

Rozdzielanie cukierków (Distributing Candies)

Cioteczka Khong przygotowuje n pudełek z cukierkami dla uczniów z pobliskiej szkoły. Pudełka są ponumerowane liczbami od 0 do n-1 oraz początkowo są puste. Pudełko i ($0 \le i \le n-1$) może pomieścić do c[i] cukierków.

Cioteczka Khong poświęca q dni na przygotowanie pudełek. W dniu j ($0 \le j \le q-1$) wykonuje akcję opisaną trzema liczbami całkowitymi $l[j], \ r[j]$ i $v[j], \ \text{gdzie} \ 0 \le l[j] \le r[j] \le n-1$ oraz $v[j] \ne 0$. Dla każdego pudełka k spełniającego $l[j] \le k \le r[j]$:

- Jeśli v[j]>0, cioteczka Khong dodaje cukierki do pudełka k, jeden po drugim, dopóki nie doda dokładnie v[j] cukierków lub pudełko stanie się pełne. Inaczej mówiąc, jeśli w pudełku przed wykonaniem akcji było p cukierków, to po wykonaniu akcji będzie w nim $\min(c[k], p+v[j])$ cukierków.
- Jeśli v[j] < 0, cioteczka Khong wyjmuje cukierki z pudełka k, jeden po drugim, dopóki nie wyjmie dokładnie -v[j] cukierków lub pudełko stanie się puste. Inaczej mówiąc, jeśli w pudełku przed wykonaniem akcji było p cukierków, to po wykonaniu akcji będzie w nim $\max(0, p + v[j])$ cukierków.

Twoim zadaniem jest wyznaczenie liczby cukierków w każdym pudełku po q dniach.

Szczegóły implementacyjne

Powinieneś zaimplementować następującą funkcję:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: tablica długości n. Dla $0 \le i \le n-1$, c[i] oznacza pojemność pudełka i.
- l, r i v: trzy tablice długości q. W dniu j, dla $0 \le j \le q-1$, cioteczka Khong wykonuje akcję opisaną liczbami całkowitymi l[j], r[j] oraz v[j].
- Wynikiem działania funkcji powinna być tablica długości n. Oznaczmy tę tablicę przez s. Dla $0 \le i \le n-1$, s[i] powinno być równe liczbie cukierków w pudełku i po q dniach.

Przykłady

Przykład 1

Rozważmy następujące wywołanie:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

To oznacza, że pudełko 0 może pomieścić 10 cukierków, pudełko 1 może pomieścić 15 cukierków, a pudełko 2 może pomieścić 13 cukierków.

Na koniec dnia 0, pudełko 0 zawiera $\min(c[0], 0+v[0])=10$ cukierków, pudełko 1 zawiera $\min(c[1], 0+v[0])=15$ cukierków, a pudełko 2 zawiera $\min(c[2], 0+v[0])=13$ cukierków.

Na koniec dnia 1, pudełko 0 zawiera $\max(0,10+v[1])=0$ cukierków, a pudełko 1 zawiera $\max(0,15+v[1])=4$ cukierków. Ponieważ 2>r[1], liczba cukierków w pudełku 2 nie ulega zmianie. Poniższa tabelka przedstawia liczby cukierków w pudełkach pod koniec każdego dnia:

Dzień	Pudełko 0	Pudełko 1	Pudełko 2
0	10	15	13
1	0	4	13

Wynikiem działania funkcji powinno więc być [0,4,13].

Ograniczenia

- $1 \le n \le 200\,000$
- $1 \le q \le 200000$
- $1 \leq c[i] \leq 10^9$ (dla każdego $0 \leq i \leq n-1$)
- $0 \leq l[j] \leq r[j] \leq n-1$ (dla każdego $0 \leq j \leq q-1$)
- ullet $-10^9 \le v[j] \le 10^9, v[j]
 eq 0$ (dla każdego $0 \le j \le q-1$)

Podzadania

- 1. (3 punkty) $n, q \leq 2000$
- 2. (8 punktów) v[j]>0 (dla każdego $0\leq j\leq q-1$)
- 3. (27 punktów) $c[0]=c[1]=\ldots=c[n-1]$
- 4. (29 punktów) l[j]=0 oraz r[j]=n-1 (dla każdego $0\leq j\leq q-1$)
- 5. (33 punktów) Brak dodatkowych ograniczeń.

Przykładowa sprawdzaczka

Przykładowa sprawdzaczka wczytuje dane wejściowe w następującym formacie:

- linia 1: n
- linia 2: $c[0] \ c[1] \ \dots \ c[n-1]$
- linia 3: q
- linia 4+j ($0 \leq j \leq q-1$): $l[j] \ r[j] \ v[j]$

Przykładowa sprawdzaczka wypisuje Twoje odpowiedzi w następującym formacie:

• linia 1: s[0] s[1] \dots s[n-1]