MAE 5009: Continuum Mechanics B

Assignment 04: Formulation of Problems in Elasticity

Due November 2, 2021

1. Verify the following equations for plane strain problems with constant f_x and f_y :

(a)
$$\frac{\partial}{\partial y} \nabla^2 u = \frac{\partial}{\partial x} \nabla^2 v$$

(b)
$$\frac{\partial}{\partial x} \nabla^2 u + \frac{\partial}{\partial y} \nabla^2 v = 0$$

(c) $\nabla^4 u = \nabla^4 v = 0$, where $\nabla^4 = \nabla^2 \left(\nabla^2 \right)$.

- 2. A bar of constant mass density ρ hangs under its own weight and is supported by the uniform stress σ_0 as shown in the figure. Assume that the stresses σ_x , σ_y , τ_{xy} , τ_{xz} and τ_{yz} are all zero,
 - (a) based on the above assumption, reduce 15 governing equations to seven equations in terms of σ_z , ϵ_x , ϵ_y , ϵ_z , u, v and w

(b) integrate the equilibrium equation to show that

$$\sigma_z = \rho gz$$

where g is the acceleration due to gravity. Also show that the prescribed boundary conditions are satisfied by this solution

(c) find $\boldsymbol{\epsilon}_{_{\!X}}$, $\boldsymbol{\epsilon}_{_{\!\mathcal{Y}}}$, $\boldsymbol{\epsilon}_{_{\!\mathcal{Z}}}$ from the generalized Hooke's law

(d) if the displacement and rotation components are zero at the point (0,0,l), determine the displacement component u and v

(e) prove that

$$w = \frac{\rho g}{2E} t^2 + v x^2 + v y^2 - l^2$$

 Express the boundary conditions for the following plate subjected to plate strain condition. The surface forces are functions of x and y only.

