RICERCA OPERATIVA - PARTE I

ESERCIZIO 1. (8 punti) Sia dato il seguente problema di PL

Si eseguano i seguenti punti:

- si risolva il problema per via grafica;
- si scriva il problema in forma standard e lo si risolva con il metodo due fasi;
- si scriva il duale del problema in forma standard e lo si risolva prima per via grafica e poi con le condizioni di complementarità;
- si esegua l'analisi di sensitività sul coefficiente di x_1 e sul coefficiente di x_2 nell'obiettivo, visualizzando graficamente cosa succede agli estremi degli intervalli individuati.

ESERCIZIO 2. (7 punti) Sia dato il seguente problema di PL

$$\max -x_1 + (\alpha - 2)x_2$$

$$x_1 - x_2 + x_3 = \alpha - 2$$

$$x_1 + x_2 + x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

Lo si risolva spiegando come varia la soluzione al variare di α .

ESERCIZIO 3. (8 punti) Si indichi la risposta corretta per ciascuna delle seguenti domande motivando la risposta.

- (1) Sia B^* una base ottima di un problema di PL in forma standard e si supponga che $A_{B^*}^{-1}$ abbia componenti tutte positive. Si considerino le perturbazioni di tutti i termini noti dei vincoli. Dire quale delle seguenti affermazioni è vera.
 - A: gli intervalli in cui le perturbazioni mantengono l'ottimalità della base hanno un estremo negativo e l'altro pari a $+\infty$;
 - **B:** gli intervalli in cui le perturbazioni mantengono l'ottimalità della base hanno un estremo non positivo e l'altro pari a $+\infty$;
 - C: gli intervalli in cui le perturbazioni mantengono l'ottimalità della base hanno un estremo positivo e l'altro pari a $-\infty$;
 - **D:** gli intervalli in cui le perturbazioni mantengono l'ottimalità della base hanno un estremo non negativo e l'altro pari a $-\infty$.
- (2) A una determinata iterazione del simplesso duale il valore γ_0 (costante nell'obiettivo della riformulazione) è sicuramente:
 - **A:** maggiore rispetto all'iterazione precedente;
 - **B:** maggiore o uguale rispetto all'iterazione precedente;
 - C: minore rispetto all'iterazione precedente;
 - **D:** minore o uguale rispetto all'iterazione precedente.
- (3) Si consideri un problema di PL in forma standard con insieme di soluzioni ottime S_{ott} . Si supponga che la regione ammissibile D_a del suo duale sia un politopo. Dire quale delle seguenti operazioni non garantisce che $S_{ott} \neq \emptyset$.
 - A: cambiare un termine noto nel primale;
 - B: cambiare un coefficiente nell'obiettivo del duale;
 - C: cambiare un coefficiente nell'obiettivo del primale;
 - **D:** aggiungere nel primale un vincolo ridondante.

- (4) In un problema di PL si supponga che $S_{ott} \neq \emptyset$. Dire quale delle seguenti affermazioni è sicuramente vera.
 - **A:** S_{ott} è un insieme limitato ;
 - **B:** S_{ott} è un politopo;
 - C: S_{ott} è un poliedro;
 - \mathbf{D} : S_{ott} può avere cardinalità arbitraria.

ESERCIZIO 4. (6 punti) Si consideri un problema di PL in forma standard con regione ammissibile un poliedro illimitato. Si dica se le seguenti affermazioni sono vere o false, **motivando la risposta**:

- la sua funzione obiettivo può sempre essere modificata in modo tale che il problema ammetta un insieme infinito e illimitato di soluzioni ottime;
- la sua funzione obiettivo può sempre essere modificata in modo tale che il problema abbia obiettivo illimitato;
- la sua funzione obiettivo può sempre essere modificata in modo tale che il problema ammetta un insieme infinito e limitato di soluzioni ottime.