Wedding Boolean Solvers with Superposition: a Societal Reform

Simon Cruanes

École polytechnique and INRIA, 23 Avenue d'Italie, 75013 Paris, France https://who.rocq.inria.fr/Simon.Cruanes/

January 23rd, 2015

Summary

- 1 The Talented SAT and Superposition Solvers
- 2 Avatar: a Mighty Combination
- Structural Induction
- 4 Conclusion

SAT solving: the Big Boolean Hammer

- SAT: boolean satisfiability
- the archetypical NP-complete problem

SAT solving: the Big Boolean Hammer

- SAT: boolean satisfiability
- the archetypical NP-complete problem
- but: good solvers exist (many breakthroughs, competition)
 Chaff (2001) first CDCL solver, 2-watch literals
 Minisat (2003) small, efficient, extensible free solver
 Lingeling
 picosat
- gave rise to SMT solvers (alt-ergo, CVC4, Z3, yices...)
- encodings to SAT are good! (e.g. iProver, Satallax...)

Superposition: the King of Equality

In classical first-order theorem proving with \simeq , successful paradigm

- clausal calculus
 - literal: $s \simeq t$ or $s \not\simeq t$
 - clause: is a disjunction of literals $l_1 \vee \ldots \vee l_n$
 - ullet empty clause means ot
- saturation-based reasoning
 - state: set of clauses
 - inference rules deduce new clauses from current ones
 - new clauses are added to the set
 - ullet ightarrow until fixpoint (sat) or \perp (unsat)
 - might never terminate if problem is sat

Superposition: Example

Let's prove $(p \land a \simeq b \land f(a) \simeq c) \Rightarrow (p \land \exists x \ f(f(b)) \simeq f(x))$. We take RPO with $p \succ f \succ a \succ b \succ c$ as ordering.

$$\frac{a \simeq b \qquad f(a) \simeq c}{\frac{f(b) \simeq c}{} \text{sup+} \qquad \frac{p \qquad \neg p \lor f(f(b)) \not\simeq f(x)}{f(f(b)) \not\simeq f(x)} \text{sup-}} \text{sup-, eq. res}$$

$$\frac{f(c) \not\simeq f(x)}{} \text{eq. res with } \{x \mapsto c\}$$

Superposition: Example

Let's prove $(p \land a \simeq b \land f(a) \simeq c) \Rightarrow (p \land \exists x \ f(f(b)) \simeq f(x))$. We take RPO with $p \succ f \succ a \succ b \succ c$ as ordering.

$$\frac{a \simeq b \qquad f(a) \simeq c}{\frac{f(b) \simeq c}{} \text{sup+} \qquad \frac{p \qquad \neg p \lor f(f(b)) \not\simeq f(x)}{f(f(b)) \not\simeq f(x)} \text{sup-}} \text{sup-, eq. res}$$

$$\frac{f(c) \not\simeq f(x)}{\bot} \text{ eq. res with } \{x \mapsto c\}$$

unification and ordering are crucial

Superposition: Inference Rules

$$\begin{array}{c|c} \textbf{Superposition} \\ \hline \textit{C} \lor \textit{s} \simeq \textit{t} & \textit{D} \lor \textit{u} \stackrel{.}{\simeq} \textit{v} \\ \hline (\textit{C} \lor \textit{D} \lor \textit{u}[\textit{t}]_{\textit{p}} \stackrel{.}{\simeq} \textit{v}) \sigma \end{array}$$

 $\sigma = \text{mgu}(u|_p, s)$, ordering conditions

Equality Factoring $C \lor s \simeq s' \lor t \simeq t'$

$$\frac{C \lor s' \not\simeq t' \lor t \simeq t')\sigma}{(C \lor s' \not\simeq t' \lor t \simeq t')\sigma}$$

where $\sigma = mgu(s, t)$, ordering conditions

Equality Resolution

$$\frac{C \lor s \not\simeq t}{C\sigma}$$

where $\sigma = \text{mgu}(s, t)$, ordering conditions

Superposition: why it works

Superposition is sound and complete in theory.

In practice, needs many optimizations to work:

- redundancy criteria (remove trivial/useless clauses)
- simplification rules (infer + delete)
- implementation techniques (term indexing)

Need for Split

Problem with resolution/superposition: clauses grow.

Typically:

$$\frac{C \vee I \qquad D \vee \neg I}{C \vee D}$$

- \rightarrow for non-unit clauses, conclusion has m + n 2 literals
- → huge search space
- → heavy clauses (more indexing, memory, etc.)

Summary

- 1 The Talented SAT and Superposition Solvers
- 2 Avatar: a Mighty Combination
- Structural Induction
- 4 Conclusion

Avatar: Split and Cut (1)

Often, clauses have independent components.

Components

- components make a partition of the clause
- no variable shared between components
- clause = boolean disjunction of its components

Avatar: Split and Cut (2)

Example

```
clause C \stackrel{\text{def}}{=} p(x) \lor q(y) \lor r(y, f(z)) \lor s
components \begin{cases} p(x) \\ q(y) \lor r(y, f(z)) \\ s \end{cases}
hence: C = (\forall x \ p(x)) \lor (\forall y \ \forall z \ q(y) \lor r(y, f(z))) \lor s
```

C is actually a boolean clause!

Avatar: Split and Cut (3)

Idea: box clauses (components) into boolean literals

Boxing

- $C \mapsto [\![C]\!]$: injection into **boolean atoms**
- \bullet $[\![\textit{C}]\!]$ unique modulo alpha-renaming and AC of \vee
- $\llbracket \neg C \rrbracket \equiv \neg \llbracket C \rrbracket$ (if C has 1 literal)

Avatar: Split and Cut (4)

connect FO clauses and boolean atoms: the trail

Trail

trail

- $C \leftarrow \overbrace{b_1 \sqcap b_2 \sqcap \ldots \sqcap b_n}$
- means $(b_1 \sqcap b_2 \sqcap \ldots \sqcap b_n) \Rightarrow C$
- Theorem: $C \leftarrow [\![C]\!]$ (proof: left to the reader)

Avatar: Split and Cut (4)

connect FO clauses and boolean atoms: the trail

Trail

- $C \leftarrow \overbrace{b_1 \sqcap b_2 \sqcap \ldots \sqcap b_n}$
- means $(b_1 \sqcap b_2 \sqcap \ldots \sqcap b_n) \Rightarrow C$
- Theorem: $C \leftarrow [\![C]\!]$ (proof: left to the reader)

Usual inferences inherit trails. Example:

$$\frac{C \vee I \leftarrow \Gamma_1 \qquad D \vee \neg I \leftarrow \Gamma_2}{C \vee D \leftarrow \Gamma_1 \sqcap \Gamma_2} \text{ resolution}$$

Avatar: Split and Cut (5)

Avatar keeps a set of boolean constraints $S_{\text{constraints}}$.

Avatar: Split and Cut (5)

Avatar keeps a set of boolean constraints $S_{constraints}$.

Splitting inference rule

If C has components C_1, \ldots, C_n (with $n \geq 2$):

$$\frac{C_1 \vee \ldots \vee C_n \leftarrow \Gamma}{C_i \leftarrow \llbracket C_i \rrbracket} \operatorname{split}(i), \ i \in \{1 \ldots n\}$$

Also add $\Gamma \Rightarrow_b \bigsqcup_{i=1}^n \llbracket C_i \rrbracket$ to $S_{\text{constraints}}$

Avatar: Split and Cut (5)

Avatar keeps a set of boolean constraints $S_{constraints}$.

Splitting inference rule

If C has components C_1, \ldots, C_n (with $n \geq 2$):

$$\frac{C_1 \vee \ldots \vee C_n \leftarrow \Gamma}{C_i \leftarrow \llbracket C_i \rrbracket} \operatorname{split}(i), \ i \in \{1 \ldots n\}$$

Also add $\Gamma \Rightarrow_b \bigsqcup_{i=1}^n \llbracket C_i \rrbracket$ to $S_{\text{constraints}}$

Bottom inference rule

When a clause $\bot \leftarrow b_1 \sqcap ... \sqcap b_n$ is found:

Add $\neg b_1 \sqcup \ldots \sqcup \neg b_n$ to $S_{constraints}$

Avatar: Split and Cut (6)

Avatar: the Proof Procedure

- ullet regular superposition + SAT-solving on $S_{\text{constraints}}$
- unsat iff either one returns unsat
- pros:
 - ullet for SAT problem, SAT-solver does all the work o fast
 - for ground problems, unit-superposition
 - superposition handles smaller clauses
 - resolution divided between (FO) prover and (SAT) solver
- also, can use current SAT interpretation to filter clauses.

Voronkov claims huge performance improvements in Vampire.

Avatar: Example

Let us re-examine the same problem:

$$(p \land a \simeq b \land f(a) \simeq c) \Rightarrow (p \land \exists x \ f(f(b)) \simeq f(x)).$$

$$\frac{\neg p \lor f(f(b)) \not\simeq f(x)}{\neg p \leftarrow \neg \llbracket p \rrbracket} \qquad \frac{\neg p \lor f(f(b)) \not\simeq f(x)}{f(f(b)) \not\simeq f(x) \leftarrow \neg \llbracket f(f(b)) \simeq f(x) \rrbracket}$$

$$\vdots$$

$$\vdots$$

$$\pi_{1}$$

$$\vdots$$

$$\pi_{2}$$

$$\begin{array}{c} \pi_1 \\ \hline \bot \leftarrow \neg \llbracket p \rrbracket \end{array} \text{sup-, eq. res}$$

$$\frac{p}{\bot \leftarrow \neg \llbracket p \rrbracket} \text{ sup-, eq. res } \frac{\frac{\mathsf{a} \simeq b \qquad f(\mathsf{a}) \simeq c}{f(b) \simeq c} \text{ sup+} \\ \frac{f(\mathsf{b}) \simeq c}{\bot \leftarrow \neg \llbracket f(f(b)) \simeq f(x) \rrbracket} \text{ sup-} \\ \bot \leftarrow \neg \llbracket f(f(b)) \simeq f(x) \rrbracket} \text{ eq. res}$$

$$S_{\text{constraints}} = \{ \neg [\![p]\!] \sqcup \neg [\![f(f(b)) \simeq f(x)]\!], [\![p]\!], [\![f(f(b)) \simeq f(x)]\!] \}$$
 unsat

Summary

- 1 The Talented SAT and Superposition Solvers
- 2 Avatar: a Mighty Combination
- Structural Induction
- 4 Conclusion

Our Goal

Poincaré: [l'induction est] «le raisonnement mathématique par excellence».

Herbrand universe calls for structural induction:

- powerful enough for data structures
- generalizes induction on naturals
- simpler than general Noetherian induction (uses subterm ordering ⊲)

Work inspired from [Kersani&Peltier, 2013].

Refute the presence of a minimal model for a subset of all the clauses.

1 pick an inductive constant i

Refute the presence of a minimal model for a subset of all the clauses.

- pick an inductive constant i
- ② pick a cover set $\kappa(i)$ e.g. for naturals, $\kappa(i) = \{0, s(j)\}$ where j: nat is a fresh constant e.g. it can also be $\kappa(i) = \{0, s(0), s(s(j))\}$ e.g. for trees, $\kappa(i) = \{E, N(j_1, t, j_2)\}$ with fresh t: term, j_1, j_2 : tree

Refute the presence of a minimal model for a subset of all the clauses.

- pick an inductive constant i
- ② pick a cover set $\kappa(\mathfrak{i})$ e.g. for naturals, $\kappa(\mathfrak{i}) = \{0, s(\mathfrak{j})\}$ where \mathfrak{j} : nat is a fresh constant e.g. it can also be $\kappa(\mathfrak{i}) = \{0, s(0), s(s(\mathfrak{j}))\}$ e.g. for trees, $\kappa(\mathfrak{i}) = \{\mathsf{E}, \mathsf{N}(\mathfrak{j}_1, t, \mathfrak{j}_2)\}$ with fresh t: term, $\mathfrak{j}_1, \mathfrak{j}_2$: tree
- ullet pick subset of ind. clauses, call it $S_{\min}(i)$

Refute the presence of a minimal model for a subset of all the clauses.

- pick an inductive constant i
- ② pick a cover set $\kappa(i)$ e.g. for naturals, $\kappa(i) = \{0, s(j)\}$ where j: nat is a fresh constant e.g. it can also be $\kappa(i) = \{0, s(0), s(s(j))\}$ e.g. for trees, $\kappa(i) = \{E, N(j_1, t, j_2)\}$ with fresh t: term, j_1, j_2 : tree
- $oldsymbol{0}$ pick subset of ind. clauses, call it $S_{\min}(\mathfrak{i})$
- **4** for every $t \in \kappa(i)$
 - (i) assert $\mathfrak{i} \simeq t \leftarrow \llbracket \mathfrak{i} \simeq t \rrbracket$
 - (ii) assume the model is minimal for $S_{\min}(\mathfrak{i})$ and $\mathfrak{i} \simeq t$
 - (iii) seek contradiction
 - also add $\bigoplus_{t \in \kappa(\mathfrak{i})} \llbracket \mathfrak{i} \simeq t
 rbracket$ to $S_{\mathsf{constraints}}$ (where \bigoplus is "xor")
- **5** no minimal model \Rightarrow no model \Rightarrow unsat

How to survive Combinatorial Explosions

Problem with previous approach:

- consider every subset of clauses
- consider every $t \in \kappa(i)$ for each subset

How to survive Combinatorial Explosions

Problem with previous approach:

- consider every subset of clauses
- consider every $t \in \kappa(i)$ for each subset
- → smells like combinatorial explosion!

How to survive Combinatorial Explosions

Problem with previous approach:

- consider every subset of clauses
- consider every $t \in \kappa(i)$ for each subset
- → smells like combinatorial explosion!
- \rightarrow some boolean solvers are good at this!

Meet QBF

Definition

A quantified boolean formula (or QBF) is defined as $Q_1x_1 \ Q_2x_2 \ \dots \ Q_nx_n \ F$ where F is a boolean formula, $\{x_1,\dots,x_n\}$ is the set of boolean variables in F, and every $Q_i \in \{\exists, \forall\}$.

- complexity: PSPACE-complete (expand and/or tree)
- but: benefits from advances in SAT
- SAT is QBF with ∃ only

Example

 $\forall a \exists b \ \forall c \ ((a \sqcup b) \sqcap (c \sqcup \neg b))$ is a false QBF.

Clause Contexts

Problem

 $\begin{array}{ccc} \text{Induction} & \rightarrow & \text{second-order} \\ \text{clauses} & \rightarrow & \text{first-order} \end{array}$

Clause Contexts

Problem

```
\begin{array}{ccc} \text{Induction} & \rightarrow & \text{second-order} \\ \text{clauses} & \rightarrow & \text{first-order} \end{array}
```

Solution

Use clause contexts

- a clause with a hole ◊
- noted C[◊]
- can be applied to a term: $C[t] \stackrel{\text{def}}{=} [\diamond \mapsto t] C[\diamond]$

Example

- $\neg p[\diamond]$ to prove $\forall n \ p(n)$
- $n + s(\diamond) \not\simeq s(n + \diamond)$ to prove $\forall n \ \forall m \ n + s(m) \simeq s(n + m)$

Keep S_{input} and $S_{min}()$ Separate

- S_{input} clauses deducible from input
 - non-inductive clauses are the theory
 - inductive clauses → find new contexts (heuristic)
- $S_{min}()$ clauses deducible from induction hypothesis only
 - induction hypothesis
 - minimality assumptions
 - saturate with inference rules
 - \rightarrow do not mix them!

Keep S_{input} and $S_{min}()$ Separate (cont'd)

- ullet Use a special marker, input , to annotate clauses from $S_{
 m input}$
- → remember, trails are inherited in inferences
 - Redundancy criterion blocks interactions between S_{input} and $S_{min}()$

$$\frac{C \leftarrow \text{input}, \llbracket D[\diamond] \in S_{\min}(\mathfrak{i}) \rrbracket, \Gamma}{\top}$$

Example

- $(\neg p(n) \leftarrow \text{input}) \in S_{\text{input}} \text{ (provable)}$
- $(\neg p(n) \leftarrow \llbracket \neg p[\diamond] \in S_{\min}(n) \rrbracket) \in S_{\min}()$ (ind. hypothesis)

Express Induction Hypothesis

For inductive constant i, set of all contexts is $S_{cand}(i)$

in the subset? provable from S_{input} ?

- $C[i] \leftarrow \boxed{ \llbracket C[\diamond] \in S_{\min}(i) \rrbracket } \ \sqcap \ \boxed{ \llbracket \operatorname{init}(C[\diamond], i) \rrbracket }$
- boolean valuation of atoms $\llbracket C[\diamond] \in S_{\mathsf{min}}(\mathfrak{i}) \rrbracket$ determine subset $S_{\mathsf{min}}(\mathfrak{i})$
- $[init(C[\diamond],i)]$ added to QBF when C[i] subsumed by some clause

Express Minimality

• model minimal for $S_{\min}(\mathfrak{i}) \neq \emptyset$ $\Rightarrow \exists C[\diamond] \in S_{\min}(\mathfrak{i}) \text{ with } \begin{cases} C[\mathfrak{i}] \text{ true} \\ C[\diamond] \text{ false on a smaller term } \mathfrak{j} \end{cases}$

Express Minimality

- model minimal for $S_{\min}(\mathfrak{i}) \neq \emptyset$ $\Rightarrow \exists C[\diamond] \in S_{\min}(\mathfrak{i}) \text{ with } \left\{ \begin{array}{c} C[\mathfrak{i}] \text{ true} \\ C[\diamond] \text{ false on a smaller term } \mathfrak{j} \end{array} \right.$
- "winning" witness C[j] annotated with $[minimal(C[\diamond], i, j)]$
- for each $C[\diamond]$ and $j \triangleleft t \in \kappa_{\downarrow}(i)$ (subterm of inductive type): $\neg C[j] \leftarrow [\![\minimal(C[\diamond],i,j)]\!] \cap [\![C[\diamond] \in S_{\min}(i)]\!] \cap [\![i=t]\!]$ (then reduced to CNF)
- \rightarrow means: " $C[\diamond]$ is the context for which $S_{min}(\mathfrak{i})$ is minimal"
- \rightarrow means: "C[\diamond] is false on j, because it's smaller than i"

Express Minimality

- model minimal for $S_{\min}(\mathfrak{i}) \neq \emptyset$ $\Rightarrow \exists C[\diamond] \in S_{\min}(\mathfrak{i}) \text{ with } \begin{cases} C[\mathfrak{i}] \text{ true} \\ C[\diamond] \text{ false on a smaller term } \mathfrak{j} \end{cases}$
- "winning" witness C[j] annotated with $[minimal(C[\diamond],i,j)]$
- for each $C[\lozenge]$ and $\mathfrak{j} \triangleleft t \in \kappa_{\downarrow}(\mathfrak{i})$ (subterm of inductive type): $\neg C[\mathfrak{j}] \leftarrow \llbracket \mathsf{minimal}(C[\lozenge],\mathfrak{i},\mathfrak{j}) \rrbracket \sqcap \llbracket C[\lozenge] \in S_{\mathsf{min}}(\mathfrak{i}) \rrbracket \sqcap \llbracket \mathfrak{i} = t \rrbracket$ (then reduced to CNF)
- \rightarrow means: " $C[\diamond]$ is the context for which $S_{min}(i)$ is minimal"
- - ullet in QBF, disjunction that forces the *choice* of $C[\diamondsuit]$ in $S_{min}(\mathfrak{i})$

QBF is needed to enumerate the characteristic function for $S_{\min}(i)$ (ranges in $2^{S_{\text{cand}}(i)}$)

QBF is needed to enumerate the characteristic function for $S_{\min}(i)$ (ranges in $2^{S_{\text{cand}}(i)}$)

Formula

$$F \stackrel{\mathrm{def}}{=} \exists_{a \in S_{\mathsf{atoms}}} a \\ \forall_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket C[\lozenge] \in S_{\mathsf{min}}(i) \rrbracket \\ \exists_{t \in \kappa(i)} \llbracket i = t \rrbracket \\ \exists_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket \mathsf{init}(C[\lozenge], i) \rrbracket \\ \exists_{j \lhd t \in \kappa_{\downarrow}(i), C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket \mathsf{minimal}(C[\lozenge], i, j) \rrbracket \\ \left(\bigcap_{x \in S_{\mathsf{constraints}}} x \right) \sqcap \left(\mathsf{empty} \sqcup \bigsqcup_{t \in \kappa(i)} \left\{ \begin{array}{c} \llbracket i = t \rrbracket \sqcap \\ \mathsf{minimal}(t) \end{array} \right\} \right)$$

QBF is needed to *enumerate* the characteristic function for $S_{min}(i)$ (ranges in $2^{S_{cand}(i)}$)

Formula

$$F \stackrel{\mathrm{def}}{=} \exists_{a \in S_{\mathsf{atoms}}} a \\ \forall_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket C[\lozenge] \in S_{\mathsf{min}}(i) \rrbracket \\ \exists_{t \in \kappa(i)} \llbracket i = t \rrbracket \\ \exists_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket \mathsf{init}(C[\lozenge], i) \rrbracket \\ \exists_{j \lhd t \in \kappa_{\downarrow}(i), C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket \mathsf{minimal}(C[\lozenge], i, j) \rrbracket \\ \left(\bigcap_{x \in S_{\mathsf{constraints}}} x \right) \sqcap \left(\mathsf{empty} \sqcup \bigsqcup_{t \in \kappa(i)} \left\{ \begin{array}{c} \llbracket i = t \rrbracket \sqcap \\ \mathsf{minimal}(t) \end{array} \right\} \right) \\ \mathsf{empty} \stackrel{\mathrm{def}}{=} \bigcap_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \lnot \llbracket C[\lozenge] \in S_{\mathsf{min}}(i) \rrbracket$$

QBF is needed to enumerate the characteristic function for $S_{min}(i)$ (ranges in $2^{S_{cand}(i)}$)

Formula

$$F \stackrel{\text{def}}{=} \exists_{a \in S_{\mathsf{atoms}}} a \\ \forall_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket C[\lozenge] \in S_{\mathsf{min}}(i) \rrbracket \\ \exists_{t \in \kappa(i)} \llbracket i = t \rrbracket \\ \exists_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket \mathsf{init}(C[\lozenge], i) \rrbracket \\ \exists_{j \lhd t \in \kappa_{\downarrow}(i), C[\lozenge] \in S_{\mathsf{cand}}(i)} \llbracket \mathsf{minimal}(C[\lozenge], i, j) \rrbracket \\ \left(\bigcap_{x \in S_{\mathsf{constraints}}} x \right) \sqcap \left(\mathsf{empty} \sqcup \bigsqcup_{t \in \kappa(i)} \left\{ \begin{array}{c} \llbracket i = t \rrbracket \sqcap \\ \mathsf{minimal}(t) \end{array} \right\} \right) \\ \mathsf{empty} \stackrel{\text{def}}{=} \bigcap_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \neg \llbracket C[\lozenge] \in S_{\mathsf{min}}(i) \rrbracket \\ \mathsf{minimal}(t) \stackrel{\text{def}}{=} \bigcap_{j \lhd t} \bigsqcup_{C[\lozenge] \in S_{\mathsf{cand}}(i)} \left(\begin{array}{c} \llbracket C[\lozenge] \in S_{\mathsf{min}}(i) \rrbracket \sqcap \\ \llbracket \mathsf{minimal}(C[\lozenge], i, j) \rrbracket \end{array} \right)$$

Summary

- 1 The Talented SAT and Superposition Solvers
- 2 Avatar: a Mighty Combination
- Structural Induction
- 4 Conclusion

Avatar brings Superposition within splitting distance of SAT solvers

- Avatar brings Superposition within splitting distance of SAT solvers
- can be extended for structural induction, using QBF solvers (NP-complete not funny enough, let's use PSPACE-complete...)
- induction is not easy!

- Avatar brings Superposition within splitting distance of SAT solvers
- can be extended for structural induction, using QBF solvers (NP-complete not funny enough, let's use PSPACE-complete...)
- induction is not easy!
- prototype and paper: work in progress

- Avatar brings Superposition within splitting distance of SAT solvers
- can be extended for structural induction, using QBF solvers (NP-complete not funny enough, let's use PSPACE-complete...)
- induction is not easy!
- prototype and paper: work in progress

Questions?

Example

n ^o	clause	constraint	source
1	p(0,a)		axiom
2	$\neg p(x,y) \lor p(s(x),f(y))$		axiom
3	$ eg p(\mathfrak{n},x) \leftarrow \mathtt{input}$		axiom
4	$\mathfrak{n} \simeq 0 \leftarrow [\![\mathfrak{n} \simeq 0]\!]$	$\left\{egin{array}{l} \left[\left[\mathfrak{n} \simeq 0 ight] \sqcup \\ \left[\left[\mathfrak{n} \simeq s(\mathfrak{n}') ight] \end{array} ight.$	split
5	$\mathfrak{n} \simeq s(\mathfrak{n}') \leftarrow \llbracket \mathfrak{n} \simeq s(\mathfrak{n}') rbracket$		split
6	$ot \leftarrow \mathtt{input} \sqcap \llbracket \mathfrak{n} \simeq 0 rbracket$	$\neg \llbracket \mathfrak{n} \simeq 0 rbracket$	sup (1,4)
7	$ eg p(s(\mathfrak{n}'),x) \leftarrow \left\{ egin{array}{l} \llbracket \mathfrak{n} \simeq s(\mathfrak{n}') rbracket \sqcap \ \llbracket init(\mathit{C}[\diamond],\mathfrak{n}) rbracket \sqcap \ \llbracket \mathit{C}[\diamond] \in \mathit{S}_{min}(\mathfrak{n}) rbracket \end{array} ight.$		hypothesis
8	$p(\mathfrak{n}',b) \leftarrow \left\{egin{array}{l} \llbracket \mathfrak{n} \simeq s(\mathfrak{n}') rbracket & & & & & & & & & & & & & & & & & & &$		hypothesis

Example (cont'd)

n ^o	clause	constraint
9	$p(s(\mathfrak{j}),f(b)) \leftarrow egin{array}{c} [\mathfrak{n}\simeq s(\mathfrak{n}')] \cap \\ [\mathfrak{m} [\mathfrak{m}] \cap [\mathfrak{c}],\mathfrak{n},\mathfrak{n}'] \cap \\ [\mathfrak{c}] \cap [\mathfrak{c}] \cap [\mathfrak{c}] \cap [\mathfrak{c}] \end{array}$	
10	$oxed{\perp} \leftarrow \left\{egin{array}{l} \left[\left[\mathfrak{n} \simeq s(\mathfrak{n}') ight] \cap \\ \left[\left[minimal \left(C[\diamond], \mathfrak{n}, \mathfrak{n}' ight) ight] \cap \\ \left[init \left(C[\diamond], \mathfrak{n} ight) ight] \cap \\ \left[\left[C[\diamond] \in S_{min}(\mathfrak{n}) ight] \end{array} ight.$	$ egin{align*} & \neg \llbracket \mathfrak{n} \simeq s(\mathfrak{n}') \rrbracket \sqcup \\ & \neg \llbracket minimal(C[\diamond],\mathfrak{n},\mathfrak{n}') \rrbracket \sqcup \\ & \neg \llbracket init(C[\diamond],\mathfrak{n}) \rrbracket \sqcup \\ & \neg \llbracket C[\diamond] \in S_{min}(\mathfrak{n}) \rrbracket \end{aligned}$