

Recap day 3

Johannes Müller, Marcelo Zoccoler

Feature extraction

AR = major / minor

$$solidity = \frac{A}{A_{convexHull}}$$

$$roundness = \frac{4 * A}{\pi \ major^2}$$

$$circularity = \frac{4\pi * A}{perimeter^2}$$

The concepts of roundness and circularity compare objects to....

The shape of a circle with the same area

The shape of a square with the same area

The shape of a triangle with the same area

Method validation & Correlation

• You have two devices to measure the same quantity – what do you do?

• The Spearman/Pearson correlation coefficient

Range between 0 and 1

Are only different in using ranks/data

Capture correlation of any kind

Can be used agnostic of units

Correlation & testing

• Adjusting the α -level (significance threshold) with the Bonferroni method

Ensures statistical power

Minimizes the risk of false positives

Is always the best choice

• In comparing multiple groups, an ANOVA can be used to find out...

...whether differences exist

...the magnitude of existing differences

...the magnitude of existing differences

Which of these is a measure of spread?

How can I read this column?

	intensity_mean_ch1	intensity_mean_ch2	intensity_max_ch1	intensity_max_ch2
time_0	23	112	53	143
time_1	45	113	255	157
time_2	68	111	255	141

How can I read these column?

	intensity_mean_ch1	intensity_mean_ch2	intensity_max_ch1	intensity_max_ch2
time_0	23	112	53	143
time_1	45	113	255	157
time_2	68	111	255	141

df['intensity_mean_ch1', 'intensity_mean_ch2']

df.give_me_the_two_first_columns()

df[:,0:2]

How can I read the this cell from this table?

	intensity_mean_ch1	intensity_mean_ch2	intensity_max_ch1	intensity_max_ch2
time_0	23	112	53	143
time_1	45	113	255	157
time_2	68	111	255	141

How can I read the these cells from this table?

inte	nsity_mean_ch1	intensity_mean_ch2	intensity_max_ch1	intensity_max_ch2
time_0	23	112	53	143
time_1	45	113	255	157
time_2	68	111	255	141
<pre>df.loc['time_0', 'intensity_mean_ch2']</pre>			df['intensity	_mean_ch2'][0]
f.loc['time_0', ['intensity_mear	n_ch1', 'intensity	_mean_ch2']]	[['intensity_mean_ch1',	'intensity_mean_ch2']][
df.iloc[0, 1]			df[0 1]	

df.iloc[0, 0:2]

lermarcelo, @jm_mightypirate

Seaborn

	area	intensity_mean	round
0	139	96.546763	False
1	360	86.613889	False
2	43	91.488372	False
3	140	73.742857	False
4	144	89.375000	True

How can display "round" with different colors?

hue = 'round'

col = 'round'

@a.ccolermarcelo, @jm_mightypirate

October 2022

Seaborn

	area	intensity_mean	round
0	139	96.546763	False
1	360	86.613889	False
2	43	91.488372	False
3	140	73.742857	False
4	144	89.375000	True

sns.relplot(data = df, x = 'area', y = 'intensity_mean')

October 2022

How can display "round" with different colors?

hue = 'round'

col = 'round'

@accolermarcelo, @jm_mightypirate

Seaborn

	area	intensity_mean	round
0	139	96.546763	False
1	360	86.613889	False
2	43	91.488372	False
3	140	73.742857	False
4	144	89.375000	True
•••			

hue = 'round'

col = 'round'