Секция «Вычислительная математика и кибернетика»

Определение стратегии вытеснения Pseudo-LRU на ветвях бинарного дерева

Корныхин Евгений Валерьевич

Соискатель

Mосковский государственный университет имени M.B. Ломоносова, Φ акультет вычислительной математики и кибернетики, Mосква, Pоссия E-mail: kornevgen@qmail.com

Ключевые слова: кэширование, кэш-память [2], стратегия вытеснения.

Актуальность исследования стратегии вытеснения Pseudo-LRU определяется ее применением в таких архитектурах как Pentium [1] и PowerPC [5]. Каноническое определение Pseudo-LRU предполагает оперирование с упорядоченным бинарным деревом высоты $\log_2 w$ (w - (постоянный) оазмер кэш-памяти, оно должно быть степенью двойки). В результате обращения к элементу кэш-памяти изменяются некоторые метки вершин, на основе меток определяется путь к вытесняемому элементу [3].

Для целей исследования свойств отдельного элемента кэш-памяти (например, для генерации тестов[4]) было найдено другое определение стратегии вытеснения Pseudo-LRU. Каждому элементу кэш-памяти соответствует битовая строка длины $\log_2 w$ (каждый бит соответствует вершине пути от корня того же упорядоченного бинарного дерева к этому элементу). Все элементы (листья) также можно пронумеровать битовыми строками длины $\log_2 w$. Определение Pseudo-LRU будет вестись для произвольного фиксированного элемента кэш-памяти, обозначим его номер (битовую строку) как α . Далее каждое обращение в кэш-память будем кодировать номером (битовой строкой) искомого при этом элемента (eta). Это обращение будет изменять сопоставленную с элементом битовую строку. Тогда пусть γ - это значение этой строки для α и осуществляется обращение к элементу с номером β . Разделим строку $\alpha \oplus \beta$ на части - левая состоит из одних нулей (пусть ее длина n) и средняя состоит только из одного бита - 1. Тогда в результате обращения новое значение строки γ составляется из трех частей - левая состоит из одних нулей и имеет длину n, средняя состоит из одной единицы, а остальные копируются из старого значения строки γ по тем же индексам. Вытесняемым α будет в том случае, когда γ состоит из одних единиц. Это изменение можно выразить формулой $\gamma' = ((\gamma \& (2 \cdot \delta - 1)) \mid \delta$, где $\delta = 2^{\lceil \log_2 \alpha \oplus \beta \rceil}$. Визуально можно представить себе изменение γ как перекрашивание вершин пути к α - при обращении по пути к β перекрашиваем в белый вершины пути к α до тех пор, пока они совпадают, и красим в черный вершину, на которой происходит расхождение путей. α вытесняется, если весь путь к нему покрашен в черный.

Литература

- 1. Таненбаум Э. Архитектура компьютера. Изд-во Питер, 2009.
- 2. Олифер В.Г., Олифер Н.А. Сетевые операционные системы. Изд-во Питер, 2008.
- 3. Tabak D. Advanced microprocessors. Mcgraw-Hill, 1995.
- 4. Dandamudi S.P. Fundamentals of computer organization and design. Springer, 2003.

5. Kornikhin E. SMT-based Test Program Generation for Cache-memory Testing // East and West-2009. C. 124-127.