Conditional Probability

Occurrence of one event affects probability of another event

$$\frac{ZX}{EX}$$
 A, B, X
 $\frac{ZX}{EX}$ $P(Roll & Sor less) = \frac{1+2+3\tau u}{3u} = \frac{10}{3u} = \frac{6}{3u}$
 $P(rolling & S) = 0$
 $P(rolling & S) = \frac{1}{3}$
 $P(rolling & S) = \frac{1}{3}$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 (note that $P(B) \neq 0$ is required)

"given"

"consistional event"

Ex: pick a student at random from a chas with me sollowing memore

	So	Jr	Sr	total
fenule	31.44.4	5.71%	0%	37.15%
				62.85%
total	71.441.	22.45%	5.71%	100%

let A = " student is a sophanore"

2)
$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{0.4}{0.7144}$$

3)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{O.4}{6.6285}$$

Ex: In a Chass w/ 40% F, 25% of tenures are Business Mayors.
and 30% of the males are business myon.

Let
$$F = \text{``student is female''}$$

$$B = \text{``student is a business myor''}$$

$$P(F) = 0.4 \quad P(B|F) = 0.25 \quad P(B|F') = 0.3$$

1)
$$P(F_AB) = P(F)P(B|F) = (0.4)(0.26) = 0.1$$

2)
$$P(B) = P(F \cap B) + P(F' \cap B) = 6.1 + P(F')P(B|F') = 0.1 + (0.6)(0.3) = 0.28$$

$$P(F') \times P(B'|F') = P(B' \cap F')$$

2.7 is Independent events

2.7 is Independent events

event A,B are insependent iff P(A) = P(A|B) iff P(B) = P(B|A) $P(A \cap B) = P(B) P(A|B)$ so iff $P(A \cap B) = P(A) P(B)$ — one to check