SNW_VFI_PARAM Small 5/3 Solution Analysis

This is the example vignette for function: **snw_vfi_main_bisec_vec** from the **PrjOptiSNW Package.** This function solves for policy function with vectorized bisection. Small Solution Analysis, husband 5 shocks, wife 3 shocks.

Test SNW_VFI_MAIN Defaults Small

Call the function with defaults.

```
mp_param = snw_mp_param('default_small53');
[V VFI,ap VFI,cons VFI,mp valpol more] = snw vfi main bisec vec(mp param);
SNW_VFI_MAIN: Finished Age Group:18 of 18
SNW_VFI_MAIN: Finished Age Group:17 of 18
SNW VFI MAIN: Finished Age Group:16 of 18
SNW VFI MAIN: Finished Age Group:15 of 18
SNW VFI_MAIN: Finished Age Group:14 of 18
SNW VFI MAIN: Finished Age Group:13 of 18
SNW_VFI_MAIN: Finished Age Group:12 of 18
SNW_VFI_MAIN: Finished Age Group:11 of 18
SNW_VFI_MAIN: Finished Age Group:10 of 18
SNW_VFI_MAIN: Finished Age Group:9 of 18
SNW VFI MAIN: Finished Age Group:8 of 18
SNW_VFI_MAIN: Finished Age Group:7 of 18
SNW VFI MAIN: Finished Age Group:6 of 18
SNW VFI MAIN: Finished Age Group:5 of 18
SNW_VFI_MAIN: Finished Age Group:4 of 18
SNW VFI MAIN: Finished Age Group:3 of 18
SNW_VFI_MAIN: Finished Age Group:2 of 18
SNW_VFI_MAIN: Finished Age Group:1 of 18
Elapsed time is 4.405878 seconds.
Completed SNW_VFI_MAIN;SNW_MP_PARAM=default_small53;SNW_MP_CONTROL=default_base
```

Small Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = [19, 22:5:97, 100];
agrid = mp_param('agrid')';
eta_H_grid = mp_param('eta_H_grid')';
eta_S_grid = mp_param('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'w:
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_param('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
```

```
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Savings and Shocks

First, analyze Savings Levels and Shocks, Aggregate Over All Others, and do various other calculations.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 9; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(VAL(A,Z)), MEAN(AP(A,Z)), MEAN(C(A,Z))

Tabulate value and policies along savings and shocks:

group	savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	me
1	0	-7.882	-5.7348	-4.085	-2.8085	-1.8188	-7.0297	
2	0.0097656	-7.7212	-5.6181	-3.9885	-2.7215	-1.7365	-6.9116	-
3	0.078125	-6.8428	-4.9741	-3.4642	-2.2559	-1.3014	-6.2511	
4	0.26367	-5.4385	-3.9243	-2.6322	-1.5472	-0.66003	-5.0899	
5	0.625	-3.9212	-2.7733	-1.7454	-0.83276	-0.049731	-3.7236	
6	1.2207	-2.4938	-1.6768	-0.89179	-0.17035	0.48277	-2.3765	
7	2.1094	-1.2492	-0.69701	-0.12719	0.42663	0.94331	-1.1762	
8	3.3496	-0.21896	0.14154	0.536	0.94666	1.3467	-0.17291	(
9	5	0.60263	0.83385	1.0995	1.3921	1.6958	0.63191	(
10	7.1191	1.242	1.3897	1.5663	1.7699	1.9935	1.2607	
11	9.7656	1.7339	1.8287	1.9458	2.086	2.247	1.7458	
12	12.998	2.1109	2.1725	2.2505	2.3468	2.4616	2.1187	
13	16.875	2.4005	2.4411	2.4935	2.5599	2.6414	2.4057	
14	21.455	2.6243	2.6513	2.687	2.733	2.7911	2.6277	
15	26.797	2.7986	2.817	2.8415	2.8737	2.9153	2.8009	
16	32.959	2.9355	2.9482	2.9654	2.9882	3.0181	2.9371	
17	40	3.0441	3.053	3.0651	3.0815	3.1033	3.0452	
18	47.979	3.1309	3.1373	3.146	3.1579	3.1739	3.1317	
19	56.953	3.201	3.2056	3.212	3.2207	3.2326	3.2016	
20	66.982	3.258	3.2614	3.2662	3.2727	3.2816	3.2585	
21	78.125	3.3049	3.3074	3.311	3.3159	3.3226	3.3052	
22	90.439	3.3437	3.3456	3.3483	3.352	3.3572	3.3439	
23	103.98	3.3761	3.3775	3.3796	3.3824	3.3864	3.3762	
24	118.82	3.4032	3.4044	3.4059	3.4082	3.4113	3.4034	
25	135	3.4262	3.4271	3.4283	3.4301	3.4325	3.4263	

1	0	0.0019699	0.012569	0.042745	0.11279	0.27641	0.0053954	0.019
2	0.0097656	0.0026822	0.013934	0.045039	0.11613	0.28116	0.0068403	0.022
3	0.078125	0.012725	0.028983	0.063429	0.14286	0.31616	0.026742	0.046
4	0.26367	0.086315	0.10163	0.14743	0.23696	0.42136	0.1257	0.14
5	0.625	0.30688	0.32748	0.37158	0.48022	0.66179	0.36452	0.3
6	1.2207	0.71364	0.74681	0.79866	0.90672	1.1008	0.7942	0.82
7	2.1094	1.38	1.4122	1.473	1.5674	1.7516	1.4621	1.4
8	3.3496	2.3237	2.3547	2.4215	2.5241	2.6817	2.4018	2.4
9	5	3.5866	3.6174	3.6852	3.8049	3.9657	3.665	3.7
10	7.1191	5.2284	5.258	5.3256	5.4521	5.645	5.3076	5.3
11	9.7656	7.2439	7.2717	7.3376	7.4667	7.6795	7.3275	7.3
12	12.998	9.683	9.7074	9.7687	9.8969	10.122	9.757	9.7
13	16.875	12.69	12.713	12.768	12.888	13.118	12.761	12.
14	21.455	16.245	16.267	16.322	16.434	16.656	16.326	16.
15	26.797	20.297	20.314	20.362	20.471	20.681	20.374	20.
16	32.959	24.972	24.994	25.04	25.136	25.339	25.05	25.
17	40	30.336	30.36	30.416	30.523	30.708	30.406	30.
18	47.979	36.418	36.442	36.497	36.607	36.811	36.485	36.
19	56.953	43.405	43.428	43.48	43.586	43.789	43.471	43.
20	66.982	51.176	51.202	51.26	51.37	51.568	51.247	51.
21	78.125	59.419	59.447	59.507	59.624	59.834	59.503	59.
22	90.439	68.737	68.762	68.819	68.932	69.146	68.808	68.
23	103.98	79.211	79.236	79.291	79.402	79.606	79.282	79.
24	118.82	90.517	90.543	90.601	90.715	90.921	90.585	90.
25	135	102.82	102.85	102.9	103.01	103.22	102.9	102

% Consumption Choices

tb_az_c = ff_summ_nd_array("MEAN(C(A,Z))", cons_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a

group	savings 	mean_eta_1	mean_eta_2 	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mear
1	0	0.36263	0.48831	0.66884	0.92666	1.2761	0.47329	0.5
2	0.0097656	0.37339	0.4984	0.67798	0.93473	1.2828	0.4833	0.6
3	0.078125	0.44367	0.56349	0.73958	0.98789	1.3276	0.54356	0.6
4	0.26367	0.58796	0.70825	0.87262	1.1106	1.439	0.66208	0.7
5	0.625	0.7912	0.90541	1.0708	1.2892	1.6202	0.84639	0.9
6	1.2207	1.082	1.1826	1.3394	1.5577	1.8756	1.1134	1
7	2.1094	1.4544	1.5549	1.7017	1.9328	2.26	1.4833	1
8	3.3496	1.958	2.0586	2.1984	2.4204	2.7735	1.99	2
9	5	2.6182	2.7182	2.8561	3.0601	3.4093	2.6493	2
10	7.1191	3.4432	3.5437	3.6809	3.8773	4.1937	3.4728	3
11	9.7656	4.5057	4.6075	4.7459	4.939	5.2349	4.5305	4
12	12.998	5.824	5.9289	6.0713	6.2649	6.5482	5.8581	5
13	16.875	7.322	7.4281	7.5761	7.7778	8.0549	7.359	7
14	21.455	9.0868	9.1934	9.342	9.5513	9.8361	9.1139	
15	26.797	11.239	11.351	11.506	11.717	12.014	11.27	
16	32.959	13.72	13.826	13.983	14.207	14.511	13.749	1
17	40	16.53	16.635	16.782	16.996	17.316	16.568	1
18	47.979	19.712	19.817	19.964	20.174	20.477	19.752	1
19	56.953	23.144	23.25	23.4	23.614	23.917	23.185	
20	66.982	27.016	27.118	27.263	27.473	27.781	27.053	2
21	78.125	31.708	31.809	31.951	32.154	32.451	31.731	3
22	90.439	36.685	36.789	36.934	37.141	37.433	36.721	3
23	103.98	41.935	42.038	42.186	42.395	42.696	41.971	4
24	118.82	47.848	47.951	48.095	48.301	48.601	47.887	
25	135	54.325	54.429	54.577	54.788	55.087	54.36	5

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(a,z))'};
ff_graph_grid((tb_az_ap{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["k0M0", "K1M0", "K2M0", "k0M1", "K1M1", "K2M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = { 'o', 'd', 's', 'o', 'd', 's'};
mp_support_graph('cl_colors') = {'red', 'red', 'red', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(KM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc, a
group
           kids
                  marry
                          mean_age_19
                                        mean_age_22
                                                     mean_age_27
                                                                   mean_age_32
                                                                                mean_age_37
                                                                                             mean_age_42
     1
            1
                    0
                            2.6201
                                         2.7665
                                                       2.8454
                                                                    2.8242
                                                                                 2.7343
                                                                                               2.5925
     2
            2
                    0
                            1.5887
                                         1.8727
                                                       2.0791
                                                                    2.1577
                                                                                 2.1527
                                                                                               2.0791
                                         1.3439
     3
            3
                    0
                            1.0708
                                                       1.5546
                                                                    1.6415
                                                                                 1.6452
                                                                                               1.5844
     4
            1
                    1
                            2.6802
                                         2.8229
                                                       2.9077
                                                                    2.9056
                                                                                 2.8417
                                                                                               2.7296
     5
            2
                    1
                            1.9461
                                          2.164
                                                       2.3286
                                                                    2.3959
                                                                                 2.3955
                                                                                               2.3375
                             1.615
                                         1.8161
                                                       1.9731
                                                                    2.0371
                                                                                 2.0352
                                                                                               1.9819
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(KM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           kids
                                       mean age 22
                                                     mean age 27
                                                                  mean age 32
                                                                                mean age 37
                                                                                             mean age 42
                  marry
                          mean age 19
                             34.74
                                         34.523
                                                       34.415
                                                                    34.265
                                                                                  34.042
                                                                                               33.736
     1
            1
                    0
     2
            2
                    0
                            34.413
                                         34.138
                                                       33.952
                                                                    33.709
                                                                                  33.376
                                                                                               32.947
     3
            3
                    0
                            34.001
                                                       33.635
                                                                    33.423
                                                                                 33.115
                                                                                               32.697
                                         33.777
     4
            1
                                                       34.323
                                                                                 33.976
                                                                                               33.682
                    1
                            34.626
                                         34.419
                                                                    34.185
     5
            2
                                                                                 33.642
                                                                                               33.267
                                                                    33.923
                    1
                            34.477
                                         34.253
                                                       34.116
     6
            3
                    1
                                                                                 33.384
                            34.101
                                         33.913
                                                       33.809
                                                                    33.641
                                                                                               33.024
% Consumption Choices
```

```
tb_az_c = ff_summ_nd_array("MEAN(C(KM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
```

xxx MEAN(C(KM,J))		XXXXXXXX	XXXXXXXXXXXXXXX	XXXX					
gr	oup	kids	marry	mean_age_19	mean_age_22	mean_age_27	mean_age_32	mean_age_37	mean_age_42
	1	1	0	6.778	7.0757	7.3697	7.6652	7.9826	8.3391
	2	2	0	7.1055	7.4611	7.8334	8.2212	8.6487	9.1272
	3	3	0	7.5174	7.8216	8.1497	8.5069	8.91	9.3774
	4	1	1	7.3063	7.6329	7.9639	8.2916	8.638	9.0211
	5	2	1	7.3917	7.7297	8.0937	8.4696	8.8812	9.339
	6	3	1	7.7233	8.0217	8.3477	8.6932	9.0766	9.5155

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(KM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(KM,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage and Age

3.6

3.8

Age LOG(X)

2

1.8

3.2

3.4

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

4.4

4.6

4.2

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

4.8

MEAN(VAL(EKM,J)), MEAN(AP(EKM,J)), MEAN(C(EKM,J))

Tabulate value and policies:

```
% Set
 % NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
 ar_permute = [2,3,6,1,4,5];
 % Value Function
 tb_az_v = ff_summ_nd_array("MEAN(VAL(EKM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
 group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                       mean_age_27
                                                                    mean_age_32
                                                                                  mean_age_37
                                                                                               mean_age_42
      1
              0
                     a
                             1.4646
                                           1.6636
                                                        1.8129
                                                                      1.8698
                                                                                   1.8591
                                                                                                 1.7896
       2
              1
                     0
                             2.0551
                                           2.3251
                                                        2.5065
                                                                      2.5458
                                                                                   2.4958
                                                                                                 2.3811
       3
                     1
                              1.795
                                           1.9657
                                                        2.0955
                                                                      2.1504
                                                                                   2.1481
                                                                                                 2.0956
       4
                             2.3659
                                           2.5697
                                                        2.7107
                                                                      2.7421
                                                                                   2.7001
                                                                                                 2.6037
 % Aprime Choice
 tb az ap = ff summ nd array("MEAN(AP(EKM,J))", ap VFI, true, ["mean"], 3, 1, cl mp datasetdesc
 group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                       mean_age_27
                                                                    mean_age_32
                                                                                  mean_age_37
                                                                                               mean_age_42
       1
              0
                     0
                             34.471
                                           34.227
                                                        34.028
                                                                      33.781
                                                                                   33.465
                                                                                                 33.068
       2
              1
                     0
                             34.298
                                           34.065
                                                        33.974
                                                                      33.817
                                                                                   33.557
                                                                                                 33.186
       3
                             34.499
                     1
                                           34.288
                                                        34.123
                                                                      33.91
                                                                                   33.632
                                                                                                 33.274
                     1
                             34.304
                                           34.102
                                                        34.042
                                                                      33.923
                                                                                   33.703
                                                                                                 33.375
 % Consumption Choices
 tb_az_c = ff_summ_nd_array("MEAN(C(EKM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
 xxx MEAN(C(EKM,J))
                    XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
     group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                      mean_age_27
                                                                    mean_age_32
                                                                                  mean_age_37
                                                                                               mean_age_42
      1
              0
                     0
                              7.047
                                           7.3391
                                                         7.647
                                                                       7.982
                                                                                   8.3628
                                                                                                 8.8022
      2
              1
                     0
                             7.2203
                                           7.5665
                                                        7.9215
                                                                      8.2802
                                                                                   8.6647
                                                                                                 9.0936
      3
                                                                      8.2659
                                                                                   8.6401
                                                                                                 9.0694
              0
                     1
                             7.3401
                                           7.6271
                                                        7.9338
      4
              1
                             7.6075
                                                                      8.7038
                                                                                   9.0904
                                                                                                 9.5144
                     1
                                           7.9624
                                                        8.3364
Graph Mean Values:
 mp support graph('cl st graph title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
```

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(EK,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(EK,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


