Ps # 9 Solutions

I. In reduced row-echelar form, A becomes

\[
\begin{align*}
\b

b. Given the tools currently at our disposal, we cannot compute the general solution we cannot compute the general solution as existence + uniqueness tells us we should have 3 linearly independent solutions. We currently only have 2!

3 a. The eigenvalues are
$$-2$$
, -1 , 0 , $+1$.

b. for $4=0$, the corresponding eigenvector is parallel to $v=\begin{pmatrix} 9\\3\\1 \end{pmatrix}$

4. The eigenvalues of A are -1 , 1 , $+2$ with corresponding eigenvectors

 $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\3\\1 \end{pmatrix}$.

Thus, the general solution is

 $\vec{X}_{3n} = \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + C_1 e^{-t}\begin{pmatrix} -1\\1\\0 \end{pmatrix} + C_2 e^{t}\begin{pmatrix} 1\\1\\0\\3 \end{pmatrix} + C_3 e^{2t}\begin{pmatrix} 8\\10\\3\\3 \end{pmatrix}$

5. This matrix has eigenvalues of $\frac{5+\sqrt{17}}{2} = \frac{5-\sqrt{17}}{2}$

with eigenvectors $\begin{pmatrix} -3+\sqrt{17}\\4 \end{pmatrix} + \begin{pmatrix} -3-\sqrt{17}\\4 \end{pmatrix}$. The

with eigenvectors
$$\left(\begin{array}{c} 4 \end{array}\right)^{\frac{1}{2}} \left(\begin{array}{c} 4 \end{array}\right)^{\frac{1}{2}} \left($$