DSIP – Lecturer 09 Image Enhancement in the Spatial Domain

Image Enhancement – Review

Types of image enhancement operations

Point/pixel operations Output value at specific coordinates (x,y) is

dependent only on the input value at (x,y)

Local operations The output value at (x,y) is dependent on the input values in the *neighborhood* of (x,y)

Global operations The output value at (x,y) is dependent on all the values in the input image

Image Enhancement

Process an image to make the result more suitable than the original image for a specific application

-Image enhancement is subjective (problem /application oriented)

Image enhancement methods:

Spatial domain: Direct manipulation of pixel in an image (on

the image plane)

Frequency domain: Processing the image based on modifying the Fourier transform of an image

Many techniques are based on various combinations of methods from these two categories

Histograms

Histogram of an image with gray level (0 to L-1):

A discrete function $h(r_k) = n_k$, where r_k is the k^{th} gray level and n_k is the number of pixels in the image having gray level r_k .

How a histogram is obtained?

- For B-bit image, initialize 2^B counters with 0
- Loop over all pixels x,y
- When encountering gray level f(x,y)=i, increment counter # i

Normalized histogram: A discrete function $p(r_k) = n_k/n$, where n is the total number of pixels in the image. $p(r_k)$ estimates probability of occurrence of gray-level r_k

Example Histogram

Pout image

Example Histogram

Cameraman image

Histogram Examples

Contrast Stretching through Histogram

If r_{max} and r_{min} are the maximum and minimum gray level of the input image and L is the total gray levels of output image The transformation function for contrast stretching will be

Idea: To find a non-linear transformation

$$s = T(r)$$

to be applied to each pixel of the input image f(x,y), such that a uniform distribution of gray levels in the entire range results for the output image g(x,y).

Assuming ideal, continuous case, with normalized histograms

- that $0 \le r \le 1$ and $0 \le s \le 1$
- T(r) is single valued i.e., there exists $r = T^{-1}(r)$
- T(r) is monotonically increasing

A function T(r) is monotonically increasing if $T(r_1) \le T(r_2)$ for $r_1 \le r_2$, and monotonically decreasing if $T(r_1) > T(r_2)$ for $r_1 < r_2$. $s_k = T(r_k)$

> Example of a transformation function which is both single valued and monotonically increasing

The discrete approximation of the transformation function for histogram equalization is:

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j)$$
 for $0 \le k \le L - 1$

where
$$p_r(r_j) = \frac{n_j}{n}$$
, $j = 0, ..., L-1$ and $n = \sum_{j=0}^{L-1} n_j$

 n_j : number of pixels with gray level r_j

n : total number of pixels

Note: For digital images, gray-level pdf cannot be exactly uniform after histogram equalization

- •Spreading out the frequencies in an image (or equalising the image) is a simple way to improve dark or washed out images
- •The formula for histogram equalisation is given where
 - $-r_k$: input intensity
 - $-s_k$: processed intensity
 - -k: the intensity range (e.g 0.0 1.0)
 - $-n_i$: the frequency of intensity j
 - -n: the sum of all frequencies

$$S_k = T(r_k)$$

$$= \sum_{j=1}^k p_r(r_j)$$

$$= \sum_{j=1}^k \frac{n_j}{n}$$

Γ52	55	61	66	70	61	64	73]
63	59	55	90	109	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
L 87	79	69	68	65	76	78	94

Value	Count	Value	Count	Value	Count	Value	Count	Value	Count
52	1	64	2	72	1	85	2	113	1
55	3	65	3	73	2	87	1	122	1
58	2	66	2	75	1	88	1	126	1
59	3	67	1	76	1	90	1	144	1
60	1	68	5	77	1	94	1	154	1
61	4	69	3	78	1	104	2		
62	1	70	4	79	2	106	1		
63	2	71	2 _{Dr. B.}	S. Daga , Fr.(RCE , Mumb	a109	1		

[52]	55	61	66	70	61	64	73
63	59	55	90	109	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94
_							_

	0	12	53	93	146	53	73	166
								158
								166
6	55	20	154	243	255	231	146	130
9)7	53	117	227	247	210	117	146
1	90	85	36	146	178	117	20	170
								194
2	06	190	130	117	85	174	182	219

Initial Image

Image After Equalization

15

2	3	3	2
4	2	4	3
3	2	3	5
2	4	2	4

4x4 image

Gray scale = [0,9]

Gray Level(j)	0	1	2	3	4	5	6	7	8	9
No. of pixels	0	0	6	5	4	1	0	0	0	0
$\sum_{j=0}^k \boldsymbol{n}_j$	0	0	6	11	15	16	16	16	16	16
$\mathbf{c} = \sum_{j=1}^{k} \frac{\mathbf{n}_{j}}{2}$			6	11	15	16	16	16	16	16
$s = \sum_{j=0}^{J} \frac{J}{n}$	0	0	/	/	/	/	/	/	/	/
<i>j</i> =0			16	16	16	16	16	16	16	16
s x 9	0	0 0	3.3	6.1	8.4	0	0	0	0	
	0		≈ 3	≈6	≈8	9	9	9	9	9
		l] D:: D	 	DOE Marral	 :			17	

3	6	6	3
8	3	8	6
6	3	6	9
3	8	3	8

Output image

Gray scale = [0,9]

Histogram equalization

Histogram Matching

Histogram matching (histogram specification)

A processed image has a specified histogram

Let $p_r(r)$ and $p_z(z)$ denote the continous probability density functions of the variables r and z. $p_z(z)$ is the specified probability density function.

Let s be the random variable with the probability

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

Obtain a transformation function G

$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

Histogram Matching

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$G(z) = (L-1)\int_0^z p_z(t)dt = s$$

$$z = G^{-1}(s) = G^{-1}[T(r)]$$

Histogram Matching: Procedure

Obtain p_r(r) from the input image and then obtain the values of s

$$s = (L-1) \int_0^r p_r(w) dw$$

Use the specified PDF and obtain the transformation function G(z)

$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

• Mapping from s to z

$$z = G^{-1}(s)$$

Histogram Matching: Example

Assuming continuous intensity values, suppose that an image has the intensity PDF

$$p_r(r) = \begin{cases} \frac{2r}{(L-1)^2}, & \text{for } 0 \le r \le L-1\\ 0, & \text{otherwise} \end{cases}$$

Find the transformation function that will produce an image whose intensity PDF is

$$p_z(z) = \begin{cases} \frac{3z^2}{(L-1)^3}, & \text{for } 0 \le z \le (L-1)\\ 0, & \text{otherwise} \end{cases}$$

Histogram Matching: Example

Find the histogram equalization transformation for the input image

$$s = T(r) = (L-1) \int_0^r p_r(w) dw = (L-1) \int_0^r \frac{2w}{(L-1)^2} dw = \frac{r^2}{L-1}$$
 Find the histogram equalization transformation for the specified histogram

The transformation function
$$t$$
 $dt = (L-1)\int_0^z \frac{3t^2}{(L-1)^3} dt = \frac{z^3}{(L-1)^2} = s$

$$z = \left[(L-1)^2 s \right]^{1/3} = \left[(L-1)^2 \frac{r^2}{L-1} \right]^{1/3} = \left[(L-1)r^2 \right]^{1/3}$$

Histogram Matching: Discrete Cases

• Obtain $p_r(r_i)$ from the input image and then obtain the values of s_k , round the value to the integer range [0, L-1].

$$s_k=T(r_k)=(L-1)\sum_{j=0}^k p_r(r_j)=\frac{(L-1)}{MN}\sum_{j=0}^k n_j$$
 • Use the specified PDF and obtain the transformation function G(z_q),

round the value to the integer range [0, L-1].

• Mapping from
$$S_k = (L-1)\sum_{i=0}^q p_z(z_i) = S_k$$

$$z_q = G^{-1}(s_k)$$

Suppose that a 3-bit image (L=8) of size 64×64 pixels (MN = 4096) has the intensity distribution shown in the following table (on the left). Get the histogram transformation function and make the output image with the specified histogram, listed in the table on the right.

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

	Specified	
z_q	$p_z(z_q)$	
$z_0 = 0$	0.00	
$z_1 = 1$	0.00	
$z_2 = 2$	0.00	
$z_3 = 3$	0.15	
$z_4 = 4$	0.20	
$z_5 = 5$	0.30	
$z_6 = 6$	0.20	
$z_7 = 7$	0.15	

Obtain the scaled histogram-equalized values,

$$s_0 = 1, s_1 = 3, s_2 = 5, s_3 = 6, s_4 = 7,$$

 $s_5 = 7, s_6 = 7, s_7 = 7.$

Compute all the values of the transformation function G,

$$G(z_0) = 7\sum_{j=0}^{0} p_z(z_j) = 0.00 \longrightarrow 0$$

$$G(z_1) = 0.00 \rightarrow 0$$
 $G(z_2) = 0.00 \rightarrow 0$
 $G(z_3) = 1.05 \rightarrow 1$ $G(z_4) = 2.45 \rightarrow 2$

	<u> </u>	$(2_3) = 1.03$	\rightarrow 1	$G(z_4) = 2.43 \rightarrow 2$
r_k	$n_k G($	$z_5^{r(r_k)} = 4.55$	\rightarrow 5	$G(z_6) = 5.95 \rightarrow 6$
$r_0 = 0$	790	$\frac{2.5}{0.19}$		$G(z_6) = 3.75$
$r_1 = 1$	1023G	$(z_7) = \frac{0.25}{0.21} \cdot .00$	\rightarrow 7	
$r_2 = 2$	850	\mathcal{L}_7) $\overline{0.21}$ \cdot	, ,	
$r_3 = 3$	656	0.16		
$r_4 = 4$	329	0.08		
$r_5 = 5$	245	0.06		

0.03

0.02

z_q	Specified $p_z(z_q)$	
$z_0 = 0$	0.00	
$z_1 = 1$	0.00	
$z_2 = 2$	0.00	
$z_3 = 3$	0.15	
$z_4 = 4$	0.20	
$z_5 = 5$	0.30	
$z_6 = 6$	0.20	
$z_7 = 7$	0.15	

a b c d

FIGURE 3.22

- (a) Histogram of a 3-bit image. (b) Specified histogram.
- (c) Transformation function obtained from the specified histogram.
- (d) Result of performing histogram specification. Compare
- (b) and (d).

Obtain the scaled histogram-equalized values,

$$s_0 = 1, s_1 = 3, s_2 = 5, s_3 = 6, s_4 = 7,$$

 $s_5 = 7, s_6 = 7, s_7 = 7.$

Compute all the values of the transformation function G,

$$G(z_0) = 7\sum_{j=0}^{0} p_z(z_j) = 0.00 \longrightarrow 0$$

$$G(z_1) = 0.00 \rightarrow 0$$
 $G(z_2) = 0.00 \rightarrow 0$ $G(z_3) = 1.05 \rightarrow 1$ $\mathbf{s_0}$ $G(z_4) = 2.45 \rightarrow 2$ $\mathbf{s_1}$ $G(z_5) = 4.55 \rightarrow 5$ $\mathbf{s_2}$ $G(z_6) = 5.95 \rightarrow 6$ $\mathbf{s_3}$ $G(z_7) = 7.00 \rightarrow 7$ $\mathbf{s_4}$ $\mathbf{s_5}$ $\mathbf{s_6}$ $\mathbf{s_7}$

$$s_0 = 1, s_1 = 3, s_2 = 5, s_3 = 6, s_4 = 7,$$

 $s_5 = 7, s_6 = 7, s_7 = 7.$

$$r_k \to z_q$$

$$0 \rightarrow 3$$

$$1 \rightarrow 4$$

$$2 \rightarrow 5$$

$$3 \rightarrow 6$$

$$4 \rightarrow 7$$

$$5 \rightarrow 7$$

$$6 \rightarrow 7$$

$$7 \rightarrow 7$$

a b

FIGURE 3.24

- (a) Transformation function for histogram equalization.
- (b) Histogramequalized image (note the washedout appearance).
- (c) Histogram of (b).

a c b d

FIGURE 3.25

- (a) Specified histogram.
- (b) Transformations.
- (c) Enhanced image using mappings from curve (2).
- (d) Histogram of (c).