

Low-Level Design Thyroid Disease Detection

Developed by	Saurabh Gupta
Version	1.0
Date	24-06-2023

Low-Level Design

Table of Contents

1	Dog	cument Change/History Control	3
2	Rev	/iews:	. 3
3	App	proval Status:	. 3
4	Intr	oduction	. 4
	4.1	What is Low-Level Design Document.	. 4
	4.2	Scope	. 4
5	Arc	hitecture	. 4
6	Arc	hitecture Description	. 5
	6.1 R	aw Data Validation	. 6
	6.2	Data Transformation	. 7
	6.3	Data Preprocessing	. 7
	6.4	Feature Engineering	. 7
	6.5	Balance the data set by using SMOTE	7
	6.6	Parameter Tuning	3
	6.7	Model Building	3
	6.8	Model Saving	8
	6.9	GitHub	3
	6.10	Deployment	8
7	Lloi	t Toot Coops	_

1 Document Change/History Control

Version	Date	Done By	Review By	Remarks
1.0	24-06-2023	Saurabh Gupta		

2 Reviews:

Version	Date	Reviewer	Remarks

3 Approval Status:

Version	Review Date	Reviewed By	Approved By	Remarks

4 Introduction

4.1 What is Low-Level Design Document.

The goal of LLD or a low-level design document (LLDD) is to give the internal logical design of the actual program code for 'Stores Sales Prediction'. LLD describes the class diagrams with the methods and relations between classes and program specs. It describes the modules so that the programmer can directly code the program from the document.

4.2 Scope

Low-level design (LLD) is a component-level design process that follows a step-by-step refinement process. This process can be used for designing data structures, required software architecture, source code, and ultimately, performance algorithms. Overall, the data organization may be defined during requirement analysis and then refined during data design work.

5 Architecture

6 Architecture Description

The dataset looks like as follow:

	count	unique	top	freq
age	3772	94	59	95
sex	3772	3	F	2480
on thyroxine	3772	2	f	3308
query on thyroxine	3772	2	f	3722
on antithyroid medication	3772	2	f	3729
sick	3772	2	f	3625
pregnant	3772	2	f	3719
thyroid surgery	3772	2	f	3719
I131 treatment	3772	2	f	3713
query hypothyroid	3772	2	f	3538
query hyperthyroid	3772	2	f	3535
lithium	3772	2	f	3754
goitre	3772	2	f	3738
tumor	3772	2	f	3676
hypopituitary	3772	2	f	3771
psych	3772	2	f	3588
TSH measured	3772	2	t	3403
TSH			1	
T3 measured				t 3003
Т3			1	
TT4 measured				t 3541
TT4		242	1	
T4U measured	3772	2		t 3385
T4U	3772	147	1	
FTI measured	3772	2		t 3387
FTI	3772	235	1	? 385
TBG measured	3772	1		f 3772
TBG	3772	1	1	3772
referral source	3772	5	othe	r 2201
binaryClass	3772	2	F	3481

The data set consists of object data type shown in Fig.

#	Column	Non-Null Count	Dtype
0	age	3772 non-null	object
1	sex	3772 non-null	object
2	on thyroxine	3772 non-null	object
3	query on thyroxine	3772 non-null	object
4	on antithyroid medication	3772 non-null	object
5	sick	3772 non-null	object
6	pregnant	3772 non-null	object
7	thyroid surgery	3772 non-null	object
8	I131 treatment	3772 non-null	object
9	query hypothyroid	3772 non-null	object
10	query hyperthyroid	3772 non-null	object
11	lithium	3772 non-null	object
12	goitre	3772 non-null	object
13	tumor	3772 non-null	object
14	hypopituitary	3772 non-null	object
15	psych	3772 non-null	object
16	TSH measured	3772 non-null	object
17	TSH	3772 non-null	object
18	T3 measured	3772 non-null	object
19	T3	3772 non-null	object
20	TT4 measured	3772 non-null	object
21	TT4	3772 non-null	object
22	T4U measured	3772 non-null	object
23	T4U	3772 non-null	object
24	FTI measured	3772 non-null	object
25	FTI	3772 non-null	object
26	TBG measured	3772 non-null	object
27	TBG	3772 non-null	object
28	referral source	3772 non-null	object
29	binaryClass	3772 non-null	object
	(1)		_

6.1 Raw Data Validation

After data is loaded, various types of validation are required before we proceed further with any operation. Validations like checking for zero standard deviation for all the columns, checking for complete missing values in any columns, etc. These are required because The attributes which contain these are of no use. It will not play role in contributing to the sales of an item from respective outlets.

Like if any attribute is having zero standard deviation, it means that's all the values are the same, its mean is zero. This indicates that either the sale is increasing or decrease that attribute will remain the same. Similarly, if any attribute is having full missing values, then there is no use in taking that attribute into an account for operation. It's unnecessary increasing the chances of dimensionality curse.

6.2 Data Transformation

Before sending the data into the database, data transformation is required so that data are converted into such form with which it can easily insert into the database. In the raw data, there can be various columns of underlying patterns which also gives an in-depth knowledge about the subject of interest and provides insights into the problem. But caution should be observed with respect to data as it may contain null values, or redundant values, or various types of ambiguity, which also demands pre-processing of data.

6.3 Data Preprocessing

Preprocessing of this dataset includes doing analysis on the independent variables like checking for null values in each column and then replacing or filling them with supported appropriate data types so that analysis and model fitting is not hindered from their way to accuracy. Shown above are some of the representations obtained by using Pandas tools which tell about variable count for numerical columns and model values for categorical columns. Maximum and minimum values in numerical columns, along with their percentile values for median, play an important factor in deciding which value to be chosen at priority for further exploration tasks and analysis. Data types of different columns are used further in label processing and a one-hot encoding scheme during the model building.

6.4 Feature Engineering

After preprocessing it was found that some of the attributes are not important to the thyroid detection for the particular outlet. So those attributes are removed. Even one hot encoding is also performed to convert the categorical features into numerical features.

6.5 Balance the data set by using SMOTE

```
from imblearn.over_sampling import SMOTE

sm = SMOTE(random_state = 2)

x_train_res, y_train_res = sm.fit_resample(x_train, y_train.ravel())
```


6.6 Parameter Tuning

Parameters are tuned using GridSearchCV. Two algorithms are used in this problem, Logistic Regression, Random Forest Classifier and XGB Classifier. The parameters of these 3 algorithms are tuned and passed into the model.

6.7 Model Building

After doing all kinds of preprocessing operations mention above and performing scaling and hyperparameter tuning, the data set is passed into 3 models, Logistic Regression, Random Forest Classifier and XGB Classifier. It was found that Random Forest Classifier and XGB Classifier performs best with the 99%.

6.8 Model Saving

Model is saved using pickle library in `.sav` format.

6.9 GitHub

The whole project directory will be pushed into the GitHub repository.

Github: https://github.com/saurabhg2083/Thyroid_disease_detection

6.10 Deployment

The cloud environment (AWS Elastic Bean Stack) was set up and the project was deployed from GitHub into the AWS.

App link: http://thyroid-detection.eba-2ngj3nkm.ap-south-1.elasticbeanstalk.com/

7 Unit Test Cases.

Test Case Description	Pre-Requisite	Expected Result	
Verify whether the	Application-URL should be	Application URL should	
Application URL is	defined	be	
accessible to the user		accessible to the user	
Verify whether the	Application URLis	The Application should	
Application loads	accessible	load completely for the	
completely for the user		user when the URL is	
when the URLis accessed	Application is deployed	accessed	
Verify whether a user is	The user is able to see the	Users should be able	
able to see inputfields while	input fields	to see inputfields on	
opening the application		logging in	
Verify whether a user is	The user is able to see the	The user should be able	
able to enter the input	input fields	to fill the input field	
values.			
Verify whether a user	The user is able to see the	Users should get	
gets predict button to	input fields	Submit button to	
submit the inputs		submit the inputs	
Verify whether a user is	The user is able to see the	Users should be	
presented with	input fields.	presented with	
recommended results on	The user is able to see the	recommended results	
clicking submit	submit button	on clicking submit	
Verify whether a result	The user is able to see the	The result should be in	
is in accordance with	input fields.	accordance with the input	
the input that the user	The user is able to see the	that the user has entered	
has entered	submit button		