Guía de Ejercicios Lógica

I.- Ejercitación Básica y General

- 1.- Escriba en forma simbólica los siguientes enunciados
- a) Si las exportaciones disminuyen entonces bajarán las utilidades
- b) Los precios son altos si y sólo sí los costos aumentan
- c) Si la producción aumenta entonces bajarán los precios
- d) Si aumenta la demanda esto implica que aumenta la oferta y viceversa
- e) Si la contaminación aumenta entonces existirá restricción vehicular adicional
- 2.- Si p y r son proposiciones verdaderas y q es falsa ,determine el valor de verdad de :
- a) [$(p \land \sim q) v \sim r$] $\Rightarrow q$
- b) $[(\sim r \vee q) \wedge (r \vee \sim p)] \Leftrightarrow \sim r$
- c) [(\sim p \Rightarrow q) \Rightarrow \sim r] v [\sim q \Rightarrow r]
- 3.- ¿ Qué condiciones debe satisfacer p y q para que la siguiente proposición sea :
- a) $[(q \Leftrightarrow p) \land \sim q] \Rightarrow (p \land \sim q)$ Falsa
- b) $[(\sim p \Rightarrow q) \Rightarrow \sim r] \vee [\sim q \Rightarrow r]$ Falsa
- c) $\{ \sim p \land (p \lor q) \} \land [p \Leftrightarrow q]$ Verdadera
- 4.- Sean p, q, r, tres proposiciones tales que r es falsa, p $\Leftrightarrow \sim$ q y \Rightarrow r son verdaderas, deducir el valor de verdad de p.
- 5.- Cuál de las siguientes expresiones son lógicamente equivalentes a

$$(\sim p v \sim q) \wedge r$$

- a) $p \Rightarrow (\sim q \wedge r)$
- b) $(p \Rightarrow q) \wedge r$
- c) $(p \Rightarrow \sim q) \wedge r$
- d) $p \Rightarrow (q v r)$

6.- Considere la proposición p (x) : x es un número mayor o igual que -2 y menor que 3 . Determine los valores de verdad de .

a) (
$$\forall$$
 x) (x \in E) p(x) si E = {-2, -1, 0}
b) (\exists x) (x \in F) p (x) si F = { 3,4,5}

- 7.- Si la proposición p es verdadera y la proposición q es falsa, entonces de las siguientes afirmaciones es (son) correcta (s):
- I p ⇒ q es una proposición verdadera
- II p ⇔ q es una proposición falsa
- III ~p v q es una proposición verdadera
- 8.- La negación de la proposición p v q es :
- I ~pvq
- II ~p ∧ ~q
- III ~p v ~q
- 9.- Sean p y q dos proposiciones distintas, si (p v q) es falsa entonces
- a) p es verdadera y q es falsa
- b) p es verdadera y q es verdadera
- c) p es falsa y q es falsa
- d) p es falsa y q es verdadera
- e) Ninguna de las anteriores
- 10.- Dada la proposición q = " a ningún niño le gustan las" entonces escriba la preposición $\sim q$
- 11.- Si la proposición p es verdadera (V) y la proposición q es verdadera (V) . De las expresiones siguientes cuál (es) es(son) correcta(s) :
- a) $p \Rightarrow q = V$
- b) $p \wedge q = F$
- c) p v q = F
- d) $\sim p \wedge q = V$

- 12.- Sea $P(x) = x + 5 \le 9$, $x \in IN$. Señale el conjunto validez de P(x).
- 13.- Dadas las proposiciones: p = José es rico; q = José es avaro. La proposición simbólica que expresa: " Si José es rico, entonces es avaro "
- 14.- Sea P (x) = x aumentado en 9, es mayor o igual que 13". De acuerdo a esta proposición es incorrecto señalar que :
- a) \exists '. x que cumple p(x)
- b) $\forall x > 4$ se cumple p(x)
- c) $\exists x \le 4 \text{ se cumple } p(x)$
- d) $\forall x > 14$ se cumple p(x)
- 15.- Sean las proposiciones:
 - p: la computación es fácil
 - q: los ingenieros deben saber computación

Entonces, traduzca a lenguaje verbal las proposiciones siguientes y ¿Cuál(es) a su juicio representa(n) una expresión aceptable en el sentido cotidiano?

- a) $p \wedge q$
- b) \sim (p v q)
- c) \sim (q v \sim p)
- d) \sim (p v \sim q)
- e) $p \Rightarrow q$
- 16.- Se sabe que la proposición: $[(p \ v \ q) \land p] \Rightarrow [(r \ v \ q) \Leftrightarrow p]$ es falsa. Determinar los valores veritativos de las proposiciones:
- a) p, q, r
- b) $[(p \land \sim q) \Rightarrow (r \lor p)] \Leftrightarrow [\sim q (r \lor p)]$
- 17.- Construir las tablas de verdad de y verificar cuales de ellas son tautologías.
- a) $[(p \land \sim q) \Rightarrow q] \Leftrightarrow (p \Rightarrow q)$
- b) $(p \Rightarrow q) \Leftrightarrow [(\sim p \Rightarrow \sim q)]$
- c) $[p \land (p \Rightarrow q)] \Rightarrow q$

18.- Deduzca utilizando propiedades conocidas que la proposición:

$$[(p \land \sim q) \lor (p \land r)] \Rightarrow (q \land r) \text{ es la negación de: } \sim (p \Rightarrow q)$$

II.- Tautología ,Contingencia o Contradicción

Demuestre por medio de tablas de verdad si la siguientes proposiciones son Tautología (T) Contingencia (k) o Contradicción (C)

19.-
$$[(p \Rightarrow q) \land \sim p] \Rightarrow \sim q$$

20.-
$$[(p \lor q) \ r] \Leftrightarrow [(p' \Leftrightarrow q') \lor r']$$

21.-
$$\sim \{ [\sim p \land (\sim q \lor p)] \Rightarrow q \}$$

22.- [(a v b)
$$\land$$
 (a v c)] \Leftrightarrow [a v (b \land c)]

23.-
$$[(a \Rightarrow b) \land (b \Rightarrow c)] \Leftrightarrow (a \Rightarrow c)$$

24.- [
$$(p \land \sim q) \lor (p \land r)$$
] \Rightarrow $(q \land r)$ es la negación de: $\sim (p \Rightarrow q)$

III.- Esquemas Equivalentes

Se dice que son esquemas equivalentes cuando los valores veritativos de ambas tablas son iguales. Determine si las siguientes proposiciones son equivalentes o no.

25.-
$$[(p \land \sim q) \lor \sim (q \land \sim p)] con [(p \Rightarrow q) \Rightarrow (q \Rightarrow p)]$$

26.-
$$(p \Leftrightarrow q)$$
 con $(\sim p \Leftrightarrow \sim q)$

27.-
$$[p \Rightarrow (q \lor r)] con [(p \Rightarrow q) \lor (q \Rightarrow r)]$$

28.-
$$[p \Rightarrow (q \wedge r)]$$
 con $[\sim p \ v \ (q \wedge r)]$

30.- Probar que las tres proposiciones siguientes son equivalentes:

$$p \Rightarrow (q \ v \ r)$$
$$(p \land \sim q) \Rightarrow r$$

$$(p \Rightarrow q) \ v \ (p \Rightarrow r)$$

- 31.- Probar que $\sim p$ es equivalente con $[(p \lor q) \Rightarrow (\sim p \land q)] \land (p \Rightarrow q)$
- 32.- Transformar la proposición: p $\Rightarrow \sim (\sim q \Rightarrow r)$ en otra equivalente que contenga sólo conectivos " \wedge " y " \sim "

IV.- Simplificar

Simplifique las siguientes proposiciones usando álgebra lógica:

33.-
$$p \Rightarrow [\sim q \Rightarrow (p \lor q)]$$

35.-
$$\sim$$
 [(\sim p \Rightarrow q) \Leftrightarrow \sim (p v \sim q)]

36.-
$$p \land [(q \land \sim p) \Rightarrow (p \lor \sim q)]$$

37.- a v [(b
$$\Rightarrow \sim$$
b) \land (a $\Rightarrow \sim$ a)]

V.- Uso de Propiedades o Teoremas Lógicos

Demuestre las siguientes equivalencias utilizando las propiedades o teoremas de lógica.

38.- [[(
$$\sim q \ v \ r$$
) $\Rightarrow q$] $(p \land r)$] \Leftrightarrow [($\sim q \ v \ p$) \land ($\sim q \ v \ r$)]

39.-
$$[(p \Rightarrow q) \land (\sim p \Rightarrow q)] \Leftrightarrow q$$

40.-
$$[(p \Rightarrow q) \land (p \Rightarrow r)]] \Leftrightarrow [p \Rightarrow (q \land r)]$$

41.-
$$[(p \ q) \Rightarrow (p \land q)] \Leftrightarrow (p \Leftrightarrow q)$$

42.-
$$[(p \Leftrightarrow \sim q) \land (q \land Np)] \Leftrightarrow N (q \Rightarrow p)$$

43.-
$$[(p \land \sim q) \lor (p \land r)] \Rightarrow (q \land r)$$
 es la negación de: $\sim (p \Rightarrow q)$

44.-
$$(p \Rightarrow q) \Leftrightarrow [(\sim q \Rightarrow \sim p)$$

$$45.\text{- }[(\sim(p\land q)) \Rightarrow r] \Leftrightarrow \left[\ \sim [(p \Rightarrow \sim q) \land \sim r] \right.$$