

WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTERS PATENT IS:

Sabu
1. An assistant for digesting a lignocellulose material, which
comprised a nonionic surfactant (A) comprising one or more compounds
represented by the general formula (1):

wherein R^1 is a branched alkyl group containing 4-24 carbon atoms
represented by the general formula (2):

(wherein R^2 and R^3 are independently selected from the group
consisting of straight-chain or branched alkyl groups containing 1-21
carbon atoms, and R^4 is an alkylene group containing 1-21 carbon
atoms); m is an integer of at least 1, having an average of 4-20; A^1
is an alkylene group containing 3 or 4 carbon atoms; and n is 0 or an
integer of at least 1, having an average of 0-15; wherein $(C_2 H_4 O)$ and
 $(A^1 O)$, in case of the average of n being 1-15, are linked random-wise
and/or block-wise.

2. An assistant for digesting for a lignocellulose material,
which comprises a nonionic surfactant (B) obtained by addition of an
alkylene oxide to an aliphatic alcohol, said nonionic surfactant (B)
comprising one or more compounds represented by the general formula
(3):

wherein R^5 is a straight-chain, branched or cyclic aliphatic
hydrocarbyl group containing 4-24 carbon atoms; p is an addition molar

*Synd 1
A*

number of 4-20; A² is an alkylene group containing 3 or 4 carbon atoms; and q is an addition molar number of 0 or 1-15; wherein (C₂H₄O) and (A¹O), in case of the average of q being 1-15, are linked random-wise and/or block-wise; said nonionic surfactant (B) having a weight-average molecular weight (M_w) and a number-average molecular weight (M_n) providing a ratio of M_w/M_n satisfying the relationship (4):

$$\frac{M_w}{M_n} \leq -0.183 \times K^{-0.930} \times \ln X + 1.327 \times K^{-0.065} \quad (4)$$

wherein LnX is a natural logarithm of X; X is an average addition molar number of the alkylene oxide per 1 mole of the aliphatic alcohol; and K is the number of carbon atoms in R⁵ of the general formula (3).

3. The assistant of Claim 1 or 2, wherein said nonionic surfactant (A) or said nonionic surfactant (B) has an HLB of 6-18.

4. An assistant for digesting a lignocellulose material, which comprises an anionic surfactant (C) represented by the general formula (5) and/or an anionic surfactant (D) comprising one or more compounds represented by the general formula (6):

wherein R⁶ is a straight-chain, branched or cyclic aliphatic hydrocarbyl group containing 4-24 carbon atoms; A³ is an alkylene group containing 3 or 4 carbon atoms; r is 0 or an integer of at least 1, having an average of 0-15; k is an integer of 1 or 2; and M¹ and M² are monovalent cations.

5. An assistant for digesting a lignocellulose material, which

Sinha comprises:

(a) a nonionic surfactant (A) and/or a nonionic surfactant (B); together with

(b) at least one anionic surfactant selected from the group consisting of an anionic surfactant (C), an anionic surfactant (D) and an anionic surfactant (E);

in a weight ratio of 100/0.1 - 100/30;

said nonionic surfactant (A) comprising one or more compounds represented by the general formula (1); said nonionic surfactant (B) being obtained by addition of an alkylene oxide to an aliphatic alcohol, and comprising one or more compounds represented by the general formula (3) and having a weight-average molecular weight (M_w) and a number-average molecular weight (M_n) providing a ratio of M_w/M_n satisfying the relationship (4); said anionic surfactant (C) comprising one or more compounds represented by the general formula (5); said anionic surfactant (D) comprising one or more compounds represented by the general formula (6); and said anionic surfactant (E) comprising one or more compounds represented by the general formula(7):

Suba's

(7)

wherein R^1 is a branched alkyl group containing 4-24 carbon atoms represented by the general formula (2):

(2)

(wherein R^2 and R^3 are independently selected from the group consisting of straight-chain or branched alkyl groups containing 1-21 carbon atoms, and R^4 is an alkylene group containing 1-21 carbon atoms); R^5 and R^6 are straight-chain, branched or cyclic aliphatic hydrocarbyl groups containing 4-24 carbon atoms; R^7 is a straight-chain or branched alkyl group, alkenyl group, or mono- or di-hydroxyalkyl group, containing 4-24 carbon atoms; R^8 is an alkylene group containing 1-6 carbon atoms; m is an integer of at least 1, having an average of 4-20; p is a number of 4-20; A^1 , A^2 , A^3 and A^4 are alkylene groups containing 3 or 4 carbon atoms; n , r and s are 0 or an integer of at least 1, having an average of 0-15; q is an addition molar number of 0 or 1-15; k is an integer of 1 or 2; M^1 , M^2 and M^3 are monovalent cations; wherein $(C_2 H_4 O)$ and $(A^1 O)$, in case of the average of n or q being 1-15, are linked random-wise and/or block-wise;

$$M_w/M_n \leq -0.183 \times K^{-0.930} \times \ln X + 1.327 \times K^{-0.065} \quad (4)$$

wherein $\ln X$ is a natural logarithm of X ; X is an average addition molar number of the alkylene oxide per 1 mole of the aliphatic alcohol; and K is the number of carbon atoms in R^5 of the general formula (3).

6. The assistant of any one of Claims 1-5, which is used in

Sunba (combination with a quinone type digestion assistant and/or a polysulfide.

7. A method for producing a pulp, which comprises digesting a lignocellulose material with an alkali or a sulfite in the presence of a digestion assistant; wherein an assistant (a) according to any one of Claims 1-6 is used as the assistant.

8. A method for producing a pulp, which comprises digesting a lignocellulose material with an alkali or a sulfite in the presence of a digestion assistant; wherein an assistant (a) according to any one of Claims 1-5 is used together with a quinone type digestion assistant and/or a polysulfide as the assistant.

9. The method of Claim 8, wherein the assistant (a) is added beforehand prior to addition of the quinone type digestion assistant and/or the polysulfide, and after their addition, digesting is carried out.

10. The method of Claim 9, wherein the lignocellulose material is heated after, during and/or before addition of the assistant (a).

add a²