- Privilege escalation
 - Gain higher level access to a system
 - Exploit a vulnerability
 - Might be a bug or a design flaw
 - Higher level access means moer capabilities
 - This commonly is the highest level access
 - This is obviously a concern
 - These are high priority vulnerability patches
 - You want to get these holes closed very quickly
 - Any user can be an admin
 - Horizontal privilege escalation
 - User A can access user B resources
- Mitigating privilege escalation
 - Patch quickly
 - Fix the vulnerability
 - Updated AV/AM
 - Block known vulnerabilities
 - Data Execution Prevention
 - Only data in executable areas can run
 - Address space layout randomization
 - Prevent a buffer overrun at a known memory address
- Elevation of privilege vulnerability
 - o CVE-2020-1530
 - Windows remote access elevation of privilege vulnerability
 - Windows Remote Access
 - 7,8.1,10
 - Attacker would execute a program on a victim computer
 - Vulnerability in Remote Access would elevate privileges
- Cross Site Scripting
 - XSS
 - Cascading Style Sheets (CSS) are something else entirely.
 - Originally called cross site because of browser security flaws
 - Information from one site could be shared with another site
 - One of the most common web application development errors
 - Takes advantage of the trust a user has for a site
 - Complex and varied
 - Malware that uses JavaScript?
 - Do you allow scripts? Me too
- Non-persistent (reflected) XSS Attack
 - Website allows scripts to run in user input
 - Search box is a common source
 - Attacker emails a link that takes advantage of this vulnerability
 - Runs a script that sends credentials/session IDs/ cookies th the attacker

- Script embedded in URL executes in the victim's browser
 - As if it came from the server
- Attacker uses credentials/session IDs/cookies to steal victim's knowledge
 - Very sneaky
- Persistent (stored) XSS attack
 - Attacker posts a message to a social network
 - Includes the malicious payload
 - Its now "persistent"
 - Everyone gets the payload
 - No specific target
 - All viewers to the page
 - For social networking, this can spread quickly
 - Everyone who views the message can have it posted to their page
 - Where someone can view it and then propagate to others
- Hacking a Subaru
 - o June '17, Aaron Guzman
 - Security researcher
 - When authenticating with Subaru, users get a token
 - This token never expires (bad!)
 - A valid token allowed any service request
 - Even adding your email address to someone else's account
 - Now you have full access to someone else's car
 - Web front end included an XSS vulnerability
 - A user clicks a malicious link, and you have their token.
- Protecting against XSS
 - Be careful when clicking untrusted links
 - Never blindly click in your email inbox. Never
 - Consider disabling JS
 - Or control with an extension
 - This offers limited protection
 - Keep your browser and applications up to date
 - Validate all inputs
 - Don't allow users to add their own scripts to an input field.
- Code injection
 - Code injection
 - Adding your own information into a data stream
 - Enabled because of bad programming
 - This application should properly handle input and output
 - So many different daat types:
 - HTML, SQI, XML, LDAP
- SQL Injection
 - SQL Structured Query Language
 - The common relational database management system language

- SQL Injection
 - Modifying SQL requests
 - Your application shouldnt really allow this.
- Example SQL injection
 - Inputting employee name and authentication tan (Transaction address basically)
 - Inputting into both fields, Smith and 3SL99A would provide the information for that specific user but since the input box can take scripts if i add OR'1'=1 which 1 does = 1 which means return everything that's TRUE it will output the entire database.
- XML injection and LDAP injection
 - XML Extensible Markup Language
 - A set of rules for data transfer and storage
 - XML Injection
 - Modifying XML requests, a good application will validate
 - LDAP Lightweight Directory Access Protocol
 - Created by the telephone companies
 - Now used by almost everyone
 - LDAP injection
 - Modify LDAP requests to manipulate application results
- DLL Injection
 - Dynamic Link Library
 - A windows library containing code and data
 - Many applications can use this library
 - Inject a DLL and have an application run a program
 - Runs as part of the target process.

Buffer overflows

- Overwriting a buffer of memory
 - Spills over into other memory areas
- Developers need to perform bounds checking
 - The attackers spend a lot of time looking for openings
- Not a simple exploit
 - Takes time to avoid crashing things
 - Takes time to make it do what you want
- A really useful buffer overflow is repeatable
 - Which means that a system can be compromised
- Replay Attack
 - Useful information is transmitted over the network
 - A crafty hacker will take advantage of this.
 - Need access to the raw network data
 - Network tap, ARP poisoning
 - Malware on the victim computer

- The gathered information may help the attacker (Replay Attack)
 - Replay the data to appear as someone else
- This is not an on path attack
 - The actual replay doesn't require the original workstation
 - Pass the hash example
 - Avoid this type of replay attack with a salt or encryption
 - SSL or TLS is encrypted and can't find any hash info
 - Use a session ID with the password hash to create a unique auth hash each time
- Browser cookies and session IDs
 - Cookies
 - Information stored on your computer by the browser
 - Used for tracking personalization, session management
 - Not executable, not generally a security risk
 - Unless someone gets access to them
 - Could be considered be a privacy risk
 - Lots of personal information in there
 - Session IDs are often stored in the cookie
 - Maintains sessions across multiple browser sessions
- Header manipulation
 - Information gathering
 - Wireshark, Kismet
 - Exploits
 - Cross site scripting
 - Modify headers
 - Tamper, Firesheep, Scapy
 - Modify cookies
 - Cookies Manager+
 - Firefox add on
- How to prevent
 - Encrypt end to end
 - They can't capture your session ID if they cant see it
 - Additional load on the web server HTTPS
 - Firefox: HTTPS Everywhere, force TLS
 - Many sites are now HTTPS only
 - Encrypt end to somewhere
 - At Least avoid capture over a local wireless network
 - Still in the clear for part of the journey
 - Personal VPN (OpenVPN, VyprVPN, etc)
- - Cross Site requests
 - Cross site requests are common and legitimate
 - Loads professor messer server
 - Loads a video from YT

- Loads pictures from IG
- o HTML on ProfessorMesser.com directs requests from your browser
 - This is normal and expected
 - Most of these are unauthenticated requests
- The client and the server
 - Website pages consist of client side code and server-side code
 - Many moving parts
 - Client side
 - Renders the page on the screen
 - HTML, JS
 - Server side
 - Performs requests from the client
 - HTML, PHP
 - Transfer money from one account to another
 - Post a video on YT
- Cross site request forgery
 - One click attack, session riding
 - XSRF, CSRF (sea surf)
 - Takes advantage of the trust that a web application has for the user
 - The website trusts your browser
 - Requests are made without your consent or your knowledge
 - Attacker posts a FB status on your account
 - Significant web application development oversight
 - The application should have anti forgery techniques added
 - Usually a cryptographic token to prevent a forgery
- Server side request forgery (SSRF)
 - Attacker finds a vulnerable web application
 - Sends requests to a webs server
 - Web server performs the request on behalf of the attacker
 - Caused by bad programming
 - Never trust the user input
 - Server should validate the input and the responses
 - These are rare, but can be critical vulnerabilities
- Capital One SSRF breach
 - Attacker is able to execute commands on the Capital One website
 - This is normally stopped by a WAF (Web Application Firewall)
 - The WAF was misconfigured
 - Attacker obtained security credentials for the WAF role
 - WAF role account listed the buckets on Amazon S3
 - Attacker retrieved the data from the Amazon buckets
- Malware hide and go seek
 - Traditional antivirus is very good at identifying known attacks
 - Checks the signature

- Block anything that matches
- o There are still ways to infect and hide
 - Its a constant war
 - Zero day attacks, new attack types, etc.
- Your drivers
 - The interaction between the hardware and your operating system
 - They are often trusted
 - Great opportunity for security issues
 - May 2016 HP audio drivers
 - Conexant audio chips
 - Driver installation includes a audio control software
 - Debugging feature enables a keylogger
 - Hardware interactions contain sensitive information
 - Video keyboard mouse
- Shimming
 - Filling in the space between two objects
 - A middleman
 - Windows includes its own shim
 - Backwards compatibility with previous Windows versions
 - Application compatibility Shim Cache
 - Malware authors write their own shims
 - Get around security (like UAC)
- Refactoring
 - Metamorphic Malware'
 - A different program each time its downloaded
 - Make it appear diff each time
 - Add NOP instructions
 - Loops, pointless code strings
 - Can intelligently redesign itself
 - Reorder functions
 - Modify flow
 - Reorder code and insert unused data types
 - Difficulty to match with signature-based detection
 - Used a layered approaches
- SSL Stripping / HTTP downgrade
 - Combines an on-path attack with a downgrade attack
 - Difficult to implement, but big returns for the attacker.
- Attacker must sit in the middle of the conversation
 - Must modify data between the victim and web server
 - Proxy server, ARP spoofing, rogue WIFI hotspot
 - VIctim does not see any significant problem
 - Except the browser isnt encrypted
 - Strips the A away from HTTPS

- This is a client and server problem
 - Works on SSL and TLS.
- SSL (Secure Sockets Layer) 2.0
 - Deprecated in 2011
- o SSL 3.0
 - Vulnerable to the POODLE attack
 - June 2015
- TLS Transport Layer Security (1.0)
 - Upgrade to SSL 3.0
 - Can downgrade to SSL 3.0
 - TLS 1.1
 - Deprecated in 2020
 - TIs 1.2 and 1.3 the latest standards
- Web site visitor —> attacker ←– web server
 - Intercepts the HTTPS and converts to HTTPS and sends it back to web site visitor. Sends post for login and user info and the attacker can grab it.

Race condition

- A programming conundrum
 - Sometimes, things happen at the same time
 - This can be bad if you've not planned for it
- Time-of-check to time-of-use attack (TOCTOU)
 - Check the system
 - When do you use the results of your last check?
- Memory Vulnerability
 - Manipulating memory can be advantageous
 - Relatively difficult to accomplish
 - Memory leak
 - Unused memory is not properly released.
 - Begins to slowly grow in size
 - Eventually uses all available memory
 - System crashes
 - NULL Pointer dereference (pointing to nothing in memory)
 - Programming technique that references a portion of memory
 - Application crashes, DoS, debug information
 - o Integer overflow
 - Large numbers into a smaller sized space.
 - Where does the extra number go
 - You shouldnt be able to manipulate memory this way.
 - Directory traversal attack
 - Directory traversal / path traversal
 - Read files from a web server that are outside of the website's file directory
 - Users shouldnt be able to browse the Windows folder.

- Web server software vulnerability
 - Wont stop suers from browsing past the web server root
- Web application code vulnerability
 - Take advantage of badly written code
- Improper error handling
 - Errors happen, and you should probably know about it
 - Messages should be informational enough
 - · Avoid too much detail
 - Network info
 - Memory dump
 - Stack traces
 - Database dumps
 - Easy to fix
- Improper input handling
 - Many applications accept user input
 - We put data in, we get data back
 - All input should be considered malicious
 - Check everything
 - Allowing invalid input can be devastating
 - SQL injections, buffer overflow, DoS
 - It takes a lot of work to find input that can be used maliciously
- API attacks
 - API Application Programming interface
 - Attackers look for vulnerabilities in this new communication path
 - Exposing sensitive data, dos, privileged access
- Resource exhaustion
 - A specialized dos attack
 - Zip bomb
 - Uncompressed to 4.5 petabytes from 42 kb compressed file.
 - Antivirus will identify these vulnerabilities
 - DHCP starvation
 - Attack floods a network with Ip address requests
 - MAC address changes each time
 - DHCP server eventually runs out of addresses
 - Can limit DHCP requests