МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВО АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Иі	нститут цифровой	і́ техники і	и электроник	И
Кафедра	вычислительной	техники и	электроники	(ВТиЭ)

Лабораторная работа № 1

Моделирование поведения автономного робота в программе робосимулятора «Robotis»

Выполнили студенты 5.306m гр.				
Борисов В. В.				
Лаптев А. В.				
Проверил:				
Белозерских В.В.				
Лабораторная работа защищена				
« » 2024 г				

Цель работы:

Моделирование поведения автономного робота (Lizard) в программах R+ Task 3.0, RoboPlus.

Задачи:

Изучить особенности архитектуры и организации автономного робота. В соответствии с заданиями написать и отладить программы движения робота. Произвести программирование контроллера. Работоспособность написанных движений проверить на настоящем роботе. Предоставить отчет.

Задание 1.

С помощью программы RoboPlus(Manager) установить управление единичным сервоприводом робота.

Алгоритм.

Начало.

- 1. Установка соединения с роботом с помощью Сот-порта;
- 2. Включение крутящего момента на нужном приводе робота;
- 3. Установка скорости работы привода;
- 4. Задание текущего положения привода;

Конец.

С помощью данного алгоритма было осуществлено управление 12 приводом (хвостом) робота.

Вывод: в ходе выполнения работы было осуществлено знакомство с функционалом робота и осуществлено тестовое взаимодействие с сервоприводом.

Задание 2.

Смоделировать покадровое движение робота с помощью программы R+ Task 3.0.

Алгоритм.

Алгоритм для единичного движения робота состоит из следующих действий.

Начало.

- 1.Выбор необходимого робота Lizard;
- 2.Задание времени движения;
- 3. Установка необходимого положения для приводов;

Конец.

По ходу добавления нескольких движений может получиться следующее:

Вывод: в ходе выполнения работы было осуществлено знакомство со средой моделирования движений робота и разработан алгоритм движения в прямом направлении.

Задание 3.

Написать программу движения робота с помощью программы RoboPlus Task.

Алгоритм программы.

Начало.

- 1. Включение крутящего момента на всех приводах;
- 2. Установка скорости движения приводов;
- 3.Инициализация таймера №1 на 1.92 и таймера высокого разрешения №2 на 28 сек;
- 4. Начало бесконечного цикла:
 - 4.1 Если таймер №2 меньше 0 то переход к п. 4.2, иначе вызов функции движения прямо;
 - 4.2 Установка таймера №2 в значение 9;
 - 4.3 Если таймер №2 меньше 0 то переход к п. 4.4, иначе вызов функции движения вправо;
 - 4.4 Установка таймера №2 в значение 14;
 - 4.5Если таймер №2 меньше 0 то переход к п. 4.6, иначе вызов функции движения прямо;
 - 4.6 Установка таймера №2 в значение 9;
 - 4.7Если таймер №2 меньше 0 то переход к п. 4.8, иначе вызов функции движения влево;
 - 4.8 Установка таймера №2 в значение 28;
 - 4.9Если таймер №2 меньше 0 то переход к п. 4.1, иначе вызов функции движения прямо;

Конец.

Результат программы получился следующий:

Вывод: в ходе выполнения работы была осуществлена разработка программы для движения робота по заданной траектории с использованием визуального программирования.

Вывод по лабораторной работе.

В ходе выполнения лабораторной работы были изучены особенности архитектуры и организации автономного робота. В соответствии с заданиями написаны и отлажены программы движения робота. Произведено программирование контроллера. Работоспособность написанных движений была проверена на настоящем роботе.