Vision AI for Wound Identification & Recommended Treatment

Wound Misidentification

misdiagnosed by healthcare professionals

Wounds Initailly

Cost of Misdiagnosis and Mistreatment

- Misdiagnosed wounds account for over \$2 billion annually in additional U.S. healthcare spending
- Chronic wounds cost the U.S. healthcare system more than \$25 billion per year
- Longer recovery times: Delayed treatment increases the risk of infection leading to prolonged hospital stays

Impact & Benefits

Real-time analysis for quick decisionmaking.

Reduces human error and ensures consistent assessments

Faster recovery times and reduced complications

Competitor & Real World

"Ping An Good Doctor already has a platform and a booth in China."

Train Data and Model

From Kaggle

Data Explorer

Version 1 (14.78 MB)

- ▼ □ Wound_dataset
 - Abrasions
 - Bruises
 - Burns
 - Cut
 - Ingrown_nails
 - Laceration
 - Stab_wound

Total: 2940 Images

```
Model Architecture
 ----- #
input_tensor = Input(shape=(img_height, img_width, 3))
x = Conv2D(32, (3, 3), activation="relu")(input_tensor)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(64, (3, 3), activation="relu")(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(128, (3, 3), activation="relu")(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
v = Flatten()(v)
feature_vector = Dense(2048, activation="relu", name="feature_output")(x)
class predictions = Dense(num classes, activation="softmax", name="class output")(feature vector
model = Model(inputs=input_tensor, outputs=[class_predictions, feature_vector])
  Model Compile
 ----- #
model.compile(
   optimizer=Adam(learning_rate=0.001),
   loss={"class output": "categorical crossentropy", "feature output": "mean squared error"},
   metrics={"class_output": "accuracy"}
```

Prediction Result

Classificati	on Report:			
	precision	recall	f1-score	support
Abrasions	0.88	0.88	0.88	16
Bruises	0.95	0.88	0.91	24
Burns	1.00	0.92	0.96	13
Cut	0.89	0.80	0.84	10
Diabetic Wounds	0.75	0.78	0.77	46
Laseration	0.73	0.92	0.81	12
Normal	1.00	1.00	1.00	20
Pressure Wounds	0.85	0.67	0.75	60
Surgical Wounds	0.76	0.60	0.67	42
Venous Wounds	0.67	0.96	0.79	49
accuracy			0.80	292
macro avg	0.85	0.84	0.84	292
weighted avg	0.81	0.80	0.80	292

Prediction Result

X Total Misclassified Samples: 58

Vector Embedding & Mongodb Connection

Step-1

Step 2

Step 3

Image Preprocessing and Feature Extraction:

- Resize to 224x224 pixels to match the input size of ResNet50.
- Normalize the image
- ResNet50 model (without the top classification layer).
- Extract a 2048-dimensional feature vector (embedding) that represents high-level features of the image.

Saving the Embeddings and Metadata:

- Generate Embeddings
- Store Metadata:
- Extract the label from the directory structure.
- Pair the image name and label with the embedding vector.
- Save to JSON

Push Data to MongoDB

Total image records: 292

Image: abrasions (1).jpg

Label: Abrasions

Embedding length: 2048

Sample values: [0.9696771502494812, 1.477671]

Image: abrasions (10).jpg

Label: Abrasions

Embedding length: 2048

Sample values: [1.2132694721221924, 0.9437909

Vector Search Result

```
QUERY IMAGE: abrasions (1).jpg (Class: Abrasions)
SIMILAR IMAGES (Top 5 Results):
RANK IMAGE NAME
                                 CLASS
                                                SIMILARITY SCORE
     mirrored_abrasions (1).jpg Abrasions
                                               0.9901
     cut (42).jpg
                                               0.8937
                                Cut
     mirrored_abrasions (37).jpg Abrasions
                                               0.8912
     abrasions (37).jpg
                         Abrasions
                                               0.8911
     mirrored abrasions (22).jpg Abrasions
                                                0.8890
 Correct class matches: 4/5 (80.0%)
 Top match class: Abrasions (Correct)
```


Top Match: mirrored_abrasions (1),jpg Class: Abrasions Score: 0.9901

Conclusion:

 The combination of CNN for classification and Vector Search for storing embeddings enables scalable and efficient wound assessment. This solution ensures fast, accurate classification, aiding quick treatment decisions in critical or remote care settings.

Future works:

 We plan to expand the dataset with images of wounds at different healing stages, allowing healthcare professionals to track recovery progress and improve treatment decisions, leading to better patient outcomes.