NAME:

This is an open notes and open-book exam. Write all your answers on these pages.

Do all the problems within 55 minutes.

#### 105 points total

### 1 Sum of Products Minimization (16 points)

Consider the following specification:

$$F(w, x, y, z) = \Sigma(7, 8, 9, 13, 15)$$
  
$$D(w, x, y, z) = \Sigma(1, 2, 3, 5, 6, 12, 14)$$

A. Draw a 4-variable Karnaugh map and fill it in with 0s, 1s, and don't cares corresponding to the specification (8 points).

B. Using your Karnaugh map, write down a *minimal* sum-of-products expression for F(w,x,y,z) (4 points).

$$F(w, x, y, z) =$$

C. Using only nand gates and inverters, draw a schematic implementing F(w,x,y,z) (4 points).

# 2 Product of Sums Minimization (16 points)

Consider the following specification:

$$F(w, x, y, z) = \Pi(0, 3, 5, 7, 8, 13)$$
  
$$D(w, x, y, z) = \Pi(2, 6, 10, 14)$$

A. Draw a 4-variable Karnaugh map and fill it in with 0s, 1s, and don't cares corresponding to the specification (8 points).

B. Using your Karnaugh map, write down a *minimal* product-of-sums expression for F(w,x,y,z) (4 points).

$$F(w, x, y, z) =$$

C. Using only nor gates and inverters, draw a schematic implementing F(w,x,y,z) (4 points).

#### 3 7-Segment Display Controller and Decoder (31 points)

| Inputs |   | Outputs |       |       |       |
|--------|---|---------|-------|-------|-------|
| X      | У | $D_0$   | $D_1$ | $D_2$ | $D_3$ |
| 0      | 0 | 1       | 0     | 0     | 0     |
| 0      | 1 | 0       | 1     | 0     | 0     |
| 1      | 0 | 0       | 0     | 1     | 0     |
| 1      | 1 | 0       | 0     | 0     | 1     |

Figure 1: 2–4 Decoder Specification and Block Diagram



Figure 2: Two 7-Segment Displays

Consider the two-to-four decoder specified below and its block diagram in Figure 1. Your task is to design part of the *Display Controller* shown in Figure 2.

A. (3 Points) The two 7-segment displays are used to display the *base 10* value of a 2-bit 2's-complement number  $i_1i_0$ , where  $i_1$  is the most significant bit.

Each segment in the two 7-segment displays is controlled by the corresponding control signals  $a_0$  through  $g_1$ . In this part, for each value of  $i_1i_0$ , specify the base 10 value to be displayed when  $i_1i_0$  is interpreted as a 2's-complement number. As an example, the case for  $11_2$  is shown below. Fill in the remainder of the table.

| $in_1$ | $in_0$ | Display |
|--------|--------|---------|
| 0      | 0      |         |
| 0      | 1      |         |
| 1      | 0      |         |
| 1      | 1      | -1      |

B. (14 Points) The four input variables to the display controller are  $i_0$  through  $i_3$  corresponding to each of the four input cases. Fill in the table below specifying the value of each display segment. Note: (1) for negative numbers, use the leftmost 7-segment display for the negative sign, and (2) use  $b_0$  and  $c_0$  for the numeral "1".

|   | $i_0$ | $i_1$ | $i_2$ | $i_3$ | $a_1$ | $b_1$ | $c_1$ | $d_1$ | $e_1$ | $f_1$ | $g_1$ | $a_0$ | $b_0$ | $c_0$ | $d_0$ | $e_0$ | $f_0$ | $g_0$ |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| - | 1     | 0     | 0     | 0     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|   | 0     | 1     | 0     | 0     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|   | 0     | 0     | 1     | 0     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|   | 0     | 0     | 0     | 1     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

C. (14 points) Based on the table above, write minimal logical formulas in terms of the inputs  $i_0, i_1, i_2, i_3$  for the following display segments:

 $b_1 =$ 

 $g_1 =$ 

 $b_0 =$ 

 $c_0 =$ 

 $d_0 =$ 

 $f_0 =$ 

 $g_0 =$ 

# arch 2012 Exam #2a Design with Multiplexers (20 points)

Consider the following function:

$$F(w,x,y,z) = (x+y) \cdot (w'+y) \cdot (y+z) \cdot (w+x'+y'+z') \cdot (w'+x+y'+z')$$

A. Fill in the truth table (4 points)

|    |   |   |              | ( 1        |
|----|---|---|--------------|------------|
| W  | X | у | $\mathbf{z}$ | F(w,x,y,z) |
| 0  | 0 | 0 | 0            |            |
| 0  | 0 | 0 | 1            |            |
| 0  | 0 | 1 | 0            |            |
| 0  | 0 | 1 | 1            |            |
| 0  | 1 | 0 | 0            |            |
| 0  | 1 | 0 | 1            |            |
| 0  | 1 | 1 | 0            |            |
| 0  | 1 | 1 | 1            |            |
| 1  | 0 | 0 | 0            |            |
| 1  | 0 | 0 | 1            |            |
| 1  | 0 | 1 | 0            |            |
| 1  | 0 | 1 | 1            |            |
| 1  | 1 | 0 | 0            |            |
| 1  | 1 | 0 | 1            |            |
| 1  | 1 | 1 | 0            |            |
| _1 | 1 | 1 | 1            |            |

B. We can write F(w,x,y,z) using Shannon's expansion as:

$$\begin{split} F(w,x,y,z) = & (w' \cdot x' \cdot y') \cdot F(0,0,0,z) + (w' \cdot x' \cdot y) \cdot F(0,0,1,z) + \\ & (w' \cdot x \cdot y') \cdot F(0,1,0,z) + (w' \cdot x \cdot y) \cdot F(0,1,1,z) + \\ & (w \cdot x' \cdot y') \cdot F(1,0,0,z) + (w \cdot x' \cdot y) \cdot F(1,0,1,z) + \\ & (w \cdot x \cdot y') \cdot F(1,1,0,z) + (w \cdot x \cdot y) \cdot F(1,1,1,z) \end{split}$$

Write the formulas for each function below (8 points).

$$F(0,0,0,z) =$$

$$F(0,0,1,z) =$$

$$F(0,1,0,z) =$$

$$F(0, 1, 1, z) =$$

$$F(1,0,0,z) =$$

$$F(1,0,1,z) =$$

$$F(1, 1, 0, z) =$$

$$F(1, 1, 1, z) =$$

C. What are the inputs to the multiplexer shown below that implements F(w,x,y,z)? (8 points)



## 5 Full Subtractor Design (22 points)



Figure 3: Full Subtractor

A full subtractor has three inputs x, y, and  $b_{in}$ , and two outputs  $b_{out}$  and d. The behavior of the full subtractor is described as follows:

$$x_{10} - y_{10} - b_{in10} = -2 \times b_{out} + d.$$

In other words, the value of  $x - y - b_{in}$  is represented as a 2-bit 2's-complement number  $b_{out}d$ .

A. Given the informal behavioral description of a full subtractor, fill in the following table (14 points).

| X | у | $b_{in}$ | Base 10 value | $b_{out}$ | d |
|---|---|----------|---------------|-----------|---|
| 0 | 0 | 0        |               |           |   |
| 0 | 0 | 1        |               |           |   |
| 0 | 1 | 0        |               |           |   |
| 0 | 1 | 1        | -2            | 1         | 0 |
| 1 | 0 | 0        |               |           |   |
| 1 | 0 | 1        |               |           |   |
| 1 | 1 | 0        |               |           |   |
| 1 | 1 | 1        |               |           |   |

B. Implement the full subtractor using two 4:1 multiplexers as shown below (8 Points:).

