b) : F]$; indeed, we can just look at the prime decomposition of m and n, and note that $m, n \mid [F(a, b) : F]$. Hence, $[F(a, b) : F] \ge mn$.

Since $F \subseteq F(a)$, we also know that b is algebraic over F(a) with degree at most n, so $[F(a,b):F(a)] \le n$. Hence, $[F(a,b):F] \le mn$, which shows that [F(a,b):F] = mn.

- **3** If $|F| = q < \infty$, show:
 - a. There exists a prime p such that char F = p.
 - b. $q = p^n$ for some n.
 - c. $a^q = a$ for all $a \in F$.
 - d. If $b \in K$ is algebraic over F, then $b^{q^m} = b$ for some m > 0.
- **Solution** a. First note that char F > 1, or else F would only have 1 element, which is impossible since F must have $0 \neq 1 \in F$.

Suppose the characteristic of F is not prime, and let n, m be two prime divisors of char F. Also, for $k \in \mathbb{Z}$, we identify $k \in F$ via $k = \underbrace{1 + 1 + \cdots + 1}$.

By assumption, there exists $k \in \mathbb{Z} \setminus \{0\}$ so that $knm = \operatorname{char} F$. But this means that

$$knm = 0 \implies nm = 0$$
,

but $n, m \neq 0$, since n, m < char F. This implies that F is not an integral domain, which contradicts the definition of a field. Hence, char F is prime.

b. We have a natural embedding $\mathbb{Z}/p\mathbb{Z} \hookrightarrow F$, where $k \mapsto \underbrace{1+1+\cdots+1}_{k \text{ times}}$. Because of this and the fact that

p is prime, we can think of $\mathbb{Z}/p\mathbb{Z}$ as a subfield of F. Hence, we can consider F as a finite dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$. Now pick a basis \mathfrak{B} for the vector space. Then if $|\mathfrak{B}| = n$, we have

$$q = |F| = |\mathbb{Z}/p\mathbb{Z}|^{|\mathfrak{B}|} = p^n$$

as required.

- c. Notice that the units F^{\times} form a group under multiplication with $|F^{\times}| = q 1$, since $F^{\times} = F \setminus \{0\}$. By Lagrange, $a^{q-1} = 1 \implies a^q = a$ for all $a \in F^{\times}$. 0 clearly satisfies the equation, so the equation holds for all $a \in F$.
- d. Because b is algebraic over F, F(b) is finite dimensional over F, which is finite dimensional over $\mathbb{Z}/p\mathbb{Z}$, so F(b) is finite dimensional over $\mathbb{Z}/p\mathbb{Z}$. Specifically,

$$[F(b): \mathbb{Z}/p\mathbb{Z}] = [F(b): F][F: \mathbb{Z}/p\mathbb{Z}] := mn.$$

Let \mathfrak{B} be a basis for F(b) over $\mathbb{Z}/p\mathbb{Z}$, so that $|\mathfrak{B}| = mn$. Hence,

$$|F(b)| = |\mathbb{Z}/p\mathbb{Z}|^{|\mathfrak{B}|} = p^{mn} = q^m.$$

Thus, by (c), $b^{q^m} = b$ for all algebraic $b \in K$.

- **4** Let u be a root of $f = t^3 t^2 + t + 2 \in \mathbb{Q}[t]$ and $K = \mathbb{Q}(u)$.
 - a. Show that $f = m_{\mathbb{Q}}(u)$.
 - b. Express $(u^2 + u + 1)(u^2 u)$ and $(u 1)^{-1}$ in the form $au^2 + bu + c$ for some $a, b, c \in \mathbb{Q}$.
- **Solution** a. By the rational root theorem, the only possible roots in \mathbb{Q} are ± 1 and ± 2 . A quick check shows that f is irreducible over $\mathbb{Q}[t]$.

Now suppose otherwise, and assume that $g := m_{\mathbb{Q}}(u)$ has a strictly lower degree than f. Since $\mathbb{Q}[t]$ is a Euclidean domain, it follows that f = qg + r for some $g, r \in \mathbb{Q}[t]$. Since u is a root for both polynomials, we see that r(u) = 0 also. But $\deg(r) < \deg(g)$, and because g is the minimal polynomial, it follows that r = 0, so $g \mid f$.

Hence, we can write f = (t - a)g, but this implies that f is reducible, which is a contradiction. Thus, $f = m_{\mathbb{Q}}(u)$.

b. Notice that $u^3 - u^2 + u + 2 = 0 \implies u^3 = u^2 - u - 2$. Expanding,

$$(u^2 + u + 1)(u^2 - u) = u^4 - u = u^3 - u^2 - 2u - u = u^3 - u^2 - 3u = -4u - 2.$$

We solve $(au^2 + bu + c)(u - 1) = 1$:

$$1 = au^{3} + bu^{2} + cu - au^{2} - bu - c = bu^{2} + (c - a - b)u - (c + 2a).$$

Then a = -1/3, b = 0, c = -1/3, so

$$-\frac{u^3}{3} - \frac{1}{3} = (u-1)^{-1}.$$

- **5** Let $\zeta = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \in \mathbb{C}$. Show that $\zeta^{12} = 1$ but $\zeta^r \neq 1$ for $1 \leq r < 12$. Show also that $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$ and find $m_{\mathbb{Q}}(\zeta)$.
- **Solution** We can write $\zeta = e^{i\pi/6}$. Then $\zeta^{12} = e^{2\pi i} = 1$. For $1 \le r < 12$, $\zeta^r \ne 1$: we need $\cos \frac{r\pi}{6} = 1$, which first happens when r = 12.

We claim that $m_{\mathbb{Q}}(\zeta) = t^4 - t^2 + 1$. First,

$$m_{\mathbb{Q}}(\zeta)(\zeta) = \zeta^4 - \zeta^2 + 1 = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} - \cos\frac{\pi}{3} - i\sin\frac{\pi}{3} + 1 = 0.$$

Next, we need to show that this is irreducible over \mathbb{Q} . By the rational root theorem, the only possible roots in \mathbb{Q} are ± 1 , but it's easy to see that these both fail. Hence, $t^4 - t^2 + 1$ is irreducible, and is thus the minimal polynomial.

Lastly, $[\mathbb{Q}(\zeta):\mathbb{Q}] = \deg m_{\mathcal{Q}}(\zeta) = 4$, so we're done.

6 Let K = F(u), u be algebraic over F, and the degree of u be odd. Show that $K = F(u^2)$.

Solution It's clear that $F(u^2) \subseteq F(u)$. Notice that

$$[F(u):F] = [F(u):F(u^2)][F(u^2):F].$$

We also know that $\{1,u\}$ span $F(u)/F(u^2)$, so $[F(u):F(u^2)] \le 2$. But by assumption, $2 \nmid [F(u):F]$, which implies that $[F(u):F(u^2)] = 1$. Hence, $[F(u):F] = [F(u^2):F]$, so $F(u^2) = F(u)$, as required.

7 Let u be transcendental over F and $F < k \subseteq F(u)$. Show that u is algebraic over k.

Solution First notice $F(u) = F(u, u^2, ...)$, since u is transcendental. Thus, because k strictly contains F, k must contain at least one of the u^n . Thus, $t^n - u^n \in k[t]$, and u is clearly a root of this polynomial. Hence, u is algebraic over k.

8 If $f = t^n - a \in F[t]$ is irreducible, $u \in K$ is a root of f, and $n/m \in \mathbb{Z}$, show that $[F(u^m): F] = n/m$. What is $m_F(u^m)$?

Solution Since f is irreducible, $f = m_F(u)$. Since $n/m \in \mathbb{Z}$, we have

$$0 = f(u) = u^n - a = (u^m)^{n/m} - a.$$

We claim that $m_F(u^m) = t^{n/m} - a$. Suppose otherwise, and that there exists $g = b_k t^k + \cdots + b_0$ such that $g(u^m) = 0$ and k < n/m. Then u is a root of $g(t^m)$, but $\deg g(t^m) = mk < n$, which contradicts the minimality of f. Hence, $m_F(u^m) = t^{n/m} - a$, which also shows that $[F(u^m) : F] = n/m$, as required.

9 If a^n is algebraic over a field F for some n > 0, show that a is algebraic over F.

Solution Since a^n is algebraic over F, there exists a polynomial $f \in F[t]$ so that $f(a^n) = 0$. Then $g(t) := f(t^n) \in F[t]$, and $g(a) = f(a^n) = 0$, so a is algebraic over F also.