Python CS-521

Eugene Pinsky
Department of Computer Science
Metropolitan College, Boston University
Boston, MA 02215
email: epinsky@bu.edu

May 17, 2020

Abstract

This course will present an effective approach to help you learn Python. With extensive use of graphical illustrations, we will build understanding of Python and its capabilities by learning through many simple examples and analogies. The class will involve active student participation, discussions, and programming exercises. This approach will help you build a strong foundation in Python that you will be able to effectively apply in real-job situations and future courses.

EXERCISES

SETS

Solutions for Topic: Sets

• print consonants in x_set :

x_set = set("monday")

• use set comprehension to construct y_set with negative elements from x_set :

$$x_{set} = [1,-5,-7, 3,-2]$$

 $y_{set} = [-5,-7,-2]$

```
x_{set} = [1,-5,-7, 3,-2]

y_{set} = \{e \text{ for } e \text{ in } x_{set} \text{ if } e < 0\}
```


• use set comprehension to construct a list of consonants in x_set :

x_set = set("wednesday")

```
VOWELS = set("aeoiuy")
x_set = set("wednesday")
y_set = {e for e in x_set if e not in VOWELS}
```


• use update() to transform x_set into y_set

$$x_{set} = \{1, 2, 3, 4, 5\}$$

 $y_{set} = \{1, 2, 3, 7, 8\}$

```
x_set = {1, 2, 3, 4, 5}
y_set = x_set.copy()
y_set.remove(4); y_set.remove(5)
y_set.update({7, 8})
```


• change (in-place) the contents of x_set from

$$x_{set} = \{1, 2, 3\}$$
 to:

$$x_{set} = \{4, 5, 6\}$$

```
x_set = {1, 2, 3}
y_set = x_set.copy()
x_set.clear()
x_set.add(4)
x_set.add(5)
x_set.add(5)
```


• compute the sum of two elements from x_set chosen at random

 $x_{set} = set(range(10))$

```
x_set = set(range(10))
f_random = x_set.pop()
s_random = x_set.pop()
print("sum is ", f_random + s_random)
```


• show two ways to construct a set containing elements from x_set but not from y_set :

$$x_{set} = \{1, 2, 3, 4, 5, 6\}$$

 $y_{set} = \{3, 4\}$

```
x_set = {1, 2, 3, 4, 5, 6}

w_set = x_set.copy()
w_set.difference_update(y_set)

z_set = x_set.difference(y_set)
```


• show two different ways to remove even numbers from x_set

 $x_{set} = \{1, 2, 3, 4, 5, 6\}$

```
x_set = {1, 2, 3, 4, 5, 6}
y_set = x_set.copy()

for e in x_set:
    if e % 2 == 0:
        y_set.discard(e) # or remove

# second method
z_set = {e for e in x_set if e % 2 == 1}
```


• compute characters that are both in x_set and y_set

```
x_set = set("sunday")
y_set = set("tuesday")
```

```
x_set = set("sunday")
y_set = set("tuesday")
z_set = x_set.intersection(y_set)
```


• find a set of characters that are in x_set but not in y_set

```
x_set = set("sunday")
y_set = set("tuesday")
```

```
x_set = set("sunday")
y_set = set("tuesday")
z_set = x_set.difference(y_set)
```


• find a set of characters that are either in x_set or y_set

```
x_set = set("sunday")
y_set = set("tuesday")
```

```
x_set = set("sunday")
y_set = set("tuesday")
z_set = x_set.union(y_set)
```


• compute Jacard's similarity for each pair of sets from x_set , y_set , z_set :

```
x_set = set("sunday")
y_set = set("tuesday")
z_set = set("thursday")
```

```
x_set = set("sunday")
y_set = set("tuesday")
z_set = set("thursday")

x_or_y_size = len(x_set.union(y_set))
x_and_y_size = len(x_set.intersection(y_set))
jacard_xy = x_and_y_size / x_or_y_size

x_or_z_size = len(x_set.union(z_set))
x_and_z_size = len(x_set.intersection(z_set))
jacard_xz = x_and_z_size / x_or_z_size

y_or_z_size = len(y_set.union(z_set))
y_and_z_size = len(y_set.intersection(z_set))
jacard_yz_size = y_and_z_size / y_or_z_size
```


• which two sets are most similar?

- most similar: y_set and z_set
- they have highest Jaccard's similarity