2 주차 활동 보고서

발표자: 최승환

일자: 2023-07-18

목차

- 01 2주차 활동 요약
- 02 2주차 활동 내용
- 03 2주차 활동 결과
- 04 3주차 활동 계획
- 05 현재 진행 상황

2주차 활동 요약

- 1. Python의 Flask 웹 프레임워크를 사용하여 실시간 영상에 대한 영상처리 실습 진행
- 2. OpenCV 라이브러리 함수를 이용하여 웹 브라우저에 기능 구현
- 3. 실시간 영상에 대한 YOLO 모델 적용 및 성능 평가
- 4. Flask → PyQt5 마이그레이션 계획 및 디자인 설계
- 5. 현장실습 활동 기간 동안의 Github 활용 방법에 대해서

- > Python의 Flask 웹 프레임워크를 사용하여 브라우저를 통한 실시간 영상처리 실습 진행
- ▶ 웹캠 또는 동영상을 업로드하여 실시간 영상에 대한 OpenCV 기능들을 쉽게 적용해 볼 수 있도록 구성하였다.

- ▶ 구현된 OpenCV 기능들은 상단 카테고리에서 원하는 기능들을 선택할 수 있도록 하였다.
- ▶ 상단의 4개의 기능 그룹들은 서로 독립적이고 각각의 하위 기능들에 대해 중첩이 가능하다.
- ▶ 즉, 기능 그룹 아래 상세 기능들 중 하나만 적용할 수 있도록 하였다. (Radio button)

- ▶ 색변환 → Gray-scale 변환
- ▶ 노이즈 → 노이즈 추가(Salt&Pepper, Gaussian)
- ▶ 필터링 → LPF(잡음제거), HPF(에지강조)
- ▶ 윤곽선 → 에지검출(이진화)

- ▶ 사전에 학습된 YOLO 가중치 파일을 사용하여 실시간 객체 인식 실습
- ➤ YOLOv5와 YOLOv7은 바운딩 박스 처리 연산이 필요하다.

```
model = torch.hub.load('./yolov7', 'custom', '/path/my/weights.pt', source='local')

# OpenCV 이미지를 PIL 이미지로 변환
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

# 객체 인식
results = model(pil_image)

# bounding box 처리
boxes = results.xyxy[0] # (x1, y1, x2, y2) 형식의 bounding box 좌표
confidences = results.xyxy[0][:, 4] # bounding box의 신뢰도

for box, confidence in zip(boxes, confidences):
    x1, y1, x2, y2 = map(int, box[:4])
    label = f'{results.names[int(box[5])]} {confidence:.2f}' # 객체 클래스와 신뢰도

# bounding box 그리기
    cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
    cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 255, 0), 2)
```

➤ YOLOv8 은 라이브러리로 존재하여 코드가 간단했다.

```
from ultralytics import YOLO

model = YOLO('/path/my/weights.pt')
results = model(pil_image)
frame = results[0].plot()
```


YOLOv5s YOLOv8m

Model	size (pixels)	mAP ^{val} 50-95	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B)
YOLOv8n	640	37.3	80.4	0.99	3.2	8.7
YOLOv8s	640	44.9	128.4	1.20	11.2	28.6
YOLOv8m	640	50.2	234.7	1.83	25.9	78.9
YOLOv8l	640	52.9	375.2	2.39	43.7	165.2
YOLOv8x	640	53.9	479.1	3.53	68.2	257.8

▶ 모델 복잡도에 따른 추론 속도

- YOLOv8n → **6.1 frame/sec**
- YOLOv5s → **3.5 frame/sec**
- YOLOv8m → **1.1 frame/sec**
- YOLOv7x \rightarrow **0.5 frame/sec**

3주차 활동 계획

3주차 활동 계획

- ▼ 좀 더 서버와 밀접한 프로그래밍과 편리한 GUI 제작을 위해 PyQt5 프레임워크를 사용한다.
- ✓ Qt Designer를 사용하여 이전 배치와 비슷하게 디자인한다.
- ㅁ 각 기능별 구현 후 테스트하기
- □ 사전 학습된 YOLO 가중치 파일 적용하기

현재 진행 상황

➤ Qt Designer 도구를 사용하여 이전 구조와 비슷하게 디자인하였다.

현재 진행 상황

Github

🙎 2023 산학협력 프로젝트

2023 지역산업 SW인재양성 기반조성사업

지역산업 SW인재양성 기반조성사업

- 지역 SW산업 집적단지를 중심으로 한 산학관 협력 기반의 SW교육 인프라 구축 및 지역기업 맞춤형 SW인재 선순 환 생태계 조성
- 사업기간: 2023.1 ~ 2023.12
- 전담기관: 정보통신산업진흥원, 대구광역시(벤처혁신과)
- 산학협력 프로젝트 지원(20개사)
- 장/단기 현장실습 프로그램 지원(25개사)
- 산학관 협력 네트워킹 연계 (지역SW기업 학부생 간 프로젝트 공유)

💼 하계 단기 현장실습

᠍ 활동기간	🔛 근무지	■ 직무 내용		
2023.07.03 ~ 2023.08.31	(주)라온에이치씨	AI기반의 영상(객체) 처리기술을 통한 인식·분석시스템 개발		

▶ 직무 자세히보기

활동기록

주차	驘 날짜	ご 근무일지	🖺 주간보고서
1주차	07.03 ~ 07.07	1일차, 2일차, 3일차, 4일차, 5일차	1주차 보고서
2주차	07.10 ~ 07.14	6일차, 7일차, 8일차, 9일차, 10일차	2주차 보고서
3주차	07.17 ~ 07.21	11일차	
4주차	07.24 ~ 07.28		
5주차	07.31 ~ 08.04		
6주차	08.07 ~ 08.11		
7주차	08.14 ~ 08.18		
8주차	08.21 ~ 08.25		

QnA