Instructions:

- Follow directions and answer questions with requested supporting work.
- Clearly indicate your answer in the allotted space or by putting a box around it.
- No cellphones, laptops, books, notes, supporting materials, or external aids are allowed on this exam.

Name:	
UID:	

Problem #	Score
1	
2	
3	
4	
5	
Total	

- 1. True of False. (2 points each)
- (a) If $\mathcal{B} = \{u_1, u_2, \cdots, u_n\}$ is a basis of \mathbb{R}^n , then for any $x \in \mathbb{R}^n$, we have

$$\left[u_1 \ u_2 \ \cdots \ u_n\right][x]_{\mathcal{B}} = x.$$

True

- (b) If the columns of $A \in \mathbb{R}^{m \times n}$ are orthonormal, then $A^T A = I$. False. This is only true if $m \geq n$.
- (c) $im(A)^{\perp} = ker(A^T)$. True
- (d) Suppose $n \in \mathbb{R}^n$; $T(x) = nn^T x$ is the orthogonal projection onto $V = \{\alpha n : \alpha \in \mathbb{R}\}$. False. This is only true if ||n|| = 1.
- (e) An orthogonal matrix must have linearly independent columns. True $\,$
- (f) $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times k}$, then $im(AB) \subseteq im(A)$. True
- (g) (3 points) Write down the Rank-nullity theorem. For $n \times m$ matrix A,

$$\dim(ker(A)) + \dim(im(A)) = m$$

- (h) (2 points) If $\{u_1, u_2, \dots, u_m\}$ is a set of orthonormal vectors of \mathbb{R}^n and $x \in \mathbb{R}^n$ is an arbitrary vector. What is the relation between $p = (u_1 \cdot x)^2 + (u_2 \cdot x)^2 + \dots + (u_m \cdot x)^2$ and $||x||^2$ (equal, greater than or equal to, less than or equal to)? $(u_1 \cdot x)^2 + (u_2 \cdot x)^2 + \dots + (u_m \cdot x)^2 \le ||x||^2$
- (i) (3 points) Write down the definition of the least-squares solution of a linear system Ax = b where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

 x^* is a least-squares solution to Ax = b if $||b - Ax^*|| \le ||b - Ax||$ for all $x \in \mathbb{R}^n$.

2. Consider the linear map $T: \mathbb{R}^4 \to \mathbb{R}^4$ given by

$$T(x) = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

Find an orthonormal bases for ker(T) and im(T).

This is the orthogonal projection onto the plane spanned by (1,1,-1,-1) and (1,-1,1,-1). An orthonormal basis for im(T) is naturally $\frac{1}{2}(1,1,-1,-1),\frac{1}{2}(1,-1,1,-1)$. By inspection, an orthonormal basis for ker(T) is $\frac{1}{\sqrt{2}}(1,0,0,1),\frac{1}{\sqrt{2}}(0,1,1,0)$ (or can be found by first finding a basis for ker(T) then apply Gram-Schmidt process). Since $ker(T) = im(T)^{\perp}$, the combination of basis forms a orthonormal basis or \mathbb{R}^4 .

3. Consider a subspace V spanned by the basis $\mathcal{B} = \{v_1, v_2\}$, where

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

Determine whether the following vectors are in V. If the vector is in V, compute its coordinates with respect to \mathcal{B} .

- (a) (3 points) $x = \begin{bmatrix} 3 \\ -4 \\ -11 \end{bmatrix}$. (b) (3 points) $y = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.
- (c) (4 points) Find a vector v_3 such that $\mathcal{C} = \{v_1, v_2, v_3\}$ forms a basis of \mathbb{R}^3 . Compute the coordinates with respect to \mathcal{C} for the vectors in (a) and (b).
- (a) $x = 10v_1 7v_2$, and $[x]_{\mathcal{B}} = (10, -7)$.
- (b) $y = 2v_1 v_2 + (0, 1, 0)$, and $y \notin V$.
- (c) Let $v_3 = (0, 1, 0)$, then $[x]_{\mathcal{C}} = (10, -7, 0), [y]_{\mathcal{C}} = (2, -1, 1)$.

4. (a) (7 points) Compute the QR factorization of the matrix

$$A = \left[\begin{array}{cc} 1 & 6 \\ 1 & 4 \\ 1 & 6 \\ 1 & 4 \end{array} \right]$$

(b) (3 points) Show for the above matrix A and its QR factorization A = QR, $||Ax||^2 = ||Rx||^2$ for all $x \in \mathbb{R}^2$. (Note the difference that $Ax \in \mathbb{R}^4$ and $Rx \in \mathbb{R}^2$.)

(a)
$$Q = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad R = \begin{bmatrix} 2 & 10 \\ 0 & 2 \end{bmatrix}$$

The bonus problem follows from $A^TA = R^TR$.

5. (Bonus problem. 5 points.) Let V be a subspace in \mathbb{R}^m . For the orthogonal projection $proj_V(x)$ for $x \in \mathbb{R}^m$, the following property always holds:

$$x - proj_V(x) \in V^{\perp}$$
.

Use Pythagorean Theorem to show that

$$||x - proj_V(x)||^2 \le ||x - y||^2$$
 for all $y \in V$.

Hint: Since $y - proj_V(x) \in V$, we know that $x - proj_V(x)$ is perpendicular to $y - proj_V(x)$. Apply Pythagorean Theorem to the right triangle formed by these two vectors.