

Projektmunka I.

Mérésautomatizálás delta robottal

OE-KVK 2024. október 29. Hallgtó neve: Neptun kód: Széles Péter

YYHITZ

Tartalomjegyzék

1.	Specifikáció	2	
2.	Irodalomkutatás 2.1. Léptetőmotor pozícionálás 2.2. Inverz kinematika 2.3. Effektor mozgásának útja 2.4. Robot mozgástere	3 3 6 9	
3.	Logikai rendszerterv	10	
4.	Ütemterv		
5.	Fizikai rendszerterv		
6.	Költségterv, beszerzési lista	12	
7.	Eszközök ismertetése	12	
8.	Szoftver terv	12	
9.	Megvalósítás	12	
10.	Működés ismertetése	12	
11.	Tesztelés	12	
12.	Tesztelés eredményeinek értékelése	12	
13.	Fejlesztési lehetőségek	12	
14.	Hivatkozások	13	

1. Specifikáció

Dolgozatomban egy delta robottal megvalósított, úgynvezett "Flying probe" automata áramkör mérőrendszert szeretnék megvalósítani. A nyomtatott áramköröm meglévő mérési pontokat kamera segítségével azonosítom, és a mérőtüskét a delta robot helyezi pozícióba legalább +-1mm pontossággal. A mérést automatikusan digitális műszer segítségével végződik. A digitális műszerret és a robotkarrart egy számítógép vezérelné, ami a mérési eredményeket tárolná és visszajelezné.

2. Irodalomkutatás

2.1. Léptetőmotor pozícionálás

Léptetőmotor pozícionálása történhet vezrléssel, vagy szabályozással. Vezérlés előnye hogy mevalósítása egyszerűbb és olcsóbb, ha a rendszer mozgatásához szükséges nyomaték, soha nem haldja meg a léptetőmotor által képes ladott nyomaték nagyságát, ez a módsze hosszú távon pontos pozícionálást tud lehetővé tenni. Olyan rendszerekben ahol a rendszer mozgatásához szükséges nyomaték gyorsan, vagy előre meg nem jósolható módon megváltozhat, a léptető motor lépést téveszthet, így ott visszacsatolást kell bevezetni. Ez a visszacsatolás történhet a motor tengelypozíciójának mérésével, vagy a motor tekercsein folyó áram mérésével.^[1]

1. ábra. Lecserélni saját képre!

2. ábra. Lecserélni saját képre!

Nyíthurkú működés során a megtett lépések számolásával határoznánk meg a pozíciónkat. A kezdeti pozíciót a rendszer újraindításakor meg kell adni. Ez történhet kézzel ismert pozícióba mozgatással, törénhet végálláskapcsolókkal vagy motoráram mérésen alapuló "homeing"-al. A motor számított, és enkóderrel mért valós pozícióját adott időközönként összehasonlítjuk. Amint a várt és valós érték közt egy lépésnél nagyobb eltérét mérünk átkapcsolunk szabázáson alapuló irányításra. Amint a pozició megegyezik a kívántal visszakapcsolunk vezérelt működésre és újrakalkulájuk az útvonalat a jelenlegi pozíciótól.

Léptetőmotor lépéstévesztésének lehetséges okai:

- Motor indításakor a vezérlő frekvencia túl nagy.
- A motor saját rezonanciafrekvenciájához közeli vezérlőfrekvenciával vezéreljük.
- Maximális vezérlőfrekvencia túl nagy.
- Külső hatás.

Az első három ok orvosolható megfelelő gyorsulási rámpák implementálásával. Külső hatások ellen csak a motor nyomatékának növelésével tudunk védekezni. A gyorsulási rámpa lehet Trapéz ("Trapezoidal"), Sgörbe ("S-curve") vagy parabola (sebesség) jellegű.

3. ábra. Lecserélni saját képre!

4. ábra. Lecserélni saját képre!

Trapéz görbe matematikai leírása:

$$s_t = s_0 + v_0 T + \frac{1}{2}at^2$$
$$V_t = V_0 + at$$

 s_0 : kezdő pozíció.

 $\stackrel{\circ}{V_0}$: kezdő sebesség.

 s_t : pillanatnyi pozíció.

 v_t : pillanatnyi sebesség.

a: állandó gyorsulás.

t: eltelt idő.

S-görbe és Parabola görbe matematikai leírása:

$$s_t = s_0 + v_0 T + \frac{1}{2} a_0 t^2 + \frac{1}{6} j t^3$$
$$V_t = V_0 + a_0 t + \frac{1}{2} j t^2$$

$$a_t = a_0 + jt$$

 s_0 : kezdő pozíció.

 V_0 : kezdő sebesség.

a₀: kezdő gyorsulás.

 s_t : pillanatnyi pozíció.

 v_t : pillanatnyi sebesség.

 a_t : pillanatnyi gyorsulás.

j: állandó rándulás(a gyorsulás idő szerinti deriváltja).

t: eltelt idő.

Trapéz gyorsulási karakterisztika megvalósítása a legegyszerűbb. S-görbe gyorsulási karakterisztika használata lecsökkenti a rendszerben keletkező negyfrekvenciás rezgések energiáját, ez járhat jorsabb beállási idővel. Ahogy az alábbi léptetőmotor sebesség/nyomaték görbélyén látható, a motor által leadni képes nyomaték a sebeség növekedésével jelentősen lecsökken, így érdemes a gyorsulást sebesség növekedésével arányosan csökkenteni. Ezt valósítja meg a parabola sebesség görba.^[3]

5. ábra. Lecserélni saját képre!

2.2. Inverz kinematika

A kordinátarendszerünk x tengelye az 1-es számú motor felé mutat. A 2-es és 3-as számú motor szögének számításához a kordinátarendszer el kell forgatni 2-es esetén 120 fokkal, 3-as esetén -120 fokkal, hogy az x tengely a megfelelő motor irányába mutasson.

Kordinátarendszer forgatása:

Deszkartes -> Polár kordinátarendszer átváltás:

$$\alpha = Arctg2(y_1; x_1)$$
$$r = \sqrt{x_1^2 + y_1^2}$$

Polár -> Deszkartes kordinátarendszer átváltás:

$$x_2 = rSin(\alpha + -120)$$

$$y_2 = rCos(\alpha + -120)$$

 x_1 : kezdeti x kordináta.

 y_1 : kezdeti y kordináta.

r: vektor hossza.

 α : vektor iránya.

 x_2 : elforgatott x kordináta. y_2 : elforgatott y kordináta.

Ki kell számítani az alsó kar xz síkon vett vetületét.

Alsó kar xz síkon vett vetülete:

$$r_{a1} = \sqrt{r_a^2 + y_e^2}$$

y_e: effektor y kordinátája.

 r_a : alsó kar hossza.

 r_{a1} : alsó kar xz síkon vett vetületének hossza.

Alsó és felső kar csatlakozási pontjának kiszámításához fel kell írnunk egy egyenletrendszert. Első egyenlet egy kört ír le xz síkon, amely középpontja a motor tengelye és a felső kar csatlakozási pontja, sugara megeggyezik a felső kar hosszával. Második egyenlet szintén egy kört ír le xz síkon, amely középpontja az effektor asztal és az alsó kar csatlakozási pontja, sugara megeggyezik az alsó kar hosszával.

Egyenletrendszer felírása:

$$(x-f)^{2} + (z-m)^{2} = r_{f}^{2}$$
$$(x-(x_{e}+e)^{2} + (z-z_{e})^{2} = r_{a1}^{2}$$

x: alsó és felső kar csatlakozási pontjának x kordinátája.

z: alsó és felső kar csatlakozási pontjának z kordinátája.

 x_e : effektor x kordinátája.

 z_e : effektor z kordinátája.

 r_a : alsó kar hossza.

 r_f : felső kar hossza.

e: effektor asztal sugara.

m: motorrögzítő lap magassága.

f: motorrögzítő lap sugara.

Az alsó és felső kar csatlakozási pontjának x;z kordinátája valamint a motor tengelye és a felső kar csatlakozási pontjának kordinátáiból kiszámíthatjuk a felsőkar szögét. A motor tengelyének szöge megegyezik a felső kar szögével.

Felsőkar szögénak kiszámítása:

$$\theta = Arctg2(z-m; x-f)$$

x: alsó és felső kar csatlakozási pontjának x kordinátája.

z: alsó és felső kar csatlakozási pontjának z kordinátája.

m: motorrögzítő lap magassága.

f : motorrögzítő lap sugara.

 θ : motor tengelyének szöge.

https://ieeexplore.ieee.org/document/6318565

https://api.repository.cam.ac.uk/server/api/core/bitstreams/4787fb8e-9639-

4421-bb8e-09314a613aae/content

https://people.ohio.edu/williams/html/PDF/DeltaKin.pdf

https://robotics.caltech.edu/jwb/courses/ME115/handouts/DeltaKinematics

https://faculty.washington.edu/chx/teaching/robotics/delta_robotics_inematics.pdf

2.3. Effektor mozgásának útja

Az efektor útjának tervezésekor célunk hogy az asztal egy pontjáról kiindulva az asztalon található objektumok felett kellő magasságban elhaladjom. Mindezt a leggyorsabban, minimális energiabevitellel, és lehető legkevesebb nemkívánt rezgések gerjesztésével tegye. Erre a problémára egy kielégítő megoldás ha úgynevezett "Lamé" görbék mentén végezzük az effektor mozgatását^{[4][5]}

6. ábra. Lecserélni saját képre!

Lamé görbe matematikai leírása:

$$\left|\frac{x}{a}\right|^n + \left|\frac{y}{b}\right|^n = 1$$

|a|: x tengely metszéspontjai. a > 0

|b|: y tengely metszéspontjai. b > 0

n: a görbe alakját adja meg. $n = 1, 2, 3 \dots$ Esetünkben n > 2.

2.4. Robot mozgástere

3. Logikai rendszerterv

7. ábra. Teljes rendszer terve

8. ábra. Delta robot rendszerterve

4. Ütemterv

Oktatási hét	Feladatok	Elvégzett feladat
1	Megbeszélés, tájékoztató	
2	Specifikáció kidolgozása	Megbeszélés, tájékoztató
3	Specifikáció kidolgozása	
4	Specifikáció kidolgozása	Specifikáció kidolgozása
5	Ütemterv kidolgozása	Ütemterv kidolgozása
6	Irodalomkutatás	Irodalomkutatás
7	Félévközi projektbemutató	Irodalomkutatás
8		
9		
10		
11		
12		
13	Projektbemutató	
14	Projektbemutató pótlás	

- 5. Fizikai rendszerterv
- 6. Költségterv, beszerzési lista
- 7. Eszközök ismertetése
- 8. Szoftver terv
- 9. Megvalósítás
- 10. Működés ismertetése
- 11. Tesztelés
- 12. Tesztelés eredményeinek értékelése
- 13. Fejlesztési lehetőségek

14. Hivatkozások

- [1] Stănică Dorin-Mirel; Ioan Lita; Mihai Oproescu *Comparative analysis* of stepper motors in open loop and closed loop used in nuclear engineering, 2017
 - (https://ieeexplore.ieee.org/document/8259924)
- [2] FAULHABER How to recognize and prevent step losses with stepper motors, DR. FRITZ FAULHABER GMBH CO. KG (https://cdn.faulhaber.com/media/DAM/Documents/Tutorials/faulhabertutorial-stepper-motor-step-loss-prevention.pdf)
- [3] Chuck Lewin *Mathematics of Motion Control Profiles*, Performance Motion Devices, Inc. (http://www.pmdcorp.com/)
- [4] Zhiwei Chen; Shixu Xu; Jingwen Wu; Yanlong Geng *The simulation study of optimization of pick-and-place route for delta robot based on lame curves*, 2018 (https://ieeexplore.ieee.org/document/8407178)
- [5] Weidi Chen; Honggen Fang; Yang Yang; Wensong He Optimal Trajectory Planning for Delta Robot Based on Three-Parameter Lamé Curve, 2017
 - (https://ieeexplore.ieee.org/document/8328303)

Ábrák jegyzéke

1.	Lecserélni saját képre!	3
2.	Lecserélni saját képre!	3
3.	Lecserélni saját képre!	4
4.	Lecserélni saját képre!	5
5.	Lecserélni saját képre!	6
6.	Lecserélni saját képre!	9
7.	Teljes rendszer terve	10
8	Delta robot rendszerterve	10