Probleme bei IPv4 sind Gründe für die Einführung von IPv6

- IPv4 Adressen sind sehr knapp aus
- fragmentierte Adressbereiche und dadurch große Routingtabellen erschweren das Routing
- geringer Leistungsumfang von IPv4, da sehr altes Protokoll
- fehlende Autokonfiguration
- fehlende Flusssteuerungsmechanismen z.B. zur Priorisierung von Daten
- Sicherheit muss über externe Protokolle realisiert werden

Eigenschaften von IPv6

- Adresslänge 128 Bit --> 2¹²⁸ Adressen (340.282.366.920.938.463.463.374.607.431.768.211.456 Stück)
- Subnetting und NAT sind nicht mehr nötig, da genügend Adressen vorhanden sind
- es gibt keine Broadcasts, stattdessen wird intensiv Multicast verwendet
- leistungsfähige Autokonfiguration (ähnlich APIPA), in einfachen Netzen ist DHCP dadurch unnötig
- eingebaute Sicherheit über IPsec ermöglicht Authentizität und Vertraulichkeit
- Unterstützung von neuen Techniken wie Quality of Service (QoS) und Multicasting
- ICMPv6, um die erweiterten Funktionen zu steuern
- vereinfachter Header mit fester Größe ermöglicht schnellere Verarbeitung im Router
- Erweiterung des Headers über Extension Headers

IPv6-Header

Aufbau einer IPv6-Adresse

eine IPv6-Adresse besteht aus:

- Prefix (Netzanteil) und
- Interface Identifier (IID, Hostanteil, Suffix)

Achtung: Der Interface Identifier ist immer 64 Bit breit!

IPv6-Adressnotation

- Aufteilung der 128 Bit in 8 Blöcke zu je 16 Bit, hexadezimale Darstellung, Trennung durch Doppelpunkte
- pro Block können führende Nullen weggelassen werden
 2001:0db8:0000:08d3:0000:8a2e:0070:7344 wird zu 2001:db8:0:8d3:0:8a2e:70:7344
- ein oder mehrere aufeinander folgende Blöcke, deren Wert 0000 beträgt, dürfen ausgelassen und durch zwei Doppelpunkte ersetzt werden. Wegen der Eindeutigkeit darf dies **nur einmal angewendet** werden! z.B: 2001:0db8:0000:0000:0000:0000:1428:57ab wird zu 2001:db8::1428:57ab
- URL-Angaben mit IPv6-Adressen müssen geklammert werden: http://[2001:db8::1428:57ab] für alternativen Port: http://[2001:db8::1428:57ab]:8080
- Netzwerkadressen werden (wie bei IPv4 in CIDR-Schreibweise) als *Prefix* dargestellt:
 2001:db8:1234::/48 ist ein Subnetz mit dem Adressbereich
 2001:db8:1234:0000:0000:0000:0000 bis 2001:db8:1234:fffff:ffff:ffff:ffff

IPv6-Adressbereiche und Adressarten

- 2000::/3 *Global Unicast* sind routbare und global eindeutige Adressen, dafür stellt die IANA z.Z. nur den Bereich 2000::/3 zur Verfügung
- fc00::/7 *Unique Local Unicast* sind private, global eindeutige Adressen, die aber im Internet nicht geroutet werden
- fe80::/10 Link Local werden überhaupt nicht geroutet, auch nicht im lokalen Netz
- ff00::/8 *Multicast* Adressen mit festgelegten Gültigkeits-/Routing-Bereichen und Gültigkeits-Dauern z.B. ff02::1 für alle Rechner bzw. ff01::2 für alle Router eines Layer2-Netzwerksegments
- :: undefiniert, ähnlich der Adresse 0.0.0.0 bei IPv4
- ::1 Adresse des eigenen Rechners (*Localhost*, *Loopback*)
- 2001::/32 Teredo (Tunneling IPv6 over UDP through NAT)
- 2002::/16 Adressbereich für 6to4-Tunneling

IPv6-Autokonfiguration und ICMPv6

- Mit Stateless Address Autoconfiguration (SLAAC) kann die automatische Vergabe einer Link Local Adresse auf Basis der MAC-Adresse erfolgen (ähnlich APIPA).
- ICMPv6 dient in IPv6-Netzwerken zum Austausch von Fehler- und Informationsmeldungen. Mit dem Neighbor Discovery Protocol (NDP) liefert es den Ersatz für ARP.
- Bereits vergebene IPv6-Adressen können mit der Duplicate Address Detection (DAD) erkannt werden.
- NDP ermöglicht auch das Auffinden von Rechnern und Routern. Beispielsweise geschieht die automatische Zuordnung von (Default-)Routen durch eine Anfrage an die Multicast-Adresse ff02::2 über die alle Router eines Layer2-Netzwerksegments erreichbar sind (Router Solicitation).

IPv6 und DNS

Wegen der Adresslänge ist ein funktionierendes DNS sehr hilfreich. Für IPv6-Adressen gibt es den Resource Record (RR) Typ AAAA, der, genau wie der Typ A bei IPv4, einen Namen in eine IPv6-Adresse auflöst. Der Reverse Lookup funktioniert nach wie vor über den RR Typ PTR. Für IPv6 ist IP6. ARPA die Reverse Domain.

Übergang von IPv4 nach IPv6

Um einen einfachen Übergang von IPv4 zu IPv6 zu ermöglichen sind mehrere Verfahren üblich:

Parallelbetrieb (Dual-Stack, Dual-Stack-Lite)

Hier wird allen beteiligten Schnittstellen neben der IPv4-Adresse zusätzlich mindestens eine IPv6-Adresskonfiguration zugewiesen. Der Rechner kann dann über beide Protokolle gleichzeitig in beide Richtungen kommunizieren (Allerdings unterstützt DS-Lite IPv4 und IPv6 gleichzeitig nur nach außen).

Tunnelmechanismen

Dabei werden IPv6-Pakete in der Nutzlast von IPv4 zu einer Tunnelgegenstelle übertragen (z.B. 6to4). Für den Zugriff auf ein IPv6-Subnetz hinter einem NAT-Gerät gibt es u.a. von Microsoft das Teredo-Protokoll.

Übersetzungsverfahren

Kann auf einem Gerät IPv6 nicht aktiviert werden, können Verfahren wie NAT/Protocol Translation (NAT-PT) oder Transport Relay Translation nötig werden, um zwischen beiden Protokollen zu übersetzen.

Probleme

- nicht alle Geräte und Anwendungen unterstützen IPv6
- Übergangstechnologien verhindern die schnelle Einführung von IPv6
- hohe Komplexität von IPv6 (Schulungsbedarf)
- fehlende Anonymität bei mit SLAAC generierten Interface Identifier (Abhilfe: IPv6 Privacy Extensions)
- IPv6 und DNS: für die automatische Vergabe der Nameserver-Adressen ist ein IPv6-DHCP-Server nötig

Links

Windows-Hilfe zu IPv6 Folien zum Buch Understanding IPv6 von MicrosoftPress IPv6 Essentials

Start - Hilfe und Support - nach IPv6 suchen www.google.de/search?q=UnderstandingIPv6.ppt shop.oreilly.com/product/9780596100582.do Introduction to IPv6 (2008) download.microsoft.com/download/e/9/b/e9bd20d3-cc8d-4162-aa60-3aa3abc2b2e9/IPv6.doc

IPv6 Internals IP Version 6 Setting up an IPv6 Test Lab www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-3/ipv6_internals.html technet.microsoft.com/en-us/library/cc738636.aspx technet.microsoft.com/en-us/library/cc783758.aspx

Updated list of IPv6 address allocations

http://dbillings.com/networking/ipv6_cheatsheet.pdf www.iana.org/assignments/ipv6-address-space

Fragen

IPv6 Cheat Sheet

- 1.) Erläutern Sie mindestens drei Gründe, warum IPv6 eingesetzt werden sollte.
- 2.) Beschreiben Sie mindestens drei wesentliche Eigenschaften von IPv6.
- 3.) Wie ist eine IPv6-Unicast Adresse aufgebaut und was muss dabei immer eingehalten werden?
- 4.) Wie werden IPv6-Adressen und IPv6-Subnetze dargestellt und welche Vereinfachungen sind möglich?
- 5.) Worin unterscheiden sich die bei IPv6 möglichen Adressarten?
- 6.) Welche Einschränkungen gelten für IPv6 Link-Local-Adressen
- 7.) Welche Aufgaben erfüllt bei IPv6 das Neighbor Discovery Protocol (NDP)?
- 8.) Erläutern Sie drei Verfahren, die einen einfachen Übergang von IPv4 nach IPv6 ermöglichen sollen.
- 9.) Warum sind beim Einsatz von IPv6 die DHCP- und DNS-Dienste sehr hilfreich?