Time-Optimal Control of a Pseudo-Helicopter

Author: James Gross

CID: 01305321

Supervisor: Dr. Eric Kerrigan

Aims

- Design model predictive controllers with a minimum time objective for the Quanser 3 DOF helicopter
- Compare the performance of the controllers

Objectives

- Improve and validate mathematical model of the helicopter
- Determine optimal path
- Design tracking and nontracking controllers
- Investigate performance of the controllers in the absence and presence of disturbances

Contents

- 1. Introduction to Pseudo- 4. Tracking vs Non-Helicopter
 - Tracking
- 2. Mathematical Model and Model Validation
- 5. Disturbance Handling
- 6. Future Work
- 3. Optimal Path Planning
- 7. Conclusions

Introduction to the Pseudo-Helicopter

- 3 degrees of freedom: elevation, pitch, travel
- Highly coupled, nonlinear system
- Constraints on motor voltage, elevation, and pitch

Introduction to the Pseudo-Helicopter

Inputs:

Outputs:

- Front motor voltage V_f

Elevation

 ϵ

Back motor voltage V_h

Pitch

ρ

Travel

λ

Mathematical Model and Model Validation

Euler-Lagrange equations:

$$\frac{\partial}{\partial q_i} L(t, \boldsymbol{q}, \dot{\boldsymbol{q}}) - \frac{d}{dt} \frac{\partial}{\partial \dot{q}_i} L(t, \boldsymbol{q}, \dot{\boldsymbol{q}}) = Q_i \text{ for } i = 1, 2, ..., n$$

where $\mathbf{q} = [\epsilon \quad \rho \quad \lambda]^T$ and $L(t, \mathbf{q}, \dot{\mathbf{q}}) = T - V$

$$\rightarrow \dot{x} = f(x, u)$$

where $\mathbf{x} = [\epsilon \quad \rho \quad \lambda \quad \dot{\epsilon} \quad \dot{\rho} \quad \dot{\lambda}]^T$ and $\mathbf{u} = [V_f \quad V_b]^T$

Mathematical Model and Model Validation

Mathematical Model and Model Validation

No Actuator Lag

First Order Actuator Lag

damping

Mathematical Model and Model Validation

friction

Friction in pitch and travel directions negligible

- Simple friction model preferred
- sign function replaced with smooth approximation

Mathematical Model and Model Validation

- Open-loop:
 - RMS deviation of each model from experimental data showed a 533% improvement for the friction model
- Closed-loop:
 - Compared closed-loop responses of the models and the physical system using same LQR gains matrix

Optimal Path Planning

- Objective: get from start point to Cost function: end point in minimum time

$$V(x,u,t) = t_f$$

Start point:

$$x_0 = [0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0]^T$$

End point:

$$x_f \in \begin{bmatrix} 0 & 0 & \pi & 0 & 0 & 0 & -\infty & -\infty \\ 0 & 0 & \pi & 0 & 0 & \infty & \infty \end{bmatrix}$$

Hard constraints:

$$\epsilon \in [-27.5^{\circ}, 27.5^{\circ}]$$

$$\rho \in [-90^{\circ}, 90^{\circ}]$$

$$[-24, 24]$$

$$u \in \begin{bmatrix} -24 & 24 \\ -24 & 24 \end{bmatrix}$$

Optimal Path Planning

$$t_f = 2.1$$
 seconds

Tracking vs Non-Tracking

Tracking vs Non-Tracking

Linear tracking receding horizon controller:

- Objective: track the optimal path using a linear state space model as the predictive controller
- Cost function:

$$V(\boldsymbol{x}, \boldsymbol{u}, t) = \int_{t_{k_0}}^{t_{k_f}} ||\boldsymbol{y} - \boldsymbol{y}_r||^2 dt$$

Tracking vs Non-Tracking

$$\|y_f - y_{des}\|_2 = 1.124$$

Tracking vs Non-Tracking

Nonlinear non-tracking variable horizon controller:

- Objective: get from start point to end point in the minimum time possible using nonlinear frictionless model as predictive plant
- Cost function:

$$V(\boldsymbol{x},\boldsymbol{u},t)=t_f$$

Tracking vs Non-Tracking

$$\|y_f - y_{des}\|_2 = 0.646$$

Disturbance Handling

- White noise disturbance:
 - Added Gaussian white noise to signal to noise ratio 2
 - $-\dot{x} = f(x, u) + \xi(t)$

- Bias disturbance:
 - Added disturbance in the travel direction

$$-\ddot{\lambda} = f_{\lambda}(x, u) + \xi(t)$$

$$\xi(t) = \begin{cases} 2 & if \ t < 0.3 \\ 0 & otherwise \end{cases}$$

White noise disturbance

Disturbance Handling

Tracking

$$||y_f - y_{des}||_2 = 2.539$$

Non-Tracking

$$||y_f - y_{des}||_2 = 0.7718$$

Bias disturbance

Disturbance Handling

Tracking

$$||y_f - y_{des}||_2 = 0.868$$

Non-Tracking

$$\|y_f - y_{des}\|_2 = 0.336$$

Future Work

- Reduce computational time, possibly by parallelising the code or calculating multiple inputs each iteration
- Reduce the effects of plant-model mismatch by either introducing an input disturbance model or by using integral action
- Improve non-tracking controller performance by switching to a minimum energy cost function when in the vicinity of the desired end point

Conclusions

- Modified the nonlinear model by adding previously ignored dynamics, improving open-loop performance by 533%
- Determined the optimal path for a minimum time control objective
- Designed tracking and non-tracking controllers for the control objective
- Compared the performance of the controllers without disturbance, with non-tracking offering 74% better performance
- Compared the performance of the controllers with disturbance:

	Tracking	Non-tracking
White Noise	126% reduction	20% reduction
Bias	23% improvement	48% improvement