Biostatistics Week VI

Ege Ülgen, M.D.

18 November 2021

Maximum Likelihood Estimation

- MLE selects the set of values of the parameters that maximizes the likelihood function
 - maximizes the "agreement" of the selected model with the observed data

MLE of λ for Poisson Distribution

Recall that the pmf for Poisson distribution is:

$$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

For observations $x_1,...,x_N$ that are i.i.d. $\sim Pois(\lambda)$, the likelihood (*L*) of this observation is:

$$L = P((X_1 = x_1) \cap ... \cap (X_N = x_N)) = \prod_{i=1}^N P(X_i = x_i)$$
$$= \prod_{i=1}^N \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} = \frac{e^{-N\lambda} \lambda^{\sum_{i=1}^N x_i}}{\prod_{i=1}^N x_i!}$$

MLE of λ for Poisson Distribution

Since the likelihood is monotonically increasing log-likelihood is then:

$$log(L) = -N\lambda + (\sum_{i=1}^{N} x_i)log(\lambda) - log(\prod_{i=1}^{N} x_i!)$$

MLE of λ for Poisson Distribution

$$log(L) = -N\lambda + (\sum_{i=1}^{N} x_i)log(\lambda) - log(\prod_{i=1}^{N} x_i!)$$

Under suitable regularity conditions, the maximum likelihood estimate (estimator) is defined as:

$$\hat{\lambda} = \operatorname*{argmax} log(L)$$
 $\lambda \in \mathbb{R}^+$

FOC:

$$\frac{\partial log(L)}{\partial \lambda}\Big|_{\hat{\lambda}} = -N + \frac{1}{\hat{\lambda}} \sum_{i=1}^{N} x_i = 0$$

$$\iff \hat{\lambda} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Law of Large Numbers

 the average of the results obtained from a large number of trials should be close to the expected value and will tend to become closer to the expected value as more trials are performed

• e.g., if X_1, \dots, X_n are i.i.d. normal variables with mean μ and variance σ^2 , then \overline{X} converges to μ as n increases

Law of Large Numbers

The Central Limit Theorem

 The central limit theorem (CLT) states that the distribution of sample means approximates a normal distribution as the sample size gets larger, regardless of the population's distribution

Tossing a coin n times (repeated for 10 000 times) – Distribution of sample means

The Central Limit Theorem

- A key aspect of CLT is that the average of the sample means and standard deviations will equal the population mean and standard deviation
- A sufficiently large sample size can predict the characteristics of a population more accurately

Sampling Distributions of Mean and Variance

• \bar{X} and s^2 are **point estimates**

- If $X_1, ..., X_n$ are i.i.d. RVs $\sim N(\mu, \sigma^2)$
 - 1. $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
 - 2. $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \bar{X})^2 = \frac{(n-1)s^2}{\sigma^2}$
 - 3. \bar{X} and s^2 are independent

Brief Summary

- MLE is a useful approach for finding an estimator that maximizes the "agreement" of the selected model with the observed data
- CLT states that "the distribution of sample means approximates a normal distribution as the sample size gets larger"
- $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

Biostatistics Week VII

Ege Ülgen, M.D.

18 November 2021

Hypothesis Testing

- Hypothesis: an assumption that can be tested based on the evidence available
 - A novel drug is efficient in treating a certain disease
 - Regular smoking leads to lung cancer
 - Overweight individuals who (1) consume greasy food and (2) consume a low amount vegetables (1) have high levels of cholesterol and (2) have a higher risk of cardiovascular diseases
- Hypothesis test: investigation of the hypothesis using the sample
 - Assessing evidence provided by the data against the null claim (the claim which is to be assumed true unless enough evidence exists to reject it)

Null and Alternative Hypotheses

- H₀ Null hypothesis
 - The mean of a variable is not different than c
 - There is no difference between the two groups' means
 - There is no difference compared to baseline
 - ...
- H_a or H₁ Alternative hypothesis
 - There is a difference between the two groups' means
 - The mean in group A is higher than group B
 - ...

One- vs. Two-tailed Tests

The coin is biased

Two-tailed

$$H_0$$
: p = 0.5

$$H_a$$
: p \neq 0.5

• The probability of heads is larger (or smaller) than 0.5

One-tailed

$$H_0$$
: $p \le 0.5$ (or $p \ge 0.5$)

$$H_a$$
: p > 0.5 (or p < 0.5)

	Decision	
H _o	Fail to reject	Reject
True	Correct decision	Type I Error α
False	Type II Error B	Correct decision

Hypothesis Testing

- P(Type 1 error) = α = P(reject H₀| H₀ is true)
- P(Type 2 error) = β = P(fail to reject H₀| H₀ is false)
- As α gets larger β gets smaller, vice versa
- As n gets large, both α and β get smaller

Reducing the probabilities of errors

We control the spread of our normal curves.

Hypothesis Testing

	Decision		
H _o	Fail to reject	Reject	
True	Correct decision	Type I Error α	
False	Type II Error ß	Correct decision	

- Confidence level = 1α
 - P(fail to reject H₀ | H₀ is true)
- Statistical power = 1β
 - P(reject H₀| H₀ is false)

Hypothesis Testing - Steps

Hypothesis Testing - Steps

1. Check assumptions, determine H_0 and H_a , choose α

- Assumptions differ based on the test
- The null hypothesis always contains equality (=)

2. Calculate the appropriate test statistic

• z, t, χ^2 , ...

3. Calculate critical values/p value

With the aid of precalculated tables/software

4. Decide whether to reject/fail to reject H₀

• Reject if the statistic is within the critical region/p $\leq \alpha$

Critical Value/Rejection Region

- We select α (significance level) prior to performing a hypothesis test
 - Some common values for α are 0.01, **0.05** an 0.10
- Based on the selected lpha, the critical values are calculated, and the rejection region is determined
 - the region where the null hypothesis is rejected

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu < \mu_0$$

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu > \mu_0$$

$$H_0: \mu = \mu_0$$

$$H_1$$
: $\mu \neq \mu_0$

Test Statistic

$$test\ statistic = \frac{estimator - null\ value}{standard\ error\ of\ estimator}$$

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

Commonly Used Hypothesis Tests

- Continuous (comparing means)
 - One sample
 - z-Test
 - Student's t-Test
 - Two samples
 - Student's t-Test
 - Equal variance
 - Unequal variance
 - Paired t-Test
 - >2 samples
 - Analysis of Variance (ANOVA)
- Categorical
 - Chi-squared (χ²) Test

One-sample z-Test for µ

• Assuming we know the true value of the population variance σ^2

• If $X_1, ..., X_n$ are i.i.d. RVs $\sim N(\mu, \sigma^2)$, then:

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

$$z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

One-Sample z-Test for μ – Example

- It is claimed that the post-treatment tumor volume of glioblastoma patients subject to a novel treatment is different than 5 cm³
- The mean tumor volume of 41 randomly-selected patients is 5.9 cm³
- Population standard deviation is 1.74

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked, Population variance is known
 - H_0 : $\mu = 5$ H_a : $\mu \neq 5$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} = \frac{5.9 - 5}{1.74/\sqrt{41}} = 3.312$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

p < 0.001

Confidence Interval

$$P\left(\overline{X} - Z_c \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + Z_c \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

$$\overline{X} \mp Z_c \frac{\sigma}{\sqrt{n}} = 5.9 \mp 1.96 \frac{1.74}{\sqrt{41}}$$

95% Confidence Interval for μ [5.367, 6.433]

5. State a conclusion:

With 95% confidence, we can conclude that there is enough evidence to say that post-treatment tumor volume of glioblastoma patients subject to a novel treatment is different than 5 cm³

Post-treatment tumor volume of glioblastoma patients subject to a novel treatment was found to be different than 5 cm³ (z-test, p < 0.001)

Post-treatment tumor volume of glioblastoma patients subject to a novel treatment was found to be different than 5 cm³ (z-test, 95% CI = 5.367-6.433)

One-Sample t-Test

 a statistical hypothesis test used to determine whether an unknown population mean is different from a specific value

One-Sample t-Test

One-Sample t-Test – Example I

- It is claimed that the post-treatment tumor volume of glioblastoma patients subject to a novel treatment is different than 5 cm³
- The mean tumor volume of 41 randomly-selected patients is 5.9 cm³
- Population variance is unknown
- Sample standard deviation is 1.74

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked
 - H_0 : $\mu = 5$ H_a : $\mu \neq 5$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = \frac{\bar{X} - \mu}{s / \sqrt{n}} = \frac{5.9 - 5}{1.74 / \sqrt{41}} = 3.312 \quad (\sim t_{n-1} = t_{40})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

5. State a conclusion:

With 95% confidence, we can conclude that there is enough evidence to say that post-treatment tumor volume of glioblastoma patients subject to a novel treatment is different than 5 cm³.

One-Sample t-Test – Example II

id	$week_1$	cd4_1	week_2	$cd4_2$	<pre>perc_benefit</pre>
361	0	26	7.43	3	-11.905994
1017	0	13	7.00	10	-3.296703
519	0	3	8.14	5	8.190008
1147	0	65	33.00	97	1.491841
1216	0	36	8.00	31	-1.736111
52	0	16	9.43	31	9.941676
660	0	34	8.43	32	-0.697788
1145	0	41	8.00	71	9.146341
697	0	33	8.00	45	4.545455
560	0	21	8.00	27	3.571429

- Mean percentage benefit is 1.925015
- Is it due to chance? Or does it indicate positive impact of the novel treatment?
 - What would be the value of mean percentage benefit what if you selected another set of 10 patients?

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked (Quantile-quantile plot)
 - H_0 : $\mu = 0$ H_a : $\mu \neq 0$
 - $\alpha = 0.05$

- 2. Calculate the appropriate test statistic
 - Mean percentage benefit is 1.925015
 - Standard deviation is 6.702202
 - Sample size is 10

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}} = \frac{1.925015 - 0}{6.702202/\sqrt{10}} = 0.9082736 \quad (\sim t_{n-1} = t_9)$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

One-Sample t-Test – Example III

- It is claimed that:
- A novel drug reduces the recovery time of patients to less than 10 days
- Recovery time for 7 randomly-selected patients:

2, 4, 11, 3, 4, 6, 8 (
$$\bar{X}$$
 = 5.43, s = 3.15)

• Test the hypothesis using $\alpha = 0.01$

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked
 - H_0 : $\mu \ge 10$ H_a : $\mu < 10$
 - $\alpha = 0.01$
- 2. Calculate the appropriate test statistic

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}} = \frac{5.43 - 10}{3.15/\sqrt{7}} = -3.84 \quad (\sim t_{n-1} = t_6)$$

- 3. Calculate **critical values**/p value
- 4. Decide whether to reject/fail to reject H₀

Two-Sample t-Test

The two-sample t-test (also known as the independent samples t-test) is a method used to test whether the unknown population means of two groups are equal or not

Two-sample t-Test

$$H_0: \mu_X = \mu_Y$$

$$H_a$$
: $\mu_X \neq \mu_Y$

or

$$H_0$$
: $\mu_X - \mu_Y = 0$

$$H_a$$
: μ_X - $\mu_Y \neq 0$

Two-sample t-Test

$$\sigma_{X}^{2} = \sigma_{Y}^{2}$$

$$T = \frac{\bar{X} - \bar{Y}}{s_{P} \sqrt{\frac{1}{n_{X}} + \frac{1}{n_{Y}}}} \sim t(n_{X} + n_{Y} - 2)$$

$$s_{P} = \frac{(n_{X} - 1)s_{x}^{2} + (n_{Y} - 1)s_{Y}^{2}}{n_{X} + n_{Y} - 2}.$$

$$\sigma_{X}^{2} \neq \sigma_{Y}^{2}$$

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{s_{X}^{2}}{n_{X}} + \frac{s_{Y}^{2}}{n_{Y}}}} \sim t(m),$$

$$m = rac{(w_X + w_Y)^2}{\left(rac{w_X^2}{n_X - 1} + rac{w_Y^2}{n_Y - 1}
ight)} \ w_X = s_X^2/n_X, \quad w_Y = s_Y^2/n_Y$$

Two-sample t-Test – Example I

id	treatment	perc_benefit	id	treatment	perc_benefit
158	trt1	37.2549020	15	trt2	10.0978368
392	trt1	-4.3864459	143	trt2	0.5048635
457	trt1	-5.1075269	470	trt2	-0.8156940
487	trt1	36.7043369	536	trt2	50.0000000
723	trt1	5.1303099	549	trt2	-3.0303030
832	trt1	3.1806616	750	trt2	-2.8977108
894	trt1	-3.9062500	891	trt2	26.3872135
1104	trt1	5.9443608	997	trt2	4.3651179
1283	trt1	-0.8601855	1000	trt2	2.3582125
1288	trt1	-3.1674208	1209	trt2	8.9702189

- Mean percentage benefit is 7.0787 for treatment arm 1, and 9.5940 for treatment arm 2
- Is the difference a significant one?

F-test for Variance Equality

$$H_0: \sigma_X^2 = \sigma_Y^2$$

$$H_1: \sigma_X^2 \neq \sigma_Y^2$$

or

$$H_0: \frac{\sigma_X^2}{\sigma_Y^2} = 1$$

F-test (cont.)

1. Check assumptions, determine H_0 and H_1 , choose α

•
$$H_0: \frac{\sigma_X^2}{\sigma_Y^2} = 1 \ H_a: \frac{\sigma_X^2}{\sigma_Y^2} \neq 1$$

• $\alpha = 0.05$

2. Calculate the appropriate test statistic

$$Q = \frac{s_X^2}{s_Y^2} = \frac{264.13}{277.93} = 0.95035 \quad \sim F_{n_X - 1, n_Y - 1} = F_{9,9}$$

F-test (cont.)

- 3. Calculate critical region/p value
- 4. Decide whether to reject/fail to reject H₀

- 1. Check assumptions, determine H0 and Ha, choose α
 - We check that the variables are normally distributed
 - We have decided that the variances are equal
 - H_0 : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = -0.3416(\sim t_{17.98834})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

95% confidence interval for $\mu_1 - \mu_2 = [-17.98, 12.95]$

 there is not enough evidence to say mean percentage benefit for treatment 1 and treatment 2 are significantly different

Two-sample t-Test - Example II

- In a study,
 - The sedimentation rate of 12 arthritis patients was measured: \bar{X}_1 = 82.79 mm and s_1 = 18.4 mm
 - The sedimentation rate of 15 healthy controls was measured: \bar{X}_2 = 69.03 mm and s_2 = 21.4 mm
- Is there a difference between the mean sedimentation rates of the two groups?

- 1. Check assumptions, determine H0 and Ha, choose α
 - We check that the variables are normally distributed
 - H_0 : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = 2.34 \quad (\sim t_{25})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

95% confidence interval for $\mu_1 - \mu_2 = [3.52, 33]$

 With 95% confidence, there is enough evidence to say that there is a difference between the mean sedimentation rates of the two groups

$$t_h = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}} \sim t_{n-1}$$

$$D = (X_{11} - X_{21}), (X_{12} - X_{22}), \dots, (X_{1n} - X_{2n})$$

$$\overline{D} = \frac{\sum_{i=1}^{n} D_i}{n}, S_D = \sqrt{\frac{\sum_{i=1}^{n} D_i^2 - \frac{\left(\sum_{i=1}^{n} D_i\right)^2}{n}}{n-1}}$$

- In a study investigates a seminar that aims to reduce the number of cigarettes smoked
- For 10 randomly-selected smokers,
 - The number of cigarettes smoked per day before the seminar (X₁)
 - The number of cigarettes smoked per day after the seminar (X₂)
 - are recorded

 Can it be claimed that the seminar reduces the number of cigarettes smoked per day?

		$D = X_1 - X_2$
X_{1i}	X_{2i}	D_{j}
30	28	2
25	25	0
25	25	0
20	18	2
20	17	3
18	18	0
17	16	1
17	16	1
15	15	0
13	12	1

- 1. Check assumptions, determine H_0 and H_a , choose α
 - $H_0: \mu_D \le 0$ $H_a: \mu_D > 0$ $D = X_1-X_2$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = 3 \ (\sim t_9)$$

- 3. Determine the critical region / calculate the p value / calculate the confidence interval
- 4. Decide whether the null hypothesis can be rejected or not

- 3. Determine the critical region / calculate the p value / calculate the confidence interval
- 4. Decide whether the null hypothesis can be rejected or not

95% confidence interval for \overline{D} = [0.246, ∞]

Brief Summary

