N TREATY (PCT)

(12) INTERNATIONAL APPLIC TON PUBLISHED UNDER THE PATENT COOPER

(19) World Intellectual P Organization

International Bureau

(43) International Publication Date 17 June 2004 (17.06.2004)

PCT

(10) International Publication Number

(51) International Patent Classification7:

C07K 14/47

WO 2004/050699 A1

(21) International Application Number:

PCT/GB2003/005158

(22) International Filing Date:

27 November 2003 (27.11.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0227910.7 29 November 2002 (29.11.2002) GB 0228538.5 6 December 2002 (06.12.2002) GB 0321300.6 11 September 2003 (11.09.2003) GB

- (71) Applicant (for all designated States except US): MEDI-CAL RESEARCH COUNCIL [GB/GB]; 20 Park Crescent, London W1B 1AL (GB).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): GAMBLIN, Steven [GB/GB]; National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (GB).

- (74) Agents: FORD, Timothy, James et al.; Kilburn & Stroode, 20 Red Lion Street, London WC1R 4PJ (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

E2F(409-426)

[Continued on next page]

(54) Title: STRUCTURE OF A COMPLEX OF RETINOBLASTOMA PROTEIN BOUND TO E2F, AND USES THEREOF

(57) Abstract: The present invention provides the crystal structure of pRb/E2F₍₄₀₉₋₄₂₆₎ as well as uses of the structure in identifying agents which modulate the binding between pRb and E2F and/or a pRb/E2F(409-426) complex, and thus are useful as pharmaceutical agents in the prevention or treatment of proliferative diseases.

BEST AVAILABLE COPY

LDYHFGLEEGEGIRDLFD

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

15

20

STRUCTURE OF A COMPLEX OF RETINOBLASTOMA PROTEIN BOUND TO E2F, AND USES THEREOF

The present invention relates to the crystal structure of pRb/E2F₍₄₀₉₋₄₂₆₎ as well as uses of the structure in identifying agents which modulate the binding between pRb and E2F and/or a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, and thus are useful as pharmaceutical agents in the prevention or treatment of proliferative diseases.

The retinoblastoma tumour suppressor protein (pRb) regulates the cell cycle, sponsors differentiation and restrains apoptosis. Dysfunctional pRb is thought to be necessary for the development of most human malignancies.

pRb controls the cell cycle and apoptosis by acting as a negative regulator of transcription. It is now established that the growth-inhibitory effects of pRb are dependent on its regulation of the E2F family of transcription factors whose activity is necessary for the expression of genes involved in the G1 to S transition of the cell cycle and DNA replication. The transcriptional repression exerted by pRb over E2F responsive promoters involves at least three, distinct mechanisms. By binding to the transcriptional activation domain of E2F, pRb prevents it from recruiting components of the transcriptional apparatus and, once tethered to E2F promoters, pRb interacts with, and represses, other nearby transcription factors. Finally, pRb recruits protein factors to E2F promoters, such as histone deacetylases (HDACs) and histone methyltransferases (HMTases) that negatively regulate transcription by altering chromatin structure.

In addition to regulating entry into S-phase, it is thought that pRb is important in protecting differentiating cells from apoptosis. Certainly in many types of tissue, loss of pRb leads to apoptosis. This and other data has led to a model whereby the anti-apoptotic activity of pRb is mediated by its repression of certain E2F-dependent promoters. Unrepressed E2F is able to drive apoptosis by both p53-dependent and p53-independent mechanisms.

10

15

20

25

30

Although inactivation of the pRb pathway is thought to be widely involved in cellular transformation, there are examples of tumours where over-expression of functional pRb appears to be detrimental to successful clinical treatment. For example, adenocarcinoma of the pancreas is the fifth most common cause of cancer-related death in the Western world. It is particularly resistant to currently available forms of chemotherapy and radiation therapy. It is thought that this malignancy is able to evade apoptosis induced by treatment with chemotherapeutic drugs because of over-expression of pRb. It seems plausible that the protective effect of pRb over-expression against apoptosis is mediated by E2F. By blocking transcriptional activation by E2F, over-expression of pRb appears to render pancreatic cancer cells insensitive to chemotherapy.

As many of the anti-tumourigenic properties of pRb are mediated by its regulation of the E2F transcription factors, it would be beneficial to have a crystal structure of the pRb-binding fragment of E2F (E2F₍₄₀₉₋₄₂₆₎) in complex with the tumour suppressor protein. Such detailed knowledge of the molecular interactions between E2F and the A/B interface of pRb would enable the development of compounds that bind to pRb and inhibit complex formation. Such a compound, administered in parallel with conventional chemotherapy, would offer a means of enhancing treatment of proliferative diseases such as pancreatic cancer and perhaps related diseases.

Accordingly, the present invention provides the crystal structure of the primary pRb-binding fragment of E2F (E2F₍₄₀₉₋₄₂₆₎) in complex with the tumour suppressor protein pRb. The structure shows how E2F₍₄₀₉₋₄₂₆₎ binds at the interface of the A and B domains of the pocket of pRb making extensive interactions with conserved residues from both.

In order to address the regulation of the E2F transcription factor by pRb, the present inventors have determined the crystal structure of the complex of pRb_{AB} bound to the

10

minimal binding region of E2F, namely E2F₍₄₀₉₋₄₂₆₎. The structure has important implications for the understanding of pRb/E2F function. The studies have quantified the contribution of the principal interaction made by E2F through residues 409-426 with pRb as well as that of a secondary interaction involving the marked box region of E2F. In both cases these interactions are with the pocket region of the tumour suppressor protein pRb.

The analysis of the crystal structure of pRb/E2F₍₄₀₉₋₄₂₆₎ suggests that E2F₍₄₀₉₋₄₂₆₎ acts as a sensor of the structural integrity of the pRb pocket. Accordingly, cells in many tissues should be protected against deleterious mutations in pRb because they will sponsor increased E2F transcriptional activation, and thus apoptosis. It seems particularly intriguing, therefore, that all tumour derived pRb mutants fail to bind to E2F suggesting that an intense selectionary pressure operates in many types of tissue in favour of cells which harbour defects in apoptosis once they have lost normal pRb function. Perhaps the most notable exception to this process occurs in retinal cells, which are able to survive for some time with loss of pRb without acquiring other genetic alterations. Indeed, it has been suggested that these particular cells are distinguished by their ability to acquire survival signals from neighbouring cells and thus give rise to the eponymous retinoblastomas.

20

15

According to a first aspect, the present invention provides a crystal structure of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex, characterised by the atomic co-ordinates of Annex 1.

Preferably the interactions between E2F₍₄₀₉₋₄₂₆₎ and pRb comprise one or more of the following interactions:

E2F ₍₄₀₉₋₄₂₆₎ residue	pRb residue
Leu ₄₀₉	Lys ₅₄₈
Тут411	Glu ₅₅₁

E2F ₍₄₀₉₋₄₂₆₎ residue	pRb residue
Тут411	Ile ₅₃₂
Тут411	Glu ₅₅₄
His ₄₁₂	Arg ₆₅₆
His ₄₁₂	Lys ₆₅₃
Gly ₄₁₄	Glu ₅₃₃
Gly ₄₁₄	Lys ₆₅₂
Leu ₄₁₅	Leu ₆₄₉
Leu ₄₁₅	Glu ₅₅₃
Leu ₄₁₅	Lys ₅₃₇
Glu ₄₁₇	Lys ₅₃₇
Gly ₄₁₈	Arg ₄₆₇
Glu ₄₁₉	Thr ₆₄₅
Arg ₄₂₂	Glu ₄₆₄
Asp ₄₂₃	Arg ₄₆₇
Leu ₄₂₄	Lys ₅₃₀
Phe ₄₂₅	Phe ₄₈₂
Phe ₄₂₅	Lys ₄₇₅

In a second aspect, the present invention provides a method to identify an agent which modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎, the method comprising:-

- a) combining together pRb, E2F₍₄₀₉₋₄₂₆₎ and an agent, under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ form a complex;
 - b) growing a crystal of any pRb/E2F(409-426) complex; and
 - c) analysing the crystal structure to determine whether the agent is an agent which modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎.

In the present invention, the term "modulates" is intended to refer to inhibiting, enhancing, destabilising and/or stabilising the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎ and/or the formation of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and/or the stability of the complex after formation.

5

"conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex" are those conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ form a complex in the absence of an agent. Therefore the effect of the agent on the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎ and complex formation can be assessed.

10

15

20

Growing a crystal of a pRb/E2F₍₄₀₉₋₄₂₆₎ complex in step b) can be performed using methods well known to the person skilled in the art, for example using methods described in Practical Protein Crystallography 1999, McRee, D. E., Academic Press, San Diego, Ca, USA; and also in Protein Crystallization Techniques, Strategies and Tips 1999, Bergfors, T. M., International University Line, Ca, USA.

lı T

In the method, the combining of the pRb, $E2F_{(409-426)}$ and agent may be in any order. The order may be combining pRb with the agent and then adding the $E2F_{(409-426)}$. Alternatively, the order may be combining $E2F_{(409-426)}$ with the agent and then adding pRb, or combining pRb with $E2F_{(409-426)}$ and then the agent. For example, the pRb may be combined with $E2F_{(409-426)}$ before soaking the complex in the agent, preferably in a solution of the agent. In this regard, two of the pRb, $E2F_{(409-426)}$ and agent may be co-crystalised before adding the pRb, $E2F_{(409-426)}$ or agent, as appropriate.

25

Preferably step c) comprises comparing the crystal structure to the crystal structure of the first aspect of the invention.

The agent may be selected using the three dimensional atomic co-ordinates of Annex 1.

In a third aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising selecting an agent using the threedimensional atomic coordinates of Annex 1.

Preferably, said selection is performed in conjunction with computer modeling. 5

Preferably the method comprises the further steps of:

- a) contacting the selected agent with pRb and E2F(409-426) under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex; and
- b) measuring the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ in the presence of the agent 10 and comparing the binding affinity to that of pRb to E2F(409-426) when in the absence of the agent, wherein an agent modulates a pRb/E2F(409-426) complex when there is a change in the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the presence of the agent.

15

20

The method may further comprise:

- a) growing a supplementary crystal from a solution containing pRb and E2F₍₄₀₉. 426) and the selected agent where said agent changes the binding affinity of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex;
- b) determining the three-dimensional atomic co-ordinates of the supplementary crystal by X-ray diffraction using molecular replacement analysis;
- c) comparing the three dimensional atomic co-ordinates with those for the crystal structure as defined in the first aspect of the invention; and
- d) selecting a second generation agent using the three-dimensional atomic 25 coordinates determined for the supplementary crystal.

Preferably, said selection is performed in conjunction with computer modeling.

In a fourth aspect there is provided a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- a) contacting a selected agent with pRb and E2F₍₄₀₉₋₄₂₆₎ under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex; and
- b) measuring the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ in the presence of the agent and comparing the binding affinity to that of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the absence of the agent, wherein an agent modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex when there is a change in the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the presence of the agent.

10

There is a "change in the binding affinity" when the binding affinity either decreases or increases when in the presence of the agent. If a decrease is observed, the agent may be inhibiting the complex. If an increase is observed, the agent may be enhancing the complex.

15

20

The method of the fourth aspect may further comprise:

- a) growing a supplementary crystal from a solution containing pRb and E2F₍₄₀₉₋₄₂₆₎ and the selected agent where said agent changes the binding affinity of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex;
- b) determining the three-dimensional atomic coordinates of the supplementary crystal by X-ray diffraction using molecular replacement analysis;
- c) comparing the three dimensional atomic co-ordinates with those for the crystal structure defined in the first aspect of the invention; and
- d) selecting a second generation agent using the three-dimensional atomic coordinates determined for the supplementary crystal

Preferably, said selection is performed in conjunction with computer modeling.

In a fifth aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- a) selecting an agent;
- b) co-crystalising pRb with the agent:
- c) determining the three dimensional coordinates of the pRb-agent association by X-5 ray diffraction using molecular replacement analysis; and
 - d) comparing the three dimensional coordinates with those of the crystal structure claimed in claim 1.
- In a sixth aspect, the present invention provides a method of identifying an agent that 10 modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:
 - a) selecting an agent;

15

- b) crystalising pRb and soaking the agent into the crystal;
- c) determining the three dimensional coordinates of the pRb-agent association by Xray diffraction using molecular replacement analysis; and
 - d) comparing the three dimensional coordinates with those of the crystal structure claimed in claim 1.

In a seventh aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F(409-426) complex, comprising: 20

- a) selecting an agent;
- b) co-crystalising pRb, E2F₍₄₀₉₋₄₂₆₎ and the agent;
- c) determining the three dimensional coordinates of the pRb-E2F-agent association by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the crystal structure 25 claimed in claim 1.

In an eighth aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F(409-426) complex, comprising:

30 a) selecting an agent;

10

15

20

30

- b) co-crystalising pRb and E2F₍₄₀₉₋₄₂₆₎ and soaking the agent into the crystal;
- c) determining the three dimensional coordinates of the pRb-E2F-agent association by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the crystal structure claimed in claim 1.

Preferably the agent in the fifth, sixth, seventh or eighth aspect is selected using the three dimensional atomic co-ordinates of Annex 1. Preferably the method of the fifth, sixth, seventh or eighth aspect further comprises selecting a second generation agent using the three dimensional atomic coordinates determined. The second generation agent is preferably selected using the three dimensional atomic coordinates of Annex 1. The selection may be performed in conjunction with computer modeling.

Preferably the selected agent and/or the second generation agent, in the second, third, fourth, fifth, sixth, seventh and/or eighth aspects mimics a structural feature of $E2F_{(409-426)}$ when said $E2F_{(409-426)}$ is bound to pRb.

Preferably soaking refers to the pRb/E2F $_{(409-426)}$ complex being transferred to a solution containing the selected agent.

The method as defined in the third aspect preferably comprises the further steps of:

- a) contacting the selected agent with a pRb/E2F₍₄₀₉₋₄₂₆₎ complex; and
- b) determining whether the agent affects the stability of the complex.
- 25 Preferably the determination is with fluorescence polarization.

In a ninth aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

a) contacting a fluorescently tagged E2F₍₄₀₉₋₄₂₆₎ peptide (E2F-fluoropeptide) with pRb to allow pRb/E2F-fluoropeptide complex formation;

25

- b) detecting the fluorescence polarization;
- c) adding a selected agent; and
- d) detecting the fluorescence polarization in the presence of the agent.
- In a tenth aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising;
 - a) contacting a fluorescently tagged E2F₍₄₀₉₋₄₂₆₎ peptide (E2F-fluoropeptide) with pRb to allow pRb/E2F-fluoropeptide complex formation;
 - b) detecting the fluorescence polarization;
- 10 c) contacting a selected agent with pRb and E2F₍₄₀₉₋₄₂₆₎ peptide (E2F-fluoropeptide) under conditions in which pRb and E2F-fluoropeptide can form a complex;
 - d) detecting the fluorescence polarization; and
 - e) comparing the fluorescence polarization detected in b) and d).
- Preferably the fluorescently tagged E2F peptide is selected using the three dimensional atomic co-ordinates of Annex 1.

Preferably a decrease in fluorescence polarization in the presence of the agent indicates that the agent destabilises the complex.

The methods of the ninth or tenth aspects may comprise the further step of adding untagged E2F₍₄₀₉₋₄₂₆₎ and detecting fluorescence polarization.

Preferably if fluorescence polarization decreases, on addition of the untagged E2F₍₄₀₉₋₄₂₆₎, the agent does not stabilise the complex.

Preferably if there is no substantial change in fluorescence polarization, on addition of the untagged $E2F_{(409-426)}$, the agent stabilises the complex.

30 Preferably the method further comprises:

- a) contacting a fluorescently tagged E7 peptide (E7-fluoropeptide) with pRb to allow pRb/E7-fluoropeptide complex formation;
- b) detecting the fluorescence polarization;
- c) adding an agent that modulates pRb/E2F(409-426) complex; and
- 5 d) detecting the fluorescence polarization in the presence of the agent.

Alternatively the method may further comprise:

- a) contacting a fluorescently tagged E7 peptide (E7-fluoropeptide) with pRb to allow pRb/E7-fluoropeptide complex formation;
- 10 b) detecting the fluorescence polarization;
 - c) contacting an agent that modulates pRb/E2F₍₄₀₉₋₄₂₆₎ complex with pRb and E7-fluoropeptide under conditions in which pRb and E7-fluoropeptide can from a complex;
 - d) detecting the fluorescence polarization; and
- e) comparing the fluorescence polarization detected in b) and d).

Preferably a decrease in fluorescence polarization indicates that the agent also inhibits E7 binding to pRb. Such agents can then be removed from the method because the agents are identified as non-specific inhibitors. This identification of non-specific inhibitors can dramatically reduce the workload downstream of the assay method, for example in biochemical assays, thereby accelerating the hit to lead discovery process.

In addition ANS (aniline naphthalene sulphonic acid) reagent may be used to detect hydrophobic surfaces on pRb which become exposed as it unfolds. The fluorescence of ANS is highly sensitive to its environment. In solution there is virtually no fluorescence, whereas when bound to protein, such as pRb, it fluoresces highly. Changes in protein structure can alter the fluorescent signal of bound ANS due to changes in its environment to water. Therefore changes in pRb structure can be detected on addition of ANS and the agent that modulates pRb/E2F₍₄₀₉₋₄₂₆₎ complex. If the fluorescent signal alters on addition of the agent, the agent may be affecting the pRb

structure. The use of ANS to monitor protein unfolding is known in the art (Semisotnov et al (1991) Biopolymers, 31(1), 119-128)

The binding affinities may be measured by isothermal titration calorimetry.

Alternatively the binding affinities may be measured by Surface Plasmon Resonance (SPR).

In an eleventh aspect, the present invention provides an agent identified by a method according to the second, third, fourth, fifth, sixth, seventh, eighth, ninth and/or tenth aspects of the invention.

In a twelfth aspect, the present invention provides an agent, as set out according to the eleventh aspect of the invention, for use as an apoptosis promoting factor in the prevention or treatment of proliferative diseases.

15

10

Preferably the, or each selected agent is obtained from commercial sources or is synthesised. Preferably the agent is for use in preventing or treating cancer, which may be pancreatic cancer and related diseases.

In a thirteenth aspect, the present invention provides the use of an agent, which modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, identified by a method according to the second, third, fourth, fifth, sixth, seventh, eighth, ninth and/or tenth aspects of the present invention, in the manufacture of a medicament for the prevention or treatment of proliferative diseases.

25

The proliferative diseases may be cancer, preferably pancreatic cancer and related diseases.

In a fourteenth aspect, the present invention provides the use of the atomic coordinates of the crystal structure as set out according to the first aspect of the present invention, for identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex.

- In a fifteenth aspect, the present invention provides computer readable media comprising a data storage material encoded with computer readable data, wherein said computer readable data comprises a set of atomic co-ordinates of the pRb/E2F₍₄₀₉₋₄₂₆₎ crystal structure according to Annex 1 recorded thereon.
- Preferred features of each aspect of the invention are as for each of the other aspects mutatis mutandis.

The present invention will now be described, by way of example only, and with reference to the following figures, in which:

15

Annex I.

Atomic co-ordinates for crystal of pRb/E2F₍₄₀₉₋₄₂₆₎ complex.

In Annex 1 there is shown:

Column Number	Description	
2	Atom number	
3	Atom type	
4	Residue type	
5	pRb domains (A or B) or E2F ₍₄₀₉₋₄₂₆₎ (P)	
6	Residue number	
7	x co-ordinate of atom (Å)	
8	y co-ordinate of atom (Å)	
9	z co-ordinate of atom (Å)	
10	Occupancy	
11	B-factor (Å ²)	

10

Figure 1.

Structure of pRb/E2F.

- (A) Schematic drawing of functional domains and protein constructs used for pRb, E2F. The shading used for the constructs in this panel match those used in subsequent figures.
- (B) The structure of pRb_{AB}/E2F₍₄₀₉₋₄₂₆₎, shown in two orthogonal views in Ribbons representation. The helices of the A domain are shown as a darker shade to those of the B domain. The main-chain trace of E2F is labelled.

(C) The interactions between E2F₍₄₀₉₋₄₂₆₎ and pRb_{AB} are shown schematically with the E2F peptide running down the centre. Residues of E2F that are conserved across the five family members are shown as ovals, while the five residue subset of these conserved residues whose mutation leads to disruption of the pRb/E2F interaction are shaded. Hydrogen-bond interactions are shown as broken lines, while hydrophobic contacts are indicated by bands. Residues from domain A of pRb are labelled with an asterisk and the other residues are from domain B. All of the pRb residues shown are either invariant or conserved across 27 species of pRb, p107 and p130.

20 Figure 2.

25

30

Isothermal Titration Calorimetry (ITC) measurements.

- (A) The upper panel shows the raw data of an ITC experiment performed at 22° C. The lower panel shows the integrated heat changes, corrected for the heat of dilution, and the fitted curve based on a single site model. The panel represents the experiment where $E2F_{(243-437)}$ is titrated into Rb_{AB}.
- (B) Summary of dissociation constants obtained by ITC measurements. The quoted errors are those produced by fitting the data to a two-state model. For the interaction of E2F₍₂₄₃₋₄₃₇₎ to Rb_{AB} and Rb_{ABC} the affinities are too high to measure reliably and we have therefore quoted the upper limits of the dissociation constants.

15

25

30

Figure 3 - Binding of Fluorescein-E2F, Rhodamine-E2F and Fluorescein-E7 to pRb

- Figure 4 Displacement binding curves: a) E2F₄₀₉₋₄₂₆ peptide; b) detergent
- Figure 5 Screen controls from test screen 6 x 384 plates
 - Figure 6 Correlation between inhibition of Rhodamine and Fluorescein-E2F
- 10 Figure 7 Correlation between inhibition of Fluorescein-E2F and Fluorescein-E7
 - Figure 8 a) Titration curves of rho-N-E2F (n=3); b) Time course of the change of fluorescence polarization signal with time taken from a test screen (mean±s.e.m., n=960)
 - Figure 9 IC50 curves determined for hits identified using the screening protocol described with reference to Figures 3 to 8: a) hit compound IC50 curve; b) non-specific inhibitor IC50 curve

20 Structure determination of pRb/E2F

For crystallisation we used a pRb construct based on that previously described by Lee, J.O., Russo, A.A., and Pavletich, N.P. (1998). Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7, Nature 391, 859-65, which has engineered thrombin cleavage sites at the ends of the flexible linker region between the A and B domains. Purification and proteolysis produces a final protein containing residues 372 to 589 of the A domain and 636 to 787 of the B domain (hereafter pRb_{AB} – Figure 1A). Although these two domains are not covalently attached after thrombin treatment, they remain tightly associated. The removal of the A-B linker region facilitates crystallisation of pRb but does not alter its binding affinity for E2F. Crystals of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex grew in a plate-like

10

habit with typical dimensions 200 x 200 x 10 μm^3 . Repeated attempts at data collection from flash-cooled crystals using synchrotron X-ray sources were thwarted by very high crystal mosaicity and poor data reduction statistics. The problem was overcome by using the micro-focus diffractometer on station ID13 at ESRF current experience and plans at EMBL and ESRF/ID13, Acta Crystallogr D 55, 1765-1770), currently the only such device installed at a synchrotron source. Using a $10x10 \ \mu m^2$ aperture, data were collected from four separate and widely spaced volumes of a single crystal in order to minimise radiation damage. A total of 100, 1° oscillation images were collected using a MAR CCD detector. These data extended to a Bragg spacing of 2.5 Å with an overall $R_{merge} = 9.2\%$, and completeness of 87%. The structure was solved by molecular replacement and produced initial electron density maps in which the E2F peptide (E2F₍₄₀₉₋₄₂₆₎) could be readily located.

Protein constructs.

Rb_{AB} was expressed as a GST-fusion protein in E. coli using the pGEX-6P vector. 15 The construct was engineered to contain a Prescission protease site at the N-terminus of Rb as well as two thrombin sites (LVPRGS) inserted at either end of the flexible A-B linker. Fusion protein was loaded onto a glutathione Sepharose 4B column before treatment with thrombin and Prescission protease. The resulting eluent was further purified using a Superdex 200 gel filtration column. RbABC was expressed in 20 E. coli with a C-terminal His-tag using pET-24. Crude lysate was first purified using an S-sepharose column followed by a Ni-NTA step before being run on a Superdex 200 gel filtration column. Recombinant human E2F1(243-437) was expressed in E. coli using pGEX-6P with an engineered Prescission protease site at the N-terminus of E2F. Crude lysate was bound onto a glutathione Sepharose 4B column prior to cleavage 25 with the protease. The resulting eluent was further purified by gel filtration on a Superdex 75 column. E2F₍₄₀₉₋₄₂₆₎ and E2F₍₃₈₀₋₄₃₇₎ were synthetic peptides. HPV-16 E7(17-98) was prepared as described elsewhere (Clements, A.J., K, Mazzareli, J.M. Ricciardi, R.P. Marmorstein R. (2000). Oligomerization properties of the viral

oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein., Biochemistry 39, 16033-16045).

Crystallography.

Plate-like crystals were grown by the hanging drop vapour diffusion method at 4°C. 5 Rb_{AB} was mixed with the E2F-1 peptide at 1:2 molar ratio and concentrated to 15mg/ml. Hanging drops were formed by mixing 1µl of protein solution with an equal volume of reservoir solution containing; 0.14M Na citrate, 26% PEG400, 4% n-propanol and 0.1M Tris at pH 7.8. Crystals were flash frozen in mother-liquor made up to 25% glycerol. Diffraction data were collected using the micro-focus 10 diffractometer at ESRF and processed using the DENZO and SCALEPACK software (Otwinowski, Z.M., W. (1993). In Data Collection and Processing, L.I. Sawyer, N. Bailey, S., ed. (SERC Daresbury Laboratory), pp. 556-562). Molecular replacement calculations were carried out using Amore (CCP4, 1994) with 1GUX.brk as the search model. The final model contains co-ordinates for the protein which cover residues 15 379-578 of the A domain and 644-787 of the B domain of Rb and the entire E2F₍₄₀₉₋ 4261 peptide for the four copies present in the asymmetric unit together with 600 solvent molecules. The refined model has the following residuals; $R_{work} = 23.7\%$, R_{free} =28.7%, rmsd bonds = 0.007 Å, rmsd angles =1.3°.

20

25

Structure of pRb/E2F complex

The packing of the A and B domains generates a waist-like interface groove into which $E2F_{(409-426)}$ binds in a largely extended manner (Figure 1B). The peptide makes contacts with residues from helices $\alpha 4$, $\alpha 5$, $\alpha 6$, $\alpha 8$ and $\alpha 9$ of domain A, and with $\alpha 11$ from domain B of pRb. Formation of the complex buries 2280 Ų of surface area, 1500 Ų of which are hydrophobic. The two end regions of the $E2F_{(409-426)}$ fragment make extensive contacts with pRb, while interactions made by the middle section of the $E2F_{(409-426)}$ fragment (residues 416 to 420) are relatively sparse (Figure 1C). Overall, a high proportion of the hydrogen bond interactions between the two

10

15

20

25

molecules involves the side chains of conserved pRb residues interacting with the main chain of E2F. Examination of the distribution of conserved residues over the surface of pRb, reveals that the majority are accounted for by the E2F binding site. There is a somewhat smaller cluster of conserved residues associated with the LxCxE binding site. Perhaps the most remarkable aspect of this analysis is that although pRb has been reported to associate with at least 110 cellular proteins perhaps 50 or more in a pocket-dependent manner, the E2F and LxCxE binding sites account for almost all of the conserved residues on its surface. There are two explanations that may partially account for these observations. Firstly, many of the reported binding partners of pRb have yet to be verified. Secondly, the LxCxE binding site is probably responsible for mediating the binding of many different proteins, such as HDAC, to pRb.

Since there are four copies of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex in the asymmetric unit of our crystal form it is possible both to compare these four crystallographically independent copies of the pRb/E2F(409-426) complex and to compare them with the crystal structure of pRb/E7 without bond E2F (Lee et al., 1998 Supra). The first six residues at the N-terminus, the $\alpha 3-\alpha 4$ and $\alpha 6-\alpha 7$ loops adopt different conformations between the four copies in our asymmetric unit, while the variations across the rest of the structure between the four molecules is not significant. Comparison of the pRb structure in the presence and absence of bound E2F₍₄₀₉₋₄₂₆₎ shows that there is essentially no change in the relative orientation of the two lobes of the A/B pocket on E2F₍₄₀₉₋₄₂₆₎ binding nor any widespread changes in the structures of the individual domains. This comparison does reveal that the end of $\alpha 4$ and the connecting loop to α5 becomes ordered in the pRb/E2F₍₄₀₉₋₄₂₆₎ complex as two conserved residues (Glu464-pRb & Arg467-pRb located towards the end of $\alpha 4$ in our structure) interact with the E2F₍₄₀₉₋₄₂₆₎ peptide. Within the E2F₍₄₀₉₋₄₂₆₎ construct there are eight residues that are conserved across E2F's from all animal species (Figure 1A). Amino-acid substitutions at five of these positions have been shown to lead to loss of binding to pRb but retention of E2F's trans-activation potential. The following description

٠.

focuses on the structural role of these five residues. Tyr(411)-E2F appears to play an important role in peptide binding because its phenolic ring occupies a hydrophobic pocket created by Ile(536)-pRb, Ile(532)-pRb, Ile(547)-pRb and Phe(413)-E2F, while its hydroxyl group makes a hydrogen bond to the invariant Glu(554)-pRb. Towards the C-terminal part of the E2F peptide, Leu(424)-E2F and Phe(425)-E2F make several hydrophobic interactions, two of which involve conserved residues. Leu(424)-E2F makes contacts with the aliphatic portion of the side chain of Lys(530)-pRb and also packs against Leu(415)-E2F and Phe(425)-E2F. In addition, Phe(425)-E2F itself packs against Phe(482)-pRb. Unlike the residues of E2F just discussed, the side-chains of Glu(419)-E2F and Asp(423)-E2F do not point into the groove formed between the A and B domains of pRb, but instead point away from it. Glu(419)-E2F hydrogen bonds through a water molecule with the main-chain carbonyl of Thr(645)-pRb; Asp(423)-E2F forms a salt bridge with Arg(467)-pRb located at the end α4.

15

20

10

5

Finally, as described earlier, the crystal structure shows how E2F makes extensive contacts with largely conserved residues from both the A and B domains of the pocket and that the binding site for E2F is dependent on the structure of the interface between the two domains. This feature of the structure suggests that E2F acts as a sensor of the structural integrity of the pRb pocket. The position and nature of the E2F binding site make the binding of the transcription factor particularly sensitive to mutations in the pocket region of the tumour suppressor protein. The potential significance of these observations will be discussed later with regard to the normal role of pRb in protecting cells against E2F-mediated apoptosis.

25

Additional determinants of pRb/E2F function

It is clear from a number of studies that, although E2F₍₄₀₉₋₄₂₆₎ expressed as a Gal4 fusion protein is sufficient to recruit pRb and repress transcription, there are additional interactions made by the physiologically relevant E2F/DP heterodimer with pRb.

10

15

20

25

Similarly, while the pocket domain is highly conserved, the most frequent site of deleterious mutation, and capable of transcriptional repression, it is not sufficient for the physiological function of pRb. In particular, the C-terminus of pRb is necessary for mediating growth arrest and recruitment of certain cyclin/cdk complexes as well as containing several of the residues whose phosphorylation leads to deactivation of pRb function. Therefore, in order to better understand the requirements for physiological pRb/E2F complex formation, we have made a series of constructs of the two proteins (Figure 1A) and carried out binding measurements by isothermal titration calorimetry (ITC). We have also carried out a series of competition experiments to confirm qualitatively the interpretation of the ITC binding data.

Isothermal Titration Calorimetry.

Binding of the various E2F constructs to Rb_{AB} and Rb_{ABC} was measured by isothermal titration calorimetry using a MicroCal Omega VP-ITC machine (MicroCal Inc.,

Northampton, USA). The E2F constructs at a concentration between $100\text{-}150\,\mu\text{M}$ were titrated into $12\text{-}15\,\mu\text{M}$ Rb at a temperature of 22°C . Proteins were dialysed against 50mM Tris pH 7.6, 100mM NaCl and 1mM TCEP. After subtraction of the dilution heats, calorimetric data was analysed using the evaluation software MicroCal Origin v5.0 (MicroCal Software Inc.). For all of the titrations, the stoichiometry of ligand binding to Rb was very close to 1.0. For $E2F_{(243\text{-}437)}$ binding to Rb, the binding affinity and the heat change associated with binding were such that we could only establish that binding was tighter than 10 nM. In order to verify that binding of this protein was similar for both Rb_{AB} and Rb_{ABC} we carried out competition experiments which showed approximately equal partition between the two different Rb proteins.

Competition experiments.

The proteins used in these experiments were His₆-Rb_{ABC} (RESIDUES 380-929); MW 66.07kDa, non-tagged Rb_{AB} (residues 372-787); MW 48.67 KDa, are His₆-Rb_{AB} (residues 376-792); MW 49.86 KDa, E2F₍₂₄₃₋₄₃₇₎; MW 21.45 KDa HPV E7 (residues

17-98); MW 9.38 KDa and E2F₍₄₀₉₋₄₂₆₎; MW 2.12 KDa. Protein concentrations were carefully determined by u.v. spectroscopy and confirmed by ITC titrations. The small acidic E2F proteins stain much weaker than Rb with Coomassie on SDS-PAGE. For all gel lanes contained a final Rb_{AB} concentration of ca. 7μM. After equilibration with E2F₍₂₄₃₋₄₃₇₎ and E2F₍₄₀₉₋₄₂₆₎ the samples were loaded onto a 1.0ml Ni column and washed with 7 x 0.5 ml of loading buffer (50mM Tris pH 7.5, 200mM NaCl & 10mM Imidazole). The samples were then eluted with 7 x 0.5ml elution buffer (50mM Tris, pH 7.5, 200mM NaCl, 200mM Imidazole). After volume correction samples were boiled in SDS loading buffer and run on a 4-12% SDS PAGE. For the two pRb proteins and E2F₍₂₄₃₋₄₃₇₎ were mixed at 40μM in a final volume of 0.5ml. After equilibration for 2hrs the mixture was loaded onto 1ml Ni beads in a small column, washed with 7 x 0.5ml of loading buffer (50mM Tris, pH 7.5, 200mM NaCl, 10mM Imidazole), eluted using 7 x 0.5ml elution buffer (50mM Tris, pH 7.5, 200mM NaCl, 200mM Imidazole). Samples, after correcting for volume were boiled in SDS sample buffer and run on a 4-12% SDS gel.

A typical ITC experiment is shown in Figure 2A and a summary of the affinity constants obtained for both pRb_{AB} and pRb_{ABC} interacting with three constructs of E2F are given in Figure 2B. The two shorter E2F constructs bind to either pRb_{AB} or pRb_{ABC} with similar affinities. However, E2F₍₂₄₃₋₄₃₇₎ binds at least 16-fold stronger than either of the two shorter E2F fragments to both pRb_{AB} and Rb_{ABC}. Our ITC data therefore show that there are additional interactions of the A/B pocket of pRb with a region of E2F-1 outside of the transactivation domain. This result has been confirmed qualitatively by competition experiments which show that a 15-to 30-fold molar excess of the shorter E2F peptide is required to 50% compete with E2F₍₂₄₃₋₄₃₇₎ for binding to pRb. Our results are consistent with an earlier report that noted an interaction of pRb with the marked box region of E2F (residues 245-317). Taken together, these data demonstrate that the majority of the free energy of interaction between pRb and E2F is contributed by the 18-residue segment E2F₍₄₀₉₋₄₂₆₎ used in our

structure analysis. There is an additional stabilising interaction between the marked box region of E2F and pRb, that contributes approximately 2kcal mol-1 to the overall free energy of complex formation, but is not sufficient on its own for complex formation.

5

10

15

20

As the binding constant for the interaction of E2F₍₂₄₃₋₄₃₇₎ with pRb_{AB} (or pRb_{ABC}) was too tight to determine reliably by ITC we performed a competition experiment to determine if this E2F construct bound preferentially to one or the other pRb construct. The results show approximately equal partitioning of E2F(243-437) between the two pRb species and demonstrates therefore, that the C-terminus of pRb does not participate in the binding to E2F-1 in isolation. This means that in addition to the interaction of E2F₍₄₀₉₋₄₂₆₎ with the pocket region of pRb there is an additional interaction, almost certainly involving the marked box region of E2F, that also binds to the pRb pocket. This data is consistent with the hypothesis that the approximately 10-fold stronger interaction of E2F/DP with pRbABC rather than pRbAB reported previously arises through interactions of the DP component of the E2F/DP heterodimer with the C-terminus of pRb. This idea is strongly supported by the data from another study which shows that DP-1 interacts with pRb in a manner that does not require the structural integrity of the A/B pocket. Taken together, these data indicate that at least one of the functions of the C-terminus of pRb is to bring additional stabilisation to the interaction of the tumour suppressor with the heterodimeric E2F/DP transcription factors.

Use of structure atomic co-ordinates of Annex I

The atomic co-ordinates of Annex 1 are cartesian co-ordinates derived from the results 25 obtained on diffraction of a monochromatic beam of X-rays by the atoms of the pRb/ E2F₍₄₀₉₋₂₆₎ complex in crystal form. The diffraction data was used to calculate electron density maps of the crystal. The electron density maps were then used to position the individual atoms of the pRb/ E2F(409-26) complex.

10

15

20

23

The determination of the three-dimensional structure of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex provides basis for the design of new and specific agents that modulates formation of the complex and/or modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎. For example, computer modelling programs may be used to design different molecules expected to modulate formation of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and/or the interactions between pRb and E2F₍₄₀₉₋₄₂₆₎.

A candidate agent, may be any available compound. A commercial library of compound structures such as the Cambridge Structural Database would enable computer based *in silico* screening of the databases to enable compounds that may interact with, and/or modulate formation of, the complex to be identified.

Such libraries may be used to allow computer-based high throughput screening of many compounds in order to identify and select those agents with potential to modulate formation of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and/or the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎.

In this regard, a potential modulating agent can be subjected to computer modelling with a docking program such as GRAM, DOCK or AUTODOCK (see Walters et al., Drug discovery Today, Vol.3, No. 4, (1998), 160-178, and Dunbrack et al., Folding and Design, 2 (1997) 27-42) to identify and select potential agents. This can include computer fitting of potential modulating agents to the pRb/E2F₍₄₀₉₋₄₂₆₎ complex to ascertain how the agent, in terms of shape and structure, will bind to the complex.

Computer programs can be employed to estimate the interactions between the pRb, E2F₍₄₀₉₋₄₂₆₎ and agent or pRb/E2F₍₄₀₉₋₄₂₆₎ complex and agent. These interactions may be attraction, repulsion, and steric hindrance of the two binding partners (e.g. the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and a selected agent). A potential agent will be expected to be more potent if there is a tighter fit and fewer steric hindrances, and therefore greater attractive forces. It is advantageous for the agent to be specific to reduce interaction

10

15

20

25

with other proteins. This could reduce the occurrence of side-effects due to additional interactions with other proteins.

Potential agents that have been designed or selected possible agents can then be screened for activity as set out in the second to tenth aspects above. The agents can be obtained from commercial sources or synthesised. The agent is then contacted with $pRb/E2F_{(409-426)}$ complex to determine the ability of the potential agent to modulate the formation of the complex. Alternatively the agent may be contacted with pRb and $E2F_{(409-426)}$ under conditions in which pRb and $E2F_{(409-426)}$ can form a complex (in the absence of agent), to determine the ability of the agent to modulate complex formation.

A complex of pRb/E2F₍₄₀₉₋₄₂₆₎ and said potential agent can then be formed such that the complex can be analysed by X-ray crystallography to determine the ability of the agent to modulate complex formation and/or the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎.

The complex of pRb/E2F $_{(409-426)}$ and agent could be compared to that for pRb/E2F $_{(409-426)}$ alone with the three dimensional atomic co-ordinates in Annex 1.

Detailed structural information can then be obtained about the binding of the potential agent to the complex,. This will enable the structure or functionality of the potential agent to be altered to thereby to improve binding. The above steps may be repeated as may be required.

The agent-pRb/E2F₍₄₀₉₋₄₂₆₎ complex could be analysed by co-crystallising pRb/E2F₍₄₀₉₋₄₂₆₎ with the selected agent or soaking the agent into crystals of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex; and then determining the three dimensional co-ordinates of the agent-complex by X-ray diffraction using molecular replacement analysis.

Therefore, the pRb/E2F₍₄₀₉₋₄₂₆₎ -agent complexes can be crystallised and analysed using X-ray diffraction data obtained and processed, for example using the DENZO and SCALEPACK software (Otwinowksi, Z. M., W. (1993). Difference Fourier electron density maps can be calculated based on X-ray diffraction patterns of soaked or co-crystallised pRb/E2F₍₄₀₉₋₄₂₆₎ complex and the solved structure of uncomplexed agent. These maps can then be used to determine the structure of the agent bound to the pRb/E2F₍₄₀₉₋₄₂₆₎ and/or changes in the conformation of pRb/E2F₍₄₀₉₋₄₂₆₎ complex relative to the pRb/E2F₍₄₀₉₋₄₂₆₎ complex in the absence of agent.

- The agent may be improved, for example by adding or removing functional groups, substituting groups or altering its shape in light of data obtained from agent bound to pRb/E2F₍₄₀₉₋₄₂₆₎ complex and/or agent bound to pRb. Such an improved agent may then be subjected to the methods of the invention.
- 15 Electron density maps can be calculated using programs such Amore from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographical, D50, (1994), 760-763).
- The provision of computer readable media enables the atomic co-ordinates to be accessed to model the pRb/E2F₍₄₀₉₋₄₂₆₎ complex by, for example, RAMSOL (a publicly available computer software package which allows access and analysis of atomic co-ordinate data for structure determination and/or rational drug design).
- In addition, structure factor data, derivable from the atomic co-ordinate data (see e.g. Blundell et al., in Protein Crystallography, Academic Press, New York, London and San Francisco, (1976)), can be used to enable difference Fourier electron density maps to be deduced.

30 Screening assays

After an agent has been selected, its inhibitory effect on pRb/E2F₍₄₀₉₋₄₂₆₎ complex formation or ability to interact with the pRb/E2F₍₄₀₉₋₄₂₆₎ complex can be assessed with one or more of the methods of the invention.

For example, the crystal structure of the interaction of E2F₍₄₀₉₋₄₂₆₎ with pRb can be used to aid the design of a fluorescently tagged peptide for the use in a binding assay suitable for high throughput screening of low molecular weight compounds or peptide libraries. The fluorescent tag may be a fluorescein, rhodamine or some other commercially available tag chemically attached via a suitable amine or thiol group.

10

15

Binding could be measured by detecting fluorescence polarization in an homogeneous assay format (i.e. one in which all reagents are mixed in a single well, and reaction occurs in solution without wash steps). Fluorescence polarization technology is commonly applied in high throughput screening laboratories (ref: Sokham et al. (1999) Analytical Biochemistry, 275, 156-161. "Analysis of protein-peptide interaction by a miniaturised fluorescence polarization assay using cyclin-dependent kinase2/cyclin E as a model system.")

20

25

Fluorescence polarization can be used to determine binding of a fluorescently- tagged small molecule (ligand or peptide) with a large molecule (receptor or protein) by detecting changes in the rotational velocity of the small molecule in the free and bound state. The rotational velocity is inversely proportional to the size of the molecule. Using a fluorescently tagged peptide and suitable optics the changes in rotational velocity upon binding to pRb can be measured as a differences in light emitted in parallel and perpendicular to a polarized excitation source. Fluorescence polarisation gives a measure of the proportion of fluorescently tagged peptide found in the bound state in a homogenous format.

30

In an assay method of the present invention, fluoro-peptide (E2F₍₄₀₉₋₄₂₆₎ – fluoropeptide) bound to pRb will have a low rotational velocity and will appear

stationary during the excitation period. Emitted light will be transmitted in parallel to the polarized incident light and the light detected will have a high polarization value. In contrast in the presence of an inhibitor of the interaction between pRb and $E2F_{(409-426)}$ -fluoropeptide, the free $E2F_{(409-426)}$ -fluoro-peptide will have a high rotational velocity and light will be transmitted in all directions. Emitted light will be detected both parallel and perpendicular to the polarized excitation source, and will have a low polarization value.

An example of the use of fluorescence polarisation is now described.

10

5

Data from a Fluorescence Polarisation (FP) screen configured for the interaction of pRb with E2F is presented. Fluorescein-tagged E2F peptide was used to screen 10,000 small drug like molecules. Hit confirmation strategies based on fluorescence interference and specificity were developed and compared.

15

20

25

Based on the crystal structure defined by the atomic co-ordinates in Annex 1, an FP screen was configured for the interaction of recombinant pRb A/B domains with E2F(409-426) peptide (see Fig 1B). In addition, a second peptide binding site (E7, see Fig 1B), distant from the E2F binding pocket, was utilised as an internal control for non-specific inhibitors. Fluorophores in the form of fluorescein and rhodamine labelled peptides were synthesised and were used in a primary screen and hit confirmation.

Knowledge of the interaction of E2F and E7 peptides with pRb influenced the design of the fluoro-peptides used in the assay. The following peptides were synthesised, labelled and tested.

1. N-terminal amide linkage 5carboxyfluorescein-E2F409-426, 18'mer. (fl-N-E2F18)

2. Rhodamine label at C-terminal cysteine E2F409-427, 19 mer. (Rh-C-E2F19)

5

LDYHFGLEEGEGIRDLFDC

3. Rhodamine label at DDC substitution E2F409-426, 18'mer. (Rh-N2-E2F18)

10

LCYHFGLEEGEGIRDLFD

4. N-terminal amide linkage 5carboxyfluorescein-E7, nonomer (Fl-E7)

15

DLYCYEQLN

Peptides 1, 3 and 4 were used in the screen and subsequent hit confirmation assays.

Synthetic peptides were synthesised and fluoro-tagged using either N-terminal
labelling with 5 carboxyfluorescein succinimidyl ester or cysteine labelling with single isomer tetramethylrhodamine-5- maleimide. Typical titration binding curves of pRb with the fluoro-labelled peptides are shown (mean±sem, n=3) in Figure 3. Fluorescein fluorescence measured at λexcite = 485 and λemit = 520 nm
Rhodamine fluorescence measured at λexcite = 545 and λemit = 580 nm

25

Measurements were made using BMG Fluorostar plate reader fitted with polarization optic. Fluorescein-E2F showed the greatest degree of polarization, and consequently the best signal to noise. It was chosen as the label of choice for a primary screen. Data were fitted to a one site binding model using Graphpad prism. Kd values of

450± 70 and 380±50 nM were calculated for fluorescein and Rhodamine labelled E2F, which were similar to Kd determined for unlabelled peptide using isothermal calorimetry. Fluorescein-E7 showed tightest binding with Kd= 130±20 nM.

5 The assay principle was validated using unlabelled E2F peptide to displace Fl-E2F without disrupting Fl-E7 binding to pRb. Fluoro-tagged peptide (400 nM) was preincubated with pRb (1 μM) and unlabelled peptide added at the concentrations shown. Displacement binding curves were plotted (figure 4a), and were fitted to a one site competition binding model using Graphpad prism curve fitting software. These curves were compared to the effects of a detergent-like compound (figure 4b), which causes gross structural changes and disrupts binding of both peptides.

The results show that labelled E2F (Fl-E2F) does not displace E7, thereby validating the assay principle.

15

20

25

The assay was optimised in 384-well black plates (Matrix) and automated using a Beckman Fx liquid handling robot. 1 μ M pRb in 50 mM Tris HCL, pH7.0, 100 mM NaCl, 10 mM DTT, 0.05% NP-40 was mixed with 40 μ M compound (4% DMSO) and 0.4 μ M fluorescein-E2F (final concentrations). Controls from a test screen of 10,000 compounds are shown in Figure 5.

Polarized and depolarized signal from fluorescein-E2F with and without pRb present are shown in Figure 5 (solid and open circles respectively). Specific disruption of binding by E2F protein and peptide are also shown. Addition of E2F protein completely displaces F1-E2F (open triangle) and the signal is reduced to that of free fluoro-peptide alone. Addition of unlabelled-E2F at a concentration which gave 50% inhibition is clearly separated from the control populations. Hits were identified as compounds which reduced the polarization signal to less than mean-3sd of the fluorescein-E2F: pRb control.

Summary of Screen Data

Assay Principle	Fluorescence Polarization
Assay Automation	Biomek Fx
Assay Detection	BMG Polar Star Reader
Assay Parameters Signal: noise	6.9
Signal: background	4.8
z`	0.67
Test Screen 10,000 Z	0.45
Hit rate	0.93%

5 Z factors are statistical factors well known by the skilled person in the art. The Z' factor is defined by

$$Z' = 1 - {\frac{(3X \text{ s.d.of positive control} + 3X \text{ s.d of negative control})}{(\text{mean of positive control} - \text{mean of negative control})}}$$

10

In the present assay:-

positive control = fully polarized signal; pRb plus fluoro-tagged E2F peptide negative control = depolarized signal from fluoro-tagged E2F peptide alone.

15 Z is calculated in much the same way except:

Positive control = polarized signal of pRb and fluoro-tagged E2F in presence of compounds.

HIT CONFIRMATION:

20 Identification of Fluorescence Interfering Compounds.

A large proportion (37.5%) of the hits selected from the primary screen were coloured compounds which significantly altered the fluorescence intensity signal, and were potentially interfering with the assay. All hits were included in hit confirmation assays.

5

10

15

Hits were re-plated from master stocks and re-tested against fluorescein-E2F and rhodamine-E2F. A correlation (r^2 =0.69) between inhibition of fluorescein E2F and Rhodamine-E2F was observed (figure 6) with a hit confirmation rate of 78%. Notably, 60% of compounds which were potentially interfering with the fluorescein signal were inhibitors with Rhodamine-E2F assay, without affecting rhodamine fluorescence intensity signal. Suggesting that deselection of compounds on the basis of fluorescence interference can lead to loss of real inhibitors.

Finally the hits were tested against a second peptide binding site. Fluorescein-E7 peptide at 400 nM. The results were compared to inhibition of E2F and a scatter plot is shown in Figure 7. A weak correlation was observed (r^2 =0.51), with 72% of the inhibitors of E2F also inhibiting fluorescein E7. These compounds were excluded as non-specific inhibitors and were not taken forward in subsequent biochemical assays.

Comparison of Hit Confirmation Strategies on 80 best hits selected from a Primary screen of 10,000 compounds.

Hit Confirmation rates

Confirmation Test	% Primary Hits
1. Inhibition in retest Fluorescein-E2F	77.5
2. Fluorescence Interference	37.5
3. Inhibition in retest Rhodamine-E2F	62.5
4. Inhibition of Fluorescein-E7	58.5

15

The impact of selection strategy on number of compounds selected for further biochemical study (eg IC50, isothermal calorimetry, co-crystallisation)

Strategy 1	Strategy 2	Strategy 3
Tests 1+2 Remove fluorescence interfering compounds	Tests 1+3 Select inhibitors active for both fluorescein- and rhodamine-E2F	Tests 1+3+4 E2F inhibitors but not E7 inhibitors
36	50	14
False Negatives	False Positives	Specific Compounds only

To demonstrate the stability and rapidity of binding equilibria of fluoro-peptide with pRb. The titration curves shown in Figures 8a and 8b are typical of several experiments and are of rho-N-E2F (n=3). The time course shown of the change of fluorescence polarization signal with time is taken from a test screen (mean ± s.e.m., n= 960).

pRb titration curves were performed in 96-well black plates, in a total reaction volume of 100uL. Doubling dilutions from 10 μM stock of pRb were made in binding buffer (50 mM Tris HCL, pH7.0, 100 mM NaCl, 10 mM DTT, 0.05% NP-40) and 80 μL added in triplicate to wells. 20 μL of 2 μM fluoro-peptide was added and pipetted up and down to mix. The plate was read after 1 hr incubation at room temperature.

Compound interference was not a useful factor upon which to deselect compounds in an FP assay, and can lead to false negatives. The use of a second fluoro-label in hit confirmation avoids the loss of false negatives, but still includes false positives.

Screening of the hits against the second peptide site, E7, identified non-specific inhibitors, which caused gross structural changes to the protein. These were excluded from further biochemical testing. Identification of these non-specific inhibitors dramatically reduced the down stream work load.

5

The developed screening strategy rapidly identifies false negatives and positives (interfering and protein unfolding reagents) from the primary screen. This reduces the number of compounds to test in biochemical assays, thus saving both time and reagents which will accelerate the hit to lead discovery process.

10

ANS (aniline naphthalene sulphonic acid) reagent may be used to detect hydrophobic surfaces on pRb which become exposed as it unfolds. The fluorescence of ANS is highly sensitive to its environment. In solution there is virtually no fluorescence, whereas when bound to protein, such as pRb, it fluoresces highly. Changes in protein structure can alter the fluorescent signal of bound ANS due to changes in its environment to water. Therefore changes in pRb structure can be detected on addition of ANS and the agent that modulates pRb/E2F(409-426) complex. If the fluorescent signal alters on addition of the agent, the agent may be affecting the pRb structure. The use of ANS to monitor protein unfolding is known in the art (Semisotnov et al (1991) Biopolymers, 31(1), 119-128)

20

15

Biochemical assays could include IC50, isothermal calorimetry, and/or cocrystallisation.

25

In an example of an IC50 assay, reactions were performed in 96-well black plates in a total reaction volume of 100 μL. Compounds were dissolved in DMSO at a maximum concentration of 10 mM and doubling dilutions made in DMSO. $4~\mu L$ of diluted compound was mixed with 80 µL pRb (400 nM in binding buffer). The plate was incubated at room temperature for 15 min and then Rhodamine-E2F and fluorescein-

E7 were added to give final concentrations of 400 nM each. Reactions were performed in triplicate. Plates were read after 1 hr. The results are shown in Figures 9a and 9b.

- 5 Accordingly, an assay method could include the following steps:
 - a) allow complex formation of pRb and E2F₍₄₀₉₋₄₂₆₎-fluoropeptide, and measure maximum fluorescence polarization; and
 - b) add a selected agent and detect whether there is a decrease in fluorescence polarization.

10

Alternatively, an assay method could include the steps:

- a) allow complex formation of pRb and E2F₍₄₀₉₋₄₂₆₎-fluoropeptide in the presence and absence of a selected agent and measure the fluorescence polarization; and
- b) compare the fluorescence polarization values.

15

Compounds which stabilise the pRb/E2F $_{(409-426)}$ complex could be assessed in a modification of the above method, involving competition binding of pRb by unlabelled E2F $_{(409-426)}$ and E2F $_{(409-426)}$ -fluoropeptide.

- 20 In this regard an assay method could include the following steps:
 - a) allow complex formation of pRb/E2F₍₄₀₉₋₄₂₆₎-fluoropeptide, and measure max fluorescence polarization;
 - b) add a selected agent and measure fluorescence polarization if no change in fluorescence polarization there is no disruption of complex;
- 25 c) add unlabeled E2F₍₄₀₉₋₄₂₆₎ and measure fluorescence polarization expect displacement of E2F₍₄₀₉₋₄₂₆₎-fluoropeptide and a decrease in fluorescence polarization, but not if complex is stabilised by presence of the agent.

Alternatively, the pRb, E2F₍₄₀₉₋₄₂₆₎-fluoropeptide and agent could be added together before detecting fluorescence polarization. If fluorescence polarization is reduced to

10

15

20

25

30

less than a predetermined value, the agent is determined to destabilize the complex, and vice versa.

The interactions could be confirmed by co-crystalisation of pRb/E2F₍₄₀₉₋₄₂₆₎ with the agent, and determination of the three dimensional atomic coordinates by X-ray diffraction and molecular replacement.

The E2F₍₄₀₉₋₄₂₆₎/pRb interaction can also be applied to heterogeneous assay formats (i.e. ones in which reagents are partitioned between a solid support and in solution, and wash steps are involved). This would involve the immobilisation of pRb on microtitre plates, for example by antibody capture or metal ion chelation using Histagged pRb and Nickel coated plates. E2F₍₄₀₉₋₄₂₆₎ peptide may be tagged with fluorescence as above and the fluorescence detected directly to determine binding. Alternatively, the peptide could be labelled with biotin and detected with streptavidinhorse radish peroxidase in an ELISA-like format.

Compounds which interact with the complex without altering association or disassociation of the complex could be identified by crystallographic means, unless the agent itself was tagged (radioactivity/fluorescence) and binding to the complex measured directly, eg fluorescence polarization as above or scintallation counting of an immuno-precipitate.

Alternatively, the agent can be added to pRb and E2F(409-26) under conditions in which pRb and E2F₍₄₀₉₋₂₆₎ can form a complex. This could result in the agent and complex cocrystallising. The binding affinities of pRb to E2F₍₄₀₉₋₂₆₎ in the pRb/ E2F₍₄₀₉₋₂₆₎ complex in the presence and absence of the agent can then be compared to determine whether the agent inhibits complex formation. The three dimensional structure of the pRb/ E2F₍₄₀₉₋₂₆₎ - agent complex can also be solved (X-ray diffraction using molecular replacement analysis) to enable the associations in the new complex to be compared with those in the pRb/ E2F₍₄₀₉₋₂₆₎ complex (see Annex 1). As a further alternative the

pRb/ E2F₍₄₀₉₋₂₆₎ complex can be formed before soaking the complex in the presence of a selected agent. The binding affinities of pRb to E2F₍₄₀₉₋₂₆₎ can then be determined in the presence and absence of the agent. As before, the three dimensional structure of any pRb/ E2F₍₄₀₉₋₂₆₎ – agent complex could be solved.

5

The binding affinities can be measured using isothermal titration calorimetry.

Alternatively, surface plasmon resonance (SPR) could be used such as that provided by Biacore AB.

Preferred features of each aspect of the invention are as for each of the other aspects mutatis mutandis. The prior art documents mentioned herein are incorporated to the fullest extent permitted by law.

Annex 1

molecule from four molecules in an asymmetric	:: 617 alpha=90.00 beta=93.70 gama=90.00 C 2	30.447 1.00 45.11 N	30.626 1.00 44.12	1.00 44.5	33.137 1.00 45.	-16.814 34.740 1.00 52.60	35.114 1.00 52.37	30.446 1.00 43	889 30.824 1.00 43	909 1.00 41.4	.85	.700 1.00 39.85	.446 31.134 1.00 40.8	.937 1.00 40.	.461 1.00 36.	.62	.144 -14.006 27.355 1.00 38.16 0	174 -13.193 28.126 1.00 36.87 N	1.00	303 -14.214 26.805 1.00 35.83 C	37	1.00	1.00 33	745 -11.028 27.043 1.00 32.65	.97	.21	1.00 30.	609 21.938 1.00 29.0	.081 1.00 33.	833 22.531 1.00 28.	020 24.767 1.00 29.8	258 -8.833 24 884 1 00 30 56
s one	548	379	379	379	379	379	379	379	379	380	380	380	380	380	380	380	380	381	381	381	381	381	381	381	382	382	382	382	382	382	382	382
•	b=158	ď	ø	Ą	ď	Æ	A A	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	A 3	3
nates is whithin	P=	MET	MET	MET	MET	MET	MET	MET	MET	ASN	ASN	ASN	ASN	ASN	ASN	ASN	ASN	開		THE	開	•	·	EE	•	ILE .	TIE	LEE ,	ILE	LEE!	ILE ;	CLE 1
coordinates cell whith			- g		_ წ	S .	凹	ັບ	0			7 CB			ND2 F							CG2 I	H	H	H		CB I	G I	• •	CG2 I	H	Н
t Ç Ö		٦ ٦		m	4	N A	s S	7	8												_		Ü	0	Z	_		_		_	O	0
the	a=101			•	•		_	• -	~	J1	10	11	12	13	14	15	16	1,	18	13	20	21	22	23	24	25	26	27	28	29	30	31
REMARK the REMARK unit	RK	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	

0 U U U U U O Z O U U U U O Z O U Z O U U O Z O U U O Z O U U O Z O U

ATOM	33	ð	GLN	ø	383	•	-10.639	25,574	1.00 29.76	
ATOM	34	巴	GLN	Ø	383	2.535		8.5	6	
ATOM	35	පි	GLN	Ø	383	•	H	6.23	34	
ATOM	36	8	GLN	Ø	383		7	6.13	00 39	
ATOM	37	OE1	GLN	ø	383	o,	0	6.38	90.00	
ATOM	38	NE2	_	Ø	1 383		4.07		1.00 43.51	
ATOM	39	ບ		ø	383	S	9.7	6.79	.00 27.9	
ATOM	40	0		Ø	383		9	5.82	.00 27.2	
ATOM	41	z		Ø	384		8	7.79	.00 26.5	
ATOM	42	ජ		Ø	384		0	3.97	.00 24.9	
ATOM	43	පු		A	384		-9.689		.00 26.4	
ATOM	44	ព	GLN	ď	384	6.156	-9.957	0.00	.00 29.9	
ATOM	45	₿		ď	384	6.694	•	H	35.6	
ATOM	46	0 E1	GLN	ď	384	6.215	ä	Н	.00 33.7	
ATOM	47	NE2	GLN	Ø	384	7.677	-10.306	31.921	.00 37.2	
ATOM	48	ບ		ď	384	•	-7.617	œ	.00 23.5	
ATOM	49			~ ~	384	•	•	0	.00 23.1	
ATOM	20		•	~ ~	385	5.466	.41	ထ	.00 21.3	
ATOM	21				385	•	0	-	.00 19.4	
ATOM	25		•		385	•	-5.976	~	.00 20.0	
ATOM	23		•		385		-4.583	ဖ်	.00 20.0	
ATOM	54		-		385	•	***	7	.00 16.8	
ATOM	22				85	•	-4.708	•	00 22.0	
ATOM	26		LEU 1	e e	185		-5.381	φ.	.00 18.	
ATOM	57				85	•	17	7.	.00 17.7	
ATOM	28	z	-		98:	•	14	ė.	.00 16.7	
ATOM	23			_	98	3.192	-5.561	25.195	00 16.	
ATOM	9	8	•		98	•		24.033	.00 16.1	
E CER	, 6	පු (•		98	•	-6.115	22.679	.00 14.4	
ATOM MOTE	3 6		-		98	œ	.36	21.343	φ.	
ATOM	9		-		86	.26	-6.895	ď	.00 17.3	
ATOM	64				86	9	-5.117	.01	.00 15.4	
ATOM	65		MET A	m	œ	0	-4.152	9	.00 14.4	
ATOM	99				œ	1.641	-5.823	27.085	.00 14.9	
ATOM			•		œ	.50	•	7.90	0 15.3	
ATOM	89	_ ප	•			°.		28.771	.00 16.6	
ATOM	69	ខ	MET A	m	œ	.66	-7.709	28.039	0 21.2	
ATOM		S D	MET A	m	Φ		-8.842	.23	1.00 33.36	

20 20	13.5	12.21	11.97		,	9		6		, -		7	•	9	0.	0	0	5.28	9	7.16	<u>س</u>	. "	9		1 H	9.07		'n	7.30	6.73	7.70		8.42	7.80		8.43	8.78
1 00	1.00	1.00	1.00	•	Č	Õ	0	0	0	0		Ō	•	1.00	•	•	•	1.00	1.00	0	•	1.00	1.00	00	00	00.	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
29.834		တ	9.27	0.0	0.57	55	2.1	1.21	ത	o.	ω.	27.248	ů.	6	5	7.	26.740	26.635	6.48	6.08	5.75	. 4	3.50	3.94	7.08	9.9	œ.	9.33			00.	30.608		30.415	30.091	29.860	8.75
-9.970	-4.229	.36	-4.183	.09	.43	-4.616	•	•	•	-0.883	8	. 60	-0.694	-0.953	.77	۲.	-0.189	0.998	-1.196	-0.947	23	.59	.84	.75	.14	0.694	•	4.	-0.391	•	1.626	•	1.610	2.673	2.367	4.043	ū
-0.081	.81		.04	.51	.93	83	.16	.64	•	•	.02	04	•	5.546	36	۲.	Ø	w	ω	•	-1.197	-1.054	-0.467	-1.582	•	-2.038	.07	•	'n	'n	.09	.69	•	.08	2.494	•	
MET A 387	Ø	~	~	~	ILE A 388	~	PQ,	PC.	Æ;	Æ,	Æ,	LEU A 389	Ø	LEU A 389	4	Ø,	ø	æ		æ	ø	Ø	Ø	Ø		ď	•	4	₹ :	4	Ø,	Ø	ď	Þ	ø	ALA A 392	ø.
S	บ	0	z	ජ	8	CG1		N		0																	2 (Α . Ο	₹
71	72	73	74	75	16	77	78	79	80	81	87	83																א ע	2 6	7 6	7 6	603			106		
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM ATOM	E CER	EOTA MOTA	E CHA	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

10	:	.00 11.	.00 15.	.00 12.	0 13.	.00 11.	.00 11.	0 10.	0 15.	0 17.	0 18.	0 11.9	00 12.7	00 10.	00 10.	00 11.8	00 14.7	00 17.3	0 13.5	0 15.3	ω,	00 7.5	7.5	00 8.1	00 6.7	6.0	00 6.7	9.8 00	9.7		9.9	9	6.5	10.7	10.3	12.	0 15.0
0	31	1.571	1.29	9.385	9.40	3.59	619.	5.524	5.569	1.65	.673	1.391	7.796	9.656 1	0.369 1	0.905 1	9.792 1	3.846 1	7.668 1	9.388	1.519 1	3.001	1.946 1	1.102 1	1.324 1	0	1.373	4.336	4.508	5.184	6.31	.91	.71	37.393 1.	7.34	.38	9.5
õ	6.482	25	.58	.15	.84	10	.87	44	35	92	7.835	0.03	0.760	10.206	1.325	2.142	.872	3.681	3.884	.156	0.878	.784	.724	1.391	.675	.350	3.040	1.077	66	0.162	.811	.437	.496	829	0	.725	m
மு	0.655	.69	0.415	.65	.83	.16	.98	.13	. 62	1.378	.50	.68	.49		92	74	.97	92	.61	04	œ	69	-	v	.40	.36	90.	. 66	60	.08	•	.56	5.712	ų	.20	3.475	. 52
A 393	A 393	A 393	m	m	ന	ന	സ	n	n	M	A 394	m	'n	ന	A 395	m	m	m	m	m	m	m	č	m	m	č	A 396	m	m	m	A 397	e E	8	39	A 397	9	398
SER	SER						ASP	ASP	ASP	ASP	ASP	ASP	ASP	GLN			GLN	GLN	GLN	GLN	GLN	GLN	PRO	PRO	PRO	PRO	PRO	PRO	PRO	SER	SER		•	•	SER 7	•	GI'N 7
z		8												z																				ပ	0	z	ජ
109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

16.05	•	0	00	. 4e	14	14	15	15.5	17.	. "	, –		4	4.8	11.	6	8.94	,	6.4	6.9	7.77	0		6.74	ਜ਼	•	6.89	4.00	7.08	4.	6.83	•	7	4.3	8.8	9	•
1.00	1.00	1.00	1.00	1,00	Ō	1.00	•	•	•	. 0	. 0	0	1.00	1.00	•	•	1.00	•	1.00	1.00	•	•		•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
40.497			40.018	98	17	55		82	99	~	.55	3	.00	•	38.663	•	36.425		10		98	.04	00	38.198	.15	36.732	~	•	39.588	39.834	40.479	41.773	.68		.60	42.107	40.852
₽	10.725	11.914	•	•	•	44	•	•	8.607	•	8.543			11.219	•	•	10.696		•	11.040	•	•	13.331	•	•		16.024	16.588	15.091	16.141	14.141	14.353	13.166	13.157	14.607	15.584	13.744
	1.144	0.312	9.	.01	•	5.503	•	•	6.949	7.545	•	6.719	•	æ		8.829	8.722	•	•	11.217	•	10.029	•	•	6.182	ø	6.360	96.	•	•	8.112	•	8.347	o,	0	9.0	10.799
ď,	GLU A 398	Ø,	K	Ø	ø	ø	Ø	ø,	Ø	ø	Ą	Ø	Ø	ø	Ø,	Ø	ø	ø	Ø	ø	ø,	U A 400	Ø	ø	Ø	Ø	-	Ø.	Ø	ď	æ		ø	Ø	ø	2 A 402	A
<u>ප</u>			OE1 GI	_	_	o GLU					OD1 ASN	ND2 AS	C AS	O AS	N LE	ES LE	CB LEU	SG LE	CO LE				N ILE				CO1 ILE	CG2 ILE		O				OG SER	SER	SER	TYR
147	148	149	150			153																					174 (181		183	
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

.585 1.00 9. .816 1.00 9. .641 1.00 10. .555 1.00 11.	.063 1.00 10. .705 1.00 12. .171 1.00 6. .475 1.00 7.	.824 1.00 9.1 165 1.00 8.2 836 1.00 7.1 133 1.00 8.7	997 1.00 902 1.00 828 1.00 869 1.00	939 1.00 2 964 1.00 2 104 1.00 10 979 1.00 10	060 1.00 10. 005 1.00 11. 687 1.00 13. 757 1.00 14. 026 1.00 18. 670 1.00 12.	080 1.00 11.9 813 1.00 10.1 188 1.00 11.3 158 1.00 12.2 708 1.00 12.8 505 1.00 15.3 337 1.00 18.9 617 1.00 16.2 373 1.00 13.0
13.941 12.753 11.498 11.434 10.307	9.134 42 8.017 42 9.224 41 10.368 40	.916 40 .916 40 .634 38 .876 38	17.114 36 16.043 35 15.068 35 14.087 34	15.048 33 15.048 33 16.016 34 18.081 39 19.011 38	18.073 40. 19.164 41. 19.150 41. 19.650 40. 19.493 41. 20.265 39.	9.165 42. 8.060 42. 8.036 43. 6.626 43. 6.115 44. 6.823 45. 4.902 44. 8.520 42.
	u con u ca n		10.904 10.887 11.894 11.866	9.856 9.856 9.876 11.909 12.696	10.991 10.927 9.546 8.446 7.272 8.844	25 25 25 37 37 15 15
TYR A TYR A TYR A TYR A	TYR A TYR A TYR A	TYR A PHE A PHE A	PHE A PHE A PHE A PHE A	PHE A PHE A PHE A PHE A	ASN ASN ASN ASN ASN ASN	ASN A A A A
185 186 187 188 189	191 192 193 194	195 196 197 198	199 200 201 201	203 204 205 206		213 214 215 216 217 218 220 221
ATOM ATOM ATOM ATOM ATOM	ATOM ATOM ATOM ATOM	ATOM ATOM ATOM	ATOM ATOM ATOM	ATOM ATOM ATOM	ATOM ATOM ATOM ATOM ATOM	ATOM ATOM ATOM ATOM ATOM ATOM ATOM

0.01 0.04 0.08 0.09 11.00 11 40.027 38.723 36.466 35.268 36.907 36.907 36.903 36.935 36.935 36.935 36.935 37.104 36.935 36.935 37.104 37.104 37.104 37.104 37.105 37 41.100 42.061 41.004 39.890 18.845
19.284
19.284
17.366
20.772
20.772
21.660
21.036
22.387
22.403
22.403
23.399
24.215
23.399
24.215
23.399
24.215
22.344
22.344
22.346
22.346
22.346
22.346
22.346
22.346
23.399
24.215
23.399
24.215
23.399
24.215
23.399
24.215
23.399
24.215
23.399
24.215
23.399
24.215
23.399
22.346
22.346
22.346
22.346
22.346
22.346
22.346
23.399
22.3486
23.399
23.399
23.399 15.245 16.454 16.358 16.101 16.871 16.056 18.625 20.746 20.691 17.892 17 13.848 13.819 12.470 **4444444444444444444444444444**

SUBSTITUTE SHEET (RULE 26)

4 70		•	10.54				ש) (, α	•	3.70	4	_	٠.	4.	u,	u)	- CT			. "	, C	3,25	1 4	S	α	9	Н	•	8.3	2.9	α	4		0	9	5.34
0	1.00	• -	Ō	0	0	1.00	-	9	2		Ō	ŏ.	1.00		•	1.00	0.	0	0	0	O	Ō	Ō	0	0	•	0		00.	00.	00.	1.00 1	1.00	1.00	1.00	1.00	1.00
4	53	L.	'n	4.3	3.77	46	2.24	0			23.291															2	1.13	7.	1.80	0.53	9.2	ω.	7	8.733	9.772		8.683
. 93	•	2.29	3.73	4.56	4.84	•	8.99	8.424	7.530	7.084	.222	6.381	6.283	6.901	7.717	99	.374	.045	5.771	.671	4.001	3.052	3.300	5.168	4.535	6.337	6.936	8.304	ω.	9.176	œ.	œ.	7	6.694 1	7	7.999 1	9.038 1
0	•	7	9.342	4	Ŋ	86	52	0.83	1.67	2.913	_	5.353	5.052	5.626	5.644	5.149	.873	.026	. 022	.148	.360	•	•	.193		.615	6.751 1		764	215	359	۰.	7.452 1	. 94	3	9.337 1	0.454 1
_	_																																	•	~	٥,	10
A 41	41	41	A 417	41	A 417	A 417	A 417	A 418	A 418	A 418	A 418	_	_								A 419		A 419				420							C	2	421	
	LYS					LYS	LYS	ARG	ARG	ARG	ARG	ARG	ARG	ARG	ARG	ARG	ARG	ARG	W.F.	VAL	ME	WE	VAL	VAL A	VAL A	LYS A	LYS A	LYS A	LYS A	•		•	LYS A	LYS A	ASP A	ASP A	asp a
ฮ	8					U	0	z	ð	ප	ဗ္ဗ	8	NE	N U	H	NHZ	ָט	0	Z	ð	පු	g	CG2	ບ	0	z	5 1	8	8 (8 1	8	NZ	<u>ں</u>	0 ;	ż	์ ฮ	g
299	0	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	323	330	331	332	333	334	335	336
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	MOTA	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ALOE &	MOTA	MOTA MOTA	ATOM	AIOM	ALOM	ATOM	ATOM	ATOM	ATOM

1.00 18.552 17.945 18.957 17.402 16.355 18.125 15.328 16.007 14.956 13.661 13.223 12.022 11.251 12.550 13.996 13.086 13.913 14.638 15.166 12.511 13.895 13.746 12.986 12.817 14.901 14.901 15.558 17.095 17.772 17.825 18.381 18.340 18.940 9.935 8.673 10.768 9.890 9.880 11.120 11.120 11.3031 13.975 9.990 8.834 7.756 7.756 7.330 6.867 6.996 6.643 5.339 5.024 5.024 7.274 7.608 7.946 7.946 7.538 9.208 ASP A 421
ASP A 421
ASP A 421
ASP A 421
ILE A 422
ILE A 423
ILE A 423
ILE A 423
ILE A 423
ILE A 424
IYR A 425
ILE A 425 337 338 339 340 341 342 344 344 344 345 352 352 352 353 353 353 363 373 373 373

CB PHE A 426 9.951 11.028 13.521 1.00 4.17

CB PHE A 426 8.549 8.213 14.646 1.00 3.43

CCI PHE A 426 8.549 8.213 14.646 1.00 2.00

CCI PHE A 426 8.549 8.213 14.646 1.00 2.00

CCI PHE A 426 8.518 6.847 14.597 1.00 2.00

CCI PHE A 426 8.518 6.847 14.597 1.00 2.00

CCI PHE A 426 8.518 6.847 14.597 1.00 2.00

CCI PHE A 426 9.642 6.104 14.835 1.00 2.00

CCI PHE A 426 9.642 6.104 14.835 1.00 2.00

CCI PHE A 426 9.126 9.126 9.583 11.779 1.00 5.74

CCI PHE A 426 9.126 9.583 11.779 1.00 5.74

CCI LYS A 427 7.651 11.011 12.633 1.00 6.97

CCI LYS A 427 6.582 11.626 11.339 1.00 7.52

CCI LYS A 427 6.582 11.626 11.039 1.00 7.52

CCI LYS A 427 6.582 11.626 11.00 2.02

CCI LYS A 427 6.88 16.156 11.00 2.02

CCI LYS A 427 6.88 16.156 1.00 2.02

CCI LYS A 427 6.88 16.156 1.00 2.02

CCI LYS A 427 6.88 16.156 1.00 5.49

CCI LYS A 427 6.88 16.156 1.00 5.49

CCI LYS A 427 7.364 12.069 10.081 1.00 5.34

CCI LYS A 428 6.880 14.894 9.187 1.00 6.80

CCI LYS A 428 6.880 14.894 9.187 1.00 6.80

CCI LYS A 429 1.0.81 10.81 1.081 6.89

CCI LYS A 429 1.0.81 10.495 9.187 1.00 1.441

CCI LYS A 429 1.0.81 10.497 8.509 1.00 1.441

CCI LYS A 429 1.0.81 10.81 1.081 6.969 1.00 6.90

CCI LYS A 429 1.0.81 10.81 6.89

CCI LYS A 429 1.0.81 10.81 6.96 1.00 1.00 1.441

CCI LYS A 429 1.0.81 10.81 6.89

CCI LYS A 429 1.0.81 10.81 6.89

CCI LYS A 429 1.0.81 10.81 6.89

CCI LYS A 429 1.0.81 10.81 6.80

CCI LYS A 429 1.0.81 10.81 6.96

CCI LYS A 429 1.0.81 10.81 6.80

CCI LYS A 429 1.0.81 10.81 6.80

CCI LYS A 429 1.0.81 10.81 6.80

CCI LYS A 429 1.0.81 10.81 10.80

CCI LYS A 429 1.0.81 10.81 6.80

CCI LYS A 429 1.0.90 1.43 1.00 5.90

CCI LYS A 429 1.0.81 10.81 10.80 5.90

CCI LYS A 429 1.0.90 1.0.43 1.00 5.90

CCI LYS A 429 1.0.90 1.0.45 1.0.90 5.90

CCI LYS A 429 1.0.90 1.0.45 1.0.90 1.00 6.80

CCI LYS A 429 1.0.9

SUBSTITUTE SHEET (RULE 26)

7 38	7.54	•	7. T		9.6	9.6	4	7	9		1 4		0		w.	ω	٠,	ω,	, ru	റ	-	· W		4		9.2	0.9	9	4	4.8	7	6.5	9	9	8.0		0.7
1.00	1.00	•	•	•	•	1.00	•		•	•		00.	00.	00	00	00	00.	00.	00	00.	00.	00.	00	00.	00.	00	00.	00.	00.	00.	00.	00.	00	00	00	1.00 2	00
12	10.323	.46	9.56	ω	10.689	.5					6.355					•	•	•	3.537	•	4.701	•	2.783	.90	6	0	4	~	\sim	4.450	5.426	.92	6.705	0.	.93	0	.75
2	6.911	.45	.83	3.531	. 82	3.404	•				•	•	•	7.119	8.710	8.866		-:	٠.	٠:	٦.	-:	7.003	7.038	5.818	4.	÷	.86	. 65	.57	.51	2.537	.07	.81	.51	Ŋ	Ō
٠.	.23	٠:		•	``	8.207	4.	4.	w.	m	'n	9	4.	\sim	8.494	.40	ö	•	12.118	•	•	10.218		. 78	1.5	.20	。	.08	.47	. 58	7.473	4.	.99	8.011	7.026	60	.07
ന	•	PHE A 43	PHE 1	PHE 7	PHE 1	PHE	PHE A	PHE A	PHE A	ALA A	LYS A	LYS A	LYS A	LYS A	LYS A	LYS A	LYS A	LYS A	LYS A	ALA A	VAL A	VAL A	VAL A	VAL A	VAL A	VAL A	VAL A	GLY A	GLY A								
						CES					ජ	8		0												6	ပ	> ;	z (5	9	ន្ត	CG2	ບ	0	×	g
413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	T # #	7##	443	444	445	446	447	448	449	450
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM ATOM	MOH4	ATOM	ATOM						

4 898 0 666 1	F 752 0 050 1 00 0	7.72 0.639 I.00 3	0.10440 1.000 F 92.0	6.779 -1.26E 1.00.34.L	6 873 -1 1960 1 00 10 1	6.064 -2 11F 1 00 40	6.317 -3.826 1.00 ±0.8	7.74	6 874 0 726 1 00 11.	6.67 0.738 1.00 34.2	8.185 0.51 1.00 34	8.731 1.293 1.00 32.0	9.129 2.729 1.00 31.8	9.947 3.330 1.00 33	8.559 3.264 1.00 30.0	8.811 4.618 1.00 28.0	9.405 4.591 1.00 28.7	8.660 5.796 1.00 30.3	7.448 5.270 1.00 26.2	6.535 4.724 1.00 24.7	7.320 6.426 1.00 24.3	6.035 7.132 1.00 22.6	5.510 7.079 1.00 22.7	4.007 7.496 1.00 22.5	5.722 5.695 1.00 22.1	6.064 8.591 1.00 21.7	6.166 9.531 1.00 18.	8.749 1.00 21.5	.986 10.061 1.00 21.3	.639 9.97	.602 9.153 1.00 23.3	.142 9.025 1.00 27.5	.665 10.046 1.00 29.9	.237 7.914 1.00 27.9	15 11,119 1 00 20 3	0.02 00.4 /++.++ /++.
35 7.68	35 8.5	36 6.40	36 5.95	·		. [-	• •	· •	, 4	• ~	•	. 4	7	m	г	7	0-	7	r	0	-1		m	m	m m	ri	. 2	0 0) 	-2	-2 -	-4	4-	សុ	0	
GLY A	GLY A 4	GLN A	GLN A	GLN 2	GLN	GLN A	GLN A	GLN A	GLN A	GLN A	GLY A	GLY A	GLY A	GLY A	CYS A	CYS A	CYS A	CYS A	CYS A	CYS A	VAL A	VAL A	VAL A	AL A	AL A	AL A	VAL A 439	A 1115	4 K	3LU A 44	ыр A 44	3LU A 44	EU A 44	ILU A 44	GLU A 44(111111
ч	C	m	454 CA	10	10	~	œ	459 M																			479 0								486 C	
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ALOHA MOTA	E CE	ATOM	ATOM	ATOM	A LOIN	EOT &	ATOM	ATOM	ATOM	ATOM	ATOM	FOT C	ALON A	ATOM	AIOM	

1 00 18 24	1.00 18.75	1 (4	0 26.	.00 22.	0 16.	.00 15.7	9.	0 13.	0 14.0	.00 16.0	13	12.8	12.9	17.5	12.4	12.	Н	0 12.	12	.00 17.5	20.	.00 19.6	6.0	.00 11.8	.00 10.	.00 10.9	0	.00 12.3	.00 15.	0	0	0 29.	0	0 32.	6.6 00	0	7
-	11.088	12	•	•	•	13.665	.96	58	.89	.83	.99		90.	21	16.346	7.41	0	ဖ	.46	.40	.09	.14	.50	.66	.87	.82	17.337	20	40	_		-	_	04	.23	•	Œ
. 45	2.105	.14	.56	1.404	4.072		5.089							9.243	•	6.744	•	•	3.245	•	•	•	•	•	•	•	3.341	•	•	•	.08	5	-0.444	4	4	3.973	0
9	2.085	8	2	.14	83	.16	-44	.51	1.	86	94	46	.04	7	36	2.867	1.694	1.407	0.527	-		-	•	•	•	•	5.022	•	•	•	•	•	4.	5.432	5.751	Ŋ	
A 441	A 441	A 441	A 441	A 441	A 441	ø	Ø	Ø	4	ď	ø	ø	ø	A 443		A 443	A 444					A 444	A 444	A 444	A 444	A 445	A 445	A 445	A 445	A 445	A 445	A 445	A 445	A 445	A 445	A 445	A 446
•	CB ILE	٠.	٠.								SER									GEN	GIN	I GLN	2 GLN	GLN	GLN	ARG	ARG	ARG	ARG	ARG	ARG	ARG	1 ARG	2 ARG	ARG	ARG	TYR
o o														503 OG																					7. C	5	X 9:
Z.																														51	52	52	52	52	52	52	25
ATO	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

6.37 6.37 6.60 7.20 18.558 17.835 18.559 19.243 19.243 19.243 19.243 19.243 19.243 19.243 19.243 19.243 19.243 20.052 20.052 20.054 20.055 20.055 20.055 20.056 6.634 9.082 9.082 10.019 11.916 11.916 6.820 6.820 6.820 7.986 9.423 9.423 1.290 0.126 0.833 1.290 0.833 3.501 1.290 6.656 6.6 6.505 6.448 9.2644 9.2644 9.2644 9.2644 9.2644 9.2644 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.472 9.724 9.725 9.7 TYR A
TYR A

2,67	2.00	. 0		0	4	' -	4	~	9		• •	2.00			3.02	5.79	2.00	2.00	2.00						•	•	ਜ	2.00	•	•	2.00	•		0	C	· Ĥ	•
1.00	. 0		0	٥.	0		0		0			1.00		•	•	1.00	1.00	1.00	0.	1.00	•	0	٥.	•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	•	1.00
27.139		11.	6.86	.36	5.96	5.45	~	5.57	4.82	77	. 8		44	26.276	45	32	93	.05	29.139	•	.64	•	•	16	•	.58	27.820	27.486	27.209	•	.86	29.346		.66	0.08	0.33	9.83
0	5.784	H		7	32	0	4.474	.16	.15		4.221		•	2.241	.77	0.419	.20	•	3.642	4.944	6.011	7.176	8.535	8.741	9.990	11.062	•	。	9.642	5	6.551	6.875	7.371	8.025	9.427	0.3	
7.611	8	5.688	4.415	3.265	2.114	.95	-0.248	.36	32	ω.	φ.	7.694		9.493		•	•		10.339	10.108	11.061	10.910	11.501	7	13.402	12.543	•	11.177	10.675	. 84	11.761	.60	9	.88	7.875	92	88
A 4	ARG A 4	ARG A 4	-	ARG A 4	ARG A 4	ARG A 4	ARG A 4	ARG A	ARG A	ARG A	ARG A		LEU A	LEU A	LEU A	LEU A	LEU A	LEU A	LEU A	TYR A	TYR A	IYR A	IYR A	IYR A	IYR A	IYR A	IYR A 4	TYR A 4	IYR A 4	IYR A 4	LYR A 454	IYR A 4	IYR A 4				
0	×	ð	ප	ဗ္ဗ	8	NE	CZ	NHI	NH2	ບ	0	z	ð	8	ပ္ပ	8	9	ບ	0	z	ð	ප	ğ	<u></u>	- E	S	HO	CE 1	CDS	υ.	0	٠. ح	ร์ ฮ	8	ຄ	9	CE1
565	9	53	28	9	2	7	Ċ	m	~H	575		577																	એ. હ 4.ા	95	96	27	98	99	00	601	0
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

 454
 7.841
 12.047
 29.107
 1.00
 2.99

 454
 6.794
 13.303
 28.578
 1.00
 2.99

 454
 6.795
 11.146
 28.853
 1.00
 4.23

 454
 6.842
 9.862
 29.328
 1.00
 3.50

 454
 9.367
 6.274
 31.703
 1.00
 3.50

 455
 8.891
 3.972
 32.803
 1.00
 3.54

 455
 8.891
 3.972
 32.803
 1.00
 3.54

 455
 8.891
 3.972
 32.323
 1.00
 3.04

 455
 8.891
 3.972
 32.323
 1.00
 3.07

 455
 8.891
 3.972
 32.323
 1.00
 3.07

 455
 8.891
 3.972
 32.323
 1.00
 3.07

 455
 8.892
 1.507
 32.471
 1.00
 4.28

 455
 8.802
 3.242
 31.00
 3.07

 456
 11.282

SUBSTITUTE SHEET (RULE 26)

on.	~ ~2	œ	_	~	œ	0	0	7	7	~	10		•	10	_		_																				
α,	3.6	3	9		0	0	7.	4	0	•	•	8.07	m	0	•	•		•	•	•	•	2.00	•	•	0	3.6	3.8	H	0.36	9.96	7	7	9	7	3.57		3.63
00	0	00	00	00	00		00	00	00	00	00	00	00 1		00	00	00	00	00	00	00	0	0	0	0	4 0	0	0	0	T 0	0	0 1	0	0	0 1	0	0
7	H	H	4	Ч	H	H	4	<u>-</u>	•	•	H	•	•	•	•	•	7.	•	•	4	•	1.0	1.0	•	•	•	1.0	1.0	1.0	1.0	1.0	1.0	•	•	1.0	•	1.0
992	N	188	300	ч	ぜ	4	168	0	230	m	178	993	C	591	541	123	767	321	604	446	œ	573	Н	59	S	~	178	101	86	78	29	985	37	œ	95	~	92
36.	37.	œ.	9	36.	ė.	ė.	37.	8	o.	•	ı,	w.	6	H	•	38.	37.	œ.	œ	37.4	•	37.5	40.2	41.1	•	•	41.5	41.3	41.3	41.2	41.7	•	•		41.1	•	40.1
	295	380		118	96	3	30	986	N	83	54		S	~	2	22	18	S	36	_	-	49	30	92	66	90	26	65	52	93	60	30	84	33	95	88	16.
•		•	•	•	•	•	3.3	2.9	•	4.3	5.0	4.1	4.9	•	5.3	5.1	6.3	•	8.4	9.44	10.3	10.2	9.9	6.8	.7	٦	4.1	æ	3.8	4.4	3.5	4.3	4.3	.7	2.9	4	ų
194	397	0	0	Ŋ	078	33	3	g	9	54	61	0	4	S	0	S	23	142	34	77	69	78	32	665	03	53	64	98	31	46	69	98	46	91	84	22	89
•	12.3	8	8	13.2	Э.	13.7	14.7	15.2	Ŋ	16.7	17.3	17.5	8	18.6	16.9	17.8	ė.	vo	15.1	15.3	14.1	16.678	2	9	4.	14.65	ω.	12.08	ø.	ທຸ	4.	5.8	6.3	6.4	7.6	8.0	0.0
																•			•		•	•	•	•	•	.,	1-1	•	-			_	-	7	7	H	
	58	28	59	59	29	459	29	59	460	09	9	9	90	460	90	90	19	21	21	21	21	21	11	13	22	22	22	22	62	23	23	23	23	6	<u>ب</u>	m	e E
A 4	A 4			A 4				A 4	A 4	A 4	A		A 4	A 4		4	A 40				A 46		A 46	A 46	A 462	A 462	A 462	462	₹	4	A 46	4	1 46	1 46	1 46	1 46	46
GLU	Tra	GLU	SER	SER	SER	SER	SER	SER	MET.	MET	MET	MET		•	•				•		•	-	-		•	•		LYS 7	LYS	•		•	LYS A	•	SER A	SER A	전 전
01	_																																			S.	S
Ö	ပ	0	Z			_												ð	B	ပ္ပ	₿	8	ບ	0	z	ð	8	ပ္ပ	8	S	ZN	ပ	0	z	ð	8	8
641	642	643	ヸ	645	646	647	648	649	650	651	652	653	654	655	656	657	658	629	9	661	662	663	664	665	999	667	668	699	670	671	672	673	674	675	919	677	678
		_																														_	-	-	-	_	_
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	Į Į	Į Į	S S	J M	ATOM	N N	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM
~	~	~	~4	r-U	ra;	æ	Œ	æ	Œ	Ø	Ø	Ø	æ	∢ (∢ i	Æ,	4	4	4	K	ď	K	ď	ď	Ā	ď	A	4	Ą	A	A	Ą	A	¥	Æ	A	¥

14.52	15.99	14.97	14.47	13.37	•	13.58	•		•	•		œ	~	19.26	_i	₹.	ď	œ.	œ.	_;	~		H	7.6	ο.	6.8	23.81		25.21	4	m	œ	20.93	•	15.74	•	•
1.00	1.00	0	•	•	1.00	1.00					1.00									1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ä	42.533	•	Ή.	0.35		9.24	9.9	8.6	2.7	4	43.107	4	52	8	80.	.26	90.	.55	.55	35	39	30	37	46	64	44.382	.35	47.247	•	45.051	ĸ.	•		9		ď	0
.83	3.479	.95						6.526			6.619	7.176	•	•	•	•	8.543	•					1.694			-	3.578	•	•	•	•	•	•	•	5.089	•	5.467
•	19.609	.07	20.196	20.352	21.027	22.427	22.561	23.388	20.064	21.057	18.835	18.551	17.056	16.680	15.185	14.733	14.460	18.981	19.486	18.818	19.154	18.257	18.800	Ø	7	~	20.600	H	H	α	à	4	et!	10	10	10	~
Ø,		Ø;	Æ,	Œ	4	Æ	Æ	Ø	Æ	GLU A 464	Ø	ø	Ø	K	Ø	Ø	ď	ø	Ø	K	Ø	ø	Ø	ø	Æ	ď	Ø	Ø	Ø	Ø	Ø	ď	ø	ø	ø	Ø	3 A 467
	0	_										CA GLU	89 85	S G	8 8	OE1 GI	OE2 GI	C GI	년 0	N GE	15 5	CB GI	CG GI	S GI	OE1 GL	OE2 GL	CGLU	0	N AR	S AR			CD ARG	NE ARG			NH2 AR(
	680																															711					
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

23.45 23.85 23.85 23.39 19.92 25.54 24.22 23.40 24.43 25.52 26.52 26.91 26.91 26.91 26.91 26.91 25.79 28.15 25.97 25.84 23.67 26.30 27.70 28.63 32.75 38.95 41.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 48.310 50.339 47.500 46.285 48.091 46.458 46.636 44.944 46.260 45.661 47.608 47.427 47.218 46.174 45.210 45.835 48.043 48.257 44.141 43.776 46.723 8.047 7.919 8.862 7.5498.357 9.644 10.774 11.941 12.106 13.245 13.426 12.313 11.815 10.760 12.878 12.376 12.376 12.376 12.086 13.000 10.801 8.580 7.352 23.560 24.669 23.067 23.067 23.871 24.393 26.380 21.160 21.160 21.160 21.022 21 ARG A ARG A LIEU A SER A LILE A GILN A GILN A GILN A GILN A ASN A ASN A ASN A ASN A ASN A

	.00 21.8	.00 19.0	.00 17.5	0 15.5	.00 14.	.00 14.5	11	œ	10.	13.(•	15.6	.00 13.7	00 13.1	.00 14.2	.00 6.1	.00 13.4	00 13.4	.00 13.3	00 12.4	.00 12.7	.00 13.7	.00 16.6	00 24.3	.00 23.5	.00 12.9	.00 14.2	.00 12.8	11.6	.00.	.00 14.1	H	.00 14.8	.00 11.	0 11.	1.00 9.67
41.391	0.44	0.9	9.65	9.17	0.04	ا 0.	1.90		.81	.95	œ.	7.36	.89	7.93	.60	7.89	ė.	'n.	•				٠.	` .	- :	4.	-:	5	4	35.056	.25	33.212	5.25	3.51	2.28	34.234
17.974	9.90	5.0	4.53	3.27	; i	1.78	.71	.96	.25	1.32	5.62	.26	.91	•	.37	.55	17.877	•	.57	.43	•	17.204	17.423	33	90.	16.436	.73	15.223	12	æ	11.659	11.262	m	.47	4.	14.876
19.073	20	19.419	19.885	٠, د	0		œ.	6	Ó	0.44	19.944	0	S	g	o	ď	ò	ö		22.878	4	i	26.724	. 7	7.40	22.467	2.43	2.18	1.83	. 56	ä	21.999	0.89	0.59	20.608	9.5
ASN A 472 ASN A 472	A 47	A.	A 47	₹,	PHE A 473	∢ ,	4	Ø	Ø	Ø	Ø	Ø	SER A 474	Ø	Ø	ø	Ø	Ø	Ø	LYS A 475	Ø	ď	Ą		A 4	ø	₽'	A A	A A	A 47	LEU A 476	A 47	A 47	7	TU A 476	A 47
	0		-, ,				- •	-	-						_	OG S	S S	0	i z	e e	e E	00 11	8	S S	NZ II	i E) (II N	es es	ii B	•-•	_	_	ii U) O	N LEU
755 756																														786	787	788	789	790	791	792
ATOM	ATOM	ATOM	E PLOTA	NOT V	ATOM		ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

υυυυυσεουσουυσεουοουσεουσουσεουσουσουσο

7.27	•	9.	2.00	۰.	5.74	ų.	6.17	5.15	4.	6.20	2.00	6.46	6.14	•	7.55	7.69	12.13	4	ä	•	8.94	•	5.52	•	•	13.62	•	•	•	•		•	•	17.85		
1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	•	1.00	1.00	1.00	•	1.00	1.00	1.00	1.00	0.	٥.	°	۰.	٥.	1.00	0.	1.00
33.633	5.4	6.5	ų.		32.164	.78	.87	32.539	•	2.8	4.7	•	29.680	•	o,	•	œ.	7.	•	•	28.165	•	'n	4.	e.	•	•	25.332	.04	25.262	. 79	•	.97	9	3	25.551
15.210	3.93	14.102	•	•		•	•	19.783	20.397	.84	ö	•		7	6	'n.	.34	15.086	•	•	15.236	•	•	•	•	17.413	•	•	•	•	•	•	•	14.429	12.265	12.560
18.271	•	•	16.667	•	.23	•	•	19.716	8	17.615	18.764	20.057	20.037	20.712	21.572	22.520	23.519	•		20.791	•	•	•	•	•	•	•	20.522	19.612	•	•	•	•		4	21.713
A 477	A 477	A 477	A 477	A 477	A 477	A 478	A 478	A 478	A 478	A 478	A 478	A 478	A 478	A 479	A 479		A 479		A 479		A 479					A 480	A 480	A 480	4 480	4 481	4 481	4 481	4 481	4 481	4 481	4 481
LEU 1	03	DEC.	LEU /	1 031	LEU 1	SN 1	ASN 1	SN 1	,	•			•	•	•			-	•	-	-	-			ASN A	ASN 1	ASN 1	ASN 1	ASN 1	ILE 1	TLE 1	ILE 7	ILE 7	IJE 7	ILE 1	TLE 1
ඒ ස																																			- •	• •
793	795	196	797	798	799	800	801	802	803	804	802	908	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830
ATOM .	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

 \cdot 0 \times 0 0 \times 0 0 \times 0 0

8.37	•	ė	3.95	•	2.30	•	6.39	3.09	2.00	•	•	•	4.48		æ	5.16	6.16	4.45	5.78	4.68	4.81	S	5.49	4	13.21	.15.95	23.47	4.72	4.49	æ	3.18	4.17	•			•	2.83
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00				1.00		1.00
24.932	6.87	27.710	9.22	.04	30.273	31.037	H	31.307	30.569	7	•	•	26.803	27.001	•	•	•	30.451	•	•	24.919	•	•	22.454	21.223	21.275	21.607	23.026	22.188	23.892	23.799	24.505	23.891	24.382		•	6.17
11.555	•	•	11.967			8.872	9.353		•	11.205	•	•	•	13.264	•	•	•	•	•	•	10.899	•	•	12.555	•	14.107	•	10.264	9.590	•	•	8.206	•	.38	6.323	.75	ന
•	ä	ä	21.064	0			18.537	8.1	œ,	19.631	6	18.721	ξ.	16.500		•	•	•	•	17.210	•	•	•	•	•	17.108	•	5	17.927	ų.	æ	g	4	.86	18.580	4	7
ILE A 481	Ø	PHE A 482		PHE A 482	ø	Ø	ø	HIS A 483	Ø	ø	Ø	Ø	ø	ø	Ø	Ø	æ	Ø	Ø		Ø		MET A 484	ø	K	ø	Ø	A 48	SER A 485	A 48							
0	z	ජ	8	ខ	E	CE	77	CE2	8	ບ	0	z	g	ප	ន	NO1	GB	NE2	9	ບ	0	z	ජ	ස	ဗ္ဗ	SD	뜅	ບ	0	z	ජ	ප	ဗ	ບ	0	z	ð
831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	852	856	857	828	859	860	861	Ø	863	864	865	866	867	898
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

		•																																		
2.69	2.00	σ	•	4.	0	•	ਜ਼		4.99	7.08	3.80	2.00	3.28	4.99	5.66	5.49	6.07	6.10	5.29	4.37	5.78	5.44	4.75	5.61	5.43	6.08	4.62	6.60	4	Ŋ	٠	4.	0	2.00		3.11
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	•	1.00	•	•
27.456	. 6	œ.	25.188	•	•	•		•	•		•			•		•		•	•	•	24.279	•	.16	.46		.60		•	•	.14	•	•	•	19.324	ų.	18.485
7.645		•					9.150		•	•	•	•	6.983	•	•	•	•	4.496	3.122	3.023	1.310	•	1.438	•	•	3.780	•	•	•	•	•	•	•	5.660	•	•
	15.484	6.6	6.1		ø.	14.480	4						15.873													12.815								10.047	. 85	.24
LEU A 486	4 4 4	Ø	ď	ø	4	ø	Ø	Ø	4	ø	Ø	ø	ALA A 488	ø	ø	ø	ø	ø	ø	ø	ø	4	Ø	ď	ø		Ø	Ø	ď	Ø	æ	ď	æ	LEU A 491	LEU A 491	A 4
8 8	8 8	8	ပ																																ບ	0
869	871	872	873	874	875	876	877	878	879	880	881	882	883	884	882	886	887	888	889	890	891	892	893	894	895	896	897	868	899	900	901	902	903	904	905	906
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

 \mathbf{U} \mathbf{Z} \mathbf{O} \mathbf{U} \mathbf{U}

10.25 11.55 11.55 8.23 8.23 10.69 10.69 10.67 10.15 9.64 6.54 6.43 12.13 12.62 13.37 15.28 14.65 13.27 18.39 23.19 20.445 20.970 22.536 22.536 20.047 20.466 20.047 20.047 20.006 20.293 19.610 21.852 118.563 11.742 116.324 116.324 116.531 19.555 18.745 18.909 18.193 16.735 16.081 12.891 15.991 14.935 16.884 16.687 0.631 -0.468 -0.4880 -1.384 -1.386 -1 14.102 13.919 13.806 13.230 13.230 14.608 11.802 11.802 11.016 9.637 8.558 8.558 9.550 8.754 10.363 11.097 10.405 10.911 10.876 10.586 11.688 **44444444444444444444444444444**

330.04 330.05 330.04 330.05 18.018 18.828 20.077 11.183 13.556 12.563 13.556 12.205 12.338 12.338 12.951 11.084 9.631 9.631 9.631 10.043 9.915 10.132 10.132 10.132 10.321 -2.865 -5.242 -4.693 -5.935 -6.704 -5.924 -6.527 -6.527 -6.531 -10.619 -4.042 -4.822 -4.693 -3.904 -3.631 -11.420 -10.547 7.476 5.473 4.297 3.024 2.726 3.974 5.443 6.019 8.074 7.561 9.233 9.962 11.290 12.305 9.098 8.382 976 977 978 979 980 981

。	0.85	7.1	6.24	6.1	4.2	5.7	6.0	4.4	2.9	i,	1.3	•	9.39	ö	9.53	9.41	8.11	8.23	6.68	4.62	5.05	4.34	7.00	3.18	2.93	2.65	0.19	•	•	9.	9.	7	æ	4.35	2.30	9.77	0.70
S	5	5		5	0 5	0	0 5	0 5	0	0	5	5	4	5	4	4	4	4	4	4	4	4	4	4	4	4	0	м П	<u>е</u>	е	ω ω	3	м	м	m	7	m
1.0	1.0	1.00	1.00	1.0	1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0	٥.	٥.	•	°.	1.00	1.00	1.00	1.00	1.00	1.00
•	7.983	•	•	-0.219	-0.216	•	0.559	0.436	•	•	•	•	•	•	4.774	•	•	4.691	5.719	6.998	7.442	8.823	9.062	9.743	8.093	7.827	ω.	•	11.720			13.278	10.273	. 22	Ø	1.3	9.931
-4.738	. 75	11	•	-1.239	.70	.68	-0.084	.0	•	•	3.403	•	•	•	•	•	1.482	•	•	•	•	•	2.709	•	•	•	•	•	•	•		1.573	-0.390	•	9	-1.586	•
•	3.844	•		•	8.726	•	•	11.773	•	13.712	14.026	13.924	•	•	16.487	16.783	•	•	•	•	•	•	11.716	•	•	•	ο.	•	13.935	•	٥.	9	•		16.542	.59	.11
SER A 501	SER A 501	Ø	Ø	SER A 508		Ø	ď		Ø		Ø	4	ø	Ø	Ø			ø	Ø	Ą	Ø	ø	ASP A 511	ø	ď	¥	¥	ø	ø	ø	Ø	ø	ø	Ø	SER A 513	ď	
U	0	z	J					-																													9
983	984	985	986	987	988	989	990	991	992	993	994	995	966	997	966	666	1000	1001	1002	1003	1004	1005	1006	1001	1008	1009	1010	101	1012	1013	1014	1015	1016	1017	1018	1019	1020
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

30.48	5.2	0.	9.	æ	13.56	7.78	7.61	•	5.65	•	19.98	21.97	16.87	13.02	13.72	13.79	•	•	11.58	•	•	6.20	6.53	6.10	•	0.	щ.	٥.	•		3	₹.	3.37	3.57	4.13	3.53
1.00	00.	00.	1.00	1.00	1.00	1.00	°	0.	٠.	•	•	1.00	1.00	1.00	1.00	1.00	1.00	•	1.00	•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	٥.	٥.		•		1.00	1.00	1.00	1.00
9.250	. 6	3.46	4	.93	15.659	15.466	. •	•	17.219	•	13.883	14.198	13.071	•	11.613	11.161	•	12.185	12.490	11.514	10.997	4.	9.797	ů.	8.286	.35	.33	r.	.74	.76	9.569	00.	.70	7	. 26	15.545
-2.859	. 03	•	-0.177	-0.914	-0.038	-0.135	.67	.63	•	0.919	•	2.200	1.189	•	•	.79	•	.49	4.693	3.097	4.084	3.393	4.310	•	•	5.565	•	•	•	œ	Ø	.16	.35	.74	5.585	
17.245	. u	œ.	19.332	•	•	22.774	23.601	3.07	•	20.893	•	•	20.917	H	•	ö	1.5	.44	20.673	19.356			•	16.196	•	14.229	•	•	•	12.376	13.015	o.	•	17.666	7.1	6.85
SER A 513	. A	A 5	ø	ø			ø	4	Ą	ď	Ø	ø	ø		4	ø	ø	ø	Ø	Ø	Ø	ø	Ø	ø	ď	TRP A 516	ø	TRP A 516			ø	ø	Æ	Ø	æ	
8 .		×	ਈ	8	ပ္ပ	CDI	CE1	Z	CE2	CD2	ບ	0	Z	ජ	ප	ဗ္ဗ	8	บ	0	×	ð	ච	ဗ္ဗ	6	NET	CE2	CDS	CE3	CZ3	CH2	CZ2	ပ	0	z	ව	පු
1021	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	05	05	1056	1057	1058
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

14.339 14.539 15.627 15.627 16.977 14.269 10.162 9.094 9.100 11.701 11.7 14.585 15.015 16.736 16.854 18.178 9.498 9.727 10.018 10.037 11.240 9.344 9.344 10.025 8.949 9.580 11.115 10.946 10.198 9.289 11.711 10.946 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.711 11.7111 11.711 7.275 6.677 5.522 5.126 5.833 8.434 9.526 8.196 8.196 8.593 15.951 14.834 18.075 18.212 17.848 19.497
20.514
21.899
22.196
22.196
23.684
21.682
20.392
20.366
20.466
21.098
22.350
20.268
19.046
11.949
11.333 16.164 17.443 17.522 17.357 16.071 15.983 14.901 18.823 **4444444444444444444444444444**

6 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 8 7 14.324 13.3974 113.3974 115.733 116.287 116.287 117.716 117.71 14.599 15.287 16.571 12.771 13.624 11.539 11.082 10.220 9.986 9.986 9.957 10.191 10.334 11.724 11.734 11.734 11.734 12.949 8.202 8.528 9.510 9.5 20.752 21.989 22.890 22.890 22.010 22.511 21.428 21.428 21.532 20.849 22.971 23.614 23.614 23.485 22.971 23.485 27.149 27.457 27.359 25.885 25.280 26.506 26.508 26.5316 5522 5522 5522 5522 5522 5522 5523 ASSN A AS 1099 1099 11099 11100 11100 11100 11100 11100 11100 11110 1110 110

4.24	4.U.		6	•	•	•	6.22	4.38	•	7.25	•	•	•	•	•	7.19	•	6.25	6.43	6.94	•	•	•	•	•	19.36	•	•	•		•	•	•	5	5	•
1.00	00.7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00			1.00	1.00	•	1.00	1.00	1.00	1.00	1.00					1.00		1.00
23.098	7.0	2.49	2.35	23.205	.45	3.15	4.2	2.13	2.22	0.80	0.71	0.31	20.164	0.44	0.78	0.91	3.12	1.08	.81	3.56	3.01	4.09	.98	6.08	.28	•	5.40	31	5.06	84	5.47	6.83	7.07	26.434	7.16	6.94
6.292	. Y.	99	0.77	10.941	1.61	.37	.28	•	.68	5.130	.25	. 78	3.975	.57	•	.86	•	4.228	4.066	3.007	•	•	•	1.711	2.858	2.977	3.915	3.849	ų.	4.	'n	8	.32	6.736	.89	. 23
28:240	4 4	. 2	7	99.	53	18	73	73	65	35	22.132	92	19.799						25.289			m	4	C	Н	31.044	0	Н	σ		~	~	52	27.919	59	7.98
PHE A 526	4 4		ASP A 527	Ø	ø	ø	Ø	4	¥	Ø	Ø	Ø	¥	Ø	ø	Ø	Ą	Þ	ø	Ø	Ø	Ø	Ø	Ø	¥	ø	Ø	Ą	ø	ď	¥	ø	4	LYS A 530	ø	
0;	z (90										CE1 F) 기
1135	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172
ATOM	E TOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

	7.04		ທຸ	4.	0.	6.11	æ	2	è	5.58	5.19	4.47	4.56	2.00				6.39	6.52		H	•	•	é.	•	•	5.64	•	4.45	5.10	5.13	•	5.26	-	4.00		7
•	•	•	•	•	•	1.00	•	•	1.00	•	•	•	•	1.00	•	1.00	1.00	1.00	1.00	0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				1.00		1.00	
.97	7.63	.84	6.83	7.50	.84	6.38	.78	7.51	28.299	6.70	6.54	5.45	4.08	22.877	5.38	7	æ	•	•	•	•		•	•	•	•	30.998	•	•		•	'n		29.882	8.3	27.794	7.6
3	.53	.45	4.272	.05	.97	.22	6.035	2.598	2.236	1.762	0.353	-0.250	0.411	-0.133	-1.674	-0.511	-1.055	-0.609	.49				-2.996				0.211		2.187		0.394		Ŋ	٠	9	•	
œ	4	•	•	•	•	20.343	•	•	•		.42	.23		.69													22.497				133	19.329	82	49	4	02	41
LXS A 530	LYS A	LYS. A	VAL A	VAL A	VAL A	VAL A	VAL A	VAL A	VAL A	ILE A	ILE A	ILE A	ILE A	ILE A	ILE A	ILE A	ILE A	GLU A	GLU A	GLU A	GLU A	GLU A	GLU A	GLU A	GLU A	GLU A	SER A	SER A	SER A	SER A	SER A	SER A	PHE A	PHE A	PHE A	PHE A	PHE A
NZ	ບ	0																																			
1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

4.58
4.58
4.63
4.63
4.63
6.81
6.81
8.38
11.82
6.92
7.20
7.20
7.82
6.92
7.82
6.92
11.82
6.92
7.82
6.92
7.82
6.93
8.88
8.69
8.98
6.92
11.46 1.00 28.161 27.637 30.160 31.638 31.910 32.571 34.010 34.638 35.157 36.319 34.540 35.570 34.370 33.873 34.626 34.626 32.870 33.873 -4.347 -4.414 -4.726 -5.757 -3.836 -2.954 -2.945 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -2.9665 -3.015 -1.477 15.157
14.532
15.156
16.430
18.138
17.052
19.077
18.874
20.025
20.014
21.367
19.245
19.245
19.2582
22.582
22.582
22.582
24.072
25.029
17.853 16.250 16.297 14.926 13.957 14.879 13.655 13.550 12.180 ROUGEL SOUGE FRONGE GOOD SET OF SET O

31.090 32.421 32.607 33.346 29.706 28.823 29.472 28.095 27.973 28.053 28.053 28.053 28.053 28.053 28.053 28.053 28.053 24.831 23.781 24.853 25.939 25.938 25.690 25.472 25.540 25.014 25.167 24.413 23.074 -7.576 -5.782 -7.378 -7.663 -7.232 -7.373 -4.622 -8.848 -9.615 -9.247 -5.179 -4.668 -10.196 -10.605 -11.004 -10.139 -12.283 -12.785 -10.978 -14.329 -15.067 -17.391 9.033 8.315 7.510 8.603 10.911 12.463 12.631 12.469 10.487 12.717 13.338 15.657 15.645 16.929 15.492 14.089 14.095 444444444444444444444444 ROUNDER ROUGE BROUGE BR 1251 1253 1253 1254 1255 1256 1257 1267 1268 1267 1268 1267 1269 1270 1270 1271 1272 1273 1274 1275 1278 1279 1280 1281 1282

X U U U X O U X U U U X O X O U U U X O O U O X O U O X O U U U X O O X O U U U X

13.31 19.54 29.26 21.36 10.12 14.13 20.90 24.85 25.80 7.39 7.65 5.99 8.46 1.00 20.921 22.646 22.725 23.524 23.287 21.439 21.117 23.314 22.867 24.313 24.923 26.159 27.190 28.521 26.827 23.875 23.585 23.224 22.157 21.580 -7.478 -5.997 -5.454 -5.068 -7.727 -6.831 -8.475 -8.235 -9.080 -8.632 -9.481 -8.952 -8.603 -7.911 -9.683 -11.417 -12.366 -13.592 -13.189 -14.338 -9.024 -8.759 -8.402 15.455 14.246 13.860 13.715 13.72 14.307 15.772 16.548 15.154 15.330 13.948 13.855 15.547 16.706 17.354 17.154 17.154 17.154 19.476 19.203 20.060 19.527 20.060 20.646 20.837 21.254 **444444444444444444444444444444** AGG BROCKER CG GG GG GG BROCKER BROCKE 1298 1299 1300 1303 1304 1305 1306 1308 1308 1310 1310 1319 1295 1297 1301 1302 1313 1314 1315 1316 1318

22.485 21.991 22.289 22.289 22.297 22.907 22.922 23.196 24.325 22.287 20.720 19.888 118.529 17.595 16.069 14.969 15.999 13.901 18.076 17.357 18.496 18.243 -5.856 -4.711 -4.379 -3.698 -3.255 -2.473 -4.937 -6.167 -6.493 -7.847 -8.358 -9.858 -10.217 -10.655 -6.418 -5.935 -6.750 -7.403 -7.583 -7.818 -7.851 -8.435 -5.020 -4.381 -7.319 -5.292 18.083 17.394 17.121 19.919 20.773 20.395 19.698 20.395 19.851 18.194 18.512 22.693 22.693 22.693 22.318 23.714 23.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 25.316 27 25.734 27.060 27.664 1325 1326 1327 1328 1329 1330 1331 1332 1334 1335 1336 1337 1338 1339 1340 1341 1343 1344 1345 1346 1346 1348 1349 1350 1350 1352 1353 1354 1355 1356 1357 1358 1359

71.7	6.68	0	7	o.	2	N.	4.5	00		8.65		•	•	2.00	•	•									w		~	n,	æ		9	ഗ	'n	φ.	0	Н	٠.
C	1.00	٥.	٥.	0	0	0	•	0	0	1.00	0		0	1.00	0	0	0.	1.00	0	0	0	0	00	00	00	00	00			1.00	0.	0	0	٥.	0.	0	-
18.435	18	0.90	22.321	3.28	4.68	9.	5.60	0.27	31	-	H	8	õ		2	9	.33	.83	41	14	91	ေရ	41	4.25	3.04	2.76	Ò	9.	6.21	15.400	4	7.77	8.95	8.5	19.797		8.0
-1.706		.55		42	.88	H	.03	-2.999	.32	•	സ	-6.229	.08	.41	-8.929	.9	6.80	.98	-3.850	.48	. 78	7	.08	.47	-3.879	-3.796	.27	.22	-1.417	.83	.89	0.438	•	.16	.51	2.324	.27
5.7	5.08	6.26	6.21	7.14	6.91	5.7	5.93	7.57	3.59	7.56	3.73	3.48	3.60		3.52	.02	.09	.06	.23	. 04	.31	.06	.83	.42	.91	.63	.,	3.25	8.79	29.447	28.480	8.97	13	6.7	5.86	-	0.46
553	1 554	554	554	554	554	554	554	554	554	555	555	555	555	555	555	555	555	555	555	556	556	556	556	556	556	556	256	556	556	556	557	557	557	557	557	557	557
~	~	~	~	~	щ	P.	GLU A	GLU A	GLU A	Æ,	ď	Æ,	Æ,	HIS A	K	Ø	Z,	ď	HIS A	Ø	Ø	Ø	Ø	¢	A	Ø		Ø	Ø		Ø	Ø	Ø	Ø	Ø	Ø	ILE A :
0	×	ð	8	ဗ္ဗ	8	OE1	OE2	ບ	0	z	ජ	9	ဗ္ဗ	ND1	CE1	NE2	97													0			9	GG1	6	CG7	 D
m	છ	36	m	ຕ	36	1369	37	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	39	9	39	39	9	1399	Ö
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

21.619 22.900 22.900 118.054 118.054 117.040 117.250 117.250 117.250 117.260 1 1.072 -1.072 -1.673 -1.1.673 -2.949 -2.11284 -2.11284 -3.949 -32.137 31.501 31.501 33.009 34.222 32.417 33.009 30.720 30.720 30.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.722 33.642 33.7222 33.7222 33.7 26.528 **AAAAAAAAAAAAAAAAAAAAAAAAA** 1410

3.35 2.70 16.638 17.793 18.231 17.292 17.524 18.648 19.378 14.016 13.306 13.660 12.484 11.965 11.192 10.050 112.858 14.034 11.849 12.036 10.720 9.913 12.711 13.356 12.592 12.592 12.592 12.592 12.592 12.592 12.592 12.592 12.592 12.592 12.592 12.593 12 6.356 8.550 8.532 8.918 9.272 10.573 11.162 11.553 12.235 10.768 11.762 5.825 6.068 35.073 36.036 36.208 35.434 35.881 36.974 37.222 38.273 39.083 35.925 33.777 33.777 32.264 30.004 32.200 34.290 34.350 35.281 35.281 35.653 36.397 36.397 37.786 34.969 31.929 **4444444444444444** 1448

5.48	ന	4.	гi	7	٥.	υ.	æ	٥.	κi	æ	<u>ښ</u>	9	Η.	ᅻ.	ri.	ᅻ.	œ	4	5.23		0	œ	IJ	ü	۰.	ᅼ	9.0	ų.	2	ο	9.5	2.5	9	1.6	۰.	ų.
1.00		۰.	1.00	°	0.	٥.	0	1.00	1.00	1.00	•	•	1.00	•	•	•	1.00	•	0	0.	0	°.	1.00	۰.	۰.	٥.	٥.	0.	°	0.	0	0.	Ö	0	0	1.00
17.982	.96	.86	٠.	96.	.03	.92	.74	.38	.55	90.	.39	.01	.03	.33	89	.81	.73	.52	.03	.16	30	.57	.67	.52	.29	.41	.76	78	.70	63	.59	.22	10	Η.	89	4.
8.341	.22	.42	.08	Ξ.	.02	.14	.30		99	.18	.83	.64	96	.04	. 78	.76	0.31	88	1.13	.92	9	.75	7.573	.55	.71	1.97	.19	2.74	3.89	4.90	9	6.78	6.3	3.32	3.7	2.32
32.554	4	7	2	끔	7.0	٠. و	5,	4.	3.	5.	4	5.0	3.5	6.4	6	7.3	ω. ω.	2.2	E.	4.	e.	2.2	2.2	7.3	7.3		7.7	7.4	67	6.5	6.74	5.73	37.892	.83	8.70	7.02
SER A 567 SER A 567	Ø	Ø	Ø	Ø	PRO A 568	Ø	A	Ø	Ø	Ø	4	Ø	LEU A 569	ø	Ø	ø	ø	Ø	ø	Ø	¥	æ	PHE A 570	Ø	K	ø	Ø	Æ	Ø	ď	Ø		Ø	Ø	ø	
ဗီ ပ	0	z	ర	9	ဗ္ဗ	8	ပ	0	z	ర్	9	ង	9	CD5	บ	0	z	ð	9	g	9	Œ	27	CE2	9	บ	0	z				001	OD2	บ	0	z
1477	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

16.97 15.24 15.89 14.11 9.92 20.35 17.30 18.15 22.46 24.95 25.51 31.74 36.07 12.90 1.00 24.850 23.745 23.745 23.745 22.767 21.393 22.767 21.393 22.25 23.373 22.296 23.373 22.296 22.296 22.296 22.296 23.373 22.296 22.296 23.373 22.296 23.373 23.373 23.373 23.373 24.685 25.224 25.224 25.224 25.224 26.332 28.310 38.310 38. 111.657 10.621 10.127 11.348 9.247 10.963 10.761 10.567 9.090 7.746 6.981 8.825 11.088 12.192 13.190 14.242 15.079 16.241 17.213 18.197 13.946 14.149 14.743 14.789 15.802 15.802 13.876 14.356 12.579 11.655 37.111 36.028 35.028 34.536 38.461 38.945 39.068 40.645 39.068 41.435 42.037 42.037 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 44.287 47.302 39.394 40.876 39.394 41.569 41.569 1525 1526 1527

 ATOM
 1553
 O
 SER A 577
 44.506
 11.186
 28.946
 1.00
 29.93

 ATOM
 1554
 N
 LYS A 577
 44.210
 11.666
 26.785
 1.00
 21.31

 ATOM
 1555
 CB
 LYS A 577
 46.750
 11.656
 24.390
 1.00
 21.34

 ATOM
 1556
 CB
 LYS A 577
 46.759
 10.514
 24.390
 1.00
 21.34

 ATOM
 1556
 CB
 LYS A 577
 46.759
 10.514
 24.390
 1.00
 23.44

 ATOM
 1560
 CB
 LYS A 577
 46.252
 10.97
 24.391
 1.00
 23.44

 ATOM
 1564
 CA
 LYS A 577
 46.252
 12.566
 27.028
 1.00
 23.44

 ATOM
 1564
 CA
 LYS A 577
 46.252
 12.566
 27.028
 1.00
 23.44

 ATOM
 1564
 CA
 ASP A 578
 45.279
 16.256
 27.028
 1.00
 23.44

0 4	• •	N	7.62	7.75	7.31	4.	ų.	12.14	ų.	4.	5.67	ų.	ů.		8.06	٥.		'n	۲.	٥.	٠.	٥.	٥.	2.00	٥.	۰.	۰.	٥.	ų.	0.	ü	ü	0.	۰.	0	4.
	1.00	٠.	•	•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	٥.	1.00	1.00	1.00	0	1.00	•	٥.	1.00	٥.	0	0	1.00	0.	0.	0.	0	•	0
28.058	5.74	7.4	8.63	27.846	9.0	30.458	Ξ.	32.774	.27	Η.	.27	0.06	0.29	0.60	ď	.17	.64	8	LO.	.36	.55	110	.42	22.035	.32	.99	ų.	26.111	.47	26.556	4		25.662	8	23.744	ī.
6.981	.40	7.685	4.653	3.822	4.459	3.191	.31	3.311	٥.	•	2.359	•	•	•	0.646	•	0.812	•	•	•	•	•	•	2.111	•	•	•	0.619		1.031	0.270	•	1.741	-		.09
36.846	7.71	9.12	6	6.80	6.33	•	Ę.	36.099	•	•	•	•	•	•	•	•	•	•		•	•	•	•	32.792	•	•	•	•		Ġ	37.452	.73	.41	.28	40.882	0.63
LEU B 647	m	LEU B 647	LEU B 647	LEU B 647	SER B 648	e E	B 64	B	B 64	B 64	LEU B 649	B 64	Ф	B 64	B 65	B 65	B 65	B 65	ф	ф	ф	Ø	ф	ф	æ	æ	Ø	ф	B 65		LYR B 651					
8 8	8 8	CD2	ບ	0	z	ð	9	g												-									•			-		6	CE1	CZ
1594	1596	ហ	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	3	1631
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

 ATOM
 1632
 OH
 TYR
 B 651
 41.249
 3.679
 22.433
 1.00
 3.37

 ATOM
 1633
 CH
 TYR
 B 651
 39.480
 3.780
 25.433
 1.00
 3.37

 ATOM
 1633
 C
 TYR
 B 651
 39.147
 3.047
 25.488
 1.00
 2.37

 ATOM
 1635
 C
 TYR
 B 651
 37.355
 -1.135
 26.856
 1.00
 2.37

 ATOM
 1635
 C
 TYR
 B 652
 36.735
 -1.135
 26.856
 1.00
 2.35

 ATOM
 1643
 C
 TYR
 B 652
 36.735
 -2.180
 26.186
 1.00
 9.45

 ATOM
 1644
 C
 IXS
 B 652
 36.103
 -3.27
 1.124
 1.00
 9.45

 ATOM
 1644
 C
 IXS
 B 652
 34.713
 -4.916
 37.35
 1.00
 9.45

 ATOM
 1644
 C
 IXS
 B 652</

14.72 19.73 23.51 26.59 19.55 5.96 5.87 6.37 29.568 28.707 30.851 24.362 24.362 22.293 21.632 20.640 20.156 21.465 21.465 20.556 20.884 21.981 22.595 24.087 25.720 26.641 24.491 -6.470 -8.824 -8.820 -9.905 -7.943 -8.358 -8.238 -9.895 -10.215 -10.816 -11.188 -11.056 -9.999 -8.056 -7.226 -7.045 -9.422 -9.615 -10.806 -10.769 -9.400 -10.196 34.955 33.527 33.278 32.174 31.217 36.008 36.360 34.794 34.122 32.951 32.951 32.909 36.009 36.009 36.009 36.009 36.009 36.009 1672 1674 1674 1675 1676 1677 1678 1679 1680 1682 1688 1688 1688 1686 1689 1690 1690 1690 1690 1690 1690 1690 1700

SUBSTITUTE SHEET (RULE 26)

ZOUZOUUUUZOUUUZOUZUZUOZUUUUUZOUZOUZO

																																				•
8.10		8.99	æ	٣.	9	æ	4.	ų.		4.	ທຸ	ġ	3.76		•	3.87	2.00	12.78	13.90	13.10	13.72	13.06	14.40	9.20	15.62	Ġ	9	'n	ų.	15.75	0	ь.	4	3	15.75	9
1.00	. 0			٠	1.00	0.	•	•	•	1.00	•	4	1.00	•		1.00	1.00	1.00	1.00	1.00	•	•	°	0.	•	1.00	٥.	٥.	1.00	1.00	1.00	1.00	1.00	-		1.00
22.229	.54	•	.60	.11	.54	.55	ö	•	•	•	•	•	17.178	•	•	•	16.330	•	17.273	•	•	ď	8	•	•	18.904	•	٥.	9.0	22.090	2.6	2.3	23.284	19.840	7	19.225
-12.090		.33	.14	.20	.68	.64	3.67	.83	99.	-12.968	.79	.30	-10.027	.76	.62	.65	-8.468	-13.448	-14.338	.87	•	.30	-12.110	.32	.85	-14.658		-14.980	-16.268	-16.291	7.72	8.27	8.3	-17.296	-18.403	-16.930
39.053	1	36.976	S	S	3	2	7	7	7	7	9	2	~	3.47	2.97	33.784	ä	œ.	œ	•	ö	41.803	•	•	•	41.198	.90	40.656	.82	40.287	0.05	.98	1.05	. 14	40.592	9.03
B 659 B 659	B 660	B 660	В 660	В 660	В 660	B 660	B 660	в 660	B 661	В 661	B 661	B 661	В 661	B 661	8 661	B 661	B 661	8 661	8 661	8 662	3 662	3 662	3 662	3 662	3 662	3 662	3 662	3 663	3 663	3 663	3 663	3 663	8 663	3 663	9 663	3 664
TYR	FEG	LEU	LEU	LEU	LEU	LEG	LEGI	LEGI	ARG]	ARG]	ARG]	ARG 1	ARG]	ARG 1	ARG 1	ARG 1	ARG 1	ARG 1	ARG 1	LEGI	LEU 1	LEU 1	LEU	LEU	LEU	LEU 1	LEGI I	ASN I	ASN I	ASN 1	ASN 1	ASN 1	ASN 1	ASN 1	ASN I	THR 1
ပင	'	đ	ප	ဗ္ဗ	9	CD2	บ																						ð	ප	ဥ	001	ND2	ບ	0	z
1708	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

15.40 16.10 19.38 19.52 20.43 19.42 19.57 18.97 18.84 14.11 15.62 18.90 18.38 19.13 17.77 18.28 12.51 16.34 19.46 18.41 1.00 15.599 14.843 16.702 14.515 13.840 13.322 12.715 17.036 18.192 17.678 17.430 17.260 18.009 19.536 20.048 16.472 18.478 21.526 21.937 22.277 17.291 17.387 15.012 14.376 16.166 -19.808 -18.201 -21.576 -21.680 -23.085 -17.463 -16.171 -15.473 -14.082 -16.273-18.142-18.978 -17.769 -17.649 -18.381-16.057 -22.126 -24.235 -20.191 -23.151 -23.691-21.89139.095 40.453 39.504 39.932 38.978 41.816 42.452 44.435 40.586 42.257 40.700 42.290 45.104 43.614 41.170 44.601 42.463 42.273 40.892 40.404 42.019 41.558 40.005 668 668 667 899 THR B
THR B
THR B
THR B
THR B
LEU B
LEU B
LEU B
LEU B
CYS B
CYS B
CYS B
CYS B
CYS B
GLU B ARG
ARG
ARG
ARG
ARG
ARG 1755 1756 1757 1758 1760 1761 1762 1763 1764 1765 1766 1767 1769 1770 1770 1774 1775 1776 1778 1779 1780 1777

Z U U U Z O U O O O U U Z O U O U O Z O U U U O Z O U U U Z O U U U Z O U U U Z O U U U Z O U U U Z O U U Z O U

18.63 20.70 18.65 15.39 17.46 18.50 17.36 15.48 24.66 18.31 17.97 18.75 14.62 19.33 21.39 23.09 23.79 24.29 19.41 22.45 25.50 25.94 27.18 31.37 34.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 12.850 14.568 17.448 15.382 13.477 16.552 17.632 17.484 16.227 17.765 18.858 16.644 16.637 17.439 5.007 14.267 12.135 12.247 18.006 11.029 10.606 14.819 15.762 15.221 12.787 17.431 16.514 -21.413 -19.999 -21.649-21.320 -23.529-20.771-18.385 -22.131 -21.450 -20.070 -19.118 -17.828 -19.778-22.401 -22.162 -24.470 -25.575 -25.084 -25.749 -26.222 -25.474-25.180 -25.898-26.842 -26.667 -25.634-27.605 -24.868 -25.379-23.548 46.559 47.699 47.828 43.433 42.191 47.206 47.340 46.646 46.704 44.105 43.167 45.803 48.081 48.467 50.152 51.058 48.413 48.698 48.121 50.867 45.677 45.892 15.665 48.806 50.715 49.983 50.420 50.113 51.097 699 699 699 699 699 699 670 670 670 670 670 670 670 671 671 671 672 672 672 672 672 673 Ø ф ф М ф Д Д Д GLU 1789 1790 1799 1791 1792 1793 1794 1795 1796 1798 1800 1797 1801 1802 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 ATOM ATOM ATOM ATOM ATOM ATOM TOM ATOM

18.47 19.76 18.67 18.78 18.20 16.44 15.18 12.22 20.186 20.560 19.085 21.901 22.414 21.088 22.121 20.250 17.965 17.348 15.866 17.566 20.274 21.623 20.547 21.773 22.326 21.548 19.469 19.703 20.473 20.830 -23.021 -20.283 -16.803 -17.104 -20.630 -19.848 -19.319-21.410 -20.396 -19.194 -19.156 -20.376-16.886 -18.030 -17.715 -17.973 -15.898 -14.706 -16.455 -15.636 -16.751 49.579 49.540 53.517 54.274 54.239 53.642 54.824 51.657 51.660 51.382 51.143 51.006 52.243 52.008 51.998 53.405 48.933 49.369 51.420 50.691 50.038 1836 1837 1838 1839 1840 1841 1828 1829 1830 1832 1833 1834 1835 1844 1844 1845 1846 1847 1848 1849 1850 1851 1827 1831 1852 1853

ATOM	1860 1861	ූ වී	HIS	ф ф	678 678	48.841	7.	3 22.788	1.00	
ATOM	86	පි	HIS	М	678	9.77	-14.27	. 0	0.1	14.
ATOM	œ	ပ္ပ		m	~	9.61	3.42	26.25	1.0	16.7
ATOM	86	MD		щ		.61	2.46	6.3	1.0	18.
ATOM	v	CEI		М	-	9	1.90	27.58	4	17.3
ATOM	vo	NE2		ф		9.7	2.43	28.22	1.0	16.0
ATOM	1867	CDS		щ		ų.	-13.39	7.41		15.5
ATOM	1868	ບ		ф	678	0.01		23.18		13.4
ATOM	1869	0		ф	678	9.8		3.57	1.0	13.
ATOM	1870	×			619	0.90	-12.92	22.24	1.0	13.
ATOM	1871	ව්			619	S	1.90	21.6	1.0	13.87
ATOM	1872	8			619	2.94	2.54	20.88	i.	14.
ATOM	1873	CG1		ф	619	3.84	.34	21.82	H	15.
ATOM	1874	9		ф	619	4.95	-14.17	5 21.105		11
ATOM	1875	CG2		ф	619	3.79	.48	20.21	H	16.
ATOM	1876	ບ		ф	619	6	.02	20.66	ij	13.
ATOM	1877	0		Д	619	1.01	.77	20.65	H	12.
Ž O	1878	z		m	680	0.07	-11.675	19.86	H	12.
ATOM	1879	ජ	ILE		680	.16	.98	18.95	넊	11.
S.	1880	9			089	48.355	90.	18.11		•
Ž Q	1881	ខ្ល		m	680		-12.924	17.34	1.0	9.
Ę O	1882	CD 1			089	5.	-13.950	16.46		9
ğ,	1883	CG2		ф	089	47.473	i	17.07	1.00	12.
Σ	1884	บ			680	48.199	-10.085	19.72	1.00	11.
ğ	1885	0			089	47.921	•	19.31	1.00	10.1
ATOM	1886	z			681	ö	ċ	20.84	1.00	۲
ATOM	1887	g.			681	46.736	9.8	21.	•	9.9
ATOM	1888	ප			681	۲.	.59	22.78	1.00	10.30
ATOM	88	ပ္ပ			681	.51	-9.703	23.78	1.00	10.20
ATOM	83	6			581	. 94	•		1.00	8.14
ATOM	83	NET		щ	581		ū	7	1.00	11.57
ATOM	σ	CE2			581	44.174	-8.153	4.7	1.00	0
ATOM		9		Д	581	ų.	8	เร	1.00	•
ATOM	Ò	CE3		m	581	43.548	. 59	4.		C
ATOM	1895	CZ3		m	581	4	-7.671	22.623	1.00	•
ATOM	Ō	CHI	TRP	m	581	42.385	.98	.81		9.93
ATOM	1897	CZ 2	TRP	<u> </u>	581	. 18	-	4.90		ı.

60	33	57	68	ဝ္ပ	9	80	05	57	09	78	12	22	25	7	82	9	ī,	0	4	4	4	ð.	ភ	-	ဖွ	2	Ŋ	덛	ίū	m				rύ		وم و
9.6	. o		•	•	9.2	•	•	•	•	•	6.5	4.6	8.2	•	4.8	•	6.3	•	•	5. B.	9.0	10.7	10.9	10.4		7.5	6.7	.8	7.6	10.4	16.0	3	•	6.1	•	
1.00	1.00	1.00	1.00	1.00	1.00	•	•		1.00	?	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
22.136	. 4 . 4	2.89	.31	.49		. 85	.19	6	4.	18.233	Τ.	•	17.107						•	18.371	•	•	•	•	20.010	•	•	•	•	25.038	5.29	5.6	5.09	22.317	2.6	1.8
-8.596	8.75	-7.629	-8.117	•	•	-6.547	-5.428	-6.900	-5.949	-6.672	-5.923	-6.590	-4.513	-5.331	-4.143	-6.158	-5.766	-6.971	-6.775	-5.561	-5.363	-6.426	-7.674	-7.845	•	-3.634	-4.856	•	-4.668	-3.884	-2.667	-1.596	•	-2.708	9	•
47.427	.71	9.52	50.887	.76		49.664	.52	Н	。	50.485	H	0	•	8.70	48.604	.65	6	•	•	43.516	•	•	•	•	45.885	•	. 18	.78	45.903	.46	•	•	7.	46.597	•	7.
681	682	682	682	682	682	682	682	683	683	683	683	683	683	683	683	684	684	684	684	684	684	684	684	684	684	684	685	685	685	685	.685	685	685	685	685	989
TRP B	HE B	THR B	THR B	THR B	THR B	THR B	THR B	LEU B	PHE B	PHE B	PHE B	PHE B	四田 3	PHE B	PHE B	GLN B	GLN B	GLN B	GLN B	GLN B	GLN B	GLN B	GLN B	GLN B	HIS B											
υ c) Z	ð	ප	061	CG2																							-		_		-	-	υ	0	z
1898	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

12.07 114.84 113.76 113.76 113.76 113.76 10.02 10.02 10.02 10.02 10.02 10.03 1 11.42 1.00 11.000 1.000 1.000 1.000 1.000 19.017 19.673 20.069 20.687 19.723 20.415 18.791 21.036 18.692 17.502 17.143 16.252 19.119 21.812 22.883 24.062 25.548 22.475 0.473 -1.302 -0.557 -1.518 -2.196 -0.754 0.216 0.139 -0.907 -1.890 -1.098 -1.098 1.084 48.443 47.531 47.058 46.784 48.012 46.448 45.871 44.898 44.898 43.666 42.762 42.153 41.142 43.227 43.227 45.030 45.360 46.488 47.388 47.428 48.116 1947 1948 1941 1942 1943 1944 1945 1946 1949 1950 1951 1953 1953 1954 1955 1956 1957 1958 1960 1960 1963 1964 1965 1966 1967 1968 1970 1971 1972 1973

																												٠								
1.00 13.56	4 ~	1.00 11.49	1.00 12.32	1.00 13.24	1.00 16.51	1.00 27.49	1.00 28.02	1.00 27.57	11.	o,	12.	1.00 11.54	•	12	1.00 13.10	1.00 12.96	15	18	12	1.00 10.45	금	12	H	1.00 10.21	.00 10	1.00 12.97	.00 16.	.00 22.	1.00 15.98	1.00 9.33	0 10.	00 7.	00 7.	8 00	1.00 11.49	00 11.
23.395	. 4	18.897	17.493	•	17.042	16.964	16.071	17.795	17.054	15.982	17.925	17.749	18.968	19.276	18.465	18.712	19.800	20.038	20.641	20.368	16.481	16.015	15.881	14.644	14.262	15.116	15.027	16.037	13.961	13.532	12.529	13.729	12.747	13.250	12.255	11.273
1.806		•	•	2.895	•	•	4.649	3.845	3.941	3.491	4.520	4.662	5.296	6.634	7.724	8.952	9.139	10.416	8.076	6.833	5.375	5.147	6.181	6.843	7.880	9.126	9.803	10.421	9.751	5.846	6.125	4.664	•	•	1.851	•
50.129		47.670	47.629	48.418	49.824	50.774	50.583	51.722	46.173	45.826	45.346	43.892	43.246	43.781	43.456	43.952	44.790	45.273	45.130	44.643	43.456	42.342	44.334	43.993	45.024	44.958	43.629	43.221	42.974	43.839	43.184	44.370	44.294	45.194	•	46.625
ND2 ASN B 690		GLU B	CIO B	GLU B	GIM B	GLU B	GLU B	GIU B	GLU B	GLU B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	GLU B	GLU B	GLU B	GLU B	GLU B	GLU B	GLU B	GLU B	GLU B	LEU B	LEU B	LEU B 6	CG LEU B 694	LEU B 6
1974																																			2010	
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

SUBSTITUTE SHEET (RULE 26)

12.03	4.81	•	6.27	•	•	•	•		5.11	5.14	'n	6.23	6.47	8.31	13.20	9.34	3.82	9.75	5.88	6.24	•	•	•	5.53	Ġ	•	٠	•	•	3.61	•	7.08	。	•	9.60	8.71
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Н	Н	Н	Н	-	7	Н	1.00	1.00	1.00	1.00	1.00	1.00	1.00
13.091	9	e.	13.639	15.082	15.836	•	15,495	12.933	12.616	12.705	.15	11.947	•	11.848	•	13.185	•	•	.86	83	8	9.689	8:563	8.830	9.309	8.482	9.232	8.060	10.173	9.890	.86	•	•	8.809	8.137	6.818
1.293	49	3.163	•	2.596	1.332	-0.166	0.077	•	3.212	4.874	5.925	7.200	8.469	9.744	10.900	11.587	11.314	12.606	5.569	5.442	5.417	5.019	6.024	7.416	7.547	8.461	3.586	3.257	•	•	1.335	.67	.30	2.334	.26	•
47.261	2.53	42.079	40.705	40.166	40.634	39.938	38.323	39.780	38.662	40.219	39.358	40.136	39.302	40.166	39.304	39.133	39.826	38.279	38.683	39.321	37.374	36.620	36.851		35.077			36.893	7.	•	39.393	39.962	41.414	42.23	42.863	42.877
02 LEU B 694 1.EU B 694	о Д	MET B 6	A MET B 695	B MET B 695	3 MET B 695	O MET B 695	MET B 6	MET B		ARG B	ARG B 696	ASP B	ASP B	ASP B	ASP B	ASP B	ASP B	ASP B	ASP B	ARG B	ARG B	ARG B	ARG B	•	ARG B 6		1 ARG B 6									
2012 CD									2022 0											2033 0													046	2047 NE	048	2049 NH:
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

 2
 4
 4
 4
 4
 4
 4
 4
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 7
 6
 6
 7
 7
 7
 6
 6
 7
 7
 7
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 10.451 11.034 11.964 12.229 11.507 10.758 12.041 14.592 15.713 17.117 17.322 14.019 12.691 12.691 12.634 11.524 11 0 . 785 -0 . 843 -2 . 845 -5 . 605 -2 . 946 -2 . -4.198 -4.994 -5.385 -5.695 -6.958 -8.161 -8.095 -8.568 -6.779 -7.654 -5.650 -4.162 -4.192 -2.903 43.498
337.198
34.474
35.4445
36.4744
36.4744
37.4445
37.4445
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062
37.062 38.418 ARG B
ARG B
ARG B
ARG B
HIS B 2052 2053 2054 2055 2055 2057 2058 2059 2060 2061 2062 2063 2064

13.568 13.720 14.325 14.722 15.795 14.093 13.393 13.207 11.262 10.059 8.683 8.938 10.826 10.826 10.826 12.848 13.873 8.466 11.592 -8.558 -9.941 -10.902 -10.805 -8.835 -9.378 -9.041 -10.798 -9.281 -9.464 -8.142 -7.550 -6.052 -5.697 -7.794 -10.153 -10.222 -10.805 39.832 39.200 43.363 44.404 42.825 43.404 41.137 40.198 39.124 44.763 44.936 45.637 46.091 45.622 47.299 48,520 47.296 42.616 47.837 47.061 **—** 111.B
11.B
11.B 2093 2094 2095 2096 2097 2090 2091 2092

20.65 17.96 18.22 22.80 23.73 23.11 22.99 21.61 17.84 17.36 18.01 16.83 15.62 17.41 1.00 9.981 8.799 7.533 6.686 5.520 4.041 10.224 11.349 12.271 11.848 16.319 9.676 15.796 13.926 13.049 5.187 7.161 11.024 13.493 14.417 16.876 16.632 11.615 -12.726 -12.285 -10.280 -11.706 -9.469 -9.239 -10.673 -11.215 -11.520 -10.300 -11.656 -11.027-11.163 -10.107 -10.585 -11.312 -12.666 -13.122 -11.494 -13.303 -15.179 48.674 48.316 49.206 48.600 49.134 49.811 50.778 50.372 50.587 51.559 50.665 51.936 52.857 53.937 52.444 53.288 49.392 51.062 52.598 53.286 53.453 52.745 53.705 54.827 52.091 53.214 **д** д B ддд *<u>m</u> m m m m m m* MET MET MET MET TYR TYR ILE Chocker of Colling and Colling 2128 2133 2134 2135 2137 2138 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2152 2154 2155 2156 2157 2158 2160

SUBSTITUTE SHEET (RULE 26)

26.17 25.70 25.70 23.21 23.21 20.20 20.20 20.20 20.20 33.21 33.07 33.07 33.07 33.07 33.07 33.07 33.07 33.07 33.07 33.07 26.08 13.427 112.651 113.160 113.160 113.160 115.080 115.080 117.093 11.736 11.204 -13.978 -15.241 -15.601 -14.669 -16.343 -17.523 -15.941 -16.647 -15.622 -17.067 -13.072 -14.356 -11.816 -10.659 -10.776 -13.206 -14.644 -14.735 -17.488 -18.965 -11.968 -17.991 57.697 58.000 56.935 56.793 57.950 57.613 58.799 58.099 60.847 57.185 58.139 56.913 58.631 59.795 58.164 58.255 59.663 61.153 58.141 57.395 60.627 LYS B

31.76 32.06 31.40 30.98 31.42 31.42 31.88 33.94 37.89 39.26 38.62 30.27 29.04 28.05 1.00 10.820 6.682 6.764 5.664 8.871 4.573 3.278 2.944 1.649 0.379 4.896 5.592 4.368 4.578 -17.908 -17.454 -18.216 -19.329-17.409 -17.110 -18.253-16.776 -15.743-17.419 -19.008 -18.855 -15.858 -18.114-16.934 -18.082 -16.374 -14.644 -13.801 -12.422-11.287 -11.178 49.865 49.590 48.096 47.220 49.586 48.521 49.634 48.380 47.017 51.469 47.761 48.937 49.478 49.501 49.418 44.728 50.012 47.223 46.347 47.117 45.957 46.162 46.005 44.870 д д д 2208 2214 2215 2216 2216 2218 22219 22221 22221 22222 22223 22224 22226 22229 22239 2233 2233 2210 2211 2212 2213 2235 2236 2237

5.19	0	5.8	7.9	6.8	3.2	3.6	1.6	0.5	ö	2.3	'n	8.1	ď	0.1	7	6.1	ė.	ë.	ä.	6.09	5	S.	ė.	7	8.5	9.3	9.0	7	9.7	6.1	5.4	Ŋ,	ທຸ	4	•	3.74
00 2							00 2	00	00		00 2		00	00			00	00	0	00	0	0	00	00	0	0	0	00	0	0	00	00		00	00	00
<u> </u>	H	Ή.	H	H	i.	H	H	H	Ļ.	H	H	H	ų.	H	⊢	ä	H	ᅼ	ų.	ų.	۲.	H	H	H	H	H	H	H	ا	4	H	H.	ä	નં	H	i.
.337	16	.015	52	00	27	23	11	9	62	.560	18	.895	24	.822	60	67	034	24	82	25	28	07	05	57	14	41	0	61	16	90	03	33	13	.682	42	O.
0 0										4	ਚਾ	Ġ	ø.	ý	ø	7.	ω.	ω.	ώ	o,	7	ω.	Ġ	ស	4	'n	4.	Ŋ,	٠ ف	IJ.				m		ý
855 442	196	782	990	138	916	236	465	462	242	194	368	980	771	301	581	874	687	191	177	949	432	523	975	483	015	384		563		718			634	196	254	612
-15.	9	7	9	ö	ė	7	7.	æ	-19.	-20.	-21.	-20.	17.	18.	16.	15.	-14.	-15.	-14.	-13.	-15.	-15.	4	4.	-14.	-14.	-12.	-15.	-15.	-16.	-17.	-19.	-18	-19.	-18.	-18.
762	800	524	265	363	224	052	980	7	905	479 -	530	256	937	997	384	789	685		054	137	407	475	247	946	049	846		7	783	216	304		725	963	694	
43.		43.		•													•										0	8	•	9	38.	8	6	•	7	ÿ
722	~~	722	722	722	722	722	723	723	723	723	723	723	723	723	724	724	724	724	724	724	724	724	725	725	725	725	725	725	725	726	726	726	726	126	0	726
дд	ф	Д	m	щ	щ	ф	ф	щ	щ	щ	щ	щ	щ	<u>щ</u>	<u>.</u> Д	Д	Д	Д	щ	m	щ	Д	<u>-</u>	щ	<u>щ</u>	Д	<u>.</u>	<u>,</u>	М	<u>,</u>	щ	m	்	œ.	m m	<u>.</u>
LYS	LYS	LYS	LYS	LYS	LYS	LYS	ITE	ILE	ILE	ILE	ILE	TIE	ILE	ILE	ILE	ILE	HII	ITE	ILE	ILE	11日	ILE	VAL	VAL	VAL	VAL	VAL	W.	VAL	THR	THR	THR	THR	THR	THR	THE
ජ ස	ខ្ល	8	띩	NZ	บ	0	z	ð	ප	GG1	6	CG2	บ	0	z	ජ	ස	GG1	8	CG2	ບ	0	z	ð	පු	CG1	CG2	ပ	0	z	ð	ප	061	CG2	ບ	0
240	242	2243	244	245	246	247	248	249	250	251	252	253	54	255	356	257	2258	529	09	197	362	563	564	597	99;	29	89	69	270	171	:72	:73	274	275		773
222	22,	2,	2,	7	55	22	2,	2,	2	22	22	22	22	22	22	22	22	22	22	22	22	2,	22	22	22	22	22	22	22	22	22	22	22	22	22	22
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

13.02	80	N		'n	•	8	H.	•	-	7.00	4.		ω.	ü	4.	13.99	4	7.	3	21.11		Ġ	.7	14.88	3	17.14	w.	4	22.19	0.	16.31	17.05	14.65	15.22	7	13.31
1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	0		0.	0.	1.00	1.00	1.00	1.00	1.00	1.00	٥.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00
7.430	99	9.331	.74	.28	.66	.13	9.455	.73	.01	10.030		8.777	.49	H	35	.83	.19	. 78	. 74	3.278	. 75	.57	8.043	.97	8.770	9.671	.13	•	8.350	ω.		.42	σ	12.522	. 05	13.196
-18.208	8.6	7.44	-17.702	-16.195	0.	7.	-12.497	•	-10.794	ö	-9.074	•	æ	ü	•	-15.598		ო.	4.	-15.844	ч.	4	-16.568	•	-17.558	-18.411	-19.640	9	ø.	3	•	-18.118	•	5. 6.	. 78	-15.126
38.621	9.39	7.2	6.1	7.7	36.915	7.5	36.773	36.790	6.0	35.323	4.5	5.3	36.036	5.4	34.562	5.3	4.0	4.0	4.768	4.356	5.021	4.801	33.100	•	33.659	2.8	•	33.778	8	4.8		ä	œ	4		4.6
73	73	2.7	27	80	89	80	80	89	89	80	80	80	80	80	80	ون و	9	ē.	9	<u>ئ</u>	9	ø.	0	6	0	0	0	0	0	0	0	0	H	1	7	1
3 72	B 7.																	72			72	72	72	72						73				731	73	73
ALA I		ALA B	ALA B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	TYR B	LYS B	LYS B	LYS B	LYS B	LYS B	LYS B	LYS B	LYS B	LYS B	ASP B	ASP B	ASP B	ASP B	ASP B	ASP B	ASP B	ASP B	LEU B	LEU B	LEU B	LEU B
z ü	8	บ	0	z	ð	8	ပ္ပ	8	GET	ß	Ю	CE2	CD2	ပ	0	z	ð	8	පු	8	8	NZ	υ	0	Z	ජ	ප	ဗ္ဗ	001	OD2	ပ	0	z	ජ	9	g
2278	28	~	28	28	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

32.86 28.05 21.53 22.67 20.57 17.22 15.27 18.51 19.79 21.62 22.24 26.72 31.50 17.81 19.49 18.53 18.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 12.326 11.762 12.620 12.293 13.400 13.870 14.614 14.608 11.077 10.568 13.462 9.525 9.274 8.210 7.666 7.676 6.357 6.466 5.428 5.751 4.245 3.292 13.863 7.141 -16.150 -15.507 -15.085 -15.635 -15.595 -16.164 -12.798 -7.694 -8.437 -9.562 -9.624 -10.129-15.685 -13.853 -13.592 -12.894 -11.520 -10.622 -10.792 -9.962 -10.387 -11.463 -11.070 -9.967 -11.610 -11.898 -10.096 -10.140 -11.751 -11.924 -11.198 28.578 28.964 31.403 32.566 32.343 30.998 29.366 29.161 30.276 31.179 30.555 28.872 30.066 28.075 27.003 28.931 30.392 32.132 30.646 30.027 29.805 28.741 31.832 31.712 32.435 31.036 **дддда** Д 2320 2322 2323 2324 2325 2326 2327 2328 2329 2331 2332 2333 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2350 ATOM ATOM ATOM ATOM

10.98 9.61 12.04 13.84 13.62 8.74 9.41 2.00 12.82 12.84 27.73 13.09 13.18 11.57 10.08 14.68 12.99 11.66 15.45 16.07 16.42 1.00 1.00 1.00 2.518 3.756 3.756 3.389 5.984 7.332 7.332 7.711 8.356 5.527 4.634 4.09 4.455 3.986 2.633 2.590 4.439 4.879 0.479 4.089 2.175 3.098 1.912 3.145 -6.403 -5.946 -6.349 -7.259 -7.256 -7.031 -5.661 -7.314 -7.514 -10.348 -11.414 -12.157 -11.832 -8.893 -5.959 -6.653 -3.181 -5.162 -10.029 -6.723 -2.096 -6.065 -4.035 -3.607 -6.472 38.107 38.063 37.279 36.511 35.063 34.224 35.257 34.999 33.757 36.758 37.616 36.976 38.338 37.348 38.449 30.615 34.206 31.857 30.887 30.162 **мимимимимимимимимимими** 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2377 2380 2381 2382 2383 2385 2386 2387 2388

ជ	2 4	<u>.</u> 0	4.	&	0	41	ស	23	29	80	81	17	00	78	67	17	66	4	80	m	17	7	S.	55	9	0.0	£3			7.	4	62	89	9	4.	88
		14.1	4	•	4	s.	9	Š.	Š.	щ	•	ن	•	•	12.6	•	•	•	•	•	16.1	•	•	•	•	•		ന	4		ď	ä	•	ø	28.9	•
1.00	. ·	•	0.	0.	°.	•	•	•	°	•	1.00	•	1.00	1.00	•	1.00	•	•	•	•	1.00	•	•	•	٥.		٥.	٥.	•	0	0.	٥.	Õ.	٠	1.00	
2	28.	0.995	.73	42	. 14	S	.08	Н.	.10	2.291	•	•	•	•	5.411	•	•	•	•	•	4.950	4.687	•	•	3.695	4.400	•	2.533	•	•	•	•	•	•	2.100	2.253
5.2	4./7	-2.962	2.62	1.17	.96	.03	•	.80	2.193	.30	.11	-1.966	-1.379	.27	-1.627	.68	.03	.10	. 92	.28	3.196	.62	.41	. 28	.36	•	.16	.33	.93	.51	.42	. 99	.73	.89		.10
.47	, .	36.320	5.3	٥.	3.5	3.5	3.7	4.0	33.733	Ġ	6.46	•	39.089	٠	0	•	ė.	ö	•	•	39.695	•	•	•	•		42.072	.49	. 90	.37	.89	.40	.98	.79	m	4.04
740	740	- [74	74	74	74	74	741	741	741	741	742	742	742	742	74							743	743			744		744		744	744	74	744	745	745
LYS B	איז ה מיני	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	VAL B	VAL B	VAL B	VAL B	VAL B	VAL B	VAL B	LEU B	LEU B	LEU B	LEU B	LEU B	LEU B	LEU B	LEU B	ILE B	ILE B	ILE B	ILE B	ILE B	ILE B	ILE B	ILE B	LYS B	LYS B
ບ	o ;	z 6																																0	Z	F
2392	2393	2394	2396	2397	2398	2399	2400	2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

υυυςοοουυυυσοουουυυσουοουοςουουυσουουσουου

31.99 33.87 33.87 33.87 33.93 34.28 35.26 35.26 35.26 36.85 36.33 36.33 36.38 36.38 37.08 36.38 37.08 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 -1.826 2.510 3.574 1.542 1.767 0.995 -0.281 1.439 2.266 0.234 -0.115 -0.936 -0.212 -0.373 -0.457 -0.614 -1.431 -0.928 -0.928 -0.820 -2.007 -2.600 -3.728 -4.511 -4.511 -3.828 -0.701 -1.270 8.457 9.456 10.733 10.472 9.502 9.880 8.925 8.925 8.924 7.839 8.821 10.125 10.735 11.772 6.586 6.109 4.934 5.225 4.026 44.911 46.346 47.283 46.918 47.283 42.120 41.094 42.125 41.647 42.782 39.726 38.844 39.726 37.090 35.781 37.090 35.781 37.090 35.781 40.251 41.666 42.369 LLYS B
GLU B 2431 2432 2433 2434 2435 2436

ATOM	2468 2469	6 8	TYR TYR	д д	749	37.125	3.290	0.327	1.00	17.50
ATOM	2470	CZ	TYR	ф	749	6.30	.74	.50	0	6
ATOM	2471	HO	TXR	Ø	749	5.76	. 65	.41	0	8.6
ATOM	2472	CE2	TYR	ф	749	6.53	0	.85	۰.	9.0
ATOM	2473	9	TYR	ф	749	7.06	.56	.94	0	7.3
ATOM	2474	ບ	TYR	Ø	749	9.96	. 13	.50	0	ω.
ATOM	2475	0	TYR	p	749	9.91	.25	.71	0.	1.9
ATOM	2476	z	ASP	ф	750	4.		.86	1.00	۲.
ΜÖ	2477	ฮ	ASP	p	750	1.11	.97	.53	0	8.8
ATOM	2478	ස	ASP	ø	750	.56	.67	-1.874	٥.	9.0
ĕ	2479	පු	ASP	ф	750	ď	1	.31	•	0.5
ATOM	2480	9	ASP	Д	750	2.68	.31	.67	۰.	5.5
ATOM	2481	OD2	ASP	ф	750	3.49	.29	•	٥.	0.8
ATOM	2482	ບ	ASP	ф	750	41.067	-3.110	58	٥.	7.8
ATOM	2483	0	ASP	ф	750	0.60	.92	.54	٥.	8.2
ĕ	2484	z	SER	m	751	.53	.27	-1.023	1.00	õ
ΜÖ	2485	ජ	SER	ф	751	1.59	-5.478	-0.198	0.	5.6
ΜÖ	2486	8	SER	Д	751	3	.57	-0.976	0.	9
ATOM	2487	g	SER	щ	751	.68	.39	-0.953	1.00	0
ΜÖ	2488	บ	SER	Д	751	2.34	~	•	٥.	ທ
ATOM	2489	0	SER	ф	751	.13	ر .	•	0	0
ATOM	2490	z	IIE		752	2.14	ᅼ	•	0.	3
ATOM	2491	ජ	ILE	Д	752	.79	o.	•	1.00	ů.
ATOM	2492	ප	ITE	щ	752	.23	-6.937	•	۰.	4.
ATOM	2493	CG1	ILE	щ	752	.60	•	5.805	1.00	
ATOM	2494	8	ILE	ф	752	.94	-7.320	•	1.00	ø
ATOM	2495	CG2	ILE	Ø	752	.76	-8.248	•	1.00	7
ATOM	2496	ပ	II.	æ	752	•	-6.089	3.284	1.00	ģ
ĕ	2497	0	ILE	Д	752	86	-5.642	•	1.00	
ATOM	2498	×	ILE	Ø	753	.80	-6.656	2.186	1.00	ų
ĕ	2499	ජ	ILE	ф	753	6.21	.84	.01	1.00	0
ATOM	2500	9	II.E	ф	753	6.4	.79	φ.	1.00	4.
ĕ	2501	CG1	ILE	ф	753.	6.01	.19	.13	00	.7
ATOM	2502	មិ	ILE	ф	753	5.97	.05	11.	1.00	4.
ATOM	2503	CG2	TLE	Ø	753	47.962	-7.928	0.502	1.00	17.13
ATOM	2504	ບ	ITE	ф	753	6.83	.51	.67	1.00	ò
ATOM	2505	0	ITE	ф	753	7.87	S	. 18	1.00	Ŋ

13.40 12.15 12.25 11.74 12.24 12.24 9.65 11.69 13.58 8.49 11.89 110.64 12.44 13.71 13.71 16.30 16.30 17.21 20.27 20.27 14.37 14.37 1.00 11111 00.1 5.142 5.674 5.721 6.414 7.793 8.441 6.293 5.917 6.030 7.313 8.444 8.307 7.070 5.673 5.123 5.791 3.867 -1.884 -2.081 -2.286 -1.641 -0.250 -1.833 -2.414 -2.440 -1.554 -3.741 -0.431 -5.675 -6.181 -6.197 -6.683 -7.161 -7.628 -6.674 -3.564 -2.764 -3.880 -4.070 45.829 47.807 45.863 45.849 44.564 44.648 44.678 44.603 44.568 47.028 47.725 47.239 48.450 49.697 49.792 50.933 52.012 53.166 51.935 50.782 49.688 50.386 51.213 **м** м м ø 2519 2520 2515 2516 2517 2518 2521 2522 2523 2524 2525 2526 2526 2527 2528 2529 2530 2531 2532 2533 2538 2539 2540 2534 2535 2536 2537

ω.	3.7	15.54	4	4.5	3.2	8		4.	3.	4	4.2	4.7	5.2	5.2	4.8	0	0.	13.72	15.35	æ	φ.	6.4	4.	Η.	4.	Ŝ	4.	•	Ŋ	2.1	7	9.9	3.1	7.7	32.36	4.3
•	Ō,	1.00	9	0	Ö.	•	•	1.00	1.00	1.00	0.	0.	1.00	0	0	1.00	1.00	1.00	1.00	0	1.00	1.00	1.00	0	1.00			0		•	°	٥.		0.	1.00	0
•	.64	1.603	.82	.72	.89	.03	.03	.06	.65	3	.14	.64	.91	•	.23	11.085	12.302	12.712	.89	.66	N	.21	.42	.63	.45	7.205	.77	.46	.81	'n	.15	. 25	.10	.71	5.279	.65
•	.25	-0.024	.17	.33	0.701	.51	.83	۳.			٠:	"	٠:		٠:	-2.591	-3.188	-4.129	4.	o,	-1.162	w.	à	-2.303	7	-3.092	.02	. 78	9	.13	90.	.17	.12	.39	0.617	.17
50.210	m (49.283	7	9.0	9.5	Ñ	7	4	7.3'	ij	0.5	9.13	9.3(8.5	4	3.	7.23	8.13	9.16	9.30	9.70	1.33	1.42	2.75	3.26	4.77	5.03	5.13	3.68	4.64	3.38	1.22	3.91	3.78	4	5.94
758	2,72	758	758	758	759	759	759	759	759	759	759	760	160	160	160	760	760	760	760	760	760	160	191	761	761	761	761	761	761	761	762	762			762	
PH 6		9 09	M	Д	Д	VAL B	Д	PQ	Д	Д	М	Щ	æ	ф	Д	Щ	Щ	Щ	Д	ф	PHE B	Д	Ø	ф	ф	ф	Ø	Ø	B	m)	ф			GIN B	GIN B	GIN B
z		98			•																													g B	8	OE1 G
2544	0#0	2547	548	549	550	551	552	553	554	ເດ	256	557	558	559	260	261	295	263	564	365	999	267	899	699	270	171	572	573	574	75	276	577	578	57	2580	58
ATOM	PLOE A	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

SUBSTITUTE SHEET (RULE 26)

ATOM	2620	z i	ASN	Д	767	57.398	•	16.083	1.00	<i>i</i> ,
ATOM	2621	ජ	ASN	Д	767	Ġ	-1.570	.23	1.00	m
ATOM	2622	9	ASN	щ	767	'n	-1.023	17.768	1.00	
ATOM	2623	ဗ္ဗ	ASN	ф	797	'n.	-1.892	æ	1.00	w
ATOM	2624	OD1	ASN	ф	167	4	-2.945	18.545	1.00	9.3
ATOM	2625	ND2	ASN	ф	167	5	-1.456	.09		ø
ATOM	2626	ບ	ASN	ф	167	•	-3.092	16.985	1.00	
ATOM	2627	0	ASN	м	767	7.	g	œ	1.00	4.7
ATOM	2628	z	LE	m	768	•	-3.511	5.86	1.00	5.4
ATOM	2629	đ	HE	ф	768	9	-4.940	15.625	1.00	36.32
ATOM	2630	8	ILE	щ	768	5.62	-5.237	4.	1.00	4.
ATOM	2631	CG1	II II	ф	768	4.10	•	.30	1.00	5.7
ATOM	2632	9	ILE	m	768	53.429	-5.168	12.981	1.00	5.4
ATOM	2633	CG2	TE	ф	768	55.950	-6.683	.83	1:00	4.1
ATOM	2634	ซ	ILE	ф	768	7	-5.577	.69	1.00	7
ATOM	2635	0	TIE	ф	768	7.69		5.92	1.00	8.1
ATOM	2636	z	LEU	ф	169	8.62	•	.50	1.00	•
ATOM	2637	ð	LEU	ф	169	9.99	-5.257	•	1.00	40.19
ATOM	2638	8	LEO	Д	769	0.99	-4.186	0.	1.00	40.99
ATOM	2639	8	LEU	ф	769	1.86	-4.615	•	1.00	•
ATOM	2640	9	LEU	ф	769	46	-5.984	•	1.00	•
ATOM	2641	9	LEU	ф	169	90	-4.723	•	1.00	42.90
ATOM	2642	ບ	LEU	ф	169	37	-5.753	•	1.00	40.93
ATOM	2643	0	LEU	ф	169	61.022	-6.789	16.999	1.00	•
ATOM	2644	z	GLN	Ø	770	98	•	•	1.00	41.51
ATOM	2645	ජ	GLN	ф	770	28		•	1.00	41.74
ATOM	2646	9	GLN	ф	770	36	•	•	1.00	41.53
ATOM	2647	g	GLN	g	770	59.450		21.762	1.00	42.43
ATOM	2648	₿	GLN	ф	770	8.13	-5.425	<i>i</i>	1.00	42.74
ATOM	2649	OE1	GLN	ф	770	8.06	-6.041	3.66	1.00	41.16
ATOM	2650	NE2	GIN		770	7.	•	90.	1.00	
ATOM	2651	ບ	GLN	Ø	170	.12	-7.004	.38	1.00	φ.
ATOM	2652	0	GLN	Ø	770	61.077	•	19.610	1.00	•
ATOM	2653	z	TYR	Д	771	58.911	•	٠.	1.00	42.24
ATOM	2654	ව්	TYR		771	•	.88	19.229	1.00	42.97
ATOM	2655	8	TYR	ф	771		-9.140	.77	1.00	1.8
ATOM	2656	g	TYR		771	56.175	-8.189	•	1.00	38.45
ATOM	2657	9	TYR	Ø	771	55.729	-8.307	20.662	1.00	

SUBSTITUTE SHEET (RULE 26)

0 35.2	0 34.	0 34.	9	0 35.	0 44.	43	46.	48	48	50.3	00 50.02	52.6	រោ	0 54.4	55.0	NO.	56.	57.8	9.1	ហ	60.2	59.8	59.5	59.4	539	59.	59	60.	0 59.27	S	57.	56.	Ŋ	59.35	59.00	59.19	
1.0	1.0		1.0					•		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.00	1.0	1.0	1.0	1.0	1.0	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.16	20.343	.75	9.06	.57	44	.72	45	.62	43	7.42	7.1	.38	.23	20.320	.18	19.879		.76	w			35		.53	2.43	3.86	24.393	3.78	4.31	3.81	4.09	4.87	3.57	4.1	23.327	.21	25.546
7.42	.43	5.49		7.19	9.77	96.0	.18	9.93	σ	0	-11.413	-9.510	-9.794	-8.723	-9.024	-11.173	-		•	•	•	•	ω.	•	•	-12.203	•	9	.40	.14	•	-7.364	-5.532	-12.077	-11.452	-12.663	À
4.7	Ġ	ų.	4.70	Ó	9.57	.70	0.23	$\ddot{-}$.59	.36	.95	62.746	.88	64.021	5.10	3.69	2.63	4	64.694	'n	•	Ġ	4.	4.	•	m	64.540	4	4	•	63.016	2.18	9.	3	61.559	61.199	m.
B 771	8 771	3 771	3 771	3 771	3 771	3 771	3 772	3 772	3 772	3 772	3 772	3 773	В 773	1773	1 773	1 773					774	774		774	775	775	775	775	775	-	~	~	~	775	775	176	776
TYR	TYR	TYR	TYR	TYR	TYR 1	TYR 1	ALA 1	ALA 1	ALA I	ALA I	ALA 1	SER 1		SER E	SER E	SER E				THRB	THE B	THE	THR B	THRB	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	ARG B	PRO B	PRO B
											0																		8	NE	ZZ U	NHI	NH2	บ	0	z	ð
LO.	ഥ	2660	2661	10	เก	2664	10	10	10	10	10	67	2671	2672	67	67	67	67	2677	2678	2679	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	69	o	Ø	2694	Ġ.
ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM	ATOM

υυυυχουουυχουυυσχουυοχουυσχουουσχουουσχουουσ

59.00 57.74 57.92 56.28 56.28 56.21 56.21 56.21 57.00 53.82 51.05 51.05 51.07 49.65 44.67 44.69 45.46 44.03 43.69 42.70 1.00 1.00 1.00 1.00 25.321 25.464 24.508 26.737 27.466 29.916 27.702 27.460 27.460 27.199 27.483 26.856 27.488 27.941 28.117 28.526 28.693 29.137 27.219 27.780 26.642 26.983 28.080 29.555 30.355 27.119 28.496 -10.950 -11.793 -9.364 -10.338 -8.103 -7.751 -6.263 -5.930 -6.018 -7.973 -9.228 -9.548 -11.020 -13.324 -12.007 -8.680 -10.887 -8.480 -7.367 -8.184 -6.594 58.011 57.078 56.561 57.807 57.189 56.916 56.810 55.960 56.128 57.514 55.525 54.508 53.774 54.098 52.486 53.553 53.599 53.361 51.739 51.867 49.645 47.997 48.015 PRO B
THR B
SER B 2705 2706 2707 2708 2708 2710 2711 2712 2713 2716 2719 2719 2719 2720 2721 2702 2703 2704 2724 2725 2726 2727

51.46 53.83 54.70 54.84 53.76 42.35 48.44 49.03 111111 111111 000011 1.00 29.879 31.708 32.656 33.902 35.137 35.248 37.122 31.879 31.746 31.075 29.563 28.831 30.932 29.579 28.374 27.311 27.497 30.413 29.341 31.643 28.388 29.710 32.048 38.178 -11.356 38.178 -12.545 38.390 -13.068 39.185 -12.254 39.506 -11.180 -9.990 -9.692 -10.450 -11.490 -10.203 -9.080 -12.473 -12.667 -10.093 -8.777 -9.334 -10.507 -12.109 -13.299 -12.296 -12.469 -13.007 38.331 39.720 39.907 39.388 38.831 37.169 36.100 36.409 35.162 35.332 37.583 44.169 45.321 45.027 42.817 42.923 42.915 40.617 40.666 40.049 35.757 $\begin{array}{c} \mathsf{C} \\ \mathsf{$ 2739 2742 2743 2744 2745 2746 2747 2748 2761 2762 2763 2764 2765 2767 ATOM ATOM ATOM ATOM

53.17 51.86 50.85 53.44 52.26 52.06 49.91 53.54 47.69 48.66 42.24 47.41 47.97 47.13 44.51 45.50 46.89 44.53 39.39 35.91 32.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 37.659 39.864 33.745 38.706 38.601 31.252 31.289 32.535 32.878 34.063 33.165 26.866 25.896 26.932 29.991 28.897 28.935 27.910 28.288 27.200 28.970 30.109 -15.085 -15.465 -13.138 -14.750 -12.880 -14.416 -13.883 -15.300 -13.565 -13.428 -16.882 -14.544 -13.716 -14.044 -15.482 -15.489 -16.389 -14.207 -14.357-15.024 -16.887 -11.911 -10.565 30.063 31.223 30.807 30.800 22.180 30.457 30.468 30.090 20.931 23.458 24.423 22.266 22.987 22.417 24.287 25.177 25.145 **虽且日日日日日日日日日日日日日日日日日日日日日日日** Ø ASP ASP ASP ASP ASP ASP TYR TYR TYR TYR от стать в ст 2774 2775 2776 2777 2778 2779 2780 2782 2783 2784 2785 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2800 2802 2803 2804 2805 2806 2807 2808

21.47 21.22 20.74 18.47 16.23 14.97 13.89 11.09 11.98 21.26 21.26 21.32 21.51 22.19 21.62 23.30 22.87 1.00 30.271 29.595 31.590 32.298 33.494 32.917 32.917 32.631 32.578 32.806 33.087 30.917 29.910 28.926 34.114 33.919 35.032 35.099 33.664 32.170 32.468 33.585 34.061 34.191 34.234 36.323 -10.014 -10.230 -9.330 -8.759 -8.571 -8.268 -7.522 -7.405 -6.707 -6.919 -7.412 -6.414 -6.153 -6.357 -8.475 -7.505 -6.167 -8.091 -5.790 -6.195 -2.897 -2.528 -1.497 -6.754 -5.609 26.400 30.980 27.773 26.881 25.501 25.193 23.887 22.881 29.109 29.724 29.556 30.859 27.814 24.471 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2842 2843 2841

 ANDM
 2851
 CA GIU P
 8
 30.779
 -2.099
 38.551
 1.00 31.21

 ANDM
 2852
 CB GIU P
 8
 32.215
 -1.763
 38.887
 1.00 31.34

 ANDM
 2852
 CB GIU P
 8
 32.215
 -1.763
 38.887
 1.00 44.38

 ANDM
 2855
 CB GIU P
 8
 34.639
 -2.144
 38.639
 1.00 44.38

 ANDM
 2855
 CB GIU P
 8
 34.637
 -1.015
 38.639
 1.00 44.38

 ANDM
 2855
 CB GIU P
 8
 34.977
 -1.015
 38.639
 1.00 44.38

 ANDM
 2856
 CB GIU P
 9
 29.675
 -2.193
 40.726
 1.00 44.38

 ANDM
 2863
 G GIU P
 9
 29.675
 -2.193
 40.726
 1.00 44.38

 ANDM
 2861
 CG GIU P
 9
 29.655
 -2.193
 40.726
 1.00 44.38

 ANDM
 2861
 CG GIU P
 9
 29.655
 -2.193
 30.727

 ATOM
 2889
 CD1 ILIB P
 13
 23.048
 5.763
 31.684
 1.00 18.51

 ATOM
 2892
 CD1 ILIB P
 13
 21.913
 5.983
 35.380
 1.00 17.49

 ATOM
 2892
 C ILIB P
 13
 24.899
 7.769
 35.380
 1.00 17.49

 ATOM
 2893
 C ILIB P
 13
 24.899
 7.769
 33.896
 1.00 17.49

 ATOM
 2894
 CA ARG P
 14
 24.742
 8.917
 35.288
 1.00 17.49

 ATOM
 2894
 CA ARG P
 14
 24.742
 8.917
 35.288
 1.00 17.43

 ATOM
 2895
 CB ARG P
 14
 24.742
 8.917
 1.00 17.43

 ATOM
 2896
 CG ARG P
 14
 24.780
 10.653
 38.027
 1.00 17.43

 ATOM
 2901
 CG ARG P
 14
 25.712
 10.653
 38.027
 1.00 17.43

 ATOM
 2902
 CG ARG P
 14
 25.712
 10.653
 38.027
 1.00 17

1.00 23.17	1.00 24.24	1.00 26.26	1.00 26.70	1.00 29.15	1.00 31.05	1.00 31.59	1.00 35.19	1.00 37.21	1.00 37.60	1.00 31.76
28.122	29.158	33.045	33.582	33.505	34.732	35.922	37.254	38.293	37.355	34.586
10.542	11.351	12.403	13.079	12.312	12.999	12.033	12.741	12.001	14.012	13.540
24.662	25.144	27.470	26.583	28.717	29.152	29.110	29.079	29.132	29.007	30.566
17.	17	17	17	18	18	18	18	18	18	18
	Д			Д						
PHE	PHE	PHE	PHE	ASP						
CB2	8	ບ	0	z	ජ	ප	හි	001	OD2	ບ
2927	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937
ATOM										

1. A crystal structure of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex, characterised by the atomic coordinates of Annex 1.

5

2. A crystal structure as claimed in claim 1, wherein the interactions between E2F₍₄₀₉₋₄₂₆₎ and pRb comprise one or more of the following interactions:

E2F ₍₄₀₉₋₄₂₆₎ residue	pRb residue
Leu ₄₀₉	Lys ₅₄₈
Тут411	Glu ₅₅₁
Tyr ₄₁₁	Пе ₅₃₂
Тут411	Glu ₅₅₄
His ₄₁₂	Arg ₆₅₆
His ₄₁₂	Lys ₆₅₃
Gly ₄₁₄	Glu ₅₃₃
Gly ₄₁₄	Lys ₆₅₂
Leu ₄₁₅	Leu ₆₄₉
Leu ₄₁₅	Glu ₅₅₃
Leu ₄₁₅	Lys ₅₃₇
Glu ₄₁₇	Lys ₅₃₇
Gly ₄₁₈	Arg ₄₆₇
Glu ₄₁₉	Thr ₆₄₅
Arg ₄₂₂	Glu ₄₆₄
Asp ₄₂₃	Arg ₄₆₇
Leu ₄₂₄	Lys ₅₃₀
Phe ₄₂₅	Phe ₄₈₂
. Phe ₄₂₅	Lys ₄₇₅

- 3. A method to identify an agent which modulates the interaction between pRb and E2F_(409.426), the method comprising:
- a) combining together pRb, E2F₍₄₀₉₋₄₂₆₎ and an agent, under conditions in which pRb
 and E2F₍₄₀₉₋₄₂₆₎ form a complex;
 - b) growing a crystal structure of any pRb/ E2F₍₄₀₉₋₄₂₆₎ complex; and
- c) analysing the crystal to determine whether the agent is an agent which modulates
 the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎.
 - 4. A method, as claimed in claim 3, wherein the combining of the components is pRb with the agent and then $E2F_{(409-426)}$.
- 5. A method as claimed in claim 3, wherein the combining of the components is $E2F_{(409-426)}$ with the agent and then pRb.
 - 6. A method as claimed in claim 3, wherein the combining of the components is pRb with E2F₍₄₀₉₋₄₂₆₎ and then the agent.

- 7. A method as claimed in any one of claims 3 to 6, wherein step c) comprises comparing the crystal structure to the crystal structure of claim 1
- 8. A method as claimed in any one of claims 3 to 7, wherein the agent is selected using the three dimensional atomic co-ordinates of Annex 1.
 - 9. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising selecting an agent using the three-dimensional atomic coordinates of Annex 1.

10

. 20

25

- 10. A method as claimed in claim 9, wherein said selection is performed in
- 11. A method as claimed in claim 9 or 10, wherein the method further comprises the steps of:

conjunction with computer modeling.

- a) contacting the selected agent with pRb and E2F₍₄₀₉₋₄₂₆₎ under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex; and
- b) measuring the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ in the presence of the agent and comparing the binding affinity to that of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the absence of the agent, wherein an agent modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex when there is a change in the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the presence of the agent.
 - 12. A method as claimed in claim 11, wherein the method further comprising:
- a) growing a supplementary crystal from a solution containing pRb and E2F₍₄₀₉₋₄₂₆₎ and the selected agent where said agent changes the binding affinity of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex;
 - b) determining the three-dimensional atomic coordinates of the supplementary crystal by X-ray diffraction using molecular replacement analysis;
 - c) comparing the three dimensional coordinates with those for the crystal structure as claimed in claim 1; and
 - d) selecting a second generation agent using the three-dimensional atomic coordinates determined for the supplementary crystal.
 - 13. A method as claimed in claim 12, wherein said selection is performed in conjunction with computer modeling.
- 14. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex,
 comprising:

10

15

- b) measuring the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ in the presence of the agent and comparing the binding affinity to that of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the absence of the agent, wherein an agent modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex when there is a change in the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the presence of the agent.
- 15. A method as claimed in claim 14, wherein the method further comprising:
- a) growing a supplementary crystal from a solution containing pRb and E2F₍₄₀₉₋₄₂₆₎ and the selected agent where said agent changes the binding affinity of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex;
 - b) determining the three-dimensional atomic coordinates of the supplementary crystal by X-ray diffraction using molecular replacement analysis;
 - c) comparing the three dimensional coordinates with those for the crystal structure claimed in claim 1; and
 - d) selecting a second generation agent using the three-dimensional atomic coordinates determined for the supplementary crystal.
 - 16. A method as claimed in claim 15, wherein said selection is performed in conjunction with computer modeling.
- 17. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:
 - a) selecting an agent;
 - b) co-crystalising pRb with the agent;
 - c) determining the three dimensional coordinates of the pRb-agent association by X-ray diffraction using molecular replacement analysis; and

- d) comparing the three dimensional coordinates with those of the crystal structure claimed in claim 1.
- 18. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:
- a) selecting an agent;
- b) crystalising pRb and soaking the agent into the crystal;
- c) determining the three dimensional coordinates of the pRb-agent association by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the crystal structure claimed in claim 1.
 - 19. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:
- 15 a) selecting an agent;
 - b) co-crystalising pRb, E2F₍₄₀₉₋₄₂₆₎ and the agent;
 - c) determining the three dimensional coordinates of the pRb-E2F-agent association by X-ray diffraction using molecular replacement analysis; and
 - d) comparing the three dimensional coordinates with those of the crystal structure claimed in claim 1.
 - 20. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:
 - a) selecting an agent;
- b) co-crystalising pRb and E2F₍₄₀₉₋₄₂₆₎ and soaking the agent into the crystal;
 - c) determining the three dimensional coordinates of the pRb-E2F-agent association by X-ray diffraction using molecular replacement analysis; and
 - d) comparing the three dimensional coordinates with those of the crystal structure claimed in claim 1.

25

- 21. A method as claimed in any one of claims 17 to 20, wherein the agent is selected using the three dimensional atomic co-ordinates of Annex 1
- 22. A method as claimed in any one of claims 17 to 21, wherein the methods further
 comprise selecting a second generation agent using the three dimensional atomic coordinates determined in step c).
 - 23. A method as claimed in claim 22, wherein the second generation agent is selected using the three dimensional atomic coordinates of Annex 1.
 - 24. A method as claimed in claim 22 or 23, wherein the selection is performed in conjunction with computer modeling.
- 25. A method of identifying an agent as claimed in any one of claims 3 to 24, wherein the selected agent and/or the second generation agent mimics a structural feature of E2F₍₄₀₉₋₄₂₆₎, when said E2F₍₄₀₉₋₄₂₆₎ is bound to pRb.
 - 26. A method as claimed in claim 9 or 10, wherein method comprises the further steps of:
- a) contacting the selected agent with a pRb/E2F₍₄₀₉₋₄₂₆₎ complex; and
 - b) determining whether the agent affects the stability of the complex.
 - 27. A method as claimed in claim 26, wherein the determination is with fluorescence polarization.

28. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- a) contacting a fluorescently tagged E2F₍₄₀₉₋₄₂₆₎ peptide (E2F-fluoropeptide) with pRb to allow pRb/E2F-fluoropeptide complex formation;
- 30 b) detecting the fluorescence polarization;

20

30

- c) adding a selected agent; and
- d) detecting the fluorescence polarization in the presence of the agent.
- 29. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising;
- a) contacting a fluorescently tagged E2F₍₄₀₉₋₄₂₆₎ peptide (E2F-fluoropeptide) with pRb to allow pRb/E2F-fluoropeptide complex formation;
- b) detecting the fluorescence polarization;
- c) contacting a selected agent with pRb and E2F₍₄₀₉₋₄₂₆₎ peptide (E2F-fluoropeptide) under conditions in which pRb and E2F-fluoropeptide can form a complex;
 - d) detecting the fluorescence polarization; and
 - e) comparing the fluorescence polarization detected in b) and d).
- 30. A method as claimed in claim 28 or 29, wherein the fluorescently tagged E2F peptide is selected using the three dimensional atomic co-ordinates of Annex 1.
 - 31. A method as claimed in any one of claims 28 to 30, wherein a decrease in fluorescence polarization in the presence of the agent indicates that the agent destabilises the complex.

32. A method as claimed in any one of claims 28 to 31, wherein the method comprises the further step of adding untagged E2F₍₄₀₉₋₄₂₆₎ and detecting fluorescence polarization.

- 25 33. A method as claimed in claim 32, wherein if fluorescence polarization decreases, on addition of the untagged E2F₍₄₀₉₋₄₂₆₎, the agent does not stabilise the complex.
 - 34. A method as claimed in claim 32 or 33, wherein if there is no substantial change in fluorescence polarization, on addition of the untagged E2F₍₄₀₉₋₄₂₆₎, the agent stabilises the complex.

- 35. A method as claimed in any one of claims 28 to 34, wherein the method further comprises:
- a) contacting a fluorescently tagged E7 peptide (E7-fluoropeptide) with pRb to allow pRb/E7-fluoropeptide complex formation;
 - b) detecting the fluorescence polarization;
 - c) adding an agent that modulates pRb/E2F(409-426) complex; and
 - d) detecting the fluorescence polarization in the presence of the agent.
- 36. A method as claimed in any one of claims 28 to 34, wherein the method further comprises:
 - a) contacting a fluorescently tagged E7 peptide (E7-fluoropeptide) with pRb to allow pRb/E7-fluoropeptide complex formation;
 - b) detecting the fluorescence polarization;
- c) contacting an agent that modulates pRb/E2F₍₄₀₉₋₄₂₆₎ complex with pRb and E7-fluoropeptide under conditions in which pRb and E7-fluoropeptide can from a complex;
 - d) detecting the fluorescence polarization; and
 - e) comparing the fluorescence polarization detected in b) and d).

- 37. A method as claimed in claim 35 or 36, wherein a decrease in fluorescence polarization indicates that the agent also inhibits E7 binding to pRb.
- 38. A method as claimed in any one of claims 11 to 16, wherein the binding affinity is measured by isothermal titration calorimetry.
 - 39. A method as claimed in any one of claims 11 to 16, wherein the binding affinity is measure by Surface Plasmon Resonance (SPR).

15

- 40. An agent, that modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎, identified by a method as claimed in any one of claims 3 to 39.
- 41. An agent, as claimed in claim 40, for use as an apoptosis promoting factor in the prevention or treatment of proliferative diseases.
- 42. An agent as claimed in claim 40 or 41, wherein the agent is for use in preventing or treating cancer, which may be pancreatic cancer and related diseases.
- 43. The use of an agent, which modulates the formation of a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, identified by a method as claimed in any one of claims 3 to 39, in the manufacture of a medicament for the prevention or treatment of proliferative diseases.
 - 44. The use of an agent as claimed in claim 43, wherein the proliferative diseases are cancer, preferably pancreatic cancer and related diseases.
 - 45. The use of the atomic co-ordinates of the crystal structure as claimed in claim 1 or 2, for identifying an agent that modulates the formation of a pRb/E2F₍₄₀₉₋₄₂₆₎ complex.
 - 46. Computer readable media comprising a data storage material encoded with computer readable data, wherein said computer readable data comprises a set of atomic co-ordinates of the pRb/E2F₍₄₀₉₋₄₂₆₎ crystal structure of Annex 1 recorded thereon.

FIG. 1A

FIG. 2A

FIG. 2B

Binding Constants (μΜ)	Rb _{AB}	Rb _{ABC}
E2F (409-426)	0.34 <u>+</u> 0.02	0.3 <u>+</u> 0.03
E2F (380-437)	0.16 <u>+</u> 0.01	0.1 <u>+</u> 0.01
E2F (243-437)	<0.01	<0.01

FIG. 3
Binding of Fluorescein-E2F, Rhodamine-E2F and Fluorescein-E7 to pRb

FIG. 4
Displacement Binding Curves

SUBSTITUTE SHEET (RULE 26)

FIG. 5
Screen controls from Test Screen 6X384 plates

FIG. 6
Correlation Inhibition Rhodamine and Fluorescein-E2F

FIG. 7
Correlation Inhibition Fluorescein-E2F and Fluorescein-E7

FIG. 8

SUBSTITUTE SHEET (RULE 26)

FIG. 9

INTERNATION SEARCH REPORT

Internati Application No PCT/B/05158

			rui/	0/ 02128		
A CLASSI IPC 7	FICATION OF SUBJECT MANAGER C07K14/47					
According to	o International Patent Classification (IPC) or to both national classific	cation and IPC				
	SEARCHED					
IPC 7						
	tion searched other than minimum documentation to the extent that					
	ata base consulted during the International search (name of data b , EPO-Internal, MEDLINE	ase and, where practical, s	earch terms user	d)		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the re	elevant passages		Relevant to claim No.		
Υ	LEE JIE-OH ET AL: "Structure of retinoblastoma tumour-suppressor domain bound to a peptide from H	pocket		3-39,45		
	NATURE (LONDON), vol. 391, no. 6670, 26 February 1998 (1998-02-26), p 859-865, XP002272473 ISSN: 0028-0836 the whole document					
Y	HELIN K ET AL: "A CDNA ENCODING PRB-BINDING PROTEIN WITH PROPERT TRANSCRIPTION FACTOR E2F" CELL, CELL PRESS, CAMBRIDGE, NA, vol. 70, no. 2, 24 July 1992 (19 pages 337-350, XP000872846 ISSN: 0092-8674 the whole document	IES OF THE		3-39,45		
X Furth	ner documents are listed in the continuation of box C.	Patent family me	mbers are listed i	n annex.		
"A' docume conside "E" earlier diffing di "L' docume which i citation "O" docume other n"P" docume later th	nt which may throw doubts on priority claim(s) or solled to establish the publication date of another or or other special reason (as specified) and referring to an oral disclosure, use, exhibition or neans and prior to the international filling date but an the priority date claimed actual completion of the international search	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family 				
	A April 2004 Halling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	22/04/200 Authorized officer Winnmer, G				

INTERNAMINAL SEARCH REPORT

Internat polication No PCT/ 05158

		PCT/(05158
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	DATABASE PDB 'Online! RCSB; 7 January 2003 (2003-01-07) LEE CHANGWOOK ET AL: "Structure of rb tumor suppressor bound to the transactivation domain of e2f-2" retrieved from PDB Database accession no. 1n4m XP002272474 the whole document & LEE CHANGWOOK ET AL: "Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor." GENES & DEVELOPMENT. UNITED STATES 15 DEC 2002, vol. 16, no. 24, 15 December 2002 (2002-12-15), pages 3199-3212, ISSN: 0890-9369	3-39,45
P,X	DATABASE PDB 'Online! RCSB; 6 March 2003 (2003-03-06) XIAO ET AL: "Crystal Structure Of The Retinoblastoma Tumour Suppressor Protein Bound To E2F Peptide" retrieved from PDB Database accession no. 109k XP002272475 abstract & XIAO ET AL.: "Crystal Structure of the Retinoblastoma Tumor" PROC.NATL.ACAD.SCI., vol. 100, no. 5, 21 February 2003 (2003-02-21), pages 2363-2368, USA	3-39,45

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 1, 2, 46 because they relate to subject matter not required to be searched by this Authority, namely:
	Rule 39.1(v) PCT - Presentation of information
2. X	Claims Nos.: 40-44 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
	see FURTHER INFORMATION sheet PCT/ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. 🔲 !	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 40-44

Present claims 40-44 relate to compounds defined by reference to a desirable characteristic or property, namely that they modulate the interaction between pRb and E2F, and that they may be identified by one of the claimed in silico sceening or modeling methods.

The claims cover all compounds having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for no such compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compounds by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, no search has been carried out for these claims.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.