Devoir de Mathématiques n°17

KÉVIN POLISANO MPSI 1

Vendredi 11 Avril 2008

EXERCICE

Partie II

1. a) Soit π un élément d'un groupe multiplicatif G, e un entier relatif et $\alpha = \pi^e$.

On considère l'application:

$$f_{\alpha}: \ \mathbb{Z} \times G \longrightarrow G^2$$

 $(k, \tau) \mapsto (\pi^k, \tau \alpha^k)$

On cherche à exhiber une fonction φ_e de G^2 dans G ne dépendant que de e et vérifiant :

$$\forall (k,\tau) \in \mathbb{Z} \times G, \ \tau = \varphi_e \circ f_\alpha(k,\tau)$$

L'application suivante convient :

$$\varphi_e: G^2 \longrightarrow G$$

$$(a,b) \mapsto ba^{-e}$$

En effet:

$$\forall (k,\tau) \in \mathbb{Z} \times G, \ \varphi_e \circ f_\alpha(k,\tau) = \varphi_e(\pi^k,\tau\alpha^k) = \tau\alpha^k(\pi^k)^{-e} = \tau\pi^{ke}\pi^{-ke} = \tau$$

b) Les membres d'une association souhaitent pouvoir transmettre à un individu A, un message décomposé en parties telles que chacune puisse être représentée par un élément τ_i du groupe et un entier k_i choisit. Seul A connaît l'entier e et il reçoit de la part de l'auteur les couples :

$$f_{\alpha}(k_i, \tau_i) = (\lambda_i, \mu_i)$$

Pour pouvoir décrypter les parties et donc le message (c'est-à-dire prendre connaissance des τ_i) il suffira à A d'appliquer φ_e à chaque couple reçu dans la mesure où :

$$\varphi_e(\lambda_i, \mu_i) = \varphi_e \circ f_\alpha(k_i, \tau_i) = \tau_i$$

2. \mathbb{F}_{29} est un corps, donc \mathbb{F}_{29}^{\star} est un groupe pour la loi . d'ordre 29-1=28.

Par voies de conséquence :

$$\forall \lambda \in \mathbb{F}_{29}^{\star}, \lambda^{28} = 1 \Leftrightarrow \lambda^{17}.\lambda^{11} = 1 \Leftrightarrow \lambda^{17} = \lambda^{-11}$$

On conjecture alors que e=11. Vérifions le sachant que $\pi=2$ et $\alpha=18$, on a bien :

$$\pi^e = 2^{11} = 2048 = 70 \times 29 + 18 = 18 = \alpha$$

b) On donne la suite des couples (λ_i, μ_i) suivante :

$$(16, 17), (18, 24), (28, 22), (17, 21), (23, 23), (24, 8)$$

Décryptons ce message en cherchant les parties-ci :

$$\tau_i = \varphi_e(\lambda_i, \mu_i) = \mu_i \cdot \lambda_i^{-11} = \mu_i \cdot \lambda_i^{17}$$

A partir du tableau on a :

$$\begin{split} \varphi_e(16,17) &= 17 \times 16^{17} = 17 \times 7 = 4 \times 29 + 3 = 3 \\ \varphi_e(18,24) &= 24 \times 18^{17} = 24 \times 26 = 21 \times 29 + 15 = 15 \\ \varphi_e(28,22) &= 22 \times 28^{17} = 22 \times 28 = 21 \times 29 + 7 = 7 \\ \varphi_e(17,21) &= 21 \times 17^{17} = 21 \times 17 = 12 \times 29 + 9 = 9 \\ \varphi_e(23,23) &= 23 \times 23^{17} = 23 \times 16 = 12 \times 29 + 20 = 20 \\ \varphi_e(24,8) &= 8 \times 24^{17} = 8 \times 20 = 5 \times 29 + 15 = 15 \end{split}$$

Enfin d'après la correspondance entre les entiers (1,2,...,27,28) modulo 29 et le 28-uplet (A,B,...,Z,'',.) le message décrypté est :

COGITO

PROBLÈME

I. L'étude d'un exemple

1. Soit A une matrice quelconque de $\mathcal{M}_2(\mathbb{R})$ donc de la forme $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Calculons A^2 :

$$A^{2} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^{2} + bc & ab + bd \\ ac + dc & cb + d^{2} \end{pmatrix}$$

Par ailleurs Det(A) = ad - bc et Tr(A) = a + d d'où :

$$A^{2} - \text{Tr}(A)A + \text{Det}(A)I_{2} = \begin{pmatrix} a^{2} + bc & ab + bd \\ ac + dc & d^{2} \end{pmatrix} - (a+d)\begin{pmatrix} a & b \\ c & d \end{pmatrix} + (ad - bc)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a^{2} + bc - (a+d)a + (ad - bc) & ab + bd - (a+d)b \\ ac + dc - (a+d)c & d^{2} - (a+d)d + (ad - bc) \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Donc:

$$A^2 - \operatorname{Tr}(A)A + \operatorname{Det}(A)I_2 = 0 \quad (*)$$

2. Soit A une matrice non scalaire; on note \mathbb{A} l'ensemble :

$$\mathbb{A} = \left\{ M \in \mathcal{M}_2(\mathbb{R}) | \exists (a, b) \in \mathbb{R}^2, M = aI_2 + bA \right\}$$

L'ensemble \mathbb{A} est le sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ engendré par I_2 et A.

La famille (I_2, A) est libre car aI_2 est une matrice scalaire et bA ne l'est pas par hypothèse.

Donc (I_2, A) est une base de \mathbb{A} donc :

$$Dim(\mathbb{A}) = 2$$

Considérons deux matrices M et M' de $\mathbb A$ et calculons leur produit :

$$MM' = (aI_2 + bA)(a'I_2 + b'A) = aa'I_2 + ab'A + ba'A + bb'A^2$$

Et comme $A^2 = \text{Tr}(A)A - \text{Det}(A)I_2$ en reportant on a :

$$MM' = (aa' - bb'\operatorname{Det}(A))I_2 + (ab' + ba' + bb'\operatorname{Tr}(A))A \in \mathbb{A}$$

Donc \mathbb{A} est une sous-algèbre de \mathcal{M}_2 .

3. Soit $B \in \mathbb{A}$ i.e $B = aI_2 + bA$ qui vérifie $B^2 = -I_2$.

Remarquons que $b \neq 0$ car sinon on aurait $B = aI_2 \Rightarrow B^2 = a^2I_2 = -I_2$ absurde car $a \in \mathbb{R}$.

$$B^{2} = (aI_{2} + bA)^{2}$$

$$= a^{2}I_{2} + 2abA + b^{2}A^{2}$$

$$= a^{2}I_{2} + 2abA + b^{2}(\operatorname{Tr}(A)A - \operatorname{Det}(A)I_{2})$$

$$= (a^{2} - b^{2}\operatorname{Det}(A))I_{2} + (2ab + b^{2}\operatorname{Tr}(A))A$$

Puisque $B^2=-I_2$ on a le système :

$$\begin{cases} a^2 - b^2 \operatorname{Det}(A) = -1 \\ 2ab + b^2 \operatorname{Tr}(A) = 0 \end{cases} \Leftrightarrow \begin{cases} a^2 - b^2 \operatorname{Det}(A) = -1 \\ a = -\frac{b \operatorname{Tr}(A)}{2} \end{cases} \Leftrightarrow \begin{cases} b^2 (\operatorname{Tr}(A)^2 - 4 \operatorname{Det}(A)) = -4 \\ a = -\frac{b \operatorname{Tr}(A)}{2} \end{cases}$$

Puisque $b^2 > 0$ il faut donc que : $Tr(A)^2 < 4Det(A)$

Réciproquement si $\text{Tr}(A)^2 < 4\text{Det}(A)$ alors la matrice suivante vérifie $B^2 = -I_2$:

$$B = \left(-\frac{\operatorname{Tr}(A)}{\sqrt{4\operatorname{Det}(A) - \operatorname{Tr}(A)^2}}\right)I_2 + \left(\frac{2}{\sqrt{4\operatorname{Det}(A) - \operatorname{Tr}(A)^2}}\right)A$$

4. La famille (I_2, B) est libre puisque B n'est pas une matrice scalaire d'après (*).

Puisque Dim (Vect $\{I_2, B\}$) = 2 et Dim(\mathbb{A}) = 2 alors (I_2, B) est une base de \mathbb{A} .

Considérons l'isomorphisme d'espace vectoriel défini de \mathbb{A} vers \mathbb{C} par $f(I_2, B) = (1, i)$.

La bijectivité vient du fait que l'image de la base (I_2, B) de \mathbb{A} est la base (1, i) de \mathbb{C} .

Ainsi on a bien $f(I_2) = 1_{\mathbb{C}}$ et soit $(M, M') \in \mathbb{A}^2$ on a :

$$MM' = (aI_2 + bB)(a'I_2 + b'B)$$

= $aa'I_2 + ab'B + ba'B + bb'B^2$
= $(aa' - bb')I_2 + (ab' + ba')B$

D'où:

$$f(MM') = (aa' - bb')f(I_2) + (ab' + ba')f(B)$$

$$= (aa' - bb') + i(ab' + ba')$$

$$= (a + ib)(a' + ib')$$

$$= f(M)f(M')$$

Par conséquent f est un isomorphisme d'algèbre entre $\mathbb A$ et le corps $\mathbb C$ des complexes.

5. Nous avons vu que si $M = aI_2 + bA$ alors $M^2 = (a^2 - b^2 \text{Det}(A))I_2 + (2ab + b^2 \text{Tr}(A))A$.

$$M^2 = 0 \Longrightarrow \begin{cases} a^2 - b^2 \operatorname{Det}(A) = 0 \\ 2ab + b^2 \operatorname{Tr}(A) = 0 \end{cases}$$

Donc soit a = 0 et b = 0 soit :

$$\begin{cases} a = -\frac{b\operatorname{Tr}(A)}{2} \\ \left(\frac{\operatorname{Tr}(A)^2}{4} - \operatorname{Det}(A)\right)b^2 = 0 \end{cases}$$

Donc les matrices $M = \left(-\frac{b\operatorname{Tr}(A)}{2}\right)I_2 + bA$ vérifient $M^2 = 0$ sans être nulles.

Supposons qu'une matrice M non nulle soit inversible et vérifie $M^2=0$ alors :

$$M^{-1}(M.M) = M^{-1}.0 \Rightarrow (M^{-1}.M)M = 0 \Rightarrow I_2.M = 0 \Rightarrow M = 0$$

Absurde par hypothèse, donc on en déduit que toutes les matrices M non nulles de $\mathbb A$ ne sont pas inversibles et donc que $\mathbb A$ n'est pas un corps.

6. Soit B une matrice non scalaire de $\mathcal{M}_2(\mathbb{R})$. On lui associe l'algèbre \mathbb{B} .

Si A et B sont semblables alors il existe une matrice inversible $P \in \mathcal{M}_2(\mathbb{R})$ telle que :

$$B = P^{-1}AP$$

B est non scalaire, par suite A non plus et donc (I_2, A) est une base de A.

Soit alors φ définie de \mathbb{A} dans \mathbb{B} par $\varphi(I_2, A) = (I_2, B)$.

 φ transforme une base de $\mathbb A$ en une base de $\mathbb B$ donc est une bijection. Et soit $M\in\mathbb A$ on a :

$$\varphi(M) = \varphi(aI_2 + bA) = a\varphi(I_2) + b\varphi(A) = aI_2 + b(P^{-1}AP) = P^{-1}(aI_2 + bA)P = P^{-1}MP$$

Si $(M, M') \in \mathbb{A}^2$ on a $MM' \in \mathbb{A}$ et :

$$\varphi(MM') = P^{-1}MM'P = P^{-1}MPP^{-1}M'P = \varphi(M)\varphi(M')$$

Ainsi φ est un isomorphisme d'algèbre, donc \mathbb{A} et \mathbb{B} sont isomorphes.

7. On suppose que A est telle que $Tr(A)^2 > 4Det(A)$.

 $\lambda \in \mathbb{R}$ est dite valeur propre de A s'il existe $X \in \mathbb{R}^n - \{0\}$ tel que $AX = \lambda X$.

X est alors un vecteur propre de A associé à la valeur propre λ .

a) On a $AX = \lambda X \Leftrightarrow (\lambda I_2 - A)X = 0$ et puisque $X \neq 0$ alors $(\lambda I_2 - A)$ n'est pas inversible.

D'où $\operatorname{Det}(\lambda I_2 - A) = 0$ donc les valeurs propres sont racines du polynôme $\operatorname{Det}(XI_2 - A)$.

Or il se trouve que : $Det(XI_2 - A) = X^2 - Tr(A)X + Det(A)$.

Et puisque $\Delta = \text{Tr}(A)^2 - 4\text{Det}(A) > 0$ alors le polynôme possède deux racines distinctes.

Donc A possède deux valeurs propres.

b) Notons λ et λ' les valeurs propres de A et X, X' les vecteurs propres associés.

Soit $(\mu, \mu') \in \mathbb{R}^2$ tels que $\mu.X + \mu'X' = 0$ et f l'endomorphisme associé à A, alors :

$$\mu \cdot f(X) + \mu' \cdot f(X') = 0 \Leftrightarrow \mu \cdot \lambda \cdot X + \mu' \cdot \lambda' \cdot X' = 0$$

Or
$$\mu.X = -\mu'.X'$$
 d'où : $-\lambda.\mu'.X' + \mu'.\lambda'.X' = 0 \Leftrightarrow \mu'.X'(\lambda' - \lambda) = 0$.

Et puisque les valeurs propres sont distinctes et $X' \neq 0$ il vient $\mu' = 0$, de même $\mu = 0$.

Donc la famille (X, X') est libre et puisque de dimension 2 est une base de \mathbb{R}^2 .

c) Dans la base (X, X') on a $f(X) = \lambda . X + 0 . X'$ et $f(X') = 0 . X + \lambda' . X'$ donc :

$$M(f) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda' \end{pmatrix}$$

d) A est isomorphe à \mathbb{B} où $\mathbb{B} = \text{Vect}(I_2, B)$ et B matrice diagonale semblable à A.

Soit \mathbb{D} l'algèbre des matrices diagonales d'ordre 2 à coefficient dans \mathbb{R} on a :

$$Dim(\mathbb{D}) = Dim(\mathbb{B}) = 2 \text{ et } \mathbb{B} \subset \mathbb{D} \Longrightarrow \mathbb{B} = \mathbb{D}$$

e) Notons ϕ un isomorphisme de \mathbb{A} dans \mathbb{D} .

Notons également E_{11} et E_{22} les matrices élémentaires qui forment une base de \mathbb{D} .

On a
$$(\phi^{-1}(E_{11}), \phi^{-1}(E_{22})) \neq (0, 0)$$
 et $\phi^{-1}(E_{11}) \circ \phi^{-1}(E_{22}) = \phi^{-1}(E_{11}E_{22}) = 0$.

Donc $\phi^{-1}(E_{11})$ et $\phi^{-1}(E_{22})$ ne sont pas inversibles, donc \mathbb{A} n'est pas un corps.

II. Quelques résultats généraux

Soit \mathbb{D} une algèbre de dimension finie n.

1. Soit a un élément de \mathbb{D} et ϕ_a l'application définie par :

$$\phi_a: \quad \mathbb{D} \quad \longrightarrow \quad \mathbb{D} \\
x \quad \mapsto \quad ax$$

Soit $(x,y) \in \mathbb{D}^2$ et $\lambda \in \mathbb{R}$ on a :

$$\phi_a(\lambda x + y) = a(\lambda_x + y) = \lambda(ax) + ay = \lambda\phi_a(x) + \phi_a(y)$$

Donc ϕ_a est un endomorphisme de l'espace vectoriel \mathbb{D} .

2. On note \mathfrak{B} une base de \mathbb{D} .

 $\operatorname{Mat}_{\mathfrak{B}}(\phi_a)$ désigne la matrice de l'endomorphisme ϕ_a dans la base \mathfrak{B} .

Soit l'application :

$$\Psi: \mathbb{D} \longrightarrow \mathcal{M}_n(\mathbb{R})$$

$$a \mapsto \operatorname{Mat}_{\mathfrak{B}}(\phi_a)$$

Décomposons là en deux autres applications :

$$\Psi: \mathbb{D} \xrightarrow{\phi} \mathcal{L}(\mathbb{D}) \xrightarrow{\varphi} \mathcal{M}_n(\mathbb{R})$$

$$a \mapsto \phi_a \mapsto \operatorname{Mat}_{\mathfrak{D}}(\phi_a)$$

D'une part on a :

$$\phi_{\lambda a + \mu b} = \lambda \phi_a + \mu \phi_b$$

Et d'autre part :

$$\phi_{ab} = \phi_a \circ \phi_b$$

Avec $\phi(1_{\mathbb{D}}) = \phi_{1_{\mathbb{D}}}$ neutre de $\mathcal{L}(\mathbb{D})$. Donc ϕ est un morphisme de l'algèbre \mathbb{D} sur $\mathcal{L}(\mathbb{D})$.

D'après le cours les algèbres $\mathcal{L}(\mathbb{D})$ et $\mathcal{M}_n(\mathbb{R})$ sont isomorphes.

Donc par composition Ψ est un morphisme d'algèbre. Montrons que son noyau est réduit à 0:

Soit a tel que $\Psi(a) = 0$ i.e $\mathcal{M}_{\mathfrak{B}}(\phi_a) = 0 \Rightarrow \phi_a = 0$.

L'application ϕ_a est identiquement nulle donc en particulier on a $\phi_a(1_{\mathbb{D}}) = a = 0$

Donc $\operatorname{Ker}(\Psi) = \{0_{\mathbb{D}}\}$ et on en déduit que Ψ est injective.

Ainsi par morphisme $\Psi(\mathbb{D})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ et donc \mathbb{D} est isomorphe à $\Psi(\mathbb{D})$.

3. On considère que $\mathbb{D} = \mathbb{C}$ corps des complexes.

On munit \mathbb{C} , considéré comme \mathbb{R} -espace vectoriel, de la base $\mathfrak{B} = (1, i)$.

Soit z = a + ib avec $(a, b) \in \mathbb{R}^2$, on a:

$$\phi_z(1) = z \times 1 = a + ib$$
 et $\phi_z(i) = z \times i = (a + ib) \times i = -b + ia$

D'où:

$$\operatorname{Mat}_{\mathfrak{B}}(\phi_z) = \begin{pmatrix} \phi_z(1) & \phi_z(i) \\ a & -b \\ b & a \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix}$$

4. Soit maintenant \mathbb{A} une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

On s'intéresse à quelques cas où on peut affirmer que A est, ou n'est pas, un corps.

(a) On suppose que A contient une matrice non scalaire A qui a une valeur propre réelle λ .

Puisque $(A, I_n) \in \mathbb{A}^2$ alors $A - \lambda I_n \in \mathbb{A}$ par combinaison linéaire.

Or on a vu dans la première partie que $A - \lambda I_n$ est non nulle et non inversible.

Donc A n'est pas un corps.

(b) Traitons simultanément les cas où A est diagonalisable ou trigonalisable.

Soit l'élément $a_{11}=\lambda$ de D , D représente la matrice diagonale ou triangulaire semblable :

$$A - \lambda I_n = PDP^{-1} - \lambda PP^{-1} = P(D - \lambda I_n)P^{-1}$$

Ainsi:

$$Det(A - \lambda I_n) = Det(P(D - \lambda I_n)P^{-1}) = Det(P)Det(D - \lambda I_n)Det(P^{-1}) = Det(D - \lambda I_n)$$

Or l'élément b_{11} de $D - \lambda I_n$ est nul et par suite $\operatorname{Det}(D - \lambda I_n) = 0$.

Le déterminant d'une matrice diagonale ou trigonale égal le produit des éléments diagonaux.

Donc:

$$\boxed{\operatorname{Det}(A - \lambda I_n) = 0}$$

La matrice $A - \lambda I_n \in \mathbb{A}$ est non inversible et donc \mathbb{A} n'est pas un corps.

(c) On suppose que A est intègre, soit A une matrice non nulle.

L'application ϕ_a est un endomorphisme de \mathbb{A} d'après 1. et de plus :

$$AX = 0 \Longrightarrow X = 0$$
 car A intègre et $A \neq 0$

Donc $\operatorname{Ker}(\phi_a) = \{0_{\mathbb{A}}\}$ implique ϕ_a injective. Puis on utilise la formule du rang :

$$\operatorname{Dim}(\mathbb{A}) = \underbrace{\operatorname{Dim}(\operatorname{Ker}\phi_a)}_{=0} + \operatorname{Dim}(\operatorname{Im}\phi_a) \text{ et } \operatorname{Im}\phi_a \subset \mathbb{A} \Rightarrow \operatorname{Im}\phi_a = \mathbb{A}$$

Et donc ϕ_a est surjective. C'est un isomorphisme de \mathbb{A} .

De là on en déduit qu'il existe une matrice $M \in \mathbb{A}$ telle que :

$$\phi_a(M) = I_n \Leftrightarrow AM = I_n$$

Donc A est inversible, et c'est le cas pour toutes les matrices de \mathbb{A} .

Donc \mathbb{A} est un corps.

III. L'algèbre des quaternions

On suppose qu'il existe deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ telles que :

$$A^2 = -I_n$$
 $B^2 = -I_n$ $AB + BA = 0$ (*)

1. On a $A^2 = -I_n$ donc par morphisme :

$$\operatorname{Det}(A^2) = \operatorname{Det}(-I_n) \Leftrightarrow \operatorname{Det}(A)^2 = (-1)^n$$

Et donc n est nécessairement pair.

2. Considérons l'ensemble suivant :

$$\mathbb{H} = \{ M \in \mathcal{M}_n(\mathbb{R}), \exists (t, x, y, z) \in \mathbb{R}^4, M = tI_n + xA + yB + zAB \}$$

 \mathbb{H} est clairement un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, en effet :

Soit $(\lambda, \mu) \in \mathbb{R}^2$ et $(M, M') \in \mathbb{H}^2$ on a :

$$\lambda M + \mu M' = (\lambda t + \mu t')I_n + (\lambda x + \mu x')A + (\lambda y + \mu y')B + (\lambda z + \mu z')$$

Par ailleurs:

$$MM' = (tI_n + xA + yB + zAB)(t'I_n + x'A + y'B + z'AB)$$

$$= (tt'I_n + tx'A + ty'B + tz'AB) + (xt'A + xx'A^2 + xy'AB + xz'A^2B)$$

$$+ (yt'B + yx'BA + yy'B^2 + yz'BAB) + (zt'AB + zx'ABA + zy'AB^2 + zz'(AB)^2)$$

Or telles que sont définies A et B on a :

$$BAB = -(-BA)B = -(AB)B = -AB^{2} = -A(-I_{n}) = A$$

$$ABA = -A(-BA) = -A(AB) = -A^{2}B = -(-I_{n})B = B$$

$$(AB)^{2} = (AB)(AB) = A(BA)B = -A(AB)B = -A^{2}B^{2} = -I_{n}$$

Il vient alors:

$$MM' = (tt'-xx'-yy'-zz')I_n + (tx'+xt'+yz'-zy')A + (ty'-xz'+yt'+zx')B + (tz'+xy'-yx'+zt')AB$$
 Et puisque $I_n \in \mathbb{H}$ alors \mathbb{H} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

3. En prenant t'=t, x'=-x, y'=-y et z'=-z on a directement :

$$(tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = (t^2 + x^2 + y^2 + z^2)I_n \quad (\star)$$

4. (a) Considérons la relation linéaire $tI_n + xA + yB + zAB = 0$, on a alors d'après (\star) :

$$(tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = 0 \Longrightarrow (t^2 + x^2 + y^2 + z^2)I_n = 0$$

Et comme $I_n \neq 0$:

$$t^2 + x^2 + y^2 + z^2 = 0 \Longrightarrow t = x = y = z = 0$$

Donc la famille (I_n, A, B, AB) est libre et forme donc une base de \mathbb{H} .

(b) Si $M = aI_n + xA + yB + zAB \in \mathbb{H}$ alors d'après (\star) on a :

$$M^{-1} = \frac{1}{t^2 + x^2 + y^2 + z^2} (tI_n - xA - yB - zAB) \in \mathbb{H}$$

Ceci étant vérifié pour toute matrice on en conclut que H est un corps.

5. On suppose dans toute la suite du problème que n=4.

En notant J la matrice $J=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et 0 la matrice nulle de $\mathcal{M}_2(\mathbb{R})$ on définit :

$$A = \begin{pmatrix} J & 0 \\ 0 & -J \end{pmatrix} \quad B = \begin{pmatrix} 0 & -I_2 \\ I_2 & 0 \end{pmatrix}$$

On pose également C = AB.

(a) On calcule facilement:

$$J^{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix}$$

$$B^{2} = \begin{pmatrix} 0 & -I_{2} \\ I_{2} & 0 \end{pmatrix} \begin{pmatrix} 0 & -I_{2} \\ I_{2} & 0 \end{pmatrix} = \begin{pmatrix} -I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix} = -I_{4}$$

$$A^{2} = \begin{pmatrix} J & 0 \\ 0 & -J \end{pmatrix} \begin{pmatrix} J & 0 \\ 0 & -J \end{pmatrix} = \begin{pmatrix} J^{2} & 0 \\ 0 & J^{2} \end{pmatrix} = -I_{4}$$

$$AB + BA = \begin{pmatrix} 0 & -J \\ -J & 0 \end{pmatrix} + \begin{pmatrix} 0 & J \\ J & 0 \end{pmatrix} = 0$$

Donc les matrices A et B satisfont la condition (*).

On appelera donc \mathbb{H} le sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ engendré par I_4 , A, B et C.

Ses éléments sont appelés quaternions et la base (I_4, A, B, C) de \mathbb{H} sera notée \mathfrak{B} .

(b) Soit M une matrice non nulle de \mathbb{H} , elle s'écrit dans la base \mathfrak{B} :

$$M = tI_4 + xA + yB + zC$$

Or les matrices A, B et C sont antisymétrique et on sait que pour une telle matrice X:

$$^{t}X = -X$$

Donc:

$$tM = tI_4 - xA - yB - zC \in \mathbb{H}$$

Mais alors on remarque que:

$$M^{t}M = (tI_{4} + xA + yB + zC)(tI_{4} - xA - yB - zC) = (t^{2} + x^{2} + y^{2} + z^{2})I_{4}$$

On a vu précédemment que :

$$M^{-1} = \frac{1}{t^2 + x^2 + y^2 + z^2} (tI_4 - xA - yB - zC) = \frac{tM}{t^2 + x^2 + y^2 + z^2}$$

On sait de surcroît que $\mathrm{Det}(M)=\mathrm{Det}({}^tM)$ donc :

$$Det(M)^{2} = Det((t^{2} + x^{2} + y^{2} + z^{2})I_{4}) = (t^{2} + x^{2} + y^{2} + z^{2})^{4}$$

 $Et \ finalement:$

$$M^{-1} = \frac{{}^t M}{\sqrt{\operatorname{Det}(M)}}$$