Amazon Baby Products Sentiment Analysis

In [1]:

```
from IPython.display import Image
Image(filename = 'C:/amazon logo.png')
```

Out[1]:

As per one survey, 72% of consumers will take action only after reading a positive review.

As a frequent Amazon user, I have always been curious about the online review system and how do they impact any consumer's purchasing decision. With this work I am interested in exploring the structure of a large database of Amazon reviews and analysing this information through effective visualization so as to be a smarter consumer as well as reviewer. For the sake of simplicity I am going to limit my analysis to only Amazon baby dataset.

Below is a sample Amazon review. It consists of the following information:

- Rating (1 5 stars)
- The review
- · A summary of the review
- The number of people who have voted if this review is helpful or not.

In [2]:

```
from IPython.display import Image
Image(filename = 'C:/Amazon Rev.png')
# ![image] (imagename.png "Title")
```

Out[2]:

I am going to use a data of over 59,000 reviews of Amazon Baby products that is available via this link here. http://jmcauley.ucsd.edu/data/amazon/links.html. This database contains 19 different features along with each of the elements of a review pictured above. So our initial goals would be to

- Perform some basic exploratory data analysis to better understand reviews.
- · What are the properties of helpful reviews?
- How reviewText correlate to overall ratings.

In [3]:

```
%matplotlib inline
import pandas as pd
import numpy as np
from wordcloud import WordCloud , STOPWORDS
from nltk.corpus import stopwords
from nltk import word tokenize
from string import punctuation
from sklearn.cross validation import train test split, cross val score
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.metrics import precision score, confusion matrix
from sklearn import metrics
import matplotlib.pyplot as plt
import itertools
import seaborn as sns
import missingno as msno
import pandasql as pdsql
from pandasql import sqldf
import warnings
warnings.filterwarnings("ignore")
C:\Users\anands\AppData\Local\Continuum\Anaconda3\lib\site-
packages\sklearn\cross validation.py:44: DeprecationWarning: This module wa
s deprecated in version 0.18 in favor of the model selection module into wh
ich all the refactored classes and functions are moved. Also note that the
interface of the new CV iterators are different from that of this module. T
his module will be removed in 0.20.
  "This module will be removed in 0.20.", DeprecationWarning)
```

In [4]:

```
%matplotlib inline
import matplotlib.pyplot as plt
import csv
from textblob import TextBlob
import pandas
import sklearn
# import cPickle
import numpy as np
from sklearn.feature extraction.text import CountVectorizer,
TfidfTransformer
from sklearn.naive bayes import MultinomialNB
from sklearn.svm import SVC, LinearSVC
from sklearn.metrics import classification_report, f1_score, accuracy_score
, confusion_matrix
from sklearn.pipeline import Pipeline
from sklearn.grid search import GridSearchCV
from sklearn.cross_validation import StratifiedKFold, cross val score, trai
n test split
from sklearn.tree import DecisionTreeClassifier
from sklearn.learning_curve import learning curve
```

In [5]:

```
df = pd.read_csv('C:\Baby_review.csv',low_memory=False)
```

In [6]:

```
pd.read_csv('C:\Baby_review.csv',low_memory=False)
```

Out[6]:

Out [0	-					
	reviewerID	asin	reviewerName	helpful	helpful_num	helpful_den
0	A3NMPMELAZC8ZY	097293751X	Jakell	[3, 3]	3	3
1	A3O4ATU0ENBKTU	097293751X	MAPN	[1, 1]	1	1
2	A2SYNL4YX73KNY	097293751X	R. Davidson "Jrdpa"	[2, 2]	2	2
3	A2Q2A6JKY95RTP	097293751X	R. Garrelts	[2, 2]	2	2

4	AZVIESSANDNOWMK8	9319 375011	Eenrile/WerName	[tielp]ful	իelpful_num	∄elpful_den
5	ALRN58JO86V5E	9729375011	John Ramahlo Jr.	[2, 3]	2	3
6	AXEEHEUKQILR0	9729375011	K. Kadrmas	[2, 2]	2	2
7	A3KZ91O8KA1IAZ	9729375011	LMCR "HauteDiva"	[1, 2]	1	2
8	A10G2X4KR2U1GE	9729375011	M&M	[1, 1]	1	1
9	A3EG1F4UBURE6O	9729375011	Maria M. Shaw	[6, 6]	6	6
10	A2BGDV09HCHX8E	9729375011	msb175 "msb"	[0, 1]	0	1
11	A10STX704CY2IH	9729375011	Rangers68	[2, 3]	2	3
12	A36OZM5CENQ7LW	B00000IZQI	Allison	[1, 1]	1	1
13	A1Z54EM24Y40LL	B00000IZQI	csm	[17, 18]	17	18
14	AZK9CCTYQNRNL	B00000IZQI	Deanna Hockey	[2, 2]	2	2

15	ARVIEWEND 6FIN	BOPPOOIZQI	KeWiewlerName	helphul	หืelpful_num	หืelpful_den
16	A1DNWA98IV5PMW	B00000IZQI	Madison and Nathan's Mom	[2, 2]	2	2
17	AFM7DWQ762149	B000001ZQI	S. Hughes "s_hughes"	[98, 100]	98	100
18	A3DETJ3SIGHPWI	B00000IZQI	Sue	[7, 7]	7	7
19	A3NVSUFF2RPXOV	B00000IZQI	William Moor "William Moor"	[1, 1]	1	1
20	A30H2335OM7RD6	B00000J3LL	apoem "apoem"	[5, 5]	5	5
21	A2EP68HH1PXAN3	B00000J3LL	Tamara	[1, 1]	1	1
22	A3NKRXQLI3FQML	B00002JV9S	azgal	[1, 1]	1	1
23	A9RTFYY13I0GP	B00002JV9S	Buzzbee	[1, 1]	1	1
24	A3B19AL2Q4KZAG	B00002JV9S	Cece "Not So Usual"	[3, 4]	3	4
25	A269WG8C9O2B0C	B00002JV9S	Gee Geronimo	[1, 1]	1	1
26	A37KH5N4TE0RPR	B00002JV9S	LisaD	[1, 2]	1	2

27	A14RUX9GCBX49B					
		B00002JV9S	Rebecca Tucker	[0, 2]	0	2
28	A2QEPZKATEOCUG	B00002JV9S	RGillund	[4, 4]	4	4
29	A3IUDIPEMB2EE8	B00002JV9S	TwinMom	[54, 57]	54	57
56920	A383CVDQ66BP86	B00JLHWDO4	Brookel	[5, 9]	5	9
56921	A3045OYEAMGB7Z	B00JLHWDO4	Elise	[1, 1]	1	1
56922	A1Y0G2WBHTXPHY	B00JLHWDO4	K. Fowler "Mom of twins"	[3, 3]	3	3
56923	A3UQW8PYBBQI9P	B00JLHWDO4	RSD	[3, 5]	3	5
56924	A2XNKMGEYHLUK7	B00JLI73ZM	Amazon Customer	[2, 5]	2	5
56925	A27JH7C18JQIJB	B00JLI73ZM	Angie	[2, 3]	2	3
56926	A3AOVTNCJ73WZU	B00JLI73ZM	CNye	[3, 4]	3	4

56927	ASTIVACIO TWWJR4	BSO ULI73ZM	Dearie Wer Name	[ńęlp]ful	helpful_num	₿elpful_den
56928	A1HKBA28E0BZF8	B00JLI73ZM	Leaping Trout	[1, 3]	1	3
56929	A2D3L6NXIW2BP7	B00JLI73ZM	Mamafoosa	[20, 21]	20	21
56930	A2RIAXGSBP65BJ	B00JRYRYS6	Amanda Hamm "writer"	[2, 3]	2	3
56931	A2RX62V4E2BF5Z	B00JRYRYS6	Celeste "Vodka, Apple Pucker & Sweet 'n' Sour"	[1, 1]	1	1
56932	A268QM4AOCO9NI	B00JRYRYS6	C. Weaver "PsychoDoc"	[3, 3]	3	3
56933	A2ME89MSWVG9NF	B00JRYRYS6	donny "don130"	[1, 1]	1	1
56934	A3C1QYGEET3BVY	B00JRYRYS6	PC Mountain	[1, 2]	1	2
56935	A3IMK08UX0I46A	B00JRYRYS6	TOPJOB7 "topjob7"	[1, 1]	1	1
56936	A1ZILONLWX15N2	B00L13XFIE	Ally	[1, 1]	1	1
56937	A2K0QLST7946WU	B00L13XFIE	AQBoston "Allie"	[1, 1]	1	1

	reviewerID	asin	reviewerName	helpful	helpful_num	helpful_den
56938	A1HH6P7G3GH9EL	B00L13XFIE	BtrflyBlueStar	[6, 6]	6	6
56939	A17SL464CLQAT8	B00L13XFIE	ca.roybal	[3, 5]	3	5
56940	A32IUKDAS4THJD	B00L13XFIE	Danielle Warren	[2, 4]	2	4
56941	A2RDQBFPIJXNOW	B00L13XFIE	Fiona'sMom	[16, 18]	16	18
56942	A3GJJZV6K0F7IY	B00L13XFIE	GreenEyedGirl	[2, 2]	2	2
56943	A1URMXEEWEQR6V	B00L13XFIE	Jeremiah L. Olson	[2, 3]	2	3
56944	A2VCMK1USHIEL9	B00L13XFIE	Marcela	[1, 1]	1	1
56945	A34T0JYVRU1M2B	B00L13XFIE	Nukke	[1, 1]	1	1
56946	A1AFNMTDISXUJE	B00L13XFIE	Qutie	[1, 2]	1	2
56947	A1ZS6UQ9RVUX97	B00L13XFIE	R. Nafziger	[1, 2]	1	2
56948	AG4E44KM93P4L	B00L13XFIE	Silofish	[0, 1]	0	1

	reviewerID	asin	reviewerName	helpful	helpful_num	helpful_den
56949	A3CIIOMK18CHXM	B00L13XFIE	Viviana	[1, 1]	1	1

56950 rows × 19 columns

```
In [7]:

df.shape
```

Out[7]: (56950, 19)

In [8]:

```
df.columns.tolist()
```

Out[8]:

```
['reviewerID',
'asin',
'reviewerName ',
'helpful',
'helpful_num',
'helpful den',
 'reviewText',
 'overall',
'summary',
'unixReviewTime',
'reviewTime',
'exclamationcount',
 'questioncount',
 'charcount',
'wordcount',
'capcount',
 'avgrating',
'diffrating',
'ishelpful']
```

In [9]:

df.head(2)

Out[9]:

	reviewerID	asin	reviewerName	helpful	helpful_num	helpful_den	reviewT
0	A3NMPMELAZC8ZY	097293751X	Jakell	[3, 3]	3	3	This boo is perfect I'm a first time neveno
							I use thi

1	ASADEMATIND ENBKTU	Q9772 93751X	MAN Per Name	[ńelp]ful	ĥelpful_num	ĥelpful_den	beologevit t
							(grandm
							ca

In [10]:

df.sort_values(by='overall', ascending=False)[:3]

Out[10]:

	reviewerID	asin	reviewerName	helpful	helpful_num	helpful_den	re
0	A3NMPMELAZC8ZY	097293751X	Jakell	[3, 3]	3	3	is l'r tii m
31934	A37QWKCN6XQV1I	B003FLLQX6	K Bosh	[1, 1]	1	1	B fa bi co re
31939	A1ER8RH6UFTD1W	B003FLLQXG	Melanie Cintron	[10, 11]	10	11	Tis Tion of it.

In [11]:

df.describe()

Out[11]:

	helpful_num	helpful_den	overall	unixReviewTime	exclamationcount	questic
count	56950.000000	56950.000000	56950.000000	5.695000e+04	56950.000000	56950.0
mean	4.939701	5.987199	3.951975	1.329489e+09	0.879385	0.1024
std	23.655852	24.799907	1.308374	7.046482e+07	1.814582	0.4932
min	0.000000	1.000000	1.000000	9.824544e+08	0.000000	0.0000
25%	1.000000	1.000000	3.000000	1.306454e+09	0.000000	0.0000
50%	1.000000	2.000000	4.000000	1.353802e+09	0.000000	0.0000
75%	3.000000	4.000000	5.000000	1.376006e+09	1.000000	0.0000
max	1206.000000	1214.000000	5.000000	1.405987e+09	74.000000	18.000

Exploratory Data Analysis

I. Distribution of overall ratings

```
In [12]:
```

```
df['overall'].value counts()
Out[12]:
5
     28368
     11717
4
3
     7463
     4836
1
      4566
Name: overall, dtype: int64
In [13]:
df1 = df.groupby(['overall']).agg({'reviewerID': 'count'})
df1['% of total']= df1['reviewerID']/df1['reviewerID'].sum()*100
# df1['% of total'] = df1['% of total'].map('{:,.2f}%'.format)
df1
```

Out[13]:

	reviewerID	% of total
overall		
1	4836	8.491659
2	4566	8.017559
3	7463	13.104478
4	11717	20.574188
5	28368	49.812116

In [14]:

```
df1.reset_index(level = 0 , inplace = True)
df1
s = df1[['overall','% of total']]
s.set_index('overall', inplace = True)
s.plot(kind = 'bar', color = 'y')
plt.xlabel("Ratings")
plt.ylabel("% of total reviews")
plt.title("Distribution of Ratings( in %)")
```

Out[14]:

<matplotlib.text.Text at 0xe64afd0>

Distribution of Ratings(in %) 50 wo of total 40 20

Looking at the distribution of ratings, we see that 5-star reviews constitute a large proportion (50%) of all reviews. The next most prevalent rating is 4-stars(21%), followed by 3-star (13%), 1-star (8.5%), and finally 2-star reviews (8.0%).

II. Ratings and their helpfulness

Reviews are voted upon based on how helpful other reviewers find them. The most helpful
reviews appear near the top of the list of reviews and are hence more visible. As such, I was
interested in exploring the properties of helpful reviews.

In [15]:

```
t2 = pd.crosstab(df['overall'], df['ishelpful'], margins = True)
t2.columns = ["Not-helpful", "Helpful", 'Total']
t2.index = [1,2,3,4,5,'Total']
t2 = t2/t2.ix["Total", "Total"]*100
t2['Total'] = t2['Total'].map('{:,.2f}%'.format)
t2['Not-helpful'] = t2['Not-helpful'].map('{:,.2f}%'.format)
t2['Helpful'] = t2['Helpful'].map('{:,.2f}%'.format)
t2
```

Out[15]:

	Not-helpful	Helpful	Total
1	4.18%	4.31%	8.49%
2	3.62%	4.40%	8.02%
3	5.17%	7.94%	13.10%
4	6.02%	14.56%	20.57%
5	13.19%	36.62%	49.81%
Total	32.18%	67.82%	100.00%

In [16]:

```
t2 = pd.crosstab(df['overall'], df['ishelpful'])
t2.columns = ["Not-helpful", "Helpful"]
t2.index = [1,2,3,4,5]
t2.plot(kind='bar', stacked=False, color=['y','pink'], grid=False)
plt.xlabel("Ratings")
plt.ylabel("Review Count")
plt.title("Ratings vs Helpfulness")
```

Out[16]:

```
<matplotlib.text.Text at 0x11e7b470>
```


We looked at the percentage of those reviews that users found helpful or not helpful for each Star rating. And we notice that as the ratings increase, the reviews become more helpful. For 5-star reviews, 36% reviews were found helpful and 13% not helpful.

III. Avg word_cnt per review

It will be interesting to see what are the word counts for a given review. Further, I would also like to explore the correlation between word count and other characteristics of a given review like helpfulness.

Word cnt wrt Rating(overall)

In [17]:

```
pysql = lambda q: pdsql.sqldf(q, globals())
strl= """SELECT overall as Ratings, avg(wordcount), min(wordcount), max(word
count)
from df
group by overall
"""
pl = pysql(strl)
pl.head(10)
pl
# pl.plot(kind = 'box')
```

Out[17]:

	Ratings	avg(wordcount)	min(wordcount)	max(wordcount)
0	1	117.148677	2	2978
1	2	132.210031	12	1262
2	3	144.172451	4	3855
3	4	159.316293	2	2232
4	5	130.617844	1	2352

In [18]:

```
SHS.SEL CONTEXT( NOTEDOOK , TONE SCATE-1.3, IC-{ ITHE.ITHEWIGHER: 3})
pysql = lambda q: pdsql.sqldf(q, globals())
str1= """SELECT overall as Ratings, wordcount
from df
11 11 11
p2 = pysql(str1)
color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue',
caps='Gray')
ax = sns.boxplot( p2.Ratings,p2.wordcount, palette = 'deep', color = color)
medians = p2.groupby(['Ratings'])['wordcount'].median().values
median labels = [str(np.round(s, 2)) for s in medians]
pos = range(len(medians))
for tick, label in zip(pos, ax.get xticklabels()):
    ax.text(pos[tick], medians[tick] + 0.25, median labels[tick],
            horizontalalignment='center', size='small', color='w', weight='k
old')
4
```


5-star reviews have the second lowest median word count (91 words), while 3-star reviews have relatively higher median word count (101 words).

IV. Avg word_cnt per review on helpfulness index

In [19]:

```
pysql = lambda q: pdsql.sqldf(q, globals())

strl= """SELECT overall, Avg(wordcount) as avg_wordcount
from df
where ishelpful = 0
group by overall, ishelpful
"""

dfl = pysql(strl)
# dfl.head(10)
# ax = dfl.plot(x='overall', y='avg_wordcount', color='g')
```

```
str2= """SELECT overall, Avg(wordcount) as avg_wordcount
from df
where ishelpful = 1
group by overall, ishelpful
"""
df1 = pysql(str1)
df2 = pysql(str2)
ax = df1.plot(x='overall', y='avg_wordcount', color='Darkgrey', label =
'Not-helpful')
df2.plot(x='overall', y='avg_wordcount', color='Darkgreen', label =
'Helpful', ax = ax)
plt.ylabel('avg_word_cnt')
plt.xlabel('ratings')
plt.title("avg_word_cnt vs helpfulness")
```

Out [19]:

<matplotlib.text.Text at 0x14f2b6a0>

The word counts for helpful reviews and not helpful reviews have a similar distribution. However, not helpful reviews have a larger concentration of reviews with low word count and helpful reviews have more longer reviews. Descriptive reviews are helpful in general.

V. Regular vs Non Regular Reviewers

We are interested to draw a comparision between the reviews of regular vs not regular reviewers. So who are regular reviewers? Our obvious choice would be those customers who have clearly reviewed more than once, the more the better! After analysing the review counts, we found out that there is a good distinction of review counts between <3 reviews and more than 3 reviews /customer in the dataset. So, we assigned reviewers as frequent reviewers who have more than 3 reviews and viceversa. The goal here is to identify if there is any behavioral distinction between frequent and not frequent reviewer groups.

```
ın [∠∪]:
pysql = lambda q: pdsql.sqldf(q, globals())
str1= """SELECT reviewerID, count(overall) as frequency
from df
group by reviewerID
0.01\,0
df4 = pysql(str1)
df4['% of total review']= df4['frequency']/df4['frequency'].sum()*100
df4['% of total review'] = df4['% of total review'].map('{:,.2f}%'.format)
df4["frequency"].value_counts()
Out[20]:
2
      4143
1
      4047
3
      3267
4
      2154
5
      1395
6
      739
7
       431
8
       251
9
       178
10
       135
11
       90
        71
12
       57
13
14
       31
        29
17
15
       28
       25
16
18
        14
20
       12
19
       11
21
         8
22
         8
32
         6
26
         6
23
         5
24
         4
27
         3
36
         2
25
         2
         2
38
31
         1
49
         1
48
         1
30
         1
45
         1
33
         1
58
         1
44
         1
34
         1
35
         1
```

37 1
53 1
47 1
Name: frequency, dtype: int64

```
In |21|:
```

```
df4.hist(layout=(1,2),bins = 6, figsize = [20,6], color = 'Darkgreen')
plt.xlabel("Number of reviewers")
plt.ylabel('Reviewer_cnt')
```

Out[21]:

<matplotlib.text.Text at 0x11d9c5c0>

Here Frequency is the number of reviews completed by a given customer on the website. From the above histogram we see we have quite a good concentration of reviewers in the dataset reviewing in the range of 1-10 times. After analysing further we found below.

- We have 8977 Regular Customers with Review frequency > 2
- We have 8190 customers which are not so regular having frequency <= 2
- Majority of the reviews(7410) are done by customers who have reviewed atleast 2 or 3 times.

Do "more reviews" mean they are "more helpful"?

OR

Do "frequent reviewers" write "helpful reviews"?

In [22]:

```
str1="""Select reviewerID, count(overall) as Frequency, overall as Stars, i
shelpful as Helpful
from df
group by reviewerID, overall
"""
df5 = pysql(str1)
# df5['% of total review'] = df5['frequency']/df4['frequency'].sum()*100
# df5['% of total review'] = df5['% of total
```

```
review'].map('{:,.2f}%'.format)
# df5['reg_nonreg']=df5['frequency'].apply(lambda x: "Non-Regular" if x < 3
else "Regular")

df5['TotalFrequency']= df5.groupby('reviewerID').Frequency.transform(np.sum)
s = df5[['Helpful','TotalFrequency']]
s
t1 = pd.crosstab(s['TotalFrequency'], s['Helpful'])
t1.columns = ['Not-Helpful', 'Helpful']
t1
# t1.plot(color = ['orange', 'green', 'grey'])
# plt.xlabel("No of times user reviewed")
# plt.ylabel("Total Reviews")
# plt.title("Review frequency vs Helpfulness")</pre>
```

Out[22]:

	Not-Helpful	Helpful
TotalFrequency		
1	1557	2490
2	2579	4082
3	2415	4303
4	1752	3387
5	1206	2583
6	704	1472
7	450	884
8	258	562
9	199	399
10	171	312
11	95	230
12	79	174
13	71	132
14	41	78
15	40	69
16	38	61
17	36	77
18	24	31
19	13	29
20	19	28
21	9	24
22	7	23
23	5	17

24	Not-Helpful	₩elpful
24	5 ot-Heipiul	ησυριαι
₹ §talFrequency	1	7
26	7	16
27	2	11
30	0	3
31	2	2
32	7	19
33	2	3
34	1	3
35	0	5
36	4	6
37	0	5
38	0	9
44	0	4
45	2	3
47	1	3
48	1	3
49	2	3
53	2	2
57	3	2
58	5	0

In [23]:

```
t1.plot.area(color = ['pink','Darkgreen'])
plt.xlabel("No of times user reviewed")
plt.ylabel("Total Reviews")
plt.title("Review frequency vs Helpfulness")
```

Out[23]:

<matplotlib.text.Text at 0x11ce7dd8>

There is no striking pattern detected from the above plot generated for Total Frequecy of the reviews vs Helpfulness. However, we clearly see more helpful reviews for each frequency. Also, we notice more helpful reviews than not -useful ones for the users who have reviewed for about 2-8 times as opposed to higher frequency holders. Also, as the review frequency increases that is the number of times user gives review increases, so does the helpful index in general. So we can say more reviews are better!

Inferences

- In general positive reviews are common in this dataset.
- We have 50 % of the total reviews assigned as 5 -star.
- Best reviews (5-star) are relatively shorter.
- · Longer reviews are more helpful.
- Frequent reviewers write longer and helpful reviews.

Preprocessing data

Steps involved.

- · Identifying nulls
- Word Normalization
 - 1. converting to lowercase.
 - 2. removing punctualtion.
 - 3. removing stopwords.
- Tokenization

In [24]:

```
df.head(1)
dfr = df[['reviewerID', 'reviewText','overall','summary']]
dfr.head(3)
```

Out[24]:

	reviewerID	reviewText	overall	summary
0	A3NMPMELAZC8ZY	This book is perfect! I'm a first time new mo	5	Great for newborns
1	A3O4ATU0ENBKTU	I use this so that our babysitter (grandma) ca	5	Compact and Easy way to record the milestones
2	A2SYNL4YX73KNY	I like this log, but think it would work bette	3	Needs clearer AM & PM

In [25]:

msno.bar(dfr) #columns with missing values

In [26]:

```
#Converting review text to lower case
pd.options.mode.chained_assignment = None # default='warn'
dfr['reviewText'] = dfr['reviewText'].str.lower()
dfr.head(2)
```

Out[26]:

	reviewerID	reviewText	overall	summary
0	A3NMPMELAZC8ZY	this book is perfect! i'm a first time new mo	5	Great for newborns
1	A3O4ATU0ENBKTU i use this so that our babysitter (grandma) ca		5	Compact and Easy way to record the milestones

In [27]:

```
# Removing puctuations
def remove_punctuations(text):
    for p in punctuation:
        text = text.replace(p, ' ')
    return text
dfr['reviewText'] = dfr['reviewText'].apply(remove_punctuations)
dfr.head(3)
```

Out[27]:

	reviewerID	reviewText	overall	summary
0	A3NMPMELAZC8ZY	this book is perfect i m a first time new mo	5	Great for newborns
1	A3O4ATU0ENBKTU	i use this so that our babysitter grandma ca	5	Compact and Easy way to record the milestones
2	436ANI 4AA43KNA	i like this log but think it would	2	Noods closers AM & DM

Z	AZOTINL T TATORINT		J	NECUS CICAICI AIVI & LIVI
	reviewerID	YeVie Watext	overall	summary

In [28]:

```
# import string
# import re
# import nltk

# txt_re= re.compile('[^a-z]+')
# def txt_cleanup(txt):
# txt = txt_re.sub(' ', txt).strip()
# return txt

# df["txt_clean"] = df["reviewText"].apply(txt_cleanup)
```

In [29]:

```
# remove stopwords
pd.options.mode.chained_assignment = None # default='warn'
from nltk.corpus import stopwords
stop = stopwords.words('english')
dfr['reviewText'] = dfr['reviewText'].apply(lambda x: ' '.join([item for it em in x.split() if item not in stop]))
dfr.head(3)
```

Out[29]:

	reviewerID	reviewText	overall	summary
0	A3NMPMELAZC8ZY	book perfect first time new mom book made easy	5	Great for newborns
1	A3O4ATU0ENBKTU	use babysitter grandma keep track goes day rec	5	Compact and Easy way to record the milestones
2	A2SYNL4YX73KNY	like log think would work better clearer pm se	3	Needs clearer AM & PM

In [30]:

```
# creating a tokenized column for the reviewText
dfr['reviewText_token'] = dfr['reviewText'].apply(word_tokenize)
dfr.head(2)
```

Out[30]:

	reviewerID	reviewText	overall	summary	reviewText_token
(A3NMPMELAZC8ZY	book perfect first time new mom book made easy	5	Great for newborns	[book, perfect, first, time, new, mom, book, m
,	A3O4ATU0ENBKTU	use babysitter grandma keep track goes day rec	5	Compact and Easy way to record the milestones	[use, babysitter, grandma, keep, track, goes,

In [31]:

```
# Creating tokenized text
def split into lemmas(message):
```

```
message = message.lower()
  words = TextBlob(message).words
  # for each word, take its "base form" = lemma
  return [word.lemma for word in words]

dfr.reviewText.head(3).apply(split_into_lemmas)

Out[31]:

0    [book, perfect, first, time, new, mom, book, m...
1    [use, babysitter, grandma, keep, track, go, da...
2    [like, log, think, would, work, better, cleare...
Name: reviewText, dtype: object

In [32]:

# Add Sentimemnt field
dfr['sentiment'] = dfr.overall.apply(lambda overall: "positive" if overall
> 3 else "negative" if overall < 3 else "neutral")
dfr.tail(1)</pre>
```

Out[32]:

	reviewerID	reviewText	overall	summary	reviewText_token	sentiment
56949	A3CIIOMK18CHXM	great bought hemp inserts beginning stink like	5	Really	[great, bought, hemp, inserts, beginning, stin	positive

In [33]:

```
dfr.sentiment.value_counts()

Out[33]:

positive    40085
negative    9402
neutral    7463
Name: sentiment, dtype: int64

In [34]:

dfr = dfr[dfr.sentiment != 'neutral']
```

In [35]:

```
dfr.groupby('sentiment').describe()
```

Out[35]:

		overall
sentiment		
	count	9402.000000
	mean	1.485641
	std	0.499820
ma mative	min	1.000000
negative	0=0/	4 000000

	25%	overall	
sentiment	50%	1.000000	
Sentiment	75%	2.000000	
	max	2.000000	
positive	count	40085.000000	
	mean	4.707696	
	std	0.454827	
	min	4.000000	
	25%	4.000000	
	50%	5.000000	
	75%	5.000000	
	max	5.000000	

In [36]:

```
dfr['sentiment'].value_counts().plot(kind='bar', color=['pink','grey'])
```

Out[36]:

<matplotlib.axes._subplots.AxesSubplot at 0x11e19dd8>

In [37]:

```
pos_sent = dfr[dfr.sentiment == "positive"]
neg_sent = dfr[dfr.sentiment == "negative"]
```

In [38]:

```
# Create WordCloud
# from wordcloud import WordCloud, STOPWORDS
```

```
stopwords = set(STOPWORDS)
# Positive WordCloud
pos_wordcloud = WordCloud(background_color='white', stopwords=stopwords, ma
x_{words}=500,
                          max font size=100, scale=5,
random_state=1).generate(str(pos_sent.summary))
plt.imshow(pos wordcloud)
plt.axis('off')
plt.show()
# Negative WordCloud
neg wordcloud = WordCloud(background color='black', stopwords=stopwords, ma
x_{words}=500,
                          max font size=100, scale=5,
random state=1).generate(str(neg_sent.summary))
plt.imshow(neg wordcloud)
plt.axis('off')
plt.show()
```


Data to Vectors

Bag of words

```
bow_transformer = CountVectorizer(analyzer=split_into_lemmas).fit(dfr['revi
ewText'])
print (len(bow_transformer.vocabulary_))
```

39944

In [40]:

```
reviewTextSample = dfr['reviewText'][0]
print(reviewTextSample)
```

book perfect first time new mom book made easy keep track feedings diaper c hanges sleep definitely would recommend new moms plus small enough throw di aper back doctor visits

In [41]:

```
bow_sample = bow_transformer.transform([reviewTextSample])
print (bow_sample.shape)

(0, 4267) 1
(0, 5686) 2
(0, 7306) 1
(0, 10503) 1
(0, 10989) 2
```

(0, 12383) 1
(0, 12930) 1

(0, 11687) 1

(0, 14090) 1

(0, 14327) 1

(0, 19561) 1
(0, 21224) 1

(0, 22496) 2

(0, 23366) 2
(0, 25657) 1

(0, 26374) 1

(0, 28459) 1

(0, 31649) 1
(0, 31839) 1

(0, 35544) 1

(0, 35657) 1

(0, 36171) 1
(0, 38222) 1

(0, 39504) 1

(1, 39944)

In [42]:

```
# Sanity Check: Testing which words have been repeated twice print (bow_transformer.get_feature_names()[22496]) print (bow_transformer.get_feature_names()[5686])
```

mom book

In [43]:

```
# to transform the entire bag-of-words corpus into TF-IDF corpus at once:
reviewText bow = bow transformer.transform(dfr['reviewText'])
```

```
In [44]:
#And finally, after the counting, the term weighting and normalization can
be done with TF-IDF, using scikit-learn's TfidfTransformer
tfidf transformer = TfidfTransformer().fit(reviewText bow)
tfidf sample = tfidf transformer.transform(bow sample)
print (tfidf sample)
  (0, 39504) 0.0910911774391
  (0, 38222) 0.248638550566
  (0, 36171) 0.269602705872
  (0, 35657) 0.0974133883326
  (0, 35544) 0.19470588015
  (0, 31839) 0.130941923183
  (0, 31649) 0.152305109642
  (0, 28459) 0.126209499967
  (0, 26374) 0.172009264279
  (0, 25657) 0.13783427868
  (0, 23366) 0.291703927434
  (0, 22496) 0.345382649914
  (0, 21224) 0.132073383481
  (0, 19561) 0.122474735529
  (0, 14327) 0.115279646197
  (0, 14090) 0.185310962094
  (0, 12930) 0.12686373717
  (0, 12383) 0.102774647355
  (0, 11687) 0.262560998447
  (0, 10989) 0.262810764604
  (0, 10503) 0.154025172667
  (0, 7306) 0.167351307043
  (0, 5686) 0.436619225984
  (0, 4267) 0.11599239369
In [45]:
#What is the IDF (inverse document frequency) of the word "b"? Of word
"book"?
print (tfidf transformer.idf [bow transformer.vocabulary ['p']])
print (tfidf transformer.idf [bow transformer.vocabulary ['perfect']])
6.72808112994
3.31372025092
In [46]:
tfidf transformer = TfidfTransformer().fit(reviewText bow)
reviewText tfidf = tfidf transformer.transform(reviewText bow)
print (reviewText tfidf.shape)
(49487, 39944)
Vocabulary!
In [47]:
print ("Now that our Bag of data model is trained, lets take a peek at the
vocabulary. Our vocabulary comprises of 15000 words:-\n\n")
# X_train_CV = CV.transform(X_train)
vocab = bow transformer.get feature names()
print (vocab[-200:])
```

Now that our Bag of data model is trained, lets take a peek at the vocabulary. Our vocabulary comprises of 15000 words:-

['yeswhy', 'yet', 'yeti', 'yetplenty', 'yeuch', 'yey', 'yezz', 'yield', 'yi elded', 'yielding', 'yikes', 'yin', 'yippee', 'yippeee', 'ykk', 'ym', 'ymca ', 'yo', 'yoga', 'yoghurt', 'yogurt', 'yoke', 'yolk', 'yoo', 'yoplait', 'yo re', 'york', 'yorker', 'yorkers', 'yoru', 'yosemite', 'you2', 'you9', 'youc ons', 'youd', 'youfamily', 'youg', 'youger', 'yough', 'youhave', 'youll', ' youmotorola', 'younever', 'young', 'younger', 'youngest', 'youngests', 'you ngin', 'younging', 'youngins', 'youngster', 'yourchest', 'youre', 'yourgo', 'yourself3', 'yourself5', 'yourslansinoh', 'yoursprosdouble', 'yousoft', 'y outh', 'youthful', 'youto', 'youtube', 'youtubes', 'youve', 'yowch', 'yowza ', 'yoyo', 'yr', 'yrmv', 'yrold', 'ysr', 'yuan', 'yucki, 'yucki', 'yuckie', 'yuckiness', 'yucky', 'yuk', 'yukon', 'yuky', 'yum', 'yummi', 'yummy', 'yup ', 'yuppie', 'yuppiest', 'ywo', 'z', 'zac', 'zach', 'zachary', 'zachy', 'za 'zagged', 'zagging', 'zantac', 'zany', 'zanzibar', 'zap', 'zapp', 'zapp os', 'zcon', 'zealand', 'zealot', 'zealous', 'zebra', 'zed', 'zee', 'zelda' , 'zellest', 'zen', 'zenlike', 'zeno', 'zenoff', 'zephyr', 'zero', 'zeroed' 'zeus', 'zig', 'zigzag', 'zigzagging', 'zilch', 'zillion', 'zinc', 'zing' , 'zinging', 'zinnia', 'zip', 'zipadeezip', 'zipadeezips', 'zipcar', 'zipep red', 'ziper', 'ziploc', 'ziplock', 'ziplocks', 'ziplocs', 'zipped', 'zippe r', 'zipper2', 'zipperconsexpensive', 'zippered', 'zipperi', 'zippering', ' zipperpage', 'zipperscomfortable', 'zipperseal', 'zippersgreat', 'zippersum mer', 'zipping', 'zipploc', 'zippy', 'ziptie', 'zipties', 'zit', 'zo', 'zoe ', 'zoey', 'zoli', 'zolibaby', 'zolibot', 'zolis', 'zolo', 'zombie', 'zone' , 'zonesthe', 'zonk', 'zonked', 'zonks', 'zoo', 'zoo18m', 'zoolander', 'zoo ley', 'zoom', 'zoomability', 'zoomcons', 'zoomed', 'zoomin', 'zooming', 'zo on', 'zooper', 'zorb', 'zorro', 'zou', 'zout', 'zrecs', 'zucchini', 'zuccin i', 'zuchini', 'zulily', 'zuma', 'zumba', 'zurich', 'zutano', 'zwipes', 'zz z', 'zzzipme', 'zzzz', 'zzzzzs']

Time for some Machine Learning

At this point, we have numeric training features from the Bag of Words and the original sentiment labels for each feature vector, so let's do some supervised learning!

```
In [48]:
```

```
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer,
TfidfTransformer

X = dfr['reviewText']
y = dfr['sentiment']

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.3, random_state=1)
print('Size of training set: ', len(X_train))
print('Size of test set: ', len(X_test))

Size of training set: 34640
Size of test set: 14847
```

In [49]:

```
OI WOTAS LOOL.
CV = CountVectorizer( max features = 15000)
# fit transform does 2 jobs: ##it fits the model and learns the vocabulary
.##it transforms our training data into feature vectors.
# The input to fit transform should be a list of strings.
X train CV = CV.fit transform(X train)
# print( "number words in training corpus:", len(CV.get feature names()))
X_test_CV = CV.transform(X_test)
X train CV = X train CV.toarray()
X train CV.shape
Out [49]:
(34640, 15000)
In [50]:
# calculate accuracy, precision, recall, and F-measure of class predictions
from sklearn import metrics
def eval_metrics(y_test, y_pred):
    print ('accuracy: '+ str(metrics.accuracy score(y test, y pred)))
   print ('precision:'+ str(metrics.precision_score(y_test, y_pred,
average='weighted')))
    print ('recall:'+ str(metrics.recall score(y test, y pred,
average='weighted')))
   print ('F-measure:'+ str(metrics.fl score(y test, y pred,
average='weighted')))
In [51]:
# function for K-fold cross validation
from sklearn.model selection import KFold
from sklearn.metrics import accuracy score
def xval score(clf, x, y, score func=accuracy score):
    result = 0
    nfold = 5
    for train, test in KFold(nfold).split(x): # split data into train/test
        clf.fit(x[train], y[train]) # fit
       result += score func(clf.predict(x[test]), y[test]) # evaluate
score function on held-out data
    return result / nfold # average
```

Naive Bayes with counter-vectorization

```
In [52]:
```

```
# Applying Multinomial Naïve Bayes
from sklearn.naive_bayes import MultinomialNB
modelNB = MultinomialNB()
multiNB = modelNB.fit(X_train_CV, y_train)
multiNB_pred = multiNB.predict(X_test_CV)
eval_metrics(y_test,multiNB_pred)
```

accuracy: 0.862531151074 precision: 0.866173053853

```
recall:0.862531151074
F-measure: 0.864182986426
In [53]:
sent detector = MultinomialNB().fit(reviewText tfidf, dfr['sentiment'])
print ('predicted:', sent_detector.predict(tfidf_sample)[0])
print ('expected:', dfr.sentiment[225])
dfr.sentiment[:205]
# modelNB.fit(tfidf sample[9])
predicted: positive
expected: negative
Out[53]:
       positive
1
       positive
4
       positive
5
       positive
6
       positive
7
       positive
8
       positive
9
       positive
10
      positive
11
       positive
12
       positive
13
       positive
14
       positive
15
       positive
16
      positive
17
      positive
18
       positive
19
       positive
21
       positive
22
       positive
24
      positive
25
      positive
26
       positive
28
       positive
29
      negative
30
      negative
32
       negative
33
      positive
36
       positive
37
       positive
         . . .
201
       positive
202
      negative
203
      positive
204
      positive
205
      negative
206
      positive
207
      positive
209
      negative
210
     positive
211
      positive
212
      negative
214
      positive
215
      positive
```

216

norstitto

```
пеуастуе
\triangle \perp \nabla
217
      positive
218 negative
219 positive
220 positive
positive
225 negative
226 negative
227 positive
229 negative
230 negative
231 positive
232 positive
233 positive
      negative
234
     positive
235
236
       negative
Name: sentiment, dtype: object
In [54]:
# clf = MultinomialNB()
# NBscore = xval score(clf, X test CV, y test)
# print(NBscore)
```

In [55]:

```
# Applying Bernoulli Naïve Bayes
from sklearn.naive_bayes import BernoulliNB
modelNB = BernoulliNB()
berNB = modelNB.fit(X_train_CV, y_train)
berNB_pred= berNB.predict(X_test_CV)
eval_metrics(y_test, berNB_pred)

# nb = MultinomialNB()
# %time nb.fit(X_train_CV, y_train)
```

accuracy: 0.845355964168 precision: 0.870007893372 recall: 0.845355964168 F-measure: 0.853551717769

Naive Bayes with TF-IDF

```
In [56]:
```

```
tf = TfidfVectorizer(min_df=5, max_df=0.8)
tf_train = tf.fit_transform(X_train)
tf_test = tf.transform(X_test)
```

In [57]:

```
from sklearn.naive_bayes import MultinomialNB
modelNBTF = MultinomialNB()
multiNBTF = modelNBTF.fit(tf_train, y_train)
multiNBTF_pred = multiNBTF.predict(tf_test)
eval_metrics(y_test,multiNBTF_pred)
```

accuracy: 0.82636222806 precision: 0.842054942509

```
recall:0.82636222806
F-measure:0.763905001941

In [58]:

cv = CountVectorizer(min_df = 1, ngram_range = (1, 2))
X_train_cv = cv.fit_transform(X_train)
X_test_cv = cv.transform(X_test)
```

In [59]:

```
model = MultinomialNB()
multi_cv = model.fit(X_train_cv, y_train)
multi_pred = multi_cv.predict(X_test_cv)
eval_metrics(y_test,multi_pred)
```

accuracy: 0.821175995151 precision: 0.848199601946 recall: 0.821175995151 F-measure: 0.750963692676

Support Vector Machine

In [60]:

```
# instantiate and train model, kernel=linear
model = svm.SVC(kernel='linear', random_state=44)
svm = model.fit(tf_train, y_train)
svm_pred = svm.predict(tf_test)
eval_metrics(y_test,svm_pred)
```

accuracy: 0.904021014346 precision:0.899766973931 recall:0.904021014346 F-measure:0.899108048718

Logistic Regression

In [61]:

```
modellr = LogisticRegression(C=1e5)
lr = modellr.fit(tf_train, y_train)
lr_pred = lr.predict(tf_test)
eval_metrics(y_test, lr_pred)
```

accuracy: 0.850205428706 precision:0.854196964075 recall:0.850205428706 F-measure:0.852033238903

Classifier Comparision

In [62]:

```
from sklearn.metrics import roc_curve, auc
def formatt(x):
    if x == 'negative':
```

```
return 0
    return 1
vfunc = np.vectorize(formatt)
colors = ['b', 'g', 'y', 'm', 'k']
prediction = dict()
prediction['Logistic'] = lr.predict(tf_test)
prediction['NB-Count Vectorizer']= multiNB.predict(X test CV)
prediction['NB-TFIDF'] = multiNBTF.predict(tf test)
prediction['SVM'] = svm.predict(tf_test)
for model, predicted in prediction.items():
    false positive rate, true positive rate, thresholds = roc curve(y test.
map(formatt), vfunc(predicted))
    roc_auc = auc(false_positive_rate, true_positive_rate)
    plt.plot(false positive rate, true positive rate, colors[cmp], label='%
s: AUC = %0.2f'% (model, roc auc))
    cmp += 1
plt.title('Classifiers Compararison with ROC Curve')
plt.legend(loc='lower right')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.plot([0,1],[0,1],'r--')
plt.show()
```


Classification Report

```
In [63]:
```

```
print ('Accuracy Score = ',metrics.accuracy_score(y_test,predicted).round(4
)*100,"%")
labels = list(set(dfr.sentiment))
```

```
print(metrics.classification_report(y_test, predicted, target_names=labels)
)
```

Accuracy Sco	re = 90.4 %			
	precision	recall	f1-score	support
negative positive	0.82 0.92	0.63 0.97	0.71 0.94	2818 12029
avg / total	0.90	0.90	0.90	14847

Conclusion

With the information we gathered by analyzing the characteristics features of reviews, we see there is a lot of value hidden in the text of the reviews. Amazon can come up with a marketing strategy to encourage users to leave longer reviews as they tend to be more useful in prompting purchasing decisions. Our machine learning model shows that it is possible to predict the rating level of a review with great accuracy just by analyzing the text.

References

- https://www.invespcro.com/blog/the-importance-of-online-customer-reviews-infographic/
- http://ataspinar.com/2015/11/16/text-classification-and-sentiment-analysis/
- http://fastml.com/classifying-text-with-bag-of-words-a-tutorial/
- https://www.youtube.com/watch?v=c3fnHA6yLeY&list=PL6397E4B26D00A269&index=24