Marine Troadec M1 MASCO

Étude Pratique (1) – IAA – 2021

1-Etude des k-ppv sur des données en damier

1.2 Données en damier

1)

Dim	Size	Neig	Nb_ex	Noise	Score
2	2	1	1000	0	0.995
3	2	1	1000	0	0.952
4	2	1	1000	0	0.918
5	2	1	1000	0	0.88
6	2	1	1000	0	0.832
7	2	1	1000	0	0.811
8	2	1	1000	0	0.788
9	2	1	1000	0	0.77
10	2	1	1000	0	0.767
2	3	1	1000	0	0.98
2	4	1	1000	0	0.977
2	5	1	1000	0	0.967
2	6	1	1000	0	0.93
2	7	1	1000	0	0.95
2	8	1	1000	0	0.93
2	2	1	2000	0	0.993
2	2	1	3000	0	0.992
2	2	1	4000	0	0.995
2	2	1	5000	0	0.996
2	2	1	6000	0	0.006
2	2	1	7000	0	0.996
2	2	1	8000	0	0.997
2	2	1	9000	0	0.996
2	2	1	10000	0	0.997
2	2	1	1000	0.05	0.953
2	2	1	1000	0.1	0.926
2	2	1	1000	0.15	0.894
2	2	1	1000	0.2	0.855
2	2	2	1000	0	0.978
2	2	3	1000	0	0.971
2	2	4	1000	0	0.982
2	2	5	1000	0	0.987

Marine Troadec M1 MASCO

3) Voici le programme que j'ai utilisé afin de répondre à la question :

Modèle sans bruit :

Nous pouvons observer que le score le plus élevé est atteint pour n_neighbors égal à 1. Les autres données ne sont pas linéairement séparables les unes des autres.

Modèle avec bruit :

Avec la présence de bruit on peut observer une meilleure séparation des données, mais toujours seulement avec n_neighbors égal à 1, par rapport au modèle sans bruit. Les scores sont significativement plus bas ce qui s'explique par la présence du bruit.

Marine Troadec M1 MASCO

2-Quid sur arbres de décisions

Pour répondre à cette partie j'ai changé le classifier par celui-ci :

```
clf = tree.DecisionTreeClassifier(max_depth=j)
clf = clf.fit(x_train, y_train)
pred_test=clf.predict(x_test)
#Evaluer le modèle en utilisant le score :
score = clf.score(x_test, y_test)
```

Modèle sans bruit :

Modèle avec bruit :

Le modèle permettant la meilleure classification pour résoudre le problème est le Kneighbors, et contrairement à ce qu'on aurait pu attendre, avec une valeur égale à 1.