WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵: C12N 15/12, 15/62, C07K 13/00 C12N 5/10, C12Q 1/68 C07K 15/00

(11) International Publication Number:

WO 93/06215

A1

(43) International Publication Date:

1 April 1993 (01.04.93)

(21) International Application Number:

PCT/US92/07570

(22) International Filing Date:

8 September 1992 (08.09.92)

(30) Priority data:

761,068

17 September 1991 (17.09.91) US

(71) Applicant: THE SALK INSTITUTE FOR BIOLOGICAL STUDIES [US/US]; 10010 N. Torrey Pines Road, La Jolla, CA 92037 (US).

(72) Inventors: EVANS, Ronald, M.; 8615 La Jolla Scenic Road N., La Jolla, Ca 92037 (US). MANGELSDORF, David, J.; 4771 Seaford Place, San Diego, CA 92117 (US). ONG, Estelita, S.; 6307 Hannon Court, San Diego, CA 92117 (US). ORO, Anthony, E.; 10710 Escobar Drive, San Diego, CA 92124 (US). BORGMEYER, Uwe, K.; Steilshooper Strasse 27, D-2000 Hamburg 60 (DE). GIGUERE, Vincent; 1320 Islington Avenue, Apartment 606, Etobicoke, Ontario M9A 5C6 (CA). YAO, Tso-Pang; 7564 Charmant Drive, Apartment 1838, San Diego, CA 92122 (US).

(74) Agent: REITER, Stephen, E.; Pretty, Schroeder, Brueggemann & Clark, 444 South Flower Street, Suite 2000, Los Angeles, CA 90071 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: RECEPTOR OF THE THYROID/STEROID HORMONE RECEPTOR SUPERFAMILY

(57) Abstract

Novel members of the steroid/thyroid superfamily of receptors are described. DNA sequences encoding same, expression vectors containing such DNA and host cells transformed with such expression vectors are also disclosed, as are methods for the expression of the novel receptors of the invention, and various uses thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	MN	Mongolia
ĀÜ	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Faso	GN	Guinea	NO	Norway
BG	Bulgaria	GR	Greece	NZ	New Zealand
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	ireland	PT	Portugal
		IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo	Ki	of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire	LI	Liechtenstein	SN	Senegal
CM	Cameroon			SU	Soviet Union
cs	Czechoslovakia	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	LU	Luxembourg		
DE	Germany .	MC	Monaco	TG	Togo
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	Ml.	Mali	US	United States of America

RECEPTOR OF THE THYROID/STEROID HORMONE RECEPTOR SUPERFAMILY

FIELD OF THE INVENTION

The present invention relates to novel steroid-hormone or steroid-hormone like receptor proteins, genes encoding such proteins, and methods of making and using such proteins. In a particular aspect, the present invention relates to bioassay systems for determining the selectivity of interaction between ligands and steroid-hormone or steroid-hormone like receptor proteins.

10

BACKGROUND OF THE INVENTION

Transcriptional regulation of development and homeostasis in complex eukaryotes, including humans and other mammals, birds, fish, insects, and the like, is controlled by a wide variety of regulatory substances, including steroid and thyroid hormones. These hormones exert potent effects on development and differentiation of phylogenetically diverse organisms. The effects of hormones are mediated by interaction with specific, high affinity binding proteins referred to as receptors.

The ability to identify additional compounds which are able to affect transcription of genes which are responsive to steroid hormones or metabolites thereof, would be of significant value in identifying compounds of potential therapeutic use. Further, systems useful for monitoring solutions, body fluids, and the like, for the presence of steroid hormones or metabolites thereof, would be of value in medical diagnosis, as well as for various biochemical applications.

A number of receptor proteins, each specific for one of several classes of cognate steroid hormones [e.g., 35 estrogens (estrogen receptor), progesterones (progesterone

WO 93/06215

-2-

PCT/US92/07570

glucocorticoid (glucocorticoid receptor), receptor), receptor), aldosterones (androgen androgens (vitamin vitamin D (mineralocorticoid receptor), receptor)], retinoids (e.g., retinoic acid receptor) or for 5 cognate thyroid hormones (e.g., thyroid hormone receptor), Receptor proteins have been found to be are known. distributed throughout the cell population of complex eukaryotes in a tissue specific fashion.

10 Molecular cloning studies have made it possible to demonstrate that receptors for steroid, retinoid and thyroid hormones are all structurally related and comprise a superfamily of regulatory proteins. These regulatory proteins are capable of modulating specific gene expression 15 in response to hormone stimulation by binding directly to cis-acting elements. Structural comparisons and functional studies with mutant receptors have revealed that these molecules are composed of a series of discrete functional domains, most notably, a DNA-binding domain that composed typically of 66-68 amino acids, including two zinc fingers and an associated carboxy terminal stretch of amino acids, which approximately 250 latter comprises the ligand-binding domain.

An important advance in the characterization of this superfamily of regulatory proteins has been the delineation of a growing list of gene products which possess the structural features of hormone receptors. This growing list of gene products has been isolated by low-stringency hybridization techniques employing DNA sequences encoding previously identified hormone receptor proteins.

It is known that steroid or thyroid hormones, protected forms thereof, or metabolites thereof, enter 35 cells and bind to the corresponding specific receptor protein, initiating an allosteric alteration of the

protein. As a result of this alteration, the complex of receptor and hormone (or metabolite thereof) is capable of binding to certain specific sites on chromatin with high affinity.

5

It is also known that many of the primary effects of steroid and thyroid hormones involve increased transcription of a subset of genes in specific cell types.

10 A number of steroid hormone- and thyroid hormonetranscriptional control units responsive These include the mouse mammary tumor virus identified. 5'-long terminal repeat VTM) LTR), responsive glucocorticoid, aldosterone and androgen hormones; the 15 transcriptional control units for mammalian growth hormone genes, responsive to glucocorticoids, estrogens and thyroid hormones; the transcriptional control units for mammalian prolactin genes and progesterone receptor genes, responsive to estrogens; the transcriptional control units for avian 20 ovalbumin genes, responsive to progesterones; mammalian transcriptional metallothionein gene control units, responsive to glucocorticoids; and mammalian hepatic α_{20} globulin gene transcriptional control units, responsive to androgens, estrogens, thyroid hormones, and 25 glucocorticoids.

A major obstacle to further understanding and more widespread use of the various members of the steroid/thyroid superfamily of hormone receptors has been a lack of availability of the receptor proteins, in sufficient quantity and sufficiently pure form, to allow them to be adequately characterized. The same is true for the DNA gene segments which encode them. Lack of availability of these DNA segments has prevented in vitro manipulation and in vivo expression of the receptor-

-4-

encoding genes, and consequently the knowledge such manipulation and expression would yield.

In addition, a further obstacle to a more 5 complete understanding and more widespread use of members of the steroid/thyroid receptor superfamily is the fact that additional members of this superfamily remain to be discovered, isolated and characterized.

The present invention is directed to overcoming these problems of short supply of adequately purified receptor material, lack of DNA segments which encode such receptors and increasing the number of identified and characterized hormone receptors which are available for use.

BRIEF DESCRIPTION OF THE INVENTION

In accordance with the present invention, we have discovered novel members of the steroid/thyroid superfamily of receptors. The novel receptors of the present invention are soluble, intracellular, nuclear (as opposed to cell surface) receptors, which are activated to modulate transcription of certain genes in animal cells when the cells are exposed to ligands therefor. The nuclear receptors of the present invention differ significantly from known steroid receptors, both in primary sequence and in responsiveness to exposure of cells to various ligands, e.g., steroids or steroid-like compounds.

30

35

Also provided in accordance with the present invention are DNAs encoding the receptors of the present invention, including expression vectors for expression thereof in animal cells, cells transformed with such expression vectors, cells co-transformed with such expression vectors and reporter vectors (to monitor the

ability of the receptors to modulate transcription when the cells are exposed to a compound which interacts with the receptor); and methods of using such co-transformed cells in screening for compounds which are capable of leading to modulation of receptor activity.

Further provided in accordance with the present invention are DNA and RNA probes for identifying DNAs encoding additional steroid receptors.

10

In accordance with yet another embodiment of the invention, there is provided a method for making the receptors of the invention by expressing DNAs which encode the receptors in suitable host organisms.

15

The novel receptors and DNAs encoding same can be employed for a variety of purposes. For example, novel receptors of the present invention can be included as part of a panel of receptors which are screened to determine the interaction of proposed agonists or 20 selectivity of antagonists and other receptors. Thus, a compound which is believed to interact selectively, for example, with the glucocorticoid receptor, should not have any substantial effect on any other receptors, including those of the 25 present invention. Conversely, if such a proposed compound does interact with one or more of the invention receptors, then the possibility of side reactions caused by such compound is clearly indicated.

BRIEF DESCRIPTION OF THE FIGURE

Figure 1 is a schematic diagram correlating the relationship between the alternate spliced variants of invention receptor XR1.

30

PCT/US92/07570 WO 93/06215

-6-

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there are provided DNAs encoding a polypeptide characterized by 5 having a DNA binding domain comprising about 66 amino acids with 9 cysteine (Cys) residues, wherein said DNA binding domain has:

10

15

20

30

- less than about 70% amino acid sequence (i) identity with the DNA binding domain of human retinoic acid receptor-alpha (hRARalpha);
- (ii) less than about 60% amino acid sequence identity with the DNA binding domain of human thyroid receptor-beta (hTR-beta);
- (iii) less than about 50% amino acid sequence identity with the DNA binding domain of human glucocorticoid receptor (hGR); and
 - (iv) less than about 65% amino acid sequence identity in with the DNA binding domain of human retinoid X receptor-alpha alpha).

Alternatively, DNAs of the invention can be characterized with respect to percent amino acid sequence 25 identity of the ligand binding domain of polypeptides encoded thereby, relative to amino acid sequences of previously characterized receptors. As yet another alternative, DNAs of the invention can be characterized by identity of the percent overall amino acid sequence polypeptides encoded thereby, relative to amino acid sequences of previously characterized receptors.

Thus, DNAs of the invention can be characterized as encoding polypeptides having, in the ligand binding 35 domain:

5

10

- (i) less than about 35% amino acid sequence identity with the ligand binding domain of hRAR-alpha;(ii) less than about 30% amino acid sequence
 - (ii) less than about 30% amino acid sequence identity with the ligand binding domain of hTR-beta;
- (iii) less than about 25% amino acid sequence identity with the ligand binding domain of hGR; and
- (iv) less than about 30% amino acid sequence identity with the ligand binding domain of hRXR-alpha.

DNAs of the invention can be further to characterized as encoding polypeptides having an overall amino acid sequence identity of:

- (i) less than about 35% relative to hRARalpha;
- (ii) less than about 35% relative to hTRbeta;
- (iii) less than about 25% relative to hGR;
 and
 - (iv) less than about 35% relative to hRXRalpha.

25

35

20

Specific receptors contemplated for use in the practice of the present invention include:

"XR1" (variously referred to herein as receptor

"XR1", "hXR1", "hXR1.pep" or "verHT19.pep";

wherein the prefix "h" indicates the clone is of
human origin), a polypeptide characterized as
having a DNA binding domain comprising:

(i) about 68% amino acid sequence identity with the DNA binding domain of hRAR-alpha;

5

10

15

20

25

30

- (ii) about 59% amino acid sequence identity
 with the DNA binding domain of
 hTR-beta;
- (iii) about 45% amino acid sequence identity with the DNA binding domain of hGR; and
 - (iv) about 65% amino acid sequence identity
 with the DNA binding domain of
 hRXR-alpha;

see also Sequence ID No. 2 for a specific amino acid sequence representative of XR1, as well as ID No. 1 which is an exemplary Sequence nucleotide sequence encoding XR1. In addition, Sequence ID Nos. 4 and 6 present alternate aminoterminal sequences for the clone referred to as (the variant referred to as verht3 XR1 presented in Sequence ID No. 4 (an exemplary such sequence encoding nucleotide presented in Sequence ID No. 3), and the variant referred to as verhr5 is presented in Sequence ID No. 6 (an exemplary nucleotide sequence encoding such variant presented in Sequence ID No. 5);

"XR2" (variously referred to herein as receptor "XR2", "hXR2" or "hXR2.pep"), a polypeptide characterized as having a DNA binding domain comprising:

- i) about 55% amino acid sequence identity with the DNA binding domain of hRAR-alpha;
- (ii) about 56% amino acid sequence identity
 with the DNA binding domain of
 hTR-beta;
- (iii) about 50% amino acid sequence identity with the DNA binding domain of hGR; and

30

35

	(iv) about 52% amino acid sequence identity
•	with the DNA binding domain of
	hRXR-alpha;
	see also Sequence ID No. 8 for a specific amino
5	acid sequence representative of XR2, as well as
	Sequence ID No. 7 which is an exemplary
	nucleotide sequence encoding XR2;
	"XR4" (variously referred to herein as receptor
10	"XR4", "mXR4" or "mXR4.pep"; wherein the prefix
	"m" indicates the clone is of mouse origin), a
	polypeptide characterized as having a DNA binding
	domain comprising:
•	(i) about 62% amino acid sequence identity
15	with the DNA binding domain of
	hRAR-alpha;
	(ii) about 58% amino acid sequence identity
	with the DNA binding domain of
	hTR-beta;
20	(iii) about 48% amino acid sequence identity
	with the DNA binding domain of hGR; and
	(iv) about 62% amino acid sequence identity
	with the DNA binding domain of
_	hRXR-alpha;
25	see also Sequence ID No. 10 for a specific amino
	acid sequence representative of XR4, as well as
	Sequence ID No. 9 which is an exemplary
•	nucleotide sequence encoding XR4;

"XR5" (variously referred to herein as receptor "XR5", "mXR5" or "mXR5.pep"), a polypeptide characterized as having a DNA binding domain comprising:

(i) about 59% amino acid sequence identity with the DNA binding domain of hRAR-alpha;

PCT/US92/07570 WO 93/06215

5

10

15

20

25

30

_	7	Λ	
_	ı	u	

(ii)	about	52%	amino	acid	seque	nce	identity		
	with	the	DNA	bir	ding	do	main	of	
	hTR-be	eta;							
		_	_				• -		

- (iii) about 44% amino acid sequence identity with the DNA binding domain of hGR; and
 - (iv) about 61% amino acid sequence identity the DNA binding domain of with hRXR-alpha;

see also Sequence ID No. 12 for a specific amino acid sequence representative of XR5, as well as No. 11 which is Sequence ID an exemplary nucleotide sequence encoding XR5; and

"XR79" (variously referred to herein as "XR79", "dXR79" or "dXR79.pep"; wherein the prefix "d" indicates the clone is of Drosophila origin), a polypeptide characterized as having a DNA binding domain comprising:

- about 59% amino acid sequence identity the DNA binding domain hRAR-alpha;
- (ii) about 55% amino acid sequence identity with the binding DNA domain of hTR-beta:
- (iii) about 50% amino acid sequence identity with the DNA binding domain of hGR; and
 - (iv) about 65% amino acid sequence identity with the DNA binding domain hRXR-alpha:

see also Sequence ID No. 14 for a specific amino acid sequence representative of XR79, as well as an Sequence ID No. which is 13 nucleotide sequence encoding XR79.

35 The receptor referred to herein as "XR1" observed as three closely related proteins, presumably

produced by alternate splicing from a single gene. first of these proteins to be characterized (referred to as "verht19") comprises about 548 amino acids, and has a Mr of about 63 kilodalton. Northern analysis indicates that a 5 single mRNA species corresponding to XR1 is A variant verht19 the brain. of in expressed (alternatively referred to as "verht3", XR1' or XR1prime) is further characterized as comprising about 556 amino acids, and having a M, of about 64 kilodalton. Yet another 10 variant of verht19 (alternatively referred to as "verhr5", XR1'' or XR1prim2) is further characterized as comprising about 523 amino acids, and having a Mr of about 60 The interrelationship between these three kilodalton. variants of XR1 is illustrated schematically in Figure 1.

15

The receptor referred to herein as "XR2" further characterized as a protein comprising about 440 amino acids, and having a Mr of about 50 kilodalton. Northern analysis indicates that a single mRNA species 20 (~1.7 kb) corresponding to XR2 is expressed most highly in liver, kidney, lung, intestine and adrenals of adult male Transactivation studies (employing receptors containing the XR2 DNA binding domain and the ligand binding domain of a prior art receptor) indicate 25 that XR2 is capable of binding to TRE nat. In terms of amino acid sequence identity with prior art receptors, XR2 is most closely related to the vitamin D receptor (39% overall amino acid sequence identity, 17% amino acid identity in the amino terminal domain of the receptor, 53% amino acid 30 identity in the DNA binding domain of the receptor and 37% amino acid identity in the ligand binding domain of the receptor).

The receptor referred to herein as "XR4" is further characterized as a protein comprising about 439 amino acids, and having a M_r of about 50 kilodalton. In

-12-

terms of amino acid sequence identity with prior art receptors, XR4 is most closely related to the peroxisome proliferator-activated receptor (62% overall amino acid sequence identity, 30% amino acid identity in the amino terminal domain of the receptor, 86% amino acid identity in the DNA binding domain of the receptor and 64% amino acid identity in the ligand binding domain of the receptor). XR4 is expressed ubiquitously and throughout development (as determined by in situ hybridization).

10

The receptor referred to herein as "XR5" further characterized as a protein comprising about 556 amino acids, and having a M of about 64 kilodalton. situ hybridization reveals widespread expression throughout development. High levels of expression are observed in the 15 embryonic liver around day 12, indicating a potential role in haematopoiesis. High levels are also found in maturing dorsal root ganglia and in the skin. In terms of amino acid sequence identity with prior art receptors, XR5 is 20 most closely related to the rat nerve growth factor induced protein-B (NGFI-B) receptor. With respect to NGFI-B, XR5 has 29% overall amino acid sequence identity, 15% amino acid identity in the amino terminal domain of the receptor, 52% amino acid identity in the DNA binding domain of the 25 receptor and 29% amino acid identity in the ligand binding domain of the receptor.

The receptor referred to herein as "XR79" is further characterized as a protein comprising about 601 amino acids, and having a M of about 66 kilodalton. Whole 30 mount in situ hybridization reveals a fairly uniform pattern of RNA expression during embryogenesis. Northern 2.5 analysis indicates that kb transcript corresponding to RNA XR79 is present in throughout The levels of XR79 mRNA are highest in RNA 35 development. from 0 - 3 hour old embryos, i.e., maternal product, and

lowest in RNA from the second instar larvae (L2 stage). XR79 is distributed situ hybridization reveals that relatively uniformly at different stages of embryogenesis. In terms of amino acid sequence identity with prior art 5 receptors, XR79 is most closely related to the mammalian receptor TR2 [see Chang and Kokontis in Biochemical and Biophysical Research Communications 155: 971-977 (1988)], as well as members of the coup family, i.e., coup(ear3), harp-1. With respect to TR2, XR79 has 33% 10 overall amino acid sequence identity, 16% amino acid identity in the amino terminal domain of the receptor, 74% amino acid identity in the DNA binding domain of the receptor and 28% amino acid identity in the ligand binding domain of the receptor. With respect to coup (ear3) [see 15 Miyajima et al., in Nucl Acids Res 16: 11057-11074 (1988)], XR79 has 32% overall amino acid sequence identity, 21% amino acid identity in the amino terminal domain of the receptor, 62% amino acid identity in the DNA binding domain of the receptor and 22% amino acid identity in the ligand 20 binding domain of the receptor.

In accordance with a specific embodiment of the present invention, there is provided an expression vector which comprises DNA as previously described (or functional fragments thereof), and which further comprises:

at the 5'-end of said DNA, a promoter and a nucleotide triplet encoding a translational start codon, and

at the 3'-end of said DNA, a nucleotide 30 triplet encoding a translational stop codon;

wherein said expression vector is operative in a cell in culture (e.g., yeast, bacteria, mammalian) to express the protein encoded by said DNA.

As employed herein, reference to "functional fragments" embraces DNA encoding portions of the invention

-14-

receptors which retain one or more of the functional characteristics of steroid hormone or steroid hormone-like receptors, e.g., DNA binding properties of such receptors, ligand binding properties of such receptors, the ability to heterodimerize, nuclear localization properties of such receptors, phosphorylation properties of such receptors, transactivation domains characteristic of such receptors, and the like.

In accordance with a further embodiment of the present invention, there are provided cells in culture (e.g., yeast, bacteria, mammalian) which are transformed with the above-described expression vector.

In accordance with yet another embodiment of the present invention, there is provided a method of making the above-described novel receptors (or functional fragments thereof) by culturing the above-described cells under conditions suitable for expression of polypeptide product.

20

30

35

In accordance with a further embodiment of the present invention, there are provided novel polypeptide products produced by the above-described method.

In accordance with a still further embodiment of the present invention, there are provided chimeric receptors comprising at least an amino-terminal domain, a DNA-binding domain, and a ligand-binding domain,

wherein at least one of the domains thereof is derived from the novel polypeptides of the present invention; and

wherein at least one of the domains thereof is derived from at least one previously identified member of the steroid/thyroid superfamily of receptors e.g., glucocorticoid receptor (GR), thyroid receptors (TR), retinoic

5.

10

15

30

35

acid receptors (RAR), mineralocorticoid receptor estrogen receptor (ER), the estrogen (e.g., hERR1 related receptors or hERR2), retinoid X receptors (e.g., RXRα, RXRß or RXRδ), vitamin D receptor (VDR), aldosterone receptor (AR), progesterone receptor (PR), ultraspiracle receptor (USP), nerve growth factor induced protein-B (NGFI-B), the coup family of transcription factors (COUP), peroxisome proliferator-activated receptor (PPAR), mammalian receptor TR2 (TR2), and the like.

In accordance with yet another embodiment of the present invention, there is provided a method of using polypeptides of the invention to screen for response elements and/or ligands for the novel receptors described herein. The method to identify compounds which act as ligands for receptor polypeptides of the invention comprising:

assaying for the presence or absence of reporter protein upon contacting of cells containing a chimeric form of said receptor polypeptide and reporter vector with said compound;

wherein said chimeric form of said receptor polypeptide comprises the ligand binding domain of said receptor polypeptide and the amino-terminal and DNA-binding domains of one or more previously identified members of the steroid/thyroid superfamily of receptors;

wherein said reporter vector comprises:

- (a) a promoter that is operable in said cell,
- (b) a hormone response element which is responsive to the receptor from which the DNA-binding domain of said chimeric form of said receptor polypeptide is derived, and

5

10

25

30

35

-16-

(c) a DNA segment encoding a reporter protein,

> wherein said reporter proteinencoding DNA segment is operatively linked to said promoter for transcription of said DNA segment, and

> wherein said hormone response element is operatively linked to said promoter for activation thereof, and thereafter

identifying those compounds which induce or block the production of reporter in the presence of said chimeric form of said receptor polypeptide.

The method to identify response elements for receptor polypeptides of the invention comprises:

assaying for the presence or absence of reporter protein upon contacting of cells containing a chimeric form of said receptor polypeptide and reporter vector with a compound which is a known agonist or antagonist for the receptor from which the ligand-binding domain of said chimeric form of said receptor polypeptide is derived;

wherein said chimeric form of said receptor polypeptide comprises the DNA-binding domain of the receptor polypeptide and the amino-terminal and ligand-binding domains of one or more previously identified members of the steroid/thyroid superfamily of receptors;

wherein said reporter vector comprises:

- (a) a promoter that is operable in said cell,
- (b) a putative hormone response element, and
- (c) a DNA segment encoding a reporter protein,

wherein said reporter proteinencoding DNA segment is operatively

linked to said promoter for transcription of said DNA segment, and wherein said hormone response element is operatively linked to said promoter for activation thereof; and

5

identifying those response elements for which the production of reporter is induced or blocked in the presence of said chimeric form of said receptor polypeptide.

10

In accordance with yet another embodiment of the present invention, there is provided a DNA or RNA labeled for detection; wherein said DNA or RNA comprises a nucleic acid segment, preferably of at least 20 bases in length, 15 wherein said segment has substantially the same sequence as a segment of the same length selected from the DNA segment represented by bases 21 -1902, inclusive, of Sequence ID No. 1, bases 1 - 386, inclusive, of Sequence ID No. 3, bases 10 - 300, inclusive, of Sequence ID No. 5, bases 20 21 - 1615, inclusive, of Sequence ID No. 7, 21 - 2000, inclusive, of Sequence ID No. 9, bases 1 - 2450, ID No. 11, bases inclusive, of Sequence 21 - 2295,inclusive, of Sequence ID No. 13, or the complement of any of said segments.

25

In accordance with still another embodiment of the present invention, there are provided methods of testing compound(s) for the ability to regulate transcription-activating effects of a receptor polypeptide, said method comprising assaying for the presence or absence of reporter protein upon contacting of cells containing a receptor polypeptide and reporter vector with said compound;

wherein said receptor polypeptide is 35 characterized by having a DNA binding domain comprising

5

10

30

35

about 66 amino acids with 9 Cys residues, wherein said DNA binding domain has:

- (i) less than about 70% amino acid sequence identity with the DNA binding domain of hRAR-alpha;
- (ii) less than about 60% amino acid sequence identity with the DNA binding domain of hTR-beta;
- (iii) less than about 50% amino acid sequence identity with the DNA binding domain of hGR; and
 - (iv) less than about 65% amino acid sequence
 identity with the DNA binding domain of
 hRXR-alpha; and

wherein said reporter vector comprises:

- (a) a promoter that is operable in said cell,
- (b) a hormone response element, and
- (c) a DNA segment encoding a reporter protein,
 wherein said reporter protein-encoding DNA segment is
 operatively linked to said promoter for transcription of
 said DNA segment, and

wherein said hormone response element is operatively linked to said promoter for activation thereof.

In accordance with a still further embodiment of the present invention, there is provided a method of testing a compound for its ability to selectively regulate the transcription-activating effects of a specific receptor polypeptide, said method comprising:

assaying for the presence or absence of reporter protein upon contacting of cells containing said receptor polypeptide and reporter vector with said compound;

wherein said receptor polypeptide is characterized by being responsive to the presence of a known ligand for said receptor to regulate the transcription of associated gene(s);

5

10

20

wherein said reporter vector comprises:

- (a) a promoter that is operable in said cell,
- (b) a hormone response element, and
- (c) a DNA segment encoding a reporter protein,

wherein said reporter proteinencoding DNA segment is operatively linked to said promoter for transcription of said DNA segment, and

wherein said hormone response element is operatively linked to said promoter for activation thereof; and

assaying for the presence or absence of reporter protein upon contacting of cells containing chimeric receptor polypeptide and reporter vector with said compound;

wherein said chimeric receptor polypeptide comprises the ligand binding domain of a novel receptor of the present invention, and the DNA binding domain of said specific receptor; and thereafter

selecting those compounds which induce or block the production of reporter in the presence of said specific 25 receptor, but are substantially unable to induce or block the production of reporter in the presence of said chimeric receptor.

The above-described methods of testing compounds 30 for the ability to regulate transcription-activating effects of invention receptor polypeptides can be carried out employing methods described in USSN 108,471, filed October 20, 1987, the entire contents of which are hereby incorporated by reference herein.

-20-

As employed herein, the term "expression vector" refers to constructs containing DNA of the invention (or functional fragments thereof), plus all sequences necessary for manipulation and expression of such DNA. Such an expression vector will contain both a "translational start site" and a "translational stop site". Those of skill in the art can readily identify sequences which act as either translational start sites or translational stop sites.

Suitable host cells for use in the practice of the present invention include prokaroytic and eukaryote cells, e.g., bacteria, yeast, mammalian cells and the like.

Labeled DNA or RNA contemplated for use in the practice of the present invention comprises nucleic acid sequences covalently attached to readily analyzable species such as, for example, radiolabel (e.g., ³²P, ³H, ³⁵S, and the like), enzymatically active label, and the like.

The invention will now be described in greater detail by reference to the following non-limiting examples.

EXAMPLES

25 EXAMPLE I

ISOLATION AND CHARACTERIZATION OF XR1

The KpnI/SacI restriction fragment (503bp) including the DNA-binding domain of hRAR-alpha-encoding DNA [See Giguere et al., Nature 330: 624-629 (1987); and commonly assigned United States Patent Application Serial No. 276,536, filed November 30, 1988; and European Patent Application Publication No. 0 325 849, all incorporated herein by reference] was nick-translated and used to screen a rat brain cDNA library [see DNA Cloning, A practical approach, Vol I and II, D. M. Glover, ed. (IRL Press

-21-

(1985)] and a lambda-gtll human liver cDNA library [Kwok et al., Biochem. 24: 556 (1985) at low stringency. hvbridization mixture contained 35% formamide. 1X Denhardt's, 5X SSPE (1X SSPE=0.15 M NaCl, 10mM Na, HPO, 1mM EDTA), 0.1% SDS, 10% dextran sulfate, 100 μ g/ml denatured salmon sperm DNA and 10⁶ cpm of [³²P]-labelled probe. Duplicate nitrocellulose filters were hybridized for 16h at 42°C, washed once at 25°C for 15 min with 2X SSC (1X SSC=0.15 M NaCl, 0.015 M sodium citrate), 0.1% SDS and then 10 washed twice at 55°C for 30 min. in 2X SSC, 0.1% SDS. filters were autoradiographed for 3 days at -70°C using an intensifying screen.

positive clone having an insert of about 2.1 kb is obtained from the rat brain cDNA library. Several positive clones are obtained from the human liver library. Sequence analysis of the positive rat brain clone indicates that this clone encodes a novel member of the steroid/thyroid superfamily of receptors. Sequence analysis of one of the positive human liver clones (designated "hL1", a 1.7 kb cDNA) indicates that this clone is the human equivalent of the rat brain clone, based on sequence homology.

The EcoRI insert of clone hL1 (labeled with ³²P) 25 is also used as a probe to screen a human testis cDNA library (Clonetech) and a human retina cDNA library [see et al., in Science 232: 193-202 Hybridization conditions comprised a hybridization mixture containing 50% formamide, 1X Denhardt's, 5X SSPE, 0.1% SDS, 100 μ g/ml denatured salmon sperm DNA and 10⁶ cpm of [³²P]labelled probe. Duplicate nitrocellulose filters were hybridized for 16h at 42°C, washed once at 25°C for 15 min with 2X SSC (1X SSC=0.15 M NaCl, 0.015 M sodium citrate), 35 0.1% SDS and then washed twice at 55°C for 30 min. in 2X

PCT/US92/07570 WO 93/06215

-22-

The filters were autoradiographed for 3 SSC, 0.1% SDS. days at -70°C using an intensifying screen.

After several rounds of screening, five (5) 5 positive clones were obtained from the human retina cDNA library, and five (5) positive clones were obtained from the human testis cDNA library. Sequence analysis of two clones from the testis library indicates that these clones encode different isoforms of the same novel member of the 10 steroid/thyroid superfamily of receptors (designated as "Verht19" and "Verht3"). Sequence analysis of one of the positive clones from the human retina library indicates that this clone is yet another isoform of the same novel member of the steroid/thyroid superfamily of receptors 15 (designated "Verhr5"). The full length sequence of Verht19 is set forth herein as Sequence ID No. 1 (which includes an indication of where the splice site is for each of the variants, verht3 and verhr5). The amino-terminal sequence of verht3 and verhr5 are presented in Sequence ID Nos. 3 20 and 5, respectively. In addition, the interrelationship between each of these three isoforms is illustrated schematically in Figure 1.

EXAMPLE II

ISOLATION AND CHARACTERIZATION OF XR2

25

35

KpnI/SacI restriction fragment (503bp) The including the DNA-binding domain of hRAR-alpha-encoding DNA [See Giguere et al., Nature 330: 624 (1987); and commonly 30 assigned United States Patent Application Serial No. 276,536, filed November 30, 1988; and European Patent Application Publication No. 0 325 849, all incorporated herein by reference] was nick-translated and used to screen library liver cDNA lambda-qt11 human [Kwok al., Biochem. 24: 556 (1985)] at low stringency. The hybridization mixture contained 35% formamide, **1**X

Denhardt's, 5X SSPE (1X SSPE=0.15 M NaCl, 10mM Na₂HPO₄ 1mM EDTA), 0.1% SDS, 10% dextran sulfate, 100 mg/ml denatured salmon sperm DNA and 10⁶ cpm of [³²P]-labelled probe. Duplicate nitrocellulose filters were hybridized for 16h at 42°C, washed once at 25°C for 15 min with 2X SSC (1X SSC=0.15 M NaCl, 0.015 M sodium citrate), 0.1% SDS and then washed twice at 55°C for 30 min. in 2X SSC, 0.1% SDS. The filters were autoradiographed for 3 days at -70°C using an intensifying screen.

10

Positive clones were isolated, subcloned into vectors (Promega, Madison, Wisconsin, restriction mapped, and re-subcloned in various sized restriction fragments into M13mp18 and M13mp19 sequencing 15 vectors. DNA sequence was determined by the dideoxy method with Sequenase™ sequencing kit (United States Biochemical, Cleveland, Ohio, USA) and analyzed by University of Wisconsin Genetics Computer Group programs [Devereux et al., Nucl. Acids Res. 12, 387 (1984)]. Several clones 20 of a unique receptor-like sequence were identified, the longest of which was designated lambda-HL1-1 (also referred to herein as XR2).

The DNA sequence of the resulting clone is set 25 forth as Sequence ID No. 7.

EXAMPLE III

ISOLATION AND CHARACTERIZATION OF XR4

- A clone which encodes a portion of the coding sequence for XR4 was isolated from a mouse embryonic library by screening under low stringency conditions (as described above).
- 35 The library used was a lambda gt10 day 8.5 cDNA library having an approximate titer of 1.3 \times 10¹⁰/ml

(derived from 8.5 day old embryonic material with as much of the amnion and extraembryonic tissues dissected away as possible). This library was prepared from poly A selected RNA (by oligo-dT priming), Gubler & Hoffman cloning methods [Gene 25: 263 (1983)], and cloned into the EcoRI site of lambda gt10.

The probe used was a mixture of radioactively labeled DNA derived from the DNA binding regions of the 10 human alpha and beta retinoic acid receptors.

Positive clones were isolated, subcloned into pGEM vectors (Promega, Madison, Wisconsin, USA), restriction mapped, and re-subcloned in various sized 15 restriction fragments into M13mp18 and M13mp19 sequencing vectors. DNA sequence was determined by the dideoxy method with Sequenase™ sequencing kit (United States Biochemical, Cleveland, Ohio, USA) and analyzed by University of Wisconsin Genetics Computer Group programs [Devereux et al., Nucl. Acids Res. 12, 387 (1984)]. Several clones of a unique receptor-like sequence were identified, the longest of which was designated XR4.

The DNA sequence of the resulting clone is set 25 forth as Sequence ID No. 9.

EXAMPLE IV

ISOLATION AND CHARACTERIZATION OF XR5

- A clone which encodes a portion of the coding sequence for XR5 was isolated from a mouse embryonic library by screening under low stringency conditions (as described above).
- The library used was the same lambda gt10 day 8.5 cDNA library described in the preceding example.

-25-

Similarly, the probe used was the same mixture of radioactively labeled DNA described in the preceding example.

Only one of the clones isolated corresponds to a portion of the coding region for XR5. A 0.7 kb EcoRI fragment of this clone (designated as No. II-17) was subcloned into the bluescript pksII-Vector. Partial sequence analysis of this insert fragment shows homology to the DNA binding domain of the retinoic acid receptors.

The EcoRI-insert was used to rescreen a second library (a mouse lambda ZAPII day 6.5 cDNA described below) prepared as under high stringency 15 conditions. A total of 21 phages were isolated and rescued into the psk-vector. Partial sequencing allowed inserts of these phages to be identified as having sequences which overlap with XR5 II-17. The clone with the longest single EcoRI-insert was sequenced, revealing an open reading frame of 556 amino acids. This sequence was extended further upstream by 9bp from the furthest 5'-reaching clone.

The DNA sequence of the resulting clone is set 25 forth as Sequence ID No. 11.

The day 6.5 cDNA library, derived from 6.5 day old mouse embryonic material was prepared from poly A selected RNA (by oligo-dT priming), and cloned into the 30 EcoRI site of lambda gt10.

EXAMPLE V

ISOLATION AND CHARACTERIZATION OF XR79

The 550 bp BamHI restriction fragment, including the DNA-binding domain of mouse RAR-beta-encoding DNA (See

25

30

Hamada et al., Proc. Natl. Acad. Sci. 86: 8289 (1989); incorporated by reference herein) was nick-translated and used to screen a Lambda-ZAP cDNA library comprising a size selected Drosophila genomic library (~2-5 kb, 5 restricted) at low stringency. The hybridization mixture 1X Denhardt's, 5X SSPE contained 35% formamide, SSPE=0.15 M NaCl, 10mM Na_2HPO_4 1mM EDTA), 0.1% SDS, 10% dextran sulfate, 100 mg/ml denatured salmon sperm DNA and 106 cpm of [32P]-labelled probe. Duplicate nitrocellulose 10 filters were hybridized for 16h at 42°C, washed once at 25°C for 15 min with 2X SSC (1X SSC=0.15 M NaCl, 0.015 M sodium citrate), 0.1% SDS and then washed twice at 55°C for in 2X SSC, 0.1% SDS. The autoradiographed for 3 days at -70°C using an intensifying screen. 15

After several rounds of screening, a pure positive clone having an insert of about 3.5 kb is obtained from the Drosophila genomic library. This genomic clone 20 was then used to screen a Drosophila imaginal disc lambda gt10 cDNA library [obtained from Dr. Charles Zuker; see DNA Cloning, A practical approach, Vol I and II, D. M. Glover, ed. (IRL Press (1985)]. Hybridization conditions comprised a hybridization mixture containing 50% formamide, Denhardt's, 5X SSPE, 0.1% SDS, 100 μ g/ml denatured salmon sperm DNA and 10⁶ cpm of [³²P]-labelled probe. nitrocellulose filters were hybridized for 16h at 42°C, washed once at 25°C for 15 min with 2X SSC (1X SSC=0.15 M NaCl, 0.015 M sodium citrate), 0.1% SDS and then washed twice at 55°C for 30 min. in 2X SSC, 0.1% SDS. The filters were autoradiographed for 3 days at -70°C using an intensifying screen.

Sequence analysis of the positive cDNA clone indicates that this clone encodes another novel member of 35 the steroid/thyroid superfamily of receptors (designated

20

"XR79", a 2.5 kb cDNA). See Sequence ID No. 13 for the DNA sequence of the resulting clone.

The 2.5 kb cDNA encoding XR79 was nick-translated and used as a probe for a nitrocellulose filter containing size-fractionated total RNA, isolated by standard methods from Drosophila melanogaster of different developmental The probe hybridized to a 2.5 kb transcript which was present in RNA throughout development. The levels were 10 highest in RNA from 0 - 3 hour old embryos and lowest in RNA from second instar larvae. The same 2.5 kb cDNA was nick translated using biotinylated nucleotides and used as a probe for in situ sybridization to whole Drosophila embryos [Tautz and Pfeifle, Chromosoma 98: 81-85 (1989)]. 15 The RNA distribution appeared relatively uniform at different stages of embryogenesis.

EXAMPLE VI

SEQUENCE COMPARISONS OF INVENTION RECEPTORS WITH hRAR α , hTR β , hGR, AND hRXR α

Amino acid sequences of XR1, hRAR-alpha (human retinoic acid receptor-alpha), hTR-beta (human thyroid hormone receptor-beta), hGR (human glucocorticoid receptor), and hRXR-alpha (human retinoid receptor-alpha) were aligned using the University of Wisconsin Genetics Computer Group program "Bestfit" (Devereux et al., supra). The percentage of amino acid identity between RX2 and the other receptors, i.e., in the 66 - 68 amino acid DNA binding domains and the ligand-binding domains, are summarized in Table 1 as percent amino acid identity.

40

-28-

TABLE 1 Percent amino acid identity between receptor XR1 (verht19) and hRARα, TRB, hGR, and hRXRα

5		F	Percent amino acid identity							
	Comparison receptor	<u>Overall</u>	N-term ¹	DNA-BD ²	Ligand-BD ³					
	hGR	18	21	45	20					
10	hTRB	31	14	59	30					
	'hRARα	32	25	68	27					
	hRXRα	29	15	65	22					
15	¹ "N- ² "DN ³ "Li	term" = am A-BD" = re gand-BD" =	ino termina ceptor DNA receptor :	al domain binding do ligand bind	omain ling domain					

Similarly, the amino acid sequences of invention 20 receptors XR2, XR4, XR5, and XR79 were compared with human TR-beta $(hTR\beta)$, human RAR-alpha $(hRAR\alpha)$, human glucocorticoid (hGR) and human RXR-alpha (hRXRa). in Table 1, the percentage of amino acid identity between the invention receptors and the other receptors are summarized in Tables 2 - 5, respectively. 25

TABLE 2 Percent amino acid identity between receptor XR2 and hRARa, TRB, hGR, and hRXRa

30	•	Percent amino acid identity									
	Comparison receptor	<u>Overall</u>	N-term ¹	DNA-BD ²	Ligand-BD3						
35	hGR hTRβ hRARα hRXRα	24 31 33 27	21 19 21 19	50 56 55 52	20 29 32 23						

^{1&}quot;N-term" = amino terminal domain
2"DNA-BD" = receptor DNA binding domain
3"Ligand-BD" = receptor ligand binding domain

20

35

TABLE 3 Percent amino acid identity between receptor XR4 and hRAR α , TRB, hGR, and hRXR α

5	_	F	Percent amino acid identity							
	Comparison receptor	<u>Overall</u>	N-term ¹	DNA-BD ²	Ligand-BD3					
	hGR	25	24	48	21					
10	htrb	31	21	58	27					
	hRARα	32	22	62	29					
	hRXRα	33	24	62	28					
15	¹ "N- ¹ "DN ² "Li	term" = am A-BD" = re gand-BD" =	ino termina ceptor DNA receptor	al domain binding do ligand bind	omain ding domain					

TABLE 4 Percent amino acid identity between receptor XR5 and hRAR α , TRB, hGR, and hRXR α

		Percent amino acid identity								
25	Comparison receptor	<u>Overall</u>	N-term ¹	DNA-BD ²	Ligand-BD3					
	hGR	20	20	44 .	20					
	hTRB	24	14	52	22 .					
	hRARα	27	19	59	19					
30	hRXRα	29	17	61	27					

"N-term" = amino terminal domain
2"DNA-BD" = receptor DNA binding domain
3"Ligand-BD" = receptor ligand binding domain

-30-

TABLE 5 Percent amino acid identity between receptor XR79 and hRAR α , TRB, hGR, and hRXR α

5		I	Percent amino acid identity								
	Comparison receptor	<u>Overall</u>	N-term ¹	DNA-BD ²	Ligand-BD3						
	hGR	18	22	50	20						
10	hTRB	28	22	55	20						
	hRARα	24	14	59	18						
	hRXRα	33	20	65	24						
15	1,,, 2,,, 3,,,	N-term" = am DNA-BD" = re Ligand-BD" =	ino termin ceptor DNA receptor	al domain binding d ligand bin	omain ding domain						

While the invention has been described in detail
with reference to certain preferred embodiments thereof, it
will be understood that modifications and variations are
within the spirit and scope of that which is described and
claimed.

SUMMARY OF SEQUENCES

Sequence ID No. 1 is a nucleotide sequence encoding novel receptor of the present invention designated 5 as "hXR1".

Sequence ID No. 2 is the amino acid sequence deduced from the nucleotide sequence set forth in Sequence ID No. 1 (variously referred to herein as receptor "XR1", "hXR1", "hXR1.pep" or "verHT19.pep").

Sequence ID No. 3 is a nucleotide sequence encoding the amino-terminal portion of the novel receptor of the present invention designated as "hXR1prime".

15

Sequence ID No. 4 is the amino acid sequence deduced from the nucleotide sequence set forth in Sequence ID No. 3 (variously referred to herein as receptor "XR1prime", "hXR1prime", "hXR1prime.pep" or "verHT3.pep").

20

Sequence ID No. 5 is a nucleotide sequence encoding the amino-terminal portion of the novel receptor of the present invention designated as "hXR1prim2".

- Sequence ID No. 6 is the amino acid sequence deduced from the nucleotide sequence set forth in Sequence ID No. 5 (variously referred to herein as receptor "XR1prim2", "hXR1prim2", "hXR1prim2.pep" or "verHr5.pep").
- Sequence ID No. 7 is a nucleotide sequence encoding the novel receptor of the present invention designated as "hXR2".
- Sequence ID No. 8 is the amino acid sequence 35 deduced from the nucleotide sequence set forth in Sequence

ID No. 7 (variously referred to herein as receptor "XR2", "hXR2" or "hXR2.pep").

Sequence ID No. 9 is a nucleotide sequence 5 encoding novel receptor of the present invention referred to herein as "mXR4".

Sequence ID No. 10 is the amino acid sequence deduced from the nucleotide sequence of Sequence ID No. 9 (variously referred to herein as receptor "XR4", "mXR4" or "mXR4.pep").

Sequence ID No. 11 is the nucleotide sequence encoding the novel receptor of the present invention 15 referred to as "mXR5".

Sequence ID No. 12 is the amino acid sequence deduced from the nucleotide sequence of Sequence ID No. 11 (variously referred to herein as receptor "XR5", "mXR5" or "mXR5.pep").

Sequence ID No. 13 is the nucleotide sequence encoding the novel receptor of the present invention referred to as "dXR79".

25

20

Sequence ID No. 14 is the amino acid sequence deduced from the nucleotide sequence of Sequence ID No. 13 (variously referred to herein as "XR79", "dXR79" or "dXR79.pep").

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(1) APPLICANT: EVANS Ph.D., RONALD M.
MANGELSDORF Ph.D., DAVID J.

ONG Ms., ESTELITA S. ORO Ph.D., ANTHONY E. BORGMEYER Ph.D., UWE K. GIGUERE Ph.D., VINCENT NMN YAO Mr., TSO-PANG NMN

- (11) TITLE OF INVENTION: NOVEL RECEPTORS
- (111) NUMBER OF SEQUENCES: 14
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Pretty, Schroeder, Brueggemann & Clark (B) STREET: 444 So. Flower St., Suite 2000

 - (C) CITY: Los Angeles
 - (D) STATE: CA
 - (E) COUNTRY: US
 - (F) ZIP: 90071-2921
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 (A) NAME: Reiter Ph.D., Stephen E.
 (B) REGISTRATION NUMBER: 31192
 (C) REFERENCE/DOCKET NUMBER: P31 8936
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (619) 535-9001 (B) TELEFAX: (619) 535-8949
- (2) INFORMATION FOR SEQ ID NO:1:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1952 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (11) MOLECULE TYPE: cDNA
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: XR1 (VERHT19.SEQ)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 79..1725

1	ĺx	٠.	FEA'	יש מודו	
•	ᅩᄶ		PEA.	LUKE.	_

(A) NAME/KEY: misc_feature
(B) LOCATION: 349..1952
(D) OTHER INFORMATION: /product- "Carboxy terminal portion of XR1 variant verht3"

(ix) FEATURE:

(A) NAME/KEY: misc_feature
(B) LOCATION: 352..1952
(D) OTHER INFORMATION: /product= "Carboxy terminal portion of XR1 variant verhr5"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GA.	ATTC	GGGG	ACT	CCATA	GT A	CACI	CGGG	C A	AAGCA	ACAGO	CCC	CAGT	TTCT	GGA	GGCAGA	T 60
GGC	STAA(CCAG	GAA	AAGG	ATO Met	AAT Ast	GAG Glu	GG(Gly	G GCC 7 Ala 5	C CCA	GGA Gly	A GA(C AG1	GAC Asp	C TTA Leu	111
GAG Glu	ACT Thr	GA(G GCA	Arg	GTG Val	CCG Pro	TGG	TCA Ser 20	Ile	ATG Met	GG1 Gly	CAT His	TGT Cys	CTI	CGA Arg	159
ACT Thr	GGA Gly	Glr 30	ı Ala	AGA Arg	ATG Met	TCT Ser	GCC Ala 35	ACA	CCC Pro	ACA Thr	CCT	GCA Ala 40	G1y	GAA Glu	GGA	207
GCC Ala	AGA Arg 45	AGC Ser	TCT Ser	TCA Ser	ACC	TGT Cys 50	AGC Ser	TCC	CTG Leu	AGC Ser	AGG Arg 55	Leu	TTC Phe	TGG Trp	TCT Ser	255
CAA Gln 60	CTT	GAG Glu	CAC His	ATA Ile	AAC Asn 65	TGG Trp	GAT Asp	GGA Gly	GCC Ala	ACA Thr 70	GCC Ala	AAG Lys	AAC Asn	TTT Phe	ATT Ile 75	303
AAT Asn	TTA Leu	AGG Arg	GAG Glu	TTC Phe 80	TTC Phe	TCT Ser	TTT Phe	CTG Leu	CTC Leu 85	CCT Pro	GCA Ala	TTC Leu	AGA Arg	AAA Lys 90	GCT Ala	351
CAA Gln	ATT Ile	GAA Glu	ATT Ile 95	ATT Ile	CCA Pro	TGC Cys	AAG Lys	ATC Ile 100	TCT Cys	GGA Gly	GAC Asp	AAA Lys	TCA Ser 105	TCA Ser	GGA Gly	399
ATC Ile	CAT His	TAT Tyr 110	GGT Gly	GTC Val	ATT Ile	ACA Thr	TGT Cys 115	GAA Glu	GGC Gly	TGC Cys	AAG Lys	GGC Gly 120	TTT Phe	TTC Phe	AGG Arg	447
AGA Arg	AGT Ser 125	CAG Gln	CAA Gln	AGC Ser	TAA Asn	GCC Ala 130	ACC Thr	TAC Tyr	TCC Ser	TGT Cys	CCT Pro 135	CGT Arg	CAG Gln	AAG Lys	AAC Asn	495
TGT Cys 140	TTG Leu	ATT Ile	GAT Asp	CGA Arg	ACC Thr 145	AGT Ser	AGA Arg	AAC Asn	CGC Arg	TGC Cys 150	CAA Gln	CAC His	TGT Cys	CGA Arg	TTA Leu 155	543
CAG Gln	AAA Lys	TGC Cys	CTT Leu	GCC Ala 160	GTA Val	GGG Gly	ATG Met	Ser	CGA Arg 165	GAT Asp	GCT Ala	GTA Val	AAA Lys	TTT Phe 170	GGC Gly	591
CGA Arg							Asp :					Glu				639

CAC	CGG	ATC Met 190	CAG Glm	CAG Gln	CAG Gln	CAG Gln	CGC Arg 195	GAC Asp	CAC His	CAG Glr	CAC Glr	CAC Glr 200	CCT Pro	GG/	A GAG y Glu	687
GCT Ala	GAG Glu 205	Pro	CTG Leu	ACG Thr	CCC Pro	Thr 210	Tyr	AAC Asn	ATC 1le	TCG Ser	GCC Ala 215	Asr	GGC Gly	CTO Let	G ACG	735
	Leu					Ser					Gly				GAG Glu 235	783
GGG Gly	AGT Ser	AAG Lys	GCA Ala	GAC Asp 240	TCC Ser	GCC Ala	GTC Val	AGC Ser	AGC Ser 245	Phe	TAC	CTG Leu	GAC Asp	ATA 11e 250	CAG Gln	831
CCT Pro	TCC Ser	CCA Pro	GAC Asp 255	Gln	TCA Ser	GGT Gly	CTT Leu	GAT Asp 260	Ile	AAT Asn	GGA Gly	ATC	AAA Lys 265	Pro	GAA Glu	879
CCA Pro	ATA Ile	TGT Cys 270	Asp	TAC Tyr	ACA Thr	CCA Pro	GCA Ala 275	TCA Ser	GGC Gly	TTC Phe	TTT Phe	CCC Pro 280	Tyr	TGT	TCG Ser	927
TTC Phe	ACC Thr 285	AAC Asn	GGC Gly	GAG Glu	ACT Thr	TCC Ser 290	CCA Pro	ACT Thr	GTG Val	TCC Ser	ATG Met 295	GCA Ala	GAA Glu	TTA Leu	GAA Glu	975
CAC His 300	CTT Leu	GCA Ala	CAG Gln	AAT Asn	ATA Ile 305	TCT Ser	AAA Lys	TCG Ser	CAT His	CTG Leu 310	GAA Glu	ACC Thr	TGC Cys	CAA Gln	TAC Tyr 315	1023
															GAA Glu	1071
							AAG Lys									1119
							GCT Ala 355									1167
						Met	GAA Glu	Leu	Cys	Gln	Asn	Asp				1215
CTT Leu 380	CTA Leu	AAA Lys	GCA Ala	GGT Gly	TCT Ser 385	CTA Leu	GAG Glu	GTG Val	GTG Val	TTT Phe 390	ATC Ile	AGA Arg	ATG Met	TGC Cys	CGT Arg 395	1263
GCC Ala	TTT Phe	GAC Asp	TCT Ser	CAG Gln 400	AAC Asn	AAC Asn	ACC	GTG Val	TAC Tyr 405	TTT Phe	GAT Asp	GGG Gly	AAG Lys	TAT Tyr 410	GCC Ala	1311
AGC Ser	CCC	GAC Asp	GTC Val 415	TTC Phe	AAA Lys	TCC Ser	TTA Leu	GGT Gly 420	TGT Cys	GAA Glu	GAC Asp	TTT Phe	ATT Ile 425	AGC Ser	TTT Phe	1359
							TTA Leu 435									1407
Glu	ATT Ile	GCA Ala	TTA Leu	TTT Phe	Ser	GCA Ala 450	TTT Phe	GTA Val	CTG Leu	Met	TCA Ser	GCA Ala	GAT Asp	CGC Arg	TCA Ser	1455

TGG Trp 460	CTG Leu	CAA Gln	GAA Glu	AAG Lys	GTA Val 465	AAA Lys	ATT Ile	GAA Glu	AAA Lys	CTG Leu 470	CAA Gln	CAG Gln	AAA Lys	ATT Ile	CAG Gln 475	1503
CTA Leu	GCT Ala	CTT Leu	CAA Gln	CAC His 480	GTC Val	CTA Leu	CAG Gln	AAG Lys	AAT Asn 485	CAC His	CGA Arg	GAA Glu	GAT Asp	GGA Gly 490	ATA Ile	1551
CTA Leu	ACA Thr	AAG Lys	TTA Leu 495	ATA Ile	TGC Cys	AAG Lys	GTG Val	TCT Ser 500	ACA Thr	TTA Leu	AGA Arg	GCC Ala	TTA Leu 505	TGT Cys	GGA Gly	1599
CGA Arg	CAT His	ACA Thr 510	GAA Glu	AAG Lys	CTA Leu	ATG Met	GCA Ala 515	TTT Phe	AAA Lys	GCA Ala	ATA Ile	TAC Tyr 520	CCA Pro	GAC A sp	ATT Ile	1647
GTG Val	CGA Arg 525	CTT Leu	CAT His	TTT Phe	CCT Pro	CCA Pro 530	TTA Leu	TAC Tyr	AAG Lys	GAG Glu	TTG Leu 535	TTC Phe	ACT Thr	TCA Ser	GAA Glu	1695
			GCA Ala						TAAA	TGTT	'AT C	ACCT	AAGC	A		1742
CTTC	TAGA	AT G	TCTG	AAGT	A CA	AACA	TGAA	AAA	CAAA	CAA	AAAA	ATTA	AC C	GAGA	CACTT	1802
TATA	TGGC	CC T	GCAC	AGAC	C TG	GAGC	GCCA	CAC	ACTG	CAC	ATCT	TTTG	GT G	ATCG	GGGTC	1862
AGGC	AAAG	GA G	GGGA	AACA	A TG	AAAA	CAAA	TAA	AGTT	GAA	CTTG	TŢŢŢ	TC T	CAAA	AAAAA	1922
AAAA	AAAA	AA A	AAAA	AAAA	A AA	AAAA	AAAA									1952

(2) INFORMATION FOR SEQ ID NO:2:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 548 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Glu Gly Ala Pro Gly Asp Ser Asp Leu Glu Thr Glu Ala Arg Val Pro Trp Ser Ile Met Gly His Cys Leu Arg Thr Gly Gln Ala Arg Met Ser Ala Thr Pro Thr Pro Ala Gly Glu Gly Ala Arg Ser Ser Ser Thr Cys Ser Ser Leu Ser Arg Leu Phe Trp Ser Gln Leu Glu His Ile Asn Trp Asp Gly Ala Thr Ala Lys Asn Phe Ile Asn Leu Arg Glu Phe 65

Phe Ser Phe Leu Leu Pro Ala Leu Arg Lys Ala Gln Ile Glu Ile Ile 95

Pro Cys Lys Ile Cys Gly Asp Lys Ser Ser Gly Ile His Tyr Gly Val Ile Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Gln Gln Ser

Asn Ala Thr Tyr Ser Cys Pro Arg Gln Lys Asn Cys Leu Ile Asp Arg 130 140 Thr Ser Arg Asn Arg Cys Gln His Cys Arg Leu Gln Lys Cys Leu Ala 145 150 155 160 Val Gly Met Ser Arg Asp Ala Val Lys Phe Gly Arg Met Ser Lys Lys 165 170 175 Gln Arg Asp Ser Leu Tyr Ala Glu Val Gln Lys His Arg Met Gln Gln 180 185 190 Gln Gln Arg Asp His Gln Gln Gln Pro Gly Glu Ala Glu Pro Leu Thr 195 200 205 Pro Thr Tyr Asn Ile Ser Ala Asn Gly Leu Thr Glu Leu His Asp Asp 210 215 Leu Ser Asn Tyr Ile Asp Gly His Thr Pro Glu Gly Ser Lys Ala Asp 225 230 235 240 Ser Ala Val Ser Ser Phe Tyr Leu Asp Ile Gln Pro Ser Pro Asp Gln 245 250 255 Ser Gly Leu Asp Ile Asn Gly Ile Lys Pro Glu Pro Ile Cys Asp Tyr 260 265 270 Thr Pro Ala Ser Gly Phe Phe Pro Tyr Cys Ser Phe Thr Asn Gly Glu 275 280 285 Thr Ser Pro Thr Val Ser Met Ala Glu Leu Glu His Leu Ala Gln Asn 290 . 295 300 Ile Ser Lys Ser His Leu Glu Thr Cys Gln Tyr Leu Arg Glu Glu Leu 305 310 315 320 Gln Gln Ile Thr Trp Gln Thr Phe Leu Gln Glu Glu Ile Glu Asn Tyr 325 335 Gln Asn Lys Gln Arg Glu Val Met Trp Gln Leu Cys Ala Ile Lys Ile 340 345 350 Thr Glu Ala Ile Gln Tyr Val Val Glu Phe Ala Lys Arg Ile Asp Gly 355 360 365 Phe Met Glu Leu Cys Gln Asn Asp Gln Ile Val Leu Leu Lys Ala Gly 370 380 Ser Leu Glu Val Val Phe Ile Arg Met Cys Arg Ala Phe Asp Ser Gln 385 395 400 Asn Asn Thr Val Tyr Phe Asp Gly Lys Tyr Ala Ser Pro Asp Val Phe 405 410 415 Lys Ser Leu Gly Cys Glu Asp Phe Ile Ser Phe Val Phe Glu Phe Gly 420 425 430 Lys Ser Leu Cys Ser Met His Leu Thr Glu Asp Glu Ile Ala Leu Phe 435 440 445 Ser Ala Phe Val Leu Met Ser Ala Asp Arg Ser Trp Leu Gln Glu Lys 450 460 Val Lys Ile Glu Lys Leu Gln Gln Lys Ile Gln Leu Ala Leu Gln His 465 470 475 480

Val Leu Gln Lys Asn His Arg Glu Asp Gly Ile Leu Thr Lys Leu Ile 485 490 495 Cys Lys Val Ser Thr Leu Arg Ala Leu Cys Gly Arg His Thr Glu Lys Leu Met Ala Phe Lys Ala Ile Tyr Pro Asp Ile Val Arg Leu His Phe 515 520 525 Pro Pro Leu Tyr Lys Glu Leu Phe Thr Ser Glu Phe Glu Pro Ala Met 530 540

Gln Ile Asp Gly 545

(2) INFORMATION FOR SEQ ID NO:3:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 386 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(11) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

(B) CLONE: AMINO TERMINAL PORTION OF XRIPRIME (VERHT3.SEQ)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 90..386

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CCATCTGTCT GATCACCTTG GACTCCATAG TACACTGGGG CAAAGCACAG CCCCAGTTTC	60
TGGAGGCAGA TGGGTAACCA GGAAAAGGC ATG AAT GAG GGG GCC CCA GGA GAC Met Asn Glu Gly Ala Pro Gly Asp	113
AGT GAC TTA GAG ACT GAG GCA AGA GTG CCG TGG TCA ATC ATG GGT CAT Ser Asp Leu Glu Thr Glu Ala Arg Val Pro Trp Ser Ile Met Gly His 10 20	161
TGT CTT CGA ACT GGA CAG GCC AGA ATG TCT GCC ACA CCC ACA CCT GCA Cys Leu Arg Thr Gly Gln Ala Arg Met Ser Ala Thr Pro Thr Pro Ala 25 30 40	209
GGT GAA GGA GCC AGA AGG GAT GAA CTT TTT GGG ATT CTC CAA ATA CTC Gly Glu Gly Ala Arg Arg Asp Glu Leu Phe Gly Ile Leu Gln Ile Leu 45	257
CAT CAG TGT ATC CTG TCT TCA GGT GAT GCT TTT GTT CTT ACT GGC GTC His Gln Cys Ile Leu Ser Ser Gly Asp Ala Phe Val Leu Thr Gly Val 60 65 70	305
TGT TGT TCC TGG AGG CAG AAT GGC AAG CCA CCA TAT TCA CAA AAG GAA Cys Cys Ser Trp Arg Gln Asn Gly Lys Pro Pro Tyr Ser Gln Lys Glu 75	353
GAT AAG GAA GTA CAA ACT GGA TAC ATG AAT GCT Asp Lys Glu Val Gln Thr Gly Tyr Met Asn Ala 90 95	386

(2) INFORMATION FOR SEQ ID NO:4:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 99 amino acids (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Asn Glu Gly Ala Pro Gly Asp Ser Asp Leu Glu Thr Glu Ala Arg

Val Pro Trp Ser Ile Met Gly His Cys Leu Arg Thr Gly Gln Ala Arg

Met Ser Ala Thr Pro Thr Pro Ala Gly Glu Gly Ala Arg Arg Asp Glu

Leu Phe Gly Ile Leu Gln Ile Leu His Gln Cys Ile Leu Ser Ser Gly

Asp Ala Phe Val Leu Thr Gly Val Cys Cys Ser Trp Arg Gln Asn Gly

Lys Pro Pro Tyr Ser Gln Lys Glu Asp Lys Glu Val Gln Thr Gly Tyr
85 90 95

Met Asn Ala

(2) INFORMATION FOR SEQ ID NO:5:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 300 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: AMINO TERMINAL PORTION OF XR1PRIM2 (VERHR5.SEQ)
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 103..300
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTTTTTTTT TTTTTTGGT ACCATAGAGT TGCTCTGAAA ACAGAAGATA GAGGGAGTCT	60
CGGAGCTCGC CATCTCCAGC GATCTCTACA TTGGGAAAAA AC ATG GAG TCA GCT Met Glu Ser Ala 1	114
CCG GCA AGG GAG ACC CCG CTG AAC CAG GAA TCC GCC GCC CCC GAC CCC Pro Ala Arg Glu Thr Pro Leu Asn Gln Glu Ser Ala Ala Pro Asp Pro 10 15 20	162
GCC GCC AGC GAG CCA GGC AGC AGC GCG GCG	210

Ala Ala Ser Glu Pro Gly Ser Ser Gly Ala Asp Ala Ala Gly Ser

CGC Arg	AAG Lys	AGC Ser	GAG Glu 40	CCG Pro	CCT Pro	GCC Ala	CCG Pro	GTG Val 45	CGC Arg	AGA Arg	CAG Gln	AGC Ser	TAT Tyr 50	TCC Ser	AGC Ser		258
ACC Thr	AGC Ser	AGA Arg 55	GGT Gly	ATC Ile	TCA Ser	GTA Val	ACG Thr 60	AAG Lys	AAG Lys	ACA Thr	CAT His	ACA Thr 65	TCT Ser				300
(2)	INF	ORMAT	CION	FOR	SEQ	ID B	10:6	:									
	•	(1) \$	(A)) LEI TYI	NGTH: PE: &	RACTI : 66 emino FY: 1	amiı ac:	no ac Lđ	: cids							-	
	(:	11) 1	OLE	CULE	TYPE	E: p1	ote:	<u>ln</u>									
	(:	xi) S	EQUI	ENCE	DESC	CRIPT	CION	: SEC	Q ID	NO:	5:						
Met 1	Glu	Ser	Ala	Pro 5	Ala	Arg	Glu	Thr	Pro 10	Leu	Asn	Gln	Glu	Ser 15	Ala		
Ala	Pro	Asp	Pro 20	Ala	Ala	Ser	Glu	Pro 25	Gly	Ser	Ser	Gly	Ala 30	Asp	Ala		
Ala	Ala	Gly 35	Ser	Arg	Lys	Ser	Glu 40	Pro	Pro	Ala	Pro	Val 45	Arg	Arg	Gln		
Ser	Tyr 50	Ser	Ser	Thr	Ser	Arg 55	Gly	Ile	Ser	Val	Thr 60	Lys	Lys	Thr	His		
Thr 65	Ser																
(2)	INF	ORMAI	CION	FOR	SEQ	ID N	10:7	:									
(2) INFORMATION FOR SEQ ID NO:7: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1659 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear																	
	(11)) HOI	ECUI	LE T	PE:	cDNA											
•	(vii	IM (I	(EDIA	ATE S	SOURCE XR2	Œ:	12.SI	EG)									
	(ix) FE# (# (I	() N	ME\I	KEY: ION:	CDS 148.	.147	70									
	(xi)) SEC	UEN	CE DI	ESCRI	PTIC	on: s	EQ 1	D NO):7:							
GAT!	ATCC	GTG A	CAT	CATTO	sc ci	rgag1	CCAC	TGC	CAAA	AGC	TGT	CCCA	GA G	CAGO	SAGGG	С	60
AATO	GACA	GCT (CCA	GGC/	AC TO	ATCI	TGAC	TGO	CTCTT	CCC	TGG	GATI	TG G	ACAC	TGCC	T	120
TGGT	TAAT	GAC (CAGG	GCTC	CA GA	\AAG#	G AT	G TO	CC T	G TO	G CI	CG GC eu Gl	G GC Ly Al	C CC	T To		171
GTG Val	CCT Pro 10	GAC Asp	ATT Ile	CCT Pro	CCT Pro	GAC Asp 15	TCT Ser	GCG Ala	GTG Val	GAG Glu	CTG Leu 20	TGG Trp	AAG Lys	CCA Pro	GGC Gly		219

								•									
	Gln									GGC Gly 35						267	7
										GGG						315	ò
										TCA Ser						363	ţ
										CCC Pro						411	•
										TCG Ser						459	t
										TTC Phe 115						507	
										GGC Gly						55 5	
										CGG Arg						603	
										TCA Ser						651	
										CAG Gln						699	
										ATC Ile 195						747	
										GTC Val						795	
TGT Cys	AAC Asn	CGG Arg	CGC Arg 220	TCC Ser	TTT Phe	TCT Ser	GAC Asp	CGG Arg 225	CTT Leu	CGA Arg	GTC Val	ACG Thr	CCT Pro 230	TGG Trp	CCC Pro	843	
	Ala									CGT Arg						891	
										CAG Gln						93 9	
										AGC Ser 275						987	
										ATG Met						1035	

CGG Arg	AGG Arg	TAC Tyr	AAC Asn 300	CCT Pro	GGG Gly	AGT Ser	GAG Glu	AGT Ser 305	ATC Ile	ACC Thr	TTC Phe	CTC Leu	AAG Lys 310	Asp	TTC Phe	108	13
AGT Ser	TAT Tyr	AAC Asn 315	CGG Arg	GAA Glu	GAC Asp	TTT Phe	GCC Ala 320	AAA Lys	GCA Ala	GGG Gly	CTG Leu	CAA Gln 325	GTG Val	GAA Glu	TTC Phe	113	1
											AAT Asn 340					117	9
AAT Asn 345	GAT Asp	GCC Ala	GAG Glu	TTT Phe	GCC Ala 350	TTG Leu	CTC Leu	'ATT Ile	GCT Ala	ATC Ile 355	AGC Ser	ATC Ile	TTC Phe	TCT Ser	GCA Ala 360	122	7
GAC Asp	CGG Arg	CCC Pro	AAC Asn	GTG Val 365	CAG Gln	GAC Asp	CAG Gln	CTC Leu	CAG Gln 370	GTG Val	GAG Glu	AGG Arg	CTG Leu	CAG Gln 375	CAC His	127	5
ACA Thr	TAT Tyr	GTG Val	GAA Glu 380	GCC Ala	CTG Leu	CAT His	GCC Ala	TAC Tyr 385	GTC Val	TCC Ser	ATC Ile	CAC His	CAT His 390	CCC Pro	CAT His	132:	3
GAC Asp	CGA Arg	CTG Leu 395	ATG Met	TTC Phe	CCA Pro	CGG Arg	ATG Met 400	CTA Leu	ATG Met	AAA Lys	CTG Leu	GTG Val 405	AGC Ser	CTC Leu	CGG Arg	137	1
Thr	CTG Leu 410	AGC Ser	AGC Ser	GTC Val	His	TCA Ser 415	GAG Glu	CAA Gln	GTG Val	TTT Phe	GCA Ala 420	CTG Leu	CGT Arg	CTG Leu	CAG Gln	1419)
GAC Asp 425	AAA Lys	AAG Lys	CTC Leu	Pro	CCG Pro 430	CTG Leu	CTC Leu	TCT Ser	GAG Glu	ATC Ile 435	TṛP TGG	GAT Asp	GTG Val	CAC His	GAA Glu 440	1467	7
TGAC	TGTI	CT G	TCCC	CATA	T TI	TCTG	TTTT	CTT	GGCC	GGA	TGGC	TGAG	GC C	TGGT	GGCTG	1527	7
CCTC	CTAG	AA G	TGGA	ACAG	A CT	GAGA	AGGG	CAA	ACAT	TCC	TGGG	AGCT	GG G	CAAG	GAGAT	1587	7
CCTC	CCGT	GG C	ATTA	AAAG	A GA	GTCA	AAGG	GTA	AAAA	AAA	A AAA	AAAA	AA A	AAAA	AAA A	1647	,
AAAA	AGGA	AT T	С													1659)

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 440 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Ser Leu Trp Leu Gly Ala Pro Val Pro Asp Ile Pro Pro Asp Ser 1 5 10 15

Ala Val Glu Leu Trp Lys Pro Gly Ala Gln Asp Ala Ser Ser Gln Ala 20 25 30

Gln Gly Gly Ser Ser Cys Ile Leu Arg Glu Glu Ala Arg Met Pro His 35 40 45

Ser Ala Gly Gly Thr Ala Glu Pro Thr Ala Leu Leu Thr Arg Ala Glu 50 55 60

Pro Pro Ser Glu Pro Thr Glu Ile Arg Pro Gln Lys Arg Lys Lys Gly 65 70 75 80 Pro Ala Pro Lys Met Leu Gly Asn Glu Leu Cys Ser Val Cys Gly Asp 85 90 95 Lys Ala Ser Gly Phe His Tyr Asn Val Leu Ser Cys Glu Gly Cys Lys 100 105 110-Gly Phe Phe Arg Arg Ser Val Ile Lys Gly Ala His Tyr Ile Cys His Ser Gly Gly His Cys Pro Met Asp Thr Tyr Met Arg Arg Lys Cys Gln 130 135 140 Glu Cys Arg Leu Arg Lys Cys Arg Gln Ala Gly Met Arg Glu Glu Cys 145 150 155 160 Val Leu Ser Glu Glu Gln Ile Arg Leu Lys Lys Leu Lys Arg Gln Glu 165 170 175 Glu Glu Gln Ala His Ala Thr Ser Leu Pro Pro Arg Arg Ser Ser Pro 180 185 190 Pro Gln Ile Leu Pro Gln Leu Ser Pro Glu Gln Leu Gly Met Ile Glu 195 200 205 Lys Leu Val Ala Ala Gln Gln Gln Cys Asn Arg Arg Ser Phe Ser Asp 210 215 220 Leu Arg Val Thr Pro Trp Pro Met Ala Pro Asp Pro His Ser Arg 230 235 240 Glu Ala Arg Gln Gln Arg Phe Ala His Phe Thr Glu Leu Ala Ile Val 245 250 255 Ser Val Glu Ile Val Asp Phe Ala Lys Glu Leu Pro Gly Phe Leu 260 265 270 Gln Leu Ser Arg Glu Asp Gln Ile Ala Leu Leu Lys Thr Ser Ala Ile 275 280 285 Glu Val Met Leu Glu Thr Ser Arg Arg Tyr Asn Pro Gly Ser Glu 290 295 300 Ser Ile Thr Phe Leu Lys Asp Phe Ser Tyr Asn Arg Glu Asp Phe Ala 305 310 315 320 Lys Ala Gly Leu Gln Val Glu Phe Ile Asn Pro Ile Phe Glu Phe Ser 325 330 335 Arg Ala Met Asn Glu Leu Gln Leu Asn Asp Ala Glu Phe Ala Leu Leu 340 350 Ile Ala Ile Ser Ile Phe Ser Ala Asp Arg Pro Asn Val Gln Asp Gln 355 360 365 Leu Gln Val Glu Arg Leu Gln His Thr Tyr Val Glu Ala Leu His Ala 370 380 Tyr Val Ser Ile His His Pro His Asp Arg Leu Met Phe Pro Arg Met 385 390 395 400 Leu Met Lys Leu Val Ser Leu Arg Thr Leu Ser Ser Val His Ser Glu 405 410 415

-44-

Gln Val Phe Ala Leu Arg Leu Gln Asp Lys Lys Leu Pro Pro Leu Leu 420 430 Ser Glu Ile Trp Asp Val His Glu 435

(2) INFORMATION FOR SEQ ID NO:9:

(1) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2009 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(11) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

(B) CLONE: XR4 (XR4.SEG)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 263..1582

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAATTCCCTG GGGATTAATG GGAAAAGTTT TGGCAGGAGC TGGGGGGATTC TGCGGAGCCT	60											
GCGGGACGGC GGCAGCGGC CGAGAGGCGG CCGGGACAGT GCTGTGCAGC GGTGTGGGTA	120											
TGCGCATGGG ACTCACTCAG AGGCTCCTGC TCACTGACAG ATGAAGACAA ACCCACGGTA	180											
AAGGCAGTCC ATCTGCGCTC AGACCCAGAT GGTGGCAGAG CTATGACCAG GCCTGCAGCG												
CCACGCCAAG TGGGGGTCAG TC ATG GAA CAG CCA CAG GAG GAG ACC CCT GAG Met Glu Gln Pro Gln Glu Glu Thr Pro Glu 1 5 10												
GCC CGG GAA GAG GAG AAA GAG GAA GTG GCC ATG GGT GAC GGA GCC CCG Ala Arg Glu Glu Lys Glu Glu Val Ala Met Gly Asp Gly Ala Pro 15 20 25	340											
GAG CTC AAT GGG GGA CCA GAA CAC ACG CTT CCT TCC AGC AGC TGT GCA Glu Leu Asn Gly Gly Pro Glu His Thr Leu Pro Ser Ser Ser Cys Ala 30	388											
GAC CTC TCC CAG AAT TCC TCC CCT TCC TCC CTG CTG GAC CAG CTG CAG Asp Leu Ser Gln Asn Ser Ser Pro Ser Ser Leu Leu Asp Gln Leu Gln 45	436											
ATG GGC TGT GAT GGG GCC TCA GGC GGC AGC CTC AAC ATG GAA TGT CGG Met Gly Cys Asp Gly Ala Ser Gly Gly Ser Leu Asn Met Glu Cys Arg 60 65	484											
GTG TGC GGG GAC AAG GCC TCG GGC TTC CAC TAC GGG GTC CAC GCG TGC Val Cys Gly Asp Lys Ala Ser Gly Phe His Tyr Gly Val His Ala Cys 80 85 90	532											
GAG GGG TGC AAG GGC TTC TTC CGC CGG ACA ATC CGC ATG AAG CTC GAG Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile Arg Met Lys Leu Glu 95	580											

				Asp										Ar	C AAC g Asn	628
			Tyr					Lys					Gly		G TCG Ser	676
CAC His	AAC Asn 140	Ala	ATC Ile	CGC Arg	TTT Phe	GGA Gly 145	Arg	ATG Met	CCG Pro	GAC Asp	GGC Gly 150	Glu	AAC Lys	AGC Arg	AAG Lys	724
	. Val					Ala									CAG Gln 170	772
										Ile					CTG	820
														Thr	GGC Gly	868
AAG Lys	TCC	AGC Ser 205	CAC His	AAC Asn	GCA Ala	CCC Pro	TTT Phe 210	GTC Val	ATC Ile	CAC His	GAC Asp	ATC Ile 215	GAG Glu	ACA Thr	CTG Leu	916
		Ala													CCG Pro	964
CCC Pro 235	Tyr	AAC Asn	GAG Glu	ATC Ile	AGT Ser 240	GTG Val	CAC His	GTG Val	TTC Phe	TAC Tyr 245	CGC Arg	TGC Cys	CAG Gln	TCC Ser	ACC Thr 250	1012
ACA Thr	GTG Val	GAG Glu	ACA Thr	GTC Val 255	CGA Arg	GAG Glu	CTC Leu	ACC Thr	GAG Glu 260	TTC Phe	GCC Ala	AAG Lys	AAC As n	ATC Ile 265	CCC Pro	1060
AAC Asn	TTC Phe	AGC Ser	AGC Ser 270	CTC Leu	TTC Phe	CTC Leu	TAA Asn	GAC Asp 275	CAG Gln	GTG Val	ACC Thr	CTC Leu	CTC Leu 280	AAG Lys	TAT Tyr	1108
		CAC His 285														1156
		CTG Leu														1204
		AGT Ser														1252
GAG Glu	TTT Phe	GCT Ala	GTC Val	AAG Lys 335	TTC Phe	AAT Asn	GCG Ala	CTG Leu	GAG Glu 340	CTC Leu	GAT Asp	GAC. Asp	AGT Ser	GAC Asp 345	CTG Leu	1300
GCG Ala	CTC Leu	TTC Phe	ATC Ile 350	GCG Ala	GCC Ala	ATC Ile	Ile	CTG Leu 355	TGT Cys	GGA Gly	GAC A sp	CGG Arg	CCA Pro 360	GGC Gly	CTC Leu	1348
_		GTG Val 365		_	_	Glu .									_	1396

CTA GAA TTC CAT CTG CAG GTC AAC CAC CCT GAC AGC CAG TAC CTC TTC Leu Glu Phe His Leu Gln Val Asn His Pro Asp Ser Gln Tyr Leu Phe 380 385 390	1444
CCC AAG CTG CTG CAG AAG ATG GCA GAC CTG CGG CAC GTG GTC ACT GAG Pro Lys Leu Leu Gln Lys Met Ala Asp Leu Arg His Val Val Thr Glu 400 405 405	1492
CAT GCC CAG ATG ATG CAG TGG CTA AAG AAG ACG GAG AGT GAG ACC TTG His Ala Gln Met Met Gln Trp Leu Lys Lys Thr Glu Ser Glu Thr Leu 415 420 425	1540
CTG CAC CCC CTG CTC CAG GAA ATC TAC AAG GAC ATG TAC TAAGGCCGCA Leu His Pro Leu Leu Gln Glu Ile Tyr Lys Asp Met Tyr 430 440	1589
GCCCAGGCCT CCCCTCAGGC TCTGCTGGGC CCAGCCACGG ACTGTTCAGA GGACCAGCCA	1649
CAGGCACTGG CAGTCAAGCA GCTAGAGCCT ACTCACAACA CTCCAGACAC GTGCCCCAGA	1709
CTCTTCCCCC AACACCCCCA CCCCCACCAA CCCCCCCATT CCCCCAACCC CCCTCCCCCA	1769
CCCCGCTCTC CCCATGGCCC GTTTCCTGTT TCTCCTCAGC ACCTCCTGTT CTTGCTGTCT	1829
CCCTAGCGCC CTTGCTCCCC CCCCTTTGCC TTCCTTCTCT AGCATCCCCC TCCTCCCAGT	1889
CCTCACATTT GTCTGATTCA CAGCAGACAG CCCGTTGGTA CGCTCACCAG CAGCCTAAAA	1949
GCAGTGGGCC TGTGCTGGCC CAGTCCTGCC TCTCCTCTCT ATCCCCTTCA AAGGGAATTC	2009

(2) INFORMATION FOR SEQ ID NO:10:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 439 amino acids (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Glu Gln Pro Gln Glu Glu Thr Pro Glu Ala Arg Glu Glu Glu Lys
1 10 15 Glu Glu Val Ala Het Gly Asp Gly Ala Pro Glu Leu Asn Gly Gly Pro
20 25 30 Glu His Thr Leu Pro Ser Ser Ser Cys Ala Asp Leu Ser Gln Asn Ser 35 40 45 Ser Pro Ser Ser Leu Leu Asp Gln Leu Gln Het Gly Cys Asp Gly Ala
50 55 60 Ser Gly Gly Ser Leu Asn Met Glu Cys Arg Val Cys Gly Asp Lys Ala 65 70 75 80 Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe 85 90 95 Phe Arg Arg Thr Ile Arg Met Lys Leu Glu Tyr Glu Lys Cys Asp Arg 100 105 110 Ile Cys Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg 115 120 125

Phe Gln Lys Cys Leu Ala Leu Gly Met Ser His Asn Ala Ile Arg Phe 130 135 140 Gly Arg Met Pro Asp Gly Glu Lys Arg Lys Leu Val Ala Gly Leu Thr 155 150 Ala Ser Glu Gly Cys Gln His Asn Pro Gln Leu Ala Asp Leu Lys Ala 165 170 175 Phe Ser Lys His Ile Tyr Asn Ala Tyr Leu Lys Asn Phe Asn Met Thr 180 Lys Lys Ala Arg Ser Ile Leu Thr Gly Lys Ser Ser His Asn Ala 195 200 205 Pro Phe Val Ile His Asp Ile Glu Thr Leu Trp Gln Ala Glu Lys Gly 210 215 220 Leu Val Trp Lys Gln Leu Val Asn Val Pro Pro Tyr Asn Glu Ile Ser 225 230 235 240 Val His Val Phe Tyr Arg Cys Gln Ser Thr Thr Val Glu Thr Val Arg 245 250 255 Glu Leu Thr Glu Phe Ala Lys Asn Ile Pro Asn Phe Ser Ser Leu Phe 260 265 270 Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly Val His Glu Ala Ile 275 280 285 Phe Ala Met Leu Ala Ser Ile Val Asn Lys Asp Gly Leu Leu Val Ala 290 295 300 Asn Gly Ser Gly Phe Val Thr His Glu Phe Leu Arg Ser Leu Arg Lys 305 310 315 Pro Phe Ser Asp Ile Ile Glu Pro Lys Phe Glu Phe Ala Val Lys Phe 325 335 Asn Ala Leu Glu Leu Asp Asp Ser Asp Leu Ala Leu Phe Ile Ala Ala 340 345 350 Ile Ile Leu Cys Gly Asp Arg Pro Gly Leu Met Asn Val Pro Gln Val 355 360 365 Glu Ala Ile Gln Asp Thr Ile Leu Arg Ala Leu Glu Phe His Leu Gln 370 380 Val Asn His Pro Asp Ser Gln Tyr Leu Phe Pro Lys Leu Leu Gln Lys 385 390 395 400 Met Ala Asp Leu Arg His Val Val Thr Glu His Ala Gln Met Met Gln 405 410 415 Trp Leu Lys Lys Thr Glu Ser Glu Thr Leu Leu His Pro Leu Leu Gln
420 425 430 Glu Ile Tyr Lys Asp Met Tyr 435

(2) INFORMATION FOR SEQ ID NO:11:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2468 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:
(B) CLONE: XR5 (XR5.SEG)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..1677

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

	•	-	•													
GAA Glu 1	TTC Phe	CGG Arg	CGC Arg	GGA Gly 5	GGG Gly	GCG Ala	CGG Arg	CGC Arg	GAG Glu 10	GGG Gly	CCG Pro	GAG Glu	CCG Pro	GGC Gly 15	GGC Gly	48
TCA Ser	GGG Gly	GCC Ala	CAG Gln 20	AGA Arg	GTG Val	CGG Arg	CGG Arg	CCG Pro 25	AGA Arg	GCC Ala	TGC Cys	CGG Arg	CCC Pro 30	CTG Leu	ACA Thr	96
GCC Ala	CCC Pro	TCC Ser 35	CCC Pro	CGT Arg	GGA Gly	AGA Arg	CCA Pro 40	GGA Gly	CGA Arg	CGA Arg	CTA Leu	CGA Arg 45	AGG Arg	CGC Arg	AAG Lys	144
TCA Ser	TGG Trp 50	CGG Arg	AGC Ser	AGC Ser	GAA Glu	CGC Arg 55	CGA Arg	GAG Glu	GGC Gly	CCT Pro	GAG Glu 60	CAC His	CGC Arg	CGC Arg	ATG Met	192
GAG Glu 65	CGG Arg	GAC Asp	GAA Glu	CGG Arg	CCA Pro 70	CCT Pro	AGC Ser	GGA Gly	GGG Gly	GGA Gly 75	GGC Gly	GGC Gly	GGG Gly	GGC Gly	TCG Ser 80	240
GCG Ala	GCG	TTC Phe	CTG Leu	GAG Glu 85	CCG Pro	CCC Pro	GCC Ala	GCG Ala	CTC Leu 90	CCT Pro	CCG Pro	CCG Pro	CCG Pro	CGC Arg 95	AAC Asn	288
GGT Gly	TTC Phe	TGT Cys	CAG Gln 100	GAT Asp	GAA Glu	TTG Leu	GCA Ala	GAG Glu 105	CTT Leu	GAT Asp	CCA Pro	GGC Gly	ACT Thr 110	AAT Asn	GGA Gly	336
GAG Glu	ACT Thr	GAC Asp 115	AGT Ser	TTA Leu	ACA Thr	CTT Leu	GGC Gly 120	CAA Gln	GGC Gly	CAT His	ATA Ile	CCT Pro 125	GTT Val	TCC Ser	GTC Val	384
CCA Pro	GAT Asp 130	GAT Asp	CGA Arg	GCT Ala	GAA Glu	CAA Gln 135	CGA Arg	ACC Thr	TGT Cys	CTC Leu	ATC Ile 140	TGT Cys	GGG Gly	GAC A sp	CGC Arg	432
GCT Ala 145	ACG Thr	GGC Gly	TTG Leu	CAC His	TAT Tyr 150	GGG Gly	ATC Ile	ATC Ile	TCC Ser	TGC Cys 155	GAG Glu	GGC Gly	TGC Cys	AAG Lys	GGG Gly 160	480
TTT Phe	TTC Phe	AAG Lys	Arg	AGC Ser 165	ATT Ile	TGC Cys	AAC Asn	Lys	CGG Arg 170	GTG Val	TAT Tyr	CGG Arg	Cys	AGT Ser 175	CGT Arg	528

									٠.							•	
GA As	C AA p Ly	G AA	in C	GT GT ys Va 30	C AT	G TC	C CGC	G AA	s Gl	G AG	G AA	C AG	A TG g Cy 19	s G	AG TA Ln Ty	AC /I	576
TG Cy	C CG s Ar	C CI g Le 19	u Le	C AA	G TG	T CTO	C CAC u Glr 200	n Me	G GGG t Gly	C ATO	G AA(C AG n Ar 20	G AA g Ly S	G G(s A)	CT AT	C Le	624
AG.	A GA g Gl 21	u As	T GC p Gl	C AT y Me	G CC	T GG/ 0 Gly 21	A GGC y Gly	C CGC	G AA(g Ast	C AAC n Lys	S AG0 S Se1 220	r Ile	r GG e Gl	A CC y Pr	A GT o Va	C 1	672
CA(G1: 22:	U IT	A TC e Se	A GA r Gl	A GA u Gl	A GA u Gli 230	u Ile	GAA Glu	AGA Arg	A ATO	ATG Met 235	: Ser	GGA Gly	A CA	G GA n Gl	G TT u Ph 24	e	720
GA(G GA	A GA u Gl	A GC u Al	C AA a As 24	ប អរៈ	TGC Trp	S AGC Ser	AAC Ast	CAT His 250	Gly	GAC Asp	AGC Ser	GA(C CA Hi 25	s Se	T r	768
TC(Ser	CC.	r GG o Gl	G AA y As 26	n Ar	G GCT g Ala	TCA Ser	GAG Glu	AGC Ser 265	Asn	CAG Gln	CCC	TCA Ser	CCA Pro 270	G1	C TC	C	816
AC# Thr	CT/	A TC	r se	C AG	r Arg	TCT Ser	GTG Val 280	GAA Glu	CTA Leu	AAT Asn	GGA Gly	TTC Phe 285	Met	GC.	A TTO	C =	864
AGG	GAT AST 290) GII	TA Ty:	C ATO	G GGG Gly	Met 295	TCA Ser	GTG Val	CCT Pro	CCA Pro	CAT His 300	TAT Tyr	CAA Gln	TAC Ty	C ATA	A e	912
CCA Pro 305	nıs	CT1	TT.	I AGG	TAT Tyr 310	Ser	GGC Gly	CAC His	TCA Ser	CCA Pro 315	CTT Leu	TTG Leu	CCC Pro	CC#	CAA Gln 320	1	960
GCT Ala	CGA Arg	AGO	CT(G GAC Asp 325	Pro	CAG Gln	TCC Ser	TAC Tyr	AGT Ser 330	CTG Leu	ATT Ile	CAT His	CAG Gln	CTG Leu 335	Met	:	1008
TCA Ser	GCC Ala	GAA Glu	GAC Ast 340	Leu	GAG Glu	CCA Pro	TTG Leu	GGC Gly 345	ACA Thr	CCT Pro	ATG Met	TTG Leu	ATT Ile 350	GAA Glu	GAT Asp	•	1056
GGG Gly	TAT Tyr	GCT Ala 355	VAI	ACA Thr	CAG Gln	GCA Ala	GAA Glu 360	CTG Leu	TTT Phe	GCT Ala	CTG Leu	CTT Leu 365	TGC Cys	CGC Arg	CTG Leu	•	1104
GCC Ala	GAC Asp 370	GAG Glu	TTG	CTC	TTT Phe	AGG Arg 375	CAG Gln	ATT Ile	GCC Ala	TGG Trp	ATC Ile 380	AAG Lys	AAG Lys	CTG Leu	CCT Pro		1152
TTC Phe 385	TTC Phe	TGC Cys	GAG Glu	CTC Leu	TCA Ser 390	ATC Ile	AAG Lys	GAT Asp	TAC Tyr	ACG Thr 395	TGC Cys	CTC Leu	TTG Leu	AGC Ser	TCT Ser 400		1200
ACG Thr	TGG Trp	CAG Gln	GAG Glu	TTA Leu 405	ATC Ile	CTG Leu	CTC Leu	Ser	TCC Ser 410	CTC . Leu	ACA Thr	GTG Val	TAC Tyr	AGC Ser 415	AAG Lys		1248
CAG Gln	ATC Ile	TTT Phe	GGG Gly 420	GAG Glu	CTG Leu	GCT Ala	GAT (Asp	GTC Val 425	ACA (GCC A	AAG '	Tyr	TCA Ser 430	CCC Pro	TCT Ser		1296
GAT Asp	GAA Glu	GAA Glu 435	CTC Leu	CAC	AGA Arg	Phe	AGT (Ser / 440	GAT (GAA (Glu (GGG A	Met (GAG (Glu '	GTG Val	ATT Ile	GAA Glu		1344

									~-	~.~	0000		Oma	400		1200
Arg	Leu 450	Ile	Tyr	Leu	Tyr	His 455	Lys	Phe	His	Gln	Leu 460	Lys	Val	AGC Ser	Asn	1392
GAG Glu 465	GAG Glu	TAC Tyr	GCA Ala	TGC Cys	ATG Met 470	AAA Lys	GCA Ala	ATT Ile	AAC Asn	TTC Phe 475	CTG Leu	AAT Asn	CAA Gln	GAT Asp	ATC Ile 480	1440
AGG Arg	GGT Gly	CTG Leu	ACC Thr	AGT Ser 485	GCC Ala	TCA Ser	CAG Gln	CTG Leu	GAA Glu 490	CAA Gln	CTG Leu	AAC Asn	AAG Lys	CGG Arg 495	TAT Tyr	1488
TGG Trp	TAC Tyr	ATT Ile	TGT Cys 500	CAG Gln	GAT Asp	TTC Phe	ACT Thr	GAA Glu 505	TAT Tyr	AAA Lys	TAC Tyr	ACA Thr	CAT His 510	CAG Gln	CCA Pro	1536
AAC Asn	CGC Arg	TTT Phe 515	CCT Pro	GAT Asp	CTT Leu	ATG Met	ATG Met 520	TGC Cys	TTG Leu	CCA Pro	GAG Glu	ATC Ile 525	CGA Arg	TAC Tyr	ATC Ile	1584
GCA Ala	GGC Gly 530	AAG Lys	ATG Met	GTG Val	AAT Asn	GTG Val 535	CCC Pro	CTG Leu	GAG Glu	CAG Gln	CTG Leu 540	CCC Pro	CTÇ Leu	CTC Leu	TTT Phe	1632
AAG Lys 545	GTG Val	GTG Val	CTG Leu	CAC His	TCC Ser 550	TGC Cys	AAG Lys	ACA Thr	AGT Ser	ACG Thr 555	GTG Val	AAG Lys	GAG Glu	TGAC	CTGTGC	1684
CCTG	CACC	TC C	TTGG	GCCA	с сс	ACAG	TGCC	TTG	GGTA	GGC	AGCA	CAGG	CT C	CAGA	GGAAA	1744
GAGC	CAGA	GA C	CAAG	ATGG	A GA	.CTGT	GGAG	CAG	CTAC	CTC	CATC	ACAA	GA A	GAAT	TTGTT	1804
TGTT	TGTC	TG T	TITT	AACC	T CA	TTTT	TCTA	TAT	ATTT.	ATT	TCAC	GACA	GA G	TTGA	ATGTA	1864
TGGC	CTTC	AA C	ATGA	TGCA	C AT	GCTT	TTGT	GTG.	AATG	CAG	CAGA	TGCA	TT T	CCTT	GCAGT	1924
TTAC	AGAA'	TG T	GAAG.	ATGT	T TA	ATGT	TACC	GTG	TTGT	CAT	TGTT	TAGA	GA T	AGGT	ITTTT	1984
TGTA	TTTT	GA T	GGAG.	AGGG	T AG	GATG	GACT	AGA'	TGAG	TAT	TTCC	ATAA	TG T	TGAC	AAAGA	2044
CAAC	TACC	TC A	ATGG.	AAAC	A GG	TGTA'	TGAC	CAT	CCCT	ACC	TTTT	TCCA	CA T	TTTC	CAGC	2104
AGAT	ACAC	AC T	TGTC	TGTT.	A GA	GAGC	AAAC	TGC	CTTT	rrr .	ATAG	CCAC	AG A	CITC	TAAGT	2164
AAAA	GAAG	CA A	ACAA	AGGA	G CG	AAGT	GGTA	TAG	GGAG	ATT	TACT	AATG	GC C	AGTT(GGGAC	2224
ATCT	GAGA	GG C	AATT	IGAT.	r TT	GATC	ATCT	CAT	CCCA	CAA (GCCT	GAAG	GC A	GAAA	CTCTG	2284
CCTTA	ACCT	C T	GCTG	CACC	CT(CCCC	CCCC	CCA	CACG	CTG '	TTGT	CTCT	rg A	IGCTO	CTGT	2344
CAAG	TTT	CA T	CCAG	GTAG	A GT	CCTA	ACAA	TAAC	GCCAC	STA :	TGTA	GGACT	rt G	CCTCC	CAGC	2404
GCCC	TGTA	AG C	CAT	AGCT	cc:	TAGTT	TGC	TGTT	CTAC	GAT (CTAC	CAAG	GC C	[ACT]	CCGCA	2464
ATTC																2468

(2) INFORMATION FOR SEQ ID NO:12:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 558 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Glu Phe Arg Arg Gly Gly Ala Arg Arg Glu Gly Pro Glu Pro Gly Gly 1 5 15 . Ser Cly Ala Cln Arg Val Arg Arg Pro Arg Ala Cys Arg Pro Leu Thr Ala Pro Ser Pro Arg Gly Arg Pro Gly Arg Arg Leu Arg Arg Arg Lys 35 Ser Trp Arg Ser Ser Glu Arg Arg Glu Gly Pro Glu His Arg Arg Met Glu Arg Asp Glu Arg Pro Pro Ser Gly Gly Gly Gly Gly Gly Ser Ala Gly Phe Leu Glu Pro Pro Ala Ala Leu Pro Pro Pro Pro Arg Asn
85 90 95 Gly Phe Cys Gln Asp Glu Leu Ala Glu Leu Asp Pro Gly Thr Asn Gly 100 105 110 Glu Thr Asp Ser Leu Thr Leu Gly Gln Gly His Ile Pro Val Ser Val 115 120 125 Pro Asp Asp Arg Ala Glu Gln Arg Thr Cys Leu Ile Cys Gly Asp Arg
130
140 Ala Thr Gly Leu His Tyr Gly Ile Ile Ser Cys Glu Gly Cys Lys Gly 145 150 155 160 Phe Phe Lys Arg Ser Ile Cys Asn Lys Arg Val Tyr Arg Cys Ser Arg 165 170 175 Asp Lys Asn Cys Val Het Ser Arg Lys Gln Arg Asn Arg Cys Gln Tyr 180 185 Cys Arg Leu Lys Cys Leu Gln Met Gly Met Asn Arg Lys Ala Ile 195 200 205 Arg Glu Asp Gly Met Pro Gly Gly Arg Asn Lys Ser Ile Gly Pro Val Gln Ile Ser Glu Glu Glu Ile Glu Arg Ile Met Ser Gly Gln Glu Phe 225 235 240 Glu Glu Glu Ala Asn His Trp Ser Asn His Gly Asp Ser Asp His Ser 245 250 255 Ser Pro Gly Asn Arg Ala Ser Glu Ser Asn Gln Pro Ser Pro Gly Ser 260 265 270 Thr Leu Ser Ser Ser Arg Ser Val Glu Leu Asn Gly Phe Met Ala Phe 275 280 285 Arg Asp Gln Tyr Met Gly Met Ser Val Pro Pro His Tyr Gln Tyr Ile 290 295 300

Pro His Leu Phe Ser Tyr Ser Gly His Ser Pro Leu Leu Pro Pro Gln 305 310 315 Ala Arg Ser Leu Asp Pro Gln Ser Tyr Ser Leu Ile His Gln Leu Met 325 330 335 Ser Ala Glu Asp Leu Glu Pro Leu Gly Thr Pro Met Leu Ile Glu Asp 340 345 350 Gly Tyr Ala Val Thr Gln Ala Glu Leu Phe Ala Leu Leu Cys Arg Leu
355 360 365 Ala Asp Glu Leu Leu Phe Arg Gln Ile Ala Trp Ile Lys Lys Leu Pro 370 380 Phe Phe Cys Glu Leu Ser Ile Lys Asp Tyr Thr Cys Leu Leu Ser Ser 385 390 395 400 Thr Trp Gln Glu Leu Ile Leu Leu Ser Ser Leu Thr Val Tyr Ser Lys
405
410
415 Gln Ile Phe Gly Glu Leu Ala Asp Val Thr Ala Lys Tyr Ser Pro Ser 420 425 430 Asp Glu Glu Leu His Arg Phe Ser Asp Glu Gly Met Glu Val Ile Glu Arg Leu Ile Tyr Leu Tyr His Lys Phe His Gln Leu Lys Val Ser Asn 450 460 Glu Glu Tyr Ala Cys Met Lys Ala Ile Asn Phe Leu Asn Gln Asp Ile 465 470 475 480 Arg Gly Leu Thr Ser Ala Ser Gln Leu Glu Gln Leu Asn Lys Arg Tyr 485 490 495 Trp Tyr Ile Cys Gln Asp Phe Thr Glu Tyr Lys Tyr Thr His Gln Pro
500 505 510 Asn Arg Phe Pro Asp Leu Met Met Cys Leu Pro Glu Ile Arg Tyr Ile 515 520 525 Ala Gly Lys Het Val Asn Val Pro Leu Glu Gln Leu Pro Leu Leu Phe 530 540 Lys Val Val Leu His Ser Cys Lys Thr Ser Thr Val Lys Glu 545 550 555

(2) INFORMATION FOR SEQ ID NO:13:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2315 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(11) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

(B) CLONE: XR79 (XR79.SEQ)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 204..2009

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GCG	TTAG	AAA	AGGT	TCAA	AA I	AGGC	ACAA	A GI	CGTG	AAAA	TAT	CCTA	AACT	GAC	CGAAG	T	60
AAC	AATA	CTT	TAAC	CAAG	TG C	CTCG	AAAA	A TA	GATG	TTTT	TAA	AAGC	CTCA	AGAA	TGGTG	Α	120
TAA	CAGA	CGT	CCAA	TAAG	AA T	TTTC	AAAG	A GC	CAAT	TATI	TAI	CACAC	CCC	ACGA	CTATT	T	180
TTT	AGCC	GCC	TGCT	GTGC	CG A	CA A	TG G et A 1	AC G	GC G	TT A	AG G ys V 5	TT C	SAG A Slu I	CG T	TC he	·	230
ATC Ile 10	Lys	AGC Ser	GAA Glu	GAA Glu	AAC Asn 15	Arg	GCG Ala	ATG Met	CCC Pro	TTG Leu 20	Ile	GGA Gly	GGA Gly	GGC	AGT Ser 25		278
GCC Ala	TCA Ser	GGC Gly	GGC Gly	ACT Thr 30	CCT Pro	CTG Leu	CCA Pro	GGA Gly	GGC Gly 35	GGC Gly	GTG Val	GGA Gly	ATG Met	GGA Gly 40	GCC		326
GGA Gly	GCA Ala	TCC Ser	GCA Ala 45	ACG Thr	TTG Leu	AGC Ser	GTG Val	GAG Glu 50	CTG Leu	TGT Cys	TTG Leu	GTG Val	TGC Cys 55	GGG Gly	GAC Asp		374
CGC Arg	GCC Ala	TCC Ser 60	GGG Gly	CGG Arg	CAC His	TAC Tyr	GGA Gly 65	GCC Ala	ATA Ile	AGC Ser	TGC Cys	GAA Glu 70	Gly	TGC Cys	AAG Lys		422
GGA Gly	TTC Phe 75	TTC Phe	AAG Lys	CGC Arg	TCG Ser	ATC Ile 80	CGG Arg	AAG Lys	CAG Gln	CTG Leu	GGC Gly 85	TAC Tyr	CAG Gln	TGT Cys	CGC Arg	-	470
GGG Gly 90	GCT Ala	ATG Met	AAC Asn	TGC Cys	GAG Glu 95	GTC Val	ACC Thr	AAG Lys	CAC His	CAC His 100	AGG Arg	AAT Asn	CGG Arg	TGC Cys	CAG Gln 105		518
TTC Phe	TGT Cys	CGA Arg	CTA Leu	CAG Gln 110	AAG Lys	TGC Cys	CTG Leu	GCC Ala	AGC Ser 115	GGC Gly	ATG Met	CGA Arg	AGT Ser	GAT Asp 120	TCT Ser		566
GTG Val	CAG Gln	CAC His	GAG Glu 125	AGG Arg	AAA Lys	CCG Pro	ATT Ile	GTG Val 130	GAC Asp	AGG Arg	AAG Lys	GAG Glu	GGG Gly 135	ATC Ile	ATC Ile		614
GCT Ala	GCT Ala	GCC Ala 140	GGT Gly	AGC Ser	TCA Ser	TCC Ser	ACT Thr 145	TCT Ser	GGC Gly	GGC Gly	GGT Gly	AAT Asn 150	GGC Gly	TCG Ser	TCC Ser		662

AC(TAC Ty: 155	Le	A TC(GGC Gly	C AAC Lys	TCC Ser 160	Gly	TA?	CAC CGl	G CAC	G GGG 1 Gly 16	G CG	r GG g Gl	C AA y Ly	G GGG s Gly	710
	Ser					Ser					ı Glr				G CGC a Arg 185	758
					Asn					Tyr					TTG y Leu	806
AAT Ast	TTC Phe	GCA Ala	GAA Glu 205	Leu	ACG Thr	CAG Gln	ACA Thr	TTG Leu 210	Met	TTC Phe	GCT Ala	ACC Thr	CAA Glr 215	ı Glı	G CAG	854
CAG Gln	CAA Gln	CAA Glm 220	Gln	CAA Gln	CAG Gln	CAT His	CAA Gln 225	CAG Gln	AGT Ser	GCT	AGC Ser	TAI Tyr 230	Ser	CCA Pro	A GAT	902
		Lys													AAC Asn	950
	Ser														AAC Asn 265	998
AAC Asn	TCG Ser	CAG Gln	CAC His	CTG Leu 270	AAC Asn	TTT Phe	AAT Asn	GCT Ala	GGG Gly 275	GAA Glu	GTA Val	CCC Pro	ACC Thr	GCT Ala 280	CTG	1046
															CGG Arg	1094
GTC Val	ATC Ile	CAC His 300	AAG Lys	GGA Gly	CTG Leu	CAG Gln	ATC Ile 305	CTG Leu	CAG Gln	CCC Pro	ATC Ile	CAA Gln 310	AAC Asn	CAA Gln	CTG Leu	1142
GAG Glu	CGA Arg 315	AAT Asn	GGT Gly	AAT Asn	CTG Leu	AGT Ser 320	GTG Val	AAG Lys	CCC Pro	GAG Glu	TGC Cys 325	GAT Asp	TCA Ser	GAG Glu	GCG Ala	1190
GAG Glu 330	GAC Asp	AGT Ser	GGC Gly	ACC Thr	GAG Glu 335	GAT Asp	GCC Ala	GTA Val	GAC Asp	GCG Ala 340	GAG Glu	CTG Leu	GAG Glu	CAC His	ATG Met 345	1238
	CTA Leu														TIT Phe .	1286
GCT Ala	ATC Ile	TAA neA	GAG Glu 365	GCG Ala	GTC Val	TTT Phe	Glu	CAG Gln 370	GAT Asp	CTT Leu	CTC Leu	ACC Thr	GAT Asp 375	GTG Val	CAG Gln	1334
	GCC Ala					Pro					His					1382
	CAT His 395				Glu					Ile						1430
CAT His 410	ACC Thr	CTT Leu	CGA Arg	Lys	GTT Val 415	CCA Pro	GTT '	TTC Phe	Glu	CAA Gln 420	TTG Leu	GAA Glu	GCC Ala	CAT His	ACA Thr 425	1478

													•			
CAG Gln	GTG Val	AAA Lys	CTC Leu	CTG Leu 430	AGA Arg	GGA Gly	GTC Val	TGG Trp	CCA Pro 435	GCA Ala	TTA Leu	ATG Met	GCT Ala	ATA Ile 440	GCT Ala	1526
TTG Leu	GCG Ala	CAG Gln	TGT Cys 445	CAG Gln	GGT Gly	CAG Gln	CTT Leu	TCG Ser 450	GTG Val	CCC Pro	ACC Thr	ATT Ile	ATC Ile 455	GGG Gly	CAG Gln	1574
TTT Phe	ATT Ile	CAA Gln 460	AGC Ser	ACT Thr	CGC Arg	CAG Gln	CTA Leu 465	Ala	GAT Asp	ATC Ile	GAT Asp	AAG Lys 470	ATC lle	GAA Glu	CCG Pro	1622
TTG Leu	AAG Lys 475	ATC Ile	TCG Ser	AAC Lys	ATG Met	GCA Ala 480	AAT Asn	CTC Leu	ACC Thr	AGG Arg	ACC Thr 485	CTG Leu	CAC His	GAC Asp	TTT Phe	1670
GTC Val 490	CAG Gln	GAG Glu	CTC Leu	CAG Gln	TCA Ser 495	CTG Leu	GAT Asp	GTT Val	ACT Thr	GAT Asp 500	ATG Met	GAG Glu	TTT Phe	GGC Gly	TTG Leu 505	1718
CTG Leu	CGT Arg	CTG Leu	ATC Ile	TTG Leu 510	CTC Leu	TTC Phe	AAT Asn	CCA Pro	ACC Thr 515	CTC Leu	TTC Phe	CAG Gln	CAT His	CGC Arg 520	AAG Lys	1766
GAG Glu	CGG Arg	TCG Ser	TTG Leu 525	CGA Arg	GGC Gly	TAC Tyr	GTC Val	CGC Arg 530	AGA Arg	GTC Val	CAA Gln	CTC Leu	TAC Tyr 535	GCT Ala	CTG Leu	1814
TCA Ser	AGT Ser	TTG Leu 540	AGA Arg	AGG Arg	CAG Gln	GGT Gly	GGC Gly 545	ATC Ile	GGC Gly	GGC Gly	GGC Gly	GAG Glu 550	GAG Glu	CGC Arg	TTT Phe	1862
AAT Asn	GTT Val 555	CTG Leu	GTG Val	GCT Ala	CGC Arg	CTT Leu 560	CTT Leu	CCG Pro	CTC Leu	AGC Ser	AGC Ser 565	CTG Leu	GAC Asp	GCA Ala	GAG Glu	1910
GCC Ala 570	ATG Met	GAG Glu	GAG Glu	Leu	TTC Phe 575	TTC Phe	GCC Ala	AAC Asn	Leu	GTG Val 580	GGG Gly	CAG . Gln !	ATG (Gln	ATG Met 585	1958
GAT Asp	GCT Ala	CTT Leu	Ile	CCG Pro 59 0	TTC Phe	ATA Ile	CTG Leu	Met	ACC Thr 595	AGC . Ser .	AAC . Asn	ACC A	Ser (GGA (Gly :	CTG Leu	2006
TAGG	CGGA	AT T	GAGA	AGAA	C AG	GGCG	CAAG	CAG	ATTC	GCT .	AGAC	TGCC	CA A	AAGC	AAGAC	2066
TGAA	GATG	GA C	CAAG	TGCG	G GC	AATA	CATG	TAG	CAAC	TAG	GCAA	ATCC	CA T	TAAT:	TATAT	2126
ATTT	AATA	TA T	ACAA'	TATA'	T AG	TTTA	GGAT	ACA	ATAT	TCT .	AACA'	TAAAI	AC C	ATGA	CTITA	2186
TTGT	TGTT	CA C	AGAT	AAAA'	T GG	AATC	GATT	TCC	CAAT	AAA .	AGCG	AATAT	rg T	TTT.	AACA	2246
GAAT	GTTT	GC A	TCAG	AACT	T TG	AGAT	GTAT	ACA'	TTAG	ATT A	ATTA	CAACA	AC AA	\AAA/	AAAA	2306
AAAA	AAAA	A														2315

(2) INFORMATION FOR SEQ ID NO:14:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Asp Gly Val Lys Val Glu Thr Phe Ile Lys Ser Glu Glu Asn Arg Ala Met Pro Leu Ile Gly Gly Gly Ser Ala Ser Gly Gly Thr Pro Leu 20 25 30 Pro Gly Gly Val Gly Met Gly Ala Gly Ala Ser Ala Thr Leu Ser Val Glu Leu Cys Leu Val Cys Gly Asp Arg Ala Ser Gly Arg His Tyr
50 60

Gly Ala Ile Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Ser Ile 65 70 75 80

Arg Lys Gln Leu Gly Tyr Gln Cys Arg Gly Ala Met Asn Cys Glu Val

Thr Lys His His Arg Asn Arg Cys Gln Phe Cys Arg Leu Gln Lys Cys 100 105 110

Leu Ala Ser Gly Met Arg Ser Asp Ser Val Gln His Glu Arg Lys Pro 115 120 125

Ile Val Asp Arg Lys Glu Gly Ile Ile Ala Ala Ala Gly Ser Ser Ser 130 135 140

Thr Ser Gly Gly Gly Asn Gly Ser Ser Thr Tyr Leu Ser Gly Lys Ser 145 150 155 160

Gly Tyr Gln Gln Gly Arg Gly Lys Gly His Ser Val Lys Ala Glu Ser 165 170 175

Ala Pro Arg Leu Gln Cys Thr Ala Arg Gln Gln Arg Ala Phe Asn Leu 180 185 190

Asn Ala Glu Tyr Ile Pro Met Gly Leu Asn Phe Ala Glu Leu Thr Gln
195 200 205

Thr Leu Met Phe Ala Thr Gln Gln Gln Gln Gln Gln Gln Gln Gln His 210 215 220

Gln Gln Ser Gly Ser Tyr Ser Pro Asp Ile Pro Lys Ala Asp Pro Glu 225 230 235 240

Asp Asp Glu Asp Asp Ser Met Asp Asn Ser Ser Thr Leu Cys Leu Gln 245 250 255

Leu Leu Ala Asn Ser Ala Ser Asn Asn Asn Ser Gln His Leu Asn Phe 260 265 270

Asn Ala Gly Glu Val Pro Thr Ala Leu Pro Thr Thr Ser Thr Met Gly 275 280 285

Leu Ile Gln Ser Ser Leu Asp Met Arg Val Ile His Lys Gly Leu Gln 290 295 300

Ile Leu Gln Pro Ile Gln Asn Gln Leu Glu Arg Asn Gly Asn Leu Ser 305 310 315 Val Lys Pro Glu Cys Asp Ser Glu Ala Glu Asp Ser Gly Thr Glu Asp 325 330 335 Ala Val Asp Ala Glu Leu Glu His Met Glu Leu Asp Phe Glu Cys Gly Gly Asn Arg Ser Gly Gly Ser Asp Phe Ala Ile Asn Glu Ala Val Phe 355 Glu Gln Asp Leu Leu Thr Asp Val Gln Cys Ala Phe His Val Gln Pro 370 380 Pro Thr Leu Val His Ser Tyr Leu Asn Ile His Tyr Val Cys Glu Thr 385 390 395 Gly Ser Arg Ile Ile Phe Leu Thr Ile His Thr Leu Arg Lys Val Pro 405 410 415 Val Phe Glu Glu Leu Glu Ala His Thr Gln Val Lys Leu Leu Arg Gly
420 425 430 Val Trp Pro Ala Leu Met Ala Ile Ala Leu Ala Gln Cys Gln Gly Gln 435 440 445 Leu Ser Val Pro Thr Ile Ile Gly Gln Phe Ile Gln Ser Thr Arg Gln 450 455 460 Leu Ala Asp Ile Asp Lys Ile Glu Pro Leu Lys Ile Ser Lys Met Ala 480 Asn Leu Thr Arg Thr Leu His Asp Phe Val Gln Glu Leu Gln Ser Leu
485 490 495 Asp Val Thr Asp Met Glu Phe Gly Leu Leu Arg Leu Ile Leu Leu Phe 500 510 Asn Pro Thr Leu Phe Gln His Arg Lys Glu Arg Ser Leu Arg Gly Tyr 515 520 525 Val Arg Arg Val Gln Leu Tyr Ala Leu Ser Ser Leu Arg Arg Gln Gly 530 540 Gly Ile Gly Gly Glu Glu Arg Phe Asn Val Leu Val Ala Arg Leu 545 550 560 Leu Pro Leu Ser Ser Leu Asp Ala Glu Ala Het Glu Glu Leu Phe Phe 565 570 575 Ala Asn Leu Val Gly Gln Met Gln Met Asp Ala Leu Ile Pro Phe Ile 580 585 590

Leu Met Thr Ser Asn Thr Ser Gly Leu 595 600

That which is claimed is:

		encoding a polypeptide characterized by
		domain comprising about 66 amino acids
	with 9 Cys residues	, wherein said DNA binding domain has:
	(i)	less than about 70% amino acid sequence
5		identity with the DNA binding domain of
		hRAR-alpha;
	(ii)	less than about 60% amino acid sequence
		identity with the DNA binding domain of
		hTR-beta;
10	(iii)	less than about 50% amino acid sequence
		identity with the DNA binding domain of
		hGR; and
	(iv)	less than about 65% amino acid sequence
		identity with the DNA binding domain of
15		hRXR-alpha.
		ccording to Claim 1 wherein the ligand
	binding domain of sa	aid polypeptide has:
	(i)	less than about 35% amino acid sequence
20		identity with the ligand binding domain
		of hRAR-alpha;
	(ii)	less than about 30% amino acid sequence
		identity with the ligand binding domain
		of hTR-beta;
25	(iii)	less than about 25% amino acid sequence
		identity with the ligand binding domain
		of hGR; and
	(iv)	
		identity with the ligand binding domain
30		of hRXR-alpha.

PCT/US92/07570

	3. DNA	according to Claim 1 wherein said
	polypeptide has an o	overall amino acid sequence identity of:
	(i)	less than about 35% relative to hRAR-
		alpha;
5	(ii)	less than about 35% relative to hTR-
		beta;
	(iii)	less than about 25% relative to hGR;
		and
	(iv)	less than about 35% relative to hRXR-
10		alpha.
		-
		according to Claim 1 wherein said
		acterized by having a DNA binding domain
	comprising [XR1]:	
15	(i)	about 68% amino acid sequence identity
		with the DNA binding domain of
		hRAR-alpha;
	(11)	about 59% amino acid sequence identity
20		with the DNA binding domain of hTR-beta;
20	(;;;)	about 45% amino acid sequence identity
		with the DNA binding domain of hGR; and
	(iv)	about 65% amino acid sequence identity
	(,	with the DNA binding domain of
25		hRXR-alpha.
	5. DNA	according to Claim 1 wherein said
	•	cterized by having a DNA binding domain
	comprising [XR2]:	
30	(i)	about 55% amino acid sequence identity
		with the DNA binding domain of
		hRAR-alpha;
	(ii)	about 56% amino acid sequence identity
		with the DNA binding domain of
35		hTR-beta;

WO 93/06215 PCT/US92/07570

		-60- _.
	(iii)	about 50% amino acid sequence identity
•	, ,	with the DNA binding domain of hGR; and
	(iv)	about 52% amino acid sequence identity
	, ,	with the DNA binding domain of
5		hRXR-alpha.
	6. DNA	according to Claim 1 wherein said
		cterized by having a DNA binding domain
	comprising [XR4]:	
10	(i)	about 62% amino acid sequence identity
		with the DNA binding domain of
	•	hRAR-alpha;
	(ii)	about 58% amino acid sequence identity
		with the DNA binding domain of
15		hTR-beta;
	(iii)	about 48% amino acid sequence identity
		with the DNA binding domain of hGR; and
	(iv)	about 62% amino acid sequence identity
		with the DNA binding domain of
20		hRXR-alpha.
	7. DNA	according to Claim 1 wherein said
	polypeptide is chara	cterized by having a DNA binding domain
	<pre>comprising [XR5]:</pre>	
25	(i)	about 59% amino acid sequence identity
		with the DNA binding domain of
		hRAR-alpha;
	(ii)	about 52% amino acid sequence identity
		with the DNA binding domain of
30		hTR-beta;
	(iii)	about 44% amino acid sequence identity
		with the DNA binding domain of hGR; and
	(iv)	about 61% amino acid sequence identity
		with the DNA binding domain of

hRXR-alpha.

. 35

5

10

15

- 8. DNA according to Claim 1 wherein said polypeptide is characterized by having a DNA binding domain comprising [XR79]:
 - (i) about 59% amino acid sequence identity with the DNA binding domain of hRAR-alpha;
 - (ii) about 55% amino acid sequence identity
 with the DNA binding domain of
 hTR-beta;
 - (iii) about 50% amino acid sequence identity with the DNA binding domain of hGR; and
 - (iv) about 65% amino acid sequence identity
 with the DNA binding domain of
 hRXR-alpha.

9. DNA according to Claim 1 wherein the nucleotide sequence of said DNA is selected from the nucleotide sequence set forth in Sequence ID No. 1, the combination of Sequence ID No. 3 and the continuation thereof as set forth in Sequence ID No. 1, the combination of Sequence ID No. 5 and the continuation thereof as set forth in Sequence ID No. 1, Sequence ID No. 7, Sequence ID No. 9, Sequence ID No. 11, or Sequence ID No. 13.

25 10. An expression vector comprising DNA according to claim 1, and further comprising:

at the 5'-end of said DNA, a promoter and a triplet encoding a translational start codon, and

at the 3'-end of said DNA, a triplet encoding a 30 translational stop codon;

wherein said expression vector is operative in an animal cell in culture to express the protein encoded by the continuous sequence of amino acid-encoding triplets.

35 11. An animal cell in culture transformed with an expression vector according to Claim 10.

WO 93/06215 PCT/US92/07570

-62-

- 12. A method of making a polypeptide comprising culturing the cells of Claim 11 under conditions suitable for the expression of said polypeptide.
- 5 13. The polypeptide produced by the method of Claim 12.
- 14. A polypeptide characterized by having a DNA binding domain comprising about 66 amino acids with 9 Cys 10 residues, wherein said DNA binding domain has:

15

20

- (i) less than about 70% amino acid sequence identity with the DNA binding domain of hRAR-alpha;
- (ii) less than about 60% amino acid sequence identity with the DNA binding domain of hTR-beta;
- (iii) less than about 50% amino acid sequence identity with the DNA binding domain of hGR; and
 - (iv) less than about 65% amino acid sequence identity with the DNA binding domain of hRXR-alpha.
- said DNA or RNA comprises a nucleic acid segment of at least 20 bases in length, wherein said segment has substantially the same sequence as a segment of the same length selected from the DNA segment represented by bases 21 -1902, inclusive, of Sequence ID No. 1, bases 1 386, inclusive, of Sequence ID No. 3, bases 10 300, inclusive, of Sequence ID No. 5, bases 21 1615, inclusive, of Sequence ID No. 7, bases 21 1615, inclusive, of Sequence ID No. 9, bases 1 2450, inclusive, of Sequence ID No. 11, bases 21 2295, inclusive, of Sequence ID No. 13, or the complement of any one of said segments.

16. A method of testing a compound for its ability to regulate transcription-activating effects of a receptor polypeptide, said method comprising assaying for the presence or absence of reporter protein upon contacting of cells containing a receptor polypeptide and reporter vector with said compound;

wherein said receptor polypeptide is characterized by having a DNA binding domain comprising about 66 amino acids with 9 Cys residues, wherein said DNA binding domain has:

- (i) less than about 70% amino acid sequence identity with the DNA binding domain of hRAR-alpha;
- (ii) less than about 60% amino acid sequence identity with the DNA binding domain of hTR-beta;
- (iii) less than about 50% amino acid sequence identity with the DNA binding domain of hGR; and
 - (iv) less than about 65% amino acid sequence identity with the DNA binding domain of hRXR-alpha; and

wherein said reporter vector comprises:

- (a) a promoter that is operable in said cell,
- (b) a hormone response element, and
- (c) a DNA segment encoding a reporter protein,

wherein said reporter protein-encoding DNA segment is operatively linked to said promoter for transcription of said DNA segment, and

wherein said hormone response element is operatively linked to said promoter for activation thereof.

15

10

2.0

25

30

35

WO 93/06215 PCT/US92/07570

17. A chimeric receptor comprising at least an amino-terminal domain, a DNA-binding domain, and a ligand-binding domain,

wherein at least one of the domains thereof is derived from the polypeptide of Claim 13; and wherein at least one of the domains thereof is derived from at least one previously identified member of the steroid/thyroid superfamily of receptors.

10

5

- 18. DNA encoding the chimeric receptor of Claim 17.
- 19. A method to identify compounds which act as 15 ligands for receptor polypeptides according to Claim 13 comprising:

assaying for the presence or absence of reporter protein upon contacting of cells containing a chimeric form of said receptor polypeptide and reporter vector with said compound;

wherein said chimeric form of said receptor polypeptide comprises the ligand binding domain of said receptor polypeptide and the amino-terminal and DNA-binding domains of at least one previously identified member of the steroid/thyroid superfamily of receptors;

wherein said reporter vector comprises:

- (a) a promoter that is operable in said cell.
- (b) a hormone response element which is responsive to the receptor from which the DNA-binding domain of said chimeric form of said receptor polypeptide is derived, and
- (c) a DNA segment encoding a reporter protein,

30

20

25

35

WO 93/06215 PCT/US92/07570

-65-

wherein said reporter proteinencoding DNA segment is operatively
linked to said promoter for
transcription of said DNA segment, and
wherein said hormone response

element is operatively linked to said promoter for activation thereof, and thereafter

selecting those compounds which induce or block 10 the production of reporter in the presence of said chimeric form of said receptor polypeptide.

5

25

30

20. A method to identify response elements for receptor polypeptides according to Claim 13 comprising:

assaying for the presence or absence of reporter protein upon contacting of cells containing a chimeric form of said receptor polypeptide and reporter vector with a compound which is a known agonist or antagonist for the receptor from which the ligand-binding domain of said chimeric form of said receptor polypeptide is derived;

wherein said chimeric form of said receptor polypeptide comprises the DNA-binding domain of the receptor polypeptide and the amino-terminal and ligand-binding domains of at least one previously identified member of the steroid/thyroid superfamily of receptors;

wherein said reporter vector comprises:

- (a) a promoter that is operable in said cell,
- (b) a putative hormone response element, and
- (c) a DNA segment encoding a reporter protein,

PCT/US92/07570

5

20

25

30

wherein said reporter proteinencoding DNA segment is operatively
linked to said promoter for
transcription of said DNA segment, and
wherein said hormone response
element is operatively linked to said
promoter for activation thereof; and

identifying those response elements for which the production of reporter is induced or blocked in the 10 presence of said chimeric form of said receptor polypeptide.

21. A method of testing a compound for its ability to selectively regulate transcription-activating effects of a specific receptor polypeptide, said method comprising:

assaying for the presence or absence of reporter protein upon contacting of cells containing said receptor polypeptide and reporter vector with said compound;

wherein said receptor polypeptide is characterized by being responsive to the presence of a known ligand for said receptor to regulate the transcription of associated gene(s);

wherein said reporter vector comprises:

- (a) a promoter that is operable in said cell,
- (b) a hormone response element, and
- (c) a DNA segment encoding a reporter protein,

wherein said reporter proteinencoding DNA segment is operatively linked to said promoter for transcription of said DNA segment, and 10

wherein said hormone response element is operatively linked to said promoter for activation thereof; and

assaying for the presence or absence of reporter protein upon contacting of cells containing chimeric receptor polypeptide and reporter vector with said compound;

wherein said chimeric receptor polypeptide comprises the ligand binding domain of the receptor of Claim 13 and the DNA binding domain of said specific receptor; and thereafter

selecting those compounds which induce or block the production of reporter in the presence of said specific receptor, but are substantially unable to induce or block the production of reporter in the presence of said chimeric receptor.

22. A method according to Claim 21 wherein said contacting is carried out in the further presence of at least one agonist for said specific receptor.

verht i 9		349 352	1952
verht3	1	1///383	1952
verhr5	11111111111111300	2	1952
		FIG. I	

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

· International Application No

PCT/US 92/07570

I. CLASSIFI	CATION OF SUBJE	CT MATTER (if several classification	symbols apply, indicate all) ⁶	
According to		Classification (IPC) or to both National 2; C12N15/62;	Classification and IPC	C12N5/10
IL FIELDS	SEARCHED			
		Minimum Docu	mentation Searched	
Classification	on System		Classification Symbols	
Int.Cl.	5	C12N; C07K;	C12Q	
		Documentation Searched oth to the Extent that such Documen	er than Minimum Documentation its are Included in the Fields Searched ⁸	
				_
III. DOCUM	MENTS CONSIDERE	ED TO BE RELEVANT ⁹		Relevant to Claim No.13
Category °	Citation of D	ocument, 11 with indication, where appro	priate, of the relevant passages 12	Resevant to Claim 140.
Y	UNIVERS	113 167 (LELAND STANFO ITY, US) mber 1991 e 67, Table 4 page 11		1-8, 10-22
Υ	STUDIES 22 Augu	112 258 (THE SALK INS , US) st 1991 ure 1, claims	T. FOR BIOL.	1-8, 10-22
Y	BIOLOGI 14 June	006 364 (THE SALK INS CAL STUDIES, US) 1990 whole document	TITUTE FOR	1-8, 10-20
"A" do "E" ear "I" do "the cit "O" do	nsidered to be of parti- riler document but pul- ing date cument which may thr lich is cited to establis- ation or other special ocument referring to a ber means	eneral state of the art which is not cular relevance blished on or after the international ow doubts on priority claim(s) or b the publication date of another reason (as specified) or oral disclosure, use, exhibition or reto the international filling date but	"I" later document published after the ir or priority date and not in conflict we cited to understand the principle or invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step "Y" document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious the art. "A" document member of the same pater	e cisimed invention at he considered to the considered to the cisimed invention inventive step when the more other such docu- ous to a person skilled
	IFICATION		Date of Mailing of this Internationa	Search Report
Date of the		the International Search BER 1992	2 1 01. 93	
Internation	al Searching Authorit	CAN DATENT OFFICE	Signature of Authorized Officer S.A. NAUCHE	Hanco

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. US

9207570

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 17/12/92

Patent document cited in search report	Publication date	F	Publication date	
(0-A-9113167	05-09-91	AU-A- EP-A-	7492291 0517805	18-09-91 16-12-92
WO-A-9112258	22-08-91	AU-A- EP-A-	7338391 0514488	03-09-91 25-11-92
 WO-A-9006364	14-06-90	AU-A- CA-A- EP-A- JP-T-	4809090 2003996 0457766 4502320	26-06-90 31-05-90 27-11-91 23-04-92