Whole Genome Bisulfite Sequencing Analysis 报告

Part-1 数据预处理、比对和 call methylation

1.1 数据分析流程及对应文件

- ▶ Step-1: 下机数据去接头及质控
 - 使用 <u>fastqc</u> 软件 (version 0.11.9) 对 <u>raw data</u>进行数据质控分析(结果见目录 <u>1_raw-data_QC</u>)。
 - 使用 <u>trim_galore</u> (version 0.6.7)和 <u>cutadapt</u> (version 1.18) 软件对 <u>raw data</u>进行接头 去除和低质量碱基修剪,得到 clean data (见 <u>2_clean-data</u> 目录中的以 fq.gz 为后缀的文件)。
 - 使用 <u>fastqc</u> 软件 (version 0.11.9) 对 clean data 进行数据质控分析 (结果见目录 <u>2_clean-data_QC</u>)。
- ▶ Step-2: Reads 比对、去重、call methylation 以及质控
 - 使用 <u>bismark</u> 软件(version 0.24.0)将来自 clean data 的双端测序 reads 比对到基因组上 (参数: --score_min L,0,-0.6 -N 0 -L 20), 得到 bam 文件。
 - 使用 <u>bismark</u> 软件里的 *deduplicate_bismark* 功能去除 bam 文件中以相同方向比对到相同位置的 reads , 结果见 <u>3_aligned_BISMARK</u> 目录中的 SampleName_bismark_bt2_pe.deduplicated.bam 文件。可使用 <u>SeqMonk</u>或 <u>IGV</u> 软件等对 bam 文件进行可视化。注:SampleName 为样本名,如 D1-2、D1-3等。
 - 使用 <u>bismark</u> 软件里的 *bismark_methylation_extractor* 功能(参数: --no_overlap --comprehensive --gzip --CX --cytosine_report) 对 CpG、CHG 和 CHH Context 进行 call methylation【注: 依据 C 碱基的背景,将 C 碱基分为 CpG、CHG 和 CHH 三类,H 可以是 A,T 或 C】,见 3_aligned_BISMARK\methylation\SampleName 目录中的文件:
 - CpG_context_SampleName_bismark_bt2_pe.deduplicated.txt.gz
 - CHG_context_SampleName_bismark_bt2_pe.deduplicated.txt.gz
 - CHH_context_SampleName_bismark_bt2_pe.deduplicated.txt.gz

- 使用 <u>bismark</u> 软件里的 *bam2nuc* 功能生成核酸覆盖度的统计报告。使用 *bismark2report* 功能生成整合的 reads 比对、methylation extraction reports、去重、核酸覆盖度统计以及 M-bias 报告 , 网页报告见 <u>3_aligned_BISMARK</u> 目录中的 <u>SampleName</u> bismark bt2 PE report.html:
 - D1-2 bismark bt2 PE report.html
 - D1-4 bismark bt2 PE report.html
 - D1-5 bismark bt2 PE report.html
 - D63-5 bismark bt2 PE report.html
 - D63-6 bismark bt2 PE report.html
 - D63-8 bismark bt2 PE report.html
 - D63-9 bismark bt2 PE report.html
 - D7-1 bismark bt2 PE report.html
 - D7-2 bismark bt2 PE report.html
 - D7-3 bismark bt2 PE report.html
 - D7-5 bismark bt2 PE report.html

使用 bismark2summary 功能把所有样本生成一个汇总的网页报告,见 3_aligned_BISMARK目录中 bismark_summary_report.html。

■ 使用 bismark 软件里的 bismark2bedGraph 功能将 call methylation 的结果转为 bedGraph 格式,见 3_aligned_BISMARK\methylation\SampleName 目录中的 SampleName_bismark_bt2_pe.deduplicated.bedGraph.gz,可使用 SeqMonk或 IGV 软件对 bedGraph 文件进行可视化,此外还会生成覆盖度文件,见 3_aligned_BISMARK\methylation\SampleName 目录中的 CpG.cov.gz.bismark.cov.gz、CHG.cov.gz.bismark.cov.gz和 CHH.cov.gz.bismark.cov.gz文件,文件内容形式为: <chromosome> <start position> <end position> <methylation percentage> <count methylated> <count unmethylated> 这三种文件将会被用于下游分析,可使用 SeqMonk 可视化这些文件。

- ➤ Step-3: 汇总以上步骤的分析报告
 - 使用 <u>multiqc</u> 软件 (version 1.13) 对以上步骤中的 trim_galore, fastqc, bismark 等软件产生的分析结果进行汇总展示,见目录 4_multiQC 中的 multiqc_report.html。
- 1.2 主要结果解读

这部分分析的简要统计结果,见 <u>multiqc_report.html</u>,基本统计信息如下:

General Statistics

Copy table	III Configure	Columns	.ll Plot	Showing 11/11 rows	and ¹¹ / ₁₅ columns.								
Sample Name		% mCpG		% mCHG	% mCHH	M C's	C Coverage	% Dups	% Aligned	% BP Trimmed	% Dups	% GC	M Seqs
D1-2		60.9%		1.2%	1.4%	3 948.0	19.55X	19.7%	86.6%	1.1%	10.8%	21%	128.1
D1-4		61.7%		1.2%	1.4%	3 191.3	15.26X	31.8%	86.7%	0.8%	23.7%	21%	118.4
D1-5		60.2%		1.1%	1.4%	3 522.2	17.15X	23.9%	86.3%	1.0%	28.0%	21%	118.6
D63-5		61.6%		1.1%	1.3%	4 122.6	20.37X	18.2%	86.1%	1.2%	10.6%	22%	131.4
D63-6		62.0%		1.2%	1.4%	4 061.8	20.18X	15.5%	87.8%	1.1%	10.0%	21%	123.7
D63-8		62.2%		1.1%	1.4%	3 818.8	18.89X	20.4%	87.9%	1.1%	19.6%	21%	123.0
D63-9		62.7%		1.1%	1.4%	4 095.8	20.22X	15.4%	87.6%	1.3%	9.9%	21%	124.5
D7-1		60.8%		1.1%	1.4%	3 927.7	19.10X	25.9%	87.9%	1.2%	17.3%	21%	134.2
D7-2		60.9%		1.1%	1.4%	3 955.2	19.16X	24.8%	87.5%	1.2%	17.0%	21%	132.9
D7-3		58.9%		1.1%	1.3%	3 802.4	18.53X	16.8%	86.6%	1.4%	11.3%	22%	116.9
D7-5		61.4%		1.1%	1.4%	4 545.2	22.27X	19.6%	88.1%	1.0%	11.8%	21%	143.1

软件	缩写	全名
Bismark	% mCpG	CpG context 中 C 碱基的甲基化比例
Bismark	% mCHG	CHG context 中 C 碱基的甲基化比例
Bismark	% mCHH	CHH context 中 C 碱基的甲基化比例
Bismark	M C's	分析中覆盖到的 C 碱基位点数目 (单位: 百万)
Bismark	C Coverage	有效 reads 的测序深度
Bismark	% Dups	比对位置重复的 reads 的百分比
Bismark	% Aligned	比对率
Cutadapt	% BP Trimmed	序列修剪损失的碱基比例
FastQC	% Dups	重复 reads 的比例
FastQC	% GC	平均 GC 含量
FastQC	M Seqs	Clean data 中的 reads 数目(单位:百万对)

Part-2 下游分析

主要基于 msPIPE 分析流程。

2.1 单样本水平分析及聚类和 PCA 分析

结果见网页 methylKit-Part1.html。

2.2 组水平分析

2.2.1 甲基化水平分布

■ D1 组 (CpG pdf; CHG pdf; CHH pdf):

■ D7 组 (CpG pdf; CHG pdf; CHH pdf):

■ D63 组 (CpG pdf; CHG pdf; CHH pdf):

2.2.2 Circos plot 全基因组尺度甲基化谱 (CpG/UMRs/LMRs)

■ D1 组(pdf):

■ D7 组(<u>pdf</u>):

■ D63 组(pdf):

注:红色、浅绿色和浅蓝色分别表示 CpG、UMRs 和 LMRs 3 条 track。非甲基化区域(<mark>翻译可能不准确!</mark>)(hypomethylated regions,HMRs,由 R 包 MethylSeekR 预测)分为未甲基化区域(unmethylated regions,UMRs)和低甲基化区域(low methylated regions, LMRs)。红色柱状图是以 100kb 为 bin 的平均

甲基化水平,灰色表示缺乏数据。图像高度表示每个区域的甲基化水平,UMR 或LMR 以红点标注。图像较大,打开时可能会卡。

2.2.3 甲基化位点在基因组元件上的分布 (The average CpG methylation levels in each genomic context)

■ D1 组(pdf):

■ D7 组(<u>pdf</u>):

■ D63 组(pdf):

2.2.4 组间 CG、CHG 与 CHH 等的甲基化水平的比较(pdf file)

2.3 msPIPE 输出结果解读

Analysis 目录:

- avg_methlevel.pdf: CpG, CHG, and CHH context 的平均甲基化水平柱状图
- annotations: genes, exons, introns, promoters, intergenic regions 等区域的 bed 格式文件
- D1 (D7 或 D63): 各组的甲基化分析结果
 - Average_methyl_lv.txt:每个基因及其 promoter 的平均甲基化水平
 - Avg_Genomic_Context_CpG.txt: 每个基因组元件的平均甲基化水平(gene, exon, intron, promoter, and intergenic)
 - CXX_methylCalls.bed:每个 CX context (CXX is one of CpG, CHG, and CHH)的所有甲基化位点
 - AroundTSS/meth_lv_D1.txt:每个基因的 TSS (+/- 1500 bp)区域的滑动窗甲基化水平 (bin 大小为 500bp, Step 大小为 100bp)
 - MethylSeekR: MethylSeekR 包的运行结果,主要用于鉴定 UMRs 和 LMRs。
 - UMR-Promoter.cnt.bed:每个 promoter 区域的 UMRs 数目(promoter 定义:基因上游的 1Kp 区域)
 - UMR-Promoter.pos.bed:每个 promoter 区域 UMRs 的基因组坐标
 - Circos.CpG_UMRs_LMRs.pdf: 全基因组尺度的甲基化水平环状图 (详见前面的介绍)
 - Genomic_Context_CpG.pdf:每个基因组元件的平均甲基化水平柱状图 (gene, exon, intron, promoter, and intergenic)
 - hist_sample1_CXX.pdf: CX context 的甲基化水平分布直方图 (CXX is one of CpG, CHG, and CHH)

Anslysis 目录中 DMR 目录为两两比较的分析结果,主要基于 R 包 methylkit

- D1.D7 (D1.D63 或 D7.D93) : DMC/DMR 的分析结果目录, D1 为 control, D7 为 case, 对于差异基因的设定尝试了 q0.5 和 q0.01 两个参数, q0.5 参数得到的差异基因数目更多,以下以 q0.5 为例。
 - DMR_q0.5.bed: 差异区域的详细统计分析结果
 - methylkit: methylKit 包的输出结果。
 - DMC_q0.5.bed: q-value 0.5 参数过滤后的 DMCs
 - hypoDMC_detailed_count_methyl.txt: 每个 promoter 区域的非甲基化 DMCs 数目(methylation level case < control)
 - hyperDMC_detailed_count_methyl.txt:每个promoter区域的超甲基化DMCs数目((methylation level case > control)
 - intersection.DMC2Promoter.txt: 基因和 DMCs 的对应关系
 - DMC_genelist.txt: promoter 区域有 DMCs 的基因 list
 - DMC_gene.GOresult.txt:使用 g:Profiler 包对基因 list (methylKit 包) 做 GO 分析的输出结果
 注: 这里所用的 GO 分析工具是 R 包 gprofiler2,有一个问题是图片不显示 Term 名! 客户可考虑使用在线的 gprofiler 重做
 一下,在线分析结果中,鼠标滑过时会显示 Term 名。建议考虑使用别的在线分析网站,我所找到的适用该物种的网站有:
 - KOBAS: GO和KEGG; 可出图

● <u>DAVID</u>: GO、KEGG 等

• GeneOntology: GO

■ DMC_gene.GOresult.pdf: GO 分析结果绘图

注: bed 格式文件可以用 SeqMonk 或 IGV 软件打开。

参考文献

- 1. Kim H, Sim M, Park N, et al. msPIPE: a pipeline for the analysis and visualization of whole-genome bisulfite sequencing data[J]. BMC bioinformatics, 2022, 23(1): 1-13.
- 2. Akalin A, Kormaksson M, Li S, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles[J]. Genome biology, 2012, 13(10): 1-9.
- 3. Burger L, Gaidatzis D, Schübeler D, et al. Identification of active regulatory regions from DNA methylation data[J]. Nucleic acids research, 2013, 41(16): e155-e155.
- 4. Krueger F, Andrews S R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications[J]. bioinformatics, 2011, 27(11): 1571-1572.