

Outline

- What limits performance?
- Analysing performance: GPU profiling
- Exposing sufficient parallelism
- Optimising for Kepler

Additional Resources

- More information on topics we cannot cover today
- Kepler architecture:
 - GTC on Demand: Session S0642 Inside Kepler
 - Kepler whitepapers: http://www.nvidia.com/kepler
- More details:
 - GTC on Demand
 - S0514 GPU Performance Analysis and Optimization
 - S0419 Optimizing Application Performance with CUDA ProfilingTools
 - S0420 Nsight IDE for Linux and Mac
 - CUPTI documentation (describes all the profiler counters)
 - Included in every CUDA toolkit (/cuda/extras/cupti/doc/Cupti_Users_Guide.pdf
- GPU computing webinars in general:
 - http://developer.nvidia.com/gpu-computing-webinars
 - In particular: register spilling

Example Workflow – Getting Started on GPU

- Overall goal is application performance, combination of factors
 - inter-node/inter-process communication
 - CPU-GPU communication
 - CPU/GPU performance
- Start by analysing realistic data at realistic scale
 - Various tools such as Vampir, TAU, Scalasca help identify hotspots
- Extract data for development
 - Select timesteps for shorter runtime
 - Select subdomain for smaller scale

Example Workflow – Optimising

- Communication (node/process)
- Computation
- In this talk we're focussing on the GPU
 - CPU, DMA, GPU overlap
 - Kernel optimisation

PERFORMANCE LIMITERS

What Limits Communication with the GPU?

- PCIe bus connects GPU to CPU/network
 - Gen 2 (Fermi): 8 GB/s in each direction
 - Gen 3 (Kepler): 16 GB/s in each direction
- Tesla GPUs have dual DMA engines
 - Two memcpys (in different streams, different directions)
 - Overlap with kernel and CPU execution
- GPUDirect RDMA
 - e.g. MPI directly from GPU memory

What Limits Kernel Performance?

- Memory bandwidth
 - Low number of operations per byte
- Instruction bandwidth
 - High number of operations per byte
- Latency
 - Unable to fill memory or arithmetic pipelines
- How do we determine what is limiting a given kernel?
 - Profiling tools (e.g. nsight, nvvp, nvprof)

PROFILING

Why Profile?

NVIDIA Profilers

- NVIDIA[®] Visual Profiler
 - Standalone (nvvp)
 - Integrated into NVIDIA[®] Nsight[™] Eclipse Edition (nsight)
- NVIDIA[®] Nsight[™] Visual Studio Edition
- nvprof
 - Command-line
- Driver-based profiler still available
 - Command-line, controlled by environment variables

NVIDIA VISUAL PROFILER

Profiling Session

NVIDIA Visual Profiler

Timeline

CPU Timeline

GPU Timeline

Measuring Time

Correlating CPU and GPU Activity

Properties - Kernel

Properties - Memcpy

Analysis, Details, etc.

Concurrent Kernels

Profiling Flow

- Understand CPU behavior on timeline
 - Add profiling "annotations" to application
 - NVIDIA Tools Extension
 - Custom markers and time ranges
 - Custom naming
- Focus profiling on region of interest
 - Reduce volume of profile data
 - Improve usability of Visual Profiler
 - Improve accuracy of analysis
- Analyze for optimisation opportunities

Annotations: NVIDIA Tools Extension

- Developer API for CPU code
- Installed with CUDA Toolkit (libnvToolsExt.so)
- Naming
 - Host OS threads: nvtxNameOsThread()
 - CUDA device, context, stream: nvtxNameCudaStream()
- Time Ranges and Markers
 - Range: nvtxRangeStart(), nvtxRangeEnd()
 - Instantaneous marker: nvtxMark()

Example: Time Ranges

- Testing algorithm in testbench
- Use time ranges API to mark initialisation, test, and results

```
nvtxRangeId_t id0 = nvtxRangeStart("Initialize");
< init code >
nvtxRangeEnd(id0);
nvtxRangeId_t id1 = nvtxRangeStart("Test");
< compute code >
nvtxRangeEnd(id1);
...
```

Example: Time Ranges

Profile Region Of Interest

- cudaProfilerStart() / cudaProfilerStop() in CPU code
- Specify representative subset of app execution
 - Manual exploration and analysis simplified
 - Automated analysis focused on performance critical code

```
for (i = 0; i < N; i++) {
   if (i == 12) cudaProfilerStart();
   <loop body>
   if (i == 15) cudaProfilerStop();
}
```

Enable Region Of Interest

- Insert cudaProfilerStart() / cudaProfilerStop()
- Disable profiling at start of application

Example: Without cudaProfilerStart/Stop

Example: With cudaProfilerStart/Stop

Analysis

- Visual inspection of timeline
- Automated Analysis
- Metrics and Events

Visual Inspection

- Understand CPU/GPU interactions
 - Use nvToolsExt to mark time ranges on CPU
 - Is application taking advantage of both CPU and GPU?
 - Is CPU waiting on GPU? Is GPU waiting on CPU?
- Look for potential concurrency opportunities
 - Overlap memcpy and kernel
 - Concurrent kernels
- Automated analysis does some of this

Automated Analysis - Application

- Analyse entire application
 - Timeline
 - Hardware performance counters

Analysis Documentation

Low Memcpy Throughput [997.19 MB/s avg, for memcpys accounting for 68.1% of all memcpy time]

The memory copies are not fully using the available host to device bandwidth.

More...

Results Correlated With Timeline

Analysis Properties

- Highlight a kernel or memcpy in timeline
 - Properties shows analysis results for that specific kernel / memcpy
 - Optimisation opportunities are flagged

■ Properties 🛭 🗔 Detail Graphs	
CUDAkernel2DCT(float*, float*, in	t)
Name	Value
Duration	21.117 µs
Grid Size	[16,32,1]
Block Size	[8,4,2]
Registers/Thread	35
Shared Memory/Block	2.062 KB
- Memory	
Global Load Efficiency	100%
Global Store Efficiency	100%
 Instruction 	
Branch Divergence Overhead	0%
 Occupancy 	
Achieved	4 29.4%
Theoretical	33.3%
Limiter	Block Size
 L1 Cache Configuration 	
Shared Memory Requested	48 KB
Shared Memory Executed	48 KB

Automated Analysis - Single Kernel

Uncoalesced Global Memory Accesses

- Access pattern determines number of memory transactions
 - Report loads/stores where access pattern if inefficient

Source Correlation

Divergent Branches

- Divergent control-flow for threads within a warp
 - Report branches that have high average divergence

Source Correlation

Enabling Source Correlation

- Source correlation requires that source/line information be embedded in executable
 - Available in debug executables: nvcc -G
 - New flag for optimised executables: nvcc -lineinfo

Detailed Profile Data

Detailed Summary Profile Data

Filtering

Metrics and Events

Metrics and Events

Name	Start Time	Duration	Warp Execution Efficiency	Achieved Occupancy	Grid Size	Block Size	Regs	Static SMem	Dynamic 5
Memcpy HtoA [sync]	3.929 ms	176.773 μs	n/a	n/a	n/a	n/a	n/a	n/a	n/a
CUDAkernel1DCT(float*, int, int, int)	4.108 ms	708.262 μs	100%	0.328	[64,64,1]	[8,8,1]	28	512	0
CUDAkernel1DCT(float*, int, int, int)	5.122 ms	708.49 µs	100%	0.328	[64,64,1]	[8,8,1]	28	512	0
CUDAkernel1DCT(float*, int, int, int)	5.945 ms	708.394 µs	100%	0.327	[64,64,1]	[8,8,1]	28	512	0
CUDAkernel1DCT(float*, int, int, int)	6.763 ms	708.418 μs	100%	0.328	[64,64,1]	[8,8,1]	28	512	0
CUDAkernel1DCT(float*, int, int, int)	7.581 ms	708.534 μs	100%	0.327	[64,64,1]	[8,8,1]	28	512	0
CUDAkernel1DCT(float*, int, int, int)	8.4 ms	708.153 μs	100%	0.327	[64,64,1]	[8,8,1]	28	512	0
CUDAkernel1DCT(float*, int, int, int)	9.219 ms	708.221 µs	100%	0.327	[64,64,1]	[8,8,1]	28	512	0

☐ Analysis ☐ Details (Summary) 🛭 💆	Console Settings						» 📴 🙏 🔼 🗀 🗀
Name	Warp Execution Efficiency	Achieved Occupancy	Avg. Duration	Regs	Static SMem	Avg. Dynamic SMem	
CUDAkernel2DCT(float*, float*, int)	100%	0.3	92.66 µs	43	2112	0	
CUDAkernel2IDCT(float*, float*, int)	100%	0.302	97.655 μs	43	2112	0	
CUDAkernelQuantizationShort(short*, int)	67.5%	0.317	143.288 μs	15	0	0	
CUDAkernelQuantizationFloat(float*, int)	98.7%	0.318	173.964 μs	27	0	0	
CUDAkernelShortIDCT(short*, int)	74.7%	0.468	174.399 μs	39	2176	0	
CUDAkernelShortDCT(short*, int)	75%	0.376	189.663 μs	45	2176	0	
CUDAkernel1DCT(float*, int, int, int)	100%	0.328	708.301 µs	28	512	0	
CUDAkernel1IDCT(float*, int, int, int)	100%	0.328	708.327 µs	28	512	0	

NVPROF

nvprof

- Textual reports
 - Summary of GPU and CPU activity
 - Trace of GPU and CPU activity
 - Event collection
- Headless profile collection
 - Use nvprof on headless node to collect data
 - Visualise timeline with Visual Profiler

nvprof Usage


```
$ nvprof [nvprof_args] <app> [app_args]
```

Argument help\$ nvprof --help

nvprof – GPU Summary

\$ nvprof dct8x8

```
====== Profiling result:
Time(%)
             Time
                    Calls
                               Avg
                                         Min
                                                   Max
                                                        Name
  49.52
           9.36ms
                      101
                           92.68us
                                     92.31us 94.31us
                                                        CUDAkernel2DCT(float*, float*, int)
           7.08ms
                          708.31us 707.99us
                                             708.50us
                                                        CUDAkernel1DCT(float*,int, int,int)
  37.47
   3.75 708.42us
                          708.42us 708.42us
                                             708.42us
                                                        CUDAkernel1IDCT(float*,int,int,int)
                                                        CUDAkernelQuantizationFloat()
   1.84
         347,99us
                          173.99us
                                    173.59us
                                             174.40us
   1.75
         331.37us
                          165.69us 165.67us
                                             165.70us
                                                        [CUDA memcpy DtoH]
                                     89.70us
                                                        [CUDA memcpy HtoD]
   1.41
         266.70us
                          133.35us
                                             177.00us
                                                        CUDAkernelShortDCT(short*, int)
   1.00
         189.64us
                          189.64us
                                    189.64us
                                              189.64us
                          176.87us
   0.94
         176.87us
                                    176.87us
                                              176.87us
                                                        [CUDA memcpy HtoA]
                                                        CUDAkernelShortIDCT(short*, int)
   0.92 174.16us
                          174.16us 174.16us
                                              174.16us
                                                        CUDAkernelQuantizationShort(short*)
   0.76 143.31us
                          143.31us 143.31us
                                             143.31us
         97.75us
                           97.75us
                                     97.75us
                                               97.75us
                                                        CUDAkernel2IDCT(float*, float*)
   0.52
   0.12
          22.59us
                           22.59us
                                     22.59us
                                               22.59us
                                                        [CUDA memcpy DtoA]
```

nvprof – GPU Summary (csv)


```
$ nvprof --csv dct8x8
====== Profiling result:
Time(%), Time, Calls, Avg, Min, Max, Name
,ms,,us,us,us,
49.51,9.35808,101,92.65400,92.38200,94.19000,"CUDAkernel2DCT(float*, float*, int)"
37.47,7.08288,10,708.2870,707.9360,708.7070,"CUDAkernel1DCT(float*, int, int, int)"
3.75,0.70847,1,708.4710,708.4710,708.4710,"CUDAkernel1IDCT(float*, int, int, int)"
1.84,0.34802,2,174.0090,173.8130,174.2060, "CUDAkernelQuantizationFloat(float*, int)"
1.75,0.33137,2,165.6850,165.6690,165.7020,"[CUDA memcpy DtoH]"
1.42,0.26759,2,133.7970,89.89100,177.7030,"[CUDA memcpy HtoD]"
1.00,0.18874,1,188.7360,188.7360,188.7360,"CUDAkernelShortDCT(short*, int)"
0.94,0.17687,1,176.8690,176.8690,176.8690,"[CUDA memcpy HtoA]"
0.93,0.17594,1,175.9390,175.9390,175.9390,"CUDAkernelShortIDCT(short*, int)"
0.76,0.14281,1,142.8130,142.8130,142.8130,"CUDAkernelQuantizationShort(short*, int)"
0.52,0.09758,1,97.57800,97.57800,97.57800,"CUDAkernel2IDCT(float*, float*, int)"
0.12,0.02259,1,22.59300,22.59300,22.59300,"[CUDA memcpy DtoA]"
```

nvprof – GPU Trace

\$ nvprof --print-gpu-trace dct8x8

====== Profiling result:

Start	Duration	Grid Size	Block Size	Regs	SSMem	DSMem	Size	Throughpu ⁻	t Name
167.82ms	176.84us	-	- 1	-	-	-	1.05MB	5.93GB/s	[CUDA memcpy HtoA]
168.00ms	708.51us	(64 64 1)	(8 8 1)	28	512B	0B	_	- " - "	<pre>CUDAkernel1DCT(float*,)</pre>
168.95ms	708.51us	(64 64 1)	(8 8 1)	28	512B	0B	-	- []	<pre>CUDAkernel1DCT(float*,)</pre>
169.74ms	708.26us	(64 64 1)	(8 8 1)	28	512B	0B		-	CUDAkernel1DCT(float*,)
170.53ms	707.89us	(64 64 1)	(8 8 1)	28	512B	0B	-	-	CUDAkernel1DCT(float*,)
171.32ms	708.12us	(64 64 1)	(8 8 1)	28	512B	0B	-	-	<pre>CUDAkernel1DCT(float*,)</pre>
172.11ms	708.05us	(64 64 1)	(8 8 1)	28	512B	0B	-	-	<pre>CUDAkernel1DCT(float*,)</pre>
172.89ms	708.38us	(64 64 1)	(8 8 1)	28	512B	0B	-	-	<pre>CUDAkernel1DCT(float*,)</pre>
173.68ms	708.31us	(64 64 1)	(8 8 1)	28	512B	0B	-	-	CUDAkernel1DCT(float*,)
174.47ms	708.15us	(64 64 1)	(8 8 1)	28	512B	0B	-	-	<pre>CUDAkernel1DCT(float*,)</pre>
175.26ms	707.95us	(64 64 1)	(8 8 1)	28	512B	0B	-	-	<pre>CUDAkernel1DCT(float*,)</pre>
176.05ms	173.87us	(64 64 1)	(8 8 1)	27	0B	0B	-		<pre>CUDAkernelQuantization ()</pre>
176.23ms	22.82us	-		-	-	-	1.05MB	45.96GB/s	[CUDA memcpy DtoA]

nvprof - CPU/GPU Trace

\$ nvprof --print-gpu-trace --print-api-trace dct8x8

====== Profiling result:

Start	Duration	Grid Size	Block Size	Regs	SSMem	DSMem	Size	Throughpu	t Name
167.82ms	176.84us	-	- 120 120 110	-	-	-	1.05MB	5.93GB/s	[CUDA memcpy HtoA]
167.81ms	2.00us	-	-	-	-	-	-	- 1 - 1	cudaSetupArgument
167.81ms	38.00us	-	-		-	-	-	-	cudaLaunch
167.85ms	1.00ms	-	-	_	-	-	-	-	cudaDeviceSynchronize
168.00ms	708.51us	(64 64 1)	(8 8 1)	28	512B	0B	_	-	<pre>CUDAkernel1DCT(float*,)</pre>
168.86ms	2.00us	-/7	-	-	-	-	-	-	cudaConfigureCall
168.86ms	1.00us	-/	- //	-	-	-	_	-	cudaSetupArgument
168.86ms	1.00us	/-//	-//	-	-	-	-	-	cudaSetupArgument
168.86ms	1.00us	<i>_</i>	/-	-	-	-	-	-	cudaSetupArgument
168.87ms	0ns	- //	- 1		-	-	-	-	cudaSetupArgument
168.87ms	24.00us	- //	-			-	_	-	cudaLaunch
168.89ms	761.00us	- ///	- ///	- ^ _	-	-	-		cudaDeviceSynchronize
168.95ms	708.51us	(64 64 1)	(8 8 1)	28	512B	0B	-	-	<pre>CUDAkernel1DCT(float*,)</pre>

nvprof – Event Query


```
$ nvprof --devices 0 --query-events
```

====== Available Events:

Name Description

Device 0:

Domain domain_a:

sm_cta_launched: Number of thread blocks launched on a multiprocessor.

l1_local_load_hit: Number of cache lines that hit in L1 cache for local
memory load accesses. In case of perfect coalescing this increments by 1, 2, and 4 for 32, 64
and 128 bit accesses by a warp respectively.

l1_local_load_miss: Number of cache lines that miss in L1 cache for local
memory load accesses. In case of perfect coalescing this increments by 1, 2, and 4 for 32, 64
and 128 bit accesses by a warp respectively.

l1_local_store_hit: Number of cache lines that hit in L1 cache for local
memory store accesses. In case of perfect coalescing this increments by 1, 2, and 4 for 32,
64 and 128 bit accesses by a warp respectively.

nvprof - Event Collection


```
$ nvprof --devices 0 --events branch, divergent branch dct8x8
====== Profiling result:
                    Invocations
                                     Avg
                                               Min
                                                         Max Event Name
Device 0
         Kernel: CUDAkernel1IDCT(float*, int, int, int)
                                                   475136 branch
                                  475136
                                            475136
                                                              divergent branch
                                                 0
         Kernel: CUDAkernelQuantizationFloat(float*, int)
                                  180809
                                            180440
                                                      181178
                                                             branch
                                              6024
                                                              divergent_branch
                                    6065
                                                        6106
         Kernel: CUDAkernel1DCT(float*, int, int, int)
                            10
                                  475136
                                           475136
                                                      475136 branch
                                                             divergent branch
         Kernel: CUDAkernelShortIDCT(short*, int)
                                  186368
                                            186368
                                                      186368 branch
                                    2048
                                              2048
                                                        2048
                                                              divergent branch
         Kernel: CUDAkernel2IDCT(float*, float*, int)
                                             61440
                                                       61440 branch
                                   61440
                                                              divergent branch
```

nvprof – Profile Data Export/Import

Produce profile into a file using –o

```
$ nvprof -o profile.out <app> <app args>
```

- Import into Visual Profiler
 - File menu -> Import nvprof Profile...
- Import into nvprof to generate textual outputs

```
$ nvprof -i profile.out
$ nvprof -i profile.out --print-gpu-trace
$ nvprof -i profile.out --print-api-trace
```

nvprof – MPI

- Each rank must output to separate file
- Launch nvprof wrapper with mpirun
 - Set output file name based on rank
 - Limit which ranks are profiled
 - Example script in nvvp help for OpenMPI and MVAPICH2
 - Remember to disable profiling at start if using cudaProfilerStart()/cudaProfilerStop()

EXPOSING SUFFICIENT PARALLELISM

Kepler: Level of Parallelism Needed

- To saturate instruction bandwidth:
 - Fp32 math: ~1.7K independent instructions per SM
 - Lower for other, lower-throughput instructions
 - Keep in mind that Kepler SM can track up to 2048 threads
- To saturate memory bandwidth:
 - 100+ independent lines per SM

Memory Parallelism

- Achieved Kepler memory throughput
 - As a function of the number of independent requests per SM
 - Request: 128-byte line

Exposing Sufficient Parallelism

- What hardware ultimately needs:
 - Arithmetic pipes: Sufficient number of independent instructions (accommodate multi-issue and latency hiding)
 - Memory system: Sufficient requests in flight to saturate bandwidth (Little's Law)
- Two ways to increase parallelism
 - More independent work within a thread (warp)
 - ILP for math, independent accesses for memory
 - More concurrent threads (warps)

Occupancy

- Occupancy: number of concurrent threads per SM
 - Expressed as either:
 - the number of threads (or warps)
 - percentage of maximum threads
- Determined by several factors
 - (refer to Occupancy Calculator, CUDA Programming Guide for full details)
 - Registers per thread
 - SM registers are partitioned among the threads
 - Shared memory per threadblock
 - SM shared memory is partitioned among the blocks
 - Threads per threadblock
 - Threads are allocated at threadblock granularity

Kepler SM resources

- 64K 32-bit registers
- Up to 48 KB of shared memory
- Up to 2048 concurrent threads
- Up to 16 concurrent threadblocks

Occupancy and Performance

- Note that 100% occupancy isn't needed to reach maximum performance
 - Sufficient occupancy to hide latency, higher occupancy will not improve performance
- "Sufficient" occupancy depends on the code
 - More independent work per thread → less occupancy is needed
 - Memory-bound codes tend to need higher occupancy
 - Higher latency (than for arithmetic) needs more work

Exposing Parallelism: Grid Configuration

- Grid: arrangement of threads into threadblocks
- Two goals:
 - Expose enough parallelism to an SM
 - Balance work across the SMs
- Several things to consider when launching kernels:
 - Number of threads per threadblock
 - Number of threadblocks
 - Amount of work per threadblock

Threadblock Size and Occupancy

- Threadblock size is a multiple of warp size (32)
 - Even if you request fewer threads, HW rounds up
- Threadblocks can be too small
 - Kepler SM can run up to 16 threadblocks concurrently
 - SM may reach the block limit before reaching good occupancy
 - Example: 1-warp blocks -> 16 warps per Kepler SM (frequently not enough)
- Threadblocks can be too big
 - Quantization effect:
 - Enough SM resources for more threads, not enough for another large block
 - A threadblock isn't started until resources are available for all of its threads

Threadblock Sizing

Too few threads per block

SM resources:

- Registers
- Shared memory

Too many threads per block

Case Study: Threadblock Sizing

- Non-hydrostatic Icosahedral Model (NIM)
 - Global weather simulation code, NOAA
 - vdminty kernel:
 - 63 registers per thread, 3840 bytes of SMEM per warp
 - At most 12 warps per Fermi SM (limited by SMEM)
- Initial grid: 32 threads per block, 10,424 blocks
 - Blocks are too small:
 - 8 warps per SM, limited by number of blocks (Fermi's limit was 8)
 - Code achieves a small percentage (~30%) of both math and memory bandwidth
 - Time: 6.89 ms

Case Study: Threadblock Sizing

- Optimized config: 64 threads per block, 5,212 blocks
 - Occupancy: 12 warps per SM, limited by SMEM
 - Time: 5.68 ms (1.21x speedup)
- Further optimization:
 - Reduce SMEM consumption by moving variables to registers
 - 63 registers per thread, 1536 bytes of SMEM per warp
 - Occupancy: 16 warps per SM, limited by registers
 - Time: 3.23 ms (2.13x speedup over original)

General Guidelines

Threadblock size choice:

- Start with 128-256 threads per block
 - Adjust up/down by what best matches your function
 - Example: stencil codes prefer larger blocks to minimize halos
- Multiple of warp size (32 threads)
- If occupancy is critical to performance:
 - Check that block size isn't precluding occupancy allowed by register and SMEM resources

Grid size:

- 1,000 or more threadblocks
 - 10s of waves of threadblocks: no need to think about tail effect
 - Makes your code ready for several generations of future GPUs

OPTIMISING FOR KEPLER

Kepler Architecture Family

- Two architectures in the family:
 - GK104 (Tesla K10, GeForce: GTX690, GTX680, GTX670, ...)
 - Note that K10 is 2 GK104 chips on a single board
 - GK110 (Tesla K20, ...)
- GK110 has a number of features not in GK104:
 - Dynamic parallelism, HyperQ
 - More registers per thread, more fp64 throughput
 - For full details refer to:
 - Kepler Whitepaper (http://www.nvidia.com/kepler)
 - GTC12 Session 0642: "Inside Kepler"

Good News About Kepler Optimisation

- The same optimisation fundamentals that applied to Fermi, apply to Kepler
 - There are no new fundamentals
- Main optimization considerations:
 - Expose sufficient parallelism
 - SM is more powerful, so will need more work
 - Coalesce memory access
 - Exactly the same as on Fermi
 - Have coherent control flow within warps
 - Exactly the same as on Fermi

Level of Parallelism

- Parallelism for memory is most important
 - Most codes don't achieve peak fp throughput because:
 - Stalls waiting on memory (latency not completely hidden)
 - Execution of non-fp instructions (indexing, control-flow, etc.)
 - NOT because of lack of independent fp math

GK104:

- Compared to Fermi, needs ~2x concurrent accesses per SM to saturate memory bandwidth
 - Memory bandwidth comparable to Fermi
 - 8 SMs while Fermi had 16 SMs
- Doesn't necessarily need twice the occupancy of your Fermi code
 - If Fermi code exposed more than sufficient parallelism, increase is less than
 2x

Kepler SM Improvements for Occupancy

- 2x registers
 - Both GK104 and GK110
 - 64K registers (Fermi had 32K)
 - Code where occupancy is limited by registers will readily achieve higher occupancy (run more concurrent warps)
- 2x threadblocks
 - Both GK104 and GK110
 - Up to 16 threadblocks (Fermi had 8)
- 1.33x more threads
 - Both GK104 and GK110
 - Up to 2048 threads (Fermi had 1536)

Increased Shared Memory Bandwidth

- Both GK104 and GK110
- To benefit, code must access 8-byte words
 - No changes for double-precision codes
 - Single-precision or integer codes should group accesses into float2, int2 strutures to get the benefit
- Refer to Case Study 6 for a usecase sample

SM Improvements Specific to GK110

- More registers per thread
 - A thread can use up to 255 registers (Fermi had 63)
 - Improves performance for some codes that spilled a lot of registers on Fermi (or GK104)
 - Note that more registers per thread still has to be weighed against lower occupancy
- Ability to use read-only cache for accessing global memory
 - Improves performance for some codes with scattered access patterns, lowers the overhead due to replays
- Warp-shuffle instruction (tool for ninjas)
 - Enables threads in the same warp to exchange values without going through shared memory

Considerations for Dynamic Parallelism

- GPU threads are able to launch work for GPU
 - GK110-specific feature
- Same considerations as for launches from CPU
 - Same exact considerations for exposing sufficient parallelism as for "traditional" launches (CPU launches work for GPU)
 - A single launch doesn't have to saturate the GPU:
 - GPU can execute up to 32 different kernel launches concurrently

Conclusion

- When programming and optimising think about:
 - Exposing sufficient parallelism
 - Coalescing memory accesses
 - Having coherent control flow within warps
- Use profiling tools when analyzing performance
 - Determine performance limiters first
 - Diagnose memory access patterns