Functional programming, Seminar No. 4

Daniel Rogozin Institute for Information Transmission Problems, RAS Serokell OÜ Higher School of Economics The Faculty of Computer Science

Today

We will study

Algebraic data types and pattern

matching

Pattern matching

Let us take a look at the following functions:

```
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)

length :: [a] -> Int
length [] = 0
lenght (x : xs) = 1 + length xs
```

Pattern matching

Let us take a look at the following functions:

```
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)

length :: [a] -> Int
length [] = 0
lenght (x : xs) = 1 + length xs
```

- Such expressions as (a,b), [], and (x : xs) are called patterns
- One needs to check whether the constructors (,) and (:)
 are relevant.
- Consider swap (45, True). Variables a and b are bound with the values 45 and True.
- Consider lenght [1,2,3]. Variables x and xs are bound with the values 1 and [2,3]

Algebraic data types. Sums

The simplest example of an algebraic data type is a data type defined with an enumeration of constructors that stores no values.

Algebraic data types. Products

An example of a product data type:

```
data Point = Point Double Double
  deriving Show
```

```
> :type Point
Point :: Double -> Double -> Point
```

· An example of a function

```
taxiCab :: Point -> Point -> Double
taxiCab (Point x1 y1) (Point x2 y2) =
  abs (x1 - x2) + abs (y1 - y2)
```

Polymorphic data types

 That point data type might be parametrised with a type parameter:

```
data Point a = Point a a
  deriving Show
```

 The Point data constructor has the following type. The Point from the left (see the definition above) is a type function that has its type (kind).

```
> :type Point
Point :: a -> a -> Point a
> :kind Point
Point :: * -> *
```

Polymorphic data types and type classes

Suppose we have a function:

```
midPoint.
     :: Fractional a => Point a -> Point a -> Point a
  midPoint (Pt x1 y1) (Pt x2 y2) =
    Pt ((x1 + x2) / 2) ((y1 + y2) / 2)
· Playing with GHCi:
   > :t midPoint (Pt 3 5) (Pt 6 4)
   midPoint (Pt 3 5) (Pt 6 4) :: Fractional a => Point a
   > midPoint (Pt 3 5) (Pt 6 4)
   Pt. 4.5 4.5
   > :t it
   it :: Fractional a => Point a
```

Inductive data types

The list is the first example of an inductive data type

```
data List a = Nil | Cons a (List a)
  deriving Show
```

• The data constructors are Nil :: List a and

```
Cons :: a -> List a -> List a
```

· Pattern matching and recursion

```
concat :: List a -> List a -> List a
concat Nil ys = ys
concat (Cons x xs) ys = Cons x (xs `concat` ys)
```

Standard lists

 The list data type is already in the standard library, but its approximate definition is the following one:

```
infixr 5 :
data [] a = [] | a : ([] a)
  deriving Show
```

Syntax sugar:

```
[1,2,3,4] == 1 : 2 : 3 : 4 : []
```

The example of a definition with built-in lists:

 case ... of ... expressions allows one to patternmatch everywhere

```
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x : xs) =
   case p x of
   True -> x : filter p xs
   False -> filter p xs
```

 The pattern matching from the previous slide is a syntax sugar for the corresponding case ... of ... expression

Semantic aspects of pattern matching

- Pattern matching is performed from up to down and from left to right after that.
- · A pattern match is either
 - succeed
 - · or failed
 - or diverged
- · Here is an example:

```
foo (1,4) = 7
foo (0, _) = 8
```

- (0, undefined) fails in the first case and it succeeds in the second one
- (undefined, 0) diverges during a match
- What about (1,7-3)?

As-patterns

Suppose we have the following function (a quite bad one)

```
dupHead :: [a] -> [a]
dupHead (x : xs) = x : x : xs
```

One may rewrite this function as follows:

```
dupHead :: [a] -> [a]
dupHead s@(x : xs) = x : s
```

• Here, the name ${\tt s}$ is assigned to the whole pattern ${\tt x}$: ${\tt xs}$

Irrefutable patterns

- · Irrefutable patterns are wild-cards, variables, and lazy patterns
- · An example of a lazy pattern:

```
> f *** g (a,b) = (f a, g b)
> (const 2) *** (const 1) $ undefined
*** Exception: Prelude.undefined
> f *** g ~(a,b) = (f a, g b)
> (const 2) *** (const 1) $ undefined
(2,1)
```

newtype and type declarations

The keyword type introduces type synonyms.

```
type String = [Char]
```

- In Haskell, the string data type type is merely a type synonym for the list of characters
- The keyword newtype defines a new type with the single constructor that packs a value of a given type

```
newtype Age = Age Int
```

The same type Age defined with the accessor runAge

```
newtype Age = Age { runAge :: Int }
-- where runAge :: Age -> Int
```

Field labels

• Sometimes product data types are rather cumbersome:

```
data Person = Person String String Int Float String
```

As an alternative, one may define a data type with field labels

```
data Person =
  Person { firstName :: String
    , lastName :: String
    , age :: Int
    , height :: Float
    , phoneNumber :: String
}
```

• Such a data type is a record with accessors such as

```
firstName :: Person -> String
```

Field labels and type classes

Let us recall the Eq type class once more

```
class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool
instance Eq Int where
 x == y = x \cdot eqInt \cdot y
eqFunction :: Eq a => a -> a -> Int
eqFunction x y =
  case x == y of
    True -> 42
    False -> 0
```

- In fact, type classes are sugar for data types with field labels
- The constraint Eq a is an additional argument

Field labels and type classes

The previous listing, an unsugared version (but very roughly):

```
data Eq a =
  Eq { eq :: a -> a -> Bool
     , neq :: a -> a -> Bool
intInstance :: Eq Int
intInstance = Eq eqInt (\x y -> not $ x `eqInt` y)
eqFunction :: Eq a -> a -> a -> Int
eqFunction eqInst x y =
  case ((eq eqInst) x y) of
   True -> 42
    False -> 0
```

Some standard algebraic data types

• The Maybe a data type is a type of optional values:

```
data Maybe a = Nothing | Just a
maybe :: b -> (a -> b) -> Maybe a -> b
maybe b _ Nothing = b
maybe b f (Just x) = f x
```

A simple example

```
safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x : _) = Just x
```

Some standard algebraic data types

• The Either data type describes one or the other value

data Either e a = Left e | Right a

```
either :: (a -> c) -> (b -> c) -> Either a b -> c
either f _ (Left x) = f x
either _ g (Right x) = g x
```

An example:

```
safeTail :: [a] -> Either String [a]
safeTail [] = Left "I have no tail, mate"
safeTail (_ : xs) = Right xs
```

Folds

Folds and lists. Motivation

Take a look at these functions

```
sum :: Num a => [a] -> a
sum [] = 0
sum (x : xs) = x + sum xs
product :: Num \ a \Rightarrow [a] \rightarrow a
product [] = 1
product (x : xs) = x * product xs
concat :: [[a]] -> [a]
concat \Pi = \Pi
concat (x : xs) = x ++ concat xs
```

The definition of a right fold

· The definition of a right fold is the:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ ini [] = ini
foldr f ini (x : xs) = f x (foldr f ini xs)
```

· An informal explanation:

```
foldr f z [x1, x2, ..., xn] ==
x1 `f` (x2 `f` ... (xn `f` z)...)
```

The definition of a right fold

One may visualise that for some list [a,b,c]. The list from the left and its right fold from the right

Functions sum, product, and concat with foldr

```
sum :: Num a => [a] -> a
sum = foldr (+) 0

product :: Num a => [a] -> a
product = foldr (*) 1

concat :: [[a]] -> [a]
concat = foldr (++) []
```

The universal property of a right fold

The universal property

Let g be a function defined by the following equations:

```
g [] = v
g (x : xs) = f x (g xs)
then one has \forall xs :: [a] (g xs \equiv foldr f v xs)
```

- · The universal property is proved inductively
- This property implies $\mathtt{foldr}\ \mathtt{f}\ \mathtt{v}$ and \mathtt{g} are equivalent in this case

The definition of a left fold

· In addition to the right fold, one also has the left one

```
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl _ ini [] = ini
foldl f ini (x : xs) = foldl f (f ini x) xs
```

· Informally:

```
foldl f ini [x1, x2, ..., xn]
== (...((ini `f` x1) `f` x2) `f`...) `f` xn
```

The definition of a left fold

· In addition to the right fold, one also has the left one

```
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl _ ini [] = ini
foldl f ini (x : xs) = foldl f (f ini x) xs
```

· Informally:

```
foldl f ini [x1, x2, ..., xn]
== (...((ini `f` x1) `f` x2) `f`...) `f` xn
```

- We can optimise the implementation of foldl.
- foldl is the most optimal function, but we are not capable of processing infinite lists using the left fold function.

Are foldr and foldl equivalent?

Note that foldr and foldl are not equivalent generally

```
> foldl (/) 64 [4,2,4]
2.0
> foldr (/) 64 [4,2,4]
0.125
> foldl (\x y -> 2*x + y) 4 [1,2,3]
43
> foldr (\x y -> 2*x + y) 4 [1,2,3]
16
```

 foldr and foldl are equivalent if the folding operation is associative and commutative

The right scan

 The right scan is the foldr that yields a list that contains all intermediate values

```
scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr _ ini [] = [ini]
scanr f ini (x:xs) = f x q : qs
where qs@(q:_) = scanr f ini xs
```

- foldr and scanr are connected with each other as follows head (scanr f z xs) \equiv foldr f z xs
- The examples are

```
> scanr (:) [] [1,2,3]
[[1,2,3],[2,3],[3],[]]
> scanr (+) 0 [1..10]
[55,54,52,49,45,40,34,27,19,10,0]
> scanr (*) 1 [1..5]
[120,120,60,20,5,1]
```

The left scan

• One also has a scan function for the fold1 function:

```
scanl :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow [b]

scanl f q ls = q : (case ls of

[] \rightarrow []

x:xs \rightarrow scanl f (f q x) xs)
```

• foldl and scanl are connected with each other as follows:

last (scanl f z xs)
$$\equiv$$
 foldl f z xs

The examples:

```
> scanl (++) "!" ["a","b","c"]
["!","!a","!ab","!abc"]
> scanl (*) 1 [1..] !! 5
120
```

• In contrast to foldl, scanl works with infinite lists.

Strictness in Haskell

Bottom

- Any well-formed expression in Haskell has a type
- Prima facie, the Bool data type has two values: False and True according to its definition:

```
data Bool = False | True
```

- One may define an expession dno :: Bool which is defined recursively as dno = not dno
- dno is neither False nor True, but it's a Boolean value!
- This value is a bottom (⊥). In Haskell, ⊥ is a value that has a type forall a. a. Such errors as undefined have this type.

Strict functions

- Haskell is lazy. That's why const 42 undefined == 42
- · Lazy functions are non-strict ones

Strict functions

- Haskell is lazy. That's why const 42 undefined == 42
- · Lazy functions are non-strict ones
- In constrast to lazy functions, strict functions satisfy this equation

$$f X_1 X_2 \ldots \perp \ldots X_n = \perp$$

• For this reason constStrict 42 undefined = undefined

Strictness in Haskell. The seq function

- We've already had a look at the seq function.
- seq is a combinator that enforces computation. It evaluates the first argument to its WHNF.
- This combinator has a type a o b o b.
- It's quite close to something like $\lambda xy.y$, but seq satisfies the following equations:

$$\operatorname{seq} \bot X = \bot$$
$$\operatorname{seq} V X = X, V \neq \bot$$

 This function "breaks" our laziness! But this enforcing with seq is not so far-reaching. Data constructors and lambdas put a barrier for the \(\pexpansion\):

```
> seq (4,undefined) 5
5
> seq (\x -> undefined) 5
5
> seq (id . undefined) 5
5
```

Strictness in Haskell. The strict application

One may implement the strict application using seq

```
infixr 0 $!
($!) :: (a -> b) -> a -> b
f $! x = x `seq` f x
```

 That is, this application behaves as usual unless the second argument is the bottom.

Strictness in Haskell. The strict application

 Let us recall the tail-recursive factorial. The second version is strict:

```
tailFactorial :: Integer -> Integer
tailFactorial n = helper 1 n
  where
  helper acc x =
    if x > 1
    then helper (acc * x) (x - 1)
    else acc
tailFactorialStrict :: Integer -> Integer
tailFactorialStrict n = helper 1 n
  where
    helper acc x =
      if x > 1
      then (helper \$! (acc *x)) (x - 1)
      else acc
```

The strict foldl

The strict version of fold1

```
foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f ini [] = ini
foldl' f ini (x:xs) = foldl' f arg xs
  where arg = (f ini) $! x
```

Strictness in Haskell. Bang patterns

A data type might contain strict values with the strictness flag!,
 e.g.

```
data Complex a = !a :+ !a
  deriving Show
infix 6 :+

im :: Complex a -> a
im (x :+ y) = y
(undefined :+ 5) *** Exception: Probability
```

- > im (undefined :+ 5) *** Exception: Prelude.undefined
- The BangPatterns extension allows one to make pattern a strict one

```
> :set -XBangPatterns
> foo !x = True
> foo undefined
*** Exception: Prelude.undefined
```

Summary

Today we

- discussed the data type landscape and together with pattern matching
- · studied folds
- · realised how one can enforce lazy evaluation

Summary

Today we

- discussed the data type landscape and together with pattern matching
- · studied folds
- · realised how one can enforce lazy evaluation

On the next seminar, we will

• study such type classes as Functor, Foldable, and Monoid