Машинное обучение

Что это?

Определение с сайта machinelearning.ru:

Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться.

Менее формально: о том, как с помощью статистики учить компьютер самостоятельно делать выводы о данных.

Обобщающая способность

Обучившись на имеющихся данных, наша модель умеет делать предсказания о новых данных.

Пример: понять, является ли спамом новое сообщение на почте

Зачем оно нужно?

- человеческое время -- дорогой ресурс
- есть рутинная работа, с которой справится и компьютер.
- на какие-то типы задач человеку просто не хватит времени (найти закономерность, проверив влияние тысяч факторов)
- сложные взаимодействия факторов, которые трудно увидеть невооружённым глазом

Чаще всего МО -- про экономию человеческих ресурсов.

Задачи МО

Виды МО, глобально

- обучение с учителем (= у нас есть размеченные данные); supervised learning
- обучение без учителя (= есть много неразмеченных данных); unsupervised learning
- некоторые промежуточные виды

Размеченные данные -- дорогой ресурс, потому что требуют работы человека.

Обучение с учителем

Подбор закономерностей

Регрессия

- предсказывает какое-то значение по набору признаков
- допустимым ответом является действительное число или числовой вектор
- модель учится наилучшим образом приближать данные
- примеры:

Регрессия

- предсказывает какое-то значение по набору признаков
- допустимым ответом является действительное число или числовой вектор
- модель учится наилучшим образом приближать данные
- примеры: предсказать сложность текста для восприятия по количеству символов/слов в нём

Классификация

- есть несколько классов
- есть множество объектов, каждый из которых принадлежит к одному классу
- для ряда объектов известно, к какому классу они принадлежат (это обучающая выборка)
- нужно построить алгоритм, способный отнести произвольный (новый) объект из этого множества к тому или иному классу
- примеры: ...

Классификация. Примеры.

- определение части речи (РОЅ-тэггинг)
- определить, является ли э-мэйл спамом
- снятие семантической омонимии (Word Sense Disambiguation)
- определение языка

Другие виды

- ранжирование (например, поисковики)
- прогнозирование временных рядов, например:

Обучение без учителя

Кластеризация

- у нас есть выборка объектов, но нет заданных классов
- мы хотим разбить их на группы так, чтобы объекты в разных группах сильно отличались
- примеры?

Кластеризация

- у нас есть выборка объектов, но нет заданных классов
- мы хотим разбить их на группы так, чтобы объекты в разных группах сильно отличались
- примеры: группировка новостей по темам, группировка запросов (например, к боту)

Снижение размерности

- часто приходится иметь дело с данными больших размерностей
- такие данные сложно хранить и обрабатывать (требуют больших вычислительных мощностей и много RAM)
- есть методы, которые позволяют сильно снижать размерность, выделяя наиболее значимые компоненты
- ещё одно применение -- визуализация в 2D

Что ещё?

Вспомним векторную семантику и word2vec.

Мы научили компьютер понимать, какие слова близки друг к другу по значению, используя неразмеченные данные (просто много собраний текста).

Промежуточные типы

- обучение с подкреплением (= алгоритм получает ответ (подкрепление) от внешней среды); reinforcement learning
- активное обучение (= мы на ходу понимаем, какие данные надо дособрать); active learning
- частичное обучение (= размечена только часть данных); semi-supervised learning
- больше типов -- <u>здесь</u>

Фичи

(признаки)

Как скормить текст машине [2]

- У нас есть наш прекрасный предобработанный текст
- Но есть проблема машины понимают только числа
- Задача: преобразовать текстовую информацию в числа.
- Как?

Какие бывают переменные

- бинарные (1 или 0)
- численные (любое число)
- категориальные (жёлтый/белый/зелёный)
- порядковые (бакалавриат/магистратура/PhD)

One-hot encoding

Способ кодирования любой категориальной переменной

feature
А
В
С
В
С

feature_A	feature_B	feature_C
1	0	0
0	1	0
0	0	1
0	1	0
0	0	1

Векторизаторы

Count Vectorizer – для каждого текста в столбцах слов количество раз, сколько слово встретилось в тексте (+ n-граммы)

feature	feature_A	feature_B	feature_C
АВ	1	1	0
ВСАС	1	1	2
вСвв	 0	3	1
ВА	1	1	0
С	0	0	1

TF-IDF Vectorizer – вместо абсолютных частот значения TF-IDF

Векторизаторы

Проблемы:

- Умеют только в те слова, что видели (если не видели слово – вектор, где все нули)
- Очень много нулей (в каждом тексте встречается лишь малая часть слов из словаря) -> разреженные матрицы (sparse matrices)
- Размерность (700 тыс фичей на 70 тыс объектов)

Семантика

Вместо one-hot encoding-like векторизаторов взять word2vec (doc2vec)

Плюсы:

- не такая большая размерность (100 или 300)
- обобщение информации на уровне семантики (нет привязки к конкретным словам)

Минусы:

- Очень много весит (300 float-32 для миллиона объектов смерть и sparse тут не поможет)
- Проблема незнакомых слов на уровне w2v модели

Уменьшение размерности

Актуально, особенно когда у нас 700 тыс фичей

Много фичей:

- ШУМ
- модель долго обучается

Выход:

- выбрать самые важные фичи (feature selection)
- сделать новые фичи на основе старых (feature extraction)

Уменьшение размерности

Feature selection

- Метрики важности
- Модели МО с L1-регуляризацией, обнуляющие неважные признаки

Feature extraction

Перепроецировать признаки на другую систему координат

- PCA
- SVD

Что еще использовать

- РОЅ-тэги
- Синтаксис:
 - какой глагол управляет этим существительным?
 - какой тип связи между глаголом и этим существительным?
- Семантика
 - о гиперонимы (более общая сущность, надмножество)
 - о семантические отношения

Фичи – это важно

Предобработка – очень важно
Ключ к успеху
Важнее моделей
В первую очередь думайте о фичах и о том, что из них можно
вытащить и что интересного сделать

Оценка качества

Регрессия

MSE - Mean squared error - среднеквадратичная ошибка

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2.$$

MAE - Mean absolute error - средняя абсолютная ошибка

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

Классификация

Accuracy (аккуратность, эккьюраси) - доля правильных ответов

Precision (точность) - сколько объектов, отнесенных моделью к классу X, действительно относятся к классу X

Recall (полнота) - сколько объектов, действительно относящихся к классу X, отнесены моделью к классу X.

F1-score (F1-мера) - гармоническое среднее между precision и recall

еще есть **AUC-ROC** - площадь под кривой ROC, основана также на вот этой табличке, чем ближе к 1, тем лучше

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$
 $F1 = \frac{2 \times precision \times recall}{precision + recall}$
 $accuracy = \frac{TP + TN}{TP + FN + TN + FP}$

Train / validation / test

Нам нужно понимать, насколько качественно работает и будет работать (!) наша машина.

Как оценивать - понимаем (пред. слайды)

А на чем?

Train / validation / test

Чтобы понять, как будет работать модель на данных, которых не было в обучающей выборке - от данных сразу отрезают и откладывают в сторону **тестовую** выборку.

Модели нужно настраивать -> от обучающей выборки отрезают валидационную выборку, на которой тестируются разные настройки.

Кроссвалидация:

- делим обучающую выборку на несколько частей (фолдов)
- несколько раз обучаем
- при каждом обучении один фолд валидационный, остальные обучающие
- Результат усредняем