به نام خدا

گزارش تمرین پنجم بازیابی پیشرفته اطلاعات

ارزش گذاری مقالات علمی براساس ارجاعات

گروه ۳۰ پارسا حسینی درسا مجدی امیررضا باقری

چکیده روند پروژه

در این تمرین هدف آن است که مقالات را براساس ارجاعات، با استفاده از روشهای تحلیل لینک ارزشگذاری که کنیم. در مرحله اول، از دیتاست آماده شده در مرحله قبل استفاده کرده و پس از تمیزسازی، مقالاتی که زمینه علمی شان علوم کامپیوتر (Computer Science) و ریاضی (Mathematics) هستند، را جدا کردیم. سپس برای هر مقاله، k تا ارجاع اول آن را در نظر گرفته، و با استفاده از آنها گراف ارجاعات را می سازیم. پس از ساخت گراف ارجاعات، دو الگوریتم تحلیل لینک PageRank و HITS و PageRank بر روی آنها اعمال و نتایج حاصل از آنها با یکدیگر مقایسه شدند.

بخش ۱. آمادهسازی دادهها

از دیتاست آماده شده در تمرین قبلی استفاده می کنیم و ابتدا آن را براساس بخشهای نویسنده (authors) و ارجاعات (references) به صورت زیر تمیز کردیم.

```
[ ] def dropna_references(references):
    res = []
    for dic in references:
        if dic['paperId'] != None and dic['authors'] != None:
            res.append(dic)
    return res

def dropna_authors(authors):
    res = []
    for dic in authors:
        if dic['authorId'] != None and dic['name'] != None:
            res.append(dic)
    return res

df['references'] = df['references'].apply(dropna_references)

df['authors'] = df['authors'].apply(dropna_authors)

df.head()
```

1 Figure. تميز كردن مقالات براساس بخشهاى نويسنده و ارجاعات

در مرحله بعدی، تصمیم گیری می شود که کدام یک از مقالات برای اجرای الگوریتم انتخاب شود. از بین کل مقالات، ابتدا آنهایی که زمینه علمی (Field of Study) آنها علوم کامپیوتر (Computer Science) یا ریاضی (Mathematics) است، جدا شد. سپس از بین مقالات جدا شده، تنها آنهایی نگه داشته می شوند که تعداد استنادها به آن (CitationCount) از ۵۰ بیشتر باشد. نهایتا با توجه به اینکه تنها به تعداد مشخصی از ارجاعات هر مقاله نیاز داریم، برای هر مقاله کا ارجاع اول آن را نگه می داریم (مقدار پیش فرض برای لا برابر با 10 است).

```
[ ] df = df[df['fieldsOfStudy'].apply(str).str.contains('Computer Science') |
    df['fieldsOfStudy'].apply(str).str.contains('Mathematics')]
    df.shape
    (16226, 9)
```

2 Figure و Mathematics و Computer Science

3 Figure. جدا کردن مقالات با تعداد Citation بیشتر از ۵۰

```
[ ] def get_k_first_references(references, k=10):
    if len(references) <= k:
        return references
    return references
    return references[:k]

df['k_references'] = df['references'].apply(get_k_first_references)

df.head()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy.
"""</pre>
```

A Figure . نگه داشتن k ارجاع اول هر مقاله در ستون 4 Figure

نهایتا دادههای آماده شده در فایل clean_data.json ذخیره شده تا در مرحله بعدی برای اجرای الگوریتمهای PageRank و HITS استفاده شود.

بخش ۲. تحلیل لینک

ابتدا با استفاده از کتابخانهی Networkx و تابع Digraph گراف جهتدار ارجاعات مقالات مد نظر را ساختیم. توجه شود که در ساخت این گراف مقالاتی که در لیست مقالات هدف نبودهاند ولی به آنها ارجاع داده شده است هم به عنوان راس این گراف در نظر گرفته شدهاند.

```
1 def get_edges():
2    edges = []
3    for index, paper in df.iterrows():
4        paperId = paper['paperId']
5        references = [dic['paperId'] for dic in paper['k_references']]
6        for reference in references:
7        edges.append((paperId, reference))
8    return edges

[] 1 G = nx.DiGraph()
2 G.add_edges_from(get_edges())
3 print(f"Number of nodes = {G.number_of_nodes()}")
4 print(f"Number of edges = {G.size()}")

Number of nodes = 39738
Number of edges = 62510
```

براى تحليل لينك هم از الگوريتم Page Rank و هم از الگوريتم HITS استفاده شده است. هردوى اين الگوريتم -ها با توابع آمادهى Networkx محقق شدهاند.

در الگوریتم Page Rank مقالات به ترتیب امتیازشان مرتبسازی شده و اهتای بیشینهی آنها خروجیهای ارزشگذاری از طریق Page Rank هستند.

	paperId	title	year	referenceCount	citationCount	fieldsOfStudy
0	204e3073870fae3d05bcbc2f6a8e263d9b72e776	Attention is All you Need	2017	44	34731	[Computer Science]
1	0b44fcbeea9415d400c5f5789d6b892b6f98daff	Building a Large Annotated Corpus of English:	1993	75	8163	[Computer Science]
2	05dd7254b632376973f3a1b4d39485da17814df5	SQuAD: 100,000+ Questions for Machine Comprehe	2016		4240	[Computer Science]
3	077f8329a7b6fa3b7c877a57b81eb6c18b5f87de	RoBERTa: A Robustly Optimized BERT Pretraining	2019	58	7161	[Computer Science]
4	0b544dfe355a5070b60986319a3f51fb45d1348e	Learning Phrase Representations using RNN Enco	2014	39	14984	[Computer Science, Mathematics]
5	44d2abe2175df8153f465f6c39b68b76a0d40ab9	Long Short-Term Memory	1997	68	51403	[Computer Science, Medicine]
6	1af68821518f03568f913ab03fc02080247a27ff	Neural Machine Translation of Rare Words with	2015		4775	[Computer Science]
7	330da625c15427c6e42ccfa3b747fb29e5835bf0	Efficient Estimation of Word Representations i	2013		21777	[Computer Science]
8	2c03df8b48bf3fa39054345bafabfeff15bfd11d	Deep Residual Learning for Image Recognition	2015		94458	[Computer Science]
9	084c55d6432265785e3ff86a2e900a49d501c00a	Foundations of statistical natural language pr	1999	293	7781	[Computer Science]
10	1f6ba0782862ec12a5ec6d7fb608523d55b0c6ba	Convolutional Neural Networks for Sentence Cla	2014	34	10029	[Computer Science]
11	0e6824e137847be0599bb0032e37042ed2ef5045	Aligning Books and Movies: Towards Story-Like	2015		1411	[Computer Science]
12	3febb2bed8865945e7fddc99efd791887bb7e14f	Deep Contextualized Word Representations	2018	65	7946	[Computer Science]
13	d2c733e34d48784a37d717fe43d9e93277a8c53e	ImageNet: A large-scale hierarchical image dat	2009	24	27007	[Computer Science]
14	10f97f1fb4f5c2c8e6c44d4a33da46d331dd4aeb	Introduction to the CoNLL-2003 Shared Task: La	2003		2952	[Computer Science]

در الگوریتم HITS مقالات به ترتیب امتیاز authority شان مرتب شده و k مقالهی با authority بیشینه به عنوان خروجی این الگوریتم برگردانده می شوند.

	paperId	title	year	referenceCount	citationCount	fieldsOfStudy
0	204e3073870fae3d05bcbc2f6a8e263d9b72e776	Attention is All you Need	2017	44	34731	[Computer Science]
1	077f8329a7b6fa3b7c877a57b81eb6c18b5f87de	RoBERTa: A Robustly Optimized BERT Pretraining	2019	58	7161	[Computer Science]
2	05dd7254b632376973f3a1b4d39485da17814df5	SQuAD: 100,000+ Questions for Machine Comprehe	2016		4240	[Computer Science]
3	1af68821518f03568f913ab03fc02080247a27ff	Neural Machine Translation of Rare Words with	2015	53	4775	[Computer Science]
4	2c03df8b48bf3fa39054345bafabfeff15bfd11d	Deep Residual Learning for Image Recognition	2015		94458	[Computer Science]
5	0b544dfe355a5070b60986319a3f51fb45d1348e	Learning Phrase Representations using RNN Enco	2014	39	14984	[Computer Science, Mathematics]
6	3febb2bed8865945e7fddc99efd791887bb7e14f	Deep Contextualized Word Representations	2018	65	7946	[Computer Science]
7	1e077413b25c4d34945cc2707e17e46ed4fe784a	Universal Language Model Fine-tuning for Text	2018	56	2237	[Computer Science]
8	0e6824e137847be0599bb0032e37042ed2ef5045	Aligning Books and Movies: Towards Story-Like	2015		1411	[Computer Science]
9	44d2abe2175df8153f465f6c39b68b76a0d40ab9	Long Short-Term Memory	1997	68	51403	[Computer Science, Medicine]
10	0c908739fbff75f03469d13d4a1a07de3414ee19	Distilling the Knowledge in a Neural Network	2015	14	8617	[Mathematics, Computer Science]
11	d2c733e34d48784a37d717fe43d9e93277a8c53e	ImageNet: A large-scale hierarchical image dat	2009	24	27007	[Computer Science]
12	1fa9ed2bea208511ae698a967875e943049f16b6	HuggingFace's Transformers: State-of-the-art N	2019	80	2709	[Computer Science]
13	128cb6b891aee1b5df099acb48e2efecfcff689f	The Winograd Schema Challenge	2011	46	690	[Computer Science]
14	330da625c15427c6e42ccfa3b747fb29e5835bf0	Efficient Estimation of Word Representations i	2013		21777	[Computer Science]
15	0b44fcbeea9415d400c5f5789d6b892b6f98daff	Building a Large Annotated Corpus of English:	1993	75	8163	[Computer Science]

در هر دو الگوریتم مقالاتی که خروجی ارزشگذاری هستند برای نمایش مشخصات مبسوط تر دوباره طریق الکوریتم مقالاتی که خروجی ارزشگذاری هستند برای نمایش مشخصات مبسوط تر دوباره طریق تابع request_papers_by_id سایت semanticscholar گرفته می شوند.

بخش 3. ارزیابی و نتیجه گیری

همان طور که در خروجیهای الگوریتم Page Rank و Page Rank میشود، مقاله ی مهمی مانند HITS و مهمی مانند sall you need در رتبه ی اول قرار گرفته است و این نشان از کارایی این الگوریتمها دارد. البته باید توجه داشت که چون این مقاله در مجموعه ی مقالات اولیه ی ما نبوده و در نتیجه یالهای خروجی آن در نظر گرفته نشده، ارزش نسبی احتمالا بالاتری از حالتی که داخل مقالات میبود به خود اختصاص داده است.

همچنین برای مقایسه ی خروجیهای دو الگوریتم با هم، رتبه ی هر مقاله ی مشترک در خروجیهای Page همچنین برای مقایسه ی خروجیهای دو الگوریتم با هم Rank و HITS در کنار هم قرار داده شدهاند. مشاهده میشود 16 مورد از 20 خروجی این دو الگوریتم با هم مشترک بوده، همچنین مقاله ی اول نیز در هردو یکسان بوده است. این موضوع هم راستایی کلی این دو الگوریتم در ارزش دادن به مقالههای پرارجاع را تصدیق می کند.

	paperId	title	year	referenceCount	citationCount	fieldsOfStudy	HITS rank	Page Rank rank
0	204e3073870fae3d05bcbc2f6a8e263d9b72e776	Attention is All you Need		44	34731	[Computer Science]		1
1	077f8329a7b6fa3b7c877a57b81eb6c18b5f87de	RoBERTa: A Robustly Optimized BERT Pretraining	2019	58	7161	[Computer Science]		4
2	05dd7254b632376973f3a1b4d39485da17814df5	SQuAD: 100,000+ Questions for Machine Comprehe	2016		4240	[Computer Science]		3
3	1af68821518f03568f913ab03fc02080247a27ff	Neural Machine Translation of Rare Words with	2015		4775	[Computer Science]		7
4	2c03df8b48bf3fa39054345bafabfeff15bfd11d	Deep Residual Learning for Image Recognition	2015		94458	[Computer Science]		9
5	0b544dfe355a5070b60986319a3f51fb45d1348e	Learning Phrase Representations using RNN Enco	2014	39	14984	[Computer Science, Mathematics]		5
6	3febb2bed8865945e7fddc99efd791887bb7e14f	Deep Contextualized Word Representations	2018		7946	[Computer Science]		13
7	1e077413b25c4d34945cc2707e17e46ed4fe784a	Universal Language Model Fine-tuning for Text	2018	56	2237	[Computer Science]		19
8	0e6824e137847be0599bb0032e37042ed2ef5045	Aligning Books and Movies: Towards Story-Like	2015		1411	[Computer Science]		12
9	44d2abe2175df8153f465f6c39b68b76a0d40ab9	Long Short-Term Memory	1997	68	51403	[Computer Science, Medicine]		6