

properties of superexponentiation

Canonical name PropertiesOfSuperexponentiation

Date of creation 2013-03-22 19:07:21 Last modified on 2013-03-22 19:07:21

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)

Entry type Result
Classification msc 40-00
Classification msc 03D20

Related topic SuperexponentiationIsNotElementary

In this entry, we list some basic properties of the superexponetial function $f: \mathbb{N}^2 \to \mathbb{N}$, defined recursively by

$$f(m,0) = m,$$
 $f(m,n+1) = m^{f(m,n)}.$

Furthermore, we set f(0, n) := 0 for all n.

Given m, the values of f are

$$m, m^m, m^{m^m}, \cdots, m^{m^m},$$

where the evaluation of these values start from the top, for example: $3^{3^3} = 3^{81}$.

Proposition 1. Suppose $x, y, z \in \mathbb{N}$ (including 0), and for all except the first assertion, x > 1.

- 1. $x \le f(x, y)$.
- 2. f(x,y) is increasing in both arguments.
- 3. $2f(x,y) \le f(x,y+1)$.
- 4. $f(x,y)^2 \le f(x,y+1)$.
- 5. $f(x,y)^{f(x,y)} \le f(x,y+2)$
- 6. $f(x,y) + f(x,z) \le f(x,1+\max\{y,z\})$.
- 7. $f(x,y) \cdot f(x,z) \le f(x,1+\max\{y,z\})$.
- 8. $f(x,y)^{f(x,z)} \le f(x,2+\max\{y,z\}).$
- 9. $f(f(x,y),z) \le f(x,y+2z)$.
- 10. y < f(x, y).

Proof. Most of the proofs are done by induction.

1. The case when x=0 is obvious. Assume now that $x \neq 0$. Induct on y. The case y=0 is clear. Suppose $x \leq f(x,y)$. Then $x \leq x^x \leq x^{f(x,y)} = f(x,y+1)$.

- 2. To see f(x,y) < f(x,y+1) for x > 1, induct on y. First, $f(x,0) = x < x^x = f(x,1)$. Next, assume f(x,y) < f(x,y+1). Then $f(x,y+1) = x^{f(x,y)} < x^{f(x,y+1)} = f(x,y+1)$.
 - To see f(x,y) < f(x+1,y) for x > 1, again induct on y. First, f(x,0) = x < x+1 = f(x+1,y). Next, assume f(x,y) < f(x+1,y). Then $f(x,y+1) = x^{f(x,y)} < (x+1)^{f(x,y)} < (x+1)^{f(x+1,y)} = f(x+1,y+1)$.
- 3. Induct on y: if y = 0, then $2f(x,0) = 2x \le x^2 \le x^x = f(x,1)$. Next, assume $2f(x,y) \le f(x,y+1)$. Then $2f(x,y+1) = x^{f(x,y)} \le x^{2f(x,y)} \le x^{f(x,y+1)} = f(x,y+2)$.
- 4. If y=0, then $f(x,0)^2=x^2 \le x^x=x^{f(x,0)}=f(x,1)$. Otherwise, y=z+1. Then $f(x,y)^2=f(x,z+1)^2=x^{2f(x,z)} \le x^{f(x,z+1)}=x^{f(x,y)}=f(x,y+1)$. The inequality $2f(x,z) \le f(x,z+1)$ is derived previously.
- 5. If y = 0, then $f(x,0)^{f(x,0)} = x^x = f(x,1) \le f(x,2)$. Otherwise, y = z + 1. Then $f(x,y)^{f(x,y)} = f(x,z+1)^{f(x,z+1)} = x^{f(x,z)f(x,z+1)} \le x^{f(x,z+1)^2} = x^{f(x,z+2)} = f(x,z+3) = f(x,y+2)$.

From the last three statements, the next three proofs can be easily settled, first, let $t = \max\{y, z\}$. Then

- 6. $f(x,y) + f(x,z) \le 2f(x,t) \le f(x,t+1)$.
- 7. $f(x,y)f(x,z) = f(x,t)^2 \le f(x,t+1)$.
- 8. $f(x,y)^{f(x,z)} \le f(x,t)^{f(x,t)} \le f(x,t+2)$.
- 9. Induct on z. If z=0, then f(f(x,y),0)=f(x,y). Next, assume $f(f(x,y),z) \leq f(x,y+2z)$. Then $f(f(x,y),z+1)=f(x,y)^{f(f(x,y),z)}=f(x,y)^{f(x,y+2z)} \leq f(x,y+1)^{f(x,y+2z)} \leq x^{f(x,y)f(x,y+2z)} \leq x^{f(x,y+2z+1)}=f(x,y+2z+2)$.
- 10. Induct on y. The case when y = 0 is obvious. Next, if y < f(x, y), then $y + 1 < f(x, y) + 1 < f(x, y) + f(x, 0) \le f(x, y + 1)$.

Concerning the recursiveness of f, here is another basic property of f:

Proposition 2. f is primitive recursive.

2

Proof. Since $f(m,0) = m = p_1^1(m)$ and $f(m,n+1) = \exp(m,f(m,n)) = g(m,n,f(m,n))$, where $g(x,y,z) = \exp(p_1^3(x,y,z),p_3^3(x,y,z))$, are defined by primitive recursion via functions p_1^1 and g, and since the projection functions p_i^j , the exponential function exp, and consequently g, are primitive recursive (g obtained by composition), we see that f is primitive recursive. \square

Remark. Another recursive property of f is that f is not elementary recursive. The proof uses the properties listed above. It is a bit lengthy, and is done in the link below.