Contents

1. The Khinchin axioms for entropy	2
1.1. Entropy axioms	
1.2. Properties of entropy	
2. A special case of Sidorenko's conjecture	

1. The Khinchin axioms for entropy

Note all random variables we deal with will be discrete, unless otherwise stated. We use $\log = \log_2$.

1.1. Entropy axioms

Definition 1.1 The **entropy** of a discrete random variable X is a quantity H(X) that takes real values and satisfies the **Khinchin axioms**: Normalisation, Invariance, Extendability, Maximality, Continuity and Additivity.

Axiom 1.2 (Normalisation) If X is uniform on $\{0,1\}$ (i.e. $X \sim \text{Bern}(1/2)$), then H(X) = 1.

Axiom 1.3 (Invariance) If Y = f(X) for some bijection f, then H(Y) = H(X).

Axiom 1.4 (Extendability) If X takes values on a set A, B is disjoint from A, Y takes values in $A \sqcup B$, and for all $a \in A$, $\mathbb{P}(Y = a) = \mathbb{P}(X = a)$, then H(Y) = H(X).

Axiom 1.5 (Maximality) If X takes values in a finite set A and Y is uniformly distributed in A, then $H(X) \leq H(Y)$.

Definition 1.6 The total variance distance between X and Y is

$$\sup_E |\mathbb{P}(X \in E) - \mathbb{P}(Y \in E)|.$$

Axiom 1.7 (Continuity) H depends continuously on X (with respect to total variation distance).

Definition 1.8 Let X and Y be random variables. The **conditional entropy** of X given Y is

$$H(X\mid Y)\coloneqq \sum_{y}\mathbb{P}(Y=y)H(X\mid Y=y).$$

Axiom 1.9 (Additivity) H(X, Y) := H((X, Y)) = H(Y) + H(X | Y).

1.2. Properties of entropy

Lemma 1.10 If X and Y are independent, then H(X,Y) = H(X) + H(Y).

Proof (Hints). Straightforward.

Proof. $H(X \mid Y) = \sum_{y} \mathbb{P}(Y = y) H(X \mid Y = y)$ Since X and Y are independent, the distribution of X is unaffected by knowing Y, so $H(X \mid Y = y)$ for all y, which gives the result. (Note we have implicitly used Invariance here).

 \Box

Corollary 1.11 If $X_1, ..., X_n$ are independent, then

$$H(X_1, ..., X_n) = H(X_1) + \cdots + H(X_n).$$

Proof (Hints). Straightforward.

Proof. By Lemma 1.10 and induction.

Lemma 1.12 (Chain Rule) Let $X_1, ..., X_n$ be RVs. Then

$$H(X_1,...,X_n) = H(X_1) + H(X_2 \mid X_1) + H(X_3 \mid X_1,X_2) + \cdots + H(X_n \mid X_1,...,X_{n-1}).$$

Proof. The case n=2 is Additivity. In general,

$$H(X_1,...,X_n) = H(X_1,...,X_{n-1}) + H(X_n \mid X_1,...,X_{n-1}),$$

so the result follows by induction.

Lemma 1.13 Let X and Y be RVs. If Y = f(X), then H(X,Y) = H(X). Also, $H(Z \mid X,Y) = H(Z \mid X)$.

Proof (Hints). Consider an appropriate bijection.

Proof. The map $g: x \mapsto (x, f(x))$ is a bijection, and (X, Y) = g(X), so the first statement follows from Invariance. Also,

$$\begin{split} H(Z\mid X,Y) &= H(Z,X,Y) - H(X,Y) \quad \text{by additivity} \\ &= H(Z,X) - H(X) \quad \text{by first part} \\ &= H(Z\mid X) \quad \text{by additivity} \end{split}$$

Lemma 1.14 If X takes only one value, then H(X) = 0.

Proof (Hints). Use that X and X are independent.

Proof. X and X are independent (verify). So by Lemma 1.10, H(X, X) = 2H(X). But by Invariance, H(X, X) = H(X). So H(X) = 0.

Proposition 1.15 If X is uniformly distributed on a set of size 2^n , then H(X) = n.

Proof. Let $X_1, ..., X_n$ be independent RVs, uniformly distributed on $\{0, 1\}$. By Corollary 1.11 and Normalisation, $H(X_1, ..., X_n) = n$. So the result follows by Invariance.

Proposition 1.16 If X is uniformly distributed on a set A of size n, then $H(X) = \log n$.

$$Proof\ (Hints)$$
. Straightforward.

Proof. Let $r \in \mathbb{N}$ and let $X_1, ..., X_r$ be independent copies of X. Then $(X_1, ..., X_r)$ is uniform on A^r , and $H(X_1, ..., X_r) = rH(X)$. Now pick k such that $2^k \le n^r \le 2^{k+1}$. Then by Proposition 1.15, Invariance and Maximality, $k \le rH(X) \le k+1$. So $\frac{k}{r} \le \log n \le \frac{k+1}{r}$ and $\frac{k}{r} \le H(X) \le \frac{k+1}{r}$ for all $r \in \mathbb{N}$. So $H(X) = \log n$, as claimed.

Theorem 1.17 (Khinchin) If H satisfies the Khinchin axioms and X takes values in a finite set A, then

$$H(X) = \sum_{a \in A} p_a \log(1/p_a) = \mathbb{E}\bigg[\log \frac{1}{P_X(X)}\bigg],$$

where $p_a = \mathbb{P}(X = a)$.

Proof (Hints).

- Explain why it is enough to prove for when the p_a are rational.
- Pick $n \in \mathbb{N}$ such that $p_a = \frac{m_a}{n}$, $m_a \in \mathbb{N}_0$. Let Z be uniform on [n]. Let $\{E_a : a \in A\}$ be a partition of [n] into sets with $|E_a| = m_a$.

Proof. First we do the case where all $p_a \in \mathbb{Q}$. Pick $n \in \mathbb{N}$ such that $p_a = \frac{m_a}{n}$, $m_a \in \mathbb{N}_0$. Let Z be uniform on [n]. Let $\{E_a : a \in A\}$ be a partition of [n] into sets with $|E_a| = m_a$. By Invariance, we may assume that $X = a \Leftrightarrow Z \in E_a$. Then

$$\begin{split} \log n &= H(Z) = H(Z,X) = H(X) + H(Z \mid X) \\ &= H(X) + \sum_{a \in A} p_a H(Z \mid X = a) \\ &= H(X) + \sum_{a \in A} p_a \log m_a \\ &= H(X) + \sum_{a \in A} p_a (\log p_a + \log n) \\ &= H(X) + \sum_{a \in A} p_a \log p_a + \log n. \end{split}$$

Hence $H(X) = -\sum_{a \in A} p_a \log p_a$.

The general result follows by Continuity.

Corollary 1.18 Let X and Y be random variables. Then $0 \le H(X)$ and $0 \le H(X \mid Y)$.

Proof (Hints). Trivial.
$$\Box$$

Corollary 1.19 If Y = f(X), then $H(Y) \leq H(X)$.

Proof.
$$H(X) = H(X,Y) = H(Y) + H(X \mid Y)$$
. But $H(X \mid Y) \ge 0$.

Proposition 1.20 (Subadditivity) Let X and Y be RVs. Then $H(X,Y) \leq H(X) + H(Y)$.

Proof (Hints).

- Let $p_{ab} = \mathbb{P}(X = a, Y = b)$. Explain why it is enough to show for the case when the p_{ab} are rational.
- Pick n such that $p_{ab} = m_{ab}/n$ with each $m_{ab} \in \mathbb{N}_0$. Partition [n] into sets E_{ab} of size m_{ab} . Let Z be uniform on [n].
- Show that if X (or Y) is uniform, then $H(X \mid Y) \leq H(X)$ and $H(X,Y) \leq H(X) + H(Y)$.
- Let $E_b = \bigcup_a E_{ab}$ for each b. So Y = b iff $Z = E_b$. Now define an RV W as follows: if Y = b, then W is uniformly distributed in E_b . Use conditional independence to conclude the result.

Proof. Note that for any two RVs X, Y,

$$\begin{split} H(X,Y) & \leq H(X) + H(Y) \\ \Longleftrightarrow H(X \mid Y) & \leq H(X) \\ \Longleftrightarrow H(Y \mid X) & \leq H(Y) \end{split}$$

by Additivity. Next, observe that $H(X \mid Y) \leq H(X)$ if X is uniform on a finite set, since $H(X \mid Y) = \sum_{y} \mathbb{P}(Y = y) H(X \mid Y = y) \leq \sum_{y} \mathbb{P}(Y = y) H(X) = H(X)$ by Maximality. By the above equivalence, we also have $H(X \mid Y) \leq H(X)$ if Y is uniform on a finite set. Now let $p_{ab} = \mathbb{P}(X = a, Y = b)$, and assume that all p_{ab} are rational. Pick n such that $p_{ab} = m_{ab}/n$ with each $m_{ab} \in \mathbb{N}_0$. Partition [n] into sets E_{ab} of size m_{ab} . Let Z be uniform on [n]. WLOG (by Invariance), (X,Y) = (a,b) iff $Z \in E_{ab}$.

Let $E_b = \bigcup_a E_{ab}$ for each b. So Y = b iff $Z = E_b$. Now define an RV W as follows: if Y = b, then $W \in E_b$, but then W is uniformly distributed in E_b and independent of X (and Z). So W and X are conditionally independent given Y, and W is uniform on [n]. Then $H(X \mid Y) = H(X \mid Y, W) = H(X \mid W)$ by conditional independence and by Lemma [1.13] (since W determines Y). Since W is uniform, $H(X \mid W) \leq H(X)$.

The general result follows by Continuity.

Corollary 1.21 $H(X) \ge 0$ for any X.

Proof (Hints). (Without using the formula) straightforward.

Proof. (Without using the formula). By subadditivity, $H(X \mid X) \leq H(X)$. But $H(X \mid X) = 0$.

Corollary 1.22 Let $X_1, ..., X_n$ be RVs. Then

$$H(X_1, ..., X_n) \le H(X_1) + \cdots + H(X_n).$$

Proof (Hints). Trivial.

Proof. Trivial by induction.

Proposition 1.23 (Submodularity) Let X, Y, Z be RVs. Then

$$H(X \mid Y, Z) \le H(X \mid Z).$$

Proof (Hints). Use that $H(X \mid Y, Z = z) \leq H(Z \mid Z = z)$.

Proof.

1.
$$H(X\mid Y,Z)=\sum_{z}\mathbb{P}(Z=z)H(X\mid Y,Z=z)\leq \sum_{z}\mathbb{P}(Z=z)H(X\mid Z=z)=H(X\mid Z).$$

Remark 1.24 Submodularity can be expressed in several equivalent ways. Expanding using Additivity gives

$$H(X,Y,Z) - H(Y,Z) \le H(X,Z) - H(Z)$$

and

$$H(X,Y,Z) \le H(X,Z) + H(Y,Z) - H(Z)$$

and

$$H(X,Y,Z) + H(Z) \le H(X,Z) + H(Y,Z).$$

Lemma 1.25 Let X, Y, Z be RVs with Z = f(Y). Then $H(X \mid Y) \leq H(X \mid Z)$.

Proof (Hints). Straightforward.

Proof. We have

$$H(X \mid Y) = H(X,Y) - H(Y) = H(X,Y,Z) - H(Y,Z)$$

 $\leq H(X,Z) - H(Z) = H(X \mid Z)$

by Submodularity.

Lemma 1.26 Let X, Y, Z be RVs with Z = f(X) = g(Y). Then

$$H(X,Y) + H(Z) \le H(X) + H(Y).$$

Proof (Hints). Straightforward.

Proof. By Submodularity, we have $H(X,Y,Z) + H(Z) \leq H(X,Z) + H(Y,Z)$, which implies the result, since Z depends on X and Y.

Lemma 1.27 Let X be an RV taking values in a finite set A and let Y be uniform on A. If H(X) = H(Y), then X is uniform.

Proof (Hints). Use Jensen's inequality.

Proof. Let $p_a = \mathbb{P}(X = a)$. Then

$$H(X) = \sum_{a \in A} p_a \log(1/p_a) = |A| \cdot \mathbb{E}_{a \in A} p_a \log \left(\frac{1}{p_a}\right).$$

The function $x \mapsto x \log(1/x)$ is concave on [0, 1]. So by Jensen's inequality,

$$H(X) \leq |A| \cdot (\mathbb{E}_{a \in A} p_a) \cdot \log \left(\frac{1}{\mathbb{E}_{a \in A} p_a} \right) = \log |A| = H(Y),$$

with equality iff $a \mapsto p_a$ is constant, i.e. X is uniform.

Corollary 1.28 If H(X,Y) = H(X) + H(Y), then X and Y are independent.

Proof (Hints). Go through the proof of Subadditivity and check when equality holds. \Box

Proof. We go through the proof of subadditivity and check when equality holds. Suppose that X is uniform on A. Then

$$H(X\mid Y) = \sum_{y} \mathbb{P}(Y=y) H(X\mid Y=y) \leq H(X),$$

with equality iff $H(X \mid Y = y)$ is uniform on A for all y (by Lemma 1.27), which implies that X and Y are independent.

At the last stage of the proof, we said $H(X \mid Y) = H(X \mid Y, W) = H(X \mid W) \leq H(X)$, where W was uniform. So equality holds only if X and W are independent, which implies (since Y depends on W), that X and Y are independent.

Definition 1.29 Let X and Y be RVs. The mutual information

$$\begin{split} I(X:Y) \coloneqq H(X) + H(Y) - H(X,Y) \\ &= H(X) - H(X \mid Y) \\ &= H(Y) - H(Y \mid X). \end{split}$$

Remark 1.30 Subadditivity is equivalent to the statement that $I(X : Y) \ge 0$, and Corollary 1.28 implies that I(X : Y) = 0 iff X and Y are independent.

Note that H(X,Y) = H(X) + H(Y) - I(X:Y) (note the similarity to the inclusion-exclusion formula for two sets).

Definition 1.31 Let X, Y, Z be RVs. The **conditional mutual information** of X and Y given Z is

$$\begin{split} I(X:Y\mid Z) \coloneqq & \sum_{z} \mathbb{P}(Z=z) I(X\mid Z=z:Y\mid Z=z) \\ & = \sum_{z} \mathbb{P}(Z=z) (H(X\mid Z=z) + H(Y\mid Z=z) - H(X,Y\mid Z=z)) \\ & = H(X\mid Z) + H(Y\mid Z) - H(X,Y\mid Z) \\ & = H(X,Z) + H(Y,Z) - H(X,Y,Z) - H(Z). \end{split}$$

Submodularity is equivalent to the statement that $I(X:Y\mid Z)\geq 0$.

2. A special case of Sidorenko's conjecture

Definition 2.1 Let G be a bipartite graph with (finite) vertex sets X and Y and density α (defined to be $\frac{|E(G)|}{|X|\cdot|Y|}$). Let H be another (think of it as small) bipartite graph with vertex sets U and V and m edges. Now let $\varphi:U\to X$ and $\psi:V\to Y$. We say that (φ,ψ) is a **homomorphism** if $\varphi(x)\varphi(y)\in E(G)$ for every edge $xy\in E(H)$.

Conjecture 2.2 (Sidorenko's Conjecture) For every G, H, for random $\varphi : U \to X, \psi : V \to Y$,

$$\mathbb{P}((\varphi, \psi) \text{ is a homomorphism}) \geq \alpha^m$$
.

Remark 2.3 Sidorenko's Conjecture is not hard to prove when H is the complete bipartite graph $K_{r,s}$ (the case $K_{2,2}$ can be proved using Cauchy-Schwarz: exercise).

Theorem 2.4 Sidorenko's Conjecture is true if H is a path of length 3.

Proof. We want to show that if G is a bipartite graph of density α with vertex sets X,Y of size m and n, and we choose $x_1,x_2\in X,\ y_1,y_2\in Y$ independently at random, then $\mathbb{P}(x_1y_1,y_1x_2,x_2y_2\in E(G))\geq \alpha^3$.

It would be enough to let P be a path of length 3 chosen uniformly at random and show that $H(P) \geq \log(\alpha^3 m^2 n^2)$ (by Proposition 1.16). Instead, we shall define a different RV taking values in the set of all paths of length 3 (including degenerate paths). To do this, let (X_1, Y_1) be a random edge of G (with $X_1 \in X$, $Y_1 \in Y$). Now let X_2 be a random neighbour of Y_1 and Y_2 be a random neighbour of X_2 . It will be enough to prove that

$$H(X_1,Y_1,X_2,Y_2) \geq \log \bigl(\alpha^3 m^2 n^2\bigr).$$

8