EJERCICIO EXAMEN AGOSTO 2020

Considere un proyectil de masa m moviéndose en el plano vertical, cuya posición está dado por $\vec{r} = (x_1, x_2)$. La fuerza total F que actúa sobre el proyectil está dada por

$$\vec{F} = m\vec{g} - c\vec{v},$$

donde $\vec{v} = \frac{d\vec{r}}{dt}(t)$ es el vector velocidad y $\vec{g} = (0, -g)$, siendo $g = 9.81\,\mathrm{m/s^2}$ la constante de aceleración de la gravedad y c el coeficiente de amortiguamiento del medio.

Utilice la segunda ley de Newton para plantear un PVI que permita encontrar la posición del proyectil \vec{r} a los t segundos. Resuelva el sistema considerando $m=10\,\mathrm{Kg},\,c=0.2\,\mathrm{Kg/s}$ y suponiendo que el proyectil se lanza desde una altura de 30 metros con una velocidad inicial horizontal de $40\,\mathrm{m/s}$.

Pregunta 3 Sin responder aún	Considere el siguiente enunciado Enunciado del Ejercicio
Puntúa como 3,00	(a) Determine a qué distancia el proyectil toca el piso y cuánto tiempo demora en hacerlo. Dar los resultados con 3
Marcar Marcar	cifras significativas.
pregunta	Distancia:
(Editar pregunta	
	(b) Recuerde que la longitud de la trayectoria de la partícula durante los T primeros segundos está dada por $\int\limits_{0}^{T} \sqrt{x_1'(t)^2 + x_2'(t)^2} dt \cdot$ Calcule la distancia recorrida por el proyectil durante los primeros dos segundos. Dar el resultado con 5 dígitos exactos. longitud: