Problem

 \subseteq

Let BPL be the collection of languages that are decided by probabilistic log space Turing machines with error probability 1/3 . Prove that BPL

Step-by-step solution

Step 1 of 1

Suppose **BPL**be the collection of languages which are judged by **probabilistic log space** TM (Turing Machine) with an error probability of $\frac{1}{3}$. Now, suppose Lbe a **BPL**language and **the machine** M **is required** as the definition of **BPL**says.

- On input x of length n, suppose the number of configuration of M(.,x) is defined as C. A $C \times C$ matrix is constructed in such a way that $P[c_1,c_2]=\frac{1}{3}$ if c_2 is reachable from c_1 in a single step, and $P[c_1,c_2]=0$ otherwise.
- For all t, $P^t[c_1,c_2]$ is defined as the **probability of approaching configuration** c_2 from configuration c_1 in t number of steps. Here, P' is defined as the matrix obtained by multiplying P with itself t times.
- The accepting probability of M(.,x) can be computed by computing all powers of P till the running time of M(.,x) and decide if $x \in L$.
- The exact calculation can be performed at this time: each probability is an integer multiple of $1/3^{p(n)}$. So, the polynomial number of digits can be used to represent it.

Hence, it can be said that $BPL \subseteq P$

Comment