Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання пактичної роботи №2 з дисципліни: «Твердотільна електроніки-1»

Розрахунок ширини плавного (лінійно-градієнтного) p-n переходу

Виконавець: Студент 3-го курсу	(підпис)	О.О. Грабар
Превірив:	(підпис)	Л. М. Королевич

Задані величини:

 $N_A'=3.8\cdot 10^{20}$ — Градієнт кон-ції в р-області $N_D'=2.2\cdot 10^{22}$ — Градієнт кон-ції в п-області $n_i=1.45\cdot 10^{10}$ — Концентрація власних носіїв заряду $\varepsilon=11.9$ — Відносна діелектрична проникність $\varepsilon_0=8.85\cdot 10^{-14}$ — Електрична стала при T=300К $\varphi_T=0.025875$ — Температурний потенціал $q=1.6\cdot 10^{-19}$ — Заряд електрона

Спочатку потрібно знайти електричне поле E(x) і потенціал $\varphi(x)$, тому порібно використати (проінтегрувати) рівняння Пуассона.

$$\frac{d^2\varphi}{dx^2} = -\frac{\xi}{\varepsilon\varepsilon_0} = -\frac{dE}{dx} \tag{1}$$

Будемо вважати, що розподіл густини заряду в областях р іп буде пропорційним градієн там концентрації домішок, тоді розподіл густини заряду в областях р і п буде пропорційним градієнтам концентрації домішок:

$$\xi_p = qN_A'x; \ \xi_n = qN_D'x, \tag{2}$$

де N_A', N_D' градієнти концентрації акцепторних і донорних домішок.

Підствивши рівняння (2) в (1) проінтегруємо його та отримаємо наступне:

Спочатку для $E_p(x)$ потім для $E_n(x)$:

$$\frac{d^2\varphi_p}{dx^2} = -\frac{-qN_A'x}{\varepsilon\varepsilon_0} = -\frac{dE_p}{dx} \tag{3}$$

$$E_p(x) = \int \frac{qN_A'x}{\varepsilon\varepsilon_0} = \frac{qN_A'x^2}{2\varepsilon\varepsilon_0} + C_1 \tag{4}$$

$$\frac{d^2\varphi_n}{dx^2} = -\frac{-qN_D'x}{\varepsilon\varepsilon_0} = -\frac{dE_n}{dx} \tag{5}$$

$$E_n(x) = \int \frac{qN_D'x}{\varepsilon\varepsilon_0} = \frac{qN_D'x^2}{2\varepsilon\varepsilon_0} + C_2 \tag{6}$$

Тепер знайдемо C_1 та C_2 за умови що

$$\begin{cases} \frac{d\varphi_p}{dx} = 0, & \text{якщо } \mathbf{x} = -l_p; \\ \frac{d\varphi_n}{dx} = 0, & \text{якщо } \mathbf{x} = l_n. \end{cases}$$

Тоді сталі інтегрування:

$$C_1 = -\frac{qN_A'l_p^2}{2\varepsilon\varepsilon_0} \tag{7}$$

$$C_2 = -\frac{qN_D'l_n^2}{2\varepsilon\varepsilon_0} \tag{8}$$

Після всіх підстановок та перестановок маємо:

$$E_p(x) = \frac{qN_A'}{2\varepsilon\varepsilon_0} \cdot (x^2 - l_p^2) \tag{9}$$

$$E_n(x) = \frac{qN_D'}{2\varepsilon\varepsilon_0} \cdot (x^2 - l_n^2) \tag{10}$$

Тепер треба знайти розподіл потенціалу р та n областях, запишемо загальну формулу для багатовимірного випадку:

$$E = -\left(\frac{d\varphi}{dx}i + \frac{d\varphi}{dy}j + \frac{d\varphi}{dz}k\right) \tag{11}$$

Наш випадок є одномірним тому останні два доданки ми ігноруємо, також оскільки $\mathbf{E} = -grad\varphi$, то

$$E = -grad\varphi = -\frac{d\varphi}{dx} \Longleftrightarrow \varphi = \int E dx \tag{12}$$

Проінтегрувавши рівняння (9) та (10) знайдемо розподіл потенціалу в р та n областях:

$$-\int E_p(x)dx = -\int \frac{qN_A'}{2\varepsilon\varepsilon_0} \cdot (x^2 - l_p^2) \Rightarrow \varphi_p(x) = \frac{qN_A'l_p^2x}{2\varepsilon\varepsilon_0} - \frac{qN_A'x^3}{6\varepsilon\varepsilon_0} + C_3 \qquad (13)$$

$$-\int E_n(x)dx = -\int \frac{qN_D'}{2\varepsilon\varepsilon_0} \cdot (x^2 - l_n^2) \Rightarrow \varphi_n(x) = \frac{qN_D'l_n^2x}{2\varepsilon\varepsilon_0} - \frac{qN_D'x^3}{6\varepsilon\varepsilon_0} + C_4 \qquad (14)$$

За умови що $\varphi_p=\varphi_0$, якщо $\mathbf{x}=-l_p$; та $\varphi_n=0$, якщо $\mathbf{x}=l_n$. можна знайти невідомі константи C_3 та C_4 таким чином:

$$C_3 = \varphi_0 + \frac{qN_A'l_p^3}{3\varepsilon\varepsilon_0} \tag{15}$$

$$C_4 = -\frac{qN_D'l_n^3}{3\varepsilon\varepsilon_0} \tag{16}$$

Підставляєючи отримаємо вираз для розподілу потенціала:

$$\varphi_p(x) = \varphi_0 + \frac{qN_A'}{6\varepsilon\varepsilon_0} \cdot (3l_p^2 x - x^3 + 2l_p^3)$$
(17)

$$\varphi_n(x) = \frac{qN_D'}{6\varepsilon\varepsilon_0} \cdot (3l_n^2 x - x^3 - 2l_n^3) \tag{18}$$

Тепер можна знайти φ_0 :

$$\varphi_0 - \frac{q \cdot (N_A' l_p^3 + N_D' l_n^3)}{3\varepsilon\varepsilon_0} = 0 \tag{19}$$

Прирівняємо вирази для розподілу електричних полів за умови що $E_p(0) = E_n(0)$ і вираз:

$$\frac{l_n^2}{l_n^2} = \frac{N_A^{\prime 2}}{N_D^{\prime 2}} \tag{20}$$

Знаючи (15) можемо знайти вирази для товщини області просторового заряду в р та n-області:

$$N_A' l_p^3 + N_D' l_n^3 = \frac{3\varepsilon\varepsilon_0\varphi_0}{q} \tag{21}$$

$$N_D' \left(\frac{N_A'^2}{N_D'^2} \cdot l_n^2 + l_p^2 \right) = \frac{3\varepsilon\varepsilon_0\varphi_0}{q} \tag{22}$$

$$N_D' \left(\frac{l_n^2}{l_p^2} \cdot l_n^2 + l_p^2 \right) = \frac{3\varepsilon\varepsilon_0\varphi_0}{q} \tag{23}$$

$$l_n^2(l_p + l_p) = \frac{3\varepsilon\varepsilon_0\varphi_0}{l_0qN_D'} \tag{24}$$

Знаючи що $l_0 = l_p + l_n$ можемо запишемо вираз для l_p та виконавши аналогічні перетворбвання для l_n :

$$l_n = \sqrt{\frac{3\varepsilon\varepsilon_0\varphi_0}{l_0qN_D'}} \tag{25}$$

$$l_p = \sqrt{\frac{3\varepsilon\varepsilon_0\varphi_0}{l_0qN_A'}}\tag{26}$$

Підставивши е (19) отримані l_p та l_n отримаємо наступне:

$$\left(\frac{3\varepsilon\varepsilon_0\varphi_0}{l_0q}\right)^{\frac{2}{3}} \left(\frac{N_A}{(N_A)^{\frac{2}{3}}} + \frac{N_D}{(N_D)^{\frac{2}{3}}}\right) = \frac{3\varepsilon\varepsilon_0\varphi_0}{q} \qquad (27)$$

$$\frac{\sqrt{N_A'} + \sqrt{N_D'}}{\sqrt{N_A' \cdot N_D'}} \cdot \sqrt{\frac{3\varepsilon\varepsilon_0\varphi_0}{q}} = l_0^{\frac{3}{2}}$$
(28)

$$l_0^{\frac{3}{2}} = \frac{(\sqrt{N_A'} + \sqrt{N_D'})^2}{N_A' \cdot N_D'} \cdot \frac{3\varepsilon\varepsilon_0\varphi_0}{q}$$
 (29)

$$l_0 = \sqrt[3]{\frac{N_A' + 2\sqrt{N_A' \cdot N_D'} + N_D'}{N_A' \cdot N_D'} \cdot \frac{3\varepsilon\varepsilon_0\varphi_0}{q}}$$
(30)

$$l_0 = \sqrt[3]{\frac{3\varepsilon\varepsilon_0\varphi_0}{q}\left(\frac{1}{N_A'} + \frac{2}{\sqrt{N_A'N_D'}} + \frac{1}{N_D'}\right)}$$
(31)

Тепер треба вивести формулу самої висоти потенціального бар'єра p-n переходу, тобто φ_0

, яку можна знайти з знаючи формулу для ступінчатого р-п переходу:

$$\varphi_0 = \varphi_T \cdot ln \frac{N_A \cdot N_D}{n_i^2},\tag{32}$$

де φ_T – температурний коефіцієнт, $N_A N_D$ – концентрація акцепторних і донорних домішок відповідно та n_i^2 – квадрат власної концентрації носіїв заряду.

Запишемо зв'язок між самою концентрацією та градієнтом концентрації:

$$N_A = N_A' \cdot l_p \tag{33}$$

$$N_D = N_D' \cdot l_n \tag{34}$$

Підставляючи це в (30) отримаємо:

$$\varphi_0 = \varphi_T \cdot ln \frac{N_A' \cdot l_p \cdot N_D' \cdot l_n}{n_i^2} \tag{35}$$

Тепер маємо:

$$l_0 = \sqrt{\frac{3\varepsilon\varepsilon_0\varphi_T ln\frac{N_A'l_p \cdot N_D'l_n}{n_i^2}}{q} \left(\frac{1}{N_A'} + \frac{2}{\sqrt{N_A'N_D'}} + \frac{1}{N_D'}\right)}$$
(36)

З виразу (18) знайдемо l_n :

$$l_n^2 = l_p^2 \cdot \frac{N_A'}{N_D'} \tag{37}$$

$$l_n = l_p \cdot \sqrt{\frac{N_A'}{N_D'}} \tag{38}$$

Знаючи що $l_0 = l_n + l_p$ підставляємо (38) в (39)

$$l_p + l_p \cdot \sqrt{\frac{N_A'}{N_D'}} = \sqrt{\frac{3 \cdot \varepsilon \cdot \varepsilon_0 \cdot \varphi_T \cdot ln \frac{N_A' \cdot l_p^2 \cdot N_D' \cdot \sqrt{\frac{N_A'}{N_D'}}}{q}}{q}} \left(\frac{1}{N_A'} + \frac{2}{\sqrt{N_A'N_D'}} + \frac{1}{N_D'}\right)}$$
(39)

Тепер можемо підставити задані значення розв'язати нелінійне рівняння чісельним методом і в результаті отримаємо:

$$1.2 \cdot 10^{12} l_p^3 = 2 \cdot ln(l_p) + 71.99 \tag{40}$$

Таким чином наближено наближено отримали l_p :

$$l_p = 0.0001 \tag{41}$$

Тому

$$l_n = 0.001 \cdot \sqrt{\frac{N_A'}{N_D'}} = 1.31425748 \cdot 10^{-5} \tag{42}$$

$$l_0 = l_n + l_p = 0.00011314 \text{ cm}$$