Corrigé exercice 94:

- 1. $3y' + 2y = 0 \Leftrightarrow y' = -\frac{2}{3}y$, on est donc dans le cas $a = -\frac{2}{3}$. Les solutions de 3y' + 2y = 0 sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k e^{-\frac{2}{3}x}$, où k est un réel.
- 2. $\frac{5}{3}y' y = 0 \Leftrightarrow y' = \frac{3}{5}y$, on est donc dans le cas $a = \frac{3}{5}$. Les solutions de $\frac{5}{3}y' y = 0$ sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k e^{\frac{3}{5}x}$, où k est un réel.
- 3. $4y' + 3y = 0 \Leftrightarrow y' = -\frac{3}{4}y$, on est donc dans le cas $a = -\frac{3}{4}$. Les solutions de 4y' + 3y = 0 sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k e^{-\frac{3}{4}x}$, où k est un réel.
- 4. $\sqrt{2}y' 2y = 0 \Leftrightarrow y' = \sqrt{2}y$, on est donc dans le cas $a = \sqrt{2}$. Les solutions de $\sqrt{2}y' 2y = 0$ sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k \mathrm{e}^{\sqrt{2}x}$, où k est un réel.

Corrigé exercice 95:

- 1. $2y' = 3y \Leftrightarrow y' = \frac{3}{2}y$, on est donc dans le cas $a = \frac{3}{2}$. Les solutions de 2y' = 3y sont donc les fonctions définies sur \mathbb{R} par $x \mapsto ke^{\frac{3}{2}x}$, où k est un réel.
- 2. $-y' = \frac{3}{2}y \Leftrightarrow y' = -\frac{3}{2}y$, on est donc dans le cas $a = -\frac{3}{2}$. Les solutions de $-y' = \frac{3}{2}y$ sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k \mathrm{e}^{-\frac{3}{2}x}$, où k est un réel.
- 3. $-2y' = \frac{1}{3}y \Leftrightarrow y' = -\frac{1}{6}y$, on est donc dans le cas $a = -\frac{1}{6}$. Les solutions de $-2y' = \frac{1}{3}y$ sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k e^{-\frac{1}{6}x}$, où k est un réel.
- 4. $5y' = \sqrt{5}y \Leftrightarrow y' = \frac{\sqrt{5}}{5}y$, on est donc dans le cas $a = \frac{\sqrt{5}}{5}$. Les solutions de $5y' = \sqrt{5}y$ sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k e^{\frac{\sqrt{5}}{5}x}$, où k est un réel.

Corrigé exercice 96:

- 1. $y'-3y=0 \Leftrightarrow y'=3y$, on est donc dans le cas a=3. Les solutions de y'-3y=0 sont donc les fonctions définies sur $\mathbb R$ par $x\mapsto k\mathrm{e}^{3x}$, où k est un réel. On détermine maintenant k tel que $y(0)=2\Leftrightarrow k\mathrm{e}^0=2\Leftrightarrow k=2$. Ainsi, la solution cherchée est définie sur $\mathbb R$ par $y(x)=2\mathrm{e}^{3x}$.
- 2. $y' + 4y = 0 \Leftrightarrow y' = -4y$, on est donc dans le cas a = -4. Les solutions de y' + 4y = 0 sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k e^{-4x}$, où k est un réel. On détermine k tel que $y(0) = -4 \Leftrightarrow k = -4$. Ainsi, la solution cherchée est définie sur \mathbb{R} par $y(x) = -4e^{-4x}$.

Corrigé exercice 97:

- 1. $2y' + 3y = 0 \Leftrightarrow y' = -\frac{3}{2}y$, on est donc dans le cas $a = -\frac{3}{2}$. Les solutions de 2y' + 3y = 0 sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k e^{-\frac{3}{2}x}$, où k est un réel. On détermine k tel que $y(2) = 1 \Leftrightarrow k e^{-\frac{3}{2} \times 2} = 1 \Leftrightarrow k e^{-3} = 1 \Leftrightarrow k = e^3$. Ainsi, la solution cherchée est définie sur \mathbb{R} par $y(x) = e^3 \times e^{-\frac{3}{2}x} = e^{3-\frac{3}{2}x}$.
- 2. $5y' 2y = 0 \Leftrightarrow y' = \frac{2}{5}y$, on est donc dans le cas $a = \frac{2}{5}$. Les solutions de 5y' 2y = 0 sont donc les fonctions définies sur \mathbb{R} par $x \mapsto k e^{\frac{2}{5}x}$, où k est un réel. On détermine k tel que $y(5) = e \Leftrightarrow k e^{\frac{2}{5}x5} = e \Leftrightarrow k = e^{-1}$. Ainsi, la solution cherchée est définie sur \mathbb{R} par $y(x) = e^{-1} \times e^{\frac{2}{5}x} = e^{\frac{2}{5}x-1}$.