Sprawozdanie Zgłębianie danych

1. Wstęp:

Dla analizy danych była wybrana baza **Drug consumption**.

Baza zawiera w sobie:

1. Zestandaryzowane wartości:

Age (wiek), Gender (płeć), Education (wykształcenie),

Country (kraj), **Ethnicity** (pochodzenie etniczne),

[N, E,O,A, C, I]score - to wartości NEO-FFI-R (neurotyzm,extrawersja, otwartość na doświadczenie,ugodowność, sumienność),

Impulsive – wartość BIS-11 (impulsywność),

SS – wartości ImpSS (poszukiwanie sensacji)

2. Wartości w postaci CL[0..6], które odpowiadają za częstość przyjmowania tego lub innego środka, te środki to:

Alcohol, Amphet, Amyl, Benzos, Caff, Cannabis, Choc, Coke, Crack, Ecstasy, Heroin, Ketamine, Legalh, LSD, Meth, Mushrooms, Nicotine, Semer, VSA

Celem projektu będzie zależenie klasyfikatora którzy bym najliepiej oszacował kto z podanych osób jest osobą mającą skończone wykształcenie wyższe.

2. Przetwarzanie / obróbka / łączenie/ dzielenie baz danych

Rys. 1. Datamin_Data_1

Na rysunku 1 jest przedstawiona funkcja zmieniająca wartości w postaci CL[0..6] na liczby typu float64.

Na rysunku 2 jest przedstawiony zbiór danych do obróbki do którego doszli wszystjie kolumny oprócz kolumn: Age, Gender, Education, Country, Ethnicity, Impulsive, SS

```
scaler = StandardScaler()
scaler.fit(df_to_scale)|

StandardScaler(copy=True, with_mean=True, with_std=True)

scaled_data = scaler.transform(df_to_scale)

pca = PCA(n_components=3)

pca.fit(scaled_data)

PCA(copy=True, iterated_power='auto', n_components=3, random_state=None, svd_solver='auto', tol=0.0, whiten=False)

x_pca = pca.transform(scaled_data)
```

Rys. 3. Datamin_Data_3

Na rysunku 3 jest przedstawione skalowanie i wykorzystanie algorytmu PCA, dla standaryzacji i zmniejszenia danych.

```
scaled_df = pd.DataFrame(x_pca,columns=['Type1','Type2','Type3'])
scaled_df.index +=1
scaled_df.head()
```

	Type1	Type2	Type3
1	-1.879984	1.340416	-0.295996
2	1.272495	-2.390065	-0.168470
3	-1.961490	0.344110	-0.577363
4	-1.236894	0.416153	0.638793
5	-1.282846	0.661236	-0.883872

```
new_df = df.drop(df.columns[start:].tolist(),axis=1)
new_df = new_df.drop(new_df.columns[5:start-2].tolist(),axis=1)|
new_df.head()
```

	Age	Gender	Education	Country	Ethnicity	Impulsive	SS
1	0.49788	0.48246	-0.05921	0.96082	0.12600	-0.21712	-1.18084
2	-0.07854	-0.48246	1.98437	0.96082	-0.31685	-0.71126	-0.21575
3	0.49788	-0.48246	-0.05921	0.96082	-0.31685	-1.37983	0.40148
4	-0.95197	0.48246	1.16365	0.96082	-0.31685	-1.37983	-1.18084
5	0.49788	0.48246	1.98437	0.96082	-0.31685	-0.21712	-0.21575

```
# NEEDDED!
new_df['Id'] = range(1, len(new_df) + 1)
scaled_df['Id'] = range(1, len(scaled_df) + 1)
```

Rys. 4. Datamin_Data_4

Na rysunku 4 są przedstawione zeskanowane dane z zredukowaną wielowymiarowością danych (scaled_df) i dane z które były przeskalowywane na początku (new_df), także dodajemy kolumnę dla identyfikacji rekordów.

```
df = pd.merge(new_df, scaled_df, how='outer', on=['Id'])
print('Is it Working? {}'.format(df.isnull().values.any() == False))
df = df.drop('Id',axis=1)|
Is it Working? True
```

Rys. 5. Datamin_Data_5

Na rysunku 5 jest przedstawione łączenie danych zależnie od identyfikatora, a potem usunięcie go. Także sprawdzenie czy są wartości typu brak danych.

```
def addClassByEducation():
    try:
        classOfEdu = []
        for i in range(len(df.Age)):
            #Education
            if analis by == 'Education':
                 if round(df.iloc[i]['Education'],5) > -0.05921:
                     #df.iloc[i]['Class'] = 1
                     #print(1)
                     classOfEdu.append(1)
                 elif round(df.iloc[i]['Education'],5) <= -0.05921:</pre>
                     classOfEdu.append(0)
                     #print(0)
                     #df.iloc[i]['Class'] = 0
                 else:
                     classOfEdu.append(None)
            elif analis by == 'Age':
                 if round(df.iloc[i]['Age'],5) > 0:
                     #df.iloc[i]['Class'] = 1
                     #print(1)
                     classOfEdu.append(1)
                 elif round(df.iloc[i]['Age'],5) <= 0:</pre>
                     classOfEdu.append(0)
                     #print(0)
                     #df.iloc[i]['Class'] = 0
                else:
                     classOfEdu.append(None)
        df['Class'] = classOfEdu
    except IndexError:
                print('Data already changed')
    return None
addClassByEducation()
```

Rys. 6. Datamin_Data_6

Na rysunku 6 jest przedstawione dodanie klasyfikacji do zbioru danych w zależności od parametru analizy.

3. Klasyfikatory i ich ewaluacja

1. Podział danych na zbiory

2. Gaussian Naive Bayes

Gaussian Naive Bayes ¶

```
from sklearn.naive bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X train, y train)
GaussianNB(priors=None, var smoothing=1e-09)
gnb predictions = gnb.predict(X test)
print(classification_report(y_test,gnb_predictions))
                          recall f1-score
              precision
                                              support
           0
                  0.72
                             0.68
                                       0.70
                                                  344
           1
                  0.63
                             0.67
                                       0.65
                                                  279
  micro avg
                  0.68
                             0.68
                                       0.68
                                                  623
                            0.68
                                      0.68
                                                  623
  macro avg
                  0.68
weighted avg
                  0.68
                             0.68
                                       0.68
                                                  623
print(confusion matrix(y test, gnb predictions))
[[235 109]
[ 91 188]]
```

Rys. 7. Datamin_3_NB

3. Decision tree

Decision tree

```
dtree = DecisionTreeClassifier()
```

```
dtree.fit(X_train,y_train)
```

```
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best')
```

```
dtree predictions = dtree.predict(X test)
```

```
print(classification report(y test,dtree predictions))
```

		precision	recall	f1-score	support
	0	0.64	0.63	0.63	344
	1	0.55	0.56	0.56	279
micro	avg	0.60	0.60	0.60	623
macro	avg	0.59	0.60	0.60	623
weighted	avg	0.60	0.60	0.60	623

```
print(confusion matrix(y test,dtree predictions))
```

```
[[216 128]
[122 157]]
```

4. Random forest

Random forest

```
rfc = RandomForestClassifier(n_estimators=400)
```

```
rfc.fit(X_train,y_train)
```

```
rfc_predictions = rfc.predict(X_test)
```

```
print(classification report(y test,rfc predictions))
```

		precision	recall	f1-score	support
	0	0.71	0.74	0.72 0.65	344 279
		0.00	0.63	0.03	213
micro	avg	0.69	0.69	0.69	623
macro	avg	0.69	0.68	0.69	623
weighted	avg	0.69	0.69	0.69	623

```
print(confusion_matrix(y_test,rfc_predictions))
```

```
[[254 90]
[103 176]]
```

5. KNN

KNN

```
knn = KNeighborsClassifier(n neighbors=1)
knn.fit(X train, y train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
          metric params=None, n jobs=None, n neighbors=1, p=2,
          weights='uniform')
knn predictions = knn.predict(X test)
print(confusion matrix(y test,knn predictions))
[[230 114]
[117 162]]
print(classification_report(y_test,knn_predictions))
             precision
                         recall f1-score
                                             support
                  0.66
                           0.67
                                     0.67
                                                 344
          0
          1
                  0.59
                            0.58
                                      0.58
                                                 279
                            0.63
                                      0.63
                                                 623
                  0.63
  micro avq
                  0.62
                            0.62
                                      0.62
                                                 623
  macro avg
                                      0.63
                  0.63
                            0.63
                                                 623
weighted avg
```

6. Acurasy compare

Acurasy compare

```
acur_comp = pd.DataFrame()
alg = [gnb, dtree, rfc, knn]
algName = ['gnb', 'dtree', 'rfc', 'knn']
for i in range(4):
    acur_comp.loc[i,'name'] = algName[i]
    acur_comp.loc[i,'test'] = round(alg[i].score(X_test,y_test),4)
```

```
acur_comp['test'].plot.density(lw=1,ls='--',c='red')
```

<matplotlib.axes._subplots.AxesSubplot at 0x1f61e320>

3.1 Odpowiedzi

1. Rozumienie macierzy błędu

Klasa testowa

		pozytywna	negatywna
Klasa	pozytywna	Prawdziwie pozytywna (TP)	Fałszywie pozytywna (FP)
prawidłowa	negatywna	Fałszywie negatywna (FN)	Prawdziwie negatywna (TN)

2. Obliczenie TPR(recall, sensitivity)i FPR(fall-out, false alarm)

3. Podać wzory dla TPR i FPR są miary FNR i TNR.

sensitivity, recall, hit rate, or true positive rate (TPR)
$$TPR = \frac{TP}{P} = \frac{TP}{TP+FN} = 1 - FNR$$
 specificity, selectivity or true negative rate (TNR)
$$TNR = \frac{TN}{N} = \frac{TN}{TN+FP} = 1 - FPR$$
 miss rate or false negative rate (FNR)
$$FNR = \frac{FN}{P} = \frac{FN}{FN+TP} = 1 - TPR$$
 fall-out or false positive rate (FPR)
$$FPR = \frac{FP}{N} = \frac{FP}{FP+TN} = 1 - TNR$$

- 4. Błąd pierwszego i drugiego rodzaju
 Błąd pierwszego rodzaju to wartość **FP** w macierzy błędów
 Błąd drugiego rodzaju to wartość **FN** w macierzy błędów
 Im więcej błędów pierwszego rodzaju tym więcej jest wartość TPR
 Im więcej błędów drugiego rodzaju tym więcej jest wartość FNR
- 5. W zależności od systemu w którym działamy Jeżeli to system dla produkcji opakowania to lepiej jest popełnić błąd pierwszego rodzaju (gzie pozytywna to nie dobra jakość w produkcji), jeżeli to system medyczny to błąd drugiego rodzaju (gzie pozytywna to pacjent jest chory)

6. Dla czterech klasyfikatorów obliczyłem parę (FPR,TPR) i zaznaczyęm jako punkt na wykresie

```
    gnb 0.680233 0.322581
    dtree 0.654070 0.437276
    rfc 0.750000 0.376344
    knn 0.668605 0.419355
```

```
acur_comp.drop(['test'],axis=1).plot.scatter('FPR','TPR')|
<matplotlib.axes. subplots.AxesSubplot at 0x21f6f358>
```


Najbliżej idealnego jest Random Forest być może GaussianNB

4. Grupowanie metodą k-średnich

K-means

```
kmeans = []
for i in range(3):
   kmeans.append(KMeans(n clusters=(i+2)))
   kmeans[i].fit(X)
print(confusion_matrix(y,kmeans[0].labels_))
print(classification report(y,kmeans[0].labels ))
[[603 249]
 [454 579]]
            precision recall f1-score support
                 0.57
                          0.71
                                   0.63
                                             852
          0
          1
                 0.70
                          0.56
                                   0.62
                                             1033
                 0.63
                          0.63
                                   0.63
  micro avg
                                            1885
  macro avq
                0.63
                          0.63
                                   0.63
                                            1885
                 0.64
                          0.63
                                   0.63
weighted avg
                                            1885
```

Na rysunku jest próba wykorzystania algorytmy k-means, jako klasyfikatora dla zadania. Obliczone wartości macierzy błędu i dokładność.

```
f, (ax, ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=4)
ax.set_title("Original")
ax.scatter(df["Type1"],df["Type2"],c=df["Class"],cmap='rainbow')|
ax1.set_title('K Means 2')
ax1.scatter(df["Type1"],df["Type2"],c=kmeans[0].labels_,cmap='rainbow')
ax2.set_title('K Means 3')
ax2.scatter(df["Type1"],df["Type2"],c=kmeans[1].labels_,cmap='rainbow')
ax3.set_title('K Means 4')
ax3.scatter(df["Type1"],df["Type2"],c=kmeans[2].labels_,cmap='rainbow')
```

<matplotlib.collections.PathCollection at 0x18c41d30>

Graficzna reprezentacja działania algorytmu K-means

6.Badania dodatkowe

1. Wykresy

Gender

0.482460000000000006

200

-0.482460000000000006

1.82213 2.59171

100

Age

		2.Badania o w	<i>r</i> iek			
Klasifikator	Macierz błędu	<mark>Dokładność</mark>				
			precision	recall	f1-score	support
		0	0.80	0.67	0.73	392
C ' NT '		1	0.56	0.71	0.63	231
Gaussian Naive	[[264 128]					
Bayes	[66 165]]	micro avg	0.69	0.69		623
- J	[00 100]]	macro avg	0.68	0.69	0.68	623
		weighted avg	0.71	0.69	0.69	623
			precision	recall	f1-score	support
		0	0.73	0.67	0.70	392
		1	0.51	0.58	0.54	231
Decision tree	[[264 128]					
בינוטוטוו נוכנ	[98 133]]	micro avg	0.64	0.64	0.64	623
		macro avg	0.62	0.62	0.62	623
		weighted avg	0.65	0.64	0.64	623

			precision	recall	f1-score	support
		0	0.78			392
		1	0.57	0.66	0.61	231
Random forest	[[277 115]	micro avg	0.69	0.69	0.69	623
	[78 153]]	macro avg				623
		weighted avg	0.70	0.69	0.69	623
			precision	recall	f1-score	support
		0	0.74	0.68	0.71	392
	[[267 125]	1	0.52	0.60	0.56	231
KNN	[93 138]]	micro avg	0.65	0.65	0.65	623
		macro avg				623
		weighted avg				623
			precision	recall	f1-score	support
		0	0.56	0.77	0.65	761
	[[589 172]	1	0.79	0.58	0.67	1124
K-means	[468 656]]	micro avg	0.66	0.66	0.66	1885
		macro avg				1885
		weighted avg		0.66	0.66	1885
		gca avg	0.70	5.00	0.00	1000

Acurasy compare

	name	TPR	FPR
0	gnb	0.673469	0.285714
1	dtree	0.673469	0.424242
2	rfc	0.706633	0.337662
3	knn	0.681122	0.402597

7.Wyniki

Dało się znaleźć odpowiedzi na interesujące pytania. Najlepsze wyniku pokazały algorytmy Random Forest i Gaussian Naive Bias. To było zaskakująco, ponieważ przy takich danych które mieliśmy trudno było-bym dla człowieka oszacować wartość wyniku patrosząc na wykresy danych.