FTML practical session 12 solution

5 juin 2025

FIGURE 1 – Solution of the one-dimensional Lasso estimator

1 SOLUTION

Depending on the sign of θ , and the values of λ and y, the situation will be different. However, we need to keep in mind that we always have that $\lambda \geqslant 0$, as it is a regularization parameter.

1.0.1 $\theta \ge 0$

If $\theta \geqslant 0$, we have that

$$F_{\lambda}(\theta) = \frac{1}{2}(y - \theta)^2 + \lambda\theta \tag{1}$$

We can differentiate with respect to θ , and

$$F_{\lambda}'(\theta) = -(y - \theta) + \lambda = \theta - (y - \lambda) \tag{2}$$

In this case,

- If $\lambda \geqslant y$, then $y \lambda \leqslant 0$, and we always have that $F'_{\lambda}(\theta) \geqslant 0$, the minimum on \mathbb{R}_+ is attained for $\theta = 0$, with value $\frac{1}{2}y^2$.
- If $\lambda \leqslant y$, then $y \lambda \geqslant 0$, and we have that $F_{\lambda}'(\theta) \leqslant 0$ if $\theta \leqslant y \lambda$ and $F_{\lambda}'(\theta) \geqslant 0$ if $\theta \geqslant y \lambda$, the minimum on \mathbb{R}_+ is attained for $\theta = y \lambda$, with value $\frac{1}{2}\lambda^2 + \lambda(y \lambda) = \lambda(y \frac{1}{2}\lambda)$

1.0.2 θ ≤ 0

If $\theta \leq 0$, we have that

$$F_{\lambda}(\theta) = \frac{1}{2}(y - \theta)^2 - \lambda\theta \tag{3}$$

We can differentiate with respect to θ , and

$$F_{\lambda}'(\theta) = -(y - \theta) - \lambda = \theta - (y + \lambda) \tag{4}$$

In this case.

- If $\lambda \geqslant -y$, then $y + \lambda \geqslant 0$, and we always have that $F'_{\lambda}(\theta) \leqslant 0$, the minimum on \mathbb{R}_{-} is attained for $\theta = 0$, with value $\frac{1}{2}y^{2}$.
- If $\lambda \leqslant -y$, then $y + \lambda \leqslant 0$, and we have that $F'_{\lambda}(\theta) \leqslant 0$ if $\theta \leqslant y + \lambda$ and $F'_{\lambda}(\theta) \geqslant 0$ if $\theta \geqslant y + \lambda$, the minimum on \mathbb{R}_{-} is attained for $\theta = y + \lambda$, with value $\frac{1}{2}\lambda^{2} \lambda(y + \lambda) = \lambda(-y \frac{1}{2}\lambda)$

1.1 Applications

Let us consider some values of y and plot the θ_{λ} as a function of λ .

1.1.1 y = 1

In this case:

- If $\lambda \leq 1$,
 - the optimal $\theta \in \mathbb{R}_+$ is $\theta_+ = 1 \lambda$ with value $\lambda(1 \frac{1}{2}\lambda)$.
 - the optimal $\theta \in \mathbb{R}_-$ is $\theta_- = 0$ with value $\frac{1}{2}$.

Let us show that is $0 \le \lambda \le 1$, then $g(\lambda) = \lambda(1 - \frac{1}{2}\lambda) \le \frac{1}{2}$. We have that $g(\lambda) = \lambda - \frac{1}{2}\lambda^2$, hence $g'(\lambda) = 1 - \lambda \ge 0$. The maximum value of $g(\lambda)$ is thus attained in $\lambda = 1$, and is equal to $\frac{1}{2}$.

Overall, we have

$$\theta_{\lambda} = 1 - \lambda \tag{5}$$

and

$$F_{\lambda}(\theta_{\lambda}) = \lambda(1 - \frac{1}{2}\lambda) \tag{6}$$

— If $\lambda \geqslant 1$,

- the optimal $\theta \in \mathbb{R}_+$ is $\theta_+ = 0$ with value $\frac{1}{2}$.
- the optimal $\theta \in \mathbb{R}_-$ is $\theta_- = 0$ with value $\frac{1}{2}$.

Overall

$$\theta_{\lambda} = 0 \tag{7}$$

and

$$F_{\lambda}(\theta_{\lambda}) = \frac{1}{2} \tag{8}$$