The results below are generated from an R script.

```
# Assignment: ASSIGNMENT 4.1 Scores Exercise
# Name: Ghanta, Madhavi
# Date: 2023-04-06
## Load the ggplot2 package
library(ggplot2)
theme set(theme minimal())
## Load the pastecs package
library(pastecs)
##If the current directory does not contain the data directory, set the working
## directory to project root folder. (the folder should contain data directory )
## Set the working directory to the root of your DSC 520 directory
setwd("C:/Users/mghan/Documents/dsc520")
## Load the 'data/scores.csv' to Scores_df using read.csv
Scores_df <- read.csv("data/scores.csv")</pre>
##A professor has recently taught two sections of the same course with only one
##difference between the sections. In one section, he used only examples taken
##from sports applications, and in the other section, he used examples taken
##from a variety of application areas. The sports themed section was advertised
##as such; so students knew which type of section they were enrolling in. The
##professor has asked you to compare student performance in the two sections
##using course grades and total points earned in the course. You will need to
##import the Scores.csv dataset that has been provided for you.
## Examine the structure of Scores_df using str()
## 1. What are the observational units in this study?
str(Scores_df)
## 'data.frame': 38 obs. of 3 variables:
## $ Count : int 10 10 20 10 10 10 10 30 10 10 ...
## $ Score : int 200 205 235 240 250 265 275 285 295 300 ...
## $ Section: chr "Sports" "Sports" "Sports" "Sports" ...
# We have 38 observations with three variables.
## score and count are observational units in this study.
## 2. Identify the variables mentioned in the narrative paragraph and determine
## which are categorical and quantitative?
str(Scores_df)
## 'data.frame': 38 obs. of 3 variables:
## $ Count : int 10 10 20 10 10 10 10 30 10 10 ...
## $ Score : int 200 205 235 240 250 265 275 285 295 300 ...
## $ Section: chr "Sports" "Sports" "Sports" "Sports" ...
summary(Scores df)
##
        Count
                        Score
                                      Section
## Min. :10.00 Min. :200.0 Length:38
```

```
## 1st Qu.:10.00 1st Qu.:300.0 Class :character
## Median: 10.00 Median: 322.5 Mode: character
## Mean :14.47 Mean :317.5
## 3rd Qu.:20.00 3rd Qu.:357.5
## Max. :30.00 Max. :395.0
#Section is categorical variable for the study.
#Count and Score are quantitative variables for the study.
#3. Create one variable to hold a subset of your data set that contains only the
## Regular Section and one variable for the Sports Section.
View(Scores_df)
reg_df <-Scores_df[which(Scores_df$Section=='Regular'),]</pre>
head(reg_df)
##
     Count Score Section
        10 265 Regular
## 6
## 7
        10 275 Regular
## 9
       10 295 Regular
## 10
      10 300 Regular
      10 305 Regular
## 13
## 14
        10 310 Regular
View(reg_df)
sport_df<-Scores_df[which(Scores_df$Section=='Sports'),]</pre>
head(sport_df)
     Count Score Section
## 1
      10 200 Sports
## 2
      10 205 Sports
## 3
       20 235 Sports
     10 240 Sports
## 4
## 5
     10 250 Sports
## 8
     30 285 Sports
View(sport_df)
# 4. Use the Plot function to plot each Sections scores and the number of
# students achieving that score. Use additional Plot Arguments to label the
# graph and give each axis an appropriate label. Once you have produced your
# Plots answer the following questions:
plot(reg_df$Score,reg_df$Count,type='h',xaxt="n",xlab="Score in Regular Section"
     ,ylab="Count of Students")
axis(1, at = seq(200, 400, by = 10), las=2)
```


plot(sport_df\$Score,sport_df\$Count,type='h',xaxt="n",xlab="Score in Sports Section",ylab="Count of Stude
axis(1, at = seq(200, 400, by = 10), las=2)


```
# 4.1. Comparing and contrasting the point distributions between the two section,
# looking at both tendency and consistency: Can you say that one section tended
# to score more points than the other? Justify and explain your answer.
#By looking at the two histograms plots, it seems that sports section students
#scored more higher marks > 300.
# 4.2. Did every student in one section score more points than every student in
# the other section? If not, explain what a statistical tendency means in this context.
stat.desc(reg df[,1:2], basic=TRUE, desc=TRUE, norm=FALSE, p=0.95)
##
                     Count
                                  Score
## nbr.val
                            19.0000000
               19.0000000
## nbr.null
                0.0000000
                              0.0000000
## nbr.na
                0.0000000
                              0.0000000
## min
                10.0000000 265.0000000
## max
               30.0000000 380.0000000
               20.0000000 115.0000000
## range
## sum
              290.0000000 6225.0000000
## median
               10.0000000 325.0000000
## mean
               15.2631579 327.6315789
                            7.6315789
## SE.mean
                1.4035088
## CI.mean.0.95 2.9486625
                             16.0333524
## var
                37.4269006 1106.5789474
## std.dev
                6.1177529
                             33.2652814
## coef.var
                 0.4008183
                              0.1015326
stat.desc(sport_df[,1:2], basic=TRUE, desc=TRUE, norm=FALSE, p=0.95)
                     Count
                                  Score
## nbr.val
               19.0000000
                           19.0000000
## nbr.null
                0.0000000
                              0.0000000
## nbr.na
                 0.0000000
                              0.0000000
## min
                10.0000000 200.0000000
## max
               30.0000000 395.0000000
               20.0000000 195.0000000
## range
## sum
               260.0000000 5840.0000000
## median
               10.0000000 315.0000000
## mean
               13.6842105 307.3684211
                1.5691705
## SE.mean
                            13.3134085
                3.2967049
## CI.mean.0.95
                             27.9704333
## var
                46.7836257 3367.6900585
## std.dev
                6.8398557 58.0318021
## coef.var
                 0.4998356
                              0.1888021
bar <- ggplot(Scores_df, aes(Score,Count, fill = Section))</pre>
bar + stat_summary(fun = mean, geom = "bar", position="dodge", width = 8) + facet_wrap( ~ Section)
## Warning: 'position_dodge()' requires non-overlapping x intervals
## 'position_dodge()' requires non-overlapping x intervals
```


#Total number of students in regular section is 290 and their mean score is 327.63
#Total number of students in sports section is 260 and their mean score is 307.37
#It looks like not every student in sports section score more points than every student in regular sect

4.3. What could be one additional variable that was not mentioned in the narrative # that could be influencing the point distributions between the two sections?

#I think 'size of classes in each section' will be an additional variable could be influencing the poin #distributions between the two sections

The R session information (including the OS info, R version and all packages used):

```
sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.utf8 LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8 LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   base
## other attached packages:
## [1] pastecs_1.3.21 ggplot2_3.4.1 tidyr_1.3.0
```

```
##
## loaded via a namespace (and not attached):
## [1] rstudioapi_0.14 knitr_1.42
                                                       tidyselect_1.2.0 munsell_0.5.0
                                       magrittr_2.0.3
## [6] colorspace_2.1-0 R6_2.5.1
                                      rlang_1.1.0
                                                       fansi_1.0.4
                                                                       highr_0.10
## [11] dplyr_1.1.1 tools_4.2.2
                                      grid_4.2.2
                                                        gtable_0.3.3
                                                                       xfun_0.38
## [16] utf8_1.2.3
                      cli_3.6.1
                                       withr_2.5.0
                                                       tibble_3.2.1
                                                                       lifecycle_1.0.3
## [21] farver_2.1.1 purrr_1.0.1
                                                        evaluate_0.20
                                       vctrs_0.6.1
                                                                        glue_1.6.2
## [26] labeling_0.4.2 compiler_4.2.2
                                       pillar_1.9.0
                                                       generics_0.1.3
                                                                        scales_1.2.1
## [31] boot_1.3-28
                       pkgconfig_2.0.3
Sys.time()
## [1] "2023-04-07 22:44:17 PDT"
```