Introduction to Quantum Computing

Paolo Cremonesi

Quantum Transpiling

Quantum Computation Errors

- A qubit is affected by external noise
- For instance, the Brownian motions of the molecules may interfere with the quantum state
- Each qubit has a decoherence time
 - the maximum time a qubit can keep its superposition state
 - typically, in the order of hundreds of μs
- Gate operations are affected by errors
 - Quality of gates is measure by Fidelity
- Error correction codes are necessary to preserve the computation

Fidelity

- T_{DEC} : decoherence time of a qubit (for superconducting qubits is è $\approx 200 \mu s$)
- t_{gate} : processing time of a gate, with $t_{gate} \ll T_{DEC}$
- p_{gate} : error probability of a gate $p_{gate} pprox rac{t_{gate}}{T_{dec}}$
- Quality ratio = $\frac{T_{dec}}{t_{gate}}$ (target is 10^3 or 10^4)
- $F_{gate} \approx 1 p_{gate} \approx 1 \frac{t_{gate}}{T_{dec}}$: fidelity of quantum gate
- Threshold Theorem (Quantum Fault Tolerance): if quantum gate fidelity is above a certain threshold value, then it is possible to perform arbitrarily long quantum computations reliably, by using quantum error correction and fault-tolerant protocols

Fidelity of a Quantum Gate

• Fidelity of real gate E with respect to ideal gate U when applied to qubit $|x\rangle$

$$F(E, U, x) = (\langle x | U^H E | x \rangle)^2$$

• Average fidelity of real gate E with respect to ideal gate U

$$F(E,U) = \int (\langle x|U^H E|x\rangle)^2 dx$$

Quantum Error Correction Codes (QECC)

- Correction process is carried on after each operation
 - redundancy is employed to correct errors
 - a lot of redundancy is necessary, since
 - qubits are continuous, not discrete
 - error rate is high
 - each qubit becomes a **logical qubit**, which is encoded in *n* physical qubits: data and ancilla ones

- Error correction is the main responsible for the blowup of qubits required for quantum algorithms
- N logical qubits requires
 - 100x physical qubits (data, ancilla, wiring)
 - plus many more for other architecture details

QECC: Logical Gates

- Quantum Operations on Logical Qubits
 - each fundamental gate needs to be defined on logical qubits
 - the way the logical operation is performed depends on the logical qubit implementation
 - each logical operation is represented by a logical gate
 - cryogenic qubits: gates are implemented via **microwave pulses** (10^{-8} sec) sent to the qubits
- We want to run different gates before decoherence time expires

- data qubits
- ancilla qubits

Quantum Computation Concepts

- **Quantum Processor**: chip with *n* logical qubits
- Quantum Language Programming: language to describe a circuit using gate-level instructions or other functions
- Quantum Algorithm: quantum circuit to be executed
- Quantum Compilation (Transpiling)
 - Optimization: use heuristics to merge gates or rearrange operations
 - **Placement**: initial mapping of the circuit qubits to the on-chip logical qubits
 - **Scheduling**: schedule gates execution
 - Routing: move qubits to execute operations on multiple qubits
- Quantum Execution: translation of gate-level instructions to signals sent to the processor

Quantum Compilation: Placement

- Main issue to be addressed:
 - 2 qubits of a multi-qubits gate (e.g. CNOT) need to be adjacent to compute the gate
 - adjacent: either on the same row or same column
 - if not, they need to be moved (routing process)
- **Placement**: maps the qubits on chip, deriving the initial configuration of the processor
 - place as close as possible qubits that will be processed by a 2-qubits gate
 - minimize Manhattan distances
 - i.e., minimize routing cost (number of hops to move qubits)
 - example: $CNOT(v_3, v_4) \rightarrow Manhattan distance = 4$
 - target: find the placement that minimizes the sum of Manhattan distances over all pairs involved in multiple bits gates

Quantum Compilation: Scheduling

- Gates can theoretically be all executed simultaneously, but there are scheduling issues
 - data dependencies
 - out of order execution must preserve the correctness of the computation
- Scheduling Policies
 - As Soon As Possible (ASAP)
 - an operation is performed as soon as the input data are available
 - As Late As Possible (ALAP)
 - mitigates decoherence time constraints
 - minimize the time between a gate writing a qubit and the next gate reading it
 - reduce the time interval a quantum state needs to be preserved

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3,\psi_4)$, $CNOT(\psi_3,\psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3,\psi_4)$, $CNOT(\psi_3,\psi_5)$
 - $CNOT(\psi_2,\psi_3)$, $CNOT(\psi_2,\psi_4)$, $CNOT(\psi_2,\psi_6)$, $CNOT(\psi_1,\psi_5)$
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - $CNOT(\psi_1, \psi_3)$, $CNOT(\psi_1, \psi_6)$, $CNOT(\psi_0, \psi_4)$, $CNOT(\psi_0, \psi_5)$
 - CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3,\psi_4)$, $CNOT(\psi_3,\psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - $\frac{\mathsf{CNOT}(\psi_0, \psi_6)}{\mathsf{CNOT}(\psi_0, \psi_6)}$

- ASAP Policy (initialization As Soon As Possible)
 - INIT $\psi_0, \psi_1, \psi_2, \psi_3, \psi_4, \psi_5, \psi_6$
 - $H(\psi_a)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$
 - SOLUTION CONTINUES CONTIN
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$
 - CNOT(ψ_2, ψ_3), CNOT(ψ_2, ψ_4), CNOT($\psi_2, \frac{\psi_6}{\psi_6}$), CNOT(ψ_1, ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0, ψ_6)
- ALAP Policy (initialization As Late As Possible)
 - INIT ψ_2
 - INIT ψ_1 , ψ_3 , ψ_4 , ψ_5 , ψ_6 , $H(\psi_2)$
 - INIT ψ_0 , $H(\psi_1)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$, $CNOT(\psi_2, \psi_6)$
 - $H(\psi_0)$, $CNOT(\psi_2,\psi_3)$, $CNOT(\psi_2,\psi_4)$, $CNOT(\psi_1,\psi_6)$, $CNOT(\psi_1,\psi_5)$
 - CNOT(ψ_1, ψ_3), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5), CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3,\psi_4)$, $CNOT(\psi_3,\psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0 , ψ_6)
- ALAP Policy (initialization As Late As Possible)
 - INIT ψ_2
 - INIT ψ_1 , ψ_3 , ψ_4 , ψ_5 , ψ_6 , $H(\psi_2)$
 - INIT ψ_0 , $H(\psi_1)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$, $CNOT(\psi_2, \psi_6)$
 - $H(\psi_0)$, $CNOT(\psi_2,\psi_3)$, $CNOT(\psi_2,\psi_4)$, $CNOT(\psi_1,\psi_6)$, $CNOT(\psi_1,\psi_5)$
 - CNOT(ψ_1, ψ_3), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5), CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3,\psi_4)$, $CNOT(\psi_3,\psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0 , ψ_6)
- ALAP Policy (initialization As Late As Possible)
 - INIT ψ_2
 - INIT ψ_1 , ψ_3 , ψ_4 , ψ_5 , ψ_6 , $H(\psi_2)$
 - INIT ψ_0 , $H(\psi_1)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$, $CNOT(\psi_2, \psi_6)$
 - $H(\psi_0)$, $CNOT(\psi_2,\psi_3)$, $CNOT(\psi_2,\psi_4)$, $CNOT(\psi_1,\psi_6)$, $CNOT(\psi_1,\psi_5)$
 - CNOT(ψ_1, ψ_3), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5), CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0 , ψ_6)
- ALAP Policy (initialization As Late As Possible)
 - INIT ψ_2
 - INIT ψ_1 , ψ_3 , ψ_4 , ψ_5 , ψ_6 , $H(\psi_2)$
 - INIT ψ_0 , $H(\psi_1)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$, $CNOT(\psi_2, \psi_6)$
 - $H(\psi_0)$, $CNOT(\psi_2,\psi_3)$, $CNOT(\psi_2,\psi_4)$, $CNOT(\psi_1,\psi_6)$, $CNOT(\psi_1,\psi_5)$
 - CNOT(ψ_1, ψ_3), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5), CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3,\psi_4)$, $CNOT(\psi_3,\psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0 , ψ_6)
- ALAP Policy (initialization As Late As Possible)
 - INIT ψ_2
 - INIT ψ_1 , ψ_3 , ψ_4 , ψ_5 , ψ_6 , $H(\psi_2)$
 - INIT ψ_0 , $H(\psi_1)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$, $CNOT(\psi_2, \psi_6)$
 - $H(\psi_0)$, $CNOT(\psi_2, \psi_3)$, $CNOT(\psi_2, \psi_4)$, $CNOT(\psi_1, \psi_6)$, $CNOT(\psi_1, \psi_5)$
 - CNOT(ψ_1, ψ_3), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5), CNOT(ψ_0, ψ_6)

- ASAP Policy (initialization As Soon As Possible)
 - INIT ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4 , ψ_5 , ψ_6
 - $H(\psi_0)$, $H(\psi_1)$, $H(\psi_2)$, $CNOT(\psi_3,\psi_4)$, $CNOT(\psi_3,\psi_5)$
 - CNOT(ψ_2 , ψ_3), CNOT(ψ_2 , ψ_4), CNOT(ψ_2 , ψ_6), CNOT(ψ_1 , ψ_5)
 - CNOT(ψ_1, ψ_3), CNOT(ψ_1, ψ_6), CNOT(ψ_0, ψ_4), CNOT(ψ_0, ψ_5)
 - CNOT(ψ_0 , ψ_6)
- ALAP Policy (initialization As Late As Possible)
 - INIT ψ_2
 - INIT ψ_1 , ψ_3 , ψ_4 , ψ_5 , ψ_6 , $H(\psi_2)$
 - INIT ψ_0 , $H(\psi_1)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$, $CNOT(\psi_2, \psi_6)$
 - $H(\psi_0)$, $CNOT(\psi_2,\psi_3)$, $CNOT(\psi_2,\psi_4)$, $CNOT(\psi_1,\psi_6)$, $CNOT(\psi_1,\psi_5)$
 - $CNOT(\psi_1, \psi_3)$, $CNOT(\psi_0, \psi_4)$, $CNOT(\psi_0, \psi_5)$, $CNOT(\psi_0, \psi_6)$

Quantum Compilation: Routing

- Multi qubit gates require qubits to be adjacent
 - if they are not, we need to move them. How?
 - using **swap gate**!
- ALAP Policy (initialization as late as possible)
 - •
 - ..
 - INIT ψ_0 , $H(\psi_1)$, $CNOT(\psi_3, \psi_4)$, $CNOT(\psi_3, \psi_5)$, $CNOT(\psi_2, \psi_6)$
 - INIT ψ_0 , $H(\psi_1)$, $CNOT(\psi_3, \psi_4)$, $SWAP(\psi_3, \psi_5)$, $CNOT(\psi_3, \psi_5)$, $CNOT(\psi_2, \psi_6)$

Thanks

Paolo Cremonesi

