```
PRM_Template*
     SOP_Star::buildTemplates()
129 {
         static PRM_TemplateBuilder templ("SOP_Star.C"_sh, theDsFile);
         return templ.templates();
132 }
     class SOP_StarVerb : public SOP_NodeVerb
     public:
         SOP_StarVerb() {}
         virtual ~SOP_StarVerb() {}
         virtual SOP NodeParms *allocParms() const { return new SOP StarParms(
         virtual UT_StringHolder name() const { return SOP_Star::theSOPTypeNa
         virtual CookMode cookMode(const SOP NodeParms *parms) const { return
         virtual void cook(const CookParms &cookparms) const;
         static const SOP NodeVerb::Register<SOP StarVerb> theVerb;
150 };
     // The declaration is inside the class.
     const SOP NodeVerb::Register<SOP StarVerb> SOP StarVerb::theVerb;
     const SOP_NodeVerb *
     SOP Star::cookVerb() const
         return SOP_StarVerb::theVerb.get();
160
```

HDK HDK for SOPs

Derrick Moser | SideFX

https://www.sidefx.com/docs/hdk/

https://www.sidefx.com/docs/hdk

- overview
- class documentation
- required packages for development
- hcustom/generate_proto.py

\$HFS/toolkit

- headers and example files

Houdini Development Kit | sidefx.com/docs/hdk

container for geometry components contains lists of: points, primitives, vertices

spreadsheet view

- rows: components
- columns: attributes, groups

•	Group:	
Cd[r]	Cd[g]	Cd[b]
0.641601	0.522061	0.881155
0.800464	0.885056	0.7169
0.510895	0.59574	0.397275
0.775474	0.828006	0.841456
0.879506	0.904597	0.76764
0.20504	0.401968	0.810459
	Cd[r] 0.641601 0.800464 0.510895 0.775474 0.879506	Cd[r] Cd[g] 0.641601 0.522061 0.800464 0.885056 0.510895 0.59574 0.775474 0.828006 0.879506 0.904597

points

- a point is simply a position in space defined by a vector

primitives

- primitives are units of geometry above a point
- houdini supports several different types of primitives: eg. polygon, NURBS curve, metaball, etc.

vertices

- a vertex is a reference to a point
- primitives use vertices to reference points (eg. the corners of a polygon, the center of a sphere, or control vertices of a spline curve)
- primitives can share points, while vertices are unique to a primitive

GA (\$HFS/toolkit/include/GA)

- Geometry Attributes (base level of geometry classes)
- contains the base classes for all geometry in Houdini
- this library contains the definitions of many classes, though some are virtual abstractions implemented in higher libraries

GEO (\$HFS/toolkit/include/GEO)

- Geometry Library
- a 3D sub-class of the GA library
- this library defines most specialized classes for 3D data structures, including primitives
- primitive types

GU (\$HFS/toolkit/include/GU)

- Geo-Utility Library
- sub-classed off the GEO library

```
Higher level tools such as GU_Detail::cube(),
GU_Detail::polyIsoSurface(),GU_Detail::lsystem() are implemented here.
```


Identifying Components

GA_Index

- enumeration
- GA_INVALID_INDEX

GA_Offset

- immutable location of component in internal arrays
- GA_DETAIL_OFFSET
- GA_INVALID_OFFSET

GA_IndexMap

- indexFromOffset()
- offsetFromIndex()

GA_AttributeOwner

- GA_ATTRIB_VERTEX
- GA_ATTRIB_POINT
- GA_ATTRIB_PRIMITIVE
- GA_ATTRIB_GLOBAL

Points

GA_Detail

- appendPoint()
- appendPointBlock()
- destroyPointOffset()
- destroyPoints()

```
- getNumPoints()
```

- getNumPointOffsets()
- pointOffset()
- pointIndex()
- getPos3()
- getPos3D()

Primitives

Creation

```
GEO_PrimPoly::build()
GEO_PrimSphere::build()
GU_PrimNURBSurf::build()
etc.
```

GA_Primitive

- getMapOffset()

GA_Detail

- getPrimitive()
- appendPrimitivesAndVertices()
- getNumPrimitives()
- getNumPrimitiveOffsets()
- primitiveOffset()
- primitiveIndex()
- destroyPrimitiveOffset()
- destroyPrimitives()

Vertices

GA_Primitive

- getVertexCount()
- getVertexOffset()
- getPointOffset()
- setPointOffset()

GA_Detail

- vertexPoint()
- vertexPrimitive()
- pointVertex()
- vertexToNextVertex()
- getPrimitiveVertexCount()
- getPrimitiveVertexOffset()
- getTopology().wireVertexPoint()

Example Creating Polygons

```
GEO PrimPoly *poly =
     GEO PrimPoly::build(gdp, /*nverts*/ 3,
                          /*open*/ false,
                          /*appendpts*/ false);
for (GA Size i = 0; i < 3; ++i)
    GA Offset pt = gdp->appendPoint();
    gdp->setPos3(pt, pos[i]);
    poly->setPointOffset(i, pt);
```

Example Creating Polygons

```
GA Offset vtx;
GA Offset offset =
        gdp->appendPrimitivesAndVertices (GA PRIMPOLY,
                                          1, 3, vtx, true);
GA Offset pt = gdp->appendPointBlock(3);
GA Topology &topo = qdp->qetTopology();
for (GA Size i = 0; i < 3; ++i, ++pt, ++vtx)
    gdp->setPos3(pt, pos[i]);
    topo.wireVertexPoint(vtx, pt);
```

Iterating Over Components

GA_Range

rules for generating sequence of GA_Offset

```
GA_Detail::pointRange()
GA_Detail::vertexRange()
GA_Detail::primitiveRange()
```

GA_Iterator

- advance()/operator++()
- blockAdvance()

Example Iterating Over Points

Example Iterating Over Points

```
GA Offset start, end;
for (GA Iterator it (gdp->getPointRange (pt group);
    it.blockAdvance(start, end);)
    for (GA Offset offset = start; offset < end; ++offset)
        gdp->setPos3(offset,
                     plane.project(gdp->getPos3(offset)));
```

Primitive Types: Polygon, VDB, Metaball, NURBS Curve, etc.

GEO_Primitive

- getTypeId()
- getTypeName()
- getLocalTransform()
- iterateEdges()
- enlargeBoundingBox()
- calcVolume()
- calcArea()
- calcPerimeter()

GEO_Detail

- countPrimitiveType()
- getGEOPrimitive()
- getPrimitiveTypeId()

Intrinsics

- findIntrinsic()
- getIntrinsic()
- setIntrinsic()

Fyan

Example Checking Primitive Type

```
for (GA Iterator it (gdp->getPrimitiveRange();
    !it.atEnd(); ++it)
    GA Offset offset = *it;
    switch (gdp->getPrimitiveTypeId (offset) )
        case GA PRIMPOLY: doPoly(offset); break;
        case GA PRIMSPHERE: doSphere(offset); break;
        case GA PRIMVDB: doVDB (offset); break;
        default: break;
```

Example Reading Intrinsics

```
const GA Primitive *prim = gdp->getPrimitive(prim offset);
UT String filename;
GA LocalIntrinsic filename h = prim->findIntrinsic("abcfilename");
if (filename h != GA INVALID INTRINSIC HANDLE)
    prim->getIntrinsic(filename h, filename);
float frame = 0.0;
GA LocalIntrinsic frame h = prim->findIntrinsic("abcframe");
if (frame h != GA INVALID INTRINSIC HANDLE)
    prim->getIntrinsic(frame h, frame);
```


GOP_Manager

Parse Groups

- parsePrimitiveGroups()
- parsePointGroups()
- parseEdgeGroups()
- parseVertexGroups()

Parse Detached Groups

- parsePrimitiveDetached()
- parsePointDetached()
- parseEdgeDetached()
- parseVertexDetached()

Example Parsing Groups

Group Creation

Creation

- newPointGroup()
- newVertexGroup()
- newPrimitiveGroup()
- newEdgeGroup()

Internal

- newInternalPointGroup()
- newInternalVertexGroup()
- newInternalPrimitiveGroup()
- newInternalEdgeGroup()

Detached

- createDetachedPointGroup()
- createDetachedVertexGroup()
- createDetachedPrimitiveGroup()
- createDetachedEdgeGroup()

Groups

GA_Detail

- findPointGroup()
- findVertexGroup()
- findPrimitiveGroup()
- findEdgeGroup()
- destroyGroup()
- pointGroups()
- primitiveGroups()
- vertexGroups()
- edgeGroups()

GA_GroupTable

- -begin()
- end()

GA_Group

- getName()
- isInternal()
- clear()
- entries()

Example Primitive Group

```
GA PrimitiveGroup *bad prims =
            gdp->newPrimitiveGroup("degenerate prims");
for (GA Iterator it (gdp->getPrimitiveRange();
    !it.atEnd(); ++it)
    GA Offset offset = *it;
    if (gdp->getPrimitive (offset) ->isDegenerate())
        bad prims->addOffset(offset);
```

Attributes

Create Tuples

- addFloatTuple()
- addIntTuple()
- addStringTuple()
- addDictTuple()

Detached

- createDetachedTupleAttribute()

Create Arrays

- addFloatArray()
- addIntArray()
- addStringArray()
- addDictArray()

Attributes

GA_Detail

- findPointAttribute()
- findVertexAttribute()
- findPrimitiveAttribute()
- findGlobalAttribute()
- destroyAttribute()
- getAttributeDict()

GA_AttributeDict

- begin()
- end()

GA_Attribute

- getType()
- getName()
- getStorageClass()
- getTupleSize()

Attribute Type Info

```
GA TYPE VOID
GA TYPE POINT
GA TYPE HPOINT
GA TYPE VECTOR
GA TYPE NORMAL
GA TYPE COLOR
GA TYPE TRANSFORM
GA TYPE QUATERNION
GA TYPE INDEXPAIR
GA TYPE NONARITHMETIC INTEGER
GA TYPE TEXTURE COORD
```

GA_Attribute

- getTypeInfo()
- setTypeInfo()

Attribute Handle

F/D/I/M3/M4/Q/V3/S/Dict/FA/DA/IA/SA/DictA

GA_ROHandleF

- bind()
- isValid()
- get ()

GA_RWHandleF

- set()

Example Reading Attribute Values

```
GA ROHandleV3 uv h(gdp, GA ATTRIB VERTEX, "uv");
UT BoundingBox box;
box.initBounds();
if (uv h.isValid())
    for(GA Iterator it(gdp->getPrimitiveRange(group)); !it.atEnd(); ++it)
        GA Offset offset = *it;
        GA Size nvtx = gdp->getPrimitiveVertexCount(offset);
        for (exint i = 0; i < nvtx; ++i)
            box.enlargeBounds(uv h.get(gdp->getPrimitiveVertexOffset(offset, i)));
```


Example Writing Attribute Values

```
GA RWHandleS name h (gdp, GA ATTRIB PRIMITIVE, "name");
if(!name h.isValid())
    name h.bind(gdp->addStringTuple(GA ATTRIB PRIMITIVE, "name", 1));
if (name h.isValid())
    for (auto &iter: pieces)
        const char *piece = iter.first.c str();
        const GA OffsetArray &offsets = iter.second;
        for (exint i = 0; i < offsets.entries(); ++i)
            name h.set(offsets(i), piece);
```


Example Writing Array Values

```
GA RWHandleFA weights h (gdp, GA ATTRIB POINT, "weights", 1);
if(!weights h.isValid())
    weights h.bind(gdp->addFloatArray(GA ATTRIB POINT, "weights", 1));
if (weights h.isValid())
    UT FloatArray w;
    for(GA Iterator it(gdp->getPointRange(ptgroup)); !it.atEnd(); ++it)
        GA Offset pt = *it;
        weights h.get(pt, w);
        for (exint i = 0; i < w.entries(); ++i)
            w(i) *= scale;
        weights h.set(pt, w);
```

Example Writing Dict Values

```
GA_RWHandleDict props_h(gdp, GA_ATTRIB_POINT, "properties", 1);
if(!props_h.isValid())
    props_h.bind(gdp->addDictTuple(GA_ATTRIB_POINT, "properties", 1));
if(props_h.isValid())
{
    UT_Options options;
    options.setOptionI("loops", 42);
    options.setOptionF("angle", 1.23);
    props_h.set(pt_offset, UT_OptionsHolder(&options));
}
```


String Table

GA_Attribute

- getAIFCopyData()
- getAIFCompare()
- getAIFMath()
- getAIFSharedStringTuple()

GA_AIFSharedStringTuple

- extractStrings()
- getTableString()
- getTableHandle()
- getHandle()
- getString()
- setHandle()
- setString()
- addStrings()

Attribute Wrangler

GA_ElementWrangler

- copyAttributeValues()
- addAttributeValues()
- scaleAttributeValues()
- lerpAttributeValues()

GA_AttributeFilter

- selectPublic()
- selectByPattern()
- selectAnd()
- selector()
- selectNot()

GA_PointWrangler

GA_VertexWrangler

GA_PrimitiveWrangler

GA_DetailWrangler

GA Details

- cloneMissingAttributes()

Threading

Copy-on-Write

GA_PAGE_SIZE

- components/attributes/unorder groups

GA_SplittableRange

- UTparallelFor()/UTparallelReduce()

GA_PageHandle

- marshalled or raw access to underlying attribute data
- setPage()
- get()/set()
- value()

Example Multi-Threaded Update

```
GA RWHandleV3 p h(gdp->getP());
UTparallelFor(GA SplittableRange(gdp->getPointRange()),
             [&] (const GA SplittableRange &r)
        GA Offset start, end;
        for (GA Iterator it(r); it.blockAdvance(start, end); )
            for (GA Offset pt = start; pt < end; ++pt)
                p h.set(pt, plane.project(p h.get(pt)));
```


Example Multi-Threaded Update

```
UTparallelFor(GA SplittableRange(gdp->getPointRange()),
             [&] (const GA SplittableRange &r)
        GA RWPageHandleV3 p ph(gdp->getP());
        GA Offset start, end;
        for (GA Iterator it(r); it.blockAdvance(start, end); )
            p ph.setPage(start);
            plane.projectInPlace(&p ph.value(start), end - start);
```


Packed Primitives

GU_PrimPacked

- isPackedPrimitive()
- unpack()
- getPivot()/getPivot()
- viewportLOD()/setViewportLOD()

```
GU_PackedGeometry::packGeometry()
GU_PackedDisk::packedDisk()
```


VDB

```
enum UT_VDBType
UTvdbGetGridType()
UTvdbConvert()
```

GU_PrimVDB

- build()
- buildFromPrimVolume()
- getStorageType()
- getConstGridPtr()
- setGrid()

- UTvdbCallRealType()
- UTvdbCallScalarType()
- UTvdbCallVec3Type()
- UTvdbCallPointType()
- UTvdbCallBoolType()
- UTvdbCallAllType()
- UTvdbCallAllTopology()

SOP

SOP_Node

- myConstructor()
- buildTemplates()
- cookMySop()
- cookMyselfAsVerb()
- cookVerb()
- getDefaultState()
- inputLabel()
- isRefInput()

SOP_NodeVerb

- allocParms()
- allocCache()
- name ()
- cookMode ()
- cook()
- select()

Caching

SOP_NodeVerb

- allocCache() - return a custom subclass of SOP_NodeCache

SOP_NodeCache

- getMemoryUsage()

SOP_NodeVerb::CookParms

- cache() cast to custom subclass of SOP_NodeCache
- inputGeo()
- sopAddWarning()/sopAddError()

Caching

GA_Detail

- getUniqueId()
- getMetaCacheCount()

GA_Attribute

- getDataId()
- bumpDataId()
- cloneDataId()

SOP_Node

- mySopFlags.setManagesDataIDs(true)
- bumpAllDataIds()

GA_PrimitiveList / GA_Handle

- bumpDataId()
- getDataId()

GA_Topology

- getDataId()
- cloneDataId()

Performance Monitor

```
#include <UT/UT_PerfMonAutoEvent.h>

OP_Node *node = cookparms.getNode();
int nodeid = node ? node->getUniqueId() : -1;
UT_PerfMonAutoCookEvent event(nodeid, "Smoothing");
```


Support Files

```
$ cd /opt/hfsX.Y.ZZZ
$ source houdini_setup
$ cd ~/HdkExamples
$ hython $HH/python3.7libs/generate_proto.py SOP_PolyClip.C SOP_PolyClip.proto.h
$ houstom SOP PolyClip.C
```

Operator Icon

- -HOUDINI UI ICON PATH
- -eg. \$HOME/houdiniX.Y/config/Icons

Help Card and Help Card Icon

- -HOUDINI PATH/help
- -eg. \$HOME/houdiniX.Y/help

HOUDINI_DSO_PATH

- ./dso
- \$HOME/houdiniX.Y/dso
- \$HOME/Library/Preferences/houdini/X.Y/dso (only on Mac OSX)
- /Users/Shared/houdini/X.Y/dso (only on Mac OSX)
- \$HSITE/houdiniX.Y/dso
- \$HFS/houdini/dso
- #include <UT/UT_DSOVersion.h>
- newSopOperator()

Debugging

- compile with debug information

```
hcustom -g SOP PolyClip.C
```

- running under a debugger

```
gdb $HFS/bin/houdini-bin (gdb) run -foreground
```

- assertions UT/UT_Assert.h

```
UT ASSERT (expression)
```

- HOUDINI_DSO_ERROR

```
PRM_Template*
     SOP_Star::buildTemplates()
129 {
         static PRM_TemplateBuilder templ("SOP_Star.C"_sh, theDsFile);
         return templ.templates();
132 ]
     class SOP_StarVerb : public SOP_NodeVerb
     public:
         SOP_StarVerb() {}
         virtual ~SOP_StarVerb() {}
         virtual SOP NodeParms *allocParms() const { return new SOP StarParms(
         virtual UT StringHolder name() const { return SOP Star::theSOPTypeNa
         virtual CookMode cookMode(const SOP NodeParms *parms) const { return
         virtual void cook(const CookParms &cookparms) const;
         static const SOP NodeVerb::Register<SOP StarVerb> theVerb;
150 };
     // The declaration is inside the class.
     const SOP_NodeVerb::Register<SOP_StarVerb> SOP_StarVerb::theVerb;
     const SOP_NodeVerb *
     SOP_Star::cookVerb() const
         return SOP_StarVerb::theVerb.get();
160
```

THANKYOU

Web: SideFX.com

Twitter: sidefx

Facebook: Houdini3D

