

Einleitung

- Pose Estimation in Gebäuden verschafft im Bauwesen z.B.:
 - automatische Baufortschritterfassung
 - Facility-Management & Navigation über Augmented Reality
- visuelle Lokalisierungsverfahren
 - VO oder SLAM sind relativ zum Ausgangspunkt
 - Absolute Bestimmung möglich durch:
 - > Suchen eines korrespondierendes Bildes in einer Bildergalerie
 - Pose Regression über Bild-Features

- Ansätze über KNN wie z.B. *PoseNet*
 - Ermittlung der Ground-Trurth-Daten über SfM genügt

S. der Forschung & Grundlagen

- Acharya et al. erhoben Daten aus Simulation statt über SfM
 - Trainiert mit unterschiedlichen synth. Datentypen => 5m, 20°
 - Trainiert mit Gradientenbildern der synth. Daten => 2m, 7°

- Ziel: diesen Ansatz in größeren Gebäuden auf längeren Strecken zu untersuchen
 - mehrere Richtung & Etagenebenen

CNN Architektur

GoogLeNet, ILSVRC '14 Sieger

PoseNet, 1. CNN zur Pose-Regression

- ß ist Balance zwischen Position p und Quaterion q
 - Empfohlen zwischen 120 und 750 in Gebäuden

$$loss(I) = \|\hat{\boldsymbol{p}} - \boldsymbol{p}\| + \beta \left\| \hat{\boldsymbol{q}} - \frac{\boldsymbol{q}}{\|\boldsymbol{q}\|} \right\|$$

Methodik

Erhebung der realen Daten

Generierung der synth. Daten

- Verarbeitung der Daten
- Datensätze

Trainingsparameter

Erhebung der realen Daten

- beliebige Kameras
 - SfM-Methoden

- Intel Realsense T265 & D435
 - versicherte bei gegebenen Bestkoniditionen einen Drift von 1%

- Roboter Operating System (ROS)
 - Hardware gesteuert und Datenfluss synchronisiert

(a) Pose (T265) +3D-Punktwolke (D435)

(d) Pose (T265) + 3D-Punktwolke (D435)

(b) Fischaugenkamera 1 (T265)

(e) RGB-Bild (D435)

(c) Fischaugenkamera 2 (T265)

(f) Tiefenbild (D435)

Generierung der synth. Daten

3D-Gebäudesmodell aus BIM in Blender v. 2.79b simuliert

- (bestmögliche) Imitation der Aufnahmestrecken
 - 0.05m Intervallen mit +/- 10° Neigung in je y- und z-Achse

- Insgesamt 3 Typen (angelehnt an Acharya et al.)
 - cartoon, edge, photoreal

Verarbeitung der Daten

- Gradientenbild
 - reale Bilder auf die Größe der synth. Daten skaliert

- Treshold-Verfahren
 - Unterdrückung der durch die synth. Lichter entstandenen Artefakte

Datensätze

länger, in mehrere Richtungen verlaufend und auf mehrere Etagenebenen erstreckend

Daten erhoben:

- nördliche Hälfe des 6. Stockwerkes des IC-Gebäudes der RUB (IC)
- Seminargebäude der Hochschule Bochum (HS)

Trainingsparameter

Hyperparameter wurden übernommen bzw. gleichermaßen bestimmt oder im selben Verhältnis zum Datensatz gewählt.

- Hyperparameter Beta wurde wie empfohlen via Grid-Search bestimmt
 - Trainiert und Evaluiert mit realen Daten
 - Ergebnis dient als Referenzwert

Hyperparameter	Wert
Architektur	PoseNet (s. Abschn. 2.4.2)
Implementierung	Caffe
Batchgröße	40
Anzahl der Epochen	160
Datenaufteilung	50% Trainingsdaten 50% Evaluationsdaten
Bildskalierung	480×270
Bildausschnitt	224 × 244 (Training: zufällig, Evaluation: zentriert)
Datensatznormierung	Subtraktion des Durchschnittsbildes der Trainingsdaten
$β$ der Kostenfunktion (s. Gleichung $\boxed{5}$)	IC-loop: 680 HS-gamma: 120 HS-stairs-up: 470 HS-stairs-down: 610
Loss-Optimierer	AdaGrad
Lernrate	10^{-3}
Initialisierung der Gewichte	Gewichte eines mit dem <i>Places Datensatz</i> trainierten Modells auf GoogLeNet

Ergebnisse

- Evaluationsergebnis
 - Abweichung der Position in Meter und den Orientierungsfehler in Grad
 - werden anhand der Positionsfehler verglichen

- Akkuratesse gibt an:
 - Median der Evaluationsergebnisse
- **Evaluation**
 - 1.: Gradientenbilder der korrespondierenden synthetischen Evaluationsdaten
 - 2.: Gradientenbilder der realen Evaluationsdaten

11

IC-loop

Referenzwert: 1.93m, 4.26°

Trainingsdatensatz (Gradientenbild)	synthetische Daten (Position, Orientierung)	reale Daten (Position, Orientierung)	
grad- $cartoon$	$1.61m, 8.17^{\circ}$	$23.56m, 51.30^{\circ}$	
grad- $edge$	$2.00m, 8.29^{\circ}$	$32.91m, 59.17^{\circ}$	
grad-photorcal	$1.80m, 7.70^{\circ}$	$16.68m, 73.25^{\circ}$	
Ø Durchschnitt	1.80m, 8.05°	24.38m, 61.24°	

- alle Evaluationsdaten in einem ca. 30m x 5m großen Teilbereich
- Die Orientierung als die Aufnahmerichtung der unteren horizontalen Strecke

HS-gamma

LEHRSTUHL FÜR INFORMATIK **IM BAUWESEN**

Referenzwert: 0.95m, 7.53°

Netzwerk (Trainingsdatensatz)	synthetische Daten (Position, Orientierung)	reale Daten (Position, Orientierung)	
grad-cartoon	1.00m, 9.92°	8.60m, 19.59°	
grad- $edge$	$1.07m, 8.69^{\circ}$	10.15m, 35.11°	
$grad\mbox{-}photoreal$	$1.45m, 9.17^{\circ}$	$10.27m, 41.60^{\circ}$	
Ø Durchschnitt	1.17m, 9.26°	9.67m, 32.10°	

- alle Evaluationsdaten in einem ca. 20m x 5m großen Teilbereich
- Die Orientierung als die Aufnahmerichtung der horizontalen Strecken

HS-stairs-up

Referenzwert: 0.94m, 8.33°

Netzwerk (Trainingsdatensatz)	synthetische Daten (Position, Orientierung)	reale Daten (Position, Orientierung)
grad-cartoon	$0.82m, 7.76^{\circ}$	4.77m, 23.43°
grad-edge	$0.82m, 8.48^{\circ}$	4.33m, 51.64°
grad-photoreal	$0.92m, 7.98^{\circ}$	$5.16m, 93.38^{\circ}$
\emptyset Durchschnitt $0.85m, 8.07^{\circ}$ 4.7		$4.75m, 56.15^{\circ}$

- alle Evaluationsergebnisse zwischen der dem oberen und unteren Treppenlauf
- abwechselnd größere Positionsfehler
- Die Orientierung wurde abwechselnd in der entgegengesetzten Orientierung bestimmt

HS-stairs-down

Referenzwert: 0.87m, 9.25°

Netzwerk (Trainingsdatensatz)	synthetische Daten (Position, Orientierung)	reale Daten (Position, Orientierung)	
grad-cartoon	0.91m, 8.01°	4.20m, 47.83°	
grad-edge	$0.85m, 7.50^{\circ}$	5.59m, 67.34°	
$grad\mbox{-}photoreal$	$1.02m, 8.57^{\circ}$ $5.25m, 32.70^{\circ}$		
Ø Durchschnitt	$0.93m, 8.03^{\circ}$	$5.01m, 49.29^{\circ}$	

- alle Evaluationsergebnisse zwischen der dem oberen und unteren Treppenlauf
- abwechselnd größere Positionsfehler (sichtbarer)
- Die Orientierung wurde abwechselnd in der entgegengesetzten Orientierung bestimmt (sichtbarer)

Zusammenfassung

- Referenzwert: durch die Bestimmung des Hyperparameters Beta der Kostenf.
- **Evaluation 1**: Gradientenbilder der korrespondierenden synth. Daten
- **Evaluation 2**: Gradientenbilder der realen Daten

Strecke	Referenzwert	Evaluation 1	Ø Evaluation 2
IC-loop	$1.93m, 4.26^{\circ}$	$1.80m, 8.05^{\circ}$	$24.38m, 61.24^{\circ}$
HS- $gamma$	$0.95m, 7.53^{\circ}$	$1.17m, 9.26^{\circ}$	$9.67m, 32.10^{\circ}$
HS- $stairs$ - up	$0.94m, 8.33^{\circ}$	$0.85m, 8.07^{\circ}$	$4.75m, 56.15^{\circ}$
HS- $stairs$ - $down$	$0.87m, 9.25^{\circ}$	$0.93m, 8.03^{\circ}$	$5.01m, 49.29^{\circ}$
Ø Durchschnitt	$1.17m, 7.34^{\circ}$	1.19m, 8.35°	$10.95m, 49.69^{\circ}$

Diskussion

Diskussion der angewandten Methodik

Diskussion der Ergebnisse

Empfehlungen für weiterführende Forschung

D. der angewandten Methodik

- reale Daten wiesen bis zu 5% Drift auf
 - negativer Einfluss auf die domänenübergreifende Evaluation
- Akkuratesse ist vom Zufall abhängig
 - 5 Trainingsprozesse sind wenig
- Hyperparameter
 - wurden nicht optimiert, könnten auf den Datensatz von Acharya et al. optimiert sein

D. der Ergebnisse

- HS-stairs-down & HS-stairs-up
 - keine Generalisierungsfähigkeit zu erkennen (perceptual-aliasing)
- IC-loop & HS-gamma
 - ca. 5m breiten und 20m bis 30m langen Teilbereich
 - nur eine Richtung

24.09.2019

Parallelen zur Acharya et al.'s Datensatz

- PoseNet ist nicht begrenzt
 - mit Daten der gleichen Domäne konnte ca. 1m Positionsakkuratesse erzielt werden
 - Walch et al. erzielten mit TUM-Datensatz (größer als die Obigen) ca. 2m Positionsakkuratesse
 - => domänenübergreifende Training mit Gradientenbildern nur auf 5m x 30m in einer Richtung

Empf. für weiterf. Forschungen

- Anzahl der Trainingsprozesse bei gleichen Hyperparameter erhöhen
 - bessere Ergebnisse erzielen oder ausschließen => bestes synth. Datentyp bestimmen

- Optimierung der Hyperparameter
 - führt zu besseren Ergebnissen

- Nachfolger von PoseNet
 - versichern Verbesserung

Fazit

24.09.2019

21

Insgesamt wurde der Ansatz mit 2 Gebäuden auf 4 Strecken untersucht

- Durchschnittliche Akkuratesse von ca. 1m, 8° bei Daten der gleichen Domäne
- Domänenübergreifend: 10.95m, 49.69°
 - Parallelen ließen schlussfolgern, dass der Ansatz begrenzt ist
- Lokalisierungsverfahren undenkbar
 - Potenzielle Akkuratesse von ca. 1m im direkten Gebrauch ungeeignet, allerdings durch Kaskadeneffekt verbesserbar

Fazit

24.09.2019

22

- Unzureichende Akkuratesse bei domänenübergreifende Evaluation
 - liegt den Simulationsdefiziten und domänenspezifische Artefakte zugrunde
- Lohnenswerte Untersuchung:
 - > Diskrepanzminimierung zwischen synth. und realen Daten durch z.B. GANs
 - > Ferner: Beschränkungen der möglichen Posen im Trainingsprozess

