

# Mastering RAG

## **RAG Developer Stack**

















Weaviate







## 1. Large Language Models (LLMs)

RAG uses pre-trained LLMs for text generation. Selecting the right model depends on latency, cost, and accuracy requirements.

#### **Popular LLMs for RAG:**

- OpenAl GPT-4.5 / GPT-4o (via API)
- Mistral / Mixtral
- Meta LLaMA 3.3 / 3.2
- Anthropic Claude 3.7
- Google Gemini 2.0
- Falcon / Bloom / Pythia
- Command R+ (Cohere)

Tip: Choose open-source LLMs for privacy & on-premise deployment.



## 2. Retrieval Mechanisms

Retrieval is a crucial step in RAG, responsible for fetching relevant information before passing it to the LLM.

#### **Types of Retrieval:**

#### **Dense Retrieval**

- Uses neural embeddings to find semantically relevant documents.
- Example: Dense Passage Retrieval (DPR), ColBERT, Contriever

#### Sparse Retrieval (BM25 / TF-IDF)

 Traditional search method based on term frequency & relevance scoring.

#### **Hybrid Retrieval (Dense + Sparse)**

 Combines BM25 & Vector Search for better recall & precision.



#### **Retrieval Frameworks:**

- FAISS (Facebook AI Similarity Search)
- ChromaDB (lightweight & fast)
- Weaviate (open-source & scalable)
- Pinecone (fully managed vector DB)
- Qdrant (Al-native vector database and a semantic search engine)
- Milvus (high-speed retrieval)



## 3. Vector Embeddings

Documents & queries are converted into highdimensional vectors before retrieval.



#### **Popular Embedding Models:**

- OpenAl's text-embedding-3-large
- Hugging Face Sentence Transformers (e.g., BERT, MiniLM) Cohere Embed Models
- BAAI's BGE Embeddings
- Tip: Choose open-source LLMs for privacy & on-premise deployment.

## ✓ Analytics Vidhya

## 4. Chunking & Indexing

To improve retrieval efficiency, documents must be chunked & indexed effectively.

#### **Chunking Strategies:**

- Fixed-Length Chunks (e.g., 512 or 1024 tokens)
- Recursive Character Splitting (based on paragraph boundaries)
- Sliding Window (overlapping chunks for better context)

#### **Indexing Frameworks:**

- LlamaIndex (Formerly GPT Index)
- Haystack (deepset Al)
- LangChain Document Loaders & Splitters



## 5. Re-Ranking



Re-ranking **improves retrieval results** by scoring and ordering retrieved documents before feeding them to the LLM.

#### **Re-Ranking Models:**

- ncoders (e.g., MS-MARCO, Cohere Reranker)
- ColBERT (Late Interaction Ranking)
- <u>bge-m3</u>
- mxbai-embed-large-v1
- Hybrid Rankers (BM25 + Neural Re-rankers)



### 6. Orchestration & Frameworks

To simplify RAG workflows, frameworks help in retrieval, embedding, and response generation.

#### **Best RAG Frameworks:**

- LangChain (Modular, widely used)
- LlamaIndex (Efficient document indexing & retrieval)
- Haystack (Scalable, for production RAG apps)
- FastRAG (Lightweight & optimized)



# 7. Query Processing & Prompt Engineering

The quality of the retrieval query directly affects RAG output.

#### **Techniques for Query Optimization:**

- Query Expansion (Add synonyms & related terms)
- Rewriting Queries (Using LLMs to generate better search queries)
- Contextualization (Retain user history for relevance)

#### **Prompt Engineering Methods:**

- Chain-of-Thought (CoT) (For reasoning-heavy tasks)
- Retrieval-Augmented Prompts (Dynamically inserting context)
- Few-Shot Learning (Providing examples for better outputs)



## 8. Caching for Speed Optimization

Since retrieval & generation can be computationally expensive, caching is used to speed up responses.

#### **Caching Strategies:**

- Semantic Caching (Store past queries & responses)
- Vector Index Caching (Avoid redundant retrieval)
- LLM API Response Caching (Reduce token cost)

#### **Tools for Caching:**

- Redis (for fast in-memory caching)
- LlamaIndex Hybrid Cache
- Local Disk-Based Caching (via SQLite, Pickle)



## 9. Evaluation & Metrics

Measuring RAG system performance ensures accuracy & efficiency.

#### **Key Evaluation Metrics:**

- Retrieval Precision & Recall (Relevance of retrieved documents)
- Hallucination Rate (False information in generated responses)
- Latency (Time taken for retrieval + generation)
- Token Efficiency (Cost-effective context usage)



#### **Evaluation Frameworks:**

- EVALRAG (by Hugging Face)
- DeepEval
- Arize Al Phoenix
- LlamaIndex Evaluator
- OpenAl's EvalGPT
- Retrieval-Augmented Benchmarking Tools (RAGAS)



## 10. Deployment & Scalability

RAG applications need to be scalable & optimized for production use.

#### **Deployment Options:**

- Cloud-Based (AWS, GCP, Azure)
- On-Premises (Using Hugging Face Models + FAISS)
- Hybrid (Edge + Cloud for latency optimization)

#### **Scaling Strategies:**

- Batch Processing (Pre-compute embeddings)
- Asynchronous Retrieval (Parallel requests for speed-up)
- Model Distillation (Use smaller LLMs for costefficiency)