CS112 – Regression and Bootstrapping

Armin Hamp

18 October 2018

Link to code

https://gist.github.com/hamparmin/9f97b2e0327e54574719d49fa5e52f44

Question 1

```
(a)
#creating sample n=99
x <- rnorm(99,50,12)
y \leftarrow 4*x+3+rnorm(x,50,14)
set1 <- data.frame(x,y)</pre>
(b) Model without outlier
Call:
lm(formula = y \sim x, data = set1)
Residuals:
   Min
             1Q Median
                             3Q
                                    Max
-34.209 -7.896 0.081 10.080 34.944
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 53.9682
                        5.9453 9.077 1.32e-14 ***
                         0.1151 35.010 < 2e-16 ***
             4.0305
Χ
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
Residual standard error: 14.12 on 97 degrees of freedom
Multiple R-squared: 0.9267, Adjusted R-squared: 0.9259
F-statistic: 1226 on 1 and 97 DF, p-value: < 2.2e-16
```

(c) Model with outlier

```
Call:
lm(formula = y \sim x, data = set2)
Residuals:
    Min
             10 Median
                             3Q
                                    Max
-158.26 -61.62 -28.72
                         10.98 2699.27
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  2.751 0.00708 **
(Intercept) 316.6669
                       115.1051
             -0.6641
                         2.2377 -0.297 0.76728
                0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 ( , 1
Signif. codes:
Residual standard error: 280.5 on 98 degrees of freedom
Multiple R-squared: 0.0008978, Adjusted R-squared: -0.009297
F-statistic: 0.08807 on 1 and 98 DF, p-value: 0.7673
```

(*d*)

Scatterplot and lines of best fit

(e)

Outliers are observations with an unusual y_i value, that can have a significant effect on our regression. This is especially true if the y-value for our outlier is different enough to influence the least squares fitting of the regression. As we can see above, a single outlier (x=24, y=3000) was able to change our otherwise precise regression coefficient from positive to negative.

Question 2

(a) See table on next page:

	MODEL 1			MODEL 2		
Age	2.50%	97.50%	Age	2.50%	97.50%	
17	-6928	15020	17	-5255	17357	
18	-6637	14798	18	-5343	17347	
19	-6785	15049	19	-4956	17509	
20	-6795	14829	20	-5156	17040	
21	-6708	15171	21	-4998	17144	
22	-7012	14941	22	-4841	17365	
23	-6757	15092	23	-5368	17211	
24	-6695	15001	24	-5194	17319	
25	-6943	15108	25	-5166	17123	
26	-6860	14832	26	-4966	17029	
27	-6583	14952	27	-5042	17065	
28	-6325	15129	28	-5069	17117	
29	-6656	14954	29	-5014	17275	
30	-6673	15245	30	-5120	16972	
31	-6519	14992	31	-5187	17393	
32	-6849	15025	32	-5254	17245	
33	-6687	14959	33	-4716	17392	
34	-6818	15067	34	-4888	17417	
35	-6566	15161	35	-4959	17214	
36	-6524	15200	36	-4935	17467	
37	-6993	15125	37	-5262	17453	
38	-6900	14940	38	-5297	17683	
39	-6893	15014	39	-5221	17240	
40	-6861	14940	40	-5171	17220	
41	-6897	15224	41	-5205	17264	
42	-6981	15274	42	-5366	17496	
43	-6915	15481	43	-5573	17487	
44	-6880	15112	44	-5703	17751	
45	-7287	15341	45	-5579	17697	
46	-7134	15149	46	-5749	17725	
47	-6759	15244	47	-5872	18041	
48	-7111	15395	48	-6024	17988	
49	-7038	15225	49	-6146	18092	
50	-7250	15159	50	-6004	18099	
51	-7318	15248	51	-6294	18205	
52	-6985	15258	52	-6023	18082	
53	-7065	15426	53	-6647	18499	
54	-7069	15358	54	-5956	18247	
55	-7098	15647	55	-6543	18653	

(b)

95% confidence intervals for point estimates of model 2

Question 3

(a)

2.5% 97.5% confint with bootstrapping -46.86176 1854.759 confint based on single coef -40.52635 1813.134

(b)

Distribution of bootstrapped coefficients

(c)

What is interesting is that the bootstrapped confidence interval for the coefficients is about the same (a little larger) than the analytically obtained interval, using the confint() function. This is surprising, as during previous exercises we saw that there are cases where we can obtain a more precise confidence interval with bootstrapping. This result is probably due to *treatment* being a poor predictor of re78.

Question 4

```
#calculating r^2 by the equation R2=1-rss/tss
rsq <- function(ypredicted, yactual) {
  tss <- sum((yactual - mean(yactual))^2)
  rss <- sum((yactual - ypredicted)^2)
  return(1-(rss/tss))
}

#testing rsq on nsw dataset
rsq(predict(fit_nsw),nsw$re78)

Output
[1] 0.004871571

> summary(fit_nsw)
...
Multiple R-squared: 0.004872
```

Question 5

(a)

(b)

The histogram shows that most observations from the control set received low (between 0.35 and 0.42) probabilities, which seems intuitive at first, if our model was trained for treatment. But, we can also see that most of the observations from the treatment group were also assigned similar probabilities, which tells us that our predictors are not great for establishing a clear threshold between control and treated. However, this is not necessarily bad, as it indicates that the assignment of treatment was not dependent on any other variables measured, which is good practice for experiments with the intent of establishing causal relationships.