

AWSOME DAY ONLINE CONFERENCE

2025 | APJ

Introduction to AWS services Compute, storage & databases

Peter Vandaele

Technical Trainer AWS

Compute

Amazon Elastic Compute Cloud (Amazon EC2)

- Resizable compute capacity
- Complete control of your computing resources
- Reduced time required to obtain and boot new server instances

Virtual machines vs. physical servers

Amazon EC2 can solve some problems that are more difficult with an on-premises server

When using disposable resources

Benefits of Amazon EC2

Elasticity

Flexibility

Integrated

Reliable

Secure

Inexpensive

Simple

Amazon EC2

Amazon EC2 provides pay-as-you-go pricing and a broad selection of hardware and software that's available via the AWS Marketplace by using Amazon Machine Images (AMIs)

Template for

- Storage volumes
- Launch permissions
- A block device mapping

Examples

- Application server
- ✓ Web server
- Database server
- Game server
- ✓ Mail server
- Media server
- Catalog server
- File server

Amazon EC2 instance families and names

Choosing the correct type is very important for efficient use of your instances and cost reduction

Instance family	Use cases
General purpose <i>e.g., A1, T3, T3a, T4g, M6g, M7g</i>	Low-traffic websites and web applicationsSmall databases and midsize databases
Compute optimized e.g., C5, C6g, C6a, C7g	High-performance web serversVideo encoding
Memory optimized e.g., R7g, R6g, X2gd, X2i, z1d	High-performance databasesDistributed memory caches
Storage optimized e.g., 14g, 13, D3, H1	Data warehousingLog or data processing applications
Accelerated computing e.g., P5, P4, Inf2, G6, G5g, Trn1	 3D visualizations Machine learning

Amazon EC2 pricing

On-Demand Instances

Savings Plans Spot Instances

Unmanaged services compared to managed services

Unmanaged

You manage scaling, fault tolerance, and availability

Managed

Scaling, fault tolerance, and availability are typically built in to the service

What is serverless computing?

Building and running applications and services without managing servers

No servers to provision or manage

Scales with usage

Never pay for idle

Availability and fault tolerance built in

AWS Lambda

- Fully managed compute service
- Runs stateless code
- Supports multiple languages
- Runs your code on a schedule or in response to events (for example, changes to data in an Amazon S3 bucket or Amazon DynamoDB table)

Serverless application use cases

Web applications

Static websites

Complex web applications

Packages for Flask and Express

Backends

Applications and services

Mobile

IoT

Data processing

Real time

MapReduce

Batch

Machine learning inference

Chatbots

Powering chatbot logic

Amazon Alexa

Powering voice-enabled applications

Alexa Skills Kit

IT automation

Policy engines

Extending AWS services

Infrastructure management

Running containers on AWS

Registry

Pulls container image from the registry

Orchestration tool

Deploys container to hosting resource

Container hosting

Amazon Elastic Container Registry (Amazon ECR)

Amazon Elastic Kubernetes Service (Amazon EKS)

Amazon Elastic Container Service (Amazon ECS)

AWS Fargate

Amazon EC2

Key Takeaways

- EC2 instances Servers in the cloud!
 - Pay as you go pricing
 - Scale in/out as needed automatically
 - Different instance types (hardware) for your workloads
- Amazon ECS
 - Orchestration for your container deployments
- Serverless
 - You create the code, AWS manages the underlying compute
 - Lambda On demand, per-request pricing to run code

Storage

AWS storage options

Amazon S3

Scalable, highly durable object storage in the cloud

Amazon EFS

Scalable network file storage for Amazon EC2 instances

Amazon S3 Glacier

Low-cost, highly durable archive storage in the cloud

Amazon FSx

Fully managed, cost-effective file storage offering the capabilities and performance of popular commercial and open-source file systems

Amazon EBS

Network-attached volumes that provide durable block-level storage for Amazon EC2 instances

AWS Storage Gateway

Hybrid cloud storage service that gives you on-premises access to virtually unlimited cloud storage

Amazon S3

Object-level storage

Designed for 99.999999% durability

Event triggers

Use cases

- Content storage and distribution
- Backup and archiving
- Big data analytics
- Disaster recovery
- Static website hosting

File services use cases

Amazon EFS

- Simplify Development Operations (DevOps)
- Modernize application development
- Enhance content management systems
- Accelerate data science

Amazon FSx for Lustre

- Accelerate machine learning
- Enable high performance computing
- Unlock big data analytics
- Increase media workload agility

Amazon FSx for Windows

- Migrate Windows file servers to AWS
- Accelerate hybrid workloads
- Reduce Microsoft SQL Server deployment cost
- Simplify virtual desktops and streaming

Amazon Elastic Block Store (Amazon EBS)

- Persistent block storage for instances
- Protected through replication
- Different drive types
- Scale up or down in minutes
- Pay for only what you provision
- Snapshot functionality
- Encryption available

Create volume snapshots for backup and recovery

Detach and reattach volumes to other EC2 instances

Key takeaways

AWS provides a variety of storage options

- Object (Amazon S3)
- File (Amazon EFS and Amazon FSx)
- Block storage (Amazon EBS)
- Customers are using our storage services to build:
 - Home directories
 - Data lakes
 - Modern and business-critical applications

Databases

DIY (Unmanaged services) compared to AWS database services (managed services)

Databases on Amazon EC2

- Operating system access
- Need features of specific application

AWS database services

- Simple to set up, manage, maintain
- Push-button high availability
- Focus on performance
- Managed infrastructure

Purpose-built databases

Relational	
Amazon RDS	
Amazon Aurora	
2	
Amazon	

Redshift

AWS database options

Amazon RDS

Set up, operate, and scale a relational database in the cloud with just a few clicks

Database engines

Postgres, PostgreSQL and the Slonik Logo are trademarks or registered trademarks of the PostgreSQL Community Association of Canada, and used with their permission

Amazon Aurora

Relational database built for the cloud; compatible with MySQL and PostgreSQL

Amazon DynamoDB

Fast and flexible NoSQL database service for any scale

Key takeaways

AWS provides a variety of database options

- Relational (Amazon Aurora, Amazon RDS, Amazon Redshift)
- Nonrelational (Amazon DynamoDB, Amazon Neptune, Amazon DocumentDB, Amazon Keyspaces, Amazon ElastiCache, Amazon QLDB, Amazon Timestream)
- NoSQL databases are widely recognized for their ease of development, functionality, and performance at scale

Thank you for attending AWSome Day Online Conference

We hope you found it interesting! A kind reminder to **complete the survey**. Let us know what you thought of today's event and how we can improve the event experience for you in the future.

- aws-apj-marketing@amazon.com
- x twitter.com/AWSCloud
- f facebook.com/AmazonWebServices
- youtube.com/user/AmazonWebServices
- in linkedin.com/company/amazon-web-services
- twitch.tv/aws

Test your knowledge

Thank you!

