2η Ομάδα Ασκήσεων

11. (Τράπουλα)

Καταρχάς οι δυνατές μοιρασιές (το μέγεθος του δειγματικού χώρου του πειράματος) είναι $|\Omega| = {52 \choose 10} = {52! \over 10!42!}$. (1)

Θεωρούμε ότι τα δυνατά αποτελέσματα είναι όλα ισοπίθανα (παραδοχή 1)

α) Έστω το ενδεοχόμενο A={«Κανένας άσσος»}. Στις μοιρασιές που ανήκουν στο Α δεν υπάρχει κανένας από τους 4 άσσους της τράπουλας και μένουν 52-4=48 φύλλα για να «γεμίσουν» τα 10 «κενά» τις μοιρασιάς (η σειρά δεν μας ενδιαφέρει). Έχουμε

λοιπόν
$$|A| = {48 \choose 10} = \frac{48!}{10!38!}$$
. Από το (1) και την παραδοχή (1) έχουμε $P(A) = \frac{|A|}{|\Omega|} = \frac{48!}{10!38!} * \frac{10!42!}{52!} \approx 0.41$

β) Έστω το ενδεχόμενο $B=\{\text{«Το πολύ 3 άσσοι»}\}$. Οι μοιρασιές που ανήκουν στο B δεν θα έχουν 4 άσσους, δηλ $B'=\{\text{«4 άσσοι»}\}$. Γνωρίζουμε ότι P(B)=1- P(B') οπότε αρκεί να βρούμε το P(B').

Οι μοιρασιές που ανήκουν στο Β΄ έχουν και τους 4 άσσους και μένουν 52-4=48 φύλλα για να «γεμίσουν» τα 10-4=6 «κενά» της μοιρασιάς. Έχουμε λοιπόν

$$|B'| = {48 \choose 6} = \frac{48!}{6!42!}$$
. Από το (1) και την παραδοχή (1) είναι $P(B') = \frac{|B'|}{|\Omega|} = \frac{48!}{6!42!} * \frac{10!42!}{52!}$ ≈ 0.00078. Άρα $P(B) = 1$ -0.00078=0.9992.

- **γ)** Έστω A1 το ενδεχόμενο να υπάρχει τουλάχιστον ένας άσσος και Φ το ενδεχόμενο να υπάρχει τουλάχιστον μια φιγούρα. Αναζητούμε λοιπόν την πιθανότητα $P(A1 \cap \Phi)$. Είναι $(A1 \cap \Phi)' = A1' \cup \Phi'$ επομένως $P(A1 \cap \Phi) = 1 P(A1' \cup \Phi')$. Για το $P(A1' \cup \Phi')$ έχουμε $P(A1' \cup \Phi') = P(A1' \cap \Phi') P(A1' \cap \Phi')$.
- A1' ={«Κανένας άσσος»} δηλ είναι ουσιαστικά A1'=A και P(A1')=P(A)=0.41
- Φ' = {«Καμία φιγούρα»}. Οι φιγούρες είναι 3*4=12 και δεν παίρνουμε καμία από αυτές. Άρα μένουν 52-12=40 φύλλα για να «γεμίσουν» τα 10 «κενά» της μοιρασιάς.

Είναι λοιπόν
$$|Φ'| = {40 \choose 10} = \frac{40!}{10!30!}$$
 και συνεπώς $P(Φ') = \frac{|Φ'|}{|Ω|} = \frac{40!}{10!30!} * \frac{10!42!}{52!} ≈ 0.054$

-A1'∩ Φ'= {«Κανένας άσσος και καμία φιγούρα»}. Οι άσσοι είναι 4 και οι φιγούρες 12 και απουσιάζουν και τα 4+12=16 φύλλα από τις μοιρασιές που ανήκουν στο A1'∩Φ'. Άρα μένουν 52-16=36 φύλλα για να «γεμίσουν» τα 10 «κενά» της

μοιρασιάς. Είναι λοιπόν $|A1' \cap \Phi'| = \binom{36}{10} = \frac{36!}{10!26!}$ και συνεπώς $P(A1' \cap \Phi') = \frac{|A1' \cap \Phi'|}{|\Omega|} = \frac{36!}{10!26!} * \frac{10!42!}{52!} \approx 0.016.$

Τελικά έχουμε $P(A1'U\Phi')=P(A1')+P(\Phi')-P(A1'\cap\Phi')=0.41+0.054-0.016=0.448$ και άρα $P(A1\cap\Phi)=1-P(A1'U\Phi')=1-0.448=0.552$

12. (Τυχαίες Λέξεις)

Καταρχάς το πλήθος των δυνατών λέξεων που μπορούν να σχηματιστούν είναι $|\Omega|=24^5$. Θεωρούμε ότι όλα τα αποτελέσματα είναι ισοπίθανα.

- α) Έστω το ενδεχόμενο A={«Περιέχει 'A'»}. Τότε A'={«Δεν περιέχει κανένα 'A'»}. Γνωρίζουμε ότι P(A)=1-P(A'). Οι λέξεις που ανήκουν στο A' θα αποτελούνται εξ'ολοκλήρου από τα 23 υπόλοιπα γράμματα της αλφαβήτου. Άρα $|A'|=23^5$ και επομένως $P(A')=\frac{|A'|}{|\Omega|}=\frac{23^5}{24^5}\approx 0.81$. Συνεπώς P(A)=1-0.81=0.19
- β) Έστω το ενδεχόμενο B2={«Περιέχει το 'A' ή το 'B' ή και τα δύο»}. Έστω επίσης A το ενδεχόμενο η λέξη να περιέχει 'A' και B το ενδεχόμενο η λέξη να περιέχει 'B'. Τότε B2=AUB και B2'=A' \cap B' που ρητώς σημαίνει ότι οι λέξεις που δεν ανήκουν στο B2 δεν περιέχουν ούτε το 'A' ούτε το 'B'. Αυτό σημαίνει ότι οι θέσεις αυτών των λέξεων καλύπτονται από τα 24-2=22 υπόλοιπα γράμματα. Έχουμε, λοιπόν, $|B2'|=22^5$ και συνεπώς $P(B2')=\frac{|B2'|}{|\Omega|}=\frac{22^5}{24^5}=(\frac{22}{24})^5\approx 0.65$. Όπως γνωρίζουμε P(B2)=1-P(B2')=1-0.65=0.35
- **γ)** Έστω το ενδεχόμενο Γ3={«Περιέχει το 'A' και το 'B'»}. Με βάση τους συμβολισμούς που υιοθετήσαμε στο ερωτ. (β), είναι Γ3=A \cap B. Ισχύει Γ3'=(A \cap B)'=A'UB'. Για την πιθανότητα P(A'UB') έχουμε P(A'UB')=P(A')+P(B')-P(A' \cap B').
- P(A')= 0.81 (από ερώτημα α)
- B'={«Δεν περιέχει 'B'»}. Οι λέξεις που ανήκουν στο B' θα αποτελούνται εξ'ολοκλήρου από τα 23 υπόλοιπα γράμματα της αλφαβήτου (εκτός του B). Άρα $|B'|=23^5$ και επομένως $P(B')=\frac{|B'|}{|\Omega|}=\frac{23^5}{24^5}\approx 0.81$.
- -Από το ερώτημα (β) προέκυψε P(A'∩B')=P(B2')=0.65

Τελικά λοιπόν έχουμε P(Γ3')=0.81+0.81-0.65=0.97 και συνεπώς P(Γ3)=1-0.97=0.03

δ) Έστω το ενδεχόμενο $\Delta 4=\{$ «Περιέχει το 'B' και όχι το 'A'» $\}$ δηλ είναι $\Delta 4=B\cap A'$. Γνωρίζουμε ότι $P(\Delta 4)=P(B\cap A')=P(B)-P(A\cap B)$

Τελικά λοιπόν είναι P(Δ4)=0.19-0.03=0.16

13. (Το παράδοξο των γενεθλίων)

• <u>Ποια η πιθανότητα του ενδεχόμενου Α τουλάχιστον δύο άτομα να έχουν</u> γενέθλια την ίδια μέρα του χρόνου?

Για το ζητούμενο P(A) γνωρίζουμε ότι P(A)=1 - P(A'). Αρκεί λοιπόν να υπολογίσουμε την πιθανότητα να μην υπάρχουν 2 άτομα με γενέθλια την ίδια μέρα. Σκεπτόμενοι κάπως ανορθόδοξα, αυτό αντιστοιχεί στο να μοιράσουμε από τις 365 διαθέσιμες μέρες του χρόνου τις M στα άτομα αυτά, χωρίς επανάληψη κάποιας ημέρας. Έτσι λοιπόν $|A'| = (365)_{\rm M} = \frac{365!}{(365-M)!}$. Ο δειγματικός χώρος (Ω) θα αποτελείται από όλες τις δυνατές μοιρασιές 365 ημερών σε M άτομα με δυνατές επαναλήψεις.

Επομένως |\Omega'| = 365^{M}. (θεωρούμε πως όλα τα αποτελέσματα είναι ισοπίθανα)

Συνεπώς,
$$P(A') = \frac{|A'|}{|\Omega|} = \frac{365!}{(365-M)!365^{\Lambda}M}$$
 και τελικά $P(A) = 1 - \frac{365!}{(365-M)!365^{\Lambda}M}$

Ποιο είναι το μικρότερο Μ για το οποίο η πιθανότητα είναι μεγαλύτερη από 0.5?

Για να είναι P(A)>1/2 θα πρέπει P(A')<1/2. Αντιλαμβανόμαστε ότι καθώς το M αυξάνεται, το P(A) θα αυξάνεται. Για M=22 είναι P(A')= $\frac{365!}{(365-22)!365^22}\approx 0.524$ και P(A)=1-0.524=0.476 <1/2. Για M=23 είναι P(A')= $\frac{365!}{(365-23)!365^23}\approx 0.493$ και P(A)=1-0.493=0.507. Άρα το ζητούμενο M είναι το 23.

 Ποια η πιθανότητα του ενδεχόμενου Β να έχει τουλάχιστον ένας από τους υπόλοιπους Μ – 1 γενέθλια μαζί με αυτό το άτομο?

Για το ζητούμενο P(B) γνωρίζουμε ότι P(B)=1 - P(B'). Αρκεί λοιπόν να υπολογίσουμε την πιθανότητα να <u>μην</u> υπάρχει άλλο άτομο που να έχει την ίδια μέρα γενέθλια με το συγκεκριμένο άτομο. Καταρχάς, υπάρχουν 365 περιπτώσεις για την ημέρα στην οποία έχει γενέθλια το συγκεκριμένο άτομο. Με παρόμοιο συλλογισμό με το πρώτο

ερώτημα, αφαιρούμε από τις διαθέσιμες μέρες την 1 στην οποία έχει γενέθλια το συγκεκριμένο άτομο και μένουν έτσι 364 ημέρες για να μοιραστούν σε M-1 άτομα.

Αυτό σημαίνει ότι
$$|B'|=365*364^{M-1}$$
 και συνεπώς $P(B')=\frac{|B'|}{|\Omega|}=365*\frac{364^{M-1}}{365^M}$
$$=\left(\frac{364}{365}\right)^{M-1}.$$
 Άρα τελικά $P(B)=1-P(B')=1-\left(\frac{364}{365}\right)^{M-1}$.

φυλών, Άρα από την πολλαπλ. αρχή έχουμε $|B_5| = 4 {13 \choose 5} {39 \choose 2}$ - Συνεπώς P(B5) = 1B5 ∠ 0,029 · Για το Β6: Με τον ίδιο συλλογισμό είναι | Β6 = 4. (13) (39) SUVENUS P(B6) = B6 = 4.13! · Tia to By, oudiabtika tival By = A, onote P(Br)= P(A)= 0,0003 ~ ZUVORIKA P(B)= 0,029+0,002+0,0003= 0,0313 (χ') C= ξ" 3 ζεύχη, καμία 3άδα ή 4άδα" ξ. Για τα μοιράσματα που ανήκουν στο C υπάρχουν (13) διαφορετικές περιπτώσεις για την επιποχή των φύπλων που συμμετέχουν στα ζεύχη και για κάθε ένα ζεύχος από τα 3 υπάρχουν (4) διαφορετικές περιπτώσεις για την επιλοχή των 2 εκ των 4 φύλλων ησυ ανήκουν στην ίδια σειρα (όπου σειρά η.χ. Α, 10, 3,]...) Τέλος, η τελευταία "Θέση" μπορεί να καλυφθεί με οποιοδή ποτε από τα 52-4-4-4= 40 φύλλα που απομένουν αν αφαιρέσουμε τις 4άδει φύλλων της ίδιας σειράς με αυτές που συμμετέχουν στα ζεύχη. Apa $|C| = (13) \cdot (4)(4)(4) \cdot 40$ kay ouvenus 17. (Παπουτσοθήκη) Κατ'αρχάς το πλήθος των δυνατών αποτελεσμάτων κατά την επιλοχή 4 εκ των 20 παπουτσιών είναι [Ω = 20! και θεωρούμε ότι 4!16! αυτά είναι ισυπίθανα. (α') Έστω Α= ξ" Κανένα ζευχάρι" . Αν στην επιλοχή δεν υπάρχει κανένα <u> Τευχάρια. Υπάρχουν (10) περιπτώσεις για τα Jευχάρια που θα</u>

ουμμετέχουν στην επιλοχή (ο συνολικός αριθμός ζευχαριών είναι 10) και χια κάθε
ένα υπάρχουν 2 δυνατές περιπτώσεις για το ποιο παπούτσι του ζευχαριού θα
συμμετέχει στην επιλοχή. Άροι (Α)= (10). 2.2.2.2 και συνεπιώς
$P(A) = \frac{ A }{ \Omega } = \frac{10!}{4!6!} = \frac{4!16!}{20!} = 0,69$
(6') Eorw B = { "Axpibles 1 Jevyapi" ?. Ynapxouv 10 nepintwoeis gia zny
επιλοχή ενός ζευχαριού από τα 10. Στη συνέχεια υπάρχουν (9) περιπτώσειδ
μα την επιλοχή 2 ζευχαριών από τα εναπομείναντα 9 και χια κάθε ένα
Επιλέχεται 1 από τα 2 παπούτσια του ζευχαριού (2 περιπτώσεις).
Aρα B = 10·(9). 2·2 και συνεπώς P(B)= B = 10·9! .2².4!·16! ~0; Ω 2!¥! &ρ!
(χ') Έστω C= ξ"2 ζευχάρια" ξ. Υπάρχουν (10) περιπτώσεις για την επιλοχή 2
ζευχαριών από τα 10.
'Aρα C = (10) και συνεπώς P(C) = C = 10 .4:16! ~ 0,009 Ω 2!8! 20!
18. (Age of Empires Logic)
Κατ' αρχάς ο αριθμός των δυνατών 10 άδων που μπορούν να επιλεχθούν είναι
(30 + 20) = (50) αφού ο συνολικός αριθμός ατόμων (ελεφάντων και πεζικάριων
είναι 50. Άρα Ω =(50) = 50! 10!40!
Έστω το ενδεχόμενο Α= ξ" Τουλάχιστον 7 ελέφαντες" ζ και Αί το ενδεχόμενο
σε μια 10 άδα να υπάρχουν ακριβώς ὶ ελέφαντες. Τότε Α= ΑχυΑβυΑσυΑιο.
ο Για το Αχ: Υπάρχουν (20) περιπτώσεις για την επιλοχή των Ε ελεφάντων
και (30) περιπτώσεις χια την επιλοχή των 3 πεζικάριων που
θα συμπληρώσουν τη 10άδα. Άροι, από την πολλαηλ. αρχή,
$\frac{ A_{7} = (30) \cdot (90)}{3} \text{ kal ouvenus } P(A_{7}) = \frac{ A_{7} = 30!}{ \Omega } \cdot \frac{90!}{3! \cdot 27!} \cdot \frac{10! \cdot 40}{50!}$
≃0,03
• Για το A_8 : Με τον ίδιο συλλοχισμό είναι $ A_8 = {20 \choose 8} {30 \choose 2}$ και συνεπώς

A Committee of the Comm
$P(A_8) = \frac{ A_8 }{ \Omega } = \frac{20!}{8!12!} \cdot \frac{30!}{2!28!} \cdot \frac{10!40!}{20!} \approx 0.005$
1271 9:14: 4:48: 50:
° Για το Αq: Aq = (20) (30) και P(Aq) = Aq = 20! .30.10!40! ~0,000! Ω 9!11! 50!
ο Για το Α ₁₀ : Α10 = (20) (καθώς δεν υπάρχουν πεζικάριοι) και
$P(A_{10}) = A_{10} = 20! \cdot 10! + 10! \approx 1.8 \cdot 10^{-5}$ $ \Omega 0! 0! = 50!$
TEALKO P(A) = P(AT) + P(AB) + P(AQ) + P(ALO) = 0,03+0,005+0,0005+1,8.10-5
19. (η ζευχάρια διαχωνιζόμενων)
Κατ' αρχάς ο αριθμός των δυνατών απονομών είναι (2n) καθώς από τους
2η διαχωνιβόμενους μποραύν να επιλεχούν οι η στους οποίους θα
anovermoei το βραβείο με $(2n)$ τρόπους Άρα $[\Omega]=(2n)=(2n)!$
Έστω Ε το εξεταζόμενο ενδεχόμενο. Τια κάθε Τευχάρι σε ένα μέλος
του οποίου θα απονεμηθεί βραβείο υπάρχουν 2 περιπτώσεις για την επιλοχή
εκείνου εκ των 2 στον οποίο θα απονεμπθεί βραβείο. Άρα, από την
πολλαηλ. αρχή είναι [E = 2.2.2 2 = 2" και συνεπώς, εφόσον
n popès
όλα τα αποτελέσματα απονομής είναι ισοπίθανα, έχουμε P(E)= [E] = 2 ⁿ . n!·n!
ολα το οποτελεσματα απονομής είναι ισοπίθανα, έχουμε <u>Ρίε τεί ε χ. π. π.</u> [Ω] (2n)!
<u></u>

20. (η ζευγάρια κατασκόπων)

Καταρχάς, όλες οι δυνατές αποστολές k κατασκόπων που μπορούν να δημιουργηθούν δεδομένου ότι υπάρχουν 2n κατάσκοποι είναι $\binom{2n}{k}$. Άρα $|\Omega| = \binom{2n}{k}$

α) Έστω το ενδεχόμενο A={«Ακριβώς j άνδρες στην αποστολή»}. Για να συμπεριληφθούν ακριβώς j άνδρες θα πρέπει να επιλέξουμε από τους συνολικά n άνδρες τους j. Επίσης, για κάθε δυνατή επιλογή ανδρών για να ολοκληρωθεί η k-άδα των κατασκόπων θα επιλεγούν επίσης k-j γυναίκες από τις n που υπάρχουν.

Άρα
$$|A| = \binom{n}{j} \binom{n}{k-j}$$
 οπότε $P(A) = \frac{|A|}{|\Omega|} = \frac{\binom{n}{j} \binom{n}{k-j}}{\binom{2n}{k}}$

β) Έστω το ενδεχόμενο $B=\{\text{«Όχι άτομα του ίδιου ανδρόγυνου»}\}$. Για να μην συμπεριληφθούν άτομα του ίδιου ανδρόγυνου θα πρέπει να επιλεγούν από τα η ζευγάρια κατασκόπων τα k και από αυτά να επιλεγεί ο ένας εκ των δυο. Δηλαδή υπάρχουν $\binom{n}{k}$ δυνατές επιλογές για την επιλογή των ζευγαριών και 2 δυνατές επιλογές για την επιλογή των ζευγαριών και 2 δυνατές επιλογές για την επιλογή 1 ατόμου από κάθε ζευγάρι. Άρα $|B|=\binom{n}{k}*2^k$ και επομένως $P(B)=\frac{|B|}{|\Omega|}=\frac{\binom{n}{k}*2^k}{\binom{2n}{k}}$

^{**}Σημ. Επειδή δεν δίνονταν συγκεκριμένοι αριθμοί και οι τύποι έχουν ήδη αναλυθεί πολλές φορές, δεν ανεγράφησαν οι τύποι που αφορούν τους συνδυασμούς σε αυτήν την άσκηση.