RJTT/TOKYO INTL **RNAV SID** TIARA TWO A DEPARTURE RNAV1 Note 1) DME/DME/IRU or GNSS required. XThe aircraft equipped with only DME/DME/IRU must be able to update its position without delay at the starting point of take-off rolling RWY16R: HME 1.2NM FM DER - HATBA 2) RADAR service required. HYD 2.8NM to HATBA - 1.6NM to HATBA PQD HATBA - 1.6NM to KAMAT RWY16L: HME 1.0NM FM DER - 3.5NM to T6L23 PQD 6.6NM to KAIJI - KAIJI NRE 6.9NM to INTEL - 6.9NM to LAYER RWY34R: HME 1.0NM FM DER - 1.1NM to PLUTO SND TORAM - 3.1NM to PLUTO PQD 6.6NM to KAIJI - KAIJI NRE 6.9NM to INTEL - 6.9NM to LAYER RWY16R: DER - 1.2NM FM DER RWY34L: HME 0.5NM FM DER - 1.1NM to PLUTO RWY16L: DER - 1.0NM FM DER Critical DME SND TORAM - 3.1NM to PLUTO RWY34R: DER - 1.0NM FM DER PQD 6.6NM to KAIJI - KAIJI DME GAP RWY34L: DER - 0.5NM FM DER NRE 6.9NM to INTEL - 6.9NM to LAYER RWY04: DER - 1.7NM FM DER RWY04: HME 1.7NM FM DER - 1.1NM to PLUTO RWY05: 3.8NM to KAMAT - 1.8NM to KAMAT SND 2.2NM to TORAM - 3.1NM to PLUTO PQD 6.6NM to KAIJI - KAIJI NRE 6.9NM to INTEL - 6.9NM to LAYER RWY05: HME DER - 2.7NM to TT502 TT503 - 3.8NM to KAMAT 1.8NM to KAMAT - KAMAT HYD 1.2NM to TT503 - TT503 4.8NM to KAMAT - 3.8NM to KAMAT Inappropriate See AD1.1.6.10.3. Inappropriate NAVAIDs for RNAV1 Navaids VAR8°W TIARA TWO A DEPARTURE RWY16R/16L Aircraft filing TIARA in flight plan will be assigned the SID depending on the time of take-off SID designator Period TIARA A DEP From 2100UTC to 1400UTC, excluding the period listed below. TIARA B DEP From 2200UTC to 0230UTC TIARA C DEP | About 3hours from 0600UTC to 1000UTC INTFI <u>9000</u> 11.9 286 KAIJI CHANGE: PROC renamed. Course FM T6R13 to HATBA. **LAYER** VOR/DME 13000 **HANEDA** 112.2 HME CH-59X **GUSRO** 35°33′44″N/139°45′40″E **TIARA** 100FT FL170 **PLUTO KAMAT** 9000 158 WELDA <u>6000</u> T6R13 **HATBA** T6L23

RNAV SID RJTT/TOKYO INTL

RJTT/TOKYO INTL RNAV SID

TIARA TWO A DEPARTURE

RWY16R: Climb on HDG 158° at or above 500FT, direct to T6R13, to HATBA, to KAMAT at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY16L: Climb on HDG 158° at or above 500FT, turn left direct to T6L23, to WELDA at or above 6000FT, to PLUTO, to KAIJI, to INTEL at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY34L/34R: Climb on HDG 338° at or above 700FT, turn right direct to TORAM, to PLUTO, to KAIJI, to INTEL at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY04: Climb on HDG 043° at or above 700FT, direct to TORAM, to PLUTO, to KAIJI, to INTEL at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY05: Climb on HDG 050° at or above 500FT, direct to <u>TT501</u>, turn right direct to TT502, to LOCUP at or above 5000FT, to TT503, to KAMAT at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

Note RWY34L/34R/04: 5.0% climb gradient required up to 700FT. RWY05: 5.0% climb gradient required up to 500FT.

CHANGE: PROC renamed.

RJTT/TOKYO INTL RNAV SID

TIARA TWO A DEPARTURE

RWY16R

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	158 (150.0)	-7.9	_	_	+500	_	_	RNAV1
002	DF	T6R13	_	_	-7.9	_	_	_	_	_	RNAV1
003	TF	HATBA	_	262 (253.8)	-7.9	5.8	_	_	-	_	RNAV1
004	TF	KAMAT	_	359 (351.1)	-7.9	7.6	_	+9000	-	_	RNAV1
005	TF	LAYER	_	305 (297.1)	-7.9	12.2	_	+13000	-	_	RNAV1
006	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
007	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RWY16L

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	158 (150.0)	-7.9	_	_	+500	_	_	RNAV1
002	DF	T6L23	_	_	-7.9	_	L	-	_	_	RNAV1
003	TF	WELDA	_	055 (047.3)	-7.9	4.8	_	+6000	-	_	RNAV1
004	TF	PLUTO	_	352 (344.5)	-7.9	7.1	_	-	_	_	RNAV1
005	TF	KAIJI	_	011 (003.0)	-7.9	7.6	_	1	-	_	RNAV1
006	TF	INTEL	_	286 (278.4)	-7.9	11.9	_	+9000	_	_	RNAV1
007	TF	LAYER	_	250 (242.4)	-7.9	13.9	_	+13000	_	_	RNAV1
800	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
009	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RWY34L/RWY34R

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	338 (330.0)	-7.9	_	_	+700	_	_	RNAV1
002	DF	TORAM	_	_	-7.9	_	R	_	_	_	RNAV1
003	TF	PLUTO	_	099 (090.7)	-7.9	6.0	_	_	_	_	RNAV1
004	TF	KAIJI	_	011 (003.0)	-7.9	7.6	_	_	_	_	RNAV1
005	TF	INTEL	_	286 (278.4)	-7.9	11.9	_	+9000	_	_	RNAV1
006	TF	LAYER	_	250 (242.4)	-7.9	13.9	_	+13000	_	_	RNAV1
007	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
008	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1
					,						

RJTT/TOKYO INTL RNAV SID

R١	Λ	Λ	"	14

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	043 (034.9)	-7.9	_	_	+700	_	_	RNAV1
002	DF	TORAM	_	_	-7.9	_	_	_	_	_	RNAV1
003	TF	PLUTO	_	099 (090.7)	-7.9	6.0	-	ı	_	_	RNAV1
004	TF	KAIJI	_	011 (003.0)	-7.9	7.6	_	-	_	_	RNAV1
005	TF	INTEL	_	286 (278.4)	-7.9	11.9	_	+9000	_	_	RNAV1
006	TF	LAYER	_	250 (242.4)	-7.9	13.9	_	+13000	_	_	RNAV1
007	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
008	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RWY05

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	-	_	050 (042.4)	-7.9	_	_	+500	_	_	RNAV1
002	DF	TT501	Υ	_	-7.9	_	-	_	_	_	RNAV1
003	DF	TT502	_	-	-7.9	_	R	-	1	_	RNAV1
004	TF	LOCUP	_	199 (190.9)	-7.9	5.2	ı	+5000	-	_	RNAV1
005	TF	TT503	_	289 (280.8)	-7.9	6.2	1	ı	1	_	RNAV1
006	TF	KAMAT	_	322 (314.2)	-7.9	7.8	-	+9000	_	_	RNAV1
007	TF	LAYER	_	305 (297.1)	-7.9	12.2	_	+13000	_	_	RNAV1
800	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
009	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

Waypoint Coordinates

;	Waypoint Identifier	Coordinates	Waypoint Identifier	Coordinates
7	GUSRO	353944.8N / 1390813.1E	T6L23	352627.6N / 1395539.1E
<u>;</u>	HATBA	352623.4N / 1394315.9E	T6R13	352800.8N / 1395006.4E
5	INTEL	354553.0N / 1394340.2E	TIARA	353934.0N / 1391954.2E
3	KAIJI	354409.6N / 1395806.6E	TORAM	353636.8N / 1395011.0E
3	KAMAT	353353.6N / 1394148.9E	TT501	353328.7N / 1395029.9E
	LAYER	353925.4N / 1392829.5E	TT502	353224.4N / 1395720.7E
<u>.</u>	LOCUP	352718.8N / 1395608.5E	TT503	352828.0N / 1394840.4E
2	PLUTO	353632.1N / 1395736.8E	WELDA	352941.4N / 1395956.7E
7				

RJTT/TOKYO INTL RNAV SID

TIARA TWO B DEPARTURE

RWY16R: Climb on HDG 158° at or above 500FT, direct to T6R13, to HATBA, to KAMAT at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY16L: Climb on HDG 158° at or above 500FT, turn left direct to T6L23, to WELDA at or above 6000FT, to PLUTO, to KAIJI, to INTEL at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY34R: Climb on HDG 338° at or above 700FT, turn right direct to ARAKA, to EDOJO, to OHEDO, to INTEL at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY05: Climb on HDG 050° at or above 500FT, direct to <u>TT501</u>, turn right direct to TT502, to LOCUP at or above 5000FT, to TT503, to KAMAT at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

Note RWY34R: 5.0% climb gradient required up to 700FT. RWY05: 5.0% climb gradient required up to 500FT.

RJTT/TOKYO INTL RNAV SID

TIARA TWO B DEPARTURE

RWY16R

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	158 (150.0)	-7.9	_	_	+500	-	_	RNAV1
002	DF	T6R13	_	_	-7.9	_	_	_	_	_	RNAV1
003	TF	HATBA	_	262 (253.8)	-7.9	5.8	_	1	1	_	RNAV1
004	TF	KAMAT	_	359 (351.1)	-7.9	7.6	_	+9000	1	_	RNAV1
005	TF	LAYER	_	305 (297.1)	-7.9	12.2	_	+13000	ı	_	RNAV1
006	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
007	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RWY16L

Serial	Path	Waypoint	Fly	Course	Magnetic			Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	158 (150.0)	-7.9	_	_	+500	_	_	RNAV1
002	DF	T6L23	_	_	-7.9	_	L	_	_	_	RNAV1
003	TF	WELDA	_	055 (047.3)	-7.9	4.8	_	+6000	_	_	RNAV1
004	TF	PLUTO	_	352 (344.5)	-7.9	7.1	_	_	_	_	RNAV1
005	TF	KAIJI	_	011 (003.0)	-7.9	7.6	_	_	_	_	RNAV1
006	TF	INTEL	_	286 (278.4)	-7.9	11.9	_	+9000	_	_	RNAV1
007	TF	LAYER	_	250 (242.4)	-7.9	13.9	_	+13000	_	_	RNAV1
800	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
009	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RWY34R

Serial	Path Descriptor	Waypoint Identifier	Fly	Course °M(°T)	Magnetic Variation	Distance (NM)	Turn Direction	Altitude (FT)	Speed	Vertical	Navigation Specification
Number	Descriptor	identiller	Over	IVI(I)	variation	(INIVI)	Direction	(ГІ)	(KIAS)	Angle	Specification
001	VA	_	_	338 (330.0)	-7.9	_	_	+700	_	_	RNAV1
002	DF	ARAKA	_	_	-7.9	_	R	ı	_	_	RNAV1
003	TF	EDOJO	_	019 (010.8)	-7.9	3.5	_	_	_	_	RNAV1
004	TF	OHEDO	_	332 (323.7)	-7.9	3.9	1	ı	_	_	RNAV1
005	TF	INTEL	_	285 (277.0)	-7.9	4.1	_	+9000	_	_	RNAV1
006	TF	LAYER	_	250 (242.4)	-7.9	13.9	-	+13000	_	_	RNAV1
007	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	-	_	_	RNAV1
008	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RJTT/TOKYO INTL RNAV SID

RWY05

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	050 (042.4)	-7.9	_	_	+500	_	_	RNAV1
002	DF	TT501	Υ	_	-7.9	_	_	_	_	_	RNAV1
003	DF	TT502	_	_	-7.9	_	R	_	_	_	RNAV1
004	TF	LOCUP	ı	199 (190.9)	-7.9	5.2	1	+5000	1	_	RNAV1
005	TF	TT503	_	289 (280.8)	-7.9	6.2	_	_	_	_	RNAV1
006	TF	KAMAT	_	322 (314.2)	-7.9	7.8	-	+9000	_	_	RNAV1
007	TF	LAYER	_	305 (297.1)	-7.9	12.2	_	+13000	_	_	RNAV1
800	TF	TIARA	-	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
009	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

Waypoint Coordinates

ור				
-	Waypoint Identifier	Coordinates	Waypoint Identifier	Coordinates
	ARAKA	353848.8N / 1395041.9E	OHEDO	354523.4N / 1394838.6E
	EDOJO	354214.0N / 1395129.9E	PLUTO	353632.1N / 1395736.8E
=	GUSRO	353944.8N / 1390813.1E	T6L23	352627.6N / 1395539.1E
-	HATBA	352623.4N / 1394315.9E	T6R13	352800.8N / 1395006.4E
5	INTEL	354553.0N / 1394340.2E	TIARA	353934.0N / 1391954.2E
3	KAIJI	354409.6N / 1395806.6E	TT501	353328.7N / 1395029.9E
	KAMAT	353353.6N / 1394148.9E	TT502	353224.4N / 1395720.7E
)	LAYER	353925.4N / 1392829.5E	TT503	352828.0N / 1394840.4E
3	LOCUP	352718.8N / 1395608.5E	WELDA	352941.4N / 1395956.7E
5	·	·	·	<u>-</u>

RJTT/TO	(YO INTL		ı	RNAV SI
	TIARA TWO C DEF	PARTURE		RNAV1
%The a must at the	DME/IRU or GNSS required. ircraft equipped with only DME/DME/IRU be able to update its position without delay starting point of take-off rolling. AR service required.		1	KAIJI - KAIJI INTEL - 6.9NM to LAYER
DME GAP	RWY16R: DER - 1.2NM FM DER RWY16L: DER - 1.0NM FM DER RWY34R: DER - 1.0NM FM DER RWY05: 3.8NM to KAMAT - 1.8NM to KAMAT	Critical DME	RWY05: HME DER - 2.7 TT503 - 3.8NM 1.8NM to KAMA HYD 1.2NM to	KAIJI - KAIJI INTEL - 6.9NM to LAYER NM to TT502 to KAMAT AT - KAMAT
Inappropriate Navaids	See AD1.1.6.10.3.Inappropriate NAVAIDs for RNAV1			
VAR8	w			
	A TWO C DEPARTURE RW	Y16R/16L	<u>-</u>	
	TIARA in flight plan will be assigned the SID depending o	n the time of take-o	off	
SID designat		sted below.		
TIARA B DE	P From 2200UTC to 0230UTC			
TIARA C DE	P About 3hours from 0600UTC to 1000UTC			
		IN	NTEL	
			9000	
			286° –	
	\cdot		200 -	→ KAIJI
GUSRO	2º5	0		f
FL170	LAYER TIARA 13000	-VOR/DME -		
$\Diamond \longrightarrow$	9.5 270° \ 270° \	HANEDA 112.2 HME	:	01.0
V .		H-59X ::: <i>33´44″N/139°45´40</i> 	DE STORY	
		100F1		
				◆PLUTO
				\
				ω ₁ /
			158° 500	7
			500 1 500	
				7.8 WELL 6000
		8		053 101
			T6R11	Tel 22
				T6L23

RJTT/TOKYO INTL RNAV SID

TIARA TWO C DEPARTURE

RWY16R: Climb on HDG 158° at or above 500FT, direct to T6R11, to WELDA at or above 6000FT, to PLUTO, to KAIJI, to INTEL at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY16L: Climb on HDG 158° at or above 500FT, turn left direct to T6L23, to WELDA at or above 6000FT, to PLUTO, to KAIJI, to INTEL at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY34R: Climb on HDG 338° at or above 700FT, turn right direct to ARAKA, to EDOJO, to OHEDO, to INTEL at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

RWY05: Climb on HDG 050° at or above 500FT, direct to <u>TT501</u>, turn right direct to TT502, to LOCUP at or above 5000FT, to TT503, to KAMAT at or above 9000FT, to LAYER at or above 13000FT, to TIARA, to GUSRO at or above FL170.

Note RWY34R: 5.0% climb gradient required up to 700FT. RWY05: 5.0% climb gradient required up to 500FT.

RJTT/TOKYO INTL RNAV SID

TIARA	TWO	CD	FPAR'	TURF

	_			_	_
ום	ι۸.	ľY	1	ຂ	D

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	-	_	158 (150.0)	-7.9	_	_	+500	_	_	RNAV1
002	DF	T6R11	_	_	-7.9	_	_	ı	_	_	RNAV1
003	TF	WELDA	_	068 (060.6)	-7.9	7.8	_	+6000	_	_	RNAV1
004	TF	PLUTO	_	352 (344.5)	-7.9	7.1	_	-	_	_	RNAV1
005	TF	KAIJI	_	011 (003.0)	-7.9	7.6	_	1	_	_	RNAV1
006	TF	INTEL	_	286 (278.4)	-7.9	11.9	_	+9000	_	_	RNAV1
007	TF	LAYER	_	250 (242.4)	-7.9	13.9	_	+13000	_	_	RNAV1
800	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	-	_	_	RNAV1
009	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RWY16L

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	158 (150.0)	-7.9	_	_	+500	_	_	RNAV1
002	DF	T6L23	_	_	-7.9	_	L	-	_	_	RNAV1
003	TF	WELDA	_	055 (047.3)	-7.9	4.8	_	+6000	_	_	RNAV1
004	TF	PLUTO	_	352 (344.5)	-7.9	7.1	_	١	_	_	RNAV1
005	TF	KAIJI	_	011 (003.0)	-7.9	7.6	_	ı	_	_	RNAV1
006	TF	INTEL	_	286 (278.4)	-7.9	11.9	_	+9000	_	_	RNAV1
007	TF	LAYER	_	250 (242.4)	-7.9	13.9	_	+13000	_	_	RNAV1
008	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
009	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RWY34R

ı	KVV Y 34	Λ										
	Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
	Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
	001	VA	_	_	338 (330.0)	-7.9	_	_	+700	_	_	RNAV1
	002	DF	ARAKA	_	_	-7.9	_	R	-	-	_	RNAV1
	003	TF	EDOJO	_	019 (010.8)	-7.9	3.5	_	1	1	_	RNAV1
	004	TF	OHEDO	1	332 (323.7)	-7.9	3.9	_	1	ı	_	RNAV1
	005	TF	INTEL	_	285 (277.0)	-7.9	4.1	_	+9000	1	_	RNAV1
	006	TF	LAYER	_	250 (242.4)	-7.9	13.9	_	+13000	1	_	RNAV1
	007	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
	800	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

RJTT/TOKYO INTL RNAV SID

RWY05

Serial	Path	Waypoint	Fly	Course	Magnetic	Distance	Turn	Altitude	Speed	Vertical	Navigation
Number	Descriptor	Identifier	Over	°M(°T)	Variation	(NM)	Direction	(FT)	(KIAS)	Angle	Specification
001	VA	_	_	050 (042.4)	-7.9	_	_	+500	_	_	RNAV1
002	DF	TT501	Υ	_	-7.9	_	_	_	_	_	RNAV1
003	DF	TT502	_	_	-7.9	_	R	_	_	_	RNAV1
004	TF	LOCUP	_	199 (190.9)	-7.9	5.2	_	+5000	-	_	RNAV1
005	TF	TT503	_	289 (280.8)	-7.9	6.2	_	_	_	_	RNAV1
006	TF	KAMAT	_	322 (314.2)	-7.9	7.8	_	+9000	-	_	RNAV1
007	TF	LAYER	_	305 (297.1)	-7.9	12.2	_	+13000	_	_	RNAV1
800	TF	TIARA	_	279 (271.2)	-7.9	7.0	_	_	_	_	RNAV1
009	TF	GUSRO	_	279 (271.1)	-7.9	9.5	_	+FL170	_	_	RNAV1

Waypoint Coordinates

- 1				
3	Waypoint Identifier	Coordinates	Waypoint Identifier	Coordinates
5	ARAKA	353848.8N / 1395041.9E	PLUTO	353632.1N / 1395736.8E
	EDOJO	354214.0N / 1395129.9E	T6L23	352627.6N / 1395539.1E
-	GUSRO	353944.8N / 1390813.1E	T6R11	352552.5N / 1395137.2E
	INTEL	354553.0N / 1394340.2E	TIARA	353934.0N / 1391954.2E
	KAIJI	354409.6N / 1395806.6E	TT501	353328.7N / 1395029.9E
3	KAMAT	353353.6N / 1394148.9E	TT502	353224.4N / 1395720.7E
	LAYER	353925.4N / 1392829.5E	TT503	352828.0N / 1394840.4E
5	LOCUP	352718.8N / 1395608.5E	WELDA	352941.4N / 1395956.7E
	OHEDO	354523.4N / 1394838.6E		
=			-	