CS 215 : Data Analysis and Interpretation (Instructor : Suyash P. Awate)

Quiz (Closed Book, Notes, all.)

Roll Number:	
Name:	
For all questions, if you feel that some information is missin	ng, make justifiable assumptions,
state them clearly, and answer the question.	

Relevant Formulae

• Poisson: $P(k|\lambda) := \lambda^k \exp(-\lambda)/(k!)$

• Exponential: $P(x; \lambda) = \lambda \exp(-\lambda x); \forall x > 0$

• Univariate Gaussian:

$$P(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-0.5 \frac{(x-\mu)^2}{\sigma^2}\right)$$

1. [15 points]

State all modeling assumptions clearly. Don't use any property or theorem unless you prove it from basic definitions.

Consider $\{X_i\}_{i=1}^8$ as i.i.d. Bernoulli random variables.

• (3 points) Consider random variables $\{Y_j := X_{2j-1} + X_{2j}\}_{j=1}^4$. State the probability mass function (PMF) of the random variables $\{Y_j\}_{j=1}^4$. Are the random variables $\{Y_j\}_{j=1}^4$ independent ?

Binomial(2,p). Independent.

• (3 points) Consider random variables $\{Z_k := Y_{2k-1} + Y_{2k}\}_{k=1}^2$. State the probability mass function (PMF) of the random variables $\{Z_k\}_{k=1}^2$. Are the random variables $\{Z_k\}_{k=1}^2$ independent ?

Binomial(4,p). Independent.

• (3 points) Mathematically derive the mean and variance of random variable Z_1 .

mean = 4p. variance = 4pq.

• (6 points) Consider a random variable $W:=1+0.3\times(Z_1+X_8)$. Describe the probability mass function (PMF) of the random variable W. Mathematically derive its mean and variance.

same probabilities as in Binomial(5,p) for outcomes $\{1, 1.3, 1.6, 1.9, 2.2, 2.5\}$.

mean =1+1.5p. one way is to derive and then use properties of linearity of expectation.

variance = 0.45pq. one way is to derive and then use properties of variance under addition and scaling.

2. [10 points]

State all modeling assumptions clearly. Don't use any property or theorem unless you prove it from basic definitions.

Let random variable X model the number of coin tosses made to get the first "heads".

• (2 points) State the probability mass function (PMF) of *X*.

Geometric PMF. Please see the class slides.

 \bullet (4 points) Does X satisfy the memoryless property ? If so, mathematically prove why so. If not, mathematically prove why not.

Please see the class slides.

	ullet (4 points) Let continuous random varible Y have a uniform probability der function (PDF) over (a,b) . Does Y satisfy the memoryless property ? If so, mematically prove why so. If not, mathematically prove why not.	
	It doesn't. Counter example: Let $a=0, b=1$. Then, $0.5=P(X>0.5+0.25 X>0.5) \neq P(X>0.25)=0.75$	
3.	[10 points]	
	State all modeling assumptions clearly. Don't use any property or theorem unless you prove it from basic definitions.	
	Let random variable X have a normal probability density function (PDF) with mean zero and variance $\sigma^2.$	
	Define a random variable $Y := X $.	
	\bullet Mathematically derive the maximum likelihood (ML) estimate for the parameter associated with the PDF of $Y.$	
	Please see the class slides for the ML estimation for the half-normal random variable.	
4.	[20 points]	
	State all modeling assumptions clearly. Don't use any property or theorem unless you prove it from basic definitions.	
	• (3 points) Is the sample mean an unbiased estimator ? Mathematically prove or disprove. Mathematically derive its bias.	
	Unbiased. Please see the class slides.	
	• (5 points) Mathematically derive the variance of the sample mean.	
	Please see the class slides.	
	• (5 points) Is the sample variance an unbiased estimator? Mathematically prove or disprove. Mathematically derive its bias.	

• (7 points) Is the sample covariance an unbiased estimator ? Mathematically prove or disprove. Mathematically derive its bias.

Please see the class slides.

Please see the class slides.