

R Adoption Story

Michael Rimler Prog Leader, ClinProg

R Adoption in Clinical Reporting

Project Overview

Objectives

- Establish critical mass of R programming capability to deliver outputs supporting clinical research
- Create an environment where a newly onboarded R programmer can be as productive as a newly hired SAS programmer

WHY?

Role of **R vs SAS** in our future?

HOW?

to declare us 'R ready'?

WHAT'S NEXT?

Future deliverables?

(...beyond DTFLs)

R Adoption Journey

Project Overview

R Adoption

The R4QC Project

R4QC Project – The Start

Rationale

Why R?

- Long term objective in Clinical Programming to become programmatically multilingual
 - Not driven by 'SAS license' costs
 - Recruitment
 - Retention
 - Flexibility / Agility (right tool)
 - Expansion of capabilities and clinical programming 'products' (~data science)

Why QC?

- Lower regulatory scrutiny
 - QC code typically not submitted
- Still produced using SAS
- Facilitates 'on-the-job' organic upskilling

R4QC Project - Parts 1, 2, and 4

PoC Summary

Objectives

Demonstrate the capability of using the R for Stage 2 QC of reporting deliverables Facilitate 'on-the-job' use of R for to support staff upskilling

Successes

- Comparison of dataframes
- Cross-functional collaboration
- Central tool development
- R Roadmap Vision
- Support documentation

Challenges

- Onboarding into R ecosystem
- PROC COMPARE vs diffdf
- GPP in R (code review)
- SAS vs R reconciliation
- GitHub

Note: R4QC Part 2 reproduced Stage 2 QC for 156 TFLs

R4QC Project – Part 3

High-Level Design

- Individual programmer opts-in to perform Stage 2 QC using R (instead of SAS)
- Scope: Any non-statistical display (TLF)
- Requirements:
 - Study Lead Programmer awareness/support
 - R4QC Part 3 output tracker
 - Ways of Working Instructions
- Encouragement from above (leadership)
- Support from below (staff/documentation)

R4QC Project – Part 3

Support Mechanisms

R Adoption Journey

R Adoption Framework

Motivations and Objectives

Motivations

- Expanded Toolset
 - Right tool for the job
- Expanded delivery capabilities
 - R Markdown, RStudio Connect, Shiny
- Upskilling
 - For delivery (the business)
 - For retention (the staff)
- Recruitment
 - Closing short run gaps / enabling long run growth
- Become an industry leader, not a follower

Deliverables

- "R-ready" study teams
 - For conventional delivery
- R Package development team
 - For process improvement
- Shiny development teams
 - For future delivery products
- Support Strategy

R Adoption Journey

Project Overview (revisited)

R **Adoption**

R4QC **Central Tools Training** (Parts 3 and 4) Production/ Change Outreach Submission/ Management Other

How do you manage change in a massive organization without disrupting delivery capability?

- Multifaceted approach
- Focused efforts
- Integrated and coordinated

Deep Dive

What's been developed?

Package development driven by Statistical Data Sciences

- gskheader: Insert standard GSK header for R programs
- gsklog: Generate execution/session log
- gsktable: Building blocks of basic summary displays (continuous and categorical stats; TLFs)
- copy4qc: Copy files from WARP environment to Study Area to facilitate archiving
- gskdataset: Building blocks of dataset transformations for clinical data

gsk

RStudio Add-in - gsklog

Purpose/Objective

 Generate a record of information related to the execution of an R script (in the direction of GxP compliance)

Rationale

- R does not naturally generate this information upon execution of code
- Provide minimum information to demonstrate the integrity of the execution and details to facilitate reproduction
- Specific to Clinical Reporting workflow (datasets, tables, listings, figures)

Not intended to replicate SAS log

RStudio Add-in - gsklog

Design – RStudio Add-in *** R session history log file: q t lb1 saf chem.R *** gsklog Who, what, when Run by: msr60896 Run time logging commenced at: 2019-12-02 12:26:07 Errors/Warnings log ended at 2019-12-02 12:26:11 ****** elapsed run time R Session Information Warning in diffdf(t lb1 saf chem, q t lb1 saf chem, keys = c("PARAMLBI Packages and Versions t all Values Compared Equal R version 3.6.1 (2019-07-05) attached base packages: ning in eval(ei, envir) : Platform: x86 64-pc-linux-gnu (64-bit) graphics grDevices utils dataset duction and C datasets n [1] stats Running under: Red Hat Enterprise Linux ng in eval(ei, envir) other attached packages: wn issue SAS vs R and Rou Matrix products: default [1] lubridate 1.7.4 shiny 1.3.2 haven 2.1.1 ng in eval(ei, envir) : D /data02/StdR-3.6.1/lib64/R/lib/libRblas.so tibble 2.1.3 [10] readr 1.3.1 tidvr 0.8.3 LAPACK: /data02/StdR-3.6.1/lib64/R/lib/libRlapack.so loaded via a namespace (and not attached): locale: [1] tidyselect 0.2.5 shinyjs 1.0 lattice 0.20 [1] LC CTYPE=en US.UTF-8 LC NUMERIC=C [9] utf8 1.1.4 rlang 0.4.0 pillar 1.4.2 [6] LC MESSAGES=en US.UTF-8 LC PAPER=en US.UTF-8 [17] munsell 0.5.0 cellranger ? gtable 0.3.0 [11] LC MEASUREMENT=en US.UTF-8 LC IDENTIFICATION=C [25] Rcpp 1.0.2 xtable 1.8-4 scales 1.0

Discussion / Q&A

Andy Nicholls
Head of Statistical Data
Sciences

Tilo Blenk
Data Scientist,
Statistical Data Sciences

Michael Rimler Programming Leader, Clinical Programming

Appendix

Additional Information

R4QC Project

Differences discovered (SAS vs R)

Default rounding

- SAS: By default, round(12.5,1) should result in 13
- R: By default, round(12.5,1) should result in 12
 - Base R implements 'round-to-even'

Derivation of Quartiles (Q1 and Q3)

- SAS: In PROC MEANS, can specify the parameters q1 and q3 and the parameters are calculated
- R: Using Base R quantile function, specify a 'type' parameter (9 different type values)
 - 1 = match SAS in R4QC; 3 = R documentation states will match SAS; 7 = default

Standard Errors in Survival Analyses

- Different methodologies are used calculate the SE in survival analyses
- When the survival function reports the SE, it prints an approximation of the SE calculated by the delta method
- But this SE has poor performance when used to calculate the 95% confidence intervals
- SAS vs. R use a different method to calculate the SE that is used to get the 95% confidence interval
 - SAS: The SE matches how one would calculate by hand; R (the broom package): The SE matches the underlying SE