An Empirical Study of Skip-gram Features and Regularization for Learning on Sentiment Analysis

Cheng Li, Bingyu Wang, Virgil Pavlu and Javed A. Aslam College of Computer and Information Science Northeastern University

Sentiment Analysis

An Amazon Product Review

Sentiment Analysis

An IMDB Movie Review

Sentiment Analysis with Binary Text Classification Pipeline

Sentiment Analysis with Binary Text Classification Pipeline

Unigram (bag of words)
 capture sentiment indicator
 terms

Unigram (bag of words)
 capture sentiment indicator
 terms
 could not capture negations

Unigram (bag of words)
 capture sentiment indicator
 terms
 could not capture negations

I don't like this movie.

 Add Bi-grams capture negation-polarity word pairs

Unigram (bag of words)
 capture sentiment indicator
 terms
 could not capture negations

How could anyone sit through this movie?

Add Bi-grams
 capture negation-polarity word
 pairs
 capture two-words sentiment
 phrases

<how:1, could:1, sit through:1, anyone sit:1,...>
rd

Logistic Regression
Negative

Unigram (bag of words)
 capture sentiment indicator
 terms
 could not capture negations

Why does anyone waste time or m why did I waste time watching it?

Add Bi-grams
 capture negation-polarity word
 pairs
 capture two-words sentiment
 phrases

- Unigram (bag of words)
 capture sentiment indicator
 terms
 could not capture negations
- Don't waste your time on this movie.

- Add Bi-grams
 capture negation-polarity word
 pairs
 capture two-words sentiment
 phrases
- So annoying and such a waste of my time.

- Add tri-grams, quad-grams...
 capture sentiment phrases
 with many words
- A complete waste of time.

I wasted a lot of time on it.

I wasted too much time on it.

Difficulty with High Order n-grams

Many variations
 "waste your time"
 "waste of my time"
 "waste of time"
 "wasted a lot of time"
 "wasted too much time"
 increase the dimensionality

rare cases

"waste of time": 676 times in IMDB

"waste more time": 6 times

"waste your time": 4 times

insufficient data for parameter estimation

Skip-grams

- n-gram templates matched loosely
- Looseness parameterized by slop, the number of additional words
- n-gram = skip-gram with slop 0

Skip-gram Examples

skipgram and count		matched ngrams and count			
skip movie (slop 2)	42	skip this movie	28	skip this pointless movie	1
		skip the movie	8	skipping all the movies (of this sort)	1
		skip watching this movie	1		
it fail (slop 1)	358	it fails	279	it completely fails	5
		it even fails	5	it simply fails	3
whole thing (slop 1)	729	whole thing	682	whole horrific thing	1
		whole damn thing	5		
waste time (slop 1)	1562	waste time	109	waste of time	676
		waste your time	4	waste more time	6
only problem (slop 1)	1481	only problem	1378	only tiny problem	4
		only minor problem	11		
never leak (slop 2)	1053	never leak	545	never a urine leak (problem)	1
		never have leak	86	never have any leak	77
no smell (slop 1)	445	no smell	340	no medicine-like smell	1
		no bad smell	13	no annoying smell	5
it easy to clean and (slop 2)	314	it is easy to wipe clean and	3	it is easy to keep clean and	3
		it is so easy to clean and	16		
I have to return (slop 2)	216	I have to return	151	I finally have to return	1
		I have never had to return	1	I do not have to return	4
good service (slop 2)	209	good service	131	good price and service	1
		good and fast service	2		

Advantages of Skip-grams

- Group infrequent n-grams into a frequent skip-gram
- Allow n-grams to borrow strength from each other
- Easier learning
- Better generalization

Difficulties with Skip-grams

- Huge number
- Many are non-informative or noisy

skip-gram "I recommend" with *slop* 2 can match both "I highly recommend" and "I do not recommend"

Existing Use of Skip-grams in Sentiment Analysis

- Ask human assessors to pick informative skip-grams
 - x limited by available domain knowledge
 - x expensive
- Build dense word vectors on top of skip-grams
 - x information loss
 - x less interpretable

Goal of this Study

- Test whether skip-grams are helpful when used directly as features in sentiment analysis
- Test different automatic regularization/feature selection strategies
- Compare against n-grams and word vectors

Skip-gram Extraction

- Consider skip-grams with n<=5 and slop<=2
 <p>(5-grams with 2 additional words in between)
- Discard skip-grams with very low frequencies (<=5)

max <i>n</i>	max <i>slop</i>	# skip-grams on IMDB
1	0	2x10^4
2	0	1x10^5
3	0	2x10^5
5	0	4x10^5
2	1	3x10^5
3	1	9x10^5
5	1	1x10^6
2	2	6x10^5
3	2	2x10^6
5	2	3x10^6

L1 vs L2 regularization

- Skip-gram features: huge number, correlated
- L1: $\min_{w} |\log_{x} + \lambda ||w||_{1}$
 - ✓ shrink weights
 - ✓ select a subset of features

- compact model
- x select one out of several correlated features
- L2: $\min_{w} || \log_{x} + \lambda || w ||_{2}^{2}$
 - √ shrink weights
 - x use all features
 - ✓ spread weight among correlated features

L1+L2 regularization

- L1+L2: $\min_{w} loss + \lambda \alpha ||w||_1 + \lambda (1-\alpha)||w||_2^2$
 - ✓ shrink weights
 - ✓ select a subset of features

✓ spread weight among correlated features — robust model

Learning and Regularization

L2-regularized linear SVM

$$\min_{w} \sum_{i=1}^{N} (\max(0, 1 - y_i w^T x_i))^2 + \frac{\lambda_2^1}{2} ||w||_2^2$$

L1-regularized linear SVM

$$\min_{w} \sum_{i=1}^{N} (\max(0, 1 - y_i w^T x_i))^2 + \frac{\lambda ||w||_1}{||w||_1}$$

L2-regularized Logistic Regression

$$\min_{w} -\frac{1}{N} \sum_{i=1}^{N} y_{i} w^{T} x_{i} + \log(1 + e^{w^{T} x_{i}}) + \frac{\lambda_{\frac{1}{2}}^{1} ||w||_{\frac{1}{2}}^{2}}{||w||_{\frac{1}{2}}^{2}}$$

L1-regularized Logistic Regression

$$\min_{w} -\frac{1}{N} \sum_{i=1}^{N} y_i w^T x_i + \log(1 + e^{w^T x_i}) + \frac{\lambda ||w||_1}{|w|}$$

L1+L2-regularized Logistic Regression

$$\min_{w} -\frac{1}{N} \sum_{i=1}^{N} y_{i} w^{T} x_{i} + \log(1 + e^{w^{T} x_{i}}) + \lambda \alpha ||w||_{1} + \lambda (1 - \alpha) \frac{1}{2} ||w||_{2}^{2}$$

Datasets

Binary classification with neutral reviews ignored

dataset	positive	negative
IMDB	25,000 reviews with ratings 7-10	25,000 reviews with ratings 1-4
Amazon Baby	136,461 reviews	32,950 reviews
Product	with ratings 4-5	with ratings 1-2
Amazon Phone	47,970 reviews	22,241 reviews
Product	with ratings 4-5	with ratings 1-2

Classification Accuracy with Skip-gram Features

- Blue line: moving from unigrams to bigrams gives substantial improvement
- Blue line: using high-order n-grams gives marginal improvement
- Green and red lines: increasing *slop* from 0 to 1 and 2 gives further improvement
- max # features selected: L2: 10^6, L1: 10^4, L1+L2: 10^5

Features Used vs Accuracy

Observations on L1 vs L2

- L2: achieves better overall accuracy
 - Large training sets facilitate parameter estimation
 - Effective handling of correlated features
- L1: produces much smaller models
- L1+L2: good compromise

Skip-gram Feature Contribution

all features

selected features

weighted features

- Comparing left with middle: the fraction of unigrams increases; the fraction of slop 2 trigrams decreases. Many slop 2 trigrams are eliminated by L1.
- In right: The standard n-grams with slop=0 only contribute to 20% of the total weight, and the remaining 80% is due to skip-grams with non-zero slops.

Comparison with Word Vectors

	skip-gram	word vector
AMAZON BABY	96.85	88.84
AMAZON PHONE	92.58	85.38
IMDB	91.26	92.58 / 85.0

- Word vectors work extremely well on the given test set (92.58%), but poorly on random test sets (85%).

Other Results on IMDB

classifier	features	training documents	accuracy
LR with dropout regularization [21]	bigrams	25,000 labeled	91.31
NBSVM [23]	bigrams	25,000 labeled	91.22
SVM with L2 regularization	structural parse tree features + unigrams [16]	25,000 labeled	82.8
LR L1+L2 regularization	5-grams selected by compressive feature learning [20]	25,000 labeled	90.4
SVM	word vectors trained by WRRBM [6]	25,000 labeled	89.23
SVM	word vectors [15]	25,000 labeled $+$ 50,000 unlabeled	88.89
LR with dropout regularization [21]	bigrams	25,000 labeled $+$ 50,000 unlabeled	91.98
LR	paragraph vectors [14]	25,000 labeled $+$ 50,000 unlabeled	92.58
LR with L2 regularization	skip-grams	25,000 labeled	91.63
SVM with L2 regularization	skip-grams	25,000 labeled	91.71
LR with L1+L2 regularization	skip-grams	25,000 labeled	91.26

- Among the methods which only use labeled data, skip-grams achieved the highest accuracy

Conclusion

- Skip-grams group similar n-grams together, facilitating learning and generalization
- Using skip-grams achieves good sentiment analysis performance
- L1+L2 regularization reduces the number of features significantly while maintaining good accuracy
- Our code will be released soon at: https://github.com/cheng-li/pyramid

Thank You