

BRIDGE DETECTION AND ROBUST GEODESICS ESTIMATION VIA RANDOM WALKS

Eugene Brevdo, Peter J. Ramadge Dept. of Electrical Engineering, Princeton Univ., Princeton, NJ USA

Problem and Intuition

Given samples from a Manifold, estimate geodesic distances. Moderate noise leads to bridges, and serious errors. We propose two new bridge detectors. Applications include Semi-Supervised Learning and Inverse Problems.

Notation and an Example Local Classifier

Initial NN Estimates (via k-NN or δ -ball) from manifold ${\cal M}$

Observed Points $\mathcal{Y} = \{y_i = x_i + \nu_i\}_{i=1}^n$, $x_i \in \mathcal{M}$, ν_i : noise NN Graph $G = (\mathcal{Y}, \mathcal{E}, d)$. Edges are $e = (k, l) \in \mathcal{E}$ Edge Weight $d_e = \|y_k - y_I\|_2 \in \mathcal{D}$ for $e \in \mathcal{E}$ Neighbors \mathcal{F}_k : set of neighbors of y_k in GShortest Paths \mathcal{P}_{kl} : minimum weight path between (y_k, y_l)

Example Local Classifier: Jaccard Similarity DR (JDR)

Bridge Estimates $\mathcal{B} \subset \mathcal{E}$: determined by DR

JDR Edge-neighborhood set dissimilarity index: $j_e = 1 - |\mathcal{F}_k \cap \mathcal{F}_l|/|\mathcal{F}_k \cup \mathcal{F}_l|$ $e = (k, l) \in \mathcal{E}$ Quantile Choose "good edge percentage" 0 < q < 1 (e.g., 99%) Classifier \mathcal{B} : $e \in \mathcal{E}$ with j_e (JDR) above qth quantile

A Global Classifier: NPDR

Neighbor Probability DR (NPDR) Markov Walk Markov Walk s(t) on G, transition matrix $P(n \times n)$ $Pr\{Stopping\}\ Stop\ at\ time\ t=0,1,\ldots w.p.\ p\ (\bar{p}=1-p)$ $Pr\{Neighbor\}\ N_{ij} = Pr\{stopped\ at\ y_i|s(0) = y_j\}$ $N = p \sum_{t>0} \bar{p}^t P^t = p(I - \bar{p}P)^{-1}$ [also Markov] Classifier $\mathcal{N} = \{N_e, e \in \mathcal{E}\}$ $\mathcal{B} = \{e \in \mathcal{E} : N_e \text{ below } (1-q)^{\mathsf{th}} \text{ quantile of } \mathcal{N}\}$ Intuition Likely bridge: edge between low Pr {Neighbor} vertices

Constructing Markov Matrices P and N

- ② Let D_{ϵ} be diagonal: $(D_{\epsilon})_{ii} = e_i^T A_{\epsilon} 1$ (row sums of A_{ϵ})

Theorem (N_{ϵ} defines a heat-type diffusion operator on \mathcal{M})

 $\lim_{\epsilon \downarrow 0} \lim_{n \uparrow \infty} \frac{I - N_{\epsilon}}{\epsilon} = c' \Delta_{\mathcal{M}}$

Proof Sketch:

(e) $\mu{=}1.64$

- 1. Woodbury Identity: $\frac{I-N_{\epsilon}}{\epsilon} \propto \frac{I-P_{\epsilon}}{\epsilon} (I-\bar{p}P_{\epsilon})^{-1}$
- 2. Normalized Laplacian Convergence: $\frac{I-P_{\epsilon}}{\epsilon} \to c\Delta_{\mathcal{M}}$ [Lafon et al.]

Denoising Geodesic Estimates

Geodesic estimates vs. truth (from x_1). (a,e): SP, (b,c,d) ECDR, (f,g,h): NPDR

(f) μ =.1,q=.92

(g) μ =1.64,q=.99 (h) μ =1.64,q=.92

Random Projection CT¹

• $R_{\theta}(I)$: Radon transform of I

• $f(\theta) = R_{\theta}(I)$, $\theta \sim \mathsf{Unif}[0, 2\pi)$

• $y_i = f(\theta_i) + \nu_i \ (\nu_i \sim N(0, \sigma^2))$

Pruning Bridges (SNR: -2db)

- Preprocess data (denoise)
- ② Build NN graph (k = 50)
- Opening Prune bridges
- Solve eigenvalue problem: Angular ordering
- O Reconstruct \hat{I} via R^{-1}

Our approach: NPDR

q = .8, p = .01, on \hat{P}_0

(all edges in G have weight 1)

Approach of [1]: JDR

Optimal q = .78(found via cross-validation)

Sorted Projection Index (i) $\hat{\theta}$, JDR

(k) \hat{I} , JDR

Comparing Reconstruction Quality: 25% Improvement

Metric: $\rho = \frac{I^T \hat{I}}{\|I\| \|\hat{I}\|} (\hat{I} \text{ aligned with } I)$ JDR removes 277 nodes, $\rho_{JDR}=0.12$

NPDR removes 21 nodes, $\rho_{NPDR} = 0.15$

1. A. Singer, H. Wu, 2009