Backpropagation through the Singular Value Decomposition

Viraj Navkal

Singular Value Decomposition

Assume $A \in M_{m \times n}(F)$, with $F = \mathbb{R}$ or \mathbb{C} .

Then there is a decomposition $A = USV^*$, with

- 1. $U^*U = I$,
- 2. $V^*V = I$, and
- 3. S diagonal with nonnegative real entries.

Two possible choices for dimensions:

- 1. full_matrices false:
 - $U: m \times min(m, n)$
 - $V: n \times min(m, n)$
 - S: $min(m, n) \times min(m, n)$
- 2. full_matrices true:
 - $U: m \times m$
 - $V: n \times n$
 - S: $m \times n$

Backgpropagation through SVD in TensorFlow

Initial implementation had some restrictions:

- 1. $F = \mathbb{R}$, not \mathbb{C}
- 2. $|m n| \le 1$
- 3. full_matrices true

Backgpropagation through SVD in TensorFlow

Which restrictions can be removed?

- 1. $F = \mathbb{R}$, not \mathbb{C} no – indeterminacy when $F = \mathbb{C}$
- 2. $|m-n| \le 1$ no, at least not when full_matrices true (indeterminacy)
- full_matrices true
 yes in fact, gradient formula is known

I implemented backpropagation in TensorFlow when full_matrices is false, for arbitrary m and n.

Derivation of dS

$$A = USV^*$$

$$\Rightarrow dA = dUSV^* + UdSV^* + USdV^*$$

$$\Rightarrow U^*dAV = U^*dUS + dS + SdV^*V$$

Now, U^*dU is skew-Hermitian:

$$U^*U = I$$

$$\Rightarrow dU^*U + U^*dU = 0$$

$$\Rightarrow (U^*dU)^* + U^*dU = 0$$

Let \circ denote the element-wise product. Then

$$I \circ (U^*dAV) = I \circ (U^*dUS) + I \circ dS + I \circ (SdV^*V)$$

= dS

Therefore
$$dS = I \circ (U^*dAV)$$
.

One possible application

Nuclear norm cost penalty for regularization or low-rank compression

Closing Question

The gradient calculation fails wherever the SVD function is not continuous. Is it possible to choose a function that is continuous everywhere?