Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных методов

ВАРИАЦИОННО-ПРОЕКЦИОННЫЕ МЕТОДЫ В ЗАДАЧАХ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Содержание

Лекци	я 1	3
1.1	Исторический экскурс	3
1.2	Метод Дирихле	3
1.3	Контрпример Вейерштрасса.	3
1.4	Контрпример Адамара	3
1.5	Метод Ритца	4
Лекци	я 2	7
2.1	Метод Бубнова – Галеркина	7
2.2	Повторение	8
Лекци	я 3	11
3.1	Формулы Грина	11
3.2	Положительные операторы	13
3.3	Положительно определенные операторы	14
3.4	Энергетическая норма	15
Лекци	я 4	16
4.1	10.02 Энергетические пр-ва (2)	16
4.2	Пример	16
4.3	Пример 3	17
4.4	Энергетический метод	17
4.5	Обобщение решения задачи о min для ф.э	17
Лекци	я	18
5.1	Применение энергетического метода для краевых задач	18
	5.1.1 Теорема	20
	5.1.2 Теорема	20
5.2	Основные кр задачи для ур-я Пуассона	21
Покин	a 6	22

Лекция 1

1.1 Исторический экскурс

Лекции с 9:30 два часа.

Вариационная постановка для задача мат физики. задача - условие на границе + начальное. (Экстремум функционала энергии, поэтому энергетические пространства).

Соболев - прямые методы решения задач. позволяют найти решение с помощью СЛАУ. Наиболее известен метод Рица.

1.2 Метод Дирихле

Дана область $\omega \in \mathbb{R}^2$.

$$M = u : u_0(x, y), (x, y) \in \partial\Omega$$
$$\iint_{\Omega} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy \to min$$

Интеграл Дирихле $\Rightarrow \overline{u}$ - гармонический в Ω

1.3 Контрпример Вейерштрасса.

$$\begin{split} M &= y; y(x) \in c'[-1;1], y(-1) = -1, y(1) = 1 \\ J(y) &= int_{-1}^{1} x^{2} (y')^{2} dx, J(y) \geq 0 \\ y_{\varepsilon}(x) &= \frac{arctg(\frac{x}{\varepsilon})}{arctg(\frac{1}{\varepsilon})} \\ y'_{\varepsilon}(x) &= \frac{1}{arctg(\frac{1}{\varepsilon})} \cdot \frac{1}{1 + \frac{x^{2}}{\varepsilon^{2}}} \cdot \frac{1}{\varepsilon} = \\ &= \frac{\varepsilon}{arctg(\frac{1}{\varepsilon})} \cdot \frac{1}{\varepsilon^{2} + x^{2}} \\ J(y_{\varepsilon}) &= \int_{-1}^{1} \frac{x^{2} \varepsilon^{2}}{arctg^{2}(\frac{1}{\varepsilon})} \cdot \frac{1}{(x^{2} + y^{2})^{2}} dx = frac2\varepsilon arctg(\frac{1}{\varepsilon}) = \frac{0}{\frac{\pi}{2}} \\ J(\overline{y}) &= \int_{-1}^{1} x^{2} y^{2} dx = 0 \Rightarrow y' = 0 \end{split}$$

Противоречие: y(-1) = -1, y(1) = 1

1.4 Контрпример Адамара

$$u(x,y) = \sum_{n=1}^{\inf} \frac{\rho^2}{2^n} cos(2^n \Theta), x = \rho cos\Theta, y = \rho sin\Theta$$

$$\rho \le 1$$

Непрерывны и гармоничны. Интеграл Дирихле в круге $\rho \leq r \leq 1$

$$\pi sum_{n=1}^{\inf} r^{2^{2n+1}} \rightarrow_{r \rightarrow 1} \inf$$

1.5 Метод Ритца

$$J(\omega) = int_a^b f(x, \omega, \omega', ..., \omega^{(k)}) dx \to inf$$

 $\omega \in M$ класс допустимых функций

 $\psi_0, \psi_1, ... \psi_n, ... ($ координатные функции)

Св-ва:

$$1)\forall a_1...a_n \in \mathbb{R}, \forall_n$$

$$\omega_n = \omega_0 + \sum_{i=1}^n a_i \omega_i \in M$$

$$2)\forall \omega \in M$$
и $\forall varepsilon > 0$

Уравнение полноты

$$H(\omega n) = F(a_1, ..., a_n) \rightarrow inf$$

$$||\omega - \psi_0 - \sum_{i=1} n a_i \psi_i|| < \varepsilon$$

Рассмотрим:

$$J(\omega_n) = F(\alpha_1, ..., \alpha_n) \to inf$$

$$\frac{\partial J}{\partial a_1}(\omega_n)=0,...\frac{\partial J}{\partial a_n}(\omega_n)=0$$
 — альтернативная система уранений $\Rightarrow a_1,...,a_n$ — решение

Насколько хорошо приближает метод искомое решение? На примере задачи об упругой поластине.

$$\Omega_{\subset \mathbb{R}^2}$$
 — обл , $S = \partial \Omega$

изгиб $\omega(x,y)$ удовлетворяет ур-ю Сори Жульен

$$\Delta^{2}\omega = \frac{\partial^{4}}{\partial x^{2}} + 2\frac{\partial^{4}\omega}{\partial x^{2}\partial y^{2}} + \frac{\partial^{4}\omega}{\partial y^{4}} = \frac{q(xy)}{\mathcal{D}}; (x,y) \in \Omega$$

 $\mathcal{D}-$ жесткость пластины при упругом изгибе

q(x,y), - Интенсивность давления

$$\omega(x,y) = 0$$

$$J(\omega) = \iint_{Omega} (\frac{1}{2}(\Delta\omega)^2 - f(\omega)d\Omega \to inf)$$

$$f = \frac{q(x,y)}{\mathcal{D}} \in C'(\overline{\Omega})$$

$$\omega = \omega_1 + \omega_2$$

Рассмотрим без доказательства ограниченности снизу.

$$\omega_1 = \frac{1}{8\pi} \iint_{\Omega} r^2 lnr f(\xi, \eta) d\xi \eta$$

 $(x,y)(\xi,\eta)$ — точки из Ωr — расстояние между (x,y) и (ξ,η)

$$J(\omega) = J_0 + \frac{1}{2} \iint_{\Omega} (\Delta \omega_2)^2 dx dy$$

$$j(\omega) \ge J_0 \Rightarrow \exists inf J(\omega)$$

Введем $\psi_1(x,y),...,\psi_n(x,y)$ - координатные ф-ции

$$1)\psi_n(x,y), \frac{\partial^{k+l}\psi_n}{\partial x^k \partial x^l} \in C(\overline{\Omega}), k \le \varepsilon, l \le \varepsilon$$

 $(2)\psi_n(x,y)$ удовлетворяет краевым условиям

- 3) \forall ф-ии $\zeta(x,y)$:
- а) удовлетворяет пункту 1

6)
$$\zeta(x,y) \equiv 0(x,y) \in \Omega \rho$$

$$\Rightarrow \exists m \in \mathbb{N}, \alpha_1, ... \alpha_m \in \mathbb{R} :$$

$$|\zeta(x,y) - \sum_{i=1}^{m} \alpha_i \psi_i(x_i, y_i)| < \varepsilon$$

$$|\frac{\partial^{k+1}\zeta}{\partial x^k\partial y^l} - \sum_{i=1}^n \alpha_i \frac{\partial^{k+l}\psi_i(x,y)}{\partial x^k\partial y^l}| < \varepsilon$$

Условие полноты $k \leq \varepsilon, l \leq \varepsilon \Rightarrow$ приближенное решение :

$$\omega_n = \alpha_1 \psi_1 + \dots + \alpha_n \psi_n \to J(\omega)$$

$$J_n = \iint_{\Omega} \left(\frac{1}{2}(\Delta\omega_n)^2 - f(\omega_n)\right) dx dy$$

 α_i выбираем : $J(\omega_n) \to J(\omega)$

$$\sum_{k=1}^{n} A_{ik} a_k = B_i, i = \overline{1, n}$$

$$A_{ik} = \iint_{\Omega} \Delta \psi_i \Delta \psi_k dx dy \Rightarrow$$

 $\exists !$ решение $a_1,...,a_n$ в $\omega_n=...$ приближение решение

$$B_i = \iint_{\Omega} f \psi_i dx dy$$

 \rightarrow Сущ ед решения $a_1,...,a_n$ в $\omega_n=...$ (приближенное решение)

Рассмотрим $\forall b_1, ...b_n$

$$\zeta_n = b_1 \psi_n + \dots + b_n \xi_n$$

$$??b_i$$
 и $\sum_{i=1}^n$

$$\sum_{i=1}^{n} \sum_{k=1}^{n} n A_{ik} a_k b_i = \sum_{i=1}^{n} b_i B_i$$

$$\sum_{i=x}^{n} \sum_{k=1}^{n} n \iint_{\Omega} b_i \Delta \psi_i \Delta \psi_k a_k dx dy - \sum_{i=1}^{n} \iint_{\Omega} f b_i \psi_i dx dy = 0$$

$$\sum_{i=1}^{n} [\iint_{\omega} b_i \Delta \psi_i \sum_{k=1}^{n} a_k \Delta \xi_k dx dy - \iint_{\Omega f b_i \psi_i dx dy}] = 0$$

...

$$\int_O mega(\Delta\omega_n \sum_{i=1} nb_i\psi_i) - f(\sum_{i=1} nb_i\psi_i) dxdy = 0$$

$$\iint_O mega(\Delta\Omega_n\zeta_n - f\zeta) dxdy = 0$$

$$J_n^{(0)} = -\frac{1}{2} \iint_O (\Delta\omega_u)^2 dxdy \text{ не возрастает y } \geq inf$$

 $\forall \varepsilon>0$ по критерию Коши $\ \Rightarrow N(\varepsilon) \forall_n>N(\varepsilon)$

Лекция 2

$$\varphi_1(x,y),...,\varphi_n(x,y) - \text{координатные функции}, \qquad w_n = \alpha \varphi_1 + ... + \alpha_n \varphi_n$$

$$J_n^{(0)} = -\frac{1}{2} \iint_{\Omega} \left(\Delta w_n \right)^2 dx dy$$

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \quad \forall n \geq N(\varepsilon) \quad \forall m: 0 \leq J_n^{(0)} - J_{n+m}^{(0)} \leq \frac{1}{2} \varepsilon$$

$$\frac{\omega_{m+n} - \omega_n}{\sqrt{\varepsilon}} = \varphi(x,y)$$

$$\iint_{\Omega} (\Delta \varphi)^2 dx dy < 1$$

Обозначим $S=\partial\Omega$ — границу области Ω

$$\varphi(x,y) = \frac{1}{2\pi} \int_{S} \left(\varphi \frac{\partial (\ln r)}{\partial n} - \ln r \frac{\partial \varphi}{\partial N} \right) dS + \frac{1}{2\pi} \int_{\Omega} \Delta \varphi \ln r \, d\xi d\eta$$

$$\left| \int_{x} f(x) \overline{g}(x) dx \right|^{2} \leq \left(\int_{x} |f(x)|^{2} dx \right) \left(\int_{x} |g(x)|^{2} dx \right)$$

$$\left| \varphi(x,y) \right| \leq \frac{1}{2\pi} \left(\iint_{\Omega} (\Delta \varphi)^{2} d\xi d\eta \right)^{1/2} \left(\iint_{\Omega} \ln^{2} r \, d\xi d\eta \right)^{1/2}$$

$$\left| \varphi(x,y) \right| \leq C_{1}$$

$$\left| \omega_{n+m} - \omega_{n} \right| \leq C_{1} \sqrt{\varepsilon}$$

$$\omega_{n} \Longrightarrow_{\Omega} w_{n}(x,y) \in C(\Omega)$$

2.1 Метод Бубнова – Галеркина

$$w_n = \alpha_1 \varphi_1 + \dots + \alpha_n \varphi_n$$
 $Lw - \lambda Mw = 0$
 $L, M -$ дифференциальные операторы
$$\sum_{i=1}^{n} (A_{ik} - \lambda B_{ik}) a_k = 0, \quad k = \overline{1, n}$$

$$\begin{vmatrix} A_{11} - \lambda B_{11} & \dots & A_{1n} - \lambda B_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} - \lambda B_{n1} & \dots & A_{nn} - \lambda B_{nn} \end{vmatrix} = 0$$

$$N(x,y) = Lw_n - \lambda Mw_n$$
 — невязка $N(x,y) \perp \varphi_i, \quad i = \overline{1,n}$

2.2 Повторение

1.
$$f(x) \stackrel{\text{\tiny I.B.}}{=} 0 \Rightarrow \int_{\Omega} f(x) dx = 0$$

2.
$$\int_{\Omega} f(x)dx = 0, \quad f(x) >= 0 \quad \Rightarrow \quad f(x) \stackrel{\text{\tiny H.B.}}{=} 0$$

3.
$$|f(x)| < \varphi(x), \varphi$$
 — суммируема по Лебегу $\Rightarrow f(x)$ — суммируема по Лебегу

4. $\{\varphi_n(x)\}$ — суммируемы с квадратами по Лебегу

$$\lim_{n,k\to\infty} \int_{\Omega} |\varphi_k(x) - \varphi_n(x)|^2 dx = 0$$

Обозначим V – линейное пространство

 (φ,ψ) — скалярное произведение: $(\cdot,\cdot):V\times V\to\mathbb{C}$

1.
$$(\varphi, \psi) = \overline{(\psi, \varphi)}$$

2.
$$(a_1\varphi_1 + a_2\varphi_2, \psi) = a_1(\varphi_1, \psi) + a_2(\varphi_2, \psi)$$

3.
$$(\varphi, \varphi) \ge 0$$

4.
$$(\varphi, \varphi) = 0 \implies \varphi = \mathbf{0}$$

$$\|\varphi\| = \sqrt{(\varphi, \varphi)}$$

• Неравенство Коши-Буняковского

$$|(\varphi,\psi)| \le \|\varphi\| \|\psi\|$$

• Неравенство треугольника

$$\|\varphi + \psi\| \le \|\varphi\| + \|\psi\|$$

$$L_2(\Omega): \quad (\varphi, \psi) = \int_{\Omega} \varphi(x) \overline{\psi(x)} dx$$

$$L_2(\Omega, \sigma): \quad (\varphi, \psi) = \int_{\Omega} \varphi(x) \overline{\psi(x)} \sigma(x) dx$$

$$L_2(\Omega^m): \quad (\varphi, \varphi) = \int_{\Omega} \sum_{k=1}^m \varphi_k(x) \overline{\varphi_k(x)} dx$$

Критерий линейной зависимости системы функций

$$\varphi_1,...,\varphi_n$$
 линейно зависима (ЛЗ) в H

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Опр. M — плотно в H, если $\forall p \in H$ и $\forall \varepsilon > 0$ $\exists \varphi_n \in M : \|\varphi_n - \varphi\| < \varepsilon$.

 $C_0^{(\infty)}(\Omega)$ плотно в $L_2(\Omega)$

$$\forall \varepsilon > 0: \quad \forall \varphi \in H \qquad \exists \varphi_n^1 \in C_0^{(\infty)}(\Omega): \quad \|\varphi_n^1 - \varphi\| < \varepsilon/2 \\ \exists \varphi_n^2 \in C_0^{\infty}(\Omega): \quad \|\varphi_n^2 - \varphi_n^1\| < \varepsilon/2$$

 $C_0^{(k)}(\Omega)$ плотно в $L_2(\Omega)$

$$\{\varphi_n\}$$
 — ортонормированная система (ОНС) $(\varphi_n, \varphi_m) = \delta_{nm}$

$$(\varphi_n, \varphi_m) = \delta_{nm}$$

 $\|\varphi\|^2 = \|\varphi_1\|^2 + \|\varphi_2\|^2 + \dots + \|\varphi_n\|^2 + \dots$

$$\{\varphi_n\}$$
 полная в H , если из $(\varphi,\varphi_k)=0 \ \forall k\in\mathbb{N} \Rightarrow \varphi=\mathbf{0}$ $\forall \varphi\in H: \quad a_k=(\varphi,\varphi_k)$ — коэффициенты Фурье

Теор. H — гильбертово, $\{\varphi_k\}$ — полная ортонормированная система (ПОНС)

$$\Rightarrow \|arphi\|^2 = \sum\limits_{k=1}^\infty |a_k|^2 = \sum\limits_{k=1}^\infty |(arphi,arphi_k)|^2$$
 — равенство Парсеваля

Теор.
$$\exists a_k: \quad \sum\limits_{k=1}^{\infty} |a_k|^2$$
 сходится, $\{\varphi_n\} - \Pi$ ОНС в H , тогда:

$$\sum_{k=1}^{\infty} a_k \varphi_k \text{ сходится по } \| \cdot \| \text{ к } \varphi \in H, \text{ при этом } \| \varphi \| = \sum_{k=1}^{\infty} |a_k|^2.$$

Опр. H сепарабельно если $\exists M-$ счетное мн-во плотное в H.

Teop. H сепарабельно $\Leftrightarrow \exists \Pi OHC$ (счетная или конечная) в H.

$$\{u: \int\limits_{\Omega} u dx = 0\}$$
 — пример подпространства в $L_2(\Omega)$.

Пусть
$$H_1$$
 — подпространство в H

Пусть
$$H_1$$
 — подпространство в H $\forall \varphi \in H \quad \exists ! \varphi_1 \in H_1 : \|\varphi - \varphi_1\| = \min_{\psi \in H_1} \|\varphi - \psi\|$ — проекция φ на H_1 $\varphi = \varphi_1 + \varphi_2, \qquad H_2 = \varphi \perp H_1$ — ортогональное дополнение

l — линейный функционал : $M\subset H \to \mathbb{R}/\mathbb{C}$ $|l_{arphi}| \leq \|l\| \cdot \|arphi\|_H$ $\lim_{\psi \to \varphi} l_{\psi} = l_{\varphi}$ $\forall \varepsilon > 0$ $\exists \delta: \|\psi - \varphi\| < \delta: \ |l_{\psi} - l_{\varphi}| < \varepsilon$

Теор. (Рисса) $\forall l$ — непрерывного линейного функционала в H $\exists ! \psi \in H : l_{\varphi} = (\varphi, \psi)$

Пусть M — плотно в H, $\Phi: M \times M \to \mathbb{C}(\mathbb{R})$ $\Phi(\varphi,\psi):\Phi(\varphi,\psi)=\overline{\Phi(\psi,\varphi)}$ $\Phi(\varphi,\varphi)$ — квадратичная форма

 $H:D_A\subset H$ — область определения некоторого оператора A Линейный оператор A ограничен $\Leftrightarrow A$ непрерывен $\varphi\in D_A,\quad A\varphi\in R_A$ — область значений оператора A $\varphi\in D_A\to !\ A\varphi\in R_A$

Лекция 3

$$Au = f$$

 $u, f \in H$ $\Omega \subset \mathbb{R}^m$, $H = L_2(\Omega)$

$$\begin{cases} -\Delta u = f, & f \in C(\overline{\Omega}) \\ u|_s = 0 \end{cases}$$

$$D_A = \{ u \in C^2(\overline{\Omega}); \ u|_s = 0 \}$$

 $A = -\Delta u$

Формула Остроградского

$$\int\limits_{\Omega} \left(\frac{\partial \varphi}{\partial x} + \frac{\partial \psi}{\partial y} + \frac{\partial \omega}{\partial y} \right) d\Omega = \int\limits_{S} \left(\varphi \cos(\overline{n} \cdot x) + \psi \cos(\overline{n} \cdot y) + \omega \cos(\overline{n} \cdot z) \right) dS$$

$$W = \begin{pmatrix} \varphi \\ \psi \\ \omega \end{pmatrix} \qquad \int_{\Omega} \operatorname{div} W d\Omega = \int_{S} W_{n} dS$$

Пусть $\varphi = uv$, $\psi = \omega = 0$

$$\int\limits_{\Omega}u\frac{\partial v}{\partial x}d\Omega=-\int\limits_{\Omega}v\frac{\partial u}{\partial x}d\Omega+\int\limits_{S}uv\cos(\overline{n}\cdot x)dS$$

$$\int_{\Omega} u \frac{\partial v}{\partial x_i} d\Omega = -\int_{\Omega} v \frac{\partial u}{\partial x_i} d\Omega + \int_{S} uv cos(\overline{n} \cdot x_i) dS \qquad \text{B } \mathbb{R}^m$$
 (0)

3.1 Формулы Грина

$$Lu = -\sum_{i,k=1}^{m} \frac{\partial}{\partial x_i} \left(A_{ik}(P) \frac{\partial u(P)}{\partial x_k} \right) + C(P)u(P)$$

$$D_L = \{ u \in C^2(\overline{\Omega}) \}, \quad P \in \Omega \subset \mathbb{R}^m, \quad C(P) \in C(\overline{\Omega})$$

$$A_{ik}(P) \in C(\overline{\Omega}), \quad A_{ik}(P) = A_{ki}(P) \ \forall P, \quad i, k = \overline{1, n}$$

$$\int_{\Omega} v Lud\Omega = -\sum_{i,k=1}^{m} \int_{\Omega} v \frac{\partial}{\partial x_i} \left(A_{ik} \frac{\partial u}{\partial x_k} \right) d\Omega + \int_{\Omega} Cuvd\Omega$$

в (0) подставим $u \to v, v \to A_{ik} \frac{\partial u}{\partial x_k}$

$$\int_{\Omega} v L u d\Omega = \int_{\Omega} \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_k} \frac{\partial v}{\partial x_i} d\Omega + \int_{\Omega} C u v d\Omega - \int_{S} v \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_k} cos(\overline{n} \cdot x_i) dS$$
 (1)

$$\int_{\Omega} uLud\Omega = \int_{\Omega} \left[\sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_k} + Cu^2 \right] d\Omega - \int_{S} u \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_k} cos(\overline{n} \cdot x_i) dS$$
 (2)

из (1) вычитаем ее же, но поменяв местами u и v: $(1) - (1)_{u \rightleftharpoons v}$

$$\int_{\Omega} (vLu - uLv) d\Omega = \int_{\Omega} \left[\sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_{k}} \frac{\partial v}{\partial x_{i}} \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_{k}} \frac{\partial v}{\partial x_{i}} \right] d\Omega - \int_{S} \left[v \sum_{i,k=1}^{m} A_{ik} \frac{\partial u}{\partial x_{k}} cos(\overline{n} \cdot x_{i}) - u \sum_{i,k=1}^{m} A_{ik} \frac{\partial v}{\partial x_{k}} cos(\overline{n} \cdot x_{k}) \right] dS$$

$$N \cdot := \sum_{i,k=1}^{m} A_{ik} \frac{\partial \cdot}{\partial x_i} cos(\overline{n} \cdot x_i)$$

$$\int_{\Omega} (vLu - uLv) d\Omega = \int_{S} (uNv - vNu) dS$$
(3)

Частный случай формул Грина, это оператор Лапласа:

$$Lu = -\Delta u; \ A_{ii} = 1; \ A_{ik} = 0, \ i \neq k; \ C = 0$$

$$-\int_{\Omega} v \Delta u d\Omega = \int_{\Omega} \sum_{i=1}^{m} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}} d\Omega - \int_{S} v \frac{\partial u}{\partial n} dS$$

$$\tag{4}$$

$$-\int_{\Omega} u\Delta u d\Omega = \int_{\Omega} \left(\frac{\partial u}{\partial x_i}\right)^2 d\Omega - \int_{S} u \frac{\partial u}{\partial n} dS \tag{5}$$

$$-\int_{\Omega} (v\Delta u - u\Delta v)d\Omega = \int_{S} \left(v\frac{\partial u}{\partial n} - u\frac{\partial v}{\partial n}\right)dS \tag{6}$$

3.2 Положительные операторы

Пусть оператор A симметричен в H

Опр. Оператор называется положительным, если $\forall u \in D_A \subset H$, $(Au, u) \geq 0 \Leftrightarrow u = 0$

 $\Pi p. 1$

$$Bu = -\frac{d^2}{dx^2}u \qquad \text{B } L_2(0,1); \qquad D_B = \left\{ u \in C_0^2(0,1) : u(0) = u(1) = 0 \right\}$$

$$(Bu,v) = -\int_0^1 v \frac{d^2u}{dx^2} dx = \int_0^1 \frac{du}{dx} \frac{dv}{dx} dx - v \left. \frac{du}{dx} \right|_0^1 = -\int_0^1 u \frac{d^2v}{dx^2} = (u,Bv) \quad \forall u,v \in D_B$$

$$(Bu,u) = \int_0^1 \left(\frac{du}{dx} \right)^2 dx = 0$$

$$(Bu,u) = 0 \Rightarrow \frac{du}{dx} = 0 \Rightarrow u = const, u(0) = 0 \Rightarrow u = 0$$

 $\Pi p. 2$

$$Cu = -\frac{d^2}{dx^2}u, \qquad D_C = \left\{ u \in C^2(0,1), \begin{cases} u'(0) + \alpha u(0) = 0 \\ u'(1) + \beta u(1) = 0 \end{cases} \quad \alpha, \beta = const \right\}$$

$$(Cu,v) = \int_0^1 \frac{du}{dx} \frac{dv}{dx} dx + \alpha u(0)v(0) + \beta u(1)v(1) = (u,Cv)$$

$$\alpha > 0, \beta \ge 0$$

$$(Cu,u) = \int_0^1 \left(\frac{du}{dx} \right)^2 dx + \alpha u^2(0) + \beta u^2(1) \ge 0$$

$$\alpha = \beta = 0, \quad u \equiv 1 \Rightarrow (Cu,u) = 0 \Rightarrow C \text{ не является положительным}$$

Пр. 3

$$Au = -\Delta u, \qquad D_A = \{u \in C^2(\Omega): \quad u|_s = 0, \quad \Omega \subset \mathbb{R}^m, S = \partial\Omega, H = L_2(\Omega)\}$$

$$(Au, u) = (-\Delta u, u) = -\int_{\Omega} u \Delta u d\Omega = \int_{\Omega} \sum_{i=1}^m \left(\frac{\partial u}{\partial x_i}\right)^2 d\Omega - \int_{S} u \frac{\partial u}{\partial n} dS \ge 0$$

$$\frac{\partial u}{\partial x_i} = const, \quad u|_s = 0 \Rightarrow u = 0$$

Рассмотрим мембрану

 Ω в плоскости $(x,y),\ u(x,y)$ — изгиб мембраны

$$-\Delta u = \frac{q}{T}$$

q — поперечная нагрузка на единицу площади

T — натяжение мембраны

 $u|_S=0$ — мембрана закреплена на краях

$$(Au, u) = (-\Delta u, u) = \iint_{\Omega} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy$$

3.3 Положительно определенные операторы

Опр. Симметричный оператор A называется положительно определенным, если

$$\exists \gamma > 0 : (Au, u) \ge \gamma^2 \|u\|^2 \tag{7}$$

Пр. 1 (продолжение)

$$B: u(0) = 0, u \in D_B$$

$$u(x) = \int_{0}^{x} u'(t)dt, \quad x \in [0, 1]$$

$$u^{2}(x) \leq \int_{0}^{x} 1^{2} dt \cdot \int_{0}^{x} (u'(t))^{2} dt = x \int_{0}^{x} (u'(t))^{2} dt \leq x \int_{0}^{1} (u'(t))^{2} dt$$

$$\int_{0}^{1} u^{2}(x)dx \le \frac{1}{2} \int_{0}^{1} (u'(t))^{2} dt$$

$$\gamma^2 \|u\|^2 \leq (Bu,u), \quad \gamma = \sqrt{2} \quad \Rightarrow B$$
 является положительно определенным

11p. 4

$$Lu = -\frac{d}{dx} \left(x^3 \frac{du}{dx} \right) \quad \text{B } L_2(0,1)$$

$$D_L = \{ u \in C^2[0,1], \ u(1) = 0 \}$$

$$(Lu,v) - (u,Lv) = \int_{0}^{1} \frac{d}{dx} \left[x^{3} \left(u \frac{dv}{dx} - v \frac{du}{dx} \right) \right] dx = \left[x^{3} \left(u \frac{dv}{dx} - v \frac{du}{dx} \right) \right] \Big|_{0}^{1} = 0$$

$$(Lu,u)=\int\limits_0^1x^3\bigg(rac{du}{dx}\bigg)^2dx\geq 0\quad\Rightarrow L$$
 является положительно определенным

$$\frac{(Lu, u)}{\|u\|^2} \ge \gamma^2, \qquad u_{\delta}(x) = \begin{cases} (\delta - x)^3, & 0 \le x \le \delta \\ 0, & \delta \le x \le 1 \end{cases}, \qquad u_{\delta} \in \mathcal{D}_L$$

$$\frac{(Lu_{\delta}, u_{\delta})}{\|u_{\delta}\|^{2}} = \frac{\int_{0}^{1} x^{3} \left(\frac{du_{\delta}}{dx}\right)^{2} dx}{\int_{0}^{\delta} (\delta - x)^{3} dx} = \frac{9 \int_{0}^{1} x^{3} (\delta - x)^{4} dx}{\int_{0}^{\delta} (\delta - x)^{6} dx} = \frac{9}{40} \delta \quad \Rightarrow L \text{ не явл. положительно опр.}$$

3.4 Энергетическая норма

Пусть A — положительно определен в H (гильберт.)

Ha
$$D_A$$
: $[u, v]_A = (Au, v)_H$

Можно показать что выполняются все аксиомы скалярного произведения

1.
$$[u, v]_A = \overline{[v, u]_A}$$

 $(Au, v) = (u, Av) = \overline{(Av, u)} = \overline{[v, u]}$

2.
$$[a_1u + a_2u, v] = a_1[u, v] + a_2[u, v]$$

3.
$$(Au, u) = [u, u] \ge \gamma ||i||^2 \ge 0$$

4.
$$[u, u] = 0 \Leftrightarrow u = 0$$

$$|u|=[u,u]$$
 — энергетическая норма

 D_A предгильбертово, дополним его по $|\cdot|_A \Rightarrow$ гильбертово пр-во H_A

$$u \in H_A \Leftrightarrow \left[\begin{array}{c} u \in D_A \\ \exists u : \{u_n\} \in D_A : |u_n - u| \underset{n \to \infty}{\to} 0 \end{array}\right]$$

Лекция 4

4.1 10.02 Энергетические пр-ва (2)

 H_A — энергетическое пр-во

(0)

$$||u||_H \leq \frac{1}{\gamma}||u||_A$$

$$u \in H_A - > u \in \mathcal{D}_A$$

 $- > \exists \{u_n\} \in \mathcal{D}_A lim_{n->\infty} ||u_n - u||_A$

Теорема

 $orall \exists u \in H_A -> \,$ злем из H различным $u_1u_2 \in H_A$ отв разн. злем из H

Доказательство

2)

$$u_{1,n} \rightarrow_{||.||_A} u_n; u_{2,n} \rightarrow_{||.||_A} u_2$$

$$u_1$$
 и $u_2 \to u$ из H ; $u = u_1 - u_2$

. . .

$$r \in HA \in \{ \in u_n \mathcal{D}_A | |u_n - n||_A \to_{n \to \infty} 0 \}$$

$$||u_n||_A \to_{n\to\infty} ||u||_A$$

4.2 Пример

$$Bu = -\frac{d^2}{dx^2}u; D_B = u \in C^2(0, 1], u(0) = u(1) = 0$$

$$H =:_2 (0, 1);$$

$$u \in H_B; \exists \{u_n\} \in D_B ||u_h - u|| \to_{B \to \infty} \to 0$$

... А - положительно, но не положительно определено. Теорема

$$u \in H_A : u \in H \rightleftharpoons \exists \{u_n\} \in D_A$$

 $||u = u_n|| \to_{n \to \infty} 0$
 $||u_k - u_n||_H \to_{u,k \to +\infty} 0$

4.3 Пример 3

4.4 Энергетический метод

(для положительно определенных операторов)

$$Au = f$$

$$A: \mathcal{D}(A) \in H \to H;$$

Теорема

А положителен в Н уравнении ?? В не более одного решения.

Доказательство

$$u_1, u_2$$
 — Решения ??...

Теорема о функциональной энергии

$$F(u) = (Au, u)_H - (f, u)_H - (u, f)_H$$

Доказательство

. . .

Пример 4

$$\Delta^2 \omega = \frac{\partial^4}{\partial x^4} \omega + 2 \frac{\partial^4 \omega}{\partial^2 \omega \partial^2 y} + \frac{\partial^4 \omega}{\partial y^4}$$

$$\mathcal{D}_A = \{ \omega \in c^4(\overline{\Omega}); \omega|_S = 0; \frac{\partial \omega}{\partial n}|_S = 0 \}$$

$$A - \omega = \frac{a(x, y)}{\mathcal{D}}$$

4.5 Обобщение решения задачи о min для ф.э.

 $A-\$ Поллжительно определено в Н $Au=f??f\in H$

фикс
$$f \in H \forall u \in H_A(u,f)_H$$
: ф-ла : $H_A \to \mathcal{R}$

$$|(u, f)_H| \le ||f||_H ||u||_H \le ||f||_H \frac{1}{\gamma} ||u||_A; \gamma ||f||_H - const$$

Опр
$$(f, u) \Rightarrow$$
 по Т Рисса $\exists u_0 \in H_A(f, u)_H = [u, u_0]_A$

$$F(u) = [u, u]_A - [u, u_0] - [u_0, u]_A$$

$$+-[u_0,u_0]_A$$

$$F(u) = ||u - u_0||_A^2 - ||u_0||_A^2$$

 $argmin_{u \in H_A} F(u) = u_0$ Обощенное решение Au = f

Если H сепарабельно, энергетическое про-во тоже сепарабельно, $\exists \{\omega_n\}$ ПОНС

$$r_0 = \sum_{n=1}^{\infty} [u_0, \omega_n] \omega_n ? ?$$

$$u = \omega_n [u_0 \omega_n]_A = (f, \omega_n)_H$$

$$u_0 = \sum_{n=1}^{\infty} (f, \omega_n)_H \omega_n$$

Лекция

5.1 Применение энергетического метода для краевых задач

1. Немного опазадал, пример часть примера пропустил ...

$$(Lu, u)_H = \sum_{k=0}^m \int_{x_1}^{x_2} p_k(x) (\frac{d^k u}{dx^k})^2 dx > = \int_{x_1}^{x_2} p_{n_1}(x) (\frac{d^m u}{dx^n} dx^3) > = p_0 \int_{x_1}^{x_2} (\frac{d^m u}{dx^m} dx = p_0 ||u(m)||_H^2)$$

. . .

$$(Lu_M) > = \partial^2 ||u||_H^2, \gamma = \sqrt{p_0} (\frac{\sqrt{2}}{x_2 - x_1})^m$$

. .

$$||u||_A \le \sqrt{p_0}||u||^{(m)}{}_H \exists \{u_N(x)\}$$

 $lim_{n \to \infty} = 0; u_0$ — точное решение

$$||u_n - u_k||_A \le ||u_n - u_0||_A + ||u_k - u_0||_A \to 0$$

 $u_n^{(l)}(x_1) = u_k^{(l)}(x_1) = 0, l = \overline{0, m - 1}$

. . .

2. Изгиб балки

$$L_{\omega} = \frac{d^2}{dx^2} \left[EI(x) \frac{d^2 \omega}{dx^2} \right] + K\omega = q(x)$$

 ω — Прогиб балки

E — модуль Юнга

I(x) — момент инерции

q(x) — интенсивность нагрузки на балку

K- коэф податливости основания

$$\omega(0) = \omega(l) = 0$$

$$\omega'(0) = \omega'(l) = 0; A - П$$
оложительно определен

Аналогично задачи минимизации функционала

$$F(\omega) = \int_0^l (EI(x)\omega''^2 + K\omega^2 - 2q(x\omega))dx = (L\omega, \omega) - 2(\omega, q)$$

Воспользуемся методом Рица

$$u_n(x)_{n=1}^{\infty}, \phi_n(x) = (x-l)^2 x^{n+1}, \ \Pi$$
олная система в H_A

$$\omega_n = \sum_{k=1}^n a_k \phi_k(x) = (x-l)^2 \sum_{k=1}^n a_k x^{k+1}$$

$$\sum_{n=1}^{k=1} a_k A_{1k} = b_{ij}; i = \overline{1, n}$$

$$b_j = (q, \phi_j)_H = \int_0^l a(x)(x-l)x dx$$

$$A_{ik} = (L\phi_i, \phi_k)_H = \int_0^l (EI(x) \frac{d^2\phi_i}{dx^2} \frac{d^2\phi_k}{dx^2} + k\phi_i\phi_k) dx$$

. . .

$$\omega(0) = 0; \omega''(l) = 0$$

$$\omega'(0) = 0$$

$$\frac{d}{dx}(EI(x)\frac{d^2\omega}{dx^2})_{x=0}^{x=l} = 0$$

Тут тоже можно доказать полажительную определенность

3. Краевая задача для систем ОДУ

$$-\sum_{k=1}^{s} \left[\frac{d}{dx} (p_{jk}(x)) \frac{du_k(x)}{dx} - q_{jk}(x) u_k(x) \right] = f_j(x)$$

краевые ...

$$-\frac{d}{dx}[P(x)\frac{du}{dx}] + Q(x)u(x) = f(x)$$

$$u(x_1) = u(x_2) = 0$$

$$(u, v)_{H=L_2(x_1, x_2)} = \int_{x_1}^{x_2} u(x) \cdot v(x) dx = \int_{x_1}^{x_2} \sum_{k=1}^{s} u_k(x)v_k(x) dx$$

5.1.1 Теорема

$$P(x),Q(x)$$
 симметр. $x\in [x_1,x_2]\Rightarrow A$ Симметричный

Доказательство

$$(Au, v)_{H} = -\int_{x_{1}}^{x^{2}} v(x) \cdot \frac{d}{dx} [P(x) \frac{du}{dx}] dx + \int_{x_{1}}^{x_{2}} v(x) \cdot Q(xu(xdx)) =$$

$$= \int_{x_{1}}^{x_{2}} P \frac{du}{dx} \cdot \frac{dv}{dx} + v(x \cdot Q(x)u(x)) dx$$

$$Qu \cdot v = \sum_{j,k=1}^{s} q_{jku_{k} \cdot v_{j}} =$$

$$= \sum_{i,j=1}^{s} q_{k,j} v_{j} \cdot v_{k}$$

Следовательно оператор симметричен

5.1.2 Теорема

$$P(x),Q(x)$$
 симметрич на $[x_1,x_2]$

P(x) положит. опр. Q(x) неотр на $(x_1,x_2]\Rightarrow A$ положительно определен доказательство

$$P(x)$$
 пол. опр $\forall x \Rightarrow$ пусть $\lambda_1(x) > 0$

$$\exists \lambda > 0 = const; \lambda_1(x) > \hat{\lambda} > 0x \in [x_1, x_2]$$

$$\forall t = (t, ..., s)$$

$$P(x)t \cdot t = \sum_{j,k=1}^{s} P_{jk}(x)t_{j}t_{k} \ge \lambda_{1}(x) \sum_{k=1}^{s} t_{k}^{2} \ge$$

$$\ge \hat{\lambda} \sum_{k=1}^{s} t_{k}^{2}$$

$$Q(x)t \cdot t = \sum_{k,k=1}^{s} q_{jk}t_{j}t_{k} \ge 0$$

$$(u,u)_{H} = \int_{x_{1}}^{x_{2}} (P\frac{du}{dx} \cdot \frac{du}{dx})dx \ge \hat{\lambda} \int_{k=1}^{s} (\frac{du_{k}}{idx}^{2})dx$$

$$(Au,u)_{H} \ge \frac{2\hat{\lambda}}{(x_{2}-x_{1})^{2}} \int_{x_{1}}^{x_{2}} (\sum_{k=1}^{s} u_{k}^{2})dx = \frac{2\hat{\lambda}}{(x_{2}-x_{1})^{2}} dx = \frac{\hat{\lambda}}{(x_{2}-x_{1})^{2}} ||u||_{H}^{2}$$

$$(Au,u)_{H} \ge \gamma^{2} ||u||_{H}^{2}$$

. . .

5.2 Основные кр задачи для ур-я Пуассона

$$-\Delta u = f(p)$$
 в $\Omega \in \mathcal{R}^m$

з. Дирихле

$$u|_{\partial\Omega} = 0$$

$$Au = -\Delta u = \sum_{k=1}^{m} \frac{\partial^{2} u}{\partial x_{k}^{2}}$$

$$P_{A} = \{ u \in c^{2}(\overline{\Omega}_{1})u|_{2\Omega} = 0 \}$$

$$H = L_{2}(\Omega)$$

$$(-\Delta, u)_{h} = \int_{\Omega} \sum_{i=1}^{n} (\frac{\partial n}{\partial x_{i}})^{2} d\Omega - \int_{\partial \Omega} u \frac{\partial u}{\partial n} dS = \int_{\Omega} (grubu)^{2} d\Omega \ge 0$$

 $\stackrel{\longrightarrow}{\longleftrightarrow}$

$$F(u) = (-\Delta u, u)_H - 2(u, f)_H$$

$$F(u) = \int_{\Omega} ((gradu)^2 - 2uf)d\Omega$$

$$\left[\frac{\partial u}{\partial n} + \gamma(P)u\right]_{\partial\Omega} = 0$$

$$(-\Delta u, u)_H = \int_{\Gamma} (gradu)^2 d\Omega + \int_{\partial u^2} dS \ge 0$$

$$(-\Delta u, u)_H = 0 \Rightarrow u = condt \int_{\partial \xi} \gamma c^2 dS = 0 \Rightarrow c = 0 \Rightarrow u = 0$$

$$F(u) = \int_{\Omega} ((gradu)^2 - 2uf)d\Omega + \int_{\gamma\Omega} \gamma n^2 dS$$

$$\frac{\partial u}{\partial n}|_{\partial\Omega} = 0$$

з Неймана

5.2, 5.2

$$(-\Delta, u)_H = -\int_{\partial\Omega} u \frac{\partial u}{\partial n} dS + \int_{\Omega} (gradu)^2 d\Omega \ge$$

$$u == 1(-\Delta u, u)_H = 0$$

при
$$V == 1$$

$$\int_{\Omega} \Delta u d\Omega = \int_{\partial \overline{\Omega}} \frac{\partial u}{\partial n} dS = 0$$

$$S_{\Omega}fd\Omega = 0$$

Условие разрешимости 5.2 5.2

Лекция 6

**пропустил начало (почти треть) ** Уравнение Фридрехса в общем виде:

$$\int_{\omega} \sum_{k=1}^{m} (\frac{\partial n}{\partial x_k})^2 d\Omega \ge x^2 \int_{\Omega} u^2 dx$$

$$u|_S = 0$$

$$\begin{split} &\int_{\Omega} u^2 d\Omega = \leq c \{ \int_{\Omega} (\frac{\partial u^2}{\partial x} + \frac{\partial n}{\partial y} d\Omega) + \int_{\Omega} u^2 dS \} \\ &(\frac{\partial (fv)}{\partial x})^2 + (\frac{\partial (fv)}{\partial y})^2 = f^2 [(\frac{\partial v}{\partial x} + (\frac{\partial v}{\partial y})^2)] - vf\Delta f + \frac{\partial}{\partial x} (v^2 f \frac{\partial f}{\partial x}) \frac{\partial}{\partial y} (v^2 f \frac{\partial f}{\partial y}) \end{split}$$

Преобразуем правую и левую части

$$v^2((\frac{\partial f}{\partial x})^2+(\frac{\partial f}{\partial y})^2)+f^2((\frac{\partial v}{\partial x})^2+(\frac{\partial v}{\partial y})^2)+23\frac{\partial v}{\partial x}f\frac{\partial f}{\partial x}+2v\frac{\partial v}{\partial y}f\frac{\partial f}{\partial y}$$

$$v^2(\frac{\partial f}{\partial x})^2 + v^2(\frac{\partial f}{\partial y})^2 + 2v\frac{\partial v}{\partial x}f\frac{\partial f}{\partial x} + v^2f\frac{\partial^2 f}{\partial y^2} \frac{\partial^2 f}{\partial y^2} + 2v\frac{\partial v}{\partial y} + \frac{\partial f}{\partial y} - v^2f\Delta f + f[(\frac{\partial v}{\partial x})^2 + (\frac{\partial v}{\partial x})^2]$$

Это предполагается очевидным XD

$$\int ((\frac{\partial (fv)}{\partial x})^2 + (\frac{\partial (fv)}{\partial y})^2) d\Omega \ge + \int_{\Omega} v f \Delta f d\Omega + \int_{\partial \Omega} v^2 f \frac{\partial f}{\partial n} dS$$
$$- \int_{\Omega} v f \Delta f d\Omega \le \int_{\Omega} ((\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2) d\Omega + \int_{\partial \Omega} v^2 f \frac{\partial f}{\partial n} dS$$

$$f = \sin(\frac{\pi x}{a}) \cdot \sin(\frac{\pi y}{b})$$

$$\Delta f = -\pi^2 (\frac{1}{a^2} + \frac{1}{b^2}) \cdot f - \int_{\Omega} v^2 f \Delta u^2 = \int_{\Omega} u^2 s \Omega \pi^2 ()$$

$$\left| \int_{\partial u} v^2 f \frac{\partial f}{\partial n} dS \right| \le \int_{\partial \Omega} v^2 f \left| \frac{\partial f}{\partial n} \right| dS \le c_1 \int_{\partial \Omega} u^2 d\Omega$$

$$\pi^2(\frac{1}{a^2} + \frac{1}{b^2}) \int_{\Omega} y^2 d\Omega \le ((\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial x})^2) dx + c_1 \int_{\partial \Omega} v^2 dS$$

$$c = \min\{\frac{c_1}{\pi^2(\frac{1}{a^2} + \frac{1}{b^2})}; \frac{1}{\pi}(\frac{1}{a^2} + \frac{1}{b^2})\}$$

$$(-\Delta u,u)_{H}=\int_{\Omega}(gradu)^{2}d\Omega-\int_{\partial\Omega}u\frac{\partial u}{\partial n}dS\geq\int_{\Omega}(gradu)^{2}d\Omega+\sigma\int_{\partial\Omega u^{2}dS}\geq\sigma\{(gradu)^{2}d\Omega+\int_{\partial\Omega}u^{2}dS\}$$

$$\frac{1}{c}||u||_H^2 \leq \int_{\Omega} (gradu)^2 d\Omega + \int_{\partial\Omega} u^2 dS$$

$$\frac{\sigma_1}{c}||u||_H^2 \leq \int_{\Omega} (gradu)^2 d\Omega + \int_{\partial\Omega} u^2 dS$$

$$\sigma = \sqrt{\frac{\sigma}{c}}$$