

CSCI-3403: Cyber Security Spring 2020

Biljith Thadichi

Department of Computer Science
University of Colorado Boulder

Mid Term FCQs

Week 5

- > Replay Attacks
- > Salting
- > Project 2

Case 1

In a replay attack, the adversary must necessarily know how to decrypt the message?

- True
- False

Can Eve launch a successful replay attack? As part of the replay attack, will Eve learn Alice's credit card number

Case 2: Needham Schroeder Protocol

Alice instead uses the key exchange shown prior, can Eve launch a successful replay attack?

If Alice uses the key exchange shown in Slide 2 and Eve has obtained session key Ks, can Eve launch a successful replay attack?

Case 3

Needham-Schroeder with Denning-Sacco Modification

Alice Alice | Bob |
$$r_1$$
 | Cathy

Alice $Alice = Alice = Ali$

From Introduction to Computer Security ©2004 Matt Bishop

If Alice uses the key exchange shown in Slide 3 and Eve has obtained session key Ks, can Eve launch a successful replay attack?

Week 5

- > Replay Attacks
- > Salting
- > Project 2

Salted Password Scheme

User ID	Salt (12 Random bits)	Encrypted Password
Alice	01101000111	H(salt password)
Bobs	01110111001	H(salt password)

Effect of Salts

	8		2	
Password	p4s5w3rdz	p4s5w3rdz	p4s5w3rdz	p4s5w3rdz
Salt	-	-	et52ed	ye5sf8
Hash	f4c31aa	f4c31aa	lvn49sa	z32i6t0

Online vs Offline Attacks

Online Attacks

- Trying a large number of password combinations on the login portal in the hope of getting the right password.
- Limited by speed of the network
- Limited by account lockouts

Offline Dictionary attacks

 A dictionary attack is based on trying all the strings in a prearranged listing, typically derived from a list of words such as in a dictionary

Attacker Obtains Password File:

```
joe 9Mfsk4EQ...
mary AEd62KRD...
john J3mhF7Mv...

Attacker computes possible password hashes
(using words from dictionary)
h(automobile) = 9Mfsk4EQ...
h(aardvark) = z5wcuJWE...
h(balloon) = AEd62KRD...
h(doughnut) = tvj/d6R4
```


How much harder does the addition of a salt make it for an attacker who compromises the password file to learn Alice's password?

Assume: salt = 12 bits long, # people $> 2^{12}$

- Not much
- Twice as hard
- \circ 2¹² times as hard

How much harder does the addition of a salt make it for an attacker who compromises the password file to learn Alice's password?

- Not much
- Twice as hard
- \circ 2¹² times as hard

How much harder does the addition of a salt (12 random bits) make it for an attacker to carry out an offline dictionary attack?

- Not much
- Twice as hard
- \circ 2¹² times as hard

How much harder does the addition of a salt make it for an attacker to carry out an offline dictionary attack?

- Not much
- Twice as hard
- $\circ 2^{12}$ times as hard

Salting – Good News!

- Dictionary attack against an arbitrary user is harder
 - Before salts: Hash word and compare it with password file
 - After salts: Hash words and combos of possible salts
- N word dictionary, k bit salts
 - Attacker must hash n * 2^k strings vs n strings (no salt)

Offline Dictionary attack foiled!

h(automobile2975) = KNVXKOHBDEBKOURX
h(automobile1487) = ZNBXLPOEWNVDEJOG
h(automobile2764) = ZMCXOSJNFKOFJHKDF
h(automobile4012) = DJKOINSLOKDKOLJUS
h(automobile3912) = CNVIUDONSOUIEPQN
...Etc...
h(aardvark2975) = DKOUOXKOUDJWOIQ
h(aardvark1487) = PODNJUIHDJSHYEJNU
...Etc...

/etc/p	passwd:	
john	LPINSFRABXJYWONF	2975
mary	DOIIDBQBZIDRWNKG	1487
ioe	LDHNSUNELDUALKDY	2764

Too many combinations!!! Attack is Foiled!

Salting – Bad News!

- Ineffective against chosen victim attack
 - Attacker wants to compromise particular account
 - Just hash dictionary words with the victim's salt
- Attacker's job becomes harder, not impossible
 - Easy for attacker to compute $2^k * n$ hashes?
 - Then offline dictionary attack is still a threat

Week 5

- > Replay Attacks
- > Salting
- > Project 2

Project

- Goal: Learn how almost everything secure on the internet works, including HTTPS and SSH
- The communication should be guaranteed to be confidential and it should have complete integrity

Session keys

- The session key should not be guessable
- What is a good source of a "random" session key?

/dev/urandom

How do you access /dev/urandom

Hint: See python's os module

Session Keys

Can we send this session key out in the open?

Of course not!

How can we make sure that nobody other than the server can read this session key?

Public Key Encryption!

Generating Public – Private Key Pairs

Whose public key should we use to encrypt the message?

Server's!

How to generate public key private key pairs?

ssh-keygen

Send Username Password

Verify your message is encrypted

WIRESHARK

Mid Term FCQs

Your feedback is important!!!

Please and Thank you!

