Exercise: Strings and Text Processing

Problems for exercise and homework for the "C# Fundamentals" course @ SoftUni You can check your solutions here: Judge

1. Valid Usernames

Write a program that reads user names on a single line (joined by ", ") and prints all valid usernames.

A valid username is:

- Has length between 3 and 16 characters
- Contains only letters, numbers, hyphens and underscores
- Has no redundant symbols before, after or in between

Examples

Input	Output
sh, too_long_username, !lleg@l ch@rs, jeffbutt	jeffbutt
	Jeff John45 peter-ivanov

2. Character Multiplier

Create a **method** that takes **two strings** as arguments and returns the **sum** of their **character codes multiplied** (multiply **str1[0]** with **str2[0]** and add to the total sum). Then continue with the next two characters. If one of the strings is **longer** than the other, **add** the **remaining** character codes to the **total sum** without multiplication.

Examples

Input	Output
Gosho Pesho	53253
123 522	7647
а аааа	9700

3. Extract File

Write a program that reads the path to a file and subtracts the file name and its extension.

Examples

Input	Output
C:\Internal\training-internal\Template.pptx	File name: Template File extension: pptx
C:\Projects\Data-Structures\LinkedList.cs	File name: LinkedList File extension: cs

4. Caesar Cipher

Write a program that returns an **encrypted version** of the same text. Encrypt the text by **shifting each character** with **three** positions **forward**. For example **A** would be replaced by **D**, **B** would become **E**, and so on. Print the **encrypted text**.

Examples

Input	Output
Programming is cool!	Surjudpplqj#lv#frro\$
One year has 365 days.	Rqh# hdu#kdv#698#gd v1

5. Multiply Big Number

You are given **two lines** – the **first** one can be a really **big** number **(0 to 10**⁵⁰**)**. The **second** one will be a **single** digit number **(0 to 9)**. You must display the product of these numbers.

Note: do not use the **BigInteger** class.

Examples

Input	Output
23	46
2	
9999	89991
9	
923847238931983192462832102	3695388955727932769851328408
4	

6. Replace Repeating Chars

Write a program that reads a string from the console and **replaces** any **sequence of the same letters** with a **single corresponding letter**.

Examples

Input	Output
aaaaabbbbbcdddeeeedssaa	abcdedsa
qqqwerqwecccwd	qwerqwecwd

7. String Explosion

Explosions are marked with '>'. Immediately after the mark, there will be an **integer**, which signifies the **strength** of the explosion.

You should **remove x characters** (where **x** is the **strength** of the explosion), **starting after** the punch **character** ('>').

If you find another explosion mark ('>') while you're deleting characters, you should add the strength to your previous explosion.

When all characters are processed, **print** the string **without** the **deleted characters**.

You should **not** delete the **explosion** character – '>', but you should **delete** the **integers**, which represent the strength.

Input

You will receive single line with the string.

Output

Print what is left from the string after explosions.

Constraints

- You will always receive a strength for the punches
- The path will consist only of letters from the Latin alphabet, integers and the char '>'
- The strength of the punches will be in the interval [0...9]

Examples

Input	Output	Comments
abv <mark>>1>1>2>2</mark> asdasd	abv>>>>dasd	1st explosion is at index 3 and it is with strength of 1. We delete only the digit after the explosion character. The string will look like this: abv>>1>2>2asdasd 2nd explosion is with strength one and the string transforms to this: abv>>>2>2asdasd 3rd explosion is now with strength of 2. We delete the digit and we find another explosion. At this point the string looks like this: abv>>>>2asdasd. 4th explosion is with strength 2. We have 1 strength left from the previous explosion, we add the strength of the current explosion to what is left and that adds up to a total strength of 3. We delete the next three characters and we receive the string abv>>>>dasd We do not have any more explosions and we print the result: abv>>>>dasd
pesho>2sis>1a>2akarate>4hexmaster	pesho>is>a>karate>master	

8. *Letters Change Numbers

Nakov likes Math. But he also likes the English alphabet a lot. He invented a game with numbers and letters from the English alphabet. The game was simple. You get a string consisting of a number between two letters. Depending on

whether the letter was in front of the number or after it you would perform different mathematical operations on the number to achieve the result.

First you start with the letter **before** the number.

- If it's **uppercase** you **divide** the number by the letter's **position** in the alphabet.
- If it's lowercase you multiply the number with the letter's position in the alphabet.

Then you move to the letter after the number.

- If it's **uppercase** you **subtract** its position from the resulted number.
- If it's **lowercase** you **add** its position to the resulted number.

But the game became too easy for Nakov really quick. He decided to complicate it a bit by doing the same but with **multiple** strings keeping track of only the **total sum** of all results. Once he started to solve this with more strings and bigger numbers it became quite hard to do it only in his mind. So he kindly asks you to write a program that **calculates the sum of all numbers after the operations on each number have been done**.

For example, you are given the sequence "A12b s17G":

We have two strings – "A12b" and "s17G". We do the operations on each and sum them. We start with the letter before the number on the first string. A is Uppercase and its position in the alphabet is 1. So we divide the number 12 with the position 1 (12/1 = 12). Then we move to the letter after the number. b is lowercase and its position is 2. So we add 2 to the resulted number (12+2=14). Similarly for the second string s is lowercase and its position is 19 so we multiply it with the number (17*19 = 323). Then we have Uppercase G with position 7, so we subtract it from the resulted number (323-7=316). Finally, we sum the 2 results and we get 14+316=330.

Input

The input comes from the console as a **single line, holding the sequence of strings**. Strings are separated by **one or more white spaces**.

The input data will always be valid and in the format described. There is no need to check it explicitly.

Output

Print at the console a single number: the **total sum of all processed numbers** rounded up to **two digits** after the decimal separator.

Constraints

The **count** of the strings will be in the range [1 ... 10].

- The numbers between the letters will be integers in range [1 ... 2 147 483 647].
- Time limit: 0.3 sec. Memory limit: 16 MB.

Examples

Input		Output	Comments
A12b s17G		330.00	12/1=12, 12+2=14, 17*19=323, 323-7=316, 14+316=330
P34562Z q2576f	H456z	46015.13	
a1A		0.00	

