1 Множества

1.1 Множества

Множество - это одно из ключевых понятий математики, можно даже сказать, что это ключевое понятие классической математики. Интуитивная идея, объясняющая понятие "множество состоит в том, что множество - это абстрактный набор произвольных элементов любого типа (в том числе математических моделей или объектов). Такое интуитивное представление множеств не является точным, однако оно позволяет работать с множествами, используя логику и здравый смысл.

Более точное определение понятия "множество" требует знаний формального языка, используемого в математической логики, который будет изучен позже в рамках этого курса, поэтому пока мы будем работать с множествами в их интуитивном представлении, как с "наборами элементов". Понятие "множество" является фундаментальным в классической математике, так как на нём базируются определения всех остальных математических объектов. Грубо говоря, можно утверждать, что все объекты классической математики - множества. Итак, без ограничения общности, можно сказать, что все элементы математического множества тоже являются множествами.

1.2 Обозначение множеств

Множества обозначаются буквами латинского алфавита, возможно с индексами. Так a, B_0 , x^i , V_j^i - множества, и тот факт, что элемент a принадлежит (лежит в, является элементом) множеству A обозначается как $a \in A$. Символ \in - обозначает *отношение принадлежности*.

Множество, состоящее из конечного числа элементов $a_1 \ a_2 \dots a_n$, где n - натуральное число (количество элементов), записывается как: $\{a_1, a_2, \dots, a_n\}$. Символ ... здесь используется в качестве сокращения выражения "и так далее".

1.3 Объединение множеств

Определение

Пусть X и Y - множества. Тогда $X \cup Y$ - объединение множеств X и Y. Это множество состоит из элементов, принадлежащих любому из

множеств X или Y. Другими словами, для любого элемента a, условие $a \in X \cup Y$ выполняется тогда и только тогда, когда выполнено $a \in X$ или $a \in Y$.

Пример

Пусть
$$X = \{a, b, c\}, Y = \{c, d, e\}.$$
 Тогда $X \cup Y = \{a, b, c, d, e\}$

1.4 Пересечение множеств

Определение

Пусть X и Y - множества. Тогда $X \cap Y$ - **пересечение** множеств X и Y. Это множество состоит из элементов, лежащих одновременно в X и в Y. Другими словами, для любого элемента a, условие $a \in X \cap Y$ выполняется тогда и только тогда, когда $a \in X$ и $a \in Y$.

Пример

Пусть
$$X = \{a, b, c\}, Y = \{b, c, d\}$$
. Тогда $X \cap Y = \{b, c\}$

1.5 Разность множеств

Определение

Пусть X и Y - множества. Тогда $X \setminus Y$ - разность множеств X и Y. Это множество состоит из элементов, принадлежащих X, но не являющихся элементами множества Y. Итак, для любого a, условие $a \in X \setminus Y$ выполняется тогда и только тогда, когда $a \in X$ истинно, а $a \in Y$ ложно (можно записать как $a \notin Y$).

Пример

Пусть
$$X = \{a, b, c\}, Y = \{b, c, d\}.$$
 Тогда $X \setminus Y = \{a\}$

1.6 Равенство множеств

Равенство - важное отношение между множествами. Оно определяется как:

Определение

Два множества X и Y называются **равными**, обозначается X = Y, тогда и только тогда, когда для любого $a, a \in X$ выполняется тогда и только тогда, когда выполнено $a \in Y$.

Другими словами, два множества равны, если они состоят из одинаковых элементов.

Пример

Пусть
$$X = \{a, b, c\}, Y = \{b, c, d\}$$
. Тогда $X \neq Y$

Пример

Пусть
$$X = \{a, b, c\}, Y = \{b, c, a\}.$$
 Тогда $X = Y$

1.7 Пустое множество

Существует специальное множество, которое не содержит никаких элементов. Это множество называется пустое множество, и обозначается

0

Отметим, что по определению равенства множеств пустое множество eduncmeehho, поэтому любое другое множество, которое не содержит элементов равно \emptyset .

2 Свойства операций над множествами

2.1 Идемпотентность

Предложение

Для любого множества X верно следующее

- 1. $X \cap X = X$
- $2. \ X \cup X = X$
- это свойство называется **идемпотентность** операций \cap и \cup . Также для любого множества X верно следующее:

1.
$$X \setminus X = \emptyset$$

Эти свойства позволяют сокращать выражения, содержащие объединение/пересечение с другими множествами.

Доказательство

Это предложение очевидно следует из определений объединения, пересечения, разности и равенства множеств.

2.2 Свойства пустого множества

Предложение

Для любого множества X:

- 1. $X \cap \emptyset = \emptyset$
- 2. $X \cup \emptyset = X$
- 3. $X \setminus \emptyset = X$
- 4. $\emptyset \setminus X = \emptyset$

Эти тождества позволяют сокращать выражения, содержащие пустое множество.

Доказательство

Очевидное предложение, которое следует из определения операций над множествами и определения пустого множества.

2.3 Коммутативность

Предложение

Для любых множеств X и Y:

- 1. $X \cap Y = Y \cap X$
- 2. $X \cup Y = Y \cup X$
- свойство коммутативности операций ∩ и ∪.

Это свойство позволяет произвольно менять местами аргументы в объединениях / пересечениях, результирующее множество не изменится.

Доказательство

Очевидно следует из определений.

2.4 Разность не коммутативна

Замечание

Отметим, что операция разности множеств не коммутативна: в общем случае неверно, что $X \setminus Y = Y \setminus X$.

Доказательство

Рассмотрим следующий пример. Пусть $X = \{a\}$ - одноэлементное множество, содержащее только один элемент a, и $Y = \emptyset$. Тогда $X \setminus Y = X \neq \emptyset = Y \setminus X$.

2.5 Ассоциативность

Предложение

Для любых множеств X, Y и Z:

- $(X \cap Y) \cap Z = X \cap (Y \cap Z)$
- $(X \cup Y) \cup Z = X \cup (Y \cup Z)$

- ассоциативность операций ∩ и ∪.

Это свойство позволяет произвольно расставлять скобки внутри пересечений/объединений множеств - результирующее множество от этого не зависит. Это используется с целью сокращения выражений, вместо $(X \cap Y) \cap Z$ можно написать $X \cap Y \cap Z$, а вместо $(X \cup Y) \cup Z$ - $X \cup Y \cup Z$ соответственно.

Доказательство

Очевидно следует из определений.

2.6 Отношение включения

Помимо отношения равенства, рассмотрим очень важное отношение включения (содержится либо равно).

Определение

Два множества X и Y находятся в отношении включения, (содержится либо равно), обозначается как $X \subseteq Y$, тогда и только тогда, когда для любого a, такого, что $a \in X$, следует, что $a \in Y$. Также введем обозначение для строгого включения: $X \subset Y$ значит, что $X \subseteq Y$ и $X \neq Y$.

Замечание

Нетрудно заметить, что для любых двух множеств X и Y, X=Y тогда и только тогда, когда $X\subseteq Y$ и $Y\subseteq X$.

Замечание

Пустое множество содержится в любом другом множестве: $\emptyset \subseteq A$. В частности: $\emptyset \subset \emptyset$.

2.7 Дистрибутивность

Предложение

Для любых множеств X, Y и Z:

- 1. $(X \cap Y) \cup Z = (X \cup Z) \cap (Y \cup Z)$,
- $2. \ (X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$
- дистрибутивность операций ∩ и ∪ относительно друг друга

Дистрибутивность позволяет производить операции объединения/пересечения над скобками, содержащими противоположную операцию.

Доказательство

Докажем первое равенство. Для этого воспользуемся преобразуем равенство в отношение включения, т.е. будем доказывать, что $(X \cap Y) \cup Z \subseteq (X \cup Z) \cap (Y \cup Z)$ и $(X \cup Z) \cap (Y \cup Z) \subseteq (X \cap Y) \cup Z$. Покажем первое включение: $(X \cap Y) \cup Z \subseteq (X \cup Z) \cap (Y \cup Z)$. Рассмотрим элемент a, такой, что $a \in (X \cap Y) \cup Z$. Это означает, что имеет место один из двух случаев: $a \in X \cap Y$ или $a \in Z$. Рассмотрим эти случаи.

- Пусть $a \in X \cap Y$. Это означает, что $a \in X$ и $a \in Y$. Тогда очевидно, что $a \in X \cup Z$ и $a \in Y \cup Z$. Из определения \cap , следует, что $a \in (X \cup Z) \cap (Y \cup Z)$.
- Во втором случае рассуждаем аналогично: из того, что $a \in Z$ следует, что $a \in X \cup Z$ и $a \in Y \cup Z$, дальнейшие рассуждения аналогичны первому случаю.

покажем второе включение, т.е. $(X \cup Z) \cap (Y \cup Z) \subseteq (X \cap Y) \cup Z$. Пусть существует некоторый a, такой, что $a \in (X \cup Z) \cap (Y \cup Z)$. Тогда $a \in X \cup Z$ и $a \in Y \cup Z$. Возможные варианты включения a:

- $a \in Z$. В этом случае ясно, что $a \in (X \cap Y) \cup Z$.
- $a \notin Z$. Отсюда следует, что $a \in X$ и $a \in Y$, это означает, что $a \in X \cap Y$, и снова получаем $a \in (X \cap Y) \cup Z$.

Оба случая соответствуют требованию: $a \in (X \cap Y) \cup Z$, итак, обратное включение доказано. Второе равенство доказывается аналогично.

2.8 Степень множества

Определение

Пусть A - множество. Множество $\mathcal{P}(A) \rightleftharpoons \{B|B \subseteq A\}$ называется **сте**пенью множества A.

Теорема

Если $A_n = \{a_1, \dots, a_n\}$ - множество из n элементов, то множество $\mathcal{P}(A_n)$ состоит из 2^n элементов.

Доказательство

Индукция по n. При n=0, $\mathcal{P}(\emptyset)=\{\emptyset\}$, т.е. оно состоит из одного элемента

Шаг индукции. Предположим, что утверждение доказано для n-1, т.е. $\mathcal{P}(A_{n-1})$ состоит из 2^{n-1} подмножеств. Произвольное подмножество A_n будет однозначно определяться как:

• подмножество, лежащее в A_{n-1} , т.е. являющееся элементом $\mathcal{P}(A_{n-1})$

ullet информация о наличии a_n в нём: истина или ложь.

Поскольку существует 2^{n-1} элементов в $\mathcal{P}(A_{n-1})$, и каждое подмножество из $\mathcal{P}(A_{n-1})$ создаёт ровно два подмножества в $\mathcal{P}(A_n)$: в котором содержится a_n и то, в котором этого элемента гарантированно нет $2*2^{n-1}=2^n$ элементов в $\mathcal{P}(A_{n-1})$.

3 Декартовы произведения

3.1 Математические понятия

Как было сказано в предыдущей теме, все математические объекты на самом деле являются множествами. Тогда естественным образом возникает вопрос: как различные математические объекты, такие как числа, функции, различные пространства и так далее, представить в виде множеств? Чтобы ответить на этот вопрос, мы последовательно введем несколько понятий, описывающих основные математические модели.

Для начала отметим, что множество состоящее из двух элементов, например $\{a,b\}$, не зависит от порядка, в котором расположены элементы a и b, т.е. $\{a,b\}=\{b,a\}$. Поэтому двухэлементный набор также называют неупорядоченной парой. Как мы можем определить упорядоченную пару элементов?

3.2 Упорядоченная пара

Определение

Пусть a, b - два элемента. **Упорядоченная пара** (a, b) - это множество

$$(a,b) \rightleftharpoons \{\{a\},\{a,b\}\}$$

Здесь и далее символ ⇒ будет читаться как "равный по определению".

Замечание

По определению ясно, что если $a \neq b$, то $(a,b) \neq (b,a)$, потому что $\{\{a\},\{a,b\}\}\neq \{\{b\},\{a,b\}\}.$

3.3 Упорядоченный кортеж

Далее нам нужно определить не только упорядоченную пару, но и упорядоченную тройку, упорядоченную четвёрку и так далее, т.е. упорядоченный набор из n элементов. Упорядоченный набор из n элементов называется **кортеж** длины n. Определение кортежа проводится по индукции: если кортеж длины n-1 уже определён, мы можем определить кортеж длины n, используя операцию создания упорядоченной пары.

3.4 Кортеж длины n

Определение

Пусть n - натуральное число. **кортеж** длины n (n-местный кортеж), обозначается $\bar{a} = (a_1, \ldots, a_n)$ и определяется следующим образом:

- если n=1, то $(a_1) \rightleftharpoons a_1$,
- если n > 1, то $(a_1, \ldots, a_n) \rightleftharpoons ((a_1, \ldots, a_{n-1}), a_n)$.

Пусть $\bar{a}=(a_1,\ldots,a_n)$ - кортеж. Тогда $l(\bar{a})=n$ - длина этого кортежа.

3.5 Конкатенация кортежей

Мы можем определить операцию конкатенации над кортежами.

Определение

Пусть $\bar{a}=(a_1,\ldots,a_n)$ и $\bar{b}=(b_1,\ldots,b_m)$ - два кортежа. Тогда $\bar{a} \hat{b} \rightleftharpoons (a_1,\ldots,a_n,b_1,\ldots,b_m)$ - конкатенация кортежей \bar{a} и \bar{b} .

Предложение

Ясно, что
$$l(\bar{a}\hat{b}) = l(\bar{a}) + l(\bar{b})$$

3.6 Декартово произведение множеств

Теперь мы готовы определить очень важное понятие (фактически операцию) над множествами: декартово произведение множеств. Декартово произведение множеств A_1, A_2, \ldots, A_n - это множество всех n-местных

кортежей из элементов, принадлежащих соответствующим множествам A_i :

Определение

Пусть A_1, A_2, \ldots, A_n - конечная последовательность множеств. Тогда их **Декартово произведение** определяется как:

$$A_1 \times A_2 \times \ldots \times A_n \rightleftharpoons \{(a_1, a_2, \ldots, a_n) | a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}$$

х обычно используется для обозначения прямого произведения.

3.7 Декартова степень множества

Если все множества A_i в декартовом произведении $A_1 \times \ldots \times A_n$ равны некоторому множеству A, то Декартово произведение $A_1 \times \ldots \times A_n$ называется n-й Декартовой степенью A и обозначается A^n (A с верхним индексом - n-я степень):

$$A^n \rightleftharpoons \underbrace{A \times A \times \ldots \times A}_n$$

3.8 Декартово произведение не ассоциативно

Замечание

Декартово произведение не ассоциативно, т.е. верно, что

$$A \times (B \times C) \neq (A \times B) \times C$$

Доказательство

Чтобы доказать неравенство, проанализируем эти два произведения. Первое состоит из пар вида

$$(a, (b, c))$$
, где $a \in A, b \in B, c \in C$

а второе состоит из пар вида

$$((a,b),c)$$
, где $a\in A,b\in B,c\in C$

Понятно, что эти пары не могут быть равны.

3.9 Разложение декартова произведения

Несмотря на то, что декартово произведение не ассоциативно, оно допускает некоторое разложение на двухместное декартово произведение.

Лемма 1

Для любых множеств $A_1, ..., A_n$:

$$A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$$

Доказательство

По определению декартова произведения:

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) | a_i \in A_i\} = \{((a_1, \ldots, a_{n-1}), a_n) | a_i \in A_i\} =$$
$$= \{(\bar{a}, a_n) | a_n \in A_n, \bar{a} \in A_1 \times \ldots \times A_{n-1}\} = (A_1 \times \ldots \times A_{n-1}) \times A_n$$

3.10 Мощность декартова двухместного произведения

Лемма 2

Пусть A, B - множества, A состоит из n элементов, а B состоит из m элементов. Тогда декартово произведение $A \times B$ содержит $n \cdot m$ элементов.

Доказательство

Сколько существует пар вида (a,b), где $a \in A$ и $b \in B$? Существует n вариантов выбора a, и для каждого фиксированного a существует m вариантов выбора b. Отсюда следует, что существует $n \cdot m$ возможных пар $(a,b) \in A \times B$, следовательно, $A \times B$ содержит $n \cdot m$ пар.

3.11 Мощность конечного декартова произведения

Теорема

Пусть A_1, \ldots, A_n - последовательность конечных множеств, A_i содержит k_i элементов (здесь $1 \leq i \leq n$). Тогда декартово произведение $A_1 \times \ldots \times A_n$ будет содержать $k_1 \cdot \ldots \cdot k_n$ элементов.

Доказательство

Индукция по n. Основание индукции: при n=1 это очевидно, при n=2 это выполняется по лемме 2. Шаг индукции. По предположению индукции, $A_1 \times \ldots \times A_{n-1}$ содержит $k_1 \cdot \ldots \cdot k_{n-1}$ элементов. По лемме 1, $X = A_1 \times \ldots \times A_n = (A_1 \times \ldots \times A_{n-1}) \times A_n$, а по лемме 2 X содержит $(k_1 \cdot \ldots \cdot k_{n-1}) \cdot k_n$ элементов.

Следствие

Если множество A содержит k элементов, n - натуральное число, то A^n содержит k^n элементов.

4 Отображения

4.1 Неформальное понятие отображения

Одно из наиболее общих понятий в математике - понятие отображения. (функции), которая отображает одно множество в другое. Неформально говоря, под отображением обычно подразумевают некоторое *правило*, закон, сопоставляющий аргумент функции с её значением. Но если мы хотим выразить все основные математические понятия в терминах множеств, то мы не можем полагаться на такое определение, потому что не понятно, что именно означает "правило "закон "метод"и так далее.

4.2 Строгое определение отображения

Определение

Пусть A и B - два множества. Тогда **отображение** f из A в B - это такое подмножество $f \subseteq A \times B$, что для любого $a \in A$ и для любого $b_1, b_2 \in B$:

из
$$(a,b_1)\in f$$
 и $(a,b_2)\in f$ следует, что $b_1=b_2$

т.е. для любого $a \in A$ существует только один $b \in B$ такой, что $(a,b) \in f$. Факт того, что f - отображение из A в B, обозначается как:

$$f:A \to B$$
 или $A \stackrel{f}{\to} B$

Множество всех отображений из A в B обозначается как

$$B^A = \{f|f: A \to B\}$$

Это определение не использует таких неоднозначных понятий, как "закон "правило "метод но сводит понятие отображения к множеству пар элементов, которые удовлетворяют определенным условиям, имеющим однозначный смысл: каждому аргументу должно соответствовать только одно значение. Где $(a,b) \in f$ можно записать как f(a) = b, элемент a называется аргументом, а b - значением отображения f от аргумента a или образом элемента a из отображения f. Факт того, что f(a) = b можно записать следующим образом:

$$f: a \mapsto b$$
 или $a \stackrel{f}{\mapsto} b$

Если f(a) = b, то элемент a называется **прообразом** элемента b из отображения f.

4.3 Область определения и область значений

Определение

Для любого отображения $f:A\to B$ можно определить два множества:

- ullet область определения $dom(f)=\{a|(a,b)\in f\}$
- \bullet область значений $cod(f) = \{b | (a,b) \in f\}$

пример

Пусть
$$A=\{a,b\}$$
 и $f:A\to A$, где $f=\{(a,b)\}$. Тогда $cod(f)=\{b\}\neq A$ и $dom(f)=\{a\}\neq A$

4.4 Функция

Определение

Пусть A - множество, n - натуральное число. Тогда отображение $f:A^n\to A$ называется n-местной функция или операцией на множестве A.

В качестве примера функции мы можем рассмотреть классические арифметические функции на множестве натуральных/рациональных/действительных

чисел. Но нужно помнить, что в теоретическом представлении множеств функция - это *множесство пар* чисел, а не символическое преобразование, такое как $f(x,y) = x^2 - y^3 + 4x$, определяющее функцию в общем смысле.

4.5 Тождественное отображение

Определение

Для любого множества A можно определить **тождественное отображение** - функцию $id_A: A \to A$. Эта функция определяется как:

$$id_A \rightleftharpoons \{(a,a)|a \in A\}$$

Тождественное отображение id_A также иногда называют **диагональ** множества A. Это отображение называется тождественным, потому что его значение совпадает с аргументом:

$$id_A(a) = a$$

4.6 Классы отображений

Определение

Пусть $f:A\to B$ - некоторое отображение. Тогда это отображение называется

- инъективным ("однозначным" отображением), тогда и только тогда, когда для любых двух разных аргументов $a_1, a_2 \in A$ образы $f(a_1)$ $f(a_2)$ также различны. Обозначается как $f: A \stackrel{1:1}{\to} B$
- сюръективный (отображением "на"), тогда и только тогда, когда для любого элемента $b \in B$ существует такой $a \in A$, что f(a) = b. Обозначается как $f: A { woheadrightarrow} B$
- всюду определённым, тогда и только тогда, когда для любого элемента $a \in A$ существует такой $b \in B$, что f(a) = b. Обозначается как $f: A \rightarrowtail B$
- биективным ("взаимно-однозначным" соответствием), тогда и только тогда, когда оно инъективно, сюръективно и всюду определено. Обозначается как $f:A \xrightarrow{1:1} B$

4.7 Характеризация сюръективности

Предложение

Для любого отображения $f: A \to B$:

- 1. $f: A \rightarrow B$ (т.е. f сюръективно) $\Leftrightarrow cod(f) = B$
- 2. $f:A \rightarrowtail B$ (т.е. f всюду определено) $\Leftrightarrow dom(f) = A$

Доказательство

Очевидно по определению.

4.8 Композиция отображений

Определение

Пусть A,B,C - три множества и даны два отображения: $f:A\to B$ и $g:B\to C$. Тогда можно определить **композицию** отображений f и g. Это отображение $f\circ g:A\to C$, определённое следующим образом: для любого элемента $a\in A$

$$(f \circ g)(a) \rightleftharpoons g(f(a))$$

Обратите внимание, что это определение верно.

4.9 Свойства композиции

Предложение

Пусть $f:A \to B, \, g:B \to C$ и $h:C \to D$ - отображения. Тогда:

- 1. $(f \circ g) \circ h = f \circ (g \circ h)$ ассоциативность операции \circ
- 2. $f \circ id_B = f$
- 3. $id_A \circ f = f$

Доказательство

2 и 3 - очевидно, что касается 1, достаточно отметить, что для любого $a \in A$,

$$((f \circ g) \circ h)(a) = h(f \circ g(a))) = h(g(f(a)))$$

$$(f \circ (g \circ h))(a) = (g \circ h)(f(a)) = h(g(f(a)))$$

Правые части уравнений равны, значит и левые тоже.

4.10 Композиция и классы отображений

Предложение

Пусть $f:A \to B$ и $g:B \to C$ - отображения. Тогда:

- 1. если $f:A\stackrel{1:1}{\to} B$ и $g:B\stackrel{1:1}{\to} C$, то $f\circ g:A\stackrel{1:1}{\to} C$
- 2. если $f:A \twoheadrightarrow B$ и $g:B \twoheadrightarrow C$, то $f \circ g:A \twoheadrightarrow C$
- 3. если $f:A\rightarrowtail B$ и $g:B\rightarrowtail C$, то $f\circ g:A\rightarrowtail C$
- 4. если $f:A \xrightarrow{1:1} B$ и $g:B \xrightarrow{1:1} C$, то $f \circ q:A \xrightarrow{1:1} C$

Доказательство

Докажем 1 от противного. Предположим, что $f \circ g$ - не инъективно. Это значит, что существуют такие $a_1, a_2 \in A$, что $a_1 \neq a_2$ и $(f \circ g)(a_1) = (f \circ g)(a_2)$. Пусть $b_1 = f(a_1)$ и $b_2 = f(a_2)$. Тогда $(f \circ g)(a_1) = g(b_1) = (f \circ g)(a_2) = g(b_2)$, т.е. $g(b_1) = g(b_2)$. Так как g инъективно, $b_1 = b_2$, т.е. $f(a_1) = f(a_2)$. Но f также инъективно, поэтому $a_1 = a_2$ - противоречие. Остальные случаи доказываются аналогично.

4.11 Обратное отображение

Определение

Пусть $f:A\to B$ и $g:B\to A$ - два отображения. Тогда g называется **обратным** к f, тогда и только тогда, когда $f\circ g=id_A$ и $g\circ f=id_B$.

Предложение

Если для некоторого отображения $f: A \to B$ существует обратное отображение, то f сюръективно и всюду определено.

Доказательство

Докажем сюръективность. Если f не сюръективно, то существует такой $b \in B$, что $b \notin cod(f)$. Но по определению $id_B = (g \circ f)(b) = f(g(b)) = b$, т.е. если a = g(b), то $(a,b) \in f$, т.е. $b \in cod(f)$ - противоречие. Всюду определенность доказывается аналогично.

4.12 Инъективность обратного отображения

Предложение

Если для отображения $f:A\to B$ существует обратное, то f инъективно.

Доказательство

В противном случае существуют такие $a_1, a_2 \in A$, что $a_1 \neq a_2$ и $f(a_1) = f(a_2) = b \in B$. По условию $f \circ g = id_A$, т.е. $(f \circ g)(a) = a$ для любого $a \in A$. Следовательно, $a_1 = (f \circ g)(a_1) = g(f(a_1)) = g(b) = g(f(a_2)) = (f \circ g)(a_2) = a_2$ - противоречие.

Следствие

Если для некоторого $f:A\to B$ существует обратное отображение, то f биективно.

4.13 Единственность обратного отображения

Предложение

Если существует обратное отображение к $f: A \to B$, то оно единственно.

Доказательство

Предположим, что $g_1, g_2: B \to A$ два обратных отображения к f. Тогда предположим, что для некоторого $b \in B$ $a_1 = g_1(b) \neq a_2 = g_2(b)$.

По сюръективности f, элемент b имеет прообраз a из отображения f. Следовательно,

$$a = id_A(a) = (f \circ g_1)(a) = g_1(f(a)) = g_1(b) = a_1$$

Аналогично можно доказать, что

$$a = id_A(a) = (f \circ g_2)(a) = g_2(f(a)) = g_2(b) = a_2$$

т.е. $a_1 = a_2$ - противоречие.

4.14 Образ множества

Определение

Рассмотрим отображение $f:A\to B.$ Тогда для любого подмножества $X\subseteq A$ можно определить

$$f(X) = \{ f(x) | x \in X \}$$

- образ множества X из отображения f.