HW4 #7:

Let $x^* \in S$ st $\nabla f(x^*) = 0$ and assume the conditions of the problem hold.

her $\widetilde{x} \in S \setminus \{x^*\}$ and define $x(t) = (I-t)x^* + t\widetilde{x}$. (Note that $x(0) = x^*$ and x(1) = x' and $x'(t) = \widetilde{x}' - x^*$.) Let $\widetilde{S}(t) = \widetilde{S}(x(t))$. Then for $t \in S$ of $t \in S$ (by FTC!): $\widetilde{S}'(t) = \widetilde{S}'(0) + \widetilde{S}''(s) ds$. (X)

But, have i

$$\widehat{\xi}'(t) = \chi'(t)^{\top} \nabla \xi(\chi(t)) = (\widehat{\chi} - \chi^{*})^{\top} \nabla \xi(\chi(t)$$

Since $\nabla^2 f(x)$ is positive definite for all $x \in S$, by definition can conclude that f''(t) > 0 for all $t \in S$ to $t \in S$. From (x), we can then conclude:

$$\tilde{\xi}'(t) = (\tilde{x} - x^*)^T \nabla \xi(x^*) + \int \tilde{\xi}''(s) ds > 0.$$

OK, Apply FTC one more time:

$$5(\tilde{x}) = 5(\tilde{x}(1)) = 3\tilde{\xi}(0) + \tilde{\tilde{\xi}}'(t)dt > \tilde{\tilde{\xi}}(0) = \tilde{\tilde{\xi}}(x^*),$$

Since $\tilde{\tilde{x}}$ was arbitrary, and since $[\tilde{\tilde{x}}, \tilde{\tilde{x}}'] \leq S \neq \tilde{\tilde{x}}'$ by

convexity of S, this proves the result