Package 'disclap'

October 13, 2022

Type Package
Title Discrete Laplace Exponential Family
Version 1.5.1
Author Mikkel Meyer Andersen and Poul Svante Eriksen
Maintainer Mikkel Meyer Andersen <mikl@math.aau.dk></mikl@math.aau.dk>
Description The discrete Laplace exponential family for use in fitting generalized linear models.
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2022-01-27 12:10:09 UTC
R topics documented:
Discrete Laplace distribution
Index
Discrete Laplace distribution $Probability \ mass \ function, \ distribution \ function, \ and \ random \ generation for the \ discrete \ Laplace \ distribution \ with \ parameter \ 0 <= p < 1.$

Description

Calculates the mass of observations from the discrete Laplace distribution.

Usage

```
ddisclap(x, p)
pdisclap(x, p, lower.tail = TRUE)
rdisclap(n, p)
```

Arguments

 $\begin{array}{lll} x & & \text{vector of observations} \\ p & & \text{the parameter with } 0 <= p < 1 \\ \\ \text{lower.tail} & & \text{logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].} \\ n & & \text{number of observations to generate} \end{array}$

Details

The probability mass function for the discrete Laplace distribution with parameter $0 is given by <math>P(X = x) = \frac{1-p}{1+p}p^x$ for $x \in \mathbf{Z}$.

If x is a vector, then p must have either length 1 or the same length as x. If p has length 1, then the value will be reused for all values in x.

Value

'ddisclap' gives the probability mass, 'pdisclap' gives the distribution function, and 'rdisclap' generates random deviates.

Author(s)

Mikkel Meyer Andersen <mikl@math.aau.dk> and Poul Svante Eriksen

See Also

DiscreteLaplace

Examples

```
p <- 0.3
xs <- (-4):4
probd <- ddisclap(xs, p)
data.frame(xs, probd)
plot(xs, probd, type = "1", xlab = "x", ylab = "P(X = x; p)")</pre>
```

Discrete Laplace exponential family

Discrete Laplace exponential family

Description

Discrete Laplace exponential family for models such as a generalized linear model.

Usage

```
DiscreteLaplace()
```

Details

This family can be used in for example fitting a generalized linear model using the glm or glm. fit function.

Value

See binomial or poisson

Author(s)

Mikkel Meyer Andersen <mikl@math.aau.dk> and Poul Svante Eriksen

See Also

```
glm glm.fit ddisclap binomial poisson
```

Examples

```
xs <- abs(rdisclap(100, 0.1))
fit <- glm(xs ~ 1, family = DiscreteLaplace())
summary(fit)
theta <- as.numeric(coef(fit)[1])
mu <- DiscreteLaplace()$linkinv(theta)
p <- (sqrt(1 + mu^2) - 1) / mu
p</pre>
```

Discrete Laplace package

Discrete Laplace Family

Description

Discrete Laplace Family for models such as a generalized linear model.

Details

DiscreteLaplace() ddisclap(x, p) pdisclap(x, p, lower.tail = TRUE) rdisclap(n, p)

Author(s)

Mikkel Meyer Andersen and Poul Svante Eriksen

Maintainer: Mikkel Meyer Andersen <mikl@math.aau.dk>

See Also

DiscreteLaplace ddisclap pdisclap rdisclap

Index

```
* package
    Discrete Laplace package, 4
binomial, 3
ddisclap, 3, 4
ddisclap(Discrete Laplace
        distribution), 1
disclap (Discrete Laplace package), 4
disclap-package (Discrete Laplace
        package), 4
Discrete Laplace distribution, 1
Discrete Laplace exponential family, 3
Discrete Laplace package, 4
DiscreteLaplace, 2, 4
DiscreteLaplace (Discrete Laplace
        exponential family), 3
glm, 3
glm.fit, 3
pdisclap, 4
pdisclap(Discrete Laplace
        distribution), 1
poisson, 3
rdisclap, 4
rdisclap (Discrete Laplace
        distribution), 1
```