Statement of force on a moving charge in a magnetic field

Force is proportional to

- · Magnetic field
- Charge
- · Velocity component perpendicular to the field

Derivation for expression of force on a moving charge in a magnetic field

•

 $F\alpha Bqv\sin\theta$

.

 $F = kqvB\sin\theta$

Expression of force on a moving charge in a magnetic field

•

$$F = kqvB\sin\theta$$

Vector form of expression of force on a moving charge in a magnetic field

.

$$\vec{F} = q(\vec{v} \times \vec{B})$$

Condition for minimum force on a moving charge in a magnetic field

- · Angle 0
- · Angle 180
- Stationary

Condition for maximum force on a moving charge in a magnetic field

Perpendicular

Parameter represented by fingers in right hand palm rule

· Magnetic field

Parameter represented by thumb in right hand palm rule

Current

Parameter represented by palm in right hand palm rule

Force

Organ representing magnetic field in right hand palm rule

Fingers

Organ representing velocity of charge in right hand palm rule

• Thumb

Organ representing direction of force in right hand palm rule

Palm

Magnetic field in terms of force

Force on unit charge unit velocity perpendicular to field

One tesla in terms of lorentz force

1C charge 1 m/s velocity perpendicular to field experince 1 N force

Expression for 1 gauss

$$1gauss = 10^{-4}tesla$$

Magnitude of magnetic field at the surface of neutron star

 10^{8}

Magnitude of magnetic field at the large field in the labratory

1

Magnitude of magnetic field at the field near a bar magnet

 10^{-2}

Magnitude of magnetic field on the earth's surface

 10^{-4}

Magnitude of magnetic field in interstellar space

 10^{-12}