

สัมมนาเสริม **99711** วิทยาการข้อมูล&ข้อมูลขนาดใหญ่

วันที่ 9-10 พฤศจิกายน 2567 เวลา 9.00 - 16.00 น.

วิทยากร

รองศาสตราจารย์ ณัฐพร เห็นเจริญเลิศ

Email: nuttaporn.hen@stou.ac.th

รองศาสตราจารย์ ดร.วฤษาย์ ร่มสายหยุด

Email: walisa.rom@stou.ac.th

ติดต่อสาขาวิชา โทร 02-504-8191-3

หัวข้อการบรรยาย

วันเสาร์ที่ 9 พฤศจิกายน 2567

9.00-12.00 น. บรรยายสรุปเนื้อหา 5 หน่วย

13.00-16.00 น.ฝึกปฏิบัติ การวิเคราะห์เชิงทำนายข้อมูลสำหรับนักวิทยาการข้อมูลโดยใช้ภาษาไพธอน ด้วยเครื่องมือ Colab (กิจกรรมเดี่ยว)

วันอาทิตย์ที่ 10 พฤศจิกายน 2567

9.00-12.00 น. ฝึกปฏิบัติ การวิเคราะห์เชิงทำนายข้อมูลสำหรับนักวิทยาการข้อมูลโดยใช้ภาษาไพธอน ด้วยเครื่องมือ Colab (กิจกรรมกลุ่ม)

13.00-16.00 น.นักศึกษาแต่ละกลุ่มนำเสนอผลงาน กลุ่มละ 30 นาที จากนั้นเปิดโอกาสให้เพื่อนๆ กลุ่มอื่นๆ ได้ซักถามและตอบคำถาม

แนวคิดเกี่ยวกับวิทยาการข้อมูล

- โลกเข้าสู่ยุคของข้อมูลขนาดใหญ่ (big data) ทุกวินาที่มีข้อมูลจำนวนมากเกิดขึ้นและ หลั่งไหลอยู่ในระบบเครือข่ายคอมพิวเตอร์ อินเทอร์เน็ต และการสื่อสาร
- 🗕 ข้อมูลถูกรวบรวม จัดเก็บไว้มาวิเคราะห์เพื่อนำมาใช้ประโยชน์ในรูปแบบต่างๆ
 - 🖿 อธิบายเหตุการณ์ ทำนาย เพื่อสนับสุนการตัดสินใจ วางแผนงาน เพิ่มประสิทธิภาพการดำเนินงาน
- วิทยาการข้อมูล หรือ วิทยาศาสตร์ข้อมูล (data science) หมายถึง การใช้ กระบวนการทางวิทยาศาสตร์ (science) ที่มีระเบียบแบบแผน ตรวจสอบได้ สามารถสกัด องค์ความรู้และความเข้าใจจากข้อมูล เพื่อนำไปใช้ประโยชน์ทั้งในด้านต่าง ๆ

- ⊃ วิทยาการข้อมูลมีบทบาทสำคัญในแทบทุกด้านของการดำเนินธุรกิจ การกำหนดกลยุทธ์ต่าง ๆ
 - 🗕 ช่วยในการวิเคราะห์เพื่อคาดการณ์แนวโน้มของสินค้า แนวโน้มการลงทุน
 - 🖿 ช่วยในการจัดการความเสี่ยงทางการเงิน ตรวจจับธุรกรรมที่มีความเสี่ยงต่อการทุจริต
 - ■ช่วยป้องกันการเสียหายของอุปกรณ์ในโรงงานผลิต
 - ช่วยป้องกันการโจมตีทางไซเบอร์ และภัยคุกคามความปลอดภัยในระบบไอที่

องค์ความรู้และสาขาที่เกี่ยวข้องกับวิทยาการข้อมูล

แผนภาพเวนน์แสดงองค์ความรู้พื้นฐานของวิทยาการข้อมูล อ้างอิง Shelly Palmer (2015)

กระบวนการทางวิทยาการข้อมูล

🗕 เป็นกรอบการดำเนินงานทั่วไปในการวิเคราะห์ แก้ปัญหา ค้นหาองค์ความรู้ ตามโจทย์ที่ต้องการวิเคราะห์

- 1. การกำหนดปัญหา (business problem determination) ทำความเข้าใจและวิเคราะห์ปัญหา เพื่อให้ได้ซึ่งวัตถุประสงค์หรือเป้าหมายของปัญหาที่ชัดเจนพร้อมทั้งระบุขอบเขตของปัญหา
- 2. การเก็บรวบรวมข้อมูล (data acquisition)
 - 🗕 ข้อมูลอาจได้มาจากหลาย ๆ แหล่ง หลากหลายรูปแบบ
 - ต้องอาศัยการวางแผนและการบริหารจัดการที่ดี
 - อาจได้มาจากการสัมภาษณ์ การสำรวจ การสังเกต การทดลอง การทบทวนเอกสาร การสำมะโน

- 3. การจัดเตรียมข้อมูล (data preparation) จัดเตรียมข้อมูลให้พร้อมสำหรับการนำไปวิเคราะห์ ข้อมูลจะถูกตรวจสอบและปรับปรุงคุณภาพ
 - nrsทำความสะอาดข้อมูล (data cleansing)กระบวนการตรวจสอบ แก้ไข หรือลบรายการ ข้อมูลที่ไม่ถูกต้องออกไปจากชุดข้อมูล
 - → การแปลงข้อมูล (data transformation) การเตรียมข้อมูลให้อยู่ในรูปแบบที่พร้อมสำหรับการ ประมวลผล
 - →การเชื่อมโยงข้อมูล (data combining) กรณีข้อมูลมาจากหลายแหล่ง ต้องทำการเชื่อมโยง ข้อมูลจากหลายแหล่งเข้าด้วยกัน

- 4. การสำรวจข้อมูล (exploratory data analysis) กระบวนการตรวจสอบ การกลั่นกรอง สำรวจข้อมูลที่ได้มาให้พร้อมต่อการนำไปประมวลผลให้ได้ข้อมูลที่มีคุณภาพ ทำให้เราเข้าใจพื้นฐาน เกี่ยวกับข้อมูลชุดนั้น และเป็นการตรวจความผิดพลาดของชุดข้อมูล
- 5. การสร้างแบบจำลองข้อมูล (data modeling) เป็นการนำเอาเทคนิคคณิตศาสตร์และข้อมูลที่ จัดเตรียมไว้มาวิเคราะห์ในรูปแบบการพยากรณ์หรือรูปแบบการให้คำแนะนำ โดยส่วนใหญ่จะเป็น การวิเคราะห์ด้วยเทคนิคมากกว่า 1 แบบ เพื่อให้เกิดการประเมินค่าการวิเคราะห์ ความแม่นยำ หรือ ค่าความผิดพลาด ที่ตอบโจทย์ตามวัตถุประสงค์และมีประสิทธิภาพมากที่สุด

- 6. การนำเสนอผลการวิเคราะห์ข้อมูล หรือการสร้างภาพข้อมูล (visualization and communication) ส่วนมากจะถูกนำเสนอโดยใช้ภาพเป็นสื่อกลางเพื่อให้ง่ายต่อการศึกษาและการทำความเข้าใจ เพื่อการสื่อสาร และสร้างการรับรู้ให้กับกลุ่มคนที่เกี่ยวข้อง
 - 🖿 เช่น แผนภูมิ กราฟต่างๆ แสดงการเปรียบเทียบ หรือแนวโน้มของข้อมูล
 - nารใช้โปรแกรม เครื่องมือทางการสร้างภาพข้อมูลโดยเฉพาะ เช่น dashboard
- 7. การนำไปใช้และบำรุงรักษา (deploy and maintenance) เป็นการนำผลการวิเคราะห์ข้อมูลที่ได้รับ การตรวจสอบแบบจำลองให้เหมาะสมกับสถานการณ์ที่อาจเกิดขึ้นจริงในทางปฏิบัติและได้รับการยอมรับ
 - อาจเป็น application ผ่านทางช่องทางต่าง ๆ การ update ข้อมูลให้ทันสมัย

กระบวนการ CRISP-DM

าารวิเคราะห์ข้อมูลด้วยเทคนิคทางการทำเหมืองข้อมูล (Data Mining) ด้วยมาตรฐาน CRISP-DM (the cross industry standard process for data mining)

กระบวนการ CRISP-DM

- 1. business understanding เป็นการทำความเข้าใจในงาน โอกาส และระบุปัญหาที่จะเกิดขึ้นกับ ธุรกิจ การกำหนดขอบเขตของข้อมูลที่จะนำวิเคราะห์
 - าำหนดวัตถุประสงค์ทางธุรกิจ (determine business objectives)
 - ประเมินสถานการณ์ (assess situation)
 - nำหนดเป้าหมายการทำเหมืองข้อมูล (determine data mining goals)
 - → จัดทำแผนโครงการ (produce project plan)

- **2.** data understanding ทำความเข้าใจข้อมูลโดยการรวบรวมข้อมูลที่เกี่ยวข้อง คัดเลือกให้เหลือ เพียงข้อมูลที่มีความถูกต้องและสำคัญต่องานมาทำการวิเคราะห์
- **3. data preparation** ทำการแปลงข้อมูล (raw data) ให้กลายเป็นข้อมูลที่สามารถนำมาช่วยใน การวิเคราะห์ต่อไป
 - →คัดเลือกข้อมูล (select data)
 - ทำความสะอาดข้อมูล (clean data)
 - สร้างข้อมูล (construct data)
 - รวมข้อมูล (integrate data)
 - ■จัดรูปแบบข้อมูล (format data)

- 4. modeling การสร้างแบบจำลองเพื่อวิเคราะห์ข้อมูล
 - บางครั้งอาจมีการย้อนกลับไปปรับการเตรียมข้อมูลเพื่อให้ได้แบบจำลองที่เหมาะสมที่สุด
 - การปรับเทคนิค วิธีการการสร้างแบบจำลองที่แตกต่างกันหลายแบบ
- 5. Evaluation การประเมินผลลัพธ์ที่ได้ก่อนที่จะนำไปใช้จริง ว่าตรงกับวัตถุประสงค์หรือเป้าหมาย ที่ได้ตั้งไว้หรือมีความน่าเชื่อถือมากน้อยเพียงใด
- 6. deployment การนำเอาข้อมูลที่เป็นผลลัพธ์หรือแบบจำลองที่ได้ มาลองปฏิบัติจริงกับธุรกิจใน องค์กร โดยแปลงแนวคิดที่มีให้เกิดเป็นสารสนเทศเพื่อให้ผู้บริหารหรือนักการตลาดเข้าใจ

หลักการของข้อมูลขนาดใหญ่ (Big Data)

ความก้าวหน้าทางเทคโนโลยี ส่งผลให้เกิดปรากฏการณ์ปริมาณข้อมูลขนาดใหญ่ในเวลาเพียงสั้น ๆ ตั้งแต่ปี ค.ศ. 1990 เป็นต้นมา จาก e-commerce โซเชียลมีเดีย จากการติดต่อสื่อสารระหว่างอุปกรณ์ อัตโนมัติต่าง ๆ

ข้อมูลขนาดใหญ่ (big data) หรือบิกดาทา หมายถึง ข้อมูลปริมาณมาก มีโครงสร้างข้อมูลที่ หลากหลายทุกรูปแบบ มีการเกิดขึ้นและเปลี่ยนแปลงไปได้ตลอดเวลา มีคุณภาพข้อมูลและแหล่งที่มาที่ เชื่อถือได้ มีประโยชน์และสามารถนำไปวิเคราะห์ได้หลายรูปแบบ

คุณลักษณะของข้อมูลขนาดใหญ่

ระยะแรกเริ่มต้นจากคุณลักษณะ 3V ประกอบด้วย ปริมาณ (volume) ความหลากหลาย (variety) ความเร็ว (velocity) ต่อมามีการนิยาม V ต่าง ๆ เพิ่มเติมตามมา ได้แก่ คุณภาพของข้อมูล (veracity) คุณค่า (value) ความแปรผัน (variability)

คุณลักษณะของข้อมูลขนาดใหญ่

- 1. ปริมาณข้อมูล (volume) ข้อมูลในยุคปัจจุบันเกิดขึ้นอย่างมากมาย หลากหลายตลอดเวลา
 - 🖿 จาก social media, mobile application, sensor ของเครื่องจักรอิเล็กทรอนิกส์อัตโนมัติต่างๆ
 - ■ปริมาณของข้อมูลขนาดใหญ่ควรมีจำนวนมากพอมากกว่าหน่วยเทราไบต์ขึ้นไป เมื่อนำมาวิเคราะห์แล้วจะได้ข้อมูลเชิงลึกที่ตรงกับความเป็นจริง
- **2. ความหลากหลายของข้อมูล (variety**) ข้อมูลขนาดใหญ่มาจากแหล่งต่างๆ มากมาย
 - 🖚 ข้อมูลที่มีโครงสร้าง ไม่มีโครงสร้าง และกึ่งมีโครงสร้าง

- 3. ความเร็วของข้อมูล (velocity) ข้อมูลที่ถูกสร้างขึ้นอย่างรวดเร็วต่อเนื่องและทันเหตุการณ์
 - ครอบคลุมทั้งความเร็วของการเกิดข้อมูล การจัดเก็บหรือการเคลื่อนย้ายข้อมูล ความเร็วของ การวิเคราะห์ข้อมูล
 - nารประมวลผลแบบ real time เพื่อรองรับการทำงานกับข้อมูลที่เข้ามาอย่างต่อเนื่อง
- 🗕 4 คุณภาพของข้อมูล (veracity) เกี่ยวข้องกับความถูกต้องข้อมูล (accuracy of data) ความ น่าเชื่อถือของแหล่งที่มาของข้อมูล
 - มีกระบวนการในการตรวจสอบและยืนยันความถูกต้องของข้อมูล

- 5. คุณค่าของข้อมูล (value) ข้อมูลที่มีประโยชน์ มีคุณค่าต่อการนำไปใช้งาน มีความสัมพันธ์และ จะต้องเกี่ยวข้องกับวัตถุประสงค์ทางธุรกิจ
- 6. ความแปรผันได้ (variability) ข้อมูลขนาดใหญ่สามารถเปลี่ยนแปลงรูปแบบไปตามการใช้งาน หรือสามารถคิดวิเคราะห์ได้หลากหลายแง่มุม
 - ■จึงต้องมีการออกแบบหรือเข้าใจในสภาพแวดล้อมของการจัดเก็บข้อมูลจึงจะวิเคราะห์ข้อมูลได้ ถูกต้อง

ประโยชน์ของข้อมูลขนาดใหญ่

- 1. การติดตามและตรวจสอบ (monitoring and tracking application)
 - การติดตามความรู้สึกของลูกค้าที่มีต่อสินค้า
 - การติดตามและตรวจสอบทรัพย์สิน
 - การติดตามการใช้ไฟฟ้า
 - การบำรุงรักษาเครื่องจักร
 - การติดตามหรือเฝ้าระวังโรคระบาดหรือโรคติดต่อ

• 2. การวิเคราะห์และเจาะลึกเพื่อเข้าใจผลิตภัณฑ์หรือบริการ

- ความเข้าใจลูกค้าเพื่อให้บริการ
- การวิเคราะห์อาชญากรรม
- ด้านสุขภาพ

3. พัฒนาผลิตภัณฑ์หรือบริการใหม่

- ธุรกิจประกันภัยรถยนต์
- การส่งเสริมการขายของธุรกิจค้าปลีก
- การบริการเสนอแนะ

ประเภทของข้อมูลขนาดใหญ่

- 1. ข้อมูลที่มีโครงสร้าง (structured data) ข้อมูลที่มีการกำหนดรูปแบบและรายละเอียดของข้อมูล ไว้อย่างชัดเจน
 - ■ฐานข้อมูลแบบสัมพันธ์ (relational database)

Cust_no	Cust_name		Cust_address			Cust_credit	:	
1001	ไพศาลสฮาร์ตแวร์		54 หมู่ 7 ถ.พิบูลย์สงคราม จ.นนทบุรี			40,000		
1002	จินตนาพาณิช		115 หมู่ 3 ถ.นครอินทร์ จ. นนทบุรี			30,000		
1003	โอฬารซีแพค		39 หมู่ 1 ถ. ติวานนท์ จ.นนทบุรี		40,000			
1004	รุ่งเรื่องการช่าง		72 หมู่ 5 ถ.แจ้งวัฒนะ จ.นนทบุรี		30,000			
order								
Order_no	_	Date_c		od_no				
Order_no	Cust_no 1001	Date_c				product		
Order_no	_	_	/64 T-10	00		product Prod_no	Prod_name	Prod_priceperu
Order_no 2201 2202	1001	12/03/	/64 T-10	00			Prod_name ท่อน้ำพีวีซี 1 นิ้ว	Prod_priceperu
Order_no 2201 2202	1001	12/03/	/64 T-10 /64 M-0 /64 T-10	000	1 ⊢	Prod_no		Prod_priceperu 45 85
Order_no 2201 2202 2203	1001 1002 1003	12/03/ 14/03/ 15/03/	/64 T-10 /64 M-0 /64 T-10	000		Prod_no T-100	ท่อน้ำพีวีซี 1 นิ้ว	45

- **2. ข้อมูลกึ่งโครงสร้าง** (semi-structured data) ข้อมูลที่ถูกจัดเก็บอย่างมีรูปแบบในระดับหนึ่ง แต่ ไม่ได้กำหนดอย่างชัดเจนนัก
 - ■มีการกำหนดแท็ก (tag) หรือเครื่องหมายพิเศษ เพื่อแบ่งแยกรายละเอียด ใช้ค้นหาข้อมูลได้
 - ■ซีเอสวี่ (Comma Separated Value: CSV)

■เอ๊กซ์เอ็มแอล (eXtensible Markup Languages: XML)

🗕 เจสัน (JavaScript Object Notation: JSON)

- 3. ข้อมูลที่ไม่มีโครงสร้าง (unstructured data) ข้อมูลที่มีโครงสร้างไม่ชัดเจน หรือไม่สามารถ ระบุโครงสร้างข้อมูลได้
 - ■ข้อความ ภาพ เสียง วิดีโอ sensor data

สถาปัตยกรรมของข้อมูลขนาดใหญ่

big data architecture แบ่งเป็น 3 ส่วนใหญ่

ข้อมูลที่เกิดจากการทำธุรกิจหรือองค์กร

(business/organization generated data)

ข้อมูลที่เกิดจากคน

(human generated data)

ข้อมูลที่เกิดจากจากเครื่องจักร หรืออุปกรณ์อัตโนมัติต่าง ๆ

(machine generated data)

- **2. ระบบนิเวศของข้อมูลขนาดใหญ่** (big data ecosystem)
 - ■โครงสร้างพื้นฐาน (Infrastructure)
 - ระบบแฟ้มข้อมูลแบบกระจาย (distributed file system)
 - แฟ้มข้อมูลกระจายแบบฮาดูป

(Hadoop Distributed File System: HDFS)

ส่วนรวบรวมรวมข้อมูลหรือดาตาอินเจสสัน

(Data Ingestion)

ทำหน้าที่รับข้อมูลจากแหล่งข้อมูลต้นทาง เพื่อจัดเก็บที่ระบบแฟ้มข้อมูลแบบกระจายฮาดูป
 (HDFS) เครื่องมือ เช่น Sqoop, Flume

- a่วนประมวลผลข้อมูล (data processing)
 - ากรประมวลผลแบบแบตช์ (batch processing) เช่น Apache Hadoop, MapReduce-M/R
 - าการประมวลผลแบบเรียลไทม์/สตรีมมิง (real-time/streaming processing) เช่น อาปาเช่ คาฟคา (Apache Kafka) อาปาเช สตรอม (Apache Strom)
- aizนจัดการข้อมูล (data organizing) การจัดการข้อมูลให้นำมาใช้งานได้ง่าย มีความเกี่ยวข้อง กับฐานข้อมูลโนเอสคิวแอล (NoSOL Database)

- 3. การนำข้อมูลขนาดใหญ่ไปใช้งาน (data consumption) ค้นหารูปแบบความสัมพันธ์ของข้อมูล และสิ่งที่เชื่อมโยงกัน เช่น แนวโน้มทางการตลาด ความต้องการของลูกค้า
 - ■การวิเคราะห์แบบบรรยายหรือพรรณา (descriptive analytics)
 - าารวิเคราะห์แบบวินิจฉัย (diagnostic anlytics)
 - ■การวิเคราะห์แบบทำนายหรือพยากรณ์ (predictive analytics)
 - ■การวิเคราะห์แบบกำหนดทางเลือกในการตัดสิน (prescriptive analytics)
 - ■เทคนิคในการวิเคราะห์ เช่น สถิติ ,เหมืองข้อมูล, Machine Learning, Text Mining
 - 🖿 ส่วนของการนำเสนอข้อมูล (data presentation) การทำ data visualization

หลักการและวิธีการวิเคราะห์ข้อมูลขนาดใหญ่

- 🗕 รูปแบบของการวิเคราะห์ข้อมูลขนาดใหญ่ แบ่งเป็น 3 ลักษณะ
 - การวิเคราะห์เชิงพรรณา
 - การวิเคราะห์เชิงพยากรณ์
 - การวิเคราะห์เชิงแนะนำ

- 1. การวิเคราะห์เชิงพรรณา (descriptive analytics) วิเคราะห์ข้อมูลเหตุการณ์หรือปัญหาที่ผ่าน มาเพื่อสร้างความเข้าใจภายหลังที่เหตุการณ์นั้นได้เกิดไปแล้ว (hindsight) -สารสนเทศ
- 2. การวิเคราะห์เชิงพยากรณ์ (predictive analytics) นำข้อมูลในอดีตมาวิเคราะห์ เพื่อสร้าง โมเดลทำนายสิ่งที่จะเกิดขึ้นในอนาคต เพื่อการหยั่งรู้อย่างลึกซึ้ง (insight)
- 3. การวิเคราะห์เชิงแนะนำ (prescriptive analytics) รวมความสามารถการวิเคราะห์เชิงพรรณา และเชิงพยากรณ์ไว้และเพิ่มให้คำแนะนำเกี่ยวกับแนวทางและวิธีปฏิบัติที่เหมาะสมที่สุด (optimization)ในแต่ละแนวทาง

เทคนิคในการวิเคราะห์ข้อมูลขนาดใหญ่

- **ทคนิคในเชิงสถิติ** (statistical technique) เป็นวิธีพื้นฐานในการวิเคราะห์
 - สถิติเชิงพรรณนา เช่น ความถี่ ร้อยละ ค่าเฉลี่ย ส่วนเบี่ยงเบนมาตรฐาน
 - ■สถิติเชิงอนุมาน หาค่าความสัมพันธ์ระหว่างตัวแปร เช่น การวิเคราะห์สหสัมพันธ์ การวิเคราะห์ความ แปรปรวน
- **การประมวลผลภาพดิจิทัล** (digital image processing) นำภาพดิจิทัลมาประมวลผลเพื่อการ จัดการรูปแบบสารสนเทศของภาพ
 - การรู้จำใบหน้า ลายนิ้วมือ ชิ้นส่วนอุปกรณ์

- **การวิจัยดำเนินการ** (operation research) สร้างแบบจำลองเชิงคณิตศาสตร์ และขั้นตอนช่วยใน การตัดสินใจ
 - ■สถิติ การหาค่าเหมาะสมที่สุด สโทแคสติก (stochastic) ทฤษฎีเกม ทฤษฎีแถวคอย การจำลอง
- nารประมวลผลภาษาธรรมชาติ (natural language processing) นำภาษามนุษย์มาใช้งาน
 - nารสังเคราะห์เสียง (speech synthesis) การแปลงข้อความให้เป็นเสียง การรู้จำเสียง
- nารทำวิชวลไลเซชัน (visualization) การสร้างภาพ แผนผัง ภาพเคลื่อนไหวแทนข้อความ
 - าการพล็อตแบบกระจาย (scatter plot) การแสดงส่วนร่วมกัน (intersection)
- **พคนิคการเรียนรู้ของเครื่อง** (machine learning technique) สร้างอัลกอริธิมที่สามารถเรียนรู้ ข้อมูล และทำนายข้อมูลได้

การเรียนรู้ของเครื่อง

- อัลกอริธิมแบ่งเป็น 3 ประเภท
- 1. การเรียนรู้แบบมีผู้สอน (supervised learning)
- 2. การเรียนรู้แบบไม่มีผู้สอน (unsupervised learning)
- 3. การเรียนรู้แบบเสริมแรง (reinforcement learning)

- 1. การเรียนรู้แบบมีผู้สอน สร้างโมเดลในการทำนายโดยใช้ทั้งข้อมูลนำเข้า และข้อมูลผลลัพธ์
 - เปรียบได้กับการเรียนรู้แบบมีครูฝึกทำหน้าที่ให้คำเฉลย
 - 🖿 มีข้อมูลฝึกหัด (training data) มีผลเฉลย หรือคลาสที่เป็นคำตอบที่มีการติดเลเบล (label) ไว้
 - ■ทดสอบโมเดล โดยมีข้อมูลทดสอบ (test data) เพื่อวัดประสิทธิภาพของโมเดล
 - ■มักเป็นโมเดลที่ใช้จำแนก (classification model) มีลักษณะข้อมูลแบบไม่ต่อเนื่อง (discrete data) เช่น จำแนกสแปมเมลจากเมลปกติ

- 2. การเรียนรู้แบบไม่มีผู้สอน การจัดกลุ่มและแปลผลข้อมูลโดยอาศัยข้อมูลเข้าเพียงอย่างเดียว
 - ■ไม่มีการระบุผลลัพธ์ที่ต้องการ (target) ไว้ก่อน
 - ■จัดข้อมูลนำเข้าเป็นกลุ่ม (cluster) บนพื้นฐานของความเหมือน และความแตกต่างของรูปแบบข้อมูล
 - 🖿 เช่น การลดมิติข้อมูล (dimensionality reduction) การจัดกลุ่มข้อมูล (clustering)
- 3. การเรียนรู้แบบเสริมแรง การเรียนรู้ต่อเหตุการณ์ที่เกิด โดยผู้เรียน (agent) สังเกตเหตุการณ์ เพื่อตัดสินใจการกระทำตามข้อนโยบาย (policy) ที่ตั้งไว้
 - ■หลังจากได้กระทำ (action) ผู้เรียนจะได้ รางวัล หรือ การลงโทษ
 - ผลตอบแทนจะถูกนำไปปรับปรุงนโยบายที่ดีขึ้น ทำให้เกิดการเรียนรู้
 - ■กระบวนการปรับปรุงทำในลักษณะวนซ้ำ (iteration) จนได้นโยบายที่เหมาะสมที่สุด

ตารางจำแนกประเภทอัลกอริธิมแบบ Supervised และ Unsupervised learning

	Supervised Learning	Unsupervised Learning
Continuous	รีเกรสชัน (Regression) nารวิเคราะห์การถดถอยเชิงเส้น (Linear Regression) nารวิเคราะห์การถดถอยเชิงเส้นแบบพหุ (Multiple Linear Regression) etc.	การจัดกลุ่ม (clustering) และการลดมิติข้อมูล (Dimensionality Reduction) • K-Mean • พีซีเอ (Principle Component Analysis) • เอสวีดี (Singular Value Decomposition) • etc.
Categorical	การจำแนก (Classification) • KNN (K-nearest Neighbors) • นาอีฟเบย์ • เอสวีเอ็ม (Support Vector Machine) • etc.	การวิเคราะห์ความสัมพันธ์ (Association Analysis) อาพิออไร (Apriori) เอฟพี-โกรว์ธ (FP-Growth) etc.

