Cryptanalyse fréquentielle

Tableau de la fréquence des digrammes en anglais

First												Se	cond	Lette	r													
Letter	Α	В	С	D	E	F	G	Н	- 1	J	K	L	М	Ν	0	P	Q	R	8	Т	U	V	W	×	Υ	Z	Space	Total:
Α	2	144	308	382	1	67	138	9	322	7	146	664	177	1576	1	100	-	802	683	785	87	233	57	14	319	12	50	7086
В	136	14	-	-	415	-	-	-	78	18	-	98	1	-	240	-	-	88	15	7	256	1	1	-	13	-	36	1417
С	368	-	13	-	285	-	-	412	67	-	178	108	-	1	298	-	1	71	7	154	34	-	-	-	9	-	47	2053
D	106	1	-	37	375	3	19	-	1 48	1	-	22	1	2	137	-	-	83	95	3	52	5	2	-	51	-	2527	3770
E	670	8	181	767	470	103	46	15	127	1	35	332	187	799	44	90	9	1314	630	316	8	172	106	87	189	2	4904	11612
F	145	-	-	-	154	86	-	-	205	-	-	69	3	-	429	-	-	188	4	102	62	-	-	-	4	-	110	1561
G	94	1	-	-	289	-	19	288	96	-	-	55	1	31	135	-	-	98	42	6	57	-	1	-	2	-	686	1901
Н	1164	-	-	-	3155	-	-	1	824	-	-	5	1	-	487	2	-	91	8	165	75	-	8	-	32	-	715	6733
1	23	7	304	260	189	56	233	-	1	-	86	324	255	1110	88	42	2	272	484	558	5	165	-	15	-	18	4	4501
J	2	-	-	-	31	-	-	-	9	-	-	-	-	-	41	-	-	-	-	-	56	-	-	-	-	-		139
K	2	-	-	-	337	-	-	-	127	-	-	10	1	82	3	1	-	-	50	-	3	-	-	-	8	-	309	933
L	332	4	6	289	591	59	7	-	390	-	38	546	30	1	344	34	-	11	121	74	81	17	19	-	276	-	630	3900
М	394	50	-	-	530	6	-	-	165	-	-	4	28	4	289	77	-	-	53	2	85	-	-	-	19	-	454	2160
N	100	2	98	1213	512	5	771	5	135	8	63	80	-	54	349	-	3	2	148	378	49	3	2	2	115	-	1152	5249
0	65	67	61	119	34	80	9	1	88	3	123	218	417	598	336	138	-	812	195	415	1115	136	398	2	47	5	294	5776
P	142	-	1	-	280	1	-	24	97	-	-	169	-	-	149	64	-	110	48	40	68	-	3	-	14	-	127	1337
Q	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	66	-	-	-	-	-	i i + i i	66
B	289	10	22	133	1139	13	59	21	309	-	53	71	65	106	504	9	-	69	318	190	89	22	5	-	145	-	1483	5124
S	196	9	47	-	626	-	1	328	214	-	57	48	31	16	213	107	8	-	168	754	175	-	32	-	34	-	2228	5292
Т	259	2	31	1	583	1	2	3774	252	-	-	75	1	2	331	-	-	187	209	154	132	-	84	-	121	1	:2343	8545
U	45	53	114	48	71	10	148	-	65	-	-	247	87	278	3	49	1	402	299	492	-	-	-	1	7	3	255	2678
~	27	-	-	-	683	-	-	-	109	-	-	-	-	-	33	-	-	-	-	-	1	-	-	-	11	-		864
₩	595	3	-	6	285	-	-	472	374	-	1	12	-	103	264	-	-	35	21	4	2	-	-	-	-	-	326	2503
×	17	-	9	-	9	-	-	-	10	-	-	-	-	-	1	22	-	-	-	23	8	-	-	-	-	-	21	120
Υ	11	10	-	-	152	-	1	1	32	-	-	7	1	-	339	16	-	-	81	2	1	-	2	-	-	-	1171	1827
Z	3				26				2			4	-	-	2	-	-		3				-		3	9	2	54
Space	1882	1033	B64	515	423	1059	453	1388	237	93	152	717	B76	478	721	588	42	494	1596	3912	134	116	1787		436	2		19998
Total:	7069	1418	2059	3770	11645	1549	1906	6739	4483	. 31	932	3885	2163	5241	5781	1339	66	5129	5278	8536	2701	870	2507	121	1855	52	19974	1E+05

- On remarque que certains digrammes sont plus fréquents que d'autres (ex. : HE avec 3155)
- On peut raisonner sur les digrammes de la même façon que sur les lettres

Cryptanalyse fréquentielle

- Le fait que la source soit non-markovienne facilite le raisonnement sur les digrammes
 - Fréquence du digramme « Q U » en français : 1.6% (top 10 !)
 - Fréquence du digramme « Q U » source markovienne : 0.066%
 - L'entropie d'une source non-markovienne est moins élevée
 - (Les combinaisons « impossibles » sont plus instructives que les valeurs de fréquences des combinaisons possibles)
- On peut reprendre l'exercice avec des blocs de 3 lettres (trigrammes)
- Si on dispose des tables des fréquence, on peut considérer les n-grammes avec n qui tend vers l'infini
 - Encore plus de structures! (mots, phrases, sens du texte, etc.)
 - Encore moins d'entropie

cryptanalyse fréquentielle

- Il y a une limite théorique à la capacité de faire l'analyse fréquentielle en utilisant des blocs
 - Lorsque la taille de b (taille du bloc) tends vers l'infini, on obtient l'entropie du langage
 - Pour une source non-markovienne hautement structurée comme le langage humain, l'entropie par bloc diminue de façon asymptomatique jusqu'à la limite
 - Plus de structure implique plus de différences entre les fréquences d'occurrence
 - Indique plus de compressibilité
 - Doit traiter une table de « symboles » de plus en plus grande!
 - Le tableau des digrammes est déjà difficile à interpréter (la fréquence maximale en anglais est de 3155/100 000)
 - Difficile de faire la distinction entre divers digrammes pratiquement équiprobables
 - Plus sensibles aux aléas de la statistique

Cryptanalyse fréquentielle

 En pratique, pour compléter l'analyse, il est beaucoup plus aisé de vous fier à votre propre connaissance du langage, de la sémantique, du sujet du texte, etc.

Contremesures et principes de base

- Maximisation de l'entropie sur symboles de codage
 - On ne peut pas
 - Changer la source (p.ex. pour réduire son entropie)
 - Choisir l'alphabet de codage (p.ex. déterminer par le chiffrement)
 - On peut
 - Ajuster le codage pour maximiser l'entropie
 - Faire du codage par bloc
 - Faire du bourrage (« padding ») avec des caractères aléatoires
 - Implémenter de la compression
 - Utiliser des algorithmes de chiffrement probabilistes
- Maximisation de l'entropie des clés choisies
 - Génération aléatoire
 - Contrôle sur la génération des clés ("souveraineté de clé")

Questions?

INF 4420: Sécurité Informatique Cryptographie II

Cuppens

Aperçu – Crypto II

- Types de chiffrement
 - Par bloc vs. par flux
 - Symétrique vs. asymétrique
- Algorithmes symétriques modernes
 - DES
 - AES
- Fonctions de hachage
 - Propriétés
 - Obsolètes
 - Présentes et futures:

- Algorithmes à clé publique
 - Arithmétique modulaire
 - Notion de groupe

Type de chiffrement – Bloc vs. Flux

Chiffrement par bloc

- Algorithme où chaque mot de code (un « bloc »)
 est codée avec la même clé k
- Pour la plupart des sources, |Σ| = M est petit,
 en conséquent |T| = N >> M, de façon à éviter force brute
- Codage
 - Doit « regrouper » symboles de Σ en blocs dans T
 - Problème de « latence »

Chiffrement par flux

- Chaque mot de code est chiffré avec une clé différente
- Les clés sont générés au « fur et à mesure »

Type de chiffrement – Symétrique vs. Asymétrique

Symétrique

- Clé de déchiffrement = clé de chiffrement
- La clé doit toujours être gardé secrète !!

Asymétrique

- Deux clés différentes
- En général, il n'est pas possible de déduire clé de déchiffrement en connaissant clé de chiffrement, donc
 - Clé de chiffrement = Clé « publique »
 - Clé de déchiffrement = Clé « privée »
- Facilite la gestion de clés
- Permet plusieurs autres applications au-delà du chiffrement

DES (Data Encryption Standard) – Historique

- Développée par le gouvernement américain
 - pour usage général par le public (intérêts privés commerciaux américains)
- Devis et spécifications en 1970
 - établie par le National Institute of Standards and Technology (NIST)
 - complètement spécifié et facile à comprendre
 - sécurité indépendante de l'algorithme lui-même (Principe de Kerkchoff)
 - disponible à tous et adaptable à diverses applications (usage « commercial »)
 - possibilité d'implantation économique en matériel et en logiciel
 - efficace d'utilisation, validable, et exportable
- Deuxième appel de propositions en 1974
 - Choix de l'algorithme "Lucifer" développé par IBM
 - Adopté comme « DES » le 23 novembre 1976

DES Survol

- Application répétée (16 cycles) de
 - Substitution
 - changer systématiquement certains patrons de bits pour d'autres
 - Permutation
 - réarranger l'ordre des bits
- Arithmétique à 64 bits seulement; clef de 64 bits
- Chiffrement par blocs de 64 bits
- Objectifs de sécurité
 - Confusion
 - les bits d'output n'ont aucune relation évidente avec l'input
 - Diffusion
 - répartir les changements sur l'ensemble des bits du message
 - changement au bit i du message implique changement dans plusieurs bits du cryptogramme.

Norme DES – Détails

Norme DES – Détails d'un cycle

Norme DES – Déchiffrement

 Chaque cycle de déchiffrement dérive du cycle précédent

$$- L_j = R_{j-1}; R_j = L_{j-1} \oplus f(R_{j-1}, k_j)$$

Dans l'autre direction

$$- R_{j-1} = L_{j}; L_{j-1} = R_{j} \oplus f(R_{j-1}, k_{j})$$

- si on substitue: $L_{j-1} = R_j \oplus f(L_j, k_j)$
- La procédure est donc réversible
 - la même fonction f est utilisée pour le déchiffrement
 - il suffit de prendre les 16 sous clefs dans l'ordre inverse

S-box

- Quelle S-box est utilisée dépend de la clé de chiffrement
- Voici un exemple d'une S-box de DES (S5)

S5	Middle 4 bits of input											
	.0000.	.0001.		.1100.	.1101.	.1110.	.1111.					
00	0010	1100		1101	0000	1110	1001					
01	1110	1011		0011	1001	1000	0110					
10	0100	0010		0110	0011	0000	1110					
11	1011	1000		1010	0100	0101	0011					

Exemple 6-bit string 0 1101 1 est converti en 4-bit string 1001

Sécurité de la norme DES

- Questions relatives à la conception de l'algorithme
 - caractère confidentiel de la conception
 - présence de « trappes » (choix des s-box) ?
 - possibilité d'une faiblesse fondamentale ?
- Le nombre d'itérations (16) est il suffisant
- La taille de la clef (56 bits) est elle suffisante?
 - originalement, Lucifer prévoyait 128 bits
 - possibilité d'une attaque force brute réussie
 - possibilité d'une attaque de type parallèle
 - possibilité de réussite d'une attaque de texte clair choisi
- Toutes ces questions avaient des réponses satisfaisantes

Variantes de DES

Double DES

- Choisir deux clefs k₁ et k₂
- Chiffrer deux fois: $E(k_2, E(k_1, m))$
- Est équivalent à un DES avec clé de 57 bits
 - 1 bit de clé supplémentaire...
 - ... seulement deux fois plus de travail pour briser

Triple DES (ou 3DES)

- Deux clefs
- Trois opérations: $E(k_1, D(k_2, E(k_1, m)))$
- Équivalent à doubler la taille effective de la clé 112 bits
- Très robuste et effectif contre toutes les attaques faisables connues

Attaque par force brute – Limites ultimes

Entropie

- de la source de clé → nombres d'essais de clé
- du texte clair (« plaintext ») → facilité de reconnaissance de la bonne clé

Puissance de l'attaquant

- Vitesse d'essai du matériel disponible
- Nombre de machines disponibles (= budget total / cout par machine)

Patience de l'attaquant

Combien de temps a-t-il ?
 (après combien de temps l'information n'est plus utile ?)

Durée de vie de l'information

Après combien de temps l'information n'est plus confidentielle ?

Loi de Moore

- « À chaque 18 mois la puissance de calcul disponible pour un même budget double »
 - → Pour une sécurité équivalente on doit ajouter <u>un bit de clé à chaque 18 mois</u>...

« DES is dead... »

- Attaque par force brute
 - 56 bits de clé ne sont pas suffisants aujourd'hui
 - COPACABANA
 - Cost-Optimized Parallel COde Breaker
 - · Matériel spécialisé
 - Peut retrouver la clé en moins d'une journée!
 - Puissance
 - Nombre de secondes dans une journée = $60*60*24 = 86 400 \sim 2^{18}$ s
 - Nombre d'essais = 2⁵⁶ clés
 - Vitesse d'essai = 2^{56} / 2^{18} = 2^{56-18} = 2^{38} clé/s (~ 256 Giga-clé/s) (gardez ce chiffre en tête!!)
 - COPACABANA est facilemement reconfigurable pour d'autres algorithmes...
- DES est obsolète, mais 3DES survi
 - demeure une norme acceptée quand même (pour le moment...)

