51791AUSD1.ST25 SEQUENCE LISTING

<110>	Harkins, Richard Parkes, Deborah Parry, Gordon Schneider, Douglas Steinbrecher, Renate	
<120>	DNA Encoding a Novel RG-1 Polypeptide	
<130>	51791AUSD1	
<150> <151>	US 60/172,370 1999-12-16	
<150> <151>	US 09/732,357 2000-12-07	
<160>	13	
<170>	PatentIn version 3.1	
<210><211><211><212><213>	DNA	
<220><221><222><222><223>	(296)(1291)	
<400>	1	
agaaa	ggggt geggeageae tgecagggga agagggtgat eegaeeeggg gaaggteget	60
gggca	gggcg agttgggaaa geggcageee eegeegeeee egeageeeet teteeteett 1	20
tctcc	cacgt cctatctgcc tetegetgga ggccaggccg tgcagcatcg aagacaggag 1	180
gaact	ggage eteattggee ggeeegggge geeggeeteg ggettaaata ggageteegg 2	240
gctct	ggctg ggaccegacc gctgceggcc gcgctcccgc tgctcctgcc gggtg atg 2 Met 1	298
	ac ccc age ccg gcc gcc ctg ggc aag gcc ctc tgc gct ctc sn Pro Ser Pro Ala Ala Ala Leu Gly Lys Ala Leu Cys Ala Leu 5 10 15	346
	tg gcc act ctc ggc gcc gcc ggc cag cct ctt ggg gga gag tcc eu Ala Thr Leu Gly Ala Ala Gly Gln Pro Leu Gly Gly Glu Ser 20 25 30	394
Ile C	gt too goo gga goo cog goo aaa tao ago ato aco tto acg ggo Cys Ser Ala Gly Ala Pro Ala Lys Tyr Ser Ile Thr Phe Thr Gly 40 45	442
aag t	gg agc cag acg gec ttc ecc aag cag tac ecc etg tte egc ecc Page 1	490

								5	1/91	AUSD	I.ST	25				
Lys 50	Trp	Ser	Gln	Thr	Ala 55	Phe	Pro	Lys	Gln	Tyr 60	Pro	Leu	Phe	Arg	Pro 65	
					tcg Ser											538
					aac Asn											586
		-			gcc Ala			_	-	_	_					634
			_	_	agc Ser						_			~	_	682
					cag Gln 135											730
	-	_	,-	_	ttt Phe			_		_		_		_		778
				_	agc Ser	_	_	_	_	_	2 2 2	_	_			826
					gac Asp											874
					tcc Ser											922
	Thr			_	tcc Ser 215				_		_	-				970
					aag Lys											1018
					agc Ser									Pro		1066
			Arg		aat Asn			Val					Val		gaa Glu	1114
		Leu					Ser					Trp			tgc Cys	1162

gga ggc cac tgt ggg agg ctc ggg acc aag agc agg act cgc tac gtc Gly Gly His Cys Gly Arg Leu Gly Thr Lys Ser Arg Thr Arg Tyr Val 290 295 300 305	1210
cgg gtc cag ccc gcc aac aac ggg agc ccc tgc ccc gag ctc gaa gaa Arg Val Gln Pro Ala Asn Asn Gly Ser Pro Cys Pro Glu Leu Glu Glu 310 315 320	1258
gag get gag tge gte eet gat aac tge gte taa gaceagagee eegeageeee Glu Ala Glu Cys Val Pro Asp Asn Cys Val 325 . 330	1311
tggggccccc cggagccatg gggtgtcggg ggctcctgtg caggctcatg ctgcaggcgg	1371
ccgagggcac agggggtttc gcgctgctcc tgaccgcggt gaggccgcgc cgaccatctc	1431
tgcactgaag ggccctctgg tggccggcac gggcattggg aaacagcctc ctcctttccc	1491
aaccttgett ettaggggee eccgtgteec gtetgetete ageeteetee teetgeagga	1551
taaagtcatc cecaaggete cagetactet aaattatgte teettataag ttattgetge	1611
tecaggagat tgteetteat egteeagggg eetggeteee aegtggttge agatacetea	1671
gacctggtgc tetaggetgt getgageeca etetecegag ggegeateea agegggggee	1731
acttgagaag tgaataaatg gggcggtttc ggaagcgtca aaaaaaaaaa	1785

<210> 2

<211> · 331

<212> PRT

<213> Homo sapiens

<400> 2

Leu Leu Leu Ala Thr Leu Gly Ala Ala Gly Gln Pro Leu Gly Gly Glu 20 25 30

Ser Ile Cys Ser Ala Gly Ala Pro Ala Lys Tyr Ser Ile Thr Phe Thr 35 40 45

Gly Lys Trp Ser Gln Thr Ala Phe Pro Lys Gln Tyr Pro Leu Phe Arg 50 60

Pro Pro Ala Gln Trp Ser Ser Leu Leu Gly Ala Ala His Ser Ser Asp 65 70 75 80

Tyr Ser Met Trp Arg Lys Asn Gln Tyr Val Ser Asn Gly Leu Arg Asp 85 90 95

Phe	Ala	Glu	Arg 100	Gly	Glu	Ala	Trp	Ala 105	Leu	Met	Lys	Glu	Ile 110	Glu	Ala
Ala	Gly	Glu 115	Ala	Leu	Gln	Ser	Val 120	His	Ala	Val	Phe	Ser 125	Ala	Pro	Ala
Val	Pro 130	Ser	Gly	Thr	Gly	Gln 135	Thr	Ser	Ala	Glu	Leu 140	Glu	Val	Gln	Arg
Arg 145	His	Ser	Leu	Val	Ser 150	Phe	Val	Val	Arg	Ile 155	Val	Pro	Ser	Pro	Asp 160
Trp	Phe	Val	Gly	Val 165	Asp	Ser	Leu	Asp	Leu 170	Cys	Asp	Gly	Asp	Arg 175	Trp
Arg	Glu	Gln	Ala 180	Ala	Leu	Asp	Leu	Tyr 185	Pro	Tyr	Asp	Ala	Gly 190	Thr	Asp
Ser	Gly	Phe 195	Thr	Phe	Ser	Ser	Pro 200	Asn	Phe	Ala	Thr	Ile 205	Pro	Gln	Asp
Thr	Val 210	Thr	Glu	Ile	Thr	Ser 215	Ser	Ser	Pro	Ser	His 220	Pro	Ala	Asn	Ser
Phe 225	Tyr	Tyr	Pro	Arg	Leu 230	Lys	·Ala	Leu	Pro	Pro 235	Ile	Ala	Arg	Val	Thr 240
Leu	Val	Arg	Leu	Arg 245	Gln	Ser	Pro	Arg	Ala 250	Phe	Ile	Pro	Pro	Ala 255	Pro
Val	Leu	Pro	Ser 260	Arg	Asp	Asn	Glu	Ile 265	Val	Asp	Ser	Ala	Ser 270	Val	Pro
Glu	Thr	Pro 275		Asp	Cys	Glu	Val 280	Ser	Leu	Trp	Ser	Ser 285	Trp	Gly	Leu
Cys	Gly 290		His	Cys	Gly	Arg 295	Leu	Gly	Thr	Lys	Ser 300	Arg	Thr	Arg	Tyr
Val 305		Val	Gln	Pro	Ala 310	Asn	Asn	Gly	Ser	Pro 315	_	Pro	Glu	Leu	Glu 320
Glu	Glu	Ala	Glu	Cys 325		Pro	Asp	Asn	Cys 330						

```
<210> 3
<211> 19
<212> DNA
<213> artificial sequence
<220>
<223> primer
<400> 3
                                                                    19
cgcgcatage tecgaetae
<210> 4
<211> 15
<212> DNA
<213> artificial sequence
<220>
<223> primer
<400> 4
                                                                    15
gccgcgtccg caaag
<210> 5
<211>
      30
<212>
      DNA
<213> artificial sequence
<220>
<223> probe
<400> 5
                                                                     30
aggaagaacc agtacgtcag taacgggctg
<210> 6
<211> 36
<212> DNA
<213> artificial sequence
<220>
<223> primer
                                                                     36
tecetetaga gecaecatgg aaaaceccag eeegge
<210> 7
<211> 35
<212> DNA
<213> artificial sequence
<220> .
 <223> primer2
 <400> 7
```

```
<210> 8 <211> 19
```

<212> PRT

<213> Homo sapiens

<400> 8

Pro Leu Gly Gly Glu Ser Ile Cys Ser Ala Gly Ala Pro Ala Lys Tyr 1 5 10 15

Ser Ile Thr

<210> 9

<21.1> 19

<212> PRT

<213> Homo sapiens

<400> 9

Thr Phe Thr Gly Lys Trp Ser Gln Thr Ala Phe Pro Lys Gln Tyr Pro 1 5 10 15

Leu Phe Arg

<210> 10

<211> 15

<212> PRT

<213> Homo sapiens

<400> 10

His Ser Ser Asp Tyr Ser Met Trp Arg Lys Asn Gln Tyr Val Ser $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

<210> 11

<211> 23

<212> PRT

<213> Homo sapiens

<400> 11

Asp Ala Gly Thr Asp Ser Gly Phe Thr Phe Ser Ser Pro His Phe Ala 1 5 10 15

Thr Ile Pro Gln Asp Thr Val 20 <210> 12

<211> 12

<212> PRT

<213> Homo sapiens

<400> 12

Asn Glu Ile Val Asp Ser Ala Ser Val Pro Glu Thr $1 \hspace{1cm} 5 \hspace{1cm} 10$

<210> 13

<211> 330

<212> PRT

<213> Rattus norvegicus

<400> 13

Met Glu Asn Val Ser Phe Ser Leu Asp Arg Thr Leu Trp Val Phe Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Ala Met Leu Gly Ser Thr Ala Gly Gln Pro Leu Gly Gly Glu Ser 20 25 30

Val Cys Thr Ala Arg Pro Leu Ala Arg Tyr Ser Ile Thr Phe Thr Gly 35 40 45

Lys Trp Ser Gln Thr Ala Phe Pro Lys Gln Tyr Pro Leu Phe Arg Pro 50 55 60

Pro Ala Gln Trp Ser Ser Leu Leu Gly Ala Ala His Ser Ser Asp Tyr 65 70 75 80

Ser Met Trp Arg Lys Asn Glu Tyr Val Ser Asn Gly Leu Arg Asp Phe 85 90 95

Ala Glu Arg Gly Glu Ala Trp Ala Leu Met Lys Glu Ile Glu Ala Ala 100 105 110

Gly Glu Lys Leu Gln Ser Val His Ala Val Phe Ser Ala Pro Ala Val 115 120 125

Pro Ser Gly Thr Gly Gln Thr Ser Ala Glu Leu Glu Val His Pro Arg 130 135 140

His Ser Leu Val Ser Phe Val Val Arg Ile Val Pro Ser Pro Asp Trp 145 150 155 160

Phe Val Gly Ile Asp Ser Leu Asp Leu Cys Glu Gly Gly Arg Trp Lys
Page 7

Glu	Gln	Val	Val 180	Leu	Asp	Leu	Tyr	Pro 185	His	Asp	Ala	Gly	Thr 190	Asp	Ser
Gly	Phe	Thr 195	Phẹ	Ser	Ser	Pro	Asn 200	Phẹ	Ala	Thr	Ile	Pro 205	Gln	Asp	Thr
Val	Thr 210	Glu	Ile	Thr	Ala	Ser 215	Ser	Pro	Ser	His	Pro 220	Ala	Asn	Ser	Phe
Tyr 225	Tyr	Pro	Arg	Leu	Lys 230	Ser	Leu	Pro	Pro	Ile 235	Ala	Lys	Val	Thr	Phe 240
Val	Arg	Leu	Arg	Gln 245	Ser	Pro	Arg	Ala	Phe 250	Ala	Pro	Pro	Ser	Leu 255	
Leu	Ala	Ser	Arg 260	Gly	Asn	Glu	Ile	Val 265	Asp	Ser	Leu	Ser	Val 270	Pro	Glu
Thr	Pro	Leu 275	Asp	Cys	Glu	Val	Ser 280	Leu	Trp	Ser	Ser	Trp 285	Gly	Leu	Cys
Ģly	Gly 290	Pro	Cys	Gly	Lys	Leu 295	Gly	Ala	Lys	Ser	Arg 300	Thr	Arg	Tyr	Val
Arg 305	Val	Gln	Pro	Ala	Asn 310	Asn	Gly	Thr	Pro	Cys 315	Pro	Glu	Leu	Glu	Glu 320
Glu	Ala	Glu	Cys	Ala 325	Pro	Asp	Asn	Cys	Val 330						