目 录

1	射频资源测量	1-1
	1.1 简介	1-1
	1.1.1 802.11h测量简介 ······	1-1
	1.1.2 802.11k测量简介 ······	1-1
	1.2 射频资源测量配置任务简介	1-2
	1.3 开启射频资源测量功能	1-3
	1.4 调整射频资源测量参数	1-4
	1.5 配置对客户端射频资源测量能力集的检查模式	1-4
	1.6 射频资源测量显示和维护	1-5
	1.7 射频资源测量典型配置举例	1-5

1 射频资源测量

1.1 简介

射频资源测量,即通过对无线环境中的信道质量及可用资源性能的测量,使得客户端和 AP 能更好地了解其所处的无线环境,以便更高效率地利用频谱、功率和带宽等无线资源。

射频资源测量的主要类型有802.11h 协议中定义的测量类型和802.11k 协议中定义测量类型。

1.1.1 802.11h测量简介

802.11h协议通过频谱管理测量和传输功率测量实现了对 5GHz频段的信道质量监控,具体的测量类型如表 1-1 所示。

表1-1 802.11h 测量类型

	测量类型	说明
	Basic测量	测量客户端是否检测到其它BSS网络的报文、OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)前导码、雷达信号或者未知信号
频谱管理测量	CCA(Clear Channel Assessment,空闲信道 评估)测量	测量信道忙碌时间所占全部检测时间的百分比
	RPI(Receive Power Indication,接收功率指示)测量	测量不同RPI功率区间所占用的时间与RPI测量所用全部时间的百分比
TPC(Transmit Power Control,传输功率控制)测量		测量客户端的链路冗余情况和传输功率

802.11h 提供的测量功能主要包括:

- AP 发送的 Beacon、Probe Response 和 Association Response、Reassociation Response 帧中,能力集字段中对应 802.11h 协议的 Spectrum Mgmt 位会被置位,用于告知客户端,AP 支持 802.11h 协议,即客户端可以向 AP 发送 802.11h 协议相关的测量请求。
- AP 收到客户端发送的测量请求后,执行相应的测量动作,并向客户端回复测量报告。此外,AP 也定时向支持 802.11h 协议的客户端发送测量请求报文,并收集、保存客户端回复的测量报告。

1.1.2 802.11k测量简介

802.11k协议通过链路测量、邻居测量和射频测量,实现了对 2.4GHz和 5GHz频段的信道质量及可用资源性能监控,具体的的测量类型如 表 1-2 所示。

表1-2 802.11k 测量类型

测量	量类型	说明
	Beacon测量	测量Beacon报文、Measurement Pilot报文和Probe Response报文的RCPI(Received Channel Power Indicator,接收信道功率参数)、RSNI(Received Signal to Noise Indicator,接收信噪比)等信息
	Frame测量	测量无线设备发送帧的平均RCPI和发送帧的总数
射频测量	STA统计	测量无线设备发送和接收的帧片段总数、组播帧总数、失败帧总数、重试帧总数、应答失败帧总数等信息
	传输流测量	测量指定传输流的帧信息
	信道负载	测量信道的空闲状态
	位置信息	测量请求和被请求者的相对位置信息
	噪声分布	测量噪声在各个分贝区间的分布状况
链路测量		测量针对链路测量请求帧的RCPI、RSNI和链路冗余等信息
邻居测量		测量邻居AP的信道号、BSSID等信息

802.11k 提供的测量功能主要包括:

- AP 发送的 Beacon、Probe Response 和 Association Response、Reassociation Response 帧中,能力集字段中对应 802.11k 协议的 Radio Measurement 位会被置位,并携带 AP 支持的射频测量能力信息,用于告知客户端,AP 支持 802.11k 射频资源测量,以及支持的测量类型,即客户端可以向本 AP 发送测量请求。
- AP 收到客户端发送的测量请求后,执行相应的测量动作,并向客户端回复测量报告。此外,AP 也定时向支持 802.11k 协议的客户端发送测量请求报文,并收集、保存客户端回复的测量报告。
- AP 通过定期发送 Measurement Pilot 帧协助客户端更快地扫描到 AP, 其发送的频率比 Beacon 帧高, 但携带的信息比 Beacon 帧少。

1.2 射频资源测量配置任务简介

表1-3 射频资源测量配置任务简介

配置任务	说明	详细配置
开启射频资源测量功能	必选	<u>1.3</u>
调整射频资源测量参数	可选	1.4
配置对客户端射频测量能力集的检查模式	可选	<u>1.5</u>

1.3 开启射频资源测量功能

表1-4 开启射频资源测量功能(Radio 视图)

操作	命令	说明
进入系统视图	system-view	-
进入AP视图	wlan ap ap-name [model model-name]	-
进入Radio视图	radio radio-id	-
开启测量功能	measure { all link neighbor radio spectrum tpc } { enable disable }	缺省情况下,继承AP组配置 仅5GHz射频支持spectrum和 tpc测量
开启射频资源测量功能	resource-measure enable	缺省情况下,继承AP组配置 在开启link测量、neighbor测量 或radio测量的情况下,必须开 启射频资源测量功能
开启频谱管理功能	spectrum-management enable	缺省情况下,继承AP组配置 在开启spectrum测量或tpc测量的情况下,必须开启频谱管理功能 spectrum-management enable命令请参考"WLAN命令参考"中的"WLAN RRM"

表1-5 开启射频资源测量功能(AP组 Radio 视图)

操作	命令	说明
进入系统视图	system-view	-
进入AP组视图	wlan ap-group group-name	-
进入AP型号视图	ap-model ap-model	-
进入Radio视图	radio radio-id	-
开启测量功能	measure { all link neighbor radio spectrum tpc } { enable disable }	缺省情况下,测量功能处于关闭状态 仅5GHz射频支持spectrum和tpc测量
开启射频资源测量功能	resource-measure enable	缺省情况下,射频测量功能处于关闭状态 在开启link测量、neighbor测量或radio测量 的情况下,必须开启射频资源测量功能
开启频谱管理功能	spectrum-management enable	缺省情况下,频谱管理功能处于关闭状态 在开启spectrum测量或tpc测量的情况下, 必须开启频谱管理功能 spectrum-management enable命令请参 考"WLAN命令参考"中的"WLAN RRM"

1.4 调整射频资源测量参数

开启测量功能后,AP 以发送测量请求的时间间隔定时向客户端发送测量请求报文,并在测量请求报文中携带测量的持续时间。

表1-6 调整射频资源测量参数(Radio 视图)

操作	命令	说明
进入系统视图	system-view	-
进入AP视图	wlan ap ap-name [model model-name]	-
进入Radio视图	radio radio-id	-
配置测量持续时间	measure-duration time	缺省情况下,继承AP组配置
配置发送测量请求的时间间隔	measure-interval value	缺省情况下,继承AP组配置

表1-7 调整射频资源测量参数(AP组 Radio 视图)

操作	命令	说明
进入系统视图	system-view	-
进入AP组视图	wlan ap-group group-name	-
进入AP型号视图	ap-model ap-model	-
进入Radio视图	radio radio-id	-
配置测量持续时间	measure-duration time	缺省情况下,测量持续时间为 500TU
配置发送测量请求的时间间隔	measure-interval value	缺省情况下,发送测量请求间隔时间为30秒

1.5 配置对客户端射频资源测量能力集的检查模式

开启射频资源测量功能后,可以通过配置射频资源能力集检查模式选择客户端的上线条件。射频资源测量能力集即 AP 和客户端支持的射频资源测量类型。设备支持的射频资源测量能力集检查模式如下:

- 完全匹配模式(**all**):客户端的射频资源测量能力集与 AP 的射频资源测量能力集全部匹配,才允许客户端上线,否则,不允许客户端上线。
- 不检查模式 (none): 不检查客户端射频资源测量能力集。
- 部分匹配模式(partial): 客户端的射频资源测量能力集与 AP 的射频测量能力集只要有一个 匹配,则允许客户端上线,否则,不允许客户端上线。

表1-8 配置对客户端射频测量能力集的检查模式(Radio 视图)

操作	命令	说明
进入系统视图	system-view	-

操作	命令	说明
进入AP视图	wlan ap ap-name [model model-name]	-
进入Radio视图	radio radio-id	-
配置Radio能力集检查模式	rm-capability mode { all none partial }	缺省情况下,继承AP组配置

表1-9 配置对客户端射频测量能力集的检查模式(AP组 Radio 视图)

操作	命令	说明
进入系统视图	system-view	-
进入AP组视图	wlan ap-group group-name	-
进入AP型号视图	ap-model ap-model	-
进入Radio视图	radio radio-id	-
配置Radio能力集检查模式	rm-capability mode { all none partial }	缺省情况下,不检查客户端射频 测量能力集

1.6 射频资源测量显示和维护

在完成上述配置后,在任意视图下执行 display 命令可以显示配置后射频资源测量的运行情况,通过查看显示信息验证配置效果。

表1-10 射频资源测量显示和维护

操作	命令
显示客户端的测量报告信息	display wlan measure-report ap ap-name radio radio-id [client mac-address mac-address]

1.7 射频资源测量典型配置举例

1. 组网需求

如 <u>图 1-1</u>所示,AP通过交换机与AC相连。要求客户端的上线条件为客户端的射频资源测量能力集与AP的射频资源测量能力集完全匹配,成功上线的客户端能够执行所有测量。

2. 组网图

图1-1 射频资源测量配置组网图

3. 配置步骤

#创建无线服务模板 1。

<AC> system-view

[AC] wlan service-template 1

#配置无线服务的 SSID 为 resource-measure,并使能无线服务模板。

[AC-wlan-st-1] ssid resource-measure

[AC-wlan-st-1] service-template enable

[AC-wlan-st-1] quit

创建手工 AP, 名称为 ap1, 并配置序列号。

[AC] wlan ap ap1 model WA4320H

[AC-wlan-ap-ap1] serial-id 219801A0YG8165E00001

进入 Radio 1 视图。

[AC-wlan-ap-ap1] radio 1

#开启频谱管理功能。

[AC-wlan-ap-ap1-radio-1] spectrum-management enable

开启射频资源测量功能。

[AC-wlan-ap-ap1-radio-1] resource-measure enable

开启所有测量功能。

[AC-wlan-ap-ap1-radio-1] measure all enable

#配置对客户端射频资源测量能力集的检查模式为完全匹配模式。

[AC-wlan-ap-ap1-radio-1] rm-capability mode all

#将无线服务模板绑定到 radio1 上,并开启射频。

[AC-wlan-ap-ap1-radio-1] service-template 1

[AC-wlan-ap-ap1-radio-1] radio enable

[AC-wlan-ap-ap1-radio-1] quit

[AC-wlan-ap-ap1] quit

4. 验证配置

(1) 配置完成后,在 AC 上执行 display wlan client 命令,可以查看到客户端成功上线,说明客户端符合上线条件,即客户端的射频资源测量能力集与 AP 的射频资源测量能力集完全匹配。

[AC] display wlan client
Total number of clients: 1

MAC address Username AP name RID IP address VLAN ID 00ee-bd44-557f N/A apl 1 1.1.1.1 1

(2) 在 AC 上执行 display wlan measure-report 命令,可以显示客户端的测量报告信息。

[AC] display wlan measure-report ap ap1 radio 1 $\,$

Total number of clients: 1

Client MAC address : 00ee-bd44-557f

Link measurement:

Link margin : 2dBm RCPI : -85 dBm RSNI : 53 dBm

Noise histogram:

Antenna ID : 3

ANPI : -56 dBm

IPIO to IPIIO density : 5 12 16 13 8 5 5 15 17 1 3

Spectrum measurement:

Transmit power : 20 dBm

BSS : Detected

OFDM preamble : Detected

Radar : Detected

Unidentified signal : Undetected

CCA busy fraction : 60

RPIO to RPI7 density : 3 7 11 19 15 23 15 7

Frame report entry:

BSSID : a072-2351-e253

PHY type : fhss
Average RCPI : -10 dBm
Last RSNI : 2 dBm
Last RCPI : -20 dBm

Frames : 1

Dot11BSSAverageAccessDelay group:

Average access delay : 32 ms

BestEffort average access delay : 1 ms

Background average access delay : 1 ms

Video average access delay : 1 ms

Voice average access delay : 1 ms

Clients : 32

Channel utilization rate : 11

Transmit stream:

Traffic ID : 0 Sent MSDUs : 60 : 5 Discarded MSDUs Failed MSDUs : 3 MSDUs resent multiple times : 3 Lost QoS CF-Polls : 2 : 2 ms Average queue delay Average transmit delay : 1 ms

Bin0 range : 0 to 10 ms
Bin0 to Bin5 : 5 10 10 5 10 10