

Создание системы распознавания взрывоопасных предметов для перегружателей металлического лома (ООО «ПМХ-Втормет»)

Руководитель проекта: Павел Белоус

Презентацию подготовил: Даниил Савченко

Сроки проекта: с 01.07.2024 по 30.09.2024

Постановка цели и задачи

- Разработка системы компьютерного зрения и object detection для установки на перегружатель лома.
- Обеспечение точности и надежности детекции ВОП.
- Система должна выявлять визуально опасные объекты (ВОП) в режиме реального времени и отображать их на экране для оператора.
- Основная цель проекта помощь оператору и снижение риска пропустить ВОП при подготовке сырья (лома).

Требования к системе:

- Система должна быть основана на технологиях компьютерного зрения и обеспечивать высокий показатель детектирования взрывоопасных предметов с камеры установленной на перегружателе лома.
- Модель должна быть обучена с использованием датасета заказчика который изначально состоял из 232 изображений и в дальнейшем был дополнен 2906 фотографиями ВОПов (3138 изображений).
- ВОПы должны быть детектированы в Bouding Box.

Исходные данные (датасет)

Объем базы данных: 3138 изображений заказчика, позже дополнен 3114 изображениями из сети Интернет (6252 изображений).

Источник сбора данных: ООО «ПМХ-Втормет» — российская компания, которая осуществляет переработку побочных продуктов металлургических производств и выпускает из них шлаковый щебень, флюсы и металлизированные брикеты.

Формат данных: Датасет представляет собой набор јред изображений ВОПов которые необходимо классифицировать и подготовить для обучения модели.

Детектируемые объекты:

- 1. Элементы внутреннего сгорания:
- Двигатели внутреннего сгорания
- Автомобильные аккумуляторы
- Баллоны с горючим газом (например, пропановые баллоны)
- 2. Масляные сосуды:
- Масляные баки
- Емкости с моторным маслом
- Масляные фильтры
 - В. Прочие потенциально опасные объекты:
- Огнетушители
- Баллоны со сжатым воздухом или другими газами
- Емкости с химическими веществами

Эти предметы требуют особого внимания при обработке и подготовке сырья, так как их наличие в ломе может представлять серьезную угрозу безопасности.

ЭТАПЫ РЕАЛИЗАЦИИ ПРОЕКТА

- Анализ данных технического задания заказчика
- Разработка стратегий решения задач
- Выбор методов решения задач
- Подготовка датасета для обучения модели нейросети
- Поиск эффективных гипер параметров и способов обучения модели
- Обучение наиболее эффективной модели
- Написание кода, сравнение эффективности разных методов детекции
- Тестирование и отладка кода
- Визуализация работы

ОБОГАЩЕНИЕ ДАТАСЕТА

Изначально датасет состоял из 232 изображений.

Необходимо было пополнить датасет представителями всех классов в достаточном для обучения модели колличестве.

Была написана утилита для парсинга изображений в сети Интернет на сервисе Yandex.Картинки по похожим изображениям. Так как некоторые изображения сложно описать текстовым запросом так, чтобы найти много схожих изображений. Это занимало бы много времени.

Выбор эффективного метода аннотации изображений.

Для аннотирования была выбрана утилита CVAT. она поддерживает выгрузку в формате Bounding Box прямоугольников.

В рамках проекта стоял выбор между использованием Bounding Box (BB) и Oriented Bounding Box (OBB) прямоугольников.

Для разметки OBB была модифицирована программа LabelIMG. Написан скрипт экспорта нормализованных ориентированных прямоугольников, который конвертируется в координаты четырех точек и выгружаются.

В результате изысканий было принято решение использовать первый метод аннотирования Bounding Box.

Анализ датасета и конвертация разметки

Для анализа датасета была написана утилита с возможностью сравнения аннотаций из разных источников.

Также у утилиты есть функция конвертации ВВ в ОВВ с помощью SAM сегментации. Результат конвертации показал хорошие показатели на Prescision метрике

Поиск баланса обучающего набора данных и предсказаний

Для обучения была выбрана YOLO v8m. Она обеспечивает высокую точность и скорость распознавания объектов на изображениях и видео.

матрица путаницы по итоговой модели на валидационной выборке

Объединение изображений датасета в мозайки показало лучший результат на предикте. Был написан скрипт для сборки мозаики 4 на 4 с соблюдением стратификации. Итоговый дататсет состоит из мозаек, некоторого количества изображений с ВОПами небольшого размера на фото и изображениями без ВОПов и аннотаций.

Детекция и трекинг ВОПов

Сложно добиться хорошего результата из за внешней схожести ВОП и не опасных объектов на большом расстоянии от камеры погрузчика.

Для наилучшего схождения модели с анализируемым видео с камеры погрузчика лома поступающее видео разделяется на сегменты с помощью библиотеки SAHI после чего анализируется нейросетью.

Результат работы с использованием мозайки видео и без

без мозайки

с использованием мозайки

Демонстрация работы системы

Результаты

- Обучена модель для детекции ВОП четырех классов с эффективностью Precision 0.78 на тестовом наборе данных.
- Разработаны вспомогательные утилиты для сбора, анализа и обработки данных датасетов с ВВ и ОВВ.
- Разработан скрипт для реализации предсказания ВОП с помощью обученной модели.

Команда проекта

- Белоус Павел тимлид проекта;
- **Кравченко Дмитрий Александрович** помощник тимлида
- Манежкин Александр Сергеевич
- Хвоинская Елена Михайловна
- Лакошко Антон Станиславович
- Волохов Александр Александрович
- Голованов Артём Алексеевич
- Аборкин Павел Сергеевич
- Бычков Антон Александрович
- Голдобина Влада
- Ценина Екатерина Владимировна
- Игнатьева Елена Михайловна
- Каштанов Никита Сергеевич

- Гилёв Александр Викторович
- Аттаев Заур Саидович
- Надич Денис Николаевич
- Савченко Даниил Сергеевич
- Солошенко Сергей Анатольевич
- Елизаров Константин Геннадьевич
- Лукашина Евгения Игоревна
- Хлюпин Павел Александрович
- Гараев Тимур Фаритович
- Винокуров Дмитрий Алексеевич
- Баранов Константин Вадимович
- Кортунова Екатерина Николаевна