

(19) BUNDESREPUBLIK - DEUTSCHLAND

n Pat ntschrift ® DE 3812673 C2

(51) Int. Cl.⁶: F16H59/14 F 16 H 59/44

DEUTSCHES PATENTAMT

P 38 12 673.7-12 Aktenzeichen: 17. 4.88 Anmeldetag:

Offenlegungstag: 10.11.88

Veröffentlichungstag der Patenterteilung: 17. 8.95

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

30 Unionspriorität: 32 33 31

20.04.87 JP P 62-97019 20.04.87 JP P 62-97022

73 Patentinhaber: Mitsubishi Jidosha Kogyo K.K., Tokio/Tokyo, JP

(74) Vertreter: Raible, H., Dipl.-ing., Pat.-Anw., 70192 Stuttgart ② Erfinder:

Hiramatsu, Takeo, Dipl.-Ing., Nagaokakyo, Kyoto, JP

56 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DF 34 47 651 A1 DE 30 23 278 A1 DE 24 25 680 A1 DE-OS 22 60 258 DE-OS 22 23 397 DE-OS 19 39 691 41 02 222 US

(64) Anordnung zur Erfassung eines Drehmoments

Beschreibung

Die Erfindung betrifft eine Anordnung zur Erfassung eines Drehmoments.

Aus der US 4 102 222 ist es bekannt, einen Sollwert für ein Schalt-Drehmoment Ts zu berechnen, um beim Herunterschalten eines Getriebes einen linearen Anstieg der Motordrehzahl zu bewirken. Bei der Berechnung dieses Drehmoments Ts wird das Trägheitsmoment des Motors herangezogen. Ferner wird in einem 10 Speicher ein Anfangswert eines Drehmoments gespeichert, außerdem die Fahrgeschwindigkeit vor dem Schaltvorgang. Mit diesen gespeicherten Vergangenheitswerten wird anschließend gerechnet, obwohl sich das Motor-Drehmoment während des Schaltvorgangs unter Umständen erheblich ändern kann, und die Reibungskupplungen des Getriebes werden entsprechend gesteuert, so daß beim Schalten ein Stoß oder Ruck entstehen kann; die Steuerung der Reibungskupplungen ist verzögert bezüglich des tatsächlichen Verlaufs des 20 Motor-Drehmoments.

Aus der US 3 754 482 (= DE 22 23 397 A1) kennt man ein Getriebe, bei dem der Hydraulikdruck, welcher einer Schaltkupplung zugeführt wird, einer Regelung in der Weise unterworfen wird, daß die Änderungsrate der 25 Eingangsdrehzahl des Getriebes (welche derjenigen des Turbinenrads entspricht), so geregelt wird, daß sie einem vorgegebenen Änderungs-Sollwert entspricht.

Bei einem solchen Automatikgetriebe können die erfaßten Werte für die Drosselklappenstellung und die 30 licht. Fahrzeuggeschwindigkeit nicht immer Parameter sein, welche das Eingangs-Drehmoment des Getriebes genau angeben. Deshalb ist es hier nicht möglich, eine ruckfreie und schnelle Getriebesteuerung ohne Zugkraftun-

terbrechung zu erhalten.

Ändert sich nämlich bei einem solchen Automatikgetriebe während der Getriebesteuerung die Drosselklappenstellung des Motors in erheblichem Maße, und die Regelung kann diesem Vorgang nicht gut folgen, so treten Regelschwingungen (Pendel-Drehmomente) auf, 40 und man erhält keine ruckfreie Getriebesteuerung. Ist ferner der Anfangswert des Druckes, der den Kupplungen zu Beginn der Getriebesteuerung zugeführt wird, nicht der richtige, so können ebenfalls Pendelungen auf-

Aus der DE 22 60 258 A1 kennt man ein Getriebe, bei welchem der Leitungsdruck im hydraulischen Steuerkreis des Automatikgetriebes entsprechend dem Turbinenrad-Drehmoment gesteuert wird. Letzteres wird hergeleitet als die Summe eines Drehmoments, das auf 50 den Stator des Wandlers wird, und eines Drehmoments, das auf dessen Antriebsglied wirkt, um so den Hydraulikdruck zu steuern, welcher den Reibungskupplungen zugeführt wird. Tritt hierbei eine Änderung im Ausgangs-Drehmoment des Motors auf, so wird die Steue- 55 rung des Leitungsdrucks bewirkt, nachdem die Änderung des Ausgangs-Drehmoments des Motors bereits eine Änderung des Turbinenrad-Drehmoments bewirkt hat. Die Steuerung des Leitungsdrucks ist also hier verzögert relativ zu einer Änderung des Ausgangs-Drehmoments des Motors, und folglich ist die Drucksteuerung der Reibungskupplung ebenfalls verzögert.

Die DE 24 25 680 A1 betrifft eine Getriebesteuerung, bei welcher der einer Kupplung zugeführte Hydraulikdruck gesteuert wird entsprechend der Drehzahl des 65 Motors (entsprechend der Drehzahl der Pumpenwelle) und der Drehzahl der Eingangswelle des Getriebes (entsprechend der Drehzahl der Turbinenwelle). Wenn hier-

bei eine Änderung des Motor-Drehmoments auftritt, wird der Schaltbefehl erst bewirkt, nachdem die Änderung des Motor-Drehmoments eine Änderung der Drehzahl der Turbinenwelle bewirkt hat. Dadurch wird die Steuerung des Getriebes relativ zur tatsächlichen Änderung des Motor-Drehmoments verzögert.

Die DE 34 47 651 A1 betrifft die Steuerung der Überbrückungskupplung eines Wandlers, und zwar entspre-

chend der Drosselklappenstellung.

Die DE 19 39 691 A1 zeigt die Steuerung des Schaltdrucks, welcher einer Schaltkupplung zugeführt wird. Dies geschieht entsprechend dem Turbinenrad-Drehmoment einer hydrodynamischen Kupplung. Das Turbinenrad-Drehmoment wird errechnet aus der Eingangsdrehzahl und der Ausgangsdrehzahl dieser hydrodynamischen Kupplung. Ändert sich das Motor-Drehmoment während eines Schaltvorgangs, so muß diese Änderung erst auf das Drehmoment am Turbinenrad "durchgeschlagen" haben, bevor sie die Steuerung der Schaltkupplung beeinflussen kann. Dies hat eine Verzögerung der Steuerung der Schaltkupplung zur Folge.

Es ist ferner bekannt, das Drehmoment an einer Getriebewelle mittels eines Dehnungsmeßstreifens oder mittels Magnetostriktion zu erfassen. Die erforderlichen Sensoren sind aber groß und erfordern Schleifringe, was

die Zuverlässigkeit beeinträchtigt.

Es ist deshalb eine Aufgabe der Erfindung, eine neue Anordnung zur Erfassung eines Drehmoments bereitzustellen, welche eine bessere Getriebesteuerung ermög-

Diese Aufgabe wird gelöst durch die Anordnung nach dem Patentanspruch 1. Hierbei wird also das Drehmoment an der Ausgangswelle einer Strömungskupplung oder eines Strömungswandlers erfaßt. Zu diesem Wert wird ein Drehmomentenwert addiert, der sich aus dem Trägheitsmoment des Motors und einer Änderungsrate der Motordrehzahl ergibt. Die Summe stellt ein Drehmoment dar, mit dem die Reibungseingriffsvorrichtungen eines Getriebes in sehr vorteilhafter Weise gesteuert oder geregelt werden können, um ein weitgehend ruckfreies Schalten zu ermöglichen.

Das Drehmoment an der Ausgangswelle der Stromungskupplung oder des Strömungswandlers wird mit Vorteil gemäß Anspruch 2 erfaßt, da eine solche Erfas-45 sung mit einem geringen Aufwand möglich ist, wobei man mit besonderem Vorteil gemäß Anspruch 3 vor-

Eine andere Weiterbildung einer erfindungsgemäßen Anordnung ist Gegenstand des Anspruchs 4, wobei man zu diesem Zweck mit besonderem Vorteil eine Überbrückungskupplung verwendet, bei der mittels eines Steuerparameters das übertragene Drehmoment gesteuert werden kann, z. B. gemäß Anspruch 6 durch intermittierendes Einschalten eines Magnetventils mit einem entsprechenden Tastverhältnis. Dieses Tastverhältnis stellt dann ein Maß für das Drehmoment dar, welches von der Überbrückungskupplung jeweils übertragen wird.

Eine bevorzugte Weiterbildung einer erfindungsgemäßen Anordnung ist Gegenstand des Patentanspruchs 7. Wird nämlich der hydraulische Druck für die Reibungseingriffsvorrichtungen gemäß dem mit einer erfindungsgemäßen Anordnung erfaßten Drehmoment eingestellt, so kann die Drehmomentenkapazität dieser Reibungseingriffsvorrichtungen stabil geregelt oder gesteuert werden, und das Getriebe folgt den ihm zugeführten Befehlen in zufriedenstellender Weise.

Die Erfindung wird im folgenden beschrieben anhand

eines in der Zeichnung dargestellten bevorzugten Ausführungsbeispiels. Es zeigen:

Fig. 1 ein Blockschaltbild, welches schematisch ein Aut matikgetriebe mit einem Drehmomentwandler zeigt,

Fig. 2 eine schematische Darstellung eines Zahnradgetriebes, wie es für das Zahnradgetriebe 30 der Fig. 1 'erwendung finden kann,

Fig. 3 ein hydraulisches Schaltbild, welches einen Teil des Innenlebens der in Fig. 1 dargestellten hydrauli- 10 gesteuertes bzw. geregeltes Fahrzeuggetriebe mit eischen Schaltung 40 zeigt,

Fig. 4 ein Ablaufdiagramm einer Hauptroutine; es zeigt hydraulische Steuer- bzw. Regelvorgänge, welche bei der Getriebesteuerung von dem Getriebesteuergerät (TCU) 16 der Fig. 1 ausgefüht werden,

Fig. 5 ein Diagramm eines zeitlichen Verlaufs; es zeigt, wie Impulssignale von einem Sensor 14 für die Motordrehzahl Ne erzeugt und wie die Drehzahl und ihre Änderung in verschiedenen Takten errechnet wer-

Fig. 6 eine Darstellung von Schaltkennlinien, definiert durch die Drosselklappenöffnung und eine Getriebeabtriebsdrehzahl No.

Fig. 7 ein Ablaufdiagramm einer Leistung-EIN-AUS-Entscheidungsroutine, welche vom Getriebesteuergerät 25 16 ausgeführt wird,

Fig. 8-12 Ablaufdiagramme, welche hydraulische Steuer- bzw. Regelvorgänge darstellen, die in einem Leistung-EIN-Hinaufschaltmodus vom Getriebesteuergerät 16 ausgeführt werden,

Fig. 13 eine Darstellung mit zeitlichen Verläufen beim Leistung-EIN-Hinaufschaltmodus, und zwar den Verlauf der Turbinenraddrehzahl Nt, der Drehzahl No, und die Verläufe der Tastverhältnisse der Magnetventile auf der Auskuppel- bzw. der Einkuppelseite, wie sie beim 35 Hinaufschalten verwendet werden,

Fig. 14, 15, 16 Ablaufdiagramme, welche hydraulische Steuer- bzw. Regelvorgänge zeigen, die bei einem Leistung-EIN-Herunterschaltmodus vom Getriebesteuergerät 16 ausgeführt werden,

Fig. 17 eine Darstellung mit zeitlichen Verläufen beim Leistung-EIN-Herunterschaltmodus, und zwar den Verlauf der Turbinenraddrehzahl Nt, der Drehzahl No, und die Verläufe der Tastverhältnisse der Magnetventile auf der Auskuppel- bzw. der Einkuppelseite, wie sie beim 45 Herunterschalten verwendet werden,

Fig. 18, 19, 20 Ablaufdiagramme, welche hydraulische Steuer- bzw. Regelvorgange zeigen, die bei einem Leistung-AUS-Hinaufschaltmodus vom Getriebesteuergerät 16 ausgeführt werden,

Fig. 21 eine Darstellung mit zeitlichen Verläufen beim Leistung-AUS-Heraufschaltmodus, und zwar den Verlauf der Turbinenraddrehzahl Nt, der Drehzahl No, und die Verläufe der Tastverhältnisse der Magnetventile auf der Auskuppel- bzw. der Einkuppelseite, wie sie beim 55 Hinaufschalten verwendet werden,

Fig. 22, 23, 24 Ablaufdiagramme, welche hydraulische Steuer- bzw. Regelvorgänge zeigen, die bei einem Leistung-AUS-Herunterschaltmodus vom Getriebesteuergerät 16 ausgeführt werden,

Fig. 25 eine Darstellung mit zeitlichen Verläufen beim Leistung-AUS-Herunterschaltmodus, und zwar den Verlauf der Turbinenraddrehzahl Nt, der Drehzahl No, und die Verläufe der Tastverhältnisse der Magnetventile auf der Auskuppel- bzw. der Einkuppelseite, wie sie 65 Kammer 52b den Steuerschieber 52a in die rechte Endbeim Herunterschalten verwendet werden, und

Fig. 26 eine Darstellung mit zeitlichen Verläufen der Drosselklappenöffnung, des Turbinenrad-Wellenmoments, und des Abtriebswellen-Drehmoments, wie sie bei einem durch ein Anheben des Gaspedalfußes verursachten Hinaufschaltmodus ablaufen.

In der nachfolgenden Beschreibung werden für glei-5 che oder gleichwirkende Teile jeweils dieselben Bezugszeichen verwendet. Die Begriffe links, rechts, oben, unten beziehen sich auf die jeweilige Zeichnungsfigur, ohne daß das immer erneut wiederholt wird.

Fig. 1 zeigt in schematischer Form ein elektronisch nem Drehmomentwandler. Ein Verbrennungsmotor 10, z. B. ein Sechszylindermotor, hat eine Kurbelwelle 10a und an dieser ein Schwungrad 11. Ein Ende einer Eingangswelle 21 eines Drehmomentwandlers 20, der im Kraftfluß angeordnet ist, ist mechanisch mit der Kurbelwelle 10a über das Schwungrad 11 verbunden. Der Drehmomentwandler 20 hat in der üblichen Weise ein Gehäuse 20a, ein Pumpenrad 23, ein Leitrad 24 und ein Turbinenrad 25. Das Pumpenrad 23 ist über ein Eingangsgehäuse 22 des Wandlers 20 mit der Eingangswelle 21 verbunden, und das Leitrad 24 ist über einen Freilauf 24a mit dem Gehäuse 20a verbunden. Das Turbinenrad 25 ist mit der Antriebswelle 30a eines Zahnradgetriebes 30 verbunden.

Beim vorliegenden Ausführungsbeispiel ist der Drehmomentwandler 20 mit einer hydraulisch gesteuerten Überbrückungskupplung 28 versehen, welche mit Schlupf arbeiten kann. Dies kann z. B. eine Dämpferkupplung sein. Diese Kupplung 28 ist zwischen dem Eingangsgehäuse 22 und dem Turbinenrad 25 angeordnet. Die Kupplung 28 ermöglicht einen Schlupf zwischen Pumpenrad 23 und Turbinenrad 25 des Drehmomentwandlers 20. Der Schlupf der Kupplung 28, d. h. das von ihr übertragene Drehmoment, wird von außen gesteuert mittels einer Steuerschaltung 50.

Die Steuerschaltung 50 enthält ein Steuerventil 52 für die hydraulisch steuerbare Kupplung 28 und ein Steuermagnetventil 54. Letzteres ist ein normal geschlossenes Ein-Aus-Ventil, dessen Elektromagnet 54a elektrisch mit einem Getriebesteuergerät 16 verbunden ist, das auch als TCU 16 bezeichnet wird. Das Steuerventil 52 dient dazu, einen Durchlaß für hydraulisches Druckmittel zu schalten, welches der Kupplung 28 zugeführt werden soll, und den in der Kupplung 28 wirksamen hydraulischen Druck zu steuern. Zu diesem Behufe weist das Steuerventil 52 einen Steuerschieber 52a und eine Feder 52c auf. Letztere befindet sich links, bezogen auf Fig. 1, in einer linken Kammer 52b, gegenüber der linken Stirnfläche des Steuerschiebers 52a, und beaufschlagt diesen in Richtung nach rechts. Die linke Kammer 52b ist mit einem Durchlaß 55 für hydraulisches Vorsteuer-Druckmittel verbunden, welcher Durchlaß mit einer - nicht dargestellten - hydraulischen Vorsteuerdruckquelle verbunden ist. Der Durchlaß 55 hat eine Abzweigung 55a, die zum Rücklauf führt. Das Magnetventil 54 liegt in der Abzweigung 55a. Die Höhe des der linken Kammer 52b zugeführten Vorsteuerdrucks wird dadurch gesteuert, wie stark das Magnetventil 54 geöffnet oder geschlossen ist. Dieser Vorsteuerdruck von der Vorsteuerdruckquelle wird auch einer rechten Kammer 52d des Steuerventils 52 zugeführt. Die Kammer 52d liegt der rechten Stirnfläche des Steuerschiebers 52a gegen-

Wenn der hydraulische Vorsteuerdruck in der linken lage verschiebt, wird Drehmomentwandler-Schmieröl unter Druck über eine Ölleitung 56, das Steuerventil 52 und die Ölleitung 57 einer hydraulischen Arbeitskam5

mer zugeführt, die zwischen dem Eingangsgehäuse 22 und der Kupplung 28 angeordnet ist. Dadurch wird die Kupplung 28 gelüftet und außer Eingriff gebracht.

Wird andererseits der linken Kammer 52b kein Vorsteuerdruck zugeführt, so daß sich der Steuerschieber 52a in seine in Fig. 1 dargestellte linke Endstellung verschiebt, so wird ein Leitungsdruck von einer (nicht dargestellten) Hydropumpe über eine Leitung 58, das Steuerventil 52 und eine Leitung 59 einer Kammer zugeführt, die zwischen der Kupplung 28 und dem Turbinenrad 25 ausgebildet ist. Dadurch kommt die Kupplung 28 in Reibungseingriff mit dem Eingangsgehäuse 22.

Wird das Tastverhältnis Dc — darunter ist zu verstehen das Verhältnis zwischen der jeweiligen Einschaltzeit des Magnetventils 54 und der Gesamtdauer eines Zeittaktes — durch das Getriebesteuergerät 16 gesteuert, so wird der Steuerschieber 52a in eine Lage verschoben, in der ein Gleichgewicht gegeben ist zwischen der resultierenden Kraft aus der Vorspannung der Feder 52c und dem Vorsteuerdruck in der linken Kammer 52b einerseits und der Kraft des hydraulischen Vorsteuerdrucks in der rechten Kammer 52d andererseits. Dieser Lage des Steuerschiebers 52a entspricht ein bestimmter Druck am Ausgang des Steuerventils 52, und dieser Druck wird der Kupplung 28 zugeführt, so daß 25 das von ihr übertragene Drehmoment Tc auf einen vorgegebenen Wert eingestellt wird.

Das Zahnradgetriebe 30 hat bei diesem Ausführungsbeispiel vier Vorwärtsgänge und einen Rückwärtsgang. Die Darstellung in Fig. 2 zeigt einen Teil der Anordnung 30 des Zahnradgetriebes 30. Erste und zweite Antriebsräder 31 und 32 sind frei verdrehbar auf der Antriebswelle 30a angeordnet. Hydraulisch betätigte Kupplungen, die als Reibungseingriffsvorrichtungen zur Getriebesteuerung dienen, sind an dem Abschnitt der Antriebswelle 35 30a zwischen den Antriebsrädern 31 und 32 befestigt. Die Antriebsräder 31 und 32 sind dazu ausgelegt, sich zusammen mit der Antriebswelle 30a zu drehen, wenn sie mit einer der Kupplungen 33 bzw. 34 in Eingriff stehen, vgl. Fig. 2. Eine Getriebe-Zwischenwelle 35, die 40 parallel zur Antriebswelle 30a liegt, ist über ein abschlie-Bendes, nicht dargestelltes Getriebe mit einer - nicht dargestellten - Abtriebswelle verbunden. Auf der Getriebe-Zwischenwelle 35 ist ein erstes angetriebenes Zahnrad 36 und ein zweites angetriebenes Zahnrad 37 befestigt, und diese kämmen mit dem ersten Antriebsrad 31 bzw. dem zweiten Antriebsrad 32, wie das Fig. 2

Steht die Kupplung 33 in Eingriff mit dem ersten Antriebszahnrad 31, so wird die Drehung der Antriebswelle 30a auf die Kupplung 33, das erste Antriebszahnrad 31, das erste angetriebene Zahnrad 36 und die Getriebe-Zwischenwelle 35 übertragen. Auf diese Weise wird ein erster Getriebezustand, z. B. ein erster Gang, eingeschaltet. Steht die Kupplung 34 mit dem zweiten Antriebszahnrad 32 in Eingriff, nachdem die Kupplung 33 geöffnet wurde, so wird die Drehung der Antriebswelle 30a übertragen auf die Kupplung 34, das zweite Antriebszahnrad 32 das zweite angetriebene Zahnrad 37, und die Getriebezwischenwelle 35. Auf diese Weise wird ein zweiter Getriebezustand, z. B. ein zweiter Gang, hergestellt.

Fig. 3 zeigt die Einzelheiten der hydraulischen Schaltung 40 gemäß Fig. 1, welche den hydraulisch betätigten Kupplungen 33 und 34 unter Druck stehendes hydraulisches Druckmittel zuführt. Die Schaltung 40 hat ein erstes hydraulisches Steuerventil 44 und ein zweites hydraulisches Steuerventil 45, sowie Magnetventile 47 und

48. Das erste Steuerventil 44 hat, wie dargestellt, eine Steuerbohrung 44a mit einem darin verschiebbaren Steuerschieber 45. Das zweite Steuerventil 46 hat eine Steuerbohrung 46a mit einem darin verschiebbaren Steuerschieber 49. Rechte Kammern 44g bzw. 46g liegen den rechten Enden der Steuerschieber 45 und 49 gegenüber. Federn 44b und 46b in diesen Kammern 44g bzw. 46g drücken ihren zugeordneten Steuerschieber 45 bzw. 49 nach links, bezogen auf Fig. 3. Die Steuerventile 44 und 46 haben ferner jeweils linke Kammern 44h bzw. 46h, die den linken Enden der Steuerschieber 45 bzw. 49 gegenüberliegen. Diese Kammern 44h, 46h sind jeweils über eine Drossel 44i bzw. 46i mit dem Rücklauf verbunden.

Das Magnetventil 47 ist ein normalerweise offenes Dreiwegeventil mit drei Anschlüssen 47c, 47d und 47e. Es hat ein Schließglied 47a, eine Feder 47b und einen Elektromagneten 47f. Die Feder 47b dient dazu, das Schließglied 47a in Richtung zum Anschluß 47e zu verschieben diesen dadurch zu verschließen. Wird der Elektromagnet 47f erregt, so bewirkt er, daß sich das Schließglied 47a entgegen der Kraft der Feder 47b in Richtung zum Anschluß 47c verschiebt und diesen dadurch verschließt.

Das Magnetventil 48 ist ein normalerweise geschlossenes Dreiwegeventil mit drei Anschlüssen 48c, 48d und 48e. Es hat ein Schließglied 48a, eine Feder 48b und einen Elektromagneten 48f. Die Feder 48b dient dazu, das Schließglied 48a in Richtung zum Anschluß 48c zu beaufschlagen und diesen dadurch zu verschließen. Wird der Elektromagnet 48f erregt, so bewirkt er eine Verschiebung des Schließglieds 48a in Richtung zum Anschluß 487e entgegen der Kraft der Feder 48b und verschließt dadurch den Anschluß 48e. Die Elektromagnete 47f und 48f der Magnetventile 47 bzw. 48 sind mit dem Ausgang des Getriebesteuergeräts 16 verbunden.

Eine hydraulische Druckleitung 41 von der bereits erwähnten, nicht dargestellten Hydropumpe ist mit den Anschlüssen 44c, 46c der beiden Ventile 44, 46 verbunden. Ein Ende einer hydraulischen Leitung 41a ist mit einem Anschluß 44d des ersten Steuerventils 44 verbunden, ihr anderes Ende mit der hydraulisch betätigten Kupplung 33. Ein Ende einer hydraulischen Leitung 41b ist mit einem Anschluß 46d des zweiten Steuerventils 46 verbunden, ihr anderes Ende mit der hydraulisch betätigten Kupplung 34.

Eine hydraulische Leitung 42, welche von der bereits erwähnten, nicht dargestellten Quelle hydraulischen Vorsteuerdrucks kommt, ist mit den Anschlüssen 44e und 46e verbunden, die mit den linken Endkammern 44h, 46h des ersten Steuerventils 44 bzw. des zweiten Steuerventils 46 in Verbindung stehen, und auch mit den Anschlüssen 47c, 48c der Magnetventile 47 bzw. 48. Die Anschlüsse 47d und 48d der Magnetventile 47 bzw. 48 sind jeweils über Steuerleitungen 42a bzw. 42b mit dem Anschluß 44f bzw. 46f verbunden, welch letzterer mit den rechten Endkammern 44g, 46g des ersten Steuerventils 44 bzw. des zweiten Steuerventils 46 in Verbindung stehen. Die Anschlüsse 47e und 48e der Magnetventile 47 und 48 sind mit dem Rücklauf verbunden, der in Fig. 3 mit EX bezeichnet ist.

Die Leitung 41 dient dazu, den Steuerventilen 44 und 46 einen hydraulischen Arbeitsdruck oder Leitungsdruck zuzuführen, der z. B. über ein (nicht dargestelltes) Druckregelventil auf einen vorgegebenen Wert eingestellt ist. Die Leitung 42 mit dem Vorsteuerdruck dient dazu, den Steuerventilen 44, 46 und den Magnetventilen 47, 48 einen Vorsteuerdruck zuzuführen, der über ein

anderes, ebenfalls nicht dargestelltes Druckregelventil oder dergleichen auf einen vorgegebenen Wert einge-

Bewegt sich in Fig. der Steuerschieber 45 des ersten Steuerventils 44 nach links, so gibt eine Steuerfläche 45a 5 des Steuerschiebers 45 den bisher verschlossenen Anschluß 44c frei, so daß über die Leitung 41, die Anschlüsse 44c und 44d und die Leitung 41a hydraulischer Arbeitsdruck der Kupplung 33 zugeführt wird.

Bewegt sich der Steuerschieber 45 nach rechts, so 10 verschließt die Steuerfläche 45a den Anschluß 44c, und der Anschluß 44d kommt in Verbindung mit einem Rücklaufanschluß 44j, so daß der Druck in der Kupplung 33 auf den Rücklaufdruck fällt.

Bewegt sich in Fig. 3 der Steuerschieber 49 des zwei- 15 ten Steuerventils 46 nach links, so gibt eine Steuerfläche 49a des Steuerschiebers 49 den bisher verschlossenen Anschluß 46c frei, so daß der hydraulische Arbeitsdruck über die Leitung 41, die Anschlüsse 46c und 46d und die Leitung 41b der Kupplung 34 zugeführt wird.

Verschiebt sich der Steuerschieber 49 nach rechts, so wird der Anschluß 46c durch die Steuerfläche 49a verschlossen, während der Anschluß 46d in Verbindung mit einem Rücklaufanschluß 46j kommt, so daß der Druck in der Kupplung 34 auf den Rücklaufdruck fällt.

Zurück zu Fig. 1. Auf der Außenseite des Schwungrads 11 befindet sich ein Zahnkranz 11a, der mit dem Ritzel 12a eines Anlassers 12 kämmt. Der Zahnkranz 11a hat eine bestimmte Anzahl von Zähnen, z. B. 110 Zähne, und ein elektromagnetischer Sensor 14 liegt dem 30 $\omega e = \Delta Ne \times 2\pi \div 60 \div T = (\pi/30T) \times \Delta Ne$ Zahnkreuz 11a gegenüber. Dies ist der Motordrehzahlsensor oder Ne-Sensor 14, und er ist elektrisch mit dem Eingang des Getriebesteuergeräts 16 verbunden.

Ein Turbinenrad-Drehzahlsensor oder Nt-Sensor 15, ein Getriebeabtriebsdrehzahlsensor oder No-Sensor 17, 35 ein Drosselklappenöffnungssensor oder Ot-Sensor 18, ein Öltemperatursensor 19 und ggf. weitere Sensoren sind ebenfalls mit dem Eingang des Getriebesteuergeräts 16 verbunden. Der Nt-Sensor dient zur Erfassung der Drehzahl des Turbinenrads 25, und der No-Sensor 40 17 zur Erfassung der Getriebeabtriebsdrehzahl (nicht dargestellt), die proportional zur Fahrzeuggeschwindigkeit ist. Der Ot-Sensor 18 dient zur Erfassung der Öffung Ot der (nicht dargestellten) Drosselklappe, die in der üblichen Weise in der (nicht dargestellten Sauglei- 45 tung des Verbrennungsmotors 10 angeordnet ist. Der Öltemperatursensor 19 dient zur Erfassung der Temperatur Toil des von einer (nicht dargestellten) Hydropumpe gelieferten Druckmittels. Die Meßsignale dieser Sensoren werden dem Getriebesteuergerät 16 zugeführt.

Arbeitsweise des Getriebes

Das Getriebesteuergerät 16 enthält Speicher, z.B. ROM und RAM, einen zentralen Prozessor (Mikropro- 55 zessor), E/A-Schrittstellen, Zähler und dergleichen. Das Getriebesteuergerät 16 bewirkt die Getriebesteuerung nach einem in ihr gespeicherten Programm.

Hierzu führt das Getriebesteuergerät 16 wiederholt eine in Fig. 4 dargestellte Hauptprogrammroutine mit $_{60}$ Tb = $a \times Tt + b \times \omega t$ (A1) einem vorgegebenen Takt aus, z. B. mit einem 35-Hz-Takt. In dieser Hauptprogrammroutine werden in Schritt S10 zunächst mehrere Anfangswerte eingestellt bzw. gesetzt, die später noch erläutert werden. Dann werden im Schritt S11 vom Getriebesteuergerät 16 die 65 Werte der verschiedenen Sensoren eingelesen und gespeichert, also vom Ne-Sensor 14, dem Nt-Sensor 15, dem No-Sensor 17, dem Ot-Sensor 18 und dem Öltem-

peratursensor 19. Danach berechnet das Steuergerät 16 die notwendigen Parameterwerte für die Getriebesteuerung, ausgehend von den gemessenen Signalen, und zwar wie folgt:

Zunächst berechnet das Getriebesteuergerät 16 die Motordrehzahl Ne und ihre Änderungsrate ωe auf der Basis der Signale vom Ne-Sensor 14 (Schritt S12). Der Ne-Sensor 14 liefert jeweils pro vier Zähne des sich drehenden Zahnkranzes 11a einen Impuls an das Steuergerät 16. Dann mißt das Getriebesteuergerät 16 die Zeitdauer, die für die Messung der letzten neun Impulse im betreffenden Takt (28,6 ms, entsprechend 35 Hz) erforderlich waren, wie in Fig. 5 dargestellt. Fig. 5 zeigt diese Zeitdauer tp für neun Impulse im mittleren dargestellten Takt von 28,6 ms. Danach berechnet das Getriebesteuergerät 16 die Motordrehzahl (min-1) nach der folgenden Gleichung (1) und speichert sie im Speicher als Motordrehzahl (Ne)n für den jetzigen Takt.

20 Ne =
$$(9 \times 4)$$
:110:tp × 60 = 216: $(11 \times tp)$ (1)

Bei 1200 min⁻¹ beträgt z. B. tp=9/550 s, und setzt man das in Gleichung (1) ein, so erhält man 1200 min-1

Ausgehend von der Motordrehzahl (Ne)n-1, die im vorhergehenden Takt gespeichert worden war, und der Motordrehzahl (Ne)n, die im jetzigen Takt gespeichert wurde, wird die Änderungsrate ωe (rad/s²) der Motordrehzahl wie folgt berechnet und dann gespeichert:

$$\omega e = \Delta Ne \times 2\pi \div 60 \div T = (\pi/30T) \times \Delta Ne \qquad (2)$$

Hierbei gilt

 $\Delta Ne = (Ne)_n - (Ne)_{n-1}$ T1 und T2 siehe Fig. 5

T1 = Zeit zwischen den Enden der Meßperiode im vorvorhergehenden Takt und im vorhergehenden Takt, in Sekunden

T2 - Zeit zwischen den Anfängen der Meßperioden im vorvorhergehenden Takt und im vorhergehenden Takt, in Sekunden

T = (T1 + T2):2

Berechnung des Turbinenradwellen-Drehmoments Tt

Dann geht das Getriebesteuergerät 16 zum Schritt S13 und berechnet das Netto-Drehmoment Te des Verbrennungsmotors 10 und das Drehmoment Tt (nachfolgend als das Turbinenradwellen-Drehmoment bezeichnet) an der Ausgangswelle 30a des Drehmomentwandiers 20.

Die Beziehung zwischen dem Reibungsmoment Tb der Kupplung an der Freigabe- oder Verbindungsseite, z. B. der Kupplungen 33 und 34 in Fig. 2, erhalten während der Getriebesteuerung, und dem Turbinenradwellen-Drehmoment Tt und der Änderungsrate wt der Turbinenraddrehzahl während der Getriebesteuerung kann wie folgt angegeben werden.

$$Tb = a \times Tt + b \times \omega t$$
 (A1)

Hierbei sind a und b Konstanten, die abhängig sind vom Schaltmuster (Art der Getriebesteuerung), z. B. Heraufschalten in den zweiten Gang aus dem ersten, oder Herunterschalten vom vierten Gang in den dritten, ferner den Trägheitsmomenten verschiedener rotierender Teile, etc. Wie man der Gleichung (A1) entnimmt, kann das Kupplungs-Reibungsmoment Tb, also der Ar-

beitsdruck des hydraulischen Druckmittels für die Kupplungen 33 und 34, eingestellt werden, ohne daß dabei andere Einflüsse eine Rolle spielen, wie z. B. abnutzungsbedingtes Sinken der Motorleistung, Änderung der Kühlwassertemperatur, etc., falls dieses Moment Tb bestimmt wird auf der Grundlage des Turbinenradwellen-Drehmoments Tt und der Turbinenraddrehzahl-Änderungsrate ot. Empirische Formeln und Daten, die man unter Beachtung dieser Gesetzmäßigkeiten erhält, können leicht für Verbrennungsmotoren 10 unterschiedlichen Typs aufgestellt werden.

Falls die Änderungsrate ot der Turbinenraddrehzahl Nt auf einen Sollwert geregelt werden soll, trotz der Änderung des Turbinenradwellen-Drehmoments Tt, muß man nicht die Abweichung der Änderungsrate ωt 15 danach korrigieren, sondern das Reibungsmoment Tb erhöhen oder senken, also den Öldruck für die Kupplungen 33 und 34 entsprechend beeinflussen, und zwar um einen Betrag entsprechend der Änderung des Turbinenradwellen-Drehmoments Tt. Auf diese Weise kann eine 20 r Reibungsfläche der Kupplung 28 stabile Getriebesteuerung erreicht werden mit hoher Nachlaufleistung, ohne daß man die Regelung eine hohe Korrekturverstärkung benötigt.

Falls die zeitliche Änderung ot des Turbinenradwellen-Drehmoments Tt zu Beginn der Getriebesteuerung, also wenn die zuschaltende Kupplung mit der Erzeugung eines Reibungsmoments beginnt, geschätzt werden kann, kann das Reibungsmoment der Kupplung geändert werden, wobei man diese zeitliche Änderung ωt auf den Sollwert regelt, in Übereinstimmung mit Glei- 30 chung (A1). Deshalb erhält man solch eine Änderung des Drehmoments Tt empirisch im voraus. Ausgehend von den so erhaltenen empirischen Daten wird die Änderung des Turbinenradwellen-Drehmoments Tt zu Beginn der Erzeugung eines Drehmoments durch die zu- 35 schaltende Kupplung geschätzt. Indem man den ge-schätzten Wert in die Gleichung (A1) einsetzt, kann der der zuschaltenden Kupplung zugeführte hydraulische Druck so geändert werden, daß er das Reibungsmoment Tb so ändert, daß man nach Gleichung (A1) den Sollwert für die Änderungsrate ωt der Turbinenraddrehzahl Nt erhält. Auf diese Weise kann diese Änderungsrate ωt ab dem Beginn eines Reibungsmoments durch die zuschaltende Kupplung genau auf ihren Sollwert geregelt

serten Arbeitsweise der Getriebesteuerung. Dann wird nach Gleichung (4) das Turbinenradwellen-Drehmoment Tt berechnet, wobei das Netto-Motorenmoment Te verwendet wird, das nach Gleichung (3) berechnet wird, und diese berechneten Werte werden 50 gespeichert.

Te =
$$C \times Ne^2 + I_E \times \omega e + Tc$$
 (3)
Tt = $t (Te - Tc) + Tc = t (C \times Ne^2 + I_E \times \omega e) + Tc$ (4)

Te ist ein Netto-Drehmoment, das man erhält, wenn man die Reibungsverluste, das Ölpumpen-Antriebsmoment etc. von dem durchschnittlichen Drehmoment abzieht, das durch die Verbrennungsvorgänge im Motor 60 10 erzeugt wird. C ist ein Drehmomentkapazitätskoeffizient, der aus einem zuvor gespeicherten Kennfeld für die Wandlerkenndaten abgelesen wird, und zwar abhängig vom Drehzahlverhältnis e=Nt/Ne, also dem Verhältnis von Turbinenraddrehzahl Nt zu Motordrehzahl 65 Ne. Zuerst wird also das Drehzahlverhältnis e aus dem Ausgangssignal des Nt-Sensors 14 und der gemäß Gleichung (1) berechneten Drehzahl Ne berechnet. Dann

wird zu diesem Drehzahlverhältnis e der Koeffizient C aus dem Speicher ausgelesen.

IE ist das Trägheitsmoment bzw. Schwungmoment des Motors 10, also ein vom Motorentyp abhängiger Festwert.

t ist ein Drehmomentenverhältnis, das ebenfalls, abhängig vom Drehzahlverhältnis e, aus dem Kennfeld für die Wandlerdaten abgelesen wird.

Tc ist das der Kupplung 28 übertragene Drehmoment. Bei einer Kupplung vom Schlupftyp - wie hier wird dieses Moment angegeben durch

$$Tc = Pc \times A \times r \times \mu = a1 \times Dc - b1$$
 (5)

Hierbei sind:

Pc der der Kupplung 28 zugeführte hydraulische Arbeitsdruck

A Fläche des Arbeitskolbens für die Betätigung der Kupplung 28

μ Reibungskoeffizient der Kupplung 28.

Die Gleichung (5) kann ausgewertet werden, weil der der Kupplung 28 zugeführte Druck Pc proportional ist dem Tastverhältnis Dc des Magnetventils 54 für die Ansteuerung der Kupplung 28. (Das Tastverhältnis Dc wurde bereits weiter oben definiert.) In der Gleichung (5) sind a1 und b1 Konstanten, die entsprechend dem Schaltmodus eingestellt werden. Der nach der Gleichung (5) berechnete Wert Tc wird nur verwendet, wenn er positiv ist. Ist er negativ, so wird gesetzt Tc=0.

Die jeweiligen Werte des Netto-Motorenmoments Te und des Turbinenradwellen-Drehmoments Tt, die auf diese Weise berechnet und gespeichert werden, können recht genau auf der Grundlage der Motordrehzahl Ne, die mit dem Ne-Sensor 14 erfaßt wird, der Turbinenraddrehzahl Nt, die mit dem Nt-Sensor 15 erfaßt wird, und dem Tastverhältnis Dc des Magnetventils 54 (für die Kupplung 28) berechnet werden. Wie man au-Berdem aus den Gleichungen (3) und (4) ersieht, wird das vom Motor 10 abgegebene Drehmoment Te unter Berücksichtigung des Terms (IE×ωe) berechnet, so daß der Einfluß der Änderungsrate ot der Turbinenraddrehzahl Nt oder des Reibungsmoments Tb kaum spürbar wird. Wird das Reibungsmoment Tb verändert, also z. B. werden. Dadurch ergibt sich das Gefühl einer verbes- 45 der Kupplung 33 ein anderer Arbeitsdruck zugeführt, um die Änderungsrate ot auf einen Sollwert einzustellen, so ändert sich das Turbinenradwellen-Drehmoment nie. Folglich können sich diese beiden Drehmomente gegenseitig nicht stören, und man erhält keine unkontrollierbaren Situationen. Insbesondere kann in der Mitte eines Getriebesteuerungsvorgangs eine solche gegenseitige Beeinflussung nicht auftreten, wenn das Reibungsmoment Tb verstellt wird, um eine Anderung des Turbinenradwellen-Drehmoments Tt zu korrigieren, die z. B. durch einen Beschleunigungsvorgang oder dergleichen bewirkt wird. Folglich kann die Getriebesteuerung genügend schnell ansprechen.

Im Schritt S14 bestimmt das Getriebesteuergerät 16 den Gang, der im Zahnradgetriebe 30 eingestellt werden soll, und zwar auf Grund der Drosselklappenöffnung Ot und der Getriebeabtriebsdrehzahl No.

Fig. 6 zeigt Schaltkennlinien für den ersten Getriebezustand, beispielsweise den ersten Gang, sowie für den zweiten Getriebezustand, beispielsweise den zweiten Gang. In Fig. 6 stellt die durchgezogene Linie eine Grenzlinie zwischen den Gebieten für den ersten und den zweiten Gang dar, und zwar für das Hinaufschalten. Die gestrichelte Linie ist eine Grenzlinie zwischen den 11

Gebieten für den ersten und den zweiten Gang, und zwar beim Herunterschalten. Das Getriebesteuergerät 16 bestimmt den einzustellenden Gang nach den Schaltkennlinien der Fig. 6 und speichert im voraus den vorgegebenen Gang.

Unterscheidung zwischen Leistung-EIN und Leistung-AUS

Dann geht das Getriebesteuergerät 16 zum Schritt 10 S15 und führt eine Routine zur Unterscheidung zwischen Leistung-EIN und Leistung-AUS durch. Fig. 7 ist ein Ablaufdiagramm dieser Routine. Zuerst wird im Schritt S151 ein Wert Tto gesetzt. Dieser Wert Tto wird wie folgt berechnet:

Tto =
$$a2 \times \omega to = 2\pi \times a2 \times Ni$$
 (6)

Hierbei sind a2 und Ni vorgegebene Werte, die zuvor entsprechend der Schaltkennlinie eingestellt wurden. 20 Die Werte a2 und Ni sind negativ beim Hinaufschalten und positiv beim Herunterschalten.

Dann bestimmt das Getriebesteuergerät 16, ob das Turbinenradwellen-Drehmoment Tt, das im Schritt S13 berechnet wurde, größer als der Wert Tto ist (Schritt S152). Ist die Antwort JA, so wird ein Leistung-EIN-Schaltvorgang identifiziert (Schritt S153). Ist die Antwort NEIN, so wird ein Leistung-AUS-Schaltvorgang identifiziert (Schritt S154). Das Getriebesteuergerät 16 speichert das Ergebnis der Leistung-EIN-AUS-Unterscheidung und geht dann zur Hauptroutine gemäß Fig.

Diese Unterscheidung zwischen Leistung-EIN und Leistung-AUS beruht auf folgendem Prinzip: Die Gleichung (6) erhält man, wenn man in der Gleichung (A1) 35 das Turbinenradwellen-Drehmoment Tt, die Turbinenraddrehzahl-Änderungsrate ot für die Getriebesteuerung, und das Kupplungs-Reibungsmoment Tb jeweils durch Null bzw. wto bzw. Tto ersetzt, wobei Gleichung (A1) die Beziehung des Wertes Tb zu den Werten Tt und 40 ot darstellt. Sind keine anderen Elemente als die Kupplungen wirksam, so wird die Leistung-EIN-AUS-Unterscheidung ausgeführt abhängig davon, ob das erzeugte Turbinenradwellen-Drehmoment Tt groß genug ist, um den Sollwert wto zu erreichen. Folglich können folgen- 45 de Nachteile der konventionellen Unterscheidungsmethode, bei der die Leistung-EIN-AUS-Unterscheidung einfach vom Vorzeichen der Motorausgangsleistung abhängt, vermieden werden.

Insbesondere hat eine Getriebesteuerung, welche andere Schaltlogiken zur Unterscheidung der Leistung-EIN- und Leistung-AUS-Zustände verwendet, folgende Nachteile

(1) Falls die Motorleistung beim Hinaufschalten etwas negativ ist, wird der Leistung-AUS-Zustand falsch erfaßt. Infolgedessen wird das zuschaltseitige Reibungseingriffselement (Kupplung) außer Eingriff gelassen, so daß der Schaltvorgang nicht abgeschlossen werden kann.

(2) Wenn andererseits beim Herunterschalten die Motorleistung etwas positiv ist, wird — fälschlicherweise — der Leistung-EIN-Zustand erfaßt. Deshalb wird eine automatische Zunahme der Antriebswellendrehzahl des Getriebes erwartet, so 65 daß das zuschaltseitige Reibungseingriffselement (Kupplung) nicht eingeschaltet wird. Auch in diesem Fall wird der Schaltvorgang nicht abgeschlos-

sen

Fahrerbefehle durch Betätigung des Gaspedals entweder durch Wegnehmen des Gases, oder durch 5 starkes Gasgeben - erfordern eine möglichst rasche Leistung-EIN-AUS-Unterscheidung. Das Turbinenradwellen-Drehmoment Tt, das bei der erläuterten Leistung-EIN-AUS-Unterscheidung verwendet wird, ist sozusagen ein imaginäres oder synthetisches Turbinenradwellen-Drehmoment, das man erhält, indem man das Netto-Motoren-Drehmoment Ne, das man gemäß Gleichung (3) erhalten hat, mit dem Drehmomentenverhältnis t des Wandlers 20 multipliziert, wie in Gleichung (4) angegeben. Folglich kann die Leistung-EIN-AUS-Unterscheidung schneller erfolgen als die Unterscheidung unter Verwendung eines tatsächlichen Turbinenradwellen-Drehmoments Tt' ($=t \times CNe^2 + Tc$), das man erhält, wenn man den Term (Ie × ωe) aus Gleichung (4) wegläßt.

Auf diese Weise kann man bei dem Fahrerbefehl, der durch Wegnahme des Gases (= Anheben des Gasfußes) gegeben wird, einen Ruck durch die Drehzahlabnahme in einem niedrigen Gang vermeiden, falls die Reduzierung der Motorleistung so bald wie möglich erfaßt wird, so daß das freigabeseitige Reibungseingriffselement (Kupplung) ohne Verzögerung ausgerückt wird.

Fig. 26 zeigt dies. Wenn der Fahrer den Fuß vom Gaspedal nimmt, so daß der Hinaufschaltmodus eingeleitet wird, vgl. Fig. 26(a), ändert sich das tatsächliche Turbinenradwellen-Drehmoment Tt' gemäß der gestrichelten Linie der Fig. 26(b) und das imaginäre Turbinenradwellen-Drehmoment Tt längs der durchgezogenen Linie derselben Figur. Wird das imaginäre bzw. synthetische Drehmoment Tt verwendet, so kann der Leistung-AUS-Zustand zum Zeitpunkt t1 der Fig. 26(b) erfaßt werden, dagegen erst zum Zeitpunkt t2, wenn das tatsächliche Turbinenradwellen-Drehmoment Tt' verwendet wird. Man erhält also einen zeitlichen Vorsprung $\Delta t = t2 - t1$, wenn man statt des tatsächlichen Drehmoments Tt' das synthetische Drehmoment Tt verwendet. Dementsprechend kann das freigabeseitige Reibungseingriffselement schneller außer Eingriff gebracht werden, so daß ein Ruck durch Geschwindigkeitsabnahme vermieden werden kann ohne einen Abfall (schraffiertes Gebiet in Fig. 26(c)) des Abtriebswellen-Drehmoments.

Zurück zu Fig. 4. Das Getriebesteuergerät bestimmt dann, ob der herzustellende Getriebezustand, der in Schritt S14 bestimmt wird, sich von dem Ergebnis unterscheidet, das beim vorhergehenden Rechnertakt ermittelt wurde. Liegt kein Unterschied vor, so kehrt das Programm zum Schritt S11 zurück, und der Schritt S11 und die nachfolgenden Schritte werden wiederholt. Falls aber der Getriebezustand geändert wird, wird im Schritt S17 ein Schaltsignal ausgegeben, das dem in den Schritten S14 und S15 ermittelten Schaltmuster entspricht, worauf das Programm zum Schritt S11 zurückkehrt.

Hydraulische Steuerung für Leistung-EIN-Hinaufschalten

Die Fig. 8—12 sind Ablaufdiagramme der hydraulischen Getriebesteuerung im Leistung-EIN-Hinaufschaltmodus. In den Ablaufdiagrammen sind in der üblichen Weise die Anschlußpunkte zum nächsten Diagramm durch denselben alphanumerischen Code bezeichnet, z. B. in Fig. 8 und 9 A1, in Fig. 9 und 10 B0, etc. Fig. 13 zeigt dann die hydraulischen Steuervorgänge für den beispielhaften Fall des Hinaufschaltens aus dem er-

sten Gang in den zweiten.

Liegt im Schritt S17 ein Schaltsignal vor, und es wird ein Leistung-EIN-Hinaufschalten aus dem ersten Gang in den zweiten befohlen, so berechnet das Getriebesteuergerät 16 zunächst die jeweiligen anfänglichen Tastverhältnisse Du1 und Du2 der Magnetventile 47 und 48 (Fig. 3) nach den folgenden Gleichungen (8) und (9) (Schritt S20).

$$D_{U1} = a4 \times |Tt| + c4$$
 (8)
 $D_{U2} = a5 \times |Tt| + c5$ (9)

Hierbei ist Tt das Turbinenradwellen-Drehmoment Tt, für jeden Takt berechnet und gespeichert im Schritt S13 der Fig. 4. Die Werte a4, c4, a5 und c5 sind Konstan- 15 ten, hier für den Fall des Hinaufschaltens aus dem ersten Gang in den zweiten.

Dann stellt das Getriebesteuergerät 16 das Tastverhaltnis DLR des normalerweise offenen Magnetventils 47 auf das im Schritt S20 eingestellte Anfangs-Tastver- 20 hältnis Du1 ein und liefert ein Ausgangssignal in der Weise, daß das Magnetventil 47 mit dem Tastverhältnis DLR betrieben wird. Daraufhin wird die Kupplung 33 des ersten Gangs, welche ein freigabeseitiges Reibungseingriffselement darstellt, mit einem hydraulischen An- 25 fangsdruck versorgt, der dem anfänglichen Tastverhältnis Du1 entspricht, so daß ein (nicht dargestellter) Betätigungskolben der Kupplung zurückgezogen wird bis zu einer Stellung kurz vor der Lage, wo die Kupplung 33 anfängt zu schleifen (Schritt S21, Zeit t1 in Fig. 13 (b)). 30 Unterdessen setzt das Getriebesteuergerät 16 das Tastverhältnis D24 des normalerweise geschlossenen Magnetventils 48 auf 100% und liefert ein solches Ausgangssignal, daß das Magnetventil 48 mit dem Tastverhältnis D24 betrieben wird. Daraufhin wird ein Kolben 35 der Kupplung 34 für den zweiten Gang, welch letztere hier als Reibungseingriffselement auf der Zuschaltseite dient, vorgeschoben bis zu einer Lage kurz vor derjenigen, wo die Kupplung 34 beginnt, ein Moment zu übertragen (zum Zeitpunkt t1 der Fig. 13 (c)), und es wird 40 beim Schritt S22 eine Anfangs-Druckzufuhrdauer Ts1 (Fig. 13 (c)) in einem Zeitglied eingestellt. Dieses Zeitglied kann ein Bauelement im Getriebesteuergerät 16 sein, oder es kann softwaremäßig realisiert sein und dann ebenfalls beim Programmablauf die Anfangs- 45 NSR = Nt -- Ntc1 Druckzufuhrdauer TS1 darstellen. Diese Zeitdauer TS1 nimmt einen vorgegebenen Wert an, so daß der Kolben der Kupplung 34 auf der Einschaltseite bis zu der vorgegebenen Stellung kurz vor dem Beginn des Eingriffs vorgeschoben werden kann, wenn die Kupplung 34 50 während der gesamten Zeitdauer Ts1 und bei einem Tastverhältnis von 100% also voller Einschaltung, mit dem hydraulischen Arbeitsdruck versorgt wird.

Das Getriebesteuergerät 16 wartet ab, bis eine vorgegebene Zeitdauer tD, d. h. ein Takt (bei diesem Ausführungsbeispiel: 28,6 ms) zu Ende ist (Schritt S23) und addiert einen vorgegebenen Tastverhältniswert AD1 zum Tastverhältnis DLR, das beim vorhergehenden Takt eingestellt worden das Getriebesteuergerät 16 ein Ausgangssignal in der Weise, daß das Magnetventil 47 mit 60 dem (neuen) Tastverhältnis DLR betrieben wird (Schritt S24). Der addierte vorgegebene Wert ΔD1 des Tastverhältnisses wird auf einen solchen Wert eingestellt, daß das Tastverhältnis DLR des Magnetventils 47 mit einer vorgegebenen Rate bzw. Geschwindigkeit zunimmt, 65 z. B. mit 4% pro Sekunde, vgl. die Änderung des Tastverhältnisses DLR in Fig. 13(b) zwischen den Zeitpunkten t1 und t2. Das Getriebesteuergerät 16 bestimmt, ob

die anfängliche Druckzufuhrdauer Ts1, die im Schritt S22 eingestellt wurde, abgelaufen ist (Schritt S25). Falls die Zeitdauer TS1 nicht abgelaufen ist, geht das Programm zum werden wiederholt.

Wenn die Entscheidung beim Schritt S25 JA ist, dh. wenn die Kupplung 34 für den zweiten Gang nach Ablauf der anfänglichen Druckzufuhrdauer Ts1 zu der vorgegebenen Stellung kurz vor der Eingriffsstellung gelangt ist, geht das Programm zum Schritt S27 der Fig. 9. 10 Im Schritt S27 stellt das Getriebesteuergerät 16 das Tastverhältnis D24 des Magnetventils 48 auf einen vorgegebenen (kleinen) Wert D24min und liefert dann ein solches Treibersignal, daß das Magnetventil 48 mit dem Tastverhältnis D24 betrieben wird (zum Zeitpunkt t2 der Fig. 13(c)). Der vorgegebene Wert D24 min ist ein solcher Tastverhältniswert, daß der hydraulische Arbeitsdruck, welcher der Kupplung 34 für den zweiten Gang über das zweite hydraulische Steuerventil 46 zugeführt wird, auf einem Haltedruck gehalten wird, ohne zu- oder abzunehmen.

Wenn die vorgegebene Zeitdauer to für einen Takt zu Ende ist (Schritt S28), addiert das Getriebesteuergerät 16 den vorgegebenen Tastverhältniswert ΔD1 zum Tastverhältnis DLR des Magnetventils 47, der im vorhergehenden Takt eingestellt worden war, und liefert dadurch ein neues Tastverhältnis DLR, und es addiert einen vorgegebenen Tastverhältniswert ΔD2 zum Tastverhältnis D24 des Magnetventils 47, so daß man ein neues Tastverhältnis D24 erhält. Dann liefert das Getriebesteuergerät 16 ein Ausgangssignal, so daß die Magnetventile 47 und 48 mit den neuen Tastverhältnissen DLR bzw. D24 betrieben werden (Schritt S30). Der addierte vorgegebene Tastverhältniswert AD2 wird auf einen solchen Wert eingestellt, daß das Tastverhältnis D24 des Magnetventils 48 mit einer vorgegebenen Rate bzw. Steigerung zunimmt, z. B. mit 15% pro Sekunde, vgl. die Änderung des Tastverhältnisses D24 zwischen den Zeitpunkten t2 und t3 in Fig. 13(c).

Danach geht das Programm zum Schritt S32, worauf das Programm eine tatsächliche Schlupffrequenz NSR nach Gleichung (10) berechnet und den berechneten Wert mit einem vorgegebenen Wert ANSR1 vergleicht, z. B. 10 min⁻¹. Die Beziehung lautet:

$$s N s = Nt - Ntc1$$
 (10)

Hierbei ist Ntc1 eine berechnete Turbinenraddrehzahl für den ersten Gang, die man erhält, indem man die Getriebeabtriebsdrehzahl No, die mit Hilfe des No-Sensors 17 erfaßt wurde, mit einer vorgegebenen Zahl multipliziert.

Falls die tatsächliche Schlupffrequenz NSR kleiner ist als der vorgegebene Wert ΔN_{SR1} ($N_{SR} < \Delta N_{SR1}$), geht das Programm zum Schritt S28 zurück, worauf das Getriebesteuergerät 16 die Programmschritte S28 bis S32 wiederholt. Auf diese Weise wird also die freigabeseitige Kupplung 33 (für den ersten Gang) allmählich außer Eingriff gebracht, während die einschaltseitige Kupplung 34 (für den zweiten Gang) erst noch in Eingriff kommen muß, obwohl sie allmählich von der vorgegebenen Stellung kurz vor der Startposition für den Eingriff in Richtung Eingriff verschoben wird.

In dieser Situation nimmt die Turbinenraddrehzahl Nt allmählich zu (im letzten Teil des Regelabschnitts A der Fig. 13(a)), während die Kupplung 33 für den ersten Gang außer Eingriff gebracht wird. Folglich wird im Regelabschnitt A (zwischen dem Zeitpunkt t1, an dem das Schaltsignal gegeben wird und dem Zeitpunkt t3, an dem erfaßt wird, daß die tatsächliche Schlupffrequenz NsR den vorgegebenen Wert ΔNSR1 oder mehr erreicht hat) die Kupplung 33 für den ersten Gang allmählich außer Eingriff gebracht, ehe das Reibungsmoment der Kupplung 34 (für den zweiten Gang) erzeugt wird. 5 Durch diesen Vorgang wird die tatsächliche Schlupffrequenz NSR in Richtung zu einer vorgegebenen Soll-Schlupffrequenz NSO erhöht, die später erläutert wird. Wenn erfaßt wird, daß die tatsächliche Schlupffrequenz NSR nicht kleiner ist als der vorgegebene Wert ΔNSR1 10 (NSR≥ΔNSR1), geht das Programm zu dem in Fig. 10 dargestellten Schritt S34.

Im Schritt S34 stellt das Getriebesteuergerät 16 das Tastverhältnis D24 des Magnetventils 48 auf der Zuschaltseite auf den Anfangswert Du2 ein, der im Schritt 15 S20 berechnet worden war, und liefert ein solches Ausgangssignal, daß das Magnetventil 48 mit diesem Tastverhältnis D24 betrieben wird. Gleichzeitig subtrahiert das Getriebesteuergerät 16 einen vorgegebenen Tastverhältniswert ΔD4, z. B. 2 bis 6%, vom Tastverhältnis 20 DLR des freigabeseitigen Magnetventils 47, das im vorhergehenden Takt eingestellt worden war, so daß man ein neues Tastverhältnis DLR erhält. Unter Verwendung des Tastverhältnisses DLR als Anfangswert wird die hydraulische Regelung begonnen in der Weise, daß die 25 tatsächliche Schlupffrequenz NSR auf die vorgegebene Soll-Schlupffrequenz Nso geregelt wird (ab Schritt S35). Das Getriebesteuergerät 16 wartet bei Schritt S36 den Ablauf eines Taktes to ab und setzt dann das Tastverhältnis D_{LR} des freigabeseitigen Magnetventils 47 30 für jeden Takt in der folgenden Weise, und liefert ein solches Treibersignal, daß das Magnetventil 47 mit dem vorgegebenen Tastverhältnis DLR betrieben wird (Schritt S38). Es gilt die Beziehung

$$(D_{LR})_n = (Di)_n + K_{Pi} \times e_n + K_{Di}(e_n - e_{n-1})$$
 (11)

Hierbei gilt e_n = N_{SO} − N_{SR}, d. h. e_n ist die Differenz zwischen der tatsächlichen Schlupffrequenz N_{SR} und der Soll-Schlupffrequenz N_{SO} für den jetzigen Takt.

Ebenso ist en- i die Differenz zwischen der tatsächliche Schlupffrequenz NSR und der Soll-Schlupffrequenz NSO für den vorhergehenden Takt.

K_{Pl} und K_{Dl} sind eine proportionale bzw. eine differentielle Verstärkung, die jeweils auf vorgegebene Werte 45 eingestellt werden.

(Di)n ist ein Integralterm, der wie folgt berechnet wird:

$$(Di)_n = (Di)_{n-1} + K_{11} \times e_n + D_{H1}$$
 (11a)

Dabei ist $(Di)_{n-1}$ ein Integralterm, der im vorhergehenden Takt eingestellt wurde, und K_{11} ist eine integrale Verstärkung, die auf einen vorgegebenen Wert eingestellt wurde.

D_{H1} ist eine Korrektur des Turbinenradwellen-Drehmoments, eingestellt entsprechend einer Variation ΔTt des Turbinenradwellen-Drehmoments, das verursacht wurde, wenn das Motordrehmoment durch Beschleunigungsarbeit während des Getrieberegelvorgangs verändert wird. Die Variation ΔTt wird zuerst berechnet, 60 und die sich hieraus ergebende Korrektur D_{H1} wird dann wie folgt berechnet:

$$D_{H1} = a6 \times \Delta Tt$$
 (12)

Hierbei wird ΔTt in diesem Leistung-EIN-Gebiet angegeben durch

$$\Delta Tt = (Tt)_n - (Tt)_{n-1}$$
 (13)

In einem Leistung-AUS-Gebiet, das später erwähnt wird, gilt für ΔTt

$$\Delta Tt = -(Tt)_n + (Tt)_{n-1}$$
 (14)

Hierbei sind (Tt)_n und (Tt)_{n-1} Turbinenradwellen-Drehmomente für den jetzigen bzw. den vorhergehenden Takt, die im Schritt S13 der Figur berechnet und gespeichert werden.

In Gleichung (12) ist a6 eine Konstante, die zuvor in Übereinstimmung mit dem Schaltmuster eingestellt wurde.

Wie man aus den Gleichungen (11a) und (12) ersieht, schließt der Integralterm (Di)n die Tastverhältniskorrektur DH1 ein, welche auf der Grundlage der Variation Δ Tt des Turbinenradwellen-Drehmoments erhalten werden kann. Dementsprechend kann das Tastverhältnis DLR ohne Verzögerung nach einer Änderung des Turbinenradwellen-Drehmoments Tt korrigiert werden. Folglich brauchen die erwähnten integralen, proportionalen und differentiellen Verstärkungsfaktoren (also die Verstärkungen der I-, P- und D-Strecken) nicht auf große Werte eingestellt zu werden, so daß eine stabile Regelung bei schneller Befolgung von Fahrerbefehlen und anderen Befehlen erzielt werden kann.

Danach bestimmt das Getriebesteuergerät 16, ob die tatsächliche Schlupffrequenz NSR nicht größer ist als eine (negative) vorgegebene Schlupffrequenz ΔNS1 (z. B. –3 bis –7 min⁻¹), vgl. Schritt S40.

Wenn die Schlußfolgerung von Schritt S40 NEIN ist, geht das Programm zu Schritt S36 zurück, worauf das Getriebesteuergerät 16 wiederholt die Schritte S36 bis 35 S40 ausführt, bis die tatsächliche Frequenz NSR nicht höher wird als die vorgegebene Frequenz ANs1. Daraufhin wird das Tastverhältnis DLR des freigabeseitigen Magnetventils 47 so geregelt, daß die Differenz zwischen der tatsächlichen Schlupffrequenz NSR und der Soll-Schlupffrequenz NSO reduziert wird, oder daß die Frequenzen NSR und NSO gleich sind. Andererseits wird das Tastverhältnis D24 des einschaltseitigen Magnetventils 48 auf dem Wert des anfänglichen Tastverhältnisses Du2 konstantgehalten. Infolgedessen wird ein hydraulischer Arbeitsdruck entsprechend dem anfänglichen Tastverhältnis Du2 des Magnetventils 48 der Kupplung 34 (für den zweiten Gang) über das zweite hydraulische Steuerventil 46 zugeführt, so daß sich der (nicht dargestellte) Kolben der Kupplung 34 langsam in Richtung Eingriff bewegt. Folglich beginnt die Kupplung 34 damit, zu greifen, so daß auf die Turbinenraddrehzahl Nt ein absenkender Einfluß wirkt.

Da sich jedoch der Motor 10 im Leistung-EIN-Zustand befindet, kann man die Turbinenraddrehzahl Nt an einer Absenkung hindern, indem man das Tastverhältnis DLR des freigabeseitigen Magnetventils 47 auf einen höheren Wert einstellt. Wenn jedoch der Eingriff der eingriffsseitigen Kupplung 34 weitergeht, so daß das Eingriffsmoment der Kupplung 34 den relativ großen Wert des Tastverhältnisses DLR des freigabeseitigen Magnetventils 47 überschreitet, fängt die Turbinenraddrehzahl Nt zu sinken an. Zum Zeitpunkt t4 der Fig. 13(a) wird die tatsächliche Schlupffrequenz NsR nicht höher als die (negative) vorgegebene Schlupffrequens 65 ANs1. Wenn das festgestellt wird (JA bei Schritt S40), geht das Programm weiter zu Schritt S42 in Fig. 11. Folglich ist die hydraulische Regelung in einem Regelabschnitt B der Fig. 13 (zwischen den Zeitpunkten t3

und t4) be ndet

Falls im Regelabschnitt B ermittelt wird, daß die tatsächliche Schlupffrequenz NSR nicht größer ist als die (negative) vorgegebene Schlupffrequenz ANS1, wird der Schritt S42 der Fig. 11 ausgeführt.

Falls im Regelabschnitt Az. B. in zwei aufeinanderfolgenden Programmtakten festgestellt wird, daß die tatsächliche Schlupffrequenz NSR durch irgend eine Störung auf den Wert der (negativen) vorgegebenen Schlupffrequenz ANs1 oder niedriger abgesenkt ist, 10 kann die hydraulische Regelung im Regelabschnitt B weggelassen werden. In diesem Fall geht das Programm direkt zum Schritt S42 der Fig. 11, worauf die hydraulische Regelung in einem Regelabschnitt C beginnt.

In den hydraulischen Regelvorgängen im Regelab- 15 schnitt C und den darauffolgenden Regelabsschnitten D und E wird das Tastverhältnis D24 des zuschaltseitigen Magnetventils 48 so geregelt, daß die Differenz zwischen der Änderungsrate ot der Turbinenraddrehzahl Nt und der vorgegebenen Soll-Änderungsrate ωto der 20 Turbinenraddrehzahl so klein wie möglich gemacht wird. Auf diese Weise wird die Turbinenraddrehzahl Nt allmählich abgesenkt auf eine berechnete Turbinenraddrehzahl Ntc2 für den zweiten Gang. Das Getriebeschaltgerät 16 stellt zunächst das Tastverhältnis DLR des 25 freigabeseitigen Magnetventils 47 auf ein vorgegebenes Tastverhältnis DLRmax und liefert ein Treibersignal in der Weise, daß das Magnetventil 47 mit diesem eingestellten Tastverhältnis DLR betrieben wird (Schritt S42). Das vorgegebene Tastverhältnis D_{LRmax} wird auf einen 30 solchen Wert eingestellt, daß der hydraulische Arbeitsdruck, der über das erste hydraulische Steuerventil 44 der Kupplung 33 (für den ersten Gang) zugeführt wird, auf einem festen Druck (Haltedruck) gehalten werden kann, und daß der Kolben der Kupplung 33 in einer 35 (Di)_n = (Di)_{n-1} + $K_{12} \times E_n + D_{H1} + D_{H2}$ Lage gehalten werden kann, die der Zeit t4 der Fig. 13(b) entspricht. Bis danach die Getriebesteuerung praktisch abgeschlossen ist (zwischen den Zeiten t4 und t8 der Fig. 13(b)), wird das Tastverhältnis DLR des freigabeseitigen Magnetventils 47 auf der Höhe des vorgegebenen Tastverhältnisses D_{LRmax} gehalten, das den Haltedruck für die Kupplung 33 (für den ersten Gang)

Wenn dann der vorgegebene Zeitabschnitt to abgelaufen ist (Schritt S43), geht das Programm zu Schritt 45 S44. In S44 wird die Soll-Änderungsrate ωto der Turbinenraddrehzahl Nt wie folgt eingestellt:

$$\omega to = a7 \times No + b7 \quad (15)$$

Hierbei werden a7 und b7 auf vorgegebene Werte (negative Werte) entsprechend den Regelabschnitten C D und E eingestellt. Im Regelabschnitt C, unmittelbar nach dem Beginn des Regelvorgangs, werden die Werte a7 und b7 so eingestellt, daß die Soll-Änderungsrate ω to $_{55}$ $\Delta\omega$ to = $(\omega$ to)_n - $(\omega$ to)_{n-1} der Turbinenraddrehzahl Nt so eingestellt wird, daß die Drehzahl Nt allmählich abnimmt. In dem an den Abschnitt C anschließenden Regelabschnitt D wird die Änderungsrate oto so eingestellt, daß ihr Absolutwert grö-Ber ist als im Abschnitt C. Deshalb nimmt im Abschnitt 60 D diese Drehzahl Nt stärker ab. Im Regelabschnitt E, währenddessen der Eingriffsvorgang der Kupplung 34 (für den zweiten Gang) abgeschlossen wird, wird der Absolutwert dieser Änderungsrate wieder reduziert, um die Getriebesteuerung ruck- und stoßfrei zu machen, 65 vgl. die Darstellung des zeitlichen Verlaufs der Turbinenraddrehzahl Nt in Fig. 13(a).

Dann berechnet das Getriebesteuergerät 16 das Tast-

verhältnis D24 des zuschaltseitigen Magnetventils 48 und stellt diesen neuen Wert ein. Dies geschieht mit der Gleichung (16), wobei das Tastverhältnis verwendet wird, das als Anfangswert zum Zeitpunkt t4 erhalten wurde, wenn festgestellt wird, daß die tatsächliche Schlupffrequenz NSR auf den Wert der (negativen) vorgegebenen Schlupffrequenz ΔN_{S1} oder darunter gefallen ist. Dann liefert das Getriebesteuergerät 16 ein Treibersignal in der Weise, daß das Magnetventil 48 mit dem vorgegebenen Tastverhältnis D24 betrieben wird (Schritt S46). Die Beziehung lautet:

$$(D24)_n = (Di)_n + K_{P2} \times E_n + K_{D2}(E_n - E_{n-1})$$
 (16)

Hierbei ist E_n die Differenz ($E_n = \omega t_0 - \omega t$) zwischen der tatsächlichen Änderungsrate ot der Turbinenraddrehzahl Nt und dem Sollwert wto der Turbinenraddrehzahl für den jetzigen Takt, die im Schritt S44 eingestellt wurde. Ausgehend von den tatsächlichen Turbinenraddrehzahlen (Nt)n und (Nt)n-1 für den jetzigen und den vorhergehenden Takt des Programms erhält man die tatsächliche Änderungsrate ot wie folgt:

$$(\omega t)_n = (Nt)_n - (Nt)_{n-1}$$
 (17)

 E_{n-1} ist die Differenz zwischen der tatsächlichen Änderungsrate ot der Turbinenraddrehzahl und der Soll-Änderungsrate wto der Turbinenraddrehzahl für den vorhergehenden Programmtakt. Kp2 und KD2 sind ein Proportional-Verstärkungsfaktor bzw. ein Differential-Verstärkungsfaktor, welche jeweils auf ihre vorgegebenen Werte eingestellt werden. (Di)n ist ein Integralterm, der wie folgt berechnet wird:

$$_{5}$$
 (Di)_n = (Di)_{n-1} + K₁₂ × E_n + D_{H1} + D_{H2} (18)

Hierbei ist $(Di)_{n-1}$ ein Integralterm, der im vorhergehenden Programmtakt eingestellt wurde, und K12 ist ein Integral-Verstärkerfaktor, der ebenfalls auf einen vorgegebenen Wert eingestellt wird.

DH1 ist eine Korrektur des Turbinenradwellen-Drehmoments, eingestellt entsprechend einer Variation ΔTt des Turbinenradwellenmoments, die verursacht wird, wenn während des Getriebesteuer- und regelvorgangs das Motordrehmoment Te durch Beschleunigungsarbeit geändert wird. Die Korrektur DH1 erhält man nach

den Gleichungen (12) bis (14).

DH2 ist ein korrigiertes Tastverhältnis für die Änderung der Soll-Änderungsrate der Turbinenraddrehzahl, die nur verwendet wird, wenn sich der Regelabschnitt von C nach D, oder von D nach E, ändert. Diesen Wert erhält man wie folgt:

$$D_{H2} = \alpha \times \Delta \omega to \qquad (19)$$

$$5 \Delta \omega to = (\omega to)_n - (\omega to)_{n-1} \qquad (20)$$

Hierbei ist (wto)n eine Soll-Änderungsrate für die Turbinenraddrehzahl, die für den jetzigen Programmtakt und die nachfolgenden Programmtakte verwendet werden soll, und $(\omega to)_{n-1}$ ist eine Soll-Änderungsrate für die Turbinenraddrehzahl, die bislang in den vorhergehenden Programmtakten verwendet wurde. In Gleichung (19) ist ferner a eine Konstante, die entsprechend dem Schaltmuster eingestellt wird.

Ebenso wie der Integralterm des Tastverhältnisses DLR des freigabeseitigen Magnetventils 47, der im Regelabschnitt B berechnet wurde, wird der Integralterm (Di)n des Tastverhältnisses D24, der für jeden Pro-

grammtakt berechnet wird, auf der Basis des Tastverhältnis-Korrekturwerts DH1 korrigiert, d. h. auf Grund der Variation \(\Delta Tt \) des Turbinenradwellen-Drehmoments. Wird der Regelabschnitt geändert, so wird der Integralterm (Di)n korrigiert entsprechend der Variation Aoto der Soll-Anderungsrate der Turbinenrad-drehzahl. Dementsprechend kann das Tastverhältnis D24 ohne Verzögerung direkt nach Änderungen des Turbinenradwellen-Drehmoments und der Soll-Änderungsrate der Turbinenraddrehzahl korrigiert werden. 10 Folglich brauchen die erwähnten Integral-, Proportional- und Differential-Verstärkungsfaktoren für die Regelung nicht auf hohe Werte eingestellt zu werden, so daß eine stabile, von Pendelungen freie Regelung mit guter Befolgung der Regelbefehle erzielt wird.

Nach der Berechnung des Tastverhältnisses D24 und dem Abgeben des Treibersignals in Schritt S46 geht das Getriebesteuergerät 16 zum Schritt S48 und stellt fest, ob die Turbinenraddrehzahl Nt einen vorgegebenen Wert Ntc20 erreicht hat, der um ANtc2, z. B. 80 bis 120 20 min-1, höher ist als die berechnete Turbinenraddrehzahl Ntc2 für den zweiten Gang. Falls das Ergebnis bei Schritt S48 NEIN ist, geht das Programm zum Schritt S43 zurück, und die Arbeitsgänge der Schritte S43 bis

S48 werden wiederholt.

Zum Zeitpunkt unmittelbar nach Beginn des Regelabschnitts C hat der Eingriff der eingriffsseitigen Kupplung 34 eben erst begonnen. Deshalb kann der Ruck oder Stoß der Getriebesteuerung zu Beginn des Eingriffs vermieden werden, indem man die Turbinenrad- 30 drehzahl Nt mit der erwähnten Soll-Änderungsrate ωto reduziert. Ist die Turbinenraddrehzahl reduziert auf einen Wert, der gleich der Getriebeabtriebsdrehzahl No, multipliziert mit einem vorgegebenen Koeffizienten (z. B. 2,8) ist, so schlußfolgert das Getriebesteuergerät 35 16, daß der Regelabschnitt C verlassen wurde und der Regelabschnitt D beginnt, und ändert den Absolutwert der Soll-Änderungsrate wto in Schritt S44 in einen grö-Beren Wert (zum Zeitpunkt t5 der Fig. 13(a)).

Wenn der Absolutwert der Soll-Anderungsrate wto 40 der Turbinenraddrehzahl erhöht wird, wird das Tastverhältnis D24 des zuschaltseitigen Magnetventils 48 auf einen Wert eingestellt (während der Zeit zwischen den Zeitpunkten t5 und t6 der Fig. 13(c)), der größer ist als derjenige im Regelabschnitt C. Folglich wird die Turbi- 45 nenraddrehzahl Nt schnell und im wesentlichen mit der Soll-Anderungsrate wto heruntergefahren. Je größer der Absolutwert des Sollwerts wto ist, umso höher ist die Ansprechgeschwindigkeit der Getriebesteuerung.

Wenn danach die Turbinendrehzahl Nt weiter auf ei-in Wert gefallen ist, der gleich dem Produkt aus der $D_{d2} = a8 \times |Tt| + c8$ nen Wert gefallen ist, der gleich dem Produkt aus der Getriebeabtriebsdrehzahl No und einem anderen vorgegebenen Koeffizienten ist (z. B. 2,2), d. h. wenn sich der Kolben der Kupplung 34 (zweiter Gang) allmählich der Eingriffs-Endstellung nähert, schließt das Getriebe- 55 steuergerät 16, daß der Regelabsschnitt D verlassen wurde und der Regelabschnitt E beginnt und ändert in Schritt S44 den Absolutwert der Soll-Änderungsrate ωto der Turbinenraddrehzahl Nt auf einen Wert, der kleiner ist als der Wert, der im Regelabschnitt Deinge- 60 stellt war. Dies geschieht zum Zeitpunkt t6 der Fig. 13(a).

Wenn der Absolutwert der Soll-Änderungsrate wto der Turbinenraddrehzahl auf einen kleineren Wert geändert wird, wird das Tastverhältnis D24 des einschalt- 65 seitigen Magnetventils 48 (während der Zeit zwischen den Zeitpunkten t6 und t7 der Fig. 13(c)) auf einen Wert eingestellt, der kleiner ist als der Wert, der im Regelab-

schnitt D eingestellt worden war. Folglich wird die Turbinenraddrehzahl Nt langsam abgesenkt, und zwar im wesentlichen mit der Soll-Änderungsrate ωto. Infolgedessen kommt die freigabeseitige Kupplung 33 völlig außer Eingriff, so daß ein Ruck oder Stoß zu dem Zeitpunkt vermieden werden kann, wenn der Eingriff der Kupplung 34 auf der Eingriffsseite beendet ist.

Falls die Entscheidung bei Schritt S48 JA lautet, d. h. wenn die Turbinenraddrehzahl Nt das Niveau der vorgeschobenen Drehzahl Ntc20 erreicht (zum Zeitpunkt t7 der Fig. 13(c)), das höher ist als die berechnete Turbinenraddrehzahl Ntc2 für den zweiten Gang, setzt das Getriebesteuergerät 16 eine vorgegebene Zeitdauer TSF (z. B. von 0,5 s) im erwähnten Zeitglied (Schritt S50 15 der Fig. 12) und wartet, bis diese Zeitdauer TSF abgelaufen ist (Schritt S51). Hierdurch kann das Getriebesteuergerät 16 sicher den Eingriff der eingriffsseitigen Kupplung 34 abschließen.

Wenn die vorgegebene Zeitdauer TSF zu Ende ist, so daß die Entscheidung beim Schritt S51 JA lautet, so setzt das Getriebesteuergerät 16 die Tastverhältnisse DLR und D24 des freigabeseitigen Magnetventils 47 und des zuschaltseitigen Magnetventils 48 auf 100%, vgl. Schritt S52, und liefert entsprechende Treibersignale, so 25 daß die Magnetventile 47 und 48 mit diesen neuen Tastverhältnissen DLR und D24 betrieben werden (zum Zeitpunkt t8 der Fig. 13(b) und 13(c)). Damit ist die hydraulische Getriebesteuerung für das Leistung-EIN-Hinaufschalten vom ersten in den zweiten Gang abgeschlossen.

Hydraulische Steuerung für Leistung-EIN-Herunterschalten

Die Fig. 14-16 zeigen Ablaufdiagramme der hydraulischen Getriebesteuerung für einen Leistung-EIN-Herunterschaltvorgang. Unter Bezugnahme auf Fig. 17 werden die Vorgänge der hydraulischen Steuerung und Regelung in Verbindung mit dem Herunterschaltvorgang vom zweiten Gang in den ersten beispielhaft beschrieben.

Wenn ein Schaltsignal für einen Leistung-EIN-Herunterschaltvorgang vom zweiten in den ersten Gang vorliegt, berechnet das Getriebesteuergerät 16 zuerst die jeweiligen Anfangs-Tastverhältnisse Dd1 und Dd2 der Magnetventile 47 und 48 nach den folgenden Gleichungen (21) und (22), welche den Gleichungen (8) bzw. (9) ähnlich sind (Schritt S60).

$$D_{d1} = a8 \times |Tt| + c8$$
 (21)
 $D_{d2} = a9 \times |Tt| + c9$ (22)

Hierbei sind a8, c8, a9 und c9 Konstanten für den Herunterschaltvorgang vom zweiten in den ersten

Dann stellt das Getriebesteuergerät 16 das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 in Schritt S60 auf das Anfangs-Tastverhältnis Dd1 ein und liefert ein Ausgangssignal in der Weise, daß das Magnetventil 48 mit dem Tastverhältnis D24 betrieben wird. Daraufhin wird die Kupplung 34 für den zweiten Gang, welche als freigabeseitiges Reibungseingriffselement dient, mit einem Anfangs-Öldruck versorgt, welcher dem anfänglichen Tastverhältnis Dd1 entspricht, so daß der (nicht dargestellte) Kolben der Kupplung 34 in eine Stellung zurückgezogen wird, die kurz vor derjenigen liegt, bei der die Kupplung 34 schleift (Schritt S62; Zeit t10 von Fig. 17(b)). Unterdessen setzt das Getriebesteuergerät 16 das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 auf 0% und liefert ein Ausgangssignal in der W ise, daß das Magnetventil 47 mit diesem Tastverhältnis DLR betrieben wird.

Auf diese Weise ist das normalerweise offene Magnetventil 47 voll geöffnet. Daraufhin wird der Kolben der Kupplung 33 für den ersten Gang, welche Kupplung als zuschaltseitiges Reibungseingriffselement dient, in Richtung zu einer Stellung verschoben, die kurz vor derjenigen liegt, bei der die Kupplung 33 einzugreifen 10 beginnt (zum Zeitpunkt t10 der Fig. 17(c)), und eine Anfangs-Druckzufuhrdauer T_{S2} wird im Zeitglied eingestellt (Schritt S64). Falls das normalerweise offene Magnetventil 47 während der gesamten Zeitdauer TS2 zuschaltseitige Kupplung 33 mit einem entsprechenden hydraulischen Arbeitsdruck zu versorgen, wird der Kolben der Kupplung 33 zu der vorgegebenen Stellung kurz vor derjenigen, bei der der Eingriff beginnt, vorgeschoben.

Das Getriebesteuergerät 16 bestimmt, ob die anfängliche Druckzufuhr-Zeitdauer Ts2, die in Schritt S64 eingestellt wurde, vorbei ist (Schritt S66). Falls diese Zeitdauer Ts2 noch nicht vorbei ist, wartet das Getriebesteuergerät 16, bis diese Zeitdauer Ts2 zu Ende ist und 25 führt wiederholt den Arbeitsgang des Schrittes S66 durch.

Falls das Ergebnis beim Schritt S66 JA ist, d. h. wenn die Kupplung 33 für den ersten Gang nach Abschluß der anfänglichen Druckzufuhr-Zeitdauer Ts2 zur vorgege- 30 benen Stellung kurz vor der Eingriffsstellung vorgerückt ist, geht das Programm zum Schritt S68 der Fig. 15. Im Schritt S68 stellt das Getriebesteuergerät 16 das Tastverhältnis DLR des verbindungsseitigen Magnetventils 47 auf den vorgegebenen Wert DLRmax für den 35 Haltedruck ein und liefert dann ein Treibersignal in der Weise, daß das Ventil 47 mit diesem Tastverhältnis DLR betrieben wird (zum Zeitpunkt t11 der Fig. 17(c)). Das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 wird auf dem Niveau des vorgegebenen Tastverhältnisses D_{LRmax} für den Haltedruck an der Kupplung 33 für den ersten Gang gehalten, bis die Turbinenraddrehzahl Nt danach die berechnete Turbinenraddrehzahl Ntc1 für den ersten Gang erreicht (während der Zeitdauer zwischen den Zeitpunkten t11 und t15 der Fig. 45 17(a)).

Unterdessen verschiebt sich der Kolben der freigabeseitigen Kupplung 34 allmählich in Richtung dahin, au-Ber Eingriff zu kommen und reduziert dadurch das Reibungsmoment der Kupplung 34, so daß die Turbinen- 50 raddrehzahl Nt allmählich zuzunehmen beginnt. Dann bestimmt das Getriebesteuergerät 16, ob die Turbinenraddrehzahl Nt über einen ersten vorgegebenen Wert hinaus zugenommen hat (z. B. 1,5 × No) (Schritt S70). Falls der Diskriminierungswert (z.B. 1,5 × No) nicht 55 überschritten ist, wartet das Getriebesteuergerät 16, bis der vorgegebene Drehzahlwert überschritten wird und wiederholt den Schritt S70.

Falls die Turbinenraddrehzahl Nt diese Drehzahl (z. B. 1,5 x No) überschreitet (zum Zeitpunkt t12 der Fig. 60 17(a)), dann zeigt dies an, daß die hydraulische Getriebesteuerung im Regelabschnitt A der Fig. 17 beendet ist und daß man sich nun in einem Regelabschnitt B befindet. Im Schritt S71 anschließend an den Schritt S70 wartet das Getriebesteuergerät 16, bis ein Programmtakt zu 65 Ende ist. Danach beginnt das Getriebesteuergerät 16 einen hydraulischen Steuervorgang in der Weise, daß die Turbinenraddrehzahl Nt in Richtung zur berechne-

ten Turbinenraddrehzahl Ntc1 für den ersten Gang erhöht wird, wobei die Änderungsrate ot der Turbinenraddrehzahl geregelt wird. So wird bei den hydraulischen Regelvorgängen im Regelabschnitt B und in den darauffolgenden Regelabschnitten C und D das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 so geregelt, daß es einen Wert annimmt, daß die Differenz zwischen der tatsächlichen Änderungsrate ot und der vorgegebenen Soll-Änderungsrate wto der Turbinenraddrehzahl möglichst klein wird. Auch wird die Turbinenraddrehzahl Nt allmählich in Richtung zum Niveau der berechneten Turbinenraddrehzahl Ntc1 für den ersten Gang erhöht.

Im Schritt S72 stellt das Getriebesteuergerät 16 zumit einem Tastverhältnis von 0% betrieben wird, um die 15 nächst die Soll-Änderungsrate ωto der Turbinenraddrehzahl wie folgt ein:

> ω to = a10 × No + b10 (23)

Hierbei sind a10 und b10 Konstanten, welche auf vorgegebene Werte (positive Werte) entsprechend den Regelabschnitten B, C und D eingestellt werden. Im Regelabschnitt B unmittelbar nach dem Beginn der Regelung werden die Werte a10 und b10 so eingestellt, daß die Soll-Änderungsrate wto der Turbinenraddrehzahl auf einen Wert eingestellt wird, damit die Turbinenraddrehzahl Nt allmählich zunimmt. Im Regelabschnitt C anschließend an den Regelabschnitt B wird die Änderungsrate auf einen größeren Wert eingestellt als im Abschnitt B. Deshalb nimmt im Abschnitt C die Turbinenraddrehzahl Nt stärker zu. Im Regelabschnitt D, während dessen die Turbinenraddrehzahl Nt sich der berechneten Turbinenraddrehzahl Ntc1 für den ersten Gang nähert, wird die Änderungsrate wieder reduziert, um ein Hinausschießen der Turbinenraddrehzahl Nt über den gewünschten Wert zu verhindern (vgl. den zeitlichen Verlauf der Turbinenraddrehzahl Nt der Fig.

Dann berechnet das Getriebesteuergerät 16 das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 und setzt es auf diesen Wert, und zwar nach denselben Gleichungen wie den Gleichungen (16) und (18); das errechnete Tastverhältnis wird als Anfangswert zum Zeitpunkt t12 verwendet, wenn die Turbinenraddrehzahl Nt die angegebene Drehzahl überschreitet (z. B. 1,5 × No). Dann liefert das Getriebesteuergerät 16 ein Treibersignal in der Weise, daß das Magnetventil 48 mit dem eingestellten Tastverhältnis D24 betrieben wird (Schritt S74). Die Integral-, Proportional- und Differential-Verstärkungsfaktoren K12, KP2 und KD2 in den Gleichungen (16) und (18) werden auf ihre jeweiligen optimalen Werte für das Schaltmuster des Leistung-EIN-Herunterschaltvorgang eingestellt.

Nach der Berechnung des Tastverhältnisses D24 und der Lieferung des Treibersignals im Schritt S74 geht das Getriebesteuergerät 16 zum Schritt S76 und bestimmt, ob die Turbinenraddrehzahl Nt den Wert der berechneten Turbinenraddrehzahl Ntc1 für den ersten Gang erreicht hat. Falls die Schlußfolgerung beim Schritt S76 NEIN ist, geht das Programm zum Schritt S71 zurück, und die Schritte S71 bis S76 werden wiederholt.

Zu diesem Zeitpunkt unmittelbar nachdem der Regelabschnitt B begonnen hat, wird die Freigabe der freigabeseitigen Kupplung 34 eben begonnen. Unter Freigabe ist hierbei zu verstehen, daß diese Kupplung außer Eingriff gebracht wird. Deshalb kann ein Überschwingen der Turbinenraddrehzahl Nt vermieden werden, indem man diese Drehzahl mit der bereits erwähnten Soll-Änderungsrate wto erhöht. Ist die Turbinenraddrehzahl Nt bis zu einem Wert erhöht, der gleich dem Produkt aus der Getriebeabtriebsdrehzahl No und einem vorgegebenen Koeffizienten (z. B. 1,7) ist, s k mmt das Getriebesteuergerät 16 zum Schluß, daß der Regelabschnitt B verlassen wurde und man sich im Regelabschnitt C befindet, und ändert die Soll-Änderungsrate ωto der Turbinenraddrehzahl im Schritt S72 in einen größeren Wert (zum Zeitpunkt t13 der Fig. 17(a)).

Wenn diese Soll-Änderungsrate wto der Turbinen- 10 raddrehzahl zu einem größeren Wert geändert wird, wird das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 auf einen kleineren Wert angepaßt als den Wert, der im Regelabschnitt B eingestellt war. Diese Anpassung erfolgt während des Zeitabschnitts zwischen 15 (Di)_n = (Di)_{n-1} + $K_{11} \times e_n + D_{H1}$ (24a) den Zeitpunkten t13 und t14 der Fig. 17(b). Auf diese Weise wird die Turbinenraddrehzahl Nt schnell und im wesentlichen mit der Soll-Änderungsrate wto erhöht. Je höher hierbei die Soll-Änderungsrate wto ist, umso höher ist die Ansprechgeschwindigkeit der Getriebesteue- 20 rung.

Wenn danach die Turbinenraddrehzahl Nt weiter auf einen Wert zugenommen hat, der gleich dem Produkt aus der Getriebeabtriebsdrehzahl No und einem anderen vorgegebenen Koeffizienten (z. B. 2,4) ist, d. h. wenn 25 die Kupplung 34 für den zweiten Gang allmählich außer Eingriff kommt, so daß die Turbinenraddrehzahl Nt sich allmählich der berechneten Turbinenraddrehzahl Ntc1 für den ersten Gang nähert, schlußfolgert das Getriebesteuergerät 16, daß der Regelabschnitt C verlassen wur- 30 de und der Regelabschnitt D beginnt und ändert die Soll-Änderungsrate wto der Turbinenraddrehzahl im Schritt S72 in einen Wert, der kleiner ist als der Wert, der im Regelabschnitt C eingestellt worden war. Dies geschieht zum Zeitpunkt t14 der Fig. 17(a). Wenn die 35 len-Drehmoment, der eingestellt wird entsprechend ei-Soll-Änderungsrate wto der Turbinenraddrehzahl zum kleineren Wert geändert wird, wird das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 eingestellt (während der Zeitdauer zwischen den Zeitpunkten t14 und t15 der Fig. 17(b)) auf einen Wert, der größer ist als 40 der Wert, der im Regelabschnitt C eingestellt worden war. So wird die Turbinenraddrehzahl Nt langsam und im wesentlichen mit der Soll-Änderungsrate ωto erhöht, und dadurch kann verhindert werden, daß diese Drehzahl wesentlich über die berechnete Turbinenraddrehzahl Ntc1 für den ersten Gang hinausschießt.

Falls das Ergebnis des Schrittes S76 der Fig. 15 JA ist und ermittelt wird, daß die Turbinenraddrehzahl Nt dieselbe Höhe hat wie die berechnete Turbinenraddrehzahl Ntc1 für den ersten Gang (zum Zeitpunkt t15 der 50 Fig. 17(a)), wird der hydraulische Regelvorgang im Regelabschnitt D abgeschlossen und ein hydraulischer Regelvorgang in einem Regelabschnitt E beginnt. Im hydraulischen Regelvorgang im Regelabschnitt E wird das Tastverhältnis D24 des freigabeseitigen Magnetventils 55 48 geregelt, so daß der Unterschied zwischen der Ist-Schlupffrequenz NSR und der Soll-Schlupffrequenz NSO (z. B. 20 min⁻¹) so klein wie möglich gemacht wird, und unterdessen wird der Eingriff der Kupplung 33 für den ersten Gang auf der Zuschaltseite allmählich erhöht. 60 Somit stellt im Schritt S78 (Fig. 16) das Getriebesteuergerät 16 das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 auf das anfängliche Tastverhältnis Dd2 ein, welches, in Schritt S60 eingestellt, kleiner ist als das Tastverhältnis D_{LRmax} und liefert ein Treibersignal in 65 der Weise, daß das Magnetventil 47 mit dem neuen Tastverhältnis DLR betrieben wird, nämlich zum Zeitpunkt t15 der Fig. 17(c). Darauf beginnt der Kolben der

Kupplung 33 für den ersten Gang, also auf der Zuschaltseite, sich allmählich in Richtung zur Eingriffsseite

zu bewegen.

Danach wartet das Getriebesteuergerät 16, bis die vorgegebene Zeitdauer to im Schritt S79 zu Ende ist und berechnet dann das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 für jeden Programmtakt nach den folgenden Gleichungen (24) und (24a), welche ähnlich sind wie die Gleichungen (11) bzw. (11a) und liefert ein Treibersignal in der Weise, daß das Magnetventil 48 mit dem Tastverhältnis D24 betrieben wird (Schritt S80). Diese Beziehungen lauten:

$$(D24)_n = (Di)_n + K_{p1} \times e_n + K_{D1}(e_n - e_{n-1})$$

$$(Di)_n = (Di)_{n-1} + K_{I1} \times e_n + D_{H1}$$

$$(24a)$$

Hierbei ist (Di)n-1 ein Integralterm, der im vorhergehenden Programmtakt eingestellt wurde. Als Anfangswert wird ein Tastverhältnis verwendet, das unmittelbar vor dem Zeitpunkt t15 eingestellt wurde, wenn festgestellt wird, daß die berechnete Turbinenraddrehzahl Ntc1 für den ersten Gang von der tatsächlichen Turbinenraddrehzahl Nt übertroffen wird. K11, Kp1 und KD1 sind Integral-, Proportional- und Differential-Verstärkungsfaktoren, welche auf ihre jeweiligen optimalen Werte für den Leistung-EIN-Herabschaltmodus eingestellt werden. In der Gleichung (25) ist en die Differenz (en=NSO-NSR) zwischen dem Istwert der Schlupffrequenz NSR und dem Sollwert der Schlupffrequenz Nso für den jetzigen Programmtakt, und en-1 ist die Differenz zwischen dem Istwert der Schlupffrequenz NSR und dem Sollwert der Schlupffrequenz Nso für den vorhergehenden Programmtakt.

DH1 ist ein Korrekturwert für das Turbinenradwelner Variation ATt des Turbinenradwellen-Drehmoments, die verursacht wird, wenn das Motordrehmoment Te während des Getriebesteuervorgangs durch Beschleunigungsarbeit verändert wird. Der Wert DH1 wird berechnet nach den Gleichungen (12) bis (14).

Dann bestimmt in den Schritten S82 bis S85 (Fig. 16) das Getriebesteuergerät 16, ob in zwei aufeinanderfolgenden Programmtakten festgestellt wird, daß der Absolutwert der tatsächlichen Schlupffrequenz NSR kleiner ist als ein vorgegebener Wert (z. B. 5 min⁻¹). Im Schritt S82 bestimmt das Getriebesteuergerät 16, ob der Absolutwert der tatsächlichen Schlupffrequenz NSR kleiner ist als der vorgegebene Wert (5 min⁻¹). Falls das Ergebnis von Schritt S82 NEIN ist, setzt das Getriebesteuergerät 16 einen Kennzeichenwert FLG auf Null zurück (Schritt S83). (FLG ist die Abkürzung für flag, einer Bezeichnung, die in der Datentechnik geläufig ist und deren deutsche Übersetzung "Kennzeichen" lautet. Im folgenden wird hierfür der Ausdruck flag verwendet.) Daraufhin kehrt das Programm zum Schritt S79 zurück, und die Schritte S79 bis S82 werden wiederholt. Falls das Reibungsmoment der zuschaltseitigen Kupplung 33 klein ist, und so lange die Reduzierung des Reibungsmoments der abschaltseitigen Kupplung 34, d. h. der Grad ihres Außer-Eingriff-Kommens, durch die Regelung größer gemacht wird als die Zunahme des Reibungsmoments der Kupplung 33, so daß das Drehmoment zur Erhöhung der Turbinenraddrehzahl Nt mit Hilfe des Motors 10 in dessen leistungsabgebendem Zustand überwiegt, kann die Turbinenraddrehzahl Nt auf einem höheren Wert gehalten werden als die berechnete Turbinenraddrehzahl Ntc1 für den ersten Gang, und zwar um die Soll-Schlupffrequenz Nso höher. Wenn

jedoch das Reibungsmoment der zuschaltseitigen Kupplung 33 höher wird, sinkt die Turbinenraddrehzahl Nt allmählich, so daß man beim Schritt S82 das Ergebnis JA erhält, worauf der Programmschritt S84 ausgeführt

Im Schritt S84 bestimmt das Getriebesteuergerät 16, ob der Kennzeichenwert FLG gleich 1 ist. Wenn die Turbinenraddrehzahl Nt sinkt, so daß das Ergebnis des Schrittes S82 zum ersten Mal JA wird, ist das Ergebnis von Schritt S84 NEIN. In diesem Fall wird der Kennzei- 10 chen- oder flag-Wert FLG im Schritt S85 auf 1 gestellt, worauf das Programm zum Schritt S79 zurückgeht und die Schritte S79 und S80 ausgeführt werden. Falls zweimal, für zwei aufeinanderfolgende Programmtakte, wiederum im Schritt S82 festgestellt wird, daß der Absolut- 15 wert der tatsächlichen Schlupffrequenz NSR kleiner als der vorgegebene Wert (5 min-1) ist, nämlich zum Zeitpunkt t16 der Fig. 17(a), ist das Ergebnis des Schrittes S84 JA. In diesem Fall ist die hydraulische Regelung im tes S87 wird ausgeführt.

Im Schritt S87 setzt das Getriebesteuergerät 16 das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 und das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 auf Null %, liefert also beiden Ventilen 47 25 des zuschaltseitigen Magnetventils 48 auf das anfängliund 48 kein Treibersignal. Damit sind die Freigabe der Kupplung 34 für den zweiten Gang und der Eingriff der Kupplung 33 für den ersten Gang beendet, und die hydraulische Getriebesteuerung für das Leistung-EIN-Herunterschalten vom zweiten in den ersten Gang ist 30 abgeschlossen.

Hydraulische Steuerung für das Leistung-AUS-Heraufschalten

Die Fig. 18-20 sind Ablaufdiagramme, welche Vorgänge bei der hydraulischen Getriebesteuerung für einen Leistung-AUS-Hinaufschaltmodus zeigen. Unter Bezugnahme auf Fig. 21 werden die hydraulischen Regelvorgänge in Verbindung mit dem Hinaufschalten 40 vom ersten in den zweiten Gang als Beispiel beschrie-

Bei der Ankunft eines Schaltsignals für ein Leistung-AUS-Hinaufschalten vom ersten in den zweiten Gang berechnet das Getriebesteuergerät 16 zunächst das An- 45 fangs-Tastverhältnis Du2 des zuschaltseitigen Magnetventils 48 nach Gleichung (9) (Schritt S90 in Fig. 18).

Dann stellt das Getriebesteuergerät 16 das Tastverhältnis D_{LR} des freigabeseitigen Magnetventils 47 auf das vorgegebene Tastverhältnis D_{LRmax} für den Halte- 50 druck und liefert ein solches Ausgangssignal, daß das Magnetventil 47 mit diesem Tastverhältnis DLR betrieben wird. Danach wird der (nicht dargestellte) Kolben der Kupplung 33 für den ersten Gang, welche Kupplung Richtung zu einer Standby-Stellung zurückgezogen, in welcher die Kupplung 33 vollständig schleift und der Eingriff sogleich wieder hergestellt werden kann (Schritt S92; Zeitpunkt t21 in Fig. 21(b)). Wenn sich der Motor 10 in einem Leistung-AUS-Betriebszustand befindet, gibt es keine Möglichkeit, daß die Turbinenraddrehzahl Nt über den gewünschten Wert hinaufschießt, selbst wenn die freigabeseitige Kupplung 33 unmittelbar nach der Ankunft des Schaltsignals außer Eingriff gebracht wird. Im Gegenteil: Ein Stoß oder Ruck durch 65 die Getriebesteuerung könnte möglicherweise verursacht werden, wenn nicht die Kupplung 33 ohne Verzögerung außer Eingriff gebracht wird. Unterdessen setzt

das Getriebesteuergerät 16 das Tastverhältnis D24 des zuschaltseitigen Magnetventils 48 auf 100% und liefert ein solches Ausgangssignal, daß das Magnetventil 48 mit diesem neuen Tastverhältnis D24 betrieben wird, also mit einem Treibersignal, welches das Magnetventil 48 voll öffnet. Daraufhin wird ein Kolben der Kupplung 34 für den zweiten Gang, welche Kupplung als zuschaltseitiges Reibungseingriffselement dient, in Richtung zu einer Stellung verschoben, die kurz vor derjenigen liegt, bei der die Kupplung 34 zu greifen beginnt (zum Zeitpunkt t21 der Fig. 21(c)), und im Zeitglied wird die Anfangs-Druckzufuhrzeitdauer Ts1 eingestellt (Schritt

Im Schritt S95 stellt das Getriebesteuergerät 16 fest, ob die Anfangs-Druckzufuhrdauer TS1, die im Schritt S93 eingestellt worden war, vorüber ist. Falls diese Zeitdauer TS1 noch nicht abgelaufen ist, wird der Schritt S95 wiederholt, bis die Zeitdauer Ts1 abgelaufen ist.

Falls das Ergebnis des Schrittes S95 JA ist, d. h. wenn Regelabschnitt E zu Ende, und der Vorgang des Schrit- 20 die Kupplung 34 für den zweiten Gang nach Ablauf der Anfangs-Druckzufuhrdauer Ts1 bis zur vorgegebenen Stellung kurz vor der Eingriffsstellung vorgerückt ist, geht das Programm zum Schritt S96. In diesem Schritt stellt das Getriebesteuergerät 16 das Tastverhältnis D24 che Tastverhältnis Du2 ein, das im Schritt S90 berechnet worden war und liefert dann ein Treibersignal in der Weise, daß das Ventil 48 mit diesem Tastverhältnis D24 betrieben wird (zum Zeitpunkt t22 der Fig. 21(c)). Wenn die vorgegebene Zeitdauer to für einen Programmtakt zu Ende ist (Schritt S98), addiert das Getriebesteuergerät 16 einen vorgegebenen Tastverhältnisfaktor ΔD5 zum Tastverhältnis D24 des Magnetventils 48, welches Tastverhältnis im vorhergehenden Programmtakt eingestellt worden war und liefert dadurch ein neues Tastverhältnis D24 und liefert ein Ausgangssignal in der Weise, daß das Magnetventil 48 mit dem neuen Tastverhältnis D24 betrieben wird (Schritt S99). Der addierte vorgegebene Tastverhältnisfaktor ΔD5 wird auf einen Wert eingestellt in der Weise, daß das Tastverhältnis D24 des Magnetventils 48 mit einer vorgegebenen Rate oder Steigung zunimmt, z. B. mit 14 bis 17% pro Sekunde, vgl. die Änderung des Tastverhältnisses D24 vom Zeitpunkt t22 zum Zeitpunkt t23 in Fig. 21(c).

Danach geht das Programm zum Schritt S100, worauf das Getriebesteuergerät 16 die tatsächliche Schlupffrequenz NSR nach der Gleichung (10) berechnet und den errechneten Wert mit einem (negativen) vorgegebenen Wert ΔN_{SR2} (z. B. -8 bis -12 min⁻¹) vergleicht.

Falls die tatsächliche Schlupffrequenz NSR größer ist als der vorgegebene Wert ΔN_{SR2} ($N_{SR} > \Delta N_{SR2}$), geht das Programm zum Schritt S98 zurück, worauf das Getriebesteuergerät 16 die Schritte S98 bis S100 wiederholt und dadurch allmählich das Tastverhältnis D24 des als freigabeseitiges Reibungseingriffselement dient, in 55 Magnetventils 48 erhöht. Auf diese Weise beginnt die zuschaltseitige Kupplung 34 zu greifen, so daß ihr Reibungsmoment allmählich zunimmt. Daraufhin nimmt die Turbinenraddrehzahl Nt allmählich ab, so daß das Ergebnis beim Schritt S100 JA wird. Dann geht das Programm zum Schritt S102 der Fig. 19, worauf die hydraulische Regelung im Regelabschnitt A beendet ist und die hydraulische Regelung im Regelabschnitt B be-

> Bei den hydraulischen Regelvorgängen im Regelabschnitt B und den auf ihn folgenden Regelabschnitten C und D wird das Tastverhältnis D24 des zuschaltseitigen Magnetventils 48 so geregelt, daß die Differenz zwischen der tatsächlichen Änderungsrate ot der Turbi

nenraddrehzahl und der Soll-Änderungsrate wto der Turbinenraddrehzahl so klein wie möglich gemacht wird. Auf diese Weise wird die Turbinenraddrehzahl Nt allmählich in Richtung zur berechneten Turbinenraddrehzahl Ntc2 für den zweiten Gang abgesenkt.

Nachdem das Programm im Schritt S102 abgewartet hat, bis ein Programmtakt mit der vorgegebenen Zeitdauer to zu Ende ist, setzt das Programm zunächst die Soll-Änderungsrate wto der Turbinenraddrehzahl auf vorgegebene, gespeicherte Werte, entsprechend den 10 Regelabschnitten B, C und D. Im Regelabschnitt B unmittelbar nach dem Beginn des Regelvorgangs wird die Soll-Änderungsrate wto der Turbinenraddrehzahl auf einen derartigen Wert eingestellt, daß die Turbinenraddrehzahl Nt allmählich sinkt. Im Regelabschnitt C, der 15 dem Regelabschnitt B folgt, wird die Änderungsrate wto so eingestellt, daß ihr Absolutwert größer ist als im Regelabschnitt B. Deshalb nimmt im Regelabschnitt C die Turbinenraddrehzahl Nt stärker ab. Im Regelabschnitt D, während dessen der Eingriff der Kupplung 34 20 für den zweiten Gang im wesentlichen zum Abschluß kommt, so daß sich die Turbinenraddrehzahl Nt der berechneten Turbinenraddrehzahl Ntc2 für den zweiten Gang annähert, wird der Absolutwert der Änderungsrate wieder reduziert, um einen Ruck oder Stoß bei der 25 Getriebesteuerung zu vermeiden, vgl. die zeitliche Änderung der Turbinenraddrehzahl Nt in Fig. 21(a).

Dann berechnet das Getriebesteuergerät 16 nach den Gleichungen (16) und (18) das Tastverhältnis des zuschaltseitigen Magnetventils 48 und stellt dieses ent-sprechend ein, wobei das Tastverhältnis verwendet wird, das man, als Anfangswert, zum Zeitpunkt t23 erhalten hat, wenn festgestellt wird, daß die tatsächliche Schlupffrequenz NSR auf den Wert der (negativen) vorgegebenen Schlupffrequenz ΔN_{S2} (z. B. -8 bis -12 35 min-1) oder weniger reduziert ist. Dann liefert das Getriebesteuergerät 16 ein Treibersignal in der Weise, daß das Magnetventil 48 mit dem eingestellten Tastverhält-

nis D24 betrieben wird (Schritt S106)

Die Integral-, Proportional- und Differential-Verstär- 40 kungsfaktoren K12, KP2 und KD2 in den Gleichungen (16) und (18) werden auf ihre jeweiligen Optimalwerte für das Schaltmuster beim Leistung-AUS-Hinaufschalt-

vorgang eingestellt.

Nachdem im Schritt S106 das neue Tastverhältnis 45 D24 berechnet und ein entsprechendes Treibersignal abgegeben wurde, geht das Getriebesteuergerät 16 zum Schritt S107 und bestimmt, ob die Turbinenraddrehzahl Nt auf die vorgegebene Drehzahl Ntc20 abgesenkt ist, welche um den Betrag ΔNtc2 (z. B. 80-120 min⁻¹) hδher ist als die berechnete Turbinenraddrehzahl Ntc2 für den zweiten Gang. Falls das Ergebnis von Schritt S107 NEIN ist, geht das Programm zu Schritt S102 zurück, und die Schritte S102 bis S107 werden wiederholt.

Zu dem Zeitpunkt unmittelbar nach Beginn des Re- 55 gelabschnitts B wird der Eingriff der zuschaltseitigen Kupplung 34 eben begonnen. Deshalb kann ein Ruck oder Stoß durch die Getriebesteuerung zu Beginn des Eingriffs vermieden werden, indem man die Turbinenraddrehzahl Nt mit der erwähnten Soll-Änderungsrate 60 ωto reduziert. Ist die Turbinenraddrehzahl Nt auf einen Wert reduziert, der gleich dem Produkt aus der Getriebeabtriebsdrehzahl No und einem vorgegebenen Koeffizienten (z. B. 2,8) ist, so schlußfolgert das Getriebesteuergerät 16, daß der Regelabschnitt B zu Ende ist und der 65 Regelabschnitt C beginnt und ändert den Absolutwert der Soll-Anderungsrate wto im Schritt S104 in einen Wert, welcher größer ist als derjenige, der im Regelab-

schnitt C verwendet wurde (zum Zeitpunkt t24 der Fig.

21(a)).
Wenn der Absolutwert der Soll-Änderungsrate ωto der Turbinenraddrehzahl zum größeren Wert geändert wird, wird das Tastverhältnis D24 des zuschaltseitigen Magnetventils 48 auf einen Wert eingestellt, der größer ist als der Wert im Regelabschnitt B. Dieser höhere Wert ist wirksam im Zeitabschnitt zwischen den Zeitpunkten t24 und t25 der Fig. 21(c). Dadurch wird die Turbinenraddrehzahl Nt rasch und im wesentlichen mit der so eingestellten Soll-Änderungsrate wto abgesenkt. Je größer der Absolutwert der Soll-Änderungsrate wto ist, umso höher wird die Schaltgeschwindigkeit der Getriebesteuerung sein.

Wenn danach die Turbinenraddrehzahl Nt weiter abgesenkt ist auf den Wert, der dem Produkt aus der Getriebeabtriebsdrehzahl No und einem anderen vorgegebenen Koeffizienten (z. B. 2.2) ist, d. h. wenn sich der Kolben der Kupplung 34 für den zweiten Gang allmählich der Eingriffs-Endlage nähert, schlußfolgert das Getriebesteuergerät 16, daß der Regelabschnitt C zu Ende ist und der Regelabschnitt D beginnt und ändert den Absolutwert der Soll-Änderungsrate wto der Turbinenraddrehzahl im Schritt S104 auf einen Wert, der kleiner ist als derjenige im Regelabschnitt C. Dies geschieht zum Zeitpunkt t25 der Fig. 21(a). Wenn der Absolutwert der Soll-Änderungsrate wto der Turbinenraddrehzahl zum kleineren Wert geändert wird, wird das Tastverhältnis D24 des zuschaltseitigen Magnetventils 48 auf einen Wert eingestellt, der kleiner ist als der Wert im Regelabschnitt C. Dies geschieht während der Zeitdauer zwischen den Zeitpunkten t25 und t26 der Fig. 21(c). Folglich wird die Turbinenraddrehzahl Nt langsam und im wesentlichen mit der Soll-Änderungsrate wto abgesenkt. Infolgedessen wird die Turbinenraddrehzahl Nt so weich auf die errechnete Turbinenraddrehzahl Ntc2 für den zweiten Gang abgesenkt, daß ein Ruck oder Stoß durch die Getriebesteuerung zu dem Zeitpunkt vermieden werden kann, an dem der Eingriff der zuschaltseitigen Kupplung 34 zu Ende ist.

Wenn das Ergebnis von Schritt S107 in Fig. 19 JA ist, d. h. wenn die Turbinenraddrehzahl Nt den Wert der vorgegebenen Drehzahl Ntc20 erreicht, der etwas höher liegt als die errechnete Turbinenraddrehzahl Ntc2 für den zweiten Gang (zum Zeitpunkt t26 der Fig. 21(c)), stellt das Getriebesteuergerät 16 eine vorgegebene Zeitdauer TSF (z. B. 0,5 s) im bereits erwähnten Zeitglied ein (Schritt S109) und wartet ab, bis diese Zeitdauer Tsf zu Ende ist (Schritt S110). Hierdurch kann das Getriebesteuergerät 16 sicher den Eingriff der zuschaltseitigen

Kupplung 34 beenden.

Wenn die vorgegebene Zeitdauer TsF zu Ende ist, so daß das Ergebnis im Schritt S110 JA lautet, geht das Programm zum Schritt S112, und das Getriebesteuergerät 16 setzt die Tastverhältnisse DLR und D24 des freigabeseitigen Magnetventils 47 und auch des zuschaltseitigen Magnetventils 48 auf 100% und liefert ein entsprechendes Treibersignal, so daß die Magnetventile 47 und 48 mit diesen Tastverhältnissen DLR und D24 betrieben werden. Dies geschieht zum Zeitpunkt t27 der Fig. 21(b) und 21(c). Damit ist die hydraulische Getriebesteuerung für den Leistung-AUS-Hinaufschaltvorgang vom ersten in den zweiten Gang zu Ende.

> Hydraulische Steuerung für das Leistung-AUS-Herunterschalten

Die Fig. 22-24 sind Ablaufdiagramme, welche die

Vorgänge bei der hydraulischen Getriebesteuerung für einen Leistung-AUS-Herunterschaltvorgang zeigen. Unter Bezugnahme auf Fig. 25 werden die hydraulischen Steuer- und Regelvorgänge in Verbindung mit dem Herunterschaltvorgang vom zweiten in den ersten Gang beispielhaft beschrieben.

Beim Eingang eines Schaltsignals für ein Leistung-AUS-Herunterschalten vom zweiten in den ersten Gang berechnet das Getriebesteuergerät 16 zunächst die jeweiligen Anfangs-Tastverhältnisse Dd1 und Dd2 10 der Magnetventile 47 und 48 nach den Gleichungen (21) und (22) (Schritt S114 der Fig. 22). Die Werte a8, c8, a9 und c9 in den Gleichungen (21) und (22) werden auf ihre jeweiligen optimalen Werte für das Leistung-AUS-Herunterschalten vom zweiten in den ersten Gang eingestellt.

Dann stellt das Getriebesteuergerät 16 das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 auf das Anfangs-Tastverhältnis Dd1 ein, das im Schritt S114 eingestellt wurde und liefert ein entsprechendes Aus- 20 gangssignal, so daß das Magnetventil 48 mit diesem Tastverhältnis D24 betrieben wird. Daraufhin wird der (nicht dargestellte) Kolben der Kupplung 34 für den zweiten Gang, welcher als das freigabeseitige Reibungseingriffselement dient, in Richtung zu der Stellung kurz 25 vor der Lage zurückgezogen, wo die Kupplung 34 schleift (Schritt S115; Zeitpunkt t31 der Fig. 25(b)). Unterdessen setzt das Getriebesteuergerät 16 das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 auf 0% und liefert ein Ausgangssignal in der Weise, daß das 30 Magnetventil 47 mit diesem Tastverhältnis DLR betrieben wird. Daraufhin wird der Kolben der Kupplung 33 für den ersten Gang, welch letztere als das zuschaltseitige Reibungseingriffselement dient, in Richtung zu einer Stellung verschoben, welche kurz vor derjenigen Stel- 35 lung liegt, bei der die Kupplung 33 zu greifen anfängt (zum Zeitpunkt t31 von Fig. 25(c)), und die Anfangs-Druckzufuhrdauer Ts2 wird im Zeitglied eingestellt

Das Getriebesteuergerät 16 wartet ab, bis die vorge- 40 gebene Zeitdauer to, d. h. ein Programmtakt (28.6 ms) beendet ist (Schritt S118), und subtrahiert dann einen vorgegebenen Tastverhältniswert AD6 vom Tastverhältnis D24, das im vorhergehenden Programmtakt eingestellt worden war, so daß man ein neues Tastverhältnis D24 erhält. Dies geschieht im Schritt S120. Dann liefert das Getriebesteuergerät 16 ein Ausgangssignal in der Weise, daß das Magnetventil 48 mit dem neuen Tastverhältnis D24 betrieben wird (Schritt S120). Der subtrahierte vorgegebene Tastverhältniswert ΔD6 wird 50 auf einen Wert eingestellt, der so groß ist, daß das Tastverhältnis D24 des Magnetventils 48 mit einer vorgegebenen Rate bzw. Geschwindigkeit abnimmt, z. B. mit 8 bis 12% pro Sekunde, vgl. den Übergang des Tastverhāltnisses D24 vom Zeitpunkt t31 bis zum Zeitpunkt t33 55 in Fig. 25(b). Das Getriebesteuergerät 16 stellt fest, ob die Anfangs-Druckzufuhrdauer Ts2 die im Schritt S116 eingestellt worden war, vorbei ist (Schritt S122). Falls diese Zeitdauer Ts2 noch nicht vorbei ist, geht das Programm zum Schritt S118 zurück, und die Schritte S118 60 bis S122 werden wiederholt. Infolgedessen wird das Tastverhältnis D24 des Magnetventils 48 allmählich reduziert, so daß sich die freigabeseitige Kupplung 34 allmählich in Richtung zu der Stellung bewegt, in der der Kupplungseingriff beginnt.

Falls das Ergebnis von Schritt S122 JA ist, d. h. wenn sich die Kupplung 33 für den ersten Gang in Richtung zur vorgegebenen Stellung kurz vor dem Beginn des

Kupplungseingriffs bewegt, nachdem die Anfangs-Druckzufuhrdauer Ts2 abgelaufen ist, geht das Programm zum Schritt S124 der Fig. 23. In diesem Schritt stellt das Getriebesteuergerät 16 das Tastverhältnis DLR des Magnetventils 47 auf das anfängliche Tastverhältnis Dd2 ein, das im Schritt S114 berechnet worden war, und liefert dann ein Treibersignal in der Weise, daß das Ventil 47 mit dem Tastverhältnis DLR betrieben wird (zum Zeitpunkt t32 der Fig. 25(c)). Daraufhin bewegt sich der Kolben der zuschaltseitigen Kupplung 33 weiter allmählich in Richtung zur Startstellung für den Kupplungseingriff, also der Stellung, an der der Kupplungseingriff beginnt. Das Tastverhältnis DLR des Magnetventils 47 wird auf dem Wert für das anfängliche Tastverhältnis Dd2 gehalten, bis ein (später erläuterter) Regelabschnitt C zum Zeitpunkt t34 der Fig. 25(c) be-

Wenn danach die vorgegebene Zeitdauer tD eines Programmtakts zu Ende ist (Schritt S125), setzt das Getriebesteuergerät 16 (Schritt S126) die Berechnung des neuen Tastverhältnisses D24 und die Abgabe eines hierzu entsprechenden Ausgangssignals für die Ventilbetätigung in der gleichen Weise wie bei Schritt S12 fort. Dann geht das Programm zum Schritt S128, worauf das Getriebesteuergerät 16 eine tatsächliche Schlupffrequenz NsR nach Gleichung (25) berechnet und den errechneten Wert mit einem (negativen) vorgegebenen Wert ΔNSR2 (z. B. –8 bis –12 min⁻¹) vergleicht. Hier gilt die Beziehung:

 $N_{SR} = N_t - N_{tc2}$ (25)

Hierbei ist Ntc2 eine berechnete Turbinenraddrehzahl für den zweiten Gang, welche man erhält, indem man die Getriebeabtriebsdrehzahl No mit einem vorgegebenen Faktor multipliziert.

Falls die tatsächliche Schlupffrequenz NSR größer ist der (negative) vorgegebene Wert (NSR> \Delta NSR2), geht das Programm zum Schritt S125 zurück, worauf das Getriebesteuergerät 16 die Schritte S125 bis S128 erneut durchführt. Auf diese Weise wird die freigabeseitige Kupplung 34 für den zweiten Gang allmählich ausgekuppelt. Falls die zuschaltseitige Kupplung 33 für den ersten Gang zu diesem Zeitpunkt erst mit dem Eingriff beginnen muß, nimmt die Turbinenraddrehzahl Nt im letzten Teil des Regelabschnitts A der Fig. 25(a) allmählich ab (zwischen dem Zeitpunkt t31, an dem das Schaltsignal gegeben wird und dem Zeitpunkt t33, an dem erfaßt wird, daß die tatsächliche Schlupffrequenz NSR den vorgegebenen Wert ANSR2 oder weniger erreicht). Wenn festgestellt wird, daß die tatsächliche Schlupffrequenz NSR nicht größer ist als der vorgegebene Wert ANSR2 (NSR≤ANSR2), geht das Programm zum Schritt S130 weiter.

Im Schritt S130 addiert das Getriebesteuergerät 16 einen vorgegebenen Tastverhältniswert ΔD7 (z. B. 2—6%) zum Tastverhältnis D24 des freigabeseitigen Magnetventils 48, welches Tastverhältnis im vorhergehenden Programmtakt eingestellt worden war, so daß man ein neues Tastverhältnis D24 erhält. Unter Verwendung dieses Tastverhältnisses D24 als Anfangswert beginnt das Getriebesteuergerät 16 eine Regelung in der Weise, daß die Differenz en (= Ns1 – NsR) zwischen der tatsächlichen Schlupffrequenz NsR und einer vorgegebenen Soll-Schlupffrequenz NsI (z. B. –20 min⁻¹) so klein wie möglich gemacht wird. Wenn die zuschaltseitige Kupplung 33 noch vor dem Eingriff steht, hat die Turbinenraddrehzahl Nt die Tendenz zu fallen, da das

Reibungsmoment abnimmt, falls das Tastverhältnis D24 der freigabeseitigen Kupplung 34 auf einen kleineren Wert eingestellt wird. Falls das Tastverhältnis D24 andererseits auf einen größeren Wert eingestellt wird, nimmt das Reibungsmoment zu, so daß die Turbinenraddrehzahl Nt die Tendenz hat, zuzunehmen. Auf diese Weise kann die Turbinenraddrehzahl Nt durch die Regelung des Tastverhältnisses D24 auf einem vorgegebenen Wert gehalten werden.

Daraufhin wartet das Getriebesteuergerät 16 im 10 Schritt S132, bis ein Programmtakt zu Ende ist und setzt dann das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 für jeden Programmtakt entsprechend den Gleichungen (24) und (24a), vgl. Schritt S134. Die Integral-Proportional- und Differential-Verstärkungs- 15 faktoren KII, KPI und KDI in den Gleichungen (24) und (24a) werden auf ihre jeweiligen optimalen Werte für den Leistung-AUS-Herunterschaltvorgang eingestellt.

Danach stellt das Getriebesteuergerät 16 fest, ob die tatsächliche Schlupffrequenz NSR größer oder gleich 20 einer vorgegebenen Schlupffrequenz ΔN_{S2} ist, z. B. 3-8 min⁻¹ (Schritt S135). Falls die Antwort in Schritt S135 NEIN ist, geht das Programm zum Schritt S132 zurück, worauf das Getriebesteuergerät 16 wiederholt die Schritte S132 bis S135 ausführt, bis die tatsächliche 25 Schlupffrequenz NSR größer oder gleich der vorgegebenen Frequenz ANS2 wird. Daraufhin wird das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 so geregelt, daß die Differenz zwischen der tatsächlichen Schlupffrequenz NSR und der Soll-Schlupffrequenz NS1 30 reduziert wird oder diese Frequenzen gleich sind. Auf der anderen Seite wird das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 auf dem Wert des anfänglichen Tastverhältnisses Dd2 konstantgehalten.

Infolgedessen wird ein hydraulischer Arbeitsdruck 35 entsprechend dem anfänglichen Tastverhältnis Dd2 des Magnetventils 47 der Kupplung 33 für den ersten Gang über das erste hydraulische Steuerventil 44 zugeführt, so daß die Kupplung 33 zu greifen beginnt und sich der (nicht dargestellte) Kolben der Kupplung 33 allmählich 40 in seine Endstellung für den Kupplungseingriff bewegt. Während sich der Kolben der Kupplung 33 auf diese Weise bewegt, fängt die Turbinenraddrehzahl Nt an zuzunehmen. Das Tastverhältnis D24 des Magnetventils 48 wird auf einen kleineren Wert eingestellt, so daß die 45 Zunahme der Turbinenraddrehzahl Nt aufgehoben wird, so daß der Wert des Tastverhältnisses D24 allmählich abnimmt. Obwohl das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 auf den kleineren Wert eingestellt wird, nimmt die Turbinenraddrehzahl Nt in- 50 folge einer Zunahme des Reibungsmoments der zuschaltseitigen Kupplung 33 zu. Zum Zeitpunkt t34 der Fig. 25(a) wird daher die tatsächliche Schlupffrequenz NSR nicht kleiner als die vorgegebene Schlupffrequenz ΔN₅₂. Wenn das Getriebesteuergerät 16 dies feststellt 55 (JA im Schritt S135), geht das Programm zum Schritt S136 der Fig. 24. Folglich ist die hydraulische Regelung im Regelabschnitt B (zwischen den Zeitpunkten t33 und t34 der Fig. 25) zu Ende.

frequenz NSR nicht kleiner ist als die vorgegebene Schlupffrequenz ANS2 im Regelabschnitt B, wird Schritt S136 von Fig. 24 ausgeführt. Wird z. B. in zwei aufeinanderfolgenden Programmtakten im Regelabschnitt A zweimal festgestellt, daß die tatsächliche Schlupffre- 65 quenz NSR auf den Wert der vorgegebenen Schlupffrequenz ANs2 oder mehr infolge irgend einer Störung zugenommen hat, kann die hydraulische Regelung im

Regelabschnitt B weggelassen werden. In diesem Fall geht das Programm direkt zum Schritt S136 der Fig. 24, worauf die hydraulische Regelung im Regelabschnitt C

In den hydraulischen Regelvorgängen im Regelabschnitt C und den auf ihn folgenden Regelabschnitten D und E wird das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 so geregelt, daß der Unterschied zwischen der tatsächlichen Änderungsrate ot der Turbinenraddrehzahl und der Soll-Änderungsrate wto der Turbinenraddrehzahl so klein wie möglich gemacht wird. Auf diese Weise wird die Turbinenraddrehzahl Nt allmählich in Richtung zu einer berechneten Turbinenraddrehzahl Ntc1 für den ersten Gang erhöht.

Im Schritt S136 stellt das Getriebesteuergerät 16 als erstes das Tastverhältnis D24 des freigabeseitigen Magnetventils 48 auf ein vorgegebenes Tastverhältnis D24min für den erwähnten Haltedruck ein, so daß der Kupplung 34 für den zweiten Gang der Haltedruck zugeführt wird. Nachdem das Getriebesteuergerät gewartet hat, bis die vorgegebene Taktperiode to zu Ende ist (Schritt S138), liest das Getriebesteuergerät 16 einen zuvor gespeicherten vorgegebenen Wert aus, welcher jeweils einem der Regelabschnitte C, D oder E entspricht, und setzt diesen ausgelesenen Wert im Schritt S139 als die Soll-Änderungsrate wto der Turbinenraddrehzahl Im Regelabschnitt C unmittelbar nach dem Beginn der Regelung wird diese dem Speicher entnommene Soll-Änderungsrate wto der Turbinenraddrehzahl auf einen niedrigen Wert eingestellt, so daß die Turbinenraddrehzahl Nt allmählich zunimmt. In dem darauffolgenden Regelabschnitt D wird die Soll-Änderungsrate ωto auf einen größeren Wert als im Regelabschnitt C eingestellt. Deshalb nimmt im Regelabschnitt D die Turbinenraddrehzahl Nt stärker ab. Im Regelabschnitt E, während dessen der Eingriff der Kupplung 33 für den ersten Gang beendet wird, wird die Änderungsrate wieder reduziert, um ein Rucken oder Stoßen durch die Getriebesteuerung zu verhindern (vgl. den zeitlichen Verlauf der Turbinenraddrehzahl Nt in Fig. 25(a)).

Dann berechnet das Getriebesteuergerät 16 das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 nach den folgenden Gleichungen (26) und (26a) und stellt diesen Wert entsprechend ein. Dabei sind die Gleichungen (26) und (26a) ähnlich den Gleichungen (16) bzw. (18). Hierbei wird das anfängliche Tastverhältnis Dd2 verwendet, das man als einen Anfangswert zum Zeitpunkt t34 erhalten hat, wenn festgestellt wird, daß die tatsächliche Schlupffrequenz ANS2 oder höher zugenommen hat. Dann liefert das Getriebesteuergerät 16 ein Treibersignal in der Weise, daß das Magnetventil 47 mit dem eingestellten Tastverhältnis DLR betrieben wird (Schritt S140). Hierbei gelten folgende Beziehun-

$$(D_{LR})_n = (Di)_n + K_{P1} \times E_n + K_{D1} (E_n - E_{n-1})$$
 (26)
 $(Di)_n = (Di)_{n-1} + K_{11} \times E_n + D_{H1} + D_{H2}$ (26a)

Hierbei ist (Di)_{n-1} ein Integralterm, der im vorherge-Wenn festgestellt wird, daß die tatsächliche Schlupf- 60 henden Programmtakt eingestellt wurde, und Kii, Kpi und KD1 sind Integral-, Proportional- und Differential-Verstärkungsfaktoren, welche auf ihre jeweiligen optimalen Werte für den Leistung-AUS-Herunterschaltvorgang eingestellt werden. In den Gleichungen (26) und (26a) ist ferner E_n die Differenz ($E_n = \omega to - \omega t$) zwischen der tatsächlichen Änderungsrate ot der Turbinenraddrehzahl und der Sollwert-Änderungsrate ωto der Turbinenraddrehzahl für den jetzigen Programmtakt, die im Schritt S139 eingestellt worden war, und E_{n-1} ist die Differenz zwischen der tatsächlichen Änderungsrate ω t der Turbinenraddrehzahl und der Soll-Änderungsrate ω to der Turbinenraddrehzahl für den vorhergehenden Programmtakt.

D_{H1} ist eine Korrektur des Turbinenradwellen-Drehmoments, eingestellt entsprechend einer Variation ΔTt des Turbinenradwellen-Drehmoments, die verursacht wird, wenn das Motordrehmoment Te während des Getriebesteuervorgangs durch Beschleunigungsarbeit geändert wird. Die Korrektur D_{H1} wird nach den Gleichungen (12) bis (14) errechnet.

DH2 ist ein korrigiertes Tastverhältnis für die Änderung der Turbinenraddrehzahl-Änderungsrate, das nur verwendet wird, wenn sich der Regelabschnitt von C nach D oder von D nach E ändert. Diesen Wert erhält man aus den Gleichungen (19) und (20). In Gleichung (19) ist der Koeffizient α auf einen optimalen Wert für das Getriebesteuermuster eines Leistung-AUS-Herunterschaltvorgang eingestellt.

Nachdem im Schritt S140 das Tastverhältnis D_{LR} errechnet und eingestellt worden ist, geht das Getriebesteuergerät 16 zum Schritt S142 und stellt fest, ob die Turbinenraddrehzahl Nt einen vorgegebenen Wert Ntc10 erreicht hat, welcher niedriger ist als die berechnete Turbinenraddrehzahl Ntc1 für den ersten Gang, und zwar niedriger um einen vorgegebenen Wert, z. B. von 80—120 min⁻¹. Falls das Ergebnis von Schritt S142 NEIN ist, geht das Programm zum Schritt S138 zurück, und die Schritte S138 bis S142 werden wiederholt.

Zu diesem Zeitpunkt unmittelbar nach Beginn des Regelabschnitts C fängt der Kupplungseingriff der zuschaltseitigen Kupplung 33 eben an. Deshalb kann ein Ruck oder Stoß durch die Getriebesteuerung zu Beginn des Eingriffs vermieden werden, indem man die Turbinenraddrehzahl Nt mit der erwähnten Soll-Änderungsrate oto der Turbinenraddrehzahl erhöht. Hat die Turbinenraddrehzahl Nt auf den Wert des Produkts aus der Getriebeabtriebsdrehzahl No und einem vorgegebenen Koeffizienten (z. B. 1,7) zugenommen, so schlußfolgert das Getriebesteuergerät 16, daß der Regelabschnitt C zu Ende ist und der Regelabschnitt D beginnt und ändert — im Schritt S139 — die Soll-Änderungsrate oto auf einen größeren Wert (zum Zeitpunkt 135 der Fig. 25(a)).

Wenn die Soll-Änderungsrate oto der Turbinenraddrehzahl auf den größeren Wert geändert wird, wird das Tastverhältnis D_{LR} des zuschaltseitigen Magnetventils 47 auf einen Wert angepaßt (während des Zeitraums zwischen den Zeitpunkten t35 und t36 der Fig. 25(c)) 50 welcher kleiner ist als der Wert, der im Regelabschnitt C eingestellt wurde. Auf diese Weise wird die Turbinenraddrehzahl Nt schnell erhöht, und zwar im wesentlichen mit der Soll-Änderungsrate oto ist, umso höher die Ansprechgeschwindigkeit der Getriebesteuerung.

Wenn danach die Turbinenraddrehzahl Nt weiter auf einen Wert erhöht worden ist, der gleich dem Produkt aus der Getriebeabtriebsdrehzahl No und einem anderen vorgegebenen Koeffizienten (z. B. 2,4) ist, d. h. wenn der Kolben der Kupplung 33 für den ersten Gang allmählich nahe an seine Eingriffs-Endlage herankommt, so daß die Turbinenraddrehzahl Ntc1 für den ersten Gang nähert, schlußfolgert das Getriebesteuergerät 16, daß der Regelabschnitt D zu Ende ist und der Regelabschnitt E beginnt und ändert diese Soll-Änderungsrate wto im Schritt S139 auf einen Wert, der kleiner ist als der Wert,

der im Regelabschnitt D eingestellt worden war. Dies geschieht zum Zeitpunkt t36 der Fig. 25(a). Wenn diese Soll-Änderungsrate oto auf den kleineren Wert geändert wird, wird das Tastverhältnis DLR des zuschaltseitigen Magnetventils 47 neu eingestellt (während des Zeitraums zwischen den Zeitpunkten t36 und t37 der Fig. 25(c)), und zwar auf einen Wert, der größer ist als derjenige im Regelabschnitt D. Auf diese Weise wird die Turbinenraddrehzahl Nt langsam erhöht, und zwar im wesentlichen mit der Soll-Änderungsrate oto. Infolgedessen kann ein Druck oder Stoß durch die Getriebesteuerung im Bereich des Zeitpunkts vermieden werden, an dem der Eingriff der zuschaltseitigen Kupplung 33 abgeschlossen ist.

Falls das Ergebnis von Schritt S142 JA ist, d. h. wenn die Turbinenraddrehzahl Nt den Wert der vorgegebenen Drehzahl Ntc10 erreicht, welcher um einen vorgegebenen Wert (80—120 min⁻¹) niedriger ist als die berechnete Turbinenraddrehzahl Ntc1 für den ersten Gang (zum Zeitpunkt t37 der Fig. 25(c)), setzt das Getriebesteuergerät 16 beide Tastverhältnisse D24 und DLR des freigabeseitigen und des zuschaltseitigen Magnetventils 48 bzw. 47 auf 0% und liefert ein solches Treibersignal, daß diese Magnetventile 48 und 47 mit diesen Tastverhältnissen D24 bzw. DLR betrieben werden (zum Zeitpunkt t37 der Fig. 25(b) und 25(c)). Auf diese Weise ist die hydraulische Getriebesteuerung für das Leistung-AUS-Herunterschalten vom zweiten Gang in den ersten abgeschlossen.

In Verbindung mit dem vorstehenden Ausführungsbeispiel wurden nur die Vorgänge der hydraulischen Steuerung bzw. Regelung für die Getriebesteuerung oder -schaltung zwischen dem ersten und zweiten Gang und umgekehrt beschrieben, um die Beschreibung nicht unnötig zu komplizieren. Es ist jedoch dem Fachmann klar, daß die Vorgänge der hydraulischen Getriebesteuerung bzw. -regelung für jede andere Kombination von Gängen, z. B. für das Schalten zwischen dem zweiten und dritten Gang und umgekehrt, in der gleichen Weise erklärt werden können.

Ferner werden beim beschriebenen Ausführungsbeispiel hydraulisch betätigte Kupplungen als Reibungseingriffselemente zur Getriebesteuerung verwendet. Alternativ können jedoch in gleicher Weise Getriebesteuerbremsen zum gleichen Zwecke verwendet werden, z. B. Bremsbänder.

Patentansprüche

1. Anordnung zur Erfassung eines Drehmoments bei einer Fahrzeug-Antriebsordnung mit einer Strömungskupplung oder einem Strömungswandler (20), welch letztere(r)

- zwischen einem Verbrennungsmotor (10) und einem Getriebe (30) angeordnet ist,

— eine mit dem Verbrennungsmotor (10) in Wirkverbindung stehende Eingangswelle (21) und eine mit dem Getriebe (30) in Wirkverbindung stehende Ausgangswelle (30a) aufweist.

mit folgenden Merkmalen:

einer Drehmomenten-Erfassungsvorrichtung (16) zur Erfassung des Drehmoments (Tt', t×C×Ne²) an der Ausgangswelle (30a) der Strömungskupplung oder des Strömungswandlers (20),

— einer Drehzahländerungs-Erfassungsvorrichtung (16) zum Erfassen der Änderungsrate (we) der Motordrehzahl (Ne),

- einer Addiervorrichtung zum Addieren des von der Drehmomenten-Erfassungsvorrichtung (16) erfaßten Drehmoments (Tt'; t×C×Ne²) zum Produkt (t×I_Eωe) aus

der von der Drehzahländerungs-Erfassungsvorrichtung (16) erfaßten Änderungsrate (ωe) der Motordrehzahl und

dem Trägheitsmoment (IE) des Verbren-

nungsmotors (10) und

— dem Drehmomentenverhältnis (t)der Strömungskupplung oder des Strömungswandlers
— und mit einer Vorrichtung (16) zum Bestimmen des Drehmoments (Tt) auf der Grundlage
der durch die Addiervorrichtung erhaltenen
Summe ((t × I_E × ωe) + (t × C × Ne²)).

2. Anordnung nach Anspruch 1, bei welcher Drehzahl-Erfassungsvorrichtungen (14, 15) zur Erfassung der Drehzahl der Eingangswelle (21) und der Drehzahl der Ausgangswelle (30a) der Strömungskupplung oder des Strömungswandlers (20) vorgesehen sind,

und bei welcher ferner das Drehmoment (Tt') an der Ausgangswelle (30a) der Strömungskupplung oder des Strömungswandlers (20) unter Verwendung der als Parameter dienenden Drehzahlen dieser Eingangswelle (21) und dieser Ausgangswelle

(30a) erfaßt wird.

3. Anordnung nach Anspruch 2, bei welcher unter Verwendung der von den Drehzahl-Erfassungsvorrichtungen (14, 15) erfaßten Drehzahlen (Ne, Nt) der Eingangswelle (21) und der Ausgangswelle (30a) ein Drehmomentenverhältnis (t) und eine Drehmomentenkapazität (C) der Strömungskupplung oder des Strömungswandlers (20) ermittelt wird, und bei der das Drehmoment (Tt') an der Ausgangswelle (30a) auf der Grundlage der Drehzahl (Ne) der Eingangswelle, des Drehmomentenverhältnisses (t), und der Drehmomentenkapazität (C) erfaßt wird.

4. Anordnung nach einem der Ansprüche 1 bis 3, bei welcher der Strömungskupplung oder dem Strömungswandier (20) eine zwischen der Eingangswelle (21) und der Ausgangswelle (30a) angeordnete Überbrückungskupplung (28) zugeordnet ist, welche dazu ausgebildet ist, entsprechend einem ihr zugeführten hydraulischen Arbeitsdruck (Pc) ein Drehmoment (Tc) zu übertragen, und als Steuerparameter für diese Überbrückungskupplung (28) der hydraulische Arbeitsdruck (Pc) oder ein ihn kennzeichnenden Wert (Dc) dient.

5. Anordnung nach Anspruch 4, bei welcher das von der Überbrückungskupplung übertragene Drehmoment (Tc) erfaßbar ist durch Erfassen des Steu-

erparameters (Dc).

6. Anordnung nach Anspruch 4 oder 5, bei welcher 55 mindestens ein Magnetventil (50) zur Steuerung des zugeführten hydraulischen Arbeitsdrucks vorgesehen ist und als Steuerparameter das Tastverhältnis (Dc) des Magnetventils (50) dient.

7. Anordnung nach einem der vorhergehenden Ansprüche, wobei das Getriebe (30) Reibungseingriffsvorrichtungen (33, 34) aufweist, welche abhängig von einem ihnen zugeführten hydraulischen Druck in Eingriff oder außer Eingriff bringbar sind, um ein erforderliches Übersetzungsverhältnis einzustellen,

und die Drehmomentenkapazität dieser Reibungseingriffsvorrichtungen (33, 34) jeweils entsprechend dem von der V rrichtung (16) zum Bestimmen des Drehmoments bestimmten Drehmoment (Tt) gesteuert oder geregelt wird.

et.

Hierzu 23 Seite(n) Zeichnungen

Numm r: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig.1

Nummer: Int. Cl.6:

DE 38 12 673 C2 F 16 H 59/14

Veröff ntlichungstag: 17. August 1995

Fig.2

Fig.6

Numm r: Int. Cl.6:

DE 38 12 673 C2 F 16 H 59/14

Veröff ntlichungstag: 17. August 1995

Fig.3

Steuergerät 16 Steuergerät 16

Nummer: Int. Cl.⁸: DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig.4

Nummer:

Int. Cl.6: Veröffentlichungstag: 17. August 1995

DE 38 12 673 C2 F 16 H 59/14

Nummer: Int. Cl.⁶; DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig.7

Nummer: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig.8

508 133/72

Nummer: Int. Cl.⁸: DE 38 12 673 C2 F 16 H 59/14

Veröff ntlichungstag: 17. August 1895

Setze T_{SF} in Zeitglied

Setze T_{SF} in Zeitglied

Setze T_{SF} in Zeitglied

S51

JA

D24 = 100%

S51

JA

Zurück

Zurück

(Return)

Nummer: Int. Cl.B:

DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig.10

Numm r: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig.11

Nummer: int. Cl.6:

DE 38 12 673 C2 F 16 H 59/14

Veröff ntlichungstag: 17. August 1995

Fig.13

Nummer: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig.14

Nummer: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

V röffentlichungstag: 17. August 1995

Fig.15

Nummer: Int. Cl.6:

DE 38 12 673 C2 F 16 H 59/14

Veröff ntlichungstag: 17. August 1995

Fig.16

Nummer: Int. Cl.6:

DE 38 12 673 C2 F 16 H 59/14

V r"ff ntlichungstag: 17. August 1995

Fig.17

Numm r: Int. Ci.⁶:

DE 38 12 673 C2 F 16 H 59/14 Veröffentlichungstag: 17. August 1995

Fig.18

508 133/72

Nummer: Int. Cl.⁶:

DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Nummer: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

Veröff ntlichungstag: 17. August 1995

Fig. 21

Numm r: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

V röffentlichungstag: 17. August 1995

Fig.22

Nummer: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig.23

508 133/72

Nummer: Int. Cl.6:

DE 38 12 673 C2 F16 H 59/14

Veröff ntlichungstag: 17. August 1995

Fig. 24

Numm r: Int. Cl.⁸: DE 38 12 673 C2 F 16 H 59/14

Veröffentlichungstag: 17. August 1995

Fig. 25

Numm r: Int. Cl.⁶: DE 38 12 673 C2 F 16 H 59/14

V röff ntlichungstag: 17. August 1995

Fig.26

