Document Number: IMX6ULLHDG

Rev. 0, 08/2016

Hardware Development Guide for the i.MX 6ULL Applications Processor

1 About This Book

1.1 Overview

This document's purpose is to help hardware engineers design and test their i.MX 6ULL processor-based designs. It provides information on board layout recommendations, and design checklists to ensure first-pass success and avoidance of board bring-up problems. It also provides information on board-level testing and simulation such as using BSDL for board-level testing, using the IBIS model for electrical integrity simulation and more.

Engineers are expected to have a working understanding of board layouts and terminology, IBIS modeling, BSDL testing and common board hardware terminology.

This guide is released along with relevant device-specific hardware documentation such as datasheets, reference manuals and application notes available on www.nxp.com.

Contents

Ι.	About This Book	I
2.	i.MX 6ULL Design Checklist	7
3.	i.MX 6 Series Layout Recommendations	21
4.	Avoiding Board Bring-up Problems	30
5.	Understanding the IBIS Model	34
6.	Using the Manufacturing Tool	44
7.	Using BSDL for Board-level Testing	49
8.	Revision History	51
4.	Development Platforms	52

1.1.1 Devices supported

This guide currently supports the i.MX 6ULL.

1.2 Essential reference

This guide is intended as a companion to the i.MX 6ULL chip reference manuals and data sheets. For reflow profile and thermal limits during soldering, see application note AN3300. These documents are available on www.nxp.com.

1.3 Suggested reading

This section lists additional reading that provides background for the information in this manual as well as general information about the architecture.

1.3.1 General Information

The following documentation provides useful information about the ARM processor architecture and computer architecture in general:

For information about the ARM Cortex-A7 processor see:

http://www.arm.com/products/processors/cortex-a/cortex-a7.php

- Computer Architecture: A Quantitative Approach (Fourth Edition) by John L. Hennessy and David A. Patterson
- Computer Organization and Design: The Hardware/Software Interface (Second Edition), by David A. Patterson and John L. Hennessy

The following documentation provides useful information about high-speed board design:

- Right the First Time- A Practical Handbook on High Speed PCB and System Design Volumes I
 & II Lee W. Ritchey (Speeding Edge) ISBN 0-9741936- 0-72
- Signal and Power Integrity Simplified (2nd Edition) Eric Bogatin (Prentice Hall)- ISBN 0-13-703502-0
- High Speed Digital Design- A Handbook of Black Magic Howard W. Johnson & Martin Graham (Prentice Hall) - ISBN 0-13-395724-1
- High Speed Signal Propagation Advanced Black Magic Howard W. Johnson & Martin Graham
 (Prentice Hall) ISBN 0-13-084408-X
- High Speed Digital System Design- A handbook of Interconnect Theory and Practice Hall, Hall and McCall (Wiley Interscience 2000) - ISBN 0-36090-2
- Signal Integrity Issues and Printed Circuit Design Doug Brooks (Prentice Hall) ISBN 0-13-141884-X
- PCB Design for Real-World EMI Control Bruce R. Archambeault (Kluwer Academic Publishers Group) - ISBN 1-4020-7130-2
- Digital Design for Interference Specifications- A Practical Handbook for EMI Suppression -David L. Terrell & R. Kenneth Keenan (Newnes Publishing) - ISBN 0-7506-7282-X

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

- Electromagnetic Compatibility Engineering- Henry Ott (1st Edition John Wiley and Sons) ISBN 0-471-85068-3
- Introduction to Electromagnetic Compatibility Clayton R. Paul (John Wiley and Sons) ISBN 978-0-470-18930-6
- Grounding & Shielding Techniques Ralph Morrison (5th Edition John Wiley & Sons) ISBN 0-471-24518-6
- EMC for Product Engineers Tim Williams (Newnes Publishing) ISBN 0-7506- 2466-3

1.4 Related documentation

NXP documentation is available from the sources listed on the back page of this guide. Additional literature is published as new NXP products become available. For a current list of documentation, see www.nxp.com.

1.5 Conventions

This document uses the following notational conventions:

Table 1. Conventions

Courier	Used to indicate commands, command parameters, code examples, and file and directory names.	
Italics	Italics indicates command or function parameters	
Bold	Function names are written in bold.	
cleared/set	When a bit takes the value zero, it is said to be cleared; when it takes a value of one, it is said to be set.	
mnemonics	Instruction mnemonics are shown in lowercase bold. Book titles in text are set in italics	
sig_name	Internal signals are written in all lowercase	
nnnn nnnnh	Denotes hexadecimal number	
0b	Denotes binary number	
rA, rB	Instruction syntax used to identify a source GPR	
rD	Instruction syntax used to identify a destination GPR	
REG[FIELD]	Abbreviations for registers are shown in uppercase text. Specific bits, fields, or ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode enable bit in the machine state register.	
x	In some contexts, such as signal encodings, an unitalicized x indicates a don't care.	
x	An italicized x indicates an alphanumeric variable	
n, m	An italicized <i>n</i> indicates a numeric variable	

NOTE

In this guide, notation for all logical, bit-wise, arithmetic, comparison, and assignment operations follow C Language conventions.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

1.6 Signal conventions

Table 2. Signal conventions

Convention	Definition	
PWR_ON_RESET	n overbar indicates that a signal is active when low	
_b, _B	Iternate notation indicating an active-low signal	
signal_name	Lowercase italics is used to indicate internal signals	

1.7 Acronyms and abbreviations

The following table defines the acronyms and abbreviations used in this document.

Table 3. Definitions and acronyms

Term	Definition	
ARM®	Advanced RISC machines processor architecture	
BGA	Ball grid array package	
вом	Bill of materials	
BSDL	Boundary scan description language	
CAN	Flexible Controller Area Network peripheral	
ССМ	Clock Controller Module	
DDR	Dual data rate DRAM	
DDR3	DDR3 DRAM	
DDR3L	Low voltage DDR3 DRAM	
DDR3U	Ultra low voltage DDR3 DRAM	
DRAM	Dynamic random access memory	
ECSPI	Enhanced Configurable SPI peripheral	
EIM	External Interface Module	
ENET	10/100/1000-Mbps Ethernet MAC peripheral	
EPIT	Enhanced Periodic Interrupt Timer peripheral	
ESR	Equivalent series resistance (of a crystal)	
GND	Ground	

Table 3. Definitions and acronyms (continued)

GPC	General Power Controller	
GPIO	General-purpose input/output	
HDCP	High-bandwidth Digital Content Protection	
I2C	Inter-integrated circuit interface	
IBIS	Input output buffer information specification	
IOMUX	i.MX 6ULL chip-level I/O multiplexing	
JTAG	Joint Test Action Group	
KPP	Keypad Port peripheral	
LDB	LVDS Display bridge	
LDO	Low drop-out regulator	
LPCG	Low power clock gating	
LPDDR2	Low-power DDR2 DRAM	
LVDS	Low-voltage differential signaling	
MLB	MediaLB 150 peripheral	
MMDC	Multi Mode DDR Controller	
ODT	On-die termination	
ОТР	One-time programmable	
РСВ	Printed circuit board	
PCle	PCI Express	
PCISig	Peripheral Component Interconnect Special Interest Group	
PMIC	Power management integrated circuit	
POR	Power-on reset	
RAM	Random access memory	
RGMII	Reduced Gigabit Media Independent Interface (Ethernet)	
RMII	Reduced Media Independent Interface (Ethernet)	
ROM	Read-only memory	
SDMA	Smart Direct Memory Access Controller	
UART	Universal asynchronous receiver/transmitter	

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

About This Book

Table 3. Definitions and acronyms (continued)

USB	Universal Serial Bus
USB OTG	USB On-The-Go
USB2.0	USB version 2.0 peripheral

2 i.MX 6ULL design checklist

This document provides a design checklist for the i.MX 6ULL processor.

The design checklist tables contain recommendations for optimal design. Where appropriate, the checklist tables also provide an explanation of the recommendation so that users have a greater understanding of why certain techniques are recommended. All supplemental tables referenced by the checklist appear in sections following the design checklist tables.

2.1 Design checklist tables

Table 4. DDR recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	1. Connect ZQPAD to an external 240 all resistor to GND.	This is a reference used during DRAM output buffer driver calibration.
	2. Connect DRAM_VREF to a source that is 50% of the voltage value of NVCC_DRAM.	 The user may tie DDR_VREF to a precision external resistor divider. Shunt DDR_VREF to GND with a closely-mounted 0.1 µF capacitor. See Table 15 for resistor values. Using resistors with recommended tolerances ensures the ±2% DDR_VREF tolerance per the DDR3 specification. The user can use PMIC's tracking regulator as used on NXP reference designs.
	3. Connect DRAM_RESET to a 10 k Ω 5% pulldown resistor to GND.	DDR3: DRAM_RESET should be pulled down to meet the JEDEC sequence until the controller is configured and starts driving. DRAM_RESET should be kept high when DDR3 enters self-refresh mode. LPDDR2: DRAM_RESET should be left unconnected. Some NXP reference designs use a 1% resistor simply to consolidate the BOM. DRAM_RESET is an active-low signal.
	4. DRAM_SDCKE0 and DRAM_SDCKE1 require external pull-down resistors to GND for JEDEC compliance when using LPDDR2.	 For LPDDR2: SDCKE[1:0] must be pulled down to meet the JEDEC sequence until the controller is configured and starts driving. NXP designs use 10 kΩ For DDR3: SDCKE[1:0] pull-down is not required to meet JEDEC, unless deep sleep or standby modes are used (see point 5).

Table 4. DDR recommendations (continued)

5. DRAM_SDCKE0 and DRAM_SDCKE1 require external resistors (such as 10 km) to GND to minimize current drain during deep sleep mode (DSM).	The BSP (Board Support Package) uses a common DDR routine for both fly-by and T-topology designs. Fly-by designs have parallel resistor termination on address lines, while T-topology does not. During low-power self-refresh, the BSP programs pad control register GRP_CTLDS to 0x00000000. Therefore, DRAM_SDCKE0, DRAM_SDCKE1, and other associated GRP_CTLDS I/O are forced to the high-impedance state. Because DRAM_SDCKE0 and DRAM_SDCKE1 are forced to high-Z, external pull-down resistors are required to avoid floating outputs during standby. In NXP designs, 10 kohm resistors are utilized for this purpose. Any other termination on the DRAM_SDCKE0 and DRAM_SDCKE1 lines (such as 50 ohms) should not be present; simulation should be performed to ensure CKE signal integrity.
6. Make sure that the correct LPDDR2 function is connected to the correct I/O. Note that this does not necessarily correspond to the I/O name.	MMDC IO names are for the DDR3 default. When LPDDR2 is selected, the I/O name (DDR3 MMDC PAD) does not match with the LPDDR2 functionality. See the "LPDDR2 and DDR3 pin mux mapping" table in the "Multi Mode DDR Controller (MMDC)" chapter of the chip reference manual.

Table 5. LCD recommendations for developer's boot modes

Checkbox	Recommendation	Explanation/supplemental recommendation
	1. When LCD boot signals are used as the system's LCD signals, other functions, or GPIO outputs after boot, use a passive resistor network to select the desired boot mode for development boards.	Because only resistors are used, LCD bus loads can cause current drain, leading to higher (false) supply current measurements. Each LCD boot signal should connect to a series resistor to isolate the bus from the resistors and/or switchers; see Figure 1. Each configured LCD boot signal sees either a 10 k Ω pulldown or a 10 k Ω pullup. For each switch-enabled pulled-up signal, the supply is presented with a 10 k Ω current load. An alternate approach using buffers is implemented in the i.MX 6ULL EVK development board design. Either of these implementations is acceptable.
	 2. To reduce incorrect boot-up mode selections, do one of the following: Use LCD boot interface lines only as processor outputs. Ensure LCD boot interface lines are not loaded down such that the level is interpreted as low during power-up, when the intent is to be a high level, or vice versa. If an LCD boot signal must be configured as an input, isolate the LCD signal from the target driving source with one analog switch and apply the logic value with a second analog switch. Alternately, peripheral devices with three-state outputs may be used; ensure the output is high-impedance during the boot up interval. 	Using LCD boot interface lines as inputs may result in a wrong boot up due to the source overcoming the pull resistor value. A peripheral device may require the LCD signal to have an external or on-chip resistor to minimize signal floating. If the usage of the LCD boot signal affects the peripheral device, then an analog switch, open collector buffer, or equivalent should isolate the path. A pull-up or pull-down resistor at the peripheral device may be required to maintain the desired logic level. Review the switch or device data sheet for operating specifications.
	3. The BOOT_CFG signals are required for proper functionality and operation and should not be left floating	See the "System Boot" chapter in your chip reference manual for the correct boot configuration. Note that an incorrect setting may result from an improper booting sequence.

Table 6. Boot mode input recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	 For BOOT_MODE1 and BOOT_MODE0, use one of the following options to achieve logic 0: Tie to GND through any value external resistor Tie directly to GND For logic 1, use one of the following: Tie directly to the VDD_SNVS_IN rail Tie to the VDD_SNVS_IN rail through an external resistor 10 kΩ. A value of 4.7 kΩ is preferred in high-noise environments. If switch control is desired, no external pull down resistors are necessary. Simply connect SPST switches directly to the VDD_SNVS_IN rail. If desired, a 4.7 kΩ to 10 kΩ series resistor can be used when current drain is critical. 	BOOT_MODE1 and BOOT_MODE0 each have on-chip pull-down devices with a nominal value of 100 k Ω , a projected minimum of 60 k Ω , and a projected maximum of 140 k Ω . Be aware that when these are logic high, current is drawn from the VDD_SNVS_IN supply. In production, when on-chip fuses determine the boot configuration, both boot mode inputs can be disconnected.

Table 7. I²C recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	Verify the target I2C interface clock rates.	The bus can only operate as fast as the slowest peripheral on the bus. If faster operation is required, move the slow devices to another I2C port.
	2. Verify that the target I2C address range is supported and does no conflict with other peripherals. If there is an unavoidable address conflict, move the offending device to another I2C port.	These chips support up to four I2C ports. If it is undesirable to move a conflicting device to another I2C port, review the peripheral operation to see if it supports remapping the address.
	3. Do not place more than one set of pull up resistors on the I2C lines.	This can result in excessive loading. Good design practice is to place one pair of pullups only.

Table 8. JTAG recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	Do not add external pull-up or pull-down resistors on JTAG_TDO.	JTAG_TDO is configured with an on-chip keeper circuit such that the floating condition is actively eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental. See Table 2-15 for a summary of the JTAG interface.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

Table 8. JTAG recommendations (continued)

2. Ensure that the on-chip pull up/pull down configuration is followed if external resistors are used with JTAG signals (with the exception of JTAG_TDO). For example, do not use an external pull-down on an input that has an on-chip pull-up.	External resistors can be used with all JTAG signals except JTAG_TDO, but they are not required. See Table 16 for a summary of the JTAG interface.
3. JTAG_MOD may be referred to as SJC_MOD in some documents. Both names refer to the same signal. JTAG_MOD should be externally connected to GND for normal operation in a system. Termination to GND through an external pull down resistor is allowed. Use 4.7 k Ω .	When JTAG_MOD is low, the JTAG interface is configured for common software debug, adding all the system TAPs to the chain. When JTAG_MOD is high, the JTAG interface is configured to a mode compliant with the IEEE 1149.1 standard.

Table 9. Power supply decoupling recommendations

Checkbox	Supply	Decoupling and bulk caps (min qty)	Notes
	VDD_SOC_IN	2×0.22uF²+1×4.7uF¹+1×22uF³	14x14 package: Place 22 uF cap and one of the 0.22uF caps next to the ball K10.
	VDD_ARM_CAP	2×0.22uF²+1×22uF³	14x14 package: Place 22 uF cap and one of the 0.22uF caps next to the ball G9. Place "+" within 50 mils of via. Do not connect any loads to VDDARM_CAP.
	VDD_SOC_CAP	3×0.22uF²+1×22uF³	14x14 package: Place 22 uF cap and one of the 0.22uF caps next to the ball AA10. Place "+" within 50 mils of via.
	VDD_HIGH_IN	1x0.22uF²+1x4.7uF¹	_
	VDD_HIGH_CAP	1×0.22uF²+1×10uF¹	VDDHIGH_CAP is restricted to MX6ULL loads.
	VDD_SNVS_IN	1x0.22uF²	_
	VDD_SNVS_CAP	1×0.22uF²	If the nominal value is larger than recommended, power-up/down ramp time is excessive and suspend/resume operation cannot be guaranteed. Select a small capacitor with low ESR. Do not connect any loads to VDD_SNVS_CAP.
	NVCC_DRAM	6×0.22uF²+1×10uF³	
	NVCC_PLL	1×0.22uF²+1×10uF¹	Do not connect any loads to this LDO output.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

Table 9. Power supply decoupling recommendations

NVCC_xxxx	1x0.22uF²	One capacitor per via. Grouped NVCC balls can share a capacitor.
VDD_USB_CAP	1x0.1uF+1x10uF ¹	May use a single 10 uF capacitor instead of 2 ×4.7 uF capacitors. Do not connect any loads to this LDO output.
USB_OTG1_VBUS	1×1uF ¹	10V rated
USB_OTG2_VBUS	1×1uF¹	10V rated

¹ Use the smallest capacitor package size allowed with your design rules

Table 10. Power and decoupling recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	Comply with the power-up sequence guidelines as described in the data sheet to guarantee reliable operation of the device.	Any deviation from these sequences may result in the following situations: • Excessive current during power-up phase • Prevention of the device from booting • Irreversible damage to the processor (worst-case scenario)
	2. Do not overload coin cell backup power rail VDD_SNVS_IN. Note that the following I/Os are associated with VDD_SNVS_IN; most inputs have on-chip pull resistors and do not require external resistors: • POR_B – configurable on-chip pullup • ONOFF – on-chip pullup • BOOT_MODE0 – on-chip pulldown • BOOT_MODE1 – on-chip pulldown • TAMPER – on-chip keeper • PMIC_STBY_REQ – configurable output • PMIC_ON_REQ – push-pull output • TEST_MODE – on-chip pulldown	 Concerning i.MX 6ULL: When VDD_SNVS_IN = VDD_HIGH_IN, SNVS domain current is drawn from both equally. When VDD_HIGH_IN > VDD_SNVS_IN, VDD_HIGH_IN supplies all SNVS domain current and current flows into VDD_SNVS_IN to charge a coin cell battery. When VDD_SNVS_IN > VDD_HIGH_IN, VDD_SNVS_IN supplies current to SNVS, and some current flows into VDD_HIGH_IN. Note: VDD_HIGH_IN must be valid (above the internal detector threshold, 2.4 V typ) for the current flow to occur. Thus, current flow only happens when VDD_HIGH_IN is powered to a level below VDD_SNVS_IN. If VDD_HIGH_IN is off or low, no extra current is drawn from VDD_SNVS_IN. The whole circuit assumes it is charging a coin cell and starts charging when VDD_HIGH_IN is valid. If you are driving VDD_SNVS_IN with a non-battery power source, it must be at the same level as VDD_HIGH_IN or current will flow between them. When VDD_SNVS_IN is not powered by a battery, it is recommended that VDD_SNVS_IN = VDD_HIGH_IN. If VDD_SNVS_IN is tied to a battery, the battery eventually discharges to a value equal to that of VDD_HIGH_IN and never subsequently charges above VDD_HIGH_IN. The battery chemistry may add restrictions to VDD_HIGH_IN's voltage range. External charging components should be based on the battery manufacturer's specifications.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

 $^{^2}$ For 0.22 μF capacitors, use 0402 package

 $^{^3}$ For 22 μF capacitors, 0603 package preferred; 0805 and 1206 are acceptable

Table 10. Power and decoupling recommendations

3. Maximum ripple voltage limitation.	Common limitation for ripple noise should be less than 5% Vp-p of supply voltage average value. Related power rails affected: all VDD_xxx_IN and VDD_xxx_CAP.
4. If VDD_SNVS_IN is directly supplied by a coin cell, a schottky diode is required between VDD_HIGH_IN and VDD_SNVS_IN. The cathode is connected to VDD_SNVS_IN. Alternately, VDD_HIGH_IN and VDD_SNVS_IN can be tied together if the real-time clock function is not needed during system power-down.	When no power is supplied to VDD_VSNVS_IN, the diode limits the voltage difference between the two on-chip SNVS power domains to approximately 0.3 V. The processor is designed to allow current flow between the two SNVS power domains proportional to the voltage difference.

Table 11. Oscillator and clock recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	1. Precision 32.768 kHz oscillator Connect a crystal between RTC_XTALI and RTC_XTALO. Choose a crystal with a maximum of 100 k Ω ESR (equivalent series resistance) and follow the manufacturer's recommendation for loading capacitance. Do not use an external biasing resistor because the bias circuit is on-chip.	The capacitors implemented on either side of the crystal are about twice the crystal load capacitance. To hit the target oscillation frequency, board capacitors need to be reduced to compensate for board and chip parasitic capacitance; typically 15–16 pF is employed. The integrated oscillation amplifier has an on-chip self-biasing scheme, but is high-impedance (relatively weak) to minimize power consumption. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (> 100 M Ω) as this negatively affects the amplifier bias and causes a reduction of startup margin. Use short traces between the crystal and the processor, with a ground plane under the crystal, load capacitors, and associated traces.
	2. External kilohertz source If feeding an external clock into the device, RTC_XTALI can be driven DC-coupled with RTC_XTALO floated or driven with a complimentary signal.	The voltage level of this driving clock should not exceed the voltage of VDD_SNVS_CAP and the frequency should be <100 kHz under typical conditions. Do not exceed VDD_SNVS_CAP or damage/malfunction may occur. The RTC_XTALI signal should not be driven if the VDD_SNVS_CAP supply is off. This can lead to damage or malfunction. For RTC_XTALI VIL and VIH voltage levels, see the latest i.MX 6ULL datasheet available at www.nxp.com Note that if this external clock is stopped, the internal ring oscillator starts automatically.
	3. An on-chip loose-tolerance ring oscillator is available of approximately 40 kHz. If RTC_XTALI is tied to GND and RTC_XTALO is floating, the on-chip oscillator is automatically engaged.	When a high-accuracy real-time clock is not required, the system may use the on-chip 40 kHz oscillator. The tolerance is \pm 50%. The ring oscillator starts faster than an external crystal and is used until the external crystal reaches stable oscillation. The ring oscillator also starts automatically if no clock is detected at RTC_XTALI at any time.

Table 11. Oscillator and clock recommendations (continued)

4. Precision 24 MHz oscillator Connect a fundamental-mode crystal between XTALI and XTALO. An 80 typical ESR crystal rated for a maximum drive level of 250 W is acceptable. Alternately, a 50 typical ESR crystal rated for a maximum drive level of 200 W may be used. See the engineering bulletin EB830 on www.nxp.com. for additional options.	NXP BSP software requires 24 MHz on this clock. This clock is used as a reference for USB and PCIe, so there are strict frequency tolerance and jitter requirements. See Table 17 for guidelines. See the crystal oscillator (XTALOSC) reference manual chapter and relevant interface specification chapters for details. To access a calculator for the 24 MHz crystal drive level, see EB830 on the i.MX Community.
 5. External megahertz source If feeding an external clock into the device: A single ended external clock source can be used to drive XTALI. In this configuration, XTALO should be left externally floating. A differential external clock source can be used to drive both XTALI and XTALO. 	For XTALI VIL and VIH voltage levels, see the latest i.MX 6ULL datasheet. See the crystal oscillator (XTALOSC) reference manual chapter and relevant interface specification chapters for details.
6. CCM_CLK1_P/ CCM_CLK1_N are LVDS input/output differential pairs compatible with TIA/EIA-644 standard. The frequency range is 0 to 600 MHz. Alternatively, a single-ended signal can be used to drive a CCM_CLKx_P input. In this case, the corresponding CCM_CLKx_N input should be tied to a constant voltage level equal to 50% of VDD_HIGH_CAP. Termination should be provided with high-frequency signals. See the LVDS pad electrical specification in the data sheet for further details. After initialization, the CCM_CLKx inputs/outputs can be disabled (if not used) by the PMU_MISC1 register. If unused, any or both of the CCM_CLKx_N/P pairs may be left floating.	The clock inputs/outputs are general-purpose differential high-speed clock Input/outputs. Any or both of them can be configured: • As inputs to feed external reference clocks to the on-chip PLLs and/or modules. • As outputs to be used as either a reference clock or as a functional clock for peripherals.
7. Bias XTALI with a 2.2 M resistor to GND. Mount the resistor close to the XTALI ball	The XTALI bias must be adjusted externally to ensure reasonable start-up time.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

Table 12. Reset and ON OFF recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	1. If the external POR_B signal is used to control the processor POR, then POR_B must be immediately asserted at power-up and remain asserted until the VDD_ARM_CAP and VDD_SOC_CAP supplies are stable. VDD_SOC_IN may be applied in either order with no restrictions. In the absence of an external reset feeding the SRC_POR_B input, the internal POR module takes control.	A reset switch may be wired to the chip's POR_B, which is a cold-reset negative-logic input that resets all modules and logic in the IC. POR_B may be used in addition to internally generated power-on reset signal (logical AND, both internal and external signals are considered active low).
	2. For portable applications, the ON/OFF input may be connected to an ON/OFF SPST push-button switch. On-chip debouncing is provided, and this input has an on-chip pull up. If not used, ON/OFF can be a no connect.	A brief connection to GND in OFF mode causes the internal power management state machine to change state to ON. In ON mode, a brief connection to GND generates an interrupt (intended to be a software-controllable power-down). An approximate 5 seconds or more to GND causes a forced OFF.

Table 13. USB recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	1. USB OTG To comply with the USB OTG specification, the VBUS supply on the OTG connector should be off by default when the boards power up, and keeps off until OTG_ID is pulled low.	The processor can turn VBUS on when it's required.

Table 14. Miscellaneous recommendations

Checkbox	Recommendation	Explanation/supplemental recommendation
	The TEST_MODE input is internally connected to an on-chip pull down device. The user can either float this signal or tie it to GND.	This input is reserved for NXP manufacturing use.
	2. GPANAIO must be a no connect.	This output is reserved for NXP manufacturing use.
	3. NC contacts are no connect and should be floated.	Depending on the feature set, some versions of the IC may have NC contacts connected inside the BGA.

The following figure provides supporting information for Table 18.

Figure 1. Boot configuration for development mode

2.2 DDR reference circuit

The following table is a resistor chart (see Table 4 recommendation #2). The recommendations are appropriate for designs with DDR memory chips with a maximum Vref input current of 2 μ A each.

 Number of DRAM with 2 μA Vref input current
 Resistor divider value (2 resistors)

 2
 = 1.21 kΩ 1%

 2
 = 1.54 kΩ 0.5%

 2
 = 2.32 kΩ 0.1%

Table 15. DDR Vref resistor sizing guideline

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

2.3 JTAG signal termination

The following table is a JTAG termination chart (see recommendations in Table 8).

Table 16. JTAG interface summary

JTAG signal	I/O type	On-chip termination	External termination
JTAG_TCK	Input	47 kΩ pullup	Not required; can use 10 kΩ pulldown
JTAG_TMS	Input	47 kΩ pullup	Not required; can use 10 kΩ pullup
JTAG_TDI	Input	47 kΩ pullup	Not required; can use 10 kΩ pullup
JTAG_TDO	3-state output	100 kΩ pullup	Do not use pullup or pulldown
JTAG_TRSTB	Input	47 kΩ pullup	Not required; can use 10 kΩ pullup
JTAG_MOD	Input	100 kΩ pullup	Use 4.7 kΩ pulldown or tie to GND

2.4 Oscillator tolerance

The following table provides 24 MHz oscillator tolerance guidelines (see Table 11, recommendations #4 and #5). Because these are guidelines, the designer must verify all tolerances per the official specifications.

Table 17. MHz crystal tolerance guidelines

Interface	Tolerance (± ppm)
Ethernet	50
USB2.0	150

2.5 Unused analog interfaces

The following table shows the recommended connections for unused analog interfaces.

Table 18. Recommended connections for unused analog interfaces

Module	Contact name	Recommendations if unused
ADC	ADC_VREFH	Tie to VDDA_ADC_3P3
	VDDA_ADC_3P3	VDDA_ADC_3P3 must be powered even if the ADC is not used.
ССМ	CCM_CLK1_P, CCM_CLK1_N	Float
RTC	RTC_XTALI	Ground
	RTC_XTALO	Float
USBOTG	USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB1_OTG_VBUS USB_OTG2_DN, USB_OTG2_DP, USB2_OTG_VBUS	Float

¹ These supplies must remain powered if boundary scan test needs to be done.

2.6 Migrating from i.MX 6UltraLite to i.MX 6ULL

The main feature changes from i.MX 6UltraLite to i.MX 6ULL are adding EPDC and ESAI support. The i.MX 6ULL's EPDC could support E-book DC4 board .The detailed migration from i.MX 6UltraLite to i.MX 6ULL is available at:

AN WebSite TBD

18 NXP Semiconductor, Inc.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

3 i.MX 6ULL Layout Recommendations

3.1 Introduction

This chapter provides recommendations to assist design engineers with the layout of an i.MX 6ULL -based system.

3.2 Basic design recommendations

The i.MX 6ULL processor comes in multiple packages.

When using the Allegro tool, optimal practice is to use the footprint as created by NXP. When not using the Allegro tool, use the Allegro footprint export feature (supported by many tools). If export is not possible, create the footprint per the package mechanical dimensions outlined in the product data sheet.

Native Allegro layout and gerber files are available on NXP.com.

3.2.1 Placement of bulk and decoupling capacitors

Place small decoupling and larger bulk capacitors on the bottom side of the CPU.

The 0402 decoupling and 0603 bulk capacitors should be placed as close as possible to the power balls. The distance should be less than 50 mils. Additional bulk capacitors can be placed near the edge of the BGA via array. Placing the decoupling capacitors close to the power balls is critical to minimize inductance and ensure high-speed transient current demand by the processor.

A correct via size is critical for preserving adequate routing space. The recommended geometry for the via pads is: pad size 18 mils and drill 8 mils.

A preferred BGA power decoupling design layout is available through <u>www.nxp.com.</u>. Customers should use the NXP design strategy for power and decoupling.

3.3 Stackup recommendations

High-speed design requires a good stackup in order have the right impedance for the critical traces.

Figure 2. i.MX 6ULL EVK PCB stackup info

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

i.MX 6ULL Layout Recommendations

The constraints for the trace width may depend on a number of factors, such as the board stackup and associated dielectric and copper thickness, required impedance, and required current (for power traces). The NXP reference design uses a minimum trace width of 3 mils for the DDR routing. The stackup also determines the constraints for routing and spacing.

Consider the following when designing the stackup and selecting the material for your board.

- Board stack-up is critical for high-speed signal quality.
- You must preplan impedance of critical traces
- High-speed signals must have reference planes on adjacent layers to minimize cross-talk.
- NXP reference design equals Isola FR4.
- NXP validation boards equals Isola FR4.
- The recommended stackup is 4-layers, with the layer stack as shown in the following figure. The left hand image shows the detail provided by NXP inside the fabrication detail as a part of the Gerber files. The right hand side shows the solution suggested by the PCB fabrication company for our requirements.

The following table shows the i.MX 6ULL EVK PCB stackup implementation:

Layers	Single ended				Diffe	rential		
	Trace width (Mils)	Impedance (Ωs)	Trace width (Mils)	Trace spacing 'Air- gap' (Mils)	Impedance (Ωs)	Trace width (Mils)	Trace spacing 'Airgap' (Mils)	Impedance (Ωs)
TOP	4.5	50	4	4	90	4	7	100
ВОТ	4.5	50	4	4	90	4	7	100

Table 19. Stackup implementation

3.4 DDR connection information

The following figures show the block diagrams from the reference design boards for the DDR3 interface and the LPDDR2 interface (respectively) with the i.MX 6ULL.

Figure 3. i.MX 6ULL LPDDR2 interface

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

21

Figure 4. i.MX 6ULL DDR3 interface

The DDR3 interface is one of the most critical interfaces for chip routing. It must have the controlled impedance for the single ended traces be equal to 50Ω and for the differential pairs be equal to 100Ω

Figure 5. Final placement of memories and decoupling capacitors 1

Figure 6. Final placement of memories and decoupling capacitors 2

3.4.1 DDR routing rules

DDR3 routing can be accomplished in two different ways: routing all signals at the same length or routing by byte group.

Routing all signals at the same length can be more difficult because of the tight space between the DDR and the processor and the large number of required interconnects. However, it is the better way because it makes signal timing analysis straightforward. Ideally, we could route all the signals at the same length. Nevertheless, it could be difficult because of the large number of connections in the tight space between the DDR and the processor. The following table explains the rules for routing the signals by the same length.

Signals	Total length	Recommendations
Address and Bank	Clock length	Match the signals ±25 mils of the value specified in the length column
Data and Buffer	Clock length	Match the signals ±25 mils of the value specified in the length column
Control signals	Clock length	Match the signals ±25 mils of the value specified in the length column
Clock DRAM_SDCLK[1:0]	Longest trace less than or equal to 2 inches	Match the signals of clocks signals ±5 mils. Each differential clock pair
DRAM_SDQS[1:0] and DRAM_SDQS[1:0]_B	Clock length	Match the signals of DQS signals ±10 mils of the value specified in the length column.

Table 20. DDR3 routing by the same length

Routing by byte group requires better control of the signals of each group. It is also more difficult for analysis and constraint settings. However, its advantage is that the constraint to match lengths can be

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

applied to a smaller group of signals. This is often more achievable once the constraints are properly set. The following table explains the rules for routing the signals by byte group.

Table 21. DDR3 routing by byte group

Chip signals	Group	Length (mils) Min		Recommendations
DRAM_SDCLK0 DRAM_SDCLK0_B	Clock	Short as possible	2 inches	Match the signals ± 5 mils.
DRAM_A[15:0] DRAM_SDBA[2:0] DRAM_RAS DRAM_CAS DRAM_SDWE	Address and Command	Clock (min) – 200	Clock (min)1	Match the signals ± 25 mils.
DRAM_D[7:0] DRAM_DQM0 DRAM_SDQS0 DRAM_SDQS0_B	Byte Group 1	_	Clock (min)	Match the signals of each byte group ± 25 mils. Match the differential signals of DQS ± 10 mils.
DRAM_D[15:8] DRAM_DQM1 DRAM_SDQS1 DRAM_SDQS1_B	Byte Group 2	_	Clock (min)	_
DRAM_CS[1:0] DRAM_SDCKE[1:0] DRAM_SDODT[1:0]	Control signals	Clock (min) – 200	Clock (min)	Match the signals ± 50 mils.

¹⁾ Clock (min) — The shortest length of the clock group signals because this group has a \pm 5 mil matching tolerance. Finally, the impedance for the signals should be 50Ω for single ended and 100Ω for differential pairs.

3.5 Routing considerations

The chip can support up to 2 GB of DRAM memory. i.MX 6ULL DDR routing needs to be separated into three groups: data, address, and control. Each group has its own method of routing from an i.MX 6 series chip to DDR memory. The DDR layout has 2 Gbyte and 1 Gbyte options.

3.5.1 Swapping data lines

The DDR3 pin swapping technique for the data bus lines within bytes makes it easier to:

- Route direct lines
- Avoid changes between layers

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

i.MX 6ULL Layout Recommendations

The rules are as follows:

- Hardware write leveling lowest order bit within byte lane must remain on lowest order bit of lane by JEDEC compliance (see the "Write Leveling" section in JESD79-3E)
 - The lowest bit of each byte must be aligned between the i.MX 6ULL and DDR chips. For example, D0 of i.MX 6ULL to D0 of DDR chip, D8 of i.MX 6ULL to D8 of DDR chip.
 - Other data lines free to swap within byte lane
- JEDEC DDR3 memory restrictions are:
 - No restrictions for complete byte lane swapping
 - DQS and DQM must follow lanes

NOTE

If byte lane swapping was done, target DDR IC register read value must be transposed according to the data line swapping.

3.5.2 High speed signal routing recommendations

The following list provides recommendations for routing traces for high speed signals. Note that the propagation delay and the impedance control should match in order to have the correct communication with the devices.

- High-speed signals (DDR, RMII, display) must not cross gaps in the reference plane.
- Avoid creating slots, voids, and splits in reference planes. Review via voids to ensure they do not create splits (space out vias).
- Provide ground return vias within 100 mils distance from signal layer-transition vias when transitioning between different reference ground planes.
- A solid GND plane must be directly under crystal, associated components, and traces.
- Clocks or strobes that are on the same layer need at least 2.5× spacing from an adjacent trace (2.5× height from reference plane) to reduce cross-talk.
- All synchronous modules should have bus length matching and relative clock length control. For SD module interfaces:
 - Match data and CMD trace lengths (length delta depends on bus rates)
 - CLK should be longer than the longest signal in the Data/CMD group (+5 mils)
 - Similar DDR rules must be followed for data, address and control as for SD module interfaces.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

25

3.6 DDR power recommendations

The following recommendations apply to the VREF (P0V675_REFDDR) voltage reference plane.

- Use < 30 mils trace between decoupling cap and destination.
- Maintain a 25 mils clearance from other nets.

Decouple using distributed 0.22 uF capacitors by the regulator, controller, and devices.

• Place one 1.0 uF near the source of VREF: one near the VREF pin on the controller and two between the controller and the devices.

3.7 USB recommendations

Use the following recommendations for the USB.

- Route the high speed clocks and the DP and DM differential pair first.
- Route DP and DM signals on the top or bottom layer of the board.
- The trace width and spacing of the DP and DM signals should meet the differential impedance requirement of 90Ω .
- Route traces over continuous planes (power and ground).
 - They should not pass over any power/GND plane slots or anti-etch.
 - When placing connectors, make sure the ground plane clearouts around each pin have ground continuity between all pins.
- Maintain the parallelism (skew matched) between DP and DM, and match overall differential length difference to less than 5 mils.
- Maintain symmetric routing for each differential pair.

Do not route DP and DM traces under oscillators or parallel to clock traces and/or data buses.

- Minimize the lengths of high speed signals that run parallel to the DP and DM pair.
- Keep DP and DM traces as short as possible.
- Route DP and DM signals with a minimum amount of corners. Use 45-degree turns instead of 90-degree turns.
- Avoid layer changes (vias) on DP and DM signals. Do not create stubs or branches.
- Provide ground return vias within 50 mils distance from signal layer-transition vias when transitioning between different reference ground planes.

3.8 Impedance signal recommendations

Use the following table as a reference when you are updating or creating constraints in your software PCB tool to set up the impedance and the correct trace width.

Table 22. Impedance signal recommendations

Signal Group	Impedance	Layout Tolerance (±)	
All signals, unless specified	50 ₂ SE	10%	
USB Diff signals	90 ₂ Diff	10%	
Diff signals: DDR, Phy IC to Ethernet Connector	100 ₂ Diff	10%	

The following figure shows the dimensions of a stripline and microstrip pair. Figure 8 shows the differential pair routing.

Figure 7. Microstrip and stripline differential pair dimensions

Figure 8. Differential pair routing

- The space between two adjacent differential pairs should be greater than or equal to twice the space between the two individual conductors.
- The skew between LVDS pairs should be within the minimum recommendation (\pm 100 mil).

3.9 ESD and radiated emissions recommendations

The PCB design should four layers, with solid power and ground planes. The recommendations for ESD immunity and radiated emissions performance are as follows:

- All components with ground chassis shields (USB jack, buttons, and so forth) should connect the shield to the PCB chassis ground ring.
- Ferrite beads should be placed on each signal line connecting to an external cable. These ferrite beads must be placed as close to the PCB jack as possible.

NOTE

Ferrite beads should have a minimum impedance of 500Ω at 100 MHz with the exception of the ferrite on USB_5V.

- Ferrite beads should NOT be placed on the USB D+/D- signal lines as this can cause USB signal integrity problems. For radiated emissions problems due to USB, a common mode choke may be placed on the D+/D- signal lines. However, in most cases, it should not be required if the PCB layout is satisfactory. Ideally, the common mode choke should be approved for high speed USB use or tested thoroughly to verify there are no signal integrity issues created.
- It is highly recommended that ESD protection devices be used on ports connecting to external connectors. Users must add low capacitance TVS arrays to the USB interfaces. For example, SEMTECH's RClamp0854P protects high speed data interfaces such as USB2.0, USB OTG from overvoltage caused by ESD, CDE and EFT. See the reference schematic (available at www.nxp.com.) for detailed information about ESD protection implementation on the USB interfaces.
- If possible, stitch all around the board with vias with 100 mils spacing between them connected to GND planes with exposed solder mask to improve EMI. It's called Faraday Cage.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

3.10 Component placement recommendations

Adhere to the following recommendations when placing components.

- Place components such that short and/or critical routes can be easily laid out.
 - Critical routes determine component location.
 - Orient devices to facilitate routes (minimize length and crossovers).
- Consider placing the following pairings adjacent.
 - i.MX and DDR

28

- PHY and associated jack
- Jack and CODEC input
- Bluetooth[®] (or other RF) and antenna

3.11 Reducing skew and phase problems in deferential pairs traces

Differential pair technology has evolved to require more stringent checking in the area of phase control. This is evident on the higher data rates associated with parallel buses such as DDR or Ethernet. In the simplest of terms, Diff Pair technology sends opposite and equal signals down a pair of traces. Keeping these opposite signals in phase is essential to assuring that they function as intended.

The following figures show two examples of static routing where a match is achieved without needing to tune one element of the differential pair.

Figure 9. Yellow traces diff pairs 1

The following figure shows the addition of a delay trace to one element of the differential pair to avoid length mismatch (which reduces skew and phase problems). The green box marks the detail.

Figure 10. Small bumps added to the shorter differential pair

3.12 eMMC HS200 mode recommendations.

The HS200 bus speed mode for eMMC offers the following features:

- SDR Data sampling method
- □ CLK frequency up to 200MHz Data rate up to 200MB/s
- \Box 4 or 8-bits bus width supported
- □ Single ended signaling with 4 selectable Drive Strength
- □ Signaling levels of 1.8V
- □ Tuning concept for Read Operations

The PCB design recommendations for eMMC HS200 mode are as below:

- The propagation time skew of signals between the controller and eMMC should be within 50ps.
- The maximum length of the traces should be 60mm as the parasitic capacitance will cause the driving load capacitance increase.
- The maximum line length difference should be 8mm.
- The HW reset pin of eMMC should be configured as floating or connecting to GND if not used.
- The maximum line length of DDR50 should be 60mm.
- The maximum line length difference of DDR50 should be 8mm.

4 Avoiding Board Bring-up Problems

4.1 Introduction

This chapter provides recommendations for avoiding typical mistakes when bringing up a board for the first time. These recommendations consist of basic techniques that have proven useful in the past for detecting board issues and addressing the three most typical bring-up pitfalls: power, clocks, and reset. A sample bring-up checklist is provided at the end of the chapter.

4.2 Using a current monitor to avoid power pitfalls

Excessive current can cause damage to the board. Avoid this problem by using a current-limiting laboratory supply set to the expected typical main current draw (at most). Monitor the main supply current with an ammeter when powering up the board for the first time. You can use the supply's internal ammeter if it has one. By monitoring the main supply current and controlling the current limit, any excessive current can usually be detected before permanent damage occurs.

4.3 Using a voltage report to avoid power pitfalls

Using incorrect voltage rails is a common power pitfall. To help avoid this mistake, create a basic table called a voltage report prior to bringing up your board. This table helps validate that all the supplies are reaching the expected levels.

To create a voltage report, list the following:

- Your board voltage sources
- Default power-up values for the board voltage sources
- Best location on the board to measure the voltage level of each supply

Carefully determine the best measurement location for each power supply to avoid a large voltage drop (IR drop) on the board, which causes inaccurate current values to be measured. The following guidelines help produce the best current measurements:

- Measure closest to the load (in this case the i.MX 6ULL processor).
- Make two measurements: the first after initial board power-up and the second while running a heavy use-case that stresses the i.MX 6ULL processor.

Ensure that the supplies that are powering the i.MX 6ULL meet the DC electrical specifications as listed in your chip-specific data sheet.

Source	Net name	Expected (V)	Measured (V)	Measured point	Comment
Main	VSYS	5.0	5.103	TP814	_
LDO	VDD_SNVS_3V3	3.3	3.334	TP701	_
DCDC	DCDC_3V3	3.3	3.261	TP705	_
DCDC	DRAM_1V35	1.35	1.376	TP708	_

Table 23. Sample voltage report

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

DCDC	VDD_ARM_SOC_IN	1.4	1.411	TP702	_
LDO	VLDO_3V3	3.3	3.275	TP704	_
LDO	VLDO_1V8	1.8	1.792	TP707	_
LDO	NVCC_SD	3.3/1.8	3.311	TP709	_
i.MX 6ULL	VDD_ARM_CAP	1.1	1.1	C106	_
i.MX 6ULL	VDD_SOC_CAP	1.1	1.1	C116	_
i.MX 6ULL	VDD_HIGH_CAP	2.5	2.515	C120	_
i.MX 6ULL	VDDSNVS_CAP	1.1	1.1	C124	_
i.MX 6ULL	NVCC_PLL_OUT	1.1	1.1	C122	_

Table 23. Sample voltage report

4.4 Checking for clock pitfalls

Problems with the external clocks are another common source of board bring-up issues. Ensure that your entire clock sources are running as expected.

The XTALI/XTALO and the RTC_XTALI/RTC_XTALO clocks are the main clock sources for 24 MHz and 32 kHz reference clocks respectively on the i.MX 6ULL. Although not required, the use of low jitter external oscillators to feed CLK1_P/N on the i.MX 6ULL can be an advantage if low jitter or special frequency clock sources are required by modules driven by CLK1_P/N. See the CCM chapter in your i.MX 6ULL chip reference manual for details. If a 32.768 kHz crystal is not connected to the i.MX 6ULL, an on-chip ring oscillator is automatically used for the low-frequency clock source.

When checking crystal frequencies, use an active probe to avoid excessive loading. A parasitic probe typically inhibits the 32.768 kHz and 24 MHz oscillators from starting up. Use the following guidelines:

- RTC_XTALI clock is running at 32.768 kHz (can be generated internally or applied externally).
- XTALI/XTALO is running at 24 MHz (used for the PLL reference).
- CLK1_P/N can be used as oscillator inputs for low jitter special frequency sources.
- CLK1_P/N is optional.

In addition to probing the external input clocks, you can check internal clocks by outputting them at the debug signals CLKO1 and CLKO2 (iomuxed signals). See the CCM chapter in the chip reference manual for more details about which clock sources can be output to those debug signals. JTAG tools can be used to configure the necessary registers to do this.

4.5 Avoiding reset pitfalls

Follow these guidelines to ensure that you are booting using the correct boot mode.

- During initial power on while asserting the POR_B reset signal, ensure that 24 MHz and 32.768k clock is active before releasing POR_B.
- Follow the recommended power-up sequence specified in the i.MX 6ULL data sheet.
- Ensure the POR_B signal remains asserted (low) until all voltage rails associated with boot up are on.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

Avoiding Board Bring-up Problems

The GPIOs and internal fuses control how the i.MX 6ULL boots. For a more detailed description about the different boot modes, see the system boot chapter of the chip reference manual.

4.5.1 Sample board bring-up checklist

Note that the checklist incorporates the recommendations described in the previous sections. Blank cells should be filled in during bring-up as appropriate.

Table 24. Board bring-up checklist

Checklist Item	Details	Owner	Findings & status			
Note: The following items must be completed serially.						
1. Perform a visual inspection.	Check major components to make sure nothing has been misplaced or rotated before applying power.					
2. Verify all i.MX 6ULL voltage rails.	Confirm that the voltages match the data sheet's requirements. Be sure to check voltages not only at the voltage source, but also as close to the i.MX 6ULL as possible (like on a bypass capacitor). This reveals any IR drops on the board that will cause issues later. Ideally all of the i.MX 6ULL voltage rails should be checked, but VDD_ARM_SOC_IN is particularly important voltages. These are the core logic voltages and must fall within the parameters provided in the i.MX 6ULL data sheet. VDD_SNVS_IN, NVCC_GPIO, and NVCC_DRAM are also critical to the i.MX 6ULL boot up.					
3. Verify power-up sequence.	Verify that power on reset (POR_B) is de-asserted (high) after all power rails have come up and are stable. See the i.MX 6ULL data sheet for details about power-up sequencing.					
4. Measure/probe input clocks (32 kHz, 24MHz, others).	Without a properly running clock, the i.MX 6ULL will not function properly.					
5. Check JTAG connectivity	This is one of the most fundamental and basic access points to the i.MX 6ULL to allow the debug and execution of low level code.					
Note: The following items may be	worked on in parallel with other bring up tasks.					
Access internal RAM.	Verify basic operation of the i.MX 6ULL in system. Perform a basic test by performing a write-read-verify to the internal RAM. No software initialization is necessary to access internal RAM.					

Table 24. Board bring-up checklist (continued)

Verify CLKO outputs (measure and verify default clock frequencies for desired clock output options) if the board design supports probing of the CLKO pin.	This ensures that the corresponding clock is working and that the PLLs are working. Note that this step requires chip initialization, for example via the JTAG debugger, to properly set up the IOMUX to output CLKO and to set up the clock control module to output the desired clock. See the reference manual for more details.	
Measure boot mode frequencies. Set the boot mode switch for each boot mode and measure the following (depending on system availability): • NAND (probe CE to verify boot, measure RE frequency) • SPI-NOR (probe slave select and measure clock frequency) • MMC/SD (measure clock frequency)	This verifies the specified signals' connectivity between the i.MX 6ULL and boot device and that the boot mode signals are properly set. See the "System Boot" chapter in the reference manual for details about configuring the various boot modes.	
Run basic DDR initialization and test memory.	1. Assuming the use of a JTAG debugger, run the DDR initialization and open a debugger memory window pointing to the DDR memory map starting address. 2. Try writing a few words and verify if they can be read correctly. 3. If not, recheck the DDR initialization sequence and whether the DDR has been correctly soldered onto the board. It is also recommended that users recheck the schematic to ensure that the DDR memory has been connected to the i.MX 6ULL correctly.	

5 Understanding the IBIS Model

This chapter explains how to use the IBIS (input output buffer information specification) model, which is an Electronic Industries Alliance standard for the electronic behavioral specifications of integrated circuit input/output analog characteristics. The model is generated in ASCII text format and consists of multiple tables that capture current vs. voltage (IV) and voltage vs. time (VT) characteristics of each buffer. IBIS models are generally used to perform PCB-board-level signal integrity (SI) simulations and timing analyses.

The IBIS model's features are as follows:

- Supports fast chip-package-board simulation, with SPICE-level accuracy and faster than any transistor-level model
- Provides the following for portable model data
 - I/O buffers, series elements, terminators
 - Package RLC parasitics
 - Electrical board description

5.1 IBIS structure and content

An IBIS file contains the data required to model a component's input, output, and I/O buffers behaviorally in ASCII format. The basic IBIS file contains the following data:

• Header information regarding the model file

Information about the component, the package's electrical characteristics, and the pin-to-buffer model mapping (in other words, which pins are connected to which buffer models)

The data required to model each unique input, output, and I/O buffer design on the component IBIS models are component-centric, meaning they allow users to model an entire component rather than only a particular buffer. Therefore, in addition to the electrical characteristics of a component's buffers, an IBIS file includes the component's pin-to-buffer mapping and the electrical parameters of the component's package.

5.2 Header Information

34

The first section of an IBIS file provides the basic information about the file and its data. The following table explains the header information notation.

Table 25. Header Information

Keyword	Required	Description
[IBIS Ver]	Yes	Version of IBIS Specification this file uses.
[Comment char]	No	Change the comment character. Defaults to the pipe () character
[File Name]	Yes	Name of this file. All file names must be lower case. The file name extension for an IBIS file is .ibs

Table 25. Header Information

[File Rev]	Yes	The revision level of this file. The specification contains guidelines for assigning revision levels.
[Date]	No	Date this file was created
[Source]	No	The source of the data in this file. Data is taken from a simulation and validated on the board.
[Notes]	No	Component or file-specific notes.
[Disclaimer]	No	May be legally required
[Copyright]	No	The file's copyright notice

Example 1. Header Information

[IBIS Ver] 4.2

[Comment Char] |_char

[File Name] 14x14_imx6ull_autmtv_1.ibs

[File Rev] 001

[Date] Sat Jan 31 02:23:00 2015

[Source] FSL Viper 2012.03.14

[Notes]

5.2.1 Component and pin information

The second section of an IBIS file is where the data book information regarding the component's pinout, pin-to-buffer mapping, and the package and pin electrical parameters is placed.

Table 26. Component and Pin Information

Keyword	Required	Comment
[Component]	Yes	The name of the component being modeled. Standard practice has been to use the industry standard part designation. Note that IBIS files may contain multiple [Component] descriptions.
[Manufacturer]	Yes	The name of the component manufacturer
[Package]	Yes	This keyword contains the range (minimum, typical and maximum values) over which the packages' lead resistance, inductance, and capacitance vary (the R_pkg, L_pkg, and C_pkg parameters).
[Pin]	Yes	This keyword contains the pin-to-buffer mapping information. In addition, the model creator can use this keyword to list the package information: R, L, and C data for each individual pin (R_pin, L_pin, and C_pin parameters).
[Package Model]	No	If the component model includes an external package model (or uses the [Define Package Model] keyword within the IBIS file itself), this keyword indicates the name of that package model.
[Pin Mapping]	No	This keyword is used if the model creator wishes to include information on buffer power and ground connections. This information may be used for simulations involving multiple outputs switching.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

Table 26. Component and Pin Information

[Diff Pin]	No	This keyword is used to associate buffers that should be driven in a complementary fashion as a differential pair.
[Model Selector]	Yes	This keyword provides a simple means by which several buffers can be made optionally available for simulation at the same physical pin of the component.

Example 2. Component and pin information

```
[Component] imx6ull_l4xl4
[Manufacturer] NXP
[Package]
|variable
           typ
                         min
                                    max
R_pkg
         0.19939
                      6.56E-03
                                  0.3526
L_pkg
         4.44E-09
                      1.69E-10
                                   8.61E-09
C_pkg
         5.70E-13
                      3.18E-13
                                   4.04E-12
[Pin]
        signal_name
                           model_name
                                                                      C_{pin}
                                             R_{pin}
                                                        L_{pin}
                              GND
Al
          GND
                                              NA
                                                           NA
                                                                        NA
                                            0.353071 7.62806nH
A2
                                                                      0.6007274pF
        SD1_DATA3
                             gpio
```

5.2.2 Model information

The [Model] keyword starts the description of the data for a particular buffer.

Table 27. Model information

Keyword	Comment
[Model Spec]	General set of parameters for the model simulation.
[Receiver Thresholds]	Threshold information for the different simulation cases.
[Temperature Range]	The temperature range over which the min, typ and max IV and switching data have been gathered.
[Voltage Range]	The range over which Vcc is varied to obtain the min, typ and max pullup and power clamp data.
[Pulldown] [Pullup] [GND_clamp] [POWER_clamp]	IV information. For more details, see Section 5.2.3, "IV information."
[Ramp] [Rising Waveform] [Falling Waveform]	VT information. For more details, see Section 5.2.4, "VT information."
[Test Data] [Rising Waveform Near] [Rising Waveform Far] [Falling Waveform Near] [Falling Waveform Far] [Test Load]	VT golden model information. For more details, see Section 5.2.5, "Golden Model VT information."

5.2.3 IV information

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

IV information is composed of four Current-over-Voltage tables: [Pullup], [Pulldown], [GND_clamp], and [Power_clamp]. Each look-up table describes a different part of the IO cell model.

Figure 11. IO cell model

5.2.4 VT information

Table 28. Ramp and waveform keywords

Keyword	Required	Comment
[Ramp]	Yes	Basic ramp rate information, given as a dV/dt_r for rising edges and dV/dt_f for falling edges. Note: The dV value is the 20% to 80% voltage swing of the buffer when driving into the specified load, R_load (for [Ramp], this load defaults to 50). For CMOS drivers or I/O buffers, this load is assumed to be connected to the voltages defined by the [Voltage Range] keyword for falling edges and to ground for rising edges.
[Rising Waveform]	No	The actual rising (low to high transition) waveform, provided as a VT table.
[Falling Waveform]	No	The actual falling (high to low transition) waveform, provided as a VT table.

Example 3. Ramp and waveform keywords example

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

Understanding the IBIS Model

38

```
R fixture= 0.2400k
V fixture= 0.0
V_fixture_m in= 0.0
V_fixture_max= 0.0
ltime
            V(typ)
                       V(min)
                                            V(max)
10.0S
           0.3369uV 12.4052uV
                                           41.7335nV
|19.7866fS 0.6730uV 12.7375uV
                                           0.3823uV
|20.8863fS 0.6917uV 12.7519uV
                                           0.4013uV
121.9489fS 0.7058uV 12.7657uV
                                           0.4196uV
I
```

The [Ramp] keyword is always required, even if the [Rising Waveform] and [Falling Waveform] keywords are used. However, the VT tables under [Rising Waveform] and [Falling Waveform] are generally preferred to [Ramp] for the following reasons:

- VT data may be provided under a variety of loads and termination voltages
- VT tables may be used to describe transition data for devices as they turn on and turn off.
- [Ramp] effectively averages the transitions of the device, without providing any details on the shapes of the transitions themselves. All detail of the transition ledges would be lost.

The VT data should be included under two [Rising Waveform] and two [Falling Waveform] sections, each containing data tables for a Vcc-connected load and a Ground-connected load (although other loading combinations are permitted).

The most appropriate load is a resistive value corresponding to the impedance of the system transmission lines the buffer will drive (own impedance). For example, a buffer intended for use in a 60 Ω system is best modeled using a 60 Ω load (R_fixture).

.....

39

Figure 12. Model data interpretation

5.2.5 Golden Model VT information

Golden waveforms are a set of waveforms simulated using known ideal test loads. They are useful for verifying the accuracy of behavioral simulation results against the transistor level circuit model from which the IBIS model parameters originated.

Figure 13. Model data interpretation

Table 29. Golden waveform keywords

Keyword	Required	Comment
[Test Data]	No	Provides a set of golden waveforms and references the conditions under which they were derived. Useful for verifying the accuracy of behavioral simulation results against the transistor level circuit model from which the IBIS model parameters originated.
[Rising Waveform Near] [Rising Waveform Far] [Falling Waveform Near] [Falling Waveform Far]	Yes	Current-Over-Voltage tables, for far and near portions of the golden model, as shown in Figure 13.
[Test Load]	Yes	Defines a test load network and its associated electrical parameters for reference by golden waveforms under the [Test Data] keyword. If Test_load_type is Differential, the test load is a pair of the circuits shown in . If the R_diff_near or R_diff_far subparameter is used, a resistor is connected between the near or far nodes of the two circuits. If Test_load_type is Single_ended, R_diff_near and R_diff_far are ignored.

5.3 NXP naming conventions for model names and usage in i.MX 6ULL IBIS file

The model names are defined per each [Model selector]. The models may differ from each other by having different parameters—such as voltage, drive strength, mode of operation, and slew rate. The mode of operation, drive strength, and slew rate parameters are programmable by software.

5.3.1 [Model Selector] ddr

The "ddr" model type supports the DDR signals.

5.3.1.1 DDR [Model Selector]

"ddr" models exist for DDR3, DDR3L, and LPDDR2 protocols. This model has the following parameters:

- DDR protocol
- DDR IO type
- Drive strength
- ODT enable/disable

The IBIS model name is composed from the parameters' values in two ways, as follows:

• Without active ODT circuit:

<ddr protocol>_sel<ddr_type>_ds<drive_strength>_mio

• With active ODT circuit:

<ddr protocol>odt_t<0DT_value>_sel<ddr_type>_mi

DDR write models ("_mio" suffix) have no simulated ODT, as ODT is disabled during write. Write models' DS parameter is meaningful and changes to describe the different levels of drive strength. DDR read models ("_mi" suffix) have no meaningful DS parameter, as no driving happens during read. Read models' ODT parameter is meaningful and changes to describe different levels of ODT impedance.

Table 30. Module Selector Reference Guide for ddr

DDR Protocol	Selected according to the used DDR. DDR IO voltage level is selected accordingly.	
DDR IO Type	Controlled by the IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE[19:18] register in IOMUXC (IOMUX controller) DDR_SEL bits, to select between DDR3 & LPDDR2.	
Drive strength	Controlled by bits [5:3] (DSE) of the following registers in IOMUX (IOMUX controller): IOMUXC_SW_PAD_CTL_GRP_BxDS (4 registers) IOMUXC_SW_PAD_CTL_GRP_CTLDS IOMUXC_SW_PAD_CTL_PAD_DRAM_ADDRxx (16 registers) IOMUXC_SW_PAD_CTL_PAD_DRAM_DQMx (4 registers) IOMUXC_SW_PAD_CTL_PAD_DRAM_RAS_B IOMUXC_SW_PAD_CTL_PAD_DRAM_CAS_B IOMUXC_SW_PAD_CTL_PAD_DRAM_CSx_B (2 registers) IOMUXC_SW_PAD_CTL_PAD_DRAM_SDWE_B IOMUXC_SW_PAD_CTL_PAD_DRAM_ODTx (2 registers) IOMUXC_SW_PAD_CTL_PAD_DRAM_SDBAx (3 registers) IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCKE0 (2 registers) IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCKE0 (2 registers) IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCKE0 PIOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0_P (4 registers) IOMUXC_SW_PAD_CTL_PAD_DRAM_RESET	
ODT value	Controlled by bits [18:16], [14:12], [10:8], and [6:4] in MPODTCTRL register of MMDC.	

Example 4. [Model Selector] DDR in IBIS file

```
ddr3_sell1_dsll1_mio DDR, 1.5V, ddr3 mode, 34 0hm driver impedance ...

LPDDR, 1.2V, lpddr2 mode, 34 0hm driver impedance ...
```

See the register description in the IOMUXC chapter in the chip reference manual for further details about this model.

5.3.2 [Model Selector] GPIO

This model has the following parameters:

- Voltage level
- Drive strength
- Slew rate
- Speed

The IBIS model name is composed from parameters' values as follows:

gpio<voltage_level>_ds<drive_strength>_sr<slew_rate(1 bit)><speed(2 bits)>_mio

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

Table 31. Module Selector Reference Guide for GPIO

Voltage Level	For i.MX 6ULL chips, there are no user configurations for the voltage level because the GPIO cell senses the NVCC and auto-configures itself accordingly. The IBIS user can choose between high and low voltage by selecting a different model at [Model Selector].
Drive strength	Controlled by the DSE bits (bits [5:3]) in the IOMUXC_SW_PAD_CTL_PAD_ <pad name="">.</pad>
Slew rate	Controlled by the SRE bit (bit 0) in the IOMUXC_SW_PAD_CTL_PAD_ <pad name="">.</pad>
Speed	Controlled by the SPEED bits (bits [7:6]) in the IOMUXC_SW_PAD_CTL_PAD_ <pad name="">.</pad>

See the register description in the IOMUXC chapter in the chip reference manual for further details about this model.

5.4 Quality assurance for the IBIS models

The IBIS models are validated against the IBIS specification, which provides a way to objectively measure the correlation of model simulation results with reference transistor-level spice simulation or measurements.

Correlation: The process of making a quantitative comparison between two sets of I/O buffer characterization data, such as lab measurement vs. structural simulation or behavioral simulation vs. structural simulation.

Correlation: Level A means for categorizing I/O buffer characterization data based on how much the modeling engineer knows about the processing conditions of a sample component and which correlation metric he or she used.

All models have passed the following checks:

- IBISCHK without errors or unexplained warnings
- Data for basic simulation checked
- Data for timing analysis checked
- Data for power analysis checked
- Correlated against Spice simulations

5.5 IBIS usage

NXP board designers used the i.MX 6ULL IBIS model with the Hyperlynx tool by Mentor Graphics.

Effective board design results achieved after loading:

- i.MX 6ULL IBIS model.
- Companion IC IBIS models.
- Board model in HyperLynx format.

Board simulations for various GPIO and DDR signals were then run.

5.6 References

Consult the following references for more information about the IBIS model.

- IBIS Open Forum (http://www.eda.org/ibis/) The IBIS Open Forum consists of EDA vendors, computer manufacturers, semiconductor vendors, universities, and end-users. It proposes updates and reviews, revises standards, and organizes summits. It promotes IBIS models and provides useful documentation and tools.
- IBIS specification (http://eda.org/pub/ibis/ver4.2/)

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

6 Using the Manufacturing Tool

6.1 Overview

The i.MX manufacturing tool is designed to program firmware onto storage devices such as NAND or eSDe through the EVK and preload the data area with media files in an efficient and convenient manner. It is intended for NXP Semiconductor customers or their OEMs who plan to mass manufacture i.MX-based products.

The application is not designed to test the devices or to diagnose manufacturing problems. Devices initialized with this application still need to be functionally verified.

6.2 Feature summary

The tool includes the following features:

- Continuous operation—operations automatically begin with the connection of a new device, and multiple operations such as update and copy can be linked together seamlessly.
- Enumeration—static-ID firmware loaded into RAM in recovery-mode prevents Windows® from enumerating every device.
- AutoPlay—various Windows® 'pop-up' application and status messages, such as Explorer in Windows® XP and Windows 7.

In addition, the following characteristics improve the tool's ease of use:

- An independent process bar is set up for each physical USB port.
- The tool begins processing with the connection of the first device detected and allows users to replace each device after completion instead of needing to wait for all devices to complete.
- The tool uses color-based indicators to indicate the work status on each of the ports.
 - Blue indicates the device is being processed.
 - Green indicates the device was successfully processed and that the programmed device can be replaced with a new one independent of the device's progress.
 - Red indicates the device failed to process.

6.3 Version support

Table 32. Version support

Tool	Version requirement
i.MX 6ULL Manufacturing Tool for WinCE	Version 2.3.2 or later

6.4 Connecting the manufacturing tool to your device

The manufacturing tool can be connected using a USB hub-based physical setup or a direct connection, as described in Section 6.4.1, "Connecting with a USB hub," and Section 6.4.2, "Connecting directly."

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

6.4.1 Connecting with a USB hub

Figure 14. Physical connection with a USB hub

Connect an external USB 2.0 powered hub to the PC's USB connection. The hub must meet the following criteria:

- USB 2.0 compliant
- Externally powered and not bus powered.

NOTE

The hub should be able to supply at least 500 mA per USB port.

The PC should recognize the external USB hub. The manufacturing tool will configure the USB ports (up to 16) on the external hub(s) for use.

6.4.2 Connecting directly

The following figure shows the direct connect setup configuration. Each device connects to a single port on an internal PCI USB controller. This configuration is limited to the number of PCI slots available.

Figure 15. Physical connection without a USB hub

6.5 Installing the manufacturing tool

The following subsections explain how to install the manufacturing tool. These subsections are in chronological order.

6.5.1 Running the .exe

The following steps explain where to install the .exe. This executable can be run directly and requires no special installation.

- 1. Unzip the tool package to your local directory (for example, D:\mfgtools-rel\).
- 2. Find MfgTool.exe in the list of files.
- 3. Run MfgTool.exe in your local directory.

You should see a user interface similar to the one shown in the following figure.

Figure 16. Example user interface

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

6.6 Using the manufacturing tool

Once you have completed all steps in Section 6.4, "Connecting the manufacturing tool to your device," and Section 6.5, "Installing the manufacturing tool," the tool is ready for use.

The status information panel is located near the bottom of the main application window. Use this panel to select a profile and to see the status of the profile and or the firmware version of an update operation..

Click the green start button to initiate a process.

Once a process is started, a blue status bar indicates the progress of the processing. The process can be stopped by clicking the red stop button.

Figure 17. Processing

If the process completes successfully, the status bar turns green. Click the stop button to finish the process. If the status bar turns red, the processing failed.

Figure 18. Successful process

Once the start/stop button is clicked and the operations begin, the status information panel displays the following information:

Start Time Time the operations began

Elapsed Time How long have operations been running

Average Duration Average time to complete a single device

Using the Manufacturing Tool

Successful Operations How many devices successfully updated

Failed Operations How many device updates have failed

Failure Rate Percentage of failures

If you have a terminal tool to monitor the debug serial port of your board, you can open it to see more process information than what is presented in the GUI.

6.7 Customizing the manufacturing tool

This chapter illustrates the tool's behavior with screenshots from the reference design boards provided by NXP. However, you can customize the tool for other designs. For detailed information on customizing the manufacturing tool, see the *Manufacturing Tool User's Manual*.

6.8 Other references

For more detailed information about the manufacturing tool, see the following documents included in the manufacturing tool release package. Contact your local NXP sales office for assistance obtaining documents if needed:

- For detailed information about how to use the manufacturing tool, see *Manufacturing Tool V2 Quick Start Guide*.
- For detailed information about how to script the processing operations of the manufacturing tool, see the *Manufacturing Tool V2 UCL User Manual*.
- For information about how to generate the manufacturing tool firmware for Linux and Android, see *Manufacturing Tool V2 Linux or Android Firmware Development Guide*.
- For the change list and known issues, see *Manufacturing Tool V2 Release Notes*.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

7 Using BSDL for Board-level Testing

7.1 BSDL overview

Boundary scan description language (BSDL) is used for board-level testing after components have been assembled. The interface for this test uses the JTAG pins. The definition is contained within IEEE Std 1149.1.

7.2 How BSDL functions

A BSDL file defines the internal scan chain, which is the serial linkage of the IO cells, within a particular device. The scan chain looks like a large shift register, which provides a means to read the logic level applied to a pin or to output a logic state on that pin. Using JTAG commands, a test tool uses the BSDL file to control the scan chain so that device-board connectivity can be tested.

For example, when using an external ROM test interface, the test tool would do the following:

- 1. Output a specific set of addresses and controls to pins connected to the ROM
- 2. Perform a read command and scan out the values of the ROM data pins.
- 3. Compare the values read with the known golden values.

Based on this procedure, the tool can determine whether the interface between the two parts is connected properly and does not contain shorts or opens.

7.3 Downloading the BSDL file

The BSDL file for each i.MX processor is stored on the NXP website upon product release. Contact your local sales office or fields applications engineer to check the availability of information prior to product releases.

7.4 Pin coverage of BSDL

Each pin is defined as a port within the BSDL file. You can open the file with a text editor (like Wordpad) to review how each pin will function. The BSDL file defines these functions as shown:

```
-- PORT DESCRIPTION TERMS

-- in = input only

-- out = three-state output (0, Z, 1)

-- buffer = two-state output (0, 1)

-- inout = bidirectional

-- linkage = OTHER (vdd, vss, analog)
```

The appearance of "linkage" in a pin's file implies that the pin cannot be used with boundary scan. These are usually power pins or analog pins that cannot be defined with a digital logic state.

Hardware Development Guide for the i.MX 6ULL Applications Processor, Rev. 0, 08/2016

7.5 Boundary scan operation

The boundary scan operation is controlled by:

- TEST_MODE, POR_B, and JTAG_MOD pins
- On-chip Fuse bits

The JTAG_MOD pin state controls the selection of JTAG to the core logic or boundary scan operation. See the following references for further information:

- The "System JTAG Controller (SJC)" chapter in the chip reference manual for the definitions of the JTAG interface operations.
- The "JTAG Security Modes" section in the same chapter for an explanation of the operation of the e-Fuse bit definitions in the following table.
- The "Fusemap" chapter in the chip reference manual the fusemap tables.

Pin name Logic state Description JTAG_MOD 1 IEEE 1149.1 JTAG compliant mode BOOT_MODE[1:0] [0:0] [0:1] [1:0] Boot From Fuses Serial Downloader Internal Boot (Development) POR B Power On Reset for the device 1 e-Fuse bits JTAG_SMODE[1:0] [0:0] [0:1] JTAG enable mode Secure JTAG mode SJC_DISABLE Secure JTAG Controller is enabled 0

Table 33. System considerations for BSDL

7.6 I/O pin power considerations

The boundary scan operation uses each of the available device pins to drive or read values within a given system. Therefore, the power supply pin for each specific module must be powered in order for the IO buffers to operate. This is straightforward for the digital pins within the system.

8 Revision History

Table 34. Revision history

Revision number	Date	Substantive changes
0	08/2016	Initial release.

Appendix A Development Platforms

This appendix provides a complete list of the development platforms that are available from NXP to support the i.MX 6ULL.

Table 35. i.MX 6ULL EVK

Version i.MX used	i.MX 6ULL	
Schematic PN and Rev.	170-29364 / 170-28616	
Features	 4 Gbit DDR3L 512 Mbit QSPI Flash eMMC Footprint NAND Footprint 1x SD3.0 SD Card Socket 2x SD2.0 TF Card Sockets LCD 24-bit Parallel Port CSI Camera Connector Footprint Audio Codec 2x 100Mbps Ethernet (RJ45) Sensors Accelerometer Digital eCompass X1 USB OTG; X1 USB HOST 2x CAN Ports ONOFF, RESET Button HDMI Connector Footprint 	
Quick Start Guide	Available at www.nxp.com./imxsabre on NXP website.	
Schematic	Available at www.nxp.com./imxsabre on NXP website.	
Layout	Available at www.nxp.com./imxsabre on NXP website.	

How to Reach Us:

Home Page: freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
© 2016 Freescale Semiconductor, Inc.

Document Number: IMX6ULLHDG

Rev. 0 08/2016

