Rappel sur la dérivation.

I. Nombre dérivé.

1. Définition.

Définition: Soit f une fonction définie sur un intervalle I contenant le réel a. La fonction f est dite dérivable en a si la limite lorsque h tend vers 0 de $\frac{f(a+h)-f(a)}{h}$ existe.

Remarques: En changeant de variable, on obtient une définition équivalente à la précédente: On dit que f est dérivable en a si la limite lorsque x tend vers a de $\frac{f(x)-f(a)}{x-a}$ existe.

On note alors
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
. $f'(a)$ est appelé le nombre dérivé de f en a .

2. Tangente.

Soit $\mathbb G$ la courbe représentant f dans le plan muni d'un repère orthogonal. On considère les points A(a;f(a)) et M(x;f(x)) de $\mathbb G$ avec $x\neq a$.

Alors, $\frac{f(x)-f(a)}{x-a}$ représente le coefficient directeur de la droite (AM).

1) Si f est dérivable en A, Alors les droites (AM) « tendent vers une position limite » quand x tend vers a.

Définition: Si f est dérivable en a, on appelle tangente à la courbe $\mathcal T$ au point A(a;f(a)) la droite passant par A et de coefficient directeur f'(a). Une équation de cette tangente est: y=f'(a)(x-a)+f(a).

2) Si f n'est pas dérivable.

On distingue trois cas.

$$-\lim_{x\to a} \frac{f(x) - f(a)}{x - a} = \pm \infty$$

On dit que Tadmet en A une tangente verticale.

- Si $\frac{f(x)-f(a)}{x-a}$ a des limites à droite et à gauche, distinctes, on dit que \mathcal{T} admet deux demi tangentes.
- $-\frac{f(x)-f(a)}{x-a}$ n'a pas de limite, même à droite ou à gauche.

II. Fonction dérivée.

1. Définition.

Définition: Soit I un intervalle ou une réunion d'intervalles. La fonction f est dérivable sur I si f est dérivable sur I en tout réel a de I. La fonction f' définie sur I par $x \mapsto f'(x)$ est appelée la fonction dérivée de f.

Remarque: Il peut arrive que f' soit elle-même dérivée sur I et on note f'' sa dérivée; dans ce cas, on dit que f est deux fois dérivables sur I et f'' est la dérivée seconde de f.

Si, à son tour, f'' est dérivable sur I, on note $f^{(3)}$ sa dérivée, et ainsi de suite, sous réserve d'existence; on note alors $f^{(n)}$ la dérivée d'ordre n de f, $n \in \mathbb{N}$ *.

2. Dérivées des fonctions usuelles.

I	f(x) =	f'(x) =	
IR	k , où k est un nombre réel		
IR	x		
IR	x^n , avec $n \in \mathbb{N}$ et $n \ge 2$		
IR	$\sin(x)$		
IR	$\cos(x)$		
IŘ	$\frac{1}{x}$		
10.1.1	$\frac{x}{\sqrt{x}}$		
]0;+∞[V X		
IR	e ^x		
IŘ	$\frac{1}{x^n}, n \in \mathbb{N}$		

3. Dérivées et opérations.

Propriété:

Soient u et v deux fonctions dérivables sur un intervalle I et k un réel, alors les fonctions u+v, ku et uv sont dérivables sur I et si de plus, v ne s'annule pas sur I, alors les fonctions $\frac{1}{v}$ et $\frac{u}{v}$ sont dérivables sur I.

Fonction	u+v	ku	uv	$\frac{1}{v}$	$\frac{u}{v}$
Dérivée					

Exemple 1 : Déterminer les dérivées des fonctions f , g , h définies de la manière suivante :

$$f(x) = \frac{1}{x-4} \text{ pour } x \in \mathbb{R}\{4\}, \ g(x) = x e^x \text{ pour } x \in \mathbb{R}\text{et } h(x) = \frac{3x+2}{x^2+1} \text{ pour } x \in \mathbb{R}$$

Exemple 2 : Déterminer la dérivée seconde de la fonction f définie sur Rpar $f(x) = -3x^4 + 5x^2 + 7$

- 4. Application de la dérivation.
 - Sens de variation.

Théorème: Soit f une fonction dérivable sur un intervalle I inclus dans \mathcal{D}_f .

- si f'>0, sauf en un nombre fini de points où f' s'annule, alors f est strictement croissante sur I.
- si f'<0, sauf en un nombre fini de points où f' s'annule, alors f est strictement décroissante sur I.
- si f' est nulle sur I, alors f est constante sur I.
- Extremum local.

Soit f une fonction définie sur un intervalle I et $c \in$ I.

Dire que f(c) est un maximum local de f en c signifie qu'il existe un intervalle ouvert J inclus dans I, contenant c tel que pour tout x appartenant à J, $f(x) \le f(c)$.

De façon analogue, on définit un minimum local de f.

Un extremum local est soit un maximum local, soit un minimum local.

Théorème: Soit f une fonction dérivable sur un intervalle ouvert $\mathbf{I}, c \in \mathbb{R}$

- si f(c) est un extremum local, alors f'(c)=0.
- si f's'annule en c en changeant de signe, alors f(c) est un extremum local.

Exemple 3 : Reprendre les fonctions étudiées à l'exemple 1, en étudier leurs variations et préciser si elles ont des extrema locaux.