Example 4.0.18

Let π be the plane in \mathbb{R}^3 spanned by vector $x_1 = (1, 2, 2)$ and $x_2 = (-1, 0, 2)$.

- **①** Using the Gram-Schmidt process find an orthonormal basis for π .
- **2** Extend it to an orthonormal basis for \mathbb{R}^3 .

 x_1 , x_2 is a basis for the plane π . We can extend it to a basis for \mathbb{R}^3 by adding one vector from the standard basis. For instance, vectors x_1 , x_2 , and $x_3 = (0, 0, 1)$ form a basis for R_3 because

$$\begin{vmatrix} 1 & 2 & 2 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{vmatrix} = 1 \times \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} = 2 \neq 0.$$

April 29, 2021

Using the Gram-Schmidt process, we orthogonalize the basis $x_1 = (1, 2, 2)$, $x_2 = (-1, 0, 2)$, $x_3 = (0, 0, 1)$:

$$v_{1} = x_{1} = (1, 2, 2),$$

$$v_{2} = x_{2} - \frac{\langle x_{2}, v_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v_{1} = (-1, 0, 2) - \frac{(-1.1 + 0.2 + 2.2)}{(1.1 + 2.2 + 2.2)} (1, 2, 2)$$

$$= (-1, 0, 2) - \frac{3}{9} (1, 2, 2) = \left(-\frac{4}{3}, -\frac{2}{3}, \frac{4}{3} \right),$$

$$v_{3} = x_{3} - \frac{\langle x_{3}, v_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v_{1} - \frac{\langle x_{3}, v_{2} \rangle}{\langle v_{2}, v_{2} \rangle} v_{2}$$

$$= (0, 0, 1) - \frac{(0.1 + 0.2 + 1.2)}{(1.1 + 2.2 + 2.2)} (1, 2, 2)$$

$$- \frac{(0.\frac{-4}{3} + 0.\frac{-2}{3} + 1.\frac{4}{3})}{(\frac{-4}{3} \cdot \frac{-4}{3} + \frac{-2}{3} \cdot \frac{-2}{3} + \frac{4}{3} \cdot \frac{4}{3})} \left(-\frac{4}{3}, -\frac{2}{3}, \frac{4}{3} \right)$$

$$= (0, 0, 1) - \frac{2}{9} (1, 2, 2) - \frac{\frac{4}{3}}{4} \left(-\frac{4}{3}, -\frac{2}{3}, \frac{4}{3} \right) = \left(\frac{2}{9}, -\frac{2}{9}, \frac{1}{9} \right)$$

Now $v_1=(1,2,2), v_2=(-\frac{4}{3},-\frac{2}{3},\frac{4}{3}), v_3=(\frac{2}{9},-\frac{2}{9},\frac{1}{9})$ is an orthogonal basis for R_3 while v_1,v_2 is an orthogonal basis for π . It remains to normalize these vectors.

$$\begin{aligned} \langle v_1, v_1 \rangle &= 9 \Rightarrow ||v_1|| = 3 \\ \langle v_2, v_2 \rangle &= 4 \Rightarrow ||v_2|| = 2 \\ \langle v_3, v_3 \rangle &= \frac{1}{9} \Rightarrow ||v_3|| = \frac{1}{3} \\ w_1 &= \frac{v_1}{||v_1||} = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) = \frac{1}{3}(1, 2, 2), \\ w_2 &= \frac{v_2}{||v_2||} = \left(-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right) = \frac{1}{3}(-2, -1, 2), \\ w_3 &= \frac{v_3}{||v_3||} = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) = \frac{1}{3}(2, -2, 1). \end{aligned}$$

 w_1 , w_2 is an orthonormal basis for π . w_1 , w_2 , w_3 is an orthonormal basis for \mathbb{R}^3 .

Problem 4.0.19

Find the distance from the point y=(0,0,0,1) to the subspace $V\subset\mathbb{R}^4$ spanned by vectors $x_1=(1,-1,1,-1),\ x_2=(1,1,3,-1),\ and\ x_3=(-3,7,1,3).$

Let us apply the Gram-Schmidt process to vectors x_1, x_2, x_3, y . We should obtain an orthogonal system v_1, v_2, v_3, v_4 . The desired distance will be $|v_4|$. Given

$$x_1 = (1, -1, 1, -1),$$
 $x_2 = (1, 1, 3, -1),$
 $x_3 = (-3, 7, 1, 3),$ $y = (0, 0, 0, 1).$

$$\begin{aligned} v_1 &= x_1 = (1, -1, 1, -1), \\ v_2 &= x_2 - \frac{\langle x_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = (1, 1, 3, -1) - \frac{4}{4} (1, -1, 1, -1) = (0, 2, 2, 0), \\ v_3 &= x_3 - \frac{\langle x_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle x_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 \\ &= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0) = (0, 0, 0, 0). \end{aligned}$$

The vector x_3 is a linear combination of x_1 and x_2 . V is a plane, not a 3-dimensional subspace. We should orthogonalize vectors x_1, x_2, y .

$$\begin{split} \vec{v}_3 &= y - \frac{\langle y, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle y, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 \\ &= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0) \\ &= \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right). \\ |\vec{v}_3| &= \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} |(1, -1, 1, 3)| \\ &= \frac{\sqrt{1^2 + (-1)^2 + 1^2 + 3^2}}{4} = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}. \end{split}$$

