Inferência Estatística Comparada

AULA 6 - INFERÊNCIA CLÁSSICA

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Sejam $A, B : \mathcal{X} \to \mathbb{R}$ tais que $A(x) \leq B(x)$, $\forall x \in \mathcal{X}$.
- [A(X), B(X)] é chamado **intervalo aleatório**. Exemplos:
- $X=(X_1,...,X_n)$ com X_i a valores em $\mathbb{R},\ i=1,2,...,n.$ Sejam $A(X)=\bar{X}-1$ e $B(X)=\bar{X}+2.$ $[A(X),B(X)]=[\bar{X}-1,\bar{X}+2]$ é intervalo aleatório.
- $X = (X_1,...,X_n)$ com X_i a valores em $\mathbb{R}, i = 1,2,...,n$. Sejam $A(X) = min\{X_1,...,X_n\} = X_{(1)}$ e $B(X) = max\{X_1,...,X_n\} = X_{(n)}$.
 - $[A(X), B(X)] = [X_{(1)}, X_{(n)}]$ é intervalo aleatório.

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Sejam $A, B : \mathcal{X} \to \mathbb{R}$ tais que $A(x) \leq B(x)$, $\forall x \in \mathcal{X}$.
- [A(X), B(X)] é chamado **intervalo aleatório**. Exemplos:
- $X=(X_1,...,X_n)$ com X_i a valores em $\mathbb{R},\ i=1,2,...,n.$ Sejam $A(X)=\bar{X}-1$ e $B(X)=\bar{X}+2.$ $[A(X),B(X)]=[\bar{X}-1,\bar{X}+2]$ é intervalo aleatório.
- $X = (X_1,...,X_n)$ com X_i a valores em \mathbb{R} , i = 1,2,...,n. Sejam $A(X) = min\{X_1,...,X_n\} = X_{(1)}$ e $B(X) = max\{X_1,...,X_n\} = X_{(n)}$.

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Sejam $A, B : \mathcal{X} \to \mathbb{R}$ tais que $A(x) \leq B(x)$, $\forall x \in \mathcal{X}$.
- [A(X), B(X)] é chamado **intervalo aleatório**. Exemplos:
- $X=(X_1,...,X_n)$ com X_i a valores em $\mathbb{R},\ i=1,2,...,n.$ Sejam $A(X)=\bar{X}-1$ e $B(X)=\bar{X}+2.$ $[A(X),B(X)]=[\bar{X}-1,\bar{X}+2]$ é intervalo aleatório.
- $X = (X_1, ..., X_n)$ com X_i a valores em \mathbb{R} , i = 1, 2, ..., n. Sejam $A(X) = min\{X_1, ..., X_n\} = X_{(1)}$ e $B(X) = max\{X_1, ..., X_n\} = X_{(n)}$. $[A(X), B(X)] = [X_{(1)}, X_{(2)}]$ é intervalo aleatório
 - $[A(\Lambda),D(\Lambda)]=[\Lambda_{(1)},\Lambda_{(n)}] \in \text{Interval of alcatorio.}$

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Sejam $A, B : \mathcal{X} \to \mathbb{R}$ tais que $A(x) \leq B(x)$, $\forall x \in \mathcal{X}$.
- [A(X), B(X)] é chamado intervalo aleatório. Exemplos:
- $X=(X_1,...,X_n)$ com X_i a valores em $\mathbb{R},\ i=1,2,...,n.$ Sejam $A(X)=\bar{X}-1$ e $B(X)=\bar{X}+2.$ $[A(X),B(X)]=[\bar{X}-1,\bar{X}+2]$ é intervalo aleatório.
- $X = (X_1,...,X_n)$ com X_i a valores em \mathbb{R} , i = 1,2,...,n. Sejam $A(X) = min\{X_1,...,X_n\} = X_{(1)}$ e $B(X) = max\{X_1,...,X_n\} = X_{(n)}$. $[A(X),B(X)] = [X_{(1)},X_{(n)}]$ é intervalo aleatório.

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Sejam $A, B : \mathcal{X} \to \mathbb{R}$ tais que $A(x) \leq B(x)$, $\forall x \in \mathcal{X}$.
- [A(X), B(X)] é chamado intervalo aleatório. Exemplos:
- $X=(X_1,...,X_n)$ com X_i a valores em $\mathbb{R},\ i=1,2,...,n.$ Sejam $A(X)=\bar{X}-1$ e $B(X)=\bar{X}+2.$ $[A(X),B(X)]=[\bar{X}-1,\bar{X}+2]$ é intervalo aleatório.
- $X = (X_1,...,X_n)$ com X_i a valores em \mathbb{R} , i = 1,2,...,n. Sejam $A(X) = min\{X_1,...,X_n\} = X_{(1)}$ e $B(X) = max\{X_1,...,X_n\} = X_{(n)}$. $[A(X),B(X)] = [X_{(1)},X_{(n)}]$ é intervalo aleatório.

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Seja [A(X), B(X)] um intervalo aleatório. Dizemos que [A(X), B(X)] é um intervalo de confiança para θ com coeficiente de confiança $\gamma, \gamma \in (0, 1)$, se
- $\mathbb{P}(A(X) \leq \theta \leq B(X) \mid \theta) \geq \gamma \,, \, \forall \theta \in \Theta$. Isto é,
- $\bullet \ \int_{\mathcal{X}} \mathbb{I}(A(x) \leq \theta \leq B(x)) \ f(x|\theta) \ dx \ \geq \ \gamma$, ou
- Fixado $\theta \in \Theta$, a probabilidade do intervalo aleatório [A(X), B(X)] "ter θ como elemento" é ao menos γ .

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Seja [A(X), B(X)] um intervalo aleatório. Dizemos que [A(X), B(X)] é um intervalo de confiança para θ com coeficiente de confiança $\gamma, \gamma \in (0, 1)$, se
- $\mathbb{P}(A(X) \leq \theta \leq B(X) \mid \theta) \geq \gamma$, $\forall \theta \in \Theta$. Isto é,
- \bullet $\int_{\mathcal{X}} \mathbb{I}(A(x) \leq \theta \leq B(x)) \ f(x|\theta) \ dx \ \geq \ \gamma$, ou
- Fixado $\theta \in \Theta$, a probabilidade do intervalo aleatório [A(X), B(X)] "ter θ como elemento" é ao menos γ .

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Seja [A(X), B(X)] um intervalo aleatório. Dizemos que [A(X), B(X)] é um intervalo de confiança para θ com coeficiente de confiança $\gamma, \gamma \in (0, 1)$, se
- $\mathbb{P}(A(X) \leq \theta \leq B(X) \mid \theta) \geq \gamma$, $\forall \theta \in \Theta$. Isto é,
- \bullet $\int_{\mathcal{X}} \mathbb{I}(A(x) \leq \theta \leq B(x)) \ f(x|\theta) \ dx \ \geq \ \gamma$, ou
- Fixado $\theta \in \Theta$, a probabilidade do intervalo aleatório [A(X),B(X)] "ter θ como elemento" é ao menos γ .

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Seja [A(X), B(X)] um intervalo aleatório. Dizemos que [A(X), B(X)] é um intervalo de confiança para θ com coeficiente de confiança $\gamma, \gamma \in (0, 1)$, se
- $\mathbb{P}(A(X) \leq \theta \leq B(X) \mid \theta) \geq \gamma$, $\forall \theta \in \Theta$. Isto é,
- ullet $\int_{\mathcal{X}}\mathbb{I}(A(x)\leq heta\leq B(x))\;f(x| heta)\;dx\;\geq\;\gamma$, ou
- Fixado $\theta \in \Theta$, a probabilidade do intervalo aleatório [A(X), B(X)] "ter θ como elemento" é ao menos γ .

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Seja [A(X), B(X)] um intervalo aleatório. Dizemos que [A(X), B(X)] é um intervalo de confiança para θ com coeficiente de confiança $\gamma, \gamma \in (0, 1)$, se
- $\mathbb{P}(A(X) \leq \theta \leq B(X) \mid \theta) \geq \gamma$, $\forall \theta \in \Theta$. Isto é,
- ullet $\int_{\mathcal{X}}\mathbb{I}(A(x)\leq heta\leq B(x))\;f(x| heta)\;dx\;\geq\;\gamma$, ou
- $\bullet \int_{\{x \in \mathcal{X}: A(x) < \theta < B(x)\}} f(x|\theta) dx \ge \gamma.$
- Fixado $\theta \in \Theta$, a probabilidade do intervalo aleatório [A(X), B(X)] "ter θ como elemento" é ao menos γ .

- $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Consideremos $\Theta \subset \mathbb{R}$. Seja [A(X), B(X)] um intervalo aleatório. Dizemos que [A(X), B(X)] é um intervalo de confiança para θ com coeficiente de confiança $\gamma, \gamma \in (0, 1)$, se
- $\mathbb{P}(A(X) \leq \theta \leq B(X) \mid \theta) \geq \gamma$, $\forall \theta \in \Theta$. Isto é,
- ullet $\int_{\mathcal{X}} \mathbb{I}(A(x) \leq \theta \leq B(x)) \; f(x|\theta) \; dx \; \geq \; \gamma$, ou
- $\bullet \int_{\{x \in \mathcal{X}: A(x) < \theta < B(x)\}} f(x|\theta) dx \ge \gamma.$
- Fixado $\theta \in \Theta$, a probabilidade do intervalo aleatório [A(X), B(X)] "ter θ como elemento" é ao menos γ .

$$\mathbb{P}(rac{|ar{X}- heta|}{rac{1}{\sqrt{n}}} \ \le \ \Phi_{rac{1+\gamma}{2}}^{-1} \mid heta) \ = \ \gamma \ , orall heta \in \Theta$$
 , ou

$$\bullet \ \mathbb{P}(\bar{X} - \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \leq \theta \leq \bar{X} + \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \mid \theta) = \gamma \ , \ \forall \theta \in \Theta \ .$$

- Nesse caso, $[\bar{X} \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}, \bar{X} + \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}]$ é intervalo de confiança para θ com coeficiente de confiança γ .
- γ é a probabilidade (pré-amostragem) de que, dado θ , esse intervalo aleatório "tenha θ como elemento" (ou, em outras palavras, que a estimação de θ por \bar{X} tenha erro pequeno). PRECISÃO INICIAL (Barnett)

$$\mathbb{P}(\tfrac{|\bar{X}-\theta|}{\frac{1}{\sqrt{n}}} \ \leq \ \Phi_{\frac{1+\gamma}{2}}^{-1} \mid \theta) \ = \ \gamma \ , \forall \theta \in \Theta \ , \, \mathsf{ou}$$

$$\bullet \ \mathbb{P}(\bar{X} - \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \, \leq \, \theta \, \leq \, \bar{X} + \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \mid \theta) \, = \, \gamma \, , \, \forall \theta \in \Theta \, .$$

- Nesse caso, $[\bar{X} \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}, \bar{X} + \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}]$ é intervalo de confiança para θ com coeficiente de confiança γ .
- γ é a probabilidade (pré-amostragem) de que, dado θ , esse intervalo aleatório "tenha θ como elemento" (ou, em outras palavras, que a estimação de θ por \bar{X} tenha erro pequeno). PRECISÃO INICIAL (Barnett)

$$\mathbb{P}(\frac{|\bar{X}-\theta|}{\frac{1}{\sqrt{n}}} \, \leq \, \Phi_{\frac{1+\gamma}{2}}^{-1} \mid \theta) \, = \, \gamma \; , \forall \theta \in \Theta$$
 , ou

$$\bullet \ \mathbb{P}(\bar{X} \, - \, \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \, \leq \, \theta \, \leq \, \bar{X} \, + \, \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \mid \theta) \, = \, \gamma \, , \, \forall \theta \in \Theta \, .$$

- Nesse caso, $[\bar{X} \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}, \bar{X} + \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}]$ é intervalo de confiança para θ com coeficiente de confiança γ .
- γ é a probabilidade (pré-amostragem) de que, dado θ , esse intervalo aleatório "tenha θ como elemento" (ou, em outras palavras, que a estimação de θ por \bar{X} tenha erro pequeno). PRECISÃO INICIAL (Barnett)

$$\mathbb{P}(\tfrac{|\bar{X}-\theta|}{\frac{1}{\sqrt{n}}} \ \leq \ \Phi_{\frac{1+\gamma}{2}}^{-1} \mid \theta) \ = \ \gamma \ , \forall \theta \in \Theta \ , \ \mathsf{ou}$$

- $\bullet \ \mathbb{P}(\bar{X} \, \, \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \, \leq \, \theta \, \leq \, \bar{X} \, + \, \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \mid \theta) \, = \, \gamma \, , \, \forall \theta \in \Theta \, .$
- Nesse caso, $[\bar{X} \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} , \ \bar{X} + \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}]$ é intervalo de confiança para θ com coeficiente de confiança γ .
- γ é a probabilidade (pré-amostragem) de que, dado θ , esse intervalo aleatório "tenha θ como elemento" (ou, em outras palavras, que a estimação de θ por \bar{X} tenha erro pequeno). PRECISÃO INICIAL (Barnett)

$$\mathbb{P}(\tfrac{|\bar{X}-\theta|}{\frac{1}{\sqrt{n}}} \ \leq \ \Phi_{\frac{1+\gamma}{2}}^{-1} \mid \theta) \ = \ \gamma \ , \forall \theta \in \Theta \ , \ \mathsf{ou}$$

- $\bullet \ \mathbb{P}(\bar{X} \, \, \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \, \leq \, \theta \, \leq \, \bar{X} \, + \, \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}} \mid \theta) \, = \, \gamma \, , \, \forall \theta \in \Theta \, .$
- Nesse caso, $[\bar{X} \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}, \bar{X} + \Phi_{\frac{1+\gamma}{2}}^{-1} \cdot \frac{1}{\sqrt{n}}]$ é intervalo de confiança para θ com coeficiente de confiança γ .
- γ é a probabilidade (pré-amostragem) de que, dado θ , esse intervalo aleatório "tenha θ como elemento" (ou, em outras palavras, que a estimação de θ por \bar{X} tenha erro pequeno). PRECISÃO INICIAL (Barnett)

- PRECISÃO INICIAL: mede "quão bem" espera-se estimar θ com base em \bar{X} ANTES da observação dos dados.
- No exemplo, suponhamos n=16 e $\gamma=0,95(\Phi_{\frac{1+\gamma}{2}}^{-1}=1,96)$. Assim, $[\bar{X}-0,49\ \bar{X}+0,49]$ é intervalo de confiança para θ com $\gamma=0,95$.
- PRECISÃO FINAL: Conduzido o experimento, mede (deveria medir) "quão boa" \bar{x} é como estimativa para θ APÓS a observação dos dados.
- No exemplo, suponhamos n=16. Conduzido o experimento e observado $x=(x_1,...,x_{16})$ tal que $\bar{x}=12$. Qual é a precisão da estimativa $\bar{x}=12$?

- PRECISÃO INICIAL: mede "quão bem" espera-se estimar θ com base em \bar{X} ANTES da observação dos dados.
- No exemplo, suponhamos n=16 e $\gamma=0,95(\Phi_{\frac{1+\gamma}{2}}^{-1}=1,96)$. Assim, $[\bar{X}\ -\ 0,49\ \bar{X}\ +\ 0,49]$ é intervalo de confiança para θ com $\gamma=0,95$.
- PRECISÃO FINAL: Conduzido o experimento, mede (deveria medir) "quão boa" \bar{x} é como estimativa para θ APÓS a observação dos dados.
- No exemplo, suponhamos n=16. Conduzido o experimento e observado $x=(x_1,...,x_{16})$ tal que $\bar{x}=12$ Qual é a precisão da estimativa $\bar{x}=12$?

- PRECISÃO INICIAL: mede "quão bem" espera-se estimar θ com base em \bar{X} ANTES da observação dos dados.
- No exemplo, suponhamos n=16 e $\gamma=0,95(\Phi_{\frac{1+\gamma}{2}}^{-1}=1,96)$. Assim, $[\bar{X}\ -\ 0,49\ \bar{X}\ +\ 0,49]$ é intervalo de confiança para θ com $\gamma=0,95$.
- PRECISÃO FINAL: Conduzido o experimento, mede (deveria medir) "quão boa" \bar{x} é como estimativa para θ APÓS a observação dos dados.
- No exemplo, suponhamos n=16. Conduzido o experimento e observado $x=(x_1,...,x_{16})$ tal que $\bar{x}=12$ Qual é a precisão da estimativa $\bar{x}=12$?

- PRECISÃO INICIAL: mede "quão bem" espera-se estimar θ com base em \bar{X} ANTES da observação dos dados.
- No exemplo, suponhamos n=16 e $\gamma=0,95(\Phi_{\frac{1+\gamma}{2}}^{-1}=1,96)$. Assim, $[\bar{X}\ -\ 0,49\ \bar{X}\ +\ 0,49]$ é intervalo de confiança para θ com $\gamma=0,95$.
- PRECISÃO FINAL: Conduzido o experimento, mede (deveria medir) "quão boa" \bar{x} é como estimativa para θ APÓS a observação dos dados.
- No exemplo, suponhamos n=16. Conduzido o experimento e observado $x=(x_1,...,x_{16})$ tal que $\bar{x}=12$. Qual é a precisão da estimativa $\bar{x}=12$?

- Quão próximo $\bar{x}=12$ está de θ ? Como medir, pós-experimentação, a precisão da estimativa $\bar{x}=12$?
- Qual a interpretação/significado da estimativa por intervalo $[\bar{x}-0.49\ \bar{x}+0.49]=[11.51\ ,\ 12.49]$?
- Transferência (herança) de aspectos da construção pré-experimentação.
- Construção pré-experimentação

Inferência pós-experimentação

- Quão próximo $\bar{x}=12$ está de θ ? Como medir, pós-experimentação, a precisão da estimativa $\bar{x}=12$?
- Qual a interpretação/significado da estimativa por intervalo $[\bar{x}-0.49\ \bar{x}+0.49]=[11.51\ ,\ 12.49]$?
- Transferência (herança) de aspectos da construção pré-experimentação.
- Construção pré-experimentação

- Quão próximo $\bar{x}=12$ está de θ ? Como medir, pós-experimentação, a precisão da estimativa $\bar{x}=12$?
- Qual a interpretação/significado da estimativa por intervalo $[\bar{x}-0.49\ \bar{x}+0.49]=[11.51\ ,\ 12.49]$?
- Transferência (herança) de aspectos da construção pré-experimentação.
- Construção pré-experimentação

- Quão próximo $\bar{x}=12$ está de θ ? Como medir, pós-experimentação, a precisão da estimativa $\bar{x}=12$?
- Qual a interpretação/significado da estimativa por intervalo $[\bar{x}-0.49\ \bar{x}+0.49]=[11.51\ ,\ 12.49]$?
- Transferência (herança) de aspectos da construção pré-experimentação.
- Construção pré-experimentação

Χ

Inferência pós-experimentação

• Exemplo 2: $X=(X_1,...,X_n)$ AAS do modelo uniforme sobre o intervalo $(\theta-\frac{1}{2},\theta+\frac{1}{2}),\,\theta\in\mathbb{R}.$

•
$$\mathbb{P}(X_{(1)} \leq \theta \leq X_{(n)} \mid \theta) =$$

= $1 - \mathbb{P}(X_{(1)} > \theta \mid \theta) - \mathbb{P}(X_{(n)} < \theta \mid \theta) =$
= $1 - (\frac{1}{2})^n - (\frac{1}{2})^n = 1 - (\frac{1}{2})^{n-1}$

- Assim, $[X_{(1)}, X_{(n)}]$ é um intervalo de confiança para θ com coeficiente de confiança $\gamma = (\frac{1}{2})^{n-1}$.
- Outros intervalos poderiam ser derivados nesse caso: por exemplo, $[X_{(2)},X_{(n-1)}]$, com coeficiente de confiança $\gamma=1-(n+1)\frac{1}{2}^{n-1}$, ou $[X_{(j)},X_{(n+1-j)}]$, com coeficiente de confiança ...

- Exemplo 2: $X=(X_1,...,X_n)$ AAS do modelo uniforme sobre o intervalo $(\theta-\frac{1}{2},\theta+\frac{1}{2}),\,\theta\in\mathbb{R}.$
- $\mathbb{P}(X_{(1)} \le \theta \le X_{(n)} \mid \theta) =$ = $1 - \mathbb{P}(X_{(1)} > \theta \mid \theta) - \mathbb{P}(X_{(n)} < \theta \mid \theta) =$ = $1 - (\frac{1}{2})^n - (\frac{1}{2})^n = 1 - (\frac{1}{2})^{n-1}$
- Assim, $[X_{(1)},X_{(n)}]$ é um intervalo de confiança para θ com coeficiente de confiança $\gamma=(\frac{1}{2})^{n-1}$.
- Outros intervalos poderiam ser derivados nesse caso: por exemplo, $[X_{(2)},X_{(n-1)}]$, com coeficiente de confiança $\gamma=1-(n+1)\frac{1}{2}^{n-1}$, ou $[X_{(j)},X_{(n+1-j)}]$, com coeficiente de confiança ...

- Exemplo 2: $X=(X_1,...,X_n)$ AAS do modelo uniforme sobre o intervalo $(\theta-\frac{1}{2},\theta+\frac{1}{2}),\,\theta\in\mathbb{R}.$
- $\mathbb{P}(X_{(1)} \le \theta \le X_{(n)} | \theta) =$ = $1 - \mathbb{P}(X_{(1)} > \theta | \theta) - \mathbb{P}(X_{(n)} < \theta | \theta) =$ = $1 - (\frac{1}{2})^n - (\frac{1}{2})^n = 1 - (\frac{1}{2})^{n-1}$
- Assim, $[X_{(1)},X_{(n)}]$ é um intervalo de confiança para θ com coeficiente de confiança $\gamma=(\frac{1}{2})^{n-1}$.
- Outros intervalos poderiam ser derivados nesse caso: por exemplo, $[X_{(2)},X_{(n-1)}]$, com coeficiente de confiança $\gamma=1-(n+1)\frac{1}{2}^{n-1}$, ou $[X_{(j)},X_{(n+1-j)}]$, com coeficiente de confiança ...

- Exemplo 2: $X=(X_1,...,X_n)$ AAS do modelo uniforme sobre o intervalo $(\theta-\frac{1}{2},\theta+\frac{1}{2}),\,\theta\in\mathbb{R}.$
- $\mathbb{P}(X_{(1)} \le \theta \le X_{(n)} \mid \theta) =$ = $1 - \mathbb{P}(X_{(1)} > \theta \mid \theta) - \mathbb{P}(X_{(n)} < \theta \mid \theta) =$ = $1 - (\frac{1}{2})^n - (\frac{1}{2})^n = 1 - (\frac{1}{2})^{n-1}$
- Assim, $[X_{(1)}, X_{(n)}]$ é um intervalo de confiança para θ com coeficiente de confiança $\gamma = (\frac{1}{2})^{n-1}$.
- Outros intervalos poderiam ser derivados nesse caso: por exemplo, $[X_{(2)},X_{(n-1)}]$, com coeficiente de confiança $\gamma=1-(n+1)\frac{1}{2}^{n-1}$, ou $[X_{(j)},X_{(n+1-j)}]$, com coeficiente de confiança ...

- No exemplo 2, consideremos n=6. Assim, $[X_{(1)},X_{(6)}]$ é intervalo de confiança com $\gamma=\frac{31}{32}\geq 0,95$. (Interpretar)
- Suponhamos $X_{(1)}=9,55$ e $X_{(6)}=10,45$. Nesse caso, a estimativa por intervalo é dada por: [9,55;10,45].
- Como interpretar tal estimativa por intervalo? Há alguma afirmação probabilística, por assim dizer, na desigualdade (fixado θ) $9,55 \le \theta \le 10,45$?
- $X_{(1)} = 9,55$ e $X_{(6)} = 10,45$ revelam, indubitavelmente, que $9,95 \le \theta \le 10,05$ (COM CERTEZA!!!!).
- Note que o aumento de n produz, muito provavelmente, aumento do comprimento da estimativa por intervalo (e aumento de γ), e diminuição da incerteza sobre θ , do comprimento do intervalo onde θ (certamente) está!!!

- No exemplo 2, consideremos n=6. Assim, $[X_{(1)},X_{(6)}]$ é intervalo de confiança com $\gamma=\frac{31}{32}\geq 0,95$. (Interpretar)
- Suponhamos $X_{(1)}=9,55$ e $X_{(6)}=10,45$. Nesse caso, a estimativa por intervalo é dada por: [9,55;10,45].
- Como interpretar tal estimativa por intervalo? Há alguma afirmação probabilística, por assim dizer, na desigualdade (fixado θ) $9,55 \le \theta \le 10,45$?
- $X_{(1)} = 9,55$ e $X_{(6)} = 10,45$ revelam, indubitavelmente, que $9,95 \le \theta \le 10,05$ (COM CERTEZA!!!!).
- Note que o aumento de n produz, muito provavelmente, aumento do comprimento da estimativa por intervalo (e aumento de γ), e diminuição da incerteza sobre θ , do comprimento do intervalo onde θ (certamente) está!!!

- No exemplo 2, consideremos n=6. Assim, $[X_{(1)},X_{(6)}]$ é intervalo de confiança com $\gamma=\frac{31}{32}\geq 0,95$. (Interpretar)
- Suponhamos $X_{(1)}=9,55$ e $X_{(6)}=10,45$. Nesse caso, a estimativa por intervalo é dada por: [9,55;10,45].
- Como interpretar tal estimativa por intervalo? Há alguma afirmação probabilística, por assim dizer, na desigualdade (fixado θ) $9,55 \le \theta \le 10,45$?
- $X_{(1)} = 9,55$ e $X_{(6)} = 10,45$ revelam, indubitavelmente, que $9,95 \le \theta \le 10,05$ (COM CERTEZA!!!!).
- Note que o aumento de n produz, muito provavelmente, aumento do comprimento da estimativa por intervalo (e aumento de γ), e diminuição da incerteza sobre θ , do comprimento do intervalo onde θ (certamente) está!!!

- No exemplo 2, consideremos n=6. Assim, $[X_{(1)},X_{(6)}]$ é intervalo de confiança com $\gamma=\frac{31}{32}\geq 0,95$. (Interpretar)
- Suponhamos $X_{(1)}=9,55$ e $X_{(6)}=10,45$. Nesse caso, a estimativa por intervalo é dada por: [9,55;10,45].
- Como interpretar tal estimativa por intervalo? Há alguma afirmação probabilística, por assim dizer, na desigualdade (fixado θ) $9,55 \le \theta \le 10,45$?
- $X_{(1)}=9,55$ e $X_{(6)}=10,45$ revelam, indubitavelmente, que $9,95\leq\theta\leq10,05$ (COM CERTEZA!!!!).
- Note que o aumento de n produz, muito provavelmente, aumento do comprimento da estimativa por intervalo (e aumento de γ), e diminuição da incerteza sobre θ , do comprimento do intervalo onde θ (certamente) está!!!

- No exemplo 2, consideremos n=6. Assim, $[X_{(1)},X_{(6)}]$ é intervalo de confiança com $\gamma=\frac{31}{32}\geq 0,95$. (Interpretar)
- Suponhamos $X_{(1)}=9,55$ e $X_{(6)}=10,45$. Nesse caso, a estimativa por intervalo é dada por: [9,55;10,45].
- Como interpretar tal estimativa por intervalo? Há alguma afirmação probabilística, por assim dizer, na desigualdade (fixado θ) $9,55 \le \theta \le 10,45$?
- $X_{(1)}=9,55$ e $X_{(6)}=10,45$ revelam, indubitavelmente, que $9,95\leq\theta\leq10,05$ (COM CERTEZA!!!!).
- Note que o aumento de n produz, muito provavelmente, aumento do comprimento da estimativa por intervalo (e aumento de γ), e diminuição da incerteza sobre θ , do comprimento do intervalo onde θ (certamente) está!!!

Estimação por intervalo

- No caso mais geral $(\Theta \subset \mathbb{R}^k)$, definimos regiões de confiança:
- A região aleatória $R: \mathcal{X} \to \mathcal{R}(\subset \mathcal{P}(\Theta))$ é uma região de confiança para θ com coeficiente γ se

$$\mathbb{P}(\theta \in R(X)|\theta) \geq \gamma, \forall \theta \in \Theta.$$

- Algumas alternativas à abordagem vista até aqui: "likelihood intervals/regions", intervalos/regiões de probabilidade (ou credibilidade).
- Na sequência, olharemos "likelihood regions" (intervalos de probabilidade mais adiante).

Estimação por intervalo

- No caso mais geral $(\Theta \subset \mathbb{R}^k)$, definimos regiões de confiança:
- A região aleatória $R: \mathcal{X} \to \mathcal{R}(\subset \mathcal{P}(\Theta))$ é uma região de confiança para θ com coeficiente γ se

$$\mathbb{P}(\theta \in R(X)|\theta) \geq \gamma, \forall \theta \in \Theta$$

- Algumas alternativas à abordagem vista até aqui: "likelihood intervals/regions", intervalos/regiões de probabilidade (ou credibilidade).
- Na sequência, olharemos "likelihood regions" (intervalos de probabilidade mais adiante).

- No caso mais geral $(\Theta \subset \mathbb{R}^k)$, definimos regiões de confiança:
- A região aleatória $R: \mathcal{X} \to \mathcal{R}(\subset \mathcal{P}(\Theta))$ é uma região de confiança para θ com coeficiente γ se

$$\mathbb{P}(\theta \in R(X)|\theta) \geq \gamma, \forall \theta \in \Theta.$$

- Algumas alternativas à abordagem vista até aqui: "likelihood intervals/regions", intervalos/regiões de probabilidade (ou credibilidade).
- Na sequência, olharemos "likelihood regions" (intervalos de probabilidade mais adiante).

- No caso mais geral $(\Theta \subset \mathbb{R}^k)$, definimos regiões de confiança:
- A região aleatória $R: \mathcal{X} \to \mathcal{R}(\subset \mathcal{P}(\Theta))$ é uma região de confiança para θ com coeficiente γ se

$$\mathbb{P}(\theta \in R(X)|\theta) \geq \gamma, \forall \theta \in \Theta.$$

- Algumas alternativas à abordagem vista até aqui: "likelihood intervals/regions", intervalos/regiões de probabilidade (ou credibilidade).
- Na sequência, olharemos "likelihood regions" (intervalos de probabilidade mais adiante).

- No caso mais geral $(\Theta \subset \mathbb{R}^k)$, definimos regiões de confiança:
- A região aleatória $R: \mathcal{X} \to \mathcal{R}(\subset \mathcal{P}(\Theta))$ é uma região de confiança para θ com coeficiente γ se

$$\mathbb{P}(\theta \in R(X)|\theta) \geq \gamma, \forall \theta \in \Theta.$$

- Algumas alternativas à abordagem vista até aqui: "likelihood intervals/regions", intervalos/regiões de probabilidade (ou credibilidade).
- Na sequência, olharemos "likelihood regions" (intervalos de probabilidade mais adiante).

• $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Suponhamos que exista EMV para θ , δ_{MV} . A região (intervalo) $R_{MV}: \mathcal{X} \to \mathcal{R}$ que associa a cada $x \in \mathcal{X}$ o conjunto

$$R_{MV}(x) = \{\theta \in \Theta : \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ge \gamma\}$$

é chamado γ "likelihood region/interval" para θ , $\gamma \in (0,1)$.

- Note que para cada $x \in \mathcal{X}$, $R_{MV}(x)$ depende apenas de V_x , não envolve V_y , $y \neq x$.
- Voltemos ao exemplo 1. Nesse caso, $\delta_{MV}(X) = \bar{X}$. Assim, para $x \in \mathcal{X}$, $R_{MV}(x)$ é dado por

• $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Suponhamos que exista EMV para θ , δ_{MV} . A região (intervalo) $R_{MV}: \mathcal{X} \to \mathcal{R}$ que associa a cada $x \in \mathcal{X}$ o conjunto

$$R_{MV}(x) = \{\theta \in \Theta : \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ge \gamma\}$$

é chamado γ "likelihood region/interval" para θ , $\gamma \in (0,1)$.

- Note que para cada $x \in \mathcal{X}$, $R_{MV}(x)$ depende apenas de V_x , não envolve V_y , $y \neq x$.
- Voltemos ao exemplo 1. Nesse caso, $\delta_{MV}(X) = \bar{X}$. Assim, para $x \in \mathcal{X}$, $R_{MV}(x)$ é dado por

• $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Suponhamos que exista EMV para θ , δ_{MV} . A região (intervalo) $R_{MV}: \mathcal{X} \to \mathcal{R}$ que associa a cada $x \in \mathcal{X}$ o conjunto

$$R_{MV}(x) = \{ \theta \in \Theta : \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ge \gamma \}$$

é chamado γ "likelihood region/interval" para $\theta, \gamma \in (0, 1)$.

- Note que para cada $x \in \mathcal{X}$, $R_{MV}(x)$ depende apenas de V_x , não envolve V_y , $y \neq x$.
- Voltemos ao exemplo 1. Nesse caso, $\delta_{MV}(X) = \bar{X}$. Assim, para $x \in \mathcal{X}$, $R_{MV}(x)$ é dado por

• $(\mathcal{X}, \mathcal{F}, \mathcal{P})$. Suponhamos que exista EMV para θ , δ_{MV} . A região (intervalo) $R_{MV}: \mathcal{X} \to \mathcal{R}$ que associa a cada $x \in \mathcal{X}$ o conjunto

$$R_{MV}(x) = \{\theta \in \Theta : \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ge \gamma\}$$

é chamado γ "likelihood region/interval" para θ , $\gamma \in (0,1)$.

- Note que para cada $x \in \mathcal{X}$, $R_{MV}(x)$ depende apenas de V_x , não envolve V_y , $y \neq x$.
- Voltemos ao exemplo 1. Nesse caso, $\delta_{MV}(X) = \bar{X}$. Assim, para $x \in \mathcal{X}$, $R_{MV}(x)$ é dado por

•
$$R_{MV}(x) = \{\theta \in \Theta : \frac{V_x(\theta)}{V_x(\bar{x})} \ge \gamma\}$$
. Mas

$$\bullet \; \Leftrightarrow \; \bar{x} \; - \; \sqrt{\frac{-2\; log\gamma}{n}} \; \leq \; \theta \; \leq \; \bar{x} \; + \; \sqrt{\frac{-2\; log\gamma}{n}}.$$

$$\bullet \ R(x) = \left[\ \bar{x} \ - \ \sqrt{\frac{-2 \log \gamma}{n}} \ , \ \ \bar{x} \ + \ \sqrt{\frac{-2 \log \gamma}{n}} \ \right]$$

ullet $R_{MV}(x) = \{ heta \in \Theta : rac{V_x(heta)}{V_x(ar{x})} \geq \gamma \}.$ Mas

$$\bullet \; \Leftrightarrow \; \bar{x} \; - \; \sqrt{\frac{-2\; log\gamma}{n}} \; \leq \; \theta \; \leq \; \bar{x} \; + \; \sqrt{\frac{-2\; log\gamma}{n}}.$$

$$\bullet \ R(x) = \left[\ \bar{x} \ - \ \sqrt{\frac{-2 \log \gamma}{n}} \ , \ \ \bar{x} \ + \ \sqrt{\frac{-2 \log \gamma}{n}} \ \right]$$

$$\bullet \ R_{MV}(x) = \{\theta \in \Theta : \frac{V_x(\theta)}{V_x(\bar{x})} \ge \gamma\}.$$
 Mas

$$\bullet \ \frac{V_x(\theta)}{V_x(\bar{x})} = \frac{e^{-\frac{\sum_{i=1}^n (x_i - \theta)^2}{2}}}{e^{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2}}} = \dots = e^{-\frac{n}{2}(\theta - \bar{x})^2} \ge \gamma \Leftrightarrow$$

$$\bullet \; \Leftrightarrow \; \bar{x} \; - \; \sqrt{\frac{-2\; log\gamma}{n}} \; \leq \; \theta \; \leq \; \bar{x} \; + \; \sqrt{\frac{-2\; log\gamma}{n}}.$$

$$\bullet \ R(x) \ = \ [\ \bar{x} \ - \ \sqrt{\frac{-2\ log\gamma}{n}} \ \ , \ \ \bar{x} \ + \ \sqrt{\frac{-2\ log\gamma}{n}} \]$$

$$\bullet \ R_{MV}(x) = \{\theta \in \Theta : \frac{V_x(\theta)}{V_x(\bar{x})} \ge \gamma\}.$$
 Mas

$$\bullet \ \frac{V_x(\theta)}{V_x(\bar{x})} = \frac{e^{-\frac{\sum_{i=1}^n (x_i - \theta)^2}{2}}}{e^{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2}}} = \dots = e^{-\frac{n}{2}(\theta - \bar{x})^2} \ge \gamma \Leftrightarrow$$

$$\bullet \; \Leftrightarrow \; \bar{x} \; - \; \sqrt{\frac{-2\; log\gamma}{n}} \; \leq \; \theta \; \leq \; \bar{x} \; + \; \sqrt{\frac{-2\; log\gamma}{n}}.$$

$$\bullet \ R(x) \ = \ [\ \bar{x} \ - \ \sqrt{\frac{-2\ log\gamma}{n}} \ \ , \ \ \bar{x} \ + \ \sqrt{\frac{-2\ log\gamma}{n}} \]$$

$$\bullet \ R_{MV}(x) = \{\theta \in \Theta : \frac{V_x(\theta)}{V_x(\bar{x})} \ge \gamma\}.$$
 Mas

$$\bullet \ \frac{V_x(\theta)}{V_x(\bar{x})} = \frac{e^{-\frac{\sum_{i=1}^n (x_i - \theta)^2}{2}}}{e^{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2}}} = \dots = e^{-\frac{n}{2}(\theta - \bar{x})^2} \ge \gamma \Leftrightarrow$$

$$\bullet \; \Leftrightarrow \; \bar{x} \; - \; \sqrt{\frac{-2\; log\gamma}{n}} \; \leq \; \theta \; \leq \; \bar{x} \; + \; \sqrt{\frac{-2\; log\gamma}{n}}.$$

$$\bullet \ R(x) \ = \ [\ \bar{x} \ - \ \sqrt{\frac{-2 \ log \gamma}{n}} \ \ , \ \ \bar{x} \ + \ \sqrt{\frac{-2 \ log \gamma}{n}} \]$$

$$\bullet \ R_{MV}(x) = \{\theta \in \Theta : \frac{V_x(\theta)}{V_x(\bar{x})} \ge \gamma\}.$$
 Mas

$$\bullet \ \frac{V_x(\theta)}{V_x(\bar{x})} = \frac{e^{-\frac{\sum_{i=1}^n (x_i - \theta)^2}{2}}}{e^{-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2}}} = \dots = e^{-\frac{n}{2}(\theta - \bar{x})^2} \ge \gamma \Leftrightarrow$$

$$\bullet \; \Leftrightarrow \; \bar{x} \; - \; \sqrt{\frac{-2\; log\gamma}{n}} \; \leq \; \theta \; \leq \; \bar{x} \; + \; \sqrt{\frac{-2\; log\gamma}{n}}.$$

$$\bullet \ R(x) \ = \ [\ \bar{x} \ - \ \sqrt{\frac{-2\ log\gamma}{n}} \ \ , \ \ \bar{x} \ + \ \sqrt{\frac{-2\ log\gamma}{n}} \]$$

- Voltando ao exemplo 2, temos que
- $V_x(\theta) = \prod_{i=1}^n \frac{1}{(\theta + \frac{1}{2}) (\theta \frac{1}{2})} \mathbb{I}_{[\theta \frac{1}{2}, \theta + \frac{1}{2}]}(x_i) \Rightarrow$
- $\bullet \Rightarrow V_x(\theta) = \mathbb{I}(\theta \frac{1}{2} \le x_{(1)} \le x_{(n)} \le \theta + \frac{1}{2}) \Rightarrow$
- que atinge valor máximo 1 em qualquer ponto do intervalo $[x_{(n)}-\frac{1}{2}\ ,\ x_{(1)}+\frac{1}{2}].$

Voltando ao exemplo 2, temos que

•
$$V_x(\theta) = \prod_{i=1}^n \frac{1}{(\theta + \frac{1}{2}) - (\theta - \frac{1}{2})} \mathbb{I}_{[\theta - \frac{1}{2}, \theta + \frac{1}{2}]}(x_i) \Rightarrow$$

•
$$\Rightarrow V_x(\theta) = \mathbb{I}(\theta - \frac{1}{2} \le x_{(1)} \le x_{(n)} \le \theta + \frac{1}{2}) \Rightarrow$$

Voltando ao exemplo 2, temos que

•
$$V_x(\theta) = \prod_{i=1}^n \frac{1}{(\theta + \frac{1}{2}) - (\theta - \frac{1}{2})} \mathbb{I}_{[\theta - \frac{1}{2}, \theta + \frac{1}{2}]}(x_i) \Rightarrow$$

•
$$\Rightarrow V_x(\theta) = \mathbb{I}(\theta - \frac{1}{2} \le x_{(1)} \le x_{(n)} \le \theta + \frac{1}{2}) \Rightarrow$$

$$\bullet \Rightarrow V_x(\theta) = \mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}),$$

Voltando ao exemplo 2, temos que

•
$$V_x(\theta) = \prod_{i=1}^n \frac{1}{(\theta + \frac{1}{2}) - (\theta - \frac{1}{2})} \mathbb{I}_{[\theta - \frac{1}{2}, \theta + \frac{1}{2}]}(x_i) \Rightarrow$$

$$\bullet \Rightarrow V_x(\theta) = \mathbb{I}(\theta - \frac{1}{2} \le x_{(1)} \le x_{(n)} \le \theta + \frac{1}{2}) \Rightarrow$$

$$\bullet \Rightarrow V_x(\theta) = \mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}),$$

Voltando ao exemplo 2, temos que

•
$$V_x(\theta) = \prod_{i=1}^n \frac{1}{(\theta + \frac{1}{2}) - (\theta - \frac{1}{2})} \mathbb{I}_{[\theta - \frac{1}{2}, \theta + \frac{1}{2}]}(x_i) \Rightarrow$$

$$\bullet \Rightarrow V_x(\theta) = \mathbb{I}(\theta - \frac{1}{2} \le x_{(1)} \le x_{(n)} \le \theta + \frac{1}{2}) \Rightarrow$$

$$\bullet \ \Rightarrow \ V_x(\theta) \ = \ \mathbb{I}(x_{(n)} - \tfrac{1}{2} \ \leq \ \theta \ \leq \ x_{(1)} + \tfrac{1}{2}) \ ,$$

- Voltando ao exemplo 2, temos que
- $V_x(\theta) = \prod_{i=1}^n \frac{1}{(\theta + \frac{1}{2}) (\theta \frac{1}{2})} \mathbb{I}_{[\theta \frac{1}{2}, \theta + \frac{1}{2}]}(x_i) \Rightarrow$
- $\bullet \Rightarrow V_x(\theta) = \mathbb{I}(\theta \frac{1}{2} \le x_{(1)} \le x_{(n)} \le \theta + \frac{1}{2}) \Rightarrow$
- $\bullet \Rightarrow V_x(\theta) = \mathbb{I}(x_{(n)} \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}),$
- que atinge valor máximo 1 em qualquer ponto do intervalo $[x_{(n)}-\frac{1}{2}\ ,\ x_{(1)}+\frac{1}{2}].$

$$\bullet \ \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ = \ \frac{\mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2})}{1} \ \ge \ \gamma \ \Leftrightarrow$$

$$\bullet \Leftrightarrow x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}.$$

- Logo, a estimativa por intervalo é dada por
- $R(x) = [x_{(n)} \frac{1}{2}, x_{(1)} + \frac{1}{2}].$
- Para os números fornecidos, R(x) = [9,95; 10,05].

$$\bullet \ \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ = \ \frac{\mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2})}{1} \ \ge \ \gamma \ \Leftrightarrow$$

$$\bullet \Leftrightarrow x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}.$$

- Logo, a estimativa por intervalo é dada por
- $R(x) = [x_{(n)} \frac{1}{2}, x_{(1)} + \frac{1}{2}].$
- Para os números fornecidos, R(x) = [9,95; 10,05].

$$\bullet \ \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ = \ \frac{\mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2})}{1} \ \ge \ \gamma \ \Leftrightarrow$$

$$\bullet \Leftrightarrow x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}.$$

- Logo, a estimativa por intervalo é dada por
- $R(x) = [x_{(n)} \frac{1}{2}, x_{(1)} + \frac{1}{2}].$
- Para os números fornecidos, R(x) = [9,95; 10,05].

Assim,

$$\bullet \ \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ = \ \frac{\mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2})}{1} \ \ge \ \gamma \ \Leftrightarrow$$

$$\bullet \Leftrightarrow x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}.$$

Logo, a estimativa por intervalo é dada por

•
$$R(x) = [x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}].$$

• Para os números fornecidos, R(x) = [9,95; 10,05].

Assim,

$$\bullet \ \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ = \ \frac{\mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2})}{1} \ \ge \ \gamma \ \Leftrightarrow$$

- $\bullet \Leftrightarrow x_{(n)} \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}.$
- Logo, a estimativa por intervalo é dada por

•
$$R(x) = [x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}].$$

• Para os números fornecidos, R(x) = [9,95; 10,05].

$$\bullet \ \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ = \ \frac{\mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2})}{1} \ \ge \ \gamma \ \Leftrightarrow$$

$$\bullet \Leftrightarrow x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}.$$

- Logo, a estimativa por intervalo é dada por
- $R(x) = [x_{(n)} \frac{1}{2}, x_{(1)} + \frac{1}{2}].$
- Para os números fornecidos, R(x) = [9,95; 10,05].

$$\bullet \ \frac{V_x(\theta)}{V_x(\delta_{MV}(x))} \ = \ \frac{\mathbb{I}(x_{(n)} - \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2})}{1} \ \ge \ \gamma \ \Leftrightarrow$$

- $\bullet \Leftrightarrow x_{(n)} \frac{1}{2} \le \theta \le x_{(1)} + \frac{1}{2}.$
- Logo, a estimativa por intervalo é dada por
- $R(x) = [x_{(n)} \frac{1}{2}, x_{(1)} + \frac{1}{2}].$
- Para os números fornecidos, R(x) = [9,95; 10,05].

