300

360

- 63 **-**

SEQUENCE LISTING

(1) GENE	RAL INFORMATION:	
(i)	APPLICANT: Levy, Gary	
(ii)	TITLE OF INVENTION: Methods of Modulating Immune Coagulation	
(iii)	NUMBER OF SEQUENCES: 4	
(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: BERESKIN & PARR (B) STREET: 40 King Street West (C) CITY: Toronto (D) STATE: Ontario (E) COUNTRY: Canada (F) ZIP: M5H 3Y3	
(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30	
(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:	
(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Gravelle, Micheline (B) REGISTRATION NUMBER: 40,261 (C) REFERENCE/DOCKET NUMBER: 9579-006	
(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (416) 364-7311 (B) TELEFAX: (416) 361-1398	
(2) INFOR	RMATION FOR SEQ ID NO:1:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 4630 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: other nucleic acid	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:	
GATCTAGG	GT TGGAAGCCAG GTCTCCTGAG TATGCGAGAA TAAATACAGT CATGGAAGTG 6	0
TAAAGAGT	CT GCCAACATTT TGAGAATGTG AATAGGATTT GGCTAAAATT AAGGGGATAT 12	0
ACAGAAAA	GT CATAGGAAAT CAGGTTAAAG ACATAAATAT GAGATAGGCT ACAGAGTGTT 18	0
ጥጥል ልርጥል ል'	ዋል ር <u>გል</u> ዋልልልልርኔ ምምያል <u>ርልምምምን ምርርርርልምርምር ልር</u> ምርልምምምምር ልልልምምልምምምም	Λ

TAAAGCAAAA AAACCCTTTT TAAACAAGAA ATCTTATGAG ATGTCAATAT GCAAAACAAA

TTAAAAGGAG GTGGTTTCTC TAACTGAAGC TGTTCCTCTT TCCTGCCTTC AGCCTCTGAA

- 64 -

GAGAAAGTTA	GAAAACTATT	ATCATTAATG	CTACATGTTT	TGAACAAGCT	GATATACCAA	420
GTGGCCCAGA	GAGCAGGTAG	AAGAACCAGC	GTGGAGACAG	AAAGCAAGAG	GCCCGCCTGC	480
CAGGGCTACC	TGCAGAAAGA	AAGGGCAAAG	ATGCTGTAGG	CAAGAGAAGT	TCAGGACAGA	540
CACTGGCATA	GCTCAAAGAT	TCACATTTGA	GCAGCTGTGG	AAGATGACAG	TACAATTACC	600
AAAATGTCGA	AGGGCAAAGG	AGGCAGCTAC	TGGTTTTGAT	GAAAGACAAT	TATGTCCTTT	660
TAAATGGGTC	TTAGACATTT	AGACATTTAT	ATACACTATG	CTACGGACAA	AGGAATAGAA	720
AGTAGCACTT	TTTTCTCCAC	TAGTTTTCTT	CTCTTTTTCA	AGTAGATGAA	GCAAAAGTCA	780
ACTGCAATAG	TCAGAAAGCT	GTACTTTGTT	ACACTTAGAA	ACTTCTAAAA	GTGCTTAAGA	840
TTTCACCTGA	AAGTCCAACA	TGAAGAAAAT	ACAGGCTCCC	CAATGCCCCA	TTCTAAGAAG	900
GAAAAAGGAC	CATTTTCATT	TTAGTAACGT	TTCTGTTCTA	TAGACAGTTT	GGATAACTAG	960
CTCTTACTTT	TTATCTTTAA	AAACTGTTTT	TCCAGTGAAG	TTACGTATAA	TTATTTACTT	1020
CAAGCGTAGT	ATACCAAATT	ACTTTAGAAA	TGCAAGACTT	TTCTTATACT	TCATAAAATA	1080
CATTATGAAA	GTGAATCTTG	TTGGCTGTGT	ACATTTGACT	ATAATAATT	CAATGCATAT	1140
TATTTCTATT	GAGAGTAAGT	TACAGTTTTT	GGCAAACTGC	GTTTGATGAG	GGCTATCTCC	1200
TCTTCCTGTG	CGTTTCTAAA	ACTTGTGATG	CAAACGCTCC	CACCCTTTCC	TGGGAACACA	1260
GAAAGCCTGA	CTCAGGCCAT	GGCCGCTATT	AAAGCAGCTC	CAGCCCTGCG	CACTCCCTGC	1320
TGGGGTGAGC	AGCACTGTAA	AGATGAAGCT	GGCTAACTGG	TACTGGCTGA	GCTCAGCTGT	1380
TCTTGCCACT	TACGGTTTTT	TGGTTGTGGC	AAACAATGAA	ACAGAGGAAA	TTAAAGATGA	1440
AAGAGCAAAG	GATGTCTGCC	CAGTGAGACT	AGAAAGCAGA	GGGAAATGCG	AAGAGGCAGG	1500
GGAGTGCCCC	TACCAGGTAA	GCCTGCCCCC	CTTGACTATT	CAGCTCCCGA	AGCAATTCAG	1560
CAGGATCGAG	GAGGTGTTCA	AAGAAGTCCA	AAACCTCAAG	GAAATCGTAA	ATAGTCTAAA	1620
GAAATCTTGC	CAAGACTGCA	AGCTGCAGGC	TGATGACAAC	GGAGACCCAG	GCAGAAACGG	1680
ACTGTTGTTA	CCCAGTACAG	GAGCCCCGGG	AGAGGTTGGT	GATAACAGAG	TTAGAGAATT	1740
AGAGAGTGAG	GTTAACAAGC	TGTCCTCTGA	GCTAAAGAAT	GCCAAAGAGG	AGATCAATGT	1800
ACTTCATGGT	CGCCTGGAGA	AGCTGAATCT	TGTAAATATG	AACAACATAG	AAAATTATGT	1860
TGACAGCAAA	GTGGCAAATC	TAACATTTGT	TGTCAATAGT	TTGGATGGCA	AATGTTCAAA	1920
GTGTCCCAGC	CAAGAACAAA	TACAGTCACG	TCCAGGTATG	TATAATAATG	TTTTCTTATC	1980
ATATGTTCAT	AAATGTTATA	CAGTCAGAGA	TGTATCTAAA	AGATTAACCT	GAGTCAGTAA	2040
GTTAAATAGA	TGACAGATTA	AGTCTTTTAT	TTATCAAGGT	GCACAGGAAA	AAATAAATAT	2100
CTTCTCAAAT	ATGACCACAT	AAATATGACC	TAATTACAAA	ATCATAGTTA	GTTCTGTATC	2160
CACTGGAAGT	CACTTTCAAT	TTTAAGATCT	TATTTGTTAA	TGCCAGACCT	ACTTGCAAGC	2220
AGAGATTAGA	GGTCCTTTCT	GCTTTATAAC	ATTAGGTTCT	TCTTGTGAGG	CCTTAAGCAT	2280
TTACTAAACA	CCTTCAAGTA	AGTTTAGTAA	AGTTTCATTA	CTGCCATTGA	TTCAATTATC	2340

- 65 -

AAACTGCTTT TGTACATATA	AAGAATTCTT	CAGATGCATG	GTTTCTATTA	ACAAGATCCA	2400
ATGCCTTCCT TTTATTTCCC	CTTCAGTTCA	ACATCTAATA	TATAAAGATT	GCTCTGACTA	2460
CTACGCAATA GGCAAAAGAA	GCAGTGAGAC	CTACAGAGTT	ACACCTGATC	CCAAAAATAG	2520
TAGCTTTGAA GTTTACTGTG	ACATGGAGAC	CATGGGGGGA	GGCTGGACAG	TGCTGCAGGC	2580
ACGTCTCGAT GGGAGCACCA	ACTTCACCAG	AACATGGCAA	GACTACAAAG	CAGGCTTTGG	2640
AAACCTCAGA AGGGAATTTT	GGCTGGGGAA	CGATAAAATT	CATCTTCTGA	CCAAGAGTAA	2700
GGAAATGATT CTGAGAATAG	ATCTTGAAGA	CTTTAATGGT	GTCGAACTAT	ATGCCTTGTA	2760
TGATCAGTTT TATGTGGCTA	ATGAGTTTCT	CAAATATCGT	TTACACGTTG	GTAACTATAA	2820
TGGCACAGCT GGAGATGCAT	TACGTTTCAA	CAAACATTAC	AACCACGATC	TGAAGTTTTT	2880
CACCACTCCA GATAAAGACA	ATGATCGATA	TCCTTCTGGG	AACTGTGGGC	TGTACTACAG	2940
TTCAGGCTGG TGGTTTGATG	CATGTCTTTC	TGCAAACTTA	AATGGCAAAT	ATTATCACCA	3000
AAAATACAGA GGTGTCCGTA	ATGGGATTTT	CTGGGGTACC	TGGCCTGGTG	TAAGTGAGGC	3060
ACACCCTGGT GGCTACAAGT	CCTCCTTCAA	AGAGGCTAAG	ATGATGATCA	GACCCAAGCA	3120
CTTTAAGCCA TAAATCACTC	TGTTCATTCC	TCCAGGTATT	CGTTATCTAA	TAGGGCAATT	3180
AATTCCTTGT TTCATATTTT	TCATAGCTAA	AAAATGATGT	CTGACGGCTA	GGTTCTTATG	3240
CTACACAGCA TTTGAAATAA	AGCTGAAAAA	CAATGCATTT	TAAAGGAGTC	CTTTGTTGTT	3300
ATGCTGTTAT CCAATGAACA	CTTGCAAGCA	ATTAGCAATA	TTGAGAATTA	TACATTAGAT	3360
TTACAATTCT TTTAATTTCT	ATTGAAACTT	TTTCTATTGC	TTGTATTACT	TGCTGTATTT	3420
AAAAATAAT TGTTGGCTGG	GTGTGGTAGC	TCACGCCTGT	AATCCCAGCA	CTTTGGAATG	3480
TCAAGGCAGG CAGATCACTT	GAGGTCAGGA	GTTTGAGACC	AGCCTGGCCA	AACATGTGAA	3540
ACGCTGTCTC TATTAAAAAT	ACAAAAATTA	GCCGGGCATG	GTGGTACATG	CCTGTAATCA	3600
ACGCTGTTTA TTAAAAATAC	AAAAATTAGC	CGGGCATGGT	GGACATGCCT	GTAATCCTAG	3660
TACTTGGGAG GCTGAGGCAG	GAGAATCGCT	TGAACCTGAG	AGGAAGAGGT	TGCAGTGAGC	3720
CAAGAATGAG CCACTGCACT	CCAGCATGGG	TGACAGAGAA	AACTCTGTCT	CAAACAAAAA	3780
AATAATAAAA TTTATTCAGT	AGGTGGATTC	TACACAAAGT	AATCTGTATT	TGGGCCATGA	3840
TTTAAGCACA TCTGAAGGTA	TATCACTCTT	TTCAGGCTAT	AATTATTTGG	GTAATCTTCA	3900
TTCTGAGACA AACTTAATCT	ATATCATTTA	CTTTGCAACA	GAACAACCCT	ACAGCATTTT	3960
GGTTCCCAGA CTAAGGGAAC	TAATATCTAT	ATAATTAAAC	TTGTTCATTT	ATCATTCATG	4020
AAATATAAAA TACTTGTCAT	TTAAACCGTT	TAAAAATGTG	GTAGCATAAT	GTCACCCCAA	4080
AAAGCATTCA GAAAGCAATG	TAACTGTGAA	GACCAGGGTT	TAAAGGTAAT	TCATTTATAG	4140
TTTATAACTC CTTAGATGTT	TGATGTTGAA	AACTGCTTTA	ACATGAAAAT	TATCTTCCTC	4200
TGCTCTGTGT GAACAATAGO	TTTTAATTTA	AGATTGCTCA	CTACTGTACT	AGACTACTGG	4260
TAGGTTTTTT TGGGGGGGG	TGGGTAGGGA	. TATGTGGGTA	ATGAAGCATI	TACTTACAGG	4320

- 66 -

CTATCATACT	CTGAGGCCAA	TTTTATCTCC	AAAGCAATAA	TATCATTAAG	TGATTCACTT	4380
CATAGAAGGC	TAAGTTTCTC	TAGGACAGAT	AGAAAACATG	AATTTTGAAA	TATATAGAAC	4440
agtagttaaa	ATACTATATA	TTTCAACCCT	GGCTGGTAGA	TTGCTTATTT	TACTATCAGA	4500
AACTAAAAGA	TAGATTTTTA	CCCAAACAGA	AGTATCTGTA	ATTTTTATAA	TTCATCAATT	4560
CTGGAATGCT	ATATATAATA	TTTAAAAGAC	TTTTTAAATG	TGTTTAATTT	CATCATCGTA	4620
AAAAGGGATC						4630

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 439 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Lys Leu Ala Asr Trp Tyr Trp Leu Ser Ser Ala Val Leu Ala Thr
- Tyr Gly Phe Leu Val Val Ala Asn Asn Glu Thr Glu Glu Ile Lys Asp 20 25 30
- Glu Arg Ala Lys Asp Val Cys Pro Val Arg Leu Glu Ser Arg Gly Lys 35 40 45
- Cys Glu Glu Ala Gly Glu Cys Pro Tyr Gln Val Ser Leu Pro Pro Leu 50 55 60
- Thr Ile Gln Leu Pro Lys Gln Phe Ser Arg Ile Glu Glu Val Phe Lys 65 70 75 80
- Glu Val Gln Asn Leu Lys Glu Ile Val Asn Ser Leu Lys Lys Ser Cys 85 90 95
- Gln Asp Cys Lys Leu Gln Ala Asp Asp Asn Gly Asp Pro Gly Asg Asn 100 105 110
- Gly Leu Leu Pro Ser Thr Gly Ala Pro Gly Glu Val Gly Asp Asn 115 120 125
- Arg Val Arg Glu Leu Glu Ser Glu Val Asn Lys Leu Ser Ser Glu Leu 130 135 140
- Lys Asn Ala Lys Glu Glu Ile Asn Val Leu His Gly Arg Leu Glu Lys 145 150 155 160
- Leu Asn Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Ser Lys
 165 170 175
- Val Ala Asn Leu Thr Phe Val Val Asn Ser Leu Asp Gly Lys Cys Ser
- Lys Cys Pro Ser Gln Glu Gln Ile Gln Ser Arg Pro Val Gln His Leu 195 200 205
- Ile Tyr Lys Asp Cys Ser Asp Tyr Tyr Ala Ile Gly Lys Arg Ser Ser 210 215 220

- 67 -

Glu 225	Thr	Tyr	Arg	Val	Thr 230	Pro	Asp	Pro	Lys	Asn 235	Ser	Ser	Phe	Glu	Val 240
Tyr	Cys	Asp	Met	Glu 245	Thr	Met	Gly	Gly	Gly 250	Trp	Thr	Val	Leu	Gln 255	Ala
Arg	Leu	Asp	Gly 260	Ser	Thr	Asn	Phe	Thr 265	Arg	Thr	Trp	Gln	Asp 270	Tyr	Lys
Ala	Gly	Phe 275	Gly	Asn	Leu	Arg	Arg 280	Glu	Phe	Trp	Leu	Gly 285	Asn	Asp	Lys
Ile	His 290	Leu	Leu	Thr	Lys	Ser 295	Lys	Glu	Met	Ile	Leu 300	Arg	Ile	Asp	Leu
Glu 305	Asp	Phe	Asn	Gly	Val 310	Glu	Leu	Tyr	Ala	Leu 315	Tyr	Asp	Gln	Phe	Tyr 320
Val	Ala	Asn	Glu	Phe 325	Leu	Lys	Tyr	Arg	Leu 330	His	Val	Gly	Asn	Tyr 335	Asn
Gly	Thr	Ala	Gly 340	Asp	Ala	Leu	Arg	Phe 345	Asn	Lys	His	Tyr	Asn 350	His	Asp
Leu	Lys	Phe 355	Phe	Thr	Thr	Pro	Asp 360	Lys	Asp	Asn	qzA	Arg 365	Tyr	Pro	Ser
Gly	Asn 370	Cys	Gly	Leu	Tyr	Tyr 375	Ser	Ser	Gly	Trp	Trp 380	Phe	Asp	Ala	Cys
Leu 385	Ser	Ala	Asn	Leu	Asn 390	Gly	Lys	Tyr	Tyr	His 395	Gln	Lys	Tyr	Arg	Gly 400
Val	Arg	Asn	Gly	11e 405	Phe	Trp	Gly	Thr	Trp 410	Pro	Gly	Val	Ser	Glu 415	Ala
His	Pro	Gly	Gly 420	Tyr	Lys	Ser	Ser	Phe 425	Lys	Glu	Ala	Lys	Met 430	Met	Ile
Arg	Pro	Lys 435	His	Phe	Lys	Pro									

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5403 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CATAAGGCGT	GTCTGACAAA	TTCTTCATAC	ACACATTTCC	CCTTTGCACA	TTCAGTCTGT	60
ATAGGTTATT	TCTATAGGAG	AAAAAAAA	TTCAAATTCC	TTGTGCACTG	GTAACAGGCA	120
TGAAGGCTCA	GCAAAGCCAA	TACGTGTTAT	GTCCAGTTGG	AGACAGTGCC	AGGGCCAACA	180
TTCCAGACTT	CTCAGATAGA	AAGTGCGCCT	GCCTGCCCTG	CTCTGAGAAT	TTGAAGAGAG	240
TAGTTCAGTT	AGAATTAAGA	GGCAGTAGAG	AAAAGTCTTG	GGAAATCTGG	TTAGAGATAT	300
AAATATGAGA	ACTGGACATG	GTGGTACACA	CCTGTGATCT	CTGTGTTTAG	GAGGGAGAGG	360

- 68 -

CAGAGAGATC	AGGAGTTCAA	GGCCAGCCTG	AGCTACTTGA	GACCCAGTCT	AATAAATAA	420
GAGATAGATT	ACAGAGTGCC	TTTAACTAGT	ACAGAGAAAG	AATTTGGGTT	TATCTGTGTC	480
AGTTACGCTG	AAATAATTT	TAAGTAATAA	AATCCCTTTT	AATAAGAAAC	CTTATGAGGT	540
CAGTATGCAC	AATGAACTTA	AGAGAGACCC	CCAGCTCCTG	AGCTGAGTGA	TGGGGAAGGA	600
CAGCCACTGC	CTGTGATGTG	TGAGTGACGT	GCTTCCAAGT	GTTTTAACCA	CTGACGATTA	660
CATAGCCTGC	ACAGTCAGGA	GAAAACAGCC	GTATTCTCTG	CCAGTTCTCT	TCCCTTTTAC	720
AAACAGATGA	GAGACACACA	CAGAGAATCC	ATTTAAAGAG	CGGACCTTTG	TTCTGATTAG	780
GGGCAATTTT	AAGTACTTAA	GAGTTCACAC	AAAGTCTAGC	CTTCAAAAAG	AAAACAGGTT	840
CCCAAACTAG	GGAGGAAACA	GAATCATTTC	CATTTTGGTG	ACATTTAGTG	GGAAGAAGCT	900
CACAGACATT	TAGACGTTCC	AACTCTTTCC	CCACTAGTGG	ACCAAGTATA	TAATATGGTA	960
TCTTTTGGGC	ACTGGTATTA	CAACTGTTTT	TTAAACAAAA	GACTTTCCTT	GTGCTTTACT	1020
AAAAACCCAG	ACGGTGAATC	TTGAATACAA	TGCGTGGCAC	CCACGGCAGG	CATTCTATTG	1080
TGCATAGTTT	TGACTGACAG	GAGATGACAG	CATTTGGCTG	GCTGCGCTTG	CTGAGGACCC	1140
TCTCCTCCTG	TGTGGCGTCT	GAGACTGTGA	TGCAAATGCG	CCCGCCCTTT	TCTGGGAACT	1200
CAGAACGCCT	GAGTCAGGCG	GCGGTGGCTA	TTAAAGCGCC	TGGTCAGGCT	GGGCTGCCGC	1260
ACTGCAAGGA	TGAGGCTTCC	TGGTTGGTTG	TGGCTGAGTT	CTGCCGTCCT	CGCTGCCTGC	1320
CGAGCGGTGG	AGGAGCACAA	CCTGACTGAG	GGGCTGGAGG	ATGCCAGCGC	CCAGGCTGCC	1380
TGCCCGCGA	GGCTGGAGGG	CAGCGGGAGG	TGCGAGGGGA	GCCAGTGCCC	CTTCCAGCTC	1440
ACCCTGCCCA	CGCTGACCAT	CCAGCTCCCG	CGGCAGCTTG	GCAGCATGGA	GGAGGTGCTC	1500
AAAGAAGTGC	GGACCCTCAA	GGAAGCAGTG	GACAGTCTGA	AGAAATCCTG	CCAGGACTGT	1560
AAGTTGCAGG	CTGACGACCA	TCGAGATCCC	GGCGGGAATG	GAGGGAATGG	AGCAGAGACA	1620
GCCGAGGACA	GTAGAGTCCA	GGAACTGGAG	AGTCAGGTGA	ACAAGCTGTC	CTCAGAGCTG	1680
AAGAATGCAA	AGGACCAGAT	CCAGGGGCTG	CAGGGGCGCC	TGGAGACGCT	CCATCTGGTA	1740
AATATGAACA	ACATTGAGAA	CTACGTGGAC	AACAAAGTGG	CAAATCTAAC	CGTTGTGGTC	1800
AACAGTTTGG	ATGGCAAGTG	TTCCAAGTGT	CCCAGCCAAG	AACACATGCA	GTCACAGCCG	1860
GGTAGGTGTA	ATGAGGGTCA	TACAGTTTGT	TCATGAAAGC	TGTATAGCCA	GATAGTGGCC	1920
ATAAACATTA	ACCCGAGGGA	GCATAAGTTA	GTCAGACTTT	CACCTGTTAA	GTTATGGCAG	1980
GAGAAACAAG	TGTTTTCTCA	AATGAGACAA	CAGAAATGGT	AAATGATCCA	CGTACAAAAA	2040
TCCTATTAGT	TGTACTCGTT	AGAGACCGTC	ACTTGCAAGT	CTCTAGACCT	TCCCTGCTAG	2100
GTCGACCAAC	AGACGAGCAG	AAACAGATTC	CTCCCGGAAT	CTGAACACAT	ATTTGAACAC	2160
AGGACAGGTA	TGGCAAGGTT	CCTGGCTCTG	CTTGCTTAGG	TCCCTGGGAA	TCAGATCTTG	2220
GGTGGCTGAT	GGGCTTTATA	AGGCTTTCAC	AAACAATCTG	CTGTGCTAGG	TTCTCAAATA	2280
TCTAGTGAGA	ATGGGAGATT	TTTATACATG	GAAGCATCTC	TCCTCTCTCT	CTCCTCTCTC	2340

- 69 -

CTCTCTCTTC	TCTCTCTCTC	TCTCTCTCTC	TCTCTCTCTC	TCTCTCTCTC	TCTCTCTCTC	2400
CTCCCTCCCT	CCCTCTCTCT	CTCTTTGTGT	GCGTGTGTGG	TGGGGATGAG	GACACGTGTA	2460
GAACTTCGGG	GGTTGAGACT	TAGTGCATAT	GCATCCTCAC	CATTCCAGTT	AGTGAATGTT	2520
AACACTATTT	AAGGTCACAG	ACCTAACAGC	CTTCTGTGTC	CGGATTCCTG	GATTCCTAGG	2580
ACCTTTGTGG	ATGGGTTGCC	ACACCCTCTG	TGTTCATCCT	GACTGTGAGG	TCGATGGGAC	2640
ATAGTAGGGA	TAACTTTCAT	TTGGAATCTC	TAGAGATGGT	AGGTCATCAT	GTCATAGAAT	2700
GTTATCACTA	ATGACCAAGA	TAGACACTCA	TGTTTAAGAG	ACATCACAAG	GTGTATATTA	2760
AATATGACAT	GGCATATAAC	TTGTAATGAC	ACAAAAATAT	TCTGTTACCT	ACTTTTCTCC	2820
TAAAAGCTTG	GGACTCTCCA	GAGTTCTAAA	TACATGCAAA	CAGATTATTG	TGTTTTACAG	2880
GAATCTTATA	TTGAACTTTC	TTTACCTGAC	TCAAATTTTA	TTAAAATTAA	CTGGGAACAA	2940
ATAGTTGGTC	TCTAATCTCT	ACAAAAACCA	CCAAATGATT	ACACTGAGCA	TAATTATAAT	3000
CACCCTGCTG	CTACGTCTAG	AAACCAAACT	GTGAAATATT	GGCTGACTGT	ATACCTTCCT	3060
AAATAATAAA	TTCAGGATAA	CATTGCCATA	TTATTGGAGA	ACCCCCCCT	CCCTTTTAAA	3120
ACTGGAATCA	TTTTATGTCA	ATCTCAGGTG	AAATACGAAT	GGGTTTCAGA	ACAGTGCTGT	3180
GCACTGAAGG	CTGACATTTA	GAACATATAT	AACGATTTCT	GTAAAGTCTG	CTGTAACAAT	3240
TGCTGATTGT	ATCCTAGGAG	ACTTGGACTC	CTCTCAACGT	TAAGGCAGAG	GAATATAATG	3300
GTTATGAGAG	TAAAACTCTC	TGTCAGGTAC	ATCTGGCTTT	CTGTCCCAGC	TCTGTCACTT	3360
AACACTTAGT	TGCGGTGGGA	AAACTCCCTG	ATCTTCCGGG	AGACTAAGTA	ACTGTATAAG	3420
CAAGCTGGCC	GTGATATCCA	CGTCGTAAGG	CTGCTGTGTG	GGTTCAGTGA	AAACTGTTAC	3480
AGTGATTGGC	AGAGTTTCTG	GAGGTCATTG	ACCCTCATTA	AACCTTGCAT	ACACTTATTC	3540
TTACTACTCT	TTGCTGTTAG	TGTTGCCACC	AGGATTGCCA	TTCAAGGCAG	TCCTGTATAC	3600
TTGATAACAC	CAGTTGGTTC	TGAGGCCTTA	GTTAGCATCT	GTTAGCCTGG	TTCAGGAGAG	3660
TGTATCAGAG	CCAGGTTCCT	CTATCACATA	AACTGTAACG	CAAGTGAATT	GTCCAATTGC	3720
TGTTGAGTCT	GAGAGTCCTT	GAGGTGCATA	GCTTTGACTA	ATAAATCCCC	ATGCTTTTAT	3780
GCTTTTCCTT	CCTCCCTCTT	CCAGTTCAAC	ATCTAATATA	CAAAGATTGT	TCCGACCACT	3840
ACGTGCTAGG	AAGGAGAAGC	AGTGGGGCCT	ACAGAGTTAC	CCCTGATCAC	AGAAACAGCA	3900
GCTTTGAGGT	CTACTGTGAC	ATGGAGACCA	TGGGTGGAGG	CTGGACGGTG	CTGCAGGCTC	3960
GCCTTGATGG	CAGCACCAAC	TTCACCAGAG	AGTGGAAAGA	CTACAAAGCC	GGCTTTGGAA	4020
ACCTTGAACG	AGAATTTTGG	TTGGGCAACG	ATAAAATTCA	TCTTCTGACC	AAGAGTAAGG	4080
AAATGATTTT	GAGAATAGAT	CTTGAAGACT	TTAATGGTCT	CACACTTTAT	GCCTTGTATG	4140
ATCAGTTTTA	TGTGGCTAAT	GAATTTCTCA	AATACCGATT	ACACATCGGT	AACTACAATG	4200
GCACGGCAGG	GGATGCCTTG	CGTTTCAGTC	GACACTACAA	CCATGACCTG	AGGTTTTTCA	4260
CAACCCCAGA	CAGAGACAAC	GATCGGTACC	CCTCTGGGAA	CTGTGGGCTC	TATTACAGCT	4320

- 70 -

CAGGCTGGTG	GTTTGATTCA	TGTCTCTCTG	CCAATTTAAA	TGGCAAATAT	TACCACCAGA	4380
AATACAAAGG	TGTCCGTAAT	GGGATTTTCT	GGGGCACCTG	GCCTGGTATA	AACCAGGCAC	4440
AGCCAGGTGG	CTACAAGTCC	TCCTTCAAAC	AGGCCAAGAT	GATGATTAGG	CCCAAGAATT	4500
TCAAGCCATA	AATTGCTAGT	GTTCATCTCT	CTGGGCACTC	ACTATCTAAG	AGGACGATGA	4560
ATTCCTTCAG	CCCTTTACCA	TATGTCTCAG	TTTATATTCC	TTTCCTATGG	CTAAACATTT	4620
CCTTTAAAGC	TTTACAGCTT	TTAGAATAAA	GCTGAAAAGA	TCTAAAAAGA	CTCCTATGTT	4680
GCTGTTATAT	GAGGAATGCT	TGAAAGCACT	GGAAATATTG	ACAATTATAC	ATTATAATTG	4740
CAAAACCTTT	CATTTTTATT	AGTTGAAAAG	TTTCCTAATA	TTTTTATTAT	TTTTATAATA	4800
AAAACTAAAT	TATTCAGCAA	GCTAGATTCT	ATATACGCAA	GTTTTATTTT	CACTAGGGCT	4860
AAATATACAC	ATTTGAGAAT	ATACCAGTCC	TTCCAGGTAC	AACTGAAAGC	CAAGAACTGT	4920
AGTATTATCT	TTCGTCTAAG	AAGAACTTAA	AGCATTTTAG	TTCTCAAGAA	GAAGGGCAGG	4980
GATGGGATTG	GGGGCCAGGG	ACAATATGTA	TAGCTAAATG	TATTCATCTA	ATGCAAAATA	5040
TGGCATTAAA	ATACCTAAAA	ATGTGGTAGC	ATAATATATG	TCTCTTCCCT	CTCCAATTGA	5100
AAAATAATGT	TACCCTGTAG	ACTTTGGTTT	AGTGGTAATT	CACTTACTGT	TTATAGCCTG	5160
TTAGACCGCG	ATACAAAAGC	TGCTTTATCC	TCTCCCTCTG	CTCTCTGTGC	ACAATGGTTT	5220
GTGATGTAAG	GTGCTAGACT	ACTGTAAGGT	TTCCTTGGGG	AAAGGCATGG	TAAGGGAAAA	5280
CACACTGGTT	TATATTTTGA	AAGCCAATCC	TAATCCCAAA	GCAATACTGT	TGTCGAGGAG	5340
TCAACGTTCT	AGGAAGCTGA	CTTTTCTAGA	ACAAATGTAT	TTATTAGGAT	GAATTTGGGA	5400
ATT						5403

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Arg Leu Pro Gly Trp Leu Trp Leu Ser Ser Ala Val Leu Ala Ala 1 10 15

Cys Arg Ala Val Glu Glu His Asn Leu Thr Glu Gly Leu Glu Asp Ala 20 25 30

Ser Ala Gln Ala Cys Pro Ala Arg Leu Glu Gly Ser Gly Arg Cys 35 40 45

Glu Gly Ser Gln Cys Pro Phe Gln Leu Thr Leu Pro Thr Leu Thr Ile 50 60

Gln Leu Pro Arg Gln Leu Gly Ser Met Glu Glu Val Leu Lys Glu Val 55 70 75 80

- 71 -

Arg Thr Leu Lys Glu Ala Val Asp Ser Leu Lys Lys Ser Cys Gln. Asp Cys Lys Leu Gln Ala Asp Asp His Arg Asp Pro Gly Gly Asn Gly Gly Asn Gly Ala Glu Thr Ala Glu Asp Ser Arg Val Gln Glu Leu Glu Ser 115 120 125 Gln Val Asn Lys Leu Ser Ser Glu Leu Lys Asn Ala Lys Asp Gln Ile 135 Gln Gly Leu Gln Gly Arg Leu Glu Thr Leu His Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Asn Lys Val Ala Asn Leu Thr Val Val Val Asn Ser Leu Asp Gly Lys Cys Ser Lys Cys Pro Ser Gln Glu His 185 Met Gln Ser Gln Pro Val Gln His Leu Ile Tyr Lys Asp Cys Ser Asp His Tyr Val Leu Gly Arg Arg Ser Ser Gly Ala Tyr Arg Val Thr Pro 210 215 220Asp His Arg Asn Ser Ser Phe Glu Val Tyr Cys Asp Met Glu Thr Met 225 230 235 Gly Gly Gly Trp Thr Val Leu Gln Ala Arg Leu Asp Gly Ser Thr Asn Phe Thr Arg Glu Trp Lys Asp Tyr Lys Ala Gly Phe Gly Asn Leu Glu Arg Glu Phe Trp Leu Gly Asn Asp Lys Ile His Leu Leu Thr Lys Ser Lys Glu Met Ile Leu Arg Ile Asp Leu Glu Asp Phe Asn Gly Leu Thr Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr Val Ala Asn Glu Phe Leu Lys Tyr Arg Leu His Ile Gly Asn Tyr Asn Gly Thr Ala Gly Asp Ala Leu Arg Phe Ser Arg His Tyr Asn His Asp Leu Arg Phe Phe Thr Thr Pro Asp Arg Asp Asn Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr 355 360 365Ser Ser Gly Trp Trp Phe Asp Ser Cys Leu Ser Ala Asn Leu Asn Gly 370 375 380 Lys Tyr Tyr His Gln Lys Tyr Lys Gly Val Arg Asn Gly Ile Phe Trp Gly Thr Trp Pro Gly Ile Asn Gln Ala Gln Pro Gly Gly Tyr Lys Ser 405 410 415Ser Phe Lys Gln Ala Lys Met Met Ile Arg Pro Lys Asn Phe Lys Pro 420 425 430

SEQUENCE LISTING

<110>	Levy, Gary
<120>	Methods of Modulating Immune Coagulation
<130>	9579-37
<140>	
<141>	
<150>	US 09/442,143
<151>	1999-11-15
<160>	53
<170>	PatentIn version 3.1
<210>	1
<211>	4630

<213> Homo sapiens

<212> DNA

<400> 1 gatctagggt tggaagccag gtctcctgag tatgcgagaa taaatacagt catggaagtg 60 taaagagtct gccaacattt tgagaatgtg aataggattt ggctaaaatt aaggggatat 120 acagaaaagt cataggaaat caggttaaag acataaatat gagataggct acagagtgtt 180 ttaagtaata caataaaaca tttagatttt tgcccatgtc agtcattttg aaattatttt 240 taaagcaaaa aaaccctttt taaacaagaa atcttatgag atgtcaatat gcaaaacaaa 300 ttaaaaggag gtggtttctc taactgaagc tgttcctctt tcctgccttc agcctctgaa 360 gagaaagtta gaaaactatt atcattaatg ctacatgttt tgaacaagct gatataccaa 420 gtggcccaga gagcaggtag aagaaccagc gtggagacag aaagcaagag gcccgcctgc 480 cagggctacc tgcagaaaga aagggcaaag atgctgtagg caagagaagt tcaggacaga 540 cactggcata gctcaaagat tcacatttga gcagctgtgg aagatgacag tacaattacc 600 aaaatgtcga agggcaaagg aggcagctac tggttttgat gaaagacaat tatgtccttt 660

taaatgggtc ttagacattt agacatttat atacactatg ctacggacaa aggaatagaa 720 agtagcactt ttttctccac tagttttctt ctctttttca agtagatgaa gcaaaagtca 780 actgcaatag tcagaaagct gtactttgtt acacttagaa acttctaaaa gtgcttaaga 840 tttcacctga aagtccaaca tgaagaaaat acaggctccc caatgcccca ttctaagaag 900 gaaaaaggac cattttcatt ttagtaacgt ttctgttcta tagacagttt ggataactag 960 ctcttacttt ttatctttaa aaactgtttt tccagtgaag ttacgtataa ttatttactt 1020 caagcgtagt ataccaaatt actttagaaa tgcaagactt ttcttatact tcataaaata 1080 cattatgaaa gtgaatcttg ttggctgtgt acatttgact ataataattt caatgcatat 1140 tatttctatt gagagtaagt tacagttttt ggcaaactgc gtttgatgag ggctatctcc 1200 tetteetgtg egtttetaaa aettgtgatg caaaegetee caecetttee tgggaacaca 1260 gaaageetga eteaggeeat ggeegetatt aaageagete eageeetgeg eacteeetge 1320 tggggtgagc agcactgtaa agatgaagct ggctaactgg tactggctga gctcagctgt 1380 tcttgccact tacggttttt tggttgtggc aaacaatgaa acagaggaaa ttaaagatga 1440 aagagcaaag gatgtctgcc cagtgagact agaaagcaga gggaaatgcg aagaggcagg 1500 ggagtgcccc taccaggtaa gcctgccccc cttgactatt cagctcccga agcaattcag 1560 caggatcgag gaggtgttca aagaagtcca aaacctcaag gaaatcgtaa atagtctaaa 1620 gaaatcttgc caagactgca agctgcaggc tgatgacaac ggagacccag gcagaaacgg 1680 actgttgtta cccagtacag gagccccggg agaggttggt gataacagag ttagagaatt 1740 agagagtgag gttaacaagc tgtcctctga gctaaagaat gccaaagagg agatcaatgt 1800 acttcatggt cgcctggaga agctgaatct tgtaaatatg aacaacatag aaaattatgt 1860 tgacagcaaa gtggcaaatc taacatttgt tgtcaatagt ttggatggca aatgttcaaa 1920 gtgtcccagc caagaacaaa tacagtcacg tccaggtatg tataataatg ttttcttatc 1980 atatgttcat aaatgttata cagtcagaga tgtatctaaa agattaacct gagtcagtaa 2040 gttaaataga tgacagatta agtcttttat ttatcaaggt gcacaggaaa aaataaatat 2100 cttctcaaat atgaccacat aaatatgacc taattacaaa atcatagtta gttctgtatc 2160 cactggaagt cactttcaat tttaagatct tatttgttaa tgccagacct acttgcaagc 2220 agagattaga ggtcctttct gctttataac attaggttct tcttgtgagg ccttaagcat 2280 ttactaaaca ccttcaagta agtttagtaa agtttcatta ctgccattga ttcaattatc 2340 aaactgcttt tgtacatata aagaattctt cagatgcatg gtttctatta acaagatcca 2400 atgccttcct tttatttccc cttcagttca acatctaata tataaagatt gctctgacta 2460 ctacgcaata ggcaaaagaa gcagtgagac ctacagagtt acacctgatc ccaaaaatag 2520 tagctttgaa gtttactgtg acatggagac catgggggga ggctggacag tgctgcaggc 2580

acgtctcgat gggagcacca acttcaccag aacatggcaa gactacaaag caggctttgg 2640 aaacctcaga agggaatttt ggctggggaa cgataaaatt catcttctga ccaagagtaa 2700 ggaaatgatt ctgagaatag atcttgaaga ctttaatggt gtcgaactat atgccttgta 2760 tgatcagttt tatgtggcta atgagtttct caaatatcgt ttacacgttg gtaactataa 2820 tggcacaget ggagatgeat tacgtttcaa caaacattac aaccacqate tgaaqttttt 2880 caccactcca gataaagaca atgatcgata tccttctggg aactgtgggc tgtactacag 2940 ttcaggctgg tggtttgatg catgtctttc tgcaaactta aatggcaaat attatcacca 3000 aaaatacaga ggtgtccgta atgggatttt ctggggtacc tggcctggtg taagtgaggc 3060 acaccctggt ggctacaagt cctccttcaa agaggctaag atgatgatca gacccaagca 3120 ctttaagcca taaatcactc tgttcattcc tccaggtatt cgttatctaa tagggcaatt 3180 aattccttgt ttcatatttt tcatagctaa aaaatgatgt ctgacggcta ggttcttatg 3240 ctacacagca tttgaaataa agctgaaaaa caatgcattt taaaggagtc ctttgttgtt 3300 atgctgttat ccaatgaaca cttgcaagca attagcaata ttgagaatta tacattagat 3360 ttacaattct tttaatttct attgaaactt tttctattgc ttgtattact tgctgtattt 3420 aaaaaataat tgttggctgg gtgtggtagc tcacgcctgt aatcccagca ctttggaatg 3480 tcaaggcagg cagatcactt gaggtcagga gtttgagacc agcctggcca aacatgtgaa 3540 acgctgtctc tattaaaaat acaaaaatta gccgggcatg gtggtacatg cctgtaatca 3600 acgctgttta ttaaaaatac aaaaattagc cgggcatggt ggacatgcct gtaatcctag 3660 tacttgggag gctgaggcag gagaatcgct tgaacctgag aggaagaggt tgcagtgagc 3720 caagaatgag ccactgcact ccagcatggg tgacagagaa aactctgtct caaacaaaaa 3780 aataataaaa tttattcagt aggtggattc tacacaaagt aatctgtatt tgggccatga 3840 tttaagcaca tetgaaggta tateaetett tteaggetat aattatttgg gtaatettea 3900 ttctgagaca aacttaatct atatcattta ctttgcaaca gaacaaccct acagcatttt 3960 ggttcccaga ctaagggaac taatatctat ataattaaac ttgttcattt atcattcatg 4020 aaatataaaa tacttgtcat ttaaaccgtt taaaaatgtg gtagcataat gtcaccccaa 4080 aaagcattca gaaagcaatg taactgtgaa gaccagggtt taaaggtaat tcatttatag 4140 tttataactc cttagatgtt tgatgttgaa aactgcttta acatgaaaat tatcttcctc 4200 tgctctgtgt gaacaatagc ttttaattta agattgctca ctactgtact agactactgg 4260 taggtttttt tgggggggg tgggtaggga tatgtgggta atgaagcatt tacttacagg 4320 ctatcatact ctgaggccaa ttttatctcc aaagcaataa tatcattaag tgattcactt 4380 catagaaggc taagtttctc taggacagat agaaaacatg aattttgaaa tatatagaac 4440

agtagttaaa atactatata tttcaaccct ggctggtaga ttgcttattt tactatcaga 4500
aactaaaaga tagatttta cccaaacaga agtatctgta attttataa ttcatcaatt 4560
ctggaatgct atatataata tttaaaagac tttttaaatg tgtttaattt catcatcgta 4620
aaaagggatc 4630

<210> 2

<211> 439

<212> PRT

<213> Homo sapiens fgl2

<400> 2

Tyr Gly Phe Leu Val Val Ala Asn Asn Glu Thr Glu Glu Ile Lys Asp 20 25 30

Glu Arg Ala Lys Asp Val Cys Pro Val Arg Leu Glu Ser Arg Gly Lys 35 40 45

Cys Glu Glu Ala Gly Glu Cys Pro Tyr Gln Val Ser Leu Pro Pro Leu 50 55 60

Thr Ile Gln Leu Pro Lys Gln Phe Ser Arg Ile Glu Glu Val Phe Lys 75 75 80

Glu Val Gln Asn Leu Lys Glu Ile Val Asn Ser Leu Lys Lys Ser Cys 85 90 95

Gln Asp Cys Lys Leu Gln Ala Asp Asp Asp Gly Asp Pro Gly Arg Asn 100 105 110

Gly Leu Leu Pro Ser Thr Gly Ala Pro Gly Glu Val Gly Asp Asn 115 \$120 \$125

Arg Val Arg Glu Leu Glu Ser Glu Val As
n Lys Leu Ser Ser Glu Leu 130 135 140

Lys Asn Ala Lys Glu Glu Ile Asn Val Leu His Gly Arg Leu Glu Lys 145 150 155 160

Leu Asn Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Ser Lys 165 170 175

Val Ala Asn Leu Thr Phe Val Val Asn Ser Leu Asp Gly Lys Cys Ser 180 185 190

Lys Cys Pro Ser Gln Glu Gln Ile Gln Ser Arg Pro Val Gln His Leu 195 200 205

Ile Tyr Lys Asp Cys Ser Asp Tyr Tyr Ala Ile Gly Lys Arg Ser Ser 210 215 220

Glu Thr Tyr Arg Val Thr Pro Asp Pro Lys Asn Ser Ser Phe Glu Val 225 230 235 240

Tyr Cys Asp Met Glu Thr Met Gly Gly Gly Trp Thr Val Leu Gln Ala 245 250 255

Arg Leu Asp Gly Ser Thr Asn Phe Thr Arg Thr Trp Gln Asp Tyr Lys 260 265 270

Ala Gly Phe Gly Asn Leu Arg Arg Glu Phe Trp Leu Gly Asn Asp Lys 275 280 285

Ile His Leu Leu Thr Lys Ser Lys Glu Met Ile Leu Arg Ile Asp Leu 290 295 300

Glu Asp Phe Asn Gly Val Glu Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr 305 310 315 320

Val Ala Asn Glu Phe Leu Lys Tyr Arg Leu His Val Gly Asn Tyr Asn 325 330 335

Gly Thr Ala Gly Asp Ala Leu Arg Phe Asn Lys His Tyr Asn His Asp 340 345 350

Leu Lys Phe Phe Thr Thr Pro Asp Lys Asp Asn Asp Arg Tyr Pro Ser 355 360 365

Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly Trp Trp Phe Asp Ala Cys 370 375 380

Leu Ser Ala Asn Leu Asn Gly Lys Tyr Tyr His Gln Lys Tyr Arg Gly 385 390 395 400

Val Arg Asn Gly Ile Phe Trp Gly Thr Trp Pro Gly Val Ser Glu Ala 405 410 415

His Pro Gly Gly Tyr Lys Ser Ser Phe Lys Glu Ala Lys Met Met Ile

Arg Pro Lys His Phe Lys Pro 435

<210> 3

<211> 5403

<212> DNA

<213> Murine

<400> 3						
	gtctgacaaa	ttcttcatac	acacatttcc	cctttgcaca	ttcagtctgt	60
ataggttatt	tctataggag	aaaaaaaata	ttcaaattcc	ttgtgcactg	gtaacaggca	120
tgaaggctca	gcaaagccaa	tacgtgttat	gtccagttgg	agacagtgcc	agggccaaca	180
ttccagactt	ctcagataga	aagtgcgcct	gcctgccctg	ctctgagaat	ttgaagagag	240
tagttcagtt	agaattaaga	ggcagtagag	aaaagtcttg	ggaaatctgg	ttagagatat	300
aaatatgaga	actggacatg	gtggtacaca	cctgtgatct	ctgtgtttag	gagggagagg	360
cagagagatc	aggagttcaa	ggccagcctg	agctacttga	gacccagtct	aaataaataa	420
gagatagatt	acagagtgcc	tttaactagt	acagagaaag	aatttgggtt	tatctgtgtc	480
agttacgctg	aaataatttt	taagtaataa	aatccctttt	aataagaaac	cttatgaggt	540
cagtatgcac	aatgaactta	agagagaccc	ccagctcctg	agctgagtga	tggggaagga	600
cagccactgc	ctgtgatgtg	tgagtgacgt	gcttccaagt	gttttaacca	ctgacgatta	660
catagcctgc	acagtcagga	gaaaacagcc	gtattctctg	ccagttctct	tcccttttac	720
aaacagatga	gagacacaca	cagagaatcc	atttaaagag	cggacctttg	ttctgattag	780
gggcaatttt	aagtacttaa	gagttcacac	aaagtctagc	cttcaaaaag	aaaacaggtt	840
cccaaactag	ggaggaaaca	gaatcatttc	cattttggtg	acatttagtg	ggaagaagct	900
cacagacatt	tagacgttcc	aactctttcc	ccactagtgg	accaagtata	taatatggta	960
tcttttgggc	actggtatta	caactgtttt	ttaaacaaaa	gactttcctt	gtgctttact	1020
aaaaacccag	acggtgaatc	ttgaatacaa	tgcgtggcac	ccacggcagg	cattctattg	1080
tgcatagttt	tgactgacag	gagatgacag	catttggctg	gctgcgcttg	ctgaggaccc	1140
tetectectg	tgtggcgtct	gagactgtga	tgcaaatgcg	cccgcccttt	tctgggaact	1200
cagaacgcct	gagtcaggcg	gcggtggcta	ttaaagcgcc	tggtcaggct	gggctgccgc	1260
actgcaagga	tgaggcttcc	tggttggttg	tggctgagtt	ctgccgtcct	cgctgcctgc	1320
cgagcggtgg	aggagcacaa	cctgactgag	gggctggagg	atgccagcgc	ccaggctgcc	1380

1440 tgccccgcga ggctggaggg cagcgggagg tgcgagggga gccagtgccc cttccagctc 1500 accetgeeca egetgaecat ecageteeeg eggeagettg geageatgga ggaggtgete aaagaagtgc ggaccctcaa ggaagcagtg gacagtctga agaaatcctg ccaggactgt 1560 1620 aagttgcagg ctgacgacca tcgagatccc ggcgggaatg gagggaatgg agcagagaca gccgaggaca gtagagtcca ggaactggag agtcaggtga acaagctgtc ctcagagctg 1680 1740 aagaatgcaa aggaccagat ccaggggctg caggggcgcc tggagacgct ccatctggta 1800 aatatgaaca acattgagaa ctacgtggac aacaaagtgg caaatctaac cgttgtggtc 1860 aacagtttgg atggcaagtg ttccaagtgt cccagccaag aacacatgca gtcacagccg ggtaggtgta atgagggtca tacagtttgt tcatgaaagc tgtatagcca gatagtggcc 1920 ataaacatta acccgaggga gcataagtta gtcagacttt cacctgttaa gttatggcag 1980 2040 gagaaacaag tgttttctca aatgagacaa cagaaatggt aaatgatcca cgtacaaaaa tcctattagt tgtactcgtt agagaccgtc acttgcaagt ctctagacct tccctgctag 2100 gtcgaccaac agacgagcag aaacagattc ctcccggaat ctgaacacat atttgaacac 2160 aggacaggta tggcaaggtt cctggctctg cttgcttagg tccctgggaa tcagatcttg 2220 2280 ggtggctgat gggctttata aggctttcac aaacaatctg ctgtgctagg ttctcaaata tctagtgaga atgggagatt tttatacatg gaagcatctc tcctctctc ctcctctctc 2340 2400 ctccctccct ccctctctc ctctttgtgt gcgtgtgtgg tggggatgag gacacgtgta 2460 2520 gaacttcggg ggttgagact tagtgcatat gcatcctcac cattccagtt agtgaatgtt 2580 aacactattt aaggtcacag acctaacagc cttctgtgtc cggattcctg gattcctagg 2640 acctttgtgg atgggttgcc acaccctctg tgttcatcct gactgtgagg tcgatgggac 2700 atagtaggga taactttcat ttggaatctc tagagatggt aggtcatcat gtcatagaat gttatcacta atgaccaaga tagacactca tgtttaagag acatcacaag gtgtatatta 2760 aatatgacat ggcatataac ttgtaatgac acaaaaatat tctgttacct acttttctcc 2820 2880 taaaagcttg ggactctcca gagttctaaa tacatgcaaa cagattattg tgttttacag gaatcttata ttgaactttc tttacctgac tcaaatttta ttaaaattaa ctgggaacaa 2940 3000 atagttggtc tctaatctct acaaaaacca ccaaatgatt acactgagca taattataat 3060 caccetgetg ctacgtetag aaaccaaact gtgaaatatt ggetgaetgt atacetteet 3120 aaataataaa ttcaggataa cattgccata ttattggaga accccccct cccttttaaa actggaatca ttttatgtca atctcaggtg aaatacgaat gggtttcaga acagtgctgt 3180 gcactgaagg ctgacattta gaacatatat aacgatttct gtaaagtctg ctgtaacaat 3240 tgctgattgt atcctaggag acttggactc ctctcaacgt taaggcagag gaatataatg 3300 gttatgagag taaaactctc tgtcaggtac atctggcttt ctgtcccagc tctgtcactt 3360 3420 aacacttagt tgcggtggga aaactccctg atcttccggg agactaagta actgtataag caagctggcc gtgatatcca cgtcgtaagg ctgctgtgtg ggttcagtga aaactgttac 3480 agtgattggc agagtttctg gaggtcattg accctcatta aaccttgcat acacttattc 3540 3600 ttactactct ttgctgttag tgttgccacc aggattgcca ttcaaggcag tcctgtatac 3660 ttgataacac cagttggttc tgaggcctta gttagcatct gttagcctgg ttcaggagag 3720 tgtatcagag ccaggttcct ctatcacata aactgtaacg caagtgaatt gtccaattgc tgttgagtct gagagtcctt gaggtgcata gctttgacta ataaatcccc atgcttttat 3780 3840 gcttttcctt cctccctctt ccagttcaac atctaatata caaagattgt tccgaccact 3900 acgtgctagg aaggagaagc agtggggcct acagagttac ccctgatcac agaaacagca 3960 gctttgaggt ctactgtgac atggagacca tgggtggagg ctggacggtg ctgcaggctc gccttgatgg cagcaccaac ttcaccagag agtggaaaga ctacaaagcc ggctttggaa 4020 accttgaacg agaattttgg ttgggcaacg ataaaattca tcttctgacc aagagtaagg 4080 aaatgatttt gagaatagat cttgaagact ttaatggtct cacactttat gccttgtatg 4140 4200 atcagtttta tgtggctaat gaatttctca aataccgatt acacatcggt aactacaatg gcacggcagg ggatgccttg cgtttcagtc gacactacaa ccatgacctg aggtttttca 4260 caaccccaga cagagacaac gatcggtacc cctctgggaa ctgtgggctc tattacagct 4320 caggctggtg gtttgattca tgtctctctg ccaatttaaa tggcaaatat taccaccaga 4380 aatacaaagg tgtccgtaat gggattttct ggggcacctg gcctggtata aaccaggcac 4440 4500 agccaggtgg ctacaagtcc tccttcaaac aggccaagat gatgattagg cccaagaatt tcaagccata aattgctagt gttcatctct ctgggcactc actatctaag aggacgatga 4560 attectteag ceetttacea tatgteteag tttatattee ttteetatgg etaaacattt 4620 4680 cctttaaagc tttacagctt ttagaataaa gctgaaaaga tctaaaaaga ctcctatgtt gctgttatat gaggaatgct tgaaagcact ggaaatattg acaattatac attataattg 4740 caaaaccttt catttttatt agttgaaaag tttcctaata tttttattat ttttataata 4800 4860 aaaactaaat tattcagcaa gctagattct atatacgcaa gttttatttt cactagggct 4920 aaatatacac atttgagaat ataccagtcc ttccaggtac aactgaaagc caagaactgt agtattatct ttcgtctaag aagaacttaa agcattttag ttctcaagaa gaagggcagg 4980 gatgggattg ggggccaggg acaatatgta tagctaaatg tattcatcta atgcaaaata 5040 tggcattaaa atacctaaaa atgtggtagc ataatatatg tctcttccct ctccaattga 5100 5160 aaaataatgt taccctgtag actttggttt agtggtaatt cacttactgt ttatagcctg

ttagaccgcg atacaaaagc tgctttatcc tctccctctg ctctctgtgc acaatggttt 5220 gtgatgtaag gtgctagact actgtaaggt ttccttgggg aaaggcatgg taagggaaaa 5280 cacactggtt tatattttga aagccaatcc taatcccaaa gcaatactgt tgtcgaggag 5340 tcaacgttct aggaagctga cttttctaga acaaatgtat ttattaggat gaatttggga 5400 att

<210> 4

<211> 432

<212> PRT

<213> Murine fgl2

<400> 4

Met Arg Leu Pro Gly Trp Leu Trp Leu Ser Ser Ala Val Leu Ala Ala 1 5 10 15

Cys Arg Ala Val Glu Glu His Asn Leu Thr Glu Gly Leu Glu Asp Ala 20 25 30

Ser Ala Gln Ala Cys Pro Ala Arg Leu Glu Gly Ser Gly Arg Cys 35 40 45

Glu Gly Ser Gln Cys Pro Phe Gln Leu Thr Leu Pro Thr Leu Thr Ile 50 55 60

Gln Leu Pro Arg Gln Leu Gly Ser Met Glu Glu Val Leu Lys Glu Val 65 70 75 80

Arg Thr Leu Lys Glu Ala Val Asp Ser Leu Lys Lys Ser Cys Gln Asp 85 90 95

Cys Lys Leu Gln Ala Asp Asp His Arg Asp Pro Gly Gly Asn Gly Gly 100 105 110

Asn Gly Ala Glu Thr Ala Glu Asp Ser Arg Val Gln Glu Leu Glu Ser 115 120 125

Gln Val Asn Lys Leu Ser Ser Glu Leu Lys Asn Ala Lys Asp Gln Ile 130 \$135\$ 140

Gln Gly Leu Gln Gly Arg Leu Glu Thr Leu His Leu Val Asn Met Asn 145 150 155 160

Asn Ile Glu Asn Tyr Val Asp Asn Lys Val Ala Asn Leu Thr Val Val 165 170 175

Val Asn Ser Leu Asp Gly Lys Cys Ser Lys Cys Pro Ser Gln Glu His 180 185 190

Met Gln Ser Gln Pro Val Gln His Leu Ile Tyr Lys Asp Cys Ser Asp 195 200 205

His Tyr Val Leu Gly Arg Arg Ser Ser Gly Ala Tyr Arg Val Thr Pro 210 215 220

Asp His Arg Asn Ser Ser Phe Glu Val Tyr Cys Asp Met Glu Thr Met 225 230 235 240

Gly Gly Gly Trp Thr Val Leu Gln Ala Arg Leu Asp Gly Ser Thr Asn 245 250 255

Phe Thr Arg Glu Trp Lys Asp Tyr Lys Ala Gly Phe Gly Asn Leu Glu 260 265 270

Arg Glu Phe Trp Leu Gly Asn Asp Lys Ile His Leu Leu Thr Lys Ser 275 280 285

Lys Glu Met Ile Leu Arg Ile Asp Leu Glu Asp Phe Asn Gly Leu Thr 290 295 300

Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr Val Ala Asn Glu Phe Leu Lys 305 310 315 320

Tyr Arg Leu His Ile Gly Asn Tyr Asn Gly Thr Ala Gly Asp Ala Leu 325 330 335

Arg Phe Ser Arg His Tyr Asn His Asp Leu Arg Phe Phe Thr Thr Pro 340 345 350

Asp Arg Asp Asn Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr 355 360 365

Ser Ser Gly Trp Trp Phe Asp Ser Cys Leu Ser Ala Asn Leu Asn Gly 370 375 380

Lys Tyr Tyr His Gln Lys Tyr Lys Gly Val Arg Asn Gly Ile Phe Trp 385 390 395 400

Gly Thr Trp Pro Gly Ile Asn Gln Ala Gln Pro Gly Gly Tyr Lys Ser 405 410 415

Ser Phe Lys Gln Ala Lys Met Met Ile Arg Pro Lys Asn Phe Lys Pro 425 <210> 5 <211> 592 <212> DNA <213> Murine <400> 5 atgaggette etggttggtt gtggetgagt tetgeegtee tegetgeetg eegageggtg 60 gaggagcaca acctgactga ggggctggag gatgccagcg cccaggctgc ctgccccgcg 120 180 aggctggagg gcagcgggag gtgcgagggg agccagtgcc ccttccagct caccctgccc acgctgacca tccagctccc gcggcagctt ggcagcatgg aggaggtgct caaagaagtg 240 cggaccctca aggaagcagt ggacagtctg aagaaatcct gccaggactg taagttgcag 300 360 gctgacgacc atcgagatcc cggcgggaat ggagggaatg gagcagagac agccgaggac agtagagtcc aggaactgga gagtcaggtg aacaagctgt cctcagagct gaagaatgca 420 aaggaccaga tccaggggct gcaggggcgc ctggagacgc tccatctggt aaatatgaac 480 aacattgaga actacgtgga caacaaagtg gcaaatctaa ccgttgtggt caacagtttg 540 592 gatggcaagt gttccaagtg tcccagccaa gaacacatgc agtcacagcc gg <210> 6 <211> 613 <212> DNA <213> Homo sapiens <400> 6 atgaagctgg ctaactggta ctggctgagc tcagctgttc ttgccactta cggttttttg 60 gttgtggcaa acaatgaaac agaggaaatt aaagatgaaa gagcaaagga tgtctgccca 120 gtgagactag aaagcagagg gaaatgcgaa gaggcagggg agtgccccta ccaggtaagc 180 240 ctgccccct tgactattca gctcccgaag caattcagca ggatcgagga ggtgttcaaa 300 gaagtccaaa acctcaagga aatcgtaaat agtctaaaga aatcttgcca agactgcaag

ctgcaggctg atgacaacgg agacccaggc agaaacggac tgttgttacc cagtacagga

gccccgggag aggttggtga taacagagtt agagaattag agagtgaggt taacaagctg

360

420

480 tcctctgagc taaagaatgc caaagaggag atcaatgtac ttcatggtcg cctggagaag ctgaatcttg taaatatgaa caacatagaa aattatgttg acagcaaagt ggcaaatcta 540 acatttgttg tcaatagttt ggatggcaaa tgttcaaagt gtcccagcca agaacaaata 600 613 cagtcacgtc cag <210> 7 <211> 707 <212> DNA <213> Murine <400> 7 60 ttcaacatct aatatacaaa gattgttccg accactacgt gctaggaagg agaagcagtg gggcctacag agttacccct gatcacagaa acagcagctt tgaggtctac tgtgacatgg 120 180 agaccatggg tggaggctgg acggtgctgc aggctcgcct tgatggcagc accaacttca ccagagagtg gaaagactac aaagccggct ttggaaacct tgaacgagaa ttttggttgg 240 gcaacgataa aattcatctt ctgaccaaga gtaaggaaat gattttgaga atagatcttg 300 360 aagactttaa tggtctcaca ctttatgcct tgtatgatca gttttatgtg gctaatgaat 420 ttctcaaata ccgattacac atcggtaact acaatggcac ggcaggggat gccttgcgtt 480 tcagtcgaca ctacaaccat gacctgaggt ttttcacaac cccagacaga gacaacgatc ggtacccctc tgggaactgt gggctctatt acagctcagg ctggtggttt gattcatgtc 540 tctctgccaa cttaaatggc aaatattacc accagaaata caaaggtgtc cgtaatggga 600 660 ttttctgggg cacctggcct ggtataaacc aggcacagcc aggtggctac aagtcctcct 707 tcaaacaggc caagatgatg attaggccca agaatttcaa gccataa <210> 8 <211> 707 <212> DNA <213> Homo sapiens <400> 8 ttcaacatct aatatataaa gattgctctg actactacgc aataggcaaa agaagcagtg 60 120 agacctacag agttacacct gatcccaaaa atagtagctt tgaagtttac tgtgacatgg 180 agaccatggg gggaggctgg acagtgctgc aggcacgtct cgatgggagc accaacttca ccagaacatg gcaagactac aaagcagget ttggaaacct cagaagggaa ttttggctgg 240

300 ggaacgataa aattcatctt ctgaccaaga gtaaggaaat gattctgaga atagatcttg aagactttaa tggtgtcgaa ctatatgcct tgtatgatca gttttatgtg gctaatgagt 360 420 ttctcaaata tcgtttacac gttggtaact ataatggcac agctggagat gcattacgtt tcaacaaca ttacaaccac gatctgaagt ttttcaccac tccagataaa gacaatgatc 480 gatatccttc tgggaactgt gggctgtact acagttcagg ctggtggttt gatgcatgtc 540 tttctgcaaa cttaaatggc aaatattatc accaaaaata cagaggtgtc cgtaatggga 600 660 ttttctqqqq tacctqqcct ggtgtaagtg aggcacaccc tggtggctac aagtcctcct 707 tcaaagaggc taagatgatg atcagaccca agcactttaa gccataa

<210> 9

<211> 1052

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (384)..(384)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (468)..(468)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (470)..(470)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (505)..(505)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (524)..(524)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (668)..(668)

<223> n is any nucleic acid

<400> 9 60 atcactctgt tcattcctcc aggtattcgt tatctaatag ggcaattaat tccttcagca ctttagaata tgccttgttt catatttttc atagctaaaa aatgccttgt ttcatatttt 120 tcatagctaa aaaatgatgt ctgacggcta ggttcttatg ctacacagca tttgaaataa 180 agctgaaaaa caatgcattt taaaggagtc ctttgttgtt atgctgttat ccaatgaaca 240 cttgcaagca attagcaata ttgagaatta tacattagat ttacaattct tttaatttct 300 attgaaactt tttctattgc ttgtattact tgctgtattt aaaaaataat tgttggctgg 360 gtgtggtagc tcacgcctgt aatnccagca ctttggaatg tcaaggcagg cagatcactt 420 480 gaggtcagga gtttgagacc agcctggcca aacatgtgaa acgctgtntn tattaaaaat 540 acaaaaatta gccgggcatg gtggnacatg cctgtaatcc tagntacttg ggaggctgag 600 gcaggagaat cgcttgaacc tgagaggaag aggttgcagt gagccaagaa tgagccactg 660 cactccagca tgggtgacag agaaaactct gtctcaaaca aaaaaataat aaaatttatt cagtaggntg gattctacac aaagtaatct gtatttgggc catgatttaa gcacatctga 720 aggtatatca ctcttttcag gctataatta tttgggtaat cttcattctg agacaaactt 780 840 aatctatatc atttactttg caacagaaca accctacagc attttggttc ccagactaag 900 ggaactaata tctatataat taaacttgtt catttatcat tcatgaaata taaaatactt gtcatttaaa ccgtttaaaa atgtggtagc ataatgtcac cccaaaaagc attcagaaag 960 caatgtaact gtgaagacca gggtttaaag gtaattcatt tatagtttat aactccttag 1020 1052 atgtttgatg ttgaaaactg ctttaacatg aa

<210> 10

<211> 1339

<212> DNA

<213> Murine

<400> 10						
	tatcatggga	tggaatgaga	agggaaagta	ggagcccgag	agtgcggtaa	60
gacaaggcat	aaggcgtgtc	tgacaaattc	ttcatacaca	catttcccct	ttgcacattc	120
agtctgtata	ggttatttct	ataggagaaa	aaaaatattc	aaattccttg	tgcactggta	180
acaggcatga	aggctcagca	aagccaatac	gtgttatgtc	cagttggaga	cagtgccagg	240
gccaacattc	cagacttctc	agatagaaag	tgcgcctgcc	tgccctgctc	tgagaatttg	300
aagagagtag	ttcagttaga	attaagaggc	agtagagaaa	agtcttggga	aatctggtta	360
gagatataaa	tatgagaact	ggacatggtg	gtacacacct	gtgatctctg	tgtttaggag	420
ggagaggcag	agagatcagg	agttcaaggc	cagcctgagc	tacttgagac	ccagtctaaa	480
taaataagag	atagattaca	gagtgccttt	aactagtaca	gagaaagaat	ttgggtttat	540
ctgtgtcagt	tacgctgaaa	taatttttaa	gtaataaaat	cccttttaat	aagaaacctt	600
atgaggtcag	tatgcacaat	gaacttaaga	gagaccccca	gctcctgagc	tgagtgatgg	660
ggaaggacag	ccactgcctg	tgatgtgtga	gtgacgtgct	tccaagtgtt	ttaaccactg	720
acgattacat	agcctgcaca	gtcaggagaa	aacagccgta	ttctctgcca	gttctcttcc	780
cttttacaaa	cagatgagag	acacacacag	agaatccatt	taaagagcgg	acctttgttc	840
tgattagggg	caattttaag	tacttaagag	ttcacacaaa	gtctagcctt	caaaaagaaa	900
acaggttccc	aaactaggga	ggaaacagaa	tcatttccat	tttggtgaca	tttagtggga	960
agaagctcac	agacatttag	acgttccaac	tctttcccca	ctagtggacc	aagtatataa	1020
tatggtatct	tttgggcact	ggtattacaa	ctgtttttta	aacaaaagac	tttccttgtg	1080
ctttactaaa	aacccagacg	gtgaatcttg	aatacaatgc	gtggcaccca	cggcaggcat	1140
tctattgtgc	atagttttga	ctgacaggag	atgacagcat	ttggctggct	gcgcttgctg	1200
aggaccctct	cctcctgtgt	ggcgtctgag	actgtgatgc	aaatgcgccc	gcccttttct	1260
gggaactcag	aacgcctgag	tcaggcggcg	gtggctatta	aagcgcctgg	tcaggctggg	1320
ctgccgcact	gcaaggatg					1339

<210> 11

<211> 1338

<212> DNA

<213> Homo sapiens

<400> 11 tagggttgga	agccaggtct	cctgagtatg	cgagaataaa	tacagtcatg	gaagtgtaaa	60
gagtctgcca	acattttgag	aatgtgaata	ggatttggct	aaaattaagg	ggatatacag	120
aaaagtcata	ggaaatcagg	ttaaagacat	aaatatgaga	taggctacag	agtgttttaa	180
gtaatacaat	aaaacattta	gatttttgcc	catgtcagtc	attttgaaat	tatttttaaa	240
gcaaaaaaac	cctttttaaa	caagaaatct	tatgagatgt	caatatgcaa	aacaaattaa	300
aaggaggtgg	tttctctaac	tgaagctgtt	cctctttcct	gccttcagcc	tctgaagaga	360
aagttagaaa	actattatca	ttaatgctac	atgttttgaa	caagctgata	taccaagtgg	420
cccagagagc	aggtagaaga	accagcgtgg	agacagaaag	caagaggccc	gcctgccagg	480
gctacctgca	gaaagaaagg	gcaaagatgc	tgtaggcaag	agaagttcag	gacagacact	540
ggcatagctc	aaagattcac	atttgagcag	ctgtggaaga	tgacagtaca	ataccaaaat	600
gtcgaagggc	aaaggaggca	gctactggtt	ttgatgaaag	acaattatgt	ccttttaaat	660
gggtcttaga	catttagaca	tttatataca	ctatgctacg	gacaaaggaa	tagaaagtag	720
cacttttttc	tccactagtt	ttcttctctt	tttcaagtag	atgaagcaaa	agtcaactgc	780
aatagtcaga	aagctgtact	ttgttacact	tagaaacttc	taaaagtgct	taagatttca	840
cctgaaagtc	caacatgaag	aaaatacagg	ctccccaatg	ccccattcta	agaagaaaaa	900
ggaccatttt	cattttagta	acgtttctgt	tctatagaca	gtttggataa	ctagctctta	960
ctttttatct	ttaaaaactg	tttttccagt	gaagttacgt	ataattattt	acttcaagcg	1020
tagtatacca	aattacttta	gaaatgcaag	acttttctta	tacttcataa	aatacattat	1080
gaaagtgaat	cttgttggct	gtgtacattt	gactataata	atttcaatgc	atattatttc	1140
tattgagagt	aagttacagt	ttttggcaaa	ctgcgtttga	tgagggctat	ctcctcttcc	1200
	taaaacttgt					1260
	ccatggccgc					1320
agcagcactg						1338

<210> 12

<211> 1339

<212> DNA

<213> Homo sapiens

<400> 12 60 tagggttgga agccaggtct cctgagtatg cgagaataaa tacagtcatg gaagtgtaaa gagtctgcca acattttgag aatgtgaata ggatttggct aaaattaagg ggatatacag 120 aaaagtcata ggaaatcagg ttaaagacat aaatatgaga taggctacag agtgttttaa 180 gtaatacaat aaaacattta gatttttgcc catgtcagtc attttgaaat tatttttaaa 240 300 gcaaaaaaac cctttttaaa caagaaatct tatgagatgt caatatgcaa aacaaattaa aaggaggtgg tttctctaac tgaagctgtt cctctttcct gccttcagcc tctgaagaga 360 420 aagttagaaa actattatca ttaatgctac atgttttgaa caagctgata taccaagtgg cccagagagc aggtagaaga accagcgtgg agacagaaag caagaggccc gcctgccagg 480 540 gctacctgca gaaagaaagg gcaaagatgc tgtaggcaag agaagttcag gacagacact 600 ggcatagete aaagatteae atttgageag etgtggaaga tgaeagtaea attaceaaaa 660 tgtcgaaggg caaaggaggc agctactggt tttgatgaaa gacaattatg tccttttaaa tgggtcttag acatttagac atttatatac actatgctac ggacaaagga atagaaagta 720 gcactttttt ctccactagt tttcttctct ttttcaagta gatgaagcaa aagtcaactg 780 ccaatagtca gaaagctgta ctttgttaca cttagaaact tctaaaagtg cttaagattt 840 900 cacctgaaac gccaacatga agaaaataca ggctccccaa tgccccattc taagaagaaa 960 aaggaccatt ttcattttag taacgtttct gttctataga cagtttggat aactagctct tactttttat ctttaaaaac tgtttttcca gtgaagttac gtataattat ttacttcaag 1020 cgtagtatac caaattactt tagaaatgca agacttttct tatacttcat aaaatacatt 1080 atgaaagtga atcttgttgg ctgtgtacat ttgactataa taatttcaat gcatattatt 1140 1200 tctattgaga gtaagttaca gtttttggca aactgcgttt gatgagggct atctcctctt 1260 cctgtgcgtt tctaaaactt gtgatgcaaa cgctcccacc ctttcctggg aacacagaaa cgctactcag gcacgtgccg gtattaaagc agctccagcc ctgcgcactc cctgctgggt 1320 1339 gagcagcact gtaaagatg

<210> 13

<211> 328

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (265)..(265)

<223> n is any nucleic acid

<400>	13	
	atat aatatggtat cttttgggca ctggtattac aactgttttt taaacaaaag	60
actttc	cttg tgctttacta aaaacccaga cggtgaatct tgaatacaat gcgtggcacc	120
cacggc	aggc attctattgt gcatagtttt gactgacagg agatgacagc atttggctgc	180
gtgcgc	ttgc tgaggaccct ctcctcctgt gtggcgtctg agactgtgat gcaaatgcgc	240
ccgccc.	tttt ctgggaactc agaangcctg agtcaggcgg cggtggctat taaagcgcct	300
ggtcag	gctg ggctgccgca ctccaagg	328
<210>	14	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	14	23
Cadaag	aagc agtgagacct aca	2.5
<210>	15	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ttatct	15 ggag tggtgaaaaa ctt	23
<210>	16	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	

```
<220>
<223> Primer
<400> 16
                                                                    22
gcaaacaatg aaacagagga aa
<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 17
                                                                    24
attgccctat tagataacga atac
<210> 18
<211> 15
<212> PRT
<213> Homo sapiens
<400> 18
Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly
<210> 19
<211> 7
<212> DNA
<213> Artificial Sequence
<220>
<223> API motif
<220>
<221> misc_feature
<222> (4)..(4)
```

<223> n is G or C

<400> tgantca		7
<210>	20	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gaaata	20 caaa aaccgcagaa gg	22
<210>	21	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	21 gaaa tctggttaga g	21
55		
<210>	22	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gagctg	22 agtg atggggaagg a	21

<210>	23	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	23 tggt attacaactg t	21
gggcac		
<210>	24	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	24 ctgt gtggcgtctg a	21
<210>	25	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	25 ggag ggcagggtga a	21
55		
<210>	26	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	Primer	
<400> acagtt	26 gtaa taccagtgcc c	21
<210>	27	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> aacgga	27 gacc caggcagaaa c	21
<210>	28	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> cttcgg	28 gagc tgaatagtca a	21
<210>	29	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gacagc	29 aaag tggcaaatct a	21

<210>	. 30	
<211>	- 21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	gtgaa gttggtgctc c	21
ccccg	gegaa geeggegeee e	21
<210>	31	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> caaaa	31 gaagc agtgagacct aca	23
<210>	32	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Primer	
<400> tgacc	32 aagag taaggaaatg a	21
-010:		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	

<220>		
<223>	Primer	
<400> tgactg	33 tatt tgttcttggc tg	22
<210>	34	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ttctgg	34 gaac tgtgggctgt a	21
<210>	35	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ccagct	35 tcat ctttacagt	19
<210>	36	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> aatcact	36 cetg tteatteete e	21

<210>	37	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		10
gaaat	aatat gcattgaaa	19
<210>	38	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	38 acagg aagaggaga	19
<210>	39	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ttgaca	39 tcct ttgagatat	19
<210>	40	
<211>	17	
<212>	DNA	
	DIVA	

<220>		
<223>	Primer	
<400> atgggg	40 catt ggggagc	17
<210>	41	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ggctate	41 ctcc tcttcctgt	19
<210>	42	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> tgagcta	42 atgc cagtgtctgt	20
<210>	43	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> caagcgt	43 tagt ataccaaat	19

<210>	44	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	44 ggaa agaggaac	18
aaggca	ggaa agaggaac	10
<210>	45	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
	45 ggaa tagaaagtag c	21
<210>		
<211>	19	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> cagggc	46 aaaa atctaaatg	19
-010		
<210>	47	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	Primer	
	47 agag caggtagaa	19
<210>	48	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
	48 aggg ttgaaata	18
<210>	49	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gccctg	49 tcag tcattttg	18
<210>	50	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	50	10

<210>	51	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	51	17
ttgggg	tgac attatgc	1/
<210>	52	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	52	20
tgagca	gcac tgtaaagatg	20
<210>	53	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	53	0.0
gtggct	taaa gtgcttgggt	20