4. Mrówka Langtona

Zadanie

Opis problemu

Dana jest liczba całkowita n i kwadratowa plansza nXn pól. Proszę zaalokować dynamicznie pamięć dla planszy oraz zaimplementować działanie mrówki Langtona przy następujących założeniach:

- $1.\$ Pola planszy przyjmują wartości całkowite od 1 do 8.
- 2. Krawędzie planszy są "sklejone" z przeciwległymi (periodyczne warunki brzegowe).
- 3. W chwili t = 0 mrówka stoi na polu o współrzędnych [0][0] w kierunku pola [0][1].
- 4. W chwili t=0 pola planszy mają wartości losowe z podanego przedziału.
- 5. W zależności od stanu pola na którym stoi mrówka, wykonuje ona następujące czynności:

stan pola	zmiana stanu pola na	ruch mrówki
1	7	krok w przód
2	4	obrót w prawo
3	2	obrót w lewo
4	6	krok w prawy bok
5	3	krok w lewy bok
6	5	krok w tył
7	8	w tył zwrot
8	1	nic nie robi

Uzupełnij funkcje, których argumentem jest dwuwymiarowa tablica board[] [] reprezentująca planszę, po której porusza się mrówka.

- 1. Funkcja void init_board(int*** board, const int n) alokuje pamięć dla kwadratowej tablicy board o wymiarach [n][n] a następnie inicjalizuje ją liczbami losowymi z przedziału [1, 8]. Pola planszy wypełniane są wierszami.
- 2. Funkcja void free_board(int **board, const int n) zwalnia pamięć tablicy board.
- 3. Funkcja void ant_move(int** board, const int n, Ant* ant) wykonuje kolejny ruch mrówki zdefiniowanej w strukturze zgodnie z tabelą powyżej.

- 4. Funkcja void ant_simulation(int** board, const int n, Ant* ant, const int steps), która inicjalizuje stan mrówki zgodnie z opisem a następnie wykonuje steps kroków (ruchów mrówki)
- 5. Funkcja void print_board(int** board, const int n) wypisuje stan planszy zgodnie z rosnącą wartością indeksów. Każde pole powinno być wypisane jako cyfra oznaczająca stan tego pola. Po każdym znaku pola powinna znajdować się spacja.
- 6. Funkcja void print_ant(const Ant ant) wypisuje stan mrówki (jej położenie i kierunek). Położenie należy wypisać jako parę liczb całkowitych będących indeksami pola, na którym stoi, a kierunek jest jedną z liter N, E, S, W (północ, wschód, południe, zachód). Przykład: jeżeli mrówka stoi na polu [1][1], to jej kierunek określamy następująco:

mrówka patrzy w stronę	kierunek
[0][1]	N
[1][2]	E
[2][1]	S
[1][0]	W

Wejście

Trzy liczby całkowite: rozmiar planszy – liczba $10 \leqslant n \leqslant 100$, początkowa wartość ziarna generacji dla funkcji srand() i liczba kroków, $10 \leqslant s \leqslant 1000$.

Wyjście

Stan planszy po wykonaniu zadanej liczby kroków (funkcja print_board()) oraz końcowy stan mrówki (funkcja print_ant()).

Przykład:

Wejście:

10 5 20

Wyjście: