

Application No. 09/964,221
SD-7650

AMENDMENTS TO THE CLAIMS

- Please amend the claims as follows:

1. (cancelled)
2. (currently amended): The method of claim [[1]] 42, wherein the steps of applying the transformation generate encrypted data that is indistinguishable from Gaussian white noise.
3. (currently amended): The method of claim [[1]] 42, wherein the steps of applying the transformation comprises normalizing the measurements.
4. (currently amended): The method of claim 3 wherein the normalizing step comprises centering and scale-transforming the measurements so that the mean is zero and the standard deviation is 1 are fixed.
5. (currently amended): The method of claim [[1]] 42, wherein the steps of applying the transformation comprises permuting the measurements.
6. (original): The method of claim 5 wherein permuting comprises employing an item of secret information.
7. (original): The method of claim 6 wherein permuting comprises employing a passcode.
8. (original): The method of claim 7 wherein permuting additionally comprises employing the results of a hash function of the passcode.
9. (currently amended): The method of claim [[1]] 42, wherein the steps of applying the transformation comprises employing a linear transformation.

Application No. 09/964,221
SD-7650

10. (currently amended): The method of claim 9 wherein employing a linear transformation comprises employing a $n \times m$ linear transformation matrix, W, with orthonormal columns, where $n \leq m$.

11. (original): The method of claim 10 wherein employing a linear transformation comprises employing a normalized Hadamard matrix.

12. (original): The method of claim 10 wherein employing a linear transformation comprises employing a normalized matrix comprising Fourier coefficients with a cosine / sine basis.

13. (currently amended): The method of claim 9 wherein the employing a linear transformation comprises permuting the linearly transformed data.

14. (original): The method of claim 13 wherein permuting the linearly transformed data comprises employing an item of secret information.

15. (original): The method of claim 14 wherein permuting the linearly transformed data comprises employing a passcode.

16. (original): The method of claim 15 wherein permuting the linearly transformed data additionally comprises employing the results of a hash function of the passcode.

17. (currently amended): The method of claim [[1]] 42, wherein the measurements comprise biometric data.

18. (original): The method of claim 17 wherein the measurements comprise measurements selected from the group consisting of fingerprints, retinal scans, facial scans, hand geometry, spectral data, and voice data.

Application No. 09/964,221
SD-7650

19. (currently amended): The method of claim 17, additionally comprising the step of placing the reference template biometric data on a smart card to be carried by an individual from whom the biometric data was taken.

20. (currently amended): The method of claim [[1]] 42, wherein the measurements comprise spectral data.

21. (original): The method of claim 20 wherein the measurements comprise weapons spectra.

22. (currently amended): The method of claim [[1]] 42, additionally comprising the step of adding pseudo-dimensions to the measurements to enhance concealment.

23-41. (Cancelled)

42. (New): A method of authenticating an item, the method comprising:

- a) acquiring an unencrypted reference signal, Y_{ref} , of an item; where Y_{ref} is an n -dimensional row vector $\{Y_1(ref), Y_2(ref), \dots, Y_n(ref)\}$ of unencrypted reference measurements subject to measurement error;
- b) applying a transformation to the unencrypted reference signal, Y_{ref} , to generate an encrypted reference signal, U_{ref} of the item; where U_{ref} is an n -dimensional row vector $\{U_1(ref), U_2(ref), \dots, U_n(ref)\}$ of encrypted reference measurements;
- c) acquiring an unencrypted new signal, Y_{new} , of the item, where Y_{new} is an n -dimensional row vector $\{Y_1(new), Y_2(new), \dots, Y_n(new)\}$ of unencrypted new measurements subject to measurement error;

Application No. 09/964,221
SD-7650

d) applying the transformation to the unencrypted new signal, Y_{new} , to generate an encrypted new signal, U_{new} , of the item; where U_{new} is an n -dimensional row vector $\{U_1(new), U_2(new), \dots, U_n(new)\}$ of encrypted new measurements;

e) calculating an unencrypted Euclidean distance metric, E , between the unencrypted new and reference signals, Y_{new} and Y_{ref} ;

f) calculating an encrypted Euclidean distance metric, D , between the encrypted new and reference measurements, U_{new} and U_{ref} ;

g) comparing the encrypted Euclidean distance metric, D , to a critical value, D_{crit} , and;

e) if $D < D_{crit}$, then deciding that the item is authentic;
wherein the transformation has the property that the unencrypted Euclidean distance metric, E , is equal to the encrypted Euclidean distance metric, D .

43. (new) The method of claim 42, wherein:

$$E = \sum_{j=1}^n (Y_j(new) - Y_j(reference))^2;$$

and

$$D = \sum_{j=1}^m (U_j(new) - U_j(reference))^2;$$

wherein $m \leq n$.

Application No. 09/964,221
SD-7650

44. (new) The method of claim 42, wherein:

$$E = \sum_{j=1}^n \frac{(Y_j(\text{new}) - Y_j(\text{reference}))^2}{Y_j};$$

and

$$D = \sum_{j=1}^m \frac{(U_j(\text{new}) - U_j(\text{reference}))^2}{Y_j};$$

wherein $m \leq n$; and the denominator can be either $Y_j(\text{new})$ or $Y_j(\text{reference})$.

45. (new) The method of claim 42, wherein:

$$E = \sum_{j=1}^n (\sqrt{Y_j}(\text{new}) - \sqrt{Y_j}(\text{reference}))^2;$$

and

$$D = \sum_{j=1}^m (\sqrt{U_j}(\text{new}) - \sqrt{U_j}(\text{reference}))^2;$$

wherein $m \leq n$.

46. (new) The method of claim 10, wherein the elements, w_{ij} , of the transformation matrix, \mathbf{W} , have the following properties:

$$\sum_{i=1}^n w_{ij}^2 = 1, \forall j;$$

Application No. 09/964,221
SD-7650

$$w_{i1} = \frac{1}{\sqrt{n}}, \forall i; \text{ and}$$

$$\sum_{i=1}^n w_{ij} = 0, \forall j \text{ with } w_{i1} = K, \forall i.$$

47. (new) The method of claim 42, wherein applying the transformation to the unencrypted signal, \mathbf{Y} , comprises:

$$Y \rightarrow Y_\pi \rightarrow Y_\pi \cdot W \rightarrow (Y_\pi \cdot W)_\sigma$$

wherein:

π is a *permutation* of the integers from 1: n that is unique to a particular verification class;

W is an $n \times m$ transformation matrix with orthonormal columns that transforms the vector, \mathbf{Y} , of measurements to $m \leq n$ latent variables; and

σ is a *permutation* of the integers from 1: m that is unique to the particular verification class; and

wherein the verification class comprises one or more physical units, items, or individuals.