Técnicas de Clustering - 3

Cuántos clusters?

- En algunas aplicaciones el número de clusters está predefinido
 - Ejemplo: Hay que dividir n ciudades de Argentina entre k vendedores
- La mayoría de las veces no
- Lamentablemente, los algoritmos siempre devuelven una solución, aunque no tenga sentido
- El número de clusters es otra información que tenemos que sacar de los datos muchas veces

- Cuántos clusters hay en un dataset es una pregunta difícil.
 - No hay "verdad" contra la que comparar
 - No hay métodos con fuerte teoría detrás
- La mayoría de los métodos son empíricos

Métodos a discutir

- El "salto" en la función costo
- Gap statistic
- Estabilidad

- Un criterio general para evaluar la calidad de la solución en la suma de las distancias dentro del cluster Wk
 - Es lo que se minimiza en la mayoría de los métodos

- Un criterio general para evaluar la calidad de la solución en la suma de las distancias dentro del cluster Wk
 - Es lo que se minimiza en la mayoría de los métodos

- Un criterio general para evaluar la calidad de la solución en la suma de las distancias dentro del cluster Wk
 - Es lo que se minimiza en la mayoría de los métodos

- Un criterio general para evaluar la calidad de la solución en la suma de las distancias dentro del cluster Wk
 - Es lo que se minimiza en la mayoría de los métodos
- Wk decrece siempre. No sirve buscar el mínimo.
- Pero decrece más cuando separa 2 clusters verdaderos que cuando parte en 2 un cluster "natural"
 - Elimina distancias "largas" en el primer caso

 Hay que buscar un "lomo" o un cambio completo de pendiente

tot.puntos<-100 gap=2 x<-rnorm(tot.puntos,mean=-gap) y<-rnorm(tot.puntos,mean=-gap) gausianas<-cbind(x,y,rep(1,length(x)))</pre> x<-rnorm(tot.puntos,mean=2*gap) y<-rnorm(tot.puntos,mean=0) gausianas<-rbind(gausianas,cbind(x,y,rep(2,length(x))))</pre> x<-rnorm(tot.puntos,mean=0.7*gap,sd=0.5) y<-rnorm(tot.puntos,mean=2.5*gap,sd=0.5) gausianas<-rbind(gausianas,cbind(x,y,rep(3,length(x))))</pre> x<-rnorm(tot.puntos,mean=-gap,sd=0.5) y<-rnorm(tot.puntos,mean=gap,sd=0.5) gausianas<-rbind(gausianas,cbind(x,y,rep(4,length(x)))) plot(gausianas[,1:2],col=gausianas[,3])

#cuatro clusters de dist. gaussianas


```
#cuatro clusters de dist. gaussianas
tot.puntos<-100
gap=2
x<-rnorm(tot.puntos,mean=-gap)
y<-rnorm(tot.puntos,mean=-gap)
gausianas<-cbind(x,y,rep(1,length(x)))
x<-rnorm(tot.puntos,mean=2*gap)
y<-rnorm(tot.puntos,mean=0)
gausianas<-rbind(gausianas,cbind(x,y,rep(2,length(x))))
x<-rnorm(tot.puntos,mean=0.7*gap,sd=0.5)
y<-rnorm(tot.puntos,mean=2.5*gap,sd=0.5)
gausianas<-rbind(gausianas,cbind(x,y,rep(3,length(x))))
x<-rnorm(tot.puntos,mean=-gap,sd=0.5)
y<-rnorm(tot.puntos,mean=gap,sd=0.5)
gausianas<-rbind(gausianas,cbind(x,y,rep(4,length(x))))
plot(gausianas[,1:2],col=gausianas[,3])
```



```
#Ejemplo: 4 Gaussianas
wg = np.zeros(10)
for k in range(2, 11):
    kmeans = KMeans(n_clusters=k, n_init=10, random_state=42)
    kmeans.fit(X)
    wg[k-1] = kmeans.inertia_ # inertia_ = suma de cuadrados dentro de clusters
```

```
#Ejemplo: 4 Gaussianas
wg = np.zeros(10)
for k in range(2, 11):
```


kmeans = KMeans(n_clusters=k, n_init=10, random_state=42) kmeans.fit(X)

wg[k-1] = kmeans.inertia_ # inertia_ = suma de cuadrados dentro de clusters


```
#Ejemplo: Iris
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
```

#se ve el quiebre para k=3, menos claro

#Ejemplo: Iris from sklearn.datasets import load iris = load_iris()

X = iris.data


```
iolaita
Mining
```

```
#Ejemplo: Uniforme R
x<-rnorm(4*tot.puntos,)
y<-rnorm(4*tot.puntos)
gausianas<-cbind(x,y,rep(1:4,tot.puntos))
plot(gausianas[,1:2],col=gausianas[,3])
wn=rep(0.0,10)
for(k in 2:10) wn[k]<-sum(kmeans(gausianas[,1:2],k,nsta=10)$withinss)
matplot(2:10,wn[-1],type='b')
#no se ve muy diferente a IRIS</pre>
```

```
#Ejemplo: Uniforme
x<-rnorm(4*tot.puntos,)
y<-rnorm(4*tot.puntos)
gausianas<-cbind(x,y,rep(1:4,tot.puntos))
plot(gausianas[,1:2],col=gausianas[,3])
wn=rep(0.0,10)
for(k in 2:10) wn[k]<-sum(kmeans(gausianas[,1:2],k,nsta=10)$withinss)
matplot(2:10,wn[-1],type='b')
#no se ve muy diferente a IRIS</pre>
```


#Ejemplo: Uniforme

x<-rnorm(4*tot.puntos,)

y<-rnorm(4*tot.puntos)

gausianas<-cbind(x,y,rep(1:4,tot.puntos))

plot(gausianas[,1:2],col=gausianas[,3])

wn=rep(0.0,10)

for(k in 2:10) wn[k]<-sum(kmeans(gausianas[,1:2],k,nsta=10)\$within

matplot(2:10,wn[-1],type='b')

#no se ve muy diferente a IRIS

- Suele no ser una medida confiable usada directamente.
- No detecta la falta de clusters.

Gap statistic

- Trata de resolver los problemas del salto
- Desarrollado por Tibshirani, Walther y Hastie, J. Royal Statistical Soc. B, 2001.
- Idea: comparar la curva anterior con la curva que da una distribución uniforme.
- Cuantificar el salto: Buscar la primer diferencia significativa entre las dos curvas (primer gap)

Gap - Referencia

- Dos formas de generar la referencia:
 - a) Tomar una distribución uniforme que ocupe el mismo hiperrectangulo que la original

Gap - Referencia

- Dos formas de generar la referencia:
 - a) Tomar una distribución uniforme que ocupe el mismo hiperrectangulo que la original

Gap - Referencia

- Dos formas de generar la referencia:
 - a) Tomar una distribución uniforme que ocupe el mismo hiperrectangulo que la original
 - b) Hacer lo mismo pero sobre una PCA de los datos.

Computation of the Gap statistic

- 1. Cluster the observed data, varying the total number of clusters from k = 1, 2, ..., K, giving within dispersion measures $W_k, k = 1, 2, ..., K$.
- 2. Generate B reference datasets, using the uniform prescription (a) or (b) above, and cluster each one giving within dispersion measures W_{kb}^* , $b=1,2,\ldots B,\ k=1,2,\ldots K.$ Compute the (estimated) Gap statistic:

$$Gap(k) = (1/B) \sum_{b} log(W_{kb}^*) - log(W_k)$$

3. Let $\bar{l} = (1/B) \sum_b \log(W_{kb}^*)$, compute the standard deviation $\mathrm{sd}_k = [(1/B) \sum_b (\log(W_{kb}^*) - \bar{l})^2]^{1/2}$, and define $s_k = \mathrm{sd}_k \sqrt{1 + 1/B}$. Finally choose the number of clusters via

$$\hat{k} = \text{smallest } k \text{ such that } \operatorname{Gap}(k) \geq \operatorname{Gap}(k+1) - s_{k+1}$$

Ejemplo: sin clusters

Ejemplo: sin clusters

Ejemplo: sin clusters

Gap: comparación

1	Estimate of number of clusters \hat{k}									
Method	1	2	3	4	5	6	7	8	9	10
СН	Null model in 10 dimensions 0*	50	0	0	0	0	0	0	0	0
KL	0*	29	5	0 3	0 3	$\frac{0}{2}$	2	0	0	0
Hartigan	0*	0	1	20	21	6	0	0	0	0
Silhouette	**	49	î	0	0	0	0	0	0	0
Gap/unif	49*	1	0	0	0	0	0	0	0	0
Gap/pc	50*	0	0	0	0	0	0	0	0	0
	Three cluster model									
CH	0	0	50*	0	0	0	0	0	0	0
KL	0	0	39*	0	5	1	1	2	0	0
Hartigan	0	0	1^*	8	19	13	3	3	2	1
Silhouette	0	0	58*	0	0	0	0	0	0	- 0
Gap/unif	1	0	49^{*}	0	0	0	0	0	0	0
Gap/pc	2	0	48*	0	0	0	0	0	0	- 0

Gap: comparación (cont.)

	Random 4 cluster model in 10 dims.									
CH	0	1	4	44*	1	0	0	0	0	0
KL	0	0	0	45*	3	1	1	0	0	0
Hartigan	0	0	2	48*	0	0	0	0	0	0
Silhouette	0	13	20	16*	5	0	0	0	0	0
Gap/unif	0	0	0	50*	1	0	0	0	0	0
Gap/pc	0	0	4	46^{*}	0	0	0	0	0	0
	Two elongated clusters									
CH	0	0*	0	0	0	0	0	7	16	27
KL	0	50*	0	0	0	0	0	0	0	0
Hartigan	0	0*	0	1	0	2	1	5	6	35
Gap/unif	0	0*	17	16	2	14	1	0	0	0
Gap/pc	0	50*	0	0	0	0	0	0	0	0

Estabilidad - Introducción

- Idea base: Los resultados científicos tienen que ser reproducibles. Los "clusters naturales" de un problema se tienen que encontrar siempre.
- Si cambio un punto en un problema y la solución desaparece, entonces no son "clusters naturales" sino un resultado ficticio creado por mi algoritmo.

Ejemplo a favor

Sample 1

k = 2:

Ejemplo a favor

La división en clusters naturales suele ser la más estable

Estabilidad – Algoritmo base

- Variar la cantidad de clusters
- Construir muchas soluciones replicadas
- Evaluar la estabilidad de las soluciones
- Seleccionar el k con más estabilidad

Soluciones replicadas

- Estabilidad: Problemas similares dan soluciones similares.
- Como muchos algoritmos son deterministas, se necesita generar problemas perturbados
- Hay un trade-off al perturbar:
 - Si cambio mucho puedo destruir la estructura natural
 - Si cambio poco puede parecer estable algo que no es

Cómo generar réplicas?

- Subsample
 - Tomo una muestra al azar de los datos originales
 - Se suele tomar del 70% al 90% de los datos
- Agregar ruido
 - Agregar ruido blanco (normal) a los datos originales
 - Bajo porcentaje de la señal (menos de 10%)
- Proyecciones
 - En datos de alta dimensionalidad, tomar proyecciones sobre un subespacio elegido al azar

Soluciones

- Una vez que tengo los datos perturbados, tengo que clusterizarlos.
- Se usa siempre el mismo algoritmo, buscando que la única variación sean los datos
- Próximo paso: Medir cuán diferentes son las soluciones

- Siempre se evalúan pares de soluciones
- Cuando los conjuntos de datos son iguales:
 - Cuento cuántos pares de puntos que están en un mismo cluster en la primer solución también lo están en la segunda
 - Normalizo la cuenta
 - Distintas normalizaciones dan distintos indices:
 - Jaccard
 - Rand
 - Fowlkes and Mallows

Muy similares

- Cuando los conjuntos de datos son distintos:
 - Restringir: Evaluar la intersección
 - La más usada
 - Tiene sentido si la intersección es grande
 - Se pierde información
 - Extender: Agregar los puntos faltantes a cada solución (obtenida previamente)
 - Por ejemplo, en k-means, asignar al centro cercano
 - En single linkage asigno al primer vecino espacial
 - Menos común

Seleccionar el k

- Tengo una muestra de valores de similaridad entre las soluciones, para distintos k
- Evaluación más simple: tomo la (mayor) media (no es recomendable).
- Busco algo cualitativo, que muestre cuando una distribución está mucho más a la derecha
- Algunos autores miran la concentración del histograma (o el área bajo la cumulativa)

- Ejemplo:
 - 4 clusters gaussianos
 - 250 puntos en cada uno

Seleccionar el k: 4 gaussianas

Seleccionar el k: distribución uniforme

Contraejemplos

- Uno asume que las soluciones naturales tienen que ser estables
- Lo contrario no está garantizado. Hay soluciones estables que son "artificiales"

- Distribución asimétrica
- K=2 es un poco mejor que k=3.
- Se suele superar seleccionando, entre todas las estables, la que tiene el mayor k

- Un cluster asimétrico
- K=2 es un poco mejor que k=3.
- Pero va en contra del caso anterior
- En este caso se pierde casi siempre

- Los algoritmos que buscan "bolas" son estables en distribuciones alargadas para k crecientes
 - K-means en una distribución uniforme unidimendional

Resumen

- Encontrar el número de clusters: problema abierto de interés actual
- Dos heurísticas muy usadas
 - Gap: Comparar la bondad de la solución con una distribución nula
 - Estabilidad: Las soluciones naturales tienen que ser estables
 - Las dos detectan cuando no hay clusters