Mechanizm wyjściowy ze sworzniami i tulejami

Spis treści

Budowa i zasada działania

Obliczenia

Siły

Wypadkowa siła w mechanizmie wyjściowym

Naprężenia stykowe

Materialy

Straty mechaniczne mocy

Tolerancje wykonania mechanizmu wyjściowego ze sworzniami i tulejami

Budowa i zasada działania

Ruch koła cykloidalnego przenoszony jest na element wyjściowy, poprzez mechanizm wyjściowy. Istnieje wiele rozwiązań konstrukcyjnych. Zadaniem mechanizmu wyjściowego jest zamiana ruchu planetarnego koła cykloidalnego na ruch obrotowy elementu wyjściowego.

Na rysunku 1 zaprezentowano mechanizm wyjściowy składający się ze sworzni (7), zamocowanych w elemencie wyjściowym, na których osadzone są tuleje (6). Sworznie (7) wraz z tulejami (6) współpracują z otworami koła cykloidalnymi (2).

Rys.1. Mechanizm wyjściowy ze sworzniami i tulejami

Obiegowe koło cykloidalne (2) obracając się z prędkością kątową ω_k oddziałuje na tuleje (6) osadzone na sworzniach (7), które z kolei umieszczone są w tarczy elementu wyjściowego. Wobec tego tuleje (6) wraz ze sworzniami (7) obracają się po okręgu wokół punktu O_2 w tym samym kierunku, co koło cykloidalne (2). W tym samym kierunku, co koło cykloidalne (2) obraca się także element wyjściowy. Ponadto tuleje (6) obracają się z prędkością kątową ω_k wokół sworzni (7) oraz względem otworów w obiegowym kole cykloidalnym (2).

Obliczenia

Podczas projektowania mechanizmu wyjściowego istotne jest określenie sił oddziałujących na jego elementy składowe i to zarówno dla mechanizmu pozbawionego luzów, jak i z luzami, oszacowanie luzów oraz strat mechanicznych mocy świadczących o jego sprawności.

Siły

Podczas pracy przekładni cykloidalnej w punktach styku tulei z otworami w kole cykloidalnym wystąpi odkształcenie materiału. W wyniku którego element wyjściowy wraz ze sworzniami i tulejami obróci się względem koła (lub względem punktu O_2) o kąt $\Delta \varphi$ (rys.2).

Przyjmując, że siła F_i jest wprost proporcjonalna do odkształcenia (ugięcia) δ_i tulei:

$$F_{j} = c_{j} \cdot \delta_{j} = \Delta \varphi \cdot h_{j} \tag{1}$$

gdzie:

 c_i – sztywność *j*-tej tulei;

j – liczba tulei przenoszących obciążenie, j=1,2 z_w ;

$$z_w = \frac{z_R}{2} + 1$$

 z_R – liczba wszystkich tulei;

 h_j – promień toczny.

Siła F_j osiąga wartość maksymalną F_{max} dla maksymalnej wartości promienia tocznego h_{max} , który wynosi:

$$h_{\max} = R_{wt} \tag{2}$$

Siły F_i są proporcjonalne do siły F_{max} i można je wyznaczyć następująco:

$$F_j = F_{\text{max}} \cdot \frac{h_j}{h_{\text{max}}} \tag{3}$$

Siła F_{max} wynosi:

$$F_{\text{max}} = \frac{4 \cdot M_K}{R_{wt} \cdot Z_R} \tag{4}$$

Wyznaczenie siły F_{max} umożliwia określenie siły F_j odpowiadającej promieniowi tocznemu h_j :

$$F_{j} = \frac{4 \cdot M_{K}}{R_{wt} \cdot z_{R}} \cdot \frac{h_{j}}{R_{wt}} \tag{5}$$

Z rys.2 wynika, że promień toczny h_i wynosi:

$$h_i = R_{wt} \cdot \sin \varphi_{ki} \tag{6}$$

Rys.2. Zależności geometryczne dla mechanizmu wyjściowego ze sworzniami i tulejami

Podstawiając wyrażenie (5) do wyrażenia (6) oraz po przekształceniach otrzymuje się ostatecznie:

$$F_{j} = \frac{4 \cdot M_{K}}{R_{wt} \cdot z_{R}} \cdot \sin \varphi_{kj} \tag{7}$$

Kąt φ_{tj} rozmieszczenia *j*-tej tulei osadzonej na *j*-tym sworzniu w elemencie wyjściowym można wyznaczyć na jako:

$$\varphi_{ij} = \frac{2 \cdot \pi \cdot (j-1)}{z_{,i}} \tag{8}$$

Wypadkowa siła w mechanizmie wyjściowym

Siły pochodzące od mechanizmu wyjściowego F_j , podobnie jak siły międzyzębne F_i , oddziałują na wał czynny, na którym osadzone są koła cykloidalne, a w konsekwencji na łożyska toczne podpierające wał czynny. W związku z tym istotne jest wyznaczenie wypadkowej od sił mechanizmu. Zatem:

$$F_{wm} = \frac{4 \cdot M_K}{\pi \cdot R_{vol}} \tag{9}$$

Siła ta działa na ramieniu:

$$r_m = \frac{\pi \cdot R_{wt}}{4} \tag{10}$$

Naprężenia stykowe

Podczas pracy przekładni tuleje mechanizmu wyjściowego współpracują z otworami kół cykloidalnych przetaczając się po nich zewnętrzną powierzchnią oraz wewnątrz ze sworzniami przekazującymi napęd na wałek wyjściowy. W związku z tym istotne jest określenie nacisków w parach: tuleja-otwór oraz tuleja-sworzeń. Współpraca tych elementów jest ze sobą powiązana i w związku z tym wyznaczone siły F_j działające na sworzeń również oddziałują na tuleje oraz na otwory w kołach cykloidalnych.

W przypadku współpracy tulei z otworem koła obiegowego występuje nacisk pomiędzy wypukłą powierzchnią tulei oraz wklęsłą powierzchnią otworu, co pokazano na rys.3.

Występujące naciski pomiędzy tuleją a otworem w kole cykloidalnym można wyznaczyć z zależności:

$$p_{j} = \sqrt{\frac{F_{j} \cdot \left(R_{otwj} - R_{tzj}\right)}{B \cdot \pi \cdot R_{otwj} \cdot R_{tzj} \cdot \left[\frac{1 - v_{k}^{2}}{E_{k}} + \frac{1 - v_{t}^{2}}{E_{t}}\right]}}$$
(11)

gdzie:

 F_i – siła działająca na sworzeń z tuleją;

 R_{otwi} – promień otworu w kole cykloidalnym;

 R_{tzj} – promień zewnętrzny tulei;

B – szerokość koła cykloidalnego;

 v_k – liczba Poissona materiału, z którego wykonane jest koło cykloidalne;

 E_k – moduł Younga materiału, z którego wykonane jest koło cykloidalne;

 v_t – liczba Poissona materiału, z którego wykonana jest tuleja;

 E_t – moduł Younga materiału, z którego wykonana jest tuleja.

Rys.3. Naciski p_i w mechanizmie wyjściowym ze sworzniami i tulejami a) współpraca tulei z otworem koła cykloidalnego, b) model zastępczy

Materialy

Podczas pracy przekładni cykloidalnej w miejscach styku tulei z otworami koła cykloidalnego generowane są duże naciski p_j . W związku z tym materiały przyjmowane na wykonanie koła cykloidalnego oraz tuleje muszą charakteryzować się odpornością na odkształcenia δ_j pod wpływem działania sił F_j na małej powierzchni styku, czyli posiadać w miarę duże naciski dopuszczalne p_{dop} . Zwykle tuleje wykonywane są z brązu (B101, B102, BA 1044) albo stali.

Wartości p_{dop} dla wybranych par materiałowych współpracujących ze sobą przedstawiono w tab.1.

7r 1 1	TT7 , 1 .	. 1 /	1 1	1	11	1 1	, 1 1
Ianı	Wartosci	naciskow	donuszczaln	vcnn	ala wi	nranvcu	par materiałowych
1 40.1.	municisci	riucisno w	uopuszczum	VCII Ddoi	z uiu vv v	or anyon	pai maicriaiowych

	Tuleja				
Koło cykloidalne	B 101	B 102	BA 1044		
	p_{dop} [MPa]				
Stal ulepszana cieplnie	320	320	495		
Żeliwo lub stal nie ulepszona cieplnie	210	215	330		

W przypadku, gdy tuleja wykonana jest ze stali należy przyjąć p_{dop} o mniejszej wartości, czyli dla materiału, z którego wykonana jest tuleja lub koło cykloidalne o mniejszej wartości p_{dop} .

Straty mechaniczne mocy

Rozpatrując straty mocy w mechanizmie wyjściowym (rys.4) zauważa się, że moc tracona jest na tarcie pomiędzy otworami w obiegowym kole cykloidalnym a tulejami, umieszczonymi w otworach tego koła, oraz pomiędzy tulejami a sworzniami, na których osadzone są tuleje.

Rys.4. Schemat kinematyczny mechanizmu wyjściowego ze sworzniami i tulejami Zatem można to zapisać następującym wyrażeniem:

$$N_{Cmw} = N_{Tk-t} + N_{Tt-s} (12)$$

gdzie:

 N_{Tk-t} – strata mocy pomiędzy otworem w obiegowym kole cykloidalnym a tuleją;

 N_{Tt-s} – strata mocy pomiędzy tuleją a sworzniem.

W celu określenia strat w tym węźle należy przyjąć następujące założenia upraszczające:

- pomiędzy tuleją a otworem w obiegowym kole cykloidalnym nie występuje poślizg;
- pomiędzy tuleją a sworzniem nie występuje poślizg.

Moc tracona na tarcie pomiędzy otworem obiegowego koła cykloidalnego a tuleją wynosi:

$$N_{Tk-t} = \sum_{i=1}^{m} F_{j} \cdot f_{k-t} \cdot (\omega_{t} - \omega_{k})$$

$$(13)$$

gdzie:

 F_i – siła działająca na sworzeń, opisana wyrażeniem (7);

 f_{k-t} – współczynnik tarcia tocznego pomiędzy otworem obiegowego koła cykloidalnego a tuleją;

 ω_t – prędkość kątowa tulei;

 ω_k – prędkość kątowa obiegowego koła cykloidalnego.

Moc tracona na tarcie pomiędzy tuleją a sworzniem wynosi:

$$N_{Tt-s} = \sum_{i=1}^{m} F_{i} \cdot f_{t-s} \cdot (\omega_{t} - \omega_{s})$$
(14)

gdzie:

 f_{t-s} – współczynnik tarcia tocznego pomiędzy tuleją a sworzniem;

 ω_s – prędkość kątowa sworznia.

Ze względu na to, że sworznie osadzone są w kołnierzu wałka biernego przyjmuje się zależność, że prędkość kątową elementu wyjściowego ω_{wy} jest tożsama z prędkością obracających się sworzni ω_s a także obiegowego koła cykloidalnego ω_k , czyli:

$$\omega_{wv} = \omega_{s} = \omega_{k} \tag{15}$$

Z kolei prędkości tulei ω_t można określić jako.

$$\omega_t = \omega_s \cdot \left(\frac{r_{w1} + e}{R_{tzj} - R_{sj}} + 1 \right) \tag{16}$$

gdzie:

 r_{wl} – promień toczny koła cykloidalnego;

e – mimośród zazębienia cykloidalnego;

 R_{si} – promień sworznia, na którym osadzona jest tuleja.

Z uwagi ograniczenie ruchu – sworzeń z tuleją umieszczoną w otworze obiegowego koła cykloidalnego – średnia wielkość prędkości kątowej obiegowego koła cykloidalnego ω_k musi być taka sama jak wałka wyjściowego (biernego) ze sworzniami ω_s . Z kolei rozważania prowadzone powyżej pokazują, że gdy nie występuje poślizg pomiędzy tuleją a sworzniem oraz tuleją i powierzchnią otworu obiegowego koła cykloidalnego to wystarczający jest warunek: $\omega_k = \omega_s$.

Równocześnie fizykalnym warunkiem uniknięcia poślizgu jest wymaganie, aby składowe styczne reakcji w punktach *K* i *L* nie przekroczyły wartości:

$$\mu \cdot F_i$$

gdzie:

 F_i – jest składową normalną działającą w punktach i = K i L;

μ – graniczna wartość współczynnika tarcia przy poślizgu.

W przypadku występowania poślizgów w punktach K i L prędkość elementu wyjściowego ω_s będzie różniła się od prędkości obiegowego koła cykloidalnego ω_k lokalnie i w danej chwili, natomiast wartości średnie $\omega_{s\acute{s}r}$ i $\omega_{k\acute{s}r}$ pozostaną równe z uwagi na wspomniane wyżej ograniczenia konstrukcyjne.

Korzystając z zależności (15) możemy zapisać, że wyrażenie (14) przyjmuje następującą postać:

$$N_{Tt-s} = F_i \cdot f_{t-s} \cdot (\omega_t - \omega_k) \tag{17}$$

Wobec tego całkowita moc tracona w mechanizmie wyjściowym N_{Cmw} , opisana wyrażeniem (12), po wstawieniu wyrażeń (13) oraz (17) do tego wyrażenia wynosi:

$$N_{Cmw} = \sum_{i=1}^{m} F_j \cdot f_{k-t} \cdot (\omega_t - \omega_k) + \sum_{i=1}^{m} F_j \cdot f_{t-s} \cdot (\omega_t - \omega_k)$$
(18)

Po przekształceniach:

$$N_{Cmw} = (\omega_t - \omega_k) \cdot (f_{k-t} + f_{t-s}) \cdot \sum_{j=1}^m F_j$$
(19)

Zachowując związek zachodzący pomiędzy prędkością kątową tulei ω_t a prędkością kątową sworznia ω_s , opisany wyrażeniem (16) oraz to, że $\omega_s = \omega_k$ (15) wówczas wyrażenie (19) zapisuje się w następujący sposób:

$$N_{Cmw} = \omega_k \cdot \frac{r_{w1} + e}{R_{tzj} - R_{sj}} \cdot \sum_{j=1}^{m} F_j \cdot (f_{k-t} + f_{t-s})$$
 (20)

Tolerancje wykonania mechanizmu wyjściowego ze sworzniami i tulejami

Wszystkie elementy składowe obiegowej przekładni cykloidalnej wykonywane są z założoną tolerancją. Dotyczy to także elementów mechanizmu wyjściowego. Zatem mogą w nim wystąpić luzy mające wpływ na pracę przekładni oraz na obciążenia w tym mechanizmie w postaci sił i nacisków. Na rysunku 5 przedstawiono mechanizm wyjściowy wraz z zaznaczonymi tolerancjami wykonania poszczególnych jego elementów i mających wpływ na powstanie w nim luzów Δ_i .

Tuleje o promieniach zewnętrznych R_{tzj} rozmieszczone są na okręgu o promieniu R_{wt} i współpracują z otworami koła cykloidalnego o promieniach R_{otwj} rozłożonych równomiernie na okręgu o promieniu R_{wk} . Promienie R_{wt} i R_{wk} mają identyczne wartości, lecz inne punkty zaczepienia. Punkt zaczepienia promienia R_{wk} jest środkiem obrotu koła cykloidalnego i oznaczony jest jako O_1 , natomiast środek obrotu elementu wejściowego i wyjściowego O_2 jest punktem zaczepienia promienia R_{wt} . Oba środki odsunięte są od siebie o wartość mimośrodu e podobnie jak środek tulei O_{tj} względem środka otworu O_{kj} . Wyznaczenie luzu Δ_j powstałego pomiędzy otworami w kole cykloidalnym a j-tą tuleją jest istotne z tego względu, że wielkość luzu Δ_j decyduje o udziale tulei w przenoszeniu przez nie obciążenia. Zgodnie z budową mechanizmu wyjściowego można wyróżnić:

- tolerancję wykonania promienia otworu koła cykloidalnego T_o ;
- tolerancję wykonania promienia zewnętrznego tulei T_t ;
- tolerancję wykonania promienia rozmieszczenia otworów w kole cykloidalnym T_{Rk} ;
- tolerancję wykonania promienia rozmieszczenia tulei w elemencie wyjściowym T_{Rt} ;
- tolerancję kąta rozmieszczenia otworów w kole cykloidalnym $T_{\phi k}$;
- tolerancję kąta rozmieszczenia tulei w elemencie wyjściowym $T_{\omega t}$;
- tolerancję wykonania mimośrodu T_e .

Rys.5. Luz Δ_i w mechanizmie wyjściowym ze sworzniami i tulejami [22]

Luz Δ_j w mechanizmie wyjściowym określa się wzdłuż kierunku działania sił F_j . W przypadku, gdy liczba sworzni 6 z tulejami jest równa co najmniej 6, to zakłada się z wystarczającym przybliżeniem, że siły F_j skierowane są równolegle do $O_I Y$.

Na podstawie przyjętych tolerancji w dokumentacji technicznej można przewidywać, korzystając ze statystyki, rozkład wartości: sił F_j działających na sworznie z tulejami, nacisków pomiędzy tulejami a otworami koła cykloidalnego p_j oraz generowanych strat mocy w mechanizmie N_{Cmwi} .

W przypadku zmierzonych elementów tworzących sworzniowy mechanizm wyjściowy posługujemy się odchyłkami. Zatem wyróżnia się:

- odchyłkę wykonawczą promienia otworu koła cykloidalnego: δ_{Rotwj} , mieszczącą się w tolerancji T_0 ;
- odchyłkę wykonawczą promienia zewnętrznego tulei osadzonej na sworzniu: δ_{Rtzj} , mieszczą się w tolerancji T_t ;
- odchyłkę wykonawczą promienia rozmieszczenia otworów w kole cykloidalnym: δ_{Rwk} , mieszczącą się w tolerancji T_{Rk} ;
- odchyłkę wykonawczą promienia rozmieszczenia tulei ze sworzniami w elemencie wyjściowym: δ_{Rwt} , mieszczącą się w tolerancji T_{Rt} ;
- odchyłkę wykonawczą kąta rozmieszczenia otworów w kole cykloidalnym: $\delta_{\varphi kj}$, mieszczącą się w tolerancji $T_{\varphi k}$;
- odchyłkę wykonawczą kąta rozmieszczenia tulei ze sworzniami w elemencie wyjściowym: δ_{qtj} , mieszczącą się w tolerancji T_{qx} ;
- odchyłkę wykonania mimośrodu: δ_e , mieszczącą się w tolerancji T_e .