Common Op-Amp Circuits

Inverting amplifier

Noninverting amplifier

Unity follower

Summing amplifier

Integrator

Differentiator

Inverting Op-Amp

The input signal is applied to the inverting (–) input

The non-inverting input (+) is grounded

The feedback resistor (R_f) is connected from the output to the negative (inverting) input; providing *negative feedback*.

Inverting Op-Amp Gain

Gain is set using external resistors: R_f and R_1

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{R_{f}}{R_{1}}$$

Gain can be set to any value by manipulating the values of R_f and R_1 .

Unity gain $(A_v = 1)$:

$$R_f = R_1$$

$$A_v = \frac{-R_f}{R_1} = -1$$

The negative sign denotes a 180° phase shift between input and output.

Inverting Amplifier

Example 10.5: If Rf = $500k\Omega$ and R1 = $100k\Omega$, what output voltage results for an input of V₁ = 2V

Solution:

$$V_o = -\frac{R_f}{R_1} V_1 = -\frac{500 \text{ k}\Omega}{100 \text{ k}\Omega} (2 \text{ V}) = -10 \text{ V}$$

Non Inverting Op-Amp Gain

Gain is set using external resistors: R_f and R_1

$$Av = (1 + Rf/R1)$$

Gain can be set to any value by manipulating the values of R_f and R_1 .

Non Inverting Amplifier

Example 10.6: Calculate the output voltage of a noninverting opamp for values V1= 2V, Rf = $500k\Omega$ and R1 = $100k\Omega$

Solution:

$$V_o = \left(1 + \frac{R_f}{R_1}\right)V_1 = \left(1 + \frac{500 \,\mathrm{k}\Omega}{100 \,\mathrm{k}\Omega}\right)(2 \,\mathrm{V}) = 6(2 \,\mathrm{V}) = +12 \,\mathrm{V}$$

Unity Follower

$$V_o = V_1$$

Summing Amplifier

Because the op-amp has a high input impedance, the multiple inputs are treated as separate inputs.

$$V_{o} = -\left(\frac{R_{f}}{R_{1}}V_{1} + \frac{R_{f}}{R_{2}}V_{2} + \frac{R_{f}}{R_{3}}V_{3}\right)$$

Summing Amplifier

Example 10.7: Calculate the output voltage of an op-amp summing amplifier for the following set of voltages. Use $R_f = 1M\Omega$ in all cases.

a.
$$V_1 = +1 \text{ V}, V_2 = +2 \text{ V}, V_3 = +3 \text{ V}, R_1 = 500 \text{ k}\Omega, R_2 = 1 \text{ M}\Omega, R_3 = 1 \text{ M}\Omega.$$

b. $V_1 = -2 \text{ V}, V_2 = +3 \text{ V}, V_3 = +1 \text{ V}, R_1 = 200 \text{ k}\Omega, R_2 = 500 \text{ k}\Omega, R_3 = 1 \text{ M}\Omega.$

Solution:

a.
$$V_o = -\left[\frac{1000 \text{ k}\Omega}{500 \text{ k}\Omega}(+1 \text{ V}) + \frac{1000 \text{ k}\Omega}{1000 \text{ k}\Omega}(+2 \text{ V}) + \frac{1000 \text{ k}\Omega}{1000 \text{ k}\Omega}(+3 \text{ V})\right]$$

 $= -[2(1 \text{ V}) + 1(2 \text{ V}) + 1(3 \text{ V})] = -7 \text{ V}$
b. $V_o = -\left[\frac{1000 \text{ k}\Omega}{200 \text{ k}\Omega}(-2 \text{ V}) + \frac{1000 \text{ k}\Omega}{500 \text{ k}\Omega}(+3 \text{ V}) + \frac{1000 \text{ k}\Omega}{1000 \text{ k}\Omega}(+1 \text{ V})\right]$
 $= -[5(-2 \text{ V}) + 2(3 \text{ V}) + 1(1 \text{ V})] = +3 \text{ V}$

Integrator

The output is the integral of the input; i.e., proportional to the area under the input waveform. This circuit is useful in low-pass filter circuits and sensor conditioning circuits.

$$V_o(t) = -\frac{1}{RC} \int V_1(t) dt$$

Differentiator

The differentiator takes the derivative of the input. This circuit is useful in high-pass filter circuits.

$$V_o(t) = -RC \frac{dV_1(t)}{dt}$$

Gain and Bandwidth

The op-amp's high frequency response is limited by its internal circuitry. The plot shown is for an open loop gain $(A_{OL} \text{ or } A_{VD})$. This means that the op-amp is operating at the highest possible gain with no feedback resistor.

In the open loop mode, an op-amp has a narrow bandwidth. The bandwidth widens in closed-loop mode, but the gain is lower.

Slew Rate (SR)

Slew rate (SR): The maximum rate at which an op-amp can change output without distortion.

$$SR = \frac{\Delta V_o}{\Delta t} \quad \text{(in V/}\mu\text{s)}$$

The SR rating is listed in the specification sheets as the $V/\mu s$ rating.

Maximum Signal Frequency

The slew rate determines the highest frequency of the op-amp without distortion.

where V_P is the peak voltage

Frequency Parameters

An op-amp is a wide-bandwidth amplifier. The following factors affect the bandwidth of the opamp:

Gain

Slew rate

Absolute Ratings

These are common maximum ratings for the op-amp.

Electrical Characteristics

 μ A741 Electrical Characteristics: $V_{CC} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$

Characteristic	Minimum	Typical	Maximum	Unit
$V_{\rm IO}$ Input offset voltage		1	6	mV
I _{IO} Input offset current		20	200	nA
I _{IB} Input bias current		80	500	nA
V _{ICR} Common-mode input voltage range	±12	±13		V
V _{OM} Maximum peak output voltage swing	±12	±14		V
A _{VD} Large-signal differential voltage amplification	20	200		V/mV
r_i Input resistance	0.3	2		$M\Omega$
r _o Output resistance		75		Ω
C _i Input capacitance		1.4		pF
CMRR Common-mode rejection ratio	70	90		dB
I _{CC} Supply current		1.7	2.8	mA
P_D Total power dissipation		50	85	mW

Note: These ratings are for specific circuit conditions, and they often include minimum, maximum and typical values.

Op-Amp Performance

The specification sheets will also include graphs that indicate the performance of the opamp over a wide range of conditions.

ASSIGNMENT TASK

Analyse the Op Amp configuration to calculate the output voltage for the circuit of Figure below with inputs of V_1 =40 mV rms and V_2 =20 mV rms.

ASSIGNMENT TASK

• Analyze the op Amp circuit to determine the output voltage for the circuit of Figure below.

