Partiel S2 Architecture des ordinateurs

Durée : 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (5 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 2 (4 points)

On souhaite réaliser une mémoire RAM d'une capacité de 2 Mib (que l'on notera M) à l'aide de plusieurs mémoires RAM d'une capacité de 16 Kib (que l'on notera m). La mémoire M possède un bus de donnée de 16 bits et la mémoire m un bus de donnée de 4 bits. Répondez aux questions sur le document réponse.

Exercice 3 (5 points)

- 1. Câblez la figure 1 afin de réaliser un compteur asynchrone modulo 11.
- 2. Câblez la figure 2 afin de réaliser un décompteur asynchrone modulo 11.
- 3. Câblez la figure 3 afin de réaliser un registre à décalage (E \rightarrow Q0 \rightarrow Q1 \rightarrow Q2 \rightarrow Q3).

Exercice 4 (6 points)

On souhaite réaliser la séquence du tableau présent sur le document réponse à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le document réponse.
- 2. Sur le <u>document réponse</u>, donnez les expressions les plus simplifiées des entrées J et K de chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : J0 = 1, K1 = Q2).

Partiel S2 1/6

Partiel S2 2/6

Architecture	des ordinateurs	FDITA	C2	2016/2017
ALCHHELLINE	des enumaients	CPLIA-		- / 1 1 1 1 1 / 1 1 1 1 / 1

Nom:	Prénom :	Classe :
	DOCUMENT RÉPONSE À	RENDRE

Exercice 1

1.

Nombre	S	E	М
75,75			
0,46875			

2.

Représentation IEEE 754	Représentation associée
20A1 8000 0000 0000 ₁₆	
7FF7 0000 0000 0000 ₁₆	
0004 2000 0000 0000 ₁₆	

Exercice 2

Question	Réponse
Quelle est la profondeur de la mémoire <i>m</i> ?	
Quelle est la profondeur de la mémoire M?	
Donnez le nombre de fils du bus d'adresse de la mémoire m.	
Donnez le nombre de fils du bus d'adresse de la mémoire <i>M</i> .	
Combien de mémoires doit-on assembler en parallèle ?	
Combien de mémoires doit-on assembler en série ?	
Combien de bits d'adresse vont servir à déterminer les entrées CS des mémoires ?	
Quand la mémoire <i>M</i> est active, combien de mémoires <i>m</i> sont actives simultanément?	

Exercice 3

Figure 1

Figure 2

Figure 3

Exercice 4

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	0	0						
0	0	1						
0	1	1						
0	1	0	· · · · · · · · · · · · · · · · · · ·					
1	1	0	.,,				,,,,	
1	1	1						
1	0	1						
1	0	0						

Utilisez les tableaux de Karnaugh uniquement pour les solutions qui ne sont pas évidentes.

J0 =

K0 =

_	Q1 Q0					
	J1	00	01	11	10	
02	0					
Q2	1					

	Q1 Q0					
	K1	00	01	11	10	
03	0					
Q2	1					

J1 =

K1 =

	Q1 Q0						
	J2	00	01	11	10		
03	0						
Q2	1						

J2 =

K2 =