60
GREEN

Date:	arija
-------	-------

GREEN Date:
Visual NODA (1)
Group:
'A set which satisfies the
Following properties is called a group.
-> Closure property.
-> Associative property.
-> Identity
-> Inverse
Along with these properties if a set
Along with these properties if a set satisfies commutative property then
it is called Abelian Group.
Field:
A set F which is abelian
group under addition, abelian group,
under multiplication and also satisfy
the distributive property is called a lield. For example IR, Q, C etc.
rield. For example 'IR, Q, Cetc.
OK
A field is a set F with two operations
addition and multiplication and satisfy the following axioms (A) (M) and (D)
the following axioms (A) (M) and (D)

Date:

181	BEST WAY CEMENT
120	(A) Axiams for addition:
THE PERSON NAMED IN	
	(Az) Hadition is commutative i-e X+y=y+x & x,y ∈ F
THE	(A3) Addition is associative i-e
72.	
	that x+0=x \ \ x \in F.
	50(N Mai KT(-K)=0
7	
THE	(M2) Multiplication is commutative i-e
	(M2) Multiplication is commutative i-e N.y= y.x + x,y \in F (M3) Multiplication is associative i-e
711	(Ny) Z = N(YZ) Y NIYZE F
	(My) F contains an element 1 such that $\chi \cdot 1 = \chi \forall \chi \in F$
	(Ms) Fox any non-zero element x EF, 3 an element 'n such that
	$\frac{1}{2}$ an element of such that $\frac{1}{2}$
	\sim

Date:

(D) The Distributive law: x.(4+z)=xy+xz \ x,y,zEF

(x+y).Z = XZ + YZ Y x,y,Z E F

Let F be a field and V
be a non-empty set on whose elements
an aperation of addition is defined.
Suppose that for every aff and
every VEV, av is an element of
V. Then V is called a vector space
over F if following axioms hold:

(i) V is an abelian group under addition.

(iii) $a(v+w) = av+aw + a \in F, v,w \in V$ (iii) $(a+b)\cdot v = av+bv + av \in F, v \in V$ (iv) $a(bv) = (ab)v + av \in F, v \in V$

(V) 1-V=V, 1 being M.I of F.

The elements of Fare called scalars and elements of V are called vectors and av, aff and VEV is called scalar multiplication of V by a.

	BEST WAT
1	Example 1: The set 1R3 & (N,y,z): N,y,z ER3 is vector space over
3	tield K, under addition and scalar
	multiplication defined by:
3	(i) U+U'=(x+y+z)+(x',y',z')
	$= (\chi_1 \chi_1', \chi_1 \chi_2', \chi_2 \chi_2')$ for $U = (\chi_1 \chi_1 \chi_2), U' = (\chi_1', \chi_1', \chi_2') \in \mathbb{R}^3$
	(ii) QU = (9x,9y, 9z), 9ER3
3	
	Proof:
	We check axioms for vector
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
6	(1) Abelian group under Addition.
	(a) Closure Property: Let U, V \(\mathbb{R}^3, \) such that
N. S.	U=(X1,4, Z1), V=(W2, 42, Z2) then
15	U+V = (N, Y1, Z1) + (N2, Y2)]
	$= (\chi_1 + \chi_2, Y_1 + Y_2, Z_1 + Z_2) \in \mathbb{R}^3$
AL .	Sa clasure Duparty holds.

(b) Commutative property: Let U, V \in \mathbb{R}^3, such that
$U = (\chi_1, \chi_1, \chi_2), V = (\chi_2, \chi_2, \chi_2)$ then,
U+V=(X,,Y,,Z,)+(X2,Y2,Z2)
$=(\chi_1 + \chi_2, y_1 + y_2, Z_1 + Z_2)$
= (N2+N1, Y2+Y1, Z2+Z1) "R is fiel
$= (\chi_2, \chi_2, \chi_2) + (\chi_1, \chi_1, \chi_1)$
= W V + U
So, commutative property holds.
(C) Associative Property:
(C) Associative Property: Let U, V, W E R3 such that
U=(X,14,,Z1), V-(X2,42,Z2), W=(X3,43,Z
then
U+(N+W) = (N, , y1, Z1)+(N2, y2, Z2)+(N3, y3, Z2)
= (N,14,1Z1)+ (N2+N3,42+43, Z2+Z3)
= (N,+962+N3, 4,+42+43, Z1+Z2+Z3)
= (x,+x2, y,+y2, Z,+Z2)+(x3, y3, Z3)
$= ((\lambda_1, y_1, z_1) + (\lambda_2, y_2, z_2)) + (\lambda_3, y_3, z_3)$
=(v+v)+w
S. accordation on party holds

Date:

* BESIWAT CEMENT
(d) Adentity element:
As $O=(0,0,0) \in \mathbb{R}^3$ such
that Y UER3, 0+U=U=U+0.
(e) Inverse of each element: Y UER3, F-UER3 such that
Y UER3 7 -UER3 such that
U+(-U)=0
and the second s
$U = (\chi_1, \chi_1, \chi_2), U = (-\chi_1, -\chi_1, -\chi_1)$
$U + (-U) = (\chi_1, Y_1, Z_1) + (-\chi_1, -Y_1, -Z_1)$
$=(\chi,-\chi,, \xi,-\xi,, \chi,-\chi,-\chi,-\chi,-\chi,-\chi,-\chi,-\chi,-\chi,-\chi,-\chi,-\chi,-\chi,-\chi$
=(0,0,0)=0
So, the given set is Abelian group
under addition.
and the first of the second
(ii) Let aER, and u, v ER3 such
that U=(x,,y,,Z,), V=(x2,y2,Z2)
then
Q(U+V)=Q((N,y1,Z1)+(N2142,Z2))
$= q(x_1+x_2, y_1+y_2, z_1+z_2)$
$= (a(x_1+x_2)+a(y_1+y_2), a(z_1+z_2))$
= (ax, + ax2, ay, + ay2, az, + az2)
= (an, ay, az,)(ax, ay, az)
= a(x, y, z,)+a(x2, y2, Z2)
= 9U+9V

(iii) Let a, b ∈ R, u ∈ R3, u=(x, y, z)

then

 $(a+b) \cdot U = (a+b)(N_1, Y_1, Z_1)$

= ((a+b) N1, (a+b) 4, (a+b) Z1

 $= (ax_1 + bx_1, ay_1 + by_1, az_1 + bz_1)$ $= (ax_1, ay_1, az_1) + (bx_1, by_1, bz_1)$

= q(x1, y, Z1)+b(x1, y1, Z1)

= au+bu

(iv) Let a, b ER and U ER3, U= (x, y, z)

then

 $a(bv) = a(b(x_1, y_1, z_1))$

= a (bx1, by1, bz1)

= (abx,, aby, abz)

= (ab)(x,, y,, zi)

= (ab) U

(V) AS 1 ER, Let UER3, U=(x,y,z)

then

1.0 = 1(x, y, z,)

= (1.x, , 1.4, 1 Z) " R is field

= (x1, y, , Z1)=U

As all the conditions of vector space are satisfied. Given set R3 is rector space over R.

Date:	
-------	--

Example 2: The field (Foto) is vector space over itself. Solution: We use axioms of vector space. (i) As by definition of field F. F. is the abelian group under addition is the abelian group under addition a(u+v) = au + av F is distributive (a+b)u = au + bu F is distributive (a+b)u = au + bu F is distributive (a+b)u = au + bu F has asso. Property a(bv) = (ab)v F has asso. Property (v) As 1 E F and let u E F, then	Date.	BEST WAY DESTWAY CEMENT
Solution: We use axioms of vector space (i) As by definition of field F. F is the abelian group under addition (ii) Let aEF and u, v EF, then a(u+v) = au + av "F is distributive (iii) Let a, b EF and u EF, then (a+b)u = au + bu "F is distributive (iv) Let a, b EF and u EF, then a(bv) = (ab)v "F has asco. property v) As 1 EF and Let u EF, then	Exam	
Me use axioms of vector space (i) As by definition of field F. F is the abelian group under addition (ii) Let a E F and u, v E F, then a(u+v) = au+av :: F is distributive (iii) Let a, b E F and u E F, then (a+b) u = au+bu :: F is distributive (iv) Let a, b E F and u E F, then a(bv) = (ab) v :: F has asso. Property (v) As 1 E F and Let u E F, then	Salu	
is the abelian group under addition (ii) Let aff and u, v f, then a(u+v) = au+av "F is distributive (iii) Let a, b f and u f, then (a+b)u = au+bu "F is distributive (iv) Let a, b f and u f, then a(bv) = (ab)v "F has asso. Property (v) As 1 f and let u f f, then	30(0	
(ii) Let a \(\in \) = and u, v \(\in \), then a (u+v) = au+av "F is distributive (iii) Let a, b \(\in \) and u \(\in \), then (a+b) u = au+bu "F is distributive (iv) Let a, b \(\in \) F and u \(\in \), then a (bv) = (ab) v "F has asso. Property (v) As 1 \(\in \) and Let u \(\in \), then	(i)	As by definition of field F. F is the abelian aroup under addition
(iii) Let a, b EF and U EF, then (a+b) U = au + bu "F is distributive (iv) Let a, b EF and U EF, then a (bv) = (ab) v "F has asso. Property v) As 1 EF and Let U EF, then	(ii)	
(a+b) u = au + bu "F is distributive (iv) Let a, b ∈ F and u ∈ F, then a (bv) = (ab) v "F has asso. Property v) As 1 ∈ F and Let u ∈ F, then		a(u+v) = qu+qv : F is distributive
a (bv) = (ab) v :: F has asso. Property v) As 1 EF and let U EF, then	(iii)	Let a, b E F and u E F, then a+b) u = au + bu "F is distributive
v) As 1EF and let UEF, then 1.U=U "F has identity element		COLLEGE OF THE SECOND
	(v)	As 1EF and let UEF, then 1.U=U "F has identity element
As all the properties of vector space are satisfied. Then every field is vector space over itself.	gre	satisfied. Then every field is