

Face Recognition: Tech. that knows you!

"All, all are gone, the old familiar faces."

Charles Lamb

Face Recognition

The ability to recognize a person's face in a digital image.

• First real system was created in 1964 by Woody Bledsoe, Helen Chan Wolf and Charles Bisson.

 Operator had to manually measure and locate key points on the face.

 System could only filter down a list pictures to a small set of possible matches.

GPUs and NNs revolt

• Systems using increasingly complex statistical models were built from the 1970s through the 2000s.

• The availability of GPUs and the advent of deep learning through the mid 2010s.

 Key research papers from Google and Facebook in 2014 and 2015 demonstrated how to reach near human-level performance on face recognition.

Available to almost anyone for all kinds of products.

Uses

- Identity Verification
- Tagging Photos
- Surveillance

Advertisement

Tools

- Commercial Services
 - Amazon Rekognition
 - Microsoft Azure Face
 - Google Cloud Vision
 - IBM Watson Visual Recognition

- Open-Source
 - OpenFace by Brandon Amos at Carnegie Mellon.
 - Dlib by Davis King.

Pareidolia

Multi-Step Pipeline

- Locate and extract faces from the image.
- Identify face landmarks.
- Align faces to match a pose template.
- Encode faces.
- Check the Euclidean distance between face encodings.

Face Detection

The ability to detect and locate human faces in an image.

Step 2: Slide a window.

Step 3: Return location.

Face Classification

Viola-Jones

Histogram of Gradients or HOG

Convolutional Neural Networks or CNNs

Invented by Paul Viola and Michael Jones in the early 2000s.

Very fast and great for low-powered devices.

HOG: Conversion

Input Image

HOG Representation

Step 2: Slide a window.

Step 3: Return location.

- Compactness with enough detail to detect faces.
- Resistance to small changes in lighting and object's shape.

CNNs

Most accurate solution.

Lots of training data.

Slow unless backed by a GPU to offload processing.

Face Landmark Estimation

Locating key points on a face, like the center of the eyes and mouth.

Face Landmark Estimation

Face Landmark Estimation

Trick 2: Limit movement of each point.

Trick 3: Fine-tune with multiple models.

Face Alignment

Adjusting a raw face image so that key facial features like the eyes, nose and mouth line up with a predefined template.

Step 1: Detect face landmarks.

Affine Transformation

A linear mapping between sets of points where parallel lines remain parallel.

Identifying an Unknown Face

Comparing Faces

Face Encoding

The process of taking a face image and turning it into a set of measurements.

Measuring Faces

	Left	Right
Nose	2.5	2
Mouth	2.5	3
Eyes	4	2.5

Euclidean Distance

The distance between two points in space along a straight line.

Face Distance Threshold

Maximum face distance at which the face is considered the same.

• If distance(Left, Right) > 0.6 then they're not a match.

• If $distance(Left, Right) \leq 0.6$ then they're a match.

• The lower the distance, the better the match.

$$distance(a,b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2}$$

$$distance(Left, Right) = \sqrt{(2.5-2)^2 + (2.5-3)^2 + (4-2.5)^2}$$

$$distance(Left, Right) = \sqrt{2.75}$$

$$distance(Left, Right) = 1.66$$
 Not a match!

Deep Metric Learning

Using deep learning to have a computer come up with a way to measure something.

Training with Triplets

Face distance (A, B) should be small.

Face distance (A, C) should be large.

Training with Triplets

Face distance (A, B) should be small.

Face distance (A, C) should be large.

-0.6948713 0.11813076

Calculating Euclidean Distance with 128 Points

$$distance(\mathbf{a}, \mathbf{b}) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_{128} - b_{128})^2}$$

Limitations

Data and Privacy

Performance

Security

Demo 😊