Système éclipse ★

C2-04

Pas de corrigé pour cet exercice.

Question 1 Comment se nomme la correction apportée par $C_{V2}(p)$? Expliquer brièvement comment ce type de correction permet de stabiliser un système instable. Pour cela, tracer l'allure du diagramme de Bode correspondant à ce terme.

Question 2 Lire sur les diagrammes de Bode du système de fonction de transfert W(p), la valeur de la pulsation de coupure $\omega_{0\,\mathrm{dB}}$ où le rapport d'amplitude A_{dB} s'annule. Quelle est, à cette pulsation, la valeur de la phase? Justifier alors la présence de la correction $\frac{1+k_f\tau_vp}{1+\tau_vp}$

Question 3 Exprimer en fonction de τ_V et de k_f la pulsation ω_m pour laquelle la phase maximale est atteinte. On rappelle pour cela que $\frac{d \arctan x}{dx} = \frac{1}{1+x^2}$.

Question 4 Lire sur les diagrammes de Bode la valeur de ω pour laquelle la phase du système corrigé uniquement par le correcteur $C_{V1}(p)$, est de -185°. En déduire la valeur de τ_V correspondante.

Question 5 Pour la valeur de τ_V trouvée précédemment, on donne le diagramme de Black (hors programme...) de la FTBO du système corrigé entièrement, obtenu pour $K_V = 75$. Donner la valeur de K_V qui maximise la marge de phase en expliquant comment vous l'obtenez à la lecture de ce diagramme. Valider alors les performances attendues en terme de stabilité.

Question 6 On donne le tracé de la réponse temporelle à un échelon de vitesse de $10 \,\mathrm{mm \, s^{-1}}$ du système corrigé pour trois valeurs de K_V . Quelle valeur de K_V permet de valider les performances attendues en terme de rapidité? Donnez une valeur optimale de K_V qui permette de satisfaire au mieux le cahier des charges?

Question 7 Le système ainsi corrigé est-il robuste aux perturbations en échelon mais également en rampe comme celles provoquées par le système de maintien en tension?

