

Dr. rer. nat. Johannes Riesterer

Kameraprojektion

Shaderprogramm

OpenGL Pipeline

```
<script id="2d-vertex-shader" type="x-shader/x-vertex">
    attribute vec2 a position;
    uniform float t:
    varying float T;
    void main() {
   // gl_Position = vec4(a_position, 0.0, t);
   T = t:
    gl_Position = vec4(a_position[0], a_position[1], 0.0, 1.0);
</script>
<script id="2d-fragment-shader" type="x-shader/x-fragment">
    precision mediump float;
    varying float T;
    void main() {
    gl_FragColor = vec4(0.0 ,1.0,0.0,1.0);
</script>
```

Basis

Basis

Sind b_1, b_2, b_3 einer unabhängig, dann heisst die geordnete Menge $B = \{b_1, b_2, b_3\}$ Basis des \mathbb{R}^3 .

Basisdarstellung

Für $v \in \mathbb{R}^3$ heisst

$$heta_B: \mathbb{R}^3 o \mathbb{R}^3$$
 $heta_B(v) = egin{pmatrix} \lambda_1 \ \lambda_2 \ \lambda_3 \end{pmatrix}$ mit $\lambda_1 \cdot b_1 + \lambda_2 \cdot b_2 + \lambda_3 \cdot b_3 = v$

Darstellung von v bezüglich der Basis B.

Basiswechsel

Basiswechsel berechnen

$$\theta_B(v) = M_B \cdot v$$
, $M_B := \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}^{-1}$ (column major)

Basiswechsel

Seien $B:=\{b_1,\ldots,b_n\}$ und $B':=\{b'_1,\ldots,b'_n\}$ zwei Basen des \mathbb{R}^n . Dann heißt $M_B^{B'}:=M_{B'}\cdot M_B^{-1}$ die Basiswechselmatrix von B nach B'. Wir haben also folgende Situation:

Skalarprodukt

Skalarproduktt

$$\langle v, w \rangle := v^t \cdot w = \sum_{i=1}^3 v_i \cdot w_i$$

Zwei vom Nullvektor verschiedene Vektoren $u, v \in \mathbb{R}^n$ heißen orthogonal, falls < u, v >= 0 ist.

Norm

$$||v|| := \sqrt{\langle v, v \rangle} := v^t \cdot w = \sqrt{\sum_{i=1}^3 v_i^2}$$

Ein Vektor v heißt normal, falls ||v||=1 ist. Ist w ein beliebiger Vektor, so heißt $\frac{1}{||w||}w$ die Normalisierung von w, denn er ist normal.

Satz

Für den von zwei Vektoren u, v eingeschlossenen Winkel φ gilt:

$$\cos(\varphi) = \frac{\langle u, v \rangle}{||u|| \cdot ||v||}$$

Kreuzprodukt

Kreuzprodukt

Für
$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 und $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ heißt

$$u \times v := \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

das Kreuzprodukt von u und v. Es gilt

- \bullet < $u \times v$, $u > = < u \times v$, v > = 0
- $u \times v = -(v \times u)$
- $u \times v = 0$ genau dann, wenn u und v linear abhängig sind.

Orthonormalbasis

Eine Basis $B := \{b_1, b_2, b_3\}$ heißt Orthonormalbasis (kurz ONB), falls

$$\langle b_i, b_j \rangle = \begin{cases} 1 \text{ falls } i = j \\ 0 \text{ sonst} \end{cases}$$

gilt. Insbesondere sind alle b_i normal.

Basis-Wechsel-Matrix

Ist $B := \{b_1, \dots, b_n\}$ eine ONB, so gilt

$$M_B^{-1} = M_B^t$$

Drehungen

Eine Matrix $O \in \mathbb{M}^{n \times n}$ heißt orthogonal, falls $O^{-1} = O^t$ ist. Sie ist genau dann orthogonal, falls

$$\det(O) \in \{-1, 1\}$$
.

Ist $\det(O) = 1$, so nennen wir O eine Drehung und $SO(n) := \{O \in \mathbb{M}^{n \times n} | \det(O) = 1\}$ die Drehgruppe (oder auch spezielle orthogonale Gruppe).

Basis-Wechsel-Matrix

Sei $O \in \mathbb{M}^{n \times n}$ eine orthogonale Matrix, dann gilt für alles $v, w \in \mathbb{R}^n$

$$< O \cdot v , O \cdot w > = < v , w >$$

und somit insbesondere

$$||O\cdot v|| = ||v||.$$

Eulerwinkel

Jede Drehung $O \in SO(3)$ lässt sich zerlegen in ein Produkt

$$O = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & \pm \sin(\phi) \\ 0 & \mp \sin(\phi) & \cos(\phi) \end{pmatrix} \cdot \begin{pmatrix} \cos(\psi) & 0 & \sin(\psi) \\ 0 & 1 & 0 \\ -\sin(\psi) & 0 & \cos(\psi) \end{pmatrix} \cdot \begin{pmatrix} \cos(\xi) & \sin(\xi) & 0 \\ -\sin(\xi) & \cos(\xi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Die Winkel ϕ, ψ, ξ heißen Eulerwinkel.

Eulerwinkel

Die Zerlegung $O \in SO(3)$ einer Drehung in obiges Produkt ist nicht eindeutig. Ein anschauliches Beispiel dafür liefert der sogenannte "Gimbal lock". SO(3) ist also nicht das Produkt von drei Intervallen sondern es ist $SO(3) = S^3/\{\pm 1\}$.

Affiner Raum

Der Affine Raum \mathbb{A}^3 ist ein Tupel $\left(\mathbb{R}^3, (\mathbb{R}^3, +, \cdot)\right)$ zusammen mit den Abbildung

$$-: \mathbb{R}^3 \times \mathbb{R}^3 \to (\mathbb{R}^3, +, \cdot)$$
$$\overline{PQ} := Q - P$$

und

$$+: \mathbb{R}^{n} \times (\mathbb{R}^{3}, +, \cdot) \to \mathbb{R}^{3}$$

$$\begin{pmatrix} P_{1} \\ \vdots \\ P_{3} \end{pmatrix} + \begin{pmatrix} v_{1} \\ \vdots \\ v_{3} \end{pmatrix} := \begin{pmatrix} P_{1} + v_{1} \\ \vdots \\ P_{3} + v_{3} \end{pmatrix} .$$

Affiner Raum

Die Elemente (Vektoren) aus \mathbb{R}^3 nennt man auch Punkte in Abgrenzung zu den Vektoren aus $(\mathbb{R}^3,+,\cdot)$. Für Punkte $P,Q\in\mathbb{R}^3$ ist also \overline{PQ} ein Vektor, auch Verbindungsvektor genannt.

Affine basis

Ist $B:=\{b_1,b_2,b_3\}$ eine Basis des Vektorraums $(\mathbb{R}^3,+,\cdot)$ und $P\in\mathbb{A}$ ein Punkt, so nennen wir das Tupel (P,B) eine affine Basis. Für jeden Punkt Q gibt es dann also Skalare $\lambda_1,\ldots,\lambda_n$ mit

$$Q = P + \sum_{i=1}^{3} \lambda_i \cdot b_i .$$

Der Punkt $\theta_{(P,B)}(Q) := \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$ heißt die Darstellung von Q bezüglich der affinen Basis (P,B).

Affine Abbildung

Abbildungen der Form

$$\phi: \mathbb{A}^3 \to \mathbb{A}^3$$
$$\phi(P) := A \cdot P + t$$

mit $A \in M^{3\times3}$ und $t \in (\mathbb{R}^3, +, \cdot)$ heißen affine Abbildungen. Insbesondere heißt eine affine Abbildung mit $A = I_3$ und $t \neq 0$ Translation.

Abstand

Der Abstand von $P, Q \in \mathbb{A}$ ist definiert durch

$$d: \mathbb{A}^3 \times \mathbb{A}^3 \to \mathbb{R}$$

$$d(P,Q) := ||\overline{PQ}||$$
.

Affiner Basiswechsel

Sind $(P, B := \{b_1, \dots, b_n\})$ und $(P', B' := \{b'_1, \dots, b'_n\})$ zwei affine Basen und definieren wir die Abbildung

$$heta_{(P,B)}: \mathbb{A}^n \to \mathbb{A}^n$$

$$heta_{(P,B)}(Q) := M_B \cdot Q - M_B \cdot P = M_B(Q - P),$$

so erhalten wir analog zu der Situation in Vektorräumen

$$\mathbb{A}^{n} \stackrel{\theta^{-1}}{\longleftarrow} \mathbb{A}^{n}$$

$$\downarrow \text{id} \qquad \qquad \downarrow \theta^{(P',B')} \qquad \qquad \downarrow \theta^{(P',B')} \\
\mathbb{A}^{n} \stackrel{\theta(P',B')}{\longrightarrow} \mathbb{A}^{n}$$

$$\text{mit } \theta_{(P,B)}^{(P',B')}(Q) := \theta_{(P',B')}\bigg(\theta_{(P,B)}^{-1}(Q)\bigg).$$

Projektier Raum

Der projektive Raum ist definiert als

$$\mathbb{P}^3 := \mathbb{R}^4 - \{0\}/\sim$$

$$v \sim w \Leftrightarrow v = \lambda w \text{ für ein } \lambda \neq 0 \in \mathbb{R} \text{ .}$$

Homogene Koordinaten

Wir haben die Abbildung

$$\mathbb{A}^3 \to \mathbb{P}^3$$

$$\begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \mapsto \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$$

und nennen das Bild eines Punktes unter dieser Abbildung die homogenen Koordinaten.

Homogene Koordinaten

Auf der Menge der homogenen Koordinaten haben wir die Umkehrabbildung

$$\mathbb{P}^{3} - \left\{ \begin{pmatrix} p_{1} \\ p_{2} \\ p_{3} \\ p_{4} \end{pmatrix} \middle| p_{4} = 0 \right\} \to \mathbb{A}^{3}$$

$$\begin{pmatrix} p_{1} \\ p_{2} \\ p_{3} \\ p_{4} \end{pmatrix} \mapsto \begin{pmatrix} \frac{p_{1}}{p_{4}} \\ \frac{p_{2}}{p_{4}} \\ \frac{p_{3}}{p_{4}} \end{pmatrix}.$$

Ferne Punkte

Die Menge der Punkte $F_3 := \left\{ \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{pmatrix} \middle| p_4 = 0 \right\}$ heissen unendlich

ferne Punkte.

$$\begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 0 \end{pmatrix} = \lim_{n \to \infty} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \frac{1}{n} \end{pmatrix} \cong \lim_{n \to \infty} n \cdot \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

Identifikation der fernen Punkte

Es ist $F_3 \cong \mathbb{P}^2$

Zerlegung des projektiven Raum

Der projektive Raum ist damit die Vereinigung des Affinen Raumes und den unendlich fernen Punkten. "Parallelen schneiden sich in den unendlich fernen Punkten". Es gilt also

$$\mathbb{P}^3 = \mathbb{A}^3 \cup F_3 = \mathbb{A}^3 \cup \mathbb{P}^2 = \mathbb{A}^3 \cup \mathbb{A}^2 \cup F_2$$
$$= \mathbb{A}^3 \cup \mathbb{A}^2 \cup \mathbb{P}^1 = \mathbb{A}^3 \cup \mathbb{A}^2 \cup \mathbb{S}^1 / \{\pm 1\}$$
$$= \mathbb{A}^3 \cup \mathbb{A}^2 \cup \mathbb{S}^1$$

Projektive Abbildungen

Die Matrizenmultiplikation

$$\mathbb{R}^4 \to \mathbb{R}^4$$
$$v \mapsto A \cdot v$$

setzt sich wegen der Eigenschaft $A\cdot(\lambda v)=\lambda A\cdot v$ zu einer Abbildung

$$\mathbb{P}^3 \to \mathbb{P}^3$$
$$p \mapsto A \cdot p$$

fort.

Projektive Abbildungen

Wir können damit und mit der Definition der Matrix-Vektor-Multiplikation eine affine Abbildung

$$\phi: \mathbb{A}^3 \to \mathbb{A}^3$$
$$\phi(v) := A \cdot v + t$$

in homogenen Koordinate ausdrücken durch eine Matrizenmultiplikation

$$\begin{pmatrix} v \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} A & t \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} v \\ 1 \end{pmatrix} \ .$$

Zentralprojektion

Die Matrizen

$$\mathcal{K}_{persp_{xy}} := egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & rac{1}{d} & 0 \end{pmatrix}, \mathcal{K}_{orth_{xy}} := egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} \; ,$$

realisieren die Zentralprojektion auf die Ebene parallel zur X-Y-Ebene und Augenpunkt im Ursprung mit Augendistanz d in homogenen Koordinaten.

Zentralprojektion

Die Zentralprojektion auf die Ebene parallel zur X-Y-Ebene und Augenpunkt im Ursprung mit Augendistanz d durch die Hintereinanderausführung folgender Abbildungen darstellen:

$$\begin{aligned} & \textit{persp}_{xy} : \mathbb{R}^{3} \to \mathbb{P}^{3} \to \mathbb{P}^{3} \to \mathbb{P}^{2} \to \mathbb{R}^{2} \\ & \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \mapsto K_{\textit{persp}_{xy}} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ \frac{z}{d} \end{pmatrix} \\ & \mapsto K_{\textit{orth}_{xy}} \cdot \begin{pmatrix} x \\ y \\ z \\ \frac{z}{d} \end{pmatrix} = \begin{pmatrix} x \\ y \\ \frac{z}{d} \end{pmatrix} \mapsto \begin{pmatrix} \frac{x}{2} \\ \frac{y}{2} \\ \frac{z}{d} \end{pmatrix} \end{aligned}$$

Clipping Koordinaten

$$P := \begin{pmatrix} \frac{n}{r} & 0 & 0 & 0\\ 0 & \frac{n}{t} & 0 & 0\\ 0 & 0 & \frac{-f-n}{f-n} & \frac{-2 \cdot f \cdot n}{f-n}\\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

MVP := ModelViewProjectionMatrix

Bresenham

Die Strecke $S = \overline{PQ} \in \mathbb{R}^n$ soll auf ein (n-dimensionales Pixel-) Raster abgebildet werden

$$P = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
 $Q = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ $\forall x_i, y_i \in \mathbb{R}$ $M_p = \left(x_p + 1, y_p + \frac{1}{2}\right)$

Bresenham

$$M_{p} \left\{ \begin{array}{ll} \text{oberhalb} \ \overline{PQ} & \Rightarrow & \text{w\"{a}hle} \ E \\ \text{unterhalb} \ \overline{PQ} & \Rightarrow & \text{w\"{a}hle} \ N_{E} \end{array} \right.$$

$$F(x, y) := dy \cdot x - dx \cdot y + dx \cdot b$$

$$(x, y) \in y = mx + b \Leftrightarrow F(x, y) = 0$$
bzw.
$$F(x, y) = 0 \quad (x, y) \text{ liegt auf } S$$

$$> 0 \quad (x, y) \text{ liegt unterhalb von } S$$

$$< 0 \quad (x, y) \text{ liegt oberhalb von } S$$

Bresenham

$$D_p := 2 \cdot F(M_p)$$

1. Fall: $D_p < 0 \Rightarrow \text{Nachfolgepixel ist } E$

$$D_{E} = 2 \cdot F(M_{E})$$

$$= 2 \cdot F(x_{p} + 2, y_{p} + \frac{1}{2})$$

$$= dy \cdot (2x_{p} + 4) - dx \cdot (2y_{p} + 1) + 2 \cdot b \cdot dx$$

$$= D_{p} + \triangle_{E}$$

$$\text{mit} \qquad \triangle_{E} := 2 \cdot dy$$

2. Fall: $D_p \ge 0 \Rightarrow \text{Nachfolgepixel ist } NE$

$$D_{NE} = 2 \cdot F(M_{NE})$$

$$= D_p + \triangle_{NE}$$

$$\text{mit } \triangle_{NE} := 2dy - 2dx$$

Interpolation

GLSL interpoliert Werte innerhalb eines Fragmentes linear zwischen den im Vertex-Shader gesetzten Werten. Dies kann zum Beispiel mit Hilfe eines Sweepline-Algorithmus realisiert werden.

Fläche

Ein Fläche (Parametrisierung) ist eine Abbildung

$$s: U \subset \mathbb{R}^2 \to \mathbb{R}^3$$
$$s(u, v) := \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}$$

bei der die Abbildungen $x,y,z:U\subset\mathbb{R}^2\to\mathbb{R}$ stetig sind. Sie heißt differenzierbar, falls die partiellen Ableitungen

$$\frac{\partial}{\partial u}s(u,v) = \begin{pmatrix} \frac{\partial}{\partial u}x(u,v) \\ \frac{\partial}{\partial u}y(u,v) \\ \frac{\partial}{\partial u}z(u,v) \end{pmatrix}, \ \frac{\partial}{\partial v}s(u,v) = \begin{pmatrix} \frac{\partial}{\partial v}x(u,v) \\ \frac{\partial}{\partial v}y(u,v) \\ \frac{\partial}{\partial v}z(u,v) \end{pmatrix}$$

existieren.

Tangentialraum

Die Ebene

$$T_{s}(u,v) := \{s(u,v) + \lambda \cdot \frac{\partial}{\partial u}s(u,v) + \mu \cdot \frac{\partial}{\partial v} \mid \lambda, \mu \in \mathbb{R}\}$$

heißt Tangentialebene am Punkt (u, v) und der Vektor

$$n(u,v) := \frac{\partial}{\partial u} s(u,v) \times \frac{\partial}{\partial v} s(u,v) ,$$

welcher Senkrecht auf dieser Ebene steht, die Normale.

Oberflächenintegral

Das OberflächenIntegral ist definiert durch

$$\int_{\mathcal{S}} d\omega := \int_{U} ||n(u,v)|| \ dU \ .$$

und analog

$$\int_{\mathcal{S}} f \ d\omega := \int_{U} f(s(u,v)) \cdot ||n(u,v)|| \ dU \ .$$

für eine Funktion $f:S\to\mathbb{R}$. Man nennt $d\omega$ beziehungsweise ||n(u,v)|| das infinitessimale Flächenelement.

Fubini

Ist $U=U_1 imes U_2 \in \mathbb{R}^2$ und $f:U \to \mathbb{R}$ eine integrierbare Funktion, so gilt

$$\int_U f \ d(U_1 \times U_2) = \int_{U_1} \int_{U_2} f \ dU_2 dU_1 = \int_{U_1} \int_{U_2} f \ dU_1 dU_2 \ .$$

Die Sphäre S^2

$$s: [0, \pi) \times [0, 2\pi) \to \mathbb{R}^{3}, \ s(u, v) := \begin{pmatrix} \sin(u)\cos(v) \\ \sin(u)\sin(v) \\ \cos(u) \end{pmatrix}$$

$$\frac{\partial}{\partial u}s(u, v) = \begin{pmatrix} \cos(u)\cos(v) \\ \cos(u)\sin(v) \\ -\sin(u) \end{pmatrix}, \frac{\partial}{\partial v}s(u, v) = \begin{pmatrix} -\sin(u)\sin(v) \\ \sin(u)\cos(v) \\ 0 \end{pmatrix}$$

$$||\frac{\partial}{\partial u}s(u, v) \times \frac{\partial}{\partial v}s(u, v)|| = \sin(u)$$

$$\int_{S^2} d\omega = \int_{[0,\pi)\times[0,2\pi)} \sin(u)d(u\times v) = \int_{[0,2\pi)} \int_{[0,\pi)} \sin(u)dudv$$
$$= 4\pi$$

Transformationsformel

$$d\omega = \frac{1}{r^2} \cdot \cos(\theta) dA, \ \pi(x) := \frac{x}{||x||} \tag{1}$$

$$V(x,y) := \begin{cases} 1 \text{ falls } \overline{xy} \cap (A - \{x,y\}) = \emptyset \\ 0 \text{ sonst} \end{cases}$$
 (2)

$$\int_{\pi(A)} f \cdot d\omega = \int_{A} f \cdot \frac{1}{r^{2}} \cdot \cos(\theta) \cdot V(a, 0) \ dA \ , \tag{3}$$