AI第四次作业

迮炎杰, 519021910706

第一题

解释机器学习模型的过拟合(overfitting)与欠拟合(underfitting)指的是什么现象。我们可以有哪些方法来避免过拟合与欠拟合的现象。

答:

对于深度学习或机器学习模型而言,我们不仅要求它对训练数据集有很好的拟合(训练误差),同时也希望它可以 对未知数据集(测试集)有很好的拟合结果(泛化能力),所产生的测试误差被称为**泛化误差**。

欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在训练集上就表现很差, 没法学习到数据背后的规律。

避免欠拟合的方法:

- 1. 增加网络复杂度,使用更复杂的模型。
- 2. 训练的时间长一点, train longer。

过拟合是指训练误差和测试误差之间的差距太大。换句换说,就是模型复杂度高于实际问题,**模型在训练集上表现很好,但在测试集上却表现很差**。模型对训练集"死记硬背"(记住了不适用于测试集的训练集性质或特点),没有理解数据背后的规律,**泛化能力差**。

避免过拟合的方法:

- 1. 正则化,如L1正则化与L2正则化。
- 2. 早停,即early stopping。
- 3. Dropout, 在训练的时候随机丢掉一些神经元。
- 4. 使用数据增强,提高泛化能力。

第二题

根据以下的步骤完成神经网络反向传播的推导。假定一个前馈全连接神经网络的结果如下 图1所示,其中, $(x_{k-1,1},x_{k-1,2},\cdots,x_{k-1,N_{k-1}})$ 为该神经网络第 k-1 层共 N-1 个神经元的输 出信号,并被输入第k层神经元。对于第k层的第j个神经元,根据神经网络的前向信号传播规 律,我们规定

$$net_{k,j} = \left[\sum_{i=1}^{N_{k-1}} \left(m_{k,j,i} \cdot x_{k-1,i}^3 + n_{k,j,i} \cdot x_{k-1,i}\right)\right] + b_{k,j}$$
(1)

- (1) 假定第 k 层的激活函数是 sigmoid 函数,那么第 k 层第 j 个神经元输出的信号 $x_{k,j}$ 等 于什么? (可以用 $net_{k,i}$ 表示结果)。
- (2) 假定我们计算该网络的输出后,得到其 loss 为 E,我们第 k 层的第 j 个神经元从网络输 出处反向传播而来的梯度为

$$\frac{\partial E}{\partial x_{k,j}} = G_{k,j} \tag{2}$$

请计算对于 $net_{k,j}$ 的反向梯度 $\frac{\partial E}{\partial net_{k,j}}$ 。要求用 $G_{k,j}$ 与 $x_{k,j}$ 表示该反向梯度。 提示: sigmoid 函数求导公式: $\frac{\partial sigmoid(x)}{\partial x} = sigmoid(x) \cdot [1 - sigmoid(x)]$ 。

图 1: 第二题的神经网络

- (3) 利用上方计算好的梯度 $\frac{\partial E}{\partial net_{k,j}}$ 表达式计算参数 $u_{k,j,i}$ 处的梯度 $\frac{\partial E}{\partial m_{k,j,i}}$ 。要求用 $G_{k,j}$ 与 $x_{k,j}$ 表示该反向梯度。
- (4) 假如该神经网络的学习率为 η , 那么参数 $m_{k,j,i}$ 更新后的值 $m'_{k,i,i}$ 为多少? 要求用 $G_{k,j}$, $x_{k,j}$, $m_{k,j,i}$ 与 η 表示更新后的参数。

(1)

$$sigmoid(x) = rac{1}{1+e^{-x}} \ x_{k,j} = rac{1}{1+e^{-net_{k,j}}}$$

(2)

$$\frac{\partial E}{\partial net_{k,j}} = \frac{\partial E}{\partial x_{k,j}} \frac{\partial x_{k,j}}{\partial net_{k,j}} = G_{k,j} imes \frac{1}{1+e^{-net_{k,j}}} imes [1 - \frac{1}{1+e^{-net_{k,j}}}] = \frac{G_{k,j}e^{-net_{k,j}}}{(1+e^{-net_{k,j}})^2}$$
 (其中 $net_{k,j}$ 比较长,就不代入了)

(3)

$$rac{\partial E}{\partial m_{k,j,i}} = rac{\partial E}{\partial net_{k,j}} rac{\partial net_{k,j}}{\partial m_{k,j,i}} = rac{G_{k,j}e^{-net_{k,j}}x_{k-1,i}^3}{(1+e^{-net_{k,j}})^2}$$

(其中 $net_{k,j}$ 比较长,就不代入了)

(4)

如果使用SGD(stochastic gradient descent)算法,算法伪代码如下:

- Choose an initial vector of parameters w and learning rate η .
- Repeat until an approximate minimum is obtained:
 - Randomly shuffle examples in the training set.
 - For i = 1, 2, ..., n, do:
 - $ullet w:=w-\eta
 abla Q_i(w).$

则:

$$m_{k,j,i}' = m_{k,j,k} - \eta rac{G_{k,j} e^{-net_{k,j}} x_{k-1,i}^3}{(1+e^{-net_{k,j}})^2}$$

(其中 $net_{k,j}$ 比较长,就不代入了)

第三题

我们在 lecture14 中学习了层次化聚类(hierarchical clustering,HAC),k-means,dbscan 密度聚类三种聚类方法,请比较一下这三种算法的时间复杂度和优缺点(假定计算两点之间的距离时间复杂度为O(1))。

算法	时间复杂度	优点	缺点
НАС	$O(n^2)$ 或 $O(n^3)$ 或 $O(n^2\log{(n)})$,取决于 cluster之间的相似度计算,如果是常数级的那就是 $O(n^2)$ 。	可以构造层次结 构。可以使用任 意类型的 distance function。	1. 不能处理噪声或outlier。2. 时间复杂 度比较高。
K- Means	O(IKn),其中 I 是iteration 次数, K 是cluster的个数。	1. 比较快。2. 可扩展性比较 强,数据多了也 可以用。	1. 随机初始化导致可能会无法收敛,或者收敛到suboptimal的结果。2. 需要给定cluster的个数K。3. 对于不是convex的数据形状效果不好。
DBSCAN	最多是 $O(n^2)$,可以用一些数据结构加速到 $O(n\log{(n)})$ 。	1. 可以找出噪声 点,比较鲁棒。 2. 不需要指定 cluster的数量。	1. 聚类结果非常取决于ϵ的大小,即半 径。2. 对于density variance比较大的数 据效果不好。