디지털논리회로

이론, 실습, 시뮬레이션

(Problem Solutions of Chapter 9)

1. 동기순서논리회로의 해석

(1) 변수명칭 부여

 \circ F-F A 플립플롭의 입력 : T_A , \circ F-F B 플립플롭의 입력 : T_B \circ F-F A 플립플롭의 출력 : A, \circ F-F B 플립플롭의 출력 : B

(2) 부울 대수식 유도

 \circ 플립플롭의 입력 : $T_A = A + B$, $T_B = \overline{A} + B$

(3) 상태표 작성

① A=0, B=0이면, $T_A=0, T_B=1$ 이므로 차기상태는 A=0, B=1

② A=0, B=1이면, $T_A=1, T_B=1$ 이므로 차기상태는 A=1, B=0

③ $A=1,\;B=0$ 이면, $T_A=1,\;T_B=0$ 이므로 차기상태는 $A=0,\;B=0$

④ $A=1,\;B=1$ 이면, $T_A=1,\;T_B=1$ 이므로 차기상태는 $A=0,\;B=0$

현재	상태	차기	상태
A	B	A	B
0	0	0	1
0	1	1	0
1	0	0	0
1	1	0	0

(4) 상태도 작성

(5) 00→01→10의 순서를 갖는 카운터로 동작

2. 동기순서논리회로의 해석(상태표 및 상태도)

(1) 상태표 작성

		차기	상태		출력				
현재상태	x=0, y=0	x=0, y=1	<i>x</i> =1, <i>y</i> =0	<i>x</i> =1, <i>y</i> =1	x=0, y=0	x=0, y=1	<i>x</i> =1, <i>y</i> =0	<i>x</i> =1, <i>y</i> =1	
0	0	0	0	1	0	1	1	0	
1	0	1	1	1	1	0	0	1	

(2) 상태도 작성

3. 동기순서논리회로의 해석(상태표 및 상태도)

(1) 부울 함수

 $J_A = B, \ K_A = \overline{B}, \quad J_B = A \odot x, \ K_B = A \odot x, \ F = A \oplus B \oplus x$

(2) 상태표 작성

x=0, A=0, B=0 일 때 $J_A=0$ and $K_A=1$ 이므로 A=0. $J_B=1$ and $K_B=1$ 이므로 B=1. F=0

x=0, A=0, B=1 일 때 $J_A=1$ and $K_A=0$ 이므로 A=1, $J_B=1$ and $K_B=1$ 이므로 B=0, F=1

x=0, A=1, B=0 일 때 $J_A=0$ and $K_A=1$ 이므로 A=0, $J_B=0$ and $K_B=0$ 이므로 B=0, F=1

x=0, A=1, B=1 일 때 $J_A=1$ and $K_A=0$ 이므로 A=1, $J_B=0$ and $K_B=0$ 이므로 B=1, F=0

⑤ x=1, A=0, B=0 일 때 J_A =0 and K_A =1이므로 A=0, J_B =0 and K_B =0이므로 B=0, F=1

x=1, A=0, B=1 일 때 $J_A=1$ and $K_A=0$ 이므로 A=1, $J_B=0$ and $K_B=0$ 이므로 B=1, F=0

x=1, A=1, B=0 일 때 $J_A=0$ and $K_A=1$ 이므로 A=0, $J_B=1$ and $K_B=1$ 이므로 B=1, F=0

x=1, A=1, B=1 일 때 $J_A=1$ and $K_A=0$ 이므로 A=1, $J_B=1$ and $K_B=1$ 이므로 B=0, F=1

현재	VFEII		차기	상태		출력		
연세	· 6대	<i>x</i> =0		<i>x</i> =1		x=0	<i>x</i> =1	
A	B	A	B	A	B	F	F	
0	0	0	1	0	0	0	1	
0	1	1	0	1	1	1	0	
1	0	0	0	0	1	1	0	
1	1	1	1	1	0	0	1	

(3) 상태도 작성

4. 동기순서논리회로의 해석(상태표 및 상태도)

(1) 부울함수 : $z_1 = x_1 \oplus x_2 \oplus z_2$, $J = x_1 x_2$, $K = \overline{x_1 + x_2}$

(2) 상태표 작성

 $x_1=0$, $x_2=0$, $z_2=0$ 일 때, J=0 and K=1이므로 $z_2=0$, $z_1=0$

 $x_1=0$, $x_2=0$, $z_2=1$ 일 때, J=0 and K=1이므로 $z_2=0$, $z_1=0$

 $x_1=0$, $x_2=1$, $z_2=0$ 일 때, J=0 and K=0이므로 $z_2=0$, $z_1=1$

 $x_1=0$, $x_2=1$, $z_2=1$ 일 때, J=0 and K=0이므로 $z_2=1$, $z_1=0$

 $x_1=1$, $x_2=0$, $z_2=0$ 일 때, J=0 and K=0이므로 $z_2=0$, $z_1=1$ ⑥ $x_1=1$, $x_2=0$, $z_2=1$ 일 때, J=0 and K=0이므로 $z_2=1$, $z_1=0$

 $x_1=1$, $x_2=1$, $z_2=0$ 일 때, J=1 and K=0이므로 $z_2=1$, $z_1=1$

 $x_1=1$, $x_2=1$, $z_2=1$ 일 때, J=1 and K=0이므로 $z_2=1$, $z_1=1$

		차기성	상태		출력				
현재상태	X1=0 X2=0	x ₁ =0 x ₂ =1	x ₁ =1 x ₂ =0	<i>x</i> ₁=1 <i>x</i> ₂=1	x ₁ =0 x ₂ =0	x ₁ =0 x ₂ =1	x ₁ =1 x ₂ =0	x ₁ =1 x ₂ =1	
0	0	0	0	1	0	1	1	1	
1	0	1	1	1	0	0	0	1	

(3) 상태도 작성

5. 상태도 결정

6. 순서논리회로 해석

7. 순서논리회로 설계

(1) 상태 여기표 작성

혀	ᅰᄼ	상태 차기 상태							플립플롭 입력					출력		
연	세경	네	x=0				x=0				X=0	<i>x</i> =1				
A	B	С	A	B	С	A	B	С	D_A	D_B	$D_{\mathcal{C}}$	D_A	D_B	$D_{\mathcal{C}}$	F	F
0	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1
0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1
0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1
0	1	1	0	0	1	0	1	0	0	0	1	0	1	0	0	1
1	0	0	0	1	0	0	1	1	0	1	0	0	1	1	0	0

(2) 플립플롭 입력 및 출력 함수

(3) 회로도

(1) 상태표 작성

현재	사태		차기	상태		출력		
원제	0.41	X^{z}	=0	X	=1	<i>x</i> =0	<i>x</i> =1	
A	B	A	B	A	B	F	F	
0	0	0	1	0	0	0	0	
0	1	0	0	1	0	1	0	
1	0	1	1	1	0	1	1	
1	1	0	0	0	1	0	1	

(2) 상태 여기표 작성

조합·	논리회로	입력	テレフリ	YFEII	조	조합논리회로 출력				
입력	현재	상태	하기 상태 - 상태			플립플롭 입력				
X	A	B	A	B	J_A	K_A	J_B	K_{B}		
0	0	0	0	1	0	Х	1	Х		
0	0	1	0	0	0	Х	Х	1		
0	1	0	1	1	X	0	1	Х		
0	1	1	0	0	X	1	Х	1		
1	0	0	0	0	0	Х	0	Х		
1	0	1	1	0	1	Х	Х	1		
1	1	0	1	0	X	0	0	Х		
1	1	1	0	1	X	1	Х	0		

(3) 플립플롭 입력 및 출력 함수

(4) 회로도

(5) 펄스입력 x에 대한 회로 동작도

(1) 상태 여기표 작성

입력	현	재 상	·태	차	기 상	태	플립플롭 입력				출력		
X	A	В	С	A	В	С	J_A	K_A	J_B	K_B	$J_{\mathcal{C}}$	K_C	F
0	0	0	1	0	0	1	0	Χ	0	Χ	Х	0	0
0	0	1	0	0	1	1	0	Х	Х	0	1	Х	0
0	0	1	1	0	0	1	0	Х	Х	1	Х	0	0
0	1	0	0	1	0	1	Х	0	0	Χ	1	Χ	0
0	1	0	1	0	0	1	Х	1	0	Χ	Х	0	0
1	0	0	1	0	1	0	0	Х	1	Χ	Х	1	0
1	0	1	0	1	0	0	1	Х	Х	1	0	Х	0
1	0	1	1	1	0	0	1	Χ	Х	1	Х	1	0
1	1	0	0	1	0	0	Х	0	0	Х	0	Х	1
1	1	0	1	1	0	0	Х	0	0	Х	Х	1	1

0000, 0110, 0111, 1000, 1110, 1111은 Don't Care 처리.

(2) 플립플롭 입력 및 출력 함수

(3) 회로도

10. 상태 축소

(1) 상태 a와 h가 동일하므로 축소하면 다음과 같다.

현재상태	차기	상태	출력(z)			
원세경대	X=0	<i>x</i> =1	x=0	<i>x</i> =1		
а	С	f	0	0		
b	d	e	0	0		
c	а	g	0	0		
d	b	g	0	0		
e	e	b	0	1		
f	f	а	0	1		
g	c	g	0	1		

(2) 초기상태 a에서 출발하여 입력순서가 x=1001101인 경우 차기상태와 출력

X		1	0	0	1	1	0	1
차기상태	а	f	f	f	а	f	f	а
출력(z)		0	0	0	1	0	0	1

11. 순서논리회로 설계

(1) 순서논리회로

$$D_A = \bar{x}y + xA$$
, $D_B = \bar{x}B + xA$, $F = B$

(2) 상태표

입	력	현재	상태	차기	상태	출력
X	У	A	B	A	B	F
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	0	1	0	0	0	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	1	1
0	1	1	0	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	0	1	0	0	1
1	0	1	0	1	1	0
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	0	1	0	0	1
1	1	1	0	1	1	0
1	1	1	1	1	1	1

(3) 상태도

12. 순서논리회로 설계

(1) 순서논리회로

(2) 상태 여기표

입	력	현재	상태	차기	상태	출력
X	У	A	B	A	B	F
0	0	0	0	1	0	0
0	0	0	1	0	1	1
0	0	1	0	1	0	0
0	0	1	1	1	0	1
0	1	0	0	0	0	0
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	1	0	0
1	0	1	0	0	0	0
1	0	1	1	1	0	0
1	1	0	0	0	1	0
1	1	0	1	1	1	0
1	1	1	0	1	0	1
1	1	1	1	1	0	1

(3) 상태도

(4) 상태 방정식

$$\begin{split} A(t+1) &= (\overline{xy}\overline{B} + x\overline{y}\overline{B} + x\overline{y}B + xyB)\overline{A} + (\overline{xy}\overline{B} + \overline{xy}B + xyB + \overline{xy}B + \overline{xy}B + \overline{xy}B + xyB)A \\ &= (xB + \overline{y}\overline{B})\overline{A} + (\overline{x} + y + B)A \\ B(t+1) &= (x\overline{y}\overline{A} + xy\overline{A})\overline{B} + (\overline{xy}\overline{A} + \overline{xy}\overline{A} + xy\overline{A})B \\ &= (x\overline{A})\overline{B} + (\overline{x}\overline{A} + y\overline{A})B \end{split}$$

13. 상태도를 이용한 순서논리회로 설계

(1) 상태 여기표

ē	현재 상태	#	京	가기 상태	H	플립	J플롭 G	입력	출력
A	В	С	A	B	С	T_A	T_B	T_C	F
0	0	0	0	0	1	0	0	1	0
0	0	1	0	1	0	0	1	1	1
0	1	0	0	1	1	0	0	1	0
0	1	1	1	0	0	1	1	1	1
1	0	0	1	0	1	0	0	1	1
1	0	1	1	1	0	0	1	1	1
1	1	0	1	1	1	0	1	0	0

111은 Don't Care 처리.

(2) 플립플롭 입력 및 출력 함수

(3) 회로도

14. 상태도를 이용한 순서논리회로 설계

(1) 상태 여기표

입력	Ö	현재상티	H	Ā	하기상티	H	플립	입플 롭 입	입력	출력
X	A	B	C	A	B	C	T_A	T_B	T_C	F
0	0	0	0	1	0	0	1	0	0	0
0	0	0	1	0	1	0	0	1	1	0
0	0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	0	0	0	1	0
0	1	0	0	1	0	0	0	0	0	0
0	1	0	1	1	1	0	0	1	1	0
0	1	1	0	1	1	0	0	0	0	0
0	1	1	1	1	1	0	0	0	1	0
1	0	0	0	0	0	1	0	0	1	0
1	0	0	1	0	0	1	0	0	0	1
1	0	1	0	0	1	1	0	0	1	0
1	0	1	1	1	0	1	1	1	0	0
1	1	0	0	0	1	1	1	1	1	0
1	1	0	1	1	0	1	0	0	0	0
1	1	1	0	1	1	1	0	0	1	0
1	1	1	1	1	0	1	0	1	0	0

(2) 플립플롭 입력 함수

$$T_A = \overline{x}\,\overline{A}\,\overline{C} + xA\overline{B}\,\overline{C} + x\overline{A}\,BC$$

$$T_B = \overline{x} \, \overline{B} \, \overline{C} + xBC + \overline{x} \, \overline{A} \, B \overline{C} + xA\overline{B} \, \overline{C}$$

$$T_C = x \oplus C$$

(3) 회로도

15. 순서논리회로 설계

(1) 상태 여기표

입력	현재	상태	차기	상태	플립플-	롭 출력
X	A	В	A	B	D_A	D_B
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	1	0	1	0
0	1	1	1	1	1	1
1	0	0	0	1	0	1
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	1	1	0	1	0

(2) 플립플롭 입력 함수

(3) 회로도

16. 3-비트 그레이 코드 카운터 설계(J-K) 플립플롭 이용)

(1) 상태 여기표

현	재 상	태	차	기 상	태	플립플롭 입력						
A	B	С	A	В	C	J_A	K_A	J_B	K_B	$J_{\mathcal{C}}$	K_C	
0	0	0	0	0	1	0	Х	0	Х	1	Х	
0	0	1	0	1	1	0	Х	1	Х	Х	0	
0	1	0	1	1	0	1	Х	Х	0	0	Х	
0	1	1	0	1	0	0	Х	Х	0	Х	1	
1	0	0	0	0	0	Х	1	0	Х	0	Х	
1	0	1	1	0	0	Х	0	0	Х	Х	1	
1	1	0	1	1	1	X	0	Х	0	1	Х	
1	1	1	1	0	1	Х	0	Х	1	Х	0	

(2) 플립플롭 입력 함수

(3) 회로도

17. 상태도를 이용한 순서논리회로 설계

(1) 상태 여기표

10진수	현	재 싱	태	차기 상태			플립플롭 입력					
10位十	A	B	С	A	B	С	J_A	K_A	J_B	K_B	$J_{\mathcal{C}}$	K_C
1	0	0	1	1	0	0	1	Х	0	Х	Х	1
2	0	1	0	0	0	1	0	Х	Х	1	1	Х
3	0	1	1	1	0	1	1	Х	Х	1	Х	0
4	1	0	0	0	1	1	Х	1	1	Х	1	Х
5	1	0	1	1	1	1	Х	0	1	Х	Х	0
6	1	1	0	0	1	0	Х	1	Х	0	0	Х
7	1	1	1	1	1	0	Х	0	Х	0	Х	1

000은 무관항(don't care)으로 처리

(2) 플립플롭 입력 함수

(3) 회로도

(1) 상태 여기표

현	재 상	태	차기 상태			플립플롭 입력				
A	B	С	A	B	С	D	J	K	T	
0	0	1	1	0	0	1	0	Х	1	
0	1	0	1	0	1	1	Х	1	1	
0	1	1	1	1	0	1	Х	0	1	
1	0	0	0	1	1	0	1	Х	1	
1	0	1	0	0	1	0	0	Х	0	
1	1	0	0	1	0	0	Х	0	0	

000, 111은 don't care

(2) 플립플롭 입력 함수

(3) 회로도

(4) 초기상태가 0 또는 7일 때의 동작

(1) 상태도

(2) 상태 여기표

현재	현재상태 외부입력			상태	플립플롭의 입력			
A	B	X	A	B	J_A	K_A	J_B	$K_{\!B}$
0	0	0	0	1	0	×	1	×
0	0	1	1	1	1	×	1	×
0	1	0	1	0	1	×	×	1
0	1	1	0	0	0	×	×	1
1	0	0	1	1	×	0	1	×
1	0	1	0	1	×	1	1	×
1	1	0	0	0	×	1	×	1
1	1	1	1	0	×	0	×	1

(3) 플립플롭 입력 함수

(4) 회로도

20. 상태 방정식을 이용한 순서논리회로 설계

$$\begin{array}{l} A(t+1) = xAB + y\overline{A}\,C + xy = xAB + y\overline{A}\,C + xy(A + \overline{A}) \\ = (yC + xy)\overline{A} + (xy + xB)A \end{array}$$

J-K 플립플롭의 특성 방정식은 $Q(t+1)=J\overline{Q}+\overline{K}Q$ 이므로

$$J_A = yC + xy$$
, $K_A = \overline{xy + xB} = \overline{x} + \overline{y}\overline{B}$

$$B(t+1) = xAC + \overline{y}B\overline{C} = xAC(B + \overline{B}) + \overline{y}B\overline{C} = xAC\overline{B} + (\overline{y}\overline{C} + xAC)B$$

$$J_B = xAC$$
, $K_B = \overline{\overline{y}C} + xAC = \overline{A}C + \overline{x}C + y\overline{C}$

$$C(t+1) = \overline{x}B + yA\overline{B} = (\overline{x}B + yA\overline{B})(C + \overline{C}) = (\overline{x}B + yA\overline{B})\overline{C} + (\overline{x}B + yA\overline{B})C$$

$$J_C = \overline{x}B + yA\overline{B}, \quad K_C = \overline{\overline{x}B + yA\overline{B}} = \overline{AB} + xB + \overline{yB}$$

$21. \ M-N$ 플립플롭을 이용한 회로설계

(1) 주어진 조건에 의하여 M-N 플립플롭의 진리치표는 다음과 같다.

M	N	Q(t+1)
0	0	0
0	1	Q(t)(불변)
1	0	$\overline{Q(t)}$ (toggle)
1	1	1

진리표를 이용하여 여기표를 작성하면 아래와 같다.

(2) 상태 여기표

ē	현재상태 차기상태				플립플롭 입력						
A	B	С	A	B	С	M_A	N_A	M_B	N_B	M_C	N_C
0	0	0	0	0	1	0	Χ	0	Χ	1	Χ
0	0	1	0	1	1	0	Χ	1	Χ	Х	1
0	1	1	1	1	1	1	Χ	Х	1	Х	1
1	0	0	0	0	0	Х	0	0	Х	0	Х
1	0	1	1	0	0	Х	1	0	Χ	Х	0
1	1	1	1	0	1	Х	1	Х	0	Х	1

(3) 카르노 맵

(4) 회로도

(1) 상태도

(2) 상태표

현재상태	차기	상태	출	력
현제경대	x = 0	x = 1	x = 0	x = 1
S_0	S_0	S_1	0	0
S_1	S_0	S_2	0	0
S_2	S_0	S_2	0	1

(3) 상태 여기표

현재상태	입력	차기상태	플립플	롭 입력	출력
A B	x	A B	$J_A K_A$	$J_B K_B$	z
0 0	0	0 0	0 ×	0 ×	0
0 0	1	0 1	0 ×	1 ×	0
0 1	0	0 0	0 ×	× 1	0
0 1	1	1 0	1 ×	× 1	0
1 0	0	0 0	× 1	0 ×	0
1 0	1	1 0	× 0	0 ×	1
1 1	0	××	× ×	× ×	×
1 1	1	× ×	××	× ×	×

(4) 플립플롭 입력 및 출력함수

(5) 회로도

(1) 상태도

(2) 상태표

현재상태	차기	상태	출력		
원제경대	x = 0	x = 1	x = 0	x = 1	
S_0	S_0	S_1	0	0	
S_1	S_0	S_2	0	0	
S_2	S_0	S_0	0	1	

(3) 상태 여기표

현재상태	입력	차기상태	플립플롭 입력		출력
A B	x	A B	$J_A K_A$	$J_B K_B$	z
0 0	0	0 0	0 ×	0 ×	0
0 0	1	0 1	0 ×	1 ×	0
0 1	0	0 0	0 ×	× 1	0
0 1	1	1 0	1 ×	× 1	0
1 0	0	0 0	× 1	0 ×	0
1 0	1	0 0	× 1	0 ×	1
1 1	0	××	××	××	×
1 1	1	× ×	××	××	×

(4) 카르노 맵

(5) 회로도

