Chapter 35

Plant Structure, Growth, and Development

PowerPoint® Lecture Presentations for

Biology

Eighth Edition Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

Overview: Plastic Plants?

- The fanwort plant exhibits developmental plasticity, the ability to alter itself in response to its environment.
- Developmental plasticity is more marked in plants than in animals.
- In addition to plasticity, plant species have by natural selection accumulated characteristics of morphology = form that vary little within the species.

The fanwort has two types of leaves -- developmental plasticity

Concept 35.1: The plant body has a hierarchy of organs, tissues, and cells

- Like multicellular animals, plants have organs composed of different tissues, which in turn are composed of cells.
- Three basic organs evolved: roots, stems, and leaves.
- They are organized into a root system and a shoot system:
- Roots rely on sugar produced by photosynthesis in the shoot system.
- Shoots rely on water and minerals absorbed by the root system.

The Three Basic Plant Organs: Roots, Stems, and Leaves

- Roots are multicellular organs with important functions:
 - Anchoring the plant
 - Absorbing minerals and water
 - Storing organic nutrients

Root Hairs of a radish seedling

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Many plants have modified roots

Stems = organs consisting of nodes & internodes

Nodes, the points at which leaves are attached.

Internodes, the stem segments between nodes.

- An axillary bud is a structure that has the potential to form a lateral shoot, or branch.
- Apical bud, or terminal bud, is located near the shoot tip and causes elongation of a young shoot.
- Apical dominance helps to maintain dormancy in most nonapical buds.

Many Plants have Modified Stems

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Leaves = the main photosynthetic organs

Leaves generally consist of a flattened **blade** and a stalk called the **petiole**, which joins the leaf to a node of the stem.

- Monocots and eudicots differ in the arrangement of veins, the vascular tissue of leaves:
 - Most monocots have parallel veins.
 - Most eudicots have branching veins.

Simple vs.
Compound Leaves

(a) Simple leaf

(b) Compound leaf

(c) Doubly compound leaf

Some plant species have evolved modified leaves that serve various functions

Tissue System:

Each plant organ has:

- * dermal
- * vascular and
- * ground tissues

- In nonwoody plants, the dermal tissue system consists of the epidermis.
- A waxy coating called the cuticle helps prevent water loss from the epidermis.
- In woody plants, protective tissues called periderm replace the epidermis in older regions of stems and roots.
- Trichomes are outgrowths of the shoot epidermis and can help with insect defense.

- Tissues that are neither dermal nor vascular are the ground tissue system.
- Ground tissue internal to the vascular tissue is pith; ground tissue external to the vascular tissue is cortex. Both have plastids for storage.
- Ground tissue includes cells specialized for storage, photosynthesis, and support.

Common Types of Plant Cells - are specialized of cells in structure and function.

- Some major types of plant cells:
 - Parenchyma ground: thin flexible cell walls: photosynthesis, storage.
 - Collenchyma ground: thicker cell walls for flexible support.
 - Sclerenchyma ground: thick secondary cell walls reinforced with lignin for rigid, sturdy support.
 - Xylem vascular: water-conducting cells.
 - Phloem vascular: sugar-conducting cells.

Concept 35.2: Meristems generate cells for new organs

- A plant can grow throughout its life; this is called indeterminate growth.
- Some plant organs cease to grow at a certain size; this is called determinate growth.
- Annuals complete their life cycle in a year or less.
- Biennials require two growing seasons.
- Perennials live for many years.

- Meristems are growth regions have perpetual embryonic tissue that allows for indeterminate growth.
- Apical meristems are located at the tips of roots and shoots and at the axillary buds of shoots.
- Apical meristems elongate shoots and roots, a process called primary growth.

An overview of primary and secondary growth

Primary growth of a root

Shoot shoot apical meristem Leaf primordia tip Young leaf Developing vascular strand **Axillary** bud meristems 0.25 mm Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Secondary growth produced by the vascular cambium

Location and a Cell's Developmental Fate

- Positional information underlies all the processes of development: growth, morphogenesis, and differentiation.
- Cells are not dedicated early to forming specific tissues and organs.
- The cell's final position determines what kind of cell it will become.

Genetic Control of Flowering

- Flower formation involves a phase change from vegetative growth to reproductive growth.
- It is triggered by a combination of environmental cues and internal signals.
- Transition from vegetative growth to flowering is associated with the switching on of floral meristem identity genes.

- Plant biologists have identified several organ identity genes = plant homeotic genes.
 These genes regulate the development of floral pattern.
- A mutation in a plant organ identity gene can cause abnormal floral development.

(a) Normal Arabidopsis flower

Organ identity genes and pattern formation in flower development

(b) Abnormal Arabidopsis flower