Controlli Automatici

Università degli Studi di Bergamo

Esercizio 1

Descrizione: Si consideri il sistema a compensazione diretta del disturbo $y_d(t)$ sul segnale di uscita y(t) descritto dallo schema Simulink qui riportato:

in cui

$$G(s) = \frac{8}{(s+1)(s+2)}$$
 $H(s) = \frac{1}{s+3}$ $C(s) = \frac{0.987}{(1+0.267)^2}$

Quesiti:

- 1. Si verifichi che il compensatore è in grado di annullare asintoticamente l'effetto di un disturbo sinusoidale di pulsazione $\omega=4$ [rad/s].
- 2. Si simuli su t = 10 [s] la risposta del sistema al disturbo d(t) = 7sin(4t).

Soluzione:

- 1. Vedere lo script live di MATLAB "exercise1.mlx"
- 2. Vedere lo script Simulink "exercise1_sl.slx"

Esercizio 2

Descrizione: Si consideri il sistema a compensazione del segnale di riferimento $y_0(t)$ descritto dallo schema Simulink qui riportato:

in cui

$$G(s) = \frac{10}{(1+s)(1+0.01s)}$$
 $R(s) = \frac{1+s}{s}$

mentre il compensatore $C\left(s\right)$ può assumere una delle seguenti espressioni

$$C_{1}(s) = 0$$
 $C_{2}(s) = 0.1 \frac{1+s}{1+0.01s}$ $C_{3}(s) = 0.1 \frac{1+s}{1+0.001s}$

Quesiti:

1. Si confrontino le risposte (su un tempo pari a t=1 [s]) ottenute con le diverse scelte del compensatore C(s) in presenza di un riferimento sinusoidale $y_0(t)$ di pulsazione $\omega=80$ [rad/s].

Soluzione:

- 1. Vedere lo script live di MATLAB "exercise2.mlx"
- 2. Vedere lo script Simulink "exercise2_sl.slx"

Esercizio 3

Descrizione: Si consideri il seguente processo G(s) che presenta sia zeri a parte reale positiva che ritardi di tempo e un segnale di riferimento $y_0(t) = step(t)$ descritto dallo schema Simulink qui riportato:

in cui

$$G(s) = \frac{1-s}{(1+s)(1+0.1s)}e^{-s}$$
 $R(s) = \frac{1+0.1s}{s}$

Quesiti:

- 1. Si simuli su un tempo pari a t=10 [s] la risposta allo scalino in presenza ed in assenza del predittore di Smith.
- 2. Si simuli la risposta quando il ritardo stimato differisce da quello effettivo per il 50%.

Soluzione:

$$G\left(s\right) = \frac{N\left(s\right)}{D\left(s\right)}e^{-\tau s} = \frac{N^{+}\left(s\right)N^{-}\left(s\right)}{D\left(s\right)}e^{-\tau s}$$

$$G'\left(s\right) = \frac{N\left(s\right)}{D\left(s\right)} = \frac{N^{+}\left(s\right)N^{-}\left(s\right)}{D\left(s\right)} \text{ (asintoticamente stabile e a fase minima)}$$

$$R'\left(s\right) = \frac{N_{R}\left(s\right)}{D_{R}\left(s\right)}$$

$$P\left(s\right) = \left(1 - \frac{N^{+}\left(s\right)}{N^{+}\left(-s\right)}e^{-\tau s}\right) \frac{N^{+}\left(s\right)N^{-}\left(s\right)}{D\left(s\right)}$$

Nel nostro caso abbiamo che:

$$G(s) = \frac{1-s}{(1+s)(1+0.1s)}e^{-s}$$

$$R(s) = \frac{1+0.1s}{s}$$

$$N^{-}(s) = 1$$

$$N^{+}(s) = (1-s)$$

$$N^{+}(-s) = (1+s)$$

$$P(s) = \left(1 - \frac{(1-s)}{(1+s)}e^{-s}\right) \frac{1(1+s)}{(1+s)(1+0.1s)} = \frac{1}{1+0.1s} \left(1 - \frac{(1-s)}{(1+s)}e^{-s}\right)$$

1. Vedere lo script Simulink "exercise3_sl.slx"