Math 143 Midterm 2

Name:

Identities: $\cos^2 t = (1 + \cos 2t)/2$, $\sin^2 t = (1 - \cos 2t)/2$.

1. Find the values of t for which the parametric curve $\begin{cases} x = 2t^2 \\ y = t^4 - t^3/3 \end{cases}$ for $t \in \mathbb{R}$ is concave down.

2. Find the plane containing the lines $\begin{cases} x=2+t, \\ y=1+t, \\ z=-2+2t \end{cases} \text{ for } t \in \mathbb{R} \text{ and } \begin{cases} x=s, \\ y=1+s, \\ z=1+2s \end{cases} \text{ for } s \in \mathbb{R}.$

3. Find the equation of the line tangent to the polar curve $r = 1/(1 + \cos \theta)$ at $\theta = \pi/2$.

4. Find the area enclosed by the polar curve $r = \sin(4\theta)$.

5. Find the arclength of the parametric equations $\begin{cases} x = \cos(2t), \\ y = 2t - \sin(2t) \end{cases}$ for $t \in [0, \pi]$.