Lecture Notes for

Neural Networks and Machine Learning

Deep Transfer Learning and Demo

Logistics and Agenda

- Logistics
 - None!
- Agenda
 - Transfer Learning in Deep Learning
 - Transfer Learning Demo
- Next Time:
 - Transformers for Text and Vision
- Next Next Time
 - Self-Supervised Learning and Consistency Loss

Transfer Learning with Neural Networks

Found in a recent paper:

6 Unrelated Work

This paper is not related to [8, 23, 48, 13, 35] in any way, but we think everyone should read these papers because: (1) they're real good, (2) my friends also need those citations.

7 Related Work

Deep Transfer Learning

- Almost always Inductive Transfer
 - (new task, same domain, or domain adaptation)
- Almost always Feature Representation Transfer
 - like image pre-training
- All other topics are mostly open research topics that maybe one of you will solve!

(Sun, B., Feng, J., & Saenko, K. (2016). Return of Frustratingly Easy Domain Adaptation)

19

Approaches with Deep Learning

Feature Extraction Transfer

- Most well known: use learned parameters from one task in another task in same domain
- Most useful when labels for target domain are sparse

New domain: Dogs versus Cats

New domain: Gaze Classification

Defining the Bottleneck

- Frozen training layers before bottleneck:
 - Why waste computations?
 - Computing more than one forward pass on the same data—just save them out
 - Unless using augmentation
- In Keras, build multiple models with different entry points
 - Input toBottleneck
 - Bottleneckto Output
 - Input to Output


```
bottleneck = Input(shape=model_base.output.shape)
outputs = Dense(NUM_CLASSES)(bottleneck)
model_top = Model(bottleneck, outputs)
```

```
model_total = Model(inputs, outputs)
```


Freezing and Fine-tuning

- Step 1, Freeze base model:
 - No update during back-propagation
 - Only update layers after the bottleneck
 - Optional: Augment a set of training data
 - Send training dataset through base model
 - Save out bottleneck features
 - Train bottleneck features in new task
 - Typically 5-10 epochs is sufficient, easy to overfit
 - Larger training step size is okay
- Step 2, Fine-tune, unfreeze a few layers in base model:
 - Optional: Setup images to use some type of augmentation
 - Attach newly trained model to pre-trained model
 - Train to your hearts content, use smaller training step size

Bottlenecking on a GPU

Dogs versus Cats

justinledford Justin Ledford

Member of 8000net

Updated for tf==2.12 in the Main Repository:
02 Transfer Learning.ipynb

Original Example: https://github.com/8000net/
Transfer-Learning-Dolphins-and-Sharks

Another Great Example:

https://keras.io/examples/vision/

image_classification_efficientnet_fine_tuning/

Popular Transfer Learning Models

Vision:

- Conv Architectures:
 - VGG, Inception, ResNet, Xception, EfficientNet
 - ViT: Huge ViT

Audio:

WaveNet, VGGish

Text:

- Word Embedding
 - Glove, Word2Vec, ConceptNet
- Sentence Embedding
 - Universal Sentence Encoders (Google)
 - BERT (Google)

From SMU PhD Students in my Research Lab:

- VGG for transferring to gaze classification
- VGG for swapped face detection
- Domain adaptation for speaker authentication
- YOLO/DarkNet for surgical instrument detection
- GLOVE for similar instructions in a maintenance manual
- BERT for student vocabulary acquisition

Lecture Notes for

Neural Networks and Machine Learning

Transfer Learning

Next Time:

Transformers

Reading: None

