Raphael Vieira Alves - (119126889)

Valor: 5 pontos

1. Analise o algoritmo apresentado a seguir e defina, linha a linha, qual a quantidade de vezes que o código é executado, T(n), no pior caso, melhor caso e no caso médio:

inteiro i, j, k, x,	Melhor caso	Caso Médio	Pior Caso
A[n]; início	1	1	1
A = []	1	1	1
para i de 1 até n faça	1	N	N
k = i;	1	1	1
		1	1
x = A[i];		N	N
para j de 1 até n faça	1	1	1
se $(A[j] < x)$ então	1	1	1
k = j;	1	1	1
x = A[k];	1	1	1
fim se	1	1	1
	1	1	1
fim para			
A[k] =			
a[i]; A[i]			
= x;			
fim para			
fim			

Estrutura de Dados e Análise de Algoritmos

```
2. Dada a estrutura
abaixo: public class
Aluno {
    String
    nome; int
    matricula;
    String
    curso;
}
```

Crie uma classe para armazenamento dos dados de vários alunos. As exigências são:

- A) Utilize uma estrutura de alocação estática (vetor) para a tarefa
- B) Crie um método para realizar a inserção de um novo aluno na primeira posição disponível no vetor
- C) Crie um método para realizar a remoção de um aluno com base em um número de matrícula informado
- D) Crie um método para informar a quantidade de posições vazias (sem alunos) na estrutura
- E) Implemente a função de inserção que aumente de tamanho para caber mais posições. Toda vez que a estrutura estiver cheia ela deve aumentar em 5 posições.
- 3. Utilize a estrutura Aluno da questão anterior e faça:
 - A) Crie uma estrutura de alocação dinâmica na forma de uma Lista Simples Encadeada. O que deve mudar na classe Aluno?
 - B) Crie um método para inserção de um novo aluno na última posição da estrutura
 - C) Crie um método para inserção de um novo aluno na primeira posição da estrutura
 - D) Crie um método para inserção de um novo aluno em uma posição informada pelo usuário
 - E) Crie um método que retorne a quantidade de alunos armazenados na lista
 - F) Crie um método para realizar a remoção de um aluno com base em um número de matrícula informado
- 4. Avalie cada um dos métodos feitos nas questões 2 e 3 a respeito da quantidade de operações realizadas T(n) e diga:
 - a) Qual o melhor caso?

vetor:

Estrutura de Dados e Análise de Algoritmos

Inserir Aluno: 1

Remover Aluno: 1

Quantidade de Posições Vazias: 1

Aumentar tamanho em 5 posições: 1

Lista Simples Encadeada:

Inserir Aluno na última posição: 1

Inserir Aluno na primeira posição: 1

Inserir Aluno na posição informada usuário: 1

Quantidade de alunos Armazenados: 1

Remover aluno com matrícula: 1

b) Qual o pior caso?

vetor:

Inserir Aluno: 1

Remover Aluno: N

Quantidade de Posições Vazias: N

Aumentar tamanho em 5 posições: N

Lista Simples Encadeada:

Inserir Aluno na última posição: N

Inserir Aluno na primeira posição: 1

Inserir Aluno na posição informada usuário: N

Quantidade de alunos Armazenados: N

Remover aluno com matrícula: N

c) Qual o caso médio?

Estrutura de Dados e Análise de Algoritmos

<u>vetor</u>:

Inserir Aluno: 1

Remover Aluno: N

Quantidade de Posições Vazias: N

Aumentar tamanho em 5 posições: N

Lista Simples Encadeada:

Inserir Aluno na última posição: N

Inserir Aluno na primeira posição: 1

Inserir Aluno na posição informada usuário: N

Quantidade de alunos Armazenados: N

Remover aluno com matrícula: N