Wine Quality:- Lab cycle-1

1. Download the dataset winequality-red.csv file(each column is separated by a semicolon (;)) from the UCI Machine Learning Repository.

2. Convert it to numPy array, name it as wines (leave the first row of the list) and specify the data type of array as float.

```
wines=arr.astype('float64')
print(wines)
```

Output:

```
[[7.4 0.7 0. ... 0.56 9.4 5.]

[7.8 0.88 0. ... 0.68 9.8 5.]

[7.8 0.76 0.04 ... 0.65 9.8 5.]

...

[6.3 0.51 0.13 ... 0.75 11. 6.]

[5.9 0.645 0.12 ... 0.71 10.2 5.]

[6. 0.31 0.47 ... 0.66 11. 6.]
```

3. Identify the shape of the array.

```
np.shape(wines)
```

Output:

(1599, 12)

4. Display the element at row 3 and column 4.

wines[2,3]

Output:

2.3

In [48]:

5. Display the first three items from the fourth column.

wines[:3,3]

Ouput:

array([1.9, 2.6, 2.3])

6. Display third column from each row.

wines[:,2]

Output:

array([0., 0., 0.04, ..., 0.13, 0.12, 0.47])

In [21]:

7. Display fourth row.

wines[3,:]

Output:

8. Assign value 10 to 2nd row and 6th column element.

wines[1,5] = 10

print(wines[1,5])

Output:

10.0

9. Take the 10th column from wines array and name that slice as slice_new and assign value 666 to all elements of slice_new

```
slice_new = wines[:,9]
slice_new[:] = 666
```

```
print(slice_new)
Output:
[666. 666. 666. ... 666. 666. 666.]
10. Display wines array.
print(wines)
Output:
[7.40e+007.00e-010.00e+00...6.66e+029.40e+005.00e+00]
[7.80e+00 8.80e-01 0.00e+00 ... 6.66e+02 9.80e+00 5.00e+00]
[7.80e+00 7.60e-01 4.00e-02 ... 6.66e+02 9.80e+00 5.00e+00]
[6.30e+00 5.10e-01 1.30e-01 ... 6.66e+02 1.10e+01 6.00e+00]
[5.90e+00 6.45e-01 1.20e-01 ... 6.66e+02 1.02e+01 5.00e+00]
[6.00e+00 3.10e-01 4.70e-01 ... 6.66e+02 1.10e+01 6.00e+00]]
11. Find the data type of wines array and Change the data type to int.
print(wines.dtype)
wines = wines.astype('int')
print(wines.dtype)
print(wines)
Output:
float64
int32
[[ 7 0 0 ... 666 9 5]
[7 0 0 ... 666 9 5]
[ 7 0 0 ... 666 9 5]
[ 6 0 0 ... 666 11 6]
[ 5 0 0 ... 666 10 5]
[ 6 0 0 ... 666 11 6]]
12. Add 10 points to each quality score.
wines[:-1] += 10
```

```
print(wines[:,-1])
Output:
```

[15 15 15 ... 16 15 6]

13. Find the sum of all the elements in an array

print(wines.sum()) print(sum(sum(wines))) **Output:** 1402158

1402158

14. Find the sum of all the values in every column.

print(wines.sum(axis = 0))

Output:

[28569 16004 15981 19330 15980 41347 90281 16061 20750 10809 14 31949 24992]

15. Find the sum of all the values in every row.

print(wines.sum(axis = 1))

Output:

[856 889 881 ... 883 887 755]

16. Add the quality column to itself

wines[:,-1] += wines[:,-1] print(wines[:,-1])

Output:

[30 30 30 ... 32 30 12]

17. Multiply alcohol by quality

print(wines[:,-2]* wines[:,-1])

Output:

[570 570 570 ... 672 600 132]

18. Display which wines have a quality rating higher than 5.

print(wines[wines[:,-1]>5])

Output:

[[17 10 10 ... 676 19 30] [17 10 10 ... 676 19 30]

[17 10 10 ... 676 19 30]

•••

[16 10 10 ... 676 21 32]

[15 10 10 ... 676 20 30]

[6 0 0 ... 666 11 12]]

19. Check if any wines have a quality rating equal to 10.

print(wines[wines[:,-1]==10])

Output:

П

20. Select rows in wines where the quality is over 7

print(wines[wines[:,-1]>7])

Output:

[[17 10 10 ... 676 19 30]

```
[ 17 10 10 ... 676 19 30]
[ 17 10 10 ... 676 19 30]
...
[ 16 10 10 ... 676 21 32]
[ 15 10 10 ... 676 20 30]
[ 6 0 0 ... 666 11 12]]
```

21. Display wines with alcohol greater than 10 and quality greater than 7.

print(wines[(wines[:,-2]>10) & (wines[:,-1]>7)])

Output:

22. Change the shape of wines array. wines = wines.reshape((533,36)) print(wines.shape)

Output:

(533, 36)

Iris dataset :- Lab cycle-2

1. Print the dataset iris.

import pandas as pd

file = pd.read_csv("E:\Downloads\data-analysis/iris.csv")
print(file)

Output:

	sepal_length	sepal_w	vidth petal_le	ngth	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	
••	•••	•••			•••	
14	5 6.7	3.0	5.2	2.3	Iris-virginica	
14	6 6.3	2.5	5.0	1.9	Iris-virginica	
14	7 6.5	3.0	5.2	2.0	Iris-virginica	
14	8 6.2	3.4	5.4	2.3	Iris-virginica	
14	9 5.9	3.0	5.1	1.8	Iris-virginica	

[150 rows x 5 columns]

2. Print the structure of the dataset iris.

print(file.info())

Output:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149

Data columns (total 6 columns):

Column Non-Null Count Dtype

0 sepal_length 150 non-null float64

1 sepal_width 150 non-null float64

2 petal_length 150 non-null float64

3 petal_width 150 non-null float64

4 species 150 non-null object

5 Total 150 non-null float64

dtypes: float64(5), object(1) memory usage: 7.2+ KB

None

3. Print the summary of all the variables of the dataset iris.

print(file.describe())

Output:

```
sepal_length sepal_width petal_length petal_width
                                                  Total
      150.000000 150.000000
                              150.000000 150.000000 150.000000
count
        5.843333
                   3.054000
mean
                              3.758667
                                         1.198667 13.854667
      0.828066
                 0.433594
                             1.764420
                                       0.763161
                                                  3.128149
std
       4.300000
                  2.000000
                             1.000000
                                        0.100000 8.400000
min
                                         0.300000 10.700000
25%
        5.100000
                  2.800000
                              1.600000
50%
        5.800000
                  3.000000
                              4.350000
                                         1.300000 14.300000
                                         1.800000 16.250000
75%
        6.400000
                  3.300000
                              5.100000
       7.900000
                  4.400000
                              6.900000
                                        2.500000 20.400000
max
```

4. How many of the variables (columns) are in the dataset iris.

len(file.keys())

Output:

6

5. How many observations (rows) are in the dataset iris.

len(file)

Output:

150

6. Use duplicated() function to print the logical vector indicating the duplicate values present in the dataset iris.

file.duplicated()

Output:

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False

...

- 145 False
- 146 False
- 147 False
- 148 False
- 149 False

Length: 150, dtype: bool

7. Extract duplicate elements from the dataset iris.

file[file.duplicated()]

Output:

	sepal_length	sepal_width	petal_length	petal_width	species	Total
34	4.9	3.1	1.5	0.1	Iris-setosa	9.6
37	4.9	3.1	1.5	0.1	Iris-setosa	9.6
142	5.8	2.7	5.1	1.9	Iris-virginica	15.5

8. Extract unique elements from the dataset iris.

file.drop_duplicates()

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

¹⁴⁷ rows × 5 columns

9. Print the indices of duplicate elements in the dataset iris.

print(file[file.duplicated()].index.tolist())

Output:

[34, 37, 142]

10. Print the indices of unique elements in the dataset iris.

print(file.drop_duplicates().index.tolist())

Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 2 4, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 9 0, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 148, 149]

11. How many unique elements are in the dataset iris.

len(file.drop_duplicates())

Output:

147

12. How many duplicate elements are in the dataset iris.

len(file[file.duplicated()])

Output:

3

13.Print the sorted elements in the dataset iris(Ascending order).

file.sort_values('sepal_length', axis=0)

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
13	4.3	3.0	1.1	0.1	Iris-setosa
42	4.4	3.2	1.3	0.2	Iris-setosa
38	4.4	3.0	1.3	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
41	4.5	2.3	1.3	0.3	Iris-setosa
122	7.7	2.8	6.7	2.0	Iris-virginica
118	7.7	2.6	6.9	2.3	Iris-virginica
117	7.7	3.8	6.7	2.2	Iris-virginica
135	7.7	3.0	6.1	2.3	Iris-virginica
131	7.9	3.8	6.4	2.0	Iris-virginica

150 rows × 5 columns

14. Find whether any missing values are in the dataset iris.

file.dropna()

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

15.Display how many missing values are present in each column.

file.isnull().sum()

Output:

sepal_length 0

sepal_width 0

petal_length 0

petal_width 0

species 0

dtype: int64

16.Replace all missing values with zero.

file.fillna(0)

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

17. Calculate Petal width mean ,median ,SD, Variance for the species setosa.

print(file[file['species']=='Iris-setosa']['petal_width'].mean())
print(file[file['species']=='Iris-setosa']['petal_width'].std())
print(file[file['species']=='Iris-setosa']['petal_width'].var())

Output:

0.244

0.1072095030816784

0.011493877551020411

18.Print from 10th row to 20th row of iris dataset.

file[10:21]

	sepal_length	sepal_width	petal_length	petal_width	species
10	5.4	3.7	1.5	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
12	4.8	3.0	1.4	0.1	Iris-setosa
13	4.3	3.0	1.1	0.1	Iris-setosa
14	5.8	4.0	1.2	0.2	Iris-setosa
15	5.7	4.4	1.5	0.4	Iris-setosa
16	5.4	3.9	1.3	0.4	Iris-setosa
17	5.1	3.5	1.4	0.3	Iris-setosa
18	5.7	3.8	1.7	0.3	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa
20	5.4	3.4	1.7	0.2	Iris-setosa

19. Print Species and its corresponding Petal length and Width.

file[['species', 'petal_length', 'petal_width']]

Output:

	species	petal_length	petal_width			
0	Iris-setosa	1.4	0.2			
1	Iris-setosa	1.4	0.2			
2	Iris-setosa	1.3	0.2			
3	Iris-setosa	1.5	0.2			
4	Iris-setosa	1.4	0.2			
145	Iris-virginica	5.2	2.3			
146	Iris-virginica	5.0	1.9			
147	Iris-virginica	5.2	2.0			
148	Iris-virginica	5.4	2.3			
149	Iris-virginica	5.1	1.8			
150 rows × 3 columns						

20.Display records only with species "Iris-setosa".

file[file['species']=="Iris-setosa"]

Output:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa

21.Count number of times a particular species has occurred.

file['species'].value_counts()

Output:

Iris-setosa 50 Iris-versicolor 50

Iris-virginica 50

Name: species, dtype: int64

22.Identifying minimum and maximum Value of Sepal width.

print(min(file['sepal_width']))
print(max(file['sepal_width']))

Output:

2.0

4.4

23.Add new column to store sum of first four column values

file['Total']=file[file.columns[0:4]].sum(axis=1)
print(file)

Output:

	sepal_length	sepal_width	petal_length	petal_width	species	Total
0	5.1	3.5	1.4	0.2	Iris-setosa	10.2
1	4.9	3.0	1.4	0.2	Iris-setosa	9.5
2	4.7	3.2	1.3	0.2	Iris-setosa	9.4
3	4.6	3.1	1.5	0.2	Iris-setosa	9.4
4	5.0	3.6	1.4	0.2	Iris-setosa	10.2
145	6.7	3.0	5.2	2.3	Iris-virginica	17.2
146	6.3	2.5	5.0	1.9	Iris-virginica	15.7
147	6.5	3.0	5.2	2.0	Iris-virginica	16.7
148	6.2	3.4	5.4	2.3	Iris-virginica	17.3
149	5.9	3.0	5.1	1.8	Iris-virginica	15.8

150 rows × 6 columns

Universities Ranking dataset: - Lab cycle-3

1. Find the universities in which undergraduate students were admitted.

import pandas as pd

 $file = pd.read_csv("E:\Downloads\data-analysis/National_Universities_Rankings.csv")$

file

Output:

file['Name'][file['Undergrad Enrollment'].notnull()]

0	Princeton University
1	Harvard University
2	University of Chicago
3	Yale University
4	Columbia University

• • •

226 University of Massachusetts--Dartmouth

227 University of Missouri--St. Louis

228 University of North Carolina--Greensboro

229 University of Southern Mississippi

Utah State University

Name: Name, Length: 231, dtype: object

2. List the states along with the cities in which universities located.

a = file['Location'].str.split(', ', expand=True)

file['city']=a[0]

file['state']=a[1]

file

Ouput:

	index	Name	Location	Rank	Description	Tuition and fees	In-state	Undergrad Enrollment	city	state
0	0	Princeton University	Princeton, NJ	1	Princeton, the fourth- oldest college in the Un	\$45,320	NaN	5,402	Princeton	NJ
1	1	Harvard University	Cambridge, MA	2	Harvard is located in Cambridge, Massachusetts	\$47,074	NaN	6,699	Cambridge	MA
2	2	University of Chicago	Chicago, IL	3	The University of Chicago, situated in Chicago	\$52,491	NaN	5,844	Chicago	IL
3	3	Yale University	New Haven, CT	3	Yale University, located in New Haven, Connect	\$49,480	NaN	5,532	New Haven	СТ
4	4	Columbia University	New York, NY	5	Columbia University, located in Manhattan's Mo	\$55,056	NaN	6,102	New York	NY

3. List the cities &universities under each state.

list(file.groupby(['state', 'city', 'Name']).groups.keys())

Output:

```
[('AK', 'Fairbanks', 'University of Alaska--Fairbanks'),
```

('AL', 'Auburn', 'Auburn University'),

('AL', 'Birmingham', 'University of Alabama--Birmingham'),

('AL', 'Huntsville', 'University of Alabama--Huntsville'),

('AL', 'Tuscaloosa', 'University of Alabama'),

('AR', 'Fayetteville', 'University of Arkansas'),

('AZ', 'Tempe', 'Arizona State University--Tempe'),

('AZ', 'Tucson', 'University of Arizona'),

('CA', 'Azusa', 'Azusa Pacific University'),

('CA', 'Berkeley', 'University of California--Berkeley'),

. . . .

('RI', 14, 'Brown University'),

('TN', 15, 'Vanderbilt University'),

('TX', 15, 'Rice University'),

('VA', 24, 'University of Virginia'),

('VA', 32, 'College of William & Mary'),

('WI', 44, 'University of Wisconsin--Madison')]

5. How many universities have both out-of state and in-state students?

 $len(file[(file['In-state'].notnull())\ \&\ (file['In-state'].notnull())])$

Ouput:

133

6. How many universities have marginal difference <=\$5000 in in-state &out-of state tuition fees.

 $fee_Tu = file[Tuition and fees'].str.replace('\W', ", regex=True)$

 $fee_Tu = fee_Tu.astype(int)$

fee_In = file['In-state'].fillna('0')

 $fee_In = fee_In.str.replace('\W', '' , regex=True)$

fee_In = fee_In.astype(int)

file[abs(fee_Tu-fee_In)<=5000]

Output:

	index	Name	Location	Rank	Description	Tuition and fees	In- state	Undergrad Enrollment	city	state
204	204	South Dakota State University	Brookings, SD	202	Founded in 1881, South Dakota State University	\$11,403	\$8,172	11,007	Brookings	SD
208	208	University of South Dakota	Vermillion, SD	202	Founded in 1862, University of South Dakota is	\$11,688	\$8,457	7,435	Vermillion	SD

7. List the universities having tuition fee>15000\$ and rank between 120 to 170.

 $file[(file['Tuition and fees'].str.replace('\W', ",regex=True).astype (int)>15000)\&(file['Rank']>120)\& (file['Rank']<170)]$

Output:

index	Name	Location	Rank	Description	Tuition and fees	In-state	Undergrad Enrollment	city	state
123	The Catholic University of America	Washington, DC	124	Catholic University of America, as its name su	\$42,536	NaN	3,480	Washington	DC
124	DePaul University	Chicago, IL	124	DePaul University has five campuses in and aro	\$37,626	NaN	15,961	Chicago	IL
125	Duquesne University	Pittsburgh, PA	124	Founded in 1878, Duquesne University is a priv	\$35,062	NaN	5,961	Pittsburgh	PA
126	Howard University	Washington, DC	124	At Howard University, a historically black col	\$24,908	NaN	6,883	Washington	DC
127	University of Arizona	Tucson, AZ	124	As one of the largest public institutions in i	\$30,025	\$10,872	33,732	Tucson	AZ
	123 124 125 126	The Catholic University of America 124 DePaul University 125 Duquesne University 126 Howard University	123 The Catholic University of America 124 DePaul University Chicago, IL 125 Duquesne University PA 126 Howard University Washington, DC	123 The Catholic University of America 124 DePaul University Chicago, IL 124 125 Duquesne University PA 124 126 Howard University Washington, DC 124	The Catholic University of America Burnington, DC America, as its name su 124 DePaul University Chicago, IL 124 DePaul University bas five campuses in and aro 125 Duquesne University Pittsburgh, PA 124 Founded in 1878, Duquesne University is a priv 126 Howard University Washington, DC 127 University of Arizona Tucson, AZ 124 As one of the largest public institutions in	The Catholic University of America DePaul University of America DePaul University of America DePaul University of America DePaul University DePaul University DePaul University DePaul University DePaul University PA 124 DePaul University PA 124 DePaul University Sa7,626 and aro 125 Duquesne University PA 124 Depaul University PA 124 Depaul University Sa5,062 is a priv 126 Howard University Washington, DC 127 University of Arizona Tucson, AZ 124 As one of the largest public institutions in \$30,025	The Catholic University of America DePaul University of America DePaul University of America DePaul University of America DePaul University of America as its name su DePaul University of America as its name su DePaul University of Sar, 626 NaN and aro Pittsburgh, PA 124 Pounded in 1878, Duquesne University is a priv Phoward University Washington, DC DC 124 At Howard University, a historically black col As one of the largest public institutions in \$30,025 \$10,872	The Catholic University of America DePaul University of America, as its name su DePaul University of America, as its name su DePaul University Chicago, IL 124 DePaul University DePaul University Patholic University of America, as its name su DePaul University \$37,626 NaN 15,961 Founded in 1878, Duquesne University is a priv At Howard University Howard University Washington, DC Tucson, AZ 124 As one of the largest public institutions in \$30,025 \$10,872 33,732	The Catholic University of America The Catholic University of America, as its name as u DePaul University The Catholic University of America, as its name as u DePaul University The Catholic University of America, as its name as u DePaul University The Catholic University of America, as its name as u DePaul University The Catholic University of America, as its name as u DePaul University The Catholic University of America, as its name as u DePaul University The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America, as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America as its name as u The Catholic University of America

8. Find the campuses of universities located in different cities (multiple cities).

file[['city', 'Name']].groupby(['city', 'Name']).first()
Output:

city	Name
Albany	University at AlbanySUNY
Albuquerque	University of New Mexico
Ames	Iowa State University
Amherst	University of MassachusettsAmherst
Ann Arbor	University of MichiganAnn Arbor
Williamsburg	College of William & Mary
Winchester	Shenandoah University
Winston-Salem	Wake Forest University
Worcester	Clark University
	Worcester Polytechnic Institute

231 rows × 0 columns

9. Mention the states where out-of state fee is more than in-state students. Print Minimum and Maximum fees.

ft = file['Tuition and fees'].str.replace('\W', ",regex=True).astype(int)
fi = file['In-state'].fillna('0').str.replace('\W', ",regex=True).astype(int)
print("Min and max of Tuition and fees: ",min(ft), max(ft))
print("Min and max of In-state fee: ", min(fi), max(fi))

file[ft>fi].drop_duplicates(['state'])['state']

Output:

Min and max of Tuition and fees: 5300 55056

Min and max of In-state fee: 0 18687

- 0 NJ
- 1 MA
- 2 IL
- 3 CT
- 4 NY
- 5 CA

. . . .

- 200 NV
- 204 SD
- 205 AK
- 210 MT

Name: state, dtype: object

10. Find the cities locating top 100 universities.

file[file['Rank']<=100].drop_duplicates(['city'])['city']

Output:

- 0 Princeton
- 1 Cambridge
- 2 Chicago

...

- 97 Stony Brook
- 98 Auburn
- 101 Buffalo

Name: city, Length: 87, dtype: object

11. Find universities with least no of undergraduate students.

file[file['Undergrad Enrollment']==file['Undergrad Enrollment'].min()]
Output:

	index	Name	Location	Rank	Description	Tuition and fees	In- state	Undergrad Enrollment	city	state
11	11	California Institute of Technology	Pasadena, CA	12	Caltech, which focuses on science and engineer	\$47,577	NaN	1,001	Pasadena	CA

12.Identifying correlations between enrollment numbers and university rank.

file['Rank'].corr(file['Undergrad Enrollment'].apply(lambda x:int(x.replace(',', ""))))

Output:

-0.040770935787747827

Adidas Sales dataset :- Lab cycle-4

1. List all the retailers with retailer id.

import pandas as pd
file = pd.read_excel("E:\Downloads\dataanalysis/Adidas_US_Sales_Datasets_1_.xlsx")
file.drop_duplicates(['Retailer'])[['Retailer', 'Retailer ID']]
Output:

Retailer	Retailer ID
•	·

0	Foot Locker	1185732
46	Walmart	1185732
68	Sports Direct	1197831
140	West Gear	1128299
212	Kohl's	1189833
1148	Amazon	1185732

2. List all the retailers in every region.

list(file.groupby(['Region', 'Retailer']).groups.keys())

```
[('Midwest', 'Amazon'),
  ('Midwest', 'Foot Locker'),
  ('Midwest', "Kohl's"),
  ('Midwest', 'Sports Direct'),
  ('Midwest', 'West Gear'),
  ('Northeast', 'Amazon'),
  ....
  ('West', 'Amazon'),
  ('West', 'Foot Locker'),
  ('West', "Kohl's"),
  ('West', 'Sports Direct'),
  ('West', 'Walmart'),
  ('West', 'West Gear')]
```

3. List the retailers in every city of a state.

```
Output:

[('Alabama', 'Birmingham', 'Amazon'),
 ('Alabama', 'Birmingham', 'Sports Direct'),
 ('Alaska', 'Anchorage', 'Amazon'),
 ('Alaska', 'Anchorage', 'Foot Locker'),
...

('Wilmington', "Women's Apparel"),
 ('Wilmington', "Women's Athletic Footwear"),
```

list(file.groupby(['State', 'City', 'Retailer']).groups.keys())

5. Find the total sales of every retailer.

file.groupby('Retailer')['Total Sales'].sum()

('Wilmington', "Women's Street Footwear")]

Output:

Retailer

Amazon 77698912.0 Foot Locker 220094720.0 Kohl's 102114753.0 Sports Direct 182470997.0 Walmart 74558410.0 West Gear 242964333.0

Name: Total Sales, dtype: float64

6. Find the total sales of the retailers in every city along with profit.

file.groupby(['City', 'Retailer'])[['Total Sales', 'Operating Profit']].sum() **Output:**

Total Sales Operating Profit

City	Retailer		
Albany	Kohl's	3692639.0	1367451.11
	West Gear	20735165.0	8062399.80
Albuquerque	Kohl's	17065965.0	5783668.15
	Sports Direct	2799051.0	954392.26
Anchorage	Amazon	13365025.0	4143804.75
St. Louis	West Gear	1701133.0	681457.25
Wichita	Foot Locker	3520950.0	1230372.67
	Kohl's	6451914.0	2279774.62
Wilmington	Foot Locker	8387568.0	3077352.68
	Kohl's	3910844.0	1446997.38

108 rows × 2 columns

7. Find the total sales &profit of each product sold by the retailer. file.groupby(['Retailer', 'Product'])[['Total Sales', 'Operating Profit']].sum() **Output:**

		Total Sales	Operating Profit
Retailer	Product		
Amazon	Men's Apparel	10474770.0	3331443.80
	Men's Athletic Footwear	12011959.0	4518030.11
	Men's Street Footwear	22161652.0	8707658.12
	Women's Apparel	15710639.0	6280071.53
	Women's Athletic Footwear	7935255.0	2701607.74
	Women's Street Footwear	9404637.0	3279692.01
Foot Locker	Men's Apparel	29508995.0	9942404.61
	Men's Athletic Footwear	36480415.0	12409221.49
	Men's Street Footwear	57481575.0	23060809.17
	Women's Apparel	43296114.0	17192901.49
	Women's Athletic Footwear	24239624.0	8477313.73
	Women's Street Footwear	29087997.0	9639474.32

8. Find the units sold, total sales &profit of the products sold between the d ates 1/1/2020 and 4/15/2020.

file[(file['Invoice Date']>'1/1/2020') & (file['Invoice Date']<'4/15/2020')][['Units Sold', 'Total Sales', 'Operating Profit']].sum()

Output:

Units Sold 137483.00 Total Sales 51549291.00 Operating Profit 17815082.37

dtype: float64

9. Find the no of units sold of each product by each retailer in every city.

file.groupby(['City', 'Retailer', 'Product'])['Units Sold'].sum()

Output:

City Retailer Product

Albany Kohl's Men's Apparel 1375

Men's Athletic Footwear 1401 Men's Street Footwear 2104 Women's Apparel 1613 Women's Athletic Footwear 1311

...

Wilmington Kohl's Men's Athletic Footwear 1490

Men's Street Footwear 2638 Women's Apparel 1743 Women's Athletic Footwear 970 Women's Street Footwear 1525

Name: Units Sold, Length: 618, dtype: int64

10. Find the products with different price per unit in different cities with proper information.

list(file.groupby(['Product', 'City', 'Price per Unit']).groups.keys())

```
[("Men's Apparel", 'Albany', 49.0),
("Men's Apparel", 'Albany', 50.0),
("Men's Apparel", 'Albany', 51.0),
("Men's Apparel", 'Albany', 52.0),
("Men's Apparel", 'Albany', 55.000000000000001),
("Men's Apparel", 'Albany', 56.0),
("Men's Apparel", 'Albany', 59.0),
("Men's Apparel", 'Albany', 60.0),
("Men's Apparel", 'Albany', 60.0000000000001),
......]
```

11. Find the total sales &profits of all products in every month.

file.groupby(file['Invoice Date'].dt.strftime('%B'))[['Total Sales', 'Operating Profit']].sum()

Output:

-	Total Sales	Operating Profit
Invoice Date		
April	72339970.0	27559237.31
August	92166201.0	34451440.30
December	85841957.0	31590202.03
February	61100153.0	21392736.70
January	71479142.0	25141934.51
July	95480694.0	34054898.59
June	74747372.0	26714715.92
March	56809109.0	20439788.00
May	80507695.0	29946255.33
November	67857340.0	24755521.43
October	63911033.0	25078444.60
September	77661459.0	31009586.73

12. Find the total sales &profit of the products in different sales methods in each city

file.groupby(['City', 'Sales Method'])[['Total Sales', 'Operating Profit']].sum() **Output:**

		Total Sales	Operating Profit
City	Sales Method		
Albany	In-store	23815000.0	9121062.50
	Online	612804.0	308788.41
Albuquerque	Online	19424023.0	6569814.43
	Outlet	440993.0	168245.98
Anchorage	Online	372353.0	158133.36
St. Louis	In-store	9437500.0	3778625.00
	Online	245765.0	128584.36
Wichita	Online	9972864.0	3510147.29
Wilmington	In-store	11988750.0	4373362.50
	Online	309662.0	150987.56

13. Find the retailers who sold the same product with different prices in different cities

```
list(file.groupby(['Retailer', 'Product', 'Price per Unit']).groups.keys())
[('Amazon', "Men's Apparel", 32.0),
('Amazon', "Men's Apparel", 35.0),
('Amazon', "Men's Apparel", 36.0),
('Amazon', "Men's Apparel", 37.0),
('Amazon', "Men's Apparel", 39.0),
('Amazon', "Men's Apparel", 40.0),
('Amazon', "Men's Apparel", 40.00000000000001),
('Amazon', "Men's Apparel", 41.0),
('Amazon', "Men's Apparel", 42.0),
('Amazon', "Men's Apparel", 43.0),
('Amazon', "Men's Apparel", 44.0),
('Amazon', "Men's Apparel", 45.0),....]
14. Find the products whose sales raises in every month.
f=file.groupby([file['Invoice Date'].dt.month,file['Invoice Date'].dt.year,file['Pro
duct']])['Total Sales'].sum()
print(f)
l=list(file['Product'].unique())[:]
for i in 1:
print(i,f[:,:,i].is_monotonic_increasing)
Output:
Invoice Date Invoice Date Product
1
         2020
                    Men's Apparel
                                            2288362.0
                 Men's Athletic Footwear
                                             2639958.0
                Men's Street Footwear
                                            3859495.0
                 Women's Apparel
                                           3066713.0
                 Women's Athletic Footwear
                                               1990181.0
                    Men's Athletic Footwear
12
         2021
                                                13195038.0
                Men's Street Footwear
                                           18953848.0
                 Women's Apparel
                                          14910708.0
                 Women's Athletic Footwear
                                               9549962.0
                 Women's Street Footwear
                                             10547148.0
Name: Total Sales, Length: 144, dtype: float64
Men's Street Footwear False
Men's Athletic Footwear False
Women's Street Footwear False
Women's Athletic Footwear False
Men's Apparel False
```

15. Find the retailers whose profit increased every month.

f=file.groupby([file['Invoice Date'].dt.month,file['Invoice Date'].dt.year,file['Ret ailer']])['Operating Profit'].sum()

print(f)

l=list(file['Retailer'].unique())[:]

for i in 1:

print(i,f[:,:,i].is_monotonic_increasing)

Output:

Invoice Date Invoice Date Retailer

1 2020 Foot Locker 3544899.00 West Gear 2285106.41 2021 Amazon 1510504.30 Foot Locker 3761780.79 Kohl's 3565743.93

• • •

12 2021 Foot Locker 10016105.07

Kohl's 2749782.47 Sports Direct 5660159.36 Walmart 631767.00 West Gear 6232275.13

Name: Operating Profit, Length: 104, dtype: float64

Foot Locker False Walmart False Sports Direct False West Gear False Kohl's False

Amazon False

Movies dataset:- Lab cycle-5

1. (i). Find out the no of movies released in every month of the year 1995. import pandas as pd

```
from datetime import datetime
```

file = pd.read_csv("E:\Downloads\data-analysis\movies.csv")

file = file[file["Release Date"].str.contains("TBD") == False]

file['Release Date'] = file['Release Date'].apply(pd.to_datetime)

file['Date']=file['Release Date'].dt.strftime('%d')

file['Month']=file['Release Date'].dt.strftime('%m')

file['Year']=file['Release Date'].dt.strftime('% Y')

file[file['Year']=='1995'][['Title', 'Month']].groupby('Month').count()

s cop coo	Title
Month	
01	3
02	2
03	3
04	5
05	6
06	7
07	8
08	7
09	4
10	8
11	7
12	13

(ii). Find out the no. of movies released in every year from 1990 to 1998. $file[(file['Year']>='1990') \& (file['Year']<='1998')][['Title', 'Year']].groupb \\ y('Year').count()$

	Title
Year	
1990	28
1991	33
1992	28
1993	39
1994	52
1995	73
1996	99
1997	97
1998	144

2. (i). Find no. of movies released under each genre given in the database. file[['Title', 'Major Genre']].dropna().groupby('Major Genre').count()

	Title
Major Genre	
Action	420
Adventure	274
Black Comedy	36
Comedy	675
Concert/Performance	5
Documentary	43
Drama	789
Horror	219
Musical	53
Romantic Comedy	137
Thriller/Suspense	239
Western	36

(ii). Find the movies under each genre with 1MDB rating >7 and rotten tom atoes rating > 60.

list(file[(file['IMDB Rating']>7) & (file['Rotten Tomatoes Rating']>60)].dropna().groupby(['Major Genre', 'Title']).groups.keys())

Output:

[('Action', 'Black Hawk Down'),

('Action', 'Blood Diamond'),

('Action', 'Casino Royale'),

('Action', 'Inglourious Basterds'),

('Action', 'Iron Man'),

('Action', 'Live Free or Die Hard'),

('Action', 'The Bourne Ultimatum'),

('Action', 'The Dark Knight'),

...('Thriller/Suspense', 'Children of Men'),

('Thriller/Suspense', 'District 9'),

('Thriller/Suspense', 'State of Play'),

('Thriller/Suspense', 'Sunshine'),

('Thriller/Suspense', 'The Prestige'),

('Thriller/Suspense', 'Valkyrie'),

('Western', '3:10 to Yuma')]

3. (i). Find the movies released under each fiction with each director in the ascending order of release dates.

file[file['Creative Type'].fillna('0').str.contains('Fiction')][['Title', 'Director', 'Rel ease Date']].sort_values('Release Date')

Output:

		D	
	Title	Director	Release Date
213	Casablanca	Michael Curtiz	1942-01-01
582	Moby Dick	John Huston	1956-01-01
876	The Sound of Music	Robert Wise	1965-04-01
292	Escape from the Planet of the Apes	NaN	1971-01-01
93	Battle for the Planet of the Apes	Jack Lee Thompson	1973-01-01
217	Catch-22	Mike Nichols	2070-06-24
342	Fiddler on the Roof	Norman Jewison	2071-01-01
433	High Plains Drifter	Clint Eastwood	2072-01-01
369	The Godfather	Francis Ford Coppola	2072-03-15
21	1776	NaN	2072-11-09

2187 rows × 3 columns

(ii). Find movies released under each distributor in the order of genre and director.

list(file.dropna().groupby(['Distributor', 'Major Genre', 'Director']).groups.keys()

Output:

[('20th Century Fox', 'Action', 'Len Wiseman'), ('20th Century Fox', 'Action', 'Mathieu Kassovitz'), ('20th Century Fox', 'Action', 'Renny Harlin'), ('20th Century Fox', 'Action', 'Tim Story'), ('20th Century Fox', 'Adventure', 'Gil Kenan'), ('20th Century Fox', 'Comedy', 'Adam Shankman'),

(20th Century Fox', Comedy', Adam Shankman).

('20th Century Fox', 'Comedy', 'David Silverman'

. . . .

('Weinstein Co.', 'Comedy', 'Kevin Smith'),

('Weinstein Co.', 'Drama', 'Denzel Washington'),

('Weinstein Co.', 'Drama', 'Stephen Daldry'),

('Weinstein Co.', 'Thriller/Suspense', 'Peter Webber')]

4. (i). Find the movies released world-wide and find out the revenue receive d world-wide other than US with their ratings.

file['Revenue other than US'] = file['Worldwide Gross'].replace('Unknown', '0'). astype(float) - file['US Gross'].replace('Unknown', '0').astype(float) file[file['Revenue other than US'] > 0][['Title', 'Revenue other than US', 'IMDB Rating']]

Output:

	Title	Revenue other than US	IMDB Rating
4	Slam	77702.0	3.4
5	Mississippi Mermaid	2600000.0	NaN
8	Pirates	4700000.0	5.8
20	Twelve Monkeys	111700000.0	8.1
22	1941	60700000.0	5.6
3196	Zack and Miri Make a Porno	5398360.0	7.0
3197	Zodiac	50000000.0	NaN
3198	Zoom	516860.0	3.4
3199	The Legend of Zorro	95900000.0	5.7
3200	The Mask of Zorro	139871255.0	6.7

1921 rows × 3 columns

(ii). Find the movies with loss & profit released in each year with genre and ratings.

file['Worldwide Gross'] = file['Worldwide Gross'].replace('Unknown', '0').astype (float)

list(file[file['Worldwide Gross']-

file['Production Budget']!=0].groupby(['Year', 'Major Genre', 'IMDB Rating']).groups.keys())

```
[('1929', 'Musical', 6.7),
('1930', nan, 7.9),
('1931', nan, 2.2),
('1934', 'Romantic Comedy', 8.3),
('1938', 'Drama', nan),
('1938', nan, 8.0),
('1939', 'Drama', 8.2),
('1940', 'Drama', 8.4),
('1940', nan, 7.1),
('1942', 'Drama', 8.8),
....]
```

Student dataset:- Lab cycle-6

1. Combine the CSE & IT data and display the data

import pandas as pd
import numpy as np
cse = pd.read_csv("E:\Downloads\data-analysis\CSE.csv")
it = pd.read_csv("E:\Downloads\data-analysis\IT.csv")
student = pd.read_csv("E:\Downloads\data-analysis\student.csv")
cse.rename(columns={'Professional Elective':'PE'}, inplace=True)
merged_data = pd.merge(student, cse).append(pd.merge(student, it))
merged_data = merged_data.reset_index()
pd.concat([cse, it])

Output:

	Regd.No	CN	DAA	AFL	OE	PE
C	Y20CS001	10.0	15.0	11.0	16.0	12.0
1	Y20CS002	16.0	14.0	15.0	10.0	13.0
2	2 Y20CS003	3 15.0	12.0	32.0	12.0	NaN
3	Y20CS004	12.0	NaN	12.0	NaN	17.0
4	Y20CS005	14.0	16.0	13.0	25.0	6.0
5	Y20CS006	9.0	17.0	9.0 1	14.0	23.0
e	Y20CS007	13.0	3.0	NaN	17.0	16.0
7	Y20CS008	20.0	12.0	15.0	16.0	11.0

2. Display all CSE students' marks along with personal information. pd.merge(student, cse, on='Regd.No') Output:

	Regd.No	Name	Sex	Course	Branch	Address	EAMCET RANK	CN	DAA	AFL	OE	PE
0	Y20CS001	ADAPA HEMANTH VENKATA SAI PAVAN KUMAR	М	B.Tech	CSE	GUNTUR	2000	10.0	15.0	11.0	16.0	12.0
1	Y20CS002	ALAPARTHI VIVEK MADHAV	F	B.Tech	CSE	GUNTUR	1900	16.0	14.0	15.0	10.0	13.0
2	Y20CS003	ALIFA SHAIK	F	B.Tech	CSE	GUNTUR	3126	15.0	12.0	32.0	12.0	NaN
3	Y20CS004	ALLA NEEHARIKA	М	B.Tech	CSE	TENALI	2500	12.0	NaN	12.0	NaN	17.0
4	Y20CS005	AVYAKTHA	F	B.Tech	CSE	VINUKONDA	8000	14.0	16.0	13.0	25.0	6.0
5	Y20CS006	AMBATI MEGHANA	M	B.Tech	CSE	NARASARAOPET	4012	9.0	17.0	9.0	14.0	23.0
6	Y20CS007	ANCHA PRABANDHA	М	B.Tech	CSE	GUNTUR	5001	13.0	3.0	NaN	17.0	16.0
7	Y20CS008	APPANA HEMA SRI	F	B.Tech	CSE	GUNTUR	1201	20.0	12.0	15.0	16.0	11.0
8	Y20CS009	ARIKATLA VIJAYA LAKSHMI	F	B.Tech	CSE	VINUKONDA	17000	17.0	14.0	12.0	10.0	12.0

3. Print all students Regd.No, Name and professional elective.

merged_data[['Regd.No', 'Name', 'PE']]

Output:

	Regd.No	Name	PE
0	Y20CS001	ADAPA HEMANTH VENKATA SAI PAVAN KUMAR	12.0
1	Y20CS002	ALAPARTHI VIVEK MADHAV	13.0
2	Y20CS003	ALIFA SHAIK	NaN
3	Y20CS004	ALLA NEEHARIKA	17.0
4	Y20CS005	AVYAKTHA	6.0
5	Y20CS006	AMBATI MEGHANA	23.0
6	Y20CS007	ANCHA PRABANDHA	16.0
7	Y20CS008	APPANA HEMA SRI	11.0
8	Y20CS009	ARIKATLA VIJAYA LAKSHMI	12.0

4. Identify the students whose DAA marks are >18.

merged_data[merged_data['DAA']>18]

Output:

	index	Regd.No	Name	Sex	Course	Branch	Address	EAMCET RANK	CN	DAA	AFL	OE	PE
12	12	Y20CS013	BANDLA BHAVITHA	F	B.Tech	CSE	NARASARAOPET	3456	13.0	24.0	10.0	17.0	10.0

5. Display the names and EAMCET ranks of the students who got minimu m 12 marks in all courses.

 $\label{lem:merged_data} $$ merged_data["CN"]>=12)\&(merged_data['OE']>=12)\&(merged_data["AFL"]>=12)\&(merged_data['PE']>=12)\&(merged_data['DAA']>=12)][['Name','EAMCET RANK']]$

Output:

Name EAMCET RANK

6. Calculate mean value of all the subject's marks.

merged_data.loc[0:,['CN','DAA','AFL','OE','PE']].mean()

Out[6]:

CN 13.607143 DAA 14.000000 AFL 13.214286 OE 14.428571 PE 17.666667 dtype: float64

7. Display the names common in both CSE & IT along with Regd.No. merged_data[merged_data['Name'].duplicated()][['Name', 'Regd.No']] **Output:**

Name Regd.No

8. Fill the missing values of the data with average marks of the subject of s pecific group.

print(cse.fillna(cse.mean()))
print(it.fillna(it.mean()))

	Regd.No	CN	DAA	AFL	OE	PE
0	Y20CS001	10.0	15.000000	11.000000	16.000000	12.000000
1	Y20CS002	16.0	14.000000	15.000000	10.000000	13.000000
2	Y20CS003 15.0 12.000000		32.000000	12.000000	13.692308	
3	Y20CS004	CS004 12.0 14.071429		12.000000	14.428571	17.000000
4	Y20CS005	14.0	16.000000	13.000000	25.000000	6.000000
5	Y20CS006	9.0	17.000000	9.000000	14.000000	23.000000
6	Y20CS007	13.0	3.000000	13.428571	17.000000	16.000000
7	Y20CS008	20.0	12.000000	15.000000	16.000000	11.000000
8	Y20CS009	17.0	14.000000	12.000000	10.000000	12.000000
9	Y20CS010	5.0	16.000000	14.000000	9.000000	15.000000

	Regd.No	AFL	CN	DAA	PE
0	Y20IT001	15.0	12.000000	14.000000	12.000000
1	Y20IT002	13.0	13.000000	15.000000	15.000000
2	Y20IT003	12.0	14.000000	16.000000	14.000000
3	Y20IT004	14.0	14.214286	17.000000	16.000000
4	Y20IT005	16.0	18.000000	13.000000	18.000000
5	Y20IT006	9.0	15.000000	12.000000	17.000000
6	Y20IT007	10.0	22.000000	10.000000	3.000000
7	Y20IT008	11.0	12.000000	11.000000	125.000000
8	Y20IT009	13.0	16.000000	16.000000	21.357143
9	Y20IT010	12.0	14.000000	13.928571	8.000000

9. Divide the students into 5 groups based on average marks.

 $merged_data.fillna(merged_data[['CN', 'DAA', 'AFL', 'OE', 'PE']].mean(), inplace = True)$

merged_data['Avg_Marks'] = merged_data[['CN', 'DAA', 'AFL', 'OE', 'PE']].mea n(axis = 1)

merged_data['Group'] = pd.cut(merged_data['Avg_Marks'], bins=np.arange(10, 36, 5), labels=['A', 'B', 'C', 'D', 'E'])

 $merged_data[['Regd.No', 'Group']]$

Output:

_		
	Regd.No	Group
0	Y20CS001	A
1	Y20CS002	A
2	Y20CS003	В
3	Y20CS004	A
4	Y20CS005	A
5	Y20CS006	A
6	Y20CS007	A
7	Y20CS008	A
8	Y20CS009	A
9	Y20CS010	_
10	Y20CS011	A
11	Y20CS012	A

10.Create equal sized groups of students based on EAMCET Rank.

merged_data['group2']=pd.qcut(merged_data['EAMCET RANK'],6,labels=Fals e)

merged_data[['Regd.No','Name','group2']]

Output:

	Regd.No	Name	group2
0	Y20CS001	ADAPA HEMANTH VENKATA SAI PAVAN KUMAR	0
1	Y20CS002	ALAPARTHI VIVEK MADHAV	0
2	Y20CS003	ALIFA SHAIK	1
3	Y20CS004	ALLA NEEHARIKA	1
4	Y20CS005	AVYAKTHA	2
5	Y20CS006	AMBATI MEGHANA	2
6	Y20CS007	ANCHA PRABANDHA	2
7	Y20CS008	APPANA HEMA SRI	0
8	Y20CS009	ARIKATLA VIJAYA LAKSHMI	4
9	Y20CS010	AVULA CHAYA PRIYANKA	1
10	Y20CS011	AVULAPATI ANIL KUMAR	1
11	Y20CS012	BALAGA LAVANYA	0
12	Y20CS013	BANDLA BHAVITHA	1

11.Display the electives and the Regd.No of students who opted the elective along with the subject name.

print(cse[cse['OE'].notnull() & cse['PE'].notnull()][['Regd.No', 'OE','PE']])
print(it[it['PE'].notnull()][['Regd.No', 'PE']])

Output:

Regd.No OE PE

- 0 Y20CS001 16.0 12.0
- 1 Y20CS002 10.0 13.0
- 4 Y20CS005 25.0 6.0
- 5 Y20CS006 14.0 23.0
- 6 Y20CS007 17.0 16.0
- 7 Y20CS008 16.0 11.0
- 8 Y20CS009 10.0 12.0
- 9 Y20CS010 9.0 15.0
- 10 Y20CS011 16.0 14.0
- 12 Y20CS013 17.0 10.0

- 13 Y20CS014 14.0 16.0
- 14 Y20CS015 13.0 13.0

Regd.No PE

- 0 Y20IT001 12.0
- 1 Y20IT002 15.0
- 2 Y20IT003 14.0
- 3 Y20IT004 16.0
- 4 Y20IT005 18.0
- 5 Y20IT006 17.0
- 6 Y20IT007 3.0
- 7 Y20IT008 125.0
- 9 Y20IT010 8.0
- 10 Y20IT011 14.0
- 11 Y20IT012 17.0
- 12 Y20IT013 11.0
- 13 Y20IT014 13.0
- 14 Y20IT015 16.0

12. Compare the performance of the students from various cities.

 $merged_data['Address']).mean()$

Output:

	index	EAMCET RANK	CN	DAA	AFL	OE	PE	Avg_Marks	group2
Address									
CHILAKALURIPET	4.666667	14002.333333	15.666667	13.666667	15.000000	14.428571	14.666667	14.685714	3.333333
GUNTUR	4.555556	8152.222222	14.000000	13.222222	15.468254	14.142857	14.814815	14.329630	1.555556
NARASARAOPET	7.000000	11676.500000	12.901786	18.500000	11.500000	14.964286	16.666667	14.906548	3.000000
TENALI	8.000000	10998.200000	12.921429	13.000000	10.800000	14.742857	13.800000	13.052857	2.600000
VIJAYAWADA	10.000000	6141.250000	11.750000	12.750000	13.053571	12.964286	11.250000	12.353571	1.500000
VINUKONDA	9.400000	29000.000000	14.400000	14.000000	12.000000	15.371429	34.400000	18.034286	4.000000

13. Find the correlation between the marks of DS &DAA.

df = pd.concat([cse,it])

df['CN'].corr(df['DAA'])

Output:

-0.2031529941702545