Computer Vision Deep Learning

YBIGTA Science Team 12기 최동민

'딥러닝 개론' 난이도 설문조사

* 필수항목

'딥러닝 개론' 수업의 난이도가 어떠셨나요? *

- 매우 어려웠다
- 어려웠다
- 보통
- 쉬웠다
- 매우 쉬웠다

오늘 수업에서 이런걸 해주세요! (선택)

내 답변

https://goo.gl/forms/h29bSwJthBklz3JG3

Deep Learning

딥러닝

인공지능

딥러닝

인공지능

딥러닝

머신러닝

인공지능

인공신경망

딥러닝

머신러닝

'인공지능'이란?

인공지능

딥러닝 vs 머신러닝

딥러닝 = 일종의 복잡한 함수

뉴런 (신경세포)

1. 가중치 (Weights)

1. 가중치 (Weights)

2. 활성화 함수 (Activation Function)

2. 활성화 함수 (Activation Function)

2. 활성화 함수 (Activation Function)

3. 레이어 (Layer)

- 4. 모델 (Model)
 - = Architecture
 - = Network

5. 손실 함수 (Loss Function)

5. 손실 함수 (Loss Function)

: 신경망이 학습할 수 있도록 해주는 지표 or 학습 상태를 측정하는 지표

5. 손실 함수 (Loss Function)

: 신경망이 학습할 수 있도록 해주는 지표 or 학습 상태를 측정하는 지표

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$
Mean Squared Error n i True Prediction

5. 손실 함수 (Loss Function)

: 신경망이 학습할 수 있도록 해주는 지표 or 학습 상태를 측정하는 지표

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)$$
 Binary Cross Entropy

6. 역전파 (Back Propagation)

6. 역전파 (Back Propagation)

: 출력을 통해 계산한 오차를 앞쪽 레이어로 전달하여 기울기(Gradient)를 계산하는 방법

- 6. 역전파 (Back Propagation)
- : 출력을 통해 계산한 오차를 앞쪽 레이어로 전달하여 기울기(Gradient)를 계산하는 방법

7. Optimizer

6. 역전파 (Back Propagation)

: 출력을 통해 계산한 오차를 앞쪽 레이어로 전달하여 기울기(Gradient)를 계산하는 방법

7. Optimizer

: 기울기(Gradient)를 바탕으로 가중치(Weights)를 최적의 방향으로 업데이트해주는 역할

Review

레이어 (Layer)

Review

Model

- = Architecture
- = Network

Review Optimization

Classification

Object Detection

Segmentation

Segmentation

Brain Tumor Segmentation

Generation

DiscoGAN

앞선 모든 예시에서 사용된 모델

앞선 모든 예시에서 사용된 모델

CNN

Convolutional Neural Network

신경망

Convolutional Neural Network

합성곱

신경망

고양이 vs 강아지

$$x_1 \cdot w_1 + x_2 \cdot w_2 + x_3 \cdot w_3 + \cdots + x_n \cdot w_n$$

1 _{×1}	1,	1,	0	0					
0,0	1,	1 _{×0}	1	0		1	0	1	
0 _{×1}	0,0	1 _{×1}	1	1	*	0	1	0	
0	0	1	1	0		1	0	1	
0	1	1	0	0		필타	l (Fi	lter)

Image

1 _{×1}	1,0	1,	0	0
0,×0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

입력과 출력이 이미지(벡터)

입력과 출력이 이미지(벡터) 가중치로 구성된 필터를 이용

Fully-Connected Layer

Fully-Connected Layer

Encoder에서 얻어낸 값들을 통해 최종 결과를 도출하는 과정

Fully-Connected Layer

Encoder에서 얻어낸 값들을 통해 최종 결과를 도출하는 과정 = 단순히 선형 레이어를 쌓은 형태

Fully-Connected Layer

Encoder에서 얻어낸 값들을 통해 최종 결과를 도출하는 과정

- = 단순히 선형 레이어를 쌓은 형태
- = MLP (Multi Layer Perceptron)

1. Pooling

1. Pooling

추출된 특징들 중 필요한 정보만 남도록 서브 샘플링(Sub-sampling)하는 과정

1. Pooling

추출된 특징들 중 필요한 정보만 남도록 서브 샘플링(Sub-sampling)하는 과정 Ex) Max-pooling, Average-pooling ...

1. Pooling

추출된 특징들 중 필요한 정보만 남도록 서브 샘플링(Sub-sampling)하는 과정 Ex) **Max-pooling**, Average-pooling ...

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

2. Stride

2. Stride

필터가 한번에 이동하는 pixel의 수

2. Stride

필터가 한번에 이동하는 pixel의 수

5 x 5 Output Volume

Stride = 1

2. Stride

필터가 한번에 이동하는 pixel의 수

2. Stride

필터가 한번에 이동하는 pixel의 수 = 출력 이미지의 크기를 결정하는 요소 중 하나

3. Padding

3. Padding

출력 이미지의 크기를 크게 해주려는 목적

3. Padding

출력 이미지의 크기를 크게 해주려는 목적

Ex) Zero-padding, Replication-padding, Reflection-padding

3. Padding

출력 이미지의 크기를 크게 해주려는 목적

Ex) Zero-padding, Replication-padding, Reflection-padding

02	00	0,	0	0	0	0			
0,	2_0	2_0	3	3	3	0			
00	0,	1,	3	0	3	0 ¦	1	6	5
0	2	3	0	1	3	0	7	10	9
0	3	3	2	1	2	0 ¦	7	10	8
0	3	3	0	2	3	0			
0	0	0	0	0	0	0			

Zero-padding (Filter size = 3, Stride = 2)

GAN(Generative Adversarial Network)

Generative Adversarial Network

Generative Adversarial Network 생성

Generative Adversarial Network 생성 적대하는

Generative Adversarial Network 생성 적대하는 네트워크

Generative Adversarial Network

생성

적대하는

네트워크

Generated Faces

Super Resolution (SRGAN)

Generative

Adversarial

더 자세한 내용은 사이언스팀에서 !!

https://www.facebook.com/ybigtascience/

Q&A

Thank You