• For the case K=2, plot the system time vs. increasing arrival rate λ .

- What is the value of the system time when $\lambda=1.5$?
 - 0 3.9902
- What value of λ would cause the queue to become unstable?
 - \circ when λ is larger than 1.6, there's a huge jump in avg system time.
- What value of λ would cause the queue to become unstable when K=3?
 - Avg system time jumps from 13 to 30 when λ increase from 2.8 to 2.9. So a λ > 2.8 makes queue of K=3 unstable
- What did you do to assess the accuracy of your estimates?
 - My estimates are based on averages after 100k departures. So the uncertainties are mostly ruled out.
- Write down two applications of the above queueing model?
 - Network Load balancing
 - Ticket purchasing service