Notazione

Funzioni di più variabili e funzioni vettoriali

 $f:A\subset\mathbb{R}^n o\mathbb{R}^k$ è una funzione

- di più variabili se $k=1 \land n \geq 2$
- vettoriale di più variabili se $k \geq 2 \wedge n \geq 2$

Insieme

 $A \subset \mathbb{R}^n$

Intorno

Si chiama intorno sferico di $p_0 \in \mathbb{R}^n$ di raggio r>0 l'insieme $\mathrm{B}(p_0,r):=\{p\in \mathbb{R}^n: \mathrm{d}(p,p_0)< r\}$

Punto di frontiera

 $\underline{p_0} \in \mathbb{R}^n$ si dice punto di frontiera di A se $\mathrm{B}(\underline{p_0},r) \cap A \neq \emptyset \wedge \mathrm{B}(\underline{p_0},r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset \ \ \forall r > 0$ L'insieme di tutti i punti di frontiera di A è detto frontiera di A e si denota con ∂A

Insieme chiuso

A è detto chiuso se ogni punto di frontiera di A appartiene ad A

Insieme aperto

A è detto aperto se non contiene alcun punto della sua frontiera

Parte interna

L'insieme di tutti i punti di A che non sono di frontiera si chiama parte interna di A e si denota con \mathring{A}

Insieme limitato

A è detto limitato se $\exists r>0:A\subset \mathrm{B}(\underline{0},r)$

Punto di accumulazione

 $p_0\in\mathbb{R}^n$ si dice punto di accumulazione per A se $\mathrm{B}(p_0,r)\cap(A\setminus\{p_0\})
eq\emptyset\;\;orall r>0$

Punto isolato

 $p_0 \in A$ si dice punto isolato di A se non è un punto di accumulazione

Limite

 $f:A\subset \mathbb{R}^n o \mathbb{R}$, $\underline{p_0}$ punto di accumulazione di A II limite

$$\exists \lim_{ar{p}
ightarrow p_0} f(ar{p}) = l \in \mathbb{R}$$

se

$$orall \epsilon > 0 \ \ \exists \delta > 0 : |f(p) - l| < \epsilon \ \ orall (p) \in \mathrm{B}(p,\delta) \cap (A \setminus \{p_0\})$$

 $f,g:A\subset\mathbb{R}^n o\mathbb{R}$, p_0 punto di accumulazione di A

Se
$$\exists \lim_{p o p_0} f(p) = l \in \mathbb{R}$$
 e $\exists \lim_{p o p_0} g(p) = m \in \mathbb{R} \implies$

- $ullet \ \exists \lim_{p
 ightarrow p_0} (f(p) + g(p)) = l + m$
- $ullet \ \exists \lim_{p
 ightarrow p_0} f(p) \cdot g(p) = l \cdot m$
- Se $g(\underline{p})
 eq 0 \ \ orall \underline{p} \in (A \setminus \{\underline{p_0}\})$ e $m
 eq 0 \Longrightarrow$

$$\exists \lim_{ \underline{p} o \underline{p_0} } rac{f(\underline{p})}{g(p)} = rac{l}{m}$$

- $F: \mathbb{R} o \mathbb{R}$ continua, $h(p) := F(f(p)) \implies \exists \lim_{p o p_0} h(p) = F(l)$
- $\bullet \ \ h:A\to \mathbb{R}, \ f(\underline{p})\le h(p)\le g(\underline{p}) \ \ \underline{\forall} p\in (A\setminus \{\underline{p_0}\}) \ \text{se} \ l=m \implies \exists \lim_{p\to p_0} g(\underline{p})=l$

Limite lungo direzioni

Funzione restrizione: $B\subset A,\, f|_B: B\to \mathbb{R},\, f|_B(p):=f(p)$ se $p\in B$

 $f:A\subset \mathbb{R}^n o \mathbb{R}$, p_0 punto di accumulazione di A, sono equivalenti:

- $ullet \ \exists \lim_{p o p_0} f(p) = l$
- $orall B\subset A$ per cui $\underline{p_0}$ è punto di accumulazione di B $\exists \lim_{\underline{p} o p_0} f|_B(\underline{p})=l$