Модель и алгоритмы прогнозирования состояния подшипника качения

Выступающий: О.А.Яковлев Руководитель: доцент, к.т.н. В.Е.Гай

Федеральное Государственное Бюджетное Учреждение Высшего Образования
"Нижегородский Государственный Технический Университет им. Р.Е. Алексеева"

Нижний Новгород, 2017

Цель и задачи исследования

Цель: разработка метода прогнозирования состояния подшипника качения по вибрационному сигналу

Задачи:

- Исследование существующие методы прогнозирования состояния подшипника
- Разработка нового метода прогнозирования
- Выполнение вычислительного эксперимента с целью проверки алгоритма и сравнения его с аналогами

Научная новизна

- Признаковое описание вибрационного сигнала
- Информационная модель оценки состояния подшипника

Информационная модель алгоритма.

Текущее состояние подшипнка

Оценка времени пребывания в текщем и предшествующих состояниях

Расчет спектральных коэффициентов

Нормализованный сигнал

Расчет СКО

Поиск аномалий в массиве СКО

Расчет кумулятивного среднеквадратического

Для аномалий рассчитывается кумулятивное среднеквадратическое отклонение λ .

$$\lambda(T) = \sum_{t=0}^{t$$

.

Аппроксимация

- Каждый из массивов λ разбивается на M сегментов.
- Для каждого из сегментов с помощью метода опорных векторов вычисляется линейная аппроксимирующая функция с коэффициентом наклона k.

Классификация

- Признаковое описание массив коэффициентов $\{k_{ij}\}, i \in \overline{1, M}, j \in \overline{1, 16}$.
- В качестве классификатора используется метод опорных векторов.
- Определяется принадлежность одному из трех классов (нормальное состояние, изношенное состояние, предполомочное состояние)

Вычислительный эксперимент

Признаки	Метод классификации	R, в %	R, в %
		состояние 1	состояние 2
ПВР	CMM	79,58	80,65
ПВР	MOB	97,7	98,24
CKO	CMM	95	97,22
KCC	MOB	95,13	98,27

Вычислительный эксперимент (сигнал зашумлен)

Уровень шума, дБ	R, в %	R, в %
в ровень шума, дв	состояние 1	состояние 2
20	94,38	97,33
10	93,21	96,02
0.1	78,88	79,58

Спасибо за внимание!