lecture 17, trees for MPL

phil1012 introductory logic

overview

this lecture

- an introduction to trees for MPL
- motivation for MPL truth trees
- motivation for new rules
- constructing MPL truth trees
- finished trees, closed paths, and saturation

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - \circ explain the general rationale behind trees for MPL
 - \circ explain the particular rationale behind each tree rule for ${\tt MPL}$
 - \circ explain what it means to say that a path is saturated
 - construct trees using the tree rules for MPL
 - \circ use trees to test for various logical properties of MPL formulas
 - read off (counter) models from open paths of MPL trees

required reading

• section 10.1 of chapter 10

tables and trees

tables and trees

- recall that in PL we had two methods of proof: truth tables and truth trees
- in MPL we have only one: truth trees
- the tree rules for MPL are similar to those for PL
- but there are additional rules for the quantifiers
- and the rationale appeals to models
- let's start by running through the rationale for the rules

rationale for tree rules

rationale for tree rules

- the general rationale for the tree rules:
 - the rules prescribe propositions that must be true, given that what we have already written down is true
- in the non-branching case:
- if there is a model in which every proposition on some old path is

true, then there is a model in which every proposition on the new path is true.

- in the branching case:
- if there is a model in which every proposition on some old path is true, then there is a model in which every proposition on at least one new path is true.
- all of the rules from PL have the relevant property. Take the rules for negated disjunction (a non-branching rule) and disjunction (a branching rule) for example.

the rationale for the rule for negated disjunction

• rule for negated disjunction:

$$\neg(\alpha \lor \beta) \checkmark \\ \neg\alpha \\ \neg\beta$$

- rationale:
 - suppose there is some model in which $\neg(\alpha \lor \beta)$ is true
 - \circ it follows by rule (2) that ($\alpha \vee \beta$) is false on this model
 - \circ it follows by rule (4) that lpha and eta are both false on this model
 - \circ it follows by rule (2) that $\neg \alpha$ and $\neg \beta$ are both true on this model
 - so if there is a model in which every proposition on some old path is true *before* this rule is applied, then there is a model in which every proposition on the new path is true *after* this rule has been applied

the rationale for the rule for disjunction

• rule for disjunction:

- rationale:
 - \circ suppose there is a model in which $(\alpha \lor \beta)$ is true
 - \circ it follows by rule (4) that either α is true or β is true in this model
 - so if there is a model in which every proposition on some old path is true before this rule is applied, then there is a model in which every proposition on at least one new path is true after this rule has been applied

rules for quantifiers

rules for quantifiers

• we now introduce four new rules for the quantifiers.

- the rule for negated existential quantifier.
- the rule for negated universal quantifier.
- the rule for existential quantifier.
- the rule for universal quantifier.
- the application of the rules for the negated quantifiers is the same as for the other rules.
- the unnegated quantifiers require special treatment.

rule for negated existential quantifier

```
\neg \exists \underline{x} \alpha(\underline{x}) \checkmark \\ \forall \underline{x} \neg \alpha(\underline{x})
```

- rationale:
 - \circ suppose that $\neg\exists \underline{x}\alpha(\underline{x})$ is true in some model $\mathcal M$
 - \circ it follows from this that $\exists \underline{x} \alpha(\ \underline{x})$ is false in $\mathcal M$
 - \circ it follows from this that there is no model just like $\mathcal M$ except that it also assigns a referent to a—where is a is some name to which $\mathcal M$ assigns no referent—in which $\alpha(a/x)$ is true
 - \circ in other words, $\alpha\big(\,\underline{a}/\underline{x}\big)\,$ is false in every model just like $\mathcal M$ except that it also assigns a referent to \underline{a}
 - \circ it follows from this that $\neg\alpha\big(\,\underline{a}/\underline{x}\big)\,$ is true on every model just like $\mathcal M$ except that it also assigns a referent to \underline{a}
 - it follows from this that $\forall \underline{x} \neg \alpha(\underline{x})$ is true in $\mathcal M$

rule for negated universal quantifier

```
\neg \forall \underline{x} \alpha(\underline{x}) \checkmark \\ \exists \underline{x} \neg \alpha(\underline{x})
```

- rationale:
 - \circ suppose that $\neg \forall x \alpha(x)$ is true in some model $\mathcal M$
 - \circ it follows from this that $orall x lpha(\ x)$ is false in $\mathcal M$
 - it follows from this that there is some model just like $\mathcal M$ except that it also assigns a referent $\underline a$ —where $\underline a$ is some name to which $\mathcal M$ assign no referent—in which α ($\underline a$ / $\underline x$) is false
 - \circ it follows from this that $\neg \alpha$ $(\underline{a}/\underline{x})$ is true in \mathcal{M} . It follows that $\exists x \neg \alpha(x)$ is true in \mathcal{M}

rule for existential quantifier

$$\frac{\exists \underline{x} \alpha(\underline{x}) \checkmark \underline{a}}{\alpha(\underline{a}/\underline{x})}$$

- note 1: at the time of applying the rule at the bottom of some path, the name <u>a</u> used in applying the rule must be one that has not yet appeared anywhere on the path.
- note 2: when applying the rule and checking off the formula, we write the name we have used in applying the rule next to the check mark.
- let's look at a couple of examples . . .
- suppose we have:

$$Fa \\ Gb \\ \exists xHx$$

• the following is a correct application of the rule for the existential quantifier:

$$Fa \\ Gb \\ \exists xHx \checkmark c \\ Hc$$

- ullet the name c has not been used on the path
- the following is an incorrect application of the rule for the existential quantifier:

$$Fa \\ Gb \\ \exists xHx \checkmark b \\ Hb$$

- \bullet the name $\,b\,$ has already been used on the path
- okay, now consider another example
- suppose we have:

$$(\exists x Fx \vee \exists x Gx) \checkmark$$

$$\exists x Fx \quad \exists x Gx$$

ullet we apply the rule for the existential quantifier once:

$$\exists x Fx \vee \exists x Gx) \vee \\ \exists x Fx \vee a \quad \exists x Gx \\ Fa$$

• we apply the rule again:

$$(\exists x Fx \vee \exists x Gx) \checkmark$$

$$\exists x Fx \checkmark a \quad \exists x Gx \checkmark a$$

$$Fa \qquad Ga$$

- this is okay because the name has not been used on this path.
- okay, now let's look at the rationale for the rule for the existential quantifier
- rationale:
 - \circ suppose there is a model $\mathcal M$ in which $\exists x \alpha(x)$ is true.

- it follows from this that there is at least one object o in the domain of $\mathcal M$ such that $\alpha\left(\underbrace{a/x}\right)$ is true in $\mathcal M^a_o$, where $\underline a$ is some name not assigned a referent in $\mathcal M$, and $\mathcal M^a_o$ is a model that is just like $\mathcal M$ except that in it the name $\underline a$ is assigned the referent o.
- \circ so, if there is a model $\mathcal M$ in which $\exists \underline x \alpha(\ \underline x)$ is true, then there is a different model $\mathcal M_o^a$ in which $\alpha(\ \underline a/\underline x)$ is true $\exists \underline x \alpha(\ \underline x)$ will be true on $\mathcal M_o^a$.
- \circ so, if there is a model $\mathcal M$ in which $\exists \underline x \alpha(\ \underline x)$ is true, then there is a different model $\mathcal M_o^a$ in which $\alpha(\ \underline a/\underline x)$ is true, and $\exists \underline x \alpha(\ \underline x)$ is true.

rule for universal quantifier:

```
\frac{\forall \underline{x}\alpha(\underline{x}) \setminus \underline{a}}{\alpha(\underline{a}/\underline{x})}
```

- \bullet note 1: the name a does not have to be new on the path
- note 2: when applying the rule, we write a backslash, not a check mark—and we write the name used in applying the rule next to the backslash
- note 3: we can apply the rule multiple times

```
\forall \underline{x} \alpha(\underline{x}) \setminus \underline{a}, \underline{b}, \underline{c}
\alpha(\underline{a}/\underline{x})
\alpha(\underline{b}/\underline{x})
\alpha(\underline{c}/\underline{x})
```

- okay, let's go over the rationale for the rule for the universal quantifier
- rationale (case 1):
 - \circ suppose that the name \underline{a} used in applying the rule is new to the path.
 - if there is a model $\mathcal M$ in which $\forall \underline{x}\alpha(\underline{x})$ is true, then for every object o in the domain of $\mathcal M$, $\alpha(\underline{a}/\underline{x})$ is true in $\mathcal M^a_o$ where \underline{a} is our new name (which is not assigned a referent in $\mathcal M$), and $\mathcal M^a_o$ is a model that is just like $\mathcal M$ except that in it the name \underline{a} is assigned the referent o
 - \circ if $\forall x \alpha(x)$ is true in \mathcal{M} , then $\forall x \alpha(x)$ is true in \mathcal{M}_{o}^{a} .
 - it follows that if there is a model in which $\forall \underline{x}\alpha(\underline{x})$ is true, then there is a model on which $\forall \underline{x}\alpha(\underline{x})$ is true and $\alpha(\underline{a}/\underline{x})$ is true.
- rationale (case 2):
 - \circ suppose that the name \underline{a} used in applying the rule is not new to the path.
 - if there is a model $\mathcal M$ in which $\forall \underline x \alpha(\underline x)$ is true, then for every object o in the domain of $\mathcal M$, $\alpha(\underline d/\underline x)$ is true in $\mathcal M_o^d$ where $\underline d$ is a new name (which is not assigned a referent in $\mathcal M$), and $\mathcal M_o^d$ is a model that is just like $\mathcal M$ except that in it the name $\underline d$ is assigned the referent o
 - \circ in this case, \underline{a} is (already) assigned to a referent in $\mathcal{M}-$ suppose it is assigned to the object k
 - \circ we have just seen that $lpha(\underline{d}/\underline{x})$ is true in every model just like

- ${\mathcal M}$ except that it assigns a referent to d
- \circ so $\alpha\big(\ \underline{d}/\underline{x}\big)$ is true in \mathcal{M}_k^d , the model that assigns \underline{d} 's referent to k
- \circ but then $\alpha\big(\,\underline{a}/\underline{x}\big)\,$ must be true in $\mathcal{M}\text{,}$ because $\underline{a}\,\text{'s}$ referent is the same object k
- okay, so much for the motivation for the rules for the existential quantifier and the universal quantifier, now let's take a look at trees for MPL in their entirety

tree rules for MPL

tree rules for MPL

- the tree rules for MPL consist of:
 - the tree rules from PL.
 - tree rules for disjunction, negated disjunction, conjunction, negated conjunction, conditional, negated conditional, biconditional, negated biconditional, and double negation are the same as in PL
- and the tree rules for the quantifiers:
- rule for existential quantifier

$$\exists \underline{x} \alpha(\underline{x}) \checkmark \underline{a} \qquad (\text{new } \underline{a})$$
$$\alpha(\underline{a}/\underline{x})$$

• rule for negated existential quantifier

$$\neg \exists \underline{x} \alpha(\underline{x}) \checkmark \\ \forall \underline{x} \neg \alpha(\underline{x})$$

• rule for universal quantifier

$$\forall \underline{x} \alpha(\underline{x}) \setminus \underline{a} \quad (\text{any } \underline{a})$$
 $\alpha(\underline{a}/\underline{x})$

• rule for negated universal quantifier

$$\neg \forall \underline{x} \alpha(\underline{x}) \checkmark \\ \exists x \neg \alpha(x)$$

recommended order of application

- \bullet there's a recommended order of application for the rules:
 - rules from PL. non-branching first
 - rules for negated quantifiers
 - rule for (unnegated) existential quantifier
 - rule for (unnegated) universal quantifier
- that's it. those are the four new rules, and notes on their application.
- now we've got to say something about finished trees

finished trees, saturated paths

finished trees, saturated paths

- because we can go on applying the rule for the universal quantifier as many times as we like, we need to say something about when our trees are finished
- to do so we appel to the idea of a saturated path
- a tree is **finished** if each of its paths is either **closed** or **saturated**.
- a path is **saturated** if and only if
 - every formula on it—apart from atomic formulas, negations of atomic formulas, and formulas whose main operator is a universal quantifier—has had the relevant rule applied; and
 - every formula on it whose main operator is a universal quantifier
 - \circ has had the universal quantifier rule applied to it at least once, and
 - has had the rule applied to it once for each name that appears on the path.
- let's consider an example
- suppose we have:

```
\exists x F x \\ \forall x H x \\ Gb
```

ullet we apply the existential quantifier rule to get:

• then we apply the universal quantifier rule to get:

```
\exists x Fx \checkmark a \\ \forall x Hx \backslash a \\ Gb \\ Fa \\ Ha
```

- this tree is unfinished!
- ullet why? because there is a name no the path, b in this case, which we have not yet used in applying the universal quantifier rule
- \bullet so we apply the universal quanfitier rule using the name b to get:

```
\exists x Fx \checkmark a \\ \forall x Hx \backslash a, b \\ Gb \\ Fa \\ Ha \\ Hb
```

- this tree is finished!
- why? because we've applied the universal quantifier rule at least once, and we have applied it using every name on the path
- \bullet don't worry if you haven't fully understood the idea of saturating a path
- we'll do plenty of practice in the live lecture and in the tutorials

wrapping up

this lecture

- \bullet introducting the tree rules for MPL
- \bullet the rationale for the rules
- ullet finished trees, saturated paths

next lecture

• lecture 18, uses of trees for MPL