Our goal is to create an axiomatic basis for the real numbers \mathbb{R} . We need to establish axioms for \mathbb{R} and then derive all further properties from the axioms. We would like these axioms to be as minimal and agreeable as possible; however, finding axioms that characterize \mathbb{R} is not easy. Instead, we'll start from the natural numbers \mathbb{N} and expand from there.

0.1 Natural Numbers \mathbb{N} and Induction

How do we define the natural numbers? Listing every natural number is definitely not an option. We could try to define the natural numbers as $\mathbb{N} := \{1, 2, ...\}$. However, the "..." is ambiguous. Instead, we can define \mathbb{N} in terms of its properties.

Definition 0.1.1 ▶ Peano Axioms for \mathbb{N}

The *Peano axioms* are five axioms that can be used to define the natural numbers \mathbb{N} .

- 1. $1 \in \mathbb{N}$
- 2. Every $n \in \mathbb{N}$ has a successor called n + 1.
- 3. 1 is **not** the successor of any $n \in \mathbb{N}$.
- 4. If $n, m \in \mathbb{N}$ have the same successor, then n = m.
- 5. If $1 \in S$ and every $n \in S$ has a successor, then $\mathbb{N} \subseteq S$.

Note that there is not one "prescribed" way to do define the natural numbers. This is just the most popular approach.

From the fifth axiom, we can derive a new proof technique for proving an arbitrary statement for all natural numbers.

Theorem 0.1.1 ▶ Principle of Induction

Let P(n) be a statement for each $n \in \mathbb{N}$. Suppose that:

- 1. P(1) is true, and
- 2. if P(n) is true, then P(n + 1) is true.

Then P(n) is true for all $n \in \mathbb{N}$.

Proof. Let $S := \{n \in \mathbb{N} : P(n)\}$. Then $1 \in S$ because P(1) is true. Note that if $n \in S$, then P(n) is true. Hence, P(n+1) is true by assumption, so $n+1 \in S$. By the fifth Peano axiom, we have $\mathbb{N} \subseteq S$. Since S was defined as a subset of \mathbb{N} , we have $\mathbb{N} = S$. Therefore, P(n) is true for all $n \in \mathbb{N}$. □

A proof by induction kind of has a "domino effect". We set up the dominoes by proving $P(n) \implies P(n+1)$ and knock over the first domino by proving P(1). The result is that all the dominoes will topple each other, leaving no domino standing.

$$\underbrace{P(1)}_{\text{by 1.}} \Longrightarrow \underbrace{P(2)}_{\text{by 2.}} \Longrightarrow \underbrace{P(3)}_{\text{by 2.}} \Longrightarrow \cdots$$

Technique 0.1.1 ▶ Proof by Induction

To prove a statement P(n) for all $n \in \mathbb{N}$, we need two things:

- 1. Base Case: Prove P(1).
- 2. *Induction Step*: Assume P(n) is true from some $n \in \mathbb{N}$, then prove $P(n) \implies P(n+1)$.

It is crucial that we actually use our assumption that P(n) is true in the induction step. Otherwise, our proof is most likely wrong.

Example 0.1.1 ► Simple Proof by Induction

Prove that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Proof. Let P(n) be the statement $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

Base Case: When n = 1, LHS = 1 and RHS = $\frac{1(1+1)}{2}$ = 1, so P(1) is true.

Induction Step: Assume that P(n) is true for some $n \in \mathbb{N}$. Then:

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right)$$
$$= \frac{(n+1)(n+2)}{2}$$

That is, P(n + 1) is true. By the Principle of Induction, P(n) is true for all $n \in \mathbb{N}$.

0.2 Integers \mathbb{Z}

From the natural numbers, we can easily construct the integers. First, we assume the existence an operation, addition (+) and multiplication (\cdot) . On \mathbb{N} , we assume addition and multiplication satisfy the following properties for all $a, b, c \in \mathbb{N}$:

- Commutativity a + b = b + a
- $a \cdot b = b \cdot a$

- Associativity
- (a+b)+c=a+(b+c) $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
- Distributivity
- $a \cdot (b+c) = a \cdot b + a \cdot c$
- Identity
- $1 \cdot n = n$

We can expand this number system by including:

- 1. an *additive identity* $(n + 0 = n \text{ for all } n \in \mathbb{N})$
- 2. *additive inverses* (for all $n \in \mathbb{N}$, add -n so -n + n = 0)

From this, we can construct the set of integers.

<u>Definition</u> 0.2.1 ▶ Integers \mathbb{Z}

The set of *integers* is defined as:

$$Z := \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\}$$

Definition 0.2.2 ► Even, Odd, Parity

Let $a \in \mathbb{Z}$.

- *a* is *even* if there exists $k \in \mathbb{Z}$ where a = 2k.
- a is odd if there exists $k \in \mathbb{Z}$ where a = 2k + 1.
- *Parity* describes whether an integer is even or odd.

Theorem 0.2.1 ▶ Parity Exclusivity

Every integer is either even or odd, never both.

TODO: prove this

Example 0.2.1 ▶ Parity of Square

For $n \in \mathbb{Z}$, if n^2 is even, then n is even.

Proof. We proceed by contraposition. Suppose n is not even. Then n is odd, and thus can be expressed as n = 2k + 1 for some $k \in \mathbb{Z}$. Then:

$$n^2 = (2k+1)(2k+1)$$
$$= 4k^2 + 4k + 1$$

Since the integers are closed under addition and multiplication, then $4k^2 + 4k \in \mathbb{Z}$. Thus, n^2 is odd.

0.3 Rational Numbers Q

We can further expand this number system by the following:

- 1. Include *multiplicative inverses* (for all $n \in \mathbb{Z} \setminus \{0\}$, define 1/n such that $n \cdot 1/n = 1$)
- 2. Define $m \cdot 1/n := m/n$ when $n \neq 0$.

From this, we can construct the set of rational numbers.

Definition 0.3.1 ► Rational Numbers Q

The set of *rational numbers* is defined as:

$$\mathbb{Q} := \left\{ \frac{m}{n} : m, n \in Z \land n \neq 0 \right\}$$

To ensure multiplication works as intended, we also define $\frac{m}{n} \cdot \frac{k}{l} := \frac{m \cdot k}{n \cdot l}$.

We say $\frac{m_1}{n_1} = \frac{m_2}{n_2}$ if and only if $m_1 n_1 = m_2 n_2$ where $n_1, n_2 \neq 0$. In other words, $\frac{m_1}{n_1} \sim \frac{m_2}{n_2} \iff m_1 n_2 = m_2 n_1$. Thus, $\mathbb Q$ is the set of equivalence classes for this relation.

If n = kp and m = kq, where $k, p, q \in \mathbb{Z}$, $k \neq 0$, $q \neq 0$, then:

$$\frac{n}{m} = \frac{kp}{kq} = \frac{k}{p}$$
, because $kpq = kqp$

If *n* and *m* have no common factor (except ± 1), then we say that $n/m \in \mathbb{Q}$ is in the "lowest terms" or "reduced terms". The set $(Q, +, \cdot)$ forms a field. However, we cannot write x = n/m

where $x^2 = 2$.

Theorem 0.3.1 $\triangleright \sqrt{2}$ is not a Rational Number

$$\sqrt{2} \notin \mathbb{Q}$$

Proof. Suppose for contradiction $\sqrt{2}$ is a rationa number. Then, there exist $n, m \in \mathbb{Z}$ such that $(n/m)^2 = 2$. If n = kp and m = kq, then we can "cancel" the common factor k to write n/m = p/q. That is, we can assume that n and m have no (non-trivial) common factors. Now, $n^2/m^2 = 2$, so by multiplying both sides by m^2 , we get $n^2 = 2m^2$. Thus, n^2 is an even number, so n is also even (Example 0.2.1). Then, we can write n = 2k where $k \in \mathbb{Z}$. Then:

$$\implies (2k)^2 = 2m^2$$

$$\implies 4k^2 = 2m^2$$

$$\implies 2k^2 = m^2$$

Then m^2 is even, so m is even. Thus, m and n are both even, so they are multiples of 2. This contradicts the fact that we defined n/m in the lowest terms.

Does there exist $r \in \mathbb{Q}$ such that $r^2 = 3$?

Definition 0.3.2 ▶ **Divides**

For $a, b \in \mathbb{Z}$, we say a *divides* b if b is a multiple of a.

$$a \mid b \iff \exists (c \in \mathbb{Z})(b = ac)$$

Theorem 0.3.2 ▶ Division Algorithm

Suppose $a, b \in \mathbb{Z}$. Then a = kb + r where $k \in \mathbb{Z}$ and $r \in \mathbb{Z}$ where $0 \le r < a$.

Example 0.3.1

If $p \in \mathbb{N}$ and $3 \mid p^2$, then $3 \mid p$.

Proof. By the division algorithm, p = 3k + j where $k \in \mathbb{Z}$ and $j \in \mathbb{Z}$ where $0 \le j < 3$. Then, $p^2 = (3k+j)^2 = 9k^2 + 6kj + j^2$. Suppose that $3 \mid p^2$. Then, $p^2 = 3l = 9k^2 + 6kj + j^2$. Thus:

$$j^2 = 3l - 9k^2 - 6kj = 3(l - 3k^2 - 2kj)$$

We have $3 \mid j^2$. Hence, $j \neq 1, j \neq 2$, leaving only j = 0. Therefore, p = 3k + 0, so $3 \mid p$.

Example $0.3.2 \triangleright \sqrt{3}$ is not a Rational Number

Proof. Suppose for contradiction $\sqrt{3}$ is a rational number. Then, there exist $n, m \in \mathbb{Z}$ such that $(n/m)^2$. If n and m share a common factor, then we can "cancel" the common factor to where n/m = kp/kq = p/q. Thus, we may assume that n and m have no nontrivial common factor.

$$\left(\frac{n}{m}\right)^2 = 3$$

$$\implies \frac{n^2}{m^2} = 3$$

$$\implies n^2 = 3m^2$$

Thus, $3 \mid n^2$, so $3 \mid n$ by the previous lemma. Writing n = 3k for some $k \in \mathbb{Z}$, we have:

$$(3k)^2 = 3m^2$$

$$\implies 9k^2 = 3m^2$$

$$\implies 3k^2 = m^2$$

That is, $3 \mid m^2$ so $3 \mid m$. Thus, 3 divides both n and m. This contradicts the fact that we defined n/m in the lowest terms.

0.4 Fields

Definition 0.4.1 ▶ Field

A *field* is a set F with two defined operations, addition and multiplication, satisfying the following for all $a, b, c \in F$:

Addition	Multiplication
(a+b)+c=a+(b+c)	(ab)c = a(bc)
a + b = b + a	ab = ba
a(b+c) = ab + ac	(a+b)c = ac + bc
$\exists (0 \in \mathbb{F})(a+0=a)$	$\exists (1 \in \mathbb{F})(1 \neq 0 \land 1a = a)$
$\exists (-a \in \mathbb{F})(a + (-a) = 0)$	$(a \neq 0) \iff \exists (a^{-1} \in \mathbb{F})(aa^{-1} = 1)$
	$(a+b)+c = a+(b+c)$ $a+b = b+a$ $a(b+c) = ab+ac$ $\exists (0 \in \mathbb{F})(a+0=a)$

All the "standard facts" of arithmetic and algebra in \mathbb{R} follows from these axioms.

 \mathbb{Q} , \mathbb{R} , and \mathbb{C} are infinite fields, but \mathbb{Z}_p (arithmetic modulo p) is a finite field if p is prime.

More generally, F_q where $q = p^k$ is a finite field.

Theorem 0.4.1 ▶ Facts about Fields

Let *F* be a field. For all $a, b, c \in F$:

(a) if
$$a + c = b + c$$
, then $a = b$

(b)
$$a \cdot 0 = 0$$

(c)
$$(-a) \cdot b = -(a \cdot b)$$

(d)
$$(-a) \cdot (-b) = a \cdot b$$

(e) if
$$a \cdot c = b \cdot c$$
 and $c \neq 0$, then $a = b$

(f) if
$$a \cdot b = 0$$
, then $a = 0$ or $b = 0$

(g)
$$-(-a) = a$$

(h)
$$-0 = 0$$

Proof of (g).

$$-(-a) = -(-a) + 0$$

$$= -(-a) + (a + (-a))$$

$$= -(-a) + (-a + a)$$

$$= (-(-a) + (-a)) + a$$

$$= ((-a) + -(-a)) + a$$

$$= 0 + a$$

$$= a + 0$$

$$= a$$

0.5 Ordered Fields

Definition 0.5.1 ▶ Ordered Field

An *ordered field* is a field with a relation < such that for all $a, b, c \in F$:

Axiom	Description
Trichotomy	Only one is true: $a < b$, $a = b$, or $b < a$
Transitivity	if $a < b$ and $b < c$ then $a < c$
Additive Property	if $b < c$, then $a + b < a + c$
Multiplicative Property	if $b < c$ and $0 < a$, then $a \cdot b < a \cdot c$

We then define > as the inverse relation of <.

Theorem 0.5.1 ▶ Facts about Ordered Fields

- if a < b then -b < -a
- if a < b and c < 0, then cb < ca
- if $a \neq 0$, then $a^2 = a \cdot a > 0$
- 0 < 1
- if 0 < a < b then 0 < 1/b < 1/a

Although \mathbb{C} is a field, it is not an ordered field. We can certainly define some kind of "order" on \mathbb{C} , but there is no way to make it satisfy the four axioms of an ordered field. For example, $i^2 = -1 < 0$, contradicting the fact that any nonzero number's square is greater than 0 in an ordered field.

 \mathbb{R} and \mathbb{Q} are ordered fields.

Definition 0.5.2 ► **Absolute Value**

Let *F* be an ordered field. For $a \in F$, we define the **absolute value** of a as:

$$|a| \coloneqq \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

 \bigcirc

We can think of |a - b| as the distance between a and b. More egnerally, |a - b| = d(a, b) is the metric we are using.

Theorem 0.5.2 ▶ Properties of Absolute Value

- $|a| \ge 0$, $a \le |a|$, and $-a \le |a|$
- |ab| = |a||b|

Theorem 0.5.3 ▶ Triangle Inequality

Let *F* be an ordered field. For any $a, b \in F$, $|a + b| \le |a| + |b|$.

Proof. There are two cases to consider. If $a + b \ge 0$, then:

$$|a + b| = a + b$$

$$\leq |a| + b$$

$$\leq |a| + |b|$$

If a + b < 0, then:

$$|a + b| = -(a + b)$$

$$= -a - b$$

$$\leq |a| - b$$

$$\leq |a| + |b|$$

0.6 Completeness

Definition 0.6.1 ▶ Bounded Above, Bounded Below, Bounded

Let *F* be an ordered field, and let $A \subseteq F$.

- A is **bounded above** if there exists $b \in F$ such that $a \le b$ for all $a \in A$. In this context, b is an **upper bound** for A.
- A is **bounded below** if there exists $c \in F$ such that $c \le a$ for all $a \in A$. In this context, c is a **lower bound** for A.
- *A* is *bounded* if *A* is bounded above and bounded below.

Example 0.6.1 ▶ **Upper and Lower Bounds**

Consider the set $(0,1) := \{x \in \mathbb{R} : 0 < x < 1\}$.

- (0,1) is bounded above by 1 and any number greater than 1.
- (0, 1) is bounded below by 0 and any negative number.

Consider the set $[3, \infty) := \{x \in \mathbb{R} : 3 \le x\}$.

- $[3, \infty)$ is not bounded above.
- $[3, \infty)$ is bounded below by 3 and any number less than 3.

Definition 0.6.2 ▶ Maximum, Minimum

Let *F* be an ordered field, and let $A \subseteq F$.

- If there exists $M \in A$ such that M is an upper bound for A, then M is the *maximum* of A, denoted $M = \max A$
- If there exists $m \in A$ such that m is a lower bound for A, then m is the m in m of A, denoted $m = \min A$.

Note that from the above example, (0,1) has neither a maximum nor a minimum. However, 3 is the minimum of $[3,\infty)$.

Definition 0.6.3 ▶ **Supremum, Infimum**

Let *F* be an ordered field, and let $A \subseteq F$. If there exists $s \in F$ such that:

- 1. s is an upper bound for A, and
- 2. s < t for any upper bound t for A,

then s is the **supremum** of A, denoted $s = \sup A$.

If A has a supremum, then that supremum is unique. ()

Theorem 0.6.1 ▶ Maximum is the Supremum

Let F be an ordered field, and let $A \subseteq F$. If A has a maximum M, then $M = \sup A$.

Proof. Since $M = \max A$, we know M is an upper bound for A. Let t be an upper bound for A. Since $M \in A$, then $t \ge M$. Thus, M is less than or equal to any upper bound t, so $M = \sup A$.

Example $0.6.2 \triangleright \text{Supremum of } (0, 1)$

Prove that $\sup(0, 1) = 1$.

Proof. First, note that 1 is an upper bound for (0,1). Next, suppose that $t \in \mathbb{Q}$ is an upper bound for (0,1). Since $0 < \frac{1}{2} < 1$, then $0 < \frac{1}{2} \le t$. By transitivity, t > 0. Suppose for contradiction t < 1. Because 0 < t < 1, we have 1 < 1 + t < 2. Dividing across by 2, we have $\frac{1}{2} < \frac{1+t}{2} < 1$. That is, $\frac{1+t}{2} \in (0,1)$. But t < 1, so 2t < 1 + t. Thus, $t < \frac{1+t}{2}$. This contradicts our assumption that t is an upper bound for (0,1). Therefore, $t \ge 1$, so $\sup(0,1) = 1$.

Definition 0.6.4 ► Completeness

An ordered field F is *complete* if every nonempty subset of F that is bounded above has a supremum in F.

Theorem 0.6.2 ▶ \mathbb{Q} is not complete