Topoloxía en \mathbb{R}^n

Cálculo

Grao en Enxeñería Mecánica e Grao en Tecnoloxías Industriais Escola Politécnica de Enxeñería de Ferrol

Índice

- $lue{1}$ Os espazos vectoriais \mathbb{R}^2 e \mathbb{R}^3
- 2 Produto escalar
- \bigcirc Produto vectorial en \mathbb{R}^3
- 4 Aplicacións dos produtos escalar e vectorial
- Coordenadas
- 6 Topoloxía en \mathbb{R}^n

O plano \mathbb{R}^2 e o espazo \mathbb{R}^3

Definimos os seguintes conxuntos:

$$\mathbb{R}^2 := \{(x,y)/x, y \in \mathbb{R}\}$$

$$\mathbb{R}^3 := \{(x, y, z)/x, y, z \in \mathbb{R}\}$$

O plano \mathbb{R}^2 e o espazo \mathbb{R}^3

Definimos os seguintes conxuntos:

$$\mathbb{R}^2 := \{(x, y)/x, y \in \mathbb{R}\}$$
$$\mathbb{R}^3 := \{(x, y, z)/x, y, z \in \mathbb{R}\}$$

Estes conxuntos están dotados das seguintes operacións:

Consideramos $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$, $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbb{R}^3$ e $\lambda \in \mathbb{R}$.

Suma de vectores:

En
$$\mathbb{R}^2$$
: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
En \mathbb{R}^3 : $(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$

Produto por un escalar:

En
$$\mathbb{R}^2$$
: $\lambda(x_1, y_1) = (\lambda x_1, \lambda y_1)$
En \mathbb{R}^3 : $\lambda(x_1, y_1, z_1) = (\lambda x_1, \lambda y_1, \lambda z_1)$

O plano \mathbb{R}^2 e o espazo \mathbb{R}^3

Definimos os seguintes conxuntos:

$$\mathbb{R}^2 := \{(x, y)/x, y \in \mathbb{R}\}$$
$$\mathbb{R}^3 := \{(x, y, z)/x, y, z \in \mathbb{R}\}$$

Estes conxuntos están dotados das seguintes operacións:

Consideramos $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$, $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbb{R}^3$ e $\lambda \in \mathbb{R}$.

Suma de vectores:

En
$$\mathbb{R}^2$$
: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
En \mathbb{R}^3 : $(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$

Produto por un escalar:

En
$$\mathbb{R}^2$$
: $\lambda(x_1, y_1) = (\lambda x_1, \lambda y_1)$
En \mathbb{R}^3 : $\lambda(x_1, y_1, z_1) = (\lambda x_1, \lambda y_1, \lambda z_1)$

Aos elementos de \mathbb{R}^2 e \mathbb{R}^3 chamámoslles **vectores** e aos do corpo \mathbb{R} chamámoslles **escalares**.

Correspondencia xeométrica

Identificación xeométrica: coordenadas cartesianas

Identificamos os vectores con segmentos de recta orientados, é dicir, con segmentos de recta cunha frecha no seu extremo.

Correspondencia xeométrica

Identificación xeométrica: coordenadas cartesianas

Identificamos os vectores con segmentos de recta orientados, é dicir, con segmentos de recta cunha frecha no seu extremo.

Propiedades:

- Se un vector ten a súa base na orixe, entón as coordenadas do seu extremo son as súas compoñentes.
- O vector que une os puntos $P = (x_1, y_1, z_1)$ e $P' = (x_2, y_2, z_2)$ represéntase polo segmento que une eses puntos e ten coordenadas

$$(x_2-x_1,y_2-y_1,z_2-z_1)$$

A suma e o produto por escalares xeométricas correspóndense coas mesmas operacións alxébricas.

A suma e o produto por escalares xeométricas correspóndense coas mesmas operacións alxébricas.

Os vectores súmanse pola regra do paralelogramo:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

A suma e o produto por escalares xeométricas correspóndense coas mesmas operacións alxébricas.

Os vectores súmanse pola regra do paralelogramo:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

O produto por un escalar "estira" ou "encolle" o vector pola medida do escalar e cambia o sentido do vector se o escalar é negativo:

A suma e o produto por escalares xeométricas correspóndense coas mesmas operacións alxébricas.

Os vectores súmanse pola regra do paralelogramo:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

O produto por un escalar "estira" ou "encolle" o vector pola medida do escalar e cambia o sentido do vector se o escalar é negativo:

Para pensar: Como se restan dous vectores? Hai relación entre a resta e a diagonal do paralelogramo

Os vectores i, j, k

Introducimos os vectores i, j e k nas direccións dos eixes coordenados:

•
$$\mathbf{i} = (1,0,0)$$
 • $\mathbf{j} = (0,1,0)$ • $\mathbf{k} = (0,0,1)$

•
$$j = (0, 1, 0)$$

•
$$\mathbf{k} = (0, 0, 1)$$

Estes vectores permiten escribir calquera vector $\mathbf{v} = (v_1, v_2, v_3)$ de \mathbb{R}^3 da forma

$$\mathbf{v} = v_1 \, \mathbf{i} + v_2 \, \mathbf{j} + v_3 \, \mathbf{k}.$$

Exemplo: representamos o vector (2,3,2)

Ecuacións paramétricas da recta

• A ecuación da recta a través do punto \mathbf{a} e na dirección do vector \mathbf{v} é:

• As ecuacións da recta a través dos puntos (a_1, b_1, c_1) e (a_2, b_2, c_2) son:

$$x = a_1 + t(a_2 - a_1)$$

$$y = b_1 + t(b_2 - b_1)$$

$$z = c_1 + t(c_2 - c_1)$$

Ecuación paramétrica do plano

O plano a través da orixe que contén aos vectores ${\bf v}$ e ${\bf w}$ está formado polos puntos da forma

$$\boldsymbol{p}(s,t)=s\;\boldsymbol{v}+t\;\boldsymbol{w},$$

onde s e t son parámetros que percorren os números reais.

Se o plano non pasa pola orixe e pasa polo punto **a**, entón calquera punto do plano é da forma

$$p(s,t) = a + s v + t w,$$

onde s e t son parámetros que percorren os números reais.

Índice

- $lue{1}$ Os espazos vectoriais \mathbb{R}^2 e \mathbb{R}^3
- 2 Produto escalar
- 4 Aplicacións dos produtos escalar e vectoria
- Coordenadas
- 6 Topoloxía en \mathbb{R}^n

Produto escalar de vectores

Definición

O produto escalar dos vectores $\mathbf{v}=(x_1,y_1,z_1)$ e $\mathbf{w}=(x_2,y_2,z_2)$ defínese por:

$$\mathbf{v} \cdot \mathbf{w} = x_1 \ x_2 + y_1 \ y_2 + z_1 \ z_2.$$

O produto escalar chámase así porque o resultado do produto é un escalar, é dicir, un número real.

Produto escalar de vectores

Definición de la composición del composición de la composición de

O produto escalar dos vectores $\mathbf{v}=(x_1,y_1,z_1)$ e $\mathbf{w}=(x_2,y_2,z_2)$ defínese por:

$$\mathbf{v} \cdot \mathbf{w} = x_1 \ x_2 + y_1 \ y_2 + z_1 \ z_2.$$

O produto escalar chámase así porque o resultado do produto é un escalar, é dicir, un número real.

Propiedades: Para vectores $\emph{\textbf{u}}, \emph{\textbf{v}}, \emph{\textbf{w}}$ e un número real α cúmprese:

- $v \cdot w = w \cdot v$
- $(\alpha \mathbf{v}) \cdot \mathbf{w} = \alpha \mathbf{v} \cdot \mathbf{w}$
- Dous vectores \mathbf{v} e \mathbf{w} son perpendiculares ou ortogonais se $\mathbf{v} \cdot \mathbf{w} = 0$.

Produto escalar de vectores

Definición

O produto escalar dos vectores $\mathbf{v} = (x_1, y_1, z_1)$ e $\mathbf{w} = (x_2, y_2, z_2)$ defínese por:

$$\mathbf{v} \cdot \mathbf{w} = x_1 \ x_2 + y_1 \ y_2 + z_1 \ z_2.$$

O produto escalar chámase así porque o resultado do produto é un escalar, é dicir, un número real.

Propiedades: Para vectores $\emph{\textbf{u}}, \emph{\textbf{v}}, \emph{\textbf{w}}$ e un número real α cúmprese:

- $v \cdot w = w \cdot v$

- Dous vectores \mathbf{v} e \mathbf{w} son perpendiculares ou ortogonais se $\mathbf{v} \cdot \mathbf{w} = 0$.

Exemplo: os vectores (1, -2, 3) e (5, 1, -1) son perpendiculares, xa que $(1, -2, 3) \cdot (5, 1, -1) = 0$.

Norma dun vector

A lonxitude ou **norma** dun vector $\mathbf{v} = (v_1, v_2, v_3)$ vén dada por:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Norma dun vector

A lonxitude ou **norma** dun vector $\mathbf{v} = (v_1, v_2, v_3)$ vén dada por:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Norma dun vector

A lonxitude ou **norma** dun vector $\mathbf{v} = (v_1, v_2, v_3)$ vén dada por:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Propiedades:

- A norma dun vector sempre é positiva ou cero: $\|\mathbf{v}\| \ge 0$. Ademais, se $\|\mathbf{v}\| = 0$ entón $\mathbf{v} = (0,0,0)$.

Norma dun vector

A lonxitude ou **norma** dun vector $\mathbf{v} = (v_1, v_2, v_3)$ vén dada por:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Propiedades:

- A norma dun vector sempre é positiva ou cero: $\|\mathbf{v}\| \ge 0$. Ademais, se $\|\mathbf{v}\| = 0$ entón $\mathbf{v} = (0,0,0)$.

Exemplo:

Calculamos a norma do vector (6, 2, 3) como segue:

$$\|(6,2,3)\| = \sqrt{6^2 + 2^2 + 3^2} = \sqrt{49} = 7.$$

Distancias e ángulos

Distancia: A norma dos vectores permítenos medir a distancia entre 2 puntos.

• a distancia entre os puntos $P \in Q$ vén dada pola norma do vector que une $P = (x_1, y_1, z_1)$ e $Q = (x_2, y_2, z_2)$:

$$\|\overrightarrow{PQ}\| = \|(x_2 - x_1, y_2 - y_1, z_2 - z_1)\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Cálculo

Distancia: A norma dos vectores permítenos medir a distancia entre 2 puntos.

• a distancia entre os puntos $P \in Q$ vén dada pola norma do vector que une $P = (x_1, y_1, z_1)$ e $Q = (x_2, y_2, z_2)$:

$$\|\overrightarrow{PQ}\| = \|(x_2 - x_1, y_2 - y_1, z_2 - z_1)\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Ángulos: A seguinte relación permítenos calcular o ángulo que forman dous vectores usando a súa norma e produto escalar.

Teorema

Sexan ${\bf v}$ e ${\bf w}$ dous vectores no espazo e sexa θ o ángulo entre eles. Entón:

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta, \ 0 \le \theta \le \pi.$$

Distancias e ángulos

Distancia: A norma dos vectores permítenos medir a distancia entre 2 puntos.

• a distancia entre os puntos $P \in Q$ vén dada pola norma do vector que une $P = (x_1, y_1, z_1)$ e $Q = (x_2, y_2, z_2)$:

$$\|\overrightarrow{PQ}\| = \|(x_2 - x_1, y_2 - y_1, z_2 - z_1)\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Ángulos: A seguinte relación permítenos calcular o ángulo que forman dous vectores usando a súa norma e produto escalar.

Teorema

Sexan ${\bf v}$ e ${\bf w}$ dous vectores no espazo e sexa θ o ángulo entre eles. Entón:

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta, \ 0 \le \theta \le \pi.$$

Desigualdade triangular

Para dous vectores calquera \mathbf{v} e \mathbf{w} cúmprese:

$$\|\mathbf{v} + \mathbf{w}\| < \|\mathbf{v}\| + \|\mathbf{w}\|$$

Distancias e ángulos

Distancia: A norma dos vectores permítenos medir a distancia entre 2 puntos.

• a distancia entre os puntos P e Q vén dada pola norma do vector que une $P = (x_1, y_1, z_1)$ e $Q = (x_2, y_2, z_2)$:

$$\|\overrightarrow{PQ}\| = \|(x_2 - x_1, y_2 - y_1, z_2 - z_1)\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Ángulos: A seguinte relación permítenos calcular o ángulo que forman dous vectores usando a súa norma e produto escalar.

Teorema

Sexan \mathbf{v} e \mathbf{w} dous vectores no espazo e sexa θ o ángulo entre eles. Entón:

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta, \ 0 \le \theta \le \pi.$$

Desigualdade triangular

Para dous vectores calquera \mathbf{v} e \mathbf{w} cúmprese:

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$$

Para pensar: demostrar a Desigualdade triangular.

- lacksquare Os espazos vectoriais \mathbb{R}^2 e \mathbb{R}^3
- 2 Produto escalar
- 4 Aplicacións dos produtos escalar e vectorial
- Coordenadas
- 6 Topoloxía en \mathbb{R}^n

Produto vectorial

Produto vectorial

O produto vectorial de $v = (v_1, v_2, v_3)$ e $w = (w_1, w_2, w_3)$ é o vector:

$$\mathsf{v} \times \mathsf{w} = \left| egin{array}{ccc} \mathsf{v}_2 & \mathsf{v}_3 \\ \mathsf{w}_2 & \mathsf{w}_3 \end{array} \right| oldsymbol{i} - \left| egin{array}{ccc} \mathsf{v}_1 & \mathsf{v}_3 \\ \mathsf{w}_1 & \mathsf{w}_3 \end{array} \right| oldsymbol{j} + \left| egin{array}{ccc} \mathsf{v}_1 & \mathsf{v}_2 \\ \mathsf{w}_1 & \mathsf{w}_2 \end{array} \right| oldsymbol{k}.$$

Ou, simbolicamente,

$$\mathbf{v} \times \mathbf{w} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array} \right|.$$

Produto vectorial

Produto vectorial

O produto vectorial de $v = (v_1, v_2, v_3)$ e $w = (w_1, w_2, w_3)$ é o vector:

$$\mathsf{v}\times\mathsf{w}=\left|\begin{array}{ccc} \mathsf{v}_2 & \mathsf{v}_3 \\ \mathsf{w}_2 & \mathsf{w}_3 \end{array}\right| \boldsymbol{i}-\left|\begin{array}{ccc} \mathsf{v}_1 & \mathsf{v}_3 \\ \mathsf{w}_1 & \mathsf{w}_3 \end{array}\right| \boldsymbol{j}+\left|\begin{array}{ccc} \mathsf{v}_1 & \mathsf{v}_2 \\ \mathsf{w}_1 & \mathsf{w}_2 \end{array}\right| \boldsymbol{k}.$$

Ou, simbolicamente,

$$\mathbf{v} \times \mathbf{w} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array} \right|.$$

Propiedades:

- $\mathbf{v} \times \mathbf{w} = 0 \Leftrightarrow (\mathbf{v} = 0 \text{ ou } \mathbf{w} = 0 \text{ ou } \mathbf{v} || \mathbf{w}).$
- $v \times w = -w \times v$.
- $v \times (w + u) = (v \times w) + (v \times u).$
- $\bullet (\alpha \mathbf{v}) \times \mathbf{w} = \alpha (\mathbf{v} \times \mathbf{w}).$

Produto vectorial

Produto vectorial

O produto vectorial de $v = (v_1, v_2, v_3)$ e $w = (w_1, w_2, w_3)$ é o vector:

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k}.$$

Ou, simbolicamente,

$$\mathbf{v} \times \mathbf{w} = \left| egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array} \right|.$$

Propiedades:

• $\mathbf{v} \times \mathbf{w} = 0 \Leftrightarrow (\mathbf{v} = 0 \text{ ou } \mathbf{w} = 0 \text{ ou } \mathbf{v} || \mathbf{w}).$

$$v \times w = -w \times v.$$

 $\mathbf{v} \times (\mathbf{w} + \mathbf{u}) = (\mathbf{v} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{u}).$

Comprobamos que

$$\mathbf{i} \times \mathbf{i} = 0, \quad \mathbf{j} \times \mathbf{j} = 0, \quad \mathbf{k} \times \mathbf{k} = 0.$$

$$i \times j = k$$
, $j \times k = i$, $k \times i = j$.

Produto mixto

Produto mixto

Dados 3 vectores $\emph{\textbf{u}}$, $\emph{\textbf{v}}$ e $\emph{\textbf{w}}$ de \mathbb{R}^3 , defínese o seu produto mixto como o número real seguinte:

$$u \cdot (v \times w)$$

Produto mixto

Produto mixto

Dados 3 vectores \mathbf{u} , \mathbf{v} e \mathbf{w} de \mathbb{R}^3 , defínese o seu produto mixto como o número real seguinte:

$$\boldsymbol{u}\cdot(\boldsymbol{v}\times\boldsymbol{w})$$

Da expresión dos produtos escalar e vectorial deducimos que se $\mathbf{u}=(u_1,u_2,u_3),\ \mathbf{v}=(v_1,v_2,v_3)$ e $\mathbf{w}=(w_1,w_2,w_3)$, entón

$$m{u}\cdot(m{v}\timesm{w})=\left|egin{array}{cccc} u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \end{array}
ight|.$$

Produto mixto

Produto mixto

Dados 3 vectores \mathbf{u} , \mathbf{v} e \mathbf{w} de \mathbb{R}^3 , defínese o seu produto mixto como o número real seguinte:

$$u \cdot (v \times w)$$

Da expresión dos produtos escalar e vectorial deducimos que se $\mathbf{u}=(u_1,u_2,u_3),\ \mathbf{v}=(v_1,v_2,v_3)$ e $\mathbf{w}=(w_1,w_2,w_3)$, entón

$$\mathbf{u}\cdot(\mathbf{v}\times\mathbf{w})=\left|\begin{array}{cccc} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array}\right|.$$

Desta expresión podemos deducir que ${\pmb u}\cdot({\pmb v}\times{\pmb w})={\pmb v}\cdot({\pmb w}\times{\pmb u})={\pmb w}\cdot({\pmb u}\times{\pmb v}).$ Por outro lado, séguese tamén que se ${\pmb u}$ está no plano xerado por ${\pmb v}$ e ${\pmb w}$, é dicir, ${\pmb u}=\alpha{\pmb v}+\beta{\pmb w}$, entón

$$\boldsymbol{u}\cdot(\boldsymbol{v}\times\boldsymbol{w})=0.$$

Polo tanto, temos que $\mathbf{v} \times \mathbf{w}$ é perpendicular ao plano xerado por $\mathbf{v} \in \mathbf{w}$.

Interpretación xeométrica do produto vectorial

Para coñecer a lonxitude do produto vectorial $\mathbf{v} \times \mathbf{w}$ calculamos:

$$\|\mathbf{v} \times \mathbf{w}\|^{2} = \left\| \begin{vmatrix} v_{2} & v_{3} \\ w_{2} & w_{3} \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_{1} & v_{3} \\ w_{1} & w_{3} \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_{1} & v_{2} \\ w_{1} & w_{2} \end{vmatrix} \mathbf{k} \right\|^{2}$$

$$= \begin{vmatrix} v_{2} & v_{3} \\ w_{2} & w_{3} \end{vmatrix}^{2} + \begin{vmatrix} v_{1} & v_{3} \\ w_{1} & w_{3} \end{vmatrix}^{2} + \begin{vmatrix} v_{1} & v_{2} \\ w_{1} & w_{2} \end{vmatrix}^{2}$$

$$= (v_{2}w_{3} - v_{3}w_{2})^{2} + (v_{1}w_{3} - v_{3}w_{1})^{2} + (v_{1}w_{2} - v_{2}w_{1})^{2}$$

$$= (v_{1}^{2} + v_{2}^{2} + v_{3}^{2})(w_{1}^{2} + w_{2}^{2} + w_{3}^{2}) - (v_{1}w_{1} + v_{2}w_{2} + v_{3}w_{3})^{2}$$

$$= \|\mathbf{v}\|^{2} \|\mathbf{w}\|^{2} - (\mathbf{v} \cdot \mathbf{w})^{2} = \|\mathbf{v}\|^{2} \|\mathbf{w}\|^{2} - \|\mathbf{v}\|^{2} \|\mathbf{w}\|^{2} \cos^{2}\theta$$

$$= \|\mathbf{v}\|^{2} \|\mathbf{w}\|^{2} \sin^{2}\theta$$

Interpretación xeométrica do produto vectorial

Para coñecer a lonxitude do produto vectorial $\mathbf{v} \times \mathbf{w}$ calculamos:

$$\|\mathbf{v} \times \mathbf{w}\|^{2} = \| \begin{vmatrix} v_{2} & v_{3} \\ w_{2} & w_{3} \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_{1} & v_{3} \\ w_{1} & w_{3} \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_{1} & v_{2} \\ w_{1} & w_{2} \end{vmatrix} \mathbf{k} \|^{2}$$

$$= \begin{vmatrix} v_{2} & v_{3} \\ w_{2} & w_{3} \end{vmatrix}^{2} + \begin{vmatrix} v_{1} & v_{3} \\ w_{1} & w_{3} \end{vmatrix}^{2} + \begin{vmatrix} v_{1} & v_{2} \\ w_{1} & w_{2} \end{vmatrix}^{2}$$

$$= (v_{2}w_{3} - v_{3}w_{2})^{2} + (v_{1}w_{3} - v_{3}w_{1})^{2} + (v_{1}w_{2} - v_{2}w_{1})^{2}$$

$$= (v_{1}^{2} + v_{2}^{2} + v_{3}^{2})(w_{1}^{2} + w_{2}^{2} + w_{3}^{2}) - (v_{1}w_{1} + v_{2}w_{2} + v_{3}w_{3})^{2}$$

$$= \|\mathbf{v}\|^{2} \|\mathbf{w}\|^{2} - (\mathbf{v} \cdot \mathbf{w})^{2} = \|\mathbf{v}\|^{2} \|\mathbf{w}\|^{2} - \|\mathbf{v}\|^{2} \|\mathbf{w}\|^{2} \cos^{2}\theta$$

$$= \|\mathbf{v}\|^{2} \|\mathbf{w}\|^{2} \sin^{2}\theta$$

Teorema

Sexan ${\bf v}$ e ${\bf w}$ dous vectores no espazo e sexa θ o ángulo entre eles. Entón:

Esta cantidade representa a área do paralelogramo determinado por $v \in w$.

Propiedades do produto vectorial

O produto vectorial $\mathbf{v} \times \mathbf{w}$ é perpendicular a \mathbf{v} e a \mathbf{w} e ten lonxitude igual a $\|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$:

Propiedades do produto vectorial

O produto vectorial $\mathbf{v} \times \mathbf{w}$ é perpendicular a \mathbf{v} e a \mathbf{w} e ten lonxitude igual a $\|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$:

Pero hai 2 posibles eleccións, así que aplicamos a *regra da man dereita* para facer esta escolla.

Propiedades do produto vectorial

O produto vectorial $\mathbf{v} \times \mathbf{w}$ é perpendicular a \mathbf{v} e a \mathbf{w} e ten lonxitude igual a $\|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$:

Pero hai 2 posibles eleccións, así que aplicamos a *regra da man dereita* para facer esta escolla.

Na seguinte figura representamos o vector $\mathbf{v} \times \mathbf{w}$, que é perpendicular ao plano xerado por \mathbf{v} e \mathbf{w} , está orientado segundo a *regra da man dereita* e ten lonxitude igual á área do paralelogramo que determinan \mathbf{v} e \mathbf{w} :

Index

- 1 Os espazos vectoriais \mathbb{R}^2 e \mathbb{R}^3
- 2 Produto escalar
- 3 Produto vectorial en \mathbb{R}^3
- 4 Aplicacións dos produtos escalar e vectorial
- Coordenadas
- 6 Topoloxía en \mathbb{R}^n

Ecuación do plano

Ecuación do plano:

Se un plano contén o punto $P_0 = (x_0, y_0, z_0)$ e $\mathbf{n} = (A, B, C)$ é un vector normal ao plano, entón un punto P = (x, y, z) estará no plano se $\overrightarrow{P_0P} \cdot \mathbf{n} = 0$,

de onde se deduce a ecuación do plano

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0,$$

ou, escribindo $D = -Ax_0 - By_0 - Cz_0,$
 $Ax + By + Cz + D = 0.$

Ecuación do plano

Ecuación do plano:

Se un plano contén o punto $P_0 = (x_0, y_0, z_0)$ e $\mathbf{n} = (A, B, C)$ é un vector normal ao plano, entón un punto P=(x,y,z) estará no plano se $\overrightarrow{P_0P} \cdot \mathbf{n} = 0$.

de onde se deduce a ecuación do plano

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0,$$

ou, escribindo $D = -Ax_0 - By_0 - Cz_0,$

$$Ax + By + Cz + D = 0$$

Distancia de un punto a un plano:

Para calcular a distancia do punto $E = (x_1, y_1, z_1)$ ao plano anterior, proxectamos o vector $\mathbf{v} = \overrightarrow{P_0 E}$ sobre o vector normal unitario \mathbf{n} e calculamos a súa lonxitude:

$$\frac{|\mathbf{v} \cdot \mathbf{n}|}{\|\mathbf{n}\|} = \frac{|A(x_1 - x_0) + B(y_1 - y_0) + C(z_1 - z_0)|}{\sqrt{A^2 + B^2 + C^2}}$$
ou

$$\frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Volume dun paralelepípedo

Dado un paralelepípedo determinado por vectores a, b e c, como o da seguinte figura,

calculamos o seu volume achando a área da base determinada por \boldsymbol{a} e \boldsymbol{b} e multiplicándoa pola altura \boldsymbol{h} :

Volume dun paralelepípedo

Dado un paralelepípedo determinado por vectores a, b e c, como o da seguinte figura,

calculamos o seu volume achando a área da base determinada por \boldsymbol{a} e \boldsymbol{b} e multiplicándoa pola altura \boldsymbol{h} :

Área da base determinada por \mathbf{a} e \mathbf{b} : $\|\mathbf{a}\| \|\mathbf{b}\| \operatorname{sen} \theta = \|\mathbf{a} \times \mathbf{b}\|$.

Altura
$$h: \|\mathbf{c}\| \cos \psi = \frac{\|\mathbf{c}\| \|\mathbf{a} \times \mathbf{b}\| \cos \psi}{\|\mathbf{a} \times \mathbf{b}\|} = \frac{\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})}{\|\mathbf{a} \times \mathbf{b}\|}.$$

Volume do paralelepípedo:
$$\|\mathbf{a} \times \mathbf{b}\| \frac{\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})}{\|\mathbf{a} \times \mathbf{b}\|} = \boxed{\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})}$$

Index

- $lue{1}$ Os espazos vectoriais \mathbb{R}^2 e \mathbb{R}^3
- 2 Produto escalar
- 4 Aplicacións dos produtos escalar e vectorial
- 5 Coordenadas
- 6 Topoloxía en \mathbb{R}^n

Coordenadas polares

As coordenadas cartesianas permiten identificar un punto do plano mediante as súas proxeccións nos eixes OX e OY, pero este non é o único xeito de facelo:

Coordenadas polares

As coordenadas cartesianas permiten identificar un punto do plano mediante as súas proxeccións nos eixes OX e OY, pero este non é o único xeito de facelo:

Coordenadas polares

As coordenadas polares (ρ, φ) dun punto (x, y) no plano están dadas por:

$$x = \rho \cos \varphi, \ y = \rho \sin \varphi.$$

onde $\rho \in [0,\infty)$ e $\varphi \in [0,2\pi)$. Polo tanto $\rho = \sqrt{x^2 + y^2}$ e $\varphi = \arctan \frac{y}{x}$.

Coordenadas polares

As coordenadas cartesianas permiten identificar un punto do plano mediante as súas proxeccións nos eixes OX e OY, pero este non é o único xeito de facelo:

Coordenadas polares

As coordenadas polares (ρ, φ) dun punto (x, y) no plano están dadas por:

$$\mathbf{x}=
ho\cos\varphi,\ \mathbf{y}=
ho\sin\varphi.$$

onde
$$\rho \in [0,\infty)$$
 e $\varphi \in [0,2\pi)$. Polo tanto $\rho = \sqrt{x^2 + y^2}$ e $\varphi = \arctan \frac{y}{x}$.

Exemplo:

O punto (1,1) en coordenadas cartesianas correspóndese co punto $(\sqrt{2},\frac{\pi}{4})$ en coordenadas polares.

Coordenadas polares. Exemplos

Consideramos coordenadas polares (ρ,φ) e analizamos que sucede se $\rho=constante$ ou $\varphi=constante.$

Coordenadas polares. Exemplos

Consideramos coordenadas polares (ρ,φ) e analizamos que sucede se $\rho=constante$ ou $\varphi=constante$.

$$ho = constante$$

As coordenadas polares son moi axeitadas para describir conxuntos con simetría circular. Así, unha circunferencia $\mathcal C$ con centro na orixe e raio r, descríbese en coordenadas polares como:

$$C = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 = r^2 \}$$
$$= \{(\rho, \varphi) \in [0, \infty) / \rho = r \}$$

Cando traballamos no espazo temos distintas formas de determinar un punto. Unha delas é utilizando as coordenadas cilíndricas:

Coordenadas cilíndricas

As coordenadas cilíndricas (ρ, φ, z) dun punto (x, y, z) no espazo están dadas por:

$$\mathbf{x}=\rho\cos\varphi,\ \mathbf{y}=\rho\sin\varphi,\ \mathbf{z}=\mathbf{z}.$$

Onde $\rho \in [0, \infty)$, $\varphi \in [0, 2\pi)$ e $z \in \mathbb{R}$.

Cando traballamos no espazo temos distintas formas de determinar un punto. Unha delas é utilizando as coordenadas cilíndricas:

Coordenadas cilíndricas

As **coordenadas cilíndricas** (ρ, φ, z) dun punto (x, y, z) no espazo están dadas por:

$$x = \rho \cos \varphi, \ y = \rho \sin \varphi, \ z = z.$$

Onde
$$\rho \in [0, \infty)$$
, $\varphi \in [0, 2\pi)$ e $z \in \mathbb{R}$.

Exemplo: Para achar as coordenadas cilíndricas do punto (1,1,3), proxectamos o punto no plano XY e utilizamos neste as coordenadas polares:

$$\rho = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\varphi = \arctan 1 = \frac{\pi}{4}$$

$$z = 3$$

O punto (1,1,3) escríbese en coordenadas cilíndricas $(\sqrt{2}, \frac{\pi}{4}, 3)$.

Tomamos coordenadas cilíndricas con $\rho = constante$:

A superficie que obtemos é un cilindro, por esta razón estas coordenadas se denominan cilíndricas e resultan axeitadas para traballar con rexións que teñen simetría circular ao redor do eixe *OZ*.

Tomamos coordenadas cilíndricas con $\rho = constante$:

A superficie que obtemos é un cilindro, por esta razón estas coordenadas se denominan cilíndricas e resultan axeitadas para traballar con rexións que teñen simetría circular ao redor do eixe *OZ*.

Exemplos de edificios que poden ser descritos con coordenadas cilíndricas:

Fontes: es.wikipedia.org/wiki/Torre-Agbar

es.wikipedia.org/wiki/Estructura_hiperboloide

Outra alternativa para traballar con puntos ou rexións no espazo son as coordenadas esféricas.

Coordenadas esféricas

As coordenadas esféricas (r, φ, θ) dun punto (x, y, z) do espazo están dadas por:

$$x = r \sin \theta \cos \varphi,$$

$$y = r \operatorname{sen} \theta \operatorname{sen} \varphi,$$

$$z = r \cos \theta$$
,

con
$$r \in [0, \infty)$$
, $\varphi \in [0, 2\pi)$, $\theta \in [0, \pi]$.

Outra alternativa para traballar con puntos ou rexións no espazo son as coordenadas esféricas.

Coordenadas esféricas

As coordenadas esféricas (r, φ, θ) dun punto (x, y, z) do espazo están dadas por:

$$x = r \sin \theta \cos \varphi,$$

$$y = r \operatorname{sen} \theta \operatorname{sen} \varphi,$$

$$z = r \cos \theta$$

con
$$r \in [0, \infty)$$
, $\varphi \in [0, 2\pi)$, $\theta \in [0, \pi]$.

Exemplo: o punto $(\sqrt{2}, \sqrt{6}, 2\sqrt{2})$ ten coordenadas esféricas $(4, \frac{\pi}{3}, \frac{\pi}{4})$:

$$\begin{array}{rcl} \sqrt{2} & = & 4 \sin \frac{\pi}{4} \cos \frac{\pi}{3} = 4 \frac{\sqrt{2}}{2} \frac{1}{2}, \\ \sqrt{6} & = & 4 \sin \frac{\pi}{4} \sin \frac{\pi}{3} = 4 \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}, \\ 2\sqrt{2} & = & 4 \cos \frac{\pi}{4} = 4 \frac{\sqrt{2}}{2}, \end{array}$$

Cando fixamos a coordenada r = constante, a rexión que describimos é unha esfera:

Para describir os puntos dunha esfera de raio r, só precisamos as coordenadas (φ,θ) para determinar un punto. Por este motivo se utilizan as coordenadas xeográficas lonxitude e latitude.

Aínda que habitualmente a lonxitude pode ser leste ou oeste e varía de 0 a 180 graos, esta coordenada mide o ángulo arredor do eixe OZ, como o fai φ nas coordenadas esféricas. Tamén a latitude pode ser norte ou sur e varía entre 0 e 90 graos, pero mide o ángulo con respecto ao plano XY, que en esencia coincide con medir o ángulo con respecto ao eixe OZ, como a coordenada θ .

Cando fixamos a coordenada r = constante, a rexión que describimos é unha esfera:

Para describir os puntos dunha esfera de raio r, só precisamos as coordenadas (φ,θ) para determinar un punto. Por este motivo se utilizan as coordenadas xeográficas lonxitude e latitude.

Aínda que habitualmente a lonxitude pode ser leste ou oeste e varía de 0 a 180 graos, esta coordenada mide o ángulo arredor do eixe OZ, como o fai φ nas coordenadas esféricas. Tamén a latitude pode ser norte ou sur e varía entre 0 e 90 graos, pero mide o ángulo con respecto ao plano XY, que en esencia coincide con medir o ángulo con respecto ao eixe OZ, como a coordenada θ .

As coordenadas esféricas son moi axeitadas para describir rexións con simetría esférica, é dicir, rexións onde todos os puntos distan o mesmo da orixe de coordenadas.

- lacksquare Os espazos vectoriais \mathbb{R}^2 e \mathbb{R}^3
- 2 Produto escalar
- 4 Aplicacións dos produtos escalar e vectorial
- Coordenadas
- **6** Topoloxía en \mathbb{R}^n

Topoloxía en R: intervalos

Definicións. Sexan $a, b \in \mathbb{R}$.

• Defínese o **intervalo aberto** (a, b) como o subconxunto de \mathbb{R} dado por:

$$(a, b) := \{x \in \mathbb{R}/a < x < b\}$$

• Defínese o **intervalo pechado** [a,b] como o subconxunto de $\mathbb R$ dado por:

$$[a,b] := \{x \in \mathbb{R}/a \le x \le b\}$$

a e b son os **extremos** do intervalo.

ullet Definense os **intervalos abertos** (a,∞) e $(-\infty,a)$ como

$$(a, \infty) := \{x \in \mathbb{R}/a < x\}, \qquad (-\infty, a) := \{x \in \mathbb{R}/x < a\}$$

e os correspondentes intervalos pechados $[a,\infty)$ e $(-\infty,a]$ como

$$[a,\infty):=\{x\in\mathbb{R}/a\leq x\},\qquad (-\infty,a]:=\{x\in\mathbb{R}/x\leq a\}$$

Cotas, máximo e mínimo, supremo e ínfimo

Cotas de $A \subset \mathbb{R}$

- a é unha cota superior de A se $a \ge x$ para todo $x \in A$.
- $a \in \text{unha cota inferior de } A \text{ se } a \leq x \text{ para todo } x \in A.$

Un conxunto dise acoutado se ten unha cota superior e unha cota inferior.

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$

Cotas, máximo e mínimo, supremo e ínfimo

Cotas de $A \subset \mathbb{R}$

- a é unha cota superior de A se $a \ge x$ para todo $x \in A$.
- a é unha cota inferior de A se $a \le x$ para todo $x \in A$.

Un conxunto dise acoutado se ten unha cota superior e unha cota inferior.

Máximo e mínimo de $A \subset \mathbb{R}$: max(A) e min(A)

- O máximo de A é un punto $x \in A$ tal que $x \ge y$ para todo $y \in A$.
- O mínimo de A é un punto $x \in A$ tal que x < y para todo $y \in A$.

 $A = (-1, 2] \cup \{3\} \cup \{4\}$

Cotas, máximo e mínimo, supremo e ínfimo

Cotas de $A \subset \mathbb{R}$

- a é unha cota superior de A se $a \ge x$ para todo $x \in A$.
- a é unha **cota inferior** de A se $a \le x$ para todo $x \in A$.

Un conxunto dise acoutado se ten unha cota superior e unha cota inferior.

Máximo e mínimo de $A \subset \mathbb{R}$: max(A) e min(A)

- O máximo de A é un punto $x \in A$ tal que $x \ge y$ para todo $y \in A$.
- O mínimo de A é un punto $x \in A$ tal que $x \le y$ para todo $y \in A$.

Supremo e ínfimo de $A \subset \mathbb{R}$: sup(A) e inf(A)

- O supremo de A é a menor das cotas superiores, é dicir, é o menor punto $x \in \mathbb{R}$ tal que $x \ge y$ para todo $y \in A$.
- O **ínfimo** de A é a maior das cotas inferiores, é dicir, é o maior punto $x \in \mathbb{R}$ tal que $x \le y$ para todo $y \in A$.

Topoloxía de \mathbb{R}^n : bólas abertas.

Definición

Sexa $x_0 \in \mathbb{R}^n$ e r > 0. Definimos a **bóla aberta** de centro x_0 e raio r como o conxunto:

$$B_r(x_0) := \{x \in \mathbb{R}^n / ||x - x_0|| < r\}$$

Topoloxía de \mathbb{R}^n : bólas abertas.

Definición

Sexa $x_0 \in \mathbb{R}^n$ e r > 0. Definimos a **bóla aberta** de centro x_0 e raio r como o conxunto:

$$B_r(x_0) := \{x \in \mathbb{R}^n / ||x - x_0|| < r\}$$

Exemplos:

Puntos interiores

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $\mathbf{x}_0 \in \mathbb{R}^n$.

• x_0 é un punto interior se existe r > 0 tal que $B_r(x_0) \subset A$.

Puntos interiores

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $\mathbf{x}_0 \in \mathbb{R}^n$.

• x_0 é un punto **interior** se existe r > 0 tal que $B_r(x_0) \subset A$.

Exemplos:

$$A = (-1,2] \cup \{3\} \cup \{4\}$$

Puntos interiores

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $\mathbf{x}_0 \in \mathbb{R}^n$.

• x_0 é un punto interior se existe r > 0 tal que $B_r(x_0) \subset A$.

Exemplos:

$$A = (-1,2] \cup \{3\} \cup \{4\}$$

$$\stackrel{\circ}{\mathcal{A}}=(-1,2)$$

Notación: ao conxunto de puntos interiores de A chamámolo o *interior* de A e denotámolo por $\overset{\circ}{A}$.

Puntos interiores

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $\mathbf{x}_0 \in \mathbb{R}^n$.

• x_0 é un punto **interior** se existe r > 0 tal que $B_r(x_0) \subset A$.

Exemplos:

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$

 $\stackrel{\circ}{A} = (-1, 2)$

$$B = (2,8] \times [1,5)$$

Notación: ao conxunto de puntos interiores de A chamámolo o *interior* de A e denotámolo por $\overset{\circ}{A}$.

Puntos interiores

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $\mathbf{x}_0 \in \mathbb{R}^n$.

• x_0 é un punto **interior** se existe r > 0 tal que $B_r(x_0) \subset A$.

Exemplos:

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$

 $\stackrel{\circ}{A} = (-1, 2)$

$$B = (2,8] \times [1,5)$$

$$\overset{\circ}{B}$$
 = (2,8) × (1,5)

Notación: ao conxunto de puntos interiores de A chamámolo o *interior* de A e denotámolo por $\overset{\circ}{A}$.

Clasificación de puntos: puntos adherentes

Puntos adherentes

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $\mathbf{x}_0 \in \mathbb{R}^n$.

• x_0 é un punto **adherente** se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$.

Clasificación de puntos: puntos adherentes

Puntos adherentes

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $\mathbf{x}_0 \in \mathbb{R}^n$.

• x_0 é un punto adherente se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$.

Exemplos:

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$

Clasificación de puntos: puntos adherentes

Puntos adherentes

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $x_0 \in \mathbb{R}^n$.

• x_0 é un punto adherente se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$.

Exemplos:

$$A = (-1,2] \cup \{3\} \cup \{4\}$$

$$\bar{A} = [-1, 2] \cup \{3\} \cup \{4\}$$

Notación: ao conxunto de puntos adherentes de A chamámolo a *adherencia* de A e denotámolo por \bar{A} .

Clasificación de puntos: puntos adherentes

Puntos adherentes

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $x_0 \in \mathbb{R}^n$.

• x_0 é un punto adherente se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$.

Exemplos:

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$

$$\bar{A} = [-1, 2] \cup \{3\} \cup \{4\}$$

$$\bar{A} = [-1, 2] \cup \{3\} \cup \{4\}$$

$$B=(2,8]\times[1,5)$$

Notación: ao conxunto de puntos adherentes de A chamámolo a *adherencia* de A e denotámolo por \bar{A} .

Clasificación de puntos: puntos adherentes

Puntos adherentes

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $x_0 \in \mathbb{R}^n$.

• x_0 é un punto adherente se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$.

Exemplos:

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$
$$\bar{A} = [-1, 2] \cup \{3\} \cup \{4\}$$

$$B = (2,8] \times [1,5)$$

$$\bar{B} = [2,8] \times [1,5]$$

Notación: ao conxunto de puntos adherentes de A chamámolo a *adherencia* de A e denotámolo por \bar{A} .

Clasificación de puntos: puntos fronteira

Puntos fronteira

Sexa A un subconxunto de \mathbb{R}^n ($A \subset \mathbb{R}^n$) e $x_0 \in \mathbb{R}^n$.

• x_0 é un punto **fronteira** se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$ e $B_r(x_0) \cap (\mathbb{R}^n \backslash A) \neq \emptyset$.

Clasificación de puntos: puntos fronteira

Puntos fronteira

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $\mathbf{x}_0 \in \mathbb{R}^n$.

• x_0 é un punto **fronteira** se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$ e $B_r(x_0) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$

Clasificación de puntos: puntos fronteira

Puntos fronteira

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $x_0 \in \mathbb{R}^n$.

• x_0 é un punto fronteira se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$ e $B_r(x_0) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Exemplos:

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$
$$Fr(A) = \{-1, 2, 3, 4\}$$

Notación: ao conxunto de puntos fronteira de A chamámolo fronteira de A e denotámolo por Fr(A).

Puntos fronteira

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $x_0 \in \mathbb{R}^n$.

• x_0 é un punto fronteira se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$ e $B_r(x_0) \cap (\mathbb{R}^n \backslash A) \neq \emptyset$.

Exemplos:

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$
$$Fr(A) = \{-1, 2, 3, 4\}$$

$$B = (2,8] \times [1,5)$$

Notación: ao conxunto de puntos fronteira de A chamámolo fronteira de A e denotámolo por Fr(A).

Puntos fronteira

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $x_0 \in \mathbb{R}^n$.

• x_0 é un punto fronteira se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$ e $B_r(x_0) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Exemplos:

$$A = (-1, 2] \cup \{3\} \cup \{4\}$$
$$Fr(A) = \{-1, 2, 3, 4\}$$

$$B = (2,8] \times [1,5)$$

$$Fr(B) = [2,8] \times \{1\} \cup \{8\} \times [1,5] \\ \cup [2,8] \times \{5\} \cup \{2\} \times [1,5]$$

Notación: ao conxunto de puntos fronteira de A chamámolo fronteira de A e denotámolo por Fr(A).

Topoloxía de \mathbb{R}^n : clasificación de puntos

Clasificación de puntos

Sexa A un subconxunto de \mathbb{R}^n $(A \subset \mathbb{R}^n)$ e $x_0 \in \mathbb{R}^n$.

- x_0 é un punto **interior** se existe r > 0 tal que $B_r(x_0) \subset A$.
- x_0 é un punto **adherente** se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$.
- x_0 é un punto **fronteira** se para todo r > 0 se cumpre $B_r(x_0) \cap A \neq \emptyset$ e $B_r(x_0) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Notación:

- ao conxunto de puntos interiores de A chamámolo o *interior* de A e denotámolo por $\overset{\circ}{A}$,
- ao conxunto de puntos adherentes de A chamámolo a adherencia de A e denotámolo por Ā,
- ao conxunto de puntos fronteira de A chamámolo fronteira de A e denotámolo por Fr(A).

Temos as seguintes relacións:

$$\stackrel{\circ}{A} \subset A \subset \bar{A}, \quad \bar{A} = \stackrel{\circ}{A} \cup Fr(A) = A \cup Fr(A), \quad \stackrel{\circ}{A} = \bar{A} \setminus Fr(A) = A \setminus Fr(A).$$

Conxuntos abertos

Un conxunto $A \subset \mathbb{R}^n$ é aberto se todos os seus puntos son interiores, é dicir, se para todo punto $x_0 \in A$ existe r > 0 tal que $B_r(x_0) \subset A$.

Conxuntos abertos

Un conxunto $A \subset \mathbb{R}^n$ é aberto se todos os seus puntos son interiores, é dicir, se para todo punto $\mathbf{x}_0 \in A$ existe r > 0 tal que $B_r(\mathbf{x}_0) \subset A$.

Exemplos:

ullet Os intervalos abertos son conxuntos abertos de $\mathbb R$.

Conxuntos abertos

Un conxunto $A \subset \mathbb{R}^n$ é aberto se todos os seus puntos son interiores, é dicir, se para todo punto $x_0 \in A$ existe r > 0 tal que $B_r(x_0) \subset A$.

- Os intervalos abertos son conxuntos abertos de \mathbb{R} .
- As bolas abertas son conxuntos abertos de \mathbb{R}^n .

Conxuntos abertos

Un conxunto $A \subset \mathbb{R}^n$ é aberto se todos os seus puntos son interiores, é dicir, se para todo punto $x_0 \in A$ existe r > 0 tal que $B_r(x_0) \subset A$.

- Os intervalos abertos son conxuntos abertos de \mathbb{R} .
- As bolas abertas son conxuntos abertos de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos abertos.

Conxuntos abertos

Un conxunto $A \subset \mathbb{R}^n$ é aberto se todos os seus puntos son interiores, é dicir, se para todo punto $x_0 \in A$ existe r > 0 tal que $B_r(x_0) \subset A$.

- ullet Os intervalos abertos son conxuntos abertos de $\mathbb R$.
- As bolas abertas son conxuntos abertos de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos abertos.

Conxuntos abertos

Un conxunto $A \subset \mathbb{R}^n$ é aberto se todos os seus puntos son interiores, é dicir, se para todo punto $x_0 \in A$ existe r > 0 tal que $B_r(x_0) \subset A$.

Exemplos:

- Os intervalos abertos son conxuntos abertos de \mathbb{R} .
- As bolas abertas son conxuntos abertos de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos abertos.

Unha veciñanza dun punto $x \in \mathbb{R}^n$ é un conxunto aberto que contén a x.

Conxuntos abertos

Un conxunto $A \subset \mathbb{R}^n$ é aberto se todos os seus puntos son interiores, é dicir, se para todo punto $x_0 \in A$ existe r > 0 tal que $B_r(x_0) \subset A$.

Exemplos:

- ullet Os intervalos abertos son conxuntos abertos de ${\mathbb R}.$
- As bolas abertas son conxuntos abertos de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos abertos.

Unha veciñanza dun punto $x \in \mathbb{R}^n$ é un conxunto aberto que contén a x.

Este conxunto non é aberto!

- A unión dunha colección arbitraria de conxuntos abertos é un aberto.
- A intersección dun número finito de conxuntos abertos é un aberto.
- Un conxunto $A \subset \mathbb{R}^n$ é aberto se e só se $A = \stackrel{\circ}{A}$. En particular, o interior dun conxunto sempre é aberto.
- Sexa A ⊂ ℝⁿ. O interior de A é a unión de todos os conxuntos abertos contidos en A.

Conxuntos pechados

Un conxunto $B\subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n\backslash B$ é un conxunto aberto.

Conxuntos pechados

Un conxunto $B \subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n \backslash B$ é un conxunto aberto. **Exemplos:**

 \bullet Os intervalos pechados son conxuntos pechados de $\mathbb{R}.$

Conxuntos pechados

Un conxunto $B\subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n\backslash B$ é un conxunto aberto. **Exemplos:**

- \bullet Os intervalos pechados son conxuntos pechados de $\mathbb{R}.$
- ullet O complementario dunha bóla aberta é un conxunto pechado de \mathbb{R}^n .

Conxuntos pechados

Un conxunto $B\subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n\backslash B$ é un conxunto aberto. **Exemplos:**

- \bullet Os intervalos pechados son conxuntos pechados de $\mathbb{R}.$
- O complementario dunha bóla aberta é un conxunto pechado de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos pechados.

Conxuntos pechados

Un conxunto $B\subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n\backslash B$ é un conxunto aberto. **Exemplos:**

- ullet Os intervalos pechados son conxuntos pechados de \mathbb{R} .
- O complementario dunha bóla aberta é un conxunto pechado de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos pechados.

Conxuntos pechados

Un conxunto $B \subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n \backslash B$ é un conxunto aberto. **Exemplos:**

- ullet Os intervalos pechados son conxuntos pechados de $\mathbb R$.
- ullet O complementario dunha bóla aberta é un conxunto pechado de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos pechados.

Propiedades:

A unión dun número finito de conxuntos pechados é un pechado.

Conxuntos pechados

Un conxunto $B \subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n \backslash B$ é un conxunto aberto. **Exemplos:**

- ullet Os intervalos pechados son conxuntos pechados de $\mathbb R$.
- ullet O complementario dunha bóla aberta é un conxunto pechado de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos pechados.

- A unión dun número finito de conxuntos pechados é un pechado.
- A intersección dunha familia arbitraria de conxuntos pechados é un pechado.

Conxuntos pechados

Un conxunto $B \subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n \backslash B$ é un conxunto aberto. **Exemplos:**

- ullet Os intervalos pechados son conxuntos pechados de $\mathbb R$.
- O complementario dunha bóla aberta é un conxunto pechado de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos pechados.

- A unión dun número finito de conxuntos pechados é un pechado.
- A intersección dunha familia arbitraria de conxuntos pechados é un pechado.
- Un conxunto $B \subset \mathbb{R}^n$ é pechado se e só se $B = \overline{B}$. En particular a adherencia dun conxunto sempre é un pechado.

Conxuntos pechados

Un conxunto $B \subset \mathbb{R}^n$ é pechado se o seu complementario $\mathbb{R}^n \backslash B$ é un conxunto aberto. **Exemplos:**

- ullet Os intervalos pechados son conxuntos pechados de $\mathbb R.$
- O complementario dunha bóla aberta é un conxunto pechado de \mathbb{R}^n .
- O conxunto baleiro \emptyset e o total \mathbb{R}^n son conxuntos pechados.

- A unión dun número finito de conxuntos pechados é un pechado.
- A intersección dunha familia arbitraria de conxuntos pechados é un pechado.
- Un conxunto $B \subset \mathbb{R}^n$ é pechado se e só se $B = \overline{B}$. En particular a adherencia dun conxunto sempre é un pechado.
- Sexa $B \subset \mathbb{R}^n$. A adherencia de B é a intersección de todos os conxuntos pechados que conteñen a B.

Conxuntos acoutados

Dicimos que un conxunto $A \subset \mathbb{R}^n$ está acoutado se existe un raio r > 0 e un punto x_0 tal que $A \subset B_r(x_0)$.

Conxuntos acoutados

Dicimos que un conxunto $A \subset \mathbb{R}^n$ está acoutado se existe un raio r > 0 e un punto x_0 tal que $A \subset B_r(x_0)$.

- Unha bóla aberta $B_s(y_0)$ está acoutada.
- Un plano non está acoutado.

Conxuntos acoutados

Dicimos que un conxunto $A \subset \mathbb{R}^n$ está acoutado se existe un raio r > 0 e un punto x_0 tal que $A \subset B_r(x_0)$.

Exemplos:

- Unha bóla aberta $B_s(y_0)$ está acoutada.
- Un plano non está acoutado.

Conxuntos compactos

Dicimos que un conxunto $A \subset \mathbb{R}^n$ é compacto se é pechado e acoutado.

Conxuntos acoutados

Dicimos que un conxunto $A \subset \mathbb{R}^n$ está acoutado se existe un raio r > 0 e un punto x_0 tal que $A \subset B_r(x_0)$.

Exemplos:

- Unha bóla aberta $B_s(y_0)$ está acoutada.
- Un plano non está acoutado.

Conxuntos compactos

Dicimos que un conxunto $A \subset \mathbb{R}^n$ é compacto se é pechado e acoutado.

- Un intervalo da forma [a, b], con $a, b \in \mathbb{R}$, é un compacto.
- A adherencia dunha bóla aberta $\bar{B}_r(x_0)$ é un compacto.

Bibliografía

- J. de Burgos; Álgebra Lineal, Ed. McGrawHill, 1993.
- C. Gómez Bermúdez; Problemas de Álxebra linear, Ed. Andavira, 2015.
- S. I. Grossman; Álgebra Lineal con aplicaciones, Ed. McGrawHill, 1992.
- R. Larson, B. H. Edwards, D. C. Calvo; Algebra lineal, Pirámide Ediciones, 2004.
- Marsden, J., Tromba, A. (2010). Cálculo vectorial. Addison-Wesley.
- D. C. Lay; Álgebra lineal y sus aplicaciones. Addison-Wesley, 2007.

Topoloxía en \mathbb{R}^n

Cálculo

Grao en Enxeñería Mecánica e Grao en Tecnoloxías Industriais Escola Politécnica de Enxeñería de Ferrol