TP12 : Cryptanalyse et cryptographie à base de réseaux

Résumé du TP

Bertrand Meyer 25 mai 2020

L'algorithme LLL

L'algorithme LLL est apparu au début des années 80 et a permis de résoudre toute sorte d'équations diophantiennes, comme celle de RSA.

 \rightarrow Les réseaux euclidiens étaient vu comme des points de faiblesse en cryptographie $\stackrel{\textcircled{\ensuremath{\mathbb{Z}}}}{=}$.

L'algorithme LLL

L'algorithme LLL est apparu au début des années 80 et a permis de résoudre toute sorte d'équations diophantiennes, comme celle de RSA.

 \rightarrow Les réseaux euclidiens étaient vu comme des points de faiblesse en cryptographie $\stackrel{\textcircled{\ensuremath{\wp}}}{=}$.

À partir des années 2000, on a commencé à construire des cryptosystèmes crédibles basés sur des réseaux euclidiens 😑.

L'algorithme LLL

L'algorithme LLL est apparu au début des années 80 et a permis de résoudre toute sorte d'équations diophantiennes, comme celle de RSA.

 \rightarrow Les réseaux euclidiens étaient vu comme des points de faiblesse en cryptographie $\stackrel{\textcircled{\ensuremath{\mathsf{E}}}}{=}$.

À partir des années 2000, on a commencé à construire des cryptosystèmes crédibles basés sur des réseaux euclidiens 😑.

En 2020, ce sont les options les plus sérieuses pour la cryptographie du futur, dite aussi cryptographie postquantique ②.

Le mort-né : le sac à dos de Merkle-Hellman 🌗

Soient $a_1, a_2, ..., a_n$ entiers connus \nearrow et s entier connu

$$s = \sum_{i=1}^{n} x_i a_i$$

avec $x_i \in \{0,1\}$ inconnus \overline{Z} .

Le mort-né : le sac à dos de Merkle-Hellman 🧶

Soient $a_1, a_2, ..., a_n$ entiers connus $\stackrel{\frown}{\sim}$ et s entier connu

$$s = \sum_{i=1}^{n} x_i a_i$$

avec $x_i \in \{0,1\}$ inconnus \mathbb{Z} .

$$\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \\ 0 \end{pmatrix} \text{ appartient à } \mathbf{\Lambda} = \mathbb{Z} \begin{pmatrix} 1 \\ 0 \\ \cdots \\ 0 \\ a_1 \end{pmatrix} \oplus \cdots \oplus \mathbb{Z} \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 1 \\ a_n \end{pmatrix} \oplus \mathbb{Z} \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \\ -s \end{pmatrix}.$$

Le mort-né : le sac à dos de Merkle-Hellman 🧶

Soient $a_1, a_2, ..., a_n$ entiers connus $\stackrel{\frown}{\sim}$ et s entier connu

 $s = \sum_{i}^{n} x_i a_i$

avec $x_i \in \{0,1\}$ inconnus \mathbb{Z} .

$$\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \\ 0 \end{pmatrix} \text{ appartient à } \mathbf{\Lambda} = \mathbb{Z} \begin{pmatrix} 1 \\ 0 \\ \cdots \\ 0 \\ a_1 \end{pmatrix} \oplus \cdots \oplus \mathbb{Z} \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 1 \\ a_n \end{pmatrix} \oplus \mathbb{Z} \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \\ -s \end{pmatrix}.$$

Comme v est court (en fait, $||\mathbf{v}|| = O(\sqrt{n})$), LLL(Λ) le dévoile avec grande probabilité 🔒.

Cryptanalyse

Coppersmith I

Théorème (Coppersmith)

Il est possible de trouver avec LLL les racines x modulo N telles que $|x| \le B = O(N^{1/d})$ de

$$f(x) = x^d + a_{d-1}x^{d-1} + \dots + a_1x + a_0.$$

Démonstration.

- Si $\sum_{i=0}^{n} |a_i| B^i < N$: chercher les racines dans \mathbb{Z} suffit.
- Sinon, échanger f avec un polynôme qui a les même racines et de petits coefficients.

Candidat : combinaison linéaire des polynômes

$$g_{i,j}(x) = x^j N^i f^{m-i}(x) \mod N^m$$
.

Coppersmith II

On écrit les vecteurs coefficients de $g_{i,j}(Bx)=B^jx^jN^jf^{m-i}(Bx)$ et on applique l'algorithme LLL .

Exemple (avec ici m = 1)

(<i>g</i> _{1,0}	<i>g</i> _{1,1}		<i>9</i> 1, <i>d</i> -1	90,0	g _{0,1}		$g_{0,d-1}$
X	0	N ^m	0		0	a_0	0		0
X	1	0	BN^m	٠.	÷	Ba ₁	Ba_0	٠.	÷
		:	··.	٠.	0	÷	:	٠.	0
x ^d	— 1	:		٠.	$B^{d-1}N^m$	$B^{d-1}a_{d-1}$:		$B^{d-1}a_0$
X	d	:			0	B^d	B^da_{d-1}		÷
x ^d	+1	:			:	0	B^{d+1}	·	:
		:			:	:	·	٠.	$B^{2d-2}a_{d-1}$
$\int X^{2a}$	1—1	0			0	0		0	B^{2d-1}

Bits de poids forts connus avec RSA

Données (connues de l'attaquant):

- · (N, e) clé publique de RSA $\stackrel{\sim}{\sim}$.
- $\cdot c = m^e \mod N$ chiffré \bowtie d'un message $m \bowtie$
- et \tilde{m} approximation \blacksquare du message tq $|m \tilde{m}| < N^{1/e}$.

Objectif:

Trouver le clair m

Attaque:

Appliquer la méthode de Coppersmith à 🔨

$$f(x) = (\tilde{m} + x)^e - m^e.$$

RSA de petite clé privée (attaque de Wiener)

Soient N = pq (module), e (clé publique) et s (clé privée petite) des paramètres de RSA :

$$e \cdot s \equiv 1 \mod \phi(N) = (p-1)(q-1).$$

$$\Leftrightarrow \exists k, \quad e \cdot s + k(p+q-1) - 1 = kN \equiv 0 \mod N.$$

Le polynôme bivarié
$$f(x,y) = ex + y$$
 admet $(\underbrace{s}_{x_0}, \underbrace{k(p+q-1)-1}_{y_0})$

comme « petite » racine modulo N 🐏.

En adaptant la méthode de Coppersmith au cas bivarié, on retrouve x_0 , y_0 , p+q. On connait somme et produit de $\{p,q\}$ d'où les facteurs p et q.

Cryptosystèmes

Des problèmes NP difficiles

Étant donné un réseau euclidien Λ, il est NP-difficile 🦾

(CVP) de trouver le plus proche vecteur dans Λ d'un point quelconque de l'espace ambiant.

Algorithme de Babai (I)

Résolution approchée du problème CVP.

Soit \mathbf{t} un vecteur cible de l'espace ambiant et $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ une base LLL -réduite, on cherche itérativement le plan affine

$$u_i \mathbf{b}_i + Vect(\mathbf{b}_1, \dots, \mathbf{b}_{i-1})$$

le plus proche quand u_i varie dans \mathbb{Z} .

Algorithme de Babai (II)

Fonctionnerait parfaitement si (b_1, b_2, \dots, b_n) est orthogonale.

En général, il existe des zones de l'espaces dans lequel l'algorithme se trompe —.

Le cryptosystème — historique — GGH

Cache le message dans un point d'un réseau avec du bruit.

Clé privé : base B quasi orthogonale d'un réseau 🎤

Clé publique : forme normale d'Hermite H de B 🎤

Chiffrement: c = Hm + e où e petite perturbation

Trappe : Le problème CVP est difficile en général, mais

l'algorithme de Babai le résout dans la base **B**, ce qui

permet le déchiffrement 🔒.