Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$
${\mathfrak r}_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	- 0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
${\tau_1^{\#}}_1^1$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6k^2r_5+t_1+4t_2}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	3 t 1 t	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	0	0	0	0
	$_{L^{+}}^{\sharp} + ^{\alpha\beta}$	$_{L}^{#2}$ $+^{\alpha\beta}$	$\begin{bmatrix} *_1 + \alpha \beta \end{bmatrix} - {(1)}$	$\sigma_{1}^{\#1} + \alpha$	$\sigma_{1}^{\#2} + \alpha$	$t_1^{\#1} \dagger^{\alpha}$	$\tau_{1}^{\#2} + \alpha$

	$\omega_{1^+lphaeta}^{\sharp1}$	$\omega_{1^+lphaeta}^{ ext{#2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\#1}$	$\omega_{1}^{#2}$ α	$f_{1-\alpha}^{\#1}$	$f_{1\alpha}^{#2}$
$\omega_{1}^{\sharp 1} \dagger^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	\frac{t_1 + t_2}{3}	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\sharp 1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	t_2

	$\sigma_{2}^{\#1}{}_{lphaeta}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{t_2}$	
$\tau_{0}^{\#2}$	0	0	0	0	
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	
$\sigma_0^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0	
	$\sigma_{0}^{\#1}$ \dagger	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2} +$	$\sigma_{0}^{\#1} +$	

$\omega_{2}^{\#1} + \alpha^{\beta} \qquad \omega_{2}^{\#1} + \alpha^{\beta} \qquad 0 \qquad 0 \qquad 0 \qquad \frac{t_{1}}{2}$	_				
$\omega_{2}^{\#1} + \alpha^{\beta} \qquad \omega_{2}^{\#1} + \alpha^{\beta} \qquad \frac{t_{1}}{2} - \frac{ikt_{1}}{\sqrt{2}}$ $f_{2}^{\#1} + \alpha^{\beta} \qquad \frac{ikt_{1}}{\sqrt{2}} \qquad k^{2}t_{1}$ $\omega_{2}^{\#1} + \alpha^{\beta} \chi \qquad 0 \qquad 0$	$\omega_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$\frac{t_1}{2}$	
$\omega_{2}^{\#1} + \alpha \beta \qquad \frac{\omega_{2}^{\#1}}{2}$ $\omega_{2}^{\#1} + \alpha \beta \qquad \frac{t_{1}}{\sqrt{2}}$ $\omega_{2}^{\#1} + \alpha \beta \chi \qquad 0$	$f_{2}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\omega_{2}^{#1} + \alpha \beta$ $f_{2}^{#1} + \alpha \beta$ $\omega_{2}^{#1} + \alpha \beta \chi$	$\omega_2^{\#1}{}_+\alpha\beta$			0	
		$\omega_{2}^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{#1} +^{lphaeta\chi}$	

Source constraints/ga	uge generators
SO(3) irreps	Multiplicities
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total constraints:	16

Massive and massless spectra

Massive particle			
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$		
Polarisations:	3		
Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$		
Spin:	1		
Parity:	Even		

o massless particles)

Unitarity conditions

 $r_5 > 0 \&\& (t_1 < 0 \&\& (t_2 < 0 || t_2 > -t_1)) || (t_1 > 0 \&\& -t_1 < t_2 < 0)$