Chapitre 3: Méthodes d'estimation

Rabah Messaci

Département de Probabilités-Statistique USTHB

Octobre 2011

Introduction

Pour certaines quantités, moments, variances, covariances, probabilités il a été vu qu'il existe des estimateurs simples ayant de bonnes qualités : sans biais et convergents. Pour des paramètres quelconques, il est nécessaire d'avoir des méthodes d'estimation conduisant à des estimateurs de bonne qualité. Il existe plusieurs grandes méthodes d'estimation

- Méthode des moments
- Méthode du maximum de vraisemblance
- Recherche des estimateurs sans biais de variance minimale

Autres méthodes - estimation par les moindres carrés qui sera utilisée dans le contexte de la régression linéaire - estimation bayésienne qui ne sera pas abordée ici

Méthode des moments : exemples

Les moments empiriques sont des estimateurs sans biais et convergents des moments théoriques. La méthode des moments consiste à égaler les uns aux autres. Soit le modèle d'échantillon $(\mathfrak{X},\mathfrak{B},(\mathcal{P}_{\theta})_{\theta\in\Theta})^{'n}$ associé à n observations $(x_1,x_2,...,x_n)$ d,'une v.a de loi P_{θ} .

On suppose $\theta = (\theta_1, \theta_2, ..., \theta_p)$. On veut estimer θ i.e p paramètres.

$$E(X) = \overline{X_n} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$E(X^2) = \frac{\sum_{i=1}^{n} X_i^2}{n}$$

$$E(X^p) = \frac{\sum_{i=1}^{n} X_i^p}{n}$$
:

Méthode des moments

Exemples:

• Soit le modèle d'échantillon poissonien $(N, \mathcal{P}(N), \{P(\lambda), \lambda \in R_+^*\})^{'n)}$ associé à n observations $(x_1, x_2, ..., x_n)$ d,'une v.a de loi $P(\lambda)$. Estime λ par la méthode des moments.

$$E(X) = \lambda = \overline{X} \implies \widehat{\lambda} = \overline{X}$$

• Soit le modèle d'échantillon gaussien $(R, \mathcal{P}(R), \{N(m, \sigma^2), m \in R\})^{'n)}$. On suppose σ^2 connu. Estimer m.

$$E(X) = m = \overline{X} \implies \widehat{m} = \overline{X}$$

• Soit le modèle d'échantillon gaussien $(R, \mathcal{P}(R), \{N(m, \sigma^2), m \in R\})^{'n)}$ Estimer m.et σ^2

$$E(X) = m = \overline{X}$$

$$E(X^2) = \sigma^2 + m^2 = m_2 \implies$$

$$\widehat{m} = \overline{X} \text{ et } \widehat{\sigma^2} = m_2 - \overline{X}^2 = S_n^2$$

Considérons une pièce de monnaie pour laquelle la probabilité d'obtenir pile est inconnue. Cette pièce est lancée 10 fois et on obtient 6 piles. Une méthode d'estimation intuitive est de considérer que l'évènement réalisée, ici 6 piles et 4 faces, a une forte probabilité (puiqu'il s'est réalisé contrairemant aux autres). On estime alors p par la valeur \hat{p} de [0,1] qui attribue à cet évènement, la plus forte probabité, ou en d'autres termes par la valeur \hat{p} qui maximise la vraisemblance.

On a
$$L(p, \widetilde{x}) = p^6 (1 - p)^4$$

 $\frac{\partial}{\partial p} L(p, \widetilde{x}) = 0 \iff \frac{\partial}{\partial p} \log L(p, \widetilde{x}) = 0$
 $\iff \widehat{p} = \frac{6}{10}$

Définition : Estimateurs du maximum de vraisemblance

Soit $\widetilde{x}=(x_1,x_2,...,x_n)$ un n-échantillon d'une v.a X de loi $(f_{\theta})_{\theta\in\Theta}$. On appelle estimateur du maximum de vraisemblance de θ , s'il existe, la statistique $\widehat{\theta}$ telle que

$$L(\widehat{\theta}, \widetilde{x}) = \max_{\theta \in \Theta} L(\theta, \widetilde{x})$$

La maximisation de la fonction de vraisemblance peut se faire de différentes manières

Cas $1:\theta$ réel et $L(\theta,\widetilde{\varkappa})$ dérivable par rapport à θ est alors solution du système d'équations dit équations du maximum de vraisemblance

vraisemblance
$$\begin{cases} \frac{\partial}{\partial \theta} L(\theta, \widetilde{x}) = 0 : \text{condition du } 1^{er} \quad \text{ordre} \\ \frac{\partial^2}{\partial \theta^2} L(\theta, \widetilde{x}) < 0 : \text{condition du } 2^{\grave{e}me} \quad \text{ordre} \end{cases}$$

$$\iff \begin{cases} \frac{\partial}{\partial \theta} \log L(\theta, \widetilde{x}) = 0 : \text{condition du } 1^{er} \quad \text{ordre} \\ \frac{\partial^2}{\partial \theta^2} \log L(\theta, \widetilde{x}) < 0 : \text{condition du } 2^{\grave{e}me} \quad \text{ordre} \end{cases}$$

Car la fonction log est continue et strictement monotone.

FIGURE: Fonction de vraisemblance

FIGURE: Fonction de log-vraisemblance

Cas 2 : θ réel et $L(\theta, \tilde{x})$ non dérivable par rapport à θ Il faut maximiser la vraisemblance directement

Cas
$$3:\theta=(\theta_1,\theta_2,..,\theta_p)$$
 vectoriel et $L(\theta,\widetilde{x})$ dérivable par rapport à θ
$$\begin{cases} \frac{\partial}{\partial \theta_1} \log L(\theta,\widetilde{x}) = 0 \\ \frac{\partial}{\partial \theta_2} \log L(\theta,\widetilde{x}) = 0 \\ \dots \\ \frac{\partial}{\partial \theta_p} \log L(\theta,\widetilde{x}) = 0 \end{cases}$$
 conditions du 1^{er} ordre
$$\frac{\partial}{\partial \theta_p} \log L(\theta,\widetilde{x}) = 0$$

La condition du $2^{\grave{e}me}$ ordre s'exprime à l'aide de la matrice Hessienne qui doit être définie négative.

FIGURE: Fonction de vraisemblance

Théorème

Soit $\widetilde{x} = (x_1, x_2, ..., x_n)$ un n-échantillon d'une v.a X de loi $(f_{\theta})_{\theta \in \Theta}$.

S'il existe une statistique exhaustive T pour θ alors l'estimateur du maximum de vraisemblance de θ est fonction de T.

Conséquence du théorème de factorisation

Théorème : invariance fonctionnelle

Soit $\widehat{\theta}$ l'estimateur du maximum de vraisemblance de θ alors l'estimateur du maximum de vraisemblance de $g(\widehat{\theta})$ est $g(\widehat{\theta})$ pour toute fonction g.

Risque quadratique

Définition : Risque quadratique

Soit T un estimateur de $g(\theta)$

On appelle risque quadratique de l'estimateur T , l'erreur quadratique moyenne de T , i.e

$$R_{\theta}(T) = E_{\theta}((T(X) - g(\theta))^{2})$$

Proposition

On a

$$R_{\theta}(T) = E_{\theta}((T(X) - E_{\theta}(T(X)))^2 + (E_{\theta}(T(X)) - g(\theta))^2$$

i.e

$$R_{\theta}(T) = Var(T) + biais(T)^2$$

Risque quadratique

Définition

Un estimateur \mathcal{T}_1 est dit meilleur qu'un autre estimateur \mathcal{T}_2 au sens du risque quadratique si

$$R_{\theta}(T_1) \leq R_{\theta}(T_2) \qquad \forall \theta \in \Theta$$

(uniformément en θ)

Proposition

Parmi tous les estimateurs sans biais le meilleur au sens du risque quadratique est celui qui a la plus petite variance.

$$Var_{\theta}(T_1) \leq Var_{\theta}(T_2) \qquad \forall \theta \in \Theta$$

pour tout T_2 autre estimateur sans biais.

Si un tel estimateur existe, il est alors dit estimateur sans biais de variance minimale (ou uniformément minimale) : ESBVUM.

amélioration d'un estimateur

Soit T un estimateur sans biais de $g(\theta)$ et S une statistique exhaustive pour θ . Alors

- 1) $E_{\theta}(T/S)$ est un estimateur sans biais de $g(\theta)$
- 2) $Var_{\theta}(E_{\theta}(T/S)) \leq Var_{\theta}(T)$

Conclusion : $E_{\theta}(T/S)$ est un meilleur estimateur sans biais de $g(\theta)$

Démonstration :

 $E_{\theta}(T/S)$ est un estimateur de $g(\theta)$ car ne dépend pas de θ .

1)
$$E_{\theta}(E_{\theta}(T/S)) = E_{\theta}(T) = g(\theta)$$

(Théorème de l'espérance conditionnelle)

2)
$$Var_{\theta}(T) = Var_{\theta}(E_{\theta}(T/S)) + E_{\theta}(Var_{\theta}(T/S))$$

(Théorème de la variance conditionnelle)

$$\implies Var_{\theta}(E_{\theta}(T/S)) = Var_{\theta}(T) - E_{\theta}(Var_{\theta}(T/S)) \leq Var_{\theta}(T)$$

Remarque : Si
$$T = h(S)$$
 alors $E_{\theta}(h(S)/S) = h(S) = T$

Dans ce cas il n'y a pas d'amélioration.

Théorème de Lehmann-Scheffé

Soit T un estimateur sans biais de $g(\theta)$ et S une statistique exhaustive et complète pour θ . Alors

 $E_{\theta}(T/S)$ est l'unique estimateur sans biais de $g(\theta)$ dit estimateur sans biais de variance uniformément minimale (ESBVUM)

Démonstration

Théorème de Rao-Cramer

Soit T un estimateur sans biais de $g(\theta)$. On suppose les conditions de régularité de Fischer vérifiées, alors

$$Var_{ heta}(T) \geq rac{(g'(heta))^2}{I(heta)}$$

La quantité $\frac{(g'(\theta))^2}{I(\theta)}$ est dite borne de Rao-Cramer (*BRC*)

$$Var_{\theta}(T) = \frac{(g'(\theta))^2}{I(\theta)}$$

Démonstration : Rappel :

$$|\rho_{X,Y}| = \left| \frac{Cov(X,Y)}{\sigma_X \sigma_Y} \right| \le 1 \implies Cov(X,Y)^2 \le \sigma_X^2 \sigma_Y^2$$

$$E_{\theta}(T(X)) = \int_{\mathcal{X}} T(x) f_{\theta}(x) dx = \int_{\mathcal{X}} T(x) L(\theta,x) dx = g(\theta) \implies$$

$$\frac{\partial}{\partial \theta} (E_{\theta}(T(X))) = \int_{\mathcal{X}} T(x) \frac{\partial}{\partial \theta} (L(\theta, x)) dx = g'(\theta)$$

$$= \int_{\mathcal{X}} T(x) \frac{\partial}{\partial \theta} (\log L(\theta, x)) L(\theta, x) dx = Cov(T(X), \frac{\partial}{\partial \theta} (\log L(\theta, X)))$$

$$\implies Cov^2(T(X), \frac{\partial}{\partial \theta}(\log L(\theta, X)) \leq Var_{\theta}(T(X))Var(\frac{\partial}{\partial \theta}(\log L(\theta, X)))$$

$$\implies Var_{\theta}(T(X)) \ge \frac{Cov^{2}(T(X), \frac{\partial}{\partial \theta}(\log L(\theta, X))}{Var(\frac{\partial}{\partial \theta}(\log L(\theta, X))} = \frac{g'(\theta)^{2}}{I(\theta)}$$

Cas particulier :
$$g(\theta) = \theta$$

$$BCR = \frac{1}{I(\theta)}$$

Pour que
$$Var_{\theta}(T(X)) \geq \frac{Cov^2(T(X), \frac{\partial}{\partial \theta}(\log L(\theta, X))}{Var(\frac{\partial}{\partial \theta}(\log L(\theta, X)))} = \frac{g'(\theta)^2}{I(\theta)}$$

Il est nécessaire et suffisant que $\frac{\partial}{\partial \theta}(\log L(\theta, X)) = k(\theta)T(X) + I(\theta)$

$$\implies E_{\theta}(\frac{\partial}{\partial \theta}(\log L(\theta, X))) = k(\theta)E_{\theta}(T(X)) + l(\theta)$$

$$\implies E_{\theta}(T(X)) = g(\theta) = -\frac{I(\theta)}{k(\theta)}$$

$$\iff \frac{\partial}{\partial \theta} (\log L(\theta, X) = k(\theta) (T(X) - g(\theta)))$$

Définition : estimateur efficace

Un estimateur sans biais T de $g(\theta)$ est dit efficace si

$$Var_{ heta}(T) = rac{(g'(heta))^2}{I(heta)}$$

Information de Fischer : cas vectoriel

Cas d'un paramètre vectoriel $\theta=(\theta_1,\theta_2,...,\theta_p)$ L'information de Fischer est alors donnée par la matrice des variances-covariances

$$\mathcal{I}(\theta) = \mathcal{V}(\textit{Grad} \log L(\theta, X))$$
 du vecteur $\textit{Grad} \log L(\theta, X) = \begin{cases} \frac{\partial}{\partial \theta_1} \log L(\theta, X) \\ \frac{\partial}{\partial \theta_2} \log L(\theta, X) \end{cases}$. .
$$\frac{\partial}{\partial \theta_p} \log L(\theta, X)$$

Comme pour le cas réel on peut montrer que

$$\mathcal{I}(\theta) = -\left(E\left(\frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_i} \log L(\theta, X)\right)_{1 \le i \le p, 1 \le j \le p,}\right)$$

Information de Fischer : cas vectoriel

Exemple

Soit x une observation de de $X \backsim N(m, \sigma^2)$

Soit x une observation de de
$$X \sim N(m, \sigma^2)$$

$$\mathcal{I}(m, \sigma^2) = -\begin{pmatrix} E(\frac{\partial^2}{\partial m^2} \log L(\theta, X)) & E(\frac{\partial}{\partial m} \frac{\partial}{\partial \sigma^2} \log L(\theta, X)) \\ E(\frac{\partial}{\partial m} \frac{\partial}{\partial \sigma^2} \log L(\theta, X)) & E(\frac{\partial^2}{\partial (\sigma^2)^2} \log L(\theta, X)) \end{pmatrix}$$

$$\mathcal{I}(m, \sigma^2) = -\begin{pmatrix} \frac{1}{\sigma^2} & 0 \\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}$$

Théorème de Rao-Cramer : cas vectoriel

Soit deux matrices définies positives A et B, on dit que $A \ge B$ si

$$Q_A(x) = x^t A x \ge Q_B(x) = x^t B x$$

On rappelle que les matrices de variances-covariances sont définies positives.

Théorème de Rao-Cramer : cas vectoriel

Soit T un estimateur sans biais de $g(\theta)$ (à valeurs dans R^p). On suppose les conditions de régularité de Fischer vérifiées, alors

$$\mathcal{V}_{ heta}(T) \geq \textit{Grad}(g(heta)^t \mathcal{I}(heta)^{-1} \textit{Grad}(g(heta)$$

 $\mathcal{V}_{\theta}(T)$ est la matrice de variances-covariances de T.