

Introdução

É a técnica que possibilita a geração de uma onda quadrada cuja largura do pulso pode ser controlada.

Assim, é possível controlar a porcentagem do tempo em que a onda permanece em nível lógico alto.

Introdução

Esse tempo é chamado de *Duty Cycle* (Ciclo de trabalho) e sua alteração provoca mudança no valor médio da onda, indo desde 0V (0% de *Duty Cycle*) a 5V (100% de *Duty Cycle*), no caso dos microcontroladores.

A alteração do *Duty Cycle* faz com que seja possível a geração de sinais com diferentes valores médios (DC), fazendo com que uma saída PWM opere como uma saída analógica.

Exemplos

Exemplos

Pinagem no Microcontrolador

Pinagem no Microcontrolador

Pinagem no Microcontrolador

Importância do Prescaler

Como vimos, o papel do *prescaler* é de retardar as coisas.

Isso é bom porque nos permite executar o PWM em frequências diferentes.

É também importante pois alguns dispositivos são sensíveis às "velocidades" PWM.

Um motor, por exemplo, ficará quente se a forma de onda do PWM for muito "rápida" e ficará instável se o PWM for muito "lento".

O ATmega328 tem 6 saídas PWM, duas em cada temporizador/ contador.

O temporizador PWM do AVR é capaz de funcionar em 3 modos diferentes: Fast PWM, PWM com correção de fase e PWM com correção de fase e frequência.

Modo PWM Rápido

O PWM rápido funciona da mesma maneira que o contador normal.

Neste modo (mais simples), o temporizador conta repetidamente de 0 a 255.

A saída liga quando o temporizador está em 0 e desliga quando o temporizador corresponde ao registrador de comparação de saída (output compare register – OCR).

Quanto maior for o valor no registro de comparação de saída, maior será o ciclo de trabalho. Este modo é conhecido como **Modo PWM Rápido**.

Modo PWM Rápido

Funcionamento

A lógica de controle recebe o sinal e incrementa o registro TCNTn.

Quando uma correspondência é detectada, a flag OCFnx é setada e o sinal é enviado para o gerador de forma de onda (Waveform Generator).

O Waveform Generator então muda o estado do pino OCnx (o estado é determinado pelo modo selecionado).

Quando o registro TCNTn passa o valor TOP (0xFF ou OCRnA), ele simplesmente transborda (ou ultrapassa) e volta para 0, ao mesmo tempo que a flag OCFnx é setada.

Manipulação de Registradores

- Primeiramente, é necessário definir qual pino PWM será utilizado.
 - Timer0 Pinos PD5 (Comparador B) e PD6 (Comparador A)
 - Timer1 Pinos PB2 (Comparador B) e PB1 (Comparador A)
 - Timer2 Pinos PD3 (Comparador B) e PB3 (Comparador A)
- Depois, declara-se esse pino como saída, utilizando o DDRD.

Manipulação de Registradores

- Uma vez configurado o pino, deve-se estabelecer as configurações dos registradores TCCRnA e TCCRnB.

Manipulação de Registradores - TCCRnA

- Deve-se escolher o modo de funcionamento do PWM. Normalmente se escolhe um um comparador iniciando em 1, e quando a comparação é atingida, a forma de onda atinge 0 (PWM não-invertido)

Manipulação de Registradores - TCCRnA

Bit	7	6	5	4	3	2	1	0
	COM0A1	COM0A0	COM0B1	COM0B0			WGM01	WGM00
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected.
0	1	WGM02 = 0: Normal Port Operation, OC0A Disconnected
		WGM02 = 1: Toggle OC0A on Compare Match
1	0	Clear OC0A on Compare Match, set OC0A at BOTTOM (non-inverting mode)
1	1	Set OC0A on Compare Match, clear OC0A at BOTTOM (inverting mode)

Manipulação de Registradores - TCCRnA

Bit	7	6	5	4	3	2	1	0
[COM0A1	COM0A0	COM0B1	COM0B0			WGM01	WGM00
Access	R/W	R/W	R/W	R/W			R/W	R/W
Reset	0	0	0	0			0	0

Mode	WGM02	WGM01	WGM00	Timer/Counter Mode of Operation	TOP	Update of OCR0x at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	TOP	воттом
2	0	1	0	стс	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	воттом	MAX
4	1	0	0	Reserved	-	-	-
5	1	0	1	PWM, Phase Correct	OCRA	TOP	BOTTOM
6	1	1	0	Reserved	-	-	-
7	1	1	1	Fast PWM	OCRA	BOTTOM	TOP

Manipulação de Registradores - TCCRnB

 O TCCRnB definirá o prescaler do Temporizador, o que afetará o tempo de ciclo do PWM.

Manipulação de Registradores - TCCRnB

Bit	7	6	5	4	3	2	1	0
[FOC0A	FOC0B			WGM02		CS0[2:0]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

CA02	CA01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clk _{I/O} /1 (No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clkl/O/256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge.
1	1	1	External clock source on T0 pin. Clock on rising edge.

Manipulação de Registradores - OCRnA e OCRnB

Os comparadores definem o Duty Cycle de operação do PWM.

$$DutyCycle[\%] = \frac{OCR}{(2^{n}-1)} * 100$$
 onde n é o número de bits do temporizador

Prof. João Magalhães

Horário de Atendimento:

• Segunda-feira: 17h30

• Quinta-feira: 19h30

E-mail: joao.magalhaes@inatel.br

Celular: (35) 99895-4450

Linkedin: https://www.linkedin.com/in/joaomagalhaespaiva/

