

โจทย์ค่ายสอง ปีการศึกษา 2562 ชุดที่ 3 (ข้อ 46. ถึง 65.)

โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ที่	เนื้อหา	โจทย์
1.	Graph 1 จำนวน 14 ข้อ	46. เซ็คไบพาร์ไทต์กราฟ (Bipartite graph check)
		47. จุดเทียนภาวนา (Candle Lighting Prayer)
		48. เส้นทางเตือนภัยพิบัติ (Disaster)
		49. ต้นไม้ของแอนเชียนพีท (AP_Tree)
		50. ท่อระบายน้ำ (Sewer)
		51. ฝ่าเขาวงกต (maze)
		52. พีทเทพหนีฝุ่น (PT_PM2.5)
		53. ชมรมการต่อสู้ตัวต่อตัว (48_Fight)
		54. ดุจสร้างครึ่งวงกลม (Semicircle)
		55. หุ่นยนต์ (Robot TOI13)
		56. แผนที่ลายแทง (Map)
		57. เกมตรงข้ามบียูยู (BUU Opposite)
		58. พีทเล่นแพ็กแมน (Peatt Pacman)
		59. เขาวงกตของแอนเชียนพีท (AP_Maze)
2.	Brute force algorithm จำนวน 6 ข้อ	60. ขังพีทซิมิ (Imprison)
		61. ระบบนำทางยานอวกาศ (Spaceship)
		62. ตาชั่งแห่งเทพ (Deva scales)
		63. แฟลชเล่นดอมมิโน (FC_Dominoes)
		64. ขับรถตะลุยเมือง (48_Car City)
		65. รัชลอนดอนโอลิมปิก (RT_Olympics)

1. เรื่อง Graph 1 จำนวน 14 ข้อ

46. เช็คไบพาร์ไทต์กราฟ (Bipartite graph check)

จงเขียนโปรแกรมเพื่อเช็คว่า undirected graph นี้เป็น Bipartite graph หรือไม่?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็ม Q (1 <= Q <= 3) แทนจำนวนคำถาม ในแต่ละคำถามรับข้อมูลดังนี้
บรรทัดแรก ระบุจำนวนเต็มบวก N M (N <= 100,000, M <= 200,000) แทนจำนวนโหนดและจำนวนเส้นเชื่อม
อีก M บรรทัดต่อมา แสดงจำนวนเต็มบวก u v (1 <= u, v <= N) เพื่อระบุว่ามีเส้นเชื่อมระหว่างโหนด u และโหนด v

<u>ข้อมูลส่งออก</u>

มี Q บรรทัด แต่ละบรรทัด หากเป็น Bipartite graph ให้ตอบว่า yes หากไม่ใช้ให้ตอบว่า no

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก		
2	yes		
4 4	no		
1 2			
2 3			
3 4			
4 1			
3 3			
1 2			
2 3			
3 1			

+++++++++++++++++

47. จุดเทียนภาวนา (Candle Lighting Prayer)

เมื่อครั้งรายาบุหลันผู้ครองบุหงาตันหยงนครมายาวนานสิ้นพระชนม์ ชาวเมืองต่างเศร้าโศกอาลัยเป็นอย่างมาก ทุกคนต่าง รวมตัวกันที่ลานพิธีกรรมเพื่อจุดเทียนและสวดภาวนาตามธรรมเนียมที่ปฏิบัติกันมาเพื่อแสดงความ อาลัยและส่งดวงพระวิญญาณสู่ สวรรคาลัย

ลานพิธีกรรมถูกปูด้วยกระเบื้องสี่เหลี่ยมจัตุรัสยาวด้านละ 1 หน่วย โดยปูกระเบื้องชิดกัน M แถวและ N หลัก ผู้มาร่วมไว้ อาลัยและสวดภาวนาจะเลือกนั่งบนกระเบื้องตามอัธยาศัย แต่ต้องนั่งหนึ่งคนต่อกระเบื้องหนึ่งแผ่น เมื่อเลือกที่นั่งได้แล้วทุกคนจะไม่ ลุกจากที่นั่ง จนกว่าจะเสร็จสิ้นการสวดภาวนา

ก่อนสวดภาวนา ทุกคนจะต้องจุดเทียนด้วยไม้ชีด หรือหากไม่มีไม้ชีดจะต้องรอต่อไฟเทียนจากผู้ที่นั่งติดกัน คนใดคนหนึ่ง จากทั้ง 8 ทิศทาง และไม่สามารถลุกจากกระเบื้องเพื่อไปต่อเทียนจากคนอื่นที่ไม่ได้นั่งบน กระเบื้องแผ่นที่อยู่ติดกัน พิธีการสวด ภาวนาจะรอจนกระทั่งทุกคนที่มาร่วมพิธีจุดเทียนเรียบร้อยแล้ว ประธานในพิธีจึงจะเริ่มนำสวดภาวนาอย่างพร้อมเพรียงกัน ด้วย ความเป็นผู้ประหยัดมัธยัสถ์ตามวิถีปฏิบัติของคนในบุหงาตันหยงนคร แม้ในยามที่เป็นพิธีอาลัยผู้ครองนครอันยิ่งใหญ่ ชาวเมืองที่มา ร่วมงานก็พยายามที่ใช้จำนวนไม้ขีดไฟให้น้อยที่สุดที่เป็นไปได้ดังตัวอย่างในรูปที่ 1

รูปที่ 1 ตัวอย่างการจุดเทียนในการสวดภาวนาโดยใช้ไม้ชีดไฟน้อยที่สุดเพียง 3 ก้าน (เป็นรูปแบบหนึ่งจากหลายรูปแบบที่ เป็นไปได้)

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนไม้ขีดไฟที่น้อยที่สุดซึ่งทำให้ทุกคนจุดเทียนได้และพร้อมที่จะสวดภาวนา

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก มีจำนวนเต็มสองจำนวน คือ M ระบุจำนวนแถว และ N ระบุจำนวนหลักของลานพิธีกรรม แต่ละจำนวนถูกคั่น ด้วยช่องว่างหนึ่งช่อง กำหนดให้ 2 <= M, N <= 2,000

บรรทัดที่ 2 ถึงบรรทัดที่ M+1 แต่ละบรรทัดประกอบด้วยสตริงขนาด N ตัวอักขระ แต่ละอักขระแดงการนั่งของผู้เข้าร่วม สวดภาวนาในพิธี โดยกำหนดให้ '0' แทนพื้นที่ว่างที่ไม่มีคนนั่ง และ '1' แทนพื้นที่ที่มีคนนั่ง

<u>ข้อมูลส่งออก</u>

มีหนึ่งบรรทัด ระบุจำนวนไม้ขีดไฟที่น้อยที่สุด ซึ่งทำให้ทุกคนจุดเทียนได้และพร้อมที่จะสวดภาวนา

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 5	3
10011	
00001	
01100	
10011	
4 4	1
0010	
1010	
0100	
1111	

+++++++++++++++++

48. เส้นทางเตือนภัยพิบัติ (Disaster)

. ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 9 ม.ธรรมศาสตร์

หน่วยงานระดับนานาชาติที่มีความเชี่ยวชาญในการวิเคราะห์สภาพบรรยากาศและธรณีวิทยาตรวจพบว่าจะเกิดภัย ธรรมชาติครั้งใหญ่ขึ้นภายในช่วง 3-4 วันข้างหน้า และจะส่งผลกระทบอย่างหนักต่อพื้นที่ของประเทศเล็กๆ ประเทศหนึ่ง จึงรีบแจ้ง ให้ทางการของประเทศนี้ทราบ เนื่องจากพื้นที่นี้มีลักษณะเป็นป่าห่างไกลความเจริญไม่สามารถติดต่อสื่อสารเพื่อส่งข่าวเตือนภัยนี้ได้ ด้วยเทคโนโลยีต่าง ๆ จึงจำเป็นต้องส่งเจ้าหน้าที่เดินทางไปช่วยเหลือ ทั้งนี้เจ้าหน้าที่จะต้องนำประชาชนที่อาศัยอยู่ตาม "ทางเดิน" n เส้นในพื้นที่อพยพหนีภัยพิบัติครั้งนี้ ในที่นี้ทางเดินคือเส้นทางที่เชื่อมจุดสองจุดเข้าด้วยกัน และเรียกสองจุดดังกล่าวว่า "จุดปลาย" ของทางเดิน

เช่น พื้นที่ตัวอย่างดังรูปที่ 1 มีจุดปลายทั้งหมด 5 จุดได้แก่ A, B, C, D และE ทางการระบุทางเดิน 6 เส้น ด้วยจุดปลายทั้งสองของ ทางเดินได้แก่ AB, AE, BD, BC, CE และ DE โดยคำสั่งของทางการให้เจ้าหน้าที่เริ่มต้นเดินทางจากจุดปลายใดก่อนก็ได้แล้วนำ ประชาชนที่อยู่ตามทางเดินทุกเส้น อพยพออกมาให้ครบ โดยไม่ให้เจ้าหน้าที่เดินซ้ำทางเดินเส้นเดิมเนื่องจากเวลาที่ค่อนข้างจำกัด และเจตนาที่จะหลีกเลี่ยงการทำลายระบบนิเวศน์ของป่าให้น้อยที่สุด

ฐปที่1 ตัวอย่างทางเดิน 6 เส้นที่ทางการให้เจ้าหน้าที่จะต้องเดินทางไปเตือนประชาชนเกี่ยวกับภัยพิบัติ

ในการเดินทางของเจ้าหน้าที่ เจ้าหน้าที่อาจจะเดินทางไปยังจุดปลายใดๆ ได้มากกว่าหนึ่งครั้งทั้งนี้ทางการรับประกันว่า แต่ ละคู่ของจุดปลายใดๆ จะมีลำดับของทางเดินที่สามารถเชื่อมต่อถึงกันได้เสมอ นอกจากนี้ระหว่างแต่ละคู่ของจุดปลายใด ๆ อาจจะ ไม่มีทางเดิน หรือมีทางเดินไม่เกินหนึ่งเส้น และมีวิธีที่เจ้าหน้าที่จะสามารถเดินทางตามเงื่อนไขข้างต้นด้วยทางเดินต่าง ๆ ที่ให้มาได้ อย่างแน่นอน

จงเขียนโปรแกรมเพื่อหาลำดับการเดินทางของเจ้าหน้าที่เพื่อแจ้งข่าวเตือนภัยพิบัติครั้งนี้ให้แก่ประชาชนที่อาศัยอยู่ตาม ทางเดินทั้ง n เส้นที่เป็นไปตามเงื่อนไขที่ทางการกำหนดไว้

<u>ข้อมูลนำเข้า</u>

บรรทัดที่หนึ่ง ระบุจำนวนเต็ม n แสดงจำนวนทางเดินทั้งหมด โดยที่ n <= 300 บรรทัดที่สองถึงn+1 แต่ละบรรทัดเป็นตัวอักษรสองตัวติดกันโดยแต่ละตัวอักษรเป็นตัวพิมพ์ใหญ่ "A" ถึง "Z" ระบุจุดปลายสองจุด ของทางเดินแต่ละเส้น และจุดปลายทั้งหมดมีไม่เกิน 26 จุด

<u>ข้อมูลส่งออก</u>

มีหนึ่งบรรทัด ระบุตัวอักษรแทนจุดปลายต่างๆ ที่อยู่ในทางเดินตามลำดับในการเดินทางของเจ้าหน้าที่ แต่ละจุดปลายคั่นด้วย ช่องว่างหากมีหลายลำดับในการเดินทางของเจ้าหน้าที่ ให้ตอบลำดับที่มาก่อนตามพจนานุกรมภาษาอังกฤษ

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก					
6	BAECBDE					
AB						
AE						
BD						
BC						
CE						
DE						

4	A B C D A
AB	
DA	
DA BC	
DC	

คำอธิบายตัวอย่างที่ 1

ลำดับการเดินทางของเจ้าหน้าที่ตามเงื่อนไขของทางการในตัวอย่างที่1 อาจมีได้หลายลำดับ เช่น E A B C E D B และ B D E A B C E เป็นอีกสองลำดับการเดินทางตัวอย่างที่เป็นไปตามเงื่อนไข แต่ที่เลือกตอบลำดับ B A E C B D Eเพราะเป็นลำดับที่มา ก่อนในพจนานุกรมภาษาอังกฤษ

+++++++++++++++++

49. ต้นไม้ของแอนเชียนพีท (AP_Tree)

แอนเชียนพีท (Ancient Peatt: AP) จอมเวทมนตร์แห่งยุคโบราณ ผู้ช่ำชองศาสตร์เวทมนตร์ ได้เปิดสำนักเวทมนตร์อยู่บน เทือกเขาหิมาลัย ประเทศธิเบต เขาเป็นคนที่มองโลกผ่านช่องจากรูกุญแจและตลอดเวลาเขาก็จะถ่างรูกุญแจให้กว้างขึ้นเพื่อ ช่วยเหลือโลกมนุษย์ เขาเป็นอาจารย์ใหญ่ที่มีศิษยานุศิษย์มาเรียนเวทมนตร์กับเขามากมาย

แอนเชียนพีทมีต้นไม้ต้นหนึ่งที่มี n โหนด และมี n-1 เส้นเชื่อม แต่ละโหนดจะมีค่าน้ำหนักเป็น w_i แอนเชียนพีทต้องการตัด เส้นเชื่อมออกหนึ่งเส้น เพื่อให้ต้นไม้แตกออกเป็นสองส่วน แล้ว<u>ผลรวมน้ำหนักของต้นไม้ในแต่ละส่วนมีค่าแตกต่างกันน้อยที่สุด</u>เท่าที่ จะเป็นไปได้

เช่น N=6, ต้นไม้มี 6 โหนด ที่มีค่าน้ำหนัก 2, 1, 3, 3, 4, 6 และมี 5 เส้นเชื่อม ดังภาพ

จากภาพหากตัดเส้นเชื่อมระหว่างโหนดที่ 5 และโหนดที่ 6 ออก จะได้ค่าผลรวมต้นไม้สองฝั่งเป็น 2 + 1 + 3 + 4 = 10 และ 6 + 3 = 9 มีค่าผลต่างเป็น 1 ซึ่งเป็นผลต่างที่น้อยที่สุดเท่าที่จะเป็นไปได้แล้ว

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาผลต่างของผลรวมของต้นไม้ทั้งสองส่วนที่น้อยที่สุดเท่าที่จะเป็นไปได้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 10 ในแต่ละคำถาม ให้รับข้อมูลดังนี้ บรรทัดแรก รับจำนวนเต็มบวก N แทนจำนวนโหนดในต้นไม้ โดยที่ N ไม่เกิน 100,000

อีก N-1 บรรทัดต่อมา รับจำนวนเต็มบวก a b ห่างกันหนึ่งช่องว่างเพื่อบอกว่ามีเส้นเชื่อมระหว่างโหนด a และ โหนด b โดยที่ 1 <= a, b <= N

บรรทัดต่อมา รับจำนวนเต็มบวก N จำนวนแทนค่าน้ำหนักของแต่ละโหนดห่างกันหนึ่งช่องว่าง โดยตัวเลขดังกล่าว จะมีค่าตั้งแต่ 1 ถึง 100,000,000 20% ของชุดข้อมูลทดสอบจะมีค่า N ไม่เกิน 20 40% ของชุดข้อมูลทดสอบจะมีค่า N ไม่เกิน 1,000

<u>ข้อมูลส่งออก</u>

ในแต่ละคำถาม ให้แสดงค่าผลต่างของผลรวมของต้นไม้ทั้งสองส่วนที่น้อยที่สุดเท่าที่จะเป็นไปได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	1
6	9
1 2	
1 3	
1 5	
5 6	
6 4	
2 1 3 3 4 6	
3	
1 2	
1 3	
10 4 3	

คำอธิบายตัวอย่างที่ 1

มี 2 คำถามย่อย ได้แก่ คำถามย่อยแรก เป็นไปตามคำอธิบายของโจทย์

คำถามย่อยที่สอง ตัดเส้นเชื่อมระหว่างโหนดที่ 1 และโหนดที่ 2 ออก จะได้ค่าผลรวมต้นไม้สองฝั่งเป็น 4 และ 10 + 3 = 13 มีค่าผลต่างเป็น 9 ซึ่งเป็นผลต่างที่น้อยที่สุดเท่าที่จะเป็นไปได้แล้ว

++++++++++++++++

เมืองแห่งหนึ่งมีพื้นที่เป็นรูปสี่เหลี่ยมขนาด a แถวคูณ b คอลัมน์และแบ่งเขตเป็นจำนวนเท่ากับ axb เขต แต่ละเขตจะมี พิกัด (i, j) โดยเขตที่พิกัด (1, 1) จะอยู่ที่มุมซ้ายบนของพื้นที่สี่เหลี่ยมและแต่ละเขตจะมีท่อระบายน้ำเชื่อมต่อกับเขตเพื่อนบ้าน หรือไม่ก็ได้ ดังแสดงในรูป (ให้เครื่องหมาย มิและ 📛 แสดงถึงท่อระบายน้ำที่เชื่อมระหว่างเขต)

กำหนดให้เขตที่พิกัด (1, 1) เป็นจุดเริ่มปล่อยน้ำทิ้ง โดยจะสามารถระบายน้ำทิ้งไปยังท่อระบายน้ำที่เชื่อมอยู่กับเขตนั้น ๆ และแต่ละท่อใช้เวลาระบายน้ำทิ้งจากเขตหนึ่งไปยังเขตหนึ่งด้วยเวลาหนึ่งหน่วย น้ำสามารถไหลได้ 4 ทิศทาง คือ ไหลไปยังเขตทิศ เหนือ ไหลลงเขตทิศใต้ ไหลไปทางเขตตะวันออก และ ไหลไปทางเขตตะวันตก โดยเขตรับน้ำจะไม่สามารถระบายน้ำกลับไปยังเขต ก่อนหน้าที่ระบายน้ำมาให้

จงเขียนโปรแกรมเพื่อคำนวณหาระยะเวลาที่น้อยที่สุดที่น้ำทิ้งอย่างน้อย 2 สายจะมาบรรจบกัน พร้อมทั้งบอกพิกัดของเขต ที่น้ำทิ้งมาบรรจบกัน (รับประกันว่าข้อมูลนำเข้าทุกชุด จะมีเขตที่น้ำสองสายมาบรรจบกันเกิดขึ้นเร็วที่สุดเพียงเขตเดียวเสมอ) โดย จากรูปตัวอย่างข้างบนนี้ น้ำทิ้งจะเริ่มต้นที่ (1, 1) ในช่วงเวลา 1 และเคลื่อนไปสู่ (2, 1) และ (1, 2) ในช่วงเวลาที่ 2 จากนั้นจึงไปสู่ (3, 1) และ (1, 3) ในช่วงเวลาที่ 3 และถึง (3, 2) กับ (2, 3) ในช่วงเวลาที่ 4 และสุดท้ายจึงมาบรรจบกันที่พิกัด (3, 3) ในช่วงเวลาที่ 5 ตามลำดับ

กำหนดให้แต่ละเขตสามารถมีรูปแบบการติดตั้งท่อระบายน้ำได้ทั้งหมด 4 รูปแบบ เมื่อพิจารณาการเชื่อมต่อทางทิศ ตะวันออกและทิศใต้เท่านั้น ได้แก่ R หมายถึง เขตนั้นมีท่อระบายน้ำเชื่อมกับเขตทิศตะวันออก, D หมายถึงเขตนั้นมีท่อระบาย น้ำเชื่อมกับเขตทิศใต้, B หมายถึงเขตนั้นมีท่อระบายน้ำเชื่อมกับทั้งเขตทิศตะวันออกและทิศใต้ และ N หมายถึงเขตนั้นไม่มีท่อ ระบายน้ำเชื่อมกับเขตทิศตะวันออกและทิศใต้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก เป็นค่าของตัวแปร a และ b โดยที่ 2 <= a, b <= 100

บรรทัดที่สองถึง a+1 แต่ละบรรทัดมีตัวอักษรทั้งหมด b ตัวคั่นด้วยช่องว่าง แต่ละตัวระบุถึงสถานะการมีท่อระบายน้ำของเขตแต่ละ เขตในพิกัด (i, j) โดยเริ่มจากพิกัดที่ (1, 1) ไปเรื่อยๆตามลำดับ และ 1 <= i <= a, 1 <= j <= b

<u>ข้อมูลส่งออก</u>

บรรทัดแรก จำนวนเต็มบวก 1 ตัว แสดงถึงช่วงเวลาที่น้ำทิ้งมาบรรจบกัน บรรทัดที่สอง เป็นจำนวนเต็ม 2 ตัว คั่นด้วยช่องว่าง ซึ่งเป็นพิกัด (i, j) ที่น้ำทิ้งมาบรรจบกัน

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 4	5
BRDN	3 3
DRBD	
RRRD	
NNNN	
3 4	5
B B B D	2 4
D N R B	
RRRN	

+++++++++++++++++

51. ฝ่าเขาวงกต (maze)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 8 ม.ศิลปากร

นักล่าสมบัตินามว่า "อินเดียนา เจ" พลาดพลั้งตกลงไปในหลุมพรางที่ส่งเขาไปอยู่ในเขาวงกตซึ่งมีทางออกอยู่เพียงตำแหน่ง เดียวเท่านั้น เคราะห์ดีที่นายอินเดียนามีแผนที่เขาวงกตติดตัวมาด้วย ทำให้เขาทราบตำแหน่งปัจจุบันของเขาและตำแหน่งของ ทางออก จากแผนที่ อินเดียนาพบว่าพื้นที่เขาวงกตถูกแบ่งออกเป็นช่องจำนวน M แถว N หลัก โดยแต่ละช่องในแผนที่จะมีเลขหนึ่ง หรือเลขศูนย์อย่างใดอย่างหนึ่ง ซึ่งเลขศูนย์แทนกำแพงและเลขหนึ่งแทนทางเดิน นอกจากนี้เขาวงกตยังวางตัวในทิศเหนือ-ใต้ ตะวันออก-ตะวันตกพอดี ดังแสดงในภาพตัวอย่างที่อยู่หน้าถัดไป

อย่างไรก็ตามปัญหาหนักใจมีอยู่ว่า บริเวณที่อินเดียนาตกลงมาไม่ได้เชื่อมต่อกับทางออก อินเดียนาจึงจำเป็นที่จะต้อง ระเบิดกำแพงเขาวงกตด้วยระเบิดที่มีติดตัวอยู่เพียงลูกเดียวเท่านั้น นอกจากนี้อินเดียนาทราบว่าระเบิดนี้มีพลังทำลายกำแพงเขา วงกตได้เพียงหนึ่งช่องเท่านั้น

อินเดียนาจึงจำเป็นที่จะต้องวางแผนว่าเขาจะต้องเดินในเขาวงกตอย่างไร และใช้ระเบิดทำลายกำแพงตรงพื้นที่ช่องใดจึงจะ สามารถเดินไปถึงทางออกได้ อินเดียนาทราบตำแหน่งเริ่มต้นของเขาและตำแหน่งทางออกเท่านั้น และเพื่อให้การวางแผนและ ประมาณระยะทางเดินเป็นไปโดยง่าย อินเดียนาจะเดินในทิศเหนือ ใต้ ตะวันออก หรือ ตะวันตก เท่านั้น อินเดียนาจะไม่เดินในทิศ เฉียงเป็นอันขาด (เช่น ไม่เดินในทิศตะวันออกเฉียงเหนือ เป็นต้น)

ยกตัวอย่างจากแผนที่ในหน้าถัดไป เขาวงกตนี้ประกอบด้วยช่องจำนวนทั้งหมด 5 แถวและ 8 หลัก กำหนดให้อินเดียนา เริ่มต้นในช่องที่ถูกเน้นด้วยวงรี และทางออกอยู่ ณ ตำแหน่งที่เน้นด้วยสามเหลี่ยม หากอินเดียนาระเบิดกำแพงที่ช่องใดช่องหนึ่งที่ถูก เน้นด้วยลูกศรก็จะสามารถเดินไปถึงทางออกได้ การระเบิดกำแพงที่ช่องอื่นๆ นอกจากหนึ่งในสี่ช่องนี้ จะไม่ทำให้อินเดียนาไปถึง ทางออกได้

ยิ่งไปกว่านั้น อินเดียนายังสนใจด้วยว่าทางเดินจากจุดเริ่มต้นไปถึงทางออกที่ใกล้ที่สุดมีระยะทางเท่าใด (ระยะทางนับจาก จำนวนช่องที่เดินผ่าน) จากตัวอย่างเดิม ถ้าอินเดียนาระเบิดกำแพงที่ช่อง ณ ตำแหน่งแถวที่สอง หลักที่ห้า หรือ ตำแหน่งแถวที่สาม หลักที่หก จะทำให้ได้ทางเดินที่ใกล้ที่สุดด้วย คือได้ทางเดินที่ผ่านจำนวนช่องทั้งหมด 6 ช่อง (นับช่องที่จุดเริ่มต้นและสิ้นสุดและช่อง ที่เป็นกำแพงที่ถูกระเบิดด้วย)

	เหนือ	0	0	1	1	0	0	0	0
ตะวันตก	ตะวันออก	1	0	1	1	0 🔷	1	1	1
NIO 9 MAILI	MIS 1 M G G L I	1	0	1	1	1	0 🗢	0	1
		1	1	0	0		0 🛑	0	1
	ใต้	0	0	1	1	0 🛑	1	1	1

จงเขียนโปรแกรมที่มีประสิทธิภาพในการหาจำนวนช่องของกำแพงที่อินเดียนาสามารถทำการระเบิดเพื่อนำอินเดียนาไปสู่ ทางออกได้ รวมทั้งหาระยะทางเดินที่สั้นที่สุดจากจุดเริ่มต้นไปจนถึงทางออก

<u>ข้อมูลนำเข้า</u>

บรรทัดแรกระบุค่า M และ N ซึ่งแทนจำนวนแถวและจำนวนหลักของเขาวงกตตามลำดับ โดยที่ 1 <= M, N <= 150 โดย M และ N ถูกคั่นด้วยช่องว่าง

บรรทัดที่สองระบุแถว (Rs) และหลัก (Cs) ของช่องที่อินเดียนาเริ่มต้น โดยที่ 1 <= Rs <= M และ 1 <= Cs <= N โดย Rs และ Cs ถูกคั่นด้วยช่องว่าง

บรรทัดที่สามระบุแถว (Re) และหลัก (Ce) ของช่องที่เป็นทางออก โดยที่ 1 <= Re <= M และ 1 <= Ce <= N โดย Re และ Ce ถูกคั่นด้วยช่องว่าง รับประกันว่าตำแหน่งเริ่มต้นและทางออกจะตรงกับช่องที่มีเลขหนึ่งอยู่ในแผนที่

อีก M บรรทัดต่อมา ในแต่ละบรรทัดจะประกอบไปด้วยเลขจำนวน N ตัวแต่ละตัวคั่นด้วยช่องว่างโดยเลขศูนย์แทนกำแพง และเลขหนึ่งแทนทางเดิน บรรทัดแรกใน M บรรทัดนี้บอกลักษณะช่องของแถวแรกในเขาวงกต (แถวแรกคือแถวที่อยู่ทางเหนือสุด) เรียงจากหลักทางทิศตะวันตกไปตะวันออก (หลักแรกคือหลักทางทิศตะวันตก) บรรทัดถัดมาบอกลักษณะของแถวที่สอง และเป็น เช่นนี้ไปเรื่อย ๆ จนครบ M บรรทัด

สำหรับข้อมูลเข้าทุกชุด อินเดียนาจำเป็นต้องใช้ระเบิดหนึ่งลูกในการไปถึงทางออก

<u>ข้อมูลส่งออก</u>

บรรทัดแรก ระบุจำนวนช่องกำแพงที่อินเดียนาสามารถวางระเบิดและพาอินเดียนาไปถึงทางออกได้ บรรทัดที่สอง ระบุระยะทางที่น้อยที่สุดที่อินเดียนาสามารถเดินเพื่อไปถึงทางออก โดยระยะทางคือจำนวนช่องที่อินเดียนา เดินผ่านทั้งหมด ซึ่งนับรวมช่องที่เป็นจุดเริ่มต้นและจุดสิ้นสุด พร้อมทั้งนับรวมช่องกำแพงที่อินเดียนาระเบิดด้วย

ตัวอย่าง

ข้อ	ข้อมูลนำเข้า							ข้อมูลส่งออก
5	8							4
4	5							6
2	8							
0	0	1	1	0	0	0	0	
1	0	1	1	0	1	1	1	
1	0	1	1	1	0	0	1	
1	1	0	0	1	0	0	1	
0	0	1	1	0	1	1	1	

++++++++++++++++

52. พีทเทพหนีฝุ่น (PT_PM2.5)

-ที่มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น15 ออกโดย PeaTT~

พีทเทพ (Peattaep) เป็นพระราชาปกครองดินแดน POSNBUU ซึ่งต้องเผชิญกับปัญหาฝุ่นละอองขนาดเล็ก PM2.5 ที่เกิน มาตรฐาน

ดินแดน POSNBUU เป็นตารางขนาด R แถว C คอลัมน์ ในแต่ละช่องจะประกอบไปด้วย '#' คือช่องที่ห้ามเดิน (ทั้งพีทเทพ และฝุ่นพิษจะไม่สามารถเข้าไปยังช่อง # ได้), 'S' คือจุดเริ่มต้นของพีทเทพ, 'E' คือประตูทางออกของพีทเทพ และตัวเลขจาก 0 ถึง 9 เพื่อบอกว่าตอนเริ่มต้นในแต่ละช่องมีฝุ่นพิษอยู่กี่หน่วย (เลข 0 แปลว่าไม่มีฝุ่นพิษ)

พีทเทพต้องการเดินจากจุดเริ่มต้นไปยังประตูทางออกโดยเผชิญกับฝุ่นพิษน้อยที่สุด เขาสามารถเดินทางไปได้ใน 4 ทิศทาง ได้แก่ ขึ้นบนหนึ่งช่อง, ลงล่างหนึ่งช่อง, ไปซ้ายหนึ่งช่อง และไปขวาหนึ่งช่อง ในแต่ละนาทีเมื่อพีทเทพเดินไปฝุ่นพิษเองก็สามารถพัด ไปข้าง ๆ ได้หนึ่งช่องใน 4 ทิศทางเช่นกัน ฝุ่นหลาย ๆ ช่องสามารถพัดมารวมกันได้

ฝุ่นพิษจะพยายามพัดเข้าหาพีทเทพให้ได้ ไม่ว่าจะไล่ตามหรือดักทางอยู่ข้างหน้า และพีทเทพจะพยายามหนีฝุ่นพิษไปยัง ทางออกเพื่อที่จะ<u>เจอกับฝุ่นพิษจำนวนน้อยที่สุดโดยไม่จำเป็นจะต้องเดินทางด้วยระยะทางที่สั้นที่สุด</u> ดังนั้นในบางจังหวะของการ เดินทาง พีทเทพและฝุ่นสามารถอยู่กับที่ได้

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนฝุ่นที่น้อยที่สุด ในการเดินทางของพีทเทพไปยังทางออก

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 10

ในแต่ละคำถาม ข้อมูลในแต่ละบรรทัดมีรายละเอียดดังนี้

บรรทัดแรก รับจำนวนเต็มบวก R C แทนขนาดของตาราง โดยที่ R, C ไม่เกิน 1,000

อีก R บรรทัดต่อมา รับตารางเริ่มต้นโดยประกอบไปด้วยตัวเลข 0-9, #, S, E เท่านั้น ซึ่ง S และ E จะปรากฏในตาราง เริ่มต้นเพียงครั้งเดียว

20% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 10

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดให้แสดงจำนวนฝุ่นที่น้อยที่สุด ในการเดินทางของพีทเทพไปยังทางออก หากพีทเทพไม่สามารถ เดินทางไปยังประตูทางออกได้ให้ตอบว่า -1

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	9
5 7	6
000E0#3	
#0##0#0	
050#0#0	
4#0#0#0	
0#0S000	
1 4	
SE69	

คำอธิบายตัวอย่างที่ 1 มีทั้งสิ้น 2 คำถาม ได้แก่

-คำถามแรก ตารางเริ่มต้นมีขนาด 5 แถว 7 คอลัมน์ ดังตารางซ้าย

			Ε	#	ω
#		#	#	#	
	5		#	#	
4	#		#	#	
	#		S		

			-E	#	3
#		#	#	#	
	5		#	#	
4	#		#	#	
	#		-S		

พีทเทพจะเดินทางตามเส้นทางดังตารางขวา ยังไงเขาก็จะต้องเจอฝุ่นพิษ 9 หน่วยทางซ้ายแน่นอน โดยฝุ่น 4 หน่วยจะพัด มาดักและฝุ่น 5 หน่วยจะอยู่กับที่ดักรอเขา แต่ฝุ่นพิษ 3 หน่วยทางด้านขวาจะพัดมาไม่ทัน จึงตอบ 9

-คำถามที่สอง ตารางเริ่มต้นมีขนาด 1 แถว 4 คอลัมน์ ดังตารางซ้าย

S	Ε	6	9

S-	-E	6	9

พีทเทพจะเดินไปทางขวา 1 ช่อง ฝุ่นพิษ 6 หน่วยก็จะพัดมาเจอกับเขาที่ประตูทางออก แต่ฝุ่นพิษ 9 หน่วยจะพัดมาไม่ทัน จึงตอบว่า 6 หน่วยนั่นเอง

+++++++++++++++++

53. ชมรมการต่อสู้ตัวต่อตัว (48_Fight)

ที่มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น14 ออกโดย PeaTT~

วง PEATT48 เป็นวงไอดอลของประเทศไทย และเป็นวงน้องของวงไอดอลญี่ปุ่น AKB48 ภายใต้แนวคิดร่วมกันคือ "ไอดอล ที่คุณสามารถไปพบได้" ก่อตั้งโดยปรมาจารย์พีทผู้มีชื่อเสียงโด่งดัง

ปรมาจารย์พีทได้ก่อตั้งชมรมการต่อสู้ตัวต่อตัวเพื่อฝึกฝนให้สมาชิกได้พัฒนาทักษะความสามารถของตัวเองก่อนจะแสดง ผลงานต่อประชาชน สมาชิกในวง PEATT48 จะมีทั้งผู้ชายและผู้หญิงปะปนกันไป

วง PEATT48 มีสมาชิกทั้งสิ้น N คน ปรมาจารย์พีทได้จัดประลองการต่อสู้ตัวต่อตัวทั้งสิ้น M รอบ โดยในแต่ละรอบที่มา ต่อสู้กันจะเป็นสมาชิกคนละเพศกันเท่ากัน กล่าวคือ ต้องเป็นผู้ชายประลองกับผู้หญิงเท่านั้น

ปรมาจารย์พีทจะจัดการต่อสู้ตัวต่อตัวจากการประลองคู่แรก ไปยังคู่ที่สอง และจัดการประลองไปเรื่อย ๆ จนกว่าจะพบว่ามี สมาชิกที่มาสู้กันนั้นเป็นเพศเดียวกัน (เช่น ผู้ชายสู้กับผู้ชาย หรือ ผู้หญิงสู้กับผู้หญิง) เขาก็จะหยุดจัดการประลองทันที

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาว่าปรมาจารย์พีทจะสามารถจัดการประลองได้มากที่สุดกี่รอบ?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N M แทนจำนวนสมาชิกทั้งหมดในวง PEATT48 และ จำนวนรอบการประลองทั้งหมด โดยที่ N ไม่เกิน 100,000 และ M ไม่เกิน 300,000

อีก M บรรทัดต่อมา รับจำนวนเต็มบวกไม่ซ้ำกันสองจำนวน แทนคู่ต่อสู้ตัวต่อตัว ซึ่งมีค่าตั้งแต่ 1 ถึง N โดยหมายเลขที่ให้ มาไม่มีการระบุเพศไว้ก่อน ให้สมมติว่าเป็นเพศใดก็ได้ ที่จะทำให้ประลองกันได้มากที่สุด

40% ของชุดข้อมูลทดสอบ จะมี N, M ไม่เกิน 500

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนรอบการประลองต่อสู้ตัวต่อตัวสูงที่สุดที่ปรมาจารย์พีทสามารถจัดได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
6 8	6
3 4	
1 2	
5 6	
1 6	
1 3	
4 5	
2 4	
2 6	

คำอธิบายตัวอย่างที่ 1

ปรมาจารย์พีทสามารถจัดการประลอง 5 คู่แรกได้ นั่นคือ 3 สู้กับ 4, 1 สู้กับ 2, 5 สู้กับ 6, 1 สู้กับ 6 และ 1 สู้กับ 3 ซึ่งเป็น การต่อสู้จากคนละเพศทั้งสิ้น แต่พอปรมาจารย์พีทจัดการประลองคู่ที่ 6 ให้ 4 สู้กับ 5 ก็พบว่าเป็นการต่อสู้ของสมาชิกเพศเดียวกัน เขาจึงหยุดการประลองทันที และได้จำนวนรอบการประลองมากที่สุดเป็น 6 รอบ

++++++++++++++++++

54. ดุจสร้างครึ่งวงกลม (Semicircle)

ที่มา: ข้อสิบสอง EOIC#34 PeaTT~

ครึ่งวงกลม N รูป จะต้องถูกลากขึ้น ครึ่งวงกลมแต่ละรูปมีจุดเริ่มต้นอยู่ที่พิกัด Si และสิ้นสุดที่พิกัด Ei โดยแต่ละรูปสามารถ ลากเส้นได้สองวิธีเป็นครึ่งวงกลมหงายหรือครึ่งวงกลมคว่ำก็ได้ แต่มีข้อจำกัดคือรูปครึ่งวงกลมทั้ง N รูปนั้นจะต้องไม่ตัดกัน เช่น N=2 มีพิกัดครึ่งวงกลมเป็น (1 ถึง 4) และ (2 ถึง 5) เราสามารถสร้างได้แบบนี้

หรือสามารถสร้างให้ (1 ถึง 4) ลงล่าง และ (2 ถึง 5) ขึ้นบนก็ได้ สรุปว่าสร้างครึ่งวงกลมได้ 2 แบบ จงเขียนโปรแกรมเพื่อหาว่าเราจะสามารถสร้างครึ่งวงกลมได้ทั้งสิ้นกี่แบบ?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 100

Q บรรทัดต่อมา รับตัวเลขจำนวนเต็มบวก N แทนจำนวนครึ่งวงกลม โดยที่ N ไม่เกิน 700 จากนั้นรับตัวเลข Si Ei เพื่อแสดง จุดเริ่มต้นและจุดสิ้นสุดของครึ่งวงกลมทั้ง N คู่ ตามลำดับ โดยที่ 0 <= Si < Ei <= 1,000,000,000

รับประกันว่าไม่มีสองครึ่งวงกลมใดที่มีทั้งจุดเริ่มต้นและจุดสิ้นสุดซ้ำกัน

<u>ข้อมูลส่งออก</u>

Q บรรทัด แต่ละบรรทัดให้แสดงจำนวนวิธีการสร้างครึ่งวงกลมโดยไม่ทำให้เส้นครึ่งวงกลมเหล่านั้นตัดกัน mod 1001

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	2
2 1 4 2 5	8
3 3 9 6 9 3 6	

+++++++++++++++++

55. หุ่นยนต์ (Robot TOI13)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 13 ณ ศูนย์ สอวน. โรงเรียนมหิดลวิทยานุสรณ์

ทุเรียน จิงโจ้ และอีกาดำ เป็นนักเรียนโรงเรียนวิทยาศาสตร์แห่งหนึ่ง ในภาคเรียนนี้เขาทั้งสามคนลงทะเบียนเรียนรายวิชา ความคิดสร้างสรรค์และนวัตกรรมซึ่งจะต้องสร้างชิ้นงานนวัตกรรมส่งคุณครู วันหนึ่งขณะที่ทั้งสามกำลังเรียนรายวิชาบูรณาการ ความรู้ ภายในชั้นเรียนมีการอภิปรายเกี่ยวกับสังคมผู้สูงอายุ (aging society) ซึ่งทำให้ทั้งสามคนสนใจเป็นอย่างมาก และรวมกลุ่ม กันคิดสร้างชิ้นงานสำหรับส่งคุณครูในรายวิชาแรกได้ นั่นคือ หุ่นยนต์ช่วยผู้สูงอายุเก็บสิ่งของ

ทุเรียน จิงโจ้ และ อีกาดำ ช่วยกันออกแบบการทำงานของหุ่นยนต์จำนวน K ตัวให้สามารถทำงานได้ ดังนี้

- -หุ่นยนต์แต่ละตัวสามารถเคลื่อนที่ไปได้ 4 ทิศทางเท่านั้น คือ เคลื่อนที่ไปทางด้านซ้าย ด้านขวา ด้านหน้า และด้านหลัง ของหุ่นยนต์
- -หุ่นยนต์สามารถเคลื่อนที่ในแนวระนาบตามแผนที่ข้อมูลซึ่งอยู่ในรูปของตารางขนาด N×M โดยที่ 1 <= N <= 2,000 และ 1 <= M <= 2,000
- -สำหรับแผนที่ข้อมูลนั้น ภายในแต่ละช่องของตารางจะประกอบไปด้วยตัวอักขระซึ่งบอกว่าช่องนั้นเป็นตำแหน่งเริ่มต้น พื้นที่ว่าง สิ่งกีดขวาง หรือสิ่งของเป้าหมาย โดย
 - -X หมายถึง ตำแหน่งเริ่มต้นของหุ่นยนต์ ซึ่งมีเป็นจำนวน K ตำแหน่งที่ไม่ซ้ำกัน
 - -E หมายถึง พื้นที่ว่าง
 - -W หมายถึง สิ่งกีดขวาง
 - -A หมายถึง สิ่งของเป้าหมาย ซึ่งอาจมีมากกว่า 1 ชิ้นได้
- -หุ่นยนต์สามารถเคลื่อนที่ผ่านพื้นที่ว่าง (E) สิ่งของเป้าหมาย (A) และตำแหน่งเริ่มต้น (X) ได้ แต่ไม่สามารถเคลื่อนที่ผ่านสิ่ง กีดขวาง (W) ได้ และจะต้องเคลื่อนที่ภายในขอบเขตของแผนที่ข้อมูลที่กำหนดให้เท่านั้น
 - -การเคลื่อนที่จากช่องใด ๆ ไปยังช่องถัดไป จะนับเป็น 1 ก้าว
- -หุ่นยนต์จะเก็บสิ่งของเป้าหมายแต่ละชิ้นได้สำเร็จ ก็ต่อเมื่อหุ่นยนต์สามารถเคลื่อนที่ไปอยู่ภายในช่องที่ระบุว่าเป็นสิ่งของ เป้าหมาย A และได้เคลื่อนที่กลับมายังตำแหน่งเริ่มต้นของหุ่นยนต์ตัวนั้น โดยหุ่นยนต์สามารถหยิบและบรรทุกสิ่งของเป้าหมายได้ ครั้งละ 1 ชิ้นเท่านั้น นั่นคือ หลังจากหุ่นยนต์หยิบสิ่งของเป้าหมายได้แล้ว หุ่นยนต์ต้องบรรทุกสิ่งของเป้าหมายนั้นกลับไปยังตำแหน่ง เริ่มต้น และวางสิ่งของเป้าหมายก่อนที่จะเคลื่อนที่ไปหยิบสิ่งของเป้าหมายชิ้นถัดไปได้ (ในกรณีที่มีสิ่งของเป้าหมายหลายชิ้น)

สมมติให้แผนที่ข้อมูลมีขนาด 5×5 (N=5, M=5) และภายในแต่ละช่องของตารางจะประกอบไปด้วยตัวอักขระ ดังรูปที่ 1

E	Е	Е	E	E
A	E	A	E	W
W	E	E	W	W
W	Е	Е	x	E
W	W	Е	x	A

รปที่ 1

จะเห็นว่ามีสิ่งของเป้าหมายทั้งสิ้น 3 ชิ้น และหุ่นยนต์ 2 ตัว ดังนั้นหุ่นยนต์แต่ละตัวอาจเคลื่อนที่จากตำแหน่งเริ่มต้น (X) ไป หยิบและบรรทุกสิ่งของเป้าหมาย (A) กลับมายังตำแหน่งเริ่มต้นได้ดังรูปที่ 2 รูปที่ 3 และรูปที่ 4 โดยมีจำนวนก้าวรวมทั้งหมด 18 ก้าว ซึ่งเป็นจำนวนก้าวรวมที่น้อยที่สุดที่หุ่นยนต์ทั้ง 2 ตัวต้องใช้ในการเก็บสิ่งของเป้าหมายได้สำเร็จทั้งหมด 3 ชิ้น

E	E	E	E	Е		E	E	E	E	E
A	E	A	Е	W		A	Е	A	E	M
W	E	E	W	W		M	E	E S	W	M
W	E	E	x	Е		W	E	E		E
W	W	E	x (1)	A		W	W	E	X	A
		รูปที่ 2			_			รูปที่ 3		
			Е	Е	E	E	E			
			A 6	E @	A	E	W			
			TAT	E 8 3		W	W			
			M	E	© E ←	① X	E			
			W	W	E	x	A			

รปที่ 4

และเพื่อให้หุ่นยนต์สามารถทำงานได้อย่างมีประสิทธิภาพ ทุเรียน จิงโจ้ และอีกาดำ จึงต้องการให้หุ่นยนต์ใช้จำนวนก้าว รวมที่น้อยที่สุดที่หุ่นยนต์จะต้องใช้ในการเก็บสิ่งของเป้าหมายให้ได้มากชิ้นที่สุด ทั้งนี้อาจไม่จำเป็นต้องใช้หุ่นยนต์ทุกตัวในการเก็บ สิ่งของเป้าหมาย เนื่องจากเวลาส่งชิ้นงานใกล้เข้ามาทุกที ทั้งสามจึงมองหาสมาชิกเพิ่มเติมที่จะสามารถช่วยเขียนโปรแกรมเพื่อหา จำนวนก้าวที่น้อยที่สุดที่หุ่นยนต์จะต้องใช้ในการเก็บสิ่งของเป้าหมายได้สำเร็จให้ได้มากชิ้นที่สุด

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อช่วย ทุเรียน จิงโจ้ และ อีกาดำ หาจำนวนก้าวรวมที่น้อยที่สุดที่หุ่นยนต์จะต้องใช้ใน การเก็บสิ่งของเป้าหมายได้สำเร็จให้ได้มากชิ้นที่สุด

<u>ข้อมูลนำเข้า</u>

บรรทัดที่ 1 มีจำนวนเต็มสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ N ระบุจำนวนแถวของตาราง

แผนที่ข้อมูล และ จำนวนที่สอง คือ M ระบุจำนวนคอลัมน์ของตารางแผนที่ข้อมูล กำหนดให้ 1 <= N <= 2,000 และ 1 <= M <= 2,000

N บรรทัดต่อมา แต่ละบรรทัดประกอบด้วยสตริงขนาด M ตัวอักขระ แต่ละอักขระแสดงข้อมูลภายในตารางแผนที่แต่ละ ช่อง โดยกำหนดให้ X แทนตำแหน่งเริ่มต้น, E แทนพื้นที่ว่าง, W แทนสิ่งกีดขวาง, A แทนสิ่งของเป้าหมาย กำหนดให้ ข้อมูลนำเข้าที่ ใช้ทดสอบจะมีอักขระ X ได้ตั้งแต่ 1 จนถึง 100 จำนวน และ ข้อมูลนำเข้าที่ใช้ทดสอบจะมีอักขระ A ได้ตั้งแต่ 1 จนถึง 100 จำนวน ข้อมูลส่งออก

บรรทัดที่ 1 แสดงจำนวนเต็มสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง โดยจำนวนแรกหมายถึงจำนวนชิ้นของ สิ่งของเป้าหมายที่หุ่นยนต์สามารถเก็บได้สำเร็จ และ จำนวนที่สอง ระบุจำนวนก้าวรวมที่น้อยที่สุดที่หุ่นยนต์จะต้องใช้ในการเก็บ สิ่งของเป้าหมายสำเร็จได้มากชิ้นที่สุด

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 5	3 18
EEEEE	
AEAEW	
WEEWW	
WEEXE	
WWEXA	
5 5	1 6
WEEEE	
AWAEW	
WEEWW	
WEEXE	
WWEEE	
5 9	2 64
EEEWEEEEE	
EWEWEWEEE	
AWXWEWWWE	
EWWWEWEEE	
EEEEEWAEE	
5 5	0 0
WEEEE	
AWEEW	
WEEWW	
WEEXE	
WWEEE	

+++++++++++++++++

56. แผนที่ลายแทง (Map)

. ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 10 ม.อุบลราชธานี

ในยุคอารยธรรมลุ่มน้ำโขงโบราณ มี "ชนเผ่าต๋อย" ซึ่งถูกกล่าวขานว่าเคยมีความรุ่งเรืองทั้งด้านสติปัญญา วิทยาการและ

วัตถุ หัวหน้าชนเผ่าต๋อยในอดีตตระหนักถึงอันตรายที่จะเกิดขึ้นแก่องค์ความรู้ และวิทยาการที่ชนเผ่าได้คิดค้นขึ้นมา จึงบันทึกองค์ ความรู้และวิทยาการต่าง ๆ ของชนเผ่า และซ่อนบันทึกนี้ รวมทั้งสมบัติของชนเผ่าทั้งหมดไว้ด้วยกัน จากนั้นหัวหน้าชนเผ่าได้ทำ แผนที่ลายแทงไปยังที่ช่อนสมบัติเหล่านั้น ลงบนหนังสัตว์รูปสี่เหลี่ยมผืนผ้าที่มีความยาวตามแนวตั้ง m หน่วย และความยาวตาม แนวนอน n หน่วย

เพื่อเป็นการรักษาความลับของที่ซ่อนสมบัติหัวหน้าชนเผ่าได้ตัดแบ่งแผนที่ลายแทงออกเป็นชิ้นส่วนเล็ก ๆ รูปสี่เหลี่ยม จัตุรัสขนาด 1 ตารางหน่วย จำนวนทั้งสิ้น m x n ชิ้น โดยด้านหลังของแต่ละชิ้นมีหมายเลข 0, 1, 2, 3, ..., (m x n) - 2, (m x n) - 1 เขียนกำกับอยู่ แล้วแจกจ่ายชิ้นส่วนเหล่านี้ทั้งหมดให้ทุกครัวเรือนในชนเผ่าช่วยกันดูแล และจารึกความสัมพันธ์ระหว่างชิ้นส่วน เล็ก ๆ ของลายแทง จำนวนทั้งสิ้น (m x n) - 1 ความสัมพันธ์ ไว้ที่แท่นบูชา ณ ลานหินแตก ทางเข้าสู่ผาแต้ม เพื่อใช้ในการประกอบ ชิ้นส่วนเหล่านั้นให้กลับมาเป็นแผนที่ลายแทงดังเดิม

ในแต่ละความสัมพันธ์มีตัวอักษร 'U' หรือ 'L' (อักษรภาษาอังกฤษตัวพิมพ์ใหญ่) แทนการอยู่ติดกันทางด้านบน หรือการอยู่ ติดกันทางด้านซ้าย ตามลำดับ ตัวอย่างเช่น

- 4 L 2 หมายความว่า ชิ้นส่วนหมายเลข 4 <u>อยู่ติดทางด้านซ้าย</u>ของชิ้นส่วนหมายเลข 2
- 10 U 25 หมายความว่า ชิ้นส่วนหมายเลข 10 **อยู่ติดทางด้านบน**ของชิ้นส่วนหมายเลข 25

ในเดือนพฤษภาคมนี้ ทายาทผู้นำชนเผ่าต๋อยจะทำการรวบรวมชิ้นส่วนเล็ก ๆ ของลายแทงทั้งหมด เพื่อเปิดขุมสมบัตินำเอา องค์ความรู้ วิทยาการ รวมถึงสมบัติของชนเผ่า ออกมาช่วยพัฒนาประเทศ แต่การจัดเรียงชิ้นส่วนเล็ก ๆ ตามความสัมพันธ์ที่จารึกไว้ นั้น มีความยุ่งยากเป็นอย่างมาก ทายาทผู้นำชนเผ่าได้รับข่าวว่าจะมีผู้รู้วัยเยาว์จำนวนมากมารวมตัวกันในการแข่งขันคอมพิวเตอร์ โอลิมปิกระดับชาติ ครั้งที่ 10 ณ มหาวิทยาลัยอุบลราชธานี จึงได้เข้ามาขอความช่วยเหลือจากผู้รู้ ให้เขียนโปรแกรมคอมพิวเตอร์ จัดเรียงชิ้นส่วนเล็ก ๆ ของลายแทงทั้งหมด ตามความสัมพันธ์ที่มีการจารึกไว้ เพื่อประกอบเป็นแผนที่ลายแทงไปยังขุมสมบัติ

<u>งานของคุณ</u>

จงเขียนโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพ เพื่อประกอบแผนที่ลายแทงจากความสัมพันธ์ที่กำหนดให้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก ประกอบด้วยจำนวนเต็ม m และ n ซึ่งแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง แสดงความยาวตามแนวตั้ง และความยาวตามแนวนอนของแผนที่ลายแทง ตามลำดับ เมื่อ 1 <= m <= 200 และ 1 <= n <= 200

บรรทัดที่สอง ถึงบรรทัดที่ $m \times n$ แสดงความสัมพันธ์ที่ถูกจารึกไว้ จำนวน $(m \times n)$ - 1 ความสัมพันธ์ โดยแต่ละบรรทัดมี การจัดเรียงดังนี้ จำนวนเต็ม i ตามด้วยช่องว่างหนึ่งช่อง ตัวอักษรภาษาอังกฤษตัวพิมพ์ใหญ่ 'U' หรือ 'L' อย่างใดอย่างหนึ่ง ตามด้วย ช่องว่างหนึ่งช่อง และจำนวนเต็ม j เมื่อ $0 <= i < m \times n$ และ $0 <= j < m \times n$

<u>ข้อมูลส่งออก</u>

มีทั้งหมด m บรรทัดโดยแต่ละบรรทัดประกอบด้วย จำนวนเต็มทั้งหมด n จำนวนแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง ซึ่งแสดงการเรียงลำดับชิ้นส่วนเล็ก ๆ ของลายแทงตามแนวนอนโดยทั้งหมดประกอบกันเป็นแผนที่ลายแทงขุมสมบัติรูป สี่เหลี่ยมผืนผ้าที่มีความยาวตามแนวตั้ง m หน่วย และความยาวตามแนวนอน n หน่วย

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 2	0 1
1 U 5	3 5
0 U 3	4 2
4 L 2	
0 L 1	

5 U 2	
1 5	1 2 0 4 3
4 L 3	
2 L 0	
1 L 2	
0 L 4	

<u>ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ</u>

1. ความสัมพันธ์ที่กำหนดให้จะสามารถนำแต่ละชิ้นส่วนเล็ก ๆ มาสร้างแผนที่ลายแทงโดยเชื่อมโยง (connected) ไปยังชิ้นส่วนเล็ก ๆ อื่นได้เสมอ ดังแผนที่ลายแทงในรูปที่ 1 (ก) โดยข้อมูลนำเข้าจะไม่มีความสัมพันธ์ในลักษณะเช่น รูปที่ 1 (ข) และ (ค)

รูปที่ 1 แสดงตัวอย่างแผนที่ลายแทง (ก) แผนที่ลายแทงที่ถูกสร้างจากความสัมพันธ์ที่เชื่อมโยง (ข) และ (ค) แผนที่ลายแทงที่ถูกสร้างจากความสัมพันธ์ที่ไม่เชื่อมโยง

+++++++++++++++++

57. เกมตรงข้ามบียูยู (BUU Opposite)

ที่มา: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ม.บูรพารุ่น 11 ออกโดย PeaTT~

เมื่อมีเวลาว่าง เทพจะชอบเล่นเกมเกมหนึ่งที่มีชื่อว่า "เกมตรงข้ามบียูยู" (BUU Opposite)

เกมตรงข้ามบียูยู (BUU Opposite) เป็นเกมที่มีเบี้ยสองตัวคือ A และ B เคลื่อนที่ไปมาบนกระดานสี่เหลี่ยมมุมฉากขนาด R x C ช่อง ในกระดานนั้น บางช่องเป็นช่องที่ห้ามเดิน แต่สำหรับช่องอื่น เบี้ยทั้งสองตัวจะสามารถเดินไปยังช่องนั้นได้

เบี้ยจะเดินในทิศทางขึ้นบน, ลงล่าง, ซ้าย และขวาเท่านั้น และการเดินไม่สามารถเดินไปยังช่องห้ามเดินได้อย่างไรก็ตาม เบี้ยทั้งสองนี้ไม่ได้เคลื่อนที่โดยเป็นอิสระต่อกัน แต่การเคลื่อนที่ของเบี้ยทั้งสองนั้นจะเกิดขึ้นพร้อมกันแต่มีทิศทางตรงกันข้าม เช่น ถ้า A เดินไปทางซ้าย B ก็จะเดินไปทางขวา ถ้า A เดินขึ้นบน B ก็จะเดินลงล่าง แต่ถ้าการเคลื่อนที่ของเบี้ยตัวใดตัวหนึ่งไม่สามารถ เกิดขึ้นได้ เนื่องจากจะเป็นการเดินออกนอกตาราง หรือเดินเข้าไปในช่องที่ห้ามเดิน การเดินในครั้งนั้นจะทำให้เบี้ยตัวนั้นจะอยู่ที่ช่อง เดิม นอกจากนี้เบี้ยทั้งสองสามารถเดินสวนกันได้และยังสามารถเดินไปหยุดอยู่ที่ช่องเดียวกันได้ด้วย

เทพเล่นเกมตรงข้ามบียูยูนี้โดยต้องการหาระยะที่เบี้ยทั้งสองจะสามารถเดินไปใกล้กันให้มากที่สุดเท่าที่จะเป็นไปได้ และ ระยะทางดังกล่าวจะต้องไม่ผ่านช่องห้ามเดิน โดย<u>ระยะระหว่างตำแหน่งสองตำแหน่งบนตารางคือจำนวนตาเดินที่น้อยที่สุดจาก ตำแหน่งแรกไปยังตำแหน่งที่สอง และเทพต้องการหาว่าการที่จะเดินให้ได้ระยะทางที่เบี้ยทั้งสองอยู่ใกล้กันมากที่สุดโดยไม่ผ่านช่อง ห้ามเดิน จะต้องใช้จำนวนช่องตารางเดินที่น้อยที่สุดเป็นเท่าใด</u>

เช่น R=2, C=5 ให้ '.' คือช่องว่าง, '#' คือช่องที่ห้ามเดิน และตารางเริ่มต้นเป็นดังภาพที่ 1

А	•	•	•	•		•	•	А	
•	•	•	•	В		•	•	В	
	ก	าพที่ 1			=			กาพที่ 2	

เทพสามารถเล่นเกมตรงข้ามบียูยูโดยให้เบี้ย A เดินไปทางขวาสองครั้ง จะทำให้เบี้ย B เดินมาทางซ้ายสองครั้งเช่นกันดัง ภาพขวา จะได้ระยะที่เบี้ยสองตัวจะสามารถเดินไปใกล้กันได้มากที่สุดเท่ากับ 1 ช่องตาราง ซึ่งเป็นระยะที่ใกล้ที่สุดเท่าที่จะเป็นไป ได้แล้ว ไม่สามารถทำให้เบี้ยสองตัวอยู่ใกล้กันมากกว่านี้ได้อีก และจำนวนช่องตารางเดินจากตำแหน่งเริ่มต้นของเบี้ย A และ B ที่ น้อยที่สุดเพื่อให้เบี้ยทั้งสองเดินมาใกล้กันมากที่สุดมีค่าเท่ากับ 2 ช่องตารางนั่นเอง

<u>งานของคูณ</u>

จงเขียนโปรแกรมอย่างมีประสิทธิภาพเพื่อช่วยเทพหาระยะทางที่เบี้ยสองตัวจะสามารถเดินไปใกล้กันได้มากที่สุดและหา จำนวนช่องตารางเดินที่น้อยที่สุดจากตำแหน่งของเบี้ยทั้งสองเพื่อทำให้เบี้ยทั้งสองเดินมาใกล้กันมากที่สุด

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q มีค่าไม่เกิน 5 ในแต่ละคำถาม ให้รับข้อมูลดังนี้

บรรทัดแรก รับจำนวนเต็มบวก R C ตามลำดับห่างกันหนึ่งช่องว่าง เพื่อแสดงขนาดของตาราง โดยที่ 2 <= R, C <= 30 อีก R บรรทัดต่อมา รับข้อมูลของตารางเป็นตัวอักขระ C ตัวติดกัน โดยที่ '.' คือช่องว่าง, '#' คือช่องที่ห้ามเดิน และรับประกันว่าจะมีตัวอักษร 'A' และ 'B' ปรากฏในตารางอย่างละตัวเท่านั้น

20% ของชุดข้อมูลทดสอบ ในตารางจะไม่มีสิ่งกีดขวาง

40% ของชุดข้อมูลทดสอบ จะสามารถเดินจนเบี้ยทั้งสองมาอยู่ในตำแหน่งเดียวกันได้เสมอ

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดให้แสดงระยะที่เบี้ยทั้งสองจะสามารถเดินไปใกล้กันได้มากที่สุด เว้นวรรคหนึ่งวรรค ตามด้วย จำนวนช่องตารางเดินที่น้อยที่สุดจากตำแหน่งเริ่มต้นเพื่อทำให้เบี้ยเดินมาใกล้กันได้มากที่สุด อย่างไรก็ตามถ้าเบี้ยทั้งสองอยู่ใน ตำแหน่งที่ไม่ว่าจะเดินอย่างไรก็ตาม จะไม่มีทางเดินที่เป็นไปได้ระหว่างตำแหน่งของเบี้ยทั้งสอง ให้ตอบระยะทางใกล้สุดเป็น -1 และ จำนวนช่องตารางเดินน้อยที่สุดเป็น 0

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	1 2
2 5	-1 0
A	0 2
B	0 4
1 5	
A.#.B	
1 5	
АВ	
3 5	
A	
###	
###.B	

ตัวอย่างที่1

มีทั้งสิ้น 4 คำถาม ได้แก่

คำถามแรก เป็นไปตามตัวอย่างในโจทย์

คำถามที่สอง ไม่ว่าจะเดินอย่างไรก็ไม่มีทางเดินที่เป็นไปได้ระหว่างตำแหน่งของเบี้ยทั้งสอง จึงตอบระยะทางใกล้สุดเป็น -1 และจำนวนช่องตารางเดินน้อยสุดเพื่อให้ได้ระยะทางดังกล่าวเป็น 0 นั่นเอง

คำถามที่สาม เทพสามารถเล่นเกมตรงข้ามโดยให้เบี้ย A เดินไปทางขวาสองครั้ง จะทำให้เบี้ย B เดินมาทางซ้ายสองครั้ง เช่นกัน แล้วเบี้ยทั้งสองจะมาอยู่ที่ตำแหน่งเดียวกันนั่นเอง

คำถามที่สี่ เทพสามารถเล่นเกมตรงข้าม 4 ครั้ง โดยให้เบี้ย A เดินไปทางขวา, เดินไปทางขวา, เดินไปทางขวา และ เดินลง จะพบว่าเบี้ยทั้งสองจะมาอยู่ที่ตำแหน่งเดียวกัน จึงตอบว่า 0 4 นั่นเอง

++++++++++++++++

58. พีทเล่นแพ็กแมน (Peatt Pacman)

เด็กชายพีทเป็นเด็กอนุบาลอายุ 5 ขวบที่ชอบเล่นเกมแพ็กแมน (Pacman) เป็นอย่างมาก

เกมแพ็กแมน (Pacman) เป็นเกมห^{ู้}นึ่งที่ผู้เล่นจะควบคุมตัวละครให้เดินกินเม็ดคะแนนพร้อม ๆ กับเดินหลบผี (Ghost) ไป ด้วย

เกมแพ็กแมนจะเล่นในตารางขนาด R แถว C คอลัมน์ โดยช่องบนซ้ายคือช่อง (0, 0) และช่องล่างขวาคือช่อง (R-1, C-1) เกมนี้เล่นทั้งสิ้น T วินาที ในแต่ละวินาทีแพ็กแมนและผีสามารถเดินทางไปยังช่องที่อยู่ติดกันในทิศทางบนล่างซ้ายขวา<u>หรือจะหยุด อยู่กับที่ก็ได้</u> นอกจากนี้บางช่องของตารางอาจเป็นกำแพงที่แพ็กแมนและผีเดินทางเข้าไปไม่ได้

กำหนดให้เริ่มต้นแพ็กแมนจะอยู่ช่อง (rp, cp) ในวินาทีที่ 0 และแพ็กแมนเริ่มเดินทางได้ในวินาทีที่ 1 ส่วนผีมีทั้งสิ้น N ตัว โดยผีตัวที่ i จะโผล่ขึ้นมาในช่อง (ri, ci) ในวินาทีที่ ti ของเกม ในวินาทีที่ ti ที่ผีโผล่มานั้น ผีจะยังเดินไม่ได้ ต้องรอวินาทีถัดไปถึงจะ เริ่มเดินทางได้ ตัวอย่างเช่น ถ้า ti=0 หมายความว่า ผีตัวนั้นจะเริ่มเดินทางได้พร้อมกับแพ็กแมน หรือ ถ้า ti=T หมายความว่า ผีตัว นั้นโผล่มาหลังจากแพ็กแมนเดินครบหมดแล้ว และผีจะเดินทางไปไหนไม่ได้เลย แต่จะถือว่าผีโผล่มาในช่องนั้นอยู่ดี

แพ็กแมนนั้นมองไม่เห็นผี ดังนั้นจึงไม่สามารถเดินหลบผีได้ แต่อย่างไรก็ตาม แพ็กแมนนั้นทราบค่า ti, ri, ci ของผีทุก ๆ ตัว เมื่อแพ็กแมนเห็นว่าช่องใดที่ผีมีโอกาสมาถึงก็จะไม่เลือกเดินทางเข้าไปยังช่องนั้นเด็ดขาด เด็กชายพีทอยากทราบว่า จากข้อมูลที่ แพ็กแมนมีนั้น แพ็กแมนสามารถหาทางเดินปลอดภัยที่รับประกันได้ว่า เมื่อเวลาผ่านไป T วินาทีแล้ว ไม่มีทางที่ผีตัวไหนจะมากิน แพ็กแมนได้อย่างแน่นอนหรือไม่? โดยผีจะมากินแพ็กแมนได้ก็ต่อเมื่อฝีและแพ็กแมนนั้นอยู่ที่ช่องเดียวกันหลังจากที่ผีและแพ็กแมน ได้ตัดสินใจเดินทาง (หรือหยุดนิ่งอยู่กับที่) ในวินาทีนั้นแล้ว

<u>งานของคุณ</u>

จงเขียนโปรแกรมช่วยเด็กชายพีทเล่นเกมแพ็กแมนทั้งสิ้น Q เกม

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 10 ในแต่ละคำถาม ให้รับข้อมูลดังนี้ บรรทัดแรกรับจำนวนเต็ม R, C, N, T, rp, cp ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ 1 <= R, C <= 700 และ 1 <= N <= 60,000 และ 1 <= T <= 490,000 และ 0 <= rp < R และ 0 <= cp < C

อีก N บรรทัดต่อมา รับจำนวนเต็ม ti, ri, ci ตามลำดับห่างกันหนึ่งช่องว่างแสดงข้อมูลของผีแต่ละตัว โดยที่ 0 <= ti <= T และ 0 <= ri < R และ 0 <= ci < C

อีก R บรรทัดต่อมา แต่ละบรรทัดรับอักขระ C ตัวอักขระติดกันแทนตาราง โดยที่ . คือช่องว่าง และ # คือกำแพง ที่แพ็กแมนและฝีไม่สามารถเดินทางเข้าไปได้

25% ของชุดข้อมูลทดสอบ จะมี R, C, N ไม่เกิน 100

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด ให้ตอบตามลำดับข้อมูลนำเข้า ถ้าแพ็กแมนสามารถหาทางเดินที่ปลอดภัยได้จนจบเกม ให้ตอบว่า YES แต่ถ้าไม่สามารถหาทางเดินดังกล่าวได้ให้ตอบว่า NO เว้นวรรค ตามด้วยวินาทีที่มากที่สุดที่แพ็กแมนรอดจากการถูกผีกิน โดยหาก แพ็กแมนไม่รอดสักวินาทีเลยให้ตอบเวลาเป็น -1

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	YES
2 5 1 1 0 2	NO -1
1 0 2	NO 0
• • • • •	YES
2 5 1 1 0 2 0 0 2	
• • • • •	
2 5 4 1 0 2 1 0 2 1 0 3 1 0 1 1 1 2	
••••	
5 5 2 10 2 2 0 0 0 0 4 4	

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 4 คำถาม ได้แก่

คำถามแรก ตารางขนาด 2 x 5 มีฝี 1 ตัว เล่นเกม 1 วินาที ตอนแรกแพ็กแมนอยู่ที่ช่อง (0, 2) ในวินาทีที่ 0 ผีจะโผล่มาในวินาทีที่ 1 ที่ช่อง (0, 2) ถึงผีและแพ็กแมนจะเริ่มต้นอยู่ที่ช่องเดียวกัน แต่ผีโผล่ออกมาช้ากว่าแพ็กแมน ดังนั้นแพ็กแมน สามารถหนีผีได้อย่างแน่นอน จึงตอบว่า YES คำถามที่สอง ตารางขนาด 2 x 5 มีผี 1 ตัว เล่นเกม 1 วินาที ตอนแรกแพ็กแมนอยู่ที่ช่อง (0, 2) ในวินาทีที่ 0 ผีจะโผล่มาในวินาทีที่ 0 ที่ช่อง (0, 2) จะเห็นว่าผีเกิดที่เดียวกับแพ็กแมน และเริ่มเดินพร้อมกัน ดังนั้นแพ็กแมนไม่มีทางหนีได้อย่าง แน่นอน จึงตอบว่า NO -1 เพราะวินาทีที่ 0 แพ็กแมนก็ถูกกินแล้วไม่รอดสักวินาทีเลย

คำถามที่สอง ตารางขนาด 2 x 5 มีผี 4 ตัว เล่นเกม 1 วินาที ตอนแรกแพ็กแมนอยู่ที่ช่อง (0, 2) ในวินาทีที่ 0 ผี 4 ตัวจะโผล่มาในวินาทีที่ 1 ที่ช่อง (0, 2), (0, 3), (0, 1) และ (1, 2) ตามลำดับ จะเห็นว่าผี 4 ตัวเกิดทีหลัง แต่เกิดมาในทุก ๆ ที่ที่ แพ็กแมนสามารถเดินทางไปได้ แพ็กแมนจึงไม่สามารถหนีได้อย่างแน่นอน จึงตอบว่า NO 0 เพราะวินาทีที่ 0 แพ็กแมนยังรอดอยู่ แต่ในวินาทีที่ 1 ไม่ว่าแพ็กแมนจะทำอย่างไรก็ต้องถูกผีกินอย่างแน่นอน

คำถามที่สี่ ตารางขนาด 5 x 5 และมีบางช่องเป็นกำแพง ตัวอย่างนี้ผีตัวไหนก็ไม่สามารถเข้าไปกินแพ็กแมนได้เลยเพราะติด กำแพง แพ็กแมนจึงอยู่เฉย ๆ จนครบ 10 วินาทีก็จะสามารถหนีผีได้อย่างแน่นอน จึงตอบว่า YES

+++++++++++++++++

59. เขาวงกตของแอนเชียนพีท (AP_Maze)

ที่มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น13 PeaTT~

วันนี้คุณจะต้องมาผจญภัยในเขาวงกตของแอนเชียนพีทซึ่งภายในเขาวงกตจะมีเลเซอร์ลำแสงตั้งอยู่ เลเซอร์ลำแสงนี้จะ ปล่อยแสงเป็นเส้นตรงและเปลี่ยนทิศทางการปล่อยแสงตามเข็มนาฬิกาในทุก ๆ วินาที โดยลำแสงดังกล่าวจะไม่สามารถทะลุผ่าน กำแพง ประตูทางออก หรือ เลเซอร์ลำแสงอันอื่นได้

เริ่มต้นคุณยืนอยู่ในเขาวงกตในวินาทีที่ 0 คุณต้องการจะเดินไปยังประตูทางออก การเดินหนึ่งก้าวใช้เวลา 1 วินาทีโดย สามารถเดินได้ 4 ทิศทางได้แก่ บน, ล่าง, ซ้าย และ ขวา ซึ่งช่องที่คุณจะเดินไปจะต้องไม่โดนแสงจากเลเซอร์ลำแสงโดยเด็ดขาด อยากทราบว่าคุณสามารถเดินทางไปถึงประตูทางออกได้เร็วที่สุดในเวลากี่วินาที?

ตัวอย่างการเปลี่ยนทิศของเลเซอร์ลำแสงตามเข็มนาฬิกา เมื่อ x คือที่ตั้งของเลเซอร์ลำแสง

	\			
			/	
			X	
	\		/	
			/	
• • • • • • •	\ .		./	
t=0	t=1	t=2	t=3	t=4

จะเห็นว่าเมื่อถึงรูปแบบที่ 4 รูปแบบของลำแสงจะกลับมาเป็นรูปแบบที่ 1 วนซ้ำกลับมาเรื่อย ๆ

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาว่าคุณจะออกจากเขาวงกตของแอนเชียนพีทได้เร็วที่สุดในกี่วินาที โดยตลอดการเดินทางจะไม่โดน แสงจากเลเซอร์ลำแสง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก ระบุจำนวนคำถามย่อย Q โดยที่ Q ไม่เกิน 5 ในแต่ละคำถามย่อย รับข้อมูลนำเข้าดังนี้

บรรทัดแรก ระบุจำนวนเต็มบวก N, M (1 <= N, M <= 300) แสดงความกว้างและความยาวของเขาวงกต หลังจากนั้นอีก N บรรทัดต่อมา ในบรรทัดที่ i+1 (1 <= i <= N) ระบุอักขระ M ตัว แสดงถึงสภาพเขาวงกตในช่องต่าง ๆ โดย '#' แสดงถึงกำแพง, 'S' แสดงถึงทางเข้าเขาวงกต, 'E' แสดงถึงประตูทางออกเขาวงกต, '.' แสดงถึงช่องว่าง และ '|', '/', '- ', '\' แสดงถึงเลเซอร์ลำแสงและทิศทางเริ่มต้นของแสง (ลำดับการเปลี่ยนทิศ '|', '/', '-', '\', '|', '/', '-',) ในวินาทีที่ 0 (ตอนที่ยืนอยู่ช่องเริ่มต้น) หากโดนเลเซอร์ลำแสงจะถือว่าไม่เป็นไร

รับประกันว่า S และ E จะมีอย่างละช่องเดียว

20% ของชุดข้อมูลทดสอบจะมี N, M <= 10

50% ของชุดข้อมูลทดสอบจะมี N, M <= 100

<u>ข้อมูลส่งออก</u>

มี Q บรรทัด แต่ละบรรทัดให้แสดงเวลาน้อยสุดในการเดินทางจากทางเข้าไปยังประตูทางออก หรือ แสดง -1 ถ้าคุณไม่ สามารถเดินทางไปถึงประตูทางออกได้โดยไม่โดนแสงจากเลเซอร์ลำแสง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	2
2 3	3
S-#	-1
.E.	
1 5	
SE/	
5 5	
S	
• • • •	
.	
E	

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 3 คำถามย่อย

คำถามแรก ให้เดินลงและเดินขวาจะถึงประตูทางออกได้ในวินาทีที่ 2 โดยวินาทีแรกเดินลงได้เพราะเลเซอร์ลำแสงเปลี่ยน ทิศทางไปทิศทางอื่น '\' และวินาทีที่ 2 เดินขวาถึงประตูทางออกได้โดยไม่ต้องสนใจเลเซอร์ลำแสง

คำถามที่สอง เดินขวา 3 ก้าวก็จะถึงประตูทางออกได้ ซึ่งเลเซอร์ลำแสงจะไม่ทะลุประตูทางออกออกมา จึงไม่รบกวนการ เดินทาง

คำถามที่สาม จะไม่สามารถไปถึงประตูทางออกได้ เพราะจะโดนเลเซอร์ลำแสงอย่างแน่นอน รูปแบบการเปลี่ยนแปลงของ เลเซอร์ลำแสงในตัวอย่างนี้ เป็นดังนี้

S	S.	S/	S	S/.	S.	S/
.	.	./\		/\/\.	.	./\
	. E					
Input	t=0	t=1	t=2	t=3	t=4	t=5

++++++++++++++++

2. เรื่อง Brute force algorithm จำนวน 6 ข้อ

60. ขังพีทซิมิ (Imprison)

ที่มา: ข้อสอบท้ายค่ายสองคูนย์ม.บูรพารุ่น8 PeaTT~ ณ อาณาจักร POSNBUU มีสิ่งมีชีวิตชนิดหนึ่งที่เรียกว่า พีทซิมิ อยู่

พีทซิมิ (Peattsimi) เป็นสิ่งมีชีวิตเรียบง่าย ขึ้เกียจ ตะกละ ปีนป่ายกำแพง เปลี่ยนสีตัวเอง ขุดเจาะหินได้ ไม่ค่อยฉลาด และ ไร้ประโยชน์สุด ๆ

พระราชาเห็นดังนั้นจึงสั่งจับตัวพีทชิมิมาทั้งหมด P ตัวแล้วนำมาขังในพื้นที่ขนาด NxM ช่อง โดยตำแหน่งบนซ้ายมีพิกัดเป็น (1, 1) และ ตำแหน่งล่างขวามีพิกัดเป็น (N, M) บัดนี้พีทชิมิรู้สึกท้อแท้สุด ๆ ที่จะต้องมาถูกขังอยู่ในบริเวณแคบ ๆ เพื่อความ หฤหรรษ์ส่วนตัวจึงทำการกลายพันธุ์ตัวเอง (mutate) ให้แบ่งตัวแบบ mitosis เพิ่มจำนวนได้อีก 4 ตัวในช่องข้างเคียงบน ล่าง ซ้าย ขวา จนเต็มพื้นที่

เนื่องจากพีทซิมิแต่ละตัวมีวิวัฒนาการไม่เท่ากัน พีทซิมิตัวที่ 1 ซึ่งมีวิวัฒนาการสูงสุดจะแบ่งตัวก่อน ตามด้วยพีทซิมิตัวที่ 2 เป็นลำดับไปเรื่อย ๆ จนถึงพีทซิมิตัวที่ P พีทซิมิจะไม่แบ่งตัวไปยังช่องข้างเคียงในทิศทางที่มีพีทซิมิจับจองอยู่ก่อนแล้วและจะไม่ แบ่งตัวออกไปนอกพื้นที่ ทั้งนี้พีทซิมิแต่ละตัวจะใช้เวลาในการแบ่งตัวเท่ากัน และเมื่อพีทซิมิแบ่งตัวจนเต็มพื้นที่โดยที่ไม่มีช่องว่าง หลงเหลืออยู่ก็จะเป็นการเสร็จสิ้นการกลายพันธุ์ของพีทซิมิ

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อรับตำแหน่งเริ่มต้นของพีทซิมิทั้ง P ตัว แล้วหาว่าเมื่อสิ้นสุดการแบ่งตัว พีทซิมิแต่ละตัวจะแบ่งตัวอยู่ บนพื้นที่จำนวนทั้งสิ้นกี่ช่อง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวกสามจำนวน คือ N, M, P แสดงความกว้างของพื้นที่, ความยาวของพื้นที่ และ จำนวนพีทซิมิเริ่มต้นที่นำมาจับขังตามลำดับ (1 <= N, M <= 5000; 1 <= P <= 10; P <= NxM)

ต่อจากนั้น P บรรทัด แต่ละบรรทัดรับจำนวนเต็มบวกสองจำนวน X_i , Y_i แสดงแถวและคอลัมน์เริ่มต้นของพีทซิมิตัวที่ i ตามลำดับ โดยที่ $1 <= X_i <= N$ และ $1 <= Y_i <= M$

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น P บรรทัด แต่ละบรรทัดแสดงจำนวนช่องทั้งหมดที่มีพีทซิมิตัวที่ i อยู่ในพื้นที่เมื่อการแบ่งตัวสิ้นสุด

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 5 2	9
4 5	11
2 3	
5 10 4	3
2 5	12
2 4	15
2 6	20
4 5	

คำอธิบายตัวอย่างที่ 1

พื้นที่มีขนาด 4x5 ช่อง เริ่มต้นพระราชาจับพีทซิมิตัวที่หนึ่งมาขังไว้ที่ช่อง (4, 5) และจับพีทซิมิตัวที่สองมาขังไว้ที่ช่อง (2, 3) การแบ่งตัวของพีทซิมิสามารถแสดงได้ดังภาพนี้

		2	2
2	2	.222.	.2221
	1	2.1	211
1	11	11	111
.222.	.2221	22221	22221
22221	22221	22221	22221
.2211	.2211	22211	22211
111	.1111	.1111	11111
ขั้นตอนการแบ่งตัวแบบ mitosis ของพีทชิมิตามลำดับ			

สุดท้ายจะมีพีทซิมิตัวที่หนึ่งอยู่ทั้งสิ้น 9 ช่อง และจะมีพีทซิมิตัวที่สองอยู่ทั้งสิ้น 11 ช่อง

คำอธิบายตัวอย่างที่ 2

พื้นที่มีขนาด 5x10 ช่อง เริ่มต้นพระราชาจับพีทซิมิสี่ตัวมาไว้ที่ช่อง (2, 5), (2, 4), (2, 6) และ (4, 5) ตามลำดับ การแบ่งตัว ของพีทซิมิสามารถแสดงได้ดังภาพนี้

	1	21	213
213	213	2213	22133
	1	21	213
4	4	4	4
213	22133	.2221333	2222133333
22133	.2221333	222213333.	2222133333
213	22133	.2221333	2222133333
444	44444	.444444	444444444
4	444	44444	444444444
ขั้นตอนการแบ่งตัวแบบ mitosis ของพีทชิมิตามลำดับ			

สุดท้ายจะมีพีทซิมิตัวที่หนึ่งอยู่ทั้งสิ้น 3 ช่อง, พีทซิมิตัวที่สองอยู่ทั้งสิ้น 12 ช่อง, พีทซิมิตัวที่สามอยู่ทั้งสิ้น 15 ช่อง และมีพีท ซิมิตัวที่สื่อยู่ทั้งสิ้น 20 ช่อง

61. ระบบน้ำทางยานอวกาศ (Spaceship)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 9 ม.ธรรมศาสตร์

ในโลกอนาคต นักเรียนย้ายขึ้นไปอยู่ในอาณานิคมใหม่บนอวกาศ และใช้ยานบินที่สามารถเคลื่อนที่ได้ในสามมิติเป็น ยานพาหนะ นักเรียนได้รับมอบหมายให้ไปซื้อชิ้นส่วนคอมพิวเตอร์จากร้านค้าในอาณานิคม สำหรับประกอบคอมพิวเตอร์ n ชุด เพื่อมาใช้ในห้องสอบคอมพิวเตอร์โอลิมปิกระดับจักรวาล ซึ่งคอมพิวเตอร์แต่ละชุดประกอบด้วยชิ้นส่วน 3 ชนิดคือ มอนิเตอร์ คีย์บอร์ด และตัวเครื่อง ชนิดละหนึ่งชิ้น เนื่องจากชิ้นส่วนที่วางขายในร้านใดร้านหนึ่ง อาจมีไม่พอสำหรับประกอบคอมพิวเตอร์ทั้ง n ชุด และมีงบประมาณจำกัด นักเรียนจึงต้องออกแบบระบบนำทางที่สามารถลำดับร้านค้าในอาณานิคม และกำหนดจำนวนชิ้นส่วน คอมพิวเตอร์ที่ต้องซื้อจากแต่ละร้าน โดยใช้ค่าใช้จ่ายน้อยที่สุดในการเดินทางเพื่อซื้อชิ้นส่วนคอมพิวเตอร์ กำหนดให้นักเรียนรู้พิกัด ตำแหน่งของร้านค้าทั้งหมด m ร้านในอาณานิคม และจำนวนชิ้นส่วนคอมพิวเตอร์แต่ละชนิดที่ขายในแต่ละร้าน ให้ถือว่าเส้นทาง ระหว่างร้านค้าทุกร้านไม่มีสิ่งกีดขวางจึงสามารถเดินทางเป็นเส้นตรงได้ และกำหนดให้ช่องบรรทุกของของยานบินสามารถบรรทุกของได้ไม่จำกัด ให้การเดินทางสิ้นสุดลงเมื่อซื้อของชิ้นสุดท้ายครบตามความต้องการ ยกตัวอย่างเช่น ร้านค้า A อยู่ที่พิกัด (x₁, y₁, z₁) และ B อยู่ที่พิกัด (x₂, y₂, z₂) กำหนดให้ใช้สูตรต่อไปนี้ในการคำนวณค่าใช้จ่ายใน การเดินทางระหว่างร้านค้า A และ B

ค่าใช้จ่ายในการเดินทางระหว่างร้านค้า A และ B = $(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$

หมายเหตุ แนะนำให้ใช้การคำนวณค่าใช้จ่ายแบบจำนวนเต็ม (ไม่แนะนำให้ใช้ฟังก์ชัน pow() เนื่องจากอาจมีปัญหาการปัด ค่าไม่ถูกต้อง)

<u>ข้อมูลนำเข้า</u>

บรรทัดที่หนึ่งประกอบด้วย จำนวนเต็มหนึ่งจำนวน แสดงค่า n เป็นจำนวนชุดของเครื่องคอมพิวเตอร์ โดยที่ 1 <= n <= 20

บรรทัดที่สองประกอบด้วย จำนวนเต็มสามจำนวน แต่ละจำนวนคั่นด้วยช่องว่างหนึ่งช่อง แสดงพิกัดจุดเริ่มต้นบนแกน x, y, z โดยที่ 0 <= x, y, z <= 500

บรรทัดที่สามประกอบด้วย จำนวนเต็มหนึ่งจำนวน แสดงค่า m เป็นจำนวนร้านค้าทั้งหมดในอาณานิคม โดยที่

1 <= m <= 10

บรรทัดที่สี่ถึงบรรทัด 2m+3 แสดงข้อมูลของร้านค้า m ร้าน โดยร้านที่ i เมื่อ i = 1, ..., m มีข้อมูล 2 บรรทัดดังนี้

- 1) บรรทัดที่ 2i+2 ประกอบด้วยเลขจำนวนเต็มสามจำนวน แต่ละจำนวนคั่นด้วยช่องว่างหนึ่งช่อง แสดงพิกัด ร้านค้า บนแกน x, y, z โดยที่ 0 <= x_i <= 500, 0 <= y_i <= 500 และ 0 <= z_i <= 500
- 2) บรรทัดที่ 2i+3 เลขจำนวนเต็มสามจำนวน แต่ละจำนวนคั่นด้วยช่องว่างหนึ่งช่อง แสดงจำนวนสินค้าแต่ละชนิด ของแต่ละร้านค้า โดยเรียงลำดับดังนี้ มอนิเตอร์ (M_i) คีย์บอร์ด (K_i) และตัวเครื่อง (C_i) โดยที่ 0 <= M_i, K_i, C_i <= 20

หมายเหตุ รับประกันว่าจำนวนชิ้นส่วนของทุกร้านรวมกันนั้น เพียงพอที่จะประกอบคอมพิวเตอร์ได้ไม่น้อยกว่า n ชุด ข้อมูลส่งออก

แสดงค่าใช้จ่ายรวมของการเดินทางที่น้อยที่สุด จากจุดเริ่มต้นจนถึงร้านสุดท้ายที่นักเรียนซื้อสินค้า **ตัวอย่าง**

ข้อมูลนำเข้า	ข้อมูลส่งออก
1	100
0 0 0	
2	
10 0 0	
2 5 7	
0 10 0	
0 3 9	
5	10542
0 0 0 5	
5	
60 34 56	
0 5 7	
90 41 92	
1 7 8	
24 61 81	
6 8 8	
41 86 70	
5 6 7	
46 97 85	
9 2 4	

+++++++++++++++++

62. ตาชั่งแห่งเทพ (Deva scales)

ที่มา: ข้อสิบสาม EOIC#26 PeaTT~

ตาชั่งแห่งเทพ (Deva scales) เป็นตาชั่งสองแขน ที่มีตุ้มน้ำหนัก 20 อัน ได้แก่ ตุ้มน้ำหนัก 1 หน่วย, ตุ้มน้ำหนัก 3 หน่วย, ตุ้มน้ำหนัก 27 หน่วย, ตุ้มน้ำหนัก 81 หน่วย ไล่ไปเรื่อยๆจนถึงตุ้มน้ำหนัก 3¹⁹ = 1,162,261,467 หน่วย โดย จะมีตุ้มน้ำหนักต่าง ๆ น้ำหนักละ 1 อันเท่านั้น

ตาชั่งนี้เป็นของ พีทเทพ (นามสมมติ) โดยพีทเทพได้กล่าวเอาไว้ว่า ไม่ว่าไข่ของนางพญาจะหนักเท่าใด เอนเทอร์ก็สามารถ ชั่งให้ตาชั่งแห่งเทพนี้สมดุลได้เสมอ พีทเทพได้พิสูจน์มาแล้ว (ซึ่งคุณจะเชื่อหรือไม่ ก็แล้วแต่คุณ อิอิ)

ตัวอย่างเช่น ถ้าไข่นางพญามีน้ำหนัก 10 หน่วย และวางไว้ที่ตาชั่งข้างซ้าย เอนเทอร์สามารถนำลูกตุ้มน้ำหนัก 9 หน่วยและ 1 หน่วย วางไว้ที่ตาชั่งข้างขวาก็จะทำให้ตาชั่งแห่งเทพนี้สมดุล โดยใช้ตุ้มน้ำหนักทั้งหมด 2 อัน และสิ่งของบนตาชั่งแต่ละข้างจะมี น้ำหนักรวมข้างละ 10 หน่วย

หรือ หากไข่นางพญามีน้ำหนัก 20 หน่วย และวางไว้ที่ตาชั่งข้างซ้าย เอนเทอร์ก็สามารถนำลูกตุ้มน้ำหนัก 9 หน่วยและ 1 หน่วย วางไว้ที่ตาชั่งข้างซ้าย จากนั้นก็นำลูกตุ้มน้ำหนัก 27 หน่วยและ 3 หน่วย วางไว้ที่ตาชั่งข้างขวาก็จะทำให้ตาชั่งแห่งเทพนี้ สมดุล โดยใช้ตุ้มน้ำหนักทั้งหมด 4 อัน และ สิ่งของบนตาชั่งแต่ละข้างจะมีน้ำหนักรวมข้างละ 30 หน่วย

จงเขียนโปรแกรมเพื่อหาว่าเมื่อนำไข่ของนางพญามาวางที่ตาชั่งข้างซ้ายแล้ว เอนเทอร์จะต้องนำตุ้มน้ำหนักมาถ่วงน้อยที่สุด กี่อันเพื่อให้ตาชั่งแห่งเทพนี้สมดุล และสิ่งของบนตาชั่งแต่ละข้างจะมีน้ำหนักรวมข้างละกี่หน่วย

<u>ข้อมูลนำเข้า</u>

บรรทัดเดียว จำนวนเต็มบวก N แทนน้ำหนักของไข่ของนางพญา โดยที่ N ไม่เกิน 1,000,000,000 30% ของชุดข้อมูลทดสอบจะมี N ไม่เกิน 100,000

<u>ข้อมูลส่งออก</u>

บรรทัดเดียว แสดงจำนวนตุ้มน้ำหนักน้อยที่สุดที่ต้องใช้ เว้นวรรคตามด้วย น้ำหนักรวมของสิ่งของบนตาชั่งแห่งเทพข้างหนึ่ง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
20	4 30

+++++++++++++++++

63. แฟลชเล่นดอมมิโน (FC Dominoes)

มีโดมิโน N ชิ้นวางเรียงอยู่บนเส้นแนวแกน x ที่วางตามแนวซ้าย-ขวา จุดปลายด้านซ้ายของเส้นถือว่ามีพิกัดในแกน x เท่ากับ 0 เราจะเรียกโดมิโนเรียงตามลำดับจากปลายด้านซ้ายไปยังปลายด้านขวา โดยเริ่มจากชิ้นที่ 1 ไปจนถึงชิ้นที่ N โดมิโนชิ้นที่ i มีความสูง Hi และวางอยู่บนเส้นที่มีพิกัดแกน x เท่ากับ Xi ตัวอย่างการวาง (ในแนวด้านข้าง) แสดงดังรูป

ในการเล่นโดมิโนนั้น เราจะเลือกโดมิโนตัวแรกแล้วผลักไปทางด้านซ้ายหรือทางด้านขวาก็ได้ ถ้าโดมิโน "ล้ม" ไปโดนโดมิโน ตัวใด ตัวที่ถูกล้มโดนจะล้มไปชนตัวอื่น ๆ ด้วย โดมิโนสามารถล้มออกไปนอกขอบของเส้นตรงด้านล่างได้

อย่างไรก็ตาม เราถือว่าโดมิโนไม่มีความหนา ดังนั้นถ้าล้มไปแล้วปลายโดมิโนไปสัมผัสอีกตัวหนึ่งพอดี จะไม่มีการล้มต่อ ยกตัวอย่างเช่น ถ้ามีโดมิโนความสูง 1 หน่วยอยู่ที่ตำแหน่ง 10 และมีโดมิโนอีกชิ้นอยู่ที่ตำแหน่ง 11 ถ้าโดมิโนความสูง 1 หน่วย ถูก ทำให้ล้มไปทางด้านขวา โดมิโนที่อยู่ที่ตำแหน่ง 11 จะไม่ล้มไปด้วย เพราะว่าไม่มีการชน (โดมิโนที่ล้มลงมาสัมผัสอีกอันพอดี)

จงเขียนโปรแกรมรับข้อมูลของโดมิโน จากนั้นให้คำนวณหาโดมิโนตัวตั้งต้นที่เราควรจะไปผลัก (จะเป็นการผลักไปทางซ้าย หรือทางขวาก็ได้) เพื่อทำให้มีโดมิโนล้มลงมากที่สุด

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก ระบุจำนวนเต็ม N (1 <= N <= 100,000)

จากนั้นอีก N บรรทัดจะระบุข้อมูลของโดมิโนแต่ละอัน กล่าวคือ บรรทัดที่ 1 + i จะระบุจำนวนเต็มสองจำนวน Xi Hi (1 <= Xi <= 1,000,000,000; 1 <= Hi <= 1,000,000,000) รับประกันว่า 1 <= X_i < X_{i+1} สำหรับทุก ๆ 1 <= i < N 30% ของข้อมูลชุดทดสอบมี N <= 1000

<u>ข้อมูลส่งออก</u>

มีบรรทัดเดียว ประกอบไปด้วยจำนวนเต็ม J และอักขระ D โดยที่ J คือหมายเลขของโดมิโนที่ถ้าเราเริ่มผลัก และอักขระ D จะเป็นค่า L หรือ R เพื่อระบุทิศทางในการผลัก โดยที่ L แทนการผลักไปทางซ้าย และ R แทนการผลักไปทางขวา ถ้ามีโดมิโนหลาย ชิ้นที่พลักได้จำนวนเท่ากัน ให้ตอบตัวที่มีหมายเลขน้อยที่สุด และในกรณีที่พิจารณาโดมิโนตัวที่มีหมายเลยน้อยที่สุดแล้วผลักได้ทั้ง สองทิศทาง ให้ตอบการผลักไปทางซ้าย

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	2 R
1 1	
3 3	
5 4	
7 15	
10 3	

+++++++++++++++++

64. ขับรถตะลุยเมือง (48_Car City)

ปรมาจารย์พีท แห่งวง PEATT48 เป็นบุคคลที่ร่ำรวยมาก เขามีรถยนต์ทั้งสิ้น N คัน รถแต่ละคันจอดอยู่ที่พิกัด (x_i, y_i) โดย ที่ไม่มีรถสองคันใดที่จอดอยู่ ณ ตำแหน่งเดียวกัน รถแต่ละคันจะสามารถเคลื่อนที่ได้ไม่เกิน d_i หน่วย

ปรมาจารย์พีทจะจัดการรถของเขาดังนี้

- 1. เลือกรถยนต์มาขับหนึ่งคัน แล้วขับเป็นเส้นตรงไปในทิศทางที่ขนานกับแกนหลัก (+x, -x, +y, -y) ทิศทางใดทิศทางหนึ่ง
- 2. หากขับเจอรถยนต์อีกคันของเขา เขาสามารถขับรถยนต์คันใหม่<u>ไปในทิศทางเดิมที่เขาเคยขับมา</u> หรือ ขับรถคันเดิมของ เขาต่อไปในทิศทางเดิมแล้วทิ้งรถคันใหม่ไว้ตรงนั้น
 - 3. ทำข้อ 2. ไปเรื่อย ๆ จนกว่าจะไม่สามารถขับรถไปต่อได้อีกแล้ว

ปรมาจารย์พีทขับรถไปเรื่อย ๆ ก็เริ่มเบื่อ เขาอยากจะรู้ว่า เขาสามารถขับผ่านรถยนต์ได้มากที่สุดกี่คัน? (นับทุกคันที่ขับผ่าน ไม่ว่าจะเปลี่ยนคันหรือไม่ และนับคันเริ่มต้นด้วย)

จงเขียนโปรแกรมเพื่อช่วยปรมาจารย์พีทหาจำนวนรถยนต์ที่มากที่สุดที่เขาสามารถขับผ่านมาได้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก T แทนจำนวนชุดทดสอบ โดยที่ T ไม่เกิน 20 ในแต่ละชุดทดสอบ บรรทัดแรก รับจำนวนเต็มบวก N โดยที่ N ไม่เกิน 50.000

อีก N บรรทัดต่อมา รับจำนวนเต็มแสดงข้อมูลของรถยนต์แต่ละคัน x_i, y_i, d_i ห่างกันหนึ่งช่องว่าง โดยที่ -10⁸ <=

$$x_i$$
, $y_i <= 10^8$ และ $1 <= d_i <= 10^8$

20% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 100

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น T บรรทัด ในแต่ละบรรทัดแสดงจำนวนรถยนต์สูงสุดที่ปรมาจารย์พีทสามารถขับผ่านมาได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	2
4	4
1 2 2	
-1 2 1	
2 1 4	
1 7 3	
5	

0	0	1	
0	2	2	
0	4	1	
0	6	4	
0	8	1	

คำอธิบายตัวอย่างที่ 1 มีทั้งสิ้น 2 คำถามได้แก่

-คำถามแรก ให้ขับรถยนต์คันแรก (1, 2, 2) ไปทางซ้าย 2 หน่วย จะเจอรถยนต์คันที่สอง (-1, 2, 1) จึงตอบว่าสูงสุด 2 คัน

-คำถามที่สอง ให้ขับรถยนต์คันที่สี่ (0, 6, 4) ไปทางใต้ 4 หน่วย จะผ่านรถยนต์คันที่สาม (0, 4, 1) ไม่เปลี่ยนรถยนต์ ผ่าน รถยนต์คันที่สอง (0, 2, 2) แล้วเปลี่ยนรถยนต์มาขับคันที่สองไปทางใต้ต่ออีก 2 หน่วย จะผ่านรถยนต์คันแรก (0, 0, 1) จึงตอบว่า สูงสุด 4 คัน นั่นเอง

+++++++++++++++++

65. รัชลอนดอนโอลิมปิก (RT_Olympics)

. ที่มา: ข้อสิบสอง Rush TOI 2018 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น14

ในการแข่งขันกีฬาโอลิมปิกที่ลอนดอน ได้มีการแข่งขันทั้งสิ้น M วันติดต่อกัน โดยจะต้องมีการแข่งทุกวัน เมื่อเปิดให้มีการ ลงทะเบียนปรากฏว่ามีทีมที่เข้าร่วมแข่งขันเป็นจำนวนมาก เจ้าภาพคำนวณดูแล้วว่าต้องให้มีการแข่งขันทั้งหมด N คู่ด้วยกันจึงจะหา ผู้ชนะได้

เพื่อไม่ให้มีบริษัทที่ถือลิขสิทธิ์การถ่ายทอดสดแค่เพียงบริษัทเดียว นโยบายขององค์กรโอลิมปิกจึงกำหนดให้ผู้ถ่ายทอดจะมี ลิขสิทธิ์การถ่ายทอดเป็นช่วงวันที่ต่อเนื่องกันและต้องถ่ายทอดทุกคู่ของการแข่งขันที่เกิดขึ้นในช่วงวันดังกล่าว

บริษัทของคุณมีความตั้งใจจะขอซื้อลิขสิทธิ์การถ่ายทอดสดนี้ เพื่อให้ใช้ค่าลิขสิทธิ์ที่เสียไปอย่างคุ้มค่า บริษัทของคุณมี นโยบายที่จะต้องถ่ายทอดการแข่งขันให้ได้ครบ P คู่พอดีเท่านั้น ถ้าไม่ได้ครบก็จะไม่ยินดีซื้อลิขสิทธิ์การถ่ายทอดนี้มา

การตัดสินใจครั้งนี้สร้างปัญหาใหญ่ เนื่องจากตอนนี้ตารางการแข่งขันยังไม่เปิดเผย แต่ได้เวลาที่บริษัทต้องทำการยืนยันทำ สัญญาขอถ่ายทอดสดการแข่งขันแล้ว เป็นที่ทราบกันว่าค่าลิขสิทธิ์นั้นแพงมาก และบริษัทยังไม่ต้องการแบกรับความเสี่ยงที่อาจ เกิดขึ้นได้ถ้าไม่สามารถถ่ายทอดได้ตามนโยบาย ดังนั้นบริษัทจะตกลงทำสัญญาก็ต่อเมื่อ ไ<u>ม่ว่าตารางการแข่งขันจะถูกจัดมาอย่างไรก็ตาม</u> บริษัทจะสามารถเลือกช่วงวันที่ต่อเนื่องกันเพื่อถ่ายทอดสดการแข่งขันได้ครบพอดี P คู่เสมอ

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อตัดสินใจว่า บริษัทจะตกลงทำสัญญาหรือไม่?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก Q แทนจำนวนชุดทดสอบย่อย โดยที่ Q ไม่เกิน 800 อีก Q บรรทัดต่อมา แต่ละบรรทัด รับจำนวนเต็มบวก N M P โดยที่ N <= 25 และ 1 <= M, P <= N

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด หากบริษัทตกลงทำสัญญาให้ตอบ yes หากไม่ควรทำสัญญาให้ตอบ no

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	yes
5 3 3	no
6 3 3	

+++++++++++++++++