

Operational Manual

RGM-3000/REB-3000 Series Operational Manual

Version 1.8 2003/5/15

This document contains information highly confidential to Professor. It is provided for the sole purpose of the business discussions between supplier and Professor and is covered under the terms of the applicable Non-Disclosure Agreements. Disclosure of this information to other parties is prohibited without the written consent of Professor.

Professor GPS Module: RGM-3000/REB-3000 series Operational Manual

Introduction	2
RGM/REB-3000 CONFIGURATION SELECT TABLE	2
Product Features	2
PRODUCT APPLICATIONS	3
PRODUCT MODELS	3
Picture	4
REB-3000XX02XX	4
REB-3000XX10XX	4
RGM-3000XX00XX	5
REB-3000XX00XX	5
RGM-3000/REB-3000 Series System Block Diagram	6
TECHNIQUE SPECIFICATIONS	7
RGM-3000/REB-3000 Mechanical Layout	8
Hardware interface	13
ABSOLUTE MAXIMUM RATINGS	15
CRITICAL DESIGN GUIDE AND DIAGRAM	15
DESIGN LAYOUT DIAGRAM	16
NMEA V2.2 Protocol	17
GGA-Global Positioning System Fixed Data	18
GLL-Geographic Position – Latitude/Longitude	18
GSA-GNSS DOP and Active Satellites	18
GSV-GNSS Satellites in View	19
RMC-Recommended Minimum Specific GNSS Data	19
VTG-Course Over Ground and Ground Speed	20
GPS Receiver User's Tip	20

Professor GPS Module: RGM-3000/REB-3000 series

Operational Manual

Introduction

RGM-3000/REB-3000 series is the third generation of Professor GPS Receiver. The GPS receiver is powered by SiRF Star II technology and Professor proprietary navigation algorithm that providing you more stable navigation data. The miniature design is the best choice to be embedded in a portable device like PDA, mobile phone, person locator and vehicle locator. It supports TricklePower function which can be enabled by external command for power saving. The excellent sensitivity of RGM-3000 gets the great performance when going though the urban canyon and foliage.

RGM/REB-3000 Configuration Select Table

RGM/REB	Power Config	I/O Connector	Switch Cable	Ext ANT	F/W Version	F/W Configuration
	1	2	3	4	5	6
REB-3000		F:FFC P:Pin type	_	2.Hirose 0:None	1.Enhanced	1.GGA,GSA,RMC,GSV,4800 (GSV:5 sec/time, others: 1Hz)
RGM-3000		F:FFC P:Pin Type	0:None	0: None	1.Enhanced	1.GGA,GSA,RMC,GSV,4800 (GSV:5 sec/time, others: 1Hz)

Product Features

RGM/REB-3000XXXXXX

- OEM product development is fully supported through applications engineering and WEB technique forum.
- ♦ Small form factor.
- ♦ 12 parallel channels
- ♦ 0.1 second re-acquisition time.
- Enhanced algorithm for navigation stability.
- ♦ NMEA-0183 compliant protocol/custom protocol.
- ♦ WAAS demodulator
- Excellent sensitive for urban canyon and foliage environments.
- Single satellite positioning.
- Dual multi path rejection.

RoyalTek RGM-3000/REB-3000 GPS Module Operational Manual)

Product applications

RGM-3000/REB-3000

- ♦ Portable IA device for personal navigation/ position commerce (P-Commerce)
- ♦ Automotive applications
- Personal positioning and navigation
- ♦ Marine navigation
- ♦ Timing application
- Extendable I/O capability Provides programming I/O function and development tool kit for customer

Product models

RGM-3000LXXXXX/REB-3000LXXXXX

Adopt the latest SIRF low power chips (GSP 2e-LP and GRF 2e-LP). Power consumption can be lowered ro 80mA.

RGM-3000NXXXXX/REB-3000NXXXXX

Adopt the SIRF standard chips (GSP 2e and GRF 2e). Power consumption is 180mA

RGM-3000XFXXXX/REB-3000XFXXXX

RGM/REB-3000 with FPC type I/O connector.(22 pins,)

RGM-3000XPXXXX/REB-3000XPXXXX

RGM/REB-3000 with Pin type I/O connector.(20 pins)

RGM-3000XX00XX

The RGM-3000 is a stamp size GPS receiver with a patch antenna on top of GPS receiver.

REB-3000XXXXXX

REB-3000 provides the external antenna power ($2.8DCV \pm 5\%$) through RF cable. There are 3 models for versatile applications:

- 1) REB-3000XX10XX: with SMA RF cable.
- 2) REB-3000XX02XX: with 100 mm RF cable and a patch antenna.(RF cable can be customized)
- 3) REB-3000XX00XX: GPS receiver core module only

Picture

REB-3000XX02XX

REB-3000XX10XX

RGM-3000XX00XX

REB-3000XX00XX

RGM-3000/REB-3000 Series System Block Diagram

The RGM-3000/REB-3000 series consists of SiRF star II chipsets technology, Professor LNA and proprietary software. The system is described as follows.

RGM-3000XX00XX/REB-3000XX01XX

REB-3000XX10XX/REB-3000XX00XX

GPS.receiver w/o patch ANT.

Technique specifications

RGM-3000/REB-3000 series.

Operational Characteristics.

12 Channels

L1, 1575.42MHz.

C / A code, 1.023MHz chip rate.

Snap start: 3 seconds, 90%

Hot start: 8 seconds, 90%

Warm start: 38 seconds, 90%

Cold start: 48 seconds, 90%

Reacquisition:0.1 second, typical

Navigation update rate: Once per second.

Datum: WGS-84.

Accuracy.

Position accuracy: ≦ 25m CEP without

SA

Velocity accuracy:0.1 meters/second

without SA

DGPS Accuracy.

Position:1 to 5 m, typical

Velocity: 0.05 meters/second, typical

DGPS type

WAAS, EGNOS, RTCM-104 protocol.

Dynamics.

Altitude: 18000 meters (60000 feet) Max.

Velocity: 515 meters / second Max.

Acceleration: 4 g., Max.

Power Requirements.

The input voltage is $3.3V\pm10\%$, ripple \leq

200mV. The power of active antenna is

supplied by RGM-3000/REB-3000 series.

REB-3000LXXXXX/RGM-3000LXXXXX

Current ≤80mA typical

≤100mA max.

(3.3volt, w/o ext antenna)

REB-3000NXXXXX/RGM-3000NXXXXX

Current ≤180mA typical

≤200mA max.

(3.3volt, w/o ext antenna)

Weight. 30g(RGM-3000),15g(REB-3000)

Environment.

Temperature.

Operating temperature -40 ~ +85 Degree

(Celsius).

Storage temperature: -50 ~ +100 Degree

(Celsius).

Humidity \leq 95% noncondensing.

GPS Antenna

Specification(REB-3000XX02XX,

RGM-3000XX00XX)

Center Frequency: 1575.42±1.023MHz

Bandwidth (-10dB return loss):≥8MHz

Gain at Zenith: 3.0dBi Typ, ≥2dB;

Gain at 10° elevation :-1.0 dBi Typ,≧-4dB

Polarization :R.H.C.P

Axial Ratio: 2.0dB max

LNA Specification: (External ANT for

RGM-3000XX02XX)

Center Frequency: 1575.42±1.023MHz

Gain : ≧12dB

Noise Figure : ≦3dB

Out Band Attenuation: 7dB min for ±20MHz

20dB min for ±50MHz

30dB min for ±100MHz

Output V.S.W.R 2.0dB max

Voltage DC 3.0v±10%

Current ≦15mA

Mechanical Layout

RGM-3000/REB-3000 Mechanical Layout

REB-3000XF02XX (FPC Type)

REB-3000XF10XX (FPC Type)

RGM-3000XF00XX (FPC Type)

REB-3000XX00XX (FPC Type)

REB-3000XP10XX (Pin Type)

RGM-3000XP00XX (Pin Type)

REB-3000XP02XX (Pin Type)

Dimension for Flexible Flat Circuit & Connector

Dimension for Pin type Connector(male and female):

Hardware interface

RGM-3000XFXXXX/REB-3000XFXXXX (FPC Type).

Connector Type: FPC, 22 Pin

Pin NO	Name	I/O	Description	Characteristic
1	VCC		System Power	DC 3.3V ± 10% (Suggested: add an external bypass capacitor. Value ≧ 2.2uF)
2	VCC		System Power	DC 3.3V ± 10% (Suggested: add an external bypass capacitor. Value ≧ 2.2uF)
3	TXA	0	Navigation Data Output	TTL Level; Voh≧2.4V, Vol≦0.4V; Ioh=Iol=2mA
4	RXA	ı	Serial Data Input	TTL Level; Vih≧0.7*VCC; Vil≦0.3*VCC
5	TXB	0	Reserved	TTL Level; Voh≥2.4V, Vol≤0.4V; Ioh=IoI=2mA
6	RXB	I	GPS Input	TTL Level; Vih≧0.7*VCC; Vil≦0.3*VCC
7	TIMEMARK	0	mark Output	Vil≦0.2V, Pulse Width≧10ms
8	Reserved		Not Used	No connection
9	BOOTSEL	I	-	TTL Level; Vih≧0.7*VCC; Vil≦0.3*VCC
10	Reserved	ı	Reserved	
11	VBAT		External Backup Power Input	2.1V≦ Vbat ≦3.6V
12	RESERVED			
13	GPIO3	I/O	General Purpose I/O Pin	TTL Level; Output: Voh≧2.4V, Vol≦0.4V; Ioh=Iol=2mA Input: Vih≧0.7*VCC; Vil≦0.3*VCC
14	GPIO5	I/O	General Purpose I/O Pin	Output : Voh≧2.4V, Vol≦0.4V ; Ioh=Iol=2mA Input : Vih≧0.7*VCC ; Vil≦0.3*VCC
15	GPIO6	I/O	General Purpose I/O Pin	TTL Level; Output: Voh≧2.4V, Vol≦0.4V; Ioh=Iol=2mA Input: Vih≧0.7*VCC; Vil≦0.3*VCC
16	GPIO7	I/O	General Purpose I/O Pin	TTL Level; Output: Voh≧2.4V, Vol≦0.4V; Ioh=Iol=2mA Input: Vih≧0.7*VCC; Vil≦0.3*VCC
17	GPIO10	I/O	General Purpose I/O Pin	TTL Level; Output: Voh≧2.4V, Vol≦0.4V; Ioh=Iol=2mA Input: Vih≧0.7*VCC; Vil≦0.3*VCC
18	GPIO13	I/O	General Purpose I/O Pin	
19	GPIO15	I/O	·	TTL Level; Output: Voh≧2.4V, Vol≦0.4V; Ioh=Iol=2mA Input: Vih≧0.7*VCC; Vil≦0.3*VCC
20	GND		System GND	
21	GND		System GND	
22	GND		System GND	

RGM-3000XPXXXX/REB-3000XPXXXX (PIN Type)

Connector Type: 20 Pin Header, 1.27 mm pitch

NO System Power DC 3.3V ± 10% (Suggested: add an external Value ≥ 2.2uF) 2 VCC System Power DC 3.3V ± 10% (Suggested: add an external Value ≥ 2.2uF)	
Value ≧ 2.2uF) 2 VCC System Power DC 3.3V ± 10% (Suggested: add an external Value ≧ 2.2uF)	
(Suggested: add an externated Value ≧ 2.2uF)	ll bypass capacitor.
Value ≧ 2.2uF)	Il bypass capacitor.
3 GND System GND	
4 GND System GND	
5 RXA I Serial Data Input TTL Level; Vih≧0.7*VCC;	
6 TXA O Navigation Data Output TTL Level; Voh≧2.4V, Vol≦	
7 RXB I RTCM 104 Differential TTL Level; Vih≧0.7*VCC; GPS Input	
8 TXB O Serial Data Output TTL Level; Voh≧2.4V, Vol≦	
9 BOOTSEL I Internal boot Active High TTL Level; Vih≧0.7*VCC;	Vil≦0.3*VCC
10 Reserved Not used No connection	
11 VBAT External Backup Power 2.1V≦ Vbat ≦3.6V Input	
12 Reserved Not Used No connection	
13 GPIO3 I/O General Purpose I/O Pin TTL Level;	
Output : Voh≧2.4V, Vol≦0 Input : Vih≧0.7*VCC ; Vil≦0	· ·
14 TIMEMARK O 1 Pulse per second time Vil≤0.2V, Pulse Width≥10r mark Output	ns
15 GPIO6 I/O General Purpose I/O Pin TTL Level;	
Output : Voh≧2.4V, Vol≦0 Input : Vih≧0.7*VCC ; Vil≦0	
16 GPIO5 I/O General Purpose I/O Pin TTL Level;	
Output : Voh≧2.4V, Vol≦0	.4V ; loh=lol=2mA
Input : Vih≧0.7*VCC ; Vil≦(0.3*VCC
17 GPIO10 I/O General Purpose I/O Pin TTL Level;	
Output : Voh≧2.4V, Vol≦0	.4V;Ioh=Iol=2mA
Input : Vih≧0.7*VCC ; Vil≦0	0.3*VCC
18 GPIO7 I/O General Purpose I/O Pin TTL Level;	
Output : Voh≧2.4V, Vol≦0	
Input : Vih≧0.7*VCC ; Vil≦(0.3*VCC
19 GPIO15 I/O General Purpose I/O Pin TTL Level;	
Output : Voh≧2.4V, Vol≦0 Input : Vih≧0.7*VCC ; Vil≦0	
20 GPIO13 I/O General Purpose I/O Pin TTL Level;	
Output : Voh≧2.4V, Vol≦0	.4V;Ioh=Iol=2mA
Input : Vih≧0.7*VCC ; Vil≦0	

Definition Of Pin assignment

VCC DC Power Input

This is the main power supply for the Engine board. The power range is from $3.3V\pm10\%$, ripple $\leq 200mV$. The maximum current of RGM-3000 is $\leq 200mA$.

GND

GND provides the ground for the Engine board. Connect all grounds.

VBAT

This is the battery backup supply that powers the SRAM and RTC when main power is removed. The input voltage level is from 2.1V~3.6V. Max current draw is 10 uA at 3.3volt. Without an external backup battery or on board battery, engine board will execute a cold start after every turn on. To achieve the faster start-up offered by a hot or warm start, either a backup battery must be connected or battery installed on board.

TXA

This is the main transmit channel and is used to output navigation and measurement

data to user written software. The default setup is NMEA Output, 4800bps, 8 data bits, no parity, 1 stop bit. The default sentences are GPGGA, GPGSA, GPRMC once per second and GPGSV once per 5 seconds.

Please refer to "software interface" for the detail protocol.

RXA

This is the main receiving channel and is used to receive software commands to the Engine board from user written software. Please refer to "software interface" for the detail protocol.

RXB

This is used for DGPS differential input.

BOOTSEL

Pull Bootsel pin high & reset, then it will get to boot mode.

GPIO

This pin can be programmed to input or output. For more application, please contact Royaltek's sales.

Absolute maximum ratings

Parameter	Symbol	Unit	Min. Value	Max. Value
Supply voltage	VCC	V	2.97	3.63
Output current		MA		200

Critical design guide and diagram

1. It is recommanded to attach GNDu plate (30*30MM) below RGM3000 module or the antenna module of REB-3000XX02XX to increase the intensity of reception . Please refers to "Design Layout Diagram".

- 2. During design of integrated layout, please isolate high frequency noise source (power Switch,data or address signal lines) from GPS antenna.
- 3. Please don't place metal object above patch antenna.

Design Layout Diagram

Recommanded Ground plate for RGM-3000XF00XX/REB-3000XFXXXX

RGM-3000XF00XX with ground plate

0.50

Recommanded REB-3000 Antenna Ground Plate

Connector tool (Option, not included in standard kit)

It is used to remove or install FPC on connector.

Software interface

NMEA V2.2 Protocol

It is the RS-232 interface:9600 bps, 8 bit data, 1 stop bit and no parity. It supports the following NMEA-0183 messages:GGA, GLL,

GSA, GSV, RMC and VTG.

NMEA Output Messages

The Engine board outputs the following messages as shown in Table 1:

Table 1 NMEA-0183 Output Messages

NMEA Record	Description
GGA	Global positioning system fixed data
GLL	Geographic position – latitude / longitude
GSA	GNSS DOP and active satellites
GSV	GNSS satellites in view
RMC	Recommended minimum specific GNSS data
VTG	Course over ground and ground speed

GGA-Global Positioning System Fixed Data

Table 2 contains the values of the following example: \$GPGGA, 161229.487,

3723.2475, N, 12158.3416, W, 1, 07, 1.0, 9.0, M, , , ,0000*18

Table 2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Position	161229.487		hhmmss.sss
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Position Fix Indicator	1		See Table 2-1
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude	9.0	meters	
Units	M	meters	
Geoid Separation		meters	
Units	M	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*18		
<cr><lf></lf></cr>			End of message termination

Table 2-1 Position Fix Indicator

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3	GPS PPS Mode, fix valid

GLL-Geographic Position – Latitude/Longitude

Table 3 contains the values of the following

example:\$GPGLL, 3723.2475, N, 12158.3416, W, 161229.487, A*2C

Table 3 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		Dddmm.mmmm
E/W Indicator	W		E=east or W=west
UTC Position	161229.487		hhmmss.ss
Status	Α		A=data valid or V=data not valid
Checksum	*2C		
<cr><lf></lf></cr>			End of message termination

GSA-GNSS DOP and Active Satellites

Table 4 contains the values of the following

example:\$GPGSA, A, 3, 07, 02, 26, 27, 09, 04, 15, , , , , , 1.8,1.0,1.5*33

Table 4 GSA Data Format

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	Α		See Table 4-2
Mode 2	3		See Table 4-1
Satellite Used	07		Sv on Channel 1
Satellite Used	02		Sv on Channel 2
Satellite Used			Sv on Channel 12
PDOP	1.8		Position Dilution of Precision
HDOP	1.0		Horizontal Dilution of Precision
VDOP	1.5		Vertical Dilution of Precision
Checksum	*33		
<cr><lf></lf></cr>			End of message termination

Table 4-1 Mode 1

Value	Description
1	Fix not available
2	2D
3	3D

Table 4-2 Mode 2

Value	Description
M	Manual-forced to operate in 2D or 3D mode
А	Automatic-allowed to automatically switch 2D/3D

GSV-GNSS Satellites in View

Table 5 contains the values of the following example: \$GPGSV, 2, 1, 07, 07, 79, 048, 42, 02, 51, 062, 43, 26, 36,

256, 42, 27, 27, 138, 42*71\$GPGSV, 2, 2, 07, 09, 23, 313, 42, 04, 19, 159, 41, 15, 12, 041, 42*41

Table 5 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of Messages ¹	2		Range 1 to 3
Messages Number ¹	1		Range 1 to 3
Satellites in View	07		
Satellite ID	07		Channel 1(Range 1 to 32)
Elevation	79	degrees	Channel 1(Maximum 90)
Azimuth	048	degrees	Channel 1(True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
Satellite ID	27		Channel 4(Range 1 to 32)
Elevation	27	degrees	Channel 4(Maximum 90)
Azimuth	138	degrees	Channel 4(True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<cr><lf></lf></cr>			End of message termination

¹Depending on the number of satellites

Specific GNSS Data

tracked multiple messages of GSV data may be required.

Table 6 contains the values of the following example: \$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598, ,*10

RMC-Recommended Minimum

Table 6 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Position	161229.487		hhmmss.sss
Status	Α		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	knots	
Course Over Ground	309.62	degrees	True
Date	120598		ddmmyy
Magnetic Variation		degrees	E=east or W=west
Checksum	*10		
<cr><lf></lf></cr>			End of message termination

example:\$GPVTG, 309.62, T, , M, 0.13, N,

VTG-Course Over Ground and

Ground Speed

0.2, K*6E

Table 7 contains the values of the following

Table 7 VTG Data Format

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading
Reference	T		True
Course		degrees	Measured heading
Reference	M		Magnetic
Speed	0.13	knots	Measured horizontal speed
Units	N		Knots
Speed	0.2	km/hr	Measured horizontal speed
Units	K		Kilometer per hour
Checksum	*6E		
<cr><lf></lf></cr>			End of message termination

GPS Receiver User's Tip

- 1. GPS signal will be affected by weather and environment conditions, thus suggest to use the GPS receiver under less shielding environments to ensure GPS receiver has better receiving performance.
- 2. When GPS receiver is moving, it will prolong the time to fix the position, so suggest to wait for the satellite signals to be locked at a fixed point when first power-on the GPS receiver to ensure to lock the GPS signal at the shortest time.
- 3. The following situation will affect the GPS receiving performance:
 - a. Solar control filmed windows.
 - b. Metal shielded, such as umbrella, or in vehicle.
 - c. Among high buildings.
 - d. Under bridges or tunnels.
 - e. Under high voltage cables or near by radio wave sources, such as mobile phone base stations.
 - f. Bad or heavy cloudy weather.
- 4. If the satellite signals can not be locked or encounter receiving problem (while in the urban area), the following steps are suggested:
 - a. Please plug the external active antenna into GPS receiver and put the antenna on outdoor or the roof of the vehicle for better receiving performance.
 - b. Move to another open space or reposition GPS receiver toward the direction with less blockage.
 - c. Move the GPS receiver away from the interferences resources.
 - d. Wait until the weather condition is improved.

<u>Professor RGM-3000/REB-3000</u> <u>GPS Module Operational Manual)</u>

5. While a GPS with a backup battery, the GPS receiver can fix a position immediately at next power-on if the build-in backup battery is full-recharged.