

Quantum Information Engines

- & Maxwell Demon revisited

Assessing Time, Cost and Performance Criteria

Henning Kirchberg henningk@chalmers.se

EOC24, Trinity College Dublin, July, 16th

Motivation: Measurement Time-How fast can one get information and use it?

Molecular information ratchet: Macrocycle

V. Serreli et al., Nature 445, 523-527 (2024)

S. Borsley, D. A. Leigh, and B. M. W. Roberts, Angew. Chem. Int. Ed. 2024, e202400495 (2024)

Overview

Recap: Information Engine

Quantum Measurement & Measurement Time

Measurement Performance: Information Gain & Cost

Information Engine Cycle

Engine Performance: Efficiency and Power

Recap: Information Engine

Heat engine

$$W \leq Q_h - Q_c$$

Szilard engine

$$W \leq Q$$

$$I=S=Q/T=k_B\ln 2$$

Quantum Measurement

Strong Measurement

• Projective measurement on state

• Increase of the systems free energy

$$F = U - \overline{TS}$$

- 2nd law is satisfied by memory (Maxwell demon)
- Landauer erasure:

$$W_{eras} \ge k_B T S$$

Weak Measurement

• System – ancilla/meter entanglement

- Projection on ancilla state => information on the system
- **POVM-operations**: e.g., "effective" Kraus operators

$$\langle M|U(\hat{
ho}_S\mathop{\otimes}\limits_{\mathsf{time?}}\hat{
ho}_M)U^\dagger\ket{M}$$

Energy cost (bound)

$$W_{\text{meas}}^M + W_{\text{eras}}^M \ge k_B T I.$$
 Time-dependence?

T. Sagawa and M. Ueda, PRL **102** (2009)

NOW: <u>Assessing measurement time</u>

Core of Information Engine:

Measurement Process & Time

$$W_{meas} = ext{tr} \Big(\hat{
ho}(0) \hat{V}(0) \Big) - ext{tr} \Big(\hat{
ho}(t_m) \hat{V}(t_m) \Big)$$

Measurement on meter:

$$\hat{P}(t_m|m) = \ket{m}ra{m}\hat{
ho}(t_m)\ket{m}ra{m}/p_m \ p_m = ext{tr}ig(ra{m}\hat{
ho}(t_m)\ket{m}ig)$$

Information gain:

$$I_m(t_m) \equiv S(0) - S(t_m) \ S(t_m) \equiv -k_B \sum_m p_m \operatorname{tr} igl(\hat{P}(t_m|m) \ln \hat{P}(t_m|m)igr)$$

Prototype: 2-Level-System & Free Particle Meter

Entangling evolution:

$$\hat{
ho}(t_m) = e^{-i\hat{H}t_m/\hbar}\hat{
ho}(0)e^{i\hat{H}t_m/\hbar}$$
 $\hat{
ho}(t=0) = \hat{
ho}_S(t=0) \otimes \hat{
ho}_M(t=0)$
 $\hat{H} = \Delta E |1\rangle \langle 1| + \frac{\hat{p}^2}{2} + \hat{V}(t)$
 $\hat{V}(t) \equiv \hat{V} = g \cdot \hat{x} \otimes |1\rangle \langle 1|$
for $0 \le t \le t_m$

Projection on meter:

$$raket{p|\hat{
ho}(t_m)\ket{p}=P_0(p,t_m)\ket{0}raket{0}+P_1(p,t_m)\ket{1}raket{1}}$$

Measurement Performance: Conditional Probability

Increasing conditional probabilities to be in excited state for given meter outcomes with measurement time

Rescaled measurement time:

$$ar{t}_m \equiv g t_m/\hbar \sqrt{B}$$

Measurement Performance: Information Gain & Cost

$$I_m(t_m) \equiv S(0) - S(t_m)$$

$$W_{meas} = ext{tr} \Big(\hat{
ho}(0) \hat{V}(0) \Big) - ext{tr} \Big(\hat{
ho}(t_m) \hat{V}(t_m) \Big)$$

More information gain with measurement time before saturating $-a \ln a - b \ln b$ but increasing measurement cost over time

Information Engine Cycle

Work extraction

$$G(p, t_m) = \Delta E[P_1(t_m|p) - P_1(0|p)]$$

$$G(p,t_m) = \Delta E[P_1(t_m|p) - P_1(0|p)] ag{p'} \ W_{out}(t_m,p') = \int_{-\infty}^{p'} dp P(p,t_m) G(p,t_m)$$

Restoration work

$$T_M = 0$$

$$W_{prep}=\hbar\Omega/2=\hbar^2B/4$$

Engine Performance: Power and Efficiency

Efficiency peaks before decreasing with measurement time as energy investment in measurement increases

H.K. and A. Nitzan, arXiv:2404.17431 (2024)

Engine Performance: Maximum Efficiency

$$\eta(t_m,p') = rac{1}{1+W_{in}(t_m)/W_{out}(t_m,p')} \ lacksquare$$
 $W_{in}(t_m)/W_{out}(t_m,p') \propto \hbar^2 B/\Delta E$

Higher efficiency if the system energy difference is larger than meter "fluctuations"!

Engine Performance: Efficiency x Power

Comparison to heat engine

Carnot engine

ullet Efficiency: $\eta_c=1-T_c/T_h$

$$T_c = T_h => \eta_c = 0$$

$$T_c = 0 => \eta_c = 1$$

 Performance: Zero power at highest (Carnot) efficiency

Information engine

Efficiency:

$$T_M = T_S => \eta \geq 0$$

$$T_M=0=>\eta\leq 1$$

 Performance: Power AND efficiency can peak together

Part of the energy investment is "work"

Conclusion & Outlook

- Assessing measurement time is important to address measurement efficiency => Information gain / time
- Measurement time is related to the system-meter correlation time
- **Cyclic time** of information engine is bounded by this time
- Information gain & Measurement cost are correlated to measurement time
- Prototype Information Engine:
- Efficiency: Increases with time before going (diminishing returns)
- Power: Decreasing over time
- Next: Finite meter temperature & Implementation into molecular transfer processes

Thank you for your attention!

Open Positions

A. PhD position:
"Nanoelectronic devices
coupled to light"

B. Master / Research Project:
"Quantum Information Engine:
Converting Information to
Useful Work"

School

"Quantum thermodynamics meets quantum transport", Chalmers, November, 11-15

Deadline: September, 15

https://sites.google.com/site/splettchalmers/research-group