Branch-and-Bound Algorithms for ℓ_0 -Regularized Problems

Théo Guyard Inria and Insa Rennes

PhD defense - November 27th, 2024

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

1) Loss f(Ax)

Models the quantity to minimize in the application at hand

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

1) Loss f(Ax)

Models the quantity to minimize in the application at hand 2) ℓ_0 -norm $\|\mathbf{x}\|_0$

Counts non-zeros in its input to promote sparse solutions

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

1) Loss f(Ax)

Models the quantity to minimize in the application at hand 2) ℓ_0 -norm $\|\mathbf{x}\|_0$

Counts non-zeros in its input to promote sparse solutions

3) Penalty h(x)

Linked to the application or artificially introduced to enable solution methods

$$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$$

small loss

few non-zeros

Solutions

small penalty

A. Tillmann *et. al* (2024)

A. Tillmann et. al (2024)

A. Tillmann et. al (2024)

A. Tillmann et. al (2024)

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Question

How to design generic and efficient solution methods?

$$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$$

Question

How to design generic and efficient solution methods?

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Question

How to design generic and efficient solution methods?

Properties

- non-convex
- non-smooth
- non-continuous
- ...

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Question

How to design generic and efficient solution methods?

Properties

- non-convex
- non-smooth
- non-continuous
- ...

Can be tackled using generic MIP solvers

D. Bertsimas et. al (2016)

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Quadratic $/ \ h$: Bound constraint

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} / f$: Quadratic / h: Bound constraint

Problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} / f$: Quadratic / h: Bound constraint

Problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Quadratic / h: Bound constraint

Can we do better?

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Quadratic $/ \ h$: Bound constraint

Branch-and-Bound Algorithms

Explore regions in the feasible space and prune those that cannot contain any optimal solution.

Branching – Region management **Bounding** – Pruning test evaluation

BnB - How to construct regions in the feasible space?

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

BnB - How to construct regions in the feasible space ?

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Observation

Solutions expected to be sparse

BnB – How to construct regions in the feasible space ?

Problem

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

ObservationSolutions expected to be sparse

Method

Drive the sparsity of the optimization variable

BnB – How to construct regions in the feasible space?

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Observation

Solutions expected to be sparse

Method

Drive the sparsity of the optimization variable

BnB – How to construct regions in the feasible space ?

BnB – How to construct regions in the feasible space?

BnB - How to construct regions in the feasible space?

BnB – How to construct regions in the feasible space ?

BnB – How to construct regions in the feasible space ?

BnB – How to construct regions in the feasible space?

BnB – How to construct regions in the feasible space?

BnB – How to construct regions in the feasible space?

BnB - How to construct regions in the feasible space?

BnB – How to construct regions in the feasible space ?

BnB - How to construct regions in the feasible space?

BnB - How to construct regions in the feasible space?

Pruning test Solutions in region ν ?

Pruning test

Solutions in region ν ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

Pruning test

Pruning test

Pruning test

Pruning test

Solutions in region ν ?

Easy task

Compute an upper bound on p^*

Pruning test

Solutions in region ν ?

Easy task

Compute an upper bound on p^{\star}

Construct and evaluate a feasible vector in each region explored to refine $p_{\rm ub}^{\star}$

Pruning test

Solutions in region ν ?

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

Main challenge

Compute a lower bound on p^{ν}

$$\begin{aligned} & \text{Restriction to region } \nu \\ & p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$$

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Requirement 1 – Tight lower bound on p^{ν} **Requirement 2** – Tractable lower bound on p^{ν}

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Requirement 1 – Tight lower bound on p^{ν} Requirement 2 – Tractable lower bound on p^{ν}

Standard strategy

Construct and solve a relaxation

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \frac{\lambda ||\mathbf{x}||_0 + h(\mathbf{x})}{g(\mathbf{x})}$$

Requirement 1 – Tight lower bound on p^{ν} **Requirement 2** – Tractable lower bound on p^{ν}

Standard strategy

Construct and solve a relaxation

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \frac{\lambda ||\mathbf{x}||_0 + h(\mathbf{x})}{g(\mathbf{x})}$$

Requirement 1 – Tight lower bound on p^{ν} Requirement 2 – Tractable lower bound on p^{ν}

Standard strategy

Construct and solve a relaxation

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\mathsf{lb}}(\mathbf{x})$$

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \frac{\lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})}{g(\mathbf{x})}$$

Requirement 1 – Tight lower bound on p^{ν} Requirement 2 – Tractable lower bound on p^{ν}

Standard strategy

Construct and solve a relaxation

Relaxation for region
$$\nu$$

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \nu} \, f(\mathsf{Ax}) + \underline{\mathsf{g}_{\mathsf{lb}}}(\mathsf{x})$$

$$g_{\mathrm{lb}} \leq g$$

 g_{lb} convex

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \frac{\lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})}{g(\mathbf{x})}$$

Requirement 1 – Tight lower bound on p^{ν} **Requirement 2** – Tractable lower bound on p^{ν}

Standard strategy

Construct and solve a relaxation

Relaxation for region
$$\nu$$

$$g_{lb} \leq g$$

 g_{lb} convex

 $p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\mathsf{lb}}(\mathbf{x})$

Lower bound $p_{\mathsf{lb}}^{\nu} \leq p^{\nu}$

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Quadratic $/ \ h$: Bound constraint

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

 $A \in R^{100 \times 300} / f$: Quadratic / h: Bound constraint

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Quadratic $/ \ h$: Bound constraint

Observation

Better performance with BnB solvers ... but they are instance-specific

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Logistic / h: Bound cstr. $+ \ \ell_1$ -norm

Problem

$$\rightarrow g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$
 \longrightarrow many applications

Axis 1

How to construct relaxations generically ?

Manuscript - Chap. 3

 \rightarrow Journal paper (202x)

Axis 1 – How to construct

relaxations generically?

Axis 1 – Generic relaxation construction

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$

$$g(\mathbf{x}) = \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

lower bound on p^{ν}

Axis 1 – Generic relaxation construction

Restriction to region
$$\nu$$
 $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ $p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$ lower bound on p^{ν} standard strategy

Relaxation for region ν $g_{lb} \leq g$ g_{lb} convex

Axis 1 – Generic relaxation construction

Axis 1 – Generic relaxation construction

Generalization by setting $\mathbf{g}_{\mathsf{lb}} = \mathbf{g}_{\mathsf{cvx}}$

Axis 1 – Generic relaxation construction

Generalization by setting $g_{lb} = g_{cvx}$

- \rightarrow h proper, closed, convex
- h o h separable, even, supercoercive, $h \geq h(\mathbf{0}) = 0$

Spotlight result

The convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ admits a closed-form expression.

Spotlight result

The convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ admits a closed-form expression.

Theorem (1d version) – Let $g(x) = \lambda ||x||_0 + h(x)$, one has

$$\mathbf{g}_{\mathsf{cvx}}(x) = egin{cases} au | x | & \text{if } |x| \leq \mu \\ h(x) + \lambda & \text{otherwise} \end{cases}$$

where (τ,μ) are some "easy-to-compute" quantities.

Spotlight result

The convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ admits a closed-form expression.

Theorem (1d version) – Let $g(x) = \lambda ||x||_0 + h(x)$, one has

$$g_{\text{cvx}}(x) = \begin{cases} \tau |x| & \text{if } |x| \le \mu \\ h(x) + \lambda & \text{otherwise} \end{cases}$$

g \text{\lambda} \times \times

where $\left(\tau,\mu\right)$ are some "easy-to-compute" quantities.

Spotlight result

The convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ admits a closed-form expression.

Theorem (1d version) – Let $g(x) = \lambda ||x||_0 + h(x)$, one has

$$g_{\text{cvx}}(x) = \begin{cases} \tau |x| & \text{if } |x| \le \mu \\ h(x) + \lambda & \text{otherwise} \end{cases}$$

g x

where $\left(\tau,\mu\right)$ are some "easy-to-compute" quantities.

Spotlight result

The convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ admits a closed-form expression.

Theorem (1d version) – Let $g(x) = \lambda ||x||_0 + h(x)$, one has

$$g_{\text{cvx}}(x) = \begin{cases} \tau |x| & \text{if } |x| \le \mu \\ h(x) + \lambda & \text{otherwise} \end{cases}$$

β λ γ γ γ ×

where (τ,μ) are some "easy-to-compute" quantities.

Spotlight result

The convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ admits a closed-form expression.

Theorem (1d version) – Let $g(x) = \lambda ||x||_0 + h(x)$, one has

$$g_{\text{cvx}}(x) = \begin{cases} \tau |x| & \text{if } |x| \le \mu \\ h(x) + \lambda & \text{otherwise} \end{cases}$$

g_{cvx} λ τ λ

where (τ,μ) are some "easy-to-compute" quantities.

Spotlight result

The convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ admits a closed-form expression.

Theorem (1d version) – Let $g(x) = \lambda ||x||_0 + h(x)$, one has

$$g_{\text{cvx}}(x) = \begin{cases} \tau | x| & \text{if } |x| \le \mu \\ h(x) + \lambda & \text{otherwise} \end{cases}$$

where (au, μ) are some "easy-to-compute" quantities.

Generic relaxation construction

Characterize $g_{lb} = g_{cvx}$

Encompasses prior contributions

Spotlight result

The convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ admits a closed-form expression.

Theorem (1d version) – Let $g(x) = \lambda ||x||_0 + h(x)$, one has

$$g_{\text{cvx}}(x) = \begin{cases} \tau |x| & \text{if } |x| \le \mu \\ h(x) + \lambda & \text{otherwise} \end{cases}$$

g g v x

where $\left(\tau,\mu\right)$ are some "easy-to-compute" quantities.

Generic relaxation construction

Characterize $g_{lb} = g_{cvx}$ Encompasses prior contributions

Practical relaxation construction

Closed-form for ∂g_{cvx} and $\text{prox}_{g_{\text{cvx}}}$ Enables standard solution methods

Axis 1 – Numerics

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Logistic $/ \ h$: Bound cstr. $+ \ \ell_1$ -norm

Axis 1 – Numerics

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Logistic $/ \ h$: Bound cstr. $+ \ \ell_1$ -norm

Axis 1 – Numerics

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Logistic / h: Bound cstr. $+ \ \ell_1$ -norm

El0ps is a generic BnB solver with state-of-the-art performance

Let's recap

Axis 1

How to construct relaxations generically?

- 1) Set $g_{lb} = g_{cvx}$
- 2) Closed-form expression
- 3) Generalize BnB method

Let's recap

Problem
$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \qquad \Rightarrow \text{many applications}$$

$$\Rightarrow p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \qquad \Rightarrow \text{pruning test}$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \qquad \Rightarrow \text{lower bound on } p^{\nu}$$

$$\Rightarrow \text{Relaxation for region } \nu$$

$$p^{\nu}_{\text{lb}} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\text{lb}}(\mathbf{x}) \qquad \Rightarrow \text{instance-specific construction of } g_{\text{lb}}$$

Avie 1

How to construct relaxations generically?

- 1) Set $g_{lb} = g_{cvx}$
- 2) Closed-form expression
- 3) Generalize BnB method

Axis 2

How to solve relaxations efficiently?

Manuscript - Chap. 6

- \rightarrow ICASSP (2022)
- \rightarrow Journal paper (202x)

Axis 2 – How to solve relaxations

efficiently?

Axis 2 - Convex optimization

Relaxation for region
$$\nu$$
 $\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\text{cvx}}(\mathbf{x})$

Axis 2 - Convex optimization

Axis 2 – Convex optimization

Axis 2 – Convex optimization

Axis 2 - Convex optimization

Axis 2 - Convex optimization

Proximal gradient Coordinate descent

. . .

Axis 2 – Convex optimization

Proximal gradient

Coordinate descent

Solving cost

cost per iteration

×

number of iterations

Axis 2 - Convex optimization

Axis 2 – Convex optimization

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

Task

Reduce the solving cost

Reduce the dimension of x

Convex problem

 \tilde{g} non-smooth at $\mathbf{x} = \mathbf{0}$ $lack {lack}$ sparse solution \mathbf{x}^{\star}

Axis 2 – Screening and smoothing tests

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

Axis 2 – Screening and smoothing tests

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

Dual problem

 $\max_{\mathbf{u} \in \mathbf{R}^m} D(\mathbf{u})$

Axis 2 – Screening and smoothing tests

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

if strong duality holds

$$\mathbf{A}^{\mathrm{T}}\mathbf{u}^{\star} \in \partial \tilde{\mathbf{g}}(\mathbf{x}^{\star})$$

Dual problem

 $\max_{\mathbf{u}\in\mathbf{R}^m}D(\mathbf{u})$

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

if strong duality holds

$$\mathbf{A}^{\mathrm{T}}\mathbf{u}^{\star} \in \partial \tilde{g}(\mathbf{x}^{\star})$$

Dual problem

 $\max_{\mathbf{u}\in\mathbf{R}^m}D(\mathbf{u})$

Intermediate result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a dual solution \mathbf{u}^* .

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

if strong duality holds

$$\mathbf{A}^{\mathrm{T}}\mathbf{u}^{\star} \in \partial \tilde{\mathbf{g}}(\mathbf{x}^{\star})$$

Dual problem

 $\max_{\mathbf{u}\in\mathbf{R}^m}D(\mathbf{u})$

Intermediate result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a dual solution \mathbf{u}^* .

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

if strong duality holds

$$\mathbf{A}^{\mathrm{T}}\mathbf{u}^{\star}\in\partial\widetilde{g}(\mathbf{x}^{\star})$$

Dual problem

 $\max_{\mathbf{u}\in\mathbf{R}^m}D(\mathbf{u})$

Intermediate result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a dual solution \mathbf{u}^* .

Spotlight result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a safe region \mathcal{R} .

remind
$$\tilde{g}(\mathbf{x}) = \sum_{i=1}^{n} \tilde{g}_i(x_i)$$

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

if strong duality holds

$$\mathbf{A}^{\mathrm{T}}\mathbf{u}^{\star}\in\partial\tilde{\mathbf{g}}(\mathbf{x}^{\star})$$

Dual problem

 $\max_{\mathbf{u} \in \mathbf{R}^m} D(\mathbf{u})$

Intermediate result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a dual solution \mathbf{u}^* .

Spotlight result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a safe region \mathcal{R} .

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

if strong duality holds

$$\mathbf{A}^{\mathrm{T}}\mathbf{u}^{\star} \in \partial \tilde{\mathbf{g}}(\mathbf{x}^{\star})$$

Dual problem

 $\max_{\mathbf{u} \in \mathbf{R}^m} D(\mathbf{u})$

Intermediate result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a dual solution \mathbf{u}^* .

Spotlight result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a safe region \mathcal{R} .

Theorem – Given a safe region \mathcal{R} , note $\mathbf{a}^{\mathrm{T}}\mathcal{R}=\left\{\mathbf{a}^{\mathrm{T}}\mathbf{u}\mid\mathbf{u}\in\mathcal{R}\right\}$, one has

Screening test: $\mathbf{a}_i^{\mathrm{T}} \mathcal{R} \subseteq \mathrm{int}(\partial \tilde{g}_i(0)) \implies x_i^{\star} = 0$

Smoothing test: $\mathbf{a}_i^{\mathrm{T}} \mathcal{R} \subseteq \mathrm{cmpl}(\partial \tilde{g}_i(0)) \implies x_i^{\star} \neq 0$

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

if strong duality holds

$$\mathbf{A}^{\mathrm{T}}\mathbf{u}^{\star}\in\partial\widetilde{g}(\mathbf{x}^{\star})$$

Dual problem

 $\max_{\mathbf{u} \in \mathbf{R}^m} D(\mathbf{u})$

Intermediate result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a dual solution \mathbf{u}^* .

Spotlight result

Some zeros and non-zeros in \mathbf{x}^* can be identified from a safe region \mathcal{R} .

Theorem – Given a safe region \mathcal{R} , note $\mathbf{a}^{\mathrm{T}}\mathcal{R}=\left\{\mathbf{a}^{\mathrm{T}}\mathbf{u}\mid\mathbf{u}\in\mathcal{R}\right\}$, one has

Screening test: $\mathbf{a}_i^{\mathrm{T}} \mathcal{R} \subseteq \mathrm{int}(\partial \tilde{g}_i(0)) \implies x_i^{\star} = 0$

Smoothing test: $\mathbf{a}_i^\mathrm{T} \mathcal{R} \subseteq \mathrm{cmpl}(\partial \tilde{g}_i(0)) \implies x_i^\star \neq 0$

easy to evaluate if ${\mathcal R}$ has a simple shape

X

18/28

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Logistic / $\tilde{\mathbf{g}}$: Elastic-net

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

 $\mathbf{A} \in \mathbf{R}^{100 \times 300} \ / \ f$: Logistic / $\tilde{\mathbf{g}}$: Elastic-net

Accelerated proximal gradient

- Vanilla method
- With screening
- With screening and smoothing

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

Accelerated proximal gradient

- Vanilla method
- With screening
- With screening and smoothing

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

Accelerated proximal gradient

- Vanilla method
- With screening
- With screening and smoothing

 1^{st} -order $\rightarrow 2^{\text{nd}}$ -order Faster convergence

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

Accelerated proximal gradient

- Vanilla method
- With screening
- With screening and smoothing

 1^{st} -order $\rightarrow 2^{\text{nd}}$ -order

Faster convergence

More expensive iterations

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

Accelerated proximal gradient

- Vanilla method
- With screening
- With screening and smoothing

 1^{st} -order $\rightarrow 2^{\text{nd}}$ -order

Faster convergence

More expensive iterations

What about the solving time?

Convex problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$

Accelerated proximal gradient

- Vanilla method
- With screening
- With screening and smoothing

Let's recap

Problem
$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \qquad \Rightarrow \text{many applications}$$

$$\Rightarrow p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \qquad \Rightarrow \text{pruning test}$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \qquad \Rightarrow \text{lower bound on } p^{\nu}$$

$$\Rightarrow \text{Relaxation for region } \nu$$

$$p^{\nu}_{\text{lb}} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\text{lb}}(\mathbf{x}) \qquad \Rightarrow \text{instance-specific construction of } g_{\text{lb}}$$

Avic 1

How to construct relaxations generically?

- 1) Set $g_{lb} = g_{cvx}$
- 2) Closed-form expression
- 3) Generalize BnB method

Axis 2

How to solve relaxations efficiently?

- 1) Cast as convex problem
- 2) Screening/smoothing
- 3) Reduce solving cost

Let's recap

Problem $\rightarrow g(\mathbf{x}) = \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$ $p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$ → many applications BnB algorithm Restriction to region ν → pruning test $p^{\nu} = \min_{\mathbf{x} \in \mathcal{V}} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$ \rightarrow lower bound on p^{ν} standard strategy Relaxation for region ν instance-specific $p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\mathsf{lb}}(\mathbf{x})$ construction of g_{lb}

Axis 1

How to construct relaxations generically?

- 1) Set $g_{lb} = g_{cvx}$
- 2) Closed-form expression
- 3) Generalize BnB method

Axis 2

How to solve relaxations efficiently?

- 1) Cast as convex problem
- 2) Screening/smoothing
- 3) Reduce solving cost

Axis 3

How to improve the standard strategy?

Manuscript - Chap. 4-5

- \rightarrow ICASSP (2022)
- → EUSIPCO (2023)
- \rightarrow ICML (2024)

20/28

Axis 3 – How to improve the

standard strategy?

Solving time

Solving time

Solving time

Question

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$
 $\Rightarrow g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

Question

Question

Question

Axis 3 - Dual bounds

Question

Can we balance the complexity/tightness tradeoff when computing the lower bound on p^{ν} ?

Any evaluation of D^{ν} gives a lower-bound on ρ^{ν}

Standard lower bound

$$p^
u \geq p^
u_{\mathsf{lb}}$$

Tight but expensive

Dual lower bound

$$p^{\nu} \geq D^{\nu}(\mathbf{u})$$

Rough but economical

Standard lower bound

$$p^
u \geq p^
u_{\mathsf{lb}}$$

Tight but expensive

Dual lower bound

$$p^{\nu} \geq D^{\nu}(\mathbf{u})$$

Rough but economical

A. Atamtürk et al. (2020) / G. Samain et al. (2023)

Standard lower bound

 $p^
u \geq p^
u_{\mathsf{lb}}$

Tight but expensive

Dual lower bound

 $p^{\nu} \geq D^{\nu}(\mathbf{u})$

Rough but economical

A. Atamtürk et al. (2020) / G. Samain et al. (2023)

Spotlight result

Successor nodes in the BnB tree share similar dual lower bounds.

Standard lower bound

$$p^
u \geq p^
u_{
m lb}$$

Tight but expensive

Dual lower bound

$$p^{\nu} \geq D^{\nu}(\mathbf{u})$$

Rough but economical

A. Atamtürk et al. (2020) / G. Samain et al. (2023)

Spotlight result

Successor nodes in the BnB tree share similar dual lower bounds.

Standard lower bound

$$p^
u \geq p^
u_{
m lb}$$

Tight but expensive

Dual lower bound

$$p^{\nu} \geq D^{\nu}(\mathbf{u})$$

Rough but economical

A. Atamtürk et al. (2020) / G. Samain et al. (2023)

Spotlight result

Successor nodes in the BnB tree share similar dual lower bounds.

$$D^{\nu_{i,b}}(\mathbf{u}) = D^{\nu}(\mathbf{u}) + \Delta^{i,b}(\mathbf{u})$$

Standard lower bound

$$p^
u \geq p^
u_{\mathsf{lb}}$$

Tight but expensive

Dual lower bound

$$p^{\nu} \geq D^{\nu}(\mathbf{u})$$

Rough but economical

A. Atamtürk et al. (2020) / G. Samain et al. (2023)

Spotlight result

Successor nodes in the BnB tree share similar dual lower bounds.

$$D^{
u_{i,b}}(\mathbf{u}) = D^{
u}(\mathbf{u}) + \Delta^{i,b}(\mathbf{u})$$
 Independent of $u_{i,b}$ Virtually cost-free

Standard lower bound

$$p^
u \geq p^
u_{\mathsf{lb}}$$

Tight but expensive

Dual lower bound

$$p^{\nu} \geq D^{\nu}(\mathbf{u})$$

Rough but economical

A. Atamtürk et al. (2020) / G. Samain et al. (2023)

Spotlight result

Successor nodes in the BnB tree share similar dual lower bounds.

$$D^{\nu_{i,b}}(\mathbf{u}) = D^{\nu}(\mathbf{u}) + \Delta^{i,b}(\mathbf{u})$$
 Independent of $\nu_{i,b}$ Virtually cost-free

Standard lower bound

$$p^
u \geq p^
u_{\mathsf{lb}}$$

Tight but expensive

Dual lower bound

$$p^{\nu} \geq D^{\nu}(\mathbf{u})$$

Rough but economical

A. Atamtürk et al. (2020) / G. Samain et al. (2023)

Spotlight result

Successor nodes in the BnB tree share similar dual lower bounds.

$$D^{\nu_{i,b}}(\mathbf{u}) = D^{\nu}(\mathbf{u}) + \Delta^{i,b}(\mathbf{u})$$
 Independent of $\nu_{i,b}$ Virtually cost-free

Standard pruning

Standard pruning

Standard pruning

Standard pruning

Standard pruning

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Obtain $D^{\nu}(\mathbf{u})$ during node processing Test all successors with dual bounds

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Obtain $D^{\nu}(\mathbf{u})$ during node processing Test all successors with dual bounds

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Obtain $D^{\nu}(\mathbf{u})$ during node processing Test all successors with dual bounds

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Obtain $D^{\nu}(\mathbf{u})$ during node processing Test all successors with dual bounds

Standard pruning

Solve one relaxation per node Select two successors to test next

Slow and costly tree expansion

Simultaneous pruning

Obtain $D^{\nu}(\mathbf{u})$ during node processing Test all successors with dual bounds

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

$$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$$

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

$\begin{aligned} & \textbf{Problem} \\ & \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \end{aligned}$

Let's recap

Problem
$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \qquad \Rightarrow \text{many applications}$$

BnB algorithm

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \qquad \Rightarrow \text{pruning test}$$

$$\Rightarrow \text{lower bound on } p^{\nu}$$

standard strategy

Relaxation for region ν

$$p^{\nu}_{\text{lb}} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\text{lb}}(\mathbf{x}) \qquad \Rightarrow \text{instance-specific}$$

$$\text{construction of } g_{\text{lb}}$$

Axis 1

How to construct relaxations generically?

- 1) Set $g_{lb} = g_{cvx}$
- 2) Closed-form expression
- 3) Generalize BnB method

Axis 2

How to solve relaxations efficiently?

- 1) Cast as convex problem
- 2) Screening/smoothing
- 3) Accelerate solution

Axis 3

How to improve the standard strategy?

- 1) Dual bound $D^{
 u}(\mathbf{u}) \leq p^{
 u}$
- 2) Link between successors
- 3) Change of paradigm

Conclusion

Contributions

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

minimize loss / sparse solutions

Contributions

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

minimize loss / sparse solutions

Question

How to design generic and efficient solution methods?

Contributions

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

minimize loss / sparse solutions

Question

How to design generic and efficient solution methods?

1) Generic solver

Axis 1

BnB solver with generic framework

Contributions

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

minimize loss / sparse solutions

Question

How to design generic and efficient solution methods?

- 1) Generic solver
 - Axis 1

BnB solver with generic framework

- 2) Efficient solver
 - Axis 2 & 3

Efficient relaxation solution, simultaneous pruning

Contributions

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

minimize loss / sparse solutions

Question

How to design generic and efficient solution methods?

- 1) Generic solver
 - Axis 1

BnB solver with generic framework

- 2) Efficient solver
 - Axis 2 & 3

Efficient relaxation solution, simultaneous pruning

- 3) Practical solver
 - EI0ps

Flexible with state-ofthe-art performance

Extension to other formulations

Minimize loss $f(\mathbf{A}\mathbf{x})$ Force sparsity with $\|\mathbf{x}\|_0$

Regularized version

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \frac{\lambda \|\mathbf{x}\|_0}{\|\mathbf{x}\|_0}$

Extension to other formulations

Minimize loss $f(\mathbf{A}\mathbf{x})$ Force sparsity with $\|\mathbf{x}\|_0$

Regularized version

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \frac{\lambda \|\mathbf{x}\|_0}{\|\mathbf{x}\|_0}$

Constrained version

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \le k$

Extension to other formulations

Minimize loss $f(\mathbf{A}\mathbf{x})$ Force sparsity with $\|\mathbf{x}\|_0$

Regularized version

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0$

Constrained version

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \le k$

 \rightarrow non-separability of the ℓ_0 -norm constraint

Extension to other formulations

Minimize loss $f(\mathbf{A}\mathbf{x})$ Force sparsity with $\|\mathbf{x}\|_0$ contributions

Regularized version $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0$

Constrained version $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \leq k$

 \rightarrow non-separability of the ℓ_0 -norm constraint

Towards stronger relaxations

Restriction to region ν $\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$ lower bound

Convex relaxation

$$\min_{\mathbf{x}\in\nu}f(\mathbf{A}\mathbf{x})+g_{cvx}(\mathbf{x})$$

Extension to other formulations

Minimize loss f(Ax)Force sparsity with $\|\mathbf{x}\|_0$ contributions

Regularized version $\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0$

Constrained version $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{A}\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \leq k \quad \min_{\mathbf{x} \in \mathcal{V}} f(\mathbf{A}\mathbf{x}) + g_{\text{non-cvx}}(\mathbf{x})$

 \rightarrow non-separability of the ℓ_0 -norm constraint

Towards stronger relaxations

Restriction to region ν $\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$ lower bound Convex relaxation $\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \mathbf{g}_{cvx}(\mathbf{x})$

Non-cvx relaxation

improve

Extension to other formulations

Minimize loss $f(\mathbf{A}\mathbf{x})$ Force sparsity with $\|\mathbf{x}\|_0$ contributions

Regularized version $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda ||\mathbf{x}||_0$

Constrained version

 \rightarrow non-separability of the ℓ_0 -norm constraint

Towards stronger relaxations

Restriction to region ν

Convex relaxation

Non-cvx relaxation

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{A}\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \le k \quad \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\text{non-cvx}}(\mathbf{x})$$

ightarrow tune $g_{\text{non-cvx}}$ to preserve the overall convexity

Extension to other formulations

Minimize loss $f(\mathbf{A}\mathbf{x})$ Force sparsity with $\|\mathbf{x}\|_0$ contributions

Regularized version $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0$

Constrained version $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{A}\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \le k$

 \rightarrow non-separability of the $\ell_0\text{-norm}$ constraint

Towards stronger relaxations

Restriction to region ν $\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$

Convex relaxation

$$\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \mathbf{g}_{cvx}(\mathbf{x})$$

Non-cvx relaxation

$$\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \mathbf{g}_{\text{non-cvx}}(\mathbf{x})$$

ightarrow tune $g_{\text{non-cvx}}$ to preserve the overall convexity

Broader exploitation of smoothing tests

Convex problem

Screen/smooth tests

$$x_i^{\star} = 0 \text{ or } x_i^{\star} \neq 0$$

Extension to other formulations

Minimize loss $f(\mathbf{A}\mathbf{x})$ Force sparsity with $\|\mathbf{x}\|_0$ contributions

Regularized version $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \frac{\lambda ||\mathbf{x}||_0}{\|\mathbf{x}\|_0}$

Constrained version

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \le k$$

ightarrow non-separability of the ℓ_0 -norm constraint

Towards stronger relaxations

Restriction to region ν

Convex relaxation

$$\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \mathbf{g}_{\text{cvx}}(\mathbf{x})$$

Non-cvx relaxation

$$\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g_{\text{non-cvx}}(\mathbf{x})$$

ightarrow tune $g_{\text{non-cvx}}$ to preserve the overall convexity

Broader exploitation of smoothing tests

Convex problem

Screen/smooth tests

$$x_i^{\star} = 0 \text{ or } x_i^{\star} \neq 0$$

Set $x_i = 0$

Tailored to any instance

iny instanc

Extension to other formulations

Minimize loss $f(\mathbf{A}\mathbf{x})$ Force sparsity with $\|\mathbf{x}\|_0$ contributions

Regularized version $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda ||\mathbf{x}||_0$

Constrained version $\min_{x \in \mathbb{R}^n} f(Ax)$ s.t. $||x||_0 \le k$

 \rightarrow non-separability of the $\ell_0\text{-norm}$ constraint

Towards stronger relaxations

Restriction to region ν

Convex relaxation

$$\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \mathbf{g}_{\text{cvx}}(\mathbf{x})$$

Non-cvx relaxation

$$\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \mathbf{g}_{\text{non-cvx}}(\mathbf{x})$$

 \rightarrow tune $g_{\text{non-cvx}}$ to preserve the overall convexity

Broader exploitation of smoothing tests

Convex problem

Screen/smooth tests

$$x_i^{\star} = 0 \text{ or } x_i^{\star} \neq 0$$

Set $x_i = 0$ Tailored to any instance

Smooth \tilde{g}_i Depends on

the instance

Extension to other formulations

Minimize loss f(Ax)Force sparsity with $\|\mathbf{x}\|_0$ contributions

Regularized version $\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0$

Constrained version $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \leq k$

 \rightarrow non-separability of the ℓ_0 -norm constraint

Towards stronger relaxations

Restriction to region ν $\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$

Convex relaxation

$$\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \mathbf{g}_{\text{cvx}}(\mathbf{x})$$
improve

Non-cvx relaxation

$$\min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + \mathbf{g}_{\text{non-cvx}}(\mathbf{x})$$

 \rightarrow tune $g_{\text{non-cvx}}$ to preserve the overall convexity

Broader exploitation of smoothing tests

Convex problem

Screen/smooth tests

$$x_i^* = 0 \text{ or } x_i^* \neq 0$$

Tailored to any instance

Set $x_i = 0$ Smooth \tilde{g}_i Depends on the instance

 \rightarrow Newton accel. for proximal identification G. Bareilles et al. (2022)

Question time!

Context – Machine learning application

Tabular ML dataset

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$	a _{1,2}		$a_{1,n}$	<i>y</i> ₁
Sample 2	a _{2,1}			a _{2,n}	
Sample 3	a _{3,1}	$A \in R^{m}$	×n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \text{weights } \mathbf{x} \in \mathbf{R}^n \Longrightarrow \text{Target } \mathbf{y} = \phi(\mathbf{A}\mathbf{x})$$

Context - Algebra application

Sparse Component Analysis

Goal

Given $M \in \mathbb{R}^{m \times n}$, find $D \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$ such that $M \simeq DB$ with sparse columns in B.

Optimization problem

 $\min_{\mathbf{D} \in \mathsf{R}^{m imes r}, \mathbf{B} \in \mathsf{R}^{r imes n}} rac{1}{2} \|\mathbf{M} - \mathbf{D} \mathbf{B}\|_F^2 + \lambda \sum_{i=1}^n \|\mathbf{b}_i\|_0$

J. Cohen, N. Gillis (2019)

Extract material abundance map from hyperspectral image

Context – Operation research application

Max. capacity per edge: 10 Edge construction cost: 5

Which edges to build to transport flows from source to sink nodes?

Network design

$$\begin{cases} \min \ Q(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 \\ \text{s.t.} \ \mathbf{D}\mathbf{x} \leq \mathbf{d}, \ \mathbf{x} \leq \mathbf{c} \\ \mathbf{x} \in \mathbf{R}_+^{\operatorname{card}(E)} \end{cases}$$

Q: transportation cost

 λ : unit construction cost

 $Dx \le d$: flow conservation $x \le c$: capacity constraint

Context – Signal processing application

Optimization problem $\min_{\mathbf{x} \in \mathbf{R}^n} \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_2^2$ sparsity-inducing function \mathbf{y} Sparse optimization problem $\min_{\mathbf{x} \in \mathbf{R}^n} \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_2^2 + \lambda \| \mathbf{x} \|_0$

Context – Balancing solution quality and problem hardness

Riboflavin dataset - P. Bühlmann et al. (2014)

Colony	AADK	AAPA	ABFA	ABH	 ZUR	B2 prod.
#1	8.49	8.11	8.32	10.28	 7.42	-6.64 -5.43
#2	7.29	6.39	11.32	9.42	 6.99	-5.43
#71	 6.85	 8.27	7.98	8.04	 6.65	 -7.58

4,088 genes

Context – Balancing solution quality and problem hardness

Context - Balancing solution quality and problem hardness

Context – **A** bit of history

Context - MIP formulation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

MIP formulation

$$\begin{cases} \min \ f(\mathbf{A}\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} + h(\mathbf{x}) \\ \text{s.t. } \mathbf{x}_{i} = \mathbf{0} \implies \mathbf{z}_{i} = \mathbf{0}, \ \forall i \\ \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

Practical MIP formulation

$$\begin{cases} \min \ f(\mathbf{A}\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} + \mathbf{h}_{\min}(\mathbf{x}, \mathbf{z}) \\ \text{s.t. } \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \end{cases}$$

Use generic MIP solvers

Need standardized expressions linear/quadratic/conic/...

Lifted formulation

$$\|\mathbf{x}\|_0 = \mathbf{1}^{\mathrm{T}}\mathbf{z}$$
 for all $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{z} \in \{0, 1\}^n$ if $x_i = 0 \implies z_i = 0, \ \forall i$

Construct h_{mip} depending on h

$$\frac{h(\mathbf{x}) \qquad h_{\min}(\mathbf{x}, \mathbf{z})}{\eta(\|\mathbf{x}\|_{\infty} \leq M) \mid \eta(-M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{x})} \\
\alpha \|\mathbf{x}\|_{2}^{2} \qquad \sum_{i=1}^{n} \alpha^{\frac{x_{i}^{2}}{z_{i}}} \qquad 37$$

Context – Research community

Lund University M. Carlsson, C. Olsson,... Quadratic envelope Frankfurt / Wurzburg Universities C. Kanzow, A. Tillmann, ... Optimality conditions

MIT

D. Bertsimas, R. Mazmuder, ... MIO tools for ℓ_0 -problems

London Business School

J. Pauphilet, R. Cory-Wright, ... Healthcare applications

Ponts ParisTech

M. De Lara, P. Chancelier, A. Parmentier, . Non-convex analysis for ℓ_0 -norm, ML appli.

Centrale Nantes / ENSTA Bretagne

S. Bourguignon, J. Ninin, ... Branch-and-Bound for ℓ_0 -problems

Inria / CentraleSupélec

C. Herzet, C. Elvira, A. Arslan, ... Generalization, acceleration

Google Deep Mind

H. Hazimeh. A. Dedieu. ...

MIO-based heuristics and

softwares

Berkley

A. Atamtürk, A. Gomès, ...

Convex-based acceleration

IRIT / I3S

E. Soubies, L. Blanc-Féraud, Strong relax. of ℓ_0 -norm

38/28

BnB – Region separation

Axis 1 – Relaxation construction

Region
$$\nu \equiv (S_0, S_1, S_{\bullet})$$
 with
$$\begin{cases} x_i = 0 & \text{if } i \in S_0 \\ x_i \neq 0 & \text{if } i \in S_1 \\ x_i \in \mathbf{R} & \text{if } i \in S_{\bullet} \end{cases}$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$
 with $g_i(x_i) = \lambda ||x_i||_0 + h_i(x_i)$

Restriction to region
$$\nu$$

$$p^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{A}\mathbf{x}) + g^{\nu}(\mathbf{x}) \qquad \text{with} \qquad g_{i}^{\nu}(x_{i}) = \begin{cases} g_{i}(x_{i}) + \eta(x_{i} = 0) & \text{if } i \in \mathcal{S}_{0} \\ g_{i}(x_{i}) + \eta(x_{i} \neq 0) & \text{if } i \in \mathcal{S}_{1} \\ g_{i}(x_{i}) & \text{if } i \in \mathcal{S}_{\bullet} \end{cases}$$

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \min_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{A}\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

with
$$g_{i,\text{lb}}^{\nu}(x_i) = \begin{cases} \eta(x_i = 0) & \text{if } i \in \mathcal{S}_0 \\ h_i(x_i) + \lambda & \text{if } i \in \mathcal{S}_1 \\ g_{i,\text{cvx}}(x_i) & \text{if } i \in \mathcal{S}_{\bullet} \end{cases}$$

Axis 1 - Graphical interpretation

$$g(x) = \lambda ||x||_0 + h(x)$$
 convexify $f(x) = \begin{cases} \tau |x| & \text{if } |x| \le \mu \\ \lambda + h(x) & \text{otherwise} \end{cases}$

Axis 2 - Reduced and smoothed formulation

Convex problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_1 + h(\mathbf{x})$$

Knowledge of zeros/positive/negative entries in the solutions

Reduced/smoothed formulation

$$\min_{\tilde{\mathbf{x}} \in \mathbf{R}^{\tilde{n}}} f(\tilde{\mathbf{A}}\tilde{\mathbf{x}}) + \lambda \boldsymbol{\theta}^{\mathrm{T}}\tilde{\mathbf{x}} + h(\tilde{\mathbf{x}})$$

Reduced dimension $\tilde{n} \ll n$ Smooth objective if f/h smooth

1st-order methods

Proximal gradient Coordinate descent

Sub-linear/linear convergence rate Cost $\mathcal{O}(nm)$ per iteration

2nd-order methods

Newton's method

Super-linear convergence rate Cost $\mathcal{O}(\tilde{n}m)$ per iteration

Axis 2 – Graphical interpretation (dual)

Screening: $\mathbf{a}_{i}^{\mathrm{T}}\mathbf{u}^{\star} \in \mathrm{int}(\partial \tilde{\mathbf{g}}_{i}(0)) \implies \mathbf{x}_{i}^{\star} = 0$ Smoothing: $\mathbf{a}_{i}^{\mathrm{T}}\mathbf{u}^{\star} \in \mathrm{cmpl}(\partial \tilde{\mathbf{g}}_{i}(0)) \implies \mathbf{x}_{i}^{\star} \neq 0$

Axis 2 – Graphical interpretation (safe)

Safe screening: $\mathbf{a}_i^{\mathrm{T}} \mathcal{R} \subseteq \mathrm{int}(\partial \tilde{g}_i(0)) \implies x_i^* = 0$

Safe smoothing: $\mathbf{a}_i^{\mathrm{T}} \mathcal{R} \subseteq \text{cmpl}(\partial \tilde{g}_i(0)) \implies x_i^\star \neq 0$

Axis 2 – Numerics

Iterations

Accelerated proximal gradient

- Vanilla method
- With screening
- With screening and smoothing

Axis 3 — Dual relaxation

Region
$$\nu \equiv (S_0, S_1, S_{\bullet})$$
 with
$$\begin{cases} x_i = 0 & \text{if } i \in S_0 \\ x_i \neq 0 & \text{if } i \in S_1 \\ x_i \in \mathbf{R} & \text{if } i \in S_{\bullet} \end{cases}$$

Restriction to region ν

$$\begin{aligned} & \textbf{Dual relaxation for region } \nu \\ & \rho^{\nu}_{\text{dual}} = \text{max}_{\mathbf{u} \in \mathbf{R}^m} - \mathbf{f}^*(-\mathbf{u}) - (\mathbf{g}^{\nu}_{\text{lb}})^*(\mathbf{A}^{\mathrm{T}}\mathbf{u}) \text{ with } (\mathbf{g}^{\nu}_{i,\text{lb}})^*(\mathbf{a}^{\mathrm{T}}_i\mathbf{u}) = \begin{cases} 0 & \text{if } i \in \mathcal{S}_0 \\ h^*_i(\mathbf{a}^{\mathrm{T}}_i\mathbf{u}) - \lambda & \text{if } i \in \mathcal{S}_1 \\ [h^*_i(\mathbf{a}^{\mathrm{T}}_i\mathbf{u}) - \lambda]_+ & \text{if } i \in \mathcal{S}_{\bullet} \end{cases} \end{aligned}$$

Axis 3 – Combining both paradigms

Axis 4 - Relaxation strength

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + \frac{\eta(\alpha \leq \mathbf{x} \leq \beta)}{1}$$

Construct and solve a relaxation

$$g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + \eta(\alpha \le \mathbf{x} \le \beta) \to \mathbf{g}_{\text{cvx}}$$

Practical side – Large interval $[\alpha, \beta]$ to obtain relevant solutions. **Numerical side** – Small interval $[\alpha, \beta]$ to obtain strong relaxations.

Axis 4 - Peeling tests

Simultaneous pruning test

Result 1

 \rightarrow peeling test gives weaker conclusions but is easier to pass

$$D^{\nu_{i,\epsilon}}(\mathbf{u}) \geq D^{\nu_{i,1}}(\mathbf{u})$$

Peeling test

Result 2

ightarrow we can find the smallest $\epsilon>0$ such that the peeling test is passed

$$p_{\mathsf{ub}}^{\star} < D^{\nu_{i,\epsilon}}(\mathbf{u})$$

Numerics – El0ps

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

EI0ps

Problem management

Builtin instances of f/h

User-defined instances of f/h

- \rightarrow function value
- ightarrow convex conjugate
- ightarrow subdifferential
- $\rightarrow \ \mathsf{proximal} \ \mathsf{operator}$

Branch-and-Bound solver

Generic backbone (Axis 1)

 $\rightarrow \mbox{generic convex relaxation}$

Relaxation solution (Axis 2)

- ightarrow convex optim. solver
- ightarrow accel. with screen/smooth

Reduced complexity (Axis 3)

- \rightarrow dual bounds
- ightarrow simultaneous pruning

Perspectives – Stronger relaxations

$$\begin{array}{ll} p^{\nu} &= \min_{\mathbf{x} \in \nu} \ f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \\ \vee | & \\ p^{\nu}_{\mathsf{non-cvx}} = \min_{\mathbf{x} \in \nu} \ f(\mathbf{A}\mathbf{x}) + g_{\mathsf{non-cvx}}(\mathbf{x}) \\ \vee | & \\ p^{\nu}_{\mathsf{cvx}} &= \min_{\mathbf{x} \in \nu} \ f(\mathbf{A}\mathbf{x}) + g_{\mathsf{cvx}}(\mathbf{x}) \end{array}$$

→ Need valid and tractable relaxation

$$\begin{split} g(\mathbf{x}) &= \lambda \|\mathbf{x}\|_0 + \frac{\gamma}{2} \|\mathbf{x}\|_2^2 \\ \lor \mid \\ g_{\mathsf{non-cvx}}(\mathbf{x}) &= \mathsf{Mcp}_{\alpha,\beta}(\mathbf{x}) + \frac{\gamma}{2} \|\mathbf{x}\|_2^2 \\ \lor \mid \\ g_{\mathsf{cvx}}(\mathbf{x}) &= \mathsf{Berhu}_{\lambda,\gamma}(\mathbf{x}) \end{split}$$

ightarrow Tune (lpha,eta) depending on f and ${f A}$ to ensure the overall objective convexity

Regularization functions

Objective functions

Perspectives – Proximal identification

Convex problem

$$\mathbf{x}^{\star} \in \operatorname{argmin}_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \tilde{g}(\mathbf{x})$$

Screening/smoothing

Optimality conditions $\mathbf{A}^{\mathrm{T}}\mathbf{u}^{\star}\in\partial\widetilde{g}(\mathbf{x}^{\star})$

$$\tilde{\mathbf{g}}(\mathbf{x}^*) = \sum_{i=1}^n \tilde{\mathbf{g}}_i(\mathbf{x}_i^*)$$

Identif. from dual solution $\mathbf{a}_{i}^{\mathrm{T}}\mathbf{u}^{\star} \rightarrow x_{i}^{\star} = 0 \text{ or } x_{i}^{\star} \neq 0$

$$\mathcal{R} \subseteq \mathbf{R}^m$$
 with $\mathbf{u}^* \in \mathcal{R}$

Identif. from safe region $\mathbf{a}_{i}^{\mathrm{T}} \mathcal{R} \rightarrow x_{i}^{\star} = 0 \text{ or } x_{i}^{\star} \neq 0$

Safe but can miss indices

Proximal identification

Optimality conditions

$$\mathbf{x}^{\star} = \operatorname{prox}_{\tilde{g}}(\mathbf{x}^{\star})$$

$$\mathbf{g}(\mathbf{x}^{\star}) = \sum_{i=1}^{n} \tilde{g}_{i}(x_{i}^{\star})$$

 $\mathbf{w} = \operatorname{prox}_{\tilde{\sigma}}(\mathbf{x})$ $x - w \in \partial \tilde{g}(w)$

unsafe exploit.

make safe

Identif. from prox. operator $\operatorname{prox}_{\tilde{g}_i}(x_i^{\star}) \to x_i^{\star} = 0 \text{ or } x_i^{\star} \neq 0$

$$x \in \mathbb{R}^n$$
 near x^*

Identif. from arbitrary point $\operatorname{prox}_{\tilde{e}_i}(x_i) \to x_i^{\star} = 0 \text{ or } x_i^{\star} \neq 0$

Unsafe but classify all indices

Perspectives - Newton acceleration

Algorithm 1: Our approach

```
Input: \mathbf{x}^0 \in \mathbf{R}^n

Initialize (S_0, S_1, S_{ullet}) = (\emptyset, \emptyset, [1, n])
for \underbrace{k = 1, 2, \ldots, k_{\max}}_{S_0} do

// Update iterate

\mathbf{x}^k_{S_0} \leftarrow \mathbf{0}

\mathbf{x}^k_{S_1} \leftarrow 2^{\mathrm{nd}} \mathrm{Orderlteration}(\mathbf{x}^{k-1}_{S_1})

\mathbf{x}^k_{S_{ullet}} \leftarrow 1^{\mathrm{st}} \mathrm{Orderlteration}(\mathbf{x}^{k-1}_{S_{ullet}})

// Update structure knowledge

\mathcal{R} \leftarrow \mathrm{SafeRegion}(\mathbf{x}^k)

S_0 \leftarrow S_0 \cup \mathrm{ScreeningTest}(\mathcal{R})

S_1 \leftarrow S_1 \cup \mathrm{SmoothingTest}(\mathcal{R})

S_{ullet} \leftarrow [1, n] \setminus (S_0 \cup S_1)
```

- end
 - $S_0 \subseteq S_0^*$ and $S_1 \subseteq S_1^*$ at any iter.
 - $S_{\bullet} \neq \emptyset$ until $k \geq k_0$
 - → Safe but uncomplete identification

$$S_0^* = \{i \mid x_i^* = 0\}$$

$$S_1^* = \{i \mid x_i^* \neq 0\}$$

Algorithm 2: G. Bareilles et al.

Input: $x^0 \in R^n$

```
 \begin{array}{c|c} \text{for} & \underline{k=1,2,\ldots,k_{\max}} \text{ do} \\ \hline & // \text{ Update iterate} \\ & \tilde{\mathbf{x}}^k \leftarrow \text{ProxIteration}(\mathbf{x}^{k-1}) \\ & // \text{ Get local structure} \\ & (\mathcal{S}_0,\mathcal{S}_1) \leftarrow \text{ProxIdentification}(\tilde{\mathbf{x}}^k) \\ & // \text{ Follow local structure} \\ & \mathbf{x}^k \leftarrow \text{StructureUpdate}_{(\mathcal{S}_0,\mathcal{S}_1)}(\tilde{\mathbf{x}}^k) \\ \text{end} \end{array}
```

- $S_{\bullet} = \emptyset$ at any iter.
- $S_0 \neq S_0^{\star}$ and $S_1 \neq S_1^{\star}$ until $k \geq k_0$
- → Unsafe but complete identification