Practice sheet of Induction & Recursion

1. Using the principle of mathematical induction, prove that

$$1^2 + 2^2 + 3^2 + \dots + n^2 = (1/6)\{n(n+1)(2n+1)\}$$
 for all $n \in \mathbb{N}$.

2. Using the principle of mathematical induction, prove that

$$1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2n - 1)(2n + 1) = (1/3)\{n(4n^2 + 6n - 1).$$

- **3**. By induction prove that 3ⁿ 1 is divisible by 2 and is valid for all positive integers.
- **4**. By induction prove that n^2 3n + 4 is even and valid for all positive integers.
- 5. Show that $n! > 3^n$ for $n \ge 7$.
- **6**. Use the Principle of Mathematical Induction to verify that, for n any positive integer, $6^n 1$ is divisible by 5.
- 7. Check that $a_n = 2^n + 1$ is a solution to the recurrence relation $a_n = 2a_{n-1} 1$ with $a_1 = 3$.
- **8**. Determine the recursive formula for the sequence 4,8,16,32,64, 128,....?
- **9**. Use iteration to solve the recurrence relation $a_n = a_{n-1} + n$ with $a_n = 4$.
- 10. Solve the recurrence relation $a_n = 7a_{n-1} 10a_{n-2}$ With $a_0 = 2$ and $a_1 = 3$.
- 11. Solve the recurrence relation $a_n = 6a_{n-1} 9a_{n-2}$ with initial conditions $a_0 = 1$ and $a_1 = 4$.
- 12. Solve the recurrence relation Fn=10Fn-1-25Fn-2 where F0=3 and F1=17
- 13. Provide a recursive definition for f(n) = n!
- **14**. Determine T(2), T(3), T(4), and T(5), if T(n) is recursively defined by T(0) = 2, T(1) = 2, and T(n) = T(n-1) + 3T(n-2) + 4.
- 15. One of the most famous recursive definitions is for the Fibonacci sequence f0, f1, f2,

Base Case
$$f0 = 0$$
, $f1 = 1$.

Recursive Case $(n \ge 2)$ fn = fn-1 + fn-2.

Compute the $f2, f3, \ldots, f10$.