Die gesetzlichen Einheiten in Deutschland

Vorwort

Das Internationale Einheitenystem SI (Système international d'unités) ist ein Kind des metrischen Systems und wurde von der 11. Generalkonferenz für Maß und Gewicht im Jahr 1960 auf eben diesen Namen getauft. Mit diesem System wurden die Einheiten im Messwesen neu geordnet.

Das SI fußt auf sieben Basiseinheiten und zahlreichen "abgeleiteten Einheiten", die durch reine Multiplikation und Division aus den Basiseinheiten, immer mit dem Faktor 1, gebildet werden.

Das SI entstammt den Bedürfnissen der Wissenschaft, ist aber mittlerweile auch das vorherrschende Maßsystem der internationalen Wirtschaft. In Deutschland sind die SI-Einheiten als gesetzliche Einheiten für den amtlichen und geschäftlichen Verkehr eingeführt. Um die nationale und internationale Einheitlichkeit der Maße zu sichern, sind die Aufgaben der Darstellung, Bewahrung und Weitergabe der Einheiten im Messwesen der Physikalisch-Technischen Bundesanstalt (PTB), dem nationalen Metrologieinstitut Deutschlands, übertragen worden. Einzelheiten hierzu sind im Einheiten- und Zeitgesetz formuliert.

Literatur

- Bureau international des poids et mesures (BIPM): Le Système international d'unités (SI) – The International System of Units (SI).
 8° édition, 2006. Pavillon de Breteuil,
 F-92312 Sèvres Cedex, France
- Ambler Thomson, Barry N. Taylor (Hrg.): Guide for the use of the International System of Units (SI).
 National Institute of Standards and Technology. NIST Special Publication 811, 2008 Edition

Braunschweig, Juni 2012

Gesetze, Richtlinien, Normen

Gesetz über die Einheiten im Messwesen und die Zeitbestimmung (Einheiten- und Zeitgesetz – EinhZeitG) Neufassung vom 22. Februar 1985, zuletzt geändert durch das Gesetz zur Änderung des Gesetzes über Einheiten im Messwesen und des Eichgesetzes, zur Aufhebung des Zeitgesetzes, zur Änderung der Einheitenverordnung und zur Änderung der Sommerzeitverordnung vom 3. Juli 2008 (BGBl. I S. 1185)

Ausführungsverordnung zum Gesetz über die Einheiten im Messwesen und die Zeitbestimmung

(Einheitenverordnung – EinhV) vom 13. Dezember 1985 (BGBl. I S. 2272), zuletzt geändert durch die 3. Verordnung zur Änderung der Einheitenverordnung vom 25. September 2009 (BGBl. I S. 3169)

Richtlinie 80/181/EWG des Rates vom

20. Dezember 1979 zur Angleichung der Rechtsvorschriften der Mitgliedsstaaten über die Einheiten im Messwesen. Der vollständige Änderungsstand ist:

- 85/1/EWG vom 18. Dezember 1984 (ABl. L 2 vom 3.1.1985)
- 89/617/EWG vom 27. November 1989 (ABl. L 357 vom 7.12.1989)
- 1999/103/EG vom 24. Januar 2000 (ABl. L 34 vom 9. 2. 2000)
- 2009/3/EG vom 11. März 2009 (ABl. L 114 vom 7.5.2009)

DIN 1301 Teil 1, 2010-10

Einheiten; Einheitennamen, Einheitenzeichen

DIN 1301 Teil 1 Beiblatt 1, 04.82

Einheiten; Einheitenähnliche Namen und Zeichen

DIN 1301 Teil 2, 02.78

Einheiten; Allgemein angewendete Teile und Vielfache

DIN 1301 Teil 3, 10.79

Einheiten; Umrechnungen für nicht mehr anzuwendende Einheiten DIN 1304 Teil 1, 03.94

Formelzeichen; Allgemeine Formelzeichen

DIN 5493 Teil 1, 02.93

Logarithmische Größen und Einheiten

ISO 1000: 11.92

SI units and recommendations for the use of their multiples and of certain other units

ISO 31-0 bis ISO 31-XIII

(Grundsätze zu Größen und Einheiten sowie Einheiten für spezielle physikalische Größen)

SI-Basiseinheiten

Basisgröße	Basiseinheit		Definition
	Name	Zeichen	(siehe auch DIN 1301)
Länge	Meter	m	Der Meter ist die Länge der Strecke, die Licht im Vakuum während der Dauer von (1/299 792 458) Sekunden durchläuft.
Masse	Kilogramm	kg	Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.
Zeit	Sekunde	S	Die Sekunde ist das 9 192 631 770fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids ¹³³ Cs entsprechenden Strahlung.
elektrische Stromstärke	Ampere	A	Das Ampere ist die Stärke eines konstanten elektrischen Stromes, der, durch zwei parallele, geradlinige, unendlich lange und im Vakuum im Abstand von einem Meter voneinander angeordnete Leiter von vernachlässigbar kleinem, kreisförmigem Querschnitt fließend, zwischen diesen Leitern je einem Meter Leiterlänge die Kraft $2 \cdot 10^{-7}$ Newton hervorrufen würde.
Temperatur	Kelvin	K	Das Kelvin, die Einheit der thermodynamischen Temperatur, ist der 273,16te Teil der thermodynamischen Temperatur des Tripelpunktes des Wassers. Diese Definition bezieht sich auf Wasser, dessen Isotopenzusammensetzung durch folgende Stoffmengenverhältnisse definiert ist: 0,000 155 76 Mol ² H pro Mol ¹ H, 0,000 379 9 Mol ¹⁷ O pro Mol ¹⁶ O und 0,002 005 2 Mol ¹⁸ O pro Mol ¹⁶ O.
Stoffmenge	Mol	mol	Das Mol ist die Stoffmenge eines Systems, das aus ebenso vielen Einzelteilchen besteht, wie Atome in 0,012 Kilogramm des Kohlenstoffnuklids ¹² C enthalten sind. Bei Benutzung des Mol müssen die Einzelteilchen spezifiziert sein und können Atome, Moleküle, Ionen, Elektronen sowie andere Teilchen oder Gruppen solcher Teilchen genau angegebener Zusammensetzung sein.
Lichtstärke	Candela	cd	Die Candela ist die Lichtstärke in einer bestimmten Richtung einer Strahlungsquelle, die monochromatische Strahlung der Frequenz $540 \cdot 10^{12}$ Hertz aussendet und deren Strahlstärke in dieser Richtung (1/683) Watt durch Steradiant beträgt.

SI-Vorsätze

Potenz	Name	Zeichen	Potenz	Name	Zeichen
10^{24}	Yotta	Y	10-1	Dezi	d
10^{21}	Zetta	Z	10^{-2}	Zenti	С
10^{18}	Exa	Е	10^{-3}	Milli	m
10^{15}	Peta	P	10^{-6}	Mikro	μ
10^{12}	Tera	T	10^{-9}	Nano	n
109	Giga	G	10^{-12}	Piko	р
10^{6}	Mega	M	10^{-15}	Femto	Î
10^{3}	Kilo	k	10^{-18}	Atto	a
10^{2}	Hekto	h	10^{-21}	Zepto	Z
10^{1}	Deka	da	10^{-24}	Yokto	у

Größen und ihre Einheiten

Größe	Einheitenname	Zeichen	Beziehur	ngen und Bemerkungen
Länge	Meter	m	SI-Basis	einheit
	Astronomische Einheit	AE	1 AE	= 149,597 870 · 10 ⁹ m • mittl. Entfernung Erde–Sonne
	Parsec	pc	1 pc	$= 206\ 265\ AE = 30,857 \cdot 10^{15}\ m$
	Lichtjahr	Lj Å	1 Lj	$= 9,460 530 \cdot 10^{15} \text{ m} = 63240 \text{ AE} = 0,306 59 \text{ pc}$
	Ångström	Å	1 Å	$=10^{-10} \mathrm{m}$
	typograph. Punkt	p	1 p	= 0,376 065 mm • im Druckereigewerbe
	inch*	in	1 in	$= 2.54 \cdot 10^{-2} \text{ m} = 25.4 \text{ mm}^{**}$
	foot	ft	1 ft	= 0.3048 m = 30.48 cm
	yard	yd	1 yd	= 0,9144 m
	mile	mile	1 mile	= 1609,344 m
	Internat. Seemeile	sm C	1 sm	= 1852 m
	Fathom	fm	1 fm	= 1,829 m • in der Seeschifffahrt
ebener Winkel	Radiant	rad	1 rad	= 1 m/m • Zentriwinkel $r = 1$ m, Bogen = 1 m
	Vollwinkel			$= 2\pi \cdot \text{rad} = 360^{\circ} = 400 \text{ gon}$
	Grad	0	1°	$= (\pi/180) \text{ rad} = 1,1111 \text{ gon}$
	Minute	,	1'	= 1°/60 • auch Winkelminute genannt
	Sekunde	"	1"	= 1'/60 = 1°/3600 • auch Winkelsekunde genannt
	Gon	gon	1 gon	= $(\pi/200)$ rad = 0.9° • Neugrad genannt
	Neuminute	С	1 ^c	$= 10^{-2} \text{ gon} = 0.5\pi \cdot 10^{-4} \text{ rad}$
	Neusekunde	сс	1^{cc}	$= 10^{-4} \text{ gon} = 0.5\pi \cdot 10^{-6} \text{ rad}$
räumlicher Winkel	Steradiant	sr	1 sr	= 1 m ² /m ² • r = 1 m, Kalottenfläche = 1 m ²
Brechkraft	Dioptrie	dpt	1 dpt	= 1/m • nur bei optischen Systemen
Fläche	Quadratmeter	m^2	_	nicht "qm" verwenden
	Ar	a	1 a	= 100 m ² • nur für Grund- und Flurstücke
	Hektar	ha	1 ha	= $100 \text{ a} = 10^4 \text{ m}^2$ • nur für Grund- und Flurstücke
	Barn	b	1 b	= 10 ⁻²⁸ m ² • in Atom- und Kernphysik
	Morgen		1 Morge	$n = 0.25 \text{ ha} = 2500 \text{ m}^2$ • regionale Unterschiede
	square foot	sq ft	1 sq ft	$= 0.092 903 06 \text{ m}^2$
	acre	ac	1 ac	$= 4046,856 \text{ m}^2$
	square yard	sq yd	1 sq yd	$= 0.8361 \text{ m}^2$

Gesetzliche Einheiten: Im geschäftlichen und amtlichen Verkehr müssen Größen in gesetzlich festgelegten Einheiten angegeben werden. (Einheiten- und Zeitgesetz, Einheitenverordnung).

[•] Gebräuchliche Einheiten: dürfen nur verwendet werden, wenn die Angabe der Größen in gesetzlichen Einheiten nicht vorgeschrieben ist (z.B. im Bereich der Forschung) oder zusätzlich zu diesen.

kursiv gedruckte Einheitennamen: gemäß EG-Richtlinie in einigen Ländern, in speziellen Anwendungsbereichen oder Verwendungszwecken zulässig

^{**} fett gedruckte Endziffer: Wert gilt als exakt (siehe auch ISO 31)

Größe	Einheitenname	Zeichen	Beziehungen und Bemerkungen
Volumen	Kubikmeter Liter	m³ l oder L	• nicht "cbm" verwenden $1 l = 1 L = 10^{-3} \text{ m}^3 = 1 \text{ dm}^3 = 10^3 \text{ cm}^3$ • nicht "ccm" verwenden
Raummaße für Schiffe	barrel Gill fluid ounce pint quart gallon Bruttoraumzahl	bbl gill fl oz pt qt gal BRZ	$\begin{array}{lll} 1 \ barrel &= 158,987 \ l & \bullet \ nur \ f\ddot{u}r \ Roh\ddot{o}l \\ 1 \ gill &= 0,142 \cdot 10^{-3} \ m^3 & \bullet \ nur \ f\ddot{u}r \ Spirituosen \\ 1 \ fl \ oz &= 28,4131 \cdot 10^{-6} \ m^3 = 28,4131 \ ml & 29,5735 \ ml \ (USA) \\ 1 \ pt &= 0,568 \ 262 \cdot 10^{-3} \ m^3 = 568,262 \ ml & 473,176 \ ml \ (USA) \\ 1 \ qt &= 1,136 \ 52 \cdot 10^{-3} \ m^3 = 1,136 \ 521 & 0,946 \ 353 \ l \ (USA) \\ 1 \ gal &= 4,546 \ 09 \cdot 10^{-3} \ m^3 = 4,54 \ 609 \ l & 3,785 \ 41 \ l \ (USA) \\ BRZ &= K_1 \cdot V \ (K_1 = 0,2 + 0,02 \ log_{10} \ V) \\ & \bullet \ Schiffs-Gesamtgr\ddot{o} \ Se \\ & (V: Inhalt \ aller \ geschlossenen \ R\ddot{a}ume \ in \ m^3) \end{array}$
	Nettoraumzahl	NRZ	Nutzbarkeit eines Schiffes; u.a. abhängig vom Rauminhalt aller Laderäume
Volumenstrom, Voluspezifisches Volumen		m³/s m³/kg	$1 \text{ m}^3/\text{s} = 60 \cdot 10^3 \text{ l/min} = 3600 \text{ m}^3/\text{h}$ $1 \text{ m}^3/\text{kg} = 1 \text{ l/g}$
Masse	Kilogramm Gramm Tonne metrisches Karat atomare Masseneinheit	kg g t	SI-Basiseinheit 1 g = 10^{-3} kg • nicht "gr." oder "Gr." verwenden 1 t = 10^3 kg 1 Karat = 0.2 g = $0.2 \cdot 10^{-3}$ kg • nur für Edelsteine (Abk. für Karat: Kt oder ct) 1 u = $1,660$ 565 $5 \cdot 10^{-27}$ kg • $1/12$ der Masse eines Atoms des Nuklids 12 C 1 \mathcal{B} = 0.5 kg • seit 1884 keine gesetzliche Einheit
	Zentner Doppelzentner ounce (avoirdupois) troy ounce pound	Ztr dz oz oz tr lb	$\begin{array}{lll} 1 \ Ztr & = 50 \ kg \\ 1 \ dz & = 100 \ kg \\ 1 \ oz & = 28,3495 \cdot 10^{-3} \ kg = 28,3495 \ g \\ 1 \ oz \ tr & = 31,10 \cdot 10^{-3} \ kg = 31,10 \ g & \bullet \ f\"{u}r \ Gold \\ 1 \ lb & = 0,453 \ 592 \ 37 \ kg = 453,592 \ 37 \ g \end{array}$
Gewichtstonne	tons/deadweight	ton dw t dw	1 ton dw = 1016 kg 1 t dw = 1000 kg • Tragfähigkeit von Schiffen
längenbezogene Masse flächenbezogene Masse Massenstrom Dichte	Tex Denier	tex den 1 kg/m² kg/s kg/m³	1 tex = 10 ⁻⁶ kg/m = 1 g/km • nur für Textilien 1 den = 1/9 tex = 1/9 g/km 1 kg/m ² = 1 mg/mm ² 1 kg/s = 60 kg/min = 3,6 t/h = 86,4 t/d 1 kg/m ³ = 1 g/l = 10 ⁻³ kg/l
Mostgewicht	Öchslegrad	Oe°	Das Mostgewicht in Öchslegrad entspricht dem Zahlenwert der Dichte (von Traubenmost) in kg/m³ minus 1000.

Größe	Einheitenname	Zeichen	Beziehur	ngen und Bemerkung	en
Zeit	Sekunde	s	SI-Basis	einheit • Vors	ätze nur bei s verwenden
Zeitspanne,	Minute	min	1 min	= 60 s	
Dauer	Stunde	h	1 h	= 60 min = 3600 s	
	Tag	d	1 d	= 24 h = 1440 min =	= 86 400 s
Frequenz	Hertz	Hz	1 Hz	= 1/s	
Drehzahl, Dreh-		1/s			t "U/s" od. "U/min" verwenden
geschwindigkeit*		1/min	1/min	= 1/(60s)	
Geschwindigkeit		m/s	1 m/s	= 3.6 km/h	
	TZ 4	1		*	"Stundenkilometer" verwenden
D 11 .	Knoten	kn	1 kn	$= \text{sm/h} = 0.514\overline{4} \text{ m/}$	
Beschleunigung	Gal	m/s² Gal	Normalt 1 Gal	fallbeschleunigung g_n = 1 cm/s ²	= 9,806 65 m/s ² • nur in der Geodäsie
TAT: 1 1 1 1 1 1 1			I Gal	$= 1 \text{ cm/s}^2$	• nur in der Geodasie
Winkelgeschwindigkei		rad/s		. 1	
Kraft	Newton	N	1 N	$= 1 \text{ kg} \cdot \text{m/s}^2$ = 10^{-5} N	auch Gewichtskraft genannt
	Dyn Pond	dyn	1 dyn 1 p	$= 10^{5} \text{ N}$ $= 9,806 65 \cdot 10^{-3} \text{ N}$	• 1 kp ≈10 N
Impuls	Tolid	p N·s	1 N · s	$= 1 \text{ kg} \cdot \text{m/s}$	• Masse · Geschwindigkeit
Schalldruck**	Pascal	Pa	1 Pa	$= 1 \text{ Kg} \cdot \text{III/S}$ $= 1 \text{ N/m}^2$	• Wasse · Geschwindigkeit
	Pascai		1 Pa	= 1 N/III ⁻	DINI 1222
Schallleistung***		W			• DIN 1332
Schallintensität**, Schallenergie-					
flussdichte		W/m²			• DIN 1332
Lärmdosis***		$Pa^2 \cdot s$			• DIN 45 644
Druck,	Pascal	Pa	1 Pa	$-1 N/m^2 - 1 lra/(c^2)$	• m) $\approx 0.75 \cdot 10^{-2} \text{ mmHg}$
mechanische	1 ascai	1 a	1 MPa	= 1 N/m - 1 kg/(s) = 1 N/mm ²	• für Festigkeitsangaben
Spannung	Bar	bar	1 bar	$= 10^5 \text{ Pa} = 10^3 \text{ mbar}$	e e
97	Millimeter-	mmHg		g = 133,322 Pa = 1,33.	
	Quecksilbersäule	C		,	• nur in Heilkunde zulässig
	physik. Atmosphäre	atm	1 atm	= 1,013 2 5 bar	
	techn. Atmosphäre	at	1 at	$= 1 \text{ kp/cm}^2 = 0.980 \text{ c}$	
	Torr	Torr	1 Torr	= (101 325/760) Pa	
	Meter-Wassersäule	mWS	1 mWS	= 9806,65 Pa = 98,0	
	psi	lbf/in²	I lbt/in ²	= 68,947 57 mbar =	6894,/5/ Pa

^{*} in der Elektrotechnik Kreisfrequenz

** in der Akustik werden häufig logarithmierte Verhältnisgrößen nach DIN 5493 Teil 1 verwendet (z.B. Schalldruckpegel)

*** auf den Nennwert bezogen Schalldosis genannt

Größe	Einheitenname	Zeichen	Beziehungen und Bemerkungen
dynamische	Pascalsekunde	Pa · s	1 Pa · s = 1 N · s/m ² = 1 kg/(s · m) • DIN 1342
Viskosität	Poise	P	1 P = 0,1 Pa · s = 0,1 N · s/m ²
kinematische		m^2/s	• DIN 1342
Viskosität	Stokes	St	1 St = 10^{-4} m ² /s
Arbeit, Energie,	Joule	J	1 J = 1 N · m = 1 W · s = $(1/3,6) \cdot 10^{-6} \text{ kW} \cdot \text{h} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2$
Wärmemenge	Kilowattstunde	$kW \cdot h$	$1 \text{ kW} \cdot \text{h} = 3.6 \text{ MJ} = 860 \text{ kcal}$
	Elektronvolt	eV	$1 \text{ eV} = 160,218 \text{ 92} \cdot 10^{-21} \text{ J}$
	Erg	erg	1 erg = 10^{-7} J
	Kalorie	cal	1 cal = $4,1868 \text{ J} = 1,163 \cdot 10^{-3} \text{ W} \cdot \text{h}$
	Therm	therm	1 therm = $105,50 \cdot 10^6 \text{ J}$
Brennwert		kcal/l	1 kcal/l = 4,1868 kJ/l • auch oberer Heizwert
	Tonne Steinkohlen-	kcal/kg	1 kcal/kg = 4,1868 kJ/kg
	einheiten	t SKE	1 t SKE = $7 \cdot 10^6$ kcal = $29,3076 \cdot 10^9$ J = $8,141 \cdot 10^3$ kW · h • Heizwert von 7000 kcal/kg
Wärmekapazität	chiliciten	J/K	1 J/K = 1 m ² · kg/(s ² · K) • Entropie
Energiedichte		J/M ³	$1 \text{ J/m}^3 = 1 \text{ kg/(m} \cdot \text{s}^2)$
- C		<i>'</i>	
spezifische Energie		J/kg	1 J/kg = $1 \text{ m}^2/\text{s}^2$
molare Energie		J/mol	1 J/mol = 1 W · s/mol = 1 m ² · kg/(s ² · mol)
molare		J/(mol·K)	$1 \text{ J/(mol} \cdot \text{K)} = 1 \text{ m}^2 \cdot \text{kg/(s}^2 \cdot \text{K} \cdot \text{mol)}$ • molare Entropie
Wärmekapazität	TAT	T.4.7	1747 17/ 187 / 187 A 1 2 1 / 3
Leistung,	Watt	W	1 W = 1 J/s = 1 N · m/s = 1 V · A = 1 $m^2 \cdot kg/s^3$
Energiestrom,	Voltampere	VA	1 VA = 1 W • Scheinleistung
Wärmestrom	Var	var	1 var = 1 W • Blindleistung
TT : 1 : .	Pferdestärke	PS	1 PS = $75 \text{ m} \cdot \text{kp/s} = 0,735 498 75 \text{ kW}$
Heizleistung		kcal/h	1 kcal/h = 1,163 W
Wärmeleitfähigkeit		$W/(m \cdot K)$	$1 \text{ W/(m \cdot \text{K})} = 1 \text{ m} \cdot \text{kg/(s}^3 \cdot \text{K)} \approx 0.860 \text{ kcal/(m \cdot h \cdot ^\circ\text{C})}$
* · * · 1 1		$kcal/(m \cdot h \cdot {}^{\circ}C)$	$1 \text{ kcal/(m} \cdot \text{h} \cdot \text{°C}) = 1,163 \text{ W/(m} \cdot \text{K)}$
Wärmedurchgangs-		$W/(m^2 \cdot K)$	$1 \text{ W/(m}^2 \cdot \text{K)} = 1 \text{ m} \cdot \text{kg/(s}^3 \cdot \text{m} \cdot \text{K)} \approx 0,860 \text{ kcal/(m}^2 \cdot \text{h} \cdot \text{°C)}$
koeffizient		$kcal/(m \cdot h \cdot {}^{\circ}C)$	$1 \text{ kcal/}(\text{m}^2 \cdot \text{h} \cdot {}^{\circ}\text{C}) = 1,163 \text{ W/}(\text{m}^2 \cdot \text{K})$
Wärmestromdichte, Bestrahlungsstärke		W/m ²	$1 \text{ W/m}^2 = 1 \text{ kg/s}^3$
Strahlstärke		W/sr	$1 \text{ W/sr} = 1 \text{ m}^2 \cdot \text{kg/(s}^3 \cdot \text{sr})$
Strahldichte		$W/(m^2 \cdot sr)$	$1 \text{ W/(m}^2 \cdot \text{sr}) = 1 \text{ kg/(s}^3 \cdot \text{sr})$ $1 \text{ W/(m}^2 \cdot \text{sr}) = 1 \text{ kg/(s}^3 \cdot \text{sr})$
		(111 01)	() - 1-19/ (0 02)

Größe	Einheitenname	Zeichen	Beziehungen und Bemerkungen
elektr. Stromstärke	Ampere	A	SI-Basiseinheit
elektr. Spannung, elektr. Potential, elektromotor. Kraft	Volt	V	1 V = 1 W/A = 1 kg · m ² /(A · s ³)
elektr. Widerstand	Ohm	Ω	1 Ω = 1 V/A = 1/S = 1 W/A ² = 1 kg · m ² /(A ² · s ³)
elektr. Leitwert	Siemens	S	1 S = 1 A/V = $1/\Omega = 1$ W/V ² = 1 A ² · s ³ /(kg · m ²)
elektr. Ladung, Elektrizitätsmenge	Coulomb Amperestunde	C A · h	$1 C = 1 A \cdot s$ $1 A \cdot h = 3600 A \cdot s = 3600 C$
elektr. Ladungsdichte	•	C/m³	$1 \text{ C/m}^3 = 1 \text{ A} \cdot \text{s/m}^3$
elektr. Flussdichte, Verschiebung		C/m ²	$1 \text{ C/m}^2 = 1 \text{ A} \cdot \text{s/m}^2$
elektr. Kapazität	Farad	F	1 F = 1 C/V = 1 A · s/V = 1 A ² · s ⁴ /(kg · m ²)
Permittivität		F/m	1 F/m = 1 A · s/(V · m) = 1 A ² · s ⁴ /(kg · m ³)
elektr. Feldstärke		V/m	$1 \text{ V/m} = 1 \text{ kg} \cdot \text{m/(A} \cdot \text{s}^3) \qquad \bullet \text{ DIN } 1357$
magn. Fluss	Weber	Wb	1 Wb = 1 V · s = 1 T · m ² = 1 A · H = 1 kg · m ² /(A · s ²)
magn. Flussdichte, magn. Induktion	Tesla	Т	1 T = 1 Wb/m ² = 1 V · s/m ² = 1 kg/(s ² · A)
Induktivität, magn. Leitwert	Henry	Н	1 H = 1 Wb/A = $V \cdot s/A = 1 \text{ kg} \cdot \text{m}^2/(A^2 \cdot s^2)$
Permeabilität		H/m	$1 \text{ H/m} = 1 \text{ V} \cdot \text{s/(A} \cdot \text{m}) = 1 \text{ kg} \cdot \text{m/(A}^2 \cdot \text{s}^2)$
magn. Feldstärke		A/m	
	Oersted	Oe	1 Oe = $[10^3/(4\pi)] \cdot A/m \approx 80 A/m$
Temperatur T	Kelvin	K	SI-Basiseinheit
Celsius-	Grad Celsius	°C	t/°C = T /K - 273,15 • Tripelpunkt von H,O = 0,01 °C
Temperatur t	Grad Ceisius	C	$1/C = 1/K - 2/5,15 \cdot \text{Inperpulate voil } H_2O = 0,01 \cdot C$
Temperaturdifferenz	Kelvin, Grad Celsius	K, °C	
	degree Fahrenheit	°F	$t/^{\circ}C = (5/9) \cdot (t/^{\circ}F - 32)$
Lichtstärke	Candela	cd	SI-Basiseinheit
Leuchtdichte		cd/m ²	• DIN 5031 Teil 3
	Stilb	sb	$1 \text{ sb} = 10^4 \text{ cd/m}^2$
Lichtstrom	Lumen	lm	$1 \text{ lm} = 1 \text{ cd} \cdot \text{sr} \qquad \bullet \text{ DIN 5031 Teil 3}$
Beleuchtungsstärke	Lux	lx	1 lx = 1 lm/m^2 = $1 \text{ cd} \cdot \text{sr/m}^2$ • DIN 5031 Teil 3

Größe	Einheitenname	Zeichen	Beziehungen und Bemerkungen
Aktivität einer radio-	Becquerel	Bq	1 Bq = 1/s • DIN 6814 Teil 4
aktiven Substanz	Curie	Ci	1 Ci = 37 GBq
Energiedosis,	Gray	Gy	1 Gy = 1 J/kg = 1 W · s/kg = 1 m^2/s^2
Kerma	Rad	rd	1 rd = $1 cGy = 0.01 Gy$
Äquivalentdosis	Sievert	Sv	1 Sv = 1 J/kg = 1 W · s/kg = 1 m^2/s^2
	Rem	rem	1 rem = 1 cSv = 0.01 Sv
Energiedosis-		Gy/s	$1 \text{ Gy/s} = 1 \text{ W/kg} = 1 \text{ m}^2/\text{s}^3$
leistung oder -rate		rd/s	1 rd/s = 0.01 Gy/s
Äquivalentdosis-		Sv/s	$1 \text{ Sv/s} = 1 \text{ W/kg} = 1 \text{ m}^2/\text{s}^3$
leistung oder -rate		rem/s	1 rem/s = 0.01 Sv/s
Ionendosis	Coulomb je kg	C/kg	$1 \text{ C/kg} = 1 \text{ A} \cdot \text{s/kg}$ • Größe nicht mehr verwenden
	Röntgen	R	$1 R = 258 \cdot 10^{-6} \text{ C/kg}$
Stoffmenge	Mol	mol	SI-Basiseinheit
Stoffmengen- konzentration		mol/l	$1 \text{ mol/l} = 10^3 \text{ mol/m}^3$ • DIN 1310
molares Volumen		l/mol	$1 \text{ l/mol} = 10^{-3} \text{ m}^3/\text{mol}$
molare Masse		g/mol	$1 \text{ g/mol} = 10^{-3} \text{ kg/mol}$
molare Entropie		$J/(mol \cdot K)$	$1 \text{ J/(mol} \cdot \text{K)} = 1 \text{ kg} \cdot \text{m}^2/(\text{s}^2 \cdot \text{mol} \cdot \text{K})$
molare innere Energie		J/mol	• DIN 1345
Volumenkonzentratio	n*,**	1	
Stoffmengenanteil**		1	• DIN 1310
Massenanteil**		1	• DIN 1310
Volumenanteil**		1	• DIN 1310
Massenkonzentration ^a Partialdichte***	***,	kg/l oder g/l	$1 \text{ kg/l} = 10^3 \text{ kg/m}^3$ • DIN 1310
Teilchenzahlkonzentra	ation	$1/m^3$	• z. B. Staubpartikel pro m³
katalytische Aktivität	Katal	kat	1 kat $= \text{mol} \cdot \text{s}^{-1}$ • als abgeleitete SI-Einheit in der Richtlinie 2009/3/EG enthalten
katalytische Konzentration		kat/m³	$1 \text{ kat/m}^3 = \text{mol} \cdot \text{s}^{-1} \cdot \text{m}^{-3}$

auch Volumenanteil genannt, wenn der Mischvorgang ohne Volumenveränderung erfolgt Dies kann auch in Prozent (1% = 1/100) oder Promille (1% = 1/1000) angegeben werden.

^{*** &}quot;g/(100 ml)" nicht "%" und "mg/(100 ml)" nicht "mg-Prozent" nennen (DIN 1310)

Naturkonstanten (Auswahl)

Naturkonstanten sind wesentliche Elemente, um die Welt zu beschreiben: Sie tauchen in den physikalischen Theorien auf, ohne dass die Theorien selbst ihre Werte angeben könnten. Diese Konstanten müssen daher experimentell gemessen werden – eine Basisaufgabe der Metrologie.

Avogadro-Konstante Boltzmann-Konstante Elementarladung Faraday-Konstante Feinstrukturkonstante, inverse Feldkonstante, elektrische Feldkonstante, magnetische Flussquant, magnetisches Gravitationskonstante Josephson-Konstante Lichtgeschwindigkeit (Vakuum) Masseneinheit, atomare Planck'sches Wirkungsquantum Ruhmasse des Elektrons Ruhmasse des Protons Rydberg-Konstante Stefan-Boltzmann-Konstante Universelle Gaskonstante von-Klitzing-Konstante

Die Zahlenwerte dieser Übersicht entstammen der CODATA-Datenbank. [http://physics.nist.gov/cuu/Constants/]

Die Ziffern in Klammern hinter einem Zahlenwert bezeichnen die Unsicherheit in den letzten Stellen des Wertes. Die Unsicherheit ist als einfache Standardabweichung gegeben (Beispiel: Die Angabe 6,672 59 (85) ist gleichbedeutend mit 6,672 59 \pm 0,000 85).

 $N_{\Lambda} = 6,022 \ 141 \ 29 \ (27) \cdot 10^{23} \ \text{mol}^{-1}$ $k = 1,380 6488 (13) \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$ $e = 1,602 \ 176 \ 565 \ (35) \cdot 10^{-19} \ C$ $F = 96 \ 485,3365 \ (21) \cdot \text{C} \cdot \text{mol}^{-1}$ $\alpha^{-1} = 137,035 999 074 (44)$ $\varepsilon_0 = 1/(\mu \cdot c^2) = 8,854 \ 187 \ 817... \cdot 10^{-12} \ \text{F} \cdot \text{m}^{-1} \text{ (exakt)}$ $\mu_0 = 4\pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2} = 12,566\ 370\ 614... \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2} \text{ (exakt)}$ $\Phi_0 = 2,067 833 758 (46) \cdot 10^{-15} \text{ Wb}$ $G = 6,673 \ 84 \ (80) \cdot 10^{-11} \ \text{m}^3 \cdot \text{kg}^{-1} \cdot \text{s}^{-2}$ $K_{\rm r} = 483\,597,870\,(11)\cdot 10^9\,{\rm Hz\cdot V^{-1}}$ $c = 299 792 458 \text{ m} \cdot \text{s}^{-1} \text{ (exakt)}$ $u = 1,660 538 921 (73) \cdot 10^{-27} \text{ kg}$ $h = 6,626\ 069\ 57\ (29) \cdot 10^{-34}\ \text{J} \cdot \text{s}$ $m_{\rm s} = 9{,}109~382~91~(40) \cdot 10^{-31}~{\rm kg}$ $m_{\rm p} = 1,672 \ 621 \ 777 \ (74) \cdot 10^{-27} \ {\rm kg}$ $R_{\rm m} = 10~973~731,568~539~(55)~{\rm m}^{-1}$ $\sigma = 5,670\ 373\ (21) \cdot 10^{-8}\ \text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$ $R = 8,314 \ 4621 \ (75) \cdot \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $R_{\nu} = 25 812,807 4434 (84) \Omega$

Literatur

P. J. Mohr, B. N. Taylor, D. B. Newell: CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. **80**, 2 (2008)

Bundesministerium Die Physikalisch-Technische Bundesanstalt, für Wirtschaft das nationale Metrologieinstitut, ist eine und Energie wissenschaftlich-technische Bundesobe wissenschaftlich-technische Bundesoberbehörde im Geschäftsbereich des Bundesministeriums für Wirtschaft und Energie.

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Nationales Metrologieinstitut

Bundesallee 100 38116 Braunschweig

Presse- und Öffentlichkeitsarbeit

Telefon: 0531 592-3006 Fax: 0531 592-3008 E-Mail: presse@ptb.de

www.ptb.de

Stand: Mai 2016