DEBER 1 ESTADISTICA KEVIN CANO 3"A"

EJERCICIO 1

Pregunta 1

- 10*X-1
 - [1] 99
- X*X-1
 - [1] 99
- abs(X*X)-abs(9-X)
 - [1] 99
- 11*X-X+1 [1] 101

Pregunta 2

x=c(1300,1400,1500,2000,3000)

- sum(x)
 - [1] 9200
- x[c(4)]
 - [1] 2000
- x[c(5)]-x[c(1)] [1] 1700
- $\operatorname{cummin}(x)>10$
 - [1] TRUE TRUE TRUE TRUE TRUE
- x[c(2)]-x[c(1)]
 - [1] 100
 - x[c(3)]-x[c(2)]
 - [1] 100
- cumsum(x)<1000
 - [1] FALSE FALSE FALSE FALSE

EJERCICIO 2

library(nycflights13), library(dplyr), library(tidyr) View(flights)

Pregunta 3

- flights %>% filter(origin=='SFO', dest=='OAK') %>% View()
- flights %>% filter(month=='1') %>% View()
- flights %>% filter(dep_delay>=1) %>% View()
- flights %>% filter(hour==24, hour==5) %>% View()
- flights %>% filter(arr_delay==2*dep_delay) %>% View()

Pregunta 4

- flights %>% select(dep_delay)
- flights %>% select(arr_delay, -starts_with("-"))

Pregunta 5

flights %>% arrange(dep_time, year, month, day) %>%View()

Pregunta 6

flights %>% filter(air_time, distance) %>% mutate(Velocidad=air_time*distance, air_time=air_time/60) %>% View()

Pregunta 7

- flights %>% filter(! is.na(dep_delay)) Filtra los valores de elementos en los retrasos de salida que se están perdiendo.
- group_by(date, hour) Indica los valores agrupados entre la fecha y la hora.
- summarise(delay=mean(dep_delay, n=n()))
 Hace un resumen del promedio de los retrasos.
- filter(n > 10) En esta función apareció error. Error in n > 10: comparison (6) is possible only for atomic and list types

Pregunta 8

flights %>% group_by(dest, arr_delay) %>% summarize(mean(arr_delay, na.rm=TRUE)) %>% View()

EJERCICIO 3

Pregunta 9

- TODO=alldata View(TODO)
- Paises=countries_of_the_world View(Paises)
- TODO\$'pop'

```
PoblacionTodo=TODO %>% select(Poblacion='pop') %>% mutate(Poblacion=gsub(" .*$", "",Poblacion)) %>% group_by(Poblacion) %>% summarize(PoblacionTotal=n()) View(PoblacionTodo)
```

- PoblacionPaises=Paises %>% select(Poblacion=`X__2`, Continente=`X__1`) %>%
 filter(Continente=="LATIN AMER. & CARIB") %>%
 group_by(Poblacion)
 View(PoblacionPaises)
- dim(PoblacionPaises)
 [1] 45 2
 dim(PoblacionTodo)
 [1] 2460 2
- PaisesTodo=inner_join(PoblacionPaises, PoblacionTodo, by="Poblacion")
 View(PaisesTodo)

La tabla sale error porque no hay datos válidos para SUDAMERICA.

- Podemos calcularlo pero a mi parecer ninguna de las 2 tablas posee datos de antigüedad.
- Paises\$X_6

```
PatronMigratorio=Paises %>% select(Migracion='X__6') %>% mutate(Migracion=gsub(" .*$", "",Migracion)) %>% group_by(Migracion) %>% summarise(mean(Migracion, na.rm=TRUE)) %>% View()
```

Tenemos la lista de datos de migración pero no pude calcular el patron migratorio y a que el pasar de los años aumenta o disminuye dependiendo de la época.