2a Avaliação - 18/12/12

Sem Consulta - Duração: 2h 30min

Nome:		
	Justifique sucintamente as passagens A interpretação é parte integrante da questão	

(Valor 3.0) - Questão 1: O circuito da Figura 1 deve medir $0 \le \Delta R \le 3\Omega$. Assumindo opamp ideal com alimentação $\pm 5V$, tensão da bateria 12V, $R_A = 30K\Omega$ e $R = 100\Omega$,

- a) (valor 1.25) determine R_F de modo que V_{out} tenha um fundo de escala de 3V.
- b) (valor 0.75) esboce, em detalhe, $V_{out} \times \Delta R$.
- c) (valor 1.0) para o valor calculado de R_F, quantifique o impacto no desempenho do circuito no caso de um descasamento de 10% em um dos valores de R_A.

Figura 1

Questão 2 (Valor 3.0): Considere o circuito linear da Figura 2 e parâmetros listados. Transistores do mesmo tipo (NPN / PNP) possuem mesma densidade de corrente de saturação. Relação entre áreas emissor/base conforme indicado. Admitir inicialmente tensão de Early $V_A \rightarrow \infty$.

Justificando as passagens e/ou respostas e assumindo as hipóteses necessárias,

- a) (valor 0.75) Determinar R_1 de modo que $V_X = -2V$.
- b) (valor 1.0) Para o valor dimensionado de R_1 , qual seria o máximo valor possível de R_2 ?
- c) (valor 1.25) No caso de |VA| = 5V, determine a resistência de pequenos sinais r_A , literalmente e numericamente.

Questão 3 (Valor 4.0): Considere o circuito linear da Figura 3 e parâmetros listados

- a) (valor 0.75) Determinar o ganho de pequenos sinais Vout/Vsig em médias frequencias.
- b) (valor 1.25) Dimensionar capacitores para que se tenha -60dB/dec de rejeição abaixo da frequencia de corte imposta por CC1
- c) (valor 1.5) Estimar as frequencias de corte superior do circuito.
- d) (valor 0.5) Em detalhe, esboçar o gráfico da resposta em frequencia (ganho e fase) do circuito.

