UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR VT22

Ordinära Differentialekvationer

Rami Abou Zahra

1

Contents

1. Föreläsning - Intro	2
1.1. Vad är en differentialekvation?	2
1.2. Exemepel på ODE	2
1.3. Exemepel på PDE	2
1.4. Newtons andra lag	2
1.5. Spridning av en sjukdom	3
1.6. Riktningsfält	3
1.7. Lösning av en ODE	3
1.8. Klassificering av ODE:er	4
1.9. Exemple	4
1.10. Exemppel	5
1.11. Idén i den här kursen	5
2. Föreläsning - 1:a ordningens ODE och 3 typer	6
2.1. Linjära 1:a ordningens ODE	6
2.2. Motiverande exmpel	6
2.3. Exempel	7
2.4. Separabla ekvationer	7
2.5. Exempel	7
2.6. Exempel 2	8
2.7. Exakta ekvationer	9
2.8. Enkelt exempel	9
2.9. Exempel	10
2.10. Exempel på differentialekvationer som ej linjär, exakt, eller separabel	10
3. Förtydligande - Föreläsning 2	11
3.1. Exempel	11
4. Föreläsning - Existens och unikhet	13
4.1. Exempel	14
5. Klassificering av ODE	16
6. Andra ordningens linjära ODE:er	17
6.1. Exempel	17
6.2. Homogena ekvationer	18
7. Föreläsning - Homogena ekvationer	21
7.1. Reduktion av ordning	21
7.2. Homogena 2:a orndingens linj. ODE med konstanta koefficienter p,q	22
8. Föreläsning	25
8.1. Metoden med obestämda koefficienter	25
8.2. Variation av parameter-metoden	28

1. FÖRELÄSNING - INTRO

1.1. Vad är en differentialekvation? En ekvation som innehåller derivator med avseende på en eller flera oberoende variabler.

Om det enbart är en variabel som är oberoendekallas det för en ordinär differentialekvation.

Fråga: Vad är poängen med att variablerna är oberoende? Svar: Man måste ha oberoende variabler som man löser för

- 1.2. Exemepel på ODE.

I alla dessa fall hade vi en oberoende variabel, har vi flera så är det en partiell differentialekvation (PDE).

- 1.3. Exemepel på PDE.
- 1.4. Newtons andra lag. $F = m \cdot a$ där F är kraften, m massan, a accelerationen. Säg att vi har en sten:

Figure 1. Figur

Då får vi följande samband

$$a = \frac{d^2s}{dt^2}F = -mg - mg = m \cdot \frac{d^2s}{dt^2}\frac{d^2s}{dt^2} = -g$$

1.5. **Spridning av en sjukdom.** Ett virus sprids genom en population. Spridning sker när folk som är infekterade kommer i kontakt med folk som inte är smittade.

Vad säger detta om spridningen? Antag att vid tid t så är x(t) personer infekterade och y(t) personer är inte infekterade. Spridning bör vara proportionell mot hur många från x, y som mötes, det vill säga ett rimligt antagande är:

$$\frac{dx}{dt} = kxy$$

Något man kan studera är vad som händer när en infekterad person introduceras till en grupp ickeinfekterade. Detta betyder att x(0) = 1. Antal personer är x + y = n + 1. Stoppar vi in detta i
ekvationen får vi:

$$\frac{dx}{dt} = k \cdot x \cdot (n+1-x)$$

Ofta kan man inte lösa ODE:er med hand, då kan man lösa det grafiskt/m.h.a dator. Det finns flera verktyg som kan åstadkomma detta men ett av dessa verktyg är ett vektorfält/riktningsfält.

1.6. **Riktningsfält.** Grafiska verktyg är ofta väldigt kraftfulla för att förstå hur lösningen till en ODE ser ut.

Tänk oss att vi har följande ODE:

$$y' = \frac{y}{x^2}$$

De flesta ODE:er går inte att lösa exakt. Därför är grafiska verktyg/numreriska metoder väldigt användbara när man vil lösa ODE:er.

1.7. Lösning av en ODE.

$$\frac{dp}{dt} = \frac{p}{2} - 450$$

$$\frac{dp}{dt} = \frac{1}{2}(p - 450)$$

$$p = 900 \Rightarrow \frac{dp}{dt} = 0 \Rightarrow p(t) = 900 \text{är en lösning}$$

$$p \neq 900 \Rightarrow \frac{\frac{dp}{dt}}{p - 900} = \frac{1}{2}$$

$$\frac{d}{dt}(\log(|p - 900|)) = \frac{1}{2} \text{vi kan nu integrera m.a.p t}$$

$$\log(|p - 900|) = \int \frac{1}{2} dt = \frac{t}{2} + C$$

$$|p - 900| = e^{\frac{t}{2} + C} = e^{C} e^{\frac{t}{2}}$$

$$p = 900 \pm e^{C} e^{\frac{t}{2}} \text{där } e^{C} \text{ är en positiv konstant}$$

Kom ihåg att p = 900 är en lösning, alltså:

$$p = 900 + Ce^{t/2}$$

ger alla lösningar. Vi kan få fram C genom att kolla på startpopulation:

$$p(0) = 1000 \Rightarrow C = 100p(t) = 900 + 100e^{t/2}$$

Liknande beteende $\forall p(0) > 900$

1.8. Klassificering av ODE:er. I funktionen y(t) är y en beroende variabel (beror på t) och t en oberoende variabel. Detta är en reellvärd funktion på intervallet (a,b):

$$y:(a-b)\to\mathbb{R}$$

$$y' = \frac{dy}{dt}, y'' = \frac{d^2y}{dt}, y''' = \frac{d^3y}{dt}$$

Alternativt:

$$y^{(0)} = y, y^{(1)} = \frac{dy}{dt} \cdots$$

Sats 1.1: ODE

En ordinär differentialekvation för funktionen y = y(t) är en ekvation på formen:

$$F(t, y, y^{(1)}, \cdots y^{(n)}) = 0$$

Sats 1.2: Graden av en ODE

Graden av en ODE är ordningen på den högsta derivatan av y som förekommer. I sats 1.1 hade det då varit n.

Sats 1.3: Linjär ODE

En ODE kallas för linjär om den är på formen:

$$\sum_{i=0}^{n} a_i(t) y^{(i)}(t) = g(t)$$

Sats 1.4: Icke-linjär ODE

Om en ODE inte är linjär kallas den icke-linjär

Hur definierar vi en lösning till en ODE?

En lösning till en ODE på ett intervall (a, b) är en funktion y(t) så att:

- y och alla dess derivator är kontinuerliga $\forall t \in (a, b)$
- y löser ekvationen $\forall t$

Om detta uppfylls kallas (a, b) lösningsintervallet.

1.9. Exemepel.

$$t^5 y^{(4)} - t^3 - y^{(2)} + 6y = 0$$

Denna ODE är linjär och av grad 4.

1.10. Exemppel.

$$u'' = \sqrt{1 + (u')^2}$$

Sats 1.5: Initialvärdesproblem

Ett initialvärdesproblem (IVP) är en ODE tillsammans med ett startvärde för den oberoende variabeln. För en ODE av grad 1:

$$F(t, y, y') = 0 \operatorname{och} y(x_0) = y_0$$

Där $y(x_0) = y_0$ kallas initialvillkoret

Ofta kommer vi ha:

$$y^{(n)}(t) = F(t, y^{(1)} \cdots y^{(n-1)}(t))$$

1.11. Idén i den här kursen.

- Givet en ODE, finns det lösning?
- Om ja, hur många lösningar finns det? (Inget initialvärde kommer vi ha oändligt)
- Hitta explicita lösningar till enkla ODE:er
- Analysera och approximera lösningar till komplicerade ODE:er med serier (typ som Taylor-serier men med mer krut)
- Kvalitativa egenskaper (hur påverkar initialvillkoret lösningen?)
- Numreriska metoder

2. FÖRELÄSNING - 1:A ORDNINGENS ODE OCH 3 TYPER

Vi kommer kolla på 3 olika typer av 1:a ordningens ODE:

- Linjära
- Separabla
- Exakta

I alla dessa fall kommer vi kunna lösa dessa och få fram explicita lösningar - i allmänhet inte möjligt. Däremot är det viktigt att notera att det finns 1:a ordningens ODE som inte täcks av dessa fallen!

Vi kommer primärt undersöka ODE:er på formen y' = f(t, y)

2.1. Linjära 1:a ordningens ODE.

Kan skrivas på formen:

$$a(x)\frac{dy}{dx} + b(x)y = c(x) \Leftrightarrow \frac{dy}{dx} = \frac{c(x) - b(x)y}{a(x)}$$

Här antas $a(x) \neq 0$

2.2. Motiverande exmpel.

Antag att vi har en ODE på formen:

$$xy' + y = e^x$$
$$x > 0$$

Vi har $xy' + y = (xy)' = e^x$ där vi nu kan integrera båda sidorna:

$$xy = \int e^x dx + C \Leftrightarrow xy = e^x + C \Leftrightarrow y = \frac{e^x + C}{x}$$

Här hade vi riktigt tur att vi kunde inse att derivatan av produkten var lika med ODE:n vi ville lösa. Givetvis går det inte alltid att göra så. Men vad vi kan göra är att vi kan multiplicera ekvationen med en *faktor* för att få ODE:n på den formen.

Denna faktor brukar betecknas $\mu(x)$ och kallas för den integrerande faktorn. Låt oss kolla på den allmänna lösningsmetoden:

- Skriv på formen y' + p(x)y = f(x)
- Beräkna integrerande faktorn $\mu(x) = e^{\int p(x)dx}$
- Tag integrerande faktor och multiplicera ekvationen med den: $\mu(x)y' + \mu(x)p(x)y = \mu(x)f(x)$
- Nu har vi $(\mu(x)y)' = \mu(x)y' + \mu(x)p(x)y$
- Vi kan skriva om ekvationen som $(\mu(x)y)' = \mu(x)f(x) \Leftrightarrow \mu(x)y = \int \mu(x)f(x)dx$

Detta ger oss slutgiltigen lösningen $y = \frac{1}{\mu(x)} \int \mu(x) f(x) dx$

Notera att $\mu(x) \neq 0$ ty $e^x \neq 0$

Detta funkar "alltid", så länge vi kan integrera.

2.3. Exempel.

$$y' + 3x^2y = x^2$$

Vi noterar att vi är på rätt form, dvs $p(x) = 3x^2$, $f(x) = x^2$. Då kan vi räkna den integrerande faktorn:

$$\mu(x) = e^{\int p(x)dx} = e^{\int 3x^2 dx} = e^{x^3}$$

$$\Leftrightarrow e^{x^3}y' + e^{x^3}3x^2y = e^{x^3} \cdot x^2 \Leftrightarrow (e^{x^3} \cdot y)' = e^{x^3}x^2$$

$$e^{x^3}y = \int x^2 \cdot e^{x^3} dx \Leftrightarrow e^{x^3}y = \frac{e^{x^3}}{3} + C$$

$$y = \frac{1}{3} + C \cdot e^{-x^3}$$

2.4. Separabla ekvationer.

Namnet är ganska beskrivande i det här fallet, där är ekvationer där vi kan separera variablerna. Formellt menas det att ekvationer på denna form är separabla:

$$\frac{dy}{dx} = g(x)h(y)$$

En lösningsmetod ser ut på följande:

- Skriv som $\frac{dy}{h(y)} = g(x)dx$ (flyttat över allt med y på ena sidan och allt med x på andra)
- Integrera båda sidorna: $\int \frac{dy}{h(y)} = \int g(x)dx$

En rimlig fråga man kan ställa sig är "varför funkar det att betrakta $\frac{dy}{dx}$ som ett bråk?":

$$y'(x) = g(x)h(y(x)) \Leftrightarrow \frac{y'(x)}{h(y(x))} = g(x)$$

$$\int \frac{y'(x)}{h(y(x))} dx = \int g(x) dx \text{HL ""ar ok, men VL, ""ar den verkligen samma som vi kom fram till? Vi skriver om den } \int \frac{y'(x)}{h(y(x))} dx = \left[u(x) = y(x), \frac{du}{dx} = y'(x)\right] = \int \frac{1}{h(u)} du \text{Men } u \text{ kan lika g"arna vara } y$$

2.5. Exempel.

$$k = 1, n = 1000, x(0) = 1$$

$$\frac{dx}{dt} = kx(n+1-x), 0 < x < n+1$$

$$\frac{dx}{dt} = x(1001-x)$$

$$\frac{dx}{x(1001-x)} = dt$$

$$\int \frac{dx}{x(1001-x)} dx = \int 1 dt$$

$$\int \frac{dx}{x(1001-x)} dx = \frac{1}{1001} \int \frac{1}{x} + \frac{1}{1001-x} dx \text{vi använde PBU}$$

$$\Leftrightarrow \frac{1}{1001} \cdot (\log(x) - \log(1001-x)) = t + C$$

$$\log\left(\frac{x}{1001-x}\right) = 1001 \cdot t + C$$

$$\frac{x}{1001-x} = e^{1001t+C}$$

$$x(0) = 1 \Rightarrow \frac{1}{1001-1} = e^{0+C} \Leftrightarrow e^{C} = \frac{1}{1000}$$

$$x = \frac{1001e^{1001t}}{1000+e^{1001t}}$$

2.6. Exempel 2.

$$(e^{2y} + y) \cdot \cos(x) \frac{dy}{dx} = e^y \sin(2x)$$

Här är det inte helt uppenbart att den är separabel, vi kan testa att flytta runt saker och se vad vi får:

$$\frac{e^{2y} + y}{e^y} dy = \frac{\sin(2x)}{\cos(x)} dx, (\cos(x) \neq 0)$$

Nu ser vi att den är separabel och vi kan köra på!

$$\int \frac{e^{2y} + y}{e^y} dy = \int e^y + y e^{-y} dy = e^y - y e^{-y} - e^{-y} + C = VL$$

$$\int \frac{\sin(2x)}{\cos(x)} dx = \int \frac{2\sin(x)\cos(x)}{\cos(x)} dx = 2 \int \sin(x) dx = -2\cos(x) + D = HL$$

$$VL = HL \Leftrightarrow e^y - y e^- y - e^{-y} = -2\cos(x) + C$$

Detta är en lösning på implicit form, och det går inte att göra så mycket bättre än så ty inga startvärden. Detta är vanligt för separabla ekvationer.

Värt att notera, när vi delar på $\cos(x)$ antar vi att den inte antar värdet 0, men sen i slutet spelar det ingen roll om vi har $\cos(x) = 0$. Detta gäller för att vi har kontinuitet och är okej och giltigt.

När $\sin(x) = 0$ är $\cos(x) = 0$ samtidigt (i bråket), vi får kolla på gränsvärdet då och vi ser att det finns ett G.V. utan problem. Det blir så kallat härbar singularitet.

2.7. Exakta ekvationer.

Diff. ekvationer på formen:

$$M(x,y) + N(x,y) \cdot \frac{dy}{dx} = 0$$

Detta betyder nödvändigtvis inte att den är exakt, så vi måste ställa krav på M, N. Därför ställer vi lite krav som de bör uppfylla.

Sats 2.1: Exakt ekvation

Ekvationen är exkakt om det finns en funktion F(x,y) så att $\frac{\partial F(x,y)}{\partial x} = M(x,y)$ och $\frac{\partial F(x,y)}{\partial y} = N(x,y)$

Bevis 2.1: Bevisskiss: exakt ekvation

$$\begin{split} M(x,y)dx + N(x,y)dy &= 0\\ dF(x,y) &= \frac{\partial F}{\partial x} \cdot dx + \frac{\partial F}{\partial y} \cdot dy = M(x,y)dx + N(x,y)dy = dF(x,y) = 0\\ \Leftrightarrow F(x,y) &= C \end{split}$$

2.8. Enkelt exempel.

$$ydx + xdy = 0 \Leftrightarrow F(x,y) = xy \Rightarrow \frac{\partial F}{\partial x} = y, \frac{\partial F}{\partial y} = x$$

 $\Leftrightarrow F(x,y) = C \Rightarrow xy = C \Rightarrow y = \frac{C}{x}$

Kuriosa: Varför kallas dessa för exakta? Inom differentialgeometri så kallas en differential på denna form ydx + xdy = 0 för exakt. En viktigare fråga man törs fråga sig är kanske $n\ddot{a}r$ $\ddot{a}r$ en differentialekvation exakt?.

Vi har sagt att den är det om det finns ett F, men hur kan vi hitta det?

Sats 2.2: När kan vi hitta F

åt M(x,y) och N(x,y) vara två kontinuerliga funktioner med kontinuerliga första ordningens partiella derivator (vi antar att det här gäller i någon rektangel a < x < b, c < y < d). Då är M(x,y)dx + N(x,y)dy = 0 exakt omm:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Bevis 2.2: När kan vi hitta F

Vi börjar med ena hållet, om ekvationen är exakt vill vi visa att det här gäller.

Att den är exakt implicerar att $\frac{\partial F}{\partial x}=M,\, \frac{\partial F}{\partial y}=N.$

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \frac{\partial F}{\partial x}$$
$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \frac{\partial F}{\partial y}$$
$$\Leftrightarrow \text{De \"{ar} lika}$$

Eftersom M, N har kontinuerliga derivator så kommuterar dem (enligt flervariabelanalys)

Vissa ekvationer kan göras exakta genom att multiplicera med en integrerande faktor. Inte så allmänt

2.9. Exempel.

Betrakta följande differentialekvation:

$$2xydx + (x^2 - 1)dy$$

Här är 2xy = M och $(x^2 - 1) = N$. Nu vill vi kolla om den här differentialekvation är exakt:

$$\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x}$$

Nu vill vi hitta ett F så att $\frac{\partial F}{\partial x}=M=2x$ och att $\frac{\partial F}{\partial y}=N=x^2-1.$

Låt oss ta integralen på N:

$$F(x,y) = \int (x^2 - 1)dy = (x^2 - 1) \cdot y + h(x)$$

Viktigt att notera att vi får h(x) som konstant, ty vi vet inte om konstanten beror på x när vi integrerar med avseende på y.

Vi vill hitta h(x) så att den första partialen (M) uppfylls:

$$\frac{\partial}{\partial x} ((x^2 - 1)y + h(x)) = 2xy$$
$$2xy + h'(x) = 2xy \Leftrightarrow h'(x) = 0 \Leftrightarrow h(x) = C$$

Vi behöver ett F, så vi kan ta C=0:

$$F(x,y) = (x^{2} - 1)y$$
$$dF(x,y) = 0 \Leftrightarrow F(x,y) = C$$
$$(x^{2} - 1)y = C \Leftrightarrow y = \frac{C}{x^{2} - 1}$$

- 2.10. Exempel på differentialekvationer som ej linjär, exakt, eller separabel.
 - $y' = \sin(xy)$ $e^{y'} = x$

3. FÖRTYDLIGANDE - FÖRELÄSNING 2

Det kanske var lite otydligt just *vad* en exakt lösning/differentialkevation var och vad det innebär med just att den löses *implicit*.

Sats 3.1: Implicit lösning

En lösning kallas för *implicit* om den *implicerar* explicita lösningar.

3.1. Exempel.

Låt oss titta på ekvationen för en cirkel med radie 5 i planet:

$$25 = x^2 + y^2$$

Detta är en funktion som inte är rent definierad, det vill säga vi har inget VL som består av enbart beroende variabler från HL såsom y(x). Däremot så implicerar den de explicita funktionerna:

- $y = \sqrt{25 x^2}$
- $y = -\sqrt{25 x^2}$

Nu har vi gått igenom definitionen, låt oss rigoröst gå igenom definitionen av en *exakt* differentialkevation. Vi kommer göra detta genom att gå igenom ett exempel och sedan se vad det är vi kommer behöva för att lösa den.

Antag att vi vill lösa följande:

$$2xy - 9x^2 + (2y + x^2 + 1)\frac{dy}{dx} = 0$$

För förklaringens skull, antag att vi har en funktion $\varphi(x,y) = y^2 + (x^2 + 1)y - 3x^3$. Låt oss nu finna den partiella derivatan av denna funktion:

- $\bullet \ \frac{\partial}{\partial x} = 2xy 9x^2$
- $\bullet \ \frac{\partial}{\partial y} = 2y + x^2 + 1$

Notera här att detta matchar precis differentialkevationen förutom att den saknar en $\frac{dy}{dx}$ term. Men! Tricket kommer från flervarren. Vi vet att y är en beroende variabel som beror på x, alltså kommer vi enligt kedjeregeln få följande:

$$\frac{d}{dx}(\varphi(x,y(x))) = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \cdot \frac{dy}{dx}$$

Detta på grund av att y(x) tekniskt sett har en inre derivata som vi måste ta hänsyn till. Vi ser nu att vi kan skriva om vår differentialkevation som $\frac{d}{dx}\varphi(x,y(x))=0$. Men om en ordinär derivata (dvs inte partiell, ty då måste vi betrakta alla partialer) är lika med noll så måste det vara så att vi differentierar en konstant! Alltså $\varphi(x,y(x))=C$, men detta motsvarar i vårat exempel då att vi har:

$$\varphi(x,y) = y^2 + (x^2 + 1)y - 3x^3 = C$$

Detta blir då en *implicit* lösning, eftersom den implicerar flera lösningar som vi får arbeta oss för. Det som nu återstår är att kolla hur vi kan hitta denna underbara φ funktion och under vilka villkor som den fungerar.

Vår sugardaddy/mommy funktion skall alltså uppfylla:

- $\varphi_x = M$
- $\varphi_{y} = N$

Givet att $\varphi(x, y(x))$ och dess första derivator också är kontinuerliga vet vi från flervarren att vi kan kommutera partialerna på följande sätt:

$$\varphi_{xy} = \varphi_{yx}$$

Men givet detta, och att $\varphi_x = M$ osv så kan vi alltså busa lite!

$$\varphi_{xy} = (\varphi_x)_y = (M)_y = M_y$$

$$\varphi_{yx} = (\varphi_y)_x = (N)_x = N_x$$

Men eftersom $\varphi_{xy} = \varphi_{yx}$ så vet vi alltså att $M_y = N_x$, fiffigt sätt att kontrollera att man har gjort rätt!

Hur kan vi hitta denna funktion då? Vi skulle kunna använda $M_y = N_x$ sambandet och se om vi kommer någon vart:

$$\varphi = \int M dx \Leftrightarrow \int N dy$$

Detta är fördelaktigt att vi kan byta runt och integrera lite som vi vill, ty förhoppningsvis är en utav dem lättare än den andra. Låt oss antag att dx integralen är den vi vill integrera:

$$\int Mdx = \varphi + h(y)$$

Detta eftersom φ är en funktion av 2 variabler och vi integrerar med avseende på en, alltså vet vi inte om konstanten kanske beror på den andra variabeln. Därför skriver vi h(x) istället för C som vi kanske är vana med.

Hur kan vi hitta denna mystiska funktion h(x)? Vi vet att om vi deriverar φ med avseende på y så bör vi få N, vi använder detta till vår fördel:

$$\varphi_y = \frac{\partial}{\partial y} \left(\int M dx \right) = \frac{\partial}{\partial y} \varphi + h'(y) = N$$

$$h'(y) = N - \frac{\partial}{\partial y} \varphi$$

Nu är det bara en fråga om att integrera h'(y):

$$h(y) = \int (N - \frac{\partial}{\partial}\varphi)dy$$
$$\Leftrightarrow \varphi + D$$

Vi kan strunda i konstanten D eftersom i vår implicita lösning så kommer vi ha $\varphi + D = C$ där vi nu kan slå ihop D och C till en enda konstant. Nu har vi hittat en metod för att lösa dessa differentialkevationer! För definitionen, se Sats 2.1.

4. FÖRELÄSNING - EXISTENS OCH UNIKHET

Antag att vi har en ODE på formen:

$$y' = f(x, y), y(x_0) = y_0$$

I allmänhet kan vi inte lösa den här explicit. Vi kommer under denna föreläsning kika på IVP. Vi kommer studera 3 frågor:

- Lokal existens: finns det en lösning y(x) def. i närheten av x_0 ?
- Existens i stort: Hur stort intervall kan den vara definierad på som innehåller x_0 där y(x) är def.?
- Unikhet: Finns det flera lösningar eller bara en? Detta är viktigt att veta om man studerar en ODE eftersom man behöver ha koll på att den lösningen man får som kanske löser ett system så behöver vi veta vad den andra lösningen betyder.

När det gäller första punkten, det visar sig att lokal existens endast kräver att f är kontinuerlig:

Sats 4.1

Om f är kontinuerlig så finns det en lösning definierad i närheten av en punkt.

Detta räcker inte för att lösningen ska vara unik! Exempelvis:

$$y' = xy^{1/3}, y(0) = 0$$

 $y((x)) = 0, y(x) = \frac{x^3}{\sqrt{27}}$

Vi kommer kolla på ett intressant bevis om när lösnignen är unik, ty beviset ger information om hur man kan approximera en lösning.

Sats 4.2

Antag att f och $\frac{\partial f}{\partial y}$ är kontinuerliga i någon rektangel $R = \{(x, y) \in \mathbb{R}^2, a \leq x \leq b, c \leq y \leq d\}$ som innehåller (x_0, y_0) i dess inre (kan ej ligga på randen).

Då existerar det något intervall $I=(x_0-h,x_0+h)$ för h>0 och en unik funktion y=y(x) definierad på I så att y'=f(x,y) på I och $y(x_0)=y_0$

Kommentar: $y' = xy^{1/3} = f(x, y)$ ger oss $\frac{\partial f}{\partial y} = \frac{x}{3y^{2/3}}$ som inte är kontinuerlig ty $y \neq 0$ ger bus.

Kommentar: Bara för att funktionen är definierad i en rektangel betyder det inte att samma rektangel är intervallet för lösningen. I allmänhet är intervallet mindre än rektangel.

$$y' = y^{2}, y(0) = 1$$

$$\Leftrightarrow f(x, y) = y^{2} \text{ är kont.}$$

$$\frac{\partial f}{\partial y}(x, y) = 2y \text{ är kont.}$$

$$y(x) = \frac{1}{1 - x}$$

Så satsen gäller \forall rektanglar. Notera att lösningen inte är def. i x=1, men den är definierad för x<1.

Bevis 4.1: Sketch av bevis för unikhet av unikhetssats

Idén är att använda metoden med successiva approximationer. Vi kommer börja med en funktion som inte är en lösning men som ger oss lite info och så fortsätter vi tills vi når ett "gränsvärde" som är vår lösning:

- Skriv om som integralekvation: $y' = f(x, y), y(x_0) = y_0 \Leftrightarrow \int_{x_0}^x y'(t)dt = \int_{x_0} x f(t, y(t))dt \Leftrightarrow \int_{x_0}^x y'(t)dt = \int_{x_0} x f(t, y(t))dt \Leftrightarrow \int_{x_0}^x y'(t)dt = \int_{x_0} x f(t, y(t))dt = \int_{x_0} x f(t, y(t))dt$ $y(x) - y(x_0) = \int_{x_0}^x f(t, y(t)) dt \Leftrightarrow y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$ • Det härliga här är att vi kan förkasta initalvärdet, ty det blir lätt att stoppa in och lösa.
- Nu definierar vi en sekvens av funktioner som är våra "successiva approximation": $\varphi_0(x) =$ y_0 . Denna uppfyller IV men i allmänhet inte funktionen. Sedan definierar vi φ_1 $y_0 + \int_{x_0}^x f(t, \varphi_0(t)) dt$ (i allmänhet inte en lösning til ekvationen), men vi fortsätter såhär $\cdots \varphi_{n+1}(x) = y_0 + \int_{x_0}^x f(t, \varphi_n(t)) dt$
- Vi vill få en känsla för att den här sekvensen av funktioner i gränsvärdet när $y \to \infty$ ger oss en lösning.
- Notera, $\varphi_n(x_0) = y_0 + \int_{x_0}^{x_0} f(t, \varphi_{n-1}(t)) dt = y_0$ men i allmänhet inte $\varphi'_n = f(x, \varphi_n)$
- $\lim_{n\to\infty} \varphi_{n+1}(x) = y_0 + \lim_{n\to\infty} \int_{x_0}^x f(t,\varphi_n(t)) dt$ Om vi låter $\varphi = \lim_{n\to\infty} \varphi_n$ får vi: $\varphi(x) = y_0 + \int_{x_0}^x f(t,\varphi(t)) dt \to \varphi$ är en lösning!

- Detta är ett informellt bevis ty vi vet inte när vi kan flytta in gränsvärdet innanför integralen, går det att få in det så löser det sig.

Vi får inte glömma att vi använder oss av att f är kontinuerlig och definierad i rektangeln. Vi måste alltså se till att φ hamnar inom denna rektangeln. Vi måste därför begränsa φ så att den aldrig lämnar rektangeln.

4.1. Exempel.

Vi kommer ta en explicit ekvation och kolla vad som händer med φ

$$y' = -\frac{y}{2} + t, y(0) = 0$$

$$y(t) = 0 + \int_0^x \frac{y(s)}{2} + sds$$

$$\varphi_0(t) = 0$$

$$\varphi_1(t) = 0 + \int_0^t \frac{0}{2} + sds = \left[\frac{s^2}{2}\right]_0^t = \frac{t^2}{2}$$

$$\varphi_2(t) = \int_0^t \frac{\frac{s^2}{2}}{2} + sds = \int_0^t \frac{s^2}{4} + sds = \left[\frac{s^3}{2 \cdot 3!} + \frac{s^2}{2}\right]_0^t = \frac{t^3}{12} + \frac{t^2}{2}$$

$$\vdots$$

$$\lim_{n \to \infty} \varphi_n(t) = \sum_{i=0}^\infty \frac{(-1)^{n+1}t^{n+1}}{2^{n-1}(n+1)!} \text{ ser ut som taylor för } e^x$$

Vi kan kolla att den konvergerar genom kriterier för serier. I detta fall kan vi försöka få en explicit lösning. Vi noterar att den liknar taylor, låt oss undersöka:

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \to \sum_{k=2}^{\infty} (-1)^{k} \frac{t^{k}}{2^{k-2}k!} = 4 \sum_{k=2}^{\infty} (-1)^{k} \frac{t^{k}}{2^{k}k!} = 4 \sum_{k=2}^{\infty} \frac{\left(\frac{-t^{k}}{2}\right)}{k!} = 4 \sum_{k=0}^{\infty} \frac{\left(\frac{-t^{k}}{2}\right)}{k!} - 4 + 2t = 4e^{\left(\frac{-t}{2}\right)} - 4 + 2t$$

Bevis 4.2: Bevis av unikhet

Antag att vi har 2 lösningar, y_1 och y_2 . Det vi gjorde var att vi skrev om den på integralform:

$$y_1(x) = y_0 + \int_{x_0}^x f(t, y_1(t)) dt$$

$$y_2 = y_0 + \int_{x_0}^x f(t, y_2(t)) dt$$
Om de är unika så borde $y_1 - y_2 = 0$

$$y_1 - y_2 = \left(y_0 + \int_{x_0}^x f(t, y_1(t)) dt\right) - \left(y_0 + \int_{x_0}^x f(t, y_2(t)) dt\right)$$

$$y_1 - y_2 = \int_{x_0}^x f(t, y_1(t)) - f(t, y_2(t)) dt$$
MVS ger $g(y_1) - g(y_2) = g'(\alpha y_1 + (1 - \alpha y_2))(y_1 - y_2), \alpha \in [0, 1]$

$$f(t, y_1) - f(t, y_2) = \frac{\partial f}{\partial y}(\alpha y_1 + (1 - \alpha)y_2)(y_1 - y_2)$$
Eftersom $\frac{\partial f}{\partial y}$ är kont. i R finns det en övre gräns:
$$\left| \frac{\partial f}{\partial y} < C \right| \text{ för någon konstant } C$$

$$\left| \frac{\partial f}{\partial y}(\alpha y_1 - (1 - \alpha)y_2) \right| \le C$$

$$|f(t, y_1) - f(t, y_2)| \le C |y_1 - y_2|$$

Går vi tillbaka till där vi skrev "för någon konstant C" får vi:

$$|y_1 - y_2| = \left| \int_{x_0}^x f(t, y_1(t)) - f(t, y_2(t)) dt \right| \le \int_{x_0}^x |f(t, y_1(t)) - f(t, y_2(t))| dt \le C \int_{x_0}^x |y_1(t) - y_2(t)| dt$$

$$\text{Låt } u(x) = |y_1(x) - y_2(2)|:$$

$$u'(x) \le C \cdot u(x) \Leftrightarrow u'(x) - Cu(x) \le 0$$

Detta är en linjär differentialolikhet som vi löser på följande sätt:

Integrerande faktor: $\mu(x) = e^{\int -Cdx} = e^{-Cx} > 0$ så ändrar inte olikheten:

$$e^{-Cx}u'(x) - Ce^{-Cx}u(x) \le 0 \Leftrightarrow (e^{-Cx}u(x))' \le 0$$

$$\Leftrightarrow \int_{x_0}^x (e^{-Ct}u(t))'dt \le 0 \Leftrightarrow e^{-Cx}u(x) - e^{Cx_0}u(x_0) \le 0$$

Då är frågan, vad är $u(x_0)$?

$$u(x_0) = |y_1(x_0) - y_2(x_0)| = |y_0 - y_0| = 0$$

 $e^{-Cx}u(x) \le 0 \Leftrightarrow u(x)=0$ men eftersom u(x) är absolutbelopp så kan ej vara negativ, alltså $u(x)=0 \Leftrightarrow y_1(x)-y_2(x)=0 \Leftrightarrow y_1(x)=y_2(x)$

5. Klassificering av ODE

Avgör om följande är linjära:

•
$$\sin(x)y' + \cos(x)y = 0$$

•
$$y' = e^x$$

•
$$y' + y = \sin(y)$$

•
$$sin(x)y + cos(x)$$

• $y' = e^x$
• $y' + y = sin(y)$
• $\frac{y'}{y} = log(x)$
• $yy' = cos(x)$
• $y' + y = x$

•
$$yy' = \cos(x)$$

$$\bullet \ y' + y = x$$

Påminnelse: $a(x)\frac{dy}{dx} + b(x)y = c(x)$ är en linjär 1:a ordningens

Avgör om följande är separabla:

•
$$yy' = x$$

•
$$xy' = y$$

•
$$yy = x$$

• $xy' = y$
• $\frac{dy}{dx} = \frac{e^y}{y(x+5)}$
• $y' + y = x$
• $\sin(y') = x + 5$

$$\bullet \ y' + y = x$$

$$\bullet \ \sin(y') = x + 5$$

•
$$y' = x\sin(y) + x$$

Avgör om följande är exakta (tips, dela på dx):

$$\bullet \ xdx + ydy = 0$$

•
$$\sin(y)dx + \sin(x)dy = 0$$

•
$$3yx^3dx + x^3dy = 0$$

Anmärkning: Att avgöra om en ekvation är exakt innebär att man avgör om formen som den är skriven är exakt. Det går oftast att manpulera den så att den blir exakt annars. Exempelvis:

$$(3xy + xy) + (x^2 + xy)y' = 0$$

$$\Leftrightarrow x(3xy + xy) + x(x^2 + xy)y' = 0$$

$$\Leftrightarrow (3x^2 + xy^2) + (x^3 + x^2y)y' = 0$$

6. Andra ordningens linjära ODE:er

Vi kommer introducera dessa och tala om homogena ekvationer.

Sats 6.1: Andra ordningens ODE

En allmän andra ordningens ODE är:

$$G(x, y, y', y'') = 0$$

Om vi kan isolera y'' får vi:

$$y'' = F(x, y, y')$$

Vi kommer fokusera främst på linjära ODE:er.

Sats 6.2: Linjär ODE

En ODE som kan skrivas på formen:

$$A(x)y'' + B(x)y' + C(x)y = F(x)$$

Vi kommer anta att A, B, C, F är kontinuerliga

6.1. Exempel.

Exempel på en linjär ODE (Bessel-ekvationen)

$$x^{2}y'' + xy' + (x^{2} - \alpha^{2})y = 0$$
$$y'' = (y+1)^{2}y' + y^{2}$$

Exempel på en icke-linjär 2:a ordningens ODE:

$$y'' = (y+1)^2 y' + y^2$$

Sats 6.3: Homogen ekvation

Om F(x) = 0 kallas ekvationen för homogen. Annars kallas den inhomogen.

Den associerade homogena ekvationen är en ODE där vi ansätter F(x) = 0, det vill säga om vi tar ekvationen från sats 6.2 och sätter F(x) = 0 så är det vår associerade homogena ekvationen.

Exempel:

$$3y'' + (2+x)y' + y = \cos(x)$$

har den associerade homogena ekvationen:

$$3y'' + (2+x)y' + y = 0$$

Notera här att vi kan multiplicera vår associerade ekvation med vad som, detta kommer inte ändra vår lösningsmängd.

IVP existerar för andra ordningens ODE:er. För en fullständig lösning kommer vi kräva 2 initalvillkor, men vi kan få en *parametriserad* lösningsmängd om vi har 1.

Sats 6.4: Existens

Betrakta

$$y'' + p(x)y' + q(x)y = f(x) y(a) = b_0, \ y'(a) = b_1$$

Om p, q är kontinuerliga på ett intervall I som innehåller a (våran startpunkt), då finns exakt en lösning y = y(x) och den är definierad på hela intervallet I.

Kommentar: Första ord. ODE:er har endast en lösning som går igenom en punkt (x_0, y_0) . För andra ordningen har vi en lösning för varje lutning också!

Kommentar: Det visar sig att vi kommer stöta på en massa linjär algebra. Kanske inte för 2:a ordningens, men för första är det användbart. För 3:e ordningen och n:e ordningen går det m.h.a linjär algebra att generalisera ganska enkelt, vi kommer bara få större matriser.

Kommentar: Vissa lösningar kommer vi se blir system av mindre ordningens ODE:er, detta går också att definiera och lösa m.h.a linjär algebra.

6.2. Homogena ekvationer.

För att förstå inhomogena måste vi först förstå homogena. Detta kanske inte är tydligt varför, men det kommer vi se senare när vi diskuterar andra ekvationer. Vi påminner oss om att en homogen ekvation är på formen:

$$A(x)y'' + B(x)y' + y = 0$$

Sats 6.5

Om y_1 och y_2 löser den homogena ekvationen på ett intervall I, då löser även $y=C_1y_1+C_2y_2$ ekvationen för alla konstanter C_1,C_2 på I

Notera här att det i princip blir en linjärkombination, varpå namnet "linjär ODE" kommer ifrån. Beviset lämnas som övning till läsaren. Exempel:

$$y_1=e^x$$
 och $y_2=xe^x$ är lösningar till
$$y''-2y'+y=0$$
 Då är $y=C_1e^x+C_2xe^x=(C_1+C_2x)e^x$ också en lösning

Varför vill man ha detta? Om vi har ett IVP så vill vi att lösningen skall ha ett specifikt värde. Då kan vi kombinera lösningar för att få det svaret vi söker.

Lösningsmetod (idé):

- Hitta 2 lösningar y_1 och y_2
- Ta deras linjärkombination $y = C_1y_1 + C_2y_2$
- Använd initalvillkor för att bestämma C_1, C_2

Funkar sista punkten verkligen alltid? Svaret är ja, om man väljer y_1 och y_2 på rätt sätt. Men detta implicerar att det finns ett fel sätt också. Om vi exempelvis får att y = y' så kan vi inte bestämma C_1, C_2

Sats 6.6: Linjärt oberoende

Två funktioner f, g är linjärt oberoende om vi *inte* har:

$$f = kg$$
 eller $g = kf$ för någon konstant $k \in \mathbb{R}$

Det som är viktigt är att ingen av de (k eller funktionerna) är noll, ty annars kan vi dela på noll.

Exempel:

$$\sin(x) \text{ och } \cos(x) \text{ \"{ar} linj\"{art} oberoende} \\ e^x \text{ och } xe^x \\ x+1 \text{ och } x^2$$
 Linj\"{art oberoende}

Man kan verifiera om de är linj. ober. genom att ta $\frac{f}{g}$, om de inte är lika med en konstant så är de oberoende. Exempelvis är då e^{x+1} och e^x linjärt beroende. Det är inte alltid lätt att se, exempelvis:

$$\sin(2x)$$
 och $\sin(x)\cos(x)$ är linjärt beroende ty:
 $\sin(2x) = 2\sin(x)\cos(x)$

Ett verktyg som är användbart när man studerar dessa typer av ODE:er är Wronskianen.

Sats 6.7: Wronskianen

Wronskianen av 2 deriverbara funktioner f, g är:

$$W(f,g) = \det\begin{pmatrix} f & g \\ f' & g' \end{pmatrix} = fg' - f'g$$

Lemma 6.1

Om f, g är deriverbara på intervallet I och är linjärt beroende på I, då är $W(f, g) = 0 \ \forall x \in I$. Om vi får oberoende ekvationer, då kan vi hitta en lösning m.h.a lösningsidén.

Bevis 6.1: Wronskianen

Om f, g är linjärt beroende så är f = kg eller g = kf. Vi stoppar in det i uttrycket för Wronskianen:

$$W(f,g) = \det\begin{pmatrix} f & g \\ f' & g' \end{pmatrix} = \det\begin{pmatrix} kg & g \\ kg' & g' \end{pmatrix} = kgg' - kg'g = 0$$

Det funkar tyvärr inte åt andra hållet, det vill säga om determinanten är noll så är de inte alltid linjärt beroende. \Box

Motexempel:

$$f = x^2$$
, $q = |x|x$

Dessa är linjärt oberoende men har noll-determinant.

Hur vet vi att det ens finns 2 linjärt oberoende lösningar så att vi kan få vårat coola svar? Det visar sig att det inte är jättekrångligt att visa! Vi kan använda satsen om existens och unikhet:

$$y'' + p(x)y' + g(x) = 0$$

y(a) = 0, $y'(a) = 1 \Rightarrow$ det finns en lösning y_1 enligt existens och unikhetssatsen y(a) = 1, y'(a) = 0 det finns en lösning y_2 enligt existens och unikhetssatsen Då måste vi kolla så att y_1, y_2 är linjärt oberoende (Wronskianen nollskilld):

$$W(y_1, y_2)(a) = \det\begin{pmatrix} y_1(a) & y_2(a) \\ y_1'(a) & y_2'(a) \end{pmatrix} = y_1(a)y_2'(a) - y_1'(a)y_2(a) = 0 \cdot 0 - 1 \cdot 1 = -1 \neq 0$$

Alltså linjärt oberoende

Sats 6.8

åt y_1 och y_2 vara linjärt oberoende lösningar till:

$$y'' + p(x)y' + q(x)y = 0$$
 där p, q är kontinuerliga på intervallet I

Då är alla lösningar på formen $y = C_1y_1 + C_2y_2$

Sats 6.9: Fundamental lösningsmängd

Två linjärt oberoende lösnignar kallas för en fundamental lösningsmängd

Bevis 6.2

Antag att vi har en lösning y. Vi vill hitta C_1, C_2 . Tag en punkt $a \in I$ och lös systemet:

$$C_1y_1(a) + C_2y_2(a) = y(a)$$

$$C_1y_1'(a) + C_2y_2' = y'(a)$$

Skriv som:

$$\begin{pmatrix} y_1(a) & y_2(a) \\ y_1'(a) & y_2'(a) \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} y(a) \\ y'(a) \end{pmatrix}$$

Har en lösning om matrisens determinant är nollskilld. Gäller om $W(y_1, y_2)(a) \neq 0$. Detta går att visa! Så systemet har en lösning.

Vi kan defninera en lösning $g = C_1y_1 + C_2y_2$ (linjär kombination av lösningar är en lösning på samma initalvillkor), men vi har unikhet, alltså måste lösningen vara samma, dvs y = g

Sats 6.10: Abels sats

Om y_1 och y_2 är lösningar till y''+p(x)y'+q(x)y=0 där p,q är kontinuerliga på I. Då är deras Wronskian $W(y_1,y_2)(x)=Ce^{-\int p(x)dx}$ där C är en konstant som ej beror på x. Antingen är $W(y_1,y_2)(x)=0$ $\forall x\in I$ eller $W(y_1,y_2)(x)\neq 0$ $\forall x\in I$

Bevis 6.3: Bevisidé för Abels sats

Derivera $W(y_1, y_2)$ med avseende på x. Då får man ett uttryck som innehåller y_1, y_2 och dess derivator. Använder man ODE:n så kan man visa att även W uppfyller en linjär första ordningens ODE och den kan man lösa explicit.

7. FÖRELÄSNING - HOMOGENA EKVATIONER

Vi vill hitta dessa linjärt oberoende funktionerna, det är syftet med dagens föreläsning. Vi kommer börja med att undersöka följande:

$$y'' + p(x)y' + q(x)y = 0$$

Alla lösningar är på formen $y = C_1y_1 + C_2y_2$ där $\{y_1, y_2\}$ är en fundamental lösningsmängd, dvs linjärt oberoende.

Hur ska vi hitta y_1, y_2 ? Vi kommer använda 2 olika metoder:

- Reduction of order (reduction av ordning, om vi har y_1 så kan vi hitta y_2)
- \bullet p,q är konstanter så finns det en annan metod

7.1. Reduktion av ordning.

Antag att vi har en lösning y_1 till y'' + p(x)y' + q(x)y = 0.

Denna metod kan användas för att hitta en till (linjärt oberoende) lösning y_2 . Idén:

- Hitta y_2 som ej är beroende av y_1
- Vi sätter $y_2(x) = u(x) \cdot y_1(x)$, om linj. ber. så är u(x) en konstant så vi vill hitta u(x)

Vi kan börja med att se att:

$$y_2' = u' \cdot y_1 + uy_1'$$

$$y_2'' = u'' \cdot y_1 + 2u'y_1' + uy_1''$$
Insättning av y_2, y_2', y_2'' i ekvationen ger:
$$(u'' \cdot y_1 + 2u'y_1' + uy_1'') + p(u' \cdot y_1 + uy_1') + quy_1$$

$$u\underbrace{(y_1'' + py_1' + qy_1)}_{\text{Ekvationen!}} + u''y_1 + u'(2y_1' + py_1)$$

Det som står framför u är lika med noll ty det är precis det vi börjar med:

$$u''y_1 + u'(2y'_1 + py_1) = 0$$

Låt $w = u'$:

 $y_1w' + w(2y_1' + py_1) = 0$ Detta är en linjär första ordningens ODE

Exempel: Givet att x^4 är en lösning till $x^2y'' - 7xy' + 16y = 0$, hitta en annan lösning. Det vi kommer se är att metoden vi precis gick igenom funkar ävenom vi har något framför y''

Ansätt $y_2 = uy_1 \text{ där } y_1 = x^4$:

$$x^{2}(u''y_{1} + 2u'y'_{1} + uy''_{1}) + p(u'y_{1} + uy'_{1}) + quy_{1} = 0$$

$$u(x^{2}y''_{1} + py'_{1} + qy_{1}) + x^{2}u''y_{1} + u'(2x^{2}y'_{1} + py_{1}) = 0$$

$$0 + x^{2}u''y_{1} + u'(2x^{2}y'_{1} + py_{1}) = 0$$

$$\text{Låt } w = u' \text{ och sätt in } y_{1} = x^{4} :$$

$$x^{2} \cdot x^{4} \cdot w' + w(2x^{2} \cdot 4x^{3} - 7x \cdot x^{4}) = 0 \text{ OBS: } q \text{ finns inte med}$$

$$x^{6}w' + w(8x^{5} - 7x^{5}) = 0$$

$$x^{6}w' + x^{5}w = 0$$

$$xw' + w = 0$$

$$(xw)' = 0$$

$$xw = C$$

$$w = \frac{C}{x}$$

$$u' = \frac{C}{x} \Leftrightarrow u = C \log(|x|) + D$$

 $y_2 = u \cdot y_1 = (C \log(|x|) + D)x^4$ men vi vill få en lösning, detta är en familj av lösning Oftast väljer man D = 0. C får helst inte vara noll, annars får vi att $y_2 = Cy_1$, alltså linjärt beroende Väljer vi C = 1, D = 0 får vi:

$$y_2 = x^4 \log(|x|)$$

Alla lösningar är på formen:

$$C_1y_1 + C_2y_2 = C_1x^4 + C_2x^4\log(|x|) = x^4(C_2\log(|x|) + C_1)$$

Kommentar: Detta fungerar bara om vi har en lösning redan. Påminner lite om polynom, där om man redan har en lösning så kan vi dela bort den och få ett polynom med lägre grad.

7.2. Homogena 2:a orndingens linj. ODE med konstanta koefficienter p,q.

Vi kommer betrakta y'' + py' + qy = 0 för $p, q \in \mathbb{R}$. Det visar sig att det alltid finns en lösning på formen $y(x) = e^{r \cdot x}$ där r beror på p, q. Insättning ger:

$$r^2e^{rx} + pre^{rx} + qe^{rx} = 0 \Leftrightarrow e^{rx}(r^2 + pr + q) = 0e^{rx}$$
 är aldrig noll, alltså $r^2 + pr + q = 0$

För att det skall vara lika med noll, så måste r vara en rot, alltså har vi en lösning enbart då.

Sats 7.1: Karaktäristiska polynom

Polynomet $r^2 + pr + q$ kallas för det karaktäristiska polynomet till y'' + py' + qy = 0

Vi får 3 oilka fall när vi hanterar rötter:

- Fall 1: 2 distinkta reela rötter
- Fall 2: Dubbelrot
- Fall 3: Icke-reela rötter

Fall 1: När $r_1 \neq r_2$. Vi får 2 lösningar, en för r_1 och en för r_2 : $y_1 = e^{r_1 x}$ och $y_2 = e^{r_2 x}$. Dessa är linjärt oberoende eftersom $\frac{e^{r_1 x}}{e^{r_2 x}} = e^{(r_1 - r_2)x}$, om de är beroende hade vi fått en konstant det vill säga e^0 , men eftersom $r_1 \neq r_2$ får vi inte det. Alltså är $\{y_1, y_2\}$ en fundamental lösningsmängd. Vi vet att alla lösningar ges på foren $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

Fall 2: När $r_1 = r_2$. Vi får en lösning $y_1 = e^{rx}$ men vi behöver 2 lösningar. Använd reduktion av ordning för att hitta y_2 , $y_2 = u(x)y_1 = u(x)(e^{rx})$, derivera 2 gånger och stoppa in så får vi $u''y_1 + 2u'y'_1 + u''_1 + 2u'y'_1 + u''_1 + 2u'y'_1 + 2u'y'_1$

 $p(u'y_1 + uy_1') + quy_1 = 0$. Då försvinner vissa termer och vi får kvar $y_1u'' + (2y_1' + py_1)u' = 0$. Vi har $y_1 = e^{r_1 x} \mod r_1 = -\frac{p}{2}$. Insättning ger $e^{-\frac{p}{2}} u'' + (2(-\frac{p}{2})e^{-\frac{p}{2}x} + pe^{-\frac{p}{2}x})u' = 0$:

$$e^{-\frac{p}{2}}u'' = 0$$
$$u'' = 0$$
$$u = Cx + D$$

Vi har alltså $y_2=(Cx+D)e^{-\tfrac{p}{2}}x$. Sätt D=0 och $C=1\to y_2=xe^{-\tfrac{p}{2}}x=xe^{rx}=xy_1$

Alltså $y = C_1 e^{rx} + C_2 x e^{rx} = (C_1 + C_2 x) e^{rx} \text{ där } C_1 \neq C_2$

Fall 3: Komplexa rötter:

$$y_1 = e^{(a+bi)x}$$
 och $y_2 = e^{(a-bi)x}$

Dessa är linjärt oberoende. I denna kurs håller vi enbart på med reela ting, så det är fördelaktigt att skriva om så att det blir tydligt att vi arbetar med reela former. Vi kan använda oss av eulers formel $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

Vi får:

$$e^{(a+bi)x} = e^{ax}e^{bix} = e^{ax}(\cos(bx) + i\sin(bx))$$
$$e^{(a-bi)x} = e^{ax}e^{-bix} = e^{ax}(\cos(-bx) + i\sin(-bx)) = e^{ax}(\cos(bx) - i\sin(bx))$$

Alla lösningar är på formen

$$y = C_1 e^{ax} (\cos(bx) + i\sin(bx)) + C_2 e^{ax} (\cos(bx) - i\sin(bx)) =$$

$$(C_1 + C_2)e^{ax} \cos(bx) + i(C_1 - C_2)e^{ax} \sin(bx) \text{ vi har real del och imaginär del}$$

$$\text{Tag } C_1 = C_2 = \frac{1}{2} \ y = e^{ax} \cos(bx)$$

$$\text{Tag } C_1 = -C_2 = -\frac{i}{2} \ = i(-\frac{i}{2} - \frac{i}{2})e^{ax} \sin(bx) = e^{ax} \sin(bx)$$

Dessa är linjärt oberoende, om vi delar dem på varandra får vi $\frac{\cos(bx)}{\sin(bx)}$ vilket inte är en konstant.

Alltså är $\{e^{ax}\cos(bx), e^{ax}\sin(bx)\}$ en annan fundamental lösningsmängd. Vi använder oftast denna.

Exempel: Hitta den allmänna lösningen till:

- 2y'' 5y' 3y = 0• y'' 10y' + 25y = 0
- y'' + 4y' + 7y = 0

Vi kan konstatera att alla dessa är linjära, andra ordningen, konstanta koefficienter. Vi börjar att betrakta första punkten:

$$y''-\frac{5}{2}y'-\frac{3}{2}y=0$$
 Karaktäristiska polynomet: $r^2-\frac{5}{2}r-\frac{3}{2}=0$ Rötterna blir: $r_1=3, r_2=-\frac{1}{2}$
$$y=C_1e^{-\frac{1}{2}x}+C_2e^{3x} \text{ (notera, inget } x \text{ framför } C_2 \text{ ty ingen dubbelrot)}$$

Nästa:

Karaktäristiska polynomet: $r^2-10r+25$, rötterna är $r_1=5, r_2=5$ Dubbelrotination, allmänna lösningen ges av:

$$y = C_1 e^{5x} + C_2 x^{5x}$$

Sista:

 Karaktäristiska polynomet: r^2+4r+7 , rötterna ges av $r_1=-2+i\sqrt(3), r_2=-2-i\sqrt(3)$ Två komplexa rötter, vi får:

$$y = C_1 e^{-2x} \cos(\sqrt{3x}) + C_2 e^{-2x} \sin(\sqrt{3x})$$

8. Föreläsning

Idag kommer vi lösa ekvationer på formen y'' + p(x)y' + q(x)y = f(x). Tidigare har vi kollat på det homogena fallet, det vill säga när f(x) = 0, nu ska vi hantera det inhomogena fallet.

Sats 8.1: Generell lösning

Den generella lösningen till y'' + p(x)y' + q(x)y = f(x) kan skrivas på formen:

$$y(x) = y_h + y_p(x)$$

Där $y_h = C_1 y_1(x) + C_2 y_2(x)$ är den allmänna lösnigen till den associerade homogena ekvationen, och y_p är $n\mathring{a}gon$ lösning till y'' + p(x)y' + q(x)y = f(x) (kallas för $partikul\"{a}r$ lösning). Partikul\"{a}rlösningen är alltid oberoende.

Vi ser då att lösnigen är summan av lösnigen till den associerade homogena ekvationen och en lösning till ekvationen.

Bevis 8.1: Generell lösning

Låt y vara en lösning till y'' + p(x)y' + q(x)y = f(x). Vi vill visa att y går att skriva på formen:

$$y = C_1 y_1 + C_2 y_2 + y_p$$

Vi har y'' + p(x)y' + q(x)y = f(x), men vi har också antagit att $y''_p + p(x)y'_p + q(x)y_p = f(x)$. Om vi subtraherar båda från varandra får vi:

$$(y - y_p)'' + p(x)(y - y_p)' + q(x)(y - y_p) = 0$$

Denna ekvation är homogen! Det ger oss:

$$y - y_p = C_1 y_1 + C_2 y_2$$

$$\Leftrightarrow y = C_1 y_1 + C_2 y_2 + y_p$$

Hur ska vi hitta y_p ? Detta är föreläsningens premiss. Partikulärlösningen är inte unik, även om vi hänvisar till den som "partikulärlösningen". Oftast får man den på en specifik form, men den är givetvis inte entydig.

Kommentar: Om vi har 2 olika partikulärlösningar y_{p_1}, y_{p_2} så förhåller de sig till varandra: $y_{p_2} = C_1 y_1 + C_2 y_2 + y_{p_1}$, men vi skulle kunna vända på det och skriva $y_{p_1} = D_1 y_1 + D_2 y_2 + y_{p_2}$

Vi kommer gå igenom 2 olika metoder för att hita partikulärlösningen:

- Metoden med obestämda koefficienter (ansatsmetoden) (mer gissning)
- Variation av parameter-metoden (mer allmän, mer räkna)

8.1. Metoden med obestämda koefficienter.

Idén går ut på att gissa en lösning och verifiera den.

Exempel: Hitta en partikulärlösning till:

- y'' + 3y' + 4y = 3x + 2
- $y'' y = 2e^{3x}$
- $3y'' + y' 2y = 2\cos(x)$

Anmärkning: De har alla konstanta koefficienter.

Vi börjar med att kolla på första. Vi söker ett y så att vi får 3x + 2 på HL. Det låter rimligt att det vi söker är ett polynom, så vi tar ett allmänt polynom och stoppar in och ser vad som händer.

Graden av polynomet på HL är av grad 1, så rimligtvis borde y vara ett förstagradspolynom. Det generella förstagradspolynomet är y = Ax + B. Vi stoppar in och ser vad som händer:

$$y'_p = A$$

$$y''_p = 0$$

$$\Leftrightarrow 0 + 3A + 4(Ax + B) = 3x + 2$$

$$4Ax + (3A + 4B) = 3x + 2$$

Här kan man jämföra vad som står framför x och vilka som är konstanter. Vi får:

$$\left. \begin{array}{l} 4A = 3 \\ 3A + 4B = 2 \end{array} \right\} = A = \frac{3}{4} \ , \ B = \frac{-1}{16} \\$$

En partikulärlösning är $y_p = \frac{3}{4}x - \frac{1}{16}$

Nästa kommer vara att inse att vi har en exponentialfunktion. Vi gissar:

$$y_p = Ae^{3x}$$

$$y'_p = 3Ae^{ex}$$

$$y''_p = 9Ae^{3x}$$

$$\Leftrightarrow 9Ae^{ex} - Ae^{3x} = 2e^{3x} = 8Ae^{3x}$$

$$\Leftrightarrow A = \frac{1}{4} \Rightarrow y_p = \frac{1}{4}e^{3x}$$

Ibland får man en gissning som ger 0 på VL, då har man gissat fel. Vissa folk på tentor har gissat fel och börjar lösa för x men det är inte riktigt det vi vill, vi vill hitta för alla x.

Vi kör sista (men inte minsta!). Vi ska testa vad som händer om man gissar fel. Vi gissar $y_p = A\cos(x)$:

$$y'_p = -A\sin(x)$$
$$y''_p = -A\cos(x)$$

Första anmärkningen på att något har gått snett är att vi har fått $\sin(x)$, vi forts.

$$-3A\cos(x) - A\sin(x) - 2A\cos(x) = 2\cos(x)$$
$$-5A\cos(x) - A\sin(x) = 2\cos(x)$$
För att detta skall gälla bör vi ha:
$$-5A = 2 \Rightarrow A = \frac{-2}{5} \text{ men vi har ingen sinus term i HL!}$$

Vad vi skulle kunna göra är att vi gör en ny gissning, eftersom vi vet att vid derivering får vi motsatt funktion kan vi ansätta $y_p = A\cos(x) + B\sin(x)$. Vi får:

$$y_p'' = -A\sin(x) + B\cos(x)$$

$$y_p'' = -A\cos(x) - B\sin(x)$$

$$3(-A\cos(x) - B\sin(x)) + (-A\sin(x) + B\cos(x)) - 2(A\cos(x) + B\sin(x)) = 2\cos(x)$$

$$(-5A + B)\cos(x) + (-A - 5B)\sin(x) = 2\cos(x)$$

$$-5A + B = 2$$

$$-A - 5B = 0$$

$$B = \frac{1}{13}$$

$$y_p = \frac{-5}{13}\cos(x) + \frac{1}{13}\sin(x)$$

Denna metod fungerade bra i dessa exempel. Vi ska kika på ett exempel där den första gissningen inte riktigt skulle funka och tänka på "vad kan vi göra då?".

Exempel: Hitta en partikulärlösning till $y'' - 5y' + 4y = 8e^x$ (ganska lik ett tidigare exempel). Rimlig gissning är $y_p = Ae^x$:

$$Ae^x - 5Ae^x + 4Ae^x = 8e^x$$

$$0Ae^x = 8e^x \Rightarrow \text{Bus! Kan ej välja } A \text{ så att vi får en lösning.}$$

Varför hände detta och varför funkar det inte? Jo, för att om vi kollar på den associerade homogena ekvationen y'' - 5y' + 4y = 0 så har den den allmänna lösningen $y_h = C_1 e^x + C_2 e^{4x}$. Så $y_p = Ae^x$ löser den homogena ekvationen, löser den den homogena kan den inten rimligtvis lösa den inhomogena.

En smidig lösning på detta är att man tar det man gissade på, och multiplicerar med x. Detta funkar i allmänhet, får man noll så multiplicera med $x.y_p = Axe^x$. Vi kollar:

$$y_p' = Ae^x + Axe^x$$

$$y_p'' = Ae^x + Ae^x + Axe^x = 2Ae^x + Axe^x$$

$$\Leftrightarrow 2Ae^x + Axe^x - 5(Ae^x + Axe^x) + 4Axe^x = 8e^x$$

$$-3Ae^x + 0Axe^x = 8e^x$$

$$A = \frac{-8}{3} \Rightarrow y_p = \frac{-8}{3}xe^x$$

När vi säger "multipliera med x" kommer det betecknas x^s senare, detta för att ibland så kan det hända att man måste multipliera med x flera gånger så man låter helt enkelt s beteckna hur många gånger man behöver multipliera gissningen med x för att inte få en linjärt beroende lösning (0).

Nedan följer en (ej fullständig) tabell kring vilka de generella formerna på visa typer av uttryck ser ut:

Om $f(x)$ är	Gissa y_p
P_n (polynom av grad n)	x^s Polynom (där s oftast är noll men om vi får 0 , öka)
$a\cos(kx) + b\sin(kx)$	$x^{s}(A\cos(kx) + B\sin(kx))$
$e^{rx}(a\cos(kx) + b\sin(kx))$	$x^s e^{rx} (A\cos(kx) + B\sin(kx))$
$P_n e^{rx}$	$x^s(P_n)e^{rx}$
$P_n(a\cos(kx) + b\sin(kx))$	$x^{s}(P_{n})(A\cos(kx) + B\sin(kx))$

Vad händer om f(x) inte är på en form liknande ovan? Då kan vi troligen inte gissa lösningen. Men, om den är en summa av saker i tabellen, då kan vi använda att den är linjär och därmed dela upp i fall.

8.2. Variation av parameter-metoden.

Mer allmän, men kräver mer beräkning. Risken är därmed större att man räknar fel.

Den ger oss en lösning till y'' + p(x)y' + q(x)y = f(x) om vi har en fundamental lösningsmängd $\{y_1, y_2\}$ till den associerade homogena ekvationen.

En partikulärlösning ges då på formen $y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$. Hade u_1, u_2 varit konstanter hade vi fått en homogen ekvation.

Här är $u_1'=\frac{W_1}{W(y_1,y_2)}$ och $u_2'=\frac{W_2}{W(y_1,y_2)}$ där W är Wronskianen som inte är något annat än en determinant av en 2x2 matris:

$$W = \det\left(\begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix}\right) = y_1 y'_2 - y'_1 y_2$$

$$W_1 = \det\left(\begin{pmatrix} 0 & y_2 \\ f(x) & y'_2 \end{pmatrix}\right) = -f(x) y_2$$

$$W_2 = \det\left(\begin{pmatrix} y_1 & 0 \\ y'_1 & f(x) \end{pmatrix}\right) = f(x) y_1$$

Exempel: Lös $y'' + 3y' + 2y = \frac{1}{1 + e^x}$

Om vi vill använda denna metod, så behöver vi den homogena ekvationen, så steg 1, lös homogen:

Karaktäristiska polynomet
$$r^2 + 3r + 2 = 0$$

$$r_1 = -1 \\ r_2 = -2$$
Lösningen är $y_h = C_1 e^{-x} + C_2 e^{-2x}$

$$\text{Där } y_1 = e^{-x}, y_2 = e^{-2x}$$
Vi söker $y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$

$$W(y_1, y_2) = \det\left(\begin{pmatrix} e^{-x} & e^{-2x} \\ -e^{-x} & -2e^{-2x} \end{pmatrix}\right) = -2e^{-3x} + e^{-3x} = -e^{-3x}$$

$$W_1 = \frac{-1}{1+e^x}e^{-2x}$$

$$W_2 = \frac{1}{1+e^x}e^{-x}$$

$$u'_1 = \frac{W_1}{W} = \frac{-e^{-2x}}{1+e^x} \cdot \frac{1}{-e^{-3x}} = \frac{e^x}{1+e^x}$$

$$u'_2 = \frac{e^{-x}}{1+e^x} \cdot \frac{1}{-e^{-3x}} = \frac{-e^{2x}}{1+e^x}$$

$$u_1 = \int \frac{e^x}{1+e^x} dx = [u = e^x, du = e^x dx] = \int \frac{1}{1+u} du$$

$$u_2 = \int \frac{e^2x}{1 + e^x} = -\int \frac{e^x(1 + e^x) - e^x}{1 + e^x} dx = -\int e^x dx + \int \frac{e^x}{1 + e^x} dx = -e^x + \ln|1 + e^x|$$

 $=\ln|1+u|$ (vi struntar i +C ty partikulärlösning är en) $=\ln|1+e^x|$

Vi får
$$y_p = \ln|1 + e^x| \cdot e^{-x} + (-e^x + \ln|1 + e^x| \cdot e^{-2x}) = \ln|1 + e^x| (e^{-x} + e^{-2x}) - e^{-x}$$

Allmänna lösningen ges av:

$$y = y_p + y_h = C_1 e^{-x} + C_2 e^{-2x} + \ln|1 + e^x| (e^{-x} + e^{-2x}) - e^{-x}$$

Varför funkar det här? Om vi stoppar in så löser det, men varför? Sätter vi in $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$ i ekvationen och förenklar, får vi:

$$(y_1u_1' + y_2u_2')' + p(x)(y_1u_1' + y_2u_2') + y_1'u_1' + y_2'u_2' = f(x)$$

Notera att vi har $(y_1u_1' + y_2u_2')'$ 2 gånger. Vi kan då kräva

$$(y_1u'_1 + y_2u'_2)' = 0 y'_1u'_1 + y'_2u'_2 = t(x)$$

Detta är en linjärt system! Vi har slutna formler. Vi kan alltså kolla om systemet är lösbart genom Cramers regel.