Anleitung zum Zeichnen einer Schaltung mit Flip-Flops

Simon Gloser

May 19, 2017

Contents

1	Automaten Zeichen	2
	1.1 Beispiel	2
2	Übergangstabelle (Übergangsmatrix) anlegen	3
	2.1 Beispiel	3
3	Anzahl der Zustandsvariblen (z) bestimmen	3
	3.1 Beispiel	3
4	Wertetabelle anlegen	4
	4.1 Beispiel	4
5	KV - Diagramm zeichnen	4
	5.1 Beispiel	4

Beispiel Aufgabe:

Es soll ein möglichst einfacher, getakteter Automat mit <u>einer</u> Eingangs- und <u>zwei</u> Ausgangsvariablen entworfen werden, der einen 2-bit modulo-4 Zähler inkrementiert, wenn am Eingang während eines Taktes 1 anliegt. Der Zählwert soll in den Ausgangsvariablen als Binärzahl ausgegeben werden.

1 Automaten Zeichen

Als erstes muss ein Automat gezeichnet werden.

1.1 Beispiel

Siehe Bild 1.

Figure 1: Automat

2 Übergangstabelle (Übergangsmatrix) anlegen

2.1 Beispiel

Table 1: Zustandsübergangstabelle \Übergangsmatrix

Zustände\Eingaben	0	1
A	A/00	B/01
В	B/01	C/10
С	C/10	D/11
D	D/11	A/00

3 Anzahl der Zustandsvariblen (z) bestimmen

Jetzt muss die Menge der Zustansvariablen (z) bestimmt werden. Die ergeben sich aus der Formel:

 $2^{AnzahlderZustandsvariablen}=$ Anzahl der Zustände des Automaten

Falls man es nicht sofort sieht.

$$2^{AnzahlderZustandsvariablen} = \text{Anzahl der Zustände des Automaten} | ln$$
 $ln(2^{AnzahlderZustandsvariablen}) = ln(\text{Anzahl der Zustände des Automaten})$
Anzahl der Zustandsvariablen $*ln(2) = ln(\text{Anzahl der Zustände des Automaten}) | : ln(2)$
Anzahl der Zustandsvariablen $= \frac{ln(\text{Anzahl der Zustände des Automaten})}{ln(2)}$

Sollte eine Kommazahl rauskommen, dann zur nächsten ganzen Zahl aufrunden.

3.1 Beispiel

Im Diagramm des Automaten sehen wir vier Zustände.

$$2^{Anzahlder Zustandsvariablen} = 4 \quad |ln|$$

$$ln(2^{Anzahlder Zustandsvariablen}) = ln(4)$$
 Anzahl der Zustandsvariablen $*ln(2) = ln(4) \quad |:ln(2)|$ Anzahl der Zustandsvariablen $= \frac{ln(4)}{ln(2)}$ Anzahl der Zustandsvariablen $= 2$

4 Wertetabelle anlegen

Table 2: Wertetabelle allgemein

$x_n \dots x_0 z_n \dots z_0$	$z_n^+ \dots z_0^+ y_n \dots y_0$
Werte wie gewohnt eintragen 000 111	Werte aus der Übergangstabelle oder Automaten nehmen

4.1 Beispiel

Table 3: Wertetabelle									
X	z_1	z_0	z_1^+	z_0^+	y_1	y_0			
0	0	0	0	0	0	0			
0	0	1	0	1	0	1			
0	1	0	1	0	1	0			
0	1	1	1	1	1	1			
1	0	0	0	1	0	1			
1	0	1	1	0	1	0			
1	1	0	1	1	1	1			
1	1	1	0	0	0	0			

5 KV - Diagramm zeichnen

5.1 Beispiel

