

Multi-scale Attention-based Multiple Instance Learning for Breast Cancer Diagnosis

Mariana Mourão, Jacinto C. Nascimento, Carlos Santiago, Margarida Silveira Institute for Systems and Robotics, LARSyS, Instituto Superior Técnico, Portugal

Introduction

- Mammography is the gold standard for early breast cancer detection.
- Multiple Instance Learning (MIL) enables weakly supervised learning from image-level labels, supporting image-level classification and instance-level (e.g., patches) detection on high-resolution images.

<u>Challenge:</u> MIL models in mammography overlook instance interactions & multi-scale lesions, limiting robustness across lesion types and sizes.

Contributions

Proposed a **Feature Pyramid Network (FPN)-based MIL** framework for weakly supervised classification and detection of breast lesions.

- Multi-scale analysis across receptive-field granularities.
- Flexible & interpretable aggregation using localized or context-aware attention.
- Adaptive scale fusion to handle lesion size variability.
- Thorough evaluation against baselines & SoTA models + ablation studies across different lesion types and sizes.

Scan Me!

Methods

The proposed FPN-MIL framework has three main modules.

1. FPN-based Instance Encoder

Extracts fine-to-coarse pixel-level instances X^s at different scales s from a refined feature pyramid.

3. Multi-scale Aggregator

Adaptively combines the scales, producing:

- ullet multi-scale image embedding h_{ms} for image classification
- multi-scale aggregated heatmap for lesion detection

2. Instance Aggregators

At each scale, aggregate the instance features X^s into an image embedding h^s , also producing interpretable scale-specific heatmaps.

Attention-based MIL (AbMIL)

Localized attention

Set Transformer (SetTrans) fficient context-awar

Efficient context-aware attention

• Image Classification Prediction P_{ms} of lesion presence • Lesion Detection Scale-specific Heatmaps Small scale Medium scale Large scale Multi-scale Aggregated

Heatmap

Experimental Results

Experiments were performed on the **Vindr-Mammo** dataset, assessing performance on **image classification (AUC)** and **lesion detection (mAP).**

- → Comparison with baselines & SoTA models
- FPN-MIL outperforms Single-scale Patch-based (SSP)-MIL baselines
- Our best models are lesion-dependent
 FPN-SetTrans better for calcifications (distributed point-like lesions)

FPN-AbMIL better for masses (isolated volume-like lesions)

Outperform or competitive against FSC, FSOD & WSOD SoTA models

Type	Model	Calcification					Mass				
	Model	AUC	mAP	\mathbf{mAP}_s	\mathbf{mAP}_m	\mathbf{mAP}_l	AUC	mAP	\mathbf{mAP}_s	\mathbf{mAP}_m	\mathbf{mAP}_l
FSC	EN-B2	92.0	-	-	-	-	73.0	-	-	-	-
FSOD	RetinaNet	-	17.0	-	-	-	-	37.0	-	-	-
WSOD	Mammo-FActOR	-	20.0	-	-	-	-	38.0	-	-	-
SSP-	AbMIL	90.5	15.9	0.0	26.6	52.1	75.8	14.7	0.0	18.8	61.0
MIL	$\mathbf{SetTrans}$	88.9	18.4	0.1	29.4	57.6	73.2	5.8	0.0	9.1	22.0
FPN-	(Our) FPN-AbMIL	93.5	32.0	9.1	34.8	57.5	79.2	28.2	4.7	32.1	66.2
MIL	(Our) FPN-SetTrans	94.2	37.4	18.8	39.5	62.2	77.4	24.3	3.0	28.0	73.2

→ Ablation Studies

- ✓ FPN > Multi-Scale Patches (MSP) given its finer receptive-field granularity.
- ✓ **Multi-scale attention aggregator** improves robustness to lesion size variability.

Inst- Enc	MS- Aggr	Calcification					Mass				
		AUC	mAP	\mathbf{mAP}_{s}	\mathbf{mAP}_m	\mathbf{mAP}_l	AUC mAP	\mathbf{mAP}_s	\mathbf{mAP}_m	$\overline{\mathbf{mAP}_{l}}$	
MSP	Attention	91.3↓	18.5↓	0.3	22.8↓	54.9↓	77.1 9.5	0.0	9.5↓	46.6	
FPN	\mathbf{w}/\mathbf{o}	93.8_{\downarrow}	33.0_{\downarrow}	8.5	35.7_{\downarrow}	61.6 \downarrow	78.8 25.2	5.0_{\uparrow}	30.7_{\downarrow}	56.0_{\downarrow}	
FPN	Concat	92.2_{\downarrow}	28.8	12.6_{\downarrow}	17.2	59.4	76.9 19.4	7.0_{\uparrow}	32.6_{\uparrow}	26.4	
FPN	Attention	94.2	37.4	18.8	39.5	62.2	79.2 28.2	4.7	32.1	66.2	

Interpretability: Our multi-scale aggregated heatmaps highlight clinically relevant breast lesions across different types and sizes.

Conclusions

- The proposed FPN-MIL framework has a modular and adaptable design, robust across different lesion types and sizes.
- Our best models outperform or are competitive against SoTA in breast lesion classification & detection while more label-efficient.
- Future work: Explore more MIL aggregators and jointly analyze multi-view mammograms.

