### Санкт-Петербургский Политехнический Университет им. Петра Великого

# Институт прикладной математики и механики Кафедра прикладной математики

# Курсовая работа

3 курс, группа 3630102/70301

Студент Лебедев К.С.

Преподаватель Баженов А. Н.

# Содержание

| 1. | Список таблиц                     | 3  |
|----|-----------------------------------|----|
| 2. | Постановка задачи                 | 4  |
| 3. | Теория                            | 4  |
| 4. | Реализация                        | 4  |
| 5. | Результаты                        |    |
|    | 5.1. функция распределения Фишера | 5  |
|    | 5.2. функция распределения Рэлея  |    |
| 6. | Выводы                            | 20 |
| 7. | Список литературы                 | 21 |
| 8. | Приложения                        | 21 |

| 1 | Список | таблиц |
|---|--------|--------|
| _ |        |        |

| <br>Результаты |
|----------------|
|                |

#### 2 Постановка задачи

Для трех выборок 50, 200 и 1000 элементов, сгенерированных согласно закону распределения Фишера с параметрами  $\mu=4$  и  $\nu=2$  и Рэлея с параметром  $\sigma=0.7$  проверить гипотезы о согласии распределения смоделированной выборки с заданным законом распределения по критерию  $\chi^2$  для группирования выбирать интервалы равной длины, уровень значимости  $\alpha=0.05$ . Проверить гипотезы о согласии распределения смоделированной выборки с заданным законом распределения по непараметрическому критерию Мизеса-Смирнова; уровень значимости  $\alpha=0.05$ .

#### 3 Теория

Функция распределения Фишера:

$$F = \frac{Y_1/d_1}{Y_2/d_2},\tag{1}$$

где  $Y_1,Y_2$  - две независимые случайные величины, имеющие распределение  $\chi^2$ , а  $d_1$  и  $d_2$  - их степени свободы соотвественно.

Функция распределения Рэлея:

$$f(x;\sigma) = \frac{x}{\sigma^2} exp\left(-\frac{x^2}{2\sigma^2}\right), x \ge 0, \sigma > 0.$$
 (2)

Оба распределения подходят для проверки нашего распределения статистики непараметрического критерия (критерий Мизеса-Смирнова) при простой гипотизе, так как являются абсолютно непрерывными распределениями.

#### 4 Реализация

Работы была выполнена на языке Python 3.7. Для генерации выборок использовался модуль [1]. Для построения графиков использовалась библиотека matplotlib [2]. Функции распределения обрабатывались при помощи библиотеки scipy.stats [3]

### 5 Результаты

#### 5.1 функция распределения Фишера

Рис. 1: Функция распределения Фишера с n = 50



Рис. 2: Функция нормального распределения с n=50



Рис. 3: Функция распределения Фишера с n = 200



Функция плотности распределения Нормального 0.16 Теоритическая Эмпирическая 0.14 0.12 0.10 Частоты 0.08 0.06 0.04 0.02 0.00 -2.093 -1.754 -1.416 -0.061 0.277 0.616 0.954 1.293 -1.077 -0.738 -0.400

Интервалы

Рис. 4: Функция нормального распределения с n = 200

Рис. 5: Функция распределения Фишера с n = 1000



Рис. 6: Функция нормального распределения с n=1000



Рис. 7: График функции распределения Фишера



Рис. 8: График функции нормального распределения



### 5.2 функция распределения Рэлея

Рис. 9: Функция распределения Рэлея с n=50





Интервалы

Рис. 10: Функция нормального распределения с n=50

Рис. 11: Функция распределения Рэлея с n = 200



Функция плотности распределения Нормального

Теоритическая

0.12

0.10

0.08

0.06

0.04

0.02

0.00

-2.375

-2.053

-1.732

-1.411

-1.089

-0.768

-0.446

Интервалы

-0.125

0.196

0.518

0.839

Рис. 12: Функция нормального распределения с n = 200



Рис. 13: Функция распределения Рэлея с n = 1000

Рис. 14: Функция нормального распределения с n = 1000



Рис. 15: График функции распределения Рэлея



Рис. 16: График функции нормального распределения



Таблица 1: Результаты

| Распределение | n    | Тест по критерию $\omega^2$ | Тест по критерию $\omega^2$ для нормального распределения |
|---------------|------|-----------------------------|-----------------------------------------------------------|
|               | 50   | True                        | True                                                      |
| Фишера        | 200  | True                        | True                                                      |
| Фишера        | 1000 | True                        | True                                                      |
|               | 50   | True                        | True                                                      |
| Рэлея         | 200  | False                       | True                                                      |
| 1 3/16/1      | 1000 | True                        | True                                                      |

### 6 Выводы

По полученным результатам видно, что оба подхода дают лучший результат на выборках большого объема. Если рассматривать результаты для выборки объема n=200 элементов, то видно, что при распределении Фишера тест на критерий Крамера — Мизеса — Смирнова пройден в отличии от Рэлея.

### 7 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль matplotlib https://matplotlib.org/users/index.html
- [3] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [4] Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.
- [5] http://www.machinelearning.ru/
- [6] https://ru.wikipedia.org/

### 8 Приложения

 ${\it K}{\it o}$ д отчёта: https://github.com/9 ${\it S}$ hikamaru/CourseProjMatStat