Thoughts on building meta-data representation

- based on several FDD attempts

BAS points representation

What information do we need?

- Location Information (location level)
 - Building. Floor. Zone
- Functional/Context Information (asset level)
 - Absolute Location ref of VAV/AHU (physical loc)
 - Context ref of asset (connection of ahu-vav, ahu-zone)
- Inner Information (point level)
 - Sensing points meta: type, asset ref, functionality (difference between outside/return/mix/ discharge[supply]/exhaust air)

Location Information

JSON

```
"Building": {
  "building_meta": "on hold (building description, consruction year etc.)",
  "ref_id": "uuid",
  "structure": {
    "Floor1": {
      "floor_meta": "on hold (floor map, description, etc.)",
      "ref_id" : "uuid",
      "structure": [
          "zone": "102",
          "zone_meta": "classroom",
          "ref_id": "uuid"
          "zone": "113",
          "zone-meta": "office",
          "ref id": "uuid"
    "Floor2": {
      "floor_meta": "on hold (floor map, description, etc.)",
      "ref_id" : "uuid",
      "structure": [
          "zone": "212",
          "zone_meta": "auditorium",
          "ref id": "uuid"
```

```
■ Building {3}
     building meta: on hold (building description, consruction year etc.)
     ref id : uuid

▼ Floor1 {3}
            floor_meta : on hold (floor map, description, etc.)
            ref id : uuid

▼ structure [2]

▼ 0 {3}
                  zone : 102
                  zone_meta : classroom
                  ref id: uuid

▼ 1 {3}
                  zone : 113
                  zone-meta: office
                  ref_id : uuid

▼ Floor2 {3}
            floor_meta : on hold (floor map, description, etc.)
            ref id: uuid

▼ structure [1]

▼ 0 {3}
                  zone : 212
                  zone_meta : auditorium
                  ref id: uuid
```

Functional/Context Information

Absolute Location ref of VAV/AHU (physical loc)

```
e.g. AHU2: {loc_ref: floor_uuid}
VAV1: {loc_ref: zone_uuid}
```

 Context ref of asset: The idea is to find out which VAVs/zones are drawing air from AHU, which AHU is supplying air for VAV/zone

```
e.g. AHU2: {fun_ref: [vav_uuid1,..., zone_uuid]}
VAV1: {fun_ref: ahu_uuid}
FCU1: {fun_ref: zone_uuid}
```

 Point ref of asset: find all the points inside each asset e.g. AHU2: {point_ref:[uuid_1,uuid2]}

JSON

```
"AHU": {
    "AHU_meta": "on hold (ahu description, consruction year etc.)",
    "ref id": "uuid",
    "loc_ref": "uuid",
    "fun_ref": [
        "id": "uuid 1",
        "notes": "supplying air to the VAV"
        "id": "uuid 2",
        "notes": "supplying air to the zone"
    "point_ref": ["uuid1", "uuid2"]
  "VAV": {
    "VAV meta": "on hold",
    "ref_id": "uuid",
    "loc_ref": "uuid",
    "fun ref": [
        "id": "uuid 1",
        "notes": "draw air from this AHU unit"
    "point_ref": ["uuid1","uuid2"]
  "FCU": {
    "FCU_meta": "on hold",
    "ref_id": "uuid",
    "loc_ref": "uuid",
    "fun_ref": [
        "id": "uuid_1",
        "notes": "supplying air to this zone"
    "point_ref": ["uuid1", "uuid2"]
```

```
AHU meta: on hold (ahu description, consruction year etc.)
     ref id: uuid
     loc_ref : uuid

y fun ref [2]

      ▶ 0 {2}
      1 {2}

▼ point_ref [2]
        0 : uuid1
        1 : uuid2
VAV_meta : on hold
     ref_id : uuid
     loc_ref : uuid

y fun_ref [1]

      ▶ 0 {2}

▼ point_ref [2]
        0 : uuid1
        1 : uuid2

▼ FCU {5}
     FCU meta: on hold
     ref_id : uuid
     loc ref : uuid

y fun_ref [1]

▼ 0 {2}

           id : uuid 1
           notes: supplying air to this zone

▼ point_ref [2]
        0 : uuid1
        1 : uuid2
```

Inner Information

We assume all points are located within assets/zones, and we focus only on hardware points

- Uuid, asset_ref, (loc_ref)
- Point category: valve, temperature, fan
- functionality(extend Haystack): outside air temperature
- acronym: unique among each asset
- Value: define legitimate range of values
- Unit: F, cfm, kwh
- IOType: AI, AO, DI(BI),DO(BO)
- (extendable)

JSON

```
[
    "display_name": "OAT",
    "ref_id": "uuid",
    "asset_ref": "asset_uuid",
    "loc_ref": "loc_uuid",
    "category": "valve",
    "functionality": "outside air temperature",
    "acronym": "OAT",
    "value": "define legitimate range of values",
    "unit": "Fahrenheit",
    "IOType": "AI",
    "other": "..."
}
```

```
0 {11}
    display_name : OAT
    ref_id : uuid
    asset_ref : asset_uuid
    loc_ref : loc_uuid
    category : valve
    functionality : outside air temperature
    acronym : OAT
    value : define legitimate range of values
    unit : Fahrenheit
    IOType : AI
    other : ...
```

Dictionary

 Every time an uuid is created/updated, the path of that element will be stored into a dictionary.

– E.g. {"uuid1": "location.Building.structure.floor1"}

Easy access to elements in O(1) time

Application Example1

FDD rules applied to AHUs in different buildings.

"when supply air fan is on and both heating and cooling coil is on, raise an alarm" (Simultaneously heating and cooling)

We need supply air fan, hot water valve, chilled water valve

Sage	Johnson Control	AutomatedLogic	Siemens
		Automateulogic	Siemens
PH.AHU.RMA17D.SAF.	PC-NAE-1/N2-1.EN1.SF-	AHU-4 I/O/SF s/s	DOH.AHU.001.SAF
PRESENT_VALUE	S.PRESENT_VALUE		
PH.AHU.RMA17D.CCV.	PC-NAE-1_PC-NAE-1/N2-1.EN1.CLG-	AHU-4 I/O/chw vlv	DOH VHIT 001 CCO
PRESENT_VALUE	VLV.PRESENT_VALUE	Allo-4 i/ O/ cliw viv	DOTI.ATTO.001.CCO
PH.AHU.RMA17D.HCV.	PC-NAE-1_PC-NAE-1/N2-1.EN1.PH-	AHU-4 I/O/pht hw vlv	DOH VHIT 001 HCO
PRESENT_VALUE	VLV.PRESENT_VALUE	Allo-4 i/ O/ plit liw viv	DOM.AMO.001.MCO

Efforts are spent to locate the required points!

Application Example 2

Trouble shooting: two AHUs in the same floor, one is 100% cooling, the other is 40% heating

Application Example 2 (cont'd)

- Unable to find where the discharge air from AHU is supplied to. Go to design drawings.
- Well, not very informative...
- Eventually, we have to call the technician, turns out AHU4(cooling one) is supplying air to VAVs and AHU5(heating one) is supplying air to a large grage space directly.

Application Example 3

• Abnormal duct pressure. (0.1 "w.c., others are like 1.7 "w.c.) what does that mean?

- People have to go to the design drawing, get the duct specs(size, shape, etc.), convert to flow rate, then check if the OAF+RAF ≈ EAF+DAF
- Turns out to be a broken sensor