UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

ASSIGNMENT - 3

Date	4th October 2022
Team ID	PNT2022TMID27839
Student Name	Chandan Kumar (311519104010)
Domain Name	Education
Project Name	University Admit Eligibility Predictor
Maximum Marks	2 Marks

1.)IMPORT THE REQUIRED LIBRARIES

```
1.)IMPORT THE REQUIRED LIBRARIES

In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

2.)D	1WO	NLOA	D A	ND UPL	OAD TH	E DATA	SET IN	то	
<pre>df = pd.read_csv('abalone.csv') df.head()</pre>										
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	
(o 1 2 3	Sex 0 M 1 M 2 F 3 M	df = pd.read_df.head() Sex Length M	df = pd.read_csv('abal df.head() Sex Length Diameter 0 M 0.455 0.365 1 M 0.350 0.265 2 F 0.530 0.420 3 M 0.440 0.365	df = pd.read_csv('abalone.cs df.head() Sex Length Diameter Height 0 M 0.455 0.365 0.095 1 M 0.350 0.265 0.090 2 F 0.530 0.420 0.135 3 M 0.440 0.365 0.125	df = pd.read_csv('abalone.csv') df.head() Sex Length Diameter Height Whole weight 0 M 0.455 0.365 0.095 0.5140 1 M 0.350 0.265 0.090 0.2255 2 F 0.530 0.420 0.135 0.6770 3 M 0.440 0.365 0.125 0.5160	df = pd.read_csv('abalone.csv') df.head() Sex Length Diameter Height Whole weight Shucked weight 0 M 0.455 0.365 0.095 0.5140 0.2245 1 M 0.350 0.265 0.090 0.2255 0.0995 2 F 0.530 0.420 0.135 0.6770 0.2565 3 M 0.440 0.365 0.125 0.5160 0.2155	df = pd.read_csv('abalone.csv') Sex Length Diameter Height Whole weight Shucked weight Viscera weight 0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 1 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140	Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight 0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 1 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.155	

3.) HANDLE MISSING VALUES AND DEAL WITH THEM

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

5.)PERFORM VISUALIZATIONS a.)UNIVARIANTE ANALYSIS In [6]: sns.distplot(df.Rings) C:\Users\Prem\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: 'distplot' is a deprecated function and will be removed in a future version. Please adapt your code to use either 'displot' (a figure-level function with similar flexi bility) or 'histplot' (an axes-level function for histograms). Out[6]: Axess.ubplot:xlabel='Rings', ylabel='Density'>

b.) BI - VARIANTE ANALYSIS

c.) MULTI - VARIANTE ANALYSIS

In [13]:	df.corr()								
Out[13]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
	Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
	Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
	Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
	Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
	Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
	Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
	Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

6.) FIND AND REPLACE THE OUTLIERS

6.)FIND THE OUTLIERS AND REPLACE THE OUTLIERS In [15]: for i in df.columns.drop('Sex'): sns.boxplot(df[i]) plt.show() C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit key word will result in an error or misinterpretation. warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.
warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation. warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation. warnings.warn(

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 Height

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

e	= La	belEnco		Ū	mport LabelE .Sex)	ncoder				
	.head	d()								
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15.0	
	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7.0	
	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9.0	
	0		0.420 0.365	0.135 0.125	0.6770 0.5160	0.2565 0.2155	0.1415 0.1140	0.210 0.155	9.0	

8.) SPLIT DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

9.) SCALE THE INDEPENDENT VARIABLES

10.) SPLIT THE DATA INTO TRAINING AND TESTING

10.)SPLIT THE DATA INTO TRAINING AND TESTING DATA In [23]: from sklearn.model_selection import train_test_split x_train , x_test , y_train , y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)

11.) BUILD THE MODEL

```
11.)BUILD THE MODEL

In [24]: from sklearn.linear_model import LinearRegression model = LinearRegression()
```

12.) TRAIN THE MODEL

```
12.)TRAIN THE MODEL

In [25]: model.fit(x_train,y_train)

Out[25]: LinearRegression()
```

13.) TEST THE MODEL

```
13.)TEST THE MODEL

In [26]: y_predict = model.predict(x_test)

In [27]: pd.DataFrame({"Actual":y_test, "Predicted":y_predict.round(0)})

Out[27]:

Actual Predicted
668 13.0 13.0
1580 8.0 9.0
3784 11.0 10.0
463 5.0 5.0
2615 12.0 10.0
... ... ...
575 11.0 10.0
3231 12.0 9.0
1084 7.0 9.0
290 15.5 12.0
2713 4.0 6.0
836 rows × 2 columns
```

14.) MEASURE THE PERFORMANCE USING METRICS

```
14.)MEASURE THE PERFORMANCE USING METRICS

In [28]: from sklearn import metrics metrics.r2_score(y_test,y_predict)

Out[28]: 0.58432381444787
```