# SECONDARY STRUCTURE IDENTIFICATION IN RNA

CPTR 498 Ivan Guillen

## ORIGINAL GOAL

"The end goal for the project would be to have a program that could take a FASTA file with genetic sequences, and another file of potential editing sites in that FASTA file and mark which potential editing sites could form a double stranded structure with another part of the sequence."

- Dr. Kirt Onthank

### •••

## **INPUT**

#### **FASTA**

- List of genetic sequences
- Each item in file has:
  - Sequence ID
  - Sequence

#### **CSV**

- List of potential edits
- Each item in file has:
  - Sequence ID
  - Edit site

>lcl|TRINITY\_DN13654\_c4\_g1\_i1:c99-22 TTGTGTCTAGTTAAATTACTAGTTTCAGAGAATGCTTTA CCACAGATTTCACATTCATATGGTTTCTCTCCTGTATGA

orf,pos,mrna\_con lcl|TRINITY\_DN13654\_c4\_g1\_i1:c99-22,59,T lcl|TRINITY\_DN13654\_c4\_g1\_i1:c99-22,26,A lcl|TRINITY\_DN13654\_c4\_g1\_i1:c99-22,48,T lcl|TRINITY\_DN13654\_c4\_g1\_i1:c99-22,20,A lcl|TRINITY\_DN13654\_c4\_g1\_i1:c99-22,74,A lcl|TRINITY\_DN13654\_c4\_g1\_i1:c99-22,40,C lcl|TRINITY\_DN13654\_c4\_g1\_i1:c99-22,65,C

## ••• WHAT IS A SECONDARY STRUCTURE?

**Hairpin Loops** are a common type of secondary structure that are created when a sequence of RNA folds upon itself and forms base pairs with another section of the same sequence.



**Internal Loops** are similar, but feature a short sequence of unpaired bases within a larger sequence of paired bases.



**Bulges** are also similar, but feature regions on one side of the folded structure that have extra bases with no corresponding bases on the opposite side.



- Nucleic acid secondary structures are base-pairing interactions that occur within the same sequence.
- 3 common types:
  - Hairpin Loops
  - Internal Loops
  - Bulges



The end goal for this project is to create a program that could take a FASTA file with genetic sequences and a CSV file of potential editing sites in that FASTA file, and <u>identify the longest</u> <u>secondary structure possible for each edit</u>.

## **OUTPUT**

•••

| Hairpin Loops                       | pos | len | base    | base_loc | rev_comp | rev_comp_loc |
|-------------------------------------|-----|-----|---------|----------|----------|--------------|
| lcl TRINITY_DN13654_c4_g1_i1:c99-22 | 26  | 6   | AGAGAA  | [26, 31] | ттстст   | [63, 68]     |
| <br>                                | 20  | 5   | ACTAG   | [17, 21] | CTAGT    | [6, 10]      |
| Icl TRINITY_DN13654_c4_g1_i1:c99-22 | 65  | 6   | ттстст  | [63, 68] | AGAGAA   | [26, 31]     |
| Internal Loops                      |     |     |         |          |          |              |
| Icl TRINITY_DN13654_c4_g1_i1:c99-22 | 48  | 7   | ATTT.AC | [45, 51] | GT.AAAT  | [9, 15]      |
| Icl TRINITY_DN13654_c4_g1_i1:c99-22 | 40  | 6   | ACCA.A  | [38, 43] | T.TGGT   | [57, 62]     |
| Bulges                              |     |     |         |          |          |              |
| Icl TRINITY_DN13654_c4_g1_i1:c99-22 | 26  | 6   | CAGAGA  | [25, 30] | тст.ст   | [66, 72]     |
| <br>                                | 48  | 5   | ATTT.A  | [45, 50] | TAAAT    | [11, 15]     |



## **ITERATIONS**

#### Symmetrical Search Outwards from Edit Site:

- Each iteration, check left and right. Add if reverse complement exists.
- Issue: What if adding a base to the left limits the search to the right (or vice versa)?





## **ITERATIONS**

Search All the Way One Way, then Increase Length by Searching the Other Way:

- Issue: What if searching one way first limits the search the other way?

T T C C C T T C A C A T G A A G C A T G T G T C A T G C T A

#### ••• CURRENT IMPLEMENTATION - STEP 1

Our goal is to find the longest reverse complement at each edit site. Thus, given a sequence (seq) and edit site (E):

#### **Step 1: Find Longest Reverse Complement to the Left**

- Set L = E
- While the reverse complement of seq[L:E] exists in either seq[:L] or seq[E:],
  - Decrement L by 1
- Set longest to seq[L:E]

#### ••• CURRENT IMPLEMENTATION - STEP 2A

#### **Step 2: Find Longest Reverse Complement**

- Set R = E + 1
- While L ≤ E,
  - While the reverse complement of seq[L:R] exists in either seq[:L] or seq[R:],
    - Set longest to seq[L:R]
    - Increment R by 1
  - Increment L and R by 1
- Return longest

## ••• CURRENT IMPLEMENTATION - STEP 2B

#### Iteration 1:



#### Iteration 2:



#### **Iteration 3:**





- While the base algorithm is similar for all three types, additional modifications were needed to account for unpaired/extra bases in internal loops and bulges.
- Regular expression searches were used instead of Python's built-in string.find() and periods (".") were used to simulate gaps between paired bases.
- A boolean flag was set if a jump over the unpaired/extra bases could be made. The jump would only be made if necessary.

## **FUTURE ADDITIONS**

- Additional support for different types of secondary structures
  - Pseudoknots
- Additional search parameters
- Multi-thread capacity

