

AN5290 Application note

Minimal BOM for STM32WB Series microcontrollers

Introduction

STM32WB Series microcontrollers are designed to minimize the number of external components needed to ensure optimized RF performance.

This document details the bill of materials (BOM) for Bluetooth® Low-Energy applications.

The QFN48 package is used as a reference but the considerations valid for it can easily be extended to other packages.

February 2019 AN5290 Rev 2 1/15

Contents AN5290

Contents

1	Design considerations	5
	1.1 SMPS or LDO configurations	5
	1.2 HSE trimming	6
	1.3 RF matching	7
2	Schematics	8
3	Bill of materials	1
4	Conclusion	3
5	Revision history	4

AN5290 List of tables

List of tables

Table 1.	Bill of materials - Optimized solution with discrete components	11
Table 2.	Bill of materials- Optimized solution with IPD	12
Table 3.	Bill of materials - Solution without SMPS	12
Table 4.	Document revision history	14

AN5290 Rev 2 3/15

List of figures AN5290

List of figures

Figure 1.	Supply configurations	5
Figure 2.	HSE trimming	6
Figure 3.	RF matching and external filters	7
Figure 4.	Optimized solution with discrete components	8
Figure 5.	Optimized solution with IPD	9
Figure 6.	Solution without SMPS	0

1 Design considerations

1.1 SMPS or LDO configurations

The STM32WB Series microcontrollers are based on Arm^{®(a)} cores.

The power management implemented on these devices embeds a powerful switched mode power supply (SMPS) that can be used to improve power efficiency when the supply voltage is higher than 2 V, otherwise, the LDO configuration is used. The two configurations are shown in *Figure 1*. See AN5246 "Usage of SMPS on STM32WB Series microcontrollers", available on *www.st.com*, for more details.

SMPS SMPS step-down step-down converter converter V_{FBSMPS} V_{FBSMPS} [Main RF LP Main RF LP LDO LDO Reg LDO LDO Reg SMPS supply LDO supply

Figure 1. Supply configurations

To operate properly, the SMPS needs two inductors and two capacitors. In the LDO configuration, no external component is needed. The detailed electrical schemes are shown in *Section 2*.

arm

MS44478V3

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5290 Rev 2 5/15

1.2 HSE trimming

The STM32WB MCUs use the HSE oscillator for the RF clock generation, this component must be fine-tuned. Internal load capacitors are used, removing the need for external parts (see *Figure 2*). See AN5042 'HSE trimming for RF applications using the STM32WB Series' for more details.

Figure 2. HSE trimming

1.3 RF matching

There is a unique pin RX/TX for the RF and this interface is single ended, thus eliminating the need for external baluns. Furthermore, internal band pre-filtering helps to reduce external components.

An external PI filter made-up by discrete components followed by a ceramic filter is needed for, respectively, impedance matching and harmonics rejection. Another matching network is required for the antenna. To optimize the BOM and the performance stability, these filters can be replaced by an internal passive device (IPD), as shown in *Figure 3*.

Figure 3. RF matching and external filters

The RF performance strongly depends upon the PCB layout. AN5165 "Development of RF hardware using STM32WB microcontrollers", available on www.st.com, describes the precautions to be taken for the layout of an RF board with the STM32WB.

AN5290 Rev 2 7/15

AN5290 Rev 2

AN5290 Bill of materials

3 Bill of materials

Table 1. Bill of materials - Optimized solution with discrete components

Designator	Description	Comment	Footprint	Manufacturer	Part number
C1, C5, C6, C7, C8, C9, C11, C12	Capacitor, not polarized (X5R)	100 nF decoupling capacitors		Murata	GRM155R61H104KE19D
C2		100 pF decoupling capacitors	0402	Yageo	CC0402KRX7R9BB101
C3, C4		4.3 pF LSE crystal capacitor		Murata	GRM1555C1H4R3CA01D
C10, C13	Capacitor, not polarized	4.7 µF decoupling capacitor			GRM155R61A475MEAAD
C14		0.8 pF matching network			GRM1555C1HR80BA01D
C15		0.3 pF matching network			GRM1555C1HR30WA01D
L1	Coil	Filtering coil	0603	TAI-TECH	FCM1608KF-601T03
L2	Inductor	10 µH SMPS inductor	0805		LQM21FN100M70L
L3		10 nH SMPS inductor	- 0402	Murata	LQG15WZ10NJ02D
L4		2.7 nH matching network			LQG15HS2N7S02D
X1	Crystal	32 MHz - HSE	NX2016	NDK	NX2016SA_32MHz
X2	Orystai	32.768 kHz - LSE	NX2012	NDI	NX2012SA_32-768kHz
FLT1	Low-pass filter	Harmonics rejection	-	Murata	LFL212G45TC1A007

Bill of materials AN5290

Table 2. Bill of materials- Optimized solution with IPD

Designator	Description	Comment	Footprint	Manufacturer	Part number
C1, C5, C6, C7, C8, C9, C11, C12	Capacitor, not polarized (X5R)	100 nF decoupling capacitors		Murata	GRM155R61H104KE19D
C2		100 pF decoupling capacitors	0402	Yageo	CC0402KRX7R9BB101
C3, C4	Capacitor, not polarized	4.3 pF LSE crystal capacitor		Murata	GRM1555C1H4R3CA01D
C10, C13		4.7 µF decoupling capacitor			GRM155R61A475MEAAD
L1	Coil	Filtering coil	0603	TAI-TECH	FCM1608KF-601T03
L2	Inductor	10 µH SMPS inductor	0805	- Murata	LQM21FN100M70L
L3		10 nH SMPS inductor	0402		LQG15WZ10NJ02D
X1	Crystal	32 MHz - HSE	NX2016	- NDK	NX2016SA_32MHz
X2	Orystal	32.768 kHz - LSE	NX2012		NX2012SA_32-768kHz
IPD1	Integrated passive device	Matching network and low-pass filter	Bumpless CSP	STMicroelectronics	MLPF-WB55-01E3

Table 3. Bill of materials - Solution without SMPS

Designator	Description	Comment	Footprint	Manufacturer	Part number
C1, C5, C6, C7, C8, C9, C11, C12	Capacitor, not polarized (X5R)	100 nF decoupling capacitors		Murata	GRM155R61H104KE19D
C2	Capacitor, not polarized	100 pF decoupling capacitors	0402	Yageo	CC0402KRX7R9BB101
C3, C4		4.3 pF LSE crystal capacitor		Murata	GRM1555C1H4R3CA01D
L1	Coil	Filtering coil	0603	TAI-TECH	FCM1608KF-601T03
X1	Crystal	32 MHz - HSE	NX2016	NDK	NX2016SA_32MHz
X2		32.768 kHz - LSE	NX2012	NDN	NX2012SA_32-768kHz
IPD1	Integrated passive device	Matching network and low-pass filter	Bumpless CSP	STMicroelectronics	MLPF-WB55-01E3

AN5290 Conclusion

4 Conclusion

Refer to the STM32WB55xx datasheet (DS11929), available on *www.st.com*, for the detailed RF performance of the devices addressed by this document.

The devices of the STM32WB Series show excellent RF performance with a minimal set of external components associated with a PCB layout that complies with RF guidelines.

AN5290 Rev 2 13/15

Revision history AN5290

5 Revision history

Table 4. Document revision history

Date	Revision	Changes	
14-Feb-2019	1	Initial release.	
20-Feb-2019 2		Updated Section 1.1: SMPS or LDO configurations. Updated Table 2: Bill of materials- Optimized solution with IPD.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

AN5290 Rev 2 15/15