First Name:
Last Name:
Student ID:

First Name:
Last Name:
Student ID:

First Name:
Student ID:

Student ID:

We declare that this assignment is solely our own work, and is in accordance with the University of Toronto Code of Behaviour on Academic Matters.

This submission has been prepared using \LaTeX .

Problem 1.

```
(6 Marks)
Consider the following Python code:
def mystery(L):
    , , ,
    :param L: List of size n
    :return: A mystery number
    , , ,
    sum1 = 0
    sum2 = 0
    bound = 1
    while bound \leq len(L):
         i = 0
         while i < bound:
             j = 0
             while j < len(L):
                 if L[j] > L[i]:
                      sum1 = sum1 + L[j]
                 j = j + 2
             j = 1
             while j < len(L):
                 sum2 = sum2 + L[j]
                 j = j*2
             i = i + 1
        bound = bound * 2
    return sum1 + sum2
```

- 1. (3 Marks) Denote the time complexity of the given code T(n) as a function of n where n is the size of the list L. Compute T(n). Justify all steps.
- 2. (3 Marks) Prove that $T(n) \in O(n^{\frac{5}{2}})$. Hint: You can use without proof the following: $\forall \alpha \in \mathbb{R}^+ : \log_2 n \in O(n^{\alpha})$.

Solution

1. Sample Solution

• The value of variable bound on completion of iteration b is 2^b .

Proof by induction on the number of iterations

Let b denote the number of iterations.

Initial Step : Let b = 1.

Then bound = 2.

Inductive Step: Assume bound= 2^b on iteration b.

Then bound = bound*2 so bound = $2^b 2 = 2^{b+1}$ on iteration b+1.

• The bound loop terminates when the loop count is $\lfloor \log_2 n \rfloor + 1$.

Proof

Let B be the count of last loop.

Then bound= 2^B .

Also bound > n.

Then $B > \log_2 n$.

Also B is the smallest integer to satisfy this condition.

Then $B-1 \leq \log_2 n$ and B-1 is the largest integer to satisfy this condition.

Then $B - 1 = |\log_2 n|$.

Then $B = \lfloor \log_2 n \rfloor + 1$.

- Clearly, the number of steps of the *i*-loop is bound.
- The number of steps of the first j-loop is clearly $C = \lfloor \frac{n}{2} \rfloor$.
- The number of steps of the second *j*-loop is $D = \lceil \log_2 n \rceil$.

•

$$T(n) = 5 + \sum_{b=1}^{B} (4 + \sum_{i=0}^{2^{b}} (6 + \sum_{j=0}^{C} 4 + \sum_{j=1}^{D} 3))$$

$$= 5 + \sum_{b=1}^{B} (4 + \sum_{i=0}^{2^{b}} (6 + 4(C+1) + 3D))$$

$$= 5 + \sum_{b=1}^{B} (4 + (6 + 4(C+1) + 3D)2^{b})$$

$$= 5 + 4B + (6 + 4(C+1) + 3D) \sum_{b=1}^{B} 2^{b}$$

$$= 5 + 4B + 2(6 + 4(C+1) + 3D)(2^{B} - 1)$$

$$= 5 + 4(\lfloor \log_2 n \rfloor + 1 + 2(6 + 4(\lfloor \frac{n}{2} \rfloor + 1) + 3\lceil \log_2 n \rceil)(2^{\lfloor \log_2 n \rfloor + 1} - 1)$$

2. Before moving forward with the required proof, let's observe that we can always assume n > 2 (in general n greather than a fixed number). The reason why is that we seek B (in the definition of big-O) such that for all natural numbers greather than B, the big-O inequality is satisfied. That said, if we chose some natural number B that satisfies other conditions, we can always replace it with $B' = \max(B, 2) + 1$ and rename the variable back to B. This way we guarantee that:

$$\log_2 n \ge 1$$

so

$$\lceil \log_2 n \rceil \le \log_2 n + 1 \le 2 \log_2 n.$$

Also we know it is always true that

$$\lfloor \frac{n}{2} \rfloor \le \frac{n}{2}, \quad \lfloor \log_2 n \rfloor \le \log_2 n.$$

So, writing informally, the estimation for T(n) (assuming n > 2) is:

$$T(n) \le 5\log_2 n + 4(\log_2 n + \log_2 n + 2(6\log_2 n + 2n + \log_2 n) + 6\log_2 n)(2 \cdot 2^{\log_2 n} - 1)$$

Dropping the -1 and doing all other operations, we have

$$T(n) \le 5\log_2 n + 152n\log_2 n + 32n^2$$

We know for all n > 2, we have $1 \le n^2$ and $n \le n^2$ so finally,

$$T(n) \le 189n^2 \log_2 n.$$

The formal proof.

We know $\log_2 n \in O(n^{\frac{1}{2}})$ # From the hint

Then $\exists c \in \mathbb{R}^+ : \exists B \in \mathbb{N} : \forall n \in \mathbb{N} : n > B \implies \log_2 n \le cn^{\frac{1}{2}}$.

Let $c_1 \in \mathbb{R}^+$, $B_1 \in \mathbb{N}$ be the numbers that satisfy the definition in the previous line.

Let $c_0 = 189c_1, B_0 = \max(B_1, 2) + 1$. # From the informal estimation.

Let $n \in \mathbb{N}$.

Then n > 2.

Then $T(n) \leq 189n^2 \log_2 n$. # See the informal estimation.

Also $n > B_1$.

Then $\log_2 n \le c_1 n^{\frac{1}{2}}$.

Then $T(n) \leq 189c_1 n^{\frac{5}{2}}$.

Then $T(n) \leq c_0 n^{\frac{5}{2}}$.

Then $n > B_0 \implies T(n) \le c_0 n^{\frac{5}{2}}$.

Then $\forall n \in \mathbb{N} : n > B_0 \implies T(n) \le c_0 n^{\frac{5}{2}}$.

Then $\exists c \in \mathbb{R}^+ : \exists B \in \mathbb{N} : \forall n \in \mathbb{N} : n > B \implies T(n) \le cn^{\frac{5}{2}}$.

Then $T(n) \in O(n^{5/2})$.

Problem 2.

- (6 Marks) Using the appropriate definitions, prove the following:
 - 1. (3 Marks)

$$7n^2 + 77n + 1 \in \Theta(n^2 + n + 165).$$

2. (3 Marks)

$$n\log(n^7) + n^{\frac{7}{2}} \in O(n^{\frac{7}{2}}).$$

Solution

1. We will solve the problem by showing separately $7n^2+77n+1 \in \Omega(n^2+n+165)$ and $7n^2+77n+1 \in O(n^2+n+165)$.

Prove $7n^2 + 77n + 1 \in \Omega(n^2 + n + 165)$. Let $c_0 = 1, b_0 = 3$. Then 77n + 1 > 165. Also $n^2 > n$. Then $7n^2 + 77n + 1 > 1 \cdot (n^2 + n + 165)$. Then $n > B_0 \implies 7n^2 + 77n + 1 \ge c_0 \cdot (n^2 + n + 165)$. Then $\exists c \in \mathbb{R}^+ : \exists B \in \mathbb{N} : \forall n \in \mathbb{N} : n > B \implies 7n^2 + 77n + 1 \ge c \cdot (n^2 + n + 165)$. Then $7n^2 + 77n + 1 \in \Omega(n^2 + n + 165)$.

 $\begin{array}{l} \textbf{Prove} \quad 7n^2 + 77n + 1 \in O(n^2 + n + 165). \\ \text{Let } B_0 = 0, c_0 = 77. \\ \text{Then } 7n^2 + 77n + 1 < 77n^2 + 77n + 77 \cdot 165 = 77(n^2 + n + 165). \\ \text{Then } n > B_0 \implies 7n^2 + 77n + 1 \leq c_0(n^2 + n + 165). \\ \text{Then } \forall n \in \mathbb{N} : n > B_0 \implies 7n^2 + 77n + 1 \leq c_0(n^2 + n + 165). \\ \text{Then } \exists c \in \mathbb{R}^+ : \exists B \in \mathbb{N} : \forall n \in \mathbb{N} : n > B \implies 7n^2 + 77n + 1 \leq c(n^2 + n + 165). \\ \text{Then } 7n^2 + 77n + 1 \in \Omega(n^2 + n + 165). \end{array}$

2. We know $\log n \in O(n^{\frac{5}{2}})$.# From the hint,prob.1 Then $\exists c \in \mathbb{R}^+ : \exists B \in \mathbb{N} : \forall n \in \mathbb{N} : n > B \implies \log n \le cn^{\frac{5}{2}}$. Let $c_1 \in \mathbb{R}^+, B_1 \in \mathbb{N}$ be the elements that satisfy the above. Let $c_0 = 7c_1 + 1, B_0 = B_1$. Then $c_0 \in \mathbb{R}^+, B_0 \in \mathbb{N}$. Let $n > B_0$. Then $n \log n^7 + n^{\frac{7}{2}} = 7n \log n + n^{\frac{7}{2}}$ $\leq 7n(c_1 n^{\frac{5}{2}}) + n^{\frac{7}{2}} = (7c_1 + 1)n^{\frac{7}{2}}$ Then $n > B_0 \implies n \log n^7 + n^{\frac{7}{2}} \leq c_0 n^{\frac{7}{2}}$. Then $\exists c \in \mathbb{R}^+ : \exists B \in \mathbb{N} : \forall n \in \mathbb{N} : n > B \implies n \log n^7 + n^{\frac{7}{2}} \leq cn^{\frac{7}{2}}$. Then $n \log(n^7) + n^{\frac{7}{2}} \in O(n^{\frac{7}{2}})$.

Problem 3.

- (6 MARKS) Let $\mathcal{F} = \{f | f : \mathbb{N} \to \mathbb{R}^+\}$. Using the appropriate definitions, prove or disprove the following:
 - 1. (3 Marks)

$$\forall f, g \in \mathcal{F} : \log f(n) \in O(g(n)) \implies f(n) \in O(3^{g(n)}).$$

2. (3 Marks)

$$\forall f \in \mathcal{F} : \lfloor \sqrt{\lfloor f(n) \rfloor} \rfloor \in O(\sqrt{f(n)}).$$

Solution

1. We disprove it.

Let $f(n) = 9^n, g(n) = n$.

Then $f, g \in \mathcal{F}$.

Then $\log f(n) = n \log 9$.

Let $c_0 = \log 9, B_0 = 1.$

Then $c_0 \in \mathbb{R}^+, B_0 \in \mathbb{N}$.

Then $n > 1 \implies (\log 9)n \le (\log 6)n$.

Then $\forall n \in \mathbb{N} : n > 1 \implies (\log 9)n \le (\log 9)n$.

Then $\exists c \in \mathbb{R}^+ : \exists B \in \mathbb{N} : \forall n \in \mathbb{N} : n > B \implies \log f(n) \le cg(n)$.

Then $\log f(n) \in O(g(n))$.

#Show that $f(n) \notin O(3^{g(n)})$.

Let $c \in \mathbb{R}, B \in \mathbb{N}$.

Let $n_0 = \max(B, \log_3 c) + 1$.

Then $n_0 > B$.

Then $9^{n_0} = (3^2)^{n_0} = 3^{2n_0} = 3^{n_0}3^{n_0} > c3^{n_0} = c3^{g(n_0)}$.

Then $\exists n \in \mathbb{N} : n > B \land f(n) > c3^{g(n)}$.

Then $\forall c \in \mathbb{R}^+ : \forall B \in \mathbb{N} : \exists n \in \mathbb{N} : n > B \land f(n) > 3^{g(n)}$.

Then $f(n) \notin O(3^{g(n)})$.

Then $\exists f, g \in \mathcal{F} : \log f(n) \in O(g(n)) \land f(n) \notin O(3^{g(n)}).$

2. Let $f \in \mathcal{F}$.

Let $c_0 = 1, B_0 = 0$.

Then $c_0 \in \mathbb{R}, B_0 \in \mathbb{N}$.

Let $k = \lfloor \sqrt{\lfloor f(n) \rfloor} \rfloor$.

Then $k \in \mathbb{N}$.

Then $k \leq \sqrt{\lfloor f(n) \rfloor} < k+1$. # By definition of the floor Then $k^2 \leq \lfloor f(n) \rfloor < (k+1)^2$. # All members are nonnegative Then $k^2 \leq f(n) < (k+1)^2$. # $(k+1)^2 - k^2 \geq 1$ Then $k \leq \sqrt{f(n)} < (k+1)$ # Extract square root, all members nonnegative

Then $\lfloor \sqrt{\lfloor f(n) \rfloor} \rfloor \leq \sqrt{f(n)}$.

Then $n > B_0 \implies \lfloor \sqrt{\lfloor f(n) \rfloor} \rfloor \le c_0 \sqrt{f(n)}$.

Then $\exists c \in \mathbb{R}^+ : \exists B \in \mathbb{N} : \forall n \in \mathbb{N} : n > B \implies \lfloor \sqrt{\lfloor f(n) \rfloor} \rfloor \leq c \sqrt{f(n)}$.

Then $\lfloor \sqrt{\lfloor f(n) \rfloor} \rfloor \in O(\sqrt{f(n)})$.

Then $\forall f \in \mathcal{F} : \lfloor \sqrt{\lfloor f(n) \rfloor} \rfloor \in O(\sqrt{f(n)}).$

Problem 4.

- (6 Marks) Recall that $n! = 1 \cdot 2 \dots n$. Also, by convention, 0! = 1. Using the method of mathematical induction, prove the following:
 - 1. (3 Marks)

$$\forall n \in \mathbb{N} : \sum_{i=0}^{n} i \cdot i! = (n+1)! - 1.$$

2. (3 Marks)

$$\forall n \in \mathbb{N} : n \ge 1 \to 2^n \le 2^{n+1} - 2^{n-1} - 1.$$

Solution

1. Let $P(n): \sum_{i=0}^{n} i \cdot i! = (n+1)! - 1$.

Basis step: Prove P(0).

$$\sum_{i=0}^{0} i \cdot i! = 0 \cdot 1 = 0.$$

Also
$$(0+1)! - 1 = 1 - 1 = 0$$
.

Then P(0).

Inductive Step:

Let $n \in \mathbb{N}$.

Assume P(n).

Then
$$\sum_{i=0}^{n+1} i \cdot i!$$

= $\sum_{i=0}^{n} i \cdot i! + (n+1)(n+1)!$

$$=(n+1)!-1+(n+1)(n+1)!$$
 #using inductive hypothesis

$$= (n+2)(n+1)! - 1 \# Factoring (n+1)!$$

=(n+2)!-1. # Using the definition of factorial

Then P(n+1).

Then $P(n) \implies P(n+1)$.

Then
$$\forall n \in \mathbb{N} : n \ge 0 \implies (P(n) \implies P(n+1)).$$

Then $\forall n \in \mathbb{N} : \sum_{i=0}^{n} i \cdot i! = (n+1)! - 1.$

2. Let $P(n): 2^n < 2^{n+1} - 2^{n-1} - 1$.

Basis Step:

$$2^{1+1} - 2^{1-1} - 1 = 4 - 1 - 1 = 2 > 2^1$$
.

Then P(1).

Inductive step

Let $n \in \mathbb{N}$.

Assume $n \geq 1$.

```
Assume 2^n \le 2^{n+1} - 2^{n-1} - 1.

Then 2^{n+1+1} - 2^{n+1-1} - 1 = 2^{n+2} - 2^n - 1 = 2(2^{n+1} - 2^{n-1} - 1) + 1

\ge 2 \cdot 2^n + 1 #Using inductive hypothesis

\ge 2^{n+1} # Elementary algebra

Then P(n+1).

Then P(n) \implies P(n+1).

Then n \ge 1 \implies (P(n) \implies P(n+1)).

Then \forall n \in \mathbb{N} : n \ge 1 \implies 2^n \le 2^{n+1} - 2^{n-1} - 1.
```