Existence d'une structure Spin^c en dimension 4

 $9~{\rm août}~2020 \\ {\rm sorya.patricia@courrier.uqam.ca}$

Résumé

Dans ce court document, nous montrons l'existence d'une structure $Spin^c$ pour toute variété de dimension 4 compacte, lisse et orientable. Ce résultat a été obtenu en 1958 par Hirzeburch et Hopf, et découle du travail de Wu sur les classes caractéristiques. Nous suivons la présentation de Friedrich [1] que nous agrémentons de détails algébriques.

Théorème. Toute variété M de dimension 4 compacte, lisse et orientable admet une structure $Spin^c$.

Démonstration. La suite exacte $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{r} \mathbb{Z}/2\mathbb{Z} \to 0$, où r est le quotient, donne lieu à la suite exacte suivante,

$$H^2(M; \mathbb{Z}) \xrightarrow{2} H^2(M; \mathbb{Z}) \xrightarrow{r} H^2(M; \mathbb{Z}/2\mathbb{Z}) \xrightarrow{\beta} H^3(M; \mathbb{Z}) \xrightarrow{2'} H^3(M; \mathbb{Z})$$
 (1)

où β est l'homomorphisme de Bockstein [2, p. 303]. M admet une structure $Spin^c$ si et seulement si sa deuxième classe de Stiefel-Whitney $w_2(M)$ est la réduction modulo 2 d'une classe intégrale, c'est-à-dire qu'il existe $c \in H^2(M; \mathbb{Z})$ telle que $r(c) = w_2(M)$. Nous voulons donc montrer que $w_2(M)$ est dans l'image de r.

Notons T(G) le sous-groupe de torsion d'un groupe abélien G finiment engendré.

Lemme 1.
$$T(H^3(M; \mathbb{Z})) = T(H^2(M; \mathbb{Z})).$$

Démonstration. Par le théorème des coefficients universels,

$$H^3(M; \mathbb{Z}) = \operatorname{Ext}(H_2(M; \mathbb{Z}), \mathbb{Z}) \oplus \operatorname{Hom}(H^3(M; \mathbb{Z}), \mathbb{Z}).$$

 $H_2(M;\mathbb{Z})$ étant finiment engendré, on a $\operatorname{Ext}(H_2(M;\mathbb{Z}),\mathbb{Z}) = T(H_2(M;\mathbb{Z}))$. Aussi, $\operatorname{Hom}(H^3(M;\mathbb{Z});\mathbb{Z}) = H_3(M;\mathbb{Z})/T(H_3(M;\mathbb{Z})$ car le seul homomorphisme $\mathbb{Z}_p \to \mathbb{Z}$ est l'homomorphisme nul. Toute la torsion de $H^3(M;\mathbb{Z})$ se trouve ainsi dans la première composante $T(H_2(M;\mathbb{Z}))$. Par la dualité de Poincaré, avec M compacte, on obtient

$$T(H^3(M;\mathbb{Z})) = T(H_2(M;\mathbb{Z})) = T(H^2(M;\mathbb{Z})).$$

Notons $\dim(G)$ la dimension, en tant que $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel du sous-groupe de G, formé des composantes $\mathbb{Z}/2\mathbb{Z}$.

Lemme 2. dim im $\beta = \dim r(T(H^2(M; \mathbb{Z})))$.

Démonstration. Par exactitude, on a im $\beta = \ker 2' = \{a \in H^3(M; \mathbb{Z}) \mid 2a = 0\}$. Si a possède une composante non cyclique non nulle, alors $2a \neq 0$. Ainsi, on doit avoir que $a \in T(H^3(M; \mathbb{Z}))$. Par le lemme précédent,

$$\operatorname{im} \beta = \{ a \in T(H^2(M; \mathbb{Z}) \mid 2a = 0 \},\$$

ce qui correspond au noyau de $H^2(M;\mathbb{Z}) \stackrel{2}{\to} H^2(M;\mathbb{Z})$.

Posons $T = T(H^2(M; \mathbb{Z}))$. On considère la suite exacte suivante

$$\ker 2 \to T \xrightarrow{2} T \xrightarrow{r} T/2T \to 0.$$

Son exactitude implique que

$$\dim r(T) = \dim(T/2T)$$

$$= \dim T - \dim 2T$$

$$= \dim T - (\dim T - \dim \ker 2)$$

$$= \dim \ker 2$$

$$= \dim \inf \beta.$$

Le cup-produit $\smile: H^2(M; \mathbb{Z}/2\mathbb{Z}) \times H^2(M; \mathbb{Z}/2\mathbb{Z}) \to H^4(M; \mathbb{Z}/2\mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z}$ est une forme bilinéaire non dégénérée sur les $\mathbb{Z}/2\mathbb{Z}$ -espaces vectoriels $H^2(M; \mathbb{Z}/2\mathbb{Z})$ [2, p. 250]. Le complémentaire du sous-espace r(T) par rapport à \smile est

$$r(T)^{\perp} = \{ c \in H^2(M; \mathbb{Z}/2\mathbb{Z}) \mid c \smile r(b) = 0 \ \forall b \in T \}.$$

Lemme 3. im $r = r(T)^{\perp}$.

 $D\acute{e}monstration$. Soient $a \in H^2(M; \mathbb{Z})$ et $b \in T(H^2(M; \mathbb{Z})$. Supposons que $b \in \mathbb{Z}_p$. Par bilinéarité de \smile , on a

$$p(a \smile b) = (a \smile pb) = a \smile 0 = 0 \in \mathbb{Z}.$$

Puisque \mathbb{Z} est intègre, $a \smile b = 0$. On trouve alors

$$r(a) \smile r(b) = r(a \smile b) = r(0) = 0,$$

de sorte que $r(a) \in r(T)^{\perp}$ et im $r \subset r(T)^{\perp}$.

De plus, en conséquence du lemme précédent et de l'exactitude de (1),

$$\dim r(T)^{\perp} = \dim H^{2}(M; \mathbb{Z}) - \dim r(T)$$

$$= \dim H^{2}(M; \mathbb{Z}) - \dim \operatorname{im} \beta$$

$$= \dim \ker \beta$$

$$= \dim \operatorname{im} r,$$

d'où le résultat.

Il suffit à présent de montrer que $w_2(M)$, qu'on notera w_2 , réside dans $r(T)^{\perp}$. Par la formule de Wu [3],

$$w_k = \sum_{i=0}^k Sq^{k-i}v_i,$$

où Sq^{k-i} carré de Steenrod et v_i classe de Wu. La première classe de Stiefel-Whitney est donnée par

$$w_1 = Sq^1(v_0) + Sq^0(v_1) = v_1,$$

car $Sq^k(v_l)=0$ si k>l et $Sq^0=Id$. La deuxième classe de Stiefel-Whitney est donnée par

$$w_2 = Sq^2(v_0) + Sq^1(v_1) + Sq^0(v_2) = v_1^2 + v_2,$$

car $Sq^k(v_k) = v_k \smile v_k = v_k^2$. Or, M étant orientée, on a $v_1 = w_1 = 0$. Il en découle que $w_2 = v_2$. Les classes de Wu sont caractérisées par $v_k \smile x = x^2$ pour tout $x \in H^{4-k}(M; \mathbb{Z}/2\mathbb{Z})$. En prenant $x = r(b) \in \operatorname{im} r$, le dernier lemme nous permet de déduire que

$$w_2 \smile r(b) = r(b) \smile r(b) = 0.$$

On en conclut que $w(2) \in \operatorname{im} r$, ce qu'il fallait démontrer.

Références

- [1] Thomas Friedrich: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics. American Mathematical Society, 2000.
- [2] Allen HATCHER: Algebraic topology. Cambridge University Press, 2001.
- [3] John Milnor et James D. Stashef: *Characteristic classes*. Annals of mathematics studies 76. Princeton University Press, 1974.
- [4] William S. MASSEY: On the Stiefel-Whitney classes of a manifold. *American Journal of Mathematics*, 82(1):92–102, 1960.