

Yapay Zeka I: Veri Bilimi ve Makine Öğrenmesine Giriş Sertifika Programı

Doç. Dr. Taner Arsan H. Fuat Alsan, PhD(c) Sena Kılınç, PhD(c)

Makine Öğrenmesine Giriş

- Yapay zekanın bir alt dalıdır
- Sabit kodlanmış kurallar yerine örüntü tanıma (pattern recognition)

Öğrenme Paradigmaları

- Denetimli Öğrenme (Supervised Learning)
 - Etiketli veri kümesi gereklidir
 - Sonuçları değerlendirmek daha kolaydır
- Denetimsiz Öğrenme (Unsupervised learning)
 - Etiketli veri kümesine gerek duyulmaz
 - Sonuçları değerlendirmek daha zordur

• Ayrıca:

- Yarı denetimli öğrenme (Semi-supervised learning)
- Pekiştirmeli öğrenme (Reinforcement learning)
- Kendinden denetimli öğrenme (Self-supervised learning)
- Zayıf denetimli öğrenme (Weakly-supervised learning)
- vb.

Makine Öğrenmesi Görevleri

- Regression (Regression):
 - Sürekli (continuous) bir değeri tahmin
 - Örnek: Ev fiyatlarını tahmin etme
- Sınıflandırma (Classification):
 - Verilerin hangi nesne sınıfına ait olduğuna (önceden belirtilmiş sabit sayıda nesne sınıfı arasında) karar verme
 - Örnek: Bir görüntü verildiğinde, bu resmin bir araba mı yoksa kamyon mu olduğuna karar verme
- Kümeleme (Clustering):
 - Benzer verileri (bir benzerlik ölçütü kullanarak) gruplama
 - Denetimsiz (etiketli veri seti gerektirmez)
 - Örnek: Müşteri segmentasyonu

Veri Üretmek

- Veri kümelerinin lisansları vardır ve ticari uygulamalara yönelik yasal sorunlar oluşturabilir
- Sentetik veri üretebiliriz
- Regresyon için fonksiyonla manuel olarak üretebiliriz:
 - $y = x + \epsilon$
- Aşağıdaki sklearn fonksiyonları da kullanılabilir:
 - (from sklearn import datasets)
 - datasets.make_regression()
 - datasets.make_classification()
 - datasets.make_blobs()

Gradyan Düşüşü (Gradient Descent)

- Makine öğreniminde, modelleri eğitmek için kapalı formda analitik çözümlerimiz yoktur.
- Bunun yerine, gradyan düşüşü gibi iteratif çözümleri kullanırız.
- Döngü kullanarak kayıp fonksiyonunun model parametreleriyle olan türevini alır ve adım adım minimum kayba doğru hareket ederiz.
- Yeterli iterasyondan sonra, modeller eğitilmiş olur ve tahmin yapmaya hazırdır.

Gradyan Düşüşü (Görsel Olarak)

Örnek: Temel Lineer Regresyon

- Temel lineer regresyon modeli: $y = w_0 + w_1 x$
- w_0, w_1 model parametreleri, x girdiler ve y çıktılar (tahminler)
- Kayıp (loss) fonksiyonu: $\mathcal{L}(\hat{y}, y) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i y_i)^2$
 - N toplam veri sayısı, y_i tahmin etmek istenilen hedef, $\widehat{y_i}$ modelin tahmini
 - Model tahmini ile hedef veriler arasındaki ortalama kare hata
 - Kayıbın düşük olması daha iyidir
- Amaç: Kayıp fonksiyonunun minimize edildiği w_0, w_1 değerlerini bulmak istiyoruz. Buna modelin eğitilmesi (veya fit edilmesi) denir

Gradyan Hesabi

• Güç kuralını kullanarak: $\frac{\partial}{\partial x} f(x)^n = n f(x)^{n-1} f'(x)$

•
$$\frac{\partial \mathcal{L}}{\partial w_0} = \frac{\partial \mathcal{L}}{\partial w_0} \frac{1}{N} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)^2 = \frac{2}{N} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)(1)$$

$$\bullet \frac{\partial \mathcal{L}}{\partial w_0} = \frac{2}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)$$

•
$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial w_1} \frac{1}{N} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)^2 = \frac{2}{N} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)(x_i)$$

$$\bullet \frac{\partial \mathcal{L}}{\partial w_1} = \frac{2}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)(x_i)$$

Model Optimizasyonu

• Kaybın azaltılması için model parametrelerinin güncellenmesi gerekir

•
$$w_0=w_0-\alpha\frac{\partial\mathcal{L}}{\partial w_0}$$
 Kayıp en aza indirilene kadar döngü olarak devam eder

- α öğrenme oranı (learning rate), öğrenmenin hızını belirler
 - Dikkali seçilmelidir
 - Çok küçük olursa -> eğitim çok uzun sürer
 - Çok büyük olursa -> eğitim dengesizleşir

Öğrenme Oranını Doğru Seçmek

İkinci Örnek: Polinom Regresyonu

- İkinci dereceden model: $y = w_0 + w_1 x + w_2 x^2$
- Gradyanları daha önce aynı şekilde hesapladığımızda aşağıdakileri ederiz:
 - (hesaplamalar atlanmıştır ancak egzersiz için bunu kendi başınıza hesaplayabilirsiniz)

$$\bullet \frac{\partial \mathcal{L}}{\partial w_0} = \frac{2}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)$$

$$\bullet \frac{\partial \mathcal{L}}{\partial w_1} = \frac{2}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)(x_i)$$

$$\bullet \frac{\partial \mathcal{L}}{\partial w_2} = \frac{2}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)(x_i^2)$$

Polinom Regresyon Modeli Optimizasyonu

Yöntem olarak aynı fakat öğrenilebilir üç parametremiz var

•
$$w_0=w_0-\alpha\frac{\partial\mathcal{L}}{\partial w_0}$$

• $w_1=w_1-\alpha\frac{\partial\mathcal{L}}{\partial w_1}$
• $w_2=w_2-\alpha\frac{\partial\mathcal{L}}{\partial w_2}$
Kayıp kadar devar

Kayıp en aza indirilene kadar döngü olarak devam eder

Gradyan Düşüşü Hakkında Notlar

- Gradyan Patlamaları (Exploding gradients)
 - Gradyan değerleri çok büyük sayılara ulaşabilir (buna dikkat edin)
- Kaybolan Gradyanlar (Vanishing gradients)
 - Gradyan değerleri çok küçük sayılara ulaşabilir (buna dikkat edin)
- Bazı fonksiyonların sınırlayıcı özellikleri vardır
 - Örnek: log() fonksiyonu negatif sayıları alamaz (buna dikkat edin)
- Öğrenme oranı dikkatlice seçilmelidir

Diğer Eğitim Yöntemleri

- Least Squares
 - Basit ancak sadece temel modellere uygulanabilir (örnek: Lineer Regresyon)
- Maximum Likelihood Estimation (MLE)
 - Olasılık dağılımlarını uygun hale getirmek için kullanışlıdır
- Maximum A Posteriori (MAP) Estimation
 - MLE'ye benzer ancak Bayes Kuralı'nı kullanır