S.No.: 306 BCS 3504

No. of Printed Pages: 05

B. Tech. Examination, 2024-25

(Odd Semester)

AUTOMATA THEORY

Time: Three Hours] [Maximum Marks: 60

Note: Attempt all questions.

SECTION-A

- 1. Attempt all parts of the following: $8 \times 1 = 8$
 - (a) Give the examples/applications designed as fintie state system.
 - (b) Draw the finite automata that accept a string over (0, 1) having three CS consecutive 0's.
 - (c) List the closure properties of regular language.
 - (d) Design a regular expression that accepts all the string for input alphabet {a, b} containing exactly 2 a's.

BCS 3504

2

- (c) Define context free grammar and ambiguity in context to grammar.
- (1) Discuss the definition of Push Down Automata (PDA).
- (g) What are the features of universal turing machine?
- (h) What do you understand by Halting problem?

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Construct a minimum state automation equivalent to the fintie automata:

State	0	1
→ q0	q1	q5
q1 (Final State)	q 6	q2
q2	q0	q2
• q3	q2	q6
q4	q7	q5
q 5	q2	q6
q6	q6	q4
q7	q6	q2

(b) Apply Arden's theorem to find the regular expression of the language for given finite automata:

- (c) Describe context free grammar and pushdown automata.
- (d) Construct a turing machine to convert a binary string to its 1's complement.

SECTION-C

- Note: Attempt all questions. Attempt any two parts from each questions. $8 \times 5 = 40$
- 3. (a) Cosntruct a DFA which accept a language of all binary string divisible by 5 over Σ (0, 1).
 - (b) Give the complete description about the Chomsky hierarchy.
 - (c) Design a FA to accept the string that always ends with 101.

- 4. (a) Prove that $L = \{a^i b^i | i \ge 0\}$ is not regular.
 - (b) Construct the given Mealy machine into Moore machine:

- (c) State and prove the closure properties of context free language.
- 5. (a) Convert the grammar

$$S \rightarrow AB, A \rightarrow BS|b, B \rightarrow SA|a$$
 into GNF.

(b) Design a push down automata for:

$$L = \{ W c W^{R} | W \in (a, b)^{+} \}$$

(c) Consider the grammar given below:

$$S \rightarrow A \mid B, A \rightarrow 0 \mid A \mid \epsilon, B \rightarrow 0 \mid B \mid B \mid \epsilon$$

Give the Leftmost and Rightmost derivation for the string 1001.

- 6. (a) Write short notes on any two of the following:
 - (i) Universal TM
 - (ii) Halting problem
 - (iii) Church's thesis
 - (b) Design a TM for the following language:

$$L = \{a^n b^n c^n \mid n \ge 1\}$$

(c) Define decidable, undecidable and post correspondence problems in automata.
