ACE Examination Paper 1 Year 12 Mathematics Extension 2 Yearly Examination Worked solutions and marking guidelines

Section	on I	
	Solution	Criteria
1	$z = -\sqrt{2} + \sqrt{2}i$ $= 2\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)$ $= 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$	1 Mark: D
2	$\int 3\sqrt{x} \ln x dx 3 = 3 \int \ln x \frac{d}{dx} \left(\frac{2x^{\frac{3}{2}}}{3}\right) dx$ $= 3 \left(\frac{2x^{\frac{3}{2}}}{3} \ln x - \frac{2}{3} \int x^{\frac{3}{2}} \times \frac{1}{x} dx\right)$ $= 2x^{\frac{3}{2}} \ln x - 2 \times \frac{2x^{\frac{3}{2}}}{3} + C$ $= 2x\sqrt{x} \left(\ln x - \frac{2}{3}\right) + C$	1 Mark: A
3	$ \underline{u} = \sqrt{5^2 + (-1)^2 + \sqrt{10}^2}$ $= \sqrt{36} = 6$ $ \underline{u} ^2 = 36$ 3	1 Mark: D
4	$\frac{\frac{3}{iw} = \frac{3}{-i+i^2}}{= \frac{3}{-i+i^2} \times \frac{-1+i}{-1+i} = \frac{-3+3i}{1+1}}$ $= \frac{-3+3i}{2}$	1 Mark: C
5	$I_{6} = \int \tan^{6}x dx$ $= \frac{\tan^{5}x}{5} - I_{4}$ $= \frac{\tan^{5}x}{5} - \left(\frac{\tan^{3}x}{3} - I_{2}\right)$ $= \frac{\tan^{5}x}{5} - \frac{\tan^{3}x}{3} + \tan x - I_{0}$ $= \frac{\tan^{5}x}{5} - \frac{\tan^{3}x}{3} + \tan x - x + C$	1 Mark: A
6	$v^{2} = 36 - 4x^{2}$ = $2^{2}(9 - x^{2}) = n^{2}(a^{2} - x^{2})$ $a^{2} = 9 \text{ or } a = 3, n = 2 \text{ and } \alpha = 0 \text{ (initially at the origin)}$ $x = a\sin(nt + \alpha)$ = $3\sin(2t)$	1 Mark: B

7	$t = \tan \frac{x}{2}$	1 Mark: B
	$dt = \frac{1}{2}\sec^2\frac{x}{2}dx \text{ or } dx = \frac{2}{1+t^2}dt$	
	When $x = \frac{\pi}{3}$ then $t = \frac{1}{\sqrt{3}}$ and when $x = \frac{2\pi}{3}$ then $t = \sqrt{3}$	
	$\sin x + 1 = \frac{2t + 1 + t^2}{1 + t^2}$ $\int_{-\frac{3\pi}{3}}^{\frac{2\pi}{3}} 1 dt = \int_{-\frac{3\pi}{3}}^{\sqrt{3}} 1 + t^2 = 2$	
	$\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{1}{\sin x + 1} dx = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1 + t^2}{2t + 1 + t^2} \times \frac{2}{1 + t^2} dt$	
	$= \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{2}{(1+t)^2} dt = -2 \left[\frac{1}{1+t} \right]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}$	
	$= -2\left(\frac{1}{1+\sqrt{3}} - \frac{\sqrt{3}}{\sqrt{3}+1}\right) = -2\left(\frac{(1-\sqrt{3})^2}{1-3}\right)$ $= 4 - 2\sqrt{3}$	
8	$(\underline{\iota} + \underline{\jmath} - \underline{k}). (3\underline{\iota} - x\underline{\jmath} + 2\underline{k}) = 4$ $3 - x - 2 = 4$ $1 - x = 4$ $x = -3$	1 Mark: A
9	ab, cd and $ab - cd$ are real	1 Mark: B
	ac, bd and $ac - bd$ are imaginary	
	$(ab - cd)^2 \ge 0$	
	$a^2b^2 + c^2d^2 \ge 2abcd$	
	$(ac-bd)^2$ is a negative real number	
	$\therefore (ac - bd)^2 \le 0$	
	$\therefore a^2c^2 + b^2d^2 \le 2abcd$	
10	$a = 3x^2$	1 Mark: C
	$v^2 = 2 \int 3x^2 dx = 2x^3 + C$	
	When $x = 1$, $v = -\sqrt{2}$ then $C = 0$	
	$v = -\sqrt{2x^3} (v < 0 \text{ when } x = 1)$	
	$\frac{dx}{dt} = -\sqrt{2x^3}$	
	a c	
	$\frac{dt}{dx} = -\frac{1}{\sqrt{2}}x^{-\frac{3}{2}}$	
	$t = \frac{2}{\sqrt{2}}x^{-\frac{1}{2}} + C$	
	Initially $t = 0$ and $x = 1$ then $C = -\sqrt{2}$	
	$t = \sqrt{2}x^{-\frac{1}{2}} - \sqrt{2}$	
	$x^{-\frac{1}{2}} = \frac{t + \sqrt{2}}{\sqrt{2}}$	
	$x = \frac{2}{(t + \sqrt{2})^2}$	
	1	

11(a) (i)	Solution	Criteria
	<u> </u>	
(1)	$ \overrightarrow{OA} = \overrightarrow{OB} $	1 Mark: Correct
	$\sqrt{3^2 + 2^2 + (\sqrt{3})^2} = \sqrt{\alpha^2}$	answer.
	$\alpha = 4$	
11(a) (ii)	$ \overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OC} \overrightarrow{OC} + \overrightarrow{CA} = \overrightarrow{OA} Now \overrightarrow{BC} = \overrightarrow{CA} $	2 Marks: Correct answer.
	$\therefore \overrightarrow{OC} - \overrightarrow{OB} = \overrightarrow{OA} - \overrightarrow{OC}$	1 Mark: Shows some understanding.
	$\overrightarrow{OC} = \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OB})$ $= \frac{1}{2} (3\underline{\imath} + 2\underline{\jmath} + \sqrt{3}\underline{k} + 4\underline{\imath})$ $= \frac{1}{2} (7\underline{\imath} + 2\underline{\jmath} + \sqrt{3}\underline{k})$	
	$=\frac{1}{2}(7\underline{\imath}+2\underline{\jmath}+\sqrt{3}\underline{k})$	
11(a) (iii)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	3 Marks: Correct answer.
	$=4\underline{\iota}-\left(3\underline{\iota}+2\underline{\jmath}+\sqrt{3}\underline{k}\right)$	answer.
	$= \underline{i} - 2\underline{j} - \sqrt{3}\underline{k}$	2 Marks: Applies the statement for
	$\overrightarrow{OC} = \frac{1}{2} \left(7\underline{\imath} + 2\underline{\jmath} + \sqrt{3}\underline{k} \right)$	perpendicular vectors.
	$\overrightarrow{OC}.\overrightarrow{AB} = \frac{1}{2}(7 - 4 - 3) = 0$	4 M 1 E: 1 AB
	(Two vectors are perpendicular if and only if u . $v = 0$)	1 Mark: Finds \overrightarrow{AB} .
44(1)	$\therefore \overrightarrow{OC} \text{ is perpendicular to } \overrightarrow{AB}$	
11(b)	Let $z = x + iy$ and given $ z = 1$ then $x^2 + y^2 = 1$ LHS = z^{-1}	2 Marks: Correct answer.
	$= (x + iy)^{-1}$ $= \frac{1}{x + iy} \times \frac{x - iy}{x - iy}$ $= \frac{x - iy}{x^2 + y^2}$ $= \frac{x - iy}{1}$ $= \bar{z}$ $= RHS$	1 Mark: Uses $x^2 + y^2 = 1$ or shows some understanding.
11(c) (i)	$ \begin{array}{c} y \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{array} $ $ \begin{array}{c} z_1 + z_2 \\ z_1 \\ 0 \end{array} $	1 Mark: Correct answer.

4		T
11(c) (ii)	2 ^	1 Mark: Correct answer.
	$1 + \qquad \qquad z_1$	
	<	
	$\begin{bmatrix} -2 & -1 & 0 \\ 1 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$	
	$z_1 - z_2$	
	- z ₂ • -z Ţ	
11(d)	$\int \frac{1}{\sqrt{12 + 4x - x^2}} dx = \int \frac{1}{\sqrt{12 - (x^2 - 4x)}} dx$	2 Marks: Correct
	V · ·	answer.
	$= \int \frac{1}{\sqrt{16 - (x^2 - 4x + 4)}} dx$	4.14. 1. 6 1.
	· · · · · · · · · · · · · · · · · · ·	1 Mark: Completes the square.
	$=\int \frac{1}{\sqrt{16-(x-2)^2}} dx$	the square.
	V 10 (% 2)	
	$=\sin^{-1}\left(\frac{x-2}{4}\right)+C$	
11(e)	$\int \frac{x^2}{x^2 + 1} dx = \int \frac{x^2 + 1 - 1}{x^2 + 1} dx$	2 Marks: Correct
		answer.
	$=\int \left(1-\frac{1}{x^2+1}\right)dx$	1 Mark: Shows
	$ \int x^2 + 17 $ $ = x - \tan^{-1} x + C $	some
12(-)		understanding.
12(a)	De Moivre's theorem.	3 Marks: Correct
	$\cos 5\theta + i\sin 5\theta = (\cos \theta + i\sin \theta)^5$	answer.
	$(\cos\theta + i\sin\theta)^5 = \cos^5\theta + 5\cos^4\theta\sin\theta i + 10\cos^3\theta(\sin\theta i)^2$	2 Market Evnande
	$+10\cos^2\theta(\sin\theta i)^3 + 5\cos\theta(\sin\theta i)^4 + (\sin\theta i)^5$	2 Marks: Expands the binomial.
	$= \cos^5\theta - 10\cos^3\theta\sin^3\theta + 5\cos\theta\sin^4\theta$	
	$+i(5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta)$	1 Mark: Applies
	Equating the real components	De Moivre's
	$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$	theorem.
	$= \cos^5\theta - 10\cos^3\theta(1 - \cos^2\theta) + 5\cos\theta(1 - \cos^2\theta)^2$	
	$=\cos^5\theta - 10\cos^3\theta + 10\cos^5\theta$	
	$+5\cos\theta(1-2\cos^2\theta+\cos^4\theta)$	
	$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	
12(b)	8-2x A $Bx+C$	2 Manker Course
(i)	$\frac{8-2x}{(1+x)(4+x^2)} = \frac{A}{1+x} + \frac{Bx+C}{4+x^2}$	2 Marks: Correct answer.
	Using partial fractions to find <i>A, B</i> and <i>C</i>	
	$A(4+x^2) + (Bx+C)(1+x) = 8-2x$	1 Mark: Makes
	$A(4+x) + (Bx+C)(1+x) = 8-2x$ $(A+B)x^2 + (B+C)x + (4A+C) = 8-2x$	progress in finding
	A + B = 0 (1)	A, B or C.
	B + C = -2 (2)	
	$4A + C = 8 \ \widehat{\textbf{3}}$	
	Equation $(1) - (2)$	
	$A-C=2\boxed{4}$	
	Equation $3 + 4$	
	5A = 10 $A = 2$	
	A - 2 $A = 2, B = -2 and C = 0$	
L	, =	ı

12(b)	$c^4 = 8 - 2x$ $c^4 = 2 - 2x$	2 Marks: Correct
(ii)	$\int_0^4 \frac{8 - 2x}{(1 + x)(4 + x^2)} dx = \int_0^4 \frac{2}{1 + x} + \frac{-2x}{4 + x^2} dx$	answer.
	$= [2\ln(1+x) - \ln(4+x^2)]_0^4$	
	$= (2\ln 5 - \ln 20) - (2\ln 1 - \ln 4)$	1 Mark: Correctly
	$= 2\ln 5 - (\ln 4 + \ln 5) - (2\ln 1 - \ln 4)$	finds one of the integrals.
10()	= ln5	
12(c) (i)	Simple harmonic motion occurs when $\ddot{x} = -n^2(x-b)$	2 Marks: Correct answer.
	$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$	answer.
	$= \frac{d}{dx} \left(\frac{1}{2} \times (x^2 + 2x + 8) \right)$	1 Mark:R the
	, ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	formula for SHM.
	$=\frac{1}{2}\times(-2x+2)$	
	=-x+1	
	=-1(x-1)	
12.2	\therefore SHM about the position $x = -1$ ($n = 1$ and $b = 1$)	
12(c) (ii)	Centre of motion $x = 1$	3 Marks: Correct
	$Period = \frac{2\pi}{n} = \frac{2\pi}{1} = 2\pi$	answer.
	To find the amplitude	2 Marks: Finds two
	$v^2 = -x^2 + 2x + 8$	correct answers.
	$=1^2(8+2x-x^2)$	1 Mark: Finds one
	$=1^{2}(9-(x-1)^{2})$	correct answer.
	$= n^2(a^2 - x^2)$	
	:. Amplitude is 3 metres	
	Alternatively	
	Amplitude occurs at the extremes when $v = 0$	
	$x^{2} - 2x - 8 = 0$ (x - 4)(x + 2) = 0	
	Displacement occurs between $x = 4$ and $x = -2$ (distance of 6)	
	Hence the amplitude is 3 metres	
	\therefore Centre of motion $x = 1$, period 2π and amplitude is 3 metres.	
12(c)	Now $a = 3$, $n = 1$ and $b = 1$ (centre of motion)	1 Mark: Correct
(iii)	$x = a\cos(nt + \alpha) + 1$	answer.
	$=3\cos(t+\alpha)+1$	
	Initially $t = 0$ and $x = 2.5$	
	$2.5 = 3\cos(0 + \alpha) + 1$	
	$\cos\alpha = \frac{1.5}{3}$ $\alpha = \frac{\pi}{3}$	
	$\alpha = \frac{3}{\pi}$	
	$x = 3\cos\left(t + \frac{\pi}{3}\right) + 1$	
	$\therefore b = 1 \text{ and } \alpha = \frac{\pi}{3}$	
	J	

12(d)	$\arg\left(\frac{z-2}{z+2i}\right) = \arg(z-2) - \arg(z+2i) = \frac{\pi}{2}$	2 Marks: Correct
	Angle in a semicircle.	answer.
	arg $(z-2)$ -1 1 2 3 -1 -2 -2 -1 -2 -2 -2 -3 -1 -2 -3 -1 -3 -3 -1 -3 -3 -1 -3 -3 -1 -3 -3 -3 -3 -3 -3 -3 -3	1 Mark: Shows some understanding of the problem.
13(a)	$P(x) = x^4 + x^2 + 6x + 4 = 0$	4 Marks: Correct
	$P'(x) = 4x^3 + 2x + 6$	answer.
	$=2(2x^3+x+3)$	
	To determine the roots of $2x^3 + x + 3$	3 Marks: Factorises the polynomial.
	$P'(-1) = 2(2 \times (-1)^3 + (-1) + 3)$	ene perymonnan
	= 0 Therefore -1 is a zero of multiplicity 2 of $P(x)$	2 Marks:
	$P(x) = x^4 + x^2 + 6x + 4$	Recognises $(x + 1)^2$ as a factor of the
	$= (x+1)^2(x^2+bx+c)$	polynomial.
	$= (x^2 + 2x + 1)(x^2 + bx + c)$	1 Marky Calculates
	$= x^4 + bx^3 + cx^2 + 2x^3 + 2bx^2 + 2cx + x^2 + bx + c$	1 Mark: Calculates the derivative and
	$= x^4 + (b+2)x^3 + (c+2b+1)x^2 + (b+2c)x + 4$ Hence $c = 4, b = -2$	finds its zeros.
	$P(x) = x^4 + x^2 + 6x + 4$	
	$= (x+1)^2(x^2 - 2x + 4)$	
	$= (x+1)^2((x-1)^1 - 1 + 4)$ = $(x+1)^2((x-1)^2 + 3)$	
	$= (x+1)^{2}(x-1)^{2} + 3i$ $= (x+1)^{2}(x-1+\sqrt{3}i)(x-1-\sqrt{3}i)$	
	\therefore Zeros of $P(x)$ are -1 , $1 + \sqrt{3}i$ and $1 - \sqrt{3}i$	
13(b)	$\frac{dx}{dt} = x$	2 Marks: Correct
		answer.
	$\left \frac{dt}{dx} = \frac{1}{x} \right $	1 Mark: Finds <i>t</i> in
	$t = \ln x + C$	terms of x .
	Given $x = 1$ when $t = 3$	
	$3 = \ln 1 + C$	
	C=3	
	$t = \ln x + 3$	
	$\ln x = t - 3$	
	$x = e^{t-3}$	
	I .	1

13(c)	Step 1: To prove true for <i>n</i> = 1	3 marks: Correct
	LHS = 1 + x	answer.
	RHS = $\frac{x^{1+1} - 1}{x - 1} = \frac{(x + 1)(x - 1)}{(x - 1)} = 1 + x$	2 marks: Proves the result true for $n = 1$
	Result is true for $n = 1$	and attempts to use the result of $n = k$ to prove the result for
	Step 2: Assume true for $n = k$	n = k + 1
	$S_k = \frac{x^{k+1} - 1}{x - 1}$	1 mark: Proves the result true for <i>n</i> = 1.
	Step 3: To prove true for $n = k + 1$	
	$S_{k+1} = \frac{x^{k+2} - 1}{x - 1}$	
	$S_k + T_{k+1} = S_{k+1}$	
	LHS = $\frac{x^{k+1} - 1}{x - 1} + x^{k+1}$	
	$=\frac{x^{k+1}-1}{x-1}+\frac{x^{k+1}(x-1)}{(x-1)}$	
	$=\frac{x^{k+1}-1+x^{k+2}-x^{k+1}}{x-1}$	
	$= \frac{x^{k+2} - 1}{x - 1}$	
	x-1 = RHS	
	Step 4: True by induction	
13(d) (i)	$ \underline{k} $ component $ \underline{l} $ component	2 Marks: Correct
(1)	$2 + 4\lambda = -2$ $3 - 1 = \mu$	answer.
	$\lambda = -1$ $\mu = 2$	1 Mark: Finds either
	Substitute -1 for λ into the equation of l_1	λ or μ .
	$3\underline{\iota} + \underline{\jmath} + 2\underline{k} + (-1)(\underline{\iota} - \underline{\jmath} + 4\underline{k}) = 2\underline{\iota} + 2\underline{\jmath} - 2\underline{k}$	
	$\therefore A: 2\underline{\imath} + 2\underline{\jmath} - 2\underline{k}$	
13(d)	Line l_1 : $(\underline{u} = \underline{v} - \underline{J} + 4\underline{k})$	3 Marks: Correct
(ii)	$ u = \sqrt{1^2 + (-1)^2 + 4^2} = \sqrt{18}$	answer.
	Line $l_2: (v = v - v)$	2 Marks: Uses the
	$ v = \sqrt{1^2 + (-1)^2} = \sqrt{2}$	angle between two
		vectors.
	$\cos\theta = \frac{\underline{u} \cdot \underline{v}}{ \underline{u} \underline{v} } = \frac{2}{\sqrt{18} \times \sqrt{2}}$	1 Mark: Shows
	$=\frac{1}{3}$	some understanding.
] 3	_

14(a)	Inequality is only defined for $x(1-x) \ge 0$	2 Maulas C
17(a)		3 Marks: Correct answer.
	(cannot find the square root of a negative number)	
	$0 \le x \le 1 $	2 Marks: Finds one
	Using the result $ x = \sqrt{x^2}$ or $ 4x - 1 = \sqrt{(4x - 1)^2}$	correct region or makes significant
	$\sqrt{(4x-1)^2} > 2\sqrt{x(1-x)}$	progress.
	$(4x-1)^2 > 4x(1-x)$	1 Mark: Finds
	$16x^2 - 8x + 1 > 4x - 4x^2$	$0 \le x \le 1$ or uses
	$20x^2 - 12x + 1 > 0$	$ x = \sqrt{x^2}$ or
	(10x - 1)(2x - 1) > 0	shows some understanding.
	$\therefore x < \frac{1}{10} \text{ or } x > \frac{1}{2} \text{ (2)}$	
	Combining results 1 and 2	
	$\therefore 0 \le x < \frac{1}{10} \text{ or } \frac{1}{2} < x \le 1$	
14(b)	Let $z = x + iy$ and $\bar{z} = x - iy$	3 Marks: Correct
	$z^{2} = i\bar{z}$ $x^{2} - y^{2} + 2xyi = i(x - iy)$	answer.
	$\begin{vmatrix} x - y + 2xyi = t(x - ty) \\ x^2 - y^2 + 2xyi = y + ix \end{vmatrix}$	2 Maulas Einda and
	Equating the real and imaginary parts.	2 Marks: Finds one possible solution to
	$x^2 - y^2 = y(1)$	the equation.
	$2xy = x \ (2)$	
	Rearranging equation 2	1 Mark: Correctly
	x(2y-1)=0	expresses the
	$\therefore x = 0 \text{ and } y = \frac{1}{2}$	equation in terms of x and y.
	Substitute $x = 0$ into equation (1) $-y^2 = y$	
	y(y+1) = 0	
	$\therefore y = 0 \text{ and } y = -1$	
	Substitute $y = \frac{1}{2}$ into equation ①	
	$x^2 - \frac{1}{4} = \frac{1}{2}$	
	4 2	
	$x^2 = \frac{3}{4}$	
	$x^{2} = \frac{3}{4}$ $x = \pm \frac{\sqrt{3}}{2}$ $(\sqrt{3}, 1) (\sqrt{3}, 4)$	
	: Solution is $(0,0), (0,-1), \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	

4463	al al	1
14(c)	LHS = $\frac{n!}{r!(n-r)!} + \frac{n!}{(r-1)!(n-r+1)!}$	3 Marks: Correct
(i)		answer.
	$= \frac{n! (n-r+1) + n! r}{r! (n-r+1)!}$	
	· · · · · · · · · · · · · · · · · · ·	2 Marks: Makes
	n!(n-r+1+r)	significant progress
	$= \frac{n! (n-r+1+r)}{r! (n-r+1)!}$	towards the
	· · · · · · · · · · · · · · · · · · ·	solution.
	$= \frac{(n+1)n!}{r! (n-r+1)!}$	Solution.
	$=\frac{(n+1)!}{r!(n-r+1)!}$	1 Mark: Makes
	r!(n-r+1)!	some progress.
	= RHS	
14(a)	$RHS = {}^{n}C_{r}$	
14(c)		3 Marks: Correct
(ii)	$= \frac{n!}{[n - (n - k)]! (n - k)!}$	answer.
		2 Marks: Makes
	$=\frac{n!}{(k!(n-k)!)}$	significant progress
	-(k!(n-k)!)	towards the
	$= {}^{n}C_{n-k}$	solution.
	= LHS	1 Mark: Makes
		some progress.
14(d)	∫e	2 Marks: Correct
(i)	$I_n = \int_1^e (\ln x)^n dx$	answer.
(-)	1	diswerr
	$= [x(\ln x)^n]_1^e - \int_1^e x \times n(\ln x)^{n-1} \times \frac{1}{x} dx$	
		1 Mark: Sets up the
	$= e(\ln e)^{n} - 1(\ln 1)^{n} - n \int_{1}^{e} (\ln x)^{n-1} dx$	integration by
	$= e(\ln e)^{n} - 1(\ln 1)^{n} - n \int_{1}^{1} (\ln x)^{n} dx$	parts.
	$I_n = e - nI_{n-1}$ for $n = 1, 2, 3,$	
14(d)	Now $I_0 = \int_1^e (\ln x)^0 dx = [x]_1^e = e - 1$	2 Marks: Correct
(ii)	$\int_{1}^{1} (\ln x)^{2} dx = [x]_{1} = 0$	answer.
	$I = 2 + 1 \times I = 2 + (2 + 1) = 1$	
	$I_1 = e - 1 \times I_0 = e - (e - 1) = 1$	4 M 1 Cl
	$I_2 = e - 2 \times I_1 = e - 2 \times 1 = e - 2$	1 Mark: Shows
		some
	$\therefore I_3 = e - 3 \times I_2 = e - 3(e - 2)$	understanding.
	= -2e + 6	
15(a)	All the coefficients of $P(z)$ are real.	1 Marks Connect
(i)		1 Mark: Correct
	Then any complex roots occur in conjugate pairs.	answer.
	Since $(2+i)$ is a root then $(2-i)$ is a root.	
15(a)	Roots are $(2+i)$, $(2-i)$ and α	0.14 . 1 . 2
15(a)	$\alpha \in (2 \pm i)$, $(2 \pm i)$ and α	2 Marks: Correct
(ii)	$(2+i)(2-i)\alpha = -\frac{d}{a} = -\frac{20}{1}$	answer.
1	u 1	
1	$(4-i^2)\alpha = -20$	1 Mark: Makes
	$5\alpha = -20$	some progress
	$\alpha = -4$	towards the
		solution.
	P(z) = (z - (-4))[z - (2+i)][z - (2-i)]	
1	$=(z+4)(z^2-4z+5)$	

15(b) (i)	When $x = 1$ $\ddot{x} = \frac{5}{1^3} - \frac{2}{1^2} = 3$ Particle starts from rest at $x = 1$ with a positive acceleration. Hence it is moving in the positive x direction.	1 Mark: Correct answer.
15(b) (ii)	$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2}v^2\right) = \frac{5}{x^3} - \frac{2}{x^2}$ $\frac{1}{2}v^2 = \int 5x^{-3} - 2x^{-2}dx$ $= -\frac{5}{2}x^{-2} + 2x^{-1} + C$ When $x = 1, v = 0$ $0 = -\frac{5}{2} \times 1^{-2} + 2 \times 1^{-1} + C$ $C = \frac{1}{2}$ $\frac{1}{2}v^2 = -\frac{5}{2}x^{-2} + 2x^{-1} + \frac{1}{2}$ $v^2 = \frac{-5}{x^2} + \frac{4}{x} + 1$ $= \frac{x^2 + 4x - 5}{x^2}$ Now $x^2 + 4x - 5 = (x + 5)(x - 1)$ $\therefore v = \frac{\sqrt{x^2 + 4x - 5}}{x} \text{ for } x \ge 1$	3 Marks: Correct answer. 2 Marks: Finds the correct expression for v^2 1 Mark: Integrates to find $\frac{1}{2}v^2$.
15(b) (iii)	For $x = 3$ $\ddot{x} = \frac{5}{3^3} - \frac{2}{3^2} = -\frac{1}{27}$ The acceleration is negative and the particle is slowing. For $x > 2.5$ $v = \lim_{x \to \infty} \frac{\sqrt{x^2 + 4x - 5}}{x}$ $= \lim_{x \to \infty} \sqrt{1 + \frac{4}{x} - \frac{5}{x^2}}$ $\to 1$ \therefore The velocity decreases and approaches 1.	2 Marks: Correct answer. 1 Mark: Determines that the particle is slowing or approaches 1.
15(c) (i)	c = a + b $ = (2i + 2j + k) + (i + j - 4k) $ $ = 3i + 3j - 3k$	1 Mark: Correct answer.

15(c)	0400: 4 1:6 : 11 16 17 17	4 M 1 C :
(ii)	OACB is a rectangle if opposite sides are equal (parallelogram) and one angle is a right angle.	4 Marks: Correct answer.
	$\overrightarrow{OA} = 2\underline{\imath} + 2\underline{\jmath} + \underline{k}$	
	$ OA = \sqrt{2^2 + 2^2 + 1^2} = 3$	3 Marks: Makes
	$\overrightarrow{OB} = \underline{\imath} + \underline{\jmath} - 4\underline{k}$	significant progress towards the
	$ \overrightarrow{OB} = \sqrt{1^2 + 1^2 + (-4)^2} = \sqrt{18} = 3\sqrt{2}$	solution.
	$\overrightarrow{BC} = 2\iota + 2\jmath - k$	2 Marks: Shows that
	$ \overrightarrow{BC} = \sqrt{2^2 + 2^2 + (-1)^2} = 3$	the opposite sides
	$\overrightarrow{AC} = \underline{\imath} + \underline{\jmath} - 4\underline{k}$	of <i>OACB</i> are equal.
	$ \overrightarrow{AC} = \sqrt{1^2 + 1^2 + (-4)^2} = \sqrt{18} = 3\sqrt{2}$	1 Mark: Finds the
	∴ Opposite sides of <i>OACB</i> are equal.	distance of one side
	$\overrightarrow{OA} \cdot \overrightarrow{OB} = (2 \times 1) + (2 \times 1) + (1 \times (-4))$	of OACB.
	= 0	
	$\therefore \overrightarrow{OA}$ and \overrightarrow{OB} are perpendicular.	
	∴ OACB is a rectangle.	
15(c)	$A = lb$ $= 3\sqrt{2} \times 3$	1 Mark: Correct
(iii)	$= 3\sqrt{2} \times 3$ $= 9\sqrt{2} \text{ square units}$	answer.
16(a)		3 Markey Comment
16(a) (i)	Resolving forces ($m = 40 \text{ kg}$, $g = 10 \text{ ms}^{-2}$) $ma = -mg - 0.1v^2$	3 Marks: Correct answer.
- /	$ma = -mg - 0.1v^{-1}$ $40a = -400 - 0.1v^{2}$	
	$400a = -4000 - 0.1b$ $400a = -4000 - v^2$	2 Marles M 1
	$a = -\frac{1}{400}(v^2 + 4000)$	2 Marks: Makes significant progress
		towards the solution.
	$\frac{dv}{dt} = -\frac{1}{400}(v^2 + 4000)$	
	$\frac{dt}{dv} = \frac{-400}{v^2 + 4000}$	1 Marks Dagalesas
		1 Mark: Resolves the forces.
	$t = \int \frac{-400}{4000 + v^2} dv$	
	The particle has an initial speed of u ms ⁻¹ and reaches maximum	
	height when $v = 0$.	
	$t = \int_{0}^{0} \frac{-400}{4000 + v^{2}} dv$	
	$=400\int_0^u \frac{1}{4000+v^2}dv$	
	$=400 \left[\frac{1}{20\sqrt{10}} \tan^{-1} \frac{v}{20\sqrt{10}} \right]_0^u$	
	$= 2\sqrt{10} \left[\tan^{-1} \frac{v}{20\sqrt{10}} \right]_0^u$	
	$= 2\sqrt{10} \left[\tan^{-1} \frac{u}{20\sqrt{10}} - \tan^{-1} \frac{0}{20\sqrt{10}} \right]$	
	$= 2\sqrt{10} \tan^{-1} \frac{u}{20\sqrt{10}}$	
	20√10	

16(a) (ii)	$v\frac{dv}{dx} = -\frac{1}{400}(v^2 + 4000)$	3 Marks: Correct answer.
		aliswei.
	$\frac{dv}{dx} = -\frac{v^2 + 4000}{400v}$	2 Marks: Makes
		significant progress
	$\frac{dx}{dv} = \frac{-400v}{v^2 + 4000}$	towards the
		solution.
	$x = \int \frac{-400v}{v^2 + 4000} dv$	
	<i>γν</i> 1 1000	1 Mark: Uses
	Maximum height reached when travelling from $v = u$ to $v = 0$.	$a = v \frac{dv}{dx}$
	Max height = $\int_{u}^{0} \frac{-400v}{v^2 + 4000} dv$	
	$= \int_0^u \frac{400v}{v^2 + 4000} dv$	
	$=200\int_0^u \frac{2v}{v^2 + 4000} dv$	
	$= 200 [\ln (v^2 + 4000)]_0^u$	
	$= 200[\ln (u^2 + 4000) - \ln (4000)]$	
	$=200\ln\left(\frac{u^2+4000}{400}\right)$	
16(b)	$(1-3i)^2 = 1 - 6i + 9i^2$	1 Mark: Correct
(i)	=1-6i-9	answer.
	= -8 - 6i	
16(b)	Quadratic formula	2 Marks: Correct
(ii)	$0 + \sqrt{64 + 4 \times 2 \times (12 + 2i)}$	answer.
	$z = \frac{8 \pm \sqrt{64 - 4 \times 2 \times (12 + 3i)}}{4}$	
	-	1 Mark: Makes
	$=\frac{8\pm\sqrt{64-96-24i}}{4}$	some progress towards the
		solution.
	$=\frac{8\pm\sqrt{-32-24i}}{4}$	
	1	
	$= \frac{8 \pm \sqrt{4(-8-6i)}}{4}$	
	$=\frac{4\pm(1-3i)}{2}$	
	<u> </u>	

16(c)	Let $f(x) = 1 + x + \frac{x^2 e^x}{2} > e^x$	3 Marks: Correct
		answer.
	$f'(x) = 1 + \frac{1}{2}(x^2e^x + e^x 2x) - e^x$	2 Marks: Makes
	$= 1 + xe^x + \frac{x^2e^x}{2} - e^x$	significant progress towards the
	f'(0) = 0	solution.
	$f''(x) = xe^x + e^x + \frac{1}{2}(x^2e^x + e^x 2x) - e^x$	1 Mark: Sets up
	$= 2xe^{x} + \frac{x^{2}e^{x}}{2} > 0 \text{ for } x > 0$	f(x) and uses calculus.
	Therefore $f'(x) > 0$ (increasing) for $x > 0$ and $f(0) = 0$	
	$\therefore 1 + x + \frac{x^2 e^x}{2} - e^x > 0$	
	$\therefore 1 + x + \frac{x^2 e^x}{2} > e^x$	
16(d)	$x = \sec\theta$	4 Marks: Correct
	$\frac{dx}{d\theta} = \tan\theta \sec\theta$	answer.
	Also	3 Marks: Finds the
	$\sqrt{x^2 - 1} = \sqrt{\sec^2 \theta - 1}$	integral in terms of θ .
	$=\sqrt{\tan^2\theta}=\tan\theta$	2 Maylea Cimplifica
	$\int \frac{\sqrt{x^2 - 1}}{x^2} dx = \int \frac{\tan\theta \tan\theta \sec\theta d\theta}{\sec^2\theta}$	2 Marks: Simplifies the integral using the substitution.
	$= \int \frac{\tan^2\theta \ d\theta}{\sec\theta}$	1 Mark: Sets up an appropriate
	$= \int \left(\frac{\sin^2 \theta}{\cos^2 \theta} \times \frac{\cos \theta}{1}\right) d\theta = \int \frac{\sin^2 \theta}{\cos \theta} d\theta$	substitution.
	$= \int \frac{1 - \cos^2 \theta}{\cos \theta} d\theta$	
	$= \int (\sec\theta - \cos\theta) d\theta$	
	$= \ln(\sec\theta + \tan\theta) - \sin\theta + C$	
	$\sqrt{x^2-1}$	
	θ 1	
	$\therefore \int \frac{\sqrt{x^2 - 1}}{x^2} dx = \ln\left(x + \sqrt{x^2 - 1}\right) - \frac{\sqrt{x^2 - 1}}{x} + C$	