

Erfindungspatent für die Schweiz und Liechtenstein
Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

12 PATENTSCHRIFT A5

11

624 573

22 Gesuchsnummer: 1075/78

23 Inhaber:
Gebrüder Sulzer Aktiengesellschaft, Winterthur

22 Anmeldungsdatum: 01.02.1978

24 Patent erteilt: 14.08.1981

25 Patentschrift
veröffentlicht: 14.08.1981

27 Erfinder:
Prof. Dr.med. Bernhard Georg Weber, St. Gallen

26 Zwischenwirbel-Prothese.

57 Die Zwischenwirbel-Prothese besteht aus zwei in einander benachbarten Flächen der Wirbelsäule verankerbaren Lagerpfannen (4), die je eine schalenförmige Ausnehmung (7) haben. Darin ist ein Abstandskörper (8) gelagert. Die Pfanne wird vorzugsweise aus Polyäthylen, der Abstandskörper aus Keramik gefertigt.

PATENTANSPRÜCHE

1. Zwischenwirbel-Prothese, insbesondere für Halswirbel, bei der zwischen den einander zugewandten, benachbarten Endflächen zweier Wirbelkörper mindestens ein Zwischenkörper eingelegt ist, gekennzeichnet durch je in einer Endfläche verankerbare Lagerpfannen (4, 4'; 14) deren Basis eine schalenförmige Ausnehmung (7) hat, und durch einen Abstandskörper (8) der in den Hohlraum zwischen einander zugewandten Ausnehmungen (7) zweier Lagerpfannen (4, 4'; 14) eingelegt ist.

2. Prothese nach Anspruch 1, dadurch gekennzeichnet, dass der Abstandskörper (8) linsenförmig ausgebildet ist.

3. Prothese nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Abstandskörper (8) aus Biokeramik und die Lagerpfanne (4, 4'; 14) aus Kunststoff, insbesondere aus High-Density-Polyäthylen (HDPE), bestehen.

4. Prothese nach Anspruch 1, dadurch gekennzeichnet, dass die Verankerungsseite (5') der Lagerpfanne (4') dachförmig ausgebildet und mit schwabenschwanzförmigen Vorsprünge (11) versehen ist.

5. Prothese nach Anspruch 1, dadurch gekennzeichnet, dass die Lagerpfanne (4) eine verbreiterte, Hinterschneidungen (6) erzeugende Bodenplatte (5) und Nuten (9) aufweist, wobei die Nuten (9) mindestens teilweise unter einem Winkel zur Längsrichtung der Hinterschneidungen (6) verlaufen.

2

der Abstandskörper aus Biokeramik und die Lagerpfanne aus Kunststoff, insbesondere aus High-Density-Polyäthylen (HDPE), bestehen. Für eine relativ weite und gleichmäßige Verteilung der Auflagedrücke ist es weiterhin vorteilhaft, wenn der Abstandskörper linsenförmig ausgebildet ist.

Für eine zementfreie Veränderung in den Wirbelkörpern kann die Lagerpfanne vorteilhaft eine verbreiterte, Hinterschneidungen erzeugende Bodenplatte und Nuten aufweisen, wobei die Nuten mindestens teilweise unter einem Winkel zur Längsrichtung der Hinterschneidungen verlaufen.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert.

Fig. 1 zeigt in schematisch perspektivischer Darstellung – in Richtung frontal auf den Körper gesehen – eine Ansicht auf einen Wirbelkörper eines unteren Hals- oder eines Brustwirbels, in den eine der neuen Lagerpfannen eingesetzt ist;

Fig. 2 ist der Schnitt II-II von Fig. 1 und stellt zwei einander gegenüberliegende Flächen von benachbarte Wirbelkörpern eingesetzte Lagerpfannen dar;

Fig. 3 ist in gleicher Darstellung wie Fig. 1 eine zweite Ausführungsform einer in einem Wirbelkörper verankerten Pfanne wieder, während

Fig. 4, ähnlich wie Fig. 2, ein Schnitt IV-IV durch zwei benachbarte Wirbelkörper ist,

Fig. 5 und 6 schliesslich zeigen in gleicher Darstellung eine weitere Ausführungsform.

In eine – beispielsweise mit einem Fräser hergestellte – Ausnehmung eines Wirbelkörpers 1, an dem auf beiden Seiten der Fig. 1 noch die Ansätze 3 für die Wirbelfortsätze angedeutet sind, ist eine Lagerpfanne 4 eingesetzt, die beispielsweise einen rechteckigen oder quadratischen Grundriss hat.

In die äussere, d.h. benachbarten Wirbel zugewandte, Oberfläche der Pfanne 4 ist eine schalenförmige Ausnehmung 7 eingelassen, die in Form und Größe an einen Abstandskörper 8 (Fig. 2 und 4) angepasst ist, der zwischen die Lagerpfanne 4 zweier benachbarter Wirbelkörper 1 als Prothesenkörper eingelegt wird. Der Abstandskörper 8 ist im vorigen Beispiel linsenförmig ausgebildet, kann aber auch eine Kugel, ein kugelähnlicher oder ein elliptischer Körper sein.

Die Ausführungsform nach Fig. 1 und 2, die für eine zementfreie Verankerung im Wirbelkörper 2 bestimmt ist, hat eine verbreiterte Bodenplatte 5, so dass in Richtung des Einschleins eine mit Knochensubstanz gefüllte Hinterschneidung 6 entsteht. Als Sicherung gegen unbeabsichtigtes Auschleissen des Pfanne 4 aus dem Wirbelkörper 2 bei zementfreier Verankerung sind in den Boden 5 der Pfanne 4 Nuten 9 eingeschnitten, von denen mindestens eine einen Winkel, vorzugsweise von 90°, mit der Längsrichtung der Hinterschneidung 6 bildet. In diese Nut 9 wächst nach der Implantation Knochengewebe ein und verhindert so ein Verschieben der eingesetzten Pfanne 4 im Körper 2. Wird die Pfanne 4 quadratisch ausgebildet, so können durch Verbreiterung der Bodenplatte 5 Hinterschneidungen 6 auf allen vier Quadranten vorgesehen sein; in diesem Fall ermöglichen zwei senkrecht zueinander angeordnete Nuten 9 – wie sie im Ausführungsbeispiel nach Fig. 1 und 2 gezeigt sind – ein Einsetzen des Pfannenkörpers in den Wirbelkörper, ohne dass auf eine Vorzugsrichtung geachtet werden müsste.

Die Pfanne 4' gemäss Fig. 3 und 4 ist für eine Verankerung mittels eines Knochenzements 10 vorgesehen. Ihre Verankerungsseite 5' ist im Querschnitt keilförmig ausgebildet und trägt für eine verbesserte Haftung in dem Zementbett 10, über ihre dachförmig ausgebildete äussere Oberfläche verteilt, schwabenschwanzförmige Vorsprünge 11.

Die Schalen 14 der dritten Ausführungsform sind uhrzeigarsartig ausgebildet; sie werden in operativ entsprechend vorbereitet, schalenförmige Ausnehmungen der Wirbelkörper 1

Die Erfindung betrifft eine Zwischenwirbel-Prothese, insbesondere für Halswirbel, bei der zwischen den einander zugewandten, benachbarten Endflächen zweier Wirbelkörper mindestens ein Zwischenkörper eingelegt ist.

Eine Zwischenwirbel-Prothese hat die Aufgabe, als Ersatz einer erkrankten Zwischenwirbelscheibe zu dienen. Sie soll in gewissen Fällen die übliche Operationsverfahren der Versteifung zweier benachbarter Wirbelkörper mit Hilfe von Knochenpfannen ersetzen. Dort geht die Beweglichkeit zwischen den zwei Nachbarwirbeln verloren, was mit der neuen Prothese vermieden werden soll.

Es ist bekannt, zwischen einzelnen Wirbeln – nach Entfernen der Knorpel-Zwischenwirbelschicht – kissenartige Zwischenlagen oder kugelförmige Zwischenkörper aus Kunststoff einzulegen (FR-PS 1 122 634). Während die als elastische Dämpfungselemente dienenden Zwischenlagen die Einhaltung eines Mindestabstandes nicht gewährleisten, ergeben sich bei kugelförmigen Zwischenkörpern relativ hohe spezifische Auflagedrücke auf dem sie umgebenden knöchernen Gewebe, was zu Schädigungen dieses Gewebes führen kann.

Aufgabe der Erfindung ist es daher, eine Prothese zu schaffen, bei der die Beweglichkeit zweier Wirbel gegeneinander erhalten bleibt, ein Mindestabstand zwischen den zwei Wirbeln gewährleistet ist und niedrige spezifische Auflagedrücke gewährleistet sind. Diese dreifache Aufgabe wird gemäss der Erfindung gelöst durch je in einer Endfläche verankerbare Lagerpfannen, deren Basis eine schalenförmige Ausnehmung hat, und durch einen Abstandskörper, der in den Hohlraum zwischen einander zugewandten Ausnehmungen zweier Lagerpfannen eingelegt ist.

Die auf ihrer Verankerungsseite beispielsweise dachförmig ausgebildete Lagerpfanne bildet eine gegenüber einer Kugel stark vergrösserte Auflagefläche, mit der die Prothese in den Wirbelkörpern abgestützt ist; der Abstandskörper zwischen den Lagerpfannen gewährleistet einen Mindestabstand zwischen zwei Wirbelkörpern.

Besonders gute Gleiteigenschaften zwischen Pfanne und Abstandskörper erzielt man, wenn in an sich bekannter Weise

eingesetzt und stützen sich mit einem Rand 15 zusätzlich auf der Endfläche des Wirbelkörpers 1 ab. Ihre dem Wirbelkörper zugewandte Fläche 16 hat eine rautenförmige Struktur, um das Einwachsen im Gewebe und die Verankerung im Wirbelkörper zu erleichtern und zu verbessern. Der interne Krümmungsradius der Ausnehmung 7 entspricht der Wölbung des zwischengelegten Abstandskörpers 8.

Wie erwähnt, werden die Pfanne 4 bzw. 14 und der Abstandskörper 8 aus in der Implantat-Technik bewährten Werkstoffen hergestellt; insbesondere haben sich hochmolekulares Polyäthylen (HDPE) für die Pfannen und Biokeramik, vor allem hochreines und dichtes Al_2O_3 , für die Abstandskörper bewährt.

Fig. 2

Fig. 4

Fig. 6

Fig. 1

Fig. 3

Fig. 5