

ETR03004-011c

300mA/150mA High Speed LDO Regulators with ON-OFF Control

■GENERAL DESCRIPTION

The XC6204/XC6205 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves high ripple rejection and low dropout and consists of a standard voltage source, an error correction, current limiter and a phase compensation circuit plus a driver transistor.

Output voltage is selectable in 0.05V steps within a range of 0.9V ~ 6.0V.

The series is also compatible with low ESR ceramic capacitors which give added output stability. This stability can be maintained even during load fluctuations due to the excellent transient response of the series.

The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

The CE function enables the output to be turned off, resulting in greatly reduced power consumption.

■APPLICATIONS

- Smart phones / Mobile phones
- Portable game consoles
- Digital still cameras / Camcorders
- Digital audio equipments
- Reference voltage sources
- Multi-function power supplies

■FEATURES

Maximum Output Current : 150mA

300mA(XC6204 E to H type)

Dropout Voltage : 200mV @ 100mA

60mV @ 30mA

Operating Voltage : 2V ~ 10V

Output Voltage Range : 1.8V ~ 6.0V (XC6204)

0.9V ~ 1.75V (XC6205)

Highly Accurate : $\pm 2\%$, $\pm 1\%$ Low Power Consumption : 70μ A (TYP.) Standby Current : 0.1μ A (MAX.)

High Ripple Rejection: 70dB@10kHz (XC6204)

60dB@10kHz (XC6205)

Low ESR Capacitor Compatible

: Ceramic capacitor

Operating Ambient Temperature

: -40°C~ 85°C

Packages: SOT-25, SOT-89-5, USP-6BEnvironmentally Friendly: EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT

■TYPICAL PERFORMANCE CHARACTERISTICS

■BLOCK DIAGRAM

1) XC6204, XC6205 Series B, D, F, H Type

2) XC6204, XC6205 Series C, G Type

3) XC6204, XC6205 Series A, E Type

^{*} Diodes shown in the above circuit are protective diodes.

■PRODUCT CLASSIFICATION

Ordering Information

XC6204/XC6205(1)2(3)4(5)6-7

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION			
		Α	150mA Active High, pull-down resistor built-in (*2)(Semi-Custom)			
		В	150mA Active High, no pull-down resistor built-in (Standard)			
		С	150mA Active Low, pull-up resistor built-in (*2)(Semi-Custom)			
(1)(*1)	Type of Regulator	pe of Regulator D 150mA Active Low, no pull-up resistor built-in (Semi-Cus				
(I) ()	(CE pin Logic)	E	300mA ^(*1) Active High, pull-down resistor built-in ^(*2) (Semi-Custom)			
		F	300mA ^(*1) Active High, no pull-down resistor built-in (Standard)			
		G	300mA ^(*1) Active Low, pull-up resistor built-in ^(*2) (Semi-Custom)			
		Н	300mA ^(*1) Active Low, no pull-up resistor built-in (Semi-Custom)			
23	Output Voltage	09 ~ 17	XC6205			
23	Odiput voltage	18 ~ 60	XC6204 e.g. Vout=2.0V→②=2, ③=0			
		2(*4)	0.1V increments, ±2% accuracy			
		2()	e.g. Vout=2.8V, ±2%→②=3, ③=8, ④=2			
		1(*3)	0.1V increments, ±1% accuracy			
4)	Output Voltage	1, ,	e.g. Vout=3.0V, ±1%→②=3, ③=0, ④=1			
9	Accuracy	A ^(*4)	0.05V increments, ±2% accuracy			
		A ` /	e.g. Vout=2.85V, ±2%→②=2, ③=8, ④=A			
		B ^(*3)	0.05V increments, ±1% accuracy			
		D. 7	e.g. Vout=3.85V, ±1%→②=3, ③=8, ④=B			
	Packages	MR-G	SOT-25 (3,000pcs/Reel)			
56-7	(Order Unit)	DR-G	USP-6B (3,000pcs/Reel)			
	(Older Ollit)	PR-G	SOT-89-5 (1,000pcs/Reel)			

^(*1) E to H types are compatible to 300mA of XC6204 series. (XC6205 can not draw 300mA depending on output voltage.)

 $^{^{(2)}}$ With the pull-up resistor or pull-down resistor built-in types, the supply current during operation will increase by V_{IN} / $300k\Omega$ (TYP.)

 $^{\,^{(^3\!)}\,}$ Output voltage range of the ±1% accuracy product is 2.95V to 6.0V.

 $^{^{(^*\!4)}}$ Output voltage accuracy of the $V_{\text{OUT}}{\le}1.5V$ is $\pm30\text{mV}.$

^(*5) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

■PIN CONFIGURATION

■ PIN ASSIGNMENT

	PIN NUMBER		DININIANE	FUNCTIONS
SOT-25	SOT-89-5	USP-6B	PIN NAME	FUNCTIONS
1	4	1	Vin	Input
2	2	5	Vss	Ground
3	3	6	CE	ON/OFF
3	3	0	CL	Control
4	1	2, 4	NC	No Connection
5	5	3	Vout	Output

■FUNCTIONS

Туре	CE	OPERATIONAL STATE
A D C C Turns	Н	ON
A,B,E,F Type	L	OFF
C D C H Type	Н	OFF
C,D,G,H Type	L	ON

H = High Level L = Low Level

■ ABSOLUTE MAXIMUM RATINGS

PARAMET	ER	SYMBOL	RATINGS	UNITS
Input Volta	ge	VIN	12.0	V
Output Curr	Output Current		500 (*1)	mA
Output Volta	age	VOUT	VSS - 0.3 ~ VIN + 0.3	V
CE Input Vol	tage	VCE	VSS - 0.3 ~ VIN + 0.3	V
			250 (IC only)	
	SOT-25		600 (40mm x 40mm Standard board) ^(*2)	
			760 (JESD51-7board) ^(*2)	
Power Dissipation	1100.00	D .	120 (IC only)	
(Ta=25°C)	USP-6B	Pd	1000 (40mm x 40mm Standard board) ^(*2)	mW
			500 (IC only)	
	SOT-89-5		1300(40mm x 40mm Standard board) ^(*2)	
			1750 (JESD51-7 board) ^(*2)	
Operating Ambient 7	Temperature	Topr	-40 ~ 85	°C
Storage Tempe	erature	Tstg	-55 ~ 125	°C

 $^{^{(*1)}}I_{OUT}$ =Pd/(V_{IN} - V_{OUT})

^(°2) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to PACKAGING INFORMATION for the mounting condition.

■ELECTRICAL CHARACTERISTICS

XC6204A, B Type

PARAMETER	SYMBOL	CONDITIONS	-	Ta = 25°C	;	-40	°C <u><</u> Ta <u><</u> 8	5℃	UNITS	CIRCUIT
PARAIVIETER	STIVIBUL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (2% products)	V	Iouт = 30mA	× 0.98	,	× 1.02	× 0.97	V out(t)	× 1.03	V	1
Output Voltage (1% products)	$V_{\text{OUT(E)}}$	1001 – 30MA	× 0.99	Vout(t)	× 1.01	× 0.98	V OUI(I)	× 1.02	V	ı
Maximum Output Current	Іоитмах	-	150	-	-	150	-	-	mA	1
Load Regulation	$\triangle V$ оит	1mA≦Iouт≦100mA	-	15	50	-	30	80	mV	1
Dropout Voltage	Vdif1	Iоит = 30mA			E	-1			mV	1
Dropout voitage	Vdif2	IOUT = 100mA			E	-2			IIIV	'
Supply Current (A type)		VIN = VCE = VOUT(T)+1.0V	50	80	120	50	90	145	μΑ	0
Supply Current (B type)	loo	VIN = VCE = VOUT(T)+1.0V	40	70	100	40	80	120	μΑ	2
Standby Current	I _{STBY}	VIN = VOUT(T)+1.0V, VCE = Vss	-	0.01	0.10	ı	0.05	1.00	μΑ	2
Line Regulation		Vout(t)+1.0V≦VIN≦10V Iout = 30mA	-	0.01	0.20	-	0.05	0.30	%/V	1
Input Voltage	Vin	-	2	-	10	2	-	10	V	-
Output Voltage Temperature Characteristics	∆Vouт _∆Topr∙Vouт	IOUT = 30mA -40°C≦Topr≦85°C	-	100	-	-	-	-	ppm/ °C	1
Output Noise	en	Iουτ = 10mA 300Hz~50kHz		30	-	-	-	-	μ Vrms	3
Power Supply Rejection Ratio	PSRR	$V_{IN} = \{V_{OUT(T)+1.0}\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f=10kHz$	-	70	-	-	-	-	dB	4
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = VIN	-	300	-	-	280	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VIN	-	50	•	_	60	•	mA	1
CE "H" Voltage	Vсен	-	1.6	-	Vin	1.7	-	Vin	V	1
CE "L" Voltage	VCEL	-	-	-	0.25	-	-	0.20	V	'
CE "H" Current (A type)	logu	VIN = VCE = VOUT(T)+1.0V	3.2	-	20.0	3.0	-	25.0		
CE "H" Current (B type)	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	-0.15	-	0.15	μΑ	2
CE "L" Current	ICEL	VIN = VOUT(T)+1.0V, $VCE = VSS$	-0.10	-	0.10	-0.15	-	0.15		

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V
- (*2) Vout(T)=Specified output voltage
- (*3) VOUT(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the VIN pin while maintaining a certain IouT value).
- (*4) Vdif=VIN1-VOUT1
 - Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- (*5) The values for -40°C \leq Ta \leq 85°C are designed values.

XC6204C, D Type

PARAMETER	SYMBOL	CONDITIONS	-	Ta = 25°C)	-40	°C <u><</u> Ta <u><</u> 8	5℃	UNITS	CIRCUIT
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage			× 0.98		× 1.02	× 0.97		× 1.03		
(2% products)	VOUT(E)	louт = 30mA	× 0.30	Vout(t)	× 1.02	× 0.31	Vout(t)	× 1.03	V	1
Output Voltage	VOUT(E)	1001 – 3011IA	× 0.99	VOUI(I)	× 1.01	× 0.98	V O01(1)	× 1.02	v	'
(1% products)			× 0.99		× 1.01	× 0.90		× 1.02		
Maximum Output Current	Іоитмах	1	150	-	1	150	-	1	mA	1
Load Regulation	∆Vоит	1mA≦lout≦100mA	-	15	50	ı	30	80	mV	1
Dropout Voltage	Vdif1	Iоит = 30mA			E	-1			mV	1
Dropout Voltage	Vdif2	IOUT = 100mA			E	-2			IIIV	1
Supply Current		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	50	80	120	50	90	145		
(C type)		VIN = VOUT(T)+1.0V, $VCE = VSS$	50	80	120	50	90	145	^	•
Supply Current	IDD		40	70	100	40	00 400		μΑ	2
(D type)		VIN = VOUT(T)+1.0V, $VCE = VSS$	40	70	100	40	80	120		
Standby Current	I _{STBY}	VIN = VCE = VOUT(T)+1.0V	-	0.01	0.10	-	0.05	1.00	μΑ	2
Line Regulation	_∆Vouт_	Vout(T)+1.0V ≦VIN≦10V	_	0.01	0.20	_	0.05	0.30	%/V	1
Line Regulation	△VIN•Vout	IOUT = 30mA	_	0.01	0.20	_	0.03	0.50	707 V	'
Input Voltage	Vin	-	2	-	10	2	-	10	V	-
Output Voltage	_∆Vоит	IOUT = 30mA	_	100	_	_	_	_	ppm/	1
Temperature Characteristics	△Topr·Vout	-40°C≦Topr≦85°C	_	100	_	_			°C	'
Output Noise	en	IOUT = 10mA		30	_	_	_	_	μ Vrms	3
Output Noise	en	300Hz~50kHz		50		_		_	μVIIIIS	3
Power Supply	PSRR	$VIN = {VOUT(T)+1.0}V+1.0Vp-pAC$	_	70	_	_	_	_	dB	4
Rejection Ratio	TOININ	Iоит = 50mA, f = 10kHz	_	70	_	_	_	_	uБ	4
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = VSS	-	300	-	-	280	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VSS	-	50	ı	ı	60	1	mA	1
CE "H" Voltage	VCEH	-	1.6	-	Vin	1.7	-	Vin	V	1
CE "L" Voltage	VCEL	-	-	-	0.25	-	-	0.20	v	1
CE "H" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	-0.15	-	0.15		
CE "L" Current		Viv. = Vio. = = 4.0V Vio. = - Vi	20.0		2.0	25.0		2.0		
(C type)	la-:	VIN = VOUT(T)+1.0V, $VCE = VSS$	CE = Vss -20.0 -	-3.2	.2 -25.0	-	-3.0	μΑ	2	
CE "L" Current	ICEL	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.40		0.40	0.45		0.45		
(D type)		VIN = VOUT(T)+1.0V, VCE = VSS	-0.10	-	0.10	-0.15	-	0.15		

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V
- (*2) Vout(T)=Specified output voltage
- (*3) VOUT(E)=Effective output voltage (i.e. the output voltage when "VOUT (T)+1.0V" is provided at the VIN pin while maintaining a certain IOUT value).
- (*4) Vdif=VIN1-VOUT1
 - Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized $Iout \{Vout(t)+1.0V\}$ is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- (*5) The values for -40°C \leq Ta \leq 85°C are designed values.

XC6204E, F Type

DADAMETED	OV/MPOL	COMPITIONS	-	Ta = 25°0	;	LINUTO	
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (2% products)	Vout(e)	louт = 30mA		E-0		V	1
Maximum Output Current	Іоитмах	V _{IN} = V _{OUT(T)+} 1.0V When V _{OUT} ≦2.0V, V _{IN} = 3.0V	300	-	-	mA	1
Load Regulation	∆Vоит	1mA≦Iouт≦100mA	-	15	50	mV	1
Drangut Valtage	Vdif1	IOUT = 30mA	E-1			mV	1
Dropout Voltage	Vdif2	IOUT = 100mA		E-2		IIIV	'
Supply Current (E type)		VIN = VCE = VOUT(T)+1.0V	50	80	120		0
Supply Current (F type)	loo	VIN = VCE = VOUT(T)+1.0V	40	70	100	μΑ	2
Standby Current	I _{STBY}	VIN = VOUT(T)+1.0V, VCE = Vss	-	0.01	0.10	μΑ	2
Line Regulation	∆Vout ∆Vin∙Vout	Vout(t)+1.0V≦VIN≦10V Iout = 30mA	-	0.01	0.20	%/V	1
Input Voltage	Vin	-	2	-	10	V	-
Output Voltage Temperature Characteristics	∆Vouт _∆Topr∙Vouт	Iουτ = 30mA -40°C≦Topr≦85°C	-	100	-	ppm/	1
Output Noise	en	louт = 10mA 300Hz~50kHz		30	-	μ Vrms	3
Power Supply Rejection Ratio	PSRR	$V_{IN} = \{V_{OUT(T)}+1.0\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f = 10kHz$	-	70	-	dB	4
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = VIN	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = VIN	-	50	-	mA	1
CE "H" Voltage	VCEH	ī	1.6	-	VIN	V	1
CE "L" Voltage	VCEL	1	-	-	0.25	v	
CE "H" Current (E type)	logu	VIN = VCE = VOUT(T)+1.0V	3.2	-	20.0		2
CE "H" Current (F type)	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10	μΑ	۷
CE "L" Current	ICEL	VIN = VOUT(T)+1.0V, VCE = Vss	-0.10	-	0.10	μΑ	2

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V
- (*2) Vout(t)=Specified output voltage
- (*3) Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain Iout value).
- (*4) Vdif=VIN1-VOUT1

Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.

XC6204G, H Type

DADAMETER	0)/// 4D 01	COMPITIONS	-	Га = 25°C	·	LINUTO	
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (2% products)	Vout(E)	Iоuт = 30mA		E-0		V	1
Maximum Output Current	Іоитмах	V _{IN} = V _{OUT(T)} +1.0V When V _{OUT} ≤2.0V, V _{IN} = 3.0V	300	-	-	mA	1
Load Regulation	∆Vоит	1mA≦Iouт≦100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	Iоит = 30mA		E-1			1
Dropout Voltage	Vdif2	Ιουτ = 100mA		E-2		mV	1
Supply Current (G type)	1	VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120	μΑ	0
Supply Current (H type)	IDD	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	μΑ	2
Standby Current	I _{STBY}	VIN = VCE =VOUT(T)+1.0V	-	0.01	0.10	μΑ	2
Line Regulation	∆Vout _∆Vin∙Vout	Vout(t)+1.0V≦VIN≦10V Iout = 30mA	-	0.01	0.20	%/V	1
Input Voltage	Vin	-	2	-	10	V	-
Output Voltage Temperature Characteristics	∆Vouт _∆Topr∙Vouт	lоuт = 30mA -40°C≦Topr≦85°C	-	100	-	ppm/	1
Output Noise	en	Iouт = 10mA 300Hz~50kHz		30	-	μ Vrms	3
Power Supply Rejection Ratio	PSRR	$V_{IN} = \{V_{OUT(T)}+1.0\}V+1.0Vp-pAC$ $I_{OUT} = 50mA, f = 10kHz$	-	70	-	dB	4
Current Limiter	llim	VIN = VOUT(T)+1.0V, VCE = Vss	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+1.0V, VCE = Vss	-	50	-	mA	1
CE "H" Voltage	VCEH	-	1.6	-	VIN	V	1
CE "L" Voltage	VCEL	-	-	-	0.25	V	'
CE "H" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	-0.10	-	0.10		
CE "L" Current (G type)	los	VIN = VOUT(T)+1.0V, VCE = Vss	-20.0	-	-3.2	μΑ	2
CE "L" Current (H type)	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	-0.10	-	0.10		

NOTE:

- (*1) Unless otherwise stated, $VIN=V_{OUT(T)}+1.0V$
- (*2) Vout(T)=Specified output voltage
- (*3) Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).
- (*4) Vdif=VIN1-VOUT1

 $Vout1=A \ voltage \ equal \ to \ 98\% \ of \ the \ output \ voltage \ whenever \ an \ amply \ stabilized \ Iout \ \{Vout(T)+1.0V\} \ is \ input.$ $Vint=The \ input \ voltage \ when \ Vout1 \ appears \ as \ input \ voltage \ is \ gradually \ decreased.$

XC6205A, B Type

DADAMETER	CVMDCI	CONDITIONS	-	Га = 25°C	;	LINUTO	
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage(*5)	Vout(e)	IOUT = 30mA	× 0.98	Vout(t)	×1.02	V	1
Maximum Output Current	Іоитмах		150	-	1	mA	1
Load Regulation	∆Vоит	1mA≦Iouт≦100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA	E-1			mV	1
Dropout voltage	Vdif2	IOUT = 100mA		E-2		IIIV	'
Supply Current		VIN = VCE = VOUT(T)+1.0V	50	80	120		
(A type)		When Vout \leq 0.95V, Vin = Vce = 2.0V	50	80	120		0
Supply Current	IDD	VIN = VCE = VOUT(T)+1.0V	40	70	100	μΑ	2
(B type)		When Vout≦0.95V, Vin = Vce = 2.0V	40	70	100		
Standby Current	_	VIN = VOUT(T)+1.0V, VCE = VSS	-	0.01	0.10	μA	2
Standby Current	I _{STBY}	When Vout \leq 0.95V, Vin = 2.0V	-	0.01	0.10	μΑ	2
	△Vout	$V_{OUT(T)+1.0}V \leq V_{IN} \leq 10V$					
Line Regulation	△VIN·VOUT	IOUT = 30mA, VCE = VIN	-	0.01	0.20	%/V	1
Input Voltage	Vin	When Vouτ≦0.95V, 2.0V≦VIN≦10V	2	_	10	V	_
Output Voltage	△Vout	IOUT = 30mA	_			nnm/	
Temperature Characteristics		-40°C≦Topr≦85°C	-	100	-	ppm/ °C	1
·		IOUT = 10mA					
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3
		Vin = {Vout(t)+1.0}V+1.0Vp-pAC					
Power Supply	PSRR	When VouT≦1.5V, ViN =2.5V+1.0Vp-pAC	-	65	-	dB	4
Rejection Ratio		IOUT = 50mA, f = 10kHz					
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VIN	-	300	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VIN	-	50	-	mA	1
CE "H" Voltage	Vсен	-	1.6	-	VIN	.,	4
CE "L" Voltage	VCEL	-	-	-	0.25	V	1
CE "H" Current		VIN = VCE = VOUT(T)+1.0V	0.0		00.0		
(A type)	la-u	When Vouт≦0.95V, Vin = Vce = 2.0V	3.2	-	20.0		
CE "H" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	0.10		0.40		2
(B type)		When Vout≦0.95V, Vin = VcE = 2.0V	-0.10	-	0.10	μΑ	
CE "L" Current	ICEL	VIN = VOUT(T)+1.0V, VCE = Vss	0.40	-0.10 - 0.10	0.10		
OE L Guilell	ICEL	When Vouт≦0.95V, Vin = 2.0V	-0.10	-	0.10		

NOTE:

- (*1) Unless otherwise stated, VIN=Vout(T)+1.0V However, when Vout \leq 0.95V, VIN=2.0V
- (*2) Vout(t)=Specified output voltage
- (*3) VOUT(E)=Effective output voltage (i.e. the output voltage when "VOUT (T)+1.0V" is provided at the VIN pin while maintaining a certain IOUT value).
- (*4) Vdif=VIN1-VOUT1
 - Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. VIN1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- (*5) When $Vout(T) \le 1.45V$, MIN. $\Rightarrow Vout(T)-30mV$, MAX. $\Rightarrow Vout(T)+30mV$

XC6205C, D Type

DADAMETED	CVMDOL	COMPITIONS	-	Га = 25°C	;	LINITO	CIDCLIIT
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage(*5)	Vout(e)	IOUT = 30mA	× 0.98	Vout(t)	×1.02	V	1
Maximum Output Current	Іоитмах		150	-	1	mA	1
Load Regulation	∆Vоит	1mA≦Iouт≦100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA	E-1			mV	1
Dropout voltage	Vdif2	IOUT = 100mA	E-2		IIIV	ı	
Supply Current		VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120		
(C type)	1	When Vout \leq 0.95V, Vin = 2.0V	30	80	120	A	2
Supply Current	IDD	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	μΑ	2
(D type)		When Vouт≦0.95V, Vin = 2.0V	40	70	100		
Standby Current	_	VIN = VCE = VOUT(T) + 1.0V	_	0.01	0.10	μΑ	2
Staridby Current	I _{STBY}	When Vout \leq 0.95V, Vin = Vce = 2.0V	_	0.01	0.10	μΑ	2
	∆Vоит	$V_{OUT(T)+1.0}V \leq V_{IN} \leq 10V$					
Line Regulation	△VIN·VOUT	IOUT = 30mA, VCE = VSS When VOUT≦0.95V, 2.0V≦VIN≦10V	-	0.01	0.20	%/V	1
Input Voltage	Vin	vvnen vou1≦0.95v, 2.0v≦vin≦10v	2	_	10	V	_
Output Voltage	△Vout	IOUT = 30mA	_			•	
Temperature Characteristics		-40°C≦Topr≦85°C	-	100	-	ppm/ ℃	1
Temperature orial acteristics		IOUT = 10mA					
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3
		VIN = {VOUT(T)+1.0}V+1.0Vp-pAC					
Power Supply	PSRR	When VouT≦1.5V, ViN =2.5V+1.0Vp-pAC	_	65	_	dB	4
Rejection Ratio		IOUT = 50mA, f = 10kHz					
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VSS	-	300		mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VSS	-	50	-	mA	1
CE "H" Voltage	VCEH	-	1.6	-	Vin	.,	4
CE "L" Voltage	VCEL	-	-	-	0.25	V	1
05 41 11 0		VIN = VCE = VOUT(T)+1.0V	0.40		0.40		
CE "H" Current	Ісен	When Vout≦0.95V, Vin = Vce = 2.0V	-0.10	-	0.10		
CE "L" Current		VIN = VOUT(T)+1.0V, VCE = VSS	20.0		2.0	., .	0
(C type)	lo-	When Vouт≦0.95V, Vin = 2.0V	-20.0	-	-3.2	μΑ	2
CE "L" Current	ICEL	VIN = VOUT(T)+1.0V, VCE = Vss	0.10		0.10		
(D type)		When Vout≦0.95V, Vin = 2.0V	-0.10	-	0.10		

NOTE:

- (*1) Unless otherwise stated, VIN=Vout(T)+1.0V However, when Vout \leqq 0.95V, VIN=2.0V
- (*2) Vout(T)=Specified output voltage
- (*3) Vout(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the Vin pin while maintaining a certain Iout value).
- (*4) Vdif=VIN1-VOUT1

Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.

(*5) When $Vout(T) \le 1.45V$, MIN. $\Rightarrow Vout(T)$ -30mV, MAX. $\Rightarrow Vout(T)$ +30mV

XC6205E, F Type

PARAMETER	SYMBOL	CONDITIONS		Ta = 25°C		UNITS	CIRCUIT
PARAIVIETER	STIVIBUL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage(*5)	Vout(e)	IOUT = 30mA	× 0.98	Vout(t)	× 1.02	V	1
Maximum Output Current(*6)	Іоитмах	VIN = E-5	E-4			mA	1
Load Regulation	∆Vоит	1mA≦Iouт≦100mA	-	15	50	mV	1
Dropout Voltage	Vdif1	IOUT = 30mA	E-1			mV	1
Dropout voitage	Vdif2	IOUT = 100mA		E-2		IIIV	ı
Supply Current		VIN = VOUT(T)+1.0V, VCE = Vss	50	80	120		
(E type)		When Vout≦0.95V, Vin = Vce = 2.0V	50	80	120	^	0
Supply Current	IDD	Vin = Vce =Vout(t)+1.0V	40	70	100	μΑ	2
(F type)		When Vout≦0.95V, Vin = Vce = 2.0V	40	70	100		
Standby Current		VIN = VOUT(T)+1.0V, VCE = Vss	_	0.01	0.10	μΑ	2
Standby Current	I _{STBY}	When Vouт≦0.95V, Vın = 2.0V	-	0.01	0.10	μΑ	2
	∆Vоит	$VOUT(T)+1.0V \le VIN \le 10V$					
Line Regulation	△VIN·VOUT	IOUT = 30mA, VCE = VIN	-	0.01	0.20	%/V	1
Input Voltage	Vin	When Vout≦0.95V, 2.0V≦Vin≦10V	2		10	V	
Output Voltage		IOUT = 30mA		_	10	•	
Temperature Characteristics	∆Vouт _∆Topr∙Vouт	-40°C≦Topr≦85°C	-	100	-	ppm/ °C	1
Temperature characteristics	△10pi vooi	Iout = 10mA					
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3
		VIN = {VOUT(T)+1.0}V+1.0Vp-pAC					
Power Supply	PSRR	When Vouт≦1.5V, Vin =2.5V+1.0Vp-pAC	_	65	_	dB	4
Rejection Ratio		IOUT = 50mA, f = 10kHz					
Current Limiter	llim	VIN = VOUT(T)+2.0V, VCE = VIN	-	380	-	mA	1
Short-circuit Current	Ishort	VIN = VOUT(T)+2.0V, VCE = VIN	-	50	-	mA	1
CE "H" Voltage	Vсен	-	1.6	-	Vin		
CE "L" Voltage	VCEL	-	-	-	0.25	V	1
CE "H" Current		VIN = VCE = VOUT(T)+1.0V			22.2		
(E type)		When Vout≦0.95V, VIN = VCE = 2.0V	3.2	-	20.0		
CE "H" Current	Ісен	VIN = VCE = VOUT(T)+1.0V	0.40		0.40		•
(F type)		When Vout≦0.95V, Vin = Vce = 2.0V	-0.10	-	0.10	μΑ	2
CE "I " Current	lori	VIN = VOUT(T)+1.0V, VCE = VSS	0.10		0.40		
CE "L" Current	ICEL	When Vouт≦0.95V, Vin = 2.0V	-0.10	-	0.10		

NOTE:

- (*1) Unless otherwise stated, VIN=VOUT(T)+1.0V However, when VouT≤0.95V, VIN=2.0V
- (*2) VOUT(T)=Specified output voltage
- (*3) V_{OUT(E)}=Effective output voltage (i.e. the output voltage when "VouT (T)+1.0V" is provided at the VIN pin while maintaining a certain Iou⊤ value).
- (*4) Vdif=VIN1-VOUT1
 - $Vout_1=A$ voltage equal to 98% of the output voltage whenever an amply stabilized $Iout_1 = Vout_1 =$
- (*5) When $Vout(t) \le 1.45V$, MIN. $\Rightarrow Vout(t)$ -30mV, MAX. $\Rightarrow Vout(t)$ +30mV
- (*6) Refer to "Specification & Condition by Series"

■ ELECTRICAL CHARACTERISTICS (Continued)

XC6205G, H Type

PARAMETER	SYMBOL	CONDITIONS		Ta = 25°C		UNITS	CIRCUIT
PAINAMETER	STWIDOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CINCOIT
Output Voltage(*5)	Vout(e)	Iоит = 30mA	× 0.98	Vout(t)	× 1.02	V	1
Maximum Output Current(*6)	Іоитмах	VIN = E-5	E-4	-	-	mA	1
Load Regulation	∆Vоит	1mA≦louт≦100mA	-	15	50	mV	1
Drangut Valtage	Vdif1	Iоит = 30mA	E-1			mV	1
Dropout Voltage	Vdif2	IOUT = 100mA		E-2		IIIV	1
Supply Current		VIN = VOUT(T)+1.0V, VCE = VSS	50	80	120		
(G type)		When Vouт≦0.95V, Vin = 2.0V	50	80	120		•
Supply Current	IDD	VIN = VOUT(T)+1.0V, VCE = VSS	40	70	100	μΑ	2
(H type)		When Vouт≦0.95V, Vin = 2.0V	40	70	100		
Standby Current	1	VIN = VCE =VOUT(T)+1.0V		0.01	0.10	μΑ	2
Standby Current	I _{STBY}	When Vout \leq 0.95V, Vin = Vce = 2.0V	-	0.01	0.10	μΑ	2
	∆Vоит	$VOUT(T)+1.0V \leq VIN \leq 10V$					
Line Regulation	△VIN·VOUT	IOUT = 30mA, VCE = Vss	-	0.01	0.20	%/V	1
Input Voltage	Vin	When Vouт≦0.95V, 2.0V≦VIN≦10V	2	_	10	V	
Output Voltage		IOUT = 30mA		_	10	•	
Temperature Characteristics	∆Vouт △Topr·Vouт	-40°C≦Topr≦85°C	-	100	-	ppm/ °C	1
Temperature Characteristics	△ 10pi vooi	Iout = 10mA					
Output Noise	en	300Hz~50kHz	-	30	-	μ Vrms	3
		VIN = {VOUT(T)+1.0}V+1.0Vp-pAC					
Power Supply	PSRR	When VouT≦1.5V, ViN =2.5V+1.0Vp-pAC	_	65	_	dB	4
Rejection Ratio		IOUT = 50mA, f = 10kHz					·
Current Limiter	llim	Vin = Vout(T)+2.0V, VcE = Vss	_	380	-	mA	1
Short-circuit Current	Ishort	Vin = Vout(T)+2.0V, VcE = Vss	-	50	-	mA	1
CE "H" Voltage	VCEH	-	1.6	-	Vin		
CE "L" Voltage	VCEL	-	-	-	0.25	V	1
		Vin = Vce = Vout(T)+1.0V					
CE "H" Current	Ісен	When Vout≦0.95V, VIN = VcE = 2.0V	-0.10	-	0.10		
CE "L" Current		VIN = VOUT(T)+1.0V, VCE = VSS	-20.0 -				
(G type)		When Vouт≦0.95V, VIN = 2.0V		-	-3.2	μΑ	2
CE "L" Current	ICEL	VIN = VOUT(T)+1.0V, VCE = VSS	0.46		0.40		
(H type)		When Vouт≦0.95V, VIN = 2.0V	-0.10	-	0.10		

NOTE:

- (*1) Unless otherwise stated, $V_{IN}=V_{OUT(T)}+1.0V$ However, when $V_{OUT}\leq 0.95V$, $V_{IN}=2.0V$
- (*2) Vout(t)=Specified output voltage
- (*3) VOUT(E)=Effective output voltage (i.e. the output voltage when "Vout (T)+1.0V" is provided at the VIN pin while maintaining a certain IOUT value).
- (*4) Vdif=VIN1-VOUT1
 - Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input. Vin1=The input voltage when Vout1 appears as input voltage is gradually decreased.
- (*5) When Vout(t) \leqq 1.45V, MIN. \Rightarrow Vout(t)-30mV, MAX. \Rightarrow Vout(t)+30mV
- (*6) Refer to "Specification & Condition by Series"

■Voltage Chart

XC6204 series Note: For the XC6204E, F, G, H type, see the item "Ta=25°C" only.

SYMBOL	E	-0		E	-1			E	-2	
PARAMETER		VOLTAGE	DROPOUT VOLTAGE 1 (mV) Iout=30mA			DROPOUT VOLTAGE 2 (mV) Iout=100mA				
SETTING OUTPUT VOLTAGE (V)		/) oducts)								
	Vout		Vdif 1			Vdif 2				
Vout (t)		,01	Ta =	25℃	-40°C≦T	opr≦85°C	Ta =	25°C	-40°C≦T	opr≦85°C
	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
1.80	1.764	1.836	200	210	210	230	300	400	340	480
1.85	1.813	1.887	200	210	210	230	300	400	340	480
1.90	1.862	1.938	120	150	130	170	280	380	320	460
1.95	1.911	1.989	120	150	130	170	280	380	320	460
2.00	1.960	2.040	80	120	90	140	240	350	280	430
2.05	2.009	2.091	80	120	90	140	240	350	280	430
2.10	2.058	2.142	80	120	90	140	240	330	280	410
2.15	2.107	2.193	80	120	90	140	240	330	280	410
2.20	2.156	2.244	80	120	90	140	240	330	280	410
2.25	2.205	2.295	80	120	90	140	240	330	280	410
2.30	2.254	2.346	80	120	90	140	240	310	280	390
2.35	2.303	2.397	80	120	90	140	240	310	280	390
2.40	2.352	2.448	80	120	90	140	240	310	280	390
2.45	2.401	2.499	80	120	90	140	240	310	280	390
2.50	2.450	2.550	70	100	80	120	220	290	260	370
2.55	2.499	2.601	70	100	80	120	220	290	260	370
2.60	2.548	2.652	70	100	80	120	220	290	260	370
2.65	2.597	2.703	70	100	80	120	220	290	260	370
2.70	2.646	2.754	70	100	80	120	220	290	260	370
2.75	2.695	2.805	70	100	80	120	220	290	260	370
2.80	2.744	2.856	70	100	80	120	220	270	260	350
2.85	2.793	2.907	70	100	80	120	220	270	260	350
2.90	2.842	2.958	70	100	80	120	220	270	260	350
2.95	2.891	3.009	70	100	80	120	220	270	260	350
3.00	2.940	3.060	60	90	70	110	200	270	240	350
3.05	2.989	3.111	60	90	70	110	200	270	240	350
3.10	3.038	3.162	60	90	70	110	200	250	240	330
3.15	3.087	3.213	60	90	70	110	200	250	240	330
3.20	3.136	3.264	60	90	70	110	200	250	240	330
3.25	3.185	3.315	60	90	70	110	200	250	240	330
3.30	3.234	3.366	60	90	70	110	200	250	240	330
3.35	3.283	3.417	60	90	70	110	200	250	240	330
3.40	3.332	3.468	60	90	70	110	200	250	240	330
3.45	3.381	3.519	60	90	70	110	200	250	240	330
3.50	3.430	3.570	60	90	70	110	200	250	240	330
3.55	3.479	3.621	60	90	70	110	200	250	240	330
3.60	3.528	3.672	60	90	70	110	200	250	240	330
3.65	3.577	3.723	60	90	70	110	200	250	240	330
3.70	3.626	3.774	60	90	70	110	200	250	240	330
3.75	3.675	3.825	60	90	70	110	200	250	240	330
3.80	3.724	3.876	60	90	70	110	200	250	240	330
3.85	3.773	3.927	60	90	70	110	200	250	240	330
3.90	3.822	3.978	60	90	70	110	200	250	240	330
										330
3.95	3.871	4.029	60	90	70	110	200	250	240	

●Voltage Chart (Continued) XC6204 series (Continued) Note: For the XC6204E, F, G, H type, see the item "Ta=25°C" only.

SYMBOL		-0		E	-1			E	-2	
PARAMETER SETTING OUTPUT VOLTAGE (V)	(\	VOLTAGE /) oducts)	DROPOUT VOLTAGE 1 (mV) Iout=30mA		DROPOUT VOLTAGE 2 (mV) Iout=100mA					
0011 01 10211102 (1)	(270 p.10 uu		Vdif 1				Vdif 2			
Vout(t)	Vo	DUT	Ta =	25°C	-40°C≦To	opr≦85°C			-40°C≦Topr≦85°C	
7 33 1(1)	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
4.00	3.920	4.080	60	80	70	100	180	230	220	310
4.05	3.969	4.131	60	80	70	100	180	230	220	310
4.10	4.018	4.182	60	80	70	100	180	230	220	310
4.15	4.067	4.233	60	80	70	100	180	230	220	310
4.20	4.116	4.284	60	80	70	100	180	230	220	310
4.25	4.165	4.335	60	80	70	100	180	230	220	310
4.30	4.214	4.386	60	80	70	100	180	230	220	310
4.35	4.263	4.437	60	80	70	100	180	230	220	310
4.40	4.312	4.488	60	80	70	100	180	230	220	310
4.45	4.361	4.539	60	80	70	100	180	230	220	310
4.50	4.410	4.590	60	80	70	100	180	230	220	310
4.55	4.459	4.641	60	80	70	100	180	230	220	310
4.60	4.508	4.692	60	80	70	100	180	230	220	310
4.65	4.557	4.743	60	80	70	100	180	230	220	310
4.70	4.606	4.794	60	80	70	100	180	230	220	310
4.75	4.655	4.845	60	80	70	100	180	230	220	310
4.80	4.704	4.896	60	80	70	100	180	230	220	310
4.85	4.753	4.947	60	80	70	100	180	230	220	310
4.90	4.802	4.998	60	80	70	100	180	230	220	310
4.95	4.851	5.049	60	80	70	100	180	230	220	310
5.00	4.900	5.100	50	70	60	90	160	210	200	290
5.05	4.949	5.151	50	70	60	90	160	210	200	290
5.10	4.998	5.202	50	70	60	90	160	210	200	290
5.15	5.047	5.253	50	70	60	90	160	210	200	290
5.20	5.096	5.304	50	70	60	90	160	210	200	290
5.25	5.145	5.355	50	70	60	90	160	210	200	290
5.30	5.194	5.406	50	70	60	90	160	210	200	290
5.35	5.243	5.457	50	70	60	90	160	210	200	290
5.40	5.292	5.508	50	70	60	90	160	210	200	290
5.45	5.341	5.559	50	70	60	90	160	210	200	290
5.50	5.390	5.610	50	70	60	90	160	210	200	290
5.55	5.439	5.661	50	70	60	90	160	210	200	290
5.60	5.488	5.712	50	70	60	90	160	210	200	290
5.65	5.537	5.763	50	70	60	90	160	210	200	290
5.70	5.586	5.814	50	70	60	90	160	210	200	290
5.75	5.635	5.865	50	70	60	90	160	210	200	290
5.80	5.684	5.916	50	70	60	90	160	210	200	290
5.85	5.733	5.967	50	70	60	90	160	210	200	290
5.90	5.782	6.018	50	70	60	90	160	210	200	290
5.95	5.831	6.069	50	70	60	90	160	210	200	290
6.00	5.880	6.120	50	70	60	90	160	210	200	290

●Voltage Chart (Continued)

XC6204 series, 1% products

Note: $\pm 1\%$ output voltage accuracy products are available for the XC6204E~H type from V_{OUT}=2.95V.

SYMBOL E-0				
PARAMETER	OUTPUT VOLTAGE			
SETTING	(V)			
OUTPUT VOLTAGE (V)	(1% products)			
.,	Vo	DUT		
$V_{OUT(T)}$	MIN.	MAX.		
2.95	2.921	2.980		
3.00	2.970	3.030		
3.05	3.020	3.081		
3.10	3.069	3.131		
3.15	3.119	3.182		
3.20	3.168	3.232		
3.25	3.218	3.283		
3.30	3.267	3.333		
3.35	3.317	3.384		
3.40	3.366	3.434		
3.45	3.416	3.485		
3.50	3.465	3.535		
3.55	3.515	3.586		
3.60	3.564	3.636		
3.65	3.614	3.687		
3.70	3.663	3.737		
3.75	3.713	3.788		
3.80	3.762	3.838		
3.85	3.812	3.889		
3.90	3.861	3.939		
3.95	3.911	3.990		
4.00	3.960	4.040		
4.05	4.010	4.091		
4.10	4.059	4.141		
4.15	4.109	4.192		
4.20	4.158	4.242		
4.25	4.208	4.293		
4.30	4.257	4.343		
4.35	4.307	4.394		
4.40	4.356	4.444		
4.45	4.405	4.494		
4.50	4.455	4.545		

Г	1			
SYMBOL	E-0			
PARAMETER	R OUTPUT VOLTAGE			
SETTING	(\	/)		
OUTPUT VOLTAGE (V)	(1% products)			
.,	Vout			
$V_{OUT(T)}$	MIN.	MAX.		
4.55	4.505	4.596		
4.60	4.554	4.646		
4.65	4.604	4.697		
4.70	4.653	4.747		
4.75	4.703	4.798		
4.80	4.752	4.848		
4.85	4.802	4.899		
4.90	4.851	4.949		
4.95	4.901	5.000		
5.00	4.950	5.050		
5.05	5.000	5.101		
5.10	5.049	5.151		
5.15	5.099	5.202		
5.20	5.148	5.252		
5.25	5.198	5.303		
5.30	5.247	5.353		
5.35	5.297	5.404		
5.40	5.346	5.454		
5.45	5.396	5.505		
5.50	5.445	5.555		
5.55	5.495	5.606		
5.60	5.544	5.656		
5.65	5.594	5.707		
5.70	5.643	5.757		
5.75	5.693	5.808		
5.80	5.742	5.858		
5.85	5.792	5.909		
5.90	5.841	5.959		
5.95	5.891	6.010		
6.00	5.940	6.060		

●Voltage Chart (Continued)

XC6205 series

AGOZOG SCHOS							
SYMBOL E-0		E-1		E-2			
PARAMETER SETTING OUTPUT VOLTAGE (V)	OUTPUT VOLTAGE (V)		DROPOUT VOLTAGE1 (mV) Iout=30mA		DROPOUT VOLTAGE 2 (mV) lout=100mA		
	Vout		Ta = 25°C				
Vout (t)			Vdif 1		Vdif 2		
	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	
0.90	0.870	0.930	1050	1100	1150	1200	
0.95	0.920	0.980	1050	1100	1150	1200	
1.00	0.970	1.030	1000	1100	1050	1200	
1.05	1.020	1.080	1000	1100	1050	1200	
1.10	1.070	1.130	900	1000	950	1100	
1.15	1.120	1.180	900	1000	950	1100	
1.20	1.170	1.230	800	900	850	1000	
1.25	1.220	1.280	800	900	850	1000	
1.30	1.270	1.330	700	800	750	900	
1.35	1.320	1.380	700	800	750	900	
1.40	1.370	1.430	600	700	650	800	
1.45	1.420	1.480	600	700	650	800	
1.50	1.470	1.530	500	600	550	700	
1.55	1.519	1.581	500	600	550	700	
1.60	1.568	1.632	400	500	500	600	
1.65	1.617	1.683	400	500	500	600	
1.70	1.666	1.734	300	400	400	500	
1.75	1.715	1.785	300	400	400	500	

Specification Chart by Series

SYMBOL	S-1		S-2	S-3	
PRODUCT SERIES	SUPPLY CURRENT (μ A)		CE "H" CURRENT	CE "L" CURRENT (μA)	
	MIN. MAX.		(μA)		
XC6205A	52.0	115.0	18.0	-0.1	
XC6205B	42.0	95.0	0.1	-0.1	
XC6205C	52.0	115.0	0.1	-18.0	
XC6205D	42.0	95.0	0.1	-0.1	

Specification & Condition by Series

SYMBOL	E-5	E-4		
SPECIFIED OUTPUT VOLTAGE	INPUT VOLTAGE (V)	MAXIMUM OUTPUT CURRENT (mA)		
(V)	Vin	MIN.		
0.90~0.95	2.5	260		
1.00~1.05	2.5	260		
1.10~1.15	2.6	270		
1.20~1.25	2.7	290		
1.30~1.35	2.8			
1.40~1.45	2.9	300		
1.50~1.75	3.0			

^{*} Vout(T)=Specified output voltage

■TYPICAL APPLICATION CIRCUIT

■OPERATIONAL EXPLANATION

Output voltage control with the XC6204/6205 series:

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier.

The P-channel MOSFET, which is connected to the VouT pin, is then driven by the subsequent output signal. The output voltage at the VouT pin is controlled & stabilized by a system of negative feedback.

The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

< Low ESR Capacitors >

With the XC6204/05 series, a stable output voltage is achievable even if used with a low ESR capacitor as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) is connected as close as possible to the output pin (Vout) and the Vss pin. Please use an output capacitor with a capacitance value of at least 1 μ F. Also, please connect an input capacitor (CIN) of 0.1 μ F between the VIN pin and the Vss pin in order to ensure a stable power input.

Recommended output capacitor values

Vout	0.9V ~ 1.2V	1.25V ~ 1.75V
CL	4.7 μ F	2.2 μ F

<Current Limiter, Short-Circuit Protection>

The XC6204/05 series includes a combination of a fixed current limiter circuit & a foldback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows. However, when the input/output voltage differential is quite small, this current will be about 200mA.

■OPERATIONAL EXPLANATION (Continued)

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6204/05 series. In shutdown mode, output at the Vout pin will be pulled down to the Vss level via R1 & R2. The operational logic of the IC's CE pin is selectable (please refer to the selection guide). Note that as the standard XC6204/05B type is 'High Active/No Pull Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC is in operation.

We suggest that you use this IC with either a VIN voltage or a Vss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry if a voltage between 0.25V and 1.5V is input.

<Minimum Operating Voltage>

In order to stabilize the IC's operations, an input voltage of more than 2.0V is needed. Should the input voltage be less than 2.0V, the output voltage may not be regulated correctly. (Please refer to Input Voltage vs. Output Voltage characteristics below.)

- ① When VIN is less than 2.0V, the CE pin remains in stand-by mode. When VIN rises above 2.0V, the power supply will turn ON.
- ② The input power supply will begin to rise after a few hundred msec. (Please also refer to the transient response characteristics.)

O Input Voltage vs. Output Voltage xC6205B092

O Enable Response Time

XC6205B092

O Turn-ON Response Time

XC6205B092

■NOTES ON USE

- 1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4. Torex places an importance on improving our products and their reliability.
 We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

■TEST CIRCUITS

Circuit 1

Circuit 2

*TEST CIRCUIT V_{CE}(CE Pin Voltage)

ACTIVE

XC6204/XC6205A, B, E, F Type $\cdot \cdot \cdot \cdot \cdot V_{CE} = V_{IN}$

XC6204/05C, D, G, H Type $\cdot \cdot \cdot \cdot V_{CE} = V_{SS}$

STANDBY

XC6204/05C, D, G, H Type $\cdot \cdot \cdot \cdot V_{CE} = V_{IN}$

■TYPICAL PERFORMANCE CHARACTERISTICS

- ●XC6204
- (1) Output Voltage vs. Output Current

●XC6204 (Continued)

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

- ●XC6204 (Continued)
- (2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

- ●XC6204 (Continued)
- (3) Dropout Voltage vs. Output Current (Continued)

* Since the operation of this IC is only guaranteed from V_{IN}=2.0V and above, it is essential that when using with applications where V_{OUT}=2.0V or less, the difference between V_{IN} and V_{OUT} be at least equal to 2V – V_{OUT(T)}.

(4) Supply Current vs. Input Voltage

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

- ●XC6204 (Continued)
- (5) Output Voltage vs. Ambient Temperature

(6) Supply Current vs. Ambient Temperature

- ●XC6204 (Continued)
 - (6) Supply Current vs. Ambient Temperature (Continued)

(7) CE Pin Threshold Voltage vs. Ambient Temperature

(8) Input Transient Response

●XC6204 (Continued)

(8) Input Transient Response (Continued)

- ●XC6204 (Continued)
- (8) Input Transient Response (Continued)

(9) Load Transient Response

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

- ●XC6204 (Continued)
- (9) Load Transient Response (Continued)

●XC6204 (Continued)

(9) Load Transient Response (Continued)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

XC6204 (Continued)

(9) Load Transient Response (Continued)

●XC6204 (Continued)

(9) Load Transient Response (Continued)

(10) Turn-On Response Time

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

●XC6204 (Continued)

(10) Turn-On Response Time

●XC6204 (Continued)

(10) Turn-On Response Time (Continued)

(11) Enable Response Time

(These characteristics will not be affected by the nature of the CE pin's logic)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

●XC6204 (Continued)

(11) Enable Response Time (Continued)

(These characteristics will not be affected by the nature of the CE pin's logic)

●XC6204 (Continued)

(11) Enable Response Time (Continued)

(These characteristics will not be affected by the nature of the CE pin's logic)

(12) Ripple Rejection Rate

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

●XC6204 (Continued)

(12) Ripple Rejection Rate (Continued)

(13) Output Noise Density

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

●XC6205

(1) Output Voltage vs. Output Current

(2) Output Voltage vs. Output Current (Current Limit)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

- ●XC6205 (Continued)
- (3) Output Voltage vs. Input Voltage

(4) Dropout Voltage VS. Output Current

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

- ●XC6205 (Continued)
- (5) Supply Current vs. Input Voltage

XC6205x092

XC6205x152

XC6205x152

(6) Output Voltage vs. Ambient Temperature

XC6205x092

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

- ●XC6205 (Continued)
- (7) Supply Current vs. Ambient Temperature

(8) CE Pin Threshold Voltage vs. Ambient Temperature

XC6205xxx2

(9) Load Transient Response

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

●XC6205 (Continued)

(9) Load Transient Response (Continued)

(10) Input Transient Response 1

(11) Input Transient Response 2

XC6205x092

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

●XC6205 (Continued)

(11) Input Transient Response 2 (Continued)

XC6205x152

XC6205x152

(12) Enable Response Time

XC6205B092

XC6205x152

(13) Ripple Rejection Rate

XC6205x092

■PACKAGING INFORMATION

For the latest package information go to, www.torexsemi.com/technical-support/packages

PACKAGE	GE OUTLINE / LAND PATTERN THERMAL CHARACTERISTICS	
SOT-25	SOT-25 PKG	SOT-25 Power Dissipation
SOT-89-5	<u>SOT-89-5 PKG</u>	SOT-89-5 Power Dissipation
USP-6B	<u>USP-6B PKG</u>	USP-6B Power Dissipation

■ MARKING RULE

[XC6204]

●SOT-25, SOT-89-5

① represents product series

(TOP VIEW)

MARK	PRODUCT SERIES
4	XC6204xxxxxx

2 represents type of regulator

OUTPUT VOLTAGE 1	OUTPUT VOLTAGE 100mV INCREMENTS OUTPUT VOLTAGE 50mV INCREMENTS				
VOLTAGE =0.1~3.0V	VOLTAGE =3.1~6.0V	VOLTAGE =0.15~3.05V	VOLTAGE =3.15∼6.05V		
V	А	Е	L	XC6204Axxxxx	
X	В	F	M	XC6204Bxxxxx	
Υ	С	Н	N	XC6204Cxxxxx	
Z	D	K	Р	XC6204Dxxxxx	
<u>V</u>	<u>A</u>	<u>E</u>	<u>L</u>	XC6204Exxxxx	
<u>X</u>	<u>в</u>	<u>F</u>	<u>M</u>	XC6204Fxxxxx	
<u>Y</u>	CI	<u>H</u>	<u>N</u>	XC6204Gxxxxx	
<u>Z</u>	<u>D</u>	<u>K</u>	<u>P</u>	XC6204Hxxxxx	

3 represents output voltage

MARK	OUTPUT VOLTAGE (V)			MARK	OUTPUT VOLTAGE (V)			/)	
0	_	3.1	_	3.15	F	1.6	4.6	1.65	4.65
1	_	3.2	_	3.25	Н	1.7	4.7	1.75	4.75
2	ı	3.3	ı	3.35	K	1.8	4.8	1.85	4.85
3	ı	3.4	ı	3.45	L	1.9	4.9	1.95	4.95
4	-	3.5	1	3.55	M	2.0	5.0	2.05	5.05
5	_	3.6	-	3.65	N	2.1	5.1	2.15	5.15
6	ı	3.7	ı	3.75	Р	2.2	5.2	2.25	5.25
7	ı	3.8	ı	3.85	R	2.3	5.3	2.35	5.35
8	-	3.9	1	3.95	S	2.4	5.4	2.45	5.45
9	_	4.0	-	4.05	Т	2.5	5.5	2.55	5.55
Α	ı	4.1	ı	4.15	U	2.6	5.6	2.65	5.65
В	I	4.2	ı	4.25	V	2.7	5.7	2.75	5.75
С		4.3	_	4.35	X	2.8	5.8	2.85	5.85
D	-	4.4		4.45	Y	2.9	5.9	2.95	5.95
E	_	4.5	_	4.55	Z	3.0	6.0	3.05	6.05

④ represents production lot number

0 to 9, A to Z, reversed character of 0 to 9 and A to Z repeated. (G, I, J, O, Q, W excluded)

■MARKING RULE (Continued)

[XC6204]

●USP-6B

①② represents product series

MARK		DDODI ICT SEDIES	
1	2	PRODUCT SERIES	
0	4	XC6204xxxxDx	

3 represents type of regulator

MARK	TYPE	PRODUCT SERIES
А	CE pin: High Active, Pull-Down Resistor Built-In	XC6204AxxxDx
В	CE pin: High Active, No Pull-Down Resistor Built-In	XC6204BxxxDx
С	CE pin: High Active, Pull-Up Resistor Built-In	XC6204CxxxDx
D	CE pin: Low Active, No Pull-Up Resistor Built-In	XC6204DxxxDx
E	CE pin: High Active, Pull-Down Resistor Built-In	XC6204ExxxDx
F	CE pin: High Active, No Pull-Down Resistor Built-In	XC6204FxxxDx
Z	CE pin: Low Active, Pull-Up Resistor Built-In	XC6204GxxxDx
Н	CE pin: Low Active, No Pull-Up Resistor Built-In	XC6204HxxxDx

4 represents integer of the output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6204x3xxDx
5	5.X	XC6204x5xxDx

⑤ represents decimal number of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES	MARK	VOLTAGE (V)	PRODUCT SERIES
0	X.0	XC6204xx0xDx	Α	X.05	XC6204xx0ADx
1	X.1	XC6204xx1xDx	В	X.15	XC6204xx1ADx
2	X.2	XC6204xx2xDx	С	X.25	XC6204xx2ADx
3	X.3	XC6204xx3xDx	D	X.35	XC6204xx3ADx
4	X.4	XC6204xx4xDx	E	X.45	XC6204xx4ADx
5	X.5	XC6204xx5xDx	F	X.55	XC6204xx5ADx
6	X.6	XC6204xx6xDx	Н	X.65	XC6204xx6ADx
7	X.7	XC6204xx7xDx	K	X.75	XC6204xx7ADx
8	X.8	XC6204xx8xDx	L	X.85	XC6204xx8ADx
9	X.9	XC6204xx9xDx	М	X.95	XC6204xx9ADx

6 represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

Note: No character inversion used.

■MARKING RULE (Continued)

[XC6205]

●SOT-25, SOT-89-5

1 represents product series

MARK	PRODUCT SERIES		
5	XC6205xxxxxx		

2 represents type of regulator

MA	RK	
OUTPUT VOLTAGE	OUTPUT VOLTAGE	PRODUCT SERIES
100mV INCREMENTS	50mV INCREMENTS	
V	E	XC6205Axxxxx
X	F	XC6205Bxxxxx
Υ	Н	XC6205Cxxxxx
Z	K	XC6205Dxxxxx
<u>V</u>	<u>E</u>	XC6205Exxxxx
<u>X</u>	F	XC6205Fxxxxx
<u>Y</u>	<u>H</u>	XC6205Gxxxxx
<u>Z</u>	<u>K</u>	XC6205Hxxxxx

3 represents output voltage

	•				
MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)	
8	0.9	0.95	D	1.4	1.45
9	1.0	1.05	E	1.5	1.55
Α	1.1	1.15	F	1.6	1.65
В	1.2	1.25	Н	1.7	1.75
С	1.3	1.35			

4 represents production lot number

0 to 9, A to Z, reversed character of 0 to 9 and A to Z repeated. (G, I, J, O, Q, W excluded)

■MARKING RULE(Continued)

[XC6205]

●USP-6B

12 represents product series

MARK		PRODUCT SERIES	
1	2	PRODUCT SERIES	
0	5	XC6205xxxxDx	

③ represents type of voltage regulator

MARK	TYPE	PRODUCT SERIES
А	CE pin: High Active with Pull-Down Resistor Built-In	XC6205AxxxDx
В	CE pin: High Active with No Pull-Down Resistor Built-In	XC6205BxxxDx
С	CE pin: Low Active with Pull-Up Resistor Built-In	XC6205CxxxDx
D	CE pin: Low Active with No Pull-Up Resistor Built-In	XC6205DxxxDx
Е	CE pin: High Active with Pull-Down Resistor Built-In	XC6205ExxxDx
F	CE pin: High Active with No Pull-Down Resistor Built-In	XC6205FxxxDx
Z	CE pin: Low Active with Pull-Up Resistor Built-In	XC6205GxxxDx
Н	CE pin: Low Active with No Pull-Up Resistor Built-In	XC6205HxxxDx

4 represents integer of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES		
3	3.X	XC6205x3xxDx		
5	5.X	XC6205x5xxDx		

⑤ represents decimal point of output voltage

MARK	OUTPL	OUTPUT VOLTAGE (V)		OUTPUT VOLTAGE (V)	
0	X.0	XC6205xx0xDx	Α	X.05	XC6205xx0ADx
1	X.1	XC6205xx1xDx	В	X.15	XC6205xx1ADx
2	X.2	XC6205xx2xDx	С	X.25	XC6205xx2ADx
3	X.3	XC6205xx3xDx	D	X.35	XC6205xx3ADx
4	X.4	XC6205xx4xDx	E	X.45	XC6205xx4ADx
5	X.5	XC6205xx5xDx	F	X.55	XC6205xx5ADx
6	X.6	XC6205xx6xDx	Н	X.65	XC6205xx6ADx
7	X.7	XC6205xx7xDx	K	X.75	XC6205xx7ADx
8	X.8	XC6205xx8xDx	L	X.85	XC6205xx8ADx
9	X.9	XC6205xx8xDx	M	X.95	XC6205xx9ADx

6 represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

^{*}No character inversion used.

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.