4I803 Cours 3 et 4

Opérateurs relationnels Implémentation et coût

février 2023

Plan

- Rappel et Objectif
- Notion de pipeline
- Tri
- Sélection
- Projection
- Jointure
- Autres

Traitement des requêtes (rappel)

Objectif

- Comprendre les **algorithmes** qui évaluent les opérateurs relationnels
- Quantifier les accès aux données nécessaire pour évaluer une opération
 - Unité de mesure : la page
 - Les opérations principales sont :
 - sélection, projection, jointure, tri, ...
- Disposer d'un modèle (i.e., des formules) pour déterminer le coût d'une opération en termes d'accès aux données
- Hypothèses : coût E/S >> coût CPU
 - Lire un nuplet à partir d'une page de données stockée sur disque dure beaucoup plus longtemps que de calculer un nuplet à partir de données déjà en mémoire.

Implémentation des opérateurs

- Il existe plusieurs algorithmes *physiques* possibles pour un opérateur *logique*
 - comprendre les différentes variantes
- Détailler les étapes de l'algorithme physique
- Faire la distinction entre
 - Etape impliquant un accès aux données
 - Etape sans accès aux données

Evaluation en pipeline d'une opération

- Une opération est évaluée en pipeline
 - Si elle est évaluée sans lire aucune donnée stockée dans la base
 - Chaque opérande (données en entrée) doit être le résultat d'une autre opération
 - Opérande ≠ table
 - Opérande **non** matérialisée : jamais écrite temporairement sur disque avant d'évaluer l'opération
 - On « consomme » les opérandes pour « produire » la sortie progressivement
- Pipeline = traitement à la volée
- Avantage : moins couteux car pas de matérialisation

Pipeline vs. matérialisation

• Rmq: pas de pipeline pour la première sélection car accès aux données stockées.

Opération unaire évaluée en pipeline

- Une opération unaire a une opérande *e*
 - Exples: $\sigma_{pr\'edicat}(e)$ $\pi_{attributs}(e)$
- Si l'opérande e est une expression composée d'au moins une opération, c-à-d, si $e \neq$ table alors
 - $-\operatorname{coût}(\sigma_{pr\acute{e}dicat}(e)) = \operatorname{coût}(e)$
 - $-\operatorname{coût}(\pi_{attributs}(e)) = \operatorname{coût}(e)$

Opération binaire évaluée en pipeline

- Deux branches en pipeline
 - Union avec doublons
 - opération non relationnelle: UNION ALL en SQL
 - Fusion de listes déjà triées
- Une branche en pipeline
 - Jointure entre une "petite" et une "grande" relation
- Coût d'une opération *n-aire* en pipeline
 - = somme du coût de ses opérandes

Opération binaire évaluée en pipeline

Arbre linéaire à gauche :

- "Flux" de nuplets "remontant" sur une branche
 - 3 branches : verte, rouge, bleue

Opération binaire évaluée en pipeline

Arbre linéaire à droite :

Evaluation itérative en pipeline

- Une opération en pipeline est itérative
 - Parcours itératif des nuplets de l'opérande pour calculer, un par un, les nuplets du résulat.
 - Le 1^{er} nuplet du résultat dépend seulement des *m* premiers éléments de l'opérande
 - Le 2^{ème} nuplet du résultat dépend seulement des *n* éléments suivants de l'opérande
 - ... ainsi de suite jusqu'au dernier nuplet du résultat

• Avantage:

- Chaque opérateur produit son résultat à la demande de son père
- Contrôle du flux des nuplets intermédiaires

Implémention des opérateurs

- Modèle d'Itérateur
 - Interface commune à tous les opérateurs :
 - méthodes open(), nextTuple(), close()
 - nextTuple() invoque récursivement nextTuple() des opérandes
 - Permet une implémentation en pipeline ou avec matérialisation
 - Avantages :
 - Facilite l'exécution d'un plan : le plan est lui-même un itérateur
 - Permet de calculer progressivement le résultat de manière interactive
 - latence réduite pour produire les n premiers tuples du résultat
- Génération dynamique de code
 - Avantages :
 - optimisation tardive avec information plus récente sur les ressources disponibles (mémoire)
 - pas d'appels imbriqués de méthodes nextTuple()
 - Inconvénient: temps pour compiler la requête

Implémention des opérateurs

Modèle Itérateur

```
[ ] class Operateur():
    def __init__(self):
        pass

def open(self):
    pass

def next(self):
    pass

def close(self):
    pass
```

```
[ ] # TABLE ACCESS FULL
    class ParcoursSequentiel(Operateur):
[ ] class Selection(Operateur):
[ ] class HashJoin(Operateur):
```

Requête SQL transformée en un plan

Plan = arbre composé d'objets de classe Operateur

Résultat : itérer sur l'objet racine du plan

Algorithmes des opérateurs relationnels

- Diapos suivantes
 - Parcours séquentiel
 - Sélection
 - Projection
 - Jointure
 - Tri

— ...

Parcours séquentiel d'une table

- Requête:
 - Select * from R
- R stockée dans page(R) pages du disque
 - Taille d'une page en octets : T_{page}
 - Nombre de nuplets de R dans une page :
 - $T_{page} / largeur(R)$
 - $page(R) = card(R) / (T_{page} / largeur(R))$
- Parcours séquentiel : Table Access FULL
 - $\operatorname{Coût}(R) = \operatorname{page}(R) \cdot c$
 - avec c < 1 si les pages à lire sont contigües (exple c=0,27 en TME)
 - $\sin c = 1$

Sélection: o

- Sélection : $\sigma_{p(A)}$ (...)
 - avec p(A) est un prédicat dépendant de l'attribut A
- Si E est une expression composée
 - $-\operatorname{Coût}(\sigma_{p(A)}(E)) = \operatorname{coût}(E)$
- Si T est une table et l'attribut A n'est pas indexé
 - Coût($\sigma_{p(A)}(T)$) = page(T)

Sélection par index **non** plaçant : σ_{NP}

• Soit IdxA l'index non plaçant sur R.A, et p(A) le prédicat de sélection

```
for rowid in IdxA.getRowIds( p(A) ):
    r = R.getTuple(rowid)
    add r in result
```

- 1. Traverser l'index : getRowIds (p(A))
 - Atteindre une feuille de l'index
 - C_{index}= 0 si l'index tient en mémoire
 - Sinon $C_{index} = (hauteur de l'arbre -1)$
 - Lire le(s) rowid
 - Index Unique Scan: C_{rowid} = 0 (les feuilles de l'index unique contiennent des rowid)
 - Index Range Scan : $C_{\text{rowid}} = [(\text{card}(\sigma_{p(A)}(R)) / \text{card}(R)) * \text{nbre de pages contenant les rowids}]$
- 2. Lire les tuples associés aux rowld : getTuple (rowlD)
 - Voir: Table Access By Rowid
- Coût($\sigma_{NPp(A)}(R)$) = $C_{index} + C_{rowid} + card(\sigma_{p(A)}(R))$. **CF** / card(R)

CF: Clustering factor

- On a : page(R) < CF < card(R)
- Indique dans quelle mesure le « rangement » des tuples dans une page dépend de l'attribut indexé
- CF est déterminé à partir d'entrées consécutives de l'index
 - Pour une plage [v1, v2] de valeurs consécutives
 - Les entrées { (v1, {rowid}), (v2, {rowid}) } dans cette plage contiennent N rowid
 - N rowid font référence à P pages à lire
 - Nombre moyen de rowid retrouvés dans une page
 1 < N/P < nbre de tuples par page
 - CF = card(R) / (N/P)
- CF faible =

les tuples ont été insérés avec des valeurs croissantes de l'attribut indexé

• CF élevé =

tuples ont été insérés indépendant de la valeur de l'attribut indexé

Sélection par index plaçant : op

Soit IdxA l'index plaçant sur R.A, et p(A) le prédicat de sélection

```
for page P_p in IdxA.getPages(p(A)):
  for tuple r in P_{R}:
        add r in result on suppose que tous les r de Pr satisfont p(A)
```

- Traverser l'index pour obtenir l'adresse de la première page indexée
 - C_{index}= 0 l'index tient en mémoire ou pour le hachage linéaire
 - Sinon

 - C_{index}= 1 pour le hachage extensible
 C_{index}= hauteur de l'arbre 1 pour un arbre B+
- Lire les pages "pleines" de tuples du résultat = lire une fraction de la table
- Coût $(\sigma_{P_{\mathcal{D}(A)}}(R)) = \lceil page(R) * SF(p(A)) \rceil$
 - Rappel: SF(p(A)) est le facteur de sélectivité du prédicat p(A)

Sélections complexes

- Sélections complexes sur une table contenant plusieurs prédicats
- Lorsque plusieurs attributs sont indexés séparément
 - Conjonction (AND)
 - Intersection d'adresses de nuplets (rowid)
 - Vecteur binaire puis ET logique
 - Disjonction (OR)
 - Union d'adresses de nuplets
 - Vecteur binaire puis OU logique

Projection: π

- Projection sans doublons : $\pi_{\text{Attributs}}(R)$
 - R est une relation
 - Correspond au "Select distinct Attributs"
 - $-\sin \pi_{Attr}(R)$ tient en mémoire ou si R est sans doublons
 - $\operatorname{Coût}(\pi_{\operatorname{Attr}}(R)) = \operatorname{coût}(R)$
 - $-\sin \pi_{Attr}(R)$ ne tient **pas** en mémoire. Deux possibilités :
 - En triant
 - Lire R pour matérialiser R trié selon *Attributs*, puis lire R trié
 - OU en hachant
 - Lire R et la hacher sur disque, insérer uniquement si nouvelle valeur pour « Attributs » puis lire chaque paquet
- Projection SQL avec doublons : Select Attributs
 - Opération non relationnelle
 - $Coût(proj_{Attr}(R)) = coût(R)$

Jointures:

Diapos suivantes:

- Boucles imbriquées
 - simple
 - par bloc
 - avec index
- Par hachage
- Par Tri fusion

— ...

Boucles imbriquées : M

- On suppose que S est une table
- Jointure notée $R \bowtie_{R.a=S.a} S$
 - On note r un tuple r de R, s un tuple de S

```
for r in R:
  for s in S:
    if r.a = s.a:
       add (r,s) in result
```

- Avantage:
 - Algo général, permet d' évaluer tout prédicat de jointure
 - Exple (théta jointure) : R $\bowtie_{R.a > S.a}$ S
- Inconvénient :
 - Relire S pour chaque tuple de R
- Amélioration :
 - Relire S pour chaque **partie** de R : voir diapo suivante

Boucles imbriquées par blocs : >

- On suppose que M+2 pages de R tiennent en mémoire
 - On peut "charger" M pages de R en mémoire
- Possibilité de **réduire** le nombre d'accès à S
 - Itération principale sur R par blocs de M pages
 - Puis joindre chaque nuplet de S avec le bloc courant
- Algo:

```
foreach Br of R do
  foreach tuple s ∈ S do
  foreach tuple r ∈ Br,
    if r.a=s.a then add <r,s> in result
```

• Coût(R $\bowtie_{A.a=B.a} S$) = coût(R) + page(R)/M . page(S) Rmq : en TD: M = 1 page

Boucles imbriquées avec matérialisation : ⋈_{Mat}

- Sert lorsque S est une sous-expression : S ≠ table
 - Matérialiser S avant de calculer la jointure
- Jointure notée R ⋈_{Mat R.a=S.a} S
 - Etape préliminaire
 - Evaluer S : coût(S)
 - Stocker son résultat dans S_{Mat} Coût pour écrire S_{Mat} : page(S)
 - Jointure par boucles imbriquées entre R et S_{Mat}

$$Coût(R \bowtie_{Mat R.a=S.a} S) = coût(S) + page(S) + coût(R \bowtie_{R.a=S.a} S)$$

- Exple pour M=1
 - $Coût(R \bowtie_{Mat R.a=S.a} S) = coût(S) + page(S) + coût(R) + page(R) \cdot page(S)$

Jointure par boucles avec index (1)

- Jointure
 - par boucles imbriquées et
 - index sur l'attribut a de S
 - Évite de parcourir S entièrement pour chaque bloc de R

$$\operatorname{Coût}(R \bowtie_{\operatorname{Ind} R.a=S.a} S) = \operatorname{coût}(R) + \operatorname{card}(R) \cdot \operatorname{coût}(\sigma_{a=v}(S))$$

- Cas particulier de la jointure sur clé
 - si l'attribut a est une clé de S, alors $coût(\sigma_{a=v}(S)) = 1$
- Cas général :
 - le terme $coût(\sigma_{a=v}(S))$ dépend du type d'index
 - voir détails sur les 2 diapos suivantes

Jointure par boucles avec index (2)

Jointure avec index **non plaçant** *IdxSa* sur S.a

```
    On suppose que l'index tient en mémoire : C<sub>index</sub> = 0
    for r in R:

            for i in IdxSa.getRowIds(r.a):
            s = S.getTuple(i)
            add (r,s) in result

    coût(σ<sub>a=v</sub>(S)) = C<sub>rowid</sub> + card(σ<sub>a=v</sub>(S)) * CF / card(S) (cf diapo sélection)
    donc coût(R ⋈<sub>Ind R.a=S.a</sub>S) =

                    coût(R) + card(R). [C<sub>rowid</sub> + card(σ<sub>a=v</sub>(S)) * CF / card(S)]
                   coût(R) + card(R).
                    card(S) ]
                    card(S) ]
                   coût(R) + card(R).
                    card(S) ]
                    card(S) ]
```

Jointure par boucles avec index (3)

- Jointure avec index plaçant sur S.a
 - On suppose que S.getPages(v) retourne les pages Ps consécutives contenant les tuples de S tq S.a=v

```
for r \in R:

for P_S \in S. getPages (r.a):

foreach tuple s \in P_S:

if s.a = r.a:

add \langle r, s \rangle in result

coût(\sigma_{a=v}(S)) = \lceil page(S) * SF(a=v) \rceil
coût(R \bowtie_{Ind R.a=S.a} S) = coût(R) + card(R) . \lceil page(S) * SF(a=v) \rceil
```

Jointure par tri puis fusion (1)

- Trier R et S sur l'attribut de jointure : Sort(join)
 - voir tri externe
- Fusionner les relations triées : Merge join
- Amélioration pour réduire le nombre de lectures et écritures
 - Laisser R triée en plusieurs morceaux sans les fusionner. Idem pour S.
 - On peut fusionner directement les 2 relations dès que le nombre de paquets restant dans les 2 relations est inférieur à k
 - Trier R en P_R paquets, et trier S en P_S paquets, tq : $P_R + P_S < k$
 - Fusion des Pr paquets de R avec les Ps paquets de S en une seule étape
- Exemple : jointure entre 2 tables R et S
 - Page(R)=6000, page(S)=3000, k=100 pages en mémoire
 - Coût du tri = 2. (page(R) + page(S))
 - On obtient 60 blocs de R et 30 blocs de S soit un total de 90 blocs
 - Il suffit de lire les blocs pour les fusionner : coût = page(R) + page(S)
 - Bilan: $coût(R \bowtie_{TF R,a=S,a} S) = 3 (page(R) + page(S))$

Jointure par fusion (2) algorithme détaillé

- Principe : itérer progressivement sur R et S
- S'il y a plusieurs tuples de r (ou s de S) pour une valeur de a, produire toutes les paires (r,s)
 - $R=\{(1,b) (7,z) (7,b) (7,c)\} S = \{(6,e) (7,e) (7,a) (9,i)\}$
 - Le résultat contient 6 tuples: 7ze 7be 7ce 7za 7ba 7ca
- Algo:
 - Initialiser r et s
 - $r \leftarrow$ premier tuple de R, $s \leftarrow$ premier tuple de S
 - tant que r et s existent
 - $\sin r.A = s.A$ alors
 - tmpR← r
 - continuer d'itérer sur R pour ajouter dans tmpR les tuples tq R.A = S.A
 - tant que s existe et s.A = r.A
 - » Pour chaque t dans tmpR, ajouter (s,t) dans le résultat
 - \rightarrow S \leftarrow suivant(S)
 - $si r.A < s.A alors r \leftarrow suivant(R) sinon si s.A < r.A suivant(S)$

Jointure par hachage (1)

- Hypothèse : R est plus grande que S $page(R) \ge page(S)$
- Principe : traitement en 2 étapes
 - 1) Lire S pour la hacher selon la clé de jointure
 - 2) Itérer sur les tuples de R et jointure sur clé
- S tient en mémoire créer une hashmap en mémoire

```
1) init: Map : hashmap <A, List<Tuple>>
  foreach tuple s ∈ S do
    -- créer la liste L et l'associer à S.a si elle n'existe pas
    List L ← Map.getOrCreate(S.a)
    add s in L
2) foreach tuple r ∈ R do
    L ← Map.get(r.a)
    foreach tuple s ∈ L add (r,s) in result
Coût(R ⋈<sub>H R.a=S.a</sub> S) = coût(S) + coût(R)
```


Jointure par hachage : cas du hachage externe : ⋈_{HExt}

- Hachage externe si S ne tient pas en mémoire :
 - Algorithme « Grace Hash join »
 - Taille de la mémoire : k+1 pages
 - Hacher S (puis R) sur disque
 - Répartir les données de S dans k 'paquets'
 - Le paquet Si contient les tuples de S tels que h(S.a) = i
 - Continuer à répartir récursivement jusqu'à ce que la <u>taille</u> des paquets de S soit <= k pages
 - Répartir les données de R en utilisant les <u>mêmes</u> fonctions de hachage que celles ayant servit à hacher S.
 - Un paquet de R peut avoir une taille > k
 - Coût : 2e. (page(R) + page(S)) avec $e = \lfloor \log_k(page(S)) \rfloor$
 - Charger le 1^{er} paquet de S en mémoire puis lire le 1^{er} paquet de P pour faire la jointure. Idem pour les paquets suivants
 - Coût : page(S) + page(R)

$$Coût(R \bowtie_{HExt R.a=S.a} S) = 2e(page(R) + page(S)) + page(R) + page(S)$$

Hachage externe: illustration du Grace Hash join

Jointure n-aire

- Evaluer n jointure binaires
- Parcourir l'arbre de jointure en profondeur d'abord
- Evaluer les opérations en remontant
 - depuis l'opération la plus à gauche
- Exple: $(R \bowtie_a S) \bowtie_b T$ et jointure par boucles imbriquées

• Exple: $(R \bowtie_a S) \bowtie_b T$ et jointure par hachage

Order by

• voir tri externe

Tri externe

- Hypothèse : k pages tiennent en mémoire
- Algorithme en s étapes : tri de blocs puis fusions de blocs
- Etape n°1: tri
 - Lire R pour créer des paquets triés de k pages chacun
 - Nombre de paquets obtenus : page(R)/k
 - Coût de l'étape de tri (lecture + matérialisation) : 2.page(R)
- Puis étapes n° 2, 3, ..., s: fusion
 - Fusion
 - Charger la première page de k paquets et les fusionner
 - Dès qu'une page est vide, charger la suivante du même paquet
 - Dès que les k premiers paquets ont été fusionné, fusionner les k paquets suivants
 - On obtient des paquets triés de taille k² pages
 - Coût d'une étape : lire et matérialiser toutes les données : 2.page(R)
 - Nombre de paquets : page(R)/k²
 - Continuer jusqu'à obtenir un seul paquet, on a donc :
 - page(R) $/ k^s \le 1$

Tri externe : Fusion en 1 seule étape

Fusion en plusieurs étapes

39

Tri externe (suite)

- Nombre d'étape s tq : $k^s \ge page(R)$: $s = \lceil \log_k(page(R)) \rceil$
- Coût total des s étapes (inclut le tri et les étapes de fusion):
 - Lorsque le résultat final du tri est matérialisé
 - $Coût(tri(R)) = 2 \cdot page(R) \cdot s$
- Si on ne matérialise pas le résultat de la dernière étape
 - Dernière étape = seulement lire R
 - Exple : R trié sera affiché ou transmis à une autre opération.
 - $\operatorname{Coût}(\operatorname{tri}(R)) = 2 \cdot \operatorname{page}(R) \cdot (s-1) + \operatorname{page}(R)$
- Si E est une expression composée (E ≠ table)
 - Tri fait en pipeline : la première lecture de E consiste à évaluer E et le stocker. Le dernier résultat n'est pas matérialisé.
 - Coût(tri(E)) = [coût(E) + page(E)] + [2.page(E).(s-2)] + [page(E)]
 - $\Leftrightarrow \operatorname{Coût}(\operatorname{tri}(E)) = \operatorname{coût}(E) + 2 \cdot \operatorname{page}(E) \cdot (s 1)$

Autres opérations

- Group By avec agrégation
 - Hachage ou tri
- a IN (sous-requête)
 - Evaluer la sous-requête pour chaque valeur de a
 - Algorithme général de type "boucles imbriquées"
 - Lorsque la sous-requête ne dépend pas de la requête principale
 - Evaluer une (semi) jointure : Requête principale ⋉ sous-requête
 - Charger la sous requête en mémoire : voir algo de type ⋈_H
 Ou
 - Matérialiser la sous-requête : voir algo de type ⋈_{Mat}

Perspectives

- Nombreuses autres variantes pour implémenter les opérateurs relationnels
- Evaluation en parallèle d'un opérateur
- Tri externe en parallèle
 - Sort benchmark : voir le site sortbenchmark.org
 - 2009: 500 GO/mn, 2013: 1,4 TO/mn,
 - 2014: 4,3 TO/mn http://sortbenchmark.org/ApacheSpark2014.pdf
 - 2015: 16 TO/mn
 - 2016: 44 TO/mn http://sortbenchmark.org/TencentSort2016.pdf
 - Coût 'vert' du tri: