Pairs of Random Variables

- · Now that we have a good understanding of a single random variable, we can study multiple random variables X1, X2,..., Xn and the relationships (e.g., dependencies) between them.
- " Most of the intuition is captured by n=2 random variables.

 → Notation: We usually use X and Y rather than X, and X2.

 → In general, we cannot think of Y as a function of X
- Examples: → X is the desired signal and Y is a noisy version.
 → X and Y are the temperatures in Boston on
 - two consecutive days
 - → X and Y are the ratings of a movie by two friends

- · We will use the CDF as a unifying framework (in the background) to describe discrete and continuous random variables.
 - -) Discrete: Use the CDF to get the PMF, which is easier to work with.
 - -) Continuous: Use the CDF to get the PDF, which is easier to work with.

Joint Cumulative Distribution Function

The joint cumulative distribution function (CDF) $F_{x,y}(x,y)$ of a pair of random variables X and Y is the probability that X is less than or equal to x and Y is less than or equal to y,

$$F_{x,y}(x,y) = P[\{\omega \in \Omega : X(\omega) \le x, Y(\omega) \le y\}]$$

$$= P[\{X \le x\} \cap \{Y \le y\}] \xrightarrow{\text{Shorthand notation}} \text{Shorthand notation}$$

$$= P[X \le x, Y \le y] \xrightarrow{\text{Comma means "and"}}$$

- · Properties: -> Fx, x(x,y) > 0 (Non-negativity) -> lim Fx, x(x,y) = 1 (Normalization)
 - → Fxix(xiy) & Fxix(x,y) for x & x, y & y (Non-decreasing)
 -) $\lim_{y\to\infty} F_{x,y}(x,y) = F_{x}(x)$ and $\lim_{x\to\infty} F_{x,y}(x,y) = F_{y}(y)$ (Marginalization)

Joint Probability Mass Function

The joint probability mass function (PMF) $P_{x,y}(x,y)$ of a pair of discrete random variables X and Y is the probability that X equals x and Y equals y,

$$P_{x,y}(x,y) = P[\{\omega \in \Omega : X(\omega) = x, Y(\omega) = y\}]$$

$$= P[\{X = x\} \cap \{Y = y\}] \text{ shorthand notation}$$

$$= P[X = x, Y = y]$$

• The range $R_{x,y}$ of a pair of discrete random variables is the set of possible values,

· We can derive the joint PMF from the joint CDF but it will be easier to work with the joint PMF directly.

- · Properties of the Joint PMF:
- → Px,y (x,y) ≥ O (Non-negativity)
- $\rightarrow P[\{(x,y) \in B\}] = \sum_{(x,y) \in B} P_{x,y}(x,y) \quad (additivity)$
- * The marginal PMFs $P_{x}(x)$ and $P_{y}(y)$ are the PMFs for the individual random variables X and Y.
 - Sum the joint PMF over the undesired variable to get a marginal PMF. $P_{x}(x) = \sum_{y \in R_{y}} P_{x,y}(x,y) P_{y}(y) = \sum_{x \in R_{x}} P_{x,y}(x,y)$
 - -) The marginal PMFs alone are not enough to determine the joint PMF.

· Can visualize the joint PMF as a table:

Marginalize to get Pr(y)

P _{x,y} (_{x,y})				×]		•		
		×,	Xz	×3	•••	×m	Sum over Columns		
Y	۸٠	P _{×,4} (×,,4)	Px, y(x2, y1)	Px14 (x3, Y1)	•••	Px14 (xm,4)	P / \ -	P ₄ (4,) P ₄ (42)	y=Y
	y ₂	Px, y (x, y2)	Px, (xx, yx)	Px, y (x3, y2)	•••	Px, y (xx, yz)	14(4)	P. (y2)	y= y
	:	:	:	:	٠.	;	:	/ :	
	Ϋ́n	Px17 (x1, yn)	Px,4 (x2,40)	P, (x3 yn)	• • •	Px,4 (xm,4n)		Pr(yn)	y =

Muryinalize to get $P_{x}(x)$

$$P_{x}(x) = \begin{pmatrix} P_{x}(x_{1}) & x = x_{1} \\ P_{x}(x_{2}) & x = x_{2} \\ P_{x}(x_{3}) & x = x_{3} \\ \vdots & \vdots \\ P_{x}(x_{n}) & x = x_{n} \end{pmatrix}$$

Properties Non-negativity: No negative entries.

additivity: add up subset of entries.

· Can visualize the joint PMF as a 3-d plot: $\uparrow P_{x}(x)$ Non-negativity: No negative values Normalization: Heights add to 1. the marginal PMF of Y. marginal PMF

Joint PMF

· Example:	a	, ,	×				
· Example: Pxx (x,y)			1	2	3		
	. 4	1	1/3	0	0		
	y	2	16	16	1 3		

Sum over Columns $\frac{P}{P_{Y}(y)} = \begin{cases}
\frac{1}{3} & y = 1 \\
\frac{2}{3} & y = 2
\end{cases}$

$$\frac{2}{3} y = 1$$

$$\frac{2}{3} y = 2$$

Sum over rows

$$P_{\times}(\times) = \begin{pmatrix} \frac{1}{2} & x = 1 \\ \frac{1}{6} & x = 2 \\ \frac{1}{3} & x = 3 \end{pmatrix}$$
of \times

Calculate IP[X = Y].

· Recall that all probability questions are implicitly about the probability of membership in a set.

> This is shorthand for the event {(X,Y) & B} with $B = \{(1,1), (1,2), (2,2)\}$

$$|P[X \le Y] = |P[\{(x,y) \in B\}]
 = \sum_{(x,y) \in B} P_{x,y}(x,y)
 = P_{x,y}(1,1) + P_{x,y}(1,2) + P_{x,y}(2,2)
 = \frac{1}{3} + \frac{1}{6} + \frac{1}{6} = \frac{2}{3}$$