2020 中兴捧月算法大赛

参加了 2020 中兴捧月算法大赛,图灵赛道,赛程时间为 4.8-5.8,赛前官方宣传图灵赛道题目方向为机器学 习/数据挖掘/CV/NLP,原来冲着试水一下机器学习的数据挖掘而参赛,另外也觉得稍懂一点图像的知识,即便是 cv 相关或许也可一战,然而最终题目却为 nlp 方向的文本匹配.

一开始一脸懵逼,一直处于弃赛状态(就像往常不好斗的自己一样),毕竟完全 0 基础 nlp, 题目都不太看得懂......另外循环神经网络也没接触过, 题目涉及到变长序列的处理,霸王硬上弓也不太方便。

1. 赛题

文本匹配,相似性的二分类问题——

- 1. 给定三个文本文件, train.txt, test.txt, corpus.txt, 内容均为 nlp 中的文本向量;
- 2. train.txt 为已标注数据, 其中每一行含三个字段: text_a、text_b、label, 分别由\tab 键分隔, 依次代表文本 a、文本 b、文本 a 和 b 的相似性 (即是否表达同一语义), 总计约 250000 条. 示例如下:

条目	文本a	文本b	相似性 (1/0)
1573 1730 8392 0 689 7 2702 \tab 96 1573	1573 1730 8392 0	96 1573 1730	1
1730 8392 \tab 1	689 7 2702	8392	
3500 1076 3865 22 3392 16096 5084 \tab 3500	3500 1076 3865 22	3500 1076 3865	0
1076 3865 2316 3392 225 \tab 0	3392 16096 5084	2316 3392 225	

- 3. test.txt 为未标注数据, 亦即待预测数据, 其每一行含两个字段: text_a、text_b, 需要建立模型预测他们的相似性标签, 总计 12500 条;
- 4. corpus.txt 为无监督语料库, 内容庞大, 约 2G 大小, 每行仅含一个字段: text, 即某自然语言文本对应的文本向量, 如上例中的 1573 1730 8392 0 689 7 2702. 不提供词表, 由选手自行选择是否使用此信息.

2. CNN 初探

4月30日,初赛还有约一周时间,开始索性强行使用固定长度的 CNN 模型摸个鱼 —— 处理发现训练集 train.txt 和测试集 test.txt 中最长的文本序列均为32维,于是强行把短于32维的文本向量填充到32维补齐,输入 CNN/MLP 进行文本相似分类。4.30起两三天,纯 MLP 型的神经网络和 CNN 型的网络均有尝试, CNN 结果稍好,最终选定 CNN 网络为主.

然而,由于 CNN 强行补齐了文本向量,最终分类准确率(acc)只能维持在 70%左右 (此时反思: 当时使用的 padding_value 好像为 0,而文本序列本身含 0——不应该填充文本词表本身已含有的值,比如应填充为-1 等,不过,我估计即使这样做了结果也不会有什么大提升):

2020/04/30

你的排名为第 259, 分值为 60.417 你的排名为第 257, 分值为 61.483 你的排名为第 256, 分值为 62.083 你的排名为第 253, 分值为 64.067 2020/05/01 你的排名为第 249, 分值为 65.567 2020/05/02

你的排名为第 212, 分值为 71.483 你的排名为第 213, 分值为 71.483

3. RNN 初探

好像不得不使用 RNN 了,最近笔面试也经常考到 RNN,就像注定是个绕不过的坎儿,硬着头皮上吧。 RNN 原理来不及细抠了,了解了下基本思想以及 PyTorch 的相关 API,分别使用了 nn.RNN/LSTM/GRU 接口,此题目下经过尝试三者效果无差别,最终使用了 nn.LSTM. rnn 为一层的时候效果一般,一度气馁,然而 rnn 的 num_layers=2 后效果小小爆炸,线下测试集显示准确率冲上 80%. 再接再励,将 num_layers 调为 3,效果 反而下降且模型变得震荡,最终 num_layers 设为 2.

2020/05/04

你的排名为第 167, 分值为 79.850

此后进入 RNN 的各种参数暴力调试期,杂五杂六的参数七上八下地调,然收效甚微,从未经历过强大如神经网络会欠拟合的情况,训练集分数都总是上不去 80 就很糟心,更奇葩的是测试集分数竟然持续性比训练集都高,说明存在严重的欠拟合!终于体会到神经网络的理论很美好、现实很残酷的处境,这个领域确实还需要科研工作者/工程师前赴后继地研究下去.慢慢陷入疲劳,线上分数记录也懒得记了......

2020/05/05 78.333 2020-05-05 14:39:03 80.167 2020-05-05 17:31:07

ACC of Train Set And Evaluation Set

4. VAE 编码???

此前一直没有利用到题目给的无监督文本序列 corpus.txt, 看人家说什么预训练, 小白如我实在是不知道怎么个利用法. 尽管一直觉察到题目是仅仅把文本分词、一个词汇对应分词者词表中那个词的序号, 而直接使用序号做文本的特征向量直觉上就很蹩脚, 但, 那又有什么办法呢?

海量无监督语料、特征向量、序号、编码......我靠,我TM是做VAE的呀!VAE是无监督学习方法,可以利用VAE先把每一条无监督语料映射为隐变量空间作为编码,如果生成器收敛,这不就找到一个很好的特征向量吗,利用这个特征向量做文本的编码应该要比蹩脚的序列号编码强吧?

我马上就着手敲起了 VAE 的实现, 写完编码器, 要下笔生成器时, 傻了, 怎么生成一个变长序列???

搜了各种序列深度生成模型的代码,看了几天都一愣一愣的,什么乱七八糟的,我 RNN 的原理都没整明白呢,看那一堆"字都认得、就是不看不懂嘛意思"的解释,还有没几天时间初赛截止,拉倒了......

5. seq2seq

代码一时写不出来,但这些知识点迟早要会的吧,不管比赛怎么样,还是先一步一步掌握下原理吧.于是开始看邱锡鹏老师《神经网络与深度学习》中序列生成模型那一章,看到了一节叫 seq2seq,只想说 woc woc woc,这 TM 不就是我的"VAE"思想嘛,果然我能想到的大佬们都想到了. 嗯,好像这个叫 transformer 的很厉害,哦,这个叫 bert 的好像是现在的无敌战神......

PyTorch 的 API 直接就有 nn.Transformer, 再搜一下 transformer 的代码吧, 又看了一段时间, 知识点过于密集, 弃坑......

6. embedding

好吧, 死前再扑腾一下. 这几个 seq2seq 的模型里总是提到一个 embedding layer, 本质似乎就是一种向量空间转换, 关键的是它竟然是可学习的, 好赖加一个 nn. Embedding 层试一下算述. 捣腾了 PyTorch 的相关 API, 终于在 RNN 层前、输入层后成功插入了一个 embedding 层. 有意栽花花不开, 无心插柳柳成荫, embedding 后效果好得嗷嗷叫, 训练集终于过拟合了, 准确率达到 98%, 说明模型学习能力总算提上来了, 目前的任务是提高泛化能力.

你的排名为第 122, 分值为 83.917

7. 泛化提升

提高活化能力就很玄学了呀,之前一直只用过提前停止法,观察测试集分数啥时候达到最高就停止. 此外倒是一直听说神经网络的 dropout,相当于集成学习,试试吧——dropout 果然效果还不错,不过指的是测试集后期的分数不会下降,测试集曲线会趋平,而非不加 dropout 的那种后期会下降和大幅波动,不过测试集最高分却没什么提高.

ACC of Train Set And Evaluation Set

似乎到此为止了,这一趟打比赛虽然取得不了什么成绩,但一周的时间里学习了RNN和 dropout,也知足了.

8. 溯源

且慢,其实一直以来都忽视了一个要素——训练集的正负样本分布情况 (也是最近面试到的一个回答得稀烂的题),赛题的正负样本比例会不会严重不平衡呢? 赶紧写了统计代码——正例 143229 例,负例 104771 例,正负比1.5:1,似乎有点较真的必要.

8.1 调阈值

正例过多,会使得模型更倾向于将未知数据预判为正例,也就是判断为正例的估计可能偏乐观了.为保证客观,应把正例的判定基准相应提升,原来的概率估计p>0.5即认为是正例,看来应该以p>0.6甚至p>0.7、p>0.8、p>0.9 为界,通过测试找到最佳阈值吧.

选取了一个在我的线下测试集表现比较好的模型,分别以0.5,0.7,0.8,0.85,0.9为阈值提交到线上进行打分,结果0.5的时候分数80出头,以0.85为界的分值最高,达到历史新高86.183分,排名63,喜出望外!

8.2 平衡训练集

初赛仅剩一天,也没得什么折腾了,唯一能做的就是再尝试下从训练时入手,平衡下训练时的正负样本比例. 最好不要直接把多余的正例删除掉吧,信息浪费;那么通过手工造些负例样本点弥补不平衡吗? 咋造?——无监督语料 corpus.txt!

自己随便造句操作上不并不是不可行,但是你又不知道人家的词表咋划分的,自己随便写了俩词其实根本不能组成一个句子怎么办? 最好的方法似乎是从给的无监督语料里随机抽出2n个句子,因为是随机抽取,况且现实世界中"随便说两名话,他们表达的是同一个意思"这样一个概率事件发生的可能性是极低的,所以抽取2n个句子再随机匹配成的n个文本对几乎可认为一定是不相似的,即他们的标签是0,为负样本点.

如此便得以扩充平衡了训练集,"生成"约 50000 例负样本,使得正负例样本点均为 143229 例,重新学习训练,线上提交.

不过线下测试集结果虽然由原来的最高 90 分提升到 92, 但线上 A 榜显示这样做却并没有得到什么收益, 最终也没有超过通过调阈值得到的最高分. 初赛时间已到, 没有了提交机会, 本次比赛终于结束.

9. 止步初赛

5.14 日, 初赛 B 榜公布, 最终成绩 85.776 分, 排名 49. 也不知道是哪一次提交的结果, 还是非常想知道最后 我那步生成负例进行训练是不是发挥了功效的.

榜首成绩 89.480, 听说前排使用的模型均是传说中的 bert, 曾经也想剑指 bert, 但段位还是太低了, 下次一定吧.

前40名晋级复赛,前66名给予区域优胜奖,止步初赛,在意料之中.

本次比赛官方赛事群里入群 731 人, 预计参赛人员 800 左右? 第一次参加算法赛事, 虽有很多懵懂, 但在实战中着实受益匪浅, 果然还是"纸上得来终觉浅, 绝知此事要躬行".

后记: 在研究阈值的时候应该试一下 ROC 曲线的, 多天然的一个应用机会啊, 奈何自我的很多知识其实都是泛而不深, 即使知道 ROC 曲线也根本意识不到它需要被信手拈来的场景, 在最后一天使用了全部 5 次提交机会后又看了一眼自己那么多条杂乱的阈值曲线才想到 ROC, 我该说什么呢?