CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

ROUTING - CONTINUED

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

So far...

• Routing – Link state

Dijkstra's algorithm: example

Step	N'	D(v) p(v)	D(w) p(w)	D(x) p(x)	D(y) p(y)	D(z) p(z)
0	u	7,u	3,u	5,u	∞	∞
1	uw	6,w		5,u	11,W	∞
2	uwx	6,W			11,W	14,X
3	uwxv				10,V	14,X
4	uwxvy					12,y
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Link State Routing – controlled flooding

Flooding of link-state packets. (a) LSP arrives at node X; (b) X floods LSP to A and C; (c) A and C flood LSP to B (but not X); (d) flooding is complete

Example

- OSPF Open shortest path first
- Problems
 - does not scale!
 - Overhead
 - Reliable flooding may not be reliable

Distance Vector

- Each node has an one dimensional array (a vector) containing the "distances" (costs) to all other nodes
- Each node knows the cost to neighbors
- Each node distributes that vector to its immediate neighbors

Bellman-Ford equation (dynamic programming)

let $d_x(y) := \text{cost of least-cost path from } x \text{ to } y$ then $d_x(y) = \min_{\text{cost to neighbor } v} \{c(x,v) + d_v(y)\}$ cost to neighbor v cost from neighbor v to destination y min taken over all neighbors v of x

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

= $\min\{2+1, 7+0\} = 3$

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

= $\min\{2+1, 7+0\} = 3$

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation: $D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- * under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

each node:

	from A	via A	via B	via C	via D
	to A				
T=4	to B		3	25	
	to C		5	23	
	to D		10	28	

from B	via A	via B	via C	via D
to A	3		7	
to B				
to C	8		2	
to D	13		7	

from C	via A	via B	via C	via D
to A	23	5		15
to B	26	2		12
to C				
to D	33	9		5

from D	via A	via B	via C	via D
to A			10	
to B			7	
to C			5	
to D				

Wikipedia

Initial distances stored at each node (global view)

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast"

 t_o : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does not send a message to z.

link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes

poisoned reverse:

- If Z routes through Y to get to X :
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

	X	Υ	Z
X	0	4	5
Υ	4	0	1
Z	5	1	0

- 1. Y *thinks* it can route via Z to X, cost is 6 $(Y \rightarrow Z + Z \rightarrow X)$
- 2. Z sees the update from Y, updates it's own path, Cost to X is now 7 ($Z \rightarrow Y + Y \rightarrow X$)
- 3. Y sees the update from Z,
- 4. and so on....

$d_x(y)$ - Distance from x to y

		cost to		
		x y z		
	Χ	0 4 5		
from	У	46 0 1	—	Y's table at convergence
Į,	Z	5 1 0		9

Distance to x = Max (Direct path, Path via Z) = Max(60, 5+1) = 6 Y's path changed, advertise

$$Y \rightarrow Z = Cost to x is 6$$

$$Z \rightarrow Y = Cost to x is 7$$

. . . .

Z finally realizes cost to x via y is 51, chooses direct path.

Distance vector: Routing Information Protocol (RIP)

Max hops = 16

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- **LS:** O(n²) algorithm requires O(nE) msgs
 - may have oscillations
- **DV**: convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect *link* cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

Routing – Summarized

Apps (HTTP) Video from 1.3.2.1 Transport (TCP/UDP) Network (IP) LAN 3 5.5.0.0/16 Network (IP) Interface 2 Link (Ethernet) 1.3.0.0/8 |IF 2 5.5.0.0/16|IF 1 LAN 2 LAN 1 1.3.0.0/8 8.8.4.0/24

Routing will get you to the door (to another network)

A routing table tells you the most efficient way to get there

Once inside the building, use Layer 3 to Layer 2 mapping get to the actual hosts

IP: 1.3.2.1 → MAC:52:54:00:86:38:14

How do we scale this thing?

https://www.submarinecablemap.com/

How do we scale this thing?

http://www.opte.org/

https://time.com/3952373/internet-opte-proje

Local Routing - Gets you to the door.

What gets you to the campus?

Next Steps

How do we scale this routing to the Internet?