```
/* Montgomery 5.21 */
proc import datafile="/home/u63048916/STAT571B/Homework/Homework 4/Q5-21.xlsx"
    dbms=xlsx
    out=mont5 21
    replace;
    getnames=yes;
proc print data=mont5_21;
run;
proc glm data=mont5_21;
class Pressure Temperature Day;
model Yield= Day Temperature Pressure;
means Day Pressure Temperature Pressure*Temperature;
output out=mont5_21new r=res p=pred;
PROC univariate data=mont5_21new normal;
var res;
qqplot res /normal(MU=0 SIGMA=EST);
proc sgplot;
scatter x=pred y=res;
refline 0;
run;
/* multiple comparison */
proc glm data=mont5_21;
class Pressure Temperature Day;
model Yield= Day Temperature | Pressure;
means Temperature | Pressure / tukey lines;
output out=mont5_21new1 r=res p=pred;
proc glm data=mont5_21;
class Pressure Temperature Day;
model Yield= Day Temperature Pressure;
lsmeans Temperature Pressure/tdiff adjust=tukey;
output out=mont5_21new2 r=res p=pred;
```

5.21. The yield of a chemical process is being studied. The two factors of interest are temperature and pressure. Three levels of each factor are selected; however, only nine runs can be made in one day. The experimenter runs a complete replicate of the design on each day. The data are shown in the following table. Analyze the data, assuming that the days are blocks.

	Day 1 Pressure			Day 2 Pressure		
Temperature	250	260	270	250	260	270
Low	86.3	84.0	85.8	86.1	85.2	87.3
Medium	88.5	87.3	89.0	89.4	89.9	90.3
High	89.1	90.2	91.3	91.7	93.2	93.7

4. Montgomery 5.21

This is a general two factor blocked factorial design (factors are Pressure and Temperature, blocks are Days). The Statistical model is

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \delta_k + \epsilon_{ijk} \begin{cases} i = 1, 2, 3 \\ j = 1, 2, 3 \\ k = 1, 2, ..., 18 \end{cases}$$