Differential binding analysis

Sandra Cortijo <u>sandra.cortijo@slcu.cam.ac.uk</u>
Sergio Martinez Cuesta <u>sermarcue@gmail.com</u>
Ashley Sawle <u>Ashley.Sawle@cruk.cam.ac.uk</u>
Denis Seyres <u>Denis.seyres@bioresource.nihr.ac.uk</u>

Why differential binding analysis?

 The same transcription factor has different binding profiles in different conditions

 The same histone modification has different patterns of occurrence patterns in different conditions

Why differential binding analysis?

Strategies

Count-based Hidden Markov Model

Count-based methods

Transcription factors

Histone modifications

Transcription factors (FoxA1)

EROI – External Regions Of Interest IROI – Internal Regions Of Interest

Transcription factors (FoxA1)

Transcription factors (FoxA1)

Histone modifications (H3K36me3)

Histone modifications (H3K36me3)

Histone modifications (H3K36me3)

Transcription factors

Histone modifications

There are **differences** between the tools to perform differential binding analysis

There are **differences** between the tools to perform differential binding analysis

Methods considering **replicates** are more robust than those considering single data sets only

There are **differences** between the tools to perform differential binding analysis

Methods considering **replicates** are more robust than those considering single data sets only

Some tools give good results with default parameters e.g. **ChIPComp** and **diffBind** when replicates are available

There are **differences** between the tools to perform differential binding analysis

Methods considering **replicates** are more robust than those considering single data sets only

Some tools give good results with default parameters e.g. **ChIPComp** and **diffBind** when replicates are available

The other tools require more extensive fine-tuning of parameters to achieve satisfactory results

K Binding Site Lists

Peaks are called in samples e.g. MACS2

K Binding Site Lists

K Binding Site Lists

