Statistics One

Lecture 8
Null Hypothesis Significance Testing (NHST)

Two segments

- Overview
- · Problems & Remedies

Lecture 8 ~ Segment 1

NHST: Overview

NHST: Overview

- Null Hypothesis Significance Testing (NHST)

 - -H₀ = null hypothesis
 For example, r = 0-H_A = alternative hypothesis
 For example, r > 0

NHST: Overview

- Null Hypothesis Significance Testing (NHST)
 - $-H_0 = \text{null hypothesis}$
 - For example, B = 0
 - -H_A = alternative hypothesis
 For example, B > 0

NHST: Overview

- · If the alternative hypothesis predicts the direction of the relationship between X & Y (positive vs. negative)
 - Directional test
 - Otherwise it is known as a non-directional test

NHST: Overview

- · Null Hypothesis Significance Testing (NHST)
 - $-H_0 = \text{null hypothesis}$
 - For example, B = 0

 -H_A = alternative hypothesis
 For example, B != 0

NHST: Overview

- Assume H₀ is true, then calculate the probability of observing data with these characteristics, given that Ho is true

 - p = P(D | H_0) If p is very low, then Reject H_0 , else Retain H_0

NHST: Overview Experimenter Decision Retain H₀ Reject H₀ H₀ true Correct Type I error Decision (False alarm) Truth H₀ false Type II error Correct

(Miss)

Decision

NHST: Overview

- $p = P(D | H_0)$
- · Given that the null hypothesis is true, the probability of these, or more extreme data, is
 - NOT: The probability of the null hypothesis being true is p
 - In other words, $P(D|H_0) != P(H_0|D)$

NHST so far in this course

- - Is the correlation significantly different from zero?
- - Is the slope of the regression line for X significantly different from zero?

NHST for B

- t = B / SE
 - B is the unstandardized regression coefficient

 - SE = standard error SE = SQRT[SS.RESIDUAL / (N 2)]

Segment summary

- · NHST is a procedure for hypothesis
- · Requires a binary decision
 - Reject or Retain the Null Hypothesis
- · Four possible outcomes
 - Correct retention, correction rejection
 - False alarm (Type 1 error), Miss (Type II error)

Lecture 8 ~ Segment 2

NHST Problems & Remedies

NHST Problems

- Biased by sample sizeArbitrary decision rule
- Yokel local test
- Error prone
- · Shady logic

NHST Problems

- · Biased by sample size
 - - p-value is based on t-value t = B / SE

 - SE = SQRT(SS.RESIDUAL / (N 2))

NHST Problems

- Arbitrary decision rule
 The cut-off value (alpha) is arbitrary
 p < .05 is considered standard but still arbitrary
 - Problems arise when p is close to .05 but not less than .05

NHST Problems

- · Yokel local test
 - · Many researchers use NHST because it's the only approach they know

 NHST encourages weak hypothesis testing

NHST Problems

- · Error prone

 - Type I errors

 Probability of Type I errors increases when researchers conduct multiple NHSTs
 - Type II errors
 - Many fields of research are plagued by a large degree of sampling error, which makes it difficult to detect an effect, even when the effect exists

NHST Problems

- · Shady logic
- Modus tollens
 If p then q
 Not q
 Therefore, not p

not occur

The data have occurred

Therefore, the null hypothesis is false

NHST Problems

- · Shady logic

- unlikely
 These data have occurred
 Therefore, the null hypothesis is highly unlikely
- If a person plays football, then he or she is probably not a professional player This person is a professional player Therefore, he or she probably does not play football

NHST Remedies

- · Biased by sample size
- Supplement all NHSTs with estimates of effect size

 For example, in regression, report standardized regression coefficients and the model R-squared

NHST Remedies

- · Arbitrary decision rule
 - Again, supplement NHST with estimates of effect size
 - Also, avoid phrases such as "marginally significant" or "highly significant"

23

NHST Remedies

- · Yokel local test

 - Learn other forms of hypothesis testing
 Consider multiple alternative hypotheses
 Model comparison

NHST Remedies

- Error prone
 Replicate significant effects to avoid long-term impact of Type 1 errors
 Obtain large and representative samples to avoid Type II errors

NHST Remedies

- Shady logic

 Simply remember, p = P(D | H₀)
 - OR, avoid NHST, and...
 - Report Confidence Intervals only (see Lecture 10)Apply Bayesian inference

NHST Problems

- Biased by sample sizeArbitrary decision ruleYokel local test

- Error proneShady logic

END SEGMENT

END LECTURE 8