LatentView Analytics Retail capabilities

LatentView Retail Roadmap Over the last decade

Latent View Projects across Retail value chain

Plan

Assortment mix analytics

Market/Demographics based assortment planning

Financial analytics

Interactive BI Dashboards Vendor management dashboards

Demand Forecasting

Market trends analysis

Route optimization

inventory optimization

Warehouse optimization

Media/Market mix modeling

Web Analytics

CRM analytics

Recommendation engines

Pricing analytics

Technical capabilities

Representative use cases

Plan

Buy

Move

Sell

Online marketing effectiveness

Demographics driven assortment planning

Sales trend prediction using machine learning

Price elasticity modeling

Optimize expenses

Product feedback

Demand Forecasting

Inventory diagnostics

Supply chain optimization

Recommendation Engine

Loyalty Analytics

Smart Insights

Case studies - Plan

Enhancing customer Assortment Planning using Consumer Reviews

Leading US Department Store Chain - Sears

The Problem: In the retail business, an effective assortment plan can move the needle on financial and personnel performance

The "Before" State

Assortment planning was done using only internal data resulting in gaps in merchandising decision making such as competitor information and understanding of consumer preferences across different product categories and geographies

LatentView Solution

Built a text analytics platform to consolidate external, unstructured data to 'measure' customer preferences of client's product SKU's with respect to competition on various parameters that drives purchase

The "After" State

Deeper insight into product trends, consumer preferences and competitor information augmented assortment planning lead to 2% increase in footfall and increase in high frequent shoppers by 6% which had a major impact on the topline

Consumer preference driven Assortment Planning

Leading US Based Beverages & Snack Manufacturer - PepsiCo

The Problem: In the CPG industry, understanding of consumer purchase preferences across geographies and demographics is a key input in assortment planning across brands and SKU sizes

The "Before" State

A lack of a unified view of consumer purchase preferences across different segments, cities and brands resulted in sub-optimal assortment planning across all stores

LatentView Solution

Built an intuitive, actionable visualization tool that provided insights into which brands and SKUs were underperforming and identify the causal factors such as geolocation, socio-demographics and consumption patterns

The "After" State

Streamlined assortment planning helped increase the efficiency of demand planning resulting in reduced manufacturing costs and inventory levels

Machine Learning Driven Sales Trend Detection at Scale

Leading Transnational Consumer Goods Company

The Problem: In the CPG industry, the speed to detect sales trends accurately at the most granular SKU level across multiple product categories can be a big source of competitive advantage

The "Before" State

Detecting sales trends & anomalies across thousands of SKUs was a laborious, error-prone, time consuming activity taking almost 4-5 weeks to even get a rudimentary estimate

LatentView Solution

Built a Machine Learning, Rules & Notification engine to perform enhanced seasonal decomposition of time series (STLPlus) along with changepoint / breakpoint analysis on sales data, to identify & classify seasonal, trend components

The "After" State

Deep dive sales analysis output with notifications for over 10,000 SKUs in less than a day helped making timely market interventions in supply chain planning thus reducing stock-out rate by 5% & inventory costs by 2%

Integrated & Customized Campaign Activation for Higher Revenue

Leading Online Payments Company - PayPal

The Problem:

While the highly engaged user transacted in 10-12 verticals, the average user only used the customer's payment services in 3 verticals and this gap presented a significant revenue upside opportunity

The "Before" State

Campaigns were managed manually and were developed and executed based on general product-based marketing strategies by different marketing teams

LatentView Solution

Developed an automated platform for managing campaigns, which were customized through dynamic selection of best offers and messages for each customer based on their life stage

The "After" State

Customized campaigns resulted in significant number of incremental transactions for the average user (footprint increased from 3 to 8 verticals) which netted an additional revenue of \$7.5 million

Profiling customer by dimension and life stage.

Best campaign is selected for customer based on multiple criteria & Channel

Channel

Dimension

Initiative Target method

Lifecycle stage

Message block dynamically selected for each customer

The Next Best Offer (NBO) Engine determines the best offers from the offer repository that are most relevant for customer.

Case studies - Buy

Predicting Price For Leading Retailer Based On Price Elasticity

Client is a leading US Retailer. - Sears

Business Objective

- Analyze sales response to discounts offered
- Determine customers' price elasticity towards different types of products

LatentView Solution

Built a price elasticity model which helps to:

- Analyze price elasticities across different customer segments
- Test different pricing strategies by checking potential loss / profit
- identify key characteristics that drive price sensitivity of customers

Business Benefits

- Predict demand for sales & volume across a range of price points
- Determine how sensitive customers are to a price change
- Determines if a price change is warranted & its potential impact based on the strategy

Optimizing Expenses At Various Customer Touch-points

Client is a leading Travel Website. - Expedia

Business Objective

- The objective is to reduce the costs at these cost centers (Customer Care center, Marketing Campaigns etc.,)
- This involved identifying the reasons for higher operational costs and ways to optimize/reduce these costs.

LatentView Solution

- LatentView analysed one year of customer calls to categorize the calls into revenue & non – revenue generating calls(request for refunds)
- LatentView also used fuzzy string matching algorithm to identify the correct email id to enable correct marketing.

Business Benefits

- Number of Non-revenue generating calls were reduced resulting in lowering in service costs.
- Effectiveness of Marketing campaigns were improved.
- Service quality at the customer care center was improved

Business Insights

Impact

Data driven Product Innovation based on Consumer Reviews

Largest Home Appliances Manufacturer in US - Whirlpool

The Problem: Lack of/Delayed access to direct customer feedback on their products and competitors' can adversely affect a consumer durable company's ability to innovate and keep customers happy

The "Before" State

Purchase drivers were determined by postfacto analysis of POS data at stores and survey data resulting in delays of up to eight months to get consumer feedback on product features

LatentView Solution

Built a real-time text analytics platform to consolidate external, unstructured data to 'measure' customer feedback of client's brand with respect to competition on various parameters that drives purchase

The "After" State

Precise, fine-tuned innovation on product features and messaging was possible on an ongoing basis as consumer feedback reached the teams directly within 2.5 months of product launch

SAS VA Dashboards

Case studies - Move

Precise Forecasting of Demand for Jewelry SKUs

World's 3rd Largest Jewelry Manufacturer - Pandora

The Problem: Accurate demand forecasts for new and existing SKU's is essential in a vertically integrated supply chain for high value products

The "Before" State

Lack of consensus on demand forecast across different business functions and no centralized category level forecast was further complicated by the frequent introductions of new products every year

LatentView Solution

Generated baseline forecasts for 3000 SKU's using multivariate forecasting techniques and driving consensus among demand planners. Automated new SKU forecasts using similarity indices to identify most similar old SKUs

The "After" State

Improved overall demand forecast accuracy by 13% and availability of SKU level forecasts helped reduce supply planning costs by 2%

Existing SKUs

- Subset Data
- Determine if the time series requires any additional transformations

Repeat the process for all SKU's

» Fit the models from the subset identified above to the insample data and collect statistics on the out-sample

Choose the model with the best accuracy to fit the whole range of data

Identify and flag poor performing models for manual corrections

New SKUs

Add following variables to the data

- Net Weight
- Weight Gold/Silver
- **DNA Metal**
- US Retail Sale price
- **DNA Stones**
- **DNA Colour**

Clustering of **SKUs**

- Calculate similarity indices for new SKUs to identify most similar old SKUs
- Choose the model with the best accuracy to fit the whole range of data
- Use business inputs to fine tune models

 ARIMA STLF

Neural Networks
 Croston's
 Tbats

Prophet

K- Prototypes

PAM

Automated Inventory Diagnostic Tool

Leading Snack and Beverages Company - PepsiCo

Business Objective

- To provide a starting point for the analytics dimension of inventory management capabilities
- To identify average excess inventory levels and set smart targets by SKU and location
- To identify 'near term' inventory reduction opportunities
- To understand key operational drivers

LatentView Solution

- Dashboards were built using Tableau to provide an end to end solution illustrating the flow of Inventory for both Raw Materials and Finished Goods
- A logical flow of dashboards was built which provided a holistic snapshot of the supply chain network, capturing the key governing parameters from a sector level to an SKU level
- Developed a What-If analysis framework providing the user a platform to simulate different scenarios and hence identify the optimal method to reduce excess inventory.

Business Benefits

- Provides better inventory planning in the warehouses thus reducing the cost of carrying goods and also avoid stock-outs
- Identifies the opportunities for improvement from a Sector level up to a SKU location level using the key performance indicators for various inventory components

Identifying Insufficient and Excess Inventory

- Supply Chain Health
- Inventory Analysis
- SKU Analysis
- Component Overview

Set and Refresh Inventory Targets

- Cycle Stock Analysis
- In Transit Analysis
- Pre-Build Analysis

- Scenario Analysis
- Goal Setting Analysis
- What-if Analysis

Go Back

Automated Inventory Diagnostic Tool Screenshots

	Hon	ne				Scena	rio A	nalys	sis		Last Tableau Data 28-06-2016 20:21:	
Location	Sector	All	Region	All	Marke ID	t All	Country	, All	Location All Type	Locati	on ^{All}	Period/ All Month
Material Attributes	Product Line	All	Brand Group	All	Brand	All	Sub Brand	All	Pack ^{All}	SKU	All	
Others	Proc. Type	All										
	Safety		Safety Sto	tock Scenarios				Cycle Stock Scenarios				
		А	В	С		D						
Set Forecast to (%)	t MAPE 0.00%		0.00%	0.00%	0	.00%	Set Production In val to (days)	Production Inter-	0.00	0.00	0.00	0.00
		33.91%	34.92%	42.09%	4	3.66%	val	to (days)	7.17	15.66	18.06	29.20
+/- Forecast by (%)	st MAPE (0.00%	0.00%	0.00%	0	.00%	A/ Brad	Production Inter	0.00	0.00	0.00	0.00
	33.91%		34.92%	42.09%	4	3.66%	val	+/- Production Inter- val by (days)	7.17	15.66	18.06	29.20
Set Forecas	t Bias to (0.00%	0.00%	0.00%	0	.00%	Set	Inbound Shipme	0.00	0.00	0.00	0.00
(%)		-14.48%	-11.40%	-11.50%	_9	9.25%	Inte	Inbound Shipme erval to (days)	46.92	27.92	27.24	28.67
+/- Foreca:			0.00%	0.00%		.00%	+/-	Inbound Shipme erval by (days)		0.00	0.00	0.00
(%)	-14.48%		-11.40%	-11.50%	_0	9.25%	Interval by (days)		46.92	27.92	27.24	28.67
Input Lead		0.00	0.00	0.00		.00	Set	Outbound Ship- nt Interval to (day		0.00	0.00	0.00
(days)		5.30	5.29	4.21		.33	me	nt Interval to (day	1.48	1.92	3.44	5.28
+/- Lead Tu		0.00	0.00	0.00		.00	+/-	Outbound Ship-	0.00	0.00	0.00	0.00
(Days)		5.30					me	nt Interval by (day	(5)		3.44	
			5.29	4.21	5.	.33			1.48	1.92		5.28
		(Current	Scenario		Differen	ice			Safety St		
			9,275.68K	9,275.68K		0.00K		10.00M-	2016 P06/May	2016	P05/Apr	2016 P04/Mar
Safety Sto		es	2,430.37K	2,430.37K		0.00K	Value	5.00M-				
								0.00M				
Safety Sto	ock DOH	1	9.57	9.57		0.00		Safety Stock	(\$)	Safe	ety Stock (\$) Scena	ario
					\dashv			Cycle Stock				
Cycle Sto	ck (\$)		28,050.66K	28,050.66K		0.00K		30.00M-	2016 P06/May	2016	P05/Apr	2016 P04/Mar
Cycle Sto	ck Cases	i	6,905.40K	6,905.40K		0.00K	Value	20.00M-				
Cycle Sto	ck DOH		28.95	28.95		0.00		0.00M Cycle Stock (5)	Cve	le Stock (\$) Scenar	io

Improving Production line Throughput for leading Snack company- PepsiCo

Key Issue: A plant producing ~3000 lbs chips an hour have lower Operational Equipment Efficiency (OEE) due to impact of packaging segment stops contributing to fryer downtime / throughput reduction

Approach: Identifying key factors to predict downtime / throughput reduction on hourly basis. Building a real time visualization tool to monitor the key factors and take necessary mitigating actions

Impact:

- Additional output gained by predicting downtime ~13000 lbs / month
- Incremental wastage reduction ~4500 lbs / month *

Case studies - Sell

Recommendation System to Increase Share of Wallet

Largest Food Distributor in US - Sysco

The Problem: In an industry where customer acquisition is fairly expensive, this company's repeat orders were at a low 4%

The "Before" State

Sales teams tried to sell new products to existing customers based on shallow analysis of previous transactions and 'gut' feel

LatentView Solution

Build an innovative recommendation engine that combined customer segmentation, user-based collaborative filtering and market basket analysis

The "After" State

20% increase in value of new orders from existing customers. Higher customer satisfaction due to precise recommendations

Collaborative Filtering

Market Basket Analysis

Market Basket Analysis performed for all products bought by customers in a segment. Select the product with highest likelihood to co-occur in the basket

MILK EGGS OLIVES BREAD

TRX1

TRX2

TRX3

Recommended

Bread

TRX4

Recommendation Engine

Combine the recommendations from the 2 algorithms to generate the final recommendation

For a Customer who purchases Milk & Eggs, the product with highest affinity is Bread

Personalized Targeting using Look-Alike Modeling

The Problem: Lack of a scientific data-driven approach to targeting customers for new campaigns - PayPal

The "Before" State

The marketing team targeted customers based on pre-set rules which did not take into account past behavior, thus having a negative impact on campaign effectiveness

LatentView Solution

Created look-alike models using logistic regression techniques so as to target the right customers for campaigns

The "After" State

Identification of target population who have a higher propensity to respond to specific campaigns on large merchant offers drove incremental revenue of \$0.5 million

Model performance

Who are more likely to respond?

Purchased previously in Fashion vertical

Opened their emails in the last 3 months

6 Active in more than 6 of the last 12 months

Females with age between 20 and 40 years

Campaign performance

Metrics	Value			
Target Size	950K			
Incr. Rev per Account	\$ 0.57			
Incr. Rev %	2%			
Total Incr. Rev	\$555,236			

Contact Optimization to Improve Campaign Response Rates

Large International Airline Company – United Airlines

The Problem: For email campaigns, an important communication medium, the open rates among loyalty customers were 3%

The "Before" State

Customers received a certain number of emails as defined by business rules, once in 6 months. Lack of personalization resulted in low open rates

LatentView Solution

Dynamic segmentation based on customer's past behavior helped optimize the number of emails sent per week. Collaborative filtering techniques were used to personalize email content for customer segments

The "After" State

2% increase in email open rates, 5% higher clicks per customer, which led to an increase of 3% in air revenue

Optimized Member Capacity

Optimized Content

Product	Propensity			
Fare Sale	0.734			
Bundles	0.562			
AirMiles Club	0.323			
Chase	1			
Hotel	2			

Social Insights Platform for Fashion Trends Spotting

Leading US Cosmetics Company - Revion

The Problem: Understanding the make-up and personal care needs of the women in the 18-34 age range is critical in the cosmetics industry

The "Before" State

Loyal consumers of the client's cosmetics line was aging and the impression of the brand had been in steady decline among younger women for the past few years

LatentView Solution

Building a social insights platform to mine the rich data of the target demographic available in social media to spot trends, rate influencers, identify upcoming competitors, refine campaign messaging and understand drivers of purchase

The "After" State

Ability to score trends that could become mainstream ahead of time helped the company to improve their product launch success rate by 5% in the first 6 months

Thank you

