Discrete Structures and Theory of Logic Lecture-34

Dharmendra Kumar November 26, 2020

Duality law

Two formulas P and Q are said to be dual of each others if either one can be obtained from the other by replacing \land by \lor and \lor by \land . The connectives \land and \lor are also called dual of each other. If the formula P contains the special symbols T or F, then Q, its dual, is obtained by replacing T by F and F by T.

Example: Dual of $(P \land Q) \lor T$ is $(P \lor Q) \land F$.

Converse, Inverse and Contrapositive

For any statement formula $P \to Q$, the statement formula $Q \to P$ is called the converse, $\neg P \to \neg Q$ is called its inverse and $\neg Q \to \neg P$ is called its contrapositive.

Note: $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$ and $Q \rightarrow P \Leftrightarrow \neg P \rightarrow \neg Q$

Tautological Implication

A statement A is said to be tautologically imply a statement B iff $A \to B$ is tautology. We shall denote this by $A \Rightarrow B$, which is read as "A implies B".

 $A \Rightarrow B$ guarantees that B has the truth value T whenever A has the truth value T.

Exercise

- 1. Show the following implications.
- (a) $(P \wedge Q) \Rightarrow (P \rightarrow Q)$
- (b) $P \Rightarrow (Q \rightarrow P)$
- (c) $(P \rightarrow (Q \rightarrow R)) \Rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R)$
- 2. Show the following equivalences.
- (a) $P \rightarrow (Q \rightarrow P) \Leftrightarrow \neg P \rightarrow (P \rightarrow \neg Q)$
- (b) $P \rightarrow (Q \lor R) \Leftrightarrow (P \rightarrow Q) \lor (P \rightarrow R)$
- (c) $(P \rightarrow Q) \land (R \rightarrow Q) \Leftrightarrow (P \lor R) \rightarrow Q$
- $(\mathsf{d}) \neg (P \leftrightarrow Q) \Leftrightarrow (P \lor Q) \land \neg (P \land Q)$

Exercise

3. Show the following implications without constructing truth tables.

(a)
$$(P \rightarrow Q) \Rightarrow P \rightarrow (P \land Q)$$

(b)
$$(P \rightarrow Q) \rightarrow Q)) \Rightarrow (P \lor Q)$$

(c)
$$((P \lor \neg P) \to Q) \to ((P \lor \neg P) \to R) \Rightarrow (Q \to R)$$

$$(\mathsf{d})\; (Q \to (P \land \neg P)) \to (R \to (P \land \neg P)) \Leftrightarrow (R \to Q)$$

Formulas with distinct truth tables

A statement formula containing n variables must have as its truth table one of the 2^{2^n} possible truth table, each of them having 2^n rows.

5

Functionally complete set of connectives

A set of connectives by which every formula can be expressed in terms of an equivalent formula containing the connectives from this set, is called a functionally complete set of connectives.

Minimal functionally complete set:

A functional complete set is said to be minimal functionally complete set if its proper subset is not functionally complete.

Example:

- 1. Are the sets $\{\land, \lor, \neg\}, \{\land, \neg\}, and \{\lor, \neg\}$ functionally complete?
- 2. Is the set $\{\land, \lor, \neg\}$ minimal functionally complete?
- 3. Are the sets $\{\land, \neg\}$, and $\{\lor, \neg\}$ minimal functionally complete?
- 4. Are the sets $\{\neg\}, \{\wedge\}, \{\vee\}$ functionally complete?

Example: Write the formulas which are equivalent to the formulas given below and which contain the connectives \wedge and \neg .

- 1. $\neg(p \leftrightarrow (Q \rightarrow (R \lor P))$
- 2. $((P \lor Q) \land R) \rightarrow (P \lor R)$