Signály a systémy - Projekt 2017/18

Jiří Furda (xfurda00)

Fakulta informačních technologií Vysoké učení technické v Brně

Úloha 1

Vzorkovací frekvence: **16000 Hz** Délka: **16000 vzorků = 1 s**

Postup

Načteme vstupní signál pomocí příkazu [Y,Fs] = audioread('xfurda00.wav'); Hodnota proměnné Fs obsahuje vzorkovací frekvenci a v poli Y jsou jednotlivé vzorky. Pole Y obsahuje 16000 vzorků, výsledek dělené počtu vzorků vzorkovací frekvencí je délka vstupního signálu.

16000 / 16000 = 1 s

Úloha 2

Postup

Provedeme příkaz X = fft(Y); pro získání Fourierovy transformace, tu kosmeticky upravíme a zobrazíme pomocí příkazu plot(f,Xhalf);

Úloha 3

Maximum modulu spektra: 699 Hz

Signály a systémy - Projekt 2017/18

Jiří Furda (xfurda00)

Fakulta informačních technologií Vysoké učení technické v Brně

Postup

Použitím příkazu [x, ix] = max(Xhalf); zjistíme, že maximální hodnota se nachází na indexu 699, což odpovídá frekvenci maxima.

Úloha 4

Stabilita filtru: Ano

Postup

Prvně načteme zadané koeficienty filtru pomocí b = [0.2324, -0.4112, 0.2324]; a = [1, 0.2289, 0.4662]; a následně použijeme poskytnutou funkci *ukazmito(b, a, Fs);* která nejen vykreslí potřebný obrázek, ale také určí (ne)stabilitu filtru.

Úloha 5

Typ filtru: Horní propusť

Signály a systémy - Projekt 2017/18

Jiří Furda (xfurda00)

Fakulta informačních technologií Vysoké učení technické v Brně

Postup

Opět využijeme funkci *ukazmito(b, a, Fs);* pro získání obrázku modulu kmitočtové charakteristiky, z kterého je zřejmé, že se jedná o horní propusť.

Úloha 6

Postup

Provedeme samotnou filtraci použitím příkazu *Y_filter* = *filter*(*b, a, Y*); a následně provedeme totožnou akci jako v úloze 2.

Úloha 7

Maximum modulu spektra: 5959 Hz

Postup

Řešení je opět totožné s úlohou 3.