АФІННІ ФУНКЦІЇ ТА РІВНЯННЯ М01

EXERCICE N°1 Розпізнати афінну функцію

ПОБАЧИТИ ВИПРАВЛЕННЯ

Серед наступних функцій вкажіть ті, які є афінними, потім для останніх вкажіть напрямний коефіцієнт m і ординату в початку p прямих, що представляють ці функції.

1)
$$x \mapsto -2x+1$$

2)
$$x \mapsto (2+x)(2x-1)$$
 3) $x \mapsto \frac{2x}{3}$

$$3) \qquad x \mapsto \frac{2x}{3}$$

$$4) \qquad x \mapsto \frac{1-2x}{3}$$

5)
$$x \mapsto \frac{2}{3x}$$

5)
$$x \mapsto \frac{2}{3x}$$
 6) $x \mapsto x - (2x+1)$

EXERCICE N°2 Освоїти основи

ПОБАЧИТИ ВИПРАВЛЕННЯ

Розглянемо афінну функцію $f: \begin{cases} \mathbb{R} \mapsto \mathbb{R} \\ x \mapsto 2x - 1 \end{cases}$

- **1)** Обчисліть зображення 5 за f .
- **2)** Обчислити f(-2)
- 3) Чому дорівнює точка перетину у лінії, яка представляє цю функцію?
- 4) Який його провідний коефіцієнт?

EXERCICE N°3 Побудуйте графік зображення афінної функції

ПОБАЧИТИ ВИПРАВЛЕННЯ

Представте в одному кадрі афінні функції, визначені наступними виразами.

$$f(x)=3x-2$$

$$g(x) = -3x + 2$$

$$h(x)=1$$

EXERCICE N°4 Графічно визначте вираз афінної функції ПОБАЧИТИ ВИПРАВЛЕННЯ Наведемо ортонормальне посилання (O; I; J)

правильно	Випереджаючий коефіцієнт	Ordonnée à l'origine	Замовляли на виході
			$x \mapsto -2x+1$
			$x \mapsto 3x - 3$
			$x \mapsto -\frac{3}{4}x$
			<i>x</i> →

EXERCICE N°1 Розпізнати афінну функцію (ключ відповіді)

ПОВЕРНУТИСЯ ДО ВПРАВ 1

Серед наступних функцій вкажіть ті, які є афінними, потім для останніх вкажіть напрямний коефіцієнт m і ординату в початку p прямих, що представляють ці функції.

1)
$$x \mapsto -2x+1$$

2)
$$x \mapsto (2+x)(2x-1)$$
 3) $x \mapsto \frac{2x}{3}$
5) $x \mapsto \frac{2}{3x}$ 6) $x \mapsto x - (2x+1)$

$$3) \qquad x \mapsto \frac{2x}{3}$$

$$4) \qquad x \mapsto \frac{1-2x}{3}$$

5)
$$x \mapsto \frac{2}{3x}$$

6)
$$x \mapsto x - (2x + 1)$$

funktsiya	1	2	3	4	5	6
Вишуканий ?	ТАК	НІ	ТАК	ТАК	НІ	ТАК
m	-2	X	$\frac{2}{3}$	$-\frac{2}{3}$	X	-1
p	1	X	0	<u>1</u> 3	X	-1

[•] для 2) $(2+x)(2x-1) = 4x-2+2x^2-x = 2x^2+3x-2$ (термін у x^2 відмінний від нуля, тому функція не є афінною)

• для 6)
$$x-(2x+1) = x-2x-1 = -x-1$$

для 3) Функція навіть лінійна.

[■] для 5) $x \mapsto \frac{2}{3x}$ (Про «зворотну» функцію ми поговоримо пізніше)

EXERCICE N°2 Освоєння основ (Ключ відповіді)

повернутися до вправ 2

Розглянемо афінну функцію $f: \begin{cases} \mathbb{R} \mapsto \mathbb{R} \\ x \mapsto 2x - 1 \end{cases}$

1) Обчисліть зображення 5 за f .

$$f(5) = 2 \times 5 - 1$$
$$f(5) = 9$$

2) Обчислити f(-2)

$$f(-2) = 2 \times (-2) - 1$$

 $f(-2) = -5$

3) Чому дорівнює точка перетину у лінії, яка представляє цю функцію?

Ордината на ординаті в початку координат дорівню $\epsilon - 1$

Пам'ятайте: у розгорнутому та згорнутому вигляді вираз афінної функції має вигляд mx + p, а p— точка перетину у.

TyT m=2 i p=-1

4) Який його провідний коефіцієнт?

Його провідний коефіцієнт становить 2.

Пам'ятайте: у розгорнутому та згорнутому вигляді вираз афінної функції має вигляд mx+p, а m є головним коефіцієнтом.

Ici m=2 et p=-1

EXERCICE N°3 Побудуйте зображення афінної функції (ключ відповіді)

повернутися до вправ 3

Представте в одному кадрі афінні функції, визначені наступними виразами.

$$f(x)=3x-2$$

$$g(x) = -3x + 2$$

$$h(x)=1$$

Щоб провести пряму лінію, вам просто потрібно знати дві точки. Однак точка належить прямій тоді і тільки тоді, коли її координати задовольняють рівняння цієї прямої.

• для f(x)

Пряма, що представляє афінну функцію f , має (скорочене) рівняння y=f(x) , тобто: $y=3\,x-2$

Щоб отримати координати точки на цій лінії, просто ВИБЕРІТЬ абсцису x ОБЧИСЛИТЬ її ординату y = f(x) = 3x - 2

Наприклад:

Вибираємо x=0 і обчислюємо $y=f(0)=3\times 0-2=-2$.

Тоді ми отримуємо точку координат (0; -2)

Оскільки нам потрібні дві точки, ми вибираємо друге значення для x, наприклад x=2, і обчислюємо $y=f(2)=3\times 2-2=4$

Тоді ми отримуємо точку координат (2;4)

IBce, що вам потрібно зробити, це розташувати ці точки на площині і провести пряму, яка проходить через них.

Ми можемо узагальнити це у вигляді таблиці:

для 1)			для 2)		
x	0	2	x	0	-1
y = f(x)	-2	4	y=g(x)	2	5
точка	A(0; -2)	B(2;4)	точка	C(0; 2)	D(-1;5)

для 3)

Просто проведіть пряму лінію, паралельну осі абсцис і проходить через точку $J(0\ ;\ 1)$

Ми могли б використати той самий метод, що й для 1) і 2). Оскільки y = h(x) = 1 , будьяке значення x дасть y = 1 .

Точка J(0;1) просто має те, що вона знаходиться на осі у... Після виконання всіх розрахунків все, що вам потрібно зробити, це розмістити згадані точки та намалювати потрібні лінії.

EXERCICE N°4 Графічно визначте вираз афінної функції (Ключ відповіді)

повернутися до вправ 4

правильно	Випереджаючий коефіцієнт	Ordonnée à l'origine	Замовляли на виході
(d_4)	-2	1	$x \mapsto -2x+1$
(d_2)	3	-3	$x \mapsto 3x - 3$
(d_3)	$-\frac{3}{4}$	0	$x \mapsto -\frac{3}{4}x$
(d_1)	$\frac{2}{3}$	-2	$x \mapsto \frac{2}{3} - 2$

для (d_1)

Ордината в початку координат (-2) читається безпосередньо на графіку (як для інших трьох...)

Орієнтовний коефіцієнт також отримується шляхом графічного читання...

Ми шукаємо дві точки (d_1) , координати яких легко читати. Наприклад (3;0) et

$$(6;2)$$
 , тоді ми це знаємо $m=\frac{2-0}{6-3}=\frac{2}{3}$ Quand on avance de 3