МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студентка гр. 3341	 Яковлева А.А
Преподаватель	Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Изучение работы конечных автоматов, в частности Машины Тьюринга.

Задание

Вариант 4

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}, которая начинается с символа 'a'.

Напишите программу, которая оборачивает исходную строку. Результат работы алгоритма - исходная последовательность символов в обратном порядке.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

		b	a	c	a	a	b	a	b	c	b	a	c	c	a		

Алфавит (можно расширять при необходимости):

- a
- b
- c
- " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
- 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
- 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.
- 6. Нельзя использовать дополнительную ленту, в которую записывается результат.

Ваша программа должна вывести полученную ленту после завершения работы. В отчет включите таблицу состояний. Отдельно кратко опишите каждое состояние.

Выполнение работы

Таблица состояний:

	a	ь	С	1.1	d
q1	a;L;q2	b;L;q2	c;L;q2	'';R;q1	
q2				d;R;q3	
q3	a;R;q3	b;R;q3	c;R;q3	'';L;q4	
q4	a;L;q5	b;L;q5	c;L;q5		
q5	' ';R;q10	'';R;q11	'';R;q12	'';L;q5	' ';n;qT
q6	a;R;q6	b;R;q6	c;R;q6	a;L;q9	
q7	a;R;q6	b;R;q6	c;R;q6	b;L;q9	
q8	a;R;q6	b;R;q6	c;R;q6	c;L;q9	
q9	a;L;q9	b;L;q9	c;L;q9	'';L;q5	
q10	a;N;q6	b;N;q6	c;N;q6	'';R;q10	
q11	a;N;q7	b;N;q7	c;N;q7	'';R;q11	
q12	a;N;q8	b;N;q8	c;N;q8	'';R;q12	

Рассмотрим каждое состояние:

- q1 начальное состояние: пока встречает пробел перемещает курсор вправо, когда встречает a, b, или с перемещает курсор влево, на пробел до последовательности символов, и переходит в состояние q2
- *q2* вместо пробела записывает d, добавленный в алфавит символ, необходимый для определения начала строки, перемещает курсор вправо и переходит в состояние *q3*
- *q3* пока встречает a, b, или с перемещает курсор вправо, когда встречает пробел перемещает курсор влево, на последний символ последовательности, и переходит в состояние *q4*
- q4 перемещает курсор влево, на предпоследний символ последовательности, чтобы обернуть последовательность относительно последнего символа, переходит в состояние q5
- *q5* перемещает курсор влево пока встречает пробел, когда встречает непробельный символ заменяет его пробелом, если текущий символ был d,

значит курсор вернулся в начало строки, переходит в конечное состояние qT, иначе перемещает курсор вправо и переходит в состояние q10 если это а, q11 если b, q12 если с

- *q6* перемещает курсор вправо пока встречает а, b или c, когда встречает пробел (конец последовательности в обратном порядке) заменяет его символом а, перемещает курсор влево, переходит в состояние *q9*
- *q7* перемещает курсор вправо пока встречает а, b или c, когда встречает пробел (конец последовательности в обратном порядке) заменяет его символом b, перемещает курсор влево, переходит в состояние *q9*
- *q8* перемещает курсор вправо пока встречает а, b или c, когда встречает пробел (конец последовательности в обратном порядке) заменяет его символом c, перемещает курсор влево, переходит в состояние *q9*
- q9 перемещает курсор влево пока встречает а, b или c, когда встречает пробел (ближайший пробел к началу последовательности в обратном порядке) перемещает курсор влево, переходит в состояние q5
- *q10* перемещает курсор вправо пока встречает пробел, когда встречает другой символ (начало последовательности в обратном порядке) переходит в состояние *q6*
- q11 перемещает курсор вправо пока встречает пробел, когда встречает другой символ (начало последовательности в обратном порядке) переходит в состояние q7
- q12 перемещает курсор вправо пока встречает пробел, когда встречает другой символ (начало последовательности в обратном порядке) переходит в состояние q8

В словарь *table* запишем таблицу состояний. Считаем ленту, так как она бесконечна, добавим к ней справа *tape_length* пробелов, в данной задаче длина строки не более 13, поэтому 20 пробелов будет достаточно, запишем в *memory* список, содержащий элементы полученной ленты. В список состояний q добавим начальное состояние q1, idx, указателю на текущую ячейку ленты, присвоим 0.

С помощью цикла *while* пока текущее состояние не равно конечному, symbol присвоим символ, стоящий в текущей ячейке, *q curr* присвоим текущее состояние, поменяем символ в текущей ячейке ленты в соответствии с таблицей, в список состояний q добавим соответствующее состояние, idx добавим значение функции move (-1, если в таблице стоит L; 0, если N; 1, если R).

После конечного состояния выведем ленту.

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	a	a	
2.	abc	cba	
3.	aabbcc	ccbbaa	
4.	abbcaababccac	caccbabaacbba	

Выводы

Была изучена работа конечных автоматов, создана программа, моделирующая работу Машины Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
def move(direction):
         if direction == 'L':
              return -1
         elif direction == 'N':
              return 0
         else:
              return 1
     table = {
          'q1': {'a': ('a', 'L', 'q2'), 'b': ('b', 'L', 'q2'), 'c': ('c',
'L', 'q2'), ' ': (' ', 'R', 'q1')},
          'q2': {' ': ('d', 'R', 'q3')},
          'q3': {'a': ('a', 'R', 'q3'), 'b': ('b', 'R', 'q3'), 'c': ('c',
'R', 'q3'), ' ': (' ', 'L', 'q4')},
          'q4': {'a': ('a', 'L', 'q5'), 'b': ('b', 'L', 'q5'), 'c': ('c',
'L', 'q5')},
          'q5': {'a': (' ', 'R', 'q10'), 'b': (' ', 'R', 'q11'), 'c': ('
', 'R', 'q12'), ' ': (' ', 'L', 'q5'), 'd': (' ', 'N', 'qT')},
          'q6': {'a': ('a', 'R', 'q6'), 'b': ('b', 'R', 'q6'), 'c': ('c',
'R', 'q6'), ' ': ('a', 'L', 'q9')},
'q7': {'a': ('a', 'R', 'q7'), 'b': ('b', 'R', 'q7'), 'c': ('c', 'R', 'q7'), ' ': ('b', 'L', 'q9')},
     'q8': {'a': ('a', 'R', 'q8'), 'b': ('b', 'R', 'q8'), 'c': ('c', 'q8'), ' ': ('c', 'L', 'q9')},
          'q9': {'a': ('a', 'L', 'q9'), 'b': ('b', 'L', 'q9'), 'c': ('c',
    'q9'), ' ': (' ', 'L', 'q5')},
          'q10': {'a': ('a', 'N', 'q6'), 'b': ('b', 'N', 'q6'), 'c': ('c',
'N', 'q6'), ' ': (' ', 'R', 'q10')},
         'q11': {'a': ('a', 'N', 'q7'), 'b': ('b', 'N', 'q7'), 'c': ('c',
     'q7'), ' ': (' ', 'R', 'q11')},
'q12': {'a': ('a', 'N', 'q8'), 'b': ('b', 'N', 'q8'), 'c': ('c',
     'q8'), ' ': (' ', 'R', 'q12')},
     tape length = 20
     memory = list(input() + " "*tape length)
     q = ['q1']
     idx = 0
     while q[-1] != 'qT':
         symbol = memory[idx]
         q curr = q[-1]
         memory[idx] = table[q curr][symbol][0]
         idx += move(table[q curr][symbol][1])
          q.append(table[q curr][symbol][2])
     print(''.join(memory))
```