# **5** Context Free Grammars

[Linz § 5.1]

**Definition:** A grammar  $G = (N, \Sigma, S, P)$  is **context-free** if all producitons in P have the form

$$A \longrightarrow x$$

where  $A \in N$  and  $x \in (N \cup \Sigma)^*$ .

A language is context-free (CF) if L = L(G) for some context-free grammar (CFG), G.

#### *Note*:

Clearly, all linear grammars are CF,

: all regular languages are CF,

but the converse is **not** true.

#### Note:

CFG's are important in the definition of **programming languages**.

(See, e.g., Linz chapter 5 Intro and Section 5.3.)

### Examples of CFL's:

**Example 1:** Recall (pp. 1-26/30) the language  $Bal(\Sigma)$  of balanced words over  $\Sigma = \{a, b\}$ :

$$Bal(\Sigma) = \{ u \in \Sigma^* \mid n_a(u) = n_b(u) \}$$

We write  $Bal(a, b) = Bal(\{a, b\})$ 

We saw that Bal(a, b) is generated by the CFG G, with productions:

$$S \longrightarrow aSb \mid bSa \mid SS \mid \lambda$$

We proved:

- (a)  $L(G) \subseteq Bal(a,b)$
- (b)  $Bal(a,b) \subseteq L(G)$
- (a) is clear. (Every sentential form generated by G is **balanced**.)
- (b) was proved by showing:

 $u \in Bal(a, b) \implies u$  is generated by G,

– by induction (CVI) on |u|.

Example 2: Take  $\Sigma = \{ [, ] \}$  and let  $WN_{[]} \subseteq \Sigma^*$  be the set of all well-nested bracket strings. (See Kozen, Lecture 20.)

E.g. [[]][] is **well-nested**, but []][[] is **not**.

For  $u \in \Sigma^*$ , define  $E(u) = n_{[}(u) - n_{]}(u)$ .

What is the difference between  $WN_{[]}$  and Bal([,])?

For  $u \in \{ [,] \}^*$  to be **balanced**, it is **sufficient** that:

$$(1) E(u) = 0$$

but for u to be **well-nested**, we also need:

(2) for **every prefix** v of u:

$$n_{[}(v) \geq n_{]}(u)$$

i.e.

$$E(v) \ge 0$$

i.e.  $\forall k = 0, ..., |u|$ :

$$E(u \upharpoonright k) = n [(u \upharpoonright k) - n](u \upharpoonright k)$$
  
  $\geq 0.$ 

(See p. 1-26 for notation.)

This suggests, as a CFG for  $WN_{[\ ]}$ 

$$S \longrightarrow \underline{[\ S\ ]\ |\ SS\ |\ \lambda}$$

(Recall the grammar G for Bal(a, b) on p. 5-2.)

Call this  $G_{[]}$ .

Show 
$$L(G_{[\ ]}) = WN_{[\ ]}$$

We must show:

$$(a)L(G_{\lceil \rceil}) \subseteq WN_{\lceil \rceil}$$

$$(b)WN_{[]} \subseteq L(G_{[]})$$

(a) is clear. (Why?)

Every sentential form derived from  $G_{[]}$  is well-nested (ignoring non-terminal 'S').

(b) We will show:

$$u \in WN_{[\;]} \Longrightarrow u$$
 is generated by  $G_{[\;]}$ 

by CVI on |u|

To prove this, we need the concept of **bracket diagrams**.

The **bracket diagram** of u = BD(u) is the graph of E(v) for all **prefixes** v of u:



#### Note:

- (1) For **all prefixes** v of u,  $E(v) \ge 0$ , and
- (2) E(u) = 0

In other words, if  $u \in \{[,]\}^*$ , then u is well-nested iff

- (1) its bracket diagram is always non-negative, and
- (2) its **right end** has value **0**.

We will show: for all  $u \in \{ [,] \}^*$ , if  $u \in WN_{[]}$ , then  $u \in L(G_{[]})$ .

By **CVI** on |u|

**Base:** |u| = 0. Then  $u = \lambda$ , and so  $S \implies u$ .

Induction step: |u| = n > 0

Suppose:  $\forall v \text{ with } |v| < n : (v \in WN_{[\ ]} \implies v \in L(G_{[\ ]})).$ 

# Case 1

BD(u) is 0 at **beginning** and **end**, and **positive** in between.



Then u has the form [v], where BD(v) is also:

- 0 at the beginning and end,
- non-negative in between.

So v is also well-nested.

Also, 
$$|v| = |u| - 2 < |u|$$
.

Hence, by induction hypothesis,

in 
$$G_{[\,]}\colon \ S \stackrel{*}{\Longrightarrow} v$$

Hence

$$S \Longrightarrow [S] \stackrel{*}{\Longrightarrow} v = u,$$

i.e. 
$$S \stackrel{*}{\Longrightarrow} u$$
.

## Case 2

BD(u) is 0 at some point between the beginning and the end:



So u = xy, where  $x, y \in WN_{[]}$ .

Also, |x|, |y| < |u|

Hence by induction hypothesis,

$$S \stackrel{*}{\Longrightarrow} x$$
 and  $S \stackrel{*}{\Longrightarrow} y$ 

Hence in  $G_{[\ ]}$ 

$$S \implies SS \stackrel{*}{\underset{(1)}{\Longrightarrow}} xS \stackrel{*}{\underset{(2)}{\Longrightarrow}} xy = u$$

i.e.  $S \stackrel{*}{\Longrightarrow} u$ .

**Problem:** (2 types of brackets)

Let 
$$\Sigma = \{[,],(,)\}$$

- (1) **Define**, for  $u \in \Sigma^*$ : "u is well-nested".
- (2) Let  $WN_{[]()} = \{u \in \Sigma^* \mid u \text{ is well-nested}\}$ . Find a CFG for  $WN_{[]()}$ !

### *Note*:

The string '[(])' is not well-nested.

## More on CFG's and CFL's

Given  $\Sigma$ ,

Q. Is the class of **CFL's** closed under **union**?

I.e. is the **union** of 2 CFL's always a CFL?

A. Let 
$$L_1 = L(G_1)$$
,  $G_1 = (N_1, \Sigma, S_1, P_1)$   
 $L_2 = L(G_2)$ ,  $G_2 = (N_2, \Sigma, S_2, P_2)$ 

Can assume w.l.o.g.:  $N_1 \cap N_2 = \emptyset$  (*Why?*)

Then let  $G = (V, \Sigma, S, P)$  where

$$N = N_1 \cup N_2 \cup \{S\},\,$$

$$P = P_1 \cup P_2 \cup \{S \longrightarrow S_1 \mid S_2\}$$

Then  $L(G) = \underline{L_1 \cup L_2}$ 

Q. What about **intersection**?

\*\*\* Stay tuned! \*\*\*

**Examples:** Find CFG's for the following languages:  $(\Sigma = \{a, b\})$ 

1. 
$$\{a^nb^{2n} \mid n \ge 0\}$$
  
 $S \longrightarrow aSbb \mid \lambda$ 

2. 
$$\{a^n b^m \mid n \leq m\}$$
  
$$\underline{S \longrightarrow aSb \mid Sb \mid \lambda}$$

3. 
$$\{a^nb^m \mid n < m\}$$
  
 $S \longrightarrow aSb \mid Sb \mid b$ 

4. 
$$\{a^nb^m \mid n \leq m \leq 2n\}$$
  
$$\underline{S \longrightarrow aSb \mid aSbb \mid \lambda}$$

5. 
$$\{a^n b^n c^k \mid n, k \ge 0\}$$
  $(\Sigma = \{a, b, c\})$   $\frac{S \longrightarrow Sc \mid T}{T \longrightarrow aTb \mid \lambda}$ 

6. 
$$\{a^n b^m \mid m \le n+2\}$$
  
 $S \longrightarrow aSb \mid aS \mid \lambda \mid b \mid bb$ 

7. 
$$\{a^n b^m \mid n \neq m\}$$

$$egin{aligned} rac{S \longrightarrow S_1 \mid S_2}{S_1 \longrightarrow aS_1 b \mid S_1 b \mid b} \ S_2 \longrightarrow aS_2 b \mid aS_2 \mid a \end{aligned}$$

8. 
$$\{a^nb^m \mid 0 \le m \le 2n\}$$
  
 $S \longrightarrow aS \mid aSb \mid aSbb \mid \lambda$ 

9. 
$$\{a^nb^m \mid m \ge 2n\}$$
  
 $S \longrightarrow aSbb \mid Sb \mid \lambda$ 

10. 
$$\{a^n b^k c^n \mid n, k \ge 0\}$$
  $(\Sigma = \{a, b, c\})$   $\frac{S \longrightarrow aSc \mid T}{T \longrightarrow Tb \mid \lambda}$