Chap three

ShangXiaojin

2022年12月14日

目录

1	Lag	range Polynomial & Neville's Iterated Interpolation &	
	\mathbf{Div}	ided Differences	3
	1.1	Ex	3
		1.1.1 Ex_1	3
		1.1.2 Ex_2	3
	1.2	code	3
		1.2.1 Preparations	3
		1.2.2 main function	4
		1.2.3 the body of code \dots	6
	1.3	Ans & Analyse	7
2	Her	rmite Polynomials	7
	2.1	Ex	7
	2.2	code	7
		2.2.1 main function	7
	2.3	Ans	8

1 Lagrange Polynomial & Neville's Iterated Interpolation & Divided Differences

1.1 Ex

1.1.1 Ex_1

iff(0.1)=0.62049958, f(0.2)=-0.28398668, f(0.3)=0.00660095, f(0.4)=0.24842440, then , please obtain the approximations while <math>x=0.25

1.1.2 Ex 2

Use Neville's method to obtain the approximations for Lagrange interpolating polynomials of degrees one, two, and three to approximate each of the following:

```
\begin{aligned} a.f(8.4), &iff(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = \\ 18.82091 \\ b.f(-\frac{1}{3}), &iff(-0.75) = -0.07181250, f(-0.5) = -0.02475000, f(-0.25) = \\ 0.33493750, f(0) = 1.10100000 \\ c.f(0.25), &iff(0.1) = 0.62049958, f(0.2) = -0.28398668, f(0.3) = 0.00660095, f(0.4) = \\ 0.24842440 \\ d.f(0.9), &iff(0.6) = -0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362, f(1.0) = \\ 0.65809197 \end{aligned}
```

1.2 code

To be frankly, I thougt I'd do this math problem all...and I did.

1.2.1 Preparations

In order to use iteration to complete this problem, I integrated all the information of this topic into one matrix.

```
clc , clear
format long
clc
clear
```

```
A= [8.1 \quad 8.3 \quad 8.6 \quad 8.7;
16.94410 \quad 17.56492 \quad 18.50515 \quad 18.82091;
-0.75 \quad -0.5 \quad -0.25 \quad 0;
-0.07181250 \quad -0.02475000 \quad 0.33493750 \quad 1.1010000;
0.1 \quad 0.2 \quad 0.3 \quad 0.4;
0.62049958 \quad -0.28398668 \quad 0.00660095 \quad 0.24842440;
0.6 \quad 0.7 \quad 0.8 \quad 1.0;
-0.17694460 \quad 0.01375227 \quad 0.22363362 \quad 0.65809197];
X = [8.4 \quad -1/3 \quad 0.25 \quad 0.9];
Ans = \mathbf{zeros}(4,3);
```

1.2.2 main function

 $Neville^1$

```
function f = Neville(X,F,a)

n = size(X,2);

Q = zeros(size(X,2));

for i = 1:n

Q(i,1) = F(i);

end

for i = 2:n

for j = 2:i

Q(i,j) = ((a - X(i - j + 1))*Q(i,j-1) - (a - X(i))*Q(i-1,j-1))/(X(i))

end

end

f = Q;

end
```

Lagrange

```
function g = Lagrange(X, F, a)

n = size(X, 2);
```

¹由于 Matlab 矩阵从 1 开始计数,对角标进行了适当的更改

```
L = zeros(1,n);
T = a * ones(1,n);
for i = 1:n
    temp = X(1,i) * ones(1,n);
    A = X;
    B = X;
    A(1,i) = a-1;
    B(1,i) = X(1,i) -1;
    L(1, i) = prod(T - A)/prod(temp - B);
end
g = \mathbf{dot}(F, L);
end
                          Differences<sup>2</sup>
function t = Differences(X, F, a)
n = size(X, 2);
x = a * ones(n);
t = F(1,1);
T = [F' \mathbf{zeros}(n, n-1)];
for i = 2:n
    for j = 2:i
         T(i,j) = (T(i,j-1) - T(i-1,j-1))/(X(i) - X(i-j+1));
    end
end
for k = 2:n
    temp1 = x(1:k-1);
    temp2 = X(1:k-1);
    t = t + T(k,k)*prod(temp1 - temp2);
end
end
```

 $^{^2}$ 由于 Matlab 矩阵从 1 开始计数,对角标进行了适当的更改

1.2.3 the body of code

Ex2

此处未按照作业要求对 1、(c) 进行求解二,而是按照该题原本要求作答, 作答中由于已经将本题所有信息录入矩阵 A 之中,为方便起见进行两步运 算:

第一步: 利用迭代选取 x_i x_4 这 4-i 个点运用 Neville 求 x 点函数近似值 第二步: 根据 x 值,重新选取 x 附近的 x_i 点进行最终值的更正。具体代码 如下:

```
\begin{array}{lll} temp1 &=& Neville\left(A(1\,,2\!:\!3)\,,A(2\,,2\!:\!3)\,,8\!.4\right);\\ temp2 &=& Neville\left(A(3\,,2\!:\!3)\,,A(4\,,2\!:\!3)\,,-1/3\right);\\ temp3 &=& Neville\left(A(5\,,2\!:\!3)\,,A(6\,,2\!:\!3)\,,0\!.25\right);\\ Ans(1\,,\!1) &=& temp1\,(2\,,\!2);\\ Ans(2\,,\!1) &=& temp2\,(2\,,\!2);\\ Ans(3\,,\!1) &=& temp3\,(2\,,\!2);\\ Ans \end{array}
```

$Ex1^3$

具体代码如下:

```
%f (0.25) if f (0.1) = 0.62049958, f (0.2) = -0.28398668, f (0.3) = 0.006600 tic, Lagrange (A(5,:),A(6,:),0.25), toc tic, Neville (A(5,:),A(6,:),0.25), toc tic, Differences (A(5,:),A(6,:),0.25), toc
```

³直接利用了矩阵 A 进行计算

1.3 Ans & Analyse

类型	耗时 (s)	结果
Lagrange Polynomial	0.020129	-0.210337221875000
Neville's Iterated Interpolation	0.015109	-0.210337221875000
Divided Differences	0.006151	-0.210337221875000

2 Hermite Polynomials

2.1 Ex

f, such that ,find P(x)

X	0.1	0.2	0.3	0.4
f(x)	-0.62049958	-0.28398668	0.00660095	0.24842440
f'(x)	3.58502082	3.14033271	2.66668043	2.16529366

2.2 code

2.2.1 main function

```
function q = Hermite(X,F,F1)

n = size(X,2);

Q = zeros(2*n);

Z = zeros(1,2*n);

q = zeros(1,2*n);

for i = 1:n

Z(1,2*i-1) = X(i);
Z(1,2*i) = X(i);
Q(2*i-1,1) = F(i);
Q(2*i,1) = F(i);
Q(2*i,2) = F1(i);
if i > 1

Q(2*i-1,2) = (Q(2*i-1,1) - Q(2*i-2,1))/(Z(1,2*i-1)-Z(1,2*i-2));
```

```
end for i=3:2*n for j=3:i Q(i\,,j\,)=(Q(i\,,j-1)-Q(i-1,j-1))/(Z(i)-Z(i-j+1)); end end for i=1:2*n q(i\,)=Q(i\,,i\,); end end end
```

2.3 Ans

耗时 (s)	0.055735	
Ans	[-0.620499580000000	3.585020820000000
	-2.198918199999995	-0.490447000000094
	0.037205000000695	0.040474999992823
	-0.002527777740325	$0.002962962817440 \;]$