Choosing Representation Size

A few practical issues

- Recall Singular Value Decomposition
- $M_{m \times n} \approx \dot{M}_{m \times n} = U_{m \times p} \Sigma_{p \times p} V_{p \times n}^{T}$
- If $p = \min(m,n)$, then $M_{m \times n} = \dot{M}_{m \times n}$ but there is no compression
- Usually, we set p <= min(m,n), and compute only p columns of U and p rows of V^T
- SVD computes the "best" p vectors.
- The square of the matrix Σ shows how much each column of U (row of V^T) contributes to the approximation.

•
$$M_{m \times n} \approx \dot{M}_{m \times n} = U_{m \times p} \Sigma_{p \times p} V_{p \times n}^{\mathsf{T}}$$

• Consider p = 0; assume that means $\dot{M} = 0$

•
$$(\|\mathbf{M}_{m \times n} - \dot{\mathbf{M}}_{m \times n}\|_{F})^{2} = (\|\mathbf{M}_{m \times n}\|_{F})^{2}$$

= sum of squares of elements of M
call it SS

This is the "worst" possible error.

•
$$M_{m \times n} \approx \dot{M}_{m \times n} = U_{m \times p} \Sigma_{p \times p} V^{T}_{p \times n}$$

• If $p = \min(m,n)$, then $M_{m \times n} = \dot{M}_{m \times n}$

•
$$(\|\mathbf{M}_{m \times n} - \dot{\mathbf{M}}_{m \times n}\|_{F})^{2} = (\|\mathbf{M}_{m \times n} - \mathbf{M}_{m \times n}\|_{F})^{2}$$

= 0

• This is the "best" possible error.

• $\Sigma_{p \times p}$ is >= 0 on the diagonal, 0 everywhere else.

• Let's call its entries σ_1 , σ_2 , ..., σ_p

• σ_i^2 tells us how much column i of U and row i of V^T improve the approximation (reduce the error)

Also tell us the "importance" of topic i

Choosing p: "Elbow"

Choosing p: "Elbow"

Choosing p: "Share"

"Share" is cumulative sum of squared singular values, normalized by SS

p = 9 gives a share of 0.1; p = 48 gives a share of 0.2; p = 460 gives a share of 0.5

Choosing p: Application-driven

"Why are we doing this again?"

- Examining topics manually to learn about the corpus
 - If you choose p = 6, the first 5 topics will be same as if you had chosen p = 5
 - As long as you are finding interesting topics, you can keep going

Choosing p: Application-driven

- If you are using the learned representations for retrieval, can evaluate different p
 - Precision = proportion of documents returned that are relevant
 - Recall = proportion of relevant documents in the corpus that are returned
 - F score = 2 * (precision*recall) / (precision + recall)
 - Between 0 and 1

Walber - Own work - CC BY-SA 4.0

Using the New Representations for Documents and Words

Rows of U and V as term and document representations

- $\dot{\mathbf{M}}_{m \times n} = \mathbf{U}_{m \times p} \, \mathbf{\Sigma}_{p \times p} \, \mathbf{V}^{\mathsf{T}}_{p \times n}$
- Remember: *m* terms, *n* documents
- Each column of V^T corresponds to a document
- Each row of U corresponds to a term
- All of these vectors have dimension p.
- Each one can be used as a vector representation for a term or document

V ^T	D1	D2	D3	D4	D5	D6
W1	1	0	1	1	1	0
W2	0	1	0	0	1	1

Columns of V^T are new vector representations for each document

U	T1	T2
cat	1	0
dog	1	0
horse	1	0
apple	0	1
orange	0	1

Rows of U are new vector representations for each term

Re-arranging the SVD equation

- Recall: V^TV = U^TU = I (identity)
- $\dot{M}_{m \times n} = U_{m \times p} \Sigma_{p \times p} V_{p \times n}^{T}$
- $\dot{\mathbf{M}}_{m \times n} \mathbf{V}_{n \times p} = \mathbf{U}_{m \times p} \mathbf{\Sigma}_{p \times p} \mathbf{V}_{p \times n}^{\mathsf{T}} \mathbf{V}_{n \times p}$
- $\dot{M}_{m \times n} V_{n \times p} = U_{m \times p} \Sigma_{p \times p} I_{p \times p}$
- $\dot{M}_{m \times n} V_{n \times p} = U_{m \times p} \Sigma_{p \times p}$
- $\dot{M}_{m \times n} V_{n \times p} \Sigma^{-1}_{p \times p} = U_{m \times p} \Sigma_{p \times p} \Sigma^{-1}_{p \times p}$
- $\dot{\mathbf{M}}_{m \times n} \mathbf{V}_{n \times p} \mathbf{\Sigma}^{-1}_{p \times p} = \mathbf{U}_{m \times p} \mathbf{I}_{p \times p}$
- $\dot{M}_{m\times n}(V_{n\times p}\Sigma^{-1}_{p\times p}) = U_{m\times p}$

Rows of U represent terms

•
$$\dot{M}_{m\times n}$$
 $(V_{n\times p} \Sigma^{-1}_{p\times p}) = U_{m\times p}$

 Each element of row i of U is a weighted sum of a row of M

 Each element of row i of U is summary or a feature for term i

Re-arranging the SVD equation

- Recall: V^TV = U^TU = I (identity)
- $\dot{M}_{m \times n} = U_{m \times p} \Sigma_{p \times p} V_{p \times n}^{T}$
- $U_{p\times m}^{\mathsf{T}}\dot{\mathsf{M}}_{m\times n} = U_{p\times m}^{\mathsf{T}}U_{m\times p}\Sigma_{p\times p}V_{p\times n}^{\mathsf{T}}$
- $U^{\mathsf{T}}_{p\times m}\dot{M}_{m\times n} = I_{p\times p}\Sigma_{p\times p}V^{\mathsf{T}}_{p\times n}$
- $U^{\mathsf{T}}_{p\times m}\dot{\mathsf{M}}_{m\times n} = \Sigma_{p\times p} V^{\mathsf{T}}_{p\times n}$
- $\Sigma^{-1}_{p \times p} U^{\mathsf{T}}_{p \times m} \dot{\mathsf{M}}_{m \times n} = \Sigma^{-1}_{p \times p} \Sigma_{p \times p} V^{\mathsf{T}}_{p \times n}$
- $\Sigma^{-1}_{p \times p} U^{\mathsf{T}}_{p \times m} \dot{\mathsf{M}}_{m \times n} = \mathsf{I}_{p \times p} V^{\mathsf{T}}_{p \times n}$
- $(\Sigma^{-1}_{p\times p}U^{\mathsf{T}}_{p\times m})\dot{\mathsf{M}}_{m\times n}=V^{\mathsf{T}}_{p\times n}$

Rows of V represent documents

•
$$(\Sigma^{-1}_{p\times p} U^{\mathsf{T}}_{p\times m})\dot{\mathsf{M}}_{m\times n} = V^{\mathsf{T}}_{p\times n}$$

• Each element of column j of V^T is a weighted sum of a column of \dot{M}

 Each element of column j of V^T is summary or a feature for document j

SVD as dimensionality reduction

- In the term-document matrix,
 - Each term represented by a vector of length *n*
 - Each document represented by a vector of length m
 - These representations are not comparable.
- LSA/SVD gives us
 - Much more compact representations length p
 - A representation of all terms and documents in the same space
- Can use Cosine similarity, dot product, or other techniques like Euclidean distance, etc.
- Can compare document to document and document to term!

Retrieval

- Given a single-term query
 - Look up the corresponding row in U
 - Rank columns of V^T by their similarity to that row
 - Return documents in that order

V ^T	D1	D2	D3	D4	D5	D6
W1	1	0	1	1	1	0
W2	0	1	0	0	1	1

U	T1	T2
cat	1	0
dog	1	0
horse	1	0
apple	0	1
orange	0	1

1	0	1	1	1	0
1	0	1	1	1	0
1	0	1	1	1	0
0	1	0	0	1	1
0	1	0	0	1	1

Multi-word queries

•
$$\Sigma^{-1}_{p \times p} U^{\mathsf{T}}_{p \times m} \dot{\mathsf{M}}_{m \times n} = V^{\mathsf{T}}_{p \times n}$$

 This equation "shrinks" every document representation from length m to length p

• Given a new document $d_{m\times 1}$, we get its representation like this:

•
$$\Sigma^{-1}_{p \times p} U^{\mathsf{T}}_{p \times m} \mathbf{d}_{m \times 1} = \mathbf{v}_{p \times 1}$$

Multi-word queries

•
$$\Sigma^{-1}_{p \times p} U^{\mathsf{T}}_{p \times m} \mathbf{d}_{m \times 1} = \mathbf{v}_{p \times 1}$$

• Given the new document's representation, compare it to all the representations in $V_{p\times n}^T$

Can use cosine, for example

Retrieve e.g. the top 10 most similar

Adding documents

Representation depends on entire corpus

 To allow a new document to modify the representation (of all words and documents), must "re-compute" the SVD

 (There are algorithms for updating SVDs without a total re-do.)

Related Methods

Non-negative Matrix Factorization

- NMF for short
 - $\dot{M}_{m\times n} = W_{m\times p} \overline{H_{p\times n}}$
 - Subject to $W_{m \times p} >= 0$, $H_{p \times n} >= 0$
- Similar (sometimes easier) interpretation because no negative weights.
- Cannot approximate the original matrix any better than SVD does. (Why?)
- Unlike SVD, not guaranteed to find global minimum.
- Topics not "ordered" by importance

Probabilistic Latent Semantic Analysis

Summary

LSA Compresses the Term Document Matrix

$$U_{m \times p} \Sigma_{p \times p} V^{\mathsf{T}}_{p \times n}$$

- Columns of U represent word "clusters" (topics)
- Rows of V^T represent document "clusters"
- Rows of U represent words using p dimensions
- Columns of V^T represent documents using p dimensions
- Any technique that uses vector similarity or distance can use similarity or distance between rows of U and/or columns of V^T
- NMF gives similar output, $W_{m \times p} H_{p \times n}$ with restriction to positive values.
- PLSA gives probabilistic interpretation of topics

Retrieval Example