

1 File Upload • 2.0 Hide Answer

A box has n balls numbered from 1 to n. Suppose you keep picking a ball randomly each time and put it back in the box before the next pick.

- 1. Let X be the random variable denoting the first time at which you have seen a ball twice. Find the PMF of X.
- 2. Let T_i be the random variable corresponding to the time taken for seeing a new ball, after you have seen i different balls. Find the PMF of T_i .
- 3. Let T be the random variable corresponding to the first time at which you have encountered all the n balls. Find $\mathbb{E}T$.

Uploaded File Details

Uploaded File Details

Hide Answer

7.0

- 1. A triangle in the graph is a set of edges $\{\{i,j\},\{j,k\},\{k,i\}\}$ where i,j,k are distinct. Find the expected number of triangles in G.
- 2. A k-clique in a graph is a set of k vertices $S \subseteq V$, |S| = k, such that there is a edge in G between every pair of vertices in S. Show that:

$$\Pr\left[ext{there is no k-clique in G}
ight] \geq 1 - inom{n}{k} rac{1}{2^{inom{k}{2}}}$$

Uploaded File Details

File Upload

1

← Previous

Page: 1 / 2

Next →