Shortest Job First (SJF)

Nirmala Shinde Baloorkar Assistant Professor Department of Computer Engineering

CPU Scheduling Algorithms

First Come First Serve (FCFS) Shortest Job First (SJF)

Priority Scheduling Round Robin (RR)

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its CPU burst.
- The CPU is assigned to the process with the smallest/shortest CPU burst time for execution (FCFS can be used to break ties).
- Two schemes:
 - Non preemptive
 - preemptive

Example 1 for Non-Preemptive SJF

Process	Burst time
P1	4
P2	3
Р3	5

• Gantt Chart

Turnaround Time = Completion Time - Arrival Time

• Turnaround Time p1= 7, p2=3, p3=12

Example 1 for Non-Preemptive SJF

Process	Burst time
P1	4
P2	3
P3	5

• Turnaround Time p1= 7, p2=3, p3=12, Avg. Turnaround Time =

22/3=7.33ms

Waiting Time = Turnaround Time - Burst Time

• Waiting Time p1= 3, p2=0, p3=7, Avg. Waiting Time = 10/3=3.33ms

Example 2 for Non-Preemptive SJF

Process	Arrival Time	Burst Time
P_I	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle A}$	5.0	4

• At time 0, P_1 is the only process, so it gets the CPU and runs to completion

Example for Non-Preemptive SJF

Process	Arrival Time	Burst Time
P_I	0.0	7
P_2	2.0	4
P_3	4.0	1
P_{4}	5.0	4

Turnaround Time = Completion Time - Arrival Time

• Once P_1 has completed the queue now holds P_2 , P_3 and P_4

- P_3 gets the CPU first since it is the shortest. P_2 then P_4 get the CPU in turn (based on arrival time)
- Turnaround Time for process p1= 7, p2= 10. p3=4, p4=11
- Average Turnaround time : (7+10+4+11)/4 = 8ms

Example for Non-Preemptive SJF

Process	Arrival Time	Burst Time
P_I	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\scriptscriptstyle \mathcal{A}}$	5.0	4

Waiting Time = Turnaround Time - Burst Time

• Once P_1 has completed the queue now holds P_2 , P_3 and P_4

- Turnaround Time for process p1=7, p2=10. p3=4, p4=11 Avg. Turnaround Time =32/4=8ms
- Waiting Time for process p1 = 0, p2=6, p3=3, p4=7 Avg. Waiting Time = 16/4 = 4ms

Shortest Job First

Advantages:

- Optimality: Minimizes the average waiting time and turnaround time.
- Efficiency: Provides efficient CPU utilization in environments where shorter jobs are frequent.

Disadvantages:

- Starvation: Longer processes may suffer indefinite postponement if shorter processes keep arriving.
- **Prediction Challenge**: Accurate prediction of burst times is required, which is not always feasible.

Question?

