

Lógicas Difusas e Sistemas Difusos

Cleber Zanchettin
UFPE - Universidade Federal de Pernambuco
CIn - Centro de Informática

Introdução (1/2)

- O conhecimento humano é muitas vezes incompleto, incerto ou impreciso.
- A IA preocupa-se com formalismos de representação e raciocínio que permitam o tratamento apropriado a cada tipo de problema.
- No mundo real muitas vezes é utilizado conhecimento incerto.
 - Incertezas estocásticas.
 - Incertezas léxicas.

Introdução (2/2)

Incertezas estocásticas

Ex.: "A probabilidade de acertar o alvo é de 0.8"

Incertezas léxicas

- Ex.: homens altos, dias quentes, moeda estável
- A experiência do especialista A mostra que B está quase para ocorrer, porém, o especialista C está convencido de que isso não é verdade.
- Incerteza pode ser tratada de várias formas entre elas com Lógicas Difusas (= Nebulosas, Fuzzy) e Redes Bayseanas.
- Os fundamentos da lógica difusa foram estabelecidos em 1965, por Lotfi Zadeh.

História

- 1965 Seminal paper "Fuzzy Logic" por Prof. Lotfi Zadeh,
- 1970 Primeira aplicação de Lógica Fuzzy em engenharia de controle (Europa)
- 1975 Introdução de Lógica Fuzzy no Japão
- 1980 Verificação empírica de Lógica Fuzzy na Europa
- 1985 Larga aplicação de Lógica Fuzzy no Japão
- 1990 Larga aplicação de Lógica Fuzzy na Europa
- 1995 Larga aplicação de Lógica Fuzzy nos Estados Unidos
- 2000 Lógica Fuzzy tornou-se tecnologia padrão e é também aplicada em análise de dados e sinais de sensores. Aplicação de Lógia Fuzzy em finanças e negócios

Teoria clássica dos conjuntos (1/3)

- Os conjuntos (*crisp*) podem ser definidos das seguintes maneiras:
 - Enumeração de todos os elementos do universo de discurso pertencentes à ele.
 - Ex.: $A:\{0,1,2,3,4,5,6\}$
 - Relação bem definida entre os elementos do universo de discurso.
 - Ex.: $A : \{x \in U \mid x > 0\}$
 - Predicado da lógica clássica bivalente.
 - Ex.: maior_que_zero(x)

Teoria clássica dos conjuntos (2/3) centro

- Outra forma de definir os conjuntos:
 - Função característica ou função de pertinência.

$$\mu: U \rightarrow \{0,1\}$$

Então...

$$\mu_A: U \rightarrow \{0,1\}$$

$$\mu_A(x) = \begin{cases} 0, & se \ x \notin A \\ 1, & se \ x \in A \end{cases}$$

Teoria clássica dos conjuntos (3/3)

– Graficamente:

Figura 2.1: Gráfico representando o conjunto A no universo U

- Relações de pertinência:
 - $6 \in A \text{ ou } \mu_A(6) = 1$ $-6 \notin A \text{ ou } \mu_A(-6) = 0$

Teoria dos conjuntos difusos

- Os conjuntos difusos são conjuntos cujos elementos possuem valores de pertinência que variam no intervalo [0,1]: $\mu_F: U \to [0,1]$
 - Elemento com pertinência 0 = não pertence ao conjunto difuso F.
 - Elemento com pertinência 1 = é uma representação completa do conjunto difuso F.
- Conjuntos difusos são uma generalização dos conjuntos crisp.
- Definição da função de pertinência depende:
 - Do significado lingüístico definido para o conjunto.
 - Da sua interpretação no contexto do universo utilizado.

Tipos de função de pertinência (1/2)

- As funções de pertinência podem ser de vários tipos:
 - Triangular
 - Trapezoidal
 - Sino
 - ...

Tipos de função de pertinência (2/2)

Triangular

Trapezoidal

• Sino

Clássica x Difusa

Hierarquia

Sistemas Difusos (implementação)

Lógicas Difusas (formalização)

Teoria dos Conjuntos Difusos (teoria de base)

Representação dos conjuntos difusos (1/2)

- Analiticamente universo discreto é composto por poucos elementos.
 - Ex.: Conjunto dos números inteiros pequenos entre –10 e 10.

$$\mu_F(x) =$$

$$\{0.0/-10, 0.0/-9, 0.0/-8, 0.0/-7, 0.0/-6, 0.0/-5, 0.2/-4, 0.4/-3, 0.6/-2, 0.8/-1, 1.0/0, 0.8/1, 0.6/2, 0.4/3, 0.2/4, 0.0/5, 0.0/6, 0.0/7, 0.0/8, 0.0/9, 0.0/10\}$$

Representação dos conjuntos difusos (2/2)

- Gráfico da função de pertinência (diagrama Hassi-Euler (H-E)) – universo contínuo ou discreto com grande quantidade de elementos.
 - Ex.: Conjunto dos números reais pequenos entre –10 e 10.

Figura 2.2: Exemplo de diagrama H-E

Exemplos de conjuntos difusos (1/2)

Conjunto febre alta

Definição analítica (discreta):

•
$$\mu_{FA}(35^{\circ}C) = 0$$
 $\mu_{FA}(38^{\circ}C) = 0.1$ $\mu_{FA}(41^{\circ}C) = 0.9$

•
$$\mu_{FA}(36^{\circ}C) = 0$$
 $\mu_{FA}(39^{\circ}C) = 0.35$ $\mu_{FA}(42^{\circ}C) = 1$

•
$$\mu_{FA}(37^{\circ}C) = 0$$
 $\mu_{FA}(40^{\circ}C) = 0.65$ $\mu_{FA}(43^{\circ}C) = 1$

- Gráfico H-E:

Exemplos de conjuntos difusos (2/2)

Conjunto projetos longos

Definição analítica (discreta):

•
$$\mu_{PL}(2) = 0.2$$
 $\mu_{PL}(8) = 0.5$

$$\mu_{PL}(8) = 0.5$$

$$\mu_{PL}(14) = 0.8$$

•
$$\mu_{PL}(4) = 0.3$$
 $\mu_{PL}(10) = 0.6$

$$\mu_{Pl}(10) = 0.6$$

$$\mu_{PL}(16) = 0.9$$

•
$$\mu_{PL}(6) = 0.4$$
 $\mu_{PL}(12) = 0.7$

$$\mu_{PL}(12) = 0.7$$

$$\mu_{PL}(18) = 1.0$$

– Gráfico H-E:

Ressaltando

- Cada elemento de um conjunto difuso possui o grau com que ele é membro do conjunto.
 - Ex.: cada projeto é membro do conjunto projetos longos com um determinado grau.
- Os conjuntos difusos são funções.
- A definição de um conjunto depende do significado linguístico definido para o conjunto.
 - Ex.: A definição do conjunto projetos longos depende do significado linguístico de "projetos longos".
- A definição de um conjunto depende do contexto.
 - Ex.: a definição de um projeto longo depende do contexto, a definição de um homem alto depende do contexto.

Conjuntos difusos: operadores (1/5)

- Intersecção (t-norm) $\mu_{(A \cap B)}(x_i) = \mu_A(x_i) \wedge \mu_B(x_i)$
 - Mínimo: $\mu_{A\cap B}(x_i) = min[\mu_A(x_i), \mu_B(x_i)]$
 - Produto: $\mu_{A \cap B}(x_i) = \mu_A(x_i)$. $\mu_B(x_i)$
 - Soma limitada:

$$\mu_{A\cap B}(x_i) = max[(0,\mu_A(x_i)+\mu_B(x_i)-1)]$$

Conjuntos difusos: operadores (2/5)

- União (t-conorm) $\mu_{(A \cup B)}(x) = \mu_A(x_i) \vee \mu_B(x_i)$
 - Máximo: $\mu_{A \cup B}(x_i) = max[\mu_A(x_i), \mu_B(x_i)].$
 - Produto ou soma probabilística:

$$\mu_{A \cap B}(x_i) = \mu_A(x_i) + \mu_B(x_i) - \mu_A(x_i) \mu_B(x_i)$$

– Soma limitada:

$$\mu_{A \cup B}(x_i) = min[1, \mu_A(x_i) + \mu_B(x_i)]$$

Conjuntos difusos: operadores (3/5)

• Complemento $\mu_{\overline{A}}(x_i) = 1 - \mu_A(x_i)$

Conjuntos difusos: operadores (4/5)

Em conjuntos difusos

$$\mu(\neg A \cup A) \neq \mu(TRUE) \text{ e } \mu(\neg A \cap A) \neq \mu(FALSE),$$

diferentemente da teoria dos conjuntos clássica.

■ Considere: $\mu(A) = 1/2$, $\mu(\neg A \cup A) = \max(\neg \mu(A), \mu(A))$ $= \max(1-1/2,1/2)$ $= 1/2 \neq 1$ $\mu(\neg A \cap A) = \min(\neg \mu(A), \mu(A))$ $= \min(1-1/2,1/2)$ $= 1/2 \neq 0$

Conjuntos difusos: operadores (5/5)

- Dependendo de como são definidos os conectivos
 AND e OR, uma nova lógica é criada. O conectivo NOT é, em geral, imutável.
- A lógica de Zadeh utiliza os operadores de mínimo para intersecção e máximo para união.

Isomorfismo

Teoria dos conjuntos	Lógica	Álgebra
Pertinência	Verdade	Valor
Membro (\in)	Verdadeiro (V)	1
Não-membro (∉)	Falso (F)	0
Intersecção (∩)	E (^)	Produto (·)
União (∪)	OU (V)	Soma (+)
Complemento (\overline{Conj})	NÃO (¬)	Complemento (')

Tabela 2.1: Equivalências entre teoria dos conjuntos, lógica e álgebra

Lógicas difusas

Características:

- Permitem valores-verdade diferentes de 0 e 1.
- Permitem predicados:
 - Precisos (ex.: pai_de).
 - Imprecisos (ex.: cansado).
- Quantificadores podem ser de vários tipos.
 - Ex.: Maioria, muitos, vários.
- Podem ser utilizados modificadores de predicados.
 - Ex.: mais ou menos, extremamente.

Qualificadores (1/7)

- São modificadores de predicados.
- Mudam o gráfico da função de pertinência.
- Aumentam o poder expressivo das lógicas difusas.
- São funções, assim como os conjuntos difusos.

Qualificadores (2/7)

Qualificador	Função
Por volta de,	Aproxima um escalar
Aproximadamente	
Bastante, extremamente	Aumenta a precisão do
	conjunto
Um pouco	Dilui o conjunto
Não	Complementar
Mais que, maior que	Restringe uma região
Menos que, menor que Restringe uma região	

Qualificadores (3/7)

O qualificador "aproximadamente":

Figura 2.3: Exemplo de modificação de função de pertinência através de qualificadores

Qualificadores (4/7)

O qualificador "bastante":

Qualificadores (5/7)

O qualificador "um pouco":

Qualificadores (6/7)

O qualificador "não":

Qualificadores (7/7)

O qualificador "mais que":

Variáveis lingüísticas (1/4)

- É uma entidade utilizada para representar de modo impreciso um conceito ou variável de um dado problema.
 - Ex.: temperatura, altura, peso.
- Seu valor é expresso:
 - Qualitativamente (por termos linguísticos).
 - Ex.: frio, muito grande, aproximadamente alto,
 - Quantitativamente (por funções de pertinência).
- Obs.: Termos linguísticos podem ser modificados por qualificadores.

Variáveis lingüísticas (2/4)

Uma variável lingüística é caracterizada por

$$\{x, T, U, m(n)\}$$

Onde:

- x é o nome da variável;
- T é um conjunto de termos lingüísticos;
- U é o domínio (universo) de valores de x sobre os quais os significados dos termos lingüísticos são determinados
 - Ex.: altura pode estar entre 1,30m e 1,90m.
- m(x) é uma função semântica que assinala a cada termo lingüístico t de T um conjunto difuso que representa o seu significado.
- Basicamente são conjuntos difusos + qualificadores.

Variáveis linguísticas (3/4)

Exemplo:

 $\{altura, \{baixo, alto\}, [1, 30; 1, 90], m\}$

Figura 2.4: Exemplo de conjuntos difusos (representados por funções de pertinência) associados a termos lingüísticos

Variáveis lingüísticas (4/4)

- Exemplo de variáveis lingüísticas do conjunto altura com qualificadores:
 - muito alto
 - um pouco alto
 - ligeiramente alto

Regras difusas

- Forma mais comum: regras se/então.
 - SE <antecedente> ENTÃO <consequente>
- Antecedente: possui condições que, quando satisfeitas (mesmo que parcialmente), determinam o processamento do consequente através de um mecanismo de inferência difusa.
 - Disparo de uma regra: ocorre quando o processamento do antecedente para as entradas atuais gerou graus de pertinência não nulos.
- Consequente: composto por ações ou diagnósticos que são gerados com o disparo da regra.
 - Os consequentes das regras disparadas são processados em conjunto para gerar uma resposta determinística para cada variável de saída do sistema.

Sistemas difusos (1/2)

- São sistemas baseados em regras que usam lógica difusa para raciocinar sobre os dados.
- Possuem a habilidade de codificar conhecimento de forma próxima à usada pelos especialistas.
- O que faz uma pessoa ser especialista?
 - Justamente a capacidade em fazer diagnósticos ou recomendações em termos imprecisos.
- Sistemas Fuzzy capturam uma habilidade próxima do conhecimento do especialista.
- O processo de aquisição do conhecimento por sistemas difusos é:
 - mais fácil,
 - mais confiável,
 - menos propenso a falhas e ambiguidades.

Sistemas difusos (2/2)

- Devido aos seus benefícios, como:
 - regras próximas da linguagem natural,
 - fácil manutenção,
 - simplicidade estrutural.
- Os modelos baseados em sistemas Fuzzy são validados com maior precisão.
- A confiança destes modelos cresce.

Um agente inteligente com BC

Um agente inteligente difuso

Módulos de um sistema difuso

- Base de conhecimento
 - Regras
 - Variáveis linguísticas
- Processos do Raciocínio
 - Processo de fuzzificação
 - Processo de inferência
 - Processo de defuzzificação

Base de conhecimento: regras

- Forma mais comum: regras se/então
 - SE <antecedente> ENTÃO <consequente>
- Condicionais.
 - If x is X then a is A.
 - If x is X and y is Y then a is A.
 - If x is muito X then a is A.
- Incondicionais.
 - a is A.
 - a is mais que A.

Base de conhecimento: variáveis lingüísticas

Lembrando: uma variável linguística é caracterizada por

$$\{x, T, U, m(n)\}$$

onde:

- x é o nome da variável;
- T é um conjunto de termos linguísticos;
- U é o domínio (universo) de valores de x sobre os quais os significados dos termos linguísticos são determinados
- m(x) é uma função semântica que assinala a cada termo lingüístico t de T um conjunto difuso que representa o seu significado.
- Basicamente são conjuntos difusos + qualificadores.
- Técnica de armazenamento:
 - Guardar a expressão da função.
 - Guardar um par de vetores X e Y

Sistema difuso – exemplo

 Determinar o tempo de irrigação de uma plantação (em minutos), de acordo com a temperatura (graus Celsius) e a umidade do ar (%).

Exemplo: variáveis lingüísticas

Exemplo: regras

- 1. Se temperatura é fria e umidade é alta então irrigação é pequeno.
- 2. Se temperatura é média e umidade é média então irrigação é médio.
- 3. Se temperatura é fria e umidade é média então irrigação é médio.
- 4. Se temperatura é quente e umidade é baixa então irrigação é grande.

Etapas do raciocínio

Raciocínio: fuzzificação

- Determinação dos valores de pertinência das variáveis de entrada.
- Transforma entradas crisp em valores difusos.
- Lembrando: podem ser utilizadas diferentes funções de pertinência para cada variável. As mais comuns são:
 - Triangular
 - Trapezoidal
 - Sino

Exemplo de fuzzificação

Raciocínio: inferência (1/10)

- Transformação dos conjuntos difusos de cada variável de saída em um único.
- Realiza a interpretação das regras da base de conhecimento.
- Passos:
 - Ativação do antecedente,
 - Implicação,
 - Agregação.

Raciocínio: inferência (2/10)

- Ativação do antecedente:
 - Utiliza os graus de pertinência das condições difusas, determinados na fuzzificação.
 - Aplica os operadores difusos para obter o grau de verdade das regras.

Raciocínio: inferência (3/10) Exemplo de ativação do antecedente

Sejam:

- Temperatura é fria com grau de pertinência 0,4
- Temperatura é média com grau de pertinência 0,6
- Temperatura é quente com grau de pertinência 0
- Umidade é baixa com grau de pertinência 0
- Umidade é média com grau de pertinência 0,7
- Umidade é alta com grau de pertinência 0,3
- $\bullet \ \mu_{A \wedge B}(x_i) = min[\mu_A(x_i), \mu_B(x_i)]$

Raciocínio: inferência (4/10) Exemplo de ativação do antecedente

- 1. Se temperatura é fria e umidade é alta então irrigação é pequeno.
- 2. Se temperatura é média e umidade é média então irrigação é médio.
- 3. Se temperatura é fria e umidade é média então irrigação é médio.
- 4. Se temperatura é quente e umidade é baixa então irrigação é grande.
- Ativações dos antecedentes:
 - 1. 0,3
 - 2. 0,6
 - 3. 0,4
 - 4. 0

Raciocínio: inferência (5/10)

Implicação

- Obtenção dos valores difusos de saída de cada regra.
- Obtenção de um conjunto difusos de saída para cada regra.
- Métodos mais comuns:
 - Mínimo: $C1 = min(\mu_{regra}, C)$
 - Produto: $C1 = \mu_{regra} \cdot C$

onde: C1 é um conjunto difuso de saída determinado pela aplicação da implicação;

C é o conjunto difuso de saída existente no conseqüente da regra;

 μ_{regra} é o grau de verdade da regra.

Raciocínio: inferência (6/10) Exemplo de implicação

0,3

- 1. Se temperatura é fria e umidade é alta então irrigação é pequeno.
 - 0,
- 2. Se temperatura é média e umidade é média então irrigação é médio.
 - 0,
- 3. Se temperatura é fria e umidade é média então irrigação é médio.
- 4. Se temperatura é quente e umidade é baixa então irrigação é grande.

Resultados da implicação. O tempo de irrigação deve ser:

- 1. 0,3 pequeno
- 2. 0,6 médio
- 3. 0,4 médio
- 4. 0 grande não participará do processo de inferência.

Raciocínio: inferência (7/10) Exemplo de implicação

Raciocínio: inferência (8/10)

Agregação:

- Agrega os conjuntos difusos obtidos na implicação.
- Obtém um único conjunto difuso, que descreve a saída do sistema.
- Pra quê?
 - Porque se espera que o sistema difuso produza uma única decisão.
- Como?
 - Normalmente se utiliza o operador de união máximo.

$$\mu(x) = \max(\mu_1(x), ..., \mu_n(x))$$

 Mas também pode ser utilizado, por ex., o operador de união soma limitada.

$$\mu(x) = \min(1, \mu_1(x) + ... + \mu_n(x))$$

Raciocínio: inferência (9/10) Exemplo de agregação

Raciocínio: inferência (10/10) Observação

- Quando se utiliza o min na etapa de implicação e o max na etapa de agregação, diz-se que foi utilizada a técnica min-max de inferência.
- Quando se utilizam os operadores de soma limitada, diz-se que foi utilizada a técnica aditiva (ou cumulativa) de inferência.

Raciocínio: defuzzificação (1/3)

- Produz um valor crisp a partir de um conjunto difuso.
- Pra quê?
 - Porque apesar de um único conjunto difuso de saída (produzido na etapa anterior) possuir informação qualitativa útil, normalmente queremos uma saída crisp.
- Como?
 - Existem diversos métodos.

Raciocínio: defuzzificação (2/3) Métodos de defuzzificação

- Seja o conjunto difuso de saída $Y = \mu_Y(v)$ definido no universo de discurso V da variável v.
- O valor defuzzificado y_{sai} é:
 - Centróide para universo de discurso contínuo

$$y_{sai} = \frac{\int_{V} v \cdot \mu_{Y}(v) dv}{\int_{V} \mu_{Y}(v) dv}$$

Mais robustos

Centróide para universo de discurso discreto

$$y_{sai} = \frac{\sum_{V} v \cdot \mu_{Y}(v)}{\sum_{V} \mu_{Y}(v)}$$

Raciocínio: defuzzificação (3/3) Métodos de defuzzificação

Primeiro do máximo:

$$y_{sai} = \{min(z|\mu_Y(z) = max(\mu_Y(v)))\}$$

Meio do máximo:

$$y_{inf} = \{ min(z | \mu_Y(z) = max(\mu_Y(v))) \}$$

$$y_{sup} = \{ max(z | \mu_Y(z) = max(\mu_Y(v))) \}$$

$$y_{sai} = \frac{y_{inf} + y_{sup}}{2}$$

Estudo de caso Formulação

Formulação:

- Seja um sistema difuso para predizer o número de turistas visitando um resort.
- Variáveis de entrada:
 - Temperatura (em graus Celsius)
 - Luz do sol (expressa em uma porcentagem do máximo esperado de luz do sol)

– Saída:

 Quantidade estimada de turistas (expressa em porcentagem da capacidade do resort).

Estudo de caso Construção (1/3)

Centro de Informática

- Base de conhecimento variáveis lingüísticas
 - Entradas:
 - Temperatura {fria, morna, quente}
 - Luz do sol {nublado, parcialmente ensolarado, ensolarado}
 - Saída:
 - Turistas
 {baixo, médio, alto}

Estudo de caso Construção (2/3)

- Base de conhecimento regras (devem ser definidas por um especialista)
 - 1. Se temperatura é quente ou luz do sol é ensolarado então turistas é alto.
 - Se temperatura é morna e luz do sol é parcialmente ensolarado então turistas é médio.
 - 3. Se temperatura é fria ou luz do sol é nublado então turistas é baixo.
- Operadores de união e intersecção: max e min.

Estudo de caso Construção (3/3)

Raciocínio

- Escolha da estratégia de implicação
 - Mínimo
- Escolha da estratégia de agregação
 - Máximo
- Escolha do método de defuzzificação
 - Centróide

Estudo de caso Execução (1/5)

Centro de Informática

- Suponha a situação em que foi observado:
 - Temperatura de 19 graus Celcius.
 - Luz do sol de 60%.
- Raciocínio Fuzzificação Temperatura

$$\mu$$
 fria(19) = 0.33
 μ morna(19) = 0.67
 μ quente(19) = 0

Luz do sol $\mu \text{ nublado}(60) = 0$ $\mu \text{ parc ensolarado}(60) = 0.8$ $\mu \text{ ensolarado}(60) = 0.2$

Estudo de caso Execução (2/5)

- Raciocínio Inferência
 - Ativação do antecedente
 - 1. Se temperatura é quente ou luz do sol é ensolarado

$$\mu$$
 quente(19) $\checkmark \mu$ ensolarado(60)

$$= max(0, 0.2) = 0.2$$

2. Se temperatura é morna e luz do sol é parcialmente ensolarado

$$\mu$$
 morna (19) $\wedge \mu$ parc ensolarado (60)

$$= min(0.67,0.8) = 0.67$$

3. Se temperatura é fria ou luz do sol é nublado

$$\mu$$
 quente(19) $\vee \mu$ ensolarado(60)

$$= \max(0.33,0) = 0.33$$

Estudo de caso Execução (3/5)

- Raciocínio Inferência
 - Implicação

cin.ufpe.br

Estudo de caso Execução (4/5)

- Raciocínio Inferência
 - Agregação

Estudo de caso Execução (5/5)

Raciocínio – Defuzzificação

Applet:

http://wing.comp.nus.edu.sg/pris/FuzzyLogic/DemoApplets/IPApplet/IP.html

http://people.clarkson.edu/~esazonov/neural_fuzzy/loadsway/LoadSway.htm

http://www.fdi.ucm.es/profesor/lgarmend/SC/aparca/

http://www.qdev.de/?location=applets/wma/index

http://www.intelligent-

systems.info/neural_fuzzy/loadsway/LoadSway.htm

http://www.ecst.csuchico.edu/~juliano/Fuzzy/FuzzyFan/

Lógica difusa no mundo

- Lógica Fuzzy tornou-se tecnologia padrão e é também aplicada em análise de dados e sinais de sensores;
- Também utiliza-se lógica fuzzy em finanças e negócios;
- Aproximadamente 1100 aplicações bem sucedidas foram publicadas em 1996; e
- Utilizada em sistemas de Máquinas Fotográficas, Máquina de Lavar Roupas, Freios ABS, Ar Condicionado e etc.

Conclusão

Lógica difusa é uma importante ferramenta para auxiliar a concepção de sistemas complexos, de difícil modelagem, e pode ser utilizada em conjunto com outras tecnologias de ponta, como é o caso da combinação entre lógica difusa e redes neurais artificiais.

Referências bibliográficas

- REYES, C. A. P., Lecture Notes in Computer Science 3204 Coevolutionary Fuzzy Modeling, Springer, Germany, 2004.
- SANTOS, G. J. C., Tese de Mestrado, Universidade Federal de Santa Cruz, Departamento de Ciências Exatas e Tecnológicas, Ilhéus, Bahia, 2003.
- ALMEIDA, P. E. M., EVSUKOFF, A. G., Sistemas Inteligentes: Fundamentos e Aplicações, cap. Sistemas Fuzzy, Manole, Barueru, São Paulo, 2005.
- COX, E., The FuzzySystems Handbook.
- KARTALOPOULOS, S. V., *Understanding Neural Networks and Fuzzy Logic*, IEEE PRESS, 1996.
- KOSKO, B., Fuzzy Engineering, Prentice-Hall, 1997.
- Kosko, B., Neural Networks and Fuzzy Systems, Prentice-Hall, 1992.