题一. 求极限

1.
$$\lim_{(x,y)\to(0,0)} \frac{\ln(x^2 + e^{y^2})}{x^2 + y^2}$$
; (极限为 1)

2.
$$\lim_{(x,y)\to(0,0)}(x-y)\ln\sqrt{x^2+y^2}$$
; (极限为 0)

3.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2+1}-1}$$
; (极限不存在)

4.
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{|x||y|^p}}{\sqrt{|x|+|y|}}$$
, 其中 $p>1$. (极限为 0)

5.
$$\lim_{x \to +\infty, y \to +\infty} (x^2 + y^4) e^{-(x+y)}$$
; (极限为 0)

$$6.\lim_{x\to+\infty,y\to+\infty} \left(\frac{xy}{x^2+y^2}\right)^{y^2}. (极限为 0)$$

注记: 求极限一般原则(以二元函数为例)

- (i) 在考察极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 是否存在时, 如果观察到动点 (x,y) 沿不同的路径, 例如沿不同射线, 趋向于 (x_0,y_0) 时, 趋向于不同的值, 则可断言极限不存在. 例如上述极限3.
- (ii) 当所考虑极限存在时,常常可以利用一元函数求极限的模式求极限. 例如上述第极限1,2,5. 应牢记一元函数的若干极限公式(模式). 例如

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e, \quad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1, \quad \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

(iii) 适当放大或缩小, 然后观察是否存在极限. 例如上述极限4,5.

(iv) 给出必要的计算过程.

解答思路:

1.
$$\[\exists \ \delta = x^2 + e^{y^2} - 1, \ \] \[\delta(x,y) \to 0, \ (x,y) \to (0,0). \] \[\exists \ \frac{\ln(x^2 + e^{y^2})}{x^2 + y^2} = \frac{\ln(1+\delta)}{\delta} \frac{x^2 + e^{y^2} - 1}{x^2 + y^2} \to 1 \cdot 1 = 1, \quad (x,y) \to (0,0). \]$$

2. 回忆一元函数极限的一个基本结论 $\lim_{\rho\to 0^+} \rho \ln \rho = 0$. 于是

$$(x-y)\ln\sqrt{x^2+y^2} = \sqrt{x^2+y^2}\ln\sqrt{x^2+y^2} \cdot \frac{x-y}{\sqrt{x^2+y^2}} \to 0.$$

注意虽然函数

$$\frac{x-y}{\sqrt{x^2+y^2}}$$

当 $(x,y) \rightarrow (0,0)$ 时极限不存在, 但保持有界.

3. 由于

$$\frac{xy}{\sqrt{x^2+y^2+1}-1} = \frac{(\sqrt{x^2+y^2+1}+1)(xy)}{x^2+y^2} = (\sqrt{x^2+y^2+1}+1)\frac{xy}{\sqrt{x^2+y^2}}.$$

由于极限

$$\lim_{(x,y)\to(0,0)} \sqrt{x^2+y^2+1}+1$$

存在且等于 2, 而极限

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

不存在. 因此原极限

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2+1}-1}$$

不存在.

4. 由于

$$\frac{|x||y|^p}{(|x|+|y|)^2} \le \frac{|x||y|}{x^2+y^2}|y|^{p-1} \le \frac{1}{2}|y|^{p-1} \to 0, \quad (x,y) \to (0,0),$$

故极限

$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{|x||y|^p}}{\sqrt{|x|+|y|}} \quad (p>1)$$

存在且极限为零.

5. 对于 x > 0, y > 0,

$$0 \le \frac{x^2 + y^4}{e^{x+y}} \le \frac{x^2}{e^x} + \frac{y^4}{e^y} \to 0 + 0 = 0, \quad x \to +\infty, y \to +\infty,$$

故原极限存在且极限为零.

题二. 假设二元函数 f(x,y) 在点 (x_0,y_0) 处的重极限以及两个累次极限均存在,证明这三个极限相等. (课本习题1.3题4(2)).

证明:记

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = A, \quad \lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = B, \quad \lim_{(x, y) \to (x_0, y_0)} f(x, y) = C.$$

要证 A=B=C. 根据假设重极限 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=C$ 存在性可知, 对任意 $\varepsilon>0$, 存在 $\delta>0$. 使得

$$|f(x,y) - C| < \varepsilon, \quad \forall z = (x,y) \in B^{\circ}(z_0,\delta).$$

于上述不等式中, 固定 $y \in (y_0 - \delta, y_0 + \delta) \setminus \{y_0\}$, 令 $x \to x_0$ 即得

$$|\phi(y) - C| \le \varepsilon,\tag{1}$$

其中 $\phi(y) \stackrel{\triangle}{=} \lim_{x \to x_0} f(x,y)$. 于不等式 (1) 中令 $y \to y_0$ 即得 $|A - C| \le \varepsilon$. 由 $\varepsilon > 0$ 的任意性可知 A = C. 同理可证 B = C. 命题得证. \blacksquare

题三. 设 $f(x,y) = |x-y|\phi(x,y)$, 其中 $\phi(x,y)$ 在原点 (0,0) 处连续. 考虑函数 f(x,y) 在原点 (0,0) 处的可微性 (课本习题1.4题1(4)).

解:分两种情形讨论.

情形一: $\phi(0,0) \neq 0$. 考虑函数 f(x,y) 在原点处的偏导数. 由于

$$\frac{f(x,0) - f(0,0)}{x - 0} = \frac{|x|\phi(x,0)}{x} = \pm \phi(x,0),$$

故偏导数 $f_x(0,0)$ 不存在. 由此可见函数 f(x,y) 在原点 (0,0) 处不可微.

情形二: $\phi(0,0) = 0$. 由估计

$$|f(x,y)| = |x-y||\phi(x,y)| \le 2\sqrt{x^2 + y^2}|\phi(x,y)|$$

可知

$$\frac{|f(x,y) - 0 \cdot x - 0 \cdot y|}{\sqrt{x^2 + y^2}} \le 2|\phi(x,y)| \to 0, \quad (x,y) \to (0,0).$$

这说明函数 f(x,y) 在原点 (0,0) 处可微, 且其微分为 df(0,0) = 0. 解答完毕. ■

注: 研究二元函数 f(x,y) 的可微性之一般准则:

- (i) 若两个偏导数 $f_x(x_0, y_0)$ 和 $f_y(x_0, y_0)$ 的其中之一不存在, 则可断言函数 f 在点 (x_0, y_0) 处不可微.
- (ii) 设两个偏导数 $f_x(x_0,y_0)$ 和 $f_y(x_0,y_0)$ 是均存在, 分别记作 a,b. 若以下极限式

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) - a\Delta - b\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0,$$

不成立,则可断言函数在点 (x_0,y_0) 处不可微.

题四. 设

$$f(x,y) = \begin{cases} \frac{x - \sin x}{|x| + 2|y|}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

证明 f(x,y) 在原点 (0,0) 处可微, 并求微分 df(0,0).

解: 根据一元函数的结论可知

$$\frac{x - \sin x}{x^3} \to \frac{1}{6}.$$

由此得

$$\frac{|f(x,y)|}{\sqrt{x^2+y^2}} \le \frac{|x-\sin x|}{(|x|+2|y)|\sqrt{x^2+y^2}} \le \frac{|x-\sin x|}{x^2} \to 0, \quad x \to 0.$$

这表明函数 f(x,y) 在原点 (0,0) 处可微, 且其微分为 df(0,0) = 0. 解答完毕. ■

题五. 设 $A \subset \mathbb{R}^n$ 为平面点集. 定义平面上的点 $z_0 = (x_0, y_0)$ 到点集 A 的距离为 $\rho(z_0, A)$ $\stackrel{\triangle}{=} \inf\{\|z - z_0\|, z \in A\}$, 这里 $\|z - z_0\| = \sqrt{(x - x_0)^2 + (y - y_0)^2}$, z = (x, y). 证明

- (i) 对于任意两点 $z, w \in \mathbb{R}^2$, 成立 $|\rho(z, A) \rho(w, A)| \le ||z w||$;
- (ii) 点集 *A* 的闭包可以表示为 $\bar{A} = \{z \in \mathbb{R}^2, \rho(z, A) = 0\}.$

注: 根据结论(i)可知, 对于给定的平面点集 A, 距离 $\rho(z,A)$ 作为定义在整个 \mathbb{R}^2 上的函数处处连续. 参见课本第96页第一章总复习题第6题.

证(i): 记 $f(z) = \rho(A, z)$. 对平面任意两个点 $z_1, z_2 \in \mathbb{R}^2$, 不妨设 $f(z_2) \geq f(z_1)$. 根据 $f(z_1)$ 的定义,以及下确界的性质可知,对任意 $\varepsilon > 0$,存在点 $a_1 \in A$,使得 $\|a_1 - z_1\| < f(z_1) + \varepsilon$ 或写作 $f(z_1) > \|a_1 - z_1\| - \varepsilon$. 另一方面显然有 $f(z_2) \leq \|z_2 - a_1\|$. 于是

$$|f(z_2) - f(z_1)| = f(z_2) - f(z_1) < ||z_2 - a_1|| - (||a_1 - z_1|| - \varepsilon) \le ||z_2 - z_1|| + \varepsilon.$$

此即 $|f(z_2) - f(z_1)| < ||z_2 - z_1|| + \varepsilon$. 注意 $\varepsilon > 0$ 是任意正数. 因此 $|f(z_2) - f(z_1)| \le ||z_2 - z_1||$. 结论(i)得证.

证(ii). 为方便, 记 $B = \{z \in \mathbb{R}^2, \rho(A, z) = 0\}$. 要证 $\bar{A} = B$. 以下将证明 (1) $\bar{A} \subset B$; (2) $\bar{A} \supset B$.

证(1). 对任意元素 $z_* \in \bar{A} = A \cup \partial A$. 若 $z_* \in A$, 则有 $\rho(A, z_*) = 0$, 从而 $z_* \in B$. 设 $z_* \notin A$, $z_* \in \partial A$, 则存在点列 $\{z_n\} \subset A$, 使得 $z_n \to z_*$. 根据结论(i)知函数 $f(z) = \rho(A, z)$ 是连续的. 故 $\rho(A, z_*) = \lim_{n \to +\infty} \rho(A, z_n) = 0$, 因为 $\rho(A, z_n) = 0$, $\forall n \geq 1$. 这就证明了 $z_* \in B$. 结论(1)得证.

证(2). 设 $z_* \in B$. 若 $z_* \in A$, 则当然有 $z_* \in \bar{A}$. 设 $z_* \notin A$, 则根据下确界性质可知, 对任意 $n \ge 1$, 存在 $z_n \in A$, 使得 $||z_n - z_*|| < \rho(A, z_*) + 1/n = 1/n$. 这说明点 z_* 是集合 A 的边界点, 即 $z_* \in \partial A$. 故结论(2)成立. 解答完毕. \blacksquare

题六. 设 $f: \mathbb{R}^n \to \mathbb{R}$ 为 n 元函数. 证明函数 f 在 \mathbb{R}^n 上处处连续, 当且仅当对于 \mathbb{R} 中的任何开集 $G \subset \mathbb{R}$, 其原象 $f^{-1}(G) \triangleq \{x \in \mathbb{R}^n, f(x) \in G\}$ 是 \mathbb{R}^n 中的开集. (注: 这是课本第96页第1章总复习题第4题.)

证明. \Rightarrow : 设 f 在 \mathbb{R}^n 上处处连续. 要证 \mathbb{R} 中的任何开集 $G \subset \mathbb{R}$ 的原象 $f^{-1}(G)$ 是 \mathbb{R}^n 中的开集,即要证 $f^{-1}(G)$ 中的每个点都是内点. 任取一点 $x_0 \in f^{-1}(G)$,即 $y_0 = f(x_0) \in G$. 由于 G 是开集,故存在点 y_0 的一个邻域完全包含在 G 中,即存在 $\varepsilon > 0$,使得 $(y_0 - \varepsilon, y_0 + \varepsilon) \subset G$. 根据函数 f 在点 x_0 处的连续性可知,存在 $\delta > 0$,使得 $|f(x) - f(x_0)| < \varepsilon$,对 $\forall x \in B(x_0, \delta) = \{x \in \mathbb{R}^n, ||x - x_0|| < \delta\}$. 此即 $f(B(x_0, \delta)) \subset (y_0 - \varepsilon, y_0 + \varepsilon) \subset G$. 这表明 $B(x_0, \delta) \subset f^{-1}(G)$,即 x_0 是 $f^{-1}(G)$ 的内点. 由点 $x_0 \in f^{-1}(G)$ 的任意性可知 $f^{-1}(G)$ 是开集.

 \Leftarrow : 设 \mathbb{R} 中的任何开集 $G \subset \mathbb{R}$ 的原象 $f^{-1}(G)$ 是 \mathbb{R}^n 中的开集, 要证函数 f 在 \mathbb{R}^n 上处处连续. 对任意给定的点 $x_0 \in \mathbb{R}^n$, 记 $y_0 = f(x_0)$. 对任意 $\varepsilon > 0$, 点 y_0 的邻域 $G = (y_0 - \varepsilon, y_0 + \varepsilon)$ 是开集. 于是 G 的原象 $f^{-1}(G)$ 是 \mathbb{R}^n 中的开集, 故点 $x_0 \in f^{-1}(G)$ 是内点, 即存在 $\delta > 0$, 使得点 x_0 的 δ 邻域 $B(x_0, \delta) \subset f^{-1}(G)$, 即 $f(B(x_0, \delta)) \subset G$. 这表明对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $\|x - x_0\| < \delta$, 我们有 $|f(x) - f(x_0)| < \varepsilon$. 换言之, 函数 f 在任意给定的点 $x_0 \in \mathbb{R}^n$ 处连续. 由点 x_0 的任意性可知, 函数 f 在 \mathbb{R}^n 上处处连续. 证毕. \blacksquare

题七. 设二元函数 f(x,y) 在全平面 \mathbb{R}^2 上处处连续且满足条件 $\lim_{x^2+y^2\to+\infty} f(x,y) = +\infty$. 证明函数 f(x,y) 在全平面 \mathbb{R}^2 上可取得最小值, 即存在点 $(x_0,y_0) \in \mathbb{R}^n$, 使得

$$f(x_0, y_0) \le f(x, y), \quad \forall (x, y) \in \mathbb{R}^2.$$

(注: 这是课本第24页习题1.3第8题).

证明: 由假设 $\lim_{x^2+y^2\to+\infty} f(x,y) = +\infty$ 知, 对于函数 f(x,y) 在任意一点的值, 比如 f(0,0), 存在正数 M>0, 使得 f(x,y)>f(0,0), 对 $\forall (x,y)\in\mathbb{R}^2$, $x^2+y^2\geq M$. 再根据 连续函数在有界闭集的最值性可知, 函数 f(x,y) 在有界闭圆盘 $B_M: x^2+y^2\leq M$ 上 可取得最小值. 设 f(x,y) 在点 $(x_0,y_0)\in B_M$ 处取有界闭圆盘 B_M 上的最小值. 显然

 $f(x_0,y_0)$ 是函数 f(x,y) 在全平面 \mathbb{R}^2 上的最小值. 命题得证. ■

题八:假设二元函数 f(x,y) 在平面开区域 $D \subset \mathbb{R}^2$ 上的两个偏导数恒为零.证明函数 f(x,y) 在开区域 D 上为常数.

证明: 由假设区域 D 是连通开集,即对于 D 中任意两点,存在一条连接这两点的折线,且 折线完全包含在 D 中. 现固定一点 $z_0=(x_0,y_0)\in D$,对 D 中的任意点 $z=(x,y)\in D$,根据 D 的连通性可知,存在有限个点 $z_k=(x_k,y_k)\in D$,k=1,2,...n,其中 $z_n=z$,使得由 n 个直线段 $\overline{z_kz_{k+1}}$, $k=0,1,2,\cdots,n-1$ 所构成的折线包含在 D 中. 直线段 $\overline{z_0z_1}$ 可用如下参数方程表示 $x(t)=tx_1+(1-t)x_0$, $y(t)=ty_1+(1-t)y_0$, $0\leq t\leq 1$. 考虑复合函数 g(t)=f(x(t),y(t)). 根据复合函数的求导规则,以及 f 的两个偏导数恒为零的假设可知,故 g(t) 的导数在开区间 (0,1) 恒为零,从而 g(t) 为常数,即 g(0)=g(1). 此即 $f(z_0)=f(z_1)$. 同理可证 $f(z_1)=f(z_2)=\cdots=f(z_n)$. 由此可知 $f(z)=f(z_0)$. 这就证明了函数 f(x,y) 在开区域 D 上为常数. 证毕. \blacksquare

注1: 熟知若开区间上一元函数的导数恒为零,则这个函数为常数函数. 题八的结论是这个一元情形的结论对于二元情形的推广. 显然这个结论可以推广到一般 n 元情形,即若一个 n 元函数的 n 个偏导数均恒为零,则函数必为常数函数. 证明方法同如下二元情形的证明方法.

注2: 设二元函数 f(x,y) 在平面开区域 $D \subset \mathbb{R}^2$ 上连续可微. 若它的一个偏导数, 比如说 $f_y(x,y)$ 恒为零, 则当 D 为凸域时(区域称为凸的, 如果区域中的任何两点之间的线段均包含在 D 中), 函数 f(x,y) 与变量 y 无关. 但当区域 D 非凸时, 函数 f(x,y) 仍可能与变量 y 有关. 例如设 $D = \mathbb{R}^2 \setminus \{(x,y), x \geq 0, y = 0\}$. 易见 D 非凸. 令

$$f(x,y) = \begin{cases} x^3, & x > 0, y > 0 \\ 0, & \text{others.} \end{cases}$$

显然 $f_y(x,y) = 0$, $\forall (x,y) \in D$. 但函数 f(x,y) 的值变量 y 有关. 例如 f(1,1) = 1, 而 f(1,-1) = 0.

题九. 考虑偏微分方程的初值问题 $z_t = az_x + bz_y$, $z(x,y,0) = z_0(x,y)$, 其中 a,b 均为常数, $z_0(x,y)$ 为全平面 \mathbb{R}^2 上的连续可微函数. 证明这个初值问题有唯一解, 且这个唯一解可表示为 $z(x,y,t) = z_0(x+at,y+bt)$, $\forall (x,y,t) \in \mathbb{R}^3$. (这是课本第96页第一章总复习题第11题. 方程 $z_t = az_x + bz_y$ 称为运输方程.)

注: 三元函数 z(x,y,t) 称为上述初值问题的解是指, 函数 z(x,y,t) 在 \mathbb{R}^3 上连续可微, 且满足方程 $z_t = az_x + bz_y$, 即如下恒等式成立,

$$z_t(x, y, t) \equiv az_x(x, y, t) + bz_y(x, y, t), \quad \forall (x, y, t) \in \mathbb{R}^3.$$
 (2)

此外还满足初值条件,即

$$z(x, y, 0) \equiv z_0(x, y), \quad \forall (x, y) \in \mathbb{R}^2. \tag{3}$$

证明:不难验证三元函数 $z(x,y,t)=z_0(x+at,y+bt)$ 是上述初值问题的解. 以下证明解的唯一性. 即要证, 若连续可微函数 w(x,y,t) 满足等式(2) 和 (3), 即

$$w_t(x, y, t) = aw_x(x, y, t) + bw_y(x, y, t), \quad \forall (x, y, t) \in \mathbb{R}^3.$$
 (4)

$$w(x, y, 0) = z_0(x, y), \quad \forall (x, y) \in \mathbb{R}^2, \tag{5}$$

则必有 $w(x,y,t)=z_0(x+at,y+bt)$, $\forall (x,y,t)\in\mathbb{R}^3$. 作变量替换 u=x+at, v=y+bt, t=t. 其逆变换 x=u-at, y=v-bt, t=t. 记 $\bar{w}(u,v,t)=w(u-at,v-bt,t)$, 则根据等式(4)可知, 函数 $\bar{w}(u,v,t)$ 关于变量 t 的偏导数恒为零, 即 $\bar{w}_t(u,v,t)\equiv 0$, $\forall (u,v,t)\in\mathbb{R}^3$. 根据题八的注2可知, 三元函数 $\bar{w}(u,v,t)$ 与变量 t 无关. 于是

$$\bar{w}(u, v, t) = \bar{w}(u, v, 0) = w(u, v, 0) = z_0(u, v), \quad \forall (u, v, t) \in \mathbb{R}^3.$$

将变量 u, v 变回 x, y 得 $w(x, y, t) = z_0(x + at, y + bt), \forall (x, y, t) \in \mathbb{R}^3$. 唯一性得证. 证毕. ■