FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Construction of Pt/graphitic C₃N₄/MoS₂ heterostructures on photoenhanced electrocatalytic oxidation of small organic molecules

Chunyang Zhai^{a,1}, Mingjuan Sun^{a,1}, Lixi Zeng^b, Mianqiang Xue^c, Jianguo Pan^a, Yukou Du^d, Mingshan Zhu^{a,b,*}

- ^a School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, PR China
- c Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8569, Japan
- d College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China

ARTICLE INFO

Keywords: Photofunctional Electrode Graphitic carbon nitride Molybdenum disulfide Visible light Fuel cell reaction

ABSTRACT

Low temperature fuel cells, with the features of clean, environmental friendliness, and high energy density, are considered as ideal future green energy sources. It has been recently demonstrated that the activities and stabilities of traditional fuel cell reactions can be improved by using photo-functional electrodes with assistance of light illumination. Two-dimensional (2D) heterostructure of g- C_3N_4/MoS_2 was demonstrated to be a promising photocatalyst. Herein, we used g- C_3N_4/MoS_2 nanosheets as a photo-functional substrate for the decoration of Pt nanoparticles and then applied on fuel cell electrocatalytic reactions. Comparing with traditional electrocatalytic reactions, the electrocatalytic performances of the as-synthesized Pt/g- C_3N_4/MoS_2 for the oxidation of methanol, and formic acid upon visible light illumination are improved with 6.5, 2.2, and 2.5 times, respectively. The decisive factors in the improved catalytic performances are the synergistic effect of photo&electro-process and the effective charge separation in the designed 2D/2D g- C_3N_4/MoS_2 heterostructure.

1. Introduction

Owing to their low emission of contamination, high-energy density, and ultra-fast recharging, fuel cells have been acted as an alternative power-generation technique to convert chemical energy directly into electrical energy [1–7]. Up to date, various fuel cells such as direct methanol fuel cell (DMFC), direct ethanol fuel cell (DEFC), and direct formic acid fuel cell (DFAFC) have received great interest [1–4]. This is because those small organic molecules (SOMs) including ethanol, methanol, and formic acid have high mass energy density and easy storage and transport. In most cases, platinum (Pt) was used as the most effective electrocatalyst in the electrocatalytic oxidation of liquid fuel (viz. methanol, ethanol, formic acid...) [3–5]. However, due to the easy poisonous by carbonaceous intermediates together with the high cost of Pt, great efforts are still required to address the rapid increasing energy demands

Accordingly, extensive efforts have been done to develop electrocatalysts supports to improve the performance of electrode. On one hand, the Pt electrocatalysts can be dispersed well on the surfaces of supports, which increases the catalytic active sites. Moreover, such supports also decrease the usage amount of Pt, contributing to the low-cost of electrodes. On the other hand, these supports have co-catalytic properties such as adsorption ability. Currently, semiconductor materials have been certified as candidates of electrocatalysts carriers. We all have known that these semiconductors are used as photocatalysts and have powerful oxidation ability after light irradiation. Therefore, a novel photo-enhanced fuel cell system was constructed, in which the SOMs could be oxidized by synergistic effect of electro&photo-catalytic process on a metal/semiconductor electrode upon light irradiation [6–16]. With the assistance of light irradiation, the activities and stabilities of traditional fuel cell reaction for SOM oxidation at ambient environment were greatly improved [6,7].

More recently, ultrathin two dimensional (2D) semiconductor material has received considerable attention in the field of artificial photosynthesis because of their origin 2D structural features and optical properties [17–19]. 2D graphite carbon nitride (g-C₃N₄) nanosheets have been used for various photocatalytic applications including organic photosynthesis, water contamination treatment and water splitting [19–25]. Nevertheless, because of the rapid recombination of photogenerated charge holes and electrons, the photocatalytic

^{*} Corresponding author at: School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China. E-mail address: mingshanzhu@yahoo.com (M. Zhu).

¹ These authors contributed equally to this work.

efficiency of pure g- C_3N_4 is still far from satisfactory. Accordingly, significant efforts have been made to enhance the charges separation by coupling with the other materials [19,26,20–31]. In general, 2D/2D heterostructures are the most expected owing to the advantages of abundant coupling interfaces and large contact surface, which contribute to the improved photogenerated charges migration and enhanced the photocatalytic activity [19,26,20–31]. It is well recognized that 2D-layered transition metal disulfides (TMDs) such as molybdenum disulfide (MoS₂) has been considered as promising candidates of cocatalysts to improve the rate of charge separation in recent years [32–34]. Hence, 2D layered MoS₂ was coupled with g- C_3N_4 to construct 2D/2D heterostructures [35–39]. For example, Majima group showed that the photogenerated electrons from g- C_3N_4 can be rapid injected to MoS₂, resulting in enhanced photocatalytic activity on H₂ production [39].

However, the above efforts most focused on the applications of heterostructure of g-C₃N₄/MoS₂ on photocatalysis, and there are very few works beyond this category. To further extend the application of g-C₃N₄/MoS₂ composite, we used it as a support for the deposition of Pt electrocatalysts to fabricate Pt/g-C₃N₄/MoS₂ electrode. The as-prepared composite electrode was used as anode in the investigation of electrocatalytic oxidation of SOMs including methanol, ethanol, and formic acid for the first time. Owing to their nice visible light response, Pt/g-C₃N₄/MoS₂ showed obvious enhanced electrocatalytic performance after visible light illumination compared to electrocatalytic process and Pt decorated single-component viz. Pt/g-C₃N₄ and Pt/MoS₂ composites under visible light illumination. Efficient interfacial charger carrier mobility is observed in the desired 2D/2D heterostructures contributing to the great improvement of electrocatalytic activities under visible light illumination. The present results display that the construction of 2D/2D heterostructures opens new opportunity in the application of fuel cell reactions.

2. Experimental

2.1. Chemicals

Urea $[CO(NH_2)_2$, AR, CAS 57-13-6], chloroplatinic acid hexahydrate $(H_2PtCl_6 \cdot 6H_2O, AR, CAS 18497-13-7)$, ammonium tetrathiomolybdate $[(NH_4)_2MoS4, AR, CAS 15060-55-6]$, dimethyl formamide (DMF, AR, CAS 68-12-2), sulphuric acid $(H_2SO_4, AR, CAS 7664-93-9)$, potassium hydroxide (KOH, AR, CAS 1310-58-3), ethanol (CH₃CH₂OH, EtOH, AR, CAS 64-17-5), methanol (CH₃OH, MeOH, AR, CAS 67-56-1), and formic acid (HCOOH, AR, CAS 64-18-8) were purchased (Sinopharm Chemical, China) and were used directly without any purification.

2.2. Synthesis of g-C₃N₄, MoS₂, and heterostructure of g-C₃N₄/MoS₂

The nanosheets of g-C₃N₄ were obtained through heating the urea in the semi-closed environment [40]. In a typical experiment, urea powders (10 g) were dissolved into water (15 mL). The pH of above solution was adjusted to $4\sim5$ by HCl and then dried at 80 °C with 12 h. The samples were put into an alumina crucible with a lid. The crucible was then put in the muffle furnace and held at 550 °C for 2 h with the heating rate of 5 °C min $^{-1}$.

The g- C_3N_4/MoS_2 was synthesized \emph{via} a solvothermal method. 0.09 g g- C_3N_4 and 0.008 g ammonium tetrathiomolybdate were dispersed into 15 ml DMF under 20 min ultrasonication, and then transferred into Teflon autoclave (V: 25 mL). The above autoclave was held at 200 °C for 12 h. The powders were obtained through centrifugation and then washed by ethanol completely, and dried at 70 °C in an oven, obtaining the heterostructure of g- C_3N_4/MoS_2 . The weight ratio of MoS_2 in the g- C_3N_4/MoS_2 is about 10 wt%. The different ratios of MoS_2 in g- C_3N_4/MoS_2 were synthesized through using different amounts of ammonium tetrathiomolybdate. The pure MoS_2 were prepared with same method without ammonium tetrathiomolybdate g- C_3N_4 .

2.3. Preparation of Pt/g-C₃N₄, Pt/MoS₂, and Pt/g-C₃N₄/MoS₂

The Pt/g-C₃N₄/MoS₂ nanocomposite was prepared \emph{via} a hydrothermal approach. 20 mg g-C₃N₄/MoS₂ and 0.68 ml H₂PtCl₆ aqueous solution (3.9 × 10 $^{-2}$ M) were dispersed into ethanol-H₂O mixtures (20 mL, vol = 1:1) under ultrasonication for 30 min. The mixtures were then transferred into Teflon autoclave (V: 25 mL). The above autoclave was held at 140 °C for 4 h and cooled down naturally. The powders were obtained \emph{via} centrifugation and then washed by ethanol thoroughly and dried at 70 °C in an oven, obtaining the Pt/g-C₃N₄/MoS₂. The weight ratio of Pt is \emph{ca} . 20 wt% for total mass. The Pt/g-C₃N₄ and Pt/MoS₂ were prepared with similar method that the g-C₃N₄/MoS₂ was replaced by bare C₃N₄ and MoS₂, respectively.

2.4. Preparation of $Pt/g-C_3N_4/MoS_2$, Pt/MoS_2 , $Pt/g-C_3N_4$ modified electrodes

The Pt/g-C₃N₄/MoS₂ electrode was prepared through coating the Pt/g-C₃N₄/MoS₂ on a 3 mm in diameter of L-type glassy carbon electrode (GCE). Typically, Pt/g-C₃N₄/MoS₂ (2 mg) and Nafion solutions (5 wt%, 10 μ L) were added into ethanol-H₂O mixtures (1 mL, vol = 1:1) with 30 min ultrasonication to get the dispersion homogeneously. After, 5 μ L of the above dispersion was dispersed onto the surface of L-type GCE and dried at the ambient condition (containing 2 μ g of Pt). The Pt/g-C₃N₄ and Pt/MoS₂ electrodes were prepared with same method, in which Pt/g-C₃N₄ and Pt/MoS₂ were used, respectively.

2.5. Photoelectrocatalytic measurements

The photoelectrocatalytic measurements were employed on a quartz reactor with an electrochemical workstation (CHI 660E), in which modified GCE, Pt wire, and Ag/AgCl were acted as working electrode, counter electrode, and reference electrode, respectively. The photoelectrocatalytic activity of methanol, ethanol, and formic acid was carried out by cyclic voltammetry (CV) measurements. The scan rate is $50\,\mathrm{mV}~\mathrm{s}^{-1}$. Chronoamperometries (CA) of samples under visible light illumination or dark condition were measured at −0.2 V in 1 M EtOH + 1 M KOH solution. The chronopoenttiometric curves of Pt/g-C₃N₄/ MoS₂ electrode were carried out at 100 μA under dark condition and visible light illumination. The photocurrent responses were measured in 0.1 M aqueous solution of Na₂SO₄ at 0.6 V. The electrochemical impedance spectroscopy (EIS) was measured in 1 M EtOH + 1 M KOH, 1 M MeOH + 1 M KOH, 0.5 M HCOOH + 0.5 M H₂SO₄ and 0.1 MNa₂SO₄, respectively. The EIS at different potentials were measured in 1 M EtOH + 1 M KOH solution over the frequency range between 0.1 and 10⁵ Hz under an AC voltage amplitude of 5.0 mV.

During photoelectrocatalytic measurements, a xenon lamp (500 W) was used as light source and a 420 nm long pass filter was put before reactor.

2.6. Characterization

Transmission electron microscopy (TEM, JEOL-2100, operated at 120 kV, HAADF-STEM image and corresponding EDX elemental mapping operated at 200 kV) was used to evaluate the morphology and component of samples. X-ray photoelectron spectroscopy (XPS, JEOL JPS-9010 MC spectrometer) and X-ray diffraction (XRD, BrukerD8Focus, with Cu K α radiation (50 kV) of wavelength $\lambda=1.5418\,\mbox{\normalfont A}$) were investigated to the component and phase structures of samples, respectively. The UV–vis properties of samples were carried out by using a UV–vis-NIR Spectrophotometer on LAMBDA 950 UV/Vis/NIR Spectrophotometer. The photoluminescence (PL) properties of samples were carried out by using fluorospectrophotometer (Edinburgh FLS920) with the excitation wavelength at 405 nm.

Fig. 1. TEM (a) and HRTEM (b, c) images of $Pt/g-C_3N_4/MoS_2$ nanocomposites. Particle size distribution histogram (d) of Pt nanoparticles on $g-C_3N_4/MoS_2$ from Fig. 1c and b.

3. Results and discussion

3.1. Characterization of g-C $_3N_4,\ MoS_2,\ and\ g-C _3N_4/MoS_2$ and Pt/g-C $_3N_4/MoS_2$

The 2D morphologies of g-C₃N₄, MoS₂, and g-C₃N₄/MoS₂ nanosheets were demonstrated by TEM. Figs. S1a and S1b show the pure g-C₃N₄ and MoS₂ with a sheet-like morphology and size range from $200\,nm$ to $1\,\mu m$ and 50 to $200\,nm,$ respectively. After hybridized with MoS₂, small sized of MoS₂ nanosheets attached on the surface of g-C₃N₄ can be easily observed, as shown in Fig. S1c. In general, 2D sheet-like materials can be used as promising supports for the growth of metal nanoparticles. Fig. 1a shows that small nanoparticles of Pt were well decorated on the surface of g-C₃N₄/MoS₂ nanocomposites. To clear show the size of Pt nanoparticles and fine structure of MoS2, HRTEM images of Pt/g-C₃N₄/MoS₂ from two different dotted circles in the Fig. 1a were displayed in Fig. 1b and c. Beside small particles of Pt, lattice fringes (d-spacing: 0.62 nm) were easily detected, which attributed to (002) plane of MoS2. The average diameter of Pt decorated on g-C₃N₄/MoS₂ nanosheets is ca.3.0 nm, as shown in Fig. 1d. Furthermore, the pure g-C₃N₄ and MoS₂ nanosheets were also used as the substrates to deposit Pt nanoparticles, respectively. As shown in Fig. S2, similar sizes of Pt nanoparticles were observed in Pt/g-C₃N₄ and Pt/MoS₂ composites.

The HAADF-STEM image, EDX spectra, and EDX elemental mapping of $Pt/g-C_3N_4/MoS_2$ were provided to investigate the composition and the distribution of different elements on the surface of 2D structures. In the Fig. 2a, lots of bright dots which are Pt nanoparticles, were well

dispersed on the surface of $g\text{-}C_3N_4$ sheets. Beside the nanosheets and bright dots, a piece of bright sheet was also detected on $g\text{-}C_3N_4$ sheets surface, which might be MoS_2 . To confirm these conclusions, EDX at the selected zones were collected. It can be seen that the C, N, Pt, Mo, and S elements were easily detected in the Fig. 2b, while only C, N and Pt elements were found in the Fig. 2c. To further demonstrate the above phenomena, the EDX element mapping with different elements were provided, which the different components of $g\text{-}C_3N_4$, MoS_2 and Pt were easily observed. These results clearly show that the Pt and MoS_2 were hybridized with 2D $g\text{-}C_3N_4$ sheets.

To identify the elements and interaction of as-prepared samples, the X-ray photoelectron spectroscopy (XPS) of bare g-C₃N₄, MoS₂, and g-C₃N₄/MoS₂ were investigated (Fig. 3). Firstly, three peaks at 398.7, 400.2, and 401.4 eV were observed in pure g-C₃N₄, which are corresponded to C-N, tertiary nitrogen N-C3, and C-N-H groups, respectively [28,41]. Secondly, for pure MoS₂, two characteristic peaks corresponding to S $2p_{1/2}$ and S $2p_{3/2}$, and Mo $3d_{3/2}$ and Mo $3d_{5/2}$, are observed at ca. 163.2 and 162.0 eV, and 232.1 and 229.0 eV, respectively [27,42]. Interestingly, the binding energies of N 1s, S 2p, and Mo 3d were slightly shifted in the g-C₃N₄/MoS₂, in which the binding energies of N 1s shift to the higher binding energies while those of S 2p and Mo 3d shift to the lower binding energies, respectively. These binding energy shifts in the composites is due to the interaction of two components [41]. In the Pt/g-C₃N₄/MoS₂, beside the above elements, two peaks assigning to Pt $4f_{7/2}$ and Pt $4f_{1/2}$ were easily observed, in which at 72.0 and 75.2 eV, respectively (Fig. S3). The corresponding values are matched well with Pt (0), indicating metallic Pt nanoparticles in Pt/ $g-C_3N_4/MoS_2$ [10,42].

Fig. 2. HAADF-STEM image (a), EDX spectra of different areas (b and c), and element mapping of N, Mo, S, and Pt elements of Pt/g-C₃N₄/MoS₂.

XRD patterns of the as-prepared samples were measured to characterize the crystalline phases, and the results were reflected in Fig. 4A. It can be seen that all g-C₃N₄ based samples show one main characteristics peak at 27.4°, which contributes to the diffraction of (002) plane for g-C₃N₄ nanosheets [27]. For pure MoS₂, two characteristics peaks at ca. 32.7° and 56.7° were observed, which are contributed to the (100) and (110) crystal planes of MoS_2 (JCPDS No. 37-1492) [27]. In the composite of g-C₃N₄/MoS₂, the diffraction peaks of the MoS₂ in the g-C₃N₄/MoS₂ nanocomposites can not be observed easily, due to the low weight content of MoS2 (5 wt%). The similar result has been reported previously by others [27]. However, when the weight content of MoS₂ is increased to 20 wt%, two small peaks can be observed at 32.7° and 56.7°, indicating the formation of g-C₃N₄/MoS₂ nanocomposites. To Pt/g-C₃N₄/MoS₂, beside the above peaks, three different peaks at ca. 39.7°, 46.2°, and 67.9° were detected in Pt/g-C₃N₄/MoS₂. These peaks are assigned to the (111), (200), and (220) planes of Pt [43], which further indicate the formation of metallic Pt in the composites of Pt/g-

C_3N_4/MoS_2 .

The optical properties of the g-C₃N₄, MoS₂, g-C₃N₄/MoS₂ and Pt/g-C₃N₄/MoS₂ were investigated by using the UV-vis diffuse reflectance spectra (UV-vis DRS). Fig. 4B shows the pure g-C₃N₄ with an absorption edge at around 452 nm, indicating that the as-prepared g-C₃N₄ has 2.7 eV band gap. Pure MoS₂ showed a broad absorption in the visible region owing to the narrow band gap. When the different MoS₂ were hybridized with g-C₃N₄ nanosheets, tailed absorptions in the far visible region were observed in the presence of MoS₂. Similar phenomena were observed in the other reports [27,29]. When Pt nanoparticles were loaded on the surface of g-C₃N₄/MoS₂, beside the absorption of g-C₃N₄ and MoS₂, an enhanced absorption was observed in the visible region due to the dark color of Pt. These visible light responses in the Pt/g-C₃N₄/MoS₂ indicate the potential advantages on photoelectrocatalytic small organic molecules under visible light illumination.

Fig. 3. XPS spectra of N 1s (A), S 2p (B), and Mo 3d (C) of the g-C₃N₄/MoS₂ (a), g-C₃N₄ (b), and MoS₂ (c).

Fig. 4. XRD patterns (A) and UV-vis DRS (B) of g- C_3N_4 (a), g- C_3N_4/MoS_2 5 wt% (b), g- C_3N_4/MoS_2 10 wt% (c), g- C_3N_4/MoS_2 20 wt% (d), pure MoS_2 (e) and Pt/g- C_3N_4/MoS_2 (f).

3.2. Oxidation of ethanol on the Pt/g-C₃N₄/MoS₂ catalyst

The electrocatalytic and photoelectrocatalytic properties of the asobtained electrodes were evaluated through catalytic oxidation of SOMs including methanol, ethanol, and formic acid, respectively. Fig. 5A shows the cyclic voltammetries (CVs) curves at the potential range from -0.9 to 0.2 V by using Pt/g-C₃N₄ and Pt/g-C₃N₄/MoS₂ as working electrodes for the electrocatalytic ethanol oxidation. There are two characteristic oxidation peaks observed at around -0.2 V in forward curve and -0.3 V in backward curve. The current density of forward peak for Pt/g-C₃N₄ is about 10.9 mA mg $_{\rm Pt}^{-1}$. When the 10 wt% of MoS₂ was hybridized with C₃N₄ nanosheets, the peak current density was improved to 76.9 mA mg $_{\rm Pt}^{-1}$. As comparison, the pure GCE, g-C₃N₄ and MoS₂ modified electrodes for the oxidation of EtOH displayed negligible catalytic activities (Fig. S4).

Owing to the excellent photocatalytic property of $g\text{-}C_3N_4$, the corresponding $Pt/g\text{-}C_3N_4$ and $Pt/g\text{-}C_3N_4/MoS_2$ electrodes were used upon visible light illumination for the oxidation of ethanol under the same conditions. As expected, the forward peak current densities of both electrodes were improved. The corresponding peak current densities were summarized in Table 1. Comparing with $Pt/g\text{-}C_3N_4$, the $Pt/g\text{-}C_3N_4/MoS_2$ was more effective towards ethanol oxidation under visible light irradiation. These results suggest that the layered MoS_2 plays a crucial role in the improvement of the electrocatalytic performance. The effects of MoS_2 ratio in $Pt/g\text{-}C_3N_4/MoS_2$ for photoelectrocatalytic oxidation of ethanol were measured under dark environment and visible light illumination. Fig. 5B shows that the optimum loading of MoS_2 in $Pt\text{-}C_3N_4/MoS_2$ was 10 wt%, in which the forward peak current

densities reached 165.5 mA mg $^{-1}$ $_{Pt}$ under visible light illumination. Accordingly, the as-prepared Pt-C₃N₄/MoS $_2$ with 10 wt% of MoS $_2$ was used in the following experiments.

3.3. Photoelectrochemical properties of ethanol oxidation

To reveal the catalytic oxidation process of ethanol, the EIS in 1 M EtOH + 1 M KOH solution of as-prepared Pt/g- C_3N_4/MoS_2 under visible light irradiation were studied at different potential (Fig. 6). From -0.55 V to -0.25 V, the diameter of semicircle arc (DSA) was decreased with increasing potentials. In general, when the potential is below the oxidation potential (ca. -0.2 V), the active sites for the oxidation of ethanol are increased because of the removal of intermediate species. These intermediate species are formed from ethanol dehydrogenation at lower potential [40,44]. When the potential is above oxidation potential, the DSA was increased owing to the catalyst surface poisoning by intermediate species. Nevertheless, the arc turned to the second quadrant at -0.15 V (Fig. 6B). This is because of the removal of intermediate species from catalyst surface. Continue to increase the potentials to 0 V, the arc is gradually transferred to positive behavior (Fig. 6C), since the intermediate species were absent [40,44].

To confirm the photo-assisted electrocatalytic process on Pt/g- G_3N_4/MoS_2 , different scan rates on the photoelectrocatalytic oxidation of ethanol with and without visible light illumination were carried out (Fig. 7). Firstly, the peak current densities of electrode were increased with the scan rates increase. Fig. 7B and D show a linear relation between the peak current density (i_p) and square root of scan rate ($v^{1/2}$) under dark condition and visible light illumination. The diffusion

Fig. 5. A: CVs curves of Pt/g- C_3N_4/MoS_2 (a and b) and Pt/g- C_3N_4 (c and d) in 1 M EtOH+1 M KOH solution with (a and c) and without (b and d) visible light illumination. B: Different electrodes for the oxidation of EtOH under visible light and dark environment.

Table 1

The forward peak current densities on different electrodes under visible light illumination and dark environment.

Catalyst	Pt/g - C_3N_4 (mA mg ⁻¹ P_t)				$ ext{Pt/MoS}_2$ (mA mg $^{-1}$ $_{ ext{Pt}}$)				$ ext{Pt/g-C}_3 ext{N}_4/ ext{MoS}_2$ (mA mg $^{-1}$ $_{ ext{Pt}}$)			
	Visible light		Dark		Visible light		Dark		Visible light		Dark	
	j	Error	j	Error	j	Error	j	Error	j	Error	j	Error
Methanol	163.1	± 1.5%	97.3	± 1.1%	441.7	± 0.9%	190.8	± 3.4%	1618	± 2.2%	250.5	± 4.5%
Ethanol Formic acid	17.5 281.3	± 4.4% ± 1.9%	10.9 182.8	± 2.6% ± 2.1%	10.5 193.7	± 3.5% ± 2.2%	6.07 50.3	± 4.4% ± 4.1%	165.5 1557	± 1.0% ± 0.3%	76.9 624	± 2.3% ± 1.7%

coefficient (D) of electrode is calculated by Eq. (1):

$$\frac{D_{light}}{D_{dark}} = \left[\frac{\left(\frac{i_p}{v^{1/2}}\right)_{light}}{\left(\frac{i_p}{v^{1/2}}\right)_{dark}} \right]^2 \tag{1}$$

From Eq. (1), the value of D_{light}/D_{dark} is 2.7, which indicates the improved electron transfer kinetics at the surface of $Pt/g-C_3N_4/MoS_2$ and thereby contributes to the higher catalytic activity under visible light irradiation [45,46].

In general, the effective interfacial charger transfer between two components contributes to an enhanced photocatalytic performance in the composites. To investigate the photoelectric properties of Pt/g-C_3N_4/MoS_2 electrode in 1 M EtOH + 1 M KOH media, the electrochemical impedance spectrum (EIS) and linear sweep voltammetry (LSV) of Pt/g-C_3N_4 and Pt/g-C_3N_4/MoS_2 were carried out. Fig. 8A shows that the DSA of Pt/g-C_3N_4 is larger than Pt/g-C_3N_4/MoS_2. Moreover, upon visible light irradiation, both of DSAs turned to smaller than those under dark condition. Usually, the smaller DSA means smaller impedance between catalysts and electrolyte and faster interfacial charge transfer on the electrode. These results suggest the decreased internal resistances and facilitated charge transfer in the composites of Pt/g-C_3N_4/MoS_2 and those electrodes upon light illumination [47–59].

In addition, the LSV behaviors of above electrodes in the same electrolyte were also investigated with and without visible light irradiation. Fig. 8B shows that the onset potentials on the Pt/g-C₃N₄/MoS₂ and Pt/g-C₃N₄ electrodes under visible light illumination were negatively shifted by comparing with those electrodes under dark condition. The current densities of Pt/g-C₃N₄/MoS₂ and Pt/g-C₃N₄ electrode were 122 and 17.5 mA mg $_{\rm pt}^{\rm Pt}$ under visible light illumination at potential of -0.3 V, which are 2.7 and 1.9 times higher than the corresponding electrodes under dark condition, respectively. These enhanced current densities are due to the improved charger mobility in the composites of g-C₃N₄/MoS₂ under light excitation.

3.4. Oxidation of methanol and formic acid on Pt/g- C_3N_4/MoS_2 catalyst

To further prove the Pt-C₃N₄/MoS₂ can be acted as a promising

electrocatalyst towards small organic molecules under visible light illumination, methanol and formic acid were also investigated. The CVs for the electrocatalytic oxidation of methanol and formic acid were shown in Fig. 9and the forward peak current densities of $Pt-C_3N_4/MoS_2$ in different substrates solutions were summarized in Table 1. Compare to dark condition, the peak current densities of electrode were improved 6.5 and 2.5 times in the photoelectrocatalytic oxidation of methanol and formic acid, respectively. The error was below 5% in all our experiments also can be observed.

3.5. Photoelectrochemical properties of methanol and formic acid oxidation

Similar to catalytic oxidation of ethanol, the EIS and LSV behaviors of the as-synthesized Pt/g- C_3N_4/MoS_2 electrode is also investigated in methanol and formic acid media under visible light illumination and dark environment to further reveal the advantages of light photo-illuminated process. Fig. 10A and C show that the DSAs of Pt/g- C_3N_4/MoS_2 electrodes under visible light illumination are much smaller than those under dark condition both in methanol and formic acid system. On the other hand, the LSV behaviors of electrodes demonstrated similar tendencies, which showed the onset potentials were negatively shift and the current densities were enhanced. Furthermore, different scan rates on the photoelectrocatalytic oxidation of methanol and formic acid under visible light and dark environment were investigated (Figs. S5 and S6). The diffusion coefficients (D_{light}/D_{dark}) for methanol and formic acid are 27.6 and 5.7, respectively.

3.6. Stability of Pt/g-C₃N₄/MoS₂ catalyst

The long-term stability of electrocatalyst is a crucial parameter in fuel cells. Fig. 11A shows the chronoamperometric curves of the assynthesized $Pt/g-C_3N_4/MoS_2$ within 3000 s both under dark environment and visible light illumination. The electrode shows stable electrocatalytic performance in both conditions, while the current density was higher under visible light illumination than that of under dark environment, revealing superior catalytic activity in photo-illuminated process. In the chronopotentiometry spectra, the potential is gradually increased with the polarization time, indicating a better catalyst's poisoning resistance. The catalyst turns to be poisoned when the voltage

Fig. 6. EIS spectra of Pt/g-C₃N₄/MoS₂ electrode at different potentials in 1 M EtOH + 1 M KOH solution under visible light irradiation.

Fig. 7. A and C: CVs of Pt/g-C₃N₄/MoS₂ at different scan rate in 1 M EtOH + 1 M KOH solution. B and D: The dependence of i_p on the $v^{1/2}$. The electrode was irradiated by visible light (A and B) and under dark (C and D) condition.

increased rapidly [50]. Fig. 11B suggests the chronopotentiometry spectra of electrode both under dark condition and visible light illumination. When the electrode is upon irradiated by visible light, the potential of Pt/g-C₃N₄/MoS₂ electrode jumped to a much higher potential after 14,600 s, which is *ca.* 41.5 times than that of under dark environment (352 s). This result indicates Pt/g-C₃N₄/MoS₂ electrode has the better anti-poisoning ability under visible light illumination, which contributes to the higher catalytic activity. Although these intermediate carbonaceous species can be partial removed by the strong oxidative ability of radical ions, the catalysts still need to bear the intermediate carbonaceous species, which poisoned the catalyst after

lont-time catalytic process. It still has a long way to get a successful real application.

3.7. Photoelectrochemical properties of Pt/g-C₃N₄/MoS₂ catalyst

Above results solidly demonstrated that the as-prepared $Pt/g-C_3N_4/MoS_2$ electrode is an efficient photoelectrocatalyst for the oxidation of small organic molecules with assistance of visible light irradiation. In general, the photocatalytic activity is highly depending on the ratio of the photogenerated charge separation. On the other hand, in comparison with the other structures, 2D/2D heterostructures possess

Fig. 8. The EIS (A) and LSV (B) spectra of Pt/g- C_3N_4/MoS_2 (a and b) and Pt/g- C_3N_4 (c and d) in 1 M EtOH + 1 M KOH under visible light illumination (a and c) and dark condition (b and d).

Fig. 9. CVs of $Pt-C_3N_4/MoS_2$ electrode in 1 M MeOH+1 M KOH solution (A) and $0.5 \, M$ HCOOH+0.5 M H_2SO_4 (B) under visible light illumination and dark condition.

abundant coupling interfacial sites and relative larger surface area, which facilitates migration of the photoinduced chargers more easily, thereby resulting in higher photocatalytic performance.

To confirm superior charger separation in the 2D/2D composites of g-C₃N₄/MoS₂ compare to pure g-C₃N₄, the photocurrent response together with EIS spectra of both electrodes were evaluated in Na₂SO₄ electrolyte. Fig. 12A shows I–t curves on the g-C₃N₄ and g-C₃N₄/MoS₂. When the working electrodes were under visible light irradiation, both electrodes showed rapid responsive photocurrents. However, compare to the pure g-C₃N₄ (0.11 μ A cm⁻²), the 2D/2D g-C₃N₄/MoS₂ composites show 6 times enhanced photocurrent intensity (0.60 μ A cm⁻²). Moreover, the photocurrent responses are repeatable during on/off cycles under visible light irradiation. Furthermore, the EIS measurements

showed that the g- C_3N_4/MoS_2 under visible light illumination displays the smallest DSA than that of under dark environment and g- C_3N_4 under light irradiation and dark environment (Fig. 12B). These results clearly confirm that light irradiation promotes the electrons mobility at the surface of electrode in g- C_3N_4/MoS_2 composites.

Photoluminescence (PL) quenching is often observed due to the altered charge migration processes in the composites. The PL emission spectra together with time-resolved fluorescence decays of pure g- G_3N_4 /Mo S_2 nanocomposites were studied. As show in Fig. 13A, when the samples were excited at 405 nm, the PL emission of g- G_3N_4 showed a broad peak centered at 460 nm, which matchs its bandgap (ca. 2.7 eV). In the composites of g- G_3N_4 /Mo S_2 , PL emission intensity quenching with 61.1% was detected compare to pure g- G_3N_4 . The

Fig. 10. The EIS (A and C) and LSV (B and D) spectra of $Pt/g-C_3N_4/MoS_2$ under visible light illumination and dark environment in 1 M MeOH+1 M KOH (A and B) and 0.5 M HCOOH+ 0.5 M H_2SO_4 (C and D).

Fig. 11. Chronoamperometry (CA) at -0.2 V (A) and chronopotentiometry (CP) at $100 \,\mu\text{A}$ (B) of the Pt/g-C₃N₄/MoS₂ in 1 M MeOH + 1 M KOH condition under visible light illumination and dark environment.

efficient PL quenching means much less electron-hole recombination in $g-C_3N_4/MoS_2$ composites, indicating the photogenerated electrons from excited $g-C_3N_4$ were efficiently trapped by MoS_2 [11].

To probe the kinetics of electron transfer from the excited g-C₃N₄ to MoS₂, time-resolved fluorescence decay were studied, as shown in Fig. 13B and the corresponding fitted fluorescence decay data are summarized in Table 2. Pure g-C₃N₄ shows an average lifetime (τ) of 1.74 ns. In the composites of g-C₃N₄/MoS₂, the average lifetime turns to shorter. The rate of electron transfer process is calculated according Eq. (2) [51] and listed in Table 2.

$$k_{ET} = \frac{1}{\tau_{g-C_3N_4/MoS_2}} - \frac{1}{\tau_{g-C_3N_4}}$$
 (2)

where, k_{ET} is the rate of electron transfer, $\tau_{g-C_3N_4/MoS_2}$ is the average lifetime of excited g-C₃N₄/MoS₂, and $\tau_{g-C_3N_4}$ is the average lifetime of excited g-C₃N₄. The calculated k_{ET} is $ca. 2.8 \times 10^8$ s. This rapid electron transfer rate visually reveals an efficient electron transfer between the excited g-C₃N₄ and the MoS₂ in the composites under visible light illumination, resulting in a suppressed electron-hole recombination and thereby increased photoelectrocatalytic performance.

3.8. Proposed mechanism of photo-enhanced electrocatalytic small organic molecules oxidation on $Pt/g-C_3N_4/MoS_2$ catalyst

According to above results, a proposed mechanism for distinctly enhanced photoelectrocatalytic oxidation of SOMs including ethanol, methanol, and formic acid by using 2D/2D composites of $Pt/g-C_3N_4/MoS_2$ modified electrode was seen in Scheme 1. Firstly, in the electrocatalytic process, Pt nanoparticles deposited on the surface of $g-C_3N_4/MoS_2$ were acted as active sites, in which the target molecules are electro-oxidized to CO_2 on its surface. The main steps for the oxidation

of methanol, ethanol, and formic acid were described as follow equations:

(1) electrocatalytic oxidation of methanol [52-54]:

$$(CH_3OH)_{solution} \rightarrow Pt-(CH_3OH)_{ads}$$
 (3)

$$Pt-(CH3OH) ads + OH- \rightarrow Pt-HCO ads + 2H2O + e-$$
 (4)

$$Pt-HCO_{ads} + 2OH- \rightarrow Pt-HCOO_{ads} + H_2O + 2e^-$$
 (5)

$$Pt-HCOO_{ads} \rightarrow Pt + CO_2 + H^+ + e^-$$
 (6)

$$Pt-HCO_{ads} \rightarrow Pt-CO_{ads} + H^{+} + e^{-}$$
 (7)

$$Pt + OH \rightarrow Pt - OH_{ads} + e^{-}$$
 (8)

$$Pt-CO_{ads} + Pt-OH_{ads} \rightarrow CO_2 + 2Pt + H^+ + e^-$$
 (9)

(2) electrocatalytic oxidation of ethanol: [52,55,56]

$$(CH_3CH_2OH)_{solution} \rightarrow Pt-(CH_3CH_2OH)_{ads}$$
 (10)

$$Pt\text{-}(CH_3CH_2OH)_{ads} + 2 OH - \rightarrow Pt\text{-}CH_3CHO_{ads} + 2H_2O + 2e^- \quad (11)$$

$$2 \text{ Pt-CH}_3\text{CHO}_{ads} + 12\text{OH-} \rightarrow 2 \text{ Pt} + 2\text{CO}_2 + 10\text{H}_2\text{O} + 12\text{e}^-$$
 (12)

(3) electrocatalytic oxidation of formic acid: [52,57,58] Direct oxidation processes:

$$(HCOOH)_{solution} \rightarrow Pt-(HCOOH)_{ads}$$
 (13)

$$Pt-(HCOOH)_{ads} + OH- \rightarrow Pt-HCOO_{ads} + H_2O + e^-$$
 (14)

$$Pt-HCOO_{ads} \rightarrow Pt + CO_2 + H^+ + e^-$$
 (15)

Indirect oxidation processes:

$$Pt + HCOOH \rightarrow Pt-(CO)_{ads} + H_2O$$
 (16)

Fig. 12. Photocurrent responses (A) and EIS spectra (B) of g- G_3N_4/MoS_2 (a and b) and g- G_3N_4 (c and d) in $0.1 \,\mathrm{M}\,$ Na_2SO_4 media at a potential of $0.6 \,\mathrm{V}$. The illumination was interrupted every 15 s in the photocurrent responses.

Fig. 13. PL emission spectra (A) and decay profiles (B) of the g-C₃N₄ (a) and g-C₃N₄/MoS₂ nanocomposites (b). Excitation wavelength: 405 nm.

Table 2 Time-resolved PL decay data of g-C₃N₄ and g-C₃N₄/MoS₂ derived from Fig. 13B.

Sample	τ ₁ (ns)	τ ₂ (ns)	τ _{ave} (ns)	k _{ET} (s ⁻¹)
g-C ₃ N ₄	0.88 (73.5%)	4.12 (26.5%)	1.74	-
g-C ₃ N ₄ /MoS ₂	0.67 (81.4%)	3.35 (18.6%)	1.17	2.8 × 10 ⁸

Scheme 1. Proposed scheme of the electrocatalytic (EC) and photocatalytic (PC) oxidation of small organic molecules through the $Pt/g-C_3N_4/MoS_2$ electrode under visible-light illumination.

$$Pt-(CO)_{ads} + Pt-(OH)_{ads} \rightarrow 2Pt + CO_2 + H^+ + e^-$$
 (17)

Secondly, after $Pt/g-C_3N_4/MoS_2$ electrode was upon visible light illumination, the photogenerated electrons and holes were formed in the conduction band (CB) and valence band (VB) of $g-C_3N_4$, respectively [20–23]. The surface adsorbed OH^-/H_2O was oxidized by holes to form hydroxyl radicals ('OHs) [11–14,47]. Then, the SOMs and intermediate carbonaceous species which adsorbed on the surface of electrocatalyst were oxidized by formed 'OHs, leading to a photo-assisted catalytic process. This photocatalytic cleaning process for the removal of intermediate carbonaceous species promotes the poisoning suppression of catalysts, although the catalysts still need to bear the intermediate carbonaceous species after long time catalytic process. The corresponding steps are showing as follows: [59–61]

$$g-C_3N_4 + h\nu \rightarrow g-C_3N_4 + e^- + h^+$$
 (18)

$$h^+ + OH^- \rightarrow OH^{\bullet} \tag{19}$$

$$CH_3OH_{ad} + OH^{\bullet} + 5OH^{-} \rightarrow CO_2 + 5H_2O + e^{-}$$
 (20)

$$CH_3CH_2OH_{ad} + OH^{\bullet} + OH^{-} \rightarrow CO_2 + H_2O + e^{-}$$
 (21)

$$HCOOH_{ad} + 2OH_{-} \rightarrow CO_{2} + 2H_{2}O + e^{-}$$
 (22)

Intermediates (CO _{ads}) + OH•
$$\rightarrow$$
 CO₂ + H⁺ + e⁻ (23)

In the pure g- C_3N_4 , these electron-hole pairs are recombined easily and only a small fraction of holes can be used for photocatalytic cleavage. However, in the presence of MoS_2 , owing to the effective electrons transfer between g- C_3N_4 and MoS_2 [26–30], the electrons are easily injected to MoS_2 and then flow to Pt and electrode by external electric field, thereby limiting the charges recombination and improving the catalytic performance and stability.

To confirm the hydroxyl radicals ('OHs) were generated in the samples of $g\text{-}C_3N_4$ and $g\text{-}C_3N_4/MoS_2$ during visible light illumination, electron spin resonance (ESR) spectroscopy was investigated. We used 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as spin trapping adducts to detect the formation of 'OH. Fig. 14 shows four-line spectra with relative intensities of 1:2:2:1 in the system of $g\text{-}C_3N_4$ after visible light illumination, indicating that the 'OH can be generated in the presence of $g\text{-}C_3N_4$ under visible light illumination [62]. Moreover, after hybridzation of MoS_2 , the signals of 'OHs were improved obviously. This phenomenon further confirms that the electrons from excited $g\text{-}C_3N_4$ were rapidly transport to MoS_2 , resulting in an effective charge separation and enhanced the catalytic performance.

4. Conclusions

In summary, 2D/2D heterostructure of g- C_3N_4/MoS_2 nanocomposite was synthesized to be a photofunctional support for Pt nanoparticles decoration. The as-prepared Pt/g- C_3N_4/MoS_2 exhibited efficient catalytic activities towards the oxidation of SOMs including ethanol,

Fig. 14. ESR spectra of DMPO – OH adducts in the system of g-C $_3N_4$ and g-C $_3N_4/MoS_2$.

methanol, and formic acid. Furthermore, with the assistance of visible light illumination, the performance was distinctly improved owing to the synergistic effect of electro- and photo-process. By coupling MoS_2 nanosheets on the surface of the g- C_3N_4 , the effective charger separation in the designed 2D/2D heterostructure of g- C_3N_4 / MoS_2 contributes to the higher catalytic performance compared to single-component of g- C_3N_4 upon visible light irradiation. The present results suggest that the 2D/2D heterostructure of g- C_3N_4 / MoS_2 are a promising photo-functional substrate in the fields of chemical and solar energy conversion.

Acknowledgments

Research was supported by the National Natural Science Foundation of China (41522304, 21577142, 21603111, and 51702173) and also supported by K.C. Wong Magna Fund in Ningbo University.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.10.047.

References

- [1] C. Bianchini, P. Kang Shen, Chem. Rev. 109 (2009) 4183-4206.
- [2] F. Vigier, S. Rousseau, C. Coutanceau, J.-M. Leger, C. Lamy, Top. Catal. 40 (2006) 111–121.
- [3] C. Rice, S. Ha, R.I. Masel, A. Wieckowski, J. Power Sources 115 (2003) 229-235.
- [4] E. Antolini, J. Power Sources 170 (2007) 1-12.
- [5] M. Cao, D.S. Wu, R. Cao, ChemCatChem 6 (2014) 26-45.
- [6] M. Zhu, C. Zhai, C. Lu, Advanced Electrode Materials, Ch.11 John Wiley & Sons, Inc., Hoboken, NJ, USA, 2016, pp. 435–456.
- [7] S. Sfaelou, P. Lianos, AIMS Mater. Sci. 3 (2016) 270-288.
- [8] K. Drew, G. Girishkumar, K. Vinodgopal, P.V. Kamat, J. Phys. Chem. B 109 (2005) 11851–11857.
- [9] M. Sun, J. Hu, C. Zhai, M. Zhu, J. Pan, Electrochim. Acta 245 (2017) 863–871.
- [10] C. Zhai, M. Zhu, F. Pang, D. Bin, C. Lu, M.C. Goh, P. Yang, Y. Du, ACS Appl. Mater. Interfaces 8 (2016) 5972–5980.
- [11] C. Zhai, M. Sun, M. Zhu, K. Zhang, Y. Du, Int. J. Hydrogen Energy 42 (2017) 5006–5015.
- [12] A. Leelavathi, G. Madras, N. Ravishankar, J. Am. Chem. Soc. 136 (2014) 14445–14455.
- [13] A. Arabzadeh, A. Salimi, M. Ashrafi, S. Soltanian, P. Servati, Catal. Sci. Technol. (6) (2016) 3485–3496.
- [14] J.A. Díaz-Real, E. Ortiz-Ortega, M.P. Gurrola, J. Ledesma-Garcia, L.G. Arriaga, Electrochim. Acta 206 (2016) 388–399.
- [15] Y.-H. Hsu, A.T. Nguyen, Y.-H. Chiu, J.-M. Li, Y.-J. Hsu, Appl. Catal. B Environ. 185 (2016) 133–140.
- [16] C. Zhai, M. Zhu, D. Bin, H. Wang, Y. Du, C. Wang, P. Yang, ACS Appl. Mater. Interfaces 6 (2014) 17753–17761.
- [17] K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353 (2016) 1–11.
- [18] M.-Y. Li, C.-H. Chen, Y.M. Shi, L.-J. Li, Mater. Today 19 (2016) 322-335.
- [19] W.-J. Ong, Front. Mater. 4 (2017) 11.
- [20] W. Jiang, W. Luo, J. Wang, M. Zhang, Y. Zhu, J. Photochem. Photobiol. C 28 (2016) 87–115.
- [21] J.Q. Wen, J. Xie, X.B. Chen, X. Li, Appl. Surf. Sci. 391 (2017) 72–123.
- [22] J.S. Zhang, Y. Chen, X.C. Wang, Energy Environ. Sci. 8 (2015) 3092–3108.
- [23] Y. Zheng, L.H. Lin, B. Wang, X.C. Wang, Angew. Chem. Int. Ed. 54 (2015)

- 12868-12884.
- [24] G.G. Zhang, Z.-A. Lan, X.C. Wang, Angew. Chem. Int. Ed. 55 (2016) 15712–15727.
- [25] Y.D. Hou, A.B. Laursen, J.S. Zhang, G.G. Zhang, Y.S. Zhu, X.C. Wang, S. Dahl, I. Chorkendorff, Angew. Chem. Int. Ed. 52 (2013) 3621–3625.
- [26] J.J. Wang, Z.Y. Guan, J. Huang, Q.X. Li, J.L. Yang, J. Mater. Chem. A 2 (2014) 7960–7966.
- [27] J. Yan, Z.G. Chen, H.Y. Ji, Z. Liu, X. Wang, Y.G. Xu, X.J. She, L.Y. Huang, L. Xu, H. Xu, H.M. Li, Chem. Eur. J. 22 (2016) 4764–4773.
- [28] Q. Li, N. Zhang, Y. Yang, G.Z. Wang, D.H.L. Ng, Langmuir 30 (2014) 8965-8972.
- [29] J. Li, E.Z. Liu, Y.N. Ma, X.Y. Hu, J. Wan, L. Sun, J. Fan, Appl. Surf. Sci. 364 (2016) 694–702.
- [30] H. Zhao, Y.M. Dong, P.P. Jiang, H.Y. Miao, G.L. Wang, J.J. Zhang, J. Mater. Chem. A 3 (2015) 7375–7381.
- [31] Z.Y. Zhang, D.L. Jiang, D. Li, M.Q. He, M. Chen, Appl. Catal. B Environ. 183 (2016) 113–123
- [32] C.L. Tan, H. Zhang, Chem. Soc. Rev. 44 (2015) 2713-2731.
- [33] X. Li, H.W. Zhu, J. Materiomics 1 (2015) 33-44.
- [34] K. Chang, X. Hai, J.H. Ye, Adv. Energy Mater. 6 (2016) 1-21.
- [35] K. Pramoda, U. Gupta, M. Chhetri, A. Bandyopadhyay, S.K. Pati, C.N.R. Rao, ACS Appl. Mater. Interfaces 9 (2017) 10664–10672.
- [36] J. Li, E.Z. Liu, Y.N. Ma, X.Y. Hu, J. Wan, L. Sun, J. Fan, Appl. Surf. Sci. 364 (2016) 6 94–702.
- [37] X.J. Lu, Y.L. Jin, X.Y. Zhang, G.Q. Xu, D.M. Wang, J. Lv, Z.X. Zheng, Y.C. Wu, Dalton Trans. 45 (2016) 15406–15414.
- [38] S.A. Ansari, M.H. Cho, Sci. Rep. 7 (2017) 1-11.
- [39] X. Shi, M. Fujitsuka, S. Kim, T. Majima, Small 14 (2018) 1-9.
- [40] M.S. Zhu, C.Y. Zhai, M.J. Sun, Y.F. Hu, B. Yan, Y.K. Du, Appl. Catal. B Environ. 203 (2017) 108–115.
- [41] Z.Y. Zhang, K.C. Liu, Z.Q. Feng, Y.N. Bao, B. Dong, Sci. Rep. 6 (2016) 1-10.
- [42] C. Zhai, M. Zhu, D. Bin, F. Ren, C. Wang, P. Yang, Y. Du, J. Power Sources 275 (2015) 483–488.
- [43] M. Zhu, Z. Li, Y. Du, Z. Mou, P. Yang, ChemCatChem 4 (2012) 112-117.
- [44] C. Wang, H. Wang, C. Zhai, F. Ren, M. Zhu, P. Yang, Y. Du, J. Mater. Chem. A 3 (2015) 4389–4398.
- [45] Z. Yao, R. Yue, F. Jiang, C. Zhai, F. Ren, Y. Du, J Solid State Electrochem. 17 (2013) 2511–2519.
- [46] M. Sun, J. Hu, C. Zhai, M. Zhu, J. Pan, ACS Appl. Mater. Interfaces 9 (2017) 13223–13230.
- [47] F. Liang, Y. Zhu, Appl. Catal. B 180 (2016) 324–329.
- [48] M. Zhu, Y. Osakada, S. Kim, M. Fujitsuka, T. Majima, Appl. Catal. B Environ. 217 (2017) 285–292.
- [49] M. Zhu, X. Cai, M. Fujitsuka, J. Zhang, T. Majima, Angew. Chem. Int. Ed. 56 (2017) 2064–2068.
- [50] F. Ren, H. Wang, C. Zhai, M. Zhu, R. Yue, Y. Du, P. Yang, J. Xu, W. Lu, ACS Appl. Mater. Interfaces 6 (2014) 3607–3614.
- [51] M. Zhu, Y. Dong, Y. Du, Z. Mou, J. Liu, P. Yang, X. Wang, Chem. Eur. J. 18 (2012) 4367–4374.
- [52] M.H. Shao, Electrocatalysis in Fuel Cells: A non- and Low- Platinum Approach, Springer, London, 2013.
- [53] R. Nagao, D.A. Cantane, F.H.B. Lima, H. Varela, Phys. Chem. Chem. Phys. 14 (2012) 8294–8298.
- [54] Y.X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, J. Am. Chem. Soc. 125 (2003) 3680–3681.
- [55] E. Antolini, Energies 10 (2017) 1–20.
- [56] M.A.F. Akhairi, S.K. Kamarudin, Int. J. Hydrogen Energy 41 (2016) 4214-4228.
- [57] M.G. Hosseini, M.M. Momeni, Fuel Cells 3 (2012) 406–414.
- [58] N. Mojumder, S. Sarker, S.A. Abbas, Z. Tian, V. Subramanian, ACS Appl. Mater. Interfaces 6 (2014) 5585–5594.
- [59] A.Y. Ahmed, T.A. Kandiel, I. Ivanova, D. Bahnemann, Appl. Surf. Sci. 319 (2014) 44–49.
- [60] M. Hamandi, G. Berhault, C. Guillard, H. Kochkar, Appl. Catal. B 209 (2017) 203–213.
- [61] P. Panagiotopoulou, M. Antoniadou, D.I. Kondarides, P. Lianos, Appl. Catal. B 100 (2010) 124–132.
- [62] H.H. Ji, F. Chang, X.F. Hu, W. Qin, J.W. Shen, Chem. Eng. J. 218 (2013) 183–190.