長庚大學109學年度第二學期 作業系統實務 第三次小考

系級: 姓名: 學號:

1. (60%) A sporadic server has a replenishment period 6 and an execution budget 2. Let the sporadic server have the budget 2 at time 0. Assume that events arrive at 1, 2, 3, 8, 14, and each event consumes the execution time 1. Please draw a diagram from time 0 to time 22 to show the changing of the execution budget at different time points.

Answer:

- 2. (60%) Consider 4 tasks, t_1 , t_2 , t_3 , and t_4 which have priorities x_1 , x_2 , x_3 , and x_4 , respectively, and assume $x_1 > x_2 > x_3 > x_4$ (x_1 is the highest priority). After we profiled the programs of the 4 tasks, we have the following information:
 - Task t₁ will lock semaphore S₁ for 30 ms.
 - Task t₂ will lock semaphore S₃ for 20 ms and lock semaphore S₂ for 25 ms.
 - Task t_3 will lock semaphore S_1 for 10ms and lock semaphore S_3 for 40ms.
 - Task t₄ will lock semaphore S₂ for 50ms and lock semaphore S₄ for 70ms.
 - (a) Please derive the priority ceiling of each semaphore. If the priority ceiling protocol is used to manage the semaphore locking, (b) please derive the worst-case blocking time of each task. You have to provide the reason to support each of your answers.

Answer: (a) Priority ceilings: S_1 : x_1 , S_2 : x_2 , S_3 : x_2 , S_4 : x_4

(b) Worst-case blocking times: t₁: 10 ms, t₂: 50 ms, t₃: 50 ms, t₄: 0 ms.