AMENDMENTS TO SPECIFICATION

In the specification, starting on page 4, line 1, please amend the following paragraph as indicated.

In one embodiment the invention is an engine intake manifold having disposed on the mating surfaces of its respective components a continuous bead or film of adhesive. As used herein continuous bead or film of adhesive means a bead or film of adhesive that is disposed around the periphery of the mating surface and the end of the adhesive bead or film connects with the beginning of the adhesive bead or film. The continuous bead or film of adhesive upon cure is capable all-of forming an air and liquid tight seal between the components. This function allows the adhesive bead or film to replace gaskets as the sealing means. The adhesive may be applied to the intake manifold components in the immediate vicinity of the location where the components are to be contacted with each other or it may be applied in a location remote from where or when the components are to be contacted. Remote as used herein refers-can refer to one or both of time and location. In the embodiment where the adhesive is applied to one or more of the components remote from the place wherein the components are joined together a cure-on-demand adhesive is used.

In the specification, starting on page 8, line 1, please amend the following paragraph as indicated.

In preparation of the present assembly, the adhesive is applied to the by contacting the adhesive in a conventional fashion with one or more mating surface to form a continuous bead or film. The adhesive may be coated, extruded brushed or the like onto the surface. The adhesive can be applied immediately before joining components or it can be applied in remote location from the location where the components are bonded together, or the engine. The preferred cure-on-demand adhesive is exposed to conditions such that it will cure and thereby bond the components together and form a seal between them. Such conditions can be applied prior to or after bringing components together for joining. It is well within the average level of skill in the art to determine which operation may be used to cure the adhesive and when it should be performed. In one embodiment the operation may be an operation that is inherent in the assembly or operation of an automotive vehicle.

In the specification, starting on page 2, line 25, please amend the following paragraph as indicated.

Optionally, either or both of the first component 12 or second component 16 has a member for facilitating joinder or location of the components relative to each other or to the engine. Referring more specifically to FIGS. 2 and 3a-3c (where like parts are denoted by like reference numerals), there are shown examples of different

members. Typically, a first member 22 associated with the first component 12 will engage a second opposing structural member 24 associated with the second component 16. Such engagement can be about the periphery of a component, on an interior portion (not shown) or both. Any suitable coacting structure may be employed. For instance, a friction fit, an interference fit or some other interlock fit may be used. Examples of suitable joints include butt joints, lap joints, tongue in groove joints or the like. In one embodiment, shown in FIG. 3a, a snap fit connection 26 results from a tang 28 on the first member 22, engaging an opposing wall 30 formed on the second member 24. In another embodiment, in FIG 3b, one of the components has a flange 32 having an inner wall surface 34 for increasing the surface area available for bonding and for engaging the other component. FIG. 3c is a magnified view of the joints shown in Fig. 2, and illustrates a detent 36 for achieving a snap fit and a rib 38 that penetrates a groove 40 about at least a portion of the mating surface for increasing surface area for contacting adhesive, and effectively forming a tongue-in-groove joint, snap fit or both. As will be appreciated, optionally, a tang or other like structure may be formed for assisting in achieving a snap fit or for providing an audible locator for facilitating assembly. Combinations of the above types of joints are also contemplated as possible within a single assembly. Further examples are illustrated in commonly owned, co-pending U.S. Application Serial No. 09/825,721 (filed contemporaneously herewith; entitled "Adhesively Bonded Radiator Assembly"). Further, other suitable structures or surface treatments may be employed for providing an increase in the amount of surface area of the mating surfaces of the joint, or the overlap between the respect mating surfaces of the components.

In the specification, starting on page 9, line 13, please amend the following paragraph as indicated.

The present intake manifold assembly can be employed in combination with other adhesively bonded engine components, such as described in commonly owned co-pending Application Serial No. 60/262,570 ("Adhesively Bonded Valve Cover Cylinder Head Assembly"), hereby incorporated by reference, and that disclosed in commonly owned co-pending Application Serial No. 09/825,721 ("Adhesively Bonded Radiator Assembly"), hereby incorporated by reference.