

2024 LONI Scientific Computing Bootcamp

Overview

HPC User Services

Oleg Starovoyto, Jason Li, Siva P Kasetti

Feng Chen, and Le Yan

LONI HPC

June 4 - 5 and June 10 - 11, 2024

sys-help@loni.org

Outline

A very brief overview of scientific computing

Agenda for the bootcamp

Computing platform

What is Scientific Computing?

- "Scientific Computing is the collection of tools, techniques, and theories required to solve on a computer mathematical models of problems in Science and Engineering." – (Golub & Ortega 1992)
- ➤ It is a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems.

Abacus, 2nd century BC

Calculating-Table by Gregor Reisch: Margarita Philosophica, 1503.

Why Scientific Computing?

Scientific Computing is nowadays:

 The "third pillar of science", in addition to theoretical analysis and experiments for scientific discovery.

> Sometimes other means are:

- Impossible
- Costly (time and money)
- Dangerous or undesirable

Astrophysics

_ Aircraft design

stockpile based on tests of weapon subsystems, computer similations of bash physics phenomena (shown here) and weapon behavior, and knowledge gained from past nuclear tests.

Nuclear weapon tests

How to Conduct Scientific Computing?

- Scientific theory and algorithm
 - From your own study/research background
- Software
 - General purpose
 - Excel
 - Matlab
 - Python/R/Perl/C/Fortran, etc.
 - Dedicated software, such as:
 - Ansys (CFD, Structural/Solid Mechanics/Electronics)
 - Lammps/Gromacs/Amber (Molecular Dynamics)
 - Most cases, we need both

Hardware

- Your laptop/desktop/lab server
- Cloud Computing
 - Will be used in this bootcamp
- Supercomputers

python

aws

Purpose of This Bootcamp

- Understand the basic usage of popular scientific computing programming tools
 - Python

- One application of the programming tools
 - Deep Learning

Agenda

- Day 1
 - Introduction to Python
- > Day 2
 - Intermediate Python
- Day 3 and Day 4
 - Exploring Deep Neural Networks: A Beginner's Guide
 - NVidia Deep Learning Institute: Fundamentals of Deep Learning
- Our source code repository:
 - https://github.com/lsuhpchelp/loniscworkshop2024
 - Computing Environment:
 - Google Colab
 - See https://colab.research.google.com/notebooks

Lectures and Hands-on sessions

- Morning sessions 9am-12noon
 - Lecture
- > Afternoon sessions 1pm-4pm
 - Exercise/Lecture
- Although recordings will be available, we strongly recommend you try to follow the live session.

Google Colaboratory

- Colaboratory, or "Colab" for short, allows you to write and execute Python (or R) in your browser, with
 - Zero configuration required
 - Free access to GPUs
 - Easy sharing
- Allows you to focus on learning the Python (or R) language itself instead of working on installing and configuring a programming environment.
 - Ref: https://colab.research.google.com/notebooks/intro.ipynb

Open Colab Notebook from Github

- Open the below link:
 - https://github.com/lsuhpchelp/loniscworkshop2024/blob/main/day1/Pyth onSet102.ipynb
 - Or navigate yourself in the github repo:
 - https://github.com/lsuhpchelp/loniscworkshop2024.git
 - Select "day1 > PythonSet102.ipynb"
- Click the "Open in Colab" link:

After the Colab notebook is laid out, you need one more step, save the Colab notebook to your google drive by "COPY TO DRIVE", or you will be editing the notebook in "Playground" (read only) mode:

Possible Bug of Github

In case of the "Something went wrong, try again later?"

Copy and paste the github link from the browser URL box (https://github.com/lsuhpchelp/loniscworkshop2024/blob/main/day1/PythonSet 102.ipynb) into the below the location to have it rendered: https://nbviewer.jupyter.org/

nbviewer

A simple way to share Jupyter Notebooks

Enter the lecation of a Jupyter Notebeek to have it rendered here:

https://colab.research.google.com/github/lsuhpchelp/loniscworkshop2023/blob/main/day1/Python101.ipynb

Go!

Questions?

✓ Type your question in the Zoom chat window. (Preferred)

✓ Raise your hand if you do want to ask a question with your microphone, we can unmute you.

