清华大学本科生考试试题专用纸

	113	/ 1 /		J M M M	7 /11 -	<u> </u>		
	考试课程				年	月	日	
卷 B	《概率统计考试题》	(04.06)	班级	学号	姓名	, 1		
记号:	~服从; := 记为;	iid 独立	工同分布;	df分布函数;	pdf 分	布密度	函数;	
	rv 随机变量;	r v 随机	向量; E	B(n, p)二项分布;	P(λ) Poiss	son 分才	, i	
	Ge(p) 几何分布;	Ex(\lambda) 指	新数分布 ;	U(a,b)均匀分布	; N(μ,	r²)正态	分布。	
— (3:	3分)填空与判断正	误(正确	时填√,钅	昔误时填×;填入	的分布必	须带参	数)	
	设 $F_i(x)$ 和 $f_i(x)$ 分 $f_i(x)$ 不是密度函数		df和 pdf,)	i =1,2。则 $F_1(x)F_2$	(x)是分 ⁷	市函数	()	
2 . 与事件	设两个相互独立 ‡ A 不发生 B 发生的			文生的概率为 1/9, ————————————————————————————————————		t生B7	^下 发生的 ^材	既率
3.	设 $(X_1,X_2)\sim N(0,$	$0, \sigma^2, \sigma^2, 0$).5), <i></i> ♦ <i>Y</i> ₁	$=X_1-\frac{1}{2}X_2$, $Y_2=$	$=\frac{1}{2}X_1-X$	Z ₂ ,则Y	1 和 Y 2都不	有正
态分布	5且分布参数相同(`),但不独	<u>\(\frac{1}{2} \) ().</u>				
4.	. 设 rv X~t(n) (s	n > 1), Y	$X = \frac{1}{X^2}, \text{M}$	Y~ ()。			
5. 从 χ^2 分	. 设设 rv X和Y都) }布(服从~ <i>N</i> ((),1),则 <i>X</i> :	+ Y服从正态分布	(); 而	[X ² 和Y ² 表	
6.	设总体X的方差	存在, X ₁ , 2	X_2, \dots, X_{n-1}	是其简单样本, Y_k	$=\frac{1}{k}\sum_{i=1}^{k}$	$_{_{1}}X_{_{i}}$, k	= n., n	⊦1,
则用Y	$_{n}$ 及 Y_{n+1} 估计 EX 时,	$Y_{n+1} \bowtie Y_n$	有效()				
	. 设 $X_1, X_2,, X_{n-1}$		$N(0,\sigma^2),$	$\diamondsuit \bar{X} = \frac{1}{n} \sum_{j=1}^{n} X$	$_{j}$, $Y_{j}=X_{j}$	$\zeta_j - ar{X}$,	<i>j</i> =1,2。	则
<i>Y</i> ₁ 与Y ₂	的相关系数							
8.	. 如果总体 <i>X~P(λ</i>),则当n -	$ ightarrow \infty$ 时, Y_n	$=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ 几乎	立处处收敛	女于		°

二(8 分)设 A、B 是两个时间,且 0 < P(A) < 1, $P(B|A) = P(B|\bar{A})$,问 A、B 是否独立?请说明理由。

- Ξ (10 分) 设 $X_1, X_2, ..., X_n, ...$ 为 iid
 - (1) 如果 X_1 [~]0−1 分布,参数为 p,试对固定正整数 $k \le n$,求如下概率:

$$P(\sum_{i=1}^{n} X_{i} = k), P(\sum_{i=1}^{n} X_{i} = k, X_{n} = 0), \not B P(\min\{n : X_{n} \neq 0, n = 1, 2, ...\} = k)$$

(2) 如果
$$X_1^{\sim} N(0, \sigma^2)$$
,试求 $\left(\frac{X_1 + X_2}{X_1 - X_2}\right)^2$ 的分布。

- 四(10分)设某网络服务器首次失效时间(寿命) $X\sim Ex(\lambda)$,现随机购得4台中
 - (1) 令 Y: 4 台中寿命小于此类服务器期望寿命的台数, 求 Y 的最可能值。
 - (2) 事件 A: 4 台中最早失效时间大于此类服务器期望寿命。求 A 的概率。

五(10 分)在计算机上作大型科学计算,需对十进制的 x_j 的小数点后第 6 位作四舍五入,得到的 x_j 近似数为 y_j ,则误差 $\varepsilon_j = x_j - y_j$ 在区间(-0.5×10^{-5} , 0.5×10^{-5})内随机取值,视为从区间内的均匀分布随机变量,令累积误差 $\eta_n = \sum_{j=1}^n \varepsilon_j$,试利用中心极限定理,当 n=10,000时有 99.7%以上的把握给出 $|\eta_n|$ 的近似估计的上界。 注 **2** Φ (3)-1=0.9974.

六(9 分) 设(X,Y)的 pdf 为 $f(x,y) = c \cdot \exp\{-n(x+y)\}I(0 < x < y < +\infty)$,其中 n 为已 知整数,c 为待定常数.

七(20 分)设某糖厂用自动包装机集箱外运糖果,某日开工后再生产线上抽测 9 箱,得数据 99.3,100.5,101.2,98.3,99.7,99.5,102.1,100.5(kg).认为包装的每箱重为正态分布 $N(\mu,\sigma^2)$,参数 μ 和 σ^2 都未知,取 α =0.05

- (1) 试写出 μ 的最大似然估计值和标准差 σ 的置信度为0.95的双侧置信区间.
- (2) 如果规定包装机没箱装糖重量为 100kg 且方差未知,问由抽测数据能否认为生产线上每箱装糖重量不低于规定重量?

附表 $z_{0.05}=1.64$, $z_{0.025}=1.96$

$\chi^2_{\alpha}(n)$	n=8	n=9	$\chi^2_{\alpha}(n)$	n=8	n=9	$t_{\alpha}(n)$	n=8	n=9
$\alpha = 0.95$	2.733	3.325	$\alpha = 0.05$	15.507	16.919	α =0.05	1.8595	1.8331
$\alpha = 0.975$	2.180	2.700	$\alpha = 0.025$	17.535	19.023	$\alpha = 0.025$	2.3060	2.2622

参考答案:

2.
$$\frac{2}{3}$$

7.
$$\frac{1}{n+1}$$

8.
$$\lambda^2 + \lambda$$

二. 解: P(B)=P(B|A)P(A)+P(B|Ā)P(Ā)=P(B|A)[P(A)+P(Ā)]= P(B|A), 所以 A 和 B 独立。

$$\equiv$$
. (1) $C_n^k p^k (1-p)^{n-k}$, $C_{n-1}^k p^k (1-p)^{n-k}$, $p(1-p)^{k-1}$

(2)
$$\left(\frac{X_1 + X_2}{X_1 - X_2}\right)^2 \sim F(1, 1)$$

五. 解: $\mathrm{E}\varepsilon_j = 0$, $\mathrm{D}\varepsilon_j = \frac{1}{12}$, $\mathrm{P}(|\eta_n| < a) = 0.997$,

$$P(-a < \Sigma \varepsilon_j < a) = P\left(\frac{-a}{\sqrt{1000 \times \frac{1}{12}}} < \frac{\Sigma \varepsilon_j}{\sqrt{n}\sigma} < \frac{a}{\sqrt{1000 \times \frac{1}{12}}}\right) = 2\Phi\left(\frac{a}{5\sqrt{\frac{10}{3}}}\right) - 1$$
$$= 0.997$$

$$\therefore a = 15\sqrt{\frac{10}{3}}$$

$$\overrightarrow{r}$$
. (1) $c = 2n^2$

(2)
$$f_{Y|X}(y|1) = e^{-n(y-1)}$$

(3)
$$2n^2e^{-n(x+y)} \neq \frac{1}{n^2}e^{-n(x+y)}$$
,所以 X、Y 不独立