《模式识别》试题

(2005年春季学期,本科生,理论考核部分)

姓名: ______学号:

一、填空与选择填空(本题答案写在此试卷上,40分)
1、聚类分析的基本思想是:。
2、模式相似性测度分为三类: (1); (2);
(3)
3、欧式距离具有。 马式距离具有。
(1) 平移不变性 (2) 旋转不变性 (3) 尺度缩放不变性 (4) 相关性进行处理
4、C-均值聚类算法适用于
5、 利用两类方法处理多类问题的技术途径有: (1); (2);
(3)。其中最常用的是第个技术途径。
6、判别函数的值和正负在分类中的意义
是:
7、感知器算法。
(1) 只适用于线性可分的情况; (2) 线性可分、不可分都适用。
8、积累位势函数法的判别界面为。
(1) 线性界面; (2) 非线性界面。
二、(15分)设线性判别函数,
(1)证明感知器算法经过不超过次的迭代校正必定终止于某个解向量。其中,
(2) 如果,则
其中,,,为增广权矢量的解向量。
三、(15分) 设等式方程组,其中:属于的样本作为的前行,属于的样本作为的后行。证明:当余量矢
量时,MSE 解等价于 Fisher 解。
四、(15分)在目标识别中,假定有农田和装甲车两种类型,类型和类型分别代表农田和装甲车,它们
的先验概率分别为 0.8 和 0.2, 损失函数如表 1 所示。现在做了三次试验,获得三个样本的类概率密度
如下:

- : 0.3, 0.1, 0.6
- : 0.7, 0.8, 0.3
- (1) 试用贝叶斯最小误判概率准则判决三个样本各属于哪一个类型;
- (2) 假定只考虑前两种判决,试用贝叶斯最小风险准则判决三个样本各属于哪一个类型;
- (3) 把拒绝判决考虑在内,重新考核三次试验的结果。

表 1

損失 損失 判决	$\omega_{ m l}$	
$lpha_{_1}$	0. 5	3
	5	1
	2	2

五、(15分)举出日常生活或技术、学术领域中应用模式识别理论解决问题的实例(包括问题模型,解决的方法,体会)(15分)