

Digitaltechnik Vorlesung 2: Zusätzliches Material

Mathieu Luisier
Institut für Integrierte Systeme, ETH Zürich

Schalter: Strom und Spannung

Wann fliesst ein Strom I durch einen Schalter?

Kann eine Spannung V_{sch} über einem Schalter gemessen werden?

Spannungsquelle

Definition der Spannungsquelle: beide Darstellungen sind äquivalent

Stromrichtung

Analyse von Schaltungen in der Schalterlogik

 U_{S}

UY

Block mit Schaltern

 V_{DD}

Diese beiden Schaltungen sind äquivalent:

U_S: Spannung über dem Schalterblock

U_R: Spannung über dem Widerstand R

U_Y: Ausgangsspannung

Analyse:

 $V_{DD}=U_S+U_R$ und $U_Y=U_R$

- 1. Wenn es keinen Strompfad gibt (I=0): $U_R=0$, $U_S=V_{DD} \Longrightarrow U_Y=0$ (logische 0)
- 2. Wenn es einen Strompfad gibt ($I\neq 0$): $U_R=V_{DD}$, $U_S=0 \Rightarrow U_Y=V_{DD}$ (logische 1)

UND Verknüpfung

Alternative Form der Schaltung für die UND-Verknüpfung

Diese Schaltung und die auf Slide 12 des Vorlesung2.pdf Dokuments sind identisch. Sie sind nur anders gezeichnet

Wenn Aussage A (Eingang) wahr *oder* Aussage B (Eingang) wahr ist, dann ist Aussage Y (Ausgang) wahr

(1) Wahrheitstabelle:

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Wenn Aussage A (Eingang) wahr *oder* Aussage B (Eingang) wahr ist, dann ist Aussage Y (Ausgang) wahr

(1) Wahrheitstabelle:

 $1 \stackrel{\frown}{=} 0.8 \text{ V } (V_{DD})$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

(2) Schalterlogik:

Wenn Aussage A (Eingang) wahr *oder* Aussage B (Eingang) wahr ist, dann ist Aussage Y (Ausgang) wahr

(1) Wahrheitstabelle:

0 =	0 V	(Masse)
1 ≘	8.0	$V(V_{DD})$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

(2) Schalterlogik:

Wenn Aussage A (Eingang) wahr *oder* Aussage B (Eingang) wahr ist, dann ist Aussage Y (Ausgang) wahr

(1) Wahrheitstabelle:

0 =	0 V	(Masse	<u> </u>
1 ≘	8.0	V (V _{DD})	

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

(2) Schalterlogik:

ÄQUIVALENZ-Verknüpfung, XNOR-GATTER

Wahrheitstabelle:

Α	В	$S = \overline{A} \wedge \overline{B}$	$\mathbf{Q} = \mathbf{A} \wedge \mathbf{B}$	$Y = S \vee Q$
0	0	1	0	1
0	1	0	0	0
1	0	0	0	0
1	1	0	1	1

Nur wenn beide Eingänge äquivalent sind, ist der Ausgang 1

Wahrheitstabelle eines UND-Gatters mit 3 Eingängen

Die Wahrheitstabelle eines UND-Gatters mit 3 Eingängen besitzt **4** Spalten und **2**³=**8** Zeilen

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

NOR-Gatter mit 4 Eingängen

Nur wenn A=B=C=D=0 ist Y=1

NAND mit 3 Eingängen aus 3 Schaltern

Wenn A=B=C=1, dann ist der Ausgang Y mit der Masse gebunden, i.e. Y=1 und die angelegte Spannung V_{DD}=0.8 V fällt über den Serie Widerstand R.

Der Vorteil dieser Variante ist, dass die Verzögerungszeit, bis das Signal am Ausgang Y geändert wird, wenn die Eingänge modifiziert werden, viel kleiner ist als im Fall von kombinierten Grundgattern.

Schaltnetz zu analysieren (1)

Schaltnezt

Logische Gleichung

$$\mathbf{Y} = ((\mathbf{A} \wedge \mathbf{C}) \wedge \mathbf{B}) \vee (((\mathbf{B} \wedge \mathbf{C}) \vee \mathbf{A}) \wedge \overline{\mathbf{C}})$$

Schaltnetz zu analysieren (2)

Wahrheitstabelle

Α	В	С	S	Q	R	Y
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	1	1	1
1	0	1	0	1	0	0
1	1	0	0	1	1	1
1	1	1	1	1	0	1

$$S = (A \land C) \land B \quad Q = (B \land C) \lor A \quad R = Q \land \overline{C} \quad Y = S \lor R$$

Schaltnetz zu analysieren (3)

(1)

Wann ist Y=1?

Es gibt 3 Fälle, wo Y=1:

Wenn A=1 UND B=0 UND C=0

ODER

Wenn A=1 UND B=1 UND C=0 (2)

ODER

• Wenn A=1 **UND** B=1 **UND** C=1 (3)

Diese 3 Bedingungen können so zusammengefasst werden:

$$Y = (A \wedge \overline{B} \wedge \overline{C}) \vee (A \wedge B \wedge \overline{C}) \vee (A \wedge B \wedge C)$$
(1) (2) (3)