VERİ MADENCİLİĞİ

(Karar Ağaçları ile Sınıflandırma)

Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

Genel İçerik

- Veri Madenciliğine Giriş
- Veri Madenciliğinin Adımları
- Veri Madenciliği Yöntemleri
 - Sınıflandırma
 - Kümeleme
 - İlişkilendirme/birliktelik kuralları
- Metin madenciliği
- WEB madenciliği
- Veri Madenciliği Uygulamaları

İçerik

- Sınıflandırma yöntemleri
 - Karar ağaçları ile sınıflandırma
 - Entropi Kavramı
 - ID3 Algoritması Entropiye dayalı algoritmalar
 - C4.5 Algoritması
 - Twoing Algoritması
 - Gini Algoritması

 Sınıflandırma ve regresyon ağaçları (CART)
 - k-en yakın komşu algoritması } Bellek tabanlı algoritmalar

Karar Ağaçları ile Sınıflandırma

- Sınıflandırma problemleri için yaygın kullanılan yöntemdir.
- Sınıflandırma doğruluğu diğer öğrenme metotlarına göre çok etkindir.
- Öğrenmiş sınıflandırma modeli ağaç şeklinde gösterilir ve karar ağacı (decision tree) olarak adlandırılır.
- Karar ağaçları akış şemalarına benzeyen yapılardır. Her bir nitelik bir düğüm tarafından temsil edilir. Dallar ve yapraklar ağaç yapısının elemanlarıdır. En son yapı yaprak en üst yapı kök ve bunların arasında kalan yapılar dal olarak isimlendirilir.

Karar Ağaçlarında Dallanma Kriterleri

- Karar ağaçlarında en önemli sorunlardan birisi hangi kökten itibaren bölümlemenin veya dallanmanın hangi kritere göre yapılacağıdır. Aslında her farklı kriter için bir karar ağacı algoritması karşılık gelmektedir.
- Bu algoritmalar şu şekilde gruplandırılabilir.
 - ID3 ve C4.5, entropiye dayalı sınıflandırma algoritmalarıdır.
 - Twoing ve Gini, CART (Classification And Regression Trees) sınıflandırma ve regresyon ağaçlarına dayalı sınıflandırma algoritmalarıdır.
 - k-en yakın komşu algoritması bellek tabanlı sınıflandırma yöntemleri arasında yer almaktadır.

Entropi

(1/3)

- Entropi, rastgele değere sahip bir değişken veya bir sistem için belirsizlik ölçütüdür.
- Enformasyon, rassal bir olayın gerçekleşmesi halinde ortaya çıkan bilgi ölçütüdür.
- Bir süreç için entropi, tüm örnekler tarafından içerilen enformasyonun beklenen değeridir.
- Eşit olasıklı durumlara sahip sistemler yüksek belirsizliğe sahiptirler.
- Shannon, bir sistemdeki durum değişikliğinde, entropideki değişimin enformasyon boyutunu tanımladığını öne sürmüştür.
- Buna göre bir sistemdeki belirsizlik arttıkça, bir durum gerçekleştiğinde elde edilecek enformasyon boyutu da artacaktır.

Entropi

(2/3)

- Shannon bilgiyi bitlerle ifade ettiği için, logaritmayı 2 tabanında kullanmıştır.
- S bir kaynak olsun. Bu kaynağın $\{m_1, m_2, ... m_n\}$ olmak üzere n mesaj üretildiğini varsayalım. Tüm mesajlar birbirinden bağımsız üretilmektedir ve m_i mesajlarının üretilme olasılıkları p_i 'dir. $P = \{p_1, p_2, ... p_n\}$ olasılık dağılımına sahip mesajları üreten S kaynağının entropisi H(S) şu şekildedir.

$$H(S) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

 Bir paranın havaya atılması olayı rassal X sürecini göstersin. Yazı ve tura gelme olasılıkları eşit olduğundan elde edilecek entropi,

$$H(X) = -\sum_{i=1}^{n} p_i \log_2(p_i) = -\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) = 1$$

- Aşağıdaki 8 elemanlı S kümesi verilsin.
- S = {evet, hayır, evet, hayır, hayır, hayır, hayır, hayır, hayır}
- "evet " ve "hayır" için olasılık,

$$p(evet) = \frac{2}{8}, \ p(hayir) = \frac{6}{8}$$

$$H(S) = -\left(\frac{2}{8}\log_2\frac{2}{8} + \frac{6}{8}\log_2\frac{6}{8}\right) = 0.81128$$

- Karar ağaçları yardımıyla sınıflandırma işlemlerini yerine getirmek üzere Quinlan tarafından birçok algoritma geliştirilmiştir. Bunlar arasında ID3 ve C4.5 algoritması yer almaktadır.
- ID3(Iterative Dichotomiser 3) algoritması sadece kategorik verilerle çalışmaktadır.
- Karar ağaçları çok boyutlu veriyi belirlenmiş bir niteliğe göre parçalara böler.
- Her adımda verinin hangi özelliğine göre ne tür işlem yapılacağına karar verilir.
- Oluşturulabilecek tüm ağaçların kombinasyonu çok fazladır.
- Karar ağaçlarının en az düğüm ve yaprak ile oluşturulması için farklı algoritmalar kullanılarak bölme işlemi yapılır.

(2/4)

- Karar Ağacında Entropi
 - Bir eğitim kümesindeki sınıf niteliğinin alacağı değerler kümesi T, her bir sınıf değeri C_i olsun.
 - ullet T sınıf değerini içeren küme için P_T sınıfların olasılık dağılımı,

$$P_T = \left(\frac{|C_1|}{|T|}, \frac{|C_2|}{|T|}, \dots, \frac{|C_k|}{|T|}\right)$$

şeklinde ifade edilir.

T sınıf kümesi için ortalama entropi değeri ise

$$H(T) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

şeklinde ifade edilir.

- Karar ağaçlarında bölümlemeye hangi düğümden başlanacağı çok önemlidir.
- Uygun düğümden başlanmazsa ağacın içerisindeki düğümlerin ve yaprakların sayısı çok fazla olacaktır.
- Bir risk kümesi aşağıdaki gibi tanımlansın. C_1 ="var", C_2 ="yok"
 - RISK = {var, var, var, yok, var, yok, var, var, yok}

$$|C_1| = 6$$
 $|C_2| = 4$ $p_1 = 6/10 = 0.6$ $p_2 = 4/10 = 0.4$

$$P_{RISK} = \left(\frac{6}{10}, \frac{4}{10}\right)$$

$$H(RISK) = -\sum_{i=1}^{n} p_i \log_2(p_i) = -\left(\frac{6}{10}\log_2\frac{6}{10} + \frac{4}{10}\log_2\frac{4}{10}\right) = 0.97$$

ID3 Algoritması

- Dallanma için niteliklerin seçimi
 - Öncelikle sınıf niteliğinin entropisi hesaplanır.

$$H(T) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

Sonra özellik vektörlerinin sınıfa bağımlı entropileri hesaplanır.

$$H(X_k) = -\sum_{i=1}^n \frac{|T_i|}{|X_k|} \log \frac{|T_i|}{|X_k|} \qquad H(X,T) = \sum_{k=1}^n \frac{|X_k|}{|X|} H(X_k)$$

 Son olarak sınıf niteliğinin entropisinden tüm özellik vektörlerinin entropisi çıkartılarak her özellik için kazanç ölçütü hesaplanır.

$$Kazanc(X,T) = H(T) - H(X,T)$$

 En büyük kazanca sahip özellik vektörü o iterasyon için dallanma düğümü olarak seçilir.

Aşağıdaki tablo için karar ağacı oluşturulsun.

MÜŞTERİ	BORÇ	GELİR	STATÜ	RİSK
1	YÜKSEK	YÜKSEK	İŞVEREN	KÖTÜ
2	YÜKSEK	YÜKSEK	ŰCRETLÍ	KÖTÜ
3	YÜKSEK	DÜŞÜK	ÜCRETLİ	KÖTÜ
4	DÜŞÜK	DÜŞÜK	ÜCRETLİ	İYİ
5	DÜŞÜK	DÜŞÜK	İŞVEREN	KÖTÜ
6	DÜŞÜK	YÜKSEK	İŞVEREN	İYİ
7	DÜŞÜK	YÜKSEK	ÜCRETLİ	İYİ
8	DÜŞÜK	DÜŞÜK	ÜCRETLİ	İYİ
9	DÜŞÜK	DÜŞÜK	İŞVEREN	KÖTÜ
10	DÜŞÜK	YÜKSEK	İŞVEREN	İYİ

$$H(T) = H(RISK) = -\sum_{i=1}^{n} p_i \log_2(p_i) = -\left(\frac{5}{10} \log_2 \frac{5}{10} + \frac{5}{10} \log_2 \frac{5}{10}\right) = 1$$

$$H(BORC_{YÜKSEK}) = -\left(\frac{3}{3}\log_2\frac{3}{3} + \frac{0}{3}\log_2\frac{0}{3}\right) = 0$$

$$H(BORC_{DUSUK}) = -\left(\frac{5}{7}\log_2\frac{5}{7} + \frac{2}{7}\log_2\frac{2}{7}\right) = 0,863$$

$$H(BORC_{RISK}) = \frac{3}{10}H(BORC_{YÜKSEK}) + \frac{7}{10}H(BORC_{DUSUK})$$

$$= \frac{3}{10}(0) + \frac{7}{10}(0,863) = 0,64$$

$$Kazan\varsigma(BOR\varsigma,RISK) = 1 - 0.64 = 0.36$$

$$\begin{split} H(GELIR_{YÜKSEK}) &= -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}\right) = 0,971 \\ H(GELIR_{DUSUK}) &= -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0,971 \\ H(GELIR,RISK) &= \frac{5}{10}H(GELIR_{YÜKSEK}) + \frac{5}{10}H(GELIR_{DUSUK}) \\ &= \frac{5}{10}(0,971) + \frac{5}{10}(0,971) = 0,971 \end{split}$$

$$Kazanc(GELIR, RISK) = 1 - 0.971 = 0.029$$

$$\begin{split} H(STATU_{ISVEREN}) &= -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0,971 \\ H(STATU_{DUSUK}) &= -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0,971 \\ H(STATU,RISK) &= \frac{5}{10}H(STATU_{Y\ddot{U}KSEK}) + \frac{5}{10}H(STATU_{DUSUK}) \\ &= \frac{5}{10}(0,971) + \frac{5}{10}(0,971) = 0,971 \end{split}$$

$$Kazanc(STATU, RISK) = 1 - 0.971 = 0.029$$

İlk dallanma için uygun seçim BORÇ niteliğidir.

- Karar ağacından elde edilen kurallar
- 1.EĞER(BORÇ = YÜKSEK) İSE (RİSK = KÖTÜ)
- 2.EĞER(BORÇ = DÜŞÜK) VE (GELİR = YÜKSEK) İSE (RİSK = İYİ)
- 3.EĞER(BORÇ = DÜŞÜK) VE (GELİR = DÜŞÜK) VE (STATÜ = ÜCRETLİ) İSE (RİSK = İYİ)
- 4.EĞER(BORÇ = DÜŞÜK) VE (GELİR = DÜŞÜK) VE (STATÜ = İŞVEREN) İSE(RİSK = KÖTÜ)

Uygulama: Hava problemi örneği

tim kümesi				
HAVA	ISI	NEM	RÜZGAR	OYUN
güneşli	sıcak	yüksek	hafif	Hayır
güneşli	sıcak	yüksek	kuvvetli	Hayır
bulutlu	sıcak	yüksek	hafif	Evet
yağmurlu	ılık	yüksek	hafif	Evet
yağmurlu	soğuk	normal	hafif	Evet
yağmurlu	soğuk	normal	kuvvetli	Hayır
bulutlu	soğuk	normal	kuvvetli	Evet
giineș! i	ılık	yüksek	hafif	Hayır
güneşli	soğuk	normal	hafif	Evet
yağmurlu	ılık	normal	hafif	Evet
güneşli	ılık	normal	kuvvetli	Evet
bulutlu	ılık	yüksek	kuvvetli	Evet
bulutlu	sıcak	normal	hafif	Evet
yağmurlu	ılık	yüksek	kuvvetli	Hayır

Uygulama: Hava problemi

- OYUN = {hayır, hayır, hayır, hayır, hayır, evet, evet, evet, evet, evet, evet, evet, evet}
- C1, sınıfı "hayır", C2, sınıfı ise "evet"
- P1=5/14, P2=9/14

$$H(OYUN) = -\left(\frac{5}{14}\log_2\frac{5}{14} + \frac{9}{14}\log_2\frac{9}{14}\right) = 0.940$$

ISI niteliği için kazanç ölçütü:

$$\begin{aligned} \left| ISI_{soğuk} \right| &= 4 \\ \left| ISI_{nink} \right| &= 6 \\ \left| ISI_{sicak} \right| &= 4 \\ H(X,T) &= \sum_{i=1}^{n} \frac{|T_i|}{|T|} H(T_i) \end{aligned}$$

H(ISI, OYUN)	$= \frac{4}{14} H(ISI_{so\check{g}uk})$	$+\frac{6}{14}H(ISI_{ihk})$	$+\frac{4}{14}H(IS)$	I_{sicak})
	14	14	14	DIO WILL

ISI	OYUN
soğuk	evet
soğuk	hayır
soğuk	evet
soğuk	evet
ılık	evet
ıhk	hayır
ılık	evet
ılık	evet
ılık	evet
ılık	hayır
sıcak	hayır
sıcak	hayır
sıcak	evet
sıcak	evet

$$\begin{split} H\big(ISI_{soguk}\big) &= -\left(\frac{1}{4}\log_2\frac{1}{4} + \frac{3}{4}\log_2\frac{3}{4}\right) = 0.811 \\ H\big(ISI_{sink}\big) &= -\left(\frac{2}{6}\log_2\frac{2}{6} + \frac{4}{6}\log_2\frac{4}{6}\right) = 0.918 \\ H\big(ISI_{sinak}\big) &= -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right) = 1.00 \\ H\big(ISI, OYUN\big) &= \frac{4}{14}(0.811) + \frac{6}{14}(0.918) + \frac{4}{14}(1.00) = 0.911 \end{split}$$

Kazanç(ISI,OYUN)=H(OYUN)-H(ISI,OYUN)

=0.940-0.911=0.029

HAVA niteliği için kazanç ölçütü:

$$\left|HAVA_{g\ddot{u}ne \sharp l\ddot{l}}\right| = 5 \qquad \left|HAVA_{ya \breve{g}murlu}\right| = 5 \qquad \left|HAVA_{bulutlu}\right| = 4$$

$$H(HAVA,OYUN) = \frac{5}{14} H \left(HAVA_{g\, @nesli} \right) + \frac{4}{14} H \left(HAVA_{bulutlu} \right) + \frac{5}{14} H \left(HAVA_{y\, a\, \&murlu} \right)$$

$$H(HAVA_{g\,"unesli"}) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0.971$$

$$H(HAVA_{yağmurlu}) = -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}\right) = 0.971$$

$$H(HAVA_{bulurlu}) = -\left(\frac{4}{4}\log_2\frac{4}{4}\right) = 0$$

HAVA	OYUN	
güneşli	hayr	
güneşli	hayr	
güneşli	hayır	
güneşli	evet	
giineşli	evet	
yağınırlı	evet	
yağmurlu	evet	
yağınırlı	hayr	
yağınırlı	evet	
yağmurlu	hayır	
bulutlu	evet	
bulutlu	evet	
buluthi	evet	
buluthi	evet	

$$H(HAVA,OYUN) = \frac{5}{14} H \left(HAVA_{g\,\bar{u}nesli} \right) + \frac{4}{14} H \left(HAVA_{bulurlu} \right) + \frac{5}{14} H \left(HAVA_{y\,a\,\bar{g}murlu} \right)$$

$$H(HAVA,OYUN) = \frac{5}{14}(0.971) + \frac{4}{14}(0) + \frac{5}{14}(0.971) = 0.694$$

NEM niteliği için kazanç ölçütü:

$$\begin{split} \left| NEM_{y\ddot{u}ksek} \right| &= 7 \\ \left| NEM_{normal} \right| &= 7 \\ H(NEM,OYUN) &= \frac{7}{14} H(NEM_{y\ddot{u}ksek}) + \frac{7}{14} H(NEM_{normal}) \\ H(NEM_{y\ddot{u}ksek}) &= -\left(\frac{4}{7} log_2 \frac{4}{7} + \frac{3}{7} log_2 \frac{3}{7}\right) = 0.985 \\ H(NEM_{normal}) &= -\left(\frac{1}{7} log_2 \frac{1}{7} + \frac{6}{7} log_2 \frac{6}{7}\right) = 0.592 \end{split}$$

NEM	OYUN
yüksek	hayır
yüksek	hayır
yüksek	evet
y üksek	evet
yüksek	hayır
ytiksek	evet
yüksek	hayır
normal	evet
normal	hayır
normal	evet
norma!	evet
normal	evet
normal	evet
normal	eust

$$H(NEM,OYUN) = \frac{7}{14}H(NEM_{y\bar{u}ksek}) + \frac{7}{14}H(NEM_{normal})$$

$$H(NEM,OYUN) = \frac{7}{14}(0.985) + \frac{7}{14}(0.592) = 0.789$$

RÜZGAR niteliği için kazanç ölçütü:

$$\begin{aligned} \left| R \ddot{\mathbf{U}} Z G A R_{hafif} \right| &= 8 \\ \left| R \ddot{\mathbf{U}} Z G A R_{kuvvetli} \right| &= 6 \\ H (R \ddot{\mathbf{U}} Z G A R, O Y U N) &= \frac{8}{14} H \left(R \ddot{\mathbf{U}} Z G A R_{hafif} \right) + \frac{6}{14} H \left(R \ddot{\mathbf{U}} Z G A R_{kuvvetli} \right) \\ H (R \ddot{\mathbf{U}} Z G A R_{hafif}) &= -\left(\frac{2}{5} \log_2 \frac{2}{5} + \frac{6}{5} \log_2 \frac{6}{5} \right) = 0.811 \end{aligned}$$

$H(R\ddot{U}ZGAR_{hafif}) = -\left(\right.$	$\frac{2}{8}\log_2\frac{2}{8} + \frac{3}{8}\log_2\frac{3}{8} = 0.811$
$H(R\ddot{\mathbb{U}}ZGAR_{kuvverli}) = -$	$\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.00$

$$H(R\ddot{\mathbb{U}}ZGAR,OYUN) = \frac{8}{14}H\big(R\ddot{\mathbb{U}}ZGAR_{hafif}\big) + \frac{6}{14}H(R\ddot{\mathbb{U}}ZGAR_{kuvvetli})$$

$$H(R\ddot{U}ZGAR, OYUN) = \frac{8}{14}(0.811) + \frac{6}{14}(1.00) = 0.892$$

Kazanç(RÜZGAR,OYUN)=H(OYUN)-H(,OYUN)

Nitelik	Kazanç
HAVA	0.246
ISI	0.029
NEM	0.151
RÜZGAR	0.048

RÜZGAR

hafif

hafif

hafif

hafif

hafif

hafif kuvvetli

kuvvetli kuvvetli

kuvvetli

kuvvetli kuvvetli OYUN hayır

evet

hayır evet

evet

hayır

evet

evet

hayır

Birinci dallanma sonucu karar ağacı:

HAVA=güneşli için gözlem değerleri				
HAVA	ISI	NEM	RÜZGAR	OYUN
güneşli	sıcak	yüksek	hafif	hayır
güneşli	sıcak	yüksek	kuvvetli	hayır
güneşli	ılık	yüksek	hafif	hayır
güneşli	soğuk	normal	hafif	evet
güneşli	ılık	normal	kuvvetli	evet

Oyun için entropi:

$$H(OYUN) = -\left(\frac{3}{5}log_2\frac{3}{5} + \frac{2}{5}log_2\frac{2}{5}\right) = 0.970$$

ISI niteliği için kazanç ölçütü:

$$\begin{split} |ISI_{soguk}| &= 1 \\ H(ISI_{soguk}) &= -\left(\frac{1}{1}log_2\frac{1}{1}\right) = 0 \\ H(ISI_{sicak}) &= -\left(\frac{2}{2}log_2\frac{2}{2}\right) = 0 \\ H(ISI_{sicak}) &= -\left(\frac{1}{2}log_2\frac{1}{2} + \frac{1}{2}log_2\frac{1}{2}\right) = 1 \end{split}$$

ISI	OYUN
soğuk	evet
sıcak	hayır
sıcak	hayır
ılık	hayır
ılık	evet

$$H(ISI, OYUN) = \frac{1}{5}(0) + \frac{1}{5}(0) + \frac{1}{5}(1) = 0.4$$

Kazanc(ISI, OYUN) = H(OYUN) - H(ISI, OYUN) = 0.970 - 0.4 = 0.570

NEM niteliği için kazanç ölçütü:

$$H(NEM_{y\ddot{u}ksek}) = -\left(\frac{3}{3}log_2\frac{3}{3}\right) = 0$$

$$H(NEM_{normal}) = -\left(\frac{2}{2}\log_2\frac{2}{2}\right) = 0$$

$$H(NEM, OYUN) = \frac{3}{5}(0) + \frac{2}{5}(0) = 0$$

NEM	OYUN
yüksek	hayır
yüksek	hayır
yüksek	hayır
normal	evet
normal	evet

Kazang(NEM, OYUN) = H(OYUN) - H(NEM, OYUN) = 0.970 - 0 = 0.970

RÜZGAR niteliği için kazanç ölçütü:

$$H(R\ddot{U}ZGAR_{hafif}) = -\left(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}\right) = 0.918$$

$$H(R\ddot{\mathbb{U}}ZGAR_{kuvvetli}) = -\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) = 1$$

$$H(R\ddot{U}ZGAR, OYUN) = \frac{3}{5}(0.918) + \frac{2}{5}(1) = 0.951$$

RÜZGAR	OYUN
hafif	hayır
hafif	hayır
hafif	evet
kuvvetli	hayır
kuvvetli	evet

 $Kazang(R\ddot{U}ZGAR,OYUN) = H(OYUN) - H(R\ddot{U}ZGAR,OYUN) = 0.970 - 0.951 = 0.019$

Adım 3: HAVA niteliğinin "bulutlu" değeri için dallanma:

Görüldüğü gibi tüm karar değerleri **"evet"** olduğu için herhangi bir analize gerek yoktur.

HAVA	ISI	NEM	RÜZGAR	OYUN
bulutlu	sıcak	yüksek	hafif	evet
bulutlu	soğuk	normal	kuvvetli	evet
bulutlu	ılık	yüksek	kuvvetli	evet
bulutlu	sıcak	normal	hafif	evet

Adım 3: HAVA niteliğinin "bulutlu" değeri için dallanma:

Adım 3:HAVA niteliğinin "yağmurlu" değeri için dallanma:

OYUN için entropi:

HAVA	ISI	NEM	RÜZGAR	OYUN
yağmurlu	ılık	yüksek	hafif	evet
yağmurlu	soğuk	normal	hafif	evet
yağmurlu	soğuk	normal	kuvvetli	hayır
yağmurlu	ılık	normal	hafif	evet
yağmurlu	ılık	yüksek	kuvvetli	hayır

$$H(OYUN) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0.970$$

Adım 3:HAVA niteliğinin "yağmurlu" değeri için dallanma:

ISI niteliği için kazanç ölçütü:

$$\begin{aligned} \left| ISI_{soğuk} \right| &= 2 & \left| ISI_{nlik} \right| &= 3 \\ H\left(ISI_{soğuk} \right) &= -\left(\frac{1}{2} log_2 \, \frac{1}{2} + \frac{1}{2} log_2 \, \frac{1}{2} \right) &= 1 \end{aligned}$$

	l^2	2	1	1	
$H(ISI_{\rm nlik}) = -$	$(\frac{-\log_2}{3}$	$\frac{-}{3}$ +	$\frac{-log_2}{3}$	$(\frac{1}{3}) = $	0.918

$$H(ISI, OYUN) = \frac{2}{5}(1) + \frac{3}{5}(0.918) = 0.951$$

ISI	OYUN
soğuk	evet
soğuk	hayır
ılık	evet
ılık	evet
Ilık	hayır

Kazang(ISI, OYUN) = H(OYUN) - H(ISI, OYUN) = 0.970 - 0.951 = 0.019

Adım 3:HAVA niteliğinin "yağmurlu" değeri için dallanma:

RÜZGAR niteliği için kazanç ölçütü:

$$|R\ddot{U}ZGAR_{hafif}| = 3 |R\ddot{U}ZGAR_{g\ddot{u}g\ddot{u}\ddot{u}}| = 2$$

RÜZGAR	OYUN
hafif	evet
hafif	evet
hafif	evet
kuvvetli	hayır
kuvvetli	hayır

Oluşturulan Karar Ağacı

C4.5 Algoritması

- C4.5 ile sayısal değerlere sahip nitelikler için karar ağacı oluşturmak için Quinlan tarafından geliştirilmiştir.
- ID3 algoritmasından tek farkı nümerik değerlerin kategorik değerler haline dönüştürülmesidir.
- En büyük bilgi kazancını sağlayacak biçimde bir eşik değer belirlenir.
- Eşik değeri belirlemek için tüm değerler sıralanır ve ikiye bölünür.
- **E**şik değer için $[v_i, v_{i+1}]$ aralığının orta noktası alınabilir.

$$t_i = \frac{v_i + v_{i+1}}{2}$$

 Nitelikteki değerler eşik değere göre iki kategoriye ayrılmış olur.

NİTELİK 1	NİTELİK2	NİTELİK3	SINIF
a	eşit veya küçük	doğru	smift
a	büyük	doğru	smif2
a	biiyiik	yanlış	smif2
a	büyük	yanlış	sınıf2
a	eşit veya ktiçtik	yanlış	sınıf1
b	büyük	doğru	smif1
b	eşit veya ktiçtik	yanlış	sınıf1
b	eşit veya küçük	doğru	sınıf1
b	eşit veya küçük	yanlış	sınıf1
c	eşit veya küçük	doğru	sınıf2
c	eşit veya küçük	doğru	smif2
c	eşit veya küçük	yanlış	sınıfl
c	eşit veya küçük	yanlış	sınıf1
c	büyük	yanlış	sınıf1

Tabloda örneğe ait eğitim kümesi ele alındığında sayısal değerlere sahip olan NİTELİK2 niteliğinin seçilmesi durumunda bilgi kazancının bulunması istenmektedir.

Eşik değerinin belirlenmesi

Nitelik 2 = {65, 70, 75, 80, 85, 90, 95, 96} için eşik değer
 (80+85)/2 = 83 alınmıştır.

doğru doğru yanlış yanlış	sinif2 sinif2 sinif2
yanlış yanlış	sınıf2
yanlış	
	sınıf2
yanlış	sınıfl
) doğru	sınıf1
yanlış	sınıf1
doğru	sınıfl
yanlış	sınıf1
) doğru	sınıf2
) doğru	smif2
) yanlış	sınıf1
yanlış	sınıf1
5 yanlış	sınıf1
	yanlış doğru yanlış doğru doğru doğru doğru doğru yanlış yanlış yanlış

NİTELİK2≤ 83
veya
NİTELİK2>83
testi uygulanarak
düzenleme
yapıldığında
yandaki tablo
elde edilir.

$$H(SINIF) = -\left(\frac{5}{14}\log_2\frac{5}{14} + \frac{9}{14}\log_2\frac{9}{14}\right) = 0,940$$

Entropi değerleri ve Bilgi kazancı hesaplanır

$$H(NITELIK1_a) = -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}\right) = 0,971$$

$$H(NITELIK1_b) = -\left(\frac{4}{4}\log_2\frac{4}{4} + \frac{0}{4}\log_2\frac{0}{4}\right) = 0$$

$$H(NITELIK_{1_c}) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0.971$$

$$H(NITELIK1, SINIF) = \frac{5}{14}H(NITELIK1_a) + \frac{4}{14}H(NITELIK1_b) + \frac{5}{14}H(NITELIK1_c)$$
$$= \frac{5}{14}0.971 + \frac{4}{14}0 + \frac{5}{14}0.971 = 0.694$$

$$Kazan\varsigma(NITELIK1, SINIF) = 0.940 - 0.694 = 0.246$$

$$H(NITELIK2_{ek}) = -\left(\frac{7}{9}\log_2\frac{7}{9} + \frac{2}{9}\log_2\frac{2}{9}\right) = 0,765$$

$$H(NITELIK2_b) = -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}\right) = 0,971$$

$$H(NITELIK2, SINIF) = \frac{9}{14}H(NITELIK2_{ek}) + \frac{5}{14}H(NITELIK1_b)$$
$$= \frac{9}{14}0,765 + \frac{5}{14}0,971 = 0,836$$

Kazanc(NITELIK 2, SINIF) = 0.940 - 0.836 = 0.104

$$H(NITELIK3_d) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1$$

$$H(NITELIK3_g) = -\left(\frac{6}{8}\log_2\frac{6}{8} + \frac{2}{8}\log_2\frac{2}{8}\right) = 0.811$$

$$H(NITELIK3, SINIF) = \frac{6}{14}H(NITELIK3_d) + \frac{8}{14}H(NITELIK3_y)$$
$$= \frac{6}{14}1 + \frac{8}{14}0,811 = 0,892$$

Kazanç(NITELIK 3, SINIF) = 0,940 - 0,892 = 0,048

 $Kazan\varsigma(NITELIK\ 3,SINIF) < Kazan\varsigma(NITELIK\ 2,SINIF) < Kazan\varsigma(NITELIK\ 1,SINIF)$

Oluşturulan karar ağacı

- Karar ağacından elde edilen kurallar
- 1.EĞER(NİTELİK1 = a) VE(NİTELİK2 = Eşit veya Küçük) İSE(SINIF = Sınıf1)
- 2.EĞER(NİTELİK1 = a) VE(NİTELİK2 = Büyük) İSE(SINIF = Sınıf2)
- 3.EĞER(NİTELİK1 = b) İSE(SINIF = Sınıf1)
- 4.EĞER(NİTELİK1 = c) VE(NİTELİK3 = yanlış) İSE(SINIF = Sınıf1)
- 5.EĞER(NİTELİK1 = c) VE(NİTELİK3 = doğru) İSE(SINIF = Sınıf2)