NAIVE BAYES CLASSIFIER

PART 2 OF 3 - HYPOTHESIS TESTING AND CLASSIFICATION

GOALS

- Bayes Theorem
- Hypothesis testing
- Classification example

BAYES RULE

One of the most important results of probability theory is the general form of Bayes' theorem.

Assume there are individual hypotheses, h_i , from a set of hypotheses, H. Assume a set of evidences, E.

$$p(h_i|E) = (p(E|h_i) * p(h_i)) / p(E)$$

This equation may be read, "The probability of an hypothesis h_i given a set of evidences E is . . ."

CAROLINE BARRIÈRE, CSI4106, FALL 2020

HYPOTHESIS TESTING

The general form of Bayes' theorem assumes that the set of hypotheses, h_i **partitions** the evidence set E:

p(hi|E) is the probability that h_i is true given evidence E

p(h_i) is the probability that h_i is true overall

p(E|h_i) is the probability of observing evidence E when h_i is true

n is the number of possible hypotheses

$$p(h_i|E) = \frac{p(E|h_i) \times p(h_i)}{\sum_{k=1}^{n} p(E|h_k) \times p(h_k)}$$

$$P(E)$$

GENERAL FORM OF BAYES THEOREM

Prior probability

The prior probability, is the probability, generally an unconditioned probability, of an hypothesis or an event.

The prior probability of an event is symbolized: p(E), and the prior probability of an hypothesis is symbolized $p(h_i)$.

Posterior probability

The posterior (after the fact) probability, generally a conditional probability, of an hypothesis is the probability of the hypothesis given some evidence.

The posterior probability of an hypothesis given some evidence is symbolized: $p(h_i \mid E)$.

PRIOR / POSTERIOR

Suppose that you go out to purchase a bicycle.

Only 3 sellers: D1, D2, D3 p(D1) = 0.2, P(D2) = 0.4, P(D3) = 0.4

You're interested in bicycle A.

If you go to D_1 , the probability of buying A is 0.2. At seller D_2 , the probability of buying is 0.4, and at D_3 , the probability of buying is 0.3.

Assuming you bought the bicycle, what is the probability that you purchased it from D2?

Rephrase: What is the posterior probability of the hypothesis D2 given the evidence that you bought A?

CAROLINE BARRIÈRE, CSI4106, FALL 2020

EXAMPLE OF BAYES THEOREM

You're interested in bicycle A. If you go to D_1 , the probability of buying A is 0.2. At seller D_2 , the probability of buying is 0.4, and at D_3 , the probability of buying is 0.3.

Assuming you bought the bicycle, what is the probability that you purchased it from D2?

Space partitioning

$$p(A) = p(A \mid D1) * P(D1) + p(A \mid D2) * P(D2) + p(A \mid D3) * P(D3)$$

 $p(A) = 0.2 * 0.2 + 0.4 * 0.4 + 0.3 * 0.4 = 0.32$

Hypothesis evaluation

$$p(D2|A) = (p(A|D2) * p(D2)) / p(A)$$

$$= 0.4 * 0.4 / 0.32$$

$$= 0.16 / 0.32$$

$$= 0.5$$

CAROLINE BARRIÈRE, CSI4106, FALL 2020

EXAMPLE OF BAYES THEOREM

Only 3 sellers: D1, D2, D3

$$p(D1) = 0.2$$
, $P(D2) = 0.4$, $P(D3) = 0.4$

Space partitioning

$$P(A \mid D1) = 0.2$$

$$p(A \mid D2) = 0.4$$
 $p(E) = p(A \mid D1) * P(D1) + p(A \mid D2) * P(D2) + p(A \mid D3) * P(D3)$

$$p(A \mid D3) = 0.3$$
 $p(E) = 0.2 * 0.2 + 0.4 * 0.4 + 0.3 * 0.4 = 0.32$

Assuming you bought bicycle A, where did you buy it from?

$$p(D1|A) = (p(A|D1) * p(D1)) / p(E) = 0.04/0.32 = 0.125$$

P(D2|A)

$$p(D2|A) = (p(A|D2) * p(D2)) / p(E) = 0.16/0.32 = 0.5$$

P(D3 | A)

$$p(D3|A) = (p(A|D3) * p(D3)) / p(E) = 0.12/0.32 = 0.375$$

NAIVE BAYES CLASSIFIER

Assuming you bought bicycle A, where did you buy it from?

P(D1 A)	p(D1 A) = (p(A D1) * p(D1)) / p(E) = 0.04/0.32 =	0.125	
P(D2 A)	p(D2 A) = (p(A D2) * p(D2)) / p(E) = 0.16/0.32 =	0.5	
P(D3 A)	p(D3 A) = (p(A D3) * p(D3)) / p(E) = 0.12/0.32 =	0.375	

NAIVE BAYES CLASSIFIER

Next video:

Conditional independence