Vijay(P16) 03/08/2023

```
In [1]:
             import numpy as np
           1
           2
             import pandas as pd
             import seaborn as sns
             import matplotlib.pyplot as plt
In [2]:
             df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\madrid_2016.csv")
Out[2]:
                                        CO EBE NMHC
                                                         NO NO 2 O 3 PM10 PM25 SO 2 TCH TOL
                             date BEN
                                                                                                       station
              0 2016-11-01 01:00:00
                                  NaN
                                        0.7
                                            NaN
                                                        153.0
                                                               77.0
                                                                                       7.0
                                                                                           NaN
                                                                                                NaN
                                                                                                     28079004
                                                   NaN
                                                                    NaN
                                                                          NaN
                                                                                NaN
                 2016-11-01 01:00:00
                                                                                                    28079008
                                   3.1
                                        1.1
                                             2.0
                                                   0.53 260.0
                                                              144.0
                                                                     4.0
                                                                          46.0
                                                                                24.0
                                                                                      18.0
                                                                                           2.44
                                                                                                14.4
                 2016-11-01 01:00:00
                                   5.9
                                             7.5
                                                        297.0
                                                              139.0
                                                                                                26.0
                                                                                                     28079011
                                      NaN
                                                   NaN
                                                                   NaN
                                                                                NaN
                                                                                      NaN
                                                                                           NaN
                                                                          NaN
                 2016-11-01 01:00:00
                                                        154.0
                                                              113.0
                                                                                               NaN 28079016
                                  NaN
                                        1.0
                                            NaN
                                                   NaN
                                                                     2.0
                                                                          NaN
                                                                                NaN
                                                                                      NaN
                                                                                           NaN
                 2016-11-01 01:00:00
                                                   NaN 275.0
                                                              127.0
                                                                                               NaN 28079017
                                  NaN NaN
                                            NaN
                                                                     2.0
                                                                          NaN
                                                                                NaN
                                                                                      18.0
                                                                                           NaN
         209491 2016-07-01 00:00:00
                                  NaN
                                        0.2
                                            NaN
                                                   NaN
                                                          2.0
                                                               29.0
                                                                   73.0
                                                                          NaN
                                                                                NaN
                                                                                      NaN
                                                                                           NaN
                                                                                               NaN 28079056
         209492 2016-07-01 00:00:00
                                  NaN
                                        0.3
                                            NaN
                                                   NaN
                                                          1.0
                                                               29.0
                                                                   NaN
                                                                          36.0
                                                                                NaN
                                                                                       5.0
                                                                                           NaN
                                                                                               NaN 28079057
         209493 2016-07-01 00:00:00
                                  NaN NaN
                                            NaN
                                                   NaN
                                                          1.0
                                                               19.0
                                                                   71.0
                                                                          NaN
                                                                                NaN
                                                                                      NaN
                                                                                           NaN
                                                                                               NaN 28079058
          209494 2016-07-01 00:00:00
                                  NaN
                                      NaN
                                            NaN
                                                   NaN
                                                          6.0
                                                               17.0
                                                                    85.0
                                                                          NaN
                                                                                NaN
                                                                                      NaN
                                                                                           NaN
                                                                                               NaN 28079059
          209495 2016-07-01 00:00:00 NaN NaN
                                            NaN
                                                   NaN
                                                          2.0
                                                               46.0
                                                                   61.0
                                                                          34.0
                                                                                NaN
                                                                                      NaN
                                                                                           NaN
                                                                                               NaN 28079060
         209496 rows × 14 columns
In [3]:
           1 df=df.dropna()
In [4]:
          1 df.columns
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25',
                 'SO_2', 'TCH', 'TOL', 'station'],
               dtype='object')
In [5]:
          1 df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 16932 entries, 1 to 209478
         Data columns (total 14 columns):
              Column
                       Non-Null Count Dtype
          #
          0
              date
                        16932 non-null object
          1
              BEN
                        16932 non-null
                                         float64
          2
              CO
                        16932 non-null
                                         float64
          3
              EBE
                        16932 non-null
                                        float64
          4
              NMHC
                        16932 non-null
                                         float64
          5
              NO
                        16932 non-null
                                         float64
              NO_2
                        16932 non-null
          6
                                        float64
          7
              0 3
                        16932 non-null
                                        float64
          8
              PM10
                        16932 non-null float64
              PM25
                        16932 non-null
                                        float64
          10
              SO 2
                        16932 non-null float64
          11
              TCH
                        16932 non-null float64
              TOL
                        16932 non-null float64
          13 station 16932 non-null int64
         dtypes: float64(12), int64(1), object(1)
         memory usage: 1.9+ MB
```

```
In [6]: 1 data=df[['BEN', 'TOL', 'TCH']]
2 data
```

Out[6]:

	BEN	TOL	тсн
1	3.1	14.4	2.44
6	0.7	5.0	1.35
25	2.7	15.0	2.30
30	0.7	5.0	1.35
49	1.7	10.7	1.95
209430	0.1	0.2	1.15
209449	0.6	1.9	1.48
209454	0.1	0.3	1.15
209473	0.6	1.9	1.50
209478	0.1	0.2	1.15

16932 rows × 3 columns

In [7]: 1 data.plot.line(subplots=True)

Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

In [8]: 1 data.plot.line()

Out[8]: <AxesSubplot:>

In [9]: 1 b=data[0:50]

```
In [10]: 1 b.plot.bar()
```

Out[10]: <AxesSubplot:>


```
In [11]: 1 data.plot.hist()
```

Out[11]: <AxesSubplot:ylabel='Frequency'>

In [12]: 1 data.plot.area()

Out[12]: <AxesSubplot:>


```
In [13]: 1 data.plot.box()
```

Out[13]: <AxesSubplot:>


```
In [14]: 1 b.plot.pie(y='BEN' )
```

Out[14]: <AxesSubplot:ylabel='BEN'>


```
In [15]: 1 data.plot.scatter(x='BEN' ,y='TOL')
```

Out[15]: <AxesSubplot:xlabel='BEN', ylabel='TOL'>

In [16]: 1 df.describe()

Out[16]:

	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	
count	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16932.
mean	0.537970	0.349941	0.298955	0.099913	20.815734	39.373376	48.118474	19.248110	10.
std	0.599479	0.203807	0.450204	0.079850	40.986063	31.170307	32.560277	18.509093	8.
min	0.100000	0.100000	0.100000	0.000000	1.000000	1.000000	1.000000	1.000000	0.0
25%	0.200000	0.200000	0.100000	0.050000	1.000000	14.000000	21.000000	9.000000	5.
50%	0.400000	0.300000	0.200000	0.090000	7.000000	34.000000	46.000000	15.000000	8.0
75%	0.700000	0.400000	0.300000	0.120000	23.000000	58.000000	69.000000	24.000000	14.
max	12.300000	4.500000	13.500000	2.210000	829.000000	319.000000	181.000000	367.000000	215.
									-

In [18]:

1 sns.pairplot(df1[0:50])

Out[18]: <seaborn.axisgrid.PairGrid at 0x2d2f4a702e0>


```
In [19]: | 1 | sns.distplot(df1['BEN'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `di splot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for his tograms).

warnings.warn(msg, FutureWarning)

Out[19]: <AxesSubplot:xlabel='BEN', ylabel='Density'>

In [20]: 1 sns.heatmap(df1.corr())

Out[20]: <AxesSubplot:>


```
In [22]: 1 from sklearn.model_selection import train_test_split
2 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [23]: 1  from sklearn.linear_model import LinearRegression
2  lr=LinearRegression()
3  lr.fit(x_train,y_train)
```

Out[23]: LinearRegression()

```
In [24]: 1 lr.intercept_
```

Out[24]: 28079042.32381048

```
In [25]:
              coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[25]:
                 Co-efficient
                   -1.843533
            BEN
             CO
                    4.911084
            EBE
                    0.560646
           NMHC
                    0.870575
             NO
                   0.068100
           NO_2
                   -0.062596
                   -0.023603
            0_3
           PM10
                   -0.012790
           PM25
                   0.089795
           SO_2
                   -0.811247
            TCH
                  -14.337630
            TOL
                    0.184437
In [26]:
              prediction =lr.predict(x_test)
              plt.scatter(y_test,prediction)
Out[26]: <matplotlib.collections.PathCollection at 0x2d280b8a310>
               +2.8079e7
            30
            20
            10
             0
           -10
           -20
                     10
                           12
                                14
                                     16
                                           18
                                                20
                                                     22
                                                      +2.8079e7
In [27]:
           1 lr.score(x_test,y_test)
Out[27]: 0.8220137982748653
In [28]:
           1 lr.score(x_train,y_train)
Out[28]: 0.8302178271427866
In [29]:
            1 from sklearn.linear_model import Ridge,Lasso
In [30]:
            1 rr=Ridge(alpha=10)
            2 rr.fit(x_train,y_train)
Out[30]: Ridge(alpha=10)
In [31]:
           1 rr.score(x_test,y_test)
Out[31]: 0.8221409241828994
In [32]:
           1 rr.score(x_train,y_train)
Out[32]: 0.8301311859727917
```

```
In [33]:
           1 la=Lasso(alpha=10)
           2 la.fit(x train,y train)
Out[33]: Lasso(alpha=10)
In [34]:
          1 la.score(x_test,y_test)
Out[34]: 0.6482056484857444
          1 la.score(x_train,y_train)
In [35]:
Out[35]: 0.6463260941245638
In [36]:
           1 from sklearn.linear_model import ElasticNet
           2 en=ElasticNet()
           3 en.fit(x_train,y_train)
Out[36]: ElasticNet()
In [37]:
          1 en.coef_
Out[37]: array([-0.
                                        , -0.
                             0.
                                                     , -0.
                                                                   , 0.04717921,
                -0.10627211, -0.02193956, 0.00250391, 0.04354719, -0.86986901,
                -0.01448539, 0.
                                        1)
In [38]:
           1 en.intercept_
Out[38]: 28079026.30199501
In [39]:
           1 prediction=en.predict(x_test)
In [40]:
           1 en.score(x_test,y_test)
Out[40]: 0.7058559284487442
In [41]:
           1 from sklearn import metrics
           2 print(metrics.mean_absolute_error(y_test,prediction))
           3 print(metrics.mean_squared_error(y_test,prediction))
           4 print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
         3.3493497255052933
         18.82514763140473
         4.338795642964154
In [42]:
           1 from sklearn.linear model import LogisticRegression
In [43]:
           1 feature_matrix=df[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3',
              'PM10', 'SO_2', 'TCH', 'TOL']]
           3 target_vector=df[ 'station']
In [44]:
           1 feature_matrix.shape
Out[44]: (16932, 10)
In [45]:
           1 target_vector.shape
Out[45]: (16932,)
In [46]:
           1 | from sklearn.preprocessing import StandardScaler
In [47]:
           1 | fs=StandardScaler().fit_transform(feature_matrix)
```

```
In [48]:
           1 logr=LogisticRegression(max iter=10000)
           2 logr.fit(fs,target vector)
Out[48]: LogisticRegression(max_iter=10000)
In [49]:
           1 observation=[[1,2,3,4,5,6,7,8,9,10]]
In [50]:
           1 prediction=logr.predict(observation)
           2 print(prediction)
         [28079008]
          1 logr.classes_
In [51]:
Out[51]: array([28079008, 28079024], dtype=int64)
In [52]:
           1 logr.score(fs,target_vector)
Out[52]: 0.9923812898653437
In [53]:
           1 logr.predict_proba(observation)[0][0]
Out[53]: 1.0
In [54]:
           1 logr.predict_proba(observation)
Out[54]: array([[1.0000000e+00, 1.6336121e-46]])
In [55]:
           1 from sklearn.ensemble import RandomForestClassifier
In [56]:
           1 rfc=RandomForestClassifier()
           2 rfc.fit(x_train,y_train)
Out[56]: RandomForestClassifier()
In [57]:
           1
             parameters={'max_depth':[1,2,3,4,5],
              'min_samples_leaf':[5,10,15,20,25],
           3
              'n_estimators':[10,20,30,40,50]
In [58]:
           1 from sklearn.model selection import GridSearchCV
           2 grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
           3 grid_search.fit(x_train,y_train)
Out[58]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [59]:
           1 grid_search.best_score_
Out[59]: 0.9937563280458994
In [60]:
           1 rfc_best=grid_search.best_estimator_
```

```
Out[61]: [Text(2120.4, 1993.2, 'SO_2 <= 4.5\ngini = 0.5\nsamples = 7475\nvalue = [6006, 5846]\nclass = a'),
              Text(976.5, 1630.8000000000002, 'NO 2 <= 13.5\ngini = 0.076\nsamples = 3743\nvalue = [235, 5666]\nclas
             s = b'),
              Text(334.79999999999, 1268.4, 'NMHC <= 0.065\ngini = 0.012\nsamples = 1748\nvalue = [16, 2749]\ncla
             ss = b'),
              Text(223.2, 906.0, 'gini = 0.0\nsamples = 1477\nvalue = [0, 2320]\nclass = b'),
              Text(446.4, 906.0, '0_3 <= 62.5\ngini = 0.069\nsamples = 271\nvalue = [16, 429]\nclass = b'),
              Text(223.2, 543.59999999999, 'SO_2 <= 2.5\ngini = 0.226\nsamples = 66\nvalue = [14, 94]\nclass =
              Text(111.6, 181.199999999999, 'gini = 0.0\nsamples = 44\nvalue = [0, 71]\nclass = b'),
              Text(334.79999999999, 181.199999999998, 'gini = 0.47\nsamples = 22\nvalue = [14, 23]\nclass =
             b'),
              Text(669.59999999999, 543.599999999999, 'NO 2 <= 11.5\ngini = 0.012\nsamples = 205\nvalue = [2, 33
             5]\nclass = b'),
              Text(558.0, 181.199999999999, 'gini = 0.0 \times = 177 = [0, 296] = b'),
              Text(781.19999999999, 181.1999999999982, 'gini = 0.093\nsamples = 28\nvalue = [2, 39]\nclass = b'),
              Text(1618.19999999999, 1268.4, 'TCH <= 1.455\ngini = 0.13\nsamples = 1995\nvalue = [219, 2917]\nclas
             s = b'),
              Text(1339.19999999999, 906.0, '0 3 <= 90.5\ngini = 0.008\nsamples = 1762\nvalue = [11, 2770]\nclass
             = b').
              Text(1116.0, 543.59999999999, '0 3 <= 80.5\ngini = 0.003\nsamples = 1683\nvalue = [4, 2644]\nclass =
              Text(1004.4, \ 181.1999999999999, \ 'gini = 0.002 \\ \ nsamples = 1621 \\ \ nvalue = [2, \ 2547] \\ \ nclass = b'), \\ \ n
              Text(1562.39999999999, 543.599999999999, 'TCH <= 1.225\ngini = 0.1\nsamples = 79\nvalue = [7, 126]
             \nclass = b'),
              Text(1450.8, 181.199999999999, 'gini = 0.0\nsamples = 63\nvalue = [0, 109]\nclass = b'),
              Text(1674.0, 181.199999999999, 'gini = 0.413\nsamples = 16\nvalue = [7, 17]\nclass = b'),
              Text(1897.19999999999, 906.0, 'NMHC <= 0.065\ngini = 0.485\nsamples = 233\nvalue = [208, 147]\nclass
              Text(1785.6, 543.59999999999, 'gini = 0.085\nsamples = 27\nvalue = [2, 43]\nclass = b'),
              Text(2008.8, 543.599999999999, '0 3 <= 17.5\ngini = 0.446\nsamples = 206\nvalue = [206, 104]\nclass =
             a'),
              Text(1897.19999999999, 181.1999999999999, 'gini = 0.327\nsamples = 62\nvalue = [21, 81]\nclass =
             b'),
              Text(2120.4, 181.1999999999982, 'gini = 0.197\nsamples = 144\nvalue = [185, 23]\nclass = a'),
              Text(3264.299999999997, 1630.80000000000000, '0 3 <= 4.5\ngini = 0.059\nsamples = 3732\nvalue = [5771,
             180]\nclass = a'),
              Text(2678.39999999999, 1268.4, 'BEN <= 1.25\ngini = 0.452\nsamples = 160\nvalue = [176, 93]\nclass =
             a'),
              Text(2343.6, 906.0, 'CO <= 0.55\ngini = 0.474\nsamples = 78\nvalue = [53, 84]\nclass = b'),
              Text(2232.0, 543.59999999999, 'gini = 0.124\nsamples = 27\nvalue = [42, 3]\nclass = a'),
Text(2455.2, 543.59999999999, 'PM25 <= 25.5\ngini = 0.211\nsamples = 51\nvalue = [11, 81]\nclass =
              Text(2343.6, 181.199999999982, 'gini = 0.14\nsamples = 36\nvalue = [5, 61]\nclass = b'),
              Text(2566.79999999997, 181.1999999999982, 'gini = 0.355\nsamples = 15\nvalue = [6, 20]\nclass =
             b'),
              Text(3013.2, 906.0, 'BEN <= 1.65\ngini = 0.127\nsamples = 82\nvalue = [123, 9]\nclass = a'),
              Text(2901.6, 543.599999999999, 'SO 2 <= 13.0\ngini = 0.282\nsamples = 35\nvalue = [44, 9]\nclass =
              Text(2790.0, 181.1999999999999, 'gini = 0.42 \nsamples = 18 \nvalue = [21, 9] \nclass = a'),
              Text(3013.2, 181.199999999999, 'gini = 0.0\nsamples = 17\nvalue = [23, 0]\nclass = a'),
              Text(3124.79999999997, 543.599999999999, 'gini = 0.0\nsamples = 47\nvalue = [79, 0]\nclass = a'),
              Text(3850.2, 1268.4, 'SO_2 <= 7.5 \neq 0.03 = 0.03 = 3572 = [5595, 87] = 0.03 = a'),
              Text(3571.2, 906.0, '0_3 <= 21.5\ngini = 0.153\nsamples = 657\nvalue = [945, 86]\nclass = a'),
              Text(3348.0, 543.599999999999, 'CO <= 0.65\ngini = 0.424\nsamples = 179\nvalue = [185, 81]\nclass =
             a'),
              Text(3459.6, 181.199999999999, 'gini = 0.198\nsamples = 56\nvalue = [9, 72]\nclass = b'),
              Text(3794.39999999996, 543.599999999999, 'PM10 <= 52.5\ngini = 0.013\nsamples = 478\nvalue = [760,
             5]\nclass = a'),
              Text(3682.799999999997, 181.1999999999982, 'gini = 0.008\nsamples = 446\nvalue = [710, 3]\nclass =
              Text(3906.0, 181.1999999999982, 'gini = 0.074\nsamples = 32\nvalue = [50, 2]\nclass = a'),
              Text(4129.2, 906.0, 'CO <= 1.05\ngini = 0.0\nsamples = 2915\nvalue = [4650, 1]\nclass = a'),
              Text(4017.6, 543.59999999999, 'gini = 0.0\nsamples = 2876\nvalue = [4585, 0]\nclass = a'),
              Text(4240.8, 543.5999999999999, 'NO_2 <= 97.5\ngini = 0.03\nsamples = 39\nvalue = [65, 1]\nclass =
             a'),
```

Text(4129.2, 181.1999999999982, 'gini = 0.087\nsamples = 15\nvalue = [21, 1]\nclass = a'), Text(4352.4, 181.199999999982, 'gini = 0.0\nsamples = 24\nvalue = [44, 0]\nclass = a')]

Conclusion

Linear Regression=0.8302178271427866

Ridge Regression=0.8301311859727917

Lasso Regression=0.6463260941245638

ElasticNet Regression=0.7058559284487442

Logistic Regression=0.9923812898653437

Random Forest=0.9937563280458994

Random Forest is suitable for this dataset

In []:

1