

UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ: CAMPUS DE FOZ DO IGUAÇU CENTRO DE ENGENHARIAS E CIÊNCIAS EXATAS

Cálculo Numérico

Atividade #7

Instruções:

- Entrega individual, via "Tarefas" do Teams e arquivo único em .pdf;
- Use este arquivo .docx para fazer sua atividade, e ao finalizar, gere o .pdf.
- Além de incluir os algoritmos no .pdf, eles devem ser upados em anexo, cada um individualmente e um arquivo txt;
- Discente: Daniel Marques da Silva
- 1) Elabore funções genéricas para todos os casos.

Resposta:

O primeiro exercício se referia a implementação de todos os casos de integração numéricas, excluídas os métodos de Romberg e Gauss. Esses deveriam efetuar a leitura usando dois tipos de entrada, ou uma função já conhecida, além de seus pontos de limite, ou a entrada deveria ser vetores de X e Y.

A tabela a seguir apresenta os resultados de saída de cada um dos métodos.

Euler Progressivo	Euler Regressivo
Digite o Limite Inferior:0 Digite o Limite Superior:5 Valor da função no limite:20 Método Progressivo ou Regressivo? (P ou R):p O resultado da Integral é: -1120.0 Press any key to continue	Digite o Limite Inferior:0 Digite o Limite Superior:5 Valor da função no limite:10 Método Progressivo ou Regressivo? (P ou R):r O resultado da Integral é: -560.0 Press any key to continue
Trapezoidal	Simpson 1/3
Limite Inferior:0 Limite Superior:.8 Valor da Integral Trapezoidal: 1.6404693340159997 Erro Total: 30.599799812459217	Limite Inferior:0 Limite Superior:.8 Defina se é por função ou por valores [f/v] :f Valor da Integral por Simpson 1/3: 1.0936462226773 Pressione qualquer tecla para continuar
Simpson 3/8	

```
Limite Inferior:0

Limite Superior:.8

Defina se é por função ou por valores [f/v] :f

Valor da Integral por Simpson 3/8: 1.2303520005119994

Número de retangulos usados: 200

Press any key to continue . . . _
```

Tabela 1 – Resposta das funções

Como é observado, para a função dada por Euler $f(x) = x^2 - 18x + 36$, os limites selecionados não foram satisfatórios para o cálculo da integral. Além, a função em si é mal condicionada para uso desse método, esse que bastante simples e muitas vezes não se mostra suficiente para cálculos de 2° grau. Para os demais métodos, foi utilizado a função $f(x) = 400x^5 - 900x^4 + 675x^3 - 200x^2 + 25x + 0,2$, onde a resposta analítica é 1,6405, aproximadamente. E como é possível observar para a resposta dada pelo método trapezoidal é suficientemente próxima da real, quase convergindo ao real. Em respeito as respostas dadas pelos métodos de Simpson, a diferença entre eles foi de 0,136705778, algo relativamente baixo dependendo da necessidade de precisão.

Obs. Código-Projeto se encontra em anexo aos demais arquivos.

2) Comparações com valores analíticos

Resposta:

Prosseguindo com algumas comparações, foi realizado também uma comparação dos valores dados pelas funções de Simpson 3/8 e Trapezoidal para a função f(x) = sen(x), onde os resultados podem ser apresentados segundo a Tabela 2.

Tabela 2 – Solução para seno(x)

Como era de se esperar de um cálculo próximo do real, os valores retornados são extremamente pequenos, da ordem de 10⁻⁴, onde o valor real deve ser zero. O que condiz com os valores analíticos estimados segundo anos a fio de pesquisa em Cálculo Diferencial Integral.

Obs. Código-Projeto se encontra em anexo aos demais arquivos.

3) Executar o método Trapezoidal em Excel e SciLab

Resposta:

Para esse foi solucionado o método trapezoidal nas linguagens do Excel e SciLab e após uma comparação dada com os resultados em Python. É conveniente afirmar que os dados variam muito pouco entre essas, onde o

SciLab apresentou o resultado como sendo 1,6405, o que é muito mais próximo do real. A função usada foi a apresentada anteriormente no Exercício 1 para o suposto método.

Tabela 3 - Resultados em SciLab e Excel

Obs. Código-Projeto se encontra em anexo aos demais arquivos.

4)

Respos	ta	
--------	----	--

5)

Resposta:

6)

Respost	a:
---------	----

7) Solução de Circuito eletrônico usando o Trapezoidal.

Resposta:

Dado um circuito RL, foi pedido para calcular a corrente que flui pelo circuito antes e depois do acionamento de uma chave que integra o Indutor ao circuito, conforme figura apresentada a seguir (de autoria do Autor e realizada no ATP). Também foi requisitado uma comparação dos dados retornados com um software de simulação de circuito, esse que foi selecionado o ATP.

Figura 1 – Circuito de Análise em ATP

Para esse, os dados gerais do circuito são:

Tensão da Fonte	127 V
Frequência	60 Hz
Defasagem	0°
Resistencia	100Ω
Indutância	176mH
Tempo de Simulação	100ms
Fechamento da Chave	50ms

Tabela 4 – Definições Gerais do Circuito

Foram realizadas três simulações em ambos os programas, uma com tempo de amostras de 1μ s, 1ms e 4ms, os gráficos resultantes são apresentados na tabela a seguir.

Tabela 5 – Resultados dados em Python

Os resultados apresentados no software ATP são apresentados na tabela 6.

4	
I μs	
•	

	(% rotarsame e/H; x-vir t) cl.f -l.R cl.R - cl.L -
1ms	3) (2) 1 1 1 2 3 4 5 0 dsz
4ms	2 (A) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Como é possível observar, alterando os subintervalos, ou tempo de amostra, a forma final da onda resultante sofre uma alteração bastante drástica, sendo que com 4 ms é quase um conjunto irregular de curvas. Todavia, para os casos anteriores, ambas as simulações apresentaram resultados bastante semelhantes o que demonstra a eficiência do método trapezoidal para solução de circuitos elétricos.

Obs. Código-Projeto se encontra em anexo aos demais arquivos, **Aqui as imagens podem sofrer ampliação, não há** degradação da qualidade, formato .svg utilizado.