CC1: 16 mars 2020: 10h-11h30 (1h; 1h20 pour les tiers temps)

On attachera le plus grand soin à la présentation et aux calculs. Aucun document ni appareil numérique autorisé. Barême indicatif : 5 points par exercice environ.

Exercice 1. Montrer que la matrice suivante est inversible et calculer son inverse

$$\left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{array}\right).$$

Correction : En résolvant le système linéaire Ax = y, on échelonne la matrice A avec 3 pivots non nuls ce qui montre que A est inversible et

$$A^{-1} = \left(\begin{array}{rrr} 1 & -2 & 1 \\ -1 & 3 & -1 \\ -1 & 1 & 0 \end{array}\right).$$

Exercice 2. Donner la définition d'un sous-espace vectoriel de \mathbb{R}^n . On considère maintenant les trois sous-ensembles de \mathbb{R}^3 :

$$F_1 = \{(\lambda, 3\lambda, 2\lambda) ; \lambda \in \mathbb{R}\}$$

$$F_2 = \text{Vect}((0, 1, 2), (1, -1, -1))$$

$$F_3 = \{(\lambda + 1, \lambda - 1, 3\lambda - 1) ; \lambda \in \mathbb{R}\}$$

Parmi ces espaces, lesquels sont des sous-espaces vectoriels de \mathbb{R}^3 (justifier votre réponse en fournissant une preuve ou bien bien un contre-exemple)?

<u>Correction</u>: un sev F de \mathbb{R}^n est un sous-ensemble non-vide de \mathbb{R}^n tel que pour tout $x, y \in F$ et tout $\lambda, \mu \in \mathbb{R}$ on a $\lambda x + \mu y \in F$. On a $F_1 = Vect((1,3,2))$ et donc F_1 et F_2 sont des sev (par définition du vect qui est un sev., propriété de cours). F_3 n'est pas un sev car il ne contient pas le vecteur nul par exemple.

Exercice 3. On considère le système linéaire

$$\begin{cases} ax + y + z &= 1\\ x + ay + z &= b\\ x + y + az &= b \end{cases}$$

Résoudre ce système en fonction des paramètres réels $a,b \in \mathbb{R}$. Lorsque celui-ci est compatible, donner l'ensemble des solutions ainsi que le rang du système.

Correction : le système est équivalent à

$$\begin{cases} x + y + az &= b \\ x + ay + z &= b \\ ax + y + z &= 1 \end{cases}$$

et en échelonnant on trouve

$$\begin{cases} x + y + az &= b\\ (a-1)y + (1-a)z &= 0\\ (1-a)y + (1-a^2)z &= 1-ab \end{cases}$$

ce qui donne la discussion

1er cas : a = 1. On a deux sous-cas :

- (i) $a = 1, b \neq 1 \text{ alors } S = \emptyset$
- (ii) a = 1, b = 1 alors $S = \{(1 y z, y, z) ; y, z \in \mathbb{R}\}$ et le rang du système est 1 (rang = 3 2).

2ème cas : $a \neq 1$ alors on tombe sur le système

$$\begin{cases} x+y+az = b \\ y-z = 0 \\ (2+a)z = \frac{1-ab}{1-a} \end{cases}$$

et on a les 3 sous-cas suivants :

- (i) si a = -2 et $b \neq -1/2$ alors $S = \emptyset$
- (ii) si a=-2 et b=-1/2 alors y=z et x+y-2z=-1/2 ce qui donne $\mathcal{S}=\{(-1/2+z,z,z)\;;\;z\in\mathbb{R}\}$ et le rang vaut 2.
- (iii) si $a \neq -2$ (et $a \neq 1$) on trouve une seule et unique solution (et donc le rang vaut 3):

$$x = b - \frac{(1+a)(1-ab)}{(1-a)(2+a)} = \frac{1+a-2b}{(a-1)(2+a)}, \ y = z = \frac{1-ab}{(1-a)(2+a)}$$

Exercice 4. Soit $A \in M_n(\mathbb{R})$ une matrice carré de taille n vérifiant $A^2 = I_n$ (où I_n désigne la matrice identité). Montrer par récourence l'égalité

$$\forall p \in \mathbb{N}^*, \quad (I_n + A)^p = 2^{p-1}(I_n + A).$$

On suppose que $A \neq -I_n$. Montrer que la matrice $A - I_n$ n'est pas inversible.

Correction: 1) c'est vrai pour p = 1. Si on suppose le résultat vrai au rang $p \ge 1$, alors $(I_n + A)^{p+1} = (I_n + A)^p(I_n + A) = 2^{p-1}(I_n + A)^2 = 2^{p-1}(I_n + 2A + A^2) = 2^p(I_n + A)$ (car I_n commute avec toute matrice). D'où le résultat par réccurence.

2) On a $A^2 - I_n = (A - I_n)(A + I_n) = 0$. Supposons $A - I_n$ inversible. Il vient $(A - I_n)^{-1}(A - I_n)(A + I_n) = 0$ c.a.d. $A + I_n = 0$ et $A = -I_n$ ce qui n'est pas possible d'après l'hypothèse. D'où $A - I_n$ est non inversible.