Lecture 7 Training Neural Nets

Root Mean Squared Prop (RMSProp)

 RMSProp divides the learning rate by an exponentially-decaying average of squared gradients.

Hinton et al. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude." COURSERA: Neural networks for machine learning 4.2 (2012): 26-31.

RMSProp

$$\mathbf{s}^{k+1} = \beta \cdot \mathbf{s}^k + (1 - \beta) [\nabla_{\boldsymbol{\theta}} L \circ \nabla_{\boldsymbol{\theta}} L]$$

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \alpha \cdot \frac{\nabla_{\boldsymbol{\theta}} L}{\sqrt{\boldsymbol{s}^{k+1}} + \epsilon}$$

Element-wise multiplication

Hyperparameters: α , β , ϵ Needs tuning! Often 0.9

RMSProp

X-direction Small gradients

(Uncentered) variance of gradients

→ second momentum

We're dividing by square gradients:

- Division in Y-Direction will be large
- Division in X-Direction will be small

$$oldsymbol{s}^{k+1} = eta \cdot oldsymbol{s}^k + (1-eta) [
abla_{oldsymbol{ heta}} L \circ
abla_{oldsymbol{ heta}} L]$$

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \alpha \cdot \frac{\nabla_{\boldsymbol{\theta}} L}{\sqrt{\boldsymbol{s}^{k+1}} + \epsilon}$$

Can increase learning rate!

RMSProp

- Dampening the oscillations for high-variance directions
- Can use faster learning rate because it is less likely to diverge
 - → Speed up learning speed
 - → Second moment

Adaptive Moment Estimation (Adam)

Idea: Combine Momentum and RMSProp

$$m^{k+1} = \beta_1 \cdot m^k + (1 - \beta_1) \nabla_{\theta} L(\theta^k)$$
 First momentum: mean of gradients $v^{k+1} = \beta_2 \cdot v^k + (1 - \beta_2) [\nabla_{\theta} L(\theta^k) \circ \nabla_{\theta} L(\theta^k)]$

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \alpha \cdot \frac{m^{k+1}}{\sqrt{v^{k+1}} + \epsilon}$$

Note: This is not the update rule of Adam

Second momentum: variance of gradients

Q. What happens at k=0? A. We need bias correction as $m{m}^0=0$ and $m{v}^0=0$

[Kingma et al., ICLR'15] Adam: A method for stochastic optimization

Adam: Bias Corrected

Combines Momentum and RMSProp

$$\boldsymbol{m}^{k+1} = \beta_1 \cdot \boldsymbol{m}^k + (1 - \beta_1) \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^k) \qquad \boldsymbol{v}^{k+1} = \beta_2 \cdot \boldsymbol{v}^k + (1 - \beta_2) [\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^k) \circ \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^k)]$$

- m^k and \boldsymbol{v}^k are initialized with zero
 - → bias towards zero
 - → Need bias-corrected moment updates

Update rule of Adam

$$\widehat{\boldsymbol{m}}^{k+1} = \frac{\boldsymbol{m}^{k+1}}{1 - {\beta_1}^{k+1}} \qquad \widehat{\boldsymbol{v}}^{k+1} = \frac{\boldsymbol{v}^{k+1}}{1 - {\beta_2}^{k+1}} \qquad \longrightarrow \quad \boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \alpha \cdot \frac{\widehat{\boldsymbol{m}}^{k+1}}{\sqrt{\widehat{\boldsymbol{v}}^{k+1}} + \epsilon}$$

Adam

 Exponentially-decaying mean and variance of gradients (combines first and second order momentum)

There are a few others...

- 'Vanilla' SGD
- Momentum
- RMSProp
- Adagrad
- Adadelta
- AdaMax
- Nada
- AMSGrad

Adam is mostly method of choice for neural networks!

It's actually fun to play around with SGD updates. It's easy and you get pretty immediate feedback ©

Convergence

Source: http://ruder.io/optimizing-gradient-descent/

Convergence

Source: http://ruder.io/optimizing-gradient-descent/

Convergence

Source: https://github.com/Jaewan-Yun/optimizer-visualization

Learning Rate: Implications

- What if too high?
- What if too low?

Learning Rate

Learning Rate Decay

•
$$\alpha = \frac{1}{1 + decay_rate * epoch} \cdot \alpha_0$$

- E.g.,
$$\alpha_0 = 0.1$$
, $decay_rate = 1.0$

- \rightarrow Epoch 0: 0.1
- → Epoch 1: 0.05
- → Epoch 2: 0.033
- → Epoch 3: 0.025

0.12
0.1
0.08
0.06
0.04
0.02
0
0
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

...

Learning Rate Decay

Many options:

- Step decay $\alpha = \alpha t \cdot \alpha$ (only every n steps)
 - T is decay rate (often 0.5)
- Exponential decay $\alpha = t^{epoch} \cdot \alpha_0$
 - t is decay rate (t < 1.0)

•
$$\alpha = \frac{t}{\sqrt{epoch}} \cdot a_0$$

- t is decay rate
- Etc.

Training Schedule

Manually specify learning rate for entire training process

- Manually set learning rate every n-epochs
- How?
 - Trial and error (the hard way)
 - Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.

Basic Recipe for Training

- Given ground dataset with ground labels
 - $-\{x_i,y_i\}$
 - x_i is the i^{th} training image, with label y_i
 - Often $\dim(x) \gg \dim(y)$ (e.g., for classification)
 - i is often in the 100-thousands or millions
 - Take network f and its parameters w, b
 - Use SGD (or variation) to find optimal parameters w, b
 - Gradients from backpropagation

Gradient Descent on Train Set

- Given large train set with (n) training samples $\{x_i, y_i\}$
 - Let's say 1 million labeled images
 - Let's say our network has 500k parameters
- Gradient has 500k dimensions
- n = 1 million
- Extremely expensive to compute

Learning

- Learning means generalization to unknown dataset
 - (So far no 'real' learning)
 - I.e., train on known dataset → test with optimized parameters on unknown dataset
- Basically, we hope that based on the train set, the optimized parameters will give similar results on different data (i.e., test data)

Learning

- Training set ('train'):
 - Use for training your neural network
- Validation set ('val'):
 - Hyperparameter optimization
 - Check generalization progress
- Test set ('test'):
 - Only for the very end
 - NEVER TOUCH DURING DEVELOPMENT OR TRAINING

Learning

- Typical splits
 - Train (60%), Val (20%), Test (20%)
 - Train (80%), Val (10%), Test (10%)
- During training:
 - Train error comes from average minibatch error
 - Typically take subset of validation every n iterations

Basic Recipe for Machine Learning

Split your data

Basic Recipe for Machine Learning

Split your data

Basic Recipe for Machine Learning

Credits: A. Ng

Over- and Underfitting

Over- and Underfitting

Source: https://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Learning Curves

- Training graphs
 - Accuracy

- Loss

Learning Curves

Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

Overfitting Curves

Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

Other Curves

Source: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

To Summarize

- Underfitting
 - Training and validation losses decrease even at the end of training
- Overfitting
 - Training loss decreases and validation loss increases
- Ideal Training
 - Small gap between training and validation loss, and both go down at same rate (stable without fluctuations).

To Summarize

- Bad Signs
 - Training error not going down
 - Validation error not going down
 - Performance on validation better than on training set
 - Tests on train set different than during training
- Bad Practice
 - Training set contains test data
 - Debug algorithm on test data_

Never touch during development or training

Hyperparameters

- Network architecture (e.g., num layers, #weights)
- Number of iterations
- Learning rate(s) (i.e., solver parameters, decay, etc.)
- Regularization (more later next lecture)
- Batch size
- ...
- Overall: learning setup + optimization = hyperparameters

Hyperparameter Tuning

- Methods:
 - Manual search:
 - most common @
 - Grid search (structured, for 'real' applications)
 - Define ranges for all parameters spaces and select points
 - Usually pseudo-uniformly distributed
 - → Iterate over all possible configurations
 - Random search:

Like grid search but one picks points at random in the predefined ranges

How to Start

- Start with single training sample
 - Check if output correct
 - Overfit → train accuracy should be 100% because input just memorized
- Increase to handful of samples (e.g., 4)
 - Check if input is handled correctly
- Move from overfitting to more samples
 - **-** 5, 10, 100, 1000, ...
 - At some point, you should see generalization

Find a Good Learning Rate

- Use all training data with small weight decay
- Perform initial loss sanity check e.g., log(C) for softmax with C classes
- Find a learning rate that makes the loss drop significantly (exponentially) within 100 iterations
- Good learning rates to try:
 1e-1, 1e-2, 1e-3, 1e-4

Coarse Grid Search

- Choose a few values of learning rate and weight decay around what worked from
- Train a few models for a few epochs.
- Good weight decay to try: 1e-4, 1e-5, 0

Refine Grid

- Pick best models found with coarse grid.
- Refine grid search around these models.
- Train them for longer (10-20 epochs) without learning rate decay
- Study loss curves <- most important debugging tool!

Timings

- How long does each iteration take?
 - Get precise timings!
 - If an iteration exceeds 500ms, things get dicey
- Look for bottlenecks
 - Dataloading: smaller resolution, compression, train from SSD
 - Backprop
- Estimate total time
 - How long until you see some pattern? FOR MYNEURAL NETWORK!
 - How long till convergence?

Network Architecture

- Frequent mistake: "Let's use this super big network, train for two weeks and we see where we stand."
- Instead: start with simplest network possible
 - Rule of thumb divide #layers you started with by 5
- Get debug cycles down
 - Ideally, minutes

Debugging

- Use train/validation/test curves
 - Evaluation needs to be consistent
 - Numbers need to be comparable
- Only make one change at a time
 - "I've added 5 more layers and double the training size, and now I also trained 5 days longer. Now it's better, but why?"

Common Mistakes in Practice

- Did not overfit to single batch first
- Forgot to toggle train/eval mode for network
 - Check later when we talk about dropout...
- Forgot to call .zero_grad() (in PyTorch) before calling .backward()
- Passed softmaxed outputs to a loss function that expects raw logits