Homework 11.1 Sequences: Problem Set

Generated by Gemini

November 1, 2025

Concept Checklist

This problem set is designed to test the following concepts related to sequences:

• Direct Calculation & Basic Properties:

- Writing the first few terms of a sequence from an explicit formula.
- Writing the first few terms of a recursively defined sequence.
- Understanding the definitions of convergence and divergence.

• Pattern Recognition:

- Finding an explicit formula for an arithmetic sequence.
- Finding an explicit formula for a geometric sequence.
- Finding an explicit formula for sequences involving alternating signs, factorials, and powers.

• Limit Evaluation via Algebraic Manipulation:

- Limits of rational functions of n (dividing by the highest power).
- Limits involving radicals (dividing by highest power, using conjugates).
- Limits of geometric sequences $(\lim_{n\to\infty} r^n)$.
- Limits involving exponential functions (dividing by the fastest-growing base).
- Limits involving factorials (simplification).
- Limits involving logarithmic properties.

• Limit Evaluation using Calculus Theorems:

- L'Hôpital's Rule: For indeterminate forms $\frac{\infty}{\infty}$ or $\frac{0}{0}$ involving functions of n (like logarithms, exponentials, and powers).
- **Squeeze Theorem:** For sequences involving bounded, oscillating terms like $\sin(n)$, $\cos(n)$, or $(-1)^n$.
- Continuity: Evaluating limits by passing the limit inside a continuous function (e.g., $\lim_{n\to\infty} e^{a_n} = e^{\lim a_n}$).
- Indeterminate Forms: Evaluating limits of the form 1^{∞} , 0^{0} , or ∞^{0} using logarithms and L'Hôpital's Rule.

• Monotonic Sequence Theorem:

- Proving a sequence is monotonic (increasing or decreasing).
- Proving a sequence is bounded (above and/or below).
- Using the Monotonic Sequence Theorem to conclude convergence and find the limit of a recursive sequence.

Problem Set

Part 1: Direct Calculation and Pattern Recognition

- 1. List the first five terms of the sequence $a_n = \frac{n^2 1}{n^2 + 1}$.
- 2. List the first five terms of the sequence defined by $a_1 = 2$ and $a_{n+1} = \frac{a_n}{a_n 1}$.
- 3. Find a formula for the general term a_n of the sequence, assuming the pattern continues:

$$\left\{\frac{3}{4}, -\frac{4}{8}, \frac{5}{16}, -\frac{6}{32}, \dots\right\}$$

- 4. Find a formula for the general term a_n of the arithmetic sequence $\{11, 8, 5, 2, \dots\}$.
- 5. Find a formula for the general term a_n of the geometric sequence $\{5, -10/3, 20/9, -40/27, \ldots\}$.

Part 2: Determining Convergence or Divergence

For each of the following sequences, determine whether it converges or diverges. If it converges, find the

6.
$$a_n = \frac{3n^2 - 5n + 2}{8n^2 + 4n - 1}$$

7.
$$a_n = \frac{n}{n^3 + 1}$$

8.
$$a_n = \frac{n^4 - n^2}{n^3 + n}$$

9.
$$a_n = \frac{\sqrt{4n^2+1}}{3n-2}$$

10.
$$a_n = \sqrt{n^2 + n} - n$$

11.
$$a_n = \frac{5^n + 3^n}{5^n - 2^n}$$

12.
$$a_n = (-1.01)^n$$

13.
$$a_n = \frac{3^{n+2}}{7^n}$$

14.
$$a_n = \frac{\cos(n)}{n^2}$$

15.
$$a_n = \frac{(-1)^n n!}{n^n}$$
 (Hint: Write out the terms of $\frac{n!}{n^n}$ and bound it.)

16.
$$a_n = \frac{5n^2 - \sin(2n)}{n^2 + n}$$

$$17. \ a_n = \frac{\ln(n)}{\sqrt{n}}$$

18.
$$a_n = n^2 e^{-n}$$

19.
$$a_n = \frac{(\ln n)^3}{n}$$

20.
$$a_n = \arctan(2n)$$

$$21. \ a_n = \cos\left(\frac{n\pi}{n+1}\right)$$

22.
$$a_n = \frac{(n+1)! - n!}{(n+1)!}$$

23.
$$a_n = \frac{(2n-1)!}{(2n+1)!}$$

24.
$$a_n = \left(1 + \frac{3}{n}\right)^n$$

25.
$$a_n = n^{1/n}$$

26.
$$a_n = n \sin\left(\frac{1}{n}\right)$$

27.
$$a_n = \frac{\ln(n^2+1)}{\ln(3n+1)}$$

28.
$$a_n = \frac{2^n}{n!}$$

29.
$$a_n = \frac{n \sin(n\pi)}{2n+1}$$

Part 3: Monotonic Sequence Theorem

- 30. Consider the sequence defined by $a_1 = \sqrt{5}$ and $a_{n+1} = \sqrt{5 + a_n}$.
 - a. Show that $\{a_n\}$ is increasing.
 - b. Show that $\{a_n\}$ is bounded above by 3.
 - c. Explain why the sequence converges and find its limit.
- 31. Consider the sequence defined by $a_1 = 3$ and $a_{n+1} = \frac{1}{4}(a_n + 6)$.
 - a. Show that $\{a_n\}$ is decreasing and bounded below.
 - b. Find the limit of the sequence.

Solutions

- 1. **Solution:** $a_1 = \frac{1-1}{1+1} = 0$, $a_2 = \frac{4-1}{4+1} = \frac{3}{5}$, $a_3 = \frac{9-1}{9+1} = \frac{8}{10} = \frac{4}{5}$, $a_4 = \frac{16-1}{16+1} = \frac{15}{17}$, $a_5 = \frac{25-1}{25+1} = \frac{24}{26} = \frac{12}{13}$. The terms are $\left\{0, \frac{3}{5}, \frac{4}{5}, \frac{15}{17}, \frac{12}{13}, \dots\right\}$.
- 2. **Solution:** $a_1 = 2$, $a_2 = \frac{2}{2-1} = 2$, $a_3 = \frac{2}{2-1} = 2$, $a_4 = 2$, $a_5 = 2$. The sequence is a constant sequence $\{2, 2, 2, 2, 2, \dots\}$.
- 3. **Solution:** The signs are alternating, starting negative if we consider n = 1 for the first term -4/8. Let's re-index to start at n = 1 for 3/4. The sign is $(-1)^{n+1}$. The numerator starts at 3 and increases by 1, so it is n + 2. The denominator is a power of 2, starting with $4 = 2^2$, then $8 = 2^3$, etc. The denominator is 2^{n+1} . Thus, $a_n = (-1)^{n+1} \frac{n+2}{2^{n+1}}$.
- 4. **Solution:** This is an arithmetic sequence with first term $a_1 = 11$ and common difference d = 8 11 = -3. The formula is $a_n = a_1 + (n-1)d = 11 + (n-1)(-3) = 11 3n + 3 = 14 3n$.
- 5. **Solution:** This is a geometric sequence with first term $a_1 = 5$. The common ratio is $r = \frac{-10/3}{5} = -\frac{10}{15} = -\frac{2}{3}$. The formula is $a_n = a_1 r^{n-1} = 5 \left(-\frac{2}{3}\right)^{n-1}$.
- 6. Solution: Divide by the highest power of n in the denominator, which is n^2 .

$$\lim_{n \to \infty} \frac{3n^2/n^2 - 5n/n^2 + 2/n^2}{8n^2/n^2 + 4n/n^2 - 1/n^2} = \lim_{n \to \infty} \frac{3 - 5/n + 2/n^2}{8 + 4/n - 1/n^2} = \frac{3 - 0 + 0}{8 + 0 - 0} = \frac{3}{8}.$$

Converges to $\frac{3}{8}$.

7. **Solution:** Divide by n^3 .

$$\lim_{n \to \infty} \frac{n/n^3}{n^3/n^3 + 1/n^3} = \lim_{n \to \infty} \frac{1/n^2}{1 + 1/n^3} = \frac{0}{1 + 0} = 0.$$

Converges to 0.

8. Solution: The degree of the numerator (4) is greater than the degree of the denominator (3).

$$\lim_{n \to \infty} \frac{n^4 - n^2}{n^3 + n} = \lim_{n \to \infty} \frac{n(1 - 1/n^2)}{1 + 1/n^2} = \infty.$$

The sequence diverges.

9. Solution: Divide by n (which is $\sqrt{n^2}$).

$$\lim_{n \to \infty} \frac{\sqrt{4n^2/n^2 + 1/n^2}}{3n/n - 2/n} = \lim_{n \to \infty} \frac{\sqrt{4 + 1/n^2}}{3 - 2/n} = \frac{\sqrt{4 + 0}}{3 - 0} = \frac{2}{3}.$$

Converges to $\frac{2}{3}$.

10. **Solution:** This is an indeterminate form $\infty - \infty$. Multiply by the conjugate.

$$\lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2(1 + 1/n)} + n}$$
$$= \lim_{n \to \infty} \frac{n}{n\sqrt{1 + 1/n} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + 1/n} + 1} = \frac{1}{\sqrt{1 + 0} + 1} = \frac{1}{2}.$$

Converges to $\frac{1}{2}$.

11. **Solution:** Divide by the fastest-growing term, 5^n .

$$\lim_{n \to \infty} \frac{5^n / 5^n + 3^n / 5^n}{5^n / 5^n - 2^n / 5^n} = \lim_{n \to \infty} \frac{1 + (3/5)^n}{1 - (2/5)^n} = \frac{1 + 0}{1 - 0} = 1.$$

Converges to 1.

12. Solution: This is a geometric sequence with ratio r = -1.01. Since |r| > 1, the sequence diverges.

4

13. Solution: Rewrite as $a_n = 9 \cdot \left(\frac{3}{7}\right)^n$. This is a geometric sequence with |r| = 3/7 < 1.

$$\lim_{n \to \infty} 9 \left(\frac{3}{7}\right)^n = 9 \cdot 0 = 0.$$

Converges to 0.

14. **Solution:** Use the Squeeze Theorem. We know $-1 \le \cos(n) \le 1$.

$$-\frac{1}{n^2} \le \frac{\cos(n)}{n^2} \le \frac{1}{n^2}$$

Since $\lim_{n\to\infty} -\frac{1}{n^2} = 0$ and $\lim_{n\to\infty} \frac{1}{n^2} = 0$, by the Squeeze Theorem, $\lim_{n\to\infty} \frac{\cos(n)}{n^2} = 0$. Converges to 0.

- 15. **Solution:** Use the Squeeze Theorem. $a_n = (-1)^n \frac{n!}{n^n} = (-1)^n \left(\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{n}{n}\right)$. We know that $0 \le \frac{n!}{n^n} \le \frac{1}{n}$. So, $-\frac{1}{n} \le (-1)^n \frac{n!}{n^n} \le \frac{1}{n}$. Since $\lim_{n \to \infty} \pm \frac{1}{n} = 0$, the limit of a_n is 0. Converges to 0.
- 16. **Solution:** Divide by n^2 . $a_n = \frac{5-\sin(2n)/n^2}{1+1/n}$. For the term $\frac{\sin(2n)}{n^2}$, we can use the Squeeze Theorem. $-\frac{1}{n^2} \le \frac{\sin(2n)}{n^2} \le \frac{1}{n^2}$, so its limit is 0.

$$\lim_{n \to \infty} a_n = \frac{5 - 0}{1 + 0} = 5.$$

Converges to 5.

17. **Solution:** Use L'Hôpital's Rule for the indeterminate form $\frac{\infty}{\infty}$.

$$\lim_{x \to \infty} \frac{\ln(x)}{x^{1/2}} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{1/x}{(1/2)x^{-1/2}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0.$$

Converges to 0.

18. Solution: Use L'Hôpital's Rule for $\frac{\infty}{\infty}$. Let $f(x) = x^2/e^x$.

$$\lim_{x \to \infty} \frac{x^2}{e^x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{2x}{e^x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{2}{e^x} = 0.$$

Converges to 0.

19. **Solution:** Use L'Hôpital's Rule repeatedly. Let $f(x) = (\ln x)^3/x$.

$$\lim_{x\to\infty}\frac{(\ln x)^3}{x}\stackrel{L'H}{=}\lim_{x\to\infty}\frac{3(\ln x)^2\cdot(1/x)}{1}=\lim_{x\to\infty}\frac{3(\ln x)^2}{x}\stackrel{L'H}{=}\lim_{x\to\infty}\frac{6(\ln x)\cdot(1/x)}{1}=\lim_{x\to\infty}\frac{6\ln x}{x}\stackrel{L'H}{=}\lim_{x\to\infty}\frac{6/x}{1}=0.$$
 Converges to 0.

20. Solution: As $n \to \infty$, $2n \to \infty$. The range of $\arctan(x)$ is $(-\pi/2, \pi/2)$.

$$\lim_{n \to \infty} \arctan(2n) = \frac{\pi}{2}.$$

Converges to $\pi/2$.

21. **Solution:** The function cos(x) is continuous.

$$\lim_{n\to\infty}\cos\left(\frac{n\pi}{n+1}\right)=\cos\left(\lim_{n\to\infty}\frac{n\pi}{n+1}\right)=\cos\left(\lim_{n\to\infty}\frac{\pi}{1+1/n}\right)=\cos(\pi)=-1.$$

Converges to -1.

22. Solution: Simplify the expression.

$$a_n = \frac{n!(n+1) - n!}{n!(n+1)} = \frac{n!(n+1-1)}{n!(n+1)} = \frac{n}{n+1}.$$

$$\lim_{n \to \infty} \frac{n}{n+1} = 1.$$

Converges to 1.

23. **Solution:** Simplify the expression using (n+1)! = (n+1)n!.

$$a_n = \frac{(2n-1)!}{(2n+1)(2n)(2n-1)!} = \frac{1}{(2n+1)(2n)}.$$
$$\lim_{n \to \infty} \frac{1}{4n^2 + 2n} = 0.$$

Converges to 0.

24. **Solution:** This is the indeterminate form 1^{∞} . Let $L = \lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^n$. Take the natural log: $\ln(L) = \lim_{n \to \infty} n \ln\left(1 + \frac{3}{n}\right) = \lim_{n \to \infty} \frac{\ln(1+3/n)}{1/n}$. This is $\frac{0}{0}$, so use L'Hôpital's Rule.

$$\ln(L) = \lim_{n \to \infty} \frac{\frac{1}{1+3/n} \cdot (-3/n^2)}{-1/n^2} = \lim_{n \to \infty} \frac{3}{1+3/n} = 3.$$

So, ln(L) = 3, which means $L = e^3$. Converges to e^3 .

25. **Solution:** This is the indeterminate form ∞^0 . Let $L = \lim_{n \to \infty} n^{1/n}$. Take the natural log: $\ln(L) = \lim_{n \to \infty} \frac{1}{n} \ln(n)$. This is $\frac{\infty}{\infty}$, so use L'Hôpital's Rule.

$$ln(L) = \lim_{n \to \infty} \frac{1/n}{1} = 0.$$

So, ln(L) = 0, which means $L = e^0 = 1$. Converges to 1.

26. **Solution:** Indeterminate form $\infty \cdot 0$. Rewrite and use L'Hôpital's Rule. Let x = 1/n. As $n \to \infty$, $x \to 0^+$.

$$\lim_{n\to\infty}\frac{\sin(1/n)}{1/n}=\lim_{x\to 0^+}\frac{\sin(x)}{x}\stackrel{L'H}{=}\lim_{x\to 0^+}\frac{\cos(x)}{1}=1.$$

Converges to 1.

27. **Solution:** Use L'Hôpital's Rule for $\frac{\infty}{\infty}$.

$$\lim_{x \to \infty} \frac{\ln(x^2 + 1)}{\ln(3x + 1)} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{\frac{2x}{x^2 + 1}}{\frac{3}{3x + 1}} = \lim_{x \to \infty} \frac{2x(3x + 1)}{3(x^2 + 1)} = \lim_{x \to \infty} \frac{6x^2 + 2x}{3x^2 + 3}.$$

This is still $\frac{\infty}{\infty}$. The degrees are equal, so the limit is the ratio of leading coefficients, 6/3 = 2. Converges to 2.

28. **Solution:** For n > 2, n! grows much faster than 2^n . Let's look at the terms: $a_1 = 2$, $a_2 = 2$, $a_3 = 8/6$, $a_4 = 16/24$,... We can see $0 < a_n = \frac{2 \cdot 2 \cdot \cdots 2}{1 \cdot 2 \cdot \cdots n} = \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \cdots \frac{2}{n} \le 2 \cdot 1 \cdot \left(\frac{2}{3}\right)^{n-2}$. As $n \to \infty$, this goes to 0. The limit is 0. Converges to 0.

29. **Solution:** $\sin(n\pi) = 0$ for any integer n. So, $a_n = \frac{n \cdot 0}{2n+1} = 0$ for all n. The sequence is $\{0, 0, 0, \dots\}$. Converges to 0.

30. Solution:

- a. **Increasing:** Use induction. Base Case: $a_1 = \sqrt{5} \approx 2.23$, $a_2 = \sqrt{5 + \sqrt{5}} \approx 2.69$. So $a_2 > a_1$. Inductive Step: Assume $a_{k+1} > a_k$ for some $k \ge 1$. Then $5 + a_{k+1} > 5 + a_k$. Since square root is an increasing function, $\sqrt{5 + a_{k+1}} > \sqrt{5 + a_k}$, which means $a_{k+2} > a_{k+1}$. By induction, the sequence is increasing.
- b. **Bounded:** Use induction. Base Case: $a_1 = \sqrt{5} < 3$. Inductive Step: Assume $a_k < 3$. Then $a_{k+1} = \sqrt{5 + a_k} < \sqrt{5 + 3} = \sqrt{8} < 3$. By induction, $a_n < 3$ for all n.
- c. Limit: Since the sequence is increasing and bounded above, it must converge by the Monotonic Sequence Theorem. Let $L = \lim_{n \to \infty} a_n$. Then $L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{5 + a_n} = \sqrt{5 + L}$. $L^2 = 5 + L \implies L^2 L 5 = 0$. Using the quadratic formula, $L = \frac{1 \pm \sqrt{1 4(1)(-5)}}{2} = \frac{1 \pm \sqrt{21}}{2}$. Since the terms are all positive, the limit must be positive. So, $L = \frac{1 + \sqrt{21}}{2}$.

31. Solution:

- a. **Monotonic and Bounded:** $a_1 = 3$, $a_2 = \frac{1}{4}(3+6) = \frac{9}{4} = 2.25$, $a_3 = \frac{1}{4}(2.25+6) = \frac{8.25}{4} = 2.0625$. The sequence appears to be decreasing. It is bounded below by 2. Proof (Decreasing by induction): Base case $a_2 < a_1$ is true. Assume $a_k < a_{k-1}$. Then $a_k + 6 < a_{k-1} + 6$, so $\frac{1}{4}(a_k + 6) < \frac{1}{4}(a_{k-1} + 6)$, which is $a_{k+1} < a_k$. Proof (Bounded below by 2): Base case $a_1 > 2$. Assume $a_k > 2$. Then $a_{k+1} = \frac{1}{4}(a_k + 6) > \frac{1}{4}(2+6) = 2$.
- b. **Limit:** Since the sequence is decreasing and bounded below, it converges. Let the limit be L. $L = \frac{1}{4}(L+6) \implies 4L = L+6 \implies 3L=6 \implies L=2$.

Problem Cross-Reference by Concept

- Direct Calculation & Basic Properties:
 - Writing first terms (explicit): 1
 - Writing first terms (recursive): 2
 - Definitions are implicitly tested in all limit problems.
- Pattern Recognition:
 - Arithmetic: 4
 - Geometric: 5
 - Mixed (alternating, powers, etc.): 3
- Limit Evaluation via Algebraic Manipulation:
 - Rational functions of n: 6, 7, 8
 - Radicals: 9, 10
 - Geometric sequences / Exponentials: 11, 12, 13
 - Factorials: 22, 23
 - Logarithmic properties: 27 (can also be solved with L'Hôpital's)
- Limit Evaluation using Calculus Theorems:
 - L'Hôpital's Rule: 17, 18, 19, 26, 27
 - Squeeze Theorem: 14, 15, 16, 28 (denominator dominates)
 - Continuity: 20, 21
 - Indeterminate Forms $(1^{\infty}, \infty^0)$: 24, 25
- \bullet Mixed Forms and Special Cases:
 - Rewriting for L'Hôpital's Rule: $26\,$
 - Recognizing zero terms: 29
- Monotonic Sequence Theorem:
 - Proving properties and finding the limit: 30, 31