CPSC 540: Machine Learning Independent Component Analysis, Markov Chains

Mark Schmidt

University of British Columbia

Winter 2017

Admin

- Assignment 3:
 - Due tonight.
 - 1 late day to hand in Wednesday, 2 for Monday.
- Assignment 4:
 - Due March 20.
- For graduate students planning to graduate in May:
 - Send me a private message on Piazza ASAP.

Last Time: Kernel Density Estimation

• We discussed kernel density estimation,

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} k_R(x - x^i),$$

a mixture of simple densities k_R centered on each example.

 \bullet Flexible class of density models, though sensitive to bandwidth R.

Last Time: Probabilistic PCA and Factor Analysis

• PCA is limit of a continuous mixture model under Gaussian assumptions,

$$x|z \sim \mathcal{N}(W^T z, \sigma^2 I), \quad z \sim \mathcal{N}(0, I),$$

as $\sigma \to 0$.

• PCA is limit of a continuous mixture model under Gaussian assumptions,

$$x|z \sim \mathcal{N}(W^T z, \sigma^2 I), \quad z \sim \mathcal{N}(0, I),$$

as $\sigma \to 0$.

• Factor analysis (FA) generalizes to diagonal covariance D,

$$x|z \sim \mathcal{N}(W^T z, \mathbf{D}), \quad z \sim \mathcal{N}(0, I),$$

where W and D are estimated from data.

- Both are 100+ years old with tons of applications.
 - Classic tools for dividing data into "parts" and visualizing high-dimensional data.
- Probabilistic perspective allows us to do things like mixture of factor analyses.

Orthogonality and Sequential Fitting

- The PCA and FA solutions are not unique.
- Common heuristic:
 - **1** Enforce that rows of W have a norm of 1.
 - $oldsymbol{0}$ Enforce that rows of W are orthogonal.
 - lacktriangle Fit the rows of W sequentially.
- This leads to a unique solution up to sign changes.

Orthogonality and Sequential Fitting

- The PCA and FA solutions are not unique.
- Common heuristic:
 - Enforce that rows of W have a norm of 1.
 - $oldsymbol{2}$ Enforce that rows of W are orthogonal.
 - lacksquare Fit the rows of W sequentially.
- This leads to a unique solution up to sign changes.
- But there are other ways to resolve non-uniqueness (Murphy's Section 12.1.3):
 - ullet Force W to be lower-triangular.
 - Choose an informative rotation.
 - Use a non-Gaussian prior.

Outline

- Independent Component Analysis
- Markov Chains
- Monte Carlo Methods

Motivation for Independent Component Analysis (ICA)

- Factor analysis has found an enormous number of applications.
 - People really want to find the "factors" that make up their data.
- But factor analysis can't even identify factor directions.
 - ullet We can rotate W and obtain the same model.

Motivation for Independent Component Analysis (ICA)

- Factor analysis has found an enormous number of applications.
 - People really want to find the "factors" that make up their data.
- But factor analysis can't even identify factor directions.
 - ullet We can rotate W and obtain the same model.
- Independent component analysis (ICA) is a more recent approach (≈ 30 years).
 - Under certain assumptions, it can identify factors.
- The canonical application of ICA is blind source separation.

Blind Source Separation

• In blind source separation we have microphones recording multiple sources.

http://music.eecs.northwestern.edu/research.php

• Goal is to reconstruct sources (factors) from the measurements.

Independent Component Analysis Applications

• ICA is replacing PCA/FA in many applications.

Some ICA applications are listed below:[1]

- optical Imaging of neurons^[17]
- neuronal spike sorting^[18]
- face recognition^[19]
- modeling receptive fields of primary visual neurons^[20]
- predicting stock market prices^[21]
- mobile phone communications [22]
- color based detection of the ripeness of tomatoes^[23]
- removing artifacts, such as eye blinks, from EEG data.

Recent work shows that ICA can often resolve direction of causality.

• As in PCA/FA, ICA is a matrix factorization method,

$$X \approx ZW$$
.

• Let's assume that X = ZW for a "true" W with k = d.

• As in PCA/FA, ICA is a matrix factorization method,

$$X \approx ZW$$
.

- Let's assume that X = ZW for a "true" W with k = d.
- The 3 issues stopping us from finding "true" *W*:
 - lacksquare Label switching: get same model if we permute rows of W.
 - \bullet We can exchange row 1 and 2 of W (and same columns of Z).
 - Not a problem because we don't care about order of factors.

As in PCA/FA, ICA is a matrix factorization method,

$$X \approx ZW$$
.

- Let's assume that X = ZW for a "true" W with k = d.
- The 3 issues stopping us from finding "true" W:
 - lacksquare Label switching: get same model if we permute rows of W.
 - We can exchange row 1 and 2 of W (and same columns of Z).
 - Not a problem because we don't care about order of factors.
 - $oldsymbol{\circ}$ Scaling: get same model if multiply rows of W by constant.
 - If we multiply row 1 of W by α , could multiply column 1 of Z by $1/\alpha$.
 - Can't identify scale/sign, but might hope to identify direction.

As in PCA/FA, ICA is a matrix factorization method,

$$X \approx ZW$$
.

- Let's assume that X = ZW for a "true" W with k = d.
- The 3 issues stopping us from finding "true" W:
 - lacksquare Label switching: get same model if we permute rows of W.
 - ullet We can exchange row 1 and 2 of W (and same columns of Z).
 - Not a problem because we don't care about order of factors.
 - f 2 Scaling: get same model if multiply rows of W by constant.
 - If we multiply row 1 of W by α , could multiply column 1 of Z by $1/\alpha$.
 - Can't identify scale/sign, but might hope to identify direction.
 - **3** Rotataion: we the get same model if we pre-multiply W by orthogonal Q.
 - Because PCA/FA only depend on W^TW , which equals $(QW)^T(QW)$.

As in PCA/FA, ICA is a matrix factorization method,

$$X \approx ZW$$
.

- Let's assume that X = ZW for a "true" W with k = d.
- The 3 issues stopping us from finding "true" W:
 - **1** Label switching: get same model if we permute rows of W.
 - ullet We can exchange row 1 and 2 of W (and same columns of Z).
 - Not a problem because we don't care about order of factors.
 - $oldsymbol{2}$ Scaling: get same model if multiply rows of W by constant.
 - If we multiply row 1 of W by α , could multiply column 1 of Z by $1/\alpha$.
 - Can't identify scale/sign, but might hope to identify direction.
 - **3** Rotataion: we the get same model if we pre-multiply W by orthogonal Q.
 - Because PCA/FA only depend on W^TW , which equals $(QW)^T(QW)$.
- If we could address rotation, we could identify the directions.

Another Unique Gaussian Property

• Consider density written as a product of independent factors,

$$p(z) = \prod_{c=1}^{k} p_c(z_c).$$

 \bullet If p(z) is rotation-invariant, p(Qz)=p(z), then it must be Gaussian.

Another Unique Gaussian Property

• Consider density written as a product of independent factors,

$$p(z) = \prod_{c=1}^{k} p_c(z_c).$$

- If p(z) is rotation-invariant, p(Qz) = p(z), then it must be Gaussian.
- The (non-intuitive) magic behind ICA:
 - If product of independent factors is non-Gaussian, it isn't rotationally symmetric.

Another Unique Gaussian Property

Consider density written as a product of independent factors,

$$p(z) = \prod_{c=1}^{k} p_c(z_c).$$

- If p(z) is rotation-invariant, p(Qz) = p(z), then it must be Gaussian.
- The (non-intuitive) magic behind ICA:
 - If product of independent factors is non-Gaussian, it isn't rotationally symmetric.
- Implication: if at most 1 factor is Gaussian, we can identify them.
 - Up to permutation/sign/scaling (other rotations change distribution).

Independent Component Analysis

• In ICA we use the approximation,

$$X \approx WZ$$

where we want z_i to be non-Gaussian.

ullet A common strategy is maximum likelihood ICA assuming a heavy-tailed z_j like

$$p(z_j) = \frac{1}{\pi(\exp(z_j) + \exp(-z_j))}.$$

Independent Component Analysis

• In ICA we use the approximation,

$$X \approx WZ$$

where we want z_i to be non-Gaussian.

ullet A common strategy is maximum likelihood ICA assuming a heavy-tailed z_j like

$$p(z_j) = \frac{1}{\pi(\exp(z_j) + \exp(-z_j))}.$$

- Another common strategy fits data while maximizing measure of non-Gaussianity:
 - Maximize kurtosis, which is 0 for Gaussians.
 - Minimimize entropy, which is maximized with Gaussians.
- The fastICA method is a popular Newton-like method maximizing kurtosis.

ICA on Retail Purchase Data

• Cash flow from different stores over 3 years:

ICA on Retail Purchase Data

• Factors found using ICA:

Outline

- Independent Component Analysis
- Markov Chains
- Monte Carlo Methods

• Consider density estimation on "Vancouver Rain" dataset (first 100 examples):

- Variable x_j^i is whether or not it rained on day j in month i.
 - Each row is a month, each column is a day of the month.
 - Data ranges from 1896-2004.

• Consider density estimation on "Vancouver Rain" dataset (first 100 examples):

- Variable x_i^i is whether or not it rained on day j in month i.
 - Each row is a month, each column is a day of the month.
 - Data ranges from 1896-2004.
- Without extra information (like "July"), days have simple relationship:
 - If it rained yesterday, it's likely to rain today (> 50% chance of $(x_i == x_{i-1})$).

- ullet With independent Bernoullis, we get $p(x_j^i = \text{"rain"}) pprox 0.41$ (sadly).
 - Real data vs. independent Bernoulli model:

- With independent Bernoullis, we get $p(x_i^i = \text{"rain"}) \approx 0.41$ (sadly).
 - Real data vs. independent Bernoulli model:

- Independent model misses correlations between days.
- Mixture of Bernoullis could model correlation, but it's inefficient:
 - "Position independence" of correlation would need lots of mixtures.

Markov Chains

• A better density model for this data is a Markov chain.

$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2|x_1)p(x_3|x_2)\cdots p(x_d|x_{d-1})$$

Markov Chains

Markov Chains

• A better density model for this data is a Markov chain.

$$\begin{split} p(x_1, x_2, \dots, x_d) &= p(x_1) p(x_2|x_1) p(x_3|x_2) \cdots p(x_d|x_{d-1}) \\ &= \underbrace{p(x_1)}_{\text{initial prob.}} \prod_{j=2}^d \underbrace{p(x_j|x_{j-1})}_{\text{transition prob.}}, \end{split}$$

where I'm using x_j as short for x_j^i for a generic i.

- Models dependency of feature on previous feature.
 - Assuming a meaningful ordering of features.

Markov Chains

• A better density model for this data is a Markov chain.

$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2|x_1)p(x_3|x_2) \cdots p(x_d|x_{d-1})$$

$$= \underbrace{p(x_1)}_{\text{initial prob.}} \prod_{j=2}^{d} \underbrace{p(x_j|x_{j-1})}_{\text{transition prob.}},$$

where I'm using x_j as short for x_j^i for a generic i.

- Models dependency of feature on previous feature.
 - Assuming a meaningful ordering of features.
- Makes a strong conditional independence assumption ("Markov property"),

$$p(x_j|x_{j-1},x_{j-2},\ldots,x_1)=p(x_j|x_{j-1}),$$

that the last "time" x_{i-1} tells us everything we need to know about the "past".

What we want for the rain data.

- For rain data it makes sense to use a homogeneous Markov chain:
 - Transition probabilities $p(x_j|x_{j-1})$ are the same for all j.

- For rain data it makes sense to use a homogeneous Markov chain:
 - Transition probabilities $p(x_j|x_{j-1})$ are the same for all j.
- ullet MLE for discrete x_j values is given by

$$\theta_{x_j,x_{j-1}} = \frac{\text{(number of transitions from } x_{j-1} \text{ to } x_j)}{\text{(number of times we saw } x_{j-1} \text{ for } j > 1)},$$

and we use the same $\theta_{x_j,x_{j-1}}$ for all j.

- For rain data it makes sense to use a homogeneous Markov chain:
 - Transition probabilities $p(x_j|x_{j-1})$ are the same for all j.
- MLE for discrete x_j values is given by

$$heta_{x_j,x_{j-1}} = \frac{(\text{number of transitions from } x_{j-1} \text{ to } x_j)}{(\text{number of times we saw } x_{j-1} \text{ for } j > 1)},$$

and we use the same $\theta_{x_j,x_{j-1}}$ for all j.

- A special case of the general idea of parameter tieing:
 - "Making different parts of the model use the same parameters."

- For rain data it makes sense to use a homogeneous Markov chain:
 - Transition probabilities $p(x_j|x_{j-1})$ are the same for all j.
- MLE for discrete x_j values is given by

$$\theta_{x_j,x_{j-1}} = \frac{\text{(number of transitions from } x_{j-1} \text{ to } x_j)}{\text{(number of times we saw } x_{j-1} \text{ for } j > 1)},$$

and we use the same $\theta_{x_j,x_{j-1}}$ for all j.

- A special case of the general idea of parameter tieing:
 - "Making different parts of the model use the same parameters."
- Advantages:
 - You have more data available to estimate each parameter.
 - Don't need to independently learn $p(x_j|x_{j-1})$ for days 14 and 15.

Homogenous Markov Chains

- For rain data it makes sense to use a homogeneous Markov chain:
 - Transition probabilities $p(x_j|x_{j-1})$ are the same for all j.
- MLE for discrete x_j values is given by

$$\theta_{x_j,x_{j-1}} = \frac{\text{(number of transitions from } x_{j-1} \text{ to } x_j)}{\text{(number of times we saw } x_{j-1} \text{ for } j > 1)},$$

and we use the same $\theta_{x_j,x_{j-1}}$ for all j.

- A special case of the general idea of parameter tieing:
 - "Making different parts of the model use the same parameters."
- Advantages:
 - 1 You have more data available to estimate each parameter.
 - Don't need to independently learn $p(x_i|x_{i-1})$ for days 14 and 15.
 - You can have models of different sizes.
 - Same model can be used for months with 28, 29, 30, or 31 days.

Homogeneous Markov Chain for Rain Data

• Real vs. independent vs. homogeneous Markov chain:

- We've previously considered density estimation for images of digits.
- We saw that independent Bernoullis do terrible

• We can do a bit better with mixture of 10 Bernoullis:

- The shape is looking better, but it's missing correlation between adjacent pixels.
 - Could we capture this with a Markov chain?

• Samples from a homogeneous Markov chain (putting rows into one long vector):

- This captures correlations within rows, but misses dependencies between rows.
 - "Position independence" of homogeneity means it loses position information.

Inhomogeneous Markov Chains

• Markov chains allow a different $p(x_i|x_{i-1})$ for each j.

Inhomogeneous Markov Chains

- Markov chains allow a different $p(x_j|x_{j-1})$ for each j.
- MLE for discrete x_j values is given by

$$\theta_{x_j,x_{j-1}}^j = \frac{\left(\text{number of transitions from } x_{j-1} \text{ to } x_j \text{ starting at } (j-1)\right)}{\left(\text{number of times we saw } x_{j-1} \text{ at position } (j-1)\right)},$$

- Such inhomogeneous Markov chains include independent models as special case:
 - We could set $p(x_i|x_{i-1}) = p(x_i)$.

• Samples from an inhomogeneous Markov chain:

- We now have correlations within rows and position information.
 - But Markov assumption isn't capturing dependency between rows.
 - Next time we'll discuss graphical models which address this.
 - You could alternately consider mixture of Markov chains.

Fun with Markov Chains

- Markov Chains from "Explained Visually": http://setosa.io/ev/markov-chains
- Modeling Snakes and Ladders as a Markov chain: http://datagenetics.com/blog/november12011/index.html
- Modeling Candyland as Markov chain: http://www.datagenetics.com/blog/december12011/index.html
- Modeling Yahtzee as a Markov chain: http://www.datagenetics.com/blog/january42012/

Outline

- Independent Component Analysis
- Markov Chains
- Monte Carlo Methods

- Generating samples from a density model allows us to see what it's learned.
- To sample from a mixture model we used:
 - Sample cluster z^i , then sample x^i based on the cluster parameters.

- Generating samples from a density model allows us to see what it's learned.
- To sample from a mixture model we used:
 - ullet Sample cluster z^i , then sample x^i based on the cluster parameters.
- To sample from a Markov chain we:
 - **①** Sample x_1 from initial probabilities $p(x_1)$.

- Generating samples from a density model allows us to see what it's learned.
- To sample from a mixture model we used:
 - ullet Sample cluster z^i , then sample x^i based on the cluster parameters.
- To sample from a Markov chain we:
 - **1** Sample x_1 from initial probabilities $p(x_1)$.
 - ② Given x_1 , sample x_2 from transition probabilities $p(x_2|x_1)$.

- Generating samples from a density model allows us to see what it's learned.
- To sample from a mixture model we used:
 - ullet Sample cluster z^i , then sample x^i based on the cluster parameters.
- To sample from a Markov chain we:
 - **1** Sample x_1 from initial probabilities $p(x_1)$.
 - ② Given x_1 , sample x_2 from transition probabilities $p(x_2|x_1)$.
 - **3** Given x_2 , sample x_3 from transition probabilities $p(x_3|x_2)$.

- Generating samples from a density model allows us to see what it's learned.
- To sample from a mixture model we used:
 - ullet Sample cluster z^i , then sample x^i based on the cluster parameters.
- To sample from a Markov chain we:
 - **1** Sample x_1 from initial probabilities $p(x_1)$.
 - ② Given x_1 , sample x_2 from transition probabilities $p(x_2|x_1)$.
 - **3** Given x_2 , sample x_3 from transition probabilities $p(x_3|x_2)$.
 - 4 . . .
 - **5** Given x_{d-1} , sample x_d from transition probabilities $p(x_d|x_{d-1})$.

- Generating samples from a density model allows us to see what it's learned.
- To sample from a mixture model we used:
 - ullet Sample cluster z^i , then sample x^i based on the cluster parameters.
- To sample from a Markov chain we:
 - **1** Sample x_1 from initial probabilities $p(x_1)$.
 - ② Given x_1 , sample x_2 from transition probabilities $p(x_2|x_1)$.
 - **3** Given x_2 , sample x_3 from transition probabilities $p(x_3|x_2)$.
 - 4 . . .
 - **3** Given x_{d-1} , sample x_d from transition probabilities $p(x_d|x_{d-1})$.
- This is called ancestral sampling.
 - It's easy if probabilities have nice form, and we know how to sample in 1D...

- ullet Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).

- ullet Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).
- To sample from a discrete distribution like

$$p(X = 1) = 0.4$$
, $p(X = 2) = 0.1$, $p(X = 3) = 0.2$, $p(X = 4) = 0.3$,

we can divide up the $\left[0,1\right]$ interval based on probability values:

- Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).
- To sample from a discrete distribution like

$$p(X = 1) = 0.4$$
, $p(X = 2) = 0.1$, $p(X = 3) = 0.2$, $p(X = 4) = 0.3$,

we can divide up the [0,1] interval based on probability values:

• If $u \sim \mathcal{U}(0,1)$, 40% of the time it lands in x_1 region, 10% of time in x_2 , and so on.

- ullet Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).
- To sample from a discrete distribution like

$$p(X = 1) = 0.4$$
, $p(X = 2) = 0.1$, $p(X = 3) = 0.2$, $p(X = 4) = 0.3$,

we can use the following procedure (sampleDiscrete.m):

• Generate $u \sim \mathcal{U}(0,1)$.

- ullet Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).
- To sample from a discrete distribution like

$$p(X = 1) = 0.4, \quad p(X = 2) = 0.1, \quad p(X = 3) = 0.2, \quad p(X = 4) = 0.3,$$

- Generate $u \sim \mathcal{U}(0,1)$.
- ② If $u \leq p(X \leq 1)$, output 1.

- ullet Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).
- To sample from a discrete distribution like

$$p(X = 1) = 0.4$$
, $p(X = 2) = 0.1$, $p(X = 3) = 0.2$, $p(X = 4) = 0.3$,

- Generate $u \sim \mathcal{U}(0,1)$.
- ② If $u \leq p(X \leq 1)$, output 1.

- ullet Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).
- To sample from a discrete distribution like

$$p(X = 1) = 0.4$$
, $p(X = 2) = 0.1$, $p(X = 3) = 0.2$, $p(X = 4) = 0.3$,

- Generate $u \sim \mathcal{U}(0,1)$.
- ② If $u \leq p(X \leq 1)$, output 1.
- If $u \leq p(X \leq 3)$, output 3.
- **o** Otherwise, output 4.

- ullet Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).
- To sample from a discrete distribution like

$$p(X = 1) = 0.4, \quad p(X = 2) = 0.1, \quad p(X = 3) = 0.2, \quad p(X = 4) = 0.3,$$

- Generate $u \sim \mathcal{U}(0,1)$.
- ② If $u \leq p(X \leq 1)$, output 1.
- If $u \leq p(X \leq 3)$, output 3.
- **5** Otherwise, output 4.
- With k states, cost to generate a sample is O(k).

- Sampling methods assume we can sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's rand).
- To sample from a discrete distribution like

$$p(X = 1) = 0.4$$
, $p(X = 2) = 0.1$, $p(X = 3) = 0.2$, $p(X = 4) = 0.3$,

- Generate $u \sim \mathcal{U}(0,1)$.
- ② If $u \leq p(X \leq 1)$, output 1.
- \bullet If $u \leq p(X \leq 2)$, output 2.
- If $u \leq p(X \leq 3)$, output 3.
- **5** Otherwise, output 4.
- With k states, cost to generate a sample is O(k).
- You can go faster if you're generating multiple samples:
 - One-time O(k) cost to store the $p(X \le c)$ for all c.
 - Per-sample $O(\log k)$ cost to do binary search for smallest $u \leq p(X \leq c)$.

- Recall that the cumulative distribution function (CDF) F is $p(X \le x)$.
 - F(x) is between 0 and 1 a gives proportion of times X is below x.

- Recall that the cumulative distribution function (CDF) F is $p(X \le x)$.
 - F(x) is between 0 and 1 a gives proportion of times X is below x.

• We can also use the CDF to sample from continuous variables.

https://en.wikipedia.org/wiki/Cumulative_distribution_function

- Recall that the cumulative distribution function (CDF) F is $p(X \le x)$.
 - ullet F(x) is between 0 and 1 a gives proportion of times X is below x.

• We can also use the CDF to sample from continuous variables.

https://en.wikipedia.org/wiki/Cumulative_distribution_function

- The inverse CDF (or quantile function) F^{-1} is its inverse:
 - Given a number u between 0 and 1, gives x such that $p(X \le x) = u$.

- Recall that the cumulative distribution function (CDF) F is $p(X \le x)$.
 - F(x) is between 0 and 1 a gives proportion of times X is below x.

We can also use the CDF to sample from continuous variables.

 $\verb|https://en.wikipedia.org/wiki/Cumulative_distribution_function|\\$

- The inverse CDF (or quantile function) F^{-1} is its inverse:
 - Given a number u between 0 and 1, gives x such that $p(X \le x) = u$.
- Inverse transfrom method for exact sampling in 1D:
 - Sample $u \sim \mathcal{U}(0,1)$.
 - **2** Compute $x = F^{-1}(u)$.

Sampling from a 1D Gaussian

• Consider a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \sigma^2)$$
.

CDF has the form

$$F(x) = p(X \le x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right],$$

where erf the CDF of $\mathcal{N}(0,1)$.

Sampling from a 1D Gaussian

• Consider a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \sigma^2).$$

CDF has the form

$$F(x) = p(X \le x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right],$$

where erf the CDF of $\mathcal{N}(0,1)$.

Inverse CDF has the form

$$F^{-1}(u) = \mu + \sigma \sqrt{2} \operatorname{erf}^{-1}(2u - 1).$$

- To sample from a Gaussian:
 - Generate $u \sim \mathcal{U}(0,1)$.
 - ② Compute $F^{-1}(u)$.

Inference in Markov Chains

- Given density esimator, we often want probabilistic inferences like computing
 - Marginals: what is the probability that $x_i = c$?
 - Conditionals: if it rains today, what is the probability it will rain in 5 days?

Inference in Markov Chains

- Given density esimator, we often want probabilistic inferences like computing
 - Marginals: what is the probability that $x_i = c$?
 - Conditionals: if it rains today, what is the probability it will rain in 5 days?
- Easy for independent models: we have marginals $p(x_j)$ and $p(x_j|x_{j'}) = p(x_j)$.
 - Also easy for mixtures of independent models.
- For Markov chains, it's more complicated...

Inference by Sampling

- Using samples from discrete Markov chain to compute marginals numerically:
 - Generate a large number of samples x^i from the model.

$$X = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

Inference by Sampling

- Using samples from discrete Markov chain to compute marginals numerically:
 - Generate a large number of samples x^i from the model.

$$X = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

2 Compute frequency that variable j was equal to c.

$$p(x_2 = 1) = \frac{2}{4} = 0.5, \quad p(x_3 = 0) = \frac{0}{4} = 0.$$

Inference by Sampling

- Using samples from discrete Markov chain to compute marginals numerically:
 - Generate a large number of samples x^i from the model.

$$X = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

2 Compute frequency that variable j was equal to c.

$$p(x_2 = 1) = \frac{2}{4} = 0.5, \quad p(x_3 = 0) = \frac{0}{4} = 0.$$

- This is a special case of a Monte Carlo method.
 - Second most important class of ML algorthms (after numerical optimization).
 - Originally developed to build better atomic bombs :(

• Monte Carlo methods approximate expectations of random functions,

$$\mathbb{E}[g(X)] = \underbrace{\sum_{x \in \mathcal{X}} g(x) p(x)}_{\text{discrete } x} \quad \text{or} \quad \underbrace{\mathbb{E}[g(X)] = \int_{x \in \mathcal{X}} g(x) p(x) dx}_{\text{continuous } x}.$$

• Monte Carlo methods approximate expectations of random functions,

$$\mathbb{E}[g(X)] = \underbrace{\sum_{x \in \mathcal{X}} g(x) p(x)}_{\text{discrete } x} \quad \text{or} \quad \underbrace{\mathbb{E}[g(X)] = \int_{x \in \mathcal{X}} g(x) p(x) dx}_{\text{continuous } x}.$$

• Using n samples x^i from p(x) the Monte Carlo estimate is

$$\mathbb{E}[g(X)] \approx \frac{1}{n} \sum_{i=1}^{n} g(x^{i}).$$

• Monte Carlo methods approximate expectations of random functions,

$$\mathbb{E}[g(X)] = \underbrace{\sum_{x \in \mathcal{X}} g(x) p(x)}_{\text{discrete } x} \quad \text{or} \quad \underbrace{\mathbb{E}[g(X)] = \int_{x \in \mathcal{X}} g(x) p(x) dx}_{\text{continuous } x}.$$

• Using n samples x^i from p(x) the Monte Carlo estimate is

$$\mathbb{E}[g(X)] \approx \frac{1}{n} \sum_{i=1}^{n} g(x^{i}).$$

ullet We often take g(X) as indicator function $\mathcal{I}_{\{A\}}$ for some event A so that

$$\mathbb{E}[g(X)] = \mathbb{E}[\mathcal{I}_{\{A\}}] = p(A), \quad \text{and} \quad p(A) \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{I}_{\{A_i\}},$$

which is a very simple "mixture of indicators" or kernel density estimator model.

Monte Carlo Method for Rolling Di

Probability of event: (number of samples consistent with event)/(number of samples)

Monte Carlo Method for Rolling Di

Probability of event: (number of samples consistent with event)/(number of samples)

Monte Carlo Method for Inequalities

Monte Carlo estimate of probability that variable is above threshold,

$$g(x) = \mathcal{I}_{x \ge \tau}.$$

Monte Carlo Method for Mean

We could compute mean using g(x) = x.

$$E[x] \approx \frac{1}{n} \sum_{i=1}^{n} x^{i}.$$

Monte Carlo Method for Mean

We could compute mean using g(x) = x.

$$E[x] \approx \frac{1}{n} \sum_{i=1}^{n} x^{i}$$
.

How could we sample from a 2D Gaussian?

- Use product rule p(x,z) = p(z|x)p(x) and ancestral sampling:
 - Sample x from marginal p(x), sample z from conditional p(z|x) (both Gaussian).

• Monte Carlo estimate is unbiased approximation of expectation,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}g(x^{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(x^{i})]$$

• Monte Carlo estimate is unbiased approximation of expectation,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}g(x^{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(x^{i})]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(X)] = \mathbb{E}[g(X)],$$

so by law of large numbers it converges (almost surely) to $\mathbb{E}[g(X)]$ as $n \to \infty$.

• Monte Carlo estimate is unbiased approximation of expectation,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}g(x^{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(x^{i})]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(X)] = \mathbb{E}[g(X)],$$

so by law of large numbers it converges (almost surely) to $\mathbb{E}[g(X)]$ as $n \to \infty$.

- Allows computing expectations in Markov chains even if x_j is continuous:
 - ullet $E[x_j]$ is approximated by average of x_j in the samples.

• Monte Carlo estimate is unbiased approximation of expectation,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}g(x^{i})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(x^{i})]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[g(X)] = \mathbb{E}[g(X)],$$

so by law of large numbers it converges (almost surely) to $\mathbb{E}[g(X)]$ as $n \to \infty$.

- Allows computing expectations in Markov chains even if x_j is continuous:
 - ullet $E[x_j]$ is approximated by average of x_j in the samples.
 - $p(x_j \le 10)$ is approximate by frequency of x_j being less than 10.
 - $p(x_j \le 10, x_{j+1} \ge 10)$ is approximated by frequency of joint event.

- Rate of convergence of Monte Carlo measured by variance of estimator.
 - If all samples look the same, it converges quickly.
 - If samples look very different, it can be painfully slow.

- Rate of convergence of Monte Carlo measured by variance of estimator.
 - If all samples look the same, it converges quickly.
 - If samples look very different, it can be painfully slow.
- We can sometimes avoid Monte Carlo and compute univariate marginals exactly:
 - Markov chains with discrete or Gaussian probabilities.

- Rate of convergence of Monte Carlo measured by variance of estimator.
 - If all samples look the same, it converges quickly.
 - If samples look very different, it can be painfully slow.
- We can sometimes avoid Monte Carlo and compute univariate marginals exactly:
 - Markov chains with discrete or Gaussian probabilities.
- In the discrete case, this is given by the recursive Chapman-Kolmogorov equations,

$$p(x_j) = \sum_{x_{j-1}} p(x_j, x_{j-1})$$
marginalization rule

- Rate of convergence of Monte Carlo measured by variance of estimator.
 - If all samples look the same, it converges quickly.
 - If samples look very different, it can be painfully slow.
- We can sometimes avoid Monte Carlo and compute univariate marginals exactly:
 - Markov chains with discrete or Gaussian probabilities.
- In the discrete case, this is given by the recursive Chapman-Kolmogorov equations,

$$p(x_j) = \underbrace{\sum_{x_{j-1}} p(x_j, x_{j-1})}_{\text{marginalization rule}} = \underbrace{\sum_{x_{j-1}} \underbrace{p(x_j|x_{j-1})p(x_{j-1})}_{\text{product rule}}.$$

• Simple equation that gives probability of all paths leading to $x_j = c$ for all c.

$$p(x_j) = \sum_{x_{j-1}} p(x_j|x_{j-1})p(x_{j-1}).$$

- In Markov chains we're given $p(x_1 = c)$ for all c.
 - CK equations give us $p(x_2 = c)$ for all c if we know $p(x_1 = c)$ for all c.

$$p(x_j) = \sum_{x_{j-1}} p(x_j|x_{j-1})p(x_{j-1}).$$

- In Markov chains we're given $p(x_1 = c)$ for all c.
 - CK equations give us $p(x_2 = c)$ for all c if we know $p(x_1 = c)$ for all c.
 - CK equations give us $p(x_3 = c)$ for all c if we know $p(x_2 = c)$ for all c.
 - ...

$$p(x_j) = \sum_{x_{j-1}} p(x_j|x_{j-1})p(x_{j-1}).$$

- In Markov chains we're given $p(x_1 = c)$ for all c.
 - CK equations give us $p(x_2 = c)$ for all c if we know $p(x_1 = c)$ for all c.
 - CK equations give us $p(x_3 = c)$ for all c if we know $p(x_2 = c)$ for all c.
 - ...
- ullet Cost of computing all univarite marginals is $O(dk^2)$ if variable has k states.
 - ullet We repeatedly multiply vector containing marginals by k by k transition matrix.

Monte Carlo Methods

$$p(x_j) = \sum_{x_{j-1}} p(x_j|x_{j-1})p(x_{j-1}).$$

- In Markov chains we're given $p(x_1 = c)$ for all c.
 - CK equations give us $p(x_2 = c)$ for all c if we know $p(x_1 = c)$ for all c.
 - CK equations give us $p(x_3 = c)$ for all c if we know $p(x_2 = c)$ for all c.
 - . . .
- Cost of computing all univarite marginals is $O(dk^2)$ if variable has k states.
 - We repeatedly multiply vector containing marginals by k by k transition matrix.
- We can also define a continuous version:

$$p(x_j) = \int_{x_{j-1}} p(x_j|x_{j-1})p(x_{j-1}) = \int_{x_{j-1}} p(x_j, x_{j-1})$$

- If $p(x_{j-1})$ and $p(x_j|x_{j-1})$ are Gaussian, then $p(x_j,x_{j-1})$ is Gaussian.
 - Implies $p(x_i)$ is a Gaussian marginal.

• Independent component analysis: allows identifying non-Gaussian latent factors.

- Independent component analysis: allows identifying non-Gaussian latent factors.
- Markov chains model dependencies betwee adjacent features.

- Independent component analysis: allows identifying non-Gaussian latent factors.
- Markov chains model dependencies betwee adjacent features.
- Parameter tieing uses same parameters in different parts of a model.
 - Allows models of different sizes and more data for parameter estimation.

- Independent component analysis: allows identifying non-Gaussian latent factors.
- Markov chains model dependencies betwee adjacent features.
- Parameter tieing uses same parameters in different parts of a model.
 - Allows models of different sizes and more data for parameter estimation.
- Inverse Transform generates samples from simple 1D distributions.

- Independent component analysis: allows identifying non-Gaussian latent factors.
- Markov chains model dependencies betwee adjacent features.
- Parameter tieing uses same parameters in different parts of a model.
 - Allows models of different sizes and more data for parameter estimation.
- Inverse Transform generates samples from simple 1D distributions.
- Ancestral sampling generates samples from a Markov chain.

- Independent component analysis: allows identifying non-Gaussian latent factors.
- Markov chains model dependencies betwee adjacent features.
- Parameter tieing uses same parameters in different parts of a model.
 - Allows models of different sizes and more data for parameter estimation.
- Inverse Transform generates samples from simple 1D distributions.
- Ancestral sampling generates samples from a Markov chain.
- Monte Carlo methods approximate expectations using samples.

- Independent component analysis: allows identifying non-Gaussian latent factors.
- Markov chains model dependencies betwee adjacent features.
- Parameter tieing uses same parameters in different parts of a model.
 - Allows models of different sizes and more data for parameter estimation.
- Inverse Transform generates samples from simple 1D distributions.
- Ancestral sampling generates samples from a Markov chain.
- Monte Carlo methods approximate expectations using samples.
- Chapman-Kolmogorov equations compute exact univariate marginals.
 - For discrete or Gaussian Markov chains.
- Next time: weakening the Markov assumption.