Exercícios - Teoria dos Grafos

Matheus Souza D'Andrea Alves

2018.2

1.1

Tal demonstração é proporcional a demonstrar que em qualquer grafo com $n \geq 6$ ou existe um K_3 ou um I_3 induzido.

Suponha por absurdo que G não possui nem K_3 ou I_3 induzidos. Observe que se G é bipartido ele necessariamente possui um I_3 , para que não exista é necessário um ciclo ímpar.

Porém ele não pode possuir um K_3 e portanto deve possuir um ciclo de tamanho 5, pois ciclos de tamanho maior que 5 possuem I_3 .

Como sabemos que G não possuí um ciclo induzido de tamanho 3 todo ciclo de tamanho cinco é da seguinte forma

Figura 1: C_5

Observe que neste C_5 sempre é possível obter um I_2 . Sabemos que G possui pelo menos seis vértices, suponha sem perda de generalidade um $I_2 = \{D, C\}$, suponha um vértice $v \in V(G) - V(C_5)$ para que não exista um I_3 em G é necessário que v seja vizinho de pelo menos s dos seguintes vértices s0, s0, s0, s0, s1, porém qualquer composição dessa nos dá um s3 e é portanto absurda .

Logo todo G com n > 5 possui ou um K_3 ou um I_3 .

1.2

Suponha que G é um grafo conexo que possui 2 caminhos distintos de forma que $|p_1| = |p_2|$ onde ambos são os maiores caminhos. Como G é conexo existe pelo menos um caminho entre quaisquer vértices de p_1 e p_2 , porém tal caminho é absurdo pois se o mesmo existir p_1 e p_2 não são os maiores caminhos, já que o caminho necessário teria uma soma dos vértices de p_1 e p_2 .

1.3

Suponha $u,v \in V(G)$ os vértices de grau ímpar. Sem perda de generalidade considere u, como u possui grau ímpar ele precisa possuir necessariamente pelo menos um vizinho. Se tal vizinho w_1 não é v então w_1 é par e precisa de mais um vizinho, e assim sucessivamente.

Figura 2: Construção

Observe que tal recursão só para quando ou existe um ciclo ou se atinge um vértice de grau ímpar (i.e v). Porém para que qualquer w_i seja o fecho de um ciclo e não seja necessário a adição de mais um vértice ele precisa ser v e portanto $\exists P[u,v]$

1.4

1.5

Tal regra é o mesmo que afirmar que, dado qualquer grafo G, existem 2 vértices u, v tal que d(u) = d(v) Observe que a regra é válida quando k = 2.

Figura 3: possíveis vizinhanças com 2 vértices

Suponha que a regra seja valida para algum k>2, mostraremos que também é valida para k+1.

Queremos adicionar o k+1-ésimo vértice (v) ao grafo G_k , se o vértice é isolado a propriedade se mantém, o mesmo acontece quando o vértice é universal. Para que a regra falhe é necessário que exista um número j de vizinhos de v em G_k tal que a regra não seja válida, porém 0 < j < k onde a propriedade é sempre válida, então não existe tal configuração e a regra se aplica a k+1.

2.3

Queremos mostrar : G é floresta $\iff |E(G)| = |V(G)| - \omega(G)$.

Seja G uma floresta formada por $\omega(G)$ árvores, toda árvore a_i tem n_i vértices

e consequentemente
$$n_i-1$$
 arestas. Sendo assim se somarmos todas as árvores temos $\sum_{i=1}^{\omega(G)}|E(a_i)|=\sum_{i=1}^{\omega(G)}(|V(a_i)|-1)$ que implica em:

$$|E(G)| = |V(G)| - \omega(G)$$

A contra partida se mostra semelhante devido ao Teorema 2.3. Observe que a regra é válida para $\omega(G) = 1$.

Suponha que valha para algum k>1, mostraremos que vale então para k+1.

$$\sum_{i=1}^{k+1} |E(a_i)| = \sum_{i=1}^{k+1} (|V(a_i)| - 1)$$

$$\sum_{i=1}^{k} |E(a_i)| + |E(a_{k+1})| = \sum_{i=1}^{k} (|V(a_i)| - 1) + |V(a_{k+1})| - 1$$

$$|E(a_{k+1})| = |V(a_{k+1})| - 1$$

e portanto a_{k+1} é arvore.