Overview

- Link Layer
- **Network Layer**
 - Addressing
 - Address Resolution (ARP)
 - Fragmentation
 - Intra-AS Routing
 - **Distance Vector**
 - Link State
 - Multicast Routing
 - IPv6
- Transport Layer
 - UDP
 - DNS

IP Service Model

- Connection-less Communication
 - No state is kept about individual packets
- Order not guaranteed
- Best-effort delivery (unreliable service)
 - Packets may be lost
 - Packets may be delivered out of order
 - Duplicate copies of a packet may be delivered
 - Packets can be delayed for a long time

IP Datagram

 The total length field defines the total length of the datagram including the header.

Fragmentation Example

Internet = Network of Networks

Routing Protocols

- Distance Vector routing
 - Routes propagate through exchange of routing tables
- Link State routing
 - Establish view of topology & run algorithm e.g. Dijkstra's Shortest-Path

Distance Vector Routing

Each router know the networks that are immediately connected to it

Distance Vector Routing

- Learning routes from neighbours
 - e.g. Node A incorporates information from Node B

Distance Vector: Example IV

Net18	1	-
Net15	2	В
Net28	2	В
Net10	2	С
Net7	3	В
	 	
Net11	5	С
Net5	5	С

Δ

- Time require to build complete routing tables for all nodes
 - this is known as convergence

Link State Routing

- View of complete topology
 - through broadcasts

Dijkstra's Algorithm for Router A Routing Table Tentative Nodes

Dijkstra's Algorithm for Router A

Dijkstra's Algorithm for Router A

Example: Dijkstra's Algorithm

Tentative Nodes

G	6	Α
Е	4	В
С	9	В

14

Example: Dijkstra's Algorithm

Border Gateway Protocol (BGP)

- Uses Path Vector Routing
- Advertisements include complete path to destination
- Router that forwards advertisement adds itself to the list
- Path can be checked for loops
- Policies are applied when incorporating new routes

Network	Next Router	Path		
N01	R01	AS14, AS23, AS67		
N02	R05	AS22, AS67, AS05, AS89		
N03	R06	AS67, AS89, AS09, AS34		
N04	R12	AS62, AS02, AS09		

Routing Protocols

- Distance Vector routing
 - Routes propagate through exchange of routing tables
- Link State routing
 - Establish view of topology & run algorithm e.g. Dijkstra's Shortest-Path

Multicast Overview

- 2-Layer Approach:
 - Endpoints and Routers:
 Internet Group Management
 Protocol (IGMP) between
 Join & Leave –
 - Routers:Multicast Routing protocols
- Multicast Addresses:
 224.0.0.0 239.255.255.255
 or 224.0.0.0/4

Internet Group Management Protocol (IGMP)

Defines communication between hosts and router

 Specifies messages for hosts for joining and leaving groups

Specifies query messages for routers

Multicast Routing Protocols

- Intra-AS
 - **MOSPF**
 - **DVMRP**
 - PIM
 - Sparse mode
 - Dense mode

- Inter-AS
 - MBGP + MSDP
 - BGMP + MASC

Summary: Multicast Routing

- Internet Group Management Protocol (IGMP)
 - Join&leave messages from hosts to routers
- Protocol Independent Multicast (PIM)
 - Dense Mode (DM)
 - Start from broadcast and get routers not interested to opt out
 - Sparse Mode (SM)
 - Start from rendezvous point and grow tree from there

CS2031 Telecommunications II

IPv6

Protocols in the OSI Model

Classful Addresses

- Class A (international organisations)
 - 126 networks with 16,277,214 hosts each
- Class B (large companies)
 - 16,384 networks with 65,354 hosts each
- Class C (smaller companies)
 - 2,097,152 networks with 254 hosts each

Inefficiency of Classful Addresses

Classful Addresses:

Class	Networks	Addresses	
А	126	16,777,214	
В	16,382	65,534	
С	2,097,152	254	

- Inefficient use of Hierarchical Address Space
 - Class C with 2 hosts (2/254 = 0.78%) efficient
 - Class B with 256 hosts (256/65534 = 0.39% efficient)

Why IPv6? (Current Business Reasons)

- Demand from particular regions
 - Asia, EU
 - technical, geo-political, and business reasons
 - demand is now
- Demand for particular services
 - cellular wireless (especially 3GPP standards)
 - Internet gaming (e.g., Sony Playstation 2)
 - use is >= 1.5 years away (but testbeds needed now)
- Potential move to IPv6 by Microsoft?
 - IPv6 included in Windows XP, but not enabled by default
 - to be enabled by default in next major release of Windows
 - use is >= 1.5 years away

Why IPv6? (Theoretical Reasons)

- Only compelling reason: more IP addresses!
 - For billions of new users (Japan, China, India,...)
 - For billions of new devices (mobile phones, cars, appliances,...)
 - For always-on access (cable, xDSL, ethernet-to-the-home,...)
 - For applications that are difficult, expensive, or impossible to operate through NATs (IP telephony, peer-to-peer gaming, home servers,...)
 - To phase out NATs to improve the robustness, security, performance, and manageability of the Internet

How Was The Address Size Chosen?

- Proposal: Fixed-length, 64-bit addresses
 - Minimizes growth of per-packet header overhead
 - Efficient for software processing
- Proposal: Variable-length, up to 160 bits
 - Compatible with OSI NSAP addressing plans
 - Big enough for auto-configuration using IEEE 802 addresses
 - Could start with addresses shorter than 64 bits & grow later
- Settled on fixed-length, 128-bit addresses
 - (340,282,366,920,938,463,463,374,607,431,768,211,456 in all!)
 - ~1500 addresses/sqft of the earths surface

IPv6 Address

 Standard representation is set of eight 16-bit values separated by colons

Address Abbreviation

Sequences of zeros can be replaced with series of colons

Address Zones and Scopes

Each oval is a different zone; different colors indicate different scopes

Non-Global Unicast Addresses

 Link-local unicast addresses are meaningful only in a single link zone, and may be re-used on other links

 Site-local unicast addresses are meaningful only in a single site zone, and may be re-used in other sites

64-bit EUI Address

Ethernet MAC address (48 bits)

Extended Unique Identifier (EUI)

64 bits version

Uniqueness of the MAC

Eui-64 address

EUI-64 address is formed by inserting FFFE and OR'ing a bit identifying the uniqueness of the MAC address

IPv6 Autoconfiguration

- Client sends router solicitation (RS) messages
- Router responds with router advertisement (RA)
 This includes prefix and default route
- Client configures its IPv6 address by concatenating prefix received with its EUI-64 address

Multicast Addresses

8 bits	4	4	112 bits
11111111	Flag	Scope	Group ID

- Low-order flag indicates permanent / transient group; three other flags reserved
- Scope field:
 - 1 interface-local (for multicast loopback)
 - 2 link-local (same as unicast link-local)
 - 3 subnet-local
 - 4 admin-local
 - 5 site-local (same as unicast site-local)
 - 8 organization-local
 - B community-local
 - E global (same as unicast global)
 - (all other values reserved)

Reserved Addresses

8 bits	120 bits			
00000000	All Os			a. Unspecified
8 bits	120 bits			L
00000000	000000000000000000000000000000000000000			b. Loopback
8 bits	88 bits		32 bits	
00000000	All Os	All Os IPv4 address		
8 bits	72 bits	16 bits	32 bits	-
00000000	All Os	All 1s	IPv4 address	d. Mapped

Different Types of Addresses

Туре	Binary	Hex
Unspecified	0000	::/128
Loopback	0001	::1/128
Global Unicast Address	0010	2000::/3
Link Local Unicast Address	1111 1110 10	FE80::/10
Unique Local Unicast Address	1111 1100 1111 1101	FC00::/7
Multicast Address	1111 1111	FF00::/8

Many Addresses

- An interface on an IPv6 node can, and usually will, have many addresses
 - Link-Local
 - Site-Local
 - Auto-configured 6to4
 - Solicited-Node Multicast
 - All-Nodes Multicast
 - Global anonymous
 - Global published

Communication Types

- Unicast
 - One-to-one communication
- Multicast
 - One-to-many communication
- Anycast
 - One-to-nearest communication
 - Delivered to any one interface

IPv6 Header

- Fixed length of all fields, header length irrelevant
- Remove Header Checksum other layers are responsible
- No hop-by-hop fragmentation fragment offset irrelevant
 - MTU discovery before sending or minimum MTU=1280
- Extension headers next header type
- Basic Principle: Routers along the way should do minimal processing

Header Comparison

IPv4 Header

Type of Version IHL Total Length Service Fragment Identification Flags Offset Time to Live Header Checksum Protocol Source Address **Destination Address Options Padding** Field's name kept from IPv4 to IPv6 -egend Fields not kept in IPv6

Name and position changed in IPv6

IPv6 Header

New field in IPv6

Extension Headers

Extension Headers

- Hop-by-Hop Options
 - Require processing at each router
- Routing
 - Similar to v4 source routing
- Fragment
- Authentication
- Encapsulating security payload
- Destination options
 - For destination node

Extension header	Description
Hop-by-hop options	Miscellaneous information for routers
Destination options	Additional information for the destination
Routing	Loose list of routers to visit
Fragmentation	Management of datagram fragments
Authentication	Verification of the sender's identity
Encrypted security payload	Information about the encrypted contents

IPv6 Structure

- Every additional header is identified by "next header" field
 - including TCP and UDP header

44

IPv6 Extension Headers

(a) Hop-by-hop options header; destination options header

(b) Fragment header

(c) Generic routing header

(d) Type 0 routing header

Transition from IPv4 to IPv6

IPv4-IPv6 Transition

- Dual-Stack
 - Stack implements
 support for both IPv4
 and IPv6
 - Allow IPv4 and IPv6 to co-exist in the same devices and networks

Tunneling

- Encapsulate IPv6 in IPv4 traffic
- Avoid order dependencies when upgrading hosts, routers, or regions

Header Translation

- Headers are translated into other format at "gateway"
- Allow IPv6-only devices to communicate with IPv4-only devices

Summary: IPv6

- Longer addresses: 128 bit
- Simpler, fixed-sized header
- Types of communication
 - Unicast
 - Multicast
 - Anycast
- **Extension headers**
 - Hop-by-Hop Options, Routing, Fragmentation, Authentication
- Techniques for transition
 - Dual-Stack
 - Tunneling
 - Translation

That's all folks

