Oracle adatbáziskezelőről fejlesztőknek

Kerepes Tamás People Come First Egyesület Tamas.kerepes@pcf.hu

Relációs adatbázis

- A relációs adatbázis adatszerkezeteket, adatokat és integritási szabályokat tartalmaz, amelyeket különböző műveletekkel kezelhetünk. Meg sok mindent mást is ©
- Az adatbázis tervezést rugalmasan végezhetjük.
- Biztosítja a fizikai adatok tárolása és a logikai adatbázis szerkezetek közötti függetlenséget.
- Az adatokon az SQL nyelv segítségével különböző műveleteket végezhetünk.

Objektumiroentáltság

- Az objektum technológia lehetővé teszi:
 - a valós világ modellezését;
 - a valódi dolgok objektumként való megjelenítését.
- Az objektum technológia a bonyolult rendszerek kezelésének lehetséges módszere, így könnyebben szimulálhatók a valós élet problémái.

Alkalmazás architektúrák

Az adatbázis kialakításakor figyelembe kell venni, hogy az alkalmazások alábbi típusai milyen sajátos követelményeket támasztanak:

- online tranzakció-feldolgozó rendszerek (OLTP);
- döntéstámogató rendszerek (DSS);
- hibrid rendszerek.

Online tranzakció-feldolgozó rendszerek

- Nagy átbocsátóképesség, intenzív I/O.
- Nagymennyiségű adatot tartalmaz, amely:
 - folyamatosan nő és
 - egyidejűleg felhasználók százai használják.
- Fontos az adatbázis:
 - elérhetősége;
 - sebessége;
 - felhasználói száma;
 - helyreállíthatósága.

Döntéstámogató rendszerek

- A lekérdezések az adatok jelentős hányadát érintik.
- Gyakoriak a teljes tábla keresések.
- Fontos:
 - a válaszidő;
 - a naprakészség;
 - az elérhetőség.

Hibrid alkalmazások

- Az OLTP és DSS rendszerek kombinációja.
- Online és kötegelt jellegű feldolgozást is végeznek.

SQL utasítások párhuzamos végrehajtása

SELECT ...

SQL utasítások párhuzamos végrehajtása

INSERT ... SELECT, UPDATE és DELETE

CREATE TABLE ...

Adatbázis konfigurációk

A követelményeknek megfelelően különböző adatbázis konfigurációk használhatóak:

- dedikált szerver;
- osztott szerver;
- elosztott adatbázisok;
- Oracle Real Application Clusters (RAC).

Dedikált szerver

- Minden dedikált szerver folyamat egy felhasználói folyamattól érkező kéréseket kezeli.
- A dedikált szerver folyamat tétlen marad, amikor a felhasználó nem végez adatbázis műveletet.

Osztott szerver

- Csökkenti az Oracle szerverhez kapcsolódó folyamatok számát.
- Csökkenti a tétlen szerver folyamatok számát.
- Növeli a lehetséges felhasználók számát.
- Mérsékli a memória használatot és a rendszer terhelését.

Elosztott adatbázisok

Real Application Clusters (RAC)

- Fürtben elhelyezett szervereket egy rendszerként kezelhetünk.
- Egy adatbázishoz több példányon keresztül is hozzáférhetünk.

- Előnyei:
 - rugalmas teljesítmény tervezés;
 - jó skálázhatóság;
 - nagyfokú elérhetőség.

Oracle API-k

Alkalmazási program interfészek (API-k):

- JDBC, ODBC, esetleg SQLJ
- OLAP
- 3GL előfordítók: Pro*C/C++, Pro*COBOL
- Oracle Call Interface (OCI)
- Oracle Objects for OLE (OO4O)

Az elsődleges összetevők áttekintése

Oracle szerver

Egy Oracle szerver:

- Egy adatbáziskezelőrendszer, ami nyitott, átfogó és egységes megközelítést biztosít az információk kezeléséhez.
- Oracle példányból és Oracle adatbázisból áll.

Oracle példány

Egy Oracle példány:

- Hozzáférést biztosít az Oracle adatbázishoz.
- Mindig egy és csak egy adatbázist nyithat meg.
- Memória-szerkezetekből és folyamatokból áll.

Kapcsolódás az Oracle példányhoz

Oracle adatbázis

Egy Oracle adatbázis:

- adatok gyűjteménye, amit egységként kezelünk;
- háromféle állományból áll.

Paraméterállomány

Jelszóállomány

Archivált naplóállományok

Logikai szerkezet

Az Oracle architektúra logikai szerkezete határozza meg az adatbázisbeli fizikai terület felhasználását.

Táblatér

Egy SQL utasítás feldolgozása

- Kapcsolódjunk a példányhoz:
 - felhasználói folyamat és
 - szerver folyamat segítségével.
- Különböző típusú SQL utasításokat végezhetünk:
 - a lekérdezések sorokat adnak vissza;
 - a DML utasítások rögzítik a változásokat;
 - a véglegesítési mechanizmussal biztosítjuk a tranzakciók visszaállíthatóságát.
- Az SQL utasítások végrehajtásakor az Oracle szerver bizonyos részeit használjuk, másokat pedig nem.

Egy lekérdezés feldolgozása

Egy DML utasítás feldolgozása

Memória-szerkezet

Az Oracle memória-szerkezet két memória területből áll:

- Globális rendszerterület (SGA): a példány indulásakor foglalódik és alapvető része az Oracle példánynak.
- Globális programterületből (PGA): a szerver folyamat elindulásakor foglalódik.

Globális rendszerterület (SGA)

Az SGA néhány memória-szerkezetből áll:

- osztott tartomány;
- adatblokk-gyorsító;
- naplópuffer;
- más szerkezetek.

Létezik két opcionális memória-szerkezet, amit az SGA-n belül konfigurálhatunk:

- nagyméretű tartomány;
- jáva tartomány.

Globális rendszerterület (SGA)

- Az SGA dinamikus és mérete az SGA_MAX_SIZE paraméterrel vezérelhető.
- Az SGA memóriát a részek granulátumokban foglalják le.
- Folytonos virtuális memória terület.

Osztott tartomány

Az osztott tartomány a legutoljára végrehajtott SQL utasításokat és a legutoljára használt adatszótár információkat tárolja.

Két fő részből áll:

- könyvtárgyorsító
- adatszótár-gyorsító.
- Méretét a SHARED_POOL_SIZE paraméter határozza meg.

Könyvtárgyorsító

A könyvtárgyorsító a legutoljára használt SQL és PL/SQL utasításokról tárol információkat.

- Lehetővé teszi a rendszeresen használt SQL utasítások megosztását.
- Kezelése a legrégebben nem használt algoritmus alapján történik.
- Két szerkezetből áll:
 - osztott SQL terület;
 - osztott PL/SQL terület.
- Méretét az osztott tartomány mérete határozza meg.

Adatszótár-gyorsító

- Az adatszótár-gyorsító az adatbázisban legutoljára használt definíciók gyűjteménye.
- Információkat tartalmaz az adatbázis állományairól, táblákról, indexekről, felhasználókról, jogosultságokról és egyéb más objektumról.
- Méretét az osztott tartomány mérete határozza meg.

Adatblokk-gyorsító

Az adatblokk-gyorsító az adatállományokból beolvasott adatblokkok másolatát tárolja.

- Kezelése a legrégebben nem használt algoritmus alapján történik.
- Egy puffer méretét a DB_BLOCK_SIZE paraméter mutatja.

Adatblokk-gyorsító méretezése

- Független algyorsítókból áll:
 - DB_CACHE_SIZE
 - DB_KEEP_CACHE_SIZE
 - DB_RECYCLE_CACHE_SIZE
- Dinamikusan átméretezhető, mérete növelhető vagy csökkenthető:

```
ALTER SYSTEM SET DB_CACHE_SIZE = 96M;
```

 DB_CACHE_ADVICE beállításával statisztikákat gyűjthetünk a gyorsító különböző méret melletti viselkedéséről.

Naplópuffer

Az adatblokkokon végrehajtott változtatásokat naplózza.

- Elsődleges célja a helyreállítás.
- Naplóbejegyzéseket tartalmaz, amik a változásokat rögzítik.
- Méretét a LOG_BUFFER paraméter határozza meg.

Jáva tartomány

- A jáva tartomány a jáva utasítások elemzési kéréseinek kiszolgálásához szükséges.
- Konfigurálnunk kell, ha telepítettük és az adatbáziskezelő rendszeren belül használni szeretnénk a Jávát.
- A Jáva virtuális gépen belül munkamenet szintű Jáva kódot és adatokat tárol.

Globális programterület (PGA)

A PGA egy memória terület, ami minden az Oracle adatbázishoz kapcsolódó felhasználói folyamathoz lefoglalódik.

Folyamat szerkezetek

Az Oracle folyamat egy program, ami típusától függően kérhet információkat, lépések sorozatát hajthatja végre vagy speciális feladatokat végezhet.

Különböző típusú folyamatok léteznek:

- felhasználói folyamat;
- szerver folyamat;
- háttérfolyamat.

Felhasználói folyamat

A felhasználói folyamat egy program, ami a felhasználó kéréseit továbbítja az Oracle szerverhez.

- Először a kapcsolatot kell kiépíteni.
- Nincs közvetlen kapcsolata az Oracle adatbázis-szerverrel.

Kapcsolat kiépítése Szerver folyamat

Felhasználó

Szerver folyamat

- A szerver folyamat egy olyan program, ami közvetlenül kapcsolódik az Oracle adatbázis-szerverhez.
- A generált hívásokat végrehajtja, és visszaküldi az eredményt.

Lehet dedikált vagy osztott szerver folyamat.

Háttérfolyamatok

A fizikai és a memóriabeli szerkezetek közötti kapcsolattartást az Oracle háttérfolyamatok végzik.

Kötelező háttérfolyamatok:

DBWn PMON CKPT

LGWR SMON

Opcionális háttérfolyamatok:

ARCnLMON Snnn

QMNn LMDnLMS

CJQ0 Pnnn RECO

LCKn Dnnn

Adatbázisíró (DBWn)

Naplóíró (LGWR)

A COMMIT feldolgozása

Rendszerfigyelő (SMON)

Folyamatfigyelő (PMON)

Ellenőrzési pont folyamat (CKPT)

Archiváló folyamat (ARCn)

