

Vorlesung Fertigungstechnik - Übung Schnittzeit II

Dr.-Ing. Anke Müller, 15.05.2018
Institut für Werkzeugmaschinen und Fertigungstechnik

Gliederung

Theorieteil

- Bearbeitungszeit t_e
- Übersicht Formeln und Einheiten
- Unterschied zwischen Bearbeitungslänge I_b und Schnittlänge I_c am Beispiel Außenlängsdrehen
- Berechnung von Bearbeitungs-, Hauptnutzungs- und Schnittzeiten für:
 - 1.) Außenlängsdrehen eines zylindrischen Werkstücks
 - 2.) Plandrehen eines zylindrischen Werkstücks mit konstanter Drehzahl
 - 3.) Plandrehen eines zylindrischen Werkstücks mit konstanter Schnittgeschwindigkeit

Übungsaufgaben

- Umfangsplanfräsen
- Bohren
- Stirnplanfräsen
- Außenlängsdrehen

Gliederung

Theorieteil

- Bearbeitungszeit t_e
- Übersicht Formeln und Einheiten
- Unterschied zwischen Bearbeitungslänge I_b und Schnittlänge I_c am Beispiel Außenlängsdrehen
- Berechnung von Bearbeitungs-, Hauptnutzungs- und Schnittzeiten für:
 - 1.) Außenlängsdrehen eines zylindrischen Werkstücks
 - 2.) Plandrehen eines zylindrischen Werkstücks mit konstanter Drehzahl
 - 3.) Plandrehen eines zylindrischen Werkstücks mit konstanter Schnittgeschwindigkeit

Übungsaufgaben

- Umfangsplanfräsen
- Bohren
- Stirnplanfräsen
- Außenlängsdrehen

Die Bearbeitungszeit t_e ist die für die Zerspanung eines Werkstücks notwendige Zeit:

$$t_e = t_h + t_n$$

 t_h : Hauptnutzungszeit (Schnitt-, An- und Überlaufzeiten)

 t_n : Nebennutzungszeit (Rücklaufzeiten, Werkzeugwechselzeiten etc.)

Die Hauptnutzungszeit ist die Summe der Schnittzeit sowie An- und Überlaufzeiten

(Achtung: nicht Rücklaufzeit!)

$$t_h = t_c + t_{ii} = \frac{l_h}{v_f}$$

 t_c : Schnittzeit

 t_{ii} : An- und Überlaufzeiten

 l_{h} : Hauptnutzungslänge

 v_f : Vorschubgeschwindigkeit

1.) Außenlängsdrehen eines zylindrischen Werkstücks

$$t_h = \frac{l_h}{v_f}$$
 (1Zyklus)

Anzahl der Zustellungen =
$$\frac{d_{w,ist} - d_{w,soll}}{2 \cdot a_p}$$

2.) Plandrehen eines zylindrischen Werkstücks mit n = konst.

$$v_c = \pi \cdot d \cdot n$$

$$\to v_c \sim d$$

$$v_{c,\min} = \pi \cdot d_{wi} \cdot n$$

$$v_{c,\max} = \pi \cdot d_{wa} \cdot n$$

Berechnung der Schnittzeit t_c

2.) Plandrehen eines zylindrischen Werkstücks mit n = konst.

$$l_b = d_{wa} - d_{wi}$$
 (gesamte Bearbeitungslänge)

$$t_c = \frac{d_{wa} - d_{wi}}{2 \cdot v_f} = \frac{d_{wa} - d_{wi}}{2 \cdot n \cdot f} \qquad \begin{array}{l} \text{(durch 2, da H\"{a}lfte des Bauteils durch Rotation mit bearbeitet wird)} \end{array}$$

$$mit \quad n = \frac{v_{c, \text{max}}}{d_{wa} \cdot \pi}$$

$$\Rightarrow t_c = \frac{d_{wa} - d_{wi}}{2 \cdot f \cdot v_{c,\text{max}}} \cdot \pi \cdot d_{wa}$$

$$t_c = \frac{l_b}{v_f}$$

$$v_f = n \cdot f$$

$$v_c = \pi \cdot d \cdot n$$

$$n = \frac{v_c}{\pi \cdot d}$$

3.) Plandrehen eines zylindrischen Werkstücks mit v_c = konst.

$$v_c = \pi \cdot d \cdot n = 2 \cdot \pi \cdot r \cdot n$$

$$n = \frac{v_c}{2 \cdot \pi \cdot r}$$

$$\rightarrow n \sim \frac{1}{r}$$

Wie viele Sekunden Schnittzeit bedeutet das für den Zerspanprozess?

3.) Plandrehen eines zylindrischen Werkstücks mit v_c = konst.

$$t_c = \int_{r_{wi}}^{r_{wa}} rac{1}{v_f} dr$$
 mit $v_f = n \cdot f$ und $n = rac{v_c}{\pi \cdot 2r}$

$$t_c = \int_{r_{wi}}^{r_{wa}} \frac{1}{\frac{v_c}{2\pi \cdot r} \cdot f} dr = \int_{r_{wi}}^{r_{wa}} \frac{2\pi r \cdot dr}{f \cdot v_c} = \frac{2\pi r}{f \cdot v_c} \int r \cdot dr$$

Integrieren zu:

$$t_c = \frac{\pi}{f \cdot v_c} \cdot \left(r_{wa}^2 - r_{wi}^2 \right)$$

$$t_c = \frac{l_b}{v_f} = \frac{r}{v_f}$$

$$v_f = n \cdot f$$

$$v_c = \pi \cdot 2r \cdot n$$

$$n = \frac{v_c}{\pi \cdot 2r}$$

1. Aufgabe analysieren

Aufgabe lesen, Hinweise mit unterstreichen, markieren

2. Wirkrichtungen, Bearbeitungszeiten einzeichnen

- Vorschubrichtungen, Drehrichtung, gegebene Größen einzeichnen
- Schnitt-, An-, Überlaufzeiten einzeichnen, Nebennutzungszeit überlegen und aufschreiben (Folgefehler!)

3. Prüfen, ob v_c oder n konstant ist

$$v_c = \pi \cdot d \cdot n$$

- Entsprechenden Gegenpart ausrechnen, der wird immer benötigt.
- Beim Stirnplandrehen aufpassen, da dort immer nur bis zur Mitte verfahren wird
- Beim Längsdrehen darauf achten, das $a_{\rm p}$ immer 2x den Durchmesser reduziert
- Wenn der Zusammenhang nicht linear ist, muss für die Zeit te integriert werden

4. Grundformel für die gesuchte Zeit heraussuchen, schrittweise fehlende Größen $t_h = t_c + t_{ii} = \frac{l_h}{v_f}$ bestimmen und nacheinander einsetzen

oft ist t_h oder t_c gesucht

Übungsaufgabe für zu Hause

Außenlängendrehen (SS 2006)

Eine Ankerwelle, wie sie in Anlassern von Kraftfahrzeugen zu finden ist, soll in zwei Aufspannungen auf ihrer gesamten Länge I_g bei <u>konstanter</u> Schnittgeschwindigkeit v_c längs übergedreht werden!

Wie groß ist die für die Drehbearbeitung benötigte <u>Gesamtbearbeitungszeit the</u> (Hauptnutzungszeit), wenn die Überlauflängen $I_{\ddot{U}} = 0$ mm betragen? Die radialen Verfahrwege an den Durchmesserübergängen sollen unberücksichtigt bleiben. (3½ P)

Außenlängendrehen (SS 2001/2002)

Gegeben:

Durchmesser 1: $d_1 = 14 \text{ mm}$ Länge 1: I_1 = 18 mm

Durchmesser 2: $d_2 = 22 \text{ mm}$ Länge 2: I_2 = 20 mm

Durchmesser 3: $d_3 = 18 \text{ mm}$ Länge $3: I_3 = 82 \text{ mm}$

Durchmesser 4: $d_4 = 16 \text{ mm}$ Länge $4:I_4 = 25 \text{ mm}$

Länge gesamt: $I_a = 145 \text{ mm}$

Prozessgrößen:

 $v_c = 350 \text{ m/min}$ $a_p = 1 \text{ mm}$ f = 0.3 mm $I_{0} = 0 \text{ mm}$

Gesucht:

Übungsaufgabe im 2er Team

Außenlängendrehen (SS 2006)

Eine Ankerwelle, wie sie in Anlassern von Kraftfahrzeugen zu finden ist, soll in zwei Aufspannungen auf ihrer gesamten Länge I_g bei <u>konstanter</u> Schnittgeschwindigkeit v_c längs übergedreht werden!

Wie groß ist die für die Drehbearbeitung benötigte <u>Gesamtbearbeitungszeit the</u> (Hauptnutzungszeit), wenn die Überlauflängen $I_{\ddot{U}} = 0$ mm betragen? Die radialen Verfahrwege an den Durchmesserübergängen sollen unberücksichtigt bleiben. (3½ P)

Außenlängendrehen (SS 2001/2002)

17

Gegeben:

Durchmesser 1: $d_1 = 14 \text{ mm}$ Länge 1: $l_1 = 18 \text{ mm}$

Durchmesser 2: $d_2 = 22 \text{ mm}$ Länge 2: $l_2 = 20 \text{ mm}$

Durchmesser 3: $d_3 = 18 \text{ mm}$ Länge 3: $l_3 = 82 \text{ mm}$

Durchmesser 4: $d_4 = 16 \text{ mm}$ Länge 4: $l_4 = 25 \text{ mm}$

Länge gesamt: $I_q = 145 \text{ mm}$

Prozessgrößen:

 $v_c = 350 \text{ m/min}$ $a_p = 1 \text{ mm}$ $I_{ii} = 0 \text{ mm}$

^th

 d_2 d_1 v_f , f v_g v_f , f v_g

Gesucht:

₹

Übungsaufgabe im 2er Team

Außenlängendrehen (SS 2006)

$$v_{c} = konst.$$

$$t_{h} = t_{c} + 0 = l_{h}$$

$$t_{h} = t_{c} + 0 = l_{h}$$

$$v_{f} = l_{1}$$

$$v_{f1} = n_{1} \cdot f \quad v_{c} = \pi \cdot d_{1} \cdot n_{1}$$

$$n_{1} = \frac{v_{c}}{\pi \cdot d_{1}}$$

$$t_{h1} = \frac{l_1 \cdot \pi \cdot d_1}{v_c \cdot f} = \frac{18 \text{ mm} \cdot \pi \cdot 14 \text{ mm}}{5833,33 \text{ mm/s} \cdot 0,3 \text{ mm}} = 0,45 \text{ s}$$

$$t_{h2} = 0,79 \text{ s}$$
 $t_{h3} = 2,65 \text{ s}$ $t_{h4} = 0,72 \text{ s}$

$$\rightarrow t_{hges} = t_{h1} + t_{h2} + t_{h3} + t_{h4} = \underline{4,61 \text{ s}}$$

