

Contents

What is a container
Docker and Apptainer
Building / Using Containers
GPUs
MPI
BioContainers

Why Use Containers?

- Verifiable reproducibility
- An immutable image
- Mobility of compute
- Limits user privileges
- Make use of GPU's and high-speed networks

Docker vs Apptainer

Docker containers are very popular particularly in bioinformatics
Docker runtime is not secure on shared clusters
Create the container using Docker and then containerize with Apptainer
Note: Apptainer was rebranded from Singularity, but it is the same software

Docker vs Apptainer

Apptainer has better security and performance

Where it runs

How it works

Apptainer on HPC – Compute Node

```
laptop $ ssh netid@hpc.arizona.edu
netid@gatekeeper $ shell
(puma) netid@wentletrap $ elgato
(elgato) netid@wentletrap $ interactive -a PI
netid@cpu9 $ apptainer help
netid@cpu9 $ apptainer help build
```

https://ua-researchcomputing-hpc.github.io/Apptainer-Examples/

Apptainer on HPC - Creating

```
$ apptainer pull docker://godlovedc/lolcow
        pulls from docker registry
        less reproducible - image can change
$ apptainer pull library://sylabsed/examples/lolcow
        pulls from a container library
        more reproducible
$ apptainer build lolcow.sif docker://godlovedc/lolcow
        more options
        converts to latest format
        needs a name
* Look for temporary files in ~/.apptainer
```


Apptainer on HPC - Running

```
$ apptainer shell lolcow_latest.sif
Apptainer>
Apptainer> exit
```

\$ apptainer run lolcow_latest.sif or

```
$./lolcow latest.sif
```

\$ apptainer run library://sylabsed/exa...p.co.rulou...
INFO: Using cached image

```
* Look for cached files in ~/.apptainer
```


Apptainer on HPC

SingularityHub for building containers

- developed by Vanessa Sochat at Stanford's Research Computing Group
- supported by Google

It's gone now ..

So now what?

Build on HPC

Apptainer examples at our Github

https://ua-researchcomputing-hpc.github.io/Apptainer-Examples/

Hello World Docker Build Tensorflow

Find the Basic Build Example

- use a recipe to build a container on HPC
- run the container using a Slurm script

Apptainer on HPC – Running Batch

```
#!/bin/bash
#SBATCH --job-name=lolcow
#SBATCH --ntasks=1
#SBATCH --nodes=1
#SBATCH --mem=1gb
#SBATCH --time=00:01:00
#SBATCH --partition=standard
#SBATCH --account=YOUR GROUP
cd /path/to/container
apptainer run example.sif
```


Singularity on HPC – File paths

Access to your files outside the container: Binding You automatically get /home and /tmp and \$PWD

- \$ echo "Hello from inside the container" > \$HOME/hostfile.txt \$ apptainer exec lolcow_latest.sif cat \$HOME/hostfile.txt
- Hello from inside the container
- \$ echo "Drink milk (and never eat hamburgers)." > data/cow_advice.txt
- \$ apptainer exec --bind data:/mnt lolcow_latest.sif cat /mnt/cow_advice.txt or implement these general descriptions:
- \$ apptainer shell -bind /data my-container.sif
- \$ export APPTAINER_BINDPATH=/data

GPUs and Containers

We show four ways to run tensorflow containers on HPC. We just use Tensorflow as an example

- 1. Containers as modules: caffe, pytorch, rapids, tensorflow and theano.
- 2. Tensorflow examples from our Github
- 3. Tensorflow directly from Nvidia
- 4. Tensorflow from Docker Hub

GPU and Containers

Apptainer fully supports using GPUs with the –nv flag A collection of containers with GPU support are available that were pulled from Nvidia's service called NGC "module whatis tensorflow/nvidia"

tensorflow/nvidia/2.0.0 : Name: Tensorflow

tensorflow/nvidia/2.0.0 : Version: nvidia-tensorflow_2.0.0-py3

tensorflow/nvidia/2.0.0 : Description: 'tensorflow' is an alias for apptainer exec

--nv /contrib/singularity/nvidia/nvidia-tensorflow_2.0.0-py3.sif python3'

tensorflow/nvidia/2.0.0 : Description: So typically 'tensorflow xxx.py'

Apptainer on HPC – Complex Example Build Custom Tensorflow

https://ua-researchcomputing-hpc.github.io/Apptainer-Examples/

Building a Tensorflow container with Cuda and Python 3.6

- 1.Identify which version of Tensorflow you need.
- 2. Identify a compatible version of Cuda.
- 3. Find a Cuda container on Docker Hub to bootstrap from.
- 4. Design your recipe.
- 5.Build!

GPUs and Containers

Apptainer Using SLURM

```
#!/bin/bash
#SBATCH --job-name apptainer-job
#SBATCH --account=your_pi
#SBATCH --partition=standard
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --gres=gpu:1
#SBATCH --time=01:00:00

cd /path/to/python/script
module load tensorflow/nvidia
```

tensorflow /contrib/singularity/nvidia/tensorflow example.py

Github and Containers

Singularity Examples at our Github

https://ua-researchcomputing-hpc.github.io/Singularity-Examples/

Hello World Docker Remote Build Tensorflow

Run this command from your test directory to get the examples:

wget https://ua-researchcomputing-hpc.github.io/Apptainer-Examples/Tensorflow-Example/Tensorflow-Example.tar.gz tar zxvf Tensorflow-Example.tar.gz

GPUs and Containers

Register with Nvidia at https://ngc.nvidia.com/signin

From an interactive session on a compute node in a subdirectory of /HOME:

(literally \$HOME refers to /home/uxx/netid which are directories starting u and your netid)

\$ singularity build tensorflow-20.08-tf2-py3.simg docker://nvcr.io/nvidia/tensorflow:20.08-tf2-py3

From the same /HOME subdirectory

- \$ cp /contrib/singularity/nvidia/TFlow_example.py . # Note the "." at the end
- \$ CONTAINER=\$HOME/tensorflow-20.08-tf2-py3.simg #optional set the path of container
- \$ singularity exec --nv \$CONTAINER python TFlow_example.py

Go to Docker Hub and review Tags and copy Pull Command

https://hub.docker.com/r/nvidia/cuda

Create a recipe file, and modify Pull command:

Bootstrap: docker

FROM: nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04

Create container:

singularity build tflow20.sif tflow20.recipe

Test:

\$ singularity shell tflow20.sif

\$ python3

>>> import tensorflow as tf

>>> tf.test.is_gpu_available()

. . .

True

MPI and Containers

Singularity containers support MPI for multiple nodes But the MPI type and version must match
The interconnect must match – infiniband or ethernet Build the container with OpenMPI/3 or Intel/MPI Using MPI reduces portability sylabs.io/guides/ has a tutorial using MPI

BioContainers

A community driven project based on Docker focused on Proteomics and Genomics
A set of containers for the bioinformatics community
Specifications to build standardized containers
Guidelines for reproducible pipelines
Containers that can be pulled into Singularity for HPC use

BioContainers on GitHub

References

https://public.confluence.arizona.edu/display/UAHPC/Containers

https://ua-researchcomputing-hpc.github.io

https://hpc.nih.gov/apps/singularity.html

https://sylabs.io/guides/3.5/user-guide/introduction.html

https://github.com/sylabs/examples

https://containers-at-tacc.readthedocs.io/en/latest/

https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com

https://www.tensorflow.org/tutorials/quickstart/beginner

