Реакция перезарядки $dp \rightarrow (pp)n$

В. В. Глаголев¹, Г. Мартинска², Я. Мушински^{1,2}, Н .М. Пискунов¹, Й. Урбан²

Аннотация

Обсуждается отношение дифференциальных поперечных сечений перезарядки на дейтроне и нуклоне в области малых переданных импульсов с целью оценки спинзависящей части амплитуды $np \to pn$ перезарядки.

1 Введение

В последнее время прошли дискуссии на семинарах, посвященных вопросам извлечения информации о сечениях спинзависящей части np - рассеяния из реакций перезарядки на дейтроне. Возобновился интерес к подобным исследованиям, особенно в связи с возможностями ускорения дейтронов с энергией выше 1 ГэВ на нуклон на Нуклотроне ЛВЭ ОИЯИ. Продолжают обсуждаться старые идеи Померанчука и Чу [1], формализованные в работах Дина и др. Эти формулы выведены в определенных предположениях, а именно, при справедливости импульсного приближения и условия полноты. В работе Ледницкого и др. [2] показано, что при релятивистских энергиях эти предположения оправданы . Кроме того, при экспериментальном исследовании взаимодействия в конечном состоянии (ВКС)оказалось, что к эффекту ВКС очень чувствительны асимметрии распределений по углу $\alpha = (\vec{p_s}\vec{q})$, где $\vec{p_s}$ - импульс спектатора в системе покоя дейтрона, а \vec{q} - трехмерная передача от падающего нуклона к рассеянному. В работах [3, 4] было показано, что в области $|t| < 0.1 (\Gamma_9 B/c)^2$ и импульсов спектаторов меньших 0.1 ГэВ/с асимметрии, вызванные ВКС, практически отсутствуют, что хорошо видно как для прямого развала, так и для развала дейтрона с перезарядкой на рис. 1.

Это важно учитывать при продвижении в область более высоких энергий, в которой отсутствуют экспериментальные данные по *пр* - рассеянию. Выше 1 ГэВ имеются лишь предварительные результаты группы Дельта-сигма [5]. Кроме того, в связи с развитием поляризационных методов исследований в Дубне (Нуклотрон) и Юлихе (COSY), существенно расширяются возможности восстановления амплитуд и фаз нуклон-нуклонного рассеяния в области

¹ Объединенный Институт Ядерных Исследований, Дубна

 $^{^2}$ Университет П. Й. Шафарика, Кошице, Словакия

Рис. 1: Асимметрия по углу $\alpha=(\vec{p_s}\vec{q})$, где $\vec{p_s}$ - импульс спектатора в системе покоя дейтрона, а \vec{q} - трехмерная передача от падающего нуклона к рассеянному. Пустые кружки - реакция перезарядки, сплошными кружками обозначены данные для прямого развала.

энергий до и выше 1 ГэВ'а. В связи со сказанным, мы критически переосмысливаем представление экспериментальных данных по изучению реакции перезарядки на дейтроне $dp \to (pp)n$, полученных на водородной пузырьковой камере [6].

2 Эксперимент

Экспериментальный материал был получен с помощью 100-см водородной пузырьковой камеры на синхрофазотроне ЛВЭ ОИЯИ. Камера была облучена выведенным из ускорителя пучком дейтронов импульса $3.35~\Gamma$ эВ/с. После стандартной процедуры просмотра, измерений и идентификации была получена в условиях 4π -геометрии информация о 17 реакциях, представленных в таблице 1.

	реакция	число событий
1.	ppn	102778
2.	$ppn\pi^0$	31295
3.	$p\pi^+nn$	65284
4.	dp	16184
5.	$dp\pi^0$	3950
6.	$dp\pi^0\pi^0$	1839
7.	$d\pi^+ n$	4963
8.	$d\pi^+ n\pi^0$	1843
9.	$\pi^+\pi^+nn$	315
10.	$ppp\pi^-$	5487
11.	$ppp\pi-\pi^0$	167
12.	$ppp\pi^-\pi^0\pi^0$	67
13.	$pp\pi^+\pi^-n$	1163
14.	$pp\pi^+\pi^-n\pi^0$	49
15.	$dp\pi^+\pi^-$	576
16.	$dp\pi^+\pi^-\pi^0$	39
17.	$dp\pi^+\pi^-\pi^0\pi^0$	1414

Таблица 1: Перечень наблюдаемых реакций

Видно, что около половины всех событий составляла реакция безмезонного развала дейтрона $dp \to ppn$. Эту реакцию можно разделить на два класса прямой развал $dp \to (pn)p$ и перезарядку $dp \to (pp)n$. К перезарядке отнесены события, в которых самым быстрым из вторичных нуклонов в системе покоя дейтрона являлся нейтрон. Таких событий было 17512, что соответствовало поперечному сечению (5.85 ± 0.05) мбн. При этом миллибарн-эквивалент события определялся исходя из полного сечения dp - заимодействий [7] с учетом потерь событий упругого dp - рассеяния. Систематическая ошибка, связанная с оценкой потерь в упругом dp - рассеянии составляла около 4%.

Заметим, что это сечение включает в себя часть событий квази pp - рассеяния с образованием промежуточной Δ -изобары. Ниже мы обсудим соответствующую поправку. Инвариантную величину t экспериментально определяем

как переданный 4-импульс от протона мишени к нейтрону в лабораторной системе координат.

Напомним некоторые из теоретических формул [8, 9]. Дифференциальное поперечное сечение $np \to pn$ рассеяния может быть представлено в виде суммы спин-независящей (индекс SI) и спин-зависящей (индекс SD) частей:

$$(d\sigma/dt)_{np\to pn} = (d\sigma/dt)_{np\to pn}^{SI} + (d\sigma/dt)_{np\to pn}^{SD}$$

Амплитуда элементарной реакции перезарядки $pn \to np$ может быть записана как:

$$f_{ce} = a_{ce} + b_{ce}(\sigma \vec{n})(\sigma_i \vec{n}) + c_{ce}[(\sigma \vec{n}) + (\sigma_i \vec{n})] + d_{ce}[(\sigma \vec{m})(\sigma_i \vec{m})] + e_{ce}[(\sigma \vec{l})(\sigma_i \vec{l})],$$

где операторы σ и σ_i являются матрицами Паули падающей частицы (нейтрон) и і-того нуклона (протон), коэффициенты $a_{ce}, b_{ce}, c_{ce}, d_{ce}, e_{ce}$ являются комплексными функциями энергии и угла рассеяния взаимодействующих частиц.

$$ec{n} = rac{ec{k} imes ec{k'}}{|ec{k} imes ec{k'}|}, \quad ec{m} = rac{ec{k'} - ec{k}}{|ec{k'} - ec{k}|}, \quad ec{l} = rac{ec{k'} + ec{k}}{|ec{k'} + ec{k}|}$$

 \vec{k} и $\vec{k'}$ - импульсы падающего и рассеянного нуклонов в CMS.

Заметим, что имеются по крайней мере два инвариантных относительно обращения времени и пространства типа представления матрицы рассеяния - это представление Гольдбергера [10] и представление Быстрицкого, Легара, Винтерница [11], которые равнозначны.

Для спин-независящей и спин-зависящей частей дифференциального поперечного сечения получаем:

$$(d\sigma/dt)_{np\to pn}^{SI} = (\pi/p^2)|a_{ce}|^2$$
$$(d\sigma/dt)_{np\to pn}^{SD} = (\pi/p^2)[|b_{ce}|^2 + |c_{ce}|^2 + |d_{ce}|^2 + |e_{ce}|^2],$$

где р - импульс в системе центра масс NN-системы.

Соотношение между поперечным сечением периферической перезарядки на дейтроне $dp \to (pp)n$ и процессом элементарной перезарядки $pn \to np$ обсуждалось во многих работах. Математический формализм, развитый в [8, 9] позволяет в рамках импульсного приближения записать дифференциальное поперечное сечение перезарядки на дейтроне в виде:

$$(d\sigma/dt)_{dp\rightarrow(pp)n} = [1-S(t)](d\sigma/dt)_{np\rightarrow pn}^{SI} + [1-1/3S(t)](d\sigma/dt)_{np\rightarrow pn}^{SD}$$

Здесь $S(t) = \int [\Psi(r)]^2 e^{-iqr} d^3r$ обозначает форм-фактор дейтрона и $q^2 = t$ квадрат четырехмерного переданного импульса. Из этой формулы следует, что при нулевом переданном импульсе от протона-мишени к нейтрону, т.е. при угле рассеяния 180° в ситеме центра масс из за того, что S(0)=1, дифференциальное поперечное сечение равно:

$$(d\sigma/dt)_{dp\to(pp)n} = 2/3(d\sigma/dt)_{np\to pn}^{SD}$$

Таким образом, реакция перезарядки неполяризованного дейтрона на неполяризованном протоне-мишени при нулевой передаче (t=0) полностью определяется спин-зависящей частью элементарного $np \to pn$ рассеяния назад в сци (180°) . То есть, дейтрон выступает как спиновый фильтр. Следует заметить, что этот результат остается справедливым и при учете D-состояния дейтрона [2].

В условиях коллинеарной кинематики $|c_{ce}|^2 = sin^2\theta = 0$ и $|b_{ce} - e_{ce}|^2 = sin^2\theta = 0$, т.е. для рассеяния назад (перезарядки) получим:

$$(d\sigma/dt)_{dp\to(pp)n} = 2/3(\pi/p^2)[2|b_{ce}|^2 + |d_{ce}|^2].$$

Таким образом, изучение процесса $dp \to (pp)n$ при малых переданных импульсах позволяет оценить спин-зависящую часть элементарной $np \to pn$ реакции, то есть сумму амплитуд $2|b_{ce}|^2 + |d_{ce}|^2$.

Из наших экспериментальных данных мы оцениваем величину дифференциального поперечного сечения для перезарядки на дейтроне при t=0 и сравниваем ее с имеющимися в литературе данными по этой величине для $np \to pn$ рассеяния при той же энергии. Самыми близкими по энергии данными являются измерения на ускорителе Сатурн, сделанные Бизардом и др. [12, 13].

Рис. 2: Экстраполяция данных Сакле к t = 0.

На рис. 2 мы приводим дифференциальные поперечные сечения из этой работы в области импульсов (1.4 - 1.95) ГэВ/с экстраполированные к t=0 выражением

$$d\sigma/dt = a\exp(bt + ct^2).$$

Экспоненциальный фит этих значений дал для нашей энергии 1.675 ГэB/с на нуклон величину $d\sigma/dt|_{t=0}=54.7\pm0.2$ мбн/ $(\Gamma$ эB/с)². К полученному значению

мы и будем в дальнейшем относить нашу оценку дифференциального поперечного сечения для квазиупругой $dp \to (pp)n$ перезарядки при t=0. Заметим, что систематическая ошибка в данных Бизарда и др. составляла 5%.

Рис. 3: Диаграмма: импульс нуклона-спектатора в системе покоя дейтрона в зависимости от угла его вылета в лабораторной системе координат. Под диаграммой показаны ее проекции. Масштаб распределений выбран таким, чтобы показать их подобие.

Воспользуемся кинематической корреляцией между полярным углом вылета нуклона-спектатора в лабораторной системе координат и его импульсом в системе покоя дейтрона, рис. 3

Видно, что при углах меньших 5 градусов лежит основная часть событий, соответствующих квазинуклонному рассеянию. В случае t=0 два протона в лабораторной системе координат имеют практически одинаковые импульсы $\vec{p}_1=\vec{p}_2=(1/2)\vec{p}_d$. Для набора пар протонов, попадающих в конус с раствором 5°, строится распределение $d\sigma/dt$ с учетом миллибарн-эквивалента и поправки на поток, равной отношению полного числа спектаторных нуклонов к числу спектаторов в конусе.

В связи с заметным вкладом событий с промежуточной Δ -изобарой [14, 4], основная часть которых является следствием квази-рр столкновений, идущих через Δ^{++} и Δ^{+-} изобары (см. диаграммы а) и b) на рис. 4), необходимо было бы ввести поправку на квази-протонные столкновения.

Рис. 4: Диаграммы Фейнмана для реакции $dp \to ppn$ с участием промежуточной Δ -изобары

На рис. 5 приведено сравнение распределений по импульсам спектаторов из прямого развала и перезарядки. Виден относительный избыток в спектре протонов-спектаторов из перезарядки, связанный с вкладом промежуточных изобарных состояний. Из сопоставления рисунков 3 и 5 видно, что этот избыток находится в области импульсов больших $0.2~\Gamma$ эВ/с, т.е. вне конуса с углом раствора до 5 градусов и не влияет на дифференциальное сечение при t=0.

Дифференциальное сечение фитированное тем же способом, как данные $np \to pn$, приводится на рис. 6. Экстраполяция к t=0 дала значение $d\sigma/dt|_{t=0}=30.2\pm4.1~{\rm M6H/(\Gamma B/c)^2}.$

Рис. 5: Импульсные распределения спектаторов из прямого канала и перезарядки нормированные на максимум.

Введем отношение дифференциальных сечений для рассеяния вперед (перезарядка) на дейтроне и протоне $R=\frac{(d\sigma/dt)_{dp}}{(d\sigma/dt)_{np}}=0.55\pm0.08$. В высказанных выше предположениях оно может быть приравнено к $\frac{2}{3}\times\frac{(d\sigma/dt)_{np}^{SD}}{(d\sigma/dt)_{np}}$ и, соответственно, доля спиннезависящей части сечения упругой $np\to pn$ перезарядки $R_{np}^{ID}=\frac{(d\sigma/dt)_{np}^{SI}}{(d\sigma/dt)_{np}^{SD}}=\frac{2}{3\times R}-1=0.21\pm0.17$.

3 Заключение

- 1. Критически переработано представление экспериментальных данных по реакции $dp \to (pp)n$, полученных на водородной пузырьковой камере.
- 2. Получено отношение дифференциальных сечений перезарядки под нулем градусов в реакции $dp \to (pp)n$ и $np \to pn$: $R=0.55\pm0.08$, что свидетельствует о преобладающем вкладе спин-зависящей части сечения $np \to pn$ рассеяния.
- 3. Важным является продолжение исследований в области более высоких энергий на установке Стрела.

Рис. 6: Экстраполяция дифференциального сечения к t = 0.

Авторы благодарят за полезные обсуждения Н. Б. Ладыгину, Ф. Легара и В. Л. Любошица.

Данная работа выполнена при поддержке Slovak grant agency 1/1020/04.

Список литературы

- [1] I. Pomeranchuk, Sov. JETF 21 (1951) 1113; G.F.Chew, Phys.Rev. 84 (1951)710
- [2] R.Lednicky, V.L.Lyuboshitz, V.V.Lyuboshitz, ISHEPP...2004
- [3] B.S.Aladashvili et al, J.Phys.G: Nucl.Phys., Vol.3, (1977)pp.7-20
- [4] B.S.Aladashvili et al, J.Phys.G: Nucl.Phys.(1977)pp.1225-1240
- [5] V.I.Sharov et al. Czech.J.Phys.55(2005) A283-A305
- [6] V.V.Glagolev et al, Eur.Phys.J A 15, 471-475 (2002)
- [7] D.V.Bugg et al, Phys.Rev. 146,pp 980-992 (1966)
- [8] N.W.Dean, Phys.Rev.D 5 (1972)pp. 1661,2832.
- [9] D.Bugg, C.Wilkin, Nucl. Phys. A 467 (1987) 575

- [10] M.Goldberger, K.Watson, Collision Theory, Willey, New York (1966)
- [11] J.Bystricky, F.Lehar and P.Winternitz, J.Phys. (Paris) 39 (1978) 1.
- [12] G.Bizard et al Nuclear Physics B85(1975) 14-30
- [13] J.Bystrycky, F.Lehar, Nucleon-Nucleon Scattering data, editors H.Behrens and G.Ebel, Fachinformationszentrum Karlsruhe, 1978 Edition, N 11-1, p.521
- [14] B.S.Aladashvili et.al, Nucl.Phys. A274,486 (1976)

The Charge - Exchange Reaction $dp \rightarrow (pp)n$

V. V. Glagolev 1, G. Martinská 2, J. Mušinský $^{1,2},$ N. M. Piskunov 1, J. Urbán 2

Abstract

An estimation of the spin dependent part of the $np \to pn$ exchange amplitude was made on the basis of the $dp \to (pp)n$ data, taken at 1.67 GeV/c per nucleon in a full solid angle arrangement. The $np \to pn$ amplitude turned out to be nearly entirely spin dependent. This result shows new possibilities for the experiments in polarized deuteron beams and polarized proton target.

 $^{^{\}rm 1}$ Joint Institute for Nuclear Research, 141980 Dubna, Russia

² University of P. J. Šafárik, Jesenná 5, 04154 Košice, Slovak Republic