Yingzhu (Jacqueline) Zhang

Students I have consulte with for this assignment:

- 1. William Bench
- 2. Nathanel Marshall
- 3. Yussre ElBardicy
- 4. William Theuer
- 5. Maurice Hayward
- 6. Stephanie Bramlett
- 7. Diego Lanao

1. 1.4.4 **Solution:**

```
public class twoSum
{
    public static in count(int[] a)
    {
    int N = a.length;
    int cnt = o;

    for (int i = o; i;N; i ++)
        for (int j = i+1; j; N; j++)
        if (a[i] + a[j] == o)
            cnt ++;

    return cnt;
    }

    public static void main(String[] args)
    {
      int[] a = In.readInts(args[o]);
      StdOut.println(count(a))
    }
}
```

statement block	time in seconds	frequency	total time
D	t_0	x(depends on input)	t_0x
C	t_1	$N^2/2 - N/2$	$t_1(N^2/2 - N/2)$
В	t_2	N	t_2N
A	t_3	1	t_3
	grand total	$(t_1/2)N^2 \ (-t_1/2 + t_2)N$	
		$(-t_1/2+t_2)N$	
		$t_3 + t_0 x$	
	tilde approximation	$\sim (t_1/2)N^2$ (assuming x is small)	
	order of growth	N^2	

2. 1.4.5 **Solution:**

- (a) $\sim N$
- (b) ~ 1

(c)
$$1 + 2/N + 1/N + 2/N^2 = 1 + 1/N + 2/N + 2/N^2 \sim 1$$

(d)
$$\sim 2N^3$$

(e)
$$lg2N - lgN = (lg2 + lgN)/lgN = 1/lgN + 1 \sim 1$$

(f)
$$lg(N^2 + 1)/lgN = lg(1(N^2 + 1))/lgN$$

 $= (lg(N^2(1 + 1/N^2)))/lgN$
 $= (2lgN + lg(1 + 1/1/N^2)))/lgN$
 $= 2 + ((lg(1 + 1/N^2)/lgN)) \sim 2$

(g)
$$\sim N^{100}/2^N$$

3. 1.4.9 **Solution:**

According to Doubling Ratio Proposition: If $T(N) \sim aN^b lgN$, then $T(2N)/T(N) = (a(2N)^b lg(2N))/aN^b lgN$ $(2^bN^b lg(2N))/N^b lgN$ $(2^b lg(2N))/lgN$ $(2^b(lg2lgN))/lgN = 2^b(1)$ $\therefore \sim 2^b$

Because the running time for problems of size $N_0 = T$, and the doubling factor converges to 2^b then

According to Doubling Ratio Proposition, $aN_0^b lg N_0 = T$, $a = T/(N_0^b lg N_0)$

: the running time of a program for a problem of size N: $\sim T(N^b lg N)/(N_0^b lg N_0)$

4. 1.5.1 **Solution:**

Through quick-find, we get:

p-q	О	1	2	3	4	5	6	7	8	9	number of times the array is accessed
9-0	0	1	2	3	4	5	6	7	8	0	2+10+1 = 13
3-4	О	1	2	4	4	5	6	7	8	O	2+10+1 = 13
5-8	О	1	2	4	4	8	6	7	8	O	2+10+1 = 13
7-2	О	1	2	4	4	8	6	2	8	O	2+10+1 = 13
2-1	О	1	1	4	4	8	6	1	8	O	2+10+1+1 = 14
5-7	0	1	1	4	4	1	6	1	1	O	2+10+1+1 = 14
0-3	4	1	1	4	4	1	6	1	1	4	2+10+1+1 = 14
4- 2	4	1	1	1	1	1	6	1	1	1	2+10+1+2 = 15

See attached sheet of paper for demonstrative diagrams.

5. 1.5.2 **Solution**:

Through quick-union, we get:

	p-q	0	1	2	3	4	5	6	7	8	9	number of times the array is accessed
1)	9-0	0	1	2	3	4	5	6	7	8	0	2+1 = 3
2)	3-4	0	1	2	4	4	5	6	7	8	O	2+1 = 3
3)	5-8	0	1	2	4	4	8	6	7	8	O	2+1 = 3
4)	7-2	O	1	2	4	4	8	6	2	8	O	2+1 = 3
5)	2-1	O	1	1	4	4	8	6	2	8	O	2+1 = 3
6)	5-7	0	1	1	4	4	2	6	2	8	0	2+2+1 = 5
7)	0-3	4	1	1	4	4	2	6	2	8	0	1+2+1 = 4
8)	4-2	4	1	1	4	1	2	6	2	8	O	1+2+1 = 4

See attached sheet of paper for demonstrative diagrams.

6. 1.5.3 **Solution**:

Through weighted quick-union, we get:

	_		_	_					_			
	p-q	0	1	2	3	4	5	6	7	8	9	number of times the array is accessed
1)	9-0	9	1	2	3	4	5	6	7	8	9	2+1+1 = 4
2)	3-4	9	1	2	3	3	5	6	7	8	9	2+1+1 = 4
3)	5-8	9	1	2	3	3	5	6	7	5	9	2+1+1 = 4
4)	7-2	9	1	7	3	3	5	6	7	5	9	2+1+1 = 4
5)	2-1	9	7	7	3	3	5	6	7	5	9	2+1+1+1 = 5
6)	5-7	9	7	7	3	3	5	6	5	5	9	2+1+1 = 4
7)	0-3	9	7	7	9	3	5	6	5	5	9	2+2+1+1 = 6
8)	4-2	9	7	7	9	7	5	6	5	5	9	2+2+1+1 = 6

See attached sheet of paper for demonstrative diagrams.

10⁹ instructions per second–array accesses persecond

Assume:each iteration of the inner *for* loop requires 10 machine instruction. We can find the minimus amount of time (in days) that would be required for quick-find to solve this dynamic connectivity problem by:

Solution:

```
For each input pair:
```

find(): 2machineinstructions

 $union(): 10*(10^9+1) machine instructions$

Then, for 10^6 pair, the total machine instructions = $2 * 10^6 + 10^7 (10^9 + 1)$

Also, a computer is capable of executing $24*60^2*10^9 = 8.64*10^13$ machine instructions per day

$$(2*10^6 + 10^7(10^9 + 1))/8.64*10^13 \approx 115.7407$$

∴ \approx 116 days

8. 1.5.9 **Solution:**

According to the proposition that the depth of any node in a forest built by weighted quick-union for N sites is at most lgN,

When
$$N = 10$$
, depth = $lg10(3 < lg10 < 4)$

But according to the diagram drawn in the attachement page, the depth of this problem is 4,

: it is impossible to ge the result by running weighted quick-union