Package 'caratREG'

August 16, 2021

		8	
Туре	Package		
Title	Regression Analysis Me Trials	ethods for Covariate-Adaptive Randomized	
Versi	on 0.0.1		
Date	2021-08-10		
Auth	or Fuyi Tu [aut, cre], W	ei Ma [aut, ths], Hanzhong Liu [aut, ths]	
Main	tainer Fuyi Tu <fuyi.t< th=""><th>tu@ruc.edu.cn></th><th></th></fuyi.t<>	tu@ruc.edu.cn>	
Desci		ats all of the regression methods considered in Ma et al. (2020) for esti- e treatment effect under covariate-adaptive randomization.	
Licer	nse GPL (>= 3)		
Impo	orts dplyr (>= 1.0.0), Ma	ASS, stats	
Roxy	genNote 7.1.1		
Need	sCompilation no		
R to	tau.adj tau.diff		1 2 3 5
Index	ĸ		7
ca	ratREG-package	Regression Analysis Methods for Covariate-Adaptive Randomized Trials	
			_

Description

This package implements all of the regression methods considered in Ma et al. (2020) for estimating and inferring the treatment effect under covariate-adaptive randomization.

2 tau.adj

Details

Index of help topics:

caratREG-package Regression Analysis Methods for

Covariate-Adaptive Randomized Trials

tau.adj Regression without interaction

tau.diff Difference in means

tau.interact Regression with interaction

Author(s)

Fuyi Tu [aut, cre], Wei Ma [aut, ths], Hanzhong Liu [aut, ths]

Maintainer: Fuyi Tu <fuyi.tu@ruc.edu.cn>

References

Ma, W., Tu, F., & Liu, H. (2020). Regression analysis for covariate-adaptive randomization: A robust and efficient inference perspective. arXiv preprint arXiv:2009.02287.

tau.adj

Regression without interaction

Description

Estimating and inferring the treatment effect based on regression without interaction.

Usage

```
tau.adj(A, B, Y, X = NULL, pi, q, conf.level = 0.95)
```

Arguments

A	a numeric vector of treatment assignments. Its length should be the same as the number of subjects.
В	a numeric vector of stratum labels. Its length should be the same as the number of subjects.
Υ	a numeric vector of observed outcomes. Its length should be the same as the number of subjects.
X	an (optional) numeric design matrix containing additional covariates used in the regression.
pi	a numeric value for the target treatment proportion in each stratum.
q	a numeric value indicating the balance level of covariate-adaptive randomizations. Detailed information can be found in Section 2, Ma et al.(2020).
conf.level	confidence level of the interval. Default is 0.95.

Details

Estimating and inferring the treatment effect based on regression without interaction. It implements the methods as described in Sections 3.2 and 4.2, Ma et al. (2020).

tau.diff 3

Value

A list of class "htest" containing the following components:

statistic the value of the t-statistic.

p.value the p-value for the test

conf.int a confidence interval under chosen level conf.level for the difference in treatment effect between treatment group and control group.

estimate estimated treatment effect difference between treatment group and control group.

method a character string indicating what type of regression was performed.

References

Ma, W., Tu, F., & Liu, H. (2020). Regression analysis for covariate-adaptive randomization: A robust and efficient inference perspective. arXiv preprint arXiv:2009.02287.

Examples

```
n <- 1000
pi <- 0.5
q <- pi*(1-pi)
alphavec <- c(5,8,3,12)
m2e<-function(x){</pre>
6*exp(x)*x*(1-x)
}
mu0 <- alphavec[2]*3.6-alphavec[1]*2-alphavec[4]*integrate(m2e,lower = 0,upper = 1)$value</pre>
mu1 <- 0
X1 \leftarrow rgamma(n,2)
X2 \leftarrow sample(c(1,2,3),n,replace = TRUE, prob = c(0.3,0.6,0.1))
X3 \leftarrow rpois(n,3)
X4 \leftarrow rbeta(n,2,2)
X1_S \leftarrow rep(1,n)
X1_S[which(X1 >= 2.5)] <- 2
profile <- cbind(X1_S, X2)</pre>
strata <- unique(cbind(X1_S,X2))</pre>
B <- numeric(n)</pre>
for(i in 1:nrow(strata)){
B[which(profile[,1] == strata[i,1] & profile[,2] == strata[i,2])] = i
}
X \leftarrow cbind(X1,X3)
A <- sample(c(0,1),n,replace=TRUE,prob=c(1-pi,pi))
Y0 <- mu0 + alphavec[1] * X1 + log(alphavec[3] * X1 * log(X3 + 1) + 1) + alphavec[4] * exp(X4) + rnorm(n, sd = 2)
Y1 \leftarrow mu1+alphavec[2]*X2^2+log(alphavec[3]*X1*log(X3+1)+1)+rnorm(n,sd = 1)
Y <- Y0*(1-A)+Y1*A
tau.adj(A, B, Y, X, pi, q)
```

tau.diff

Difference in means

Description

Estimating and inferring the treatment effect based on difference in means.

4 tau.diff

Usage

```
tau.diff(A, B, Y, X = NULL, pi, q, conf.level = 0.95)
```

Arguments

A	a numeric vector of treatment assignments. Its length should be the same as the number of subjects.
В	a numeric vector of stratum labels. Its length should be the same as the number of subjects.
Υ	a numeric vector of observed outcomes. Its length should be the same as the number of subjects.
Χ	an (optional) numeric design matrix containing additional covariates used in the regression.
pi	a numeric value for the target treatment proportion in each stratum.
q	a numeric value indicating the balance level of covariate-adaptive randomizations. Detailed information can be found in Section 2, Ma et al.(2020).
conf.level	confidence level of the interval. Default is 0.95.

Details

Estimating and inferring the treatment effect based on difference in means. It implements the methods as described in Sections 3.1 and 4.1, Ma et al. (2020).

Value

A list of class "htest" containing the following components:

statistic	the value of the t-statistic.
p.value	the p-value for the test
conf.int	a confidence interval under chosen level conf.level for the difference in treatment effect between treatment group and control group.
estimate	$estimated \ treatment \ effect \ difference \ between \ treatment \ group \ and \ control \ group.$
method	a character string indicating what type of regression was performed.

References

Ma, W., Tu, F., & Liu, H. (2020). Regression analysis for covariate-adaptive randomization: A robust and efficient inference perspective. arXiv preprint arXiv:2009.02287.

Examples

```
n <- 1000
pi <- 0.5
q <- pi*(1-pi)
alphavec <- c(5,8,3,12)
m2e<-function(x){
    6*exp(x)*x*(1-x)
}
mu0 <- alphavec[2]*3.6-alphavec[1]*2-alphavec[4]*integrate(m2e,lower = 0,upper = 1)$value
mu1 <- 0
X1 <- rgamma(n,2)</pre>
```

tau.interact 5

```
X2 \leftarrow sample(c(1,2,3),n,replace = TRUE, prob = c(0.3,0.6,0.1))
X3 <- rpois(n,3)
X4 \leftarrow rbeta(n,2,2)
X1_S \leftarrow rep(1,n)
X1_S[which(X1 \ge 2.5)] < -2
profile <- cbind(X1_S, X2)</pre>
strata <- unique(cbind(X1_S,X2))</pre>
B <- numeric(n)</pre>
for(i in 1:nrow(strata)){
B[which(profile[,1] == strata[i,1] & profile[,2] == strata[i,2])] = i
X \leftarrow cbind(X1,X3)
A <- sample(c(0,1),n,replace=TRUE,prob=c(1-pi,pi))
Y0 \leftarrow \text{mu0+alphavec[1]*X1+log(alphavec[3]*X1*log(X3+1)+1)+alphavec[4]*exp(X4)+rnorm(n,sd=2)}
Y1 \leftarrow mu1+alphavec[2]*X2^2+log(alphavec[3]*X1*log(X3+1)+1)+rnorm(n,sd = 1)
Y \leftarrow Y0*(1-A)+Y1*A
tau.diff(A, B, Y, X, pi, q)
```

tau.interact

Regression with interaction

Description

Estimating and inferring the treatment effect based on regression with interaction.

Usage

```
tau.interact(A, B, Y, X = NULL, pi, q, conf.level = 0.95)
```

Arguments

Α	a numeric vector of treatment assignments. Its length should be the same as the number of subjects.
В	a numeric vector of stratum labels. Its length should be the same as the number of subjects.
Υ	a numeric vector of observed outcomes. Its length should be the same as the number of subjects.
Χ	an (optional) numeric design matrix containing additional covariates used in the regression.
pi	a numeric value for the target treatment proportion in each stratum.
q	a numeric value indicating the balance level of covariate-adaptive randomizations. Detailed information can be found in Section 2, Ma et al.(2020).
conf.level	confidence level of the interval. Default is 0.95.

Details

Estimating and inferring the treatment effect based on regression with interaction. It implements the methods as described in Sections 3.3 and 4.3, Ma et al. (2020).

6 tau.interact

Value

A list of class "htest" containing the following components:

the value of the t-statistic. statistic p.value the p-value for the test conf.int a confidence interval under chosen level conf.level for the difference in treatment effect between treatment group and control group. estimated treatment effect difference between treatment group and control group. estimate

method a character string indicating what type of regression was performed.

References

Ma, W., Tu, F., & Liu, H. (2020). Regression analysis for covariate-adaptive randomization: A robust and efficient inference perspective. arXiv preprint arXiv:2009.02287.

Examples

```
n <- 1000
pi <- 0.5
q <- pi*(1-pi)
alphavec <- c(5,8,3,12)
m2e<-function(x){</pre>
6*exp(x)*x*(1-x)
}
mu0 <- alphavec[2]*3.6-alphavec[1]*2-alphavec[4]*integrate(m2e,lower = 0,upper = 1)$value</pre>
mu1 <- 0
X1 \leftarrow rgamma(n,2)
X2 \leftarrow sample(c(1,2,3),n,replace = TRUE, prob = c(0.3,0.6,0.1))
X3 \leftarrow rpois(n,3)
X4 \leftarrow rbeta(n,2,2)
X1_S \leftarrow rep(1,n)
X1_S[which(X1 >= 2.5)] <- 2
profile <- cbind(X1_S, X2)</pre>
strata <- unique(cbind(X1_S,X2))</pre>
B <- numeric(n)</pre>
for(i in 1:nrow(strata)){
B[which(profile[,1] == strata[i,1] & profile[,2] == strata[i,2])] = i
}
X \leftarrow cbind(X1,X3)
A <- sample(c(0,1),n,replace=TRUE,prob=c(1-pi,pi))
Y0 \leftarrow mu0 + alphavec[1] \times X1 + log(alphavec[3] \times X1 \times log(X3 + 1) + 1) + alphavec[4] \times exp(X4) + rnorm(n, sd = 2)
Y1 \leftarrow mu1+alphavec[2]*X2^2+log(alphavec[3]*X1*log(X3+1)+1)+rnorm(n, sd = 1)
Y <- Y0*(1-A)+Y1*A
tau.diff(A, B, Y, X, pi, q)
```

Index

```
* package
        caratREG-package, 1

caratREG (caratREG-package), 1
caratREG-package, 1

tau.adj, 2
tau.diff, 3
tau.interact, 5
```