Graphes et Langages

Chapitre 2 Graphes orientés

Leo Donati Noëlle Stolfi

Université de Nice Sophia Antipolis IUT Nice Côte d'Azur DUT Informatique

2015-2016

Chapitre 2 : Graphes orientés

- GRAPHES ORIENTÉS
 - Définitions
 - Degré sortant et entrant
 - Matrice d'adjacence
 - Graphes orientés particuliers
- 2 Parcourir un graphe orienté
 - Chemins et circuits
 - Connexité forte
 - Graphes orientés eulériens
 - Fermeture transitive

- 3 Graphes sans circuits
 - Savoir si un graphe a des circuits ou pas
 - Noyau d'un graphe
 - Niveaux d'un graphe

Définitions

Degré sortant et entrant Matrice d'adjacence Graphes orientés particuliers

GRAPHE ORIENTÉ

Les graphes orientés servent à modéliser les situations dans lesquelles les liens qui lient les objets indiquent

- une hiérarchie
- une dépendance
- un flux (eau, gaz, électricité, données)
- un séquence temporelle
- un changement d'état (altitude)
- un cheminement

DÉFINITION

DÉFINITION

Un graphe orienté G est donné par un triplet (V, E, γ)

- V (comme vertex) est l'ensemble des sommets du graphe G (aussi appelés noeuds du graphe);
- E (comme edge) est l'ensemble des arcs du graphe G
- γ est la fonction d'incidence qui associe à chaque arc, son sommet de départ et son sommet d'arrivée.

$$\gamma: E \longrightarrow V \times V$$

La différence avec un graphe non orienté c'est que γ associe à chaque arc un couple de sommets.

EXTRÉMITÉS

Si
$$\gamma(a) = (s_1, s_2)$$

On dit que

- s₁ est le début de l'arc a
- s₂ est la fin de l'arc a
- et on représente a par un arc orienté allant de s₁ à s₂

BOUCLES ET ARCS

Les définitions de boucles et d'arcs parallèles sont les mêmes que pour les graphes non orientés.

Mais si $\gamma(a_1) = (s_1, s_2)$ et $\gamma(a_2) = (s_2, s_1)$ ces deux arcs ne sont pas considérées parallèles car elles ont même extrémités mais pas même début et même fin.

Exemple 1

$$G = (V, E, \gamma)$$

•
$$V = \{s_1, s_2, s_3, s_4\}$$

•
$$E = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

• l'application γ définie par

•
$$\gamma(a_1) = (s_1, s_2)$$

•
$$\gamma(a_2) = (s_1, s_3)$$

•
$$\gamma(a_3) = (s_2, s_1)$$

•
$$\gamma(a_4) = (s_4, s_4)$$

•
$$\gamma(a_5) = (s_4, s_3)$$

•
$$\gamma(a_6) = (s_2, s_3)$$

SUCCESSEURS ET PRÉDÉCESSEURS

DÉFINITION

- On dit qu'un sommet s est un successeur d'un sommet s' s'il existe un arc qui part de s' et qui va à s;
- $\Gamma^+(s)$ dénote l'ensemble des successeurs de s;
- Dans ces mêmes conditions on dit que s' est un prédécesseur de s.
- $\Gamma^-(s)$ dénote l'ensemble des prédécesseurs de s;

Remarque

- Certains sommets n'ont aucun successeur ou aucun prédécesseur;
- Un sommet peut être son propre successeur en cas de boucle.

DEGRÉS ENTRANTS ET SORTANTS

DÉFINITION

Dans un graphe orienté, si s est un sommet on distingue entre :

- le degré sortant d⁺(s) qui est le nombre d'arcs dont s est le début;
- le degré entrant $d^-(s)$ qui est le nombre d'arcs dont s est la fin ;

Propriété

Quel que soit le graphe orienté G

$$\sum_{s \in F} d^{+}(s) = \sum_{s \in F} d^{-}(s) = d(G)$$

Exemple 1

DEGRÉS ENTRANTS ET SORTANTS

sommet	d^+	d^-
1	2	1
2	2	1
3	0	3
4	2	1
total	6	6

MATRICE D'ADJACENCE

DÉFINITION

Soit $G = (V, E, \gamma)$ un graphe orienté avec des sommets numérotés de 1 à n :

$$V = \{s_1, s_2, \dots, s_n\}$$

La matrice d'adjacence de G est une matrice carrée $n \times n$ dont l'entrée (i,j) donne le nombre d'arcs dont le début est le sommet s_i et la fin est le sommet s_i .

REMARQUE

Transposer la matrice d'adjacence, équivaut à changer le sens de tous les arcs.

Matrice d'adjacence

$$M = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

Propositions

Dans la matrice d'adjacente d'un graphe orienté

- la somme des éléments de la ligne i donnent le degré sortant de s_i , $d^+(s_i)$;
- la somme des éléments de la colonne j donnent le degré entrant de s_i , $d^-(s_i)$;
- les boucles sont définies par des 1 sur la diagonale (et pas des 2 comme pour les graphes non orientés);
- en général la matrice d'adjacence n'est pas une matrice symétrique.

Graphe symétrique

DÉFINITION

Un graphe orienté $G = (V, E, \gamma)$ est symétrique, ssi

$$\forall a \in E, \text{avec } \gamma(a) = (s_1, s_2), \exists a' \in E \text{ telle que } \gamma(a') = (s_2, s_1)$$

Autrement dit s'il y a un arc qui part de s_1 vers s_2 il doit y avoir un arc qui va de s_2 et qui arrive à s_1

Propriété

La matrice d'adjacence d'un graphe symétrique est une matrice symétrique.

Exemple 1

Le graphe de l'exemple 1 n'est pas un graphe symétrique.

Degré sortant et entrant Graphes orientés particuliers

GRAPHE ANTISYMÉTRIQUE

DÉFINITION

Un graphe orienté $G = (V, E, \gamma)$ est antisymétrique, ssi

$$\exists a \in E, \text{avec } \gamma(a) = (s_1, s_2) \Rightarrow \forall a' \in E, \gamma(a') \neq (s_2, s_1)$$

Autrement dit s'il y a un arc qui part de s_1 et qui arrive à s_2 il ne doit pas y avoir d'arc entre s_2 et s_1 .

Propriété

La matrice d'adjacence d'un graphe antisymétrique est telle que

$$\forall i \forall j, i \neq j \Rightarrow a_{ij} \times a_{ji} = 0$$

Exemple 1

14/37

Le graphe de l'exemple 1 n'est pas antisymétrique. M2201-2

Exemples 2 et 3

GRAPHE COMPLET

DÉFINITION

Un graphe orienté $G = (V, E, \gamma)$ est complet si et seulement si

$$\forall (s_1, s_2) \in V^2$$
, $\exists a \in E$, tel que $\gamma(a) = (s_1, s_2)$ ou $\gamma(a) = (s_2, s_1)$

Propriété

La matrice d'adjacence d'un graphe complet est telle que

$$\forall i \forall j, i \neq j \Rightarrow a_{ij} \neq 0 \text{ ou } a_{ji} \neq 0$$

EXEMPLES

Les exemples 1 et 2 ne sont pas complets.

Le graphe de l'exemple 3 est complet.

Graphes transitifs

DÉFINITION

Un graphe orienté $G = (V, E, \gamma)$ est transitif ssi

$$\forall (a_1, a_2) \in E^2 \quad \gamma(a_1) = (s_1, s_2) \text{ et } \quad \gamma(a_2) = (s_2, s_3)$$

$$\Rightarrow \quad \exists a_3 \in E \text{ tels que} \quad \gamma(a_3) = (s_1, s_3)$$

Autrement dit dans un graphe transitif, pour deux arcs consécutifs, il doit y avoir aussi un arc direct

EXEMPLES

DEUX GRAPHES ORIENTÉS

DEUX GRAPHES ORIENTÉS

Non transitif car $\gamma(a_1) = (s_1, s_2), \gamma(a_3) = (s_2, s_4)$ mais pas d'arc entre s_1 et s_4 .

DEUX GRAPHES ORIENTÉS

Non transitif car

$$\gamma(a_1) = (s_1, s_2), \gamma(a_3) = (s_2, s_4)$$

mais pas d'arc entre s_1 et s_4 .

Graphe transitif

M2201-2

ATTENTION

Un graphe complet n'est pas forcément transitif et un graphe transitif n'est pas forcément complet.

ATTENTION

Un graphe complet n'est pas forcément transitif et un graphe transitif n'est pas forcément complet.

ATTENTION

Un graphe complet n'est pas forcément transitif et un graphe transitif n'est pas forcément complet.

Chemins et circuits Connexité forte Graphes orientés eulériens Fermeture transitive

Chapitre 2 : Graphes orientés

- GRAPHES ORIENTÉS
 - Définitions
 - Degré sortant et entrant
 - Matrice d'adjacence
 - Graphes orientés
- PARCOURIR UN GRAPHE ORIENTÉ
 - Chemins et circuits
 - Connexité forte
 - Graphes orientés eulériens
 - Fermeture transitive

- 3 Graphes sans circuits
 - Savoir si un graphe a des circuits ou pas
 - Noyau d'un graphe
 - Niveaux d'un graphe

Chemins et circuits Connexité forte Graphes orientés eulériens Fermeture transitive

CHEMINS ET CIRCUITS

Changement de vocabulaire

Dans un graphe orienté, les mêmes concepts utilisent de nouveaux mots :

- arc à la place d'arête;
- chemin à la place de chaîne;
- circuit à la place de cycle.

Chemins et circuits Connexité forte Fermeture transitive

Connexité forte

DÉFINITION

Un graphe orienté G est fortement connexe si de chaque sommet de G il existe un chemin vers tous les autres sommets.

EXEMPLE

Chemins et circuits Connexité forte Graphes orientés eulérien Fermeture transitive

Connexité forte

DÉFINITION

Un graphe orienté G est fortement connexe si de chaque sommet de G il existe un chemin vers tous les autres sommets.

Chemins et circuits Connexité forte Graphes orientés eulériens Fermeture transitive

Connexité forte

DÉFINITION

Un graphe orienté G est fortement connexe si de chaque sommet de G il existe un chemin vers tous les autres sommets.

Chemins et circuits Connexité forte Graphes orientés eulériens Fermeture transitive

Connexité forte

DÉFINITION

Un graphe orienté G est fortement connexe si de chaque sommet de G il existe un chemin vers tous les autres sommets.

Graphes orientés eulériens

Proposition

Pour qu'il existe dans un graphe orienté un circuit eulérien c'est à dire une façon de parcourir le graphe en passant une et une seule fois par chaque arc et revenir au point de départ, la condition nécessaire et suffisante est que :

- le graphe soit fortement connexe
- pour chaque sommet les degrés entrant et sortant soient égaux.

FERMETURE TRANSITIVE

DÉFINITION

Soit $G = (V, E, \gamma)$ un graphe orienté. On peut associer à G un unique graphe transitif $\hat{G} = (V, \hat{E}, \hat{\gamma})$ défini de la façon suivante :

- $a \in \hat{E}$ est un arc de \hat{G} allant de s_1 à s_2 si et seulement si dans G il existe un chemin allant de s_1 à s_2 .
- \hat{G} est appelé la fermeture transitive de G.

REMARQUE

Si G est déjà transitif, alors $G = \hat{G}$.

$$A = \left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$A = \left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$A = \left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

M2201-2

Chapitre 2 : Graphes orientés

- GRAPHES ORIENTÉS
 - Définitions
 - Degré sortant et entrant
 - Matrice d'adjacence
 - Graphes orientés particuliers
- 2 PARCOURIR UN GRAPHE ORIENTÉ
 - Chemins et circuits
 - Connexité forte
 - Graphes orientés eulériens
 - Fermeture transitive

3 Graphes sans circuits

- Savoir si un graphe a des circuits ou pas
- Noyau d'un graphe
- Niveaux d'un graphe

PROBLÈME

QUESTION

Comment savoir si un graphe a des circuits?

Première réponse

Un graphe a des circuits s'il y a des boucles dans sa fermeture transitive.

Donc si on sait calculer la fermeture transitive d'un graphe, on peut savoir s'il a des circuits ou pas.

SECONDE RÉPONSE

On utilise la répartition des sommets du graphe en différents niveaux.

Noyau

DÉFINITION

Soit le graphe orienté $G=(V,E,\gamma)$ sans boucles. Un sous-ensemble $N\subset V$ de sommets est un noyau de G s'il satisfait aux deux conditions suivantes :

- $\forall s \in S N, \exists s' \in N, \exists a \in E$ tel que $\gamma(a) = (s, s')$. Un ensemble N vérifiant cette propriété est dit absorbant. On peut dire aussi que tout sommet qui n'est pas dans N a un successeur dans N.
- $\forall (s,s') \in \mathbb{N}^2, \forall a \in E, \gamma(a) \neq (s,s') \text{ et } \gamma(a) \neq (s',s).$ Un ensemble \mathbb{N} vérifiant cette propriété est dit stable. On peut dire aussi que les sommets de \mathbb{N} sont deux à deux non adjacents.

EXEMPLES

Exemples de noyaux

Le noyau du graphe est $N = \{2,3\}$

If y a un circuit 1–2–4–3. Deux noyaux possibles : $N = \{2,3\}$ ou $N' = \{1,4\}$

PROPRIÉTÉS

Théorème 1

Un graphe orienté simple symétrique possède au moins un noyau.

Théorème 2

Un graphe orienté simple sans circuit possède un et un seul noyau.

Théorème 3

Un graphe orienté sans boucle transitif possède un et un seul noyau.

CALCUL DU NOYAU

Algorithme utilisant la matrice d'adjacence a_{ij}

- on choisit une ligne k ne contenant que des 0
- on met le sommet k correspondant dans le noyau
- on barre la ligne k
- - pour toute les lignes i telles que $a_{ik} \neq 0$
 - on barre la ligne i
 - 3 on barre la colonne i
- on reprend à l'étape 1

ATTENTION

Cet algorithme ne fonctionne que avec des graphes sans circuits.

Exemple de calcul du noyau

Exemple de calcul du noyau

$$A = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{array}\right)$$

Exemple de calcul du noyau

$$A = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{array}\right)$$

Le noyau est $N = \{1, 3, 5\}$.

NIVEAUX D'UN GRAPHE

DÉFINITION

 le niveau 0, N₀ contient les sommets de degré sortant égal à 0 : ceux qui n'ont pas de successeur.

$$N_0 = \{ s \in E, d^+(s) = 0 \}$$

• le niveau 1, N_1 contient les sommets (qui ne sont pas dans le niveau N_0) dont tous les successeurs sont dans N_0

$$N_1 = \{s \in E - N_0, \Gamma^+(s) \subset N_0\}$$

 de même le niveau N_k contient tous les sommets qui ne sont dans aucun des niveaux inférieurs mais dont tous les successeurs sont dans des niveaux inférieurs.

EXEMPLE DE CALCUL DES NIVEAUX

$$N_0 = \{5\}$$
 $N_1 = \{3,4\}$
 $N_2 = \{2\}$
 $N_3 = \{1\}$

$$N_0 = \{5\}
N_1 = \{3\}
N_2 = \emptyset
N_3 = \emptyset$$

Car il y a un circuit 1-2-4

CALCUL DES NIVEAUX

ALGORITHME À PARTIR DE LA MATRICE D'ADJACENCE

- **1** i = 0
- On cherche dans la matrice les lignes qui ne contiennent que des 0
 - \bullet on met les sommets correspondants dans le niveau N_i
 - 2 on barre les lignes et les colonnes correspondant à ces sommets
- i = i + 1
- si $i \le n$ (taille de la matrice), on reprend à l'étape 2

Cas de blocage

L'algorithme peut s'arrêter à l'étape 2 avant que i > n s'il n'y a pas de ligne ne contenant que des 0.

Exemple de calcul des niveaux

$$A = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{array}\right)$$

Savoir si un graphe a des circuits ou pas Noyau d'un graphe Niveaux d'un graphe

DESSIN DU GRAPHE SELON LES NIVEAUX

Savoir si un graphe a des circuits ou pas Noyau d'un graphe **Niveaux d'un graphe**

Dessin du graphe selon les niveaux

M2201-2

Savoir si un graphe a des circuits ou pas Noyau d'un graphe Niveaux d'un graphe

Dessin du graphe selon les niveaux

Dessin du graphe selon les niveaux

M2201-2

M2201-2

