

HackerRank

Editorial 🖰 Problem Submissions Leaderboard A document is represented as a collection paragraphs, a paragraph is represented as a collection of sentences, a sentence is represented as a collection of words and a word is represented as a collection of lower-case ([a-z]) and upper-case ([A-Z]) English characters. You will convert a raw text document into its component paragraphs, sentences and words. To test your results, queries will ask you to return a specific paragraph, sentence or word as described below. Alicia is studying the C programming language at the University of Dunkirk and she represents the words, sentences, paragraphs, and documents using pointers: A word is described by char*. A sentence is described by char**. The words in the sentence are separated by one space (" "). The last word does not end with a space(" "). A paragraph is described by char***. The sentences in the paragraph are separated by one period ("."). A document is described by char****. The paragraphs in the document are separated by one newline("\n"). The last paragraph does not end with a newline For example: Learning C is fun. Learning pointers is more fun. It is good to have pointers. • The only sentence in the first paragraph could be represented as: char** first_sentence_in_first_paragraph = {"Learning", "C", "is", "fun"}; • The first paragraph itself could be represented as: char*** first_paragraph = {{"Learning", "C", "is", "fun"}}; • The first sentence in the second paragraph could be represented as: char** first_sentence_in_second_paragraph = {"Learning", "pointers", "is", "more", "fun"}; • The second sentence in the second paragraph could be represented as: char** second_sentence_in_second_paragraph = {"It", "is", "good", "to", "have", "pointers"}; • The second paragraph could be represented as: char*** second_paragraph = {{"Learning", "pointers", "is", "more", "fun"}, {"It", "is", "good", "to", "have", "pointers"} • Finally, the document could be represented as: char**** document = {{{"Learning", "C", "is", "fun"}}, {{"Learning", "pointers", "is", "more", "fun"}, {"It", "is", "good

Alicia has sent a document to her friend Teodora as a string of characters, i.e. represented by **char*** not **char******. Help her convert the document to **char****** form by completing the following functions:

- char**** get_document(char* text) to return the document represented by char****
- char*** kth_paragraph(char**** document, int k) to return the k^{th} paragraph.
- char** kth_sentence_in_mth_paragraph(char****document, int k, int m) to return the k^{th} sentence in the m^{th} paragraph.
- char* kth_word_in_mth_sentence_of_nth_paragraph(char**** document, int k, int m, int n) to return the k^{th} word in the m^{th} sentence of the n^{th} paragraph.

Input Format

The first line contains the integer paragraph_count.

Each of the next **paragraph_count** lines contains a paragraph as a single string.

The next line contains the integer q, the number of queries.

Each of the next q lines or groups of lines contains a query in one of the following formats:

- 1 The first line contains 1 k:
 - \circ The next line contains an integer $m{x}$, the number of sentences in the $m{k^{th}}$ paragraph.
 - \circ Each of the next $m{x}$ lines contains an integer $m{a}[m{i}]$, the number of words in the $m{i}^{th}$ sentence.
 - This query corresponds to calling the function **kth_paragraph**.
- 2 The first line contains **2 k m**:
 - \circ The next line contains an integer $m{x}$, the number of words in the $m{k^{th}}$ sentence of the $m{m^{th}}$ paragraph.
 - This query corresponds to calling the function **kth_sentence_in_mth_paragraph.**
- 3 The only line contains 3 k m n:
 - This query corresponds to calling the function **kth_word_in_mth_sentence_of_nth_paragraph.**

Constraints

- The text which is passed to the **get_document** has words separated by a space (" "), sentences separated by a period (".") and paragraphs separated by a newline("\n").
- The last word in a sentence does not end with a space.
- The last paragraph does not end with a newline.
- The words contain only upper-case and lower-case English letters.
- $1 \leq$ number of characters in the entire document ≤ 1000
- ullet 1 \leq number of paragraphs in the entire document \leq 5

Output Format

Print the paragraph, sentence or the word corresponding to the query to check the logic of your code.

Sample Input 0

```
Learning C is fun.
Learning pointers is more fun.It is good to have pointers.

1 2
2
5
6
2 1 1
4
3 1 1 1
```

Sample Output 0

```
Learning pointers is more fun.It is good to have pointers. Learning \ensuremath{\mathsf{C}} is fun Learning
```

Explanation 0

The first query corresponds to returning the second paragraph with ${f 2}$ sentences of lengths ${f 5}$ and ${f 6}$ words.

The second query correspond to returning the first sentence of the first paragraph. It contains $\bf 4$ words.

The third query corresponds to returning the first word of the first sentence of the first paragraph.

```
Change Theme Language: C

1 > #include <stdio.h>...

7 char* kth_word_in_mth_sentence_of_nth_paragraph(char**** document, int k, int m, int n) {
```