Métodos de Prova Adicionais Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

21 de fevereiro de 2014

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva

Prova de Existência

Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso

Adaptando demonstrações

Exercícios

Avisos / Tarefas

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

3 of 43

Primeiro Passo: Compreender o Enunciado

Anteriormente, vimos...

- A terminologia associada a teoremas;
- Enunciados de generalização;
- Tipos de argumentos necessários em algumas provas (generalizações, equivalências, condicionais vácuos, etc...)

Segundo Passo: Escolher uma Técnica

- Se o enunciado é condicional, temos opções de método...
 - Prova Direta
 - Prova por Contraposição
 - Prova por Contradição

Segundo Passo: Escolher uma Técnica

- Se o enunciado é condicional, temos opções de método...
 - Prova Direta
 - o Prova por Contraposição
 - Prova por Contradição

IMPORTANTE!!!

Em cada caso, devemos identificar a condição e a conclusão do condicional.

Terceiro Passo: Desenvolvimento da Prova

- Alguns métodos complementares...
 - Prova por Casos
 - Prova Exaustiva
 - Prova de Existência
 - Prova de Unicidade

Terceiro Passo: Desenvolvimento da Prova

- Possíveis estratégias...
 - Raciocínio adiante e reverso
 - Adaptando demonstrações

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

8 of 43

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos

Prova Exaustiva Prova de Existência

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

9 of 43

Consiste nos seguintes passos:

- Divida a condição p em casos p₁, p₂, ... p_n distintos e complementares
- Em cada caso p_i , resolva o condicional $p_i \rightarrow q$
- Conclua que q é verdade, pois segue de p em todos os possíveis casos.

Consiste nos seguintes passos:

- Divida a condição p em casos p₁, p₂, ... p_n distintos e complementares
- Em cada caso p_i , resolva o condicional $p_i \rightarrow q$
- Conclua que q é verdade, pois segue de p em todos os possíveis casos.

IMPORTANTE!!!

Uma prova por casos deve cobrir todas as possibilidades em que um teorema se aplica. Os possíveis casos que dividem p devem ser complementares uns aos outros.

	por Casos					
Assuma	<i>p</i> ₁	p_2		pn		
Desenvolva	÷	÷		÷		
Conclua	q	q		q		
Resultado		р –	→ q			

Por que Funciona?

Observe a tabela para p dividida em casos p_1 e p_2 :

			E	F	G		
p_1	p_2	q	$p_1 \rightarrow q$	$p_2 \rightarrow q$	$p_1 \vee p_2$	G o q	$E \wedge F$
F	F	F	V	V	F	V	V
F	F	V	V	V	F	V	V
F	V	F	V	F	V	F	F
F	V	V	V	V	V	V	V
V	F	F	F	V	V	F	F
V	F	V	V	V	V	V	V
V	V	F	F	F	V	F	F
V	V	V	V	V	V	V	V

Por que Funciona?

Constatação:

Se focarmos nossa atenção às colunas $p_1 \to q \land p_2 \to q$ (descrita como $E \land F$), e $(p_1 \lor p_2) \to q$ (descrita como $G \to q$), observamos que as fórmulas são equivalentes. Como consequencia, provar que $p_1 \to q$ e que $p_2 \to q$ é o mesmo que mostrar $p \to q$.

Exemplo

Teorema

"Se n é um inteiro, então $n^2 \ge n$."

Exemplo

Teorema

"Se n é um inteiro, então $n^2 \ge n$."

O enunciado pode ser reescrito:

$$(\forall n \in \mathbb{Z})[n^2 \geq n]$$

Exemplo

Teorema

"Se n é um inteiro, então $n^2 \ge n$."

O enunciado pode ser reescrito:

$$(\forall n \in \mathbb{Z})[n^2 \geq n]$$

Constatação:

Temos um condicional $p \rightarrow q$ em que

- p é "n é inteiro";
- q nos diz que " $n^2 \ge n$ ".

Teorema

"Se n é um inteiro, então $n^2 \ge n$."

Teorema

"Se n é um inteiro, então $n^2 > n$."

Prova

A condição do teorema é que n seja inteiro. Podemos dividir essa condição em casos (i) n=0, (ii) $n\geq 1$, (iii) $n\leq -1$.

Teorema

"Se n é um inteiro, então $n^2 > n$."

Prova

A condição do teorema é que n seja inteiro. Podemos dividir essa condição em casos (i) n=0, (ii) $n\geq 1$, (iii) $n\leq -1$.

Caso (i): Quando n = 0, teremos que $n^2 = 0^2$. Logo, uma vez que $0 \ge 0$, podemos afirmar que $n^2 \ge n$.

Teorema

"Se n é um inteiro, então $n^2 > n$."

Prova

A condição do teorema é que n seja inteiro. Podemos dividir essa condição em casos (i) n=0, (ii) $n\geq 1$, (iii) $n\leq -1$.

Caso (i): Quando n = 0, teremos que $n^2 = 0^2$. Logo, uma vez que $0 \ge 0$, podemos afirmar que $n^2 \ge n$.

Caso (ii): Quando $n \ge 1$, se multiplicarmos os dois lados da equação por n, teremos $n.n \ge 1.n$, ou seja, $n^2 \ge n$. Portanto, se $n \ge 1$, então $n^2 \ge n$.

Teorema

"Se n é um inteiro, então $n^2 \ge n$."

Prova

A condição do teorema é que n seja inteiro. Podemos dividir essa condição em casos (i) n = 0, (ii) $n \ge 1$, (iii) $n \le -1$.

Caso (i): Quando n = 0, teremos que $n^2 = 0^2$. Logo, uma vez que $0 \ge 0$, podemos afirmar que $n^2 \ge n$.

Caso (ii): Quando $n \ge 1$, se multiplicarmos os dois lados da equação por n, teremos $n.n \ge 1.n$, ou seja, $n^2 \ge n$. Portanto, se $n \ge 1$, então $n^2 \ge n$.

Caso (iii): Neste caso temos $n \le -1$. Sabemos que $n^2 \ge 0$ para qualquer n. Como $0 \ge -1$, temos $n^2 \ge n$. ■

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos

Prova Exaustiva

Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

16 of 43

Consiste no seguinte passo:

• Para cada elemento do domínio, mostre que o teorema vale.

Consiste no seguinte passo:

Para cada elemento do domínio, mostre que o teorema vale.

Constatação:

É um caso particular da prova por casos.

Consiste no seguinte passo:

Para cada elemento do domínio, mostre que o teorema vale.

Constatação:

É um caso particular da prova por casos.

Constatação:

Uma prova exaustiva só pode ser feita em domínios finitos.

Teorema

" $(n+1)^3 \ge 3^n$ se n é um inteiro positivo com $n \le 4$ ".

Prova

Utilizaremos uma prova exaustiva.

Teorema

" $(n+1)^3 \ge 3^n$ se n é um inteiro positivo com $n \le 4$ ".

Prova

Utilizaremos uma prova exaustiva. Basta verificarmos que a propriedade $(n+1)^3 \geq 3^n$ vale para n=1,2,3 e 4.

Teorema

" $(n+1)^3 \ge 3^n$ se n é um inteiro positivo com $n \le 4$ ".

Prova

Utilizaremos uma prova exaustiva. Basta verificarmos que a propriedade $(n+1)^3 \geq 3^n$ vale para n=1,2,3 e 4. Para n=1, teremos $(1+1)^3 \geq 3^1$, o que resulta em $8 \geq 3$;

Teorema

" $(n+1)^3 \ge 3^n$ se n é um inteiro positivo com $n \le 4$ ".

Prova

Utilizaremos uma prova exaustiva. Basta verificarmos que a propriedade $(n+1)^3 \ge 3^n$ vale para n=1,2,3 e 4. Para n=1, teremos $(1+1)^3 \ge 3^1$, o que resulta em $8 \ge 3$; para n=2, teremos $(2+1)^3 \ge 3^2$, o que resulta em $27 \ge 9$;

Teorema

" $(n+1)^3 \ge 3^n$ se n é um inteiro positivo com $n \le 4$ ".

Prova

Utilizaremos uma prova exaustiva. Basta verificarmos que a propriedade $(n+1)^3 \geq 3^n$ vale para n=1,2,3 e 4. Para n=1, teremos $(1+1)^3 \geq 3^1$, o que resulta em $8 \geq 3$; para n=2, teremos $(2+1)^3 \geq 3^2$, o que resulta em $27 \geq 9$; para n=3, teremos $(3+1)^3 \geq 3^3$, o que resulta em $64 \geq 27$;

Teorema

" $(n+1)^3 \ge 3^n$ se n é um inteiro positivo com $n \le 4$ ".

Prova

Utilizaremos uma prova exaustiva. Basta verificarmos que a propriedade $(n+1)^3 \geq 3^n$ vale para n=1,2,3 e 4. Para n=1, teremos $(1+1)^3 \geq 3^1$, o que resulta em $8 \geq 3$; para n=2, teremos $(2+1)^3 \geq 3^2$, o que resulta em $27 \geq 9$; para n=3, teremos $(3+1)^3 \geq 3^3$, o que resulta em $4 \geq 27$; finalmente, para 1 = 4, teremos $1 \leq 27$; finalmente, para $1 \leq 37$; finalmente, para $1 \leq 47$; finalmente, para finalmente,

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva

Prova de Existência

Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

19 of 43

Prova de Existência

Há duas maneiras de demonstrar enunciados do tipo $(\exists x)[P(x)]$

- Mostrar um elemento do domínio que satisfaz a propriedade (prova construtiva)
- Construir um argumento que garante a existência de um elemento com a propriedade, mesmo que não o mostremos (prova não construtiva) - Normalmente por contradição.

Exemplo - Prova de Existência Construtiva

Teorema

"Existe um inteiro positivo que pode ser escrito como a soma de dois cubos de inteiros positivos em pelo menos duas maneiras distintas."

Teorema

"Existe um inteiro positivo que pode ser escrito como a soma de dois cubos de inteiros positivos em pelo menos duas maneiras distintas."

Prova

Após muitos testes e possivelmente por um método de força bruta, encontramos que $1729 = 10^3 + 9^3 = 12^3 + 1^3$.

Teorema

"Existe um inteiro positivo que pode ser escrito como a soma de dois cubos de inteiros positivos em pelo menos duas maneiras distintas."

Prova

Após muitos testes e possivelmente por um método de força bruta, encontramos que $1729 = 10^3 + 9^3 = 12^3 + 1^3$. Uma vez que mostramos um inteiro que pode ser escrito como soma de cubos de duas maneiras diferentes, o teorema está provado.

Teorema

"Existem irracionais x, y tais que x^y é racional."

Teorema

"Existem irracionais x, y tais que x^y é racional."

Prova

Sabemos que $\sqrt{2}$ é irracional.

Teorema

"Existem irracionais x, y tais que x^y é racional."

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$.

Teorema

"Existem irracionais x, y tais que x^y é racional."

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$. Se este número for racional, teremos provado o teorema, pois existiriam irracionais x e y tais que $x = y = \sqrt{2}$ com x^y racional.

Teorema

"Existem irracionais x, y tais que x^y é racional."

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$. Se este número for racional, teremos provado o teorema, pois existiriam irracionais x e y tais que $x = y = \sqrt{2}$ com x^y racional. Suponha então que $\sqrt{2}^{\sqrt{2}}$ é irracional.

Teorema

"Existem irracionais x, y tais que x^y é racional."

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$. Se este número for racional, teremos provado o teorema, pois existiriam irracionais x e y tais que $x = y = \sqrt{2}$ com x^y racional.

Suponha então que $\sqrt{2}^{\sqrt{2}}$ é irracional. Nesse caso, podemos usar $x=\sqrt{2}^{\sqrt{2}}$ e $y=\sqrt{2}$

Teorema

"Existem irracionais x, y tais que x^y é racional."

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$. Se este número for racional, teremos provado o teorema, pois existiriam irracionais x e \underline{y} tais que $x = y = \sqrt{2}$ com x^y racional.

Suponha então que $\sqrt{2}^{\sqrt{2}}$ é irracional. Nesse caso, podemos usar $x = \sqrt{2}^{\sqrt{2}}$ e $y = \sqrt{2}$ para fazer $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$

Teorema

"Existem irracionais x, y tais que x^y é racional."

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$. Se este número for racional, teremos provado o teorema, pois existiriam irracionais x e \underline{y} tais que $x = y = \sqrt{2}$ com x^y racional.

Suponha então que $\sqrt{2}^{\sqrt{2}}$ é irracional. Nesse caso, podemos usar $x = \sqrt{2}^{\sqrt{2}}$ e $y = \sqrt{2}$ para fazer $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$ $= \sqrt{2}^{(\sqrt{2}.\sqrt{2})} = \sqrt{2}^2 = 2$.

Exemplo - Prova de Existência Não-Construtiva (Continuação)

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$. Se este número for racional, teremos provado o teorema, pois existiriam irracionais x e y tais que $x=y=\sqrt{2}$ com x^y racional. Suponha então que $\sqrt{2}^{\sqrt{2}}$ é irracional. Nesse caso, podemos usar $x=\sqrt{2}^{\sqrt{2}}$ e $y=\sqrt{2}$ para fazer $x^y=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2}.\sqrt{2})}=\sqrt{2}^{2}=2$.

Exemplo - Prova de Existência Não-Construtiva (Continuação)

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$. Se este número for racional, teremos provado o teorema, pois existiriam irracionais x e y tais que $x=y=\sqrt{2}$ com x^y racional. Suponha então que $\sqrt{2}^{\sqrt{2}}$ é irracional. Nesse caso, podemos usar $x=\sqrt{2}^{\sqrt{2}}$ e $y=\sqrt{2}$ para fazer $x^y=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2}.\sqrt{2})}=\sqrt{2}^{2}=2$. Embora não saibamos dizer qual dos pares $x=y\sqrt{2}$ ou $x=\sqrt{2}^{\sqrt{2}}$ e $y=\sqrt{2}$ de reais gera um racional, sabemos que ao menos um dos pares o faz.

Exemplo - Prova de Existência Não-Construtiva (Continuação)

Prova

Sabemos que $\sqrt{2}$ é irracional. Considere o número $\sqrt{2}^{\sqrt{2}}$. Se este número for racional, teremos provado o teorema, pois existiriam irracionais x e y tais que $x = y = \sqrt{2}$ com x^y racional. Suponha então que $\sqrt{2}^{\sqrt{2}}$ é irracional. Nesse caso, podemos usar $x = \sqrt{2}^{\sqrt{2}}$ e $y = \sqrt{2}$ para fazer $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2}.\sqrt{2})}$ $=\sqrt{2}^2=2$. Embora não saibamos dizer qual dos pares $x=y\sqrt{2}$ ou $x = \sqrt{2}^{\sqrt{2}}$ e $y = \sqrt{2}$ de reais gera um racional, sabemos que ao menos um dos pares o faz. Em cada caso, existe um par de números irracionais x, y tais que x^y é racional.

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência

Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

Prova de Unicidade

Enunciados do tipo "existe um único n tal que..."

Exemplo

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

Prova de Unicidade

Uma prova de unicidade consiste de dois passos:

- **1.** Mostrar que existe um elemento *x* do domínio que satisfaz a propriedade (prova de existência)
- **2.** Mostrar que qualquer outro elemento $y \neq x$ não satisfaz a propriedade (uma generalização)

Um enunciado de unicidade tem formato

$$(\exists x)[P(x) \land (\forall y)[y \neq x \rightarrow \neg P(y)]]$$

Um enunciado de unicidade tem formato

$$(\exists x)[P(x) \land (\forall y)[y \neq x \rightarrow \neg P(y)]]$$

Os passos são:

1. Mostrar $(\exists x)[P(x)]$

Um enunciado de unicidade tem formato

$$(\exists x)[P(x) \land (\forall y)[y \neq x \rightarrow \neg P(y)]]$$

Os passos são:

- **1.** Mostrar $(\exists x)[P(x)]$
- **2.** Sabendo que esse x existe, mostrar que $(\forall y)[y \neq x \rightarrow \neg P(y)]$.

Um enunciado de unicidade tem formato

$$(\exists x)[P(x) \land (\forall y)[y \neq x \rightarrow \neg P(y)]]$$

Os passos são:

- **1.** Mostrar $(\exists x)[P(x)]$
- **2.** Sabendo que esse x existe, mostrar que $(\forall y)[y \neq x \rightarrow \neg P(y)]$.

Constatação:

A primeira parte mostra que existe um elemento. A segunda mostra que é somente um. Como resultado, temos que existe "um e somente um".

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

Prova

1. Observe que $r = \frac{-b}{a}$ é um solução de ar + b = 0, pois $a \cdot \frac{-b}{a} + b = -b + b = 0$.

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

- **1.** Observe que $r = \frac{-b}{a}$ é um solução de ar + b = 0, pois $a.\frac{-b}{a} + b = -b + b = 0$. Consequentemente, existe um número real tal que ar + b = 0. (existência)
- **2.** Suponha que existe um $s \neq r$ tal que as +b = 0.

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

- **1.** Observe que $r = \frac{-b}{a}$ é um solução de ar + b = 0, pois $a.\frac{-b}{a} + b = -b + b = 0$. Consequentemente, existe um número real tal que ar + b = 0. (existência)
- **2.** Suponha que existe um $s \neq r$ tal que as + b = 0. Nesse caso, temos que as + b = ar + b.

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

- **1.** Observe que $r = \frac{-b}{a}$ é um solução de ar + b = 0, pois $a.\frac{-b}{a} + b = -b + b = 0$. Consequentemente, existe um número real tal que ar + b = 0. (existência)
- **2.** Suponha que existe um $s \neq r$ tal que as + b = 0. Nesse caso, temos que as + b = ar + b. Subtraindo b dos dois lados, temos as = ar.

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

- **1.** Observe que $r = \frac{-b}{a}$ é um solução de ar + b = 0, pois $a.\frac{-b}{a} + b = -b + b = 0$. Consequentemente, existe um número real tal que ar + b = 0. (existência)
- **2.** Suponha que existe um $s \neq r$ tal que as + b = 0. Nesse caso, temos que as + b = ar + b. Subtraindo b dos dois lados, temos as = ar. Dividindo ambos por a, temos s = r.

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

- **1.** Observe que $r = \frac{-b}{a}$ é um solução de ar + b = 0, pois $a.\frac{-b}{a} + b = -b + b = 0$. Consequentemente, existe um número real tal que ar + b = 0. (existência)
- **2.** Suponha que existe um $s \neq r$ tal que as + b = 0. Nesse caso, temos que as + b = ar + b. Subtraindo b dos dois lados, temos as = ar. Dividindo ambos por a, temos s = r. Mas $s \neq r$, então temos uma contradição.

Teorema

Se a e b são números reais e a \neq 0, então existe um único real r tal que ar + b = 0.

- **1.** Observe que $r = \frac{-b}{a}$ é um solução de ar + b = 0, pois $a.\frac{-b}{a} + b = -b + b = 0$. Consequentemente, existe um número real tal que ar + b = 0. (existência)
- **2.** Suponha que existe um $s \neq r$ tal que as + b = 0. Nesse caso, temos que as + b = ar + b. Subtraindo b dos dois lados, temos as = ar. Dividindo ambos por a, temos s = r. Mas $s \neq r$, então temos uma contradição. Logo, nossa suposição de que tal s existe deve ser falsa e r seria único.

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

Exercícios em Sala

- **1.** Prove que $n^2 + 1 \ge 2^n$ quando n é um inteiro positivo com $1 \le n \le 4$.
- **2.** Use prova por casos pra mostrar que min(a, min(b, c)) = min(min(a, b), c) para a, b, c números reais quaisquer.
- 3. Prove que existem dois inteiros positivos consecutivos tais que um dos inteiros é um quadrado perfeito e o outro é um cubo perfeito. Sua prova é construtiva ou não construtiva?

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência Prova de Unicidade

Exercícios

Estratégia em Demonstrações Raciocínio Adiante e Reverso

Adaptando demonstrações

Exercícios

Avisos / Tarefas

32 of 43

Raciocínio Adiante e Reverso

Para um condicional $p \rightarrow q...$

- Normalmente seguimos o sentido do condicional: Partimos de p e buscamos q. (Rac. Adiante)
- Se usarmos apenas regras de equivalência no raciocínio, podemos fazer o caminho contrário. (Rec. Reverso)

Exemplo - Raciocínio Reverso

Teorema

Dados dois reais positivos a e b, a média aritmética deles $\frac{(a+b)}{2}$ é sempre maior que a média geométrica \sqrt{ab} desses números.

Exemplo - Raciocínio Reverso

Teorema

Dados dois reais positivos a e b, a média aritmética deles $\frac{(a+b)}{2}$ é sempre maior que a média geométrica \sqrt{ab} desses números.

O enunciado pode ser reescrito:

$$(\forall a)(\forall b)[a,b\in\mathbb{R}_+^* o rac{(a+b)}{2}>\sqrt{ab}]$$

Exemplo - Raciocínio Reverso

Teorema

$$(\forall a)(\forall b)[a,b\in\mathbb{R}_+^* o rac{(a+b)}{2}>\sqrt{ab}]$$

Prova

Para provar que $\frac{(a+b)}{2} > \sqrt{ab}$ quando a, b são reais positivos, podemos trabalhar com um raciocínio reverso, ou seja, partindo da conclusão.

Teorema

$$(\forall a)(\forall b)[a,b\in\mathbb{R}_+^*\to \frac{(a+b)}{2}>\sqrt{ab}]$$

Prova

Teorema

$$(\forall a)(\forall b)[a,b\in\mathbb{R}_+^*\to \frac{(a+b)}{2}>\sqrt{ab}]$$

Prova

$$\frac{(a+b)}{2} > \sqrt{ab},$$

 $\frac{(a+b)^2}{2^2} > ab,$

Teorema

$$(\forall a)(\forall b)[a,b\in\mathbb{R}_+^*\to \frac{(a+b)}{2}>\sqrt{ab}]$$

Prova

$$rac{(a+b)}{2}>\sqrt{ab}, \ rac{(a+b)^2}{2^2}>ab, \ rac{(a+b)^2}{4}>ab,$$

Teorema

$$(\forall a)(\forall b)[a,b\in\mathbb{R}_+^* o rac{(a+b)}{2}>\sqrt{ab}]$$

Prova

$$\frac{(a+b)}{2} > \sqrt{ab},$$

 $\frac{(a+b)^2}{2^2} > ab,$
 $\frac{(a+b)^2}{4} > ab,$
 $(a+b)^2 > 4ab,$

Teorema

$$(\forall a)(\forall b)[a,b\in\mathbb{R}_+^* o rac{(a+b)}{2}>\sqrt{ab}]$$

Prova

$$rac{(a+b)}{2} > \sqrt{ab}, \ rac{(a+b)^2}{2^2} > ab, \ rac{(a+b)^2}{4} > ab, \ (a+b)^2 > 4ab, \ a^2 + 2ab + b^2 > 4ab,$$

Prova

... Construiremos inequalidades equivalentes:

$$\frac{(a+b)}{2} > \sqrt{ab},$$
 $\frac{(a+b)^2}{2^2} > ab,$
 $\frac{(a+b)^2}{4} > \sqrt{ab},$
 $(a+b)^2 > 4ab,$
 $a^2 + 2ab + b^2 > 4ab,$

Prova

... Construiremos inequalidades equivalentes:

$$\begin{array}{l} \frac{(a+b)}{2} > \sqrt{ab}, \\ \frac{(a+b)^2}{2^2} > ab, \\ \frac{(a+b)^2}{4} > \sqrt{ab}, \\ (a+b)^2 > 4ab, \\ a^2 + 2ab + b^2 > 4ab, \\ a^2 - 2ab + b^2 > 0, \end{array}$$

Prova

... Construiremos inequalidades equivalentes:

$$\begin{aligned} &\frac{(a+b)}{2} > \sqrt{ab}, \\ &\frac{(a+b)^2}{2^2} > ab, \\ &\frac{(a+b)^2}{4} > \sqrt{ab}, \\ &(a+b)^2 > 4ab, \\ &a^2 + 2ab + b^2 > 4ab, \\ &a^2 - 2ab + b^2 > 0, \\ &(a-b)^2 > 0. \end{aligned}$$

Prova

... Construiremos inequalidades equivalentes:

$$\frac{(a+b)}{2} > \sqrt{ab},$$

$$\frac{(a+b)^2}{2^2} > ab,$$

$$\frac{(a+b)^2}{4} > \sqrt{ab},$$

$$(a+b)^2 > 4ab,$$

$$a^2 + 2ab + b^2 > 4ab,$$

$$a^2 - 2ab + b^2 > 0,$$

$$(a-b)^2 > 0.$$

Como para $a \neq b$ temos $a - b \neq 0$, então $(a - b)^2 > 0$ vale.

Prova

... Construiremos inequalidades equivalentes:

$$\frac{(a+b)}{2} > \sqrt{ab},$$

$$\frac{(a+b)^2}{2^2} > ab,$$

$$\frac{(a+b)^2}{4} > \sqrt{ab},$$

$$(a+b)^2 > 4ab,$$

$$a^2 + 2ab + b^2 > 4ab,$$

$$a^2 - 2ab + b^2 > 0,$$

$$(a-b)^2 > 0.$$

Como para $a \neq b$ temos $a - b \neq 0$, então $(a - b)^2 > 0$ vale. Como todos os passos envolveram expressões equivalentes, podemos afirmar que $\frac{(a+b)}{2} > \sqrt{ab}$ quando a, b são reais positivos.

Raciocínio Adiante e Reverso

Constatação:

Uma prova com raciocínio adiante do teorema exemplo iniciaria com a inequalidade $(a - b)^2 > 0$, mas não é trivial pensar nisso. O raciocínio reverso ajudou a encontrar a hipótese necessária.

Raciocínio Adiante e Reverso

Constatação:

Uma prova com raciocínio adiante do teorema exemplo iniciaria com a inequalidade $(a - b)^2 > 0$, mas não é trivial pensar nisso. O raciocínio reverso ajudou a encontrar a hipótese necessária.

Constatação:

Uma vez que temos uma demonstraçãoc om raciocínio reverso, é fácil montar uma com raciocínio adiante, pois todos os passos são equivalências.

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso

Adaptando demonstrações

Exercícios

Avisos / Tarefas

38 of 43

Adaptando Demonstrações

Em casos de problemas parecidos, podemos facilmente adaptar as provas.

Exemplo

Mostrar que "O produto de dois números pares é par"

Adaptando Demonstrações

Em casos de problemas parecidos, podemos facilmente adaptar as provas.

Exemplo

Mostrar que "O produto de dois números pares é par"

 Provamos anteriormente que "O produto de dois números ímpares é ímpar".

Adaptando Demonstrações

Em casos de problemas parecidos, podemos facilmente adaptar as provas.

Exemplo

Mostrar que "O produto de dois números pares é par"

 Provamos anteriormente que "O produto de dois números ímpares é ímpar".

Constatação:

Podemos facilmente adaptar a demonstração sobre ímpares para provar o teorema que menciona números pares.

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

40 of 43

Exercícios em Sala

- 1. Prove que "O produto de dois números pares é par"
- 2. Você consegue adaptar as três provas que tivemos para o enunciado "O produto de dois números ímpares é ímpar" (direta, contraposição, contrdição)?

Outline

Primeiros Passos de uma Demonstração

Outros Métodos de Prova

Prova por Casos Prova Exaustiva Prova de Existência Prova de Unicidade

Exercícios

Estratégia em Demonstrações

Raciocínio Adiante e Reverso Adaptando demonstrações

Exercícios

Avisos / Tarefas

42 of 43

Avisos e Tarefas...

- LC sobre erros comuns em demonstrações (Upload em 20/02)
- LP do próximo tópico Definições de Funções (até 22/02)
- Teste 01 em 24/02.