Range Queries Con Updates Segment Tree y otras variantes

Ulises López Pacholczak

August 24, 2023

- Segment Tree
 - Problema Motivador
 - Explicación de la Estructura

Ya sabemos como responder queries de suma en rango, en O(n) tiempo de procesamiento (O(n * m) si es una tabla) y O(1) tiempo de consulta.

Ya sabemos como responder queries de suma en rango, en O(n) tiempo de procesamiento (O(n*m) si es una tabla) y O(1) tiempo de consulta.

También, se pueden resolver queries de maximo o mínimo en rangos con $O(n \log n)$ tiempo de procesamiento y O(1) tiempo de consulta.

Ya sabemos como responder queries de suma en rango, en O(n) tiempo de procesamiento (O(n*m) si es una tabla) y O(1) tiempo de consulta.

También, se pueden resolver queries de maximo o mínimo en rangos con $O(n \log n)$ tiempo de procesamiento y O(1) tiempo de consulta.

¿Pero esto es suficiente para todos los problemas?

Suma en Rangos con Updates

CSES 1648 - Dynamic Range Sum Queries

Dado un arreglo de n enteros, tu tarea es procesar q queries de los siguientes tipos:

- Actualizar el valor en la posición k a un valor u
- ② Cual es la suma de los valores en el rango [a, b]?

Tanto q y n pueden ser como máximo $2 * 10^5$

https://cses.fi/problemset/task/1648

Con lo que ya sabemos...

Por cada query de tipo 1, debemos realizar un reprocesamiento de O(n). Por ende, la complejidad del problema nos quedaría $O(n^2)$, lo mismo que hacerlo con fuerza bruta.

Con lo que ya sabemos...

Por cada query de tipo 1, debemos realizar un reprocesamiento de O(n). Por ende, la complejidad del problema nos quedaría $O(n^2)$, lo mismo que hacerlo con fuerza bruta.

Es claro que necesitamos otra estructura de datos para poder manejar los updates de forma eficiente...

Segment Tree

El Segment Tree es una estructura de datos que nos permite realizar queries en rangos y updates en $O(\log n)$.

Segment Tree

El Segment Tree es una estructura de datos que nos permite realizar queries en rangos y updates en $O(\log n)$.

Funcionamiento

Cada nodo representa el valor de realizar una operacion (en el caso del problema original, la suma) en un rango del arreglo.

