and since the minimum is 0, we pick the outgoing column to be Column $k^-=7$. The pivot 3 is indicated in red and the new basis is K=(2,1,6,5). Since the minimum is 0, the basis K=(2,1,6,5) is degenerate (indeed, the component corresponding to the index 5 is 0). Next we apply row operations to reduce Column 5 to the fourth vector of the identity matrix I_4 . For this, we multiply Row 4 by 1/3, and then add the normalized Row 4 to Row 1 and subtract the normalized Row 4 from Row 2 to obtain the tableau:

4	0	0	-8	-14	13	0	0
$u_2 = 2$	0	1	1/3	0	0	0	1/3
$u_1 = 2$	1	0	2/3	1	0	0	-1/3
$u_6 = 3$	0	0	1	0	0	1	0
$u_5 = 0$	0	0	-2/3	-1	1	0	1/3

To compute the new reduced costs, we want to set \bar{c}_5 to 0, so we subtract 13× Row 4 from Row 0 to get the tableau

4	0	0	2/3	-1	0	0	-13/3
$u_2=2$	0	1	1/3	0	0	0	1/3
$u_1 = 2$	1	0	2/3	1	0	0	-1/3
$u_6 = 3$	0	0	1	0	0	1	0
$u_5 = 0$	0	0	-2/3	-1	1	0	1/3

The only possible incoming column corresponds to $j^+=3$. We have the ratios (for positive entries on Column 3)

$$2/(1/3) = 6$$
, $2/(2/3) = 3$, $3/1 = 3$,

and since the minimum is 3, we pick the outgoing column to be Column $k^-=1$. The pivot 2/3 is indicated in red and the new basis is K=(2,3,6,5). Next we apply row operations to reduce Column 3 to the second vector of the identity matrix I_4 . For this, we multiply Row 2 by 3/2, subtract $(1/3)\times$ (normalized Row 2) from Row 1, and subtract normalized Row 2 from Row 3, and add $(2/3)\times$ (normalized Row 2) to Row 4 to obtain the tableau:

4	0	0	2/3	-1	0	0	-13/3
$u_2 = 1$	-1/2	1	0	-1/2	0	0	1/2
$u_3 = 3$	3/2	0	1	3/2	0	0	-1/2
$u_6 = 0$	-3/2	0	0	-3/2	0	1	1/2
$u_5 = 2$	1	0	0	0	1	0	0

To compute the new reduced costs, we want to set \bar{c}_3 to 0, so we subtract $(2/3) \times \text{Row } 2$ from Row 0 to get the tableau