MACHINING TIME

- TITLE: Estimation and Measurement of Machining time in facing in a CNC twining centre using constant spindle speed and constant cutting velocity.
- OBJECTIVES: > To estimate and measure the machining time in facing of a disc in a CNC twining centre using is constant spindle speed and (ii) constant cutting velocity
 - De determine the increase in productivity by employing constant citting velocity over constant spindle speed

THEORY:

Derivations of expressions:

A CONSTANT SPINDLE SPEED

when performing facing coperation at constant spindle speed

tm = Distance travelled by tool (mm)

Feed rate (mm/min)

= approach + do-di + overtravel

If we neglect approach and overtravel,

$$tm = \frac{do - di}{2SN}$$

where do - outer diameter (mm)

di → Inner diameter (mm)

S -> Feed (mm/sun)

N -> RPM sprodle (sev/min)

tm - machining time (min)

B. CONSTANT CUTTING VELOCITY

tm = Total material vernoved material oremoval rate

$$=\frac{\pi}{4}\left(d_{0}^{2}-d_{1}^{2}\right)t$$

$$=\frac{\pi}{4}\left(d_{0$$

OBS ERVATIONS

Outer diameter of the workpiece (do) = 84.7 mm

Inner diameter of the workpiece (di) = 32.95 mm

work Material: C60 steel

Tool Material: T; N Coated WC Insuct

Tool yeometry: VBMT 16,04,08

Depth of cut (t); 0.5 mm

Cutting Velocity (Vc): 100 m (constant Vc Case, Initial Ve for constant upindle uped case)

#	SPINDLE SPEED N RPM	FEED S mm/rev	ESTIMATED TIME tm (min)	MEASURED TIME tm (min)
1a	376	0.05	1min 22.575	1min 23.16s
2 a	376	0.10	41.285	44.005
3a	376	0.15	27.52s	27.30s
1b	376 @ t=0	0-05	57.35s	58.70s
2b	376 @ t=0	0-10	28.68 s	27.375
3b	376@t=0	0.15	19.115	19.11 s

CALCULATIONS

TABLE: INCREASE IN PRODUCTIVITY (%)

#	FEED S mm/rev	ESTIMATED	MEASURED
1a 1b	0.05	30-54%	29.41%
2a 2b	0-10	30.52%	37.79%
3a 3b	0.15	30-55%	30 %

@ MACHINING TIME FOR TAPER TURNING @ CONSTANT VELOCITY

: Volume of the material sumoved

$$= \frac{\pi h}{3} (R^2 + Rr + r^2) - \frac{\pi h}{3} ((R-t)^2 + (R-t)(r-t) + (r-t^2)$$

=
$$\frac{\pi h}{3}(3Rt + 3rt - 3t^2)$$

= $\pi ht(R+r-t)$

Machining time, tm = Volume of Moderial removed

Moterial removal rate

$$= \frac{\text{Tiht}(R+r-t)}{\text{StVe}}$$

=)
$$t_m = \frac{\pi h (R+r-t)}{s Vc}$$

where R- outer Radius r- Inno Rodius | 5 - feed