Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação Laboratório de Sistemas Distribuídos e de Programação Concorrente

Caderno de Desafio para Programação Paralela

Caderno Desafio C/MPI/OpenMP

Quantos Elementos Há nas Colunas da Matriz que São Menores que a Média da Matriz

por

Paulo Sérgio Lopes de Souza

Baseado em desafio anterior feito por Guilherme Martins e Paulo S. L. de Souza

Este caderno de desafio representa um Recurso Educacional Aberto para ser usado por alunos e professores, como introdução aos uma estudos de programação paralela C/MPI/OpenMP. Este material pode ser utilizado e modificado desde que os direitos autorais sejam explicitamente mencionados e referenciados. Utilizar considerando a licença GPLv2 (GNU General Public License version 2) ou posterior.

1. Desafio

O objetivo deste desafio é desenvolver um algoritmo paralelo em C/MPI/OpenMP que determine quantos elementos das colunas da matriz são menores que a média da matriz. Para sua solução, considere uma matriz quadrada *MAT* de valores inteiros positivos e uma média aritmética simples *MED* dos elementos de *MAT*. Determine quantos elementos existem em cada coluna de *MAT* que são menores que *MED*.

A aplicação concorrente executará com **P** processos **MPI** e cada processo com **T** threads **OpenMP**, onde considera-se que a dimensão **N** de **MAT** é bem maior que **P** e **T**. O valor de **P** pode ser determinado pelo **mpirun** com o parâmetro **-np <P>.** O valor de **T** pode ser dinâmico, i.e., em função do número de núcleos do computador onde o processo criador das threads vai executar (em outras palavras, não precisa especificar o número **T** de threads, deixe o **OpenMP** escolhê-lo em função do processador usado).

Os valores de **N** e **MAT** serão obtidos a partir de um arquivo de entrada pelo processo **MPI** de **rank** 0. Os valores de **MAT** variam entre 0 e 99, inclusive.

O exemplo a seguir ilustra a especificação descrita para uma matriz $\textbf{\textit{MAT}}$ com N = 5:

MAT					
em p0					
30	07	90	88	18	
05	90	54	51	90	
90	05	05	05	27	
47	22	44	17	05	
12	33	49	90	23	

	MAT espalhada nos processos MPI							
	(média 39,88)							
p0		p1		p2		р3		p4
30		<i>07</i>		90		88		18
05		90		54		51		90
90		05		05		05		27
47		22		44		17		05
12		33		49		90		23

vet_menor[]				
em p0				
[0]	3			
[1]	4			
[2]	1			
[3]	2			
[4]	4			

Os dados lidos do arquivo de entrada para este exemplo acima são:

```
5
30 07
      90 88
              18
      54 51
05 90
             90
90 05 05 05 27
47
   22
       44
          17
             05
12 33
      49
          90
             23
```

A saída da aplicação impressa em **stdout** deve exibir **vet_menor[]**. A saída esperada para os dados acima é:

```
3 4 1 2 4
```

Há um espaço em branco entre cada número e também após o último. Há uma quebra de linha ("\n") ao final da linha.

Para executar no bash, por exemplo, utilize este padrão:

mpirun -np 4 menorescol entrada. txt

Obs: na linha de comando acima, considera-se que o programa foi inserido em *menorescol.c* e o executável chama-se *menorescol* e está no diretório atual. O número de processos (-np 4) é um exemplo, não um requisito; o algoritmo deve funcionar para um número variado de processos. Os dados da matriz estão em *entrada.txt*, seguindo o padrão já explicado.

2. Um ponto de partida para a solução do desafio

A implementação sequencial do desafio e um arquivo de entrada estão em anexo.