Exclusive Theorem

by Sven Nilsen, 2020

In this paper I present an exclusive theorem found in Path Semantical Logic.

The Exclusive Theorem is a proof in Path Semantical Logic^[1]:

(tr, fa) (B, C):
tr(B), B=>(tr
$$\vee$$
 fa), B \neg =C => tr \vee fa

Where the tuple `(tr, fa)` has level 1 and the tuple `(B, C)` has level 0. The notation `tr(B)` means `tr=>B` where `B` is at a lower level.

The propositions 'tr' and 'fa' are used with Boolean intuition, where 'true' and 'false' are excluded.

Thing that are not provable:

- fa(B)
- B
- $\neg (tr = > C)$
- ¬(fa=>C)

One can prove `C=>fa`.

If `fa(B)` is added as assumption, then one can prove `C=>tr` and therefore `¬C` and `B`.

One can prove `fa(B) \vee fa(C)`, but not `fa(B) \vee fa(C)`. Similarly, one can prove `tr(B) \vee tr(C)` (trivial, since `tr(B)`), but not `tr(B) \vee tr(C)`.

One can prove:

$$fa(B) \wedge tr(B) = fa(C) \wedge tr(C)$$

Here is a table of the possible cases:

В	С
tr	tr, fa
tr, fa	tr
tr, fa	fa

Notice that there is no case where `C` is uninhabited.

References:

"Path Semantical Logic"
AdvancedResearch, reading sequence on Path Semantics
https://github.com/advancedresearch/path_semantics/blob/master/sequences.md#path-semantical-logic