Matrix Factorization

Otakus v.s. No. of Figures

There are some common *factors* behind otakus and characters.

http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-implementation-in-python/

Otakus v.s. No. of Figures

The factors are latent.

No. of Otakus = M No. of characters = N No. of latent factor = K

	r^{j}	r^1	r^2	r^3	r^4
r^i			75	0-0-0-0	
		A September 21 * 127 × 128		5- 8- 8	- AND
r^A	Α	$5 n_{A1}$	3	,	1
r^B	В	4	3	?	1
r^{C}	С	1	1	?	5
r^D	D	1	?	4	4
r^E	E	?	1	5	4

$$r^{A} \cdot r^{1} \approx 5$$

 $r^{B} \cdot r^{1} \approx 4$
 $r^{C} \cdot r^{1} \approx 1$
 \vdots

Minimizing

Only considering the defined value

$$L = \sum_{(i,j)} (r^i \cdot r^j - n_{ij})^2$$

Find r^i and r^j by gradient descent

Assume the dimensions of r are all 2 (there are two factors)

Α	0.2	2.1	
В	0.2	1.8	
С	1.3	0.7	
D	1.9	0.2	
E	2.2	0.0	

1 (春日)	0.0	2.2
2 (炮姐)	0.1	1.5
3 (姐寺)	1.9	-0.3
4 (小唯)	2.2	0.5

More about Matrix Factorization

Considering the induvial characteristics

$$r^A \cdot r^1 \approx 5$$

$$r^A \cdot r^1 + b_A + b_1 \approx 5$$

 b_A : otakus A likes to buy figures

 b_1 : how popular character 1 is

Minimizing
$$L = \sum_{(i,j)} (r^i \cdot r^j + b_i + b_j - n_{ij})^2$$

Find r^i , r^j , b_i , b_j by gradient descent (can add regularization)

 Ref: Matrix Factorization Techniques For Recommender Systems

Matrix Factorization for Topic analysis

Latent semantic analysis (LSA)

	Doc 1	Doc 2	Doc 3	Doc 4
投資	5	3	0	1
股票	4	0	0	1
總統	1	1	0	5
選舉	1	0	0	4
立委	0	1	5	4

character→document, otakus→word

Number in Table:

Term frequency (weighted by inverse document frequency)

Latent factors are topics (財經、政治)

- Probability latent semantic analysis (PLSA)
 - Thomas Hofmann, Probabilistic Latent Semantic Indexing, SIGIR, 1999
- latent Dirichlet allocation (LDA)
 - David M. Blei, Andrew Y. Ng, Michael I. Jordan, Latent Dirichlet Allocation, Journal of Machine Learning Research, 2003