Задание №3

Нахождение производных таблично-заданной функции по формулам численного дифференцирования

- 1) Решать задачу численного дифференцирования предлагается для двух функций:
 - Функция $f_1(x)$ из задания 1 (номер варианта соответствует Вашему номеру в списке группы);
 - Функция $f_2(x) = e^{1.5kx}$, k = ((номер Вашего варианта по mod 5) +1).
- 2) Предложите пользователю выбрать функцию, для которой будет решаться задача (далее функция обозначена за f(x)).
- 3) Подготовительный этап (создаем таблицу):
 - Запросить у пользователя количество значений в таблице (внимание: будет ограничение! Количество (m+1) должно быть ≥ 5);
 - Запросить начальное значение a в таблице и шаг h > 0;
 - ВЫВЕСТИ НА ПЕЧАТЬ таблицу из (m+1) значения функции в равноотстоящих с шагом h точках $x_i = a+i \cdot h$, где $i=0,1,\ldots,m$.
- 4) Исследовательский этап (получаем формулы численного дифференцирования для второй производной для «начала» и для «конца» таблицы). А именно: методом неопределённых коэффициентов требуется получить расчетную формулу как линейную комбинацию значений f(a), f(a+h), f(a+2h), f(a+3h). А также одновременно получить представление погрешности для неё. Заменой h на -h получить формулу для «конца» таблицы.
- 5) Собственно решение задачи численного дифференцирования:

Для таблично-заданной функции f (смотри таблицу, созданную на подготовительном этапе), найти значение ее первой и второй производной во всех узлах x_i таблицы. Для этого воспользоваться известными простейшими формулами численного дифференцирования, имеющими погрешность, порядка $O(h^2)$. Это формулы (3), (4) и (5) для первой производной и формула (6) для второй производной из Презентации к заданию 3.

Также на занятии были предложены три «новые» формулы для первой производной, порядок погрешности которых есть $O(h^4)$. Их также нужно реализовать в расчетах.

ВНИМАНИЕ! Вы заполняете таблицу значениями функции на подготовительном этапе и больше не обращаетесь к процедуре для f(x). Дальше Вы все время обращаетесь к числам из второго столбца таблицы.

Как результат, нужно вывести на печать таблицу такого вида:

x_i	$f(x_i)$	$f'(x_i)_{YJJ}$	$ f'(x_i)_T - f'(x_i)_{YJ} $	$f'(x_i)_{YJ}$	$ f'(x_i)_T - f'(x_i)_{YJJ} $	$f''(x_i)_{YJ}$	$ f''(x_i)_T - f''(x_i)_{Y \not \square} $
		формулы	абс.погрешность	«новые» фор-	/	Ваши	абс.погрешность
		(3), (4), (5)	для ф-л (3), (4), (5)	мулы с порядком	абс.погрешность	авторские	для второй произ-
		погрешно-		погрешности	для «новых»	формулы и	водной
		стями		$O(h^4)$	формул	ф-ла (6)	
		$O(h^2)$					

- 6) Этап анализа полученных результатов (проанализировать, насколько фактические погрешности «укладываются» в теорию).
- 7) Предложить пользователю выбрать другую функцию, ввести новые значения параметров или перейти к уточнению по Рунге.
- 8) Если пользователь выбрал уточнение по Рунге-Ромбергу, вновь предоставить ему возможность выбора функции, запросить количество точек, начальное значение и шаг h; вывести на экран таблицу. Затем предложить выбрать значение x_j , для которого будем уточнять производные. Найти значение первой и второй производной в этой точке по формулам ч.д., погрешность которых $O(h^2)$. Получить уточненные значения для первой и для второй производной (смотри теорию ниже). Вычислить абсолютные погрешности для уточненных значений. Устно проанализировать результаты.

Вывести на печать таблицу такого вида:

x_i	$f(x_i)$	Значение		Значение		Уточненное	
		J(h)	$/f'(x_i)_T - J(h)/$	J(h/2)	$/f'(x_i)_T - J(h/2)/$	значение $ar{J}$	$ f''(x_i)_T - \bar{J} $
		по формулам	абс.погрешность	по формулам	абс.погрешность		абс.погрешность
		(3), (4), (5)		(3), (4), (5)			
		с шагом h		с шагом <i>h</i> /2			

О методе Рунге-Ромберга уточнения значений (справочно)

Пусть в результате применения какого-либо метода (например, какой-либо формулы численного дифференцирования, составной квадратурной формулы и проч.) получены приближенные значения J(h) и $J\binom{h}{2}$. Первое получено, когда в исходных данных и в расчетах использовали шаг h, второе – шаг h/2.

Тогда если известен порядок малости относительно шага погрешности этого метода (например, погрешность $O(h^r)$ то возможно произвести уточнение (получить более точное значение \bar{J}) по формуле:

$$\bar{J} = J(h/2) + \frac{J(h/2) - J(h)}{2^r - 1} = \frac{2^r \cdot J(h/2) - J(h)}{2^r - 1}.$$