Math 3B: Lecture 5

Noah White

October 9, 2017

Definition (local maximum)

A function $f:D\longrightarrow R$ has a local maximum at a if $f(x)\leq f(a)\quad \text{for all }x \text{ near }a$

Definition (local minimum)

A function $f:D\longrightarrow R$ has a local minimum at a if $f(x)\geq f(a)\quad \text{for all }x\text{ near }a$

 $f: \mathbb{R} \longrightarrow \mathbb{R}; x \mapsto x^2$ has a min at x = 0

 $f:\mathbb{R}\longrightarrow\mathbb{R}; f(x)=x^3-4x^2-3x+13$ has a local max at $x=-\frac{1}{3}$

 $f: \mathbb{R} \longrightarrow \mathbb{R}; f(x) = x^3 - 4x^2 - 3x + 13$ has a local max at $x = -\frac{1}{3}$

Definition (Critical point)

A function f(x) has a critical point at x = a if f'(a) = 0 or if f'(a) is undefined.

Examples

• $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)

Examples

- $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)
- $f(x) = \sin x$ has a critical point at $x = \frac{\pi}{2}$ (since $f'(x) = \cos x$)

Examples

- $f(x) = x^2$ has a critical point at x = 0 (since f'(x) = 2x)
- $f(x) = \sin x$ has a critical point at $x = \frac{\pi}{2}$ (since $f'(x) = \cos x$)
- $f(x) = e^x$ doesn't have any critical points since $f'(x) = e^x$ can never be zero

Local maximums and minimums (extrema) occur at

Example

$$f:(-\infty,1]\longrightarrow \mathbb{R}; f(x)=x^3$$
 has critical points at $x=0$ and 1

 $f'(x) = 3x^2$ so f'(0) = 0 and f'(1) is undefined.

Suppose x = a is a critical point for the function f(x).

• If f'(x) < 0 for x less than and close to a, and

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

- If f'(x) < 0 for x less than and close to a, and
- f'(x) > 0 for x greater than and close to a, then
- f(x) has a minimum at a.

Suppose x = a is a critical point for the function f(x).

• If f'(x) > 0 for x less than and close to a, and

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.

- If f'(x) > 0 for x less than and close to a, and
- f'(x) < 0 for x greater than and close to a, then
- f(x) has a maximum at a.

Suppose x = a is a critical point of the function f(x)

lf

• f''(a) > 0 then f has a minimum at a

lf

- f''(a) > 0 then f has a minimum at a
- f''(a) < 0 then f has a maximum at a

lf

- f''(a) > 0 then f has a minimum at a
- f''(a) < 0 then f has a maximum at a

lf

- f''(a) > 0 then f has a minimum at a
- f''(a) < 0 then f has a maximum at a

Note: If f''(a) = 0 then we cannot conclude anything! E.g x^3 or x^4 .

To find the global extrema of f(x) defined on a closed interval [a, b]:

To find the global extrema of f(x) defined on a open interval (a, b): Note: a could be $-\infty$ and b could be ∞ . 2. Find the limits

$$L = \lim_{x \to a^+} f(x)$$
 and $M = \lim_{x \to b^-} f(x)$

- 3. Evaluate f(x) at all the critical points
- 4. The smallest value is the global min unless L is smaller, in which case there is no global min
- 5. The largest value is the global max unless *M* is larger, in which case there is no global max

