Strategy to Determine the Phase of a Chemical Mixture

If the problem statement gives the phase of a mixture, then you label that phase in the conceptual model.

What do you do when the problem statement does not give the phase of the mixture? Well, you have to determine it using the temperature (T), pressure (P), and composition $(\overline{Z} \text{ or mole fractions})$ of the mixture.

Given: T, P, \overline{Z} where \overline{Z} means z_1, z_2, \dots, z_{nc} **Find:**... Ph or phase *nc* is the number of components

Pure-Component Mixture (nc = 1, a pure compound)

For
$$P = 1$$
 atm, find T_m and T_b in Table B.1 of F&R, 3^{rd} Ed.

If
$$T > T_b$$
, then $Ph = \text{vapor}$ where T_b is the boiling point If $T = T_b$, then $Ph = \text{vapor-liquid}$

If
$$T = T_b$$
, then $Ph = \text{vapor-liquid}$

If
$$T_m < T < T_b$$
, then $Ph = liquid$

If
$$T < T_m$$
, then $Ph = \text{solid}$ where T_m is the melting point If $T = T_m$, then $Ph = \text{solid-liquid}$

If
$$T = T_m$$
, then $Ph = \text{solid-liquid}$

For $P \neq 1$ atm, find T_b using Antoine Equation in Table B.4 of F&R, 3^{rd} Ed.

If
$$T > T_b$$
, then $Ph = \text{vapor}$

If
$$T < T_b$$
, then $Ph = \text{liquid}$

Multi-component Mixture (nc > 1)

note: $T_{c,j}$ is the critical temperature of j.

Case 1:
$$T \ge T_{c,j}$$
 for each j in the mixture, then $Ph = gas$ or supercritical fluid

Case 2:
$$T \ge T_{c,j}$$
 for most j in the mixture then have a one-condensable system and $T < T_{c,j}$ for one j in the mixture then check T_{dp} of the mixture

Raoult's Law:
$$z_j P = P_j^*$$
 and $T_{dp} = tsat[P_j^*]$ where $tsat$ is the Antoine Equation in Table B.4 of F&R, 3^{rd} Ed.

If
$$T > T_{dp}$$
, then $Ph = \text{vapor}$ where T_{dp} is the dew point. If $T \leq T_{dp}$, then $Ph = \text{vapor-liquid}$

Case 3: $T < T_{c,j}$ for each j in the mixture, then check T_{dp} and T_{bp} of the mixture

Raoult's Law:
$$\left[T, \overline{X}, \overline{Y}\right] = vlet\left[P, V_f, \overline{Z}\right]$$
 see Page 6-15 in CinChE. $T = T_{dp}$, when $V_f = 1$ $T = T_{bp}$, when $V_f = 0$

If
$$T > T_{dp}$$
, then $Ph = \text{vapor}$ where T_{dp} is the dew point. If $T < T_{bp}$, then $Ph = \text{liquid}$ where T_{bp} is the bubble point. If $T_{bp} \leq T \leq T_{dp}$, then $Ph = \text{vapor-liquid}$

Note that function *vlet* can be represented by a table, graph, equations, or computer program like HYSYS. In HYSYS, place and define a process stream on the flowsheet to find T_{dp} and T_{bp} .