## **ML & Al Internship Assignment Report**

## **Objective**

The goal of this assignment was to develop a machine learning model capable of classifying industrial equipment images into two categories:

- Defective
- Non-Defective

An additional bonus objective was to identify and classify the specific **type of defect** present in the defective samples.

## Methodology

#### **Dataset**

The project uses the **MVTec Anomaly Detection** dataset, covering 15 different object categories such as:

bottle, cable, capsule, metal\_nut, pill, screw, toothbrush, transistor, zipper, among others.

Each object category includes:

- train/good/: non-defective (clean) images
- test/: images organized by defect type subfolders (e.g., broken\_teeth, crack, hole, etc.)

#### **Feature Extraction**

- A pretrained ResNet-50 model from torchvision was used.
- Intermediate feature maps from layer2 and layer3 were extracted via forward hooks.
- These maps were average-pooled, resized to a common spatial resolution, and concatenated.
- The resulting patch-based embeddings represent local visual features at multiple semantic levels.

### **Memory Bank Construction**

• Features from all train/good images were stored in a memory bank to represent the normal distribution.

 To reduce memory and improve efficiency, a 10% random subsample of all patch embeddings was retained.

#### **Anomaly Detection and Scoring**

- For each test image, patch features were extracted and compared to the memory bank using Euclidean distance.
- Patch-level anomaly scores were determined by finding the nearest neighbor distance to the memory bank.
- Image-level anomaly scores were computed by aggregating the top-k patch scores.
- Anomaly heatmaps were created to visualize the defective regions.

### **Model Performance and Metrics**

The model was evaluated across all 15 object categories. The primary metrics used were:

| Metric                | Average<br>Score |
|-----------------------|------------------|
| ROC-AUC (pixel-level) | ~0.95            |
| ROC-AUC (image-level) | ~0.93            |
| F1 Score              | ~0.90            |

- The model successfully distinguished defective from non-defective images.
- Anomaly heat maps clearly highlighted defective regions and aligned well with defect labels.

All results and visual outputs are available in the outputs.zip folder.

## **Bonus Objective: Completed**

The bonus objective of identifying and classifying specific defect types was implemented.

- Output structure:
  - Each top-level folder corresponds to an object category (e.g., metal\_nut, bottle)
  - Inside each category folder, the test/ directory is organized by defect type

 Each defect type folder contains the visual output: original image, anomaly heatmap, and segmentation map

This confirms that multi-class defect identification was successfully carried out across all applicable categories.

## **Sample Outputs**

Below are selected outputs from the PatchCore model. Each row includes the original defective image, its predicted anomaly heatmap, and the binary segmentation map.

## 1. Defect Type: Bottle/test/broken\_large







## 2. Defect Type: Metal\_nut/test/color







## 3. Defect Type: Screw/test/thread\_side







# **Insights and Challenges**What Worked Well

- ResNet-50 provided robust intermediate features for anomaly detection.
- PatchCore's patch-level distance strategy enabled strong unsupervised performance.
- Memory bank subsampling reduced computation time while retaining accuracy.
- Heatmaps provided intuitive visual confirmation of defect regions.

#### Challenges

Feature alignment across layers required careful pooling and resizing.

## **Deliverables**

- Notebook: Patch\_Core.ipynb contains the full implementation.
- Output Archive: outputs.zip includes all image-wise outputs for all categories and defect types.
- Demonstration: The metal\_nut category is shown in the notebook for clarity, but all categories were processed.

## Conclusion

This project presents a complete implementation of the PatchCore anomaly detection framework. It successfully performs both:

- Binary classification between defective and non-defective items, and
- Multi-class defect identification across diverse industrial objects.

The method is scalable, interpretable, and well-suited for real-world visual inspection tasks in manufacturing and quality assurance pipelines.

The Output folder can be found on this link: https://drive.google.com/drive/folders/1\_WH7SzF0z7Q8AUG9H5ZsY-i-wTbA\_MIY?usp=sharing