Intelligence artificielle

Agents logiques

Elise Bonzon elise.bonzon@u-paris.fr

LIPADE - Université de Paris http://www.math-info.univ-paris5.fr/~bonzon/

Motivations

- Agents fondés sur les connaissances
 - Représentation des connaissances
 - Processus de raisonnement

Motivations

- Agents fondés sur les connaissances
 - Représentation des connaissances
 - Processus de raisonnement
- ⇒ Tirer parti de connaissances grâce à une capacité à combiner et recombiner des informations pour les adapter à une multitude de fins.
 - → Mathématicien démontre un théorème
 - → Astronome calcule la durée de vie de la Terre

Motivations

- Agents fondés sur les connaissances
 - Représentation des connaissances
 - Processus de raisonnement
- ⇒ Tirer parti de connaissances grâce à une capacité à combiner et recombiner des informations pour les adapter à une multitude de fins.
 - -> Mathématicien démontre un théorème
 - → Astronome calcule la durée de vie de la Terre
- ⇒ Environnements partiellement observables : combiner connaissances générales et percepts reçus pour inférer des aspects cachés de l'état courant.
 - → Médecin ausculte un patient
 - → Compréhension du langage naturel :
 - "John a vu le diamant à travers le carreau et l'a convoité"
 - "John a lancé un caillou à travers le carreau et l'a cassé"
 - Connaissances de sens commun

Agents logiques

- 1. Agents fondés sur les connaissances
- 2. Le monde du Wumpus
- 3. Principe généraux de la logique
- 4. Logique propositionnelle
- 5. Schémas de raisonnement en logique propositionnelle
- 6. Agents basés sur la logique propositionnelle
- 7. Conclusion

connaissances

Agents fondés sur les

Base de connaissances (BC)

- Base de connaissances : ensemble d'énoncés exprimés dans un langage formel
- Les agents logiques peuvent être vus :
 - au niveau des connaissances : ce qu'ils savent, quelle que soit l'implémentation
 - au niveau des implémentations : structures de données dans la base de connaissances, et les algorithmes qui les manipulent
- Approche déclarative pour construire la base de connaissances
 - Tell : ce qu'ils doivent savoir
 - Ask : demander ce qu'ils doivent faire. La réponse doit résulter de la base de connaissances

Agent basé sur les connaissances

Un agent basé sur les connaissances doit être capable de :

- Représenter les états, les actions
- Incorporer de nouvelles perceptions
- Mettre à jour sa représentation interne du monde
- Déduire les propriétés cachées du monde
- Déduire les actions appropriées

Exemple simple d'un agent basé sur les connaissances

```
Programme agent basé sur les connaissances fonction KB-Agent(percept) retourne action variables statiques : KB, base de connaissances t, compteur initialisé à 0, indique le temps  \text{Tell}(KB, \, \text{Make-percept-sentence}(percept, \, t))  action \leftarrow \text{Ask}(KB, \, \text{Make-action-query}(t))  \text{Tell}(KB, \, \text{Make-action-sentence}(action, \, t))  t \leftarrow t+1 retourner action
```

Le monde du Wumpus

Le monde du Wumpus

Environnement

- Agent commence en case [1,1]
- Cases adjacentes au Wumpus sentent mauvais
- Brise dans les cases adjacentes aux puits
- Lueur dans la cases contenant de l'or
- Tirer tue le Wumpus s'il est en face
- On ne peut tirer qu'une fois
- S'il est tué, le Wumpus crie
- Choc si l'agent se heurte à un mur
- Saisir l'or si même case que l'agent
- Capteurs : odeur, brise, lueur, choc, cri
- Percepts: liste de 5 symboles
 Ex: [odeur, brise, rien, rien, rien]
- Actions: tourne gauche, tourne droite, avance, attrape, tire

- Mesures de performance :
 - ullet or : +1000;
 - mort : -1000 ;
 - action : -1;
 - utiliser la flèche : -10

- Totalement observable
- Déterministe
- Episodique
- Statique
- Discret
- Mono-agent

- Totalement observable Non. Perception locale uniquement
- Déterministe
- Episodique
- Statique
- Discret
- Mono-agent

- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique
- Statique
- Discret
- Mono-agent

- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique Non. Séquentiel au niveau des actions
- Statique
- Discret
- Mono-agent

- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique Non. Séquentiel au niveau des actions
- Statique Oui. Le Wumpus et les puits ne bougent pas
- Discret
- Mono-agent

- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique Non. Séquentiel au niveau des actions
- Statique Oui. Le Wumpus et les puits ne bougent pas
- Discret Oui
- Mono-agent

- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique Non. Séquentiel au niveau des actions
- Statique Oui. Le Wumpus et les puits ne bougent pas
- Discret Oui
- Mono-agent Oui. Le Wumpus est une caractéristique de la nature

Principe généraux de la logique

Principe généraux de la logique

- Logique : langage formel permettant de représenter des informations à partir desquelles on peut tirer des conclusions
- La syntaxe désigne les phrases (ou énoncés) bien formées dans le langage
- La sémantique désigne la signification, le sens de ces phrases
- Par exemple, dans le langage arithmétique :
 - x + y = 4 est une phrase syntaxiquement correcte
 - x4y+= n'en est pas une
 - 2 + 3 = 4 est une phrase syntaxiquement correcte mais sémantiquement incorrecte
 - x + y = 4 est vraie ssi x et y sont des nombres, et que leur somme fait 4
 - x + y = 4 est vraie dans un monde où x = 1 et y = 3
 - x + y = 4 est fausse dans un monde où x = 2 et y = 1

Relation de conséquences

- Relation de conséquences : un énoncé découle logiquement d'un autre énoncé : $\alpha \models \beta$
- $\alpha \models \beta$ est vraie si et seulement si β est vraie dans tous mondes où α est vraie
 - Si α est vraie, β doit être vraie
 - Par exemple, $(x + y = 4) \models (x + y \le 4)$
- Base de connaissances = ensemble d'énoncés. Une BC a un énoncé pour conséquence : $BC \models \alpha$
- La relation de conséquences est une relation entre des énoncés (la syntaxe) basée sur la sémantique

Les modèles

- Les logiciens pensent en terme de modèles, qui sont des mondes structurés dans lesquels la vérité ou la fausseté de chaque énoncé peut être évaluée
- m est un modèle de l'énoncé α si α est vraie dans m
- $M(\alpha)$ est l'ensemble de tous les modèles de α
- $BC \models \alpha$ si et seulement si $M(BC) \subseteq M(\alpha)$

Relation de conséquences dans le monde du Wumpus

- Situation après avoir effectué
 - Rien en [1,1]
 - Droite
 - Brise en [2,1]
- Considérer les modèles possible pour la base de connaissances en ne considérant que les puits
- $2^3 = 8$ modèles possibles

Modèles du monde du Wumpus

Modèles du monde du Wumpus

 $\bullet \ \ \mathsf{BC} = \mathsf{r\`egles} \ \mathsf{du} \ \mathsf{monde} \ \mathsf{Wumpus} + \mathsf{observations}$

Modèles du monde du Wumpus

- $\bullet \ \ \mathsf{BC} = \mathsf{r\`egles} \ \mathsf{du} \ \mathsf{monde} \ \mathsf{Wumpus} + \mathsf{observations}$
- $\alpha_1 =$ "[1,2] est sans puits"

Modèles du monde du Wumpus

- BC = règles du monde Wumpus + observations
- $\alpha_1 =$ "[1,2] est sans puits"
- $BC \models \alpha_1$, prouvé par vérification des modèles (*model checking*)

Modèles du monde du Wumpus

- $\bullet \ \ \mathsf{BC} = \mathsf{r\`egles} \ \mathsf{du} \ \mathsf{monde} \ \mathsf{Wumpus} + \mathsf{observations}$
- $\alpha_2 =$ "[2,2] est sans puits"
- $BC \not\models \alpha_2$

Inférence logique

- $KB \vdash_i \alpha$: l'énoncé α est dérivé de KB par la procédure i
- Validité (soundness) : i est valide si, lorsque $KB \vdash_i \alpha$ est vrai, alors $KB \models \alpha$ est également vrai
- Complétude (completness) : i est complète si, lorsque $KB \models \alpha$ est vrai, alors $KB \vdash_i \alpha$ est également vrai
- Une procédure valide et complète permet de répondre à toute question dont la réponse peut être déduite de la base de connaissances

Logique propositionnelle

Logique propositionnelle

Syntaxe

Logique propositionelle - syntaxe

- Les atomes :
 - Constantes logiques ⊤ (vrai) et ⊥ (faux)
 - Symbole propositionnel : proposition qui peut être vraie ou fausse a, b, c...
- Les connecteurs logiques :
 - ¬ (négation)
 - ∧ (et)
 - \langle (ou)
 - ⇒ (implication)
 - ⇔ (équivalence)
- Un atome (précédé ou non de ¬) est appelé un littéral
- Les formules bien formées (wffs)

Logique propositionelle - syntaxe

Formule bien formée

- Tout atome est une wff
- Si E_1 et E_2 sont des wffs, alors
 - $\neg E_1$ est une wff (négation)
 - $E_1 \wedge E_2$ est une wff (conjonction)
 - $E_1 \vee E_2$ est une wff (disjonction)
 - $E_1 \Rightarrow E_2$ est une wff (implication)
 - $E_1 \Leftrightarrow E_2$ est une wff (équivalence)
- Ordre de priorité des opérateurs : $\neg > \land > \lor > \Rightarrow, \Leftrightarrow$

Base de connaissances du monde du Wumpus (simplifié)

- ullet $P_{i,j}$ vrai s'il y a un puits en [i,j]
- $B_{i,j}$ vrai s'il y a une brise en [i,j]
- Base de connaissances :
 - $R_1 : \neg P_{1,1}$
 - Brise ssi puits dans une case adjacente :

$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$\textit{R}_{3}:\textit{B}_{2,1}\Leftrightarrow \left(\textit{P}_{1,1}\vee\textit{P}_{2,2}\vee\textit{P}_{3,1}\right)$$

- $R_4 : \neg B_{1,1}$
- $R_5: B_{2,1}$
- BC : $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$

Sémantique

Logique propositionnelle

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $\bullet \ m_1 = \{P_{1,1} = \textit{Faux}, \ P_{2,2} = \textit{Faux}, \ P_{3,1} = \textit{Vrai}\}$

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles
- Règles pour évaluer un énoncé en fonction d'un modèle m :

 $\neg E$ est vrai ssi E est faux

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles
- Règles pour évaluer un énoncé en fonction d'un modèle m :

$$\neg E$$
 est vrai ssi E est faux $E_1 \wedge E_2$ est vrai ssi E_1 est vrai **et** E_2 est vrai

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles
- Règles pour évaluer un énoncé en fonction d'un modèle m :

```
eg E est vrai ssi E est faux E_1 \wedge E_2 est vrai ssi E_1 est vrai et E_2 est vrai E_1 \vee E_2 est vrai ssi E_1 est vrai ou E_2 est vrai
```

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles
- Règles pour évaluer un énoncé en fonction d'un modèle m :

```
eg E est vrai ssi E est faux E_1 \wedge E_2 est vrai ssi E_1 est vrai et E_2 est vrai E_1 \vee E_2 est vrai ssi E_1 est vrai ou E_2 est vrai E_1 \Rightarrow E_2 est vrai ssi E_1 est faux ou E_2 est vrai
```

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles
- Règles pour évaluer un énoncé en fonction d'un modèle m :

```
\neg E
 est vrai ssi E est faux
E_1 \land E_2 est vrai ssi E_1 est vrai et E_2 est vrai
E_1 \lor E_2 est vrai ssi E_1 est vrai ou E_2 est vrai
E_1 \Rightarrow E_2 est vrai ssi E_1 est faux ou E_2 est vrai
E_1 \Rightarrow E_2 est faux ssi E_1 est vrai et E_2 est faux
```

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles
- Règles pour évaluer un énoncé en fonction d'un modèle m :

```
\neg E
 est vrai ssi E est faux
E_1 \land E_2 est vrai ssi E_1 est vrai et E_2 est vrai
E_1 \lor E_2 est vrai ssi E_1 est vrai ou E_2 est vrai
E_1 \Rightarrow E_2 est vrai ssi E_1 est faux ou E_2 est vrai
E_1 \Rightarrow E_2 est faux ssi E_1 est vrai et E_2 est faux
E_1 \Leftrightarrow E_2 est vrai ssi E_1 \Rightarrow E_2 est vrai et E_2 \Rightarrow E_1 est vrai
```

Table de vérité des connecteurs logiques

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
vrai	vrai	faux	vrai	vrai	vrai	vrai
vrai	faux	faux	faux	vrai	faux	faux
faux	vrai	vrai	faux	vrai	vrai	faux
faux	faux	vrai	faux	faux	vrai	vrai

Table de vérité des connecteurs logiques

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
vrai	vrai	faux	vrai	vrai	vrai	vrai
vrai	faux	faux	faux	vrai	faux	faux
faux	vrai	vrai	faux	vrai	vrai	faux
faux	faux	vrai	faux	faux	vrai	vrai

- La valeur de vérité d'une wff est calculée récursivement en utilisant la table de vérité ci-dessus
- Une wff peut avoir différentes valeurs de vérité dans différentes interprétations (différents modèles)

Base de connaissances du monde du Wumpus (simplifié)

• 7 symboles propositionnels : $2^7 = 128$ modèles possibles

B _{1,1}	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	P _{2,2}	$P_{3,1}$	R_1	R_2	R ₃	R_4	R_5	ВС
faux	faux	faux	faux	faux	faux	faux	vrai	vrai	vrai	vrai	faux	faux
faux	faux	faux	faux	faux	faux	vrai	vrai	vrai	faux	vrai	faux	faux
:	:	:	:	:	:	:	:	:	:	:	:	:
faux	vrai	faux	faux	faux	faux	faux	vrai	vrai	faux	vrai	vrai	faux
faux	vrai	faux	faux	faux	faux	vrai	vrai	vrai	vrai	vrai	vrai	<u>vrai</u>
faux	vrai	faux	faux	faux	vrai	faux	vrai	vrai	vrai	vrai	vrai	<u>vrai</u>
faux	vrai	faux	faux	faux	vrai	vrai	vrai	vrai	vrai	vrai	vrai	<u>vrai</u>
faux	vrai	faux	faux	vrai	faux	faux	vrai	faux	faux	vrai	vrai	faux
:	:	:	:	:	:	:	:	:	:	:	:	:
vrai	vrai	vrai	vrai	vrai	vrai	vrai	faux	vrai	vrai	faux	vrai	faux

Logique propositionnelle

Inférence par énumération

Inférence par énumération

Enumération en profondeur d'abord de tous les modèles

```
fonction TT-Entails(KB, \alpha) retourne vrai ou faux
     variables statiques : KB, base de connaissances
                             \alpha, requête, énoncé propositionnel
     symboles \leftarrow liste de symboles propositionnels dans KB et \alpha
     retourner TT-Check-All(KB, \alpha, symboles, [])
fonction TT-Check-All(KB, \alpha, symboles, modele) retourne vrai ou faux
     si Empty?(symboles) alors
         si PL-True?(KB, modele) alors retourner PL-True?(\alpha, modele)
          sinon retourner vrai
     sinon faire
          P \leftarrow \mathsf{First}(\mathit{symboles}); \mathit{reste} \leftarrow \mathsf{Rest}(\mathit{symboles})
          retourner TT-Check-All(KB, \alpha, reste, Extend(P, vrai, modele))
                     et TT-Check-All(KB, \alpha, reste, Extend(P, faux, modele))
```

Inférence par énumération

- Algorithme valide et complet
- Pour *n* symboles :
 - complexité temporelle en $O(2^n)$
 - complexité spatiale en O(n)

Equivalence, validité, satisfiabilité

Logique propositionnelle

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \land \beta) \quad \equiv \quad (\beta \land \alpha) \text{ commutativit\'e de } \land$$

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$$
 commutativité de \wedge

$$\left(\alpha\vee\beta\right)\quad \equiv\quad \left(\beta\vee\alpha\right) \text{ commutativit\'e de }\vee$$

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$\begin{array}{ccc} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) \text{ commutativit\'e de } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) \text{ commutativit\'e de } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) \text{ associativit\'e de } \wedge \end{array}$$

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \land \beta) \equiv (\beta \land \alpha) \text{ commutativit\'e de } \land (\alpha \lor \beta) \equiv (\beta \lor \alpha) \text{ commutativit\'e de } \lor$$

$$((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \text{ associativit\'e de } \land ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \text{ associativit\'e de } \lor$$

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \land \beta) \equiv (\beta \land \alpha) \text{ commutativit\'e de } \land$$

$$(\alpha \lor \beta) \equiv (\beta \lor \alpha) \text{ commutativit\'e de } \lor$$

$$((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \text{ associativit\'e de } \land$$

$$((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \text{ associativit\'e de } \lor$$

$$\neg (\neg \alpha) \equiv \alpha \text{ élimination de la double n\'egation}$$

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \land \beta) \equiv (\beta \land \alpha) \text{ commutativit\'e de } \land$$

$$(\alpha \lor \beta) \equiv (\beta \lor \alpha) \text{ commutativit\'e de } \lor$$

$$((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \text{ associativit\'e de } \land$$

$$((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \text{ associativit\'e de } \lor$$

$$\neg (\neg \alpha) \equiv \alpha \text{ \'elimination de la double n\'egation}$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \text{ contraposition}$$

 Deux énoncés sont logiquement équivalents si et seulement s'ils sont vrais dans les même modèles :

 $\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \land \beta) \equiv (\beta \land \alpha) \text{ commutativit\'e de } \land$$

$$(\alpha \lor \beta) \equiv (\beta \lor \alpha) \text{ commutativit\'e de } \lor$$

$$((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \text{ associativit\'e de } \wedge$$

$$((\alpha \vee \beta) \vee \gamma) \quad \equiv \quad (\alpha \vee (\beta \vee \gamma)) \text{ associativit\'e de } \vee$$

$$\neg(\neg\alpha) \quad \equiv \quad \alpha \text{ \'elimination de la double n\'egation}$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$$
 contraposition

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$$
 élimination de l'implication

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$
 élimination de l'équivalence

 Deux énoncés sont logiquement équivalents si et seulement s'ils sont vrais dans les même modèles :

 $\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$

$$\begin{array}{lll} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) \text{ commutativit\'e de } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) \text{ commutativit\'e de } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) \text{ associativit\'e de } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) \text{ associativit\'e de } \vee \\ \neg (\neg \alpha) & \equiv & \alpha \text{ élimination de la double n\'egation} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \beta \Rightarrow \neg \alpha) \text{ contraposition} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \alpha \vee \beta) \text{ élimination de l'implication} \\ (\alpha \Leftrightarrow \beta) & \equiv & ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \text{ élimination de l'\'equivalence} \\ \neg (\alpha \wedge \beta) & \equiv & (\neg \alpha \vee \neg \beta) \text{ De Morgan} \\ \end{array}$$

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \land \beta) \equiv (\beta \land \alpha) \text{ commutativit\'e de } \land (\alpha \lor \beta) \equiv (\beta \lor \alpha) \text{ commutativit\'e de } \lor ((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \text{ associativit\'e de } \land ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \text{ associativit\'e de } \lor ((\alpha \lor \beta) \lor \gamma) \equiv \alpha \text{ élimination de la double n\'egation}$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \text{ contraposition}$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \text{ élimination de l'implication}$$

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \text{ élimination de l'équivalence}$$

$$\neg (\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) \text{ De Morgan}$$

$$\neg (\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) \text{ De Morgan}$$

 Deux énoncés sont logiquement équivalents si et seulement s'ils sont vrais dans les même modèles :

 $\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$

Equivalence logique

 Deux énoncés sont logiquement équivalents si et seulement s'ils sont vrais dans les même modèles :

 $\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$

 $\begin{array}{lll} (\alpha \wedge (\beta \vee \gamma)) & \equiv & ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \text{ distributivit\'e de } \wedge \text{ par rapport \`a} \vee \\ (\alpha \vee (\beta \wedge \gamma)) & \equiv & ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \text{ distributivit\'e de } \vee \text{ par rapport \`a} \wedge \\ \end{array}$

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

Théorème de la déduction

$$\mathit{KB} \models \alpha$$
 si et seulement si $(\mathit{KB} \Rightarrow \alpha)$ est valide

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

Théorème de la déduction

$$KB \models \alpha$$
 si et seulement si $(KB \Rightarrow \alpha)$ est valide

- Un énoncé est satisfiable s'il est vrai dans certains modèles
 - Exemples : $A \lor B$; C

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

Théorème de la déduction

$$KB \models \alpha$$
 si et seulement si $(KB \Rightarrow \alpha)$ est valide

- Un énoncé est satisfiable s'il est vrai dans certains modèles
 - Exemples : $A \lor B$; C
- Un énoncé est insatisfiable s'il n'est vrai dans aucun modèle
 - Exemple : $A \land \neg A$

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

Théorème de la déduction

$$KB \models \alpha$$
 si et seulement si $(KB \Rightarrow \alpha)$ est valide

- Un énoncé est satisfiable s'il est vrai dans certains modèles
 - Exemples : $A \lor B$; C
- Un énoncé est insatisfiable s'il n'est vrai dans aucun modèle
 - Exemple : $A \land \neg A$

Théorème de la déduction

 $KB \models \alpha$ si et seulement si $(KB \land \neg \alpha)$ est insatisfiable

Schémas de raisonnement en

logique propositionnelle

Méthodes de preuve

Les méthodes de preuves sont de deux principaux types :

- Application des règles d'inférence
 - Génération légitime (valide) de nouveaux énoncés à partir de ceux que l'on a déjà
 - Preuve : séquence d'applications des règles d'inférence
 - Nécessite la transformation des énoncés en forme normale
- Vérification des modèles (Model checking)
 - Enumération de la table de vérité (toujours exponentiel en n)
 - Amélioré par backtracking (Davis-Putnam-Logemann-Loveland (DPLL))
 - Recherche heuristique dans l'espace d'état (valide mais incomplet)

Schémas de raisonnement en

logique propositionnelle

Calcul de conséquences logiques

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable en appliquant des règles d'inférence

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable en appliquant des règles d'inférence
- $BC \vdash_i \alpha$ signifie que α peut être démontré à partir de BC grâce à la procédure i

- La déduction est une forme de raisonnement
 - Elle calcule des conséquences logiques d'une BC
 - En utilisant une procédure de démonstration : une preuve
- Un théorème est une proposition démontrable en appliquant des règles d'inférence
- $BC \vdash_i \alpha$ signifie que α peut être démontré à partir de BC grâce à la procédure i

Rappel

- Une procédure i est valide (sound) si tout ce qu'elle permet de démontrer à partir de BC est une conséquence logique de BC : si BC ⊢_i α, alors BC ⊨ α
- Une procédure i est complète si tout ce qui est conséquence logique de BC peut être démontré par i :
 si BC ⊨ α alors BC ⊢_i α

Inférence en logique propositionnelle

Pour pouvoir démontrer de nouvelles conséquences, on a besoin :

- Des règles de ré-écritures (équivalences logiques)
- Et de règles d'inférence
 - Un ensemble de conditions
 - Une partie conclusion (vraie si les conditions sont vérifiées)

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

Modus Ponens
$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$
 Elimination de la conjonction
$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$$

Modus Ponens	$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
Elimination de la conjonction	$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$
Introduction de la conjonction	$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$

Modus Ponens	$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
Elimination de la conjonction	$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$
Introduction de la conjonction	$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$
Introduction de la disjonction	$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$

Modus Ponens	$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
Elimination de la conjonction	$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$
Introduction de la conjonction	$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n}$
Introduction de la disjonction	$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$
Elimination de la double négation	$\frac{\neg \neg \alpha}{\alpha}$

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$

Elimination de l'équivalence

Introduction de l'équivalence

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$
$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$

Elimination de l'équivalence

Introduction de l'équivalence

Résolution unitaire

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$
$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$
$$\frac{\alpha \lor \beta, \neg \beta}{\alpha}$$

Elimination de l'équivalence	$\alpha \Leftrightarrow \beta$
	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
Introduction de l'équivalence	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
introduction de l'équivalence	$\alpha \Leftrightarrow \beta$
Résolution unitaire	$\alpha \vee \beta, \neg \beta$
	α
Résolution	$\underline{\alpha \vee \beta, \neg \beta \vee \gamma}$
	$\alpha \vee \gamma$

Méthodes de preuve : déduction

Déductions

Une formule A se déduit d'un ensemble de formules $\{B_1, B_2, \ldots, B_n\}$, noté $B_1, B_2, \ldots, B_n \vdash A$ s'il existe une suite finie $(A_1, A_2, \ldots, A_i, \ldots, A)$, où chaque A_i est

- Soit l'un des Bi
- Soit obtenu par l'application d'une règle d'inférence sur deux éléments A_j , A_k de la suite déjà obtenue (j, k < i).

- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4 : \neg B_{1,1}; R_5 : B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1, 2])

- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4 : \neg B_{1,1}; R_5 : B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1,2])
- Elimination de l'équivalence à R₂ :

$$R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1, 2])
- Elimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Elimination de la conjonction à R_6 : $R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$

- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1,2])
- Elimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Elimination de la conjonction à R_6 : $R_7: (P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}$
- Equivalence logique des contraposées :
 R₈ : ¬B_{1,1} ⇒ ¬(P_{1,2} ∨ P_{2,1})

- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1, 2])
- Elimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Elimination de la conjonction à R_6 : $R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$
- Equivalence logique des contraposées : $R_8 : \neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1})$
- **Modus Ponens** avec R_8 et R_4 : $R_9: \neg (P_{1,2} \lor P_{2,1})$

- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}); R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver $\neg P_{1,2}$ (pas de puits en [1, 2])
- Elimination de l'équivalence à R_2 : $R_6: (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- Elimination de la conjonction à R_6 : $R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$
- Equivalence logique des contraposées : $R_8 : \neg B_{1.1} \Rightarrow \neg (P_{1.2} \lor P_{2.1})$
- Modus Ponens avec R_8 et R_4 : $R_9: \neg (P_{1,2} \lor P_{2,1})$
- Règle de De Morgan : R_{10} : $\neg P_{1,2} \land \neg P_{2,1}$

Schémas de raisonnement en

logique propositionnelle

Preuves par résolution

Preuve par résolution : démarche

- 1. Normaliser la représentation
 - \rightarrow les formes normales : clauses
- 2. Introduction d'une règle d'inférence unique
 - \rightarrow la résolution

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Forme normale conjective (CNF)

Forme normale conjonctive (CNF) : conjonction de disjonctions de littéraux.

- Une disjonction de littéraux est une clause
- Exemple : $(a \lor \neg b) \land (b \lor \neg c \lor \neg d)$

Standardisation de la représentation

• Il existe plusieurs manières d'exprimer les mêmes propositions

$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q)$$

⇒ Besoin d'avoir une forme standardisée ou canonique

Forme normale conjective (CNF)

Forme normale conjonctive (CNF) : conjonction de disjonctions de littéraux.

- Une disjonction de littéraux est une clause
- Exemple : $(a \lor \neg b) \land (b \lor \neg c \lor \neg d)$

La transformation d'une wff en CNF est toujours possible

Traduction d'une wff en CNF

Traduction d'une wff en CNF

Jusqu'à 5 étapes nécessaires :

- 1. Eliminer les équivalences
- 2. Eliminer les implications
- 3. Faire migrer les négations "à l'intérieur"
- 4. Eliminer les doubles négations
- 5. Appliquer la loi de distributivité sur \wedge et \vee

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

Traduction d'une wff en CNF : un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

2. Eliminer les implications

Traduction d'une wff en CNF : un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg(\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg(\neg p \land (q \lor r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations

Traduction d'une wff en CNF : un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Eliminer les doubles négations

Traduction d'une wff en CNF : un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv ((p \lor \neg q) \land (p \lor \neg r)) \lor s$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Eliminer les doubles négations
 - 5. Distribuer les \land sur les \lor

Traduction d'une wff en CNF: un exemple

$$(\neg p \land (\neg q \Rightarrow r)) \Rightarrow s$$

$$\equiv \neg (\neg p \land (\neg q \Rightarrow r)) \lor s$$

$$\equiv \neg (\neg p \land (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor \neg (q \lor r)) \lor s$$

$$\equiv (\neg \neg p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv (p \lor (\neg q \land \neg r)) \lor s$$

$$\equiv ((p \lor \neg q) \land (p \lor \neg r)) \lor s$$

$$\equiv (p \lor \neg q \lor s) \land (p \lor \neg r \lor s)$$

- 2. Eliminer les implications
- 2. Eliminer les implications
 - 3. Migrer les négations
 - 3. Migrer les négations
- 4. Eliminer les doubles négations
 - 5. Distribuer les ∧ sur les ∨
 - 5. Distribuer les ∧ sur les ∨

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - ullet Si q est faux, alors p est vrai
 - ullet On peut donc conclure $(p \lor r)$

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - Si q est faux, alors p est vrai
 - On peut donc conclure $(p \lor r)$

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

$$\frac{\alpha_1 \vee \alpha_2 \vee \ldots \vee \beta \vee \ldots \vee \alpha_n, \gamma_1 \vee \gamma_2 \vee \ldots \vee \neg \beta \vee \ldots \vee \gamma_p}{\alpha_1 \vee \ldots \vee \alpha_n \vee \gamma_1 \vee \ldots \vee \gamma_p}$$

Inférence par résolution

- Idée :
 - Soient les clauses $(p \lor q)$ et $(\neg q \lor r)$
 - Si q est vrai, alors r est vrai
 - Si q est faux, alors p est vrai
 - On peut donc conclure $(p \lor r)$

Résolution unitaire
$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

• Le modus ponens est un cas particulier de la résolution

Algorithme de résolution

- Démonstration par l'absurde : pour montrer $BC \models \alpha$, on montre que $BC \land \neg \alpha$ est insatisfiable
- Méthodologie :
 - Ajouter la négation de la conclusion désirée à la base de connaissances
 - Obtention de la clause vide par résolution
- La résolution par réfutation est valide et complète pour la logique propositionnelle

Algorithme de résolution

Algorithme de résolution

```
fonction PL-Resolution(KB, \alpha) retourne vrai ou faux
clauses \leftarrow \text{ ensemble de clauses dans la représentation CNF de } KB \land \neg \alpha
nouveau \leftarrow \{\}
loop do
pour chaque C_i, C_j dans clauses faire
resolvants \leftarrow \text{PL-Résout}(C_i, C_j)
\text{si } resolvants \text{ contient la clause } vide \text{ alors retourner } vrai
nouveau \leftarrow nouveau \cup resolvants
\text{si } nouveau \subseteq clauses \text{ alors retourner } faux
clauses \leftarrow clause \cup nouveau
```

Schémas de raisonnement en

logique propositionnelle

Systèmes à base de règles

Clauses de Horn

- Clauses de Horn : disjonction de littéraux dont un au maximum est positif
 - $(\neg L_{1,1} \lor \neg Brise \lor B_{1,1})$ est une clause de Horn
 - $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$ n'est pas une clause de Horn
- Toute clause de Horn peut s'écrire sous la forme d'une implication avec
 - Prémisse = conjonction de littéraux positifs
 - Conclusion = littéral positif unique
 - $(\neg L_{1,1} \lor \neg Brise \lor B_{1,1}) = ((L_{1,1} \land Brise) \Rightarrow B_{1,1})$
- Clauses définies : clauses de Horn ayant exactement un littéral positif
- Littéral positif = tête; littéraux négatifs = corps de la clause
- Fait = clause sans littéraux négatifs

Formes de Horn

- Forme de Horn : BC = conjonction de clauses de Horn
- Modus Ponens pour les clauses de Horn :

$$\frac{\alpha_1,\ldots,\alpha_n \quad (\alpha_1\wedge\ldots\wedge\alpha_n)\Rightarrow\beta}{\beta}$$

- Ce Modus Ponens peut être utilisé pour le chaînage avant ou chaînage arrière
- Ces algorithmes sont très naturels et sont réalisés en temps linéaire

Chaînage avant

- Idée : appliquer toutes les règles dont les prémisses sont satisfaits dans la base de connaissances
- Ajouter les conclusions de ces règles dans la base de connaissances, jusqu'à ce que la requête soit satisfaite
- Le chaînage avant est valide et complet pour les bases de connaissances de Horn

Chaînage avant

Chaînage avant

```
fonction PL-FC-Entails(KB, q) retourne vrai ou faux
    variables locales :
         compteur table indexée par clause, initialement le nombre de prémisses
         infer table, indexée par symbole, chaque entrée initialement à faux
         agenda liste de symboles, initialement symboles vrais dans KB
    tant que agenda n'est pas vide faire
         p \leftarrow Pop(agenda)
         si p = q alors retourner vrai
         si non infer[p] alors faire
             infer[p] \leftarrow vrai
             pour chaque clause de Horn c dans laquelle la prémisse p apparaît faire
                 compteur[c] \leftarrow compteur[c] - 1
                 si compteur[c] = 0 alors faire Push(Head[c], agenda)
    retourner faux
```

Chaînage avant : exemple

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 $A \land B \Rightarrow C$
 $A \land C \Rightarrow$

Preuve de complétude

- La procédure de chaînage avant permet d'obtenir tout énoncé atomique pouvant être déduit de KB
 - 1. L'algorithme atteint un **point fixe** au terme duquel aucune nouvelle inférence n'est possible
 - 2. L'état final peut être vu comme un **modèle** *m* dans lequel tout symbole inféré est mis à *vrai*, tous les autres à *faux*
 - 3. Toutes les clauses définies dans la KB d'origine sont vraies dans m
 - 4. Donc *m* est un modèle de *KB*
 - 5. Si $KB \models q$ est vrai, q est vrai dans tous les modèles de KB, donc dans m

Chaînage arrière

- Idée : Partir de la requête et rebrousser chemin
 - Vérifier si q n'est pas vérifiée dans la BC
 - Chercher dans la BC les implications ayant q pour conclusion, et essayer de prouver leurs prémisses
- Eviter les boucles : vérifier si le nouveau sous-but n'est pas déjà dans la liste des buts à établir
- Eviter de répéter le même travail : vérifier si le nouveau sous-but a déjà été prouvé vrai ou faux

Chaînage arrière

$$P \Rightarrow Q$$
 $L \land M \Rightarrow P$
 $B \land L \Rightarrow M$
 $A \land P \Rightarrow L$
 $A \land B \Rightarrow L$
 A
 B

Chaînage avant vs chaînage arrière

- Chaînage avant : raisonnement piloté par les données
 - Conclusions à partir de percepts entrants
 - Pas toujours de requête spécifique en tête
 - Beaucoup de conséquences déduites, toutes ne sont pas utiles ou nécessaires
- Chaînage arrière : raisonnement piloté par le but
 - Répondre à des questions spécifiques
 - Se limite aux seuls faits pertinents
 - La complexité du chaînage arrière peut être bien inférieure à une fonction linéaire à la taille de la base de connaissances

Schémas de raisonnement en logique propositionnelle

Algorithmes efficaces d'inférence propositionnelle

Algorithmes efficaces d'inférence propositionnelle

Deux familles d'algorithmes efficaces pour l'inférence propositionnelle :

- Exploration par backtracking
 - Algorithme DPLL (Davis, Putnam, Logemann, Loveland)
- Algorithmes de recherche locale incomplète
 - Algorithme WalkSAT

• Cet algorithme détermine si un énoncé logique en CNF est satisfiable

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur
 - Instancier les littéraux des symboles purs à vrai

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - · Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur
 - Instancier les littéraux des symboles purs à vrai
 - Heuristique de la clause unitaire

Algorithme DPLL

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur
 - Instancier les littéraux des symboles purs à vrai
 - Heuristique de la clause unitaire
 - Clause unitaire : clause qui ne contient qu'un littéral

Algorithme DPLL

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
 - Elagage
 - Une clause est vraie si l'un des littéraux est vrai
 - Un énoncé est faux si l'une des clauses est fausse
 - Heuristique des symboles purs
 - Un symbole pur est un symbole qui apparaît toujours avec le même "signe" dans toutes les clauses
 - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$. A et B sont purs, C est impur
 - Instancier les littéraux des symboles purs à vrai
 - Heuristique de la clause unitaire
 - Clause unitaire : clause qui ne contient qu'un littéral
 - Ce littéral doit être vrai

Algorithme WalkSAT

- Algorithme de recherche locale incomplète
- Chaque itération : sélection d'une clause non satisfaite et un symbole à "basculer"
- Choix du symbole à basculer :
 - Fonction d'évaluation : heuristique Min-Conflicts qui minimise le nombre de clauses non satisfaites
 - Etape de parcours aléatoire qui sélectionne le symbole au hasard

Algorithme WalkSAT

Algorithme WalkSAT

fonction WalkSAT(clauses, p, max_flips) retourne un modèle satisfiable ou erreur entrées : clauses. un ensemble de clauses

p probabilité de choisir le parcours aléatoire

 max_flips le nombre de "bascules" autorisées avant de renoncer $modele \leftarrow$ affectation aléatoire de vrai/faux des symboles dans clauses pour i=1 à max_flips faire

si modele satisfait clauses alors retourner modele

 $\textit{clause} \leftarrow \text{une clause s\'electionn\'ee au hasard parmi les } \textit{clauses} \text{ fausses de } \textit{modele}$

avec la probabilité p basculer dans modele la valeur d'un symbole sélectionné au hasard dans clause

 ${f sinon}$ basculer le symbole dans ${\it clause}$ qui maximise le nombre de clauses satisfaites

retourner erreur

Problèmes de satisfiabilité difficiles

- Soit l'énoncé 3-CNF généré aléatoirement suivant :
 (¬D∨¬B∨C)∧(B∨¬A∨¬C)∧(¬C∨¬B∨E)∧(E∨¬D∨B)∧(B∨E∨¬C)
- 16 des 32 affectations possibles sont des modèles de cet énoncé
 - → en moyenne 2 tentatives aléatoires pour trouver un modèle
- Problème difficile : augmenter le nombre de clauses en laissant fixe le nombre de symboles
 - → Problème plus contraint
- *m* nombre de clauses, *n* nombre de symboles
- Problèmes difficiles : ratio aux alentours de $\frac{m}{n} = 4.3$: **point critique**

Problèmes de satisfiabilité difficiles

Problèmes de satisfiabilité difficiles

 Temps d'exécution médian sur 100 énoncés 3-CNF aléatoires satisfiables avec n=50

Agents basés sur la logique

propositionnelle

Agents basés sur la logique propositionnelle dans le monde du Wumpus

- $\neg P_{1,1}$
- $\bullet \neg W_{1.1}$
- $B_{x,y} \Leftrightarrow (P_{x,y+1} \vee P_{x,y-1} \vee P_{x+1,y} \vee P_{x-1,y})$
- $S_{x,y} \Leftrightarrow (W_{x,y+1} \vee W_{x,y-1} \vee W_{x+1,y} \vee W_{x-1,y})$
- $W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4}$
- $\neg W_{1,1} \lor \neg W_{1,2}$
- $\neg W_{1,1} \lor \neg W_{1,3}$
- ...
- ⇒ 64 symboles propositionnels distincts; 155 énoncés

Agents basés sur la LP dans le monde du Wumpus

```
fonction PL-Wumpus-Agent(percept) retourne une action
     entrées : percept : une liste [odeur, brise, lueur]
     var. statiques : KB, contenant au départ la "physique" du monde du Wumpus ;
x, y, O la position de l'agent (1, 1, droite) au départ; V un tableau indiquant les
cases visitées, initialement à faux; A action la plus récente de l'agent, initialement à
nul: P séquence d'actions, initialement vide
     si odeur alors Tell(KB, S_{x,v}) sinon Tell(KB, \neg S_{x,v})
     si brise alors Tell(KB, B_{x,y}) sinon Tell(KB, \neg B_{x,y})
     si lueur alors A \leftarrow ramasser
     sinon si P n'est pas vide alors A \leftarrow Pop(P)
       sinon si pour une case voisine [i,j], Ask(KB, \neg P_{i,j} \land \neg W_{i,j}) est vrai ou
                 pour une case voisine [i,j], Ask(KB, P_{i,j} \vee W_{i,j}) est faux
       alors P \leftarrow A^*(\text{Route-Problem}([x, y], O, [i, j], V)); A \leftarrow \text{Pop}(P)
      sinon A \leftarrow un déplacement choisi de manière aléatoire
     retourner A
```

Limitation de l'expressivité de la logique propositionnelle

- La base de connaissances doit contenir des énoncés pour représenter "physiquement" toute case
- A chaque temps t et pour chaque localisation [x, y], on a

$$L_{x,y}^t \wedge droite^t avance^t \Rightarrow L_{x+1,y}^{t+1}$$

• Prolifération très rapide des clauses

Conclusion

Conclusion

- Les agents logiques appliquent l'inférence sur une base de connaissances pour déduire de nouvelles informations et prendre une décision
- Concepts basiques de la logique
 - Syntaxe : structure formelle des énoncés
 - Sémantique : vérité de chaque énoncé dans un modèle
 - Conséquence : vérité nécessaire d'un énoncé par rapport à un autre
 - Inférence : dérivation de nouveaux énoncés à partir d'anciens
 - Validité : l'inférence ne dérive que des énoncés qui sont des conséquences
 - Complétude : l'inférence dérive tous les énoncés qui sont des conséquences
- La résolution est complète pour la logique propositionnelle
- Les chaînages avant et arrière sont linéaire en temps, et complets pour les clauses de Horn
- La logique propositionnelle manque de pouvoir d'expression