

Asymptotic Properties

Session No.:3

Course Name: Analysis and Design of Algorithms

Course Code: R1UC407B

Instructor Name: Dr. Mili Dhar

Review of the key concepts of session no. 2

Asymptotic notation describes the efficiency (time and space complexity) of an algorithm as the input size grows large. It helps compare algorithms based on their growth rates.

Common Notations:

- Big-O (O): Upper bound, worst-case complexity.
- Omega (Ω) : Lower bound, best-case complexity.
- Theta (Θ) : Tight bound, average-case complexity.

3/28/2025 Dr. Mili Dhar

How do asymptotic notations like Big-O, Omega, and Theta help in analyzing the efficiency of algorithms.?

At the end of this session students will be able to

Learning Outcome:

Describe the properties of asymptotic notations.

3/28/2025 Dr. Mili Dhar

1. Introduction to asymptotic properties

Session Outline

2. Different types of properties

3. Solve some examples

Properties of Asymptotic Notation

- 1. Reflexivity
- 2. Symmetry
- 3. Transitivity
- 4. Transpose Symmetry
- 5. General Properties

Learning Activity- 1

Properties of Asymptotic Notation

1. Reflexive Properties

If f(n) is given then f(n) = O(f(n))

Example: If $f(n) = n^3 \Rightarrow O(n^3)$

Similarly,

 $f(n) = \Omega(f(n))$ or $f(n) = \Theta(f(n))$

Learning Activity- 1

Properties of Asymptotic Notation

2. Symmetry Properties

(Valid only for Theta Notation)

If
$$f(n) = \Theta(g(n))$$
, then $g(n) = \Theta(f(n))$

Example

If
$$f(n) = n^2$$
 and $g(n) = n^2$

then
$$f(n) = \Theta(n^2)$$
 and $g(n) = \Theta(n^2)$

Properties of Asymptotic Notation

3. Transitive Properties (for all notations)

$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$ then

$$\Rightarrow$$
 f(n) = O(h(n))

Example

If
$$f(n) = n$$
, $g(n) = n^2$ and $h(n) = n^3$
 $n < n^2 < n^3$

 \Rightarrow n is O(n²) and n² is O(n³) then n is O(n³)

Properties of Asymptotic Notation

4. Transpose Symmetry (for Big Oh and Omega notation only)

If
$$f(n) = O(g(n))$$
 then $g(n) = \Omega(f(n))$

Example

If
$$f(n) = n$$
 and $g(n) = n^2$

then n is $O(n^2)$ and n^2 is $\Omega(n)$

Properties of Asymptotic Notation

5. General Properties

A. If
$$f(n) = O(g(n))$$
 or $\Omega(g(n))$ or $\Theta(g(n))$

Then
$$a^* f(n) = O(g(n))$$
 or $\Omega(g(n))$ or $\Theta(g(n))$

Example:
$$f(n) = 2n^2 + 5 = O(n^2)$$

if
$$a = 5$$
, $\rightarrow a^* f(n) \rightarrow 10n^2 + 25 = O(n^2)$

* Valid for all notations

Learning Activity- 1

Properties of Asymptotic Notation

5. General Properties

B. If
$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

Then
$$f(n) = \Theta(g(n))$$

Example:
$$f(n) = n^2$$
 and $g(n) = n^2$

$$g(n) <= f(n) <= g(n)$$

Properties of Asymptotic Notation

5. General Properties

C. If
$$f(n) = O(g(n))$$
 and $d(n) = O(e(n))$

Then
$$f(n) + d(n) = O(max(g(n), e(n)))$$

Example:
$$f(n) = n = O(n)$$
 and $d(n) = n^2 = O(n^2)$

$$f(n) + d(n) = n + n^2 = O(n^2)$$

Properties of Asymptotic Notation

5. General Properties

D. If
$$f(n) = O(g(n))$$
 and $d(n) = O(e(n))$

Then
$$f(n) * d(n) = O((g(n)* e(n)))$$

Example:
$$f(n) = n = O(n)$$
 and $d(n) = n^2 = O(n^2)$

$$f(n) * d(n) = n* n^2 = n^3 = O(n^3)$$

Practice Examples

Example 1-
$$F(n) = n^3 D(n) = n^4 E(n) = n^6$$

$$T(n)=F(n)+D(n)+E(n)$$

$$O(T(n)) = ?$$

Example 2-
$$F(n) = 3n^2*n^3 + n*n^2 + 20n^2*n^2 + 2n^2$$

$$O(f(n))=?$$

Example 3-
$$F(n) = 3n^3 + n^{3.5} + 10n^4 + 2n^2$$

$$O(f(n))=?$$

Practice Examples

Example 4-
$$F(n) = n^2 + n^4 D(n) = n^2$$

$$T(n) = F(n) * D(n)$$

$$O(T(n))=?$$

Example 5-
$$F(n) = 3n^4 + 2n^2$$

If
$$T(n) = 10,000 * F(n)$$
, then $O(T(n)) = ?$

Next Session....

We will learn about the Empirical analysis of algorithms