11주차 탐색트리

이진탐색

이진탐색(Binary Search)

<u>정렬된 데이터</u>의 중간에 위치한 항목을 기준으로 데이터를 두 부분으로 나누어 가며 특정 항목을 찾는 탐색 방법

```
binary_search(left, right, t):
[1] if left > right: return None # 탐색 실패 (즉, t가 리스트에 없음)
[2] mid = (left + right) // 2 # 중간 항목의 인덱스 계산
[3] if a[mid] == t: return mid # 탐색 성공
[4] if a[mid] > t: binary_search(left, mid-1, t) # 앞부분 탐색
[5] else: binary_search(mid+1, right, t) # 뒷부분 탐색
```

간단한 탐색 알고리즘

- 순차 탐색(sequential search)
 - 정렬되지 않은 배열을 처음부터 마지막까지 하나씩 검사
 - 가장 간단하고 직접적인 탐색 방법
 - 평균 비교 횟수: (n + 1)/2번 비교 (최악의 경우: n번)

순차 탐색 알고리즘


```
def sequential_search(A, key, low, high): # 순차탐색
for i in range(low, high+1): # i:low, low+1, ... high
if A[i] == key: # 탐색 성공하면
return i # 인덱스 반환
return None # 탐색에 실패하면 None 반환
```

• 시간 복잡도: *O*(*n*)

이진 탐색(binary search)

- 정렬된 배열의 탐색에 적합
 - 배열의 중앙에 있는 값을 조사하여 찾고자 하는 항목이 왼쪽 또는 오른쪽 부분 배열에 있는지를 알아내어 탐색의 범위를 반으로 줄여가며 탐색 진행
 - 예) 사전에서 단어 찾기
- (예) 10억 명중에서 특정한 이름 탐색
 - 이진탐색 : 단지 30번의 비교 필요
 - 순차 탐색 : 평균 5억 번의 비교 필요

이진 탐색

리스트 A에서 34 탐색

이진 탐색 알고리즘


```
def binary_search(A, key, low, high):

if (low <= high): # 항목들이 남아 있으면(종료 조건)

middle = (low + high) // 2 # 정수 나눗셈 //에 주의할 것.

if key == A[middle]: # 탐색 성공

return middle

elif (key<A[middle]): # 왼쪽 부분리스트 탐색

return binary_search(A, key, low, middle - 1)

else: # 오른쪽 부분리스트 탐색

return binary_search(A, key, middle + 1, high)

return None # 탐색 실패
```

- 시간 복잡도: *O*(*logn*)
- 반복으로 구현 가능

보간 탐색(interpolation search)

- 탐색키가 존재 할 위치를 예측하여 탐색
 - 예) 사전이나 전화번호부를 탐색할 때
 - 'ㅎ'으로 시작하는 단어는 사전의 뒷부분에서 찾음
 - '¬'으로 시작하는 단어는 앞부분에서 찾음
- 리스트를 불균등하게 분할하여 탐색
 - 탐색 값과 위치는 비례한다는 가정

탐색위치 =
$$low + (high - low) \cdot \frac{k - A[low]}{A[high] - A[low]}$$

middle = int(low + (high-low) * ((key - A[low]) / (A[high] - a[low])))

보간탐색

• 탐색 위치 계산 예

탐색 위치 =
$$\frac{(k-list[low])}{list[high]-list[low]}*(high-low)+low$$

= $\frac{(55-3)}{(91-3)}*(9-0)+0$
= 5.31
 ≈ 5

탐색 위치 =
$$(55-3)/(91-3)*(9-0) + 0 = 5.31 = 5$$

0	1	2	3	4	5	6	7	8	9
3	9	15	22	31	55	67	88	89	91

이진탐색으로 66을 찾는 과정

수행시간

- T(N) = 입력 크기 N인 정렬된 리스트에서 이진탐색을 하는데 수행되는 키 비교 횟수
- T(N)은 1번의 비교 후에 리스트의 1/2, 즉, 앞부분이나 뒷부분을 재귀호출하므로

$$T(N) = T(N/2) + 1$$

 $T(1) = 1$

•
$$T(N) = T(N/2) + 1$$

= $[T((N/2)/2) + 1] + 1$ = $T(N/2^2) + 2$
= $[T((N/2)/2^2) + 1] + 2$ = $T(N/2^3) + 3$
= \cdots = $T(N/2^k) + k$
= $T(1) + k$, if $N = 2^k$, $k = log_2 N$
= $1 + log_2 N$ = $O(log N)$

이진탐색트리

• 이진탐색트리(Binary Search Tree):

이진탐색(Binary Search)의 개념을 트리 형태의 구조에 접목한 자료구조

 트리 형태의 자료구조에서 이진탐색을 수행하기 위해 1차원 리스트를 단순연결리스트로 만든 후, 점차 이진트리 형태로 변환하는 과정

• 이진탐색트리의 특징 중의 하나는 트리를 중위순회(Inorder Traversal)하면 정렬되어 출력

탐색트리

- 탐색을 위한 트리 기반의 자료구조이다.
- 이진탐색트리
 - 효율적인 탐색을 위한 이진트리 기반의 자료구조

• 삽입, 삭제, 탐색: *O*(*logn*)

Aa) 이진탐색트리는 이진트리로서 각 노드가 다음과 같은 조건을 만족한다.

- 각 노드 n의 키가 n의 왼쪽 서브트리에 있는 키들보다 (같거나) 크고, n의 오른쪽 서브트리에 있는 키들보다 작다. [이진탐색트리 조건]

어느 트리가 이진탐색트리인가?

이진탐색트리를 위한 BST 클래스

```
01 class Node:
       def __init__(self, key, value, left=None, right=None):
02
           self.key = key
03
           self.value = value
04
                                노트 생성자
           self.left = left
05
                                키, 항목과 왼쪽, 오른쪽자식 레퍼런스
           self.right = right
06
07
   class BST:
89
       def __init__(self): # 트리 생성자
                                             트리 루트
09
           self.root = None
10
11
       def get(self, key): # 탐색 연산
12
13
       def put(self, key, value): # 삽입 연산
14
                                               탐색, 삽입, 삭제 연산
15
                                               min()과 delete_min()은
       def min(self): # 최솟값 가진 노드 찾기
16
                                               삭제 연산에서 사용됨
17
      def deletemin(self): # 최솟값 삭제
18
19
      def delete(self, key): # 삭제 연산
20
                                             [프로그램 5-1] bst.pv
```

탐색 연산

- 탐색하고자 하는 키가 k라면, 루트의 키와 k를 비교하는 것으로 탐색을 시작
- 루트의 키가 k 보다 크면, 루트의 왼쪽 서브트리에서 k를 찾고, 작으면 루트의 오른쪽 서브트리에서 k를 찾으며, 같으면 탐색 성공
- 왼쪽이나 오른쪽 서브트리에서 k를 탐색은 루트에서의 탐색과 동일

```
def get(self, k): # 탐색 연산
   return self.get_item(self.root, k)
                           탐색 실패
def get_item(self, n, k):
   if n == None: @
                                    k가 노드의 key보다 작으면
        return None
                                    왼쪽 서브트리 탐색
   if n.key > k: (
       return self.get_item(n.left, k)
                                         k가 노드의 key보다 크면
   elif n.key < k:
                                         오른쪽 서브트리 탐색
       return self.get item(n.right, k)
    else:
        return n.value
                           탐색 성공
```

[예제] 40을 탐색하는 과정

삽입 연산

- 삽입은 탐색 연산과 거의 동일
- 탐색 중 None을 만나면 새 노드를 생성하여 부모노드와 연결
- 단, 이미 트리에 존재하는 키를 삽입한 경우, value만 갱신

```
def put(self, key, value): # 삽입 연산
       self.root = self.put_item(self.root, key, value)
02
03
                                            루트와 put item()이
   def put_item(self, n, key, value):
                                            리턴하는 노드를 재 연결
04
05
       if n == None:
                                      새 노드 생성
           return Node(key, value)
96
                                                 n의 왼쪽자식과 put_item()이
07
                                                 리턴하는 노드를 재 연결
       if n.key > key:
80
           n.left = self.put_item(n.left, key, value)
09
       elif n.key < key:
10
           n.right = self.put_item(n.right, key, value)
       else:
11
                                                 n의 오른쪽자식과 put_item()이
           n.vlaue = value
                                                 리턴하는 노드를 재 연결
12
                                key가 이미 있으므로
       return n
13
                                value만 갱신
                      부모노드와 연결하기 위해
                      노드 n을 리턴
```

[예제] 35를 삽입하는 과정

<35를 삽입할 장소를 탐색하는 과정>

root 새 노드 삽입 후 루트로 02 self.root = self.put_item(self.root, key, value) 거슬러 올라가며 재 value apple 50 key 연결하는 과정 put(35, 'pear') left right \Rightarrow 08 n.left = self.put_item(n.left, key, value) 30 80 value mango value lemon key key left right left right 10 n.right = self.put_item(n.right, key, value) 90 value 10 value cherry 40 value orange lime key key key left right left right left right 08 n.left = self.put_item(n.left, key, value) value pear Node(35, 'pear') left right

최솟값 찾기

- 최솟값은 루트노드로부터 왼쪽 자식을 따라 내려가며, None을 만났을 때 None의 부모가 가진 value
- minimum() 메소드는 delete()에서 사용

```
def min(self): # 최솟값 가진 노드 찾기
01
02
        if self.root == None:
03
            return None
        return self.minimum(self.root)
04
                                         왼쪽자식이 None인
05
                                         노드(최솟값을 가진)
                                         를리턴
06
    def minimum(self, n):
07
        if n.left == None:
                                         왼쪽자식으로 재귀호출
80
            return n
                                         하며 최솟값 가진 노드
        return self.minimum(n.left)
09
```


[그림 5-9] min()의 수행 과정

최솟값 삭제 연산

- 최솟값을 가진 노드를 삭제하는 것은 최솟값을 가진 노드 n을 찾아낸 뒤, n의 부모 p와 n의 오른쪽 자식 c를 연결
- 이 때 c 가 None이더라도 자식으로 연결
- delete_min()은 임의의 value를 가진 노드를 삭제하는 delete()에서사용

```
def delete_min(self): # 최솟값 삭제
01
       if self.root == None:
02
           print('트리가 비어 있음')
03
       self.root = self.del_min(self.root)
04
05
                                            루트와 del min()이리턴
   def del_min(self, n):
96
                                            하는 노드를 재 연결
       if n.left == None:
07
                                      최솟값 가진 노드의 오른쪽
           return n.right
98
                                      자식을 리턴
       n.left = self.del_min(n.left)
09
10
       return n
                                 n의 왼쪽자식과 del_min()이
                                 리턴하는 노드를 재 연결
```


[그림 5-10] delete_min()의 수행 과정

삭제 연산

- 우선 삭제하고자 하는 노드를 찾은 후 이진탐색트리 조건을 만족하도록 삭제된 노드의 부모와 자식(들)을 연결해 주어야
- 삭제되는 노드가 자식이 없는 경우(case 0), 자식이 하나인 경우(case 1),
 자식이 둘인 경우(case 2)로 나누어 delete 연산을 수행

- Case 0: 삭제해야 할 노드 n의 부모가 n을 가리키던 레퍼런스를 None으로 만든다.
- Case 1: n가 한쪽 자식인 c만 가지고 있다면, n의 부모와 n의 자식 c를 직접 연결
- Case 2: n의 부모는 하나인데 n의 자식이 둘이므로 n의 자리에 중위순회하면서 n을 방문하기 직전 노드(Inorder Predecessor, 중위선행자) 또는 직후에 방문되는 노드(Inorder Successor, 중위 후속자)로 대체

Case 0: 단말 노드 삭제

Case1: 자식이 하나인 노드의 삭제

Case 2: 두 개의 자식을 가진 노드 삭제

- 가장 비슷한 값을 가진 노드를 삭제 위치로 가져옴
- 후계 노드의 선택

삭제할 위치에 왼쪽 서브트리의 가장 큰 노드나 오른쪽 서브트리의 가장 작은 노드가 들어가면 이진탐색트리의 조건을 계속 만족한다.

가장 비슷한 값은 어디에 있을까?

[예제] 노드 18 삭제


```
01 def delete(self, k): # 삭제 연산
       self.root = self.del node(self.root, k)
02
03
                                        루트와 del node()가리턴
   def del_node(self, n, k):
                                        하는 노드를 재 연결
05
       if n == None:
06
           return None
07
       if n.key > k:
98
           n.left = self.del_node(n.left, k)
                                                 n의 왼쪽자식과 del node()가
09
       elif n.kev < k:
                                                 리턴하는 노드를 재 연결
           n.right = self.del_node(n.right, k)
10
11
       else:
12
           if n.right == None:
                                          n의 오른쪽자식과 del_node()가
13
               return n.left
                                          리턴하는 노드를 재 연결
14
           if n.left == None:
15
               return n.right
16
           target = n
                                  target은 삭제될 노드
                                                     target의 중위 후속자 찾아
           n = self.minimum(target.right) 
17
                                                     n이 참조하게 함
18
           n.right = self.del_min(target.right)
19
           n.left
                   = target.left
                                                 n의 오른쪽자식과 target의
                                                 오른쪽자식 연결
20
       return n
                          n의 왼쪽자식과 target의
                          왼쪽자식 연결
```

[그림 5-12] delete(10)이 수행되는 과정 (case 0)

[그림 5-13] delete(45)가 수행되는 과정 (case 1)

delete(35)가 수행되는 과정 (case 1)

[그림 5-14] delete(20)이 수행되는 과정 (case 2)

10 n.right = self.del_node(n.right, k)

[프로그램 5-2] main.py

```
01 from bst import BST
                                          이진탐색트리
02 if name == ' main ':
                                          객체 생성
       t = BST() (
03
                                                                        三
04
       t.put(500, 'apple')
                                         print('전위순회:\t', end='')
                                    16
                                                                       리
       t.put(600, 'banana')
05
                                    17
                                         t.preorder(t.root)
       t.put(200, 'melon')
                                                                       순
06
                                         print('\n중위순회:\t', end='')
                                    18
                                                                       호
07
       t.put(100, 'orange')
                                         t.inorder(t.root)
                                    19
                               개
       t.put(400, 'lime')
                                                                       및
80
                                         print('\n250: ',t.get(250))
                                    20
                               0
       t.put(250, 'kiwi')
09
                                                                       삭
                                         t.delete(200)
                                    21
                               항목
                                                                       제
       t.put(150, 'grape')
10
                                         print('200 삭제 후:')
                                    22
11
       t.put(800, 'peach')
                                         print('전위순회:\t', end='')
                                                                       여
                                    23
12
       t.put(700, 'cherry')
                               삽
                                                                       산
                                    24
                                         t.preorder(t.root)
13
       t.put(50, 'pear')
                                    25
                                         print('\n중위순회:\t', end='')
                                                                       수
       t.put(350, 'lemon')
                                                                       행
14
                                    26
                                         t.inorder(t.root)
       t.put(10, 'plum')
15
Console M PvUnit
<terminated > main.py [C:₩Users₩sbyang₩AppData₩Local₩Programs₩Python₩Python36-32]
        500
             200
                   100
                        50
                            10
                                150
                                     400
                                          250
                                                350
                                                     600
                                                          800
                                                               700
전위순회:
                                250
중위순회:
        10
            50
                100 150
                           200
                                     350
                                          400
                                                500
                                                     600
                                                          700
                                                               800
250:
      kiwi
200 삭제 후:
전위순회:
        500
             250
                   100
                        50
                            10
                                150
                                     400
                                          350
                                                600
                                                     800
                                                          700
중위순회:
        10
            50
                100
                      150
                           250
                                350
                                     400
                                          500
                                                600
                                                     700
                                                          800
```

수행시간

- 이진탐색트리에서 탐색, 삽입, 삭제 연산은 공통적으로 루트에서 탐색을 시작하여 최악의 경우에 이파리까지 내려가고, 삽입과 삭제 연산은 다시 루트까지 거슬러 올라가야 함
- 트리를 한 층 내려갈 때는 재귀호출이 발생하고, 한 층을 올라갈 때는 재 연결이 수행되는데, 이들 각각은 O(1) 시간 소요
- 연산들의 수행시간은 각각 트리의 높이(h)에 비례, O(h)

- N개의 노드가 있는 이진탐색트리의 높이가 가장 낮은 경우는 완전이진트리 형태일 때이고, 가장 높은 경우는 편향이진트리
- 따라서 이진트리의 높이 h는 아래와 같다.

 $\lceil \log (N+1) \rceil \approx \log N \le h \le N$

AVL트리(균형이진탐색트리)

[핵심 아이디어]

AVL트리는 삽입이나 삭제로 인해 균형이 깨지면 회전 연산을 통해 트리의 균형을 유지한다.

- AVL 트리는 트리가 한쪽으로 치우쳐 자라나는 현상을 방지하여 트리 높이의 균형(Balance)을 유지하는 이진탐색트리
- 균형(Balanced) 이진트리를 만들면 N개의 노드를 가진 트리의 높이가 O(logN)이 되어 탐색, 삽입, 삭제 연산의 수행시간이 O(logN)으로 보장

AVL트리는 임의의 노드 x에 대해 x의 왼쪽 서브트리의 높이와 오른쪽 서브트리의 높이 차이가 1을 넘지 않는 이진탐색트리이다.

어느 트리가 AVL트리 형태를 갖추고 있나?

[정리] N개의 노드를 가진 AVL 트리의 높이는 O(logN)이다.

[증명] A(h) = 높이가 h인 AVL 트리를 구성하는 최소의 노드 수 A(1) = 1, A(2) = 2, A(3) = 4이다.

A(3)

A(3)이 위와 같이 구성되는 이유:

- 높이가 3인 AVL 트리에는 루트와 루트의 왼쪽 서브트리와 오른쪽 서브트리가 존재해야 하고,
- 각 서브트리 역시 최소 노드 수를 가진 AVL 트리여야 하므로
- 또한 이 두 개의 서브트리의 높이 차이가 1일 때 전체 트리의 노드 수가 최소가 되기 때문

• 균형 인수 : 왼쪽서브트리 높이 - 오른쪽서브트리 높이

○ 균형 인수 +2, -2

○ 균형 인수 +1, -1

○ 균형 인수 0

AVL 트리의 연산

- 탐색연산: 이진탐색트리와 동일
- 삽입과 삭제 시 균형 상태가 깨질 수 있음
- 삽입 연산
 - 삽입 위치에서 루트까지의 경로에 있는 조상 노드들의 균형 인수에 영향을 미침
 - 삽입 후에 불균형 상태로 변한 가장 가까운 조상 노드(균형 인수가 ±2가 된 가장 가까운 조상 노드)의 서브 트리들에 대하여 다시 재균형
 - 삽입 노드부터 균형 인수가 ±2가 된 가장 가까운 조상 노드까지 회전

AVL 트리의 연산

• 노드 1을 트리에 추가 > 균형이 깨짐

- 균형이 깨지는 4가지 경우
 - LL, LR, RL, RR 타입

AVL 트리의 삽입연산

- AVL 트리의 균형이 깨지는 4가지 경우
 - 삽입된 노드 N으로부터 가장 가까우면서 균형 인수가 ±2가 된 조상 노드가 A라면
 - LL 타입: N이 A의 왼쪽서브트리의 왼쪽서브트리에 삽입
 - LR 타입: N이 A의 왼쪽서브트리의 오른쪽서브트리에 삽입
 - RR 타입: N이 A의 오른쪽서브트리의 오른쪽서브트리에 삽입
 - RL 타입: N이 A의 오른쪽서브트리의 왼쪽서브트리에 삽입
 - 각 타입별 재균형 방법
 - LL 회전: A부터 N까지의 경로상 노드의 오른쪽 회전
 - LR 회전: A부터 N까지의 경로상 노드의 왼쪽-오른쪽 회전
 - RR 회전: A부터 N까지의 경로상 노드의 왼쪽 회전
 - RL 회전: A부터 N까지의 경로상 노드의 오른쪽-왼쪽 회전

AVL 트리의 삽입연산

4가지의 경우	해결방법	설명
LL 타입	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LL 회전: 오른쪽 회전
LR <mark>타입</mark>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LR 회전: 왼쪽 회전 → 오른쪽 회전
RR 타입	$\begin{array}{c} -2 \\ \hline X \\ \hline Y \\ \hline \end{array}$	RR 회전: 왼쪽 회전
RL <mark>타입</mark>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RL <mark>회</mark> 전: 오른쪽 회전 → 왼쪽 회전

AVL 트리의 회전 연산

- AVL 트리에서 삽입 또는 삭제 연산을 수행할 때 트리의 균형을 유지하기 위해 LL-회전, RR-회전, LR-회전, RL-회전 연산 사용
- 회전 연산은 2 개의 기본적인 연산으로 구현
 - rotate_right(), rotate_left()

```
01 def rotate_right(self, n): # 우로회전

02 ① x = n.left

03 ② n.left = x.right

04 ③ x.right = n

05 n.height = max(self.height(n.left), self.height(n.right)) + 1

06 x.height = max(self.height(x.left), self.height(x.right)) + 1

07 ④ return x
```


[그림 5-20] rotate_right

[그림 5-21] rotate_left

[예제] LL-회전의 예

[예제] RR-회전의 예

[예제] LR-회전의 예

[예제] RL-회전의 예

AVL 트리를 위한 Node, AVL 클래스

```
01 class Node:
       def init (self, key, value, height, left=None, right=None):
02
03
           self.kev = kev
           self.value = value
04
                                   노드 생성자
          self.height = height
05
                                   key, value, 노드의 높이,
          self.left = left
06
                                   왼쪽, 오른쪽 자식노드 레퍼런스
07
          self.right = right
98
09 class AVL:
       def init (self):
10
           self.root = None
11
                                 트리 루트
12
13
       def height(self, n):
          if n == None:
14
15
               return 0
                                 노드 n의 높이 리턴
16
           return n.height
17
18
       def put(self, key, value): # 삽입 연산
19
       def balance(self, n): # 불균형 처리
20
       def bf(self, n): # bf 계산
21
       def rotate_right(self, n): # 우로 회전
22
      def rotate_left(self, n): # 좌로 회전
23
       def delete(self, key): # 삭제 연산
24
       def delete_min(self): # 최솟값 삭제
                                           삭제 및 삭제 관련 연산
25
       def min(self): # 최솟값 찾기
```

```
노드 n에서 불균형 발생
01 def balance(self, n): # 불균형 처리
                                           노드 n의 왼쪽자식의 오른쪽 서브트리가
       if self.bf(n) > 1: (
02
                                           높은 경우
           if self.bf(n.left) < 0:</pre>
03
               n.left = self.rotate_left(n.left)
04
           n = self.rotate right(n)
05
                                     11 회전
06
                                            노드 n의 오른쪽자식의 왼쪽 서브트리가
       elif self.bf(n) < -1:</pre>
07
                                            높은 경우
           if self.bf(n.right) > 0:
80
               n.right = self.rotate_right(n.right)
09
           n = self.rotate_left(n)
10
                                     RR 회전
11
       return n
```

```
bf(n): (노드 n의 왼쪽 서브트리 높이) – (오른쪽 서브트리 높이) 리턴
```

```
01 def bf(self, n): # bf 계산
02 return self.height(n.left) - self.height(n.right)
```

- balance()에서 line 02의 bf(n) > 1인 경우는 노드 n의 왼쪽 서브트리가 오른쪽 서브트리보다 높고, 그 차이가 1보다 큰 것으로 불균형 발생
- 이 때 bf(n.left)가 음수이면, n.left의 오른쪽 서브트리가 왼쪽 서브트리보다 높음
 - Line 04에서 rotate_left(n.left)를 수행하고 line 05에서 rotate_right(n)을 수행.
 즉, LR-회전 수행
- bf(n.left)가 음수가 아니라면, line 05에서 LL-회전 만을 수행
- RR-회전과 RL-회전도 line 08~10에 따라 각각 수행되어 트리의 균형을 유지
- 참고로 현재 노드 n의 균형이 유지되어 있으면, 바로 line 11에서 노드 n의 레퍼런스를 리턴

```
01
    def put(self, key, value): # 삽입 연산
02
        self.root = self.put_item(self.root, key, value)
03
04
    def put_item(self, n, key, value):
                                             새 노드 생성,
05
        if n == None:
                                             높이=1
06
            return Node(key, value, 1)
07
        if n.key > key:
08
            n.left = self.put_item(n.left, key, value)
09
        elif n.key < key:</pre>
10
            n.right = self.put_item(n.right, key, value)
11
        else:
                                  key가 이미 있으면
12
            n.value = value
                                  value만 갱신
13
            return n
14
        n.height = max(self.height(n.left), self.height(n.right)) + 1
15
        return self.balance(n)
                                           노드 n의 균형 유지
         노드 n의 높이 갱신
```

[예제] 30, 40, 100, 20, 10, 60, 70, 120, 110을 순차적으로 삽입

AVL 트리구축의예

[7, 8, 9, 2, 1, 5, 3, 6, 4]

AVL트리 구축의 예(계속)

AVL트리 구축의 예(계속)

삭제 연산

- AVL트리에서의 삭제는 두 단계로 진행
- [1단계] 이진탐색트리에서와 동일한 삭제 연산 수행
- [2단계] 삭제된 노드로부터 루트노드 방향으로 거슬러 올라가며 불균형이 발생한 경우 적절한 회전 연산 수행
 - 회전 연산 수행 후에 부모에서 불균형이 발생할 수 있고, 이러한 일이 반복되어 루트에서 회전 연산을 수행해야 하는 경우도 발생

30을 가진 노드의 삭제

(a) 삭제 전

(b) 삭제 후 노드 40에서 불균형 발생

[핵심 아이디어]

삭제 후 불균형이 발생하면 반대쪽에 삽입이 이루어져 불균형이 발생한 것으로 취급하자.

- 삭제된 노드의 부모= p, p의 부모 = gp, p의 형제 = s
- s의 왼쪽과 오른쪽 서브트리 중에서 높은 서브트리에 마치 새 노드가 삽입된 것으로 간주

[예제] 40 삭제

LR-회전 후

RL-회전 후

```
01 from avl import AVL
                                   AVL 트리 객체 생성
02 if __name__ == '__main__':
03
       t = AVL()
                                                                           E
                                            print('전위순회:\t', end='')
       t.put(75, 'apple')
                                        14
04
                                            t.preorder(t.root)
       t.put(80, 'grape')
                                        15
05
      t.put(85, 'lime')
                                                                           순
                                            print('\n중위순회:\t', end='')
                                        16
06
                                 0
                                                                           호
                                        17
                                            t.inorder(t.root)
07
       t.put(20, 'mango')
                                            print('\n75와 85 삭제 후:')
       t.put(10, 'strawberry')
                                        18
08
                                            t.delete(75)
09
      t.put(50, 'banana')
                                        19
                                 항
                                                                           삭
                                            t.delete(85)
                                                                           제
      t.put(30, 'cherry')
                                        20
10
                                            print('전위순회:\t', end='')
       t.put(40, 'watermelon')
                                        21
11
                                 산
                                            t.preorder(t.root)
                                                                           산
12
      t.put(70, 'melon')
                                        22
      t.put(90, 'plum')
                                            print('\n중위순회:\t', end='')
                                        23
13
                                            t.inorder(t.root)
                                                                           행
```

[프로그램 5-4] main.py

```
■ Console 

PvUnit

PvUnit
<terminated> main.py [C:\Users\sbyang\AppData\Local\Programs\Python\Python36-32
                           30
                               50
                                    70
전위순회:
        75
             40
                  20
                      10
                                        85
                                             80
                                                 90
                      40
                           50
                               70
                                    75
중위순회: 10
             20
                  30
                                        80
                                             85
                                                 90
75와 85 삭제 후:
                      30
전위순회: 40
             20
                  10
                           80
                               50
                                    70
                                        90
             20
                  30
                      40
                           50
                               70
중위순회:
        10
                                    80
                                        90
```

수행시간

- AVL 트리에서의 탐색, 삽입, 삭제 연산은 공통적으로 루트부터 탐색을 시작하여 최악의 경우에 이파리까지 내려가고, 삽입이나 삭제 연산은 다시 루트까지 거슬러 올라가야 함.
- 트리를 한 층 내려갈 때는 재귀호출하며, 한 층을 올라갈 때 불균형이 발생하면 적절한 회전 연산을 수행하는데, 이들 각각은 O(1) 시간 밖에 걸리지 않음
- 탐색, 삽입, 삭제 연산의 수행시간은 각각 AVL의 높이에 비례하므로 각 연산의 수행시간은 O(logN)

