

BAZE DE DATE

Proiectarea bazelor de date relaționale

Modelul entitate-asociere

Mihaela Elena Breabăn © FII 2015-2016

Modelul entitate-asociere (Entity/Relationship) Objective

- ▶ Concepte E/A de bază
- Modelarea constrângerilor
- Capcane de conectare
- Modelarea E/A înUML
- ▶ De la diagrame E/A (UML) la schema relaţională

Proiectarea unei BD Metodologie

Concepte E/A clasice (Chen 1976)

Entitate

- Diect ce trebuie reprezentat în baza de date
- Mulțime-entitate corespunde unui grup de obiecte de același tip, deci unei mulțimi omogene de entități
- O instanță entitate
 - O instanță unic identificabilă

Asociere (Relationship)

- Conexiune/asociere între două sau mai multe entități (sau chiar a unei entități cu ea însăși)
- Gradul asocierii = nr. de entități participante
 - unare/recursive, binare, ternare...
- Mulțime-asociere corespunde unei mulțimi omogene de asocieri

Atribut

- Proprietate a unei entități
- Pentru asociere
 - Atribute ale entităților referențiate
 - Noi atribute

Diagrame E/A

Reprezentare grafică a conceptelor E/A

Există mai multe standarde grafice, aici varianta Chen

- Un graf
 - Mulțimile-entitate, mulțimile-asociere și atributele sunt noduri
 - Există muchii doar între
 - noduri-entitate şi noduri-asociere
 - noduri-entitate şi noduri-atribute
 - noduri-asociere şi noduri-atribute

Exemplu

▶ O bază de date ce conține informații despre:

- Putem determina notele obținute, cursurile pe care le-a finalizat si creditele obținute de orice student
- ▶ Putem determina mentorul oricărui student

Alte concepte E/A

Rol

Explică semnificația entităților în asocieri

Cheie primară

- Un atribut sau o submulțime minimală de atribute ce identifică unic o instanță-entitate sau o instanță-asociere
- Obligatorie pentru entități, pentru a indica care instanțe participă în asocieri

 Cheie primară

Cheie străină pentru o asociere

 Un atribut sau o mulțime de atribute care constituie cheie primară pentru entitățile implicate

Exemplu

Care sunt cheile străine pentru cele trei mulțimi de asocieri?

Constrângeri de conectivitate/participare

- Modelul E/A permite declararea de constrângeri asupra numărului de instanțe-asociere în care o instanță-entitate participă
- Fie R o mulțime-asociere între n mulțimi-entitate E_i , i=1..n. Baza de date satisface constrângerea (E_i , u,v,R) dacă fiecare instanță-entitate din E_i participă în cel puțin u și cel mult v instanțe-asociere din R.

Exemplu

- ▶ (Studenţi, I, I Mentori)
- (Profesori,0,7,Mentori)
- Fiecare student are un singur profesor drept mentor iar un profesor poate fi mentor pentru cel mult 7studenti

Constrângeri de conectivitate pentru asocieri binare (1)

Constrângeri de conectivitate pentru asocieri binare (2)

b) Asociere mulți la mulți (A,0,m,R) (B,0,n,R), m,n>I

Entitate slabă

 O mulțime-entitate este slabă dacă existența instanțelor sale depinde de existența instanțelor altei mulțimi-entități (dependență existențială)

- Nu are cheie
- Satisface constrângerea de conectivitate (Entitate slaba, I, I, R), deci participă într-o asociere de tip unu la mulți relativ la entitatea tare

Exemplu

Capcane de conectare (Fan traps)

Problema: La ce departament aparține profesorul X?

Soluția: Model restructurat

Capcane de conectare (Chasm traps)

Problema:

Care sunt toate sălile ce aparțin unei facultăți?

Soluția: Noi asocieri

Modelul E/A extins Specializare

- Subgrupuri distinctive de instanțe-entități
 - ▶ Au în plus anumite atribute
 - Participă în asocieri la care nu participă toate instanțele-entități
 - Corespund unei mulțimi de entități specializate care se află întro asociere de tip IS-A cu mulțimea de entități de bază

Constrângeri specifice specializării

 Instanțele specializării moștenesc toate atributele și asocierile mulțimii de entități de bază, inclusiv cheia

O instanță a unei mulțimi-entitate poate aparține la una sau la mai multe specializări

Specializări disjuncte (exclusive)

Specializări cu suprapunere

O instanță a unei mulțimi-entitate trebuie sau nu să aparțină la cel puțin o specializare

Complet

Incomplet (parțial)

{disjunct/suprapus}

Modelare UML

Unified Modeling Language

- Utilizat în ingineria software
- Bazat pe concepte orientate obiect
- Instrument de comunicare cu clientul în termenii utilizați în companie
- Un limbaj foarte mare, utilizăm un set restrâns de elemente (diagrama de clase) pentru a modela o bază de date.

15:34

Mapare E/A – UML

E/R	UML
Mulțime-entitate cu atribute	Clasă
Mulțime-asociere fără atribute proprii	Asociere
Mulțime-asociere cu atribute proprii	Clasă de asociere
Specializare	Subclasă
	Compoziție și agregare

Clase

- ▶ Componente: nume, atribute, metode
- ▶ BD: nume, atribute (cheia primară)

STUDENTI CNP (pk) nume prenume localitate

Asocieri

- Exprimă asocierea dintre obiectele aparținând la 2 clase
- BD: asocierea dintre instanțele a două entități

 Obs: constrângerile de cardinalitate se specifică invers decât în diagramele E/A

Asocieri

Constrângeri de conectivitate/multiplicitate

- Restricții
 - ► (CI,u,v,A)
 - ▶ (C2,x,y,A)

- Fiecare obiect din (instanță a entității) CI este asociat cu cel puțin u și cel mult v obiecte din (instanțe ale entității) C2
- Fiecare obiect din (instanță a entității) C2 este asociat cu cel puțin x și cel mult y obiecte din (instanțe ale entității) C2

xy	uv	Tip asociere
01	01	unu la unu incompletă
11 (1)	II (I)	unu la unu completă (implicită)
01	0* (*)	unu la multi incompletă
•••	•••	•••

15:34

555

Modelați asocierea dintre STUDENTI și UNIVERSITĂȚI. Un student poate studia la cel mult 2 universități si e necesar să studieze la cel putin una. O universitate primește cel mult 10.000 studenti.

Fie asocierea

Care e numărul minim de instanțe pentru entitatea CI și pentru C2?

Asocieri recursive

Asocieri n-are

Clase de asociere

Clase de asociere

Eliminarea claselor de asociere

▶ Atunci când avem multiplicitate 0.. I sau 1.. I

Subclasă (1)

Specializare completă, disjunctă

Subclasă

Specializare completă, cu suprapunere

Compoziție și agregare

- Dbiecte dintr-o clasă aparțin obiectelor din altă clasă
- Tipuri speciale de asociere

- Compoziția: toate obiectele unei clase părți aparțin obiectelor dintr-o clasă compusă; clasei părți îi corespunde de obicei o entitate slabă (multiplicitate I..I; fără cheie primară);
- Agregarea: unele obiecte dintr-o clasă aparțin obiectelor din altă clasă (multiplicitate 0..1)

Mapare E/A, UML -> schema BD relațională

E/A	UML	Schema relațională
Mulțime-entitate cu atribute	Clasă	Relație cu cheie primară
Mulțime-asociere fără atribute proprii	Asociere	Relație cu chei străine
Mulțime-asociere cu atribute proprii	Clasă de asociere	Relație cu chei străine și alte atribute
Specializare	Subclasă	Relație cu cheie primară (cea a superclasei) și atribute particulare/specializate
	Compoziție și agregare	Relație cu cheie străină și atribute particulare

Mulțimi-entitate/clase și asocieri

 $\{CI(\underline{KI}, XI), C2(\underline{K2}, X2), A(KI,K2)\}$

Cheia primară pentru asociere depinde de multiplicitate

xy	uv	Cheia primară pt A	Observații
01 11	*	K2	Nu e necesară relația A {CI(<u>KI,</u> XI), C2 <u>(K2,</u> X2,KI)}
*	01 11	KI	Nu e necesară relația A {C1(<u>K1,</u> X1,K2), C2 <u>(K2,</u> X2)}
*	*	(K1,K2)	

▶ Fie diagrama

Mai este posibilă renuntarea la relația corespunzătoare asocierii?

Asocieri recursive

{CURSURI (<u>cod</u>, denumire, credite) PRE (<u>cod1, cod2</u>)}

{UNIVERSITATI (cod, numeU, oras) RAMURI (codFiliala, codParinte)}

Clase de asociere

{STUDENTI (<u>ID</u>, nume, prenume) UNIVERSITATI (<u>cod</u>, numeU, oras) APLICATII (<u>ID</u>, <u>cod</u>, data, rezultatul)}

Specializare/Subclase

Posibilități

- Relații subclasă ce conțin cheia superclasei și atributele specializate CI(KI,XI), C2(KI,X2), C3(KI,X3)
- Relații subclasă ce conțin atributele superclasei (inclusiv atributul cheie) si atributele specializate; superclasa conține doar tuple nespecializate CI(KI,XI), C2(K2,XI,X2), C3(K2,XI,X3)
- O singură relație ce conține atributele din superclasă și subclasă C(KI,XI,X2,X3)

555

Fie superclasa S cu un număr de subclase. Considerăm că relația de specializare este incompletă și cu suprapunere. Dacă n I, n 2 și n 3 reprezintă numărul total de tuple necesare fiecărei scheme de decodificare din cele 3 date anterior (în ordinea dată), care este relația dintre cele 3 valori?

15:34

- \circ nl<n2<n3
- o n3<n2<n1
- o n3 ≤n2 ≤n1

Compoziție și agregare

{ UNIVERSITATI(cod, numeU, oras)
DEPARTAMENTE(codU, numeD, cladire)
BIROURI (codU, adresa)}
NU acceptă NULL
acceptă NULL

Modelare EA/UML Sumar

PROS

- ▶ Tehnică populară de modelare conceptuală
- Construcții expresive, descriu punctul de vedere personal asupra aplicației
- Permite exprimarea unor tipuri de constrângeri (chei primare, străine, multiplicitate, exclusivitate...)

CONS

- Tehnică subiectivă (entitate sau atribut, entitate sau asociere, subclasare sau nu, compoziție sau nu)
- Nu permite modelarea tuturor dependentelor
- Necesită utilizarea ulterioară a normalizării

Bibliografie

- Hector Garcia-Molina, Jeff Ullman, Jennifer Widom: Database Systems: The Complete Book (2nd edition), Prentice Hall; (June 15, 2008)
- Thomas Connolly, Carolyn Begg: Database Systems: A Practical Approach to Design, Implementation and Management, (5th edition) Addison Wesley, 2009

Unelte:

- https://creately.com (diagrame EA, diagrame UML de clasă)
- http://diagramo.com/ (diagrame EA)
- http://argouml-downloads.tigris.org/nonav/argouml-0.32.2/ArgoUML-0.32.2.zip (diagrame UML de clasă)