Locally Tomographic Shadows

Alex Wilce Susquehanna University

Joint work with Howard Barnum and Matthew Graydon

QPL, Paris July 19, 2023

Overview

Local Tomography (LT) posits that the state of a composite system AB, is determined by the joint probabilities it assigns to separate, "local" measurements on A and B.

Classical probability theory and *complex* QM satisfy LT, but Real QM ($\mathbb{R}\mathbf{QM}$) does not.

This is clear on dimensional grounds, but let's look a bit deeper.

Let \mathbf{H} , \mathbf{K} be (here, f.d.) real Hilbert spaces. Write $\mathcal{L}_s(\mathbf{H})$, $\mathcal{L}_a(\mathbf{H})$ for the spaces of symmetric, resp. anti-symmetric operators on \mathbf{H} , and similarly for \mathbf{K} . Let

$$\mathcal{L}_{ss} := \mathcal{L}_s(\textbf{H}) \otimes \mathcal{L}_s(\textbf{K}) \ \ \text{and} \ \ \mathcal{L}_{aa} := \mathcal{L}_a(\textbf{H}) \otimes \mathcal{L}_a(\textbf{K})$$

Then

$$\mathcal{L}_{s}(\mathsf{H}\otimes\mathsf{K})=\mathcal{L}_{ss}\oplus\mathcal{L}_{aa}$$

NB: and orthogonal decomposition w.r.t. trace inner product.

So if ρ 's a density operator on $\mathbf{H} \otimes \mathbf{K}$,

$$\rho = \rho_{\rm ss} + \rho_{\rm aa}$$

with $\rho_{ss} \in \mathcal{L}_{ss}$ and $\rho_{aa} \in \mathcal{L}_{aa}$.

Given effects $a \in \mathcal{L}_s(\mathbf{H})$ and $b \in \mathcal{L}_s(\mathbf{K})$, $a \otimes b \in \mathcal{L}_{ss}$, so $Tr((a \otimes b)\rho_{aa}) = 0$. Hence,

$$\operatorname{Tr}((a \otimes b)\rho) = \operatorname{Tr}((a \otimes b)\rho_{ss}).$$

States with the same \mathcal{L}_{ss} component are *locally indistinguishable* in real QM.

Yes!

Yes! — and not just for $\mathbb{R}\mathbf{Q}\mathbf{M}$, but non-LT probabilistic theories (GPTs) very generally.

Yes! — and not just for $\mathbb{R}\mathbf{Q}\mathbf{M}$, but non-LT probabilistic theories (GPTs) very generally.

We call the resulting theory the *locally tomographic shadow* of the original one.

Yes! — and not just for $\mathbb{R}\mathbf{QM}$, but non-LT probabilistic theories (GPTs) very generally.

We call the resulting theory the *locally tomographic shadow* of the original one.

First, we need to say what we mean by a probabilistic theory.

Plan

- 1. Probabilistic Theories revisited
- 2. Construction of the LT shadow
- 3. The shadow of RQM
- 4. Some questions

I. Probabilistic Theories Revisited

For our purposes, a **probabilistic model** is pair (\mathbb{V}, u) where

- ▼ is an ordered real vector space, with positive cone V₊;
- u is a strictly positive linear functional on \mathbb{V} , referred to as the unit effect of the model.

For our purposes, a **probabilistic model** is pair (\mathbb{V}, u) where

- ▼ is an ordered real vector space, with positive cone V₊;
- u is a strictly positive linear functional on \mathbb{V} , referred to as the unit effect of the model.

States are elements $\alpha \in \mathbb{V}_+$ with $u(\alpha) = 1$.

Effects (measurement outcomes) are elements $a \in \mathbb{V}^*$ with $0 \le a \le u$: $a(\alpha)$ is the probability of a's of occurring in state α .

Processes from (\mathbb{V}_1, u_1) to (\mathbb{V}_2, u_2) are positive bilinear mappings $\phi: \mathbb{V}_1 \to \mathbb{V}_2$ with $u_2(\phi(\alpha)) \leq u_1(\alpha)$ for all $\alpha \in \mathbb{V}_{1+}$.

Standing assumptions and conventions:

- All models are finite-dimensional,
- We identify \mathbb{V} with \mathbb{V}^{**} ;

 $L^k(\mathbb{V}_1,...,\mathbb{V}_k)$ is the space of *k*-linear forms on $\mathbb{V}_1 \times \cdots \times \mathbb{V}_k$;

- $\bullet \ \otimes$ is always the tensor product of vector spaces/linear maps, where
- we take $\mathbb{V}\otimes\mathbb{W}:=\mathcal{L}^2(\mathbb{V}^*,\mathbb{W}^*)$ i.e., $(\alpha\otimes\beta)(a,b):=\alpha(a)\beta(b)$

A non-signaling composite of (\mathbb{V}_1, u_1) and (\mathbb{V}_2, u_2) is a model (\mathbb{V}, u) plus positive linear mappings

$$m: \mathbb{V}_1 \times \mathbb{V}_2 \to \mathbb{V}$$

$$\pi: \mathbb{V}_1^* \times \mathbb{V}_2^* \to \mathbb{V}^*$$

such that

- (i) $\pi(a,b)m(\alpha,\beta) = a(\alpha)b(\beta)$
- (ii) $\pi(u_1, u_2) = u$.

Note m defines a linear mapping

$$m: \mathbb{V}_1 \otimes \mathbb{V}_2 \to \mathbb{V}$$
,

and π dualizes to give another,

$$\pi^*: \mathbb{V} \to \mathcal{L}^2(\mathbb{V}_1^*, \mathbb{V}_2^*)^* = \mathbb{V}_1 \otimes \mathbb{V}_2.$$

 (\mathbb{V}, u) is locally tomographic (LT) iff product effects separate states — equivalently, $\mathbb{V} \simeq \mathbb{V}_1 \otimes \mathbb{V}_2$.

Two extremal cases:

- The minimal tensor product V₁ ⊗_{min} V₂: cone generated by separable states.
- The maximal tensor product $V_1 \otimes_{max} V_2$: cone generated by tensors positive on product effects.

The definition of a composite just says we have positive linear mappings

$$\mathbb{V}_1 \otimes_{\mathsf{min}} \mathbb{V}_2 \stackrel{m}{\longrightarrow} \mathbb{V} \stackrel{\pi^*}{\longrightarrow} \mathbb{V}_1 \otimes_{\mathsf{max}} \mathbb{V}_2$$

composing to the identity.

Write **Prob** for the category of probabilistic models and processes. A probabilistic theory is a functor

$$\mathbb{V}:\mathcal{C} o \mathsf{Prob}$$

, where

- C is a symmetric monoidal category ("actual" physical systems and processes, or mathematical proxies for these)
- $\mathbb{V}(AB)$ is a non-signaling composite of $\mathbb{V}(A)$ and $\mathbb{V}(B)$
- $\mathbb{V}(I) = \mathbb{R}$.

We assume \mathbb{V} is *injective on objects*, which makes $\mathbb{V}(\mathcal{C})$ a subcategory of **Prob**, with a well-defined monoidal structure given (on objects) by

$$\mathbb{V}(A), \mathbb{V}(B) \mapsto \mathbb{V}(AB).$$

II. Locally Tomographic Shadows

We need to assume that systems preferred decompositions into local pieces, so replace $\mathcal C$ with its strictification $\mathcal C^*$:

We need to assume that systems preferred decompositions into local pieces, so replace $\mathcal C$ with its strictification $\mathcal C^*$:

• objects are finite lists $\vec{A} = (A_1, ..., A_n)$ of objects $A_i \in \mathcal{C}$ $(A_i \neq I)$ standing for $\Pi \vec{A} := \Pi_{i=1}^n A_i$ in \mathcal{C} with the indicated decomposition.

We need to assume that systems preferred decompositions into local pieces, so replace C with its strictification C^* :

- objects are finite lists $\vec{A} = (A_1, ..., A_n)$ of objects $A_i \in \mathcal{C}$ $(A_i \neq I)$ standing for $\Pi \vec{A} := \prod_{i=1}^n A_i$ in \mathcal{C} with the indicated decomposition.
- Morphisms from \vec{A} to \vec{B} are morphisms $\Pi \vec{A} \to \Pi \vec{B}$ in C.

We need to assume that systems preferred decompositions into local pieces, so replace $\mathcal C$ with its strictification $\mathcal C^*$:

- objects are finite lists $\vec{A} = (A_1, ..., A_n)$ of objects $A_i \in \mathcal{C}$ $(A_i \neq I)$ standing for $\Pi \vec{A} := \prod_{i=1}^n A_i$ in \mathcal{C} with the indicated decomposition.
- Morphisms from \vec{A} to \vec{B} are morphisms $\Pi \vec{A} \to \Pi \vec{B}$ in C.

A strict symmetric monoidal category under concatenation; empty string is the unit.

Suppose that $\vec{A} := (A_1, ..., A_n) \in \mathcal{C}^*$ with composite $\Pi \vec{A} := A \in \mathcal{C}$: there's a positive linear mapping

$$\mathsf{LT}_{ec{\mathcal{A}}} := \pi_{ec{\mathcal{A}}}^* : \mathbb{V}(\mathcal{A}) \longrightarrow \mathcal{L}^n(\mathbb{V}^*(\mathcal{A}_1), ..., \mathbb{V}^*(\mathcal{A}_n))$$

restricting $\omega \in \mathbb{V}(A)$ to product effects:

$$\widetilde{\omega}(a_1,...,a_n):=\pi_{\vec{A}}^*(\omega)(a_1,...,a_n)=(a_1\otimes\cdots\otimes a_n)(\omega)$$

for all
$$(a_1,...,a_n) \in \mathbb{V}^*(A_1) \times \cdots \times \mathbb{V}^*(A_n)$$
.

Suppose that $\vec{A} := (A_1, ..., A_n) \in \mathcal{C}^*$ with composite $\Pi \vec{A} := A \in \mathcal{C}$: there's a positive linear mapping

$$\mathsf{LT}_{ec{\mathcal{A}}} := \pi_{ec{\mathcal{A}}}^* : \mathbb{V}(\mathcal{A}) \longrightarrow \mathcal{L}^n(\mathbb{V}^*(\mathcal{A}_1), ..., \mathbb{V}^*(\mathcal{A}_n))$$

restricting $\omega \in \mathbb{V}(A)$ to product effects:

$$\widetilde{\omega}(a_1,...,a_n):=\pi_{\overrightarrow{A}}^*(\omega)(a_1,...,a_n)=(a_1\otimes\cdots\otimes a_n)(\omega)$$

for all
$$(a_1,...,a_n) \in \mathbb{V}^*(A_1) \times \cdots \times \mathbb{V}^*(A_n)$$
.

We call $\widetilde{\omega}$ the *local shadow* of ω

Let $\widetilde{\mathbb{V}}(\vec{A})$ be the space $\bigotimes_i \mathbb{V}(A_i)$, ordered by the cone

$$\widetilde{\mathbb{V}}(\vec{A})_{+} := \mathsf{LT}_{\vec{A}}(\mathbb{V}(\Pi A)_{+})$$

of local shadows of elements of $\mathbb{V}(\Pi \vec{A})_+$.

With $\widetilde{u}_{\vec{A}} = u_{A_1} \otimes \cdots \otimes u_{A_n}$, $(\widetilde{\mathbb{V}}(\vec{A}), \widetilde{u}_{\vec{A}})$ is a model, the *locally tomographic shadow* of $(\mathbb{V}(A), u_A)$ with respect to the given decomposition.

Notation: Write

$$\widetilde{\mathbb{V}}(\vec{A}) \boxtimes \widetilde{\mathbb{V}}(\vec{B}) := \widetilde{\mathbb{V}}(\vec{A}\vec{B}).$$

In particular, for $A, B \in \mathcal{C}$,

$$\mathbb{V}(A)\boxtimes\mathbb{V}(B) = \widetilde{\mathbb{V}}(A,B) = \mathbb{V}(A)\otimes\mathbb{V}(B),$$

but ordered by the cone $\widetilde{\mathbb{V}}(A,B)$ generated by local shadows $\widetilde{\omega}$ of states $\omega \in \mathbb{V}(AB)$.

The effect cone of $\widetilde{\mathbb{V}}(A_1,...,A_n)$ has a nice characterization:

Lemma:
$$\widetilde{\mathbb{V}}(A_1,...,A_n)_+^* \simeq \mathbb{V}^*(\Pi_i A_i)_+ \cap (\bigotimes_i \mathbb{V}^*(A_i)).$$

In the bipartite case:

$$(\mathbb{V}(A)\boxtimes\mathbb{V}(B))_+^*\simeq\mathbb{V}(AB)_+^*\cap(\mathbb{V}(A)^*\otimes\mathbb{V}(B)^*).$$

What about processes?

Let $A = \Pi \vec{A}$ and $B = \Pi \vec{B}$ where $\vec{A} = (A_1, ..., A_n)$ and $\vec{B} = (B_1, ..., B_k)$. The following is routine:

Lemma: Let $\Phi : \mathbb{V}(\Pi \vec{A}) \to \mathbb{V}(\Pi \vec{B})$ be a positive linear mapping. The following are equivalent:

- (a) Φ maps $Ker(LT_{\vec{A}})$ into $Ker(LT_{\vec{B}})$.
- (b) If $\omega, \omega' \in \mathbb{V}(A)$ are locally indistinguishable, so are $\Phi(\omega), \Phi(\omega')$ in $\mathbb{V}(B)$.
- (c) There exists a linear mapping $\phi: \bigotimes_{i} \mathbb{V}(A_{i}) \to \bigotimes_{j} \mathbb{V}(B_{j})$ such that $LT_{\vec{B}} \circ \Phi = \phi \circ LT_{\vec{A}}$

A positive linear mapping $\Phi : \mathbb{V}(A) \to \mathbb{V}(B)$ satisfying these conditions is *locally positive* (with respect to the specified decompositions).

The linear mapping ϕ in part (c) is then uniquely determined. We call it the *shadow* of Φ , writing $\phi = \mathsf{LT}(\Phi)$.

Lemma: If $\Phi : \mathbb{V}(A) \to \mathbb{V}(B)$ is locally positive, then $\phi = LT(\Phi)$ is positive as a mapping $\widetilde{\mathbb{V}}(A_1,...,A_m) \to \widetilde{\mathbb{V}}(B_1,...,B_n)$.

Locally positive maps are reasonably abundant, but do exclude some important morphisms in $\mathbb{R}\mathbf{QM}$.

Examples:

- (a) If σ and α are swap and associator morphisms in \mathcal{C} , $\mathbb{V}(\sigma)$ is locally positive, but $\mathbb{V}(\alpha)$ need not be.
- (b) if α is a state on $A = A_1 \otimes \cdots \otimes A_n$, then the corresponding mapping $\alpha : \mathbb{R} = \mathbb{V}(I) \to \mathbb{V}(A)$ given by $\alpha(1) = \alpha$ is trivially locally positive (the kernel of LT_I is trivial). But an effect $a : \mathbb{V}(A) \to \mathbb{R}$ need not be locally positive.

.

Call a morphism $\Pi \vec{A} \stackrel{\phi}{\longrightarrow} \Pi \vec{B}$ local iff $\mathbb{V}(\phi) : \mathbb{V}(\Pi \vec{A}) \to \mathbb{V}(\Pi \vec{B})$ is locally positive (relative to the preferred factorizations of A and B).

Write Loc(C, V) for the monoidal subcategory (it is one) of C^* having the same objects but only local morphisms.

Lemma: $\widetilde{\mathbb{V}}: Loc(\mathcal{C}, \mathbb{V}) \to \mathbf{Prob}$ is a locally tomographic probabilistic theory — the locally tomographic shadow of \mathbb{V} .

IV. The Shadow of Real Quantum Theory

For simplicity, let $\mathbf{H} = \mathbf{K}$, writing \mathcal{L}_s for $\mathcal{L}_s(\mathbf{H})$. Recall

$$\mathcal{L}_{s}(\mathsf{H}\otimes\mathsf{H})=\mathcal{L}_{ss}\oplus\mathcal{L}_{aa},$$

where

$$\mathcal{L}_{ss} = \mathcal{L}_s(\mathbf{H}) \otimes \mathcal{L}_s(\mathbf{K}) \text{ and } \mathcal{L}_{aa} = \mathcal{L}_a(\mathbf{H}) \otimes \mathcal{L}_a(\mathbf{K}).$$

Then LT is just the projection onto \mathcal{L}_{ss} . This is just Sym \otimes Sym, where

$$\operatorname{Sym}(a) := \frac{1}{2}(a + a^t).$$

But Sym \otimes Sym is not positive!

Example: Let $\{x,y\}$ be an ONB for \mathbb{R}^2 , and let

$$z = \frac{1}{\sqrt{2}}(x \otimes y + y \otimes x)$$

and set

$$W := (\operatorname{\mathsf{Sym}} \otimes \operatorname{\mathsf{Sym}})(P_z) = \tfrac{1}{2}(P_x \otimes P_y + P_y \otimes P_x) + S \otimes S$$

where $Sx = \frac{1}{2}y$ and $Sy = \frac{1}{2}x$.

This is not a positive operator. For instance, If $v = x \otimes x - y \otimes y$, then $Wv = -\frac{1}{4}v$.

So $(\mathcal{L}_s \boxtimes \mathcal{L}_s)_+$ is strictly larger than $\mathcal{L}_{ss} \cap \mathcal{L}_+$.

A priori we have now have

$$(\mathcal{L}_s \otimes_{\mathsf{min}} \mathcal{L}_s)_+ \leq \mathcal{L}_{ss} \cap \mathcal{L}_+ < (\mathcal{L}_s \boxtimes \mathcal{L}_s)_+ \leq (\mathcal{L}_s \otimes_{\mathsf{max}} \mathcal{L}_s)_+.$$

In fact,

Theorem: All of these embeddings are strict.

(The hard one is the last. Uses the existence of unextendable product bases.)

The geometry of the state space in $LT(\mathbb{R}\mathbf{Q}\mathbf{M})$ is nontrivial. The following restates a result of Chiribella, D'Ariano and Perinotti (2009):

Theorem: If α , β are states density operators on $\mathbf{H} \otimes \mathbf{K}$ with α pure, then

$$LT(\alpha) = LT(\beta) \Rightarrow \alpha = \beta.$$

So the the LT map never identifies a pure state with any other state. Only nontrivially mixed states get "pasted togther".

Processes

Let $\Phi: \mathcal{L}_s(\mathbf{H} \otimes \mathbf{H}) \to \mathcal{L}_s(\mathbf{H} \otimes \mathbf{H})$ be a positive linear mapping. With respect to the decomposition

$$\mathcal{L}_s(\mathsf{H} \otimes \mathsf{K}) = \mathcal{L}_{s,s} \oplus \mathcal{L}_{s,a} \oplus \mathcal{L}_{a,s} \oplus \mathcal{L}_{a,a},$$

 Φ has an operator matrix $\begin{bmatrix} \Phi_{ss} & \Phi_{sa} \\ \Phi_{as} & \Phi_{aa} \end{bmatrix}$ We have

Lemma: Let Φ be as above. Then Φ is locally positive iff $\Phi_{sa}=0$, and in this case, $LT(\Phi)=\Phi_{s,s}$.

IV. Conclusions and questions

Compact Closure The effect $\epsilon: a \otimes b \mapsto \operatorname{Tr}(ab^t)$ is not local. Hence, $\operatorname{LT}(\mathbb{R}\mathbf{Q}\mathbf{M})$ does not inherit the compact structure of $\mathbb{R}\mathbf{Q}\mathbf{M}$. If $\mathcal C$ is compact closed, when is $\operatorname{LT}(\mathcal C, \mathbb V)$ compact closed?

LT and Complex QM How does LT interact with the restriction-of-scalars and complexification functors $(-)_{\mathbb{R}}: \mathbb{C}QM \to \mathbb{R}QM, \ (-)^{\mathbb{C}}: \mathbb{R}QM \to \mathbb{C}QM$?

The Shadow of InvQM In (BGW, Quantum 2020), we constructed a non-LT theory **InvQM**, containing finite-dimensional real and quaternionic QM and also a relative of complex QM. What is LT(**InvQM**)?

Non-deterministic shadows Not all processes in $\mathbb{R}\mathbf{Q}\mathbf{M}$ are local. Suppose Alice and Bob agree that their joint state is ω . This is consistent with the true global state being any $\mu \in \mathsf{LT}_{A,B}^{-1}(\omega)$. If μ evolves under a (global) process $\phi : \mathbb{V}(AB) \to \mathbb{V}(CD)$, the result will be one of the states in $\phi(\mathsf{LT}_{A,B}^{-1}(\omega))$. If ϕ is not local, these needn't lie in a single fibre of $\mathsf{LT}_{C,D}$: parties C and D might observe any of the different states in $\mathsf{LT}_{C,D}(\phi(\mathsf{LT}_{A,B}^{-1}(\omega)))$, giving the impression that ϕ acted indeterministically. How should one quantify this extra layer of uncertainty?