

Lineare Algebra für Informatik - Woche 11

Cosmin Aprodu

Technische Universität München

Online, 24 Juni 2021

Eingenwerte und Polynome

Sei K wieder ein Körper und $A \in K^{n \times n}$ eine *quadratische* Matrix. Ein $\lambda \in K$ heißt **Eigenwert** von A, falls es $v \in K^n \setminus \{0\}$ gibt mit $A \cdot v = \lambda \cdot v$. Ein solcher Vektor v heißt dann ein **Eigenvektor** von A (zum Eigenwert λ).

$$E_{\lambda} := \{ v \in K^n \mid A \cdot v = \lambda \cdot v \}$$

heißt **Eigenraum** (zum Eigenwert λ).

Sei $A \in K^{n \times n}$ eine quadratische Matrix. Das Polynom

$$\chi_A := \det(x \cdot I_n - A) \in K[x]$$

heißt das charakteristische Polynom von A.

Wichtig: Die Eigenwerte einer quadratischen Matrix A sind die Nullstellen des charakteristischen Polynoms χ_A .

Vielfachheiten

Es sei $\lambda \in K$ ein *Eigenwert* einer Matrix $A \in K^{n \times n}$.

- Die **algebraische Vielfachheit** $m_a(\lambda)$ von λ ist die Vielfachheit der Nullstelle λ im charakteristischen Polynom χ_A .
- Die **geometrische Vielfachheit** $m_q(\lambda)$ von λ ist definiert wie folgt:

$$m_g(\lambda) := \dim(E_{\lambda})$$

Bemerkung: $1 \le m_g(\lambda) \le m_a(\lambda)$

Beispiel: Sei
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
. Dann gilt: $\chi_A = \det \begin{pmatrix} x - 1 & -1 \\ 0 & x - 1 \end{pmatrix} = (x - 1)^2$. Also ist $\lambda_0 = 1$ der einzige Eigenwert mit $m_a(\lambda_0) = 2$ (wegen Potenz von $x - 1$). Weiter, bemerken wir, dass $A - \lambda_0 \cdot I_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ Rang 1 hat $\Rightarrow \dim(E_{\lambda_0}) = 1$ $\Rightarrow \boxed{m_a(\lambda_0) = 1}$.

Diagonalisierbar oder nicht?

Erinnerung: $GL_n(K) = \{ S \in K^{n \times n} \mid S \text{ invertierbar} \}.$

Eine quadratische Matrix $A \in K^{n \times n}$ heißt **diagonalisierbar**, falls A ähnlich zu einer Diagonalmatrix D ist, also:

$$A = S \cdot D \cdot S^{-1}$$
 oder auch $D = S^{-1} \cdot A \cdot S$

für eine Matrix $S \in GL_n(K)$. Die Eigenvektoren sind dabei die Spalten von S.

Wichtig: Eine quadratische Matrix $A \in K^{n \times n}$ ist genau dann *diagonalisierbar*, wenn **beide** der folgenden Bedingungen erfüllt sind:

• Das charakteristische Polynom χ_A zerfällt in Linearfaktoren, also:

$$\chi_A = \prod_{i=1}^r (x - \lambda_i)^{e_i}$$
, wobei $e_i = m_a(\lambda_i)$

• Für alle Eigenwerte λ_i gilt:

$$m_g(\lambda_i) = m_a(\lambda_i)$$