COMP20230: Data Structures & Algorithms Lecture 3: Running Time and Analysis

Dr Andrew Hines

Office: E3.13 Science East School of Computer Science University College Dublin

Outline

Today:

- Running time and theoretical analysis
- ullet Big- ${\cal O}$ notation

Take home message

The complexity of an algorithm is given by an analysis of the number of basic operations in the pseudo-code.

Asymptotic analysis for Big- $\mathcal O$ allows us to understand the **worst** case algorithm speed.

Last week

Big Picture

 $Problems \rightarrow D.S. \ \& \ Algorithms \rightarrow Programs$

Streaming Bandwidth Limitations

Attributes of a good algorithm

- Correctness
- Speed
- Efficiency
- Security
- Robustness
- Clarity
- Maintainability

"Does exactly what it says on the tin"

How Correct/Fast/Efficient is an algorithm?

What could we measure?

We could instrument (measure) for many parameters:

- Memory (how low is low memory usage)?
- Time to execute (smallest amount of time measured on a stopwatch?)
- Power consumption?

We will focus on **efficiency** through looking at the **running time** of algorithms

Why do we care?

Facebook scale

Saving even 1% in production is a massive benefit

https://youtu.be/kPR8h4-qZdk

Running Time

- The running time of an algorithm varies with the input and typically grows with the input size
- Average case difficult to determine
- In most of computer science we focus on the worst case running time
 - Easier to analyse
 - Crucial to many applications: what would happen if an autopilot algorithm ran drastically slower for some unforeseen, untested inputs?

How can we measure running time?

Experimentally

- Write a program to implement algorithm
- Run it for different inputs (quantity and variety)
- Measure the actual running times and plot the results: stop-watch, mprof, or debug timestamps

Problems

- You have to implement the algorithm not always practical!
- Your inputs may not entirely test the algorithm
- The running time depends on your computer's hardware and software speed

Theoretical Analysis

- Use a high-level description of the algorithm (e.g. pseudo-code) instead of an implementation
- Takes into account all possible inputs
- Allows us to evaluate speed of an algorithm independent of the hardware or software environment
- By inspecting pseudo-code, we can determine the number of statements executed by an algorithm as a function of the input size

Pseudocode

Question

Why do we use pseudocode?

Pseudocode

Question

Why do we use pseudocode?

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

(Mathematical) Functions in Algorithm Analysis

Constant	1
Logarithmic	logn
Linear	n
N-Log-N	nlogn
Quadratic	n ²
Cubic	n^3
Exponential	2 ⁿ

Primitive Operations

Algorithmic "time" is measured in elementary operations:

- Math (e.g. +, -, *, /, max, min, log, sin, cos, abs, ...)
- Comparisons (==,>,<=,...)
- Function calls and value returns (excluding operations executed within the function)
- Variable assignment
- Variable increment or decrements
- Array allocation
- Array access (e.g. accessing a single element of a Python list by index)
- Creating a new object (careful, object's constructor may have elementary ops too!)

In practice, all of these operations take different amounts of time

For the purpose of algorithm analysis, we assume each of these operations takes the same time: "1 operation"

Estimating Running Time

By inspecting the pseudocode/implementation, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
def find_max(data):

'''Return the max element from a non—empty Python list'''

biggest = data[0]  # initial max val to beat

for val in data  # for each value

if val > biggest:  # is it bigger than current biggest

biggest = val  # found a new biggest

return biggest
```

Step Line: Operations

1: 2 ops, 3: 2 ops, 4: 2n ops, 5: 2n ops, 6: 0 to n ops, 7: 1 op

Running Time gives Growth Rate

Algorithm find_max executes 5n + 5 primitive operations in the worst case, 4n + 5 in the best case.

Define

a = Time taken by the fastest primitive operation

b =Time taken by the slowest primitive operation

Let T(n) be worst-case time of find_max.

Then:

$$a(4n+5) \leq T(n) \leq b(5n+5)$$

Hence, the running time T(n) is bounded by two linear functions.

Growth Rate

Changing the hardware/ software environment

- **Does affect** T(n) by a constant factor, but
- **Does not** alter the growth rate of T(n)

The linear growth rate of the running time T(n) is an intrinsic property of algorithm $find_{\max}$

Growth Rate Factors

The growth rate is not affected by:

- constant factors or
- lower-order terms

Examples

 $10^2 n + 10^5$ is a linear function $10^5 n^2 + 10^8 n$ is a quadratic function

Plotting Running Time

Plotting Running Time

Asymptotic Algorithm Analysis: Big- \mathcal{O}

Asymptotic Algorithm Analysis

Big- $\mathcal O$ notation gives an upper bound to the growth rate of a running time function.

To perform asymptotic analysis we will:

- Find the worst-case number of primitive operations executed as a function of the input size
- \bigcirc We express this function with Big- $\mathcal O$ notation
- Disregard constant factors and lower-order terms when counting primitive operations

Example

We say that algorithm find max "runs in $\mathcal{O}(n)$ time"

Example: Linear Running Time

8: **return** *index* #1 op: return

Algorithm Return the index of the max value in an array

```
    1: function argmax(array):
    Input: an array of size n
    Output: the index of the maximum value
    2: index ← 0 #1 op: assignment
    3: foreach i in [1, n-1] do #2 op per loop
    4: if array[i] > array[index] then #3 ops per loop
    5: index ← i #1 op per loop, sometimes
    6: endif
    7: endfor
```

How many operations if the list has 10 or 10,000 elements?

Number of operations varies proportional to the size of the input

list: 6n + 2

Time in the foreach loop gets longer as the input list grows

Summarising Function Growth

For very large inputs, the growth rate of a function becomes less affected by:

- constant factors
- lower-order terms

Examples

- $10^5 n^2 + 10^8 n$ and n^2 both grow with same slope despite differing constants and lower-order terms
- $10n + 10^5$ and n both grow with same slope as well

$Big-\mathcal{O}$ Notation

Given functions f(n) and g(n), we say that:

$$f(n)$$
 is $\mathcal{O}(g(n))$

if there are positive **constants** c and n_0 such that

$$f(n) \le cg(n)$$
 for all $n \ge n_0$

Example: 2n + 10 is $\mathcal{O}(n)$ 2n + 10 < cn

$$(c-2)n \geq 10$$

$$n \ge 10/(c-2)$$

Pick c = 3 and $n_0 = 10$

$Big-\mathcal{O}$ Notation

Example: n^2 is not $\mathcal{O}(n)$

 $n^2 \le cn$ (divide both sides by n implies) $n \le c$

The above inequality cannot be satisfied because c must be a constant, therefore for any n > c the inequality is false.

Pulling it together: Big- $\mathcal O$ and Growth Rate

- Big-O notation gives an upper bound on the growth rate of a function
- We say "an algorithm is O(g(n))" if the growth rate of the algorithm is **no more than** the growth rate of g(n)
- We saw on the previous slide that n^2 is not O(n)
 - But... n is $O(n^2)$
 - And... n^2 is $O(n^3)$
 - Why?

Pulling it together: Big- $\mathcal O$ and Growth Rate

- Big-O notation gives an upper bound on the growth rate of a function
- We say "an algorithm is O(g(n))" if the growth rate of the algorithm is **no more than** the growth rate of g(n)
- We saw on the previous slide that n^2 is not O(n)
 - But... n is $O(n^2)$
 - And... n^2 is $O(n^3)$
 - Why?

Because Big- \mathcal{O} is an upper bound!

Example 1: Constant Running Time

Algorithm Return the first element of an array

1: function first_element(array):

Input: an array of size nOutput: the first element

2: **return** array[0] #2 ops: return and access array[0]

How many operations are performed in this function?

What if the list has 10 elements? 1,000 elements?

Independent of input size

Always 2 operations performed (index[0] and return)

Example 2: Linear Running Time

Algorithm Return the index of the max value in an array

```
    1: function argmax(array):
    Input: an array of size n
    Output: the index of the maximum value
    2: index ← 0 #1 op: assignment
    3: foreach i in [1, n-1] do #2 op per loop
    4: if array[i] > array[index] then #3 ops per loop
    5: index ← i #1 op per loop, sometimes
    6: endif
```

8: **return** index #1 op: return

How many operations if the list has 10 or 10,000 elements?

Number of operations varies proportional to the size of the input

list: 6n + 2

7: endfor

Time in the foreach loop gets longer as the input list grows

Example 3: Quadratic Running Time

Algorithm Return possible products of the numbers in an array

1: function possible_products(array):

Input: an array of size n

Output: list of all possible products between elements in the list

- 2: $products \leftarrow []$ #1 op: make an empty list
- 3: for i in [0, n-1] do #2 op per loop
- 4: for j in [0, n-1] do #2 op per loop per loop
- 5: products.append(array[i] * array[j])
- 6: #4 ops per loop per loop
- 7: endfor
- 8: endfor
- 9: **return** *products* #1 op: return

How many operations if the list has 10 or 10,000 elements?

Requires about $6n^2 + 2n + 2$ operations

Elements added to list must be multiplied by every other element

Example 4: Logarithmic Running Time

Algorithm Return index of a item in an array

```
1: function binarysearch(myarray, elem):
Input: a sorted array myarray and an element elem
Output: the index of (an) elem in the array or a arbitrary big number
2: low \leftarrow 0
3: high \leftarrow r
    high \leftarrow n - 1
   while (low <= high) do
        mid \leftarrow (low + high) / 2
6:
7:
8:
9:
        if myarray[mid] > elem then
            high \leftarrow mid - 1
            else
            if myarray[mid] < elem then
10:
11:
12:
13:
14:
                 low \leftarrow mid + 1
                 else
                 return mid
              endif
          endif
15\colon return size of myarray + 1 \#to show the elem is not in the array
```

How many operations if the list has 10 or 10,000 elements?

This is fast and requires less than n comparisons: approx. log(n)

Example 4: Logarithmic Running Time

Algorithm Return index of a item in an array

```
1: function binarysearch(myarray, elem):
Input: a sorted array myarray and an element elem
Output: the index of (an) elem in the array or a arbitrary big number
2: low \leftarrow 0
3: high \leftarrow r
    high \leftarrow n - 1
   while (low <= high) do
        mid \leftarrow (low + high) / 2
6:
7:
8:
9:
10:
12:
13:
14:
        if myarray[mid] > elem then
            high \leftarrow mid - 1
            else
            if myarray[mid] < elem then
                 low \leftarrow mid + 1
                 else
                 return mid
             endif
          endif
15\colon return size of myarray + 1 \#to show the elem is not in the array
```

How many operations if the list has 10 or 10,000 elements?

This is fast and requires less than n comparisons: approx. log(n)

Growth in operations as a result of the input not # lines of code that matters!

Big-O Rules

If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.

$\mathsf{Big} ext{-}\mathcal{O}$ Rules

- Forget about lower-order terms
- Forget about constant factors
- Use the smallest possible degree

Example

- It is true that 2n is $\mathcal{O}(n^{50})$ this is not a helpful upper bound
- Instead, we say it is O(n), by discarding the constant factor and using the smallest possible degree

Constants in Algorithm Analysis

Find the number of primitive operations executed as a function (T) of the input size. For the examples yesterday:

firstElementofArray: T(n) = 2

argmax: T(n) = 5n + 2

possible_products: T(n) = 5n2 + n + 3

In the future we can skip counting operations and replace any constants with c since they become irrelevant as n grows:

firstElementofArray: T(n) = c

 $T(n) = c_0 n + c_1$

possible_products: $T(n) = c_0 n^2 + n + c_1$

$Big-\mathcal{O}$ in Algorithm Analysis

Easy to express T in Big- \mathcal{O} by dropping constants and lower-order terms.

```
In Big-\mathcal O notation

firstElementofArray \mathcal O(1)

argmax \mathcal O(n)

possible_products \mathcal O(n^2)
```

The convention for representing T(n) = c in Big- \mathcal{O} is $\mathcal{O}(1)$.