Combustion engine assembly with a small volume catalytic converter

Patent number:

DE19921263

Publication date:

2000-11-16

Inventor:

BRUECK ROLF (DE); MAUS WOLFGANG (DE);

WIERES LUDWIG (DE)

Applicant:

EMITEC EMISSIONSTECHNIK (DE)

Classification:

- international:

F01N3/28

- european:

F01N3/28; F01N3/28B2B2

Application number: DE19991021263 19990507

Priority number(s): DE19991021263 19990507

Aiso published as:

WO0068549 (A1) EP1177370 (A1) US2002061268 (A1)

RU2232910 (C2)

Report a data error here

Abstract of **DE19921263**

The invention relates to an internal combustion engine comprising a volumetric displacement (H) and a catalytic converter (2) which is connected downstream and which is provided for cleaning exhaust gases. The catalytic converter (2) has a geometric surface (O). In addition, the catalytic converter (2) has an effectiveness (E) for converting at least one noxious component contained in the exhaust gas into innoxious constituents, and has at least one honeycomb body (3), whereby all honeycomb bodies (3), together, have a total volume (V). According to the invention, the volume (V) is selected such that it is smaller than the volumetric displacement (H) by at least a factor of approximately 0.6, and the geometric surface (O) is dimensioned, however, such that the catalytic converter (2) has an effectiveness (E) of greater than 98 %. The honeycomb body (3) is preferably a metallic honeycomb body (3) consisting of coated and/or wound, at least partially structured sheet metal layers (6, 7) whose channels (4) are separated from one another by channel walls (5), and whose average thickness (d) is no greater than 40 micrometers, preferably no greater than 35 micrometers, especially ranging from 18 and 32 micrometers, whereby the number (A) of channels (4) of the honeycomb body (3) over a cross-section through the honeycomb body (3) equals at least 600 cpsi. This makes it possible to provide small-volume particularly economical honeycomb bodies.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift⑥ DE 199 21 263 A 1

(5) Int. Cl.⁷: **F 01 N 3/28**

DEUTSCHES
PATENT- UND
MARKENAMT

② Aktenzeichen: 199 21 263.5
 ② Anmeldetag: 7. 5. 1999
 ④ Offenlegungstag: 16. 11. 2000

(7) Anmelder:

Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar, DE

4 Vertreter:

Patent- und Rechtsanwälte Bardehle, Pagenberg, Dost, Altenburg, Geissler, Isenbruck, 40474 Düsseldorf ② Erfinder:

Brück, Rolf, 51429 Bergisch Gladbach, DE; Maus, Wolfgang, 51429 Bergisch Gladbach, DE; Wieres, Ludwig, 51491 Overath, DE

66 Entgegenhaltungen:

DE 196 36 041 A1 WO 91 01 178 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Brennkraftmaschine mit einem kleinvolumigen Katalysator
- Die vorliegende Erfindung betrifft eine Brennkraftmaschine mit einem Hubraum H und mit einem nachgeschalteten Katalysator (2) zur Abgasreinigung, wobei der Katalysator (2) eine geometrische Oberfläche O hat, der Katalysator (2) eine Effektivität E zur Umsetzung mindestens einer schädlichen Komponente im Abgas in unschädliche Bestandteile hat und mindestens einen Wabenkörper (3) aufweist und wobei alle Wabenkörper (3) zusammen ein Gesamtvolumen V haben. Dabei wird erfindungsgemäß das Volumen V so gewählt, daß es mindestens um den Faktor 0,6 kleiner ist als der Hubraum H, und die geometrische Oberfläche O dabei aber so bemessen ist, daß der Katalysator (2) eine Effektivität E von mehr als 98% hat. Bevorzugt ist der Wabenkörper (3) ein metallischer Wabenkörper (3) aus geschichteten und/oder gewickelten, zumindest teilweise strukturierten Blechlagen (6, 7), dessen Kanäle (4) durch Kanalwände (5) voneinander getrennt sind, deren durchschnittlicher Dicke (d) höchstens 40 Mikrometer, vorzugsweise höchstens 35 Mikrometer, insbesondere zwischen 18 und 32 Mikrometer beträgt, wobei die Anzahl (A) der Kanäle (4) des Wabenkörpers (3) über einen Querschnitt durch den Wabenkörper (3) mindestens 600 cpsi beträgt. So können kleinvolumige, besonders kostengünstige Wabenkörper bereitgestellt werden.

Beschreibung

Die vorliegende Erfindung betrifft eine Brennkraftmaschine mit einem gegebenen Hubraum H und mit einem nachgeschalteten Katalysator zur Abgasreinigung. Entsprechend den gesetzlichen Vorschriften in den meisten Ländern ist es üblich, die Abgase von Verbrennungsmotoren mittels eines katalytischen Konverters zu reinigen, die im Abgassystem des Verbrennungsmotors angeordnet sind.

Bei der Auslegung von Abgasreinigungssystemen wur- 10 den in der Vergangenheit meist empirische Erkenntnisse zugrunde gelegt. In der WO 91/01178 sind beispielsweise Abgasreinigungssysteme beschrieben, die aus mehreren Wabenkörpern aufgebaut sind, so daß sich durch Größe und Anzahl dieser Wabenkörper ein gewünschtes Katalysatorvolumen für jede beliebige Größe des Hubraums einer Verbrennungsmaschine auswählen läßt. Wichtig ist dabei, daß letztendlich das Abgas so stark gereinigt wird, daß die gesetzlichen Vorschriften erfüllt werden können. Dies bedeutet in den meisten Ländern heutzutage, daß mehr als 98% 20 der schädlichen Anteile im Abgas, insbesondere der Kohlenwasserstoffe und/oder der Stickoxide in unschädliche Beständteile umgewandelt werden, vorzugsweise sogar mehr als 99%. Gemessen wird die Effektivität E anhand bestimmter vorgegebener Fahrzyklen oder in bestimmten Be- 25 triebszuständen.

Die bei der Auslegung eines Abgasreinigungssystems zu beachtenden Kriterien sind sehr zahlreich. Katalytische Konverter enthalten typischerweise Wabenkörper, deren Aufgabe es ist, eine genügend große geometrische Oberflä- 30 che zur Verfügung zu stellen, welche mit dem zu reinigenden Abgas in Kontakt kommt. Die Wabenkörper weisen im allgemeinen für das Abgas durchlässige Kanäle auf, die durch Wände voneinander getrennt sind. Für die Effektivität E eines Katalysators ist die geometrische Oberfläche O von 35 entscheidender Bedeutung. Grundsätzlich kann man eine bestimmte gewünschte geometrische Oberfläche O durch Vergrößerung der Anzahl A der Wände in einem vorgegebenen Volumen oder durch eine Vergrößerung des Volumens bei vorgegebener Anzahl A an Wänden pro Querschnittsein- 40 heit. Berücksichtigt werden müssen bei der Auslegung weiterhin die Strömungsgeschwindigkeit und Strömungsverhältnisse in den Kanälen, die die Effektivität E beeinflussen, und der durch den Katalysator verursachte Druckverlust im Abgasstrom, der den Wirkungsgrad des Verbrennungsmotors beeinflußt. Natürlich hängt die Auslegung von der Querschnittsform des Wabenkörpers, von der Art der katalytisch aktiven Beschichtung, der Anströmung des Wabenkörpers und weiteren Parametern ab.

Im Zuge der Weiterentwicklung von Wabenkörpern als 50 Trägerkörper für katalytisch aktives Material in einem Katalysator wurden die Wanddicken der Kanäle immer weiter reduziert, was sich günstig auf den Druckverlust auswirkt. Der Spielraum bei der Auslegung wurde dadurch immer größer, weil mit abnehmender Wanddicke immer kleinere Kanäle und damit immer größere geometrische Oberflächen pro Volumeneinheit bei akzeptablem Druckverlust realisierbar wurden. Trotzdem wurden die empirisch gefundenen Regelungen im wesentlichen beibehalten, so daß typischerweise bei Brennkraftmaschinen das Volumen eines nachgeschalteten Katalysators in der gleichen Größenordnung wie der Hubraum liegt.

Aufgabe der vorliegenden Erfindung ist es, eine Brennkraftmaschine mit nachgeschaltetem Katalysator anzugeben, bei der der Katalysator so ausgelegt ist, daß er eine gesetzlich geforderte hohe Effektivität E erreicht, aber ein signifikant kleineres Volumen V als der Hubraum H des Verbrennungsmotors aufweist und dabei preisgünstig herstell-

bar ist. Insbesondere soll der Wabenkörper im Katalysator aus metallischen, teilweise strukturierten Folien hergestellt sein:

Zur Lösung dieser Aufgabe dient eine Brennkraftmaschine mit einem nachgeschalteten Katalysator gemäß dem Anspruch 1. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben.

Erfindungsgemäß ist einer Brennkrastmaschine mit einem Hubraum H ein Katalysator zur Abgasreinigung nachgeschaltet, wobei der Katalysator eine geometrische Oberstäche O hat, eine Effektivität E zur Umsetzung mindestens einer schädlichen Komponente im Abgas in unschädliche Bestandteile und wobei der Katalysator mindestens einen Wabenkörper ausweist und alle Wabenkörper zusammen ein Gesamtvolumen V haben, wobei das Volumen V so gewählt ist, daß es mindestens um den Faktor 0,6 kleiner ist als der Hubraum H und die geometrische Oberstäche O dabei aber so bemessen ist, daß der Katalysator eine Effektivität E von mehr als 98% hat. Als Formeln lauten diese Bedingungen:

E > 98% (a)

V < 0.6 H (b)

Diese Wahl der Parameter hat einerseits den Vorteil, daß der Katalysator nur ein verhältnismäßig kleines Volumen beansprucht, was bei der Unterbringung im Motorraum und/ oder unter der Bodenwanne eines Kraftfahrzeuges erleichtert. Natürlich muß die geometrische Oberfläche O pro Volumeneinheit gegenüber großvolumigen Katalysatoren erhöht werden, um die notwendige Effektivität E zu erreichen. Während man früher davon ausging, daß die dazu notwendigen dünneren Kanalwände die Kosten bei der Herstellung kleinvolumiger Wabenkörper mit großer geometrischer Oberfläche erhöhen, ergibt eine genaue Analyse überraschenderweise, daß dies nicht zutrifft, wie im folgenden insbesondere anhand aus metallischen Folien hergestellter Wabenkörper erläutert wird.

Besonders günstig ist es, wenn die Anzahl A der Kanäle im Querschnitt des Wabenkörpers mindestens 500 cpsi (cells per squareinch) beträgt. Die Dicke d der Kanalwände, die die Kanäle voneinander trennen, sollte durchschnittlich höchstens 40 Mikrometer, vorzugsweise höchstens 35 Mikrometer, insbesondere zwischen 18 und 32 Mikrometer betragen.

A > = 500 cpsi (c)

d < 40 Mikrometer (d)

Bei metallischen Wabenkörpern aus geschichteten und/ oder gewickelten, zumindest teilweise strukturierten Blechlagen, gibt es einen Zusammenhang zwischen der Anzahl'A der Kanäle pro Querschnittsfläche des Wabenkörpers und der Dicke d der Blechlagen. Bei relativ wenigen Kanälen pro Querschnittsfläche haben die Kanäle selbst relativ große Abmessungen, so daß die Kanalwände relativ dick sein müssen, damit sie nicht im pulsierenden Abgasstrom schwingen und im Dauerbetrieb beschädigt werden. Je kleiner die Kanalquerschnitte sind, desto kürzer sind die freischwingenden Abschnitte der strukturierten Blechlagen, die die Kanalwände bilden. Die Blechlagen können daher dünner sein, ohne daß sich die Schwingungsneigung erhöht. Dieser Effekt ist für die vorliegende Erfindung sehr wichtig, da sich große Anzahlen A an Kanälen pro Querschnittsfläche im Hinblick auf unerwünschte Druckverluste nur verwirklichen lassen, wenn die Kanalwände sehr dünn sind.

Da wegen der Korrosionsfestigkeit für Katalysatoren nur

4

Stahlbleche mit hohem Chrom- und Aluminiumgehalt eingesetzt werden, die verhältnismäßig schwer gewalzt werden können, ging die Fachwelt richtigerweise davon aus, daß die Herstellungskosten für solche Stahlfolien mit abnehmender Dicke zunehmen. Eine genaue Betrachtung, wie sie anhand von Fig. 3 noch näher erläutert wird, zeigt jedoch, daß tatsächlich der Preis für die geometrische Oberfläche O, auf die es ganz wesentlich bei der Effektivität E eines Katalysators ankommt, um so geringer wird, je höher die Anzahl A an Kanälen pro Querschnittseinheit in einem Wabenkörper 10 ist, wenn die Dicke d der Folien entsprechend reduziert wird. Die überraschende Erkenntnis der vorliegenden Erfindung ist daher, daß zumindest für metallische Wabenkörper die Kosten zur Erreichung der notwendigen Effektivität eines Katalysators abnehmen, je größer das Verhältnis von 15 Anzahl A der Kanäle pro Querschnittsfläche zum Volumen V des Wabenkörpers ist, sofern jeweils die Dicke d der Folie auf das jeweils von der Schwingungsneigung her zulässige Maß gesenkt wird. Während natürlich der Preis pro Liter Katalysatorvolumen nahezu linear mit der Anzahl A der Ka-20 näle pro Querschnittseinheit in diesem Volumen ansteigt und daher größere Anzahlen A von Kanälen nicht unbedingt als kostengünstig erkannt werden konnten, ist tatsächlich eine Steigerung der Anzahl A der Kanäle und eine gleichzeitige Verringerung des Volumens V besonders günstig.

Unter diesen Gesichtspunkten werden erfindungsgemäß insbesondere Wabenkörper mit mindestens 600 cpsi und einer durchschnittlichen Dicke d der Kanalwände von höchstens 32 Mikrometer vorgeschlagen.

Im folgenden wird die Erfindung anhand der Zeichnung 30 noch näher erläutert. Es zeigen:

Fig. 1 eine Brennkraftmaschine mit einem nachgeschalteten Katalysator,

Fig. 2 eine perspektivische schematische Ansicht eines Katalysators und

Fig. 3 ein Diagramm zur Veranschaulichung des Preises von Volumen bzw. Oberfläche in einem metallischen Wabenkörper in Abhängigkeit von der Anzahl A der Kanäle pro Querschnittseinheit.

Fig. 1 zeigt einen Verbrennungsmotor 1, dem ein Katalysator 2 nachgeschaltet ist. Typischerweise ist ein solcher Katalysator 2 aus einem oder mehreren Wabenkörpern aufgebaut und im Motorraum oder unter der Bodenwanne eines Kraftfahrzeuges angeordnet.

Fig. 2 zeigt einen Katalysator 2, der einen Wabenkörper 3 enthält. Dieser Wabenkörper 3 ist im vorliegenden Ausführungsbeispiel der Erfindung, auf das diese jedoch nicht beschränkt ist, aus abwechselnden glatten 6 und gewellten 7 Blechlagen aufgebaut, welche Kanäle 4 bilden. Die Blechlagen 6, 7 bilden die Kanalwände 5 mit einer durchschnittlichen Dicke d. Die Blechlagen 6, 7 stellen zusammen die geometrische Oberfläche O des Wabenkörpers 3 her. Allerdings sind die Blechlagen 6, 7 noch mit einem keramischen sogenannten Washcoat auf Aluminiumoxidbasis beschichtet, wodurch eine sehr große poröse Oberfläche entsteht, die noch um ein Vielfaches größer sein kann als die geometrische Oberfläche O. Auf dem nicht dargestellten Washcoat wird eine katalytisch aktive Substanz, insbesondere eine Mischung verschiedener Edelmetalle, aufgebracht.

Fig. 3 zeigt in einem Diagramm auf der x-Achse die Anzahl A der Kanäle 4 pro Querschnittsflächeneinheit (cpsi), während in y-Richtung auf der linken Seite der Preis pro Wabenkörpervolumen (Preis/Liter) und auf der rechten Seite der Preis pro Fläche (Preis/Quadratmeter) aufgetragen ist. Durch senkrechte Linien sind dabei die Bereiche gekennzeichnet, in denen typische am Markt vorhandene Dikken d von Metallfolien eingesetzt werden können. Man erkennt, daß für bis zu 500 cpsi Metallfolien von 50 Mikrome-

ter Dicke besonders geeignet sind, für 500-600 cpsi Folien mit 40 Mikrometer Dicke, für 600-800 cpsi Folien von 30 Mikrometer Dicke, wobei für noch größere Anzahlen von Kanälen pro Querschnittseinheit noch dünnere Folien einge-

setzt werden sollten. Die Linie P1 in dem Diagramm veranschaulicht, wie der Preis pro Liter mit zunehmender Anzahl A an Kanälen 4 pro Querschnittseinheit zunimmt. Viel wichtiger für die vorliegende Erfindung ist jedoch, daß die Kurve P2 zeigt, wie der Preis pro Quadratmeter bei zunehmender Anzahl A an Kanälen 4 pro Querschnittseinheit abnimmt. Für erfindungsgemäße Wabenkörper bedeutet dies, daß ein kleinvolumiger Wabenkörper mit großer Anzahl an Kanälen, bei gleicher geometrischer Oberfläche O preisgünstiger ist als ein Wabenkörper mit größerem Volumen.

Die vorliegende Erfindung lehrt daher den preisgünstigen Einsatz von kleinvolumigen Katalysatoren mit einer großen Anzahl A von Kanälen 4 pro Querschnittsfläche, insbesondere die Anwendung von Metallfolien einer Dicke von durchschnittlich etwa 25 Mikrometer oder sogar 20 Mikrometer für Wabenkörper mit mehr als 800 cpsi bis hin zu 1.200 cpsi. Mit solchen Wabenkörpern kann eine Effektivität von 98%, vorzugsweise sogar 99%, erreicht werden, selbst wenn das Volumen V eines einer Brennkraftmaschine 1 nachgeschalteten Katalysators 2 nur etwa die Hälfte oder weniger des Hubraums H der Brennkraftmaschine 1 beträgt.

Bezugszeichenliste

- 1 Brennkraftmaschine
- 2 Katalysator
- 3 Wabenkörper
- 4 Kanal
- 5 Kanalwand
- 6 glatte Blechlage
- 35 -7 strukturierte Blechlage
 - A Anzahl der Kanäle
 - d Dicke der Kanalwand
 - H Hubraum
- E Effektivität
- 40. O geometrische Oberfläche
 - V Volumen
 - P1 Preis pro Volumeneinheit
 - P2 Preis pro geometrischer Oberflächeneinheit

Patentansprüche

- 1. Brennkraftmaschine (1) mit einem Hubraum H und mit einem nachgeschalteten Katalysator (2) zur Abgasreinigung, wobei
 - der Katalysator (2) eine geometrische Oberfläche O hat.
 - der Katalysator (2) eine Effektivitiät E zur Umsetzung mindestens einer schädlichen Komponente im Abgas in unschädliche Bestandteile hat und .
 - der Katalysator (2) mindestens einen Wabenkörper (3) aufweist und
 - alle Wabenkörper (3) zusammen ein Gesamtvolumen V haben,

dadurch gekennzeichnet, daß

- das Volumen V so gewählt ist, daß es mindestens um den Faktor 0,6 kleiner ist als der Hubraum H, und die geometrische Oberfläche O dabei aber so bemessen ist, daß der Katalysator (2) eine Effektivität E von mehr als 98% hat.
- 2. Brennkraftmaschine (1) nach Anspruch 1, dadurch gekennzeichnet, daß der Wabenkörper (3) für Abgas durchströmbare Kanäle (4) aufweist, wobei die Anzahl

A der Kanäle (4) im (Querschnitt des	Wabenkörpers (3)
mindestens 500 cpsi	(cells per square	einch) beträgt.

- 3. Brennkraftmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Wabenkörper (3) ein metallischer Wabenkörper (3) aus geschichteten und/ oder gewickelten, zumindest teilweise strukturierten Blechlagen (6, 7) ist.
- 4. Brennkraftmaschine (1) nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß die Kanäle (4) durch Kanalwände (5) voneinander getrennt sind, deren durchschnittliche Dicke (d) höchstens 40 Mikrometer, vorzugsweise höchstens 35 Mikrometer, insbesondere zwischen 18 und 32 Mikrometer beträgt.
- 5. Brennkraftmaschine (1) nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß die Anzahl (A) 15 der Kanäle (4) des Wabenkörpers (3) über einen Querschnitt durch den Wabenkörper (3) mindestens 600 cpsi beträgt, während die durchschnittliche Dicke (d) der Kanalwände (5) höchstens 32 Mikrometer beträgt.
- 6. Brennkraftmaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Katalysator ein Dreiwegekatalysator ist und im Normalbetrieb mindestens 98% von im Abgas vorhandenen Kohlenwasserstoffen und Stickoxiden umsetzt, 25 vorzugsweise mindestens 99%.
- 7. Brennkraftmaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Wabenkörper (3) eine Anzahl von Kanälen (4) von mehr als 750 psi und ein Volumen V von weniger als 30 dem 0,5-fachen des Hubraums H aufweist.
- 8. Brennkraftmaschine nach Anspruch 7, dadurch gekennzeichnet, daß die durchschnittliche Dicke (d) der Kanalwände (5) des Wabenkörpers (3) kleiner als 32 Mikrometer ist, vorzugsweise etwa 25 Mikrometer.

Hierzu 2 Seite(n) Zeichnungen

45

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 21 263 A1 F 01 N 3/28 16. November 2000

Fig. 3