TD4 - Indépendance, Borel-Cantelli, loi faible des grands nombres

Exercice 1. Soit U une variable exponentielle de paramètre 1 et soit V une variable uniforme sur l'intervalle [0,1]. On suppose que U et V sont indépendantes. Montrer que les variables aléatoires

$$X = \sqrt{U}\cos(2\pi V)$$
 et $Y = \sqrt{U}\sin[2\pi V)$

sont indépendantes et calculer leurs lois.

Exercice 2. (a) Soit X une variable aléatoire positive dans \mathcal{L}_2 . Montrer que pour tout $\varepsilon \in (0,1)$ on a

$$\mathbb{P}[X > \varepsilon \mathbb{E}[X]] \ge \frac{((1-\varepsilon)\mathbb{E}[X])^2}{\mathbb{E}[X^2]}$$

En déduire que $\mathbb{P}[X=0] \leq \text{Var}X/\mathbb{E}[X^2]$.

(b) Soient $\{A_n, n \geq 1\}$ des événements tels que

$$\sum_{n>1} \mathbb{P}[A_n] = \infty \quad \text{et} \quad \gamma = \liminf_{n \to \infty} \left(\frac{\sum_{i,j=1}^n \mathbb{P}[A_i \cap A_j]}{\left(\sum_{i=1}^n \mathbb{P}[A_i]\right)^2} \right) < \infty.$$

Montrer que

$$\mathbb{P}\left[\sum_{n>1}\mathbf{1}_{A_n}\,=\,\infty\right]\,>\,\gamma^{-1}\,>\,0.$$

En quoi ceci est-il une amélioration du deuxième lemme de Borel-Cantelli?

Exercice 3. (a) Soit $\{X_n, n \geq 1\}$ une suite indépendante de variables aléatoires exponentielles de paramètre 1. Calculer la densité de $T_n = X_1 + \cdots + X_n$ pour tout $n \geq 1$.

(b) Soit a > 1/2. Montrer que

$$\mathbb{P}\left[T_n \ge n + n^a\right] \le e^{-\sqrt{n} - n^{a - 1/2}} \left(\frac{1}{1 - 1/\sqrt{n}}\right)^n$$

pour tout $n \geq 0$.

(c) En déduire que presque sûrement, on a $T_n \leq n + n^a$ à partir d'un certain rang, pour tout a > 1/2.

Exercice 4. Soit X une variable aléatoire uniforme sur [0, 1]. On considère le développement dyadique

$$X(\omega) = \sum_{n \ge 1} 2^{-n} X_n(\omega)$$

1

avec $X_n \in \{0,1\}$ (en choisissant toujours le développement fini le cas échéant où X est un nombre dyadique).

- (a) Montrer que les X_n sont indépendantes et de loi uniforme sur $\{0,1\}$.
- (b) Soit $p \ge 1$ un entier quelconque et soit i_1, \ldots, i_p une suite quelconque de $\{0, 1\}$. Montrer que presque sûrement, on a

$$Card\{k \ge 0, X_{k+1} = i_1, \dots, X_{k+p} = i_p\} = \infty.$$

(c) Soit $p, n \ge 1$ des entiers quelconques et $Y_n = (X_{1+(n-1)p}, \dots, X_{np}) \in \{0, 1\}^p$. Soit i_1, \dots, i_p une suite quelconque de $\{0, 1\}$. Montrer que presque sûrement, on a

$$\frac{1}{n}$$
Card $\{k \le n, Y_j = (i_1, \dots, i_p)\} \to 2^{-p}$

quand $n \to \infty$.

Exercice 5. Pour toute fonction continue $[0,1] \to \mathbb{R}$ et tout entier $n \geq 0$ on définit le polynôme de Bernstein

$$\mathcal{B}_n f(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f(k/n).$$

Montrer en utilisant la loi faible des grands nombres que $\mathcal{B}_n f$ converge uniformément vers f sur [0,1] quand $n \to \infty$.