Physical (Environmental) Security

Domain 10

Overview

The Physical (Environmental) Security domain is a comprehensive evaluation of physical, environmental, and procedural risks that may exist within a facility, organization, or structure in which information systems are stored and managed.

Key Areas of Knowledge

- Understand site and facility design considerations
- Support the implementation and operation of perimeter security (e.g., physical access control and monitoring, audit trails/access logs)
- Support the implementation and operation of internal security (e.g., escort requirements/visitor control, keys and locks)
- Support the implementation and operation of facilities security (e.g., technology convergence)
 - Communications and server rooms
 - Restricted and work areas security
 - Data center security
 - Utilities and Heating, Ventilation and Air-Conditioning (HVAC) considerations
 - Water issues (e.g., leakage, flooding)
 - Fire prevention, detection and suppression
- Support the protection and securing of equipment
- Understand personnel privacy and safety (e.g., duress, travel, monitoring)

Agenda

- Understand site and facility design considerations
- Support the implementation and operation of perimeter security (e.g., physical access control and monitoring, audit trails/access logs)
- Support the implementation and operation of internal security (e.g., escort requirements/visitor control, keys and locks)
- Support the implementation and operation of facilities security (e.g., technology convergence)
- Support the protection and securing of equipment
- Understand personnel privacy and safety (e.g., duress, travel, monitoring)

Another Approach to Security

Hacker

Computer Security

Intruder

Physical Security

Physical Security Design Considerations

Facility - Site Location

- Facility Layered Defense
 - Outer Perimeter
 - Building Grounds and Construction
 - Ingress/Egress
 - Interior
- Mobile computing
- Home workers

Physical Security Components

Physical – First Line of Defense

- Perimeter Protection
 - Surroundings (terrain, remoteness, etc.)
 - Structural (fences, bollards, walls, gates, etc.)
- Building structure

Technical Controls

- Proximity devices
- Intrusion detection systems

Supporting Facility Controls

- Electrical power
- Heating, ventilation, air conditioning
- Fire detection and suppression

Mentality Approaches

- "Fortress mentality" does not implement layers of protection
- → The first step in designing and effectiveness physical security program begins with the identification of the physical security program team.
- Physical security measures are the first line of defense and people are the last line of defense

Facility Location

Location Considerations

- Natural disasters
- Proximity to highways, airports, a military base, etc.

Hazards

- Joint tenants
- Vandals & burglars

Outside Assistance

- Police, fire, medical
- Public services

Visibility

- Line of sight
- Markings

Fences and Walls

- Crowd control, deter trespassers, control access to entry points
- Can be costly and unsightly
- Will not stop a determined intruder

Bollards

- Permanent or retractable posts to control traffic and protect property
- Placement should protect facility from vehicles ramming into it
- Between a parking lot or street and the building
- Large concrete planters can provide the same protection

Fencing

- Controls entrance access
- Can be costly and unsightly

- Heights provide degrees of protection
 - 3-4 feet deters casual trespassers
 - 6-7 feet too high to climb easily
 - 8 feet with 3 strands of barbed wire deter determined intruder
- Critical areas should have at least 8-foot fences

PIDAS Fencing

- Perimeter Intrusion Detection and Assessment System
- Detects if someone tries to climb a fence or damage the fence
- Mesh-wire fence with a passive cable vibration sensor that sets off an alarm if detected

Perimeter Walls

- Reinforced concrete or solid brick
- Not less than 10 feet
- Can have barbed wire or spikes on top

Gates

- Equivalent standard to a fence or wall
- Strong hinges to resist tampering
- Manned or CCTV monitoring

Lighting

- Discourage intruders and protect personnel
- Entrances and parking lots
 - At least 8 ft. high providing at least 2 foot-candles
 - NIST recommendation
- Provides detection and deterrence

Facility Construction

- Business needs and required protection levels
 - Company that sells baseball cards versus missiles
- Physical construction materials aid in overall protection of the facility
 - Crime Prevention Through Environmental Design (CPTED)
 - Protection against vandals, fire, natural disasters
 - Physical characteristics of a building determine how easy it is to conduct electronic surveillance on sensitive areas
- Use of the facility will determine codes and regulations
 - People will be working in it versus just storage of equipment/ paper

Facility Attributes

▶ Internal Walls

- Combustibility of material (wood, steel, concrete)
- Fire rating
- Reinforcements for secured areas

Ceilings

- Combustibility of material (wood, steel, concrete)
- Fire rating
- Load and weight bearing rating
- Drop ceiling considerations

Facility Attributes - Windows

- Tempered glass should be considered over plate glass
 - Plate glass shatters producing jagged shards
- Acrylic (Plexiglas®) windows easily scratch, become hazy, and give of toxic fumes when burning
- Polycarbonate (Lexan®) windows combine the best of glass and acrylic, and in the right thickness, can be anti-ballistic
- Windows and equipment should be positioned to resist shoulder surfing and damage from direct sunlight
- Windows that open should be alarmed
 - Other security measures like those applied to doors may be required if the window could possibly be used as an entry point

Facility Attributes – Doors

- Fire Rating should be the same as walls
- Resistance to forcible entry
 - Solid core to protect from breach and add a barrier for fire
 - Directional opening should not open out unless required by code; doors that open out must have sealed hinge pins to resist compromise
 - Door frames need to be connected to wall studs to resist force
 - Doors affixed to the frame with a minimum of 3 secure hinges
- Some doors may need to be monitored and/or alarmed
 - Emergency exit doors must be marked and include panic bars
- Electric door locks may need to revert to a disabled state if a power outage occurs for safe evacuation
- Lighted doorways provide for security (a deterrent) and safety

Facility Attributes

Heating and Air Conditioning

- Positive air pressure
- Protected intake vents
- Dedicated power lines
- Emergency switch-off valves
- Placement
- Threat: Overheating/Overcooling

Environmental Considerations – HVAC

Maintain proper temperature

■ 70-74° F / 20-22° C

Maintain proper humidity

- 45-60% for safe data processing
- Hygrometer used to monitor humidity

High humidity

Can cause corrosion

Low humidity

Can cause static electricity

Static Electricity Prevention

- Use anti-static flooring in data processing areas
- Ensure proper humidity
- Have proper grounding of building and outlets
- Do not have carpeting in data centers or have static-free carpets if necessary
- Wear anti-static bands when working inside of computer systems

HVAC

During Fire

 HVAC should be turned off so that smoke is not spread and fire is not provided with more oxygen

Positive Pressurization

- Air goes out an open door instead of in
- In a fire situation, smoke must go out of the building

Control Contaminants

- Concentration of certain gasses can accelerate corrosion and negatively affect device components
- Dust can affect computer hardware

Facility Attributes

Power Supplies

- Backup and alternate power supplies
- Clean power source
- Dedicated feeders to required areas
- Placement and access to distribution panels and circuit breakers

Water and Gas Lines

- Shutoff valves
- Positive flow (material should flow out of building, not in)
- Placement
- Threat: Flood/ Explosion

Computing Area Location

- Should not be on top floor in case of fire
- Should not be in basement in case of flood
- Should not be on first floor to control access
- Should not be located next to stairs, bathrooms or elevators
- Located in core of facility for protection from exterior threats

Sensitive Room Characteristics

- Should have no more than two doors
 - Small windows and restricted amount of windows
- Full-height walls
- Walls, doors, ceiling must have the same rating and at least a one-hour minimum fire rating
 - Adjacent walls where paper records are stored must have a two-hour fire rating

Internal Partitions

Internal partitions should not be used as a security mechanism to protect sensitive areas

Agenda

- Understand site and facility design considerations
- Support the implementation and operation of perimeter security (e.g., physical access control and monitoring, audit trails/access logs)
- Support the implementation and operation of internal security (e.g., escort requirements/visitor control, keys and locks)
- Support the implementation and operation of facilities security (e.g., technology convergence)
- Support the protection and securing of equipment
- Understand personnel privacy and safety (e.g., duress, travel, monitoring)

Physical Security Controls

- Locks
- Physical IDS
- Access Logs
- Background Checks
- Separation of Duties, Job Rotation, Mandatory
 Vacations
- Awareness Programs

- Screen Filters
- Proper Disposal Procedures
- Guards
- Smoke Detection and Suppression Systems
- Controlled Physical
 Access like Turnstiles
 and Man-Traps

Physical Security Controls

Required by law or regulation

- No option on implementation
- Fire exit doors with panic bars and exit lights

Low cost but high benefit

- Cost of control is low and provides a high level of protection
 - Door lock
 - Employee awareness questioning suspicious individuals

Cost/Benefit

- Benefit of control outweighs its cost
 - Potential loss is higher than cost of control

Monitoring with Closed Circuit TV

Requirements

- Detection, recognition, identification
- The "focal length" of a lens defines its effectiveness in viewing objects from a horizontal and vertical view.
 - Short focal length = wider angle views
 - long focal length = narrower views

Connected to a recording and/or monitoring station

- Transmission medium: wired or wireless
- Lighting (need to be able to contrast between objects and background)
- Blind spots; lens requirements (includes the height, depth and width)
- Number of cameras; normal aspect ratio is 4:3 (horizontal:vertical)

Considerations

- Workplace privacy issues
- Virtual CCTV

Facility Access

▶ Identification Mechanisms

- Photo ID for a security guard
- Biometric devices
- Card badge reader swipe systems
 - Magnetic stripe
 - Embedded wire
 - Magnetic dot
 - Bar code optical

Facility Access

- Types of Proximity Devices:
- User activated
 - Wireless keypad
 - User keys in a code that is sent over air waves to the reader
- Passive systems
 - No batteries, powered by sensor
 - simple circuits transmit a code
- System sensing/ Radio Frequency ID
 - Reader transmits interrogating signal and user device sends access code
 - Also called transponder devices

Proximity Device

Used to gain access into a building

Entrance Protection

Turnstiles

 Revolving doors that can be activated to "lock" and not allow unauthorized individuals to enter or leave facility

Mantraps

 Routing people through two stationary doorways

During an emergency consider

- Fail-soft (door defaults to being unlocked)
- Fail-secure (door defaults to being locked)
- Fail-safe (door defaults to a state that protects life)

Mantrap

Security Guards Functions

- Deter and correct improper actions
- Checking credentials at entry points
- Ensuring company property does not leave facility
- Enforce regulations
- Monitor intrusion detection and fire alarm systems
- Watching for suspicious activity
 - Watch for piggybacking
- Verify doors and windows are locked
 - Should not stay stationary
 - May have a post and one roving guard
- Personnel is the most expensive countermeasure to reduce physical security risks
- Increased liability

Access Logging

Tracking Who Comes and Goes

- Access logs should be used to track who enters and leaves facilities if that level of protection is necessary
- Usually a security guard maintains these logs
 - Check Identification
 - Photograph visitors and assign temporary badge
- Not a preventative control, but a detective control
 - Logs can be collected and maintained in hard copy, computerized, and/ or CCTV recording
- Should capture who came in, when, what department they were to visit, who signed responsibility for them and escorted them, and what time they left

Agenda

- Understand site and facility design considerations
- Support the implementation and operation of perimeter security (e.g., physical access control and monitoring, audit trails/access logs)
- Support the implementation and operation of internal security (e.g., escort requirements/visitor control, keys and locks)
- Support the implementation and operation of facilities security (e.g., technology convergence)
- Support the protection and securing of equipment
- Understand personnel privacy and safety (e.g., duress, travel, monitoring)

Lock Types

Three primary lock types:

- Something you have Key
- Something you know Combination
- Something you are Biometric

Conventional Locks

- Locks easily picked/ bumped and keys easily duplicated
- Control and distribution of keys can be a problem

Pick and bump resistant Locks

- Higher cost
- Harder to pick/ bumped and keys not as easily duplicated
- Distribution and control still a problem

Lock Types

Electronic Combination Lock (aka Cipher Lock)

- A keypad for a combination
- Combinations change at least every 12 months, when an employee leaves, or when possible compromise

Key Card Systems

- Cards encoded with an access code
- High-end systems can allow control of when people are authorized to enter, log entrances and exits, and control a group of doors – not just a single door

Biometric Systems

 Provide identification and similar functionality to key card systems

Personnel Access Control

Cipher locks (keyless lock)

- Programmable locks with keypads
- Combination lock
- Door delay If a door is held open for a long period of time, an alarm will trigger to alert personnel of suspicious activity
- Key-override A specific combination can be programmed to be used in emergency situations to override usual procedures or for supervisory overrides
- Master-keying This option enables supervisory personnel to change access codes and other features of the cipher lock
- Hostage alarm If an individual is in duress and/or held hostage,
 - there can be a combination he or she enters to communicate this
 - situation to the guard station and/or police station

Best Practices for Entry Controls – 1 of 2

- Limit number of entrances to facility and computer rooms
- Doors should resist forced entry
- Screening device at every entrance
- Log entries and exits
- Watch for property leaving facility

Best Practices for Entry Controls – 2 of 2

- Secure all openings
- After an unusual diversion (bomb threat, power outage, false fire alarm) search facility
- After suspicious activity, review logs
- Do unscheduled inspections

Agenda

- Understand site and facility design considerations
- Support the implementation and operation of perimeter security (e.g., physical access control and monitoring, audit trails/access logs)
- Support the implementation and operation of internal security (e.g., escort requirements/visitor control, keys and locks)
- Support the implementation and operation of facilities security (e.g., technology convergence)
- Support the protection and securing of equipment
- Understand personnel privacy and safety (e.g., duress, travel, monitoring)

Intrusion Detection Systems

Definition

- Process of identifying attempts to penetrate a system or building with the goal of gaining unauthorized access
- The system can include sensors, control units, transmission line and display monitoring units

Activation

- System should be activated by a primary and alternate employee when employees leave for the day
- Whoever is monitoring system should have contact names of who to call if alarm sounds

Two Main Types of Systems

Electro-mechanical

- Magnetic switches
- Metallic foil in windows
- Pressure mats
- Most widely used

♦ Volumetric

- Vibration
- Microwave, ultrasonic, passive infrared
- Photo-electronic
- Not used as often

Types of Electro-mechanical Systems

Contact Sensor

- Electrical circuit is broken
- Opening a door or window

Pressure Mat Sensor

Intruder steps on mat

Closed-circuit

- Electrical circuit is broken
- Cutting a wire or breaking a window

Types of Volumetric Systems

Proximity

- Emits magnetic field and monitors that electronic field
- Detects approaching or presence of object
- Many false alarms because of sensitivity, thus should be a backup device and not primary security control

Photoelectric

- Passive device sensitive to a change in an area's light level
- Only used in windowless areas

Video Motion Detector

- Movement picked up on video camera
- Added value of providing an audit trail with recorded footage

Motion Detector Devices

- Uses Doppler effect
- Source of sound or electromagnetic signal moves towards or away from a receiver, the frequency of the signal will be higher or lower
- Motion is detected by change in frequencies
- Detects slight difference in frequency of source and sounds an alarm
 - Sonic detection: audible range (1,500 to 2,000 hertz)
 - Ultrasonic detection: High-frequency (19,000-20,000 hertz)
 - Microwave detection: Higher frequencies (400-10,000 megahertz)

Acoustical-Seismic Detector Devices

- Detect vibrations
- Microphones are used to detect sounds above the ambient noise level in the protected area
- Can be set off by storms, aircraft, rain, etc.

Intrusion Detection System Characteristics

- Expensive
- Requires human intervention
- Redundant power supply and emergency backup power
- Can be linked to a central security system
 - Fire and intruder detection
- Should fail-safe

Intrusion Detection System Precautions

- Be resistant to and detect tampering
- Must be linked to centralized security guard area and local police station
- Can cause a large amount of false alarms
- May be practical when a fence cannot be installed
- Can be penetrated

Agenda

- Understand site and facility design considerations
- Support the implementation and operation of perimeter security (e.g., physical access control and monitoring, audit trails/access logs)
- Support the implementation and operation of internal security (e.g., escort requirements/visitor control, keys and locks)
- Support the implementation and operation of facilities security (e.g., technology convergence)
- Support the protection and securing of equipment
- Understand personnel privacy and safety (e.g., duress, travel, monitoring)

Electrical Power

Primary Power Source

- Provides day-to-day power
- Dedicated feeders from utility sub-station

Alternate Power Source

- Backup power in the event of a failure of the primary source
- Generator
- Uninterruptible Power Supply (UPS)
 - Inline UPS constantly provides power from its inverter even when power line is functioning properly
 - Standby UPS monitors power line and switches to battery power when problem detected
- Another feeder from a utility sub-station

Uninterruptible Power Supply

Issues to Consider

- Size of load UPS can support
- How long it can support this load (battery duration)
- Speed the UPS takes on the load when the primary power source fails
- Physical space required

Desirable Features

- Long battery life
- Remote diagnostic software
- Surge protection and line conditioning
- EMI/RFI filters to prevent data errors caused by electrical noise
- High MTBF values
- Allow for automatic shutdown of system

Electrical Issues

- Power from the utility feeder is not always consistent and clean
- Power problems can cause hardware to degrade and data loss
- ♣ Any device that generates an electromagnetic field in a radio frequency spectrum has the potential to disrupt the operation of other devices in the local area

Electrical Interference

Clean Power is the goal

Power supply has no interference or voltage fluctuation

Electromagnetic Interference (EMI)

- Line noise
- Caused by difference between wires (hot, neutral, ground)
 - Incorrect wiring neutral wire is at a different potential than ground wire
- Caused by lightning or electrical motors

Electrical Interference

Radio Frequency Interference (RFI)

- Line noise
- Fluorescent lighting, electric cables, components within an electrical system, radio signals

Transient Noise

- Disturbance imposed on a power line
- Can damage devices, corrupt data, hurt people

EMI and RFI Sources

Power Issues

Power Excess

- Spike Momentary high voltage
- Surge Prolonged high voltage

Power Loss

- Fault Momentary power out
- Blackout Prolonged loss of power

Power Degradation

- Sag Momentary low voltage
- Brownout Prolonged power supply that is below normal voltage

Power Preventative Measures

- Voltage regulator
- Line conditioner
- Surge protector
 - Protect from voltage fluctuations
- Power line monitors
 - Detect frequency and voltage amplitude changes
- Shutting down devices in an orderly fashion

Power Preventative Measures

- Connections need to be grounded from the device to the earth
- Protection from magnetic induction should be provided through shielded lines
 - Shield long cable runs
- UPS or Generators
 - Backup power supply

Power Preventative Measures

- Use three-prong connections and adapters if using two-prong cables
- Do not plug outlet strips and extension cords into each other
- Do not have power or data lines close to engines or other devices that can cause interference
- Avoid fluorescent lights if possible

Starting Fires

High Temperature

Something raised the temperature to cause things to ignite

Fuel

What is actually burning (wood, paper, wiring)

Four Legs of a Fire

Heat, fuel, oxygen, chemical reaction

Fire Extinguishments

- Reducing temperature
- Removing fuel
- Disrupting chemical combustion
- Removing oxygen

Approach to Fire Safety

- Balanced approach to design and implementation is necessary to protect personnel and equipment
- Compliance with national and local fire standards increases overall safety
- Prevalent cause of fire in a computing center is electrical distribution systems

Fire Prevention

- Building construction
- Safety procedures
- Training employees
- Housekeeping supplies and combustibles

Automatic Detector Mechanisms

Ionization Detector

- Reacts to charged particles of smoke
- Gives early warning

Thermal Detector

- Alarms when there is a change in temperature high heat
- Fixed or rate-of-rise temperature sensors

Photoelectric Smoke Detector

- Alarms with source of light interrupted
- Optical detectors sound alarm when light beam is blocked by smoke

Infrared Flame Detector

- Reacts to emissions of flames
- Senses pulsation of flame

Photoelectric Smoke Detector

Fire Detection

Fire Detection System

- Can be configured to call a fire station with a prerecorded message
- Shutdown HVAC system

Detector Placement

- On and above suspended ceilings
- Below raised floors
- In air ducts

Fire Types

CLASS	TYPE	ELEMENTS	SUPPRESSION
Class A	Common Combustibles	Wood, paper, cloth, plastics	Water, soda acid
Class B	Liquid	Petroleum, tars, oils, solvents, alcohol, gases	CO ₂ , FM-200, Argon
Class C	Electrical	Electrical Equipment, circuits and wires	Gas (Halon) or CO ₂ . Non-conductive extinguishing agent
Class D	Flammable	Sodium, potassium, etc.	Dry Powder
Class K	Kitchen	Vegetable or animal oils and fats	Wet Chemicals

Suppression Methods

Combustion Elements	Suppression Methods	How Suppression Works
Fuel	Soda acid	Releases CO ₂ – displacing oxygen
Oxygen	CO ₂	Displaces oxygen
Temperature	Water	Reduces temperature
Chemical Combustion	Halon replacements - FM-200, Inergen, etc.	Interferes with the chemical reactions between elements / displaces oxygen

Fire Extinguishers

- Halogenated Fire Extinguishers
 - Used so that equipment is not damaged by water
 - FM-200, FE-13, Inergen
- Replacements for Halon without ozone depleting chemicals
 - It uses chemicals instead of water

Fire Extinguishers

Carbon Dioxide

- Does not leave residue after use, does not cause damage to sensitive devices
- Can suffocate people

Dry Chemicals

Not effective against electrical fires

Issues With Different Extinguishers

Carbon Dioxide

- Displaces oxygen
- Colorless and odorless
- Can result in loss of consciousness/death
 - Best used for unattended facilities
 - Delay system in manned areas before distribution

Extinguishers not rated for Class C

 Can cause shock hazard if used on fires involving energized electrical equipment

Halon

- Halogenated extinguishing agent
- Stopped production in 1994 because it depletes the ozone
 - The Montreal Protocol
- FM-200 and Inergen are popular alternatives for chemical-based suppression agents

Water Pipe Types – 1 of 2

Wet Pipe

- Always contains water
- Usually discharged at predefined temperature
- Pipes can freeze and break
- Can cause water leakage
- Most commonly used

- Water not in pipe
- Release after a delay
- Allows someone to shutdown system before release of water
- Pipes will not freeze and break colder climate areas

Water Pipe Types – 2 of 2

Pre-action System

- Combo of wet and dry pipe system
- Water released into pipe and link must melt before water is released
- Better support for false alarms or another method of putting fire out

Deluge System

- Same as dry pipe but the sprinkler head is open
- Releases a lot of water fast
- Not appropriate for a data processing environment
- Both require a supplemental system of detection

Dry Pipe System

Fire Extinguishers

- Within 50 feet of electrical equipment
- Inspected quarterly
- Clearly marked with unobstructed view
- Easily reached
- Filled with appropriate and approved suppression agent

Agenda

- Understand site and facility design considerations
- Support the implementation and operation of perimeter security (e.g., physical access control and monitoring, audit trails/access logs)
- Support the implementation and operation of internal security (e.g., escort requirements/visitor control, keys and locks)
- Support the implementation and operation of facilities security (e.g., technology convergence)
- Support the protection and securing of equipment
- Understand personnel privacy, safety and threats (e.g., duress, travel, monitoring)

Administrative Controls

Management Responsibilities

- Emergency response and procedures
- Periodic inspections and reports
- Awareness and training
- Drills and exercises
 - Simulation testing
- Facility management
- Personnel control

Threats

- Usually uncovered during disaster recovery analysis
- Many of these issues are rolled into disaster recovery and business continuity

Threat - Piggybacking/ Tailgating

- Piggybacking or tailgating, is when an individual gains unauthorized access by using someone else's legitimate credentials or access rights
- Usually an individual just follows another person closely through a door without providing any credentials
- The best preventive measure against this type of a problem is a security guard and employee education on good security practices
- Mantraps are effective controls against piggybacking

Threats to Device Security

- Portable Devices (Laptops, USB Drives, PDA, SD Cards, etc.)
 - Locking mechanism
 - Tracing software
 - Encryption
 - Inventory system
 - Anti-virus software
- Critical or sensitive items should be placed in security containers
 - Safes, vaults, locking file cabinets
 - Should be fire and theft resistant
- Good lock combinations that are changed frequently and distribution monitored

Threats to Physical Security

- Physical damage (both infrastructure and hardware)
- Theft
- Interruption of services (power failure)
- Unauthorized disclosure of information
- Natural disasters
- Fires
- Vandalism
- Terrorism
- Environmental issues

Vulnerability Assessment

- Inspections
- Facility location and construction
- Training
- Review history of losses
- Current controls

