# Höhere Mathematik I

G. Herzog, C. Schmoeger

Wintersemester 2016/17

Karlsruher Institut für Technologie

# Inhaltsverzeichnis

| 1                    | Reelle Zahlen         | 3  |
|----------------------|-----------------------|----|
| 2                    | Folgen und Konvergenz | 12 |
| 3                    | Unendliche Reihen     | 28 |
| Stichwortverzeichnis |                       | 29 |

## 1 Reelle Zahlen

Grundmenge der Analysis is die Menge  $\mathbb{R}$ , die Menge der **reellen Zahlen**. Diese führen wir **axiomatisch** ein, d.h. wir nehmen  $\mathbb{R}$  als gegeben an und **fordern** in den folgenden 15 **Axiomen** Eigenschaften von  $\mathbb{R}$  aus denen sich alle weiteren Rechenregeln herleiten lassen.

**Körperaxiome:** in  $\mathbb{R}$  seien zwei Verknüpfungen "+" und "·" gegeben, die jedem Paar  $a,b\in\mathbb{R}$  genau ein  $a+b\in\mathbb{R}$  und genau ein  $ab\coloneqq a\cdot b\in\mathbb{R}$  zuordnen. Dabei soll gelten:

(A1) 
$$\forall a, b, c \in \mathbb{R}$$
  $a + (b + c) = (a + b) + c$  (Assoziativgesetz)

$$(A5) \ \forall a, b, c \in \mathbb{R} \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$(A2) \ \exists 0 \in \mathbb{R} \ \text{mit} \ \forall a \in \mathbb{R} \ a + 0 = a \ (\text{Null})$$

(A6) 
$$\exists 1 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a \cdot 1 = a \text{ und } 1 \neq 0 \text{ (Eins)}$$

$$(A3) \ \forall a \in \mathbb{R} \ \exists -a \in \mathbb{R} \ a + (-a) = 0$$

$$(A7) \ \forall a \in \mathbb{R} \setminus \{0\} \ \exists a^{-1} \in \mathbb{R} \ a \cdot a^{-1} = 1$$

(A4) 
$$\forall a, b \in \mathbb{R} \ a + b = b + a \ (\text{Kommutativgesetz})$$

(A8) 
$$\forall a, b \in \mathbb{R} \ a \cdot b = b \cdot a \ (\text{Kommutativgesetz})$$

(A9) 
$$\forall a, b, c \in \mathbb{R} \ a \cdot (b+c) = a \cdot b + a \cdot c \ (Distributivgesetz)$$

**Schreibweisen:** für  $a, b \in \mathbb{R}$ : a - b := a + (-b) und für  $b \neq 0$ :  $\frac{a}{b} := a \cdot b^{-1}$ .

**Alle** bekannten Regeln der Grundrechnungsarten lassen sich aus (A1) - (A9) herleiten. Diese Regeln seien von nun an bekannt.

## Beispiele:

a) Beh.:  $\exists_1 0 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a + 0 = a$ 

**Beweis:** Sei  $\tilde{0} \in \mathbb{R}$  mit  $\forall a \in \mathbb{R} \ a + \tilde{0} = a$ . Mit a = 0 folgt:  $0 + \tilde{0} = 0$ . Mit  $a = \tilde{0}$  in (A2) folgt:  $\tilde{0} + 0 = \tilde{0}$ . Dann  $0 = 0 + \tilde{0} = (A4)$   $\tilde{0} + 0 = \tilde{0}$ 

b) Beh.:  $\forall a \in \mathbb{R} \ a \cdot 0 = 0$ 

**Beweis:** Sei 
$$a \in \mathbb{R}$$
 und  $b := a \cdot 0$ . Dann:  $b = (A2) a(0+0) = (A9) a \cdot 0 + a \cdot 0 = b + b$ .  $0 = (A3) b + (-b) = (b+b) + (-b) = (A1) b + (b+(-b)) = b + 0 = (A2) b$ 

**Anordnungsaxiome:** in  $\mathbb{R}$  ist eine Relation  $\dots \leq$  "gegeben.

Dabei sollen gelten:

$$(A10)$$
 für  $a, b \in \mathbb{R}$  gilt  $a \leq b$  oder  $b \leq a$ 

(A11) aus 
$$a \le b$$
 und  $b \le a$  folgt  $a = b$ 

(A12) aus 
$$a \le b$$
 und  $b \le c$  folgt  $a \le c$ 

(A13) aus 
$$a \leq b$$
 folgt  $\forall c \in \mathbb{R} \ a + c \leq b + c$ 

(A14) aus 
$$a \le b$$
 und  $0 \le c$  folgt  $ac \le bc$ 

Schreibweisen:  $b \ge a : \iff a \le b; a < b : \iff a \le b \text{ und } a \ne b; b > 0 : \iff a < b$ 

Aus (A1) - (A14) lassen sich alle Regeln für Ungleichungen herleiten. Diese Regeln seien von nun an bekannt.

Beispiele (ohne Beweis):

- a) aus a < b und 0 < c folgt ac < bc
- b) aus  $a \le b$  und  $c \le 0$  folgt  $ac \ge bc$
- c) aus  $a \leq b$  und  $c \leq d$  folgt  $a + c \geq b + d$

Intervalle: Seien  $a, b \in \mathbb{R}$  und a < b

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 (abgeschlossenes Intervall)

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$
 (offenes Intervall)

$$(a, b] := \{x \in \mathbb{R} : a < x \le b\}$$
 (halboffenes Intervall)

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$
 (halboffenes Intervall)

$$[a, \infty) := \{x \in \mathbb{R} : x \ge a\}, (a, \infty) := \{x \in \mathbb{R} : x > a\}$$

$$(-\infty,a] \coloneqq \{x \in \mathbb{R} : x \le a\}, \, (-\infty,a) \coloneqq \{x \in \mathbb{R} : x < a\}$$

$$(-\infty,\infty) \coloneqq \mathbb{R}$$

## Der Betrag

Für 
$$a \in \mathbb{R}$$
 heißt  $|a| := \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0 \end{cases}$  der Betrag von  $a$ .

Beispiele: |1| = 1, |-7| = -(-7) = 7.



Es ist 
$$|-a| = |a|$$
 und  $|a - b| = |b - a|$ 

#### Regeln:

a) 
$$|a| \ge 0$$

b) 
$$|a| = 0 \iff a = 0$$

c) 
$$|ab| = |a||b|$$

d) 
$$\pm a < |a|$$

e) 
$$|a+b| \le |a| + |b|$$
 (Dreiecksungleichung)

f) 
$$||a| - |b|| \le |a - b|$$

#### **Beweis:**

(a) - d) leichte Übung

e) Fall 1: 
$$a + b \ge 0$$
. Dann:  $|a + b| = a + b \le_{d} |a| + |b|$ .  
Fall 2:  $a + b < 0$ . Dann:  $|a + b| = -(a + b) = -a + (-b) \le_{d} |a| + |b|$ .

f) 
$$c := |a| - |b|$$
;  $|a| = |a - b + b| \le_{d} |a - b| + |b|$   
 $\Rightarrow c = |a| - |b| \le |a - b|$ . Analog:  $-c = |b| - |a| \le |b - a| = |a - b|$   
Also:  $\pm c \le |a - b|$ .

**Definition:** Sei  $\emptyset \neq M \subseteq \mathbb{R}$ .

- a) M heißt nach oben beschränkt :  $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ x \leq \gamma$ In diesem Fall heißt  $\gamma$  eine obere Schranke
- b) Ist  $\gamma$  eine obere Schranke von M und gilt  $\gamma \leq \delta$  für jede weitere obere Schranke  $\delta$  von M, so heißt  $\gamma$  das **Supremum** von M (kleinste obere Schranke von M)
- c) M heißt nach unten beschränkt :  $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ \gamma \leq x$ In diesem Fall heißt  $\gamma$  eine untere Schranke (US)
- d) Ist  $\gamma$  eine untere Schranke von M und gilt  $\gamma \geq \delta$  für jede weitere untere Schranke  $\delta$  von M, so heißt  $\gamma$  das **Infimum** von M (größte untere Schranke von M)

**Bez.**: in dem Fall:  $\gamma = \sup M$  bzw.  $\gamma = \inf M$ .

Aus (A11) folgt: ist sup M bzw. inf M vorhanden, so ist sup M bzw. inf M eindeutig bestimmt.

Ist sup M bzw. inf M vorhanden und gilt sup  $M \in M$  bzw. inf  $M \in M$ , so heißt sup M das Maximum bzw. inf M das Minimum von M und wird mit max M bzw. min M bezeichnet.

**Beispiele:** a) M = (1,2). sup  $M = 2 \notin M$ , inf  $M = 1 \notin M$ . M hat kein Maximum und kein Minimum.

- b) M = (1, 2].  $\sup M = 2 \in M$ ,  $\max M = 2$
- c)  $M = (3, \infty)$ . M ist nicht nach oben beschränkt,  $3 = \inf M \notin M$ .
- d)  $M = (-\infty, 0]$ . M ist nach unten unbeschränkt,  $0 = \sup M = \max M$ .

## Vollständigkeitsaxiom:

(A15) Ist  $\emptyset \neq M \subseteq \mathbb{R}$  und ist M nach oben beschränkt, so ist sup M vorhanden.

**Satz 1.1:** Ist  $\emptyset \neq M \subseteq \mathbb{R}$  und ist M nach unten beschränkt, so ist inf M vorhanden.

Beweis: i. d. Übungen.

**Definition:** Sei  $\emptyset \neq M \subseteq \mathbb{R}$ . M heißt beschränkt :  $\iff M$  ist nach oben und nach unten beschränkt ( $\iff \exists c \geq 0 \ \forall x \in M |x| \leq c \iff \exists c \geq 0 \ \forall x \in M - c \leq x \leq c$ )

### Satz 1.2: Es sei $\emptyset \neq B \subseteq A \subseteq \mathbb{R}$

- a) Ist A bechränkt  $\Rightarrow \inf A \leq \sup A$
- b) Ist A nach oben bzw. unten beschränkt  $\Rightarrow B$  ist nach oben beschränkt und  $\sup B \leq \sup A$  bzw. nach unten beschränkt und  $\inf B \geq \inf A$
- c) A sei nach oben bzw. unten beschränkt und  $\gamma$  eine obere bzw. untere Schranke von A. Dann

$$\gamma = \sup A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x > \gamma - \varepsilon$$
 bzw.

$$\gamma = \inf A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x < \gamma + \varepsilon$$

#### **Beweis:**

- a)  $A \neq \emptyset \Rightarrow \exists x \in \mathbb{R} : x \in A$ . Dann inf  $A \leq x, x \leq \sup A$  (A12)  $\Rightarrow \inf A \leq \sup A$
- b) Sei  $x \in B$ . Dann:  $x \in A$ , also  $x \leq \sup A$ . B ist also nach oben beschränkt und  $\sup A$  ist eine obere Schranke von B

$$\Rightarrow \sup B \le \sup A$$

Analog der Fall für A nach unten beschränkt.

c) "  $\Rightarrow$  " Sei  $\gamma = \sup A$  und  $\varepsilon > 0$ . Dann:  $\gamma - \varepsilon < \varepsilon$ .  $\gamma - \varepsilon$  ist also keine obere Schranke von A. Also:  $\exists x \in A : x > \gamma - \varepsilon$  "  $\Leftarrow$  " Sei  $\tilde{\gamma} \leq \gamma$ . Annahme:  $\gamma \neq \tilde{\gamma}$ . Dann  $\tilde{\gamma} < \gamma$ , also  $\varepsilon \coloneqq \gamma - \tilde{\gamma} > 0$ .  $\xrightarrow{Vor}$   $\exists x \in A : x > \gamma - \varepsilon = \gamma - (\gamma - \tilde{\gamma}) = \tilde{\gamma}$ . Widerspruch zu  $x \leq \tilde{\gamma}$ .

#### Natürliche Zahlen

#### **Definition:**

a)  $A \subseteq \mathbb{R}$  heißt eine Induktionsmenge (IM)

$$: \iff \begin{cases} 1. & 1 \in A; \\ 2. & \text{aus } x \in A \text{ folgt stets } x + 1 \in A \end{cases}$$

Beispiele:  $\mathbb{R}, [1, \infty), \{1\} \cup [2, \infty)$  sind Induktionsmengen

b)  $\mathbb{N} := \{x \in \mathbb{R} : x \text{ gehört zu jeder IM }\} = \text{Durchschnitt aller IMn}$ Also:  $\mathbb{N} \subseteq A$  für jede Induktionsmenge A.

#### **Satz 1.3:**

- a) N ist eine Induktionsmenge
- b) N ist nicht nach oben beschränkt
- c) Ist  $x \in \mathbb{R}$ , so ex. ein  $n \in \mathbb{N} : N > x$

Von nun an sei  $\mathbb{N} = \{1, 2, 3, \dots\}$  bekannt.

**Proposition 1.4** (Prinzip der vollständigen Induktion): Ist  $A \subseteq \mathbb{N}$  und A eine Induktionsmenge, so ist A = N.

**Beweis:**  $A \subseteq \mathbb{N}$  (nach Vor.) und  $\mathbb{N} \subset A$  (nach Def.), also  $A = \mathbb{N}$ 

## Beweisverfahren durch vollständige Induktion

A(n) sei eine Aussage, die für jedes  $n \in \mathbb{N}$  definiert ist. Für A(n) gelte:

$$\begin{cases} (I) & A(1) \text{ ist wahr;} \\ (II) & \text{ist } n \in \mathbb{N} \text{ und } A(n) \text{ wahr, so ist auch } A(n+1) \text{ wahr;} \end{cases}$$

Dann ist A(n) wahr für **jedes**  $n \in \mathbb{N}!$ 

**Beweis:** Sei  $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr } \}$ . Dann:

 $A \subseteq \mathbb{N}$  und, wg. (I), (II), A ist eine Induktionsmenge  $\stackrel{\text{(1.4)}}{\Longrightarrow} A = \mathbb{N}$ 

Beispiel: Beh.: 
$$\underbrace{1+2+\ldots+n=\frac{n(n+1)}{2}}_{A(n)}, \forall n \in \mathbb{N}$$

**Beweis** (induktiv): I.A.:  $1 = \frac{1(1+1)}{2} \checkmark$ , A(1) ist also wahr.

I.V.: Für ein 
$$n \in \mathbb{N}$$
 gelte  $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ 

I.S.:  $n \curvearrowright n+1$ :

$$1 + 2 + \dots + n + (n+1) =_{I.V.} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right)$$
$$= \frac{(n+1)(n+2)}{2}$$

 $\Rightarrow A(n+1)$  ist wahr.

**Definition:** a)  $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$ 

b)  $\mathbb{Z} := \mathbb{N}_0 \cup \{-n : n \in \mathbb{N}\}$  (ganze Zahlen)

c) 
$$\mathbb{Q} \coloneqq \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\}$$
 (rationale Zahlen)

Satz 1.5: Sind  $x, y \in \mathbb{R}$  und  $x < y \Rightarrow \exists r \in \mathbb{Q}$ :

Beweis: i. d. Übungen.

## Einige Definitionen und Formeln

- a) Für  $a \in \mathbb{R}$  und  $n \in \mathbb{N}$ :  $a^n := \underbrace{a \cdot \ldots \cdot a}_{n \text{ Faktoren}}$ ,  $a^0 := 1$  und ist  $a \neq 0$ :  $a^{-n} := \frac{1}{a^n}$  Es gelten die bekannten Rechenregeln.
- b) Für  $n \in \mathbb{N} : n! := 1 \cdot 2 \cdot \ldots \cdot n$ , 0! := 1 (Fakultäten)
- c) Binomialkoeffizienten: für  $n \in \mathbb{N}_0, k \in \mathbb{N}_0$  und  $k \leq n$ :

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}$$

z.B.  $\binom{n}{0} = 1 = \binom{n}{n}$ . Es gilt (nachrechnen!):

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \quad \text{für } 1 \le k \le n$$

d) Für  $a, b \in \mathbb{R}$  und  $n \in \mathbb{N}$  gilt:

$$a^{n+1} - b^{n+1} = (a - b) \left( a^n + a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n \right)$$
$$= (a - b) \sum_{k=0}^{n} a^{n-k}b^k$$

- e) Binomischer Satz:  $a, b \in \mathbb{R} \ \forall n \in \mathbb{N} : (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Beweis: i. d. Übungen.
- f) Bernoullische Ungleichung: Sei  $x \in \mathbb{R}$  und  $x \ge -1$ . Dann:

$$(1+x)^n \ge 1 + nx$$

9

Beweis (induktiv): I.A.: n = 1:  $1 + x \ge 1 + x$ 

I.V.: Für ein  $n \in \mathbb{N}$  gelte  $(1+x)^n \ge 1 + nx$ 

I.S.:  $n \curvearrowright n+1$ :  $\stackrel{I.V.}{\Longrightarrow} (1+x)^n \ge 1 + nx$  und da  $1+x \ge 0$ :

$$(1+x)^{n+1} \ge (1+nx)(1+x)$$

$$= 1+nx+x+\underbrace{nx^n}_{\ge 0}$$

$$\ge 1+nx+x$$

$$= 1+(n+1)x$$

**Hilfssatz** (HS): Für  $x, y \ge 0$  und  $n \in \mathbb{N}$  gilt:  $x \le y \iff x^n \le y^n$ 

Beweis: i. d. Übungen.

**Satz 1.6:** Sei  $a \ge 0$  und  $n \in \mathbb{N}$ . Dann gibt es genau ein  $x \ge 0$  mit:  $x^n = a$ .

Dieses x heißt **n-te Wurzel aus a**; Bez.:  $x = \sqrt[n]{a}$ .  $(\sqrt[n]{a} =: \sqrt{a})$ 

Beweis: Existenz: später in §7.

Eindeutigkeit: seien  $x, y \ge 0$  und  $x^n = a = y^n$ .  $\stackrel{HS}{\Longrightarrow} x = y$ 

## Bemerkungen:

- a)  $\sqrt{2} \notin \mathbb{Q}$  (s. Schule)
- b) Für  $a \ge 0$  ist  $\sqrt[n]{a} \ge 0$ . Bsp.:  $\sqrt{4} = 2$ ,  $\sqrt{4} \ne -2$ . Die Gleichung  $x^2 = 4$  hat zwei Lösungen:  $x = \pm \sqrt{4} = \pm 2$ .
- c)  $\sqrt{x^2}|x| \ \forall x \in \mathbb{R}$

## Rationale Exponenten

a) Sei zunächste a>0 und  $r\in\mathbb{Q}, r>0$ . Dann ex.  $m,n\in\mathbb{N}: r=\frac{m}{n}$ . Wir wollen definieren:

$$a^r \coloneqq \left(\sqrt[n]{a}\right)^m \quad (*)$$

Problem: gilt auch noch  $r = \frac{p}{q}$  mit  $p, q \in \mathbb{N}$ , gilt dann  $(\sqrt[n]{a})^m = (\sqrt[q]{a})^p$ ? Antwort: ja (d.h. obige Def. (\*) ist sinnvoll).

**Beweis:**  $x := (\sqrt[n]{a})^m$ ,  $y := (\sqrt[q]{a})^p$ , dann:  $x, y \ge 0$  und mq = np, also

$$x^{q} = (\sqrt[n]{a})^{mq} = (\sqrt[n]{a})^{np} = ((\sqrt[n]{a})^{m})^{p} = a^{p}$$
$$= ((\sqrt[q]{a})^{q})^{p} = ((\sqrt[q]{a})^{p})^{q} = y^{q}$$

$$\stackrel{HS}{\Longrightarrow} x = y.$$

b) Sei  $a>0, r\in\mathbb{Q}$  und r<0.  $a^r\coloneqq \frac{1}{a^{-r}}.$  Es gelten die bekannten Rechenregeln:

$$(a^r a^s = a^{r+s}, (a^r)^s = a^{rs}, \dots)$$

## 2 Folgen und Konvergenz

**Definition:** Es sei X eine Menge,  $X \neq \emptyset$ . Eine Funktion  $a: \mathbb{N} \to X$  heißt eine **Folge in X**. Ist  $X = \mathbb{R}$ , so heißt a eine **reelle Folge**.

**Schreibweisen:**  $a_n$  statt a(n) (n-tes Folgenglied)  $(a_n)$  oder  $(a_n)_{n=1}^{\infty}$  oder  $(a_1, a_2, \dots)$  statt a

#### Beispiele:

- a)  $a_n := \frac{1}{n} \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots)$
- b)  $a_{2n} := 0, \ a_{2n-1} := 1 \ (n \in \mathbb{N}), \ \text{also} \ (a_n) = (1, 0, 1, 0, \dots)$

**Bemerkung:** Ist  $p \in \mathbb{Z}$  und  $a: \{p, p+1, \dots\} \to X$  eine Funktion, so spricht man ebenfalls von einer Folge in X. Bez.:  $(a_n)_{n=p}^{\infty}$ . Meist p=0 oder p=1.

**Definition:** Sei X eine Menge,  $X \neq \emptyset$ .

- a) X heißt **abzählbar** :  $\iff \exists$  Folge  $(a_n)$  in X:  $X = \{a_1, a_2, a_3, \dots\}$
- b) X heißt **überabzählbar** :  $\iff X$  ist nicht abzählbar

## Beispiele:

- a) Ist X endlich, so ist X abzählbar.
- b)  $\mathbb{N}$  ist abzählbar, denn  $\mathbb{N} = \{a_1, a_2, a_3, \dots\}$  mit  $a_n := n \ (n \in \mathbb{N})$
- c)  $\mathbb{Z}$  ist abzählbar, denn  $\mathbb{Z} = \{a_1, a_2, a_3, \dots\}$  mit  $a_1 \coloneqq 0, a_2 \coloneqq 1, a_3 \coloneqq -1, a_4 \coloneqq 2, a_5 \coloneqq -2, \dots$  also

$$a_{2n} \coloneqq n, \quad a_{2n+1} \coloneqq -n \quad (n \in \mathbb{N})$$

d) Q ist abzählbar!



Durchnummerieren in Pfeilrichtung liefert

$$\{x \in \mathbb{Q} : x > 0\} = \{a_1, a_2, a_3, \dots\}$$
$$b_1 \coloneqq 0, b_{2n} \coloneqq a_n, b_{2n+1} \coloneqq -a_n \ (n \in \mathbb{N}). \text{ Dann:}$$
$$\mathbb{Q} = \{b_1, b_2, b_3, \dots\}$$

e)  $\mathbb{R}$  ist überabzählbar (Beweis in §5).

**Vereinbarung:** Solange nichts anderes gesagt wird, seien alle vorkommenden Folgen stets Folgen in  $\mathbb{R}$ .

Die folgenden Sätze und Definitionen formulieren wir nur für Folgen der Form  $(a_n)_{n=1}^{\infty}$ . Sie gelten sinngemäß für Folgen der Form  $(a_n)_{n=p}^{\infty}$   $(p \in \mathbb{Z})$ .

**Definition:** Sei  $(a_n)$  eine Folge und  $M := \{a_1, a_2, \dots\}$ .

- a)  $(a_n)$  heißt **nach oben beschränkt**:  $\iff M$  ist nach oben beschränkt. I.d. Fall:  $\sup_{n\in\mathbb{N}} a_n := \sup_{n=1}^{\infty} a_n := \sup M$ .
- b)  $(a_n)$  heißt **nach unten beschränkt**:  $\iff M$  ist nach unten beschränkt. I.d. Fall:  $\inf_{n\in\mathbb{N}} a_n := \inf_{n=1}^{\infty} a_n := \inf M$ .

c)  $(a_n)$  heißt **beschränkt** :  $\iff M$  ist beschränkt

$$\iff \exists c \ge 0 : |a_n| \le c \ \forall n \in \mathbb{N}$$

**Definition:** Sei A(n) eine für jedes  $n \in \mathbb{N}$  definierte Aussage.

A(n) gilt **für fast alle** (ffa)  $n \in \mathbb{N} : \iff \exists n_0 \in \mathbb{N} : A(n)$  ist wahr  $\forall n \geq n_0$ 

**Definition:** Sei  $a \in \mathbb{R}$  und  $\varepsilon > 0$ 

$$U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$$

heißt  $\varepsilon$ -Umgebung von a.

**Definition:** Eine Folge  $(a_n)$  heißt konvergent

$$:\iff \exists a\in\mathbb{R}: \begin{cases} \text{zu jedem }\varepsilon>0 \text{ ex. } n_0=n_0(\varepsilon)\in\mathbb{N}:\\ |a_n-a|<\varepsilon \ \forall n\geq n_0 \end{cases}$$

I. d. Fall heißt a Grenzwert (GW) oder Limes von  $(a_n)$  und man schreibt

$$a_n \to a \ (n \to \infty) \ \text{oder} \ a_n \to a \ \text{oder} \ \lim_{n \to \infty} a_n = a$$

Ist  $(a_n)$  nicht konvergent, so heißt  $(a_n)$  divergent. Beachte:

$$a_n \to a \ (n \to \infty) \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : a_n \in U_{\varepsilon}(a) \ \forall n \ge n_0$$

$$\iff \forall \varepsilon > 0 \ \text{gilt:} \ a_n \in U_{\varepsilon}(a) \ \text{ffa} \ n \in \mathbb{N}$$

$$\iff \forall \varepsilon > 0 \ \text{gilt:} \ a_n \notin U_{\varepsilon}(a) \ \text{für höchstens endlich viele} \ n \in \mathbb{N}$$

**Satz 2.1:**  $(a_n)$  sei konvergent und  $a = \lim a_n$ 

- a) Gilt auch noch  $a_n \to b$ , so ist a = b
- b)  $(a_n)$  ist beschränkt

#### Beweis:

a) Annahme  $a \neq b$ . Dann ist  $\varepsilon := \frac{|a-b|}{2} > 0$ .

$$\exists n_0 \in \mathbb{N} : |a_{n_0} - a| < \varepsilon \quad \forall n \ge n_0 \text{ und } \exists n_1 \in \mathbb{N} : |a_n - b| < \varepsilon \quad \forall n \ge n_1$$

 $N := \max\{n_0, n_1\}$ . Dann:

$$2\varepsilon = |a - b| = |a - a_N + a_N - b| \le |a_N - a| + |a_N - b| < 2\varepsilon$$

Widerspruch! Also a = b

b) Zu  $\varepsilon = 1 \ \exists n_0 \in \mathbb{N} : |a_n - a| < 1 \ \forall n \ge n_0$ . Dann:

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| \le 1 + |a| \quad \forall n \ge n_0$$

 $c := \max\{1 + |a|, |a_1|, \dots, |a_{n_0-1}|\}$ . Dann:  $|a_n| \le \varepsilon \ \forall n \ge 1$ .

#### Beispiele:

a) Sei  $c \in \mathbb{R}$  und  $a_n := c \ \forall n \in \mathbb{N}$ . Dann:

$$|a_n - c| = 0 \quad \forall n \in \mathbb{N}$$

Also:  $a_n \to c$ .

b)  $a_n := \frac{1}{n} \ (n \in \mathbb{N})$ . Beh:  $a_n \to 0 \ (n \to \infty)$ .

Beweis: Sei  $\varepsilon > 0$  :  $|a_n - 0| = |a_n| = \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$ 

$$\xrightarrow{1.3 \text{ c}} \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon}$$

Für  $n \ge n_0$  ist  $n > \frac{1}{\varepsilon}$ , also  $\frac{1}{n} < \varepsilon$ . Somit  $|a_n - 0| < \varepsilon \ \forall n \ge n_0$ 

c)  $a_n := (-1)^n$ . Es ist  $|a_n| = 1 \ \forall n \in \mathbb{N}$ ,  $(a_n)$  ist also beschränkt. Behauptung:  $(a_n)$  ist divergent.

**Beweis:**  $\forall n \in \mathbb{N} : |a_n - a_{n+1}| = |(-1)^n - (-1)^{n+1}| = |(-1)^n| (1 - (-1)) = 2.$  Annahme:  $(a_n)$  konvergiert. Definiere  $a := \lim a_n$ , dann

$$\exists n_0 \in \mathbb{N} : |a_n - a| < \frac{1}{2} \quad \forall n \ge n_0$$

Für  $n \ge n_0$  gilt dann aber:

$$2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \le |a_n - a| + |a_{n+1} - a| < \frac{1}{2} + \frac{1}{2} = 1$$

Widerspruch!

d)  $a_n := n \ (n \in \mathbb{N}). \ (a_n)$  ist nicht beschränkt  $\stackrel{2.1b}{\Longrightarrow} (a_n)$  ist divergent.

e) 
$$a_n := \frac{1}{\sqrt{n}} (n \in \mathbb{N})$$
. Beh.:  $a_n \to 0$ 

Beweis: Sei  $\varepsilon > 0$ .

$$|a_n - 0| = \frac{1}{\sqrt{n}} < \varepsilon \iff \sqrt{n} > \frac{1}{n} \iff n > \frac{1}{\varepsilon^2}$$

$$\xrightarrow{1.3c} \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon^2}. \text{ Ist } n \geq n_0 \Rightarrow n > \frac{1}{\varepsilon^2} \Rightarrow \frac{1}{\sqrt{n}} < \varepsilon \Rightarrow |a_n - 0| < \varepsilon$$

f) 
$$a_n := \sqrt{n+1} - \sqrt{n}$$
.

**Beweis:** 

$$a_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}}$$

 $\Rightarrow |a_n - 0| \le \frac{1}{\sqrt{n}} \ \forall n \in \mathbb{N}$ . Sei  $\varepsilon > 0$ , nach Beispiel e) folgt:

$$\exists n_0 \in \mathbb{N}: \ \frac{1}{\sqrt{n}} < \varepsilon \quad \forall n \ge n_0 \Rightarrow |a_n - 0| < \varepsilon \quad \forall n \ge n_0$$

Also  $a_n \to 0$ .

**Definition:**  $(a_n)$  und  $(b_n)$  seien Folgen und  $\alpha \in \mathbb{R}$ 

$$(a_n) \pm (b_n) \coloneqq (a_n \pm b_n); \ \alpha(a_n) \coloneqq (\alpha a_n); \ (a_n)(b_n) \coloneqq (a_n b_n)$$

Gilt  $b_n \neq 0 \ \forall n \geq m$ , so ist die Folge  $\left(\frac{a_n}{b_n}\right)_{n=m}^{\infty}$  definiert.

**Satz 2.2:**  $(a_n), (b_n), (c_n)$  und  $(\alpha_n)$  seien Folge und  $a, b, \alpha \in \mathbb{R}$ 

- a)  $a_n \to a \iff |a_n a| \to 0$
- b) Gilt  $|a_n a| \le \alpha_n$  ffa  $n \in \mathbb{N}$  und  $\alpha_n \to 0$ , so gilt  $a_n \to a$
- c) Es gelte  $a_n \to a$  und  $b_n \to b$ . Dann:
  - (i)  $|a_n| \to |a|$
  - (ii)  $a_n + b_n \rightarrow a + b$
  - (iii)  $\alpha a_n \to \alpha a$
  - (iv)  $a_n b_n \to ab$
  - (v) ist  $a \neq 0$ , so ex. ein  $m \in \mathbb{N}$ :

$$a_n \neq 0 \ \forall n \geq m$$
 und für die Folge  $\left(\frac{1}{a_n}\right)_{n=m}^{\infty}$  gilt:  $\frac{1}{a_n} \to \frac{1}{a}$ 

- d) Es gelte  $a_n \to a$ ,  $b_n \to b$  und  $a_n \le b_n$  ffa  $n \in \mathbb{N} \Rightarrow a \le b$
- e) Es gelte  $a_n \to a$ ,  $b_n \to a$  und  $a_n \le c_n \le b_n$  ffa  $n \in \mathbb{N}$ . Dann  $c_n \to a$ .

## Beispiele:

a) Sei  $p \in \mathbb{N}$  und  $a_n := \frac{1}{n^p}$ . Es ist  $n \le n^p \ \forall n \in \mathbb{N}$ . Dann:  $0 \le a_n \le \frac{1}{n} \ \forall n \in \mathbb{N} \xrightarrow{2.2e} a_n \to 0$ , also  $\frac{1}{n^p} \to 0$ .

b) 
$$a_n := \frac{5n^2 + 3n + 1}{4n^2 - n + 2} = \frac{5 + \frac{3}{n} + \frac{1}{n^2}}{4 - \frac{1}{n} + \frac{2}{n^2}} \to \frac{5}{4}$$

#### Beweis (von 2.2):

- a) folgt aus der Definition der Konvergenz
- b)  $\exists m \in \mathbb{N} : |a_n a| \le \alpha_m \ \forall n \ge m$ . Sei  $\varepsilon > 0$

$$\exists n_1 \in \mathbb{N} : \alpha_n < \varepsilon \ \forall n \ge n_1.$$

 $n_0 := \max\{m, n_1\}$ . Für  $n \ge n_0$ :  $|a_n - a| \le \alpha_n < \varepsilon$ 

- c) (i)  $||a_n| |a|| \le 1 |a_n a| \quad \forall n \in \mathbb{N} \stackrel{b)}{\underset{a)}{\Longrightarrow}} |a_n| \to |a|$ 
  - (ii) Sei  $\varepsilon > 0$ .  $\exists n_1, n_2 \in \mathbb{N}$ ;  $|a_n a| < \frac{\varepsilon}{2} \ \forall n \ge n_1$ ,  $|b_n b| < \frac{\varepsilon}{2} \ \forall n \ge n_2$  $n_0 := \max\{n_1, n_2\}$ . Für  $n \ge n_0$ :

$$|a_n + b_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

- (iii) Übung
- (iv)  $c_k := |a_n b_n ab|$ . z. z.:  $c_n \to 0$

$$c_n = |a_n b_n - a_n b + a_n b - a b| = |a n (b_n - b) + (a_n - a) b|$$
  

$$\leq |a_n| |b_n - b| + |b| |a_n - a|$$

 $\stackrel{2.1b)}{\Longrightarrow} \exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N} \ \text{und} \ c \geq |b|. \ \text{Dann:}$ 

$$c_n \le c(|b_n - b| + |a_n - a|) =: \alpha_n \xrightarrow[c)(ii),c)(iii)} \alpha_n \to 0$$

Also:  $|c_n - 0| = c_n \le \alpha_n \ \forall n \in \mathbb{N} \ \text{und} \ \alpha_n \to 0 \stackrel{b)}{\Rightarrow} c_n \to 0.$ 

(v) 
$$\varepsilon := \frac{|a|}{2}$$
; aus (i):  $|a_n| \to |a| \Rightarrow \exists n \in N$ :

$$|a_n| \in U_{\varepsilon}(|a|) = (|a| - \varepsilon, |a| + \varepsilon) = (\frac{|a|}{2}, \frac{3}{2}|a|) \quad \forall n \ge m$$

$$\Rightarrow |a_n| > \frac{|a|}{2} > 0 \ \forall n \ge m \Rightarrow a_n \ne 0 \ \forall n \ge m.$$

Für  $n \ge m$ :

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \frac{|a_n - a|}{|a_n||a|} \le \frac{2|a_n - a|}{|a|^2} =: \alpha_n$$

$$\alpha_n \to 0 \stackrel{b)}{\Rightarrow} \frac{1}{a_n} \to \frac{1}{a}.$$

d) Annahme 
$$b < a, \varepsilon := \frac{a-b}{2} > 0$$
  $\longmapsto$   $U_{\varepsilon}(b)$   $U_{\varepsilon}(a)$  Dann:  $x < y \ \forall x \in U_{\varepsilon}(b) \ \forall y \in U_{\varepsilon}(a)$ .

$$\exists n_0 \in \mathbb{N} : b_n \in U_{\varepsilon}(b) \ \forall n \ge n_0$$
$$\exists m \in \mathbb{N} : a_n \le b_n \ \forall n \ge m$$

 $m_0 := \max\{n_0, m\}$ . Für  $n \ge m_0$ :  $a_n \le b_n < b + \varepsilon$ , also  $a_n \notin U_{\varepsilon}(a)$ . Widerspruch!

e)  $\exists m \in \mathbb{N} : a_n \leq c_n \leq b_n \ \forall n \geq m$ . Sei  $\varepsilon > 0$ .  $\exists n_1, n_2 \in \mathbb{N}$ :

$$a - \varepsilon < a_n < a + \varepsilon \ \forall n \ge n_1$$
  
 $a - \varepsilon < b_n < a + \varepsilon \ \forall n \ge n_2$ 

 $n_0 := \max\{n_1, n_2, m\}$ . Für  $n \ge n_0$ :

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$$

Also:  $|a_n - a| < \varepsilon \forall n \ge n_0$ .

## Definition:

- a)  $(a_n)$  heißt monoton wachsend :  $\iff a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$ .
- b)  $(a_n)$  heißt streng monoton wachsend :  $\iff a_{n+1} > a_n \ \forall n \in \mathbb{N}$ .

- c) Entsprechend definiert man **monoton fallend** und **streng monoton fallend**.
- d)  $(a_n)$  heißt **monoton** :  $\iff$   $(a_n)$ n ist monoton wachsend oder monoton fallend.

#### Proposition 2.3 (Monotoniekriterium):

a)  $(a_n)$  sei monoton wachsend und nach oben beschränkt. Dann ist  $(a_n)$  konvergent und

$$\lim_{n \to \infty} a_n = \sup_{n=1}^{\infty} a_n$$

b)  $(a_n)$  sei monoton fallend und nach unten beschränkt. Dann ist  $(a_n)$  konvergent und

$$\lim_{n \to \infty} a_n = \inf_{n=1}^{\infty} a_n$$

**Beweis:**  $a := \sup_{n=1}^{\infty} a_n$ . Sei  $\varepsilon > 0$ . Dann ist  $a - \varepsilon$  keine obere Schranke von  $\{a_1, a_2, \cdots\}$ , also existiert ein  $n_0 \in \mathbb{N} : a_{n_0} > a - \varepsilon$ . Für  $n \geq n_0$ :

$$a - \varepsilon < a_{n_0} \le a_n \le a \le a + \varepsilon$$

also  $|a_n - a| \le \varepsilon \ \forall n \ge n_0$ .

Beispiel:  $a_1 := \sqrt[3]{6}$ ,  $a_{n+1} := \sqrt[3]{6 + a_n} (n \ge 2)$ .

$$a_1 = \sqrt[3]{6} < \sqrt[3]{8} = 2;$$

$$a_2 = \sqrt[3]{6+a_1} < \sqrt[3]{6+2} = 2;$$

$$a_2 = \sqrt[3]{6 + a_1} < \sqrt[3]{6} = a_1;$$

Behauptung:  $0 < a_n < 2$  und  $a_{n+1} > a_n \ \forall n \in \mathbb{N}$ 

## Beweis (induktiv):

I.A.: s.o.

I.V.: Sei  $n \in \mathbb{N}$  und  $0 < a_n < 2$  und  $a_{n+1} > a_n$ .  $n \curvearrowright n+1$ :  $a_{n+1} = \sqrt[3]{6+a_n} >_{I.V.} 0$ 

$$a_{n+1} = \sqrt[3]{6 + a_n} <_{I.V.} \sqrt[3]{6 + 2} = 2;$$
  $a_{n+2} = \sqrt[3]{6 + a_{n+1}} >_{I.V.} \sqrt[3]{6 + a_n} = a_{n+1}$ 

Also:  $(a_n)$  ist nach oben beschränkt und monoton wachsend.

 $\stackrel{2.3}{\Longrightarrow}(a_n)$  ist konvergent.  $a := \lim a_n, \ a_n \ge 0 \ \forall n \stackrel{2.2}{\Longrightarrow} a \ge 0$ . Es ist

$$a_{n+1}^3 = 6 + a_n \quad \forall n \in \mathbb{N}$$

$$\stackrel{2.2}{\Longrightarrow} a^3 = 6 + a \Rightarrow 0 = a^3 - a + 6 = (a - 2)(\underbrace{a^2 - 2a + 3}_{\geq 3})$$

 $\Rightarrow a = 2.$ 

#### Wichtige Beispiele:

Vorbemerkung: Seien  $x, y \ge 0$  und  $p \in \mathbb{N}$ : es ist (s. §1)

$$x^{p} - y^{p} = (x - y) \sum_{k=0}^{p-1} x^{p-1-k} y^{k}$$

$$\Rightarrow |x^p - y^p| = |x - y| \sum_{k=0}^{p-1} x^{p-1-k} y^k \ge y^{p-1} |x - y|$$

**Beispiel 2.4:** Sei  $a_n \geq 0 \ \forall n \in \mathbb{N}, \ a_n \to a (\geq 0) \ \text{und} \ p \in \mathbb{N}$ . Dann  $\sqrt[p]{a_n} \to \sqrt[p]{a}$ 

#### **Beweis:**

Fall 1: a = 0. Sei  $\varepsilon > 0$ ,  $\exists n_0 \in \mathbb{N} : |a_n| < \varepsilon^p \ \forall n \ge n_0$ 

$$\Rightarrow |\sqrt[p]{a_n} = \sqrt[p]{|a_n|} < \varepsilon \ \forall n \ge n_0$$

Also  $\sqrt[p]{a_n} \to 0$ .

Fall 2:  $a \neq 0$ .

$$|a_n - a| = |(\underbrace{\sqrt[p]{a_n}})^p - |\underbrace{\sqrt[p]{a}}|^p| = |x^p - y^p|$$

$$\geq_{s.o.} \underbrace{y^{p-1}}|x - y| = c|\sqrt[p]{a_n} - \sqrt[p]{a}|, \quad c > 0$$

$$\Rightarrow |\sqrt[p]{a_n} - \sqrt[p]{a}| \le \frac{1}{c}|a_n - a| =: \alpha_n. \ \alpha_n \to 0 \Rightarrow \sqrt[p]{a_n} \to \sqrt[p]{a}$$

**Beispiel 2.5:** Für  $x \in \mathbb{R}$  gilt  $(x^n)$  ist konvergent  $\iff x \in (-1,1]$ , i. d. Fall:

$$\lim_{n \to \infty} x^n = \begin{cases} 1, & \text{falls } x = 1\\ 0, & \text{falls } x \in (-1, 1) \end{cases}$$

#### **Beweis:**

Fall 1: x = 0. Dann  $x^k \to 0$ . Fall 2: x = 1. Dann  $x^k \to 1$ .

Fall 3: x = -1. Dann  $(x^k) = ((-1)^k)$ , ist divergent.

Fall 4: |x| > 1.  $\exists \delta > 0 : |x| = 1 + \delta \Rightarrow |x^k| = |x|^k = (1 + \delta)^k \ge 1 + n\delta \ge n\delta$  $\Rightarrow$  ist nicht beschränkt  $\stackrel{2.1}{\Longrightarrow}$   $(x^k)$  ist divergent. Fall 5:  $0 < |x| < 1 \Rightarrow \frac{1}{|x|} > 1 \Rightarrow$  $\exists \eta > 0 : \frac{1}{|x|} = 1 + \eta.$ 

$$\Rightarrow \left|\frac{1}{x^n}\right| = \left(\frac{1}{|x|}\right)^n = (1+\eta)^n \ge 1 + n\eta \ge n\eta$$

$$\Rightarrow |x^n| \le \frac{1}{\eta} \cdot \frac{1}{n} \Rightarrow x^n \to 0.$$

**Beispiel 2.6:** Sei  $x \in \mathbb{R}$  und  $s_n := 1 + x + x^n + \dots + x^n = \sum_{k=0}^n x^k$ Fall 1: x = 1. Dann:  $x_n = n + 1$ ,  $(s_n)$  ist also divergent. Fall 2:  $x \neq 1 \Rightarrow s_n = \frac{1-x^{n+1}}{1-x}$ . Aus (2.5):

$$(s_n)$$
 konvergent  $\iff$   $|x| < 1$ 

i.d. Fall:  $\lim s_n = \frac{1}{1-x}$ 

Beispiel 2.7: Behauptung:  $\sqrt[n]{n} \to 1$ .

**Beweis:** Es ist  $\sqrt[n]{n} \ge 1 \ \forall n \in \mathbb{N}$ , also  $a_n := \sqrt[n]{n} - 1 \ge 0 \ \forall n \in \mathbb{N}$ . Z. z.:  $a_n \to 0$ . Für  $n \geq 2$ :

$$n = (\sqrt[n]{n})^n = (a_n + 1)^n = {1 \choose 2} a_n^k = {n \choose k} a_n^k \ge {n \choose 2} a_n^2 = \frac{n(n-1)}{2} a_n^2$$

$$\Rightarrow \frac{n-1}{2}a_n^2 \le 1$$
. Also  $\Longrightarrow 0 \le a_n \le \frac{\sqrt{2}}{\sqrt{n-1}}(n \ge 2)$ .  $\Rightarrow a_n \to 0$ .

Beispiel 2.8: Sei c > 0. Beh.:  $\sqrt[n]{c} \to 1$ .

Beweis: Fall 1:  $c \ge 1$ .  $\exists m \in \mathbb{N} : 1 \le c \le m$ 

$$\Rightarrow 1 \le c \le n \ \forall n \ge m \Rightarrow 1 \le \sqrt[n]{c} \le \sqrt[n]{n} \ \forall n \ge m \Rightarrow \text{Beh.}$$

Fall 2: 
$$0 < c < 1 \Rightarrow \frac{1}{c} > 1 \Rightarrow \sqrt[n]{c} = \frac{1}{\sqrt[n]{\frac{1}{c}}} \xrightarrow{Fall1} 1(n \to \infty) \Rightarrow \text{Beh.}$$

Beispiel 2.9:  $a_n := \left(1 + \frac{1}{n}\right)^n$ ;  $b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!}$ Beh.:  $(a_n)$  und  $(b_n)$  sind konvergent und  $\lim a_n = \lim b_n$ 

**Beweis:** I. d. gr. Übungen wird gezeigt:  $2 \le a_n < a_{n+1} < 3 \ \forall n \in \mathbb{N}$ 

$$\stackrel{2.3}{\Longrightarrow} (a_n)$$
 konvergiert,  $a := \lim a_n$ 

Es ist  $b_n > 0$  und  $b_{n+1} = b_n + \frac{1}{(n+1)!} > b_n$ .  $(b_n)$  ist also monoton wachsend. Für n > 3:

$$b_{n} = 1 + 1 + \frac{1}{2} + \underbrace{\frac{1}{2 \cdot 2}}_{<\left(\frac{1}{2}\right)^{2}} + \underbrace{\frac{1}{2 \cdot 3 \cdot 4}}_{<\left(\frac{1}{2}\right)^{3}} + \dots + \underbrace{\frac{1}{2 \cdot \dots \cdot n}}_{<\left(\frac{1}{2}\right)^{n-1}}$$

$$< 1 + \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \dots + \left(\frac{1}{2}\right)^{n-1}\right) = 1 + \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$< 1 + \frac{1}{1 - \frac{1}{2}} = 3 \quad \forall n \in \mathbb{N}$$

 $\stackrel{2.3}{\Longrightarrow}(b_n)$  konvergiert.  $b := \lim b_n$ . Für  $n \ge 2$ :

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} = \S 1 \sum_{k=0}^{n} n \binom{n}{k} \frac{1}{n^{k}}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n!}{(n-k)!} \frac{1}{n^{k}} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n(n-1) \cdot \dots \cdot (n-(k-1))}{n \cdot n \cdot \dots \cdot n}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \underbrace{\left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)}_{<1}$$

$$\leq 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} = b_{n}$$

Also  $a_n \leq b_n \ \forall n \geq 2$ . Z. z.:  $\Rightarrow a \leq b$ Sei  $j \in \mathbb{N}, j \geq 2$  (zunächst fest). Für  $n \in \mathbb{N}, n \geq j$ :

$$a_{n} =_{s.o.} 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\geq 1 + 1 + \sum_{k=2}^{j} \frac{1}{k!} \underbrace{(1 - \frac{1}{n})}_{\to 1} \underbrace{(1 - \frac{2}{n})}_{\to 1} \cdot \dots \cdot \underbrace{(1 - \frac{k-1}{n})}_{\to 1}$$

$$\to 1 + 1 + 1 \sum_{k=2}^{j} \frac{1}{k!} = b_{j} \quad (n \to \infty)$$

Also  $a \ge b_j \ \forall j \ge 2 \xrightarrow{j \to \infty} a \ge b$ .

## **Definition:**

$$e := \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n \ (= \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!})$$

heißt Eulersche Zahl. Übung: 2 < e < 3.  $e \approx 2,718...$ 

**Definition:** Sei  $(a_n)$  eine Folge und  $(n_1, n_2, n_3, ...)$  eine Folge in  $\mathbb{N}$  mit  $n_1 < n_2 < n_3 < ...$  Für  $k \in \mathbb{N}$  setze

$$b_k \coloneqq a_{n_k}$$

also  $b_1 = a_{n_1}, b_2 = a_{n_2}, \ldots$  Dann heißt  $(b_k) = (a_{n_k})$  eine **Teilfolge** (TF) von  $(a_n)$ .

#### Beispiele:

- a)  $(a_2, a_4, a_6, ...)$  ist eine Teilfolge von  $(a_n)$ ; hier:  $n_k = 2k$
- b)  $(a_1, a_4, a_9, ...)$  ist eine Teilfolge von  $(a_n)$ ; hier:  $n_k = k^2$
- c)  $(a_2, a_6, a_4, a_{10}, a_8, a_{14}, \dots)$  ist keine Teilfolge von  $(a_n)$ .

**Definition:**  $(a_n)$  sei eine Folge und  $\alpha \in \mathbb{R}$ .  $\alpha$  heißt ein **Häufungswert** (HW) von  $(a_n)$ 

$$:\iff \exists (TF)(a_{n_k}) \text{ von } (a_n): a_{n_k} \to \alpha(k \to \infty)$$

 $H(a_n) := \{ \alpha \in \mathbb{R} : \alpha \text{ ist ein Häufungswert von } (a_n) \}.$ 

Satz 2.10:  $\alpha \in \mathbb{R}$  ist ein Häufungswert von  $(a_n)$ 

$$\iff \forall \epsilon > 0 : a_{n_k} \in U_{\epsilon}(\alpha) \quad (*)$$

für unendlich viele  $n \in \mathbb{N}$ .

#### **Beweis:**

 $,, \Rightarrow$  "Sei  $(a_{n_k})$  eine Teilfolge mit  $a_{n_k} \to \infty$ . Sei  $\epsilon > 0 \exists k_0 \in \mathbb{N} : a_{n_k} \in U_{\epsilon}(\alpha)$  für  $k \geq k_0 \Rightarrow (*)$ 

"  $\Leftarrow$  "  $\exists n_1 \in \mathbb{N} : a_{n_1} \in U_1(\alpha)$ .  $\exists n_2 \in \mathbb{N} : a_{n_2} \in U_{\frac{1}{2}}(\alpha)$  und  $n_2 > n_1$ .  $\exists n_3 \in \mathbb{N} : a_{n_3} \in U_{\frac{1}{3}}(\alpha)$  und  $n_3 > n_2$ . Etc. … Man erhält eine Teilfolge  $(a_{n_k})$  von  $(a_n)$  mit

$$a_{n_k} \in U_{\frac{1}{k}}(\alpha) \ \forall k \in \mathbb{N}, \text{ also } |a_{n_k} - \alpha| < \frac{1}{k} \ \forall k$$

Somit:  $a_{n_k} \to \alpha$ .

## Beispiele:

a)  $a_n = (-1)^n$ ,  $a_{2k} = 1 \to 1$ ,  $a_{2k+1} \to -1$ , also  $1, -1 \in H(a_n)$ . Sei  $\alpha \in \mathbb{R}$ ,  $\alpha \neq 1$ ,  $\alpha \neq -1$ Wähle  $\epsilon > 0$  so, dass  $1, -1 \notin U_{\epsilon}(\alpha)$ . Dann  $a_n \in U_{\epsilon}(\alpha)$  für kein  $n \in \mathbb{N}$  $\stackrel{2.10}{\Longrightarrow} \alpha \notin H(a_n)$ . Fazit:  $H(a_n) = \{1, -1\}$ .

- b)  $a_n = n$ . Ist  $\alpha \in \mathbb{R}$  und  $\epsilon > 0$ , so gilt:  $a_n \in U_{\epsilon}(\alpha)$  für höchstens endlich viele n, also  $\alpha \notin H(a_n)$ . Fazit:  $H(a_n) = \emptyset$ .
- c)  $\mathbb{Q}$  ist abzählbar. Sei  $(a_n)$  eine Folge mit  $Q = \{a_1, a_2, a_3, \dots\}$ . Sei  $\alpha \in \mathbb{R}$  und  $\epsilon > 0 \stackrel{1.5}{\Longrightarrow} U_{\epsilon}(\alpha) = (\alpha \epsilon, \alpha + \epsilon)$  enthält unendlich viele verschiedene rationale Zahlen  $\stackrel{2.10}{\Longrightarrow} \alpha \in H(a_n)$ . Fazit:  $H(a_n) = \mathbb{R}$ .

**Folgerung:** Ist  $x \in \mathbb{R}$ , so existieren Folgen  $(r_m)$  in  $\mathbb{Q}: r_n \to \alpha$ .

**Satz 2.11:**  $(a_n)$  sei konvergent,  $a := \lim a_n$  und  $(a_{n_k})$  eine Teilfolge von  $(a_n)$ . Dann:

$$a_{n_k} \to a(k \to \infty)$$

Insbesondere:  $H(a_n) = \{\lim a_n\}$ 

**Beweis:** Sei  $\epsilon > 0$ . Dann:  $an \in U_{\epsilon}(a)$  ffa  $n \in \mathbb{N}$ , also auch  $a_{n_k} \in U_{\epsilon}(a)$  ffa  $k \in \mathbb{N}$ . Somit:  $a_{n_k} \to \alpha$ .

**Definition:** Sei  $(a_n)$  eine Folge.

a)  $m \in \mathbb{N}$ . m heißt **niedrig** (für  $(a_n)$ )

$$:\iff a_n \ge a_m \quad \forall n \ge m$$

b)  $m \in \mathbb{N}$  heißt nicht niedrig

$$: \iff \exists n \ge m : a_n < a_m \Rightarrow n > m : a_n < a_m$$

**Hilfssatz:**  $(a_n)$  sei eine Folge. Dann enthält  $(a_n)$  eine monotone Teilfolge.

#### **Beweis:**

Fall 1: es existieren höchstens endlich viele niedrige Indizes. Also existiert  $n_1 \in \mathbb{N}$ : jedes  $n \geq n_1$  ist nicht niedrig.

$$n_1$$
 nicht niedrig  $\Rightarrow \exists n_2 > n_1 : a_{n_2} < a_{n_1}$ 

$$n_2$$
 nicht niedrig  $\Rightarrow \exists n_3 > n_2 : a_{n_3} < a_{n_2}$ 

Etc...

Wir erhalten so eine streng monoton fallende Teilfolge  $(a_{n_k})$ .

Fall 2: es existieren unendlich viele niedrige Indizes  $n_1, n_2, \ldots$ , etwa  $n_1 < n_2 < \ldots$ 

 $n_1$  ist niedrig und  $n_2 > n_1 \rightarrow a_{n_2} \ge a_{n_1}$ 

 $n_2$  nicht niedrig  $\Rightarrow \exists n_3 > n_2 : a_{n_3} \geq a_{n_2}$ 

Etc...

Wir erhalten so eine monoton wachsende Teilfolge  $(a_{n_k})$ .

#### Satz 2.12 (Bolzano-Weierstraß):

 $(a_n)$  sei beschränkt, dann:  $H(a_n) \neq \emptyset$ .  $(a_n)$  enthält also eine konvergente Teilfolge

**Beweis:**  $\exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N}. \xrightarrow{Hilfssatz} (a_n)$  enthält eine monotone Teilfolge  $(a_{n_k})$ . Dann:  $|a_{n_k}| \leq c \forall k \in \mathbb{N}$ 

 $(a_{n_k})$  ist also beschränkt  $\stackrel{2.3}{\Longrightarrow} (a_{n_k})$  ist konvergent. Also  $\lim_{k\to\infty} a_{n_k} \in H(a_n)$ .

**Satz 2.13:**  $(a_n)$  sei beschränkt  $(\stackrel{2.12}{\Longrightarrow} H(a_n) \neq \emptyset)$ 

- a)  $H(a_n)$  ist beschränkt
- b)  $\sup H(a_n)$ ,  $\inf H(a_n) \in H(a_n)$ ; es existieren also

$$\max H(a_n), \min H(a_n)$$

**Definition:** Ist  $(a_n)$  beschränkt, so nennen wir

- a)  $\limsup_{n\to\infty} a_n := \limsup a_n := \overline{\lim} a_n := \max H(a_n)$  heißt **Limes superior** oder **oberer Limes** von  $(a_n)$ .
- b)  $\liminf_{n\to\infty} a_n := \liminf a_n := \underline{\lim} a_n := \min H(a_n)$  heißt **Limes inferior** oder **unterer Limes** von  $(a_n)$ .

#### **Beweis:**

a)  $\exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N}$ . Sei  $\alpha \in H(a_n)$ . Es existiert eine Teilfolge  $(a_{n_k})$  mit  $a_{n_k} \to \alpha \ (k \to \infty)$ . Es ist

$$|a_{n_k}| \le c \quad \forall k, \text{ also } -c \le a_{n_k} \le c \quad \forall k$$

 $\Rightarrow -c \leq \alpha \leq c$ . Also  $|\alpha| \leq c \ \forall \alpha \in H(a_n)$ .

b) ohne Beweis.

Satz 2.14:  $(a_n)$  sei beschränkt.

- a)  $\liminf a_n \le \alpha \le \limsup a_n \ \forall \alpha \in H(a_n)$
- b) Ist  $(a_n)$  konvergent  $\Rightarrow \limsup a_n = \liminf a_n = \lim a_n$
- c)  $\limsup (\alpha a_n) = \alpha \limsup a_n \ \forall \alpha \ge 0$
- d)  $\limsup(-a_n) = -\liminf a_n$

Beweis: a) klar, b) folgt aus 2.11, c) und d) Übung.

**Motivation:**  $(a_n)$  sei konvergent und  $\lim a_n =: a$ . Sei  $\epsilon > 0$ ,

$$\exists n_0 \in \mathbb{N} : |a_n - a| < \frac{\epsilon}{2} \quad \forall n \ge n_0$$

Für  $n, m \ge n_0$ :

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

D.h.:  $(a_n)$  hat die folgende Eigenschaft:

$$\forall \epsilon > 0 \exists n_0 = n_0(\epsilon) \in \mathbb{N} : |a_n - a_m| < \epsilon \quad \forall n, m \ge n_0$$

$$(\Longleftrightarrow \forall \epsilon > 0 \ \exists n_0 = n_0(\epsilon) \in \mathbb{N} : |a_n - a_{n+k}| < \epsilon \quad \forall n \ge n_0 \ \forall k \in \mathbb{N})$$

**Definition:** Eine Folge  $(a_n)$  heißt eine **Cauchyfolge** (CF)

$$:\iff (a_n)$$
 hat die Eigenschaft  $(c)$ 

Konvergente Folgen sind also Cauchy-Folgen!

Proposition 2.15 (Cauchykriterium):

$$(a_n)$$
 ist konvergent  $\iff$   $(a_n)$  ist eine Cauchyfolge

**Beweis:** ",  $\Rightarrow$  " s.o. ",  $\Leftarrow$  " ohne Beweis

**Beispiel:**  $a_1 := 1, a_{n+1} := \frac{1}{1+a_n}$   $(n \in \mathbb{N})$ . Mit Induktion folgt:

- 1)  $0 < a_n \le 1 \ (n \in \mathbb{N})$  Damit:
- $2) \ a_n \ge \frac{1}{2} \ (n \in \mathbb{N})$

Für  $n \geq 2, k \in \mathbb{N}$  gilt daher:

$$|a_{n+k} - a_n| = \left| \frac{1}{1 + a_{n+k-1}} - \frac{1}{1 - a_{n-1}} \right| = \frac{|a_{n-1} - a_{n+k-1}|}{(1 + a_{n+k-1})(1 + a_{n-1})}$$

$$\leq \frac{1}{(1 + \frac{1}{2})^2} |a_{n+k-1} a_{n-1}| = \frac{4}{9} |a_{n+k-1} - a_{n-1}|$$

$$\leq \left(\frac{4}{9}\right)^2 |a_{n-k-2} - a_{n-2}| \leq \dots \leq \left(\frac{4}{9}\right)^{n-1} |a_{k+1} - a_1|$$

$$\leq \left(\frac{4}{9}\right)^{n-1} (|a_{k+1}| + |a_1|) \leq 2 \left(\frac{4}{9}\right)^{n-1}$$

 $\exists n_0 \in \mathbb{N} \setminus \{1\}: 2\left(\frac{4}{9}\right)^{n-1} < \epsilon \ (n \ge n_0).$  Damit:  $|a_{n+k} - a_n| < \epsilon \ (n \ge n_0, k \in \mathbb{N}).$  Also ist  $(a_n)$  Cauchyfolge.  $a := \lim_{n \to \infty} a_n.$  Klar:  $a \ge \frac{1}{2}$  und  $a = \frac{1}{1+a}.$  Also  $a^2 + a - 1 = 0 \iff a = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}.$  Wegen  $a \ge \frac{1}{2}$  folgt  $a = \frac{\sqrt{5}-1}{2}.$ 

# 3 Unendliche Reihen

## Stichwortverzeichnis

| abzählbar, 12 Axiome Anordnungs-, 4 Körper-, 3 Vollständigkeits-, 6         | fallend, 18 streng fallend, 18 streng wachsend, 18 wachsend, 18 Monotoniekriterium, 19       |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Bernoullische Ungleichung, 9 beschränkt, 6 Folge, 13 Menge, 5 Betrag, 5     | Natürliche Zahlen, 7<br>niedrig, 24<br>oberer Limes, 25<br>rationale Zahlen, 9               |
| nomialkoeffizient, 9 nomischer Satz, 9 auchyfolge, 26 vergent, 14           | Satz Bolzano-Weierstraß, 25 Schranke, 5 Supremum, 5                                          |
| Eulersche Zahl, 22  für fast alle, 14  Fakultäten, 9  Folge, 12  reelle, 12 | Teilfolge, 23  überabzählbar, 12  Umgebung, 14  unterer Limes, 25  vollständige Induktion, 8 |
| ganze Zahlen, 9 Grenzwert, 14 Induktionsmenge, 7 Infimum, 5 Intervalle, 4   | Wurzel, 10                                                                                   |
| konvergent, 14 Limes, 14 Limes inferior, 25 Limes superior, 25              |                                                                                              |
| monoton, 18                                                                 |                                                                                              |