Ambientes Computacionais e Conectividade

Bases Numéricas e Portas Lógicas

- Prof. Hissamu Shirado
- •Prof. Maria Ines

Objetivos

- Apresentar o sistema de numeração binário;
- Como representar números binários;
- Como converter números binários para decimal e hexadecimal;
- Apresentar o conceito das portas lógicas e algumas de suas aplicações

Sistema de Numeração

- Números são conceitos que nos são familiares desde a infância.
- Temos os números naturais, os números inteiros, os números reais, e outros.
- No dia a dia, denotamos números usando combinações de dígitos de um conjunto de 10 símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, e 9 conhecido como sistema decimal.
- Mas podemos ter outros sistemas numéricos:
 - Octal : [0,1,2,3,4,5,6,7]
 - Hexadecimal: [0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]

Sistema de Numeração Decimal

- Características
 - 1) Funciona com agrupamentos de **dez**. Esse número dez é chamado de base do sistema;
 - 2) O sistema é posicional, isto é, o valor de um algarismo é determinado pela posição que ocupa no numeral;
 - 3) O sistema é multiplicativo, isto é, em um numeral cada algarismo representa um número que é múltiplo de uma potência da base dez;
 - 4) O sistema é aditivo, isto é, o valor do numeral é dado pela soma dos valores individuais de cada símbolo de acordo com a regra anterior;

Sistema de Numeração Decimal

Por exemplo: 1234

Classe dos	milhares		Classe de unidades simples			
		1	2	3	4	
6ª Ordem	5ª Ordem	4ª Ordem	3ª Ordem	2ª Ordem	1ª Ordem	
Centenas de Milhar	Dezenas de Milhar	Unidades de Milhar	Centenas	Dezenas	Unidades	
100.000	10.000	1.000	100	10	1	

Notação polinomial

•
$$(1 \times 10^3) + (2 \times 10^2) + (3 \times 10^1) + (4 \times 10^0)$$

$$\bullet$$
 1 x 1000 + 2 x 100 + 3 x 10 + 4 x 1

$$\cdot$$
 1000 + 200 + 30 + 4 = 1234

Sistema de Numeração Binário

- O computador, como ferramenta de processamento, transforma os dados de entrada em sinais elétricos.
- Cada sinal elétrico é chamado de Bit (Binary digit) ou dígito binário.

Quem inventou a palavra foi um engenheiro belga, Claude Shannon, em sua obra *Teoria Matemática da Computação*, de 1948. Nela, Shannon descrevia um bit como sendo uma unidade de informação.

Sistema de Numeração Binário

- O sistema binário ou de base 2 é um sistema de numeração posicional como o decimal em que todas as quantidades se representam com base em dois números, ou seja, zero e um (0 e 1).
- Os computadores trabalham internamente com dois níveis de tensão, sendo o seu sistema de numeração natural.

- 8 (oito) bits compõem um byte, uma unidade completa de informação.
- Os bits são geralmente usados como medida de velocidade na transmissão de dados, enquanto os bytes são normalmente associados à capacidade de armazenamento de dados (um disco rígido com memória de 500 gigabytes).

- Num sistema binário usam-se só dois dígitos (0 e 1) para representar <u>qualquer número</u>.
- Comparado com o sistema de base decimal, a relação é a seguinte:

Sistema decimal												
1	2	3	4	5	6	7	8	9	10			
Sistema binário												
0001	0010	0011	0100	0101	0110	0111	1000	1001	1010			

• Os bits não servem apenas para representar números, mas para qualquer coisa que precise ser informada a um computador.

• Podem representar uma letra ou uma vírgula, até a cor que iremos usar na apresentação de dados, uma imagem, som ou vídeo. Tudo no computador é representado apenas por 'zeros e uns';

• Cada uma dessas informações é transformada em um código binário e interpretada pelo sistema.

• Tal qual no sistema numérico decimal, cada posição de "bit" (dígito) de um número binário tem um 'peso' particular, o qual determina a magnitude daquele número.

• O peso de cada posição é determinado por alguma potência da base do sistema numérico. No caso so sistema binário, a base é 2;

• Para calcular o valor total do número, considere os "bits" específicos e os pesos de suas posições.

Conversões

- Utilizando a notação polinomial é possível fazer cálculos de conversão de qualquer base.
 - Binária para Decimal
 - Octal para Decimal
 - Hexadecimal para Decimal

• . . .

$$a_n b^n + a_{n-1} b^{n-1} + a_{n-2} b^{n-2} + \dots + a_0 b^0$$

 Para determinar o valor decimal do número binário (1111011)², multiplique cada "bit" por seu peso posicional e some os resultados, ou seja utiliza a notação polinomial.

- $(1111011)^2$
- $(1x2^6)+(1x2^5)+(1x2^4)+(1x2^3)+(0x2^2)+(1x2^1)+(1x2^0)$
- \bullet (1x64)+(1x32)+(1x16)+(1x8)+(0x4)+(1x2)+(1x1)
- \bullet 64 + 32 + 16 + 8 + 0 + 2 + 1
- $(123)^{10}$

Conversão para Binário

- 1
- Para converter um número para binário basta dividir sucessivamente pelo valor da base. Ex: 2, 8 ou 16.
- Se for binário divide por 2, se for octal por 8, se for hexa por 16.
- Os quocientes que vão sendo obtidos, até que o quociente de uma das divisões seja 0.

Conversão para Binário

- Para converter um número decimal para binário basta dividir sucessivamente por 2 e os quocientes que vão sendo obtidos, até que o quociente de uma das divisões seja 0. Vamos converter o número 10 para binário.
- O resultado é a sequência de baixo para cima de todos os restos obtidos (10)¹⁰= 01010 = (1010)²

Exercícios

• 1) Vimos que em um sistema binário usam-se somente dois dígitos (0 e 1) para representar qualquer número. Converta os números abaixo de decimal para binário.

a) $(20)^{10}$

b) $(170)^{10}$

Exercícios

- 2) Agora vamos converter os números de binário para decimal.
- a) (10100)²

• b) (101100101)²

Operações com Números Binários

- As operações matemáticas com números binários seguem as mesmas regras da operações com números decimais.
 - Troca e destroca
 - (lembram do pegar emprestado? Do vai um)

Adição Binária

- Regras básicas:
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - $1 + 1 = 0 \Rightarrow 10 (1 + 1 \text{ \'e igual a 0 e "vai 1"})$
 - 1 + 1 + 1 = 1 => 11 (1 + 1 + 1 'e igual a 1 e "vai 1")

Adição Binária

- Ex. sem sinal:
- 101 + 011

$$5 + 3 = 8$$

Sistema Hexadecimal

O sistema hexadecimal é um sistema alfanumérico de base 16;

Apesar de estranho a uma primeira vista, o sistema hexadecimal segue as mesmas regras básicas vistas até agora; observe:

- **3A**: No sistema hexadecimal, isso é igual a $3 * 16^1 + 10 * 16^0 = 58$ em decimal.
- **1F**: No sistema hexadecimal, isso é igual a $1 * 16^1 + 15 * 16^0 = 31$ em decimal. **7B**: No sistema hexadecimal, isso é igual a $7 * 16^1 + 11 * 16^0 = 123$ em decimal.

Sistema Hexadecimal

O sistema hexadecimal é um sistema alfanumérico de base 16;

Apesar de estranho a uma primeira vista, o sistema hexadecimal segue as mesmas regras básicas vistas até agora; observe:

Portas Lógicas

- Agora, diante de tudo isso você pode estar se perguntando: Como toda essa matemática é usada em um computador. A resposta está naquilo que chamamos de Portas Lógicas;
 - Dispositivos que operam e trabalham com um ou mais sinais lógicos de entrada para produzir uma e somente uma saída, dependente da função implementada no circuito.

Portas Lógicas

24

Portas Lógicas

Spoilers

Alguns de vocês podem estar se perguntando onde esses conhecimentos se aplicam no contexto dessa UC:

- 1. As conversões entre sistemas numéricos são essenciais para entender as máscaras de sub-rede e criação de sub-redes;
- 2. O enderaçamento IPv6 usa um sistema alfanumérico que mistura letras e números hexadecimal;
- Os endereços físicos conhecidos como MAC são também representados em hexadecimal;

Estudaremos tudo isso mais a frente no curso!

Fim