Übungsblatt 4 - Algebra 1

Jovan Petrov

13. November 2023

Aufgabe 3

1. $\frac{x^{p^2}-1}{x-1} \in \mathbb{Q}[x]$ ist nicht irreduzibel

Beweis.

$$\frac{x^{p^2} - 1}{x - 1} = \frac{(x^p)^p - 1}{x - 1} = \frac{(x^p - 1)\left(\sum_{k=0}^{p-1} x^{pk}\right)}{x - 1} = \left(\sum_{k=0}^{p-1} x^k\right)\left(\sum_{k=0}^{p-1} x^{pk}\right)$$

Mit $r(x) := \sum_{k=0}^{p-1} x^k$ und $s(x) := \sum_{k=0}^{p-1} x^{pk}$, ist $\frac{x^{p^2}-1}{x-1} = r(x)s(x)$, r(x), $s(x) \in \mathbb{Q}[x]$, Grad r = p-1>0, Grad $s=p^2-p>0$ reduzibel.

 $2. \ \Phi_{p^2} := \operatorname{minpol}_{\zeta_{p^2}} = ?$

Beweis. Wir zeigen minpol $_{\zeta_{p^2}} = s(x) := \sum_{k=0}^{p-1} x^{pk}$. Es gilt

$$s(\zeta_{p^2}) = \sum_{k=0}^{p-1} \zeta_{p^2}^{pk} = \sum_{k=0}^{p-1} e^{i\frac{2\pi}{p}k} = \sum_{k=0}^{p-1} \zeta_p^k = \frac{\zeta_p^p - 1}{\zeta_p - 1} = 0$$

d.h. das Minimalpolynom von ζ_{p^2} teilt s(x). Wir zeigen noch, dass s(x) irreduzibel in $\mathbb Q$ ist. Wir betrachten zunächst $s'(y)=s(y+1)=\frac{(y+1)^{p^2}-1}{(y+1)^p-1}$. Offensichtlich ist s g.d. irreduzibel wenn s' irreduzibel ist. Modulo p gilt $s'(y)=\frac{((y+1)^p)^p-1}{(y+1)^p-1}=\frac{(y^p+1)^p-1}{(y^p+1)-1}=\frac{y^{p^2}}{y^p}=y^{p^2-p}\in\mathbb F_p[x]$ Da Grad s'= Grad $s=p^2-p$ sind also alle Koeffizienten aus dem führenden Koeffizient durch p teilbar. Ferner gilt

$$s'(y) = \sum_{k=0}^{p-1} (y+1)^{pk} = \sum_{k=0}^{p-1} \left(1 + y \sum_{j=1}^{pk} \binom{pk}{j} y^{j-1} \right) = p + y \sum_{k=0}^{p-1} \sum_{j=0}^{pk-1} \binom{pk}{j+1} y^{j-1}$$

d.h. der konstante Term von s'(y) ist $s_0 = p$. Nach dem Eisensteinkriterium ist s' und damit s in $\mathbb{Z}[x]$ (folglich auch in $\mathbb{Q}[x]$) irreduzibel.

$$\left[\sum_{k=0}^{\infty} \frac{k!}{k^k}\right]$$