

Student number

Semester 1 Assessment, 2023

School of Mathematics and Statistics

MAST30025 Linear Statistical Models Assignment 1

Submission deadline: Friday March 24, 5pm

This assignment consists of 3 pages (including this page) with 5 questions and 33 total marks

Instructions to Students

Writing

- This assignment is worth 6% of your total mark.
- You may choose to either typeset your assignment in LATEX, or handwrite and scan it to produce an electronic version.
- You may use R for this assignment, but for matrix calculations only (you may not use the lm function). If you do, include your R commands and output.
- Write your answers on A4 paper. Page 1 should only have your student number, the subject code and the subject name. Write on one side of each sheet only. Each question should be on a new page. The question number must be written at the top of each page.

Scanning and Submitting

- Put the pages in question order and all the same way up. Use a scanning app to scan all pages to PDF. Scan directly from above. Crop pages to A4.
- Submit your scanned assignment as a single PDF file and carefully review the submission in Gradescope. Scan again and resubmit if necessary.

Question 1 (4 marks)

Prove that if a symmetric matrix A has eigenvalues which are all either 0 or 1, it is idempotent.

Question 2 (6 marks)

We wish to prove (without using Theorem 2.5) that if A, B, and A + B are $n \times n$ idempotent matrices, then AB = BA = 0.

- (a) Show that AB + BA = 0.
- (b) By Theorem 2.2, there exists a matrix P which diagonalises A:

$$P^T A P = D = \left[\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right],$$

where r = r(A).

Write

$$P^T B P = \Lambda = \left[\begin{array}{cc} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{array} \right],$$

where the block matrices are of the same dimensions as above. Show that $\Lambda_{11}=0,\,\Lambda_{12}=0$ and $\Lambda_{21}=0.$

(c) Show that AB = BA = 0.

Question 3 (4 marks)

Show directly that for any random vector \mathbf{y} and compatible matrix A, we have var $A\mathbf{y} = A(\text{var }\mathbf{y})A^T$.

Question 4 (7 marks)

Let $\mathbf{y} = (y_1, y_2, y_3)^T$ be a 3-dimensional multivariate normal random vector with mean and variance

$$\mu = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}.$$

- (a) Find the eigenvalues and eigenvectors of V.
- (b) Find the distribution of $z_1 = 3y_1 + 2y_2 + y_3$.
- (c) Find the distribution of $z_2 = y_1^2 + \left(\frac{y_2 + y_3}{2}\right)^2 + \left(\frac{y_2 y_3}{2}\right)^2$.

Question 5 (12 marks)

A secondary school teacher wants to know if the marks of students in Specialist Mathematics can be predicted from their marks in General Mathematics. A linear model is assumed, and the following data is obtained from nine students:

ID	General Mathematics	Specialist Mathematics
1	86	85
2	85	97
3	89	76
4	82	79
5	84	76
6	86	99
7	84	49
8	78	72
9	92	83

- (a) Write down the linear model as a matrix equation, writing out the matrices in full.
- (b) Calculate the least squares estimate of the parameters.
- (c) Calculate the sample variance s^2 .
- (d) Calculate the standardised residuals for all students.
- (e) Calculate the Cook's distances for all students.
- (f) Predict (using a point estimate) the mark of Specialist Mathematics for a student whose mark for General Mathematics is 90.