PJWSTK Informatyka studia dzienne - SAD Ćwiczenia 15 Testy nieparametryczne

Zadanie 1 Badano, czy istnieje związek między kolorem oczu i kolorem włosów. W tym celu przeprowadzono badanie na losowej grupie 220 osób i otrzymano następujące wyniki:

	niebieski kolor oczu	inny kolor oczu
włosy jasne	67	32
włosy ciemne	53	68

Prowadzący badanie twierdzi, że otrzymane wyniki wskazują na istnienie związku między kolorem oczu i włosów. Czy ma rację? Zweryfikować odpowiednią hipotezę na poziomie istotności 0,01.

Zadanie 2Badano, czy istnieje związek między nadciśnieniem a nadwagą. W tym celu przeprowadzono badanie na losowej grupie 520 osób i otrzymano następujące wyniki:

	nadciśnie	ciśnienie w
	nie	normie
nadwaga	34	162
waga w normie	136	188

Czy na podstawie tych danych można twierdzić, że istnieje zależność między nadwagą i nadciśnieniem? Zweryfikować odpowiednią hipotezę na poziomie istotności 0,05.

Rozw. zad.1.

• (X,Y) - para cech jakościowych, X - kolor włosów, Y - kolor oczu

• Pytanie: czy X, Y są niezależne

	Niebieski kolor	Inny kolor oczu	n_i .
	oczu		
Włosy jasne	67	32	99
Włosy	53	68	121
ciemne			
$n_{\cdot j}$	120	100	n =220

1. Hipotezy:

- H₀: X, Y są niezależnymi zmiennymi losowymi: kolor włosów i kolor oczu są cechami niezależnymi
- H_1 : zaprzeczenie H_0 , tzn. zmienne losowe X, Y są zależne

2. Statystyka testowa:

$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{\left(N_{ij} - \widehat{N_{ij}}\right)^2}{\widehat{N_{ij}}} \sim \chi_1^2$$

jeśli hipoteza zerowa jest prawdziwa

- liczba stopni swobody rozkładu chi-kwadrat = 1 = (2-1)(2-1), $\widehat{N_{ij}} = \frac{N_i \cdot N_{\cdot j}}{n} = estymator \ E(N_{ij})$
- $N_{i\cdot}=N_{i1}+N_{i2}$ = liczba elementów próby, których cecha X ma wartość i-tą
- $N_{\cdot j} = N_{1j} + N_{2j}$ = liczba elementów próby, których cecha Y ma wartość j-tą

3. Wartość statystyki testowej

	Niebieski kolor oczu	Inny kolor oczu	n_i .
X (kolor włosów)	1	2	
Włosy jasne (=1)	67	32	99
Włosy ciemne	53	68	121
(=2)			
$n_{\cdot j}$	120	100	n =220

Y (kolor	Niebieski kolor oczu	Inny kolor oczu	n_i .
oczu)	1	2	
X (kolor włosów)			
Włosy jasne (=1)	67	32	99
	54	45	
Włosy ciemne	53	68	121
(=2)	66	55	
$n_{\cdot j}$	120	100	n =220

gdzie w tabeli policzono

$$\hat{n}_{ij} = \frac{n_i \cdot n_{.j}}{n}, \quad \text{np. } \hat{n}_{11} = \frac{n_1 \cdot n_{.1}}{n} = \frac{99 \cdot 120}{220} = 54$$

$$\chi^2_{obs} = \sum_{i=1}^2 \sum_{j=1}^2 \frac{\left(n_{ij} - n_i \cdot n_{.j} / 220\right)^2}{n_i \cdot n_{.j} / 220} = \frac{(67 - 54)^2}{54} + \frac{(32 - 45)^2}{45} + \frac{(53 - 66)^2}{66} + \frac{(68 - 55)^2}{55} = 3,13 + 3,76 + 2,56 + 3,07 = 12,52$$

5. Zbiór krytyczny

$$C = \left[\chi_{1-\alpha,(k-1,r-1)}^{,2},\infty \right) = \left[\chi_{0,99,1}^{,2},\infty \right) = \left[6,635;\infty \right)$$

6. $\chi^2_{obs} \in C$, zatem można twierdzić, na poziomie istotności 0,01, że kolor włosów i kolor oczu są cechami zależnymi.

Rozw. zad. 2.

- (X, Y) para cech jakościowych,
- $X = \begin{cases} 1, & \text{je\'sli losowo wybrana osoba ma nadwage} \\ 2, & \text{je\'sli losowo wybrana osoba ma wage w normie} \end{cases}$
- $Y = \begin{cases} 1, & \text{je\'sli losowo wybrana osoba ma nadci\'snienie} \\ 2, & \text{je\'sli losowo wybrana osoba ma ci\'snienie w normie} \end{cases}$
- Pytanie: czy X, Y są niezależne

1. Hipotezy:

- H_0 : X,Y są niezależnymi zmiennymi losowymi: ciśnienie i waga są cechami niezależnymi
- H_1 : zaprzeczenie H_0 , tzn. zmienne losowe X,Y są zależne

2. Statystyka testowa:

$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{\left(N_{ij} - \widehat{N_{ij}}\right)^2}{\widehat{N_{ij}}} \sim \chi_1^2$$

jeśli hipoteza zerowa jest prawdziwa

- liczba stopni swobody rozkładu chi-kwadrat = 1 = (2-1)(2-1), $\widehat{N_{ij}} = \frac{N_i \cdot N_{\cdot j}}{n} = estymator \ E(N_{ij})$
- ullet $N_{i\cdot}=N_{i\,1}+N_{i\,2}$ = liczba elementów próby, których cecha X ma wartość i-tą
- $N_{.j} = N_{1j} + N_{2j}$ = liczba elementów próby, których cecha Y ma wartość j-tą

3. Wartość statystyki testowej

	nadciśnienie	Ciśnienie w	n_i .
		normie	
Nadwaga	34	162	196
	64,08	131,92	
Waga w	136	188	324
normie	105,92	218,08	
$n_{\cdot j}$	170	350	n =520

$$\chi_{obs}^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{\left(n_{ij} - n_{i.} n_{.j} / 520\right)^2}{n_{i.} n_{.j} / 520} = \frac{(34 - 64,08)^2}{64,08} + \frac{(162 - 131,92)^2}{131,92} +$$

$$+\frac{(136-105,92)^2}{105,92}+\frac{(188-218,08)^2}{218,08}=14,12+6,86+8,54+4,35=33,87$$

5. Zbiór krytyczny

$$C = \left[\chi_{1-\alpha,(k-1,r-1)}^{2},\infty\right) = \left[\chi_{0,95;1}^{2},\infty\right) = [3,8415;\infty)$$

6. $\chi^2_{obs} \in C$, zatem można twierdzić, na poziomie istotności 0,05, że istnieje zależność między wagą i ciśnieniem.

Twierdzenie - sformułowanie CTG dla sumy S_n i dla średniej z próby losowej \overline{X}

Jeśli X_1,X_2,\dots,X_n są niezależnymi zmiennymi losowymi o tym samym rozkładzie prawdopodobieństwa z wartością oczekiwaną μ oraz odchyleniem standardowym σ , to dla dużych n rozkład

- \blacktriangleleft sumy $S_n=X_1+X_2+\cdots+X_n$ jest bliski rozkładowi normalnemu z wartością oczekiwaną $E(S_n)=n\mu$ i wariancją $Var(S_n)=n\sigma^2$
- 4 średniej z próby losowej

$$\bar{X} \coloneqq \frac{S_n}{n}$$

jest bliski rozkładowi normalnemu z wartością oczekiwaną $E(\bar{X})=\mu$ i wariancją $Var(\bar{X})=\frac{\sigma^2}{n}$

Uwaga. Zazwyczaj wystarczy aby n > 25 ($lub\ 30$).

CTG dla sumy i średniej z próby losowej mówi, że dla każdego x:

$$P(S_n \le x) = P\left(\frac{S_n - n\mu}{\sqrt{n \cdot \sigma}} \le \frac{x - n\mu}{\sqrt{n} \cdot \sigma}\right) \approx \Phi\left(\frac{x - n\mu}{\sqrt{n} \cdot \sigma}\right)$$

$$P(\bar{X} \le x) = P\left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}}\right) \approx \Phi\left(\frac{x - \mu}{\frac{\sigma}{\sqrt{n}}}\right)$$

Notacja:

$$S_n \approx N(n\mu, \sqrt{n}\sigma), \ \ \bar{X} \approx N(\mu, \frac{\sigma}{\sqrt{n}})$$

Wniosek z twierdzenia (twierdzenie Moivre'a – Laplace'a)

Jeśli $S_n{\sim}Binomial(n,p),\ j=1,2,\ldots,n,$ to dla $np\geq 5,\ nq\geq 5$

•
$$P(S_n \le x) = P\left(\frac{S_n - np}{\sqrt{npq}} \le \frac{x + \frac{1}{2} - np}{\sqrt{npq}}\right) \approx \Phi\left(\frac{x + \frac{1}{2} - np}{\sqrt{npq}}\right), gdy n \le 100$$

wprowadzamy tzw. poprawkę ciągłości (otrzymamy lepsze oszacowanie)

• $P(S_n \le x) = P\left(\frac{S_n - np}{\sqrt{npq}} \le \frac{x - np}{\sqrt{npq}}\right) \approx \Phi\left(\frac{x - np}{\sqrt{npq}}\right), \quad gdy \quad n > 100$

Uzasadnienie:

$$S_n \sim X_1 + X_2 + \dots + X_n$$
, $gdzie\ X_i \sim Bin(1, p)$, $\mu = p, \sigma^2 = pq$

Zadanie. Wykonano 30 rzutów kostką symetryczną. (a) Obliczyć wartość oczekiwaną i wariancję łącznej liczby wyrzuconych oczek. (b) Znaleźć przybliżoną wartość prawdopodobieństwa, że łączna liczba wyrzuconych oczek przekroczy 100.

Rozw. Rozkład prawdopodobieństwa zmiennej X jest jednostajny na zbiorze {1,2,3,4,5,6}:

$$P(X=i)=1/6$$
, $i=1, 2, 3, 4,5, 6$.

$$E(X) = (1/6)(1+2+3+4+5+6) = 3.5$$
, $E(X^2) = (1/6)(1+4+9+16+25+36) = 91/6$

 $Var(X) = 91/6 - (3.5)^2 = 2.9167$

$$E(S_{30}) = E(X_1 + X_2 + \dots + X_{30}) = 30E(X) = 105$$

$$Var(S_{30}) = Var(X_1 + X_2 + \dots + X_{30}) = 30Var(X) = 87,5$$

gdzie $X_j=$ liczba oczek w j-tym rzucie kostką, j = 1,2,...,30. Zmienne X_1,X_2,\ldots,X_{30} są niezależne i mają rozkład prawdopodobieństwa taki jak X.

$$P(S_{30} > 100) = 1 - P(S_{30} \le 100) \approx ?$$

W celu oszacowania $P(S_{30} \leq 100)$ stosujemy CTG (ćwiczenia C10) dla S_{30} , które mówi, że S_{30} ma przybliżony rozkład normalny z parametrami $E(S_{30})$ i $\sqrt{Var(S_{30})}$. Zatem

$$P(S_{30} \le 100) = P\left(\frac{S_{30} - 105}{\sqrt{87,5}} \le \frac{100 + \frac{1}{2} - 105}{\sqrt{87,5}}\right) \approx \Phi\left(\frac{-4,5}{\sqrt{87,5}}\right) = dalej \ obliczenia$$

Zadanie. Niech zmienna losowa X oznacza wygraną na loterii, która przyjmuje 2 wartości: P(X = 0) = 0.9, P(X = 20) = 0.1. (a) Obliczyć wartość oczekiwaną i wariancję wygranej w jednej grze. (b) Gracz zagrał na loterii 30 razy. Obliczyć przybliżoną wartość prawdopodobieństwa, że łączna wygrana przekroczy 70.

Rozw.

(a) Rozkład prawdopodobieństwa zmiennej losowej X można przedstawić w tabeli:

X	0	20
P(X = x)	0,9	0,1

$$E(X) = 0 \cdot 0.9 + 20 \cdot 0.1 = 2$$
, $E(X^2) = 400 \cdot 0.1 = 40$, $Var(X) = 40 - 2^2 = 36$

(b)

- n = 30 liczba gier
- X_j wygrana w j-tej grze, j=1,2,...,30
- ullet X_1, X_2, \dots, X_{30} —niezależne zmienne losowe, o rozkładach takich jak rozkład X
- $S_{30}=X_1+X_2+\cdots+X_{30}$ łączna wygrana
- $E(S_{30}) = 30E(X) = 30 \cdot 2 = 60$
- $Var(S_{30}) = 30Var(X) = 30 \cdot 36 = 1080$

Z CTG rozkład prawdopodobieństwa S_{30} jest bliski rozkładowi $N(60, \sqrt{1080})$

$$P(S_{30} > 70) = 1 - P(S_{30} \le 70)$$

$$P(S_{30} \le 70) = P\left(\frac{S_{30} - 60}{\sqrt{1080}} \le \frac{70 - 60}{\sqrt{1080}}\right) \approx \Phi\left(\frac{70 - 60}{\sqrt{1080}}\right) = \Phi(0,3043) = 0,6179$$
$$P(S_{30} > 70) \approx 0,3821$$