	pts r each of the following statements, answer whether it is TRUE or FALSE, and efly justify your answer.
a)	If a connected undirected graph G has the same weights for every edge, then every spanning tree of G is a minimum spanning tree, but such a spanning tree cannot be found in linear time.
b)	Given a flow network G and a maximum flow of G that has already been computed, one can compute a minimum cut of G in linear time.
c)	The Ford-Fulkerson Algorithm finds a maximum flow of a unit-capacity flow network with n vertices and m edges in time O(mn) if one uses depth-first search to find an augmenting path in each iteration.
d)	Unless $P = NP$, 3-SAT has no polynomial-time algorithm.
	For brida) b)

e) The problem of deciding whether a given flow f of a given flow network G is a maximum flow can be solved in linear time.

F

F	f)	If a decision problem A is polynomial-time reducible to a decision problem B (i.e., $A \le {}_p B$), and B is NP-complete, then A must be NP-complete.
T	g)	If a decision problem B is polynomial-time reducible to a decision problem A (i.e., $B{\le}_{p}A$), and B is NP-complete, then A must be NP-complete.
F	h)	Integer max flow (where flows and capacities are integers) is polynomial time reducible to linear programming .
F	i)	It has been proved that NP-complete problems cannot be solved in polynomial time.
Τ	j)	NP is a class of problems for which we do not have polynomial time solutions.