Class 10: Structual Bioinformatics pt. 1

Thomas Bailey

Table of contents

T	ne PDB database	1
2.	Using Mol*	5
3.	Introduction to Bio3D in R	9
4.	Predicting functional dynamics	11

The PDB database

The main repository of biomelecular structure data is called the PDK found at: http://www.rcsb.org/

Let's see what this database contains. I went to PDB > Analyze > PDB Statistics> By Exp method and molecular type.

```
pdbstats <- read.csv("Data Export Summary.csv")
pdbstats</pre>
```

	Molecular.Type	X.ray	EM	NMR	Multiple.methods	Neutron	Other
1	Protein (only)	169,563	16,774	12,578	208	81	32
2	Protein/Oligosaccharide	9,939	2,839	34	8	2	0
3	Protein/NA	8,801	5,062	286	7	0	0
4	Nucleic acid (only)	2,890	151	1,521	14	3	1
5	Other	170	10	33	0	0	0
6	Oligosaccharide (only)	11	0	6	1	0	4
	Total						

^{1 199,236}

^{2 12,822}

^{3 14,156}

^{4 4,580}

```
5
       213
```

22

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
pdbstats$X.ray
```

```
[1] "169,563" "9,939"
                        "8,801"
                                   "2,890"
                                             "170"
                                                       "11"
```

The comma in these numbers is causing them to be read as character rather than numeric. I can fix this by replacing "," for nothing "" with the sub() function:

```
x <- pdbstats$X.ray</pre>
sum(as.numeric(sub(",","",x)))
```

[1] 191374

Or I can use the **readr** package and the **read_csv()** function.

```
library(readr)
pdbstats <-read_csv("Data Export Summary.csv")</pre>
Rows: 6 Columns: 8
```

-- Column specification ------

Delimiter: ","

chr (1): Molecular Type

dbl (3): Multiple methods, Neutron, Other

num (4): X-ray, EM, NMR, Total

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

pdbstats

A tibble: 6 x 8 `Molecular Type` NMR `Multiple methods` Neutron Other `X-ray` EM<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>1 Protein (only) 169563 16774 12578 208 81 32 199236 2 Protein/Oligosacc~ 9939 2839 2 34 8 0 12822 3 Protein/NA 8801 5062 286 7 0 14156 0 4 Nucleic acid (onl~ 2890 151 1521 14 3 4580 5 Other 170 10 33 0 0 213 6 Oligosaccharide (~ 11 0 6 1 0 22

I want to cclean the column names so they are all lower case and dont have spees in them

colnames(pdbstats)

[1] "Molecular Type" "X-ray" "EM" "NMR"
[5] "Multiple methods" "Neutron" "Other" "Total"

library(janitor)

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

chisq.test, fisher.test

df <- clean_names(pdbstats) df</pre>

A tibble: 6 x 8 molecular_type nmr multiple_methods neutron other total x_ray em<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Protein (only) 169563 16774 12578 208 81 32 199236 2 2 Protein/Oligosacchar~ 9939 2839 34 8 0 12822 7 3 Protein/NA 8801 5062 286 0 0 14156 4 Nucleic acid (only) 3 4580 2890 151 1521 14 1 5 Other 170 10 33 0 0 0 213 6 Oligosaccharide (onl~ 11 0 6 1 22

Total number of x-ray structures

```
sum(df$x_ray)
```

[1] 191374

total number of structures

```
sum(df$total)
```

[1] 231029

Percent of X-ray structures

```
sum(df$x_ray)/sum(df$total) * 100
```

[1] 82.83549

Percent of EM strucutes

```
sum(df$em)/sum(df$total) * 100
```

[1] 10.75017

Q2: What proportion of structures in the PDB are protein?

```
rownames(df)
```

```
[1] "1" "2" "3" "4" "5" "6"
```

```
sum(df$x_ray[1:3] + df$em[1:3] + df$nmr[1:3])/sum(df$total) * 100
```

[1] 97.76954

The proportion that is protein is 97.77%

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

When put in the search bar there were said to be 4,683 stuctures

2. Using Mol*

The main Mol* homepage at:https://molstar.org/viewer/ We can input our own PDB files or just give it a PDB databse accession code (4 letter code)

Figure 1: Molecular view of 1HSG $\,$

Figure 2: Getting to know HIV-Pr

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

This is because of the view and to save space.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

the residue number is 308

Figure 3: Further exploration

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document.

Figure 4: The importance of Asp 25

3. Introduction to Bio3D in R

We can use the ${f bio3d}$ package for strucural bioinformatics to read PDB data into R

```
pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file
pdb</pre>
```

```
Call: read.pdb(file = "1hsg")

Total Models#: 1
  Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
```

```
Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
   Protein sequence:
      PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
      QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
      ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
      VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
length(pdbseq)
[1] 1
Q7: How many amino acid residues are there in this pdb object?
Q8: Name one of the two non-protein residues?
MK1
Q9: How many protein chains are in this structure?
2 chains A and B
Looking at the pdb object in more detail
attributes(pdb)
$names
           "xyz"
[1] "atom"
                       "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
```

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                                      z o
                                                        Х
1 ATOM
                                              <NA> 29.361 39.686 5.862 1 38.10
           1
                 N < NA >
                           PRO
                                   Α
                                         1
2 ATOM
           2
                CA <NA>
                           PRO
                                              <NA> 30.307 38.663 5.319 1 40.62
                                   Α
                                         1
3 ATOM
           3
                 C <NA>
                           PRO
                                              <NA> 29.760 38.071 4.022 1 42.64
                                   Α
                                         1
                                              <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
                 O <NA>
                           PRO
                                         1
5 ATOM
           5
                           PRO
                                              <NA> 30.508 37.541 6.342 1 37.87
                CB <NA>
                                   Α
                                          1
6 ATOM
           6
                CG <NA>
                           PRO
                                              <NA> 29.296 37.591 7.162 1 38.40
  segid elesy charge
  <NA>
            N
                <NA>
1
2
  <NA>
            С
                <NA>
3 <NA>
            С
                <NA>
  <NA>
                <NA>
            0
            С
  <NA>
                <NA>
  <NA>
            C
                <NA>
```

Let's try a new function not yet in the bio3d package. It requires the **r3dmol** package that we need to install with install.packages("r3dmol) and install.package("shiny")

```
source("https://tinyurl.com/viewpdb")
#view.pdb(pdb, backgroundColor = "pink")
```

4. Predicting functional dynamics

We can use the nma() function in bio3d to predict the large-scale functional motions of biomolecules.

```
adk <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

adk</pre>
```

```
Call: read.pdb(file = "6s36")

Total Models#: 1
  Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)

Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
```

Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 244 (residues: 244)

Non-protein/nucleic resid values: [CL (3), HOH (238), MG (2), NA (1)]

Protein sequence:

MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

m <- nma(adk)

Building Hessian... Done in 0.01 seconds. Diagonalizing Hessian... Done in 0.17 seconds.

plot(m)

Write out a trajectory of the predicted molecular motion:

mktrj(m, file="adk_m7.pdb")