COMP4222 Machine Learning with Structured Data

Graph Isomorphism Network

Instructor: Yangqiu Song

Slides credits: Jure Laskovec

Recap: Deep Graph Encoders

Recap: Aggregate from Neighbors

 Intuition: Nodes aggregate information from their neighbors using neural networks

How powerful are GNNs?

- Many GNN models have been proposed (e.g., GCN, GAT, GraphSAGE, design space).
- What is the expressive power (ability to distinguish different graph structures) of these GNN models?
- How to design a maximally expressive GNN model?

Many GNN Models

Many GNN models have been proposed:

GCN, GraphSAGE, GAT, Design Space etc.

Different GNN models use different neural networks in the box

GNN Model Example

GCN (mean-pool)

GNN Model Example

GraphSAGE (max-pool)

Note: Note Colors

- We use node same/different colors to represent nodes with same/different features.
 - For example, the graph below assumes all the nodes share the same feature.

Key question: How well can a GNN distinguish different graph structures?

- We specifically consider local neighborhood structures around each node in a graph.
 - Example: Nodes 1 and 5 have different neighborhood structures because they have different node degrees.

- We specifically consider local neighborhood structures around each node in a graph.
 - Example: Nodes 1 and 4 both have the same node degree of 2. However, they still have different neighborhood structures because their neighbors have different node degrees.

Node 1 has neighbors of degrees 2 and 3. Node 4 has neighbors of degrees 1 and 3.

- We specifically consider local neighborhood structures around each node in a graph.
 - Example: Nodes 1 and 2 have the same neighborhood structure because they are symmetric within the graph.

Node 1 has neighbors of degrees 2 and 3. Node 2 has neighbors of degrees 2 and 3. And even if we go a step deeper to 2nd hop neighbors, both nodes have the same degrees (Node 4 of degree 2)

- Key question: Can GNN node embeddings distinguish different node's local neighborhood structures?
 - If so, when? If not, when will a GNN fail?
- Next: We need to understand how a GNN captures local neighborhood structures.
 - Key concept: Computational graph

- In each layer, a GNN aggregates neighboring node embeddings.
- A GNN generates node embeddings through a
- computational graph defined by the neighborhood.
 - **Ex:** Node 1's computational graph (2-layer GNN)

• Ex: Nodes 1 and 2's computational graphs.

- **Ex:** Nodes 1 and 2's computational graphs.
- But GNN only sees node features (not IDs):

- A GNN will generate <u>the same embedding</u> for nodes 1 and 2 because:
- Computational graphs are the same.
- Node features (colors) are identical.

Note: GNN does not care about node ids, it just aggregates features vectors of different nodes.

• In general, different local neighborhoods define different computational graphs

 Computational graphs are identical to rooted subtree structures around each node.

Rooted subtree structures

(defined by recursively unfolding neighboring nodes from the root nodes)

- GNN's node embeddings capture rooted subtree structures.
- Most expressive GNN maps different rooted subtrees into different node embeddings (represented by different colors).

Injective Function

- Function $f: X \to Y$ is injective if it maps different elements into different outputs.
- Intuition: f retains all the information about input.

 Most expressive GNN should map subtrees to the node embeddings injectively.

 Key observation: Subtrees of the same depth can be recursively characterized from the leaf nodes to the root nodes.

• If each step of GNN's aggregation can fully retain the neighboring information, the generated node embeddings can distinguish different rooted subtrees.

- In other words, most expressive GNN would use an injective neighbor aggregation function at each step.
 - Maps different neighbors to different embeddings.

Summary so far

 To generate a node embedding, GNNs use a computational graph corresponding to a subtree rooted around each node.

GNN can fully distinguish different subtree structures if every step
 of its neighbor aggregation is injective.

Design the Most Powerful GNN

Expressive Power

- Key observation: Expressive power of GNNs can be characterized by that of neighbor aggregation functions they use.
 - A more expressive aggregation function leads to a more expressive a GNN.
 - Injective aggregation function leads to the most expressive GNN.

Next:

 Theoretically analyze expressive power of aggregation functions.

Neighbor Aggregation

 Observation: Neighbor aggregation can be abstracted as a function over a multi-set (a set with repeating elements).

Examples of multi-set

Same color indicates the same features.

Neighbor Aggregation

- Next: We analyze aggregation functions of two popular GNN models
 - GCN (mean-pool) [Kipf & Welling, ICLR 2017]
 - Uses element-wise mean pooling over neighboring node features

$$Mean(\{x_u\}_{u\in N(v)})$$

- GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]
 - Uses element-wise max pooling over neighboring node features

$$Max(\{x_u\}_{u\in N(v)})$$

Neighbor Aggregation: GCN Case Study

- GCN (mean-pool) [Kipf & Welling ICLR 2017]
 - Take **element-wise mean**, followed by linear function and ReLU activation, i.e., max(0, x).
 - **Theorem** [Xu et al. ICLR 2019]
 - GCN's aggregation function cannot distinguish different multi-sets with the same color proportion.
 - Failure case

Neighbor Aggregation: GCN Case Study

- For simplicity, we assume node colors are represented by one-hot encoding.
 - **Example)** If there are two distinct colors:
- This assumption is sufficient to illustrate how GCN fails.

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Neighbor Aggregation: GCN Case Study

- GCN (mean-pool) [Kipf & Welling ICLR 2017]
 - Failure case illustration

Neighbor Aggregation: GraphSAGE Case Study

- GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]
 - Apply an MLP, then take element-wise max.
 - **Theorem** [Xu et al. ICLR 2019]
 - GraphSAGE's aggregation function cannot distinguish different multi-sets with the same set of distinct colors.
 - Failure case

Neighbor Aggregation: GraphSAGE Case Study

- GraphSAGE (max-pool) [Hamilton et al. NeurIPS 2017]
 - Failure case illustration

Summary So Far

We analyzed the expressive power of GNNs.

Main takeaways:

- Expressive power of GNNs can be characterized by that of the neighbor aggregation function.
- Neighbor aggregation is a function over multi-sets (sets with repeating elements)
- GCN and GraphSAGE's aggregation functions fail to distinguish some basic multi-sets;
 hence not injective.
- Therefore, GCN and GraphSAGE are not maximally powerful GNNs.

Designing Most Expressive GNNs

- Our goal: Design maximally powerful GNNs in the class of messagepassing GNNs.
- This can be achieved by designing injective neighbor aggregation function over multi-sets.
- Here, we design a neural network that can model injective multiset function.

Injective Multi-Set Function

- Theorem [Xu et al. ICLR 2019]
- Any injective multi-set function can be expressed as:

 ${\mathcal S}$: multi-set

Injective Multi-Set Function

- Proof Intuition: [Xu et al. ICLR 2019]
- f produces one-hot encodings of colors. Summation of the one-hot encodings retains all the information about the input multi-set.

$$\Phi\left(\sum_{x\in S}f(x)\right)$$

Example:
$$\Phi\left(f\left(\begin{array}{c} \\ \\ \end{array}\right) + f\left(\begin{array}{c} \\ \\ \end{array}\right) + f\left(\begin{array}{c} \\ \\ \end{array}\right)$$
One-hot
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Universal Approximation Theorem

- How to model Φ and f in Φ $\sum_{x \in S} f(x)$?
- We use a Multi-Layer Perceptron (MLP).
- Theorem: Universal Approximation Theorem [Hornik et al., 1989]
 - 1-hidden-layer MLP with sufficiently-large hidden dimensionality and appropriate non-linearity $\sigma(\cdot)$ (including ReLU and sigmoid) can approximate any continuous function to an arbitrary accuracy.

Injective Multi-Set Function

 We have arrived at a neural network that can model any injective multiset function.

$$\mathrm{MLP}_{\Phi} \left(\sum_{x \in S} \mathrm{MLP}_{f}(x) \right)$$

• In practice, MLP hidden dimensionality of 100 to 500 is sufficient.

Most Expressive GNN

- Graph Isomorphism Network (GIN) [Xu et al. ICLR 2019]
 - Apply an MLP, element-wise sum, followed by another MLP.

$$\mathrm{MLP}_{\Phi}\left(\sum_{x\in S}\mathrm{MLP}_{f}(x)\right)$$

- **Theorem** [Xu et al. ICLR 2019]
 - GIN's neighbor aggregation function is injective.
- No failure cases!
- GIN is THE most expressive GNN in the class of message-passing GNNs!

Full Model of GIN

- So far: We have described the neighbor aggregation part of GIN.
- We now describe the full model of GIN by relating it to WL graph kernel (traditional way of obtaining graph-level features).
 - We will see how GIN is a "neural network" version of the WL graph kernel.

Weisfeiler-Lehman Isomorphism Test

- Determining whether two graphs are isomorphic when the correspondance is not provided is a challenging problem
- Weisfeiler-Lehman Isomorphism Test
 - Produces for each graph a canonical form.
 - If the canonical forms of two graphs are not equivalent, then the graphs are definitively not isomorphic.
- Weisfeiler-Lehman kernel
 - WL kernel has been both theoretically and empirically shown to distinguish most of the real-world graphs [Cai et al. 1992].

Weisfeiler-Lehman Kernel

- Goal: Design an efficient graph feature descriptor $\phi(G)$
- Idea: Use neighborhood structure to iteratively enrich node vocabulary.
 - Generalized version of **Bag of node degrees** since node degrees are one-hop neighborhood information.
- Algorithm to achieve this:
 - Color refinement

Color Refinement

- Given: A graph G with a set of nodes V.
 - Assign an initial color $c^{(0)}(v)$ to each node v.
 - Iteratively refine node colors by

$$c^{(k+1)}(v) = \text{HASH}\left(c^{(k)}(v), \left\{c^{(k)}(u)\right\}_{u \in N(v)}\right),$$

- where HASH maps different inputs to different colors.
- After K steps of color refinement, $c^{(K)}(v)$ summarizes the structure of K-hop neighborhood

Color Refinement (1)

- Example of color refinement given two graphs
- Assign initial colors

Aggregate neighboring colors

Color Refinement (2)

- Example of color refinement given two graphs
- Aggregated colors:

• Injectively HASH the aggregated colors

HASH table: Injective!

1,1	>	2
1,11	>	3
1,111	>	4
1,1111	>	5

Color Refinement (3)

- Example of color refinement given two graphs
- Colors

Aggregated colors

Color Refinement (4)

- Example of color refinement given two graphs
- Aggregated colors:

• Injectively HASH the aggregated colors

Hash table

2,4	>	6
2,5	>	7
3,44	>	8
3,45	>	9
4,245	>	10
4,345	>	11
5,2244	>	12
5, <mark>23</mark> 44	>	13
I		

Color Refinement (5)

- Example of color refinement given two graphs
- Process continues until a stable coloring is reached

Another Example

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Graph 1

Graph 2

Weisfeiler-Lehman Kernel

 After color refinement, WL kernel counts number of nodes with a given color.

$$K(\stackrel{\smile}{\longleftrightarrow}, \stackrel{\smile}{\longleftrightarrow})^{T} \phi(\stackrel{\smile}{\longleftrightarrow})$$

$$= 49$$

Weisfeiler-Lehman Kernel

- WL kernel is computationally efficient
 - The time complexity for color refinement at each step is linear in #(edges), since it involves aggregating neighboring colors.
- When computing a kernel value, only colors appeared in the two graphs need to betracked.
 - Thus, #(colors) is at most the total number of nodes.
- Counting colors takes linear-time w.r.t. #(nodes).
- In total, time complexity is linear in #(edges).

GIN uses a neural network to model the injective HASH function.

$$c^{(k+1)}(v) = \text{HASH}\left(c^{(k)}(v), \left\{c^{(k)}(u)\right\}_{u \in N(v)}\right)$$

• Specifically, we will model the injective function over the tuple:

$$\{c^{(k)}(v), \{c^{(k)}(u)\}_{u \in N(v)}\}$$
Root node features

Neighboring node colors

- Theorem (Xu et al. ICLR 2019)
- Any injective function over the tuple

can be modeled as

$$MLP_{\Phi}\left((1+\epsilon)\cdot MLP_{f}(c^{(k)}(v))) + \sum_{u\in N(v)} MLP_{f}(c^{(k)}(u))\right)$$

• where ϵ is a learnable scalar.

• If input feature $c^{(0)}(v)$ is represented as one-hot, direct summation is injective.

• We only need Φ to ensure the injectivity.

GINConv $c^{(k)}(v)$ $c^{(k)}(u)$ $c^{(k)}($

- GIN's node embedding updates
- Given: A graph G with a set of nodes V.
 - Assign an **initial vector** $c^{(0)}(v)$ to each node v.
 - Iteratively update node vectors by

Differentiable color HASH function

$$c^{(k+1)}(v) = \text{GINConv}\left(\left\{c^{(k)}(v), \left\{c^{(k)}(u)\right\}_{u \in N(v)}\right\}\right)$$

- where GINConv maps different inputs to different embeddings.
- After K steps of GIN iterations, $c^{(K)}(v)$ summarizes the structure of K-hop neighborhood.

GNN and WL Graph Kernel

GIN can be understood as differentiable neural version of the WL graph Kernel:

	Update target	Update function
WL Graph Kernel	Node colors (one-hot)	HASH
GIN	Node embeddings (low-dim vectors)	GINConv

- Advantages of GIN over the WL graph kernel are:
 - Node embeddings are **low-dimensional**; hence, they can capture the fine-grained similarity of different nodes.
 - Parameters of the update function can be learned for the downstream tasks.

Expressive Power of GIN

- Because of the relation between GIN and the WL graph kernel, their expressive is exactly the same.
 - If two graphs can be distinguished by GIN, they can be also distinguished by the WL kernel, and vice versa.
- How powerful is this?
 - WL kernel has been both theoretically and empirically shown to distinguish most of the real-world graphs [Cai et al. 1992].
 - Hence, GIN is also powerful enough to distinguish most of the real graphs!

Summary of the Lecture

- We design a neural network that can model injective multi-set function.
- We use the neural network for neighbor aggregation function and arrive at GIN---the most expressive GNN model.
- The key is to use element-wise sum pooling, instead of mean-/max-pooling.
- GIN is closely related to the WL graph kernel.
- Both GIN and WL graph kernel can distinguish most of the real graphs!

The Power of Pooling

Failure cases for mean and max pooling:

Ranking by discriminative power:

