Séance n°6

Alternative de Fredholm

Corrigé

6 Janvier 2006

Exercice 1. Un exemple en dimension 1

1.1 - L'existence de K résulte du théorème d'identification de Riesz et de la continuité de l'application trace. K est évidemment autoadjoint puisque

$$(Ku, v)_{H^1(\mathbb{R}^+)} = (u, Kv)_{H^1(\mathbb{R}^+)}, \quad \forall u, v \in H^1(\mathbb{R}^+),$$

Enfin, il est de rang 1 car $\forall u, v \in H^1(\mathbb{R}^+)$, il existe une combinaison linéaire de u et v qui s'annule en 0:

$$au(0) + bv(0) = 0$$

d'où aKu + bKv = 0.

1.2 - Si K admettait deux vecteurs propres linéairement indépendants, il ne serait pas de rang 1 mais au moins 2... $Ku = \lambda u$ donne

$$\begin{cases} -u'' + u = 0 & (\mathbb{R}^+) \\ u'(0) + \lambda u(0) = 0 \end{cases}$$

que l'on résoud facilement dans $H^1(\mathbb{R}^+)$ et on trouve : $\lambda = 1$ et $u = e^{-x}$.

1.3 - Le problème suivant :

Trouver
$$u$$
 tel que
$$\begin{cases} -u'' + u = f & (\mathbb{R}^+) \\ u'(0) + \alpha u(0) = 0 \end{cases}$$

admet la formulation variationnelle suivante :

$$u \in H^1(\mathbb{R}^+), \qquad \int_{\mathbb{R}^+} (u'v' + uv)dx - \alpha u(0)v(0) = \int_{\mathbb{R}^+} fvdx$$

pour tout $v \in H^1(\mathbb{R}^+)$. Cela s'écrit aussi, en utilisant le théorème d'identification de Riesz :

$$u - \alpha K u = g$$

avec

$$(g,v)_{H^1(\mathbb{R}^+)} = \int_{\mathbb{R}^+} fv dx.$$

D'après l'alternative de Fredholm, si $\alpha \neq 1$, le problème admet donc une solution unique $u \in H^1(\mathbb{R}^+)$.

1.4 - Si $\alpha=1$, (toujours d'après l'alternative de Fredholm) le problème admet une solution si et seulement si

$$\int_{\mathbb{R}^+} f e^{-x} dx = 0.$$

Cette solution n'est pas unique puisque on peut lui rajouter ae^{-x} .

Exercice 2. Vibrations acoustiques

2.1 - La formulation variationnelle de ce problème est :

$$\begin{cases} \text{Trouver } u \in H^1(\Omega) \text{ tel que} & \forall v \in H^1(\Omega) \\ \int_{\Omega} \nabla u \cdot \nabla v \, dx - k^2 \int_{\Omega} u \, v \, d\gamma = \int_{\partial \Omega} g \, v \, d\gamma, \end{cases}$$

On ne peut pas appliquer le théorème de Lax-Milgram car on n'a pas la coercivité.

- 2.2 Idem premier exo (Riesz).
- 2.3 On a par Cauchy-Schwarz,

$$||Ku||_{H^1(\Omega)}^2 \le ||u||_{L^2(\Omega)} ||Ku||_{L^2(\Omega)} \quad \forall u \in H^1(\Omega),$$

d'où le résultat. Si u_n est une suite bornée dans $H^1(\Omega)$, on peut en extraire une sous-suite (encore notée u_n) convergente dans $L^2(\Omega)$. Or :

$$||Ku_n - Ku_m||_{H^1(\Omega)} \le ||u_n - u_m||_{L^2(\Omega)} \quad \forall u \in H^1(\Omega).$$

Donc Ku_n est de Cauchy dans $H^1(\Omega)$. Cela prouve que K est un opérateur compact.

2.4 - Le problème (1) sécrit aussi : trouver $u \in H^1(\Omega)$ tel que :

$$u - (1 + k^2)Ku = g$$

οù

$$(g,v)_{H^1(\Omega)} = \int_{\partial\Omega} g \, v \, d\gamma$$

pour tout v. D'après l'alternative de Fredholm, il est bien posé si et seulement si $1/(1+k^2)$ n'est pas une valeur propre de K.

2.5 - On résoud le problème suivant :

(1)
$$\begin{cases}
-\Delta p + p = \lambda p & (\Omega) \\
\frac{\partial p}{\partial n} = 0 & (\partial \Omega)
\end{cases}$$

On trouve

$$\lambda = 1 + \frac{m^2 \pi^2}{l^2} + \frac{n^2 \pi^2}{L^2} + \frac{j^2 \pi^2}{h^2}$$

pour tous les entiers m, n et j. Les valeurs propres sont les inverses. Elles forment donc une suite tendant vers 0.

2.6 - On suppose k = 0. On veut alors inverser I - K et 1 est valeur propre de K associée à la fonction constante sur Ω . D'après l'alternative de Fredholm le problème admet une unique solution u dans l'orthogonal du noyau, donc telle que

$$\int_{\Omega} u \, dx = 0$$

si et seulement si le second membre est aussi dans l'orthogonal du noyau, ce qui donne :

$$\int_{\partial\Omega} g \, d\gamma = 0.$$

Exercice 3. Un contre-exemple en domaine non borné

3.1 - Il suffit de considérer une suite de la forme

$$u_n(x) = u(x_1 + n, x_2, ...x_N)$$

où u est à support compact. Ses normes L^2 et H^1 sont constantes. Mais si elle convergeat dans L^2 , ce serait forcément vers 0, d'où la contradiction.

3.2 - L'existence vient encore de Riesz. On a :

$$||u||_{L^2(\mathbb{R}^N)} \le ||Au||_{H^1(\mathbb{R}^N)} ||u||_{H^1(\mathbb{R}^N)}.$$

Si A était compact, l'injection de H^1 dans L^2 le serait aussi!

- **3.3** En utilisant la transformation de Fourier, on voit que $Au \lambda u = f$ s'écrit $-\Delta u + u \lambda u = -\Delta f + f$ d'où $(|\xi|^2 + 1 \lambda)\hat{u} = (|\xi|^2 + 1)\hat{f}$. Si f = 0, \hat{u} est nulle p.p. donc u = 0. cela prouve que A n'admet aucune valeur propre.
- **3.4** Si $f \neq 0$, cela montre aussi que l'opérateur $A \lambda I$ n'est pas inversible lorsque $\lambda > 1$. On voit bien que l'on ne peut pas appliquer l'alternative de Fredholm dans ce cas. Le problème n'est pas bien posé bien qu'on ne soit pas sur un valeur propre.