Géométrie

Espaces

§ 1 Recueils

Nous appellerons opérateur toute application d'un ensemble sur un ensemble; nous supposerons que la donnée d'un opérateur A entraîne celle de son ensemble de définition, que nous appellerons def (A), et de son ensemble de valeurs, que nous appellerons val (A).

Il sera utile notamment de considérer <u>l'opérateur impuissant</u>, dont l'ensemble de définition est vide; l'opérateur identique sur un ensemble E, que nous noterons 1_E . Il est clair que l'opérateur impuissant peut se noter 1_E , \varnothing désignant l'ensemble vide.

Etant donné deux opérateurs A et B, nous noterons A.B le produit (de composition) de ces opérateurs, défini par

(1.1)
$$[A.B](X) = A(B(X))$$

chaque fois que le second membre existe,

Le produit de deux opérateurs est toujours un opérateur, même s'il est impuissant.

La multiplication des opérateurs est associative; quels que soient les ensembles de définition de A, B, C, on a toujours

$$[A.B].C = A.[B.C]$$

(1.7)

On en déduit les règles de calcul des puissances entières positives d'un opérateur. La multiplication n'est pas commutative; on dira que A et B commutent si A.B = B.A.

Exemples: Les puissances entières positives d'un opérateur A commutent; E étant un ensemble, les opérateurs qui commutent avec 1_E sont ceux qui donnent de E une image et une image réciproque contenues dans E.

Nous dirons qu'un opérateur A est régulier si

$$[A(x) = A(y)] \Rightarrow [x = y]$$

c'est-à-dire si A établit une correspondance biunivoque entre def (A) et val (A); A étant régulier, l'opérateur inverse A^{-1} est défini par

$$[A^{-1}(x) = y] \Leftrightarrow [x = A(y)]$$

On vérifie immédiatement que A-1 est régulier, et que

(1.5)
$$\begin{cases}
[A^{-1}]^{-1} = A; & \text{def } (A^{-1}) = \text{val } (A); & \text{val } (A^{-1}) = \text{def } (A), \\
A^{-1} \cdot A = 1_{\text{def}(A)}; & A \cdot A^{-1} = 1_{\text{val}(A)}
\end{cases}$$

que si A et B sont réguliers, A.B est régulier et que l'on a

$$[A.B]^{-1} = B^{-1}.A^{-1}$$

mais cette formule tombe en défaut si le produit A.B est régulier sans que A (ou B) le soit.

On l'étend à l'inverse du produit de n opérateurs réguliers, et on en déduit le calcul des puissances entières négatives.

Nous dirons qu'un ensemble R est un pré-recueil si :

- (a) les éléments de R sont des opérateurs réguliers, dont l'inverse appartient aussi à R;
- (b) le produit de deux éléments de R est un élément de R.

de façon brève : $[A, B \in R] \Rightarrow [A^{-1}, A.B \in R]$.

Exemples:

Soit E un ensemble quelconque d'opérateurs réguliers; les produits finis d'éléments de E et d'inverses d'éléments de E forment un pré-recueil (règles 1.2, 1.5, 1.6); c'est évidemment le plus petit pré-recueil contenant E.

— Il est clair que tout groupe de permutations est un pré-recueil; inversement, un pré-recueil ne constitue un groupe que si A⁻¹. A est indépendant de A, donc si les éléments du pré-recueil sont tous des permutations d'un même ensemble.

(1.8) Soit R un pré-recueil; nous appellerons espace de R la réunion E des ensembles de définition des éléments de R.

C'est aussi la réunion des ensembles de valeurs des éléments de R (règles 1.7 a; 1.5); en d'autres termes, E est le plus petit ensemble tel que les éléments de R soient des applications d'une partie de E dans E.

Considérons deux points x et y de l'espace ${\bf E}$ d'un pré-recueil ${\bf R}$. Il est clair que la relation

(1.9) a il existe A dans R tel que A(x) = y

est symétrique (car $x = A^{-1}(y)$), transitive (car si z = B(y), on a aussi $z = [B \cdot A](x)$) et réflexive (car si $x \in E$, il existe un A dans R tel que $x \in \text{def}(A)$, donc que $x = [A^{-1} \cdot A](x)$); par suite E se partage en classes d'équivalence suivant cette relation; nous les appellerons classes de transitivité du pré-recueil.

Nous dirons que le pré-recueil R opère transitivement s'il existe une seule classe; donc si, x et y appartenant à l'espace de R, il existe toujours un élément A de R tel que A(x) = y.

det"

24

 Soient A et B deux opérateurs; nous dirons que B est un prolongement de A, ou que A est une restriction de B, et nous écrirons A < B si

$$(1.10) \qquad \operatorname{def}(A) \subset \operatorname{def}(B) \; ; \; [x \in \operatorname{def}(A)] \Rightarrow [A(x) = B(x)]$$

Il est clair que cette relation < est une relation d'ordre :

$$(1.11) \Big] \qquad [A < B, B < A] \Leftrightarrow [A = B]; [A < B, B < C] \Rightarrow [A < C]$$

Nous dirons qu'une famille d'opérateurs A_j (j parcourant un quelconque ensemble d'indices) est compatible si elle est majorée pour la relation <, c'est-à-dire s'il existe un opérateur A tels que

(1.12) quel que soit
$$j$$
, def $(A_j) \subset def (A)$; $[x \in def (A_j)] \Rightarrow [A_j(x) = A(x)]$

Il est clair que si la famille A, est compatible, on a

$$[x \in \operatorname{def}(A_j) \cap \operatorname{def}(A_k)] \Rightarrow [A_j(x) = A_k(x)].$$

Inversement, si une famille A_j vérifie cette condition (1.13), posons $E = \bigcup$ def (A_j) ; x étant un élément de E, il existe au moins un j tel que $x \in \text{def }(A_j)$; la valeur $A_j(x)$ ne dépend pas du choix de j; appelons-la A(x). Il est clair que A est la borne supérieure exacte de la famille A_j ; ainsi :

Pour qu'une famille d'opérateurs A_j soit majorée pour la relation <, il faut et il suffit qu'elle vérifie la relation (1.13); elle admet alors une borne supérieure exacle (notée $\sup_{j} [A_j]$), qui est le plus petit prolongement commun à tous les A_j .

Étudions les rapports de la relation < avec les opérations définies sur les opérateurs.

On vérifie immédiatement que

$$[A < A', B < B'] \Rightarrow [A.B < A'.B'];$$

que si les familles A_i et B_k sont chacune compatible, la famille $A_i.B_k$ est compatible, et que l'on a

$$\sup_{jk} (A_j.B_k) = \sup_{j} (A_j).\sup_{k} (B_k)$$

De même

(1.17)
$$[A < A', A' \text{ régulier}] \Rightarrow [A \text{ régulier}, A^{-1} < A'^{-1}]$$

et

(1.18)
$$\begin{bmatrix} \mathbf{A}_{j} \text{ compatibles,} \\ \sup_{j} (\mathbf{A}_{j}) \text{ régulier} \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{A}_{j} \text{ réguliers,} \\ \mathbf{A}_{j}^{-1} \text{ compatibles,} \\ \sup_{j} [\mathbf{A}_{j}^{-1}] = [\sup_{j} (\mathbf{A}_{j})]^{-1} \end{bmatrix}$$

mais les prolongements d'un opérateur régulier ne sont pas tous réguliers; si des opérateurs réguliers forment une famille compatible, leur borne supérieure n'est pas nécessairement régulière, leurs inverses ne sont pas nécessairement compatibles.

Nous dirons qu'un ensemble R d'opérateurs est un recueil s'il vérifie les axiomes des pré-recueils :

(a)
$$[A \in R] \Rightarrow [A \text{ régulier, } A^{-1} \in R]$$
;

(1.19) (b) [A et
$$B \in R$$
] \Rightarrow [A.B $\in R$]

plus l'axiome suivant :

(c)
$$[A_j = \text{partie compatible de R, sup } (A_j) \text{ régulier}]$$

 $\Rightarrow [\sup (A_j) \in R].$

Considérons un pré-recueil R_0 ; appelons R l'ensemble des opérateurs A qui vérifient

A est régulier;

(1.20) Il existe une famille compatible A_j d'éléments de R_0 telle que $A = \sup (A_j)$

la formule (1.18) montre que $A^{-1} = \sup (A_j^{-1})$; les A_j^{-1} appartenant à R_0 , A^{-1} appartient à R; de même si $B \in R$, soit : B régulier, $B = \sup B_k$, $B_k \in R_0$, la formule (1.16) montre que l'opérateur régulier A.B est égal à $\sup A_j.B_k$, donc que $A.B \in R$, puisque $A_i.B_k \in R_0$; ainsi, R est un pré-recueil.

Par ailleurs, soit A_r une famille compatible d'éléments de R, tels que $A = \sup (A_r)$ soit régulier; on peut écrire $A_r = \sup (A_{rj})$,

les A_{rj} étant des éléments de R_0 ; tous les A_{rj} sont compatibles, puisque $A_{rj} < A_r < A$; leur borne supérieure est évidemment A, qui est régulier; donc $A \in R$; ainsi R vérifie l'axiome (1.19 c); R est un recueil.

Notons aussi que si $A \in R_0$, la partie de R_0 qui se réduit à A est évidemment compatible, et que sa borne supérieure est A, qui est régulière; donc $A \in R$: le recueil R contient R_0 .

Supposons enfin qu'un recueil R' contienne R_0 ; A étant un élément de R, on peut écrire $A = \sup (A_j)$, $A_j \in R_0$; A est une borne supérieure régulière d'éléments de R_0 , donc de R'; R' vérifiant $(1.19\ c)$ par hypothèse, A appartient donc à R'; ainsi $R \subset R'$. En résumé :

R₀ étant un pré-recueil, les opérateurs A qui vérifient la condition (1.21) (1.20) forment un recueil; c'est le plus petit recueil contenant R_0 ; nous dirons que c'est le recueil engendré par R_0 .

Exemple: on sait qu'un groupe G de permutations d'un ensemble E est un pré-recueil; le recueil engendré se compose de G et de l'opérateur impuissant (borne supérieure de la partie vide de G).

— Remarquons que le recueil R engendré par un pré-recueil R_0 a même espace E que R_0 (les éléments de R_0 appliquant une partie de E dans E, il en est de même de toutes leurs bornes supérieures) ; que les classes de transitivité de R_0 et de R sont les mêmes.

§ 2 Espaces et univers

(2.1) Soit E un ensemble. On dira que E est muni d'une structure d'espace lorsqu'on aura choisi un recueil R admettant E comme espace. Les éléments de R s'appelleront alors les glissements de l'espace. Si le recueil des glissements de E opère transitivement sur E, nous dirons que E possède une structure d'univers.

Soit R₀ un pré-recueil, d'espace E; on sait que le recueil engendré par R₀ admet aussi l'espace E, et y définit donc une « structure d'espace »; nous dirons sans ambiguité qu'il s'agit de la structure d'espace définie par R₀.

— Par abus de langage, nous appellerons simplement espace tout ensemble muni d'une structure d'espace; c'est le cas notamment pour les « espaces vectoriels » (structure définie par le groupe linéaire), les « espaces topologiques » (voir ci-dessous) et les espaces des diverses théories physiques.

Lemme :

Soit E un espace, R le recueil de ses glissements. Alors :

- (a) l'opérateur impuissant appartient à R;
- (b) si 1_F et 1_G appartiennent à R, 1_{FaG} ⊂ R;
- (c) si les parties F, de E sont telles que 1, ∈ R, 1, F, ∈ R;
- (d) $1_E \in R$.

En effet:

(2.2)

(a) l'opérateur impuissant est régulier, et il est la borne supérieure de la partie vide de R; il appartient donc à R (axiome 1.19 c);

- (b) si 1_F et 1_G appartiennent à R, il en est de même de leur produit $1_F.1_G=1_{F n G}$;
- (c) il est évident que 1 u p, est la borne supérieure des 1p, comme cet opérateur est régulier, il appartient aussi à R;
- (d) A étant un glissement, l'ensemble $E_A=\det(A)$ est tel que $1_{E_A}\in R$, puisque $1_{E_A}=A^{-1}\cdot A$; il résulte de (c) que $1\bigcup_{(E_A)}(E_A)\in R$; or, par définition, $E=\bigcup_A(E_A)$.

Il est clair que (2.2) peut s'énoncer de la façon suivante :

Soit E un espace; R le recueil de ses glissements.

(2.3) Une partie F de E sera dite ouverte si 1_F ∈ R; on définit ainsi sur E une topologie (¹). Nous l'appellerons topologie naturelle de l'espace E.

Théorème :

(2.4) Les glissements d'un espace E sont, pour sa topologie naturelle, des homéomorphismes locaux, c'est-à-dire des applications bicontinues d'un ouvert de E sur un ouvert de E.

Soit A un élément du recueil R des glissements de E. Quel que soit l'ouvert Ω de E, 1_{Ω} appartient à R; donc aussi A^{-1} , 1_{Ω} . A.

Or $A^{-1}.1_{\Omega}.A$ est visiblement l'opérateur identique sur l'image réciproque de Ω par A, qui est donc un ouvert. Ainsi A est continu (voir Bourbaki); son ensemble de définition, que l'on obtient en faisant $\Omega = E$, est un ouvert. Comme A^{-1} jouit des mêmes propriétés, A est bien un homéomorphisme local.

C.O.F.D.

- Soit E un espace; nous appliquerons directement à E la terminologie de sa topologie naturelle : E peut être, ou non, séparé, compact, normal, connexe, etc.
- Supposons inversement donnée une topologie T d'un ensemble E; on peut se demander s'il existe une structure d'espace sur E

admettant T comme topologie naturelle. La réponse est donnée par l'énoncé suivant, que le lecteur vérifiera aisément :

Soit T une topologie de l'ensemble E.

Les homéomorphismes locaux de E forment un recueil; c'est le plus grand recueil admettant T pour topologie naturelle.

Le plus petit recueil ayant cette propriété est constitué par l'ensemble des 1_{Ω} , Ω étant ouvert dans E.

Exemples: Considérons la structure d'espace définie sur un ensemble E par un groupe de permutations de E; on vérifie immédiatement que la topologie naturelle est non séparée : les seuls ouverts de E sont E et l'ensemble vide.

Inversement, soit E un espace dont les seuls ouverts soient E et l'ensemble vide; si un glissement A de E n'est pas impuissant, son ensemble de définition et son ensemble de valeurs ne sont pas vides; comme ce sont des ouverts, il coıncident avec E; A étant régulier, est une permutation de E; l'ensemble G de ces glissements est clos pour la multiplication et l'inversion; d'où le théorème:

Soit E un espace; les deux conditions suivantes sont équivalentes :

(a) Les seuls ouverts de E sont E et Ø;

(2.6)

- (b) Le recueil des glissements de E se compose d'un groupe de permutations de E et de l'opérateur impuissant.
- Considérons un groupe « abstrait » G; on sait que l'on appelle homomorphisme de G une application H de G dans un groupe G', telle que $H(X \perp Y) = H(X) \mid H(Y)$, en désignant respectivement par \perp et $\mid T$ les lois de composition de G et G'. Il est clair que H transforme l'élément neutre de G en l'élément neutre de G', que $H(X^{-1}) = [H(X)]^{-1}$; que val (H) est un sous-groupe de G'; on sait que l'image réciproque par H de l'élément neutre de G' est un sous-groupe distingué de G, appelé noyau de H, et que le

⁽¹⁾ Voir Bourbaki, Topologie Générale, Livre III, Chapitre I.

(2.7)

groupe val (H) est isomorphe au groupe quotient de G par ce noyau.

Si G' est le groupe des permutations d'un ensemble F, nous dirons que H est une représentation du groupe G. En d'autres termes,

Une représentation H est un opérateur défini sur un groupe G, tel que

 $[X, Y \in G] \Rightarrow \begin{bmatrix} H(X) = \text{permutation de l'ensemble F} \\ H(X \perp Y) = H(X) \cdot H(Y) \end{bmatrix}$

Nous dirons que F est l'espace de la représentation.

Exemple: Si on pose, dans un groupe quelconque G,

$$T_{\sigma}(X)(Y) = X \perp Y$$
,

 T_{σ} est une représentation de G, ayant G pour espace; les opérateurs $T_{\sigma}(X)$ s'appellent translations à gauche; on définit de même les translations à droite $T_{d}(X)$ par la formule $T_{d}(X)(Y) = Y \perp X^{-1}$; T_{d} est aussi une représentation de G sur l'espace G.

En comparant avec (2.6), on voit donc que toute représentation H d'un groupe G sur un ensemble E donne à E une structure d'espace (les glissements de E étant les éléments de val (H) et l'opérateur impuissant); en particulier, tout groupe G possède une structure d'univers, définie par le pré-recueil des translations à gauche (resp. à droite).

 Soit E un ensemble muni d'une topologie T et d'un groupe G de permutations continues pour la topologie T.

Il est clair que les produits $A.1_{\Omega}$, où A est un élément de G et Ω un ouvert, forment un pré-recueil; on donne ainsi à E une structure d'espace; on peut vérifier que la topologie naturelle de E coıncide avec la topologie donnée T, et que les éléments du groupe G sont des glissements de E; le recueil ainsi construit est d'ailleurs le plus petit qui ait ces deux propriétés.

Considérons un espace E; le recueil R de ses glissements;
 une partie quelconque F de E. Définissons l'ensemble R_F en posant:

(2.8) $[B \in R_F] \Leftrightarrow [il \text{ existe A, dans R, tel que } B = 1_F.A = A.1_F]$

Il est immédiat que les produits et inverses d'éléments de R_F sont encore des éléments de R_F , donc que R_F est un pré-recueil; que les ensembles de définition des éléments de R_F sont des parties de F, et que $1_F \in R_F$ (il suffit de prendre $A = 1_E$) : ainsi F est l'espace du pré-recueil R_F .

Il résulte immédiatement de (2.8) que l'ensemble de définition d'un élément de R_F est l'intersection de F et d'un ouvert de E; il en est de même pour les bornes supérieures d'éléments de R_F , donc pour le recueil R_F engendré par le pré-recueil R_F (voir (1.21)).

Inversement, si Ω est un ouvert de E, $1_{\Omega} \in R$, et la formule $1_{\Omega \cap F} = 1_{\Omega}.1_{F} = 1_{F}.1_{\Omega}$ montre que $1_{\Omega \cap F} \in R_{F}$, donc que $\Omega \cap F$ est ouvert pour la topologie naturelle déduite du recueil R'_{F} . En résumé :

Soit E un espace, R le recueil de ses glissements. Nous appellerons sous-espace de E toute partie F de E, munie de la structure d'espace définie par le pré-recueil $R_{\rm F}$ (formule (2:8)).

 La topologie naturelle de F est induite par celle de E; ce qui signifie que les ouverts de F sont les intersections de F et des ouverts de E.

Exemples de sous-espaces :

(2.9)

— Soit U un univers; toute partie F de U possède une structure de sous-espace; mais F n'est pas nécessairement un sous-univers. Ainsi, si U est l'espace ordinaire, muni du pré-recueil G des déplacements, les sous-univers de U sont l'ensemble vide et les classes de transitivité des sous-groupes de G (exemples : les sommets d'un polygone ou d'un polyèdre régulier; une droite; un plan; un cercle; une sphère; un cylindre; une hélice; etc.).

- Le cas d'un sous-espace ouvert mérite une mention particulière :

& Soit F un ouvert de l'espace E, considéré comme sous-espace de E.

- Les glissements de F sont les glissements A de E qui vérifient

$$def(A) \subset F$$
 $val(A) \subset F$

Le recueil des glissements de F est aussi l'ensemble des 1_F.A.1_F,
 A désignant un glissement quelconque de E.

- Les ouverts de F sont les ouverts de E contenus dans F.
- Si E est un univers, F est aussi un univers (1) .

Théorème :

Soit E un espace ; R le recueil de ses glissements ; \mathbf{P}_{j} une famille d'opérateurs tels que

$$def(P_i) \subset E$$
; $[val(P_i)] \cap E = \emptyset$;

appelons E' la réunion des val (P_i) ; posons $\mathcal{E} = E \cup E'$.

1) Alors les conditions ♣, ♦, ♥ ci-dessous sont équivalentes :

(2.11)

(2.10)

(a) les P_j sont réguliers;

(b) $P_j^{-1}.P_k \in \mathbb{R}$ quels que soient j et k.

Il existe un recueil R tel que

- (a) l'espace de R est &.
- (b) les P, appartiennent à R;
- (c) Ε (muni du recueil R) est un sous-espace ouvert de ε (muni du recueil R).

L'ensemble f des opérateurs qui se mettent sous l'une des quatre formes suivantes

A ,
$$P_j$$
.A , $A.P_j^{-1}$, P_j .A. P_k^{-1} [A \in R] forme un pré-recueil, d'espace \mathcal{E} .

- 2) Si ces conditions sont vérifiées, on a :
 - (a) Il existe un seul recueil ℜ vérifiant ♦; c'est le recueil engendré par ¶;
 - (b) ce recueil donne à ε une structure d'espace telle que E', comme E, est un sous-espace ouvert de ε;
- (c) pour qu'un opérateur régulier B, appliquant une partie de E' dans E', soit un glissement de E', il faut et il suffit que

$$\begin{aligned} \mathbf{P}_{j}^{-1}.\mathbf{B}.\mathbf{P}_{k} \in \mathbf{R} \text{ quels que soient } j \text{ et } k, \text{ ou que} \\ \mathbf{B} &= \sup_{j,\,k} \left[\mathbf{P}_{j}.\mathbf{A}_{jk}.\mathbf{P}_{k}^{-1}\right] \quad , \quad \mathbf{A}_{jk} \in \mathbf{R}. \end{aligned}$$

Démonstration :

♦ ⇒ ♣.

Si les P_j appartiennent au recueil \Re , ils sont réguliers et P_j^{-1} . $P_k \in \Re$; comme def (P_j^{-1}, P_k) et val (P_j^{-1}, P_k) sont contenus dans E, les P_j^{-1} . P_k sont des glissements du sous-espace ouvert E (th. (2.10)), donc des éléments de $P_i(x)$, $P_i(x)$.

C.Q.F.D.

♣ ⇒ ♡.

Puisque les val $(P_j) \cap E$ sont vides, les opérateurs $A.P_j$ et $P_j^{-1}.A$ sont impuissants (si $A \in \mathbb{R}$); on peut alors construire la table de Pythagore de T(1):

⁽¹⁾ Le signe à signifiera « le lecteur vérifiera aisément que ».

⁽¹) A et B désignent des éléments de R; l'opérateur impulssant est noté — ; on a posé C_{fk} = P_f-¹·P_k; les facteurs mis entre crochets sont donc des éléments de R.

35

A.P.-1 A Pr.A P. A. P. -1 B.A В [B.A].P,-1 Pr.B P. [B.A] Pr.[B.A].P.-1 B. P.-1 [B.C., A] [B.C., A].P.-1 Pt. [B. C., A]. P. P.B.P. Pr.[B.Cmj.A]

qui montre que ${\mathbb F}$ est bien un $pr\acute{e}$ -recueil (les inverses d'éléments de ${\mathbb F}$ étant visiblement des éléments de ${\mathbb F}$); δ l'espace de ${\mathbb F}$ est ${\mathbb E}$.

C.O.F.D.

Ø ⇒ O.

Appelons R le recueil engendré par T (th. 1.20); alors

- a) l'espace de R est égal à celui de f (fin du § 1), donc à δ;
- b) les P, qui appartiennent visiblement à I, appartiennent à R;
- c) comme $1_E \in \mathcal{T}$, l'ensemble E est ouvert dans \mathcal{E} (2.3); le recueil des glissements de E, considéré comme sous-espace ouvert de \mathcal{E} , est constitué des Γ tels que $\Gamma \in \mathcal{R}$, def $(\Gamma) \subset E$, val $(\Gamma) \subset E$ (th. (2.10));

par définition du recueil engendré (1.21), il existe des Γ, tels que

$$\Gamma = \sup_{i} [\Gamma_{i}], \quad \Gamma_{i} \in \mathcal{F};$$

on a donc déf (Γ_j)⊂déf(Γ)⊂E, val(Γ_j)⊂val(Γ)⊂E, et par suite

$$\Gamma_{j} = 1_{E}, \Gamma_{j}, 1_{E};$$

en utilisant la table de Pythagore de \mathcal{F} , on voit que $\Gamma_j \in \mathbb{R}$; Γ est donc une borne supérieure régulière d'éléments du recueil \mathbb{R} ; par suite $\Gamma \in \mathbb{R}$ (1.19).

- Réciproquement, tout élément de R appartient à I, donc à R.

C.Q.F.D.

Démonstration de 4:

(a).

1) On vient de voir que le recueil \Re engendré par \Im vérifie \diamondsuit ; soit réciproquement \Re' un recueil vérifiant \diamondsuit ; (\diamondsuit c et b) montrent que $R \subset \Re'$,

 $P_j \in \mathcal{R}'$, donc que $\mathfrak{F} \subset \mathcal{R}'$; \mathcal{R} étant le plus petit recueil contenant \mathfrak{F} (th. 1.21), on a donc $\mathcal{R} \subset \mathcal{R}'$.

2) Soit Γ un élément de \Re' ; d'après (\diamondsuit , a), on a $\Gamma = 1_{\mathcal{E}} \cdot \Gamma \cdot 1_{\mathcal{E}}$; comme $1_{\mathcal{E}}$ est la borne supérieure de $1_{\mathcal{E}}$ et des $P_j \cdot P_j^{-1}$ (qui peuvent d'ailleurs s'écrire $P_j \cdot 1_{\mathcal{E}} \cdot P_j^{-1}$), Γ est la borne supérieure des opérateurs compatibles suivants (th. 1.16)

$$\begin{pmatrix} \mathbf{1_E}, \Gamma, \mathbf{1_E} \\ P_j, \mathbf{1_E}, P_j^{-1}, \Gamma, \mathbf{1_E} \\ \mathbf{1_E}, \Gamma, P_j, \mathbf{1_E}, P_j^{-1} \\ P_j, \mathbf{1_E}, P_j^{-1}, \Gamma, P_k, \mathbf{1_E}, P_k^{-1} \end{pmatrix}$$

Dans chacune de ces expressions, le facteur de la forme $1_{\mathbb{E}} \cdots 1_{\mathbb{E}}$ est un élément de \mathcal{R}' , donc de $\mathcal{R}(\diamondsuit, c)$; la comparaison avec \heartsuit montre que les opérateurs écrits appartiennent tous à \mathcal{F} ; Γ , qui est borne supérieure régulière d'éléments de \mathcal{F} , appartient à \mathcal{R} ; d'où $\mathcal{R}' \subset \mathcal{R}$.

C.Q.F.D.

(Q, b).

La formule $\mathbf{1_{E}}' = \sup_{j} [P_j.P_j^{-1}]$ montre que $\mathbf{1_{E}}' \in \mathcal{R}$, donc que E' est ouvert.

(Q, c).

- Soit B un glissement de E', donc un élément de R; alors P_f⁻¹.B.P_k est un élément de R dont les ensembles de définition et de valeurs sont contenus dans E, donc un élément de R.
- 2) Si B est régulier, applique une partie de E' dans E', et si les $A_{jk} = P_j^{-1}.B.P_k$ appartiennent à R, on a $B = 1_{R'}.B.1_{E'} = \sup_{i,k} [P_j.P_j^{-1}.B.P_k.P_k^{-1}] = \sup_{j,k} [P_j.A_{jk}.P_k^{-1}].$
- 3) Si B = $\sup_{j,k} [P_j.A_{jk}.P_k^{-1}]$, B est borne supérieure régulière d'éléments de \Re , donc élément de \Re , donc élément de \Re .
- Ce qui achève de démontrer (2.11).

Indiquons pour terminer l'important lemme suivant :

Soit E un ensemble ; I un ensemble d'indices ; C_{jk} une famille d'opérateurs $(j, k \in I)$.

37

Alors les conditions ◊ et ♡ suivantes sont équivalentes :

 $\lozenge \begin{cases}
\text{Il existe des opérateurs réguliers } P_j \text{ tels que def } (P_j) \subset E, \text{ et} \\
\text{que} \\
C_{ik} = P_i^{-1} \cdot P_k \qquad \text{(quels que soient } j, k)
\end{cases}$

2) Supposons \heartsuit ; appelons E^* l'ensemble des couples $\binom{j}{X}$, tels que $j \in I$, $X \in E_j$. Définissons sur E^* la relation \sim par

$$\binom{f}{X} \sim \binom{k}{Y} \Leftrightarrow X = C_{fk}(Y)$$

(a) montre alors que \sim est réflexive, (b) qu'elle est symétrique, (c) qu'elle est transitive; si l'on appelle $P_j(X)$ la classe de $\binom{j}{X}$ suivant cette relation [d'où déf $(P_j) = E_j$], on aura donc

$$[P_i(X) = P_k(Y)] \Leftrightarrow [X = C_{ik}(Y)]$$

d'où l'on déduit immédiatement que les P, sont réguliers, et que

$$C_{jk} = P_j^{-1} \cdot P_k$$

C.Q.F.D.

§ 3 Structure globale

Soit Φ un opérateur régulier. Nous appellerons transmuté par Φ de l'opérateur A (resp. de la famille d'opérateurs A_i) l'opérateur $\Phi \cdot A \cdot \Phi^{-1}$ (resp. la famille d'opérateurs $\Phi \cdot A_i \cdot \Phi^{-1}$).

E et E' étant deux espaces, nous appellerons/isomorphisme de E à E' tout opérateur régulier Φ, tel que def (Φ) = E, val (Φ) = E', et que le recueil R' des glissements de E' soit transmuté par Φ du recueil R des glissements de E.

δ l'opérateur 1_E est un isomorphisme de E à E; si Φ est un isomorphisme de E à E', $Φ^{-1}$ est un isomorphisme de E' à E; si Φ et Ψ sont des isomorphismes de E à E' et de E' à E'', Ψ. Φ est un isomorphisme de E à E''; d'où l'énoncé :

(3.3) Deux espaces E et E' sont dits isomorphes s'il existe un isomorphisme de E à E'; cette relation est une équivalence entre espaces; la classe d'un espace E suivant cette relation s'appellera structure globale de E.

— Il est clair que tout isomorphisme d'espace est aussi un isomorphisme pour la structure topologique, c'est-à-dire un opérateur bicontinu; on le vérifie directement en remarquant que le transmuté par Φ de 1_{Ω} est l'opérateur identique sur l'image de Ω par Φ , et que par suite Φ transforme (comme son inverse) les ouverts en ouverts.

(3.4) — Nous appellerons glissements globaux d'un espace E les glissements A de E tels que def (A) = val (A) = E; ce sont des permutations de E, qui forment un groupe (axiomes de pré-recueils).
 Si B est un glissement quelconque, A un glissement global, A.B.A⁻¹ et A⁻¹.B.A sont des glissements (axiomes des pré-recueils); donc A transmute en lui-même le recueil R des glissements de E:

(3.5) Les glissements globaux de l'espace E sont des isomorphismes de E à E (on dit aussi des automorphismes de E).

(3.6) Les automorphismes d'un espace E forment un groupe de permutations de E; les glissements globaux en forment un sous-groupe distingué.

(4.1)

Soit E un espace; Φ un opérateur régulier tel que def (Φ) = E. Φ le transmuté par Φ du recueil R des glissements de E est un recueil, d'espace E'; par suite :

Si Φ est un opérateur régulier, appliquant un espace E sur un ensemble E', on peut donner à E' une structure d'espace telle que Φ soit un isomorphisme de E à E'.

§ 4 Structure locale

Soient E et E' deux espaces; R et R' les recueils de leurs glissements. On appellera isomorphisme local de E à E' tout opérateur régulier Φ , appliquant une partie de E dans E', tel que

- (a) O transmute les éléments de R en éléments de R'.
- (b) Φ-1 transmute les éléments de R' en éléments de R.

En particulier, on voit que $\Phi.1_E.\Phi^{-1}=1_{\mathrm{val}\,(\Phi)}\in\mathrm{R}'$, donc que val (Φ) est ouvert dans E', et de même que def (Φ) est ouvert dans E.

En se reportant à l'énoncé (2.10) relatif aux sous-espaces ouverts, on constate alors que Φ est un isomorphisme du sous-espace ouvert def (Φ) au sous-espace ouvert val (Φ); δ la réciproque est vraie, de sorte que :

- (4.2) E et E' étant deux espaces, les isomorphismes locaux de E à E' sont aussi les isomorphismes d'un sous-espace ouvert de E à un sous-espace ouvert de E'.
 - Soit A un glissement quelconque de l'espace E; quel que soit le glissement B, il est clair que A.B.A⁻¹ et A⁻¹.B.A sont des glissements, donc (définition 4.1) que A est un isomorphisme local de E à E; ainsi:
- (4.3) On appelle automorphismes locaux d'un espace E les isomorphismes locaux de E à E; tous les glissements de E en sont.

Soient Φ et Ψ deux automorphismes locaux d'un espace E. Il est clair, si A est un glissement, que Ψ .A. Ψ^{-1} est un glissement, donc aussi

 $Φ.[Ψ.A.Ψ^{-1}].Φ^{-1} = [Φ.Ψ].A.[Φ.Ψ]^{-1}$, et de même $[Φ.Ψ]^{-1}.A.[Φ.Ψ]$.

Ainsi $\Phi.\Psi$ est un automorphisme local; la symétrie de l'énoncé (4.1) en Φ et Φ^{-1} montre que Φ^{-1} est un automorphisme local. Compte tenu de (4.3), on peut énoncer :

(4.4) Les automorphismes locaux d'un espace E forment un pré-recueil, d'espace E, qui contient le recueil des glissements.

Bien entendu, le pré-recueil des automorphismes locaux engendre un recueil (voir 1.21), donc une structure d'espace, et une topologie; les ouverts de cette topologie sont les réunions d'ensembles de définition d'automorphismes locaux, qui sont tous les ouverts de E pour la topologie initiale (voir 4.2 et 4.3); donc :

(4.5) La topologie naturelle pour le pré-recueil des automorphismes locaux est la même que la topologie initiale (définie par le recueil des glissements).

Les éléments d'un pré-recueil étant bicontinus pour leur topologie naturelle (théorème 2.4), on voit que :

(4.6) Les automorphismes locaux d'un espace E sont bicontinus pour la topologie naturelle de E,

ce qui peut d'ailleurs se vérifier directement, ou se déduire du fait que ce sont des isomorphismes (globaux) de sous-espaces ouverts.

Exemple 1:

Soit E un ensemble muni d'une topologie T; on a vu (2.5) que les opérateurs identiques sur les ouverts de E forment un recueil R;

d'es automorphismes locaux de E sont les opérateurs bicontinus d'ouvert à ouvert (« homéomorphismes locaux »). Ils forment donc un recueil R' (th. 2.5) qui engendre aussi la topologie T.

Exemple 2:

Munissons maintenant E de la structure d'espace définie par le recueil R'. On sait que les automorphismes locaux forment un pré-recueil P, qui contient le recueil R' (th. 4.4), et que le recueil R' engendré par P définit sur E la même topologie T que R' (th. 4.5). Comme R' est le plus grand recueil définissant la topologie T (th. 2.5), on a R' \subset P \subset R' \subset R', d'où P = R': il n'y a pas dans ce cas d'autre automorphisme local que les glissements.

Exemple 3:

Considérons la droite réelle R, et l'ensemble P des opérateurs définis sur un intervalle ouvert, et qui y coı̈ncident avec une translation. $\roldent P$ est un pré-recueil; $\roldent P$ l'opérateur F [F(x)=2x pour x>0] appartient au pré-recueil P' des automorphismes locaux de la droite, ainsi que l'opérateur G [G(x)=x pour x<0]; mais P' n'est pas un recueil; en effet, $\roldent P$ sup (F,G), qui est régulier, n'est pas un automorphisme local.

Remarques:

Les automorphismes locaux d'un espace E, qui constituent un pré-recueil (th. 4.4) peuvent constituer un recueil (exemples 1 et 2), ou non (exemple 3). Ils peuvent opérer transitivement sans que les glissements le fassent (exemple 1, en prenant $E = R^n$).

(4.7) Nous dirons qu'un espace E est parfait s'il n'existe pas d'autre automorphisme local que les glissements.

Nous avons rencontré des cas d'espaces parfaits (exemple 2) et d'espaces non parfaits (exemple 3).

Un autre cas intéressant d'espace non parfait est celui de l'espace de Minkowski, si on admet la « non conservation de la parité », c'est-à-dire qu'une symétrie dans un miroir n'est pas un glissement. En effet, les miroirs sont visiblement des automorphismes de cet espace; les homothéties sont d'ailleurs, elles aussi, des automorphismes de l'espace de Minkowski (1).

— Considérons l'ensemble des couples (E, X), où E est un espace et X un point de E, et la relation ~ définie entre ces couples par

(4.8) $[(E, X) \sim (E', X')] \Leftrightarrow \begin{bmatrix} Il \text{ existe un isomorphisme local } \Phi \text{ de } E \text{ à } E' \end{bmatrix}$

ò cette relation est une équivalence; nous appellerons structure locale de E au point X la classe de (E, X) suivant ∼; en d'autres termes :

(4.9) La relation (4.8) pourra aussi s'énoncer : « la structure locale de E au point X est la même que la structure locale de E' au point X' ».

Considérons maintenant deux points X et Y d'un univers U; par hypothèse, il existe un glissement A tel que A(X) = Y(2.1); A est un autorphisme local (4.3); on a donc $(U, X) \sim (U, Y)$:

(4.10) La structure locale d'un univers U est la même en tous ses points; on l'appellera structure locale de U.

Remarque: un espace E peut avoir même structure locale en tout point sans être un univers; (ainsi Rª muni du recueil des opérateurs identiques sur les ouverts); il faut et il suffit pour cela que E soit un univers pour la structure définie par le prérecueil de ses automorphismes locaux.

Considérons maintenant deux univers non vides U et V; nous dirons que U et V sont localement isomorphes s'ils ont même structure locale en tous leurs points; il faut et il suffit pour cela qu'il existe un isomorphisme local non impuissant de U à V; cette

⁽⁴⁾ Voir ci-dessous (38.11).

§ 5 PASSAGE DU LOCAL AU GLOBAL

43

relation est évidemment une équivalence sur l'ensemble des univers non vides.

Exemple: soit V un ouvert de l'univers U; il est clair que $1_{\overline{\nu}}$ est un isomorphisme local de U à V; donc:

(4.11) Tout univers a même structure locale que ses ouverts non vides (considérés comme sous-univers, voir (2.10)).

— Soit maintenant X un point d'un univers parfait U ; V un univers localement isomorphe à U; Φ un automorphisme local de V; Y un point de déf (Φ).

La structure locale de U en X est la même que celle de V en Y; il existe donc un isomorphisme local de U à V, Ψ , tel que $\Psi(X) = Y$.

V étant un univers, il existe un glissement A de V tel que $A(Y) = \Phi(Y)$. $\delta \Theta = \Psi^{-1}.A^{-1}.\Phi.\Psi$ est un automorphisme local de U, conservant le point X; c'est donc un glissement de U, puisque U est parfait. Son transmuté par l'isomorphisme local Ψ est un glissement de V; donc aussi son produit par le glissement A, soit $B = A.\Psi.\Theta.\Psi^{-1} = \mathbf{1}_{\mathrm{val}(A.\Psi)}.\Phi.\mathbf{1}_{\mathrm{val}(\Psi)}.$ A. Ψ et Ψ étant des isomorphismes locaux, leurs ensembles de valeurs sont des ouverts; Φ étant bicontinu, B est donc la restriction de Φ à un ouvert, qui contient visiblement Ψ .

Ainsi, l'opérateur régulier Φ coı̈ncide avec un glissement dans un voisinage de tout point Y de son ensemble de définition; c'est donc un glissement (voir le § 2); Φ étant un automorphisme quelconque, V est parfait :

Tout univers localement isomorphe à un univers parfait est parfait. On peut dire si l'on veut que la perfection d'univers est une propriété locale.

5 Passage du local au global

Problème :

(5.1)

(5.2)

Soient U_1 et U_2 deux univers non vides; R_1 et R_2 les recueils de leurs glissements.

1) Existe-t-il sur leur réunion U une structure d'univers telle que U, et U, en soient des sous-univers ouverts?

2) Le recueil R définissant une telle structure est-il unique ?

Le problème se traite de façon différente suivant que l'intersection V de U₁ et U₂ est vide ou non.

(a) Supposons V = U1 ∩ U2 non vide.

Pour que le problème (5.1) ait une solution, il est nécessaire et suffisant que V soit ouvert dans U_1 et dans U_2 et que les restrictions à V de R_1 et de R_2 soient les mêmes.

La solution est alors unique; R est le recueil engendré par le pré-recueil des produits finis d'éléments de R₁ et de R₂.

(b) Supposons U1 et U2 disjoints.

Si le problème a une solution, U_1 et U_2 sont localement isomorphes, comme sous-espaces ouverts d'un même univers (4.11); il existe donc un isomorphisme local non impuissant Φ de U_1 à U_2 .

A étant un glissement de U2, posons

$$P_A = A.\Phi$$

 P_A est régulier ; $P_A^{-1} \cdot P_B = \Phi^{-1} \cdot A^{-1} \cdot B \cdot \Phi$ est un glissement de U_1 (4.1) ; on peut appliquer le théorème (2.11) ; il existe un recueil P_A défini sur $P_A \cup P_A$ (car la réunion des val P_A) est égale à P_A 0, P_A 1 et ant un univers), qui con-

§ 5 PASSAGE DU LOCAL AU GLOBAL

(Suite) — Pour que la solution du problème (5.1) soit unique, il faut

45

tient les P_A , et qui admet U_1 et U_2 comme sous-espaces ouverts. Montrons que la restriction de R à U_2 coıncide avec R_2 .

- Soit C un élément de Re; on a pour tout A et B dans Re,

$$P_A^{-1}.C.P_B = \Phi^{-1}.A^{-1}.C.B.\Phi \in R_1$$

puisque Φ est un isomorphisme local; donc C ∈ R (2.11, ♠).

 — Soit C un élément de R tel que déf(C) ⊂ U₂, val (C) ⊂ U₂; alors il existe des éléments CAB de R₁ tels que

$$C = \sup [P_A.C_{AB}.P_{B}^{-1}]$$
 (2.11, 4)

d'où $C = \sup [A. \Phi. C_{AB}. \Phi^{-1}.B^{-1}].$

 Φ étant un isomorphisme local, les Φ . C_{AB} . Φ^{-1} appartiennent à R_2 , comme les A et les B; C est borne supérieure régulière d'éléments de R_2 , donc élément de R_2 .

Enfin, δ R donne une structure d'univers à $U = U_1 U U_2$. Donc :

Supposons les univers U1 et U2 disjoints.

Pour que le problème (5.1) ait une solution, il faut et il suffit que U₁ et U₂ soient localement isomorphes.

— Supposons que la solution du problème soit unique; le recueil R ne dépend alors pas du choix de l'isomorphisme local Φ; comme il contient visiblement Φ, tout isomorphisme local de U₁ à U₂ appartient à R.

Soit V_1 l'ensemble de définition de l'isomorphisme local Φ choisi initialement; V_1 est un ouvert de U_1 (4.2), donc un sous-univers; soit Ψ un automorphisme local de V_1 . Il est clair que Φ . Ψ est un isomorphisme local de U_1 à U_2 , donc un élément de R; par suite aussi son produit par l'élément Φ^{-1} de R, soit Φ^{-1} . Φ . $\Psi=1_{\nabla_1}$. $\Psi=\Psi$.

Alnsi tout automorphisme local Ψ de V_1 est un glissement; V_1 est parfait, donc aussi les univers localement isomorphes U, U_1 , U_2 (th. 4.12).

Supposons inversement les espaces U_1 et U_2 localement isomorphes et parfaits.

Le problème (5.1) admet une solution (5.3), définie par un recueil R; l'espace U ainsi construit est parfait (4.11, 4.12); les isomorphismes locaux P_j de U_1 à U_2 , notamment, appartiennent à R; par suite R vérifie les conditions \diamondsuit du théorème (2.11); (2.11 \diamondsuit a) permet d'énoncer :

et il suffit que U₁ et U₂ soient parfaits.

Dans ces conditions, le recueil R des glissements de U est engendré par le pré-recueil des isomorphismes locaux de U_{λ} à $U_{\mu}(\lambda, \mu \in \{1, 2\})$.

Donnons-nous une structure locale d'univers, celle d'un univers non vide U, que nous appellerons univers-type.

Nous allons chercher les structures globales de tous les univers ayant même structure locale que U; c'est-à-dire un algorithme permettant d'obtenir un univers globalement isomorphe à tout univers V localement isomorphe à U.

Soit V un univers localement isomorphe à U; nous pouvons (par un isomorphisme global, théorème (3.6)) supposer V disjoint de U; puis donner à W = U U V une structure d'univers, admettant U et V comme sous-univers ouverts (th. 5.3).

Appelons carles les glissements de W qui appliquent une partie de l'univers-type U dans V; atlas un ensemble de cartes dont les ensembles de valeurs recouvrent V (il en existe, par exemple l'ensemble de toutes les cartes). Désignons par P_j les cartes d'un atlas (j parcourt un ensemble d'indices bien choisi) et appelons C_{ik} les « changeurs de cartes »

$$C_{ik} = P_i^{-1} \cdot P_k$$

Il résulte immédiatement des théorèmes (2.11) et (2.12) que :

Les C. sont des glissements de U;

 $C_{ij} = 1_{E_i}$, E_i étant un ouvert de U;

 $C_{ik}^{-1} = C_{kj};$

 C_{jk} . $C_{kt} < C_{jk}$

— Réciproquement, donnons-nous un ensemble d'ouverts E_j de U (non tous vides) et de glissements C_{jk} de U vérifiant (5.4); il résulte du lemme (2.12) qu'il existe des opérateurs réguliers P_j , définis sur les E_j , tels que

(5.5)

 $C_{jk} = P_j^{-1}.P_k$; les conditions \clubsuit de (2.11) sont vérifiées; il existe donc un recueil \Re , admettant pour espace la réunion W de U et de $V = \bigcup val(P_j)$,

tel que U et V soient ouverts dans W, et que les P, appartiennent à R.

Alors δ W est un univers, U et V sont des sous-univers ouverts, localement isomorphes; les P_j sont des cartes de V, qui forment un atlas.

 Supposons que V et V' soient deux univers localement isomorphes à U, et qu'ils possèdent des atlas P_j et P'_j admettant les mêmes changeurs de cartes :

$$P_i^{-1}.P_k = P'_i^{-1}.P'_k$$
 quels que soient j et k.

Alors à les opérateurs $P'_j.P_j^{-1}$ sont compatibles, leur borne supérieure est un isomorphisme global de V à V'; d'où l'énoncé :

Les relations (5.4) sont nécessaires et suffisantes pour que les C_{jk} soient les changeurs de cartes P_j^{-1} . P_k d'un atlas P_j d'un univers localement isomorphe à l'univers U;

Si un atlas P_j d'un univers V et un atlas P'_j d'un univers V' ont les mêmes changeurs de cartes C_{jk} , V et V' sont globalement isomorphes.

— Nous avons bien résolu le problème posé, appliquant l'ensemble des solutions de (5.4) sur l'ensemble des structures globales d'univers localement isomorphes à U (mais le problème de savoir si deux familles distinctes de changeurs de carte définissent ou non la même structure globale est difficile).

Exemple:

(5.6) — Soit A un glissement de l'univers U. On vérifie les relations (5.4) en posant C₁₁ = C₂₂ = 1_U; C₁₂ = A; C₂₁ = A⁻¹. On définit ainsi une structure globale, que l'on peut se représenter en imaginant deux univers U₁ et U₂ isomorphes à U, et en collant le point X de U₂ sur le point A(X) de U₁. Si on prend A = 1_Ω, Ω étant un ouvert ayant un point frontière X, on obtiendra un univers non séparé (les points P₁(X) et P₂(X) sont distincts, mais tout voisinage de l'un coupe tout voisinage de l'autre), même s'il est localement séparé (c'est-à-dire localement isomorphe à un univers séparé U).