

Teorema

TEOREMA DE TAYLOR Sea f(z) analítica dentro y sobre una curva cerrada simple C. Sean a y a+h dos puntos dentro de C. Entonces

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^n}{n!}f^n(a) + \dots$$

o escribiendo z = a + h, h = z - a,

$$f(z) = f(a) + f'(a)(z - a)\frac{f''(a)}{2!}(z - a)^2 + \dots + \frac{f(n)(a)}{n!}(z - a)^n + \dots$$

Este es el llamado teorema de Taylor. La región de convergencia de la serie está dada por |z-a| < R, donde el radio de convergencia R es la distancia desde a a la singularidad más próxima de la función f(z) Sobre |z-a|=R, la serie puede converger o no. Para |z-a|>R, la serie diverge. Si a=0, la serie que resulta se llama una serie de Maclaurin.

SERIES EN EL CAMPO COMPLEJO

SERIE DE TAYLOR, MACLAURIN

Teorema

TEOREMA DE TAYLOR Sea f(z) analítica dentro y sobre una curva cerrada simple C. Sean a y a+h dos puntos dentro de C. Entonces

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^n}{n!}f^n(a) + \dots$$

o escribiendo z = a + h, h = z - a,

$$f(z) = f(a) + f'(a)(z - a)\frac{f''(a)}{2!}(z - a)^2 + \dots + \frac{f(n)(a)}{n!}(z - a)^n + \dots$$

Este es el llamado teorema de Taylor. La región de convergencia de la serie está dada por |z-a| < R, donde el radio de convergencia R es la distancia desde a a la singularidad más próxima de la función f(z) Sobre |z-a|=R, la serie puede converger o no. Para |z-a|>R, la serie diverge. Si a=0, la serie que resulta se llama una serie de Maclaurin.

SERIES EN EL CAMPO COMPLEJO

SERIE DE LAURENT

Teorema

TEOREMA DE LAURENT Sean C_1 y C_2 círculos concéntricos de radios R_1 y R_2 respectivamente y centro en a. Suponga que f(z) es unívoca y analítica sobre C_1 y C_2 en la región sombreada R (también llamada anillo) entre C_1 y C_2 . Sea a+h un punto en R. Entonces tenemos

$$f(a+h) = a_0 + a_1h + a_2h^2 + \cdots + \frac{a_{-1}}{h} + \frac{a_{-2}}{h^2} + \frac{a_{-3}}{h^3} + \cdots$$

$$donde \quad a_n = \frac{1}{2\pi j} \oint_{C_1} \frac{f(z)}{(z-a)^{n+1}} dz \quad n = 0, 1, 2, \dots$$

$$a_{-n} = \frac{1}{2\pi j} \oint_{C_2} (z-a)^{n-1} f(z) dz \quad n = 1, 2, 3, \dots$$

 C_1 y C_2 se recorren en la dirección positiva respecto a sus interiores. La parte $a_0+a_1(z-a)+a_2(z-a)^2+\cdots$ se llama la parte analítica de la serie de laurent, mientras que el resto de la serie que consiste de las potencias negatias de (z-a) se llama la parte principal. Si la parte principal es cero, la serie de Laurent se reduce a la serie de Taylor.

CLASIFICACIÓN DE SINGULARIDADES

CLASIFICACIÓN DE SINGULARIDADES

ullet Polos. Si f(z) la parte principal tiene solamente un número finito de términos dados por

$$\frac{a_{-1}}{z-a} + \frac{a_{-2}}{(z-a)^2} + \dots + \frac{a_{n1}}{(z-a)^n}$$

donde $a_{-n} \neq 0$, entonces z = a se llama un polo de orden n. Si n = 1, se llama un polo simple.

② Singularidades evitables. Si una función unívoca f(z) no está definida en z=a pero

$$\lim_{z \to a} f(z)$$

existe, entonces z=a es una singularidad evitable. En tal caso definimos f(z) en z=a como igual al

$$\lim_{z \to a} f(z)$$

3 Singularidades esenciales. Si f(z) es unívoca, entonces cualquier singularidad que no es ni un polo ni una singularidad evitable se llama una singularidad esencial. Si z=a es una singularidad esencial de f(z), la parte principal del desarrollo de Laurent tiene infinitos términos.

CLASIFICACIÓN DE SINGULARIDADES

CLASIFICACIÓN DE SINGULARIDADES

ullet Polos. Si f(z) la parte principal tiene solamente un número finito de términos dados por

$$\frac{a_{-1}}{z-a} + \frac{a_{-2}}{(z-a)^2} + \dots + \frac{a_{n1}}{(z-a)^n}$$

donde $a_{-n} \neq 0$, entonces z = a se llama un polo de orden n. Si n = 1, se llama un polo simple.

② Singularidades evitables. Si una función unívoca f(z) no está definida en z=a pero

$$\lim_{z \to a} f(z)$$

existe, entonces z=a es una singularidad evitable. En tal caso definimos f(z) en z=a como igual al

$$\lim_{z \to a} f(z)$$

3 Singularidades esenciales. Si f(z) es unívoca, entonces cualquier singularidad que no es ni un polo ni una singularidad evitable se llama una singularidad esencial. Si z=a es una singularidad esencial de f(z), la parte principal del desarrollo de Laurent tiene infinitos términos.

CLASIFICACIÓN DE SINGULARIDADES

CLASIFICACIÓN DE SINGULARIDADES

- **9 Puntos de ramificación**. Un punto $z=z_0$ se llama un punto de ramificación de la función multívoca f(z) si las ramas de f(z) se intercambian cuando z describe un camino cerrado alrededor de z_0 . Puesto que cada una de las ramas de una función multívoca es analítica. todos los teoremas para funciones analíticas, en particular el teorema de Taylor.
- ② Singularidades en el infinito. Haciendo $z=\frac{1}{w}$ en f(z), obtenemos la función f(1/w)=F(w). Entonces la singularidad en $z=\infty$ (el punto en el infinito) está definida como la misma de F(w) en w=0.

RESIDUOS

RESIDUOS

Residuos

Sea f(z) unívoca y analítica dentro y sobre el círculo C excepto en su centro, el punto z=a. Entonces, f(z) tiene una serie de Laurent en torno a z=a dada por

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n = a_0 + a_1 (z-a) + a_2 (z-a)^2 + \dots + \frac{a_{-1}}{z-a} + \frac{a_{-2}}{(z-a)^2} + \dots$$

donde

$$a_n = \frac{1}{2\pi j} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz \quad n = 0, \pm 1, \pm 2, \dots$$

Residuos

CALCULO DE RESIDUOS

CALCULO DE RESIDUOS

Calculo de residuos

En elm caso z=a es un polo de orden k existe una fórmula simple para a_{-1} dada por

$$a_{-1} = \lim_{z \to a} \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} (z-a)^k f(z)$$

TEOREMA DE LOS RESIDUOS

TEOREMA DE LOS RESIDUOS

Sea f(z) unívoca y analítica dentro y sobre una curva simple cerrada C excepto en las singularidades a,b,c,\ldots interiores a C con residuos dados por $a_{-1},b_{-1},c_{-1},\ldots$ Entonces el teorema del residuo dice que

$$\oint_C f(z)dz = 2\pi j(a_{-1} + b_{-1} + c_{-1} + \cdots)$$