

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA CURSO 2º

Examen Final de septiembre de 2021

NOMBRE				FIRMA				
TITULACIÓ	N: Eléctrico	Electrónico	Mecánico 🗌	Diseño I.	GRUPO: A I	ВС	C D	E

INSTRUCCIONES: Ponga su nombre y firme esta hoja; seleccione su titulación (dobles grados marque dos) y grupo. Sobre la mesa en lugar visible ponga su DNI o documento identificativo. La puntuación de cada cuestión aparece en el enunciado. Está prohibido el uso de calculadoras programables. Está prohibido el uso de teléfonos móviles y la toma de imágenes durante toda la prueba.

- C1. (0,75 puntos). Encuentra la resistencia equivalente R_T si:
- a) a y b están en cortocircuito
- b) a y b están en circuito abierto

 $R1=R2=R3=R4=2\Omega$. $R5=R6=R7=R8=R9=1\Omega$

C2. (1 punto). Usa el teorema de superposición para calcular Ix

C3. (1 punto). Calcula la resistencia a colocar entre A y B para que consuma la máxima potencia.

C4. (0,75 puntos). Usa divisor de intensidad para calcular I_0 e I_1

C5. (1,75 puntos). En el circuito de la figura, se pide: a) Valor de \mathcal{E}_g para que con el interruptor K abierto no circule intensidad por la bobina; b) Potencia compleja cedida por la fuente $10|30^{\circ} V$ con K cerrado.

C6. (1,75 puntos) En el circuito de la figura se pide: a) Potencia activa que consume la impedancia $\mathcal{Z} = 2 + 2j\Omega$; b) Potencia activa que consume la bobina acoplada de $j5\Omega$.

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA CURSO 2º Examen Final de septiembre de 2021

C7. (1,75 puntos). El sistema trifásico de la figura es equilibrado en tensiones de línea, de valor 380V y frecuencia 50 Hz y alimenta a una carga equilibrada de carácter inductivo conectada en estrella. Los vatímetros marcan W_1 =792W y W_2 =2.664W.

Se pide: a) La secuencia de fases razonando la respuesta; b) Impedancia de la carga; c) capacidad por fase de la batería de condensadores que, conectada en triángulo en paralelo con la carga, eleva el fdp del conjunto a 0,95 inductivo.

C8. (1,25 puntos). El circuito de la figura está alimentado por una fuente equilibrada de 50 Hz y secuencia directa. La lectura del vatímetro es $400\sqrt{3}$ W y la del amperímetro $10\sqrt{3}$ A. La carga es equilibrada y consume 6000VA. Calcular la capacidad C de los condensadores que conectados en estrella consiguen compensar el conjunto hasta un factor de potencia unidad

