TP Contours déformables: Snakes *CPE*

FIGURE 1 – Figures d'exemples

1 But du TP

Ce TP propose de mettre en oeuvre la méthode des contours déformables (ou Snakes) afin de réaliser la segmentation d'un image.

2 Rappel

On rappelle que les Snakes consistent à trouver une courbe $\mathit{optimale}\ \gamma$ tel que γ minimise une énergie E.

On peut considérer dans le cas classique que l'énergie E est donnée par :

$$E(\gamma) = \int \lambda_1 \|\gamma'\|^2 + \lambda_2 \|\gamma''\|^2 - \lambda_3 \|\nabla I\|^2(\gamma)$$
 (1)

On peut alors montrer, qu'une courbe discrète dénotée par $v=(v_x,v_y)$, avec

$$\begin{cases} v_x = (v_x[0], v_x[1], v_x[2], \dots) \\ v_y = (v_y[0], v_y[1], v_y[2], \dots) \end{cases}$$

converge vers un minimum de cette énergie si on applique la relation suivante de manière itérative :

$$v_x^{k+1} = \mathbf{A}^{-1} (v_x^k + \Delta t \,\lambda_3 \, P_x^k) ,$$
 (2)

avec

$$\begin{cases} A = \operatorname{Id} + 2\Delta t (-\lambda_1 D_2 + \lambda_2 D_4) \\ P_x^k = -\nabla_x (\|\nabla I\|^2) (v_x^k, v_y^k) . \end{cases}$$

Et de manière identique pour la composante y.

3 Initialisation

Dans un premier temps, on vient initialiser la courbe à déformer.

Question 1 *Chargez une image d'exemple simple et affichez la.*

On pourra se servir des appels suivants :

```
% lecture d'un fichier image
I=imread('fichier');
% conversion de valeurs en double
I2=double(I);
%affichage d'une image avec normalisation du niveau de gris
imagesc(I);
%modification de la table de couleur en noir et blanc
colormap gray;
%effacer l'image courante
clf;
```

Question 2 Créez un cercle autour de l'objet à déformer. Affichez celui-ci. On prendra soin de centrer correctement ce cercle et d'éviter de sortir des frontières de l'image.

Pour afficher le cercle par dessus l'image, on pourra s'inspirer de l'approche suivante :

```
%efface l'image preexistante
clf;
%affiche une image
imagesc(I);
%genere une courbe
t=[0:N-1]/N;t=t';
vx=R*cos(2*pi*t)+Cx;
vy=R*sin(2*pi*t)+Cy;
%permet l'affichage en sur-impression
hold on;
%affiche le cercle en rouge
plot([vx;vx(1)],[vy;vy(1)],'r');
```

4 Minimisation de la norme des dérivées

Dans un premier temps, on s'interesse à la matrice A de l'eq.(2).

Question 3 Construisez les matrices de dérivées 2 (D_2) et 4 (D_4). Vérifiez celles-ci en l'affichant dans le cas où le nombre de points est faible.

Question 4 Calculez et affichez $D_2 v_x$, $D_2 v_y$ et $D_4 v_x$, $D_4 v_y$ (on pourra cette fois prendre une courbe échantillonnée sur 50 à 100 points). Est-ce que ce résultat était prévisible?

Dans la suite, on pourra considérer $\Delta t = 0.05$, $\lambda_1 = 5$, et $\lambda_2 = 5$.

Question 5 Précalculez la matrice A ainsi que A^{-1} une fois. Notez que celle-ci ne dépendent pas des coordonnées de v, mais seulement de la dimension de la courbe.

Question 6 Dans une boucle, appliquez l'itération suivante et visualisez le résultat de la déformation de la courbe. Est-ce bien le résultat attendu ?

$$\left\{ \begin{array}{l} v_x^{k+1} = \mathbf{A}^{-1} \; v_x^k \\ v_y^{k+1} = \mathbf{A}^{-1} \; v_y^k \end{array} \right.$$

Pour l'affichage, on pourra s'inspirer du procédé suivant :

```
for k=[1:500]

%iteration
vx=inverse_A*vx;
vy=inverse_A*vy;

%affichage une fois sur 2
if (mod(k,2)==0)

%supprime l'image et en affiche une nouvelle
clf
imagesc(I);
hold on
plot([vx;vx(1)],[vy;vy(1)]);

%force reactualisation de l'image
pause(0.01);
end
end
```

Question 6 bis: Que faudrait il faire pour modifier le comportement du contour et permettre une segmentation de l'objet? **Question 7** Visualisez l'évolution de l'énergie interne de la courbe.

5 Force totale

On ajoute désormais la force externe empêchant la courbe de traverser les bords de l'image.

Question 8 Calculez et visualiser en tant qu'image $\|\nabla I\|^2$.

Question 9 Calculez $[Kx, Ky] = -\nabla(\|\nabla I\|^2)$. Notez que ce gradient contient deux composantes, et que chacune d'elle peut être vue en tant qu'image.

Question 10 Dans la boucle, calculez les termes P_x et P_y (voir eq. 2) en tant qu'échantillonnée de $-\nabla(\|\nabla I\|^2)$ aux positions (v_x, v_y) .

On pourra s'aider des fonctions d'interpolations de Matlab suivant la syntaxe suivante :

```
%interpolation lineaire calculant P=K(vx,vy);
Px=interp2(Kx,vx,vy);
Py=interp2(Ky,vx,vy);
```

Question 11 Appliquez désormais l'iteration complète de l'eq. (2). Commentez.

On pourra considérer $\lambda_3 = 20$ dans ce cas.

Question 12 *Visualisez l'évolution de l'énergie interne et externe.*

6 Analyse supplémentaire

Question 13 Appliquez votre algorithme sur une image bruitée. Comment devez vous faire évoluer les paramètres λ ?

Pour vous aider, vous pourrez également calculer le terme *P* sur une version lissée de l'image (utilisation d'une convolution par un noyau Gaussien avant calcul du gradient).

Question 14 Réalisez des tests sur différents types d'images à segmenter, et commentez les résultats obtenues.

Question 15 (Supplément) *Implémentez une extension (ballon, GVF, ...) et commentez l'amélioration obtenue.*

7 Aide Matlab supplémentaire

7.1 Autres fonctions potentiellements utiles

- *gradient* : Calcule le gradient d'une image.
- *conv*2 : Réalise une convolution 2D.
- *diag*: Construit une matrice diagonale (options pour choisir un offset sur la position).
- *ginput* : Permet la saisie manuelle des coordonnées d'une position à la souris.