Phase two project

student name : Julie Chepngeno

· course: DS Full Time

VALUE ANALYSIS FOR HOUSE SALE PRICES IN KING COUNTY

1.Project Overview

a) introduction

At a Real Estate, buying or selling a home is one of the most significant financial decisions you'll make in your life. Our goal is to make the home buying or selling process as smooth and stress-free as possible for our clients. In this project, we will be analyzing house sales in a western county which can be found in kc_house_data.csv

The real estate market serves as a reflection of societal aspirations, investment opportunities, and the pursuit of the elusive "dream home." Whether it's residential, commercial, or industrial, real estate offers a multitude of possibilities for individuals, businesses, and communities. It involves home owners looking to sell their property and home buyers looking to buy a dream home

b)problem statement

The real estate agency needs to develop a comprehensive advisory framework to assist homeowners in understanding the potential value-adding effects of specific home renovations. This framework should include detailed information on the types of renovations, their estimated costs, and the potential increase in the property's value. By addressing this problem, the agency can empower homeowners to make informed decisions, thereby increasing their satisfaction, trust, and the likelihood of engaging the agency's services.

Main objective

The main objective of the real estate agency's initiative is to provide homeowners with accurate and valuable advice regarding home renovations and their potential impact on the estimated value of their properties

· specific objectives

Develop a Comprehensive Renovation Advisory Framework: The agency aims to create a structured framework that outlines different renovation types and their potential impact on property value.

Track Success Metrics: The agency will track key success metrics, such as the number of homeowners served, the percentage of clients who reported increased property value, and the number of referrals received.

d) Data Understanding

In this project, the data was collected from a CSV (Comma-Separated Values) file. The dataset, kc_house_data.csv, contains information related to real estate properties in King County, Washington. It includes various attributes that describe the properties, such as their location, size, condition, and sale prices.

Analyzing the data set will help us to provide advice to homeowners about how home renovations might increase the estimated value of their homes, and by what amount.

2) Importing libraries

In [2]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats import sklearn import statsmodels.api as sm from statsmodels.formula.api import ols from sklearn.linear_model import LinearRegression %matplotlib inline

Reading and checking the data

In [3]: #loading kc_house_data.csv df = pd.read_csv("kc_house_data.csv") # Display the first few rows of the dataset df.head()

Out[3]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	sqft_above	sqf
	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN	NONE	 7 Average	1180	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	NO	NONE	 7 Average	2170	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	NO	NONE	 6 Low Average	770	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	NO	NONE	 7 Average	1050	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	NO	NONE	 8 Good	1680	

5 rows × 21 columns

4

In [4]: # Obtaining info for the dataframe df.info()

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):
                   Non-Null Count Dtype
     Column
                   -----
 0
     id
                   21597 non-null int64
 1
    date
                   21597 non-null object
 2
                   21597 non-null float64
    price
 3
     bedrooms
                   21597 non-null int64
 4
    bathrooms
                   21597 non-null float64
    sqft living
                   21597 non-null int64
 5
 6
    sqft lot
                   21597 non-null int64
 7
    floors
                   21597 non-null float64
                   19221 non-null object
 8
    waterfront
 9
     view
                   21534 non-null object
 10 condition
                   21597 non-null object
 11 grade
                   21597 non-null object
 12 sqft above
                   21597 non-null int64
 13 sqft basement 21597 non-null object
 14 yr built
                   21597 non-null int64
 15 yr renovated
                   17755 non-null float64
 16 zipcode
                   21597 non-null int64
 17 lat
                   21597 non-null float64
                   21597 non-null float64
 18 long
 19 sqft living15 21597 non-null int64
 20 sqft lot15
                   21597 non-null int64
dtypes: float64(6), int64(9), object(6)
memory usage: 3.5+ MB
```

checking and dropping duplicated values

```
In [5]: # Check for duplicated values
df.id.duplicated().sum()
```

Out[5]: 177

we have a total of 177 duplicates out of 21597 entries in the house unique identifier 'id'

In [6]: # Display duplicates
df.loc[df["id"].duplicated()==True]

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	 grade	sqft_abo\
94	6021501535	12/23/2014	700000.0	3	1.50	1580	5000	1.0	NO	NONE	 8 Good	129
314	4139480200	12/9/2014	1400000.0	4	3.25	4290	12103	1.0	NO	GOOD	 11 Excellent	269
325	7520000520	3/11/2015	240500.0	2	1.00	1240	12092	1.0	NO	NONE	 6 Low Average	96
346	3969300030	12/29/2014	239900.0	4	1.00	1000	7134	1.0	NO	NONE	 6 Low Average	100
372	2231500030	3/24/2015	530000.0	4	2.25	2180	10754	1.0	NO	NONE	 7 Average	11(
20165	7853400250	2/19/2015	645000.0	4	3.50	2910	5260	2.0	NO	NONE	 9 Better	291
20597	2724049222	12/1/2014	220000.0	2	2.50	1000	1092	2.0	NO	NONE	 7 Average	9(
20654	8564860270	3/30/2015	502000.0	4	2.50	2680	5539	2.0	NaN	NONE	 8 Good	268
20764	6300000226	5/4/2015	380000.0	4	1.00	1200	2171	1.5	NO	NONE	 7 Average	12(
21565	7853420110	5/4/2015	625000.0	3	3.00	2780	6000	2.0	NO	NONE	 9 Better	278

The column "id" is a unique identifier therefore we drop those that are duplicated and retain the first entry implace=True i added to ensure the chane is carried forward when the data is called again

```
In [7]: # dropping duplicates
df.drop_duplicates(subset="id", inplace=True)
```

Checking and dropping null values

```
In [8]: # checking for null value in the dataset
        def drop_null(data, subset, axis): # Subset should be a list
         """A simple function to find null entries and drop them"""
         print(f"{df.isna().sum()}")
         df.dropna(subset=subset, inplace=True, axis=axis)
        drop_null(df, ['yr_renovated', 'waterfront'], 0)
        id
                            0
                            0
        date
        price
        bedrooms
        bathrooms
        sqft_living
        sqft lot
        floors
        waterfront
                         2353
        view
                           63
        condition
                            0
                            0
        grade
                            0
        sqft above
        sqft basement
        yr_built
```

In the above cell, we dropped rows with null values in the categorical columns as it would not be wise to fill them with biased information.

EDA

yr_renovated
zipcode

sqft_living15

sqft_lot15
dtype: int64

lat long 3804

0

0

```
In [9]: for column in df.columns:
          print(df[column].value_counts())
                       1
         6414100192
         3333002450
                       1
         1326049170
                       1
         3043200035
                       1
         1424069044
                       1
         1446400725
                       1
         4030500130
                       1
         3319500299
                       1
         7139800020
                       1
         1523300157
                       1
         Name: id, Length: 15691, dtype: int64
         6/25/2014
                       103
         6/23/2014
                       102
                        94
         10/28/2014
                        93
         7/8/2014
         7/14/2014
                        93
         1/10/2015
                         1
         7/4/2044
In [10]: df.condition.value_counts()
Out[10]: Average
                      10170
         Good
                       4132
         Very Good
                       1245
         Fair
                        125
                         19
         Poor
```

Name: condition, dtype: int64

- In the above cell,the condition ratings are converted into a discrete variable
- The changes show from 1 to 5, where the lowest has 1 as poor, with the midpoint 3 as average, and the highest 5 as very good

```
In [12]: # Converting 'date' column to date-time format
         df['date'] = pd.to datetime(df['date'])
         df['month'] = df['date'].dt.month.astype(str)
         # Converting to guartes
         def replace quarters(x):
          """A bit complex but simple function to demarcate months into quarters"""
          x = int(x)
          if x <= 3:
           str = str(x).replace(str(x), "Q1")
          elif 4 <= x <= 6:
           str = str(x).replace(str(x), "Q2")
          elif 7 <= x <= 9:
           str = str(x).replace(str(x), "Q3")
          elif 10 <= x <= 12:
           str = str(x).replace(str(x), "Q4")
          return str
         # Replacing in the column
         df["month"] = df['month'].map(replace_quarters)
         # Visualizing
         fig, ax = plt.subplots(figsize=(16,6), ncols=2)
         plot sum = df.groupby("month")["price"].sum()
         plot mean = df.groupby("month")["price"].mean()
         ax[0].bar(plot sum.index, plot sum.values, color='purple')
         ax[1].bar(plot mean.index, plot mean.values, color='purple')
         ax[0].set(ylabel='Price', xlabel='Quarters', title='Sum of Prices per quarter')
         ax[1].set(ylabel='Price', xlabel='Quarters', title='Average Price per quarter')
         plt.tight layout()
         plt.show()
```


- There is no much difference between the quarters except that the average price in quarter 2 is slightly higher than the rest
- There are columns in the dataset tat may not be useful in evaluation and we drop them by initializing the list called dropped and then dropping thm from our dataset

```
In [13]: # Initializing a list for columns to drop
def drop_cols(data, subset, axis):
    """A simple function to drop columns"""
    data.drop(subset, axis=axis, inplace=True)

dropped = ['id', 'date', 'view', 'lat', 'long', 'month']
drop_cols(df, dropped, 1)
```

- In the cells below, the column 'grade' is split for its values and only the first section is singled out to be converted into numeric type and used as a scale for measuring the grade of the houses / properties
- Shifting has been done so that the grading parameters may start from 1.
- From 1 to 11, where the lowest has 1 as poor, with a midpoint of 7 as average and the highest being 11 as mansion

```
In [14]: # checking the grading system used in the dataset
         df['grade'].value counts()
Out[14]: 7 Average
                          6504
                          4429
         8 Good
         9 Better
                          1922
         6 Low Average
                          1459
         10 Very Good
                           832
         11 Excellent
                           288
         5 Fair
                           163
                            66
         12 Luxury
         4 Low
                            16
         13 Mansion
                            11
         3 Poor
                             1
         Name: grade, dtype: int64
In [15]: # Converting the 'grade' column to numeric dtype and shifting the scale by 2
         df['grade'] = df['grade'].map(lambda x: x.split(' ')[0]).astype(int) - 2
In [16]: # Transforming 'yr renovated' column into a categorical variable with `renovated` and `not renovated`
         def replace(x):
          """A simple function to categorize the column into renovated and not renovated"""
          if x > 0:
           str = str(x).replace(str(x), "renovated")
           str_ = str(x).replace(str(x), "not renovated")
          return str
         # Renaming our coulumn and calling our function on the dataset
         df['renovated'] = df.yr renovated.map(replace)
         # Viewing the changes
         df.renovated.value counts()
         # Dropping the original column
         df.drop('yr renovated', axis=1, inplace=True)
```

• Replacing the '?' in the column 'sqft_basement' with zero values since the entries in those columns showed similar areas for "sqft_living" and "sqft_above'

```
In [17]: # Replacing the '?' character with "0.0"
    df['sqft_basement'].replace({'?': "0.0"}, inplace=True)
    # Converting the column 'sqft_basement' to an integer column
    df['sqft_basement'] = df.sqft_basement.astype(float)
```

Checking for outliers in the price column

```
In [18]: # Creating a figure space and visualizing
fig, ax = plt.subplots(figsize=(15,6), ncols=2)
# Histogram
sns.histplot(df.price, kde=True, ax=ax[0])
ax[0].axvline(df['price'].mean(), color='red', label="Mean Price")
# Boxplot
ax[1].boxplot(df['price'])
ax[1].set_ylabel("Price")
ax[0].legend()
# Title and showing
fig.suptitle("Price Distribution and Outliers in Millions")
plt.show()
```

Price Distribution and Outliers in Millions

from the above visualizations, we see that a majority of the price distributions lie between 0 and 1.2 million with those beyond this considered as outliers. On the other hand, we consider these prices to be important for our analysis except those above 5 million that we considered as genuine outliers which we will drop

```
In [19]: # obtaining descriptive statistics on our dataset
df.describe()
```

Out[19]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	grade	sqft_above
count	1.569100e+04	15691.000000	15691.000000	15691.000000	1.569100e+04	15691.000000	15691.000000	15691.000000	15691.000000
mean	5.418726e+05	3.379899	2.122761	2087.263654	1.531265e+04	1.496877	3.411637	5.667899	1794.994392
std	3.743919e+05	0.934517	0.766978	919.928706	4.197367e+04	0.539743	0.651235	1.171426	829.131366
min	8.200000e+04	1.000000	0.500000	370.000000	5.200000e+02	1.000000	1.000000	1.000000	370.000000
25%	3.219750e+05	3.000000	1.750000	1430.000000	5.048000e+03	1.000000	3.000000	5.000000	1200.000000
50%	4.500000e+05	3.000000	2.250000	1920.000000	7.600000e+03	1.500000	3.000000	5.000000	1570.000000
75%	6.450000e+05	4.000000	2.500000	2558.500000	1.071200e+04	2.000000	4.000000	6.000000	2220.000000
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	5.000000	11.000000	9410.000000
4									

```
In [21]: # Showcasing the maximum, average and minimum market prices
print(f"""
    The average price in King County is {round(df.price.mean(), 2)},
    it has the hihgest price and lowest price being {round(df.price.max())} and {round(df.price.min())} respective """)
```

```
The average price in King County is 541872.57, it has the hihgest price and lowest price being 7700000 and 82000 respectively
```

Modelling

Checking our dataset for columns with high multicolinearity and dropping them as well due to their redundancy

```
In [22]: def model results(y, X):
           """A perfect use of a simple function to fit the models"""
          model = sm.OLS(y, sm.add constant(X))
           fit = model.fit()
           return fit
In [23]: # Checking for Multicollinearity in our predictors
         corr df = df.corr(numeric only=True).abs().stack().reset index().sort values(0, ascending=False)
         corr df['pairs'] = list(zip(corr df.level 0, corr df.level 1))
         # Dropping 'level_0' and 'level_1'
         corr df.set index(['pairs'], inplace=True)
         corr df.drop(columns=['level 0', 'level 1'], inplace=True)
         # Renaming our column
         corr df.columns = ["corr coef"]
In [24]: # Veiwing the highly correlated predictor pairs
         corr df[(corr df.corr coef > 0.75) & (corr df.corr coef < 1)]</pre>
Out[24]:
                                corr_coef
                           pairs
            (sqft_above, sqft_living)
                                 0.876111
            (sqft_living, sqft_above)
                                 0.876111
```

```
0.764588
      (sqft_living, grade)
      (grade, sqft_living)
                            0.764588
      (grade, sqft_above)
                            0.758671
      (sqft_above, grade)
                            0.758671
                            0.756656
(sqft_living, sqft_living15)
                            0.756656
(sqft_living15, sqft_living)
 (sqft_living, bathrooms)
                            0.754082
 (bathrooms, sqft_living)
                            0.754082
```

In [25]: # Visualizing the correlation between predictors
 plt.figure(figsize=(13,7))
 sns.heatmap(df.corr(method='spearman', numeric_only=True), annot=True);

From the observations made above we see that there is a very high correlation between the predictor columns of 'sqft_above', 'sqft_living', 'sqft_living15, 'grade',and 'bathrooms'. Dropping some of these will eliminate multicollinearity features. The columns to drop will be 'sqft_above', 'sqft_living15', 'grade',and 'bathrooms'

```
In [26]: # Initializing a list of columns to drop
          high_corr_pred = ['sqft_above', 'sqft_living15', 'grade', 'bathrooms']
          # Dropping the columns permanently
          drop_cols(df, high_corr_pred, 1)
          # Viewing the the remaining dataset
          print(df.shape)
          df.head()
          (15691, 12)
Out[26]:
                  price bedrooms sqft_living sqft_lot floors waterfront condition sqft_basement yr_built zipcode sqft_lot15
                                                                                                                        renovated
              538000.0
                                              7242
                                                      2.0
                                                                                      400.0
           1
                               3
                                      2570
                                                                NO
                                                                           3
                                                                                              1951
                                                                                                     98125
                                                                                                                7639
                                                                                                                        renovated
              604000.0
                               4
                                      1960
                                              5000
                                                      1.0
                                                                NO
                                                                           5
                                                                                      910.0
                                                                                                     98136
                                                                                                                5000 not renovated
                                                                                              1965
                                                                           3
              510000.0
                               3
                                      1680
                                              8080
                                                      1.0
                                                                NO
                                                                                       0.0
                                                                                              1987
                                                                                                     98074
                                                                                                                7503 not renovated
```

NO

NO

3

3

1530.0

0.0

2001

1995

98053

98003

101930 not renovated

6819 not renovated

Fitting the baseline model

3

5420

1715

101930

6819

1.0

2.0

5 1230000.0

257500.0

In [28]: # Visualization of the predictor relationships with price fig = plt.figure(figsize=(18,10)) axes = fig.subplots(nrows=2, ncols=5, sharey=True) for xcol, ax in zip(['bedrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront',\ 'sqft_basement', 'yr_built', 'sqft_lot15', 'renovated', 'condition'], axes.flatten()): df.plot(kind='scatter', x=xcol, y='price', ax=ax, alpha=0.5, color='blue') plt.tight_layout() plt.show() 2500 5000 7500 10000 12500 2.5 waterfront sqft_living

200000 400000 600000 800000

sqft_lot15

renovated

renovated

not renovated

1000 2000 3000

sqft_basement

4000 5000

1900 1920 1940 1960 1980 2000 2020

yr_built

```
In [29]: # Checking for the highly correlated
         df.corr(numeric_only=True)['price']
Out[29]: price
                          1.000000
         bedrooms
                          0.306573
         sqft_living
                          0.706341
         sqft_lot
                          0.082954
         floors
                          0.258315
         condition
                          0.033602
         sqft_basement
                          0.318285
         yr_built
                          0.048950
         zipcode
                         -0.048485
         sqft_lot15
                          0.078430
         Name: price, dtype: float64
In [30]: # Determining the variables
         y = df['price']
         X_baseline = df[['sqft_living']]
```

```
In [32]: # Fitting the model
    baseline_results = model_results(y, X_baseline)
    # Our summary
    print(baseline_results.summary())
```

OLS Regression Results

Dep. Variable:		 pri	ce R	 R-squa	 red:		0.499
Model:		•		•	-squared:		0.499
Method:		Least Squar		-	istic:		1.562e+04
Date:	Wed	d, 05 Jul 20	23 P	rob (F-statistic)	:	0.00
Time:		12:24:	53 L	.og-Li	kelihood:		-2.1821e+05
No. Observations:		156	91 A	AIC:			4.364e+05
Df Residuals:		156	89 B	BIC:			4.364e+05
Df Model:			1				
Covariance Type:		nonrobu	st				
=======================================	======		=====		========	=======	
	coef	std err		t	P> t	[0.025	0.975]
const -5.81	 5e+04	5246.275	-11.	.083	0.000	-6.84e+04	-4.79e+04
sqft_living 287	.4664	2.300	124.	985	0.000	282.958	291.975
Omnibus:	=====	 11240.4	===== 32 D	===== Durbin	======== -Watson:	=======	1.974
Prob(Omnibus):		0.0	00 J	Jarque	-Bera (JB):		478061.744
Skew:		2.9	61 P	rob(J	B):		0.00
Kurtosis:		29.3	85 C	Cond.	No.		5.66e+03
=======================================	=====		=====	=====		=======	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.66e+03. This might indicate that there are strong multicollinearity or other numerical problems.
 - The model is generally statistically sigmificant at a significance level of with a _value of 0.0, and explains about 49% of the variance in price.
 - The constant and coefficient are statistically significant.
 - For a unit increase in square-foot living area, we see an associated increase in 275 dollars in selling price of the houses.

In [33]: # Fitting a multiple regression
X_multiple = df.copy().drop(['price', 'zipcode'], axis=1)
X_multiple = pd.get_dummies(X_multiple, columns=['waterfront', 'renovated'], drop_first=True)
X_multiple

Out[33]:		bedrooms	sqft_living	sqft_lot	floors	condition	sqft_basement	yr_built	sqft_lot15	waterfront_YES	renovated_renovated
	1	3	2570	7242	2.0	3	400.0	1951	7639	0	1
	3	4	1960	5000	1.0	5	910.0	1965	5000	0	0
	4	3	1680	8080	1.0	3	0.0	1987	7503	0	0
	5	4	5420	101930	1.0	3	1530.0	2001	101930	0	0
	6	3	1715	6819	2.0	3	0.0	1995	6819	0	0
	21591	3	1310	1294	2.0	3	130.0	2008	1265	0	0
	21592	3	1530	1131	3.0	3	0.0	2009	1509	0	0
	21593	4	2310	5813	2.0	3	0.0	2014	7200	0	0
	21594	2	1020	1350	2.0	3	0.0	2009	2007	0	0
	21596	2	1020	1076	2.0	3	0.0	2008	1357	0	0

15691 rows × 10 columns

In [34]: # Fittng our multiple regression model multiple_results = model_results(y, X_multiple) print(multiple_results.summary())

OLS Regression Results

Model: OLS Adj. R-squared: 0.592 Method: Least Squares F-statistic: 2277. Date: Wed, 05 Jul 2023 Prob (F-statistic): 0.00 Time: 12:29:41 Log-Likelihood: -2.1659e+05 No. Observations: 15691 AIC: 4.332e+05 Df Residuals: 15680 BIC: 4.333e+05 Df Model: 10 4.333e+05 Covariance Type: nonrobust 10 const 5.024e+06 1.66e+05 30.294 0.000 4.7e+06 5.35e+04 bedrooms -5.655e+04 2527.712 -22.374 0.000 4.7e+06 5.35e+04 sqft_living 331.9504 3.228 102.835 0.000 325.623 338.2 sqft_lots -0.0567 0.066 -0.863 0.388 -0.185 0.0 floors 6.439e+04 4619.149 13.940 0.000 5.53e+04 7.34e+ condition 2.198e+04 3238.782 6.787 0.0		:=======	======	:====		======		==
Method: Least Squares F-statistic: 2277. Date: Wed, 05 Jul 2023 Prob (F-statistic): 0.00 Time: 12:29:41 Log-Likelihood: -2.1659e+05 No. Observations: 15691 AIC: 4.332e+05 Df Residuals: 15680 BIC: 4.333e+05 Df Model: 10 Covariance Type: nonrobust Total State of the policy of the polic	Dep. Variable:		price		•			
Date: Wed, 05 Jul 2023 Prob (F-statistic): 0.00 Time: 12:29:41 Log-Likelihood: -2.1659e+05 No. Observations: 15691 AIC: 4.332e+05 Df Residuals: 15680 BIC: 4.333e+05 Df Model: 10 Covariance Type: nonrobust					-			
Time: 12:29:41 Log-Likelihood: -2.1659e+05 No. Observations: 15691 AIC: 4.332e+05 Df Residuals: 15680 BIC: 4.333e+05 Df Model: 10 Covariance Type: nonrobust								
No. Observations: 15691 AIC: 4.332e+05 Df Residuals: 15680 BIC: 4.333e+05 Df Model: 10 Covariance Type: nonrobust		-			•	c):		
Df Residuals: 15680 BIC: 4.333e+05 Df Model: 10 Covariance Type: nonrobust coef std err t P> t [0.025 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97		12			_			
Df Model: 10 Covariance Type: nonrobust								
Covariance Type: nonrobust				BI	C:		4.333e+6	95
coef std err t P> t [0.025] 0.97 const 5.024e+06 1.66e+05 30.294 0.000 4.7e+06 5.35e+ bedrooms -5.655e+04 2527.712 -22.374 0.000 -6.15e+04 -5.16e+ sqft_living 331.9504 3.228 102.835 0.000 325.623 338.2 sqft_lot -0.0567 0.066 -0.863 0.388 -0.185 0.0 floors 6.439e+04 4619.149 13.940 0.000 5.53e+04 7.34e+ condition 2.198e+04 3238.782 6.787 0.000 1.56e+04 2.83e+ sqft_basement -15.3454 5.531 -2.774 0.006 -26.187 -4.5 yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.6 sqft_lot15 -0.6134 0.099 -6.211 0.000 7.29e+05 8.16e+ waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
const 5.024e+06 1.66e+05 30.294 0.000 4.7e+06 5.35e+04 bedrooms -5.655e+04 2527.712 -22.374 0.000 -6.15e+04 -5.16e+04 sqft_living 331.9504 3.228 102.835 0.000 325.623 338.2 sqft_lot -0.0567 0.066 -0.863 0.388 -0.185 0.0 floors 6.439e+04 4619.149 13.940 0.000 5.53e+04 7.34e+0 condition 2.198e+04 3238.782 6.787 0.000 1.56e+04 2.83e+0 sqft_basement -15.3454 5.531 -2.774 0.006 -26.187 -4.5 yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.6 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+	Covariance Type:	non	robust					
bedrooms -5.655e+04 2527.712 -22.374 0.000 -6.15e+04 -5.16e+04 sqft_living 331.9504 3.228 102.835 0.000 325.623 338.2 sqft_lot -0.0567 0.066 -0.863 0.388 -0.185 0.06 floors 6.439e+04 4619.149 13.940 0.000 5.53e+04 7.34e+0 condition 2.198e+04 3238.782 6.787 0.000 1.56e+04 2.83e+0 sqft_basement -15.3454 5.531 -2.774 0.006 -26.187 -4.5 yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.60 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+0		coef	std	err	t	P> t	[0.025	0.975]
sqft_living 331.9504 3.228 102.835 0.000 325.623 338.2 sqft_lot -0.0567 0.066 -0.863 0.388 -0.185 0.0 floors 6.439e+04 4619.149 13.940 0.000 5.53e+04 7.34e+ condition 2.198e+04 3238.782 6.787 0.000 1.56e+04 2.83e+ sqft_basement -15.3454 5.531 -2.774 0.006 -26.187 -4.5 yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.6 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+	const	5.024e+06	1.666	+05	30.294	0.000	4.7e+06	5.35e+06
sqft_lot -0.0567 0.066 -0.863 0.388 -0.185 0.06 floors 6.439e+04 4619.149 13.940 0.000 5.53e+04 7.34e+0 condition 2.198e+04 3238.782 6.787 0.000 1.56e+04 2.83e+0 sqft_basement -15.3454 5.531 -2.774 0.006 -26.187 -4.5 yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.6 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+04	bedrooms	-5.655e+04	2527.	712	-22.374	0.000	-6.15e+04	-5.16e+04
sqft_lot -0.0567 0.066 -0.863 0.388 -0.185 0.06 floors 6.439e+04 4619.149 13.940 0.000 5.53e+04 7.34e+0 condition 2.198e+04 3238.782 6.787 0.000 1.56e+04 2.83e+0 sqft_basement -15.3454 5.531 -2.774 0.006 -26.187 -4.5 yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.6 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+04	sqft_living	331.9504	3.	228	102.835	0.000	325.623	338.278
condition 2.198e+04 3238.782 6.787 0.000 1.56e+04 2.83e+04 sqft_basement -15.3454 5.531 -2.774 0.006 -26.187 -4.5 yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.6 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+04		-0.0567	0.	066	-0.863	0.388	-0.185	0.072
sqft_basement -15.3454 5.531 -2.774 0.006 -26.187 -4.5 yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.6 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+	floors	6.439e+04	4619.	149	13.940	0.000	5.53e+04	7.34e+04
yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.60 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+	condition	2.198e+04	3238.	782	6.787	0.000	1.56e+04	2.83e+04
yr_built -2612.6078 83.651 -31.232 0.000 -2776.573 -2448.60 sqft_lot15 -0.6134 0.099 -6.211 0.000 -0.807 -0.4 waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+	sqft_basement	-15.3454	5.	531	-2.774	0.006	-26.187	-4.504
waterfront_YES 7.723e+05 2.22e+04 34.833 0.000 7.29e+05 8.16e+	yr_built	-2612.6078	83.	651	-31.232	0.000	-2776.573	-2448.643
	sqft_lot15	-0.6134	0.	099	-6.211	0.000	-0.807	-0.420
renovated_renovated 4.939e+04 1.01e+04 4.876 0.000 2.95e+04 6.92e+	waterfront_YES	7.723e+05	2.22€	+04	34.833	0.000	7.29e+05	8.16e+05
	renovated_renovated	4.939e+04	1.01€	+04	4.876	0.000	2.95e+04	6.92e+04
Omnibus: 9723.971 Durbin-Watson: 1.978		.========	22 071		nhin Watson:	======		== 70
		97				•		
Prob(Omnibus): 0.000 Jarque-Bera (JB): 360515.689 Skew: 2.412 Prob(JB): 0.00	•					•		
Kurtosis: 25.982 Cond. No. 4.47e+06					• •			
NUITUSES. 25.902 CUIIU. NO. 4.476+00	KUI (US15)		<u> </u>				4.4/6+6	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.47e+06. This might indicate that there are strong multicollinearity or other numerical problems.

- The model overall is statistically significant at standard alpha of 0.05 being 0.0, and it explains 58% percent of the variance in sale price.
- The model coefficients are statistically significant except for "sqft_lot".
- In comparison to our baseline model, our multiple model is an improvement with explained variance in price from 49% to 58%
- The constant here explains that all factors held constant, and a house with no waterfront and not renovated, we would have a sale price of 4,844,000 dollars

```
In [35]: fig = plt.figure(figsize=(15,8))
    sm.graphics.plot_partregress_grid(
    multiple_results,
    exog_idx=list(X_multiple.columns.values),
    grid=(2,5),
    fig=fig)
    plt.tight_layout()
    plt.show()

    eval_env: 1
    eval_env: 1
    eval_env: 1
    eval_env: 1
```

eval_env: 1
eval_env: 1
eval_env: 1
eval_env: 1
eval_env: 1

Shifting and centering

```
In [38]: # Preparing data for shifting and centering
    categorical_cols = ['yr_built', 'waterfront_YES', 'renovated_renovated']
    numeric_cols = ['bedrooms', 'sqft_living', 'sqft_lot', 'floors', 'sqft_basement', 'sqft_lot15', 'condition']
    # Doing the centering
    X_centred = X_multiple[numeric_cols]
    for col in X_centred.columns:
        X_centred[col] = X_centred[col] - X_centred[col].mean()
    # Viewing the centred dataset
    X_centred
```

C:\Users\user\AppData\Local\Temp\ipykernel_2932\2564494513.py:7: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html# returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

X_centred[col] = X_centred[col] - X_centred[col].mean()

Out[38]:

	bedrooms	sqft_living	sqft_lot	floors	sqft_basement	sqft_lot15	condition
1	-0.379899	482.736346	-8070.645402	0.503123	113.848894	-5285.724046	-0.411637
3	0.620101	-127.263654	-10312.645402	-0.496877	623.848894	-7924.724046	1.588363
4	-0.379899	-407.263654	-7232.645402	-0.496877	-286.151106	-5421.724046	-0.411637
5	0.620101	3332.736346	86617.354598	-0.496877	1243.848894	89005.275954	-0.411637
6	-0.379899	-372.263654	-8493.645402	0.503123	-286.151106	-6105.724046	-0.411637
21591	-0.379899	-777.263654	-14018.645402	0.503123	-156.151106	-11659.724046	-0.411637
21592	-0.379899	-557.263654	-14181.645402	1.503123	-286.151106	-11415.724046	-0.411637
21593	0.620101	222.736346	-9499.645402	0.503123	-286.151106	-5724.724046	-0.411637
21594	-1.379899	-1067.263654	-13962.645402	0.503123	-286.151106	-10917.724046	-0.411637
21596	-1.379899	-1067.263654	-14236.645402	0.503123	-286.151106	-11567.724046	-0.411637

15691 rows × 7 columns

In [39]: # Concatenating
X_centred = pd.concat([X_centred, X_multiple[categorical_cols]], axis=1)
X_centred['yr_built'] = X_centred['yr_built'] - 1900
X_centred

Out[39]:		bedrooms	sqft_living	sqft_lot	floors	sqft_basement	sqft_lot15	condition	yr_built	waterfront_YES	renovated_
	1	-0.379899	482.736346	-8070.645402	0.503123	113.848894	-5285.724046	-0.411637	51	0	
	3	0.620101	-127.263654	-10312.645402	-0.496877	623.848894	-7924.724046	1.588363	65	0	
	4	-0.379899	-407.263654	-7232.645402	-0.496877	-286.151106	-5421.724046	-0.411637	87	0	
	5	0.620101	3332.736346	86617.354598	-0.496877	1243.848894	89005.275954	-0.411637	101	0	
	6	-0.379899	-372.263654	-8493.645402	0.503123	-286.151106	-6105.724046	-0.411637	95	0	
	21591	-0.379899	-777.263654	-14018.645402	0.503123	-156.151106	-11659.724046	-0.411637	108	0	
	21592	-0.379899	-557.263654	-14181.645402	1.503123	-286.151106	-11415.724046	-0.411637	109	0	
	21593	0.620101	222.736346	-9499.645402	0.503123	-286.151106	-5724.724046	-0.411637	114	0	
	21594	-1.379899	-1067.263654	-13962.645402	0.503123	-286.151106	-10917.724046	-0.411637	109	0	
	21596	-1.379899	-1067.263654	-14236.645402	0.503123	-286.151106	-11567.724046	-0.411637	108	0	

15691 rows × 10 columns

4

In [40]: # fittimg model centred_results = model_results(y, X_centred) print(centred_results.summary())

OLS Regression Results

=======================================		=====	====		:=====:	========	==
Dep. Variable:		price		-squared:		0.59	-
Model:		OLS		dj. R-squared:		0.59	
Method:	Least S	•		-statistic:		2277	
Date:	Wed, 05 Ju			rob (F-statistic	:):	0.6	
Time:	12	:40:50		og-Likelihood:		-2.1659e+6	
No. Observations:		15691		IC:		4.332e+6	
Df Residuals:		15680	B1	IC:		4.333e+6	95
Df Model:		10					
Covariance Type:	non	robust					
=======================================	coef	std	err	t	P> t	[0.025	0.975]
const	7.199e+05	6391	.692	112.627	0.000	7.07e+05	7.32e+05
bedrooms	-5.655e+04	2527	.712	-22.374	0.000	-6.15e+04	-5.16e+04
sqft_living	331.9504	3	.228	102.835	0.000	325.623	338.278
sqft_lot	-0.0567	0	.066	-0.863	0.388	-0.185	0.072
floors	6.439e+04	4619	.149	13.940	0.000	5.53e+04	7.34e+04
sqft_basement	-15.3454	5	.531	-2.774	0.006	-26.187	-4.504
sqft_lot15	-0.6134	0	.099	-6.211	0.000	-0.807	-0.420
condition	2.198e+04	3238	.782	6.787	0.000	1.56e+04	2.83e+04
yr_built	-2612.6078	83	.651	-31.232	0.000	-2776.573	-2448.643
waterfront_YES	7.723e+05	2.226	e+04	34.833	0.000	7.29e+05	8.16e+05
renovated_renovated	4.939e+04	1.01	e+04	4.876	0.000	2.95e+04	6.92e+04
Omnibus:	 97	===== 23.971	==== Dι	======== urbin-Watson:	:=====:	 1.97	
Prob(Omnibus):		0.000	Ja	arque-Bera (JB):		360515.68	39
Skew:		2.412		rob(JB):		0.6	90
Kurtosis:		25.982		ond. No.		5.51e+6	95
=======================================		=====	====		:=====:	========	==

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.51e+05. This might indicate that there are strong multicollinearity or other numerical problems.

- The centred model is statistically significant as standard alpha of 0.05 being 0.0, and still explains 58% of the variance in sale price.
- The centred model still explains the same amount of variance as the multiple model
- The model coefficients are statistically significant except for "sqft_lot".
- The constant here explains that for an average house that is not renovated, with no waterfront and built since 1900, we would have a sale price of 711,600 dollars

Transformations

• considering our predictor scatterplots above, we would need to transform them to follow the assumption of linearity in L.I.N.E

```
In [44]: # Transformations
log_cols = ['sqft_lot', 'sqft_lot15', 'sqft_living']
unlog_cols = ['bedrooms', 'condition', 'floors', 'sqft_basement', 'yr_built', 'waterfront_YES', 'renovated_rer
X_log = X_multiple[log_cols]
for col in X_log.columns:
    X_log[col] = X_log[col] - np.log(X_log[col])
    X_log = pd.concat([X_log, X_multiple[unlog_cols]], axis=1)
    X_log
```

C:\Users\user\AppData\Local\Temp\ipykernel_2932\30814496.py:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html# returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

 $X_{\log[col]} = X_{\log[col]} - np.log(X_{\log[col]})$

\cap \cdot \cdot $+$	1 11 11 1	
ou c	144	٠.

	sqft_lot	sqft_lot15	sqft_living	bedrooms	condition	floors	sqft_basement	yr_built	waterfront_YES	renovated_ren
1	7233.112347	7630.058978	2562.148339	3	3	2.0	400.0	1951	0	
3	4991.482807	4991.482807	1952.419300	4	5	1.0	910.0	1965	0	
4	8071.002853	7494.076942	1672.573451	3	3	1.0	0.0	1987	0	
5	101918.467958	101918.467958	5411.402149	4	3	1.0	1530.0	2001	0	
6	6810.172532	6810.172532	1707.552832	3	3	2.0	0.0	1995	0	
21591	1286.834507	1257.857173	1302.822218	3	3	2.0	130.0	2008	0	
21592	1123.969143	1501.680798	1522.666977	3	3	3.0	0.0	2009	0	
21593	5804.332148	7191.118164	2302.254997	4	3	2.0	0.0	2014	0	
21594	1342.792140	1999.395604	1013.072442	2	3	2.0	0.0	2009	0	
21596	1069.018994	1349.786968	1013.072442	2	3	2.0	0.0	2008	0	

15691 rows × 10 columns

4

In [45]: # Fitting our Log model log_results = model_results(y, X_log) print(log_results.summary())

OLS Regression Results

Dep. Variable:		price	R-s	squared:		0.59	92
Model:		OLS	Adj	i. R-squared:		0.59	92
Method:	Least S	quares	F-s	statistic:		2277	7.
Date:	Wed, 05 Ju	1 2023	Pro	b (F-statist	ic):	0.6	90
Time:	12	:51:27	Log	g-Likelihood:		-2.1659e+6	95
No. Observations:		15691	AIC	:		4.332e+6	95
Df Residuals:		15680	BIC	:		4.333e+6	95
Df Model:		10					
Covariance Type:	non	robust					
=======================================	coef	===== std	===== err	t	P> t	 [0.025	 0.975]
const	5.026e+06	1.666	+05	30.305	0.000	4.7e+06	5.35e+06
sqft_lot	-0.0567	0.	066	-0.863	0.388	-0.185	0.072
sqft_lot15	-0.6134	0.	099	-6.212	0.000	-0.807	-0.420
sqft_living	332.0998	3.	229	102.845	0.000	325.770	338.429
bedrooms	-5.655e+04	2527.	545	-22.372	0.000	-6.15e+04	-5.16e+04
condition	2.199e+04	3238.	654	6.789	0.000	1.56e+04	2.83e+04
floors	6.439e+04	4618.	935	13.940	0.000	5.53e+04	7.34e+04
sqft_basement	-15.3514	5.	531	-2.776	0.006	-26.192	-4.511
yr_built	-2612.3868	83.	647	-31.231	0.000	-2776.344	-2448.436
waterfront_YES	7.722e+05	2.226	+04	34.833	0.000	7.29e+05	8.16e+05
renovated_renovated	4.939e+04	1.01e	+04	4.877	0.000	2.95e+04	6.92e+04
Omnibus:	 97	====== 21.839	===== Dur	·bin-Watson:	======	 1.97	== 78
<pre>Prob(Omnibus):</pre>		0.000	Jar	que-Bera (JB)):	360259.12	28
Skew:		2.411	Pro	bb(JB):		0.6	90
Kurtosis:		25.973		nd. No.		4.47e+6	96

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.47e+06. This might indicate that there are strong multicollinearity or other numerical problems.

 In the above cell, log transformations did not assist in improving improving the model. The adjusted r-squared value remained constant. This led to the need for considering other features affecting the variability in selling price 	

```
In [47]: fig = plt.figure(figsize=(15,8))
    sm.graphics.plot_partregress_grid(
    log_results,
    exog_idx=list(X_log.columns.values),
    grid=(2,5),
    fig=fig)
    plt.show()

    eval_env: 1
    eval_env: 1
    eval_env: 1
    eval_env: 1
    eval_env: 1
    eval_env: 1
```

eval_env: 1
eval_env: 1
eval_env: 1
eval_env: 1

In [48]: # Adding 'zipcode ' column for ohe X_multiple2 = df.copy().drop('price', axis=1) X_multiple2 = pd.get_dummies(X_multiple2, columns=['waterfront', 'renovated', 'zipcode'], drop_first=True) X_multiple2

Out[48]:		bedrooms	sqft_living	sqft_lot	floors	condition	sqft_basement	yr_built	sqft_lot15	waterfront_YES	renovated_renovated	 z
	1	3	2570	7242	2.0	3	400.0	1951	7639	0	1	
	3	4	1960	5000	1.0	5	910.0	1965	5000	0	0	

1	3	2570	7242	2.0	3	400.0	1951	7639	0	1
3	4	1960	5000	1.0	5	910.0	1965	5000	0	0
4	3	1680	8080	1.0	3	0.0	1987	7503	0	0
5	4	5420	101930	1.0	3	1530.0	2001	101930	0	0
6	3	1715	6819	2.0	3	0.0	1995	6819	0	0
21591	3	1310	1294	2.0	3	130.0	2008	1265	0	0
21592	3	1530	1131	3.0	3	0.0	2009	1509	0	0
21593	4	2310	5813	2.0	3	0.0	2014	7200	0	0
21594	2	1020	1350	2.0	3	0.0	2009	2007	0	0
21596	2	1020	1076	2.0	3	0.0	2008	1357	0	0

15691 rows × 79 columns

```
In [49]: # fitting the model for it
multiple_results2 = model_results(y, X_multiple2)
print(multiple_results2.summary())
```

OLS Regression Results

===========	==============		
Dep. Variable:	price	R-squared:	0.785
Model:	0LS	Adj. R-squared:	0.784
Method:	Least Squares	F-statistic:	720.8
Date:	Wed, 05 Jul 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	12:55:54	Log-Likelihood:	-2.1157e+05
No. Observations:	15691	AIC:	4.233e+05
Df Residuals:	15611	BTC:	4.239e+05

Df Model: 79 Covariance Type: nonrobust

===========	========	=======	========		========	========
	coef	std err	t	P> t	[0.025	0.975]
const	-1.817e+05	1.47e+05	-1.240	0.215	-4.69e+05	1.06e+05
bedrooms	-3.637e+04	1872.170	-19.429	0.000	-4e+04	-3.27e+04
sqft_living	297.0622	2.563	115.923	0.000	292.039	302.085
sqft_lot	0.2633	0.048	5.450	0.000	0.169	0.358
floors	-3.562e+04	3895.463	-9.144	0.000	-4.33e+04	-2.8e+04
condition	2.776e+04	2438.989	11.381	0.000	2.3e+04	3.25e+04
sqft_basement	-90.3232	4.356	-20.737	0.000	-98.861	-81.785
yr_built	-4.0584	73.493	-0.055	0.956	-148.113	139.997
sqft_lot15	-0.0643	0.074	-0.865	0.387	-0.210	0.081
waterfront_YES	8.836e+05	1.66e+04	53.333	0.000	8.51e+05	9.16e+05
renovated_renovated	5.143e+04	7445.474	6.908	0.000	3.68e+04	6.6e+04
zipcode_98002	1.524e+04	1.8e+04	0.845	0.398	-2.01e+04	5.06e+04
zipcode_98003	6191.1424	1.61e+04	0.384	0.701	-2.54e+04	3.78e+04
zipcode_98004	8.004e+05	1.6e+04	50.018	0.000	7.69e+05	8.32e+05
zipcode_98005	3.307e+05	1.89e+04	17.480	0.000	2.94e+05	3.68e+05
zipcode_98006	3.218e+05	1.45e+04	22.269	0.000	2.93e+05	3.5e+05
zipcode_98007	2.68e+05	2.05e+04	13.067	0.000	2.28e+05	3.08e+05
zipcode_98008	2.826e+05	1.62e+04	17.437	0.000	2.51e+05	3.14e+05
zipcode_98010	4.154e+04	2.38e+04	1.749	0.080	-5016.755	8.81e+04
zipcode_98011	1.228e+05	1.84e+04	6.681	0.000	8.68e+04	1.59e+05
zipcode_98014	7.625e+04	2.16e+04	3.530	0.000	3.39e+04	1.19e+05
zipcode_98019	6.094e+04	1.9e+04	3.211	0.001	2.37e+04	9.81e+04
zipcode_98022	8406.6537	1.74e+04	0.483	0.629	-2.57e+04	4.26e+04
zipcode_98023	-1.724e+04	1.42e+04	-1.210	0.226	-4.52e+04	1.07e+04
zipcode_98024	1.375e+05	2.55e+04	5.400	0.000	8.76e+04	1.87e+05
zipcode_98027	1.748e+05	1.49e+04	11.762	0.000	1.46e+05	2.04e+05
zipcode_98028	1.261e+05	1.62e+04	7.772	0.000	9.43e+04	1.58e+05
zipcode_98029	2.339e+05	1.56e+04	14.974	0.000	2.03e+05	2.65e+05
zipcode_98030	-2422.1255	1.68e+04	-0.144	0.886	-3.54e+04	3.06e+04

-:	1 206-104	1 6404	0.044	0 200	1 0204	4 61 04
zipcode_98031	1.386e+04	1.64e+04	0.844	0.399	-1.83e+04	4.61e+04
zipcode_98032	1.37e+04	2.07e+04	0.661	0.509	-2.69e+04	5.43e+04
zipcode_98033	3.894e+05	1.47e+04	26.486	0.000	3.61e+05	4.18e+05
zipcode_98034	2.249e+05	1.4e+04	16.051	0.000	1.97e+05	2.52e+05
zipcode_98038	2.264e+04	1.38e+04	1.641	0.101	-4396.382	4.97e+04
zipcode_98039	1.353e+06	3.13e+04	43.228	0.000	1.29e+06	1.41e+06
zipcode_98040	5.692e+05	1.65e+04	34.440	0.000	5.37e+05	6.02e+05
zipcode_98042	-3215.0460	1.39e+04	-0.231	0.818	-3.05e+04	2.41e+04
zipcode_98045	1.033e+05	1.76e+04	5.867	0.000	6.88e+04	1.38e+05
zipcode_98052	2.483e+05	1.39e+04	17.860	0.000	2.21e+05	2.76e+05
zipcode_98053	1.773e+05	1.51e+04	11.766	0.000	1.48e+05	2.07e+05
zipcode_98055	5.254e+04	1.66e+04	3.170	0.002	2.01e+04	8.5e+04
zipcode_98056	9.488e+04	1.48e+04	6.404	0.000	6.58e+04	1.24e+05
zipcode_98058	2.654e+04	1.46e+04	1.816	0.069	-2103.955	5.52e+04
zipcode_98059	7.884e+04	1.46e+04	5.393	0.000	5.02e+04	1.07e+05
zipcode_98065	7.076e+04	1.61e+04	4.399	0.000	3.92e+04	1.02e+05
zipcode_98070	-1.613e+04	2.22e+04	-0.727	0.467	-5.96e+04	2.74e+04
zipcode_98072	1.595e+05	1.64e+04	9.711	0.000	1.27e+05	1.92e+05
zipcode_98074	2.021e+05	1.49e+04	13.580	0.000	1.73e+05	2.31e+05
zipcode_98075	1.893e+05	1.54e+04	12.309	0.000	1.59e+05	2.19e+05
zipcode_98077	1.298e+05	1.8e+04	7.212	0.000	9.45e+04	1.65e+05
zipcode_98092	-2.916e+04	1.54e+04	-1.894	0.058	-5.93e+04	1013.557
zipcode_98102	6.009e+05	2.46e+04	24.441	0.000	5.53e+05	6.49e+05
zipcode_98103	3.744e+05	1.42e+04	26.379	0.000	3.47e+05	4.02e+05
zipcode_98105	5.198e+05	1.75e+04	29.692	0.000	4.86e+05	5.54e+05
zipcode_98106	1.654e+05	1.59e+04	10.412	0.000	1.34e+05	1.96e+05
zipcode_98107	4.036e+05	1.65e+04	24.410	0.000	3.71e+05	4.36e+05
zipcode_98108	1.402e+05	1.87e+04	7.475	0.000	1.03e+05	1.77e+05
zipcode_98109	5.326e+05	2.31e+04	23.091	0.000	4.87e+05	5.78e+05
zipcode_98112	6.96e+05	1.67e+04	41.624	0.000	6.63e+05	7.29e+05
zipcode_98115	3.682e+05	1.42e+04	25.978	0.000	3.4e+05	3.96e+05
zipcode_98116	3.515e+05	1.57e+04	22.373	0.000	3.21e+05	3.82e+05
zipcode_98117	3.529e+05	1.42e+04	24.801	0.000	3.25e+05	3.81e+05
zipcode 98118	1.987e+05	1.44e+04	13.774	0.000	1.7e+05	2.27e+05
zipcode_98119	5.696e+05	1.89e+04	30.092	0.000	5.32e+05	6.07e+05
zipcode 98122	3.873e+05	1.66e+04	23.302	0.000	3.55e+05	4.2e+05
zipcode_98125	2.194e+05	1.5e+04	14.639	0.000	1.9e+05	2.49e+05
zipcode 98126	2.367e+05	1.57e+04	15.111	0.000	2.06e+05	2.67e+05
zipcode 98133	1.744e+05	1.45e+04	12.032	0.000	1.46e+05	2.03e+05
zipcode_98136	3.022e+05	1.67e+04	18.125	0.000	2.69e+05	3.35e+05
zipcode_98144	3.244e+05	1.57e+04	20.709	0.000	2.94e+05	3.55e+05
zipcode_98146	1.156e+05	1.63e+04	7.072	0.000	8.35e+04	1.48e+05
zipcode_98148	6.342e+04	2.9e+04	2.184	0.029	6513.079	1.2e+05
. –						

zipcode 98155	1.615e+05	1.48e+	⊦04	10.918	0.000	1.33e+05	1.91e+05
zipcode 98166	8.001e+04	1.7e+	⊦04	4.706	0.000	4.67e+04	1.13e+05
zipcode_98168	6.857e+04	1.68e+	⊦04	4.081	0.000	3.56e+04	1.01e+05
zipcode_98177	2.891e+05	1.68e+	⊦04	17.168	0.000	2.56e+05	3.22e+05
zipcode_98178	5.962e+04	1.69e+	⊦04	3.524	0.000	2.65e+04	9.28e+04
zipcode_98188	4.079e+04	2.08e+	⊦04	1.960	0.050	-6.217	8.16e+04
zipcode_98198	2.941e+04	1.64e+	⊦ 04	1.788	0.074	-2827.183	6.17e+04
zipcode_98199	4.558e+05	1.62e+	⊦ 04	28.089	0.000	4.24e+05	4.88e+05
Omnibus:	 1419	====== 97.463	===== Durt	in-Watson:	=======	 1.98	:= 5
<pre>Prob(Omnibus):</pre>		0.000	Jaro	que-Bera (JB):	2051666.65	3
Skew:		3.831	Prob	o(JB):		0.0	0
Kurtosis:		58.492	Cond	d. No.		5.47e+0	6

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.47e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [50]: fig, ax = plt.subplots(figsize=(10,6))
    sns.histplot(bins='auto', x=multiple_results2.resid, kde=True, color='purple');
    plt.xlabel('Residuals')
    plt.title("Residual Plot")
```

Out[50]: Text(0.5, 1.0, 'Residual Plot')


```
In [52]: multiple_results2_df = pd.concat([multiple_results2.params, multiple_results2.pvalues], axis=1)
    multiple_results2_df.columns = ["coefficient", "pvalue"]
    multiple_results2_df
```

Out[52]:

	coefficient	pvalue
const	-181738.183574	2.151542e-01
bedrooms	-36373.972664	4.214033e-83
sqft_living	297.062217	0.000000e+00
sqft_lot	0.263302	5.124160e-08
floors	-35620.938932	6.733407e-20
zipcode_98177	289092.833436	1.850873e-65
zipcode_98178	59622.570580	4.267632e-04
zipcode_98188	40786.194894	5.003492e-02
zipcode_98198	29413.406801	7.375780e-02
zipcode_98199	455752.956232	2.100359e-169

80 rows × 2 columns

```
In [53]: # Checking those that are not statistically significant
multiple_results2_df[multiple_results2_df["pvalue"] > 0.05]
```

Out[53]:

	coefficient	pvalue
const	-181738.183574	0.215154
yr_built	-4.058373	0.955963
sqft_lot15	-0.064297	0.387147
zipcode_98002	15243.424317	0.398111
zipcode_98003	6191.142442	0.701274
zipcode_98010	41543.916947	0.080324
zipcode_98022	8406.653651	0.629386
zipcode_98023	-17236.943719	0.226217
zipcode_98030	-2422.125527	0.885589
zipcode_98031	13862.952382	0.398584
zipcode_98032	13700.824353	0.508725
zipcode_98038	22636.105518	0.100748
zipcode_98042	-3215.046030	0.817604
zipcode_98058	26536.207194	0.069371
zipcode_98070	-16126.953241	0.467311
zipcode_98092	-29158.379313	0.058208
zipcode_98188	40786.194894	0.050035
zipcode_98198	29413.406801	0.073758

Our reference category is 98001 Auburn, Washington hence these zipcodes means that there is no significant differences in these areas compared to Auburn.

Findings

- The multiple linear regression model has an R-squared value of 0.79, which indicates that the model can explain 79% of the variance of the market house sale prices which is a good sign that the model is effective in predicting the prices
- The waterfront view was seen to be most impactful with houses having a waterfront view having value increase of about 834,000 dollars more than those without a waterfront. This can be inferred for the other variables as well
- For an average house that is not renovated, with no waterfront and built since 1900, we would have a sale price of 711,600 dollars
- The combination of square footage of the living area, bedrooms, floors, and whether the property had a waterfront view or was renovated are the most reliable predictors of a house's price in King County.

Recommendations

- We recommend for customers on a budget should look out for houses situated on higher property floors as we expect a price drop on said houses of about 30,000 dollars for every floor increase
- Development of a comprehensive database the agency can use to track the renovation projects that would improve property value.
- For customers who would like to sell their properties/houses, it is recommended that they should renovate them first as we see these would be an increase in value by about 48,000 dollars

CONCLUSION

- The combination of square footage of the living area, bedrooms, floors, and whether the property had a waterfront view or was renovated are the most reliable predictors of a house's price in King County.
- There were some limitations to the model. To meet regression assumptions, we had to try out log-transformation on certain variables. Therefore, any new data used with the model would require similar preprocessing. Additionally, since housing prices vary regionally, the model's usefulness for data from other counties may be restricted.
- If you are seeking affordable housing, it may be advisable to compromise on square footage and have no waterfront view. But, given that many urban residents already do this, it may not be a viable solution for everyone

Next steps

• Using datasets from other counties to be able to better advice our customers from comparing the dataset results.

- The agency may prepare questionnaires to identify their strengths, weaknesses, opportunities and threats and use this information to prioritize recommendations that would help address their weaknesses and take advantge of their opportunities and strengths.
- It is also important for the agency to continuously monitor the effectiveness of the strategies they implement and make adjustments as necessary. This could involve tracking metrics like website traffic, this model, social media engagement, and lead generation to assess the impact of their efforts and identify areas for improvement.

Type *Markdown* and LaTeX: α^2