Visualizing Multivariate Data and Models in R

A Romance in Many Dimensions

Here is where the dedication goes \dots

Table of contents

Pı	efac	e	v
	ONE	E, TWO, MANY	V
	Flat	land	vi
	EUF	REKA!	/iii
		Multivariate scientific discoveries	viii
		at I assume	хi
	Con	ventions used in this book	xi
Ι	Or	ienting Ideas	1
1	Intr	roduction	3
	1.1	Multivariate vs. multivariable methods	3
	1.2	Why use a multivariate design	3
	1.3	Linear models: Univariate to multivariate	4
	1.4	Visualization is harder	4
	1.5	Problems in understanding and communicating MLM results	5
2	Get	ting Started	7
	2.1	Why plot your data?	7
		2.1.1 Anscombe's Quartet	7
		2.1.2 One lousy point can ruin your day	10
		2.1.3 Shaken, not stirred: The 1970 Draft Lottery	13
	2.2	Plots for data analysis	20
		2.2.1 Model plots	20
			21
		· ·	21
	2.3		21
II	\mathbf{E}_{2}	xploratory Methods	23
3	Plot	ts of Multivariate Data	25
Ū	3.1		$\frac{26}{26}$
	0.1		27
			30
			33
	3.2	Č	34
			38
		1 1 1	41
		3.2.3 Example: Penguins data	47
		3.2.4 Visual thinning	50
	3.3	Bagplots	51
	3.4	Non-parametric bivariate density plots	53
	3.5	Simpson's paradox: marginal and conditional relationships	54
	3.6	(a) Ignoring species	55
	3.7	(b) By species	56

iv Table of contents

6	Plot	ts for univariate response models	177
	5.2	What have we learned?	110
	5.9	· ·	
		5.1.3 Coding factors and contrasts	
		5.1.2 Model matrices	
		5.1.1 Model formulas	
	5.1	The General Linear Model	163
5	Ove	erview of Linear models	161
II	ιl	Univariate Linear Models 1	L 5 9
	4.8	What have we learned?	
		4.7.1 Example: Penguin data	151
	4.7	Elliptical insights: Outlier detection	
	4.6	Application: Eigenfaces	
	4.5	Application: Variable ordering for data displays	
		4.4.2 t-SNE	
		3	
	7.4		
	4.4	Nonlinear dimension reduction	
		4.3.6 Example: Diabetes data	
		4.3.5 Supplementary variables	
		4.3.4 Biplot contributions and quality	
		4.3.3 Example: Crime data	
		4.3.2 Biplots in R	
		4.3.1 Constructing a biplot	
	4.3	Biplots	
	4 ~	4.2.5 Visualizing PCA scores and variable vectors	
		4.2.4 Visualizing variance proportions: screeplots	
		4.2.3 Finding principal components	
		0 •	
		4.2.2 Mathematics and geometry of PCA	
	1.4	4.2.1 PCA by springs	
	4.2	Principal components analysis (PCA)	
	=	4.1.1 Multivariate juicers	
	4.1	Flatland and Spaceland	103
4	Dim	nension Reduction	103
	0.17	LYACIUISCS	TOO
		Exercises	
	3 16	What have we learned?	
		3.15.3 Visualizing partial correlations	98
		3.15.2 Partial correlations	97
		3.15.1 Crime data	96
	3.15	Network diagrams	94
		3.14.2 Touring methods	89
		3.14.1 Projections	84
	3.14	Animated tours	84
		Parallel coordinate plots	79
		Generalized pairs plots	74
		Corrgrams	69
		3.10.1 Visual thinning	67
	3.10	Scatterplot matrices	63
	0.10	3.9.2 Penguin data	60
		3.9.1 Galton data	57
	ა.ყ		
	3.9	Multivariate normality and outliers	50 57
	3.8	(c) Within species	56

Table of contents

	6.1	The "regression quartet"
		6.1.1 Example: Duncan's occupational prestige
		6.1.2 Diagnostic plots
		6.1.3 Example: Canadian occupational prestige
	6.2	Other Model plots
	6.3	Coefficient displays
		6.3.1 Displaying coefficients
		6.3.2 Visualizing coefficients
		6.3.3 More useful coefficient plots
	6.4	Added-variable and related plots
		6.4.1 Properties of AV plots
		6.4.2 Marginal - conditional plots
		6.4.3 Prestige data
		6.4.4 Component + Residual plots
	6.5	Effect displays
	0.0	6.5.1 Prestige data
	6.6	Outliers, leverage and influence
	0.0	6.6.1 The leverage-influence quartet
		6.6.2 Influence plots
		<u>.</u>
		6.6.3 Duncan data
	a =	6.6.4 Influence in added-variable plots
	6.7	What have we learned?
7	Ton	ics in Linear Models
•	7.1	Ellipsoids in data space and space
	1.1	7.1.1 Coffee, stress and heart disease
	7.2	Measurement error
	1.4	7.2.1 OLS is BLUE
		1
	7.0	7.2.3 Coffee data: β space
	7.3	What have we learned?
8	Coll	linearity & Ridge Regression 238
G	8.1	What is collinearity?
	0.1	8.1.1 Visualizing collinearity
		8.1.2 Data space and β space
	0.0	1 1
	8.2	Measuring collinearity
		8.2.1 Variance inflation factors
	0.0	8.2.2 Collinearity diagnostics
	8.3	Tableplots
	8.4	Collinearity biplots
	8.5	Remedies for collinearity: What can I do?
	8.6	Ridge regression
		8.6.1 Properties of ridge regression
		8.6.2 The genridge package
	8.7	Univariate ridge trace plots
	8.8	Bivariate ridge trace plots
		8.8.1 Visualizing the bias-variance tradeoff
	8.9	Low-rank views
		8.9.1 Biplot view
	8.10	What have we learned?
IV	$^{\prime}$ N	Aultivariate Linear Models 269

vi Table of contents

9	Hot	elling's T^2
	9.1	T^2 as a generalized t-test
	9.2	T^2 properties
		Example: Mathscore data
	9.3	HE plot and discriminant axis
		9.3.1 heplot()
	9.4	Discriminant analysis
	9.5	More variables
		9.5.1 Biplots
		9.5.2 Testing mean differences
	9.6	Variance accounted for: Eta square (η^2)
	9.7	What we've learned
	9.8	Exercises
10		tivariate Linear Models 289
	10.1	Structure of the MLM
		10.1.1 Assumptions
	10.2	Fitting the model
		10.2.1 Example: Dog food data
		10.2.2 Sums of squares
		10.2.3 How big is SS_H compared to SS_E ?
	10.3	Multivariate test statistics
		10.3.1 Testing contrasts and linear hypotheses
	10.4	$ANOVA \rightarrow MANOVA $
		10.4.1 Example: Father parenting data
		10.4.2 Ordered factors
		10.4.3 Example: Adolescent mental health
		10.4.4 Factorial MANOVA
	10.5	$MRA \rightarrow MMRA$
		10.5.1 Example: NLSY data
		10.5.2 Example: School data
	10.6	Model diagnostics for MLMs
		10.6.1 Multivariate normality of residuals
		10.6.2 Distance plot
		10.6.3 Multivariate influence
	10.7	$ANCOVA \rightarrow MANCOVA $
		10.7.1 Example: Paired-associate tasks and academic performance
	10.8	What we've learned
11		ualizing Multivariate Models 339
	11.1	HE plot framework
	11.2	HE plot construction
		11.2.1 MANOVA model
	11.3	HE plots
	11.4	Significance scaling
	11.5	Visualizing contrasts and linear hypotheses
		HE plot matrices
		Low-D views: Canonical analysis
		11.7.1 Coeficients
		11.7.2 Canonical scores plot
		11.7.3 Canonical HE plot
	11.8	Factorial MANOVA
		Quantitative predictors: MMRA
		Canonical correlation analysis 364