Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Departement Informatik Wintersession 2020

Prof. Ueli Maurer

Exam Diskrete Mathematik

31. Januar 2020

Hinweise:

- 1.) Erlaubte Hilfsmittel: Selbstverfasste, handgeschriebene Notizen auf 6 A4-Seiten. Es ist erlaubt ein Wörterbuch zu benutzen. Es sind keine weiteren Hilfsmittel erlaubt (auch kein Taschenrechner).
- 2.) Die Prüfung besteht aus 4 Aufgaben mit total 140 Punkten. Die Aufgaben sind in drei Schwierigkeitsstufen von (\star) bis $(\star \star \star)$ eingeteilt.
- 3.) Die Aufgaben sind direkt auf dem Prüfungsblatt zu lösen. Bei Platzmangel befinden sich am Ende der Prüfung vier Zusatzblätter. Weitere Zusatzblätter können während der Prüfung bei uns bezogen werden. Nur von uns verteilte Zusatzblätter sind erlaubt.
- 4.) Bitte einen dokumentenechten Stift verwenden (also kein Bleistift) und nicht die Farben Rot oder Grün verwenden.
- 5.) Die Legi bitte für die Ausweiskontrolle auf den Tisch legen.
- 6.) Bis 10 Minuten vor Ende der Prüfung darf man vorzeitig abgeben und den Raum still verlassen.
- 7.) Mobiltelefone und Smartwatches müssen komplett ausgeschaltet sein (kein Stand-By).

Prüfungs-Nr.	
StudNr.:	
Name:	
Unterschrift:	

Korrektur:

		Punkte	Unter	schrift
Aufgabe	Max	Erreicht	Korr.	Ver.
1	38			
2	22			
3	41			
4	39			
Total	140			

Ta	sk 1	. Sets, Relations and Functions	.38 Points
a)	Sho	ort Questions. No justification is required.	
	1.)	List the elements of the set $P(\emptyset \cup \{\emptyset\})$.	(1 Point)
	2.)	List the elements of the set $\{(1,1),1\} \times \{1\}$.	(1 Point)
	3)	We consider the relation $\rho = \{(a,b), (a,c), (c,a)\}$ on the set $\{a,b,c\}$. List the element	nents of
	3 .)	a) $\hat{\rho}$:	(1 Point)
		b) ρ^2 :	(1 Point)
		c) ρ*:	(1 Point)
	4.)	If a relation ρ on a non-empty set A is not refexive, then it is irreflexive. \Box True \Box False	(1 Point)
	5.)	Find a relation on \(\mathbb{N} \) which is both a partial order and an equivalence relation.	(1 Point)
	6.)	The set $\mathbb{N} \times \mathbb{Q}$ is countable.	(1 Point)
		\Box True \Box False	
	7.)	The set $\{0,1\}^{\infty} \setminus \{0,1\}^*$ is countable.	(1 Point)
		\square True \square False	
b)	(*)	We consider the poset $(\{1, 2, 3, 4, 9, 42\};)$.	
	1.)	Draw the Hasse diagram of the above poset.	(2 Points)
	2.)	List all lower bounds of the set $\{3, 9, 42\}$.	(1 Point)

(*) Prove that $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$. Use the laws for logical operator	rs. (5 Points)
) $(\star \star)$ Let $(A; \preceq)$ and $(B; \sqsubseteq)$ be two totally ordered posets. Prove that the poset also totally ordered, where \leq_{lex} is the lexicographic order. (You do not have to p a partial order.)	
Hint: Recall that \leq_{lex} is defined by $(a_1, b_1) \leq_{\text{lex}} (a_2, b_2) \iff a_1 \prec a_2 \lor (a_1 = a_2 \land b_1 \sqsubseteq b_2).$	(5 Points)
$(\star \star)$ Using the diagonalization argument, prove that $\{0,1,2\}^{\infty}$ is uncountable.	(8 Points)

$(\star \star)$ Let $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be any function. Prove that either the image of f , $Im(f)$ or there exists an $A \in \mathcal{P}(\mathbb{N})$ such that $f^{-1}(\{A\})$ is uncountable (or both).	(8 Points)

	2. Number Theory	22 Points
	nort Questions. No justification is required.	((D)
1.) Compute the number of elements in \mathbb{Z}_{12}^* .	(1 Point)
2.	Compute $R_{18}(37^{42})$.	(1 Point)
3.	Compute $R_{11}(2^{3^{40}})$.	(2 Points)
		(12 11111)
b) (*) Is the function $f: \mathbb{Z}_{48} \to \mathbb{Z}_6 \times \mathbb{Z}_8$ defined by $f(x) = (R_6(x), R_8(x))$ a surjection?	Prove your
ans	swer.	(5 Points)
	Yes No	

c)	$(\star \star)$ Prove that for all $a, b, c \in \mathbb{Z} \setminus \{0\}$, if $a \mid bc$ and $\gcd(a, b) = 1$, then $a \mid c$.	(6 Points)
d)	$(\star \star)$ Prove that for all $n \geq 2$, if n is not divisible by 3, then $n^2 + 2^n$ is not prime.	(7 Points)

Task 3	3. Algebra		41 Points
a) Sho	ort Questions. No just	ification is required.	
1.)	The set $\mathcal{P}(\mathbb{N})$ with the	operation \cap is a monoid (for some neutral element).	(1 Point)
	$\hfill\Box$ True	□ False	
2.)	The set $\mathcal{P}(\mathbb{N})$ with the operation).	e operation \cap is a group (for some neutral element and so	ome inverse (1 Point)
	$\hfill\Box$ True	□ False	
3.)	The group $\langle \mathbb{Z}_4; \oplus \rangle \times \langle \mathbb{Z}_4 \rangle$	$(\mathbb{Z}_6;\oplus)$ is cyclic.	(1 Point)
	□ True	□ False	
4.)	List all elements of the	subgroup of $\langle \mathbb{Z}_{15}^*; \odot \rangle$ generated by 4.	(1 Point)
5.)	List all subgroups of $\langle Z$	$\mathbb{Z}_7^*;\odot angle.$	(3 Points)
6.)	List all units of the ring	$\leq \mathbb{Z}_7[x].$	(2 Points)
7.)	Compute $ GF(3)[x]_{x^2+1}$	$_{x+2}\Big .$	(1 Point)
8.)	True or false: For all $deg(a(x)b(x)) = 4$.	polynomials $a(x), b(x) \in \mathbb{Z}_{12}[x]$, if $\deg(a(x)) = \deg(b(x))$	= 2, then (2 Points)
	$\hfill\Box$ True, because	\Box False, a counterexample is	
9.)	Find all roots of $a(x) =$	$= 2x^2 + 3x + 2 \in GF(7)[x].$	(1 Point)

follows:	$a \approx b \iff a * \hat{b} \in H.$	
Prove that \approx is an equiva	lence relation.	(8 Points)
a ring, prove that R is con		$\in R$. Using only the definition of (10 Points)
Hint: Prove first that $a + a =$	0 for all $a \in R$.	

d)		$(\star \star)$ Find a polynomial $m(x)$ of degree 5 such that $F = \mathrm{GF}(2)[x]_{m(x)}$ is a field. answer.	Prove your (7 Points)
	2.)	$(\star \star)$ Find a generator of F^* . Prove your answer.	(3 Points)

Ta	sk 4	. Logic	39 Points
a)		ort Questions. No justification is required.	
	1.)	Let $F = A \leftrightarrow B$. Give an equivalent formula in DNF.	(1 Point)
	2.)	Find a model for the formula $(A \to B) \lor C$ of propositional logic.	(1 Point)
	3.)	The following formula is a tautology: $A \to (\neg A \to B)$. \Box True \Box False	(1 Point)
	4.)	Find a model for the formula $\forall x \ P(f(x), y)$ of predicate logic.	(1 Point)
	5.)	The expression $\forall x (P(y) \equiv Q(y))$ is a formula.	(1 Point)
		$\Box \text{ True} \qquad \Box \text{ False}$	(110000)
		The statement $\forall x \ (F \land G) \models (\forall x \ F) \land (\forall x \ G)$ is true for all formulas F and G .	(1 Point)
		□ True □ False	,
b)		Find a formula in the prenex normal form which is equivalent to the folloing form $(P(x) \vee \neg Q(y)) \wedge \exists y (P(x) \vee Q(y)).$	ula: (4 Points)
c)	\hat{f} ar) Find a formula F of predicate logic with equality which contains the binary function of a constant symbol e , such that a structure \mathcal{A} is a model for F if and only if $\langle U \rangle$ onoid.	
		onord.	(5 1 00000)

i		
\star \star) Prove or dis	sprove: For all formulas F and G ,	
(★ ★) Prove or dis	sprove: For all formulas F and G , $(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	
	$(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	(8 Point
		(8 Point
	$(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	(8 Point
	$(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	(8 Point
	$(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	(8 Point
	$(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	(8 Point
	$(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	(8 Point
	$(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	(8 Point
(* *) Prove or dis □ True	$(\forall x \ F) \lor G \ \models \ \forall x \ (F \lor G).$	(8 Point

(* *) Prove or d	is prove: For all formulas F and G ,	
(, , ,) 11000 01 0	$(\exists x \ F) \lor G \ \models \ \exists x \ (F \lor G).$	
		(8 Points
□ True	\Box False	(0 - 2 3 3 3 3 3