

Homework 1: Section 2

Algebra

Author

Paul Beggs BeggsPA@Hendrix.edu

Instructor

Dr. Christopher Camfield, Ph.D.

End

September 4, 2025

Exercises 1 through 4 concern the binary operation * defined on $S = \{a, b, c, d, e\}$ by means of Table 2.26.

Table 2.26*

*	a	b	c	b	d
\overline{a}	a	b	a	e	c
\overline{b}	c	a	b	b	a
c	c	a	b	b	a
\overline{d}	b	e	b	e	d
\overline{e}	d	b	a	d	c

*(Code partially from Tex StackExchange)

1. Compute b * d, c * c, and [(a * c) * e] * a.

Solution.

2. Compute (a * b) * c and a * (b * c). Can you say on the basis of this [sic] computations whether * is associative?

Solution.

3. Compute (b*d)*c and b*(d*c). Can you say on the basis of this computation whether * is associative?

Solution.

4. Is * commutative? Why?

Solution.

In exercises 7 through 10, determine whether the binary operation * defined is commutative and whether * is associative.

7. * defined on \mathbb{Z} by letting a * b = a - b.

Solution.

8. * defined on \mathbb{Q} by letting a * b = ab + 1.

Solution.

10. * defined on \mathbb{Z}^+ by letting $a * b = 2^{ab}$.

Solution.

23. On \mathbb{Z}^+ , define * by letting a*b=c, where c is the largest integer less than the product of a and b.

Solution.

26. Give a set different from any of those described in the examples of the text and not a set of numbers. Define two different binary operations * and *' on this set. Be sure that your set is well defined.

Solution.

37. Suppose that * is an associative binary operation on a set S. Let

$$H = \{ a \in S \mid a * x = x * a \text{ for all } x \in S \}.$$

Show that H is closed under *. (We think of H as consisting of all elements of S that commute with every element of S.)

Solution.