Finding an angle in a right-angled triangle.

- METHOD 1: If you have the length of at least two of the sides, then use SOHCAHTOA
 - Step 1: Identify the "types" (H, O, A) of the sides of your triangle with respect to the angle θ you wish to find.

H is always the hypotenuse

O is the side opposite θ

A is the side adjacent to θ

- Step 2: You will use two of these "types" that correspond to two of the sides with known side lengths to identify which trigonometric function to select in SOHCAHTOA.
- Step 3 The 3 letters in SOHCAHTOA give the equation

$$\mathsf{Function}(\theta) = \frac{\mathsf{Type}\ \mathsf{A}}{\mathsf{Type}\ \mathsf{B}}$$

Step 4 The inverse of the appropriate trigonometric function will give the value for θ .

(Some examples are on the following page.)

Finding an angle in a right-angled triangle.

Examples: We will use radians as the measure of the angles in these examples. The first triangle has a side of length 3 opposite the angle θ and a side of length 7 adjacent to the angle θ . As we have O and A, we use TOA, that is,

$$tan(\theta) = \frac{3}{7} \Rightarrow \theta = tan^{-1}(\frac{3}{7})$$
 radians.

This is the exact answer, but if you were asked to give the answer to 3 decimal places, you would find $\theta = \tan^{-1}(\frac{3}{7})$ radians ≈ 0.405 radians.

The second triangle has **h**ypotenuse of length 2 and the side **o**pposite the angle ϕ of length $\sqrt{2}$. As we have O and H, we use SOH, that is,

$$\sin(\phi) = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}} \Rightarrow \phi = \sin^{-1}(\frac{1}{\sqrt{2}}) \Rightarrow \phi = \frac{\pi}{4}$$
 radians.

Note: in the second example we used one of the special triangles.

Finding an angle in a right-angled triangle.

METHOD 2: If you have two angles in a triangle, then you can find the third angle by using the fact that the three angles sum to 180° (or to π radians).

- Step 1: Identify the angles you know, noting that one is the right-angle which is 90° (or $\frac{\pi}{2}$ radians).
- Step 2: Subtract the non-right angle you know from 90° (or from $\frac{\pi}{2}$ if you are working in radians) to find the other angle.

Example: The triangle above has an angle 50° , so the angle ϕ is

$$\phi = 90 - 50 = 40^{\circ}$$
.

Note: we can check the answer by adding all the angles together and checking they add to 180° . In this example, we have $90 + 50 + \phi = 90 + 50 + 40 = 180^{\circ}$.