Zé Manel Como escrever uma tese bonita e cheia de resultados importantes

DOCUMENTO PROVISÓRIO

Zé Manel Como escrever uma tese bonita e cheia de resultados importantes

DOCUMENTO PROVISÓRIO

"I'm King of the world."

— Jack Nicholson

Zé Manel

Como escrever uma tese bonita e cheia de resultados importantes

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requesitos necessários à obtenção do grau de Doutor em X, realizada sob a orientação científica de Y, Professor do Departamento Z da Universidade de Aveiro

DOCUMENTO PROVISÓRIO

o júri / the jury

presidente / president

ABC

Professor Catedrático da Universidade de Aveiro (por delegação da Reitora da Universidade de Aveiro)

vogais / examiners committee

DEF

Professor Catedrático da Universidade de Aveiro (orientador)

GHI

Professor associado da Universidade J (co-orientador)

KLM

Professor Catedrático da Universidade N

agradecimentos / acknowledgements

 \acute{E} com muito gosto que aproveito esta oportunidade para agradecer a todos os que me ajudaram durante este longos e penosos anos, cheios de altos e baixos (mais baixos que altos)...

Desejo também pedir desculpa a todos que tiveram de suportar o meu desinteresse pelas tarefas mundanas do dia-a-dia, . . .

Resumo

Nos dias que correm, é frequente um trabalho ser avaliado pela sua aparência em vez de o ser pelo seu conteúdo. Sendo assim, sem descurar este último, nesta tese descrevemos maneiras revolucionárias de transformar um documento sólido e austero num documento sólido e belo, capaz de fazer chorar de alegria (ou de inveja) qualquer leitor, mesmo quando este não percebe nada do que lá está escrito.

A exploração de novas descobertas na área da percepção visual, nomeadamente no que se refere à apreciação de obras de arte geniais, . . .

Abstract

Nowadays, it is usual to evaluate a work \dots

Conteúdo

C	ontei	údo	i
Li	sta d	de Figuras	iii
Li	sta d	de Tabelas	\mathbf{v}
1	Intr	rodução	1
	1.1	Opções	1
	1.2	Problemas conhecidos	1
2	Alg	guns truques úteis	3
	2.1	Mais alguns exemplos, agora sem qualquer explicação	4
3	"Fu		5
	3.1	Os primeiros cem números primos	5
4	Lixe	o 2	7
	4.1	Lixo 2.1	7
		4.1.1 Lixo 2.1.1	7
		4.1.2 Lixo 2.1.2	7
		Lixo 2.1.2.1	7
		Lixo 2.1.2.2	10
	4.2	Lixo 2.2	10
	4.3	Lixo 2.3	10
		4.3.1 Lixo 2.3.1	10
		4.3.2 Lixo 2.3.2	10
		4.3.3 Lixo 2.3.3	10
		4.3.4 Lixo 2.3.4	10
		4.3.5 Lixo 2.3.5	10
		4.3.6 Lixo 2.3.6	11
	4.4	Lixo 2.4	11
	4.5	Lixo 2.5	11
	4.6	Lixo 2.6	11
5	Lixe	o 3	13
	5.1	Lixo 3.1	13
		5.1.1 Lixo 3.1.1	13

Bi	bliog	grafia	17
6	Con	nclusões	15
	5.9	Lixo 3.9	13
	5.8	Lixo 3.8	13
	5.7	Lixo 3.7	13
	5.6	Lixo 3.6	13
	5.5	Lixo 3.5	13
	5.4	Lixo 3.4	13
		5.3.5 Lixo 3.3.5	13
		5.3.4 Lixo 3.3.4	13
		5.3.3 Lixo 3.3.3	13
		5.3.2 Lixo 3.3.2	13
		5.3.1 Lixo 3.3.1	13
	5.3	Lixo 3.3	13
	5.2	Lixo 3.2	13
		5.1.2 Lixo 3.1.2	13

Lista de Figuras

4.1	Gráfico de $\sin(2\pi t)$ para $0 \le t \le 1$	8
4.2	a) descrição do painel do canto superior,	9
4.3	Texto explicativo mais pequeno!	10

Lista de Tabelas

2.1	Isto é a tabela 2.1	4
2.2	Isto é a tabela 2.2	4
2.3	Fórmulas relacionadas com a série clássica de Fourier $(\Omega_T = \frac{2\pi}{T})$	4
4.1	Uma maneira possível de alinhar números pela vírgula (na realidade, ponto) .	7
4.2	Uma tabela!	10

Introdução

Para este tipo de documentos, o autor prefere o estilo report ao estilo book, pelo que somente o primeiro é suportado oficialmente pelo ficheiro uaThesis.sty. É possível forçar um novo capítulo a começar numa página ímpar através do uso do comando \cleardoublepage. Deve-se sempre incluir a opção a4paper para especificar as dimenses das folhas de papel.

Escusado será dizer (na realidade, escrever) que se a língua em que está escrito o documento não for o Inglês, será preciso utilizar o "pacote" babel.

1.1 Opções

Apresentamos de seguida, uma lista das opções suportadas.

- oldLogo: usa o "antigo" logotipo da Universidade de Aveiro.
- newLogo: usa o "novo" logotipo da Universidade de Aveiro.
- final: não escreve o texto "documento provisório" na capa: além disso, todas as marcas que assinalam linhas demasiado compridas são eliminadas.
- DETI, DM, DF: para teses escritas por alunos dos departamentos de electrónica, telecomunicações e informática, de matemática, e de física. É muito fácil incluir uma opção para um outro departamentos editando o ficheiro uaThesis.sty.

1.2 Problemas conhecidos

Não há problemas conhecidos. Todas as coisas aparentemente erradas não são problemas (bugs), são esquisitices (features) do ficheiro de estilo uaThesis.sty.

Alguns truques úteis

Os argumentos de macros definidas pelo utilizador podem ser delimitados por chavetas, como em $\lnesuremath{\operatorname{I}}\$ ($ie^{2\pi i\frac{mn}{N}}$), ou podem terminar numa sequência de caractéres definida pelo utilizador, como em $\lnesuremath{\operatorname{I}}\$ ($ie^{2\pi i\frac{mn}{N}}$). Ver definições de $\$ e de $\$ por preâmbulo desde documento; ambas têm um argumento, no primeiro caso delimitado por chavetas, e no segundo **terminado** por um ponto.

Em parágrafos muito longos, é em certos casos possível alterar o número de linhas que eles ocupam, colocando \looseness=N mesmo no fim do parágrafo, sendo N o número de linhas extras que se pretendem. Por exemplo, \looseness=-1 indica a nossa preferência por um parágrafo com menos uma linha do que o que seria normal; caso seja possível, o IATEX irá honrar esse nosso pedido, reduzindo a distância entre palavras. Também podemos tentar aumentar o número de linhas, usando um N positivo.

E possível partir fórmulas muito grandes usando alguns pacotes da *Americal Mathematical Society* (\usepackage{amsmath} e \usepackage{amssymb}, por exemplo). Aqui vai um exemplo:

$$F(z) = \sum_{k=-\infty}^{+\infty} f(n) z^{-n} \quad \text{isto} \dots \qquad \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} F_{ij}$$
$$= \sum_{k=-\infty}^{+\infty} n^3 z^{-n}. \tag{2.1}$$

Esta equação tem o número 2.1. Note que a parte final da frase anterior foi escrita da seguinte maneira: n\'umero~\ref{e:tf}. O caractér ~ é substituído por um espaço e o LATEX não pode partir a linha nesse sítio. Neste caso, nunca será possível ficar o texto "número" no fim de uma linha e o texto "2.1" no início da linha seguinte (o que seria muito deselegante). Em geral, quando uma frase termina com uma palavra (ou frmula matemática) pequena, é deselegante que essa palavra fique numa nova linha (use ~ nesses casos para que isso não aconteça).

É possível introduzir um espaço vertical extra entre parágrafos usando as macros \smallskip, \medskip e \bigskip. Na opção final não aparece uma caixa preta (ver linha anterior), sempre que uma linha é grande de mais (sempre que isto acontece, deve-se inserir ou eliminar texto para que deixe de acontecer).

2.1 Mais alguns exemplos, agora sem qualquer explicação

n	f(n)	n	f(n)
1	1	1	1
2	4	2	4

Tabela 2.1: Isto é a tabela 2.1.

1	0	0	4
	2	3	4
±	-	9	1

Tabela 2.2: Isto é a tabela 2.2.

• Nome: Zé Manel

• Idade: 2

• Morada: Sajhd sakjhd sakdhsa kdhsa hsa sakjhd

kdjsadsa kdjsakdjsa d

Tabela 2.3: Fórmulas relacionadas com a série clássica de Fourier $(\Omega_T = \frac{2\pi}{T})$

Domínio dos tempos	Domínio das frequências
$f(t) = \sum_{n = -\infty}^{+\infty} f_n e^{in\Omega_T t}$	$f_n = \frac{1}{T} \int_0^T f(t) e^{-in\Omega_T t} dt$
h(t) = f(t)g(t)	$h_n = f_n * g_n$ $h_n = \sum_{m = -\infty}^{+\infty} f_{n-m} g_m$
$h(t) = f(t) * g(t)$ $h(t) = \frac{1}{T} \int_0^T f(\tau)g(t - \tau) d\tau$	$h_n = f_n g_n$
$\left\langle f(t),g(t)\right\rangle =\frac{1}{T}\int_{0}^{T}f(t)\overline{g(t)}dt$	$= \langle f_n, g_n \rangle = \sum_{n = -\infty}^{+\infty} f_n \overline{g_n}$

"Fun"

Neste capítulo limitamo-nos a apresentar uma lista dos primeiros cem números primos, gerados automaticamente pelo próprio TEX (exemplo, ligeiramente modificado, extraído do livro "The TEXbook", escrito pelo Prof. Donald E. Knuth). O código utilizado para gerar esta lista é o seguinte:

```
\newif\ifprime\newif\ifunknown\newcount\n\newcount\p\newcount\d\newcount\a
\def\primes#1{2,~3\n=#1\advance\n by-2\p=5\loop\ifnum\n>0\printifprime
  \advance\p by2\repeat}
\def\printp{\ifnum\n=1\ e^\else, \fi\number\p\advance\n by-1}
\def\printifprime{\testprimality\ifprime\printp\fi}
\def\testprimality{{\d=3\global\primetrue\loop\trialdivision
  \ifunknown\advance\d by2\repeat}}
\def\trialdivision{\a=\p\divide\a by\d\ifnum\a>\d\unknowntrue\else
  \unknownfalse\fi\multiply\a by \d\ifnum\a=\p\global\primefalse
  \unknownfalse\fi}
\primes{100}.
```

3.1 Os primeiros cem números primos

 $2, \ 3, \ 5, \ 7, \ 11, \ 13, \ 17, \ 19, \ 23, \ 29, \ 31, \ 37, \ 41, \ 43, \ 47, \ 53, \ 59, \ 61, \ 67, \ 71, \ 73, \ 79, \ 83, \ 89, \ 97, \ 101, \ 103, \ 107, \ 109, \ 113, \ 127, \ 131, \ 137, \ 139, \ 149, \ 151, \ 157, \ 163, \ 167, \ 173, \ 179, \ 181, \ 191, \ 193, \ 197, \ 199, \ 211, \ 223, \ 227, \ 229, \ 233, \ 239, \ 241, \ 251, \ 257, \ 263, \ 269, \ 271, \ 277, \ 281, \ 283, \ 293, \ 307, \ 311, \ 313, \ 317, \ 331, \ 337, \ 349, \ 353, \ 359, \ 367, \ 373, \ 379, \ 383, \ 389, \ 397, \ 401, \ 409, \ 419, \ 421, \ 431, \ 433, \ 439, \ 443, \ 449, \ 457, \ 461, \ 463, \ 467, \ 479, \ 487, \ 491, \ 499, \ 503, \ 509, \ 521, \ 523 \ e \ 541.$

Lixo 2

4.1 Lixo 2.1

Mais uma brincadeira com uma tabela (tabela 4.1).

4.1.1 Lixo 2.1.1

Inclusão de uma figura (figura 4.1) gerada seguinte código MATLAB:

```
>> t=0:0.01:1;
>> plot(t,sin(2*pi*t));
>> title('seno');
>> grid on
>> print -depsc2 'example_fig.eps'
```

Idem, mas mostrando agora quadro figuras no mesmo gráfico. Devido ao encolhimento dos gráficos, será preciso aumentar a expessura das linhas e o tamanho da font no MATLAB (usando os comandos get e set), o que não foi feito aqui para se ver como as letras e números ficam pequenos.

4.1.2 Lixo 2.1.2

Lixo 2.1.2.1

Uma sub-sub-secção!

Nome do	tempo	
programa		
abc	10.000	
def	12.0	
ghi	9.0928	
jkl	20.0293	

Tabela 4.1: Uma maneira possível de alinhar números pela vírgula (na realidade, ponto)

Figura 4.1: Gráfico de $\sin(2\pi t)$ para $0 \le t \le 1$.

Figura 4.2: a) descrição do painel do canto superior, \dots

UMA FIGURA!

Figura 4.3: Uma figura! Lixo, lixo,

Lixo 2.1.2.2

4.2 Lixo 2.2

Veja a tabela 4.2.

\boldsymbol{x}	x^2	x^3
1	1	1
2	4	8
3	9	27
4	16	64
5	25	125

Tabela 4.2: Uma tabela! Lixo, lixo,

- 4.3 Lixo 2.3
- 4.3.1 Lixo 2.3.1
- 4.3.2 Lixo 2.3.2
- 4.3.3 Lixo 2.3.3
- 4.3.4 Lixo 2.3.4
- 4.3.5 Lixo 2.3.5

Veja a figura 4.3.

- 4.3.6 Lixo 2.3.6
- 4.4 Lixo 2.4
- 4.5 Lixo 2.5
- 4.6 Lixo 2.6

Lixo 3

- 5.1 Lixo 3.1
- 5.1.1 Lixo 3.1.1
- 5.1.2 Lixo 3.1.2
- 5.2 Lixo 3.2
- 5.3 Lixo 3.3
- 5.3.1 Lixo 3.3.1
- 5.3.2 Lixo 3.3.2
- 5.3.3 Lixo 3.3.3
- 5.3.4 Lixo 3.3.4
- 5.3.5 Lixo 3.3.5
- 5.4 Lixo 3.4
- 5.5 Lixo 3.5
- 5.6 Lixo 3.6
- 5.7 Lixo 3.7
- 5.8 Lixo 3.8
- 5.9 Lixo 3.9

Conclusões

```
Que conclusões?
   Exemplo de duas entradas da "bib file":
@Article
 Eliahou-1-1993-CLBNCL,
  author = {Eliahou, Shalom},
 title = {The $3x+1$ Problem: New Lower Bounds on Nontrivial Cycle Lengths},
  journal = {Discrete Mathematics},
 year = \{1993\},
 volume = {118},
 number = \{1--3\},
 pages = \{45--56\}
@Article
 Garner-1981-1-OCA,
 author = {Garner, Lynn E.},
 title = {On the Collatz $3n+1$ Algorithm},
 journal = {Proceedings of the American Mathematical Society},
 year = {1981},
 volume = \{82\},
 number = \{1\},
 pages = \{19--22\},
 month = May
```

Bibliografia

- [1] Shalom Eliahou. The 3x + 1 problem: New lower bounds on nontrivial cycle lengths. Discrete Mathematics, 118(1-3):45-56, 1993.
- [2] Lynn E. Garner. On the collatz 3n + 1 algorithm. Proceedings of the American Mathematical Society, 82(1):19-22, May 1981.