第五节 函数的极值与最大 最小值

- 一、函数的极值及其求法
- 二、最大与最小值问题
- 三、小结

一、函数的极值及其求法 1.函数极值的定义

定义 设函数f(x)在区间(a,b)内有定义, x_0 是 (a,b)内的一个点,

如果存在着点 x_0 的一个邻域,对于这邻域内的任何点x,除了点 x_0 外, $f(x) < f(x_0)$ 均成立,就称 $f(x_0)$ 是函数f(x)的一个极大值;

如果存在着点 x_0 的一个邻域,对于这邻域内的任何点x,除了点 x_0 外, $f(x)>f(x_0)$ 均成立,就称 $f(x_0)$ 是函数f(x)的一个极小值.

函数的极大值与极小值统称为极值,使函数取得极值的点称为极值点.

注意

(1)极值是局部性概念:

极值是局部区域上的最大或最小值;

极大值可能小于极小值,极小值可能大于极大值.

极大值可能小于极小值,极小值可能大于极大值.

(2)在间断点或端点处不考虑极值.

2.可能的函数极值点

(1)导数等于零的点(称为驻点)

(2)不可导的点

3. 函数极值的判断

(是极值点情形)

(不是极值点情形)

定理1(极值判断第一充分条件)

设函数 f(x)在点 x_0 处连续, 在点 x_0 的某去 心邻域 $\mathring{U}(x_0,\delta)$ 内可导

- (1) 若 $x \in (x_0 \delta, x_0)$, f'(x) > 0; 而 $x \in (x_0, x_0 + \delta)$, f'(x) < 0, 则 f'(x) 在点 x_0 处取得极大值.
- (2) 若 $x \in (x_0 \delta, x_0)$, f'(x) < 0; 而 $x \in (x_0, x_0 + \delta)$, f'(x) > 0, 则 f'(x)在点 x_0 处取得极小值.
- (3) 若 $x \in U(x_0, \delta)$ 时, f'(x)的符号保持不变, f(x)在点 x_0 处不取得极值.

求极值的步骤:

- (1) 求驻点及不可导点
- (2) 检查 f'(x) 在这些点左右的符号, 判断是否为极值点
 - (3) 求出极值

例1 求出函数 $f(x) = x^3 - 3x^2 - 9x + 5$ 的极值.

解
$$f'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3)$$

令
$$f'(x) = 0$$
, 得驻点 $x_1 = -1, x_2 = 3$. 列表讨论

x	$(-\infty, -1)$	-1	(-1,3)	3	(3,+∞)
f'(x)	+	0	_	0	+
f(x)	↑	极大值	↓	极小值	↑

极大值 f(-1) = 10, 极小值 f(3) = -22.

在某些情况下,判断f'(x)的符号比较困难,则在二阶可导的条件下,可以直接根据驻点的二阶导数f''(x)的符号判别是否为极值点.

定理2(极值判断第二充分条件)

设 f(x) 在 x_0 处具有二阶导数,且 $f'(x_0) = 0$, $f''(x_0) \neq 0$,则

- (1) 若 $f''(x_0) < 0$,则 $f(x_0)$ 为 f(x)的极大值.
- (2) 若 $f''(x_0) > 0$,则 $f(x_0)$ 为 f(x)的极小值.
- (3) 若 $f''(x_0) = 0$,则 $f(x_0)$ 可能是也可能不是 f(x)的极值.此时 f(x)在点 x_0 处是否取极值, 仍用定理1判定.

证
$$(1)$$
 : $f''(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x} < 0$,
故 $f'(x_0 + \Delta x) - f'(x_0)$ 与 Δx 异号,
当 $\Delta x < 0$ 时,有 $f'(x_0 + \Delta x) > f'(x_0) = 0$,
当 $\Delta x > 0$ 时,有 $f'(x_0 + \Delta x) < f'(x_0) = 0$,

所以,函数f(x)在 x_0 处取得极大值

例2 求出函数 $f(x) = x^3 + 3x^2 - 24x - 20$ 的极值.

解
$$f'(x) = 3x^2 + 6x - 24 = 3(x+4)(x-2)$$

令
$$f'(x) = 0$$
, 得驻点 $x_1 = -4$, $x_2 = 2$.

$$\therefore f''(x) = 6x + 6,$$

$$f''(-4) = -18 < 0$$
, 故极大值 $f(-4) = 60$,

$$f''(2) = 18 > 0$$
, 故极小值 $f(2) = -48$.

注

只有二阶导数I'(x)存在且不为零的驻点才可以用此定理判定极值点.

其他情形只能使用第一充分条件进行判别.

思考: 驻点是否一定是极值点? #P153

答

函数的驻点不一定是极值点.

例如, $y = x^3$, $y'|_{x=0} = 0$, 但x = 0不是极值点.

极值点若可导必定是驻点

(费马引理)

小结

极值是函数的局部性概念

驻点和不可导点统称为可能极值点

求函数极值的步骤:"寻找,判断"

判别法 {第一充分条件; 判别法 (注意使用条件) 第二充分条件;

二、最大值、最小值问题

在实际生活中常常遇到这样一类问题:在一定条件下,怎样使:"产品最省""用料最省""效率最高"等问题.这类问题在数学上有时可归纳为求某一函数(目标函数)的最大值和最小值问题.

闭区间上最值的求法

若函数 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b]上的最大值与最小值存在.

在区间内部取得的最值点必为极值点

步骤 1. 求驻点和不可导点;

2.求区间端点及驻点和不可导点的函数值,比较出最大值及最小值.

解:
$$f(x)$$
在[-1,4]上连续, $f'(x) = \frac{5(x-2)}{3\sqrt[3]{x}}$

x=0处f'(x)不存在,x=2为f(x)的驻点,

$$f(0) = 0$$
, $f(2) = -3\sqrt[3]{4}$, $f(-1) = -6$, $f(4) = -\sqrt[3]{16}$.

经比较知: f(x)的最大值为f(0)=0,最小值为f(-1)=-6.

实际应用中的最值问题

例4. 求乘积为常数a > 0, 而其和为最小的两个正数.

解:设两个正数x, y(x > 0, y > 0), 其和为s = x + y

则 由
$$xy = a$$
得 $y = \frac{a}{x}$

从而目标函数为
$$(x) = x + \frac{a}{x}$$
 $(x > 0)$

令
$$s'(x) = 1 - \frac{a}{x^2} = 0$$
, 得 $x_1 = \sqrt{a}$, $x_2 = -\sqrt{a}$ (舍去)

$$x = \sqrt{a}$$
是函数 $s(x)$ 唯一的驻点。

由实际问题的背景,和的最小值肯定存在而且不可能在区间端点取得,而区间内部有唯一驻点

故
$$s(x)$$
在 $x = \sqrt{a}$ 处取得最小值,

乘积为常数a而和最小的两个正数是 \sqrt{a} 和 \sqrt{a} .

当
$$x < \sqrt{a}$$
时, $s'(x) = 1 - \frac{a}{x^2} < 0$
当 $x > \sqrt{a}$ 时, $s'(x) = 1 - \frac{a}{x^2} > 0$, (验证过程不用包含在解题中)

注:

(1)解决实际问题的最值问题的步骤:

建立目标函数及其取值区间

求目标函数的最值

注:

(2) 在实际问题中,若由分析得知确实存在最大值或最小值,最值不可能在端点取得,而所讨论的区间内仅有一个驻点 x_0 ,那么不必讨论 $f(x_0)$ 是不是极值,就可以断定 $f(x_0)$ 是最大值或最小值.

小结

最值是整体概念而极值是局部概念.

求最值的步骤: "寻找,比较"值大小 (注意与求极值步骤的差异)

实际问题求最值的步骤.

作业

P161 1(9);

2;3;7;

最值应用:用于证明不等式

例6. 求证: $2x \arctan x \ge \ln(1+x^2)$

证:
$$\diamondsuit f(x) = 2x \arctan x - \ln(1 + x^2)$$
 定义域 $D: (-\infty, +\infty)$.

$$\therefore f'(x) = 2 \arctan x = 0$$
, 得唯一驻点 $x = 0$

又:
$$f''(x)|_{x=0} = \frac{2}{1+x^2}|_{x=0} = 2 > 0$$
, : $x = 0$ 是极小值点

$$∴ $f(0) = 0$ 是最小值. ⇒ $f(x) \ge 0$,$$

即 $2x \arctan x \ge \ln(1+x^2)$.

-例9 某人正处在森林地带中距公路2公里的A处,在公路右方8公里处有一个车站B,假定此人在森林地带中每步行的速度为6公里/小时,沿公路行走的速度为8公里/小时,为了近快赶到车站,他选择A→C→B,问C应在公路右方多少?他最快能在多少时间内到达B?

解:设C点在公路右方x公里处($0 \le x \le 8$),则

$$AC = \sqrt{x^2 + 4}, \quad CB = 8 - x$$
 o C B X 行走时间为 $T(x) = \frac{\sqrt{x^2 + 4}}{6} + \frac{8 - x}{8}$ A

$$T'(x) = \frac{x}{6\sqrt{x^2 + 4}} - \frac{1}{8} = \frac{4x - 3\sqrt{x^3 + 4}}{24\sqrt{x^2 + 4}}$$

令
$$T'(x) = 0$$
, 得唯一驻点 $x_0 = \frac{6}{\sqrt{7}}$,
$$T(x_0) = 1 + \frac{\sqrt{7}}{12} \approx 1.22$$

$$T(0) = 4/3 \approx 1.33, T(8) = \sqrt{68}/6 \approx 1.37$$

 $\therefore T(x_0)$ 为最小值, \therefore C点应在公路右方 $\frac{6}{7}\sqrt{7}$ 公里处.

-例2 求出函数 $f(x) = 1 - (x - 2)^{\frac{2}{3}}$ 的极值.

解
$$f'(x) = -\frac{2}{3}(x-2)^{-\frac{1}{3}}$$
 $(x \neq 2)$

当x = 2时, f'(x)不存在. 但函数f(x)在该点连续.

当
$$x < 2$$
时, $f'(x) > 0$;

当
$$x > 2$$
时, $f'(x) < 0$.

f(2) = 1 为 f(x) 的极大值.

举例

一例4 求函数 $y = 2x^3 + 3x^2 - 12x + 14$ 的在[-3,4] 上的最大值与最小值.

解
$$:: f'(x) = 6(x+2)(x-1)$$

解方程 f'(x) = 0,得 $x_1 = -2, x_2 = 1$.

计算
$$f(-2) = 34$$
; $f(1) = 7$;

$$f(-3) = 23;$$
 $f(4) = 142;$

比较得 最大值 f(4) = 142,最小值 f(1) = 7.

-例5

由直线 y=0, x=8 及抛物线 $y=x^2$ 围成一个曲边三角形,在曲边 $y=x^2$ 上求一点,使曲线在该点处的切线与直线 y=0 及 x=8 所围成的三角形面积最大.

解 如图,

设所求切点为 $P(x_0, y_0)$,

则切线PT为

$$y - y_0 = 2x_0(x - x_0),$$

$$\therefore y_0 = x_0^2, \ \therefore A(\frac{1}{2}x_0, \ 0), \ C(8, \ 0), \ B(8, \ 16x_0 - x_0^2)$$

$$\therefore s_{\Delta ABC} = \frac{1}{2} (8 - \frac{1}{2} x_0) (16 x_0 - x_0^2) \quad (\mathbf{0} \le x_0 \le 8)$$

解得
$$x_0 = \frac{16}{3}$$
, $x_0 = 16$ (舍去).

$$S(\frac{16}{3}) = \frac{4096}{27}$$

曲于
$$s(8) = \frac{1}{2}(8-4)(8*8) = 128$$

故
$$S(\frac{16}{3}) = \frac{256}{9}$$
为所求三角形面积中的最大者

所求点为(
$$\frac{16}{3}$$
, $\frac{256}{9}$).

