Dim Prefs

Clay Thomas claytont@princeton.edu

April 26, 2019

1 Lemmas

In this section, we set up the tools needed to reason about d-dimensional preferences.

1.1 Lemmas based on the structure of X

These first few lemmas relate geometric properties of X to limitations on the structure of $>_a$ for a specific, fixed a.

The most simple way X gives structure to preferences is if one outcome is better in all attributes.

Definition. Let $x, y \in X \subseteq \mathbb{R}^d_{\geq 0}$. We say x dominates y, denoted $x \gg y$, if x[k] > y[k] for each $k = 1, \ldots, d$.

Proposition 1. If $x \gg y$, then $x >_a y$ for any nonzero $a \in \mathbb{R}^d_{>0}$.

When comparing different outcomes, a useful tool is the familiar geometric notion of a convex hull. Intuitively, if a preference weight does not like any of a set of options, it will not like any outcome in the hull of those options either. Thus, a point "dominated by the hull" of a set of options cannot be preferred to all those options.

Definition. For points $x_1, \ldots, x_n \in \mathbb{R}^d$, let $\text{hull}(x_1, \ldots, x_n) = \{u_1 x_1 + \ldots + u_n x_n | 0 \leq u_i \leq 1, \sum_{i=1}^n u_i = 1\}$ denote the convex hull of x_1, \ldots, x_n .

Lemma 2. Let $z, x_1, \ldots, x_k \in \mathbb{R}^d_{\geq 0}$ and $a \in \mathbb{R}^d_{\geq 0} \setminus \{0\}$. If $z >_a x_i$ for $i = 1, \ldots, k$, then $z >_a w$ for any $w \in \text{hull}(x_1, \ldots, x_k)$.

Proof. We have $\langle a, z \rangle > \langle a, x_i \rangle$ for each i = 1, ..., k. If $w = u_1 x_1 + ... + u_n x_n$ and $\sum_i u_i = 1$, then $\langle a, w \rangle = u_1 \langle a, x_1 \rangle + ... + u_n \langle a, x_n \rangle < u_1 \langle a, z \rangle + ... + u_n \langle a, z \rangle = \langle a, z \rangle$.

Proposition 3. Let $U, V \subseteq \mathbb{R}^d_{\geq 0}$ be finite sets of points. Suppose that there exists $u \in \text{hull } U$ and $v \in \text{hull } V$ such that $u \ll v$. Then no a satisfies $u_i >_a v_i$ for each $i = 1, \ldots, k$.

Proof. For contradiction, suppose such an a exists. First, note $u_i >_a v \in \text{hull } V$, then see that $\text{hull } U \ni u >_a v$ as well. But $u \ll v$, so this is a contradiction.

The converse of the last theorem also holds:

Proposition 4. Suppose that no $a \in \mathbb{R}^d_{>0}$ satisfies $u_i \geq_a v_j$ for each $u_i \in U$ and $v_j \in V$. Then there exist $u \in \text{hull}(U)$ and $v \in \text{hull}(V)$ with $u \ll v$. NOTE: SHOULD USE THE "SEMISTRICT" DEFINITION OF jj

Proof. If no a has this property, then in particular the following linear program is infeasible:

min:
$$\sum_{k=0}^{d} 0 \cdot a_k$$

s.t.
$$\sum_{k=1}^{d} a_k (u_k^i - v_k^j) \ge 0 \quad \forall i \in U, j \in V$$

$$a_k \ge 1 \quad \forall k$$

The dual of this linear program is

$$\begin{aligned} \text{max: } & \sum_{i \in U, j \in V} 0 \cdot b_{ij} + 1 \cdot c_k \\ \text{s.t. } & \sum_{i \in U, j \in V} b_{ij} (u_k^i - v_k^j) + c_k \leq 0 \quad \forall k \\ & b_{ij} \geq 0 \quad \forall i, j \\ & c_k \geq 0 \quad \forall i, j \end{aligned}$$

This dual program is always feasible (with the all zeros solution) so by strong duality it must be unbounded. Take some solution and some k with $c_k > 1$. At this solution, b_{ij} are not all zero. Thus, take $\sum_{i,j} b_{ij} = B$, and consider:

$$\sum_{i \in U} \left(\sum_{j \in V} b_{ij} / B \right) u_k^i \le -\frac{c_k}{B} + \sum_{j \in V} \left(\sum_{i \in U} b_{ij} / B \right) v_k^j < \sum_{j \in V} \left(\sum_{i \in U} b_{ij} / B \right) v_k^j$$

NOTE: THIS CANNOT BE CORRECT BECAUSE IT IMPLIES EG THAT ALL POINTS ARE MORE THAN 1 APART $\hfill\Box$

This motivates the following definition:

Definition. A set of points dominates, denoted $U \ll V$, when DEFINITION