Lecture 4: Randomized linear dimension reduction

School of Mathematical Sciences, Xiamen University

1. Subspace embedding

Definition 1 (Subspace embedding)

Let $\mathcal{L} \subseteq \mathbb{R}^n$ be a linear subspace with dimension d. Consider a linear map $\Phi : \mathbb{R}^n \mapsto \mathbb{R}^s$ with the property that

$$(1-\varepsilon)\|\mathbf{x}\|_2 \le \|\mathbf{\Phi}\mathbf{x}\|_2 \le (1+\varepsilon)\|\mathbf{x}\|_2$$
 for all $\mathbf{x} \in \mathcal{L}$.

The map Φ is called a subspace embedding for \mathcal{L} with embedding dimension $s \in \mathbb{N}$ and distortion $\varepsilon > 0$.

Exercise: Prove that $s \geq d$.

• By the linearity of Φ , for all $\mathbf{x}, \mathbf{y} \in \mathcal{L}$, it holds that

$$(1-\varepsilon)\|\mathbf{x}-\mathbf{y}\|_2 \leq \|\mathbf{\Phi}\mathbf{x}-\mathbf{\Phi}\mathbf{y}\|_2 \leq (1+\varepsilon)\|\mathbf{x}-\mathbf{y}\|_2.$$

• In real applications, the embedding dimension s is close to the subspace dimension d and much smaller than the ambient dimension n: $s \approx d \ll n$.

Suppose that range(**U**) = \mathcal{L} where **U** $\in \mathbb{R}^{n \times d}$ is a matrix with orthonormal columns. The subspace embedding property

$$(1 - \varepsilon) \|\mathbf{x}\|_2 \le \|\mathbf{\Phi}\mathbf{x}\|_2 \le (1 + \varepsilon) \|\mathbf{x}\|_2$$
 for all $\mathbf{x} \in \mathcal{L}$

 $is\ equivalent\ with\ the\ condition$

$$1 - \varepsilon \le \sigma_{\min}(\mathbf{\Phi}\mathbf{U}) \le \sigma_{\max}(\mathbf{\Phi}\mathbf{U}) \le 1 + \varepsilon.$$

Proof. From $\mathcal{L} = \{ \mathbf{U}\mathbf{y} : \mathbf{y} \in \mathbb{R}^d \}$, we have

$$(1-\varepsilon)\|\mathbf{U}\mathbf{y}\|_2 \le \|\mathbf{\Phi}\mathbf{U}\mathbf{y}\|_2 \le (1+\varepsilon)\|\mathbf{U}\mathbf{y}\|_2$$
 for all $\mathbf{y} \in \mathbb{R}^d$.

By $\|\mathbf{U}\mathbf{y}\|_2 = \|\mathbf{y}\|_2$, we have

$$1 - \varepsilon \le \|\mathbf{\Phi}\mathbf{U}\mathbf{z}\|_2 \le 1 + \varepsilon$$
 for each unit vector $\mathbf{z} \in \mathbb{R}^d$.

The variational definition of σ_{\min} and σ_{\max} completes the proof.

2. Random subspace embeddings

- In many applications, it is imperative to construct a subspace embedding $\Phi : \mathbb{R}^n \mapsto \mathbb{R}^s$ without using prior knowledge about the subspace $\mathcal{L} \subseteq \mathbb{R}^n$. These are called *oblivious* subspace embeddings.
- By drawing a subspace embedding at random, we can ensure that the embedding property holds with high probability.

2.1 Subsampled randomized trigonometric transform (SRTT)

• Subsampled randomized trigonometric transform:

$$\mathbf{\Phi} := \sqrt{\frac{n}{s}} \mathbf{RDF} \in \mathbb{R}^{s \times n}$$

where $\mathbf{R} \in \mathbb{R}^{s \times n}$ subsamples rows, $\mathbf{D} \in \mathbb{R}^{n \times n}$ is random diagonal, and $\mathbf{F} \in \mathbb{R}^{n \times n}$ is a DCT2 matrix. More precisely, \mathbf{R} is a uniformly random set of s rows drawn from the identity matrix \mathbf{I}_n , and the random diagonal matrix \mathbf{D} has i.i.d. uniform $\{\pm 1\}$ entries.

Exercise: Prove that $\mathbb{E}\|\mathbf{\Phi}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$.

- The cost of applying the SRTT to a vector is $\mathcal{O}(n \log n)$ operations using a standard fast DCT2 algorithm, and it can be reduced to $\mathcal{O}(n \log s)$ with a more careful implementation.
- What embedding dimension s does the SRTT require? In practice, $s \approx d/\varepsilon^2$ usually has 'satisfying' performance.

2.2 Sparse random matrices

• Consider a sparse random matrix of the form

$$oldsymbol{\Phi} = egin{bmatrix} oldsymbol{arphi}_1 & \cdots & oldsymbol{arphi}_n \end{bmatrix} \in \mathbb{R}^{s imes n},$$

where $\varphi_i \in \mathbb{R}^s$ are i.i.d. sparse vectors. More precisely, each column φ_i contains exactly ζ nonzero entries, equally likely to be $\pm 1/\sqrt{\zeta}$, in uniformly positions. Exercise: $\mathbb{E}\|\mathbf{\Phi}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$.

• We can apply this matrix to a vector in $\mathcal{O}(\zeta n)$ operations. The storage cost is at most ζn parameters. If $\zeta \ll s$, then we obtain a significant computational benefit.

3. Approximate least-squares

• Consider the quadratic optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \quad \text{with} \quad \mathbf{A} \in \mathbb{R}^{n \times d}, \ \mathbf{b} \in \mathbb{R}^n.$$

We focus on the case where $d \ll n$ and **A** is dense and unstructured.

- The cost of solving the problem with a direct method, such as QR factorization, is $\mathcal{O}(d^2n)$ operations.
- The sketch-and-solve approach can obtain a coarse solution to the least-squares problem efficiently $(\mathcal{O}(nd\log d + d^3/\varepsilon^2))$.
 - (1) Construct a (random, fast) subspace embedding $\mathbf{\Phi} \in \mathbb{R}^{s \times n}$ for range($[\mathbf{A} \ \mathbf{b}]$).
 - (2) Reduce the dimension of the problem data: $\mathbf{\Phi}\mathbf{A} \in \mathbb{R}^{s \times d}$ and $\mathbf{\Phi}\mathbf{b} \in \mathbb{R}^{s}$. This step is commonly referred to as *sketching*.
 - (3) Find a solution $\mathbf{x}_{sk} \in \mathbb{R}^d$ to the sketched least-squares problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{2} \| \mathbf{\Phi} (\mathbf{A} \mathbf{x} - \mathbf{b}) \|_2^2.$$

Suppose that $\mathbf{A} \in \mathbb{R}^{n \times d}$ is a tall matrix and $\mathbf{b} \in \mathbb{R}^n$. Construct a subspace embedding $\mathbf{\Phi} \in \mathbb{R}^{s \times n}$ for range($[\mathbf{A} \ \mathbf{b}]$) with distortion ε . Let $\mathbf{x}_{\star} \in \mathbb{R}^d$ be a solution to the original least-squares problem, and let $\mathbf{x}_{sk} \in \mathbb{R}^d$ be a solution to the sketched problem. Then

$$\|\mathbf{A}\mathbf{x}_{\mathrm{sk}} - \mathbf{b}\|_{2} \leq \frac{1+\varepsilon}{1-\varepsilon} \|\mathbf{A}\mathbf{x}_{\star} - \mathbf{b}\|_{2}.$$

Proof. Using the embedding property twice yields

$$\begin{split} \|\mathbf{A}\mathbf{x}_{sk} - \mathbf{b}\|_2 &\leq \frac{1}{1 - \varepsilon} \|\mathbf{\Phi}(\mathbf{A}\mathbf{x}_{sk} - \mathbf{b})\|_2 \\ &\leq \frac{1}{1 - \varepsilon} \|\mathbf{\Phi}(\mathbf{A}\mathbf{x}_{\star} - \mathbf{b})\|_2 \leq \frac{1 + \varepsilon}{1 - \varepsilon} \|\mathbf{A}\mathbf{x}_{\star} - \mathbf{b}\|_2. \end{split}$$

The first (third) inequality is the lower (upper) bound in the embedding property. The second inequality holds because \mathbf{x}_{sk} is the optimal solution to the sketched least-squares problem.

4. Approximate orthogonalization

- Problem: Consider a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with full column rank. The task is to find a well-conditioned matrix $\mathbf{B} \in \mathbb{R}^{n \times d}$ with range(\mathbf{B}) = range(\mathbf{A}).
- A direct method for orthogonalizing the columns of the matrix **A** requires $\mathcal{O}(nd^2)$ arithmetic.
- Randomized Gram-Schmidt:
 - (1) Construct a (random, fast) subspace embedding $\Phi \in \mathbb{R}^{s \times n}$ for range(**A**). $s = \mathcal{O}(d/\varepsilon^2)$
 - (2) Sketch the problem data: $\Phi \mathbf{A} \in \mathbb{R}^{s \times d}$. $\mathcal{O}(nd \log d)$
 - (3) Compute a (thin, pivoted) QR factorization of the sketched data: $\Phi \mathbf{A} = \mathbf{Q} \mathbf{R}$. $\mathcal{O}(d^3/\varepsilon^2)$
 - (4) (Implicitly) define well-conditioned $\mathbf{B} = \mathbf{A}\mathbf{R}^{-1}$ with range(\mathbf{B}) = range(\mathbf{A}). If we wish to form the matrix \mathbf{B} explicitly, we must spend $\mathcal{O}(nd^2)$ operations.

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a tall matrix with full column rank. Construct a subspace embedding $\mathbf{\Phi} \in \mathbb{R}^{s \times d}$ for range(\mathbf{A}) with distortion ε . Form a QR factorization of the sketched matrix: $\mathbf{\Phi}\mathbf{A} = \mathbf{Q}\mathbf{R}$ with $\mathbf{R} \in \mathbb{R}^{d \times d}$. Then \mathbf{R} has full rank, and the whitened matrix $\mathbf{B} = \mathbf{A}\mathbf{R}^{-1}$ satisfies

$$\frac{1}{1+\varepsilon} \le \sigma_{\min}(\mathbf{B}) \le \sigma_{\max}(\mathbf{B}) \le \frac{1}{1-\varepsilon}.$$

Proof. Since Φ is a subspace embedding for the d-dimensional subspace range(\mathbf{A}), the range of the sketched matrix $\Phi \mathbf{A}$ also has dimension d. Thus, \mathbf{R} must have full rank. From $\|\mathbf{R}\mathbf{y}\|_2 = \|\mathbf{\Phi}\mathbf{A}\mathbf{y}\|_2$, $\mathbf{y} = \mathbf{R}^{-1}\mathbf{x}$, and

$$(1 - \varepsilon) \|\mathbf{A}\mathbf{y}\|_2 \le \|\mathbf{\Phi}\mathbf{A}\mathbf{y}\|_2 \le (1 + \varepsilon) \|\mathbf{A}\mathbf{y}\|_2,$$

we have

$$(1-\varepsilon)\|\mathbf{A}\mathbf{R}^{-1}\mathbf{x}\|_2 \le \|\mathbf{x}\|_2 \le (1+\varepsilon)\|\mathbf{A}\mathbf{R}^{-1}\mathbf{x}\|_2.$$

The variational definition of σ_{\min} and σ_{\max} completes the proof.

5. Approximate null space

- Problem: Consider a tall matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$. The task is to find an orthonormal matrix $\mathbf{W} \in \mathbb{R}^{d \times k}$ whose range aligns with the k trailing right singular vectors of \mathbf{A} .
- A full SVD of the input matrix **A** requires $\mathcal{O}(nd^2)$ arithmetic.
- The sketch-and-solve approach: $\mathcal{O}(nd \log d + d^3/\varepsilon^2)$
 - (1) Construct a (random, fast) subspace embedding $\Phi \in \mathbb{R}^{s \times n}$ for range(\mathbf{A}). $s = \mathcal{O}(d/\varepsilon^2)$
 - (2) Sketch the problem data: $\Phi \mathbf{A} \in \mathbb{R}^{s \times d}$. $\mathcal{O}(nd \log d)$
 - (3) Compute SVD of the sketched matrix: $\Phi \mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^*$. $\mathcal{O}(sd^2)$
 - (4) Set $\mathbf{W} = \mathbf{V}(:, (d-k+1): d) \in \mathbb{R}^{d \times k}$.
- A variational formulation of the null space problem:

$$\min_{\mathbf{V} \in \mathbb{R}^{d \times k}} \|\mathbf{A}\mathbf{V}\|_{\mathrm{F}}^2$$
 subject to $\mathbf{V}^*\mathbf{V} = \mathbf{I}_k$.

The solution is a matrix of k trailing right singular vectors.

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a tall matrix with full column rank, and let $\mathbf{\Phi} \in \mathbb{R}^{s \times n}$ be a subspace embedding for range(\mathbf{A}) with distortion ε . The \mathbf{W} generated by the sketch-and solve approach satisfies

$$\|\mathbf{A}\mathbf{W}\|_{\mathrm{F}}^2 \leq \frac{(1+\varepsilon)^2}{(1-\varepsilon)^2} \min_{\mathbf{V} \in \mathbb{R}^{d \times k}, \mathbf{V}^* \mathbf{V} = \mathbf{I}_k} \|\mathbf{A}\mathbf{V}\|_{\mathrm{F}}^2.$$

In particular, if AV = 0 for some k-dimensional subspace V, then AW = 0.

Proof. Fix an orthonormal matrix $\mathbf{V}_{\star} \in \mathbb{R}^{d \times k}$ that solves the null space problem. Since v is a subspace embedding for range(\mathbf{A}),

$$\|\mathbf{A}\mathbf{W}\|_F^2 \leq \frac{1}{(1-\varepsilon)^2} \|\mathbf{\Phi}\mathbf{A}\mathbf{W}\|_F^2 \leq \frac{1}{(1-\varepsilon)^2} \|\mathbf{\Phi}\mathbf{A}\mathbf{V}_{\star}\|_F^2 \leq \frac{(1+\varepsilon)^2}{(1-\varepsilon)^2} \|\mathbf{A}\mathbf{V}_{\star}\|_F^2.$$

The first (third) inequality is the lower (upper) bound in the embedding property. The second inequality holds because \mathbf{W} is the optimal solution to the sketched problem.

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a tall matrix with full column rank, and let $\mathbf{\Phi} \in \mathbb{R}^{s \times n}$ be a subspace embedding for range(\mathbf{A}) with distortion ε . The singular values of the sketched matrix $\mathbf{\Phi} \mathbf{A}$ satisfy

$$(1 - \varepsilon)\sigma_i(\mathbf{A}) \le \sigma_i(\mathbf{\Phi}\mathbf{A}) \le (1 + \varepsilon)\sigma_i(\mathbf{A})$$
 for $i = 1, \dots, d$.

Proof. Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$ be an SVD. Then $\mathbf{\Phi}$ is a subspace embedding for range(\mathbf{U}_d). For each index $i = 1, \ldots, d$, by the rotational invariance of singular values,

$$\sigma_i(\mathbf{\Phi}\mathbf{A}) = \sigma_i(\mathbf{\Phi}(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^*)) = \sigma_i(\mathbf{\Phi}\mathbf{U}\mathbf{\Sigma}).$$

By Ostrowski's relative perturbation theorem, we have

$$\sigma_d(\mathbf{\Phi}\mathbf{U})\sigma_i(\mathbf{\Sigma}) \leq \sigma_i(\mathbf{\Phi}\mathbf{A}) \leq \sigma_1(\mathbf{\Phi}\mathbf{U})\sigma_i(\mathbf{\Sigma}).$$

By the subspace embedding property, we have

$$(1 - \varepsilon)\sigma_i(\mathbf{A}) \leq \sigma_i(\mathbf{\Phi}\mathbf{A}) \leq (1 + \varepsilon)\sigma_i(\mathbf{A}). \quad \Box$$