10. Information theory

10.1. Shannon information and entropy

10.2. Kullback Leibler divergence

10.3. Flow of information

10.1. Shannon information and entropy

Definition 10.1

Let P be a probability measure on a finite sample space S with mass function p(s). The (Shannon) information content of the sample point $s \in S$, denoted $I_P(s)$, is defined to be

$$I_P(s) \stackrel{ ext{def}}{=} -\log(p(s)).$$

The information content is also called the *surprisal*.

If the probability measure P is clear from context, we will write I(s) in place of $I_P(s)$. If \mathbf{X} is a random vector with finite range and probability measure $P_{\mathbf{X}}$, we will write $I_{\mathbf{X}}(\mathbf{x})$ in place of $I_{P_{\mathbf{X}}}(\mathbf{x})$.

Definition 10.2

Let P be a probability measure on a finite sample space S with mass function p(s). The (Shannon) entropy of P, denoted H(P), is defined to be

$$H(P) \stackrel{\mathrm{def}}{=} \sum_{s \in S} p(s) I_P(s).$$

The entropy is also called the *uncertainty*.

If ${\bf X}$ is a random vector with finite range and probability measure $P_{\bf X}$, we will write $H({\bf X})$ in place of $H(P_{\bf X})$. If we write the vector in terms of its component random variables ${\bf X}=(X_1,\ldots,X_m)$, then we shall also write $H(X_1,\ldots,X_m)$ in place of $H(P_{\bf X})$ and call this the *joint entropy* of the random variables X_1,\ldots,X_m .

Do problems 1 and 2 on the worksheet.

Definition 10.3

Let P and Q be two probability measures on a finite sample space S with mass functions p(s) and q(s). Suppose they satisfy the following condition:

• Absolute continuity. For all $s \in S$, if q(s) = 0, then p(s) = 0. Or equivalently, the support of q(s) contains the support of p(s).

Then the *cross entropy* from P to Q, denoted $H_P(Q)$, is defined by

$$H_P(Q) \stackrel{ ext{def}}{=} E_{s \sim p(s)} \left[I_Q(s)
ight] = - \sum_{s \in S} p(s) \log(q(s)).$$

As usual, if $P_{\mathbf{X}}$ and $P_{\mathbf{Y}}$ are the probability measures of two random vectors \mathbf{X} and \mathbf{Y} with finite ranges, we will write $H_{\mathbf{Y}}(\mathbf{X})$ in place of $H_{P_{\mathbf{Y}}}(P_{\mathbf{X}})$.

Do problem 3 on the worksheet.

10.2. Kullback Leibler divergence

Let P and Q be two probability measures on a finite sample space S with mass functions p(s) and q(s). Suppose they satisfy the following condition:

• Absolute continuity. For all $s \in S$, if q(s) = 0, then p(s) = 0. Or equivalently, the support of q(s) contains the support of p(s).

Then the *Kullback-Leibler divergence* (or just *KL divergence*) from P to Q, denoted $D(P \parallel Q)$, is the mean order of relative magnitude of P to Q. Precisely, it is given by

$$D(P \parallel Q) \stackrel{ ext{def}}{=} E_{s \sim p(s)} \left[\log \left(rac{p(s)}{q(s)}
ight)
ight] = \sum_{s \in S} p(s) \log \left(rac{p(s)}{q(s)}
ight).$$

The KL divergence is also called the *relative entropy*.

As always, if $P_{\mathbf{X}}$ and $P_{\mathbf{Y}}$ are the probability measures of two random vectors \mathbf{X} and \mathbf{Y} with finite ranges, we will write $D(\mathbf{Y} \parallel \mathbf{X})$ in place of $D(P_{\mathbf{Y}} \parallel P_{\mathbf{X}})$.

To problem 4 on the worksheet.

Theorem 10.1 (KL divergence and entropy)

Let P and Q be two probability measures on a finite sample space S. Then

$$D(P \parallel Q) = H_P(Q) - H(P).$$

Theorem 10.3 (Gibbs' inequality)

Let P and Q be two probability measures on a finite probability space S satisfying the absolute continuity condition in <u>Definition 10.4</u>. Then

$$D(P \parallel Q) \geq 0$$
,

with equality if and only if P=Q.

Corollary 10.1 (Uniform distributions maximize entropy)

Let P be a probability measures on a finite sample space S. Then

$$H(P) \leq \log |S|,$$

with equality if and only if P is uniform.

Do problem 5 on the worksheet.