Detecting Evasion Attacks in Deployed Tree Ensembles

Laurens Devos, Lorenzo Perini, Wannes Meert, Jesse Davis

laurens.devos@kuleuven.be

@laudevs

1 Tree Ensembles Can Be Mislead

- Susceptible to Evasion Attacks
 - Adversarial examples at test time
 - Small carefully crafted changes to inputs fooling the model

Many performant attacks exist

MILP

Kantchelian et al. ICML'16

LT-Attack

Chen et al. NeurIPS'19

Veritas

Devos et al. ICML'21

2 Models Always Make A Prediction

Model *T* trained on data:

$$T(\boxed{)} = 1$$

$$T(\lceil g \rceil) = 7$$

$$T() = 3$$

$$m{T}(m{7})=5$$

2 Models Always Make A Prediction

Maybe we should abstain from making a prediction?

2 Models Always Make A Prediction

$$egin{array}{cccccc} oldsymbol{T())} &=& 1 \ oldsymbol{T()} &=& 7 \ oldsymbol{T()} &=& 3 \ oldsymbol{T()} &=& 5 \ \end{array}$$
 Standard model always makes a prediction

Maybe we should abstain from making a prediction?

This paper

OC-SCORE identifies suspicious examples

This paper

OC-SCORE identifies suspicious examples

Given a model and a set of 'normal' examples

- Assign a score s to a new example
- Reject if s > t

Need Insights into Why Non-Robust

ECML PKDD 2023

- Collect more data
 - By hand → have fun collecting it
 - Hardening: generate data automatically [Goodfellow et al., ICLR'15, Kantchelian et al., ICML'16]

- Collect more data
 - By hand → have fun collecting it
 - Hardening: generate data automatically [Goodfellow et al., ICLR'15, Kantchelian et al., ICML'16]
- Robust tree learners

[Chen et al. ICML'19, Calzavara et al. DMKD'20, Vos & Verwer, ICML'21]

- Collect more data
 - By hand → have fun collecting it
 - Hardening: generate data automatically [Goodfellow et al., ICLR'15, Kantchelian et al., ICML'16]
- Robust tree learners
 [Chen et al. ICML'19, Calzavara et al. DMKD'20, Vos & Verwer, ICML'21]

This paper

Post-deployment detection → OC-SCORE

The **OC-SPACE**

Age	Height	BMI
32	176	22

The OC-SPACE

$$OC(\{A=32, H=176, B=22\}) = (4,3,1)$$

OC = tuple of compatible leaves

The OC-SPACE

Age	Height	BMI
32	176	22
55	201	29

OC(
$$\{A=32, H=176, B=22\}$$
) = $(4,3,1)$
OC($\{A=55, H=201, B=29\}$) = $(12,6,5)$

OC = tuple of compatible leaves

The OC-SPACE

Age	Height	BMI
32	176	22
55	201	29

OC(
$$\{A=32, H=176, B=22\}$$
) = (4,3,1)
OC($\{A=55, H=201, B=29\}$) = (12,6,5)

- OC = tuple of compatible leaves
- OC-SPACE = set of all possible OCs

The OC-SPACE

Age	Height	BMI
32	176	22
55	201	29

OC(
$$\{A=32, H=176, B=22\}$$
) = $(4,3,1)$
OC($\{A=55, H=201, B=29\}$) = $(12,6,5)$

- OC = tuple of compatible leaves
- OC-SPACE = set of all possible OCs

How big is OC-SPACE?

OC-SPACE Explodes

Vast majority of OCs **never visited** by a training example

OC-SPACE Explodes

Vast majority of OCs **never visited** by a training example

OC-SPACE Explodes

Vast majority of OCs **never visited** by a training example

OC-SPACE separates normal and adversarial

Adversarial example close to normal example in input space, but far apart in OC-space

Measuring an example's adversarialness

Assign each leaf node an identifier

- Assign each leaf node an identifier
- Encode reference set examples by their identifiers: R

- Assign each leaf node an identifier
- Encode reference set examples by their identifiers: R
- Post deployment when you receive an instance $oldsymbol{x}$

- Assign each leaf node an identifier
- Encode reference set examples by their identifiers: ${\cal R}$
- Post deployment when you receive an instance $oldsymbol{x}$
 - Execute ensemble to encode its reached identifiers: $\mathrm{OC}(oldsymbol{x})$

- Assign each leaf node an identifier
- Encode reference set examples by their identifiers: ${\cal R}$
- Post deployment when you receive an instance $oldsymbol{x}$
 - Execute ensemble to encode its reached identifiers: $\mathrm{OC}(oldsymbol{x})$
 - Compute $\min\{\operatorname{hamming}(\operatorname{OC}(\boldsymbol{x}),\operatorname{OC}(\boldsymbol{x}'))\mid \boldsymbol{x}'\in R\}$ Count how many leaves differ Normal examples

Reference set R

$$(4,3,1)$$
, $(4,3,5)$) = 1

 $(12,6,5)$

Reference set R

hamming(
$$(4,3,1)$$
, $(4,3,5)$

hamming(
 $(12,6),5$), $(4,3),5$

Reference set R

hamming(
$$(4,3,1)$$
, $(4,3,5)$) = 1

hamming(
 $(12,6,5)$, $(4,3,5)$) = 2

 \vdots

hamming(
 $(12,13,1)$, $(4,3,5)$) = 3

Experimental Setup

How well do we detect adversarial examples?

- Task: Distinguish adversarial from normal examples
- 8 dataset: 4×500 adversarial vs. 2000 normal,
 4 adversarial generation methods
- Compare **OC-SCORE** to 4 baselines
 - How accurately can the approaches distinguish between normal and adversarial examples?
 - Does OC-SCORE work on real-world data?

Experimental Results

Good Detection Rate

Experimental Results

Reference Set R Need Not Be Large

- Random subsets of set of correctly classified training examples
- Detection performance barely affected

Applying OC-SCORE does not need to be expensive

Questions?

Detecting Evasion Attacks in Deployed Tree Ensembles

Laurens Devos, Lorenzo Perini, Wannes Meert, Jesse Davis

laurens.devos@kuleuven.be @laudevs

