

Chapter 7. First Order Circuits

- 7.1. Introduction
- 7.2. The source-free RC/RL circuit
- 7.3. Singularity functions
- 7.4. Step response of an RC/RL circuit
- 7.5. First-order Op Amp circuit
- 7.6. Applications

FUNDAMENTALS OF ELECTRIC CIRCUITS – DC Circuits

First Order Circuits

7.1. Introduction

- + In this chapter: -> study 2 types of circuits consisting storage elements: R-C, R-L
- + R-C, R-L circuits: → first-order differential equations of KCL, KVL
- + A first-order circuit -> characterized by a first-order differential equation
- + To excite first order circuits:
 - Source-free circuit: Energy is initially stored in the capacitive or inductive element. The energy (dependent source) causes current to flow in the circuit and is dissipated in the resistors
 - Independent source: DC source (sinusoidal source, exponential source)
- + Applications of first order circuits: delay/relay circuit, photoflash unit, automobile ignition circuit,...

7.2. The source-free RC/RL circuit **7.2.1. R-C circuit**

- + A source-free R-C circuit:
 - → Occurs when its DC source is suddenly disconnected
 - → Energy already stored in the capacitor is released to the resistors

+ Considered case: Series combination of a resistor and an initially charged capacitor with $V_0 \rightarrow$ determine the circuit response

Energy stored in the capacitor:
$$w = \frac{1}{2}CV_0^2$$

Energy stored in the capacitor: $w = \frac{1}{2}CV_0^2$ KCL at the top node of the circuit: $i_C + i_R = 0 \rightarrow C\frac{dv}{dt} + \frac{v}{R} = 0 \rightarrow \frac{dv}{dt} + \frac{v}{RC} = 0$

(First-order differential equation)

$$\Rightarrow \frac{dv}{v} = -\frac{1}{RC}dt \Rightarrow \ln v = -\frac{t}{RC} + \ln A \Rightarrow \ln \frac{v}{A} = -\frac{t}{RC} \Rightarrow v(t) = Ae^{-\frac{t}{RC}}$$

$$A = v(0) = V_0 \rightarrow v(t) = V_0 \cdot e^{-\frac{t}{RC}}$$

7.2. The source-free RC/RL circuit

7.2.1. R-C circuit

- + Circuit response is: Natural response
 - → Due to the initial energy stored and the physical characteristics of the circuit
 - → Not due to external voltage or current sources
- + The natural response of a circuit → the behavior (in terms of voltages and currents) of the circuit itself, with no external sources of excitation
- + The **time constant** of a RC circuit: → the time required for the response to decay by a factor of 1/e or 36.8% of its initial value

$$\tau = RC \to v(t) = V_0.e^{-\frac{t}{\tau}}$$

7.2. The source-free RC/RL circuit

7.2.1. R-C circuit

+ After 5τ :

- \rightarrow the voltage v(t) is less than 1% of $V_0 \rightarrow$ the capacitor is fully discharged (or charged)
- → Circuit to reach its *final state (steady state)* when no changes take place with time
- + The greater the time constant
- → the slower the response decay

$$v(t) = V_0.e^{-\frac{t}{\tau}}$$

$$2\tau$$
 0.13534

$$3\tau$$
 0.04979

$$4\tau$$
 0.01832

$$5\tau$$
 0.00674

FUNDAMENTALS OF ELECTRIC CIRCUITS - DC Circuits

First Order Circuits

7.2. The source-free RC/RL circuit

7.2.1. R-C circuit

+ The current $i_R(t)$:

$$i_R(t) = \frac{v(t)}{R} = \frac{V_0}{R} e^{-\frac{t}{\tau}}$$

+ The **power** dissipated in the resistor:

$$p_R(t) = v(t)i_R(t) = \frac{V_0^2}{R}e^{-\frac{2t}{\tau}}$$

+ The **energy** absorbed by the resistor:

$$w_{R}(t) = \int_{0}^{t} p dt = \int_{0}^{t} \frac{V_{0}^{2}}{R} e^{-\frac{2t}{\tau}} dt = -\frac{\tau V_{0}^{2}}{2R} e^{-\frac{2t}{\tau}} \Big|_{0}^{t} = \frac{1}{2} C V_{0}^{2} \left(1 - e^{-\frac{2t}{\tau}} \right)$$

+ Note: $t \to \infty \Rightarrow w_R(t) = \frac{1}{2}CV_0^2 = w_C(0)$ (the energy initially stored in the capacitor)

7.2. The source-free RC/RL circuit 7.2.1. R-C circuit

- + Example 1: Find v_C , v_x and i_x for t > 0 if $v_C(0) = 15V$
- \Rightarrow equivalent resistance: $R_{eq} = R_1 //(R_2 + R_3) = \frac{5.(8+12)}{5+8+12} = 4\Omega$
- \rightarrow time constant: $\tau = R_{eq}C = 4.0.1 = 0.4s$

$$\rightarrow v_c(t) = v_0 e^{-\frac{t}{\tau}} = 15e^{-\frac{t}{0.4}} = 15e^{-2.5t}V$$

$$\rightarrow v_x(t) = \frac{R_3}{R_2 + R_3} v_C(t) = \frac{12}{12 + 8} 15e^{-2.5t} = 9e^{-2.5t}V$$

$$\rightarrow i_x(t) = \frac{v_x(t)}{R_3} = \frac{9e^{-2.5t}}{12} = 0.75e^{-2.5t}A$$

7.2. The source-free RC/RL circuit 7.2.1. R-C circuit

+ Example 2: The switch has been closed for a long time, it is opened at t = 0. Find $v_C(t)$ for $t \ge 0$. Calculate the initial energy stored in the capacitor

 \rightarrow For t < 0, the switch is closed \rightarrow C is open circuit to DC source

$$v_c(t) = \frac{v(t)}{R_1 + R_3} R_3 = \frac{20}{3+9} 9 = 15V \rightarrow v_c(0) = V_0 = 15V$$

 \Rightarrow For t > 0, time constant of the source free R-C circuit: $R_{eq} = R_2 + R_3 = 10\Omega \Rightarrow \tau = R_{eq}C = 10.20.10^{-3} = 0.2s$

→ The voltage across the capacitor for
$$t \ge 0$$
: $v_c(t) = V_0 e^{-\frac{t}{\tau}} = 15e^{-5t}V$

 \rightarrow The initial energy stored in the capacitor: $w_c(0) = \frac{1}{2}CV_0^2 = \frac{1}{2}20.10^{-3}.15^2 = 2.25J$

7.2. The source-free RC/RL circuit

7.2.2. R-L circuit

- + Consider case: $i_L(0) = I_0 \neq 0$
- → Energy stored in the inductor as: $W_L(0) = \frac{1}{2}LI_0^2$
- + Current through the resistor: $v_L(t) + v_R(t) = 0 \rightarrow L \frac{di}{dt} + Ri = 0 \rightarrow \int_{0}^{i(t)} \frac{di}{i} = -\int_{0}^{t} \frac{R}{L} dt$

$$\rightarrow \ln \frac{i(t)}{I_0} = -\frac{R}{L}t \rightarrow i(t) = I_0 e^{-\frac{R}{L}t} = I_0 e^{-\frac{t}{\tau}} \qquad \tau = \frac{L}{R}$$

+ Energy absorbed by the resistor:

$$w_{R}(t) = \int_{0}^{t} p dt = \int_{0}^{t} R I_{0}^{2} e^{-\frac{2t}{\tau}} dt = \frac{1}{2} L I_{0}^{2} \left(1 - e^{-\frac{2t}{\tau}} \right) \qquad t \to \infty : w_{R}(t) = \frac{1}{2} L I_{0}^{2} = w_{L}(0)$$

$$t \to \infty : w_R(t) = \frac{1}{2} L I_0^2 = w_L(0)$$

7.2. The source-free RC/RL circuit

7.2.2. R-L circuit

+ Example 3: Assuming that i(0) = 10A, calculate i(t) and $i_x(t)$

Solution 1: Apply the Thevenin's law

 \rightarrow Connect $V_0 = 1V$ to the gate then apply loop current method to calculate i_0

$$\begin{cases} R_2(i_1 - i_2) + V_0 = 0 \\ (R_1 + R_2)i_2 - R_2i_1 - 3i_1 = 0 \end{cases} \rightarrow \begin{cases} i_1 - i_2 = -\frac{1}{2} \\ -5i_1 + 6i_2 = 0 \end{cases} \rightarrow \begin{cases} i_1 = -3A \\ i_0 = -i_1 = 3A \end{cases}$$

- ightarrow Hence: $R_{th} = \frac{V_0}{i_0} = \frac{1}{3}\Omega$ ightarrow Obtained an equivalent RL circuit $au = \frac{L}{R_{th}} = \frac{3}{2} = 1.5s$
- → The current through the inductor is: $i(t) = i_0 e^{-\frac{t}{\tau}} = 10e^{-\frac{2}{3}t} A$
- → The current through the resistor R₂ is: $i_x(t) = \frac{v_L(t)}{R_2} = \frac{L}{R_2} \frac{di}{dt} = -\frac{0.5}{2}.10.\frac{2}{3}e^{-\frac{2}{3}t} = -1.67e^{-\frac{2}{3}t}A$

7.2. The source-free RC/RL circuit

7.2.2. R-L circuit

+ Example 3: Assuming that i(0) = 10A, calculate i(t) and $i_x(t)$

Solution 2: Apply directly the loop current method to the given circuit

$$\begin{cases} L\frac{di_1}{dt} + R_2(i_1 - i_2) = 0 \\ (R_1 + R_2)i_2 - R_2i_1 - 3i_1 = 0 \end{cases} \rightarrow \begin{cases} \frac{di_1}{dt} + 4i_1 - 4i_2 = 0 \\ i_2 = \frac{5}{6}i_1 \end{cases}$$

The current through the inductor is:

The current through the resistor R₂ is:

$$i_x(t) = \frac{v_L(t)}{R_2} = \frac{L}{R_2} \frac{di}{dt} = -\frac{0.5}{2} \cdot 10 \cdot \frac{2}{3} e^{-\frac{2}{3}t} = -1.67 e^{-\frac{2}{3}t}$$

7.2. The source-free RC/RL circuit

7.2.2. R-L circuit

+ Example 4: The switch has been closed for a long time. At t = 0, the switch is opened. Calculate i(t) for t > 0

t < 0: the inductor acts as a short circuit

$$i_{R1} = \frac{E}{R_1 + \frac{R_2 R_3}{R_2 + R_2}} = \frac{40}{2 + \frac{12.4}{12 + 4}} = 8A \quad \Rightarrow i_L = i_{R1} \frac{R_2}{R_2 + R_3} = 8. \frac{12}{12 + 4} = 6A \Rightarrow i(0) = i_0 = 6A$$

t > 0: we have a R-L circuit

$$R_{eq} = \frac{R_4(R_2 + R_3)}{R_4 + R_2 + R_3} = \frac{16(12 + 4)}{16 + 12 + 4} = 8\Omega$$
 \Rightarrow time constant: $\tau = \frac{L}{R_{eq}} = \frac{2}{8} = 0.25s$

The current through the inductor is: $i(t) = i_0 e^{-\frac{t}{\tau}} = 6e^{-4t}A$

7.2. The source-free RC/RL circuit

7.2.2. R-L circuit

+ Example 5: Calculate i(t) for t > 0

t < 0: the inductor acts as a short circuit

$$5 = \frac{v}{R_1} + \frac{v}{R_3} = \frac{R_1 + R_3}{R_1 R_3} v \rightarrow v = \frac{R_1 R_3}{R_1 + R_3} 5 \rightarrow i(t) = \frac{v}{R_1} = \frac{R_3}{R_1 + R_3} 5 = 2A \rightarrow i(0) = i_0 = 2A$$

t > 0: we have a R-L circuit

$$R_{eq} = \frac{R_2(R_1 + R_3)}{R_2 + R_1 + R_3} = \frac{5(12 + 8)}{5 + 12 + 8} = 4\Omega$$

→ time constant:

$$\tau = \frac{L}{R_{eq}} = \frac{2}{4} = 0.5s$$

Hence, the current through the inductor is: $i(t) = i_0 e^{-\frac{t}{\tau}} = 2e^{-2t}A$

7.2. The source-free RC/RL circuit

7.2.2. R-L circuit

+ Example 6: Find i_0 , v_0 and i for all time

t < 0: the inductor acts as a short circuit

$$i(t) = \frac{E}{R_1 + R_2} = \frac{10}{2 + 3} = 2A, t < 0$$
 $i_0(t) = 0A, t < 0$ $v_0(t) = R_2 i(t) = 3.2 = 6V, t < 0$

t > 0: voltage source is disconnected to the right side, and we have a R-L circuit which consists of R₂, R₃, and L

$$R_{eq} = \frac{R_2 R_3}{R_2 + R_3} = \frac{3.6}{3+6} = 2\Omega \quad \Rightarrow \text{ time constant:} \quad \tau = \frac{L}{R_{eq}} = \frac{2}{2} = 1s \quad \Rightarrow \text{ current through L:} \quad i(t) = i_0 e^{-\frac{t}{\tau}} = 2e^{-t} A$$

→ voltage across R₂:
$$v_0(t) = -v_L(t) = -L\frac{di}{dt} = -2.2.(-1)e^{-t} = 4e^{-t}V$$

→ current through R₃:
$$i_0(t) = \frac{v_L(t)}{R_3} = \frac{L}{R_3} \frac{di}{dt} = \frac{2}{6} \cdot 2 \cdot (-1)e^{-t} = -0.67e^{-t}A$$

7.2. The source-free RC/RL circuit

7.2.2. R-L circuit

+ Example 6: Find i_0 , v_0 and i for all time

For all time:

$$i(t) = \begin{cases} 2A & t < 0 \\ 2e^{-t}A & t \ge 0 \end{cases} \qquad i_0(t) = \begin{cases} 0A & t < 0 \\ -0.67e^{-t}A & t > 0 \end{cases}$$

$$v_0(t) = \begin{cases} 6V & t < 0 \\ 4e^{-t}V & t > 0 \end{cases}$$

Note:

- \circ The current through inductor is continuous at t = 0
- o $i_0(t)$ drops from 0 to -2/3A, and $v_0(t)$ drops from 6 to 4 at t=0
- \circ τ is the same regardless of what the output is defined to be

FUNDAMENTALS OF ELECTRIC CIRCUITS - DC Circuits

First Order Circuits

7.2. The source-free RC/RL circuit

7.2.2. R-L circuit

- + Example 7: Find i_0 , v_0 and i for all time
- t < 0: the inductor acts as a short circuit
 - → the current source and R₁ and R₃ are in parallel

$$6 = \frac{v}{R_1} + \frac{v}{R_3} = \frac{R_1 + R_3}{R_1 R_3} v \rightarrow v = v_0(t) = \frac{R_1 R_3}{R_1 + R_3} 6 = 8V \rightarrow i(t) = \frac{v}{R_3} = 4A \rightarrow i_0(t) = 2A$$

t > 0: current source is disconnected, and we have a R-L circuit which consists of R_1 , R_2 , R_3 , and L

$$R_{eq} = \frac{R_2(R_1 + R_3)}{R_2 + R_1 + R_3} = \frac{3.6}{3+6} = 2\Omega \qquad \tau = \frac{L}{R_{eq}} = \frac{1}{2} = 0.5s \qquad i(t) = i(0)e^{-\frac{t}{\tau}} = 4e^{-2t}A$$

$$i_2(t) = \frac{v_L(t)}{R_2} = \frac{L}{R_2} \frac{di}{dt} = \frac{1}{3} \cdot 4 \cdot (-2)e^{-2t} = -\frac{8}{3}e^{-2t}A \rightarrow i_0(t) = -(i+i_2) = -\left(4e^{-2t} - \frac{8}{3}e^{-2t}\right) = -\frac{4}{3}e^{-2t} = -1.33e^{-2t}A$$

$$v_0(t) = -R_3i_0(t) = 2.67e^{-2t}V$$

For all time: → easy to find

7.3. Singularity functions

- + Singularity function (switching function):
 - → functions that either are discontinuous or have discontinuous derivatives
 - → Useful in circuit analysis: Serve as good approximations to the switching signals
- + Widely used singularity functions: unit step, unit impulse, unit ramp
- + Unit step function u(t): equals to 0 for negative values of t and 1 for positive values of t

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \\ undefined, & t = 0 \end{cases}$$

7.3. Singularity functions

+ Step function: → can be used to represent an abrupt change in voltage or current

$$v(t) = \begin{cases} 0, & t < t_0 \\ V_0, & t > t_0 \\ undefined, & t = t_0 \end{cases} \rightarrow v(t) = V_0.u(t - t_0)$$

7.3. Singularity functions

+ Unit impulse function $\delta(t)$ (delta function): derivative of the unit step function u(t)

$$\delta(t) = \begin{cases} 0, & t < 0 \\ 0, & t > 0 \\ undefined, & t = 0 \end{cases}$$

$$\int_{-0}^{+0} \delta(t)dt = 1 \longrightarrow \int_{-\infty}^{+\infty} \delta(t)dt = 1$$

- \rightarrow Unit impulse function $\delta(t)$ is zero everywhere except at t = 0, where it is undefined
- + Impulsive currents and voltages: occur in electric circuits as a result of switching operations of impulsive sources
 - → Not physically realizable, but useful mathematical tool

$$\int_{a}^{b} f(t)\delta(t) dt = f(0)$$

$$\int_{a}^{b} f(t)\delta(t)dt = f(0)$$

$$\int_{a}^{b} f(t)\delta(t-t_0)dt = f(t_0)$$

7.3. Singularity functions

+ Unit ramp function: zero for negative values of t and has a unit slope for positive values of t

$$r(t) = \int_{-\infty}^{t} u(t) dt = t.u(t)$$

$$r(t) = \begin{cases} 0, & t \leq 0 \\ t, & t \geq 0 \end{cases}$$

$$r(t-t_0) = \begin{cases} 0, & t \leq t_0 \\ t-t_0, & t \geq t_0 \end{cases}$$

$$r(t+t_0) = \begin{cases} 0, & t \leq -t_0 \\ t-t_0, & t \geq -t_0 \end{cases}$$

7.3. Singularity functions

+ Example 8: Express the given voltage pulse (*gate function*) in terms of the unit step. Calculate its derivative and sketch it

The given function may be regarded as a step function which:

- \rightarrow Switch on at one value of t (t = 2s)
- \rightarrow Switch off at another value of t (t = 5s)

$$v(t) = v_1(t) + v_2(t) = 10u(t-2) - 10u(t-5)V$$

Then, the derivative of the gate function:

$$\frac{d}{dt}v(t) = 10\delta(t-2) - 10\delta(t-5)$$

7.3. Singularity functions

+ Example 9: Express the current pulse in terms of the unit step. Find its integral and sketch it

The given current pulse may be regarded as:

$$i(t) = i_1(t) + i_2(t) + i_3(t) = 10u(t) - 20u(t-2) + 10u(t-4)A$$

The integral of the current pulse:

$$\int_{-\infty}^{t} i(t)dt = \int_{-\infty}^{t} 10[u(t) - 2u(t-2) + u(t-4)]dt$$

$$\to \int_{-\infty}^{t} i(t)dt = 10[t.u(t) - 2t.u(t-2) + t.u(t-4)]$$

$$\to \int_{-\infty}^{t} i(t)dt = 10[r(t) - 2r(t-2) + r(t-4)]$$

FUNDAMENTALS OF ELECTRIC CIRCUITS - DC Circuits

First Order Circuits

7.3. Singularity functions

+ Example 10: Express the given saw tooth in terms of singularity functions

Solution 1: The saw tooth is expressed as a combination of unit functions

$$v(t) = 5t.u(t) - 5t.u(t-2) = 5t[u(t) - u(t-2)]$$

Solution 2: The saw tooth is expressed as a combination of 2 functions: u(t) & r(t)

$$v_3(t) = -10u(t-2)$$

$$v(t) = 5t.u(t) - 5t.u(t-2) = 5t.u(t) - 5(t-2+2).u(t-2) = 5t.u(t) - 5(t-2).u(t-2) - 5.2.u(t-2)$$

$$\rightarrow v(t) = 5r(t) - 5r(t-2) - 10.u(t-2)$$

NTALS OF ELECTRIC CIRCUITS – DC Circuits

First Order Circuits

7.3. Singularity functions

+ Example 11: Express g(t) in terms of step and ramp functions $g(t) = \begin{cases} 3 & t < 0 \\ -2 & 0 < t < 1 \\ 2t - 4 & t > 1 \end{cases}$

$$g(t) = \begin{cases} 3 & t < 0 \\ -2 & 0 < t < \\ 2t - 4 & t > 1 \end{cases}$$

The signal g(t) can be expressed as the sum of three function specified within the three intervals: $g_1(t)$, $g_2(t)$, $g_3(t)$

with t < 0:
$$g_1(t) = 3u(-t)$$

with 0 < t < 1: $g_2(t) = -2[u(t) - u(t-1)]$
with t > 1: $g_3(t) = (2t-4)[u(t-1)]$
So:

$$g(t) = 3u(-t) - 2[u(t) - u(t-1)] + (2t-4)[u(t-1)] = 3u(-t) - 2u(t) + (2t-2)u(t-1)$$
$$g(t) = 3u(-t) - 2u(t) + 2r(t-1) = 3[1 - u(t)] - 2u(t) + 2r(t-1)$$

$$\rightarrow g(t) = 3 - 5u(t) + 2r(t-1)$$

7.4. Step response of a RC/RL circuit

7.4.1. Step response of a RC circuit

- + When the *DC* source of a RC circuit is suddenly applied:
 - > voltage or current source can be modeled as a step function
 - → the response of circuit is known as a *step response*

+ Example: Consider the RC circuit, assume an initial voltage V0 on the capacitor

$$V(-0)=V(+0)=V_0$$
 $V(-0)$: Voltage across C just before switching $V(+0)$: Voltage across C immediately after switching

Apply KVL to the loop:
$$Ri(t) + v(t) = V_s u(t) \rightarrow RC \frac{dv}{dt} + v(t) = V_s u(t)$$

With t > 0, we obtain:
$$\frac{dv}{dt} + \frac{1}{RC}v(t) = \frac{1}{RC}V_s$$

7.4. Step response of a RC/RL circuit

7.4.1. Step response of a RC circuit

$$\frac{dv}{dt} + \frac{1}{RC}(v - V_s) = 0 \rightarrow \frac{dv}{v - V_s} = -\frac{dt}{RC} \rightarrow \ln(v - V_s) \Big|_{V_0}^{v(t)} = -\frac{t}{RC} \Big|_{0}^{t}$$

$$\rightarrow \ln[v(t)-V_s] - \ln(V_0 - V_s) = -\frac{t}{RC}$$

+ If C is uncharged initially: $V_0 = 0$

$$v(t) = V_s \left(1 - e^{-\frac{t}{\tau}} \right) u(t) V$$

$$i(t) = C \frac{dv}{dt} = \frac{V_s}{R} e^{-\frac{t}{\tau}} . u(t) A$$

7.4. Step response of a RC/RL circuit

7.4.1. Step response of a RC circuit

+ In general, for t > 0:

$$v(t) = V_s + (V_0 - V_s)e^{-\frac{t}{\tau}} = v_n + v_f$$

$$\begin{cases} v_n = (V_0 - V_s)e^{-\frac{t}{\tau}} \\ v_f = V_s \end{cases}$$

- v_n: Natural response (not remained by excitation source) of circuit, will decay to zero after five time constants
- v_f : Forced response (remained by excitation source) of circuit, will represents what the circuit is forced to do by the input excitation, and remains a long time
- + Thus, to find the step response of an RC circuit requires 3 things:

$$v(t) = v(0)e^{-\frac{t}{\tau}} + v(\infty)\left(1 - e^{-\frac{t}{\tau}}\right)$$

v(0) is the initial voltage at t = +0.

 $v(\infty)$ is the final or steady state value

τ is the time constant of the circuit

7.4. Step response of a RC/RL circuit

7.4.1. Step response of a RC circuit

+ Example 12: The switch has been in position A for a long time. At t = 0, the switch moves to B. Determine v(t)for t > 0 and calculate its value at t = 1s and 4s

The voltage across the capacitor at t = -0:
$$v(-0) = \frac{24}{R_1 + R_2} R_2 = 15V$$

From charge conservation law at node A: v(+0) = v(-0) = 15V

For t > 0, the time constant is:
$$\tau = R_3 C_4 = 4.10^3 \cdot 0.5 \cdot 10^{-3} = 2s$$

Since the capacitor acts like an open circuit to *DC* at steady state:
$$v(\infty) = E_2 = 30V$$

The voltage across C_4 is: $v(t) = v(+0)e^{-\frac{t}{\tau}} + v(\infty)\left(1 - e^{-\frac{t}{\tau}}\right) = 15e^{-0.5t} + 30\left(1 - e^{-0.5t}\right) = 30 - 15e^{-0.5t}V$
At $t = 1s$: $v(1s) = 30 - 15e^{-0.5.1} = 20.902V$

At
$$t = 4s$$
: $v(4s) = 30 - 15e^{-0.5.4} = 27.970V$

7.4. Step response of a RC/RL circuit

7.4.1. Step response of a RC circuit

+ Example 13: The switch has been closed for a long time and is opened at t = 0. Find i, v for all time

For t < 0:
$$v(0) = v(-0) = 10V$$
 $i = -\frac{v}{R_1} = -1A$
For t > 0: $v(\infty) = \frac{30}{R_1 + R_2} R_2 = 20V$
 $\tau = R_{eq} C_4 = \frac{R_1 R_2}{R_1 + R_2} . C_4 = \frac{10.20}{10 + 20} . 0.25 = \frac{5}{3} s$
 $\rightarrow v(t) = v(0) e^{-\frac{t}{\tau}} + v(\infty) \left(1 - e^{-\frac{t}{\tau}}\right) = 10 e^{-0.6t} + 20 \left(1 - e^{-0.6t}\right) = 20 - 10 e^{-0.6t}V$
 $\rightarrow i(t) = \frac{v}{R_2} + C \frac{dv}{dt} = 1 - 0.5 e^{-0.6t} + 0.25 . (-10)(-\frac{3}{5}) e^{-0.6t} = 1 + e^{-0.6t} A$

7.4. Step response of a RC/RL circuit

7.4.2. Step response of a RL circuit

- + Connect a R-L circuit to a DC source \rightarrow find i as the circuit response right after the connection
 - \rightarrow i be the sum of the natural response and the forced response $i = i_n + i_f$

The natural response
$$i_n = Ae^{-\frac{R}{L}t}, \tau = \frac{L}{R}$$

The steady-state response: $i_f = \frac{V_s}{R}$

$$\rightarrow i(t) = Ae^{-\frac{t}{\tau}} + \frac{V_s}{R}$$

$$R$$

At
$$t = 0$$
: $i(0) = i(-0) = I_0 \to A = I_0 - \frac{V_s}{R}$

Thus:
$$i(t) = Ae^{-\frac{t}{\tau}} + \frac{V_s}{R} = \left(I_0 - \frac{V_s}{R}\right)e^{-\frac{t}{\tau}} + \frac{V_s}{R}$$

$$i(t) = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-\frac{t}{\tau}} = i(\infty) + \left[i(0) - i(\infty)\right]e^{-\frac{t}{\tau}}$$

7.4. Step response of a RC/RL circuit

7.4.2. Step response of a RL circuit

+ Example 14: Find i(t) for t > 0. Assume that the switch has been closed for a long time

For t < 0:
$$i(-0) = \frac{E}{R_1} = \frac{10}{2} = 5A \rightarrow i(0) = i(-0) = 5A$$

For t > 0: $i(\infty) = \frac{E}{R_1 + R_2} = \frac{10}{2 + 3} = 2A$

$$\tau = \frac{L}{R_1 + R_2} = \frac{1}{3(2+3)} = \frac{1}{15}s$$

Thus, the current through inductor L is: $i(t) = i(\infty) + [i(0) - i(\infty)]e^{-\frac{t}{\tau}} = 2 + (5-2)e^{-15t} = 2 + 3e^{-15t}A$

7.4. Step response of a RC/RL circuit

7.4.2. Step response of a RL circuit

+ Example 15: At t = 0, switch 1 is closed, and switch 2 is closed 4s later. Find i(t) for t > 0. Calculate i for t = 2s and t = 5s

For t < 0: Two switches are open

$$i(-0) = i(0) = 0A$$

For $0 \le t \le 4$: The switch S₁ is closed, S2 is open

$$i(\infty) = \frac{E_1}{R_1 + R_3} = \frac{40}{4 + 6} = 4A$$

$$\tau_1 = \frac{L}{R_{eq1}} = \frac{5}{4+6} = 0.5s$$

$$\rightarrow i(t) = i(\infty) + [i(0) - i(\infty)]e^{-\frac{t}{\tau_1}} = 4 - 4e^{-2t}A$$

7.4. Step response of a RC/RL circuit

7.4.2. Step response of a RL circuit

+ Example 15: At t = 0, switch 1 is closed, and switch 2 is closed 4s later. Find i(t) for t > 0. Calculate i for t = 2s and t = 5s

For t > 4: The switch S2 is closed

$$i(4) = 4 - 4e^{-2.4} \approx 4A$$

Using nodal analysis to find I in steady state

$$\frac{40 - v}{R_1} + \frac{10 - v}{R_2} = \frac{v}{R_3} \to v = \frac{180}{11}V \to i(\infty) = \frac{v}{R_3} = 2.72A$$

$$\rightarrow i(t) = i(\infty) + [i(4) - i(\infty)]e^{-\frac{t-4}{\tau}} = 2.72 + 1.28e^{-1.467(t-4)}A$$

7.4. Step response of a RC/RL circuit

7.4.2. Step response of a RL circuit

+ Example 15: At t = 0, switch 1 is closed, and switch 2 is closed 4s later. Find i(t) for t > 0. Calculate i for t = 2s and t = 5s

For all time, we have:

$$i(t) = \begin{cases} 0 & t \le 0 \\ 4(1 - e^{-2t}) & 0 \le t \le 4 \\ 2.72 + 1.28e^{-1.467(t-4)} & t \ge 4 \end{cases}$$

At t = 2s:

$$i(2) = 4(1 - e^{-2.2}) = 3.93A$$

At t = 5s:

$$i(5) = 2.72 + 1.28e^{-1.467(5-4)} = 3.02A$$

FUNDAMENTALS OF ELECTRIC CIRCUITS – DC Circuits

First Order Circuits

7.5. First order op-amp circuits

- + Op amp circuit containing a storage element: → exhibit first-order behaviors
- + Examples of first-order op amp circuits: differentiators and integrators (in chapter 5)
- + For practical reasons, inductors are hardly ever used in op amp circuits → the op amp circuits considered here are of the RC type
- + Methods to analyze op amp circuits:
 - → Using nodal analysis
 - → Using the Thevenin equivalent circuit to simpler the op amp circuit

7.5. First order op-amp circuits

+ Example 16: Find v_0 for t > 0, give that v(0) = 3V

Solution 1:

We have:
$$-\frac{v_1}{R_i} = C \frac{dv}{dt}$$

Potentials at node 3 and node 4 are equal to zero:

$$v_1 - 0 = V \rightarrow v_1 = V \rightarrow \frac{dv}{dt} + \frac{v}{R_i C} = 0$$

$$\rightarrow v(t) = V_0 e^{-\frac{t}{\tau}}, \tau = R_i C \rightarrow v(t) = 3e^{-10t} V$$

At t > 0, applying KCL at node 3 gives:

$$C\frac{dv}{dt} = \frac{-V_0}{R_f} \to V_0 = -R_f C\frac{dv}{dt} = -80.10^3.5.10^{-6} \left(-30e^{-10t}\right) = 12e^{-10t}V$$

7.5. First order op-amp circuits

+ Example 16: Find v_0 for t > 0, give that v(0) = 3V

Solution 2:

Voltage across the capacitor *C*: v(+0) = v(-0) = 3V

Apply KCL at node 3:
$$\frac{3}{R_i} + \frac{-V_0(+0)}{R_f} = 0 \rightarrow V_0(+0) = 12V$$

The circuit is source free: $V_0(\infty) = 0V$

To find τ , need calculate R_{eq} across C:

- → Replace C by a 1-A current source
- → Applying KVL to the input loop:

$$R_{i}i_{s} - v = 0 \to 20.10^{3}.1 - v = 0 \to v = 20kV \to R_{eq} = \frac{v}{i_{s}} = 20k\Omega$$

$$\to \tau = R_{eq}C = 0.1s \to V_{0} = V_{0}(\infty) + [V_{0}(0) - V_{0}(\infty)]e^{-\frac{t}{\tau}} = 12e^{-10t}V, t > 0$$

7.5. First order op-amp circuits

+ Example 17: Determine v(t) and $v_0(t)$

V(t) is the step response:

$$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-\frac{t}{\tau}}, t > 0$$

No current enters the op amp → the elements on the feedback loop constitute an RC circuit

$$\tau = R_4 C = 50.10^3.10^{-6} = 0.05s$$

For
$$t < 0$$
: The switch is opened $V_0(0) = 0V$
For $t > 0$: $V_1 = \frac{R_2}{R_1 + R_2} E = 2V$

At steady state: C acts like an open circuit → op amp is a non-inverting amplifier

$$V_{0}(\infty) = \left(1 = \frac{R_{4}}{R_{3}}\right)v_{1} = 3.5 \times 2 = 7V \qquad V_{1}(\infty) = v(\infty) + V_{0}(\infty) \rightarrow v(\infty) = V_{1}(\infty) - V_{0}(\infty) = 2 - 7 = -5V$$

$$\rightarrow v(t) = v(\infty) + \left[v(0) - v(\infty)\right]e^{-\frac{t}{\tau}} = -5 + 5e^{-20t} \qquad \rightarrow V_{0}(t) = V_{1}(t) - v(t) = 2 - 2e^{-20t} - \left(-5 + 5e^{-20t}\right) = 7 - 7e^{-20t}V, t > 0$$

7.5. First order op-amp circuits

+ Example 18: Determine step response $v_0(t)$

Remove C, and find the Thevenin equivalent at its terminal

Open voltage at the terminal:

$$V_{ab} = -\frac{R_f}{R_i} V_i \to V_{th} = \frac{R_3}{R_2 + R_3} V_{ab} = -\frac{R_3}{R_2 + R_3} \frac{R_f}{R_i} V_i = -2.5u(t)$$

Equivalent resistor at the terminal:

$$R_{th} = R_3 / (R_0 + R_2) \rightarrow R_{th} = \frac{(R_0 + R_2)R_3}{R_0 + R_2 + R_3} = \frac{R_2 R_3}{R_2 + R_3} = 5k\Omega$$

We obtain the Thevenin equivalent circuit:

$$V_0(t) = -2.5 \left(1 - e^{-\frac{t}{\tau}} \right) u(t), \tau = R_{th}C = 5.10^3.2.10^{-6} = 0.01s$$

$$\to V_0(t) = -2.5 \left(1 - e^{-100t} \right) u(t)V, t > 0$$

7.6. Applications

7.6.1. Delay circuits

- + As an example → consider an RC circuit:
 - → Capacitor connected in parallel with a neon lamp
 - → Voltage source can provide enough voltage to fire the lamp

- + Close the switch: V_C increases to 110V with the time constant $(R_1 + R_2)C$
 - → The lamp will act as an open-circuit and not emit light until the voltage across it exceeds a particular level (70V)
 - \rightarrow When V_C reaches, the lamp fires and the capacitor discharges through it \rightarrow V_C drops and the lamp turn off
 - → The lamp acts again as an open-circuit and C recharges
 - \rightarrow Adjusting R_2 , we can introduce either short or long time delays

7.6. Applications

7.6.2. Photoflash unit

- + This application exploits the ability of the capacitor to oppose any abrupt change in voltage
- + Principle:

Switch is in 1: C charges slowly due to the large time constant $\tau = RC$

- $\rightarrow V_C$ rises gradually from zero to V_S
- $\rightarrow I_C$ decreases from I_1 to 0

Switch is in 2: C discharges

 \rightarrow Low resistance R_2 of the photo-lamp permits a high discharge current with peak I_2 in a short duration

$$t_{discharge} = 5R_2C$$

→ The circuit provides a short-duration, high current pulse

7.6. Applications

7.6.2. Photoflash unit

+ Example 19: An electronic flashgun has a current limiting $R_1 = 6k\Omega$, and $C = 2000\mu F$ charged to 240V. If the lamp resistance R_2 is 12Ω , we have:

→ Peak discharging current:
$$I_1 = \frac{V_s}{R_2} = \frac{240}{12} = 20A$$

⇒ Energy stored:
$$w = \frac{1}{2}CV_s^2 = \frac{1}{2}2000.10^{-6}.240^2 = 57.6J$$

→ Energy stored in C is dissipated across the lamp during the discharging period:

$$t_{discharge} = 5R_2C = 5.12.2000.10^{-6} = 0.12s \rightarrow p = \frac{w}{t_{discharge}} = \frac{57.6}{0.12} = 480W$$

7.6. Applications

7.6.3. Relay circuit

- + Relay: → an electromagnetic device used to open or close a switch that controls another circuit
- + Operation principle of a relay: RL circuit

When S_1 is closed $\rightarrow i_L$ increases, produces a magnetic field

The magnetic field → pull the movable contact in the other circuit and close switch S₂

- + Relay delay time: time interval t_d between the closure of switches S_1 and S_2
- + Application of Relays: in the earliest *digital circuits and* are still used for *switching high power circuits*

7.6. Applications

7.6.3. Relay circuit

+ Example 20: The coil of a certain relay is operated by a 12V battery. If the coil has a resistance of 150Ω and an inductance of 30mH and the current needed to pull in is 50mA. Calculate the relay delay time

The current through the coil: $i(t) = i(\infty) + [i(0) - i(\infty)]e^{-\frac{R}{L}t}$

$$i(0) = 0, i(\infty) = \frac{v_s}{R} = \frac{12}{150} = 80mA, \tau = \frac{L}{R} = \frac{30.10^{-3}}{150} = 0.2ms$$

Thus: $i(t) = 80 - 80e^{-\frac{t}{\tau}} mA$

At
$$t_d$$
: $i(t_d) = 80 - 80e^{-\frac{t_d}{\tau}} = 50 \rightarrow e^{-\frac{t_d}{\tau}} = \frac{3}{8} \rightarrow t_d = \tau \ln \frac{8}{3} = 0.2 \ln \frac{8}{3} = 0.1962 ms$