IATEX TEMPLATE

XIAOXIANG ZHOU

Contents

0.1.	Quot scheme	1
0.2.	Hilbert scheme	2
References		2

0.1. Quot scheme. We refer to wiki and Venkatesh's lecture notes.

The Quot scheme is a relative version of the Grassmannian. Instead of parameterizing subvector spaces, it parameterizes quotient sheaves of a fixed sheaf.

Example 0.1 (Quot scheme Quot_{\mathcal{E}}). In this example, the field κ can be generalized to a Noetherian base scheme S_0 .

For a scheme X/κ of finite type and $\mathcal{E} \in \operatorname{Coh}(X)$, we define a moduli problem for $(S, \pi_S : S \longrightarrow \operatorname{Spec} \kappa) \in \operatorname{Ob}(\operatorname{Sch}_{\kappa})$:

$$\mathcal{A}_{S} := \left\{ (\mathcal{F}, \pi) \middle| \begin{array}{l} \mathcal{F} \in \operatorname{Coh}(X_{S}) \text{ flat over } S \\ \operatorname{supp}(\mathcal{F}) \text{ proper over } S \\ \pi : \mathcal{E}_{S} \longrightarrow \mathcal{F} \end{array} \right\}$$

 $(\mathcal{F},\pi) \sim_S (\mathcal{F}',\pi')$ if there exists an isomorphism of vector bundles $\phi: \mathcal{F} \longrightarrow \mathcal{F}'$ such that $\pi' = \phi \circ \pi$.

For a map $f: T \longrightarrow S$, the pullback f^* is defined by

$$f^*: \mathcal{A}_S \longrightarrow \mathcal{A}_T \qquad (\mathcal{F}, \pi) \longmapsto ((\operatorname{Id} \times f)^* \mathcal{F}, f^* \pi : \mathcal{E}_T \twoheadrightarrow (\operatorname{Id} \times f)^* \mathcal{F})$$

The moduli functor defined by this extended moduli problem is representable, and we denote it by $\mathrm{Quot}_{\mathcal{E}}.$

Remark 0.2. The requirements of flatness and properness ensure the well-definedness of the Hilbert polynomial $P_{\mathcal{F}}(t) \in \mathbb{Q}[t]$, defines as follows.

When a line bundle \mathcal{L} over X is fixed, take a closed point $s \in S$, then

$$P_{\mathcal{F}}(m) = \chi(\mathcal{F}_s \otimes \mathcal{L}_s^{\otimes m}) = \sum_{i=0}^{\dim \mathcal{F}} (-1)^i h^i(X_s, \mathcal{F}_s \otimes \mathcal{L}_s^{\otimes m}).$$

By flatness, the Hilbert polynomial $P_{\mathcal{F}}(m)$ does not depend on the choice of $s \in S$. Furthermore, when X is projective, one can take $\mathcal{L} = \mathcal{O}_X(1)$. This provides us a decomposition of $\mathrm{Quot}_{\mathcal{E}}$:

$$\mathrm{Quot}_{\mathcal{E}} = \bigsqcup_{P \in \mathbb{O}[t]} \mathrm{Quot}_{\mathcal{E}}^{P}.$$

Date: February 17, 2025.

Example 0.3. When $X = \operatorname{Spec} \kappa$, $\mathcal{E} = \kappa^n$, one gets

$$\mathcal{A}_{S} = \left\{ (\mathcal{F}, \pi) \middle| \begin{array}{l} \mathcal{F} \in \operatorname{Coh}(S) \text{ flat over } S \\ \pi : \mathcal{O}_{S}^{\oplus n} \xrightarrow{} \mathcal{F} \end{array} \right\}$$

and $P_{\mathcal{F}}(t) = \chi(\mathcal{F}_s)$ is constant, indicating the rank of \mathcal{F} . Therefore,

$$\operatorname{Gr}(k,n) = \operatorname{Quot}_{\kappa^n}^k, \qquad \mathbb{P}V^{\vee} = \operatorname{Quot}_V^1.$$

Example 0.4. In this example, the base scheme S_0 is X, and $\mathcal{E} \in Coh(X)$ is locally free. In this setting, the moduli problem for ??? is given by

$$\mathcal{A}_{S} = \left\{ (\mathcal{F}, \pi) \middle| \begin{array}{l} \mathcal{F} \in \operatorname{Coh}(S) \text{ flat over } S \\ \pi : \pi_{S}^{*} \mathcal{E} \xrightarrow{\longrightarrow} \mathcal{F} \end{array} \right\}$$

Since any finitely generated flat module over a commutative local, Noetherian ring is free (see SE1812584), \mathcal{F} is locally free of rank r, and $P_{\mathcal{F}}(t) = r$. Therefore,

$$\mathbb{P}\mathcal{E} = \operatorname{Quot}_{\mathcal{E}}^1 \ (over X/X).$$

Remark 0.5. The tangent space and smoothness of $\operatorname{Quot}_{\mathcal{E}}$ can be described locally, just like $T_V\operatorname{Gr}(k,n)=\operatorname{Hom}_{\mathbb{C}}(V,\mathbb{C}^n/V)$, see [?] for more details.

0.2. Hilbert scheme. Since we already defined $Quot_{\mathcal{E}}$, the Hilbert scheme is just a special case:

$$\operatorname{Hilb}_X := \operatorname{Quot}_{\mathcal{O}_X} \qquad \operatorname{Hilb}_X^P := \operatorname{Quot}_{\mathcal{O}_X}^P$$

where the moduli problem is given by

$$\mathcal{A}_{S} = \left\{ (\mathcal{F}, \pi) \middle| \begin{array}{l} \mathcal{F} \in \operatorname{Coh}(X_{S}) \text{ flat over } S \\ \operatorname{supp}(\mathcal{F}) \text{ proper over } S \\ \pi : \mathcal{O}_{X_{S}} \longrightarrow \mathcal{F} \end{array} \right\}$$

In this case, $\mathcal{F} \cong i_* \mathcal{O}_Z$ for some subvariety (maybe non-reduced) of X_S (of Hilbert polynomial P).

Example 0.6. The Hilbert scheme of k points on X is denoted by

$$X^{[k]} := \operatorname{Hilb}_X^k = \operatorname{Quot}_{\mathcal{O}_X}^k$$
.

It is birational equivalent to X^k/S_k .

Example 0.7. Recall that $P_{\mathbb{P}^m}(t) = {m+t \choose m}$. For any closed integral subvariety $X \subset \mathbb{P}^n$, the Fano variety of m-planes \mathbb{P}^m in X is given by

$$F(X,m) := \operatorname{Hilb}_X^{P_{\mathbb{P}^m}} = \operatorname{Quot}_{\mathcal{O}_X}^{P_{\mathbb{P}^m}}.$$

Example 0.8. Recall that $P_Z(t) = \binom{n+t}{n} - \binom{n+t-d}{n}$ for a degree d hypersurface Z in \mathbb{P}^n . The moduli space of degree d hypersurfaces in \mathbb{P}^n is given by

$$\mathrm{Hilb}_{\mathbb{P}^n}^{P_Z} = \mathrm{Quot}_{\mathcal{O}_{\mathbb{P}^n}}^{P_Z} \cong \mathbb{P}\left(\Gamma\left(\mathbb{P}^n, \mathcal{O}(d)\right)\right) \cong \mathbb{P}^{\binom{n+d}{d}-1}.$$

References

- [1] Jens Niklas Eberhardt. K-motives and Koszul duality. Bulletin of the London Mathematical Society, 54(6):2232–2253, 2022
- [2] Ravi Vakil. The rising sea: Foundations of algebraic geometry. preprint, 2017.

Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, 12489, Germany, $Email\ address$: email:xiaoxiang.zhou@hu-berlin.de