B.A. / B.Sc. SEMESTER 1 EXAMINATION, 2020 FAKIR CHAND COLLEGE CENTRE (551)

INSTRUCTIONS FOR CANDIDATES

READ ALL THE INSTRUCTIONS CAREFULLY BEFORE WRITING ANSWERS

- 1. Total TIME OF EXAMINATION: 1 HOURS (30 Mins. For Each Paper)
- 2. A) Question Paper Comprises Of TWO Separate Questions [CC1A+CC1B] (10 Marks) And [CC2A+CC2B] (10 Marks).
 - B) <u>CANDIDATES MUST HAVE TO ANSWER CC1A, CC2A AND CC(1B+2B) SEPARATELY IN</u>

 THREE SEPARATE PAGES [EACH IN A A4-SIZED PLAIN PAPER).
 - C) ON EACH PAPER CLEARLY MENTION ROLL NO., UNIVERSITY REG. NO. AND PAPER NO.

 ON TOP OF THE PAGE AND THEN BELOW WRITE ONLY THE CHOSEN OPTIONS AGAINST

 CORRESPONDING QUESTION NUMBERS (For Example, If Option 'A' Is Correct For Q.1

 Then Write Q.1 A)].
 - D) Then Candidates Have To Prepare THREE SEPARATE PDF FILES By Scanning Each Of The

 Three Answer Scripts Clearly [Give File Names As 'University Roll No.(Paper No.)' Format

 (Like 203551-XX-XXXX(CC1A), 203551-XX-XXXX(CC2A) And 203551-XX-XXXX(CC1B+CC2B)]
 - E) <u>Finally, Upload The Three Files One By One In The Stipulated Places Of The Google Form</u>

 <u>Before Submission Of The Form.</u>
- 3. Use **ONLY BLACK INK** For Writing Your Answers
- 4. Give AT LEAST 1CM MARGINS In All The Four Sides Of Each Page

2020

B.A. /B.Sc. Semester 1 Examination **University of Calcutta CHEMISTRY – HONOURS**

INTERNAL

Paper: CC (1A+1B)

FAKIR CHAND COLLEGE CENTRE (551)

F.M. 10

CC1A **Choose The Correct Answer:**

1x7 = 7

1. The solubility of Ca₃(PO₄)₂ in water is y mol/L. Its solubility product is:

- b) 36 v^4
- (c) 64 v^5
- (d) $108v^5$

2. A weak acid HX has the dissociation constant 1×10^{-5} M. It forms a salt NaX on reaction with alkali. The degree of hydrolysis of 0.1 M solution of NaX is

- (a) 0.0001%
- (b) 0.01%
- (c) 0.1%
- (d) 0.15%

3. NH₄Cl is acidic, because

- (a) On hydrolysis NH₄Cl gives weak base, NH₄OH and strong acid HCl(b) Nitrogen donates a pair of (c) It is a salt of weak acid and strong base
 - (d) On hydrolysis NH₄Cl gives

4. Which of the following sets of quantum numbers represents the highest energy of an atom?

(a) n = 3, 1 = 0, m = 0, $s = +\frac{1}{2}$

strong base and weak acid

(b)
$$n = 3$$
, $l = 1$, $m = 1$, $s = +\frac{1}{2}$

- (c) $n = 3, 1 = 2, m = 1, s = +\frac{1}{2}$ (d) $n = 4, 1 = 0, m = 0, s = +\frac{1}{2}$

5. The electronic configuration for oxygen is written as 1s² 2s² 2p⁴. Which rule will this configuration be violating

- (a) Aufbau's principle
- (b) Hund's principle (c) Pauli's exclusion principle
- (d) None of them

6. A solution contains Fe²⁺, Fe³⁺ and I⁻ ions. This solution was treated with iodine at 35°C. E° for Fe³⁺/Fe²⁺ is 0.77V and E° for $I_2/2I^- = 0.536V$. The favourable redox reaction is

- (a) I₂ will be reduced to I⁻
- (b) there will be no redox reaction
- (c) I⁻ will be oxidised to I₂
- (d) Fe²⁺ will be oxidised to Fe³⁺

7. $C_2H_6(g) + nO_2 \rightarrow CO_2(g) + H_2O(l)$, the ratio of coefficients of CO_2 and H_2O is

(a) 1:1

- (b) 2:3
- (c) 3:2
- (d) 1:3

CC1B **Choose The Correct Answer:**

1x3=3

8. Identify the aromatic compound-

9. Which is the correct order of dipole moment of the following compounds

(a) $CH_3Cl > CH_2Cl_2 > CHCl_3$

(b)
$$CHCl_3 > CH_2Cl_2 > CH_3Cl$$

(c) $CH_3Cl > CHCl_3 > CH_2Cl_2$

(d)
$$CH_2Cl_2 > CHCl_3 > CH_3Cl$$

10. Identify the most stable carbanion -

(a)
$$HC = \overline{C}$$
 (b) $H_3C - \overline{C} - CH_3$

B.A. /B.Sc. Semester 1 Examination University of Calcutta

CHEMISTRY – HONOURS

INTERNAL

Paper: CC(2A+2B) F.M. 10

FAKIR CHAND COLLEGE CENTRE (551)

CC2A	Choos	se The Correct	Answer:		1x7=7
1.	The compress	ibility factor of	an ideal gas is		
	a) 0	b) ∞	c) 1	d) >1	
2.	The mean translational K.E. per molecule of an ideal gas is				
	a) $3/2 k_BT$	b) 1/2 k _B T	c) k _B T	d) $2/3 k_BT$	
3.	. According to Equipartition principle, the predicted high temperature limiting value of the mola capacity at constant volume for C_2H_2 is				
	a) 5.5 R	b) 6.0 R	c) 9.0 R	d) 9.5 R	
4.	What is the dimension of coefficient of Viscosity, η?				
	a) M L ⁻² T ⁻¹	b) M L ⁻¹ T ⁻¹	c) M ⁻¹ L T ⁻¹	d) M L ⁻¹ T ²	
5.	For an enzyme catalyzed reaction, at large substrate concentration the rate of the reaction with respect to the substrate is a) 1 st order b) 2 nd order c) zero order d) can't be determined precisely				
	a) 1 st order	b) 2 nd order	c) zero order	d) can't be determine	d precisely
6.	For a first order reaction of the type: $A \rightarrow P$ in time 't', which of the following plots will be linear and pass through the origin				
	a) [A] vs t	b) $\ln\left(\frac{[A]_0}{[A]_t}\right)$	vs t	c) [A] vs 1/t	d) $\frac{1}{[A]_t}$ vs t
7.	For enzyme catalysed reaction adopting Michaelis-Menten equation, at high substrate concentration, the rate of the reaction with respect to substrate concentration is				
	a) 0	b) 1	c) 2	d) ½	
CC2B	Choos	se The Correct	Answer:		1x3=3
8.	Total number of stereo isomers for the molecule HOH ₂ C-CH(OH)-CH(OH)-CHO are				
	a) 2	b) 3	c) 4	d) 5	
				СНО	
Q	Absolute conf	figuration of the	e molecule H	OH is	

ĊH₂OH

d) L

10. Optically active molecules are capable to rotate –

b) S

a) R

a) Plane of plane polarised monochromatic lightc) Plane of polarised monochromatic light

c) D

- b) plane polarised monochromatic light
 - d) Plane of plane monochromatic light