SEQUENCE ALIGNMENT: INVESTIGATING AN INFLUENZA OUTBREAK

BIO 300/CMPSC 300 Dr. Kristen Webb Spring 2016

Descent with Modification

- DNA replication ensures a mostly faithful passing of the genome to progeny
- What would be the consequence of 100% accurate replication?

Descent with Modification

How does descent with modification happen?

Descent with Modification

How does descent with modification happen?

Mutation

- A change in a DNA sequence
 - Results from errors in replication or repair
- Mutation is the ultimate source of genetic variation

Domestic Dog – Canis lupus familiaris
All descendent from the grey wolf
All the same species (sub-species)
Breeds – variation within the species

Sequence Variations

 sequences may have diverged from a common ancestor through various types of mutations:

- substitutions (ACGA → AGGA)
- insertions (ACGA → ACCGGAGA)
- deletions (ACGGAGA → AGA)

Tracking Infectious Disease – 2009 H₁N₁ Influenza Pandemic

H₁N₁ Influenza Virus

H1N1 Influenza Virus

Neuraminidase- enables the virus to be released from the host cell

Hemagglutinin- protein the virus uses to attach to the host cells

Viral Evolution

- Viruses evolve very quickly
 - Some of the highest mutation rates known
 - Arms race with immune system
 - Viruses mutation rate 0.0001 0.000001 mutations per base per generation
 - One mutation every 10,000 1,000,000 nucleotides
 - Influenza genome size = \sim 14,000 nucleotides
 - Entire genome is coding regions (genes)
 - Humans 0.00000001 mutations per base per generation
 - One mutation every 100,000,000 nucleotides
 - Human genome size 3 billion nucleotides
 - Only 1.5% of genome is coding regions (genes)

Pairwise Alignment Similarity and Relatedness

Alignment of a gene from two closely related viruses

Hemagglutinin gene from virus A: ATGAACGCAATACTCGTAGTT...

Hemagglutinin gene from virus B: ATGAAGGCAATACTAGTAGTT...

Alignment of a gene from two distantly related viruses

Hemagglutinin gene from virus A: ATGAACGCAATACTCGTAGTT...

Hemagglutinin gene from virus C: ATGCACGAAATGCTCGGACCT...

Tracing an Infection to a Source - HIV

- 1990 CDC report that a women in Florida had contracted HIV from her dentist
 - Dentist diagnosed with HIV in 1986, developed AIDS in 1987
 - Patient had no other risk factors and had not been in contact with other HIV-positive persons
 - Patient had had an invasive dental procedure
- Tested dentist's other patients 10 tested positive for HIV
- Did they contract HIV from the dentist?

Molecular Epidemiology of HIV Transmission in a Dental Practice

Table 23.10

HIV-positive persons included in study of HIV isolates from a Florida dental practice

Average differences

			in DNA sequences (%)		
Person	Sex	Known risk factors	From HIV from dentist	From HIV from controls	
Dentist	M	Yes		11.0	
Patient A	F	No	3.4	10.9	
Patient B	F	No	4.4	11.2	
Patient C	M	No	3.4	11.1	
Patient E	F	No	3.4	10.8	
Patient G	M	No	4.9	11.8	
Patient D	M	Yes	13.6	13.1	
Patient F	м	Yes	10.7	11.9	

Source: After C. Ou et al., Science 256(1992):1165-1171, Table 1.

Sequence Aligment

- substitutions (ACGA → AGGA)
- insertions (ACGA → ACCGGAGA)
- deletions (ACGGAGA → AGA)

Global Pairwise Alignment

- Dynamic Programming
 - Divide a problem into a series of smaller subproblems
 - Solve each subproblem
 - Use the solutions to build the solution to the original problem
- Needleman-Wunsch Algorithm
 - Creates a matrix of partial alignment scores
 - Backtracks along a path to the best possible alignment

Needleman-Wunsch Algorithm

- Create N x M matrix
- Place each sequence along one axis
- Place score 0 at the up-left corner
- Fill in 1st row & column with gap penalty multiples
- Fill in the matrix with max value of 3 possible moves:
 - Vertical move: Score + gap penalty
 - Horizontal move: Score + gap penalty
 - Diagonal move: Score + match/mismatch score
- The optimal alignment score is in the lower-right corner
- To reconstruct the optimal alignment, trace back where the max at each step came from, stop when hit the origin.

Alignment score = 0

Let:
Match = +1
Mismatch = 0
Gap = -1

		С	Α	С	G	Т	Α	Т
	0	-1	-2	-3	-4	-5	-6	-7
С	-1	1	0	-1	-2	-3	-4	-5
G	-2	0	1	0	0	-1	-2	-3
С	-3	-1	0	2	1	0	-1	-2
Α	-4	-2	0	1	2	1	1	0

Alignment score = 0

Let:

Match = +1 Mismatch = 0

Gap = -1

CACGTAT
--CGCA-

)		С	Α	С	G	Т	Α	Т
	0<	1	7	-3	-4	-5	-6	-7
С	-1	1	0	7	-2	-3	-4	-5
G	-2	0	1	0	8	-1	-2	-3
С	-3	-1	0	2	1	9	-1	-2
Α	-4	-2	0	1	2	1	J	9

Alignment score = 0

Let:

Match = +1 Mismatch = 0 Gap = -1

CACGTAT

C--GCA-

0		С	Α	С	G	Т	Α	Т
	0	-1	-2	-3	-4	-5	-6	-7
С	-1	4	0	-1	-2	-3	-4	-5
G	-2	0	1	0	0	-1	-2	-3
С	-3	-1	0	2	1	0	-1	-2
Α	-4	-2	0	1	2	1	1	0

Alignment score = 0

Let:

Match = +1

Mismatch = 0

Gap = -1

CACGTAT CGC--A-

0		С	Α	С	G	Т	Α	Т
	4	-1	-2	-3	-4	-5	-6	-7
С	-1	1	0	-1	-2	-3	-4	-5
G	-2	0	V	0	0	-1	-2	-3
С	-3	-1	0	2	1	9	-1	-2
Α	-4	-2	0	1	2	1	-	-0

Ι et·

Alignment score = 0

Let.		
Match = +1		
Mismatch = 0		
Gap = -1		
CACGTAT		
CGCA-	C	-
CGCA-		
CACGTAT	G	-
CGCA-	C	
CACGTAT	^	
CC	A	-

