Assignment 1

Fake news detection via text classification

Ehu Shubham Shaw Xiaozhong Liu February 26, 2025

Task 1

Rank	Real News Word	Real News Frequency	Fake News Word	Fake News Frequency	Total Word	Total Frequency
1	trump	36508	trump	65652	trump	102160
2	state	27427	president	22522	president	46341
3	president	23819	people	22434	state	44992
4	republican	20038	state	17565	people	34877
5	government	16196	donald	16800	republican	34813
6	united	15521	clinton	16100	donald	27067
7	house	14876	obama	16043	government	23816
8	told	14221	republican	14775	could	23681
9	could	13597	american	14657	house	23526
10	official	12571	even	13516	united	23399
11	last	12545	hillary	12589	told	23205
12	people	12443	white	12486	clinton	21922
13	two	11279	news	12123	white	21843
14	party	11164	image	12046	obama	21712
15	washington	10785	make	11363	american	20640
16	former	10585	could	10084	last	20274
17	donald	10267	right	9898	two	19342
18	north	9546	know	9834	official	18252
19	country	9429	going	9558	former	17601
20	white	9357	want	9394	party	17544
21	security	9278	medium	9386	news	17493
22	leader	9002	many	9374	first	17438
23	election	8600	think	9336	even	17330
24	group	8545	first	9314	make	17310
25	minister	8527	woman	9120	campaign	17064
26	national	8359	via	9108	country	16716
27	campaign	8343	told	8984	right	16577
28	court	8341	campaign	8721	many	15935
29	tax	8320	house	8650	national	15475
30	democratic	8178	made	8401	washington	15320
31	since	8178	two	8063	hillary	15163
32	foreign	8148	united	7878	group	15138
33	first	8124	police	7788	want	14965
34	including	8083	america	7780	political	14940
35	presidential	7989	last	7729	election	14736
36	percent	7973	take	7684	may	14458
37	senate	7775	government	7620	made	14331
38	political	7537	come	7535	security	14295
39	military	7415	black	7510	since	14042
40	may	7042	back	7510	going	13826
41	support	6920	video	7485	presidential	13598
42	right	6679	may	7416	take	13587
43	vote	6644	political	7403	think	13389
44	million	6634	way	7329	police	13369

45	many	6561	country	7287	court	13008
46	week	6413	thing	7278	medium	12973
47	federal	6407	national	7116	law	12966
48	law	6356	former	7016	million	12926
49	administration	6189	say	6959	democratic	12897
50	according	6136	need	6925	support	12883
51	democrat	6119	show	6869	say	12832
52	plan	6041	law	6610	leader	12564
53	china	6018	day	6606	image	12550
54	called	6013	group	6593	including	12342
55	senator	6012	see	6552	according	12285
56	member	6005	much	6474	vote	12189
57	american	5983	party	6380	back	12171
58	make	5947	million	6292	north	12053
59	made	5930	according	6149	democrat	11987
60	take	5903	election	6136	know	11986
61	say	5873	never	6086	day	11928
62	part	5854	every	5998	woman	11774
63	russian	5830	support	5963	member	11691
64	clinton	5822	public	5933	federal	11664
65	force	5774	another	5871	need	11568
66	policy	5669	democrat	5868	percent	11508
67	obama	5669		5864	tax	11518
68	bill	5660	report since	5864	called	11318
69		5581		5693		11477
70	police	5571	really member	5686	foreign bill	11310
71	want month	5501	official	5681		11299
72			bill	5650	come	11049
73	news	5370 5354	presidential	5609	way	10886
74	russia	5322		5563	public	10864
75	day	5311	year	5545	part	10789
76	saying trade	5298	vote still	5505	senate	10713
77		5277	called	5464	russian administration	10637
78	next	5211		5356		10628
79	department whether	5204	man federal	5257	military week	10628
80	korea	5087	world	5202		10454
81			life	5192	year	10434
82	deal	5055 5014		5192	department see	10148
83	statement office	5014	story attack	5069		9893
84		5006	security	5017	report	9728
85	secretary nuclear	4970	-	5017	attack still	9643
86	public	4970	part	4963		9628
87	south	4933	fact fbi	4960	policy via	9628
88		4939	look	4945		9490
88	agency	4933	good	4945	much another	9490
90	year	4891	department	4939	minister	9433
90	company	4871	fox	4937		9432
91	meeting	4801	muslim	4929	russia show	9428
92	congress	4821	candidate	4920		9231
93	reuters	4764	russian	4883	senator work	9231
95	city three	4764	family	4840		9185
95	back	4/26	work	4840	saying	9099
96	attack	4659	actually	4829	plan candidate	9099
98	need	4643		4751	america	9071
98	international	4643	got	4719		8981
100		4635	democratic call	4713	city thing	8906
100	tuesday	4033	Call	4/13	unng	0900

campaign

Fake News Word Cloud

Fake Word cloud

Real Word cloud

Combined Word cloud

Task 2

Model	Features	Precision	Recall	Accuracy
MultinomialNB	count	0.939	0.944	0.944
Logistic Regression	count	0.993	0.995	0.994
LinearSVC	count	0.992	0.994	0.993
Random Forest	count	0.996	0.998	0.997
MultinomialNB	tfidf	0.927	0.919	0.927
Logistic Regression	tfidf	0.980	0.988	0.985
LinearSVC	tfidf	0.992	0.993	0.993
Random Forest	tfidf	0.996	0.998	0.997

- 1.True Negatives (TN): 6995 (Correctly classified negatives)
- 2.False Positives (FP): 27 (Misclassified negatives as positives)
- 3.False Negatives (FN): 16 (Misclassified positives as negatives)
- 4. True Positives (TP): 6432 (Correctly classified positives)

Error Analysis

- The model misclassified 27 negative samples as positive (False Positives).
- The model misclassified 16 positive samples as negative (False Negatives).
- The overall misclassification rate is very low (43 errors out of ~13500 samples), showing an exceptionally high recall and precision.

6993 29 1993

12

Confusion Matrix - Random Forest with count

Predicted Label

6436

6000

5000

3000

2000

- 1000

- True Negatives (TN): 6993

- False Positives (FP): 29

- False Negatives (FN): 12

- True Positives (TP): 6436

Error Analysis

- The model misclassified 29 negative samples as positive (False Positives).
- The model misclassified 12 positive samples as negative (False Negatives).
- This confusion matrix shows even fewer false negatives compared to TF-IDF, meaning count vectorization slightly outperformed TF-IDF for this dataset.

Comparison of Count vs TF-IDF for Random Forest

Feature Type	False Positives	False Negatives	Total Errors
TF-IDF	27	16	43
Count	29	12	41

- The count-based model had slightly fewer total errors (41 vs 43).
- TF-IDF had fewer false positives but more false negatives.
- The small difference in errors is negligible, meaning both feature extraction techniques worked almost equally well with Random Forest.

Task 3

ML Model	Feature	Filter	Precision	Recall	Accuracy
Random Forest	count	none	0.997	0.997	0.997
Random Forest	count	stopword_removed	0.997	0.997	0.997
Random Forest	count	nouns	0.997	0.997	0.997
Random Forest	count	adj_nouns	0.997	0.997	0.997
Random Forest	tfidf	none	0.997	0.997	0.997
Random Forest	tfidf	stopword_removed	0.997	0.997	0.997
Random Forest	tfidf	nouns	0.997	0.997	0.997
Random Forest	tfidf	adj_nouns	0.997	0.997	0.997
Logistic Regression	count	none	0.994	0.994	0.994
Logistic Regression	count	stopword_removed	0.994	0.994	0.994
Logistic Regression	count	nouns	0.994	0.994	0.994
Logistic Regression	count	adj_nouns	0.994	0.994	0.994
LinearSVC	count	none	0.993	0.993	0.993
LinearSVC	count	stopword_removed	0.993	0.993	0.993
LinearSVC	count	nouns	0.993	0.993	0.993
LinearSVC	count	adj_nouns	0.993	0.993	0.993
LinearSVC	tfidf	none	0.993	0.993	0.993
LinearSVC	tfidf	stopword_removed	0.993	0.993	0.993
LinearSVC	tfidf	nouns	0.993	0.993	0.993
LinearSVC	tfidf	adj_nouns	0.993	0.993	0.993
Logistic Regression	tfidf	none	0.985	0.985	0.985
Logistic Regression	tfidf	stopword_removed	0.985	0.985	0.985
Logistic Regression	tfidf	nouns	0.985	0.985	0.985
Logistic Regression	tfidf	adj_nouns	0.985	0.985	0.985
MultinomialNB	count	none	0.944	0.944	0.944
MultinomialNB	count	stopword_removed	0.944	0.944	0.944
MultinomialNB	count	nouns	0.944	0.944	0.944
MultinomialNB	count	adj_nouns	0.944	0.944	0.944
MultinomialNB	tfidf	none	0.927	0.927	0.927
MultinomialNB	tfidf	stopword_removed	0.927	0.927	0.927
MultinomialNB	tfidf	nouns	0.927	0.927	0.927
MultinomialNB	tfidf	adj_nouns	0.927	0.927	0.927

Performance Analysis:

Random Forest with count features:

Baseline accuracy: 0.997

stopword_removed: 0.997 (0.000, 0.00%)

nouns: 0.997 (0.000, 0.00%)

adj_nouns: 0.997 (0.000, 0.00%)

Random Forest with tfidf features:

Baseline accuracy: 0.997

stopword removed: 0.997 (0.000, 0.00%)

nouns: 0.997 (0.000, 0.00%)

adj_nouns: 0.997 (0.000, 0.00%)

Logistic Regression with count features:

Baseline accuracy: 0.994

stopword_removed: 0.994 (0.000, 0.00%)

nouns: 0.994 (0.000, 0.00%)

adj_nouns: 0.994 (0.000, 0.00%)

Logistic Regression with tfidf features:

Baseline accuracy: 0.985

stopword_removed: 0.985 (0.000, 0.00%)

nouns: 0.985 (0.000, 0.00%)

adj nouns: 0.985 (0.000, 0.00%)

LinearSVC with count features:

Baseline accuracy: 0.993

stopword_removed: 0.993 (0.000, 0.00%)

nouns: 0.993 (0.000, 0.00%)

adj_nouns: 0.993 (0.000, 0.00%)

LinearSVC with tfidf features:

Baseline accuracy: 0.993

stopword_removed: 0.993 (0.000, 0.00%)

nouns: 0.993 (0.000, 0.00%)

adj_nouns: 0.993 (0.000, 0.00%)

MultinomialNB with count features:

Baseline accuracy: 0.944

stopword_removed: 0.944 (0.000, 0.00%)

nouns: 0.944 (0.000, 0.00%)

adj_nouns: 0.944 (0.000, 0.00%)

MultinomialNB with tfidf features:

Baseline accuracy: 0.927

stopword_removed: 0.927 (0.000, 0.00%)

nouns: 0.927 (0.000, 0.00%)

adj_nouns: 0.927 (0.000, 0.00%)

Best Performing Model

• Random Forest with TF-IDF and Adj-Nouns filter was selected as the best model.

• The performance remained consistent across all variations of filters with 0.997 accuracy.

Performance Analysis and Observations

- Minimal Impact of Filtering: Applying different text processing filters (stopword removal, nouns-only, and adjective-noun extraction) did not change the model performance. This suggests that the dataset is well-structured and does not require extensive filtering.
- Random Forest consistently performed the best, maintaining 0.997 accuracy, while MultinomialNB performed the worst, with a 0.927 accuracy using TF-IDF.
- TF-IDF vs. CountVectorizer: No significant performance difference was observed between TF-IDF and CountVectorizer for Random Forest, suggesting that both feature extraction methods were equally effective for this dataset.

Task Improvement Analysis

Did the task improve performance?

- **No**, there was no performance improvement.
- The models already performed exceptionally well (above 99% accuracy for Random Forest, Logistic Regression, and LinearSVC), and additional text filtering did not impact the performance.
- The lack of improvement suggests that the dataset is already well-prepared, or the models are robust enough to handle variations in input data.
- The dataset may already contain clean and informative text, making additional filtering redundant.
- The models, especially Random Forest and LinearSVC, are powerful classifiers, which means that minor changes in feature engineering do not significantly affect their performance.

Task 4

So by using deep learning model we can possibly enhance performance Investigating Novel Features: Instead of traditional TF-IDF or count vectorization, experimenting with word embeddings (Word2Vec, GloVe, FastText) or transformer-based embeddings (BERT, RoBERTa, GPT-derived embeddings) could provide richer contextual understanding. Testing neural networks (LSTMs, Bi-LSTMs, or transformers) to capture complex text relationships.

GPT PROMPT:

Analyze the following news article and determine whether it is likely real or fake based on language style, sentiment, and factual consistency. Explain your reasoning

Responce:

- Analysis Criteria:
- 1. Language Style:
 - The phrase "just couldn't wish all Americans a Happy New Year and leave it at that" suggests subjectivity and editorialization, which are more common in opinion pieces than in neutral, fact-based journalism.
 - The phrase "Instead, he had..." implies a narrative tone, potentially leading to sensationalism rather than objective reporting.
- **Sentiment:**
 - The text carries a **negative connotation**, implying dissatisfaction with Trump's actions.
 - Real news typically presents facts with minimal emotional language, while fake news often has a strong positive or negative bias.
- **Factual Consistency:**
 - 0 Without additional context, it's unclear what Trump said or did in this situation.
 - A reliable article would include **direct quotes**, **sources**, **or evidence** rather than suggestive phrasing.

Preliminary Verdict:

- **Potentially misleading or opinion-based content** rather than an objective news report.
- Requires **fact-checking** against reputable sources to verify claims.

My analysis: Based on the experiment GPT in fact detected the fake news

fed fake text: "Donald Trump just could'nt wish all Americans a Happy New Year and leave it at that. Instead, he had".