AFNI Start to Finish: How to Analyze Data with AFNI

Goal: run group analysis on single subject response magnitudes

- how do we get there?
 - create beta (response magnitude) maps for each subject
 - should be aligned, probably to a well known template
 - run group analysis program (e.g. 3dttest++, 3dMEMA, 3dANOVA*)
 - can use uber_ttest.py to run single group tests
- how do we create aligned beta maps?
 - write single subject processing script: pre-processing through regression
 - inputs: anat, EPI, stimulus timing
 - controls: processing decisions like blur size and alignment template
 - outputs: beta weights (and t-stats, contrasts, blur estimates, etc.)
- how do we write single subject processing scripts?
 - afni_proc.py can be used to generate processing scripts
 - uber_subject.py can be used to generate afni_proc.py command
 - can also run the afni_proc.py command (generates proc script)
 - can also run the proc script (i.e. actually analyze the data)

General suggestions

- picture this experiment as your own
 - decisions on processing were made by you (and your colleagues)
 - hopefully before acquiring any data
 - there is no single "correct" way to analyze data, just reasonable ways
- focus on understanding the processing steps
 - in light of your having chosen which steps to perform
- practice the good habit of reviewing results
 - do the initial images look good?
 - review each processing step along with data
 - are the EPI and anat well aligned by the end?
 - do the statistical results look reasonable?
- create scripts for any processing step
 - they are a record of how data was processed
 - easy to apply to any new subjects
 - easy to repeat
 - expect to re-analyze everything (mistake, new decision, etc.)
 - keep original data and all processing scripts

Review of stimulus conditions

- Speech Perception Task: Subjects were presented with audiovisual speech that was presented in a predominantly auditory or predominantly visual modality.
- A digital video system was used to capture auditory and visual speech from a female speaker.
- There were 2 types of stimulus conditions:

(1) **Auditory-Reliable**

Example: Subjects can clearly *hear* the word "cat," but the video of a woman mouthing the word is degraded.

(2) Visual-Reliable

Example: Subjects can clearly *see* the video of a woman mouthing the word "cat," but the audio of the word is degraded.

Experiment Design:

- There were 3 runs in a scanning session.
- Each run consisted of 10 blocked trials:
 - 5 blocks contained Auditory-Reliable (Arel) stimuli, and
 - 5 blocks contained Visual-Reliable (*Vrel*) stimuli.
- Each block contained 10 trials of Arel stimuli OR 10 trials of Vrel stimuli.
 - Each block lasted for 20 seconds (1 second for stimulus presentation, followed by a 1-second inter-stimulus interval).
- Each baseline block consisted of a 10-second fixation point.

Data Collected:

- 2 Anatomical datasets for each subject, collected at 3 tesla.
 - 175 sagittal slices
 - voxel dimensions = 0.938 x 0.938 x 1.0 mm
- 3 Time Series (EPI) datasets for each subject.
 - 33 axial slices x 152 volumes = 5016 slices per run
 - TR = 2 sec; voxel dimensions = 2.75 x 2.75 x 3.0 mm
- ◆ Sample size, <u>n</u> = 10 (all right-handed subjects)

afni_proc.py uber_subject.py

- What is afni_proc.py?
 - * a program used to generate processing scripts for single subject analysis
 - command-line program
 - generated scripts are in tcsh syntax
 - scripts are written to be easily read and modified
- What is uber_subject.py?
 - for running single subject analysis
 - * a graphical user interface to afni_proc.py
 - quickly create processing scripts
 - can analyze all subjects from GUI
 - good for learning
 - FMRI processing, shell scripting, AFNI commands
 - can compare against manually generated scripts
 - for sanity, bug detection, quick evaluation

Overview of remaining steps

- * cd AFNI_data6/FT_analysis
 - > review directory contents and note subject data under directory FT
- from home directory, run uber_subject.py and analyze subject FT
 - > set subject ID, group ID
 - specify inputs: anat, EPI, stimulus timing files (all under FT_analysis/FT)
 - > controls: BLOCK(20,1), init GLTs, remove first 2 TRs
 - peruse other options, e.g. multiple CPUs for 3dDeconvolve?
 - create afni_proc.py command
 - execute afni_proc.py command (to create proc script)
 - execute proc script (analyze subject data)
- briefly review processing script
- review proc script in modest detail, while viewing processed data
 - run **afni** from **FT.results** directory and follow script
 - run resulting @ss_review_driver script
- * run group analysis (3dttest++, 3dMEMA or 3dANOVA2)
 - run uber_ttest.py on data under AFNI_data6/group_results
 - > or run existing **s1.3dANOVA2** script

Additional comments

- inputs for subject FT are under AFNI_data6/FT_analysis/FT
- results from uber_*.py go where the program was run
 - > uber_subject.py: subject_results/group.GROUP/subj.SUBJECT
 - b uber_ttest.py: group_results/test.INDEX.PROGRAM
 - > so in class, these directory trees should end up under the home directory
- it is not necessary to master all shell script details
 - but want to understand processing steps
- * when analyzing data, run @ss_review_driver for every subject
 - > script represents the **minimum** of what to look at for each subject
 - for the first few subjects analyzed, look at all results in detail
 - in more detail than the level of this class
 - before acquiring many subjects

Note what is under AFNI_data6/FT_analysis

FT subject data directory basic afni_proc.py script s01.ap.simple s02.ap.align more advanced script s09.cleanup - remove analysis results s11.proc.FT - result of **s01.ap.simple** s12.proc.FT.align - result of **s01.ap.align** under **FT** visual reliable timing AV1_vis.txt AV2 aud.txt auditory reliable timing anatomical dataset FT_anat+orig.BRIK/HEAD FT_epi_r1+orig.BRIK/HEAD EPI run 1 FT_epi_r2+orig.BRIK/HEAD - EPI run 2 FT epi r3+oriq.BRIK/HEAD - EPI run 3

AV1_vis.txt:

60 90 120 180 240 120 150 180 210 270 0 60 120 150 240

AFNI Start to Finish (the horror continues...)

 To continue reviewing the data on your own, please see the corresponding tutorial that continues under the data directory:

> AFNI_data6/FT_analysis/tutorial

Alternatively, this can be viewed from the AFNI web site:

http://afni.nimh.nih.gov/pub/dist/edu/data/CD.expanded/AFNI_data6/FT_analysis/tutorial

- or from the Help menu of uber_subject.py
 - Help --> Browse --> web: tutorial-single subject analysis