

1. Задача классификации

Есть множество объектов, разделенных некоторым образом на классы. Задача: определить к какому классу принадлежит тот или иной объект, исходя из особенностей выборки.

Каждый объект формирует конечное пространство признаков, исследование которого позволяет построить алгоритм, определяющий класс объекта из новой, незнакомой выборки.

Этапы построения классификатора:

- выделение характерных признаков
- обучение выбранного классификатора на обучающей выборке
- проверка классификатора на тестирующей выборке

Выделение характерных признаков, является важным этапом в классификации временных рядов, ввиду присутствия временной составляющей, с которой сложнее работать.

Основные методы выделения характерных признаков временных рядов:

- методы сглаживания (МА, ЕМА)
- порождающие модели (AR, ARMA, ARIMA, HMM)
- выделение частотных характеристик (FFT, Wavelets)

Классификаторы:

- метрические алгоритмы (kNN)
- нейронные сети (MLP)
- деревья решений (С4.5)
- SVM

2. Нейронные сети

Универсальный инструмент для классификации статических данных.

Будучи биологически инспирированными, такие сети, аналогично мозгу, справляются с задачами классификации.

Тем не менее, их довольно сложно применять в динамическом контексте, хотя, казалось бы, это естественная задача, которую решает мозг любого живого существа каждый день.

Углубление уровня биологической подобности может принести хорошие плоды и это имеет смысл проверить.

3. Биологический нейрон

В первую очередь, настоящий нейрон - нелинейная система, динамика которой динамическая вероятностный Получая характер. электрические импульсы от других нейронов через синапсы, нейрон накапливает потенциал в теле клетки. Как следствие такой нейрон, определённой активности, C вероятностью, может сам выработать импульс, который передастся через аксон на синапсы других нейронов.

Некоторые особенности биологических нейронных сетей:

- Нейроны обмениваются между собой импульсами или, как их принято называть, спайками.
- Слабая связность 10^{11} ронной сети. В человеческом мозге присутствует порядка . Не смотря на это, среднее количество соединений одного нейрона с другими составляет около 7000.
- Вероятностная природа генерации спайков.
 Спайки носят ненадежный, вероятностный характер. Многими экспериментами подтверждается, что характер плотности распределения вероятности спайков на нейроне Пуассоновский.
- После выработки спайка нейрон уходит в рефрактерный период (порядка 2-30 мс), в течение которого вероятность спайка резко снижается.
- Адаптация нейрона к входным частотам спайков.
- Изменение весов синаптических связей в процессе обучения.

4. Модель спайкового нейрона

В основе модели спайкового нейрона лежит взвешенная сумма потенциалов с синапсов:

$$u(t) = \sum_{j} w_{j} \sum_{t_{j}^{f}} \alpha(t - t_{j}^{f})$$

 $u(t)\,$ - Потенциал на мембране нейрона

 w_{i}^{\prime} - Вес синапса ј (мВ)

lpha(t) - Функция постсинаптического потенциала (мВ) t_i^f - Время спайка на синапсе ј

(MC)

Динамика синапса описывается экспонентой, график которой выглядит таким образом:

здесь
$$t_j^f=0$$
 .

Плотность вероятности генерации спайка нелинейно зависит от потенциала (u) на мембране нейрона и имеет свойства Пуассоновской плотности.

Зависимость имеет выраженное увеличение вероятности генерации спайка в районе 15 мв - это характерный порог, преодолевая который, нейрон начинает генерировать большое

количество спайков:

5. Спайковые нейронные сети

Относительно новый класс нейронных сетей.

- Данные внутри сети представляются в виде спайков - импульсов, некоторое количество которых каждый нейрон производит в течение симуляции
- Каждый нейрон это динамическая система, преобразующая входные спайки в выходные.
- Нейроны соединяются в слабосвязную рекуррентную сеть
- Входные данные необходимо представить в виде набора спайков.
- Обучение без учителя

Помимо применения результатов такого рода исследований в реальных задачах, изучение спайковых сетей также вносит вклад в решение общей проблемы, стоящей перед научным сообществом — проблема особенности функционирования мозга.

<u>6. Обучение без учителя</u>

Вероятностная модель спайкового нейрона, позволяет вывести функцию правдоподобия:

$$L = I - \gamma D - \lambda \Psi$$

 $I\,$ - Совместная информация между входными и выходными спайками

Нейрона
 Гомеостатический параметр, который выражает расстояние между средней частотой нейрона и целевой частотой (5

герц в работе)

— Регуляризационный параметр, зависящий от веса нейрона.

Максимизация такой функции относительно весов увеличивает совместную информацию между входом и выходом нейрона и минимизирует гомеостатический и регуляри γ ци λ ный параметры.

и контролируют значимость последний двух членов (1 и 0.026 в работе).

Toyoizumi 2005, 2007

7. Построение классификатора

1) Преобразование входного временного ряда в спайковые последовательности:

2) Обучение без учителя. Формирование чувствительных полей.

Для сети с 100 входными нейронами и 100 нейронами сети:

3) Получение ответной спайковой последовательности:

4) Постобработка ответов

5) Классификация обычными методами (kNN, MLP)

Результаты:

Данные: synthetic control, 6 классов, размер обучающей выборки 300, размер тестирующей 300

Рейтинг ошибки для классификатора 1-NN:

