Parte 6 Modelli di probabilità per variabili casuali continue

Variabile casuale **Uniforme continua** (o Rettangolare)

Esperimento casuale che *genera* un numero reale compreso in un *intervallo limitato*, in modo tale che (per ragioni di simmetria e indifferenza) sotto-intervalli di *pari ampiezza* abbiano la medesima probabilità

Implicazione

Probabilità di un qualsiasi intervallo reale **proporzionale** alla *ampiezza* dell'intervallo medesimo

Ambiti applicativi:

Situazioni artificiali come giochi ed esperimenti geometrici, teoria della simulazione

Variabile casuale continua associata all'esperimento casuale

X = "**Numero** generato dall'esperimento casuale"

 $x \in [a, b]$

 $a, b \in \mathbb{R}$ (numeri reali qualsiasi)

[a, b] supporto della v.c.

a e b sono i **parametri** che *caratterizzano* tale v.c.

L'**insieme** delle v.c. *generato* da *tutti i possibili* valori di a e b (sono una *infinità non numerabile*) è la **famiglia parametrica** di v.c.

Funzione/Modello di **densità** parametrica/o della v.c. X

$$f(x; a, b) = \frac{1}{b-a}$$
 $x \in [a, b]$ $f(x; a, b) = 0$ altrove

$$x \in [a, b]$$

$$f(x; a, b) = 0$$
 altrove

$$(a,b) \in \mathbb{R}^2$$

 \mathbb{R}^2 spazio parametrico

$$X \sim U(a, b)$$

La v.c. X ha distribuzione di probabilità **Uniforme continua** di parametri a e b

Proprietà soddisfatte dalla funzione di densità

$$f(x; a, b) = \frac{1}{b - a} > 0 \qquad \int_{a}^{b} f(x; a, b) \, dx = \int_{a}^{b} \frac{1}{b - a} \, dx = \frac{b - a}{b - a} = 1$$

L'**insieme** delle f(x; a, b) generato dai valori di $a \in b$ è la famiglia parametrica di funzioni di densità (modelli di probabilità) di tipo **Uniforme continuo** di parametri *a* e *b*

Funzione di ripartizione parametrica di una v.c. $X \sim U(a, b)$

$$F(x) = F(x; a, b) = \int_{a}^{x} f(t; a, b) dt = \int_{a}^{x} \frac{1}{b - a} dt = \frac{x - a}{b - a} = -\frac{a}{b - a} + \frac{1}{b - a} x$$

 $x \in [a, b]$ Funzione **lineare crescente** su [a, b]

In generale è una funzione non decrescente

$$F(x;a,b)=0$$

se
$$x \le a$$

$$se x \le a \qquad F(x; a, b) = 1$$

se
$$x \ge b$$

Siano $x_1, x_2 \in [a, b]$ due generici valori del supporto di X tali che $x_1 < x_2$

$$P(x_1 \le X \le x_2) = F(x_2; a, b) - F(x_1; a, b) = \frac{x_2 - a}{b - a} - \frac{x_1 - a}{b - a} = \frac{x_2 - x_1}{b - a}$$

La probabilità dell'intervallo reale $[x_1, x_2]$ dipende solo (in modo **proporzionale**) dalla *ampiezza* $x_2 - x_1$ dell'intervallo

Non dipende dagli specifici valori x_1 e x_2

Il fattore di proporzionalità è la funzione di densità

$$f(x; a, b) = \frac{1}{b - a}$$

Intervalli di *uguale ampiezza* contenuti nel supporto [a, b] hanno *uguale probabilità*

Media e **varianza** di una v.c. $X \sim U(a, b)$

$$f(x; a, b) = \frac{1}{b - a} \qquad x \in [a, b] \qquad (a, b) \in \mathbb{R}^2$$

$$E(X) = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{1}{b-a} \frac{b^{2}-a^{2}}{2} = \frac{a+b}{2}$$

La media coincide con il valore centrale del supporto

$$V(X) = \frac{(b-a)^2}{12}$$

Media e varianza *funzioni* di entrambi i parametri *a* e *b*

Esempio 11

Esperimento casuale

Lancio (con forza) di una palla su un tavolo da biliardo lungo 200 cm.

La palla rimbalzerà tra le varie sponde sino a fermarsi.

X = "**Distanza** (minima) tra il **bordo** del tavolo e il **punto** in cui la palla si è fermata"

X è una v.c. **Uniforme continua** in [0,200]

Parametri a = 0, b = 200

$$X \sim U(0,200)$$

$$f(x) = \frac{1}{200}$$

$$x \in [0,200]$$

$$x \in [0,200]$$
 $f(x) = 0$ altrove

$$F(x) = \frac{x}{200}$$

$$x \in [0,200]$$

$$E(X)=100$$

$$F(x)=0$$

$$x \leq 0$$

$$F(x)=1$$

$$x \ge 200$$

$$V(X) = \frac{200^2}{12} = 3333.\overline{3}$$

Distribuzione simmetrica Me = E(X) = 100

Uniform Distribution: Minimum=0, Maximum=200

Nella teoria della simulazione. ha un ruolo rilevante la v.c. U(0,1)

Variabile casuale **Normale** (o **di Gauss** o **Gaussiana**)

Variabile casuale continua che *può assumere* come valore un **qualsiasi** numero reale (tra $-\infty$ e ∞)

Il **supporto** di tale v.c. è l'intero **asse reale** \mathbb{R}

Introdotta nella storia della probabilità come distribuzione degli errori accidentali

Carl Friedrich **Gauss** 1777 – 1855

Altri contributi:

Galileo (1632), De Moivre (1733), Daniel Bernoulli (1770), Laplace (1810)

La presenza della v.c. Normale nelle applicazioni e nella teoria, come *suggerisce* la sua denominazione, è quasi una *regola* (la "norma"!)

Moltissime v.c. continue (interpreti di fenomeni reali) con supporto **reale** (ma anche con supporto **limitato** o **non negativo**, ndr) sono *ben definite* come v.c. Normali

In questo caso, naturalmente, l'**esperimento casuale** di riferimento, cui è *associata* la v.c. Normale, *genera* un numero reale *qualsiasi* (o *limitato* o *non negativo*)

Variabile casuale Normale *estremamente frequente* come v.c. di **popolazione**

Importanza della v.c. Normale negli sviluppi teorici dei metodi inferenziali

Variabili casuali campionarie connesse alla v.c. Normale

Variabili casuali continue *generate* dal campionamento casuale, e **derivate** dalla v.c. Normale, con distribuzione di probabilità **nota**

Importanza cruciale per l'applicazione dei più comuni metodi inferenziali

Variabili casuali **Chi-quadrato**, t **di Student**, F **di Fisher**

Variabili casuali campionarie asintoticamente Normali

Variabili casuali *generate* dal campionamento casuale, con distribuzione di probabilità **approssimativamente** Normale se l'ampiezza campionaria n è *sufficientemente grande* (se si dispone di un **grande campione**)

Motivazione

Risultati **limite** sulla loro distribuzione di probabilità (che valgono cioè per $n \to \infty$)

Importanza cruciale per l'applicazione generale dei metodi inferenziali

Risultato limite principale

Teorema del limite centrale

$$x \in \mathbb{R} = (-\infty, \infty)$$

 \mathbb{R} supporto della v.c.

Funzione/Modello di **densità** parametrica/o della v.c. X

Notazione

$$exp\{b\} = e^b$$

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$$

$$X \sim N(\mu, \sigma^2)$$

La v.c. X ha distribuzione di probabilità **Normale** di parametri μ e σ^2

L'insieme delle $f(x; \mu, \sigma^2)$ generato dai valori di μ e σ^2 è la famiglia parametrica di funzioni di **densità** (modelli di probabilità) di tipo **Normale** di parametri μ e σ^2

L'insieme corrispondente delle v.c. è la famiglia parametrica di v.c. Normali

I parametri μ e σ^2 coincidono, rispettivamente, con la media e la varianza della v.c. X

$$E(X) = \mu$$

$$\mu \in \mathbb{R} = (-\infty, \infty)$$

$$V(X) = \sigma^2$$

$$E(X) = \mu$$
 $\mu \in \mathbb{R} = (-\infty, \infty)$ $V(X) = \sigma^2$ $\sigma^2 \in \mathbb{R}_0^+ = [0, \infty)$

Spazio parametrico

$$\Theta = \{(\mu, \sigma^2) : \mu \in \mathbb{R}; \ \sigma^2 \in \mathbb{R}_0^+\} \subset \mathbb{R}^2$$

Semipiano positivo (chiuso) delle ordinate

Simboli μ e σ^2 impiegati usualmente per denotare media e varianza di una v.c. qualsiasi

Proprietà soddisfatte dalla funzione di densità

$$\frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\} > 0$$

$$\frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{ -\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2} \right\} > 0 \qquad \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{ -\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2} \right\} dx = 1$$

$$X \sim N(\mu, \sigma^2)$$

$$x \in \mathbb{R}$$

$$Z = \frac{X - \mu}{\sigma}$$

$$z = \frac{x - \mu}{\sigma} \in \mathbb{R}$$

Come ogni v.c. standardizzata

$$E(Z)=0$$

$$V(Z) = 1 = SD(Z)$$

La v.c. Z ha distribuzione di probabilità ancora **Normale** (di parametri 0 e 1) (Z v.c. Normale standardizzata)

Funzione/Modello di **densità** parametrica/o della v.c. Z

$$f(z;0,1) = f(z)$$

Notazione

$$f(z) = \phi(z)$$

$$\phi(z) = \frac{1}{\sqrt{2\pi}} exp\left\{-\frac{1}{2}z^2\right\}$$

$$Z \sim N(0,1)$$

$$\phi(z) = \sigma \times f(x; \mu, \sigma^2)$$
Funzioni di densità
proporzionali per ogni
valore $x \in \mathbb{R}$

La v.c. Z ha distribuzione di probabilità **Normale standardizzata**

Normal Distribution

Mean: $\mu = 0$, Standard Deviation: $\sigma = 1$

Studio analitico della funzione

Forma campanulare simmetrica unimodale

Simmetria rispetto al punto di ascissa $x = \mu$ $\mu = E(X) = Me = Md$ $E(Z^3) = 0$

$$\mu = E(X) = Me = Md \qquad E(Z^3) = 0$$

Asse x delle ascisse asintoto orizzontale

$$\lim_{x\to\pm\infty}f(x;\mu,\sigma^2)=0$$

Due flessi equidistanti dal punto $x = \mu$ in corrispondenza delle ascisse $x = \mu \pm \sigma$

A parità di σ

La modifica di μ genera una **traslazione** della funzione $f(x; \mu, \sigma^2)$ lungo l'asse x

A parità di μ	All' aumentare di σ^2 i flessi si allontanano da μ	Maggiore probabilità a intervalli di valori più distanti da μ
	Al diminuire di σ^2 i flessi si avvicinano a μ	Maggiore probabilità a intervalli di valori centrati su <i>μ</i>
$\sigma^2 \rightarrow 0$	La distribuzione tende ad essere degenere con valori sempre più vicini a $x = \mu$	

Normal Distribution

Mean: $\mu = 0$, Standard Deviation: $\sigma = 0.5$

Normal Distribution

Mean: $\mu = 0$, Standard Deviation: $\sigma = 1.2$


```
> characRV(Norm(mean=10, sd=2), charact=c("expectation", "sexpectation sd skewness kurtosis
Norm(mean=10,sd=2) 10 2 0 0
```

$$X \sim N(\mu, \sigma^2)$$
 $E(Z^3) = 0$ $E(Z^4) - 3 = 0$

Coefficiente di curtosi (oltre che di asimmetria) pari a 0

La **curtosi** indica quanto è più **appuntita** (o più **piatta**) la forma della distribuzione di una data v.c. rispetto a quella della v.c. Normale (che funge da v.c. di **riferimento**)

Di conseguenza, indica il **peso** più o meno accentuato delle **code** rispetto alla **parte centrale** della distribuzione, con riferimento alla forma di una v.c. Normale

Studio della curtosi utile per v.c. unimodali e di forma simmetrica

Ad esempio per la v.c. *t* di Student (ndr)

$$X \sim N(\mu, \sigma^2)$$

$$x \in \mathbb{R}$$

$$Z = \frac{X - \mu}{\sigma} \sim N(0,1)$$

$$z = \frac{x - \mu}{\sigma} \in \mathbb{R}$$

Per ogni $x \in \mathbb{R}$, e il corrispondente valore standardizzato $z \in \mathbb{R}$

Evento $(X \le x)$ equivalente all'evento $(Z \le z)$

$$F(x; \mu, \sigma^2) = P(X \le x) = P(Z \le z) = F(z; 0, 1) = F(z)$$

Notazione

$$F(z) = \Phi(z)$$

 $F(x; \mu, \sigma^2)$ funzione di ripartizione di una v.c. Normale $X \sim N(\mu, \sigma^2)$

 $\Phi(z)$ funzione di ripartizione della v.c. Normale standardizzata $Z \sim N(0,1)$

$$F(x; \mu, \sigma^2) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{1}{2} \frac{(t-\mu)^2}{\sigma^2}\right\} dt = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} exp\left\{-\frac{1}{2} t^2\right\} dt = \Phi(z)$$

La funzione di ripartizione di una qualsiasi v.c. Normale di parametri μ e σ^2 coincide con la funzione di ripartizione (unica) della corrispondente v.c. Normale standardizzata

$$X \sim N(\mu, \sigma^2)$$

Per ogni coppia $x_1, x_2 \in \mathbb{R}$

Intervallo reale $[x_1, x_2]$

$$x_1 < x_2$$

Evento generico di interesse

$$P(x_1 \le X \le x_2) = F(x_2; \mu, \sigma^2) - F(x_1; \mu, \sigma^2) = \Phi(z_2) - \Phi(z_1) = P(z_1 \le Z \le z_2)$$

$$\mathbf{z_1} = \frac{x_1 - \mu}{\sigma}$$

$$z_1 = \frac{x_1 - \mu}{\sigma} \qquad z_2 = \frac{x_2 - \mu}{\sigma}$$

Estremi standardizzati dell'intervallo $[x_1, x_2]$

 $[z_1, z_2]$ intervallo reale dei valori standardizzati

Per calcolare la probabilità che una qualsiasi v.c. Normale di parametri μ e σ^2 assuma valori in un qualsiasi intervallo reale è sufficiente standardizzare gli estremi dell'intervallo e ricondursi all'uso della funzione di ripartizione della v.c. Normale standardizzata

$$P(x_1 \le X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$$

La funzione $\Phi(\cdot)$ non ha una forma analitica esplicita (ovviamente, neanche $F(\cdot; \mu, \sigma^2)$)

Valori (accurati) di $\Phi(z)$ calcolati mediante algoritmi di *integrazione numerica*

Forniti nei software di analisi statistica e nei linguaggi di programmazione

Anche presenti in **tavole** appositamente predisposte per i valori z più rilevanti

 $X \sim N(70,16)$

Ad esempio, *X* è il **peso** di persone adulte

Ipotesi di Normalità appropriata?

Peso v.c. non negativa e con supporto limitato!

Impossibile osservare valori di peso tanto **distanti** dalla **media** (il centro della distribuzione)

Tali valori generano eventi (intervalli di peso) impossibili (di probabilità 0)

Si può pensare che abbiano probabilità infinitesimale, pari ad esempio a 10^{-20} (di fatto pari a 0)

Distribuzione, di fatto, totalmente addensata nella sua parte centrale

Normalità ragionevole

Oltre che di forma campanulare simmetrica

Curve di densità perfettamente sovrapponibili

Curve di **ripartizione** (ogive) perfettamente **sovrapponibili**

Probabilità di intervalli centrati su μ e da essa distanti per multipli di σ

Per una qualsiasi v.c. $X \sim N(\mu, \sigma^2)$

Valori di v.c. Normali più **lontani** da μ del **doppio** o del **triplo** di σ

Valori anomali

Normal Distribution with $\mu = 0$ and $\sigma = 1$ $P(X \le 1.5) = 0.9332$

Per ogni valore **positivo** z > 0

$$\Phi(-z) = 1 - \Phi(z)$$

A probabilità complementari corrispondono quantili opposti

 $\Phi(z)$ tabulata solo per valori di z positivi

Ovviamente, $\Phi(0) = 0.5$

Quantile di livello p di una v.c. $Z \sim N(0,1)$

Ovviamente non calcolabile in modo esplicito

Valore z_p tale che

$$\Phi(z_p) = p$$

$$1 - \Phi(z_p) = 1 - p$$

Normal Distribution with $\mu = 0$ and $\sigma = 1$ P(X \le -1.645) = 0.05

Normal Distribution with $\mu = 0$ and $\sigma = 1$

Quantile x_p di livello p di una qualsiasi v.c. $X \sim N(\mu, \sigma^2)$

$$z_p = \frac{x_p - \mu}{\sigma}$$

 z_p valore standardizzato del quantile x_p $x_p = \mu + z_p \sigma$

$$x_p = \mu + z_p \sigma$$

Normal Distribution with $\mu = 0$ and $\sigma = 1$ $P(-1.96 \le X \le 1.96) = 0.95$

$$x_{0.025} = 70 - 1.96 \times 4 = 62.16$$

$$x_{0.975} = 70 + 1.96 \times 4 = 77.84$$

$X \sim N(70,16)$

Logica frequentista Distribuzione empirica di una v.c. $X \sim N(70,16)$ Istogramma e (meglio) density plot Sintesi numeriche

Numerical summary:
 mean sd skewness kurtosis 50% n
69.98592 3.994239 -0.001099112 -0.008033291 69.98305 100000

Rug plot
Singoli valori "marcati"
sull'asse delle ascisse

```
# Distribuzione empirica vs distribuzione di probabilità - Modelli continui
# Generazione in Rcmdr di m campioni di ampiezza 1 da una popolazione continua
# Ad esempio, 100000 campioni di ampiezza 1 da una popolazione N(70,16)
NormalSamples <- as.data.frame(matrix(r(Norm(mean=70, sd=4))(100000*1), ncol=1))
rownames(NormalSamples) <- paste("sample", 1:100000, sep="")
colnames(NormalSamples) <- "obs"</pre>
# Density plot in Rcmdr
densityPlot( ~ obs, data=NormalSamples, bw=bw.SJ, adjust=1, kernel=dnorm, method="adaptive")
data <- NormalSamples
                           # inserire nome del dataframe
attach(data)
x <- seq( min(obs), max(obs), length=100)</pre>
lines(x, dnorm(x, mean(obs),sd(obs)), lwd=2, col="red")
                                                             # lanciare questo comando per tracciare la curva teorica - Normale
detach(data)
```

Confronto tra funzione di densità empirica e funzione di densità teorica

Proprietà riproduttiva della v.c. Normale

$$X_1, X_2, \cdots, X_n$$
 v.c. Normali e **indipendenti**

$$X_i \sim N(\mu_i, \sigma_i^2)$$
 $\mu_i = E(X_i)$ $\sigma_i^2 = V(X_i)$ $i = 1, 2, \dots, n$

$$\mu_i = E(X_i)$$

$$\sigma_i^2 = V(X_i)$$

$$i=1,2,\cdots,r$$

Non necessariamente identicamente distribuite

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

Combinazione lineare delle n v.c.

Una **combinazione lineare** di v.c. Normali e **indipendenti** (la v.c. Y) è ancora una v.c. **Normale**

$$Y \sim N(\mu_0, \sigma_0^2)$$

$$\mu_0 = \sum_i a_i \mu_i$$

$$\mu_0 = \sum_i a_i \mu_i$$
 $\sigma_0^2 = \sum_i a_i^2 \sigma_i^2$
Cfr Parte 4, pagg 11-12

 X_1, X_2, \cdots, X_n v.c. Normali **indipendenti** e **identicamente distribuite** (v.c. IID)

$$X_i \sim N(\mu, \sigma^2)$$

$$i = 1, 2, \cdots, n$$

$$Y \sim N(\mu_0, \sigma_0^2)$$

$$\mu_0 = \mu \sum_i a_i$$

$$X_i \sim N(\mu, \sigma^2)$$
 $i = 1, 2, \dots, n$ $Y \sim N(\mu_0, \sigma_0^2)$ $\mu_0 = \mu \sum_i a_i$ $\sigma_0^2 = \sigma^2 \sum_i a_i^2$

Casi speciali (v.c. IID)

Somma di v.c. Normali IID

$$S = \sum X_i \sim N(n\mu, n\sigma^2)$$

Media aritmetica di v.c. Normali IID

$$\overline{X} = S/n \sim N(\mu, \sigma^2/n)$$

Teorema del limite centrale

Basato su una evidenza empirica antica e costante

Prime formalizzazioni

De Moivre (1718 e 1733), Gauss (1809), Laplace (dal 1812) Formalizzazione più nota

Lindeberg-Lévy (1922 e 1925)

Estesa in varie direzioni

 (X_1, X_2, \cdots) successione (insieme infinito) di v.c. indipendenti e identicamente distribuite

 X_1, X_2, \cdots v.c. discrete o continue di tipo **qualsiasi** (anche ignoto) con **media** e **varianza** entrambe *finite*

$$X_n$$
, $n = 1,2, \cdots$

$$E(X_n) = \mu$$

$$E(X_n) = \mu \qquad V(X_n) = \sigma^2$$

 (S_1, S_2, \cdots) successione corrispondente delle v.c. somme

$$S_n = X_1 + X_2 + \dots + X_n = \sum_{i=1}^{N} X_i$$

$$S_1 = X_1$$

$$S_2 = X_1 + X_2$$

$$\vdots$$

$$S_3 = X_1 + X_2 + X_3$$

$$\vdots$$

$$V(S_n) = n\sigma^2$$

$$S_1 = X_1$$

$$S_2 = X_1 + X_2$$

$$S_3 = X_1 + X_2 + X_3$$

$$E(S_n) = n\mu$$

$$V(S_n) = n\sigma^2$$

 (Z_1, Z_2, \cdots) successione delle v.c. somme standardizzate

$$Z_n = \frac{S_n - n\mu}{\sqrt{n\sigma^2}}$$
 $Z_1 = \frac{S_1 - 1\mu}{\sqrt{1\sigma^2}}$ $Z_2 = \frac{S_2 - 2\mu}{\sqrt{2\sigma^2}}$ $Z_3 = \frac{S_3 - 3\mu}{\sqrt{3\sigma^2}}$... $E(Z_n) = 0$ $V(Z_n) = 1$

$$Z_1 = \frac{S_1 - 1\mu}{\sqrt{1\sigma^2}}$$

$$Z_2 = \frac{S_2 - 2\mu}{\sqrt{2\sigma^2}}$$

$$Z_3 = \frac{S_3 - 3\mu}{\sqrt{3\sigma^2}}$$

$$E(Z_n)=0$$

$$V(Z_n) = 1$$

$$Z_{n} = \frac{S_{n} - n\mu}{\sqrt{n\sigma^{2}}} = \frac{\overline{X}_{n} - \mu}{\sqrt{\sigma^{2}/n}}$$

$$E(Z_{n}) = 0$$

$$V(Z_{n}) = 1$$

$$\overline{X}_{n} = \frac{S_{n}}{n} = \frac{1}{n} \sum X_{i}$$

$$E(\overline{X}_{n}) = \mu$$

$$V(\overline{X}_{n}) = \sigma^{2}/n$$

$$E(Z_n) = 0$$

$$V(Z_n) = 1$$

$$\overline{X}_n = \frac{S_n}{n} = \frac{1}{n} \sum X_i$$

$$E(\overline{X}_n) = \mu$$

$$V(\overline{X}_n) = \sigma^2/n$$

La v.c. somma standardizzata coincide con la v.c. media aritmetica standardizzata

 (Z_1, Z_2, \cdots) successione delle v.c. somme standardizzate o medie standardizzate

 Z_n ha distribuzione di probabilità (nota o ignota) derivata da quella di X_n (nota o ignota)

Il **teorema del limite centrale** (TLC) fornisce la distribuzione di probabilità di Z_n quando $n \to +\infty$

Distribuzione **limite** di Z_n

Le v.c. **somma standardizzata** e **media standardizzata** di v.c. IID (con **media** e varianza finite) hanno distribuzione limite Normale standardizzata

Convergono in distribuzione alla v.c. Normale standardizzata

$$Z_n = \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{d} N(0,1)$$

$$Z_n = \frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \xrightarrow{d} N(0,1)$$

Risultato valido per v.c. X_1, X_2, \cdots di tipo **qualsiasi** (anche ignoto)

Teorema del limite centrale

Implicazioni

Più è grande il valore di n, più la distribuzione di probabilità della v.c. Z_n si avvicina alla distribuzione Normale standardizzata

Per *n* sufficientemente grande

La v.c. Z_n (somma standardizzata o media standardizzata) ha distribuzione asintotica (cioè approssimata) Normale standardizzata

$$Z_n = \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \sim N(0,1)$$
 $Z_n = \frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \sim N(0,1)$ In modo approssimato

$$Z_n = \frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \sim N(0,1)$$

Le v.c. S_n (somma) e \overline{X}_n (media aritmetica) hanno distribuzioni **asintotiche Normali** (con i rispettivi parametri)

$$S_n \sim N(n\mu, n\sigma^2)$$

$$\overline{X}_n \sim N(\mu, \sigma^2/n)$$

In modo **approssimato**

Nella **logica inferenziale**, interesse **speciale** per la media \overline{X}_n e la media standardizzata Z_n

Teorema del limite centrale

Implicazioni

Più è grande il valore di n, più la distribuzione di probabilità della v.c. Z_n si avvicina alla distribuzione Normale standardizzata

Per *n* sufficientemente grande

La v.c. Z_n (somma standardizzata o media standardizzata) ha distribuzione asintotica (cioè approssimata) Normale standardizzata

$$Z_n = \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \sim N(0,1)$$
 $Z_n = \frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \sim N(0,1)$ In modo approssimato

$$Z_n = \frac{\overline{X}_n - \mu}{\sqrt{\sigma^2/n}} \sim N(0,1)$$

Le v.c. S_n (somma) e \overline{X}_n (media aritmetica) hanno distribuzioni **asintotiche Normali** (con i rispettivi parametri)

$$S_n \sim N(n\mu, n\sigma^2)$$

$$\overline{X}_n \sim N(\mu, \sigma^2/n)$$

In modo **approssimato**

Nella **logica inferenziale**, interesse **speciale** per la media \overline{X}_n e la media standardizzata Z_n

Caso speciale del teorema del limite centrale

$$S_n = \sum X_i$$

$$\overline{X}_n = \frac{1}{n} \sum X_i$$

$$X_1, X_2, \cdots$$
 v.c. di **Bernoulli**

$$E(X_n) = p$$

$$V(X_n) = p(1-p)$$

Numero di successi nell'esperimento binomiale

$$E(S_n) = np$$

$$E(S_n) = np V(S_n) = np(1-p)$$

Proporzione di successi nell'esperimento binomiale

$$E(\overline{X}_n) = p$$

$$E(\overline{X}_n) = p$$
 $V(\overline{X}_n) = p(1-p)/n$

Le v.c. S_n e \overline{X}_n hanno distribuzioni **note** per ogni n (sono entrambe v.c. **Binomiali**)

$$S_n \sim Bin(n, p)$$

$$\overline{X}_n \sim (1/n)Bin(n,p)$$

Cfr Parte 5

Tuttavia, per il TLC (noto in questo caso come **teorema di De Moivre-Laplace**)

$$\frac{\mathbf{Z_n}}{\sqrt{np(1-p)}} \xrightarrow{d} N(0,1)$$

$$Z_n = \frac{\overline{X}_n - p}{\sqrt{p(1-p)/n}} \xrightarrow{d} N(0,1)$$

Per *n* sufficientemente grande

In modo **approssimato**

$$S_n \sim N(np, np(1-p))$$
 $\overline{X}_n \sim N(p, p(1-p)/n)$

$$\overline{X}_n \sim N(p, p(1-p)/n)$$

$$Z_n \sim N(0,1)$$

Nella logica inferenziale, distribuzione asintotica Normale di \overline{X}_n e Z_n preferita a quella **esatta Binomiale**

Condizioni (in ordine di priorità) che accelerano la convergenza alla Normalità

Distribuzione di X_n (v.c. della successione genitrice)

- Unimodale
- Simmetrica

Naturalmente, una distribuzione plurimodale e asimmetrica ritarda la convergenza

Sampling Distributions and the Central Limit Theorem

Sampling Distribution of the Sample Proportion

Sampling Distribution of the Sample Mean (Continuous Population)

Sampling Distribution of the Sample Mean (Discrete Population)

Experience how the sampling distribution of the **sample proportion** builds up one sample at a time. Use sliders to explore the shape of the sampling distribution as the sample size n increases, or as the population proportion p changes. Overlay a normal distribution to explore the Central Limit Theorem.

Experience how the sampling distribution of the **sample mean** builds up one sample at a time. Use a variety of real or theoretical **continuous** population distributions (or create your own) to draw samples from. Move sliders to explore when the Central Limit Theorem kicks in.

Experience how the sampling distribution of the **sample mean** builds up one sample at a time. Use a variety of real or theoretical **discrete** population distributions (or create your own) to draw samples from. Move sliders to explore when the Central Limit Theorem kicks in.

Oltre alle implicazioni sulla distribuzione asintotica di **speciali** v.c. (somma e media aritmetica, anche standardizzate) il TLC ha un'altra **importante implicazione**

Tutte le volte che una **variabile casuale** continua (interprete di un fenomeno reale) può essere ricondotta alla **somma** (o media, o anche combinazione lineare) di un **gran numero** di **cause** (v.c.) **indipendenti** (nessuna delle quali *prevale* sulle altre)

Distribuzione di probabilità di tale variabile casuale ragionevolmente **approssimabile** dalla distribuzione **Normale** (che è dunque il modello di probabilità)

Per questa ragione, molte v.c. (ma non tutte!) sono ben definite come v.c. Normali

Nella **logica inferenziale**, sono v.c. di popolazione

Esempio

Peso di adulti

Determinato dall'effetto **additivo** (combinazione) di una **molteplicità** di fattori (cause) **indipendenti**, quali tra gli altri:

- il peso dei genitori e dei nonni (paterni e materni)
- l'alimentazione durante la gestazione e la prima infanzia
- le abitudini alimentari attuali
- eventuali traumi o malattie
- l'abitudine all'attività sportive
- la latitudine in cui si è nati

Variabile casuale t di Student

William Sealy Gosset (1876 – 1937)

Pseudonimo "Student"

Variabile casuale **campionaria** introdotta in un articolo del 1908

È una speciale derivazione di una v.c. Normale standardizzata

Usualmente denominata con T

Caratterizzata dal **parametro** g

g numero intero ≥ 1

Il parametro g è denominato **gradi di libertà** (gl)

 $T \sim t(g)$

La v.c. T ha distribuzione di probabilità t di Student con g gl

$$T \sim t(g)$$

Variabile casuale continua che *può assumere* come valore un qualsiasi numero reale

$$t \in \mathbb{R} = (-\infty, \infty)$$

La v.c. T (t di Student) "eredita" il supporto (ma non solo!) della v.c. Z (Normale standardizzata)

R supporto della v.c.

L'**insieme** delle v.c. *generato* da *tutti i possibili* valori di *g* (sono una infinità numerabile) è la famiglia parametrica di v.c.

Funzione/Modello di **densità** parametrica/o di una v.c. $T \sim t(g)$

$$f(t;g) = \frac{1}{\sqrt{g\pi}} \frac{\Gamma\left(\frac{g+1}{2}\right)}{\Gamma\left(\frac{g}{2}\right)} \left(1 + \frac{t^2}{g}\right)^{-\frac{g+1}{2}}$$

$$t \in (-\infty, \infty)$$

$$g \in \{1, 2, \cdots, \infty\}$$

Supporto $g \in \{1, 2, \dots, \infty\}$ **Spazio parametrico**

L'insieme delle f(t; g) generato dai valori di g è la famiglia parametrica di funzioni di **densità** (modelli di probabilità) di tipo t di Student con g gradi di libertà

Media e varianza di una v.c. $T \sim t(g)$						
$g \ge 2$	E(T)=0	La media non esiste per $g = 1$				
$g \ge 3$	$1 < V(T) = \frac{g}{g - 2} \le 3$	La varianza non esiste per $g = 1$ e $g = 2$				
	g = 1	Non esistono nè media nè varianza				
	g = 2	Esiste la media, non esiste la varianza				
	$g \ge 3$	Esistono media e varianza				
La v.c. T (t di Student) "eredita" la redita (di valore 0) della v.c. Z (Normale standa		· ·				
$g \ge 3$	$\lim_{g \to \infty} \left(V(T) = \frac{g}{g - 2} \right)$	= 1 All'aumentare di g , $V(T)$ è sempre più prossima a $V(Z) = 1$				

Per ogni valore di *g*

$$Me = Md = 0$$

Distribuzione di forma campanulare simmetrica (rispetto a 0) unimodale

$$g \ge 2$$

$$E(T) = Me = Md = 0$$

$$g \ge 4$$

$$g \ge 4 \qquad E(Z^3) = 0$$

Asse t delle ascisse asintoto orizzontale

$$\lim_{t\to\pm\infty}f(t;g)=0$$

Due flessi equidistanti dal punto t=0 in corrispondenza di $t=\pm\sqrt{g/(g+2)}$

$$-1 \le -\sqrt{g/(g+2)} \le 0$$
 $\xrightarrow{g\to\infty} -1$ $0 \le +\sqrt{g/(g+2)} \le +1$ $\xrightarrow{g\to\infty} +1$

$$\xrightarrow{g\to\infty}$$
 – 1

$$0 \le +\sqrt{g/(g+2)} \le +1$$

$$\xrightarrow{g\to\infty} + 1$$

Forma simile a quella di una distribuzione Normale standardizzata

Per
$$g \to \infty$$

$$T \xrightarrow{d} N(0,1)$$

In virtù di risultati "limite" più estesi rispetto al solo TLC

La v.c. t di Student ha distribuzione limite Normale standardizzata

Per g sufficientemente grande (> 30)

 $T \sim N(0,1)$

In modo **approssimato**

La v.c. t di Student (di parametro g) ha distribuzione asintotica Normale standardizzata

t Distribution with df = 2

Coefficiente di curtosi

$$g \ge 5$$

$$g \ge 5$$
 $0 < E(Z^4) - 3 = \frac{6}{g - 4} \le 6$ $\xrightarrow{g \to \infty} 0$

$$\xrightarrow{g\to\infty} 0$$

Per ogni valore di g

Distribuzione t di Student **leptocurtica** (ipernormale)

Forma più appuntita rispetto a quella della Normale standardizzata

La distribuzione t di Student ha code più pesanti

Maggiore probabilità ad intervalli distanti dalla parte centrale della distribuzione

Funzione di ripartizione (e quantili da essa derivati) di una v.c. $T \sim t(g)$

Quantili di livello *p* tabulati per alcuni valori rilevanti di *p* (al variare di *g*)

t Distribution with df = 30 $P(X \le 1.645) = 0.9448$

Per ogni valore **positivo** t > 0

$$F(-t) = 1 - F(t)$$

A probabilità complementari corrispondono quantili opposti

Quantili di livello p tabulati solo per valori di p > 0.5 (alcuni)

t Distribution: Degrees of freedom=5

t Distribution: Degrees of freedom=30

All'aumentare di g

La **curva di ripartizione** *t* di Student **somiglia** sempre di più alla **ogiva** della Normale standardizzata

Modelli di probabilità per variabili casuali continue						Quadro riassuntivo		
	Uniforme		Normale			t di Student		
Notazione	$X \sim U(a, b)$		$X \sim N(\mu, \sigma^2)$			$T\sim t(g)$		
Funzione di densità	$\frac{1}{b-a}$		$\frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$					
Supporto	[a, b]		$\mathbb R$			\mathbb{R}		
Parametri	a, b		μ , σ^2			g		
Spazio parametrico	\mathbb{R}^2		$\{(\mu, \sigma^2): \mu \in \mathbb{R}; \ \sigma^2 \in \mathbb{R}_0^+\}$		Z	$\mathbb{Z}^+ = \{1, 2, \cdots, \infty\}$		
Media e varianza	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	μ	σ^2		0	$\frac{g}{g-2}$	
Funzione di ripartizione	$\frac{x-a}{b-a}$		Integrazione numerica		Inte	Integrazione numerica		
Impiego principale	Giochi / Teoria della simulazione				V	v.c. campionaria		