Seminar 3

DEPI

1. Un semnal poate avea patru valori posibile: $s_0(t) = -6$, $s_1(t) = -2$, $s_2(t) = 2$, $s_3(t) = 6$. Fiecare valoare este transmisă timp de o secundă. Semnalul este afectat de zgomot alb cu distribuție normală. Receptorul ia un singur eșantion pe secundă. Folosind criteriul plauzibilității maxime, decideți ce secvență de valori s-a transmis, dacă receptorul primește eșantioanele următoare:

$$4.1, 6.6, -5.2, 1.1, 0.3, -1.5, 7, -7, 4.4$$

- 2. Un semnal constant poate avea două valori posibile, $s_0(t) = 0$ sau $s_1(t) = 5$. Semnalul $s_0(t)$ este afectat de zgomot uniform U[-3;3], iar semnalul $s_1(t)$ este afectat de zgomot uniform U[-4;4]. Receptorul decide pe baza criteriului plauzibilității maxime, folosind un singur eșantion din semnal. Dacă $P(H_0) = \frac{1}{3}$ și $P(H_1) = \frac{2}{3}$
 - a. Determinați regiunile de decizie.
 - b. Calculați probabilitățile celor 4 scenarii: rejecție corectă, alarmă falsă, pierdere, detecție corectă
- 3. Fie detecția între două semnale: $s_0(t) = -2, \forall t \text{ și } s_1(t) = 3\sin(2\pi \frac{1}{4}t)$ Semnalele sunt afectate de zgomot Gaussian $\mathcal{N}(\mu = 0, \sigma^2 = 2)$. Receptorul ia un singur eșantion la momentul $t_0 = 1$, cu valoarea $r(t_0) = 2.4$. Probabilitățile celor două ipoteze sunt $P(H_0) = \frac{1}{4}$ și $P(H_1) = \frac{3}{4}$.
 - a. Reprezentati grafic cele două distribuții condiționate
 - b. Ce decizie se ia conform criteriilor ML și MPE?
 - c. Găsiți regiunile de decizie pentru ambele criterii
 - d. Calculați probabilitățile celor 4 scenarii (rejecție corectă, alarmă falsă, pierdere, detectie corectă) pentru ambele criterii
 - e. Recalculați probabilitățile de la d) dacă momentul de eșantionare se schimbă în $t_0=1.4$
 - f. Care sunt valorile posibile ale $P(H_0)$ care mențin probabilitatea alarmei false sub 1%, pentru ambele criterii?
 - g. Care sunt valorile lui $P(H_1)$ care mențin probabilitatea detecției corecte de cel puțin 99.5%, pentru ambele criterii?