Linguagens Regulares

Teorema de Kleene

Uma linguagem L é aceita por um autômato com alfabeto Σ se, e somente se, L for um conjunto regular sobre Σ .

- Prova Mostrar que:
 - 1. expressão regular → autômato, e
 - 2. autômato → expressão regular.

1. Todo conjunto regular é aceito por um autômato. Definição recursiva:

1. Todo conjunto regular é aceito por um autômato. Definição recursiva:

- 2. Toda linguagem aceita por um autômato é regular. Grafo de Expressão:
- a) Use o autômato M acrescentando os estados I (inicial) e F (final).
- b) Crie as transições para o estado inicial q₀ e para todo estado final q_f.

transforme cada transição do autômato $\rightarrow \underbrace{q_i}^{a,b} \rightarrow \underbrace{q_j}$ em uma expressão regular $\rightarrow \underbrace{1}^{a \cup b} \rightarrow \underbrace{q_j}$.

A expressão final corresponde ao label w da transição:

Linguagens Regulares

- Uma linguagem é regular quando:
 - é denotada por uma expressão regular, ou
 - é aceita por um AFD, AFN ou AFN-λ.
- Propriedades de fechamento sobre Linguagens Regulares. Se M e N são linguagens regulares então:
 - M ∪ N, M N, M*, M', M ∩ N são também regulares.

Prove!

Linguagens Não Regulares

- > Teorema
 - A linguagem { aibi, i ≥ 0 } não é regular.
 - Prova: de não-existência.
- Corolário
 - Seja L uma linguagem sobre Σ . Se existem *strings* $w \in \Sigma^*$ e $v \in \Sigma^*$ tais que:
 - $w_i v_i \in L$, para todo $i \ge 0$, e
 - w_i v_k ∉ L, para todo i ≠ k,
 - então L não é regular.

Linguagens Não Regulares

- > Exemplos:
 - A linguagem dos palíndromos sobre {a, b},
 - $L = \{ a^n b^n c^n \}.$

Prove!

Pumping Lemma

- > Lema
 - Seja M um AFD com k estados. Se M aceita um string w tal que $|w| \ge k$, então existe pelo menos um ciclo no caminho de M no qual w é aceito.
 - todo string de tamanho maior ou igual a k percorre um ciclo em M em seus p primeiros símbolos, p ≤ k.

Pumping Lemma

- Seja L uma linguagem regular aceita por um autômato de k estados. Seja z ∈ L, tal que |z| ≥ k. Então z pode ser escrito na forma uvw, onde:
 - $|uv| \leq k$,
 - |v| > 0, e
 - $uv^{i}w \in L$ para todo $i \ge 0$.

Exemplo

Provar que L = $\{a^ib^i, i \ge 0\}$ não é regular.

Suponha a existência de um AFD M de k estados para L. M aceita o string $z = a^k b^k$. Como $|z| \ge k$, z pode ser escrito da forma uvw, com $|uv| \le k$ e |v| > 0.

Seja |u| = i e |v| = j então $z = a^i$ aj $a^{k-(i+j)}$ b^k , j > 0.

Pelo lema do bombeamento, $x = uv^2w$ também pertence a L.

Mas $x = uv^2w = a^i a^{2j} a^{k-(i+j)} b^k = a^{k+j} b^k$, que não pertence a L.

Conclusão: A linguagem não é regular!