SEMINAR BIG DATA VISUALIZATION

Thái Hồ Phú Hào – 1670219 Trần Mạnh Kha – 13070237 Nguyễn Như Hải – 1670218 Nguyễn Thị Huyền – 1670225

TÀI LIỆU THAM KHẢO

- [1] PROFESSOR CHING-YUNG LIN.: Slide Big Data Visualization, Columbia University
- [2] Nguyen Thanh Tan and Insu Song.: Big Data Visualization. In ICISA 2016, 399-408
- [3] Bauer, M.I., Johnson-Laird, P.N.: How diagrams can improve reasoning. Psychological Science 4(6), 372–378 (1993)
- [4] Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11(1), 65–100 (1987)
- [5] Mayer, R.E., Gallini, J.K.: When is an illustration worth ten thousand words? Journal of Educational Psychology 82(4), 715 (1990)
- [6] Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in information visualization: using vision to think. Morgan Kaufmann (1999)
- [7] Colin, W.: Information visualization: perception for design. Morgan Kaufmann, San Francisco (2004)
- [8] Ma, K.-L., Stompel, A., Bielak, J., Ghattas, O., Kim, E.J.: Visualizing very large-scale earthquake simulations. In: 2003 ACM/IEEE Conference on Supercomputing, pp. 48–48. IEEE (2003)
- [9] Yi, J.S., ah Kang, Y., Stasko, J.T., Jacko, J.A.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics 13(6), 1224–1231 (2007)
- [10] Lamping, J., Rao, R., Pirolli, P.: A focus+ context technique based on hyperbolic geometry for visualizing large hierarchies. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 401–408. ACM Press/Addison-Wesley Publishing Co. (1995)

Nội dung

- 1. Giới thiệu
 - 1.1 Hình dung là gì?
 - 1.2 Tại sao chúng ta tạo sự hình dung?
 - 1.3 Các kỹ thuật hình dung hiện tại
- 2. Big Data Visualization
 - 2.1 Thách thức
 - 2.2 Kỹ thuật
- 3. Làm thế nào chúng ta có thể hình dung được dữ liệu lớn
 - 3. 1 Kỹ thuật chính
 - 3.2 Công cụ mã nguồn mở
 - 3.3 Ví dụ
- 4. Phân tích trực quan dữ liệu lớn

1. Giới thiệu

Làm thế nào chúng ta có thể có được thông tin?

Tín hiệu quả?

Tín hiệu hóa học

Tín hiệu vật lý

Không thể ước lượng bằng lý thuyết thông tin

Tín hiệu quả?

Tín hiệu âm thanh

Tín hiệu ánh sáng

"Trực quan hoá thông tin, Nhận thức về Thiết kế"

Tại sao hiệu quả?

Tư duy sáng tạo

Xử lý song song để trích xuất các thuộc tính hình ảnh ở mức thấp như màu sắc, hình dang, v.v ...

Giai đoạn 1 → Giai đoạn 2 → Giai đoạn 3

Sư sớm, song song thị giác thành của màu sắc, kết các vùng và cấu, hình dạng, các mẫu đơn thuộc tính không

phát hiện Chia trường giản

Giữ đối tượng trong bộ nhớ làm việc theo yêu cầu của sự chú ý tích cưc

Ví dụ

Ví dụ

Ví dụ

Hình dung được sử dụng để giúp lý luận và ra quyết định

Minh họa thông tin là gì?

"The action or fact of visualizing; the power or process of forming a mental picture or vision of something not actually present to the sight; a picture thus formed."

-- Oxford English Dictionary

"... finding the artificial memory that best supports our natural means of perception."

-- Bertin, 1983

The use of computer-supported, interactive, visual representations of abstract data to amplify cognition

-- Cart, Mackinlay, Shneiderman, 1999

Tại sao chúng ta tạo sự hình dung?

1.2 Tại sao chúng ta tạo sự hình dung?

Đếm số 3 trong đoạn văn sau:

1235693234870452973467 0378937043679709102539

Tìm mẫu

Đếm số 3 trong đoạn văn sau:

1235693234870452973467 0378937043679709102539

Tìm mẫu

Bạn có thể xác định các nhóm các chấm trong các hình sau đây?

Luật gần

Chúng ta có xu hướng nhóm các yếu tố gần nhau nhất

1.2 Tại sao chúng ta tạo sự hình dung?

	Set A		Set B		Set C		Set D	
	X	Υ	X	Υ	X	Υ	X	Υ
0	10	8.04	10	9.14	10	7.46	8	6.58
1	8	6.95	8	8.14	8	6.77	8	5.76
2	13	7.58	13	8.74	13	12.74	8	7.71
3	9	8.81	9	8.77	9	7.11	8	8.84
4	11	8.33	11	9.26	11	7.81	8	8.47
5	14	9.96	14	8.10	14	8.84	8	7.04
6	6	7.24	6	6.13	6	6.08	8	5.25
7	4	4.26	4	3.10	4	5.39	19	12.50
8	12	10.84	12	9.13	12	8.15	8	5.56
9	7	4.82	7	7.26	7	6.42	8	7.91
10	5	5.68	5	4.74	5	5.73	8	6.89
mean	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
std	3.32	2.03	3.32	2.03	3.32	2.03	3.32	2.03
corr	0.82		0.82		0.82		0.82	
lin. reg.	y = 3.00 + 0.500x		y = 3.00 + 0.500x		y = 3.00 + 0.500x		y = 3.00 + 0.500x	

Xem dữ liệu trong ngữ cảnh

1.2 Tại sao chúng ta tạo sự hình dung?

Một bức tranh đáng giá ngàn lời nói

Một số lý do khác

- Xem dữ liệu trong ngữ cảnh
- Tìm mẫu
- Kể một câu chuyện
- Thu hút sự chú ý
- Giao tiếp với người khác
- Tóm tắt và giải thích
- Tính toán đồ họa
- Chi tiêu bộ nhớ
- Truyền cảm hứng cho mọi người

1. Giới thiệu

Các kỹ thuật hiện hình hiện tại

Visualization & Visual Analysis Reference Model

Phân loại theo loại dữ liệu

Ví dụ: Hình dung dữ liệu số 1D

Ví dụ: Dữ liệu 2D

Kích thước của mỗi ô: Giá trị của thị trường chứng khoán

Màu sắc: Thay đổi Cổ phiếu

Ví dụ: Dữ liệu Đa chiều

Ví dụ: Hình dung dữ liệu cấu trúc

Ví dụ: Hình dung dữ liệu phi cấu trúc

Visualization of Text Documents

Ví dụ: Không gian địa lý

Larger cinema markets support stronger domestic film industries.

Countries sized by relative share of worldwide box office revenue, 2009

Ví dụ: Hình dung dữ liệu thời gian không gian

Ví dụ: Hình dung dữ liệu thời gian không gian

wind map

Dec. 3, 2014 11:35 am EST (time of forecast download)

top speed: 31.5 mph average: 8.2 mph

30 mph

http://hint.fm/wind/

Hình dung không chỉ là một bức tranh đẹp

Mục đích của hình dung là để lộ ra cái nhìn sâu sắc của dữ liệu

InfoVis v.s. Scientific Visualization

Scientific Visualization (SCIVIS) Information Visualization (InfoVis)

Visual Analysis (VA)

Abstract Data

InfoVis
Data Mining
Machine Learning

Traditional

Research Trend

Modern Technique

Big Data Visualization

Big Data Visualization

340 triệu lượt xem trong một ngày!

4 tỷ tin nhắn trong một ngày

Thách thức

Làm thế nào chúng ta có thể có được thông tin hữu ích từ rất nhiều các dữ liệu.

Đa dạng, tốc độ, khối lượng (3Vs)

Thách thức

Lộn xộn

Hiệu năng

Giới hạn nhận thức

Kỹ thuật (1): Pixel Oriented Visualization

Mục dữ liệu

Thuộc tín 1

Thuộc tín 2

Thuôc tín 3

Thuộc tín 4

Thuộc tín 5

Thuộc tín 6

Một mục dữ liệu đa chiều chứa 6 thuộc tính

Kỹ thuật (1): Pixel Oriented Visualization

Kỹ thuật (2): Tổng hợp và mức độ chi tiết

Xây dựng một cây để tổng hợp dữ liệu theo cách tiếp cận từ dưới lên hoặc từ trên xuống

Kỹ thuật (2): Tổng hợp và mức độ chi tiết

Kỹ thuật (3): Distortion

Kỹ thuật (3): Distortion

Kỹ thuật (4): Giảm bớt lộn xộn

Kỹ thuật (4): Giảm bớt lộn xộn

Kỹ thuật (4): Giảm bớt lộn xộn

Kỹ thuật (5): Truy vấn dựa trên trực quan

Kỹ thuật (6): Tính toán song song qua GPU hoặc GUGPU

A Survey of GPU-Based Large-Scale Volume Visualization, EuroVis, 2014

Làm thế nào chúng ta có thể hình dung được dữ liệu lớn

Hình ảnh và mô hình tham chiếu phân tích trực quan

Mã hoá: Thiết kế Trực quan

Kỹ thuật: Giao diện Thuật toán

Sử dụng các công cụ hiện có

Tableau

ManyEyes

Công cụ mã nguồn mở

Python:

iGraph: http://igraph.org/redirect.html

Networkx: https://networkx.github.io/

JavaScript:

D3.js (2D, SVG): http://d3js.org/

Tree.js (3D, WebGL): http://threejs.org/

Java:

prefuse: http://prefuse.org/

InofVis Toolkit: http://ivtk.sourceforge.net/

Công cụ mã nguồn mở

Việc phát triển những chương trình mới cần có kiến thức từ các lĩnh vực khác nhau

Làm thế nào chúng ta có thể hình dung được dữ liệu lớn

Ví dụ 1: Visualising Streaming Data

Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time IEEE InfoVis 2012

Làm thế nào chúng ta có thể hình dung được dữ liệu lớn

Ví dụ 2: Visualizing Large Text Corpus

pervent cular enables enables diabetes diabetes insightus completions diabetes diabetes analytic and diabetes diabetes analytic and diabetes diabetes analytic central diabetes analytic completions diabetes analytic central diabetes diabet

ContexTour SDM 2010

Visualizing Heterogeneous Clusters FacetAtlas TVCG (InfoVis 2010)

Visualizing Multi-relational Clusters SolarMap ICDM 2011

Cluster Interpretation

Phân tích trực quan dữ liệu lớn

Visual Analysis v.s. Data Mining

Sức mạnh máy tính

Trí tuệ con người

Phân tích trực quan

Visual Analysis v.s. Data Mining

Phân tích + Hình dung + tương tác

Phân tích trực quan dữ liệu lớn

Ví dụ 3:

Phát hiện người dùng bất thường trong Twitter

TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems, IEEE Transactions on Visualisation and Computer Graphics (VAST'15)

Phân tích trực quan dữ liệu lớn

Ví dụ 4: Hình dung các đồ thị lớn

g-Miner: Interactive Visual Group Mining on Multivariate Graphs, ACM CHI 2015

BIG DATA VISUALIZATION

BIG DATA VISUALIZATION

CÁM ƠN THẦY VÀ CÁC BẠN