CUSTOMER APPROVAL SHEET

Company Name					
MODEL	A070VW04 V4				
CUSTOMER	Title :				
APPROVED	Name :				
APPROVAL FOR SPECIFICATIONS ONLY (Spec. Ver. <u>0.5</u>)					

APPROVAL FOR SPECIFICATIONS AND ES SAMPLE (Spec. Ver. 0.5)

APPROVAL FOR SPECIFICATIONS AND CS SAMP1LE (Spec. Ver. 0.5)

☐ CUSTOMER REMARK:

AUO PM : Roro Wang

P/N: 97.07A13.431

Comment:

Doc. version: 0.6

Total pages: 32

Date : 2009/04/27

Product Specification

7.0" COLOR TFT-LCD MODULE

Model Name: A070VW04 V4

Planned Lifetime: From 2009/Feb. To 2010/Feb.

Phase-out Control: From 2009/Sep. To 2010/Feb.

EOL Schedule: 2010/Feb.

< >Preliminary Specification

< → >Final Specification

Page: 1/32

Record of Revision

Version	Revise Date	Page	Content
0	2008/12/09		Draft.
1	2008/12/29	5	Update front view drawing Increasing FPC thickness drawing
2	2009/01/16	25	Modify Note 1 current description from 160mA change to 175mA
		27	Modify Virbration spec
3	2009/01/19	6	Update back view drawin Modify BLU connecter drawing
4	2009/02/10	cover	Add product lifetime
		7	Remove SPI timing
		11	Update the BLU power Consumption
		13	Update Horizonal timing
		17	Update register table
		26	Update IS spec
5	2009/04/16	10	VCOM-> VCOMin
		17	Modify default register table
		20	Modify Application Circuit
6	2009/04/27	5-6	Update front and back view drawing
		24-25	Increasing RGB Chromaticity & Uniformity spec

MO

Contents

Α.	General Description	3
В.	Features	3
C.	General Information	4
D.	Outline Dimension	5
	1. TFT-LCD Module – Front View	5
	2. TFT-LCD Module – Rear View	6
E.	Electrical Specifications	7
	1. FPC Pin Assignment (HRS FH28-60S-0.5SH)	7
	2 . Absolute Maximum Ratings	9
F.	Electrical Characteristics	10
	1. TFT- LCD Typical Operation Condition (AGND1 = AGND2 = GND = GGND = 0V)	10
	2. Backlight Driving Conditions	11
	3. AC Characteristics	12
	4. RGB Parallel Input Timing	13
	5. Serial Control Interface AC Characteristic	15
	6. Register Information	16
	7. Register Table (Default Value)	17
	8. Register Description	17
	9. Recommended Power On Register Setting	19
	10. Application Circuit Example	20
	11. Recommended Power On/Off Sequence	22
Н.	Reliability test items(Note 2)	27
I.	Packing and Making	29
	1. Packing Form	29
	2. Module/Panel Label Information	30
	3. Carton Label Information	30
J.	Recommend Gamma Voltage & Resistor (Gamma 2.2)	31
K.	Suggestion- System block	32
L.	Precautions	33

Page: 3/32

A. General Description

A070VW04 is a amorphous transmissive type TFT (Thin Film Transistor) LCD (Liquid Crystal Display). This model is composed of TFT-LCD, drive IC, FPC (flexible printed circuit), and backlight unit. The timing controller is embedded, so it is easily to design for consumer product.

B. Features

- 7-inch display size
- WVGA resolution and stripe dot arrangement
- Built in timing controller
- LED backlight
- Standby mode supported
- Up/Down, Left/Right reversion selection
- SYNC + DE Mode
- Parallel 18/24bits interface support
- 16.7M color supported
- Wide viewing angle
- RoHS compliant green design

Page: 4/32

C. General Information

NO.	Item	Unit	Specification	Remark
1	Display Resolution	dot	800RGB(H)×480(V)	
2	Active Area	mm	152.40(H)×91.44(V)	
3	Screen Size	inch	7.0(Diagonal)	
4	4 Pixel Pitch		0.1905(H)×0.1905(V)	
5	Color Configuration		R. G. B. Stripe	Note 1
6	Color Depth		16.7M Colors	Note 2
7	Overall Dimension	mm	164(H) × 103(V) × 5.1(T)	Note 3
8	Weight	g	153.5 +/- 10%	
9	Panel surface treatment		Anti-Glare	
10	Display Mode		Normally White	

Note 1: Below figure shows dot stripe arrangement.

Note 2: The full color display depends on 24-bit data signal (pin 4~27).

Note 3: Not include blacklight cable and FPC. Refer next page to get further information.

Version:

9.0

5/32 Page:

D. Outline Dimension 1. TFT-LCD Module – Front View

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version:

9.0

Page: 6/32

2. TFT-LCD Module - Rear View

NOTES:
1. GENERAL TOLERANCE IS ±0.3.
2. THE BENDING RADIUS OF FPC SHOULD BE LARGER THAN 0.6.
3. UNIT: MM

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 7/32

E. Electrical Specifications

1. FPC Pin Assignment (HRS FH28-60S-0.5SH)

Pin no	Symbol	I/O	Description
1	AGND2	Р	Analog Ground
2	AVDD2	Р	Analog Power
3	VDD	Р	Digital Power
4	R0	I	Data input (LSB)
5	R1	I	Data input
6	R2	I	Data input
7	R3	I	Data input
8	R4	I	Data input
9	R5	I	Data input
10	R6	I	Data input
11	R7	I	Data input (MSB)
12	G0	I	Data input (LSB)
13	G1	I	Data input
14	G2	I	Data input
15	G3	I	Data input
16	G4	I	Data input
17	G5	I	Data input
18	G6	I	Data input
19	G7	I	Data input (MSB)
20	В0	I	Data input (LSB)
21	B1	I	Data input
22	B2	I	Data input
23	В3	I	Data input
24	B4	I	Data input
25	B5	I	Data input
26	B6	I	Data input
27	B7	1	Data input (MSB)
28	DCLK	I	Clock input
29	DE	1	Data enable signal
30	HSYNC	I	Horizontal sync input. Negative polarity
31	VSYNC	I	Vertical sync input. Negative polarity
32	SCL	1	Serial communication clock input
33	SDA	I	Serial communication data input
34	CSB	1	Serial communication chip select

Page: 8/32

35	NC		Not connect (Please leave it open)
36	VDD	Р	Digital Power
37	NC		Not connect (Please leave it open)
38	GND	Р	Digital ground
39	AGND1	Р	Analog ground
40	AVDD1	Р	Analog Power
41	VCOMin	I	For external VCOM DC input (Optional)
42	NC	-	Not connect
43	NC	-	Not connect
44	VCOM	0	connect a capacitor
45	V10	Р	Gamma correction voltage reference
46	V9	Р	Gamma correction voltage reference
47	V8	Р	Gamma correction voltage reference
48	V7	Р	Gamma correction voltage reference
49	V6	Р	Gamma correction voltage reference
50	V5	Р	Gamma correction voltage reference
51	V4	Р	Gamma correction voltage reference
52	V3	Р	Gamma correction voltage reference
53	V2	Р	Gamma correction voltage reference
54	V1	Р	Gamma correction voltage reference
55	NC	-	Not connect
56	VGH	Р	Positive power for TFT
57	GVCC	Р	Digital Power
58	VGL	Р	Negative power for TFT
59	GGND	Р	Digital Ground
60	CAP	С	Connected to a capacitor

I: Input pin; P: Power pin; G: Ground pin; C: capacitor pin

Page: 9/32

2 . Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
	VDD	GND=0	-0.5	5	V	Note 1
	AVDD 1	AGND1=0	0.5	15	V	Note 1
Power voltage	AVDD 2	AGND2=0	-0.5	15	V	Note 1
Power voitage	VGH		-0.3	40	V	Note 1
	VGL	GGND = 0	-20	0.3	V	Note 1
	VGH-VGL			40	V	Note 1
Input Signal Voltage	Vı		-0.3	VDD+0.3	V	Note 1
Operating	Tono		0	60	$^{\circ}\!\mathbb{C}$	Ambient
temperature	Topa		0	60	C	Temperature
Storage	Tota		-10	70	$^{\circ}\!\mathbb{C}$	Ambient
temperature	Tstg		-10	70		Temperature

Note 1: Functional operation should be restricted under normal ambient temperature.

Page: 10/32

F. Electrical Characteristics

The following items are measured under stable condition and suggested application circuit.

1. TFT- LCD Typical Operation Condition (AGND1 = AGND2 = GND = GGND = 0V)

ITE	EM	Symbol	MIN.	TYP.	MAX.	UNIT	Remark
		VDD	3.1	3.3	3.6	V	Note3
		I_{VDD}		15	20	mA	Pin3 + Pin36
		AVDD 1 AVDD 2	10.5	11	11.5	V	Note3
		I _{AVDD}		10	20	mA	Pin2 + Pin40
Power	supply	GVCC	3.1	3.3	3.6	V	Note3
		I _{GVCC}		0.08	0.15	mA	Pin57
		VGH	17.5	18	18.5	V	Note3
		I_{VGH}	1	0.35	0.5	mA	Pin56
		VGL	-7.5	-7	-6.5	V	Note3
		I_{VGL}	1	0.35	0.5	mA	Pin58
Input	H Level	V_{IH}	0.7VDD	ı	VDD	V	
Signal	L Level	V_{IL}	GND	ı	0.3VDD	V	
Input Re	eference	V1 ~ V5	AVDD/2	1	AVDD – 1	V	
Volt	age	V6 ~ V10	1	-	AVDD/2	V	
VCC	Min	V _{CDC}	3.3	3.6	3.9	V	Note 1

Note1: Above every operation range is based on stable operation from suggested application circuit.

Note2: Based on recommended Gamma 2.2 voltage.

Note3: Typical current test pattern

Page: 11/32

2. Backlight Driving Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED lightbar Current	Ι _L		175		mA	
BL Power Consumption	P_{BL}	1.548	1.758	1.968	W	
LED Life Time	L _L	10,000			Hr	Note 2, 3

Note 1: The LED driving condition is defined for LED module (21 LED). The voltage range will be 8.85 to 11.25 V based on suggested driving current set as 175mA

Note 2: Define "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25° C and LED lightbar current = 175mA.

Note 3: If it uses larger LED lightbar voltage more than 175mA, it maybe decreases the LED lifetime.

Page: 12/32

3. AC Characteristics

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	Remark
Clock High time	T _{WCL}	8	-	-	ns	
Clock Low time	T _{WCH}	8	-	-	ns	
Clock rising time	T _{RCLK}	-	-	1	ns	
Clock falling time	T _{ACK}	-	-	1	ns	
Hsync setup time	T _{HSU}	5			ns	
Hsync hold time	T _{HHD}	10			ns	
Vsync setup time	T _{VSU}	0			ns	
Vsync hold time	T _{VHD}	2			ns	
Data setup time	T _{DSU}	5			ns	
Data hold time	T _{DHD}	10			ns	
Data enable set-up time	T _{ESU}	4			ns	
Data enable hold time	T _{EHD}	2			ns	

Figure 1 : Input timing details

Page: 13/32

4. RGB Parallel Input Timing

a. Horizontal Timing

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
DCLK frequency	F _{DCLK}		25	33	40	MHz
DCLK period	T_{DCLK}		25	30.3	40	ns
Hsync Period (= T _{HD} + T _{HBL})	T _H		986	1056	1183	DCLK
Active Area	T _{HD}		-	800	-	DCLK
Horizontal blanking (= T _{HF} + T _{HE})	T _{HBL}		186	256	383	DCLK
Hsync front porch	T _{HF}			40	-	DCLK
Delay from Hsync to 1 st data input (= T _{HW} + T _{HB})	T _{HE}	Function of HDL[70] settings	146	216	343	DCLK
Hsync pulse width	T_{HW}		1	128	136	DCLK
Hsync back porch	T _{HB}		10	88	342	DCLK

b. Vertical Timing

PARAMETER	SYMBO	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vsync period (= T _{VD} + T _{VBL})	T _V		497	505	512	Th
Active lines	T _{VD}			480		Th
Vertical blanking (= T _{VF} + T _{VE})	T _{VBL}		17	25	32	Th
Vsync front porch	T _{VF}			1	-	Th
GD start pulse delay	T _{VE}	Function of VDL[30] settings	16	24	31	Th
Vsync pulse width	T _{VW}		1	3	16	Th
Hsync/ Vsync phase shift	T _{VPD}		2	320	-	DCLK

Figure 2 Horizontal input timing. (HV mode)

Page: 14/32

Figure 3: Horizontal input timing. (DE mode)

Figure 4: Vertical timing. (HV mode)

Figure 5: Vertical timing. (DE mode)

Page: 15/32

5. Serial Control Interface AC Characteristic

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Serial clock	T _{SCK}		320			ns
SCL pulse duty	T _{SCW}		40	50	60	%
Serial data setup time	T _{IST}		120			ns
Serial data hold time	T _{IHD}		120			ns
Serial clock high/low	T _{SSW}		120			ns
CSB setup time	T _{CST}		120			ns
CSB hold time	T _{CHD}		120			ns
Chip select distinguish	T _{CD}		1			us
Delay from CSB to VSYNC	T _{CV}		1			us

Figure 6: AC serial interface write mode timing

Page: 16/32

6. Register Information

There is a total of 6 registers each containing several parameters. For a detailed description of the parameters refer to register table. The serial register has read/write function. D[15:12] are the register address, D[11] defines the read or write mode and D[10:0] are the data.

Figure 7: Serial interface write sequence

- 1. At power-on, the default values specified for each parameter are taken.
- 2. If less than 16-bit data are read during the CS low time period, the data is cancelled.
 - a. The write operation is cancelled.
- 3. All items are set at the falling edge of the vertical sync, except R0[1:0].
- 4. When GRB is activated through the serial interface, all registers are cleared, except the GRB value.
- 5. The register setting values are valid when VDD already goes to high and after VSYNC starts.
- 6. It is suggested that VSYNC, HSYNC, DCLK always exists in the same time. But if HSYNC, DCLK stops, only VSYNC operating, the register setting is still valid.
- 7. If the chip goes to standby mode, the register value will still keep. MCU can wake up the chip only by changing standby mode value from low to high.
- 8. The register setting values are rewritten by the influence of static electricity, a noise, etc. to unsuitable value, incorrect operating may occur. It is suggested that the SPI interface will setup as frequently as possible.

Page: 17/32

7. Register Table (Default Value)

Reg	,	ADDF	RESS		w			DATA								
No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0	(0	01)	(0	1)	(1)	U/D (0)	SHL (1)	(0)	(0)	GRB (1)	STB (1)
R2	0	0	1	0	0	Х	Х	Х				HDL	(80h)	30h)		
R3	0	0	1	1	0	Х	Х	(0)	(0)	(0)	(0)	(0)		VDL(1000)		
R4	0	1	0	0	0	Х	Х	(1)	(0)	(0	0)	(1)	(1111)			
R6	0	1	1	0	0	Х	0	EnGB12 (1)	EnGB11 (1)	EnGB10 (1)	(0)	(0)	EnGB5 (1)	EnGB4 (1)	EnGB3 (1)	(0)

X: Reserved, please set to "0".

8. Register Description

R0 settings

Address	Bit		Default	
0000	[100]	Bits 10-9	AUO Internal Use	01
		Bits 8-7	AUO Internal Use	01
		Bit6	AUO Internal Use	1
		Bit5 (U/D)	Vertical shift direction selection.	0
		Bit4 (SHL)	Horizontal shift direction selection.	1
		Bit3	AUO Internal Use	1
		Bit2	AUO Internal Use	0
		Bit1 (GRB)	Global reset.	1
		Bit0 (STB)	Standby mode setting.	1

В	it5	U/D function
0		Scan down; First line=Gn→ Gn-1 →→ G2 → Last line=G1. (default)
1		Scan up; First line=G1 → G2 → → Gn-1 → Last line=Gn.

Bit4	SHL function
0	Shift left; First data=Y600 → Y601 → → Y2 → Last data=Y1.
1	Shift right: First data=Y1→ Y2 → → Y600 → Last data=Y600. (default)

Bit1	GRB function
0	The controller is reset. Reset all registers to default value.
1	Normal operation. (default)

Page: 18/32

Bit0	STB function
0	T-CON, source driver and DC-DC converters are off, and all outputs are High-Z.
1	Normal operation. (default)

R2 settings

A	Address	Bit		Description	
	0010	[70]	Bit7-0 (HDL)	Horizontal start pulse adjustment function	80h

Bit7-0	HDL function.	
00h	$T_{HE} = T_{HEtyp} - 128$ CLK period.	
80h	T _{HE} = T _{HEtyp} . (default)	
FFh	T _{HE} = T _{HEtyp} + 127 CLK period.	

R3 settings

Address	Bit		Description		
0011	[80]	Bit8	AUO Internal Use	0	
		Bit7	AUO Internal Use	0	
		Bit6	AUO Internal Use	0	
		Bit5	AUO Internal Use	0	
		Bit4	AUO Internal Use	0	
		Bit3-0 (VDL)	Vertical start pulse adjustment function	1000	

Bit3-0	VDL function.
0000	$T_{VE} = T_{VEtyp} - 8$ Hs period.
0001	$T_{VE} = T_{VEtyp} - 7$ Hs period.
0010	$T_{VE} = T_{VEtyp} - 6$ Hs period.
0011	$T_{VE} = T_{VEtyp} - 5$ Hs period.
0100	$T_{VE} = T_{VEtyp} - 4$ Hs period.
0101	$T_{VE} = T_{VEtyp} - 3$ Hs period.
0110	$T_{VE} = T_{VEtyp} - 2$ Hs period.
0111	$T_{VE} = T_{VEtyp} - 1$ Hs period.
1000	$T_{VE} = T_{VEtyp}$. (default)
1001	$T_{VE} = T_{VEtyp} + 1$ Hs period.
1010	$T_{VE} = T_{VEtyp} + 2$ Hs period.
1011	$T_{VE} = T_{VEtyp} + 3$ Hs period.
1100	$T_{VE} = T_{VEtyp} + 4$ Hs period.
1101	$T_{VE} = T_{VEtyp} + 5$ Hs period.
1110	$T_{VE} = T_{VEtyp} + 6 \text{ Hs period.}$

Page: 19/32

1111	$T_{VE} = T_{VEtyp} + 7$ Hs period.

R6 settings

Address Bit Description Default								
Address	Bit		Default					
0110	[90]	Bit9	AUO Internal Use	0				
		Bit8(EnGB12)	Gamma buffer Enable for V9	1				
		Bit7(EnGB11)	Gamma buffer Enable for V8	1				
		Bit6(EnGB10)	Gamma buffer Enable for V7	1				
		Bit5	AUO Internal Use	0				
		Bit4	AUO Internal Use	0				
		Bit3(EnGB5)	Gamma buffer Enable for V4	1				
		Bit2(EnGB4)	Gamma buffer Enable for V3	1				
		Bit1(EnGB3)	Gamma buffer Enable for V2	1				
		Bit0	AUO Internal Use	0				

Bitx	EnGBx function				
0	Gamma buffer for VX is disable (High Z).				
1	Gamma buffer is enable. VX must be connected externally.				

9. Recommended Power On Register Setting

Reg	,	ADDF	RESS	;	R/W	DATA										
No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0	0)1	0	1	1	0	1	0	0	1	1
R2	0	0	1	0	0	0	0	0	80h							
R3	0	0	1	1	0	0	0	0	0	0 0 0 1000						
R4	0	1	0	0	0	0	0	1	1	0	0	1		11	11	
R6	0	1	1	0	0	0	0	1	1	1	0	0	1	1	1	0

Page: 20/32

10. Application Circuit Example

(Note: for reference only, not limited to this circuit)

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

21/32

Page:

9.0

Version:

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 22/32

11. Recommended Power On/Off Sequence

Power On Sequence

Page: 23/32

Power Off Sequence

Page: 24/32

G. Optical specification (Note 1, 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time								
Rise		Tr	θ=0°		12	20	ms	Note 3
Fall		Tf	0-0		18	30	ms	
Contrast ra	ntio	CR	At optimized viewing angle	200	300	-1		Note 4
	Тор			30	50			
Viewing Angle	Bottom		CR≧10	50	65		daa	Note 5
Viewing Angle	Left		CR≧10	50	65		deg.	
	Right			50	65			
Brightne	SS	YL	θ=0°	230	250		cd/m ²	Note 6
	White	X	θ=0°	0.26	0.31	0.36		
	winte	Y	θ=0°	0.28	0.33	0.38		
	Red	X	θ=0°	0.53	0.58	0.63		
Chuomaticity		Y	θ=0°	0.30	0.35	0.40		
Chromaticity	C======	Х	θ=0°	0.27	0.32	0.37		
	Green	Y	θ=0°	0.54	0.59	0.64		
	Blue	Х	θ=0°	0.10	0.15	0.20		
		Y	θ=0°	0.02	0.07	0.12		
Uniformity		ΔY_{L}	%	70	75		%	Note 7

Note 1:Ambient temperature =25 $^{\circ}$ C, and LED lightbar current I_L = 175mA. To be measured in the dark room. Note 2:To be measured on the center area of panel with a viewing cone of 1 $^{\circ}$ by Topcon luminance meter BM-7, after 15 minutes operation.

Page: 25/32

Note 3. Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 5. Definition of viewing angle, θ , Refer to figure as below.

Note 6. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Page: 26/32

Note 7: Luminance Uniformity of these 9 points is defined as below:

Page: 27/32

H. Reliability test items(Note 2)

No.	Test items	Conditions	Remark
1	High Temperature Storage	Ta= 70°C 240Hrs	
2	Low Temperature Storage	Ta= -10℃ 240Hrs	
3	High Ttemperature Operation	Ta= 60℃ 240Hrs	
4	Low Temperature Operation	Ta= 0°C 240Hrs	
5	High Temperature & High Humidity	Ta= 50℃ . 80% RH 240Hrs	Operation
6	Heat Shock	-10°C~60°C, 50 cycle, 2Hrs/cycle	Non-operation
7	Electrostatic Discharge	$\pm 200V,200pF(0\Omega)$, once for each terminate	al Non-operation
8	Image Sticking	25℃, 20hrs	Note 5
O	Vibration	Frequency range : 10Hz~55Hz Stoke : 1.5mm Sweep : 10Hz~55Hz~10 2 hours for each direction of X,Y,Z Total 6 hours	Non-operation JIS C7021, A-10 condition A : 15 minutes
10	100G . 6ms, ±X,±Y 3 times for each dire		Non-operation JIS C7021, A-7 condition C
11	Random vibration: Vibration (With Carton) 0.015G²/Hz from 5~200H -6dB/Octave from 200~50		IEC 68-34
12	Drop (With Carton)	Height: 60cm 1 corner, 3 edges, 6 surfaces	
13	Pressure	5kg, 5sec	Note 6

Note1: Ta: Ambient Temperature.

Note2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Page: 28/32

Test Condition		Note
Pattern		
Procedure And Set-up	Contact Discharge: 330Ω, 150pF, 1sec, 8 point, 25times/point Air Discharge: 330Ω, 150pF, 1sec, 8 point, 25times/point	
Criteria	B – Some performance degradation allowed. No data lost. Self-recoverable hardware failure.	
Others	Gun to Panel Distance No SPI command, keep default register settings.	

Note 5: Operate with 5 x 5 chess board pattern as figure and light on 24 hrs. Then modify to 32 degree gray pattern. After 20 minutes, the mura is less than JND 2.5

Note 6: The panel is tested as figure. The jig is ϕ 10 mm made by Cu with rubber and the loading speed is 3mm/min on position A~E. After the condition, no glass crack will be found and panel function check is OK.(no guarantee LC mura \cdot LC bubble)

Page: 29/32

I. Packing and Making

1. Packing Form

Page: 30/32

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number and printed with code 128 with the following definition:

ABCDEFGHIJKLMNOPQRSTUV

For internal system usage and production serial numbers.

LAUO Module or Panel factory code, represents the final production factory to complete the Product Product version code, ranging from 0~9 or A~Z (for Version after 9)

-Week Code, the production week when the product is finished at its production process

Example:

501M06ZL06123456781Z05:

Product Manufacturing Week Code: WK50

Product Version: Version 1

Product Manufactuing Factory: M06

3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton.

Date from 01 to 31

■Date from U1 to 31 ■Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

-A.D. γear, ranging from 1~9 and 0. The single digit code reprents the last number of the γear

Refer to the drawing of packing format for the location and size of the carton label.

Version:

Page: 31/32

0.6

J. Recommend Gamma Voltage & Resistor (Gamma 2.2)

Gamma 2.2						
	AVDD	11				
00H	V1	10				
10H	V2	8.7				
20H	V3	8.1				
30H	V4	7.68				
3FH	V5	6.8				
3FH	V6	4.2				
30H	V7	3.32				
20H	V8	2.9				
10H	V9	2.3				
00H	V10	1				

Page: 32/32

K. Suggestion-System block

According to there are some risks of EMI issue.

Please refer to this function block before design.

If add SSC (Spread Spectrum Clocking) IC on the clock of system may cause USB abnormal work. Please add USB controller to control USB data.

Page: 33/32

L. Precautions

- 1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.