Projektowanie Algorytmów i Metody Sztucznej Inteligencji

Sprawozdanie 5:

Drzewo czerwono-czarne

1. Cel ćwiczenia:

Implementacja drzewa czerwono-czarnego jako szczególnego przypadku drzewa binarnego.

2. Pomiary

Dodawanie elementów do drzewa polegało na dodaniu losowej liczby całkowitej, a następnie dopisania jej do drzewa w odpowiednim miejscu. Przy dodawaniu elementu do drzewa należało również dopilnować, by zachowane zostały wymogi drzewa czerwono-czarnego.

Szukanie polegało na znalezieniu ostatniego dodanego elementu jakim był element o kluczu równym zadanemu rozmiarowi drzewa tj. dla n = 100, ostatni element = 100.

Tabela 1 Wyniki pomiarów czasu dodawania n elementów do drzewa czerwono-czarnego

Dodawanie	10[ms]	100[ms]	1000[ms]	10000[ms]	100000[ms]	1000000[ms]
1.	0,003221	0,021310	0,246641	2,852720	34,175	439,419
2.	0,002596	0,022148	0,254200	2,856720	34,394	453,968
3.	0,001570	0,021465	0,237875	2,852920	34,722	452,145
4.	0,001540	0,021477	0,236652	2,934600	34,548	450,762
5.	0,001542	0,021337	0,239972	2,869410	34,629	460,155
6.	0,001579	0,021540	0,235854	2,838320	34,531	447,955
7.	0,002252	0,021680	0,234454	2,864420	34,593	447,276
8.	0,001534	0,021300	0,246270	2,846560	34,428	444,736
9.	0,001524	0,021984	0,239551	2,838170	35,123	448,495
10.	0,001528	0,021454	0,237997	2,818410	34,383	460,011
średnia	0,001889	0,021570	0,240947	2,857225	34,553	450,4922
Czas / n	0,00018886	0,0002157	0,00024095	0,00028572	0,00034553	0,00045049

Tabela 2 Wyniki pomiarów czasu szukania elementu w drzewie czerwono-czarnym

Szukanie	10[ms]	100[ms]	1000[ms]	10000[ms]	100000[ms]	1000000[ms]
1.	0,000091	0,000131	0,000175	0,000284	0,000438	0,000553
2.	0,000042	0,000082	0,000124	0,000181	0,000261	0,000428
3.	0,000043	0,000072	0,000113	0,000186	0,000288	0,000428
4.	0,000041	0,000071	0,000104	0,000181	0,000271	0,000429
5.	0,000044	0,000071	0,000104	0,000177	0,000281	0,000432
6.	0,000045	0,000069	0,000109	0,000168	0,000269	0,000425
7.	0,000040	0,000070	0,000106	0,000169	0,000281	0,000426
8.	0,000041	0,000068	0,000106	0,000172	0,000256	0,000425
9.	0,000044	0,000071	0,000116	0,000167	0,000264	0,000425
10.	0,000043	0,000070	0,000109	0,000173	0,000256	0,000425
średnia	0,000047	0,000078	0,000117	0,0001858	0,0002865	0,0004396

3. Wykresy:

Rysunek 1 Złożoność czasowa dodawania n elementów do drzewa - O(nlog(n))

Rysunek 2 O(log(n))- otrzymany przez podzielenie wartości wykresu z rysunku 1. przez n

Rysunek 3 Wykres złożoności czasowej szukania elementu w drzewie - O(log(n))

Wnioski:

Pomiary oraz powstałe na ich podstawie wykresy potwierdzają teoretyczne złożoności obliczeniowe operacji dodawania n elementów do drzewa jak i znalezienia elementu w drzewie.

Operacja wyszukania elementu zgodnie z teorią zajmuje O(log(n)).

Wykres na rysunku drugim powstał z podzielenia wartości z wykresu na rysunku pierwszym przez odpowiadającą im liczbę elementów. Otrzymanym wynikiem jest funkcja logarytmiczna log(n), korzystając z prostej matematyki:

$$\frac{X}{n} = \log(n) \to X = n\log(n)$$

Powyższe równanie dowodzi tego, że na rysunku 1. Przedstawiony jest wykres złożoności czasowej O(nlog(n)).