## Untersuchung und Integration der natürlichen Exponentialfunktionen

- D. Extrema und Wendepunkte: S. 103 lesen und Ü5b) bearbeiten
- E. Einfache Flächenberechnungen: S. 104/105 lesen, Integrationsregeln übernehmen und S. 105 Ü7 bearbeiten
- F. Integration durch 1. direkten Nachweis durch Ableitung und mittels
   2. Formansatz/ Koeffizientenvergleich: S. 106/107 lesen und S. 106
   Ü10 bearbeiten

Es gilt:

$$\ln(e^x)=x,$$

da der natürliche Logarithmus die Umkehrfunktion der natürlichen Exponentialfunktion ist.

14.02.2024 Integral rechnung

## Kurvenuntersuchungen und Anwendungs-aufgaben

• S. 112 Nr. 1) oder 2) oder 3)

• S. 114 Nr. 5a)

• S. 115 Nr. 10) oder 12\*)

Die Lösungen finden Sie auf den nächsten Seiten

14.02.2024

$$f'(x) = xe^x$$
,  $f''(x) = (1+x)e^x$ ,  $f'''(x) = (2+x)e^x$ 

- Nullstelle ist x = 1
- Extremum: f'(x) = 0 für x = 0, f''(0) = 1 > 0, T(0|-1)

Wendepunkt: f''(x) = 0 für x = -1,  $f'''(-1) = e^{-1} \neq 0$ ,  $W(-1|-2e^{-1})$ 

- $f(x) \to \infty$  für  $x \to \infty$ ,  $f(x) \to 0$  für  $x \to -\infty$
- e) Graph siehe Aufgabe

$$\mathbb{E} = \mathbb{E}'(x) = (x-1)e^x = f(x)$$

$$A = -(F(1)-F(0)) = -(-e+2) \approx 0.718282 \text{ km}^2 = 718282 \text{ m}^2$$

Verkaufspreis: 57462560 Euro

B = 
$$-(F(0)-F(-2)) = -(-2+4e^{-2}) \approx 1458659 \text{ m}^2$$

$$f'(x) = e^x - 1$$
,  $f''(x) = e^x$ 

Extrema: 
$$f'(x) = 0$$
 für  $x = 0$ ,  $f''(0) = 1 > 0$ ,  $T(0|1)$ 

Wendepunkt:  $f''(x) \neq 0$ , kein Wendepunkt

- Da der Tiefpunkt bei y = 1 > 0 liegt und kein Wendepunkt existiert, kann f keine Nullstellen besitzen.
- P(1|e-1), z(x) = (e-1)x, f'(1) = e 1: z mündet tangential in die Autobahn. BP| =  $\sqrt{1 + (e-1)^2} \approx 2$  km

In 60 min werden 30 km zurückgelegt, also braucht man für 2 km 4 Minuten.

$$A = \int_{0}^{1} (f(x) - z(eg)) dx = \int_{0}^{1} (eg^{x} - ex) dx = [e^{x} - \frac{e}{2}x^{2}]_{0}^{1} = e - \frac{e}{2} - 1 \approx 0,359 \text{ km}^{2} \approx 36 \text{ ha}$$

## S. 114 Nr. 5a) und 6)

- 5. a) Nullstelle: x = -1 $f'(x) = (1-x)e^{-0.5x}$ ,  $f''(x) = (-1.5+0.5x)e^{-0.5x}$  $f'''(x) = (1,25-0.25x)e^{-0.5x}$ Extremum: f'(x) = 0 für x = 1,  $f''(1) = -e^{-0.5} < 0$  $H(114e^{-0.5}) = H(112.43)$ 
  - Wendepunkt: f''(x) = 0 für x = 3,  $f'''(3) \neq 0$
  - $W(3|8e^{-1.5}) = W(3|1.79)$

Verhalten für  $|x| \rightarrow \infty$ :

$$x \to -\infty$$
:  $f(x) \to -\infty$ ,  $x \to \infty$ :  $f(x) \to 0$ 



b) Nullstelle: x = 1 $f'(x) = (x-2)e^{2-x}$ ,  $f''(x) = (3-x)e^{2-x}$  $f'''(x) = (x-4)e^{2-x}$ Extremum: f'(x) = 0 für x = 2, f''(2) = 1 > 0T(2l-1)

Wendepunkt: f''(x) = 0 für x = 3,  $f'''(3) = -e^{-1} \neq 0$  $W(3|-2e^{-1}) = W(3|0,74)$ 

Verhalten für  $|x| \rightarrow \infty$ :

$$x \to -\infty$$
:  $f(x) \to \infty$ ,  $x \to \infty$ :  $f(x) \to 0$ 



c) Nullstelle:  $e^{2x} = 2$ ,  $x = \frac{\ln 2}{3} \approx 0.35$  $f'(x) = e^x + 2e^{-x}$ ,  $f''(x) = e^x - 2e^{-x}$  $f'''(x) = e^x + 2e^{-x}$ 

Extrema: keine

Wendepunkt: f''(x) = 0 für  $x = \frac{\ln 2}{2} \approx 0.35$ ,  $f'''(0.35) \neq 0$ W(0,3510)

Verhalten für  $|x| \rightarrow \infty$ :

$$x \to -\infty$$
:  $f(x) \to -\infty$ ,  $x \to \infty$ :  $f(x) \to \infty$ 



| n |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

| j. | Inte | egraffed | nnulle | IV |
|----|------|----------|--------|----|
|    | f    | h        | g      | k  |

Untersuchung der Nullstellen

## S. 115 Nr. 10) und 12\*)

). b) 
$$f'(x) = \frac{1}{2}e^{\frac{x}{2}}$$
,  $g'(x) = -\frac{1}{4}e^{1.5-\frac{x}{4}}$ 

c) Schnittpunkt: 
$$f = g$$
:  $e^{\frac{x}{2}} = e^{\frac{3-x}{2-4}}$  |  $\ln \frac{x}{2} = \frac{3}{2} - \frac{x}{4}$ ,  $x = 2$ ,  $S(2|e)$ 

$$\tan \alpha = f'(2) = \frac{1}{2}e \implies \alpha \approx 53,66^{\circ}$$
  
 $\tan \beta = g'(2) = -\frac{1}{4}e \implies \beta \approx -34,20^{\circ}$ 

Schnittwinkel:

$$\gamma = \alpha + |\beta| \approx 87,86^{\circ}$$

d) 
$$h(x) = mx$$
, I.  $mx = e^{\frac{x}{2}} + h(x) = f(x)$ 

II. 
$$m = \frac{1}{2}e^{\frac{x}{2}}$$
,  $B(2|e)$ ,  $h(x) = \frac{e}{2} \cdot x$ 







11. a)  $F'(x) = (4x+8-8)e^{-0.5x} = f(x)$ 

 $u \to \infty$ :  $A(u) \to 0$ 

b) Nullstelle von n:  $x = (e^2 - \frac{16}{e^2}) \cdot \frac{4}{e^2} = \frac{e^4 - 16}{e^4} \cdot 4 = 4 - \frac{64}{e^4} \approx 2,83$ 

$$A = \int_{0}^{4} f(x)dx - \int_{4-\frac{64}{e^4}}^{4} n(x)dx = [(-8x - 16)e^{-0.5x}]_{0}^{4} - \frac{1}{2} \cdot \frac{64}{e^4} \cdot \frac{16}{e^2} = -\frac{48}{e^2} + 16 - \frac{512}{e^6} \approx 8,23$$

12. 
$$A(u) = u \cdot f(u) = 4u^2 \cdot e^{-0.5u}$$
,  $A'(u) = (8u - 2u^2) \cdot e^{-0.5u}$ ,  $A'(u) = 0$  für  $u = 4$  und  $u = 0$   $A''(u) = (u^2 - 8u + 8) \cdot e^{-0.5u}$ ,  $A''(0) = 8 > 0$ ,  $A''(4) = -8 < 0 \Rightarrow$  Maximum