Практическая работа №2 ЛИНЕЙНЫЙ ВЫЧИСЛИТЕЛЬНЫЙ ПРОЦЕСС

ЦЕЛЬ РАБОТЫ. Научиться записывать математические выражения на языке VBA, составлять и запускать на выполнение линейные программы.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. ВЫПОЛНЕНИЕ РАБОТЫ

1. Понятие линейного процесса

Линейным вычислительным процессом называется процесс, в котором все операторы выполняются последовательно друг за другом. Программы с линейной структурой состоят из операторов ввода, присваивания, вывода, а также обращения к процедурам. Для организации математических вычислений потребуются знания встроенных математических функций VBA.

2. Математические функции

В VBA есть встроенные математические функции. Эти функции можно использовать в арифметических выражениях для вычисления, например, модуля числа, его целой части, косинуса числа и др. Основные математические функции, используемые в VBA, приведены в табл. 3.1.

Таблица 3.1 Математические функции VBA

Функция	Значение
Abs(число)	Модуль числа
Atn(число)	Арктангенс от числа
Cos(число)	Косинус от числа
Ехр(число)	Экспонента
Fix(число)	Выделение целой части числа
Int(число)	Целая часть числа. Функция Int возвращает ближайшее
	меньшее целое, Fix отбрасывает дробную часть числа
Log(число)	Натуральный логарифма числа
Rnd	Случайное число
Sgn(число)	=1, если число >0;
	=0, если число =0;
	=-1, если число <0.
Sin(число)	Возвращает синус числа
Sqr(число)	Извлекает квадратный корень из числа
Тап(число)	Возвращает тангенс числа

3. Перенос строки

Сочетание символов <Пробел> + <Знак подчеркивания> в конце обеспечивает то, что последующая строка является продолжением предыдущей. При этом надо помнить, что:

- не допускается разбивать переносом строковые константы;
- не допускается более семи продолжений одной и той же строки;
- сама строка не может состоять более чем из 1024 символов.

Например, данное выражение $y = Sin(Pi()^*x) + (1 + x)^*(1/2)/(1 + x^2)$ можно разбить на две строки:

$$y = Sin(Pi()*x) + (1 + x)^{(1/2)}/__$$

(1 + x^2)

4. Комментарии

Комментарии не являются программным кодом и поэтому игнорируются компилятором. Они нужны для двух важных функций:

- поясняют смысл программных кодов и алгоритма, делают программу легко читаемой;
- при ее отладке программы временно отключают фрагменты.

Признаком комментария в VBA является апостроф ('). Начиная от апострофа и до конца строки, будут восприниматься компилятором как комментарий.

5. Расположение нескольких операторов на одной строке

При помощи двоеточия можно разместить несколько операторов на одной строке. Такие две конструкции эквивалентны:

$$X=X+2$$

 $Y=X+3$ или $X=X+2:Y=X+3$

6. Функции преобразования форматов

При обработке выражений, введенных с помощью функции InputBox, и последующем выводе результата на экран, иногда приходится прибегать к функциям преобразования форматов (типов).

Преобразование строки в число и обратно осуществляются следующими функциями.

Val(<строка>) Преобразует строку в число

Str<число>) Возвращает значение типа Variant (String), являющееся строковым

представлением числа

Часто возникает потребность в выводе нескольких результатов в одном окне сообщений. Можно использовать функцию Chr, помимо операции конкатенации.

Chr(<число>) Возвращает строку, ASCII-код которой равен аргументу. Например, Chr (13)

- возвращает символ "возврат каретки", т.е. осуществляет переход на новую

строку.

Пример

Такая следующая строка кода:

MsgBox "Первая строка" & Chr(13) & "Вторая строка" & Chr(13) & "Третья строка", , _ "Многострочное сообщение"

приводит к выводу следующего окна сообщения:

Пример

Заданы два числа. Вычислить их сумму, произведение и частное.

Option Explicit

Public Sub PROG2()

Dim a As Integer, b As Integer, s As Integer, p As Integer

Dim ch As Double

a = Val(InputBox("Введите А ")) ' ввод первого числа

b = Val(InputBox("Введите В")) ' ввод второго числа

s = a + b 'вычисление суммы

MsgBox ("сумма=" & s) 'вывод суммы

p = a * b 'вычисление произведения

MsgBox ("произведение=" & p) ' вывод произведения

ch = a / b 'вычисление частного MsgBox ("частное=" & ch) 'вывод частного End Sub

Пример

Заданы целые числа а, b, с. Вычислить значение выражения

$$Y = \frac{\sqrt{a+b+b^2}}{(a+b+c)^3} \cdot tga$$

Option Explicit
Public Sub PROG3()
Dim a As Integer, b As Integer, c As Integer ' описание переменных
Dim y As Double
a = Val(InputBox("Введите А ")) 'ввод а
b = Val(InputBox("Введите В")) 'ввод b
c = Val(InputBox("Введите С")) 'ввод с
y = (Sqr(a + b) + b ^ 2) / (a + b + c) ^ 3 * Tan(a) 'вычисление Y
MsgBox ("y=" & y) 'вывод Y
End Sub

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Выбрать свой вариант задания, организовать ввод необходимых исходных данных, составить программу вычисления значения заданных выражений, набрать ее в редакторе, выполнить и оформить в отчете (задание, программный код, результаты).

Вариант 1	$a = \frac{\sqrt{ x-1 } - \sqrt[3]{ y }}{1 + \frac{x^2}{2} + \frac{y^2}{4}}; \qquad f = 3\sqrt{a + b} - 7\sin a$
Вариант 2	$z = \frac{2+3x}{2y}; \qquad f = \sin^2 a - \frac{\sqrt{a+b}}{2}.$
Вариант 3	$z=e^{x}-\sin^{2}x;$ $a=(1+y)\cdot\frac{x+\frac{y}{x^{2}+4}}{e^{-x-2}+1};$
Вариант 4	$s=1+tg\frac{x}{1+\sqrt{x}}; k=3co\omega +\frac{b}{7}.$
Вариант 5	$z = \frac{(y+1)^2}{1 - \frac{x^2}{2y}}; t = \ln x + e^y.$
Вариант 6	$s = \frac{z\sqrt{x} - y^2\sqrt[3]{x}}{\sqrt[5]{x} + 0.5};$ $b = \cos(g^2 \frac{1}{z});$
Вариант 7	$q=2x^3-3x^2+4\cos^2 x ;$ $b=x-\frac{x^2}{3a};$
Вариант 8	$d = \frac{\sin^3 - \cos^3}{2x}; \qquad b = \frac{3a + \sqrt{x^3}}{2};$
Вариант 9	$z = \frac{x^y - y^x}{\sqrt{x \cdot y}}; \qquad b = x^a + \frac{a^2}{y};$
Вариант 10	$s = e^{x} \cdot \sin(z + y); \qquad b = \frac{\sqrt{x + z} - 3y}{2}$
Вариант 11	$r = \frac{x}{1 + \frac{x^2}{2y}};$ $b = x(tg + e^{(x+3)})$
Вариант 12	$b = \frac{1 + \cos(x-2)}{\frac{x^4}{2} + \sin^2 x^2}; t = \sqrt[3]{a+b} - 2$

Вариант 13	$b=1+ y-x +\frac{(y-x)^2}{2}; a=\frac{3+e^{y+1}}{1+x^2\cdot y-tg }$
Вариант 14	$b=1+\frac{z^2}{3+\frac{z^2}{5}};$ $a=y+\frac{x}{y^2+\left \frac{x^2}{y+x^3}\right }$
Вариант 15	$a = \frac{\sqrt{x+y+z}+z^2}{1+\frac{y}{2}+\frac{z}{2}}; b = x \cdot y \cdot z \cdot a^x - \sin \alpha,$
Вариант 16	$a = \frac{1 + \sin (x + y)}{2 + \left \frac{x - 2x}{1 + x^2 y^2} \right } + x, \qquad v = \frac{\sqrt{a} + b - 3}{\ln 3}$
Вариант 17	$a = \frac{x^2 \cdot e^{2x} + \ln x}{y\sqrt{tgy}}; \qquad r = \ln(a + b)^2 + \frac{1}{2}a$
Вариант 18	$k=\sin x+\frac{\sqrt{x\cdot y}}{3}; m=(\sqrt{\frac{a\cdot x+b}{b\cdot y+z}}+t\mathfrak{g})^{23}-e^{2x}$
Вариант 19	$t = \frac{\sqrt{x} \cdot y^{2/3} + \sin x}{x - e^x - y^x}; \qquad f = \ln a^2 + a \cdot e^b$
Вариант 20	$p = \cos(\pi x) + \sin(\pi x); z = \frac{\sqrt[3]{1+x^4+x^2}+y}{1+y}$
	$r=2\sin(x)\sin(3x)-0.5$, $z=\frac{\sqrt[5]{1+y^2+x^2+e^{x-y}}}{y^3}$
Вариант 22	$y = \frac{\cos(x) + \sin(x)}{x}; \qquad z = \left(\sqrt{\frac{ x+y }{1+y}} - xy\right)(1+t)$
Вариант 23	$y = \frac{2\cos(\pi x)}{1 + x};$ $z = \frac{(1 - xy - x^2 - y^2)}{y^3} - \frac{x}{y^2}$
	$y = \frac{4\sin(\pi x)}{1 - \cos(\pi x)x }; \qquad z = \frac{\sqrt[3]{y^{-x} + x^{-y} + e^{2x - y}}}{y^2 + x^2 + t^2} - t^2$
Вариант 25	$y = \frac{\sin(3\pi x) - 2\sin(5\pi x)}{x}; \qquad z = \sqrt{ x^2 - y^4 } - t^2$

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какой вычислительный процесс называется линейным?
- 2. Из каких операторов составляются линейные программы?
- 3. Для чего в программе нужны комментарии? Способы ввода комментариев?
- 4. Какой знак используется для разделения нескольких операторов в одной строке?
- 5. Как вывести сообщение в одном диалоговом окне в несколько строк?