Outline

Unique prine factorizations
greatest Common divisors
Euclidean alwithm

Extended Euclidean algorithm

multiplicative involve

Observations

D Zn = 1 a e Zn | gcd (an) = 1 } forms a group under multiplication

(2) Zn ~ Zm, × Zm, when gcd(m, m2) = 1 Chineage Rengrator Theorem Unique Prime Furtoireation

na wi opposition, and a construction as a product of printer.

Theorem 1.20 (The Fundamental Theorem of Arithmetic). Let $a \ge 2$ be an integer. Then a can be factored as a product of prime numbers

$$a = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \cdots p_r^{e_r}.$$

Further, other than rearranging the order of the primes, this factorization into prime powers is unique.

Greatest common divisors

Définition: Given tuo megges a, 6

If d divides a and divides to then

dies a common divirun of a and b

The largest such value of d is called

the greatest common distinct of a, b.

gcd (a,6)

Examples: gcd(12,18) = 6

$$\gcd(748, 2024) = 44.$$

One way to check that this is correct is to make lists of all of the positive divisors of 748 and of 2024.

Divisors of $748 = \{1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748\}$, Divisors of $2024 = \{1, 2, 4, 8, 11, 22, 23, 44, 46, 88, 92, 184, 253, 506, 1012, 2024\}$.

Observe the following: Assume 620. case 1: a is a divisor of 6 ged Cabo = a Case 2: lo is not a divisor of a. b = a 9, + ~ o < r < a r = b - aq, Observe that a common divisor of a and b is a common divisor of roud b À common divisor of rand b is also a common. duisor of a and b. Hence $Q(d(b,a)) = g(d(a,b)) \qquad Q < f < Q$

a= >024, b= 748

$$2024 = 748 \cdot 2 + 528$$

$$748 = 528 \cdot 1 + 220$$

$$528 = 220 \cdot 2 + 88$$

$$220 = 88 \cdot 2 + 44 \quad \leftarrow$$

$$88 = 44 \cdot 2 + 0$$

$$0 = 9q + r$$

$$0 = 7q + r$$

$$\gcd(a_1b) = \gcd(b_1c_1) = \gcd(c_1,c_1) = \gcd(c_1,c_2) - \cdots$$

$$= \gcd(c_1,c_2) - \cdots$$

$$= \gcd(c_1,c_2) - \cdots$$

$$= \gcd(c_1,c_2) - \cdots$$

$$= \gcd(c_1,c_2) - \cdots$$

Theorem 1.7 (The Euclidean Algorithm). Let a and b be positive integers with $a \ge b$. The following algorithm computes gcd(a, b) in a finite number of steps.

- (1) Let $r_0 = a$ and $r_1 = b$.
- (2) Set i = 1.
- (3) Divide r_{i-1} by r_i to get a quotient q_i and remainder r_{i+1} ,

$$r_{i-1} = r_i \cdot q_i + r_{i+1}$$
 with $0 \le r_{i+1} < r_i$.

- (4) If the remainder $r_{i+1} = 0$, then $r_i = \gcd(a, b)$ and the algorithm terminates.
- (5) Otherwise, $r_{i+1} > 0$, so set i = i + 1 and go to Step 3.

Extended Endidean Agortum (Homework) Given two integers a, b, I integer u, v st autbu = gcd (a16)

Application of Extended Euristica Argoritum Zn = 5 a / gcdcarn) = 13 forms a group ander multiplication O closure: a, b EZA*, abb EZA* because godca*b, n=1 (3) identity = 1 * a = ax1 = a, 1 = Zn* 3 invarge : (ascociatives: (by a stociation of multiplication over integers) JB We need to show that Y a ∈ Zn, ∃ b sit a*b = b* a = 1 mod n See next page.

Theorem: Given integers ann, I b sit a. b = 1 mod n iff gcd (9, n) = 1 If a. C=1 mod n, then c= b mod n Prosf: E It gcdcam=1, then ab=1 mod n for some b Prof: By extended earlier digition, since god carn =1 abtnc=1 for some 6, c Take mad n a 6 = 1 mal 0 -> If a,b=1 med n then ged (9,10) = 1 boot = ap -1 = uc for some integer c $\alpha \rho - \nu c = \overline{\nu}$ If d= gd(am), then d/a and d/n then, d11. So, d= 1. To show that if a b = (mod n and a c = (mod n the n 5 DEC mod n: b=b.1=b.a.c=6.a).c=1.c=c modn