МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Программирование»

ТЕМА: УСЛОВИЯ, ЦИКЛЫ, ОПЕРАТОР SWITCH

Студентка гр. 0382	Чегодаева	Чегодаева Е.А.	
Преподаватель	Жангиро	в Т.Р.	

Санкт-Петербург 2020

Цель работы.

Изучение базовых управляющих конструкций языки Си.

Задание.

Вариант 4.

Напишите программу, выделив каждую подзадачу в отдельную функцию.

Реализуйте программу, на вход которой подается одно из значений 0, 1, 2, 3 и массив целых чисел размера не больше 100. Числа разделены пробелами. Строка заканчивается символом перевода строки.

В зависимости от значения, функция должна выводить следующее:

- 0 : индекс первого чётного элемента. (index first even)
- 1 : индекс последнего нечётного элемента. (index last odd)
- 2 : Найти сумму модулей элементов массива, расположенных от первого чётного элемента и до последнего нечётного, включая первый и не включая последний. (sum_between_even_odd)
- 3 : Найти сумму модулей элементов массива, расположенных до первого чётного элемента (не включая элемент) и после последнего нечётного (включая элемент). (sum_before_even_and_after_odd) иначе необходимо вывести строку "Данные некорректны".

Основные теоретические положения.

Из библиотеки stdio.h: функции scanf() и printf() (Ввод и вывод соответственно).

Из библиотеки stdlib.h: функция abs() (Модуль числа).

Операторы: if() $\{\}$ else $\{\}$, for () $\{\}$, while() $\{\}$, switch() $\{\}$.

Выполнение работы.

В функции $main\{\}$ с помощью функции $skanf\{\}$ присваивается целочисленное значение переменной n, объявленной ранее. Значение переменной n определяет то, к какой функции будет обращение в дальнейшем (или вывод "Данные некорректны"). Затем в теле функции объявляется целочисленный массив arr размером N (N = 100), переменная len, которая хранит количество элементов массива (изначально len = 0), символьная переменная gap = 0 ". Далее вводится сам массив посредствам цикла while(n), где с помощью функции $skanf\{n\}$ вводится каждый целочисленный элемент массива $arr\{n\}$ и идёт

счёт элементов этого массива. После этого оператор $switch(n)\{\}$ выполняет различные команды, зависящие от значения переменной n.

При n=0: происходит обращение к функции $index_first_even(arr, len)$ {}. Функция получает на вход массив arr и значение переменной len. Происходит перебор каждого элемента массива посредствам цикла for(){} и поиск первого чётного элемента массива (остаток от деления на 2 равен 0). Для того, что бы отрицательные элементы массива так же рассматривались в переборе используется функция abs(). Функция $index_first_even$ возвращает индекс найденного элемента.

При n = 1: происходит обращение к функции $index_last_odd(arr, len)$ {}. Функция получает на вход массив arr и значение переменной len. Аналогично функции $index_first_even$ происходит перебор элементов массива, но в данном случае с конца. Поиск последнего нечётного элемента (остаток от деления на 2 равен 1) осуществляется так же с использованием функции abs(). Функция $index_last_odd$ возвращает индекс найденного элемента.

При n = 2: происходит обращение к функции $sum_between_even_odd$ (arr, len){}. Функция получает на вход массив arr и значение переменной len. Объявляется целочисленная переменная sum, далее происходит перебор элементов массива посредствам цикла for(){} (Диапазон считается от первого чётного элемента (включая) и до последнего нечетного (не включая)). В переменную sum записывается сумма модулей элементов массива arr в данном диапазоне. Границы диапазона счёта определяют функции $index_first_even$ и $index_last_odd$. Функция $sum_between_even_odd$ возвращает значение переменной sum.

При n=3: происходит обращение к функции $sum_before_even_and_after_odd\ (arr, len)\{\}$. Функция получает на вход массив arr и значение переменной len. Объявляется целочисленная переменная summ, далее происходит перебор элементов массива посредствам цикла $for()\{\}$ (Диапазон захватывает весь массив). В переменную summ записывается сумма модулей элементов массива arr в данном диапазоне. После этого, из переменной summ

вычитается значение, возвращённое функцией *sum_between_even_odd*, для получения суммы модулей элементов в диапазоне, данном в задании (От начала до первого чётного элемента (не включая) и от последнего нечётного элемента (включая) до конца массива). Функция *sum_before_even_and_after_odd* возвращает значение переменной *summ*.

Возвращаясь к функции $main()\{\}$, точнее оператору $switch()\{\}$ - при вводе определённого значения n оператор обращается к соответствующей функции n, с помощью функции printf(), выводит возвращённое значение (или сообщении о некорректных данных, при наличии таких), для выхода из оператора реализуется break.

Разработанный программный код см. в приложении А.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

таомица т тезультаты тестирования				
№ п/п	Входные данные	Выходные данные	Комментарии	
1.	0 1 2 3 4 5 6 7 8 9 10\n	0	Ответ верный.	
2.	1 1 2 3 4 5 6 7 8 9 10\n	8	Ответ верный.	
3.	2 1 2 3 4 5 6 7 8 9 10\n	35	Ответ верный.	
4.	3 1 2 3 4 5 6 7 8 9 10\n	10	Ответ верный.	
5.	8 1 2 3 4 5 6 7 8 9 10\n	данные некорректны	Ответ верный.	
6.	1 -1 -1 -1 -1 -1 -3 -4\n	6	Ответ верный.	
7.	3 -1 -2 -3 -4 -5 -1 -2 -3\n	4	Ответ верный.	
8.	2 -34 5 78 -9 0 -32 1 4 15 -3 -3 8 9 34\n	192	Ответ верный.	
9.	3 5 7 9 33 4 77 121 67 -86 -15 76 0 32 -78 36 42 17 26 -17 -90 -9 16 28 14\n		Ответ верный.	
10.	1 0 0 0 0 0 0 0 0 0 -2 -4 -6 7 0 0 0\n	12	Ответ верный.	

Выводы.

Были изучены базовые управляющие конструкции языка Си.

Разработана программа, выполняющая считывание с клавиатуры исходных данных с помощью функции scanf() и цикла $while()\{\}$, для обработки команд пользователя использовались: условный оператор if, циклы $for()\{\}$ и $while()\{\}$, оператор множественного выбора $switch()\{\}$, функция abs(), функции, обрабатывающие входные данные, функция printf().

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.c #include <stdio.h> #include <stdlib.h> #define N 100 int index_first_even(int arr[], int len){ for (int i=0; i<len; i++){ $if((abs(arr[i]))\%2==0){$ return i; } } int index_last_odd(int arr[], int len){ len = len -1; for (int i = len; i > = 0; i - -) $if((abs(arr[i]))\%2==1){$ return i; } } int sum_between_even_odd(int arr[], int len){ int sum=0; for (int i=index_first_even(arr, len); i<index_last_odd(arr, len); i++){ sum=sum+abs(arr[i]); } return sum; int sum_before_even_and_after_odd(int arr[], int len){ int summ=0; for (int i = 0; i < len; i++){ summ=summ+abs(arr[i]); summ=summ-sum_between_even_odd(arr, len); return summ; int main(){ int n; scanf("%d", &n); int arr[N]; int len=0; int i=0; char gap='';

```
while(i<N && gap==' '){
  scanf("%i%c", &arr[i], &gap);
  len=len+1;
  i=i+1;
}
switch (n){
  case 0:
    printf("%d\n",index_first_even(arr,len));
    break;
  case 1:
    printf("%d\n",index_last_odd(arr,len) );
    break;
  case 2:
    printf("%d\n",sum_between_even_odd(arr,len));
    break;
  case 3:
    printf("%d\n",sum_before_even_and_after_odd(arr,len));
    break;
  default:
    printf("Данные некорректны\n");
    break;
}
return 0;
```