AZS - cvičení 8

Filtrace signálu vynulováním vzorků DFT návrh filtrů metodou oken

1. Filtrace signálu vynulováním vzorků v DFT I.

Během záznamu EKG signálu došlo k jeho kontaminaci šumem, jehož frekvence byla 60Hz. Pokuste se odstranit tento šum následujícím postupem:

- a) Nahrajte zašuměný záznam ze souboru *ecgo* (příkazem *load ecgo*) a zobrazte ho.
- b) Vypočtěte 600 bodovou DFT kontaminovaného signálu.
- c) Ručně vypočtěte indexy položek DFT, odpovídající frekvenci 60Hz.
- d) Vynulujte DFT komponenty odpovídající 60Hz signálu.
- e) Určete zpětnou IDFT a výsledný signál porovnejte s originálním signálem, který je v souboru *ecg*

2. Filtrace signálu vynulováním vzorků v DFT II.

Během záznamu EKG signálu došlo k jeho kontaminaci šumem, jehož frekvence byla 60Hz. Pokuste se odstranit tento šum následujícím postupem:

- a) Nahrajte zašuměný záznam ze souboru *ecgo* a zarovnejte ho na 512 vzorků.
- b) Vypočtěte 512 bodovou DFT (FFT) kontaminovaného signálu.
- c) Ručně vypočtěte indexy položek DFT, odpovídající frekvenci kolem 60Hz .
- d) Vynulujte DFT komponenty v okolí indexu odpovídající frekvenci 60Hz.
- e) Určete zpětnou IDFT (IFFT) a výsledný signál porovnejte s originálním signálem, který je v souboru *ecg*
- f) Diskutujte výsledky pro různý počet vynulovaných vzorků v okolí 60Hz komponenty

3. Filtrace signálu vynulováním vzorků v DFT III.

Během přenosu zprávy uložené v souboru mystery1 došlo k její kontaminaci nízkofrekvenčním a vysokofrekvenčním šumem. Snažte se dekódovat zprávu (která je viditelná pouze v signálu zobrazeném v časové oblasti následujícím postupem :

- a) Nahrajte zašuměný záznam ze souboru *mystery1*.
- b) Určete spektrum signálu (z DFT transformace).
- c) Vynulujte komponenty odpovídající nízkofrekvenčnímu šumu.
- d) Vynulujte komponenty odpovídající vysokofrekvenčnímu šumu.
- e) Určete zpětnou IDFT, zobrazte výsledný signál a pokuste se dekódovat přenášenou zprávu.

4. Návrh filtru metodou oken. Určete okno, délku filtru a koeficienty impulzní odezvy pokud máte zadané následující požadavky na filtr:

• Dolní propust

• S = 8000 Hz (vzorkovací frekvence)

5. Návrh filtru metodou oken. Určete okno, délku filtru a koeficienty impulzní odezvy pokud máte zadané následující požadavky na filtr:

6. Návrh filtru metodou oken. Určete okno, délku filtru a koeficienty impulzní odezvy pokud máte zadané následující požadavky na filtr:

7. Návrh filtru metodou oken. Určete okno, délku filtru a koeficienty impulzní odezvy pokud máte zadané následující požadavky na filtr:

Pásmová zádrž $fc_1 = 1250 \text{ Hz}$ dolní mezní frekvence $fw_1 = 1500 \text{ Hz}$ šířka dolního přechodového pásma Ap = 0.02dB $fc_2 = 2850 \text{ Hz}$ horní mezní frekvence $fw_2 = 1300 \text{ Hz}$ šířka horního přechodového pásma As = 50 dB S = 8000 Hz (vzorkovací frekvence)

Výsledky Př. 4

Table 7.6 FIR Filter Coefficients in Example 7.7 (rectangular and Hamming windows)	
B: FIR Filter Coefficients (Rectangular Window)	Bham: FIR Filter Coefficients (Hamming Window)
$b_0 = b_{24} = 0.000000$ $b_1 = b_{23} = -0.028937$ $b_2 = b_{22} = 0.000000$ $b_3 = b_{21} = 0.035368$ $b_4 = b_{20} = 0.000000$ $b_5 = b_{19} = -0.045473$ $b_6 = b_{18} = 0.000000$ $b_7 = b_{17} = 0.063662$ $b_8 = b_{16} = 0.000000$ $b_9 = b_{15} = -0.106103$	$b_0 = b_{24} = 0.000000$ $b_1 = b_{23} = -0.002769$ $b_2 = b_{22} = 0.000000$ $b_3 = b_{21} = 0.007595$ $b_4 = b_{20} = 0.000000$ $b_5 = b_{19} = -0.019142$ $b_6 = b_{18} = 0.000000$ $b_7 = b_{17} = 0.041957$ $b_8 = b_{16} = 0.000000$ $b_9 = b_{15} = -0.091808$

 $b_{10} = b_{14} = 0.000000$

 $b_{11} = b_{13} = 0.313321$

 $b_{12} = 0.500000$

Výsledky Př. 5

Table 7.8 FIR Filter Coefficients in Example 7.9 (Hanning window)

Bhan: FIR Filter Coefficients (Hanning Window)

 $b_{10} = b_{14} = 0.000000$

 $b_{11} = b_{13} = 0.318310$

 $b_{12} = 0.500000$

$$b_0 = b_{24} = 0.000000$$
 $b_1 = b_{23} = 0.000493$
 $b_2 = b_{22} = 0.000000$ $b_3 = b_{21} = -0.005179$
 $b_4 = b_{20} = 0.000000$ $b_5 = b_{19} = 0.016852$
 $b_6 = b_{18} = 0.000000$ $b_7 = b_{17} = -0.040069$
 $b_8 = b_{16} = 0.0000000$ $b_9 = b_{15} = 0.090565$
 $b_{10} = b_{14} = 0.000000$ $b_{11} = b_{13} = -0.312887$
 $b_{12} = 0.5000000$

Výsledky Př. 6

Table 7.9 FIR Filter Coefficients in Example 7.10 (Hamming Window)

Bham: FIR Filter Coefficients (Hamming Window)

 $b_0 = b_{24} = 0.002680$ $b_1 = b_{23} = -0.001175$ $b_2 = b_{22} = -0.007353$ $b_3 = b_{21} = 0.000674$ $b_4 = b_{20} = -0.011063$ $b_5 = b_{19} = 0.004884$ $b_6 = b_{18} = 0.053382$ $b_7 = b_{17} = -0.003877$ $b_8 = b_{16} = 0.028520$ $b_9 = b_{15} = -0.008868$ $b_{10} = b_{14} = -0.296394$ $b_{11} = b_{13} = 0.008172$ $b_{12} = 0.462500$

Výsledky Př. 7

Table 7.10 FIR Filter Coefficients in Example 7.11 (Blackman Window)

Black: FIR Filter Coefficients (Blackman Window)

 $b_0 = b_{34} = 0.000000$ $b_1 = b_{33} = 0.000059$ $b_2 = b_{32} = 0.000000$ $b_3 = b_{31} = 0.000696$ $b_4 = b_{30} = 0.001317$ $b_5 = b_{29} = -0.004351$ $b_6 = b_{28} = -0.002121$ $b_7 = b_{27} = 0.000000$ $b_8 = b_{26} = -0.004249$ $b_9 = b_{25} = 0.027891$ $b_{10} = b_{24} = 0.011476$ $b_{11} = b_{23} = -0.036062$ $b_{12} = b_{22} = 0.000000$ $b_{13} = b_{21} = -0.073630$ $b_{14} = b_{20} = -0.020893$ $b_{15} = b_{19} = 0.285306$ $b_{16} = b_{18} = 0.014486$ $b_{17} = 0.600000$