| Boolean Sign 1 = True 0 = False        | Logical Sign T = True F = False                             |  |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------|--|--|--|--|--|
| Multiplication *                       | AND ( ^ )                                                   |  |  |  |  |  |
| Addition +                             | OR (V)                                                      |  |  |  |  |  |
| Complement (bar) $\overline{0} = 1$    | NOT (~)                                                     |  |  |  |  |  |
| Circuit Closed = 1<br>Circuit Open = 0 | => Electric can flow through => Electric can't flow through |  |  |  |  |  |

| Idempotent laws:       | X + X = X                                   | $X \cdot X = X$                               |
|------------------------|---------------------------------------------|-----------------------------------------------|
| Associative laws:      | (x + y) + z = x + (y + z)                   | (xy)z = x(yz)                                 |
| Commutative laws:      | x + y = y + x                               | xy = yx                                       |
| Distributive laws:     | x + yz = (x + y)(x + z)                     | x(y + z) = xy + xz                            |
| Identity laws:         | x + 0 = x                                   | x • 1 = x                                     |
| Domination laws:       | x + 1 = 1                                   | x • 0 = 0                                     |
| Double complement law: | $\overline{\overline{x}} = x$               |                                               |
| Complement laws:       | $x + \overline{x} = 1$ $\overline{0} = 1$   | $\frac{x\overline{x}=0}{\overline{1}=0}$      |
| De Morgan's laws:      | $\overline{x+y} = \overline{x}\overline{y}$ | $\overline{xy} = \overline{x} + \overline{y}$ |
| Absorption laws:       | x + (xy) = x                                | x(x + y) = x                                  |

**Minterms** are included for the rows in which the function evaluates to 1. New row is (+) - Or **Find expressions of Minterm**, if x = 1 then  $x \cdot Bar = 0$ .

**Maxterm** is similar to Minterms but the negation (bar) of the variable will be flipped. **Find expressions of Minterm**, if  $\mathbf{x} = 0$  then  $\mathbf{x} \cdot \mathbf{Bar} = 1$ .

Table representation of a boolean function with input variables x, y, z

Find an equivalent boolean expression for f

Find each row where f(x, y, z) = 1f(x, y, z) Z 0 0 0 0 0 1  $\overline{x}yz = 1$  if and only if x = 0, y = 1, z = 10 0 Now add them together 1 - x y z 1 1 🔷 x y z

$$f(x, y, z) = \overline{x} y z + x \overline{y} \overline{z} + x \overline{y} z + x y z$$

$$f(x, y, z) = \overline{x}yz + x\overline{y}\overline{z} + x\overline{y}z + xyz.$$

#### Captions ^

- 1. To find an equivalent Boolean expression for function f expressed by a table, first find the rows in which the value of f is 1.
- 2. f is 1 when x=0,y=1,z=1.  $\overline{x}yz=1$  if and only if x=0,y=1,z=1.
- 3. The row 100 (representing x=1,y=0,z=0), corresponds to  $x\overline{y}\overline{z}$ .
- 4. 101 corresponds to  $x\overline{y}z$  and 111 corresponds to xyz. Now add all the terms together.
- 5.  $f(x, y, z) = \overline{x}yz + x\overline{y}\overline{z} + x\overline{y}z + xyz$ .

Conj = (A\*B) Disj = (A+B)

DNF Form: Conj-Disj-Conj-... xyz +xy + w

CJF Form: Dish-Conj-Disj-... (x+y+z)\*xy\*w\*(x+w) F

**Example**: How many different Boolean functions of degree *n* are there?

**Solution**: By the product rule for counting, there are  $2^n$  different ntuples of 0s and 1s. Because a Boolean function is an assignment

of 0 or 1 to each of these different n-tuples, TARLE 4 The Number of Reals by the product rule there are 2<sup>2n</sup> different Boolean functions of degree n. The example tells us that there are 16 different Boolean functions of degree two. We display these in Table 3.

| Functions of Degree n. |                          |  |  |  |  |  |  |
|------------------------|--------------------------|--|--|--|--|--|--|
| Degree                 | Number                   |  |  |  |  |  |  |
| 1                      | 4                        |  |  |  |  |  |  |
| 2                      | 16                       |  |  |  |  |  |  |
| 3                      | 256                      |  |  |  |  |  |  |
| 4                      | 65,536                   |  |  |  |  |  |  |
| 5                      | 4,294,967,296            |  |  |  |  |  |  |
| 6                      | 18,446,744,073,709,551,6 |  |  |  |  |  |  |
|                        | 16                       |  |  |  |  |  |  |

| T/ | TABLE 3 The 16 Boolean Functions of Degree Two. |                       |                |                |                |                |                |                |                |                |                 |                 |                 |                 |                 |                 |                 |
|----|-------------------------------------------------|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| х  | у                                               | <i>F</i> <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> | F <sub>4</sub> | F <sub>5</sub> | F <sub>6</sub> | F <sub>7</sub> | F <sub>8</sub> | F <sub>9</sub> | F <sub>10</sub> | F <sub>11</sub> | F <sub>12</sub> | F <sub>13</sub> | F <sub>14</sub> | F <sub>15</sub> | F <sub>16</sub> |
| 1  | 1                                               | 1                     | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 0              | 0               | 0               | 0               | 0               | 0               | 0               | 0               |
| 1  | 0                                               | 1                     | 1              | 1              | 1              | 0              | 0              | 0              | 0              | 1              | 1               | 1               | 1               | 0               | 0               | 0               | 0               |
| 0  | 1                                               | 1                     | 1              | 0              | 0              | 1              | 1              | 0              | 0              | 1              | 1               | 0               | 0               | 1               | 1               | 0               | 0               |
| 0  | 0                                               | 1                     | 0              | 1              | 0              | 1              | 0              | 1              | 0              | 1              | 0               | 1               | 0               | 1               | 0               | 1               | 0               |



The NAND Operator mean Not And (Opposite with And)

Symbol: Arrow Up

The NOR Operator mean Not OR (Opposite with Or)

Symbol: Arrow Down

### Elimination of addition (+) in DNF

De Morgan's law with three terms  $a+b+c=\overline{a\cdot b\cdot c}$  is applied with a =  $\overline{x}$   $\overline{y}$ , b =  $\overline{x}$ y, and c = xy.

#### **Another Morgan Law**

$$x+y=\overline{\bar x\cdot\bar y}$$

The NAND operation (which stands for "not and") is denoted by the symbol  $\uparrow$ . The expression  $x \uparrow y$  is equivalent to xy. The NOR operation (which stands for "not or") is denoted by the symbol  $\downarrow$ . The expression  $x \downarrow y$  is equivalent to x + y.

### Some others:

$$\overline{a} = a \uparrow a$$
  $xy = \overline{x \uparrow y} = (x \uparrow y) \uparrow (x \uparrow y)$ 

$$\bigcirc$$
  $X + y = \overline{X \perp y}$ 

Expression satisfied is when its final produce equal to 1

## **Digital Circuit**



## **K MAP**

The position is matter so follow template below:

To simplify expression, we put 1 into squares that indicate each element in our expression.



# For example:

Step 1:  $xy\sim z$ , then we put 1 on the row of x and column that display  $y\sim z$ .

Step 2: circle them but based on an even number, can't be 3, 5 or diagonal line.

Step 3: Because this K map is a cylinder so check the edges.

Step 4: To simplify check if that variable is staying the same or different. if x + x then it's x + y, then it's y + y,

|                                                                                                                                                        | yz | $y\bar{z}$ | $\bar{y}\bar{z}$ | $\bar{y}z$ |           | yz | $y\bar{z}$ | $\bar{y}\bar{z}$ | $\bar{y}z$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|------------------|------------|-----------|----|------------|------------------|------------|
| x                                                                                                                                                      | 0  | 1          | 1                | 0          | x         | 0  | 0          | 0                | 0          |
| $\bar{x}$                                                                                                                                              | 0  | 1          | 1                | 0          | $\bar{x}$ | 1  | 1          | 1                | 1          |
| $xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z} = \bar{z} \qquad \bar{x}yz + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z} = \bar{x}$ |    |            |                  |            |           |    |            |                  |            |

Blue shapes indicate cylinder shape. Simplify them.  $\sim xyz$  and  $\sim x\sim yz => \sim xz$  because  $\sim x$  and z are not changed.

|           | yz | $y\bar{z}$ | $\bar{y}\bar{z}$ | $\bar{y}z$ |
|-----------|----|------------|------------------|------------|
| x         |    |            | 1                | 1          |
| $\bar{x}$ | 1  |            | 1                | 1          |