Natural Language Processing Overview

Daisuke Kawahara

Department of Communications and Computer Engineering, Waseda University

Language

• Thinking, communication, and recording

 To give a name to a thing and a concept, and describe their relations

Language and Computer

- E-mail
- Text input (kana-kanji conversion), spell checker
- Information retrieval / search
- Machine translation
- Dialogue system / agent system
- •
- Everywhere in SF

NICT: VoiceTra

https://youtu.be/1w8yFkoPmxI

Natural Language Processing (NLP)

- A technology for processing natural language using computers
- Elucidate the mechanisms by which humans understand language

Also called "Computational Linguistics"

Word

- Content words / open class words 内容語 (自立語) e.g., nouns, verbs, adjective, adverbs
- Function words / closed class words 機能語 (付属語) e.g., prepositions, postpositions, determiners, copula ("be", "だ")
- Part of speech / 品詞
- Vocabulary / 語彙 (a set of words, a dictionary, a lexicon)

Multi-word Expression / 複合語

- Technical terms / 専門用語
 - e.g., "Natural Language Processing"
 "Fast Fourier Transform"
- Proper nouns (proper names, named entities) / 固有名詞
 - e.g., "Waseda University"
 "Toyota Motor Corporation"

Phrase Structure / 句構造

Dependency Structure / 依存構造

Problems in NLP

- Problems with clear definitions/answers
 - Ambiguity
 - Synonymy and polysemy 同義性 多義性
 - Syntactic ambiguity

Synonymy and Polysemy

Synonyms

- Spelling variations
 - center, centre
 - 林檎,りんご,リンゴ

- Different words (synonym ... near synonym)
 - apple, アップル, 林檎 (translation)
 - AI, Artificial Intelligence (acronym)
 - helium, He; meeting, mtg (abbreviation)
 - big, large

Homonyms / Polysemic Words

bank

interest

Homonyms / Polysemic Words

homonym

- bank:
 - 1. The banks of a river, canal, or lake are the raised areas of ground along its edge.
 - 2. A bank is an institution where people or businesses can keep their money.

polysemic words

- interest:
 - 1. If you have an interest in something, you want to learn or hear more about it.
 - 2. Interest is extra money that you receive if you have invested a sum of money.

[Collins COBUILD]

• Time flies like an arrow. (光陰矢のごとし) noun verb pp det noun

• Time flies like an arrow. (時蠅は矢を好む) noun noun verb det noun

外国人参政権

Current translation is correct.

Problems in NLP

- Problems with clear definitions/answers
 - Ambiguity
 - Synonymy and polysemy 同義性 多義性
 - Syntactic ambiguity
 - How to find and combine clues from the context 文脈

Problems in NLP

- Problems with clear definitions/answers
 - Ambiguity
 - Synonymy and polysemy 同義性 多義性
 - Syntactic ambiguity
 - How to find and combine clues from the context 文脈
- Problems without clear definitions
 - Meaning
 - What is understanding?

Metaphor / Metonymy

Metaphor

- How can I kill a process? [Martin 88]
- My car drinks gasoline. [Wilks 78]
- He shot down all of my arguments. [Lakoff & Johnson 80]
- He is a big <u>star</u>.

Metonymy

- Washington and Tokyo agree on ...
- The ham sandwich is waiting for his check. [Lakoff & Johnson 80]
- Japanese people often eat <u>nabe</u> in winter.

History of Natural Language Processing

Early Days

1947
 English-French machine translation (MT)
 (W. Weaver, A. D. Booth)

When I look at an article in Russian, I say: "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

- 1954
 Russian-English MT
 (Georgetown Univ. and IBM)
- 1955-
 - English-Japanese machine translation (電気試験所)
 - English-German-Japanese MT (Kyushu Univ.)

Dark Ages of MT

- ALPAC Report (Automatic Language Processing Advisory Committee, 1966)
 - High-quality MT is not easy to develop soon
 - More fundamental research is needed, such as computational linguistics (計算言語学)

Introduction of Meaning

- C. Fillmore: Case Grammar (格文法), 1968
 - John broke the window with a hammer.
 - The window broke.
 - A hammer broke the window.
 - Agent: John
 - Object: window
 - Instrument: hammer
- Selectional restriction by semantic features

MT Projects

- EUROTRA Project (1982-1991)
 - By the European Commission
 - An MT system for the seven (later nine) official languages of the European Community
- Mu Project (1982-1985)
 - By Science and Technology Agency (科学技術庁) and Kyoto Univ.
 - Japanese-English and English-Japanese MT

Prof. Makoto Nagao

Difficulty in Translation

- Lexicon
 - put on X ⇔ 帽子をかぶる, 服を着る, 靴を履く
- Word order
 - He wears a suit (SVO) ⇔ 彼はスーツを着ている (SOV)
- Structure
 - She has a long hair ⇔ 彼女は髪が長い
- Number, gender, definiteness

Data-driven machine translation

- Example-based machine translation [Nagao 1984]
- Statistical machine translation [Brown+ 1993]

Artificial Intelligence (1955-)

- ELIZA [J. Weizenbaum 1966]
 - Dialogue system
 - No deep understanding of input texts
- SHRDLU [T. Winograd 1972]
 - Operation of blocks in a virtual world
 - Detailed knowledge about the (small) domain

ELIZA: DOCTOR Script (M-x doctor on Emacs)

User: Men are all alike.

ELIZA: In what way?

User: They're always bugging us about something or other.

ELIZA: Can you think of a specific example?

User: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here.

ELIZA: DOCTOR Script

Word:Rank Outputs

alike:10 In what way?

What resemblance do you see?

always:5 Can you think of a specific example?

Really, always?

what:2 Why do you ask?

Does that interest you?

SHRDLU (1972)

Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)

Person: GRASP THE PYRAMID.

Computer: I DON'T UNDERSTAND WHICH PYRAMID

YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE BOX.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING.

Computer: OK. (does it)

http://hci.stanford.edu/~winograd/shrdlu/

Dialogue Systems / Chatbots

Intuitive easy-to-use interface for everyone

(NTT Docomo)

Efficient information exchange

(Yahoo! JAPAN)

UFJ BOT (LINE)

(LINE)

IBM Watson (2011)

- IBM Watson beat human champions in the US quiz show Jeopardy
 - 200M pages (mainly Wikipedia)
 - 2880 CPU cores
 - Handling of metaphor, slang, and sense of humor

Q: MARILYN MONROE & BRILLO BOXES WERE 2 OF THIS ARTIST'S SUBJECTS

Machine Comprehension

The Stanford Question Answering Dataset (SQuAD) [Rajpurkar+ 2016]

Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent that readily forms compounds (notably oxides) with most elements. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, ...

Q: What is the second most abundant element?

A: helium

SQuAD1.1 Leaderboard https://rajpurkar.github.io/SQuAD-explorer/

Here are the ExactMatch (EM) and F1 scores evaluated on the test set of SQuAD v1.1.

Rank	Model	EM	F1
	Human Performance	82.304	91.221
	Stanford University (Rajpurkar et al. '16)		
	(Rajpurkar et al. 10)		
1	LUKE (single model)	90.202	95.379
Apr 10, 2020	Studio Ousia & NAIST & RIKEN AIP		
2	XLNet (single model)	89.898	95.080
May 21, 2019	Google Brain & CMU		
3 Dec 11, 2019	XLNET-123++ (single model)	89.856	94.903
	MST/EOI		
	http://tia.today		
3	XLNET-123 (single model)	89.646	94.930
Aug 11, 2019	MST/EOI		
4	BERTSP (single model)	88.912	94.584
Sep 25, 2019	NEUKG		
	http://www.techkg.cn/		
4	SpanBERT (single model)	88.839	94.635
Jul 21, 2019	FAIR & UW		
5	BERT+WWM+MT (single model)	88.650	94.393
Jul 03, 2019	Xiaoi Research		
6	Tuned BERT-1seq Large Cased (single model)	87.465	93.294
Jul 21, 2019	FAIR & UW		
7	BERT (ensemble)	87.433	93.160
Oct 05, 2018	Google Al Language		

End-to-end MT [Bahdanau+ 2014]

Neural Chatbot

BERT [Devlin+ 2019]

- Model: Transformer [Vaswani+ 2017]
- Training: two steps (pre-training and fine-tuning)

1. Pre-training

Learn vector representations using a large-scale raw corpus

2. Fine-tuning

Fine-tune parameters for a specific task (e.g., sentiment analysis)

NLP is exciting now!

- 20 years ago
 - Humans wrote grammars and analysis rules
 - Real texts contain many exceptional (ungrammatical) expressions
 - Deadlock between language understanding and knowledge acquisition
- Now
 - Empirical / data-driven
 - No knowledge
 - \rightarrow Big text data (\sim 10-20 years)
 - No method for using knowledge
 - \rightarrow Deep neural networks (\sim 5 years)