

A Visual and Statistical Benchmark for Graph Sampling Methods

Fangyan Zhang¹ Song Zhang¹ Pak Chung Wong² J. Edward Swan II¹ T.J. Jankun-Kelly¹

¹Mississippi State University ²Pacific Northwest National Laboratory

- **■** Introduction
 - Motivation
 - Problems
- Evaluation
 - KS-Distance
 - **■** Graph Type and Properties
- Sampling Methods
 - Node sampling
 - Edge sampling
 - Topology Based Sampling

- Comparison of Sampling Results
 - Statistical Comparison
 - Visual Comparison
 - **■** Efficiency Comparison
- Sampling on Large Graph
 - Node Sampling
 - Out Degree Distribution
- Conclusion

Introduction

Motivation

- **Visualization**
 - To display all nodes and edges is impossible.
- **Estimation or calculation**
 - To calculate graph properties on a large graph is costly.
- > Data
 - ➤ No complete data.
 - To obtain data is time-consuming.

Introduction

Problems

- ➤ Given a huge graph, how to get a representative sample?
- ➤ Given several sampling methods, which sampling method is best?
- ➤ How to compare those sampling results?
- ➤ How do we measure success?

- **■** Introduction
 - Motivation
 - Problems
- Evaluation
 - KS-Distance
 - **■** Graph Type and Properties
- Sampling Methods
 - Node sampling
 - Edge sampling
 - Topology Based Sampling

- Comparison of Sampling Results
 - Statistical Comparison
 - Visual Comparison
 - **■** Efficiency Comparison
- Sampling on Large Graph
 - Node Sampling
 - Out Degree Distribution
- Conclusion

Evaluation

■ Kolmogorov-Smirnov (KS) D-statistic

- $D_n = \sup_x |F_n(x) F(x)| \sup_x$: supremum of the set of distance. F_n and F_n are distribution function.
- To evaluate the similarity between original and sampled graph
- To calculate KS value on graph properties.

Evaluation

Graph properties(10): Directed Graph

- ➤ In-degree distribution (InDD)
- Out-degree distribution (OutDD)
- Betweenness centrality distribution (BCB)
- Average neighbor degree distribution (ANDD)
- In-degree centrality distribution (InDCD)
- Out-degree centrality distribution (OutDCD)
- > Edge betweenness centrality distribution (EBCD)
- Weakly connected component distribution(WCCD)
- Hops distribution (HD)
- Hops distribution in largest weakly connected component (HLCCD

Graph properties(7): Undirected Graph

- Degree distribution (DD)
- > Betweenness centrality distribution (BB)
- Clustering coefficient (CCD)
- Average neighbor degree distribution (ANDD)
- Degree centrality distribution (DCD)
- Edge betweenness centrality distribution (EBCD)
- Hop distribution (HD)

- **■** Introduction
 - Motivation
 - Problems
- Evaluation
 - KS-Distance
 - **■** Graph Type and Properties
- Sampling Methods
 - Node sampling
 - Edge sampling
 - Topology Based Sampling

- Comparison of Sampling Results
 - Statistical Comparison
 - Visual Comparison
 - **■** Efficiency Comparison
- Sampling on Large Graph
 - Node Sampling
 - Out Degree Distribution
- Conclusion

Sampling algorithms

Node Sampling

- > Random node (RN)
- ➤ Random node-edge (RNE)
- Random node-neighbour (RNN)
- > Streaming nodes (SN)

Edge Sampling

- > Random edge (RE)
- ➤ Induced edge (IE)
- > Streaming edge (SE)

Topology Based Sampling

- ➤ Breadth-first (BF)
- Depth-first (DF)
- ➤ Random first (RF)
- > Snowball (SB)
- ➤ Random walk (RW)
- ➤ Random walk with escape (RWE)
- Forest fire (FF)

- **■** Introduction
 - Motivation
 - Problems
- Evaluation
 - **■** KS-Distance
 - **■** Graph Type and Properties
- Sampling Methods
 - Node sampling
 - Edge sampling
 - Topology Based Sampling

- **■** Comparison of Sampling Results
 - Statistical Comparison
 - Visual Comparison
 - **■** Efficiency Comparison
- Sampling on Large Graph
 - Node Sampling
 - Out Degree Distribution
- Conclusion

Comparison of Sampling Results

Undirected Graph

- > American Airlines connection data
 - > 235 nodes 1297 edges
- Simulated random undirected Graph
 - > Graph 1: 500 nodes 1260 edges
 - > Graph 2: 500 nodes 1238 edges
 - > Graph 3: 750 nodes 2871 edges
 - > Graph 4: 1000 nodes 4989 edges
 - > Graph 5: 1000 nodes 5092 edges
 - > Graph 6: 1250 nodes 7884 edges

Directed Graph

- > VAST
 - > 1214 nodes 15653 edges
- Simulated random directed Graph
 - ➤ Graph 1: 500 nodes 1284 edges
 - Graph 2: 500 nodes 1262 edges
 - Graph 3: 750 nodes 2859 edges
 - Graph 4: 1000 nodes 4900 edges
 - Graph 5: 1000 nodes 4954 edges
 - Graph 6: 1250 nodes 7732 edges

Simulated Graph: Random Graph created by Erdős-Rényi model

Statistical Comparison of Sampling Results

- Comparison Categories (4):
 - ➤ Between directed and undirected Graph
 - American airline connection data and VAST data
 - Between different graph type of undirected or directed graphs
 - American airline connection data and Simulated undirected graph
 - ➤ Between multiple graphs of same type but different sizes.
 - ➤ Simulated data with different number of nodes(500, 750, 1000, 1250)
 - > Between multiple graphs of same size and same type
 - ➤ Simulated Graph(500 VS 500, 1000 VS 1000)

Category 1: Between directed and undirected Graph (Undirected Graph)

Data: American Airlines connection data. Sampling rate: average(10%-50%)

Category 1: Between directed and undirected Graph (directed Graph)

Data: VAST 2013 Netflow data.

Sampling rate: average(10%-50%)

Category 2: between two undirected graphs with different graph type

Data: American Airline connection data VS Simulated 500_1. Sampling rate: average(10%-50%)

Category 3: between multiple graphs of same type but different sizes

➤ Data: Simulated data 500_1 VS 1250. Sampling rate: average(10%-50%)

Category 4: between multiple graphs of same size and same type

Data: Simulated data 500_1 VS 500_2. Sampling rate: average(10%-50%)

Category 4: between multiple graphs of same size and same type Pacific Northwest NATIONAL LABORATOR

Data: Simulated data 1000_1 VS 1000_2. Sampling rate: average(10%-50%)

Visual Comparison of Sampling Results

Visual Comparison

- Data: American Airlines connection data original
- Graph Type: undirected graph
- > Sampling rate: 10% on edges
- **▶** Visual Comparison Technique
 - Fix nodes location, label size, color etc.

> Analysis

Edge-related sampling methods are biased towards high-degree nodes. For example, random edge sampling, induced edge sampling, streaming edge sampling are easy to sample high degree nodes (136,50, 80,130,70 etc.)

Efficiency Comparison

Execution Time

- Data
 - simulated undirected graph data
- **■** Sampling rate
 - Average of sampling result with sampling rate range from 10% to 50% on edges.

- **■** Introduction
 - Motivation
 - Problems
- Evaluation
 - KS-Distance
 - **■** Graph Type and Properties
- Sampling Methods
 - Node sampling
 - Edge sampling
 - Topology Based Sampling

- Comparison of Sampling Results
 - Statistical Comparison
 - Visual Comparison
 - **■** Efficiency Comparison
- Sampling on Large Graph
 - Node Sampling
 - Out Degree Distribution
- Conclusion

Sampling on Big Graph

- Graph Generation
 - Erdős–Rényi model
 - parallel algorithm (by MPi4py)
 - ➤ Shadow II. Used 100 nodes, 2000 processors, each node: 512GB memory.
- > Size:
 - ≥ 1 billion nodes
 - >~500 billion edges.
- ➤ Graph Storage:
 - > about 10TB

Sampling on Big Graph

- Original Graph
- Out Degree distribution

Sampling on Big Graph

- Node sampling. Sampling Rate: 10 %
- Out Degree Distribution:

- **■** Introduction
 - Motivation
 - Problems
- Evaluation
 - KS-Distance
 - **■** Graph Type and Properties
- Sampling Methods
 - Node sampling
 - Edge sampling
 - Topology Based Sampling

- Comparison of Sampling Results
 - Statistical Comparison
 - Visual Comparison
 - **■** Efficiency Comparison
- Sampling on Large Graph
 - Node Sampling
 - Out Degree Distribution
- Conclusion

Conclusion

- No sampling method works well for all graphs.
- In visual comparison, the consistent graph layout facilitates comparison.
- The benchmark helps users choose proper sampling methods in applications.
- The benchmark provides an avenue to explore big graph.

Questions?

Thanks!

Acknowledgement

THIS WORK IS SUPPORTED BY THE PACIFIC NORTHWEST NATIONAL LABORATORY UNDER THE U.S. DEPARTMENT OF ENERGY CONTRACT DE-AC05-76RL01830