Исследование свойств локальных аппроксимирующих моделей в задаче декодирования сигналов головного мозга

 Φ илатов A.B., Mаркин~B.O., Cmpuэсов B.B filatov.av@phystech.edu; markin.vo@phystech.edu; strijov@ccas.ru $M\Phi$ TИ

В данной работе рассматривается проблема создания нейрокомпьютерного интерфейса. Особенность этой проблемы заключается в требование к устойчивости моделей. Под устойчивостью модели понимается малое изменение качества прогноза при малом изменении входных данных. Для решения задачи прогнозирования предлагается использовать локальные модели. В данной статье рассматривается построение локальных моделей на данных электрокортикограммы.

Основной вклад данной работы заключается в построении локальны модели за счет учета расположения электродов на поверхности кортекса. В предложенном подходе пространственная аппроксимация искомого сигнала строится при помощи гауссовой функции и полиномов. Параметризация, полученная при помощи локальной модели, рассматривается как новое признаковое пространство для задачи восстановления координатного положение конечности. В статье приведены результаты численных экспериментов на данных электрокортикограмм головного мозга обезьян.

Ключевые слова: отбор признаков; нейрокомпьютерный интерфейс; электрокортикограмма; локальные модели

1 Введение

Нейрокомпьютерный интерфейс (Brain-Computer Interface, BCI) [1] считывает сигналы поверхности кортекса головного мозга, анализирует и переводит в команды исполняющей системы. Исследования в данной области позволяют людям заменить или восстановить нарушенные двигательные функции организма. Примером такой системы является система управления роботизированным протезом посредством мозговых импульсов.

Мозговая активность [2] представляет собой совокупность электрических импульсов различной амплитуды и частоты, возникающих на поверхности кортекса головного мозга. Исследование мозговой активности производится при помощи электрокортикографии [3] или электроэнцефалографии [4]. Результатом измерений является временной ряд напряжений на электродах, который используется в задаче декодирования сигнала. Декодирование сигнала — извлечение информации для решения сопутствующей задачи. Для исследования используется данные из [5].

Подходы [6,7] к решению задачи декодирования состоят в извлечении информативных признаков из пространственных, частотных и временных характеристик сигнала. В [8–10] исследуются частотные характеристики кортикограмм. Основными методами решения являются линейные модели, такие как метод частичных регрессии наименьших квадратов (Partial Least Squares, PLS) [9, 11, 12] и метод главных компонент (Principal Component Analysis, PCA) [11, 12]. Важным аспектом создания таких моделей является построение надежного признакового пространства В [13] используются алгоритмы, построенные на скрытых марковских моделях. В [10, 14] рассматриваются различные участки сигнала в виде слов. В работе [2] задача отбора признаков сводится к задаче квадратичного программирования (QuadraticProgramming Feature Selection) [15]. Также для решения задачи используются нейросетевые модели [16].

Рис. 1 Пример движения запястья и предшествующему электрокортикограммы

2 Постановка задачи

Данные электрокортикограммы представляют собой временной ряд амплитуд сигналов $\mathbf{X}(t) \in \mathbb{R}^m$. По ней требуется предсказать положение запястья в следующим момент времени $\mathbf{y}(t+1) \in \mathbb{R}^3$. Рассматривается выборка $\mathfrak{D} = \{(\mathbf{X}_t, \mathbf{y}_{t+1}\}, \, \text{где } \mathbf{X}_t \, - \, \text{значения временного ряда с момента времени <math>t$ по момент t+n, где n — размер окно прогнозирования. В силу коррелированности исходных данных предлагается построить предсказательную модель как композицию локальной модели и линейной модели.

Определение 1. Локальная модель — совокупность двух параметрических отображений: φ и ψ

$$\varphi: \mathbb{R}^{n \times k_1} \to \mathbb{R}^{n \times k_2}$$
$$\tilde{\varphi}: \mathbb{R}^{n \times k_2} \to \mathbb{R}^{n \times k_1}$$
$$\tilde{\varphi}^*, \varphi^* = \underset{\tilde{\varphi}, \varphi}{\arg \min} \|\mathbf{X} - \tilde{\varphi} \circ \varphi(\mathbf{X})\|_2,$$

где φ отображает исходное признаковое пространства в скрытое пространство , а ψ отображает скрытое пространство меньшей размерности в исходное признаковое пространство.

Определение 2. Под сложностью модели понимается C — число оптимизируемых параметров.

Число оптимизируемых параметров прямо пропорционально числу параметров локальной модели, поэтому далее везде под сложностью будет пониматься число параметров локальной модели.

Определение 3. Пусть f — модель, X_1, X_2 — произвольные элементы из выборки, такие что расстояние $\rho(x,y)<\varepsilon$. Тогда модель f называется устойчивой если

$$||f(X_1) - f(X_2)|| \le C \cdot \varepsilon$$
, где $C = \text{const}$.

Локальная модель порождает новую выборку $\mathfrak{D}_{\text{new}} = \{(\mathbf{Z}_i, \mathbf{y}_i)\}, \, \mathbf{Z}_i = \varphi(\mathbf{X}_i)$. На этой выборке строится линейная модель, которая решает конечную задачу:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} L(\mathbf{z}, \mathbf{w}, \mathbf{y})$$

Критерием качества Q линейной модели f выступают коэффициент детерминации и корреляция Пирсона.

3 Описание алгоритма

3.1 Алгоритм

Рис. 2 Функциональная схема алгортма

Решение задачи строится как композиция:

$$g^* = f \circ \psi \circ \varphi,$$

где φ — локальная модель, а f — решение задачи регрессии методом частичных квадратов, а ψ — вейвлет преобразование типа Morlet.

3.2 Локальная модель

Пусть заданы координаты каждого электрода на плоскости $\mathbf{R} = \{\mathbf{r}_j \in \mathbb{R}^2, j \in 1, \dots N_{\mathrm{ch}}\}$. Зафиксируем произвольный момент времени t. Представим вектор значений $\mathbf{x}(t)$ амплитуд на электродах в момент t, как вектор-функцию $\mathbf{g}(\mathbf{R})$ координат электродов. Вектор-функцию $\mathbf{g}(\mathbf{R})$ ищем в классе полиномов от координат электродов. Находим $\mathbf{g}^*(\mathbf{R})$ из решения задачи оптимизации:

$$\mathbf{g}^* = \underset{\mathbf{g}}{\operatorname{arg min}} \|\mathbf{x}(t) - \mathbf{g}(\mathbf{R}, \boldsymbol{\Theta})\|_2^2$$

Отображение φ строим как:

$$\varphi: \mathbf{x}(t) \to \mathbf{\Theta}(t),$$

где Θ веса $\mathbf{g}^*(t)$.

3.3 Вейвлет преобразование

Вейвлет преобразование [17] представляет собой свертку искомой функции с вейвлет-функцией.

$$\psi(\tau, s) = \int_{-\infty}^{+\infty} x(t) \frac{1}{\sqrt{s}} \gamma^* \left(\frac{t - \tau}{s}\right) dt,$$

где τ и s — параметры переноса и размаха соответственно.

Вейвлет функция типа "Morlet"имеет следующий вид:

$$\gamma_{\sigma}(t) = c_{\sigma} \pi^{-\frac{1}{4}} e^{-\frac{1}{2}t^2} (e^{i\sigma t} - \varkappa_{\sigma}),$$

где \varkappa_{σ} из условия равенства нулю интеграла от вейвлета определяется как $\varkappa_{\sigma}=e^{-\frac{1}{2}\sigma^2}$ и c_{σ} определяется из условия нормировки $c_{\sigma}=\left(1+e^{-\sigma^2}-2e^{-\frac{3}{4}\sigma^2}\right)^{-\frac{1}{2}}$

В случае дискретных наборов $\{\tau_1 \dots \tau_N\}, \{s_1 \dots s_M\}$:

$$\psi_{nm} = \int_{-\infty}^{+\infty} x(t) \frac{1}{\sqrt{s_m}} \gamma^* \left(\frac{t - \tau_n}{s_m} \right) dt,$$

Результатом вейвлет преобразование является тензор Ψ , который мы переупорядочиваем до вида матрицы

3.4 Метод частичных квадратов (PLS)

Метод частичных наименьших квадратов проецирует матрицу плана Ψ и целевую матрицу \mathbf{Y} в скрытое пространство малой размерностью l (l < M). Метод PLS находит в скрытом пространстве матрицы $\mathbf{T}, \mathbf{U} \in \mathbb{R}^{m \times l}$, которые лучше всего описывают оригинальные матрицы Ψ и \mathbf{Y} . При этом PLS максимизирует взаимосвязь между \mathbf{T} и \mathbf{U} . Матрица плана Ψ и целевая матрица \mathbf{Y} проецируются в скрытое пространство следующим образом:

$$egin{aligned} \mathbf{\Psi} &= \mathbf{T}_{m imes l} \cdot \mathbf{P}^T + \mathbf{B}_{m imes n} = \sum_{k=1}^l \mathbf{t}_{k} \cdot \mathbf{p}_k^T + \mathbf{B}_{m imes n}, \ \mathbf{Y}_{m imes r} &= \mathbf{U}_{m imes l} \cdot \mathbf{Q}^T + \mathbf{C}_{m imes r} = \sum_{k=1}^l \mathbf{u}_k \cdot \mathbf{q}_k^T + \mathbf{C}_{m imes r}. \end{aligned}$$

Здесь \mathbf{T} и \mathbf{U} — образы исходных матриц в скрытом пространстве, причём столбцы матрицы \mathbf{T} ортогональны; \mathbf{P} и \mathbf{Q} — матрицы перехода; \mathbf{E} и \mathbf{F} — матрицы остатков. Метод PLS максимизирует линейную зависимость между столбцами матриц \mathbf{T} и \mathbf{U}

$$\mathbf{U} \approx \mathbf{TB}, \mathbf{B} = \operatorname{diag}(\beta_k), \quad \beta_k = \mathbf{u}_k^T \mathbf{t}_k / (\mathbf{t}_k^T \mathbf{t}_k).$$

Предсказание строится как $\hat{\mathbf{Y}} = f(\mathbf{\Psi})$, где $f(\mathbf{\Psi}) = \mathbf{\Psi} \mathbf{W} (\mathbf{P^T W})^{-1} (\mathbf{T^T T})^{-1} \mathbf{T^T}$, а \mathbf{W} – обучаемая матрица весов для поддержания ортогональности.

4 Вычислительный эксперимент

4.1 Данные

Для проведения вычислительного эксперимента использовались данные [5], представляющие запись электрокортикограммы головного мозга обезьяны. Каждой записи соответствует амплитуды напряжения на 32 электродах и три пространственные координаты. При проведении эксперимента выборка была сокращена в 10 раз для снижения длительности вычислений.

Рис. 3 Спектрограмма за первые 10 секунд

Обработка исходных данных производится в несколько этапов и подробно описано в статье [14]. Исходный сигнал записан на частоте 1 к Γ ц, данные о движении — на частоте 120 Γ ц. Сигнал фильтруется полосным фильтром с диапазоном от 0.3 до 600 Γ ц. Затем для каждого момента времени t строится частотно-временная характеристика. Над сигналом в окне [t-1.1s,t] с шагом в $\Delta=100$ миллисекунд осуществляется вейвлет-преобразование типа Morlet на 10 различных частотах ω_j в диапазоне от 10 до 150 Γ ц. Затем строится матрица 10×12 , элементами которой s_{ij} является квадрат амплитуды на частоте ω_j в момент времени $t-(1+i)\Delta$. Таким образом, размер описания одного объекта (момента времени) составляет $N_{\rm ch} \times 10 \times 12$.

При проведении эксперимента разбиение выборки производится в следующем соотношении: 80% — обучение, 20% — тестирование.

4.2 Результаты локальной модели

Таблица 1 Сравнение качества локальных моделей

Модель	Корреляция	R^2
Poly2	0.926	0.857
Poly3	0.964	0.928
Poly4	0.986	0.972
Normal		

Рис. 4 Зависимость MSE аппроксимирующей модели от времени

Рис. 5 Зависимость скорости от времени

4.3 Результаты линейной регрессии

Таблица 2 Сравнение корреляции Пирсона алгоритмов при разном количестве компонент PLS

Алгоритм	N=10	N=25	N = 50	N=100	N = 250	N = 500
Без	0.386	0.391	0.352			0.326
Poly2	0.412	0.411	0.408		0.407	0.407
Poly3	0.432	0.417	0.411	0.405	0.403	
Poly4	0.407	0.398	0.394	0.386	0.387	
Normal	0.290	0.289	0.282	0.281	0.281	
Normal2						

5 Заключение

Исследовали проблему восстановления трехмерного движения при помощи электрокортикограммы. Для построения точных и вычислительно простых решений предлагаем использовать локальные модели.

Исследовали влияние локальных модели на задаче предсказания траектории. Качество модели линейной регрессии улучшается при использовании локальных моделей и упрощается вычислительная сложность моделей. Дополнительно, при усложнении модели линейной регрессии с локальной моделью качество продолжает увеличиваться, что не выполняется для моделей без локальных моделей.

Слабым местом предложенного подхода является отсутствие автоматизированного выбора семейства локальных моделей.

6 Будущие исследования

В данной статье для вейвлет преобразования использовалась вейвлет функция только одного типа. В дальнейших работах планируется исследовать влияние на результат изменение вейвлет функции. Также существуют подходы, основанные на свёрточных нейронных сетях. В [18, 19] была показана эффективность этих подходов. Внедрение в предложенный алгоритм представляет собой интересную задачу.

В данной работе процесс выбора семейства моделей для локальной модели ложится на плечи исследователя. Однако, выбор семейства моделей можно автоматизировать при помощи нейронных сетей, что является интересным продолжением данной работы.

Литература

- [1] Jerry J Shih, Dean J Krusienski, and Jonathan R Wolpaw. Brain-computer interfaces in medicine. In *Mayo Clinic Proceedings*, volume 87, pages 268–279. Elsevier, 2012.
- [2] Anastasia Motrenko and Vadim Strijov. Multi-way feature selection for ecog-based brain-computer interface. Expert Systems with Applications, 114:402–413, 2018.
- [3] N Jeremy Hill, Disha Gupta, Peter Brunner, Aysegul Gunduz, Matthew A Adamo, Anthony Ritaccio, and Gerwin Schalk. Recording human electrocorticographic (ecog) signals for neuroscientific research and real-time functional cortical mapping. *JoVE (Journal of Visualized Experiments)*, (64):e3993, 2012.
- [4] Michael J Aminoff. Electroencephalography: general principles and clinical applications. Electrodiagnosis in Clinical Neurology, 6th ed.; Aminoff, MJ, Ed, pages 37–84, 2012.
- [5] Zenas C Chao, Yasuo Nagasaka, and Naotaka Fujii. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Frontiers in neuroengineering, 3:3, 2010.
- [6] Soichiro Morishita, Keita Sato, Hidenori Watanabe, Yukio Nishimura, Tadashi Isa, Ryu Kato, Tatsuhiro Nakamura, and Hiroshi Yokoi. Brain-machine interface to control a prosthetic arm with monkey ecogs during periodic movements. *Frontiers in neuroscience*, 8:417, 2014.
- [7] David M Alexander, Peter Jurica, Chris Trengove, Andrey R Nikolaev, Sergei Gepshtein, Mikhail Zvyagintsev, Klaus Mathiak, Andreas Schulze-Bonhage, Johanna Ruescher, Tonio Ball, et al. Traveling waves and trial averaging: the nature of single-trial and averaged brain responses in large-scale cortical signals. *Neuroimage*, 73:95–112, 2013.
- [8] César Márquez Chin, Milos R Popovic, Adam Thrasher, Tracy Cameron, Andres Lozano, and Robert Chen. Identification of arm movements using correlation of electrocorticographic spectral components and kinematic recordings. *Journal of neural engineering*, 4(2):146, 2007.
- [9] Andrey Eliseyev and Tatiana Aksenova. Stable and artifact-resistant decoding of 3d hand trajectories from ecog signals using the generalized additive model. *Journal of neural engineering*, 11(6):066005, 2014.
- [10] Carlos A Loza and Jose C Principe. Unsupervised robust detection of behavioral correlates in ecog. In 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), pages 509–512. IEEE, 2017.
- [11] Andrey Eliseyev and Tetiana Aksenova. Penalized multi-way partial least squares for smooth trajectory decoding from electrocorticographic (ecog) recording. *PloS one*, 11(5), 2016.
- [12] Roman Rosipal and Nicole Kramer. Overview and recent advances in partial least squares. In International Statistical and Optimization Perspectives Workshop Subspace, Latent Structure and Feature Selection, pages 34–51. Springer, 2005.
- [13] Rui Zhao, Gerwin Schalk, and Qiang Ji. Coupled hidden markov model for electrocorticographic signal classification. In 2014 22nd International Conference on Pattern Recognition, pages 1858–1862. IEEE, 2014.
- [14] Hai-bin Zhao, Chun-yang Yu, Chong Liu, and Hong Wang. Ecog-based brain-computer interface using relative wavelet energy and probabilistic neural network. In 2010 3rd International Conference on Biomedical Engineering and Informatics, volume 2, pages 873–877. IEEE, 2010.
- [15] Irene Rodriguez-Lujan, Ramon Huerta, Charles Elkan, and Carlos Santa Cruz. Quadratic programming feature selection. *Journal of Machine Learning Research*, 11(Apr):1491–1516, 2010.
- [16] Ziqian Xie. Deep learning approach for brain machine interface. 2018.
- [17] Alexander Grossmann and Jean Morlet. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM journal on mathematical analysis, 15(4):723–736, 1984.

- [18] VJ Lawhern, AJ Solon, NR Waytowich, SM Gordon, CP Hung, and BJ Lance. Eegnet: A compact convolutional network for eeg-based brain-computer interfaces. arxiv 2016. arXiv preprint arXiv:1611.08024.
- [19] Ian Walker, Marc Deisenroth, and Aldo Faisal. Deep convolutional neural networks for brain computer interface using motor imagery. *Imperial college of science*, technology and medicine department of computing, page 68, 2015.

Поступила в редакцию