UE 41702, TD2, Réseaux de neurones "feed-forward" et l'apprentissage supervisé

EXERCICE I. PERCEPTRON (RÉSEAU FEED-FORWARD À UNE COUCHE DE POIDS)

Considérons un réseau de neurones qui consiste à un neurone de sortie avec son taux de décharge y, et D neurones d'entrée avec ses taux de décharge $\vec{x} = \left(x_1, \ldots, x_D\right)$. Le neurone d'entrée avec l'index i est connecté au neurone de sortie avec un poids synaptique w_i . Tous les poids forment le vecteur des poids $\vec{w} = (w_1, \ldots, w_D)$. La fonction d'activation est sigmoïde, $g(a) = (1 + e^{-a})^{-1}$, où $a = w_0 + \sum_{i=1}^N w_i x_i = w_0 + \vec{w} \cdot \vec{x}$ est l'activation du neurone de sortie. Ici, le paramètre w_0 correspond au poids synaptique d'une entrée fixe $x_0 = 1$ (appelé "le biais").

On interprète ce réseau de neurones comme une machine de classification de données:

- considérons un jeu de données dans D dimensions, c'est-à-dire un ensemble de vecteurs (souvent appelés "motifs") $\left\{\vec{x}^{(1)}, \vec{x}^{(2)}, \ldots, \vec{x}^{(N)}\right\}$, où chacun des motifs $\vec{x}^{(p)} = (x_1^{(p)}, x_2^{(p)}, \ldots, x_D^{(p)})$, $p = 1, 2, \ldots N$. Géométriquement, un motif correspond à un point dans D dimensions.
- on choisie un motif $\vec{x}^{(p)}$, on l'introduit au réseau et on calcule la valeur de sortie $y(\vec{x}^{(p)})$
- si $y \le 0.5$, on classifie le motif comme appartenant à la classe A. Dans le cas contraire on assigne le motif à la classe B.
- application du réseau à tous les motifs donne lieu à une séparation de l'ensemble des données en deux classes.

A. Réseau dans une dimension (D=1).

- 1. Exprimer y en fonction de x_1 (avec w_0 et w_1 comme paramètres de cette fonction).
- 2. Trouver la valeur de x_1 qui correspond à la frontière entre deux classes (point d'inflexion de la sigmoïde).
- 3. Trouver la pente de $y(x_1)$ au point d'inflexion.
- 4. Pour deux motifs arbitraires (par ex. $x_1^{(1)} = 2$ et $x_1^{(2)} = 6$) proposer les poids synaptiques w_0 et w_1 pour que le réseau classifie $x_1^{(1)}$ à la classe A et $x_1^{(2)}$ à la classe B.
- 5. Tracer la courbe $y(x_1)$ correspondant à w_0 et w_1 de l'étape précédente.

B. Réseau dans deux dimensions (D = 2).

- 1. Exprimer y en fonction de \vec{x} et \vec{w} .
- 2. La frontière entre les classes A et B vérifie la condition y = 0.5 (Expliquer pourquoi). Trouver l'équation de cette frontière en termes de x_1 et x_2 . Conclusion ?
- 3. Démontrer que le vecteur des poids \vec{w} est perpendiculaire à la frontière
- 4. Démontrer que la distance perpendiculaire entre la frontière et l'origine est égale à $-\frac{w_0}{||\vec{w}||}$
- 5. On choisie $w_0 = -1$ et $\vec{w} = (1,1)$. Sur le plan (x_1,x_2) représenter le vecteur de poids \vec{w} et la frontière entre les classes. Que se passe-t-il si l'on change la direction de \vec{w} , en gardant la norme constant? Que se passe-t-il si l'on change w_0 , en gardant \vec{w} fixe ? Quelle est la forme de la fonction $y(x_1,x_2)$?
- 6. Comment les résultats si-dessus généralisent-ils à la dimension D > 2 ?

EXERCICE II. APPRENTISSAGE: RÈGLE DELTA

On considère le réseau de neurones de l'exercice I. L'erreur totale de classification pour l'ensemble des données $\left\{\vec{x}^{(1)}, \vec{x}^{(2)}, \ldots, \vec{x}^{(N)}\right\}$ peut être calculée selon la formule suivante :

$$E(\vec{w}) = \sum_{p=1}^{N} E^{(p)} = \sum_{p=1}^{N} \frac{1}{2} (y^{(p)} - t^{(p)})^2$$
 où :

- $E^{(p)}$ est l'erreur de classification d'un seul motif $\vec{x}^{(p)}$.
- $t^{(p)}$ est l'étiquette du motif $\vec{x}^{(p)}$; $t^{(p)} = 0$ si $\vec{x}^{(p)}$ appartient à la classe A, et $t^{(p)} = 1$ si $\vec{x}^{(p)}$ appartient à la classe B.

L'erreur totale est une fonction des poids $\vec{w} = (w_1, ..., w_D)$. Classification correcte de tous les motifs correspond au minimum de l'erreur ($E(\vec{w}) = 0$), i.e. quand la réponse du réseau $y^{(p)}$ est égale à l'étiquette de la classe $t^{(p)}$ pour tous les motifs.

Apprentissage du réseau correspond à la minimisation de la fonction d'erreur dans l'espace des poids (w_1,\ldots,w_D) par la méthode de descente de gradient. Selon cette méthode, le changement d'un poids synaptique w_i après la présentation d'un motif $\vec{x}^{(p)}$, est proportionnel à la dérivée négative de E:

$$\Delta w_i = -\eta \frac{\partial E^{(p)}}{\partial w_i}$$

A. Démontrer que

$$\Delta w_i = -\eta \delta x_i^{(p)} \qquad \text{("delta-rule")}$$

οù

$$\delta = g'(a)(y^{(p)} - t^{(p)})$$
 ("delta-error")

B. Démontrer que

$$g'(a) = g(a)(1 - g(a))$$

EXERCICE III. APPRENTISSAGE: ALGORITHME DE RÉTROPROPAGATION DU GRADIENT

On considère un réseau avec un neurone de sortie et deux couches de poids, dans D dimensions (voir les diapos du cours). La sortie du réseau :

$$y = \sum_{j=0}^{H} w_j^{(2)} z_j$$

où $w_j^{(2)}$ est le poids synaptique entre le neurone de sortie et le $j^{\,\rm eme}$ neurone cachés, dont le taux de décharge est égal à (sauf le neurone biais pour lequel $z_0=1$):

$$z_j = g\left(\sum_{i=1}^D w_{ji}^{(1)} x_i\right)$$

où $w_{ii}^{(1)}$ est le poids entre $j^{\,\mathrm{ème}}$ neurone caché et $i^{\,\mathrm{ème}}$ neurone d'entrée.

Démontrer que la méthode de descente de gradient de l'exercice précédent correspond aux formules suivantes pour la mise à jour des poids :

$$\Delta w_i^{(2)} = -\eta \delta z_i$$
 où $\delta = y^{(p)} - t^{(p)}$

et

$$\Delta w_{ii}^{(1)} = -\eta \delta_i x_i$$
 où $\delta_i = g'(a_i) w_i^{(2)} \delta$

EXERCICE IV. PLUSIEURS NEURONES DE SORTIE

On ajoute au réseau de l'exercice I.B deux neurones de sortie, on a alors

$$y_k = g(a_k), k = 0,1,2$$

$$a_k = w_{k0} + \sum_{i=1}^{D} w_{ki} x_i$$
, $D = 2$.

Dans ce réseau, chaque neurone de sortie encode l'appartenance à une classe : y_0 code pour la classe A, y_1 code pour la classe B, et y_2 code pour la classe C (on a toujours autant de classes que de neurones de sortie).

Apprentissage : on introduit un motif $\vec{x}^{(p)}$, calcule le vecteur de sortie $\vec{y}=(y_0,y_1,y_2)$ et applique la méthode de descente de gradient avec les étiquettes de la forme suivante: $\vec{t}=(1,0,0)$ si $\vec{x}^{(p)}$ appartient à la classe A, $\vec{t}=(0,1,0)$ si $\vec{x}^{(p)}\in B$, et $\vec{t}=(0,0,1)$ si $\vec{x}^{(p)}\in C$.

Si l'on considère chaque neurone de sortie comme un sous-réseau (identique au réseau de l'exercice I.B), on voit que $k^{\,\rm eme}$ neurone de sortie est entraîné pour distinguer les motifs de sa classe ($y_k=1$) de toute les autres motifs ($y_k=0$).

Classification: pour classifier un motif \vec{x} , on l'introduit au réseau, on calcule $\vec{y} = (y_0, y_1, y_2)$. On dit que le motif appartient à la classe avec l'activité maximale, par ex. à la classe B si $y_1 > y_0$ et $y_1 > y_2$.

- A. Exprimer y_0 , y_1 et y_2 en fonction de x_1 et x_2 .
- B. Quelle condition est vérifiée sur la frontière entre les classes A et B ? Quelle est l'équation de cette frontière en termes de x_1 et x_2 ?
- C. La même question pour la frontière entre B et C et entre A et C.
- D. Comment les résultats si-dessus généralisent-ils à la dimension D > 2 ?
- E. Démontrer que la règle d'apprentissage a la forme suivante :

$$\begin{split} \Delta w_{ki} &= -\eta \delta_k x_i^{(p)} & \text{("delta-rule")} \\ \delta_k &= g'(a_k) (y_k^{(p)} - t_k^{(p)}) & \text{("delta-error")} \end{split}$$