COMPARISON_MediaPipe+CNN+LSTM

June 21, 2025

```
[1]: from modules.SignLanguageProcessor import load_and_preprocess_data,parse_frame
     import os
[2]: ROOT PATH = ''
     sequences,labels,label_map = load_and_preprocess_data(os.path.
      ⇔join(ROOT_PATH, 'data'))
[3]: num_classes = len(label_map)
[4]: len(labels)
[4]: 2155
[5]: sequences.shape
[5]: (2155, 3, 61, 3)
[6]: from sklearn.model_selection import train_test_split
     X_train, X_temp, y_train, y_temp = train_test_split(
         sequences, labels, test_size=0.4, stratify=labels, random_state=42
     X_val, X_test, y_val, y_test = train_test_split(
         X_temp, y_temp, test_size=0.5, stratify=y_temp, random_state=42
[7]: import numpy as np
     def normalize landmark data(X):
         Normalize the landmark features (x, y) to have zero mean and unit variance
      \hookrightarrowacross the training set.
         Assumes X shape is (N, F, L, T), where F=3 (x, y, vis).
         X = X.copy()
         # Flatten across all samples, landmarks, and frames
         x_vals = X[:, 0, :, :].flatten()
         y_vals = X[:, 1, :, :].flatten()
```

```
# Compute mean and std
         x_mean, x_std = np.mean(x_vals), np.std(x_vals)
         y_mean, y_std = np.mean(y_vals), np.std(y_vals)
          # Normalize
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X, (x_mean, x_std), (y_mean, y_std)
      def apply_normalization(X, x_mean, x_std, y_mean, y_std):
         X = X.copy()
         X[:, 0, :, :] = (X[:, 0, :, :] - x_mean) / x_std
         X[:, 1, :, :] = (X[:, 1, :, :] - y_mean) / y_std
         return X
 [8]: def reshape_frames_for_cnn(X, y):
         X = X.transpose(0, 3, 2, 1) # (N, T, L, F)
         X = X[..., np.newaxis] # (N, T, L, F, 1)
         return X,y
 [9]: X_train_norm, (x_mean, x_std), (y_mean, y_std) =
      →normalize_landmark_data(X_train)
      X_val_norm = apply_normalization(X_val, x_mean, x_std, y_mean, y_std)
      X test_norm = apply_normalization(X_test, x_mean, x_std, y_mean, y_std)
      X train_cnn, y_train_cnn = reshape_frames_for_cnn(X_train_norm, y_train)
      X_val_cnn, y_val_cnn = reshape_frames_for_cnn(X_val_norm, y_val)
      X_test_cnn, y_test_cnn = reshape_frames_for_cnn(X_test_norm, y_test)
      print(X_train_cnn.shape)
      print(y_train_cnn.shape)
     (1293, 3, 61, 3, 1)
     (1293,)
[10]: input_shape = X_train_cnn.shape[1:]
      print(input_shape)
     (3, 61, 3, 1)
[11]: import tensorflow as tf
      train_ds = tf.data.Dataset.from_tensor_slices((X_train_cnn, y_train_cnn))
      train_ds = train_ds.shuffle(buffer_size=1000).batch(64).prefetch(tf.data.
       →AUTOTUNE)
```

```
val_ds = tf.data.Dataset.from_tensor_slices((X_val_cnn, y_val_cnn))
      val_ds = val_ds.batch(64).prefetch(tf.data.AUTOTUNE)
      test_ds = tf.data.Dataset.from_tensor_slices((X_test_cnn, y_test_cnn))
      test_ds = test_ds.batch(64).prefetch(tf.data.AUTOTUNE)
[12]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import TimeDistributed, Conv2D, MaxPooling2D,
       →Flatten, Input
      from tensorflow.keras.layers import LSTM, Dropout, Dense, BatchNormalization
      model = Sequential([
          Input((3, 61, 3, 1)),
          TimeDistributed(Conv2D(32, (3, 2), activation='relu', padding='same')),
          TimeDistributed(BatchNormalization()),
          TimeDistributed(MaxPooling2D(pool_size=(2, 1))),
          TimeDistributed(Dropout(0.25)),
          TimeDistributed(Conv2D(64, (3, 2), activation='relu', padding='same')),
          TimeDistributed(BatchNormalization()),
          TimeDistributed(MaxPooling2D(pool_size=(2, 1))),
          TimeDistributed(Flatten()),
          LSTM(128, return_sequences=False),
          Dropout(0.5),
          Dense(num_classes, activation='softmax')
      ])
      model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', u
       →metrics=['accuracy'])
[13]: history = model.fit(train_ds,validation_data=val_ds, epochs=50, batch_size=64)
     Epoch 1/50
                       6s 68ms/step -
     21/21
     accuracy: 0.1066 - loss: 3.1065 - val_accuracy: 0.0464 - val_loss: 3.1254
     Epoch 2/50
     21/21
                       1s 46ms/step -
     accuracy: 0.2142 - loss: 2.6277 - val_accuracy: 0.0464 - val_loss: 3.1366
     Epoch 3/50
     21/21
                       1s 43ms/step -
     accuracy: 0.2999 - loss: 2.3772 - val_accuracy: 0.1230 - val_loss: 3.0154
     Epoch 4/50
     21/21
                       1s 44ms/step -
     accuracy: 0.3226 - loss: 2.2264 - val_accuracy: 0.2158 - val_loss: 2.8296
     Epoch 5/50
                       1s 43ms/step -
     21/21
     accuracy: 0.3770 - loss: 2.0676 - val_accuracy: 0.2019 - val_loss: 2.7027
```

```
Epoch 6/50
21/21
                 1s 43ms/step -
accuracy: 0.4285 - loss: 1.9289 - val_accuracy: 0.2854 - val_loss: 2.4966
Epoch 7/50
21/21
                 1s 55ms/step -
accuracy: 0.4817 - loss: 1.8106 - val_accuracy: 0.3712 - val_loss: 2.3343
Epoch 8/50
21/21
                 1s 44ms/step -
accuracy: 0.4966 - loss: 1.7196 - val_accuracy: 0.4362 - val_loss: 2.1730
Epoch 9/50
21/21
                 1s 44ms/step -
accuracy: 0.5453 - loss: 1.6237 - val_accuracy: 0.4687 - val_loss: 2.0802
Epoch 10/50
21/21
                 1s 44ms/step -
accuracy: 0.5712 - loss: 1.5956 - val_accuracy: 0.4872 - val_loss: 1.9338
Epoch 11/50
21/21
                 1s 43ms/step -
accuracy: 0.5930 - loss: 1.4754 - val_accuracy: 0.4942 - val_loss: 1.8980
Epoch 12/50
21/21
                 1s 61ms/step -
accuracy: 0.6227 - loss: 1.4098 - val_accuracy: 0.5220 - val_loss: 1.7979
Epoch 13/50
21/21
                 1s 49ms/step -
accuracy: 0.6485 - loss: 1.3376 - val_accuracy: 0.5244 - val_loss: 1.7424
Epoch 14/50
21/21
                 1s 48ms/step -
accuracy: 0.6548 - loss: 1.2770 - val_accuracy: 0.5383 - val_loss: 1.6904
Epoch 15/50
                 1s 43ms/step -
accuracy: 0.7103 - loss: 1.1797 - val_accuracy: 0.5940 - val_loss: 1.6094
Epoch 16/50
21/21
                 1s 42ms/step -
accuracy: 0.7115 - loss: 1.1876 - val_accuracy: 0.5824 - val_loss: 1.5863
Epoch 17/50
21/21
                 1s 57ms/step -
accuracy: 0.6915 - loss: 1.1704 - val_accuracy: 0.6589 - val_loss: 1.4618
Epoch 18/50
21/21
                 1s 54ms/step -
accuracy: 0.6988 - loss: 1.1164 - val_accuracy: 0.6450 - val_loss: 1.4769
Epoch 19/50
21/21
                 1s 48ms/step -
accuracy: 0.7325 - loss: 1.0445 - val_accuracy: 0.6659 - val_loss: 1.3893
Epoch 20/50
21/21
                 1s 47ms/step -
accuracy: 0.7659 - loss: 0.9465 - val_accuracy: 0.6705 - val_loss: 1.3289
Epoch 21/50
21/21
                 1s 51ms/step -
accuracy: 0.7902 - loss: 0.9112 - val_accuracy: 0.6891 - val_loss: 1.3146
```

```
Epoch 22/50
21/21
                 1s 65ms/step -
accuracy: 0.7614 - loss: 0.9063 - val_accuracy: 0.7007 - val_loss: 1.2697
Epoch 23/50
21/21
                 1s 49ms/step -
accuracy: 0.7620 - loss: 0.9016 - val_accuracy: 0.7100 - val_loss: 1.2721
Epoch 24/50
21/21
                 1s 47ms/step -
accuracy: 0.7773 - loss: 0.8694 - val_accuracy: 0.7030 - val_loss: 1.2506
Epoch 25/50
21/21
                 1s 44ms/step -
accuracy: 0.7913 - loss: 0.8297 - val_accuracy: 0.7123 - val_loss: 1.1681
Epoch 26/50
21/21
                 1s 46ms/step -
accuracy: 0.8036 - loss: 0.7996 - val_accuracy: 0.7169 - val_loss: 1.1608
Epoch 27/50
21/21
                 1s 45ms/step -
accuracy: 0.8100 - loss: 0.7757 - val_accuracy: 0.7216 - val_loss: 1.1485
Epoch 28/50
21/21
                 1s 45ms/step -
accuracy: 0.8071 - loss: 0.7417 - val_accuracy: 0.7471 - val_loss: 1.0838
Epoch 29/50
21/21
                 1s 44ms/step -
accuracy: 0.8169 - loss: 0.7273 - val_accuracy: 0.7262 - val_loss: 1.1255
Epoch 30/50
                 1s 43ms/step -
21/21
accuracy: 0.8228 - loss: 0.7218 - val_accuracy: 0.7355 - val_loss: 1.1367
Epoch 31/50
                 1s 43ms/step -
accuracy: 0.8271 - loss: 0.6905 - val_accuracy: 0.7309 - val_loss: 1.0870
Epoch 32/50
21/21
                 1s 43ms/step -
accuracy: 0.8255 - loss: 0.6749 - val_accuracy: 0.7494 - val_loss: 1.0880
Epoch 33/50
21/21
                 1s 44ms/step -
accuracy: 0.8142 - loss: 0.7123 - val_accuracy: 0.7633 - val_loss: 1.0228
Epoch 34/50
21/21
                 1s 44ms/step -
accuracy: 0.8533 - loss: 0.6150 - val_accuracy: 0.7749 - val_loss: 0.9546
Epoch 35/50
21/21
                 1s 43ms/step -
accuracy: 0.8464 - loss: 0.6444 - val_accuracy: 0.7309 - val_loss: 1.0202
Epoch 36/50
21/21
                 1s 45ms/step -
accuracy: 0.8526 - loss: 0.5876 - val_accuracy: 0.7378 - val_loss: 1.0135
Epoch 37/50
21/21
                 1s 43ms/step -
accuracy: 0.8512 - loss: 0.6348 - val_accuracy: 0.7773 - val_loss: 0.9735
```

```
Epoch 38/50
                       1s 45ms/step -
     21/21
     accuracy: 0.8453 - loss: 0.5934 - val accuracy: 0.7749 - val loss: 0.9703
     Epoch 39/50
     21/21
                       1s 44ms/step -
     accuracy: 0.8602 - loss: 0.5667 - val_accuracy: 0.7865 - val_loss: 0.9553
     Epoch 40/50
     21/21
                       1s 45ms/step -
     accuracy: 0.8859 - loss: 0.5046 - val accuracy: 0.7749 - val loss: 0.9311
     Epoch 41/50
     21/21
                       1s 55ms/step -
     accuracy: 0.8709 - loss: 0.5081 - val_accuracy: 0.7471 - val_loss: 0.9622
     Epoch 42/50
     21/21
                       1s 57ms/step -
     accuracy: 0.8831 - loss: 0.4775 - val_accuracy: 0.7796 - val_loss: 0.9074
     Epoch 43/50
     21/21
                       1s 54ms/step -
     accuracy: 0.8782 - loss: 0.4810 - val accuracy: 0.7796 - val loss: 0.9248
     Epoch 44/50
     21/21
                       1s 49ms/step -
     accuracy: 0.8776 - loss: 0.4814 - val_accuracy: 0.7633 - val_loss: 0.8813
     Epoch 45/50
     21/21
                       1s 57ms/step -
     accuracy: 0.8833 - loss: 0.4590 - val_accuracy: 0.7517 - val_loss: 0.9166
     Epoch 46/50
     21/21
                       1s 46ms/step -
     accuracy: 0.8846 - loss: 0.4570 - val_accuracy: 0.7749 - val_loss: 0.9062
     Epoch 47/50
     21/21
                       1s 44ms/step -
     accuracy: 0.8941 - loss: 0.4429 - val_accuracy: 0.7587 - val_loss: 0.9294
     Epoch 48/50
     21/21
                       1s 48ms/step -
     accuracy: 0.8916 - loss: 0.4564 - val_accuracy: 0.7425 - val_loss: 0.9306
     Epoch 49/50
     21/21
                       1s 51ms/step -
     accuracy: 0.8940 - loss: 0.4083 - val_accuracy: 0.7773 - val_loss: 0.8769
     Epoch 50/50
     21/21
                       1s 45ms/step -
     accuracy: 0.8845 - loss: 0.4382 - val_accuracy: 0.7541 - val_loss: 0.9048
[14]: test loss, test accuracy = model.evaluate(test ds)
      print(f"Test Accuracy: {test accuracy:.4f}")
     print(f"Test Loss: {test_loss:.4f}")
                     Os 9ms/step -
     accuracy: 0.7872 - loss: 0.8720
     Test Accuracy: 0.7981
     Test Loss: 0.8176
```

```
[15]: import matplotlib.pyplot as plt from sklearn.metrics import classification_report, confusion_matrix import seaborn as sns
```

```
[16]: plt.figure(figsize=(12, 4))
      plt.subplot(1, 2, 1)
      plt.plot(history.history['accuracy'])
      plt.plot(history.history['val_accuracy'])
      plt.title('Model accuracy')
      plt.ylabel('Accuracy')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      # Plot training & validation loss values
      plt.subplot(1, 2, 2)
      plt.plot(history.history['loss'])
      plt.plot(history.history['val_loss'])
      plt.title('Model loss')
      plt.ylabel('Loss')
      plt.xlabel('Epoch')
      plt.legend(['Train', 'Validation'], loc='upper left')
      plt.show()
```



```
[17]: y_true, y_pred = [], []
target_names = [label_map[i] for i in range(len(label_map))]
for X_batch, y_batch in test_ds:
    y_true.append(y_batch.numpy())

    batch_pred = model.predict(X_batch, verbose=0)
    y_pred.append(np.argmax(batch_pred, axis=1))

y_true = np.concatenate(y_true)
```

	precision	recall	f1-score	support	
baca	0.933	0.875	0.903	16	
bantu	0.800	0.923	0.857	13	
bapak	0.778	0.467	0.583	15	
buangairkecil	1.000	0.750	0.857	8	
buat	0.944	1.000	0.971	17	
halo	1.000	0.850	0.919	20	
ibu	1.000	0.333	0.500	6	
kamu	0.708	0.773	0.739	22	
maaf	1.000	0.857	0.923	21	
makan	0.923	0.706	0.800	17	
mau	0.913	1.000	0.955	21	
nama	0.700	0.840	0.764	25	
pagi	0.909	0.833	0.870	24	
paham	0.889	0.960	0.923	25	
sakit	1.000	0.750	0.857	4	
sama-sama	1.000	0.857	0.923	28	
saya	0.533	0.615	0.571	13	
selamat	0.833	0.714	0.769	21	
siapa	0.325	0.812	0.464	16	
tanya	0.778	0.700	0.737	20	
tempat	0.500	0.375	0.429	8	
terima-kasih	0.696	0.842	0.762	19	
terlambat	0.722	0.765	0.743	17	
tidak	1.000	0.647	0.786	17	
tolong	1.000	0.889	0.941	18	
accuracy			0.798	431	

macro	avg	0.835	0.765	0.782	431
weighted	avg	0.839	0.798	0.806	431

