Spear of Longinus Shanghai Jiao Tong University

Contents																				
1	数论																			
		扩展欧几里德算 中国剩余定理																		
		中国剩余定理 2																		
		扩展小步大步 .																		
		卢卡斯定理																		
		Miller Rabin																		
		Pollard Rho 大快速数论变换 (z																		
		原根																		
	1.10	线性递推										 			 		 			
	1.11	直线下整点个数										 			 		 			
2	数值																			
-	2.1											 			 		 			
		快速傅立叶变换																		
		单纯形法求解线																		
	2.4	自适应辛普森 多项式求根																		
	2.5	多坝八水似									•	 		 •	 	 •	 			
3	数据																			
	3.1	平衡的二叉查找																		
	3.2	3.1.1 Treap . 坚固的数据结构																		
	0.2	3.2.1 坚固的平																		
		3.2.2 坚固的字																		
	0.0	3.2.3 坚固的左																		
	3.3	树上的魔术师 . 3.3.1 Link Cu																		
		3.3.2 Link Cu		, ,	/															
	3.4	可持久化线段树																		
		k-d 树																		
		莫队算法																		
		树状数组 kth . 虚树																		
		点分治 (zky) .																		
	3.10	元芳树										 			 		 			. 1
1	图论																			1
-	4.1	点双连通分量 (l	vx)									 	 		 		 			. 1
		2-SAT 问题 (强																		
	4.3	二分图最大匹配																		
		4.3.1 Hungary																		
	44	4.3.2 Hopcrof 二分图最大权匹																		
		最大流 (dinic)																		
	4.6	最大流 (sap) .										 			 		 			. 1
	4.7	上下界网络流.																		
		4.7.1 无源汇的																		
		4.7.2 有源汇的 4.7.3 有源汇的																		
		4.7.4 有源汇的																		
	4.8	最小费用最大流										 			 		 			. 1
		4.8.1 稀疏图																		
	4.0	4.8.2 稠密图 一般图最大匹配																		
		一																		
	4.11	哈密尔顿回路(ORE 🖞	生质的	9图) .						 			 		 			. 1
	4.12	必经点树										 			 		 			. 1

5	字符串	18
	5.1 模式匹配	18
	5.1.1 KMP 算法	18
	5.1.2 扩展 KMP 算法	19
	5.1.3 AC 自动机	19
	5.2 后缀三姐妹	19
	5.2.1 后缀数组	
	5.2.2 后缀数组 (dc3)	20
	5.2.3 后缀自动机	
	5.3 回文三兄弟	
	5.3.1 马拉车	
	5.3.2 回文自动机 (zky)	
	5.4 循环串最小表示	21
	21 With II Fee	0.1
6	计算儿何 6.1 二维基础	21
	6.1.1 点类	
	6.1.2	
	6.1.3 四句	
	6.1.4 半平面交	
	6.1.5 最小圆覆盖	
	6.2 多边形	
	6.2.1 判断点在多边形内部	23
7	其他	23
	7.1 斯坦纳树	
	7.2 无敌的读人优化	
	7.3 最小树形图	
	7.4 DLX	
	7.6 枚举大小为 k 的子集	
	7.7 环状最长公共子串	
	7.8 LLMOD	
8	Java 8.1 基础模板	25 25
	8.1 基础模板	25

```
数论
  扩展欧几里德算法
 LL exgcd(LL a,LL b,LL &x,LL &y){
2 if(!b){
           x=1;y=0;return a;
      }else{
           LL d=exgcd(b,a%b,x,y);
           LL t=x; x=y; y=t-a/b*y;
           return d;
 9 }
  中国剩余定理
 1 LL china(int n,int *a,int *m){
      LL M=1,d,x=0,y;
      for(int i=0;i<n;i++)</pre>
           M*=m[i];
      for(int i=0;i<n;i++){
   LL w=M/m[i];
   d=exgcd(m[i],w,d,y);</pre>
           y=(y\%M+M)\%M;
           x=(x+y*w%M*a[i])%M;
10
      while (x<0)x+=M;
11
12
      return x;
13 }
  中国剩余定理 2
 1 //merge Ax=B and ax=b to A'x=B'
 2 void merge(LL &A,LL &B,LL a,LL b){
      LL x,y;
      sol(A,-a,b-B,x,y);
      A=lcm(A,a);
      B=(a*y+b)%A;
      B=(B+A)%A;
 8 }
  扩展小步大步
 1 LL solve2(LL a,LL b,LL p){
      //a^x=b \pmod{p}
      b%=p;
      LL e=1\%p;
      for(int i=0;i<100;i++){
           if(e==b)return i;
           e=e*a%p;
      int r=0;
10
      while (\gcd(a,p)!=1){
11
           LL d=gcd(a,p);
           if(b%d)return -1;
12
13
           p/=d;b/=d;b=b*inv(a/d,p);
           r++;
14
      }LL res=BSGS(a,b,p);
15
      if(res==-1)return -1;
16
      return res+r;
17
  卢卡斯定理
 1 LL Lucas(LL n,LL m,LL p){
      LL ans=1;
      while(n&&m){
```

```
4
           LL a=n\%p,b=m\%p;
5
           if(a<b)return 0;
           ans=(ans*C(a,b,p))%p;
           n/=p;m/=p;
8
      }return ans%p;
9 }
  Miller Rabin 素数测试
1 const int BASE[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
2 bool check(long long n,int base) {
3 long long n2=n-1,res;
      int s=0;
       while (n2\%2==0) n2>>=1,s++;
      res=pw(base,n2,n);
      if((res==1)||(res==n-1)) return 1;
       while(s--) {
           res=mul(res,res,n);
10
           if(res==n-1) return 1;
11
12
      return 0; // n is not a strong pseudo prime
13 }
14 bool isprime(const long long &n) {
15
16
      if(n==2)
           return true;
17
      if(n<2 | | n%2==0)
18
           return false;
      for(int i=0;i<12&&BASE[i]<n;i++){</pre>
19
20
           if(!check(n,BASE[i]))
21
               return false;
22
23
      return true:
24 }
  Pollard Rho 大数分解
  时间复杂度: \mathcal{O}(n^{1/4})
 1 LL prho(LL n,LL c){
      LL i=1,k=2,x=rand()%(n-1)+1,y=x;
       while(1){
           i++;x=(x*x%n+c)%n;
           LL d=_gcd((y-x+n)%n,n);
if(d>1&&d<n)return d;
           if(y==x)return n;
           if(i==k)y=x,k<<=1;
9
10 }
11 void factor(LL n, vector<LL>&fat){
      if(n==1)return;
      if(isprime(n)){
13
14
           fat.push_back(n);
15
           return;
16
      }LL p=n;
17
      while (p>=n) p=prho(p,rand()%(n-1)+1);
      factor(p,fat);
18
      factor(n/p,fat);
19
20 }
  快速数论变换 (zky)
  返回结果:
                               c_i = \sum a_j \cdot b_{i-j} (mod) \ (0 \le i < n)
      使用说明: magic 是 mod 的原根
     时间复杂度: O(nlogn)
```

```
2 {(mod,G)}={(81788929,7),(101711873,3),(167772161,3)
               ,(377487361,7),(998244353,3),(1224736769,3)
 4
                ,(1300234241,3),(1484783617,5)}
 5 */
 6 int mo=998244353,G=3;
 7 void NTT(int a[],int n,int f){
      for(register int i=0;i<n;i++)</pre>
           if(i<rev[i])</pre>
9
10
               swap(a[i],a[rev[i]]);
11
       for (register int i=2; i <=n; i <<=1){
12
           static int exp[maxn];
13
           \exp[0]=1; \exp[\overline{1}]=pw(G, (mo-1)/i);
14
           if(f==-1)exp[1]=pw(exp[1],mo-2);
15
           for(register int k=2;k<(i>>1);k++)
               \exp[k]=1LL*\exp[k-1]*\exp[1]\%mo;
16
17
           for(register int j=0; j<n; j+=i){</pre>
               for (register int k=0; k<(i>>1); k++) {
18
19
                    register int &pA=a[j+k],&pB=a[j+k+(i>>1)];
20
                    register int A=pA,B=1LL*pB*exp[k]%mo;
21
                    pA=(A+B)\%mo;
22
                    pB=(A-B+mo)\%mo;
23
24
           }
25
26
      if(f==-1)
27
           int rv=pw(n,mo-2)%mo;
28
           for(int i=0;i<n;i++)</pre>
29
               a[i]=1LL*a[i]*rv%mo;
30
31 }
32 void mul(int m,int a[],int b[],int c[]){
33
      int n=1, len=0;
34
       while (n < m) n < < = 1, len++;
35
      for (int i=1;i<n;i++)
           rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));
36
37
      NTT(a,n,1);
38
      NTT(b,n,1);
39
      for(int i=0;i<n;i++)</pre>
40
           c[i]=1LL*a[i]*b[i]%mo;
      NTT(c,n,-1);
41
  原根
 1 vector<LL>fct:
 2 bool check(LL x,LL g){
      for(int i=0;i<fct.size();i++)</pre>
           if(pw(g,(x-1)/fct[i],x)==1)
               return 0;
      return 1:
 8 LL findrt(LL x){
9
      LL tmp=x-1;
      for(int i=2;i*i<=tmp;i++){</pre>
10
11
           if (tmp%i==0) {
12
               fct.push back(i);
13
               while(tmp%i==0)tmp/=i;
14
      }if(tmp>1)fct.push_back(tmp);
15
16
      // x is 1,2,4,p^n,2p^n
      // x has phi(phi(x)) primitive roots
17
      for(int i=2; i < int(1e9); i++) if(check(x,i))
18
19
           return i:
20
      return -1;
21 }
22 const int BASE[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
```

```
23 bool check(long long n,int base) {
      long long n2=n-1,res;
      int s=0;
      while (n2\%2==0) n2>>=1.s++:
26
27
      res=pw(base,n2,n);
28
      if((res==1)||(res==n-1)) return 1;
29
      while(s--) {
30
          res=mul(res,res,n);
31
           if(res==n-1) return 1;
32
33
      return 0; // n is not a strong pseudo prime
34 }
35 bool isprime(const long long &n) {
      if(n==2)
36
37
          return true;
38
      if(n<2 | | n%2==0)
39
          return false:
40
      for(int i=0;i<12&&BASE[i]<n;i++){</pre>
           if(!check(n,BASE[i]))
41
42
               return false:
43
44
      return true;
45 }
```

线性递推

```
1//已知 a_0, a_1, ..., a_{m-1}\\
      a_n = c_0 * a_{n-m} + \dots + c_{m-1} * a_{n-1} \setminus A_{n-1}
       \dot{x} a_n = v_0 * a_0 + v_1 * a_1 + ... + v_{m-1} * a_{m-1} \setminus \langle v_m \rangle
5 void linear_recurrence(long long n, int m, int a[], int c[], int p) {
      long long v[M] = \{1 \% p\}, u[M << 1], msk = !!n;
       for(long long i(n); i > 1; i >>= 1) {
           msk <<= 1:
8
9
10
      for(long long x(0); msk; msk >>= 1, x <<= 1) {
11
           fill_n(u, m \ll 1, 0);
           int \bar{b}(!!(n \& msk));
12
           x \mid = b;
13
14
           if(x < m) {
15
                u[x] = 1 \% p;
16
           }else {
17
                for(int i(0); i < m; i++) {
                    for(int j(0), t(i + b); j < m; j++, t++) {
18
                         u[t] = (u[t] + v[i] * v[j]) % p;
19
20
21
22
                for(int i((m << 1) - 1); i >= m; i--) {
23
                    for(int j(0), t(i - m); j < m; j++, t++) {
                         u[t] = (u[t] + c[j] * u[i]) % p;
24
25
                }
26
           }
27
28
           copy(u, u + m, v);
29
30
       //a[n] = v[0] * a[0] + v[1] * a[1] + ... + v[m - 1] * a[m - 1].
31
      for(int i(m); i < 2 * m; i++) {
           `a[i] = 0;
32
33
           for(int j(0); j < m; j++) {
34
                a[i] = (a[i] + (long long)c[j] * a[i + j - m]) % p;
35
36
37
      for(int_j(0); j < m; j++) {
38
           b[j] = 0;
39
           for(int i(0); i < m; i++) {
                b[j] = (b[j] + v[i] * a[i + j]) % p;
40
41
```

```
42
43
       for(int j(0); j < m; j++) {
44
            a[j] = b[j];
45
46 }
  直线下整点个数
  返回结果:
                                            \sum_{0 \leq i < n} \lfloor \frac{a + b \cdot i}{m} \rfloor
 1//calc \sum_{i=0}^{n-1} [(a+bi)/m]
 2// n,a,b,m > 0
 3 LL solve(LL n, LL a, LL b, LL m) {
       if(b==0)
            return n*(a/m);
       if(a>=m || b>=m)
            return n*(a/m)+(n-1)*n/2*(b/m)+solve(n,a/m,b/m,m);
       return solve((a+b*n)/m, (a+b*n)%m, m, b);
  数值
  高斯消元
 1 void Gauss(){
       int r,k;
       for(int i=0;i<n;i++){</pre>
            r=i;
             for(int j=i+1; j<n; j++)</pre>
                 if(fabs(A[j][i])>fabs(A[r][i]))r=j;
            if(r!=i)for(int j=0;j<=n;j++)swap(A[i][j],A[r][j]);</pre>
            for(int k=i+1; k < n; k++){
                 double f=A[k][i]/A[i][i];
10
                 for(int j=i;j<=n;j++)A[k][j]-=f*A[i][j];</pre>
11
12
13
       for(int i=n-1;i>=0;i--){
            14
15
            A[i][n]/=A[i][i];
16
17
18
       for(int i=0;i<n-1;i++)
19
            cout<<fixed<<setprecision(3)<<A[i][n]<<" ";</pre>
20
       cout<<fixed<<setprecision(3)<<A[n-1][n];</pre>
21 }
22 bool Gauss(){
23
       for(int i=1;i<=n;i++){</pre>
            int r=0;
24
            for(int j=i;j<=m;j++)
if(a[j][i]){r=j;break;}</pre>
25
26
27
            if(!r)return 0;
28
            ans=max(ans,r)
            swap(a[i],a[r]);
29
       swap(a[i],a[i]),
  for(int j=i+1;j<=m;j++)
  if(a[j][i])a[j]^=a[i];
}for(int i=n;i>=1;i--){
  for(int j=i+1;j<=n;j++)if(a[i][j])
  a[i][n+1]=a[i][n+1]^a[j][n+1];</pre>
30
31
32
33
34
35
       }return 1;
36 }
37 LL
      Gauss(){
38
       for(int i=0;i<n;i++)for(int j=0;j<n;j++)A[i][j]%=m;</pre>
       for(int i=0;i<n;i++)for(int j=0;j<n;j++)A[i][j]=(A[i][j]+m)%m;
39
40
       LL ans=n\frac{2}{-1}:1;
       for(int i=0;i<n;i++){</pre>
```

```
for(int j=i+1;j<n;j++){</pre>
42
                 while(A[j][i]){
43
44
                      LL t=A[i][i]/A[i][i];
45
                      for(int k=0; k< n; k++)
                      A[i][k] = (A[i][k] - A[j][k] *tm+m)m;
46
                      swap(A[i],A[j]);
ans=-ans;
47
48
49
            }ans=ans*A[i][i]%m;
50
       }return (ans%m+m)%m;
51
52 }
53 int Gauss(){//求秩
54
       int r, now=-1;
       int ans=0;
       for(int i = 0; i <n; i++){
57
            r = now + 1;
            for(int j = now + 1; j < m; j++)
58
                 if(fabs(A[j][i]) > fabs(A[r][i]))
59
            r = j;
if (!sgn(A[r][i])) continue;
60
61
            ans++;
63
            if (r != now)
64
                 for(int j = 0; j < n; j++)
    swap(A[r][j], A[now][j]);</pre>
65
66
67
            for(int k = now + 1; k < m; k++){
    double t = A[k][i] / A[now][i];</pre>
68
69
70
                 for(int j = 0; j < n; j++){
71
                      A[k][i] = t * A[now][i];
72
73
            }
74
75
       return ans;
76 }
  快速傅立叶变换
  返回结果:
                                     c_i = \sum_{0 \le j \le i} a_j \cdot b_{i-j} \ (0 \le i < n)
      时间复杂度: \mathcal{O}(nlogn)
1 typedef complex<double> cp;
2 const double pi = acos(-1);
3 void FFT(vector<cp>&num,int len,int ty){
4  for(int i=1,j=0;i<len-1;i++){</pre>
            for(int k=len;j^=k>>=1,~j&k;);
6
            if(i<j)
                 swap(num[i],num[j]);
       for(int h=0;(1<<h)<len;h++){
            int step=1<<h,step2=step<<1;
10
            cp w0(cos(2.0*pi/step2),ty*sin(2.0*pi/step2));
11
12
            for(int i=0;i<len;i+=step2){</pre>
                 cp w(1,0);
13
                 for(int j=0;j<step;j++){</pre>
14
15
                      cp &x=num[i+j+step];
16
                      cp &y=num[i+j];
                      cp d=w*x;
17
18
                      x=y-d;
19
                      y=y+d;
20
                      ŭ=ŭ∗wÓ;
21
            }
22
23
       }
```

```
24
       if(tv==-1)
25
            for(int i=0;i<len;i++)</pre>
                 num[i]=cp(num[i].real()/(double)len,num[i].imag());
26
27 }
28 vector<cp> mul(vector<cp>a, vector<cp>b){
29
       int len=a.size()+b.size();
30
       while((len&-len)!=len)len++;
       while(a.size()<len)a.push_back(cp(0,0));</pre>
31
32
       while(b.size()<len)b.push_back(cp(0,0));
33
       FFT(a,len,1);
34
       FFT(b,len,1);
35
       vector<cp>ans(len);
36
       for(int i=0;i<len;i++)</pre>
37
            ans[i]=a[i]*b[i];
       FFT(ans,len,-1);
       return ans;
  单纯形法求解线性规划
  返回结果:
                        \max\{c_{1\times m}\cdot x_{m\times 1}\mid x_{m\times 1}\geq 0_{m\times 1}, a_{n\times m}\cdot x_{m\times 1}\leq b_{n\times 1}\}
 1 namespace LP{
       const int maxn=233;
       double a [maxn] [maxn];
       int Ans[maxn],pt[maxn];
       int n,m;
       void pivot(int 1,int i){
            double t;
swap(Ans[1+n],Ans[i]);
            t=-a[1][i];
            a[1][i]=-1;
10
            for(int j=0;j<=n;j++)a[1][j]/=t;</pre>
11
            for(int j=0; j<=m; j++) {
    if(a[j][i]&&j!=1) {</pre>
12
13
                     t=a[i][i];
14
15
                     a[j][i]=0;
                     for (int k=0; k<=n; k++) a[i] [k] += t*a[l] [k];
16
                 }
17
18
19
       }
       vector<double> solve(vector<vector<double>
20
          → >A, vector<double>B, vector<double>C) {
21
            n=C.size();
            m=B.size();
22
23
            for(int i=0;i<C.size();i++)</pre>
                 a[0][i+1]=C[i];
24
25
            for(int i=0;i<B.size();i++)</pre>
26
27
                 a[i+1][0]=B[i];
28
            for(int i=0;i<m;i++)</pre>
29
                 for(int j=0; j<n; j++)</pre>
30
                     a[i+1][i+1] = -A[i][i];
31
32
33
            for(int i=1;i<=n;i++)Ans[i]=i;</pre>
34
            double t;
35
            for(;;){
36
                 int l=0; t=-eps;
37
                 for(int j=1; j<=m; j++)if(a[j][0]<t)t=a[l=j][0];
38
                 if(!1)break;
39
                 int i=0;
40
                 for(int j=1; j<=n; j++)if(a[1][j]>eps){i=j;break;}
41
                 if(!i){
42
                     puts("Infeasible");
43
                      return vector<double>();
                 }
```

```
pivot(1,i);
45
46
47
          for(;;){
48
               int i=0:t=eps:
               for(int j=1; j<=n; j++)if(a[0][j]>t)t=a[0][i=j];
49
50
               if(!i)break:
51
               int 1=0;
               t=1e30;
52
53
               for(int j=1;j<=m;j++)if(a[j][i]<-eps){</pre>
                    double tmp;
54
55
                    tmp=-a[i][0]/a[i][i];
                    if(t>tmp)t=tmp,l=j;
56
57
               if(!1){
58
                   puts("Unbounded");
59
60
                    return vector<double>():
61
62
               pivot(1,i);
63
64
           vector<double>x;
65
           for(int i=n+1;i<=n+m;i++)pt[Ans[i]]=i-n;</pre>
           for(int i=1;i<=n;i++)x.push_back(pt[i]?a[pt[i]][0]:0);</pre>
66
67
68
69 }
  自适应辛普森
1 double area(const double &left, const double &right) {
      double mid = (left + right) / 2;
      return (right - left) * (calc(left) + 4 * calc(mid) + calc(right)) / 6;
4 }
 6 double simpson(const double &left, const double &right,
      const double &eps, const double &area_sum) {
double mid = (left + right) / 2;
9
      double area_left = area(left, mid);
      double area_right = area(mid, right);
double area_total = area_left + area_right;
10
11
      if (std::abs(area_total - area_sum) < 15 * eps) {
12
          return area_total + (area_total - area_sum) / 15;
13
14
15
      return simpson(left, mid, eps / 2, area_left)
16
            + simpson(mid, right, eps / 2, area_right);
17 }
18
19 double simpson(const double &left, const double &right, const double &eps) {
      return simpson(left, right, eps, area(left, right));
21 }
  多项式求根
1 const double eps=1e-12;
2 double a[10][10];
3 typedef vector<double> vd;
4 int sgn(double x) { return x < -eps ? -1 : x > eps; }
5 double mypow(double x,int num){
      double ans=1.0;
      for(int i=1;i<=num;++i)ans*=x;</pre>
      return ans;
9 }
10 double f(int n, double x){
      double ans=0:
      for (int i=n; i>=0; --i) ans +=a[n][i]*mypow(x,i);
13
      return ans;
14 }
15 double getRoot(int n,double l,double r){
```

```
16
       if(sgn(f(n,1))==0)return 1;
       if(sgn(f(n,r))==0)return r;
17
18
       double temp;
       if(sgn(f(n,1))>0)temp=-1;else temp=1;
19
20
       double m;
       for(int i=1;i<=10000;++i){
21
22
           m=(1+r)/2;
23
           double mid=f(n,m);
24
           if(sgn(mid)==0){
25
                return m;
26
27
           if(mid*temp<0)l=m;else r=m;</pre>
28
29
      return (1+r)/2;
30 }
31 vd
     did(int n){
32
      vd ret;
       if(n==1){
33
           ret.push_back(-1e10);
ret.push_back(-a[n][0]/a[n][1]);
34
35
36
           ret.push_back(1e10);
37
           return ret;
38
39
       vd mid=did(n-1);
      ret.push_back(-1e10);
40
      for(int i=0;i+1<mid.size();++i){
  int t1=sgn(f(n,mid[i])),t2=sgn(f(n,mid[i+1]));</pre>
41
42
           if(t1*t2>0)continue;
43
44
           ret.push_back(getRoot(n,mid[i],mid[i+1]));
45
      ret.push_back(1e10);
return ret;
46
47
48 }
49 int main(){
       int n; scanf("%d",&n);
50
       for(int i=n;i>=0;--i){
51
           scanf("%lf",&a[n][i]);
52
53
54
       for(int i=n-1; i>=0; --i)
55
           for(int j=0; j<=i;++j)a[i][j]=a[i+1][j+1]*(j+1);
56
       vd ans=did(n);
57
       sort(ans.begin(),ans.end());
      for(int i=1;i+1<ans.size();++i)printf("%.10f\n",ans[i]);</pre>
59
      return 0;
60 }
  数据结构
  平衡的二叉查找树
  Treap
 1 #include < bits / stdc++.h>
 2 using namespace std;
3 const int maxn=1e5+5;
 4 #define sz(x) (x?x->siz:0)
 5 struct Treap{
       struct node{
           int key, val;
           int siž,s;
           node *c[2];
10
           node(int v=0){
                val=v:
11
                key=rand();
12
                siz=1, s=1;
13
                c[0] = c[1] = 0;
14
15
            void rz()\{siz=s;if(c[0])siz+=c[0]->siz;if(c[1])siz+=c[1]->siz;\}
16
       }pool[maxn],*cur,*root;
17
18
       Treap(){cur=pool;}
```

```
19
        node* newnode(int val){return *cur=node(val),cur++;}
        void rot(node *&t,int d){
20
             if(!t->c[d])t=t->c[!d];
21
22
                  node *p=t->c[d];t->c[d]=p->c[!d];
23
24
                  p->c[!d]=t;t->rz();p->rz();t=p;
25
26
       }
27
       void insert(node *&t,int x){
            if(!t){t=newnode(x);return;}
28
29
             if(t-val==x)\{t->s++;t->siz++;return;\}
30
             insert(t->c[x>t->val],x);
31
             if(t->key<t->c[x>t->val]->key)
                  rot(t,x>t->val);
32
33
             else t->rz();
34
35
       void del(node *&t,int x){
36
            if(!t)return;
37
             if(t->val==x){
                  if(t->s>1){t->s--;t->siz--;return;}
if(!t->c[0]||!t->c[1]){
38
39
                       if(!t->c[0])t=t->c[1];
40
                       else t=t->c[0];
41
42
                       return;
43
44
                  int d=t-c[0]-\ensuremath{\text{c}}[1]-\ensuremath{\text{c}}[1]-\ensuremath{\text{c}}[1]
45
                  rot(t,d);
46
                  del(t,x);
47
                  return:
48
49
            del(t->c[x>t->val],x);
50
            t->rz();
51
52
       int pre(node *t,int x){
             if(!t)return INT_MIN;
53
            int ans=pre(t->c[x>t->val],x);
if(t->val<x)ans=max(ans,t->val);
54
55
56
            return ans;
57
58
       int nxt(node *t,int x){
59
             if(!t)return INT MAX;
             int ans=nxt(t->c[x>=t->val],x);
60
61
             if(t->val>x)ans=min(ans,t->val);
62
            return ans;
63
       int rank(node *t,int x){
64
65
             if(!t)return 0;
            if(t->val==x)return sz(t->c[0]);
if(t->val<x)return sz(t->c[0])+t->s+rank(t->c[1],x);
66
67
68
            if (t-val>x) return rank (t-c[0],x);
69
       int kth(node *t,int x){
    if(sz(t->c[0])>=x)return kth(t->c[0],x);
    if(sz(t->c[0])+t->s>=x)return t->val;
    return kth(t->c[1],x-t->s-sz(t->c[0]));
70
71
72
73
74
75 }T;
  坚固的数据结构
```

坚固的平衡树

```
#define sz(x) (x?x->siz:0)
struct node{
  int siz,key;
  LL val,sum;
  LL mu,a,d;
  node *c[2],*f;
```

```
void split(int ned,node *&p,node *&q);
                                                                                                 14
                                                                                                        Heap[i].Key = Cost[i];
      node* rz(){
                                                                                                 15 }
           sum=val;siz=1;
                                                                                                 16 \text{ Heap}[0].\text{Dis} = -1;
           if(c[0])sum+=c[0]->sum,siz+=c[0]->siz;
10
           if(c[1])sum+=c[1]->sum,siz+=c[1]->siz;
11
12
           return this;
13
                                                                                                   树上的魔术师
14
      void make(LL _mu,LL _a,LL _d){
15
           sum=sum*_mu+_a*siz+_d*siz*(siz-1)/2;
                                                                                                   Link Cut Tree(zky)
16
           val=val*_mu+_a+_d*sz(c[0]);
17
           mu*=_mu; \bar{a}=a*_mu+_a; d=d*_mu+_d;
                                                                                                  1 struct LCT{
18
                                                                                                        struct node{
19
      void pd(){
                                                                                                            bool rev;
           if (mu==1&&a==0&&d==0)return;
20
                                                                                                            int mx, val
           if(c[0])c[0] \rightarrow make(mu,a,d);
21
           if(c[1])c[1] \rightarrow make(mu,a+d+d*sz(c[0]),d);
22
23
           mu=1; a=d=0;
24
25
      node()\{mu=1;\}
                                                                                                 9
26 }nd[maxn*2],*root;
                                                                                                 10
                                                                                                            void pd(){
27 node *merge(node *p,node *q){
                                                                                                 11
                                                                                                                 if(rev){
      if(!p||!q)return p?p->rz():(q?q->rz():0);
                                                                                                 12
29
       p->pd();q->pd();
                                                                                                 13
30
       if(p->key<q->key){
                                                                                                 14
                                                                                                                     rev=0;
31
           p-c[1]=merge(p-c[1],q);
                                                                                                 15
32
           return p->rz();
                                                                                                            }
                                                                                                 16
33
      }else{
                                                                                                 17
                                                                                                            void rz(){
34
           q \rightarrow c[0] = merge(p, q \rightarrow c[0]);
                                                                                                 18
35
           return q->rz();
                                                                                                 19
36
                                                                                                 20
37 }
                                                                                                 21
38 void node::split(int ned, node *&p, node *&q){
                                                                                                        }nd[int(1e4)+1];
                                                                                                 22
                                                                                                 23
       if(!ned){p=0;q=this;return;}
                                                                                                        void rot(node *x){
40
      if(ned==siz){p=this;q=0;return;}
                                                                                                 24
      pd();
                                                                                                 25
41
      if(sz(c[0]) >= ned){
                                                                                                            y->sets(x->c[!d],d);
42
                                                                                                 26
           c[0] \rightarrow split(ned,p,q); c[0]=0;rz();
43
                                                                                                 27
                                                                                                            if(y->rt())x->f=y->f;
44
           q=merge(q,this);
                                                                                                 28
45
                                                                                                 29
                                                                                                            x \rightarrow sets(y,!d);
46
           c[1] \rightarrow split(ned-sz(c[0])-1,p,q); c[1]=0;rz();
                                                                                                 30
47
           p=merge(this,p);
                                                                                                 31
                                                                                                        void splay(node *x){
48
                                                                                                 32
                                                                                                            while(!x->rt())
49 }
                                                                                                 33
50 int main(){
                                                                                                 34
51
      for(int i=1;i<=n;i++){
                                                                                                 35
                                                                                                                 else rot(x),rot(x);
           nd[i].val=in();
52
                                                                                                 36
53
           nd[i].key=rand();
                                                                                                 37
                                                                                                        node* access(node *x){
54
           nd[i].rz();
                                                                                                 38
                                                                                                            node *y=0;
55
                                                                                                 39
                                                                                                            for(;x;x=x->f){
           root=merge(root,nd+i);
                                                                                                 40
56
                                                                                                                 splay(x);
57 }
                                                                                                 41
                                                                                                                 x->sets(y,1);y=x;
                                                                                                 42
                                                                                                            }return y;
                                                                                                 43
  坚固的字符串
                                                                                                 44
                                                                                                        void makert(node *x){
  坚固的左偏树
                                                                                                 45
                                                                                                            access(x)->makerv();
                                                                                                 46
                                                                                                            splay(x);
 1 int Merge(int x, int y){
                                                                                                 47
    if (x == 0 \mid | y == 0) return x + y;
                                                                                                 48
                                                                                                        void link(node *x,node *y){
    if (Heap[x].Key < Heap[y].Key) swap(x, y);</pre>
                                                                                                 49
                                                                                                            makert(x);
    Heap[x].Ri = Merge(Heap[x].Ri, y);
                                                                                                 50
                                                                                                            x->f=y;
    if (Heap[Heap[x].Le].Dis < Heap[Heap[x].Ri].Dis) swap(Heap[x].Le, Heap[x].Ri);
                                                                                                 51
                                                                                                            access(x):
    if (\text{Heap}[x].\hat{R}i == 0) \text{Heap}[x].\hat{D}is = 0;
                                                                                                 52
    else Heap[x].Dis = Heap[Heap[x].Ri].Dis + 1;
                                                                                                 53
                                                                                                        void cut(node *x,node *y){
    return x;
                                                                                                 54
9 }
                                                                                                 55
                                                                                                            y - c[0] = x - f=0;
10
11 for (int i = 0; i \le n; i++){
                                                                                                 56
                                                                                                            y->rz();
      Heap[i].Le = Heap[i].Ri = 0;
12
                                                                                                 57
      Heap[i].Dis = 0;
                                                                                                 58
13
```

```
node *f,*c[2];
bool d(){return this==f->c[1];}
     bool rt(){return !f||(f->c[0]!=this\&\&f->c[1]!=this);}
     void sets(node *x,int d){pd();if(x)x->f=this;c[d]=x;rz();}
     void makerv(){rev^=1;swap(c[0],c[1]);}
               if(c[0])c[0]->makerv();
if(c[1])c[1]->makerv();
          if(c[0])mx=max(mx,c[0]->mx);
          if(c[1])mx=max(mx,c[1]->mx);
     node y=x-f; if(!y-rt())y-f-pd();
     y \rightarrow pd(); x \rightarrow pd(); bool d = x \rightarrow d();
     else y \rightarrow f \rightarrow sets(x, y \rightarrow d());
          if(x->f->rt())rot(x);
          else if(x\rightarrow d()==x\rightarrow f\rightarrow d())rot(x\rightarrow f),rot(x);
     makert(x);access(y);splay(y);
void link(int x,int y){link(nd+x,nd+y);}
```

```
void cut(int x,int y){cut(nd+x,nd+y);}
60 }T;
  Link Cut Tree(Splay)
 1 struct node{
      bool Rev;
       int c[2], fa;
 4 }T[N];
 5 inline void Rev(int x){
      if (!x) return;
       swap(T[x].c[0], T[x].c[1]);
      T[x].Rev ^= 1;
9 }
10 inline void Lazy_Down(int x){
      if (!x) return;
11
       if (T[x].Rev) Rev(T[x].c[0]), Rev(T[x].c[1]), T[x].Rev = 0;
13 }
14 void Rotate(int x, int c){
      int y = T[x].c[c];
int z = T[y].c[1 - c];
15
16
17
       if (T[x].fa){
           if (T[T[x].fa].c[0] == x) T[T[x].fa].c[0] = y;
18
19
           else T[T[x].fa].c[1] = y;
20
      \tilde{T}[z].fa = x; T[x].c[c] = z;

T[y].fa = T[x].fa; T[x].fa = y; T[y].c[1 - c] = x;
21
22
23
       //Update(x);
24
       //Update(y);
25 }
26 int stack[N], fx[N];
27 void Splay(int x){
       int top = 0;
28
       for (int u = x; u; u = T[u].fa)
29
30
           stack[++top] = u;
31
       for (int i = top; i >= 1; i--)
           Lazy_Down(stack[i]);
32
      for (int i = 2; i <= top; i++)
if (T[stack[i]].c[0] == stack[i - 1]) fx[i] = 0;
33
34
35
           else fx[i] = 1;
       for (int i = 2; i \le top; i += 2){
36
           if (i == top) Rotate(stack[i], fx[i]);
37
38
                if (fx[i] == fx[i + 1]){
   Rotate(stack[i] + 1], fx[i + 1]);
39
40
                    Rotate(stack[i], fx[i]);
41
42
43
                    Rotate(stack[i], fx[i]);
                    Rotate(stack[i + 1], fx[i + 1]);
44
                }
45
46
           }
47
48
      if (x != stack[top]) Par[x] = Par[stack[top]], Par[stack[top]] = 0;
      //if (fa == 0) Root = x;
49
50 }
51 inline int Access(int u){
       int Nxt = 0;
52
53
       while (u){
54
           Splay(u);
55
           if (T[u].c[1]){
                T[T[u].c[1]].fa = 0;
56
57
                Par[T[u].c[1]] = u;
58
59
           T[u].c[1] = Nxt;
60
           if (Nxt){
61
                T[Nxt].fa = u;
62
                Par[Nxt] = 0;
63
```

```
64
           //Update(u)
65
           Nxt^{T} = u:
           u = Par[u];
66
      }
67
      return Nxt;
68
69 }
70 inline void Root(int u){
71
      Access(u);
72
      Splay(u);
73
      Rev(u);
74 }
75 inline void Link(int u, int v){
      Root(u);
77
      Par[u] = v;
78 }
79 inline void Cut(int u, int v){
80
      Access(u);
81
      Splay(v);
82
      if (Par[v] != u){
83
           swap(u, v);
84
           Access(u);
           Splay(v);
85
86
      Par[v] = 0;
87
88 }
89 inline int Find_Root(int x){
      Access(x);
91
      Splay(x);
92
      int y = x;
      while (T[y].c[0]){
93
94
           Lazy_Down(y);
           y = \bar{T}[y].c[0];
95
97
      return y;
98 }
```

可持久化线段树

```
1 struct node1 {
      int L, R, Lson, Rson, Sum;
3 } tree[N * 40];
4 int root[N], a[N], b[N];
5 int tot, n, m;
6 int Real[N];
7 int Same(int x) {
      ++tot;
      tree[tot] = tree[x];
10
      return tot:
11 }
12 int build(int L, int R) {
13
      ++tot;
14
      tree[tot].L = L;
      tree[tot].R = \overline{R};
15
16
      tree[tot].Lson = tree[tot].Rson = tree[tot].Sum = 0;
17
      if (L == R) return tot;
18
      int s = tot;
      int mid = (L + R) \gg 1;
      tree[s].Lson = build(L, mid);
tree[s].Rson = build(mid + 1, R);
22
      return s;
23 }
24 int Ask(int Lst, int Cur, int L, int R, int k) {
      if (L == R) return L;
      int Mid = (L + R) \gg 1;
      int Left = tree[tree[Cur].Lson].Sum - tree[tree[Lst].Lson].Sum;
      if (Left >= k) return Ask(tree[Lst].Lson, tree[Cur].Lson, L, Mid, k);
      k -= Left;
      return Ask(tree[Lst].Rson, tree[Cur].Rson, Mid + 1, R, k);
```

```
31 }
32 int Add(int Lst, int pos) {
      int root = Same(Lst);
      tree[root].Sum++;
      if (tree[root].L == tree[root].R) return root;
35
      int mid = (tree[root].L + tree[root].R) >> 1;
37
      if (pos <= mid) tree[root].Lson = Add(tree[root].Lson, pos);</pre>
      else tree[root].Rson = Add(tree[root].Rson, pos);
39
40 }
41 int main() {
      scanf("%d%d", &n, &m);
42
43
      int up = 0;
      for (int i = 1; i <= n; i++){
    scanf("%d", &a[i]);
    b[i] = a[i];
44
45
46
47
48
      sort(b + 1, b + n + 1);
49
      up = unique(b + 1, b + n + 1) - b - 1;
50
      for (int i = 1; i <= n; i++){
51
           int tmp = lower_bound(b + 1, b + up + 1, a[i]) - b;
           Real[tmp] = a[i];
52
53
           a[i] = tmp;
54
55
      tot = 0;
      root[0] = build(1, up);
56
57
      for (int i = 1; i <= n; i++){
58
           root[i] = Add(root[i - 1], a[i]);
59
60
      for (int i = 1; i \le m; i++){
          int u, v, w;
scanf("%d%d,", &u, &v, &w);
printf("%d\n", Real[Ask(root[u - 1], root[v], 1, up, w)]);
61
62
63
64
65
      return 0;
  k-d 树
 1 long long norm(const long long &x) {
      // For manhattan distance
      return std::abs(x);
             For euclid distance
      return x * x;
8 struct Point {
      int x, y, id;
10
11
      const int& operator [] (int index) const {
12
           if (index == 0) {
13
           } else {
14
15
               return y;
16
      }
17
18
19
      friend long long dist(const Point &a, const Point &b) {
20
           long long result = 0;
21
           for (int i = 0; i < 2; ++i) {
               result += norm(a[i] - b[i]);
22
23
24
           return result;
25
26 } point[N];
28 struct Rectangle {
      int min[2], max[2];
31
      Rectangle() {
```

```
32
           min[0] = min[1] = INT_MAX;
           max[0] = max[1] = INT_MIN;
33
34
35
36
       void add(const Point &p) {
37
           for (int i = 0; i < 2; ++i) {
               min[i] = std::min(min[i], p[i]);
38
39
               max[i] = std::max(max[i], p[i]);
40
41
42
       long_long_dist(const Point &p) {
43
44
           long long result = 0;
45
           for (int i = 0; i < 2; ++i) {
               // For minimum distance
46
               result += norm(std::min(std::max(p[i], min[i]), max[i]) - p[i]);
47
48
               // For maximum distance
               result += std::max(norm(max[i] - p[i]), norm(min[i] - p[i]));
49
50
51
           return result;
52
53 };
55 struct Node {
       Point seperator;
       Rectangle rectangle;
       int child[2];
       void reset(const Point &p) {
60
61
           seperator = p;
62
           rectangle = Rectangle();
63
           rectangle.add(p);
64
           child[0] = child[1] = 0;
65
66 } tree[N << 1];</pre>
68 int size, pivot;
70 bool compare(const Point &a, const Point &b) {
       if (a[pivot] != b[pivot]) {
           return a[pivot] < b[pivot];</pre>
73
74
       return a.id < b.id;
75 }
76
77 int build(int 1, int r, int type = 1) {
       pivot = type;
       if (1 >= r) {
80
           return 0;
81
82
       int x = ++size;
       int mid = 1 + r >> 1;
83
       std::nth_element(point + 1, point + mid, point + r, compare);
85
       tree[x].reset(point[mid]);
86
       for (int i = 1; i < r; ++i) {
87
           tree[x].rectangle.add(point[i]);
88
       tree[x].child[0] = build(1, mid, type ^ 1);
89
90
       tree[x].child[1] = build(mid + 1, r, type ^ 1);
91
       return x;
92 }
94 int insert(int x, const Point &p, int type = 1) {
       pivot = type;
       if (x == 0)
           tree[++size].reset(p);
97
98
           return size;
99
100
       tree[x].rectangle.add(p);
```

```
if (compare(p, tree[x].seperator)) {
                                                                                               18
                                                                                                      while (q[i].1 > Le) ChangeLe(-1, Le, Ri), Le++;
101
            tree[x].child[0] = insert(tree[x].child[0], p, type ^ 1);
                                                                                                      while (q[i].1 < Le) Le--, ChangeLe(1, Le, Ri);
                                                                                               19
102
       } else {
                                                                                                      while (q[i].r < Ri) ChangeRi(-1, Le, Ri), Ri--;
103
                                                                                               20
            tree[x].child[1] = insert(tree[x].child[1], p, type ^ 1);
104
                                                                                               21
                                                                                                      Ans[q[i].id] = Cur;
105
                                                                                               22 }
106
       return x;
107 }
108
                                                                                                  树状数组 kth
109 //
         For minimum distance
110 void query(int x, const Point &p, std::pair<long long, int> &answer, int type =
                                                                                                1 int find(int k){
      \hookrightarrow 1) {
                                                                                                      int cnt=0,ans=0;
111
       pivot = type;
                                                                                                      for(int i=22;i>=0;i--){
       if (x == 0] \mid | tree[x].rectangle.dist(p) > answer.first) {
112
                                                                                                          ans+=(1<<i);
if(ans>n || cnt+d[ans]>=k)ans-=(1<<i);
113
114
                                                                                                          else cnt+=d[ans];
115
       answer = std::min(answer,
                 std::make_pair(dist(tree[x].seperator, p), tree[x].seperator.id));
116
                                                                                                      return ans+1;
       if (compare(p, tree[x].seperator)) {
117
            query(tree[x].child[0], p, answer, type ^ 1);
118
119
            query(tree[x].child[1], p, answer, type ^ 1);
       } else {
120
                                                                                                  虚树
121
            query(tree[x].child[1], p, answer, type ^ 1);
            query(tree[x].child[0], p, answer, type ^ 1);
122
                                                                                                1 int a[maxn*2],sta[maxn*2];
                                                                                                2 int top=0,k;
124 }
                                                                                                3 void build(){
126 std::priority_queue<std::pair<long long, int> > answer;
                                                                                                      sort(a,a+k,bydfn);
                                                                                                      k=unique(a,a+k)-a;
128 void query(int x, const Point &p, int k, int type = 1) {
                                                                                                      sta[top++]=1;_n=k;
                                                                                                      for(int i=0;i<k;i++){</pre>
130
       if (x == 0]|
                                                                                                          int LCA=lca(a[i],sta[top-1]);
                                                                                                9
            (int)answer.size() == k && tree[x].rectangle.dist(p) >
131
                                                                                               10
                                                                                                          while (dep [LCA] < dep [sta[top-1]]) {
              if (dep[LCA]>=dep[sta[top-2]]){
                                                                                               11
132
                                                                                                                   add_edge(LCA,sta[--top]);
                                                                                               12
133
                                                                                               13
                                                                                                                   if (sta[top-1]!=LCA)sta[top++]=LCA;
       answer.push(std::make_pair(dist(tree[x].seperator, p),
134
                                                                                               14

    tree[x].seperator.id));
                                                                                                               }add_edge(sta[top-2],sta[top-1]);top--;
                                                                                               15
       if ((int)answer.size() > k) {
135
                                                                                                          }if(sta[top-1]!=a[i])sta[top++]=a[i];
                                                                                               16
136
            answer.pop();
                                                                                               17
137
                                                                                               18
                                                                                                      while(top>1)
       if (compare(p, tree[x].seperator)) {
   query(tree[x].child[0], p, k, type ^ 1);
138
                                                                                                          add_edge(sta[top-2],sta[top-1]),top--;
                                                                                               19
139
                                                                                                      for (int i=0; i< k; i++) inr [a[i]]=1;
                                                                                               20
            query(tree[x].child[1], p, k, type ^ 1);
140
141
142
            query(tree[x].child[1], p, k, type ^ 1);
143
            query(tree[x].child[0], p, k, type ^ 1);
                                                                                                  点分治 (zky)
144
145 }
                                                                                                1 int siz[maxn],f[maxn],dep[maxn],cant[maxn],root,All,d[maxn];
                                                                                                2 void makert(int u,int fa){
                                                                                                      siz[u]=1;f[u]=0;
for(int i=0;i<G[u].size();i++){</pre>
   莫队算法
  1 struct node{
                                                                                                          edge e=G[u][i];
       int 1, r, id;
                                                                                                          if(e.v!=fa&&!cant[e.v]){
       friend bool operator < (const node &a, const node &b){
   if (a.1 / Block == b.1 / Block) return a.r < b.r;</pre>
                                                                                                               dep[e.v]=dep[u]+1;
                                                                                                               makert(e.v,u);
            return a.1 / Block < b.1 / Block;</pre>
                                                                                                a
                                                                                                               siz[u]+=siz[e.v];
                                                                                               10
                                                                                                               f[u]=max(f[u],siz[e.v]);
 7 }q[N];
                                                                                               11
 8 Block = int(sqrt(n));
                                                                                                      }f[u]=max(f[u],All-f[u]);
                                                                                               12
                                                                                                      if(f[root]>f[u])root=u;
 9 for (int i = 1; i \le m; i++){
                                                                                               13
       scanf("%d%d", &q[i].1, &q[i].r);
                                                                                               14 }
11
       q[i].id = i;
                                                                                               15 void dfs(int u,int fa){
                                                                                                      //Gain data
                                                                                                      for(int i=0;i<G[u].size();i++){</pre>
 13 sort(q + 1, q + 1 + m);
                                                                                               17
 14 Cur = a[1]; /// Hints: adjust by yourself
                                                                                               18
                                                                                                          edge e=G[u][i];
15 Le = Ri = 1;
                                                                                               19
                                                                                                          if (e.v==fa||cant[e.v])continue;
16 for (int i = 1; i <= m; i++){
                                                                                               20
                                                                                                          d[e.v]=d[u]+e.w;
       while (q[i].r > Ri) Ri++, ChangeRi(1, Le, Ri);
                                                                                               21
                                                                                                          dfs(e.v,u);
```

```
22
23 }
24 void calc(int u){
25
      d[u]=0;
      for(int i=0;i<G[u].size();i++){</pre>
26
27
           edge e=G[u][i];
28
           if(cant[e.v])continue;
29
           d[e.v]=e.w;
30
           dfs(e.v,u);
31
32
33 }
34 void solve(int u){
      calc(u);cant[u]=1;
for(int i=0;i<G[u].size();i++){</pre>
35
36
37
           edge e=G[u][i];
38
           if(cant[e.v])continue;
           All=siz[e.v];
f[root=0]=n+1;
39
40
41
           makert(e.v,0);
42
           solve(root);
43
44 }
45 All=n
46 f [root=0]=n+1;
47 makert(1,1);
48 solve(root);
  元芳树
 1 void tarjan(int u){
       dfn[u] = low[u] = ++tot;
       for(int i=0;i<G[u].size();i++){</pre>
           edge e=G[u][i];
           if (dfn[e.v])
                low[u]=min(low[u],dfn[e.v]);
           else{
               S.push(e);
                tarjan(e.v);
                if(low[e.v]==dfn[u]){
11
                    if(S.top()==e){}
12
13
                        fa[e.v][0]=u;
14
                        fw[e.v]=e.w;
15
                        S.pop();
16
                        continue;
                   }
17
18
19
                    Rcnt++;
20
                    edge ed;
21
22
                        ed=S.top();S.pop();
                        ring[Rcnt].push_back(ed);
23
24
                    }while(ed!=e);
                    reverse(ring[Rcnt].begin(),ring[Rcnt].end());
25
26
                    int last=ring[Rcnt].back().v;
                    ring[Rcnt].push_back((edge){last,u,Mw[pack(last,u)]});
27
28
29
                low[u]=min(low[u],low[e.v]);
30
      }
31
32 }
33 void up(int u){
34
      if(dep[u]||u==1)return ;
35
       if(fa[u][0])up(fa[u][0]);
      dep[u]=dep[fa[u][0]]+1;
36
37
      fw[u]+=fw[fa[u][0]];
38 }
```

```
39 void build(){
       S.push((edge)\{0,1,0\});
41
42
       tarjan(1);
43
       for(int i=1;i<=Rcnt;i++){</pre>
            rlen[i]=0;
44
45
            sum[i].resize(ring[i].size());
            dis[i].resize(ring[i].size());
46
            for(int j=0;j<ring[i].size();j++){</pre>
47
                 rlen[i]+=ring[i][j].w;
49
                 ind[i].push_back(make_pair(ring[i][j].u,j));
50
51
            sum[i][0]=0;
            fw[i+n]=0;
52
53
            fa[i+n][0]=ring[i][0].u;
           for(int j=1;j<ring[i].size();j++){
   sum[i][j]=sum[i][j-1]+ring[i][j-1].w;
   dis[i][j]=min(sum[i][j],rlen[i]-sum[i][j]);
   fw[ring[i][j].u]=dis[i][j];
   fa[ring[i][j].u][0]=i+n;
}</pre>
54
55
56
57
58
59
60
            sort(ind[i].begin(),ind[i].end());
       }
61
       for(int i=1;i<=n+Rcnt;i++)</pre>
63
64
            up(i);
65
       for(int j=1; j<BIT; j++)</pre>
66
       for(int i=1;i<=n+Rcnt;i++)if(fa[i][j-1])
67
68
            fa[i][j]=fa[fa[i][j-1]][j-1];
69
70 }
71 pair<int,int>second_lca;
72 int lca(int u,int v){
       if (dep[u] <dep[v]) swap(u,v);</pre>
       int d=dep[u]-dep[v];
74
75
       for(int i=0;i<BIT;i++)if(d>>i&1)
            u=fa[u][i];
76
       if(u==v)return u;
77
       for(int i=BIT-1; i>=0; i--)if(fa[u][i]!=fa[v][i]){
78
79
            u=fa[u][i];
            v=fa[v][i];
80
       }
81
82
       second_lca=make_pair(u,v);
83
       return fa[u][0];
84 }
  图论
  点双连通分量 (lyx)
1///求割点,割点向每个点双连通分量连边 2 void Dfs(int x, int lst){
       dfn[x] = ++dfc;
low[x] = dfn[x];
5
       stack[++cnt] = x;
       int son = 0:
       for (int i = g[x]; i; i = nxt[i]){
            if (!dfn[adj[i]]){
10
                 Dfs(adj[i], i);
11
                 low[x] = min(low[x], low[adj[i]]);
12
                 if (low[adj[i]] >= dfn[x]){
13
14
                      int Tmp;
                      iscut[\bar{x}] = 1;
15
16
                      ++block;
                      E[x].push_back(block + n);
17
```

```
18
19
                        Tmp = stack[cnt --];
20
                        belong[Tmp] = block + n;
21
22
                        E[Tmp].push_back(block + n);
23
                   }while (Tmp != adj[i]);
               }
24
25
26
           else
27
           if ((i ^ lst) != 1) low[x] = min(low[x], dfn[adj[i]]);
28
29
      if (x == Root && son == 1) iscut[x] = 0, belong[x] = E[x][0];
30
      if (x == Root && son == 0){
31
           ++block;
           belong[x] = block + n;
32
33
34 }
      tot = 1;//!!!!!!!!!!!!!!!!!!!!!!!!!!!
35
      block = 0;
36
37
      cnt = 0:
38
      dfc = 0;
39
      for (int i = 1; i <= n; i++)
           if (dfn[i] == 0){
40
41
               Root = i;
42
               Dfs(i, 0);
  2-SAT 问题 (强连通分量)
 1 int stamp, comps, top;
2 int dfn[N], low[N], comp[N], stack[N];
 4 void add(int x, int a, int y, int b) {
       edge [x << 1 \mid a].push_back(y << 1 | b);
 6 }
 8 void tarjan(int x) {
      dfn[x] = low[x] = ++stamp;
       stack[top++] = x;
11
      for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
12
           int y = edge[x][i];
13
           if (!dfn[y]) {
14
               tarjan(y);
               low[x] = std::min(low[x], low[y]);
15
           } else if (!comp[y]) {
16
17
               low[x] = std::min(low[x], dfn[y]);
18
19
       if (low[x] == dfn[x]) {
20
21
           comps++;
22
           do {
23
               int y = stack[--top];
               comp[y] = comps;
24
25
           } while (stack[top] != x);
26
27 }
29 bool solve() {
       int counter = n + n + 1;
       stamp = top = comps = 0;
31
      std::fill(dfn, dfn + counter, 0);
32
      std::fill(comp, comp + counter, 0);
33
34
      for (int i = 0; i < counter; ++i) {
35
           if (!dfn[i]) {
36
               tarjan(i);
37
38
39
      for (int i = 0; i < n; ++i) {
           if (comp[i << 1] == comp[i << 1 | 1]) {</pre>
```

```
41
               return false:
42
           answer[i] = (comp[i << 1 | 1] < comp[i << 1]);
43
      }
44
45
      return true;
46 }
  二分图最大匹配
  Hungary 算法
  时间复杂度: \mathcal{O}(V \cdot E)
 1 vector<int>G[maxn];
 2 int Link[maxn], vis[maxn], T;
3 bool find(int x){
       for(int i=0;i<G[x].size();i++){</pre>
           int v=G[x][i];
           if(vis[v]==T)continue;
           vis[v]=T;
           if(!Link[v]||find(Link[v])){
               Link[v]=x;
10
               return 1;
11
12
      }return 0;
13 }
14 int Hungarian(int n){
       int ans=0;
15
       memset(Link,0,sizeof Link);
16
       for(int i=1;i<=n;i++){</pre>
17
18
           ans+=find(i);
19
20
      }return ans;
21 }
  Hopcroft Karp 算法
  时间复杂度: \mathcal{O}(\sqrt{V} \cdot E)
  int matchx[N], matchy[N], level[N];
 3 bool dfs(int x) {
       for (int i = 0; i < (int)edge[x].size(); ++i) {
           int y = edge[x][i];
           int w = matchy[y];
           if (w == -1 | | level[x] + 1 == level[w] && dfs(w)) {
               matchx[x] = y;
               matchy[y] = x;
10
               return true;
           }
11
12
13
       level[x] = -1;
14
      return false;
15 }
17 int solve() {
       std::fill(matchx, matchx + n, -1);
       std::fill(matchy, matchy + m, -1);
       for (int answer = 0: :) {
           std::vector<int> queue;
21
           for (int i = 0; i < n; ++i) {
    if (matchx[i] == -1) {
22
23
24
                    level[i] = 0;
25
                    queue.push_back(i);
26
               } else {
27
                    level[i] = -1;
28
```

```
29
           for (int head = 0; head < (int)queue.size(); ++head) {</pre>
30
31
               int x = queue[head];
               for (int i = 0; i < (int)edge[x].size(); ++i) {
32
                   int y = edge[x][i];
33
                   int w = matchy[y];
34
                   if (w != -1 \&\& level[w] < 0) {
35
36
                       level[w] = level[x] + 1;
37
                       queue.push_back(w);
38
               }
39
40
41
           int delta = 0;
          for (int i = 0; i < n; ++i) {
42
43
               if (matchx[i] == -1 \&\& dfs(i)) {
44
                   delta++;
45
46
47
           if (delta == 0) {
48
               return answer;
49
           } else {
50
               answer += delta;
51
52
53 }
  二分图最大权匹配
```

时间复杂度: $\mathcal{O}(V^4)$

```
1 int labelx[N], labely[N], match[N], slack[N];
 2 bool visitx[N], visity[N];
 4 bool dfs(int x) {
       visitx[x] = true;
      for (int y = 0; y < n; ++y) {
           if (visity[y]) {
                continue;
10
           int delta = labelx[x] + labely[y] - graph[x][y];
           if (delta == 0) {
11
                visity[y] = true;
12
                if (match[y] == -1 \mid | dfs(match[y])) {
13
                    match[y] = x;
14
15
                    return true;
16
17
           } else {
18
                slack[y] = std::min(slack[y], delta);
19
20
21
       return false;
22 }
24 int solve() {
      for (int i = 0; i < n; ++i) {
   match[i] = -1;
   labelx[i] = INT_MIN;</pre>
25
26
27
           labely[i] = 0;
28
29
           for (int j = 0; j < n; ++j) {
                labelx[i] = std::max(labelx[i], graph[i][j]);
30
31
32
33
      for (int i = 0; i < n; ++i) {
34
           while (true) {
35
                std::fill(visitx, visitx + n, 0);
                std::fill(visity, visity + n, 0);
36
                for (int j = 0; j < n; ++j) {
37
                    slack[j] = INT_MAX;
38
```

```
39
               if (dfs(i)) {
40
41
42
               int delta = INT_MAX;
43
               for (int j = 0; j < n; ++j) {
44
45
                   if (!visity[j]) {
46
                       delta = std::min(delta, slack[j]);
47
48
49
               for (int j = 0; j < n; ++j) {
                   if (visitx[j]) {
50
51
                       labelx[j] -= delta;
52
53
                   if (visity[j]) {
54
                       labely[j] += delta;
55
                   } else {
56
                       slack[j] -= delta;
57
               }
58
          }
59
      }
60
      int answer = 0;
61
62
      for (int i = 0; i < n; ++i) {
63
          answer += graph[match[i]][i];
64
65
      return answer;
66 }
```

```
最大流 (dinic)
时间复杂度: \mathcal{O}(V^2 \cdot E)
```

```
1 struct edge{int u,v,cap,flow;};
2 vector<edge>edges;
3 vector<int>G[maxn];
4 int s,t;
5 int cur[maxn],d[maxn];
6 void add(int u,int v,int cap){
       edges.push_back((edge){u,v,cap,0});
       G[u].push_back(edges.size()-1);
       edges.push_back((edge)\{v,u,0,0\});
10
       G[v].push_back(edges.size()-1);
11 }
12 bool bfs(){
       static int vis[maxn];
       memset(vis,0,sizeof vis);vis[s]=1;
queue<int>q;q.push(s);d[s]=0;
15
       while(!q.empty()){
16
            int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
   edge e=edges[G[u][i]];if(vis[e.v]||e.cap==e.flow)continue;</pre>
17
18
19
20
                 d[e.v]=d[u]+1;vis[e.v]=1;q.push(e.v);
21
22
       }return vis[t];
23 }
24 int dfs(int u,int a){
       if (u==t||!a)return a;
25
26
       int flow=0,f;
       for(int &i=cur[u];i<G[u].size();i++){
   edge e=edges[G[u][i]];</pre>
27
28
29
            if(d[e.v] == d[u] + 1&&(f = dfs(e.v,min(a,e.cap-e.flow))) > 0)
30
                 edges[G[u][i]].flow+=f;
                 edges[G[u][i]^1].flow-=f;
31
32
                 flow+=f;a-=f;if(!a)break;
33
```

```
}return flow:
35 }
36 int dinic(){
37
      int flow=0,x;
38
       while(bfs()){
39
           memset(cur,0,sizeof cur);
40
           while(x=dfs(s,INT_MAX)){
41
               flow+=x;
42
               memset(cur,0,sizeof cur);
43
44
      }return flow:
  最大流 (sap)
  时间复杂度: \mathcal{O}(V^2 \cdot E)
 1 int g[T], adj[M], nxt[M], f[M];
 2 int cnt[T], dist[T], cur[T], fa[T], dat[T];
 3 void Ins(int x, int y, int ff, int rf){
       adj[++tot] = y; nxt[tot] = g[x]; g[x] = tot; f[tot] = ff;
       adj[++tot] = x; nxt[tot] = g[y]; g[y] = tot; f[tot] = rf;
 6 }
7 int sap(int s, int t){
       int x, sum;
9
       for (int i = 1; i <= t; i++){
           dist[i] = 1;
10
11
           cur[i] = g[i];
           fa[i] = 0;
12
           dat[i] = 0:
13
           cnt[i] = 0;
14
15
16
       cnt[0] = 1; cnt[1] = t - 1;
17
      dist[t] = 0;
18
      dat[s] = INF;
20
      sum = 0
21
      while (1){
           int p;
22
           for (p = cur[x]; p; p = nxt[p]){
   if (f[p] > 0 && dist[adj[p]] == dist[x] - 1) break;
23
24
25
26
           if (p > 0){
27
                cur[x] = p;
               fa[adj[p]] = p;
28
               dat[adj[p]] = min(dat[x], f[p]);
29
30
                x = adj[p];
31
                if (x == t){
32
                    sum += dat[x];
                    while (x != s){
   f[fa[x]] -= dat[t];
   f[fa[x] ^ 1] += dat[t];
33
34
35
                        x = adj[fa[x] ^ 1];
36
37
               }
38
39
           } else {
40
                cnt[dist[x]] --
                if (cnt[dist[x]] == 0) return sum;
41
                dist[x] = t + 1;
42
               for (int p = g[x]; p; p = nxt[p]){
43
                    if (f[p] > 0 && dist[adj[p]] + 1 < dist[x]){
44
45
                        dist[x] = dist[adj[p]] + 1;
46
                        cur[x] = p;
47
48
                cnt[dist[x]]++;
49
                if (dist[s] > t) return sum;
```

```
if (x != s) x = adj[fa[x] ^ 1];
51
52
53
      }
54 }
55 /*
56 \text{ tot} = 1
57 edges' id start from 2
58 remember to clean g
59 t is the number of points
60 */
```

上下界网络流

B(u,v) 表示边 (u,v) 流量的下界, C(u,v) 表示边 (u,v) 流量的上界, F(u,v) 表示边 (u,v) 的流量。设 G(u,v)F(u,v) - B(u,v), 显然有

$$0 \le G(u, v) \le C(u, v) - B(u, v)$$

无源汇的上下界可行流

建立超级源点 S^* 和超级汇点 T^* , 对于原图每条边 (u,v) 在新网络中连如下三条边 $: S^* \to v$, 容量为 B(u,v) $: u \to T^*$, 容量为 B(u,v); $u \to v$, 容量为 C(u,v) - B(u,v)。最后求新网络的最大流, 判断从超级源点 S^* 出发的边是否都满流 即可, 边 (u,v) 的最终解中的实际流量为 G(u,v) + B(u,v)。

有源汇的上下界可行流

从汇点 T 到源点 S 连一条上界为 ∞,下界为 0 的边。按照**无源汇的上下界可行流**一样做即可,流量即为 $T \to S$ 边上的 流量。 有源汇的上下界最大流

- 1. 在有源汇的上下界可行流中,从汇点 T 到源点 S 的边改为连一条上界为 ∞ , 下届为 x 的边。x 满足二分性质,找 到最大的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最大流。
- 2. 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边,变成无源汇的网络。按照**无源汇的上下界可行流**的方法,建 立超级源点 S^* 和超级汇点 T^* ,求一遍 $S^* \to T^*$ 的最大流,再将从汇点 T 到源点 S 的这条边拆掉,求一次 $S \to T$ 的最大流即可。

有源汇的上下界最小流

- 1. 在**有源汇的上下界可行流**中,从汇点 T 到源点 S 的边改为连一条上界为 x, 下界为 0 的边。x 满足二分性质,找 到最小的 x 使得新网络存在**无源汇的上下界可行流**即为原图的最小流。
- 2. 按照**无源汇的上下界可行流**的方法,建立超级源点 S^* 与超级汇点 T^* ,求一遍 $S^* o T^*$ 的最大流,但是注意这 一次不加上汇点 T 到源点 S 的这条边,即不使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S上界 ∞ 的边。因为这条边下界为 0,所以 S^* , T^* 无影响,再直接求一次 $S^* \to T^*$ 的最大流。若超级源点 S^* 出发的边全部满流,则 $T \rightarrow S$ 边上的流量即为原图的最小流,否则无解。

最小费用最大流

稀疏图

时间复杂度: $\mathcal{O}(V \cdot E^2)$

```
1 struct EdgeList {
      int size;
      int last[N];
      int succ[M], other[M], flow[M], cost[M];
      void clear(int n) {
6
          size = 0;
          std::fill(last, last + n, -1);
8
9
      void add(int x, int y, int c, int w) {
          succ[size] = last[x];
10
          last[x] = size;
other[size] = y;
11
12
13
          flow[size] = c;
14
          cost[size++] = w:
15
16 } e;
18 int n, source, target;
19 int prev[N];
21 void add(int x, int y, int c, int w) {
```

```
e.add(x, y, c, w);
22
23
      e.add(y, x, 0, -w);
24 }
25
26 bool augment() {
      static int dist[N], occur[N];
28
      std::vector<int> queue;
29
      std::fill(dist, dist + n, INT_MAX);
      std::fill(occur, occur + n, 0);
30
      dist[source] = 0;
31
32
      occur[source] = true;
33
      queue.push_back(source);
34
      for (int head = 0; head < (int)queue.size(); ++head) {
          int x = queue[head];
35
           for (int i = e.last[x]; ~i; i = e.succ[i]) {
36
37
               int y = e.other[i];
               if (e.flow[i] && dist[y] > dist[x] + e.cost[i]) {
38
39
                   dist[y] = dist[x] + e.cost[i];
                   prev[y] = i;
40
                   if (!occur[y]) {
41
42
                       occur[y] = true;
43
                       queue.push_back(y);
              }
45
46
47
          occur[x] = false;
48
      return dist[target] < INT_MAX;</pre>
49
50 }
51
52 std::pair<int, int> solve() {
53
      std::pair<int, int> answer = std::make_pair(0, 0);
54
      while (augment()) {
           int number = INT_MAX;
55
56
          for (int i = target; i != source; i = e.other[prev[i] ^ 1]) {
57
              number = std::min(number, e.flow[prev[i]]);
58
59
          answer.first += number;
          for (int i = target; i != source; i = e.other[prev[i] ^ 1]) {
60
61
               e.flow[prev[i]] -= number;
62
               e.flow[prev[i] ^ 1] += number;
63
               answer.second += number * e.cost[prev[i]];
64
65
      return answer;
  稠密图
  使用条件:费用非负
     时间复杂度: \mathcal{O}(V \cdot E^2)
 1 struct EdgeList {
      int size;
      int last[N];
      int succ[M], other[M], flow[M], cost[M];
      void clear(int n) {
          size = 0;
          std::fill(last, last + n, -1);
Q
      void add(int x, int y, int c, int w) {
          succ[size] = last[x];
10
          last[x] = size;
11
12
          other[size] = y;
13
          flow[size] = c;
14
          cost[size++] = w;
      }
15
```

```
16 } e;
18 int n, source, target, flow, cost;
19 int slack[N], dist[N];
20 bool visit[N];
22 void add(int x, int y, int c, int w) {
       e.add(x, y, c, w);
24
       e.add(y, x, 0, -w);
25 }
27 bool relabel() {
       int delta = INT_MAX;
29
       for (int i = 0; i < n; ++i) {
30
           if (!visit[i]) {
31
               delta = std::min(delta, slack[i]);
32
33
           slack[i] = INT_MAX;
34
35
      if (delta == INT_MAX) {
36
           return true:
37
      for (int i = 0; i < n; ++i) {
38
39
           if (visit[i]) {
40
               dist[i] += delta;
41
42
43
      return false;
45
46 int dfs(int x, int answer) {
47
      if (x == target) {
           flow += answer;
           cost += answer * (dist[source] - dist[target]);
50
           return answer;
51
52
      visit[x] = true;
53
       int delta = answer;
       for (int i = e.last[x]; ~i; i = e.succ[i]) {
   int y = e.other[i];
54
55
56
           if (e.flow[i] > 0 && !visit[y]) {
57
               if (dist[y] + e.cost[i] == dist[x]) {
                    int number = dfs(y, std::min(e.flow[i], delta));
58
                   e.flow[i] -= number;
e.flow[i ^ 1] += number;
59
60
                    delta -= number;
61
                    if (delta == 0) {
62
                        dist[x] = INT MIN:
63
64
                        return answer;
65
66
               } else {
                    slack[y] = std::min(slack[y], dist[y] + e.cost[i] - dist[x]);
67
68
69
70
71
      return answer - delta;
72 }
74 std::pair<int, int> solve() {
       flow = cost = 0;
       std::fill(dist, dist + n, 0);
77
       do {
78
               fill(visit, visit + n, 0);
79
80
           } while (dfs(source, INT_MAX));
      } while (!relabel());
81
      return std::make_pair(flow, cost);
82
83 }
```

```
一般图最大匹配
  时间复杂度: \mathcal{O}(V^3)
 1 int match[N], belong[N], next[N], mark[N], visit[N];
 2 std::vector<int> queue;
4 int find(int x) {
5    if (belong[x] != x) {
           belong[x] = find(belong[x]);
 8
      return belong[x];
9 }
10
11 void merge(int x, int y) {
12
      x = find(x);
      y = find(y);
13
14
      if (x != y) {
15
           belong[x] = y;
16
17 }
18
19 int lca(int x, int y) {
20
      static int stamp = 0;
21
       stamp++;
       while (true) {
23
           if (x != -1) {
24
               x = find(x);
25
               if (visit[x] == stamp) {
26
                    return x;
27
28
               visit[x] = stamp;
29
               if (match[x] != -1)
30
                   x = next[match[x]];
31
               } else {
32
                   x = -1:
33
34
35
           std::swap(x, y);
36
37 }
38
39 void group(int a, int p) {
40
       while (a != p) {
           int b = match[a], c = next[b];
41
           if (find(c) != p) {
42
               next[c] = b;
43
44
45
           if (mark[b] == 2) {
46
               mark[b] = 1;
47
               queue.push_back(b);
48
           if (mark[c] == 2) {
49
               mark[c] = 1;
50
51
               queue.push_back(c);
52
53
           merge(a, b);
54
55
           merge(b, c);
           a = c;
56
57 }
59 void augment(int source) {
60
       queue.clear();
61
       for (int i = 0; i < n; ++i) {
62
           next[i] = visit[i] = -1;
           belong[i] = i;
63
64
           mark[i] = 0;
      }
65
```

```
66
       mark[source] = 1;
       queue.push_back(source);
 67
       for (int head = 0; head < (int)queue.size() && match[source] == -1; ++head) {
 68
           int x = queue[head];
for (int i = 0; i < (int)edge[x].size(); ++i) {</pre>
 69
 70
                int y = edge[x][i];
 71
                if (match[x] == y | find(x) == find(y) | mark[y] == 2) {
 72
 73
                    continue;
 74
 75
                if (mark[y] == 1) {
 76
                    int r = lca(x, y);
                    if (find(x) != r) {
 77
 78
                        next[x] = y;
 79
 80
                    if (find(y) != r) {
 81
                        next[y] = x;
 82
 83
                    group(x, r);
 84
                    group(y, r);
                } else if (match[y] == -1) {
 85
                    next[y] = x;
 86
 87
                    for (int u = y; u != -1; ) {
 88
                        int v = next[u];
 89
                        int mv = match[v];
                        match[v] = u;
                        match[u] = v;
 92
                        u = mv;
 93
 94
                    break;
 95
                } else {
 96
                    next[y] = x;
                    mark[y] = 2;
 97
                    mark[match[y]] = 1;
 98
 99
                    queue.push_back(match[y]);
100
101
102
       }
103 }
104
105 int solve() {
       std::fill(match, match + n, -1);
107
       for (int i = 0; i < n; ++i) {
           if (match[i] == -1) {
108
109
                augment(i);
110
111
112
       int answer = 0;
113
       for (int i = 0; i < n; ++i) {
           answer += (match[i] !=-1);
114
115
116
       return answer;
117 }
   无向图全局最小割
   时间复杂度: \mathcal{O}(V^3)
      注意事项:处理重边时,应该对边权累加
  1 int node[N], dist[N];
 2 bool visit[N];
  4 int solve(int n) {
       int answer = INT_MAX;
       for (int i = 0; \bar{i} < n; ++i) {
           node[i] = i;
       while (n > 1) {
```

```
10
           int max = 1;
           for (int i = 0; i < n; ++i) {
11
12
                dist[node[i]] = graph[node[0]][node[i]];
                if (dist[node[i]] > dist[node[max]]) {
13
14
15
16
           int prev = 0;
17
           memset(visit, 0, sizeof(visit));
18
           visit[node[0]] = true;
19
20
           for (int i = 1; i < n; ++i) {
21
                if (i == n - 1) {
22
                    answer = std::min(answer, dist[node[max]]);
23
                    for (int k = 0; k < n; ++k)
                         graph[node[k]][node[prev]] =
24
25
                            (graph[node[prev]][node[k]] += graph[node[k]][node[max]]);
26
27
                    node[max] = node[--n];
28
29
30
               visit[node[max]] = true;
               prev = max;

max = -1;
31
                for (int j = 1; j < n; ++j) {
32
33
                    if (!visit[node[j]]) {
                        dist[node[j]] += graph[node[prev]][node[j]];
if (max == -1 || dist[node[max]] < dist[node[j]]) {</pre>
34
35
36
37
38
                   }
39
               }
40
41
42
       return answer;
43 }
  哈密尔顿回路(ORE 性质的图)
  ORE 性质:
                            \forall x, y \in V \land (x, y) \notin E \text{ s.t. } deg_x + deg_y \ge n
      返回结果:从顶点1出发的一个哈密尔顿回路
      使用条件:n > 3
 1 int left[N], right[N], next[N], last[N];
 3 void cover(int x) {
      left[right[x]] = left[x];
      right[left[x]] = right[x];
 6 }
 8 int adjacent(int x) {
9
       for (int i = right[0]; i <= n; i = right[i]) {</pre>
           if (graph[x][i]) {
10
11
               return i;
12
13
14
      return 0:
15 }
17 std::vector<int> solve() {
       for (int i = 1; i <= n; ++i) {
18
19
           left[i] = i - 1;
20
           right[i] = i + 1;
21
22
      int head, tail;
23
      for (int i = 2; i \le n; ++i) {
24
           if (graph[1][i]) {
25
                head = 1;
```

```
26
                tail = i;
27
                cover(head);
28
                cover(tail);
29
                next[head] = tail;
30
                break;
31
32
33
       while (true) {
34
           int x;
35
           while (x = adjacent(head)) {
36
                next[x] = head;
37
                head = x;
38
                cover(head);
39
40
           while (x = adjacent(tail)) {
                next[tail] = x;
41
42
                tail = x;
43
                cover(tail);
44
45
           if (!graph[head][tail]) {
                for (int i = head, j; i != tail; i = next[i]) {
   if (graph[head][next[i]] && graph[tail][i]) {
46
47
48
                         for (j = head; j != i; j = next[j]) {
    last[next[j]] = j;
49
50
                         j = next[head];
51
                         next[head] = next[i];
52
53
                         next[tail] = i;
                         tail = j;
for (j = i; j != head; j = last[j]) {
55
56
                              next[j] = last[j];
57
58
                         break;
59
                    }
60
61
           next[tail] = head;
62
           if (right[0] > n) {
63
64
                break;
65
66
           for (int i = head; i != tail; i = next[i]) {
67
                if (adjacent(i)) {
68
                    head = next[i];
tail = i;
69
70
                     next[tail] = 0;
71
                     break;
72
           }
73
74
75
       std::vector<int> answer;
76
       for (int i = head; ; i = next[i]) {
77
           if (i == 1) {
78
                answer.push_back(i);
79
                for (int j = next[i]; j != i; j = next[j]) {
80
                     answer.push_back(j);
81
82
                answer.push_back(i);
83
                break;
84
85
           if (i == tail) {
86
                break;
87
88
89
       return answer;
  必经点树
```

```
1 vector<int>G[maxn],rG[maxn],dom[maxn];
 3 int dfn[maxn], rdfn[maxn], dfs_c, semi[maxn], idom[maxn], fa[maxn];
 4 struct ufsets{
       int fa[maxn],best[maxn];
       int find(int x){
           if(fa[x]==x)
                return x;
           int f=find(fa[x]);
9
           if(dfn[semi[best[x]]]>dfn[semi[best[fa[x]]]])
10
11
                best[x]=best[fa[x]];
           fa[x]=f;
12
13
           return f;
14
15
      int getbest(int x){
16
           find(x);
17
           return best[x];
18
19
      void init(){
20
           for(int i=1;i<=n;i++)</pre>
               fa[i]=best[i]=i;
21
22
23 }uf;
24 void init(){
25
      uf.init();
26
       for(int i=1;i<=n;i++){</pre>
           semi[i]=i;
27
28
           idom[i]=0;
29
           fa[i]=0;
30
           dfn[i]=rdfn[i]=0;
31
       dfs_c=0;
32
33 }
34 void dfs(int u){
       dfn[u]=++dfs_c;
35
36
      rdfn[dfn[u]]=u;
      for(int i=0;i<G[u].size();i++){
  int v=G[u][i];</pre>
37
38
39
           if(!dfn[v]){
40
               fa[v]=u;
41
                dfs(v);
42
43
44 }
45
46 void tarjan(){
47
      for(int i=n;i>1;i--){
           int tmp=1e9;
49
           int y=rdfn[i];
50
           for(int i=0;i<rG[y].size();i++){</pre>
51
                int x=rG[y][i];
52
                tmp=min(tmp,dfn[semi[uf.getbest(x)]]);
53
54
           semi[y]=rdfn[tmp];
           int x=fa[y];
55
56
           dom[semi[y]].push_back(y);
57
           uf.fa[y]=x;
58
           for(int i=0;i<dom[x].size();i++){</pre>
59
                int z=dom[x][i];
60
                if (dfn[semi[uf.getbest(z)]] < dfn[x])</pre>
61
                    idom[z]=uf.getbest(z);
62
                else
63
                    idom[z]=semi[z];
64
           dom[x].clear();
65
      }
66
67
      semi[rdfn[1]]=1;
      for(int i=2;i<=n;i++){
68
69
           int x=rdfn[i];
```

```
if(idom[x]!=semi[x])
70
               idom[x]=idom[idom[x]];
71
72
73
      idom[rdfn[1]]=0;
74
75 }
76 init();
77 dfs(1);
78 tarjan();
  字符串
  模式匹配
  KMP 算法
1 void build(char *pattern) {
      int length = (int)strlen(pattern + 1);
      fail[0] = -1;
3
      for (int i = 1, j; i <= length; ++i) {
5
           for (j = fail[i - 1]; j != -1 && pattern[i] != pattern[j + 1]; j =
             \hookrightarrow fail[j]);
6
          fail[i] = j + 1;
7
      }
8 }
10 void solve(char *text, char *pattern) {
      int length = (int)strlen(text + 1);
      for (int i = 1, j; i <= length; ++i) {
          for (j = match[i - 1]; j != -1 && text[i] != pattern[j + 1]; j = fail[j]);
13
          match[i] = j + 1;
14
15
16 }
17 ///Hint: 1 - Base
  扩展 KMP 算法
  返回结果:
                                 next_i = lcp(text, text_{i...n-1})
 1 void solve(char *text, int length, int *next) {
      int j = 0, k = 1;
      for (; j + 1 < length && text[j] == text[j + 1]; j++);
      next[0] = length - 1;
      next[1] = j;
      for (int i = 2; i < length; ++i) {
          int far = k + next[k] - 1;
          if (next[i - k] < far - i + 1) {
    next[i] = next[i - k];</pre>
8
9
          } else {
10
               j = std::max(far - i + 1, 0);
11
               for (; i + j < length && text[j] == text[i + j]; j++);
12
13
               next[i] = j;
14
               k = i;
15
      }
16
17 }
18 /// 0 - Base
  AC 自动机
 1 struct Node{
      int Next[30], fail, mark;
3 }Tree[N];
5 void Init(){
      memset(Tree, 0, sizeof Tree);
```

```
cnt = 1:
                                                                                                29
      for (int i = 1; i \le n; i++){
                                                                                                30
10
           char c;
                                                                                                31
           int now = 1;
11
                                                                                                32
           scanf("%s", s + 1);
int Length = strlen(s + 1);
12
                                                                                                33
13
                                                                                                34
14
           for (int j = 1; j \leftarrow Length; j++){
                                                                                                35
                                                                                                       }
                c = s[i];
15
                                                                                                36
                if (Tree[now].Next[c - 'a']) now = Tree[now].Next[c - 'a']; else
16
                                                                                                37
                    Tree[now].Next[c - 'a'] = ++ cnt, now = cnt;
17
                                                                                                38
18
                                                                                                39
      }
19
                                                                                                40
20 }
                                                                                                41
                                                                                                42
22 void Build_Ac(){
                                                                                                43
23
       int en = 0;
                                                                                                44
24
       Q[0] = 1;
                                                                                                45
       for (int fi = 0; fi <= en; fi++){</pre>
25
                                                                                                46
26
           int now = Q[fi];
                                                                                                47
27
           for (int next = 0; next < 26; next++)
                                                                                                48
                if (Tree[now].Next[next])
28
                                                                                                49
29
                                                                                                50
30
                    int k = Tree[now].Next[next];
                                                                                                51
31
                    if (now == 1) Tree[k].fail = 1; else
                                                                                                52
32
                                                                                                53
33
                         int h = Tree[now].fail;
                                                                                                54
34
                         while (h && !Tree[h].Next[next]) h = Tree[h].fail;
                                                                                                55
35
                        if (!h) Tree[k].fail = 1;
                                                                                                56
36
                        else Tree[k].fail = Tree[h].Next[next];
                                                                                                57
37
38
                    Q[++ en] = k:
                }
39
      }
40
41 }
                                                                                                   后缀数组 (dc3)
43 /// Hints: when not match, fail = 1
  后缀三姐妹
  后缀数组
 1 struct Sa{
      int heap[N],s[N],sa[N],r[N],tr[N],sec[N],m,cnt;
       int h[19][N];
       void Prep(){
           for (int i=1; i<=m; i++) heap[i]=0;
           for (int i=1; i<=n; i++) heap[s[i]]++;
           for (int i=2; i<=m; i++) heap[i]+=heap[i-1];
                                                                                                12 {
           for (int i=n; i>=1; i--) sa[heap[s[i]]--]=i;
                                                                                                13
           r[sa[1]]=1; cnt=1;
                                                                                                14 }
           for (int i=2; i<=n; i++){
    if (s[sa[i]]!=s[sa[i-1]]) cnt++;
10
11
                                                                                                16 {
12
               r[sa[i]]=cnt;
                                                                                                17
13
                                                                                                18
14
           m=cnt;
15
      void Suffix(){
16
                                                                                                21 {
17
           int j=1;
                                                                                                22
18
           while (cnt<n){
                                                                                                23
19
                cnt=0;
                                                                                                24
                for (int i=n-j+1; i<=n; i++) sec[++cnt]=i;</pre>
20
                                                                                                25
               for (int i=1; i<=n; i++) if (sa[i]>j)sec[++cnt]=sa[i]-j;
21
               for (int i=1; i<=n; i++) tr[i]=r[sec[i]];
for (int i=1; i<=m; i++) heap[i]=0;
22
                                                                                                27
23
                                                                                                28 }
24
                for (int i=1; i<=n; i++) heap[tr[i]]++;</pre>
               for (int i=2; i<=m; i++) heap[i]+=heap[i-1];
25
                                                                                                30 {
                for (int i=n; i>=1; i--) sa[heap[tr[i]]--]=sec[i];
26
                                                                                                31
27
                tr[sa[1]]=1; cnt=1;
                                                                                                32
```

```
28
              for (int i=2; i<=n; i++){
                  if ((r[sa[i]]!=r[sa[i-1]]) || (r[sa[i]+j]!=r[sa[i-1]+j])) cnt++;
                   tr[sa[i]]=cnt;
              for (int i=1; i<=n; i++) r[i]=tr[i];
              m=cnt; j=j+j;
      void Calc(){
          int k=0;
          for (int i=1; i<=n; i++){
              if (r[i]==1) continue;
              int j=sa[r[i]-1];
              while ((i+k \le n) \& \& (j+k \le n) \& \& (s[i+k] == s[j+k])) k++;
              h[0][r[i]]=k;
              if (k) k--;
          for (int i=1; i<19; i++)
              for (int j=1; j+(1 << i)-1 <= n; j++)
                  h[i][j]=min(h[i-1][j],h[i-1][j + (1 << (i - 1)) + 1]);
      int Query(int L,int R){
          L=r[L], R=r[R];
          if (L>R) swap(L,R);
          L++;
          int 10 = Lg[R-L+1];
          return min(h[10][L],h[10][R-(1 << 10)+1]);
      void Work(){
          Prep(); Suffix(); Calc();
59 P,S:/// Hints : 1 - Base
```

```
1 //`DC3 待排序的字符串放在 r 数组中, 从 r[0] 到 r[n-1], 长度为 n, 且最大值小于 m.` 2 //`约定除 r[n-1] 外所有的 r[i] 都大于 0, r[n-1]=0。`
3//、函数结束后, 结果放在 sa 数组中, 从 sa[0] 到 sa[n-1]。`
4 // r 必须开长度乘 3
5 #define maxn 10000
6 #define F(x) ((x)/3+((x)%3==1?0:tb))
7 #define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
9 int wa[maxn], wb[maxn], wv[maxn], wss[maxn];
10 int s[maxn*3],sa[maxn*3];
11 int c0(int *r,int a,int b)
      return r[a] == r[b] \&\&r[a+1] == r[b+1] \&\&r[a+2] == r[b+2];
15 int c12(int k,int *r,int a,int b)
       if (k==2) return r[a] < r[b] | | r[a] == r[b] & & c12(1,r,a+1,b+1);
       else return r[a] < r[b] | | r[a] == r[b] & & wv[a+1] < wv[b+1];
20 void sort(int *r,int *a,int *b,int n,int m)
      for(i=0;i<n;i++) wv[i]=r[a[i]];</pre>
      for(i=0;i<m;i++) wss[i]=0;
       for(i=0;i<n;i++) wss[wv[i]]++;</pre>
       for(i=1;i<m;i++) wss[i]+=wss[i-1]
       for(i=n-1;i>=0;i--) b[--wss[wv[i]]]=a[i];
29 void dc3(int *r,int *sa,int n,int m)
       int i,j,*rn=r+n,*san=sa+n,ta=0,tb=(n+1)/3,tbc=0,p;
      r[n]=r[n+1]=0;
```

```
for(i=0;i<n;i++)
33
           if(i\%3!=0) wa[tbc++]=i;
34
35
       sort(r+2, wa, wb, tbc, m);
36
      sort(r+1,wb,wa,tbc,m);
       sort(r,wa,wb,tbc,m);
37
      for(p=1,rn[F(wb[0])]=0,i=1;i<tbc;i++)
38
39
           rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++;
40
      if (p<tbc) dc3(rn,san,tbc,p);</pre>
       else for (i=0;i<tbc;i++) san[rn[i]]=i;</pre>
41
      for (i=0;i<tbc;i++)</pre>
42
           if(san[i]<tb) wb[ta++]=san[i]*3;</pre>
43
       if(n\%3==1) wb[ta++]=n-1;
44
45
       sort(r,wb,wa,ta,m);
46
      for(i=0;i<tbc;i++)</pre>
47
           wv[wb[i]=G(san[i])]=i;
48
      for(i=0,j=0,p=0;i<ta && j<tbc;p++)</pre>
49
           sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++];
      for(;i<ta;p++) sa[p]=wa[i++];</pre>
50
51
      for(; j<tbc; p++) sa[p]=wb[j++];</pre>
52 }
53
54 int main(){
      int n,m=0;
      for (int i=0;i<n;i++) scanf("%d",&s[i]),s[i]++,m=max(s[i]+1,m);
      printf("%d\n",m);
58
59
      s[n++]=0;
      dc3(s,sa,n,m);
      for (int i=0; i < n; i++) printf("\d ",sa[i]);printf("\n");
```

后缀自动机

多串 LCS 对一个串建后缀自动机,其他串在上面匹配,因为是求所有串的公共子串,所以每个点记录每个串最长匹配长度的最小值,最后找到所有点中最长的一个即可。一个注意事项就是,当走到一个点时,还要更新它的 parent 树上的祖先的匹配长度,数组开两倍啦啦啦!

各长度字串出现次数最大值 给一个字符串 S, 令 F(x) 表示 S 的所有长度为 x 的子串中, 出现次数的最大值。 构建字符串的自动机, 对于每个节点, right 集合大小就是出现次数, maxs 就是它代表的最长长度, 那么我们用 |right(x)| 去更新 f[maxs[x]] 的值,最后从大到小用 f[i] 去更新 f[i-1] 的值即可

```
1 struct Node{
      int len, fail;
      int To[30];
 4 }T[N];
 5 int Lst, Root, tot, ans;
 6 char s[N];
 7 int Len[N], Ans[N], Ord[N];
 8 void Add(int x, int 1){
      int Nt = ++tot, p = Lst;
      T[Nt].len = 1
10
      for (;p && !T[p].To[x]; p = T[p].fail) T[p].To[x] = Nt;
11
      if (!p) T[Nt].fail = Root; else
12
13
      if (T[T[p].To[x]].len == T[p].len + 1) T[Nt].fail = T[p].To[x];
14
15
          int q = ++tot, qt = T[p].To[x];
          T[q] = T[qt];
16
          T[q].len = T[p].len + 1;
17
          T[qt].fail = T[Nt].fail = q;
18
19
          for (p \&\& T[p].To[x] == qt; p = T[p].fail) T[p].To[x] = q;
20
21
      Lst = Nt;
22 }
23 bool cmp(int a, int b){
      return T[a].len < T[b].len;
25 }
26 int main(){
27
      scanf("%s", s + 1);
      int n = strlen(s + 1);
```

```
ans = n:
30
      Root = tot = Lst = 1;
      for (int i = 1; i <= n; i++)
31
           Add(s[i] - 'a' + 1, i);
32
33
      for (int i = 1; i <= tot; i++)
           Ord[i] = i;
34
      sort(Ord + 1, Ord + tot + 1, cmp);
35
      for (int i = 1; i <= tot; i++)
36
37
           Ans[i] = T[i].len;
38
      bool flag = 0;
39
      while (scanf("%s", s + 1) != EOF){
40
          flag = 1;
41
           int n = strlen(s + 1);
           int p = Root, len = 0;
42
43
           for (int i = 1; i <= tot; i++) Len[i] = 0;
          for (int i = 1; i <= n; i++){
int x = s[i] - 'a' + 1;
44
45
46
               if (T[p].To[x]) len++, p = T[p].To[x];
47
               else {
48
                   while (p \&\& !T[p].To[x]) p = T[p].fail;
49
                   if (!p)^{T}p = Root, len = 0;
50
                   else len = T[p].len + 1, p = T[p].To[x];
51
52
               Len[p] = max(Len[p], len);
53
54
           for (int i = tot; i >= 1; i--){
55
               int Cur = Ord[i];
56
               Ans[Cur] = min(Ans[Cur], Len[Cur]);
57
               if (Len[Cur] && T[Cur].fail)
58
                   Len[T[Cur].fail] = T[T[Cur].fail].len;
59
60
61
      if (flag){
62
          ans = 0;
63
          for (int i = 1; i <= tot; i++){
64
               ans = max(ans, Ans[i]);
65
66
67
      printf("%d\n", ans);
      return 0;
68
69 }
```

```
回文三兄弟
马拉车
```

```
1 void Manacher(){
      R[1] = 1;
       for (int i = 2, j = 1; i <= length; i++){
   if (j + R[j] <= i){</pre>
                \tilde{R}[i] = 0;
           } else ·
                R[i] = min(R[j * 2 - i], j + R[j] - i);
8
9
           while (i - R[i] >= 1 \&\& i + R[i] <= length
10
                && text[i - R[i]] == text[i + R[i]]){
11
                R[i]++;
12
13
           if (i + R[i] > j + R[j]){
14
                j = i;
15
      }
16
17 }
18
      length = 0;
19
       int n = strlen(s + 1);
20
       for (int i = 1; i \le n; i++){
           text[++length] = '*'
21
22
           text[++length] = s[i];
```

```
23
       text[++length] = '*';
25 /// Hints: 1 - Base
  回文自动机 (zky)
 1 struct PAM{
       int tot,last,str[maxn],nxt[maxn][26],n;
int len[maxn],suf[maxn],cnt[maxn];
       int newnode(int 1){
   len[tot]=1;
   return tot++;
       void init(){
            tot=0;
            newnode(0);// tree0 is node 0
newnode(-1);// tree-1 is node 1
10
11
12
            str[0] = -1;
13
            suf[0]=1;
14
       int find(int x){
15
            while(str[n-len[x]-1]!=str[n])x=suf[x];
16
17
18
19
       void add(int c){
20
            str[++n]=c;
21
            int u=find(last);
22
            if(!nxt[u][c]){
                int v=newnode(len[u]+2);
suf[v]=nxt[find(suf[u])][c];
23
24
                nxt[u][c]=v;
25
            }last=nxt[u][c];
26
27
            cnt[last]++;
28
29
       void count(){
            for(int i=tot-1;i>=0;i--)cnt[suf[i]]+=cnt[i];
30
31
32 }P;
33 int main(){
       P.init();
34
35
       for(int i=0;i<n;i++)</pre>
            P.add(s[i]-'a');
       P.count();
  循环串最小表示
 1 string sol(char *s){
       int n=strlen(s);
       int i=0, j=1, k=0, p;
       while(i < n \& k < n ){
            int t=s[(i+k)%n]-s[(j+k)%n];
            if(t==0)k++
            else if(t<0)j+=k+1,k=0;
            else i+=k+1, k=0;
            if(i==j)j++;
       }p=min(i,j);
10
       string S;
11
12
       for(int i=p;i<p+n;i++)S.push_back(s[i%n]);</pre>
13
14 }
  计算几何
   二维基础
  点类
 1 struct P{
       double x,y;
```

```
P turn90(){return P(-y,x);}
4 };
5 double det(P a,P b,P c){
      return (b-a)*(c-a);
7 }
8 P intersect(L 11,L 12){
      double s1=det(l1.a,l1.b,l2.a);
      double s2=det(l1.a,l1.b,l2.b);
      return (12.a*s2-12.b*s1)/(s2-s1);
12 }
13 P project(P p,L 1){
      return 1.a+1.v()*((p-1.a)^1.v())/1.v().len2();
14
15 }
16 double dis(P p,L 1){
      return fabs((p-1.a)*1.v())/1.v().len();
18 }
  圆类
 1 struct C{
      P o;
double r;
      C(){}
      C(P _o,double _r):o(_o),r(_r){}
7// 求圆与直线的交点
8 //turn90() P(-y,x)
9 double fix(double x){return sgn(x)?x:0;}
10 bool intersect(C a, L l, P &p1, P &p2)
      double x = ((1.a - a.o)^{-1}(1.b - 1.a)),
          y = (1.b - 1.a).len2(),
12
          d = x * x - y * ((1.a - a.o).len2() - a.r * a.r);
13
14
      if (sgn(d) < 0) return false;
      d = max(d, 0.0):
      P p = 1.a - ((1.b - 1.a) * (x / y)), delta = (1.b - 1.a) * (sqrt(d) / y);
      p1 = p + delta, p2 = p - delta;
      return true;
18
19 }
20 // 求圆与圆的交点, 注意调用前要先判定重圆
21 bool intersect(C a, C b, P &p1, P &p2) {
      double s1 = (a.o - b.o).len();
      if (sgn(s1 - a.r - b.r) > 0 \mid | sgn(s1 - fabs(a.r - b.r)) < 0) return false;
23
      double s2 = (a.r * a.r - b.r * b.r) / s1;
      double aa = (s1 + s2) * 0.5, bb = (s1 - s2) * 0.5;
      P \circ = (b.o - a.o) * (aa / (aa + bb)) + a.o;
      P delta = (b.o - a.o).norm().turn90() * sqrt(fix(a.r * a.r - aa * aa));
      p1 = o + delta, p2 = o - delta;
29
      return true;
30 }
31 // 求点到圆的切点, 按关于点的顺时针方向返回两个点 32 bool tang(const C &c, const P &p0, P &p1, P &p2) {
      double x = (p0 - c.o).len2(), d = x - c.r * c.r;
      if (d < eps) return false; // 点在圆上认为没有切点
      P p = (p0 - c.o) * (c.r * c.r / x);
35
      P = delta = ((p0 - c.o) * (-c.r * sqrt(d) / x)).turn90();
37
      p1 = c.o + p + delta;
      p2 = c.o + p - delta;
38
39
      return true:
40 }
41 // 求圆到圆的外共切线,按关于 c1.o 的顺时针方向返回两条线
42 vector<L> extan(const C &c1, const C &c2) {
      vector<L> ret;
      if (sgn(c1.r - c2.r) == 0) {
44
          P = c2.0 - c1.0;
45
          dir = (dir * (c1.r / dir.len())).turn90();
46
          ret.push_back(L(c1.o + dir, c2.o + dir));
47
```

```
ret.push_back(L(c1.o - dir, c2.o - dir));
48
49
      } else {
50
           P p = (c1.0 * -c2.r + c2.o * c1.r) / (c1.r - c2.r);
           P p1, p2, q1, q2;
51
52
           if (tang(c1, p, p1, p2) && tang(c2, p, q1, q2)) {
53
               if (c1.r < c2.r) swap(p1, p2), swap(q1, q2);
54
               ret.push_back(L(p1, q1));
55
               ret.push_back(L(p2, q2));
56
57
58
      return ret;
59 }
60 // 求圆到圆的内共切线, 按关于 c1.o 的顺时针方向返回两条线 61 vector<L> intan(const C &c1, const C &c2) {
      vector<L> ret;
      P p = (c1.0 * c2.r + c2.0 * c1.r) / (c1.r + c2.r);
      P p1, p2, q1, q2;
      if (tang(c1, p, p1, p2) && tang(c2, p, q1, q2)) { // 两圆相切认为没有切线
65
          ret.push_back(L(p1, q1));
67
           ret.push_back(L(p2, q2));
      return ret;
70 }
  凸包
 1 vector<P> convex(vector<P>p){
      sort(p.begin(),p.end());
      vector<P>ans,S;
      for(int i=0;i<p.size();i++){</pre>
           while(S.size()>=2
                   && sgn(det(S[S.size()-2],S.back(),p[i]))<=0)
                       S.pop_back();
           S.push_back(p[i]);
      }//dw
      ans=S;
10
      S.clear();
11
      for(int i=(int)p.size()-1;i>=0;i--){
12
13
           while(S.size()>=2
                   && sgn(det(S[S.size()-2],S.back(),p[i]))<=0)
14
15
                       S.pop_back();
16
           S.push_back(p[i]);
17
18
      for(int i=1;i+1<S.size();i++)</pre>
19
           ans.push_back(S[i]);
      return ans;
  半平面交
      int quad() const { return sgn(y) == 1 \mid \mid (sgn(y) == 0 \&\& sgn(x) >= 0);}
 3 };
 4 struct L{
      bool onLeft(const P &p) const { return sgn((b - a)*(p - a)) > 0; }
      L push() const{ // push out eps
           const double eps = 1e-10;
           P 	ext{ delta = (b - a).turn90().norm() * eps;}
           return L(a - delta, b - delta);
10
11 };
12 bool sameDir(const L &10, const L &11) {
      return parallel(10, 11) && sgn((10.b - 10.a)^{(11.b - 11.a)}) == 1;
13
14 }
15 bool operator < (const P &a, const P &b) {
      if (a.quad() != b.quad())
16
           return a.quad() < b.quad();</pre>
17
```

```
18
      else
          return sgn((a*b)) > 0;
19
20 }
21 bool operator < (const L &10, const L &11) {
      if (sameDir(10, 11))
23
          return 11.onLeft(10.a);
24
25
          return (10.b - 10.a) < (11.b - 11.a);
26 }
27 bool check(const L &u, const L &v, const L &w) {
      return w.onLeft(intersect(u, v));
30 vector<P> intersection(vector<L> &1) {
      sort(1.begin(), 1.end());
      deque<L> q;
32
33
      for (int i = 0; i < (int)1.size(); ++i) {</pre>
          if (i && sameDir(l[i], l[i - 1])) {
34
35
               continue;
36
37
          while (q.size() > 1
38
               && !check(q[q.size() - 2], q[q.size() - 1], l[i]))
39
                   q.pop_back();
40
          while (q.size() > 1
               && !check(q[1], q[0], l[i]))
41
42
                   q.pop_front();
43
          q.push_back(l[i]);
44
45
      while (q.size() > 2
46
          && !check(q[q.size() - 2], q[q.size() - 1], q[0]))
47
               q.pop_back();
      while (q.size() > 2)
48
49
          && !check(q[1], q[0], q[q.size() - 1]))
50
               q.pop_front();
      vector<P> ret;
51
52
      for (int i = 0; i < (int)q.size(); ++i)</pre>
      ret.push_back(intersect(q[i], q[(i + 1) % q.size()]));
```

最小圆覆盖

```
1 point operator*(line A,line B){
      point u=B.p-A.p;
       double t=(B.v*u)/(B.v*A.v);
      return A.p+A.v*t;
6 point get(point a,point b){
      return (a+b)/2;
8 }
9 point get(point a,point b,point c){
      if (a==b)return get(a,c);
10
       if(a==c)return get(a,b);
11
       if(b==c)return get(a,b);
12
      line ABO=(line)\{(a+b)/2, Rev(a-b)\};
13
      line BCO=(line)\{(c+b)/2, Rev(b-c)\};
14
      return ABO*BCO;
15
16 }
17
      random_shuffle(p+1,p+1+n);
18
      0=p[1];r=0;
19
      for(int i=2;i<=n;i++){</pre>
20
           if (dis(p[i],0)<r+1e-6)continue;
21
           0=get(p[1],p[i]);r=dis(0,p[i]);
           for(int j=1;j<i;j++){
    if(dis(p[j],0)<r+1e-6)continue;</pre>
22
23
24
                O=get(p[i],p[j]);r=dis(0,p[i]);
25
                for(int k=1; k < j; k++){
                    if (dis(p[k],0)<r+1e-6)continue;
26
```

ch = *S ++;

12

```
O=get(p[i],p[j],p[k]);r=dis(0,p[i]);
27
               }
28
29
           }
      }
30
  多边形
  判断点在多边形内部
 1 bool InPoly(P p,vector<P>poly){
      int cnt=0:
       for(int i=0;i<poly.size();i++){</pre>
           P a=poly[i],b=poly[(i+1)%poly.size()];
           if(OnLine(p,L(a,b)))
               return false:
           int x=sgn(det(a,p,b));
           int y=sgn(a.y-p.y);
           int z=sgn(b.y-p.y);
           cnt += (x>0&&y <= 0&&z>0);
10
           cnt = (x<0&&z<=0&&y>0);
11
12
13
      return cnt;
14 }
  其他
  斯坦纳树
 1 priority_queue<pair<int, int> > Q;
 2 // m is key point
3 // n is all point
 4 for (int s = 0; s < (1 << m); s++){
      for (int i = 1; i <= n; i++)
           for (int s0 = (s&(s-1)); s0; s0=(s&(s0-1)))

f[s][i] = min(f[s][i], f[s0][i] + f[s - s0][i]);
      for (int i = 1; i <= n; i++) vis[i] = 0;
while (!Q.empty()) Q.pop();</pre>
      for (int i = 1; i <= n; i++)
Q.push(mp(-f[s][i], i));
10
11
       while (!Q.empty()){
12
13
           while ((Q.empty()) && Q.top().first != -f[s][Q.top().second]) Q.pop();
14
               if (Q.empty()) break;
               int Cur = Q.top().second; Q.pop();
15
               for (int p = g[Cur]; p; p = nxt[p]){
16
17
                    int y = adj[p];
                    if (f[s][y] > f[s][Cur] + 1)
18
19
                        f[s][y] = f[s][Cur] + 1;
20
                        Q.push(mp(-f[s][y], y));
21
               }
22
23
24 }
  无敌的读入优化
 1 namespace Reader {
      const int L = (1 << 20) + 5:
      char buffer[L], *S, *T;
      __inline bool getchar(char &ch) {
           if (S == T) {
               T = (S = buffer) + fread(buffer, 1, L, stdin);
               if (S == T) {
                    ch = EOF;
                    return false:
               }
10
11
```

```
13
           return true:
14
       __inline bool getint(int &x) {
15
16
           for (; getchar(ch) && (ch < '0' || ch > '9'); );
17
           if (ch == EOF) return false;
18
           x = ch - 0':
19
20
           for (; getchar(ch), ch >= '0' && ch <= '9'; )
                x = x * 10 + ch - '0';
21
22
           return true;
      }
23
24 }
25 Reader::getint(x);
26 Reader::getint(y);
  最小树形图
  const int maxn=1100:
 3 int n,m , g[maxn] [maxn] , used[maxn] , pass[maxn] , eg[maxn] , more ,

    queue [maxn];
5 void combine (int id , int &sum ) {
6    int tot = 0 , from , i , j , k ;
7    for ( ; id!=0 && !pass[ id ] ; id=eg[id] ) {
           queue[tot++]=id; pass[id]=1;
8
9
10
       for ( from=0; from<tot && queue[from]!=id ; from++);</pre>
       if (from==tot) return;
11
12
       more = 1;
      13
14
15
                used[queue[i]]=1;
16
                for ('j = 1; j <= n; j++) if ( !used[j] )
    if ( g[queue[i]][j] < g[id][j] ) g[id][j] = g[queue[i]][j];</pre>
17
18
19
20
21
       for ( i=1; i<=n ; i++) if ( !used[i] && i!=id ) {
22
           for ( j=from ; j<tot ; j++){</pre>
23
                k=queue[j];
24
                if (g[i][id]>g[i][k]-g[eg[k]][k])g[i][id]=g[i][k]-g[eg[k]][k];
25
      }
26
27 }
29 int mdst( int root ) { // return the total length of MDST
       int i , j , k , sum = 0 ;
memset ( used , 0 , sizeof ( used ) ) ;
31
       for ( more =1; more ; ) {
32
33
           more = 0;
34
           memset (eg,0,sizeof(eg));
           for ( i=1; i <= n; i ++) if ( !used[i] && i!=root ) {
35
                for ( j=1 , k=0 ; j <= n ; j ++) if ( !used[j] && i!=j )
   if ( k==0 || g[j][i] < g[k][i] ) k=j ;</pre>
36
37
38
                eg[i] = k;
39
40
           memset(pass,0,sizeof(pass));
           for ( i=1; i<=n ; i++) if ( !used[i] && !pass[i] && i!= root ) combine (
41
              \hookrightarrow i , sum ) ;
42
43
       for ( i =1; i<=n; i ++) if ( !used[i] && i!= root ) sum+=g[eg[i]][i];
44
       return sum :
45 }
```

```
DLX
```

```
1 int n,m,K;
 2 struct DLX{
       int L[maxn],R[maxn],U[maxn],D[maxn];
       int sz,col[maxn],row[maxn],s[maxn],H[maxn];
       bool vis[233];
       int ans[maxn], cnt;
       void init(int m){
            for(int i=0;i<=m;i++){</pre>
                 L[i]=i-1;R[i]=i+1;
                 U[i]=D[i]=i;s[i]=0;
10
11
            memset(H,-1,sizeof H);
L[0]=m;R[m]=0;sz=m+1;
12
13
14
15
       void Link(int r,int c){
            U[sz]=c;D[sz]=D[c];U[D[c]]=sz;D[c]=sz;
16
            if(H[r]<0)H[r]=L[sz]=R[sz]=sz;
17
18
            else{
                 L[sz]=H[r];R[sz]=R[H[r]];
19
20
                 L[R[H[r]]]=sz;R[H[r]]=sz;
21
22
            s[c]++;col[sz]=c;row[sz]=r;sz++;
23
24
25
       void remove(int c){
            for(int_i=D[c];i!=c;i=D[i])
26
                 L[R[i]]=L[i],R[L[i]]=R[i];
27
       void resume(int c){
28
29
            for(int i=U[c];i!=c;i=U[i])
30
                 L[R[i]]=R[L[i]]=i;
31
       int A(){
32
33
            int res=0;
34
            memset(vis,0,sizeof vis);
35
            for(int i=R[0];i;i=R[i])if(!vis[i]){
36
                 vis[i]=1;res++;
                 for(int j=D[i];j!=i;j=D[j])
    for(int k=R[j];k!=j;k=R[k])
37
38
39
                           vis[col[k]]=1;
40
41
            return res:
42
       void dfs(int d,int &ans){
43
            if(R[0]==0){ans=min(ans,d);return;}
44
            if(d+A()>=ans)return;
45
            int tmp=23333,c;
for(int i=R[0];i;i=R[i])
if(tmp>s[i])tmp=s[i],c=i;
46
47
48
            for(int i=D[c];i!=c;i=D[i]){
49
50
                 remove(i);
                 for(int j=R[i]; j!=i; j=R[j])remove(j);
51
52
                 dfs(d+1,ans);
                 for(int j=L[i]; j!=i; j=L[j])resume(j);
53
54
                 resume(i);
55
56
       void del(int c){//exactly cover
57
            L[R[c]]=L[c];R[L[c]]=R[c];
for(int_i=D[c];i!=c;i=D[i])
58
59
                 for(int j=R[i]; j!=i; j=R[j])
U[D[j]]=U[j],D[U[j]]=D[j],--s[col[j]];
60
61
62
       void add(int c){ //exactly cover
   R[L[c]]=L[R[c]]=c;
63
64
            for(int j=L[i];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++s[col[U[D[j]]=D[U[j]]=j]];
65
66
67
```

```
68
       bool dfs2(int k){//exactly cover
69
70
           if(!R[0]){
71
                cnt=k;return 1;
72
73
           int c=R[0];
           for(int i=R[0];i;i=R[i])
    if(s[c]>s[i])c=i;
74
75
76
           del(c);
77
           for(int i=D[c];i!=c;i=D[i]){
                for(int j=k[i]; j!=i; j=k[j])
78
79
                    del(col[j]);
                ans[k]=row[i];if(dfs2(k+1))return true;
for(int j=L[i];j!=i;j=L[j])
80
81
82
                    add(col[i]):
83
           add(c);
84
85
           return 0;
86
87 }dlx;
88 int main(){
      dlx.init(n);
90
       for(int i=1;i<=m;i++)</pre>
           for(int j=1; j<=n; j++)
91
                if(dis(station[i],city[j])<mid-eps)
92
93
                    dlx.Link(i,j);
                dlx.dfs(0,ans);
94
95 }
  某年某月某日是星期几
1 int solve(int year, int month, int day) {
       int answer:
       if (month == 1 || month == 2) {
           month += 12;
           vear--;
       if ((year < 1752) || (year == 1752 && month < 9) ||
           (year == 1752 \&\& month == 9 \&\& day < 3)) {
          answer = (\text{day} + 2 * \text{month} + 3 * (\text{month} + 1) / 5 + \text{vear} + \text{vear} / 4 + 5) \% 7:
10
           answer = (day + 2 * month + 3 * (month + 1) / 5 + year + year / 4
11
12
                   - year / 100 + year / 400) % 7;
13
       return answer;
14
15 }
  枚举大小为 k 的子集
  使用条件:k > 0
 1 void solve(int n, int k) {
       for (int comb = (1 << k) - 1; comb < (1 << n); ) {
           int x = comb & -comb, y = comb + x;
           comb = (((comb \& ~v) / x) >> 1) | v;
7 }
  环状最长公共子串
 1 \frac{1}{1} n, a[N << 1], b[N << 1];
3 bool has(int i, int j) {
4    return a[(i - 1) % n] == b[(j - 1) % n];
5 }
```

```
7 const int DELTA[3][2] = {{0, -1}, {-1, -1}, {-1, 0}};
9 int from[N][N];
10
11 int solve() {
12
      memset(from, 0, sizeof(from));
13
      int ret = 0;
      for (int i = 1; i \le 2 * n; ++i) {
14
           from[i][0] = 2;
15
           int left = 0, up = 0;
16
17
           for (int j = 1; j \le n; ++j) {
               int upleft = up + 1 + !!from[i - 1][j];
18
               if (!has(i, j)) {
19
20
                    upleft = INT_MIN;
21
22
               int max = std::max(left, std::max(upleft, up));
23
               if (left == max) {
                    from[i][j] = 0;
24
               } else if (upleft == max) {
25
                    from[i][j] = 1;
26
27
               } else {
                   from[i][j] = 2;
28
29
30
               left = max;
31
32
           if (i >= n) {
33
               int count = 0;
34
               for (int x = i, y = n; y;) {
35
                    int t = from[x][y];
36
                    count += t == 1;
                    x += DELTA[t][0]:
37
38
                   y += DELTA[t][1];
39
40
               ret = std::max(ret, count);
41
               int x = i - n + 1;
42
               from[x][0] = 0;
43
               int y = 0;
44
               while (y \le n \&\& from[x][y] == 0) {
45
46
               for (; x <= i; ++x) {
  from[x][y] = 0;
47
48
                    if (x == i) {
49
50
                        break;
51
52
                    for (; y <= n; ++y) {
53
                        if (from[x + 1][y] == 2) {
54
                            break;
55
                        if (y + 1 \le n \&\& from[x + 1][y + 1] == 1) {
57
58
                            break;
59
                   }
```

```
61
            }
62
63
64
       return ret;
65 }
  LLMOD
1 LL multiplyMod(LL a, LL b, LL P) { // `需要保证 a 和 b 非负`
       LL t = (a * b - LL((long double)a / P * b + 1e-3) * P) % P;
       return t < 0 : t + P : t;
4 }
  Java
  基础模板
1 public class Main {
      public static void main(String[] args) {
         InputReader in = new InputReader(System.in);
         PrintWriter out = new PrintWriter(System.out);
5
6 }
7 public static class cmp implements Comparator<edge>{
      public int compare(edge a,edge b){
         if(a.w<b.w)return 1;
10
         if(a.w>b.w)return -1;
11
          return 0;
12
13 }
14 class InputReader {
15
      public BufferedReader reader;
      public StringTokenizer tokenizer;
17
      public InputReader(InputStream stream) {
18
         reader = new BufferedReader(new InputStreamReader(stream), 32768);
19
          tokenizer = null;
20
21
      public String next() {
22
          while (tokenizer == null || !tokenizer.hasMoreTokens()) {
23
24
                 tokenizer = new StringTokenizer(reader.readLine());
25
             } catch (IOException e) {
26
                 throw new RuntimeException(e);
27
28
29
         return tokenizer.nextToken();
30
31
      public int nextInt() {
32
         return Integer.parseInt(next());
33
34 }
```