Finite Elements For Engineers

Lecture 8: Review of Module 1

S. D. Rajan

Review of Module 1

- Do you understand the following terms and concepts?
 - Finite element method
 - Finite element model
 - Problem domain and discretization
 - Node
 - Element and element equations
 - Assembly to create system equations
 - Boundary conditions
 - The six major steps

- Do you know the differences between ...
 - Full, Banded, Skyline and Sparse Storage schemes
 - Direct Stiffness Method and Galerkin's Method
 - Classical Solution and (element-based) Finite
 Element Solution

- Do you understand the following terms and concepts?
 - Well-posed problem
 - Degrees of freedom (before and after imposition of BCs)
 - Boundary Conditions (EBC, NBC, Mixed, homogenous, non-homogenous)
 - Primary and secondary unknowns
 - Rank deficiency in element equations

- With respect to Galerkin's method and 1D BVP, do you understand the following terms and concepts?
 - Primary unknown
 - Secondary unknowns
 - Residual function
 - Weighting functions
 - Trial solution and interpolation
 - Requirements for shape functions
 - Integration by parts
 - Checking the quality of the solution
 - h-convergence, p-convergence, hp-convergence

- Do you know how to derive, compute or solve ...
 - Element equations for a linear spring
 - Element equations for a 1D heat conduction and convection problem
 - Element equations for a 1D axial deformation of an elastic bar
 - Element equations for a 1D boundary value problem using linear and quadratically interpolated elements
 - Expressions for the flux