Midterm Study Guide

Zack Traczyk CSE 102 - Vaggos, Winter 2024

Contents

1	Intr	oductory Material Review	2
	1.1	Asymptotic Bounds	2
	1.2	Inductive Proofs	2
2	Solving Recurrence Relations		
	2.1	Master Theorem	2
	2.2	Unpacking Tree / Algebraic Pattern	2
	2.3	Substitution	2
	2.4	Guess and Verify	2
	2.5	Practice Problems	2
		2.5.1 HW3 - Ex.4	2
3	Algorithms		
	3.1	Binary Search	5
	3.2	Sorting	5
			5
	3.3	Merge Sort	5
	3.4	Number of leaves / depth as proof for lower asymptotic bounds	5
	3.5	Quick Select	5
	3.6	Dynamic Programming	5
		3.6.1 Fibonacci	5
		3.6.2 Binomial Coefficients	
		3.6.3 Maximize independent set	5

1 Introductory Material Review

1.1 Asymptotic Bounds

Definition 1 (Big-O). f(n) = O(g(n)) if there exists a positive constant c and an integer n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Definition 2 (Big- Ω). $f(n) = \Omega(g(n))$ if there exists a positive constant c and an integer n_0 such that $c \cdot g(n) \leq f(n)$ for all $n \geq n_0$.

Definition 3 (Big- Θ). $f(n) = \Theta(g(n))$ if there exists positive constants c_1 , c_2 , and an integer n_0 such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

1.2 Inductive Proofs

2 Solving Recurrence Relations

- 2.1 Master Theorem
- 2.2 Unpacking Tree / Algebraic Pattern
- 2.3 Substitution
- 2.4 Guess and Verify
- 2.5 Practice Problems
- 2.5.1 HW3 Ex.4

Like in many previous exercises and homeworks, find tight asymptotic bounds (big-Theta) for T(n) in each of the cases.

Problem 2.1. $T(n) = 2T(n/4) + n^2\sqrt{n}$

Problem 2.2. $T(n) = T(n-1) + \frac{1}{n}$

Problem 2.3. T(n) = 1600T(n/4) + n! (hint: answering this shouldn't require too many, if any, difficult calculations)

Problem 2.4. $T(n) = 6T(n/3) + n^4/\log^{25} n$ (hint: answering this shouldn't require too many, if any, difficult calculations)

Problem 2.6. $T(n) = T(n/2) + n(5 - \cos^2 n \sin^{20} n)$ (hint: answering this shouldn't require too many, if any, difficult calculations, just think the most basic trigonometric inequality)

Problem 2.7. $T(n) = \alpha T(n/4) + n^2$ (hint: your answer should depend on the α parameter)

Problem 2.8. $T(n)=5T(n/5)+\frac{n}{\log_5 n}$ (hint: think of $n=5^m$. Also the recursion $T(n)=T(n-1)+\frac{1}{n}$ above may come in handy.)

3 Algorithms

- 3.1 Binary Search
- 3.2 Sorting
- 3.2.1 Lower Bounds
- 3.3 Merge Sort
- 3.4 Number of leaves / depth as proof for lower asymptotic bounds
- 3.5 Quick Select
- 3.6 Dynamic Programming
- 3.6.1 Fibonacci
- 3.6.2 Binomial Coefficients
- 3.6.3 Maximize independent set