Laboratorium z Logiki Układów Cyfrowych

Nr ćwiczenia 203(a).

Temat ćwiczenia: Układy sekwencyjne (Rejestry)

Nazwisko i Imię prowadzącego kurs: Zbigniew Buchalski

Wykonawca:			
Imię i Nazwisko osób, wykonujących cwiczenie	Dzmitry Kuzma, Timofey Taushanau		
Termin zajęć: dzień tygodnia, godzina	Piątek, 13:15-15:00		
Numer grupy ćwiczeniowej	20		
Data oddania sprawozdania:	20-10-2023		
Ocena końcowa			

1 Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z podstawowymi elementami rejestrów oraz metodami syntezy złożonych układów rejestrów. Rejestry są kluczowym elementem sekwencyjnych układów logicznych, umożliwiają przechowywanie i przetwarzanie informacji w formie sekwencji bitów. W trakcie tego ćwiczenia dowiedzielismy się, jak działają rejestry, jak projektować je i jak wykorzystywać w bardziej złożonych układach, takich jak rejestry szeregowe

2 Opis ćwiczenia

W trakcie tego ćwiczenia mieliśmy okazję zapoznać się praktycznie z działaniem przerzutników i zaprojektować dwa różne układy sekwencyjne, wykorzystując przerzutniki JK oraz D. Nasze działania w ramach tych ćwiczeń można podzielić na trzy główne etapy:

W pierwszym zadaniu skupiliśmy się na budowie przerzutnika RS w technice NOR i NAND. Przerzutniki RS są jednymi z podstawowych elementów sekwencyjnych układów logicznych i umożliwiają przechowywanie informacji oraz kontrolowanie ich stanu.

W drugim zadaniu skorzystaliśmy z przerzutnika JK, aby zamodelować przerzutniki D i T. Przerzutniki JK są wszechstronne i pozwalają na różnorodne operacje sekwencyjne, takie jak przechowywanie danych, tworzenie dzielników częstotliwości, czy realizację funkcji logicznych.

W trzecim zadaniu skonstruowaliśmy szeregowy rejestr z równoległym wpisem informacji, który pozwolił nam na przesuwanie danych w tył. Ten typ rejestrów jest przydatny w wielu aplikacjach, takich jak przetwarzanie danych w strumieniach, odczytywanie i zapisywanie informacji w określonej kolejności.

3 Zadanie 1. Zbudować przerzutnik RS w technice NOR i NAND

Zbudować przerzutnik RS w technice NOR i NAND.

Rysunek 1: Z góry przerzutnik NOR, z dołu przerzutnik NAND

Tabela 1: Przerzutnik asynchroniczny RS (NOR)

S(t)	R(t)	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	-

Tabela 2: Przerzutnik asynchroniczny RS (NAND)

S(t)	R(t)	Q(t+1)
0	0	_
0	1	1
1	0	0
1	1	Q(t)

Przedstawiony schemat, w którym wykorzystano przerzutnik RS w technice NOR i NAND, został dokładnie sprawdzony i przetestowany w symulatorze. Po zbudowaniu układu potwierdziliśmy, że nasz układ działał prawidłowo i zgodnie z oczekiwaniami.

4 Zadanie 2. Wykorzystując przerzutnik JK zamodelować przerzutnik D i T

Wykorzystując przerzutnik JK zmodelować przerzutnik D i T

Rysunek 2: Z góry przerzutnik D, z dołu przerzutnik T

Tabela 3: Przerzutnik typu D

D	Q(t)	Q(t+1)
0	0	0
0	1	0
1	0	1
1	1	1

Tabela 4: Przerzutnik typu T

Т	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

W drugim zadaniu, gdzie wykorzystywaliśmy przerzutnik JK do zamodelowania przerzutników D i T, również przed ćwiczeniem przeprowadziliśmy szczegółowe testy w symulatorze. Dzięki tym testom potwierdziliśmy, że nasze przerzutniki D i T działają zgodnie z oczekiwaniami.

Ponadto, w trakcie tych ćwiczeń opracowaliśmy również tabele prawdy, które dokładnie opisywały zachowanie naszych przerzutników w zależności od sygnałów wejściowych. Te tabele prawdy pomogły nam lepiej zrozumieć charakterystykę działania naszych układów i były przydatne przy ich dalszym projektowaniu oraz integracji z innymi elementami układu.

5 Zadanie 3. Zrealizować szeregowy rejestr z równoległym wpisem informacji przesuwający w tył

Zrealizować szeregowy rejestr z równoległym wpisem informacji przesuwający w tył

 docko

 docko

Tabela 5: Rejestr szeregowy z równoległym wpisem informacji przesuwający w tył

t			t+1				
q0	q1	q2	q3	q0	q1	q2	q3
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	0
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	0
1	1	1	1	1	1	1	0

W trzecim zadaniu, gdzie budowaliśmy układ szeregowego rejestru z równoległym wpisem informacji, który umożliwiał przesuwanie danych w tył. W jednym z przypadków popełniliśmy błąd w podłączeniu układu, co skutkowało jego niepoprawnym działaniem.

Jednak po poprawieniu tego błędu, nasz układ zaczął działać zgodnie ze schematem. Monitorowanie procesu przesuwania danych w tył pozwoliły nam potwierdzić, że nasz szeregowy rejestr działa prawidłowo.

6 Wnioski

Na podstawie wyników z tych zadań można wyciągnąć następujące wnioski dotyczące całego ćwiczenia:

Ćwiczenie pozwoliło nam na praktyczne zrozumienie działania różnych typów przerzutników, takich jak przerzutnik RS, JK, D i T. Dzięki temu nabraliśmy głębszej wiedzy na temat ich zastosowań i możliwości.

Doświadczenia związane z błędami w podłączeniu układów były cennym przypomnieniem, że dokładność i staranność są kluczowe podczas projektowania sekwencyjnych układów logicznych.

Opracowanie tabel prawdy pomogło nam w pełnym zrozumieniu zachowania naszych układów w zależności od sygnałów wejściowych. Tabele te były przydatne podczas projektowania układów na ćwiczeniu, bo mogliśmy sprawdzić, czy ten układ działa poprawnie.

Ćwiczenie pokazało, że z wykorzystaniem podstawowych elementów, takich jak przerzutniki, jesteśmy w stanie projektować bardziej skomplikowane sekwencyjne układy logiczne, takie jak szeregowy rejestr z równoległym wpisem informacji.