Simulazione dell'esame di Logica, Università degli Studi di Torino, Filosofia

Seed: 851826, v.1

Punti:

 $\mathbf{b.}\ p \lor (q \lor r) \vdash q \lor (p \lor r)$

c. $p\supset q\vdash \sim p\lor q$

Punti: / 30	Tempo:
1 (3 pt)	
Dato il seguente testo:	
1. Esplicitare l'argomento, se esiste.	
2. Formalizzare l'argomento, se formalizzabile secclassica.	ondo il linguaggio della logica enunciativa
3. Dimostrare perché l'argomento è valido second lo è.	o il linguaggio della logica enunciativa classica, se
4. Determinare se l'argomento è fondato.	
Se la logica enunciativa ha un algoritmo per decidere se una formula è derivabile da un insieme, allora è decidibile. La logica enunciativa classica è decidibile.	
2 (3 pt)	
Per ogni coppia ordinata (x_n, x_{n+1}) : 1. formalizzati siano contraddittori 3. determinare se formino un enunciato sia conseguenza logica del primo tramit	insieme coerente 4. determinare se il secondo
a_1 . Non è vero che non sono attento.	
a_{2} . È vero che sono attento solo se sono attento.	
$\boldsymbol{b_1}.~x$ è condizione necessaria e sufficiente per $y.$	
$\boldsymbol{b_2}$. x se y e vice versa.	
$c_1.$ Se mi disturbi, allora esci.	
c_2 . O esci, oppure non mi disturbi.	
2 (2 1)	
3 (9 pt)	
a. $p \lor q, \sim q \vdash p$	

4 (15 pt)

Teoria (1). Per ogni caso, costruisci un esempio di relazione:

- 1. riflessiva e antisimmetrica, ma non transitiva;
- 2. simmetrica e riflessiva, ma non transitiva né antisimmetrica;
- 3. antisimmetrica e transitiva, ma non riflessiva né simmetrica.

Teoria (2). Fornire un esempio di coppia di formule del linguaggio della logica enunciativa che possono essere contemporaneamente false ma non contemporaneamente vere.

Teoria (3). Dati il linguaggio **L** e qualsiasi interpretazione V, dare due esempi diversi di formule ben formate che rappresentino una funzione di verità $f:\{0,1\}^2 \to \{0,1\}$ tale che $f(x_1,x_2)=1$ sse $[x_2]_V \neq [x_2]_V$.

Teoria (4). Determinare se le seguenti asserzioni sono vere o false: (a) per ogni coppia di formule α , β , vale che $\alpha \models \beta$ oppure $\beta \models \alpha$; (b) per ogni coppia di formule α , β , vale che $\models (\alpha \supset \beta) \lor (\beta \supset \alpha)$. Motivare le risposte.

Teoria (5). Fornire un insieme di enunciati inconsistente ma tale che ogni sotto-insieme di esso sia consistente.