一·论文汇报 •—

《Towards Retrieval-Based Neural Code Summarization- A Meta-Learning Approach》

Ziyi Zhou, Huiqun Yu, Guisheng Fan, Zijie Huang, and Kang Yang

虞慧群 化去邢工

华东理工大学, 教授

Yang
Au
20
DO
Pre
Pre

HQLgen: deep learning based HQL query generation from program context

TSE(Early Access)

Automated Software Engineering

2023

2022-11 | Journal article

DOI: <u>10.1007/s10515-022-00359-5</u>

Part of ISSN: <u>0928-8910</u> Part of ISSN: <u>1573-7535</u>

CONTRIBUTORS: Ziyi Zhou; huiqun yu; Guisheng Fan; Zijie Huang; Kang Yang; Jiayin Zhang

Source: Ziyi Zhou

Summarizing source code with hierarchical code representation

Information and Software Technology

2022-03 | Journal article

DOI: <u>10.1016/j.infsof.2021.106761</u>

Part of ISSN: 0950-5849

CONTRIBUTORS: Ziyi Zhou; Huiqun Yu; Guisheng Fan; Zijie Huang; Xingguang Yang

Source: Ziyi Zhou

Adversarial training and ensemble learning for automatic code summarization

Neural Computing and Applications 2021-10-05 | Journal article DOI: <u>10.1007/s00521-021-05907-w</u>

CONTRIBUTORS: Ziyi Zhou; Huiqun Yu; Guisheng Fan

Show more detail

Show more detail

Show more detail

2023 TSE

Code Summarization

Large Corpus

Generalization

Meta-Learning

Meta-learning is a technique that endows an agent with the ability of learning to learn. It intends to design models that can adapt to new concepts rapidly without numerous training examples

Metric-based

Model-based

Optimizationbased

Model-Agnostic Meta-Learning (MAML)

2023 TSE

MLCS-Overview

Meta-Learning for Code Summarization -- MLCS

Formal Task Definition

Given a target code snippet x^i to summarize, the goal is to learn a unique summarizer for it using its similar example pairs $S^i = \{\langle x^{ij}, y^{ij} \rangle | 1 \le j \le k_i \}$ as training data in a fewshot learning manner, where y^{ij} is the comment of the j-th similar code snippet x^{ij} and k_i is determined by the codeto-code retrieval process.

2023 TSE

Training Stage

Optimization

Fig. 1. Overall framework of our approach.

Algorithm 1 MLCS: Training Stage

Require: Hyper-parameters α , β , k, ε **Require:** Code summarization model f_{θ}

Require: Training dataset \mathcal{D} consisting of code-summary pairs

1: Randomly initialize θ

2: while not done do

3: Sample batch of training pairs $\{\langle x^i, y^i \rangle\}$ from \mathcal{D}

4: for all $\langle x^i, y^i \rangle$ do

5: Retrieve top-k examples similar to code x^i and filter them by ε according to (12), build training set S^i

6: Evaluate $\nabla_{\theta} \mathcal{L}_{S^i}(f_{\theta})$ according to (15)

7: Compute $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{S}^i}(f_{\theta})$

8: end for

9: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{i} \mathcal{L}_{(x^{i}, y^{i})} \left(f_{\theta'_{i}} \right)$

10: end while

Text Edit Distance

$$sim(x^{i}, x^{j}) = 1 - \frac{dis(x^{i}, x^{j})}{\max(|x^{i}|, |x^{j}|)}$$
 (12)

$$w_j = u_j \cdot (sim(x^i, x^{ij}) + 0.5)$$
 (14)

Gradient

$$\nabla_{\theta} \mathcal{L}_{\mathcal{S}^{i}}(f_{\theta}) = \sum_{j=1}^{k_{i}} w_{j} \nabla_{\theta} \mathcal{L}_{\langle x^{ij}, y^{ij} \rangle}(f_{\theta})$$
 (15)

2023 TSE

Testing Stage

Algorithm 2 MLCS: Inference Stage

Require: Hyper-parameters α , n, k, ε

Require: Meta-learner f'_{θ} obtained via Algorithm 1

Require: Target code snippet x^i

1: $\gamma = \min\left(\frac{2}{3}\alpha, \frac{\alpha}{n-1}\right)$

2: Retrieve top-k examples similar to code x^i and filter them by ε according to (12), build training set S^i

3: **for** *step* **in** *n*

4: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{S}^i}(f'_{\theta})$ using \mathcal{S}^i according to (15)

5: Compute $\theta \leftarrow \theta - \gamma \nabla_{\theta} \mathcal{L}_{\mathcal{S}^i}(f'_{\theta})$

6: end for

7: **output** Target summary $\hat{y}^i = f'_{\theta}(x^i)$

2023 TSE

Example

Example 2										
	def remove	ef remove_duplicates(errors):								
	passed	= defaultdi	lct(list)	-						
	for er	ror in error	rs:							
	ke	y = (error.]	inter, error.number)							
Source Code	if	(key in DUF	PLICATES):	et						
		<pre>if (key in passed[error.lnum]):</pre>								
		continue								
	<pre>passed[error.lnum] = DUPLICATES[key]</pre>									
	(у	ield error)								
Retrieved	sim = 0.27	Signature	<pre>def flatten_errors(cfg, res, levels=None, results=None)</pre>							
Ketrieved	sim = 0.27	Summary	an example function that will turn a nested dictionary of results into a flat list							
	Reference		filter duplicates from given errors list							
	NMT		remove all duplicates from a list of errors							
Generated	Rencos		remove all duplicates from a list of errors							
	Re ² Com		an example function that will turn a nested dictionary of exceptions							
	NMT + MLC	CS	remove duplicates from the given errors							

2023 TSE

Dataset

Dataset	<method, summary=""></method,>
JCSD(Java code summarization dataset)	87136
PCSD(Python code	108726
summarization dataset)	

Evaluation Metrics

BLEU-N

$$BLEU = BP \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

$$BP = \begin{cases} 1 & c > r \\ \exp\left(1 - \frac{r}{c}\right) & c \le r \end{cases}$$
(17)

Rouge-L

Meteor

$$P_{lcs} = \frac{LCS(X,Y)}{c}$$

$$R_{lcs} = \frac{LCS(X,Y)}{r}$$

$$F_{lcs} = \frac{(1+\beta^2)P_{lcs}R_{lcs}}{R_{lcs} + \beta^2 P_{lcs}}$$
(18)

$$METEOR = (1 - Pen) \cdot F_{mean}$$

$$F_{mean} = \frac{PR}{\alpha P + (1 - \alpha)R}$$

$$Pen = \gamma \cdot \left(\frac{ch}{m}\right)^{\beta}$$
(19)

2023 TSE

RQ1: How does the proposed approach perform generally compared to the baselines?

RQ2: To what extent could MLCS improve existing neural code summarizers?

RQ3: What is the effect of using different numbers of retrieved examples, and how could the model benefit from multiple similar examples via MLCS?

RQ4: How well could MLCS adapt to different code retrieval methods?

RQ5: What is the quality of the summaries produced by our approach in practice?

RQ6: What is the impact of cross-project data splitting and near-duplicate removal on retrieval-based code summarizers?

RQ7: How does MLCS perform against existing code category-based method, and how does it perform on different code categories?

2023 TSE

RQ1: Overall Performance

TABLE 2. OVERALL PERFORMANCE OF PROPOSED APPROACH COMPARED TO BASELINES.

Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	BLEU-4(s)	ROUGE-L	METEOR
	DeepCom	26.03	16.53	11.57	8.91	14.95	32.71	15.95
	ast-attendgru	32.90	22.05	15.26	11.32	18.61	42.04	20.66
	NMT	32.66	21.87	15.54	12.02	18.99	41.69	20.72
ICCD	NMT (Tf)	32.02	21.93	17.01	14.33	19.80	37.32	19.88
JCSD	Rencos	34.94	24.15	17.55	13.55	20.59	42.85	21.56
	HGNN	31.80	23.54	18.95	15.59	21.11	36.95	19.07
	Re ² Com	36.37	26.50	20.89	17.38	23.69	44.40	22.81
	NMT + MLCS	37.86	29.00	23.47	20.16	26.47	46.94	23.89
	DeepCom	24.92	15.86	11.64	8.92	15.07	30.23	14.95
	ast-attendgru	31.32	20.38	14.07	10.26	18.11	38.64	18.99
	NMT	30.58	19.62	13.95	10.61	17.98	37.29	18.51
DCCD	NMT (Tf)	30.02	20.26	15.90	13.16	18.91	34.21	18.55
PCSD	Rencos	33.70	22.80	16.77	12.85	20.44	39.97	20.12
	HGNN	31.92	22.51	17.42	13.97	20.67	38.04	19.29
	Re ² Com	35.17	25.25	19.78	15.97	23.09	41.57	21.37
	NMT + MLCS	35.89	26.43	21.16	17.38	24.70	43.06	21.98

2023 TSE

RQ2: Improvements of Applying MLCS

TABLE 3. THE IMPROVEMENTS OF THE BASELINES BY UTILIZING MLCS.

Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	BLEU-4(s)	ROUGE-L	METEOR
	Door Com + MI CC	34.36	26.40	21.94	18.95	24.37	40.30	20.97
	DeepCom + MLCS	(+32.0%)	(+59.7%)	(+89.6%)	(+112.7%)	(+63.0%)	(+23.2%)	(+31.5%)
	act attendens + MICS	37.88	28.60	22.74	19.17	25.76	47.37	23.78
JCSD	ast-attendgru + MLCS	(+15.1%)	(+29.7%)	(+49.0%)	(+69.3%)	(+38.4%)	(+12.7%)	(+15.1%)
JCSD	NMT + MLCS	37.86	29.00	23.47	20.16	26.47	46.94	23.89
	NWII + WILCS	(+15.9%)	(+32.6%)	(+51.0%)	(+67.7%)	(+39.4%)	(+12.6%)	(+15.3%)
	NMT (Tf) + MLCS	36.40	26.51	21.49	18.54	24.28	42.11	22.41
	NWII (II) + WILCS	(+13.7%)	(+20.9%)	(+26.3%)	(+29.4%)	(+22.6%)	(+12.8%)	(+12.7%)
•	Deer Com + MLCC	32.60	24.39	19.93	16.65	22.90	37.81	19.66
•	DeepCom + MLCS	(+30.8%)	(+53.8%)	(+71.2%)	(+86.7%)	(+52.0%)	(+25.1%)	(+31.5%)
	ast-attendgru + MLCS	35.75	26.07	20.31	16.33	23.97	43.65	21.79
PCSD	ast-attenugru + MLC5	(+14.1%)	(+27.9%)	(+44.3%)	(+59.2%)	(+32.4%)	(+13.0%)	(+14.7%)
resp	NMT + MLCS	35.89	26.43	21.16	17.38	24.70	43.06	21.98
' [INIVIT + IVILCS	(+17.4%)	(+34.7%)	(+51.7%)	(+63.8%)	(+37.4%)	(+15.5%)	(+18.7%)
	NMT (Tf) + MLCS	33.81	24.28	19.58	16.50	22.83	38.70	20.63
	141411 (11) + 141LC3	(+12.6%)	(+19.8%)	(+23.1%)	(+25.4%)	(+20.7%)	(+13.1%)	(+11.2%)

2023 TSE

RQ3: Effect of Gradient Aggregation Under Different Numbers of Similar Examples

Fig. 3. Effect of changing ε on performance with k = 10.

Model

Towards Retrieval-Based Neural Code Summarization- A Meta-Learning Approach

2023 TSE

METEOR

RQ4: Performance of Using Different Code Retrievers

Retriever

BLEU-1

TABLE 4. THE PERFORMANCE OF USING DIFFERENT CODE RETRIEVERS.

BLEU-3

BLEU-4

BLEU-4(s)

ROUGE-L

BLEU-2

1,10	cici	rtetriever	22201	DELC 1	DLLC 0	DLLC 1		THE COL E	THETEOR
		VSM	34.71	26.31	22.51	19.85	24.39	38.22	21.27
D-6		LSI	33.91	25.45	21.86	19.30	23.73	37.30	20.75
Ket	rieval Only	FastText	32.23	24.38	20.92	18.47	22.75	35.25	19.63
		biLSTM	35.68	27.40	23.33	20.43	25.10	39.24	21.87
		VSM	34.45	24.47	18.88	15.63	21.83	42.34	21.62
D 2		LSI	34.51	24.48	18.86	15.61	21.87	42.43	21.61
Rez	Com	FastText	33.57	23.70	18.15	14.92	21.17	41.48	21.13
		biLSTM	36.37	26.50	20.89	17.38	23.69	44.40	22.81
	NMT + MLCS	VSM	36.95	28.00	22.42	19.17	25.56	46.40	23.43
NIN		LSI	36.94	27.97	22.46	19.22	25.59	46.22	23.36
INIV		FastText	36.48	27.47	21.83	18.54	25.07	45.78	23.14
		biLSTM	37.86	29.00	23.47	20.16	26.47	46.94	23.89

2023 TSE

RQ5: Human Evaluation

TABLE 5. THE RESULTS OF HUMAN EVALUATION.

Model	Naturalness	Informativeness
Reference	4.64	4.48
Retrieval Only	4.53	2.45
NMT	4.37	2.76
Rencos	4.47	2.95
Re ² Com	4.35	2.88
NMT + MLCS	4.48	3.20

2023 TSE

RQ6: Cross-project Evaluation with Near- duplicates Removal

TABLE 6. Performance of Different Approaches with Near-Duplicates Removal.

Туре	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	BLEU-4(s)	ROUGE-L	METEOR
	DeepCom	22.51	13.38	9.35	6.89	12.88	27.72	13.56
Non- retrieval-	ast-attendgru	29.15	17.98	11.78	8.22	15.99	36.46	17.75
based	NMT	28.31	17.09	11.53	8.44	15.74	34.98	17.19
	NMT (Tf)	26.87	16.83	12.60	10.12	15.78	31.07	16.68
	Rencos	30.87	19.86	14.02	10.33	17.85	37.27	18.52
Retrieval-	HGNN	29.05	19.46	14.53	11.37	17.96	35.26	17.65
based	Re ² Com	32.30	22.11	16.70	13.17	20.20	38.88	19.72
	NMT + MLCS	32.98	23.16	17.82	14.22	21.45	40.05	20.15

2023 TSE

RQ6: Cross-project Evaluation with Near- duplicates Removal

TABLE 7. Cross-project Performance of Different Approaches with Near-Duplicates Removal.

Туре	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	BLEU-4(s)	ROUGE-L	METEOR
	DeepCom	10.75	3.07	1.13	0.48	4.35	14.56	6.80
Non-	ast-attendgru	18.06	6.59	2.71	1.32	7.32	24.23	11.60
retrieval- based	NMT	17.79	6.24	2.51	1.16	7.21	23.96	11.44
	NMT (Tf)	12.94	3.91	1.95	1.33	5.32	16.22	8.41
	Retrieval Only	10.44	3.82	2.72	2.34	5.19	12.89	6.93
	Rencos	14.75	5.03	2.28	1.29	6.03	18.99	9.24
Retrieval- based	HGNN	13.06	4.41	2.22	1.43	5.97	18.41	8.56
	Re ² Com	16.80	6.23	2.92	1.80	7.26	22.93	10.92
	ast-attendgru + MLCS	18.14	7.42	3.80	2.38	8.45	25.33	11.86

2023 TSE

RQ7: Comparison with Code Category-based Method

TABLE 8. SMOOTHED BLEU-4 SCORES OF DIFFERENT APPROACHES IN EACH COMMENT CATEGORY.

Model	What	Why	How-to-use	How-it-is-done	Property	Others	All
DeepCom	13.53	7.32	8.57	8.23	17.66	5.60	9.62
ast-attendgru	20.24	8.24	12.60	11.48	19.68	7.02	13.78
NMT	20.38	8.40	12.23	10.86	20.48	6.60	13.56
NMT(Tf)	16.91	6.46	9.44	9.25	20.14	3.34	10.88
Rencos	16.31	9.80	11.10	10.42	17.35	7.53	12.11
HGNN	13.78	7.56	8.86	7.77	20.97	5.90	9.77
Re ² Com	19.75	10.89	12.91	12.14	22.96	8.92	14.25
ast-attendgru + MLCS	21.56	11.97	13.76	13.13	25.09	8.81	15.37

