Exercice 1.

- 1. La droite (d_1) est dirigée par le vecteur de coordonnées $\overrightarrow{u} \begin{pmatrix} -5 \\ 3 \end{pmatrix}$ et un vecteur normal de la droite (d_2) est le vecteur $\overrightarrow{n} \begin{pmatrix} 5 \\ -3 \end{pmatrix}$.
 - On constate que $\overrightarrow{n}=-\overrightarrow{u}$: les vecteurs \overrightarrow{u} et \overrightarrow{n} sont donc colinéaires et on en déduit que les droites (d_1) et (d_2) sont perpendiculaires.
- 2. Les droites (d_1) et (d_2) étant perpendiculaires, elles sont donc sécantes en un point K dont les coordonnées sont solutions du système :

$$\begin{cases} 3x + 5y = 23 \\ 5x - 3y = -7 \end{cases}$$

On a $\Delta=-34$ donc le système admet un unique couple solution que l'on peut résoudre avec la méthode de Cramer et on a : On a alors :

$$x = \frac{\begin{vmatrix} 23 & 5 \\ -7 & -3 \end{vmatrix}}{-34} = \frac{-69 + 35}{-34} = 1 \text{ et } y = \frac{\begin{vmatrix} 3 & 23 \\ 5 & -7 \end{vmatrix}}{-34} = \frac{-21 - 115}{-34} = 4$$

On en déduit que le point K a pour coordonnées $\binom{1}{4}$.

Exercice 2.

1. Le point Ω est le centre du cercle $\mathscr C$ et est donc le milieu du segment [AB].

On en déduit que $\Omega(4;2)$ en appliquant la formule des coordonnées du milieu d'un segment.

Son rayon est par exemple ΩA .

Or:

$$\Omega A^{2} = (x_{A} - x_{\Omega})^{2} + (y_{A} - y_{\Omega})^{2}$$

$$= (-2 - 4)^{2} + (10 - 2)^{2}$$

$$= 100$$

$$= 10^{2}$$

On en déduit que r = 10 car $r \ge 0$.

2. La tangente (T) à $\mathscr C$ au point A est perpendiculaire à $(A\Omega)$ donc $\overrightarrow{A\Omega}$ est un vecteur normal de (T).

Or $\overrightarrow{A\Omega} \begin{pmatrix} 6 \\ -8 \end{pmatrix}$ et donc on peut prendre comme vecteur normal de (T) le vecteur $\overrightarrow{n} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

On en déduit que (T): 3x-4y+c=0. Le point A appartient à (T) donc $3x_A-4y_A+c=0$ et on trouve c=46 et ainsi :

$$(T): 3x-4y+46=0$$

Exercice 3.

1. On a (a; b; c) = (6; 1; 5) donc $\Delta = b^2 - 4ac$ soit $\Delta = -119 < 0$: le trinôme n'admet pas de racine réelle. Il est de signe constant et du signe de a = 6 c'est-à-dire strictement positif.

x	$-\infty$		+∞
signe de $f(x)$		+	

- 2. On a $\Delta = 0$ donc le trinôme admet une unique racine $x_0 = -\frac{b}{2a} = \frac{1}{6}$. Ainsi $\forall x \in \mathbb{R}, \ g(x) = -36\left(x - \frac{1}{6}\right)^2$.
- 3. On remarque que 7777 = 8888 1111 donc $x_1 = -1$ est solution évidente de l'équation.

Or
$$x_1 x_2 = \frac{c}{a}$$
 donc $-1x_2 = \frac{1111}{8888}$ soit $x_2 = -\frac{1}{8}$.
On en déduit que : $S_{\mathbb{R}} = \left\{1; -\frac{1}{8}\right\}$.

Exercice 4. Si on pose $X = x^2$ la première équation devient $-X^2 + 4X - 3 = 0$ et en posant $X = \sqrt{x}$ on obtient la même équation. On a a + b + c = 0 donc $X_1 = 1$ est racine évidente. Or $X_1 X_2 = \frac{c}{a}$ donc $X_2 = 3$.

- Pour ceux qui ont choisi la première équation : $S_{\mathbb{R}} = \{-1; 1; \sqrt{3}; -\sqrt{3}\}.$
- Pour ceux qui ont choisi la première équation : $S_{\mathbb{R}} = \{1; 9\}.$

Exercice 5.

- 1. (a) P(-4) = 0.
 - (b) -4 est racine de P et P(x) est factorisable par x + 4.
- 2. Utilisons la méthode de Ruffini pour déterminer les trois réels *a*, *b* et *c* :

On en déduit donc que $P(x) = (x + 4)(-x^2 + 6x + 7)$.

3. (a) Calcul des racines de P: on résout l'équation P(x) = 0. Or $P(x) = 0 \iff x+4=0$ (1) ou $-x^2+6x+7=0$ (2). La première équation donne x = -4. Pour la seconde, on calcule le discriminant ou on voit que a+c=b ce qui montre que $x_1 = -1$ est une solution de (2). On sait que $x_1x_2 = \frac{c}{a}$ donc $-x_2 = -\frac{7}{-1}$ soit $x_2 = 7$. On peut alors dresser le tableau de signes de P(x):

X	$-\infty$		-4		-1		7		+∞
signe de $x + 4$		_	0	+		+		+	
signe de $-x^2 + 6x + 7$		_		_	0	+	0	_	
signe de $P(x)$		+	0	_	0	+	0	_	

(b) On veut $P(x) \le 0$: on en déduit que $S = [-4, -1] \cup [7, +\infty[$.

Exercice 6.

1. On a
$$\mathcal{A}_{MAN} = \frac{MA \times AN}{2}$$
 donc $\mathcal{A}_{MAN} = \frac{x^2}{2}$.

De même $\mathcal{A}_{NBP} = \frac{BN \times BP}{2}$ donc $\mathcal{A}_{MAN} = \frac{(10 - x)(6 - x)}{2}$.

2. (a) On a:

$$\mathcal{A}_{MNPQ} = \mathcal{A}_{ABCD} - 2\mathcal{A}_{MAN} - 2\mathcal{A}_{NBP}$$

$$= 60 - x^2 - (10 - x)(6 - x)$$

$$= 60 - x^2 - (60 - 10x - 6x + x^2)$$

$$= 60 - x^2 - 60 + 10x + 6x - x^2$$

$$= -2x^2 + 16x$$

(b) On doit calculer α et β . On a (a; b; c) = (-2; 16; 0). $\alpha = -\frac{16}{-4} = 4$ et $\beta = f(4) = -2 \times 4^2 + 16 \times 4$ soit $\beta = 32$. Vu que a < 0, on en déduit le tableau de variation de f_2 sur [0; 8]:

x	0	4	8
Variation de <i>f</i>	0	32	0

- (c) L'aire du quadrilatère MNPQ est maximale pour x = 4 et cette aire maximale est égale à 32 u.a.
- (d) $\mathcal{A}_{MNPQ} = \frac{1}{2} \mathcal{A}_{ABCD} \iff -2x^2 + 16x = 30 \iff -2x^2 + 16x 30 = 0$: dont les solutions sont $x_1 = 3$ ou $x_2 = 5$. ces deux valeurs conviennent car situées dans l'intervalle [0; 8].