Гомотетия 2.0

- 1. Окружности ω_1 и ω_2 касаются внешним образом в точке X. Общие внешние касательные к ω_1 и ω_2 пересекаются в точке A. Прямая, проходящая через точку A, пересекает ω_1 в точках B и C, а ω_2 в точках D и E (порядок точек, соответственно, A-B-C-D-E). Докажите, что $\angle BXD = \angle CXE = 90^\circ$.
- **2.** Точка D на стороне BC треугольника ABC такова, что радиусы вписанных окружностей треугольников ABD и ACD равны. Докажите, что радиусы вневписанных окружностей треугольников ABD и ACD, касающихся соответственно отрезков BD и CD, также равны.
- **3.** Дан треугольник ABC и некоторая точка X. Точки A_1, B_1, C_1 середины сторон BC, CA, AB соответственно. Докажите, что прямые, проведенные через вершины A, B, C параллельно прямым XA_1, XB_1, XC_1 , пересекаются в одной точке.
- **4.** В остроугольном треугольнике ABC проведены высоты AA_1 , BB_1 , CC_1 , пересекающиеся в точке H. Точку H отразили относительно прямых B_1C_1 , C_1A_1 , A_1B_1 ; получили точки H_a , H_b , H_c соответственно. Докажите, что AH_a , BH_b , CH_c пересекаются в одной точке.
- **5.** Внутри треугольника ABC построены окружности ω_1 , ω_2 , ω_3 , такие что ω_1 касается AB и AC, ω_2 касается AB и BC, а ω_3 касается AC и BC. Кроме того ω_1 , ω_2 и ω_3 касаются внешним образом некоторой окружности Ω в точках A_1 , B_1 и C_1 соответственно. Докажите, что прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке.
- 6. В параллелограмме ABCD на диагонали AC отмечена точка K. Окружность ω_1 проходит через точку K и касается прямых AB и AD, причем вторая точка пересечения ω_1 с диагональю AC лежит на отрезке AK. Окружность ω_2 проходит через точку K и касается прямых CB и CD, причем вторая точка пересечения ω_2 с диагональю AC лежит на отрезке KC. Докажите, что при всех положениях точки K на диагонали AC прямые, соединяющие центры окружностей ω_1 и ω_2 , будут параллельны между собой.
- 7. Дана окружность с отмеченной на ней точкой A, а также точка N, расположенная внутри данной окружности. Рассматриваются все возможные хорды BC, проходящие через точку N. Найдите ГМТ центров окружности девяти точек треугольника ABC.
- 8. Дана трапеция ABCD с основаниями AD и BC, такими что AD > BC. Обозначим за X точку пересечения прямых AB и CD. Через точку X проведена прямая, пересекающая отрезки BC и AD в точках L и K соответственно. Точки P и Q на отрезке KL таковы, что $\angle APD = \angle ABC$, $\angle BQC = \angle BAD$. Докажите, что точки A, B, Q, P лежат на одной окружности.