Bootstrapping.

Bootstrap in iid case

Suppose X_t ~ (A, o²)

distribution unknown.

use X as û

Q: what is the V(û)?

1) theoretical consideration

Assume Xe ~ N(M, QZ)

then $\overline{X} \sim N(M, \frac{G^2}{h})$

 $\vee(\cancel{R}) = \vee(\cancel{X}) = \frac{G^2}{12}$

- In many cases, you can only derive asymptotic $V(\hat{\mathfrak{A}})$.

V(û) -t (forpola

Exact for all n.

2) Monte Carlo Simulation Assume $X_{t} \sim \mathcal{N}(\mathcal{M}_{0}, \sigma_{0}^{2})$ for some chosen value of Mo, Og In PC, generate Kay { X, ..., Xn } - + X repeat many times. get many x look at Distribution of this. to estimate V(X)I Must assume 40,00 as well as N to Can obtain result for small n

3) Bootstrapping

Do not assume X+ ~ N(M, O2)

Use the Original data { x1, ..., xn} to draw

Emprical Distribution Function
$$\hat{F}(x) = \sum_{i=1}^{n} \frac{1}{n} I(x_i < x_i)$$

Generate new set {X1, ..., Xn}

toon EDF.

Generate new set {xt,..., xt} from EDF made from original data {xt,..., xt }

1

Sample with replacement from { X, ..., Xu}

R code

Sample (1:10, 20, replace = TRUE)

Original data {X1, ..., Xn} Lo $\{X_1^*, \dots, X_n^*\}$ $\rightarrow X^*$ X_n^* X_n^* look at distribution of X*

 $\mathcal{J}_{X}^{(X^*)} = \mathcal{V}(\bar{X})$

Did not assume anything about distribution of the

- Comple tely data driven

Bootstrapping in ARMA

ARMA (1,1)

$$Y_{\xi} - \phi_{i} Y_{\xi-1} = e_{\xi} - \theta_{i} e_{\xi-1}$$

whenough

 $e_{\xi} \sim \frac{1}{11d} (9i o^{2})$

Data Sya, ..., Yu?

Say,
$$\hat{\phi}_{1} = .521$$

 $\hat{\Theta}_{1} = .297$

2) Get residuals from the estimation

$$\hat{e}_{t} = \sum_{j=0}^{n-t} \hat{\psi}_{j} Y_{t+j}$$
 (invertible representation)

 $\hat{\Psi}_{j}$ calculated by $\hat{\theta}_{i}$ and $\hat{\Theta}_{i}$

residuals.

3) Bootstrap { ê, ..., ên } and generate ARMA

4) For $\{Y_{n}^{t}, \dots, Y_{n}^{t}\}$ pretend that you don't know $\emptyset_{1} = .521$ and $\widehat{\Theta}_{1} = .297$, and estimate $\widehat{\Phi}_{1}^{t}$ and $\widehat{\Phi}_{1}^{t}$

repeat (3) and (4). Original set of residuals $\{\hat{e}_1, \dots, \hat{e}_n\}$ does not change, Neither to $\hat{\phi}_1 = .521$ $\hat{\phi}_2 = .297$ in step (3)

In step (4), $\hat{\phi}_{i}^{*}$ and $\hat{\theta}_{i}^{*}$ are different each time.

Morte Carlo many $\hat{\theta}$, and $\hat{\theta}$, and use $\sqrt{(\hat{\phi}_{i}^{*})}$

as estimate of $V(\hat{\phi})$.

Order Selection of ARMA(P, 9)

Property of ACF and PACF

AR(P)

MA(g)

ARMA(P,g)

ARMA(P,g)

ACF Tails off

Tails off

Tails off

Tails off

Akaike Intormation Criteria Alc

AIC = -2 log (maximum likelihood) + 2 (P+g+1)

n.a. u. u.

prq it there's no H

Best model = lonesy Alc,

AICC

$$+\frac{2(k+1)(k+2)}{N-k-2}$$

BIC Bayesian Intornation Criteria

BIC = -2 log(maximum likelihood) + thelog(h)

h = {P+9+1 w u