

Test Paper Code: CA

Time: 3 Hours

Max. Marks: 300

INSTRUCTIONS

A. General:

- This Question Booklet is your Question Paper.
- 2. This Question Booklet contains 24 pages and has 100 questions.
- The Question Booklet Code is printed on the right-hand top corner of this page.
- The Question Booklet contains blank spaces for your rough work. No additional sheets will be provided for rough work.
- Clip board, log tables, slide rule, calculator, cellular phone or electronic gadgets in any form are NOT allowed.
- Write your Name and Registration Number in the space provided at the bottom.
- All answers are to be marked only on the machine gradable Optical Response Sheet (ORS) provided along with this booklet, as per the instructions therein.
- The Question Booklet along with the Optical Response Sheet (ORS) must be handed over to the Invigilator before leaving the examination hall.
- 9. Refer to Special Instructions/Useful Data on reverse of this sheet.

B. Filling-in the ORS:

- Write your Registration Number in the boxes provided on the upper left-hand-side
 of the ORS and darken the appropriate bubble under each digit of your
 Registration Number using a HB pencil.
- Ensure that the code on the Question Booklet and the code on the ORS are the same. If the codes do not match, report to the Invigilator immediately.
- 12. On the lower-left-hand-side of the ORS, write your Name, Registration Number, and Name of the Test Centre and put your signature in the appropriate box with ball-point pen. Do not write these anywhere else.

C. Marking of Answers on the ORS:

- 13. Each question has 4 choices for its answer: (A), (B), (C) and (D). Only ONE of them is the correct answer.
- 14. On the right-hand-side of ORS, for each question number, darken with a HB Pencil ONLY one bubble corresponding to what you consider to be the most appropriate answer, from among the four choices.
- There will be negative marking for wrong answers.

MARKING SCHEME:

- (a) For each correct answer, you will be awarded 3 (Three) marks.
- (b) For each wrong answer, you will be awarded -1 (Negative one) mark.
- (c) Multiple answers to a question will be treated as a wrong answer.
- (d) For each un-attempted question, you will be awarded 0 (Zero) mark.

Name				
Registration Number				

SEAI

Special Instructions / Useful Data

N denotes the set of natural numbers.

- Z denotes the set of integers.
- denotes the set of rational numbers.
- R denotes the set of real numbers.
- \vec{x} denotes complement of a Boolean variable x.

LPP denotes Linear Programming Problem.

 $\operatorname{Max} f$ denotes $\operatorname{Maximum}$ of f.

Min f denotes Minimum of f.

f' denotes derivative of f.

E(X) denotes the expected value of a random variable X.

Var(X) denotes the variance of a random variable X.

 $P(A \mid B)$ denotes the conditional probability of A given B.

For all C programs, assume that all standard library functions are accessible.

DO NOT WRITE ON THIS PAGE

- Q.1If (2, 1) is a critical point of f(x, y) and $f_{xx}(2, 1) f_{yy}(2, 1) - [f_{yy}(2, 1)]^2 < 0$, then
 - (2, 1) is a saddle point
 - (2, 1) is a point of local maximum
 - (2, 1) is a point of local minimum (C)
 - further investigation is required to determine the nature of the point
- If $f_x(x, y) = 2xy + y^2$, $f_y(x, y) = x^2 + 2xy$ and f(-1, -1) = 5, then Q.2
 - (A) $f(x, y) = x^2y + xy^2 + 5$

(C) $f(x, y) = x^2y + xy^2 + 7$

- (D) $f(x, y) = x^2y + xy^2 7$
- If $f(x, y) = \begin{cases} \frac{x^3 y^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0), \end{cases}$ Q.3

then

(A) $f_x(0,0) = 0$, $f_y(0,0) = 1$

- (C) $f_{x}(0,0) = 1$, $f_{y}(0,0) = -1$
- (B) $f_x(0,0) = 1$, $f_y(0,0) = 0$ (D) $f_x(0,0) = -1$, $f_y(0,0) = 1$
- If $f(x, y) = x^3 \sin^{-1}\left(\frac{y}{x}\right) y^3 \cos^{-1}\left(\frac{x}{y}\right)$, x > 0, y > 0, then $x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2}$ is Q.4equal to
 - (A) = 2f
- (B) = 3f
- (C) 5f
- $(\mathbf{D}) = 6f$

- The value of the integral $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{\sin y}{v} dy dx$ is Q.5
 - (A) = 0
- (B) $\frac{1}{2}$

- $(\mathbf{C}) = \mathbf{1}$
- (D) 2
- The volume of the solid bounded by the planes x + 2y + z = 2, x = 2y, x = 0 and z = 0 is Q.6
 - (A) $\int_{0}^{1} \int_{0}^{2-2y} \int_{0}^{2-x-2y} dz dx dy$

(B) $\int_{0}^{1} \int_{\frac{x}{2}}^{1-\frac{x}{2}} \int_{0}^{2-x-2y} dz \, dy \, dx$

(C) $\int_{1}^{1} \int_{2}^{2y} \int_{1}^{2-x-2y} dz dx dy$

(D) $\int_{1}^{1} \int_{2}^{\frac{1}{2}} \int_{2}^{2-x-2y} dz \, dy \, dx$

- The area of the region bounded by the curves r=1 and $r^2=\cos 2\theta$, $0 \le \theta \le \frac{\pi}{2}$, is Q.7
 - (A) $\frac{\pi}{2}$
- (B) $\frac{\pi}{3}$
- (C) $\frac{\pi}{4}$
- (D) $\frac{\pi}{9}$

- If $f(x) = \int_{0}^{x^2} t(t-1) dt$, then Q.8
 - (A) f has a local maximum at x = 0 and a local minimum at x = 1
 - (B) f has local minima at x = 0 and x = 1
 - (C) f has a local maximum at x = 1 and a local minimum at x = 0
 - (D) f has local maxima at x = 1 and x = 0
- If $f(x) = ax^3 + bx^2 + x + 1$ has a local maximum value 3 at x = -2, then Q.9
- (A) $a = \frac{3}{4}$, $b = \frac{5}{2}$ (B) $a = \frac{3}{2}$, $b = \frac{5}{4}$ (C) $a = \frac{3}{4}$, $b = \frac{5}{4}$ (D) $a = \frac{3}{2}$, $b = \frac{5}{2}$
- If a real valued function f is given by $\int_{-t^2}^x \frac{f(t)}{t^2} dt = 2\sqrt{x} + b$, x > 0, where a > 0 and b are Q.10real constants, then f(4) is equal to
 - (A) 4
- $(\mathbf{B}) = \mathbf{6}$

- (C) 8
- (D) 10

- The integral $\int_{-\infty}^{\infty} \frac{\log_e x}{x} dx$ Q.11
 - (A) converges to e

(B) converges to $\frac{1}{a}$

(C) converges to 1

- (D) diverges
- Q.12 Let $I = \int_{0}^{2} \int_{\frac{1}{r_{0}-x^{2}}}^{\sqrt{9-y^{2}}} 2xy \, dx \, dy + \int_{2}^{3} \int_{0}^{\sqrt{9-y^{2}}} 2xy \, dx \, dy$. Then using the transformation $x = r \cos \theta$, $y = r \sin \theta$, integral I is equal to
 - (A) $\int_{1}^{\frac{\pi}{2}} \int_{1}^{3} r^{3} \sin 2\theta \, dr \, d\theta$

(B) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{3} \sin 2\theta \, dr \, d\theta$

(C) $\int_{1}^{2} \int_{1}^{3} r^{3} \sin 2\theta \, dr \, d\theta$

(D) $\int_{1}^{2} \int_{1}^{3} r^{2} \sin 2\theta \ dr \ d\theta$

Q.13	Using Taylor's p is equal to	oolynomial of	the first d	egree, the approximate	e value of $\sqrt{(3.01)^2 + (3.98)^2}$	3) ²
	(A) 4.99	(B) 4	1.95	(C) 5.01	(D) 4.92	
Q.14	If $z = y + f(x^2 -$	y^2), where f	is differen	tiable, then $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y}$	is equal to	
	$(A) x^2y$	(B) :	rcy²	(C) 2xy	(D) x	

Q.15 If
$$z = f(x, y)$$
, where $x = g(t)$, $y = h(t)$, $g(3) = 2$, $g'(3) = 5$, $h(3) = 7$, $h'(3) = -4$, $f_x(2, 7) = 6$, $f_y(2, 7) = -8$, then the value of $\frac{dz}{dt}$ at $t = 3$ is

(A) 62 (B) 60 (C) 72 (D) 52

Q.16 Consider the following C Program

The output of the above program is

- (A) 9 19 29 39 (B) 39 29 19 9 (C) 40 30 20 10 (D) 38 28 18 8
- Q.17 Consider the following C program fragment:

```
int a=100, b=20;
int c,d,e;
c = a&b;
d = a|b;
e = c&d;
printf("%d", e);
```

The output of the above fragment is

- (A) 116
- (B) 100
- (C) 20
- (D) 4

Q.18 Consider the following C program fragment:

```
void get(int n)
{
    if (n<1)
        return;
    get(n-1);
        printf("%d", n);
    get(n-2);
}</pre>
```

The value returned by the function call get (4) is

- (A) 3421211
- (B) 3421121
- (C) 1231412
- (D) 1234121
- Q.19 Binary equivalent of the hexadecimal number B81F is
 - (A) 101111000000111111

(B) 1011101000011011

(C) 1011110110011111

- (D) 1011111000011001
- Q.20 Consider the following C program fragment:

The output of the above fragment is

- (A) 11, 11, 11, 12
- (B) 11, 11, 12, 12
- (C) 11, 12, 12, 11
- (D) 11, 11, 12, 11

Q.21 Consider the following C program fragment:

```
int i;
int a[5]={1000,800,600,400,200};
for (i=0; i<5; i++)
  printf("%d ", i[a]);</pre>
```

Which of the following is true about this fragment?

- (A) Error in the definition of array i
- (B) Execution results in an infinite loop
- (C) The output is 1000 800 600 400 200
- (D) The output is 1001 801 601 401 201

$\mathbf{Q}.22$	Dec	Decimal value of $(122)_{16} \div (22)_{8}$ lies in the interval										
	(A)	(15.5, 16)	(B)	(16, 16.5)	(C)	(16.5, 17)	(D)	(17, 17.5)				
Q.23	Which one of the following units CANNOT be used to measure the speed of computer?											
	(A)	MIPS	(B)	MFLOPS	(C)		(D)	BAUD				
Q.24	Two	Two's complement of the binary number 1011.01 is										
	(A)	0100.10	(B)	0100.11	(C)	1011.10	(D)	10.0010				
Q.25	Flip	-Flop circuits ca	n be u	sed for								
	(A)	scaling	(B)	rectification	(C)	modulation	(D)	counting				
Q.26	What will the following C statement print?											
	prir	printf("%d", ++8);										
	(A) (C)	8 7			(B) (D)	9 an error mess	age					
Q.27	The following C program segment											
		a=4, b=6; ntf("%d", a==	b);									
	(A) (C)	prints 1 gives run time	error		(B) (D)	prints 0 gives compile	time err	ror				
Q.28	Consider the following C program fragment:											
Q.28	int char for	<pre>int i char str(6)="sachin"; for (i=0; i<5; i+=2) printf("%c", *(1+str+i));</pre>										
	The o	output from the	program will be									
	(A)	sci	(B)	ací	(C)	ahn	(D)	ahi				
Q.29	Wind	lows operating s	ystem	released in 2009	has bee	n named as						
	(A)	Windows Vista Windows 8			(B) (D)	Windows 7 Windows XP+-	+					

CA-5/24

Q.30 Consider the following C program fragment:

```
void main()
{ int a[5]={50,60};
   printf("\n%d %d %d", a[2],a[3),a[4]);
}
```

The output of the above program will be

(A) Garbage values

(B) 50 60 60

(C) 50 60 0

 $(D) \quad 0 \quad 0 \quad 0$

Q.31 Consider the following C program fragment:

```
void main()
  (
    int x=20, y=50;
    if (x<y) return (x=x+y);
    else printf("21");
    printf("22");
}</pre>
```

Then,

(A) the output will be Z1Z2

(B) the output will be Z1

(C) the output will be Z2

(D) no output will be displayed

Q.32 The optimal solution of the LPP

$$\begin{array}{ll} \text{Maximize } f = 3x_1 - 2x_2 \\ \text{subject to} & +2x_1 + 3x_2 \leq 6, \\ 3x_1 + 2x_2 \leq 6, \\ 2x_1 - x_2 = 2, \\ x_1, x_2 \geq 0, \end{array}$$

is

(A)
$$x_1 = \frac{10}{7}$$
, $x_2 = \frac{6}{7}$, $Max f = \frac{18}{7}$

(B)
$$x_1 = 2$$
, $x_2 = 0$, $Max f = 6$

(C)
$$x_1 = 1$$
, $x_2 = 0$, $Max f = 3$

(D)
$$x_1 = 2$$
, $x_2 = 1$, $Max f = 4$

Q.33 The optimal solution(s) of the LPP

Maximize $f = x_1 - x_2$ subject to $x_1 - x_2 \leq 1$

$$2x_1 + 3x_2 \ge 6, \\ x_1, x_2 \ge 0,$$

(A) is unbounded

(B) are infinitely many along
$$x_1 - x_2 = 1$$
 with $x_1 \ge \frac{9}{5}$, $Max f = 1$

(C) are infinitely many along
$$x_1 - x_2 = 2$$
 with $x_1 \ge \frac{9}{5}$, $Max f = 2$

(D)
$$x_1 = 1$$
, $x_2 = 0$, $Max f = 1$

Q.34The optimal solution(s) of the LPP

Minimize $f = 3x_1 + 2x_2$

subject to $2x_1+x_2\geq 2,$

$$3x_1+2x_2\leq 6,$$

$$x_1, x_2 \ge 0,$$

(B) is bounded

(C) are infinitely many along
$$3x_1 + 2x_2 \le 6$$
 (D) does not exist

Q.35 The LPP formulation of the unconstrained optimization problem Maximize
$$y = \min \{ |3x_1 + 7x_2|, |3x_1 - 7x_2| \}; x_1, x_2 \ge 0,$$

is

(A) Max y such that
$$3x_1 + 7x_2 - y \ge 0$$
, $3x_1 - 7x_2 - y \ge 0$, $3x_1 - 7x_2 + y \le 0$; $x_1, x_2, y \ge 0$

(B) Max y such that
$$3x_1 + 7x_2 + y \le 0$$
, $3x_1 - 7x_2 - y \ge 0$, $3x_1 - 7x_2 + y \le 0$; $x_1, x_2, y \ge 0$

(C) Max y such that
$$3x_1 + 7x_2 - y \ge 0$$
, $3x_1 - 7x_2 + y \ge 0$, $3x_1 - 7x_2 + y \le 0$; $x_1, x_2, y \ge 0$

(D)
$$Max \ y$$
 such that $3x_1 + 7x_2 - y \ge 0$, $3x_1 - 7x_2 - y \ge 0$, $3x_1 - 7x_2 - y \le 0$; $x_1, x_2, y \ge 0$

Q.36Let

$$S_1 = \{(x_1, x_2) : 2x_1 + x_2 = 2, x_1 \ge 0, x_2 \in \mathbb{R} \}, \ S_2 = \{(x_1, x_2) : 2x_1 + x_2 = 2, x_1 \in \mathbb{R} \ , x_2 \in \mathbb{R} \}.$$
 Then the set $S_1 \cup S_2$ is

(A) convex and unbounded

(B) not convex but bounded

(C) both convex and bounded

(D) neither convex nor bounded

Q.37	With the conversion rate 1 U.S.D. = 48					n mil	llion U.S.D. is eq	uivale	ent to	
	(A) (C)	0.48 crores INR 48 crores INR	ļ.			(B) (D)	4.80 crores INR 48,000 lacs INF			
	(0)	40 CIDIES HVIV				(1)	40,000 tacs 1111	•		
Q.38		ch one of the folk ld Cup won by In		cricketer	rs did NOT	' play	in the final mate	ch of 1	983 Prude	ential
	(A)	Sunil Gavaskar				(B)	Mohinder Ama:	math		
	(C)	Krishnamachar	ri Srikl	kanth		(D)	Dilip Vengsark	ar		
Q.39	Con	sider the followin	ıg lists	:						
		List I			List II					
		Jstad Alla Rakha Jstad Bismillah I			K. Saxopl L. Tabla	one				
		Kunnakudi Vaidy Kadri Gopalanath		ın	M. Shehna N. Violin	ai				
	The	n the correct mat	ch is							
	(A)	(1, L), (2, M), ((3, K),	(4, N)		(B)	(1, N), (2, M),	(3, L),	(4, K)	
	(C)	(1, N), (2, L), (3, M),	(4, K)		(D)	(1, L), (2, M),	(3, N),	(4, K)	
Q.40	Who among the following is NOT related to space exploration?									
	(A)	Kalpana Chawl	la			(B)	Bachendri Pal			
	(C)	Rakesh Sharma	a.			(D)	Sunita William	s		
Q.41		p fills a water ta taps are opened								
	(A)	10	(B)	12		(C)	16	(D)	20	
Q.42	Who	gave the slogan	"Jai Ja	awan, Ja	ai Kisan"?					
	(A)	Netaji Subhash	Chan	dra Bose	e	(B)	Charan Singh			
	(C)	Lal Bahadur Si	nastri			(D)	Morarji Desai			
Q.43	Which one of the following is NOT a permanent storage device?									
	(A)	Pen drive	(B)	Hard di	isk	(C)	Compact disk	(D)	RAM	

Q.44	Nati	ional Anthem of	India	was written b	ру			
	(A)	Mohammed Iql	pal		(B)	C. Rajagopal	achari	
	(C)	Rabindranath !	Tagor	8	(D)	Bankim Cha		atterjee
Q.45		among the fol anization?	lowing	g has NOT	been the S	ecretary Gene	eral of U	Jnited Nations
	(A)	Kofi Annan			(B)	Ban Ki Moon	ı	
	(C)	U. Thant			(D)	F. Mitterand		
Q.46	The	first Indian to w	in the	World Junio	r Badmintor	n Championsh	ip is	
	(A)	Saina Nehwal			(B)	Sania Mirza		
	(C)	Pullela Gopicha	and		(D)		ukone	
		_						
Q.47	reco	average marks rds, it is found t ngly entered as 6 81.40	ihat n	arks of 2 stu	udents whic	h were actual!	ly 85 an	_
Q.48	If th	e following table	!					
		p r		7				
		* 5	1	1				
		8	q	-				
		**	r	-				
		be filled with t	he al				hat eacl	n row and each
	(A)	r and p	(B)	q and q	(C)	r and q	(D)	q and p
Q.49	In th	ne sequence 1, 3,	5, 4, 8	3, 9, 12, 17, <i>x</i> ,	,, the v	alue of x is		
	(A)	19	(B)	20	(C)	21	(D)	29

Q.50 Consider the following C program fragment:

```
void main()
{
int p,b,c,d,e;
int a=2;
p=10;
c=p*p;

switch(p<<a)
    {
    case 20: (b=p*a; printf("%d", b); break;)
    case 40: (b=p*a*a; printf("%d", b); break;)
    case 80: (b=p*a*a*a; printf("%d", b); break;)
    default: (b=p*a*a*a; printf("%d", b); break;)
}</pre>
```

The output of the above program fragment yields

- (A) 20
- (B) 40
- (C) 80
- (D) 160

Q.51 Consider the following lists:

List I

List II

1. FIFO

P. Linear Programming

2. LIFO

Q. Queue

3. OS

R. Stack

4. LINDO

S. Unix

The correct match is

- (A) (1, R), (2, P), (3, S), (4, Q)
- (B) (1, R), (2, Q), (3, S), (4, P)
- (C) (1, Q), (2, R), (3, S), (4, P)
- (D) (1, Q), (2, P), (3, S), (4, R)

Q.52 http stands for

- (A) hyper text transfer protocol
- (B) hyper text transmission protocol
- (C) high transfer transport protocol
- (D) hyper transfer text protocol

Consider the following lists:. Q.53

List I

List II

- 1. Procedural Oriented Language
- P. COBOL
- 2. Object Oriented Programming
- Q. HTML
- 3. Business Oriented Language
- R. C++

4. Web Page

S. Pascal

The correct match is

- (A) (1, S), (2, Q), (3, P), (4, R)
- (B) (1, S), (2, R), (3, P), (4, Q)
- (C) (1, R), (2, S), (3, P), (4, Q)
- (D) (1, S), (2, P), (3, Q), (4, R)
- Let a_1 , a_2 and a_3 be chosen randomly in Boolean algebra. The probability that $a_3=0$, Q.54given that $(a_1 \cdot a_2) \oplus (\overline{a}_1 \cdot a_3) = 0$, is
 - (A) $\frac{1}{4}$ (B) $\frac{1}{2}$
- (C) $\frac{2}{3}$
- (D) $\frac{3}{4}$

Let $T: \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ be defined as follows. Q.55

$$T(0)=0\;\text{, }T(1)=1\;\text{and for }n\geq 2\;\text{, }T(n)=\begin{cases} 2T\left(\frac{n}{2}\right)+T\left(n-2\right), &\text{if }n\;\text{ is even}\\ 2T\left(\frac{n-1}{2}\right)+T\left(n-2\right), &\text{if }n\;\text{ is odd}\\ 0, &\text{otherwise} \end{cases}$$

Then T(7) is

- (A) 13
- (B) = 12
- (C) = 7
- (D) = 6

- Which one of the following is NOT a search engine? Q.56
 - (A) Zing
- Google (B)
- (C) Yahoo
- (D) Bing

- Q.57 Which one of the following matrices **CANNOT** be obtained by elementary row operations on the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$?
- Q.58 Consider the non-homogeneous system Ax = b where A is a square matrix of order n. If the matrix A and the augmented matrix (A f b) have the same rank r where r < n, then the system has
 - (A) no solution

(B) a unique solution

(C) exactly two solutions

- (D) infinite number of solutions
- Q.59 Let W be the subspace of \mathbb{R}^4 given by $W = \{(x, y, z, w) : x + z + w = 0, y + z + w = 0\}$. Then the dimension of W is
 - (A) 4
- (B) 3

- (C) 2
- (D) 1
- Q.60 Eigenvectors of the matrix $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ corresponding to the eigenvalues (1+i) and (1-i) are respectively (where $i = \sqrt{-1}$)
 - (A) $\binom{-1}{i}$ and $\binom{i}{1}$

(B) $\begin{pmatrix} 1 \\ -i \end{pmatrix}$ and $\begin{pmatrix} i \\ -1 \end{pmatrix}$

(C) $\begin{pmatrix} i \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -i \\ 1 \end{pmatrix}$

- (D) $\binom{-i}{1}$ and $\binom{i}{1}$
- Q.61 Let N be a nilpotent matrix of order 4 with real entries. Then which one of the following statements is true about eigenvalues of N?
 - (A) All eigenvalues are non-zero real numbers
 - (B) All eigenvalues are purely imaginary
 - (C) Zero is the only eigenvalue
 - (D) At least one eigenvalue is real and at least one eigenvalue has non-zero imaginary part

Q.62 The nullity of the matrix

$$\begin{pmatrix}
3 & 0 & 2 & 2 \\
-6 & 42 & 24 & 54 \\
21 & -21 & 0 & -15
\end{pmatrix}$$

is

- (A) 1
- (B) 2

- (C) 3
- (D) 4

Q.63 The Boolean expression for the logic circuit

í\$

- $(A) = x \cdot y$
- (C) $\overline{x} \oplus y$

- (B) $x \oplus y$
- (D) $x \oplus y \oplus (x \cdot y)$

Q.64 The Boolean expression $\overline{(\bar{x} + \bar{y})} \oplus \overline{(x \oplus y)}$ is equivalent to

(A) OR gate

(B) NAND gate

(C) NOR gate

(D) XOR gate

Q.65 Let S be the set of all four variable Boolean functions f having the property $f(x_1,x_2,x_3,x_4)=f(x_2,x_3,x_4,x_1)=f(x_3,x_4,x_1,x_2)=f(x_4,x_1,x_2,x_3)$. Then the cardinality of S is

- $(A) = 2^8$
- $(B) = 2^6$
- $(C) = 2^5$
- (D) -2^4

In Boolean algebra, the majority function M(x, y, z) is equal to 1 if at least two of Q.66 z, y and z are equal to 1. Then the output of the following circuit

is

- (A)
- (B) $p+q+\widetilde{p}\cdot\overline{q}$
- (C) $p \cdot q + \overline{p}$
- (D) $p \cdot q + \overline{p} \cdot \overline{q}$

In Boolean algebra, if $p \cdot \overline{q} + \overline{p} \cdot q = r$, then $p \cdot \overline{r} + \overline{p} \cdot r$ is equal to Q.67

- (A) p
- (\mathbf{B})

- (C) r
- $(\mathbf{D}) \mathbf{q}$

Consider the lattice given by the following Hasse diagram: Q.68

This lattice is

(A) distributive

non-distributive **(B)**

(C) complemented

a Boolean algebra (D)

Let $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$. Then $\nabla(\vec{r} \cdot \nabla(\vec{r} \cdot \vec{r}))$ is equal to Q.69

- (A) $2\vec{r}$

For any two unit vectors \vec{a} and \vec{b} , $|\vec{a} \times \vec{b}|^2$ is equal to Q.70

- (A) $1 + (\vec{a} \cdot \vec{b})^2$ (B) $(\vec{a} \cdot \vec{b})^2 1$ (C) $1 (\vec{a} \cdot \vec{b})^2$
- (D) $(\vec{a} \cdot \vec{b})^2$

- Let P be the point (3, 4, 1). Let L be the line through P parallel to the vector $\vec{i} + \vec{j} + \vec{k}$. Q.71If Q is a point on L in the first octant such that $|\overrightarrow{PQ}|^2 = 48$, then Q is
 - (A) = (7, 8, 5)
- (C) (5, 8, 7)
- (D) (8, 5, 7)
- The unit tangent vectors to the curve $3x^2 + 8xy + 2y^2 3 = 0$ at the point (1, 0) are Q.72
- (A) $\pm \left(\frac{3\vec{i}+4\vec{j}}{5}\right)$ (B) $\pm \left(\frac{3\vec{i}-4\vec{j}}{5}\right)$ (C) $\pm \left(\frac{4\vec{i}+3\vec{j}}{5}\right)$ (D) $\pm \left(\frac{4\vec{i}-3\vec{j}}{5}\right)$
- Consider the differential equation $\frac{dy}{dx} y = -y^2$. Then $\lim_{x \to \infty} y(x)$ is equal to Q.73
 - (A) = -1
- (B)

- The solution of the differential equation $\frac{d^2y}{dx^2} y = e^x$ satisfying y(0) = 0 and $\frac{dy}{dx}(0) = \frac{3}{2}$ Q.74
 - (A) $y(x) = \sinh x + \frac{x}{2}e^x$

(B) $y(x) = x \cosh x + \frac{x}{2}e^x$

(C) $y(x) = \sinh x - \frac{x}{2}e^x$

- (D) $y(x) = 2x \cosh x \frac{x}{2}e^x$
- The general solution of the differential equation $\frac{d^3y}{dx^3} 9\frac{dy}{dx} = \cos x$ is Q.75
 - (A) $y(x) = C_1 e^{3x} + C_2 e^{-3x} + C_3 + \frac{1}{10} \sin x$
 - (B) $y(x) = C_1 e^{3x} + C_2 e^{-3x} + C_3 \frac{1}{10} \sin x$
 - (C) $y(x) = C_1 e^{3x} + C_2 e^{-3x} + C_3 + \frac{1}{10} \cos x$
 - (D) $y(x) = C_1 e^{3x} + C_2 e^{-3x} + C_3 \frac{1}{10} \cos x$
- An integrating factor of the differential equation $2xy dx + (y^2 x^2) dy = 0$ is Q.76
 - (A) y
- (B) $\frac{1}{v}$
- (C) $\frac{1}{a^2}$
- $(D) = \frac{1}{n^3}$

- The differential equation representing all circles centred at (1, 0) is Q.77

- (A) $x + y \frac{dy}{dx} = 1$ (B) $x y \frac{dy}{dx} = 1$ (C) $y + x \frac{dy}{dx} = 1$ (D) $y x \frac{dy}{dx} = 1$
- Q.78Consider the following data:

x	0.1	0.2	0.3	0.4	0.5
f(x)	0.45	0.47	0.52	0.58	0.63

Using the central difference formulae for numerical differentiation, the values of f'(0.3)and f''(0.3) are respectively

- (A) 0.85, 0.99
- 0.86, 0.99 **(B)**
- 0.86, 1.00 (C)
- (D) 0.85, 1.00

Consider the following forward difference table: Q.79

x	f	Δf	$\Delta^2 f$	$\Delta^3 f$
-2	-15			
		11		
-1	4		у	
		x		z
0	0		16	
		20		
1	20			

The values of x, y and z are respectively

- (A) 4, -7, 9
- (B) -11, 22, 6
- (C) 4, -3, 1
- (D) 4, -7, 23
- Consider the non-linear equation $x^3 2x 3 = 0$. If $x_0 = 2$ is the initial approximation of Q.80the root, then the value of the root at first iteration using the Newton-Raphson method yields
 - (A) = 2.20
- (B) = 2.10
- (C) = 1.90
- (D) 1.80
- For evaluating the integral $\int_{1}^{1} y \, dx$ by Simpson's one-third rule, the error term for Q.81

2 < w < 11 is

(A) $-\frac{1}{20}h^4y^{(iv)}(w)$

(B) $-\frac{3}{4}h^4y^{(iv)}(w)$

(C) $-\frac{1}{12}h^4y^{(iv)}(w)$

(D) $-\frac{1}{6}h^4y^{(iv)}(w)$

Q.82Consider the following table:

x	1	2	3
У	5	0	7

Then by Lagrange's interpolation y(1.5) is

- (A) -2.50
- (B) -2.75
- (C) -2.25
- (D) -3.25

If A and B are two independent events and $P(A \mid B) = \frac{2}{5}$, $P(B) = \frac{1}{3}$, then $P(A \cup B)$ is Q.83

- (A) $\frac{11}{15}$
- (B) $\frac{3}{5}$

- (C) $\frac{13}{15}$ (D) $\frac{2}{15}$

Let $P(A) = \frac{3}{5}$, $P(B) = \frac{4}{5}$ and $P(A \cap B) = \frac{13}{25}$. Consider the following lists:

List I

List II

1. $P(A \mid B)$

P. $\frac{7}{20}$

2. $P(A \mid B^c)$

Q. $\frac{13}{20}$

3. $P(A^c \mid B)$

4. $P(A^c \mid B^c)$

Then the correct match is

- $(1, \mathbf{Q}), (2, \mathbf{S}), (3, \mathbf{R}), (4, \mathbf{P})$
- (B) (1, S), (2, R), (3, P), (4, Q)
- (C) (1, Q), (2, S), (3, P), (4, R)
- (D) (1, S), (2, R), (3, Q), (4, P)

Q.85Eight couples are participating in a game. Four persons are chosen randomly. The probability that at least one couple will be among the chosen persons is

- (B) $\frac{1}{26}$
- $(D) \quad \frac{2}{5}$

Let X and Y be binomial random variables with the same number of trials such that Q.86E(X) = 2E(Y) and 2Var(X) = Var(Y). Then the respective probabilities of successes are

- (A) $\frac{5}{7}$ and $\frac{5}{14}$ (B) $\frac{2}{7}$ and $\frac{1}{7}$ (C) $\frac{6}{7}$ and $\frac{3}{7}$ (D) $\frac{3}{14}$ and $\frac{3}{28}$

CA-17/24

- The random variable X follows the Poisson distribution with variance 3. Then Q.87P(X = 1|X > 0) is
- (A) $\frac{1-e^{-3}}{e^{-3}}$ (B) $\frac{1-e^{-\sqrt{3}}}{e^{-\sqrt{3}}}$ (C) $\frac{\sqrt{3}e^{-\sqrt{3}}}{1-e^{-\sqrt{3}}}$ (D) $\frac{3e^{-3}}{1-e^{-3}}$
- Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \{0, 1\} \right\}$. An element of S is chosen randomly. Then the probability that the chosen matrix is an invertible matrix is
- $(B) \quad \frac{1}{2}$
- (C) $\frac{5}{9}$
- (D) $\frac{3}{4}$
- Let X denote the set of all real-valued functions defined on \mathbb{Z} . Define a relation in X by Q.89 $f \sim g$ if $f(0) \neq g(0)$. Then the relation \sim is
 - both reflexive and symmetric
- neither reflexive nor symmetric **(B)**
- transitive but not reflexive
- neither transitive nor reflexive (D)
- Let $X = \{1, 2, 3, 4\}$. Then the total number of partitions of the set X is Q.90
 - (A) 5
- **(B)** 12
- (C) 15
- (D) 16
- The total number of non-trivial proper subgroups of the group \mathbb{Z}_{12} under addition modulo Q.9112 is
 - (A) 4
- (B) 5

- (C) 6
- (D) = 7
- The total number of generators of the cyclic group \mathbb{Z}_{21} under addition modulo 21 is Q.92
 - (A) 18
- **(B)** 19

- (C) = 20
- (D) = 21
- Let S_5 denote the group of all permutations on the finite set $\{1,2,3,4,5\}$ under the Q.93operation of permutation multiplication. Then the order of the subgroup of S_5 generated by
 - $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$ is
 - (A) = 3
- **(B)** 6

- (C) 12
- (D) 24

	(A) 1		(B)	2	(C)	3	(D)	infinite			
Q.95				subgroup generate stient group Z ₄ × Z			. The	on the order of			
	(A) 4		(B)	8	(C)	16	(D)	32			
Q.96	Let R be a commutative ring with unity of characteristic 3. For $a, b \in \mathbf{R}$, $(a+b)^6$ is equate										
	(A) 0	, the additive i	dentit	y in the ring R	(B)	$a^6 + b^6$					
		$a^6-a^3b^3+b^6$			(D)	$a^6 + a^3b^3 + b^6$					
Q.97	The rea	mainder of 8 ³¹	wher	ı it is divided by 13	is						
	(A) 1		(B)	5	(C)	8	(D)	12			
Q.98	The total number of linear maps from the vector space $\mathbb{R}^3(\mathbb{R})$ to the vector space $\mathbb{R}(\mathbb{R})$ which are NOT onto is										
	(A) 0		(B)	1	(C)	3	(D)	infinite			
Q.99	Let $M_5(R)$ denote the vector space consisting of all 5×5 matrices with real entries over										
	the real number field. Let $W\subset M_5\left(\mathbb{R}\right)$ be the subspace of all skew-symmetric matrices. Then the dimension of W is										
	(A) 1	0	(B)	15	(C)	20	(D)	25			
Q.100	Consid	er the followin	g sub	sets of R ²							
	$W_1 = \{ (x, y) : 2x + y = 0 \},$										
	$W_2 = \{(x, y) : xy = 0\},$										
	$W_3 = \{(x, y) : \sin^2 x + \sin^2 y = 0\},\$										
	$W_4 = {$	$W_4 = \{(x, y) : \sin^2 x + \cos^2 x = 1\}.$									
	Which	one of the follo	wing	pairs has the prope	erty th	nat they are NOT	' subs	paces of R2?			
	(A) V	W_1, W_2	(B)	W_2 , W_3	(C)	W_3 , W_4	(D)	W_2, W_4			

The number of distinct group homomorphisms from (Z, +) onto (Z, +) is

Q.94

End of the paper

CA-19/24

A

 \mathbf{A}

A

 \mathbf{A}

A

DO NOT WRITE ON THIS PACE.

DO NOT WRITE ON THIS PACE.

SEAL