Optimisation de formes et problèmes spectraux

Beniamin Bogosel

LAMA, Chambéry

08/12/2015

Optimisation de formes

$$\min_{\Omega \in \mathcal{A}} J(\Omega)$$

Questions?

- existence
- régularité
- la forme optimale est-elle explicite?
- résultats qualitatifs
- calculs numériques

Optimisation spectrale

Lord Rayleigh - The Theory of Sound (1877)

Le tambour

Le disque minimise l'aire a fréquence donnée

Faber-Krahn (1920-1923)

Le disque minimise $\lambda_1(\Omega)$ a aire fixée

$$\begin{cases} -\Delta u = \lambda_1(\Omega)u & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{cases}$$

Problèmes d'actualité

- optimisation valeurs propres en géométrie spectrale
 - A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators
- systèmes en compétition, dynamique des populations
 - Ramos, Tavares, Terracini, Existence and regularity of solutions to optimal partition problems involving Laplacian eigenvalues, ARMA 2015
- localisation des fonctions propres
 - David, Filoche, Jerison, Mayboroda, A free boundary problem for the localization of eigenfunctions

- 1. Optimisation sous contrainte de périmètre
- 2. Partitionnement et périmètre anisotrope
- 3. Problème spectral multiphase
- 4. Valeurs propres de Steklov
- 5. Optimisation de formes sur des surfaces

- 1. Optimisation sous contrainte de périmètre
- Approche Γ -convergence : λ_k + Per
- Optimisation numérique 2D, 3D
- Conditions d'optimalité vp multiples
- Verification numerique conjecture Polya
 - 2. Partitionnement et périmètre anisotrope
 - 3. Problème spectral multiphase
 - 4. Valeurs propres de Steklov
 - 5. Optimisation de formes sur des surfaces

- 1. Optimisation sous contrainte de périmètre
- 2. Partitionnement et périmètre anisotrope

- Approximation par Γ-convergence
- Calculs numériques

- 3. Problème spectral multiphase
- 4. Valeurs propres de Steklov
- 5. Optimisation de formes sur des surfaces

- 1. Optimisation sous contrainte de périmètre
- 2. Partitionnement et périmètre anisotrope
- 3. Problème spectral multiphase

- Calculs numériques
- Formule de monotonie à deux phases
- non-existence points tripes sur le bord

- 4. Valeurs propres de Steklov
- 5. Optimisation de formes sur des surfaces

- 1. Optimisation sous contrainte de périmètre
- 2. Partitionnement et périmètre anisotrope
- 3. Problème spectral multiphase
- 4. Valeurs propres de Steklov
- Stabilité, résultats d'existence
- Méthode solutions fondamentales
- Estimation d'erreur
- Optimisation numérique
 - 5. Optimisation de formes sur des surfaces

- 1. Optimisation sous contrainte de périmètre
- 2. Partitionnement et périmètre anisotrope
- 3. Problème spectral multiphase
- 4. Valeurs propres de Steklov
- 5. Optimisation de formes sur des surfaces

Partitions des surfaces en \mathbb{R}^3

- Périmètre minimal
- Optimisation partitions spectrales

1 Optimisation sous contrainte de périmètre

Problème spectral multiphase

3 Valeurs propres Steklov

Valeurs propres - Laplacien Dirichlet

$$\begin{cases} -\Delta u = \lambda u \\ u \in H_0^1(\Omega) \end{cases}$$

$$0 < \lambda_1(\Omega) \le \lambda_2(\Omega) \le ... \to +\infty$$

Quotients Rayleigh:

$$\lambda_k(\Omega) = \min_{S_k \subset H^1_0(\Omega)} \max_{\phi \in S_k \setminus \{0\}} \frac{\int_{\Omega} |\nabla \phi|^2 dx}{\int_{\Omega} \phi^2 dx}$$

Dilatation : $\lambda_k(t\Omega) = \frac{1}{t^2}\lambda_k(\Omega)$.

Monotonie : $\Omega_1 \subset \Omega_2 \Rightarrow \lambda_k(\Omega_1) \geq \lambda_k(\Omega_2)$

Optimisation

Contrainte volume

- formes optimales explicites pour $k \in \{1, 2\}$
- résultats d'existence (Bucur, Mazzolleni Pratelli 2012)
- calculs numériques (Oudet 2004 et Antunes, Freitas 2012)

Contrainte périmètre

- forme optimale explicite pour k=1
- resultats qualitatifs pour k = 2 en 2D (Bucur, Buttazzo, Henrot 2009)
- résultats d'existence et régularité (De Philippis, Velichkov 2012)

Description des résultats

- 1. Γ-convergence : phase unique pour Modica-Mortola et mesure capacitaire
- 2. Approximation numérique par Γ-convergence et validation par représentation Fourier radiale
- 3. Analyse qualitative des conditions d'optimalité valeurs propres multiples

Méthodes utilisées dans la littérature

- Lignes de niveaux + calcul vp éléments finis (Oudet, 2003)
- Paramétrisation radiale, coefficients Fourier
 - Calcul vp sol. particulières, MpsPack (Osting)
 - solutions fondamentales (Osting 2010, Antunes, Freitas 2012)

Formulation sans contrainte

$$\min_{\mathsf{Per}(\Omega)=1} \lambda_k(\Omega)$$

équivalent a une homothétie près à

$$\min (\lambda_k(\Omega) + \operatorname{Per}(\Omega)).$$

- en 2D les formes optimales sont convexes
- la forme optimale pour k = 1 est une boule

$$-\Delta u + C(1-\varphi)u = \lambda_k u$$

Valeur propre

$$-\Delta u + C(1-\varphi)u = \lambda_k u$$

$$\varepsilon \int_{D} |\nabla \varphi|^{2} dx + \frac{1}{\varepsilon} \int_{D} \varphi^{2} (1 - \varphi)^{2} dx$$

Valeur propre

$$-\Delta u + C(1-\varphi)u = \lambda_k u$$

$$\varepsilon \int_{D} |\nabla \varphi|^{2} dx + \frac{1}{\varepsilon} \int_{D} \varphi^{2} (1 - \varphi)^{2} dx$$

Valeur propre

$$-\Delta u + C(1-\varphi)u = \lambda_k u$$

$$\varepsilon \int_{D} |\nabla \varphi|^{2} dx + \frac{1}{\varepsilon} \int_{D} \varphi^{2} (1 - \varphi)^{2} dx$$

Valeur propre

$$-\Delta u + C(1-\varphi)u = \lambda_k u$$

$$\varepsilon \int_{D} |\nabla \varphi|^{2} dx + \frac{1}{\varepsilon} \int_{D} \varphi^{2} (1 - \varphi)^{2} dx$$

Valeur propre

$$-\Delta u + C(1-\varphi)u = \lambda_k u$$

$$\varepsilon \int_{D} |\nabla \varphi|^{2} dx + \frac{1}{\varepsilon} \int_{D} \varphi^{2} (1 - \varphi)^{2} dx$$

T-convergence

Soit $F_{\varepsilon}, F: X \to [0, \infty]$, $\varepsilon > 0$ et X est un espace métrique.

On dit que F_{ε} Γ -converges vers F si les deux conditions suivantes sont satisfaites :

(LI) Pour chaque $u \in X$ et chaque suite (u_{ε}) tel que $u_{\varepsilon} \to u$ dans X on a

$$\liminf_{\varepsilon \to 0} F_\varepsilon(u_\varepsilon) \geq F(u)$$

(LS) Pour chaque $u \in X$ il existe une suite (u_{ε}) tel que $u_{\varepsilon} \to u$ dans X et

$$\limsup_{\varepsilon\to 0} F_\varepsilon(u_\varepsilon) \leq F(u)$$

Propriétés

- (i) La Γ -limite F est semi continue-inférieurement sur X;
- (ii) Stabilité pour des perturbations continues;
- (iii) Convergence des minimiseurs

$$F_{\varepsilon} \xrightarrow{\Gamma} F \Rightarrow \operatorname{argmin} F_{\varepsilon} \to \operatorname{argmin} F$$

Théorème de Modica-Mortola

 $D \subset \mathbb{R}^N$ borné, ouvert.

$$F_{\varepsilon}(u) = \begin{cases} \int_{D} \left[\varepsilon |\nabla u|^{2} + \frac{1}{\varepsilon} u^{2} (1 - u)^{2} \right] dx & u \in H^{1}(D), \left(\int_{D} u = c \right) \\ +\infty & \text{sinon} \end{cases}$$

$$F(u) = \begin{cases} \frac{1}{3}\operatorname{Per}(\Omega,D) & u \in BV(D;\{0,1\}), \Omega = u^{-1}(1), \left(\int_D u = c\right) \\ +\infty & \text{sinon} \end{cases}$$

Théorème Modica-Mortola

 F_{ε} Γ -converge vers F dans la topologie $L^1(D)$.

Combiner les deux approches

Idée générale

Utiliser la même fonction de phase pour approcher le périmètre et la valeur propre

$$\lambda_k(\Omega)$$
 + Per(Ω)

$$\mathcal{F}(\varphi) = \lambda_k (C(1-\varphi)) dx + \varepsilon \int_D |\nabla \varphi|^2 dx + \frac{1}{\varepsilon} \int_D \varphi^2 (1-\varphi)^2 dx$$

Choix
$$C = 1/\varepsilon^2$$

Résultat Γ -convergence

$$J_{\varepsilon},J:L^1(D,[0,1])\to [0,+\infty]$$

$$J_{\varepsilon}(\varphi) = \begin{cases} \lambda_k \left(\frac{1 - \varphi}{\varepsilon^2} dx \right) + \\ + \varepsilon \int_D |\nabla \varphi|^2 dx + \frac{1}{\varepsilon} \int_D \varphi^2 (1 - \varphi)^2 dx \\ + \infty \end{cases} \quad \text{si } \varphi \in H^1(D)$$

$$J(\varphi) = egin{cases} \lambda_k(\Omega) + rac{1}{3}\operatorname{Per}(\Omega) & ext{ si } \varphi = \chi(\Omega) \in BV(D,\{0,1\}) \\ +\infty & ext{ sinon} \end{cases}$$

Théorème

 $J_{\varepsilon} \stackrel{\Gamma}{\longrightarrow} J$ dans la topologie de $L^1(D)$.

Difficultés

•
$$F_{\varepsilon} \xrightarrow{\Gamma} F$$
 et $G_{\varepsilon} \xrightarrow{\Gamma} G \not\Rightarrow F_{\varepsilon} + G_{\varepsilon} \xrightarrow{\Gamma} F + G$;

- (LI) → OK;
- (LS) non : on doit trouver le même suite qui réalise la limite dans (LS).

Calculs numériques

 $D = [0, 1]^2$ avec une grille uniforme $N \times N$.

- quadrature + différences finies pour Modica-Mortola;
- $\lambda_k \left(\frac{1-\varphi}{\varepsilon^2} dx \right) \longrightarrow \left[A + \frac{1}{\varepsilon^2} (1-\varphi)I \right] u = \lambda u;$
- algorithme du gradient;
- choix initial aléatoire $\Rightarrow k$ boules (minimum local);
- difficulté résolue si densité aléatoire non-uniforme.

Résultats

Extension directe en dimension trois

Validation des résultats en 2D

• en 2D la forme optimale est convexe

$$\Omega \longrightarrow \rho : [0, 2\pi) \to \mathbb{R}_+.$$

$$\rho(\theta) = a_0 + \sum_{k=1}^{\infty} (a_k \cos(k\theta) + b_k \sin(k\theta)).$$

Développement en série de Fourier

• $\rho \in C^{1,\alpha}$ (conjecture C^{∞})

$$\rho(\theta) \approx \rho_N(\theta) = a_0 + \sum_{k=1}^N (a_k \cos(k\theta) + b_k \sin(k\theta))$$

Pour Ω_N donné par ρ_N

$$|\lambda_n(\Omega_N) - \lambda_n(\Omega)| \leq C_{n,r_{\Omega}} \sum_{k>N+1} (|a_k| + |b_k|).$$

Cox, Ross, Osting

$$\frac{\partial \lambda_n}{\partial a_k} = -\int_0^{2\pi} \rho(\theta) \cos(k\theta) \left| \frac{\partial u_n}{\partial n} (\rho(\theta), \theta) \right|^2 d\theta$$

Optimisation

- \longrightarrow algorithme d'optimisation basé sur le gradient (LBFGS)
 - point de départ aléatoire pour éviter les minima locaux;
 - calcul des valeurs/fonctions propres avec MpsPack;
 - calculs faits pour $k \le 50$;
 - P. Antunes and P. Freitas (2015) ont fait les mêmes calculs : on au moins 10 formes qui sont meilleures (k = 11, 20, 31, 36, 37, 38, 40, 43, 46, 49).
 - les formes optimales sont presque toutes symétriques;
 exceptions :

Comparaison des deux méthodes

k	mult.	Γ-conv	Fourier	
1	1	11.55	11.55	
2	1	15.28	15.28	
3	2	15.75	15.75	
4	2	18.35	18.35	
5	2	19.11	19.11	
6	1	20.09	20.09	
7	2	21.50	21.50	
8	2	22.07	22.02	
9	1	23.21	23.21	
10	2	23.58	23.55	

k	mult.	Γ-conv	Fourier	
11	2	24.62	24.60	
12	3	24.76	24.74	
13	1	25.98	25.98	
14	2	26.43	26.43	
15	1	26.91	26.91	
16	3	27.27	27.25	
17	3	27.37	27.36	
18	2	28.66	28.63	
19	2	29.09	29.08	
20	3	29.53	29.51	

Contrainte perimetre vs contrainte volume

- contrainte volume $\longrightarrow \lambda_k(\Omega^*)$ est multiple pour $k \ge 2$
- contrainte périmètre $\longrightarrow \lambda_k(\Omega^*)$ est simple pour k=2 (BBH, 2009), 6, 9, 13, 15

Pourquoi?

Pour λ simple on a

Contrainte volume

Contrainte périmètre

$$\begin{array}{lll} \text{(1)} & \begin{cases} -\Delta u = \lambda u & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega \\ |\nabla u|^2 = 1 & \text{sur } \partial \Omega \end{cases} \end{aligned} \quad \text{(2)} & \begin{cases} -\Delta u = \lambda u & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega \\ |\nabla u|^2 = \mathcal{H} & \text{sur } \partial \Omega \end{cases}$$

Conjecture (Schiffer)

Si (1) a une solution non-triviale alors Ω est un disque.

A. Berger, The eigenvalues of the Laplacian with Dirichlet boundary condition in \mathbb{R}^2 are almost never minimized by disks (2015)

Conditions d'optimalité

• λ_k simple, V champ de vecteurs

$$\frac{d\lambda_k(\Omega)}{dV} = -\int_{\partial\Omega} \left(\frac{\partial u_k}{\partial n}\right)^2 V.nd\sigma$$

$$\longrightarrow$$
 a l'optimum on a $\left(\frac{\partial u_k}{\partial n}\right)^2 = \mathcal{H}$

Conditions d'optimalité : multiplicité > 1

On perd la différentiabilité!

Contrainte de volume :

• λ_k multiple : on trouve une famille $(\phi_i)_{i=1}^m \subset E_k$ tel que

$$\sum_{i=1}^{m} \left(\frac{\partial \phi_i}{\partial n} \right)^2 = 1$$

- Ahmad El Soufi, Saïd Ilias. Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold
- Nadirashvili, Berger's isoperimetric problem and minimal immersions of surfaces

Conditions d'optimalité

Contrainte de périmètre, hypothèse de regularité C^3 :

• λ_k multiple : on trouve une famille $(\phi_i)_{i=1}^m \subset E_k$ tel que

$$\sum_{i=1}^{m} \left(\frac{\partial \phi_i}{\partial n} \right)^2 = \mathcal{H}$$

Conséquences

•
$$\mathcal{H}(x) = 0 \Rightarrow \frac{\partial \phi_i}{\partial n}(x) = 0$$

- la frontière d'un minimiseur local ne contient pas de segment (partie plate en dim > 2)
- argument bootstrap (BBH) régularité $C^3 \to C^{\infty}$. Il reste a prouver $C^{1,\alpha} \to C^3$?

Conditions d'optimalité : vérification numérique

$$\sum_{i=1}^{m} \left(\frac{\partial \phi_i}{\partial n} \right)^2 = \mathcal{H}$$

$$\updownarrow$$

$$\mathcal{H} \in \operatorname{span} \left(\left\{ \left(\frac{\partial u_i}{\partial n} \right)^2, \ i = 1..p \right\} \bigcup \left\{ \frac{\partial u_i}{\partial n} \frac{\partial u_j}{\partial n}, \ 1 \leq i < j \leq p \right\} \right).$$

combinaison exprimable comme une somme des carrées.

Conditions d'optimalité : vérification numérique

Numériquement - moindres carrés :

$$\min_{\substack{(\alpha_i)_{i=1}^p,\\(\beta_{i,j})_{1\leq i< j\leq n}}}\sum_{h=1}^l\left(\sum_{i=1}^p\alpha_i\left(\partial_nu_i(x_h)\right)^2+\right.$$

$$+ \sum_{1 \leq i \leq p} \beta_{i,j} \partial_n u_i(x_h) \partial_n u_j(x_h) - \mathcal{H}(x_h) \bigg)^2$$

- très bon indicateur d'un minimum local
- erreur $L^{\infty} < 10^{-4}$ pour $k \le 15$ en 2D

1 Optimisation sous contrainte de périmètre

Problème spectral multiphase

3 Valeurs propres Steklov

Problème spectral multiphase

$$\min \sum_{i=1}^{n} (\lambda_1(\Omega_i) + \alpha |\Omega_i|), (\Omega_i) \text{ disjointes dans } D$$

Bucur, Velichkov (2014), David, Filoche, Jerison, Mayboroda (2015) Objectif initial...

- valider numériquement les résultats théoriques
- Méthode numérique
 - Bourdin, Bucur, Oudet formulation relaxée
 - ajout d'une phase supplémentaire

$$\sum_{i=1}^{n} \varphi_i \le 1 \longrightarrow \sum_{i=1}^{n+1} \varphi_i = 1.$$

Observations

- Absence de points triples (Bucur, Velichkov)
- Absence de points triples sur le bord
- Absence d'angles

Heuristique de formules de monotonie

 u_i fp secteur angle mesure $\theta \Rightarrow u_i \sim r^{\pi/\theta}$, $|\nabla u_i|^2 \sim r^{2\pi/\theta-2}$

trois phases

$$\prod_{i=1}^{3} \oint_{B_r} |\nabla u_i|^2 \le r^{\frac{2\pi}{\alpha} + \frac{2\pi}{\beta} + \frac{2\pi}{\gamma} - 6}$$

$$\prod_{i=1}^{3} \int_{B_r} |\nabla u_i|^2 \le r^3$$

si
$$\alpha + \beta + \gamma = 2\pi$$

deux phases

$$\prod_{i=1}^{2} \int_{B_{r}} |\nabla u_{i}|^{2} \leq r^{\frac{2\pi}{\alpha} + \frac{2\pi}{\beta} - 4}$$

$$\prod_{i=1}^2 \int_{B_r} |\nabla u_i|^2 \le r^{\varepsilon}$$

si
$$\alpha + \beta < 2\pi$$

Théorème de monotonie

$$u_i \geq 0 \in H^1(B_1) \cap L^{\infty}(B_1), \ u_1u_2 = 0, \ \lambda_i \geq 0, \ \Delta u_i + \lambda_i u_i \geq 0,$$

 $\liminf_{r \to 0} |\{u_i = 0\} \cap B_r|/|B_r| > 0$

$$\int_{B_r} |\nabla u_1|^2 \int_{B_r} |\nabla u_2|^2 = o(r^{\varepsilon}).$$

Sous-solutions

$$\lambda_1(\omega_i) + \alpha|\omega_i| \leq \lambda_1(\omega) + \alpha|\omega|, \ \forall \omega \subset \omega_i$$

D. Bucur (2012)

Non-degeneration du gradient : $x_0 \in \partial \Omega_i \cap \partial \Omega_j$

$$\int_{B_r(x_0)} |\nabla u_i|^2 \ge C > 0.$$

Conséquences

- absence de points triples au bord si ∂D est Lipschitz
- ullet absence d'angles de mesure $<\pi$

1 Optimisation sous contrainte de périmètre

Problème spectral multiphase

Valeurs propres Steklov

Problème Steklov

Pour $\Omega \subset \mathbb{R}^2$, assez régulier, simplement connexe on considère

$$\begin{cases} -\Delta u = 0 & \text{dans } \Omega, \\ \frac{\partial u}{\partial n} = \sigma u & \text{sur } \partial \Omega, \end{cases}$$

$$0 = \sigma_0 \le \sigma_1(\Omega) \le \sigma_2(\Omega) \le \sigma_3(\Omega) \le \dots \to +\infty$$

Caractérisation variationnelle :

$$\sigma_n(\Omega) = \inf_{\mathcal{S}_n} \sup_{u \in \mathcal{S}_n \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\partial \Omega} u^2 d\sigma}, \ \ n = 1, 2, ...$$

$$S_n \subset H^1(\Omega) \cap \{ \int_{\partial \Omega} u = 0 \} ;$$

$$\sigma_k(t\Omega) = \frac{1}{t}\sigma_k(\Omega).$$

Optimiseurs connus

Simplement connexes:

- $\max \sigma_1$ sous contrainte de perimetre en 2D (Weinstock)
- max σ₁σ₂ sous contrainte de périmètre en 2D (Hersch-Payne)
- min $\sum_{k=1}^{n} \frac{1}{\sigma_k}$ sous contrainte de périmètre en 2D (Hersch-Payne-Schiffer)

En général :

• $\max \sigma_1$ sous contrainte de volume

Toujours le disque...

Résultats théoriques

• Stabilité spectrale sous conditions de rigidité

Convergence des traces

Si (Ω_n) , $\Omega \subset D$ sont des ouverts connexes, verifient une condition de ε -cone, $\Omega_n \xrightarrow{H^c} \Omega$ et $u_n \rightharpoonup u$ dans H^1 alors

$$\int_{\partial\Omega}|u|^p\leq \liminf_{n\to\infty}\int_{\partial\Omega_n}|u_n|^p.$$

Si $\operatorname{Per}(\Omega_n) \to \operatorname{Per}(\Omega)$ on a égalité.

- Existence de formes optimales
 - Contrainte volume + convexité (Chapitre 4)
 - Contrainte volume, relaxation
 (B., Bucur, Giacomini en cours)

Méthode des solutions fondamentales

- Résoudre l'EDP analytiquement a l'intérieur du domaine
- erreur condition au bord assez petite (norme L^2)

Question

Une erreur au bord petite implique-t-elle une erreur petite pour la valeur propre?

Méthode des solutions fondamentales

- $(y_i)_{i=1}^N$ une famille des points a l'extérieur du domain Ω ;
- ϕ_i fonctions harmoniques radiales centrées en y_i ;

$$\Rightarrow u = \alpha_1 \phi_1 + ... + \alpha_N \phi_N$$

est harmonique dans Ω .

 \Rightarrow il reste a "arranger" (α_i) tels que

$$\frac{\partial u}{\partial n} \approx \sigma u \text{ sur } \partial \Omega.$$

Condition au bord

- $(x_i)_{i=1}^N$ une discrétisation du $\partial\Omega$;
- on impose les conditions

$$\alpha_1 \frac{\partial \phi_1}{\partial n}(x_i) + \dots + \alpha_N \frac{\partial \phi_N}{\partial n}(x_i) =$$

$$\sigma(\alpha_1 \phi_1(x_i) + \dots + \alpha_N \phi_N(x_i)), i = 1..N$$

- $\phi_j(x) = \log |x y_j|$ (formule analytique);
- $A = (\partial_n \phi_j(x_i))_{ij}^N, B = (\phi_j(x_i))_{ij}^N, u = (\alpha_1, ..., \alpha_N)^T;$
- le problème devient $A\vec{\alpha} = \sigma B\vec{\alpha}$;
- problème valeurs propres généralisées : eigs (Matlab)

Choix centres - important

- Les (x_i) on les choisit uniformément sur $\partial\Omega$ (angles ou longueur d'arc);
- Les (y_i) on les choisit sur les normales en (x_i) a $\partial\Omega$ a distance 0.1 des (x_i) .

... limitations de la méthode

Comparaison FreeFem++

		FreeFem++			
k	MFS	2096▲	33788▲	134898▲	211290▲
1	0.712751	0.714888	0.712886	0.712785	0.712773
2	0.940247	0.942837	0.940411	0.940288	0.940274
3	1.381278	1.38874	1.38175	1.3814	1.38135
4	1.443204	1.45137	1.44372	1.44333	1.44329
5	3.146037	3.15592	3.14665	3.14619	3.14614
6	3.443637	3.45562	3.44438	3.44382	3.44376
7	3.757833	3.78642	3.75962	3.75828	3.75812
8	3.922822	3.95461	3.92478	3.92331	3.92313
9	4.274362	4.32906	4.27774	4.27521	4.2749
10	4.693207	4.75819	4.69723	4.69422	4.69385
t	0.02s	0.81s	6.57s	24.76s	41.61s

Estimation d'erreur

- l'erreur numérique semble être petite; quantification?
- méthode similaire Moler-Payne, vp Laplace-Dirichlet :

Soit Ω borné, régulier, qui satisfait

$$\begin{cases} -\Delta u_{\varepsilon} = 0 & \text{in } \Omega \\ \frac{\partial u_{\varepsilon}}{\partial n} = \sigma_{\varepsilon} u_{\varepsilon} + f_{\varepsilon} & \text{on } \partial \Omega. \end{cases}$$

avec $\|u_{\varepsilon}\|_{L^2(\partial\Omega)}=1$ et $\|f_{\varepsilon}\|_{L^2(\partial\Omega)}=\delta$ petit. Alors il existe $k\in\mathbb{N}^*$ tel que

$$\frac{|\sigma_{\varepsilon} - \sigma_{k}|}{\sigma_{k}} \leq C ||f_{\varepsilon}||_{L^{2}(\partial\Omega)}.$$

 disque : prédiction théorique erreur : 10⁻¹². Précision numérique : 10⁻¹².

• en général, on voit que $\|\partial_n u_{\text{num}} - \sigma_{\text{num}} u_{\text{num}}\|_{L^{\infty}} = O(10^{-6})$ \Rightarrow precision d'ordre 10^{-6} .

Restriction au cas radial

Simplement connexité en 2D

- $\bullet \sup_{u \in S_n \setminus \{0\}} \frac{\int_{\Omega \setminus \Omega'} |\nabla u|^2 dx}{\int_{\partial \Omega \cup \partial \Omega'} u^2 d\sigma} \leq \sup_{u \in S_n \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\partial \Omega} u^2 d\sigma}$
- donc $\sigma_n(\Omega \setminus \Omega') \leq \sigma_n(\Omega)$;
- finalement $\sigma_n(\Omega \setminus \Omega')|\Omega \setminus \Omega'|^{1/2} \leq \sigma_n(\Omega)|\Omega|^{1/2}$.

Cas non-étoilé

Tests numériques

- Weinstock, Hersch-Payne
- min $\sum_{i=1}^{n} \frac{1}{\sigma_i(\Omega)|\Omega|^{\frac{1}{2}}}$ réalisé par le disque
- $\min \sum_{i=1}^n \frac{1}{\sigma_{2i-1}(\Omega)\sigma_{2i}(\Omega)|\Omega|}$ réalisé par le disque
- $\max |\Omega|^{\frac{n}{2}} \prod_{i=1}^n \sigma_i(\Omega)$ réalisé par le disque
- min $\sum_{i\in A} \frac{1}{\sigma_i(\Omega)|\Omega|^{\frac{1}{2}}}$ réalisé par le disque, ou A a la propriété : $1\in A, 2k\in A\Rightarrow 2k-1\in A$.

Steklov - contrainte aire

FIGURE : Les maximiseurs pour la $k^{\text{ème}}$ vp Steklov sous contrainte d'aire, k=2,3,...,10.

Steklov - contrainte aire + convexité

$$\sigma_1 = 1$$
 $\sigma_2 = 2.88$ $\sigma_3 = 3.91$ $\sigma_4 = 4.64$ $\sigma_5 = 5.66$ $\sigma_6 = 6.29$ $\sigma_7 = 7.43$ $\sigma_8 = 7.03$ $\sigma_9 = 9.21$ $\sigma_{10} = 9.79$

FIGURE : Formes convexes d'aire 1 qui maximisent la $k^{\mathrm{\`e}me}$ vp

Conclusion et perspectives

vagues stationnaires

$$\mathcal{L}(\Omega) = \frac{\mu}{\int_{\Omega} |\nabla h_{\Omega}|^2} + g \int_{\Omega} x_2 + \alpha \mathcal{H}^1(S) + \beta \int_{S} \kappa^2$$

• résultat général d'existence optimiseurs vp Steklov

$$\max\{F(\sigma_1(\Omega),...,\sigma_k(\Omega)):\Omega\subset\mathbb{R}^n, |\Omega|=c,\Omega \text{ mesurable}\}$$

Modica-Mortola sur des surfaces

$$\int_{\mathcal{S}} \varepsilon |\nabla_{\tau} u|^2 + \frac{1}{\varepsilon} \int_{\mathcal{S}} u^2 (1-u)^2 \stackrel{\Gamma}{\longrightarrow} c \operatorname{\mathsf{Per}}$$

logiciel calcul valeurs propres en 3D

Merci!