Практическая работа 4.. « Гистограмма как оценка плотности»

Цель работы:

- ознакомиться с определением гистограммы и ее поведением при фиксированном значении аргумента;
- научиться находить значения гистограммы, строить ее график одновременно (в качестве тестового задания) с реальной плотностью генеральной совокупности;
- убедиться в том, что асимптотические методы работают при конечном объеме выборки при корректном (с дополнительными требованиями) их использовании.

Задание и ход работы

Для случайной величины, распределенной по нормальному закону с параметрами (a, σ^2) , выполнить следующие действия.

- Задать параметры распределения X~N(a, σ²).
- 2. Построить график $f_X(x)$, используя функцию normpdf.
- 3. При n=10^6 построить выборку из генеральной совокупности X.
- По построенной выборке вычислить значения и построить график гистограммы, используя при построении встроенную функцию [a,b]=stairs(x,y) для построения кусочно-постоянной функции.
- 5. Совместить графики плотности и гистограммы на одном рисунке
- На основе хи-квадрат критерия Пирсона провести проверку гипотез согласия с семейством распределения генеральной совокупности
- 7. Оценить ошибки I и II рода критерия.

Сравнить с аналогичной обработкой выборки из равномерного распределения.

Нормальное распределение:

Равномерное распределение:

В обоих случаях график гистограммы приближается к графику плотности распределения.

Нормальное распределение:

Критерий Пирсона:

gamma	chi^2	Порог	Принимается ли
0.9	84.973	104.28	ИСТИНА
0.95	89.901	116.51	ИСТИНА
0.99	80.774	114.69	ИСТИНА

Во всех случаях гипотеза принимается.

Ошибки первого рода:

gamma	Вер-сть
0.9	0.13
0.95	0.05
0.99	0.03

Ошибки второго рода:

gamma	сдвиг	Вер-сть
0.95	0.01	0.03
0.95	0.02	0
0.95	0.03	0

Равномерное распределение:

Критерий Пирсона:

gamma	chi^2	Порог	Принимается ли
0.9	86.861	115.22	ИСТИНА
0.95	84.737	120.99	ИСТИНА
0.99	90.503	132.31	ИСТИНА

Во всех случаях гипотеза принимается.

Ошибки первого рода:

gamma	Вер-сть
0.9	0.13
0.95	0.04
0.99	0.01

Ошибки второго рода:

gamma	сдвиг	Вер-сть
0.95	0.01	0.86
0.95	0.02	0.42
0.95	0.03	0

Вероятность ошибки первого рода стремится к (1 – gamma) с увеличением n.

Вероятность ошибки второго рода уменьшается с ростом сдвига.