Mathematics: analysis and approaches Higher level 2022 Semester 2 Examinations Paper 3

Friday, September 2nd (morning)

1 hour	
	•

oui			C	andio	date r	umb	er				
		0	0	3	3	7	6	0	0	4	١
JAMES	SULLIVA	M									

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- · A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [55 marks].

8+13=21/50

Answer all questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you could sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 25]

This question asks you to investigate definite integrals of powers of $(1+x^2)^{-1}$

(a) On the same set of axes, sketch and label
$$y = (1+x^2)^{-1}$$
, $y = (1+x^2)^{-2}$ and $y = (1+x^2)^{-3}$, for $0 < x < 1$. [2]

(b) Find the exact value of
$$\int_0^1 (1+x^2)^{-1} dx$$
. [3]

(c) By substituting
$$x = \tan \theta$$
, or otherwise, find the exact value of $\int_0^1 (1+x^2)^{-2} dx$. [7]

Let
$$I_n = \int_0^1 (1+x^2)^{-n} dx$$
.

By expressing $(1+x^2)^{-n}$ as $(1+x^2)^{-n}(1)$, or otherwise, show that
$$I_{n+1} = \left(1 - \frac{1}{2n}\right)I_n + \frac{2^{-n-1}}{n}, \text{ for } n \ge 1.$$

Find the exact value of $I_n = \int_0^1 (1+x^2)^{-3} dx$ [9]

(e) Find the exact value of
$$\int_0^1 (x^2 - 2x + 2)^{-3} dx$$
 [4]

2. [Maximum mark: 30]

This question asks you to investigate the packing density of direles and spheres.

(a) An infinitely large table is covered by non-overlapping circular disks of equal radii.

Show the maximum proportion of the table that is covered is $\frac{\pi}{2\sqrt{3}}$ [4]

Hint:

- (b) Show by mathematical induction that $1+2+3+4+....+k=\frac{k(k+1)}{2}$ [5]
- (c) (i) Expand $(k+1)^3$
 - (ii) By summing each side of (b) (i) from k = 1 to k = n, show that

$$\sum_{k=1}^{n} k^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n.$$
 [6]

The diagram below shows spherical balls of diameter 1 arranged in a triangular pyramid with $\,n\,$ layers

- (d) (i) Find the number of balls in the k th layer from the top, simplifying your answer.
 - (ii) Show that the number of balls in the pyramid is $\frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n$. [5]

Let A, B, C be the centres of the balls at the vertices of the pyramid.

(e) Show that the volume of the tetrahedron *ABCD* is
$$\frac{\sqrt{2}}{12}(n-1)^3$$
. [6]

(f) Find the exact value of the proportion of the tetrahedron ABCD that is occupied by the balls as n approaches infinity.
[4]

	ractice exai WER BOOKL GES					ST ANDREW'S CATHEDRAL SCHOOL FOUNDED 1885
Cand	idate session		0 4 1	Candidate Name	SULLIVA	1 <i>N</i>
At the s	tart of each ansv	ver to a question, wri	te the question numb	er in the box using your	r normal handwritt	ing
	(a)		(0)	·) /	1+x2) "1 y=(1+x2	main.
	b)	$\int_{0}^{1} (1 + \chi^{2})^{2} dt = \frac{1}{2} dt = \frac{1}{2}$	= {x	$\int_{0}^{1} \frac{1}{1+x^{2}} dx = -(1$ $\sqrt{1+x^{2}}$ $\frac{1}{1+x^{2}}$ $\frac{1}{1+x^{2}}$) 2x
			Pleart mind life			

IB practice exams 2022

heart mind life

(d) $I_n = \int_0^1 (1+x^2)^{-n} dx$
(i) In11 = [(11x2)-(11) dx
$ (1+x^2)^{n+1} dz = (0d In+1) $
$\frac{1}{\sqrt{(n+2)(1+x^2)}}$
$\frac{1}{n+2}(1+x^2) \times \frac{1}{2x} = \frac{1}{n+1}$
$\frac{1}{2} = \frac{1}{1 + 2} \times (1 + 2^2) \times \frac{1}{22}$ $= \frac{(1 + 2^2)}{1 + 2} \times (1 + 2^2) \times \frac{1}{22}$
$= \frac{(1+x^2)}{n+2} \times (1+x^2)^{n+1} \times \frac{1}{2x^2}$
- n
$\frac{I_{n} = \int_{0}^{1} (1+2c^{2})}{\int_{0}^{1} (1)(1+2c^{2})} dx$
-(n+1) $-(n+1)$ $-(n+1)$
$= \left[\frac{\chi(1+\chi^2)^{-n} - \int_{0}^{1} \chi \Lambda(1+\chi^2)}{\chi \Lambda(1+\chi^2)^{-n} \int_{0}^{1} \chi \Lambda(1+\chi^2)} \right] \chi$ $= \left[\frac{\chi(1+\chi^2)^{-n}}{\chi \Lambda(1+\chi^2)^{-n} \int_{0}^{1} \chi \Lambda(1+\chi^2)} \right] \chi$ $= \left[\frac{\chi(1+\chi^2)^{-n}}{\chi \Lambda(1+\chi^2)^{-n} \int_{0}^{1} \chi \Lambda(1+\chi^2)} \right] \chi$
$= 2^{-n} - 0 + \frac{\pi}{2} \left[-(n+1) 2 - 1 \right]_{0}^{1}$

(ii) In - Jo (11202) - My doc up 100
$\frac{1}{2} \int_{0}^{1} (1+2c^{2}) \frac{1}{2} dz$
$\frac{1}{1} \frac{dy}{dz} = \frac{1}{1+2z^2}$ $\frac{1}{1+2z^2} \frac{dy}{dz} = \frac{1}{1+2z^2}$
$\frac{\partial U}{\partial x} = \frac{1}{2} \left(\frac{1+x^2}{2} \right) = \frac{1}{2} \left(1$
$= \frac{2}{2} - 0 - \left(\frac{-n^{-2}}{-n^{-1}}\right)$ $= \frac{2}{2} + \left(\frac{2}{2}\right) \times \left(\frac{1+x^{2}}{2}\right) = \frac{1}{2}$
$= \frac{2}{2} + \int_{0}^{1} x(M(1+x^{2}) dx + \int_{0}^{1} z(n+1)(1+x^{2}) dx$ $= \frac{2}{2} + \int_{0}^{1} x(N+1)(1+x^{2}) dx + \int_{0}^{1} x(n+1)(1+x^{2}) dx$
(e) $\int_{0}^{-3} (x^{2}-7x+2) dx = 0.544524$ $= \left[-\frac{1}{2}(x^{2}-2x+2)\right]^{-2} (400)$
$= -\frac{1}{2(}$

1

heart mind life

IB practice exams 2022

Candidate session number

ANSWER BOOKLET

4 PAGES

Candidate Name

003376-0041

JAMES SULLIVAN

At the start of each answer to a question, write the question number in the box using your normal handwriting

10

heart mind life

(d) (i) $k=1$ 1 2 $k=2$ 3 3 $k=3$ 6 4 $k=4$ 10 $k=4$ 10
$= I_{k} = K$
(e) VBALL = 3TIT
$V = \frac{3}{3} \frac{1}{3} \frac{3}{3} \frac{3}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} $
$= \frac{85}{3} (\frac{1}{6}) (\frac{3}{13} + \frac{3}{13})^{2} + \frac{2}{13}$

IB practice exams 2022

ANSWER BOOKLET

4 PAGES

Candidate session number

0	0	3	3	7	6	-0	0	4	(
O	O))	1	U	-0	U	'	L

Candidate Name

SULLI VAN JAMES

At the start of each answer to a question, write the question number in the box using your normal handwriting

Example

Example

3

