

Revisiting Recency Abstraction for JavaScript

Towards an Intuitive, Compositional, and Efficient Heap Abstraction

Singleton Abstraction

Jihyeok Park

Xavier Rival

Sukyoung Ryu

KAIST

DIENS, ÉNS, CNRS, PSL Research University and INRIA

KAIST

Static Analysis for JavaScript

JavaScript

- de facto language for web programming
- static analyzers based on abstract interpretation
 - SAFE / TAJS / WALA
- precise analysis of object properties

Object Properties

```
var o = \{a : 1\};
```

- dynamic addition and removal of object properties

```
o.b = 2; // {a : 1, b : 2}
delete o.a; // {b : 2}
```

first-class property names

```
var v = 'p';
o[v+'q']; // === o.pq
```

higher-order functions

```
o.f = function() {};
o.f();  // indirect call
```


Weak vs Strong Update

```
var o = {};
o.p = 1;
o.p = 2;
```

- strong update

- weak update

```
o = {
  p: *,1,2 (*: absent value)
}
```



```
l0: function f()
    { return {}; };
l1: var x = f();
l2: var y = f();
13: x.p = 1;
14: y.p = 2;
15: x.p + y.p;
```

Allocation Site


```
l0: function f()
10: {}
                   { return {}; };
              l1: var x = f();
              12: var y = f();
              13: x.p = 1;
              14: y.p = 2;
              15: x.p + y.p;
```



```
l0: function f()
     10: {}
                          { return {}; };
                     l1: var x = f();
    l0: {
   p: *,1
                     l2: var y = f();
                     13: x.p = 1;
Weak Update
                     14: y.p = 2;
                     15: x.p + y.p;
```



```
l0: function f()
   10: {}
                       { return {}; };
                   l1: var x = f();
     p: *, 1
                   l2: var y = f();
                      x.p = 1;
   10: {
                  14: y.p = 2;
     p: *, 1, 2
                       x.p + y.p;
Weak Update
```


- defined on top of the allocation-site abstraction
 - recent : (li,r) with strong updates
 - most recently created objects
 - old: (li,o) with weak updates
 - not recent locations


```
x: (l0,o) (l0, o): {}
y: (l0,r) (l0, r): {}
                             l0: function f()
                                  { return {}; };
                              l1: var x = f();
                             12: var y = f();
                             13: x.p = 1;
                              14: y.p = 2;
                              15: x.p + y.p;
```



```
l0: function f()
x: (l0,o) (l0, o): {}
y: (l0,r) (l0, r): {}
                                    { return {}; };
                               l1: var x = f();
x: (l0,o) (l0,o): {
y: (l0,r) p: *,1
                               l2: var y = f();
                               13: x.p = 1;
             (l0,r): {}
                               14: y.p = 2;
       Weak Update
                               15: x.p + y.p;
```



```
l0: function f()
x: (l0,o) (l0, o): {}
y: (l0,r) (l0, r): {}
                                     { return {}; };
                                l1: var x = f();
x: (l0,o) (l0,o): {
y: (l0,r) p: *,1
                                l2: var y = f();
                                13: x.p = 1;
             (l0,r): {
 p: 2
                                14: y.p = 2;
                                     x.p + y.p;
     Strong Update
```


- allocation-sites with **heap cloning** (with **sensitivities**)

```
function f(x) {
    return {p: x};
}
```


A given partition

$$\delta : \mathbb{A} \to \Pi$$

$$\mathbb{A}^{\sharp}_{\delta} = \mathcal{P}(\Pi)$$

$$\mathbb{A}^{\sharp}_{\mathbf{r}[\delta]} = \mathcal{P}(\Pi \times \{\mathbf{r}, \mathbf{o}\});$$

partition-based address abstraction

recency abstraction

Unintuitive Behaviors of Recency Abstraction

Unintuitive Behaviors

 Recency abstraction does not preserve the precision relationship between given partitionbased address abstractions

* \preceq_p : precision relationship


```
egin{aligned} & \ell_0: & \mathbf{var} \; \mathsf{obj} = \{\}; \ & \ell_1: & \mathbf{if} \; (\;?\;) \; \{ \ & \ell_2: & \mathsf{obj.a} = 1; \ & \ell_3: & \mathsf{obj} = \{\}; \ & \ell_4: & \} \end{aligned}
```

$\mathbb{A}^\sharp_{\mathrm{r}[\delta_{ op}]}$ where $\delta_{ op}:\mathbb{A} o\{\pi\}$			
	$ e^{\sharp} $	h^{\sharp}	
true branch	$oxed{egin{aligned} ext{obj} \mapsto \{(\pi, \mathbf{r})\} \end{aligned}}$	$(\pi, \mathbf{r}) \mapsto \{\}$ $(\pi, \mathbf{o}) \mapsto \{\mathbf{a} \mapsto \{1\}\}$	
false branch	extstyle ext	$(\pi, \mathbf{r}) \mapsto \{\}$	
join	$igg $ obj $\mapsto \{(\pi, \mathbf{r})\}$	$ (\pi, \mathbf{r}) \mapsto \{\} $ $ (\pi, \mathbf{o}) \mapsto \{\mathbf{a} \mapsto \{1\}\} $	

$$\mathbb{A}_{\delta_{id}}^{\sharp} \preceq_{p} \mathbb{A}_{\delta_{\top}}^{\sharp}$$

$$\preceq_{p} \qquad \preceq_{p}$$

$$\mathbb{A}_{r[\delta_{id}]}^{\sharp} \not\preceq_{p} \mathbb{A}_{r[\delta_{\top}]}^{\sharp}$$

$\mathbb{A}^\sharp_{\mathrm{r}[\delta_{\mathrm{id}}]}$ where $\delta_{id}:\mathbb{A} o\mathbb{L}$ h^\sharp			
true branch	$\texttt{obj} \mapsto \{(\mathit{l}_3,\mathbf{r})\}$	$(\mathit{l}_0,\mathbf{r})\mapsto \{\mathtt{a}\mapsto \{1\}\}\ (\mathit{l}_3,\mathbf{r})\mapsto \{\}$	
false branch	$\texttt{obj} \mapsto \{(\mathit{l}_0,\mathbf{r})\}$	$(\ell_0,\mathbf{r})\mapsto \{\}$	
join		$(\ell_0,\mathbf{r})\mapsto \{\mathtt{a}\mapsto \{\circledast,1\}\}\ (\ell_3,\mathbf{r})\mapsto \{\}$	


```
egin{aligned} & \ell_0: & \mathbf{var} \; \mathsf{obj} = \{\}; \ & \ell_1: & \mathbf{if} \; (\;?\;) \; \{ \ & \ell_2: & \mathsf{obj.a} = 1; \ & \ell_3: & \mathsf{obj} = \{\}; \ & \ell_4: & \} \end{aligned}
```

$\mathbb{A}^\sharp_{\mathrm{r}[\delta_{ op}]}$ where $\delta_{ op}:\mathbb{A} o\{\pi\}$			
	e^{\sharp}	$\mid \qquad h^{\sharp}$	
true branch	$ exttt{obj} \mapsto \{(\pi, \mathbf{r})\}$	$(\pi, \mathbf{r}) \mapsto \{\}$ $(\pi, \mathbf{o}) \mapsto \{\mathbf{a} \mapsto \{1\}\}$	
false branch	$ extstyle extstyle extstyle extstyle extstyle obj \mapsto \{(\pi, \mathbf{r})\}$	$(\pi, \mathbf{r}) \mapsto \{\}$	
join	extstyle ext	$(\pi, \mathbf{r}) \mapsto \{\}$ $(\pi, \mathbf{o}) \mapsto \{\mathbf{a} \mapsto \{1\}\}$	

$$\mathbb{A}_{\delta_{id}}^{\sharp} \preceq_{p} \mathbb{A}_{\delta_{\top}}^{\sharp}$$

$$\preceq_{p} \qquad \preceq_{p}$$

$$\mathbb{A}_{r[\delta_{id}]}^{\sharp} \not\preceq_{p} \mathbb{A}_{r[\delta_{\top}]}^{\sharp}$$

$\mathbb{A}^\sharp_{\mathrm{r}[\delta_{\mathrm{id}}]}$ where $\delta_{id}:\mathbb{A} o\mathbb{L}$ $_{e^\sharp}$			
true branch	$\texttt{obj} \mapsto \{(\mathit{l}_3,\mathbf{r})\}$	$egin{aligned} (\mathit{l}_0,\mathbf{r}) &\mapsto \{\mathtt{a} \mapsto \{1\}\} \ (\mathit{l}_3,\mathbf{r}) &\mapsto \{\} \end{aligned}$	
false branch	$\texttt{obj} \mapsto \{(\mathit{l}_0,\mathbf{r})\}$	$(\mathit{l}_0,\mathbf{r})\mapsto \{\}$	
join		$(\mathit{l}_0,\mathbf{r})\mapsto \{\mathtt{a}\mapsto \{\circledast,1\}\}\ (\mathit{l}_3,\mathbf{r})\mapsto \{\}$	


```
egin{aligned} & \ell_0: & \mathbf{var} \; \mathsf{obj} = \{\}; \ & \ell_1: & \mathbf{if} \; (\;?\;) \; \{ \ & \ell_2: & \mathsf{obj.a} = 1; \ & \ell_3: & \mathsf{obj} = \{\}; \ & \ell_4: & \} \end{aligned}
```

$$\begin{array}{c|cccc} \mathbb{A}_{\mathbf{r}[\delta_{\top}]}^{\sharp} & \text{where} & \delta_{\top} : \mathbb{A} \to \{\pi\} \\ \hline & e^{\sharp} & h^{\sharp} \\ \hline \text{true branch} & \text{obj} \mapsto \{(\pi,\mathbf{r})\} & (\pi,\mathbf{r}) \mapsto \{\} \\ \hline \text{false branch} & \text{obj} \mapsto \{(\pi,\mathbf{r})\} & (\pi,\mathbf{r}) \mapsto \{\} \\ \hline & \text{join} & \text{obj} \mapsto \{(\pi,\mathbf{r})\} & (\pi,\mathbf{r}) \mapsto \{\} \\ \hline & (\pi,\mathbf{o}) \mapsto \{\mathbf{a} \mapsto \{1\}\} \end{array}$$

$$\mathbb{A}^{\sharp}_{\delta_{id}} \preceq_{p} \mathbb{A}^{\sharp}_{\delta_{\top}}$$

$$\preceq_{p} \qquad \preceq_{p}$$

$$\mathbb{A}^{\sharp}_{r[\delta_{id}]} \not\preceq_{p} \mathbb{A}^{\sharp}_{r[\delta_{\top}]}$$

$\mathbb{A}^\sharp_{\mathrm{r}[\delta_{\mathrm{id}}]}$ where $\delta_{id}:\mathbb{A} o\mathbb{L}$ $_{e^\sharp}$			
true branch	$\texttt{obj} \mapsto \{(\mathit{l}_3,\mathbf{r})\}$	$egin{aligned} (\mathit{l}_0,\mathbf{r}) &\mapsto \{\mathtt{a} \mapsto \{1\}\} \ (\mathit{l}_3,\mathbf{r}) &\mapsto \{\} \end{aligned}$	
false branch	$\texttt{obj} \mapsto \{(\mathit{l}_0,\mathbf{r})\}$	$(\mathit{l}_0,\mathbf{r})\mapsto \{\}$	
join		$(\mathit{l}_0,\mathbf{r})\mapsto \{\mathtt{a}\mapsto \{\circledast,1\}\}\ (\mathit{l}_3,\mathbf{r})\mapsto \{\}$	


```
function g(z)
             var result = z.p;
      function f(){
l_4:
             var obj = \{\};
           var a = g(obj);
l_6:
    obj.p = 3;
l_7:
    return obj;
l_9: \mathbf{var} \ \mathbf{x} = \mathbf{f}();
l_{10}: \mathbf{var} \ \mathbf{y} = \mathbf{f}();
l_{11}:
```

allocation-site + 0-CFA

$$\delta_0: \mathbb{A} \to \{\ell_4\}$$

allocation-site + 1-CFA

$$\delta_1 \colon \mathbb{A} \to \{l_{4/9}, l_{4/10}\}$$

$$\mathbb{A}_{\delta_{1}}^{\sharp} \stackrel{\leq}{\preceq}_{p} \mathbb{A}_{\delta_{0}}^{\sharp}$$

$$\stackrel{\leq}{\preceq}_{p} \stackrel{\leq}{\preceq}_{p}$$

$$\mathbb{A}_{\mathrm{r}[\delta_{1}]}^{\sharp} \stackrel{\neq}{\preceq}_{p} \mathbb{A}_{\mathrm{r}[\delta_{0}]}^{\sharp}$$

Why?

- refinement relationship

 $\mathbb{A}_{\delta_1}^{\sharp} \preceq \mathbb{A}_{\delta_2}^{\sharp}$ iff δ_1 is a refinement partition of δ_2

Theorem 1 (Implication of precision from refinement).

$$\mathbb{A}_{\delta_1}^{\sharp} \leq \mathbb{A}_{\delta_2}^{\sharp} \Rightarrow \mathbb{A}_{\delta_1}^{\sharp} \leq_p \mathbb{A}_{\delta_2}^{\sharp}$$

Why?

 Recency abstraction does not preserve the refinement relationship between given partitionbased address abstractions

Singleton Abstraction

Singleton Abstraction

A given partition $\delta: \mathbb{A} \to \Pi$

	<u>S</u>	<u>S</u>	
7	m	m	
$\mathbb{H}^\sharp_{\mathrm{s}[\delta]} = \mathrm{I}$	I —	→ O#	$ imes \{ \mathbf{s}, \mathbf{m} \}$

- exactly one object
- multiple(m) weak updates
 - more than one objects

Evaluation

Evaluation

- 3 benchmarks (24 programs)
 - JSAI, SunSpider, and V8
- evaluation setting
 - 2.8 GHz Intel Core i5 iMac with 16GB memory

- Time

- Allocation-site Abstraction: 86.92 sec
- Recency Abstraction: 122.73 sec
- Singleton Abstraction: 79.77 sec

- Precision:

 # of properties more precise than allocation-site abstraction

Bench	Program	LOC	Recency	Singleton	Total
	adn-chess.js	234	90	55	127
	adn-coffee_pods_deals.js	367	45	37	141
	adn-less_spam_please.js	759	213	143	432
JSAI	adn-live_pagerank.js	882	132	117	323
	adn-odesk_job_watcher.js	168	56	52	71
	adn-pinpoints.js	548	58	57	232
	adn-tryagain.js	929	103	72	525
	3d-morph.js	23	1	1	4
	access-binary-trees.js	38	14	10	16
	access-fannkuch.js	51	1	1	19
	access-nbody.js	142	32	15	78
	access-nsieve.js	28	2	0	4
	bitops-3bit-bits-in-byte.js	13	0	0	0
SunSnider	bitops-bits-in-byte.js	14	0	0	0
SunSpider	bitops-bitwise-and.js	3	0	0	0
	bitops-nsieve-bits.js	22	1	1	7
	controlflow-recursive.js	18	0	0	0
	math-cordic.js	53	4	4	6
	math-partial-sums.js	25	4	4	4
	math-spectral-norm.js	41	2	1	16
	string-fasta.js	70	15	10	18
V8	navier-stokes.js	331	36	17	92
	richards.js	288	119	117	197
	splay.js	205	108	108	132
Total			1036	831	2,444
Ratio (%)			42.39	33.63	_

Conclusion

Abstraction	more division	tags for strong update
Recency	o r	recent(r) old(o)
Singleton	s or m	singleton(s) multiple(m)
Our Goal	??	singleton(s) multiple(m)