```
Encrypted Internet
Traffic Classification
Using a Supervised
Spiking Neural Network
< Felipe Castro
 11796909 >
```

intro.py

```
Conteúdo da 'Apresentação' {
         Contexto Geral
         < Ideia geral do problema e como o
         artigo se propôs a resolver >
             02 Projeto do Experimento
                   < Conjunto de dados, pré-processamento
                   e medidas de avaliação >
                       03
                            Resultados
                            < O que foi prometido, o que foi
                            realizado e discussões sobre >
                                04 Planejamento
                                      < Quais serão os próximos passos
                                      e quando serão desenvolvidos >
```



```
Resumo; {
          Classification using a Supervised Spiking
          Neural Network" trata do uso de Spiking Neural
          Networks (SNNs) para classificar tráfego de
          internet criptografado. A ideia principal é
          identificar o tipo de tráfego (como streaming,
          chat em redes sociais, chamadas VoIP, etc.)
          sem precisar descriptografá-lo. >
```

2 3

5

7 8

9

10

11

12

13

14

Spinking Neural Networks {

Diferente das redes neurais convencionais, que usam operações matemáticas contínuas, as SNNs processam dados através de picos de ativação (spikes), simulando neurônios biológicos.

Fonte da imagem: pngtree.com


```
Surrogate
Backpropagation
    Como a função de ativação
    (step-function) não é
    diferenciável, precisamos
    fazer uso de uma função
    substituta para calcular
    o gradiente durante a
    backpropagation.
```


Surrogate Backpropagation Como a função de ativação (step-function) não é diferenciável, precisamos fazer uso de uma função substituta para calcular o gradiente durante a backpropagation.

Estrutura do 'Experimento'{ Pré-processamento Separação dos dados < Leitura dos PCAPs, < Separação do seleção de features conjunto de dados entre categorias e e divisão dos fluxos depois entre treino, > validação e teste > Treinamento Avaliação < Treinamento < Avaliação por meio iterativo por meio de medidas de acerto de épocas > e visualizações do comportamento da rede >

```
2016 ISCX VPN-nonVPN Traffic Dataset
         < Conjunto de dados comumente utilizado para
         pesquisas em classificação de tráfego de rede,
         especialmente para diferenciar tráfego VPN de
         tráfego não VPN. >
ISCX-Tor2016 Dataset {
         < Conjunto de dados desenvolvido para auxiliar na
         pesquisa de detecção e classificação de tráfego
         da rede Tor, que é projetada para anonimizar a
         comunicação na Internet. >
```

Leitura dos 'PCAPs'{

	timestamp	IP_version	IP_ihl	IP_tos	IP_len	IP_id	IP_flags	IP_frag	IP_ttl	IP_proto	IP_chksum	IP_src
0	1433356821.839550	4	5	0	162	20629	DF	0	107	6	53743	205.188.12.91
1	1433356821.839658	4	5	0	40	52142	DF	0	64	6	33360	10.8.8.178
2	1433356822.479111	4	5	0	338	21179	DF	0	107	6	53017	205.188.12.91
3	1433356822.479913	4	5	0	40	52143	DF	0	64	6	33359	10.8.8.178
4	1433356822.680985	4	5	0	162	21344	DF	0	107	6	53028	205.188.12.91

IP_dst	IP_options	TCP_sport	TCP_dport	TCP_seq	TCP_ack	TCP_dataofs	TCP_reserved
10.8.8.178	0	443.0	48911.0	3.987076e+09	2.730303e+09	5.0	0.0
205.188.12.91	0	48911.0	443.0	2.730303e+09	3.987076e+09	5.0	0.0
10.8.8.178	0	443.0	48911.0	3.987076e+09	2.730303e+09	5.0	0.0
205.188.12.91	0	48911.0	443.0	2.730303e+09	3.987077e+09	5.0	0.0
10.8.8.178	0	443.0	48911.0	3.987077e+09	2.730303e+09	5.0	0.0

histo.png

network.py


```
03
  Resultados
     < O que foi prometido, o que foi
     realizado e discussões sobre >
```

evaluation.py

results.py


```
results.py
                                        evaluation.py
Avaliação; {
     VOIP : Re = 99.7\% ; Pr = 99.4\% ; Ac = 99.2\%
     File Transfer : Re = 81.8% ; Pr = 81.8% ; Ac = 98.9%
     Chat : Re = 95.6% ; Pr = 97.7% ; Ac = 99.2%
```


0 que eu pretendo fazer? {

< Meu objetivo é reproduzir as técnicas utilizadas nesse estudo e aplicá-las a um novo conjunto de dados dentro do mesmo domínio, explorando sua eficácia em diferentes cenários. Algumas bases de dados que considerei incluem:

CIC-Darknet2020: Focado em tráfego da
Darknet, incluindo comunicações anônimas. >

Fonte da imagem: istockphoto.com

Planejamento {Esperado}


```
Referência do Artigo {
    Ali Rasteh, Florian Delpech, Carlos Aguilar-Melchor, Romain
    Zimmer, Saeed Bagheri Shouraki, Timothée Masquelier,
    Encrypted internet traffic classification using a supervised
    spiking neural network,
    Neurocomputing:
        Volume 503,
        2022.
        Pages 272-282,
     * ISSN 0925-2312,
    DOI:
        https://doi.org/10.1016/j.neucom.2022.06.055.
```

```
Muito {
Obrigado;
```

slidesgo