TENTATIVE

All information in this technical data sheet is tentative and subject to change without notice.

# 12.1"XGA

# TECHNICAL SPECIFICATION

# AA121XG02

- $\bullet 5.5$ mm $^{t}(MAX)$ Module
- $\bullet 150 cd/m^2$
- •LVDS-I/F

# MITSUBISHI / ADI

Date: June.27,'01

# **CONTENTS**

| No. | Item                                    | Page        |
|-----|-----------------------------------------|-------------|
|     | COVER                                   | 1           |
|     | CONTENTS                                | 2           |
| 1   | OVERVIEW                                | 3           |
| 2,  | ABSOLUTE MAXIMUM RATINGS                | 4           |
| 3   | ELECTRICAL CHARACTERISTICS              | 4, 5        |
| 4   | INTERFACE PIN CONNECTION                | 6           |
| 5   | INTERFACE TIMING                        | 7, 8, 9, 10 |
| 6   | BLOCK DIAGRAM                           | 11          |
| 7   | MECHANICAL SPECIFICATION                | 12, 13      |
| 8   | OPTICAL CHARACTERISTICS                 | 14, 15      |
| 9 ' | RELIABILITY TEST CONDITION              | 16          |
| 10  | HANDLING PRECAUTIONS FOR TFT-LCD MODULE | 17,18,19    |

#### 1. OVERVIEW

AA121XG02 is 12.1" color TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, driver ICs, control circuit, and backlight unit.

By applying 6 bit digital data,  $1024 \times 768$ , 262 K-color images are displayed on the 12.1" diagonal screen. Input power voltage is single 3.3V for LCD driving.

Inverter for backlight is not included in this module. General specifications are summarized in the following table:

| ITEM                                  | SPECIFICATION                                     |
|---------------------------------------|---------------------------------------------------|
| Display Area (mm)                     | 245.76 (H) × 184.32 (V)<br>(12.094-inch diagonal) |
| Number of Dots                        | 1024 × 3 (H) × 768 (V)                            |
| Pixel Pitch (mm)                      | 0.240 (H) × 0.240 (V)                             |
| Color Pixel Arrangement               | RGB vertical stripe                               |
| Display Mode                          | normally white                                    |
| Number of Color                       | 262 K                                             |
| Optimum Viewing Angle(Contrast ratio) | 6 o'clock                                         |
| Brightness (cd/m²)                    | 150                                               |
| Module Size (mm)                      | 261.0 (W) × 199.0 (H) × 5.5 MAX (D)               |
| Module Mass (g)                       | 340 (Typ)、365 (Max)                               |
| Backlight Unit                        | CCFL, 1-tube, edge-light                          |
| Surface Treatment                     | Anti-glare and hard-coating 3H                    |

Sign "( )" represents preliminary value. Characteristic value without any note is typical value.

The LCD product described in this specification is designed and manufactured for the standard use in OA equipment and consumer products, such as computers, communication equipment, industrial robots, AV equipment and so on.

Do not use the LCD product for the equipment that require the extreme high level of reliability, such as aerospace applications, submarine cables, nuclear power control systems and medical or other equipment for life support.

ADI assumes no responsibility for any damage resulting from the use of the LCD product in disregard of the conditions and handling precautions in this specification.

If customers intend to use the LCD product for the above items or other no standard items, please contact our sales persons in advance.

## 2. ABSOLUTE MAXIMUM RATINGS

| ITEM                         | SYMBOL            | MIN. | MAX. | UNIT  |
|------------------------------|-------------------|------|------|-------|
| Power Supply Voltage for LCD | VCC               | 0    | 4.0  | V     |
| Lamp Voltage                 | VL                | 0    | 2000 | Vrms  |
| Lamp Current                 | IL ·              | 0    | 8.0  | mArms |
| Lamp Frequency               | FL                |      | 100  | kHz   |
| Operation Temperature *1)    | $\mathrm{T_{op}}$ | 0    | 50   | °C    |
| Storage Temperature *1)      | $T_{\sf stg}$     | -20  | 60   | °C    |

#### [Note]

### 3. ELECTRICAL CHARACTERISTICS

(1) TFT- LCD

 $Ta = 25^{\circ}C$ 

| (1) 11 1 11 11 11 11 11 11 11 11 11 11 11 | <b></b>       |     |           |     |      | $_{}$ Ta = 25°C            |  |
|-------------------------------------------|---------------|-----|-----------|-----|------|----------------------------|--|
| ITEM                                      | ITEM SYMBOL I |     | MIN. TYP. |     | UNIT | Remarks                    |  |
| Power Supply Voltages for LCD *)          | VCC           | 3.0 | 3.3       | 3.6 | V    | Note A)<br>(See next page) |  |
| Power Supply Currents for LCD             | ICC           |     | 250       | 340 | m A  | Note B) (See next page)    |  |

<sup>\*)</sup> at the Input connector

(2) Backlight

Ta = 25°C

|                       | T      |      | 1    | T    | <del>,</del> | 1α 20 0         |
|-----------------------|--------|------|------|------|--------------|-----------------|
| ITEM                  | SYMBOL | MIN. | TYP. | MAX. | UNIT         | Remarks         |
| Lamp Voltage          | VL     |      | 620  |      | Vrms         | IL = 5.0  mArms |
| Lamp Current *1)      | IL     | 3.0  | 5.0  | 6.0  | mArms        | *1)             |
| Starting Lamp Voltage | VS     | 1100 |      |      | Vrms         | Ta = 25°C       |
|                       | , VD   | 1300 |      |      | Vrms         | Ta = 0°C        |
| Lamp Frequency *2)    | FL     | 50   |      | 80   | kHz          | *2)             |

\*1) Lamp Current measurement method (The current meter is inserted in low voltage line.)



\*2)Lamp frequency of inverter may produce interference with horizontal synchronous frequency, and this may cause horizontal beat on the display. Therefore, please adjust lamp frequency, and keep inverter as far from module as possible or use electronic shielding between inverter and module to avoid the interference.

<sup>\*1)</sup> Top, Tstg  $\leq$  40°C : 90% RH max. without condensation

Top, Tstg > 40°C : Absolute humidity shall be less than the value of 90% RH at 40°C without condensation.

### [Note]

## A) Power and signals sequence:

 $t1 \le 10 \text{ ms}$  400 ms  $\le t5$   $0 \le t2 \le 200 \text{ ms}$  200 ms  $\le t6$   $0 \le t3 \le 1s$   $0 \le t7$  $t4 \le 50 \text{ms}$ 



### VCC-dip conditions:

- 1) When  $2.4 \text{ V} \leq \text{VCC} \leq 3.0 \text{ V}$ ,  $\text{td} \leq 10 \text{ ms}$
- 2) When  $VCC \le 2.4 \text{ V}$

VCC-dip conditions shall also follow the power and signals sequence.



### B) Current condition:

Typical: 64- gray- bar-pattern VCC = 3.3 V,  $f_{\text{H}}$  = 48.4 kHz,  $f_{\text{V}}$  = 60 Hz,  $f_{\text{CLK}}$  = 65 MHz

# 4. INTERFACE PIN CONNECTION

CN 1(INTERFACE SIGNAL)

Used connector: DF19L-20P-1H(HIROSE)

Corresponding connector: DF19G-20S-1C(HIROSE)

| Pin No. | Symbol  | 機能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | VCC     | +3.3V Power supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2       | VCC     | +3.3V Power supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3       | GND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4       | GND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5       | Link 0- | R0, R1, R2, R3, R4, R5, G0 *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6       | Link 0+ | R0, R1, R2, R3, R4, R5, G0 *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7       | GND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . 8     | Link 1- | G1, G2, G3, G4, G5, B0, B1 *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9       | Link 1+ | G1, G2, G3, G4, G5, B0, B1 *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10      | GND     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11      | Link 2- | B2, B3, B4, B5, HD, VD, DENA *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12      | Link 2+ | B2, B3, B4, B5, HD, VD, DENA *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13      | GND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14      | CLKIN-  | Clock-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15      | CLKIN+  | Clock+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16      | GND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17      | TEST    | This pin shall be open.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 1201    | Test signal output for only internal test use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18      | TEST    | This pin shall be open.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |         | Test signal output for only internal test use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| . 19    | GND     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20      | GND     | , and the second |

<sup>\*)</sup> See; Timing Chart(P8) and LVDS Data Mapping(P9)

### CN 2 (BACKLIGHT)

Backlight-side connector: BHSR-02VS-1(JST) Inverter-side connector: SM02B-BHSS-1(JST)

| Pin No. | Symbol | Function            |
|---------|--------|---------------------|
| 1       | CTH    | VBLH (High Voltage) |
| 2       | CTL    | VBLL (Low Voltage)  |

[Note]

VBLH-VBLL = VL

### 5. INTERFACE TIMING

(1) Timing Specifications

|             | ·.   | ITEM                   | SYMBOL  | MIN.                 | TYP. | MAX. | UNIT   |     |    |
|-------------|------|------------------------|---------|----------------------|------|------|--------|-----|----|
|             | DCLK | Frequency              | fclk    | 43.6                 | 65   | 66.6 | MHz    |     |    |
|             |      | Period                 | tclk    | 15                   | 15.4 | 22.9 | ns     |     |    |
|             |      | Horizontal Active Time | tha     | 1024                 | 1024 | 1024 | tclk   |     |    |
|             |      | Horizontal Front Porch | thep    | 0                    | 24   |      | tclk . |     |    |
| LCD Timing  | DENA | Horizontal Back Porch  | thbp    | 4                    | 296  |      | , tclk |     |    |
|             | DENA | DENA                   | DENA    | Vertical Active Time | tva  | 768  | 768    | 768 | tH |
| LVDS        |      | Vertical Front Porch   | tvfp    | 2                    | 3    |      | tн     |     |    |
| Transmitter |      | Vertical Back Porch    | tvbp    | 1                    | 35   |      | th     |     |    |
| Input       |      | Frequency              | $f_{H}$ | 42.4                 | 48.4 | 55.9 | kHz    |     |    |
|             | HD   | Period                 | tH      | 17.9                 | 20.7 | 23.6 | μs     |     |    |
|             |      | Low Width              | twhL    | 1                    | 136  | ~-   | tclk   |     |    |
|             |      | Frequency              | fv      | 55                   | 60   | 62   | Hz     |     |    |
|             | VD   | Period                 | tv      | 16.1                 | 16.7 | 18.2 | ms     |     |    |
|             |      | Low Width              | twvL    | 1                    | 6    |      | tн     |     |    |

#### [Note]

- 1) Polarities of HD and VD are negative in this specification.
- 2) DENA (Data Enable) shall always be positive polarity as shown in the timing specification.
- 3) DCLK shall appear during all invalid period, and HD shall appear during invalid period of frame cycle.
- 4) LVDS timing follows the timing specifications of LVDS receiver IC: THC63LVDF84A(Thine).

### (2) Timing Chart

# a. Horizontal Timing Chart



### b. Vertical Timing Chart



(3) LVDS Data Mapping

| Cell     | Input pin *) | Data |
|----------|--------------|------|
| POC1     | TxIN0        | R0   |
| P0C2     | TxIN1        | R1   |
| P0C3     | TxIN2        | R2   |
| P0C4     | TxIN3        | R3   |
| P0C5     | TxIN4        | R4   |
| P0C6     | TxIN5        | R5   |
| P0C7     | TxIN6        | G0   |
| P1C1     | TxIN7        | G1   |
| P1C2     | TxIN8        | G2   |
| P1C3     | TxIN9        | G3   |
| P1C4     | TxIN10       | G4   |
| P1C5     | TxIN11       | G5   |
| P1C6     | TxIN12       | B0   |
| P1C7 ·   | TxIN13       | B1   |
| P2C1     | TxIN14       | B2   |
| P2C2     | TxIN15       | B3   |
| P2C3     | TxIN16       | B4   |
| P2C4     | TxIN17       | B5   |
| P2C5     | TxIN18       | HD   |
| P2C6     | TxIN19       | VD   |
| P2C7     | TxIN20       | DENA |
| Ref-CLK1 | TxCLKIN      | DCLK |

<sup>\*):</sup> Pin definition of DS90C363(NS)

(4) Color Data Assignment

|       | Data Assig |     | ,  | RD  | ATA      |     |     |       |        | G D      | АТА |    |     |          |              | ВГ      | ATA      | ···· |     |
|-------|------------|-----|----|-----|----------|-----|-----|-------|--------|----------|-----|----|-----|----------|--------------|---------|----------|------|-----|
| COLOR | INPUT      | R5  | R4 | R3  | R2       | R1  | RO  | G5    | G4     | G3       | G2  | G1 | G0  | B5       | B4           |         | B2       | B1   | BO  |
|       | DATA       | MSB |    |     |          |     | LSB | MSB   |        |          |     |    |     | MSB      |              |         |          |      | LSB |
|       | BLACK      | 0   | 0  | 0   | 0        | 0   | 0   | 0     | 0      | 0        | 0   | 0  | 0   | 0        | 0            | 0       | 0        | 0    | 0   |
|       | RED(63)    | 1   | 1  | 1   | 1        | 1   | 1   | 0     | 0      | 0        | 0   | 0  | 0   | 0        | 0            | 0       | 0        | 0    | 0   |
|       | GREEN(63)  | 0   | 0  | 0   | 0        | 0   | 0   | 1     | 1      | 1        | 1   | 1  | 1   | 0        | 0            | 0       | 0        | 0    | 0   |
| BASIC | BLUE(63)   | 0   | 0  | 0   | 0        | 0   | 0   | 0     | 0      | 0        | 0   | 0  | 0   | 1        | 1            | 1       | 1        | 1    | 1   |
| COLOR | CYAN       | 0   | 0  | 0   | 0        | 0   | 0   | 1     | 1      | 1        | 1   | 1  | 1   | 1        | 1            | 1       | 1        | 1    | 1   |
|       | MAGENTA    | 1   | 1  | . 1 | 1        | 1   | 1   | 0     | 0      | 0        | 0   | 0  | 0   | 1        |              | 1       | 1        | 1    | 1   |
|       | YELLOW     | 1   | 1  | 1   | 1        | 1   | 1   | 1     | 1      | 1        | 1   | 1  | 1   | 0        | 0            | 0       | 0        | 0.   | 0   |
|       | WHITE      | 1   | 1  | 1   | 1        | 1   | 1   | 1     | 1      |          | 1   | 1  | 1   | 1        | 1            | 1       | 1        | 1    | 1   |
|       | RED(0)     | 0   | 0  | .0  | 0        | 0   | 0   | 0     | 0      | 0        | 0   | 0  | 0   | 0        | 0            | 0       | 0        | 0    | 0   |
|       | RED (1)    | 0   | 0  | 0   | 0        | 0   | 1   | 0     | 0.     | 0        | 0   | 0  | 0   | 0        | 0            | 0       | 0        | 0    | 0   |
|       | RED(2)     | 0   | 0  | 0   | 0        | 1   | 0   | 0     | 0      | 0        | 0   | 0  | 0   | 0        | 0            | 0       | 0        | 0    | 0   |
| RED   |            |     |    |     |          |     |     |       |        |          |     |    |     |          |              |         |          |      |     |
|       |            |     |    |     |          |     |     |       |        |          |     |    |     |          |              |         |          |      |     |
|       | RED (62)   | 1   | 1  | 1   | 1        | 1   | 0   | 0     | 0      | 0        | 0   | 0  | 0   | 0        | 0            | 0       | 0        | 0    | 0   |
|       | RED(63)    | 1   | 1  | 1   | 1        | 1   | 1   | 0     | 0      | 0        | 0   | 0  | 0.  | 0        | 0            | 0       | 0        | 0    | 0   |
|       | GREEN(0)   | 0   | 0  | 0   | 0        | 0   | 0   | 0     | 0      | 0        | 0   | 0  | 0   | 0        | 0            | 0       | 0        | 0    | 0   |
|       | GREEN (1)  | 0   | 0  | 0   | 0        | 0   | 0   | 0     | 0      | 0        | 0   | 0  | 1   | 0        | 0            | 0       | 0        | 0    | 0   |
|       | GREEN(2)   | 0   | 0  | 0   | 0        | 0   | 0   | 0     | 0      | 0        | 0   | 1  | . 0 | 0        | 0            | 0       | 0        | 0    | 0   |
| GREEN |            |     |    |     |          |     |     |       |        |          |     |    |     |          |              |         |          |      |     |
|       |            |     |    |     |          |     |     |       |        |          |     |    |     |          |              |         |          |      |     |
|       | GREN(62)   | 0   | 0  | 0   | 0        |     |     | 1     | :      | 1        | 1   | 1  | 0   | 0        | 0            | 0       | 0        | 0    | 0   |
| ·     | GREEN(63)  | 0   |    | 0   |          | - 1 |     | 1     |        |          |     |    |     | 0        |              | 0       | 0        | 0    | 0   |
|       | BLUE(0)    | 0   |    | 0   | 0        | 0   | 0   | 0     | ·····i | 0        |     |    | 0   | 0        | ••••••       | 0       | 0        | 0    | 0   |
|       | BLUE(1)    | 0   |    | 0   | 0        | 0   | 0   | 0     | 0      | 0        | 0   |    | 0   | 0        | <del>-</del> | 0       | 0        | 0    | 1   |
|       | BLUE(2)    | 0   | 0  | 0   | 0        | 0   | 0   | 0     | 0      | 0        | 0   | 0  | 0   | 0        | 0            | 0       | 0        | 1    | 0   |
| BLUE  | ·          |     |    |     | <u> </u> |     |     |       |        | <u>l</u> |     |    |     | <u></u>  | . <u></u>    | <u></u> | <u>.</u> |      |     |
|       |            |     |    |     |          |     |     |       |        |          |     |    |     | <u> </u> |              |         |          |      |     |
|       | BLUE(62)   | 0   |    |     |          |     | 0   | ····· | 0      | ······   | :   | 0  |     | 1        | ·····        |         | 1        | 1    | 0   |
|       | BLUE(63)   | 0   | 0  | 0   | 0        | 0   | 0   | 0     | 0      | 0        | 0   | 0  | 0   | 1        | 1            | 1       | 1        | 1    | 1   |

[Note]

1) Definition of gray scale

Color (n) ---n indicates gray scale level.

Higher n means brighter level.

2) Data

1:High, 0: Low

# 6. BLOCK DIAGLAM



### **BACKLIGHT**







### [Note]

We recommend you referring to the detailed drawing for your design.

Please contact our company sales representative when you need the detailed drawing.

# 8. OPTICAL CHARACTERISTICS

| Ta = 25°C, $VCC = 3.3$ | V, Input Sign | nals: Typ. Value | s shown in | Section 5 |
|------------------------|---------------|------------------|------------|-----------|
|                        |               |                  |            |           |

| ITE          | TV/I       | SYMBOL | CONTINUON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     | 1      |       |                     | n in Section 5 |
|--------------|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|---------------------|----------------|
|              |            | 1      | CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN.  | TYP.   | MAX.  | UNIT                | Remarks        |
| Contrast Rat | tio        | , CR   | $\theta = \phi = 0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 150    |       |                     | *1)*3)         |
| Luminance    |            | Lw     | $\theta = \phi = 0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 150    |       | $\mathrm{cd/m}^{2}$ | *2)*3)         |
| Response Tir | ne         | tr     | $\theta = \phi = 0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 20     |       | ms                  | *3)*4)         |
|              | 1          | tf     | $\theta = \phi = 0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 30     |       | ms                  | *3)*4)         |
| Viewing      | Horizontal | ф      | $CR \ge 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | -45~45 |       | 0                   | *3)            |
| Angle        | Vertical   | θ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -30~10 |       | 0                   | *3)            |
| •            | Red        | Rx     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.541 | 0.571  | 0.601 |                     |                |
|              |            | Ry     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.304 | 0.334  | 0.364 |                     |                |
| Color        | Green      | Gx     | 1 de la companya de l | 0.299 | 0.329  | 0.359 |                     | , P            |
| Coordinates  |            | Gy     | $\theta = \phi = 0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.501 | 0.531  | 0.561 | . <del></del>       | *3)            |
|              | Blue       | Bx     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.132 | 0.162  | 0.192 |                     | ŕ              |
|              |            | By     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.130 | 0.160  | 0.190 |                     |                |
|              | White      | Wx     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.295 | 0.325  | 0.355 |                     |                |
|              |            | Wy     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.315 | 0.345  | 0.375 |                     |                |

[Note]

These items are measured using CS-1000(MINOLTA) or LCD-7000(Otsuka Electronic) under the dark room condition (no ambient light).

Condition: IL = 5.0 mArms, FL = 50 kHz

### \*1) Definition of Contrast Ratio

CR = ON (White) Luminance / OFF(Black) Luminance

#### \*2) Definition of Luminance

Lw = ON (White) Luminance: average of 5 points



# \*3) Definition of Viewing Angle( $\theta\,,\,\phi)$



## \*4) Definition of Response Time



# 9. RELIABILITY TEST CONDITION

(1) Temperature and Humidity

| TEST ITEM                           | CONDITIONS                                   |
|-------------------------------------|----------------------------------------------|
| HIGH TEMPERATURE                    | 40°C, 90%RH, 240 h                           |
| HIGH HUMIDITY OPERATION             | (No condensation)                            |
| HIGH TEMPERATURE STORAGE            | 60°C, 96 h                                   |
| LOW TEMPERATURE STORAGE -20°C, 96 h |                                              |
| THERMAL SHOCK                       | BETWEEN -20°C (1h) and 60°C(1h).<br>5 CYCLES |

(2) Shock & Vibration

| ITEM            | CONDITIONS                                                            |
|-----------------|-----------------------------------------------------------------------|
|                 | Shock level: 1470 m/s <sup>2</sup> (150 G)                            |
| SHOCK           | Waveform: half sinusoidal wave, 2 ms                                  |
| (NON-OPERATION) | Number of shocks: one shock input in each direction of three mutually |
|                 | Perpendicular axes for a total of six shock inputs                    |
|                 | Vibration level: 9.8 m/s <sup>2</sup> (1.0 G)                         |
| ·               | Waveform: sinusoidal                                                  |
| VIBRATION       | Frequency range: 5 to 500Hz                                           |
| (NON-OPERATION) | Frequency sweep rate: 0.5 octave /min                                 |
|                 | Duration: one sweep from 5 to 500 Hz in each of three mutually        |
|                 | Perpendicular axis(each x,y,z axis: 1 hour, total 3 hours)            |

### (3) Judgment standard

The judgment of the above tests should be made as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect.

Partial transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defects.

# 10. HANDLING PRECAUTIONS FOR TFT-LCD MODULE

Please pay attention to the followings in handling TFT-LCD products:

#### (1) ASSEMBLY PRECAUTION

- a. Please use the mounting hole on the module in installing and do not bending or wrenching LCD in assembling. And please do not drop, bend or twist LCD module in handling.
- b. Please design display housing in accordance with the following guide lines.
  - (a) Housing case must be designed carefully so as not to put stresses on LCD all sides and not to wrench module. The stresses may cause non-uniformity even if there is no non-uniformity statically.
  - (b) Keep sufficient clearance between LCD module back surface and housing when the LCD module is mounted. Approximately 1.0mm of the clearance in the design is recommended taking into account the tolerance of LCD module thickness and mounting structure height on the housing.
  - (c) When some parts, such as, FPC cable and ferrite plate, are installed underneath the LCD module, still sufficient clearance is required, such as 0.5 mm. This clearance is, especially, to be reconsidered when the additional parts are implemented for EMI countermeasure.
  - (d) Design the inverter location and connector position carefully so as not to give stress to lamp cable, or not to interface the LCD module by the lamp cable.
  - (e) Keep sufficient clearance between LCD module and the others parts, such as inverter and speaker so as not to interface the LCD module. Approximately 1.0 mm of the clearance in the design is recommended.
- c. Please do not push or scratch LCD panel surface with anything hard. And do not soil LCD panel surface by touching with bare hands. (Polarizer film, surface of LCD panel is easy to be flawed.)
- d. Please do not press any parts on the rear side such as source TCP, gate TCP, control circuit board and FPCs during handling LCD module. If pressing rear part is unavoidable, handle the LCD module with care not to damage them.
- e. Please wipe off LCD panel surface with absorbent cotton or soft cloth in case of it being soiled.
- f. Please wipe off drops of adhesives like saliva and water on LCD panel surface immediately. They might damage to cause panel surface variation and color change.
- g. Please do not take a LCD module to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well.
- h. Please do not touch metal frames with bare hands and soiled gloves. A color change of the metal frames can happen during a long preservation of soiled LCD modules.
- i. Please pay attention to handling lead wire of backlight so that it is not tugged in connecting with inverter.

j. Please connect the metal frame of LCD module to GND in order to minimize the effect of external noise and EMI.

# (2) OPERATING PRECAUTIONS

- a. Please be sure to turn off the power supply before connecting and disconnecting signal input cable.
- b. Please do not change variable resistance settings in LCD module. They are adjusted to the most suitable value. If they are changed, it might happen LCD does not satisfy the characteristics specification.
- c. LCD backlight takes longer time to become stable of radiation characteristics in low temperature than in room temperature.
- d. A condensation might happen on the surface and inside of LCD module in case of sudden change of ambient temperature.
- e. Please pay attention not to display the same pattern for very long time. Image might stick on LCD. Even if image sticking happens, it may disappear as the operation time proceeds.
- f. Please obey the same safe instructions as ones being prepared for ordinary electronic products.

### (3) PRECAUTIONS WITH ELECTROSTATICS

- a. This LCD module use CMOS-IC on circuit board and TFT-LCD panel, and so it is easy to be affected by electrostatics. Please be careful with electrostatics by the way of your body connecting to the ground and so on.
- b. Please remove protection film very slowly from the surface of LCD module to prevent from electrostatics occurrence.

### (4) STORAGE PRECAUTIONS

- a. Please do not leave the LCDs in the environment of high humidity and high temperature such as 60°C90%RH.
- b. Please do not leave the LCDs in the environment of low temperature; below -20°C.

### (5) SAFETY PRECAUTIONS

- a. When you waste damaged or unnecessary LCDs, it is recommended to crush LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- b. If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

### (6) OTHERS

- a. A strong incident light into LCD panel might cause display characteristics changing inferior because of polarizer film, color filter, and other materials becoming inferior. Please do not expose LCD module direct sunlight and strong UV rays.
- b. Please pay attention to a panel side of LCD module not to contact with other materials in preserving it alone.
- c. For the packaging box, please pay attention to the followings:
  - (a) Packaging box and inner case for LCD are designed to protect the LCDs from the damage or scratching during transportation. Please do not open except picking LCDs up from the box.
  - (b) Please do not pile them up more than 5 boxes. (They are not designed so.) And please do not turn over.
  - (c) Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up.
  - (d) Packaging box and inner case for LCDs are made of cardboard. So please pay attention not to get them wet. (Such like keeping them in high humidity or wet place can occur getting them wet.)