# **Sistemas Digitais**

# Relatório do Trabalho Prático 2013/2014

Semáforo de acesso a passadeira de peões



João Calhau - nº31621

André Figueira – nº31626

# Índice:

| Introdução             | 3  |
|------------------------|----|
| Modelo ASM e Tabelas   | 4  |
| Flip Flop JK — Porquê? | 7  |
| Mapas de Karnaugh      | 8  |
| Equações Simplificadas | 11 |
| Logisim                | 12 |
| Conclusao              | 13 |

# Introdução

Neste trabalho compete nos criar um semáforo de acesso a passadeira de peões. Neste trabalho foi nos dado duas opções, uma delas seria implementar o semáforo MOSTRADOR em que o semáforo funciona base de um Interruptor que ao ser clicado, o semáforo sai do seu funcionamento normal e apos ciclos de relógio o semáforo dos automóveis passaria a Encarnado e o dos peões a Verde. A outra opção seria então implementar um semáforo LIMITADOR, que continha não só o Interruptor para peões mas também como um Sensor de Velocidade que alteraria a cor dos semáforos se se aproximar um veículo com excesso de velocidade.

Neste trabalho decidimos aceitar o desafio e fazer o circuito LIMITADOR, pois esta opção será um maior desafio em relação ao nosso conhecimento sobre tudo o que retemos este semestre em Sistemas Digitais.

Este trabalho foi dividido de acordo com as nossas dificuldades, não no sentido de facilidade mas de dificuldade. Cabendo a cada um de nos a parte onde de mais dificuldade e assim superando-as e compreendendo melhor.

# **Modelo ASM e Tabelas**



Nota: como referido anteriormente o nosso Interruptor tem prioridade sobre o nosso Sensor

Entradas: Interruptor (I), Sensor de Velocidade (S)

Saídas: S0, S1, S2, S3, S4, S5, S6

Número de estados: 7

Número de Flip Flops para codificar os estados: 3

#### Codificação das cores de ambos os semáforos:

|    | Entradas |    |    | Saídas    |    |    |           |           |           |  |
|----|----------|----|----|-----------|----|----|-----------|-----------|-----------|--|
| X2 | X1       | X0 | S0 | <b>S1</b> | S2 | S3 | <b>S4</b> | <b>S5</b> | <b>S6</b> |  |
| 0  | 0        | 0  | 0  | 1         | 1  | 1  | 1         | 1         | 0         |  |
| 0  | 0        | 1  | 1  | 1         | 1  | 0  | 1         | 1         | 1         |  |
| 0  | 1        | 0  | 1  | 0         | 0  | 1  | 1         | 1         | 1         |  |
| 0  | 1        | 1  | 1  | 1         | 1  | 1  | 1         | 1         | 1         |  |
| 1  | 0        | 0  | 1  | 1         | 1  | 1  | 1         | 1         | 1         |  |
| 1  | 0        | 1  | 1  | 1         | 1  | 1  | 1         | 1         | 1         |  |
| 1  | 1        | 0  | 1  | 0         | 0  | 1  | 1         | 1         | 1         |  |
| 1  | 1        | 1  | Х  | Х         | Х  | Х  | Χ         | Х         | Χ         |  |

Figura 2 – Tabela de codificação das cores de ambos os semaforos

## Display de 7 segmentos (com a sua respectiva codificação):









Figura 3- 000

Figura 4- 001

Figura 5-010, 110

Figura 6-011, 100, 101

A escolha das codificações foram feitas em base do estado actual do semáforo dos automóveis, a excepção da Figura 6, esta escolha foi devido a como os semáforos mudam de cor (vermelho para verde para o semaforo dos automoveis e verde para vermelho para os peoes) como inverter a Figura 3 se pareciam muito semelhante a Figura 6 decidimos então preencher todos os segmentos.

Através da construção do modelo ASM e da tabela do descodificador de 7 segmentos, podemos facilmente extrair a informação fornecida e construir uma **tabela de transição de estados e das saídas**, sendo essa a seguinte:

| Entradas Esta |   | ados | Qn   |    |    |    | Qn+1 |    | Saídas |    |           |           |           |           |           |    |
|---------------|---|------|------|----|----|----|------|----|--------|----|-----------|-----------|-----------|-----------|-----------|----|
| ı             | S | Xn   | Xn+1 | X2 | X1 | X0 | X2   | X1 | X0     | S0 | <b>S1</b> | <b>S2</b> | <b>S3</b> | <b>S4</b> | <b>S5</b> | S6 |
| 0             | 0 | а    | а    | 0  | 0  | 0  | 0    | 0  | 0      | 0  | 1         | 1         | 1         | 1         | 1         | 0  |
| 0             | 1 | а    | С    | 0  | 0  | 0  | 0    | 1  | 0      | 0  | 1         | 1         | 1         | 1         | 1         | 0  |
| 1             | 0 | а    | b    | 0  | 0  | 0  | 0    | 0  | 1      | 0  | 1         | 1         | 1         | 1         | 1         | 0  |
| 1             | 1 | а    | b    | 0  | 0  | 0  | 0    | 0  | 1      | 0  | 1         | 1         | 1         | 1         | 1         | 0  |
| Х             | Х | b    | С    | 0  | 0  | 1  | 0    | 1  | 0      | 1  | 1         | 1         | 0         | 1         | 1         | 1  |
| Х             | Х | С    | d    | 0  | 1  | 0  | 0    | 1  | 1      | 1  | 0         | 0         | 1         | 1         | 1         | 1  |
| Х             | Х | d    | е    | 0  | 1  | 1  | 1    | 0  | 0      | 1  | 1         | 1         | 1         | 1         | 1         | 1  |
| Х             | Х | е    | f    | 1  | 0  | 0  | 1    | 0  | 1      | 1  | 1         | 1         | 1         | 1         | 1         | 1  |
| Х             | Х | f    | g    | 1  | 0  | 1  | 1    | 1  | 0      | 1  | 1         | 1         | 1         | 1         | 1         | 1  |
| Х             | Х | g    | а    | 1  | 1  | 0  | 1    | 1  | 1      | 1  | 0         | 0         | 1         | 1         | 1         | 1  |

Figura 4 – Tabela de Transição de estados e das saídas

# Flip Flop JK – Porquê?

A razão pela sua escolha, é devido a facilidade de construção. Embora a construção dos mapas de karnaugh seja mais extensa, em termos de quantidade, as expressões extraídas pelos mapas de karnaugh serão mais simples, tendo assim um menor número de variáveis, o que na construção do circuito ira ser um elemento muito positivo pois a sua extensão será menor, e a sua implementação usando o kit didático será mais simples e consequentemente, menor quantidade de fios, portas.

# Tabela de excitação JK:

| Qn | Qn+1 | J | K |
|----|------|---|---|
| 0  | 0    | 0 | - |
| 0  | 1    | 1 | - |
| 1  | 0    | - | 1 |
| 1  | 1    | - | 0 |

Figura 5 – Tabela de excitação JK

# Mapas de Karnaugh

# Para os Flip Flops:

# Para J0:

X0=0

| IS\x2x1 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | 0  | 1  | 0  | 1  |
| 01      | 0  | 1  | 0  | 1  |
| 11      | 1  | 1  | 0  | 1  |
| 10      | 1  | 1  | 0  | 1  |

X0=1

| 00 | 01 | 11 | 10 |  |
|----|----|----|----|--|
| Х  | Х  | х  | X  |  |
| Х  | Х  | X  | Х  |  |
| Х  | Х  | Х  | Х  |  |
| х  | х  | Х  | х  |  |

#### Para J1:

X1=0

| IS\X2X0 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | 0  | 1  | 1  | 0  |
| 01      | 1  | 1  | 1  | 0  |
| 11      | 0  | 1  | 1  | 0  |
| 10      | 0  | 1  | 1  | 0  |

| ١, | 4 | - 1 |
|----|---|-----|
|    |   |     |
|    |   |     |

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| Х  | X  | X  | Х  |
| Х  | Х  | Х  | Х  |
| Х  | Х  | Х  | Х  |
| Х  | Х  | x  | Х  |

#### Para J2:

X2=0

| IS\x1x0 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | 0  | 0  | 1  | 0  |
| 01      | 0  | 0  | 1  | 0  |
| 11      | 0  | 0  | 1  | 0  |
| 10      | 0  | 0  | 1  | 0  |

X2=1

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| Χ  | Χ  | X  | Χ  |
| Χ  | Χ  | Х  | Χ  |
| Χ  | Χ  | Х  | Χ  |
| Х  | Х  | X  | Х  |

### Para KO:

X0=0

| S\x2x1 | 00 | 01 | 11 | 10 |
|--------|----|----|----|----|
| 00     | Х  | Х  | Х  | X  |
| 01     | Х  | Х  | Х  | Х  |
| 11     | Х  | Х  | Х  | Х  |
| 10     | Х  | Χ  | Х  | Χ  |

| ~// | ` 1 |
|-----|-----|
|     |     |
|     |     |

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| 1  | 1  | Х  | 1  |
| 1  | 1  | Χ  | 1  |
| 1  | 1  | Χ  | 1  |
| 1  | 1  | Х  | 1  |

### Para K1:

X1=0

| IS\x2x0 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | Х  | X  | X  | X  |
| 01      | Х  | Х  | Х  | Х  |
| 11      | Х  | Х  | Х  | Χ  |
| 10      | Х  | Х  | x  | Х  |

X1=0

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| 0  | 1  | X  | 1  |
| 0  | 1  | Х  | 1  |
| 0  | 1  | Х  | 1  |
| 0  | 1  | X  | 1  |

## Para K2:

X2=0

| IS\x1x0 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | Х  | Χ  | Х  | Х  |
| 01      | Х  | Х  | Х  | Х  |
| 11      | Х  | Х  | Х  | Х  |
| 10      | Х  | Х  | Х  | X  |

X2=1

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| 0  | 0  | X  | 1  |
| 0  | 0  | Х  | 1  |
| 0  | 0  | Х  | 1  |
| 0  | 0  | X  | 1  |

### Para as Saídas:

Sendo que as saídas S0=S6, S1=S2 e S4=S5, podemos então facilitar a construção dos mapas de karnough, em termos de quantidade, sendo esses mapas os seguintes:

### Para S0, sendo S0=S6:

X2=0

|   | _ |   |   |
|---|---|---|---|
| v | 7 | _ | 1 |
| ^ | _ | _ | 1 |

| IS\x1x0 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | 0  | 1  | 1  | 1  |
| 01      | 0  | 1  | 1  | 1  |
| 11      | 0  | 1  | 1  | 1  |
| 10      | 0  | 1  | 1  | 1  |

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| 0  | 0  | X  | 1  |
| 0  | 0  | Х  | 1  |
| 0  | 0  | Х  | 1  |
| 0  | 0  | X  | 1  |

#### Para S1, sendo S1=S2:

X2=0

| IS\x1x0 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | 1  | 1  | 1  | 0  |
| 01      | 1  | 1  | 1  | 0  |
| 11      | 1  | 1  | 1  | 0  |
| 10      | 1  | 1  | 1  | 0  |

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| 1  | 1  | Х  | 0  |
| 1  | 1  | Х  | 0  |
| 1  | 1  | Х  | 0  |
| 1  | V  | X  | 0  |

#### Para S3:

X2=0

| • | 1 |   | 1   |
|---|---|---|-----|
| х | , | = | - 1 |

| IS\x1x0 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | 1  | 0  | 1  | 1  |
| 01      | 1  | 0  | 1  | 1  |
| 11      | 1  | 0  | 1  | 1  |
| 10      | 1  | 0  | 1  | 1  |

| 00  | 01 | 11 | 10 |
|-----|----|----|----|
| 1   | 1  | X  | 1  |
| 1   | 1  | Х  | 1  |
| 1   | 1  | Х  | 1  |
| ( 1 | 1  | X  | 1  |

#### Para S4, sendo S4=S5:

X2=0

X2=1

| IS\x1x0 | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 00      | 1  | 1  | 1  | 1  |
| 01      | 1  | 1  | 1  | 1  |
| 11      | 1  | 1  | 1  | 1  |
| 10      | 1  | 1  | 1  | 1  |

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| 1  | 1  | Х  | 1  |
| 1  | 1  | Х  | 1  |
| 1  | 1  | Χ  | 1  |
| 1  | 1  | Χ  | 1  |

# **Equações Simplificadas:**

Extraindo a informação dos mapas de Karnaugh, podemos então obter as seguintes simplificações:

# **Equações dos Flips Flops:**

$$J0 = 1.\overline{x2} + x2.x1 + x2.\overline{x1}$$

$$K1 = x0 + x2$$

$$J2 = x1.x0$$

$$K2 = x1$$

# Equações das Saídas:

$$S0=S6=x1+x0+x2.x1$$

$$S3 = x1.\overline{x0} + x1 + x2$$

# Logisim

### Número de portas utilizadas:

- 6 Portas AND de 2 entradas
- 1 Porta AND de 3 entradas
- 3 Portas OR de 3 entradas
- 3 Portas OR de 2 entradas
- 1 Porta NOT
- 3 Flips Flops JK'

#### Circuito Integrado (Quantidade):

- 3 SN74LS32 Portas OR
- 2 SN74LS08 Portas AND
- 1 SN74LS04 Portas NOT



Figura nº 4 − Circuito

# Conclusão

Com este trabalho, conseguimos então ultrapassar as nossas dificuldades ao nos ajudar mutuamente. Conseguimos concluir que esse objectivo foi concluído, pois terminamos este trabalho com o circuito que nos foi pedido a trabalhar exactamente como deve trabalhar.