

Vishay Siliconix

P-Channel JFETs

J174	SST174
J175	SST175
J176	SST176
J177	SST177

PRODUCT SUMMARY								
Part Number	V _{GS(off)} (V)	$r_{DS(on)}$ Max (Ω)	I _{D(off)} Typ (pA)	t _{ON} Typ (ns)				
J/SST174	5 to 10	85	-10	25				
J/SST175	3 to 6	125	-10	25				
J/SST176	1 to 4	250	-10	25				
J/SST177	0.8 to 2.25	300	-10	25				

FEATURES

Low On-Resistance: J174 <85 Ω
Fast Switching—t_{ON}: 25 ns
Low Leakage: -10 pA
Low Capacitance: 5 pF

BENEFITS

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible "Off-Error," Excellent Accuracy
- Good Frequency Response
- Eliminates Additional Buffering

APPLICATIONS

- Analog Switches
- Choppers
- Sample-and-Hold
- Normally "On" Switches
- Current Limiters

DESCRIPTION

Low Insertion Loss

The J/SST174 series consists of p-channel analog switches designed to provide low on-resistance and fast switching. This series simplifies series-shunt switching applications when combined with the Siliconix J/SST111 series.

The TO-226AA (TO-92) plastic package provides a low-cost option, while the TO-236 (SOT-23) package provides surface-mount capability. Both the J and SST series are available in tape-and-reel for automated assembly (see Packaging Information).

SST175 (S5)* SST176 (S6)* SST177 (S7)*

*Marking Code for TO-236

For applications information see AN104.

J/SST174/175/176/177 Series

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Gate-Drain Voltage	Lead Temperature (1/16" from case for 10 sec.)
Gate-Source Voltage	Power Dissipation ^a
Gate Current	
Storage Temperature55 to 150°C	Notes
Operating Junction Temperature	a. Derate 2.8 mW/°C above 25°C

					Limits				
					J/SST174		J/SS	J/SST175	
Parameter	Symbol	Test Co	Test Conditions		Min	Max	Min	Max	Unit
Static									
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = 1 \mu A$	V _{DS} = 0 V	45	30		30		V
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = −15 V	, I _D = -10 nA		5	10	3	6	7 V
Saturation Drain Current ^b	I _{DSS}	V _{DS} = -15 \	V, V _{GS} = 0 V		-20	-135	-7	-70	mA
Cata Bayaraa Currant	,	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		0.01		1		1	†
Gate Reverse Current	I _{GSS}		T _A = 125°C	5					1
Gate Operating Current	I _G	$V_{DG} = -15 \text{ V}, I_D = -1 \text{ mA}$		0.01					nA
Drain Cutoff Current	1	$V_{DS} = -15 \text{ V}$		-0.01		-1		-1]
Brain Guton Gurrent	I _{D(off)}		T _A = 125°C	- 5					<u> </u>
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 \text{ V}, V_{DS} = -0.1 \text{ V}$				85		125	Ω
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = -1 \text{ mA}$, $V_{DS} = 0 \text{ V}$		-0.7					V
Dynamic									
Common-Source Forward Transconductance	9fs	$V_{DS} = -15 \text{ V}, I_{D} = -1 \text{ mA}$ f = 1 kHz		4.5					mS
Common-Source Output Conductance	g _{os}			20					μS
Drain-Source On-Resistance	r _{ds(on)}	$V_{GS} = 0 \text{ V}, I_D = 0 \text{ mA}, f = 1 \text{ kHz}$				85		125	Ω
Common-Source Input Capacitance	C _{iss}	$V_{DS} = 0 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		20					
Common-Source Reverse Transfer Capacitance	C _{rss}	V _{DS} = 0 V, f = 1	V _{GS} = 10 V MHz	5					pF
Equivalent Input Noise Voltage	ē _n	$V_{DG} = -10 \ f = 1$	/, I _D = –1 mA I kHz	20					nV∕ √Hz
Switching		_	_						
Turn-On Time	t _{d(on)}	V _{GS(L)} = 0 V, V _{GS(H)} = 10 V See Switching Circuit		10					
	t _r			15					ns
Turn-Off Time	t _{d(off)}			10					
Turr-Oil Time	t _f			20					1

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW $\leq 300~\mu s$ duty cycle $\leq 3\%$.

PSCIA

J/SST174/175/176/177 Series

Vishay Siliconix

				Limits				
				J/SST176		J/SST177		1
Parameter	Symbol	Test Conditions	Typ ^a	Min	Max	Min	Max	Unit
Static								
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = 1 \mu A$, $V_{DS} = 0 V$	45	30		30		Ι
Gate-Source Cutoff Voltage	V _{GS(off)}	$V_{DS} = -15 \text{ V}, I_{D} = -10 \text{ nA}$		1	4	0.8	2.25	V
Saturation Drain Current ^b	I _{DSS}	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}$		-2	-35	-1.5	-20	mA
Gate Reverse Current	1 .	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	0.01		1		1	
Gale Reverse Current	I _{GSS}	T _A = 125°C	5					1
Gate Operating Current	I _G	$V_{DG} = -15 \text{ V}, I_D = -1 \text{ mA}$	0.01					nA
Drain Cutoff Current	1	$V_{DS} = -15 \text{ V}, V_{GS} = 10 \text{ V}$	-0.01		-1		-1	
Diam Gulon Gurrent	I _{D(off)}	T _A = 125°C	- 5					
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 \text{ V}, V_{DS} = -0.1 \text{ V}$			250		300	Ω
Gate-Source Forward Voltage	$V_{GS(F)}$	$I_G = -1 \text{ mA}$, $V_{DS} = 0 \text{ V}$	-0.7					V
Dynamic								
Common-Source Forward Transconductance	9 fs	$V_{DS} = -15 \text{ V, } I_{D} = -1 \text{ mA}$	4.5					mS
Common-Source Output Conductance	9 _{os}	I = I KMZ	20					μS
Drain-Source On-Resistance	r _{ds(on)}	$V_{GS} = 0 \text{ V}, I_D = 0 \text{ mA}, f = 1 \text{ kHz}$			250		300	Ω
Common-Source Input Capacitance	C _{iss}	$V_{DS} = 0 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	20					
Common-Source Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 0 \text{ V}, V_{GS} = 10 \text{ V}$ f = 1 MHz	5					pF
Equivalent Input Noise Voltage	e _n	$V_{DG} = -10 \text{ V}, I_D = -1 \text{ mA}$ f = 1 kHz	20					nV∕ √Hz
Switching			•	•	•	•	•	
Turn-On Time	t _{d(on)}		10					
	t _r	$V_{GS(L)} = 0 \text{ V}, V_{GS(H)} = 10 \text{ V}$ See Switching Circuit	15					ns
Turn-Off Time	t _{d(off)}	See Switching Circuit	10					
Turri-Oii Tirrie	t _f		20					1

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW $\leq 300~\mu s$ duty cycle $\leq 3\%$.

PSCIA

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

V_{GS(off)} – Gate-Source Cutoff Voltage (V)

 $V_{GS} = 0 V$ 1.5 V -1.6

Output Characteristics

V_{DS} - Drain-Source Voltage (V)

Forward Transconductance and Output Conductance vs. Gate-Source Cutoff Voltage

V_{GS(off)} - Gate-Source Cutoff Voltage (V)

On-Resistance vs. Temperature

-2

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

J/SST174/175/176/177 Series

Vishay Siliconix

SWITCHING TIME TEST CIRCUIT								
	174	175	176	177				
V_{DD}	-10 V	-6 V	-6 V	−6 V				
V_{GG}	20 V	12 V	8 V	5 V				
R _L *	560 Ω	750 Ω	1800 Ω	5600 Ω				
R _G *	100 Ω	220 Ω	390 Ω	390 Ω				
I _{D(on)}	–15 mA	–7 mA	–3 mA	–1 mA				

*Non-inductive

INPUT PULSE

Rise Time < 1 ns Fall Time < 1 ns Pulse Width 100 ns PRF 1 MHz

SAMPLING SCOPE

Rise Time 0.4 ns Input Resistance 10 M Ω Input Capacitance 1.5 pF

See Typical Characteristics curves for changes.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05