Unsupervised Domain Adaptation by Backpropagation

Chih-Hui Ho, Xingyu Gu, Yuan Qi

Outline

- Introduction
- Architecture
 - o Baseline architecture
 - GAN architecture
 - WGAN architecture
- Experiments
- Conclusions

Introduction

Deep network: requires massive labeled training data.

- Difficult to collect sometimes:
 - Robotics
 - Disaster
 - Medical diagnosis
 - Bioinformatics

Domain Adaptation solves this problem by using relevant datasets: i.e. training on the data from source domain, but testing on the data from target domain.

Example

MNIST → MNIST-M (extracted features)

Our Implementation

- Three architectures:
 - Baseline architecture (Y. Ganin et al., 2015)
 - GAN architecture
 - WGAN architecture
- Five experiments:
 - MNIST → MNIST-M
 - SYN NUM → SVHN
 - \circ SVHN \rightarrow MNIST
 - SYN SIGN → GTSRB
 - Office Dataset
 - Amazon → Webcam
 - DSLR → Webcam
 - Webcam → DSLR

Baseline architecture

- G_f : feature extractor
- G_v : label predictor
- G_d : domain classifier

source data x_S target data x_t .

GAN based architecture

Incorporate the generative adversarial network into loss function

$$\underset{\theta_d}{\operatorname{argmin}} \ \log(G_d(G_f(x_t))) + \log(1 - G_d(G_f(x_s))) + G_y(G_f(x_s), y_s)$$

Train

Algorithm 1 GAN based domain adaptation algorithm

Randomly initialize the network

Define $L1 = log(G_d(G_f(x_t)))$

Define $L2 = log(1 - G_d(G_f(x_s)))$

Define $L3 = L(G_f(x_s), y_s)$

for e < MaxEpoch do

Fix
$$\theta_f$$
 and θ_y

$$\theta_d \leftarrow \theta_d - \mu \frac{\partial (-L1-L2)}{\partial \theta_d}$$
Fix θ_f and θ_d

$$\theta_y \leftarrow \theta_y - \mu \frac{\partial L3}{\partial \theta_y}$$
Fix θ_y and θ_d

$$\theta_f \leftarrow \theta_f - \mu \frac{\partial (L1+L2+\lambda L3)}{\partial \theta_f}$$

GAN based architecture

Incorporate the generative adversarial network into loss function

$$\underset{\theta_d}{\operatorname{argmin}} \ \log(G_d(G_f(x_t))) + \log(1 - G_d(G_f(x_s))) + G_y(G_f(x_s), y_s)$$

Train

Algorithm 1 GAN based domain adaptation algorithm

Randomly initialize the network

Define $L1 = log(G_d(G_f(x_t)))$

Define $L2 = log(1 - G_d(G_f(x_s)))$

Define $L3 = L(G_f(x_s), y_s)$

for e < MaxEpoch do

Fix
$$heta_f$$
 and $heta_y$

$$\theta_d \leftarrow \theta_d - \mu \frac{\partial (-\tilde{L}1 - L2)}{\partial \theta_d}$$

Fix
$$\theta_f$$
 and θ_d

$$\theta_y \leftarrow \theta_y - \mu \frac{\partial L3}{\partial \theta_y}$$

Fix
$$\theta_y$$
 and θ_d

$$\theta_f \leftarrow \theta_f - \mu \frac{\partial (L1 + L2 + \lambda L3)}{\partial \theta_f}$$

GAN based architecture

Incorporate the generative adversarial network into loss function

$$\underset{\theta_d}{\operatorname{argmin}} \log(G_d(G_f(x_t))) + \log(1 - G_d(G_f(x_s))) + G_y(G_f(x_s), y_s)$$

Algorithm 1 GAN based domain adaptation algorithm

Randomly initialize the network

Define $L1 = log(G_d(G_f(x_t)))$

class label y Define $L2 = log(1 - G_d(G_f(x_s)))$

Define $L3 = L(G_f(x_s), y_s)$

for e < MaxEpoch do

Fix
$$\theta_f$$
 and θ_y
$$\theta_d \leftarrow \theta_d - \mu \frac{\partial (-L1-L2)}{\partial \theta_d}$$
 Fix θ_f and θ_d

$$\theta_y \leftarrow \theta_y - \mu \frac{\partial L3}{\partial \theta_y}$$

Fix
$$heta_y$$
 and $heta_d$

$$\theta_f \leftarrow \theta_f - \mu \frac{\partial (L1 + L2 + \lambda L3)}{\partial \theta_f}$$

WGAN architecture

Slightly modified the loss function

$$\underset{\theta_d}{\operatorname{argmin}} \ G_d(G_f(x_t)) - G_d(G_f(x_s)) + G_y(G_f(x_s), y_s)$$

Algorithm 2 WGAN based domain adaptation algorithm

Randomly initialize the network

Define $L1 = G_d(G_f(x_t))$

Define $L2 = -G_d(G_f(x_s))$

Define $L3 = L(G_f(x_s), y_s)$

for e < MaxEpoch do

Fix
$$\theta_f$$
 and θ_y

$$\theta_d \leftarrow \theta_d - \mu \frac{\partial (-L1-L2)}{\partial \theta_d}$$
Fix θ_f and θ_d

$$\theta_y \leftarrow \theta_y - \mu \frac{\partial L3}{\partial \theta_y}$$
Fix θ_y and θ_d

$$\theta_f \leftarrow \theta_f - \mu \frac{\partial (L1+L2+\lambda L3)}{\partial \theta_f}$$

Experiments - MNIST → MNIST-M

Example

Network Architecture

Experiments - MNIST \rightarrow MNIST-M

Result

Method	Ours	Original paper
Source only	0.551	0.523
Proposed approach	0.872	0.767
Train on target	0.963	0.960

Visualization (t-SNE)

Experiments - SYN NUM → SVHN

Example

Network Architecture

Experiments - SYN NUM → SVHN

Result

Method	Ours	Original paper
Source only	0.880	0.867
Proposed approach	0.894	0.911
Train on target	0.927	0.922

Visualization

Experiments - SVHN \rightarrow MNIST

Example

Network Architecture

Experiments - SVHN \rightarrow MNIST

Result

Method	Ours	Original paper
Source only	0.604	0.549
Proposed approach	0.698	0.739
Train on target	0.992	0.994

Problem:

Label classifier too weak Feature extractor too weak

Visualization

Experiments - SYN SIGN → GTSRB (ongoing)

Example

Network Architecture

Experiments - SYN SIGN → GTSRB (ongoing)

Current Result

Method	Ours	Original paper
Source only	0.563	0.790
Proposed approach		0.887
Train on target	0.555	0.998

Experiments - Office Dataset (Amazon, Webcam, DSLR)

Example

Architecture (pretrianed AlexNet + Label classifier + Domain classifier)

Experiments - Office Dataset

Result

Method	Source	Amazon	DSLR	Webcam
	Target	Webcam	Webcam	DSLR
Source only (Orig	ginal paper)	0.506 (0.642)	0.914 (0.961)	0.967 (0.978)
Proposed approac (Original paper)	h	0.565 (0.730)	0.934 (0.964)	0.989 (0.992)

- Improvement in percentile: similar
- Start point (source only): ours are lower than the original paper's
 - o Possible reason: different initialization, training process, etc.

Experiments - GAN & WGAN

- Problem
 - Hard to converge
- Current Result
 - DA accuracy similar to source only baseline (no improvement)
- Solution
 - Examine the implementation
 - Optimize without momentum (WGAN)

Conclusion

- First group to implement all the experiments in the original paper
- The datasets used in the paper are organized to be used with ease
- Investigate the possibility to incorporate GAN loss function
- All codes are released on github for future research