

Propietats de la derivada

Àlex Arenas, Sergio Gómez

Universitat Rovira i Virgili, Tarragona

Propietats de la derivada

Propietats

 Aritmètiques, potència, composició (regla de la cadena), funció inversa, derivació implícita

Teoremes

 Extrems relatius, Rolle, valor mig de Cauchy, valor mig de Lagrange, regla de l'Hôpital

Propietats de la derivada

- □ Propietats aritmètiques
 - Siguin $f, g: I \subseteq \mathbb{R} \to \mathbb{R}$ dues funcions reals de variable real definides en un interval obert I, i diferenciables en $x \in \mathbb{R}$
 - Aleshores

$$(f+g)'(x) = f'(x) + g'(x)$$

$$(\lambda f)'(x) = \lambda f'(x), \quad \forall \lambda \in \mathbb{R}$$

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{(g(x))^2}, \quad \text{si } g(x) \neq 0$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}, \text{ si } g(x) \neq 0$$

Derivada de la suma

$$(f+g)'(x) = \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h}$$
$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
$$= f'(x) + g'(x)$$

Derivada del producte per una constant

$$(\lambda f)'(x) = \lim_{h \to 0} \frac{\lambda f(x+h) - \lambda f(x)}{h}$$
$$= \lambda \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lambda f'(x)$$

Derivada del producte

$$(fg)'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{g(x+h)(f(x+h) - f(x)) + f(x)(g(x+h) - g(x))}{h}$$

$$= \lim_{h \to 0} g(x+h) \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} f(x) \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x)g(x) + f(x)g'(x)$$

Derivada del recíproc

$$\left(\frac{1}{g}\right)'(x) = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{g(x+h)} - \frac{1}{g(x)}\right)$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{g(x) - g(x+h)}{g(x)g(x+h)}$$

$$= \lim_{h \to 0} \frac{1}{g(x)g(x+h)} \lim_{h \to 0} \frac{-(g(x+h) - g(x))}{h}$$

$$= -\frac{g'(x)}{(g(x))^2}$$

Derivada del quocient

$$\left(\frac{f}{g}\right)'(x) = \left(f\frac{1}{g}\right)'(x)$$

$$= f'(x)\frac{1}{g(x)} + f(x)\left(\frac{1}{g}\right)'(x)$$

$$= \frac{f'(x)}{g(x)} - f(x)\frac{g'(x)}{(g(x))^2}$$

$$= \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Derivada de la funció potència

- Si $f(x) = x^n$ per $n \in \mathbb{N}$, aleshores $f'(x) = n x^{n-1}$
- Demostració

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\sum_{k=0}^{n} \binom{n}{k} x^k h^{n-k} - x^n \right] = \lim_{h \to 0} \sum_{k=0}^{n-1} \binom{n}{k} x^k h^{n-k-1}$$

$$= \binom{n}{n-1} x^{n-1} = n \, x^{n-1}$$

- Derivada de la funció potència (general)
 - Si $f(x) = x^n$ per $n \in \mathbb{Z}$ i $x \in \mathbb{R} \setminus \{0\}$, aleshores $f'(x) = n x^{n-1}$
 - Demostració del cas n < 0 per inducció sobre m = -n > 0
 - □ Base de l'inducció m = 1 $(x^{-1})' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2} = -x^{-2}$
 - □ Hipòtesi d'inducció (HI)

$$(x^{-m})' = -m \, x^{-m-1}$$

□ Pas d'inducció

$$(x^{-(m+1)})' = (x^{-m} x^{-1})'$$

$$= (x^{-m})' x^{-1} + x^{-m} (x^{-1})'$$

$$= -m x^{-m-1} x^{-1} + x^{-m} (-x^{-2}) \qquad \text{(HI)}$$

$$= -m x^{-(m+2)} - x^{-(m+2)}$$

$$= -(m+1) x^{-(m+2)} \square$$

- Derivada de la funció potència (general)
 - Si $f(x) = x^n$ per $n \in \mathbb{Z}$ i $x \in \mathbb{R} \setminus \{0\}$, aleshores $f'(x) = n x^{n-1}$
 - Demostració del cas n < 0 utilitzant derivada del recíproc i derivada de potències positives amb m = -n > 0

$$(x^{n})' = (x^{-m})'$$

$$= \left(\frac{1}{x^{m}}\right)'$$

$$= \frac{-m x^{m-1}}{x^{2m}}$$

$$= -m x^{-m-1}$$

$$= n x^{n-1}$$

- □ Derivada de la composició (regla de la cadena)
 - Siguin $f: I \subseteq \mathbb{R} \to \mathbb{R}$ i $g: J \subseteq \mathbb{R} \to \mathbb{R}$ dues funcions definides respectivament en els intervals oberts I i J, tals que $f(I) \subset J$. Suposem f diferenciable en el punt $a \in I$, i g diferenciable en el punt $b = f(a) \in J$
 - Aleshores la funció composta $g \circ f$ és diferenciable en $a \in I$, i

$$(g \circ f)'(a) = g'(f(a)) f'(a) = g'(b) f'(a)$$

- Demostració de la regla de la cadena
 - Volem calcular

$$\lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a}$$

La idea seria escriure-ho d'aquesta manera

$$\frac{g(f(x)) - g(f(a))}{x - a} = \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \frac{f(x) - f(a)}{x - a}$$

- Desafortunadament, no tenim garantit que, per valors de x al voltant de a, es compleixi que $f(x) \neq f(a)$. Per exemple, podríem tenir f(x) = c o $f(x) = x^2 \sin(1/x)$
- La solució consisteix a fer la substitució

$$\frac{g(y) - g(b)}{y - b} \longrightarrow \begin{cases} \frac{g(y) - g(b)}{y - b} & \text{si } y \neq b \\ g'(b) & \text{si } y = b \end{cases}$$

- Demostració de la regla de la cadena
 - Per tant, definim la funció auxiliar $G: J \subseteq \mathbb{R} \to \mathbb{R}$

$$G(y) \equiv \begin{cases} \frac{g(y) - g(b)}{y - b} & \text{si } y \neq b \\ g'(b) & \text{si } y = b \end{cases}$$

 \blacksquare G és contínua en b ja que

$$\lim_{y \to b} G(y) = g'(b) = G(b)$$

■ Com la composició de funcions contínues és contínua, la funció G ∘ f és contínua en a. Per tant

$$\lim_{x \to a} (G \circ f)(x) = (G \circ f)(a) = G(f(a)) = G(b) = g'(b)$$

Demostració de la regla de la cadena

■ Per tot $x \in I \setminus \{a\}$ es compleix que

$$\frac{g(f(x)) - g(f(a))}{x - a} = G(f(x)) \frac{f(x) - f(a)}{x - a}$$

ja que si f(x) = f(a) els dos costats s'anul·len i si $f(x) \neq f(a)$ el denominador de G(f(x)) es cancel·la amb el terme f(x) - f(a)

Queda finalment

$$(g \circ f)'(a) = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a}$$
$$= \lim_{x \to a} G(f(x)) \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
$$= g'(b) f'(a)$$

□ Derivada de la funció inversa

- Sigui $f: I \subseteq \mathbb{R} \to J \subseteq \mathbb{R}$ una funció contínua i bijectiva definida en els intervals oberts I i J, f(I) = J. Suposem f diferenciable en el punt $a \in I$, i $f'(a) \neq 0$.
- Aleshores la funció inversa f^{-1} : $J \subseteq \mathbb{R} \to I \subseteq \mathbb{R}$ és diferenciable en b = f(a), i

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

- □ Demostració de la derivada de la funció inversa
 - Per definició de funció inversa

$$(f \circ f^{-1})(y) = y$$

Per tant

$$(f \circ f^{-1})'(y) = 1$$

Aplicant la regla de la cadena quedaria

$$f'(f^{-1}(b))(f^{-1})'(b) = 1$$
 \Rightarrow $f'(a)(f^{-1})'(b) = 1$

- Desafortunadament la regla de la cadena només es pot aplicar quan les dues funcions són diferenciables; ara, però, només sabem que f és diferenciable
- Per tant, la demostració no pot fer ús de la regla de la cadena

- □ Demostració de la derivada de la funció inversa
 - Definim la funció auxiliar $F: I \subseteq \mathbb{R} \to \mathbb{R}$

$$F(x) \equiv \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{si } x \neq a \\ f'(a) & \text{si } x = a \end{cases}$$

 \blacksquare F és contínua en a ja que

$$\lim_{x \to a} F(x) = f'(a) = F(a)$$

- Com f és contínua, aleshores f^{-1} és contínua en b
- Com la composició de funcions contínues és contínua, aleshores F ∘ f⁻¹ és contínua en b

- Demostració de la derivada de la funció inversa
 - Per tant

$$f'(a) = (F \circ f^{-1})(b) = \lim_{y \to b} (F \circ f^{-1})(y)$$
$$= \lim_{y \to b} \frac{f(f^{-1}(y)) - f(f^{-1}(b))}{f^{-1}(y) - f^{-1}(b)} = \lim_{y \to b} \frac{y - b}{f^{-1}(y) - f^{-1}(b)}$$

• Com $f'(a) \neq 0$ queda finalment

$$\lim_{y \to b} \frac{f^{-1}(y) - f^{-1}(b)}{y - b} = \frac{1}{f'(a)}$$

□ Teorema dels extrems relatius

- Sigui $f: I \subset \mathbb{R} \to \mathbb{R}$ una funció derivable en un punt a de l'interval obert I
- Si f té un extrem relatiu en a, aleshores f'(a) = 0
- Demostració
 - □ Suposem que és un màxim
 - \square Aleshores, $\exists \delta : f(x) f(a) \le 0 \ \forall x \in (a \delta, a + \delta)$
 - \square Si $x \in (a \delta, a)$ tenim $\frac{f(x) f(a)}{x a} \ge 0$
 - \square Si $x \in (a, a + \delta)$ tenim $\frac{f(x) f(a)}{x a} \le 0$
 - \square Com f és derivable en a, els límits laterals han de coincidir, i només s'aconsegueix si f'(a) = 0
 - □ Si fos un mínim la demostració és equivalent

□ Teorema de Rolle

- Sigui $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en [a,b], diferenciable en (a,b) i tal que f(a)=f(b).
- Aleshores existeix $c \in (a, b)$ tal que f'(c) = 0

□ Teorema de Rolle

- Sigui $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ una funció contínua en [a,b], diferenciable en (a,b) i tal que f(a)=f(b).
- Aleshores existeix $c \in (a, b)$ tal que f'(c) = 0

Demostració

- □ Per teorema de Weierstrass, existeixen $\alpha, \beta \in [a, b]$ tals que $f(\alpha) = m, f(\beta) = M, i m \le f(x) \le M \ \forall x \in [a, b]$
- □ Si $\alpha, \beta \in \{a, b\}$ aleshores la funció és constant, i f'(x) = 0 per tots els punts $x \in [a, b]$
- □ Si $\beta \in (a, b)$, aleshores f té un màxim local en β , i pel teorema anterior $f'(\beta) = 0$
- □ Si $\alpha \in (a, b)$, aleshores f té un mínim local en α , i pel teorema anterior $f'(\alpha) = 0$

- □ Teorema del valor mig de Cauchy
 - Sigui $f, g: [a, b] \subset \mathbb{R} \to \mathbb{R}$ funcions contínues en [a, b] i diferenciables en (a, b)
 - Aleshores existeix $c \in (a, b)$ tal que

$$[f(b) - f(a)] g'(c) = [g(b) - g(a)] f'(c)$$

- Observació
 - \square Si $g(a) \neq g(b)$ i $g'(c) \neq 0$ es pot escriure

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

- □ Teorema del valor mig de Cauchy
 - Sigui $f, g: [a, b] \subset \mathbb{R} \to \mathbb{R}$ funcions contínues en [a, b] i diferenciables en (a, b)
 - Aleshores existeix $c \in (a, b)$ tal que

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$

□ Teorema del valor mig de Cauchy

- Sigui $f, g: [a, b] \subset \mathbb{R} \to \mathbb{R}$ funcions contínues en [a, b] i diferenciables en (a, b)
- Aleshores existeix $c \in (a, b)$ tal que

$$[f(b) - f(a)] g'(c) = [g(b) - g(a)] f'(c)$$

Demostració

- \square Es defineix $h(x) \equiv [f(b) f(a)] g(x) [g(b) g(a)] f(x)$
- □ Aquesta funció és contínua en [a,b], diferenciable en (a,b), i h(a) = h(b)
- □ Per tant, satisfà les condicions del teorema de Rolle, i això significa que $\exists c \in (a,b)$ tal que h'(c) = 0
- \square Queda h'(c) = [f(b) f(a)] g'(c) [g(b) g(a)] f'(c) = 0

- □ Teorema del valor mig de Lagrange
 - Sigui $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ funció contínua en [a,b] i diferenciable en (a,b)
 - Aleshores existeix $c \in (a,b)$ tal que $\frac{f(b)-f(a)}{b-a}=f'(c)$

- □ Teorema del valor mig de Lagrange
 - Sigui $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ funció contínua en [a,b] i diferenciable en (a,b)
 - Aleshores existeix $c \in (a, b)$ tal que $\frac{f(b) f(a)}{b a} = f'(c)$

- Demostració
 - \square És un cas particular del teorema de Cauchy prenent g(x) = x

□ Regla de l'Hôpital

Suposem que

$$\lim_{x \to a} f(x) = 0 \qquad \qquad \lim_{x \to a} g(x) = 0$$

i que el següent límit existeix

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Aleshores

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

- □ Demostració de la regla de l'Hôpital
 - La hipòtesi que existeix

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$

implica implícitament que

- 1. Existeix un interval $(a \delta, a + \delta)$ en el que f'(x) i g'(x) existeixen $\forall x$, excepte potser a x = a
- 2. En aquest interval $g'(x) \neq 0$ excepte potser a x = a
- No importen els valor de f(a) i g(a); podem (re)definir-los com $f(a) \equiv g(a) \equiv 0$, així f i g passen a ser contínues en a
- Sigui x ∈ (a, a + δ). Pel teorema del valor mig de Lagrange, g(x) ≠ 0 ja que, en cas contrari, existiria un valor x₁ amb g'(x₁) = 0, entrant en contradicció amb 2.

- □ Demostració de la regla de l'Hôpital
 - Pel teorema del valor mig de Cauchy, $\exists \alpha_x \in (a, x)$ tal que

$$[f(x) - 0] g'(\alpha_x) = [g(x) - 0] f'(\alpha_x)$$

que també es pot escriure

$$\frac{f(x)}{g(x)} = \frac{f'(\alpha_x)}{g'(\alpha_x)}$$

- α_x s'aproxima a α quan x s'apropa a α ja que $\alpha_x \in (\alpha, x)$
- Com suposem que el límit $\lim_{y \to a} \frac{f'(y)}{g'(y)}$ existeix, aleshores

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(\alpha_x)}{g'(\alpha_x)} = \lim_{y \to a} \frac{f'(y)}{g'(y)}$$

- □ Regla de l'Hôpital (generalitzada)
 - Si

$$\lim_{x \to \blacktriangle} f(x) = \lim_{x \to \blacktriangle} g(x) = \blacksquare$$

$$\lim_{x \to \blacktriangle} \frac{f'(x)}{g'(x)} = \bigstar$$

amb

$$\blacktriangle \in \{a, a^+, a^-, +\infty, -\infty\}$$

$$\blacksquare \in \{0, +\infty, -\infty\}$$

$$\bigstar \in \{L, +\infty, -\infty\}$$

Aleshores

$$\lim_{x \to \mathbf{A}} \frac{f(x)}{g(x)} = \lim_{x \to \mathbf{A}} \frac{f'(x)}{g'(x)} = \bigstar$$

- De vegades no tenim y = f(x) sinó una relació entre els valors de x i els de y, és dir, g(x, y) = 0
- En aquests cassos, es pot utilitzar la regla de la cadena per a trobar y', encara que no coneguem f(x)

$$\frac{d}{dx}(h(y(x))) = \frac{dh(y)}{dy}\frac{dy}{dx} = \frac{dh}{dy}y'$$

Exemples

$$\square x^2 + y^2 = 1 (x^2 + y^2 - 1 = 0)$$

$$\frac{d}{dx}(x^2 + y^2) = 2x + 2y y' = 0 \implies y' = -\frac{x}{y}$$

Al punt $\left(\frac{3}{5}, \frac{4}{5}\right)$ el pendent de la recta tangent és $y' = -\frac{x}{y} = -\frac{3}{4}$

Exemples

$$\square y^4 + x y = x^3 - x + 2$$

$$\frac{d}{dx}(y^4) + \frac{d}{dx}(xy) = \frac{d}{dx}(x^3 - x + 2)$$

$$4y^3 y' + y + x y' = 3x^2 - 1 \implies y' = \frac{3x^2 - 1 - y}{4y^3 + x}$$

Al punt (1,1),
$$y' = \frac{1}{5}$$

Exemples

$$\square \cos(ty) = \frac{t^2}{y}$$

$$-\sin(ty)(y+ty') = \frac{2ty-t^2y'}{y^2}$$

$$y' = \frac{2t y + y^3 \sin(t y)}{t^2 - t y^2 \sin(t y)}$$

