

Sistema Hidráulico de potencia

Los Sistemas o Unidades de Potencia Hidráulicas, HPU, son los encargados de transformar y transmitir a través de fluido hidráulico la energía para realizar un trabajo específico ya sea lineal o rotacional.

Etapas:

- Identificar los requerimientos para el sistema
- Etapa de diseño(se hacen los cálculos para los componentes del sistema)
- Selección de los componentes que se adecuen al diseño
- Compra de equipos
- Instalación del sistema
- Puesta en marcha del sistema
- Etapa de operación
- Mantenimiento.

Consideraciones para determinar las características del motor hidráulico

La potencia del motor hidráulico depende del tipo de flujo, es decir, si es laminar, turbulento o de transición - y de las proporciones geométricas de todo el equipamiento.

- Medidas del tanque y del agitador
- Viscosidad y la densidad del fluido.
- La velocidad de giro del agitador.

Necesidades motrices del sistema

Número de Reynolds: parámetro adimensional cuyo valor indica si el flujo sigue un modelo laminar o turbulento.

$$Re = \frac{D_a^2 * N * \rho}{\mu}$$

Da: Distancia entre aspas

N: Número de revoluciones por segundo

ρ: Densidad del fluido

μ: Viscosidad absoluta

Potencia del sistema

 Para calcular la potencia se necesita conocer el número de Reynolds y el Número de potencia (Np)

• Acorde con las condiciones establecidas para el sistema dado, el número de potencia se obtiene de la siguiente gráfica y para leer la gráfica se necesita el número de Reynolds, Re, y el paso, Da, entre aspas.

Gráfica para determinar el número de potencia

• Finalmente se calcula la potencia requerida por el sistema motriz.

W out: Potencia requerida

Np: Número de potencia

N: RPS

Da: Distancia entre aspas

• Conociendo la potencia requerida y las RPS requeridas, se obtiene el torque necesario.

T: Torque requerido

ω: Velocidad angular

$$\dot{W}_{out} = N_p \rho N^3 D_A^{5}$$

Cálculos para seleccionar el motor hidráulico

Potencia de salida: La potencia de salida de un sistema rotatorio se considera como el producto de la velocidad angular por el torque disponible.

$$\dot{W}_{out} = T * \omega$$

Donde:

T: Torque requerido(salida)

ω: Velocidad Angular(salida)

Potencia de entrada

La potencia de entrada a un motor hidráulico se considera como el producto del caudal por la presión:

Donde:

- W= Potencia
- V= Caudal
- P= Presión

Calor generado por el motor

La diferencia entre la potencia de entrada y la potencia de salida es el flujo del calor generado por el sistema.

Donde:

Qgen: Calor generado

Win: Potencia entrada

Wout: Potencia de salida

Eficiencia mecánica del motor

Se calcula la eficiencia mecánica del motor:

$$\eta = \frac{RPM * T(lb \cdot in)}{GPM * PSI * 36,7} * 100\%$$

Donde:

GPM está dado en galones por minuto

Criterios para seleccionar la tubería

- Máxima velocidad de flujo permitida
- Presión máxima de trabajo del sistema
- Requerimientos visuales y económicos de la instalación

- Las conexiones deben soportar las presiones de trabajo con un margen de seguridad
- Tipo de fluido, temperatura, vibraciones y movimientos relativos

Tuberías

- Tubería de la línea de succión: Velocidad recomendada en la succión por debajo de 4ft/s
- Tubería de la línea de retorno: Velocidad recomendada en la descarga por debajo de 10 ft/s
- Tubería de la línea de presión: Velocidad recomendada en la descarga por debajo de 15 ft/s

• Cálculo del diámetro interno de la tubería:

D: Diámetro interior tubería [pulg]

A: Área de sección transversal de la tubería [pulg2]

Cálculo de área de sección transversal·

Q: Caudal requerido [gal/min] V: Velocidad [ft/s]

Cálculos de la presión de explosion:

La presión de explosión es la presión del fluido que podría causar que la tubería explote. Esto pasa cuando el esfuerzo de tensión (σ) es igual al esfuerzo de tensión del material de la tubería (S) .

BP: Presión de explosión

t: Espesor de la pared del tubo

S: Esfuerzo de tensión

Di: Diámetro interior de la tubería

Cálculo de la Presión de Trabajo

La presión de trabajo (WP) es la máxima presión segura de operación del fluido, donde BP es presión de explosión y FS es factor de seguridad.

$$WP = \frac{BP}{FS}$$

El factor de seguridad se escoge de acuerdo a la máxima presión de trabajo del sistema.

Criterios para la selección de válvulas

• Válvula direccional: Se selecciona de acuerdo a la aplicación requerida por el sistema, teniendo en cuenta las especificaciones de caudal y presión en el mismo

• Válvula de alivio: Se selecciona con la presión máxima que se desea controlar el es sistema y el caudal necesario.

• **Válvula de cheque:** Se selecciona con la presión requerida por el sistema y el caudal necesario.

Criterios para la selección de la bomba

Para seleccionar la bomba se debe conocer la presión máxima del sistema y el caudal requerido por el motor hidráulico.

Para encontrar la presión a la entrada de la bomba se debe aplicar la ecuación de energía entre el nivel del tanque y la entrada a ella.

Cálculo de la presión a la salida de la bomba

Para determinar la presión a la salida de la bomba se debe aplicar la ecuación de la energía entre los puntos 1 y 2.

$$\frac{P_1}{\gamma} + \frac{{V_1^2}}{2g} + Z_1 - H_M - H_L = \frac{P_2}{\gamma} + \frac{{V_2}^2}{2g} + Z_2$$

P1: Presión a la salida de la bomba secundarias

HL: Cabeza total de pérdidas primarias y

γ: Peso específico del fluido reservorio

P2: Presión a la entrada del

V1: Velocidad a la salida de la bomba

V2 : Velocidad a la descarga en el reservorio

Z1: Altura de salida de la bomba respecto a un Nivel de referencia Z2: Altura de la entrada al reservorio respecto a un

Pérdidas primarias y secundarias

Pérdidas primarias:

$$H_L = f \frac{L}{D} \frac{V^2}{2g}$$

f: factor de fricción. Para flujo turbulento se obtiene del diagrama de Moody y para flujo laminar de la expresión:

$$f = \frac{64}{\text{Re}}$$

L: longitud total de la tubería en ft

D: Diámetro de la tubería en ft

V: Velocidad en la línea de presión en ft/s g: gravedad en ft/s2

Re: Número de Reynolds

Pérdidas secundarias:

$$H_L = K \frac{V^2}{2g}$$

K: Factor de pérdidas en accesorios

V: Velocidad en la línea de presión en ft/s

g: gravedad en ft/s2

Cálculo de la potencia de la bomba

$$W_{sal} = P * Q * 0,0007$$

$$\dot{W}_{in} = \frac{\dot{W}_{sal}}{\eta_{bomba}}$$

Donde:

- W_{sal}: potencia de salida en hp
- P: Presión en psi
- Q: Caudal en gal/min

Donde:

- Win: potencia de entrada en hp
- nbomba: Eficiencia global de la bomba

Criterios para la selección del motor eléctrico eléctrico se debe conocer:

- La potencia requerida por la bomba.
- ☐ La velocidad de giro de la misma.
- ☐ La fuente de alimentación .
- La naturaleza del servicio de energía eléctrica .
- ☐ El nivel de voltaje disponible.
- ☐ El ciclo de trabajo (continuo o intermitente).

Así mismo se debe considerar las condiciones ambientales de la instalación y algunas características como el acoplamiento de la carga, los accesorios y modificaciones mecánicas necesarias. La potencia del motor eléctrico es igual a la potencia requerida por la bomba

Criterio para la selección de filtros

- Filtro de succión: Para seleccionar el filtro de succión se debe conocer la presión de aspiración y el caudal máximo para tener una pérdida de presión mínima.
- Filtro de retorno: Para seleccionar el filtro de retorno se deben considerar aspectos tales como: la viscosidad del fluido, el caudal requerido, la clase de limpieza del aceite, el tipo de elemento filtrante.

Se usa la siguiente fórmula para calcular el caudal de los filtros:

Donde:

f: Factor de influencia de la viscosidad

Criterios para la selección del aceite hidráulico

• El aceite hidráulico como componente del sistema, debe ser escogido de acuerdo a las especificaciones de todos los componentes del mismo, de tal manera que sea compatible con cada uno de ellos.

Selección del depósito

- Las partículas sólidas deben permanecer asentadas (en el fondo) en el reservorio y el aire debe salir fácilmente
- Todo el aceite contenido en el sistema se pueda almacenar en él

- El nivel de aceite debe ser suficiente para evitar entrada de aire a la bomba, lo que provocaría cavitación
- El volumen sea lo suficientemente grande para disipar la mayor cantidad de calor generado en el sistema
- El volumen de aire sea adecuado para permitir la expansión térmica del aceite

• Debe ser igual a tres veces el flujo volumétrico requerido por el sistema en gal/min o m3/min, respectivamente.

• Las etapas descritas anteriormente permiten conocer las criterios para seleccionar los componentes. A partir de esto, se puede proceder a la compra de componentes y montaje del sistema.

Factor de influencia de la viscosidad vs. viscosidad cinemática de servicio.

Referencias:

- [1] ALAN S., Foust; LEONARD A. Wenzel, And Others. Principios de Operaciones Unitarias, primera edición, Compañía Editorial Continental, S.A., México, 1961.
- [2] BROWN, George Granger; And others. Operaciones Básicas de la Ingeniería Química, primera edición, editorial Marín S.A., Barcelona, 1955.
- [3] Design Engineers Handbook. Bulletin 0224-B1. Fluidpower Group. Parker Hannifin Corporation. Cleveland, USA, 1979.
- [4] American National Standard. Hydraulic Fluid Power: System Standard for Stationary Industrial Machinery. ANSI/(NFPA/JIC) T2.24.1.1991.
- [5] Analyzing Hydraulic Systems. Bulletin 0222-B1. Training department, Fluidpower Group. Parker Hannifin Corporation. Cleveland, USA, 1987.
- [6] International Standard ISO 1219-2. Fluid Power Systems and Components: Graphic Symbols and Circuit Diagrams. Part 2: Circuit Diagrams, Switzerland, 1991.