COMP0024 Coursework

Question 1.

Graph 1:

	Complete Extension	Preferred Extension	Grounded Extension	Stable Extension
{}	✓	✓	✓	
{A1}				
{A2}				
{A3}				

Graph 2:

	Complete	Preferred	Grounded	Stable Extension
	Extension	Extension	Extension	
{ }	✓		✓	
{A1, A3}	✓	✓		✓
{A2, A4}	✓	✓		✓

Question 2.

Maximally consistent subsets:

$$\{A, B \cup E, D, \neg E, \neg \neg C \to B \}$$

$$\{\neg A \cap \neg B \cap \neg C, B \cup E, D, \neg \neg C \to B \}$$

$$\{\neg A \cap \neg B \cap \neg C, D, \neg E, \neg \neg C \to B \}$$

Minimally inconsistent subsets:

$$\{A, \neg A \ \cap \neg B \cap \neg C\}$$

$$\{\neg A \ \cap \neg B \cap \neg C, B \cup E, \neg E\}$$

Question 3.

Normalized combined basic probability assignment:

 $\{\alpha\}$: 0.211

 $\{\beta\}$: 0.316

 $\{\gamma\}$: 0.237

 $\{\beta,\gamma\}{:}~0.237$

Belief function:

 $\{\alpha\}$: 0.211

 $\{\beta\}$: 0.316

 $\{\gamma\}$: 0.237

 $\{\alpha, \beta\}$: 0.527

 $\{\alpha,\gamma\}$: 0.448

 $\{\beta, \gamma\}$: 0.79

 $\{\alpha,\beta,\gamma\}$: 1

Plausibility function:

 $\{\alpha\}$: 0.21

 $\{\beta\}$: 0.552

 $\{\gamma\}$: 0.473

 $\{\alpha, \beta\}$: 0.763

 $\{\alpha, \gamma\}$: 0.684

 $\{\beta, \gamma\}$: 0.789

 $\{\alpha,\beta,\gamma\}$: 1

Question 4.

Example	Sunny	Cold	Concert is on
e1	Υ	N	Yes
e2	Υ	Υ	Yes
e3	N	Υ	Yes
e4	N	N	No

Gain(Sunny) =
$$I(2, 2) - E(Sunny) = 1 - 0.5 = 0.5$$

$$Gain(Cold) = I(2,2) - E(Cold) = 1 - 0.5 = 0.5$$

Since both gains are equal ID3 can choose either column as the root node. Let's assume we pick Sunny as the root node, yielding the following ID3 decision tree with 3 leaf nodes:

