密级:公开 保密期限:

北京郵電大學

硕士学位论文

题目:	基于局部特征的图像重建算法研
	 究

学 号: ____2012110191____

姓 名: 王继哲

专 业: 信号与信息处理

导 师: _____ 李学明 _____

学院:_信息与通信工程学院_

二〇一四年十二月

独创性(或创新性)声明

本人声明所呈交的论文是本人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京邮电大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

申请学位论文与资料若有不实之处,本人承担一切相关责任。

本人签名:	日期:	

关于论文使用授权的说明

学位论文作者完全了解北京邮电大学有关保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属北京邮电大学。学校有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许学位论文被查阅和借阅;学校可以公布学位论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存、汇编学位论文。(保密的学位论文在解密后遵守此规定)

本学位论文不属于保密范围,适用本授权书。

本人签名:	 日期:	
导师签名:	 日期:	

基于局部特征的图像重建算法研究

摘 要

中、英文摘要位于声明的次页,摘要应简明表达学位论文的内容要点,体现研究工作的核心思想。重点说明本项科研的目的和意义、研究方法、研究成果、结论,注意突出具有创新性的成果和新见解的部分。

关键词是为文献标引工作而从论文中选取出来的、用以表示全文主 题内容信息的术语。关键词排列在摘要内容的左下方,具体关键词之间 以均匀间隔分开排列,无需其它符号。

关键词: 重建 局部特征 图像分割 图像配准 图像融合

RESEARCH ON IMAGE RECONSTRUCTION ALGORITHM BASED ON LOCAL FEATURES

ABSTRACT

The Chinese and English abstract should appear after the declaration page. The abstract should present the core of the research work, especially the purpose and importance of the research, the method adopted, the results, and the conclusion.

Key words are terms selected for documentation indexing, which should present the main contributions of the thesis. Key words are aligned at the bottom left side of the abstract content. Key words should be seperated by spaces but not any other symbols.

KEY WORDS: TEX LATEX xeCJK template typesetting thesis

目 录

第一章 绪论	1
1.1 中文信息处理软件的国内外发展现状	2
1.2 本说明的主要内容	3
参考文献	3
第二章 功能测试	5
2.1 三国演义	5
2.1.1 长坂坡	5
参考文献	6
第三章 基于局部特征的图像重建算法概述	7
3.1 传统的图像重建算法	7
3.2 基于局部特征的图像重建算法	8
3.3 图像的局部特征	8
3.4 图像配准	8
3.5 图像分割	8
3.6 图像融合	12
参考文献	12
第四章 大规模相似图像搜索算法概述	13
4.1 传统的大规模图像检索方法	
4.1.1 相似图像搜索算法概述	13
4.1.2 图像表示与相似性度量	13
4.1.3 基于局部特征的相似图像搜索算法	13
4.2 改进的相似搜索算法	
4.3 空间信息匹配搜索算法	
4.3.1 RanSAC	
4.3.2 视觉词组	
4.4 适用于旅游景点图像的相似图像搜索技术	
参考文献	

附录 A	不定型(0/0) 极限的计算	19
附录 B	缩略语表	21
致 谢		23
攻读学位	z期间发表的学术论文目录	25

符号对照表

 $(\cdot)^*$ 复共轭 $(\cdot)^{\mathrm{T}}$ 矩阵转置 $(\cdot)^{\mathrm{H}}$ 矩阵共轭转置 X 矩阵或向量 \mathscr{A} 集合 \mathscr{A} 集合 \mathscr{A} 集合 \mathscr{A} 为 \mathscr{B} 集合 \mathscr{A} 为 \mathscr{B} \mathscr{B} \mathscr{A} \mathscr{B} $\mathscr{$

第一章 绪论

北京邮电大学北京邮电大学 (Beijing University of Posts and Telecommunications, BUPT) 研究生院培养与学位办公室于 2010 年 3 月 1 日颁布了最新的《北京邮电大学关于研究生学位论文格式的统一要求》(下简称"要求")^[1],对原有研究生学位论文的格式要求做出了新的修订。但是迄今为止,研究生院尚未发布统一的论文模板。对于已经、正在或者即将撰写学位论文的同学都只能按照该要求的规定自行调整其学位论文的格式,一方面给大家增加了繁重的排版工作,另一方面也不利于统一全校的论文格式。

2007 年 9 月,北京邮电大学无线新技术研究所无线新技术研究所(Wireless Technology Innovation Institute,WTD 的王旭博士制作并发布了 latex-bupt——北京邮电大学博士毕业论文 IATEX 模板(非官方版)^[2]。该模板可以满足旧版官方论文格式要求^[3],但是在一些细节上的处理还有待改进,例如:

- 参考文献不能分列在各章末尾;
- 不能利用 BiBTeX 处理发表学术论文列表;
- 参考文献的格式上赏不能完全满足学校要求等。

2009 年,张煜博士发布了 buptthesis——北京邮电大学研究生学位论文 LAT_EX 文档类 (非官方版)^[4]。该模板解决了 latex-bupt 中存在的问题,并且同样可以满足旧版官方论文格式要求^[3],但是仍然存在以下一些问题可以改进:

- 论文格式与最新版的官方论文格式要求[1] 有细微出入;
- 中文解决方案采用旧式 CJK 宏包, 需要用户自行生成字体;
- 缺乏详细的用户使用文档,用户撰写论文过程中遇到的问题基本都需要登陆北邮人论坛发问,由张博逐一解答。

本模板在 buptthesis^[4] 的基础上,增加了 XeTeX 编译引擎,使用 xeCJK 宏包作为中文解决方案。同时,本模板还根据北京邮电大学发布的最新的论文格式要求 [1] 进行模板格式的修改。本模板还提供了较为细致的用户使用文档,可以帮助初级用户快速上手使用本模板。

1.1 中文信息处理软件的国内外发展现状

中文信息处理软件可以分为字处理软件和排版软件两大类。字处理软件包括以下功能:字体、字号设定,英文断字,拼写和语法检查等。通常字处理软件处理文档的规模比较小,一般是作为办公自动化套件的一个重要组成部分,目前广泛使用的中文字处理软件主要包括微软 Office 套件中的 Word、金山公司的 WPS,以及开源社区的 OpenOffice 等。排版软件则是针对大规模专业出版印刷而设计的一类软件,其主要功能是文字图像定位,基本图形绘制等。排版软件相对于字处理软件其专业针对性更强,目前广泛使用的中文排版软件主要包括北大方正的书版系列软件,飞腾系列软件,蒙泰桌面出版系统,Adobe 公司的 PageMaker,FrameMaker,以及QuarkPress 公司的 PassPort 等。除此而外,由 D. E. Knuth 编写的 TeX 和由 L. Lamport 编写的 IdTeX 也是学术界广泛的应用排版软件。

微软公司的 Word 是目前国内最为普及的字处理软件之一,也是大多数学校规定的学位论文编辑排版工具。不容否认,Word 在简单文书(例如:通知、简报等)编辑排版方面具有方便快捷的优势,而且其对多人协同编辑的支持也给文字修订工作带来了极佳的用户体验。但是从实际使用的情况看,尽管 Word 已经经历了第 12 个版本的改进,但是其对于处理大型文书文稿(例如:书籍、学位论文等)的能力仍然有待进一步完善和提高。由于 Word 版本不兼容造成的来回反复,也是使用 Word编辑文字稿件的烦事之一。另外,由于 Word 对数学公式编辑的支持一直延续其"对象链接与嵌入"(Object Linking and Embedding,OLE)的设计理念,这也使得每位使用 Word 排版过理工类的文字资料的人都有一段或多段刻骨铭心的痛苦经历,往往花在调整格式这种 dirty work 上的时间和花在编写文章内容上的时间差不多或着甚至更多。

北大方正的书版系列软件是专业中文出版领域的权威,国内几乎所有的大型出版社、报社、政府机关几乎都使用书版系列软件对其出版的书籍、报纸和公文进行编辑排版。但是,书版软件作为方正电子出版流程中的一个主要组成部分,主要定位于印前排版环节,面向专业排版工作人员。因此,学习和使用使用书版软件需要花费较长的时间来熟悉复杂的排版命令,发排后需要使用专用的 RIP 软件或者方正的专用打印机才能输出样张等。

美国 Stanford 大学的荣誉退休教授 D. E. Knuth 在 197x 年独自一人开发了 T_EX 排版系统,随后,L. Lamport 为 T_EX 编写了一系列的宏包使得 T_EX 的使用更加方便,这些宏包被称为 LAT_EX 。自从 T_EX/LAT_EX 问世以来它们就受到了学术界的青睐,目前

几乎所有的国外出版社都接受或指定使用 T_EX/L^AT_EX 对稿件进行排版编辑。19xx 年,中国科学院的张林波研究员开发了 CCT 使得 L^AT_EX 可以用于中文文稿的处理。德国的 W. Lemberg,编写了 CJK 宏包为 L^AT_EX 提供了中日韩三国语言的解决方案。使用 T_EX/L^AT_EX 排版学术论文的最大优势在于,它让作者可以不用为排版输出的具体格 式操心,而全心投入文章、书稿内容的编写上,最大程度的降低作者从事排版 dirty work 的工作量。

目前,我国的清华大学、哈尔滨工业大学、西安电子科技大学、西安交通大学等都已经纷纷制作了本校学位论文的 LATEX 模板,并接受使用 LATEX 排版的学位论文。

1.2 本说明的主要内容

本说明全面介绍了如何使用 BUPTGraduateThesis 来排版符合 [1] 规定的北京邮电大学学位论文。全文内容安排如下:

- 1. 第二章介绍
- 2

参考文献

- [1] 北京邮电大学研究生院培养与学位办公室. 关于研究生学位论文格式的统一要求 [EB/OL]. 2010 [2013-07-06]. http://www.bupt.edu.cn/.
- [2] 王旭. latex-bupt: LATEX style for BUPT thesis [EB/OL]. 2007 [2009-01-14]. http://code.google.com/p/latex-bupt/.
- [3] 北京邮电大学研究生院培养与学位办公室. 关于研究生学位论文格式的统一要求 [EB/OL]. 2010 [2013-07-06]. http://www.bupt.edu.cn/.
- [4] 张煜. 北京邮电大学研究生学位论文 LATEX 文档类 [EB/OL]. 2009 [2013-07-06]. http://code.google.com/p/buptthesis/.

第二章 功能测试

脚注使用带圈数字的表示方法,此处为示例 $1^{①}$ 和示例 $2^{②}$ 。

缩略语的功能非常强大,例如首次出现无线理论与技术实验室 (Wireless Theories and Technologies Lab, WT&T) 和非首次出现 WT&T 时将显示不同的内容。

参考文献可以使用[1] 和 [2] 的表示方法。

2.1 三国演义

《三国演义》^[3] 是中国第一部长篇章回体历史演义的小说,以描写战争为主,反映了蜀(汉)、魏、吴三个政治集团之间的政治和军事斗争,大致分为黄巾之乱、董卓之乱、群雄逐鹿、三国鼎立、三国归晋五大部分。

在广阔的背景下,上演了一幕幕波澜起伏、气势磅礴的战争场面,成功刻画了近五百个人物形象,其中曹操、刘备、孙权、诸葛亮、周瑜、关羽、张飞等人物形象脍炙人口,其中诸葛亮是作者心目中的"贤相"的化身,他具有"鞠躬尽瘁,死而后已"的高风亮节,具有近世济民再造太平盛世的雄心壮志,而且作者还赋予他呼风唤雨、神机妙算的奇异本领。曹操是一位奸雄,他生活的信条是"宁教我负天下人,休教天下人负我",既有雄才大略,又残暴奸诈,是一个政治野心家阴谋家这与历史上的真曹操是不可混同的。关羽"威猛刚毅"、"义重如山"。但他的义气是以个人恩怨为前提的,并非国家民族之大义。刘备被作者塑造成为仁民爱物、视贤下士、知人善任的仁君典型。

2.1.1 长坂坡

京剧《长坂坡》[4] 是依据《三国演义》改编的京剧传统剧目。

故事叙述:刘备自烧屯新野之后,弃樊城,阻襄阳,一路率引军民,流离败走,穷促万分。关羽、诸葛亮,已先后遣往夏口,乞救于刘琦未返,刘备等往投江陵暂驻,中途经过当阳,驻扎景山之下。忽然曹操大兵,漫山遍野追至,夤夜厮杀,刘备众大败,及天明检点随从只余百余骑,刘备家眷及赵云、简雍、二糜等将,均不知下

① 测试脚注一

② 测试脚注二

落,其余百姓,亦均散失殆尽。此时赵云因于阿斗及甘、糜二夫人等失散,遂单骑冲突,四处找寻主眷,沓无下落。往回三数次,遇见简雍被创卧地,始略知失踪处所。赵云先救出简雍,令回,再往军中及百姓中搜访,先救甘夫人于难民队,同时又救糜竺,亲自护送至长坂坡,令糜竺保甘嫂先行,折身再回,觅糜嫂及阿斗。途中刺落夏侯恩,收获青釭宝剑,七次冲入重围,方得百姓指引,得见糜夫人抱阿斗坐于坍墙枯井之旁啼哭。夫人身受数创,不能行走。赵云叩见,极力请夫人上马,欲保护而出。夫人深知大义,惟以阿斗为托,己则以愿死报主,免累赵云,赵云再三安慰催行,力任无妨,夫人再三不可,亦促赵云速行。继见赵云坚待不去,恐且迟延遇寇,乃跳身入井,以速赵云之行。赵云大惊,尚踌躇设法营救,则曹军人马已至,不得已推墙掩井,解甲藏阿斗于胸前,忽忽上马,厮杀夺围欲出。此时曹操大兵云集,群矢于赵云一身,赵云在核心,东斩西杀,虽不败辱,而屡濒于厄。幸曹操爱勇将,赖徐庶乘间说曹操,以生擒勿伤,传令全军,始得完肤而返。

参考文献

- [1] Dai L, Yue H, Sun X, et al. IMShare: instantly sharing your mobile landmark images by search-based reconstruction [J], 2012: 579–588.
- [2] 北京邮电大学研究生院培养与学位办公室. 关于研究生学位论文格式的统一要求 [EB/OL]. 2010 [2013-07-06]. http://www.bupt.edu.cn/.
- [3] Li Y, Wang Y, Huang W, et al. Automatic image stitching using SIFT [J], 2008: 568–571.
- [4] Zhao Y, Hong R, Jiang J, et al. Image matching by fast random sample consensus [C]. In ICIMCS '13: Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service, August 2013.

第三章 基于局部特征的图像重建算法概述

图像重建可以被概括的定义为这样一个基本问题: 从一个退化版本的二维物体估算实际的二维物体^[1]。退化过程的数学形式取决于图像重建算法实际的应用场景。

3.1 传统的图像重建算法

传统的图像图像重建算法所使用的场景一般是指图像修复(Image Restoration),原始"物体"由于经历了某种退化过程,不能直接由观测信息判断出来,为了消除退化过程的影响,必须根据观测到的数据进行重建来还原得到原始信息。在图像修复中,引起退化的原因叫做失真,其定义如下:

$$y = A(X) \bullet b \tag{3-1}$$

其中 A()是退化函数,可以看做是一个滤波器,b表示的是噪声,bullet表示的叠加方式。失真通常包含对 x 的卷积或者模糊,加性噪声或者乘性噪声。而图像修复的解决方案是通过对观测信息进行退化模型的数学建模,利用约束条件来推导出退化过程的逆过程,对观测信息进行逆过程得到原始图像。

另一类图像重建场景是超分辨率重建,在近年来得到飞速的发展,是炙手可热的研究领域,它的基本思想是通过多张连续的低分辨率图像序列得到一张高分辨率的图像。很多数字图像应用中都需要高分辨率的图像,高分辨率的图像能够提供更佳的视觉体验,提供更丰富的信息,比如高分辨率的医学图像能够让医生更好的进行病情诊断,高分辨率的卫星图像能够进行更准确的模式识别任务。从 1970 年代以来,CCD 和 CMOS 传感器被大规模的使用,获得了大量的数字图像,但是很多图像的分辨率较低,不能满足日益增长的业务需求,超分辨率重建是在这样的背景下诞生的。

那么,我们如何通过多张低分辨率图像获得一个高分辨率图像呢?如果一个场景下有多张低分辨率图像,而且这些图像从不同的角度来"描述"这个场景,那么这些低分辨率的图像可以看做是该场景的子采样和子像素精度的位移。如果这些低分辨率图像是以整数像素为单位进行的位移,那么多张低分辨率图像没有提供任何

"新的信息",但是如果位移单位是子像素单位的,序列中的每一个图像不能够由其他图像得出,换言之每个图像都提供了子像素精度的不同信息,我们可以利用这些信息重建一个高分辨率的图像。一般来说,SRR 算法分为基于重建和基于学习的两大类:基于重建的算法如频域重建法利用图像序列的交叠关系,凸集投影(POCS)等利用一些先验知识来约束求解过程,以达到增加细节信息的目的;基于学习的算法则使用多种机器学习的概率模型,包括基于流形学习、基于支持向量机和基于独立分量的超分辨率重建技术。基于学习的方法采用大量的高分辨率图像构造学习库来训练学习模型,在对低分辨率图像进行重建的过程中引入由学习模型获得的先验知识,进而得到图像的高频细节,获得较好的图像重建效果。

总体而言,超分辨率重建的整个流程包括三个基本环节: (1) 低分辨图像的预处理,包括降噪和裁剪等基本图像数据处理。(2) 配准过程,利用像素的空间信息估算低分辨率序列图像之间的运动矢量和空间位置关系。(3) 完成重建,使用图像分割和融合等技术,利用多帧低分辨率图像的信息完成超分辨率重建。

- 3.2 基于局部特征的图像重建算法
- 3.3 图像的局部特征
- 3.4 图像配准
- 3.5 图像分割

本文主要采用的是基于图的图像分割算法

- 二、基于图的图像分割算法
- 1、背景介绍主要参考的是这篇文章《Efficient Graph-Based Image Segmentation》 Pedro F.Felzenszwalb

文章首先自己定义一种区域边界的度量方法,其度量方法是在基于图的图像表示法之上去定义的。在这种度量方法之上,我们衍生出来比较高效的图像分割算法。 该算法是一种贪婪算法,并且分割结果满足全局属性。

通过上述逻辑关系可以看出,文章定义的度量方法需要比较准确,有一定的物理意义在里面,不然即使算法再高效,度量本身有问题,那么分割出来的图像区域也是不准确的。那么文章自然的可以分为两个部分1)区域度量方法。2)高效分割算法

图像分割的在很多应用中非常重要,是很多高层应用的前提,比如识别、索引等,我们不具体举例。我们认为图像分割的方法有下面这样的特性:

- 能够捕捉到感知上比较重要的区域,这通常体现在图像的全局特性方面。这里有两个关键点,一方面要提供感知重要的精准属性,另一方面能够确定给定的分割技术是做什么的。我们认为应该有对分割结果属性的经确定以,这样的方法才能够更好的被理解,进而与其他的方法进行比较。- 高效,接近图像像素点数量的线性时间复杂度。为了能够实际使用,我们认为分割方法应该与边缘检测或者其他low-level 图像处理技术有着相似的时间复杂度,意味着时间复杂度是线性,而且常系数也比较小。比如每一秒能对几帧图像进行分割的算法就能够处理实时的视频数据。

然而,近几年的一些方法并不能够达成上述两方面要求,哪些方法太慢以致不能实践中使用。相比较而言,本文提到的方法已经因公在大尺度图像数据集应用上。有一些其他的方法可以比较快速的进行图像分割,但是这些方法不能捕捉感知上重要的非局部特性,下文会提到。总而言之,本文在保证效率的同时考虑到了图像全局属性上的感知重要区域。

首先我们来看一幅人造图像:

我们人眼会认为这幅图像有三个区域,这个例子能够解释什么是感知重要属性(conceptually important property)。首先,亮度的变化不应该单独的座位分割区域的衡量标准。比如图像中左侧渐变区域和右侧的高频噪声区域都有较大的亮度变化,但是我们他们应该被分割成多个区域。因此,假设一个区域有着接近恒定的或变化很小的亮度是不正确的。第二个感知重要属性是有意义的区域不能单纯的依靠局部划分标准。还是在图上我们可以看到原因,渐变图像与常量区域的边界上的亮度差值比很多高频区域的差值要小,因此我们得出结论,为了分割一幅图像,我们需要引入一些适应性的或者非局部的衡量标准。我们在下一节提出的衡量标准会比较两个属性:

- 边界的亮度差值 - 区域内部的邻居像素间的亮度差值

直观上,两个区域的边界上的亮度差值如果比比两个区域中至少一个区域的内部像素差值大的话,那么边界亮度差值会更多的影响我们的感知,这个时候我们说边界亮度差是感知重要的。

2、基于图的图像表示好下面我们来进入正题,基于图的图像分割(Graph-Based Segmentation)。我们使用基于图的方法来做图像分割,令G = (V, E)表示一个无向图,

点集 $v_i \in V$,待分割的元素集合。边 $(v_i,v_j) \in E$ 有一个相应的权重 $w((v_i,v_j))$,是一个非负值,描述两个相邻元素 v_i 和 v_j 的不相似度。在图像分割,也就是本文的语境下,V 中的元素就是像素点,边就是它的两个像素点(这两个像素点是相邻的)不相似性的某种度量(例如亮度,颜色,运动,位置或者其他局部属性)。在文章的最后我们会讨论比较特殊的边集合和权重函数,不过这里的公式和不相似性度量的方法是独立的,我们可以按照自己的需求定制度量方案,这里讨论的是大框架。

在基于图的方法中,一个分割方案 S 是 V 的一个划分,每一个区域 (region or component) $C \in S$ 对应着图 G' = (V, E') 的一个连通区域,其中 $E' \subseteq E$ 。有许多方法来衡量一个分割的好坏,大体上我们希望**一个区域内部的元素尽可能相似,不同区域之间的像素尽可能不同**。这意味着同一区域内,相邻两个点的有相对来说比较小的权值,不同区域的相邻两个点的边有大的权值。

3、成对的区域比较预测,内部不相似度与外部不相似度这一节我们首先定义一个预测,D,来估计是否存在一个显著的证据表明有一个边界能将两个区域分割开。就像上文说的,就是对外部的不相似性与内部不相似进行比较,也就是比较inter-component 和 within component 的差值。

我们定义内部不相似性为该区域最小生成树的最大边,MST(C,E),即:

$$Int(C) = \max_{e \in MST(C,E)} w(e)$$
(3-2)

这个方法潜在的直觉是一个区域 C,它保持连通的最低要求是 Int(C) 这个 edge 所决定的。

定义两个区域的不同:区域 $C_1, C_2 \subseteq V$,连接这两个区域的所有边的权值中,最小的那个权值。即,

$$Dif(C_1, C_2) = \min_{v_i \in C_1, v_j \in C_2, (v_i, v_j) \in E} w((v_i, v_j))$$
(3-3)

如果两个区域没有连接的边,则令 $Dif(C_1,C_2) = \infty$ 这个定义理论上可能会有问题,因为它只反映了(或者说只考虑到了)两个区域间权值最小的那条边。在实践中我们发现尽管有显著的局限,但这种度量方式结果颇佳。值得一提的是,改变这个衡量标准也是可以的,比如采用中位数或者其他的分位点,提升对异常值的鲁棒性,但这种改变会使问题编程 NP-hard 问题。因此一个小小的分割标准的改变会大大改变解决问题的难度。

区域比较预测法通过比较 $Dif(C_1,C_2)$ 和 $Int(C_1)$ 与 $Int(C_2)$ 中较小的一个,来判断

这两个区域是否有一个边界(换言之这两个区域是否有足够的理由保持两个区域)。

$$f(n) = \begin{cases} true, \text{if } Dif(C_1, C_2) > MInt(C_1, C_2) \\ \\ false, otherwise \end{cases}$$
 (3-4)

我们引入了一个阈值函数来控制我们希望的外部不相似度与内部不相似度的相差程度。

$$MInt(C_1, C_2) = min(Int(C_1) + \tau(C_1), Int(C_2) + \tau(C_2))$$
 (3-5)

对于比较小的区域,Int(C) 并不能够较好的反应局部特性,比如最极端的情况下, 当|C|=1 时,Int(C)=0。因此我们需要一个跟区域大小相关的阈值函数

$$\tau(C) = \frac{k}{|C|}$$

其中|C| 表示的是区域 C 的大小,k 是一个常数。越是小的区域,我们越希望较大的外部不相似性。在实际中,我们可以调整 k 的取整来获得不同的效果。当 k 值很大时,算法倾向于分割出来较大的块,当 k 值较小时,算法倾向于更细的划分。

本节最后我们探讨一个比较有趣的话题,就是 τ 函数的选取,如果我们改变这个函数,不会对算法的大框架造成影响,而会对分割结果的倾向性有影响。比如我们可以让分割倾向于某一种形状 A,令 τ 函数在区域不是形状 A 的时候较大即可。这种形状上的倾向可以比较简单,比如希望正方形的或者扁平状的,也可以比较复杂,是一种特殊的形状。

- 4、分割算法本节讲解主要的算法部分,怎样利用上述的定义,在基于图的表示方法下,做出高效而准确的分割。算法的核心:输入是一个图G = (V, E),有 n 个点和 m 个边。输出是一个分割 V,分割成 $S = (C_1, ..., C_2)$.
- 0. 对 E 进行排序,生成非递减的序列 $\pi = (o_1, ..., o_m)$ 1. 从初始分割 S^0 开始,每一个点 v_i 自己就是一个区域 2. 对于每一个q = 1, ..., m 重复步骤 3 3. 通过 S^{q-1} 构建 S^q ,使用如下的方式:令 v_i 和 v_j 表示按顺序排列的第 q 条边的两个点,比如 $o_q = (v_i, v_j)$ 。如果 v_i 和 v_j 在 S^{q-1} 中连个不同的区域下,并且 $w(o_q)$ 比两个区域的内部不相似度都小,那么合并这连个区域,否则什么也不做。用公式来表达就是:令 C_i^{q-1} 是 S^{q-1} 的一个区域,它包含点 v_i ; 令 C_j^{q-1} 是 S^{q-1} 的一个区域,它包含点 v_j 。如果 $C_i^{q-1} \neq C_j^{q-1}$

并且 $w(o_q) \leq MInt(C_i^{q-1}, C_j^{q-1})$,那么通过合并 C_i^{q-1} 和 C_j^{q-1} 我们得到了 S^q ;否则的话 $S^q = S^{q-1}$ 4. 返回 $S = S^m$ 分类结果如图所示:

3.6 图像融合

参考文献

[1] Li Y, Wang Y, Huang W, et al. Automatic image stitching using SIFT [J], 2008: 568–571.

第四章 大规模相似图像搜索算法概述

随着多媒体业务的日益增长,相似图像搜索或部分图像搜索技术得到了愈加广泛的应用。在我们的图像重建系统的相似图像搜索环节中,希望找到尽可能多的部分匹配的图像,将其作重建环节的候选图像。因此我们面临的两个技术难点是(1)对图像进行搜索是在图像的部分区域上进行的,而不是整幅图像。所以传统的使用全局特征进行的快速图像匹配算法并不适用;(2)图像的局部特征信息较少,如何充分利用特征之间的几何位置关系进行图像部分区域匹配来提高搜索精度(3)云端图像数据库是Web规模的(Web-Scale),图像数据量极大,对算法的时空复杂度限制较大。如何在使用图像局部特征和其空间位置关系的同时尽量不增加匹配的时间复杂度,是本系统需要解决的难题。本章先介绍传统的图像搜索算法,再介绍利用局部特征的空间信息的相似图像搜索算法,最后针对本论文的应用场景,提出一种结合多种技术的新的相似图像搜索技术。

4.1 传统的大规模图像检索方法

- 4.1.1 相似图像搜索算法概述
- 4.1.2 图像表示与相似性度量
- 4.1.3 基于局部特征的相似图像搜索算法

聚类 tf-idf BoW

4.2 改进的相似搜索算法

文献^[1] 对近期的大规模相似图像搜索技术做了总结,提到了 Partial-Duplicate Image Retrieval via Saliency-Guided Visual Matching^[2] 技术,通过视觉显著性(saliency)模型进行比较,消除背景中的噪声。这种方法使得索引和匹配都集中在显著性区域,更能够符合用户的预期。显著值和空间约束都能够被用来进行相似性度量,并且能够高效的进行二级索引,对于大规模的 partial duplicate search 非常有利,但是内存开销比较大。

Web-Scale Image Retrieval Using Compact Tensor Aggregation of Visual Descriptors^[3] 描述了目前存在的各种视觉描述子的概况,介绍了相关的索引技术,包括哈希、词袋以及基于树的表示方法。(hashing, bag-of-words, and tree-based representation) 引出内存开销问题并提出一种生成高度压缩签名(highly compact signatures)的方法,包括张量聚合,PCA,kernel PCA等一些列算法。它改进了 Fisher Vector 族描述子,提高它的可区分性,以及特征签名的大小(feature discrimina- tive power and the size of feature signature)。

对于相似性视频搜索,它的特点是特征维数特别大,有研究提出了稀疏投影方式进行特征降维,并且使用数据挖掘的知识使用一些 metadata 来共同进行搜索^[4]。使用机器学习技术,学习稀疏投影矩阵(sparse projection matrices)。这种学习方法可以选择性的使用外部信息,比如 WikiPedia 上的知识和 Google 搜索结果中的摘要,创建一个语义相关的投影矩阵,生成一个压缩签名,以满足手机媒体检索的诸多限制。手机内存空间小,计算资源有限,传统的将高维特征映射到低维的投影矩阵在手机内存是放不下的。而我们的稀疏投影矩阵是能够在手机上使用的。

三、SimHash

这篇文章介绍的简明扼要,这里直接将核内容粘贴过来

为此我们需要一种应对于海量数据场景的去重方案,经过研究发现有种叫local sensitive hash 局部敏感哈希的东西,据说这玩意可以把文档降维到 hash 数字,数字两两计算运算量要小很多。查找很多文档后看到 google 对于网页去重使用的是 simhash,他们每天需要处理的文档在亿级别,大大超过了我们现在文档的水平。既然老大哥也有类似的应用,我们也赶紧尝试下。simhash 是由 Charikar 在2002 年提出来的,参考 [《Similarity estimation techniques from rounding algorithms》](dl.acm.org/citation.cfm?id=509965)。介绍下这个算法主要原理,为了便于理解尽量不使用数学公式,分为这几步:

1. 分词,把需要判断文本分词形成这个文章的特征单词。最后形成去掉噪音词的单词序列并为每个词加上权重,我们假设权重分为 5 个级别 (1 5)。比如:"美国"51 区"雇员称内部有 9 架飞碟,曾看见灰色外星人"==>分词后为"美国 (4) 51 区 (5) 雇员 (3) 称 (1) 内部 (2) 有 (1) 9 架 (3) 飞碟 (5) 曾 (1) 看见 (3) 灰色 (4) 外星人 (5)",括号里是代表单词在整个句子里重要程度,数字越大越重要。2. **hash**,通过 hash 算法把每个词变成 hash 值,比如"美国"通过 hash 算法计算为 100101,"51 区"通过 hash 算法计算为 101011。这样我们的字符串就变成了一串

串数字,还记得文章开头说过的吗,要把文章变为数字计算才能提高相似度计算性能,现在是降维过程进行时。3. ** 加权 **,通过 2 步骤的 hash 生成结果,需要按照单词的权重形成加权数字串,比如"美国"的 hash 值为"100101",通过加权计算为"4-4-4-44";"51 区"的 hash 值为"101011",通过加权计算为"5-55-55"。4. 合并 **,把上面各个单词算出来的序列值累加,变成只有一个序列串。比如"美国"的"4-4-4-44","51 区"的"5-55-555",把每一位进行累加,"4+5-4+5-4+5-4+5-4+5-4+5"==》"9-91-119"。这里作为示例只算了两个单词的,真实计算需要把所有单词的序列串累加。5. ** 降维 **,把 4 步算出来的"9-91-119"变成 0 1 串,形成我们最终的 simhash 签名。如果每一位大于 0 记为 1,小于 0 记为 0。最后算出结果为:"101011"。

得出的重要结论:

通过大量测试, simhash 用于比较大文本, 比如 500 字以上效果都还蛮好, 距离小于 3 的基本都是相似, 误判率也比较低。但是如果我们处理的是微博信息, 最多也就 140 个字, 使用 simhash 的效果并不那么理想。看如下图, 在距离为 3 时是一个比较折中的点, 在距离为 10 时效果已经很差了, 不过我们测试短文本很多看起来相似的距离确实为 10。如果使用距离为 3,短文本大量重复信息不会被过滤, 如果使用距离为 10,长文本的错误率也非常高, 如何解决?

总结:

- 按照 Charikar 在论文中阐述的,64 位 simhash,海明距离在 3 以内的文本都可以认为是近重复文本。当然,具体数值需要结合具体业务以及经验值来确定。- simhash 还可以用于信息聚类、文件压缩 - 选择和设计文本的去重算法? 常见的有余弦夹角算法、欧式距离、Jaccard 相似度、最长公共子串、编辑距离等,但是只适合于小数据集 - simhash 传统的用来判断两篇文章的相似度,将两篇文章映射到低维空间上,并且保持它们互相之间的相似度,但是它很难应用在图像比较上,因为图像的特征是用实数来表示的,尽管可以将其量化,但是两幅相似图像量化后的特征集合交叠的比率仍旧很小,远远小于文档,因为两幅图像不相似的区域的噪声特征非常大 - 但是如果使用 bundle features,那么如果两个相似区域的 bundle features 会非常相同,我们就可以使用 simhash 了 - 所以,min-hash 的使用场景是特征比较多,相似度比较显著的情况下。

使用 min-hash 得到摘要

- 思路转化:比较两幅图像或者两篇文章的相似度问题转化为比较两个只包含 0,

1 元素的集合的相似度,集合的相似度是 Jaccard 相似度。' $JS(A,B) = \frac{|A \cap B|}{|A \cup B|}$ '-根据这样一个神奇的公式' $Pr[m(S_i) = m(S_j)] = E[\hat{JS}] = JS(S_i,S_j)$ ',使用 min-hash 函数将一幅图片或者一篇文章转化为一个数(对该文章中的每一个单词 id 使用 hash 函数后得到一个新的 id 序列,这个序列中的第一个出现 1 的行号,就是 min-hash 的值)-这样我们可以使用 k 个 hash 函数,得到 k 个值,将原本的高维向量映射到了低维 - Min-hash 在压缩原始集合的情况下,保证了集合的相似度没有被破坏。

使用 LSH 缩小查找范围

其基本思路是将相似的集合聚集到一起,减小查找范围,避免比较不相似的集 合

对每一列 c(即每个集合)我们都计算出了 n 行 minhash 值,我们把这 n 个值均分成 b 组,每组包含相邻的 r=n/b 行。对于每一列,把其每组的 r 个数都算一个 hash 值出来,把此列的编号记录到 hash 值对应的 bucket 里。如果两列被放到了同一个 bucket 里,说明它们至少有一组 (r 个) 数的 hash 值相同,此时可认为它们有较大可能相似度较高(称为一对 candidate)。最后在比较时只对落在同一个 bucket 里的集合两两计算,而不是全部的两两比较。

4.3 空间信息匹配搜索算法

4.3.1 RanSAC

4.3.2 视觉词组

BoW 的一个被人诟病的缺点是没有利用任何的图像空间信息,而这正是图像搜索与文本搜索最显著的区别所在,目前,有很多研究成功的利用局部特征的空间位置信息进行更加精确的,文献^[5] 深入研究 SIFT 描述子。提出了一个非常优雅的方法:生成 sift 组,嵌入几何信息,最终讲一个 group 压缩到一个 64 比特的二维签名中,叫做 Nested-SIFT。

它的优点是 Nested—SIFT 使用 sift 描述子的嵌套关系,很自然的将不同尺度的局部关键点组合在一起,生成一个特征签名。嵌入空间信息的 Nested—SIFT 可区分性更强。使用 SimHash 进行压缩后,在视觉搜索中效率更高。实验结果表明这种方法提高搜索的准确度,减少了内存消耗,提高搜索速度。其缺点是生成 Nested-SIFT 会有一定的计算消耗

4.4 适用于旅游景点图像的相似图像搜索技术

参考文献

- [1] POLICY N. Web-Scale Near-Duplicate Search: Techniques and Applications [J]. IEEE MultiMedia, 2013
- [2] Li L, Jiang S, Zha Z-J, et al. Partial-Duplicate Image Retrieval via Saliency-Guided Visual Matching [J]. MultiMedia, IEEE, 20 (3), 2013: 13–23.
- [3] Negrel R, Picard D, Gosselin P. Web scale image retrieval using compact tensor aggregation of visual descriptors [J], 2013.
- [4] Wu G-L, Kuo Y-H, Chiu T-H, et al. Scalable mobile video retrieval with sparse projection learning and Pseudo label mining [J], 2013.
- [5] Xu P, Zhang L, Yang K, et al. Nested-SIFT for Efficient Image Matching and Retrieval [J], 2013.

附录 \mathbf{A} 不定型 (0/0) 极限的计算

定理 A.1(L'Hospital 法则) 若

- 1. 当 $x \rightarrow a$ 时,函数 f(x) 和 g(x) 都趋于零;
- 2. 在点 a 某去心邻域内,f'(x) 和 g'(x) 都存在,且 $g'(x) \neq 0$;
- 3. $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在(或为无穷大),

那么

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$
 (A-1)

证明: 以下只证明两函数 f(x) 和 g(x) 在 x = a 为光滑函数的情形。由于 f(a) = g(a) = 0,原极限可以重写为

$$\lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}.$$

对分子分母同时除以 (x-a), 得到

$$\lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}} = \frac{\lim_{x \to a} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a} \frac{g(x) - g(a)}{x - a}}.$$

分子分母各得一差商极限,即函数 f(x) 和 g(x) 分别在 x = a 处的导数

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$

由光滑函数的导函数必为一光滑函数,故(A-1)得证。

附录 B 缩略语表

BUPT Beijing University of Posts and Telecommunications,北京邮电大学

WT&T Wireless Theories and Technologies Lab,无线理论与技术实验室 WTI Wireless Technology Innovation Institute,无线新技术研究所

致 谢

感谢 Donald Ervin Knuth.

攻读学位期间发表的学术论文目录

期刊论文

[1] **Zhang San**, Newton I, Hawking S W, et al. An extended brief history of time [J]. Journal of Galaxy, 1234 (4), 2079: 567–890. (SCI 收录,检索号: 786FZ).

会议论文

[1] McClane J, McClane L, Gennero H, et al. Transcript in Die hard [C]. In Proc. HDDD 100th Super Technology Conference (STC 2046), Eta Cygni, Cygnus, September 21–24, 2046: 123–456. (EI 源刊).