

NCAR Command Language

NCL is an interpreted language designed specifically for scientific data analysis and visualization.

Portable, robust, and free, NCL is available as binaries or open source.

Supports NetCDF 3/4, GRIB 1/2, HDF 4/5, HDF-EOS 2/5, shapefile, ASCII, binary.

Numerous analysis functions are built-in.

High-quality graphics are easily created and customized with hundreds of graphic resources.

Many example scripts and their corresponding graphics are available.

Ejemplos Generales

equidistant

Datasets	Map projections	Models	Data Analysis
AVHRR ARM Arctic Systems Reanalysis CALIPSO classification data: vegetation/cloud CloudSat COAMPS COADS CRU DAYMET EASE ERA40, ERA-I, ERA-20C GODAS GOES GPCP HDF/HDF4/5-EOS: AIRS,HIRDLS,MLS	Map projections Maps only Map outlines Map lat/lon grids General Coastlines Cylindrical equidistant Lambert conformal (masked) Lambert conformal (native) Native grid Polar stereographic Rotated lat-lon	COAMPS CCCMA: CRCM CESM: Ice (CISM) CESM: Land CESM: POP COSMO HOMME (SEAM) ICON MPAS NOGAPS Ocean: HYCOM Ocean: NCOM Ocean: NLOM Ocean: ORCA Ocean: ROMS Paleoclimatology PIPS Regional Climate Model REMO	Anomalies Binning Climate Indices Climatology COADS Complex Coefficients (GRIB) Correlations Crop: Evapotranspiration; Penman-Monteith (FAO-56); Thornthwaite Divergent and rotational wind components Eliassen-Palm flux; Brunt/Ri/Eady ESMF regridding EOFs Filters
	Cylindrical equidistant Lambert conformal (masked) Lambert conformal (native) Native grid Polar stereographic	ICON MPAS NOGAPS Ocean: HYCOM Ocean: NCOM Ocean: NLOM Ocean: ORCA Ocean: ROMS Paleoclimatology PIPS Regional Climate Model	Evapotranspiration; Penman-Monteith (FAO-56); Thornthwaite Divergent and rotational wind components Eliassen-Palm flux; Brunt/Ri/Eady ESMF regridding EOFs
eaWiFs hapefiles SMI (v7) tation data opographic data			PV: Potential Vorticity and Temperature; Static Stability PDF: Probability Distributions
Plot Types Bar charts Box plots Contours: no maps Contours: cylindrical	Plot Techniques 2-dimensional vertical coordinates Animations	Special Plots Evans plots Histograms Iso levels Meteograms	POP: Principal Oscillation Patterns Random Data to Grid Regression, Trend Regridding Sigma coordinate
		c.cogramo	la barra al ablara

Annotations

Pie charts

interpolation

NCL: NCAR Command Language

http://www2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL examples.htm

Ejemplos para Las salidas WRF

Como usar NCL?

2 Maneras:

- 1. Usando la manera interactiva:

```
[macbook-de-clementine-junquas:~ clementinejunquas$ ncl
  Copyright (C) 1995-2013 - All Rights Reserved
  University Corporation for Atmospheric Research
  NCAR Command Language Version 6.1.2
  The use of this software is governed by a License Agreement.
  See http://www.ncl.ucar.edu/ for more details.
  ncl 0> [
```

- 2. Creando un script : « plot.ncl » que contiene el codigo para crear una figura por ej. :

```
load ncl library scripts
begin
; Open input file(s)
; Open graphical output
; Read variables
; Set up plot resources & Create plots
; Output graphics
end
```

→ Lanzarlo : ncl plot.ncl o ncl < plot.ncl

Matrices en NCL

```
";" para comentarios
```

```
<u>Definiciones</u>
A=new(2,float)
```

A=(/10.,20./) ; El "punto" para numeros "real", sin el punto si es un "integer"

B=new((/ntime,nlev,nlat,nlon/),float)

delete(A) ; para borrar la matrice A

dimsizes(M) ; = size(M) en matlab

delete([/ A, B, C /]) ; para borrar varias matrices
free memory ; si falta memoria

<u>Interactivo:</u>

print(M) ; para que aparezca la matrice en la pantalla (= M en matab) print(dimsizes(M)) ; para que aparezca las dim de M en la pantalla (=size(M) en matlab)

Funciones utiles generales

M=(/(/1,3/),(/7,2/)/)

M(0:,:) ; **Importante**: En NCL se cuentan las dimensiones a partir de 0, como en NCOs transpose(M) ; = M'

 $dim_sum(M)$; = suma de cada linea (1era dimension) $dim_sum_n(M|1)$: = suma de cada columna (2da dimension)

dim_sum_n(M,1) ; = suma de cada columna (2da dimension)
sum(M) ; = todos los elementos

product(dimsizes(M)); = length(M) en matlab

EJEMPLO 1 EJEMPLO 2

```
[ncl 0> x=new(2,float)
                                            [ncl 4> A=(/(/1,3/),(/7,2/)/)
[ncl 1> x=(/10.,20./)]
                                            [ncl 5> print(A)
[ncl 2> print(x)]
                                             Variable: A
Variable: x
                                             Type: integer
Type: float
                                             Total Size: 16 bytes
Total Size: 8 bytes
                                                         4 values
            2 values
                                             Number of Dimensions: 2
Number of Dimensions: 1
                                             Dimensions and sizes:
                                                                     [2] x [2]
Dimensions and sizes:
                      [2]
                                             Coordinates:
Coordinates:
                                             (0,0)
Number Of Attributes: 1
                                             (0,1) 3
  FillValue : 9.96921e+36
                                             (1,0) 7
(0)
        10
                                             (1,1)
(1)
        20
ncl 3>
```

```
[ncl 7> print(dimsizes(x))
  (0)     2
[ncl 8> print(dimsizes(A))
  (0)     2
  (1)     2
```

Matrices en NCL

```
Funciones utiles en climatologia
promediar= average en ingles
dim avg(A(0,:))
dim avg n(A,x); promedio sobre la dimension x
reshape(A,(/2*2/)) ; =reshape en matlab
permute=X(lat|:,lon|:,lev|:)
funcion divergence = uv2dv cfd ; si lat/lon grid
squeeze en matlab = rm single dims(M)
ncrcat en NCO = array append record(M1,M2,x) ;= se juntan 2 matrices en la dimension x
smth9 para suavizar orografia por ej.
linint2 para hacer interpolacion lat/lon
crear archivo txt:
asciiwrite("qum vertint.txt",qum)
leer archivos .txt:
qum = asciiread("qum vertint.txt",(/nlat,nlon/),"float")
Convertir del formato GRIB a NETCDF:
grib a netcdf con NCL : ncl convert2nc file.nc
netcdf a grib con CDO: cdo-f grb copy infile.nc outfile.grb
```

```
Loops
if (i .gt. 0) then
end if
do i=0,ntimes-1
end do
do while (i .lt. 10)
end do
a and b
a .or. b
.not. A
a .eq. B ; equal
a .lt. B ; lower than
a .gt. B ; greater than
a .le. B ; lower or equal
a .ge. B; greater or equal
a .ne. b ; not equal
```

```
Funciones WRF
wrf user ij to ll ; encuentra lat/lon
mas proximo de un punto preciso
wrf user intrp2d; linea
wrf_user_intrp3d ; vert cross-section
wrf pvo ; vorticidad potencial
wrf rh ; humedad relative
wrf_slp ; sea level pressure
http://www.ncl.ucar.edu/Document/
Functions/list_alpha.shtml#W
```

Hacer una figura con NCL

```
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
                                                                    librerias
load "$NCARG ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
begin
                                                                Puede ser « w » o « c »
    a = addfile("./wrfout_d01_2012-09-28_00:00:00.nc","r")
                                                                (read, write, create)
    wks = gsn open wks("X11","plt Surface")
                                                Define formato y nombre de la figura
                                                (X11, pdf, png, cgm)
    T2 = wrf user getvar(a, "T2", 0)
    ; Set up plot resources & Create plots
    ; Output graphics
```

end

wrf user getvar

```
Get fields from input file
ter = wrf user getvar(a,"HGT",0)
                                                 {ter=a->HGT(0,:,:)}
t2 = wrf user getvar(a,"T2",-1)
                                                 \{t2=a->T2\}
slp = wrf user getvar(a,"slp",1)
avo/pvo: Absolute/Potential Vorticity,
eth: Equivalent Potential Temperature,
cape 2d: 2D mcape/mcin/lcl/lfc,
cape 3d: 3D cape/cin,
dbz/mdbz: Reflectivity (3D and max),
geopt/geopotential: Geopotential,
helicity/updraft helicity: Storm Relative Helicity/Updraft helicity,
omg, Omega, p/pres/pressure: Pressure, pw: Precipitable Water,
rh/rh2: Relative Humidity (3D and 2m),
slp: Sea Level Pressure, times: Time as a string [(Times: Time as characters)],
td/td2: Dew Point Temperature (3D and 2m),
tc/tk: Temperature (C and F),
th/theta: Potential Temperature,
tv: Virtual Temperature,
twb: Wetbulb Temperature,
z/height: Height,
ua/va/wa: wind on mass points,
```

Hacer una figura con NCL

```
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
                                                                     librerias
load "$NCARG ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"
begin
                                                                 Puede ser « w » o « c »
    a = addfile("./wrfout_d01_2012-09-28_00:00:00.nc","r")
                                                                 (read, write, create)
    wks = gsn open wks("X11","plt Surface")
                                                 Define formato y nombre de la figura
                                                 (X11, pdf, png, cgm)
    T2 = wrf user getvar(a, "T2", 0)
    ; Set up plot resources & Create plots :
pltres = True
                         pltres: Plotting resources – like overlays
mpres = True
                         mpres: Map resources – like map resolution and zooming option
opts = True
                         opts: Resources associated with each individual plot
opts@cnFillOn = True
    ; Output graphics :
contour t2 = wrf contour(a,wks,T2,opts)
plot= wrf map overlays(a,wks,(/contour t2/),pltres,mpres)
```

end

Para varias variables en el mismo mapa:

```
T2 = wrf user getvar(a, "T2", 0)
slp = wrf user getvar(a,"slp",0)
pltres = True
mpres = True
;;;; Opciones para T2
opts = True
opts@cnFillOn = True
                                            ; like fill/shade
contour t2 = wrf contour(a,wks,T2,opts)
delete(opts)
;;;; Opciones para slp
opts = True
opts@cnLineColor = "Blue"
                                            ; like contour
contour slp = wrf contour(a,wks,slp,opts)
delete(opts)
plot = wrf map overlays(a,wks,(/contour t2,contour slp/), pltres, mpres)
```

```
;;;;;;;;; Resources
/datastore/datos/WRF/
                                           : caracteristicas de las variables
                               res = True
                               pltres = True ; caracteristicas del plot
Figuras_NCL/
                               mpres = True ; caracteristicas del mapa
                             ;;;;;;; MAPA
                               ; contornos politicos
                               mpres@mpGeophysicalLineColor
                                                                 = "Black" ; Overwrite basic map settings
                               mpres@mpGridLineColor
                                                                 = "Black"
                               mpres@mpNationalLineColor
                                                                 = "Black"
                               mpres@mpGeophysicalLineThicknessF = 2.0
                               mpres@mpGridLineThicknessF
                                                                = 2.0
                               mpres@mpLimbLineThicknessF
                                                                = 2.0
                               mpres@mpNationalLineThicknessF
                                                                 = 2.0
                               mpres@mpOutlineBoundarySets = "National"
                               ; Dominio
                               mpres@mpLimitMode="LatLon"
                               mpres@mpMinLatF=-20.
                               mpres@mpMaxLatF=0.
                               mpres@mpMinLonF=-82.
                               mpres@mpMaxLonF=-64.
                               ;Proyeccion
                               mpres@mpProjection = "Orthographic"
                               mpres@mpGridAndLimbOn = False
                               mpres@mpGridSpacingF = 5
                               GRID AND TICKMARK
                               mpres@tmXBLabelFontHeightF = 0.015
                                                                                  : resize tick labels
                               mpres@tmYLLabelFontHeightF = 0.015
                               mpres@tmYLLabelsOn=True
                               mpres@tmXBLabelsOn=True
                               mpres@tmXTOn=False
                               mpres@tmYROn=False
                               mpres@tmYLMinorOn=True
                               mpres@tmXBMinorOn=True
                               mpres@tmXBTickSpacingF = 5.0
                               mpres@tmYLTickSpacingF = 5.0
```

```
;;;;;;;VARIABLES
;;;;;;;;; Resources
       r res = res
       r_res@cnFillOn = True
       r_res@cnInfoLabelOn = False
       r_res@cnLevelSelectionMode = "ExplicitLevels"
                                 = (/2., 4., 6., 8., 10., 15., 20., 30., 40., 50./)
       r_res@cnLevels
       r_res@MainTitlePos = "Center"
       r_res@MainTitle = "Precipitation mean"
       r_res@Footer = False
       r_res@InitTime = False
       r_res@lbBoxMinorExtentF = 0.2
       r_res@pmLabelBarOrthogonalPosF = -0.05
                                                       ; move whole thing down
       contour_r = wrf_contour(a,wks,rainvm,r_res)
       hgt_res = res
       hgt_res@cnLineLabelsOn = False
       hgt_res@cnInfoLabelOn = False
       hgt_res@cnLineThicknessF = 1
       hgt_res@ContourParameters = (/ 500., 6000., 500. /)
       hgt_res@Footer = False
       hgt_res@InitTime = False
       contour_hgt = wrf_contour(a,wks,hgt,hgt_res)
       hqt_res2 = res
       hgt_res2@cnLineLabels0n = False
       hgt_res2@cnInfoLabelOn = False
       hgt_res2@cnLineThicknessF
                                     = 4
       hgt_res2@ContourParameters = (/ 500., 3500., 3000. /)
       hgt_res2@Footer = False
       hgt_res2@InitTime = False
       contour_hgt2 = wrf_contour(a,wks,hgt,hgt_res2)
;;;;;;PLOT
pltres@NoTitles = True
pltres@CommonTitle = True
;pltres@PlotTitle="Precipitation mean (mm/day)"
plot = wrf_map_overlays(a,wks,(/contour_r,contour_hgt,contour_hgt2/),pltres,mpres)
```

Cambiar una variable en un archivo netcdf:

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl" begin

a = addfile("./met em.d01.2000-01-24 12:00:00.nc","w")

sst = a->SST; read a field

sst = sst + 1; change the field

a->SST = sst; write the field

end

Cambiar landuse:

a = addfile("./geo em.d01.nc","w" var= a->LANDUSE

57

59

60

61

62

63

64

65

var(:,63:64,83:84) = 7

79 80 81 82 83 84 85 86

1. NCL en Interactivo

Interactive Mode (Command line)

```
- ncl [options][command-line-arguments] <return> ncl> enter commands ncl> quit <return>
```

– can save (record) interactive commands ncl> record "file_name" ncl> enter commands ... ncl> stop record

```
ncl > .... enter commands

ncl > stop record

ncl 0 > f = addfile ("UV300.nc", "r") ; open file (nc, grb, hdf, hdfeos)

ncl 1 > u = f->U ; import STRUCTURE

ncl 2 > printVarSummary (u) ; overview of variable
```

ncl> record "file name"

subset)

- = assignment
- := reassignment (v6.1.2)
- ; comment [can appear anywhere; text to right; ignored]
- - use to (im/ex)port variables via addfile(s) function(s)
- @ access/create attributes
- ! access/create named dimension
- & access/create coordinate variable
- {...} coordinate subscripting
- \$...\$ enclose strings when (im/ex)port variables via addfile(s)
- (/../) array construction (variable); remove meta data
- [/../] list construction;
- [:] all elements of a list
- : array syntax
- separator for named dimensions
- continue character [statement to span multiple lines]
- :: syntax for external shared objects (eg, fortran/C)