THERMOHALINE CIRCULATION

Note: The terms "hot" and "cold" refer to the state of the Arctic/Antarctic.

1. Evolution to steady state

- ► Initial run to "cold and slow" steady state
- ► Large temperature difference balanced by large salinity difference ⇒ low flux (cold water wants to sink, but freshwater doesn't want to sink)

1. Evolution to steady state

► Small density difference in "cold and slow" state

2. Multiple steady-states

- ► Run to "warm and fast" steady state
- ► Temperature difference is much larger than the salinity difference. . .

2. Multiple steady-states

▶ ...leading to a large density difference

2. Multiple steady-states

- ► Model has two possible steady states
 - ► Cold and slow state (0.45, 0.8)
 - ► Warm and fast state (0.125, 0.5)

3. Warming Climate

- ► From the cold state, temporarily decrease the temperature gradient to 0.6
- ► Returns to the cold state

3. Warming climate

- ► From the cold state, temporarily decrease the temperature gradient but using a smaller temperature gradient of 0.4
- ► Switches to the warm state

3. Warming climate

lacktriangledown From the warm state, temporarily decrease the temperature gradient ightarrow returns to initial state

3. Warming Climate

ightharpoonup From the warm state, temporarily decrease the temperature gradient a little bit more ightharpoonup switches to the cold state

3. Warming Climate

ightharpoonup From the warm state, temporarily decrease the temperature gradient even a little bit more ightharpoonup returns to the initial state

4. Freshwater pulses

► From the warm state, increase the salinity difference

4. Freshwater pulses

► Transitions from the "warm and fast" state to the "cold and slow" state

KEY IDEAS

- System parameters can vary unpredictably as a system evolves toward a steady-state
- ► The initial conditions matter → systems often have multiple steady states; the initial conditions determine which steady state a system will approach
- ► Short pertubations can cause a "permanent" transition from one state to another
- Observed a transition out of the (i) cold state for large perturbations in temperature (ii) warm state for moderate perturbations in temperature
- Also produced transitions from one state to another by modifying the salinity difference