

WHAT IS CLAIMED IS:

1 1. A wide-angle lens comprising, from an object side to an image plane side:
2 a first lens group comprising:
3 a first lens having a negative refractive power, and
4 a second lens having a positive refractive power; and
5 a second lens group comprising:
6 a third lens having a negative refractive power,
7 a fourth lens having a positive refractive power, said fourth lens being bonded to
8 said third lens, and
9 a fifth lens having a positive refractive power, said fifth lens comprising a first
10 convex surface oriented to said object side and a second convex surface oriented to said
11 image plane side, at least one of said convex surfaces being an aspherical surface;

12 wherein:

- 13 (1) $0.7 |R_6| < |R_8| < 1.3 |R_6|$
14 (2) $v_1 > v_2, v_3 < v_4, v_5 > 50$
15 (3) $|f_1| > 2 f_2$
16 (4) $2.5 f_{22} > f_{21} > f_{22}$,

17 where R_6 is a curvature radius of an object-side surface of said third lens;

18 R_8 is a curvature radius of an image plane-side surface of said fourth lens;

19 v_i is an Abbe number of an i -th lens ($i=1 - 5$);

20 f_1 is a composite focal length of said first lens group;

21 f_2 is a composite focal length of said second lens group;

22 f_{21} is a composite focal length of said third and said fourth lenses in said second lens

23 group;

24 f22 is a focal length of said fifth lens in said second lens group.

1 2. A wide-angle lens comprising, from an object side to an image plane side:

2 a first lens group comprising:

3 a first lens having a negative refractive power, and

4 a second lens having a positive refractive power; and

5 a second lens group comprising:

6 a third lens having a negative refractive power,

7 a fourth lens having a positive refractive power, said fourth lens being bonded to
8 said third lens, and

9 a fifth lens having a positive refractive power, said fifth lens comprising a first
10 convex surface oriented to said object side and a second convex surface oriented to said
11 image plane side, both of said convex surfaces being aspherical surfaces;

12 wherein:

13 (1) $0.7 |R_6| < |R_8| < 1.3 |R_6|$

14 (2) $v_1 > v_2, v_3 < v_4, v_5 > 50$

15 (3) $f_1 > 4 f_2$

16 (4) $2.5 f_{22} > f_{21} > f_{22}$,

17 where R_6 is a curvature radius of an object-side surface of said third lens;

18 R_8 is a curvature radius of an image plane-side surface of said fourth lens;

19 v_i is an Abbe number of an i -th lens ($i=1 - 5$);

20 f_1 is a composite focal length of said first lens group;

21 f_2 is a composite focal length of said second lens group;

22 f21 is a composite focal length of said third and said fourth lenses in said second lens
23 group;

24 f22 is a focal length of said fifth lens in said second lens group.

1 3. The wide-angle lens as described in claim 1, further comprising:
2 a glass filter oriented to said image plane side of said fifth lens.

1 4. The wide-angle lens as described in claim 3; wherein:
2 (1) $v_6 > v_5$
3 where v_6 is an Abbe number of said glass filter.

1 5. The wide-angle lens as described in claim 3, wherein said glass filter is selected from
2 the group comprising an infrared cut filter and a low-pass filter.

1 6. The wide-angle lens as described in claim 1, further comprising:
2 an aperture stop disposed between said second lens and said third lens.

1 7. The wide-angle lens as described in claim 1, further comprising:
2 a total lens length of less than or equal to 12mm.

1 8. The wide-angle lens as described in claim 1, further comprising:
2 a back focus of greater than or equal to 5mm.

1 9. The wide-angle lens as described in claim 1, further comprising:

2 an exit pupil position of greater than or equal to |20mm|.

1 10. The wide-angle lens as described in claim 7, wherein said total lens length is about
2 11.10mm to about 11.90mm.

1 11. The wide-angle lens as described in claim 2, further comprising:
2 a glass filter oriented to said image plane side of said fifth lens.

1 12. The wide-angle lens as described in claim 11; wherein:
2 (1) $v_6 > v_5$
3 where v_6 is an Abbe number of said glass filter.

1 13. The wide-angle lens as described in claim 11, wherein said glass filter is selected from
2 the group comprising an infrared cut filter and a low-pass filter.

1 14. The wide-angle lens as described in claim 2, further comprising:
2 an aperture stop disposed between said second lens and said third lens.

1 15. The wide-angle lens as described in claim 2, further comprising:
2 a total lens length of less than or equal to 10mm.

1 16. The wide-angle lens as described in claim 2, further comprising:
2 a back focus of greater than or equal to 7mm.

- 1 17. The wide-angle lens as described in claim 2, further comprising:
2 an exit pupil position of greater than or equal to |20mm|.
- 1 18. The wide-angle lens as described in claim 15, wherein said total lens length is about
2 9.90mm to about 9.95mm.
- 1 19. A method of producing a wide-angle lens, comprising the following steps:
2 providing a first lens having a negative refractive power;
3 providing a second lens having a positive refractive power;
4 providing a third lens having a negative refractive power;
5 providing an aperture stop between said second lens and said third lens;
6 providing a fourth lens having a positive refractive power;
7 bonding said third lens to said fourth lens;
8 providing a fifth lens having a positive refractive power and at least one aspherical convex
9 surface;
10 providing a glass filter on an image plane side of said fifth lens;
11 providing $0.7 |R_6| < |R_8| < 1.3 |R_6|$;
12 providing $v_1 > v_2, v_3 < v_4, v_5 > 50$;
13 providing $|f_1| > 2 f_2$;
14 providing $2.5 f_{22} > f_{21} > f_{22}$; and
15 providing $v_6 > v_5$;
16 where R_6 is a curvature radius of an object-side surface of said third lens;
17 R_8 is a curvature radius of an image plane-side surface of said fourth lens;
18 v_i is an Abbe number of an i-th lens ($i=1 - 5$);

19 v6 is an Abbe number of said glass filter;
20 f1 is a composite focal length of said first lens group;
21 f2 is a composite focal length of said second lens group;
22 f21 is a composite focal length of said third and said fourth lenses in said second lens
23 group;
24 f22 is a focal length of said fifth lens in said second lens group.