401

(1)

 S_1P の長さを r_1 、 S_2P の長さを r_2 とする。

$$S_2P - S_1P = r_2 - r_1 = \Delta$$
と置く。
$$r_1^2 = \left(x - \frac{d}{2}\right)^2 + D^2$$
 $r_2^2 = \left(x + \frac{d}{2}\right)^2 + D^2$ (三平方の定理)

x, dはDに比べとても小さいので、

$$r_1 = r_2 = D$$
 とできる。

$$r_2^2 - r_1^2 = (r_2 + r_1)(r_2 - r_1) = 2D\Delta$$
 ··· ①

また

$$r_2^2 - r_1^2 = \left(\left(x + \frac{d}{2}\right)^2 + D^2\right) - \left(\left(x - \frac{d}{2}\right)^2 + D^2\right) = 2dx$$
 ... ②

①,②式より、

$$2D\Delta = 2dx$$

$$\therefore \Delta = \frac{dx}{D}$$

(2)

明線になるとき、

$$S_2P - S_1P = m\lambda$$

 $S_2P - S_1P = \frac{dx}{D}$ より、
 $m\lambda = \frac{dx}{D}$
 $\therefore x = \frac{D}{d} \cdot \frac{\lambda}{2} (2n)$

暗線になるとき、

$$S_2P - S_1P = (m + \frac{1}{2})\lambda$$

$$S_2P - S_1P = \frac{dx}{D} \text{ LD},$$

$$(m + \frac{1}{2})\lambda = \frac{dx}{D}$$

$$\therefore x = \frac{D}{d} \cdot \frac{\lambda}{2} (2n + 1)$$