3. Basics of Information Retrieval

TAR-03-IR.pdf

Information retrieval

- <u>Information retrieval</u>: The activity of obtaining information resources relevant to an user's information need from a collection of information resources.
 - Elements of an information retrieval system:
 - Information needs (expressed by users in the form of queries)
 - Information (re)sources (typically unstructured text, images, video, audio. etc.)
 - Component for efficient retrieval of relevant sources for a given expressed information need, typically from a large collection of information sources
- <u>Information need</u>: Information need is an individual or group's desire to locate and obtain information to satisfy a conscious or unconscious need. Needs and interests call forth information.
 - o (Un)conscious needs for information are expressed via queries
 - Words and phrases in text information retrieval (e.g., "ISIS attacks")
 - Images in image content retrieval
- <u>Text information retrieval</u>: Relevance of the document is most often given as a score (and not a binary decision). Documents are ranked according to the assigned scores for the given guery. Relevance scores usually incorporate an element of uncertainty

Text representations in IR

- Representations:
 - Unstructured representation:
 - Text represented as an unordered set of terms (the so-called bag-ofwords representation – pairs word-count)
 - Considerable oversimplification: ignoring syntax and semantics (despite oversimplifying, satisfiable retrieval performance)
 - Weakly-structured representations:
 - Certain groups of terms given more importance (other terms' contribution downscaled or ignored) – bag of nouns, bag of named entity terms...
 - Structured representations:
 - Virtually not used in IR context
 - Information extraction (IE) techniques not sufficiently accurate
 - IE models can be time-costly not acceptable in IR

- <u>Preprocessing</u>: reduces the cardinality of the bag-of-words set of the document and generally boost IR performance
 - Morphological normalization: stemming or lemmatization
 - Conflating various forms of the same word to a common form
 - Important for morphologically rich languages such as Croatian
 - Stemming (e.g., kućom → kuć) more often used than lemmatization (e.g., kućom → kuća)
 - Removal of stop words
 - Removing semantically-poor terms such as articles, prepositions, conjunctions, pronouns, etc.
 - Keeping just content words nouns, verbs, adjectives, adverbs
- A basic retrieval model is a triple (f_d, f_q, r) where:
 - 1. f_d is a function that maps documents to their representations for retrieval, i.e., $f_d(d) = p_d$, where p_d is the retrieval representation of the document d
 - 2. f_q is a function that maps queries to their representations for retrieval, i.e., $f_q(q) = s_q$, where s_q is the retrieval representation of the query q
 - 3. r is a ranking function
 - Takes into account document representation p_d and query representation s_q
 - Associates a real number that indicates the potential relevance of the document d for the query q based on p_d and s_q
 - o $relevance(d,q) = r(f_d(d), f_q(q)) = r(p_d, s_q)$
 - o Index terms are all the terms in the collection (i.e., the vocabulary)
 - The set of all index terms $K = \{k_1, k_2, ..., k_t\}$
 - Each term k_i is, for document d_i , assigned a weight ω_{ij}
 - The weight of index terms not appearing in the document is 0
 - Document d_j is represented by the term vector $[\omega_{1j}, \omega_{2j}, ..., \omega_{tj}]$, where t is the number of index terms
 - Let g be the function that computes the weights, i.e., $\omega_{ij} = g(k_i, d_j)$
 - Different choices for the weight-computation function g and the ranking function r define different IR models
 - Information retrieval models roughly fall into three paradigms:
 - Set theoretic models (Boolean model)
 - Algebraic models (Vector space model)
 - Probabilistic models (Classic probabilistic model, Language model)
 - Additionally, there are IR models that utilize link analysis algorithms (e.g., PageRank, HITS), typically used in web retrieval where documents are (hyper)linked

Boolean retrieval model

- Documents represented as bags of words
- Term weights are all binary $\omega_{ij} \in \{0,1\}$
 - o $\omega_{ij} = 1$ if index term k_i can be found in the bag of words of document d_i
- Query q is given as a propositional logic formula over index terms
 - o Index terms are connected via Boolean operators (^,v) and can be negated (¬)
 - \circ Each query q can be transformed into disjunctive normal form (DNF), i.e., $q=q_{c_1} {\rm V} \; q_{c_2} {\rm V} \ldots {\rm V} \; q_{\;c_n}$ where q_{c_l} is the l-th conjuctive component of q's DNF
- The relevance of the document d_j for the query q is given as follows:

$$relevance (d_j, q) = \begin{cases} 1, if \ \exists q_{c_l} \mid \forall k_i \in terms(q_{c_l}), \omega_{ij} = 1 \\ 0, otherwise \end{cases}$$

- Inverted index: a data structure for computationally efficient retrieval
 - o **Inverted file index** contains a list of references to documents for all index terms (e.g., $L(Frodo) = \{d_1, d_2, d_3\}$)
 - Inverted index allows for handling Boolean queries via set intersections and set unions

$$rel(D,q) = L(Frodo) \cap L(stab) = \{d_1, d_2, d_3\} \cap \{d_1, d_2\} = \{d_1, d_2\}$$

- Full inverted index additionally contains the positions of each word within a document (e.g., "Frodo" : $\{(d_1, 1), (d_2, 1), (d_3, 3)\}$)
- Boolean retrieval model advantages:
 - Only one: simplicity (computational efficiency)
 - Popular in early commercial systems
- Boolean retrieval model shortcomings:
 - Expressing information needs as Boolean expressions is unintuitive
 - A pure model:
 - No ranking documents are either relevant or non-relevant
 - Relative importance of indexed terms is ignored
 - Extended Boolean model a variant of the Boolean model that accounts for the partial fulfillment of the Boolean expression

Vector space model

- Documents and queries are represented as vectors of index terms
- Weights are real numbers ≥ 0

$$\circ \quad q = [\omega_{1q}, \omega_{2q}, \dots, \omega_{tq}]$$

- The relevance of the document for the query is estimated by computing some distance or similarity metric between the two vectors
 - o Distance metrics (more relevant when distance is lower): Euclidean, Manhattan

Euclidean distance
$$dis_E(\mathbf{d_j},\mathbf{q}) = \sqrt{\sum_{i=1}^t (w_{ij} - w_{iq})^2} \qquad \qquad dis_M(\mathbf{d_j},\mathbf{q}) = \sum_{i=1}^t |w_{ij} - w_{iq}|$$

Similarity metrics (more relevant when similarity is larger): Cosine, Dice

$$Cosine(\mathbf{d_j}, \mathbf{q}) = \frac{\mathbf{d_j} \cdot \mathbf{q}}{\|\mathbf{d_j}\| \|\mathbf{q}\|}$$

$$= \frac{\sum_{i=1}^t w_{ij} w_{iq}}{\sqrt{\sum_{i=1}^t w_{ij}^2} \sqrt{\sum_{i=1}^t w_{iq}^2}}$$

$$Dice(\mathbf{d_j}, \mathbf{q}) = \frac{2 \sum_{i=1}^t w_{ij} w_{iq}}{\sum_{i=1}^t w_{ij} + \sum_{i=1}^t w_{iq}}$$

- How are weights ω_{ij} of index terms for documents computed:
 - 1. The relevance of an index term for the document is proportional to its frequency in the document (term frequency component)
 - i.e., more frequent, more relevant
 - 2. The relevance of an index term for any document is inversely proportional to the number of documents in the collection in which it occurs (inverse document **frequency** component)
 - i.e., more common across documents, less relevant (e.g., stopwords such as "the")
- Weighting schemes:
 - Binary "weighting scheme"
 - Not really a weighting scheme, ignores the two aforementioned assumptions
 - $\omega_{ij} = 1$ if document d_i contains term k_i
 - TF-IDF weighting scheme
 - The weight computed as the product of the term frequency (TF) component and the inverse document frequency (IDF) component:
 - $\omega_{i,i} = tf(k_i, d_i) \cdot idf(k_i, D)$
- The most popular local and global schemes: $tf(k_i, d_j) = 0.5 + \frac{0.5 \cdot freq(k_i, d_j)}{\max(freq(k_i, d_j) \mid k \in d_j)}$

Classic probabilistic retrieval

- Probability:
 - Bayes' rule:
 - $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$
 - Allows us to compute P(B|A) using P(A|B)
 - Particularly useful if the former is difficult to compute directly
 - Chain rule:
 - P(A,B,C) = P(A|B,C)P(B|C)P(C)
 - Allows us to write a joint probability using conditional probabilities.
- Probabilistic retrieval models:
 - View retrieval as a problem of estimating the probability of relevance given a query, document, collection, etc.
 - Documents are ranked in decreasing order of this probability
 - Some probabilistic models from this category: classical probabilistic model, two Poisson model, BM25, language model

- Probability ranking principle: If an IR system's response to each query is a ranking of the documents in the collection in order of decreasing probability of relevance, the overall effectiveness of the system to its user will be maximal.
 - Random variables:
 - $D = \{D_1, ... D_t, ... D_N\}$ Document (set of terms)
 - $Q = \{Q_1, \dots Q_t, \dots Q_L\}$ Query (set of terms)
 - $R \in \{0,1\}$ relevance judgment
 - R=1 if D is relevant for Q, R=0 otherwise
 - "What is the probability that a user will judge this document as relevant for this query?"
 - Estimate: P(R = 1 | D = d, Q = q)
- The heart of probabilistic retrieval models:
 - Let r be a shorthand for R=1, and \bar{r} for R=0
 - We apply the logit function to probability (1)
 - $logit(p) = log(\frac{p}{1-p})$
 - This is a rank preserving transformation giving:

log
$$\frac{p(r|D,Q)}{1-p(r|D,Q)} = log \frac{p(r|D,Q)}{p(\overline{r}|D,Q)}$$

Now we can apply the Bayes rule:

- - $log \frac{p(r|D,Q)}{p(\overline{r}|D,Q)} = log \frac{p(D,Q|r)p(r)}{p(D,Q|\overline{r})p(\overline{r})}$ A benefit of having used logit is that P(D,Q) cancels out
- Finally, we use the chain rule:

log
$$\frac{p(D,Q|r)p(r)}{p(D,Q|\bar{r})p(\bar{r})} = log \frac{p(D|Q,r)p(Q|r)p(r)}{p(D|Q,\bar{r})p(Q|\bar{r})p(\bar{r})}$$

$$= log \frac{p(D|Q,r)}{p(D|Q,\bar{r})} + log \frac{p(Q|r)p(r)}{p(Q|\bar{r})p(\bar{r})} \propto log \frac{p(D|Q,r)}{p(D|Q,\bar{r})} \quad (2)$$

- The right term in the second row doesn't depend on D, we can remove it without affecting the ordering (it can be interpreted as a measure of query difficulty)
- Expression (2) is the heart of probabilistic retrieval models
- Binary Independence Model:
 - Our first attempt at estimating expression (2)
 - Documents are represented with a vector of binary random variables D = < $D_1, ..., D_N >$ with one dimension for each term in vocabulary V
 - $D_i = 1$ denotes the presence of term i
 - $D_i = 0$ denotes the absence of term i
 - Similarly, the query is a vector $Q = \langle Q_1, ..., Q_L \rangle$
 - Assumption 1: given relevance terms are statistically independent
 - Now we can write the terms in (2) as follows:
 - $p(D|Q,r) = \prod_{i=1}^{|V|} p(D_i|Q,r)$ $p(D|Q,\bar{r}) = \prod_{i=1}^{|V|} p(D_i|Q,\bar{r})$ Turning expression (2) into:

 - $log \frac{p(D|Q,r)}{p(D|Q,\bar{r})} = \sum_{i=1}^{|V|} log \frac{p(D_i|Q,r)}{p(D_i|Q,\bar{r})}$ (3)

- **Assumption 2**: The presence of a term in a document depends on relevance only when that term is present in the query.
 - For a fixed query $Q = q = \langle q_1, ..., q_L \rangle$, if $q_i = 0$ according to this assumption $P(D_i|q,r)$ does not depend on relevance:
 - $p(D_i|Q,r) = p(D_i|Q,\bar{r})$
 - $log \frac{p(D_i|Q,r)}{p(D_i|Q,\bar{r})} = 0$
 - We can simplify (3) by ignoring all summation terms not in q:
 - $\sum_{i=1}^{|V|} log \frac{p(D_i|Q,r)}{p(D_i|Q,\bar{r})} = \sum_{t \in q} log \frac{p(D_t|q,r)}{p(D_t|q,\bar{r})}$ (4)
- o Although assumptions are often violated these models work well
- Common practice is to approximate $p(D_t|q,r)$ with 0.5 and $p(D_t|q,\bar{r})$ with $\frac{n_t}{N_d}$ where n_t - number of documents containing term i and N_d - total number of documents
- o A very similar alternative is to use IDF scores as ω_t
- These probabilities can be reestimated through relevance feedback
- o Example:
 - *d*₁: "Frodo and Sam stabbed orcs."
 - d_2 : "Sam chased the orc with the sword."
 - d_3 : "Sam took the sword."
 - Query: "Sam stabbed orc"

		d_1		d_2	d_3
t	Sam stabbed orcs			Sam orc	Sam
$P(D_t q,r)$	0.5	0.5	0.5	0.5 0.5	0.5
$P(D_t q,\bar{r})$	3/3	1/3	2/3	3/3 2/3	3/3
ω_t	0.5	1.5	0.75	0.5 0.75	0.5
$\sum \omega_t$		2.75		1.25	0.5

yields d_1 as the most relevant result, followed by d_2 and

- Two Poisson Model:
 - A more realistic document representation, a vector of word frequencies
 - Uses the Poisson distribution to model frequencies.
 - Assumption: all documents are of equal length
 - Can be approximated by the following expression:
 - $\sum_{t \in q} \frac{f_{t,d}(k_1+1)}{k_1 + f_{t,d}} \cdot \omega_t$ (6)
 - Where $f_{t,d}$ is the frequency of term t in document d and k_1 a constant (typically $1 \le k_1 < 2$). Higher frequency words get boosted weights.

- BM11 (Best Matching):
 - o Removes document length assumptions of the two Poisson model
 - matches in longer documents should be less important
 - We can correct the frequency $f'_{t,d} = f_{t,d} \left(\frac{l_{avg}}{l_d} \right)$
 - l_{ava} the average length of a document
 - lacktriangle the length of document d
 - dampens/boosts word frequencies based on above/below average document length
 - Now we can rewrite (6) as:

$$\sum_{t \in q} \frac{f_{t,d}(k_1+1)}{k_1 \left(\frac{l_d}{l_{avg}}\right) + f_{t,d}} \cdot \omega_t$$

- BM25:
 - While BM11 removes the problem with assuming equal document length in practice it has problems
 - Long relevant documents are getting too much dampening
 - Short irrelevant documents are getting too much boosting
 - To control the amount of correction we introduce b (often set to 0.75)
 - $\sum_{t \in q} \frac{f_{t,d}(k_1+1)}{k_1(1-b)+k_1\left(\frac{l_d}{l_{avg}}\right)b+f_{t,d}} \cdot \omega_t$
 - This expression represents the famous BM25 ranking function, which gives state-of-the-art results

Language modeling for retrieval

- Approaching the probabilistic information retrieval problem from a different perspective.
 Instead of modeling document probability given the query we model the query probability given the document.
- Probabilistic modeling of language
- A sentence t is a vector of terms $\langle t_1, ..., t_n \rangle$
- Ideally, the probability of sentence t is:
 - o $p(t) = p(t_1) \cdot p(t_2|t_1) \cdots p(t_i|t_1 \cdots t_{i-1}) \cdots p(t_n|t_1, \cdots, t_{n-1})$ E.g. for $t = \{one, ring, to, rule\}$ we have $p(t) = p(one) \cdot p(ring|one) \cdot p(to|one, ring) \cdot p(rule|one, ring, to)$
 - In practice the sparseness problem makes this intractable
- Unigram language models:
 - Solve the sparseness problem by completely ignoring conditioning
 - Probability of sentence t under the unigram model is:
 - $p(t|M) = p(t_n) \cdots p(t_i) \cdots p(t_1)$
 - o The probabilities that define the model are estimated from a collection:
 - $p(t_i) = \frac{n_i}{n_T}$
 - n_i number of times term t_i occurs in the collection
 - n_T total number of term occurrences in the collection
 - o Example:
 - *d*₁: "Frodo and Sam stabbed orcs."
 - d₂: "Sam chased the orc with the sword."
 - d_3 : "Sam took the sword."

t_i	Frodo	Sam	orc	chased	sword
$P(t_i)$	1/16	3/16	2/16	1/16	2/16

Bigram language models:

- We simplify the conditionals by leaving only the previous word
- A better approximation of reality than unigram models
- Probability of sentence t under the bigram model:

•
$$p(t|M) = p(t_n|t_{n-1}) \cdots p(t_i|t_{i-1}) \cdots p(t_1)$$

o The probabilities that define the model are estimated from a collection:

$$p(t_i|t_{i-1}) = \frac{n(t_{i-1},t_i)}{n(t_{i-1})}$$

- $n(t_{i-1}, t_i)$ number of times bigram (t_{i-1}, t_i) occurs in the collection
- $n(t_{i-1})$ number of times term t_{i-1} occurs in the collection

o Example (documents same as above):

t_{i-1}, t_i	Frodo, chased	the, sword	the, orc
$P(t_i t_{i-1})$	0	2/3	1/3

Query likelihood model:

- Given a document collection D and a query q
- o A language model M_d is built for each document
- o Documents are scored according to the probability $P(q|M_d)$
- \circ A **unigram** language model of document d can be estimated by dividing the number of times term i occurs in d by the number of terms in d

$$P(t_i|M_d) = \frac{n_{i,d}}{n_d}$$

 Bigram language models are rarely applied to individual documents due to sparsity problems

Smoothing language models:

- Models we've considered so far give probability 0 to queries which contain terms that do not occur in the document
- We can prevent this by using smoothing techniques
- Smoothing adds a small probability under the model even to unseen words
- Laplace smoothing Adding a fixed small count (e.g. 1) to all word counts (even the unobserved ones) and renormalizing to get a probability distribution

$$p'(t_i|M_d) = \frac{n_{i,d} + \alpha}{n_d + |V|\alpha}$$

- adds an artificial count α for each possible word in our vocabulary V
- Laplace smoothing assumes all unseen words are equally likely!
- Jelinek-Mercer smoothing rather builds a language model M_d of the entire document collection, and interpolates:

$$p'^{(t_i|M_d)} = \lambda p(t_i|M_d) + (1-\lambda)p(t_i|M_D)$$

 Words absent from a document will still get some probability mass from the right term. However, the amount each word gets will vary depending on their likelihood in the collection as a whole

A Dirichlet smoothed unigram model is given by:

$$p(t_i|M_d) = \frac{n_{i,d} + \mu P(t_i|M_D)}{n_d + \mu}$$

- Each word gets an artificial extra count
 - How much, depends on its probability in the collection
 - Considers length (the shorter the document the more weight is given to global knowledge from M_D)
- Laplace smoothing is a special case of Dirichlet smoothing