Computer Games Exercises: 2024s s09 (all)

https://www.umm.uni-heidelberg.de/miism/

Contents

Answer header	1
A03: Keyframing	1
Scene	2
Variables	2
Methods	3
Questions	

Answer header

Please put the author information in the header of all code files.

- name (Name)
- coauthor list

A03: Keyframing

Please read the material of the "Keyframing" game. In this task, you should implement a keyframing method, to move a ball along a spline with some predefined key frames.

Scene

Create a scene with the following items:

Groute a coord war are following terrior						
Object	Туре	Position	Size	Texture		
panel1	Control:Panel	(0, 0)	(600, 600)			
sphere1	Node2D:Sprite2D	(0, 250)		sphere.png		
sphere2	Node2D:Sprite2D	(100, 250)		sphere.png		
sphere3	Node2D:Sprite2D	(250, 500)		sphere.png		
sphere4	Node2D:Sprite2D	(400, 325)		sphere.png		
sphere5	Node2D:Sprite2D	(550, 100)		sphere.png		
ball	Node2D:Sprite2D	(0, 250)		ball.png		
panel2	Control:Panel	(0, 600)	(600, 100)			

• Add several Control:* objects to panel2, which should be used to control the speed and movement mode and show text.

Variables

Create a script for the ball with the following variables:

- an array to store the location of waypoints represented by the spheres
- an array for the derivatives at the waypoints, which contains the following items
 - (2, 0)
 - (1, 2)
 - (2, 1)
 - (1, -2)
 - (2, 0)
- ullet a variable of speed v

Methods

Implement the following methods:

• Hermite Spline defines the path with the waypoints and derivatives:

$$c(t) = h_{00} \cdot p_0 + h_{10} \cdot p_1 + h_{01} \cdot d_0 + h_{11} \cdot d_1$$

$$h_{00} = 2 \cdot t^3 - 3 \cdot t^2 + 1$$

$$h_{10} = -2 \cdot t^3 + 3 \cdot t^2$$

$$h_{01} = t^3 - 2 \cdot t^2 + t$$

$$h_{11} = t^3 - t^2$$
(1)

where p_0 , p_1 are two neighboring waypoints, d_0 , d_1 are their derivatives and $t \in [0, 1]$ is the parameter.

• Catmull-Rom Spline estimates the derivatives for the inner points by:

$$d_k = \delta_k \cdot (p_{k+1} - p_{k-1}). {2}$$

With $\delta_k=0.5$ and $d_{\rm first}=d_{\rm last}=(10,0)$, the path can be calculated as the Hermite Spline.

- Implement the **arc length calculation** of the parametric functions.
- Control the movement mode by one Control:* object in panel2. It switches between Hermite Spline and Catmull-Rom Spline.
- Control the speed by another Control:* object in panel2. The speed value is used to control the movement.
- Method move () moves the ball for each frame according to the control.
 - The piece moving time T_{piece} between two neighboring waypoints should be calculated by their arc length and the input speed: $T_{\text{piece}} = l_{\text{piece}}/v$.
 - The parameter t should be linearly interpolated by the frame time T_{frame} and the piece moving time T_{piece} : $t = (T_{\text{frame}} T_{p0})/T_{\text{piece}}$.
 - When the parameter t > 1, the ball moves to the next piece.
 - The outcome of the game should be a smooth movement of the ball along a piecewise polynomial path from sphere1 to sphere5.
 - When the ball reaches sphere5, it starts from sphere1 again.
 - Display the arc length of the path from sphere1 to the current ball position dynamically in another Control:* object in pane12.

Questions

Write the corresponding answers in the script file.

The extension of keyframing to a deformable object is realized via free-form deformation. In contrast, for physics-based animation, the procedure is automatic and completely defined by the applied forces to the object under investigation. How can keyframing be transferred to physics-based animation henceforth?