Type Author Citation Literature Cutoff Date Full Evaluation D. Abriola(a), A. A. Sonzogni NDS 107, 2423 (2006) 1-Jan-2006

 $Q(\beta^{-})=-9676\ 5$; $S(n)=13438\ 4$; $S(p)=6267\ 4$; $Q(\alpha)=-4836\ 5$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $\Delta Q(\beta^{-})=447 (2003 \text{Au} 03).$

 $Q(\beta^{-}) = -9630.0 \text{ SY}; S(n) = 1.337 \times 10^{4} \text{ 9}; S(p) = 6254 \text{ } 13; Q(\alpha) = -4826 \text{ } 14$ 2003Au03

94Ru Levels

Cross Reference (XREF) Flags

```
A ^{95}Pd β^+p decay (13.3 s) D ^{92}Mo(^3He,n)
B ^{94}Rh ε decay (70.6 s) E ^{96}Ru(p,t)
C ^{94}Rh ε decay (25.8 s) F (HI,xnγ)
```

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0	0+	51.8 min 6	ABCDEF	$\%\beta^+ + \%\varepsilon = 100$
				$T_{1/2}$: from 1968Bo27. Other: 53 min <i>I</i> (1967Ei01).
1430.71 [@] 20	2+		ABCDEF	XREF: D(1370).
				J^{π} : L=2 in (p,t).
2186.6 [@] 3	4+		ABC EF	J^{π} : L=(4) in (p,t), (E2) γ to 2 ⁺ , systematics of N=50 nuclei.
2498.0 [@] 3	6+	65 ns 2	ABC EF	J^{π} : E2 γ to 4 ⁺ .
2503.2 <i>3</i>	(3,4,5)		B E	J^{π} : log ft =6.1 in (4 ⁺) decay, L=(2,4) in (p,t).
2624.4 ^{&} 3	5-	0.51 ns 5	BC EF	J^{π} : E1 γ' s to 4 ⁺ and 6 ⁺ .
2644.1 [@] 4	8+	71 μs 4	A C F	%IT=100
				J^{π} : E2 γ to 6 ⁺ , systematics of N=50 nuclei.
2965 6	(3-)		E	J^{π} : L(p,t)=(3).
2995 6	0+		Е	J^{π} : L(p,t)=0. J^{π} : log ft =6.8 in decay of (4 ⁺).
3117.0 <i>4</i> 3177.3 <i>4</i>	(3,4,5) $(3,4,5)$		B B	J^{π} : log $f = 0.8$ in decay of (4 ⁺). J^{π} : log $f = 7.1$ in decay of (4 ⁺).
3254.7 <i>4</i>	(3,4,5)		В	J^{π} : log $ft=6.7$ in decay of (4^+) .
3520 7	(=, -,=)		E	
3615 7	0_{+}		E	J^{π} : L(p,t)=0.
3657.6 <mark>&</mark> 4	(7^{-})		C F	
3770 8	0_{+}		E	J^{π} : $L(p,t)=0$.
3820 8	(0.1)		E _	
3930.1 4	(8+)		F	
3991.2 [@] 4	$(10)^{+}$	<3.47 ps	F	J^{π} : from E2 γ to 8^+ .
4000 8	(0) -		E	
4197.3 4	(9) ⁻		F	J^{π} : fed from (11) ⁻ with E2 G.
4338.5 <i>4</i> 4489.1 & <i>4</i>	(9)-	0.760 35	F	J^{π} : fed from (11) ⁻ with E2 G.
	(11)-	0.760 ns <i>35</i>	F	J^{π} : from E1 to (10) ⁺ .
4716.6 [@] 4	$(12)^{+}$	23.8 ps 11	F	J^{π} : from E2 to (10) ⁺ .
5567.8 & 4	(13)	2.01 ps 22	F	J^{π} : from E2 to (11) ⁻ .
6275.1 <i>4</i> 6357.6 <i>4</i>	(12^+) (12^+)		F F	
6614.4 [@] 4	$(12)^{+}$	0.97 = 12		M, from M1 to (12) [†]
6918.9 <i>4</i>	$(13)^{-}$	0.87 ps <i>12</i>	F F	J^{π} : from M1 to (12) ⁺ .
7157.6 [@] 4	$(13)^+$	0.33 ps 4	F	J^{π} : from E2 to $(12)^{+}$ and M1 to $(13)^{+}$.
7768.3 4	(14) $(13)^-$	0.33 ps 4	F	J^{π} : fed from (15) ⁻ with E2 G.
7,00.5 1	(13)			7 . 100 Hom (15) With 112 O.

⁹⁴Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
7773.1 [@] 4	(15) ⁺	<0.28 ps	F	J^{π} : from E2 to $(13)^+$.
7909.9 <i>4</i>	(15^+)		F	17 C 1 C (14)= 21 M1 C
7970.0 <i>4</i> 8039.4 <i>4</i>	$(14)^ (14^+)$		F F	J^{π} : fed from (14) ⁻ with M1 G.
8133.2 4	(15)		F	J^{π} : fed from (15) ⁻ with M1 G.
8152.3 <i>4</i>	(14)-		F	J^{π} : fed from (15) ⁻ with M1 G.
8271.8 & 4	(14)	0.291 ps 28	F	J^{π} : from M1 to (13) ⁻ .
8411.2 [@] 4	$(16)^{+}$	<0.69 ps	F	J^{π} : from M1 to (15) ⁺ and E2 to (14) ⁺ .
8501.5 ^{&} 4	(15)	1.28 ps 8	F	J^{π} : from M1 to (14) ⁻ .
8736.7 <i>4</i> 8853.4 <i>4</i>	$(15)^-$ (15^-)		F F	J^{π} : fed from (16) ⁻ with M1 G.
8996.7 ^{&} 4	(16)	<0.69 ps	F	J^{π} : from M1 to (15) ⁻ .
9041.7 [@] 4	(17) ⁺	<1.4 ps	F	J^{π} : from M1 to (16) ⁺ and E2 to (15) ⁺ .
9134.9 <i>4</i>	(16)	F-	F	J^{π} : from E2 to (18) ⁻ .
9254.2 <i>4</i>	(17)		F	J^{π} : fed from (18) ⁻ with M1 G.
9464.0 4	(16 ⁻)	0.260	F	TT C 251 (45) +
9526.6 [@] 4 9789.2 4	(18) ⁺ (17) ⁻	0.360 ps <i>21</i>	F F	J^{π} : from M1 to (17) ⁺ . J^{π} : fed from (18) ⁻ with M1 G.
9921.0 [@] 4	(17) (19) ⁺	<3.4 ps	F	J^{π} : from M1 to (18) ⁺ and E2 to (17) ⁺ .
9928.6 ^{&} 4	(18)	3.49 ps 24	F	J^{π} : from E2 to (16) ⁻ .
10129.4 4	(17^{-})	5.15 ps 2 .	F	• •
10444.3 4	(19)		F	J^{π} : fed from (20) ⁻ with M1 G.
10544.8 <i>4</i> 11041.8 <i>4</i>	(18-)	1.0	F	IT 6 F0 (10)=
11041.8 ⁴ 4 11451.7 5	(20) ⁻ (19 ⁺)	<1.8 ps	F F	J^{π} : from E2 to (18) ⁻ .
12077.2 5	$(20^+,21^+)$		F	
12429.6 5	$(20^+,21^+)$		F	
12484.1 4	(20-,21-)		F	
12922.8 <i>4</i> 12940.0 <i>5</i>	(20^{-}) (20^{+})		F F	
13053.4 5	(22^{-})		F	
13077.7 5	(21-)		F	
13247.0 <i>5</i> 13623.8 <i>5</i>	$(20^+,21^+)$ (21^+)		F F	
13023.8 <i>3</i> 13896.9 <i>4</i>	(21)		F	
13917.0 5	$(23^-,24^-)$		F	
13938.8 4	(21-,22-)		F	
14226.7 <i>5</i> 14293.5 <i>5</i>	(21 ⁻) (23 ⁻)		F F	
14674.8 5	$(21^-,22^-)$		F	
14805.7 <i>4</i>	(21-,22-)		F	
15289.4 <i>4</i> 16767.4 <i>5</i>	$(22^-,23^-)$ $(24^-,25^-)$		F	
18321.4 5	(24 ,25) (25-,26-,27-)		F F	
	· · / · /-· /		=	

 $^{^{\}dagger}$ From least-squares fit to E γ . ‡ Unless otherwise explained, from γ decay pattern.

[#] From (HI,xny).

@ Band(A): Cascade based on 0⁺.

& Band(B): Cascade based on 5⁻.

γ (94Ru)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	E_f	${\rm J}_f^\pi$	Mult. [†]	$lpha^{\ddagger}$	Comments
							0.00041	
1430.71 2186.6	2 ⁺ 4 ⁺	1430.7 2 755.9 2	100 100	0.0 1430.71	0^{+}	(E2) (E2)	0.00041 0.00175	α =0.00041; α (K)=0.00036 <i>I</i> α =0.00175; α (K)=0.00151 <i>5</i> ; α (L)=0.00018 <i>I</i>
2498.0	6 ⁺	311.4 2	100	2186.6	4 ⁺	E2)	0.0238	α =0.0238; α (K)=0.0205 7; α (L)=0.00271 9; α (M)=0.00050 2 B(E2)(W.u.)=0.117 4
2503.2	(3,4,5)	1072.5 2	100	1430.71	2+			2(22)() 011177
2624.4	5-	126.5 2	46.0 18	2498.0	6+	E1	0.0707	α =0.0707; α (K)=0.0620 <i>19</i> ; α (L)=0.00722 22; α (M)=0.00131 <i>4</i> ; α (N+)=0.00024 <i>I</i> B(E1)(W.u.)=0.000100 <i>II</i>
		437.7 2	100 3	2186.6	4+	E1	0.00232	α =0.00232; α (K)=0.00204 7; α (L)=0.00023 1 B(E1)(W.u.)=5.2×10 ⁻⁶ 6
2644.1	8+	146.1 2	100	2498.0	6+	E2	0.335	α =0.335; α (K)=0.278 9; α (L)=0.0471 15; α (M)=0.0087 3; α (N+)=0.00155 5 B(E2)(W.u.)=0.0047 3
3117.0	(3,4,5)	492.6 <i>3</i>	100	2624.4	5-			
3177.3	(3,4,5)	552.9 <i>3</i>	100	2624.4	5-			
3254.7	(3,4,5)	1068.1 <i>3</i>	100	2186.6	4+			
3657.6	(7^{-})	1033.3 2	100	2624.4	5-	(E2)	0.00083	α =0.00083; α (K)=0.00072 2
3930.1	(8+)	1432.1 2	100	2498.0	6+			
3991.2	$(10)^{+}$	1347.1 2	100	2644.1	8+	E2	0.00047	α =0.00047; α (K)=0.00041 <i>I</i>
4197.3	$(9)^{-}$	267.2 2	13.4 6	3930.1	(8^{+})			
		539.6 2	100.0 17	3657.6	(7^{-})			
		1553.2 2	16.8 11	2644.1	8+			
4338.5	$(9)^{-}$	680.9 2	100	3657.6	(7^{-})			
4489.1	(11)	150.7 2	1.65 24	4338.5	(9)	E2	0.300	α =0.300; α (K)=0.249 8; α (L)=0.0416 13; α (M)=0.00771 24; α (N+)=0.00137 5 B(E2)(W.u.)=4.2 7
		291.7 2	46.8 5	4197.3	(9)-	E2	0.0296	α =0.0296; α (K)=0.0254 8; α (L)=0.00342 11; α (M)=0.00063 2; α (N+)=0.00012 B(E2)(W.u.)=4.38 21
		498.0 2	100.0 9	3991.2	$(10)^{+}$	E1	0.00169	α =0.00169; α (K)=0.00149 5; α (L)=0.00017 1 B(E1)(W.u.)=2.35×10 ⁻⁶ 12
4716.6	$(12)^{+}$	227.4 2	1.54 19	4489.1	$(11)^{-}$			
		725.3 2	≤100	3991.2	$(10)^{+}$	E2	0.00194	α =0.00194; α (K)=0.00168 5; α (L)=0.00020 <i>I</i> B(E2)(W.u.)=5 +7-5
5567.8	(13)	1078.8 2	100	4489.1	(11)	E2	0.00075	α=0.00075; α(K)=0.00065 2 B(E2)(W.u.)=7.6 9
6275.1	(12^{+})	2283.8 2	100	3991.2	$(10)^{+}$			
6357.6	(12^{+})	1641.0 2	33 6	4716.6	$(12)^{+}$			
		1868.5 2	100 9	4489.1	$(11)^{-}$			
6614.4	$(13)^{+}$	256.7 2	50.7 4	6357.6	(12^{+})			
		1897.9 2	100.0 12	4716.6	$(12)^{+}$	M1		B(M1)(W.u.)=0.0025 4
6918.9	(13^{-})	2430.0 2	100	4489.1	$(11)^{-}$			
7157.6	$(14)^{+}$	543.0 2	100.0 11	6614.4	$(13)^{+}$	M1	0.00388	α =0.00388; α (K)=0.00336 <i>10</i> ; α (L)=0.00039
		2440.9.2	206	1716 6	(12)+	Ea		I B(M1)(W.u.)=0.41 5 B(F2)(W.u.)=0.021 6
7768.3	(12)=	2440.8 2	2.8 6	4716.6	$(12)^{+}$	E2		B(E2)(W.u.)=0.021 6
7773.1	$(13)^{-}$ $(15)^{+}$	2200.4 2 615.3 2	100 ≤100	5567.8 7157.6	$(13)^{-}$ $(14)^{+}$	(M1)	0.00289	α =0.00289; α (K)=0.00251 8; α (L)=0.00029 1
1113.1	(13)	1158.8 2	≤100 23.8 <i>13</i>	6614.4	$(14)^+$ $(13)^+$	E2	0.00289	α =0.00289; α (K)=0.00251 8; α (L)=0.00029 1 α =0.00064; α (K)=0.00056 2
7909.9	(15^+)		8.5 <i>12</i>		$(15)^+$	EZ	0.00004	u=0.00004, u(K)=0.00030 2
1707.7	(13)	137.0 2 752.1 2	100.0 24	7773.1 7157.6	$(13)^+$			
		1295.5 2	62 4	6614.4	(14) $(13)^+$			
7970.0	$(14)^{-}$	2402.0 2	100	5567.8	$(13)^{-}$			
8039.4	(14) (14^+)	1764.3 2	100 17	6275.1	(12^+)			
0007.1	(-1)	1,011,0 4	100 17	02/0.1	(12)			

γ (94Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
8039.4	(14^{+})	3322.7 2	50 8	4716.6 (12)+			
8133.2	$(15)^{-}$	2565.4 2	100	5567.8 (13)			
8152.3	$(14)^{-}$	383.9 2	22.0 24	7768.3 (13)			
0071.0	(1.4)=	2584.5 2	100.0 24	5567.8 (13)			
8271.8	$(14)^{-}$	120.1 2	8.5 7	8152.3 (14)	M1	0.0162	a=0.0162; a(V)=0.0142 5; a(I)=0.00166 5;
		301.7 2	5.2 13	7970.0 (14)	M1	0.0162	α =0.0162; α (K)=0.0142 5; α (L)=0.00166 5; α (M)=0.00030 <i>I</i> B(M1)(W.u.)=0.13 <i>4</i>
		503.3 2	4000	7768.3 (13)	3.54		P. 2. 11 (27)
0.411.0	(10)+	2704.1 2	100.0 20	5567.8 (13)	M1	0.00470	B(M1)(W.u.)=0.0034 4
8411.2	$(16)^{+}$	501.0 2 638.0 2	≤43 100.0 <i>18</i>	7909.9 (15 ⁺) 7773.1 (15) ⁺	(M1) M1	0.00470 0.00266	α =0.00470; α (K)=0.00408 13; α (L)=0.00047 1 α =0.00266; α (K)=0.00230 7; α (L)=0.00026 1
		1253.8 2	17.0 12	7157.6 (14) ⁺	E2	0.00266	α =0.00200, α (K)=0.00250 7, α (L)=0.00020 1 α =0.00054; α (K)=0.00047 2
8501.5	$(15)^{-}$	229.8 2	100.0 20	8271.8 (14)	M1	0.0326	α =0.0326; α (K)=0.0285 9; α (L)=0.00336 10;
0501.5	(13)	227.02	100.0 20	02/1.0 (11)	1,11	0.0320	α (M)=0.00062 2; α (N+)=0.00012 B(M1)(W.u.)=0.44 3
		349.0 2	39.2 20	8152.3 (14)	M1	0.0112	α =0.0112; α (K)=0.0098 3; α (L)=0.00114 4; α (M)=0.00021 I
		368.3 2	28.1 13	8133.2 (15)-	M1	0.0098	B(M1)(W.u.)=0.049 4 α =0.0098; α (K)=0.0086 3; α (L)=0.00100 3; α (M)=0.00018 1
							B(M1)(W.u.)=0.0300 24
		461.9 2	24.2 20	8039.4 (14 ⁺)	3.54	0.00400	0.00400 (77) 0.00074 17 (7) 0.00044 1
		531.6 2	30.7 13	7970.0 (14)	M1	0.00408	α=0.00408; α(K)=0.00354 11; α(L)=0.00041 1 B(M1)(W.u.)=0.0109 9
		733.3 2	28.1 13	7768.3 (13)	E2	0.00189	α =0.00189; α (K)=0.00163 5; α (L)=0.00019 <i>I</i> B(E2)(W.u.)=7.1 <i>6</i>
		1344.0 2	66.7 20	7157.6 (14)+			
8736.7	(15)-	1582.8 2 464.8 2	5.9 20 53 3	6918.9 (13 ⁻) 8271.8 (14) ⁻			
8730.7	$(15)^{-}$	584.2 2	100 5	8152.3 (14)			
		603.7 2	22 5	8133.2 (15)			
		963.4 2	22 5	7773.1 (15) ⁺			
8853.4	(15^{-})	581.8 2	69 8	8271.8 (14)-			
		701.1 2	100 8	8152.3 (14)			
8996.7	(16)	259.7 2	10.4 5	8736.7 (15)	M1	0.0237	α =0.0237; α (K)=0.0208 7; α (L)=0.00244 8; α (M)=0.00045 I
		495.0 2 725.0 2	100.0 13	8501.5 (15) ⁻ 8271.8 (14) ⁻	M1	0.00478	α =0.00478; α (K)=0.00420 <i>13</i> ; α (L)=0.00048 2
9041.7	$(17)^{+}$	630.2 2	100.0 14	8411.2 (16)+	M1	0.00273	α =0.00273; α (K)=0.00237 8; α (L)=0.00027 1
0124.0	(16)=	1268.5 2	11.8 9	7773.1 (15)+	E2	0.00053	α =0.00053; α (K)=0.00046 1
9134.9	(16)	281.6 <i>2</i> 398.1 <i>2</i>	73.2 <i>24</i> 100 <i>5</i>	8853.4 (15 ⁻) 8736.7 (15) ⁻			
		1225.1 2	27 5	7909.9 (15 ⁺)			
9254.2	(17)	119.7 [#] 2 257.3 2	4.5 [#] 4 100.0 8	9134.9 (16) ⁻ 8996.7 (16) ⁻			
9464.0	(16^{-})	610.6 2	100 6	8853.4 (15 ⁻)			
9526.6	(18) ⁺	1691.0 2 484.7 2	8 <i>4</i> ≤100	7773.1 (15) ⁺ 9041.7 (17) ⁺	M1	0.00503	α =0.00503; α (K)=0.00441 <i>14</i> ; α (L)=0.00051 2 B(M1)(W.u.)=0.5 <i>5</i>
9789.2	(17)-	1115.6 2 325.2 2	18.4 11	8411.2 (16) ⁺ 9464.0 (16 ⁻)			D(M11)(W.U.)=U.S S
		654.1 2	20.1 11	9134.9 (16)			
		792.4 <i>2</i> 1288.0 <i>2</i>	100.0 <i>17</i> 8.4 <i>11</i>	8996.7 (16) ⁻ 8501.5 (15) ⁻			
		1200.0 2	0.7 11	0501.5 (15)			

γ (94Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
9921.0	(19)+	394.3 2	100 3	9526.6	(18)+	M1	0.00831	α =0.00831; α (K)=0.00728 22; α (L)=0.00084 3; α (M)=0.00015
		879.3 2	32 3	9041.7	(17) ⁺	E2	0.00120	I α =0.00120; α (K)=0.00104 4; α (L)=0.00012
9928.6	(18)	139.6 2	93.9 11	9789.2		M1	0.124	α =0.124; α (K)=0.108 4; α (L)=0.0129 4; α (M)=0.00237 7; α (N+)=0.00046 1 B(M1)(W.u.)=0.61 5
		401.9 2	9.5 11	9526.6	$(18)^{+}$			
		674.4 2	58.1 <i>17</i>	9254.2	(17)	M1	0.00234	α =0.00234; α (K)=0.00203 6; α (L)=0.00023 <i>I</i> B(M1)(W.u.)=0.0034 <i>3</i>
		793.4 2	100.0 <i>17</i>	9134.9	(16)	E2	0.00155	α =0.00155; α (K)=0.00134 4; α (L)=0.00016 <i>I</i> B(E2)(W.u.)=5.7 5
		886.8 2	17.3 <i>17</i>	9041.7	$(17)^{+}$			
		931.9 2	75.4 17	8996.7		E2	0.00105	α =0.00105; α (K)=0.00091 3; α (L)=0.00011 B(E2)(W.u.)=1.93 <i>15</i>
10129.4	(17^{-})	1718.3 2	100	8411.2	` '			
10444.3	$(19)^{-}$	515.6 2	100 <i>3</i>	9928.6	` '			
		1190.4 2	95 <i>3</i>	9254.2				
10544.8	(18 ⁻)	415.4 2 615.7 2	100 8	10129.4 9928.6				
11041.8	(20)	597.5 2	21.9 9	10444.3	(19)	M1	0.00309	α =0.00309; α (K)=0.00268 8; α (L)=0.00031 <i>I</i>
		1113.4 2	≤100	9928.6		E2	0.00070	α =0.00070; α (K)=0.00061 2
11451.7	(19^+)	2410.0 2	100	9041.7				
12077.2	$(20^+,21^+)$	2156.2 2	100	9921.0	$(19)^{+}$			
12429.6	$(20^+,21^+)$	2508.6 2	100	9921.0	$(19)^{+}$			
12484.1	$(20^-,21^-)$	2039.9 2	100	10444.3				
12922.8	(20^{-})	1881.3 2	100 9	11041.8	$(20)^{-}$			
		2377.6 2	86 9	10544.8	(18^{-})			
12940.0	(20^+)	3019.0 2	100	9921.0	$(19)^{+}$			
13053.4	(22^{-})	2011.6 2	100	11041.8	$(20)^{-}$			
13077.7	(21^{-})	2035.8 2	100	11041.8	$(20)^{-}$			
13247.0	$(20^+,21^+)$	1795.3 2	100	11451.7	(19^+)			
13623.8	(21^{+})	683.8 2		12940.0	(20^+)			
		3702.8 2	100 25	9921.0	$(19)^{+}$			
13896.9	(21^{-})	1412.9 2	$1.0 \times 10^2 \ 4$	12484.1	$(20^-,21^-)$			
		2854.7 2	67 22	11041.8				
		3452.6 2	78 22	10444.3				
13917.0	$(23^-,24^-)$	863.6 2	100	13053.4				
13938.8	$(21^-,22^-)$	2897.1 2	100	11041.8				
14226.7	(21^{-})	3184.8 2	100	11041.8	` '			
14293.5	(23^{-})	1215.8 2	100 18	13077.7	` '			
		1240.1 2	71 12	13053.4	` /			
14674.8	$(21^-,22^-)$	3632.9 2	100	11041.8				
14805.7	$(21^-,22^-)$	867.0 2	$1.0 \times 10^2 \ 3$		$(21^-,22^-)$			
		3763.7 2	27 9	11041.8	` '			
15289.4	$(22^-,23^-)$	483.8 2			$(21^-, 22^-)$			
		1392.6 2	100 <i>13</i>	13896.9	,			
		2805.2 2	23 6		$(20^-,21^-)$			
16767.4	$(24^-,25^-)$	1477.9 2	100		$(22^-,23^-)$			
18321.4	$(25^-, 26^-, 27^-)$	1554.0 2	100	16767.4	$(24^-,25^-)$			

γ (94Ru) (continued)

[†] From (HI,xn γ).

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed with undivided intensity.

 $^{94}_{44}{
m Ru}_{50}$

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109,2501 (2008)	1-Apr-2008

 $Q(\beta^-) = -6393 \ 10$; $S(n) = 10694 \ 10$; $S(p) = 7348 \ 5$; $Q(\alpha) = -1696.2 \ 9$ 2012Wa38

Note: Current evaluation has used the following Q record -6393 1010694 107344 9-1692 9 2003Au03. α : Additional information 1.

⁹⁶Ru Lev<u>els</u>

Cross Reference (XREF) Flags

Α	⁹⁶ Rh ε decay (9.90 min)	F	Coulomb excitation
В	96 Rh ε decay (1.51 min)	G	96 Ru(γ,γ')
C	(HI,xnγ)	Н	65 Cu(36 S,p4n γ)
D	96 Ru(p,p' γ)	I	95 Mo(3 He,2n γ)
E	96 Ru (α,α')		

E(level)	J ^π †	T _{1/2} ‡	XREF	Comments
0.0#	0+	stable	ABCDEFGHI	$T_{1/2}$: With Q(2 ε)=2718 keV 8 and Q(2 β ⁺)=674 keV 8 (2003Au03), 96 Ru could decay to 96 Mo by 2 ε , 2 β ⁺ or $\varepsilon\beta$ ⁺ . Experimentally, only upper limits were obtained, the shortest value being $T_{1/2}(2\beta^+)>3.1x10^{16}$ y with a 68% confidence level (1985No03). < $r^2>^{1/2}$ (charge)=4.393 5 (2004An14).
832.56 [#] 5	2+	2.94 ps 6	ABCDEFGHI	Q=-0.13 9 (1980La01,1989Ra17); B(E2) \uparrow =0.240 5 J^{π} : γ to 0 ⁺ is E2. $T_{1/2}$: from B(E2) value, see Coulomb Excitation dataset.
1518.05 [#] 6	4+	6.9 ps 5	ABCDEF HI	J^{π} : stretched E2 cascade in (α ,2n γ). $T_{1/2}$: Weighted av of 6.8 ps 7 from 65 Cu(36 S,p4n γ), 6.9 ps 9 from Coulomb excitation and 6.9 ps 9 from 95 Mo(3 He,2n γ).
1931.07 6	2+	0.38 ps <i>3</i>	AB D FG I	T _{1/2} : Weighted av of 0.38 ps +15-11 from 96 Ru(p,p'γ), 0.39 ps 6 from Coulomb excitation and 0.37 ps 6 from 95 Mo(3 He,2nγ). J ^π : E2+M1 γ to 2 ⁺ . J=2 from pγ(θ) in (p,p'γ) (1979La15,1986Ad04).
2148.78 7	0^{+}	$0.46^{\mathbf{d}} \text{ ps } +63-18$	B D I	J^{π} : from $p\gamma(\theta)$ in $(p,p'\gamma)$, E2 γ to 2 ⁺ .
2149.74 [#] 7	6+	15 ps 5	A CDE HI	J^{π} : from Hauser-Feshbach analysis, E2 γ to 4 ⁺ . T _{1/2} : Weighted av of 12.7 ps <i>10</i> from ⁶⁵ Cu(³⁶ S,p4n γ) and 26 ps 2 form ⁹⁵ Mo(³ He,2n).
2283.88 9	2+	0.15 fs 5	AB D F I	J^{π} : from $\sigma(\theta)$ in Coulomb Excitation. $T_{1/2}$: from B(E2) (Coulomb Excitation).
2462.16 9	4	0.10^{a} ps $+5-3$	AB D I	J^{π} : J from $\gamma\gamma(\theta)$ (2002Kl07).
2524.85 9	3+,4+	<0.4 ^d ps	AB D I	J^{π} : $p\gamma(\theta)$ in $(p,p'\gamma)$ and Hauser-Feshbach analysis.
2528.47 10	1+,2+		D I	J^{π} : from $p\gamma(\theta)$ in $(p,p'\gamma)$.
2576.02 <i>9</i> 2579.02 <i>15</i>	(2^+) $1^+, 2^+, 3^+$		AB D I	E2+M1 γ to 2 ⁺ .
2588.41 [@] 8	5-	≥2.8 ps	ABCD HI	J^{π} : E1 γ to 4 ⁺ and log ft =6.8 from 6 ⁺ .
2649.99 9	3(-)	_2.0 ps	AB D I	J^{π} : J from $\gamma\gamma(\theta)$ (2002Kl07), parity from syst.
2699.80 18	4+,5		D I	77(7)
2739.78 12	(2+)	<0.4 ^d ps	B D I	J ^π : From py(θ) in (p,p'γ), Hauser-Feshbach analysis in (p,p'γ) gives $2^+,3^+, \gamma$ to 0^+ excludes 3^+ .
2760.20 9	$(4^+,5)$	<0.12 ^d ps	AB D I	J^{π} : Hauser-Feshbach analysis in $(p,p'\gamma)$.
2793.89 8	(5,6)		A E I	J^{π} : From $\gamma\gamma(\theta)$ and spin and parity selection rules from 2002Kl07.

96Ru Levels (continued)

E(level)	${\sf J}^^{\dagger}$	T _{1/2} ‡	XRI	ΞF	Comments
2851.12 <i>14</i>	$(2^+,3)$	$0.14^{a} \text{ ps } +10-5$	DE	I	J^{π} : From $\gamma\gamma(\theta)$ and spin and parity selection rules from 2002Kl07.
2891.64 9	6+	$< 0.20^{d} \text{ ps}$	A C	I	J^{π} : $\gamma(\theta)$ in HI reactions.
2897.61 <i>13</i>	3 ⁽⁺⁾	$<0.4\frac{d}{ps}$	A D	I	J^{π} : from $\gamma\gamma(\theta)$ (2002Kl07).
2950.39 [#] 8	8+	11 ps 4	A C	HI	J^{π} : stretched E2 cascade in $(\alpha, 2n\gamma)$.
		11 ps 4		nı	T _{1/2} : Weighted av. of 9.5 ps 8 from ⁶⁵ Cu(³⁶ S,p4nγ) and 20 ps 2 from ⁹⁵ Mo(³ He,2n).
2987.8 <i>3</i>	(0,4)		D		77.1.0.7.10.01.0671.1
2996.30 16	$2^+,3^+,4^+$		B D	I	J^{π} : log ft =5.4 from 3 ⁺ ⁹⁶ Rh isomer gives (2,3,4) ⁺ .
3060.46 <i>15</i>	(1,4)		D		J^{π} : From $\gamma\gamma(\theta)$ and spin and parity selection rules from 2002Kl07.
3072.21 21	$(3^{-},4)$		D D	I	J^{π} : γ to 5 ⁻ ; not seen in decay of 6 ⁺ ⁹⁶ Rh isomer.
3076.28 <i>11</i> 3077.1 <i>5</i>	3-(5.6)		B D AB	Ι	J^{π} : log ft =7.0 from 6 ^{+ 96} Rh isomer gives (5,6,7); γ to 4 ⁺ .
3090.20 <i>19</i>	(5,6) 2 ⁺	<0.13 ^d ps	B DE	т.	J^{π} : log ft =5.65 from 3 ⁺ ⁹⁶ Rh isomer gives (3,0,7), γ to 4 ⁺ .
3154.24 20	1 ⁽⁺⁾	3.12^{ac} fs 14	в ре	I G	J^{π} : 10g J^{π} : 0.05 from 5° 7° Rn isomer gives 2°,5°,4°; γ to 0°. J^{π} : D γ to 0° and two more γ 's to 2° levels.
3166.76 2 <i>1</i>	(5,6)	3.12 18 14	A D	I	log ft =6.3 from 6 ⁺ 96 Rh isomer gives (5,6,7); γ to 4 ⁺ .
3172.4 3	(9^+)		Αυ	Н	$\log ji = 0.5$ from σ . Kii isomer gives $(5,0,7)$, γ to τ .
3210.13 22	(2,6)		D	I	
3232.2 5	(0,4)		D		
3261.03 18	2+		B D	I	J^{π} : log ft =5.42 from 3 ⁺ ⁹⁶ Rh isomer; γ to 0 ⁺ .
3281.3 <i>3</i>	(3,7)			Ι	
3282.4 3	1	49.2 ^c fs 35		G	J^{π} : D γ to 0^+ g.s.
3291.46 [@] 15	7-	7.1 ^b ps 9	A C	HI	J^{π} : stretched cascade in $(\alpha,2n\gamma)$ and $\gamma\gamma(\theta)$ and spin and parity selection rules from 2002Kl07.
3291.54 18	4 ⁺	<0.4 ^d ps	AB	I	J^{π} : from $\gamma\gamma(\theta)$ (2002Kl07), γ to 2 ⁺ .
3306.78 12	5		Α		J^{π} : log ft =6.2 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7); γ to 3 ⁽⁻⁾ .
3362.54 20	(4,8)		A		06-1
3377.55 10	5 ⁺		A		J^{π} : log ft =5.4 from 6 ⁺ 9 ⁶ Rh isomer gives (5,6,7) ⁺ ; γ to 3 ⁻ .
3380.51 10	$(6,7)^+$	126 ^c fs 21	A	_	J^{π} : log ft=5.4 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7) ⁺ ; γ to 8 ⁺ .
3447.9 <i>10</i> 3479.6 <i>3</i>	1	35.3 ^c fs 28		G G	J^{π} : D γ to 0^{+} g.s. J^{π} : D γ to 0^{+} g.s.
3544.52 <i>13</i>	(6,7)	33.3 18 20	A	ď	J^{π} : γ to 5; log ft =6.6 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7); γ to 8 ⁺ .
3706.50 18	$(5,6)^+$		Α		J^{π} : log ft =5.8 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7) ⁺ ; γ to 4 ⁺ .
3742.87 <i>15</i>	(5,6)		A		J^{π} : log ft =6.3 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7); γ to 4 ⁺ .
3755.15 20	$(5,6,7)^+$		A		J^{π} : log ft =5.7 from 6 ⁺ ⁹⁶ Rh isomer gives $(5,6,7)^+$; γ to 8 ⁺ .
3805.69 20	(5,6,7)		A		J^{π} : log ft =6.4 from 6 ⁺ 9 ⁶ Rh isomer.
3817.22 [#] <i>13</i>	10 ⁺	3.5^{b} ps 4	С	Н	J^{π} : stretched E2 cascade in $(\alpha, 2n\gamma)$.
3887.23 11	$(5,6,7)^+$	1	Α		J^{π} : log $ft=5.4$ from 6^{+96} Rh isomer.
3928.6 <mark>&</mark> 4	(10^{+})			Н	
3951.08 [@] 17	9-	8.3 ^b ps 8	С	Н	J^{π} : E2 γ to 7^{-} .
4057.52 20	(5,6)	от роз	Α		J^{π} : log ft =6.0 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7); γ to 4 ⁺ .
4080.28 15	$(5,6,7)^+$		A		J ^{π} : log ft =5.9 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7) ⁺ ; γ to 2 ⁺ would be an unlikely [M3] and select 5 ⁺ .
4112.99 12	$(6,7)^+$		Α		J^{π} : log ft=5.7 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7) ⁺ ; γ to 8 ⁺ 5.69.
4148.2 5	(5,6,7)		A		J^{π} : log ft =7.5 from 6 ⁺ 96 Rh isomer gives (5,6,7); γ to 6 ⁺ .
4210.8 <i>4</i>	(5,6,7)		Α		J^{π} : log ft =6.7 from 6 ⁺ ⁹⁶ Rh isomer.
4262.1 <i>4</i>	(8,12)		C		
4265.0 ^{&} 4	(11^{+})			H	

⁹⁶Ru Levels (continued)

E(level)	${\sf J}^^{\dagger}$	$T_{1/2}^{\ddagger}$	XR	EF	Comments
4418.27 [#] 16 4521.08 20 4534.03 21	12 ⁺ (5,6) ⁺ 10 ⁻	21 ^b ps 3	C A C	Н	J^{π} : stretched E2 to 10^+ . J^{π} : log ft =5.5 from 6^+ 96 Rh isomer gives $(5,6,7)^+$; γ to 4 rules out 7.
4560.93 <i>19</i> 4592.5 <i>5</i> 4598.9 <i>7</i>	$(5,6)^+$ (5,6,7)		A A C	11	J^{π} : log ft =5.6 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7) ⁺ ; γ to 4 ⁺ . J^{π} : log ft =6.0 from 6 ⁺ ⁹⁶ Rh isomer gives (5,6,7); γ to 2 ⁺ .
4710.9 ^{&} 3	(12^+)			Н	
4777.42 12	5 ⁺		A		J^{π} : log $ft=5.1$ from 6^+ 96 Rh isomer gives $(5,6,7)^+$; γ to 3^- rules out 6 and 7.
4798.7 [@] 3	11 ⁽⁻⁾	2.6 ^b ps 5	C	H	
4866.0? <i>4</i> 4949.64 <i>17</i>	(10,14) 5 ⁺		C		J^{π} : log $ft=5.3$ from 6^{+} ⁹⁶ Rh isomer gives $(5,6,7)^{+}$; γ to 3^{+} rules out
5274.3? <i>4</i>			A		6 and 7.
5531.9 ^{&} 3	$(9,13)$ (13^+)		С	ш	
5533.9? 5	(13^{-})		С	H H	
5541.47 22	$(5,6,7)^+$		Α		J^{π} : log ft=4.96 from 6 ⁺ ⁹⁶ Rh isomer.
5680.69 [#] 19	14+	2.43 ^b ps 21	C	Н	J^{π} : E2 γ to 12 ⁺ .
5750.2 [@] 3	$13^{(-)}$	$2.1^{b} \text{ ps } 4$	C	Н	·
5978.5 <mark>&</mark> 4	(14^{+})			Н	
5994.5? <i>4</i>	(9,13)		C		
6278.3 <i>3</i>	$14^{(-)}$		C	H	
6441.61 [#] 24	16 ⁺	≤7.4 ^b ps	C	H	J^{π} : E2 from 14 ⁺ .
6678.9 5	(14,18)			H	
6754.1 [@] 4	15 ⁽⁻⁾			H	
6769.8 5	(14,18)			H	
6777.1 <i>4</i> 7415.0 <i>5</i>	$16^{(-)}$ (17^+)			H H	
7415.0 5	(17) (16^+)			H	
7534.8 5	(17^{+})			Н	
7558.3 <i>5</i>	17 ⁽⁻⁾			H	
7951.2 [@] 5	$17^{(-)}$	≤4.2 ^b ps		Н	
8187.6 <i>10</i>	(17^{+})			H	
8205.7 [#] 5	18+		C	H	J^{π} : E2 γ to 16 ⁺ .
8236.0 <i>5</i>	18 ⁽⁻⁾			H	
8499.6 <i>10</i> 8644.1 <i>6</i>	(17^+) (18^+)			H H	
8736.2 <i>6</i>	(18^{+})			Н	
8968.8 11	(18^{+})			H	
9101.0 11	(18^+)			H	
9249.1 <i>7</i> 9250.3 <i>6</i>	(20^+)			H	
9391.4 [@] 5	(18 ⁻)			H	
9391.4° 3 9586.4 7	(19^{-}) (20^{+})			H H	
9665.3 6	(19^{-})			Н	
9713.4 7	(19^+)			H	
9852.2 12	(20^+)			H	
9892.3 7	(21-)			H	
9992.4 [@] 6 9997.4 8	(21^{-}) (21^{+})			H H	
10592.8 9	(21^+) (22^+)			H	

⁹⁶Ru Levels (continued)

E(level)	$J^{\pi \dagger}$	XREF
10631.5 8	(22^{+})	Н
10720.4 8	(22^{+})	H
11066.1 <i>12</i>	(22^{+})	H
11360.1 <i>12</i>	(22^{+})	H
11601.4 [@] 12	(23^{-})	Н

 $^{^{\}dagger}$ From $\sigma(\theta)$ and γ decay patterns, except as noted.

[‡] From $(p,p'\gamma)$, except where noted.

^{*} From $(p,p'\gamma)$, except where noted # Band(A): g.s. cascade.

@ Band(B): 5^- cascade.

& Band(C): (10^+) cascade.

a From 96 Ru $(p,p'\gamma)$.

b From RDDS in 65 Cu $(^{36}$ S,p4n $\gamma)$.

c From 96 Ru (γ,γ') .

d From DSAM in 95 Mo $(^{3}$ He,2n $\gamma)$.

γ (96	Ru)
--------------	-----

							$\gamma(r^*Ku)$	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	δ	α	Comments
832.56	2+	832.55 5	100	0.0 0+	E2		0.001360 19	$\alpha(K)$ =0.001190 17; $\alpha(L)$ =0.0001395 20; $\alpha(M)$ =2.56×10 ⁻⁵ 4 $\alpha(O)$ =2.11×10 ⁻⁷ 3; $\alpha(N+)$ =4.33×10 ⁻⁶ B(E2)(W.u.)=18.4 4 E _{γ} : weighted average of 832.52 10 (96 Rh ε decay (9.90 min)), 832.51 9 ((HI,xn γ)), 832.57 5 (96 Ru(p,p' γ)), 831.6 4 (65 Cu(36 S,p4n γ)), 832.6 1 (95 Mo(3 He,2n γ)).
1518.05	4+	685.47 <i>4</i>	100	832.56 2+	E2		0.00222 4	$\alpha(K)=0.00194$ 3; $\alpha(L)=0.000231$ 4; $\alpha(M)=4.24\times10^{-5}$ 6; $\alpha(N)=6.82\times10^{-6}$ 10; $\alpha(O)=3.42\times10^{-7}$ 5 $\alpha(N+)=7.16\times10^{-6}$ 10 B(E2)(W.u.)=20.7 15 E _{γ} : weighted average of 685.47 10 (96 Rh ε decay (9.90 min)),
1931.07	2+	1098.49 5	100 4	832.56 2+	E2+M1	-1.1 <i>I</i>	0.000745 11	685.34 12 ((HI,xn γ)), 685.49 5 (96 Ru(p,p $'\gamma$)), 685.1 4 (65 Cu(36 S,p4n γ)), 685.5 1 (95 Mo(3 He,2n γ)). α (K)=0.000654 10; α (L)=7.46×10 ⁻⁵ 11; α (M)=1.366×10 ⁻⁵ 20 α (O)=1.174×10 ⁻⁷ 18; α (N+)=2.33×10 ⁻⁶ B(E2)(W.u.)=18.4 24; B(M1)(W.u.)=0.019 3 E $_{\gamma}$: weighted average of 1098.2 2 (96 Rh ε decay (9.90 min)),
		1930.9 2	6.0 10	0.0 0+				1098.51 5 (96 Ru(p,p' γ)), 1098.5 1 (95 Mo(3 He,2n γ)). Mult., δ : from 95 Mo(3 He,2n γ). B(E2)(W.u.)=35 δ ; B(M1)(W.u.)=0.0016 7 E $_{\gamma}$ I $_{\gamma}$: from 95 Mo(3 He,2n γ).
2148.78	0+	1316.22 6	100	832.56 2+	E2		0.000517 8	$\alpha(K)=0.000429 \ 6; \ \alpha(L)=4.88\times10^{-5} \ 7; \ \alpha(M)=8.93\times10^{-6} \ 13;$ $\alpha(N)=1.445\times10^{-6} \ 21$ $\alpha(O)=7.65\times10^{-8} \ 11; \ \alpha(N+)=3.05\times10^{-5} \ 5$ B(E2)(W.u.)=12 +5-12 E_{γ} : weighted average of 1316.23 $7 \ (^{96}Ru(p,p'\gamma)), \ 1316.2 \ 1 \ (^{95}Mo(^{3}He,2n\gamma)).$
2149.74	6+	631.70 4	100	1518.05 4+	E2		0.00276 4	$\alpha(K)$ =0.00241 4; $\alpha(L)$ =0.000289 4; $\alpha(M)$ =5.31×10 ⁻⁵ 8; $\alpha(N)$ =8.52×10 ⁻⁶ 12; $\alpha(O)$ =4.24×10 ⁻⁷ 6 $\alpha(N+)$ =8.95×10 ⁻⁶ 13 B(E2)(W.u.)=14 5
2283.88	2+	1451.31 <i>12</i>	100 3	832.56 2+	(M1+E2)	+0.12 3	0.000489 7	E _γ : weighted average of 631.73 10 (96 Rh ε decay (9.90 min)), 631.64 10 ((HI,xnγ)), 631.71 7 (96 Ru(p,p'γ)), 632.1 4 (65 Cu(36 S,p4nγ)), 631.7 1 (95 Mo(3 He,2nγ)). α(K)=0.000381 6; α(L)=4.28×10 ⁻⁵ 6; α(M)=7.83×10 ⁻⁶ 11; α(N)=1.272×10 ⁻⁶ 18 α(O)=6.87×10 ⁻⁸ 10; α(N+)=5.78×10 ⁻⁵ 9 B(E2)(W.u.)=(3.0×10 ² 18); B(M1)(W.u.)=(44 15)

5

γ (96Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.&	δ	α	Comments
								E _γ : weighted average of 1451.2 2 (96 Rh ε decay (9.90 min)), 1451.9 5 (96 Rh ε decay (1.51 min)), 1451.6 3 (96 Ru(p,p'γ)), 1451.2 2 (95 Mo(3 He,2nγ)). I _γ : from 95 Mo(3 He,2nγ).
2283.88	2+	2283.78 22	7.5 10	$0.0 0^{+}$	E2		0.000612 9	$\alpha(K) = 0.0001500 \ 21; \ \alpha(L) = 1.675 \times 10^{-5} \ 24; \ \alpha(M) = 3.06 \times 10^{-6}$
								$\alpha(O)=2.68\times10^{-8} \ 4; \ \alpha(N+)=0.000442$
								B(E2)(W.u.)=1.6×10 ² 6
								E _γ : weighted average of 2283.6 4 (96 Rh ε decay (9.90 min)), 2283.9 5 (96 Rh ε decay (1.51 min)), 2284.2 5 (96 Ru(p,p'γ)), 2283.6 4 (95 Mo(3 He,2nγ)). I _γ : from 95 Mo(3 He,2nγ), other: 9 5 (96 Rh ε decay (1.51
2462.16	4	944.18 8	100	1518.05 4+	D+O			min)), 7.5 22 (96 Ru(p,p' γ)). E $_{\gamma}$: weighted average of 944.07 10 (96 Rh ε decay (9.90
2402.10	4	944.10 0	100	1316.03 4	D+Q			min)), 944.33 9 (96 Ru(p,p' γ)), 944.1 1 (95 Mo(3 He,2n γ)).
2524.85	3+,4+	593.95 15	7.1 24	1931.07 2 ⁺				E_{γ} : weighted average of 594.1 2 (⁹⁶ Rh ε decay (9.90 min)), 593.8 2 (⁹⁵ Mo(³ He,2n γ)).
		1006 67 10	10 6 24	1510.05 4				I_{γ} : from 96 Ru(p,p' γ).
		1006.67 <i>19</i>	10.6 24	1518.05 4+				E _{γ} : weighted average of 1006.5 5 (96 Rh ε decay (9.90 min)), 1006.7 2 (96 Ru(p,p' γ)).
		1692.25 <i>14</i>	100.0 20	832.56 2+				I_{γ} : from ⁹⁶ Ru(p,p' γ). E_{γ} : weighted average of 1692.3 2 (⁹⁶ Rh ε decay (9.90
		1092.23 14	100.0 20	832.30 2				E_{γ} . Weighted average of 1692.5 2 (Rif ϵ decay (9.90 min)), 1692.2 2 (96 Ru(p,p' γ)). I_{γ} : from 96 Ru(p,p' γ).
2528.47	1+,2+	1695.9 <i>1</i>	100 4	832.56 2+	(M1+E2)		0.000459 7	$\alpha(K) = 0.000269 \ 10; \ \alpha(L) = 3.02 \times 10^{-5} \ 11; \ \alpha(M) = 5.52 \times 10^{-6}$
2320.47	1 ,2	10/3.7 1	100 7	032.30 2	(WII + L2)		0.0004377	20; $\alpha(N)=9.0\times10^{-7}$ 4
								$\alpha(O)=4.82\times10^{-8} \ 21; \ \alpha(N+)=0.000154 \ I$
								E_{γ}, I_{γ} : observed only in $(p, p'\gamma)$.
		2528.4 3	30 4	$0.0 0^{+}$				E_{γ}, I_{γ} : from in $(p, p'\gamma)$.
2576.02	(2^{+})	1743.39 <i>10</i>	100 4	832.56 2+	D+Q			E _y : weighted average of 1743.1 5 (96 Rh ε decay (9.90
								min)), 1743.4 $I^{(96}$ Ru(p,p' γ)).
		2576.13 <i>17</i>	43 <i>4</i>	$0.0 0^{+}$				I_{γ} : from (p,p'γ). E_{γ} : weighted average of 2576.1 2 (⁹⁶ Rh ε decay (1.51
		23/0.13 1/	TJ T	0.0 0				min)), 2576.2 $3 ({}^{96}\text{Ru}(p,p'\gamma))$.
2570.02	1+ 2+ 2+	647.0.2	50.6	1021 07 2+	E2 - M1	120165	0.00257.4	I_{γ} : from $(p,p'\gamma)$.
2579.02	1+,2+,3+	647.9 2	59 6	1931.07 2+	E2+M1	+2.0 +6-5	0.00257 4	$\alpha(K)$ =0.00225 4; $\alpha(L)$ =0.000267 4; $\alpha(M)$ =4.89×10 ⁻⁵ 8; $\alpha(N)$ =7.87×10 ⁻⁶ 12; $\alpha(O)$ =3.98×10 ⁻⁷ 6 $\alpha(N+)$ =8.27×10 ⁻⁶ 13
1								

6

γ (96Ru) (continued)

$E_i(level)$	J_i^{π}	Εγ	I_{γ}	$E_f \qquad \underline{\mathbf{J}_f^{\pi}}$	Mult.&	δ	α	Comments
2579.02 2588.41	1 ⁺ ,2 ⁺ ,3 ⁺ 5 ⁻	1746.5 ^a 2 1070.36 5	100 8 100	832.56 2 ⁺ 1518.05 4 ⁺	E1+M2	-0.01 4	0.000333 6	$\alpha(K)=0.000293 \ 6; \ \alpha(L)=3.28\times10^{-5} \ 6; \ \alpha(M)=5.99\times10^{-6} \ 11; \ \alpha(N)=9.70\times10^{-7} \ 18$
								$\alpha(O)=5.18\times10^{-8} \ 10; \ \alpha(N+)=1.022\times10^{-6} \ 19$
								$B(E1)(W.u.) < 9.4 \times 10^{-5}$; $B(M2)(W.u.) < 0.34$
								E _γ : weighted average of 1070.35 <i>10</i> (96 Rh ε decay (9.90 min)), 1070.26 <i>12</i> ((HI,xnγ)), 1070.36 8 (96 Ru(p,p'γ)), 1071.1 4 (65 Cu(36 S,p4nγ)), 1070.4 <i>I</i> (95 Mo(3 He,2nγ)).
2649.99	3(-)	366.3 [#] 4	5.5 [@] 5	2283.88 2+				10/111 / (Cu(5,p in/)), 10/011 / (into (110,2n/)).
2017.77	5	718.5 [#] 2	4.0 [@] 10	1931.07 2 ⁺				
		1131.9# 2	20.0 [@] 20	1518.05 4+				
		1817.5 [#] <i>I</i>	100 0 10	832.56 2+				
2699.80	4+,5	237.7# 2	100 10	2462.16 4				
	. ,0	1181.6 [#] <i>a</i> 3		1518.05 4+				
2739.78	(2^{+})	455.9 [#] 2	3.50 [@] 20	2283.88 2+				
2737.70	(2)	591.1# 2	0.25 [@] 5	2148.78 0 ⁺				
		808.6 [#] 2	100 @ 8	1931.07 2 ⁺				
		1907.5 [#] 3	40.0 [@] 20	832.56 2 ⁺				
2760.20	$(4^+,5)$	1242.13 7	100	1518.05 4 ⁺				E _γ : weighted average of 1242.14 10 (96 Rh ε decay (9.90 min)), 1242.4 3 (96 Ru(p,p'γ)), 1242.1 1 (95 Mo(3 He,2nγ)).
2793.89	(5,6)	644.18 7	100 [@] 3	2149.74 6+				E _γ : weighted average of 644.16 10 (96 Rh ε decay (9.90 min)), 644.2 1 (95 Mo(3 He,2nγ)).
		1275.78 7	67.0 [@] 20	1518.05 4+				E _y : weighted average of 1275.76 10 (96 Rh ε decay (9.90 min)), 1275.8 1 (95 Mo(3 He,2ny)).
2851.12	$(2^+,3)$	567.0 [#] 2	8.0 [@] 20	2283.88 2+				/// · · · · · · · · · · · · · · · · · ·
	\ <i>1-1</i>	920.6 [#] 5	9 [@] 3	1931.07 2 ⁺				
		1332.8# 3	13.3 [@] 5	1518.05 4+				
		2018.8 [#] 2	100 [@] 15	832.56 2+				
2891.64	6+	741.88 7	100	2149.74 6 ⁺	D+Q			E_{γ} : weighted average of 741.87 10 (96 Rh ε decay (9.90 min)), 741.8 3 ((HI,xnγ)), 741.9 1 (95 Mo(3 He,2nγ)).
2897.61	3 ⁽⁺⁾	435.3 [#] <i>3</i>	3.0 [@] 10	2462.16 4				
		613.8 [#] <i>3</i>	20.0 [@] 20	2283.88 2+				
		966.8 [#] 2	100 [@] 12	1931.07 2+				
		1379.5 [#] <i>3</i>	63 [@] 12	1518.05 4+				
		2064.7 [#] 3	20.0 [@] 20	832.56 2+				

γ (96Ru) (continued)

						<u></u>	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f J_f^{π}	Mult.&	α	Comments
2950.39	8+	800.68 6	100	2149.74 6+	E2	0.001496 <i>21</i>	$\alpha(K)$ =0.001309 19; $\alpha(L)$ =0.0001539 22; $\alpha(M)$ =2.82×10 ⁻⁵ 4 $\alpha(O)$ =2.32×10 ⁻⁷ 4; $\alpha(N+)$ =4.77×10 ⁻⁶ B(E2)(W.u.)=6.0 22
							E _γ : weighted average of 800.70 10 (96 Rh ε decay (9.90 min)), 800.55 13 ((HI,xnγ)), 801.2 4 (65 Cu(36 S,p4nγ)), 800.7 1 (95 Mo(3 He,2nγ)).
2987.8	(0,4)	2155.2 <i>3</i>	100	832.56 2+			
2996.30	2+,3+,4+	471.4 [#] 5	15 5	2524.85 3+,4+			I_{γ} : weighted average of 15 6 (⁹⁶ Rh ε decay (1.51 min)) and 15 5 (⁹⁵ Mo(³ He,2n γ)).
		533.7 [#] 3	3.1 5	2462.16 4			I_{γ} : weighted average of 3.08 (96 Rh ε decay (1.51 min)) and 3.1 5 (95 Mo(3 He,2n γ)).
		1479.0 [#] 5	17.5 22	1518.05 4 ⁺			I_{γ} : weighted average of 17 6 (96 Rh ε decay (1.51 min)) and 17.6 24 (96 Ru(p,p' γ)).
		2163.8# 2	100.0 23	832.56 2+			I_{γ} : weighted average of 100 11 (96 Rh ε decay (1.51 min)) and 100.0 24 (96 Ru(p,p' $_{\gamma}$)).
3060.46	(1,4)	776.8 [#] <i>3</i>	25 [@] 7	2283.88 2+			
	. , ,	1129.1# 2	100 [@] 7	1931.07 2 ⁺			
		2228.3# 3	20 [@] 7	832.56 2+			
3072.21	$(3^{-},4)$	483.8 2	100	2588.41 5			
3076.28	3-	425.7 4	18.0 [@] 20	2649.99 3 ⁽⁻⁾			E _γ : weighted average of 425.2 10 (96 Ru(p,p'γ)), 425.8 5 (95 Mo(3 He,2nγ)).
		487.0 [#] 5	32 [@] 9	2588.41 5-			
		614.9 [#] 2	8.0 [@] 10	2462.16 4			
		1144.9 [#] 2	55 [@] 3	1931.07 2 ⁺			
		1557.4 [#] 3	1.0×10^{2} @ 4	1518.05 4 ⁺			
		2244.0 [#] 5	2.2 [@] 5	832.56 2+			
3077.1	(5,6)	1559.0 5	100	1518.05 4+			E_{γ} : from ⁹⁶ Rh ε decay (1.51 min).
3090.20	2+	2257.6 [#] 2	100 [@] 6	832.56 2+			
		3090.2 [#] 5	6.4 [@] 21	$0.0 0^{+}$			
3154.24	1 ⁽⁺⁾	1224.1 6	28 10	1931.07 2+			
		2321.5 3	6.0 10	832.56 2+	_		
		3154.1 3	100 8	0.0 0+	D		
3166.76	(5,6)	1648.7 [#] 2	100	1518.05 4+	D		
3172.4	(9 ⁺)	222.7 4	100	2950.39 8+	D		
3210.13	(2,6)	1692.0 [#] 3	100 15	1518.05 4+			
		2377.6 [#] 3	64 [@] 25	832.56 2+			

 ∞

γ (96Ru) (continued)

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.&	α	Comments
3232.2	(0,4)	1301.1 5	100	1931.07	2+			
3261.03	2+	1330.5 [#] <i>10</i>	<12.0	1931.07	2+			I_{γ} : from ⁹⁶ Rh ε decay (1.51 min).
		1743.1 [#] 5	100 [@] 15	1518.05	4+			
		2428.3 [#] 2	32 [@] 7	832.56				
		3261.5 [#] 5	9.0 [@] 20	0.0				
3281.3	(3,7)	692.9 3	100	2588.41				
3282.4	1	3282.3 <i>3</i>	100	0.0		D		
3291.46	7-	497.4 [#] <i>4</i>		2793.89	(5,6)			
		703.04 <i>16</i>	100	2588.41	5-	E2	0.00208 3	$\alpha(K)$ =0.00182 3; $\alpha(L)$ =0.000216 3; $\alpha(M)$ =3.96×10 ⁻⁵ 6; $\alpha(N)$ =6.37×10 ⁻⁶ 9; $\alpha(O)$ =3.21×10 ⁻⁷ 5 $\alpha(N+)$ =6.69×10 ⁻⁶ 10 B(E2)(W.u.)=17.7 23
								E _γ : weighted average of 702.95 25 ((HI,xnγ)), 703.1 2 (95 Mo(3 He,2nγ)). Other 703.9 4 65 Cu(36 S,p4nγ).
3291.54	4+	400.0 [#] 4	36 [@] 8	2891.64	6+			
		531.2 [#] <i>3</i>	8.0 [@] 20	2760.20	$(4^+,5)$			
		766.8 <mark>#</mark> 5	56 [@] 11	2524.85	$3^{+},4^{+}$			
		1773.4 [#] 5	44 [@] 14	1518.05	4+			
		2459.1 [#] 5	100 [@] 14	832.56	2+			
3306.78	5	415.2 5	32 4	2891.64	6+			
		657.5 ^a 5	12 6	2649.99	3(-)			γ previously placed in level 2588.51 (1983Wa06) but not seen in coincidence, inconsistent with J^{π} of level. Placed here by evaluator.
		1157.0 2	≈20	2149.74				
2262 71	(4.0)	1788.6 2	100 4	1518.05				
3362.54	(4,8)	1212.8 2	100	2149.74				
3377.55	5+	300.7 <i>5</i> 485.9 <i>5</i>	3.1 8 6.4 9	3076.28 2891.64				
		852.3 <i>5</i>	6.2 9	2524.85				
		915.2 2	13.2 8	2462.16				
		1227.85 10	100 6	2149.74				
		1859.7 2	20.6 8	1518.05	4+			
3380.51	$(6,7)^+$	430.2 <i>I</i>	31 3	2950.39				
		488.9 5	5.4 14	2891.64				
		586.62 20	21.3 7	2793.89				
3447.9	1	1230.66 <i>10</i> 3447.8 <i>10</i>	100 7 100	2149.74 0.0	0 ₊	D		
3479.6	1	3479.5 3	100		0+	D		
3544.52	(6,7)	237.9 2	33 5	3306.78		_		

9

γ (96Ru) (continued)

3544.52			I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.&	α	Comments
	(6,7)	594.1 2	100 11	2950.39 8+			
		1394.7 2	47 9	2149.74 6+			
3706.50	$(5,6)^+$	400.0 5	6.8 16	3306.78 5			
	. , ,	415.2 5	32 4	3291.54 4+			
		912.2 5	13.0 10	2793.89 (5,6)			
		1556.72 20	100 5	2149.74 6+			
3742.87	(5,6)	380.4 5	46 <i>14</i>	3362.54 (4,8)			
	. , ,	1593.1 2	100 11	2149.74 6+			
		2224.8 2	66 9	1518.05 4+			
3755.15	$(5,6,7)^+$	863.5 <i>5</i>	4.9 15	2891.64 6 ⁺			
		1605.4 2	100 <i>3</i>	2149.74 6+			
3805.69	(5,6,7)	1011.4 5	53 11	2793.89 (5,6)			
		1656.0 2	100 11	2149.74 6+			
3817.22	10 ⁺	866.71 10	100	2950.39 8 ⁺	E2	0.001234 18	$\alpha(K)=0.001081$ 16; $\alpha(L)=0.0001262$ 18; $\alpha(M)=2.31\times10^{-5}$ 4
							$\alpha(O)=1.92\times10^{-7}$ 3; $\alpha(N+)=3.92\times10^{-6}$
							B(E2)(W.u.)=12.7 15
							E_{γ} : from ((HI,xn γ)), other: 867.3 4 (65 Cu(36 S,p4n γ)).
3887.23	$(5,6,7)^+$	995.5 2	17.7 9	2891.64 6 ⁺			
	(=,=,.)	1737.45 10	100 5	2149.74 6 ⁺			
3928.6	(10^+)	112.1 4	100	3817.22 10+			
3951.08	9-	659.61 [‡] 11	100 [†]	3291.46 7-	E2	0.00246 4	$\alpha(K)$ =0.00215 3; $\alpha(L)$ =0.000257 4; $\alpha(M)$ =4.71×10 ⁻⁵ 7; $\alpha(N)$ =7.57×10 ⁻⁶ 11; $\alpha(O)$ =3.78×10 ⁻⁷ 6 $\alpha(N+)$ =7.94×10 ⁻⁶ 12
							$B(E2)(W.u.)=20.2\ 20$
		779.4 [‡] 4	1.7 [†] 10	$3172.4 (9^+)$			
		1002.1‡ 4	1.6 [†] 5	2950.39 8+			
4057.52	(5,6)	1907.8 2	83 9	2149.74 6 ⁺			
1031.32	(3,0)	2539.2 5	100 7	1518.05 4 ⁺			
4080.28	$(5,6,7)^+$	699.5 5	16 5	3380.51 (6,7)+			
.000.20	(5,5,7)	1188.6 2	100 9	2891.64 6 ⁺			
		1286.4 2	43 9	2793.89 (5,6)			
		2149.6 5	11 4	1931.07 2 ⁺			
4112.99	$(6,7)^+$	1162.9 5	27 <i>4</i>	2950.39 8 ⁺			
	(~,,)	1525.2 5	5.5 16	2588.41 5			
		1963.19 <i>10</i>	100 5	2149.74 6 ⁺			
4148.2	(5,6,7)	1998.4 5	100	2149.74 6+			
4210.8	(5,6,7)	1450.5 5	$1.0 \times 10^2 4$	2760.20 (4+,5)			
	(~,~,.)	2061.2 5	$1.0 \times 10^2 \ 3$	2149.74 6 ⁺			
4262.1	(8,12)	444.9 <i>4</i>	100	3817.22 10 ⁺			
4265.0	(11^+)	337.2 [‡] 4	100	3928.6 (10 ⁺)			
4203.0	(11)	331.2. 4	100	3720.0 (10)			

10

γ (96Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	α	Comments
4418.27	12+	600.86 10	100	3817.22 10+	E2	0.00317 5	$\alpha(K)$ =0.00276 4; $\alpha(L)$ =0.000333 5; $\alpha(M)$ =6.12×10 ⁻⁵ 9; $\alpha(N)$ =9.81×10 ⁻⁶ 14; $\alpha(O)$ =4.85×10 ⁻⁷ 7 $\alpha(N+)$ =1.029×10 ⁻⁵ 15 B(E2)(W.u.)=13.1 19 Measured Q, calculated B(M2)(W.u.) exceeds RUL excluding M2, hence E2.
							E_{γ} : from (HI,xnγ), other: 601.3 4 (65 Cu(36 S,p4nγ)).
4521.08	$(5,6)^+$	1996.16 <i>20</i> 2059.2 <i>5</i>	100 <i>5</i> 30.4 22	2524.85 3 ⁺ ,4 ⁺ 2462.16 4			
4534.03 4560.93	10 ⁻ (5,6) ⁺	582.99 <i>14</i> 1016.8 <i>5</i> 1269.1 <i>5</i> 1800.7 <i>2</i>	100 38 11 66 9 100 11	3951.08 9 ⁻ 3544.52 (6,7) 3291.54 4 ⁺ 2760.20 (4 ⁺ ,5 ⁻	D		E_{γ} : from (HI,xn γ), other: 584.1 4 (65 Cu(36 S,p4n γ)).
4592.5 4598.9	(5,6,7)	1048.0 <i>5</i> 336.8 <i>5</i>	100 11 100 100	3544.52 (6,7) 4262.1 (8,12)			
4710.9	(12^{+})	292.7 [‡] 4	71 <i>21</i>	4418.27 12+			
		446.7 [‡] <i>4</i>	$1.0 \times 10^2 \ 3$	4265.0 (11+)			
4777.42	5+	893.9 [‡] 4 890.0 2 1400.5 5 1470.2 5 1701.1 2 1885.7 2 2252.7 2 2628.0 5	8.×10 ¹ 3 88 7 26 7 100 21 60 7 84 9 58 9 26 7	3817.22 10 ⁺ 3887.23 (5,6,7 3377.55 5 ⁺ 3306.78 5 3076.28 3 ⁻ 2891.64 6 ⁺ 2524.85 3 ⁺ ,4 ⁺ 2149.74 6 ⁺			
4798.7	11 ⁽⁻⁾	265.1 [‡] <i>4</i> 849.2 <i>4</i>	2.0 [†] 6 100	4534.03 10 ⁻ 3951.08 9 ⁻	D		E _γ : weighted average of 847.38 25 ((HI,xnγ)), 849.2 4 (65 Cu(36 S,p4nγ)).
4866.0? 4949.64	(10,14) 5 ⁺	447.7 <i>4</i> 1642.7 2 2052.4 5 2361.5 5 2424.9 5 2800.0 5 3431.5 5	100 100 11 33 14 44 8 33 8 28 8 56 14	4418.27 12 ⁺ 3306.78 5 2897.61 3 ⁽⁺⁾ 2588.41 5 ⁻ 2524.85 3 ⁺ ,4 ⁺ 2149.74 6 ⁺ 1518.05 4 ⁺			(Cu(3,p+uy)).
5274.3?	(9,13)	475.52 35	100	4798.7 11 ⁽⁻⁾			
5531.9	(13 ⁺)	822.0 [‡] 4	100	4710.9 (12 ⁺)	D		
5533.9?	(11 ⁻)	735.2 [‡] <i>4</i> 999.9 24	44.2 [†] 100	4798.7 11 ⁽⁻⁾ 4534.03 10 ⁻	Q		E_{γ} : weighted average of 999.7 3((HI,xnγ)), 1000.3 4 (65 Cu(36 S,p4nγ)).

γ (96Ru) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}	E_f	J_f^{π} M	Iult. <mark>&</mark>	α	Comments
5541.47	$(5,6,7)^+$	2163.9 2	100	3377.55 5	+			
5680.69	14 ⁺	150.2 [‡] 4	6.0 [†] 16	5531.9 (1	13+)			
		1262.18 <i>11</i>	100	4418.27 1	2+ E	2	0.000550 8	$\alpha(K)=0.000467$ 7; $\alpha(L)=5.33\times10^{-5}$ 8; $\alpha(M)=9.76\times10^{-6}$ 14; $\alpha(N)=1.579\times10^{-6}$ 23
								$\alpha(O)=8.34\times10^{-8}$ 12; $\alpha(N+)=1.94\times10^{-5}$ 3 B(E2)(W.u.)=2.63 23
								E_{γ} : weighted average of 1262.17 11 ((HI,xn γ)), 1262.3 4
								$(^{65}\text{Cu}(^{36}\text{S},p4n\gamma)).$
5750.2	$13^{(-)}$	217.7 [‡] 4	17 [†] 3		13 ⁺) D			B(M1)(W.u.)=0.14 4
		952.6 <i>3</i>	100	4798.7 1	1 ⁽⁻⁾ E	22	0.000988 14	$\alpha(K)=0.000866 \ 13; \ \alpha(L)=0.0001005 \ 14; \ \alpha(M)=1.84\times10^{-5} \ 3$
								α (O)=1.540×10 ⁻⁷ 22; α (N+)=3.12×10 ⁻⁶ B(E2)(W.u.)=11.2 22
								E_{γ} : weighted average of 952.3 4 ((HI,xn γ)), 952.9 4
								$(^{65}\text{Cu}(^{36}\text{S},\text{p4n}\gamma)).$
5978.5	(14^{+})	447.0 [‡] 4	100	5531.9 (1				
5994.5?	(9,13)	1195.8 <i>3</i>	100		1(-)			
6278.3	$14^{(-)}$	528.8 [‡] 4	100		3 ⁽⁻⁾ D)		
		597.2 [‡] 4	33 [†] 5	5680.69 1	_			
		746.5 [‡] 4	33 [†]		13 ⁺) Q			
6441.61	16 ⁺	760.74 <i>16</i>	100	5680.69 1	4+ E	22	0.001700 24	$\alpha(K)=0.001487 \ 21; \ \alpha(L)=0.0001755 \ 25; \ \alpha(M)=3.22\times10^{-5} \ 5$ $\alpha(O)=2.63\times10^{-7} \ 4; \ \alpha(N+)=5.44\times10^{-6}$
								$a(0)=2.03\times10^{-4}$; $a(N+)=3.44\times10^{-4}$ B(E2)(W.u.)>11
								E_{γ} : weighted average of 760.68 17 ((HI,xn γ)), 761.1 4
								$(^{65}\text{Cu}(^{36}\text{S}, p4n\gamma)).$
6678.9	(14,18)	237.3‡ 4	100	6441.61 1				
6754.1	15 ⁽⁻⁾	475.6 [‡] 4	65		4 ⁽⁻⁾			
		1004.4 [‡] 4	100		3 ⁽⁻⁾ E	22	0.000875 <i>13</i>	$\alpha(K)=0.000768 \ 11; \ \alpha(L)=8.87\times10^{-5} \ 13; \ \alpha(M)=1.625\times10^{-5} \ 23$ $\alpha(O)=1.366\times10^{-7} \ 20; \ \alpha(N+)=2.76\times10^{-6}$
6769.8	(14,18)	328.2‡ 4	100	6441.61 1				
6777.1	16 ⁽⁻⁾	499.4 [‡] 4	100		$4^{(-)}$ Q)		
7415.0	(17^{+})	973.4 4	100	6441.61 1				
7425.2	(16^{+})	1447.0 [‡] 4	$1.0 \times 10^2 5$,	14+)			
75240	(177±)	1744 [‡] <i>1</i>	$1.0 \times 10^2 \ 4$	5680.69 1				
7534.8	(17^{+})	1093.2‡ 4	100	6441.61 1				
7558.3	17(-)	781.4 [‡] 4	100		6 ⁽⁻⁾	2	0.00000	(II) 0.000500 0 (I) 5.00 10 ⁻⁵ 0 (II) 1.004 10 ⁻⁵ 10
7951.2	17 ⁽⁻⁾	1197.4 [‡] 4	100	6754.1 1:	5 ⁽⁻⁾ E	12	0.000602 9	$\alpha(K)=0.000522 \ 8; \ \alpha(L)=5.98\times10^{-5} \ 9; \ \alpha(M)=1.094\times10^{-5} \ 16;$

							γ(**Ru) (contin	
E_i (level)	J_i^{π}	E_{γ}	I_{γ}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult. &	α	Comments
								$\alpha(O)=9.31\times10^{-8} 13$ $\alpha(N+)=9.03\times10^{-6} 14$ $\alpha(O)=9.31\times10^{-8} 13$ $\alpha(O)=9.31\times10^{-8} 13$ $\alpha(O)=9.31\times10^{-8} 13$
8187.6	(17^+)	1746 [‡] <i>1</i>	100	6441.61	16 ⁺			
8205.7	18+	780.8 [‡] 4	29 [†] <i>14</i>	7425.2	(16^{+})			
		1763.1 8	100 [†] 23	6441.61	16 ⁺	E2	0.000467 7	$\alpha(K)$ =0.000241 4; $\alpha(L)$ =2.71×10 ⁻⁵ 4; $\alpha(M)$ =4.96×10 ⁻⁶ 7; $\alpha(N)$ =8.03×10 ⁻⁷ 12 $\alpha(O)$ =4.30×10 ⁻⁸ 6; $\alpha(N+)$ =0.000194 3 E _{γ} : weighted average of 1765 1, 65 Cu(36 S,p4n γ), and 1762.8 4, (HI,xn γ).
8236.0	$18^{(-)}$	677.9 [‡] 4	100	7558.3	$17^{(-)}$			
		1459.3 [‡] <i>4</i>	6 4	6777.1	$16^{(-)}$			
8499.6	(17^+)	2058 [‡] 1	100	6441.61	16 ⁺			
8644.1	(18^{+})	1229.1 [‡] 4	100	7415.0	(17^{+})			
8736.2	(18^{+})	501.0 [‡] 4	$1.0 \times 10^2 \ 5$	8236.0	18(-)			
		2289 [‡] 1	100 20	6441.61	16 ⁺			
8968.8	(18^{+})	781.2 [‡] <i>4</i>	100	8187.6	(17^+)			
9101.0	(18^{+})	601.4 [‡] 4	100	8499.6	(17^+)	D		
9249.1	(20^+)	1043.3 [‡] 4	100	8205.7	18 ⁺	Q		
9250.3	(18^{-})	1299.1 [‡] 4	100	7951.2	$17^{(-)}$			
9391.4	(19^{-})	1155.0 [‡] 4	100	8236.0	$18^{(-)}$			
		1440.4 [‡] 4	50 10	7951.2	17 ⁽⁻⁾	E2	0.000468 7	$\alpha(K)$ =0.000357 5; $\alpha(L)$ =4.05×10 ⁻⁵ 6; $\alpha(M)$ =7.40×10 ⁻⁶ 11; $\alpha(N)$ =1.199×10 ⁻⁶ 17 $\alpha(O)$ =6.37×10 ⁻⁸ 9; $\alpha(N+)$ =6.37×10 ⁻⁵ 9
9586.4	(20^+)	850.2 [‡] 4	100	8736.2	(18^{+})	Q		
9665.3	(19^{-})	1429.2 [‡] 4	100	8236.0	$18^{(-)}$	D		
9713.4	(19^+)	977.2 [‡] 4	100	8736.2	(18^{+})			
9852.2	(20^{+})	751.2 [‡] 4	100	9101.0	(18^{+})			
9892.3	(21^{-})	227.0 [‡] 4	100	9665.3	(19-)			
9992.4	(21^{-})	601.0 [‡] 4	100	9391.4	(19^{-})	Q		
9997.4	(21^{+})	748.3 [‡] 4	100	9249.1	(20^{+})	D		
10592.8	(22^{+})	595.4 [‡] 4	100	9997.4	(21^{+})			
10631.5	(22^{+})	1382.4 [‡] 4	100	9249.1	(20^{+})			
10720.4	(22^{+})	1134.0 [‡] 4	100	9586.4	(20^{+})	Q		
11066.1	(22^{+})	1817 [‡] <i>1</i>	100	9249.1	(20^{+})	-		

[†] From ⁶⁵Cu(³⁶S,p4n γ). ‡ From ⁶⁵Cu(³⁶S,p4n γ). # From ⁹⁵Mo(³He,2n γ). @ From ⁹⁵Mo(³He,2n γ). & From ⁶⁵Cu(³⁶S,p4n γ), unless otherwise noted.

^a Placement of transition in the level scheme is uncertain.

 $^{96}_{44} \mathrm{Ru}_{52}$

Level Scheme (continued)

Intensities: Type not specified

Legend

19

⁹⁸Ru₅₄-1

Adopted Levels, Gammas

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen, Balraj Singh NDS 164, 1 (2020) 15-Feb-2020

 $Q(\beta^{-})=-5050 \ 10$; $S(n)=10176 \ 7$; $S(p)=8289 \ 8$; $Q(\alpha)=-2236 \ 6$ 2017Wa10

S(2n)=18287 6, S(2p)=14008 6 (2017Wa10).

Other measurements:

Additional information 1.

(HI,X) (multi-nucleon transfer): 1974We04. Mass measurements: 2008De16, 1963Da10.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 77 primary references dealing with nuclear structure calculations.

See (36 S,p2n γ) dataset (1998Kh01) for many additional possible levels and transitions, which have not been adopted due to severe disagreement with the higher statistics data in (36 S, α 4n γ) from 2000Ti07. The orderings of the γ cascades, level energies and J^{π} values are adopted from 2000Ti07, since this experiment has about seven times more counting statistics for four-fold- γ -coin events than in 1998Kh01. Moreover, the results of (36 S, α 4n γ) from 2000Ti07 and (α ,4n γ) from 1981Du06 are in better agreement in the ordering of the γ cascades, and multipolarities of crucial interband transitions, as compared to those in (36 S,p2n γ) from 1998Kh01.

⁹⁸Ru Levels

Cross Reference (XREF) Flags

		B 98 C 98 D 65	⁸ Tc β^- decay (4.2×10 ⁸ Rh ε decay (8.72 mi ⁸ Rh ε decay (3.6 min ⁵ Cu(³⁶ S,p2n γ) ⁹ Zn(³⁶ S, α 4n γ)	n) G 96 Mo(α ,2n γ) L 100 Ru(p,t)									
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF				С	omments					
0.0@	0+	stable	ABCDEFGHIJKLM		Evaluated rms charge radius=4.4229 fm 55 (2013An02). Evaluated $\delta < r^2 > (^{104}Ru, ^{98}Ru) = -0.772 \text{ fm}^2$ 5 (2013An02). Hyperfine structure measurements, and deduced changes in rms charge radii by 2014Fo01 with the following results: $\delta < r^2 > (^{96}Ru, ^{98}Ru) = 0.2874 \text{ fm}^2$ 20; $\delta < r^2 > (^{98}Ru, ^{100}Ru) = 0.2538 \text{ fm}^2$ 21; $\delta < r^2 > (^{98}Ru, ^{99}Ru) = 0.0917 \text{ fm}^2$ 15.								
652.46 [@] 5	2+	5.96 ps <i>20</i>	ABCDE GHIJKLM	Q=- J^{π} : 6 $T_{1/2}$ (2) (30 B(in) (1) μ : fr +(Cc Q: o	: from 012Ra	8 γ E2 to 0 ⁺ . 1 2016Pr01 evaluation 103, RDDS in Coul. 6 1γ)); 6.42 ps 12 from 10.389 31 in Coul. ex. 10.389 21 from Coul. ex. 10.39 4 from reorientatio 10.03 14 from consti	ex.); 5 B(E2 (1980) 04 ps omb e) from	ed on weighted average of 5.79 ps 20 a.5 ps 8 (2000Kh02, RDDS in)=0.373 7, and 6.16 ps 49 from DLa01); 5.83 ps 50 from B(E2)=0.411 35 40 from B(E2)=0.475 38 in Coul. ex. excitation (2011Ch23,2011Ta06). Other: in $\gamma(\theta, H)$ in Coulomb excitation. et in Coulomb excitation (1980La01). et interference in Coulomb excitation alysis of data in 1977Ma41 by 1998Hi01.					

 $^{^{90}}$ Zr(11 B,p2n γ): 1978Lu02, E=40 MeV. Measured γ , particle- γ coin. Six main γ rays reported from corresponding six levels.

 $^{^{96}}$ Mo(32 S, 30 Si): 1995He17, E=180 MeV. Measured $\sigma(\theta)$.

 $^{^{95}}$ Mo(3 He, γ): 1996Be13, E=11-28 MeV, measured statistical γ production.

 $^{^{96}}$ Ru(α ,2p γ): 1985Be06, only four main γ rays reported.

⁹⁸Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
1322.16 7	0+	3.7 ps +13-8	FGH J LM	J ^{π} : L(3 He,n)=0 from 0 ⁺ ; $\gamma(\theta)$ in (p,p' γ) is isotropic. T _{1/2} : from B(E2)(W.u.)=43 <i>11</i> in Coulomb excitation (2006Wi15).
1397.91 [@] 7	4 ⁺	1.60 ps <i>11</i>	A CDE GHIJKLM	J^{π} : 745.4 γ ΔJ=2, E2 to 2 ⁺ ; g.s. band member. $T_{1/2}$: from RDDS in Coulomb excitation (2012Ra03). Other: 1.68 ps +12-9 from weighted average of all available values including those deduced from B(E2) values in Coulomb excitation; value of 7.6 ps 16 from RDDS in (36 S,p2n γ) (2000Kh02) seems discrepant.
1414.36 6	2+	1.18 ps <i>14</i>	BC GHIJKLM	J^{π} : 1414.3 γ ΔJ =2, E2 to 0 $^{+}$. $T_{1/2}$: from RDDS in Coulomb excitation (2012Ra03). Other: 1.2 ps 4 from B(E2) in Coulomb excitation (1980La01).
1797.03 6	3 ⁺		BC GHIJK	J^{π} : 382.66 γ and 1144.2 γ M1+E2 to 2 ⁺ , 399.0 γ D+Q to 4 ⁺ ; J=4 from γ excitation function in (³ He,2n γ) (1988Sa01).
1817.19 <i>7</i>	2+		BC GH JKL	XREF: C(?). J^{π} : L(d,t)=2 from 5/2 ⁺ ; 1164.8 γ M1+E2 to 2 ⁺ , 1817.1 γ to 0 ⁺ ; J =2 from $\gamma\gamma(\theta)$ in 2016Gi05 in (3 He,2n γ); 2004Ca42 in (α ,2n γ) suggest 0 ⁺ or 2 ⁺ based on decay pattern and level population.
2012.81 7	3+		C GHIJKL	J^{π} : 598.5 γ E2+M1 to 2 ⁺ , 614.9 γ D+Q to 4 ⁺ .
2222.65 [@] 9	6+	4.3 ps 5	CDE GHI K	J ^π : 824.8γ ΔJ=2, E2 to 4 ⁺ ; 324.4γ from 5 ⁺ ; no γ to 2 ⁺ and 3 ⁺ levels.
2241.5 3	$(4^+,6^+)$		Н	J^{π} : suggested by 1988Sa01 in (³ He,2n γ) based on $\gamma(\theta)$, $\gamma(\text{lin pol})$ and excitation function.
2245.87 21	2 ⁽⁺⁾		GH KL	J ^π : 2 from $\gamma\gamma(\theta)$ (2016Gi05) and (1,2) from excitation function (1988Sa01) in (³ He,2n γ); L(d,t)=(2+0) from 5/2 ⁺ . other: 0 ⁺ proposed by 2004Ca42 in (α ,2n γ).
2257.9 <i>4</i> 2266.58 <i>7</i>	4+		H GHI	J^{π} : 253.8 γ and 469.5 γ M1+E2 to 3 ⁺ , 868.7 γ M1+E2 to 4 ⁺ ; γ
2277.07 11	(2)+		GH kL	excitation functions consistent with J=4 in (3 He,2n γ) (1988Sa01). J $^\pi$: 2+ from $\gamma(\theta,\text{pol})$ and excitation function (1988Sa01) and 3+,4+ from $\gamma\gamma(\theta)$ and ce data (2016Gi05, who list (2)+ for 2277 level in Table I) in (3 He,2n γ); L(d,t)=2 from 5/2+ for a 2277 group.
2285 10	(4) ⁺		Jk	E(level): probably the same as 2267 level. J^{π} : L(p,p')=4 from 0^+ .
2295.52 <i>21</i> 2362.6 <i>3</i> 2369.1 <i>3</i>			Н Н К L	XREF: K(2365).
2371.37 22 2373.9 8	$(0^+ \text{ to } 4^+)$ 0^+		H K G L	J^{π} : 1719 γ to 2 ⁺ . XREF: G(?).
2406.13 <i>14</i>	(1+,2+)		н к	J^{π} : from $\sigma(\theta)$ in (p,t). XREF: K(2409).
2427.09 8	2+		GH KL	J^{π} : L(d,t)=(2) from 5/2 ⁺ ; 1084.1γ to 0 ⁺ . J^{π} : 630.0γ M1(+E2) to 3 ⁺ , 1774.5γ M1+E2 to 2 ⁺ ; J=2 from $\gamma\gamma(\theta)$ in (³ He,2nγ) (2016Gi05); L(d,t)=(2+0) from 5/2 ⁺ .
2435 10	(3^{-})		J	$\gamma\gamma(\theta)$ in (*Fig.2iry) (20100103); $L(a,t)=(2+0)$ from $3/2$. J^{π} : $L(p,p')=(3)$ from 0^+ .
2468.35 20	$(2)^{+}$		B H K	J^{π} : L(d,t)=0 from 5/2+; possible 2467.6 γ to 0+.
2547.07 8	5 ⁺		E GHI	J ^π : spin=5 from $\gamma\gamma(\theta)$ in (³ He,2n γ) (2016Gi05); 1149.2 γ M1+E2 to 4 ⁺ .
2602.33 13	$(2^+,3^+,4^+)$		GH K	J^{π} : 1949.1 γ to 2 ⁺ , 1204.4 γ to 4 ⁺ ; L(d,t)=(2) from 5/2 ⁺ .
2619.5 <i>3</i> 2656.62 <i>8</i>	$(1,2^+)$ $(3,5^+)$		B H K GHI	J^{π} : 2619.2 γ to 0 ⁺ . J^{π} : (3,5) is suggested by $\gamma\gamma(\theta)$ and $\gamma(\theta)$ (2016Gi05) and (3)
2030.02 0	(3,3)		GIII	suggested by excitation function (1988Sa01) in (3 He,2n γ); 643.9 γ to 3 $^{+}$. But (5 $^{-}$) proposed by 1981Du06 in (α ,4n γ) based

⁹⁸Ru Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	XREF	Comments
2659.73 8	(3+,4)		GH j	on possible band structure and theoretical predictions is in disagreement. XREF: j(2671). J^{π} : (2,3,4) from $\gamma(\theta)$ (2016Gi05) and (3 ⁺ ,4) from excitation
2670.39 18	$(0^+ \text{ to } 3)$		н ј	function (1988Sa01) in (³ He,2ny). XREF: j(2671).
2707.35 17	$(1,2^+)$		Н	J^{π} : from $\gamma(\theta)$ in (³ He,2n γ) (2016Gi05); 1256.1 γ to 2 ⁺ . J^{π} : 1385.6 γ to 0 ⁺ , 1293.0 γ to 2 ⁺ .
2720.17 12	$(3,4^+)$		GH	J^{π} : $\gamma(\theta)$ and excitation function.
2754.2 3			Н	TT (0) 1 (0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2786.0 <i>4</i> 2809.39 <i>9</i>	(3)		G GH	J ^π : (3) in (α ,2n γ) inconsistent with 563.3 γ to 6 ⁺ . J ^π : (3 to 6) from $\gamma(\theta)$ (2016Gi05) and (2,3) from excitation function (1988Sa01) in (³ He,2n γ). But (2 ⁺) proposed by 1988Sa01.
2811.59 25	$(2^+,3,4^+)$		Н	J^{π} : 1397.2 γ to 2 ⁺ , 1413.7 γ to 4 ⁺ .
2816.69 <i>20</i> 2825.92 <i>21</i> 2859.22 <i>21</i>	$(2^+,3,4^+)$		H H	J^{π} : 1418.9 γ to 4 ⁺ , 999.3 γ and 2164.4 γ to 2 ⁺ .
2859.22 21 2867.40 <i>12</i>	(6) ⁺		H GH	J ^π : 320.3 γ M1(+E2) to 5 ⁺ , 644.9 γ M1,E2 to 6 ⁺ ; spin not 5 from $\gamma\gamma(\theta)$ (2016Gi05) and J=(6,7,8) from excitation function (1988Sa01) in (³ He,2n γ).
2932.72 <i>21</i> 2954.5 <i>3</i>	(4 ⁺)		H H	J^{π} : 710 γ to 6 ⁺ , 2280.8 γ to 2 ⁺ .
2997.8 7	$(1,2^+)$		Н	J^{π} : 1675.6 γ to 0 ⁺ .
3014.5 <i>6</i> 3016.9 <i>3</i>	(+)		H H K	XREF: K(3020). J^{π} : L(d,t)=(2) for a 3020 5 level.
3026.7 <i>5</i> 3046 <i>5</i>	2+,3+		H K	J^{π} : L(d,t)=0 from 5/2 ⁺ .
3058.1 4	(2+)		G	VDEE. V(2071)
3064.92 11	(3+)		GH K	XREF: K(3071). J^{π} : (3,4,5) from $\gamma(\theta)$ (2016Gi05) and (3,4) from excitation function (1988Sa01); L(d,t)=(2+0) from 5/2 ⁺ .
3069.25 <i>16</i> 3069.5 <i>10</i>	$(5,6)^+$		GH C	J^{π} : 846.6 γ M1,E2 to 6 ⁺ ; (5,6) from $\gamma\gamma(\theta)$ in (³ He,2n γ).
3074.73 <i>15</i>	$(2^+ \text{ to } 5^+)$		Н	J^{π} : 1676.7 γ to 4 ⁺ , 1061.7 γ to 3 ⁺ .
3093.8 4	$(2^+,3,4^+)$		H	J^{π} : 1679.6 γ to 2 ⁺ , 1695.7 γ to 4 ⁺ .
3097.63 <i>21</i> 3109.15 <i>13</i>	$(2^+,3,4^+)$		H H	J^{π} : 682.2 γ to 2 ⁺ , 1710.7 γ to 4 ⁺ .
3120.36 18	(= ,0,.)		H	0 + 30 2.12
3126.61 [@] 13 3132.6 3	8+	13.9 ps 21	DE GHI H	J^{π} : 904 γ E2, ΔJ =2 to 6 ⁺ ; member of g.s. band.
3179.0 <i>6</i>	$(1,2^+)$		В	J^{π} : 3179.3 γ to 0 ⁺ .
3185.02 <i>11</i> 3190.44 ^a <i>11</i>	(4 ⁺ ,5 ⁺) 8 ⁺		H DE GHI	J ^π : 1172.2 γ to 3 ⁺ , 962.3 γ to 6 ⁺ . J ^π : 967.7 γ E2, ΔJ=2 to 6 ⁺ ; J=(7,8) from $\gamma\gamma(\theta)$ and J=8 from excitation function in (³ He,2n γ). But J ^π =7 ⁻ proposed (by 1998Kh01) from 967.7 γ ΔJ=1 to 6 ⁺ in (³⁶ S,p2n γ) is in
3205.2 3	$(2^+,3)$		в нк	disagreement. XREF: K(3209).
3245.24 13	(6) ⁺		GH	J ^π : possible ε feeding from (2) ⁺ ; 1807.2γ to 4 ⁺ . J ^π : 978.9γ E2, ΔJ =(2) to 4 ⁺ ; (5,6) from $\gamma(\theta)$ (2016Gi05) and
3251.05 12	(5) ⁺		GH	(6,7) from excitation function (1988Sa01) in (3 He,2n γ). J^{π} : 984.6 γ M1+E2 to 2267, 4 $^{+}$; 754.4 γ from 4006 level, which is deexcited by a 879.6 γ , (M1+E2) to 3126, 8 $^{+}$ level.
3279.32 20			Н	decreted by a 017.07, (1911+122) to 3120, 0 level.

⁹⁸Ru Levels (continued)

E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$	XREF	Comments
3283.52 <i>11</i> 3284 <i>5</i>	$(5,7)^+$ $(2^+,3^+)$		E GHI K	J^{π} : 1061.6γ M1+E2 to 6 ⁺ ; (5,7) from γγ(θ) in (³ He,2nγ). J^{π} : L(d,t)=(0) from 5/2 ⁺ .
3288.06 22 3350.4 <i>3</i> 3366.8? <i>5</i>	$(1,2^+)$		Н Н В	J^{π} : 3366.7 γ to 0^{+} .
3382.97 22 3442.22 24	2+,3+		Н С Н К	XREF: C(?)K(3441).
3442.22 24	2 ,3		Спк	J^{π} : L(d,t)=0 from 5/2 ⁺ .
				A previously proposed 1428γ from this level in 98 Rh ε decay (3.6 min) not confirmed in (3 He,2n γ) (2016Gi05). Instead, 2016Gi05 have observed and placed a 1428γ from 2826 level.
3474.65 <i>25</i> 3523.72 <i>20</i>	$(4^+,5,6^+)$ $(4^+,5,6^+)$		GH H	J^{π} : 2076.5 γ to 4 ⁺ , 1252.8 γ to 6 ⁺ . J^{π} : 1301.2 γ to 6 ⁺ , 803.0 γ to (3,4 ⁺).
3537.0? 5	$(1^+, 2^+, 3^+)$		В	J ^{π} : 1719.8 γ to 2 ⁺ ; possible ε feeding from (2) ⁺ in ⁹⁸ Rh decay (8.72 min).
3538.79 <i>14</i> 3562.2 <i>3</i>	$(6)^{+}$		E GHI H	J^{π} : 992.0 γ M1+E2 to 5 ⁺ , 412.1 γ to 8 ⁺ .
3578.72 <i>21</i>	$(4^+ \text{ to } 7^+)$		E GH	J ^π : 1456.3 γ to 6 ⁺ , 1032.4 γ to 5 ⁺ , 295.1 γ to (5,7) ⁺ . But (8 ⁺) proposed in (³⁶ S, α 4n γ) and (7 ⁻ ,8 ⁺) in (α ,2n γ).
3620.56 22 3624.02 22			H H	
3637.9 <i>4</i>			Н	
3671.22 22 3703.22 22			H H	
3721.88 19			Н	
3851.72 ^{&} 24	9-	≤6.0 ps	E GHI	J ^π : 725.1γ E1(+M2),ΔJ=1 to 8 ⁺ ; band structure. Previous placement of a 272γ from this level was not confirmed by 2016Gi05 in their γγ-coin data, this γ remains unplaced. Previously reported 312γ from this level not seen by 2016Gi05. Previously reported 567.4 and 661.3 γ rays are observed by 2016Gi05 as 569.0 and 662.1 keV, respectively, and both placed from a new level at 3852.3 keV.
				$T_{1/2}$: from RDDS of the 725.7 γ placed from a level at 7626 in (36 S,p2n γ).
3852.3 3	$(6^+ \text{ to } 9^+)$		e gHi	J^{π} : 569.0 γ to (5,7) ⁺ , 662.1 γ to 8 ⁺ . See comments for 3851.7 level.
3855.3 <i>4</i> 3945.2 <i>6</i>			GH GH	
3965.0 4			H	
3971.84 <i>23</i> 4001.19 ^a <i>17</i>	10 ⁺	14.3 ps 21	H DE GHI	J^{π} : 810.6 γ and 874.8 γ E2, $\Delta J=2$ to 8 ⁺ . $J^{\pi}=9^{-}$ proposed in (36 S,p2n γ) is in disagreement.
4005.98 14	(7 ⁺)		GHI	E(level): only one level near this energy confirmed by 2016Gi05 in (³ He,2nγ), and not two at 4006.6 and 4007.4, as in (α,2nγ) (2004Ca42). J ^π : 879.6γ (E2+M1) to 3126, 8 ⁺ , 722.6γ to (5,7) ⁺ ; 754.4γ to 3251 level, which is deexcited by a 984.6γ, M1+E2 to 2267, 4 ⁺ level.
4134.5 4			GH	
4213.90 <i>24</i> 4215.26 <i>23</i>	$(6^+,7,8^+)$ (8^+)		H G	J^{π} : 1023.5 γ to 8 ⁺ , 1144.6 γ to (5,6) ⁺ . J^{π} : 214.3 γ to 10 ⁺ , 1024.9 γ to 8 ⁺ , 676.3 γ to (6) ⁺ .
4220.8? 5	(0)		G	XREF: G(?). 2016Gi05 in (3 He,2n γ) did not confirm a 4221.9 level decaying by
4000 FC 20	(10+)		CHT	a 1030.4 γ , as proposed by 2004Ca42in (α ,2n γ).
4223.56 20	(10^+)		GHI	J^{π} : (10) from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(^{3}He,2n\gamma)$; 1097.2 γ to 8^{+} .

⁹⁸Ru Levels (continued)

E(level) [†]	J^{π} ‡	T _{1/2} #	XREF	Comments
				Possible member of g.s. band (see 4001 level also).
4256.7 7			GH	
4415.8 5	(0± 0 10±)		G	TT 220 0 (10t) 1126 (0t
4562.8 <i>3</i>	$(8^+, 9, 10^+)$		G	J^{π} : 339.0 γ to (10 ⁺), 1436.6 γ to 8 ⁺ .
4633.9 <i>3</i> 4673.4 & <i>3</i>	11-	. A . 5	G	17 001 7 F0 41 0 · 0-1
46/3.4 3	11-	6.4 ps 5	DE G I	J ^{π} : 821.7 γ E2, Δ J=2 to 9 ⁻ ; band member. T _{1/2} : from RDDS of 821.3 γ placed from a level at 4798 in (36 S,p2n γ).
4823.19 <i>23</i>			E G	
4846.8 <i>3</i>	(9^+)		GΙ	J^{π} : 840.6 γ Q, $\Delta J=2$ to (7 ⁺), 623.7 γ to (10 ⁺).
4915.0 ^a 4	12+		DE G I	J^{π} : 913.7 γ E2, $\Delta J=2$ to 10 ⁺ ; band member.
4988.6 <i>4</i>	(12^{+})		DE G I	J^{π} : 987.5 γ (E2), ΔJ =(2) to 10 ⁺ .
5218.7 <i>4</i> 5348.4 <i>4</i>	(12^+)		E G G	J^{π} : 303.5 γ to 12 ⁺ , 1217.6 γ to 10 ⁺ .
5521.8 4	13-	4.6 ps <i>4</i>	DE G I	J^{π} : 848.4 γ E2, ΔJ =2 to 11 ⁻ ; band member.
3321.6 4	13	4.0 ps 4	DE G 1	$T_{1/2}$: from RDDS of 848.9 γ placed from a level at 3977 in (36 S,p2n γ).
5613.8 5			G	
5625.7 <i>4</i>	(13^{+})		DE G	J^{π} : 710.6 γ to 12 ⁺ .
5819.5 ^a 4 5888.4 5	14 ⁺		DE I	J^{π} : 904.6 γ E2, DJ=2 to 12 ⁺ ; band member.
6121.5 6	(14^{+})		E	J^{π} : 1206.4 γ to 12 ⁺ , 302.2 γ to 14 ⁺ .
6260.7 7	(14^{+})		E	J^{π} : 635.0 γ to (13 ⁺), 441.4 γ to 14 ⁺ .
6591.8 <mark>&</mark> 4	15-	3.1 ps 8	DE G I	J^{π} : 1070.0 γ E2, $\Delta J=2$ to 13 ⁻ ; band member.
		1		$T_{1/2}$: from RDDS of 1070 γ placed from a level at 6900 in (36 S,p2n γ).
6593.8 <i>6</i>	(15^+)		E	J^{π} : 774.6 γ to 14 ⁺ ; 968.2 γ to (13 ⁺).
6869.8 <mark>a</mark> 6	16 ⁺		DE	J^{π} : 1050.2 γ E2, $\Delta J=2$ to 14 ⁺ ; band member.
7623.5 ^{&} 7	17-	1.46 ps <i>14</i>	DE I	J ^{π} : 1031.7 γ E2, Δ J=2 to 15 ⁻ ; band member. T _{1/2} : from RDDS of 1032 γ placed from a level at 5831 in
8006.4 8	(17)		E	$(^{36}S,p2n\gamma)$. J^{π} : 1136.5 γ D to 16 ⁺ .
8449.5 & 7	19-		DE	J^{π} : 826.0 γ E2, ΔJ =2 to 17 ⁻ ; band member.
9930.5 & 8	21-		DE	J^{π} : 1480.9 γ E2, ΔJ =2 to 17°; band member.
11006.3 8	(22^{-})		DE	J^{π} : 1075.6 γ (D) to 21 ⁻ .
11405.0 <mark>&</mark> 9	23-		DE	J^{π} : 1474.5 γ E2, ΔJ =2 to 21 ⁻ ; band member.
12282.3 ^{&} 10	25-		DE	J^{π} : 877.3 γ E2, $\Delta J=2$ to 23 ⁻ ; band member.
14285.3 14			E	
14476.1 <i>11</i>			DE	
14612.1 <i>11</i>			E	
14818.4 <i>14</i>			E	
14997.4 <i>14</i>			E	
15412.4 <i>14</i>			E	
15500.5 11			DE	
17238.5 <i>15</i> 17592.4 <i>18</i>			DE DE	
19892.5? 18			E	

 $^{^\}dagger$ From a least-squares fit to $\gamma\text{-ray}$ energies, unless otherwise noted.

[‡] In general the assignments are from $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) $\gamma(\text{lin pol})$ and ce data in $(\alpha,4n\gamma)$, (³He,2n γ) and (³⁶S,p2n γ). An ascending order of spins is assumed for levels populated in in-beam γ -ray studies, that is supported by γ decay modes and yrast

⁹⁸Ru Levels (continued)

nature of such reactions.

- [#] From recoil-distance Doppler-shift method (RDDS) in (36 S,p2n γ) (2000Kh02), unless otherwise stated. Since the gamma-cascade ordering is adopted from 2000Ti07, some of the level energies differ from those in 1998Kh01 and 2000Kh02. Absence of delayed γ rays with $T_{1/2} > 0.5$ ns in (α ,4n γ) (1981Du06) suggests that the half-life of other levels populated in (α ,4n γ) is <0.5 ns.
- @ Band(A): Ground state band.
- & Band(B): Band based on 9⁻.
- ^a Band(C): Band based on 8^+ . The ordering of the transitions in the cascade, level energies and J^{π} values in Band(B) and Band(C) are as proposed by 2000Ti07 in (36 S, α 4n γ). Corresponding results in (36 S,p2n γ) study (1998Kh01) differ significantly.

γ (98Ru)

							/ (-)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	$\alpha^{\#}$	Comments
652.46	2+	652.47 5	100	0.0 0+	E2		0.00253	B(E2)(W.u.)=29.8 <i>10</i> E _γ : weighted average of 652.41 5 from 98 Tc β^- decay, 652.8 <i>1</i> from $(^{36}$ S, α 4nγ), 652.6 2 from $(\alpha$,2nγ), 652.45 5 from $(^{3}$ He,2nγ), and 652.4 <i>1</i> from Coulomb excitation. Others: 652.6 4 from 98 Rh ε decay, 652.9 4 from $(^{36}$ S,p2nγ), and 652.6 4 from $(\alpha$,4nγ). Mult.: from $\gamma(\theta)$ and ce data in $(\alpha$,4nγ), $\gamma(\theta)$ and $\gamma(\theta)$ in
1322.16	0+	669.70 5	100	652.46 2+	[E2]		0.00236	(³ He,2n γ), γ (DCO) and γ (pol) in (³⁶ S, α 4n γ). B(E2)(W.u.)=42 +12-11 α (K)=0.00206 3; α (L)=0.000246 4; α (M)=4.52×10 ⁻⁵ 7 α (N)=7.26×10 ⁻⁶ 11; α (O)=3.64×10 ⁻⁷ 5
1397.91	4+	745.43 7	100	652.46 2+	E2		0.00179	E _γ : other: 668.1 8 in (α ,2nγ). B(E2)(W.u.)=57 4 E _γ : weighted average of 745.35 5 from 98 Tc β^- decay, 745.4 4 from 98 Rh ε decay (3.6 min), 746.2 4 from (36 S,p2nγ), 745.9 1 from (36 S,α4nγ), 745.6 2 from (α ,2nγ), 745.37 5 from (3 He,2nγ), 745.5 4 from (α ,4nγ), and 745.4 5 from Coulomb excitation. Mult.: from $\gamma(\theta)$ and ce data in (α ,4nγ), $\gamma(\theta)$ and γ (pol) in
1414.36	2+	761.87 <i>6</i>	100 2	652.46 2+	E2+M1	+13 +4-2	0.00169	Multi. Holin $\gamma(\theta)$ and ce data in $(\alpha,4n\gamma)$, $\gamma(\theta)$ and $\gamma(pol)$ in $(^3\text{He},2n\gamma)$, $\gamma(D\text{CO})$ and $\gamma(pol)$ in $(^{36}\text{S},\alpha4n\gamma)$. B(M1)(W.u.)=1.7×10 ⁻⁴ +10-8; B(E2)(W.u.)=46 +7-6 E _γ : weighted average of 761.9 4 from ^{98}Rh ε decay (8.72 min), 761.5 4 from ^{98}Rh ε decay (3.6 min), 762.3 2 from $(\alpha,2n\gamma)$, 761.84 5 from $(^3\text{He},2n\gamma)$, 762.2 4 from $(\alpha,4n\gamma)$, and 762.5 5 from Coulomb excitation.
		1414.31 9	49 <i>I</i>	0.0 0+	E2			Mult.: Q+D from $\gamma(\theta)$ in (p,p' γ); M2+E1 ruled out by RUL. δ : weighted average of +13 +4-3 from $\gamma(\theta)$ in (p,p' γ) and +11 +8-3 from $\gamma\gamma(\theta)$ in (3 He,2n γ). B(E2)(W.u.)=1.04 +17-14 E $_\gamma$: weighted average of 1414.2 8 from 98 Rh ε decay (8.72 min), 1413.4 4 from 98 Rh ε decay (3.6 min), 1415.0 3 from (α ,2n γ), 1414.29 5 from (3 He,2n γ), 1415.1 4 from (α ,4n γ), and 1414.9 5 from Coulomb excitation.
1797.03	3 ⁺	382.66 5	25.3 12	1414.36 2+	M1+E2	+0.8 +8-3	0.0102 11	I _γ : weighted average of 56 5 from ⁹⁸ Rh ε decay (8.72 min), 48.6 20 from (α,2nγ) and 49 1 from (3 He,2nγ). Others: 36 3 in (α,4nγ), 20 5 in Coulomb excitation, 70 7 in ⁹⁸ Rh ε decay (3.6 min). Mult.: Q from $\gamma(\theta)$ in (p,p'γ); M2 ruled out by RUL. $\alpha(K)=0.0088$ 9; $\alpha(L)=0.00108$ 15; $\alpha(M)=0.00020$ 3 $\alpha(N)=3.2\times10^{-5}$ 4; $\alpha(O)=1.57\times10^{-6}$ 13 E _γ : weighted average of 383.0 5 from ⁹⁸ Rh ε decay (3.6 min), 382.7 3 from (α,2nγ), 382.65 5 from (3 He,2nγ), and 382.7 4 from (α,4nγ).

(3 He.2n γ). Other: 16.3 25 from 98 Rh ε decay (3.6 min).

B(E2)(W.u.)=12.8 +17-14

 ∞

2222.65

824.79 8

100

1397.91 4+

	Adopted	Levels,	Gammas ((continued)
--	---------	---------	----------	-------------

γ (98Ru) (continued)

							ueu)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	$\alpha^{\#}$	Comments
								E _γ : weighted average of 824.4 4 from ⁹⁸ Rh ε decay (3.6 min), 825.3 4 from (³⁶ S,p2nγ), 825.1 <i>I</i> from (³⁶ S,α4nγ), 825.1 2 from (α,2nγ), 824.69 5 from (³ He,2nγ), and 824.9 4 from (α,4nγ). Mult.: from γ(DCO) and γ(pol) in (³⁶ S,α4nγ), γ(θ,pol) and ce data in (³ He,2nγ), γ(θ) and ce data in (α,4nγ).
2241.5	$(4^+,6^+)$	843.6 <i>3</i>	100	1397.91 4+				Mult.: $\gamma(\theta)$ and POL data in 1988Sa01 in (3 He,2n γ) suggest mult=E2 or E1 (if ΔJ =0).
2245.87 2257.9	2 ⁽⁺⁾	1593.4 2 843.5 <i>4</i>	100 100	652.46 2 ⁺ 1414.36 2 ⁺	D+Q	-0.19 +10-11		Mult., δ : from $\gamma\gamma(\theta)$ in (³ He,2n γ).
2266.58	4+	253.80 5	24.6 17	2012.81 3+	M1+E2	-0.9 5	0.035 7	$\alpha(K)$ =0.030 6; $\alpha(L)$ =0.0040 10; $\alpha(M)$ =0.00073 18 $\alpha(N)$ =0.00012 3; $\alpha(O)$ =5.2×10 ⁻⁶ 9 E _y : others: 253.8 3 from $(\alpha,2n\gamma)$, 253.9 4 from $(\alpha,4n\gamma)$. I _y : weighted average of 26.4 11 from $(\alpha,2n\gamma)$, 21 2 from $(^3\text{He},2n\gamma)$, and 21.7 22 from $(\alpha,4n\gamma)$. Mult.: from $\gamma(\theta)$ and ce data in $(^3\text{He},2n\gamma)$ and $\gamma(\theta)$ in $(\alpha,4n\gamma)$.
		469.54 5	100 3	1797.03 3+	M1+E2	-0.8 +3-6		δ: from $\gamma(\theta)$ in (³ He,2n γ). Other: +3.5 +2 θ -12 from (α ,4n γ). E $_{\gamma}$: others: 469.6 2 from (α ,2n γ), 469.7 4 from (α ,4n γ). I $_{\gamma}$: others: 100 4 from (α ,2n γ), 100 9 from (α ,4n γ). Mult.: from $\gamma(\theta$,pol) in (³ He,2n γ), $\gamma(\theta)$ and ce data in (α ,4n γ). δ: from $\gamma(\theta)$ and ce data in (α ,4n γ). Other: +0.45 +14-8 or +4.20 + θ -13 from $\gamma(\theta)$ in (³ He,2n γ).
		868.7 3	28.7 11	1397.91 4+	M1+E2	+2.3 +15-8		E _y : weighted average of 869.2 3 from $(\alpha,2n\gamma)$ and 868.5 2 from $(^3\text{He},2n\gamma)$. I _y : weighted average of 28.7 11 from $(\alpha,2n\gamma)$ and 29 3 from $(^3\text{He},2n\gamma)$. Mult., δ : from $\gamma\gamma(\theta)$ and $\gamma(\text{pol})$ in $(^3\text{He},2n\gamma)$.
2277.07	$(2)^{+}$	264.1 <i>4</i> 879.2 <i>1</i>	5 <i>1</i> 57 <i>3</i>	2012.81 3+	(E2)			
		879.2 1	3/3	1397.91 4+	(E2)			E_{γ} : other: 879.6 <i>3</i> from (<i>α</i> ,2n <i>γ</i>). Mult.: M1,E2 from $\gamma(\theta,\text{pol})$ and ce data in (³ He,2n <i>γ</i>), but ΔJ^{π} requires E2.
2205 52		1624.3 3	100 4	652.46 2+				E_{γ} : other: 1625.4 3 from $(\alpha, 2n\gamma)$.
2295.52 2362.6		897.6 2 1710.1 3	100 100	1397.91 4 ⁺ 652.46 2 ⁺				
2371.37	$(0^+ \text{ to } 4^+)$	956.7 <i>3</i> 1719.2 <i>3</i>	14 <i>4</i> 100 <i>10</i>	1414.36 2 ⁺ 652.46 2 ⁺				
2406.13	$(1^+,2^+)$	991.7 2 1084.1 2	48 <i>10</i> 64 <i>6</i>	1414.36 2 ⁺ 1322.16 0 ⁺				
		1753.5 3	100 16	652.46 2 ⁺				
2427.09	2+	610.0 <i>1</i>	8.3 18	1817.19 2+	D+Q	-1.5 + 8 - 53		E_{γ} : weighted average of 609.9 4 from $(\alpha, 2n\gamma)$ and 610.0 I

γ (98Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
2427.09	2+	630.0 2	8.1 22	1797.03 3+	M1(+E2)	-0.04 45	from (3 He,2n γ). I $_{\gamma}$: unweighted average of 6.5 10 from (α ,2n γ) and 10 1 from (3 He,2n γ). Mult., δ : from $\gamma(\theta)$ in (3 He,2n γ). E $_{\gamma}$: weighted average of 630.3 4 from (α ,2n γ) and 629.9 2 from (3 He,2n γ). I $_{\gamma}$: unweighted average of 6.0 10 from (α ,2n γ) and 10.3 15 from (3 He,2n γ). Mult.: from $\gamma(\theta$,pol) in (3 He,2n γ) (1988Sa01). δ : deduced by 2016Gi05 from A $_{2}$ in 1988Sa01 for J(2427)=2 in
		1012.7 <i>1</i>	11 <i>I</i>	1414.36 2+			$(^3$ He,2n γ).
		1012.7 1	21 1	1397.91 4 ⁺			E_{γ} : weighted average of 1029.7 4 from $(\alpha,2n\gamma)$ and 1029.0 I from $(^{3}\text{He},2n\gamma)$.
		1774.5 <i>3</i>	100 2	652.46 2+	M1+E2	+0.42 +7-5	E_{γ} : other: 1776.4 6 from 2004Ca42 in $(\alpha,2n\gamma)$, transition identified as a doublet in 2004Ca42.
							Mult., δ : mult from $\gamma(\theta, \text{pol})$ (1988Sa01) and δ from $\gamma\gamma(\theta)$ (2016Gi05) in (3 He,2n γ).
2468.35	(2)+	670.2 [@] 7		1797.03 3+			E_{γ} : from ⁹⁸ Rh ε decay (8.72 m) only with I(670.2γ)/I(2467.6γ)=100/19.5; but its existence can not be confirmed by 2004Ca42 in (α,2nγ) and 2016Gi05 in (3 He,2nγ).
		1815.9 2		652.46 2 ⁺			E_{γ} : seen by 2016Gi05 in (³ He,2n γ) only.
		2467.6		0.0 0+			E_{γ}' : from ⁹⁸ Rh ε decay (8.72 m) only; this transition can not been seen by 2004Ca42 in $(\alpha,2n\gamma)$ and 2016Gi05 in $(^3\text{He},2n\gamma)$ due detector limit.
2547.07	5+	280.5 2	8 2	2266.58 4+			E_{γ} : other: 280.5 4 from $(\alpha,2n\gamma)$. I_{γ} : unweighted average of 10 2 from (3 He,2n γ) and 5.4 9 from $(\alpha,2n\gamma)$.
		324.4 1	21.6 9	2222.65 6+			E _{γ} : others: 324.6 3 from (α ,2n γ), 323.9 10 from (36 S, α 4n γ). I _{γ} : weighted average of 21 2 from (3 He,2n γ) and 21.7 9 from (α ,2n γ).
		534.2 2	11 <i>3</i>	2012.81 3+			I_{γ} : other: <3 in $(\alpha,2n\gamma)$.
		1149.21 8	100 4	1397.91 4+	M1+E2	+0.37 5	E _{γ} : weighted average of 1149.17 5 from (3 He,2n γ), 1149.7 2 from (α ,2n γ), 1149.6 4 from (α ,4n γ) and 1149.1 10 from (3 6S, α 4n γ). Mult.: E2 from $\gamma(\theta)$ and ce data in (α ,4n γ), but ce data also agree with M1; D+Q from $\gamma\gamma(\theta)$ in (3 He,2n γ) (2016Gi05). δ : from $\gamma\gamma(\theta)$ in (3 He,2n γ) (2016Gi05).
2602.33	$(2^+,3^+,4^+)$	325.2 <i>3</i>	23 4	2277.07 (2)+			
		589.5 2	100 7	2012.81 3+			E_{γ} : other: 589.6 4 from $(\alpha,2n\gamma)$. I_{γ} : other: 52 9 from $(\alpha,2n\gamma)$.
		785.3 <i>3</i>	12 3	1817.19 2+			
		1188.0 3	39 5	1414.36 2+			F 1 1005 7 4 6 4 9 3
		1204.4 2	67 5	1397.91 4+			E_{γ} : other: 1205.7 4 from $(\alpha, 2n\gamma)$. I_{γ} : other: 100 15 from $(\alpha, 2n\gamma)$.

γ (98Ru) (continued)

- 1									
	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	$\alpha^{\#}$	Comments
	2602.33	$(2^+,3^+,4^+)$	1949.1 <i>10</i>	40 18	652.46 2+				
	2619.5	$(1,2^+)$	802.2 4	10 2	1817.19 2 ⁺				
	2017.5	(1,2)	1967.3 5	100 9	652.46 2 ⁺				
			2619.2	11.7 12	$0.0 0^{+}$				
	2656.62	$(3,5^+)$	643.9 2	61	2012.81 3+				
	2030.02	(3,3)	1258.69 5	100 2	1397.91 4+	D(+Q)	>-0.1		E_{γ} : others: 1259.3 2 in $(\alpha, 2n\gamma)$, 1259.4 4 in $(\alpha, 4n\gamma)$.
							>-0.1		Mult., δ : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$. Mult=D from $\gamma(\theta)$ in $(^3\text{He},2n\gamma)$.
	2659.73	$(3^+,4)$	862.66 5	100	1797.03 3 ⁺	D			E_{γ} : other: 863.2 3 from $(\alpha, 2n\gamma)$. Mult.: from $\gamma(\theta)$ in (³ He,2n γ).
	2670.39	$(0^+ \text{ to } 3)$	853.2 2	12 2	1817.19 2 ⁺				
J			1256.1 5	100 4	1414.36 2+				
- [2018.1 7	14 <i>3</i>	652.46 2+				
- [2707.35	$(1,2^+)$	889.7 <i>4</i>	10 3	1817.19 2+				
		() /	1293.0 2	100 16	1414.36 2+				
- [1385.6 4	12 3	1322.16 0+				
	2720.17	$(3,4^+)$	1322.2 <i>I</i>	100 3	1397.91 4+	D			E_{γ} : other: 1322.2 4 from $(\alpha, 2n\gamma)$.
	2720.17	(3,1)				D			Mult.: from $\gamma(\theta)$ in (3 He,2n γ).
			2068.1 5	11 2	652.46 2+				
:	2754.2		937.0 <i>3</i>	100	1817.19 2+				
	2786.0		563.3 <i>4</i>	100	$2222.65 6^+$				
	2809.39	(3)	542.8 <i>1</i>	95 <i>5</i>	2266.58 4+				E_{γ} : other: 542.8 3 from $(\alpha, 2n\gamma)$.
			796.4 2	19 2	$2012.81 \ 3^{+}$				
			1012.4 <i>1</i>	100 8	1797.03 3+				
			1411.5 5	33 8	1397.91 4+				
	2811.59	$(2^+,3,4^+)$	1397.2 <i>3</i>	100 7	1414.36 2 ⁺				
		, , , ,	1413.7 <i>4</i>	58 10	1397.91 4+				
	2816.69	$(2^+,3,4^+)$	999.3 4	17 <i>4</i>	1817.19 2 ⁺				
		(- ,-, ·)	1402.2 4	33 8	1414.36 2+				
- [1418.9 3	100 11	1397.91 4+				
- [2164.4 6	91 15	652.46 2+				
	2825.92		1428.0 2	100	1397.91 4+				
J	2859.22		846.4 2	100	2012.81 3+				
J		(6) ⁺				M1(+E2)	0.0.5	0.0139 16	$\alpha(V) = 0.0122 \cdot 12 \cdot \alpha(V) = 0.00142 \cdot 21 \cdot \alpha(V) = 0.00026 \cdot 4$
	2867.40	(6)	320.3 1	100 4	2547.07 5+	M1(+E2)	0.0 5	0.0139 16	$\alpha(K)=0.0122 \ 13; \ \alpha(L)=0.00142 \ 21; \ \alpha(M)=0.00026 \ 4$ $\alpha(N)=4.2\times10^{-5} \ 6; \ \alpha(O)=2.23\times10^{-6} \ 19$ E _y : other: 320.6 3 from $(\alpha,2ny)$.
			644.9 2	52 3	2222.65 6+	M1,E2			Mult., δ : from ce data (2016Gi05) in (3 He,2n γ). E $_{\gamma}$: weighted average of 645.1 4 from (α ,2n γ) and 644.9 2 from (3 He,2n γ). I $_{\gamma}$: other: 16 2 from (α ,2n γ).
			1469.2 <i>4</i>	8 2	1397.91 4+				Mult.: from ce data in $(^{3}\text{He},2\text{n}\gamma)$.
	2022.72	(4+)							
	2932.72	(4^{+})	710.0 2 2280.8 <i>6</i>	62 <i>13</i> 100 27	2222.65 6 ⁺ 652.46 2 ⁺				
			2200.0 0	100 27	032.40 2				
- 1									

$\gamma(^{98}\text{Ru})$ (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	Comments
2954.5		527.4 3	100	2427.09 2+		
2997.8	$(1,2^+)$	1675.6 <i>7</i>	100	1322.16 0 ⁺		
3014.5	())	1616.6 <i>6</i>	100	1397.91 4+		
3016.9	(+)	1619.0 <i>3</i>	100	1397.91 4+		
3026.7	. ,	1013.9 5	100	2012.81 3+		
3058.1		835.4 <i>4</i>	100	2222.65 6+		E_{γ} : from $(\alpha, 2n\gamma)$ only.
3064.92	(3^{+})	408.3 2	7 1	2656.62 (3,5 ⁺)		
		1052.1 2	10 <i>3</i>	2012.81 3+		
		1667.0 <i>1</i>	100 4	1397.91 4+	D	E_{γ} : other: 1668.5 3 from $(\alpha, 2n\gamma)$.
						Mult.: from $\gamma(\theta)$ in (³ He,2n γ).
3069.25	$(5,6)^+$	522.3 2	9 1	2547.07 5+		E_{γ} : weighted average of 522.5 4 from $(\alpha, 2n\gamma)$ and 522.2 2 from $(^{3}\text{He}, 2n\gamma)$.
	(=,=)	846.6 <i>3</i>	100 6	2222.65 6 ⁺	M1,E2	Mult.: from ce data in (3 He,2n γ).
		1671.0 <i>3</i>	12 <i>I</i>	1397.91 4+	,	
3069.5		2417 <i>I</i>	100	652.46 2+		E_{γ} : from ⁹⁸ Rh ε decay (3.6 min) only.
3074.73	$(2^+ \text{ to } 5^+)$	418.3 2	55 6	2656.62 (3,5 ⁺)		Ly. Hom Tar o accus (5.0 mm) only.
2011.13	(2 10 5)	1061.7 3	45 9	2012.81 3+		
		1676.7 2	100 12	1397.91 4+		
3093.8	$(2^+,3,4^+)$	1679.6 4	51 16	1414.36 2+		
20,2.0	(= ,0,.)	1695.7 5	100 18	1397.91 4+		
3097.63		1699.7 2	100	1397.91 4+		
3109.15	$(2^+,3,4^+)$	452.3 <i>3</i>	16 3	2656.62 (3,5 ⁺)		
	()- / /	682.2 2	100 8	2427.09 2+		
		1312.3 2	46 7	1797.03 3 ⁺		
		1710.7 <i>3</i>	73 <i>4</i>	1397.91 4+		
3120.36		1107.6 <i>3</i>	28 7	2012.81 3+		
		1722.4 2	100 8	1397.91 4+		
3126.61	8+	904.16 <i>15</i>	100	2222.65 6+	E2	B(E2)(W.u.)=2.5 +5-3
						E_{γ} : unweighted average of 904.1 4 from (36 S,p2n γ), 904.7 1 from (36 S,α4n γ), 904.1 2 from (36 S,α2n γ), 903.80 5 from (3 He,2n γ), and 904.1 4 from (36 S,α4n γ).
						Mult.: from $\gamma(\theta, \text{pol})$ in (³ He,2n γ), $\gamma(\text{pol})$ and $\gamma(\text{DCO})$ in (³⁶ S, α 4n γ), $\gamma(\theta)$ and ce
						Mult.: from $\gamma(\theta, \text{pol})$ in (*He,2n γ), $\gamma(\text{pol})$ and $\gamma(\text{DCO})$ in (*S, α 4n γ), $\gamma(\theta)$ and ce data in $(\alpha,4n\gamma)$.
3132.6		476.2 <i>5</i>	8 2	$2656.62 (3,5^+)$		
		1734.6 <i>3</i>	100 5	1397.91 4+		00
3179.0	$(1,2^+)$	1764.6	9 1	$1414.36 \ 2^{+}$		E_{γ},I_{γ} : from 98 Rh ε decay (3.6 min) only.
		2526.1	100 7	652.46 2 ⁺		E_{γ},I_{γ} : from ⁹⁸ Rh ε decay (3.6 min) only.
		3179.3	50 5	$0.0 0^{+}$		E_{γ},I_{γ} : from ⁹⁸ Rh ε decay (3.6 min) only.
3185.02	$(4^+,5^+)$	638.0 2	48 4	2547.07 5 ⁺		
		962.3 2	43 3	2222.65 6 ⁺		
		1172.2 <i>I</i>	100 5	2012.81 3+		
3190.44	8+	967.73 9	100	2222.65 6+	E2	E_{γ} : weighted average of 968.5 3 from (36 S, α 4n γ), 968.0 2 from (α ,2n γ), 967.69 5 from (3 He,2n γ), and 968.0 4 from (α ,4n γ). Other: 969.4 4 from (36 S,p2n γ).
						Mult.: from $\gamma(\theta,\text{pol})$ and ce data in ($^3\text{He},2\text{n}\gamma$), $\gamma(\text{pol})$ and $\gamma(\text{DCO})$ in ($^{36}\text{S},\alpha4\text{n}\gamma$),

γ (98Ru) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
							$\gamma(\theta)$ and ce data in $(\alpha,4n\gamma)$. But $\Delta J=1$, dipole suggested from $\gamma(DCO)$ in $(^{36}S,p2n\gamma)$ (1998Kh01) is in disagreement.
3205.2	$(2^+,3)$	1388.5 6	44 13	1817.19	2+		I_{γ} : from (³ He,2n γ) only, normalized to I(1792.3 γ)=63 8 in ⁹⁸ Rh ε decay (8.72 min).
		1790.6 <i>4</i>	63 8	1414.36	2+		E_{γ} : other: 1792.3 from ⁹⁸ Rh ε decay (8.72 min).
		1807.2 6	88 18	1397.91			I_{γ} : from (³ He,2n γ) only, normalized to I(1792.3 γ)=63 8 in ⁹⁸ Rh ε decay (8.72 min).
		2552.3	100 11	652.46			E_{γ} , I_{γ} : from ⁹⁸ Rh ε decay (8.72 min) only. Not seen by 2016Gi05 in (³ He,2n γ) probably due to detector limit.
3245.24	$(6)^{+}$	698.1 2	12 2	2547.07	5+		
	. ,	978.9 2	100 4	2266.58	4+	(E2)	E_{γ} : weighted average of 979.2 2 from $(\alpha, 2n\gamma)$ and 978.8 1 from (³ He, 2n γ).
							Mult.: E2 from ce data in (3 He, 2 n γ), but also in overlap with M1.
		1022.3 2	15 2	2222.65			
3251.05	$(5)^{+}$	590.8 2	40 4	2659.73	$(3^+,4)$		E_{γ} : weighted average of 591.3 4 from $(\alpha, 2n\gamma)$ and 590.7 2 from $(^{3}\text{He}, 2n\gamma)$.
							I_{γ} : weighted average of 46 7 from $(\alpha,2n\gamma)$ and 38 4 from $(^{3}\text{He},2n\gamma)$.
		594.3 2	46 6	2656.62	$(3,5^+)$		E_{γ} : weighted average of 594.7 4 from (α ,2n γ) and 594.2 2 from (3 He,2n γ).
							I_{γ} : weighted average of 56 8 from $(\alpha,2n\gamma)$ and 42 5 from $(^{3}\text{He},2n\gamma)$.
		984.6 2	100 6	2266.58	4+	M1+E2	E_{γ} : weighted average of 984.9 3 from (α ,2n γ) and 984.4 2 from (3 He,2n γ).
							Mult.: from $\gamma(\theta)$ and ce data in (3 He, 2 n γ).
3279.32		1482.2 5	43 12	1797.03			
2202 77	(5.5) !	1881.4 2	100 6	1397.91			T
3283.52	$(5,7)^+$	626.9 <i>1</i>	25 1	2656.62	$(3,5^+)$		E_{γ} : weighted average of 627.1 3 from (α,2nγ), 626.8 4 from (α,4nγ), and 626.9 1 from (3 He,2nγ).
							I_{γ} : weighted average of 25.5 11 from $(\alpha, 2n\gamma)$, 29 4 from $(\alpha, 4n\gamma)$, and 23 2 from $(^{3}\text{He}, 2n\gamma)$.
		1061.6 4	100 2	2222.65	6+	M1+E2	E_{γ} : weighted average of 1062.6 <i>10</i> from (36 S,α4nγ), 1061.2 2 from (α,2nγ), 1060.6 <i>1</i> from (3 He,2nγ), and 1061.8 4 from (α,4nγ).
							Mult.: from $\gamma(\theta)$ and ce data in (³ He,2n γ). But E1 suggested from $\gamma(\theta)$ and ce data in $(\alpha,4n\gamma)$.
3288.06		1065.4 2	100	2222.65			
3350.4		1084.0 <i>3</i>	61 <i>12</i>	2266.58			
		1553.0 5	100 22	1797.03			
3366.8?	$(1,2^+)$	3366.7 [@]	100				
3382.97		1106.0 <i>3</i>	58 11	2277.07			
		1370.0 4	48 14	2012.81			
	-1 -1	1585.9 <i>4</i>	100 28	1797.03			
3442.22	$2^+,3^+$	1014.8 <i>3</i>	42 12	2427.09			00
		1625.1 5	22 4	1817.19			E_{γ} : weighted average of 1624.7 6 from ⁹⁸ Rh ε decay (3.6 min) and 1625.3 5 from (³ He,2n γ).
		2045.1 5	100 8	1397.91			
3474.65	$(4^+,5,6^+)$	229.2 3	70 9	3245.24	(6) ⁺		E_{γ} : weighted average of 229.8 4 from $(\alpha, 2n\gamma)$ and 229.1 2 from $(^{3}He, 2n\gamma)$. I_{γ} : weighted average of 66 9 from $(\alpha, 2n\gamma)$ and 78 13 from $(^{3}He, 2n\gamma)$.
		1252.8 5	100 13	2222.65	6 ⁺		E_{γ} : unweighted average of 1253.2 4 from $(\alpha,2n\gamma)$ and 1252.3 2 from $(^{3}\text{He},2n\gamma)$.

γ (98Ru) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
3523.72	$(4^+,5,6^+)$	803.0 4	11 3	2720.17				
		1301.2 2	100 6	2222.65				
3537.0?	$(1^+, 2^+, 3^+)$	1719.8 [@] 5	100	1817.19				
3538.79	(6) ⁺	412.1 <i>I</i>	100 4	3126.61				E _γ : weighted average of 412.4 <i>3</i> from $(\alpha,2n\gamma)$, 412.1 <i>I</i> from $(^{3}\text{He},2n\gamma)$, 412.3 <i>4</i> from $(\alpha,4n\gamma)$ and , 412.0 <i>10</i> from $(^{36}\text{S},\alpha4n\gamma)$. I _γ : from $(\alpha,2n\gamma)$. Others: 100 6 from $(^{3}\text{He},2n\gamma)$, 81 6 from $(\alpha,4n\gamma)$.
		992.0 2	72 7	2547.07	5+	M1+E2		E _y : weighted average of 992.0 3 from $(\alpha,2n\gamma)$, 991.8 2 from $(^3\text{He},2n\gamma)$, 992.3 4 from $(\alpha,4n\gamma)$ and 993.0 10 from $(^{36}\text{S},\alpha 4n\gamma)$. I _y : unweighted average of 79 3 from $(\alpha,2n\gamma)$ and 65 5 from $(^3\text{He},2n\gamma)$.
								Other: 100 13 from $(\alpha,4n\gamma)$. Mult.: from $\gamma(\theta)$ and ce data in $(^{3}\text{He},2n\gamma)$.
3562.2		1014.9 <i>3</i>	69 <i>13</i>	2547.07	5+			
		1340.0 4	100 11	2222.65	6+			
3578.72	$(4^+ \text{ to } 7^+)$	295.1 2	23 4	3283.52	$(5,7)^+$			E_{γ} : weighted average of 295.1 10 from (36 S,α4nγ), 295.5 4 from (α,2nγ), and 295.0 2 from (3 He,2nγ).
		1032.4 7	100 7	2547.07	5+			E_{γ} : weighted average of 26 4 from (α,2nγ), and 19 4 from (3 He,2nγ). E_{γ} : unweighted average of 1033.7 10 from (36 S,α4nγ), 1032.1 3 from (α,2nγ), and 1031.5 1 from (3 He,2nγ).
		1356.3 5	15 <i>3</i>	2222.65	6+			E _{γ} : unweighted average of 1057.6 10 from (36 S, α 4n γ) and 1056.1 4 from (3 He,2n γ).
3620.56		1397.9 2	100	2222.65	6+			
3624.02		967.4 2	100	2656.62	$(3,5^+)$			
3637.9		1415.2 <i>3</i>	100	2222.65	6+			
3671.22		1014.6 2	100	2656.62	$(3,5^+)$			
3703.22		1046.6 2	100	2656.62	$(3,5^+)$			
3721.88		438.5 <i>3</i>	46 9	3283.52	$(5,7)^+$			
		1065.2 2	100 10	2656.62	$(3,5^+)$			
3851.72	9-	725.1 2	100	3126.61	8+	E1(+M2)	+0.2 2	$B(E1)(W.u.) > 1.2 \times 10^{-4}$
								E_{γ} : unweighted average of 725.4 <i>I</i> from (36 S,α4nγ), 725.2 2 from (α,2nγ), 724.7 <i>I</i> from (3 He,2nγ), and 724.9 4 from (α,4nγ). Other: 725.7 4 from (36 S,p2nγ), placed from a level 7626.
								Mult.: from $\gamma(\theta)$ and ce data in (³ He,2n γ). E1 from $\gamma(DCO)$ and $\gamma(pol)$ in (α ,4n γ) and from $\gamma(\theta$,pol) in (³ He,2n γ).
3852.3	(6 ⁺ to 9 ⁺)	568.9 <i>3</i>	100 23	3283.52	(5,7)+			δ: from $\gamma(\theta)$ in (³ He,2n γ). E $_{\gamma}$: weighted average of 569.0 2 from (³ He,2n γ) and 567.4 10 (placed from the 3851, 9 ⁻ level) from (³⁶ S, α 4n γ).
		661.6 4	51 <i>16</i>	3190.44	8+			the 3851, 9 level) from $({}^{3}S,\alpha^{4}n\gamma)$. E_{γ} : weighted average of 662.1 4 from $({}^{3}He,2n\gamma)$, 661.3 5 from $({}^{3}S,\alpha^{4}n\gamma)$, and 661.3 4 from $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$ (placed from the 3851, 9 level
3855.3		316.8 5	100 19	3538.79	(6) ⁺			except for the first one). E _{γ} : unweighted average of 317.3 <i>3</i> from (α ,2n γ) and 316.4 <i>1</i> from
		987.6 <i>5</i>	71 <i>16</i>	2867.40	(6) ⁺			$(^3$ He,2n γ).

γ (98Ru) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
3945.2 3965.0 3971.84		1722.5 6 1742.3 4 1301.5 3 1315.7 4 1958.4 4	100 100 70 11 64 12 100 20	2222.65 2222.65 2670.39 2656.62 2012.81	6 ⁺ (0 ⁺ to 3) (3,5 ⁺)		E_{γ} : unweighted average of 1723.1 4 from $(\alpha,2n\gamma)$ and 1721.9 2 from $(^{3}\text{He},2n\gamma)$.
4001.19	10+	810.6 2	43 2	3190.44		E2	B(E2)(W.u.)=1.27 +31-23 E _γ : weighted average of 811.4 5 from (36 S,α4ηγ), 810.7 3 from (α,2ηγ), 810.3 2 from (3 He,2ηγ), 810.5 4 from (α,4ηγ), and 810.9 4 from (36 S,ρ2ηγ). I _γ : weighted average of 75 17 from (36 S,α4ηγ), 42.5 17 from (α,2ηγ), 38 4 from (3 He,2ηγ), and 46 3 from (α,4ηγ).
		874.8 2	100 4	3126.61	8+	E2	Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in $(^{36}S, \alpha 4n\gamma)$, $\gamma(\theta)$ and ce data in $(\alpha, 4n\gamma)$. B(E2)(W.u.)=2.0 +4-3 E _{γ} : unweighted average of 875.4 3 from $(^{36}S, \alpha 4n\gamma)$, 874.7 2 from $(\alpha, 2n\gamma)$, 874.3 1 from $(^{3}He, 2n\gamma)$, and 874.6 4 from $(\alpha, 4n\gamma)$. Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in $(^{36}S, \alpha 4n\gamma)$, $\gamma(\theta)$ and ce data in $(\alpha, 4n\gamma)$. In $(^{36}S, p2n\gamma)$ it was suggested as ΔJ =1, E1 transition.
4005.98	(7 ⁺)	722.6 2	100 4	3283.52	(5,7)+		$(^{3}\text{S,p2n}\gamma)$ it was suggested as $\Delta J=1$, E1 transition. E_{γ} : weighted average of 722.4 2 from ($^{3}\text{He,2n}\gamma$), 722.7 4 from (α ,4n γ), 722.9 3 from (α ,2n γ). I_{γ} : from (α ,2n γ). Others: 100 8 from ($^{3}\text{He,2n}\gamma$), 100 9 from (α ,4n γ).
		754.4 2	48 15	3251.05	(5) ⁺		E_{γ} : weighted average of 754.5 3 from $(\alpha, 2n\gamma)$ and 754.3 2 from $(^3He, 2n\gamma)$.
		815.6 3	46 2	3190.44			E _y : weighted average of 816.1 3 from $(\alpha,2n\gamma)$ and 815.4 2 from $(^3\text{He},2n\gamma)$. I _y : weighted average of 45.7 17 from $(\alpha,2n\gamma)$ and 48 15 from $(^3\text{He},2n\gamma)$.
		879.6 2	38 6	3126.61	8+	(E2+M1)	E _y : weighted average of 879.5 2 from (3 He,2ny), 879.8 4 from (α ,4ny), 879.6 3 from (α ,2ny). I _y : weighted average of 32 5 from (α ,2ny) and 43 5 from (3 He,2ny). Other: 85 7 from (α ,4ny). Mult.: from ce data in (α ,4ny).
4134.5 4213.90	$(6^+,7,8^+)$	889.3 <i>3</i> 1023.5 <i>3</i>	100 24 <i>4</i>	3245.24 3190.44	8+		E_{γ} : other: 889.3 4 from $(\alpha, 2n\gamma)$.
4215.26	(8+)	1144.6 <i>3</i> 214.3 <i>4</i> 676.3 <i>4</i> 1024.9 <i>4</i> 1088.5 <i>4</i>	100 8 44 7 40 7 100 14 60 9	3069.25 4001.19 3538.79 3190.44 3126.61	10 ⁺ (6) ⁺ 8 ⁺		E_{γ},I_{γ} : from $(\alpha,2n\gamma)$ only. E_{γ},I_{γ} : from $(\alpha,2n\gamma)$ only. E_{γ},I_{γ} : from $(\alpha,2n\gamma)$ only. E_{γ},I_{γ} : from $(\alpha,2n\gamma)$ only. E_{γ},I_{γ} : from $(\alpha,2n\gamma)$ only.
4220.8? 4223.56	(10 ⁺)	1030.4 <i>4</i> 1032.8 <i>3</i>	100 100 <i>4</i>	3190.44 3190.44	8+		E _{γ} : from $(\alpha,2n\gamma)$ only, not confirmed by 2016Gi05 in (3 He,2n γ). E _{γ} : weighted average of 1033.3 3 from $(\alpha,2n\gamma)$, 1032.5 2 from (3 He,2n γ), and 1033.2 4 from $(\alpha,4n\gamma)$.
		1097.2 3	49 3	3126.61	8+	(E2)	I _γ : from $(\alpha,2n\gamma)$. Others: 100 10 from $(^3\text{He},2n\gamma)$, 100 7 from $(\alpha,4n\gamma)$. E _γ : weighted average of 1097.5 3 from $(\alpha,2n\gamma)$, 1096.9 4 from $(^3\text{He},2n\gamma)$, and 1096.9 4 from $(\alpha,4n\gamma)$.
							 I_γ: weighted average of 49.4 19 from (α,2nγ) and 33 9 from (³He,2nγ). Other: 85 7 from (α,4nγ). Mult.: M1,E2 suggested from ce data in (α,4nγ), E2 favored from level scheme.

$\gamma(^{98}\text{Ru})$ (continued)

445.8 (8 + 9.10 + 15.6 100 324.52 60 7 4415.8 (8 + 9.10 + 34.90 3190.4 8" 452.8 (8 + 9.10 + 34.90 3390.3 100 4 4223.56 10" 4633.9 632.6 4 100 75 400.19 10" 4673.4 11" 821.7 2 100 3851.72 9" F2 4623.19 189.5 4 11 2 4633.9 2603.4 13 2 4562.8 (8 + 9.10 + 1) 10" 4846.8 (9 +) 623.7 4 15.8 25 4223.56 (10") 8422.1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
4633.9	4415.8	(8 ⁺ ,9,10 ⁺)	1225.4 <i>4</i> 339.0 <i>3</i>	100 100 <i>4</i>	3190.44 8 ⁺ 4223.56 (1	0 ⁺)		E_{γ} : from $(\alpha, 2n\gamma)$ only. E_{γ}, I_{γ} : from $(\alpha, 2n\gamma)$ only.
Fy: weighted average of 82.20 I from (δ-S,ρ.2ny), 821.3 2 from (α.2ny), 821.1 4 from (α.4ny), 821.3 2 from (δ-S,ρ.2ny) (placed from a level at 4798). Mult: from γ(DCO) and γ(pol) in (δ-S,ρ.2ny) (placed from a level at 4798). Mult: from γ(DCO) and γ(pol) in (δ-S,ρ.2ny). (β-β.γ.2ny) (placed from a level at 3798). Fy-β.γ. from (α.2ny) only. Fy-β.γ. from			410.7 <i>4</i> 632.6 <i>4</i>	94 15	4223.56 (194001.19 10	0 ⁺)		E_{γ},I_{γ} : from $(\alpha,2n\gamma)$ only.
189.5 4 11 2 4633.9 260.3 4 13 2 4562.8 (8° 9.10°) 599.4 3 47 6 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 15.8 25 4223.56 (10°) 623.74 100 4001.19 10° 623.74 100 4001.19 10° 623.74 100° 4001.19 10° 623.74 100° 4001.19 10° 623.74 100° 4001.19 10° 623.74 10° 4	4673.4	11-	821.7 2	100	3851.72 9-	-	E2	E _γ : weighted average of 822.0 <i>I</i> from (36 S, α 4nγ), 821.3 2 from (α ,2nγ), 821.1 4 from (α ,4nγ), 821.3 2 from (36 S,p2nγ) (placed from a level at 4798). Mult.: from γ (DCO) and γ (pol) in (36 S, α 4nγ), γ (θ) and ce data in (α ,4nγ); also
4846.8 (9 ⁺) 623.7 4 15.8 25 4223.56 (10 ⁺) 840.6 3 100 4 4005.98 (7 ⁺) Q E _γ : weighted average of 840.7 3 from (α,2nγ) and 840.4 4 from (α,4nγ). 1 _γ : from (α,2nγ). Mult: from γ(θ) in (α,4nγ). 1 _γ : from (α,2nγ) and 840.4 4 from (α,4nγ). 1 _γ : from (α,2nγ). Mult: from γ(θ) in (α,4nγ). 1 _γ : from (α,2nγ), 100 4001.19 10 ⁺ E _γ : weighted average of 914.3 3 from (α,2nγ), 100 4001.19 10 ⁺ E _γ : weighted average of 914.3 3 from (α,2nγ), 100 4001.19 10 ⁺ E _γ : weighted average of 987.4 3 from (α,4nγ), 100 4001.19 10 ⁺ E _γ : weighted average of 987.4 3 from (α,4nγ), 100 4001.19 10 ⁺ E _γ : weighted average of 987.4 3 from (α,4nγ), 100 4001.19 10 ⁺ E _γ : weighted average of 987.4 3 from (α,4nγ), 100 4001.19 10 ⁺ E _γ : weighted average of 303.9 10 from (3 ⁶ S,α4nγ) αnd 303.4 4 from (α,2nγ). 1 _γ : weighted average of 303.9 10 from (3 ⁶ S,α4nγ) and 303.4 4 from (α,2nγ). 1 _γ : weighted average of 1218.1 5 from (α,2nγ) and 303.4 4 from (α,2nγ). 1 _γ : from (α,2nγ) only. 1 _γ : from (α,2nγ), and 848.4 4 from (α,4nγ), 100 4673.4 11 ⁻ E _γ : weighted average of 848.5 1 from (3 ⁶ S,α4nγ), 848.0 3 from (α,2nγ), 848.0 4 from (α,4nγ), and 848.4 from (α,4nγ), 100 average of 303.9 (10 from (α,4nγ)) and 203.4 4 from (α,4nγ). 1 _γ : from (α,4nγ) only. 1 _γ : from (α,4nγ) only. 1 _γ : from (α,4nγ), and 848.4 from (α,4nγ), 848.0 3 from (α,2nγ), 848.0 4 from (α,4nγ), and 848.4 from (α,4nγ), (100 average of 303.9 (10 in (α,4nγ), 406.8 4 from (α,4nγ). 1 _γ : from (α,4nγ) only. 1 _γ : from (α,4nγ), α,406.8 4 from (α,4nγ), α,406.8 4 from (α,4nγ). 1 _γ : weighted average of 406.7 5 from (α,4nγ), 406.8 4 from (α,4nγ). 1 _γ : from (α,4nγ) only. 1 _γ : from (α,4nγ), α,406.9 4 from (α,4nγ), α,406.9 4 from (α,4nγ). 1 _γ : weighted average of 406.7 5 from (α,4nγ), 406.8 4 from (α,4nγ). 1 _γ : weighted average of 406.7 5 from (α,4nγ), 406.8 4 from (α,4nγ). 1 _γ : weighted average of 406.7 5 from (α,4nγ), 406.8 4 from (α,4nγ). 1	4823.19		260.3 <i>4</i> 599.4 <i>3</i>	13 2 47 6	4562.8 (8 4223.56 (1	$0^{+})$		$E_{\gamma}I_{\gamma}$: from $(\alpha,2n\gamma)$ only. $E_{\gamma}I_{\gamma}$: from $(\alpha,2n\gamma)$ only. $E_{\gamma}I_{\gamma}$: from $(\alpha,2n\gamma)$ only.
1/2 1/2 100 101 101 102 103 104 100 104 105	4846.8	(9+)	623.7 4	15.8 25	4223.56 (1	$0^{+})$	0	$E_{\gamma}I_{\gamma}$: from $(\alpha,2n\gamma)$ only.
4915.0 12+ 913.7 4 100 4001.19 10+ E2 E _y : weighted average of 914.3 3 from (36S,α4ηγ), 913.4 3 from (α,2ηγ), and 913.2 4 from (α,4ηγ). Other: 912.1 4 in (36S,p2ηγ) placed from a different level at 11629. 4988.6 (12+) 987.5 3 100 4001.19 10+ (E2) E _y : weighted average of 987.4 3 from (36S,α4ηγ), 987.6 3 from (α,2ηγ), and 987.6 4 from (α,4ηγ). Other: 989.8 4 in (36S,p2ηγ) placed from a different level at 14948. 5218.7 (12+) 303.5 4 68 12 4915.0 12+ E _y : weighted average of 987.4 3 from (36S,α4ηγ), 987.6 3 from (α,2ηγ), and 987.6 4 from (α,4ηγ). Other: 989.8 4 in (36S,p2ηγ) placed from a different level at 14948. Mult: from γ(pol) in (36S,α4ηγ), γ(θ) and ce data in (α,4ηγ). E _y : weighted average of 30.3 9 I0 from (36S,α4ηγ) and 303.4 4 from (α,2ηγ). I _γ : weighted average of 50 25 from (36S,α4ηγ) and 72 I2 from (α,2ηγ). I _γ : weighted average of 50 25 from (36S,α4ηγ) and 72 I2 from (α,2ηγ). I _γ : from (α,2ηγ) only. E _γ : weighted average of 1218.1 5 from (36S,α4ηγ) and 1217.3 4 from (α,2ηγ). I _γ : from (α,2ηγ) only. E _γ : weighted average of 888.5 I from (36S,α4ηγ), 848.0 3 from (α,2ηγ), 848.0 4 from (α,4ηγ), and 848.4 4 from (36S,α4ηγ), γ(θ) and ce data in (α,4ηγ). E _γ : weighted average of 50 25 from (36S,α4ηγ), and 484.5 I from (36S,α4ηγ), 848.0 3 from (α,2ηγ), 848.0 4 from (α,4ηγ), and 848.4 4 from (36S,α4ηγ), γ(θ) and ce data in (α,4ηγ). E _γ : weighted average of 848.5 I from (36S,α4ηγ), 848.0 3 from (α,2ηγ), 848.0 4 from (α,4ηγ), and 848.4 4 from (36S,α4ηγ), γ(θ) and ce data in (α,4ηγ). E _γ : from (α,4ηγ) only. E _γ : from (α,4ηγ) only. E _γ : weighted average of 50 25 from (36S,α4ηγ), 848.0 3 from (α,2ηγ), 848.0 4 from (α,4ηγ), and 848.4 4 from (36S,α4ηγ), γ(θ) and ce data in (α,4ηγ). E _γ : from (α,4ηγ) only. E _γ : weighted average of 406.7 5 from (36S,α4ηγ), 406.8 4 from (α,2ηγ), and 406.9 4 from (36S,α4ηγ), 910 from 610 from a level at 12941). E _γ : from (α,4η			040.0 3	100 4	4003.96 (7	,	Q	I_{γ} : from $(\alpha,2n\gamma)$.
4988.6 (12 ⁺) 987.5 3 100 4001.19 10 ⁺ (E2) E _γ : weighted average of 987.4 3 from (36S,α4ηγ), 987.6 3 from (α,2ηγ), and 987.6 4 from (α,4ηγ). Other: 989.8 4 in (36S,ρ2ηγ) placed from a different level at 14948. Mult.: from γ(pol) in (36S,α4ηγ), γ(θ) and ce data in (α,4ηγ). E _γ : weighted average of 303.9 10 from (36S,α4ηγ) and 303.4 4 from (α,2ηγ). I _γ : weighted average of 50 25 from (36S,α4ηγ) and 72 12 from (α,2ηγ). I _γ : weighted average of 50 25 from (36S,α4ηγ) and 72 12 from (α,2ηγ). E _γ : weighted average of 1218.1 5 from (36S,α4ηγ) and 1217.3 4 from (α,2ηγ). I _γ : from (α,2ηγ). Other: 100 25 from (36S,α4ηγ). E _γ : weighted average of 1218.1 5 from (36S,α4ηγ). E _γ : weighted average of 1218.1 5 from (36S,α4ηγ). E _γ : weighted average of 1218.1 5 from (36S,α4ηγ). E _γ : weighted average of 848.5 1 from (36S,α4ηγ). E _γ : weighted average of 848.5 1 from (36S,α4ηγ), 848.0 3 from (α,2ηγ), 848.0 4 from (α,4ηγ), and 848.4 4 from (36S,ρ2ηγ) (placed from a level at 3977). Mult.: from γ(DCO) and γ(pol) in (36S,α4ηγ), γ(θ) and ce data in (α,4ηγ). E _γ : weighted average of 303.9 10 from (36S,α4ηγ), αθο.8 4 from (α,2ηγ), αθο.9 4 from (α,2ηγ) only. E _γ : weighted average of 406.7 5 from (36S,α4ηγ), 406.8 4 from (α,2ηγ), and 406.9 4 from (36S,ρ2ηγ) (placed from a level at 12941). E _γ : from (36S,α4ηγ).	4915.0	12+	913.7 4	100	4001.19 10)+	E2	E_{γ} : weighted average of 914.3 3 from (36 S, α 4n γ), 913.4 3 from (α ,2n γ), and 913.2 4 from (α ,4n γ). Other: 912.1 4 in (36 S,p2n γ) placed from a different level at 11629.
5218.7 (12 ⁺) 303.5 4 68 12 4915.0 12 ⁺ E _y : weighted average of 303.9 10 from (36 S,α4ny) and 303.4 4 from (α,2ny). I _y : weighted average of 50 25 from (36 S,α4ny) and 72 12 from (α,2ny). E _y I _y : γ from (36 S,α4ny) only. E _y : weighted average of 1218.1 5 from (36 S,α4ny) and 1217.3 4 from (α,2ny). I _y : from (α,2ny). Other: 100 25 from (36 S,α4ny) and 1217.3 4 from (α,2ny). I _y : from (α,2ny). Other: 100 25 from (36 S,α4ny). E _y : from (α,2ny) only. E _y : weighted average of 848.5 1 from (36 S,α4ny), 848.0 3 from (α,2ny), 848.0 4 from (α,4ny), and 848.4 4 from (36 S,α4ny), γ(θ) and ce data in (α,4ny). E _y : from (α,2ny) only. E _y : from (α,2ny), γ(θ) and ce data in (α,4ny). E _y : from (α,2ny) only. E _y : from (α,2ny) on	4988.6	(12+)	987.5 3	100	4001.19 10)+	(E2)	E_{γ} : weighted average of 987.4 3 from (36 S, α 4n γ), 987.6 3 from (α ,2n γ), and 987.6 4 from (α ,4n γ). Other: 989.8 4 in (36 S,p2n γ) placed from a different level at 14948.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5218.7	(12 ⁺)	303.5 4	68 12	4915.0 12	2+		E_{γ} : weighted average of 303.9 10 from ($^{36}S_{\gamma}\alpha 4n\gamma$) and 303.4 4 from (α ,2n γ).
1217.6 4 100 14 4001.19 10 ⁺ E _γ : weighted average of 1218.1 5 from (36 S,α4nγ) and 1217.3 4 from (α,2nγ). I _γ : from (α,2nγ). Other: 100 25 from (36 S,α4nγ) and 1217.3 4 from (α,2nγ). I _γ : from (α,2nγ) only. E _γ : from (α,2nγ) only. E _γ : weighted average of 848.5 1 from (36 S,α4nγ), 848.0 3 from (α,2nγ), 848.0 4 from (α,4nγ), and 848.4 4 from (36 S,p2nγ) (placed from a level at 3977). Mult.: from γ(DCO) and γ(pol) in (36 S,α4nγ), γ(θ) and ce data in (α,4nγ). E _γ : from (36 S,ρ2nγ) only. E _γ : weighted average of 406.7 5 from (36 S,α4nγ), 406.8 4 from (α,2nγ), and 406.9 4 from (36 S,ρ2nγ) (placed from a level at 12941). I _γ : from (36 S,α4nγ).			395.0 10	50 25	4823.19			
5348.4 1124.8 3 100 4223.56 (10 ⁺) E _{γ} : from $(\alpha,2n\gamma)$ only. 5521.8 13 ⁻ 848.4 1 100 4673.4 11 ⁻ E2 B(E2)(W.u.)=10.4 +10-9 E _{γ} : weighted average of 848.5 I from $(^{36}S,\alpha^4n\gamma)$, 848.0 3 from $(\alpha,2n\gamma)$, 848.0 4 from $(\alpha,4n\gamma)$, and 848.4 4 from $(^{36}S,p2n\gamma)$ (placed from a level at 3977). Mult.: from γ (DCO) and γ (pol) in $(^{36}S,\alpha^4n\gamma)$, γ (θ) and ce data in $(\alpha,4n\gamma)$. E γ : from $(\alpha,2n\gamma)$ only. E γ : weighted average of 406.7 5 from $(^{36}S,\alpha^4n\gamma)$, 406.8 4 from $(\alpha,2n\gamma)$, and 406.9 4 from $(^{36}S,\alpha^4n\gamma)$. E γ : weighted average of 406.7 5 from $(^{36}S,\alpha^4n\gamma)$, 406.8 4 from $(\alpha,2n\gamma)$, and 406.9 4 from $(^{36}S,\alpha^4n\gamma)$.)+		E_{γ} : weighted average of 1218.1 5 from ($^{36}S_{,\alpha}4n\gamma$) and 1217.3 4 from (α ,2 $n\gamma$).
E _γ : weighted average of 848.5 I from (${}^{36}S$, α 4nγ), 848.0 J from (α ,2nγ), 848.0 J from (α ,2nγ), 848.0 J from (α ,4nγ), and 848.4 J from (α ,4nγ), and 848.4 J from (α ,4nγ), (placed from a level at 3977). Mult.: from γ(DCO) and γ(pol) in (α ,4nγ), γ(θ) and ce data in (α ,4nγ). E _γ : from (α ,2nγ) only. E _γ : weighted average of 406.7 J from (α ,2nγ), 406.8 J from (α ,2nγ), and 406.9 J from (α ,2nγ) (placed from a level at 12941). I _γ : from (α ,36S, α 4nγ).				100		$0^{+})$		E_{γ} : from $(\alpha, 2n\gamma)$ only.
5613.8 940.4 4 100 4673.4 11 ⁻ E _{γ} : from $(\alpha,2n\gamma)$ only. 5625.7 (13 ⁺) 406.8 4 100 25 5218.7 (12 ⁺) E _{γ} : weighted average of 406.7 5 from (36 S, α 4n γ), 406.8 4 from $(\alpha,2n\gamma)$, and 406.9 4 from (36 S, α 2n γ) (placed from a level at 12941). 1 _{γ} : from (36 S, α 4n γ).	5521.8	13-	848.4 1	100	4673.4 11	[-	E2	E_{γ} : weighted average of 848.5 <i>I</i> from (36 S, α 4n γ), 848.0 <i>3</i> from (α ,2n γ), 848.0 <i>4</i> from (α ,4n γ), and 848.4 <i>4</i> from (36 S,p2n γ) (placed from a level at 3977).
5625.7 (13 ⁺) 406.8 4 100 25 5218.7 (12 ⁺) E _y : weighted average of 406.7 5 from (36 S, α 4ny), 406.8 4 from (α ,2ny), and 406.9 4 from (36 S,p2ny) (placed from a level at 12941). I _y : from (36 S, α 4ny).	5613.8		940 4 4	100	4673.4 11	ı –		
		(13 ⁺)						E_{γ} : weighted average of 406.7 5 from (36 S, α 4n γ), 406.8 4 from (α ,2n γ), and 406.9 4 from (36 S,p2n γ) (placed from a level at 12941).
			637.5 10	50 25	4988.6 (1)	2 ⁺)		I_{γ} : from (30 S, α 4n γ).

γ (98Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	Comments
5625.7 5819.5	(13 ⁺) 14 ⁺	710.6 <i>10</i> 193.6 <i>5</i> 831.0 <i>5</i>	50 25 18 5 73 18	4915.0 5625.7 4988.6	(13^{+})		
		904.6 4	100 18	4915.0		E2	E _{γ} : weighted average of 904.3 3 from (36 S, α 4n γ), and 905.0 4 from (36 S,p2n γ) (placed from a level at 12534). I _{γ} : from (36 S, α 4n γ) for 904.7+904.3 doublet.
5888.4 6121.5	(14+)	899.8 <i>4</i> 302.2 <i>10</i> 495.8 <i>10</i>	100 <100 100	4988.6 5819.5 5625.7	14 ⁺ (13 ⁺)		Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ for 904.7+904.3 doublet in ($^{36}S, \alpha 4n\gamma$). E_{γ} : from $(\alpha, 4n\gamma)$ only.
6260.7	(14+)	1206.4 <i>10</i> 441.4 <i>10</i> 635.0 <i>10</i>	100 100 100	4915.0 5819.5 5625.7	14 ⁺		
6591.8	15-	1070.0 <i>I</i>	100	5521.8		E2	B(E2)(W.u.)=4.8 +17-10 E _{γ} : weighted average of 1070.0 <i>I</i> from (36 S, α 4n γ), 1069.3 <i>4</i> from (α ,2n γ), 1069.9 <i>4</i> from (α ,4n γ), and 1070.1 <i>4</i> from (36 S,p2n γ) (placed from a level at 6900). Mult.: from γ (DCO) and γ (pol) in (36 S, α 4n γ), γ (θ) and ce data in (α ,4n γ).
6593.8	(15 ⁺)	333.2 <i>10</i> 472.4 <i>10</i> 774.6 <i>10</i> 968.2 <i>10</i>	25 <i>13</i> 25 <i>13</i> 100 <i>25</i> <25	6260.7 6121.5 5819.5 5625.7	(14 ⁺) 14 ⁺		
6869.8	16 ⁺	276.5 8	50 13	6593.8			E_{γ} : unweighted average of 275.7 5 from (^{36}S , $\alpha 4n\gamma$), and 277.2 4 from (^{36}S ,p2n γ) (placed from a level at 11088).
		1050.2 4	100 25	5819.5	14+	E2	E _γ : weighted average of 1050.3 <i>5</i> from (³⁶ S,α4nγ), and 1050.1 <i>4</i> from (³⁶ S,p2nγ) (placed from a level at 15998). I _γ : from (³⁶ S,α4nγ) for 904.7+904.3 doublet.
7623.5	17-	1031.7 6	100	6591.8	15-	E2	Mult.: from γ(DCO) and γ(pol) in (³⁶ S,α4nγ). B(E2)(W.u.)=12.3 +14-11 E _γ : unweighted average of 1032.3 1 from (³⁶ S,α4nγ), 1030.6 4 from (α,4nγ), 1032.2 4 from (³⁶ S,p2nγ) (placed from a level at 5831). Mult.: from γ(DCO) and γ(pol) in (³⁶ S,α4nγ), also supported by γ(DCO) in (³⁶ S,p2nγ).
8006.4	(17)	1136.5 5	100	6869.8	16 ⁺	D	Mult.: from $\gamma(DCO)$ in ($^{36}S, \alpha 4n\gamma$).
8449.5	19-	826.0 <i>1</i>	100	7623.5		E2	E_{γ} : weighted average of 826.0 <i>I</i> from (^{36}S , α 4n γ), and 826.1 <i>4</i> from (^{36}S ,p2n γ). Mult.: from γ (DCO) and γ (pol) in (^{36}S , α 4n γ), γ (DCO) in (^{36}S ,p2n γ).
9930.5	21-	1480.9 2	100	8449.5	19-	E2	E_{γ} : weighted average of 1480.8 <i>I</i> from (36 S,α4n γ), and 1481.6 <i>4</i> from (36 S,p2n γ). Mult.: from γ (DCO) and γ (pol) in (36 S,α4n γ), γ (DCO) in (36 S,p2n γ).
11006.3	(22-)	1075.9 3	100	9930.5	21-	(D)	E_{γ} : weighted average of 1076.0 3 from (^{36}S , $\alpha 4n\gamma$), and 1075.6 4 from (^{36}S ,p2n γ) (placed from a level at 12286). Mult.: from γ (DCO) in (^{36}S ,p2n γ).
11405.0	23-	398.8 7	93 13	11006.3	(22-)	M1	 E_γ: unweighted average of 398.1 <i>3</i> from (³⁶S,α4nγ), and 399.4 <i>4</i> from (³⁶S,p2nγ) (placed from a level at 12286). Mult.: from γ(DCO) and γ(pol) in (³⁶S,α4nγ), γ(DCO) in (³⁶S,p2nγ).

γ (98Ru) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	Comments
11405.0	23-	1474.5 5	100 13	9930.5 21	E2	E_{γ} : unweighted average of 1474.0 3 from (36 S, α 4n γ), and 1475.0 4 from (36 S,p2n γ) (placed from a level at 12286).
						Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in ($^{36}S, \alpha 4n\gamma$), $\gamma(DCO)$ in ($^{36}S, p2n\gamma$).
12282.3	25-	877.3 5	100	11405.0 23	E2	E_{γ} : unweighted average of 877.6 3 from ($^{36}S_{,}\alpha4n\gamma$), and 876.7 4 from ($^{36}S_{,}p2n\gamma$) (placed from a level at 9329).
						Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in ($^{36}S, \alpha 4n\gamma$), $\gamma(DCO)$ in ($^{36}S, p2n\gamma$).
14285.3		2003 <i>1</i>	100	12282.3 25		
14476.1		2193.3 7	100	12282.3 25		E_{γ} : weighted average of 2193.6 5 from ($^{36}S_{,}\alpha 4n\gamma$), and 2192 <i>I</i> from ($^{36}S_{,}p2n\gamma$) (placed from a level at 17240).
14612.1		2330.0 5	100	12282.3 25		
14818.4		2536 <i>1</i>	100	12282.3 25		
14997.4		2715 <i>1</i>	100	12282.3 25		
15412.4		3130 <i>1</i>	100	12282.3 25		
15500.5		888.5 4	67 17	14612.1		E_{γ} : weighted average of 888.1 5 from (^{36}S , $\alpha 4n\gamma$), and 888.8 4 from (^{36}S ,p2n γ) (placed from a level at 12099).
		1024.2 4	100 30	14476.1	(Q)	E_{γ} : weighted average of 1024.0 5 from (^{36}S , $\alpha 4n\gamma$), and 1024.3 4 from (^{36}S ,p2n γ) (placed from a level at 13310).
						Mult.: from $\gamma(DCO)$ in ($^{36}S,p2n\gamma$).
17238.5		1738 <i>1</i>	100	15500.5	(Q)	E_{γ} : from (36 S, α 4n γ), and also from (36 S,p2n γ) (placed from a level at 15048).
17592.4		2180 <i>I</i>	100	15412.4		E_{γ} : other: 2181 <i>I</i> from (36 S,p2n γ) (placed from a level at 23425).
19892.5?		2654 [@] 1	100	17238.5		, 4 1/ 4

[†] From (3 He,2n γ) up to 4256 level and from (36 S, α 4n γ) above that, unless otherwise noted. Weighted averages are taken when data of comparable precision from different reactions are available.

^{*} Mostly from $\gamma(\theta)$ and ce data in $(\alpha,4n\gamma)$ and $(^3\text{He},2n\gamma)$. Since $T_{1/2}(\text{level})$ is expected to be <0.5 ns for each level populated in in-beam γ -ray studies, (no delayed γ' s with $T_{1/2}>0.5$ ns seen in $(\alpha,4n\gamma)$ by 1981Du06), $\Delta J=2$ transitions are assumed as E2 and $\Delta J=0$ or 1 transitions assumed as M1+E2, in cases where definitive ce and $\gamma(\ln pol)$ data are not available.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(B): Band based on 9-

$$^{98}_{44} Ru_{54}$$

band

0.0

$^{100}_{44}$ Ru₅₆-1

Adopted Levels, Gammas

	Hist	ory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021

 $Q(\beta^-)=-3636$ 18; S(n)=9673.32 3; S(p)=9188.5 9; $Q(\alpha)=-2857.4$ 4 2017Wa10 S(2n)=17145 6, S(2p)=15689.4 4 (2017Wa10).

Other reactions:

See 99 Ru(n, γ),(n,n):resonances dataset for 40 neutron resonances between 10.05 and 994.6 eV.

(HI,X): 1976Mi13, 1974We04.

 100 Ru(32 S, 32 S'); 100 Ru(32 S,X): 1993Co11, measured $\sigma(\theta)$.

 100 Mo(32 S, 28 Si): 1995He17, measured cross section.

⁹⁹Ru(p,n): 1969Fr18, search for IAR.

 (μ^-, X) : 1980HoZV.

 103 Rh(p,4n γ): 1972KoZE, E=44 MeV, measured E γ , I γ , I(ce). Deduced E0/E2 branching for the first excited 0⁺ state.

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 127 primary references ealing with nuclear structure calculations.

100Ru Levels

Band assignments are from $(^{36}\text{S},\alpha 2\text{n}\gamma)$ (2000Ti07) and from $(\alpha,2\text{n}\gamma)$ (2000Ge01). In J^{π} assignments from $^{99}\text{Tc}(^{3}\text{He,d})$; $^{99}\text{Ru}(\text{d,p})$ and $^{101}\text{Ru}(\text{p,d})$, the target J^{π} 's are: $9/2^{+}$ for ^{99}Tc ; $5/2^{+}$ for ^{99}Ru and ^{101}Ru .

Cross Reference (XREF) Flags

Α	100 Tc β^- decay (15.65 s)	Н	$^{99}\text{Tc}(^{3}\text{He,d})$	0	100 Ru (α,α')
В	100 Rh ε decay (20.5 h)	I	99 Ru(n, γ) E=th	P	101 Ru(p,d)
C	100 Rh ε decay (4.6 min)	J	99 Ru(n, γ) E=res	Q	101 Ru(d,t)
D	100 Mo $2\beta^{-}$ decay (7.01×10 ¹⁸ y)	K	⁹⁹ Ru(d,p)	R	102 Ru(p,t)
E	70 Zn(36 S, α 2n γ), 88 Sr(14 C,2n γ)	L	100 Mo(α ,4n γ)	S	103 Rh(p, α)
F	76 Ge(34 S,2 α 2n γ)	M	100 Ru(n,n' γ),(n,n')	T	Coulomb excitation
G	98 Mo(α ,2n γ)	N	100 Ru(p,p')		

E(level)	J** +	$T_{1/2}$ "	XREF
0.0 ^a	0+	stable	ABCDEFGHIJKLM OPQRST
539 5103 ^a 20	2+	12.54 ps 10	ARCDEFGHTIKIM OPORST

Comments

Evaluated rms charge radius <r $^2>$ ^{1/2}=4.4531 fm 31 (2013An02). Evaluated $\delta r^2(^{100}Ru,^{104}Ru)$ =-0.506 fm 2 3 (2013An02). μ =+0.858 46 (2011Ch23,2014StZZ)

Q=-0.44 7 (2016St14,1998Hi01); Q=-0.27 7 (2016St14,1998Hi01) XREF: D(?).

 J^{π} : E2 539.5 γ to 0⁺.

 $T_{1/2}$: from B(E2)=0.4938 40 in Coul. ex.; weighted average of 0.493 4 (1998Hi01,1980HiZV); 0.494 6 and 0.482 26 (1980La01); 0.520 44 (1968Mc08); and 0.572 40 (1958St32). B(E2)=0.30 6 (1956Te26) seems discrepant. All the values are from determination of Coulomb excitation probability. 2016Pr01 evaluation gives B(E2)=0.4927 41 and $T_{1/2}$ =12.51 ps 10 Other: B(E2)=0.471 14, deduced from δ(charge)= $β_2$ R=1.154 17 (1996Go36; (α,α')); $T_{1/2}$ =22.0 ps 17 from RDDS in (14 C,2nγ) (2017Ko03) is discrepant.

μ: from g=+0.429 23 measured using transient-field in Coulomb excitation (2011Ch23). Other: +0.88 6 (2011Ta06, transient-field in Coulomb excitation) from g=+0.44 3, average of two measured values of +0.45 2 and +0.43 *I* with absolute

E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XREF	Comments
				uncertainty of 0.03 in g factor; +1.02 13 from $\gamma\gamma(\theta, H, t)$ in 100 Rh ε decay (1966Au06, value of g=0.55 7 given for $T_{1/2}$ =11.0 ps); 0.94 30 from $\gamma(\theta, H, t)$ (1974Hu01) in
				Coul. ex. Q: =-0.44 4 for constructive or -0.27 7 for destructive interference (2016St14 evaluation based on 1998Hi01 (also 1980HiZV) experiment of reorientation effect in Coulomb excitation. 1998Hi01 give respective values of -0.54 7 or -0.33 7. Others by the same method: -0.43 7 or -0.20 7 (1980La01); -0.40 12 (1978Fa08); -0.13 7 (1977Ma41).
				$\beta_2(\alpha, \alpha')$ =0.204 3 (from β_2 R(charge)=1.154 17, β_2 R(nuclear)=1.12 5 (1996Go36)). β_2 (Coul. ex.)=0.209 2 (from B(E2) (1980La01,1980HiZV)).
1130.305 7	0+	8.2 ps +15-11	AB D GHIJKLM PQRST	XREF: L(?). J^{π} : spin=0 from $\gamma\gamma(\theta)$ in ¹⁰⁰ Tc β^{-} decay; ΔJ =2, E2 590.8 γ to 2 ⁺ .
1226.467 ^a 5	4+	2.6 ps 2	BC EFGHIJKLM OPQR T	$T_{1/2}$: from B(E2)=0.0191 29 in Coul. ex. J^{π} : spin=4 from $\gamma(\theta)$ in (α ,xn γ); ΔJ =2, E2 686.97 γ to 2^{+} ; band assignment. $T_{1/2}$: from B(E2)=0.260 22 in Coulomb excitation. Other:
1362.166 ^b 5	2+	0.95 ps +24-16	ABCD GHIJKLM OPQRST	2.5 ps 6 from RDDS in (¹⁴ C,2nγ) (2017Ko03). XREF: D(?). J ^π : 1362.2γ E2 to 0 ⁺ . T _{1/2} : Other: 1.34 ps +19–15, from B(E2)(from g.s.)=0.0190 23 in Coul. ex. and adopted branching
1741.011 8	0+	>1.39 ps	AB D GHIJK M P R	% $I(1362.2\gamma)=42.2\ I$. XREF: D(?)P(?). J ^{π} : 378.9 γ E2 to 2 ⁺ ; E0 transitions to 0 ⁺ .
1828 2	0+		QR	XREF: Q(1840).
1865.110 <i>5</i>	2+	0.66 ps +20-12	AB D GhIJK M PQR	J ^π : from $\sigma(\theta)$ ratio in (p,t). XREF: D(?)h(1870)P(1887). J ^π : 638.6γ to 4 ⁺ and 734.8γ to 0 ⁺ have mult=M1,E2 from ce data; 1865.1γ E2 to 0 ⁺ in ¹⁰⁰ Rh ε decay (20.8 h).
1881.043 ^b 5	3 ⁺	0.90 ps +40-22	BC GhIJKLM PQ	XREF: h(1870). J^{π} : 654.6 γ M1+E2 to 4 ⁺ and 1341.5 γ M1+E2 to 2 ⁺ ;
2051.661 7	0+	1.0 ps +11-4	AB D G IJ M QR	band assignment. XREF: D(?). J^{π} : spin=0 from $\gamma\gamma(\theta)$ in 100 Tc β^{-} ; ΔJ =2, E2 1512.1 γ
2062.651 ^b 7	4+	0.56 ps +92-22	C GhIJKLM QR	to 2^+ . XREF: h(2077). J^{π} : ΔJ =2, E2 1523.1 γ to 2^+ ; M1+E2 836.2 γ to 4^+ ;
2075.675 ^a 15	6 ⁺	>0.28 ps	C EFGhIJ LM R	$L(d,p)=L(d,t)=2$ from $5/2^+$; band assignment. XREF: $C(?)h(2077)$. J^{π} : spin from $\gamma(\theta)$ in $(\alpha,xn\gamma)$; $\Delta J=2$, E2 849.2 γ to 4^+ ;
2099.103 6	2+	0.39 ps +7-6	AB GhIJK M PQR	band assignment. J^{π} : M1 1559.5 γ to 2 ⁺ ; 968.8 γ and 2099.1 γ to 0 ⁺ ;
2131 <i>10</i> 2166.879 ^e 5	2 ⁺ ,3 ⁺ 3 ⁻	34 ps +12-8	P B G IJKLMNO QR T	872.7 γ to 4 ⁺ ; L(d,p)=0+2 and L(p,d)=2 from 5/2 ⁺ . J ^{π} : L(p,d)=0(+2) from 5/2 ⁺ . XREF: L(?). J ^{π} : L(α , α')=L(p,p')=3 from 0 ⁺ ; band assignment. T _{1/2} : from B(E3)=0.053 9 in Coul. ex. and adopted γ -ray branching ratio. Other: >0.97 ps from DSA method in (n,n' γ).

E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XREF	Comments
				B(E3)=0.052 9 (2002Ki06, evaluation). β_3 R(nuclear)(α,α')=0.76 2 (1996Go36). β_3 (Coul. ex.)=0.127 11.
2194? <i>10</i> 2240.804 <i>7</i>	2+	83 ps 6	AB G IJK M QR	J ^{π} : L(d,p)=2 from 5/2 ⁺ ; spin from $\gamma(\theta)$ in (α ,2n γ) and (n,n' γ); 1701.3 γ D to 2 ⁺ ; 228.6 γ E1 from 2 ⁻ ;
2268 <i>5</i> 2313.5 <i>3</i>	$2^+,3^+$ $(3^-,4^+)$		P C	J ^{π} : L(p,d)=2+0 from 5/2 ⁺ . J ^{π} : 951.5 γ to 2 ⁺ and 1087.1 γ to 4 ⁺ ; probable ε feeding from (5 ⁺) suggests J ^{π} not 2 ⁺ ,3 ⁺ .
2324.6 4	$(3^- \text{ to } 6^+)$		С	J^{π} : 262.3 γ and 1097.8 γ to 4 ⁺ ; probable ε feeding from (5 ⁺) suggest 3 ⁻ ,4,5,6 ⁺ .
2351.240 6	4+	0.42 ps +26-12	G IJK M QR	J^{π} : 1811.6 γ E2, ΔJ =2 to 2 ⁺ ; 1124.8 γ M1+E2 to 4 ⁺ .
2366.588 7	4+	0.78 ps +76-26	C GIK MNO QRT	J ^π : L(p,p')=4; ΔJ=2, E2 1827.1 γ to 2 ⁺ ; 1139.9 γ to 4 ⁺ . In (n, γ) E=th, 1988Co18 assigned J ^π =2 ⁺ on the basis of a 2366.3 γ (I γ =32 4) to g.s. But the placement of 2366.3 γ is considered incorrect (evaluators) since no such γ is reported in ¹⁰⁰ Rh ε decay (4.6 min). β ₄ R(nuclear)(α , α ')=0.038 8 (1996Go36). Large value of β ₄ (p,p')=0.10 (1989Si15) suggests this state as hexadecapole excitation.
2387.22 7	0+	>0.52 ps	AB D I M PQR	XREF: D(?)P(2394). J^{π} : spin=0 from cross-section ratio in (p,t) and $\gamma \gamma(\theta)$ in ¹⁰⁰ Tc β^- decay (15.46 s); L(p,d)=2 from 5/2+; allowed β feeding (log f t=5.4) from 1+ parent.
2413.86 <i>11</i>	(4 ⁺)	87 fs +7-6	G IJK M QR	J^{π} : $\Delta J=(2)$, (E2) 1874.4 γ to 2 ⁺ ; primary 7259.6 γ from 2 ⁺ ,3 ⁺ .
2438 5	$2^{+},3^{+}$		P	J^{π} : L(p,d)=2+0 from 5/2 ⁺ .
2469.389 ^c 5	2-	0.44 ps +51-16	B GIJ M R	J^{π} : M2 2469.3 γ to 0 ⁺ , E1 588.3 γ to 3 ⁺ .
2493.06 4	$(3,4,5^+)$	>0.83 ps	GIKM R	J^{π} : 1266.4 γ D(+Q) to 4 ⁺ ; 612.0 γ to 3 ⁺ . But possible γ to 2 ⁺ disfavors 5 ⁺ .
2512.411 <i>11</i>	$(4)^{+}$	0.41 ps +55–15	B GIkM P	XREF: P(2515). J^{π} : $\Delta J=(2)$, (E2) 1972.9 γ to 2 ⁺ ; M1+E2 631.4 γ to 3 ⁺ ; L(p,d)=2+4 from 5/2 ⁺ .
2516.827 6	1-	105 fs +43-26	B IJk M R	J^{π} : 651.7 γ E1 to 2 ⁺ ; 1386.5 γ and 1154.5 γ , D to 0 ⁺ .
2527.247 ^e 9	5-	0.6 ps +14-3	E G IJ LM R	J^{π} : $\Delta J=2$, E2 360.4 γ to 3 ⁻ ; $\Delta J=1$, E1 1300.8 γ to 4 ⁺ .
2536.194 12	3	0.7 ps +12-3	B GI M	J^{π} : spin from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and $(n, n'\gamma)$.
2543.71 3	2+	0.38 ps +49–15	B GIKM PR	XREF: P(2560). J^{π} : M1+E2 1181.4 γ to 2 ⁺ ; 2543.6 γ to 0 ⁺ ; L(p,d)=2+0 from 5/2 ⁺ .
2569.912 ^c 7	(3)-	>0.30 ps	B GIJ M R	J^{π} : M1,E2 499.6 γ from (1,2) ⁻ ; D+Q 403.0 γ to 3 ⁻ ; 1343.5 γ to 4 ⁺ , 1207.7 γ to 2 ⁺ ; band assignment.
2576.872 ^b 15	5 ⁽⁺⁾	>125 fs	G I M	J^{π} : $\Delta J=2$, Q 695.8 γ to 3 ⁺ ; D+Q 1350.4 γ to 4 ⁺ ; band assignment.
2591.817 ^d 6	4-	0.26 ps +62-12	G IJ M	J^{π} : (M1+E2) 424.9 γ to 3 ⁻ ; D(+Q) 1365.4 γ to 4 ⁺ ; ΔJ =2, E2 371.8 γ from 6 ⁻ ; band assignment.
2606.07 8	(2,3)	71 fs +10-8	IKM pR	XREF: p(2610). J^{π} : from $\gamma(\theta)$ in $(n,n'\gamma)$.
2617.14 <i>4</i>	1,2+	121 fs +26–19	В І Мр	XREF: p(2610). J^{π} : 2617.1 γ to 0 ⁺ and RUL.

E(level) [†]	$J^{\pi \ddagger}$	${{ m T}_{1/2}}^{\#}$		XREF		Comments
2634 10	$(0 \text{ to } 5)^+$				P	J^{π} : L(p,d)=2 from 5/2 ⁺ .
2660.140 <i>17</i>	1,2 ⁺ 5 ⁽⁺⁾	48 fs +6-5	AB	IkM		J^{π} : 2660.1 γ to 0 ⁺ and RUL.
2660.82 <i>4</i> 2666.29 <i>3</i>	(2,3)	55 fs +6-5	В	G I k IJk M	R	J ^π : ΔJ=2, Q 779.8 γ to 3 ⁺ ; D+Q 1434.3 γ to 4 ⁺ . J ^π : from $\gamma(\theta)$ in (n,n' γ). Possible γ to 0 ⁺ disfavors 3 ⁺ .
2705.52 ^b 3	6+			G K	P R	XREF: P(2695)R(2703.4). J^{π} : L(p,d)=4 from 5/2+; ΔJ =2, Q 642.8 γ to 4+; 629.8 γ to 6+.
2738.678 <i>6</i>	$(2^+,3,4^+)$			hI M	R	XREF: $h(2750)$. J^{π} : 873.7 γ to 2 ⁺ and 372.1 γ to 4 ⁺ .
2745.60 5	$(1,2^+)$	132 fs +42-28	В	h k M		XREF: $h(2750)k(2748)$. J^{π} : 1615.4 γ and 693.9 γ to 0 ⁺ ; M2 is disfavored for 693.9 γ by RUL.
2747.495 ^c 10	4 ⁽⁻⁾			GhIJK		XREF: h(2750). J^{π} : ΔJ =0, D 155.7 γ to 4 $^{-}$; band assignment; 580.6 γ possibly (M1+E2) to 3 $^{-}$.
2764.943 18	2+,3+	>0.17 ps		GhIJK M	P R	XREF: $h(2750)R(2759.4)$. J^{π} : $L(p,d)=2+0$ from $5/2^{+}$.
2775.179 <i>18</i>	(5 ⁻)			G M		XREF: M(?). E(level): see comment for 2775.34 level.
2775.34 6	2+,3+	0.30 ps +24–10	В	GhIJ M	P	J ^π : ΔJ=(0) 247.9 γ to 5 ⁻ , most likely (M1+E2). XREF: G(?)h(2750)P(2783). E(level): in (n,n' γ), 248, 1413, 1548 and 2236 gammas are reported from this level (2001Ge03), whereas in (α ,2n γ) 248, 712 and 1548 gammas
						are reported from this level. In 100 Rh ε decay (20.8 h), only the 1548 γ is reported. But I γ (248)/I γ (1548)=116/23 in (α ,2n γ) and 13/15 in (n,n' γ). This large discrepancy suggests that there are likely two levels, one high-spin decaying through the 248 γ and the other low spin populated in (n,n' γ) and 100 Rh ε decay. The 248 γ is placed from a high-spin level in (α ,2n γ)
						whereas the 1548 γ can be from both the levels. J^{π} : 2236.1 γ to 2 ⁺ and 1548.7 γ to 4 ⁺ ; L(p,d)=2+0 from 5/2 ⁺ .
2785.193 22	6 ⁽⁺⁾			G		J^{π} : $\Delta J=2$, Q 1558.8 γ to 4 ⁺ ; 709.4 γ to 6 ⁺ , most likely (M1+E2).
2800.84 5	$(2^+,3)$	0.13 ps +5-3		M	r	J^{π} : 1438.7 γ D(+Q) to 2 ⁺ , 1574.2 γ to 4 ⁺ .
2801.48 <i>5</i> 2816 <i>10</i>	$(1^+,2,3)$ $2^+,3^+$	97 fs +17-13	В	IJK M	r P	J^{π} : 2262.3 γ D+Q to 2 ⁺ ; 920.6 γ to 3 ⁺ . J^{π} : L(p,d)=2+0 from 5/2 ⁺ .
2832.8 17	0+@			J	R	E(level): from (n,γ) E=res.
2837.71 12	$(1^+,2^+)$	116 fs +2 <i>1</i> - <i>17</i>	A	I K M		J ^{π} : from $\sigma(\theta)$ ratio in (p,t). J ^{π} : probable allowed β feeding from 1 ⁺ ; 2298.2 γ D+Q to 2 ⁺ .
2862.52 <i>9</i> 2877.57 <i>8</i>	$(0^+ \text{ to } 4^+)$ $2^+,3^+$	0.25 ps +51-10		I M G IJK M	P	J^{π} : 763.3 γ and 1500.4 γ to 2 ⁺ . XREF: P(2865).
2878.44 <i>4</i>	2+,3,4+	140 fs +30-21		M		J^{π} : L(p,d)=2+0 from 5/2 ⁺ . J^{π} : 779.5 γ to 2 ⁺ and 1651.9 γ to 4 ⁺ , with
2890 <i>10</i> 2905.14 <i>20</i>	2 ⁺ ,3 ⁺ (4 ⁺)	0.21 ps +8-5		I K M	P R	mult=M2 ruled out by RUL. J ^π : L(p,d)=2+0 from 5/2 ⁺ . XREF: R(2902.6).
2911.47 ^c 3 2915.545 5	5 ⁽⁻⁾ 2 ⁻	0.35 ps +29-11	В	G K IJ M		J ^π : ΔJ=(2), (E2) 2365.5 γ to 2 ⁺ . J ^π : ΔJ=0, D+Q 384.2 γ to 5 ⁻ ; band assignment. J ^π : spin=2 from $\gamma\gamma(\theta)$ in ¹⁰⁰ Rh ε decay (20.8 h);

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	#	XREF		Comments
2933.65 10	(1,2)+		AB	P	1553.3γ and 2375.98γ E1 to 2 ⁺ ; allowed β feeding from 1 ⁻ parent. XREF: P(2926). J ^π : 2933.6γ to 0 ⁺ ; L(p,d)=2 from 5/2 ⁺ .
2951.10 8	2+,3,4+	87 fs +14-10	к м		XREF: K(2953). J^{π} : 2411.4 γ to 2 ⁺ and 1724.6 γ to 4 ⁺ , with mult=M2 ruled out by RUL.
2951.552 ^e 13	7-		E G L		J^{π} : ΔJ =1, E1 876.3 γ to 6 ⁺ ; ΔJ =2, Q 424.3 γ to 5 ⁻ ; band assignment.
2963.626 ^d 13 2967.57 3	6 ⁻ 6 ⁽⁺⁾		E G L		J ^π : ΔJ=0, E1(+M2) 887.4 γ to 6 ⁺ . J ^π : ΔJ=2, Q 1741.2 γ to 4 ⁺ ; 262.1 γ to 6 ⁺ ; 891.7 γ (M1+E2) to 6 ⁺ .
2983.04 7	$(0 \text{ to } 4)^+$		IJ	P	XREF: P(2971).
2999.32 <i>11</i> 3016.77 <i>16</i>	$(0^+ \text{ to } 4^+)$	0.18 ps +10-5	I K M IJ		J^{π} : L(p,d)=2 from 5/2 ⁺ ; probable 2444.3 γ to 2 ⁺ . J^{π} : 2459.4 γ to 2 ⁺ . E(level): from (n, γ) E=th.
3034.0 <i>4</i> 3058.1 <i>10</i>	(2,3,4)		I K J	р	E(level): from (n,γ) E=th. XREF: p(3051).
				•	J^{π} : primary 6614.6 γ from 3 ⁽⁺⁾ and 2 ⁽⁺⁾ . L(p,d)=2+0 from 5/2 ⁺ for a 3051 group suggests 2 ⁺ ,3 ⁺ for 3058 and/or 3060 level.
3060.051 ^a 17	8+		EFGH kL		XREF: k(3065.5). J^{π} : ΔJ=2, E2 984.8γ to 6 ⁺ ; band assignment.
3060.14 5	1,2+	11 fs <i>3</i>	B k M	p	XREF: k(3065.5)p(3051). J^{π} : 3060.2 γ to 0 ⁺ , with mult=M2 ruled out by RUL. See also J^{π} comment for 3058 level.
3064.61 7	4+	37 fs +10-7	I k M		XREF: k(3065.5). J^{π} : ΔJ =2, E2 γ to 2 ⁺ ; primary 6608.5 γ from 2 ⁺ ,3 ⁺ .
3069.525 6	(1,2)	>0.45 ps	B IJk M		$\Delta J = 2$, $EZ \gamma$ to Z , primary 6008.3 γ from Z , S . XREF: I(3071.6)k(3065.5). J^{π} : M1,E2 600.1 γ to Z^{-} ; M1,E2 499.6 γ to Z^{-} ; 2529.97 γ D+Q to Z^{+} ; weak 3069.4 γ to Z^{+} .
3072.268 19	2+	0.20 ps +14-6	В М	P	XREF: P(3080). J^{π} : 3071.8 γ to 0 ⁺ ; L(p,d)=0+2 from 5/2 ⁺ .
3102 <i>4</i> 3110.57 <i>11</i>	$(2^+,3^+)$	>0.26 ps	K G IJ M	P	XREF: P(3124). J^{π} : L(p,d)=2+0 from 5/2 ⁺ for a level at 3124; 943.7 γ to 3 ⁻ .
3118.67 <i>13</i>	$(0^+ \text{ to } 4^+)$	37 ps +8-6	I M	P	XREF: P(3132). J ^π : 1756.2γ to 2 ⁺ .
3139.303 <i>14</i> 3177.07 <i>23</i>	7 ⁻ 2 ⁺ ,3 ⁺		E G L	P	J ^{π} : ΔJ=2, E2 612.1 γ to 5 ⁻ ; 187.8 γ to 7 ⁻ . J ^{π} : L(p,d)=0 from 5/2 ⁺ .
3218.111 23	(8)-		G		E(level): from (n,γ) E=th. J^{π} : $\Delta J=2$, E2 254.5 γ to 6 ⁻ ;
3231.79 <i>17</i> 3263.664 <i>f</i> 18	8(+)		I EFG L		XREF: L(3266.1). J^{π} : ΔJ =0, D 203.6 γ to 8 ⁺ ; ΔJ =2, Q 557.98 γ and 1188.0 γ to 6 ⁺ ; 6 levels; γ from 10 ⁺ ; probable γ to 6 ⁺ .
3266.3 3	$(0 \text{ to } 5)^+$		HI	P	XREF: H(3240)P(3268). E(level): from (n,γ) E=th. J^{π} : L(p,d)=2 from 5/2 ⁺ ; L(³ He,d)=4 from 9/2 ⁺ .
3272.1 <i>3</i> 3300.62 <i>8</i>	2+,3+		I IJ	P P	XREF: P(3278). XREF: P(3315).
3308.08 14			I		J^{π} : L(p,d)=2+0 from 5/2+.

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3323.70 5	$(1,2^+)$	В	J^{π} : 3323.9 γ to 0 ⁺ .
3326.27 8	@	IJ	
3332.40 <i>6</i>	@	IJ	
3348.13 6	@	IJ	
3354.637^{d} 14 3368.982^{c} 21	8 ⁻ (7 ⁻)	E G L	J^{π} : ΔJ =2, E2 390.98 γ to 6 ⁻ ; E2+M1 403.1 γ to 7 ⁻ ; band assignment. J^{π} : 229.7 γ to 7 ⁻ ; 593.9 γ to (5 ⁻); band assignment.
3375.01 <i>13</i>	@	IJ	, , , , , , , , , , , , , , , , , , , ,
3419.13 <i>17</i>	(2^+)	B IJ P	XREF: P(3403).
3441 10	2+,3+	P	J^{π} : 3419.4 γ to 0 ⁺ ; L(p,d)=0 from 5/2 ⁺ for a 3403 group favors 2 ⁺ . J^{π} : L(p,d)=0 from 5/2 ⁺ .
3446.56 ^b 6	7 ⁽⁺⁾	G	J^{π} : $\Delta J=2$, Q 869.7 γ to 5 ⁽⁺⁾ ; D+Q 1370.95 γ to 6 ⁺ .
3460.4 15	@	J	
3463.43 12	$(1^+,2)$	B IJ	J^{π} : weak 3464.8 γ to 0 ⁺ ; weak 1582.9 γ to 3 ⁺ ; primary 6212.3 γ from 3 ⁽⁺⁾ .
3503.365 ^e 15 3517 10	9 ⁻ 2 ⁺ ,3 ⁺	EG L P	J^{π} : Δ=2, E2 364.1 γ and 551.9 γ to 7 ⁻ ; E1(+M2) 443.3 γ to 8 ⁺ . J^{π} : L(p,d)=2+0 from 5/2 ⁺ .
3550.10 ^b 3	8(+)	G	J^{π} : $\Delta J=2$, Q 1474.4 γ to 6 ⁺ ; 490.1 γ to 8 ⁺ ; band assignment.
3575.51 ^h 3	9-	E G L	J^{π} : $\Delta J=2$, E2 623.9 γ to 7 ⁻ ; D(+Q) 515.5 γ to 8 ⁺ .
3576.43 6	7 ⁽⁺⁾	G	J ^π : ΔJ=2, Q 999.5 γ to 5 ⁽⁺⁾ , most likely E2; D+Q 870.99 γ to 6 ⁺ ; 312.6 γ to 8 ⁽⁺⁾ .
3585 10	$2^{+},3^{+}$	P	J^{π} : L(p,d)=2+0 from 5/2 ⁺ .
3599.301° 23	(8-)	G	J^{π} : D+Q 460.0 γ and 647.8 γ to 7 ⁻ ; band assignment.
3608 10	2 ⁺ ,3 ⁺	P	J^{π} : L(p,d)=2+0 from 5/2+.
3609.96 8	7 ⁽⁺⁾	G	J^{π} : $\Delta J=2$, Q 948.98 γ to 5 ⁽⁺⁾ , most likely E2; D+Q 1534.4 γ to 6 ⁺ .
3661.48 <i>13</i> 3693 <i>10</i>	(4,5,6) $(0 \text{ to } 5)^+$	G P	J^{π} : D+Q 1134.2 γ to 5 ⁻ . J^{π} : L(p,d)=2 from 5/2 ⁺ .
3731.88 <i>13</i>	@	J	S : L(p,q) = L(p,q) = L(p,q)
3779.72 <i>13</i>	$(1 \text{ to } 4)^+$	IJ P	J^{π} : L(p,d)=2 from 5/2+; primary 5894.2 γ from 2 ⁽⁺⁾ and 3 ⁽⁺⁾ .
3851.5 4	$(4^+,5,6,7^+)$	G	J^{π} : 883.8 γ to $6^{(+)}$, 1274.7 γ to $5^{(+)}$.
3877.75 <i>17</i>	2+,3+	IJ P	J^{π} : L(p,d)=2+0 from 5/2+.
3883.0 <i>3</i>	@	IJ	
3929.64 <i>6</i>	(8 ⁺)	G	J^{π} : $\Delta J=2$, Q 961.9 γ to (6 ⁺).
3960.36 ^c 4	(9-)	G	J^{π} : D+Q 742.3 γ to (8) ⁻ ; band assignment.
3973.6 5	$(0^+ \text{ to } 5^+)$	IJ	J^{π} : primary 5699.6 γ from $2^{+}, 3^{+}$.
3983.0 7	$(1^+ \text{ to } 4^+)$	IJ	J^{π} : primary 5699.3 γ from $2^{(+)}$ and $3^{(+)}$.
3992.13 ^d 5	10 ⁻ @	E G L	J^{π} : $\Delta J=2$, E2 637.5 γ to 8 ⁻ ; E2+M1 488.7 γ to 9 ⁻ .
4000.70 20		IJ	
4049.5 12	@	J	T D(0) 572 () 07 02(0) 77
4075.93 <i>11</i>	(8,9-)	G	J^{π} : D(+Q) 572.4 γ to 9 ⁻ ; 936.9 γ to 7 ⁻ .
4083.30 ^f 4	10 ⁺ @	EFG L	J^{π} : $\Delta J=2$, E2 1023.8 γ to 8 ⁺ ; band assignment.
4091.5 14		J	TT D. 0.5010
4097.38 6	(9 ⁻) @	G	J^{π} : D+Q 521.9 γ to 9 ⁻ ; 728.5 γ to 7 ⁻ ; 565.7 γ from (11 ⁻).
4102.9 11	@	J -	
4148.6 20		J	77 : 54060 6 2(+) 12(+)
4187.6 <i>3</i> 4230.56 ^e <i>6</i>	$(1^+ \text{ to } 4^+)$	IJ F.C. I	J ^{π} : primary 5486.8 γ from 2 ⁽⁺⁾ and 3 ⁽⁺⁾ . J ^{π} : ΔJ=2, E2 727.3 γ to 9 ⁻ ; D+Q 238.4 γ to 10 ⁻ .
4235.82 ^c 5	11 ⁻ (10 ⁻)	E G L G	J^{π} : $\Delta J = 2$, $E2/27.5\gamma$ to 9°; $\Delta J = 2$, (Q) 636.5 γ to (8°); band assignment.
4235.84 ^a 3	10 ⁽⁺⁾	E G	XREF: E(4239.7).
			J^{π} : $\Delta J = 2$, Q 1175.8 γ to 8 ⁺ ; 152.6 γ to 10 ⁺ ; band assignment.
4248.49 7	$(7^-, 8, 9)$	G	J^{π} : D+Q 893.8 γ to 8 ⁻ ; 673.1 γ to 9 ⁻ .

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
4257.1 3	@	IJ	
4273.5 16	@	J	
4307.4 10	@	J	
4315.73 ^h 4	11-	EG L	J^{π} : $\Delta J=2$, E2 740.2 γ to 9 ⁻ ; band assignment.
4337.6 18	@	J	5 . 23-2, 22 / 10.27 to 5 , build assignment.
4343.44 ^b 8	9(+)	G	J^{π} : $\Delta J=2$, Q 896.8 γ to 7 ⁺ ; D+Q 1079.98 γ to 8 ⁽⁺⁾ .
$4343.44 6$ $4353.36^{i} 4$	(10^+)	EFG	J^{π} : $\Delta J=(2)$, (Q) 803.3 γ to $S^{(+)}$; 270.1 γ to $S^{(+)}$; band assignment.
4366.4 18	(10°) $(1^{+} \text{ to } 4^{+})$	ErG J	J^{π} : primary 5306.3 γ from $2^{(+)}$ and $3^{(+)}$.
4376.1 11	@	J	3. primary 3300.3y from 2. and 3.
4381.83 8	$(7,8,9^+)$	G	J^{π} : D+Q 1117.99 γ to 8+; 935.4 γ to 7+.
4403.6 12	@	J	7 . D . Q 1117777 to 0 , 7555.17 to 7 .
4408.63 8	$(9^-,10^-)$	G	J^{π} : 1054.0 γ to 8 ⁻ ; 178.1 γ to 11 ⁻ .
4503.48 <i>4</i>	(10^{+})	G	J^{π} : $\Delta J=(2)$, (Q) 953.4 γ to $8^{(+)}$; 419.9 γ to 10^{+} .
4519.6 9	@	J	
4530 <i>3</i>	@	J	
4543.7 18	@	J	
4585.6 12	@	J	
4601.2 12	@	J	
4650.7 20	@	J	
4663.44 ^c 7	(11-)	G	J^{π} : $\Delta J=(2)$, (Q) 1160.1 γ to 9 ⁻ ; 433.0 γ to 11 ⁻ ; band assignment.
4791.59 5	$(8^+,9,10^+)$	G	J^{π} : 1731.7 γ to 8 ⁺ ; 708.5 γ to 10 ⁺ .
4798.15 ^d 5	12 ⁽⁻⁾	E G L	J^{π} : $\Delta J=2$, (E2) 806.0 γ to 10 ⁻ ; 567.5 γ to 11 ⁻ ; band assignment.
4818.58 6	(10^+)	G	J^{π} : $\Delta J=(0)$, (D+Q) 582.8 $\gamma \gamma$ to 10 ⁽⁺⁾ , most likely (M1+E2).
4917.97 ^f 13	12+	EFG L	XREF: L(?).
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			J^{π} : $\Delta J=2$, E2 834.95 γ to 10 ⁺ ; band assignment.
5010.49 <i>6</i>	$(8^+, 9, 10, 11)$	G	J^{π} : 927.6 γ to 10 ⁺ ; D+Q 218.9 γ to (8 ⁺ ,9,10 ⁺).
5066.19 ^c 6	(12^{-})	G	J^{π} : 830.4 γ to $10^{(-)}$; band assignment.
5126.3 10	(12^{+})	G L	J^{π} : 1043 γ to 10 ⁺ ; proposed from a band member of the g.s band in
5162.52 ^e 13	13-	E G L	$(\alpha, 2n\gamma)$; $\gamma(\theta)$ in $(\alpha, 4n\gamma)$ give J=10,11,12. J^{π} : $\Delta J=2$, E2 932.2 γ to 11 ⁻ ; band assignment.
5102.32^{h} 12			· · · · · · · · · · · · · · · · · · ·
32/4.0/** 12	(13 ⁻)	E G L	J^{π} : ΔJ =2, Q 1043.8 γ to 11 ⁻ ; ΔJ =(2), (E2) 959.1 γ to 11 ⁻ ; band assignment.
5307.2 ⁱ 5	(12+)	E	J^{π} : 1223.9 γ to 10 ⁺ ; band assignment.
5713.31 ^f 14	14+	EFG L	XREF: L(?).
3/13.31 14	14	ErG L	J ^{π} : ΔJ =2, E2 795.3 γ to 12 ⁺ ; band assignment.
5784.4 ^d 3	(14^{-})	E	J^{π} : 986.2 γ to 12 ⁽⁻⁾ ; band assignment.
6167.2 ^e 4	(15^{-})	E	J^{π} : $\Delta J=2$, Q 1004.7 γ to 13 ⁻ ; band assignment.
6283.7 ^h 6	(15^{-})	E	J^{π} : 1009.0 γ to (13 ⁻); band assignment.
6365.2 ⁱ 7	(14^+)	E	J^{π} : 1058.0 γ to (12 ⁺); band assignment.
6714.81 ^f 18	16 ⁺	EF	J^{π} : $\Delta J=2$, E2 1001.5 γ to 14 ⁺ ; band assignment.
6885.1 ^d 6	(16^{-})	E	J^{π} : 1100.7 γ to (14 ⁻); band assignment.
7203.7 ^e 5	(17-)	E L	E(level): a 6202 level is proposed in $(\alpha,4n\gamma)$ to decay by the 1036.5 γ . J^{π} : $\Delta J=2$, (E2) 1036.5 γ to (15 ⁻); band assignment.
7408.6 ⁱ 9	(16^+)	E	J^{π} : 1043.4 γ to (14 ⁺); band assignment.
7827.02 ^f 20	18 ⁺	EF	J^{π} : $\Delta J=2$, E2 1112.2 γ to 16 ⁺ ; band assignment.
8018.2 ^d 8	(18-)	E	J^{π} : 1133.1 γ to (16 ⁻); band assignment.
8450.6 ⁱ 10	(18 ⁺)	E	J^{π} : 1042.0 γ to (16 ⁺); band assignment.
8458.7 ^e 7	(19^{-})	E	J^{π} : 1255.0 γ to (17 ⁻); band assignment.
9057.73 ^f 23	20+	EF	J^{π} : $\Delta J=2$, E2 1230.7 γ to (18 ⁺); band assignment.
			-

¹⁰⁰Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
9178.8 ^d 10 (9673.32 3)	(20 ⁻) 2 ⁺ ,3 ⁺	E	J^{π} : 1160.6γ to (18 ⁻); band assignment. E(level): S(n)=9673.32 3 (2017Wa10).
` ,			J^{π} : s-wave neutron capture in ⁹⁹ Ru g.s. with $J^{\pi}=5/2^{+}$.
(9673.33 <i>3</i>)	3 ⁽⁺⁾ &	J	E(level): $S(n)+E(n)$, where $S(n)=9673.32\ 3\ (2017Wa10)$, and $E(n)=10.05\ eV$.
(9673.35 <i>3</i>)	3(+)&	J	E(level): $S(n)+E(n)$, where $S(n)=9673.32\ 3\ (2017Wa10)$, and $E(n)=25.2\ eV$.
(9673.38 <i>3</i>)	3 ⁽⁺⁾ &	J	E(level): $S(n)+E(n)$, where $S(n)=9673.32\ 3\ (2017Wa10)$, and $E(n)=57.1\ eV$.
(9673.40 <i>3</i>)	$2^{(+)}$ &	J	E(level): $S(n)+E(n)$, where $S(n)=9673.32\ 3\ (2017Wa10)$, and $E(n)=81.6\ eV$.
(9763.42 3)	3 ⁽⁺⁾ &	J	E(level): $S(n)+E(n)$, where $S(n)=9673.32\ 3\ (2017Wa10)$, and $E(n)=104\ eV$.
9796.7 ^e 9	(21^{-})	E	J^{π} : 1338.0 γ to (19 ⁻); band assignment.
10378.14 ^f 25	22+	EF	J^{π} : $\Delta J=2$, E2 1320.4 γ to 20 ⁺ ; band assignment.
10403.3 ^d 11	(22^{-})	E	J^{π} : 1224.5 γ to (20 ⁻); band assignment.
11738.5 ^f 3	$24^{(+)}$	EF	J^{π} : $\Delta J=2$, (E2) 1360.4 γ to 22 ⁺ ; band assignment.
11746.3 ^d 12	(24^{-})	E	J^{π} : 1343.0 γ to (22 ⁻); band assignment.
13170.0 ^f 3	26 ⁽⁺⁾	EF	J^{π} : $\Delta J=2$, E2 1431.4 γ to 24 ⁽⁺⁾ ; band assignment.
13309.3 ^d 13	(26^{-})	E	J^{π} : 1563.0 γ to (24 ⁻); band assignment.
14738.2 ^f 4	$28^{(+)}$	EF	J^{π} : $\Delta J=2$, E2 1568.2 γ to 26 ⁽⁺⁾ ; band assignment.
14933.3 ^d 14	(28^{-})	E	J^{π} : 1624.0 γ to (26 ⁻); band assignment.
14938.1 ⁸ 5	(28^+)	E	J^{π} : $\Delta J=2$, Q 1768.1 γ to 26 ⁽⁺⁾ ; band assignment.
16105.8 ^g 5	(30^+)	E	J^{π} : $\Delta J=2$, Q 1167.7 γ to (28 ⁺); band assignment.
16648.4 ^f 6	(30^+)	E	J^{π} : $\Delta J = 2$, Q 1910.2 γ to 28 ⁽⁺⁾ ; band assignment.
17740.7 ⁸ 6 20197.7 8	(32^{+})	E E	J^{π} : ΔJ =2, Q 1092.3 γ to (30 ⁺); band assignment. J^{π} : 2457.0 γ to (32 ⁺).
20191.1 0		E .	J. 2737.07 to (32).

[†] From least-squares fit to E γ data for levels seen in γ -ray studies. In other cases weighted averages of available level energies are taken. About 31 γ rays amongst a total of about 450 γ rays are outside 3 times the quoted standard deviation, resulting in a reduced $\chi^2/n=5.7$, much greater than the critical value=1.2. This indicates either low uncertainties for some of the γ rays or some systematic deviations in one or more datasets. So in the fitting procedure to reduce χ^2 , the uncertainties of poor-fit γ rays are increased by factors as noted for those γ rays in the γ -ray table, resulting $\chi^2/n=1.8$.

[‡] For high-spin states ($J \ge 6$), in using arguments based on available experimental data, it is assumed that the spin values increase as the excitation energy rises in reactions of the type: (HI,xn γ). This assumption is generally supported by the decay modes.

[#] From Doppler-shift attenuation method (DSAM) in $(n,n'\gamma)$ (2001Ge03), unless otherwise stated.

[@] Primary γ from (3⁺) suggests $J^{\pi}=1^+,2,3,4,5^+$; the choices 1⁺ and 5⁺ are less likely if there is a strong primary transition.

[&]amp; From 2018MuZY evaluation.

a Band(A): g.s. band.

^b Band(B): Quasi- γ band.

^c Band(C): 2⁻ band,

^d Band(D): 4⁻ band, α =0. Configuration= $\pi g_{9/2}^4 \otimes \nu[(d_{5/2}g_{7/2})^5 h_{11/2}]$, with terminating state of 28⁻ when fully aligned (g_{9/2} protons coupled to spin 12, and d_{5/2}g_{7/2} neutrons coupled to spin 21/2).

^e Band(d): 3⁻ band, α=1. Configuration= $\pi g_{0/2}^4 \otimes \nu [(d_{5/2}g_{7/2})^5 h_{11/2}].$

f Band(E): Band based on 8⁽⁺⁾, α =0. Configuration= π ($g_{9/2}^5$)_{25/2}⊗ ν h_{11/2} coupled to one proton hole in N=3 shell, with the configuration of the terminating state of 30⁺ as π ($g_{9/2}^5$)_{25/2}⊗ ν (d_{5/2}g_{7/2})⁵_{23/2}(h_{11/2}) coupled to one proton hole in N=3 shell. The upper part of this band may have an alternate configuration= π g⁴_{9/2}⊗ ν [(d³_{5/2})(g_{7/2})(h²_{11/2})], with terminating state of 30⁺ when fully aligned (g_{9/2} protons coupled to spin of 12, d_{5/2} neutrons coupled to spin 9/2, and h_{11/2} neutrons coupled to spin 10) (2000Ti07).

^g Band(F): Band based on (28⁺). This structure of three levels is related to band based on 8⁺. Configuration of terminating state at $32+=\pi g_{9/2}^4 \otimes \nu[(d_{5/2}g_{7/2})^4 h_{11/2}^2]$, (g_{9/2} protons coupled to spin 12, and d_{5/2}g_{7/2} neutrons coupled to spin 10, and h_{11/2}

¹⁰⁰Ru Levels (continued)

neutrons coupled to spin 10). h Band(G): Band based on 9^- . i Band(H): Band based on (10^+) .

$\gamma(^{100}Ru)$

١									γ (100Ru)		
	$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. f	δ^{f}	$\alpha^{\mathbf{g}}$	$I_{(\gamma+ce)}$	Comments
	539.5103	2+	539.509 2	100	0.0	0+	E2		0.00428		B(E2)(W.u.)=35.7 3 E _γ : weighted average of 539.512 5 from ¹⁰⁰ Rh ε decay (20.8 h) and 539.508 2 from (n,γ) E=th. Others: 539.52 11 from ¹⁰⁰ Tc β ⁻ decay (15.46 s), 539.7 1 from (β ⁻ decay (15.46 s), 539.7 3 from (β ⁻ decay), 539.509 14 from (β ⁻ (β ⁻ decay), 539.7 3 from (β ⁻ (β ⁻ decay), 539.506 18 from (β ⁻ (β ⁻ decay), 639.6 1 from Coulomb excitation. Mult.: from ce data in ¹⁰⁰ Rh ε decay (20.8 h), γ(DCO) in
	1130.305	0+	590.786 11	100	539.5103	2+	E2		0.00332		(36 S, α 2n γ) and (34 S, 2α 2n γ), $\gamma(\theta)$ in (α ,2n γ) and (n,n' γ). B(E2)(W.u.)=35 5 E $_{\gamma}$: weighted average of 590.792 6 from 100 Rh ε decay (20.8 h), 590.844 20 from (α ,2n γ), 590.765 9 from (n, γ) E=th, and 590.774 20 from (n,n' γ). Others: 590.77 10 from 100 Tc β ⁻ decay (15.46 s) and 590.8 5 from Coulomb excitation. Mult.: M1,E2 from ce data and Q from $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h).
			1130.3 3		0.0	0+	E0			0.038 3	E_{γ} ,Mult.: from ce data in 100 Rh ε decay (20.8 h). q_{K}^{2} (E0/E2)=0.098 9, X(E0/E2)=0.0104 9, ρ^{2} (E0)=0.0103 18 (2005Ki02, evaluation). B(E0)(Wilkinson units)=0.048 8.
	1226.467	4+	686.972 7	100	539.5103	2+	E2		0.00221		B(E2)(W.u.)=52 4 E _γ : weighted average of 686.971 7 from 100 Rh ε decay (20.8 h), 686.973 17 from (α ,2n γ), 686.972 3 from (n, γ) E=th, and 686.963 17 from (n,n' γ). Others: 687.5 1 from (36 S, α 2n γ), 687.4 3 from (α ,4n γ), and 686.9 5 from Coulomb excitation.
	1362.166	2+	822.646 9	100.0 5	539.5103	2+	E2+M1	+3.7 3	0.0014		Mult.: M1,E2 from ce data and Q from $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h); also from $\gamma(DCO)$ and $\gamma(pol)$ in $(^{36}S,\alpha 2n\gamma)$, $\gamma(DCO)$ in $(^{34}S,2\alpha 2n\gamma)$, $\gamma(\theta)$ in $(\alpha,2n\gamma)$, $(\alpha,4n\gamma)$ an $d(n,n'\gamma)$. B(M1)(W.u.)=0.0016 +5-4; B(E2)(W.u.)=31 6 $\alpha(K)$ =0.001230 17; $\alpha(L)$ =0.0001439 20; $\alpha(M)$ =2.64×10 ⁻⁵ 4 $\alpha(N)$ =4.25×10 ⁻⁶ 6; $\alpha(O)$ =2.185×10 ⁻⁷ 31 E _y : weighted average of 822.6 1 from 100 Tc β^- decay (15.46 s), 822.654 7 from 100 Rh ε decay (20.8 h), 822.666 17 from $(\alpha,2n\gamma)$, 822.614 10 from (n,γ) E=th, 822.672 16 from $(n,n'\gamma)$, and 822.5 2 from Coulomb excitation. I _y : from $(n,n'\gamma)$. Others: 100.0 10 from 100 Rh ε decay (20.8 h), 100.0 12 from $(\alpha,2n\gamma)$, 100 4 from (n,γ) E=th. Mult.: from ce data and $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h) and $\gamma(\theta)$ in $(n,n'\gamma)$, 100 8 from (n,γ) E=res. δ : weighted average of +3.7 3 (2001Ge03) from $\gamma(\theta)$ in

γ (100Ru) (continued)

			.	<u>.</u>			c			
E_i	level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. ^f	α^{g}	$I_{(\gamma+ce)}$	Comments
136	52.166	2+	1362.157 10	73.1 2	0.0	0+	E2			(n,n'γ), +3.2 8 (1978Ba29) and 3.7 4 (1990KeZV) from γγ(θ) in 100 Rh ε decay (20.8 h). B(E2)(W.u.)=2.0 4 E _γ : weighted average of 1362.152 10 from 100 Rh ε decay (20.8 h), 1362.172 23 from (α,2nγ), 1362.17 3 from (n,γ) E=th, and 1362.160
174	41.011	0+	378.90 5	75.4 13	1362.166	2+	E2	0.01250		21 from (n,n' γ). Others: 1362.2 <i>I</i> from ¹⁰⁰ Tc β ⁻ decay (15.46 s) and 1362.1 2 from Coulomb excitation. I _y : weighted average of 72.95 23 from ¹⁰⁰ Rh ε decay (20.8 h), 73.3 <i>I</i> 2 from (α ,2n γ), and 73.6 5 from (n,n' γ). Others: 68 4 from (n, γ) E=th; 52 5 in Coulomb excitation, 95 3 in ¹⁰⁰ Tc β ⁻ decay and 112 <i>II</i> in (n, γ) E=res are in disagreement. Mult.: from ce data and $\gamma\gamma(\theta)$ in ¹⁰⁰ Rh ε decay (20.8 h) and $\gamma(\theta)$ in (α ,2n γ) and (n,n' γ). α (K)=0.01081 <i>I</i> 6; α (L)=0.001388 <i>20</i> ; α (M)=0.000255 4 α (N)=4.05×10 ⁻⁵ 6; α (O)=1.85×10 ⁻⁶ 3
										E _γ : weighted average of 378.7 <i>I</i> from ¹⁰⁰ Tc β ⁻ decay (15.46 s), 378.79 <i>5</i> from ¹⁰⁰ Rh ε decay (20.8 h), 378.81 <i>11</i> from (α ,2nγ), 379.10 <i>10</i> from (n,γ) E=th, and 378.94 <i>3</i> from (n,n'γ). I _γ : weighted average of 85 <i>6</i> from ¹⁰⁰ Tc β ⁻ decay (15.46 s), 75.1 <i>11</i> from (n,n'γ), and 69 <i>12</i> from ¹⁰⁰ Rh ε decay (20.8 h). Others: 130 <i>18</i> in (n,γ) E=th; 220 <i>20</i> in (α ,2nγ) are in disagreement. Mult.: from ce data and γ γ(θ) in ¹⁰⁰ Rh ε decay (20.8 h).
			610.48 <i>10</i>		1130.305	0+	E0		0.08 4	E _γ ,Mult.: from ce data in 100 Rh ε decay (20.8 h). q_K^2 (E0/E2)=0.9 5, X(E0/E2)=1.1 6, ρ^2 (E0)<0.090 (2005Ki02, evaluation).
			1201.503 <i>16</i>	100.0 11	539.5103	2+	(E2)			E _γ : weighted average of 1201.493 <i>16</i> from ¹⁰⁰ Rh ε decay (20.8 h) and 1201.54 <i>3</i> from (n,n'γ). Others: 1201.5 <i>1</i> from ¹⁰⁰ Tc β ⁻ decay (15.46 s), 1201.4 <i>3</i> from (α,2nγ), and 1201.44 <i>14</i> from (n,γ) E=th. L _γ : from (n,n'γ). Others: 100 <i>4</i> from ¹⁰⁰ Tc β ⁻ decay (15.46 s), 100.0 2 <i>1</i> from ¹⁰⁰ Rh ε decay (20.8 h), 100 <i>17</i> from (α,2nγ), 100 <i>18</i> from (n,γ) E=th. Mult.: (Q) from γγ(θ) in ¹⁰⁰ Rh ε decay (20.8 h); polarity from no
			1740.6 2		0.0	0+	E0		0.16 3	level-parity change. E_{γ} ,Mult.: from ce data in 100 Rh ε decay (20.8 h). q_{K}^{2} (E0/E2)=1.6 9, X(E0/E2)=0.6 3, ρ^{2} (E0)<0.048 (2005Ki02,
186	55.110	2+	502.905 23	14.1 5	1362.166	2+	M1,E2	0.0049 4		evaluation). E _{\gamma} : weighted average of 502.907 <i>18</i> from ¹⁰⁰ Rh ε decay (20.8 h), 502.7 <i>3</i> from (α ,2n γ), 503.09 <i>10</i> from (n, γ) E=th, and 502.83 6 from (n,n' γ). I _y : weighted average of 16.0 <i>14</i> from ¹⁰⁰ Rh ε decay (20.8 h), 21 8 from (α ,2n γ), 19.8 28 from (n, γ) E=th, and 13.9 <i>3</i> from (n,n' γ). Mult.: from ce data in ¹⁰⁰ Rh ε decay (20.8 h).

γ (100Ru) (continued)

									
$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\rm I_{\gamma}}^{\dagger}$	\mathbb{E}_f	$\underline{\mathbf{J}_f^{\pi}}$	Mult. f	δ^f	α^{g}	Comments
1865.110	2+	638.631 20	18 3	1226.467	4+	E2		0.00268	B(E2)(W.u.)=17 5 α(K)=0.002340 33; α(L)=0.000281 4; α(M)=5.15×10 ⁻⁵ 7 α(N)=8.27×10 ⁻⁶ 12; α(O)=4.12×10 ⁻⁷ 6 E _γ : weighted average of 638.619 14 from ¹⁰⁰ Rh ε decay (20.8 h), 638.81 13 from (α,2nγ), 638.70 7 from (n,γ) E=th, and 638.72 5 from (n,n'γ). I _γ : unweighted average of 14.2 5 from ¹⁰⁰ Rh ε decay (20.8 h), 21 4 from (α,2nγ), 25 3 from (n,γ) E=th, and 13.0 3 from (n,n'γ). Mult.: M1,E2 from ce data in ¹⁰⁰ Rh ε decay (20.8 h); ΔJ=2 requires E2.
		734.798 7	77.6 9	1130.305	0+	E2		0.00186	B(E2)(W.u.)=37 +8-9 α (K)=0.001623 23; α (L)=0.0001921 27; α (M)=3.52×10 ⁻⁵ 5 α (N)=5.67×10 ⁻⁶ 8; α (O)=2.87×10 ⁻⁷ 4 E _γ : weighted average of 734.806 7 from ¹⁰⁰ Rh ε decay (20.8 h), 734.789 7 from (n,γ) E=th, and 734.810 21 from (n,n'γ). Others: 734.8 3 from ¹⁰⁰ Tc β ⁻ decay (15.46 s) and 734.84 8 from (α ,2nγ). I _γ : weighted average of 76.8 7 from ¹⁰⁰ Rh ε decay (20.8 h), 78.3 6 from (n,n'γ), and 69 4 from (α ,2nγ). Others: 114 14 in ¹⁰⁰ Tc β ⁻ ; 118 3 in (n,γ) E=th, 104 5 in (n,γ) E=res are in disagreement. Mult.: M1,E2 from ce data in ¹⁰⁰ Rh ε decay (20.8 h); Δ J=2 requires E2.
		1325.590 <i>17</i>	100.0 7	539.5103	2+	M1+E2	-1.0 3		B(M1)(W.u.)=0.0023 +10-8; B(E2)(W.u.)=1.24 +43-53 E _γ : weighted average of 1325.8 5 from 100 Tc β^- decay (15.46 s), 1325.583 13 from 100 Rh ε decay (20.8 h), 1325.56 7 from (α ,2nγ), 1325.45 6 from (n, γ) E=th, and 1325.633 22 from (n, γ' γ). I _γ : from (n, γ' γ). Others: 100.0 10 from 100 Rh ε decay (20.8 h), 100 4 from (α ,2nγ), 100 13 from (n, γ) E=th, 100 7 from (n, γ) E=res, 100 33 from 100 Tc β^- decay. Mult.: from ce data and $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h) and $\gamma(\theta)$ in (n, γ' γ). δ: from $\gamma(\theta)$ in (n, γ' γ), -2.5 9 is also possible. Other: -1.6 +14-7 from $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h).
		1865.06 <i>6</i>	95.9 12	0.0	0+	E2			$\gamma\gamma(\theta)$ in ¹⁶⁰ Rh ε decay (20.8 h). B(E2)(W.u.)=0.43 10 E _γ : weighted average of 1864.9 2 from ¹⁰⁰ Tc β ⁻ decay (15.46 s), 1865.12 15 from ¹⁰⁰ Rh ε decay (20.8 h), 1865.12 9 from (α,2nγ), 1865.04 6 from (n,γ) E=th, and 1865.07 6 from (n,n'γ). I _γ : weighted average of 93 7 from ¹⁰⁰ Tc β ⁻ decay (15.46 s), 90 4 from (α,2nγ), and 96.4 12 from (n,n'γ), 109 13 from (n,γ) E=th, and 109 23 from (n,γ) E=res. Other: 63 6 in ¹⁰⁰ Rh ε decay (20.8 h) is in disagreement. Mult.: Q from $\gamma(\theta)$ in (n,n'γ); M2 ruled out by RUL.

$\gamma(^{100}\text{Ru})$ (continued)

							<i>y</i> (K	u) (continueu)	
$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult. f	δ^f	α^{g}	Comments
1881.043	3+	518.881 8	16.9 4	1362.166	2+	M1+E2	+0.37 7	0.00432 7	B(M1)(W.u.)=0.020 +7-6; B(E2)(W.u.)=9.6 +46-41 $\alpha(K)=0.00379$ 6; $\alpha(L)=0.000441$ 7; $\alpha(M)=8.08\times10^{-5}$ 13 $\alpha(N)=1.307\times10^{-5}$ 21; $\alpha(O)=6.87\times10^{-7}$ 10 E _{γ} : weighted average of 518.882 5 from 100 Rh ε decay (20.8 h), 518.88 6 from $(\alpha,2n\gamma)$, 519.11 13 from (n,γ) E=th, and 518.82 3 from $(n,n'\gamma)$. I _{γ} : weighted average of 17.2 2 from 100 Rh ε decay (20.8 h), 14.2
									13 from $(\alpha, 2n\gamma)$, 22 4 from (n,γ) E=th, and 16.1 4 from $(n,n'\gamma)$. Other: 86 4 in (n,γ) E=res is in disagreement. Mult.: from ce data and $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h) and $\gamma(\theta)$ in $(n,n'\gamma)$ and $(\alpha,2n\gamma)$. δ : weighted average of +0.36 δ from $(n,n'\gamma)$ and +0.38 δ from
		654.574 6	12.1 9	1226.467	4+	M1+E2	+2.3 5	0.00250	$(\alpha,2n\gamma)$. B(M1)(W.u.)=0.0013 +8-5; B(E2)(W.u.)=15 5 α (K)=0.002188 31; α (L)=0.000260 4; α (M)=4.77×10 ⁻⁵ 7 α (N)=7.67×10 ⁻⁶ 11; α (O)=3.87×10 ⁻⁷ 5
									E _γ : weighted average of 654.571 6 from 100 Rh $^{\epsilon}$ decay (20.8 h), 654.587 17 from (n, $^{\gamma}$) E=th, and 654.60 3 from (n, $^{\alpha}$). Other: 654.78 5 from ($^{\alpha}$,2n $^{\gamma}$). I _γ : unweighted average of 10.5 1 from 100 Rh $^{\epsilon}$ decay (20.8 h), 12.7
									5 from $(\alpha, 2n\gamma)$, 14.2 8 from (n, γ) E=th, and 10.9 3 from $(n, n'\gamma)$. Other: 116 31 in (n, γ) E=res is in disagreement. Mult., δ : ce data in 100 Rh ε decay (20.8 h) gives mult=M1,E2; mixing ratio is weighted average of +3.2 6 from $\gamma(\theta)$ in $(n, n'\gamma)$
		1341.548 21	100.0 6	539.5103	2+	M1+E2	+5.7 5		and $+2.1\ 3$ from $\gamma(\theta)$ in $(\alpha,2n\gamma)$. B(M1)(W.u.)=0.00023 $+9-8$; B(E2)(W.u.)= $3.9\ +13-12$ E _{γ} : unweighted average of 1341.515 9 from 100 Rh ε decay (20.8 h), 1341.601 18 from $(\alpha,2n\gamma)$, 1341.560 9 from (n,γ) E=th, and
									1341.515 22 from $(n,n'\gamma)$. I_{γ} : from (n,γ) E=th. Others: 100.0 10 from 100 Rh ε decay (20.8 h), 100.0 13 from $(\alpha,2n\gamma)$, and 100.0 8 from $(n,n'\gamma)$, 100 16 from (n,γ) E=res.
									Mult.: from ce data and $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h), $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(n,n'\gamma)$. δ : weighted average of +6.7 12 in $(n,n'\gamma)$ and +5.5 5 in $(\alpha,2n\gamma)$. Others: ce data give δ =4.4 + ∞ -21 and $\gamma\gamma(\theta)$ gives δ =6.8 +13-19; +0.37 10 also from $(n,n'\gamma)$ and +0.35 2 also from
2051.661	0+	689.491 5	14.2 19	1362.166	2+	[E2]		0.00219	$(\alpha,2n\gamma)$. B(E2)(W.u.)=16 +11-8 α(K)=0.001912 27; α(L)=0.0002276 32; α(M)=4.17×10 ⁻⁵ 6 α(N)=6.71×10 ⁻⁶ 9; α(O)=3.37×10 ⁻⁷ 5

$\gamma(^{100}\text{Ru})$ (continued)

							/(144)	(continued	-7
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.f	δ^f	α^{g}	Comments
2051.661	0+	1512.134 <i>16</i>	100.0 13	539.5103	2+	E2			E _γ : from ¹⁰⁰ Rh ε decay (20.8 h). Others: 689.2 <i>I</i> from ¹⁰⁰ Tc β^- decay (15.46 s), and 689.46 <i>9</i> from (n,n'γ). I _γ : unweighted average of 12.3 <i>4</i> from ¹⁰⁰ Tc β^- decay (15.46 s) and 16.0 <i>I2</i> from ¹⁰⁰ Rh ε decay (20.8 h). B(E2)(W.u.)=2.3 + <i>I5</i> - <i>I1</i> E _γ : weighted average of 1512.1 <i>I</i> from ¹⁰⁰ Tc β^- decay (15.46 s), 1512.140 <i>I6</i> from ¹⁰⁰ Rh ε decay (20.8 h), 1512.01 8 from (n,γ) E=th, and 1512.13 <i>4</i> from (n,n'γ). Other: 1512.10 22 from (α,2nγ). I _γ : from ¹⁰⁰ Rh ε decay (20.8 h). Others: 100 <i>I5</i> from ¹⁰⁰ Tc β^-
2062.651	4+	700.51 5	44.9 13	1362.166	2+	E2		0.0021	decay (15.46 s). Mult.: Q from $\gamma\gamma(\theta)$ in 100 Tc β^- decay (15.46 s) and 100 Rh ε decay (20.8 h); M2 ruled out by RUL. B(E2)(W.u.)=41 +27-21 $\alpha(K)=0.001835$ 26; $\alpha(L)=0.0002181$ 31; $\alpha(M)=4.00\times10^{-5}$ 6 $\alpha(N)=6.43\times10^{-6}$ 9; $\alpha(O)=3.24\times10^{-7}$ 5 E $_{\gamma}$: weighted average of 700.52 6 from (n, γ) E=th and 700.51 5 from (n, $\gamma'\gamma$). Other: 700.7 6 from (α ,2n γ).
		836.181 <i>4</i>	95 6	1226.467	4+	M1+E2	+1.73 21	0.00136	I _y : weighted average of 47 3 from $(\alpha,2n\gamma)$, 44.5 8 from $(n,n'\gamma)$, 60 7 from (n,γ) E=th, and 88 24 from (n,γ) E=res. Other: 200 18 in 100 Rh ε decay (4.6 min) is in disagreement. Mult.: Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; M2 ruled out by RUL. B(M1)(W.u.)=0.007 +5-4; B(E2)(W.u.)=27 +18-14 $\alpha(K)$ =0.001194 17; $\alpha(L)$ =0.0001389 20; $\alpha(M)$ =2.54×10 ⁻⁵ 4 $\alpha(N)$ =4.11×10 ⁻⁶ 6; $\alpha(O)$ =2.132×10 ⁻⁷ 31 E _y : weighted average of 836.187 23 from $(\alpha,2n\gamma)$, 836.180 3 from (n,γ) E=th, and 836.24 3 from $(n,n'\gamma)$. I _y : unweighted average of 87.6 18 from $(\alpha,2n\gamma)$, 104 2 from (n,γ)
		1523.14 5	100.0 14	539.5103	2+	E2			E=th, 96 12 from E=res. Other: 188 18 in 100 Rh ε decay (4.6 min); 52.4 2 in (n,n'γ) are in disagreement. Mult.: D+Q from $\gamma(\theta)$ in (n,n'γ) and (α ,2nγ); M2 ruled out by RUL. δ: weighted average of +1.5 3 from $\gamma(\theta)$ in (n,n'γ) and +1.85 21 from $\gamma(\theta)$ from (α ,2nγ). B(E2)(W.u.)=1.9 +13-10 E _γ : unweighted average of 1523.199 24 from (α ,2nγ), 1523.07 3 from (n,γ) E=th, and 1523.08 6 from (n,n'γ). I _γ : from (n,n'γ). Others: 100 13 from 100 Rh ε decay (4.6 min), 100.0 15 from (α ,2nγ), 100 5 from (n,γ) E=th, 100 48 from (n,γ)
2075.675	6+	849.22 2	100	1226.467	4+	E2			E=res. Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$ and $(\alpha,2n\gamma)$; M2 ruled out by RUL. E_{γ} : unweighted average of 849.241 15 from $(\alpha,2n\gamma)$, and 849.188 7

$\gamma(^{100}\text{Ru})$ (continued)

E d D	$\tau \pi$	p. †	. +	Б	τπ	\mathbf{x}_{t}	o o	
$E_i(level)$	$\frac{\mathbf{J}_{i}^{\pi}}{}$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	$\frac{\mathbf{J}_f^{\pi}}{f}$	Mult. ^f	<u>α^g</u>	Comments from (n,γ) E=th, and 849.241 15 from $(n,n'\gamma)$. Others: 849.9 1 from $(^{36}S,\alpha 2n\gamma)$, 849.9 3 from $(\alpha,4n\gamma)$.
		6:						Mult.: from $\gamma(DCO)$ and $\gamma(\text{lin pol})$ in $(^{36}S, \alpha 2n\gamma)$, ce data and $\gamma(\theta)$ in $(\alpha, 4n\gamma)$, $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, $\gamma(DCO)$ in $(^{34}S, 2\alpha 2n\gamma)$.
2099.103	2+	234.0 ^{@i} 5	0.19 [@] 7	1865.110	2+			
		358.080‡ 9	3.9 [‡] 4	1741.011	0+	[E2]	0.015	B(E2)(W.u.)=2.7×10 ² +6-5 α (K)=0.01295 18; α (L)=0.001677 23; α (M)=0.000309 4 α (N)=4.89×10 ⁻⁵ 7; α (O)=2.204×10 ⁻⁶ 31
		736.99 4	13.17 <i>13</i>	1362.166	2+	(M1,E2)		E _γ : weighted average of 736.966 20 from 100 Rh ε decay (20.8 h), 736.93 18 from (α ,2n γ), 737.20 13 from (n, γ) E=th, and 737.15 6 from (n,n' γ).
								I_{γ} : weighted average of 13.16 <i>13</i> from ¹⁰⁰ Rh ε decay (20.8 h), 13.2 7 from (n,n' γ), and 17 3 from (n, γ) E=th. Others: 57 9 in (α ,2n γ); 89 20 in (n, γ) E=res are in disagreement.
		872.67 5	2.3 6	1226.467	4+	[E2]	0.00121	Mult.: from ce data in 100 Rh ε decay (20.8 h). B(E2)(W.u.)=1.9 +6-5
								$\alpha(K)$ =0.001063 <i>15</i> ; $\alpha(L)$ =0.0001241 <i>17</i> ; $\alpha(M)$ =2.274×10 ⁻⁵ <i>32</i> $\alpha(N)$ =3.67×10 ⁻⁶ <i>5</i> ; $\alpha(O)$ =1.888×10 ⁻⁷ <i>26</i>
								E_{γ} : weighted average of 872.62 5 from ¹⁰⁰ Rh ε decay (20.8 h), 872.71 5 from (n,γ) E=th, and 872.67 16 from (n,n'γ).
		968.83 <i>3</i>	4.0 8	1130.305	0^{+}	[E2]		I _{γ} : unweighted average of 2.10 24 from ¹⁰⁰ Rh ε decay (20.8 h), 3.6 3 from (n, γ) E=th, and 1.59 25 from (n,n' γ). B(E2)(W.u.)=1.9 5
		908.83 3	4.0 0	1130.303	U	[EZ]		E _γ : weighted average of 968.85 3 from ¹⁰⁰ Rh ε decay (20.8 h), 968.80 5 from (n,γ) E=th, and 968.68 10 from (n,n'γ). Other: 969.2 5 from (α,2nγ).
								I _{γ} : unweighted average of 3.95 24 from 100 Rh ε decay (20.8 h), 6.4 4 from (n, γ) E=th, and 3.18 25 from (n,n' γ). Other: 22 13 in (α ,2n γ) is in severe disagreement.
		1559.54 <i>3</i>	100.0 9	539.5103	2+	M1		B(M1)(W.u.)=0.0117 +21-18
								E _γ : weighted average of 1558.9 3 from 100 Tc β^- decay (15.46 s), 1559.554 21 from 100 Rh ε decay (20.8 h), 1560.1 6 from (α ,2n γ), 1559.37 6 from (n, γ) E=th, and 1559.56 3 from (n,n' γ).
								I _γ : from (n,n'γ). Others: 100.0 10 from 100 Rh ε decay (20.8 h), 100 9 from 100 Tc β^- decay (15.46 s), 100 13 from (α ,2n γ), 100 12 from (n, γ) E=th, and 100 23 from (n, γ) E=res.
		2000 14 7	4.0.4	0.0	0+	FF 21		Mult.: from ce data in 100 Rh ε decay (20.8 h).
		2099.14 7	4.0 4	0.0	0+	[E2]		B(E2)(W.u.)=0.040 +9-7 E _γ : weighted average of 2099.16 7 from 100 Rh ε decay (20.8 h), 2099.4 5
								from (n,γ) E=th, and 2099.03 15 from $(n,n'\gamma)$. I_{γ} : weighted average of 3.3 4 from 100 Rh ε decay (20.8 h), 10 4 from (n,γ)
								E=th, and 4.28 25 from $(n,n'\gamma)$.

15

γ (100Ru) (continued)

l							<u>y</u>	(Ku) (CC	ontinued)	
	$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.f	δ^f	$\alpha^{m{g}}$	Comments
	2166.879	3-	301.769 3	12.67 24	1865.110	2+	(E1(+M2))	+0.04 3	0.00620 23	B(E1)(W.u.)=3.5×10 ⁻⁵ 10; B(M2)(W.u.)=2.8 +63-22 α (K)=0.00544 20; α (L)=0.000626 26; α (M)=0.000114 5 α (N)=1.84×10 ⁻⁵ 8; α (O)=9.4×10 ⁻⁷ 4 E _γ : weighted average of 301.771 8 from ¹⁰⁰ Rh ε decay (20.8 h), 301.769 1 from (n,γ) E=th. Others: 301.63 3 from (α ,2nγ), 301.82 3 from (n,n'γ). I _γ : weighted average of 12.7 9 from ¹⁰⁰ Rh ε decay (20.8 h), 13.5 12 from (α ,2nγ), and 12.63 24 from (n,n'γ). Other: 21.8 4 in (n,γ) E=th is in disagreement.
										Mult.: D(+Q) from $\gamma(\theta)$ in $(n,n'\gamma)$ and $(\alpha,2n\gamma)$; polarity from level-parity change. δ : weighted average of +0.04 4 from $\gamma(\theta)$ in $(n,n'\gamma)$ and +0.03 6 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
			804.85 12	2.2 13	1362.166	2+	[E1]			B(E1)(W.u.)= 3.2×10^{-7} +22–17 E _{\gamma} : unweighted average of 804.73 8 from 100 Rh ε decay (20.8 h) and 804.96 7 from (n,\gamma) E=th. I _{\gamma} : unweighted average of 0.93 9 from 100 Rh ε decay (20.8 h) and 3.5 4 from (n,\gamma) E=th.
			940.75 [‡] <i>d</i> 8	2.2 [‡] 4	1226.467	4+	[E1]			$B(E1)(W.u.)=2.0\times10^{-7}+7-6$
			1627.36 <i>3</i>	100.0 5	539.5103	2+	E1			$B(E1)(W.u.)=1.7\times10^{-6} 5$
			2166.81 4	5.9 7	0.0	0+	(E3)			E _γ : weighted average of 1627.340 11 from 100 Rh ε decay (20.8 h), 1627.462 22 from (α,2nγ), 1627.35 4 from (n,γ) E=th, 1627.34 4 from (n,n'γ), and 1626.4 5 from Coulomb excitation. I _γ : from 100 Rh ε decay (20.8 h). Others: 100.0 15 from (α,2nγ), 100.0 7 from (n,γ) E=th, and 100.0 10 from (n,n'γ). Mult.: from ce data and $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h). δ (M2/E1)=-0.008 24 in (n,n'γ), +0.02 3 in (α,2nγ). B(E3)(W.u.)=13 4 E _γ : weighted average of 2166.80 3 from 100 Rh ε decay (20.8 h), 2166.65 16 from (α,2nγ), 2166.94 7 from (n,γ) E=th,
	2240.804	2+	375.686 8	3.1 15	1865.110	2+				and 2166.61 21 from $(n,n'\gamma)$. I_{γ} : unweighted average of 4.98 25 from 100 Rh ε decay (20.8 h), 7.3 8 from $(\alpha,2n\gamma)$, and 5.4 4 from $(n,n'\gamma)$. Other: 10.9 13 from (n,γ) E=th, is in severe disagreement. Mult.: (O) from $\gamma(\theta)$ in $(n,n'\gamma)$; polarity from level-parity change. E_{γ} : from (n,γ) E=th. Other: 375.73 9 from $(n,n'\gamma)$. I_{γ} : unweighted average of 4.6 3 from (n,γ) E=th and 1.6 3 from $(n,n'\gamma)$.
			499.8 ⁱ	≈50	1741.011	0_{+}	[E2]		0.00535	B(E2)(W.u.)=2.1 10
П										

$\gamma (^{100}\text{Ru})$ (continued)

					/(10	u) (continue	<u>a)</u>	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f \mathbf{J}'	Mult. f	δ^f	α^{g}	Comments
								$\alpha(K)$ =0.00465 7; $\alpha(L)$ =0.000574 8; $\alpha(M)$ =0.0001054 15 $\alpha(N)$ =1.684×10 ⁻⁵ 24; $\alpha(O)$ =8.09×10 ⁻⁷ 11 $\alpha(O)$ =1.00 Tc $\alpha(O)$ =
2240.804	2+	878.55 [‡] 9	2.4 [‡] 3	1362.166 2	+			,
		1013.69 ^{‡c} 7	25 [‡] 3	1226.467 4	+ [E2]			B(E2)(W.u.)=0.030 +6-5
		1110.66 ^{@i} 11	8.3 [@] 21	1130.305 0	+ [E2]			B(E2)(W.u.)=0.0064 +19-18 Placement is questioned (by evaluators) since with reported intensity of $\approx 8\%$ in 100 Rh ε decay, this γ should have been seen in (n,γ) E=th.
		1701.292 <i>21</i>	100.0 <i>3</i>	539.5103 2	$^{+}$ (M1)			$B(M1)(W.u.)=2.84\times10^{-5} +46-39$
								E _γ : weighted average of 1701.0 <i>10</i> from 100 Tc β^- decay (15.46 s), 1701.310 <i>18</i> from 100 Rh ε decay (20.8 h), 1701.30 <i>15</i> from (α ,2n _γ), 1701.14 6 from (n, γ) E=th, and 1701.28 <i>3</i> from (n,n' γ).
								I _γ : from (n,n'γ). Others: 100.0 <i>16</i> from ¹⁰⁰ Rh ε decay (20.8 h), 100 <i>12</i> from (n,γ) E=th. Mult.: D from $\gamma(\theta)$ in (α ,2nγ), $\delta(Q/D)$ =-0.014 <i>50</i> from $\gamma(\theta)$ in (n,n'γ), $\delta(Q/D)$ =0.12 <i>40</i> from $\gamma(\theta)$ in ¹⁰⁰ Rh
		a :						ε decay (20.8 h); polarity from no level-parity change.
		2240.1 [@] <i>i</i> 5	0.7 6	0.0				$B(E2)(W.u.)=1.6\times10^{-5} +16-9$
2313.5	$(3^-,4^+)$	951.5 [#] 5	24 [#] 14	1362.166 2				
		1087.1# 5	33# 14	1226.467 4				
		1773.8# 5	100# 14	539.5103 2				
2324.6	$(3^- \text{ to } 6^+)$	262.3# 5	100# 16	2062.651 4				
		1097.8# 5	24# 8	1226.467 4				
2351.240	4+	470.188 [‡] <i>17</i>	2.31 [‡] 23	1881.043 3				
		486.121 [‡] 5	7.5 [‡] 4	1865.110 2	+ [E2]		0.0058	B(E2)(W.u.)=77 +32-29 α (K)=0.00505 7; α (L)=0.000624 9; α (M)=0.0001147 16 α (N)=1.832×10 ⁻⁵ 26; α (O)=8.77×10 ⁻⁷ 12
		1124.770 8	100.0 18	1226.467 4	⁺ M1+E2	-0.36 5		B(M1)(W.u.)=0.019 7; B(E2)(W.u.)=1.8 +9-8 E _{γ} : weighted average of 1124.84 3 from (α ,2n γ), 1124.768 5 from (n, γ) E=th, and 1124.77 3 from (n, $\eta'\gamma$).
		1811.63 8	64.5 22	539.5103 2	+ E2			I _{γ} : from (n,n' γ). Others: 100 3 from (α ,2n γ), 100 5 from (n, γ) E=th, and 100 30 from (n, γ) E=res. Mult., δ : D+Q from $\gamma(\theta)$ in (n,n' γ); M2 ruled out by RUL. B(E2)(W.u.)=0.9 4
								E _{γ} : weighted average of 1811.79 8 from $(\alpha, 2n\gamma)$, 1811.53 6 from (n,γ) E=th, and 1811.66 8 from $(n,n'\gamma)$. I _{γ} : weighted average of 62 3 from $(\alpha, 2n\gamma)$, 52 6 from (n,γ) E=th, 81 25 from (n,γ) E=res, and 66.4 18 from

17

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.f	α^g	Comments
2366.588	4+	485.547 [‡] <i>15</i> 1139.91 ^e 6	3.5 [‡] 5 14.3 24	1881.043 1226.467	3 ⁺ 4 ⁺			$(n,n'\gamma)$. Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; M2 ruled out by RUL. E _{γ} : weighted average of 1139.8 7 from $(\alpha,2n\gamma)$, 1139.96 7 from (n,γ) E=th, and 1139.88 6 from $(n,n'\gamma)$. level-energy difference=1140.12.
		1827.13 4	100.0 7	539.5103	2+	E2		I _γ : unweighted average of 15.0 <i>13</i> from 100 Rh ε decay (4.6 min), 8 7 from (α ,2n γ), 14.4 <i>18</i> from (n, γ) E=th, and 19.8 7 from (n,n' γ). B(E2)(W.u.)=1.1 +6-5 E _γ : weighted average of 1827.13 5 from (α ,2n γ), 1827.16 4 from (n, γ) E=th, and 1827.04 6 from (n,n' γ).
2387.22	0+	288.81 ^{‡i} 10	360 [‡] 60	2099.103	2+	[E2]	0.0305	I _γ : from (n,n'γ). Others: 100.0 25 from (α,2nγ), 100 8 from ¹⁰⁰ Rh ε decay (4.6 min) and 100 8 from (n,γ) E=th. Mult.: Q from $\gamma(\theta)$ in (α,2nγ) and (n,n'γ); M2 ruled out by RUL. $\alpha(K)$ =0.0262 4; $\alpha(L)$ =0.00354 5; $\alpha(M)$ =0.000653 9 $\alpha(N)$ =0.0001028 14; $\alpha(O)$ =4.38×10 ⁻⁶ 6
		1025.13 17	100 2	1362.166	2+	[E2]		E _γ : level-energy difference=288.28. E _γ : unweighted average of 1024.9 <i>I</i> from ¹⁰⁰ Tc β^- decay (15.46 s), 1024.98 <i>3</i> from ¹⁰⁰ Rh ε decay (20.8 h), 1025.62 <i>9</i> from (n, γ) E=th, and 1025.00 <i>5</i> from (n,n' γ).
		1847.68 7	78 4	539.5103	2+	[E2]		I _γ : from (n,n'γ). Other: 100 22 from (n,γ) E=th, 100 4 from ¹⁰⁰ Rh ε decay (20.8 h), 100 4 from ¹⁰⁰ Tc β^- decay (15.46). E _γ : weighted average of 1847.6 2 from ¹⁰⁰ Tc β^- decay (15.46 s), 1847.57 8 from ¹⁰⁰ Rh ε decay (20.8 h), 1847.76 7 from (n,γ) E=th, and 1847.73 11 from (n,n'γ).
2413.86	(4 ⁺)	1051.68 <i>14</i>	14.1 23	1362.166	2+	[E2]		 I_γ: unweighted average of 76 9 from ¹⁰⁰Tc β⁻ decay (15.46 s), 102 8 from ¹⁰⁰Rh ε decay (20.8 h), and 76.7 20 from (n,n'γ). Other: 200 22 in (n,γ) E=th is in disagreement. B(E2)(W.u.)=23 5 E_γ: unweighted average of 1051.51 6 from (α,2nγ), 1051.57 7 from (n,γ) E=th, and 1051.96 7 from (n,n'γ).
		1874.38 <i>17</i>	100.0 5	539.5103	2+	(E2)		I _{γ} : unweighted average of 9.5 10 from (n,γ) E=th and 15.2 5 from $(n,n'\gamma)$. Other: 312 19 from $(\alpha,2n\gamma)$ is in severe disagreement. B(E2)(W.u.)=8.9 7 E _{γ} : unweighted average of 1874.70 23 from $(\alpha,2n\gamma)$, 1874.15 5 from (n,γ) E=th, and 1874.29 6 from $(n,n'\gamma)$.
2469.389	2-	228.581 [@] 8	1.07 [@] I	2240.804	2+	E1	0.01306	I _γ : from (n,n'γ). Others: 100 <i>13</i> from (α,2nγ), 100 <i>15</i> from (n,γ) E=th. Mult.: (Q), ΔJ =2 from $\gamma(\theta)$ in (n,n'γ); ΔJ =0 is also possible; M2 ruled out by RUL. $\alpha(K) = 0.01146 \ 16; \ \alpha(L) = 0.001322 \ 19; \ \alpha(M) = 0.000241 \ 4$ $\alpha(N) = 3.87 \times 10^{-5} \ 6; \ \alpha(O) = 1.94 \times 10^{-6} \ 3$ B(E1)(W.u.)=0.00027 + <i>16</i> - <i>13</i> Mult.: from $\alpha(K)$ exp in ¹⁰⁰ Rh ε decay (20.8 h).

γ (100Ru) (continued)

						, ,		•
E_i (level)	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.f	δ^f	$\alpha^{\mathbf{g}}$	Comments
2469.389	302.512 7	5.34 11	2166.879	3-	M1+E2	1.8 +12-5	0.0237 14	$\alpha(K)=0.0205 \ 12; \ \alpha(L)=0.00268 \ 19; \ \alpha(M)=0.00049 \ 4$
								$\alpha(N)=7.8\times10^{-5} \ 6; \ \alpha(O)=3.49\times10^{-6} \ 17$
								$B(M1)(W.u.)=0.010 +8-7$; $B(E2)(W.u.)=3.2\times10^2 +19-16$
								E_{γ} : weighted average of 302.507 6 from ¹⁰⁰ Rh ε decay (20.8 h) and 302.522 8 from (n, γ) E=th.
								I_{γ} : from ¹⁰⁰ Rh ε decay (20.8 h). Other: 8.1 6 from (n, γ) E=th is in disagreement.
								Mult., δ : from ce data in ¹⁰⁰ Rh ε decay (20.8 h).
	370.280 5	5.54 6	2099.103	2+	E1		0.00355	$\alpha(K)=0.00312$ 4; $\alpha(L)=0.000357$ 5; $\alpha(M)=6.52\times10^{-5}$ 9
								$\alpha(N)=1.051\times10^{-5} \ 15; \ \alpha(O)=5.40\times10^{-7} \ 8$
								B(E1)(W.u.)=0.00033 +20-16
								E_{γ} : weighted average of 370.275 7 from ¹⁰⁰ Rh ε decay (20.8 h) and 370.283 5 from (n, γ) E=th.
								I_{γ} : from ¹⁰⁰ Rh ε decay (20.8 h). Other: 10.4 11 from (n, γ) E=th is in disagreement.
								Mult.: from ce data in 100 Rh ε decay (20.8 h) and RUL.
	588.343 6	36.9 <i>4</i>	1881.043	3+	E1		0.00115	B(E1)(W.u.)=0.00055 +32-26
								$\alpha(K)=0.001010 \ 14; \ \alpha(L)=0.0001145 \ 16; \ \alpha(M)=2.092\times10^{-5} \ 29$
								$\alpha(N)=3.38\times10^{-6} 5$; $\alpha(O)=1.771\times10^{-7} 25$
								E _γ : weighted average of 588.343 5 from ¹⁰⁰ Rh ε decay (20.8 h), 588.30 10 from (α ,2n γ), 588.47 8 from (n, γ) E=th, and 588.25 8 from (n,n' γ).
								I _γ : weighted average of 36.9 4 from 100 Rh ε decay (20.8 h), and 36.6 9 from (n,n'γ). Others: 68 11 from (α ,2nγ), 71 9 from (n,γ) E=th are in disagreement.
								Mult.: from ce data and $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h), $\gamma(\theta)$ in (n,n' γ), and RUL. $\delta(Q/D)$ =+0.14 16 from (n,n' γ) would give an unreasonably large B(M2)(W.u.) exceeding RUL.
	604.33 [@] 5	1.70 [@] 8	1865.110	2+	E1		0.00108	B(E1)(W.u.)= $2.3\times10^{-5} +13-11$
	004.33	1.70 0	1003.110	2	LI		0.00100	$\alpha(K)=0.000950 \ 13; \ \alpha(L)=0.0001076 \ 15; \ \alpha(M)=1.967\times10^{-5} \ 28$ $\alpha(N)=3.18\times10^{-6} \ 4; \ \alpha(O)=1.667\times10^{-7} \ 23$
								Mult.: from ce data in 100 Rh ε decay (20.8 h).
	1107.222 14	100.0 10	1362,166	2+	E1			B(E1)(W.u.)=0.00022 +13-11
	1107.222 17	100.0 10	1302.100	2	E1			E_{γ} : weighted average of 1107.223 8 from ¹⁰⁰ Rh ε decay (20.8 h), 1107.10 12 from (α,2nγ), 1107.07 6 from (n,γ) E=th, and 1107.29 5
								from $(n,n'\gamma)$. I_{γ} : from ¹⁰⁰ Rh ε decay (20.8 h). Others: 100.0 <i>16</i> from $(n,n'\gamma)$, 100
								11 from $(\alpha,2n\gamma)$ and 100 12 from (n,γ) E=th.
								Mult.: from ce data and $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h), $\gamma(\theta)$ in (n,n' γ), and RUL. $\delta(Q/D)$ =-0.10 13 from (n,n' γ) would give an unreasonably large B(M2)(W.u.) exceeding RUL.
	1020 904 20	95 2 9	520 5102	2+	E1			unreasonably large $B(M2)(W.u.)$ exceeding RUL. $B(E1)(W.u.)=3.6\times10^{-5} +2I-17$
	1929.804 20	85.2 8	539.5103) Z'	E1			$D(E1)(W.u.) = 3.0 \times 10^{-5} + 21 = 17$

19

$\gamma(^{100}\text{Ru})$ (continued)

E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.f	δ^f	α^{g}	Comments
									E _γ : weighted average of 1929.811 20 from 100 Rh ε decay (20.8 h), 1929.74 6 from (n,γ) E=th, and 1929.80 7 from (n,n'γ).
									I_{γ} : weighted average of 85.6 8 from ¹⁰⁰ Rh ε decay (20.8 h) and 84.1 <i>16</i> from $(n,n'\gamma)$. Other: 111 <i>13</i> from (n,γ) E=th.
									Mult.: from ce data and $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h), $\gamma(\theta)$ in $(n,n'\gamma)$, and RUL. $\delta(Q/D)=-0.8$ 9 from $(n,n'\gamma)$ would give an unreasonably large B(M2)(W.u.) exceeding RUL.
2469.389	2-	2469.328 [@] 22	1.08 [@] 8	0.0	0+	M2			B(M2)(W.u.)=0.16 + 10-8
									Mult.: from ce data in 100 Rh ε decay (20.8 h).
2493.06	$(3,4,5^+)$	430.42 9	45.5 18	2062.651	4 ⁺				E _{γ} : unweighted average of 430.34 4 from $(\alpha, 2n\gamma)$, 430.61 7 from (n, γ) E=th, and 430.32 6 from $(n, n'\gamma)$. I _{γ} : from $(n, n'\gamma)$. Other: 100 13 in (n, γ) E=th is in disagreement
		612.02 5	18.9 <i>18</i>	1881.043	3 ⁺				E _{γ} : weighted average of 612.03 δ from (n,γ) E=th, and 612.01 δ from $(n,n'\gamma)$. Other: 612.055 δ from $(n,2n\gamma)$ for a doublet. I _{γ} : from $(n,n'\gamma)$. Others: 37 δ in (n,γ) E=th; doublet in $(\alpha,2n\gamma)$.
		627.83 ^{‡i} 8	56 [‡] 7	1865.110	2+				Placement is considered suspect, since with the reported intensity in (n,γ) E=th, it should have been seen in other studies.
		1266.46 <i>14</i>	100.0 20	1226.467	4+	D(+Q)	+0.4 6		E _{γ} : unweighted average of 1266.52 22 from (α ,2n γ), 1266.20 8 from (n, γ) E=th, and 1266.66 10 from (n,n' γ). I _{γ} : from (n,n' γ). Other: 100 13 from (n, γ) E=th. Mult., δ : from $\gamma(\theta)$ in (n,n' γ).
2512.411	(4) ⁺	345.518 [‡] <i>12</i>	5.0 [‡] 8	2166.879	3-	[E1]		0.00425	$\alpha(K)$ =0.00374 5; $\alpha(L)$ =0.000428 6; $\alpha(M)$ =7.82×10 ⁻⁵ 11 $\alpha(N)$ =1.259×10 ⁻⁵ 18; $\alpha(O)$ =6.45×10 ⁻⁷ 9 B(E1)(W.u.)=0.00047 +28-24
		413.42 7	16.6 <i>13</i>	2099.103	2+	[E2]		0.0095	B(E2)(W.u.)=3.5×10 ² +2 <i>I</i> -18 α (K)=0.00823 <i>I</i> 2; α (L)=0.001042 <i>I</i> 5; α (M)=0.0001916 27
									$\alpha(N)=0.00825 12; \ \alpha(L)=0.001042 13; \ \alpha(M)=0.0001916 27$ $\alpha(N)=3.05\times10^{-5} 4; \ \alpha(O)=1.416\times10^{-6} 20$
									E _{γ} : weighted average of 413.43 7 from (n, γ) E=th and 413.28 25 from (n, $n'\gamma$).
									I _{γ} : weighted average of 24 4 from (n, γ) E=th and 16.4 7 from (n,n' γ).
		450.04 [‡] 19	4.7‡ 12	2062.651	4+				
		631.382 20	100.0 <i>17</i>	1881.043	3 ⁺	M1+E2	+0.41 5	0.00270	B(M1)(W.u.)=0.09 +6-5; B(E2)(W.u.)=36 +24-19 α (K)=0.002365 33; α (L)=0.000273 4; α (M)=5.01×10 ⁻⁵ 7 α (N)=8.10×10 ⁻⁶ 11; α (O)=4.29×10 ⁻⁷ 6
									E _γ : weighted average of 631.35 <i>3</i> from ¹⁰⁰ Rh ε decay (20.8 h), 631.41 5 from (α ,2n γ), 631.393 20 from (n, γ) E=th, and 631.38 <i>3</i> from (n,n' γ).
									I_{γ} : from (n,n' γ). Others: 100 3 from ¹⁰⁰ Rh ε decay (20.8 h),

20

$E_i(level)$	J_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	$\mathrm{J}_{_f}^\pi$	Mult. f	α^{g}	Comments
E _l (level)	<u>'i</u>				<u>f</u>	With.		100 6 from (n,γ) E=th, and 100 14 from $(\alpha,2n\gamma)$.
2512.411	(4) ⁺	1150.44 10	10 4	1362.166	2+	[E2]		Mult., δ : D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; M2 ruled out by RUL. B(E2)(W.u.)=1.3 +9-8 E $_{\gamma}$: weighted average of 1150.6 3 from (n,γ) E=th and 1150.42 10 from $(n,n'\gamma)$. I $_{\gamma}$: unweighted average of 5.8 12 from (n,γ) E=th and 13.4 11 from $(n,n'\gamma)$.
		1285.82 [‡] <i>15</i> 1972.91 <i>6</i>	12.4 [‡] 19 49 6	1226.467 539.5103	4 ⁺ 2 ⁺	(E2)		B(E2)(W.u.)=0.41 +25-20 E _{γ} : weighted average of 1972.91 6 from ¹⁰⁰ Rh ε decay (20.8 h), 1972.83 25 from (α ,2n γ), 1972.96 7 from (n, γ) E=th, and 1972.85 9 from (n,n' γ). I _{γ} : unweighted average of 63 4 from ¹⁰⁰ Rh ε decay (20.8 h), 41 10 from
								$(\alpha,2n\gamma)$, 36 5 from (n,γ) E=th, and 54.3 13 from $(n,n'\gamma)$. Mult.: (Q), $\Delta J=(2)$ from $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ is also possible; M2 ruled out by RUL.
2516.827	1-	349.960 [@] 16	6.71 [@] 23	2166.879	3-	[E2]	0.0161	$\alpha(K)$ =0.01394 20; $\alpha(L)$ =0.001813 25; $\alpha(M)$ =0.000334 5 $\alpha(N)$ =5.29×10 ⁻⁵ 7; $\alpha(O)$ =2.368×10 ⁻⁶ 33 B(E2)(W.u.)=7.3×10 ² +25-22 B(E2)(W.u.)=730 exceeds RUL=300; this γ could be questionable.
		465.148 <i>17</i>	27 3	2051.661	0+	[E1]	0.0020	$\alpha(K)$ =0.001759 25; $\alpha(L)$ =0.0002003 28; $\alpha(M)$ =3.66×10 ⁻⁵ 5 $\alpha(N)$ =5.91×10 ⁻⁶ 8; $\alpha(O)$ =3.07×10 ⁻⁷ 4 B(E1)(W.u.)=0.0024 +8-7 E _{γ} : weighted average of 465.15 3 from ¹⁰⁰ Rh ε decay (20.8 h), 465.148 17 from (n, γ) E=th, and 465.11 15 from (n,n' γ). I _{γ} : unweighted average of 22.7 2 from ¹⁰⁰ Rh ε decay (20.8 h), 25.7 19 from
		651.708 <i>10</i>	100.0 10	1865.110	2+	E1		(n,γ) E=th, 33 3 from $(n,n'\gamma)$ is in disagreement. B(E1)(W.u.)=0.0032 +11-9 E _{γ} : weighted average of 651.707 6 from 100 Rh ε decay (20.8 h), 651.88 7 from (n,γ) E=th, and 651.72 4 from $(n,n'\gamma)$. I _{γ} : from 100 Rh ε decay (20.8 h). Others: 100 3 from $(n,n'\gamma)$, 100 14 from (n,γ) E=th.
		775.832 11	20 6	1741.011	0+	[E1]		Mult.: from ce data in 100 Rh ε decay (20.8 h) and RUL. B(E1)(W.u.)=0.00038 <i>16</i> E _{γ} : weighted average of 775.831 <i>11</i> from 100 Rh ε decay (20.8 h), 775.97 <i>23</i> from (n, γ) E=th, and 775.95 <i>13</i> from (n,n' γ). I _{γ} : unweighted average of 21.0 <i>3</i> from 100 Rh ε decay (20.8 h), 10 <i>5</i> from (n, γ) E=th, and 29.0 <i>19</i> from (n,n' γ).
		1154.50 <i>15</i>	52.3 5	1362.166	2+	(E1)		B(E1)(W.u.)= 3.0×10^{-4} +10-9 E _{γ} : unweighted average of 1154.680 10 from 100 Rh ε decay (20.8 h), 1154.21 13 from (n, γ) E=th, and 1154.60 8 from (n,n' γ). I _{γ} : weighted average of 52.4 5 from 100 Rh ε decay (20.8 h), 52 10 from (n, γ) E=th, and 49 3 from (n,n' γ). Mult.: D from $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h); polarity from level-parity change.

$\gamma(^{100}$ Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. f	α^{g}	Comments
2516.827	1-	1386.51 6	78 <i>16</i>	1130.305	0+	(E1)		B(E1)(W.u.)=0.00026 9 E _{γ} : weighted average of 1386.521 <i>10</i> from ¹⁰⁰ Rh ε decay (20.8 h) and
								1386.43 6 from $(n,n'\gamma)$. Other: 1385.86 8 from (n,γ) E=th.
								I_{γ} : unweighted average of 86.0 7 from ¹⁰⁰ Rh ε decay (20.8 h) and 100 3 from (n,n' γ), 48 5 from (n, γ) E=th.
								Mult.: D from $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h); polarity from level-parity change.
		1977.37 <i>16</i>	51 9	539.5103	2+	(E1)		B(E1)(W.u.)= $5.8 \times 10^{-5} + 20 - 19$
						(==)		E _γ : unweighted average of 1977.24 4 from 100 Rh ε decay (20.8 h), 1977.69 13 from (n,γ) E=th, and 1977.18 13 from (n,n'γ).
								I _{γ} : unweighted average of 57.5 11 from ¹⁰⁰ Rh ε decay (20.8 h), 33 5 from (n, γ) E=th, and 61.3 22 from (n,n' γ).
								Mult.: $\delta(Q/D)=0.11~15$ from $\gamma\gamma(\theta)$ in 100 Rh ε decay (20.8 h); polarity from level-parity change.
		2516.86 [@] 5	5.08 [@] 16	0.0	0^{+}	[E1]	0.0010	$\alpha(K)=7.24\times10^{-5}\ 10;\ \alpha(L)=8.00\times10^{-6}\ 11;\ \alpha(M)=1.459\times10^{-6}\ 20$
								$\alpha(N)=2.368\times10^{-7}$ 33; $\alpha(O)=1.281\times10^{-8}$ 18; $\alpha(IPF)=0.000953$ 13
		<i>a</i>	<i>a</i>					$B(E1)(W.u.)=2.8\times10^{-6} +10-8$
527.247	5-	175.84 ^a 6	2.08 ^a 18	2351.240	4+	[E1]	0.0274	$\alpha(K)=0.02403 \ 34; \ \alpha(L)=0.00279 \ 4; \ \alpha(M)=0.000509 \ 7$
								$\alpha(N)=8.13\times10^{-5} 11; \ \alpha(O)=3.99\times10^{-6} 6$
		260 271 0	606	2166 970	2-	EO	0.01460	B(E1)(W.u.)=0.0016 +17-10
		360.371 9	6.0 6	2166.879	3-	E2	0.01468	$\alpha(K)$ =0.01268 18; $\alpha(L)$ =0.001642 23; $\alpha(M)$ =0.000302 5 $\alpha(N)$ =4.79×10 ⁻⁵ 7; $\alpha(O)$ =2.16×10 ⁻⁶ 3
								$a(N)=4.79\times10^{-7}$; $a(O)=2.10\times10^{-7}$ B(E2)(W.u.)=2.7×10 ² +29–16
								E_{γ} : weighted average of 360.331 23 from $(\alpha, 2n\gamma)$ and 360.373 5 from (n, γ)
								E=th.
								I_{γ} : unweighted average of 5.43 9 from $(\alpha,2n\gamma)$ and 6.6 4 from (n,γ) E=th. Mult.: Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; M2 ruled out by RUL.
		451.58 [‡] <i>3</i>	1.36 [‡] <i>12</i>	2075.675	6+	[E1]	0.00215	$\alpha(K)=0.001891\ 26;\ \alpha(L)=0.0002155\ 30;\ \alpha(M)=3.94\times10^{-5}\ 6$
								$\alpha(N)=6.35\times10^{-6} \ 9; \ \alpha(O)=3.30\times10^{-7} \ 5$
								$B(E1)(W.u.)=6\times10^{-5}+7-4$
		464.9 ^{‡i} 10	14 [‡] 7	2062.651	4 ⁺	[E1]	0.0020	$\alpha(K)=0.001761\ 26;\ \alpha(L)=0.0002006\ 30;\ \alpha(M)=3.67\times10^{-5}\ 5$
								$\alpha(N)=5.91\times10^{-6} \ 9; \ \alpha(O)=3.07\times10^{-7} \ 5$
								B(E1)(W.u.)=0.0006 +7-4
		1300.780 19	100.0 9	1226.467	4+	E1		B(E1)(W.u.)=0.00019 +20-11
								E _γ : weighted average of 1300.792 <i>12</i> from $(\alpha, 2n\gamma)$, 1300.764 <i>18</i> from (n, γ) E=th, and 1300.71 <i>4</i> from $(n, n'\gamma)$. Others: 1301.3 <i>3</i> from $(^{36}S, \alpha 2n\gamma)$ and 1301.6 <i>3</i> from $(\alpha, 4n\gamma)$.
								I_{γ} : from $(\alpha, 2n\gamma)$.
								Mult.: $\delta(Q/D)=+0.004$ 6 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, $+0.05$ 7 from $\gamma(\theta)$ in $(n,n'\gamma)$; $\delta(M2/E1)=-0.07$ 3 from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(\alpha,4n\gamma)$.
2536.194	3	295.49 [‡] <i>i</i> 8	32 [‡] 5	2240.804	2+			Placement is considered suspect (by evaluators) since with the reported intensity in (n,γ) E=th, it should have been seen in other studies.

								
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. f	δ^f	Comments
2536.194	3	655.156 [‡] <i>12</i>	8.9 [‡] 6	1881.043	3 ⁺			
		671.2 3	1.8 4	1865.110	2+			E_{γ} : weighted average of 671.3 6 from ¹⁰⁰ Rh ε decay (20.8 h) and 671.2 3 from (n, γ) E=th.
		ı	.					I_{γ} : weighted average of 1.8 4 from 100 Rh ε decay (20.8 h) and 2.2 11 from (n, γ) E=th.
		1173.99‡ 9	5.6 [‡] 11	1362.166	2+			100-
		1309.65 <i>14</i>	11.4 6	1226.467	4+			E _γ : weighted average of 1309.8 3 from 100 Rh ε decay (20.8 h), 1309.5 3 from (α ,2n γ), 1309.41 13 from (n, γ) E=th, and 1309.94 14 from (n,n' γ). I _γ : weighted average of 13.5 25 from 100 Rh ε decay (20.8 h), 10.0 11 from (n, γ) E=th, and 11.7 6 from (n,n' γ). Other: 42 8 in (α ,2n γ) is in disagreement.
		1996.62 3	100.0 6	539.5103	2+	D(+Q)	+0.02 3	E _γ : weighted average of 1996.59 <i>3</i> from 100 Rh ε decay (20.8 h), 1996.81 <i>13</i> from (α ,2nγ), 1996.69 <i>6</i> from (n,γ) E=th, and 1996.62 <i>8</i> from (n,n'γ). I _γ : from (n,n'γ). Others: 100.0 <i>16</i> from 100 Rh ε decay (20.8 h), 100 <i>8</i> from (α ,2nγ) and 100 <i>12</i> from (n,γ) E=th. Mult.,δ: from $\gamma(\theta)$ in (n,n'γ). Other: δ =-0.2 <i>3</i> from $\gamma(\theta)$ in (α ,2nγ).
2543.71	2+	662.68 17	11.0 22	1881.043	3+			E _{γ} : weighted average of 662.99 21 from ¹⁰⁰ Rh ε decay (20.8 h), 662.54 17 from (n, γ) E=th, and 662.56 25 from (n,n' γ). I _{γ} : weighted average of 12 3 from ¹⁰⁰ Rh ε decay (20.8 h), 6.6 3.4 from (n, γ) E=th, and 12.3 22 from (n,n' γ).
		678.62 3	65 3	1865.110	2+			E _γ : weighted average of 678.65 3 from 100 Rh ε decay (20.8 h), 678.54 14 from (α,2nγ), 678.60 7 from (n,γ) E=th, and 678.59 4 from (n,n'γ). I _γ : weighted average of 78 6 from 100 Rh ε decay (20.8 h), 71 12 from (α,2nγ), 55 7 from (n,γ) E=th, and 64.0 22 from (n,n'γ).
		1181.42 7	100.0 22	1362.166	2+	M1+E2	-0.12 9	B(M1)(W.u.)=0.011 +7-6; B(E2)(W.u.)=0.11 +26-9 E _γ : unweighted average of 1181.49 5 from 100 Rh ε decay (20.8 h), 1181.43 12 from (α ,2n γ), 1181.21 7 from (n , γ) E=th, and 1181.53 4 from (n , n' γ). I _γ : from (n , n' γ). Others: 100 6 from (α ,2n γ), 100 14 from (n , γ) E=th, 100 5 from 100 Rh ε decay (20.8 h). Mult.: D+Q from $\gamma(\theta)$ in (n , n' γ); M2 ruled out by RUL. δ: from $\gamma(\theta)$ in (n , n' γ), with +3.5 12 is possible.
		1413.19 ^{‡i} 7	46 [‡] 7	1130.305	0+			Placement is considered suspect (by evaluators) since with the reported intensity in (n,γ) E=th, it should have been seen in other studies.
		2004.31 9	48 5	539.5103	2+			E _γ : weighted average of 2004.30 <i>13</i> from ¹⁰⁰ Rh ε decay (20.8 h), 2004.01 <i>13</i> from (α ,2nγ), 2004.44 7 from (n,γ) E=th, and 2004.20 <i>12</i> from (n,n'γ). I _γ : unweighted average of 53 4 from ¹⁰⁰ Rh ε decay (20.8 h) and 42.6 <i>17</i> from (n,n'γ). Others: 147 <i>12</i> in (α ,2nγ) and 179 <i>23</i> in (n,γ) E=th are in disagreement.
		2543.58 9	38 7	0.0	0+			E _γ : weighted average of 2543.60 <i>9</i> from 100 Rh ε decay (20.8 h), 2543.5 <i>3</i> from (n,γ) E=th, and 2543.4 <i>3</i> from (n,n'γ). I _γ : weighted average of 49.4 <i>24</i> from 100 Rh ε decay (20.8 h), 36 7 from (n,γ) E=th, and 27.3 <i>17</i> from (n,n'γ).

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. f	δ^f	$\alpha^{\mathbf{g}}$	Comments
2569.912	(3)	329.058 [‡] e 12 403.042 24	1.44 [‡] 21 100.0 19	2240.804 2166.879	2 ⁺ 3 ⁻	(M1+E2)	+1.58 7	0.00958 15	E _γ : level-energy difference=329.096. $\alpha(K)$ =0.00832 $I2$; $\alpha(L)$ =0.001037 $I6$; $\alpha(M)$ =0.0001905 29 $\alpha(N)$ =3.04×10 ⁻⁵ 5; $\alpha(O)$ =1.452×10 ⁻⁶ $2I$ E _γ : weighted average of 403.07 II from ¹⁰⁰ Rh ε decay (20.8 h), 403.092 $I5$ from (α ,2nγ), 403.013 $I0$ from (α ,γ) E=th, and 403.14 A from (α ,γ). I _γ : from (α ,n'γ). Others: 100 A from (α ,γ) E=th, 100 A 0 from ¹⁰⁰ Rh α 0 decay (20.8 h), 100 α 1 from (α 0,n'γ) E=res. Mult.: D+Q from α 0 in (α 2,nγ) and (α 3,n'γ); polarity from no level-parity change. α 5: from (α 2,nγ). Other: +0.08 α 8 or +1.36 α 9 from (α ,n'γ).
		470.82 3	3.2 4	2099.103	2+				E_{γ} : weighted average of 470.98 <i>17</i> from ¹⁰⁰ Rh ε decay (20.8 h) and 470.82 <i>3</i> from (n, γ) E=th. I_{γ} : weighted average of 3.7 8 from ¹⁰⁰ Rh ε decay (20.8
		688.89 <i>3</i>	3.9 3	1881.043	3 ⁺				h) and 3.1 4 from (n,γ) E=th. E_{γ} : weighted average of 689.3 5 from $(\alpha,2n\gamma)$ and 688.89 3 from (n,γ) E=th. I_{γ} : from (n,γ) E=th.
		1207.68 6	61 13	1362.166	2+				E _{γ} : unweighted average of 1207.50 3 from ¹⁰⁰ Rh ε decay (20.8 h), 1207.70 5 from (α ,2n γ), 1207.74 7 from (n, γ) E=th, and 1207.78 6 from (n,n' γ). I _{γ} : unweighted average of 52 7 from ¹⁰⁰ Rh ε decay (20.8 h), 31 4 from (n, γ) E=th, 90 30 from (n, γ) E=res, and 70.4 21 from (n,n' γ).
		1343.47 3	56 4	1226.467	4+				E _{γ} : weighted average of 1343.44 5 from ¹⁰⁰ Rh ε decay (20.8 h), 1343.49 3 from (n, γ) E=th, and 1343.39 10 from (n,n' γ). I _{γ} : weighted average of 60 12 from ¹⁰⁰ Rh ε decay (20.8 h), 58 4 from (n, γ) E=th, and 51 6 from (n,n' γ).
		2030.55 8	10.6 14	539.5103	2+				E _{γ} : weighted average of 2030.56 20 from ¹⁰⁰ Rh ε decay (20.8 h), 2030.54 8 from (n, γ) E=th, and 2030.7 3 from (n,n' γ). I _{γ} : unweighted average of 11 3 from ¹⁰⁰ Rh ε decay (20.8
2576.872	5(+)	695.783 21	72 9	1881.043	3+	(E2)		0.00214	 h), 8.0 11 from (n,γ) E=th, and 12.9 14 from (n,n'γ). E_γ: from (n,γ) E=th. Other: 695.8 3 from (α,2nγ). I_γ: unweighted average of 63 3 from (α,2nγ) and 80 6 from (n,γ) E=th. Mult.: Q from γ(θ) in (n,γ) E=th, mostly likely E2.
		1350.431 20	100.0 21	1226.467	4+	D+Q			Fig. 1. Weighted average of 1350.40 3 from $(\alpha,2n\gamma)$, 1350.450 20 from (n,γ) E=th, and 1350.37 7 from $(n,n'\gamma)$.

						<u>-</u>			
E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.f	δ^f	α^g	Comments
2591.817	4-	240.549 [‡] <i>e</i> 8	3.5 [‡] 3	2351.240	4+	[E1]		0.0113	I_{γ} : from (α,2nγ). Other: 100 5 from (n,γ) E=th. Mult.,δ: $\delta(Q/D)$ =-3.4 2 or -0.12 4 from $\gamma(\theta)$ in (α,2nγ). $\alpha(K)$ =0.00994 $I4$; $\alpha(L)$ =0.001146 $I6$; $\alpha(M)$ =0.0002092 29
		424.874 ^e 18	42.7 24	2166.879	3-	(M1+E2)	+1.2 3	0.0080 3	$\alpha(N)=3.36\times10^{-5} 5$; $\alpha(O)=1.684\times10^{-6} 24$ B(E1)(W.u.)=0.0013 +11-7 B(M1)(W.u.)=0.08 +8-5; B(E2)(W.u.)=6×10 ² +6-4
									$\alpha(K)$ =0.00694 24; $\alpha(L)$ =0.00085 4; $\alpha(M)$ =0.000156 7 $\alpha(N)$ =2.50×10 ⁻⁵ 11; $\alpha(O)$ =1.223×10 ⁻⁶ 33 E _y : from (n, γ) E=th. Others: 424.83 21 from (α ,2n γ), and 424.88 17 from (n,n' γ). I _y : weighted average of 61 14 from (α ,2n γ), 54 6 from (n, γ)
		710.771 3	100.0 25	1881.043	3 ⁺	(E1(+M2))	+0.03 5		E=th, 85 23 from (n,γ) E=res, and 41.7 14 from $(n,n'\gamma)$. Mult., δ : (D+Q) from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; M2 ruled out by RUL. B(E1)(W.u.)=0.0014 +14-10 E _{γ} : from (n,γ) E=th. Others: 710.82 5 from $(\alpha,2n\gamma)$, and
									710.80 <i>3</i> from (n,n'γ). I _γ : from (n,n'γ). Others: 100 <i>5</i> from (α,2nγ), 100 <i>6</i> from (n,γ) E=th, 100 <i>12</i> from (n,γ) E=res. Mult.: D(+Q) from γ(θ) in (n,n'γ) and (α,2nγ); polarity from level scheme. δ: weighted average of +0.02 <i>5</i> from (n,n'γ) and +0.05 <i>8</i> from
		1229.46 ^{‡i} 12	3.1 [‡] 6	1362.166	2+	[M2]		0.00137	(α ,2n γ). α (K)=0.001199 17; α (L)=0.0001387 19; α (M)=2.55×10 ⁻⁵ 4 α (N)=4.13×10 ⁻⁶ 6; α (O)=2.209×10 ⁻⁷ 31; α (IPF)=2.165×10 ⁻⁶
									this γ is considered questionable by evaluators due to unreasonably large B(M2)(W.u.) of 26 +25-15.
		1365.415 ^c 12	81 6	1226.467	4+	(E1(+M2))	-0.05 12		B(E1)(W.u.)= 1.6×10^{-4} + $16-12$ Unusually large B(E1)(W.u.) casts some doubt on the level half-life.
									E _{γ} : weighted average of 1365.40 <i>3</i> from (α ,2n γ) and 1365.416 <i>12</i> from (n, γ) E=th. Other: 1365.49 <i>9</i> from (n,n' γ).
									I _{γ} : unweighted average of 73.9 19 from $(\alpha,2n\gamma)$, 71 4 from (n,γ) E=th, 96 8 from (n,γ) E=res, and 85.0 23 from $(n,n'\gamma)$. Mult.: D(+Q) from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; polarity from level
		1461.19 [‡] <i>i</i> 14	4.4 [‡] 6	1130.305	0+	[M4]		0.00289	scheme. Placement suspect as $\Delta J=4$ is involved.
		2052.60 [‡] 16	1.9 [‡] 6	520 5102	2+				this γ is considered questionable by evaluators due to unreasonably large B(M4)(W.u.).
		2052.60° 16	1.9* 6	539.5103	2	[M2]			B(M2)(W.u.)=1.2 +12-8

γ (100Ru) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.f	δ^f	Comments
2606.07	(2,3)	2066.52 8	100	539.5103	2+			E_{γ} : weighted average of 2066.55 8 from (n, γ) E=th and 2066.49 9 from (n,n' γ).
2617.14	1,2+	752.0 [@] 3	6.8 [@] 14	1865.110	2+			
		1255.12 [‡] 9	35 [‡] 15	1362.166	2+			
		2617.09 5	100.0 17	0.0	0+			E _γ : weighted average of 2617.07 4 from ¹⁰⁰ Rh ε decay (20.8 h), 2617.32 12 from (n,γ) E=th, and 2617.09 9 from (n,n'γ). I _γ : from ¹⁰⁰ Rh ε decay (20.8 h). Other: 100 9 from (n,γ) E=th.
2660.140	1,2+	560.95‡ 8	12.3 [‡] <i>13</i>	2099.103	2+			
	,	2120.59 7	100.0 11	539.5103	2+			E _γ : weighted average of 2120.61 7 from 100 Rh ε decay (20.8 h), 2120.55 11 from (n,γ) E=th, and 2120.57 11 from (n,n'γ). Other: 2121.2 7 from 100 Tc β ⁻ decay (15.46 s).
								I _γ : from (n,n'γ). Others: 100 20 from 100 Tc β^- decay (15.46 s), 100 9 from 100 Rh ε decay (20.8 h), 100 10 from (n,γ) E=th.
		2660.11 <i>12</i>	21.6 11	0.0	0+			E _γ : weighted average of 2660.09 12 from 100 Rh ε decay (20.8 h), 2660.0 4 from (n,γ) E=th, and 2660.22 20 from (n,n'γ). Other: 2659.5 10 from 100 Tc β^- decay (15.46 s).
								I _γ : weighted average of 40 20 from 100 Tc $β^-$ decay (15.46 s), 20 3 from 100 Rh $ε$ decay (20.8 h), 23 7 from (n,γ) E=th, and 21.7 11 from (n,n'γ).
2660.82	5(+)	309.52 ^a 9	11.1 <mark>a</mark> 12	2351.240	4+			110111 (11,11 <i>y)</i> .
2000.02	J	598.16 ^h 6	<46 ^h	2062.651	4+			E_{γ} : weighted average of 598.19 6 from (n,γ) E=th and 598.11 17 from $(\alpha,2n\gamma)$.
		779.79 6	100 3	1881.043	3 ⁺	Q		I _{γ} : from $(\alpha,2n\gamma)$, <310 from (n,γ) E=th. E _{γ} : from $(\alpha,2n\gamma)$. Other: 778.980 <i>14</i> from (n,γ) E=th differs greatly with level-energy difference.
								I _{γ} : from (n,γ) E=th. Other: 100 6 from $(\alpha,2n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
		1434.28 19	104 18	1226.467	4+	(M1+E2)	+0.38 4	E _{γ} : weighted average of 1434.21 7 from (n,γ) E=th and 1434.81 20 from $(\alpha,2n\gamma)$.
								I _{γ} : weighted average of 116 <i>15</i> from (n, γ) E=th and 78 22 from (α ,2n γ).
		4.2	-1-					Mult., δ : D+Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, most likely M1+E2.
2666.29	(2,3)	1535.12 ^{‡i} 6	63 [‡] 7	1130.305	0+			E_{γ} : poor fit, level-energy difference=1535.82. Placement is considered suspect (by evaluators) since with the reported intensity in (n,γ) E=th, it should have been seen in other studies.
		2126.86 7	100 13	539.5103	2+			E _{γ} : weighted average of 2126.92 <i>14</i> from ¹⁰⁰ Rh ε decay (20.8 h), 2126.91 δ from (n, γ) E=th, and 2126.68 <i>11</i> from (n,n' γ). I _{γ} : from (n, γ) E=th.
2705.52	6+	128.3 ^a 3	1.9 ^a 4	2576.872	5(+)			-y (-1), / ~ ····
		629.79 ^a 5	26.0 ^a 11	2075.675	6+	(M1+E2)	+1.00 7	Mult., δ : $\Delta J=0$, D+Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
		642.818 ^{ad} 19	100.0 ^a 15	2062.651	4+	Q		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.

γ (100Ru) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.f	δ^f	α^{g}	Comments
2705.52	6 ⁺	1479.143 ^e 22	68.0 11	1226.467	4+	Q			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2738.678	$(2^+,3,4^+)$	372.090 [‡] 4	45.2 [‡] 23	2366.588	4+				
		387.436 [‡] <i>3</i>	50.3 [‡] 17	2351.240	4+				
		676.071 [‡] 2 <i>1</i>	67 [‡] 6	2062.651	4+				
		857.621 <i>12</i>	100 12	1881.043	3+				E_{γ} : from (n,γ) E=th. Other: 857.71 23 from $(n,n'\gamma)$.
		873.66 [‡] <i>5</i>	48.6 [‡] 23	1865.110	2+				
2745.60	$(1,2^+)$	693.89 [@] 14	11 [@] 3	2051.661	0_{+}				
		880.8 [@] 3	17 [@] 5	1865.110	2+				
		1615.29 <i>5</i>	100.0 14	1130.305	0+				E_{γ} : weighted average of 1615.29 5 from ¹⁰⁰ Rh ε decay (20.8 h) and 1615.4 9 from (n,n' γ).
									I_{γ} : from (n,n' γ). Other: 100 5 from ¹⁰⁰ Rh ε decay (20.8 h).
		2205.95 14	40.5 14	539.5103	2+				E _γ : weighted average of 2205.96 <i>14</i> from ¹⁰⁰ Rh ε decay (20.8 h) and 2205.93 <i>19</i> from (n,n' γ).
									I_{γ} : weighted average of 35 6 from ¹⁰⁰ Rh ε decay (20.8 h) and 40.8 $I4$ from $(n,n'\gamma)$.
2747.495	4 ⁽⁻⁾	155.68 ^a 4	32.5 ^a 25	2591.817	4-	D			Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ with $\Delta J=0$.
		580.600 11	44 16	2166.879	3-	(M1+E2)	+0.62 16		E _{γ} : from (n, γ) E=th. Other: 580.52 <i>12</i> from (α ,2n γ). I _{γ} : unweighted average of 27.5 <i>25</i> from (α ,2n γ) and 60 <i>4</i> from (n, γ) E=th.
									Mult., δ : D+Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, most likely M1+E2.
		866.466 12	39.4 18	1881.043	3+				E _{γ} : from (n, γ) E=th. Other: 866.29 21 from (α ,2n γ). I _{γ} : weighted average of 38 8 from (α ,2n γ) and 39.5 18 from (n, γ) E=th.
		882.63 [‡] <i>16</i>	1.8‡ 5	1865.110	2+				110111 (11,7) L-til.
		1520.69 ^d 8	100 5	1226.467	4 ⁺	(D+Q)	+0.38 15		E_{γ} : weighted average of 1520.83 <i>12</i> from (α,2n γ) and 1520.64 7 from (n, γ) E =th.
									I_{γ} : from $(\alpha, 2n\gamma)$. Other: 100 13 from (n, γ) E=th. Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2764.943	2+,3+	398.6 [‡] 4	33‡ 11	2366.588	4+				
	,-	413.703‡ 19	8.8‡ 6	2351.240	4+				
		598.16 ^h 6	<103 ^h	2166.879	3-				I_{γ} : from $(n,n'\gamma)$. Other: 208 27 from (n,γ) E=th.
		883.88 [‡] 9	13‡ 3	1881.043	3+				
		899.87 [‡] 10	13 [‡] 3	1865.110	2+				
		1538.33 7	100 3	1226.467	4 ⁺				E_{γ} : weighted average of 1538.38 8 from $(n,n'\gamma)$ and 1538.29 7 from (n,γ) E=th.
									I_{γ} : from $(n,n'\gamma)$. Other: 100 13 from (n,γ) E=th.
2775.179	(5^{-})	247.943 17	100.0 17	2527.247	5-	(M1+E2)	+0.6 2	0.033 4	$\alpha(K)=0.029$ 3; $\alpha(L)=0.0037$ 5; $\alpha(M)=0.00067$ 8
									$\alpha(N)=0.000107 \ 13; \ \alpha(O)=5.1\times10^{-6} \ 4$ E _{γ} : from $(\alpha,2n\gamma)$. Other: 248.11 7 from $(n,n'\gamma)$.

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.f	δ^f	Comments
								Mult., δ : ΔJ =0, (D+Q) from $\gamma(\theta)$ in (α ,2n γ), with ΔJ =2 also possible; most likely (M1+E2).
2775.179	(5-)	712.76 ^a 13 1548.70 12	20 ^a 3 <20	2062.651 1226.467	4 ⁺ 4 ⁺			E_{γ},I_{γ} : from $(\alpha,2n\gamma)$.
2775.34	2+,3+	1413.18 <mark>&</mark> 7	63.2 <mark>&</mark> 16	1362.166	2+			1, 1, (, 1).
277010.	2 ,5	1548.73 10	<34	1226.467	<u>4</u> +			E _γ : weighted average of 1548.74 10 from $(n,n'\gamma)$ and 1548.4 8 from 100 Rh ε decay (20.8 h).
		2236.09 ^{&} 17	100.0 ^{&} 25	539.5103	2+			• • •
2785.193	6 ⁽⁺⁾	709.43 ^{ae} 3	100.0 ^a 22	2075.675	6+	(M1+E2)	+0.54 8	Mult., δ : ΔJ =0, D+Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, most likely (M1+E2); ΔJ =2 is also possible.
		722.677 ^{ad} 22	6.7 ^a 11	2062.651	4+	(Q)		E_{γ} : poor fit, level-energy difference=722.566. Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		1558.80 ^a 8	41 ^a 4	1226.467	4+	Q		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2800.84	$(2^+,3)$	1438.69 <mark>&</mark> 5	100.0 <mark>&</mark> <i>13</i>	1362.166	2+	D(+Q)	+0.01 5	Mult., δ : from $\gamma(\theta)$ in $(n,n'\gamma)$.
		1574.24 <mark>&</mark> 11	45.4 <mark>&</mark> <i>13</i>	1226.467	4+			
2801.48	$(1^+,2,3)$	141.27 [@] 5	46 [@] 8	2660.140	$1,2^{+}$			
		920.6 <mark>&</mark> 3	19.8 <mark>&</mark> 7	1881.043	3 ⁺			
		2262.26 11	100.0 7	539.5103		D+Q		E _γ : weighted average of 2262.1 5 from 100 Rh ε decay (20.8 h), 2262.32 7 from (n,γ) E=th, and 2261.88 <i>18</i> from (n,n'γ).
		Q.	0.					I _γ : from $(n,n'\gamma)$. Others: 100 25 from ¹⁰⁰ Rh ε decay (20.8 h). δ : $\delta(Q/D) = +0.42$ 15 or +3.9 8 from $\gamma(\theta)$ in $(n,n'\gamma)$.
2837.71	$(1^+,2^+)$	1475.67 & 19	9.3 <mark>&</mark> 6	1362.166	2+			
		2298.22 20	100.0 6	539.5103	2+	D+Q		E _γ : weighted average of 2298.4 4 from 100 Tc β^- decay (15.46 s) and 2298.17 20 from (n,n' γ).
								I_{γ} : from $(n,n'\gamma)$. δ : $\delta(Q/D)=+3.0 5$ or $-0.07 4$ from $\gamma(\theta)$ in $(n,n'\gamma)$.
2862.52	$(0^+ \text{ to } 4^+)$	763.33 <mark>&</mark> <i>17</i>	14 ^{&} 3	2099.103	2+			$0.0(Q/D) = +3.0.5 \text{ or } -0.07.4 \text{ from } \gamma(0) \text{ in (ii,ii } \gamma).$
2002.32	(0 104)	1500.38 <i>10</i>	14 3 100 & 3	1362.166	2 ⁺			
2877.57	2+,3+	996.56 ^a 15	97 ^a 10	1881.043	3 ⁺	(D(+Q))	+0.05 20	Mult., δ : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
2077.37	2 ,5	1515.41 20	100 7	1362.166	2+	(2(12))	10.03 20	E _{γ} : unweighted average of 1515.54 <i>12</i> from (α ,2n γ) and 1515.10 <i>19</i> from (n,n' γ).
								I_{γ} : from $(\alpha, 2n\gamma)$.
		$2337.98^{\ddagger i}$ 22	•	539.5103	2+			
2878.44	$2^+,3,4^+$	779.54 <mark>&</mark> 10	21.6 10	2099.103	2+			
		997.41 <mark>&</mark> 5	72.6 <mark>&</mark> <i>14</i>	1881.043	3+			
		1651.89 <mark>&</mark> 5	100.0 ^{&} 18	1226.467	4+			
2905.14	(4 ⁺)	2365.50 25	100	539.5103	2+	(E2)		B(E2)(W.u.)=1.3 4 Mult.: ΔJ =2, Q from $\gamma(\theta)$ in (n,n' γ); M2 ruled out by RUL. ΔJ =0 is also possible.
2911.47	5(-)	384.22 <i>a</i> 3	89 <mark>a</mark> 4	2527.247	5-	D+Q		Mult.: $\Delta J=0$, from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
					-			, , , , , , , , , , , , , , , , , , , ,

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}\dagger$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.f	δ^f	$\alpha^{\mathbf{g}}$	Comments
2911.47	5 ⁽⁻⁾	544.91 ^a 14	100 ^a 19	2366.588	4+				
		1685.30 ^a 24	89 ^a 15	1226.467	4+				
2915.545	2-	249.25 [@] 3	0.0373 @ 15	2666.29	(2,3)				E_{γ} : poor fit, level-energy difference=249.39.
		255.417 [@] 17	0.0519 12	2660.140	1,2+				
		298.55 [@] 11	0.0148@ 22	2617.14	$1,2^{+}$				
		345.654 [@] 8	0.243 4	2569.912	$(3)^{-}$				
		379.24 [@] 5	0.16 [@] 3	2536.194	3				
		398.716 [@] 6	0.429 [@] 5	2516.827	1-				
		403.07 ^{@i} 11	0.22 [@] 7	2512.411	$(4)^{+}$	[M2]		0.0289	$\alpha(K)$ =0.02502 35; $\alpha(L)$ =0.00316 4; $\alpha(M)$ =0.000586 8
									$\alpha(N)=9.45\times10^{-5}$ 13; $\alpha(O)=4.85\times10^{-6}$ 7
									This γ is considered questionable by evaluators due to unreasonably large B(M2)(W.u.)= 4.0×10^2 + $38-26$.
		446.153 5	36.7 4	2469.389	2-	M1(+E2)	< 0.45	0.00624 15	B(M1)(W.u.)=0.12 +7-6
									$\alpha(K)=0.00546$ 12; $\alpha(L)=0.000638$ 19;
									α (M)=0.0001170 35 α (N)=1.89×10 ⁻⁵ 5; α (O)=9.93×10 ⁻⁷ 19
									α (N)=1.89×10 ° 5; α (O)=9.93×10 ° 19 Mult.,δ: from ce data in ¹⁰⁰ Rh ε decay (20.8 h).
		748.666 [@] 7	2.77 [@] 3	2166.879	3-	M1,E2		0.00179	$\alpha(K)$ =0.001572 32; $\alpha(L)$ =0.0001825 26;
		748.000 7	2.11 3	2100.879	3	W11,E2		0.00179	$\alpha(M)=3.34\times10^{-5} 5$
									$\alpha(N)=5.40\times10^{-6}~8;~\alpha(O)=2.82\times10^{-7}~9$ Mult.: from ce data in ¹⁰⁰ Rh ε decay (20.8 h).
		816.454 [@] 16	1.146 [@] 12	2099.103	2+	(E1 - M2)	076	0.0017.11	$\alpha(K)=0.0014$ 9; $\alpha(L)=1.7\times10^{-4}$ 11; $\alpha(M)=3.1\times10^{-5}$
		810.434 - 10	1.140 - 12	2099.103	2.	(E1+M2)	0.7 6	0.0017 11	20
									$\alpha(N)=5.0\times10^{-6} \ 33; \ \alpha(O)=2.7\times10^{-7} \ 17$ B(E1)(W.u.)=6.0×10 ⁻⁶ +31-37; B(M2)(W.u.)=20
									$B(E1)(W.u.)=0.0\times10^{-4}+31-37$; $B(M2)(W.u.)=20^{-4}$
									Mult., δ : D+Q from $\gamma\gamma(\theta)$ in ¹⁰⁰ Rh ε decay (20.8 h); polarity from spin-parity change.
		1034.510 [@] 8	4.74 [@] 5	1881.043	3 ⁺	(E1)			$B(E1)(W.u.)=1.8\times10^{-5}+9-8$
									Mult.: from ce data in 100 Rh ε decay (20.8 h).
		1553.348 10	63.3 6	1362.166	2+	E1			$B(E1)(W.u.)=7.2\times10^{-5}+33-31$
									Mult.: from ce data in 100 Rh ε decay (20.8 h).
		2375.976 16	100.0 10	539.5103	2+	E1			B(E1)(W.u.)= $3.2 \times 10^{-5} + 15 - 14$
		2915.42 [@] 7	0.22 [@] 7	0.0	0+	D 401			Mult.: from ce data in 100 Rh ε decay (20.8 h).
2933.65	$(1,2)^+$	2915.42 7 2933.60 <i>10</i>	100	0.0 0.0	0 ⁺	[M2]			B(M2)(W.u.)=0.020 +12-11
2953.03	2 ⁺ ,3,4 ⁺	1589.1 ^{&} 3	14.2 ^{&} 15	1362.166	2+				
2/31.10	<i>-</i> , <i>5</i> , i	1724.62 ^{&} 8	100.0 22	1226.467	4 ⁺				E_{γ} : poor fit, level-energy difference=1724.99.
		1/21.02	100.0 22	1220.707					by. poor in, iever energy unicience—1/24.//.

$\gamma(^{100}\text{Ru})$ (continued)

2951.10 $2^{+},3,4^{+}$ 2411.41 21 70.6 24 539.5103 2^{+} 2951.552 7^{-} 166.38 15 0.19^{a} 6 2785.193 $6^{(+)}$ 245.97 8 0.84^{a} 6 2705.52 6^{+} 424.318 14 16.7 11 2527.247 5^{-} (E2) 0.00876 E_{γ} : from $(\alpha,2n\gamma)$. Others: 423.8 5 from $(^{36}S,\alpha^{2}n\gamma)$, 1 from $(\alpha,2n\gamma)$, and 17.4 9 from $(\alpha,4n\gamma)$. I_{γ} : weighted average of 17 4 from $(^{36}S,\alpha^{2}n\gamma)$, $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$; ce data in $(\alpha,4n\gamma)$ indicat (E2). 876.26 24 100.0 8 2075.675 6^{+} E1 E_{γ} : unweighted average of 876.2 1 from $(\alpha,2n\gamma)$, and 876.7 3 from $(\alpha,4n\gamma)$. Mult.: from $(\alpha,2n\gamma)$. Others: 100 4 from $(^{36}S,\alpha^{2}n\gamma)$, $\gamma(\theta)$ in $(\alpha,2n\gamma)$. Mult.: from $(\alpha,2n\gamma)$, and $(\alpha,4n\gamma)$. Mult.: from $(\alpha,2n\gamma)$, and $(\alpha,4n\gamma)$. Mult.: from $(\alpha,2n\gamma)$, and $(\alpha,4n\gamma)$.	13.5 19 cates $(2n\gamma)$, $(\alpha,4n\gamma)$.
from $(\alpha,2n\gamma)$, and 17.4 9 from $(\alpha,4n\gamma)$. Mult.: Q from $\gamma(DCO)$ in $(^{36}S,\alpha^2n\gamma)$, $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$; ce data in $(\alpha,4n\gamma)$ indicat (E2). 876.26 24 100.0 8 2075.675 6 ⁺ E1 E _{γ} : unweighted average of 876.2 <i>I</i> from $(^{36}S,\alpha^2n\gamma)$, and 876.7 <i>3</i> from $(\alpha,2n\gamma)$. Others: 100 4 from $(^{36}S,\alpha^2n\gamma)$ 9 from $(\alpha,4n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, $\gamma(DCO)$ and $\gamma(pol)$ ($^{36}S,\alpha^2n\gamma$), and $\gamma(\theta,pol)$ and ce data in $(\alpha,4n\gamma)$.	cates $(2n\gamma)$, $(\alpha,4n\gamma)$.
875.878 12 from $(\alpha, 2n\gamma)$, and 876.7 3 from $(\alpha$ I _{γ} : from $(\alpha, 2n\gamma)$. Others: 100 4 from $(^{36}S, \alpha 2n\gamma)$ 9 from $(\alpha, 4n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, $\gamma(DCO)$ and $\gamma(pol)$ $(^{36}S, \alpha 2n\gamma)$, and $\gamma(\theta, pol)$ and ce data in $(\alpha, 4n\gamma)$	$(\alpha,4n\gamma)$.
9 from $(\alpha, 4n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, $\gamma(DCO)$ and $\gamma(pol)$ $(^{36}S, \alpha 2n\gamma)$, and $\gamma(\theta, pol)$ and ce data in $(\alpha, 4n\gamma)$	γ), 100
Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, $\gamma(DCO)$ and $\gamma(pol)$ $(^{36}S, \alpha 2n\gamma)$, and $\gamma(\theta, pol)$ and ce data in $(\alpha, 4n\gamma)$	
2963.626 6 ⁻ 188^a a 2775.179 (5 ⁻) 371.774^a 19 28.0^a 5 2591.817 4 ⁻ E2 Mult.: Q from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; M2 ruled out since	ince it
would require an isomeric half-life by RUL, wunlikely.	
436.352 ^h 18 <38 ^h 2527.247 5 ⁻ (M1+E2) +2.8 20 0.0079 8 E_{γ} , I_{γ} : from (α ,2n γ). Others: E_{γ} =436.5 5 and I_{γ} : 25 from (36 S, α 2n γ), E_{γ} =436.4 3 and I_{γ} =39.0	
from $(\alpha, 4n\gamma)$. Mult., δ : from $\gamma(\theta)$ and ce data in $(\alpha, 4n\gamma)$. Other:	er:
$\delta(Q/D)=+0.69$ 25 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ for a doublet.	
887.43 24 100.0 14 2075.675 6 ⁺ E1(+M2) $-0.08\ 10$ E _{γ} : unweighted average of 888.5 5 from (36 S, α 2 887.981 17 from (α ,2n γ), and 888.8 3 from (α	
I_{γ} : from $(\alpha, 2n\gamma)$. Others: 100 5 from $(\alpha, 4n\gamma)$, 10 from $(^{36}S, \alpha 2n\gamma)$.	
Mult., δ : $\Delta J=0$, $\delta(Q/D)=-0.08$ 10 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; $E1(+M2)$ from $\gamma(\theta,pol)$ and ce data in $(\alpha,4n\gamma)$, with $\delta(M2/E1)=+0.4$ 7.	in
2967.57 $6^{(+)}$ 262.08 $\frac{a}{3}$ 34.1 $\frac{a}{1}$ 11 2705.52 6^{+} (D(+Q)) +0.17 22 891.67 $\frac{a}{8}$ 8 61 $\frac{a}{3}$ 2075.675 6^{+} (M1+E2) -0.17 8 Mult.: (D+Q) from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, most likely (M1+E2) by RUL.	ý
904.80 a 5 100 a 5 2062.651 4 ⁺ 1741.24 a 7 43.2 a 23 1226.467 4 ⁺ Q	
2983.04 (0 to 4) ⁺ 2444.25 ^{‡i} 8 100 [‡] 539.5103 2 ⁺ E _{γ} : poor fit, level-energy difference=2443.78.	

30

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. f	α^g	Comments
2999.32	$(0^+ \text{ to } 4^+)$	2459.39 ^{&} 24	100&	539.5103	2+			
3060.051	8+	984.81 22	100	2075.675		E2		E _{γ} : unweighted average of 984.8 <i>I</i> from (36 S, α 2n γ), 984.439 <i>I2</i> from (α ,2n γ), and 985.2 <i>3</i> from (α ,4n γ). Mult.: from γ (DCO) and γ (pol) in (36 S, α 2n γ), γ (θ) and ce data in (α ,4n γ), γ (θ) in (α ,2n γ).
3060.14	1,2+	1698.32 [@] 24	21 [@] 3	1362.166	2+			
		2520.56 [@] 5	28.6 [@] 9	539.5103	2+			
		3060.20 11	100.0 17	0.0	0+			E_{γ} : weighted average of 3060.25 <i>11</i> from ¹⁰⁰ Rh ε decay (20.8 h) and 3059.97 24 from $(n,n'\gamma)$.
3064.61	4+	2525.26 ^{&} 17	100 &	539.5103	2+	E2		B(E2)(W.u.)=5.4 +13-12 Mult.: Q from $\gamma(\theta)$ in (n,n' γ); M2 ruled out by RUL.
3069.525	$(1,2)^{-}$	154.007 [@] 10	1.03 [@] 3	2915.545	2-			
		409.18 [@] 8	0.26 [@] 3	2660.140	1,2+			
		499.599 [@] 7	4.41 [@] 6	2569.912	$(3)^{-}$	M1,E2	0.0050 4	Mult.: from ce data in 100 Rh ε decay (20.8 h).
		533.52 [@] 7	3.5 [@] 6	2536.194	3	[E1]		
		552.706 [@] 8	4.31 [@] 4	2516.827	1-			
		600.124 [@] 6	9.20 [@] 9	2469.389	2^{-}	M1,E2	0.00310 9	Mult.: from ce data in 100 Rh ε decay (20.8 h).
		828.70 [@] 4	0.48 [@] 8	2240.804	2+	[E1]		
		902.673 [@] 19	3.75 [@] 16	2166.879	3-			
		1204.46 [@] 5	1.16 [@] 8	1865.110	2+	[E1]		
		1707.44 [@] 6	6.61 [@] 9		2+	[E1]		
		2529.969 20	100.0 8	539.5103	2+	D+Q		E_{γ} , I_{γ} : from ¹⁰⁰ Rh ε decay (20.8 h). Other: E_{γ} =2530.06 18, I_{γ} =100 from (n,n' γ). Mult.: from $\gamma\gamma(\theta)$ in ¹⁰⁰ Rh ε decay (20.8 h).
		3069.44 16	0.09 9	0.0	0+	[M2]		E_{γ}, I_{γ} : from ¹⁰⁰ Rh ε decay (20.8 h). Other: a questionable strong 3070.2 γ reported in (n, γ) E=th.
3072.268	2+	555.42 [@] 4	7.6 [@] 4	2516.827	1-	[E1]	0.00131	$\alpha(K)$ =0.001153 <i>16</i> ; $\alpha(L)$ =0.0001308 <i>18</i> ; $\alpha(M)$ =2.391×10 ⁻⁵ <i>33</i> $\alpha(N)$ =3.86×10 ⁻⁶ <i>5</i> ; $\alpha(O)$ =2.019×10 ⁻⁷ 28 B(E1)(W.u.)=0.00031 +18-15
		602.91 [@] 4	17 [@] 3	2469.389	2-	[E1]	0.00109	B(E1)(W.u.)=0.00054 +25-23 α (K)=0.000955 13; α (L)=0.0001082 15; α (M)=1.978×10 ⁻⁵ 28 α (N)=3.20×10 ⁻⁶ 4; α (O)=1.676×10 ⁻⁷ 23
		831.272 ^{@i} 19	23.8 [@] 6	2240.804	2+			
		905.60 [@] 21	24.1 [@] 21	2166.879	3-	[E1]		B(E1)(W.u.)=0.00022 +10-9
		973.15 [@] 4	12.7 [@] 11	2099.103	2+			
		1191.16 [@] e 4	15.1 [@] 10	1881.043	3 ⁺			
		1207.50 [@] c 3	12 [@] 3	1865.110	2+			E_{γ} , I_{γ} : for doublet in 100 Rh ε decay (20.8 h).
		1710.07 <i>3</i>	100.0 <i>21</i>	1362.166	2+			E _{γ} : weighted average of 1710.07 3 from ¹⁰⁰ Rh ε decay (20.8

						/(10	a) (continued	-9	
$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.f	δ^f	$\alpha^{m{g}}$	Comments
3072.268	2+	3071.80 ^d 12	14.6 9	0.0	0+	[E2]			h) and 1710.00 12 from (n,n'γ). I _γ : from ¹⁰⁰ Rh ε decay (20.8 h). Other: 100 4 from (n,n'γ). B(E2)(W.u.)=0.024 +11-10 E _γ : weighted average of 3071.80 12 from ¹⁰⁰ Rh ε decay (20.8 h) and 3071.86 24 from (n,n'γ). I _γ : ¹⁰⁰ Rh ε decay (20.8 h). Other: 106 4 from (n,n'γ) is in disagreement.
3110.57	(2+,3+)	943.70 <i>16</i>	100	2166.879	3-	[E1]			E _y : level-energy difference=3072.20. E _y : weighted average of 943.62 <i>16</i> from $(\alpha, 2n\gamma)$ and 943.79 <i>16</i> from $(n, n'\gamma)$.
3118.67	(0 ⁺ to 4 ⁺)	1756.21 ^{&} 21 2579.28 ^{&} 16	34.1 ^{&} 22 100.0 ^{&} 22	1362.166 539.5103					5.675 To Hom (4,417)
3139.303	7-	175.55 ^a 6 187.759 <i>13</i>	5.3 ^a 8 54 4	2963.626 2951.552	6- 7-	(D+Q)	+0.17 10		E _{γ} : weighted average of 187.5 5 from (36 S, α 2n γ), 187.760 13 from (α ,2n γ), and 187.4 3 from (α ,4n γ). I _{γ} : weighted average of 76 26 from (36 S, α 2n γ), 56.1 21 from (α ,2n γ), and 43 5 from (α ,4n γ). Mult., δ : from $\gamma(\theta)$ in (α ,2n γ).
		228.1 ^a 5 354.09 ^a 4 612.057 18	2.0 ^a 12 9.4 ^a 4 100.0 17	2911.47 2785.193 2527.247	5 ⁽⁻⁾ 6 ⁽⁺⁾ 5 ⁻	D(+Q) E2	+0.04 6	0.00301	Mult., δ : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$. $\alpha(K)=0.00263$ 4; $\alpha(L)=0.000316$ 4; $\alpha(M)=5.80\times10^{-5}$ 8 $\alpha(N)=9.31\times10^{-6}$ 13; $\alpha(O)=4.61\times10^{-7}$ 6 E_{γ} : weighted average of 612.4 5 from $(^{36}S,\alpha 2n\gamma)$, 612.055 18 from $(\alpha,2n\gamma)$, and 612.4 3 from $(\alpha,4n\gamma)$. I_{γ} : from $(\alpha,2n\gamma)$ for a doublet, but most intensity belongs with 3140 level. Others: 100 10 from $(\alpha,4n\gamma)$, 100 26 from $(^{36}S,\alpha 2n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, $\gamma(\theta)$ and ce data in
		1063.8 4	37.3 8	2075.675	6+	D(+Q)	-0.03 5		 (α,4nγ). E_γ: unweighted average of 1063.3 5 from (³⁶S,α2nγ), 1063.67 3 from (α,2nγ), and 1064.5 3 from (α,4nγ). I_γ: from (α,2nγ). Others: <81 from (α,4nγ); 200 50 from (³⁶S,α2nγ) is in disagreement.
3218.111	(8)-	254.486 19	100	2963.626	6-	E2		0.0469	Mult., δ : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$. $\alpha(K)$ =0.0401 δ ; $\alpha(L)$ =0.00559 δ ; $\alpha(M)$ =0.001032 14 $\alpha(N)$ =0.0001618 23 ; $\alpha(O)$ =6.63×10 ⁻⁶ 9 Ey: from $(\alpha,2n\gamma)$ only. Mult.: Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; M2 ruled out since it would require an isomeric half-life (>0.45 μ s) by RUL, which is unlikely.
3263.664	8(+)	203.590 24	79.0 25	3060.051	8+	D			E_{γ} : weighted average of 202.6 5 from (^{36}S , $\alpha 2n\gamma$),

${\bf Adopted\ Levels,\ Gammas\ (continued)}$

						γ (100R	u) (continue	<u> </u>	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. f	δ^f	α^{g}	Comments
									203.590 <i>14</i> from $(\alpha,2n\gamma)$, and 204.0 <i>3</i> from $(\alpha,4n\gamma)$. I _{γ} : from $(\alpha,2n\gamma)$. Other: 100 <i>15</i> from $(\alpha,4n\gamma)$. Mult.: $\delta(Q/D)=+0.18$ <i>20</i> from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; $\Delta J=0$, D from $\gamma(DCO)$ in $(^{36}S,\alpha 2n\gamma)$.
3263.664	8(+)	478.467 ^a 22	52.2 ^a 13	2785.193	$6^{(+)}$	Q			
		557.98 ^{ad} 3 1188.012 20	34.4 ^a 6 100.0 <i>13</i>	2705.52 2075.675	6 ⁺ 6 ⁺	Q Q			E _y : weighted average of 1188.012 20 from $(\alpha,2n\gamma)$ and 1188.1 10 from $(\alpha,4n\gamma)$. I _y : from $(\alpha,2n\gamma)$. Other: 100 15 from $(\alpha,4n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
3323.70	$(1,2^+)$	806.93 [@] e 6	9.7 [@] 10	2516.827	1-				
		854.32 [@] 6	7.57 [@] 10	2469.389	2-				
		1224.63 [@] 13	6.9 [@] 10	2099.103	2+				
		1272.01 [@] 11	5.6 [@] 10	2051.661	0_{+}				
		2193.40 [@] e 4	9.1 9	1130.305	0_{+}				
		2784.29 ^{@c} 5	100.0 [@] 10	539.5103	2+	D+Q			Mult., δ : δ (Q/D)=0.61 +18-3 for J=2, and 5.1 +120-25 or -0.05 20 for J=1 from $\gamma\gamma(\theta)$ in ¹⁰⁰ Rh ε decay (20.8 h).
		3323.91 [@] 22	5.2 [@] 3	0.0	0^{+}				(=***)
3354.637	8-	91.7 <mark>ai</mark> 10	2.4 ^a 7	3263.664	8(+)				
		215.48 ^{ae} 3	9.3 ^a 5	3139.303	7-				
		294.61 ^a 3 390.981 14	8.83 ^a 24 100.0 10	3060.051 2963.626	8 ⁺ 6 ⁻	D(+Q) E2	+0.08 20	0.01131	Mult., δ : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ with $\Delta J=0$. $\alpha(K)=0.00979$ 14; $\alpha(L)=0.001251$ 18; $\alpha(M)=0.000230$ $\alpha(N)=3.66\times10^{-5}$ 6; $\alpha(O)=1.679\times10^{-6}$ 24 E _{γ} : from $(\alpha,2n\gamma)$. Others: 390.9 5 from $(^{36}S,\alpha 2n\gamma)$ and 391.0 3 from $(\alpha,4n\gamma)$. I _{γ} : from $(\alpha,2n\gamma)$. Others: 100 6 from $(\alpha,4n\gamma)$, 100 17 from $(^{36}S,\alpha 2n\gamma)$.
		403.092 15	<35	2951.552	7-	E2+M1	+1.58 7	0.00958 15	Mult.: from $\gamma(\theta,\text{pol})$ and ce data in $(\alpha,4\text{n}\gamma)$, $\gamma(\text{DCO})$ in $(^{36}\text{S},\alpha2\text{n}\gamma)$, and $\gamma(\theta)$ in $(\alpha,2\text{n}\gamma)$. $\alpha(\text{K})=0.00832$ 12; $\alpha(\text{L})=0.001036$ 16; $\alpha(\text{M})=0.0001905$ 29
									$\alpha(N)=3.04\times10^{-5}$ 5; $\alpha(O)=1.451\times10^{-6}$ 21 E _{γ} : from $(\alpha,2n\gamma)$. Others: 403.7 5 from $(^{36}S,\alpha 2n\gamma)$ and 403.2 3 from $(\alpha,4n\gamma)$.
									I _{γ} : from $(\alpha,2n\gamma)$. Others: 67 17 from $(^{36}S,\alpha 2n\gamma)$, 55 3 from $(\alpha,4n\gamma)$. Mult.: from $\gamma(\theta,pol)$ and ce data in $(\alpha,4n\gamma)$.
3368.982	(7-)	229.69 ^a 5 405.5 ^a 5	14.7 ^a 9 4.6 ^a 28	3139.303 2963.626	7 ⁻ 6 ⁻	(D(+Q))	+0.02 15		

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.f	δ^f	α^{g}	Comments
3368.982	(7-)	417.407 ^a 20	100.0 ^a 18	2951.552	7-	(M1+E2)	-0.21 7	0.00728 12	$\alpha(K)=0.00638 \ 10; \ \alpha(L)=0.000744 \ 13; \ \alpha(M)=0.0001364$
									25 $\alpha(N)=2.21\times10^{-5} 4$; $\alpha(O)=1.163\times10^{-6} 18$
		593.93 ^a 5	29.4 ^a 18	2775.179	(5^{-})				u(i) 2.21/10 1, u(0) 11103/10 10
3419.13	(2^{+})	2879.43 [@] 20	38 [@] 4	539.5103	2+				
		3419.4 [@] 3	100 [@] 6	0.0	0+				
3446.56	7 ⁽⁺⁾	785.70 ^a 20	39 ^a 7	2660.82	5 ⁽⁺⁾				
		869.69 ^a 16 1370.95 ^a 9	100 ^a 17 83 ^a 4	2576.872 2075.675	5 ⁽⁺⁾ 6 ⁺	Q D+Q	+0.12 2		
3463.43	$(1^+,2)$	140.03 ^{@c} 3	100 [@] 10	3323.70	$(1,2^+)$	DŦQ	TU.12 2		
3403.43	(1 ,2)	1582.9 [@] 5	96 [@] 58	1881.043	3+				
		3464.8 ^{@e} 5	98 [@] 15	0.0	0+				
3503.365	9-	148.720 <i>14</i>	25.0 11	3354.637	8-	(M1+E2)	+0.05 1	0.1040	$\alpha(K)$ =0.0908 13; $\alpha(L)$ =0.01090 16; $\alpha(M)$ =0.00201 3
									$\alpha(N)=0.000324$ 5; $\alpha(O)=1.678\times10^{-5}$ 24
									E_{γ} : from $(\alpha,2n\gamma)$. Others: 148.1 5 from $(^{36}S,\alpha 2n\gamma)$ and 148.6 3 from $(\alpha,4n\gamma)$.
									I_{γ} : weighted average of 17 8 from (36 S, α 2n γ), 24.7 11
									from $(\alpha,2n\gamma)$, and 25.8 16 from $(\alpha,4n\gamma)$.
									Mult., δ : D+Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; polarity from no
									level-parity change. Other: $\delta(Q/D) = -1.5$ 15 from $\gamma(\theta)$ in $(\alpha, 4n\gamma)$.
		239.74 ^a 5	6.0 <mark>a</mark> 4	3263.664	8(+)				$\gamma(0)$ in (a, m_{γ}) .
		364.055 <i>15</i>	55.6 11	3139.303	7-	E2		0.01420	$\alpha(K)$ =0.01228 18; $\alpha(L)$ =0.001586 23; $\alpha(M)$ =0.000292 4
									$\alpha(N)=4.63\times10^{-5}$ 7; $\alpha(O)=2.09\times10^{-6}$ 3
									E_{γ} : from $(\alpha,2n\gamma)$. Others: 363.7 5 from $(^{36}S,\alpha 2n\gamma)$ and 364.2 3 from $(\alpha,4n\gamma)$.
									I_{γ} : weighted average of 42 8 from ($^{36}S_{,\alpha}2n\gamma$), 55.5 7
									from $(\alpha,2n\gamma)$, and 60 3 from $(\alpha,4n\gamma)$.
									Mult.: from $\gamma(\theta, \text{pol})$ and ce data in $(\alpha, 4n\gamma)$, $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		443.317 16	75.8 11	3060.051	8+	E1(+M2)	+0.06 6	0.00232 21	$\alpha(K)=0.00204$ 18; $\alpha(L)=0.000233$ 23; $\alpha(M)=4.3\times10^{-5}$ 4
									$\alpha(N)=6.9\times10^{-6} \ 7; \ \alpha(O)=3.56\times10^{-7} \ 35$
									E_{γ} : from $(\alpha,2n\gamma)$. Others: 442.8 5 from $(^{36}S,\alpha 2n\gamma)$ and 443.3 3 from $(\alpha,4n\gamma)$.
									I_{γ} : weighted average of 67 17 from (^{36}S , $\alpha 2n\gamma$), 76.0
									11 from $(\alpha,2n\gamma)$, and 73 5 from $(\alpha,4n\gamma)$.
									Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in $(^{36}S, \alpha 2n\gamma)$, $\gamma(\theta, pol)$ and ce data $(\alpha, 4n\gamma)$, $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
									δ : from $(\alpha,2n\gamma)$. Other: -0.11 5 from $(\alpha,4n\gamma)$.
		551.883 <mark>e</mark> 17	100.0 11	2951.552	7-	E2		0.00402	$\alpha(K)=0.00350\ 5;\ \alpha(L)=0.000426\ 6;\ \alpha(M)=7.83\times10^{-5}\ 11$

					7(rtu) (com	mucu)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.f	δ^f	α^{g}	Comments
3992.13	10-	637.47 7	100 6	3354.637 8	E2		0.00269	$\alpha(N)=1.518\times 10^{-5}\ 22;\ \alpha(O)=7.96\times 10^{-7}\ 11$ E _γ : weighted average of 489.0 5 from (36 S, α 2nγ), 488.671 20 from (α ,2nγ), and 489.3 3 from (α ,4nγ). I _γ : weighted average of 67 17 from (36 S, α 2nγ), 54.3 7 from (α ,2nγ), and 46 8 from (α ,4nγ). Mult.: from γ(θ ,pol) and ce data in (α ,4nγ), γ(θ) in (α ,2nγ). δ: from (α ,2nγ). Other: +4 2 from (α ,4nγ). $\alpha(K)=0.002352\ 33;\ \alpha(L)=0.000282\ 4;\ \alpha(M)=5.18\times 10^{-5}\ 7$ $\alpha(N)=8.31\times 10^{-6}\ 12;\ \alpha(O)=4.14\times 10^{-7}\ 6$ E _γ : weighted average of 637.8 5 from (α ,4nγ). I _γ : from (α ,2nγ), and 637.7 2 from (α ,4nγ). I _γ : from (α ,4nγ). Others: 100 11 from (α ,2nγ), 100 17 from (α ,4nγ). Mult.: from γ(θ ,pol) and ce data in (α ,4nγ), γ(θ) in
4075.93	(8,9 ⁻)	477.1 ^a 5 572.41 ^a 13	26 ^a 16 53 ^a 5	3599.301 (8 ⁻) 3503.365 9 ⁻	D(+Q)	+0.05 7		$(\alpha,2n\gamma), \gamma(DCO)$ in $(^{36}S,\alpha 2n\gamma)$.
4083.30	10 ⁺	936.94 ^a 21 819.63 13	100 ^a 16 6.9 8	3139.303 7 ⁻ 3263.664 8 ⁽⁺⁾				E _y : weighted average of 821.4 10 from (36 S, α 2ny) and 819.62 7 from (α ,2ny).
		1023.75 25	100.0 10	3060.051 8+	E2			 I_γ: weighted average of 3.7 19 from (³⁶S,α2nγ) and 7.1 5 from (α,2nγ). E_γ: unweighted average of 1024.0 1 from (³⁶S,α2nγ), 1023.252 15 from (α,2nγ), and 1024.0 3 from (α,4nγ). I_γ: from (α,2nγ). Other: 100 8 from (³⁶S,α2nγ). Mult.: from γ(DCO) and γ(pol) in (³⁶S,α2nγ), γ(θ,pol) and ce data in (α,4nγ), γ(θ) in (α,2nγ).
4097.38	(9-)	521.86 ^a 5 728.48 ^a 19	100 ^a 6 29 ^a 6	3575.51 9 ⁻ 3368.982 (7 ⁻)	D+Q	-0.25 7		
4230.56	11-	238.351 ^e 16	35.4 7	3992.13 10	D+Q			E _y : from $(\alpha,2n\gamma)$. Others: 238.5 10 from $(^{36}S,\alpha 2n\gamma)$ and 238.2 3 from $(\alpha,4n\gamma)$. I _y : from $(\alpha,2n\gamma)$, but 6.7 33 in $(^{36}S,\alpha 2n\gamma)$ is in disagreement.
		727.34 ^c 3	100.0 14	3503.365 9	E2			E _y : weighted average of 727.8 3 from (36 S, α 2n γ), 727.340 20 from (α ,2n γ), and 727.7 3 from (α ,4n γ). I _y : from (α ,2n γ). Other: 100 6 from (α ,4n γ). Mult.: from γ (DCO) and γ (pol) in (36 S, α 2n γ), γ (θ) and ce data in (α ,4n γ), γ (θ) in (α ,2n γ).
4235.82	(10-)	636.54 ^a 15 660.34 ^a 11 732.46 ^a 5	100 ^a 31 17.9 ^a 25 53.7 ^a 25	3599.301 (8 ⁻) 3575.51 9 ⁻ 3503.365 9 ⁻	(Q) D+O	-1.05 12		(-,, /, / (0,/)
4235.84	10 ⁽⁺⁾	152.56 ^a 4 972.13 9	7.6 ^a 6 43.3 23	3303.363 9 4083.30 10 ⁺ 3263.664 8 ⁽⁺⁾	(D(+Q)) (Q)	-1.03 <i>12</i> +0.04 <i>9</i>		E_{γ} : weighted average of 973.6 10 from (^{36}S , $\alpha 2n\gamma$), and

E_i (level)	\mathtt{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.f	δ^f	Comments
4235.84	10 ⁽⁺⁾	1175.776 23	100.0 12	3060.051	8+	Q		973.13 6 from $(\alpha,2n\gamma)$. I_{γ} : from $(\alpha,2n\gamma)$, but 8 4 in $(^{36}S,\alpha 2n\gamma)$ is in disagreement. E_{γ} : from $(\alpha,2n\gamma)$. Other: 1177.9 3 in $(^{36}S,\alpha 2n\gamma)$ is discrepant.
4248.49	$(7^-, 8, 9)$	673.05 ^a 8	54 <mark>a</mark> 4	3575.51	9-			I_{γ} : from $(\alpha, 2n\gamma)$. Other: 100 8 from $(^{36}S, \alpha 2n\gamma)$.
4240.49	(7,0,9)	893.77 ^a 9	100^{a} 9	3354.637		D+Q	+0.52 5	
4315.73	11-	740.222 19	100.0 13		9-	E2	10.32 3	E _{γ} : from $(\alpha,2n\gamma)$. Others: 740.3 5 from $(^{36}S,\alpha 2n\gamma)$ and 740.6 3 from $(\alpha,4n\gamma)$. I _{γ} : from $(\alpha,2n\gamma)$.
								Mult.: from $\gamma(\theta, \text{pol})$ in $(\alpha, 4n\gamma)$, $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
121211	2(1)	812.39 ^a 8	10.5 ^a 9	3503.365				E_{γ} : poor fit, level-energy difference=812.89.
4343.44	9(+)	896.79 ^a 8	100 ^a 8		7(+)	Q	• 04 0	
1252.26	(10+)	1079.98 ^a 13	$45^{a} 5$	3263.664		D+Q	+2.84 8	
4353.36	(10^+)	270.08 ^a 8 803.26 ^a 6	5.8 ^a 7 20.7 ^a 13	4083.30	10 ⁺ 8 ⁽⁺⁾	(0)		
		1293.30 <i>4</i>	20.7° 13 100.0 19	3550.10 3060.051		(Q)		E_{γ} : weighted average of 1293.9 5 from ($^{36}S_{\gamma}\alpha^2n\gamma$) and 1293.30 3
		1293.30 4	100.0 19	3060.051	8.			E_{γ} : Weighted average of 1293.9 3 from ($^{\circ\circ}$ S, α 2n γ) and 1293.30 3 from (α ,2n γ).
4381.83	$(7,8,9^+)$	935.37 ^a 9	100 <mark>a</mark> 6	3446.56	7 ⁽⁺⁾			
		1117.99 ^a 11	65 ^a 6	3263.664	8(+)	D+Q	-0.11 7	
4408.63	$(9^-,10^-)$	178.05 ^a 9	12.7 ^a 18		11-			
		1054.01 ^a 11	100 <mark>a</mark> 9	3354.637				
4503.48	(10^+)	419.92 ^a 16	18 ^a 3	4083.30	10+			
		953.38 ^a 3	100^{a} 3	3550.10	8(+)	(Q)		
4663.44	(11^{-})	433.00 ^a 15	26 ^a 5	4230.56	11-			
		565.7 ^a 7	13^{a} 11	4097.38	(9-)	(0)		
4791.59	$(8^+, 9, 10^+)$	1160.05 ^a 7 288.08 ^a 11	$100^{a} 5$ $22^{a} 3$	3503.365 4503.48	(10^+)	(Q)		
4/91.39	(8,9,10)	438.4 ^a 3	$25^{a} 6$	4303.48	(10^{+})			
		555.69 ^a 6	81 ^a 3	4235.84	$10^{(+)}$			
		708.5 ^a 5	16 ^a 9	4083.30	10 ⁺			
		861.93 ^a 10	100° 9	3929.64	(8 ⁺)			
		1731.7 ^a 3	25^{a} 3	3060.051				
4798.15	12 ⁽⁻⁾	567.46 9	20 2	4230.56	11-			
		806.021 20	100 2	3992.13	10-	(E2)		Mult.: Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$, polarity from ce data in $(\alpha,4n\gamma)$.
4818.58	(10^{+})	465.33 <i>15</i>	35 4	4353.36	(10^{+})			
		582.82 8	100 9	4235.84	$10^{(+)}$	(D+Q)	$-0.26\ 20$	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ with $\Delta J = (0)$.
4917.97	12+	564.54 <i>15</i>	25 4	4353.36	(10^+)			E_{γ} : weighted average of 564.9 5 from (^{36}S , $\alpha 2n\gamma$) and 564.51 15 from (α , $2n\gamma$).
								I_{γ} : weighted average of 25 4 from (^{36}S , $\alpha 2n\gamma$) and 24 4 from (α ,2n γ).
		681.5 <i>5</i>	29 7	4235.84	$10^{(+)}$	Q		E_{γ} , I_{γ} , Mult.: γ from (36 S, α 2n γ) only, Δ J=2.

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	${\rm J}_f^\pi$	Mult.f	δ^f	Comments
4917.97	12+	688.2		4230.56				E_{γ} : γ from (36 S, α 2n γ) only.
		834.95 25	100 6	4083.30	10+	E2		E _{γ} : unweighted average of 835.2 <i>I</i> from (36 S, α 2n γ), 834.45 8 from (α ,2n γ), and 835.2 <i>3</i> from (α ,4n γ). I _{γ} : from (α ,2n γ). Other: 100 7 from (36 S, α 2n γ). Mult.: from γ (DCO) and γ (pol) in (36 S, α 2n γ), γ (θ) and ce data in (α ,4n γ), γ (θ) in (α ,2n γ).
5010.49	$(8^+, 9, 10, 11)$	191.93 ^a 3	100 <mark>a</mark> 4	4818.58				$\mathbf{u}(\mathbf{u},\mathbf{m}_f),\ f(\mathbf{v})\ \mathbf{m}\ (\mathbf{u},\mathbf{m}_f).$
		218.87 ^a 4	96 <mark>a</mark> 4		$(8^+, 9, 10^+)$	D+Q	+0.078 8	
		774.4 ^a 3	64 ^a 14	4235.84				
5066 10	(12=)	927.6 ^a 5	18 ^a 11	4083.30				
5066.19	(12^{-})	750.8 ^a 5 830.39 ^a 4	10 ^a 6 100 ^a 4	4315.73 4235.82				
		835.20 ^a 20	9.8^{a} 20	4233.82				
5126.3	(12+)	1043.0 10	100	4083.30				E_{γ} : unweighted average of 1042.03 13 from $(\alpha,2n\gamma)$ and 1044.0 3 from $(\alpha,4n\gamma)$.
5162.52	13-	846.73 <i>14</i>	106 6	4315.73	11-			E_{γ} : weighted average of 847.5 5 from (36 S,α2n γ) and 846.71 9 from (α ,2n γ).
								I_{γ} : from $(\alpha, 2n\gamma)$, but 33 8 in $(^{36}S, \alpha 2n\gamma)$ is in disagreement.
		932.2 3	100 2	4230.56	11-	E2		E _y : unweighted average of 932.7 3 from (${}^{36}S_{,\alpha}2n\gamma$), 931.72 3 from (α ,2ny), and 932.4 3 from (α ,4ny). I _y : from (α ,2ny). Other: 100 8 from (${}^{36}S_{,\alpha}2n\gamma$).
								Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in $(^{36}S, \alpha 2n\gamma)$, $\gamma(\theta)$ and ce data in $(\alpha, 4n\gamma)$, $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
5274.67	(13 ⁻)	959.06 <i>13</i>	100 9	4315.73	11-	(E2)		E _{γ} : weighted average of 959.6 5 from (36 S, α 2n γ) and 959.03 12. Other: 962.1 3 in (α ,4n γ) seems discrepant.
								I_{γ} : from $(\alpha,2n\gamma)$. Mult.: (Q) from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; (E2,M1) from $\gamma(\theta)$ and ce
		1043.80 ^a 20	75 <mark>a</mark> 16	4230.56	11-	0		data in $(\alpha,4n\gamma)$. E_{γ} : poor fit, level-energy difference=1044.45.
5207.2	(12±)	$1043.80^{b} 20$ $1223.9^{b} 5$				Q		E_{γ} . poor in, lever-energy uniforence=1044.43.
5307.2 5713.31	(12 ⁺) 14 ⁺	795.34 6	100 100	4083.30 4917.97		E2		E_{γ} : weighted average of 795.5 <i>I</i> from (36 S, α 2n γ), 795.30 <i>5</i>
3/13.31	14	793.34 0	100	4917.97	12	E2		from $(\alpha,2n\gamma)$, and 795.5 3 from $(\alpha,4n\gamma)$.
								Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in $(^{36}S, \alpha 2n\gamma)$, $\gamma(\theta)$ and ce data in $(\alpha, 4n\gamma)$, $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
5784.4	(14^{-})	986.2 ^b 3	100	4798.15	$12^{(-)}$			
6167.2	(15^{-})	1004.7 ^b 3	100	5162.52	13-	Q		
6283.7	(15^{-})	1009.0 <mark>b</mark> 5	100	5274.67	(13^{-})	-		
6365.2	(14^{+})	1058.0 ^b 5	100	5307.2				
6714.81	16+	1001.5 <i>I</i>	100	5713.31		E2		E_{γ} : from (^{36}S , $\alpha 2n\gamma$).
	-							Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in ($^{36}S,\alpha 2n\gamma$), $\gamma(DCO)$ in ($^{34}S,2\alpha,2n\gamma$).

	$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. f	Comments
	6885.1	(16 ⁻)	1100.7 ^b 5	100	5784.4	(14-)		
	7203.7	(17-)	1036.5 <i>3</i>	100	6167.2	(15-)	(E2)	E _{γ} : weighted average of 1036.6 3 from (36 S, α 2n γ), and 1036.3 3 from (α ,4n γ). Mult.: Q from γ (DCO) in (36 S, α 2n γ) and γ (θ) in (α ,4n γ), polarity from ce data in (α ,4n γ).
	7408.6	(16^{+})	1043.4 <mark>b</mark> 5	100	6365.2	(14^{+})		
	7827.02	18+	1112.2 <i>I</i>	100	6714.81	16 ⁺	E2	E_{γ} : from (36 S, α 2n γ). Mult.: from γ (DCO) and γ (pol) in (36 S, α 2n γ), γ (DCO) in (34 S,2 α 2n γ).
	8018.2	(18^{-})	1133.1 ^b 5	100	6885.1	(16^{-})		
	8450.6	(18^+)	1042.0 ^b 5	100	7408.6	(16^{+})		
	8458.7	(19^{-})	1255.0 ^b 5	100	7203.7	(17^{-})		
	9057.73	20+	1230.7 <i>1</i>	100	7827.02	18+	E2	Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in ($^{36}S,\alpha 2n\gamma$), $\gamma(DCO)$ in ($^{34}S,2\alpha 2n\gamma$).
	9178.8 (9673.32)	(20^{-}) $2^{+},3^{+}$	1160.6 ^b 5 5416.1 3	100 7.1 <i>13</i>	8018.2 4257.1	(18 ⁻)		
			5485.6 <i>3</i>	5.9 10	4187.6	$(1^+ \text{ to } 4^+)$		
			5672.46 19	4.5 7	4000.70	(1+ , 4+)		
			5690.2 <i>7</i> 5699.6 <i>5</i>	3.4 <i>9</i> 8.1 <i>18</i>	3983.0 3973.6	$(1^+ \text{ to } 4^+)$ $(0^+ \text{ to } 5^+)$		
			5790.2 <i>3</i>	4.6 8	3883.0	(0 103)		
			5795.41 <i>16</i>	9.4 15	3877.75	2+,3+		
			5893.43 12	40 7	3779.72	$(1 \text{ to } 4)^+$		
			5941.27 12	30 5	3731.88			
			6210.36 ^c 4	70 <i>3</i>	3463.43	$(1^+,2)$		
			6254.6 ⁱ 7	3.3 9	3419.13	(2^{+})		
			6298.11 12	38 6	3375.01			
			6324.99 <i>5</i> 6340.72 <i>5</i>	39.6 <i>10</i> 100 <i>3</i>	3348.13 3332.40			
			6346.85 7	31.9 12	3326.27			
			6365.04 <i>13</i>	10.4 7	3308.08			
I			6372.50 7	29.4 11	3300.62	$2^{+},3^{+}$		
I			6401.0 <i>3</i>	3.8 6	3272.1	,		
			6406.8 <i>3</i>	3.3 5	3266.3	$(0 \text{ to } 5)^+$		
			6441.32 <i>16</i>	6.9 7	3231.79	2+ 2+		
I			6496.04 23	4.3 5	3177.07	$2^{+},3^{+}$		
			6554.4 <i>4</i> 6562.55 <i>14</i>	2.2 <i>4</i> 8.9 <i>7</i>	3118.67 3110.57	$(0^+ \text{ to } 4^+)$ $(2^+,3^+)$		
			6602.37 ^c 7	21.3 7	3069.525			
I			6608.53 7	24.7 10	3064.61	(1,2) 4 ⁺		
			6639.1 4	2.0 4	3034.0	•		
I			6656.33 15	7.3 6	3016.77			
			6673.70 11	11.5 7	2999.32	$(0^+ \text{ to } 4^+)$		
			6690.06 <i>6</i>	51.6 16	2983.04	$(0 \text{ to } 4)^+$		E_{γ} : level-energy difference=6689.8.
1			6757.2 <i>3</i>	5.7 10	2915.545	2-		

$E_i(level)$	\mathtt{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}^{π}_f	$E_i(level)$	J_i^π	E_{γ}^{\dagger}	E_f	J_f^π
(9673.32)	$2^{+},3^{+}$	6767.8 <i>3</i>	3.4 5	2905.14	(4^+)	(9673.33)	3 ⁽⁺⁾	5365.3 8	4307.4	
		6795.54 9	18.2 9	2877.57	2+,3+			5399.2 <i>14</i>	4273.5	
		6811.1 <i>6</i>	1.3 4	2862.52	$(0^+ \text{ to } 4^+)$			5416.1 <i>10</i>	4257.1	
		6835.56 19	4.9 5	2837.71	$(1^+,2^+)$			5486.8 <i>21</i>	4187.6	$(1^+ \text{ to } 4^+)$
		6871.62.20	4.8 5	2801.48	$(1^+,2,3)$			5581.2 <i>12</i>	4091.5	
		6898.24 ⁱ 18	32 5	2775.34	$2^{+},3^{+}$			5673.6 5	4000.70	
		6908.29 <i>15</i>	7.1 6	2764.943	2+,3+			5688.3 <i>5</i>	3983.0	$(1^+ \text{ to } 4^+)$
		6926.00 18	5.6 5	2747.495	4(-)			5700.4 19	3973.6	$(0^+ \text{ to } 5^+)$
		6934.0 5	1.6 4	2738.678	$(2^+,3,4^+)$			5797.0 11	3877.75	2+,3+
		7007.05 9	16.3 8	2666.29	(2,3)			5894.2 <i>21</i>	3779.72	$(1 \text{ to } 4)^+$
		7013.4 5	1.9 4	2660.82	5(+)			5942.4 7	3731.88	(4 + 0)
		7056.4 6	1.3 4	2617.14	1,2+			6206.3 5	3463.43	$(1^+,2)$
		7066.7 3	10.2 7	2606.07	(2,3)			6212.3 13	3460.4	
		7081.30 <i>15</i>	6.9 <i>6</i> 90.8 22	2591.817	4-			6296.1 17	3375.01	
		7103.14 <i>5</i> 7129.65 <i>26</i>	3.6 5	2569.912 2543.71	(3) ⁻ 2 ⁺			6325.2 <i>12</i> 6340.2 <i>21</i>	3348.13 3332.40	
		7136.6 5	1.9 4	2536.194	3			6346.8 15	3326.27	
		7160.66 <i>19</i>	5.3 5	2512.411	$(4)^{+}$			6371.6 21	3300.62	2+,3+
		7180.00 9	15.9 8	2493.06	$(3,4,5^+)$			6562.2 5	3110.57	$(2^+,3^+)$
		7203.40 ^e 9	16.4 8	2469.389	2-			6602.3 9	3069.525	$(1,2)^{-}$
		7259.6 5	1.7 4	2413.86	(4^{+})			6654.4 5	3016.77	() /
		7306.28 9	15.8 8	2366.588	4+			6689.9 8	2983.04	$(0 \text{ to } 4)^+$
		7432.2 8	0.9 4	2240.804	2+			6795.3 <i>6</i>	2877.57	$2^{+},3^{+}$
		7506.16 <i>6</i>	56.2 17	2166.879	3-			6899.6 <i>19</i>	2775.34	$2^{+},3^{+}$
		7574.00 <i>16</i>	6.2 5	2099.103	2+			7080.0 4	2591.817	4-
		7610.29 7	41.6 14	2062.651	4+			7102.7 2 <i>I</i>	2569.912	(3)
		7791.80 9	11.5 5	1881.043	3 ⁺			7202.3 12	2469.389	2-
		7807.96 <i>11</i> 8310.78 <i>7</i>	7.2 <i>4</i> 17.9 <i>6</i>	1865.110 1362.166	2 ⁺ 2 ⁺			7504.5 <i>4</i> 7574.9 <i>5</i>	2166.879 2099.103	3 ⁻ 2 ⁺
		8446.57 8	16.2 6	1226.467	4+			7574.9 <i>5</i> 7611.0 <i>15</i>	2062.651	4+
		8543.8^{i} 5			0+					2 ⁺
		9133.21 8	0.6 2 16.8 <i>4</i>	1130.305 539.5103	2+			7806.0 <i>10</i> 8308.5 <i>15</i>	1865.110 1362.166	2+
		9133.21 o 9673.4 <i>3</i>	0.5 1	0.0	2 0 ⁺			8444.7 <i>5</i>	1226.467	
(9673.33)	3(+)	5021.6 18	0.5 1	4650.7	O	(9673.35)	3(+)	5021.6 18	4650.7	-
(9073.33)	3. /	5071.5 10		4601.2		(9073.33)	3. /	5129.0 16	4543.7	
		5087.1 10		4585.6				5142.6 28	4530	
		5129.0 16		4543.7				5296.6 9	4376.1	
		5142.6 28		4530				5336.8 16	4337.6	
		5153.2 7		4519.6				5365.3 8	4307.4	
		5269.1 <i>10</i>		4403.6				5399.2 <i>14</i>	4273.5	
		5296.6 9		4376.1				5416.1 <i>10</i>	4257.1	
		5306.3 16		4366.4	$(1^+ \text{ to } 4^+)$			5523.6 22	4148.6	
		5336.8 16		4337.6				5570.8 9	4102.9	

$\gamma(^{100}$ Ru) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{c}^{π}
		<u> </u>		J
(9673.35)	3 ⁽⁺⁾	5581.2 <i>12</i>	4091.5	
		5673.6 5	4000.70	and the
		5688.3 5	3983.0	$(1^+ \text{ to } 4^+)$
		5700.4 19	3973.6	$(0^+ \text{ to } 5^+)$
		5791.8 <i>5</i>	3883.0	/d : 45±
		5894.2 <i>21</i>	3779.72	$(1 \text{ to } 4)^+$
		5942.4 7	3731.88	
		6212.3 13	3460.4	
		6296.1 17	3375.01	
		6325.2 12	3348.13	
		6340.2 21	3332.40	2+ 2+
		6371.6 21	3300.62	$2^+,3^+$
		6562.2 5	3110.57	$(2^+,3^+)$
		6602.3 9	3069.525	$(1,2)^{-}$
		6689.9 8 6755.5 6	2983.04	$(0 \text{ to } 4)^+$
		6839.9 <i>15</i>	2915.545 2832.8	2 ⁻ 0 ⁺
		6870.2 <i>15</i>	2801.48	-
		6899.6 <i>19</i>	2775.34	$(1^+,2,3)$ $2^+,3^+$
		6908.2 17	2764.943	2 ⁺ ,3 ⁺
				4 ⁽⁻⁾
		6925.5 <i>6</i> 7005.5 <i>7</i>	2747.495 2666.29	(2,3)
		7102.7 21	2569.912	
		7158.1 24	2516.827	(3) ⁻ 1 ⁻
		7504.5 4	2166.879	3-
		7574.9 5	2099.103	2 ⁺
		7611.0 <i>15</i>	2062.651	4 ⁺
		7624.4 15	2051.661	0+
		7790.8 5	1881.043	3 ⁺
		8308.5 <i>15</i>	1362.166	2+
		8447.7 5	1226.467	4 ⁺
		9135.9 <i>13</i>	539.5103	2+
(9673.38)	3(+)	5021.6 18	4650.7	_
(7075.50)	5	5129.0 <i>16</i>	4543.7	
		5153.2 7	4519.6	
		5269.1 10	4403.6	
		5523.6 22	4148.6	
		5623.2 10	4049.5	
		5688.3 5	3983.0	$(1^+ \text{ to } 4^+)$
		5791.8 <i>5</i>	3883.0	,
		5797.0 11	3877.75	$2^{+},3^{+}$
		5894.2 <i>21</i>	3779.72	$(1 \text{ to } 4)^+$
		6206.3 5	3463.43	$(1^+,2)$

γ (100Ru) (continued)

E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	${\rm J}^\pi_f$	Mult.f	Comments
(9673.38)	3 ⁽⁺⁾	6296.1 17		3375.01			
(6346.8 <i>15</i>		3326.27			
		6371.6 <i>21</i>		3300.62	$2^{+},3^{+}$		
		6562.2 5		3110.57	$(2^+,3^+)$		
		6614.6 8		3058.1	(2,3,4)		
		6755.5 <i>6</i>		2915.545			
		6839.9 <i>15</i>		2832.8	0+		
		6870.2 15		2801.48	$(1^+,2,3)$		
		6908.2 17		2764.943			
		7080.0 4		2591.817			
		7158.1 24 7202.3 12		2516.827 2469.389			
		7504.5 <i>4</i>		2409.389			
		7574.9 <i>5</i>		2099.103			
		7790.8 5		1881.043			
		7806.0 10		1865.110			
		8444.7 5		1226.467			
(9673.40)	$2^{(+)}$	5306.3 16		4366.4	$(1^+ \text{ to } 4^+)$		
(,,,,,,,		5486.8 <i>21</i>		4187.6	$(1^+ \text{ to } 4^+)$		
		5688.3 <i>5</i>		3983.0	$(1^+ \text{ to } 4^+)$		
		5700.4 19		3973.6	$(0^+ \text{ to } 5^+)$		
		5894.2 <i>21</i>		3779.72	$(1 \text{ to } 4)^+$		
		6602.3 9		3069.525			
		6614.6 8		3058.1	(2,3,4)		
		7102.7 21		2569.912			
		7624.4 15		2051.661			
(07/62 42)	3(+)	7790.8 5		1881.043			
(9763.42)		6252 2	400	3517	2+,3+		
9796.7	(21-)	1338.0^{b} 5	100	8458.7	(19 ⁻)		
10378.14	22+	1320.4 ^b 1	100	9057.73	20+	E2	E_{γ} : from (^{36}S , $\alpha 2n\gamma$).
		1.					Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in ($^{36}S,\alpha 2n\gamma$), $\gamma(DCO)$ in ($^{34}S,2\alpha 2n\gamma$).
10403.3	(22^{-})	1224.5 ^b 5	100	9178.8	(20^{-})		
11738.5	$24^{(+)}$	1360.4 ^b 1	100	10378.14	22 ⁺	(E2)	E_{γ} : from (^{36}S , $\alpha 2n\gamma$).
							Mult.: Q from $\gamma(DCO)$ in ($^{36}S,\alpha 2n\gamma$) and ($^{34}S,2\alpha 2n\gamma$); E2 indicated by $\gamma(pol)$ in
							$(^{36}S,\alpha 2n\gamma)$.
11746.3	(24^{-})	1343.0 ^b 5	100	10403.3	(22^{-})		
13170.0	26(+)	1431.4 ^b 1	100	11738.5	24(+)	E2	E_{γ} : from (^{36}S , $\alpha 2n\gamma$).
		1		11.00.0			Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in ($^{36}S,\alpha 2n\gamma$), $\gamma(DCO)$ in ($^{34}S,2\alpha 2n\gamma$).
13309.3	(26^{-})	1563.0 ^b 5	100	11746.3	(24^{-})		
	28 ⁽⁺⁾				26 ⁽⁺⁾	Ε0	E (360 2)
14738.2	28(1)	1568.2 ^b 3	100	13170.0	26(1)	E2	E _y : from $(^{36}S, \alpha 2ny)$.
							Mult.: from $\gamma(DCO)$ and $\gamma(pol)$ in ($^{36}S,\alpha 2n\gamma$), $\gamma(DCO)$ in ($^{34}S,2\alpha 2n\gamma$).

[†] Deduced from γ -ray energies available from different studies. Weighted averages taken when values of comparable accuracy exist. Iy values are photon branching ratios. A minimum uncertainty of 1% is assigned (by evaluators) when quoted $\Delta I \gamma < 1\%$ for a transition from 100 Rh ε decay.

[‡] γ from (n,γ) E=th only.

[#] γ from ¹⁰⁰Rh ε decay (4.6 m) only.

[@] γ from ¹⁰⁰Rh ε decay (20.8 h) only.

[&]amp; γ from $(n,n'\gamma)$ only.

^a γ from $(\alpha, 2n\gamma)$ only.

^b γ from (36 S, α 2n γ) only.

^c Uncertainty increased by a factor of 5 in the fitting procedure, as the γ ray fits poorly.

^d Uncertainty increased by a factor of 4 in the fitting procedure, as the γ ray fits poorly.

^e Uncertainty increased by a factor of 3 in the fitting procedure, as the γ ray fits poorly.

f The multipolarity assignments and mixing ratios are based on ce, $\gamma(\theta)$, $\gamma\gamma(\theta)$ and $\gamma(\ln pol)$ in the following datasets: $\gamma\gamma(\theta)$ and ce data in 100 Rh ε decay (20.8 h); $\gamma(\theta)$ and ce data in $(\alpha,4n\gamma)$; $\gamma\gamma(\theta)$ and $\gamma(\ln pol)$ in $(^{34}S,\alpha 2n\gamma)$; $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(n,n'\gamma)$. In addition lifetime data are used to rule out M2 transitions over E2 and assign M1+E2 when mixing ratio is significant. The multipolarity assignments and mixing ratios given here are from $\gamma(\theta)$ data in $(\alpha, 2n\gamma)$ data, unless otherwise stated. For Ey's below 1 MeV or so, for $\Delta J=1$ transitions, M1+E2 multipolarity is assigned when δ has a significantly large value so that M2 component is less likely from Weisskopf estimates.

g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^h Multiply placed with undivided intensity.

i Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{100}_{44} \mathrm{Ru}_{56}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{100}_{\ 44}{\rm Ru}_{56}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{100}_{44} \mathrm{Ru}_{56}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

--- → γ Decay (Uncertain)

 $^{100}_{\ 44} Ru_{56}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

- ► γ Decay (Uncertain)

 $^{100}_{44} \mathrm{Ru}_{56}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

 $^{100}_{\ 44} Ru_{56}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

 $^{100}_{44} \mathrm{Ru}_{56}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

--- ► γ Decay (Uncertain)

58

 $\begin{array}{c} Band(F)\hbox{: Band based on}\\ (28^+)\end{array}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110,1745 (2009)	31-Dec-2008

 $Q(\beta^{-})=-2322\ 5;\ S(n)=9219.64\ 5;\ S(p)=10051\ 24;\ Q(\alpha)=-3413.0\ 12$ 2012Wa38

Note: Current evaluation has used the following Q record -2323 5 9219.74 5 10051 24-3411.2 16 2003Au03.

¹⁰²Ru <u>Levels</u>

All band assignments from $^{96}\mathrm{Zr}(^{13}\mathrm{C},\alpha 3\mathrm{n}\gamma)$ (2005So09).

Cross Reference (XREF) Flags

	A B C D E F	102 Rh $arepsilon$ dec	γ) K	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
0&	0^{+}	stable	ABCDEFGHIJKLMNOP	$(r^2)^{1/2}$ =4.4818 fm 20 (2004An14, evaluation).
475.0962 ^{&} 10	2+	18.4 ps <i>3</i>	ABC EFGHIJKLMNOP	Q=-0.64 5; μ =+0.71 6 β_2 = 0.2404 $I4$ (2001Ra27) E(level): From Budapest data for (n, γ). Q: From coulomb excitation, other value: -0.33 I (1998Hi01) Others: 1980La01, 1979Bo28. μ : From IPAC (1989Ra17), recalculated for $I_{1/2}$. $I_{1/2}$: From B(E2) evaluation (2001Ra27) (207-d $I_{1/2}$ Rh ε decay).
943.69 5	0+	25 ps 4	B FG J	$q_{K}^{2}(E0/E2)=0.175$ 15, $X(E0/E2)=0.0142$ 12, $\rho^{2}(E0)=0.014$ 3 (2005Ki02, evaluation). J^{π} : E0 γ to 0 ⁺ (102 Rh ε decay (207 d)).
1103.047 <i>g</i> 13	2+	4.0 ps 5	ABC EFG IJ O	E(level): From Budapest data for (n, γ) . J^{π} : E2+M1 to 2^{+} ; $\gamma \gamma(\theta)$ in 102 Rh ε decay (2.9 y).
1106.43 ^{&} 3	4+	$3.0^{\#}$ ps 5	ABC EFG JK MNOP	J^{π} : $\gamma(\theta)$, $\gamma(\text{pol})$, excit in $(\alpha,2n\gamma)$.
1521.600 ^h 22	3+		ABC FG 0	E(level): From Budapest data for (n,γ) . J^{π} : E2+M1 γ to 2^{+} ; $\gamma\gamma(\theta)$ in 102 Rh ε decay (2.9 y).
1580.56 4	2+		B FG	J ^π : E2+M1 γ to 2 ⁺ ; $\gamma\gamma(\theta)$ in ¹⁰² Rh ε decay (207 d) rules out J=1; γ' s to 0 ⁺ rule out J=3.
1603.37 18	$(3,4^+)$		A F	J^{π} : from log ft =5.5 from (4,5) and γ to 2^{+} .
1799.08 ⁸ 4	4+		A C FG K O	J^{π} : γ' s to $2^{+}, 4^{+}$.
1837.25 7	0+		B G	J ^π : J=0 from $\gamma\gamma(\theta)$ in ¹⁰² Rh ε decay (207 d); positive parity from E2 γ to 2 ⁺ .
1873.25 ^{&} 7	6+	1.1 [#] ps 4	C EFG K MNOP	J^{π} : $\gamma(\theta)$, $\gamma(\text{pol})$, excit in $(\alpha,2n\gamma)$ and band structure in $({}^{7}\text{Li},(p,d,t)\text{xn})$.
1968.01 <i>16</i>	$(0)^{+}$		F	J^{π} : $(0,1,2)^+$ from log f :=5.5 from 1 ⁺ . 0 ⁺ favored from absence of γ 's to other 0 ⁺ states.
2036.73 <i>9</i> 2043.393 ^{<i>a</i>} 25	2 ⁺ 3 ⁻		B FG IJ L P	J^{π} : E2+M1 γ to 2 ⁺ ; $\gamma\gamma(\theta)$ in 102 Rh ε decay (207 d). B(E3) \uparrow =0.065 $I0$ E(level): From Budapest data for (n, γ). B(E3) \uparrow : From Coul. ex., (d,d'). J^{π} : L(d,d')=3.

102Ru Levels (continued)

E(level) [†]	J ^π @	T _{1/2} ‡		XR	EF		Comments
2152.74 6				E			
2190.0 <i>14</i>				G			
2219.03 ^h 9	5+		A (FG		0	J ^π : E2+M1 γ to 4 ⁺ ; $\gamma\gamma(\theta)$ in ¹⁰² Rh ε decay (2.9 y) consistent with J=3 or 5; log ft rules out J=3.
2240.78 12				FG			- 102
2261.09 5	2-		В	FG			J^{π} : $\gamma\gamma(\theta)$ results from 102 Rh ε decay (207 d) consistent with J=2, not with J=1 or J=3; strong population of this level from the 3^+ 42-eV resonance in 101 Ru(n, γ). J^{π} : parity from E1 to π =+ states.
2302.70 11	(4)			G	I		E(level): from (n,γ) . J^{π} : combining the results of 1974Ri03 and 1982Co15 J^{π} =(4) is
2367.3 7	(3-)			E G	тк		suggested by 1982Co15. E(level): from (n, γ) .
2307.3 7	(3)			E G	ı K		J^{π} : L(d,d') probably 3, although L=4 cannot be excluded.
2373.05 ^a 20	5-					P	(-,- / p, -,
2385.7 11				G	Ι		
2420.0 4	$(3,4^+)$		A	FG			J^{π} : from log ft=6.6 from (4,5) and γ to 2^{+} .
2441.8 3	$(3,4^+)$		A		_		J^{π} : from log $ft=6.2$ from (4,5) and γ to 2^{+} .
2460 <i>5</i> 2467.389 <i>25</i>					Ι		Edeval), From Dudancet data for (n a)
2567 <i>5</i>				EFG	Ι		E(level): From Budapest data for (n, γ) .
2586.5 ⁸ 4	6+				_	0	
2591.79 5	Ü			FG			
2614.74 <i>12</i>	$(3,4^+)$		Α	F			J^{π} : log ft =6.4 from (4,5) and γ to 2^{+} .
2649.93 ^b 23	6-			E G	ΙK	P	
2676.1 10	$(0,1,2)^+$			F			J^{π} : log ft =5.7 from 1 ⁺ .
2700.5 5	$(3,4^+)$		A	E G	ΙK	0	J^{π} : log ft =5.8 from (4,5) and γ to 2^{+} .
2706.1 ^{&} 3	8+	0.9 [#] ps <i>3</i>			1	MN P	
2706.45 ^a 25	(7^{-})			E	K	P	
2711.15 6	(2.4+)			G			E(level): from (n,γ) .
2719.2 <i>4</i> 2789.84 <i>6</i>	$(3,4^+)$		A	G			J^{π} : log ft =5.2 from (4,5) and γ to 2^+ . E(level): from (n, γ).
2800.97 9				G			E(level). from (n, γ) .
2814.4 3	$(3,4^+)$		Α	•			J^{π} : log ft =5.8 from (4,5) and γ to 2 ⁺ .
2822.9 11	(-, ,			G			()-) ()-)
2877.5 13				G			
2899.0 <i>14</i>				G			
2909.1 <i>10</i>	$(0,1,2)^+$						J^{π} : log $ft=5.5$ from 1 ⁺ .
2913.7 <i>7</i> 2936.6 ^c 4	$(3,4^+)$ (7^-)		A			P	J^{π} : log ft =5.5 from (4,5) and γ to 2^{+} . J^{π} : parentheses used as no strong arguments are given.
2942.0^{b} 3	(8-)			T.	17	P	J. parentheses used as no strong arguments are given.
2944.75 <i>4</i>	(0)			E F	K	r	
2946.1 6				G			
2956.4 17				G			
2967.0 <i>13</i>				G			
3010.3 7	$(3,4^+)$		A				J^{π} : log ft =6.0 from (4,5) and γ to 2^{+} .
3035.4 ^h 4	7+			FG		0	
3056.73 6				FG			E(level): from (n,γ) .
3085.6 <i>18</i>	(0=)			G	77	ъ.	
3138.5 ^a 4 3157.1 21	(9-)			G	K	P	
3234.2 11				G			
3244.7 <i>14</i>				G			
3328.2 ^d 5	(8-)					P	
2220.2	()					•	

¹⁰²Ru Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XRI	EF	E(level) [†]	J^{π} @	T _{1/2} ‡	XF	REF
3347.2 26			G		4179.8 13			G	
3388.6 <i>13</i>			E G		4183.7° 5	(11^{-})			P
3394.9 <mark>8</mark> 6	(8^{+})			0	4294.7 <mark>8</mark> 8	(10^{+})			0
3434.2 ^{&} 4	10 ⁺	1.7 [#] ps 6	E	K MNOP	4365.1 ^b 5	(12^{-})			P
3450.4 11		•	G		4615				K
3456.7 ^c 4	(9-)			P	4710.9 ^a 7	(13^{-})			K P
3468.9 <i>15</i>			G		4720.1 ^e 5	$(12)^{+}$			P
3537.9 ^b 4	(10^{-})			K P	4754.6 ^h 8	(11^{+})			0
3549.1 <i>15</i>			G		4808.4 & 7	14+	0.9 [#] ps <i>3</i>	E	K MN P
3576.7 14			G		4839.8 ^d 9	(12^{-})			P
3680.1 <i>13</i>			G		5069.9 ^c 6	(13^{-})			P
3688.6 12			G		5370.4 ^b 6	(14^{-})			P
3699.6 <i>13</i>			G		5678.4 ^e 6	$(14)^{+}$			P
3718.4 11			G		5724.6 <mark>&</mark> 8	16 ⁺		E	K N P
3733.0 22			G		5757.6 ^a 8	(15^{-})			P
3741.3 11			G		5766.6 ^d 11	(14^{-})			P
3749.3 <i>13</i>			G		6058.3 ^c 8	(15^{-})			P
3758.5 10			G		6080.8 ^f 8	(14^{+})			P
3772				K	6507.2 ^b 7	(16^{-})			P
3782.1 <i>11</i>			G		6725.4 ^d 12	(16^{-})			P
3791.3 <i>13</i>			G		6790.4 <mark>&</mark> 8	18 ⁺			N P
3819.6 ^a 5	(11^{-})		Ğ	K P	6918.0 <mark>a</mark> 9	(17^{-})			Р
3840.9 12	, ,		G		7000.5 ^f 8	(16^+)			P
3858.9 ^e 5	$(10)^{+}$			P	7118.3 ^c 9	(17^{-})			P
3875.7 16			G		7750.4 ^b 8	(18^{-})			P
3885.6 11			G		7998.3 <mark>&</mark> 9	20+			N P
3916.7 ^h 6	Q^+			0	8053.6 ^f 8	(18^{+})			P
3937.0 <i>13</i>			G		8125.9 ^a 10	(19^{-})			P
3972.9 14			G		8247.0 ^c 10	(19-)			P
4013.0 ^d 7	(10^{-})			P	9037.3 ^b 11	(20^{-})			P
4033.5 14	, ,		G		9219.52 <i>10</i>	, ,		F	
4055.6 ^{&} 5	12 ⁺	2.5 [#] ps 7	E	K MN P	9248.7 ^f 9	(20^+)			P
4066.2 13		1	G		9304.5 <mark>&</mark> 10	22+			P
4081.0 <i>13</i>			G		9370.5 <mark>a</mark> 11	(21^{-})			P
4087.9 <i>13</i>			G		9509.7 ^c 11	(21^{-})			P
4113.9 22			G		10681.1 <i>a</i> 12	(23^{-})			P
4125.3 <i>14</i>			G		10708.3 ^{&} 11	24+			P
4179.1 <i>15</i>			G		12221.6? ^{&} 13	(26^{+})			P

 $^{^{\}dagger}$ Unless noted otherwise, from adopted gammas using a least-squares procedure.

[@] Unless noted otherwise, from $\gamma\gamma$, charged particle- γ coin, $\gamma\gamma(\theta)(DCO)$, $\gamma\gamma(\text{lin pol})$ and observed band structure in ⁹⁶Zr(¹³C,α3nγ) (2005So09). & Band(A): Yrast band. Predominantly $\nu h_{11/2}^2$ above the first crossing at $\hbar \omega$ ≈0.4 MeV.

^a Band(B): Band 2. $\nu(h_{11/2}(d_{5/2},g_{7/2}))$; $\alpha=1$. Vibration structure below 9⁻, rotational above this spin. Bandhead at 2045 keV.

¹⁰²Ru Levels (continued)

- ^b Band(b): Band 3. $\nu(h_{11/2}(d_{5/2},g_{7/2})); \alpha=0.$
- ^c Band(C): Band 4. $\nu(h_{11/2}(d_{5/2},g_{7/2})); \alpha=1$. Bandhead at 2936 keV.
- ^d Band(c): Band 5. $\nu(h_{11/2}(d_{5/2},g_{7/2})); \alpha=0.$
- ^e Band(D): Band based on 10^+ . γ -vibration $\otimes \nu h_{11/2}^2$ (?).
- ^f Band(E): Band based on (14⁺). β -vibration $\otimes \nu h_{11/2}^2$ (?).
- ^g Band(F): quasi- γ band, even spin (2005La07).
- ^h Band(f): quasi- γ band, odd spin (2005La07).

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	δ&	Comments
475.0962	2+	475.095 <i>1</i>	100	0 0+	E2		B(E2)(W.u.)=44.6 7 E_{γ} : From Budapest data for (n, γ) . B(E2)(W.u.): From Coul. ex.
943.69	0^+	468.64 9	100	475.0962 2+	E2		Mult.: from $(\alpha,2n\gamma)$. B(E2)(W.u.)=35 θ B(E2)(W.u.): From Coul. ex.
		943.48		0 0+	E0		Observed in 207-d 102 Rh ε decay. $I_{(\gamma+\varepsilon\varepsilon)}$: $I_{ce}(944\gamma)/I_{\gamma}(468\gamma)=0.00095\ 18$.
1103.047	2+	627.974 12	100 3	475.0962 2+	E2(+M1)+E0	-60 20	B(M1)(W.u.)= $(4.E-6 3)$; B(E2)(W.u.)= $(32 5)$ E _{γ} : From Budapest data for (n,γ) . B(E2)(W.u.): From Coul. ex.
		1103.03 <i>3</i>	59 <i>3</i>	0 0+	E2		B(E2)(W.u.)=1.14 <i>15</i> B(E2)(W.u.): From Coul. ex.
1106.43	4+	631.25 3	100	475.0962 2+	E2 [@]		B(E2)(W.u.)=66 11 B(E2)(W.u.): From Coul. ex. Mult.: from $(\alpha, 2n\gamma)$.
1521.600	3+	415.24 3	6.3 6	1106.43 4+			$\mathbf{Mint}\mathbf{Mon}(a,2n_f).$
		418.48 3	31.8 22	1103.047 2+	E2+M1	$-7.2\ 10$	
		1046.498 2	100 4	475.0962 2+	E2+M1	-5.7 3	δ: from 1989Hi12.
1580.56	2+	636.83 4	60 4	943.69 0+			
		1105.36 7	100 7	475.0962 2+	E2+M1	+0.25 3	
		1580.64 <i>16</i>	14 3	0 0+			
1603.37	$(3,4^+)$	497.14 19	100 14	1106.43 4+			
		1127.5 3	20 1	475.0962 2+			
1799.08	4+	692.25 6	59 5	1106.43 4+			
		696.50 6	100 14	1103.047 2+			
1027.25	0+	1323.3 3	16 3	475.0962 2 ⁺			
1837.25	0_{+}	256.8 4	5.3 24	1580.56 2 ⁺			
		733.93 8	27 5	1103.047 2+	E2		
10=2	- 1	1362.06 19	100 11	475.0962 2+			D. (1) (1) (1) (2) (3)
1873.25	6+	766.83 <i>4</i>	100	1106.43 4+	E2@		B(E2)(W.u.)=68 25
1968.01	$(0)^{+}$	865.96 <i>16</i>	100	1103.047 2+			Mult.: from $(\alpha, 2n\gamma)$.
2036.73	2+	456.26 <i>13</i>	81 12	1580.56 2 ⁺			
2000.70	-	930.5 2	27 10	1106.43 4+			
		1561.48 <i>17</i>	100 16	475.0962 2+	E2+M1+E0	-1.9 <i>4</i>	
		2037.0 2	27 12	0 0+	22 1111 120	1.,, /	
2043.393	3-	463.1 ^a	2, 12	1580.56 2+			
	_	940.30 <i>3</i>	86 8	1103.047 2+			
		1568.39 <i>4</i>	100 9	475.0962 2 ⁺	E1@		

S

$\gamma(^{102}\text{Ru})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f J	$\frac{\pi}{f}$ Mult.#	δ&	Comments
2152.74		1047.3 ^a	100	1106.43	+		
2219.03	5 ⁺	345.89 12	1.98 23	1873.25			
		420.40 <i>15</i> 697.42 9	7.2 <i>6</i> 100 <i>4</i>	1799.08 4 1521.600 3	+ 52		
		1112.82 8	39 3	1321.600 3		-1.1 +6-9	
2261.09	2-	216.9 3	1.7 17	2043.393		1.1 10)	
		680.64 <i>4</i>	83 11	1580.56	+ E1		
		739.50 7	100 10	1521.600 3		-0.1 I	
		1158.11 5	100 7	1103.047 2			
		1786.4 <i>4</i> 2261.3 <i>4</i>	71 <i>10</i> 3 <i>3</i>	475.0962 2 0 0			
2302.70	(4)	1197.2 ^a	100	1106.43			
2373.05	5-	328.1 4	2.4 8	2043.393			
2373.03	3	498.4 <i>4</i>	3.2 8	1873.25	+ ~		
		1266.2 5	100 6	1106.43 4	+ E1 [@]		
2420.0	$(3,4^+)$	1318 <i>3</i>	59 12	1103.047 2	+		
		1944.9 <i>4</i>	100 6	475.0962 2			
2441.8	$(3,4^+)$	920.2 9	20 3	1521.600 3			
		1338.6 <i>3</i> 1967 <i>3</i>	100 <i>4</i> 35.4 2 <i>1</i>	1103.047 2 475.0962 2			
2467.389		1992.02 <i>10</i>	100	475.0962 2			
2586.5	6+	712.4 5	< 56	1873.25	+		
		786.8 <i>4</i>	100 11		+		
2591.79	(2.4+)	548.44 5	100	2043.393 3			
2614.74	$(3,4^+)$	1511.68 <i>14</i> 2140.00 <i>25</i>	54 <i>4</i> 100 <i>5</i>	1103.047 2 475.0962 2			
2649.93	6-	276.8 3	33 3	2373.05 5			
2049.93	U	775.4 <i>3</i>	100 11	1873.25			
2676.1	$(0,1,2)^+$	2201.2 3	100 11	475.0962 2			
2700.5	$(3,4^+)$	1179.2 6	10.7 15	1521.600 3			
		1596.2 8	48 <i>3</i>	1103.047 2	+		
		2225.7 15	100 4	475.0962 2			
2706.1	8+	831.4 <i>3</i>	100	1873.25	+ E2 [@]		B(E2)(W.u.)=56 19 E _{γ} : forms together with E γ =831.0 in single spectra an unresolved doublet.
2706.45	(7-)	333.6 5	14 3	2373.05	- E2@		, 6 , , 6 4 6 4
	· ,	831.4 <i>3</i>	100 5	1873.25	_		
2719.2	$(3,4^+)$	1197.6 5	49 6	1521.600 3	+		
		1615.3 7	100 4	1103.047 2			
2014.4	(2.4+)	2244.7 15	77 3	475.0962 2			
2814.4	$(3,4^+)$	1292.5 <i>3</i>	100 10	1521.600	•		

6

$\gamma(^{102}\text{Ru})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ \sharp}$	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
2814.4	$(3,4^+)$	1711.2 <i>15</i>	66 4	1103.047	2+		
2909.1	$(0,1,2)^+$	2340.0 <i>15</i> 2434 <i>1</i>	12.8 16	475.0962	2 ⁺		
2909.1	$(0,1,2)$ ⁺ $(3,4^+)$	1810.7 <i>10</i>	100 100 <i>4</i>	475.0962 1103.047	2+		
2)13.7	(3,1)	2438.4 10	79 3	475.0962			
2936.6	(7^{-})	563.9 4	100 17	2373.05	5-	$Q^{@}$	
		1061.9 9	33 8	1873.25	6+		
2942.0	(8-)	235.4 3	58 4	2706.45	(7^{-})	D@	
		292.3 5	100 6	2649.93	6-	E2 [@]	
3010.3	$(3,4^+)$	1488.1 <i>10</i> 1907.3 <i>10</i>	41.1 <i>21</i> 100 <i>8</i>	1521.600	3 ⁺ 2 ⁺		
		2536 3	30.2 21	1103.047 475.0962			
3035.4	7+	815.1 4	100 12	2219.03	5+		
2120 -	·0-:	1161.5 5	<40	1873.25	6+		
3138.5	(9-)	196.6 5	0.9 5	2942.0	(8-)	E2 [@]	
	(0-)	432.0 3	100 6	2706.45	(7-)		15 1 17 00 067 137 0 1 (2007)
3328.2	(8-)	386.3 <i>4</i> 621.4 <i>9</i>	100 <i>13</i> 38 <i>13</i>	2942.0 2706.45	(8 ⁻) (7 ⁻)	M1+E2 [@]	Mult.: No δ from 96 Zr(13 C, α 3n γ) (2005So09).
3394.9	(8 ⁺)	808.4 5	100	2586.5	6 ⁺		
3434.2	10 ⁺	728.1 3	100	2706.1	8+	E2 [@]	B(E2)(W.u.)=57 21
3456.7	(9-)	514.6 4	100 13	2942.0	(8-)		_()()
		520.4 4	44 6	2936.6	(7^{-})	$Q^{@}$	
		750.2 8	25 6	2706.45	(7^{-})	6	
3537.9	(10^{-})	399.4 <i>4</i>	16 2	3138.5	(9-)	M1+E2 [@]	Mult.: No <i>δ</i> from 96 Zr(13 C, α 3n γ) (2005So09).
2772		595.9 3	100 5	2942.0	(8-)	E2 [@]	
3772	(11=)	830.0 3	100	2942.0	(8-)	E2 [@]	
3819.6	(11^{-}) $(10)^{+}$	680.9 5	100	3138.5	(9 ⁻) 10 ⁺	$M1+E2^{@}$	Mult.: No δ from ⁹⁶ Zr(¹³ C, α 3n γ) (2005So09).
3858.9	(10)	424.6 <i>4</i> 1152.7 <i>4</i>	65 <i>10</i> 100 <i>10</i>	3434.2 2706.1	8 ⁺	E2 [@]	Mult.: No θ from $\Delta r(^{-1}C_{*}\alpha \sin \gamma)$ (20058009).
3916.7	9+	881.3 4	100 10	3035.4	6 7 ⁺	Li2	
4013.0	(10-)	684.8 5	100	3328.2	(8-)	$Q^{@}$	
4055.6	12+	621.4 3	100	3434.2	10+	*	
4183.7	(11^{-})	645.6 5	35 4	3537.9	(10^{-})	M1+E2 [@]	Mult.: No <i>δ</i> from 96 Zr(13 C, α 3n γ) (2005So09).
		727.1 4	100 7	3456.7	(9^{-})	Q <mark>@</mark>	
4294.7	(10^+)	899.8 5	100	3394.9	(8^+)		
4365.1	(12^{-})	545.4 <i>4</i> 827.2 <i>3</i>	7.8 <i>13</i> 100 <i>7</i>	3819.6 3537.9	(11^{-}) (10^{-})	E2	
4615		843.0 5	100 /	3772	(10)	114	

$\gamma(^{102}\text{Ru})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	J_f^π	Mult.#	Comments
4710.9	(13-)	891.3 5	100	3819.6	(11-)		
4720.1	$(12)^{+}$	664.6 <i>4</i>	55 9	4055.6	12 ⁺	M1+E2 [@]	Mult.: No δ from 96 Zr(13 C, α 3n γ) (2005So09).
		860.8 <i>5</i>	55 9	3858.9	$(10)^{+}$	$Q^{@}$	
		1286.1 4	100 9	3434.2	10+	Q [@]	
4754.6	(11^{+})	837.9 5	100	3916.7	9+	@	
4808.4	14+	752.8 5	100	4055.6	12+	E2 [@]	B(E2)(W.u.)=9.E+1 3
4839.8	(12^{-})	826.8 5	100 100	4013.0	(10^{-})	Q <mark>@</mark>	
5069.9 5370.4	(13^{-}) (14^{-})	886.2 <i>4</i> 1005.3 <i>3</i>	100	4183.7 4365.1	(11^{-}) (12^{-})	E2 [@]	
5678.4	$(14)^{+}$	958.4 5	100 11	4720.1	$(12)^{+}$	Q [@]	
3070.4	(14)	1622.7 5	22 11	4055.6	12+	Q	
5724.6	16 ⁺	916.3 <i>3</i>	100	4808.4	14+	E2 [@]	
5757.6	(15^{-})	1046.7 <i>3</i>	100	4710.9	(13^{-})	E2 [@]	
5766.6	(14^{-})	926.8 7	100	4839.8	(12^{-})	0	
6058.3	(15^{-})	988.4 4	100	5069.9	(13^{-})	E2 [@]	
6080.8	(14^{+})	1272.3 4	100	4808.4	14+	F2(0)	
6507.2 6725.4	(16^{-}) (16^{-})	1136.8 <i>4</i> 958.8 <i>5</i>	100 100	5370.4 5766.6	(14^{-}) (14^{-})	E2 [@]	
6790.4	18+	1065.8 3	100	5724.6	16 ⁺	E2 [@]	
6918.0	(17^{-})	1160.4 4	100	5757.6	(15^{-})	E2 [@]	
7000.5	(16^{+})	919.6 5	22 11	6080.8	(14^{+})		
		1276.0 4	100 22	5724.6	16 ⁺	M1+E2 [@]	Mult.: No <i>δ</i> from 96 Zr(13 C, α 3n γ) (2005So09).
7118.3	(17^{-})	1060.0 4	100	6058.3	(15^{-})	$Q^{@}$	
7750.4	(18^{-})	1243.2 <i>4</i>	100	6507.2	(16^{-})	Q [@]	
7998.3	20+	1207.9 4	100	6790.4	18 ⁺	E2@	
8053.6	(18^{+})	1053.0 <i>4</i> 1263.2 <i>4</i>	75 25 100 25	7000.5 6790.4	(16 ⁺) 18 ⁺	Q [@]	
8125.9	(19 ⁻)	1207.9 4	100 23	6918.0	(17 ⁻)	E2 [@]	
8247.0	(19^{-})	1128.7 4	100	7118.3	(17^{-})	Q [@]	
9037.3	(20^{-})	1286.9 8	100	7750.4	(18-)		
9219.52		6161.9 6	3.4 14	3056.73	7 +		
		6185.5 <i>4</i> 6274.2 <i>3</i>	7.5 <i>17</i> 18 <i>3</i>	3035.4 2944.75	7+		
		6607.5 7	5.4 18	2614.74	$(3,4^+)$		
		6626.84 <i>14</i>	100 10	2591.79			
		6751.4 <i>4</i>	86 15	2467.389			

 ∞

γ (102Ru) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#
9219.52		6957.8 <i>5</i>	9.0 18	2261.09	2-		9304.5	22 ⁺	1306.2 4	100	7998.3 20 ⁺	E2 [@]
		6978.08 <i>18</i>	44 5	2240.78			9370.5	(21^{-})	1244.6 <i>4</i>	100	8125.9 (19-)	$Q^{@}$
		7176.6 5	13.2 25	2043.393	3-		9509.7	(21^{-})	1262.7 <i>6</i>	100	8247.0 (19 ⁻)	
		7697.2 <i>6</i>	4.7 18	1521.600	3+		10681.1	(23^{-})	1310.6 6	100	9370.5 (21-)	
		8112.7 4	7.4 12	1106.43	4+		10708.3	24 ⁺	1403.8 <i>4</i>	100	9304.5 22+	$Q^{@}$
9248.7	(20^+)	1195.1 <i>4</i>	100 50	8053.6	(18^{+})	$Q^{@}$	12221.6?	(26^+)	1512.4 <mark>a</mark> 7	100	10708.3 24 ⁺	
		1250.3 5	100 50	7998.3	20+	-						

 $^{^{\}dagger}$ Unless noted otherwise, weighted averages of data from 102 Tc β^- decay, 102 Rh β^- decay, 100 Mo(α ,2n γ) 101 Ru(n, γ) and different (HI,xn γ) experiments if

9

[‡] Branchings from each level are weighted averages of data from 102 Tc β^- decay, 102 Rh β^- decay, 101 Ru(n, γ) 100 Mo(α ,2n γ) and other (HI,xn γ) reactions if available. # From 102 Rh ε decay, unless noted otherwise. @ From 96 Zr(13 C, α 3n γ) and/or 100 Mo(α ,2n γ). & From 102 Rh ε decay.

^a Placement of transition in the level scheme is uncertain.

6+

 0^+

2936.6 2706.45 2706.1

2586.5

0 stable

0.9 ps 3

Adopted Levels, Gammas

 $^{102}_{44} \mathrm{Ru}_{58}$

Band(E): Band based on (14^+)

Band(f): Quasi-γ band, odd spin (2005La07)

$$^{102}_{44} \mathrm{Ru}_{58}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 108,2035 (2007)	30-Mar-2007

 $Q(\beta^{-})$ =-1138 4; S(n)=8901 3; S(p)=10781 10; $Q(\alpha)$ =-4329 3 2012Wa38

Note: Current evaluation has used the following Q record -1139 4 8901 3 10781 9 -4329 7 2003Au03.

¹⁰⁴Ru Levels

Cross Reference (XREF) Flags

Α	104 Tc β^- decay	F	232 Th(18 O,xn γ)
В	104 Rh ε decay (42.3 s)	G	162 Dy(36 S,xn γ)
C	104 Ru($\pi^{-},\pi^{-}X$)	H	110 Pd(86 Kr,xn γ)
D	104 Ru(d,d') E=12 MeV	I	176 Yb(28 Si,X γ)
E	Coulomb excitation		

E(level) [‡]	J^{π} †	T _{1/2}	XREF	Comments
0.0#	0+	stable	ABCDEFGHI	
358.02 [#] 7	2+	56.4 ps <i>10</i>	AB DEFGHI	μ =+0.82 10 (1969He11,1974Hu01,1989Ra17); Q=-0.70 8 Q: from Coul. ex. μ : from IMPAC (1989Ra17). J ^π : Coul. excited, L in (d,d'). T _{1/2} : from B(E2)=0.841 16 (1987Ra01) in Coul. ex.
888.48 [#] 9	4+	5.6 ps 6	A DEFGHI	$T_{1/2}$: from B(E2) in Coul. ex. J^{π} : E2 γ to 2 ⁺ , L=4 in (d,d').
893.10 ^{&} 8	2+	5.0 ps 5	A DE I	J^{π} : $\gamma \gamma(\theta)$ in Tc decay, L=2 in (d,d'). T _{1/2} : from B(E2) in Coul. ex.
988.27 <i>17</i>	0+	7.9 ps 9	AB E	$T_{1/2}$: from B(E2) in Coul. ex. J^{π} : $\gamma \gamma(\theta)$ in Tc decay.
1242.36 <mark>&</mark> 9	3 ⁺		A E I	J^{π} : J=3 from $\gamma\gamma(\theta)$ in Tc decay. M1+E2 γ to 2 ⁺ .
1335	0_{+}	0.90 ps 5	E	
1502.60 ^{&} 10	4+	2.7 ps <i>3</i>	A E I	J^{π} : from $\gamma\gamma(\theta)$ in Tc decay. T _{1/2} : from B(E2) in Coul. ex.
1515.44 ^b 9	2+	1.2 ps 2	A E	$T_{1/2}$: from B(E2) in Coul. ex. J^{π} : from $\gamma\gamma(\theta)$ in Tc decay.
1556.4 [#] <i>3</i> 1750?	6 ⁺ (2 ⁺)	1.33 ps +12-4	EFGHI E	$T_{1/2}$: from B(E2) in Coul. ex.
1872.39 ^{&} 12 1970.43 10 1974.8 4 2004 5	(5 ⁺) 3 ⁻ (6 ⁻ ,7)		A I A DE H H D	J^{π} : $\gamma\gamma(\theta)$ in Tc decay gives J=1 or 3, DWBA in (d,d') gives J=3.
2034.85 9	2+		A D	J^{π} : from $\gamma\gamma(\theta)$ in Tc decay. Observed in (d,d').
2080.84 ^b 10 2095 2196.6 10 2232.8 ^a 3	4 ⁺ (2 ⁺ ,4 ⁺) (6 ⁺) (5 ⁻)	0.7 ps +3-2	A E E E I HI	$T_{1/2}$: from B(E2) in Coul. ex.
2269.04 <i>10</i> 2285.07 <i>12</i>	(3,4) 2 ⁺		A A D	J^{π} : from $\gamma\gamma(\theta)$ in Tc decay. J^{π} : from $\gamma\gamma(\theta)$ in Tc decay. Observed in (d,d').
2320.4 [#] 4 2329.22 18 2373.75 12	8 ⁺ (1,2,3) (3,1)	0.56 ps +5-10	EFGHI A A	$T_{1/2}$: from B(E2) in Coul. ex. J^{π} : from $\gamma\gamma(\theta)$ in Tc decay. J^{π} : from $\gamma\gamma(\theta)$ in Tc decay J=3 is most probable, but J=1 is not ruled out.
2429.85 12			A	ruica out.

¹⁰⁴Ru Levels (continued)

E(level)‡	J^{π}	T _{1/2}	XREF		Comments		
2443 5				D			
2481.90 <i>11</i>	3-			D	J^{π} : DWBA in (d,d') fits well with 3 ⁻ .		
2489.91 <i>10</i>			A				
2524.28 <i>10</i> 2597.31 <i>16</i>			A A				
2600.7 [@] 4	(6-)		А	HI			
2613.9 ^a 3	(7^{-})			HI			
2618.97 <i>18</i>	(,)		A				
2623.4 ^{&} 10	(7^{+})			I			
2627.8 11				I			
2629.99 12			A	-			
2758.1 <i>9</i> 2759.95 <i>16</i>			Α	I			
2823.43 17			A				
2847.6 ^{&} 15	(8^{+})	2.1 ps +13-4		E I	$T_{1/2}$: from B(E2) in Coul. ex.		
2861.4 11	` ´			I	•,=		
2927.9 [@] 9	(8^{-})			I			
3035.9 8				I			
3075.03 <i>11</i> 3075.2 ^a 4	(9-)		A	HI			
3073.2 4 3111.9 [#] 5	(9) 10 ⁺			EFGHI			
3284.7 5	(10^{+})	0.26 ps +16-7		E HI	$T_{1/2}$: from B(E2) in Coul. ex.		
3333.80 23	(10)	0.20 ps 110 7	Α				
3384.4 <i>15</i>				I			
3414.42 <i>20</i> 3443.34 <i>14</i>			A				
3443.34 <i>14</i> 3472.9 [@] <i>14</i>	(10=)		A	-			
3501.59 <i>11</i>	(10^{-})		Α	I			
3507.32 12			A				
3582.81 <i>14</i>			A				
3583.90 <i>15</i>			A				
3618.16 <i>15</i> 3676.74 <i>19</i>			A A				
3691.2 ^a 5	(11^{-})			HI			
3713.4 [#] 6	(12^{+})			FGHI			
3875.40 <i>18</i>	, ,		A				
3919.45 <i>19</i>			A				
4163.9 [@] 17	(12^{-})			I			
4170.10 <i>17</i> 4263.72 <i>20</i>			A A				
4267.70 19			A				
4439.2 [#] 7	(14^{+})			GHI			
4443.2 ^a 12	(13^{-})			I			
5357.0 [#] 12	(16^{+})			HI			

 $^{^{\}dagger}$ J^{π} without comments are from γ properties and band assignments.

[‡] Level energy from least-squares adjustment.

<sup>Band(A): g.s. band.
Band(B): Band based on (6⁻).
Band(C): K^π=2⁺ band(Gamma Band).
Band(D): Band based on 5⁻.</sup>

^b Band(E): Beta Band.

γ (104Ru)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	$\alpha^{\#}$	Comments
358.02	2+	358.0 1	100	$0.0 0^{+}$			0.01502	B(E2)(W.u.)=57.9 11
888.48	4+	530.5 1	100	358.02 2+				B(E2)(W.u.)=83 9
893.10	2+	535.1 <i>1</i>	100 7	358.02 2+	M1+E2	-9 2		B(M1)(W.u.)=0.00022 10;
		893.1 <i>1</i>	70 7	0.0 0+	E2			B(E2)(W.u.)=55 6 B(E2)(W.u.)=2.8 5 Mult.: from Coul. ex.
988.27	0+	630.3 <i>3</i>	100	358.02 2+	E2			B(E2)(W.u.)=25 3 Mult.: from Coul. ex.
1242.36	3+	349.3 2 353.7 3 884.4 <i>I</i>	22.8 <i>24</i> 8.9 <i>16</i> 100 <i>13</i>	893.10 2 ⁺ 888.48 4 ⁺ 358.02 2 ⁺		3.2 4		
1335	0^+	442 [@] 1	100 13	893.10 2+		3.2 4		
1502.60	4+	977 1	100 14	358.02 2 ⁺				
1502.60	4	609.5 <i>1</i> 614.2 <i>1</i>	100 <i>14</i> 59 <i>5</i>	893.10 2 ⁺ 888.48 4 ⁺				
		1144.7 2	21 3	358.02 2 ⁺				
1515.44	2+	527.2 2	13.7 25	988.27 0 ⁺				
1313.44	2	627.0 2	7.8 16	888.48 4 ⁺				
		1157.4 <i>I</i>	100 9	358.02 2+				
		1515.5 2	28 3	$0.0 0^{+}$				
1556.4	6+	667.9 3	100	888.48 4+				
1872.39	(5^{+})	630.0 <i>1</i>	100 40	1242.36 3+				
	(-)	984.0 2	34 6	888.48 4+				
1970.43	3-	1612.4 <i>I</i>	100	358.02 2+	E1+M2	0.01		
1974.8	$(6^-,7)$	418.4 <i>3</i>	100	1556.4 6+				
2034.85	2+	519.4 <i>1</i>	11.4 <i>11</i>	1515.44 2+				
		792.5 <i>1</i>	32 <i>3</i>	1242.36 3+				
		1676.8 <i>1</i>	100 9	358.02 2+				
2080.84	4+	565.5 3	11.4 20	1515.44 2+				
		838.6 <i>I</i>	100 10	1242.36 3+				
		1187.7 2	43 5	893.10 2+				
2005	(0+ 4+)	1722.7 <i>I</i> 580 [@] <i>I</i>	89 9	358.02 2 ⁺				
2095	$(2^+,4^+)$			1515.44 2 ⁺				
		852 <i>I</i> 1203 <i>I</i>		1242.36 3 ⁺ 893.10 2 ⁺				
		1205 <i>I</i> 1206 <i>I</i>		888.48 4 ⁺				
2196.6	(6 ⁺)	694 <i>1</i>	100	1502.60 4				
2232.8	(5^{-})	1344.2 3	100	888.48 4+				
2269.04	(3,4)	298.6 2	5.5 14	1970.43 3				
	(-, -)	1376.1 2	18.6 25	893.10 2+				
		1380.5 <i>1</i>	86 9	888.48 4+				
		1911.0 <i>I</i>	100 9	358.02 2+				
2285.07	2+	314.7 <i>3</i>	7.8 19	1970.43 3				
		1396.6 <i>I</i>	100 11	888.48 4+				
2320.4	8+	764.0 <i>3</i>	100	1556.4 6 ⁺				
2329.22	(1,2,3)	1436.3 <i>3</i>	23 6	893.10 2+				
	(2.4)	1971.1 2	100 11	358.02 2+				
2373.75	(3,1)	2015.7 1	100	358.02 2+				
2429.85		349.1 3	8 4	2080.84 4+				
		459.6 2	10 3	1970.43 3				
2481.90	3-	1541.3 <i>1</i> 511.6 <i>3</i>	100 8 6.4 <i>16</i>	888.48 4 ⁺ 1970.43 3 ⁻				
4 4 01.90	J	1239.6 2	8.0 12	1970.43 3 1242.36 3 ⁺				
		1593.6 3	15.2 20	888.48 4 ⁺				
		2123.8 <i>I</i>	100 8	358.02 2+				

$\gamma(^{104}\text{Ru})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π
2489.91	·	1247.6 <i>1</i>	13.4 14	1242.36	3+
		1596.7 <i>1</i>	100 9	893.10	2+
		1601.5 2	4.5 10	888.48	4+
2524.28		553.8 <i>1</i>	15 <i>3</i>	1970.43	3-
		1021.8 <i>I</i>	22.6 20	1502.60	4+
		1281.8 <i>I</i>	100 9	1242.36	3+
		1635.8 2	31 4	888.48	4+
2597.31		1609.0 <i>3</i>	35 10	988.27	0^{+}
		2239.3 2	100 <i>13</i>	358.02	2+
2600.7	(6^{-})	1044.3 <i>3</i>	100	1556.4	6+
2613.9	(7^{-})	381.0 <i>3</i>	15 <i>3</i>	2232.8	(5^{-})
		1057.5 <i>3</i>	100 11	1556.4	6+
2618.97		333.8 <i>3</i>	100 14	2285.07	2+
		584.0 <i>3</i>	99 <i>14</i>	2034.85	2+
		648.7 <i>3</i>	36 7	1970.43	3-
2623.4	(7^{+})	751 <i>I</i>		1872.39	(5^{+})
2627.8		395 <i>1</i>		2232.8	(5^{-})
2629.99		659.3 <i>3</i>	4.8	1970.43	3-
		1736.9 <i>1</i>	100 10	893.10	2+
2758.1		1202 <i>I</i>		1556.4	6+
2759.95		475.0 2	34 10	2285.07	2+
		1517.4 2	100 12	1242.36	3+
		1871.6 <i>3</i>	30 12	888.48	4+
2823.43		1580.9 <i>3</i>	25 <i>4</i>	1242.36	3+
		1934.8 <i>3</i>	19 <i>3</i>	888.48	4+
		2465.5 2	100 8	358.02	2+
2847.6	(8^{+})	651 <i>1</i>		2196.6	(6^{+})
2861.4		1305 <i>1</i>		1556.4	6+
2927.9	(8^{-})	170 <i>1</i>		2758.1	
		327 1		2600.7	(6^{-})
3035.9		406 1		2627.8	
		422 1		2613.9	(7^{-})
3075.03		585.1 <i>3</i>	33 9	2489.91	- 1
		2181.9 <i>I</i>	76 8	893.10	2+
2075.2	(0-)	2717.0 2	100 10	358.02	2+
3075.2	(9-)	316 1	100	2758.1	(7-)
2111.0	10 ⁺	461.3 <i>3</i> 791.5 <i>3</i>	100	2613.9	(7^{-})
3111.9			11.2 15	2320.4	8 ⁺
3284.7	(10^{+})	964.3 3	100	2320.4	
3333.80		1363.3 <i>3</i> 2975.8 <i>3</i>	100 <i>18</i> 92 <i>11</i>	1970.43 358.02	3 ⁻ 2 ⁺
3384.4		523 1	92 11	2861.4	2
3414.42		795.4 <i>3</i>	55 15	2618.97	
3414.42		2525.8 3	31 6	888.48	4+
		3056.5 3	100 11	358.02	2+
3443.34		919.0 2	14 5	2524.28	_
3443.34		1927.9 3	48 6	1515.44	2+
		2550.2 2	100 9	893.10	2 ⁺
		3085.4 <i>3</i>	17 3	358.02	2 ⁺
3472.9	(10^{-})	545 1	17.5	2927.9	(8^{-})
3501.59	(10)	1128.0 <i>3</i>	19 6	2373.75	(3,1)
2001.07		1466.7 <i>1</i>	56 6	2034.85	2+
		1531.2 <i>3</i>	25 5	1970.43	3-
		1986.2 2	11 6	1515.44	2+
		2608.5 2	100 11	893.10	2+
		3143.4 2	50 5	358.02	2 ⁺

$\gamma(^{104}\text{Ru})$ (continued)

E_i (level)	J_i^{π}	E_{γ}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
3507.32		1133.4 <i>3</i>	19 8	2373.75 (3,1)	
3307.32		1472.5 <i>I</i>	60 6	2034.85 2 ⁺	
		1536.7 4	15 <i>4</i>	1970.43 3	
		3149.2 2	100 8	358.02 2 ⁺	
3582.81		1092.9 <i>1</i>	100 10	2489.91	
		2340.4 5	49 12	1242.36 3+	
3583.90		986.6 2	69 12	2597.31	
		1210.0 <i>3</i>	94 12	2373.75 (3,1)	
		2690.9 2	57 11	893.10 2+	
		3225.6 <i>3</i>	100 11	358.02 2+	
3618.16		2375.8 2	51 <i>12</i>	1242.36 3 ⁺	
		2724.9 2	100 12	893.10 2+	
		3260.3 <i>3</i>	46 7	358.02 2+	
3676.74		2788.2 2	100 10	888.48 4+	
		3318.7 <i>3</i>	55 7	358.02 2+	
3691.2	(11^{-})	616.0 <i>3</i>	100	$3075.2 (9^{-})$	
3713.4	(12^{+})	429 <i>1</i>		$3284.7 (10^+)$	
		601.5 <i>3</i>	100	3111.9 10 ⁺	
3875.40		1840.5 <i>3</i>	100 25	2034.85 2+	
		2633.0 <i>3</i>	55 20	1242.36 3+	
		2982.3 <i>3</i>	60 10	893.10 2+	
		3517.3 <i>4</i>	90 15	358.02 2+	
3919.45		2677.0 2	100 14	1242.36 3 ⁺	
		3026.4 <i>3</i>	68 8	893.10 2+	
4163.9	(12^{-})	691 <i>I</i>	100	3472.9 (10 ⁻)	
4170.10		2089.3 2	100 11	2080.84 4+	
		2927.9 5	33 11	1242.36 3+	
		3276.8 <i>3</i>	33 7	893.10 2+	
		3811.9 4	30 9	358.02 2+	
4263.72		1633.7 2	39 12	2629.99	
12 (= -0		3370.6 <i>3</i>	100 12	893.10 2+	
4267.70		2395.3 2	100 13	1872.39 (5 ⁺)	
4.420.0	(1.4±)	3374.5 <i>3</i>	69 10	893.10 2+	
4439.2	(14^+)	725.8 <i>3</i>	100	3713.4 (12 ⁺)	
4443.2	(13^{-})	752 1	100	3691.2 (11 ⁻)	E E 1000E 00
5357.0	(16^{+})	917.8		4439.2 (14+)	E_{γ} : From 1998Fo08.

 $^{^{\}dagger}$ Photon branching from each level. ‡ From 104 Tc β^- decay, unless indicated otherwise. $^{\sharp}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[®] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Type not specified

Legend

Level Scheme (continued)

Intensities: Type not specified

Legend

$$^{104}_{44} \mathrm{Ru}_{60}$$

History											
Type	Author	Citation	Literature Cutoff Date								
Full Evaluation	G. Gürdal and F. G. Kondev	NDS 113.1315 (2012)	1-Aug-2011								

 $Q(\beta^{-})=2758\ 20;\ S(n)=7406\ 13;\ S(p)=13079\ 13;\ Q(\alpha)=-6355\ 13$ 2012Wa38

Note: Current evaluation has used the following Q record 2774 20 7406 12 13079 13 -6350 13 2011AuZZ.

¹¹⁰Ru Levels

Cross Reference (XREF) Flags

			A B C	110 Tc $β^-$ decay D 254 Cf SF decay 252 Cf SF decay E 238 U($α$,F $γ$)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	0+	12.04 s <i>17</i>	ABCDE	%β ⁻ =100 $T_{1/2}$: Unweighted average of 11.6 s 6 (using β-112γ(t) in 1991Jo11), 12.2 s I (using 96γ(t) in 1986KaZS), 11.98 s 4 (using 112γ(t) in 1986KaZS), 11.8 s 2 (using 374γ(t) in 1986KaZS) and 12.6 s 5 (using 374γ(t) in 1978Fr16). Others: 17.0 s I (using 374γ(t) in 1975Fe12), 14.7 s I 3 (using 112γ(t) in 1976MaYL) and 15.9 s 5 (using 374γ(t) in 1969WiZX).
240.73 [#] 8	2+	0.32 ns 2	ABCDE	J ^π : 240.7 γ E2 to 0 ⁺ . T _{1/2} : Unweighted average of 0.34 ns 4 from ²⁵² Cf decay (1974JaYY) and 0.30 ns 2 from ²⁵⁴ Cf decay (1980ChZM). Others: 0.50 ns 8 in 1995Sc24, 0.23 ns in 1972Wi15 and 1970Ch11, and <0.5 ns in 1970Wa05. μ: +0.88 <i>14</i> , from g-factor=+0.44 7 measured using time-integral perturbed angular correlation technique in 2005Sm08 and in 2004Sm04 ($T_{1/2}$ =0.30 ns 2 was used). Q: -0.74 9 from lifetime measurements using Doppler-profile method in 1999SmZX.
612.86 [@] 8	(2+)	0.16 ns 8	ABC E	J^{π} : 372.1 γ M1+E2 to 2 ⁺ and 612.9 γ to 0 ⁺ . Branching ratio favors 2 ⁺ . $T_{1/2}$: From 372.1 γ (t) (centroid-shift) in 1995Sc24. Others: 0.01 ns <i>16</i> from 612.9 γ (t) (centroid-shift) in 1995Sc24.
663.35# 9	4+	15.4 ps <i>17</i>	ABC E	J ^π : 422.6γ E2 to 2 ⁺ ; member of the g.s. band. T _{1/2} : From 2001Kr13, using differential recoil distance method. Others: 13.4 ps 10 (1986Ma22). However, this is a combined value for ¹⁰⁸ Ru and ¹¹⁰ Ru since the 4 ⁺ to 2 ⁺ transitions in those isotopes can not be resolved.
859.96 ^{&} 9	(3 ⁺)		ABC E	J^{π} : 619.2 γ to 2 ⁺ and 196.6 γ to 4 ⁺ ; member of the one-phonon γ -vibrational band.
1084.37 [@] 11	(4^{+})		ABC E	J^{π} : 224.5 γ to (3 ⁺) and 471.5 γ to (2 ⁺); member of the one-phonon γ -vibrational band.
1137.33 10	(0+)		AB	J^{π} : 896.7 γ to 2 ⁺ . No transition to the ground state nor feeding to or from the levels with J>2 were observed.
1239.1 [#] 3	6+	2.4 ps 10	BC E	J^{π} : 575.7 γ E2 to 4 ⁺ ; member of the g.s. band. $T_{1/2}$: From 2001Kr13, using differential recoil distance method.
1375.41 ^{&} 23	(5 ⁺)		BC E	J^{π} : 291.0 γ to (4 ⁺) and 515.5 γ to (3 ⁺); member of the one-phonon γ -vibrational band.
1396.42 8	2+		AB	J^{π} : 1396.4 γ to 0 ⁺ and 733.1 γ to 4 ⁺ .
1618.37 ^a 21	(4 ⁺)		В	J^{π} : 534.0 γ to (4 ⁺) and 1005.7 γ to (2 ⁺); member of the two-phonon γ -vibrational band.
1655.85 10	$(2,3,4^+)$		AB	J^{π} : 1415.1 γ to 2 ⁺ ; direct population in ¹¹⁰ Tc β - decay (J^{π} =2,3 ⁺).
1684.27 [@] 25	(6 ⁺)		BC E	J^{π} : 599.8 γ to (4 ⁺) and 308.7 γ to (5 ⁺); member of the one-phonon γ -vibrational band.

¹¹⁰Ru Levels (continued)

```
J^{\pi \ddagger}
  E(level)
                                              XREF
                                                                                                                               Comments
                                                             J^{\pi}: 1186.6\gamma to (2<sup>+</sup>): direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2.3^+).
1799.5 3
                        (2.3.4^{+})
                                              Α
                                                             J^{\pi}: 424.2\gamma to 2<sup>+</sup>.960.5\gamma to (3<sup>+</sup>); direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2.3<sup>+</sup>).
1820.49 10
                        (2,3,4^+)
                                              AB
                                                             J^{\pi}: 1000.9\gamma to (3<sup>+</sup>) and 242.4\gamma to (5<sup>+</sup>); member of the two-phonon \gamma-vibrational band.
1860.8<sup>a</sup> 3
                        (5^{+})
                                               В
                                                             J^{\pi}: 1642.6\gamma to 2^{+}; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^{+}).
1883.34 22
                        (2,3,4^+)
                                              Α
1944.5<sup>#</sup> 4
                        8+
                                                             J^{\pi}: 705.3\gamma to 6<sup>+</sup>; member of the g.s. band.
                                                BC E
                                                             J^{\pi}: 1314.7γ to 4<sup>+</sup> and 1737.8γ to 2<sup>+</sup>; direct population in <sup>110</sup>Tc β- decay (J^{\pi}=2,3<sup>+</sup>).
1978.21 19
                        (2^+,3,4^+)
                                              Α
                                                             J^{\pi}: 1390.7\gamma to (2<sup>+</sup>); direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^+).
2003.57 22
                        (2,3,4^+)
2016.27^{f} 24
                                                             J^{\pi}: 931.8\gamma to (4<sup>+</sup>) and 1156.4\gamma to (3<sup>+</sup>); band assignment; 226.5\gamma from (6<sup>-</sup>).
                        (4^{-})
2020.9 4
                        (7^{+})
                                                BC E
                                                             J^{\pi}: 645.5\gamma to (5<sup>+</sup>); member of the one-phonon \gamma-vibrational band.
                                                             J^{\pi}: direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^{+}).
2042.39 14
                        (2,3,4)
                                              AB
                                                             J^{\pi}: 2046.8γ to 0<sup>+</sup> and 1806.4γ to 2<sup>+</sup>; direct population in <sup>110</sup>Tc β- decay (J^{\pi}=2,3<sup>+</sup>).
2047.03 23
                        (1,2^+)
                                              Α
                                                             J^{\pi}: 1844.5\gamma to 2<sup>+</sup>; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^+).
2085.27 13
                        (2,3,4^+)
                                              Α
2110.8<mark>a</mark> 4
                                                             J^{\pi}: 492.4\gamma to (4<sup>+</sup>) and 735.4\gamma to (5<sup>+</sup>); member of two-phonon \gamma-vibrational band.
                        (6^{+})
                                                В
                                                             J^{\pi}: 1902.4\gamma to 2<sup>+</sup>; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3<sup>+</sup>).
2143.1 3
                        (1^+,2,3,4^+)
2145.3<sup>e</sup> 3
                                                             J^{\pi}: 1481.9\gamma to 4<sup>+</sup>; band assignment.
                        (5^{-})
                                                В
                                                             J^{\pi}: 1539.5\gamma to 2<sup>+</sup>, 1292.9\gamma to (3<sup>+</sup>); direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3<sup>+</sup>).
2152.69 18
                        (2,3,4^+)
                                              Α
                                                             J^{\pi}: 1963.9\gamma to 2<sup>+</sup>, direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^+).
2204.6 4
                        (2,3,4^+)
                                              Α
                                                             J^{\pi}: 867.5\gamma D to (5<sup>+</sup>); band assignment.
2242.8<sup>d</sup> 4
                        (6^{-})
                                                В
                                                             J^{\pi}: 2025.6\gamma to 2<sup>+</sup>; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^+).
2266.3 4
                        (2,3,4^+)
                                              Α
2328.0^{f} 3
                                                             J^{\pi}: 312.0\gamma to (4<sup>-</sup>), 182.8\gamma to (5<sup>-</sup>) and 1088.8\gamma to 6<sup>+</sup>; band assignment.
                        (6^{-})
                                                В
2337.9 4
                        (2^+,3,4^+)
                                                             J^{\pi}: 2096.8 to 2<sup>+</sup>, 1674.6\gamma to 4<sup>+</sup>; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3<sup>+</sup>).
                                              Α
2367.0 5
                                                             J^{\pi}: 2126.2\gamma to 2<sup>+</sup>; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3<sup>+</sup>).
                        (2,3,4^+)
                                              Α
2397.0<sup>@</sup> 4
                                                             J^{\pi}: 712.7\gamma to (6<sup>+</sup>); member of the one-phonon \gamma-vibrational band.
                        (8^{+})
                                                BC E
2413.03 25
                                              Α
                                                             J^{\pi}: 1282.3\gamma to (0<sup>+</sup>); direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^{+}).
2419.6 4
                        (1,2^+)
                                              Α
2426.5° 4
                                                             J^{\pi}: 1187.2\gamma D to 6<sup>+</sup>; band assignment.
                        (7^{-})
                                                В
                                                             J^{\pi}: 2250.6\gamma to 2<sup>+</sup>; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2.3<sup>+</sup>).
2491.4 6
                        (2,3,4^+)
                                              Α
2516.6<sup>e</sup> 4
                        (7^{-})
                                                В
                                                             J^{\pi}: 371.4\gamma to (5<sup>-</sup>) and 832.3\gamma to (6<sup>+</sup>); band assignment.
                                                             J^{\pi}: 1414.7\gamma to (0<sup>+</sup>); direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^+).
2552.04 23
                        (1,2^+)
                                              Α
                                                             J^{\pi}: 2333.0 \gamma to 2<sup>+</sup>; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^+).
2573.8 7
                        (2,3,4^+)
                                              Α
2637.4<sup>d</sup> 4
                                                             J^{\pi}: 210.9\gamma to (7<sup>-</sup>) and 394.5\gamma to (6<sup>-</sup>); band assignment.
                        (8^{-})
2759.5<sup>#</sup> 4
                        10^{+}
                                                            J^{\pi}: 815\gamma to 8<sup>+</sup>; member of the g.s. band.
                                                BC E
2764.6<sup>f</sup> 4
                                                В
                                                             J^{\pi}: 436.7\gamma to (6<sup>-</sup>), 247.9\gamma to (7<sup>-</sup>) and 820.2\gamma to 8<sup>+</sup>; band assignment.
                        (8^{-})
2776.9<sup>&</sup> 5
                                                             J^{\pi}: 756.0\gamma to (7<sup>+</sup>); member of the one-phonon \gamma-vibrational band.
                        (9^+)
                                                BC E
2892.7° 4
                                                             J^{\pi}: 466.3\gamma to (7<sup>-</sup>), 255.4\gamma to (8<sup>-</sup>) and 948.2\gamma to 8<sup>+</sup>; band assignment.
                        (9^{-})
                                                В
                                                             J^{\pi}: 2082.8\gamma to (3<sup>+</sup>); nonobservation of \gamma to 2<sup>+</sup> and 0<sup>+</sup>; direct population in <sup>110</sup>Tc \beta-
2942.8 4
                        (3^{-})
                                              Α
                                                                decay (J^{\pi}=2,3^{+}).
                                                             J^{\pi}: 1868.6\gamma to (0<sup>+</sup>) and 2393.0\gamma to (2<sup>+</sup>); direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3<sup>+</sup>).
                        (1,2^+)
3006.06 23
                                              Α
                                                             J^{\pi}: 2406.6\gamma to (2<sup>+</sup>); direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3^+).
3019.5 8
                        (2,3,4^+)
                                              Α
3041.3<sup>e</sup> 4
                                                             J^{\pi}: 524.7\gamma to (7<sup>-</sup>) 276.8\gamma to (8<sup>-</sup>) and 1096.8\gamma to 8<sup>+</sup>; band assignment.
                        (9^{-})
                                                В
3072.2 3
                        (2,3,4^+)
                                                             J^{\pi}: 2459.4\gamma to 2<sup>+</sup>; direct population in <sup>110</sup>Tc \beta- decay (J^{\pi}=2,3<sup>+</sup>).
                                              Α
3091.39 14
                        (9,10^+)
                                                             J^{\pi}: 716.0\gamma to (8<sup>+</sup>).
3113.0 7
                                                В
3175.3<sup>d</sup> 5
                                                             J^{\pi}: 537.9\gamma to (8<sup>-</sup>) and 282.6\gamma to (9<sup>-</sup>); band assignment.
                        (10^{-})
                                                В
3193.3<sup>b</sup> 4
                        (9,10^+)
                                                В
                                                             J^{\pi}: 416.4\gamma to (9<sup>+</sup>) and 796.3\gamma to (8<sup>+</sup>); band assignment.
3254.2<sup>@</sup> 6
                        (10^{+})
                                                В
                                                             J^{\pi}: 857.3\gamma to (8<sup>+</sup>); member of the one-phonon \gamma-vibrational band.
3337.1<sup>f</sup> 5
                                                             J^{\pi}: 572.4\gamma to (8<sup>-</sup>) and 295.9\gamma to (9<sup>-</sup>); band assignment.
                        (10^{-})
                                                В
3485.3<sup>c</sup> 5
                        (11^{-})
                                                             J^{\pi}: 592.6\gamma to (9<sup>-</sup>) and 309.9\gamma to (10<sup>-</sup>); band assignment.
3627.1<sup>&</sup> 7
                        (11^{+})
                                                            J^{\pi}: 850.2\gamma to (9<sup>+</sup>); member of the one-phonon \gamma-vibrational band.
```

¹¹⁰Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3647.1 [#] 6	12+	ВЕ	J^{π} : 887.6 γ to 10^{+} ; member of the g.s. band.
3689.8 ^e 5	(11^{-})	В	J^{π} : 648.5 γ to (9 ⁻), 352.8 γ to (10 ⁻) and 930.3 γ to 10 ⁺ ; band assignment.
3700.1 6	(12^{+})	В	J^{π} : 940.5 γ to 10 ⁺ .
3719.0 ^b 5	(12^{+})	В	J^{π} : 959.5 γ to 10 ⁺ .
3818.6 ^d 5	(12^{-})	В	J^{π} : 643.2 γ to (10 ⁻) and 333.3 γ to (11 ⁻); band assignment.
3956.9 8	(12^{+})	В	J^{π} : 843.9 γ to 10 ⁺ .
4038.7 ^f 6	(12^{-})	В	J^{π} : 701.7 γ to (10 ⁻) and 348.8 γ to (11 ⁻); band assignment.
4153.8 [@] 8	(12^{+})	B E	J^{π} : 899.6 γ to (10 ⁺); member of the one-phonon γ -vibrational band.
4195.5 ^c 6	(13^{-})	В	J^{π} : 710.2 γ to (11 ⁻) and 376.8 γ to (12 ⁻); band assignment.
4351.0 [#] 7	14+	B E	J^{π} : 705 γ to 12 ⁺ ; member of the g.s. band.
4370.5 ^b 6	(14^{+})	В	J^{π} : 651.5 γ to (12 ⁺); band assignment.
4446.3 ^e 7	(13^{-})	В	J^{π} : 756.4 γ to (11 ⁻); band assignment.
4556.1 ^{&} 9	(13^{+})	B E	J^{π} : 929 γ to (11 ⁺); member of the one-phonon γ -vibrational band.
4566.4 ^d 7	(14^{-})	В	J^{π} : 747.9 γ to (12 ⁻) and 370.9 γ to (11 ⁻); band assignment.
4874.0^{f} 8	(14^{-})	В	J^{π} : 835.3 γ to (12 ⁻); band assignment.
5010.8° 8	(15^{-})	В	J^{π} : 815.3 γ to (13 ⁻); band assignment.
5124.8 [@] 13	(14^{+})	E	J^{π} : 971 γ to (12 ⁺); member of the one-phonon γ -vibrational band.
5143.0 ^b 8	(16^{+})	В	J^{π} : 772.5 γ to (14 ⁺); band assignment.
5150.7 [#] 8	16 ⁺	B E	J^{π} : 799.7 γ to 14 ⁺ ; member of the g.s. band.
5302.5 ^e 9	(15^{-})	В	J^{π} : 856.2 γ to (13 ⁻); band assignment.
5412.7 ^d 8	(16^{-})	В	J^{π} : 846.3 γ to (14 ⁻); band assignment.
5544.1 ^{&} 14	(15^{+})	E	J^{π} : 988 γ to (13 ⁺); member of the one-phonon γ -vibrational band.
6017.4 ^b 9	(18^{+})	В	J^{π} : 874.4 γ to (16 ⁺); band assignment.
6050.8 [#] 10	18+	В Е	J^{π} : 900.1 γ to 16 ⁺ ; member of the g.s. band.
7053.8 [#] <i>14</i>	(20^+)	E	J^{π} : 1003 γ to 18 ⁺ ; member of the g.s. band.
8159.8 [#] <i>17</i>	(22^{+})	E	J^{π} : 1106 γ to (20 ⁺); member of the g.s. band.

 $^{^{\}dagger}$ From a least-square fit to $E_{\gamma}.$

 $^{^{\}ddagger}$ Based on measured transition multipolarities, systematics of low-lying collective states in Ru isotopes, γ -ray decay pattern and the observed band structures.

[#] Band(A): g.s. band.

[@] Band(B): One-phonon γ -vibrational band, α =0.

[&]amp; Band(C): One-phonon γ -vibrational band, α =1.

^a Band(D): Two-phonon γ -vibrational band. The J^{π} assignment is tentative, based on the decay of this band mainly to one-phonon γ -vibrational band.

^b Band(E): Band based on 3193.3 keV (2009Zh24). J^{π} assignments are tentative. This band could have negative parities and odd spins one unit less. Assigned as four-quasiparticle band in 2003Ji03, but the authors stated that more experimental data needed for assigning a definitive configuration.

^c Band(F): Band based on (7⁻) at 2426.5 keV.

^d Band(G): Band based on (6⁻) at 2242.8 keV.

^e Band(H): Band based on (5⁻) at 2145.3 keV.

 $[^]f$ Band(I): Band based on (4 $^-$) at 2016.27 keV.

$\gamma(^{110}\text{Ru})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
240.73	2+	240.7 [#] 1	100#	0.0 0+	E2	0.0569	$\alpha(K)$ =0.0485 7; $\alpha(L)$ =0.00686 10; $\alpha(M)$ =0.001267 18; $\alpha(N+)$ =0.000206 3 $\alpha(N)$ =0.000198 3; $\alpha(O)$ =7.97×10 ⁻⁶ 12 B(E2)(W.u.)=66 5 Mult.: A ₂ =0.229 101, A ₄ =0.195 153 from $\gamma(\theta)$ in 1972Wi15. $\alpha(K)$ exp/ $\alpha(L)$ exp≈4.0 in 1970Wa05, $\alpha(K)$ exp measurements in 1990Ay02, but the value was not given by the authors.
612.86	(2+)	372.1 [#] <i>I</i>	100#	240.73 2+	(M1+E2)	0.0114 19	$\alpha(K)$ =0.0099 16; $\alpha(L)$ =0.0012 3; $\alpha(M)$ =0.00023 5; $\alpha(N+)$ =3.8×10 ⁻⁵ 8 $\alpha(N)$ =3.6×10 ⁻⁵ 7; $\alpha(O)$ =1.74×10 ⁻⁶ 22 Mult.: From ¹¹⁰ Tc β ⁻ decay (1990Ay02), based on conversion electron measurements, but the value was not given by the authors.
		612.9# 1	80.2# 25	0.0 0+	[E2]	0.00300 5	$\alpha(K)$ =0.00262 4; $\alpha(L)$ =0.000315 5; $\alpha(M)$ =5.78×10 ⁻⁵ 8; $\alpha(N+)$ =9.73×10 ⁻⁶ 14 $\alpha(N)$ =9.27×10 ⁻⁶ 13; $\alpha(O)$ =4.60×10 ⁻⁷ 7 B(E2)(W.u.)=0.6 3 Mult.: From ¹¹⁰ Tc β ⁻ decay (1990Ay02), based on conversion electron measurements, but the value was not given by the authors.
663.35	4+	422.6 [#] 1	100#	240.73 2+	E2	0.00887 13	$\alpha(K)$ =0.00769 II ; $\alpha(L)$ =0.000971 $I4$; $\alpha(M)$ =0.000178 3 ; $\alpha(N+)$ =2.97×10 ⁻⁵ 5 $\alpha(N)$ =2.84×10 ⁻⁵ 4 ; $\alpha(O)$ =1.325×10 ⁻⁶ 19 B(E2)(W.u.)=86 10 Mult.: From 110 Tc β^- decay (1990Ay02), based on conversion electron measurements, but the value was not given by the authors and the band structure.
859.96	(3 ⁺)	196.6 [#] <i>I</i> 247.1 [#] <i>I</i> 619.2 [#] <i>I</i>	1.53 [#] 20 20.7 [#] 20 100 [#] 3	663.35 4 ⁺ 612.86 (2 ⁺) 240.73 2 ⁺			
1084.37	(4 ⁺)	224.5 [#] 5 421.0 [#] 5 471.5 [#] 1 843.6 [#] 2	2.70 [#] 16 50.6 [#] 14 100 [#] 13 62 [#] 8	859.96 (3 ⁺) 663.35 4 ⁺ 612.86 (2 ⁺) 240.73 2 ⁺			I_{γ} : 15.9 10 in ²⁵² Cf SF decay; 15.7 in ²⁴⁸ Cm SF decay.
1137.33	(0^+)	896.7 [#] 1	100 [#]	240.73 2 ⁺			zy, resp re m er
1239.1	6+	575.7 5	100	663.35 4+	E2	0.00356 5	$\begin{array}{l} \alpha({\rm K}){=}0.00311\ 5;\ \alpha({\rm L}){=}0.000377\ 6;\ \alpha({\rm M}){=}6.92{\times}10^{-5}\ 10;\\ \alpha({\rm N}{+}){=}1.163{\times}10^{-5}\ 17\\ \alpha({\rm N}){=}1.108{\times}10^{-5}\ 16;\ \alpha({\rm O}){=}5.45{\times}10^{-7}\ 8\\ {\rm B}({\rm E}2)({\rm W.u.}){=}1.2{\times}10^2\ 5\\ {\rm Mult.:\ From}\ ^{248}{\rm Cm\ SF\ decay\ (1994Sh26)},\ {\rm based\ on\ }\gamma\gamma(\theta)\ {\rm but\ A_2\ and\ A_4}\\ {\rm values\ were\ not\ given\ by\ the\ authors.} \end{array}$

$\gamma(^{110}Ru)$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{\ddagger}$	E_f	${\rm J}_f^\pi$
1375.41	(5+)	291.0 5	3.60 20	1084.37	(4+)
1373.11	(5)	515.5 5	100	859.96	(3+)
		711.9 5	20.3 6	663.35	4+
1396.42	2+	259.2 [#] 1	3.04 [#] <i>14</i>	1137.33	(0^+)
		536.3 [#] 1	3.5 [#] 7	859.96	(3^{+})
		733.1 [#] <i>1</i>	12.0 [#] 9	663.35	4+
		783.6 [#] 1	9.7 [#] <i>13</i>	612.86	(2^{+})
		1155.8 [#] <i>1</i>	100 [#] 6	240.73	2+
		1396.4 [#] 2	29 [#] 3	0.0	0^{+}
1618.37	(4^{+})	534.0 5	26.7 21	1084.37	(4^{+})
		758.5 <i>5</i>	67 <i>4</i>	859.96	(3^{+})
		1005.7 5	100	612.86	(2^{+})
		1377.6 5	13.3 8	240.73	2+
1655.85	$(2,3,4^+)$	796.1 <mark>#</mark> 2	37 [#] <i>3</i>	859.96	(3^{+})
		1043.6 [#] 5	25.0 [#] 20	612.86	(2^{+})
		1415.1 [#] <i>1</i>	100 [#] 7	240.73	2+
1684.27	(6^+)	308.7 5	7.7 4	1375.41	(5+)
		445.2 5	11.1 <i>7</i> 100	1239.1	6+
		599.8 <i>5</i> 1021.0 <i>5</i>	23 4	1084.37 663.35	(4 ⁺) 4 ⁺
1700 5	(2.2.4±)	1021.0 <i>3</i> 1186.6 [#] <i>3</i>	100 [#]	612.86	
1799.5	$(2,3,4^+)$	ш	50 [#] 9		(2^+)
1820.49	$(2,3,4^+)$			1655.85	$(2,3,4^+)$
		424.2 <mark>#</mark> 1	100# 16	1396.42	2+
		960.5 [#] 1	20.5# 23	859.96	(3^{+})
		1579.0 [#] 2	43 [#] 5	240.73	2+
1860.8	(5^+)	242.4 5	100	1618.37	(4 ⁺)
		776.4 <i>5</i> 1000.9 <i>5</i>	12.5 <i>8</i> 12.5 <i>11</i>	1084.37 859.96	(4^+) (3^+)
1002.24	(2.2.4±)	1642.6 [#] 2	12.3 11 100 [#]	240.73	(5) 2 ⁺
1883.34 1944.5	$(2,3,4^+)$ 8^+	705.3 5	100"	1239.1	6 ⁺
1978.21	$(2^+,3,4^+)$	1314.7 [#] 2	100 [#] 15	663.35	4 ⁺
1976.21	(2 ,3,4)	1737.8 [#] 3	62 [#] 8	240.73	2 ⁺
2002 57	(2.2.4+)	1/3/.8" 3 1390.7 [#] 2	62" 8 100 [#]		_
2003.57 2016.27	$(2,3,4^+)$ (4^-)	1390.7" <i>2</i> 398.0 <i>5</i>	<22.5	612.86 1618.37	(2^+) (4^+)
2010.27	(+)	931.8 5	<22.3 27 4	1018.37	(4^{+})
		1156.4 5	100	859.96	(3^+)
		1353.0 5	29 3	663.35	4+

$\gamma(^{110}Ru)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
2020.9	(7+)	645.5 5	100	1375.41			
		781.7 <i>5</i>	7.4 <i>7</i>	1239.1	6+		
2042.39	(2,3,4)	221.9 [#] <i>1</i>	100 [#]	1820.49	$(2,3,4^+)$		
2047.03	$(1,2^+)$	1806.4 [#] <i>3</i>	100 # 8	240.73	2+		
		2046.8 [#] 4	100 [#] <i>18</i>	0.0	0^{+}		
2085.27	$(2,3,4^+)$	1225.3 [#] <i>1</i>	100 [#] 10	859.96	(3^+)		
	()- / /	1844.5 [#] 3	23 [#] 3	240.73			
2110.8	(6^+)	492.4 5	43 5	1618.37			
	,	735.4 5	4.8 6	1375.41			
		1026.4 5	100	1084.37	(4^{+})		
2143.1	$(1^+,2,3,4^+)$	1902.4 [#] 3	100 [#]	240.73	2+		
2145.3	(5^{-})	129.1 <mark>&</mark>		2016.27	(4^{-})		
		527.1 5	33 4	1618.37			
		1060.8 <i>5</i>	40 4	1084.37			
		1481.9 5	100	663.35			
2152.69	$(2,3,4^+)$	1292.9 [#] 2	16.7 [#] 24	859.96	(3^{+})		
		1539.5 [#] 3	100 [#] 12	612.86	(2^{+})		
2204.6	$(2,3,4^+)$	1963.9 [#] <i>4</i>	100 [#]	240.73			
2242.8	(6-)	226.5 5	21.5 11	2016.27			
		867.5 5	100	1375.41		D	Mult.: From 2009Lu18: $(867.5\gamma)(515.5\gamma)(\theta)$: $A_2=-0.052$ 14, $A_4=-0.002$ 21. In 2009Lu01, $A_4=+0.002$ 21 is quoted. The theoretical values for a pure dipole transition are: $A_2=-0.071$, $A_4=0$; and for a pure quadrupole transition are $A_2=-0.112$ and $A_4=-0.054$. $(867.5\gamma)(394.5\gamma)(\theta)$: $A_2=-0.079$ 14, $A_4=+0.023$ 20. The theoretical values for a pure dipole transition are: $A_2=-0.071$, $A_4=0$; and for pure quadrupole transition are $A_2=-0.007$ and $A_4=-0.023$.
2266.3	$(2,3,4^+)$	2025.6 [#] 4	100 [#]	240.73			
2328.0	(6-)	182.8 5	3.7 3	2145.3			
		312.0 5	12.7 6	2016.27			
		643.6 <i>5</i> 952.5 <i>5</i>	13.5 <i>18</i> 100	1684.27 1375.41			
		1088.8 5	41 <i>13</i>	1239.1			
2337.9	$(2^+,3,4^+)$	1674.6 [#] 4	86 [#] 17	663.35			
<u> </u>	(2,5,7)	2096.8 [#] 7	100 [#] 26	240.73			
2267.0	(2.2.4+)	2096.8" / 2126.2 [#] 5	100" 26 100#				
2367.0 2397.0	$(2,3,4^+)$ (8^+)	452.5 <i>5</i>	100" 12.9 <i>19</i>	240.73 1944.5			
4391.U	(0)	452.5 5 712.7 <i>5</i>	12.9 <i>19</i> 100	1944.5 1684.27			
		366.0 [#] 1	100 100 [#]	2047.03			
2413.03							

$\gamma(^{110}\text{Ru})$ (continued)

E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \sharp}$	I_{γ}^{\ddagger}	E_f	${\rm J}_f^\pi$	Mult.	Comments
2419.6	$\frac{l}{(1,2^+)}$	1282.3# 3	100#	1137.33			
2426.5	(7^{-})	183.6 5	6.0 20		(6^{-})		
2120.5	(,)	742.3 5	20 3	1684.27			
		1187.2 5	100	1239.1		D	Mult.: From 2009Lu18: $(1187.2\gamma)(575.5\gamma)(\theta)$: A ₂ =-0.086 11, A ₄ =+0.010 17. The
							theoretical values for a pure dipole transition are: $A_2=-0.071$, $A_4=0$; and for a pure
		,,					quadrupole transition are: $A_2 = -0.102$ and $A_4 = -0.051$.
2491.4	$(2,3,4^+)$	2250.6 [#] 6	100 [#]	240.73	2+		
2516.6	(7^{-})	188.7 <mark>&</mark>	0.2	2328.0	(6-)		
		371.4 5	6.8 13		(5^{-})		
		832.3 5	6.1 25	1684.27			
		1277.5 5	100	1239.1			
2552.04	$(1,2^+)$	1414.7 <mark>#</mark> 2	100#	1137.33			
2573.8	$(2,3,4^+)$	2333.0 [#] 7	100#	240.73			
2637.4	(8-)	210.9 5	42.5 11		(7-)		
		309.3 5	15.1 7	2328.0	(6-)		
		394.5 <i>5</i> 616.5 <i>5</i>	100 38.1 <i>13</i>	2242.8 2020.9	(6 ⁻) (7 ⁺)		
2759.5	10 ⁺	815.0 <i>5</i>	100	1944.5	8 ⁺		
2764.6	(8-)	247.9 5	34 <i>3</i>	2516.6	(7^{-})		
	,	436.7 5	100	2328.0	(6-)		
		820.2 5	12.5 <i>21</i>	1944.5	8+		
2776.9	(9 ⁺)	756.0 <i>5</i>	100	2020.9	(7^{+})		
2892.7	(9-)	255.4 5	15.2 11	2637.4	(8-)		
		466.3 <i>5</i> 948.2 <i>5</i>	47.1 <i>18</i> 100	2426.5 1944.5	(7^{-})		
20.42.0	(2=)	2082.8 [#] 4	100 100 [#]				
2942.8	(3-)			859.96			
3006.06	$(1,2^+)$	853.4# 2	18 [#] 3	2152.69			
		1868.6# 5	27 <mark>#</mark> 4	1137.33			
		2393.0# 7	100 [#] 14	612.86			
3019.5	$(2,3,4^+)$	2406.6 [#] 8	100#	612.86			
3041.3	(9-)	276.8 5	5.8 13	2764.6			
		524.7 5	41 4		(7^{-})		
2072.2	(0.2.4±)	1096.8 <i>5</i> 1025.2 [#] <i>3</i>	100	1944.5			
3072.2	$(2,3,4^+)$		58 [#] 11	2047.03			
		2212.2# 5	42 [#] 5	859.96			
		2459.4 [#] 8	100 [#] 11	612.86			
3091.39		1270.9 [#] <i>1</i>	100 [#]	1820.49			
3113.0	$(9,10^+)$	716.0 5	100	2397.0	(8^{+})		

$\gamma(^{110}Ru)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}
3175.3	(10^{-})	282.6 5	14.5 7	2892.7	(9-)	4038.7	(12^{-})	701.7 5	100	3337.1 (10-)
		537.9 5	100	2637.4	(8^{-})	4153.8	(12^+)	899.6 5	100	$3254.2 (10^{+})$
3193.3	$(9,10^+)$	416.4 5	100	2776.9	(9^+)	4195.5	(13^{-})	376.8 5	≤22.5	3818.6 (12 ⁻)
		796.3 <i>5</i>	24 5	2397.0	(8^{+})			710.2 5	100	3485.3 (11 ⁻)
		1249.0 <i>5</i>	51 <i>5</i>	1944.5		4351.0	14 ⁺	650.9 <i>5</i>	14.0 4	$3700.1 (12^+)$
3254.2	(10^{+})	857.3 <i>5</i>	100	2397.0				703.9 5	100	3647.1 12 ⁺
3337.1	(10^{-})	295.9 <i>5</i>	21 5	3041.3	. ,	4370.5	(14^{+})	651.5 <i>5</i>	100	3719.0 (12 ⁺)
		572.4 <i>5</i>	100	2764.6	(8^{-})			670.4 <i>5</i>	≤1.8	$3700.1 (12^+)$
		577.7 <mark>&</mark>	0.1	2759.5	10 ⁺	4446.3	(13^{-})	756.4 5	100	3689.8 (11 ⁻)
3485.3	(11^{-})	309.9 <i>5</i>	19 <i>3</i>	3175.3	(10^{-})	4556.1	(13^{+})	929.0 5	100	3627.1 (11 ⁺)
		592.6 <i>5</i>	100	2892.7	, ,	4566.4	(14^{-})	370.9 5	10.5 23	4195.5 (13 ⁻)
		725.9 <i>5</i>	87 9	2759.5				747.9 <i>5</i>	100	3818.6 (12 ⁻)
3627.1	(11^{+})	850.2 <i>5</i>	100	2776.9	` ./	4874.0	(14^{-})	835.3 5	100	4038.7 (12 ⁻)
3647.1	12+	887.6 <i>5</i>	100	2759.5	10 ⁺	5010.8	(15^{-})	815.3 5	100	4195.5 (13 ⁻)
3689.8	(11^{-})	352.8 <i>5</i>	8.6 23	3337.1	(10^{-})	5124.8	(14^{+})	971.0 [@] <i>10</i>	100 [@]	4153.8 (12+)
		648.5 <i>5</i>	100	3041.3	(9^{-})	5143.0	(16^{+})	772.5 5	100	4370.5 (14 ⁺)
		930.3 <i>5</i>	37 9	2759.5	10 ⁺	5150.7	16 ⁺	799.7 <i>5</i>	100	4351.0 14 ⁺
3700.1	(12^{+})	940.5 <i>5</i>	100	2759.5		5302.5	(15^{-})	856.2 <i>5</i>	100	4446.3 (13 ⁻)
3719.0	(12^{+})	464.9 5	≤2.9	3254.2	(10^{+})	5412.7	(16^{-})	846.3 <i>5</i>	100	4566.4 (14 ⁻)
		525.7 5	100		$(9,10^+)$	5544.1	(15^+)	988.0 [@] 10	100 [@]	4556.1 (13 ⁺)
		959.5 <i>5</i>	7.1 12	2759.5	10 ⁺	6017.4	(18^{+})	874.4 5	100	5143.0 (16 ⁺)
3818.6	(12^{-})	333.3 5	9.9 10	3485.3	(11^{-})	6050.8	18 ⁺	900.1 5	100	5150.7 16 ⁺
		643.2 5	100	3175.3	(10^{-})	7053.8	(20^+)	1003.0 [@] 10	100 @	6050.8 18 ⁺
3956.9	(12^{+})	843.9 <i>5</i>	100	3113.0	$(9,10^+)$	8159.8	(22^{+})	1106.0 [@] <i>10</i>	100 [@]	$7053.8 (20^+)$
4038.7	(12^{-})	348.8 5	15 4	3689.8	(11^{-})					

 ∞

[†] Additional information 1. ‡ From 252 Cf SF Decay (2009Zh24,2009Lu18), unless otherwise stated. Δ E γ =0.5 keV was estimated by the evaluators. # From 110 Tc β ⁻ decay. @ From 238 U(α ,F γ).

[&]amp; Placement of transition in the level scheme is uncertain.

¹¹⁰₄₄Ru₆₆

Legend

Intensities: Type not specified

0.0 12.04 s *17*

 $^{110}_{44} \mathrm{Ru}_{66}$ -14

