Nearest neighbor search using the Hierarchical Navigable Small World (HNSW) algorithm

Sebastian Björkqvist

Lead AI Developer, IPRally

May 12, 2023

Outline

- 1 Theoretical foundations
 - Voronoi diagram
 - Delaunay graph
 - Greedy search using Delaunay graph
- 2 HNSW algorithm
 - Idea behind algorithm
 - Construction of search index
 - Nearest neighbor search using index
- 3 Performance
 - Search accuracy
 - Build time

└Voronoi diagram

Voronoi diagram for a set of points

└─Voronoi diagram

Voronoi diagram for a set of points

L Delaunay graph

Voronoi diagram to Delaunay graph

L Delaunay graph

Voronoi diagram to Delaunay graph

- L Theoretical foundations
 - L Delaunay graph

Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search start - Query and entry point

Greedy NN search using Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search using Delaunay graph

Greedy NN search done!

Asymmetric distance functions

Why?

- Can help us the direction of the prior art
- User might be interested also in finding infringing patents
- Currently we can't model this asymmetry

LIdea behind algorithm

Asymmetric distance functions

How?

- We can learn a distribution for a document instead of just a single vector
- Model prior art relation as KL divergence of distributions

LIdea behind algorithm

Distance functions for metadata

Why?

- We can do soft filtering (by country, patent class etc.)
- Can be useful if match is not found by strict filters

LIdea behind algorithm

Learning multiple distance functions - naive way

LIdea behind algorithm

Learning multiple distance functions - naive way

Learning multiple distance functions - naive way

- LHNSW algorithm
 - LIdea behind algorithm

Learning multiple distance functions - naive way

Drawback: multiple embeddings of same document must be indexed!

LIdea behind algorithm

Learning multiple distance functions - efficient way

Learning multiple distance functions - efficient way

$$d_{n}(q, x) = v_{q}^{n} \cdot v_{x}$$

$$v_{q}^{n} \qquad v_{x}$$

$$\uparrow \qquad \qquad \uparrow$$

$$q \quad d_{n} \qquad x$$

Only one meta-embedding per document is indexed!

Construction of search index

Forward thinking

Construction of search index

Forward thinking

Why?

- We can train deeper models but keep batch size the same
- Training of deep models can take less wall clock time

Construction of search index

Forward thinking - paper

Forward Thinking: Building and Training Neural Networks One Layer at a Time (Hettinger et al.) https://arxiv.org/abs/1706.02480

Search accuracy

Search accuracy

Search accuracy

Search accuracy

Current method - using gradients

Nodes with highest gradient are considered most important

Drawbacks with using gradients

- Compute-intensive, since we need to do backwards pass
- Quality of explanations is not the best
 - Evaluating Recurrent Neural Network Explanations (Arras et al.) https://arxiv.org/abs/1904.11829

L Search accuracy

Comparing node embeddings

1 Embed graphs using model

- 1 Embed graphs using model
- Compare each pair of node embeddings

- 1 Embed graphs using model
- Compare each pair of node embeddings
- 3 Highlight most similar nodes

Why?

- Faster than using gradients (no backprop step needed)
- Might give more relevant explanations
- Can be useful for finding missing features

Summary

- We can give model more relevant data by using the citations and metadata more efficiently
- Learning distributions instead of just embeddings enables modelling asymmetry of prior art relations
- Might be possible to get better explanations by comparing node embeddings