Homework 3 At

Due Mar 2 at 11:59pm

Points 10

Questions 10

Available Feb 20 at 8am - Mar 2 at 11:59pm

Time Limit None

Allowed Attempts Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	31 minutes	10 out of 10

(!) Correct answers are hidden.

Score for this attempt: 10 out of 10

Submitted Mar 2 at 12:23pm

This attempt took 31 minutes.

Question 1

1 / 1 pts

An LTIC system is specified by the equation

$$D^2 + 5D + 6$$
) y(t) = (D + 1) f(t)

What is the characteristic polynomial, of this system?

(a).
$$\lambda^2 + 5\lambda + 6 = \lambda + 1$$

(b).
$$\lambda^2 + 5\lambda + 6 = 0$$

(c).
$$(\lambda^2 + 5\lambda + 6)\lambda = (\lambda + 1)\lambda$$

O a

b

Question 2

1 / 1 pts

What are the characteristic roots for question 1?

- (a). $\lambda = 0$
- (b). $\lambda = -1$
- (c). $\lambda_1 = -2, \ \lambda_2 = -3$
 - O a
 - O b
 - C

Question 3

1 / 1 pts

Suppose the zero-input system response of an LTIC system is

$$y_0(t) = c_1 e^{-3t} + c_2 e^{-5t}$$
,

If the initial conditions are $y_0(0) = 3$, and $y_0(0) = -5$, find $y_0(t)$.

- (a). $y_0(t) = -2e^{-3t} 2e^{-5t}$
- (b). $y_0(t) = 3e^{-3t} 5e^{-5t}$
- (c). $y_0(t) = 5e^{-3t} 2e^{-5t}$
 - O a
 - 0 b
 - C

Question 4

1 / 1 pts

Suppose $y(t) = te^{-3t}$, what is the first derivative y(t)?

Tips: When y(t) = g(t) h(t), y(t) = g(t)h(t) + g(t)h(t).

The first derivative of (ct) is: $c \dot{t} = c$, where c is a constant.

The first derivative of (t^n) is: $(t^n) = n t^{n-1}$.

The first derivative of (e^{-nt}) is: $(e^{-nt}) = -n e^{-nt}$

- (a). $y(t) = \dot{t} \times e^{-3t} + t \times (e^{-3t}) = e^{-3t} 3te^{-3t}$
- (b). $y(t) = e^{-3t}$
- (c). y(t) = t
 - a
 - O b
 - О с

An LTIC system is specified by the equation

$$(D^2 + 4D + 4)y(t) = D f(t)$$

If the initial conditions are $y_0(0)=3$, and $y_0(0)=-4$, find $y_0(t)=-4$

- $y_0(t) = c_1 e^{-2t} + c_2 e^{-2t}, c_1 = 3, c_2 = -4$
- $y_0(t) = c_1 e^{-2t} + c_2 t e^{-2t}, c_1 = 3, c_2 = 2$ (b).
- (c). None of the above.
 - O a
 - b
 - O c

Question 6

1 / 1 pts

The unit impulse response of an LTIC system is $h(t) = e^{-t}u(t)$, where u(t) is unit step function. Find this system's zero-state response y(t) if the input f(t) is $e^{-2t}u(t)$

The LTIC system's zero-state response

$$y(t) = f(t) * h(t) = \int_{-\infty}^{\infty} f(\tau) h(t - \tau) d\tau$$

When
$$x \to \omega$$
, $(e^{-nx}) \to 0$.

$$\int_0^{\infty} e^{-nx} dx = \left[\frac{e^{-nx}}{-n}\right]_{x=0}^{x=\omega} = 0 - \frac{e^0}{-n} = \frac{1}{n}, \text{ where n > 0}.$$

$$\int_0^{\infty} e^{-nx+m} \ d \ x = e^m \int_0^{\infty} e^{-nx} \ d \ x = e^m \left[\frac{e^{-nx}}{-n} \ \right]_{x=0}^{x=\infty} = e^m (0 - \frac{e^0}{-n}) = \frac{e^m}{n} \ , \ \text{ where n > 0}.$$

(a).
$$y(t) = f(t) * h(t)$$

$$= \int_{-\infty}^{\infty} e^{-2\tau} u(\tau) e^{-(t-\tau)} u(t-\tau) d\tau$$

$$= \int_{0}^{t} e^{-2\tau} e^{-(t-\tau)} d\tau$$

$$= e^{-t} \int_{0}^{t} e^{-\tau} d\tau$$

$$= e^{-t} \left[\frac{e^{-\tau}}{-1} \right]_{\tau=0}^{\tau=t}$$

$$= e^{-t} \left[\frac{e^{-\tau}}{-1} - \frac{e^{0}}{-1} \right]$$

$$= (e^{-t} - e^{-2t}) \quad \text{where } t \ge 0. \quad \text{y(t)} = 0 \text{ where } t < 0.$$
So $y(t) = (e^{-t} - e^{-2t}) u(t)$

(b).
$$y(t) = f(t) * h(t) = e^{-t} u(t)$$

(c).
$$y(t) = f(t) * h(t) = e^{-2t} u(t)$$

- a
- 0 b
- O c

Question 7

1 / 1 pts

The unit step response g(t) for a certain communication channel is shown below. What is time-constant (rise-time) T_h of this system?

- (a). $T_h = 10^{-5} s$
- (b). $T_h = 10^{-3} s$
- (c). None of the above.

)	b

O c

Question 8

1 / 1 pts

What is the bandwidth B of the channel described in guestion 7?

(a).
$$B = \frac{1}{T_h} = 10^5 \, Hz$$

(b).
$$B = \frac{1}{T_h} = 10^3 \, Hz$$

(c). None of the above.

Question 9

1 / 1 pts

A certain communication channel has a bandwidth B of 10 kHz.

A pulse of 0.5 ms duration is transmitted over this channel.

Determine the width (duration) of the received pulse.

The rise time Th of the system = 1/bandwidth, which indicates how much time it takes the system to fully responds to the input signal. Th $\frac{1}{B} = \frac{1}{10 \ k} \ seconds = \frac{1}{10} \ ms = 0.1 \ ms$.

(a).
$$(0.5 + 0.1) = 0.6 \text{ ms}$$

(c).
$$(0.5 - 0.1) = 0.4 \text{ ms}$$

Ос	

Question 10	1 / 1 pts
Supposed the received pulse width is 10 ms interval. The maximum interference between successful pulse) is (a). $\frac{1}{10\times 10^{-3}}=100\ pulses/second$ (b). $10\ pulses/second$ (c). $1\ pulse/second$	pulse rate (to avoid
a	
O b	
0.0	

Quiz Score: 10 out of 10