Лекция 10. Организация функционирования распределённых вычислительных систем

Ткачёва Татьяна Алексеевна

преп. Кафедры вычислительных систем Сибирский государственный университет телекоммуникаций и информатики

Created by:

Пазников Алексей Александрович к.т.н. доцент Кафедры вычислительных систем

Информация о курсе

Объект курса?

Распределённые вычислительные системы

Предмет курса?

Модели и алгоритмы организации функционирования

Цели распараллеливания

Что хочет пользователь?

- Сокращение времени решения задач.
- Решение задач, требующих огромных объёмов памяти.

В то же время

совершенствование средств ВТ на основе модели вычислителя *не* даст кардинального улучшения технических характеристик.

Распределённые ВС

Распределённая BC – мультипроцессорные BC с MIMDархитектурой, в которых <u>нет единого ресурса</u>.

Представляется множеством взаимодействующих элементарных машин, оснащенных средствами коммуникаций и внешними устройствами.

Архитектурные особенности

- Иерархическая структура
- Мультиархитектурная организация
- Разнородность состава

Структура современных ВС

Программное обеспечения распределённых ВС

- Распределённая ОС (GNU/Linux)
- Средства разработки параллельных программ (MPI, OpenMP, CUDA, Cray Chapel)
- Системы управления ресурсами (TORQUE, SLURM)
- Системы обеспечения отказоустойчивости (самоконтроль, самодиагностика, контрольные точки)
- Диспетчеры пространственно-распределённых ВС (GridWay, Pegasus)

Средства создания параллельных программ

Общая память

Распределённая

память

- POSIX Threads
- OpenMP
- Intel TBB
- Intel Cilk
- CUDA
- OpenCL

- Sockets
- MPI
- PVM

PGAS (partitioned global address

space)

- Cray Chapel
- IBM X10
- Unified Parallel C
- HPF

Этапы развития распределённых ВС

1 ГФЛОПС – 1988: Cray Y-MP; 8 процессоров

- Задачи гидродинамики
- Fortran77 + векторизация

1 ТФЛОПС – 1998: Cray T3E; 1 024 процессоров

- Моделирование процессов магнетизма
- Fortran + MPI (Message Passing Interface)

1 ПФЛОПС - 2008: Cray XT5; 150 000 процессоров

- Моделирование сверхпроводимости
- C/C++/Fortran + MPI + векторизация

~143 ПФЛОПС – 2019: SUMMIT; 2397824 процессора

- Моделирование сверхпроводимости и прочие сложные штуки
- C/C++/Fortran + MPI + CUDA/OpenCL/OpenMP/OpenACC

Организация функционирования

Цели организации функционирования:

- Минимум времени решения задачи
- Максимальная надёжность
- Максимум прибыли
- Минимизации энергопотребления

•

Могут быть составные показатели.

Режимы функционирования ВС

I Монопрограммный режим

Решение одной сложной задачи — для решения задачи используются все ресурсы BC.

II Мультипрограммный режим

Обработка набора задач — учитывается не только количество задач, но их параметры: число ветвей, время решения и др.

Обслуживание потока задач – задачи поступают в случайные моменты времени, их параметры случайны.

Мультипрограммный режим

Сеанс работы пользователей в пакетном режиме

- 1. Поставить задачу в очередь.
- 2. Проверить состояние задачи.
- 3. Внести коррективы в задачу (её параметры).
- 4. Получить результат решения задачи.

Системы управления ресурсами распределённых BC (RMS - Resource Management System)

Параллельное мультипрограммирование

Мультизадачные режимы

Обслуживание потоков задач

Генерация подсистем в пределах ВС

- Техника теории игр
- Стохастическое программирование

Обработка наборов задач

Формирование расписаний решения параллельных задач

Точные, эвристические и стохастические методы и алгоритмы

Системы управления ресурсами

I Монопрограммный режим

Решение одной сложной задачи — для решения задачи используются все ресурсы ВС.

II Мультипрограммный режим

Обработка набора задач – учитывается не только количество задач, но их параметры: число ветвей, время решения и др.

Обслуживание потока задач – задачи поступают в случайные моменты времени, их параметры случайны.

Диспетчеризация параллельных задач

Распределённые вычисления (Вычисления высокой пропускной способности, HTC)

- живучесть, отказоустойчивость (миграция, контрольные точки)
- длительное время решения большого количество заданий
- слабо связанные задания
- большой объём
 задействованных ресурсов

CONDOR, MOSIX, BOINC,
MapReduce

Распределённые вычисления (Вычисления высокой пропускной способности, НТС)

Алгоритмы MapReduce

Высокопроизводительные вычисления (НРС)

- сильно связанные параллельные ветви интенсивный обмен сообщениями быстрые каналы связи
- единая точка доступа к ресурсам
- параллельные программы

Конец слайдов

П.Пикассо. «Герника»