ECE 550DFundamentals of Computer Systems and Engineering

Fall 2023

Digital Arithmetic

Xin Li & Dawei Liu

Duke Kunshan University

Slides are derived from work by Andrew Hilton, Tyler Bletsch and Rabih Younes (Duke)

Last Time in ECE 550....

- Who can remind us what we talked about last time?
 - Numbers
 - Binary
 - Hex
 - One hot
 - · Binary Numbers and Math
 - Overflow

Designing a 1-bit adder

- What boolean function describes the low bit?
 - XOR
- What boolean function describes the high bit?
 - AND

$$0 + 0 = 00$$

 $0 + 1 = 01$
 $1 + 0 = 01$
 $1 + 1 = 10$

3

Designing a 1-bit adder

- Remember how we did binary addition:
 - Add the two bits
 - Do we have a **carry-in** for this bit?
 - Do we have to **carry-out** to the next bit?

Designing a 1-bit adder

- So we'll need to add three bits (including carry-in)
- Two-bit output is the carry-out and the sum

5

A 1-bit Full Adder

a	b	C_{in}	Sum	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

6

Ripple Carry

- Full Adder = Add 1 Bit
 - Can chain together to add many bits
 - Upside: Simple
 - Downside?
 - Slow. Let's see why.

7

Full adder delay

- Cout depends on Cin
 - 2 "gate delays" through full adder for carry

Ripple Carry

- Carries form a chain
 - CO of bit N is CI of bit N+1
- For few bits (e.g., 4) no big deal
 - For realistic numbers of bits (e.g., 32, 64), slow

9

Adding

- Adding is important
 - Want to fit add in single clock cycle
 - (More on clocking soon)
 - Why? Add is ubiquitous
- Ripple Carry is slow
 - Maybe can do better?
 - But seems like Cin always depends on prev Cout
 - ...and Cout always depends on Cin...

Hardware != Software

- If this were software, we'd be out of luck
 - But hardware is different
 - Parallelism: can do many things at once
 - Speculation: can guess

11

Carry Select

- Do three things at once (32 gates)
 - Add low 16 bits
 - Add high 16 bits assuming CI = 0
 - Add high 16 bits assuming CI =1
- Then pick correct assumption for high bits

Carry Select

- Could apply same idea again
 - Replace 16-bit RC adders with 16-bit CS adders
 - Reduce delay for 16 bit add from 32 to 18
 - Total 32 bit adder delay = 20
- So... just go nuts with this right?

13

Tradeoffs

- Tradeoffs in doing this
 - Power and Area (~= number of gates)
 - Roughly double every "level" of carry select we use
 - Less return on increase each time
 - · Adding more mux delays
 - Wire delays increase with area
 - Not easy to count in slides
 - But will eat into real performance
- Fancier adders exist:
 - Carry-lookahead, conditional sum adder, carry-skip adder, carry-complete adder, etc...

Recall: Subtraction

- 2's complement makes subtraction easy:
 - Remember: A B = A + (-B)
 - And: $-B = \sim B + 1$
 - ↑ that means flip bits ("not")
 - So we just flip the bits and start with CI = 1
 - Fortunate for us: makes circuits easy

15

32-bit Adder/subtractor

- Inputs: A, B, Add/Sub (0=Add,1 = Sub)
- Outputs: Sum, Cout, Ovf (Overflow)

32-bit Adder/subtractor

- By the way:
 - That thing has about 3,000 transistors
 - Aren't you glad we have abstraction?

17

Arithmetic Logic Unit (ALU)

- ALUs do a variety of math/logic
 - Add
 - Subtract
 - Bit-wise operations: And, Or, Xor, Not
 - Shift (left or right)
- Take two inputs (A,B) + operation (add,shift..)
 - Do a variety in parallel, then mux based on op

Bit-wise operations: SHIFT

- Left shift (<<)
 - Moves left, bringing in 0s at right, excess bits "fall off"
 - 10010001 << 2 = 01000100
 - x << k corresponds to x * 2^k
- Logical (or unsigned) right shift (>>)
 - Moves bits right, bringing in 0s at left, excess bits "fall off"
 - 10010001 >> 3 = 00010010
 - x >> k corresponds to $x / 2^k$ for unsigned x
- Arithmetic (or signed) right shift (>>)
 - Moves bits right, brining in (sign bit) at left
 - 10010001 >> 3= 11110010
 - x >> k corresponds to $x / 2^k$ for signed x

19

Shift: Implementation...?

• Suppose an 8-bit number

 $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \\$

Shifted left by a 3 bit number

 $S_2S_1S_0$

- Option 1: Truth Table?
 - 2048 rows? Not appealing

...but you can do it. Truth table gives this expression for output bit 0:

1 Miles and Mile

Let's simplify

• Simpler problem: 8-bit number shifted by 1 bit number (shift amount selects each mux)

Let's simplify

• Simpler problem: 8-bit number shifted by 2 bit number

Now shifted by 3-bit number

• Full problem: 8-bit number shifted by 3 bit number

Now shifted by 3-bit number

• Shifter in action: shift by 000 (all muxes have S=0)

Now shifted by 3-bit number

- Shifter in action: shift by 010
 - From L to R: S = 0, 1, 0

Now shifted by 3-bit number

- Shifter in action: shift by 011
 - From L to R: S= 1, 1, 0 (reverse of shift amount)

What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - Pi = 3.14159265358965...
 - $\frac{1}{2} = 0.5$
- How could we represent these sorts of numbers?
 - Floating Point

27

Floating Point

- Think about scientific notation for a second:
- For example:

 $6.02 * 10^{23}$

- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 2 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?

Floating Point

- How about:
- +/- X.YYYYYY * 2+/-N
- Big numbers: large positive N
- Small numbers (<1): negative N
- This is "floating point": most common way

29

IEEE single precision floating point

- Specific format called IEEE single precision:
- +/- 1.YYYYY * 2^(N-127)
- "float" in Java, C, C++,...
- S: 1 sign bit (+ = 0, 1 = -)
- E: 8 bit biased exponent (do N-127)
- M: 23-bit mantissa (YYYYY)

Binary fractions

- 1.YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - tenths
 - hundredths
 - thousandths
- So after a binary point you have...
 - Halves
 - Quarters
 - Eighths

31

Floating point example

• Binary fraction example:

$$101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625$$

- For floating point, needs normalization: 1.01101 * 2²
- Sign is +, which = 0
- Exponent = $127 + 2 = 129 = 1000 \ 0001$
- Mantissa = 1.011 0100 0000 0000 0000 0000

3130 23 22 1000 0001 011 0100 0000 0000 0000 0000

Floating Point Representation

Example:

What floating-point number is:

0xC1580000?

33

Answer

What floating-point number is 0xC1580000?

1100 0001 0101 1000 0000 0000 0000 0000

$$X = \begin{bmatrix} 3130 & 2322 & & & 0 \\ 1 & 1000 & 0010 & 101 & 1000 & 0000 & 0000 & 0000 \\ S & E & M & & M \end{bmatrix}$$

Sign = 1 which is negative

$$-1.1011x2^3 = -1101.1 = -13.5$$

Trick question

- How do you represent 0.0?
 - Why is this a trick question?
 - \bullet 0.0 = 000000000
 - But need 1.XXXXX representation?
- S = 0/1
- E = 0...0
- M = 0...0
- Results in +/- 0 in FP (but they are "equal")

35

Other weird FP numbers

- Exponent = 1111 1111 also not standard
 - S = 0 and $M = 0: +\infty$
 - S = 1 and M = 0: $-\infty$
 - S = 0/1 and $M \neq 0$: Not a Number (NaN) sqrt(-42) = NaN

Floating Point Representation

• Double Precision Floating point:

64-bit representation:

- 1-bit sign
- 11-bit (biased) exponent
- 52-bit fraction (with implicit 1).
- "double" in Java, C, C++, ...

S	Exp	Mantissa
1	11-bit	52 - bit

37

Danger: floats cannot hold all ints!

- Many programmers think:
 - Floats can represent all ints
 - NOT true
- Doubles can represent all 32-bit ints

(but not all 64-bit ints)

Wrap Up

- Implementation of Math
 - Addition/Subtraction
 - Shifting
- Floating Point Numbers
 - IEEE representation
 - Denormalized Numbers
- Next Time:
 - Storage
 - Clocking

39