

ARTIFICIAL INTELLIGENCE LAB (CSL5402)

Name: Lakhan Kumawat

Roll: 1906055

Program: B.Tech CSE (5th Sem JUL-DEC 2021)

Small project based AI Lab Assignments I & II

ASSIGNMENT - I

Supervised Machine Learning (Linear Regression, Logistic Regression, and Support Vector Machine):

- 1. Read breast-cancer dataset (shared with the named "breast_cancer.csv" in the file section inside the dataset folder) using Linear Regression, Logistic Regression, and SVM.
- 2. Read and analyze the breast_cancer dataset (shared with the named "breast_cancer.csv" in the file section inside the dataset folder) using Linear Regression, Logistic Regression, and SVM, calculate the Precision, Recall, Accuracy and F1-score.
- 3. Display the graph plots of the Scatter and histogram using Linear Regression, and SVM methods. Also display the boxplot and scatter plots using Logistic Regression method.

Program Code:

```
import numpy as np
import pandas as pd

# READING THE DATASET

df = pd.read_csv('breast_cancer.csv')
df.head()
```

OUTPUT:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	sm
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

#PLot 11

df.shape

(569, 33)

df.isna().sum()

id	0
diagnosis	0
radius mean	0
texture mean	0
perimeter mean	0
area mean	0
smoothness mean	0
compactness mean	0
concavity mean	0
concave points mean	0
symmetry_mean	0
fractal_dimension_mean	0
radius_se	0
texture_se	0
perimeter se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
fractal_dimension_se	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area worst	0

```
compactness worst
concave points worst
symmetry worst
                       569
dtype: int64
df = df.dropna(axis=1)
df['diagnosis'].value_counts()
#DATA VISUALISATION
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
%matplotlib inline
sns.set_style('whitegrid')
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.hist( df.diagnosis)
plt.title("Counts of Diagnosis")
plt.xlabel("Diagnosis")
plt.subplot(1, 2, 2)
sns.countplot('diagnosis', data=df); #Plot 12
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning:

px.histogram(df, x='diagnosis') #Plot 13

OUTPUT:

"""# **Multiple Linear Regression**"""

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import MinMaxScaler

"""* Encoding M->1 and B->0 """

from sklearn.preprocessing import LabelEncoder
labelencoder_Y = LabelEncoder()

```
df.iloc[:,1] =
labelencoder_Y.fit_transform(df.iloc[:,1].values)

df.head()
```

OUTPUT:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
0	842302	1	17.99	10.38	122.80	1001.0	0.11840
1	842517	1	20.57	17.77	132.90	1326.0	0.08474
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960
3	84348301	1	11.42	20.38	77.58	386.1	0.14250
4	84358402	1	20.29	14.34	135.10	1297.0	0.10030

```
"""* Split the dataset into independent (X) and dependent (Y) data sets""
```

```
X = df.iloc[:,2:31].values
Y = df.iloc[:,1].values
```

type(df)

```
pandas.core.frame.DataFrame
```

```
"""* Split the data set into 75% training and 25% testing"""
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size = 0.25 , random_state = 0)
```

```
"""* Scale the data (feature scaling)"""
```

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
```

```
"""* Linear Model"""
linear model = LinearRegression()
linear model.fit(X train, Y train)
LinearRegression(copy X=True, fit intercept=True, n jobs=None,
normalize=False)
"""* Predictions"""
predictions = linear model.predict(X test)
predictions = np.array(list(map(lambda x : 1 if(x>0.5) else
0,predictions)))
from sklearn.metrics import classification report,
confusion matrix
print(confusion_matrix(Y_test,predictions))
[[90 0]
"""* Accuracy Description"""
print(classification_report(Y_test,predictions))
         precision recall f1-score support
   accuracy
  macro avg 0.95 0.95 0.95
ighted avg 0.95 0.95 0.95
                                            143
weighted avg
"""# **Logistic Regression**"""
from sklearn.linear_model import LogisticRegression
log_model = LogisticRegression(random_state=0)
```

log_model.fit(X_train, Y_train)

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
      intercept_scaling=1, l1_ratio=None, max_iter=100,
      multi_class='auto', n_jobs=None, penalty='12',
      random_state=0, solver='lbfgs', tol=0.0001, verbose=0,
      warm_start=False)
"""* Predictions"""
predictions = log model.predict(X test)
from sklearn.metrics import classification report,
confusion matrix
print(confusion matrix(Y test,predictions))
[[86 4]
 [ 3 50]]
"""* Accuracy Description"""
print(classification report(Y test,predictions))
from sklearn.metrics import accuracy score
print(accuracy score(Y test, log model.predict(X test)))
              precision
                           recall f1-score
                                               support
                   0.97
                                        0.96
                                        0.93
                                                   143
    accuracy
                   0.95
                             0.95
                                        0.95
                                                   143
   macro avg
                   0.95
weighted avg
                             0.95
                                        0.95
                                                   143
0.951048951048951
"""# **SVM**"""
```

```
from sklearn.svm import SVC
classifier = SVC(kernel='linear', random_state=0)
classifier.fit(X train, Y train)
   decision_function_shape='ovr', degree=3, gamma='scale',
   max iter=-1, probability=False, random state=0, shrinking=True,
tol=0.001,
   verbose=False)
from sklearn.metrics import confusion matrix
cm = confusion matrix(Y test, classifier.predict(X test))
print(cm)
[[86 4]
from sklearn.metrics import classification report
print(classification report(Y test,
classifier.predict(X test)))
from sklearn.metrics import accuracy score
print(accuracy score(Y test, classifier.predict(X test)))
            precision
                                         support
                 0.98
                          0.96
                          0.96
                                   0.94
   accuracy
                                   0.96
                                             143
                 0.95
                         0.96
                                   0.96
                                            143
  macro avg
                 0.96
                         0.96
                                  0.96
                                             143
weighted avg
0.958041958041958
```

ASSIGNMENT - II

Un-Supervised Machine Learning (K-means Clustering, KNN)

- 1. Read heart dataset and adult dataset (shared with the named "heart.csv" and "adult.csv" in the file section inside the dataset folder) using KNN (heart dataset) K-means (adult dataset).
- 2. Read and analyze the heart dataset and adult dataset (shared with the named "heart.csv" and "adult.csv" in the file section inside the dataset folder) using KNN (heart dataset)
 K-means (adult dataset) calculate the Accuracy, Precision, Recall, and F1-score.
- 3. Plot the scatter and elbow point graphs by using KNN and scatter graph using K-means methods.

Program Code:

```
# **KNN**
"""* Importing libraries"""
import pandas as pd
import numpy as np
"""* Read the dataset"""
```

```
df = pd.read_csv('heart.csv')
df.head()
```

OUTPUT:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

df.shape

(303, 14)

df.describe()

OUTPUT:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.039604	1.399340	0.729373	2.313531	0.544554
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.161075	0.616226	1.022606	0.612277	0.498835
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.000000	0.000000	2.000000	0.000000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.000000	0.000000	2.000000	1.000000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000000	1.000000	3.000000	1.000000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000000	4.000000	3.000000	1.000000

"""* Data Visualization"""

Commented out IPython magic to ensure Python compatibility.
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

```
sns.set_style('whitegrid')
plt.figure(figsize=(30, 15))
sns.pairplot(df, hue='target', palette='coolwarm')
```



```
for col in df.drop(['target'], axis=1).columns:
    sns.lmplot(data=df,
```

```
x=col,
y='target',
fit_reg=False,
hue='target',
palette='Set2',
legend=False,
scatter_kws={'alpha': 0.5})
```

OUTPUT:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
"""* Scaling and Splitting the data into training and testing
data"""

```
X = df.drop(['target'], axis=1)
Y = df['target']
```

from sklearn.preprocessing import StandardScaler

```
stds = StandardScaler()
X = stds.fit transform(X)
X_train, X_test, Y_train, Y_test = train_test_split(X,
                                                     Υ,
                                                     test size=0
.25,
                                                     random_stat
e = 42)
"""* Calculating the value of **k**""
def knnprediction(k, X_train, Y_train, X_test):
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X train, Y train)
    pred = knn.predict(X test)
    return pred
error_mean = []
for k in range(1, 41):
    pred i = knnprediction(k, X train, Y train, X test)
    error_mean.append(np.mean(pred_i != Y_test))
plt.plot(range(1, 41),
         error mean,
         linestyle='dashed',
         color='r',
         marker='o',
         markerfacecolor='b',
         markersize=10)
plt.title('K-Value vs Error Mean')
plt.show()
```


"""* Value of K = 7"""

predictions = knnprediction(7, X_train, Y_train, X_test)
"""* Accuracy Description"""

from sklearn.metrics import classification_report,
confusion_matrix

cm = confusion_matrix(Y_test, predictions)
print(cm)

[[31 4]

[3 381

print(classification_report(Y_test, predictions))

				6.4	
		precision	recall	f1-score	support
	0	0.91	0.89	0.90	35
		0.90	0.93	0.92	41
accur	асу			0.91	76
macro	avg	0.91	0.91	0.91	76
weighted	avg	0.91	0.91	0.91	76

"""# **K-means Clustering**

```
* Importing Libraries
"""

import pandas as pd
import numpy as np
"""* Reading the dataset"""

dfs = pd.read_csv('adult.csv', skipinitialspace=True)
dfs.head()
```

OUTPUT:

	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
0	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male			13	United-States	<=50K
1	38	Private	215646	HS-grad		Divorced	Handlers-cleaners	Not-in-family	White	Male			40	United-States	<=50K
2	53	Private	234721	11th		Married-civ-spouse	Handlers-cleaners	Husband	Black	Male			40	United-States	<=50K
3	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female			40	Cuba	<=50K
4	37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female			40	United-States	<=50K

```
"""* Labelling the column"""

dfs.columns = [
    'age', 'workclass', 'fnlwgt', 'education', 'education-num',
    'marital-status', 'occupation', 'relationship', 'race',
'gender',
    'captialgain', 'capitalloss', 'hoursperweek', 'native-country', 'class'
]
dfs.head()
```

	age	workclass	fnlwgt	education	education-num	marital-status	occupation	relationship	r
0	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	W
1	38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	W
2	53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	ВІ
3	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	ВІ
4	37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	W

dfs.describe()

OUTPUT:

	age	fnlwgt	education-num	captialgain	capitalloss	hoursperweek
count	32560.000000	3.256000e+04	32560.000000	32560.000000	32560.000000	32560.000000
mean	38.581634	1.897818e+05	10.080590	1077.615172	87.306511	40.437469
std	13.640642	1.055498e+05	2.572709	7385.402999	402.966116	12.347618
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178315e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783630e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370545e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000

dfs.dtypes

age	int64
workclass	object
fnlwgt	int64
education	object
education-num	int64
marital-status	object
occupation	object
relationship	object
race	object
gender	object
captialgain	int64
capitalloss	int64
hoursperweek	int64
native-country	object
class	object

```
dtype: object
dfs.shape
"""* Data Visualization"""
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5))
sns.countplot(x="class", data=dfs)
OUTPUT:
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from sklearn.metrics import classification report,
confusion matrix, accuracy score
```

```
df_encoded = pd.get_dummies(
          data=dfs,
          columns=dfs.select_dtypes(include=[object]).columns,
          drop_first=True)
df_encoded.head()
```

OUTPUT:

	age	fnlwgt	education- num	captialgain	capitalloss	hoursperweek	workclass_Federal- gov	workclass_Local- gov	workclass_Ne wc
0	50	83311	13	0	0	13	0	0	
1	38	215646	9	0	0	40	0	0	
2	53	234721	7	0	0	40	0	0	
3	28	338409	13	0	0	40	0	0	
4	37	284582	14	0	0	40	0	0	
5 ro	ws ×	101 colum	nns						

```
X = df_encoded.drop('class_>50K', axis=1)
Y = df_encoded['class_>50K']

X_scaled = MinMaxScaler().fit_transform(X)
"""* Elbow point Graph"""

inertia = []
for k in range(1, 5):
    k_cluster = KMeans(n_clusters=k)
    k_cluster.fit_transform(X_scaled)
    inertia.append(k_cluster.inertia_)

plt.plot(range(1, 5), inertia)
plt.title("Elbow point detection graph")
plt.show()
```


array([0, 0, 0, ..., 0, 0, 1], dtype=uint8)

"""* Accuracy Description"""

print(classification_report(Y, prediction))
print(confusion_matrix(Y, prediction))

		precision	recall	f1-score	support
	0	0.75	0.74	0.75	24719
		0.23	0.24	0.23	7841
accura	су			0.62	32560
macro a	.vg	0.49	0.49	0.49	32560
weighted a	.vg	0.63	0.62	0.62	32560

```
[ 5948 1893]]
plt.plot(range(1, 5), inertia)
plt.title("Elbow point detection graph")
plt.show()
OUTPUT:
num_cols = dfs._get_numeric_data().columns
dfs['pred'] = prediction
sns.pairplot(data=dfs, vars=num_cols, hue='pred')
```


Ind Of Assignment
