Diskretna matematika 1

Luka Horjak (lukahorjak@student.uni-lj.si)

21. februar 2022

Kazalo Luka Horjak

Kazalo

Uvod				
1		nbinatorika	4	
	1.2	Osnovna načela kombinatorike	6	
		Izbori		
2		latek Število izborov z omejitvami	9	
St		o kazalo	10	

Uvod Luka Horjak

Uvod

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Diskretna matematika 1 v letu 2021/22. Predavatelj v tem letu je bil prof. dr. Sandi Klavžar.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

1 Kombinatorika

1.1 Osnovna načela kombinatorike

Trditev 1.1.1 (Načelo produkta). Naj bodo A_1, \ldots, A_n končne množice. Tedaj je

$$\left| \prod_{i=1}^{n} A_i \right| = \prod_{i=1}^{n} |A_i|.$$

Trditev 1.1.2 (Načelo vsote). Naj bodo A_1, \ldots, A_n končne, paroma disjunktne množice. Tedaj je

$$\left|\bigcup_{i=1}^{n} A_i\right| = \sum_{i=1}^{n} |A_i|.$$

Trditev 1.1.3 (Načelo enakosti). Če obstaja bijekcija med končnima množicama A in B, je

$$|A| = |B|$$
.

Definicija 1.1.4. Označimo

$$[n] = \{ i \in \mathbb{N} \mid i \le n \}.$$

Trditev 1.1.5. Za Eulerjev fi

$$\varphi(n) = |\{i \in [n] \mid (i, n) = 1\}|$$

velja rekurzivna formula

$$\sum_{d|n} \varphi(d) = n.$$

Dokaz. Na dva načina izračunamo moč množice

$$\left\{ \frac{i}{n} \mid i \in [n] \right\}.$$

Izrek 1.1.6 (Dirichletovo načelo). Če je n > m, potem ne obstaja injektivna preslikava $f: [n] \to [m]$.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.1.7 (Načelo dvojnega preštevanja). Če dva izraza predstavljata število elementov iste množice, sta enaka.

Definicija 1.1.8. Definiramo padajočo in naraščajočo potenco

$$k^{\underline{n}} = \prod_{i=0}^{n-1} (k-i)$$
 in $k^{\overline{n}} = \prod_{i=0}^{n-1} (k+i)$.

Trditev 1.1.9. Za množico N z n elementi in množico K s k elementi velja

$$i) |K^N| = k^n$$

Kombinatorika Luka Horjak

- ii) $|\{f\colon N\to K\mid f$ je injektivna $\}|=k^{\underline{n}}$
- iii) Število bijekcij med N in K je n!, če je n=k, sicer pa 0.

Dokaz. The proof is obvious and need not be mentioned.

Opomba 1.1.9.1. Če imata končni množici enako moč, je bijektivnost preslikave med njima ekvivalentna tako injektivnosti kot surjektivnosti.

1.2 Binomski koeficienti in binomski izrek

Definicija 1.2.1. Naj bo $x \in \mathbb{C}$ in $k \in \mathbb{N}_0$. Binomski koeficient števil x in k je število

$$\begin{pmatrix} x \\ k \end{pmatrix} = \frac{x^{\underline{k}}}{k!}.$$

Trditev 1.2.2. Če je $n \in \mathbb{N}_0$ in $k \leq n$, potem je

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}.$$

Dokaz. The proof is obvious and need not be mentioned.

Definicija 1.2.3. Naj bo X končna množica. Označimo

$$\begin{pmatrix} X \\ k \end{pmatrix} = \{ A \subseteq X \mid |A| = k \} .$$

Trditev 1.2.4. Za končno množico X velja

$$\left| \begin{pmatrix} X \\ k \end{pmatrix} \right| = \begin{pmatrix} |X| \\ k \end{pmatrix}.$$

Dokaz. Na dva načina preštejemo število urejenih k-teric. Dobimo, da je

$$k! \cdot \left| {X \choose k} \right| = |X|^{\underline{k}}.$$

Trditev 1.2.5. Če je $1 \le k \le n$, je

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Dokaz. Preštejmo število k-elementnih podmnožic [n] na dva načina. Za število 1 imamo dve možnosti – lahko je v podmnožico ali ne. Sedaj preštejemo načine, na katere lahko izmed preostalih n-1 elementov izberemo ustrezno število. V prvem primeru dobimo $\binom{n-1}{k-1}$ podmnožic, v drugem pa $\binom{n-1}{k}$.

Posledica 1.2.5.1. Binomski koeficienti so ravno števila v Pascalovem trikotniku:

Izrek 1.2.6 (Binomski). Za vse $n \in \mathbb{N}_0$ za $a, b \in K$, kjer je K komutativen kolobar, velja

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Dokaz. Uporabimo distributivnost in preštejemo število pojavitev vsakega monoma. \Box

Kombinatorika Luka Horjak

1.3 Izbori

Definicija 1.3.1. Naj bo N množica z n elementi.

- i) $Urejen\ izbor\ s\ ponavljanjem$ je vsaka urejena k-terica elementov N.
- ii) $Urejen\ izbor\ brez\ ponavljanja$ je vsaka k-terica paroma različnih elementov N.
- iii) $Neurejen\ izbor\ brez\ ponavljanja$ je vsaka podmnožica k elementov množice N.
- iv) Neurejen izbor s ponavljanjem je vsaka multimnožica s k elementi iz N.

Opomba 1.3.1.1. Urejenim izborom pravimo tudi *variacije*, neurejenim pa *kombinacije*.

Trditev 1.3.2. Število neurejenih izborov s ponavljanjem je enako

$$\binom{n+k-1}{k}$$
.

Dokaz. Uporabimo strategijo pik in pregrad. Naj x_k označuje število pojavitev elementa k v multimnožici. Tedaj lahko vsak izbor predstavimo kot

$$\underbrace{\bullet \bullet \cdots \bullet}_{x_1} \mid \underbrace{\bullet \bullet \cdots \bullet}_{x_2} \mid \cdots \mid \underbrace{\bullet \bullet \cdots \bullet}_{x_n}.$$

Vsak izbor natanko ustreza enemu zapisu s pikami in pregradami, teh pa je ravno $\binom{n+k-1}{k}$. Izmed n+k-1 elementov moramo namreč izbrati k pik, preostalih n-1 mest pa zasedejo pregrade.

Kombinatorika Luka Horjak

1.4 Permutacije in permutacije s ponavljanjem

Definicija 1.4.1. Permutacija množice A je bijekcija $f \colon A \to A$. Označimo

$$S_A = \{f \colon A \to A \mid f \text{ je bijekcija}\}\,,$$

v posebnem primeru

$$S_n = S_{[n]}.$$

Dodatek Luka Horjak

2 Dodatek

A Število izborov z omejitvami

Tabela 1: Število izborov k elementov iz množice z n elementi

	S ponavljanjem	Brez ponavljanja
Urejen izbor	n^k	$n^{\underline{k}}$
Neurejen izbor	$\binom{n+k-1}{k}$	$\binom{n}{k}$

Stvarno kazalo

B Binomski koeficient, 6 E Eulerjev fi, 4 I Izbor, 7 Izrek Binomski, 6 Dirichletovo načelo, 4 N Načelo dvojnega preštevanja, 4 Načelo produkta, vsote, enakosti, 4 P Pascalov trikotnik, 6 Permutacija, 8