# Курсовая работа по электротехнике. Часть 2 Новоженов П.А. ЭН-26

#### Цель работы

Исследование сложной цепи синусоидального тока посредством комплексных чисел и векторных диаграмм

#### Рассчет цепи

$$\omega = 2\pi f = 18840 \frac{\text{рад}}{c}$$

$$Z_S = \sqrt{(\omega L - \frac{1}{\omega C})^2} = 18840 \cdot 0.6 \cdot 10^{-3} - \frac{1}{18840 \cdot 5 \cdot 10^{-6}} = 0.69 \text{ Om}$$

$$\overline{Z_S} = j(\omega L - \frac{1}{\omega C}) = 0.69j = 0.69e^{i90^{\circ} \text{ Om}}$$

$$\overline{Y_{P_2}} = \frac{1}{R} + j\frac{1}{\omega L} = 0.16 + 0.26j = 0.31e^{i58^{\circ}} \text{ Cm}$$

$$\overline{Y_{P_3}} = \frac{1}{R} + j\omega C = 0.1 + 0.09j = 0.13e^{i41^{\circ}} \text{ Cm}$$

$$\overline{Z_{P_2}} = \frac{1}{\overline{Y_{P_2}}} = 3.28e^{-58^{\circ}i} \text{ Om}$$

$$\overline{Z_{P_2}} = \frac{1}{\overline{Y_{P_2}}} = 7.43e^{-41^{\circ}i} \text{ Om}$$

Найдем суммарное сопротивление  $P_2$  и  $P_3$ :

$$Y_P=\overline{Y_{P_2}}+\overline{Y_{P_3}}=0.31e^{i58^\circ}+0.13e^{i83^\circ}=0.44e^{i53^\circ}$$
 Cm 
$$Z_P=\frac{1}{\overline{Y_P}}=2.29e^{-53^\circ i}$$
 Om

Найдем сопротивление нагрузки:

$$\overline{Z_o} = Z_P + Z_S = 2.29e^{-53^{\circ}i} + 0.69e^{i90^{\circ}} = 1.79e^{-40^{\circ}i}$$
 Om

Найдем:

$$\overline{I_{1}} = \frac{\overline{E}}{\overline{Z_{o}}} = \frac{8e^{i0^{\circ}}}{1.79e^{-40^{\circ}i}} = 4.48e^{40^{\circ}i} \text{ A}$$

$$\overline{U_{1}} = \overline{I_{1}} \cdot \overline{Z_{S}} = 3.09e^{-49^{\circ}i} \text{ B}$$

$$\overline{U_{2}} = \overline{I_{1}} \cdot \overline{Z_{P}} = 10.26e^{-13^{\circ}i} \text{ B}$$

$$\overline{I_{2}} = \frac{\overline{U_{2}}}{\overline{Z_{2}}} = 3.13e^{45^{\circ}i} \text{ A}$$

$$\overline{I_{3}} = \frac{\overline{U_{2}}}{\overline{Z_{3}}} = 1.38e^{28^{\circ}i} \text{ A}$$

$$\varphi_{1} = 90^{\circ}$$

$$\varphi_2 = asin(\frac{X_{P_2}}{Z_{P_2}}) = 57^{\circ}$$
 
$$\varphi_3 = asin(\frac{X_{P_3}}{Z_{P_3}}) = 43^{\circ}$$
 
$$\varphi = asin(\frac{X}{Z}) = 57^{\circ}$$

Изобразим векторную диаграмму:



### Результат моделирования



По результату моделирования заполним таблицу:

|            | F, Гц                               | E, B       | ф, град | U1, B | I1, A | ф1, град   | U2, B | I2, A | φ2, град | U3, B       | I3, A | ф3, град |
|------------|-------------------------------------|------------|---------|-------|-------|------------|-------|-------|----------|-------------|-------|----------|
| Рассчитано | 3000                                | 8          | 57      | 2.18  | 3.16  | 90         | 7.25  | 2.21  | 57       | 7.25        | 0.98  | 43       |
| Измерено   | 3000                                | 8          | 41      | 1.695 | 2.201 | 90         | 6.961 | 2.176 | 57       | 6.961       | 0.958 | 43       |
|            | 6000                                | 8          | 82      | 8.18  | 0.47  | 90         | 1.724 | 0.367 | 39       | 1.724       | 0.369 | 62       |
| По данным  | Полные сопротивления двухполюсников |            |         |       |       |            |       |       |          |             |       |          |
|            |                                     | Z1 = U1/I1 |         |       |       | Z2 = U2/I2 |       |       |          | Z3 = U3/I3  |       |          |
|            | 3000                                | 0.77       |         |       | ]     | 3.2<br>4.7 |       |       |          | 7.2<br>4.67 |       |          |
|            | 6000                                | 17.4       |         |       |       |            |       |       |          |             |       |          |

Изобразим треугольники сопротивлений. Для сопротивления  $Z_1$  при f=6000 я не стал изображать треугольник сопротивления, так как он представляет собой прямую, причем сильно выбивающуюся из размеров остальных треугольников.



## Вывод работы

В ходе данной работы мы исследовали сложную цепь синусоидального тока посредством комплексных чисел и векторных диаграмм.