信息论基础

李 莹 liying2009@ecust.edu.cn

- 一、信源编码的相关概念
- 二、定长码及定长信源编码定理
- 三、变长码及变长信源编码定理
- 四、变长码的编码方法

1. Kraft不等式和McMillan不等式

- Kraft定理: 即时码存在的充要条件是 $\sum_{i=1}^{r-l_i} r^{-l_i} \leq 1$
- McMillan定理: 唯一可译码存在的充要条件是 $\sum_{i=1}^{q} r^{-l_i} \le 1$

- 任何一个唯一可译码均可用一个相同码长的即时码来 代替。
- 上述定理是存在性定理:
 - ✓ 当满足Kraft (或McMillan) 不等式时,必然可以构造出即时码(或唯一可译码),否则不能构造出即时码(或唯一可译码)。
 - ✓ 该定理不能作为判断一种码是否是即时码(或唯一可译码)的判断依据。

信 源 符 号 <i>s</i> ;	符号出现的概率	码1	码2	码3	石马4
S_1	1/2	0	0	1	1
s_2	1/4	11	10	10	01
S_3	1/8	00	00	100	001
S_4	1/8	11	01	1000	0001

2. 变长唯一可译码判别方法

步骤:

- **1.构造** F_1 :考察 C中所有码字,如果一个码字是另一个码字的前缀,则将后缀作为 F_1 中的元素。
- **2.**构造 $F_n(n > 1)$: 将 $C = F_{n-1}$ 比较。如果 C 中有码字是 F_{n-1} 中元素的前缀,则将相应的后缀放入 F_n 中;同样 F_{n-1} 中若有元素是 C 中码字的前缀,也将相应的后缀放入 F_n 中。
- 3.检验 F_n :
 - Γ_n **1)**如果 Γ_n 是空集,则断定码 Γ 是唯一可译码,退出循环;
 - **2)**反之,如果 F_n 中的某个元素与 C 中的某个元素相同,则断定码 C 不是唯一可译码,退出循环。
 - 3)如果上述两个条件都不满足,则返回步骤2。

例5.4:

C	F_1	F_2	F_3	F_4	F_5	
a	d	eb	de	b	ad	
c	bb	cde			bcde	
ad						
abb						
bad	,					
deb						
bbc	de					

结论: F_5 中包含了C中的元素,因此该变长码不是唯一可译码。

问题: 判断 C={1,10,100,1000}是否是唯一可译码?

- 3.紧致码平均码长界限定理
- 平均码长

$$\overline{L} = \sum_{i=1}^{q} p(s_i) l_i \quad \text{ 码符号/信源符号}$$

● 紧致码平均码长界限定理:

设离散无记忆信源的熵为H(S),用r 个码符号进行编码,则总可找到一种无失真信源编码,构成唯一可译码,使其平均码长满足:

$$\frac{H(S)}{\log r} \le \overline{L} < \frac{H(S)}{\log r} + 1$$

定理5.6 紧致码平均码长界限定理

$$\frac{H(S)}{\log r} \le \overline{L} < \frac{H(S)}{\log r} + 1$$

$$\underline{H(S) - \overline{L} \log r} \le 0$$

$$= -\sum_{i=1}^{q} p(s_i) \log p(s_i) - \sum_{i=1}^{q} p(s_i) l_i \log r$$

$$= -\sum_{i=1}^{q} p(s_i) \log p(s_i) - \sum_{i=1}^{q} p(s_i) \log r^{l_i}$$

$$= -\sum_{i=1}^{q} p(s_i) \log p(s_i) + \sum_{i=1}^{q} p(s_i) \log r^{-l_i}$$

$$= \sum_{i=1}^{q} p(s_i) \log \frac{r^{-l_i}}{p(s_i)}$$

$$\leq \log \left[\sum_{i=1}^{q} p(s_i) \frac{r^{-l_i}}{p(s_i)} \right]$$

$$=\log\left(\sum_{i=1}^{q}r^{-l_i}\right) \leq \log 1 = 0$$

$$\overline{L} \ge \frac{H(S)}{\log r}$$

平均码长=下限值时

$$p(s_i) = r^{-l_i}$$
 $(i = 1, 2, ..., q)$
 $l_i = -\log_r p(s_i)$

$$\frac{H(S)}{\log r} \le \overline{L} < \frac{H(S)}{\log r} + 1$$

$$-\log_{r} p(s_{i}) \leq l_{i} < -\log_{r} p(s_{i}) + 1$$

$$-p(s_{i}) \log_{r} p(s_{i}) \leq p(s_{i}) l_{i} < -p(s_{i}) \log_{r} p(s_{i}) + p(s_{i})$$

$$\sum_{i=1}^{q} -p(s_{i}) \log_{r} p(s_{i}) \leq \sum_{i=1}^{q} p(s_{i}) l_{i} < \sum_{i=1}^{q} -p(s_{i}) \log_{r} p(s_{i}) + \sum_{i=1}^{q} p(s_{i})$$

$$\frac{H(S)}{\log r} \leq \overline{L} < \frac{H(S)}{\log r} + 1$$

4. 无失真变长信源编码定理

● 香农第一定理(变长无失真信源编码定理): 设离散无记忆信源的熵为 H(S),它的N次扩展信源 为 S^N ,对扩展信源 S^N 进行编码。总可以找到一种编码方法.构成唯一可译码,使平均码长满足:

$$\frac{H(S)}{\log r} \le \frac{\overline{L}_N}{N} < \frac{H(S)}{\log r} + \frac{1}{N}$$

• 当 $N \to \infty$ 时,有 $\lim_{N \to \infty} \frac{\overline{L}_N}{N} = H_r(S)$

证明:

$$\frac{H(S)}{\log r} \le \overline{L} < \frac{H(S)}{\log r} + 1$$

$$S^{N} = S_{1}S_{2} \cdots S_{N}$$

$$\frac{H(S^{N})}{\log r} \le \overline{L}_{N} < \frac{H(S^{N})}{\log r} + 1$$

$$\frac{H(S^{N})}{N \log r} \le \frac{\overline{L}_{N}}{N} < \frac{H(S^{N})}{N \log r} + \frac{1}{N}$$

$$\frac{H(S)}{\log r} \le \overline{L}_{N} < \frac{H(S)}{\log r} + \frac{1}{N}$$

$$\lim_{N\to\infty} \overline{L} = \frac{H(S)}{\log r}$$

$$\mathbf{S} = S_1 S_2 \cdots S_N$$

● 把香农第一定理推广到一般离散信源,有

$$\frac{H_{\infty}}{\log r} \le \frac{\overline{L}_N}{N} < \frac{H_{\infty}}{\log r} + \frac{1}{N}$$

$$H_{\infty} \leq H(S)$$

并且
$$\lim_{N \to \infty} \frac{\overline{L}_N}{N} = \frac{H_\infty}{\log r}$$

信息传输率(码率)

$$R = H(X) = \frac{H(S)}{\overline{L}}$$

$$R = \frac{H(S)}{\overline{L}} \le \frac{H(S)}{\frac{H(S)}{\log r}} = \log r$$

编码效率

$$\eta = \frac{H_r(S)}{L}$$
 r进制单位/信源符号 码符号/信源符号

有效性 $\leftrightarrow \overline{L}$

例5.5 设离散无记忆信源
$$\begin{bmatrix} X \\ P \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\ \frac{3}{4} & \frac{1}{4} \end{bmatrix}$$

求 R、 η 及扩展信源的R、 η 。

解:
$$H(X) = \frac{1}{4}\log_2 4 + \frac{3}{4}\log_2 \frac{4}{3} = 0.81$$
 比特/符号

假定信源序列的长度为L=1,也用二元编码,其即时码如下表 所示。

符号	符号概率	即时码
\mathbf{x}_1	3/4	0
x ₂	1/4	10

编码效率
$$\eta_1 = \frac{0.811}{1.25} \times 100\% = 64.88\%$$

输出的信息率为

假定信源序列的长度为L=2,也用二元编码,其即时码如下表所示。

序列	序列概率	即时码	
x_1x_1	9/16	0	
x ₁ x ₂	3/16	10	
$\mathbf{x}_2\mathbf{x}_1$	3/16	110	
x ₂ x ₂	1/16	111	

这个码的码字平均长度

$$\overline{K_2} = \frac{9}{16} \times 1 + \frac{3}{16} \times 2 + \frac{3}{16} \times 3 + \frac{1}{16} \times 3 = \frac{27}{16}$$
二元码符号 / 信源序列

单个符号的平均码长

$$\overline{K} = \frac{\overline{K_2}}{2} = \frac{27}{32}$$
 码元符号/符号

编码效率
$$\eta_2 = \frac{32 \times 0.811}{27} \times 100\% = 96.1\%$$

输出的信息率为

$$R_2 = 0.961$$
 比特 / 码元符号

将信源序列的长度增加, L=3或L=4, 对这些信源序列X进行编码, 并求出其编码效率为

$$\eta_3 = 98.5\%$$
 $\eta_4 = 99.1\%$

信息传输率分别为:

 $R_3=0$. 985比特 / 码元符号 $R_4=0$. 991比特 / 码元符号