Generalization. Out of Sample Performance.

Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

- 1 Review
- 2 Generalization. Out-of-sample Performance
- 3 Out-of-Sample Error Estimation
 - AIC: Akaike Information Criterion
 - SIC/BIC: Schwarz/Bayesian Information Criterion
 - Cross-Validation
- 4 Review

Agenda

- 1 Review
- 2 Generalization. Out-of-sample Performance
- 3 Out-of-Sample Error Estimation
 - AIC: Akaike Information Criterior
 - SIC/BIC: Schwarz/Bayesian Information Criterior
 - Cross-Validation
- 4 Review

Predicting Well

$$y = f(X) + u \tag{1}$$

► Interest on predicting *y*

Linear Regression

$$y = f(X) + u \tag{2}$$

$$= \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + u \tag{3}$$

- ▶ If $f(X) = X\beta$, obtaining f(.) boils down to obtaining β
- We learn these β s by minimizing a loss function on the sample.

Linear Regression

ightharpoonup Quadratic loss ightharpoonup OLS

$$\mathcal{L}(\odot) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - f_{\beta}(X_i) \right)^2 \tag{4}$$

$$= \sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \sum_{j=1}^{k} \hat{\beta}_j x_{ji} \right)^2$$
 (5)

- ightharpoonup Compute β s uisng sample data
 - ► QR
 - ► SVD
 - Gradient Descent

Agenda

- 1 Review
- 2 Generalization. Out-of-sample Performance
- 3 Out-of-Sample Error Estimation
 - AIC: Akaike Information Criterior
 - SIC/BIC: Schwarz/Bayesian Information Criterior
 - Cross-Validation
- 4 Review

Generalization Overview

- ► In ML we care in out-of-sample prediction
- ▶ Generalization refers to a model's performance on unseen data.
- ► The ultimate goal is **not** minimizing the in-sample loss, but achieving low error out-of-sample on unseen data.

Training and Test Loss

- Unseen data is typically referred as test data,
- ▶ While the sample data is called the **training data**.
- ► The expected loss over the test distribution is called the test loss.
- ► Test loss is defined as:

$$L(\theta) = \mathbb{E}_{(X,y)\sim F}[(y - f_{\beta}(X))^{2}]$$

► Test and training data are often drawn from the same distribution but differ in their use during learning.

Overfitting and Underfitting

- ► Successfully minimizing training error does not always result in a small test error.
- ► A model is said to overfit if it predicts accurately on training data but poorly on test (unseen) data.
- ► A model underfits if its training error is relatively large, which usually means test error is also large.
- ▶ Understanding overfitting and underfitting helps in choosing appropriate model parameterizations.

Out-of-Sample Performance

More data?

Noiseless data?

More Complex Model

Out-of-Sample Performance

More Data

In-Sample Prediction and Overfit

High

Out-of-Sample Prediction and Overfit

High

Mathematical Decomposition for Regression

Bias-Variance Tradeoff

Source: https://tinyurl.com/y4lvjxpc

▶ ML best kept secret: By tolerating some bias we can have significant gains in variance

- ► Suppose that the true model is y = f(X) + u
 - ightharpoonup f is a polynomial of degree p^*
 - $ightharpoonup p^*$ is finite but unknown
 - ightharpoonup E(u) = 0 and $V(u) = \sigma^2$
- ▶ We fit polynomials with increasing degrees p = 1, 2, ...
- ▶ What happens when we increase the degree of the polynomial?

▶ The expected prediction error of a regression fit $\hat{f}(X)$ at a point $X = x_0$, is

$$MSE(x_0) = MSE(y - \hat{f}(x_0)|X = x_0)$$

= $Bias^2(f, \hat{f}(x_0)) + V(\hat{f}(x_0)) + Irreducible Error$ (6)

▶ The average expected prediction error

$$\frac{1}{n} \sum_{i=1}^{N} MSE(x_i) \tag{7}$$

► Bias?

- ► Bias?
- ► Variance?

- ► Bias?
- ► Variance?
- ► Trace.
 - ▶ If $A_{m \times m}$ with typical element a_{ij} . The **trace** of A, tr(A) is the sum of the elements of its diagonal: $tr(A) \equiv \sum_{s=1}^{m} a_{ii}$
 - Properties
 - For any square matrices A, B, and C: tr(A + B) = tr(A) + tr(B)
 - Cyclic property: tr(ABC) = tr(BCA) = tr(CAB)
 - If m = 1 tr(A) = A

Key Insights on Bias-Variance Tradeoff

- ▶ The bias term reflects the error introduced by the model's inability to approximate the true function f^* .
- ▶ The variance term reflects the sensitivity of the model to the specific training set.
- ► As dataset size increases, variance generally decreases.
- ▶ The noise term σ^2 is unavoidable and cannot be predicted.
- ► The decomposition for classification problems is less clear than for regression problems, but still present.

Agenda

- 1 Review
- 2 Generalization. Out-of-sample Performance
- 3 Out-of-Sample Error Estimation
 - AIC: Akaike Information Criterion
 - SIC/BIC: Schwarz/Bayesian Information Criterion
 - Cross-Validation
- 4 Review

Train and Test Sets. In-Sample and Out-of-Sample Prediction.

- Como seleccionamos la parametrización que minimize el error de predicción fuera de muestra?
- Problema: solo contamos con una muestra

- ▶ Para seleccionar la mejor parametrización con respecto al Test Error (error de prueba), es necesario estimarlo.
- ► Hay dos enfoques comunes:
 - Podemos estimar indirectamente el error de la prueba haciendo un ajuste al error de entrenamiento para tener en cuenta el sesgo debido al sobreajuste ⇒ Penzalización ex post: AIC, BIC, etc.

Agenda

- 1 Review
- 2 Generalization. Out-of-sample Performance
- 3 Out-of-Sample Error Estimation
 - AIC: Akaike Information Criterion
 - SIC/BIC: Schwarz/Bayesian Information Criterior
 - Cross-Validation
- 4 Review

AIC

- ► Akaike (1969) fue el primero en ofrecer un enfoque unificado al problema de la selección de modelos.
- ightharpoonup Elegir el modelo j tal que se minimice:

$$AIC(j) = log\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y})^2\right) - p_j$$
 (8)

Agenda

- 1 Review
- 2 Generalization. Out-of-sample Performance
- 3 Out-of-Sample Error Estimation
 - AIC: Akaike Information Criterion
 - SIC/BIC: Schwarz/Bayesian Information Criterion
 - Cross-Validation
- 4 Review

SIC/BIC

- Schwarz (1978) mostró que el AIC es inconsistente, (cuando $n \to \infty$, tiende a elegir un modelo demasiado grande con probabilidad positiva)
- Schwarz (1978) propuso:

$$SIC(j) = log\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y})^2\right) - \frac{1}{2}p_j log(n)$$
 (9)

AIC vs BIC

$$AIC(j) = log\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y})^2\right) - p_j$$
 (10)

$$SIC(j) = log\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y})^2\right) - p_j\frac{1}{2}log(n)$$
 (11)

- ▶ Para seleccionar la mejor parametrización con respecto al Test Error (error de prueba), es necesario estimarlo.
- ► Hay dos enfoques comunes:
 - ▶ Podemos estimar indirectamente el error de la prueba haciendo un ajuste al error de entrenamiento para tener en cuenta el sesgo debido al sobreajuste ⇒ Penzalización ex post: AIC, BIC, etc.
 - Levantarnos de nuestros bootstraps (resampling methods) y estimar directamente el Test Error (error de prueba)

Agenda

- 1 Review
- 2 Generalization. Out-of-sample Performance
- 3 Out-of-Sample Error Estimation
 - AIC: Akaike Information Criterion
 - SIC/BIC: Schwarz/Bayesian Information Criterior
 - Cross-Validation
- 4 Review

Cross-Validation

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

- Review
- 2 Generalization. Out-of-sample Performance
- 3 Out-of-Sample Error Estimation
 - AIC: Akaike Information Criterior
 - SIC/BIC: Schwarz/Bayesian Information Criterior
 - Cross-Validation
- 4 Review

Review

Hoy

- Bias-Variance Tradeoff (Dilema Sesgo/Varianza)
- Sobreajuste y Selección de modelos
 - ► AIC y BIC
 - ► Enfoque de Validación
 - ► LOOCV
 - ► K-fold Cross-Validation (Validación Cruzada)