Análisis Numérico

Parcial. 1ª fecha

1-10-2018

No exprese ningún cálculo en forma fraccionaria. El examen se aprueba con tres ejercicios correctamente resueltos en su totalidad. Salvo indicación contraria, use al menos 5 cifras de precisión (preferible usar memorias de la calculadora). La función log indica logaritmo natural.

Apellido, nombre(s):

1. El momento de apoyo de una ménsula con carga uniforme distribuida y carga concentrada en la punta se calcula:

 $M = q \cdot \frac{l^2}{2} + P \cdot l$

Donde q es la carga distribuida, P la concentrada, y l la longitud de la ménsula. Se determinó que la longitud es 1.2m con un error absoluto menor a 2cm, la carga distribuida es $(2.00 \pm 0.08)kN/m$, y la carga concentrada es 1.5kN con una cota de error relativo de 5%

6 (a) Calcular el momento de apoyo. Informar dicho momento con su cota de error.

(b) Calcular una cota para el error relativo cometido.

- 2. Se desea conocer una raíz r de la función $f(x) = x^4 e^x + 2$ que se sabe está cercana a $x_0 = 8$. Encontrar la raíz por el método de Newton-Raphson, interrumpir el algoritmo cuando la diferencia absoluta entre iteraciones consecutivas sea menor a 0.05. Expresar el resultado $r = \overline{r} \pm \Delta r$.
 - 3. Dados los datos: f(1) = 2, f(3) = 8, f'(1) = 0, f'(3) = 8.78889831, se pide:

(a) Hallar un polinomio interpolante de orden 3 y estimar f(2).

(b) ¿Es único el polinomio interpolante hallado? ¿Se puede acotar el error cometido.

4. Para un proceso químico se obtuvo la siguiente tabla de mediciones de concentración, c(t) (en mg/ml), versus tiempo t (en minutos). Además, para analizar el comportamiento se realizan cálculos auxiliares y los gráficos: (a) c(t) vs. t (b) $\log(c(t))$ vs. t (c) $\log(c(t))$ vs. $\log(t)$:

	auxiliares	Datos		
t	$\log(c(t))$	log(t)	c(t)	t
8	0.4055	0	1.5000	1
1	0.6801	1.0986	1.9741	3
2	0.8078	1.6094	2.2430	5

L	atos	Cálculos auxiliares		
t	c(t)	log(t)	$\log(c(t))$	
8	2.5227	2.0794	0.9253	
11	2.7317	2.3979	1.0049	
25	3.3541	3.2189	1.2102	

(a) ¿Cuál de los siguientes modelos (donde A y B son constantes) le parece más adecuado para ajustar a los datos?

 $1. \ c(t) = A \cdot t + B$

 $2. \ c(t) = A \cdot t^B$

3. $c(t) = A \cdot e^{B \cdot t}$

(b) Estimar por mínimos cuadrados el valor de los parámetros $A \ y \ B$ del modelo seleccionado en el ítem anterior.

(c) Usar el modelo del ítem anterior para estimar la concentración a tiempo t=18 minutos.

5. Dado el sistema de ecuaciones lineales Ax = b, resolver el sistema mediante descomposición LU sin pivoteo parcial (sin intercambio de filas). Escriba todos los pasos intermedios.

 $A = \begin{pmatrix} 3 & 1 & -1 \\ 6 & 4 & -2 \\ -3 & -1 & 0 \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ -2 \\ -2 \end{pmatrix}$

Olive 1/11/18

3 Siendo M= 9 12 + Pl , con L=1,2m Cae < 0,02m → Dl ≥ Cae no Dl = 0,02m 9=(2,00±0,08) kN/m, siendo 09=0,08 kN/m y == 2,00 % P = 1,5 KN Crp = 5% = 0,05 Siendo er = @ no eap = 0,075 KN = 75 N a M = M + DH La cota de error del momento de aporgo, la calculo a partir de DH = 34 A9 + 3H DR + 3H DR DH = = 22 DQ + (QQ + D) DR + Q DR AN = (1,2 m)2 (0,08) W/m + (2,00 km/m 1,2 m + 1,5 km) 0,02 m + 1,2m.0,075 KN DH = 0,2256 = 0,3 100/m KN m 4 redordes para amba la cota de essor M = 9 2 + 0 2 = 3,24 they km.m = 3,2
por redordes simetrics H=(3,2 ± 0,3) KN.m DH = Can no tomando Can = no! usula info sin -CCH = Can = 0,3 = 0,094 = 9,4% = CCH Transac Tengo la gurción B(x)= x4-ex+2 Quiero hallor la raiz r por el método de Newton-Raphson utilizando como semilla 20=8 (ya que se que res cercana a 20) La tolerancia utilizada suá: E: Pn - Pn-1/40,05 Coccessasses Utilizando: Pn= Pn-1 - B'(Pn-1) Busco entonces la derivada de la función proporcionada 6(x)= 423-ex

ni (Pn	Pn-1	b(2n-1)	(B'(Ph-1)	3			
0 1 9,19 2 8,79 3 8,63		8 9,197312235 8,795893914 8,636487796		-932,957987 -6758,54073 -3884,985003 -3056,763765	0,1594	-		
C = E ±	Δς	7 = 8,6	14241457	lleg	ce a la pedido	toleanua		
Dr = 0,022 = 0,03 La redondes para criba la cota de error								
C = 6	8,61 ± 0	,03						
Ma G Uhliza	$3(x_{-}) \mid b'($ 2 8 $8,78$ The a parados en $a dos en$ $a (x) = b l$	\$89831 n deba tir de n ron el polino [20] + £ 61	mo me dan s polimomio d modos y utilizar el p dos medidos, mio. Siendo [20,2, 2i](2-2	l'(1)=0 l olo dos nodos le grado 3; e polinomio de ge olinomio de He obtengo 2n+2 este de la fo o)2(x-x,7. (x-z)	y regularista de la regularia			
Xi =	7 7	1:1 Zz=3	nces, mis nue					
211	B[Zi]	B(Zi,Zi	+13	b[2i, Zi+1, 2		P(20,21) , -		
	25-7 A/N	$\begin{array}{c c} 1 = 2 & \beta[20, \overline{2}1] = \\ 1 = 8 & \beta[21, \overline{2}2] = \\ 1 = 8 & \beta[22, \overline{2}3] \end{array}$	0[71-0.171) 2	B[20,2,22] 831 B[2,2,23]. B = 2,89	22- 21,27-6[2 23-21 4449155	20 ,1,5		
€ (20	, 2, 2, 23]	C[20, 22, 23]- 23 - 2	B(20,21,22);	2,6972245775				
				$5(x-1)^2(x-1)$	3)			
H ₃	H3(2) = 2,802775423 \(\text{B(2)} \)							
	6(2)=	2,8028		36. er hoja 3				

5) Tengo el sistema de ecuaciones. Az-6 con $A = \begin{pmatrix} 3 & 1 & -4 \\ 6 & 4 & -2 \end{pmatrix} + b = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$ Utilizando el calcana metodo de descomposición LU A obtego L.U. x = b no { U.x = 19 Siendo L una matriz triangular inferior 19 U una matriz triangular superior. L = (lin liz liz) L = (lin liz liz) Q 21 lzz lzz Q 31 lzz lzzz Q 0 lzz lzzz Q 0 lzzz lzzz Inicialmente defino por doolittle -> lu: lzz: l33 = 1 (a) (2 0 0) (b) (M11 M12 M13) (C) (22 M23) (C) (M133) F1(4). C1(0) ~ 1. U1 = a1 - U1 = 3, F1(4) C2(0) 20 1. 112 - a12 - 1112 = 1, F1(c) C3(U) ~ 1. U13: C13 -> (le13=-1, $F_{2}(L)$ $C_{1}(U)$ $\sim l_{21}$ $l_{11} = Q_{21} \rightarrow l_{21}$ $3=6 - l_{21}=2$ $F_{3}(L)$ $C_{1}(U)$ $\sim l_{31}$ $l_{11} = Q_{31} \rightarrow l_{31}$ $3=-3 \rightarrow l_{31}=-1$ C_{11} C_{12} C_{132} C_{132} C_{132} C_{133} C_{132} C_{133} F2(6).C2(0) ~ 2.1 + 1.422 = a22 -> lezz = 4-2 - lezz = 2 F2(L) (3(U) ~ 2(-1) + 1 M23 - a23 - M23 - -2+2 - M23=0, €3(1) (2(U) ~ (-1)1 + l32 le22 = a32 -> l32.2 = -1+1=0 - l32=0. $L^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad U^{(2)} \begin{pmatrix} 3 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ F3(4) C3(4) no (-1)(-1) + 1 1133 = C132 75 1133 = -1, $L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ $U = \begin{pmatrix} 3 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

Ly=b =
$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{\pi}{3} \\ \frac{\pi}{3} \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$$

H2=-2-2y1 = $\frac{\pi}{3}$ 2-2 $\frac{\pi}{3}$ 2-2 $\frac{\pi}{3}$ 3-2 $\frac{\pi}{3}$ 3-3 $\frac{\pi}{3}$ 3-

11343

EUHA 1/11/18

(6 10,4042 (1) (0,4055) (1) (0) (1,0986 1,6094 2,0794 2,3979 3,2184) (0,6801) (0,8078) (0,9253) (1,0049) (1,2102)

(6 10,4042) (a) = (5,0338) - a = 0,4054768687 10,24646249) b = 0,249989 3108

Para hallar los coepicientes A y B =>
b=B y ea=A=1,500017641
B=0,25 A=1,5

Ca formula del modelo es: (C(t): 1,5 t 0,25 [mg/ml]

d. Puedo estimarlo porque se halla destro de mi rango de delos

Entonces:

C(18 min) = 1,5(18) 0,25 = 3,089650716 mg/m2

C(+=18) = 3,0897 mg/mL

Blo El polinomio interpolante hallado por Hermite es único, no polinomio de Lagrage ni de Newton polinomio de grado 1 Con Hermite, tengo 4 porque obtendría polinomios de grado 1 Con Hermite, tengo 4 por lo tanto, un polinomio de grado 3 Para que no modos es por lo tanto, un polinomio de grado 3 Para que no polinomio de grado 3 Para que no poera único requerirra de una mazor cantidad de nodos la oscilación será mazor Tornando una mazor cantidad de nodos la oscilación será mazor Tornando una mazor cantidad de nodos la oscilación será mazor Tornando una mazor cantidad de nodos la oscilación será mazor y no obstendré ena pren polinomio que se ajusta mejor a la que dependedela función si aunción de Porma aurguada, por lo que dependedela función si quede acotarse el erroto.