CS 510 Computational Photography-Spring 2018 Final Project Presentation

PhD Husnu Melih Erdogan – Electrical & Computer Engineering

herdogan@pdx.edu

Panoramic Images for Robot Vison

Outline

- Introduction
- Motivation
- Steps to Create Panorama
- Results
- Questions

Introduction

- Often one camera for object recognition is not enough
- Not all objects captured in an image
- Using two cameras to create a panorama and use that panoramic image for object detection

Motivation

Our robot Jimmy needs a better vision system

Test Setup

- 21 DOF (Degrees of Freedom)
- 2 x 5MP RGB Cameras
- Microphone
- LCD Display
- NUC with Intel i5 processor
- Touch Sensors
- Ubuntu 14.04
- ROS (Robot Operating System)
- Python 3.4
- OpenCV

5 Steps to Make Panorama

Capture Images

Step 1 – Capture Images

Create a mask size of 2 images

- Create a mask for the warped image

Step 2 - Feature

Detection and

Matching

Find Matches - SIFT

RANSAC

Calculate Homography and warp the image

Step 3 – **Aligning Images**

Step 4 Blending

Overlap 20%

Overlap 20%

Preprocessing images

- Create a mask for input images

- Create a mask for the final image

Step 4 Blending

 Build Laplacian pyramids LA

Step 4 Blending

Build Laplacian pyramids LB

Gaussian Pyramid of the Mask

Blending: Form a combined pyramid from LA and LB

LS(i,j) = GR(I,j,) * LA(I,j) + (1-GR(I,j)) * LB(I,j)

Reconstruct LS pyramid to get the final blended image

LS(i,j)

Pyramid Blended Image

Step 5 – Cropping (Optional)

What if we don't use any blending

Challenges

Challenges

Odd image size values

Final Results

Object Detection

Google Cloud Vision API with Standard Image

Table	80%
Furniture	64%
Wood	62%
Floor	62%
Lamp	54%
Light Fixture	51%

r3.jpg

Google Cloud Vision API with Panoramic Image

result3.jpg

	_
Table	83%
Cup	82%
Floor	81%
Coffee Cup	75%
Ceramic	75%
Flooring	71%
Tableware	68%
Furniture	65%
Olege	▼

Future Work

- Adding eye cameras into the head
- More object detection testing with two eyes
- ROS implementation

Sources

- http://www.cvl.isy.liu.se/en/research/datasets/passta/
- https://web.stanford.edu/class/ee368/Handouts/Lectures/2015 Aut umn/12-MonoPanorama 16x9.pdf
- https://www.pyimagesearch.com/2016/01/11/opencv-panoramastitching/
- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.5135
 &rep=rep1&type=pdf
- https://www.youtube.com/watch?v=oT9c LIFBqs&t=2736s
- https://www.youtube.com/watch?v=E1--wyeSK_I

Questions

