TMUA Practice - Integration

The area of the region bounded by the curve $y = \sqrt{x}$, the line y = x - 2 and the x-axis is: 1)

Atp
$$\int z = x - 2$$

 $x = x^2 - 4x + 4$
 $x^2 - 5x + 4 = 0$
 $(x - 1)(x - 4) = 0$

- 2 B $\frac{5}{2}$ C 3 D $\frac{10}{3}$ E $\frac{16}{3}$ $\angle y = 5x$ Atp 5x = x 2 $x = x^2 4x + 4$ $x^2 5x + 4 = 0$ (x i)(x 4) = 0 = 16 2 10
- 2) The graph shows a quadratic curve with equation $y = x^2 3x + 7$ and a straight line y = x + 4. What is the value of the shaded area?

At A, 8 x2-3x+7=x+4 (x-i)(x-3)=0A(1,5) B(3,7) (x-i)(x-i)=0

A (1,5) B(3,7)

Area =
$$\int_{1}^{3} x + 4 - x^{2} + 3x - 7 \, dx$$

= $\int_{1}^{3} -x^{2} + 4x - 3 \, dx$

- A $\frac{1}{3}$ B $\frac{4}{3}$ C $\frac{7}{3}$ D $\frac{32}{3}$ Area = $\left[-\frac{1}{3}x^3 + 2x^2 3x\right]^3$
- E 12

Aree =
$$\left[-\frac{1}{3}x^3 + 2x^2 - 3x\right]_1^3$$

= $\left(-9 + 18 - 9\right) - \left(-\frac{1}{3} + 2 - 3\right) = \frac{4}{3}$

The area of the region bounded by the curves $y = x^2$, y = x + 2 is: 3)

- $(A) \frac{9}{2}$ $(A) \frac{9}{2}$ $(A) \frac{7}{3}$ $(A) \frac{7}{2}$ $(A) \frac{9}{4}$ $(A) \frac{9}{4}$ $(A) \frac{11}{2}$

AL P,Q
$$x^2 = x + 2$$

 $x^2 - x - 2 = 0$
 $(x - 2)(x + 1) = 0$
 $x = 2 = -1$

Area =
$$\int_{-1}^{2} x + 2 - x^{2} dx$$

= $\left[\frac{1}{2}x^{2} + 2x - \frac{1}{3}x^{3}\right]_{-1}^{2}$
= $\left(2 + 4 - \frac{8}{3}\right) - \left(\frac{1}{2} - 2 + \frac{1}{3}\right)$
= $6 - 3 + \frac{3}{2} = \frac{9}{2}$

Find the area of the finite region between the curves with equations 4)

$$y = x^2 + x - 1 \qquad \text{and} \qquad$$

- $(C) \frac{4}{3}$ D $\frac{5}{3}$

y = x

- E 2

$$x^{2} + x - 1 = x$$

$$x^{2} = 1$$

$$x = \pm 1$$
Area =
$$\int_{-1}^{1} 1 - x^{2} dx = \left[x - \frac{1}{3}x^{3} \right]_{-1}^{1} = \left(1 - \frac{1}{3} \right) - \left(-1 + \frac{1}{3} \right)$$

$$= 2 - \frac{2}{3} = \frac{4}{3}$$

A line is tangent to the parabola $y = x^2$ at the point (a, a^2) where a > 0. 5)

The area of the finite region bounded by the parabola, the tangent line and the x-axis equals:

$$\frac{dy}{dx} = 2x$$
 $\frac{2x}{dx} = 2a$ $\frac{2x}{4} = 2a$ $\frac{2x}{4} = 2ax - a^2$ $\frac{1}{2}a$

$$y = 2ax - a$$

$$y = 0 \quad x = \frac{1}{2}a$$

$$A = \frac{a^2}{3}$$

B
$$\frac{2a^2}{3}$$

A
$$\frac{a^2}{3}$$
 B $\frac{2a^2}{3}$ C $\frac{a^3}{12}$ D $\frac{5a^3}{6}$

$$D \quad \frac{5a^3}{6}$$

$$E = \frac{a^4}{10}$$

- $\int_{0}^{9} x^{2} dx \frac{1}{2} x \frac{1}{2} a x a^{2}$ $\int_{0}^{9} x^{2} dx \frac{1}{2} x \frac{1}{2} a x a^{2}$ $\int_{0}^{9} x^{2} dx \frac{1}{2} x \frac{1}{2} a x a^{2}$ $\int_{0}^{9} x^{2} dx \frac{1}{2} x \frac{1}{2} a^{3}$ $\int_{0}^{1} x^{2} dx \frac{1}{2} a^{3}$
- 6) The area of the finite region between the parabolas with equations

$$y = x^2 + 2ax + a$$
 and $y = a - x^2$ equals 9.

The possible values of *a* are:

$$y = (x+a)^2 + a - a^2$$

$$A \quad a = 1$$

C
$$a = -3$$

$$D \quad a = \pm 1$$

$$E \quad a = 3$$

$$\int_{-a}^{0} a - x^{2} - x^{2} - 2ax - a dx = \pm 9$$
There is 9 so integral can be \pm 9

Tyler Tutoring

$$y = 5 - x^2$$
 and $y = |x| - 1$

A
$$\frac{19}{3}$$

B
$$\frac{22}{3}$$

$$C = \frac{25}{3}$$

D
$$\frac{28}{3}$$

A
$$\frac{19}{3}$$
 B $\frac{22}{3}$ C $\frac{25}{3}$ D $\frac{28}{3}$

$$x > 0 \quad x - 1 = 5 - x^{2}$$

$$x^{2} + x - 6 = 0$$

$$(x + 3)(x - 2) = 0$$

$$x = 2$$

$$x^{2} - x - 1 = 5 - x^{2}$$

$$x^{2} - x - 6 = 0$$

Evaluate the following integral
$$\int_{-1}^{1} 2(x + |x|) - 7x|x| dx$$

$$\widehat{A}$$
 2

$$B = \frac{7}{3}$$

$$\widehat{A}$$
 2 B $\frac{7}{3}$ C $\frac{5}{2}$ D 4 E $\frac{9}{2}$

$$E = \frac{9}{2}$$

$$= \int_{-1}^{0} 2(x-sc) + 7x^{2} dx + \int_{0}^{1} 2(x+x) - 7sc^{2} dx$$

$$= \left[\frac{7}{3}x^{3} \right]_{-1}^{0} + \left[2x^{2} - \frac{7}{3}x^{3} \right]_{0}^{1}$$

$$= 0 - -\frac{7}{3} + 2 - \frac{7}{3} - 0$$

9) The positive number k satisfies
$$\int_0^k (\sqrt{x} + x^2) dx = 5$$
 for which value of k?

A
$$k = (\sqrt{21} - 1)^{\frac{1}{3}}$$

B
$$k = \sqrt{3}$$

$$(C)$$
 $k = 3^{\frac{2}{3}}$

D
$$k = (\sqrt{6} - 1)^{\frac{2}{3}}$$

E
$$k = 5^{\frac{2}{3}}$$

$$\int_{0}^{k} x^{\frac{1}{2}} + x^{2} dx = 5$$

$$\left[\frac{2}{3} x^{\frac{3}{2}} + \frac{1}{3} x^{3} \right]_{0}^{k} = 5$$

$$2 k^{\frac{3}{2}} + k^{3} = 15$$

$$k^{3} + 2 k^{\frac{3}{2}} - 15 = 0$$

$$(k^{\frac{3}{2}} + 5)(k^{\frac{3}{2}} - 3) = 0$$

$$k > 0 \quad k^{\frac{3}{2}} = 3$$

$$k = 3^{\frac{2}{3}}$$

10) Let
$$f(x) = \int_{-x}^{x} \frac{1}{2} t^2 dt$$

$$g(x) = \int_0^1 x^2 t \ dt$$

Which of the following statements is true? F(x) = \[\frac{1}{6} \tag{2} \] = \[\frac{1}{2} \times^3 \]

$$(A) gf(A) > fg(A) \text{ for all } A > 0$$

$$B \quad gf(A) < fg(A) \text{ for all } A > 0$$

$$gf(A) < fg(A)$$
 for all $A > 0$

C
$$gf(A) = fg(A)$$
 for all $A > 0$

D
$$gf(A) > fg(A)$$
 for $A > 1$

and
$$gf(A) < fg(A)$$
 for $A < 1$

 $q(x) = \int \frac{1}{2}x^2 t^2 \int_0^1 = \frac{1}{2}x^2$

E
$$gf(A) < fg(A)$$
 for $A > 1$ and $gf(A) > 1$

and
$$gf(A) > fg(A)$$
 for $A < 1$

$$gf(x) = \frac{1}{2} \left(\frac{1}{3} x^{3} \right)^{2} = \frac{1}{18} x^{6}$$

$$fg(x) = \frac{1}{3} \left(\frac{1}{2} x^{2} \right)^{3} = \frac{1}{24} x^{6}$$

$$\frac{1}{18}$$
 x $\frac{1}{24}$ x $\frac{1}{24}$ Corall x

Find the minimum value of the function f(t) where $f(t) \equiv \int_{0}^{1} (x - t)^{2} + t^{2} dx$ $t \ge 0$ 11)

A 0 B
$$\frac{5}{24}$$
 C $\frac{1}{4}$ D $\frac{1}{3}$ E $\frac{7}{12}$

$$C = \frac{1}{2}$$

$$D = \frac{1}{3}$$

$$E = \frac{7}{12}$$

$$f(t) = \int_{0}^{1} x^{2} - 2tx + 2t^{2} dx$$

$$= \left[\frac{1}{3}x^{3} - tx^{2} + 2t^{2}x \right]_{0}^{1}$$

$$= \frac{1}{2} - t + 2t^{2}$$

$$= \frac{1}{3} - t + 2t^{3}$$

$$= 2t^{2} - t + \frac{1}{3}$$

At minflt)
$$\frac{df}{dt} = 4t - 1 = 0$$

$$F(\frac{1}{u}) = \frac{1}{8} - \frac{1}{4} + \frac{1}{3}$$

$$= \frac{1}{3} - \frac{1}{8} = \frac{5}{24}$$

The trapezium rule approximation using four trapezia for: 12)

$$\int_0^6 |x(x-3)(x-6)| \ dx$$

B
$$\frac{3^5}{4}$$

$$C = \frac{3^3}{2^5}$$

$$\bigcirc A = \frac{3^5}{2^3}$$
 B $= \frac{3^5}{4}$ C $= \frac{3^3}{2^5}$ D 6 E $= \frac{3}{2}$

$$x = \frac{3}{2} \qquad \frac{3}{2} \left(-\frac{3}{2} \right) \left(-\frac{9}{2} \right) = \frac{81}{8} \qquad \qquad \frac{9}{2} \left(\frac{3}{2} \right) \left(-\frac{3}{2} \right) = -\frac{81}{8}$$

$$A = \frac{1}{2}$$

$$\frac{\sqrt{2}}{2} \left(\frac{3}{2} \right) \left(-\frac{3}{2} \right) = -\frac{8}{3}$$

$$A = \frac{1}{2}$$

$$= \frac{1}{2} \times \frac{3}{2} \left(0 + 0 + 2 \left(\frac{81}{8} + \frac{81}{8} \right) \right) = \frac{3}{4} \left(\frac{81}{2} \right) = \frac{248}{8} = \frac{3^{5}}{2^{3}}$$

10) Let
$$f(x) = \int_0^1 (xt)^2 dt$$
 $g(x) = \int_0^x t^2 dt$

Which of the following statements is true?

Which of the following statements is true:

$$F(\alpha) = \begin{bmatrix} \frac{1}{3} x^2 t^3 \end{bmatrix}_0 = \frac{1}{3} x^2$$

$$F(\alpha) = \begin{bmatrix} \frac{1}{3} x^2 t^3 \end{bmatrix}_0 = \frac{1}{3} x^2$$

$$F(\alpha) = \begin{bmatrix} \frac{1}{3} x^2 t^3 \end{bmatrix}_0 = \frac{1}{3} x^3$$

$$F(\alpha) = \begin{bmatrix} \frac{1}{3} t^3 \end{bmatrix}_0 = \frac{1}{3} x^3$$

$$F(\alpha) = \begin{bmatrix} \frac{1}{3} t^3 \end{bmatrix}_0 = \frac{1}{3} x^3$$

$$F(\alpha) = \begin{bmatrix} \frac{1}{3} t^3 \end{bmatrix}_0 = \frac{1}{3} x^3$$

$$F(\alpha) = \begin{bmatrix} \frac{1}{3} t^3 \end{bmatrix}_0 = \frac{1}{3} x^3$$

D
$$gf(A) > fg(A)$$
 for $A > 1$ and $gf(A) < fg(A)$ for $A < 1$

E
$$gf(A) < fg(A)$$
 for $A > 1$ and $gf(A) > fg(A)$ for $A < 1$

$$g(x) = \frac{1}{3} \left(\frac{1}{3}x^{2}\right)^{3} = \frac{1}{81}x^{6}$$

$$\frac{1}{81}x^{6} \times \frac{1}{27}x^{6} \text{ for all } x$$

$$fg(x) = \frac{1}{3} \left(\frac{1}{3}x^{3}\right)^{2} = \frac{1}{27}x^{6}$$

11) Find the minimum value of the function
$$f(t)$$
 where $f(t) \equiv \int_0^1 (x - t)^2 + t^2 dx$ $t \ge 0$

A 0 (B)
$$\frac{5}{24}$$
 C $\frac{1}{4}$ D $\frac{1}{3}$ E $\frac{7}{12}$

$$f(t) = \int_{0}^{1} x^{2} - 2tx + 2t^{2} dx$$

$$= \left[\frac{1}{3}x^{3} - tx^{2} + 2t^{2}x \right]_{0}^{1}$$

$$= \frac{1}{3} - t + 2t^{2}$$

$$= 2t^{2} - t + \frac{1}{2}$$

B $\frac{5}{24}$ C $\frac{1}{4}$ D $\frac{1}{3}$ E $\frac{7}{12}$

At minfth $\frac{df}{dt} = 4t - 1 = 0$

$$\frac{df}{dt} = \frac{4t - 1}{t} = 0$$

$$f(\frac{1}{4}) = \frac{1}{8} - \frac{1}{4} + \frac{1}{3}$$

$$= \frac{1}{3} - \frac{1}{8} = \frac{5}{24}$$

12) The trapezium rule approximation using four trapezia for:

$$\int_0^6 |x(x-3)(x-6)| \ dx$$

$$= \frac{1}{2} \times \frac{3}{2} \left(0 + 0 + 2 \left(\frac{81}{8} + \frac{81}{8} \right) \right) = \frac{3}{4} \left(\frac{81}{2} \right) = \frac{248}{8} = \frac{3^{5}}{2^{3}}$$

13) Find the area of the finite region between the curve with equation

$$y = (x - a)(x - b)$$
 where $0 < a < b$

where
$$0 < a < b$$

and the x-axis

A
$$\frac{1}{3}(b-a)^3$$

A
$$\frac{1}{3}(b-a)^3$$
 B $\frac{1}{6}(b-a)^3$ C $\frac{1}{2}(b+a)^2$ D $\frac{1}{3}(b+a)^2$ E $\frac{1}{2}(b+a)^3$

$$C = \frac{1}{2}(b+a)^2$$

D
$$\frac{1}{3}(b+a)^2$$

E
$$\frac{1}{2}(b+a)^3$$

Area =
$$\left| \int_{a}^{b} x^{2} - (a+b)x + ab dx \right|$$

= $\left| \left(\frac{1}{3}x^{3} - \frac{1}{2}(a+b)x^{2} + abx \right]_{a}^{b} \right|$
= $\left| \left(\frac{1}{3}b^{3} - \frac{1}{2}(a+b)b^{2} + ab^{2} \right) - \left(\frac{1}{3}a^{3} - \frac{1}{2}(a+b)a^{2} + a^{2}b \right) \right|$
= $\left| \frac{1}{6} \left(2b^{3} - 3ab^{2} - 3b^{3} + 6ab^{2} - 2a^{3} + 3a^{3} + 3a^{2}b - 6a^{2}b \right) \right|$
= $\left| \frac{1}{6} \left(a^{3} - 3a^{2}b + 3ab^{2} - b^{3} \right) \right| = \frac{1}{6} \left| (a-b)^{3} \right| = \frac{1}{6} \left| (b-a)^{3} \right|$ as bea

The function f(x) is such that 14)

$$f(x) + 4f(-x) \equiv 1 + x^2 \int_{-1}^{1} f(u) \ du$$

Determine the value of $\int_{-1}^{1} f(x) dx = |x| \qquad w = -\infty \qquad |x| = -\int_{-1}^{1} f(-\omega) d\omega = \int_{-1}^{1} f(-\omega) d\omega$

$$(A) \frac{6}{13}$$
 B $\frac{5}{6}$ C 2 D $\frac{5}{2}$ E $\frac{25}{9}$

$$B = \frac{5}{6}$$

$$D = \frac{5}{2}$$

E
$$\frac{25}{9}$$

$$\int_{-1}^{1} f(x) + 4f(-x) dx = \int_{-1}^{1} 1 + kx^{2} dx$$

$$5k = \left[x + \frac{1}{3}kx^{3} \right]_{-1}^{1} = \left(1 + \frac{1}{3}k \right) - \left(-1 - \frac{1}{3}k \right)$$

$$5k = 2 + \frac{2}{3}k$$

$$\frac{13}{3}k = 2 \qquad k = \frac{6}{13}$$

Place the following integrals in order of size from smallest to largest. 15)

$$\underline{K} = \int_{1}^{4} log_4 \sqrt{x} \ dx$$

$$\underline{L} = \int_{1}^{4} log_{4}x \ dx$$

$$\underline{K} = \int_{1}^{4} log_{4} \sqrt{x} \ dx \qquad \underline{L} = \int_{1}^{4} log_{4} x \ dx \qquad \underline{M} = \int_{1}^{4} \sqrt{log_{4} x} \ dx$$

$$C \quad L < M < K$$

$$D \quad L < K < M$$