

UNIVERSIDADE FEDERAL DE SÃO PAULO INSTITUTO DE CIÊNCIA E TECNOLOGIA

ARTHUR LOSANO DE ARAUJO SILVA - RA 163564 EVANDRO KEIJI KAYANO - RA 163707 LUCAS APOLINÁRIO DE OLIVEIRA - RA 163913 THIAGO CORSO CAPUANO - RA 163996

ESCALONAMENTO NO MINIX3IMPLEMENTAÇÃO E AVALIAÇÃO

SÃO JOSÉ DOS CAMPOS 2024

Introdução

O escalonamento de processos é uma das funções mais cruciais de um sistema operacional, impactando diretamente no desempenho e na eficiência com que os recursos do sistema são utilizados. O MINIX3, um sistema operacional baseado em microkernel, utiliza o escalonamento round-robin como método padrão. Este método é conhecido por sua simplicidade e por garantir que todos os processos recebam uma parcela igual de tempo de CPU, atribuindo a cada processo um quantum fixo em ordem cíclica. Embora o round-robin seja eficaz em muitos cenários, ele pode não ser o método mais eficiente em termos de tempo de resposta e utilização de CPU, especialmente para processos de curta duração.

Em contraste, o escalonador SPN (Shortest Process Next) prioriza processos com o menor tempo de execução estimado. Este método tem o potencial de minimizar o tempo médio de espera e o tempo médio de retorno, melhorando a eficiência geral do sistema, especialmente em ambientes onde os processos variam significativamente em termos de duração.

Este trabalho tem como objetivo comparar o método padrão de escalonamento round-robin do MINIX3 com um escalonador SPN que foi implementado manualmente. Através dessa comparação, pretendemos avaliar as vantagens e desvantagens de cada método em termos de eficiência e tempo de resposta.

Por que um escalonamento "Shortest Process Next"?

Dentre as motivações que tivemos para escolher o método em questão em oposição ao Round-Robin padrão do MINIX3, podemos destacar:

- O SPN prioriza os processos com menor tempo de execução, o que pode reduzir significativamente o tempo médio de espera para a conclusão dos processos;
- Ao finalizar processos curtos rapidamente, o SPN pode diminuir o tempo médio de retorno (turnaround time), que é o tempo total desde a submissão do processo até a sua conclusão;
- Processos com tempos de execução curtos são completados mais rapidamente, o que é benéfico em ambientes onde muitos processos pequenos são comuns;
- Processos curtos não ficam na fila por longos períodos, o que pode reduzir a quantidade de processos pendentes no sistema, simplificando o gerenciamento de processos;

Característica	Característica Round-Robin		
Simplicidade	Simples de entender e implementar	Relativamente simples, mas requer estimativas de tempo de execução	
Tempo Médio de Espera	Pode ser alto para processos curtos	Geralmente menor, favorecendo processos curtos	
Tempo Médio de Retorno	Consistente, mas não otimizado	Minimizado, especialmente para processos curtos	
Utilização da CPU	Justa, mas pode não ser eficiente	Alta, devido à rápida finalização de processos curtos	
Responsividade	Moderada	Alta, especialmente para tarefas interativas	
Overhead de Gerenciamento	Baixo	Moderado, devido à necessidade de estimar tempos de execução	

Testes realizados com o escalonador padrão (Round-Robin)

Para esse trabalho, foram planejados testes de forma que seja avaliado o desempenho do escalonador com uma quantidade baixa de processos, 10 processos no caso, e com uma quantidade relativamente mais alta, 100 processos.

Para cada situação, variou-se o número de operações em IO Bound e CPU Bound, seguindo a mesma ideia de abranger um range de operações que compreenda desde uma quantidade relativamente baixa até uma relativamente alta, no caso, de 100 a 10000 operações para IO Bound e 1000 a 100000 operações para CPU Bound.

Os testes foram executados em um ambiente MINIX3 em máquina virtual com 2 CPU's, 1024MB de memória base e aproximadamente 10GB de armazenamento, utilizando o arquivo de teste enviado na proposta do trabalho.

Segue abaixo os comandos utilizados para os testes e uma planilha que contém o desempenho do sistema para cada situação testada:

mini×#	time	./tes	st 1	0 10	0 1000
minix#	time	./test	10	1000	<u>1</u> 0000
minix#	time _	_/test	10	10000	100000
mini×#	time	./tes	t 10	00 10	00 1000
mini×#	time	./test	100	100	0 10000
minix#	time .	/test	100	10000	100000

Drassassas	Ope	Tomno		
Processos	IO-Bound	CPU-Bound	Tempo	
10	100	1000	0,16	
10	1000	10000	1,70	
10	10000	100000	23,08	
100	100	1000	2,16	
100	1000	10000	20,50	
100	10000	100000	215,83	

Testes realizados com o escalonador customizado ("SPN")

Assim como nos testes do escalonador padrão, utilizamos para o escalonador customizado os mesmos casos de teste. Segue abaixo a planilha com os casos de teste e desempenho do sistema:

Deces	Oper	Tamma		
Processos	IO-Bound	CPU-Bound	Tempo	
10	100	1000	0,13	
10	1000	10000	1,65	
10	10000	100000	19,41	
100	100	1000	1,83	
100	1000	10000	19,53	
100	10000	100000	193,30	

Analisando os dados dos testes, foi possível perceber que o método padrão (Round-Robin) teve um desempenho mais custoso para o sistema, com maior tempo de processamento, conforme comparativo abaixo realizado em relação aos números obtidos no teste com o método "Shortest Process Next":

	Ope	rações	Tempo		D'farrana Alasalata	Diference relation
Processos	IO-Bound	CPU-Bound	Padrão	SPN	Diferença Absoluta	Diferença relativa
10	100	1000	0,16	0,13	0,03	23,08%
10	1000	10000	1,70	1,65	0,05	3,03%
10	10000	100000	23,08	19,41	3,67	18,91%
100	100	1000	2,16	1,83	0,33	18,03%
100	1000	10000	20,50	19,53	0,97	4,97%
100	10000	100000	215,83	193,30	22,53	11,66%

Conclusão

O escalonador Shortest Process Next (SPN) se mostra mais veloz e menos custoso que o escalonador padrão Round Robin em um sistema MINIX3 devido à sua estratégia de priorização de processos curtos. O SPN sempre seleciona o próximo processo a ser executado com base no tempo de execução mais curto, o que minimiza o tempo médio de espera e melhora a eficiência do uso da CPU. Diferentemente do Round Robin, que atribui fatias de tempo iguais a todos os processos, independentemente da sua duração, o SPN reduz a sobrecarga causada por trocas de contexto frequentes e evita que processos curtos fiquem aguardando em filas por muito tempo. Essa redução de sobrecarga e otimização de tempo de espera são fatores que contribuem para a maior velocidade e menor custo do SPN em comparação ao Round Robin em um ambiente MINIX3.

Nesse estudo também pudemos perceber a complexidade que envolve o funcionamento de um sistema operacional, ainda que extremamente simples como é o caso do MINIX3. É preciso muita cautela ao manipular os arquivos de configuração do SO pois cada pequena alteração pode vir a causar grandes impactos, como é o caso de nosso estudo: pensando no "macro" do sistema operacional, as alterações que fizemos nos fontes responsáveis pela fila de processos e operações pode ser vista como "simples", e ainda assim, já obtivemos uma melhoria em mais de 10% em termos de desempenho.

Nosso grupo alterou o código fonte do escalonador em conjunto, reunidos em ambiente virtual, então é difícil destacar exatamente qual foi a participação de cada integrante no código. Já a distribuição e discussão dos assuntos no vídeo apresentação e neste relatório, foi feita da seguinte forma:

- Introdução/Método escolhido/Porque escolhemos e vantagens : Evandro e Lucas em conjunto;
- Testes realizados no escalonador padrão e customizado : Arthur;
- Explicação das alterações no código-fonte : Thiago.