DUKELEC

CD485 數據手冊

Duke Fong

June 4, 2017

Contents

1	功能描述	3
	1.1 概述	3
	1.2 特色	3
2	CD485 協議	3
3	硬件	4
	3.1 電路參考	4
	3.2 內部結構	5
	3.3 引腳定義	5
	3.4 尺寸規格	6
4	寄存器列表	6
5	流程圖	9
	5.1 RX	10
	5.2 TX	11
6	設備接口	11
	6.1 SPI	12
	6.2 I2C	12

DUKELEC

7	操作示例	12
	7.1 初始化	12
	7.1.1 兼容模式和傳統模式	13
	7.2 TX	13
	7.3 RX	13
8	版權說明	14

CONTENTS

DUKELEC 2 CD485 協議

1 功能描述

1.1 概述

CD485(又名 CD-BUS)是一種基於 RS485 總線的通訊協議,它同時也指實現此協議的硬件和使用此協議的總線。

CD485 協議由 Duke Fong 於 2009 年設計,實現便捷、自由、多主對等、高速率通訊。

1.2 特色

當前硬件支持的特性:

- CD485 總線上各節點均可主動發起傳輸,通過節點地址仲裁以避免衝突。
- 總線上每個數據包可以含有 0~253 字節用戶數據
- 共有 8 個 RX 緩存頁和 2 個 TX 緩存頁,每一頁 256 字節
- 硬件爲每個數據包自動完成 16 位 CRC 生成與校驗
- 波特率: 412 bps 至 9 Mbps (更換晶振可支持 10 Mbps; 且另有模組支持到 36 Mbps)
- 可分別爲仲裁字段和後續數據設置不同的波特率
- 兼容傳統 RS485 總線
- 提供 SPI 和 I2C 接口
- 配置和操作便捷

2 CD485 協議

參考時序:

字段	長度 (bytes)	用途
SILENCE	0~25.5 Default: 2 (20 bits)	分隔數據包 總線在數據包結束後繼續保持 SILENCE 位長的時間爲 1, 總線便進入 空閒模式。

DUKELEC 3 硬件

FROM_ID	1	發送方 ID 當總線進入空間並保持一段時間(默認設爲 10 bits 長),才允許發送。 在發送此字段時,所有的 1 不使能 TX_EN 腳,從而回讀總線狀態以 判斷是否有更高優先級節點同時在發送。若有,該節點立即停止並推 後發送;若無,在最後一次回讀後使能 TX_EN 並保持到數據包結束。 優先級計算公式: 255 – bit_reversal(FROM_ID) 此字段會在所有數據 1 的中間位置進行回讀,因爲發送與接收存在延 時,如果波特率設的太高,回讀到的將會是前一位發送出的數據,所 以通常設置低於 1 Mbps.
TO_ID	1	接收方 ID, 255 標識廣播包。
DATA_LEN	1	用戶數據長度, 範圍: 0~253 字節, 每個緩存頁是 256 字節, 最前 3 字 節被 FROM_ID、TO_ID 和 DATA_LEN 使用。
DATA	0~253	用戶數據
CRC_L	1	CRC 低 8 位,與 Modbus 使用相同的 CRC 標準。
CRC_H	1	CRC 高 8 位

CD485 協議只定義數據包格式,不規定用戶數據格式;只支持单播和廣播,不支持多播;只提供硬件避讓、避讓後自動重傳,而應答及出錯處理則由上層用戶負責。

3 硬件

3.1 電路參考

DUKELEC 3 硬件

3.2 內部結構

3.3 引腳定義

No	Name	I/O	Pull	Description	
1	RST_N	I	-	復位,低有效,需要加外部上拉	
2	TX_EN	O	D	使能腳,連接 RS485 PHY (內部 2 KΩ 下拉電阻)	
3	TX	O	U	發送腳,連接 RS485 PHY	
4	RX	I	-	接收腳,連接 RS485 PHY	
5	VCC			電源 3.3V ±5%, ≤5mA	
6	1.2V_OUT			內部 1.2V LDO 輸出	
7	GND			地	
8	OSC_OUT	O		內部 27MHz 時鐘輸出	
9	NSS	I	U	SPI NSS(上電或復位時請勿拉低)	
10	SCLK/SCL	I	U	SPI/I2C CLOCK	
11	MOSI	I	-	SPI MOSI	
12	MISO/SDA	I/IO	U	SPI MOSI / I2C SDA	
13	INT_N	О	-	中斷,低有效,開漏輸出	
14	I2C_SEL	I	-	輸入高選擇 I2C 模式; 低爲 SPI 模式	

上拉均爲 50 KΩ,且僅在復位結束後有效。

注意:在上電或復位時的一小段時間,TX 腳會輸出低、NSS 輸出高、SCLK/SCL 輸出一段脈衝,在這段時間裹請不要驅動這些引腳,最好在模塊和 CPU 間爲 NSS 和 SCLK/SCL 串電阻做保護。

DUKELEC 4 寄存器列表

3.4 尺寸規格

4 寄存器列表

地址	名稱	R/W	說明	
0x00	VERSION	R	硬件版本,	當前爲: 0xC1
0x01	SETTING	RW	Bits:	
			bit0	OUTPUT_EN 如未置位,TX 和 TX_EN 輸出高阻。
			bit1	NO_ARBITRATE 關閉仲裁功能,輸出時 TX_EN 一直有效。
			bit2	USER_CRC 關閉硬件 CRC 如果關閉,用戶需要自行計算兩字節 CRC 並追寫在數 據之後,且在讀完數據之後再多讀兩字節 CRC 數據以 便自行校驗。用戶數據最大長度將會降至 251 字節。
			bit3	NO_DROP 如果設置,當接收出錯置位 RX_ERROR 標誌時會同時保 留出錯的數據包。 通過 RX_PAGE_FLAG 判斷當前 RX 緩存頁中的數據包 是否有錯。
			bit[5:4]	TX_EN_ADVANCE(僅 NO_ARBITRATE 置位時有效) TX_EN 提前 TX 使能的位長(額外加上 1 個系統時鐘週期)。
			默認: xx0	1x000 (x: 不關心,寫 0)
0x02	SILENCE_LEN	RW		據包結束後繼續保持 SILENCE 位長的時間爲 1, 總線便進 式, 默認 20 (bits)

DUKELEC 4 寄存器列表

0x03	TX_DELAY	RW		曼先級節點	設置越低的	才允許發送,默認 10 (bits) I值,但至少要保留 1 bit, 以確保 IDLE 狀態。
0x04	SELF_ID	RW	僅用做接收過	월濾: (由」	上至下進行四	互配)
			FROM_ID	TO_ID	SELF_ID	接收或丟棄
			not care	not care	255	接收(嗅探模式)
			= SELF_ID	not care	!= 255	丟棄(避免環路)
			!= SELF_ID	255	not care	接收(廣播)
			!= SELF_ID	!= 255	= TO_ID	接收(點對點)
			not care	!= 255	!= TO_ID	丟棄
			Default: 255			
0x05	PERIOD_LS_L	RW	EN_ADVANC 計算公式 fac	TX_DELA E $ctor = sys$	AY 和 FROM clock ÷ bon	I_ID 字段設置波特率(也包括
0x06	PERIOD_LS_H	RW	PERIOD_LS 声	高8位,共	16 位(默記	忍 0)
0x07	PERIOD_HS_L	RW	PERIOD_HS { 爲 TO_ID、D	,	-	默認 233) CRC_L/H 字段設置波特率。
0x08	PERIOD_HS_H	RW	PERIOD_HS 7	高8位,共	· 16 位(默)	認 0)

DUKELEC 4 寄存器列表

INT FLAG 中斷標誌: 0x09R BUS IDLE bit0 指示總線是否進入 IDLE 模式。 RX PENDING bit1 指示 RX 緩存是否有頁待讀。 寫 1 到 RX CTRL[CLR RX PENDING] 清除當前頁待讀 標誌。 RX LOST bit2 當一個包正確抵達且不被過濾,但卻因爲沒有更多頁用 做下一次接收而被丟棄,此標誌置位。 寫 1 到 RX_CTRL[CLR_RX_LOST] 清此標誌。 RX ERROR bit3 當一個不被過濾的包停止位錯誤、超時或校驗錯誤,此 標誌置位。 寫1到RX CTRL[CLR RX ERROR] 清此標誌。 TX BUF CLEAN bit4 指示是否所有 TX 緩存頁都未標誌爲待發送。 bit5 TX CD 當檢測到有更高優先級節點時推後發送並置此標誌。 寫 1 到 TX CTRL[CLR TX CD] 清此標誌。 此位用作調試使用。 bit6 TX ERROR 檢測到衝突後,當總線再次空閒超過設定時間硬件會自 動重發,但如果連續重發3次都發生衝突,則取消發送, 並置位此標記。 寫 1 到 TX CTRL[CLR TX ERROR] 清此標誌。 RW 中斷允許 0x0AINT MASK 當 INT FLAG & INT MASK!= 0 時 INT N 輸出低, 否則輸出高阻 (默認 0x00) 0x0BRX R 讀 RX 緩存頁數據,地址自動增加 共有8個RX緩存頁,每一頁256字節。 當硬件端成功接收到不被過濾的包:如果下一頁未標誌爲待讀(可 用作下一次接收),將當前頁標誌爲待讀並切換到下一頁;否則丟 棄該包並置位 RX LOST. RX_PENDING 位指示用戶端當前頁待讀,寫1到CLR_RX_PENDING 清除當前頁的待讀標誌並切換到下一頁。寫1到RSTRX清除所有 頁的待讀標誌,並復位接收邏輯。

DUKELEC 5 流程圖

0x0C	TX	W	寫 TX 緩存頁數據,地址自動增加 共有 2 個 TX 緩存頁,每一頁 256 字節。 當用戶寫完數據,需要等待 TX_BUF_CLEAN 置位,然後才可以通
			過 START_TX 置位當前頁的待發送標誌,並自動切換到下一頁(否則什麼都不會發生)。 當頁的待發送標誌被置上,硬件將會啓動發送,當讀完發送所需數據時,硬件端清頁的待發送標誌並切換到下一頁。
0x0D	RX_CTRL	W	RX 控制:
			bit0 RST_RX_POINTER 寫 1 歸零當前 RX 緩存頁的讀指針
			bit1 CLR_RX_PENDING (自動包含 bit0)
			bit2 CLR_RX_LOST
			bit3 CLR_RX_ERROR
			bit4 RST_RX (自動包含 bit0, 2, 3)
0x0E	TX_CTRL	W	TX 控制:
			bit0 RST_TX_POINTER 寫 1 歸零當前 TX 緩存頁的寫指針
			bit1 START_TX (自動包含 bit0)
			bit2 SET_TX_BUF_CLEAN_MASK
			Set INT_MASK[TX_BUF_CLEAN] bit 你可以在置位 START_TX 時同時置此位,當頁的待發送 標誌被清除時,便會來 TX_BUF_CLEAN 中斷。
			bit3 CLR_TX_CD
			bit4 CLR_TX_ERROR
0x0F	RX_ADDR	RW	讀寫當前 RX 緩存頁的讀指針
0x10	RX_PAGE_FLAG	R	(僅 NO_DROP 置位時使用) 0 代表當前 RX 緩存頁中的數據包正確; 非 0 表示數據包錯誤,其值指示最後接收到的字節地址,包含 CRC 字段。

5 流程圖

DUKELEC 5 流程圖

5.1 RX

如果當前包接收不夠兩個字節,或者將會被丟棄則不會設置 RX_ERROR 標誌。

DUKELEC 6 設備接口

5.2 TX

6 設備接口

SPI 和 I2C 頻率建議低於 sysclock ÷ 10.

DUKELEC 7 操作示例

除了 RX 和 TX, 其餘寄存器通常只讀寫 1字節。

```
6.1 SPI
   讀寫:
start (NSS = 0)
Write reg address with bit7: 0: read, 1: write
Read or write arbitrary length of data
stop (NSS = 1)
6.2 I2C
   寫地址: 0xc0
   讀地址: 0xc1
   寫:
start
write the write address
write 1 byte reg address
write arbitrary length of data
stop
   讀:
start
write the write address
write 1 byte reg address
restart (or stop + start)
write the read address
read arbitrary length of data, ACK all bytes except last byte
stop
    操作示例
7
7.1 初始化
```

```
// select system clock, enable OUTPUT
CD485_write(REG_SETTING, F27M | OUTPUT_EN);

// set SELF_ID
CD485_write(REG_SELF_ID, 0xcd);

// set bondrate, PERIOD_XX_H default 0
CD485_write(REG_PERIOD_LS_L, 35); // 750000 bps
CD485_write(REG_PERIOD_HS_L, 2); // 9 Mbps

// clean RX buffer
CD485_write(REG_RX_CTRL, RST_RX);
```

DUKELEC 7 操作示例

```
// enable interrupt
CD485_write(REG_INT_MASK, RX_ERROR | RX_LOST | RX_PENDING);
```

7.1.1 兼容模式和傳統模式

PERIOD_LS 和 PERIOD_HS 設置相同爲兼容模式。

進一步置位 NO ARBITRATE 進入傳統模式:

7.2 TX

```
header_buf[0] = 0xcd; // FROM_ID
header_buf[1] = 0x02; // T0_ID
header_buf[2] = 12; // DATA_LEN
CD485_write_chunk(REG_TX, header_buf, 3);
                                                     // write HEADER
CD485_write_chunk(REG_TX, data_buf, header_buf[2]); // write DATA
while (CD485_read(REG_INT_FLAG) & TX_BUF_CLEAN == 0); // make sure TX_BUF_CLEAN is set
// sent packet, and enable TX_BUF_CLEAN interrupt
CD485_write(REG_TX_CTRL, SET_TX_BUF_CLEAN_MASK | START_TX);
// write next packet
// send next packet when the TX_BUF_CLEAN interrupt occur
// if no further packet need send, disable TX BUF CLEAN interrupt:
CD485_write(REG_INT_MASK, CD485_read(REG_INT_MASK) & ~TX_BUF_CLEAN);
7.3 RX
// when RX_PENDING interrupt occur:
CD485_read_chunk(REG_RX, header_buf, 3);
                                                 // read HEADER
CD485_read_chunk(REG_RX, data_buf, header_buf[2]); // read DATA
CD485_write(REG_RX_CTRL, CLR_RX_PENDING);
                                                 // release page
```

DUKELEC 8 版權說明

8 版權說明

CD485(又名 CD-BUS)是一個相當開放的協議,硬件實現也相對簡單,任何人都可以在自己的產品中免費使用此協議或其變種:譬如汽車生產商可以在汽車內部使用 CD485協議、機器臂公司可以在機械臂內部使用此協議,同時也可以提供對外的,兼容 CD485協議的接口;但如果是銷售獨立的控制器芯片和模組,則需要支付版權費用。無論何種情形,你需要在自己的產品網頁中保留原始的協議名稱和版權信息。

聯絡: duke@dukelec.com