1

PROBABILITIY AND RANDOM VARIABLES **ASSIGNMENT 4**

GANJI VARSHITHA - AI20BTECH11009

Download latex codes from

https://github.com/VARSHITHAGANJI/ AI1103 Probability-and-random-variables/ blob/main/Assignment4.tex

QUESTION

ISS Statistics Paper I Question 12

Two cannons A_1 and A_2 fire at the same target. Cannon A_1 fires on an average 9 projectiles in the time in which cannon A_2 fire 10 projectiles.But on an average 7 out of 10 projectiles from cannon A_1 and 6 out of 10 projectiles from cannon A_2 strike the target. If in the course of shooting, the target is struck by one projectile, then the probability that it is struck by projectile from cannon A_1 is

- 1) $\frac{20}{41}$
- 2) $\frac{21}{41}$
- 3) $\frac{6}{19}$
- 4) $\frac{63}{190}$

SOLUTION

TABLE 1: Listing of events

S	event that the target is struck by a projectile
A_1	event that cannon A_1 fires a projectile
A_2	event that cannon A_2 fires a projectile

We need to calculate the conditional probability $Pr(A_1|S)$.

By Bayes' Theorem, we get

$$\Pr(A_1|S) = \frac{\Pr(S|A_1)\Pr(A_1)}{\Pr(S|A_1)\Pr(A_1) + \Pr(S|A_2)\Pr(A_2)}$$
(0.0.1)

In (0.0.1),

 $Pr(S|A_i)$ represents the conditional probability of cannon A_i striking the target. Given,

Е	A_1	A_2
Pr(E)	9 19	10 19

Also,

$$\Pr(S|A_1) = \frac{7}{10} \tag{0.0.2}$$

$$\Pr(S|A_2) = \frac{6}{10} \tag{0.0.3}$$

(0.0.4)

Substituting the values in (0.0.1), we get

$$\Pr(A_1|S) = \frac{\frac{7}{10}\frac{9}{19}}{\frac{7}{10}\frac{9}{19} + \frac{6}{10}\frac{10}{19}}$$
(0.0.5)

$$= \frac{63}{63 + 60}$$
 (0.0.6)
$$= \frac{21}{41}$$
 (0.0.7)

$$=\frac{21}{41}\tag{0.0.7}$$

Therefore, option 2 is correct.