COMPETITIVE PROGRAMMING

GEOMETRIC ALGORITHMS

Hamid Zarrabi-Zadeh

Sharif University of Technology

Spring 2024

Representative problems

- Smallest enclosing circle
- Closest pair
- Segment intersections

Representative problems (cont'd)

- Range searching
- Nearest neighbor search
- Motion planning

Geometric objects in 2D

- Point
- Line / Segment
- Circle / Disk
- Polygon / Triangle
- Polygonal Chain
- Half-plane
- ...

Geometry problems

In programming contests:

- Significant impact on the result
- Tricky to implement!

Implementation Issues:

- Degenerate cases
- Precision

General advices:

- Avoid divisions as much as possible
 - e.g., Instead of if (a/b == c), write if (a == b*c)
- Avoid using floating-point number whenever you can
- Use long long and double instead of int and float
- Use epsilon in equality tests
 - e.g., Instead of if (x == 0), write if (abs(x) < EPS)

Geometric primitives

Dot product:

- $A = (a_1, a_2), B = (b_1, b_2)$
- A B = $a_1b_1 + a_2b_2$

Geometric interpretation:

• A • B = $||A|| ||B|| \cos(\theta)$

Applications:

- Finding vector length:
 - $A \bullet A = ||A||^2$
- Computing projection:
 - $|A| \cos(\theta) = A \bullet B / \|B\|$
- Finding angles:
 - $\theta = \cos^{-1}(A \bullet B / ||A|| ||B||)$

Geometric primitives (cont'd)

Cross product:

- $A = (a_1, a_2), B = (b_1, b_2)$
- $A \times B = a_1b_2 a_2b_1$

Geometric interpretation:

• $A \times B = ||A|| ||B|| \sin(\theta)$

Applications:

- Computing area of a triangle:
 - $|A \times B| / 2$

•
$$A \times B = -(B \times A)$$

• Distance of point r to the line through p and q:

•
$$(q - p) \times (r - p) / ||q - p||$$

Orientation of three points

Define:

• cross(p, q, r) = $(q - p) \times (r - p)$

Segment-segment intersection test

Proper intersection:

- $cross(p, q, r) \cdot cross(p, q, s) < 0$
- and $cross(r, s, p) \cdot cross(r, s, q) < 0$

Area of a simple polygon

Problem:

- Given $p_1, p_2, ..., p_n$ around perimeter of a polygon P
- If P is convex, we can decompose it into triangles:
 - 2 area = $|\Sigma_{i=2..n-1} (p_i p_1) \times (p_{i+1} p_1)|$
- It also works for non-convex polygons!
 - sum of "signed areas"
- Alternative formula:
 - let $pi = (x_i y_i)$
 - 2 area = $|\Sigma_{i=1..n} (x_i y_{i+1}) \times (x_{i+1} y_i)|$

Convex hull problem

Problem:

• Given n points in the plane, find the smallest convex polygon containing all the points.

Graham scan

Algorithm:

- sort points in x-coordinates: p₁, p₂,..., p_n.
- start with an empty chain
- **for** k = 1 to n:
 - while the last two points of the chain and p_k make a left turn:
 - remove the last point from the chain
 - add p_k to the chain
- return the chain

Graham scan

Algorithm:

- sort points in x-coordinates: p₁, p₂,..., p_n.
- start with an empty chain
- **for** k = 1 to n:
 - while the last two points of the chain and p_k make a left turn:
 - remove the last point from the chain
 - add p_k to the chain
- return the chain

Analysis:

- · Each point is added to chain exactly once, and is deleted at most once.
 - So the scan takes O(n) time.
- But we need to sort the points at first.
 - Overall runtime is O(n log n).

Ternary search

Problem:

• Find the minimum of a convex function f

Solution:

- start with search interval [s, e]
- while |e s| is not small enough:
 - let $m_1 = s + (e s)/3$
 - let $m_2 = e (e s)/3$
 - if $f(m_1) < f(m_2)$, then set e to m_2
 - otherwise set s to m₁

Team reference document

KTH Royal Institute of Technology

Omogen Heap

Simon Lindholm, Johan Sannemo, Mårten Wiman

https://github.com/kth-competitive-programming/kactl/

References

- J. Park, Introduction to Programming Contests, Stanford, Winter 2012.
- M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications, 3rd edition, Springer, 2008.
- J. O'Rourke, Computational Geometry in C, 2nd edition, Cambridge University Press, 1998.

