

Universität Stuttgart

Ingenieurgeodäsie Übung12: Regression zur Höhenberechnung

Ausarbeitung im Studiengang Geodäsie und Geoinformatik an der Universität Stuttgart

Ziqing Yu, 3218051

Stuttgart, Mai 2020

Betreuer: Dipl.-Ing. Otto Lerke

Universität Stuttgart

Inhaltsverzeichnis

1.1	Einleitung	2
1.2	Aufgabe	(
	1.2.1 a	. 3
	1.2.2 b	. 4
	1.2.3 c	
	1.2.4 d	. (
	1.2.5 e	. 7
	1.2.6 f	. 7
1.3	MatLab Code 	

Kapitel 1

1.1 Einleitung

Das amtliche Höhensystem in Deutschland basiert auf Normalhöhen H_N . Bezugsfläche dieses Höhensystems ist das Quasigeoid. In dieser Übung sind 30 Festpunkten mit Ellipsoidische Höhen gegeben, 20 davon haben bekannte Normalhöhen. Die übrige Normalhöhen sind angefragt.

1.2 Aufgabe

1.2.1 a

Höhenanomalie

$$\zeta = h - H_N$$

wobei

• *h*: ellpsoidische Höhe

• H_N : Normalhöhe

Höhenanomalie von Punkten 1 bis 20:

Pkt.Nr	Höhenanomalie [m]	Pkt.Nr	Höhenanomalie [m]
1	48,3548	11	48,3946
2	48,3928	12	48,4203
3	48,4118	13	48,4420
4	48,4159	14	48,4556
5	48,4290	15	48,4695
6	48,3750	16	48,4148
7	48,4098	17	48,4483
8	48,4290	18	48,4659
9	48,4360	19	48,4762
10	48,4487	20	48,4890

Standardabweichung

$$\sigma_{\zeta} = \sqrt{(\sigma_h^2 + \sigma_{H_N}^2)} = 0,0051\,\mathrm{m}$$

Graphische Darstellung:

1.2.2 b

Die Schwerpunkt lautet:

$$x_s = \frac{1}{20} \sum_{i=1}^{20} x_i = 5375436,408$$
 $y_s = \frac{1}{20} \sum_{i=1}^{20} y_i = 3523910,288$

F

Der funktionale Modell:

$$\begin{aligned}
x_i' &= x_i - x_s \quad y_i' &= y_i - y_s \\
\zeta_i &= a_0 + a_1 \cdot y_i' + a_2 \cdot x_i' + a_3 \cdot y_i' \cdot x_i' + a_4 \cdot y_i'^2 + a_5 \cdot x_i'^2 \\
& \underbrace{\begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \vdots \\ \zeta_{19} \\ \zeta_{20} \end{bmatrix}}_{l} &= \underbrace{\begin{bmatrix} 1 & y_1' & x_1' & y_1' \cdot x_1' & y_1'^2 & x_1'^2 \\ 1 & y_2' & x_2' & y_2' \cdot x_2' & y_2'^2 & x_2'^2 \\ \vdots & & & & \\ 1 & y_{19}' & x_{19}' & y_{19}' \cdot x_{19}' & y_{19}'^2 & x_{19}'^2 \\ 1 & y_{20}' & x_{20}' & y_{20}' \cdot x_{20}' & y_{20}'^2 & x_{20}'^2 \end{bmatrix}}_{x} \cdot \underbrace{\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}}_{x}$$

$$\hat{x} = (A'A)^{-1}A'l = \begin{bmatrix} 48,4361 \\ 4,3398 \cdot 10^{-5} \\ -2,5563 \cdot 10^{-6} \\ 8,1539 \cdot 10^{-9} \\ -4,9588 \cdot 10^{-9} \\ -5,7264 \cdot 10^{-9} \end{bmatrix}$$

1.2.3 c

n ist die Anzahl der übrigen Koeffizienten, r=20-n Kovarianzmatrix von alle Koeffizienten

$$\Sigma_a = \sigma_\zeta^2 \cdot (A'A)^{-1}$$

Standardabweichung von Koeffizienten:

$$\sigma_a = \sqrt{diag(\Sigma_a)}$$

Testgröße für eine Koeffizient

$$\frac{|a_i-0|}{\sigma_{a_i}}$$

Quantil ist $t_{97,5,r}^t$ in t-Verteilung. Testgröße in jeder Schleife:

	Quantil	T_{a_0}	T_{a_1}	T_{a_2}	T_{a_3}	T_{a_4}	T_{a_5}
1	3.0688	0.0552	$6,657 \cdot 10^{-11}$	$3,645 \cdot 10^{-12}$	$2,472 \cdot 10^{-17}$	$6,628 \cdot 10^{-18}$	$7,002 \cdot 10^{-18}$
2	2.9467	$3,010 \cdot 10^4$	27,6830	1,8578	3,5185		2,0606
3	2,8131	$3,020 \cdot 10^4$	28,2715		3,7971		2,2270
4	2,6550	$4,105 \cdot 10^4$	28,5474		3,7364		

Koeffizienten in jeder Schleife:

	a_0	a_1	a_2	a_3	a_4	a_5
1	48,4361	$4,3398 \cdot 10^{-5}$	$-2,5563\cdot 10^{-6}$	$8,1539 \cdot 10^{-9}$	$-4,9588 \cdot 10^{-9}$	$-5,7264 \cdot 10^{-9}$
2	48,4323	$4,3178 \cdot 10^{-5}$	$-2,7177 \cdot 10^{-6}$	$1,1162\cdot 10^{-8}$		$-3,4860 \cdot 10^{-9}$
3	48,4325	$4,3608 \cdot 10^{-5}$		$1,1940\cdot 10^{-8}$		$-3,7536 \cdot 10^{-9}$
4	48,4301	$4,3887 \cdot 10^{-5}$		$1,1745\cdot 10^{-8}$		

1.2.4 d

Wir haben jetzt das neue Flächenpolynom:

$$\zeta_i = a_0 + a_1 \cdot y_i + a_3 \cdot y_i \cdot x_i \qquad \boxed{=}$$

Die Koordinaten der Neupunkten sind bekannt, damit darf man die Höhenanomalie berechnen.

Pkt.Nr	Höhenanomalie [m]
21	48,4340
22	48,4345
23	48,4253
24	48,4258
25	48,4316
26	48,4429
27	48,4465
28	48,4425
29	48,4337
30	48,4226

Die ellipsoidesche Höhen sind bekannt, dann:

Pkt.Nr	Normalhöhe [m]
21	800,0020
22	791,3315
23	614,9617
24	570,9782
25	504,6484
26	495,1981
27	466,7145
28	441,3225
29	412,4743
30	376,8034

1.2.5 e

Standardabweichung der Neupunktennormalhöhen sind durch Fehlerfortpflanzung bestimmbar.

$$\Sigma_{neu} = F \cdot \Sigma_{ll} \cdot F'$$

wobei:

$$F = \underbrace{ \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & y_{21} & y_{21} \cdot x_{21} & y_{21}^2 & x_{21}^2 \\ 0 & 1 & 0 & \cdots & 0 & 0 & y_{22} & y_{22} \cdot x_{22} & y_{22}^2 & x_{22}^2 \\ 0 & 0 & 1 & \cdots & 0 & 0 & y_{23} & y_{23} \cdot x_{23} & y_{23}^2 & x_{23}^2 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & y_{29} & y_{29} \cdot x_{29} & y_{29}^2 & x_{29}^2 \\ 0 & 0 & 0 & \cdots & 0 & 1 & y_{30} & y_{30} \cdot x_{30} & y_{30}^2 & x_{30}^2 \end{bmatrix}}$$

Die Standardabweichungen sind:

Pkt.Nr	Standardabweichung [mm]
21	5,1368
22	5,1329
23	5,1541
24	5,1437
25	5,1377
26	5,1553
27	5,2348
28	5,2199
29	5,1554
30	5,1358

1.2.6 f

Diese Standardabweichungen sind geringer als die Standardabweichung der Nivellement. aber die berechneten Standardabweichungen beziehen sich auf die GPS Messung, d.h. sie sind in sinnvoll, wo Nivellement eingeschränkt sind.

1.3 MatLab Code 8

1.3 MatLab Code

Code und Data Auch als Anhang in E-mail.

```
% Import Data
load data.mat
% Aufgabe a
zeta_1 = data(1:20,4) - data(1:20,3); \% öHhenanomalie 1 - 20
sigma_HN = 0.001; % Standardabweichung öNormalhhen
sigma_e = 0.005; % Standardabweichung Ellipslid öHhe
sigma_zeta = sqrt(sigma_HN^2 + sigma_e^2); %
   Fehlerfortpflanzung
figure
scatter3 (data (1:20,2), data (1:20,1), zeta_1)
% Aufgabe b
A_1 = [ones(20,1), data(1:20,1), data(1:20,2), data(1:20,1).*
    data (1:20,2), data (1:20,1).^2, data (1:20,2).^2];
   Matrix bauen
a_bar = (A_1' * A_1) \setminus A_1' * zeta_1; % Ausgleichen
% Aufgabe c
r = 20 - length(a_bar);
Sigma_a = sigma_zeta^2 * inv(A_1' * A_1);
sigma_a = sqrt(diag(Sigma_a));
T = abs(a_bar - 0) ./ sigma_a;
Q = abs(tinv(1 - 0.975, r)); % Quantil
idx = find(T < Q);
a_{list} = cell(6,1);
T_{list} = cell(6,1);
%%
i = 1;
id = zeros(6,1) * NaN;
check = zeros(6,1) * NaN;
check_list = 1:6;
while ~isempty(idx)
a_list{i} = a_bar;
T_list\{i\} = T;
id(i) = find(T == min(T));
check(i) = check_list(id(i));
check_list(id(i)) = [];
A_1(:,id(i)) = [];
a_bar = (A_1' * A_1) \setminus A_1' * zeta_1;
r = 20 - length(a_bar);
Sigma_a = sigma_zeta^2 * inv(A_1' * A_1);
sigma_a = sqrt(diag(Sigma_a));
```

1.3 MatLab Code

```
T = abs(a_bar - 0) ./ sigma_a;
Q = abs(tinv(1 - 0.975, r));
idx = find(T < Q);
i = i + 1;
end
xq = min(data(1:20,2)):50:max(data(1:20,2));
yq = min(data(1:20,1)):50:max(data(1:20,1));
[xq,yq] = meshgrid(xq,yq);
vq = griddata(data(1:20,2), data(1:20,1), zeta_1, xq, yq);
figure, hold on
mesh(xq,yq,vq)
xlabel("x")
vlabel("y")
zlabel("öHhenanomalie")
% Aufgabe d
A_2 = [ones(10,1), data(21:30,1), data(21:30,2), data(21:30,2)]
   (21:30,1).* data(21:30,2), data(21:30,1).^2, data(21:30,2)
   .^2];
for i=1:6
if isnan(id(i))
break
else
A_2(:,id(i)) = [];
end
end
zeta_2 = A_2 * a_bar; % \ddot{o}Hhenanomalie 21 - 30
NH_under = data(21:30,4) - zeta_2; \% \ddot{o}Normalhhen 21 - 30
data(21:30,3) = NH_under;
% Aufgabe e
F = [eve(10), A_2];
[\sim,1] = size(F);
Sigma_big = zeros(1,1);
Sigma_big(1:10,1:10) = 0.005^2 * eye(10);
Sigma_big(11:1,11:1) = Sigma_a;
Sigma_nh = F * Sigma_big * F';
sigma_nh = sqrt(diag(Sigma_nh));
```