Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 13 24 stycznia 2019 r.

- **M13.1.** 1 punkt Załóżmy, że nieosobliwa macierz $A = [a_{ij}^{(1)}] \in \mathbb{R}^{n \times n}$ jest symetryczna, tj. $a_{ij}^{(1)} = a_{ji}^{(1)}$ dla $i, j = 1, 2, \ldots, n$. Załóżmy ponadto, że do rozwiązania układu równań liniowych $A\boldsymbol{x} = \boldsymbol{b}$ można zastosować metodę eliminacji bez wyboru elementów głównych.
 - a) Wykazać, że wówczas wielkości $a_{ij}^{(k)}$, otrzymywane w tej metodzie kolejno dla $k=2,3,\ldots,n,$ są takie, że $a_{ij}^{(k)}=a_{ji}^{(k)}$ dla $i,j=k,k+1,\ldots,n.$
 - b) Wskazać, jak można wykorzystać ten fakt dla zmniejszenia kosztu metody eliminacji.
- **M13.2.** I punkt Niech dla $p \in \{1, 2, \infty\}$ symbol $\|\cdot\|_p : \mathbb{R}^{n \times n} \to \mathbb{R}_+$ oznacza normę macierzy indukowaną przez p-tą normę wektorową. Wykazać, że dla dowolnych macierzy $A, B \in \mathbb{R}^{n \times n}$ zachodzi nierówność

$$||AB||_p \leqslant ||A||_p ||B||_p.$$

M13.3. 1 punkt Niech $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą dominującą przekątniowo, tj. taką, że

$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n).$$

Wykazać, że metoda eliminacji Gaussa bez wyboru elementów głównych zachowuje tę własność, tzn. że wszystkie macierze $A^{(k)}$ są dominujące przekątniowo. Wywnioskować stąd, że każda macierz dominująca przekątniowo jest nieosobliwa i posiada rozkład LU.

M13.4. 1 punkt Niech $E \in \mathbb{R}^{n \times n}$ spełnia nierówność ||E|| < 1. Wykazać, że I-E jest macierzą nieosobliwą, a jej odwrotność spełnia nierówność

(1)
$$||(I-E)^{-1}|| \le \frac{1}{1-||E||}.$$

M13.5. I punkt Załóżmy, że wszystkie wartości własne λ_i macierzy $A \in \mathbb{R}^{n \times n}$ są rzeczywiste i spełniają nierówności

$$0 < \alpha \leqslant \lambda_i \leqslant \beta$$
 $(i = 1, 2, \dots, n).$

Wykazać, że metoda iteracyjna Richardsona

$$\boldsymbol{x}^{(k+1)} = (I - \tau A)\boldsymbol{x}^{(k)} + \tau \boldsymbol{b} \qquad (k \geqslant 0),$$

zastosowana do rozwiązania układu równań liniowych Ax = b, jest zbieżna, jeśli $0 < \tau < 2/\beta$.

M13.6. 1 punkt Wykazać, że jeśli A jest macierzą ze ściśle dominującą przekątną, tj.

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n),$$

to $||B_J||_{\infty} < 1$ i metoda Jacobiego jest zbieżna.

M13.7. 1 punkt Niech macierz $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ spełnia warunki

$$|a_{jj}| > \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}| \qquad (j = 1, 2, \dots, n).$$

(Mówimy, że A jest macierzą z dominującą przekątną kolumnowo.)

Pokazać, że metoda iteracyjna Jacobiego, zastosowana do układu równań o macierzy A, jest zbieżna.

M13.8. 2 punkty. Włącz komputer. Zaprogramować efektywnie metodę eliminacji Gaussa w języku Julia. Należy zaprezentować funkcję solve! (A,b), która dla danej macierzy $A \in \mathbb{R}^{n \times n}$ i wektora $b \in \mathbb{R}^n$ znajduje rozwiązanie układu równań Ax = b. Wskazówka. Aby uzyskać efektywną implementację, można rozważyć układ równań $A^Tx = b$. Efektywna implementacja to taka, która działa co najwyżej 30-razy dłużej niż wbudowana metoda \(A,b). Ponadto, dla zaoszczędzenia na obliczeniach, można pominąć wybór elementów głównych.