BRANCH-AND-BOUND

At the dictionary level

Thus far

- Use LP solver as a black box.
- This lecture:
 - Consider how to fold branch-and-bound in a dictionary setup.

View from the dictionary

Example (ILP)

```
var x1 >= 0, <= 10;

var x2 >= 0, <= 10;

var x3 >= 0, <= 10;

maximize obj: x1 + x2 - 5* x3;
```

```
c1: -2* x1 + 7 * x2 <= 1;
c2: x1 - 2 * x2 + 5* x3 <= 3;
c3: x1 + x2 - 3 * x3 <= 7;
```

solve; display x1, x2, x3; end; x_4 : $10 - x_1$ x_5 : $10 - x_2$ x_6 : $10 - x_3$ x_7 : $1 + 2x_1 - 7x_2$ x_8 : $3 - x_1 + 2x_2 - 5x_3$

 $x_9 : 7 - x_1 - x_2 + 3x_3$

Slack variables are also integers.

Final Dictionary

$$x_1 \ge 6$$
 $x_{10}: -6 + x_1$

Dictionary After Branch

 $x_{10}: -6 + x_1$

x_4	4.3333333333	$+0.333333x_8$	$+0.66667x_9$	$-0.333333x_3$
x_5	8.66666666667	$-0.333333x_8$	$+0.333333x_9$	$-2.666667x_3$
x_6	10			$-x_3$
x_7	3	$-3x_{8}$	$+x_9$	$-18x_{3}$
x_1	5.66666666667	$-0.333333x_8$	$-0.66667x_9$	$+0.333333x_3$
$\underline{}$	1.33333333333	$+0.333333x_8$	$-0.333333x_9$	$+2.666667x_3$
x_{10}	-0.33333	$-0.333333x_8$	$-0.666667x_9$	$+0.333333x_3$
\overline{z}	7.0	$+0x_8$	$-x_9$	$-2x_3$

Dictionary becomes primal infeasible.

Back to initialization phase Simplex?

Dictionary After Branch

x_4	4.3333333333	+0.3333333	$x_8 + 0.666667x_9$	$-0.333333x_3$
x_5	8.66666666667	-0.3333333	$x_8 + 0.3333333x_9$	$-2.666667x_3$
x_6	10			$-x_3$
x_7	3	$-3x_{8}$	$+x_9$	$-18x_{3}$
x_1	5.666666666667	-0.3333333	$x_8 - 0.666667x_9$	$+0.333333x_3$
x_2	1.33333333333	+0.3333333	$x_8 - 0.3333333x_9$	$+2.666667x_3$
x_{10}	-0.33333	-0.3333333	$x_8 - 0.666667x_9$	$+0.333333x_3$
\overline{z}	7.0	$+0x_{8}$	$-x_9$	$-2x_3$

Dictionary becomes primal infeasible.

Dual Feasible Dictionary!!

But not dual final.

How to update after branch?

Parent Node (Final Dictionary)

add branch constraint

Child Node:

- Add new row.
- Primal Infeasible but Dual Feasible

Consider dual complement dictionary.

(Feasible + but non-final)

Opt. Phase on dual dictionaries

Final dual dictionary LP relaxation (also final primal)

solved for child node!

General Form Simplex

Parent Node (Final Dictionary)

add branch constraint

Child Node:

- I. Add new row.
- Primal Infeasible but Dual Feasible

Consider dual complement dictionary.

(Feasible + but non-final)

Opt. Phase on dual dictionaries

Final dual dictionary LP relaxation (also final primal)

solved for child node!

General Form Dictionary

Give special treatment to bounds on variables.

$$1 \le x \le u$$

- Modify the Simplex algorithm in two ways:
 - Dictionaries now have special ways to track bounds.
 - Pivoting is modified.

Branch-and-Bound with General Form

Child Node:

Simply update variable bound.

- I. Add new row.
- 2. Primal Infeasible but Dual Feasible