Chapter 1.7 Binomial, Poisson and Geometric Distributions

- 1.7.1 Binomial Distribution
- 1.7.2 Geometric Distribution
- 1.7.3 Poisson Distribution
- 1.7.4 Summary

17 March 2018

1.7.1 Binomial Distribution

The **Binomial distribution** with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent trials, each of which yields success with probability p.

We write $X \sim \text{Bin}(n, p)$ for a random variable that has Binomial distribution with n trials and probability of success p. The outcome for each trial is success/failure. X takes the value of $0, 1, 2, \dots, n$.

1.7.1 Binomial Distribution: example

Examples include tossing a fair coin n times. In each trial, we have 2 outcomes: success or failures. The probability of success does not change from one trial to another.

The probability of any combination of 2 heads is $\left(\frac{1}{2}\right)^{2} \left(1 - \frac{1}{2}\right)^{n-2}$

There are $\binom{n}{2}$ possible combinations of 2 heads in n tosses, therefore

$$P(2H|n\ tosses) = {n \choose 2} \left(\frac{1}{2}\right)^2 \left(1 - \frac{1}{2}\right)^{n-2} = {n \choose 2} \left(\frac{1}{2}\right)^n$$

1.7.1 Binomial Distribution

In general if p is the probability of an event (we call this event a success) and we repeat n independent trials, the of getting exactly k successes in n trials is

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}; k = 0, 1, \dots, n$$

where *X* denotes the number of successes and is called *Binomial variable*.

Binomial Distribution

If X is Binomial

its mean is

$$\mu = E(X) = np$$

and the variance is

$$\sigma^2 = Var(X) = np(1-p) = (1-p)E(X)$$

Note We usually denote q = 1 - p.

Binomial Distribution

Example 1

Compute the probability of obtaining at least two '6' in rolling a fair die 4 times. [Hint: $p = \frac{1}{6}$, n = 4, k = 2]

Solution

Let $X \sim \text{Bin}(4, \frac{1}{6})$. Required probability is

Let
$$X \sim \text{Bin}(4, \frac{1}{6})$$
. Required probability is
$$P(X \ge 2) = \sum_{k=2}^{4} {4 \choose k} p^k (1-p)^{n-k} = P(X = 2) + P(X = 3) + P(X = 4) =$$

$$= {4 \choose 2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2 + {4 \choose 3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^1 + {4 \choose 4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^0 = \frac{171}{1296}$$

1.7.1 Binomial Distribution

Example 2

If $X \sim \text{Bin}(n, p)$ then as k goes from 0 to n, the probability P(X = k) will first increase monotonically and then decrease monotonically, reaching its largest value when k is the largest integer less than or equal to (n + 1)p.

Probability function (2) of the binomial distribution for n = 5 and various values of p

Binomial Distribution

The Binomial distribution is symmetric for p= 0.5 and skewed for other values.

Example n = 10

$$n + 1 = 11$$

1.7.1 Binomial Distribution

Example 3

The random variable $X \sim \text{Bin}(n, p)$ where $0 . Given that <math>\text{Var}(X) = \frac{1}{5} \text{E}(X)$, find the least value of n such that $P(X \ge 1) > 0.95$.

Solution

Solving $Var(X) = np(1-p) = \frac{1}{5}E(X) = \frac{1}{5}np$, we have $p = \frac{4}{5}$. So, we need n for which $P(X \ge 1) = 1 - P(X = 0) > 0.95$.

Binomial Distribution

$$P(X=0) = \left(\frac{1}{5}\right)^n < 0.05$$

Taking log we obtain $n \ln \left(\frac{1}{5}\right) > \ln(0.05)$; rearranging, we have

$$n > \frac{\ln(0.05)}{\ln(\frac{1}{5})} = 1.86$$

Hence minimum n is 2.

[for computing, recall that
$$\ln(0.05) = \ln\left(\frac{1}{20}\right) = -\ln(20)$$
 and $\ln\left(\frac{1}{5}\right) = -\ln(5)$. So, $\frac{\ln(0.05)}{\ln(1/5)} = \ln(20) / \ln(5)$]

1.7.1 Binomial Distribution: problem

- There are 20 racers. The probability that one finishes the race is 0.9. Find the probability that
 - 1. 12 racers finish the race
 - 2. Less than 19 finish the race

The **geometric distribution** is a discrete probability distribution of the number X of independent trials needed in order to get the **first success**. We assume that each trial has constant probability $p \in (0,1)$ of a success.

So, let's denote S = success and F = failure, it is the probability of k-1 failures before a success.

For example, if $X = number \ of \ failures$ and $p = prob.of \ success, \ q = 1 - p = prob.of \ failure$,

$$P(X = 4) = P(FFFS) = P(F)P(F)P(F)P(S) = q^{3}p$$

There is only one possible order: first 3 failures and then 1 success

We write $X \sim \text{Geo}(p)$ for a random variable that has Geometric distribution which is the number of trials before the 1^{st} success. X takes the value of $1, 2, \cdots$.

X=1, means success at the first try, X=2 at the second try, and so on.

To have the first success at the k^{th} trial, we need to have first (k-1) failures and then a success. Therefore, letting q=1-p, the probability of getting the $1^{\rm st}$ success in k^{th} trials is

$$P(X = k) = p(1-p)^{k-1} = pq^{k-1}; k = 1, 2, \dots$$

The cdf is found as

$$P(X \le k) = \sum_{i=1}^{k} (1-p)^{i-1}p = p \sum_{i=0}^{k-1} q^i = p \frac{1-q^k}{1-q} = 1 - q^k$$

Recall that
$$\sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}$$

The expected number of trials for the first success is the mean

$$E(X) = \mu = \frac{1}{p}$$

The variance is
$$Var(X) = \sigma^2 = \frac{1-p}{p^2}$$
.

The geometric distribution is *memoryless*:

$$P(X > k + i | X > i) = P(X > k)$$

Proof. We know that
$$P(X \le k) = 1 - q^k$$
, so $P(X > k) = q^k$

Hence,

$$P(X > k + i | X > i) = \frac{q^{k+1}}{q^i} = q^k = P(X > k)$$

Example 7

A box contains N white and M black balls. Balls are selected randomly, one at a time and replaced, until a black one is obtained. If we assume that each ball is replaced before the next one is drawn, what is the probability that:

- i. exactly k draws are needed?
- ii. at least k draws are needed?

Geometric Distribution

Solution

The probability of a black ball is $p = \frac{M}{M+N}$, for white it is

$$q = 1 - p = \frac{N}{M+N}$$

i. Required probability is

$$P(X = k) = p(1-p)^{k-1} = \frac{MN^{k-1}}{(M+N)^k}.$$

ii. Required probability is

$$P(X \ge k) = 1 - P(X \le k - 1) = 1 - (1 - q^{k-1}) = q^{k-1}$$

The **Poisson distribution** is a discrete probability distribution that gives the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

We write $X \sim \text{Poi}(\lambda)$ for a random variable that has Poisson distribution with rate of occurring in a fixed interval of time and/or space. X takes the value of $0, 1, 2, \cdots$.

Example 4

The Poisson distribution may be useful to model events such as

- 1. The number of goals scored in a World Cup soccer match
- 2. The number of meteors greater than 1 meter diameter that strike earth per year
- 3. The number of occurrences of the DNA sequence "ACGT" in a gene
- 4. The number of patients arriving in an emergency room between 11 and 12 pm ■

When is the Poisson distribution an appropriate model?

The Poisson distribution is appropriate if the following assumptions are true:

- X is the number of times an event occurs in an interval and X can take values $0,1,2,\cdots$.
- Events occur randomly, independently and singly
- The rate at which events occur is constant. The rate cannot be higher in some intervals and lower in other intervals.
- The probability of an event in an interval is proportional to the length of the interval.

If these conditions are true, then X is a Poisson random variable, and the distribution of X is a Poisson distribution.

Example 5

The Poisson assumptions are violated in the following cases:

- The number of students who arrive at the lecture hall will likely not follow a Poisson distribution, because the **rate is not constant** (low rate during class time, high rate between class times) and the arrivals of individual students are not independent (students tend to come in groups).
- The number of magnitude 5 earthquakes per year in China may not follow a Poisson distribution if one large earthquake increases the probability of aftershocks of similar magnitude.
- Among patients admitted to the intensive care unit of a hospital, the number of days that the patients spend in the ICU is not Poisson distributed because the number of days cannot be zero. ■

The probability of getting exactly k events in a <u>specified interval</u> with rate λ is

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
 ; $k = 0,1,2,...$

with mean $E(X) = \lambda$ and variance $Var(X) = \lambda$.

S

The shape of the Poisson pmf changes with λ , but converges for large λ

Poisson Distribution

The cdf of a Poisson is the sum of the probabilities

$$F(k) = P(X \le k) = \sum_{i=0}^{k} \frac{e^{-\lambda} \lambda^k}{k!}$$
; $k = 0, 1, 2, \dots$

$$F(0) = P(X = 0) = e^{-\lambda}, F(1) = e^{-\lambda} + \lambda e^{-\lambda} = e^{-\lambda}(1 + \lambda)$$

So, the probability of at least one event is

$$P(X > 0) = 1 - P(X = 0) = 1 - e^{-\lambda}$$

Example 6

Suppose that earthquakes occur at the rate of <u>2 per week</u>. By modeling this as a Poisson distribution, find:

- The probability of 3 earthquakes in the next week;
- ii. the probability that at least 2 earthquakes occur during the next week.

Solution

Since the rate is $\lambda = 2$ earthquakes per week

i.
$$X \sim \text{Poi}(2)$$
, so $P(X = 3) = \frac{e^{-2}2^3}{3!} = \frac{8e^{-2}}{6} = 0.18045$

ii. The required probability is

$$P(X \ge 2) = 1 - P(X = 0) - P(X = 1) =$$

$$1 - \frac{e^{-2}2^0}{0!} - \frac{e^{-2}2^1}{1!} = 1 - e^{-2} - 2e^{-2}$$

$$= 1 - 3e^{-2} \approx 0.594$$

1.7.3 Poisson Distribution: problem

Suppose that calls to a switchboard arrive as a Poisson variable with rate 2.5 per minute. Find the probability:

- that in the next minute there won't be a call
- 2. That in the next minute there won't be more than 1 call.

Also find the average number of calls per minute.

1.7.3 Poisson Distribution: problem

Suppose that calls to a switchboard arrive as a Poisson variable with rate 2.5 per minute. Find the probability:

1. that in the next minute there won't be a call

$$P(x=0) = e^{-2.5} \approx 0.082$$

2. That in the next minute there won't be more than 1 call.

$$P(x \le 1) = P(x = 0) + P(x = 1) = e^{-2.5} + 2.5e^{-2.5} \approx 0.288$$

Also find the average number of calls per minute.

The average number of calls is the mean of the variable which is equal to the rate. Hence $E(X) = \lambda = 2.5$.

Summary

1.7.1 Binomial Distribution

$$P(X = k|n) = \binom{n}{k} p^k (1-p)^{n-k}$$

1.7.2 Geometric Distribution

$$P(X = k) = p(1 - p)^{k-1}$$

1.7.3 Poisson Distribution

$$P(X = k | \lambda) = \frac{e^{-\lambda} \lambda^k}{k!}$$