

Formula sheet Mathematics: Units 3A and 3B

Number and algebra: Estimation and calculation

Index laws:

 $a_{u} = a_{u+u}$

For a,b>0 and m ,n real,

 $(a_w)_u = a_{wu}$

 $a_{u}p_{u}=(ap)_{u}$

 $u_{-w}D = \frac{u^{D}}{w^{D}} \qquad \qquad \frac{w^{D}}{1} = w^{D}$

For m an integer and n a positive integer $\frac{m}{n} = \frac{m}{n} \sqrt[n]{n} = \frac{m}{n}$

Number and algebra: Calculus

Differentiation

 $\lim_{x \to \infty} \frac{dy}{dx} = (x)^{2} \int_{0}^{\infty} \int_{0}^{\infty} dx \, dx = (x) \int_{0}^{\infty} \int_{0}^{\infty} dx \, dx$

If $f(x) = \frac{\sqrt{b}}{xb}$ neon, f(x) = x and if f(x) = x, then f(x) = x

Product rule:

 $\lim_{n \to \infty} n + \frac{xp}{np} = \frac{xp}{\sqrt{p}} \text{ uath } v = \sqrt{p}$ $(x) \delta(x) + (x) \delta(x) = (x) \eta$ upq ' $(x) \delta(x) = (x) \eta$

Integration

$$1 - \neq u \qquad 0 + \frac{1 + u^{X}}{1 + u^{X}} = xp_{u}x \int$$

Space and measurement: Measurement

In any triangle ABC,

 $\frac{2}{\text{O nis}} = \frac{d}{8 \text{ nis}} = \frac{p}{4 \text{ A nis}}$

 $A \operatorname{nis} da \frac{1}{\zeta} = a \operatorname{sin} A$

A socood -2a + 2b = a

 $\frac{^{2}p - ^{2}o + ^{2}d}{2bc} = A \cos \frac{^{2}}{c}$

Copyright © Curriculum Council 2010

2010/2315[/\5]

Space and measurement: Measurement

Trapezium: Area = $\frac{1}{2}(a+b)$ ×height, where a and b are the lengths of the parallel sides

Volume = Area of base \times height Prism:

Cylinder: Total surface area = $2\pi r h + 2\pi r^2$

Volume = $\pi r^2 \times h$

Pyramid: Volume = $\frac{1}{3}$ × area of base × height

Total surface area = $\pi r s + \pi r^2$, s is the slant height Cone:

Volume = $\frac{1}{3} \times \pi r^2 \times h$

Total surface area = $4\pi r^2$ Sphere:

Volume = $\frac{4}{3}\pi r^3$

Chance and data: Quantify chance

$$P(A) + P(\overline{A}) = 1$$

In a normal distribution approximately:

68% of values lie within one (1) standard deviation of the mean 95% of values lie within two (2) standard deviations of the mean

99.7% of values lie within three (3) standard deviations of the mean.

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.