Семинар 15

Общая информация:

Пусть $U, V \subseteq \mathbb{R}^n$ – подпространства. Напомню, что

- \bullet $U \cap V$ теоретико-множественное пересечение, тоже является подпространством.
- $U \cup V$ теоретико-множественное объединение, НЕ является подпространством. Потому рассматривают сумму подпространств $U + V = \{u + v \in \mathbb{R}^n \mid u \in U, v \in V\}$. Это наименьшее подпространство, содержащее объединение.
- Если $U \cap V = 0$, то сумма U + V называется прямой и обозначается $U \oplus V$.
- Если $\mathbb{R}^n = U \oplus V$, тогда любой вектор $z \in \mathbb{R}^n$ представляется единственным образом в виде z = u + v, где $u \in U$ и $v \in V$. Тогда вектор u называется проекцией z на U вдоль V. (аналогично для v).
- Напомню, что матрица $A \in M_n(\mathbb{R})$ называется симметрической, если $A^t = A$, кососимметрической, если $A^t = -A$, верхнетреугольной, если под главной диагональю все элементы нули, верхненильтреульной, если на главной диагонали и под ней все элементы нули. E_{ij} матричная единица, то есть матрица состоящая из нулей, а на i-ой строке, j-ом столбце стоит 1.

Задачи:

- 1. Задачник. §35, задача 35.14 (a).
- 2. Задачник. §35, задача 35.18.
- 3. Задачник. §35, задача 35.19.
- 4. Пусть $U, V, W \subseteq \mathbb{R}^n$ подпространства. Верно ли, что $U \cap (V+W) = (U \cap V) + (U \cap W)$?
- 5. Привести пример подпространств $U, V, W \subseteq \mathbb{R}^n$ таких, что $U \cap V = U \cap W = V \cap W = 0$, но при этом U, V и W линейно зависимы.
- 6. Задачник. §35, задача 35.20.
- 7. Задачник. §35, задача 35.21.
- 8. Задачник. §35, задача 35.22.
- 9. Задачник. §35, задача 35.23.
- 10. Пусть $V \subseteq \mathbb{R}^n$. Определим, двойственное подпространство следующим образом:

$$V^{\vee} = \{ z \in \mathbb{R}^n \mid v^t z = 0 \, \forall v \in V \}$$

- (a) Пусть v_1, \ldots, v_k базис V и $A \in M_{kn}(\mathbb{R})$ матрица, где v_i уложены в виде строк, т.е. $A^t = (v_1|\ldots|v_k)$. Показать, что $V^{\vee} = \{z \in \mathbb{R}^n \mid Az = 0\}$.
- (b) Показать, что $\dim V + \dim V^{\vee} = n$.
- (c) Если $U, V \subseteq \mathbb{R}^n$ такие, что $U \subseteq V$, то $U^{\vee} \supset V^{\vee}$.
- (d) $V^{\vee\vee}=V$. И как следствие, для любых $U,V\in\mathbb{R}^n$ справедливо: U=V тогда и только тогда, когда $U^\vee=V^\vee$.
- (e) Для любых $U, V \subseteq \mathbb{R}^n$ верно $(U+V)^{\vee} = U^{\vee} \cap V^{\vee}$.
- (f) Для любых $U, V \subseteq \mathbb{R}^n$ верно $(U \cap V)^{\vee} = U^{\vee} + V^{\vee}$.

 $^{^{1}}$ Еще говорят
 $\mathit{napasnessho}$ V