FORMULAE FOR THE RESOLUTION OF FLUID DYNAMICS AND HEAT AND MASS TRANSFER PROBLEMS

CONTENTS:

- Section A: Basic <u>mathematical relations</u> for the resolution of heat and mass transfer problems. It includes mathematical formulation for convection (in both integral and differential form), analytical solutions for conduction heat transfer (steady and transient), and useful formulae for radiation heat transfer.
- **Section B**: Charts of <u>convection heat transfer correlations</u> in: i) natural convection; ii) forced convection in ducts; iii) forced convection in flat plates for incompressible flow; iv) forced convection in flat plates for compressible flow; v) forced convection around tubes and bundles of tubes; vi) forced convection on rotating surfaces; vii) friction factors inside ducts (single-phase); viii) fiction factors and heat transfer coefficients in condensation and evaporation phenomena.
- **Section C**: Alternative correlations for the computation of <u>convection heat transfer correlations</u> in: i) flat plates; ii) interior of cylindrical tubes; iii) generalization of the previous formulation for flows inside non-circular cross-sections; iv) cavities with differentially heated vertical walls.
- **Section D**: <u>Thermophysical properties</u> for: metals, non-metal materials, insulating materials, gases (air and steam), liquids (water, glycerine, oil and Hg), and radiative properties.
- Section E: Nomenclature.

A. BASIC MATHEMATICAL RELATIONS

A1. Mass, momentum and energy transport equations in integral form. Moving control volumes:

$$\frac{d}{dt} \int_{V_a(t)} \rho dV + \int_{S_a(t)} \rho(\vec{v} - \vec{v}_b) \cdot \vec{n} dS = 0$$

$$\tag{1.1}$$

$$\frac{d}{dt} \int_{V_q(t)} \vec{v} \rho dV + \int_{S_q(t)} \vec{v} \rho(\vec{v} - \vec{v}_b) \cdot \vec{n} dS = \int_{S_q(t)} \vec{f}_{(\vec{n})} dS + \int_{V_q(t)} \vec{g} \rho dV$$

$$\tag{1.2}$$

$$\frac{d}{dt} \int\limits_{V_a(t)} (u + e_k) \rho dV + \int\limits_{S_a(t)} (u + e_k) \rho (\vec{v} - \vec{v}_b) \cdot \vec{n} dS = -\int\limits_{S_a(t)} \vec{q} \cdot \vec{n} dS + \int\limits_{S_a(t)} \vec{v} \cdot \vec{f}_{(\vec{n})} dS + \int\limits_{V_a(t)} \vec{v} \cdot \vec{g} \rho dV$$
 (1.3)

Assuming static control volumes ($\vec{v}_b = 0$):

$$\frac{\partial}{\partial t} \int_{V_a} \rho dV + \int_{S_a} \rho \vec{v} \cdot \vec{n} dS = 0 \tag{1.4}$$

$$\frac{\partial}{\partial t} \int_{V_{q}} \vec{v} \rho dV + \int_{S_{q}} \vec{v} \rho \vec{v} \cdot \vec{n} dS = \int_{S_{q}} \vec{f}_{(\vec{n})} dS + \int_{V_{q}} \vec{g} \rho dV$$
 (1.5)

$$\frac{\partial}{\partial t} \int_{V_a} (u + e_k) \rho dV + \int_{S_a} (u + e_k) \rho \vec{v} \cdot \vec{n} dS = -\int_{S_a} \vec{q}^{C+R} \cdot \vec{n} dS + \int_{S_a} \vec{v} \cdot \vec{f}_{(\vec{n})} dS + \int_{V_a} \vec{v} \cdot \vec{g} \rho dV$$
 (1.6)

The energy equation (6) can also be rewritten as:

$$\frac{\partial}{\partial t} \int_{V_a} \left(h - \frac{p}{\rho} + e_k + e_p \right) \rho dV + \int_{S_a} \left(h + e_k + e_p \right) \rho \vec{v} \cdot \vec{n} dS = -\int_{S_a} \vec{q}^{C+R} \cdot \vec{n} dS + \int_{S_a} \vec{v} \cdot \vec{f}_{(\vec{n})}^{\tau} dS \tag{1.7}$$

where $\vec{f}_{(\vec{n})}^{\, au}$ accounts only for the viscous force vector (per unit surface).

Other important transport equations:

Entropy transport equation:
$$\frac{\partial}{\partial t} \int_{V_a} s \rho dV + \int_{S_a} s \rho \vec{v} \cdot \vec{n} dS = -\int_{S_a} \frac{\vec{q}}{T} \cdot \vec{n} dS + \int_{V_a} \dot{s}_{gen} dV \quad (\dot{s}_{gen} \ge 0)$$
 (1.8)

Transport equation of species k:
$$\frac{\partial}{\partial t} \int_{V_a} Y_k \rho dV + \int_{S_a} Y_k \rho \vec{v} \cdot \vec{n} dS = -\int_{S_a} \vec{J}_k \cdot \vec{n} dS + \int_{V_a} \dot{\omega}_k dV$$
 (1.9)

A2. Basic transport equations in differential form (Navier-Stokes equations)

In case of <u>forced convection</u>, assuming Newtonian fluid, constant density and viscosity, negligible body forces, non-participating radiative medium, and negligible viscous dissipation:

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0 \tag{2.1}$$

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial x} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right)$$
(2.2)

$$\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial y} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right)$$
(2.3)

$$\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial z} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right)$$
(2.4)

$$\rho_o c_p \left(\frac{\partial T}{\partial t} + v_x \frac{\partial T}{\partial x} + v_y \frac{\partial T}{\partial y} + v_z \frac{\partial T}{\partial z} \right) = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right)$$
(2.5)

For <u>natural or mixed convection</u>, assuming the aforementioned hypothesis, except for the influence of the temperature on density variations in the buoyancy terms of the momentum equations (Boussinesq approach):

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0 \tag{2.6}$$

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial x} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) + g_x - \beta_o (T - T_o) g_x \tag{2.7}$$

$$\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial y} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right) + g_y - \beta_o (T - T_o) g_y \tag{2.8}$$

$$\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p}{\partial z} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right) + g_z - \beta_o (T - T_o) g_z$$
 (2.9)

$$\rho_{o}c_{p}\left(\frac{\partial T}{\partial t} + v_{x}\frac{\partial T}{\partial x} + v_{y}\frac{\partial T}{\partial y} + v_{z}\frac{\partial T}{\partial z}\right) = \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(\lambda\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(\lambda\frac{\partial T}{\partial z}\right)$$
(2.10)

In this case, it is usual to merge the gravity term \vec{g} with the pressure gradient term. Consequently, the dynamic pressure p_d appears instead of the thermodynamic pressure p. Hence, equation (7) now reads as:

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -\frac{1}{\rho_o} \frac{\partial p_d}{\partial x} + \frac{\mu_o}{\rho_o} \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) - \beta_o (T - T_o) g_x \tag{2.11}$$

In the same way, equations (8) and (9) can be rewritten.

For **gases at high velocity**, the Navier-Stokes equations, assuming semi-perfect gas behaviour, can be expressed in vectorial notation as:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \tag{2.12}$$

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} \right) = -\nabla p + \nabla \cdot \vec{\tau} + \rho \vec{g}$$
 (2.13)

$$\rho c_v \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T \right) = \nabla \cdot (\lambda \nabla T) - \nabla \cdot \vec{q}^R - p \nabla \cdot \vec{v} + \vec{\tau} : \nabla \vec{v}$$
(2.14)

$$p = \rho RT \tag{2.15}$$

where, $\vec{\tau} = \mu(\nabla \vec{v} + \nabla \vec{v}^T) - \frac{2}{3}\mu(\nabla \cdot \vec{v})\vec{\delta}$.

The kinetic energy equation can be written as:
$$\rho\left(\frac{\partial e_k}{\partial t} + \vec{v} \cdot \nabla e_k\right) = -\vec{v} \cdot \nabla p + \vec{v} \cdot \nabla \cdot \vec{\tau} + \rho \vec{v} \cdot \vec{g}$$
 (2.16)

For solids, the energy equation is simply:
$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + \dot{q}_v$$
 (2.17)

A3. Analytical solutions for conduction heat transfer in walls and extended surfaces (fins)

In this section, one-dimensional steady-state temperature profiles, and constant thermophysical properties and \dot{q}_v are considered. For the case of extended surfaces, it is assumed constant external temperature and convective heat transfer coefficient (T_q and α_q) in the fin. The temperature profiles and heat fluxes are presented as follows:

3.1 Plane walls:
$$T = -\frac{\dot{q}_v}{2\lambda}x^2 + C_1x + C_2$$
; $\dot{q}_x = \dot{q}_v x - \lambda C_1$ (3.1)

3.2 Cylindrical walls:
$$T = -\frac{\dot{q}_v}{4\lambda}r^2 + C_1ln(r) + C_2$$
; $\dot{q}_r = \frac{1}{2}\dot{q}_v r - \lambda\frac{C_1}{r}$ (3.2)

3.3 Spherical walls:
$$T = -\frac{\dot{q}_v}{6\lambda}r^2 + \frac{c_1}{r} + C_2$$
; $\dot{q}_r = \frac{1}{3}\dot{q}_v r + \lambda \frac{c_1}{r^2}$ (3.3)

3.4 Fins with constant cross-section:
$$T - T_{ext} = C_1 e^{mx} + C_2 e^{-mx}$$
; $\dot{q}_x = -\lambda_f m (C_1 e^{mx} - C_2 e^{-mx})$ (3.4)

where $m = \sqrt{\alpha_{ext}P_f/(\lambda_f S_f)}$; P_f is the perimeter of the fin; S_f is the cross-section of the fin, . α_{ext} is the external heat transfer coefficient.

Heat flux delivered by the fin:
$$\dot{Q}_f = \eta_f \alpha_{ext} (T_w - T_{ext}) A_f$$
 (3.5)

where the efficiency of the fin is evaluated from: $\eta_f = \frac{th[mL_f]}{mL_f}$ (assuming adiabatic fin end), L_f is the length of the fin, A_f is the heat transfer surface ($A_f = P_f L_f$), T_w is the temperature of the fin at its base, and T_{ext} is the external temperature.

3.5 Circular fins:
$$T - T_{ext} = C_1 I_o(mr) + C_2 K_o(mr); \quad \dot{q}_r = -\lambda_f \frac{dT}{dr} = -\lambda_f m [C_1 I_1(mr) - C_2 K_1(mr)]$$
 (3.6)

where I_o and K_o are the modified zero order Bessel functions of first and second class, respectively. See Table B, page 6.

Heat flux delivered by the fin:
$$\dot{Q}_f = \eta_f \alpha_{ext} (T_w - T_{ext}) A_f$$
 (3.7)

where
$$\eta_f \approx \frac{th[mR_i\phi]}{mR_i\phi}$$
 (assuming adiabatic fin end), $\phi = \left(\frac{R_e}{R_i} - 1\right)\left[1 + 0.35ln\left(\frac{R_e}{R_i}\right)\right]$, $A_f = 2\pi(R_e^2 - R_i^2)$, $m = \sqrt{2\alpha_{ext}/(\lambda_f e_f)}$, being R_i , R_e and e_f the inner fin radius, outer fin radius and fin thickness, respectively.

A4. Analytical solutions for conduction heat transfer in transient problems

4.1 **Plate of thickness** 2e. Unsteady-state (heating/cooling) of a flat plate with initial uniform temperature T_o . The plate is suddenly submerged into an atmosphere at temperature T_{ext} (which is considered constant throughout the process). The convective heat transfer coefficient α_{ext} is constant. Thermophysical properties of the material are considered constant as well $(\rho, c_p, \lambda, \alpha = \lambda/\rho c_p)$. The temperature follows:

$$\Phi = \sum_{k=1}^{\infty} \frac{2\sin(u_k)}{u_k + \sin(u_k)\cos(u_k)} \cos(u_k X) e^{-u_k^2 Fo}$$

$$\tag{4.1}$$

where, $\Phi = \frac{\mathrm{T-T_{ext}}}{\mathrm{T_{o}-T_{ext}}}$, $X = \frac{x}{e}$, $Fo = \frac{at}{e^2}$. The variables u_k are the solutions to equation cot(u) = u/Bi, with $Bi = \alpha_{ext}e/\lambda$.

4.2 **Cylinder of radius** r_o . The analysis of the problem is the same as the previous case. The temperature profile is obtained from:

$$\Phi = \sum_{k=1}^{\infty} \frac{2I_1(u_k)}{u_k [I_0^2(u_k) + I_1^2(u_k)]} I_0^2(u_k R) e^{-u_k^2 F o}$$
(4.2)

where, I_o is a first-class zero-order Bessel function, and I_1 is a first-class first-order; $\Phi = \frac{\mathrm{T-T_{ext}}}{\mathrm{T_o-T_{ext}}}$, $R = \frac{r}{r_o}$, $R = \frac{r}{r_o}$, and $R = \frac{at}{r_o^2}$, an

4.3 **Sphere of radius** r_o . For this case, the following temperature profile is obtained:

$$\Phi = \sum_{k=1}^{\infty} \frac{2\sin(u_k R)[sen(u_k) - u_k cos(u_k)]}{u_k R[u_k - sen(u_k)cos(u_k)]} e^{-u_k^2 Fo}$$
(4.3)

where, $\Phi = \frac{\mathrm{T-T_{ext}}}{\mathrm{T_o-T_{ext}}}$, $R = \frac{r}{r_o}$, $Fo = \frac{at}{r_o^2}$, and u_k are solutions of tan(u) = -u/(Bi-1); $Bi = \alpha_{ext}r_o/\lambda$.

A5. Radiation and atmosphere conditions

5.1 Snell's law:
$$n_A v sin \beta_A = n_B v sin \beta_B$$
 (5.1)

where β_A and β_B are the angles of incidence and refraction, respectively, and $n_{A,\nu}$ and $n_{B,\nu}$ are the refracted indices of medium A and B, at frequency ν .

5.2 Stefan-Boltzmann's constant:
$$\sigma = \frac{2\pi^5 k^4}{15h^3c_0^2} = 5.67 \cdot 10^{-8} \frac{W}{m^2 K^4}$$
 (5.2)

5.3 Wien's law for black body radiation:
$$(\lambda T)_{max.nower} = 2897.8 \,\mu\text{mK}$$
 (5.3)

5.4 **Solid angle differential**:
$$d\omega = sin\theta d\theta d\phi$$
 (5.4) where θ and ϕ are the polar and azimuthal angles, respectively.

5.5 Generalized expression of the **view factor** between surface A_i and surface A_k :

$$F_{ik} = \frac{1}{\pi A_i} \int_{A_i} \int_{A_k} \frac{\cos \theta_i \cos \theta_k}{d_{ik}^2} dA_i dA_k$$
 (5.5)

Hottel's crossed string rule. View factor F_{ij} in 2D cases: $F_{ij} = \frac{SUM\ crossed\ strings - SUM\ uncrossed\ strings}{twice\ surface\ A_i\ per\ unit\ depth}$ (5.6)

5.6 Sky temperature:
$$T_{sky} \approx 0.0552 T_{air}^{1.5}$$
 (simplified correlation) (5.7)

where T_{sky} and T_{air} correspond to the sky and ambient temperatures (both in K).

More accurate correlation:
$$T_{sky} \approx T_{air} \left[0.711 + 0.0056 T_{dp} + 7.3 \cdot 10^{-5} T_{dp}^2 + 0.013 cos \left(\frac{2\pi t}{24} \right) \right]^{\frac{1}{4}}$$
 (5.8)

where T_{dp} is the dew-point temperature, and t the time counted from midnight (t = 0, 1, 2, ..., 24). In this second expression, proposed by Verdal and Martin, all the temperatures are expressed in °C.

5.7 Black body radiation. Planck's law:
$$I_{b,\lambda\omega}^{(e)} = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{exp(\frac{hc}{\lambda kT}) - 1}$$
 (5.9)

where,
$$c = c_o/n$$
, $c = \lambda v$; $h = 6.6261 \cdot 10^{-34} \, Js$; $k = 1.3807 \cdot 10^{-23} \, J/K$; $c_o = 2.9979 \cdot 10^8 \, m/s$.

Integrating Planck's law in all directions at a given wave length λ of a body at temperature T, the spectral emissive power is obtained:

$$\dot{q}_{b,\lambda}^{(e)} = \int_{2\pi} I_{b,\lambda\omega}^{(e)} \cos\theta d\omega = \pi I_{b,\lambda\omega}^{(e)}$$
 (5.10)

Integrating Planck's law in all directions and wave lengths ($\lambda=0~a~\infty$) of a body at temperature T:

$$\dot{q}_{b}^{(e)} = \int_{\lambda=0}^{\infty} \pi I_{b,\lambda\omega}^{(e)} d\lambda = \sigma T^{4}$$
 (5.11)

With the attached Table A (see page 6), the following integral can be evaluated from $\lambda = 0$ to λ :

$$\dot{q}_{b,(\lambda=0\to\lambda)}^{(e)} = \int_{\lambda=0}^{\lambda} \pi I_{b,\lambda\omega}^{(e)} d\lambda = f_{\lambda T} \sigma T^4$$
(5.12)

where the fraction $f_{\lambda T}$ only depends on λT ($\mu m K$).

5.9 Radiation in an absorbing medium. The Lambert-Beer law

From the radiative transport equation (RTE), assuming a purely absorbing medium characterized by a spectral extinction coefficient $\beta_{\nu}=\kappa_{\nu}+\sigma_{s,\nu}$ (being κ_{ν} and $\sigma_{s,\nu}$ the absorption and scattering coefficients, respectively), the specific radiant intensity in a given direction x is given by: $dI_{\nu\omega}/dx=-\beta_{\nu}I_{\nu\omega}$. Integrating from x=0 to x (assuming constant β_{ν}): $I_{\nu\omega}=I_{o\nu}e^{-\beta_{\nu}x}$ (5.13)

where I_{ov} is the value of the specific intensity at x=0.

5.10 Reference values for temperature and pressure distribution in the atmosphere according to ISA (International Standard Atmosphere). The main parameters are included in the next table. The rest of values can be computed with the attached expressions (which allows us to evaluate T and p at any altitude z).

Zone	Zone	Layer k	$z_k(m)$	$\beta_k(K/m)$	$T_k(K)$ en z_k	$p_k(Pa)$	$\rho_k (kg/m^3)$
Troposphere		0	0	$-6,50 \times 10^{-3}$	288.15	101325	1.2252
		1 (tropopause)	11000	0,00	216.65	22649	0.3643
	Stratosphere	2	20000	$+1,00 \times 10^{-3}$	216.65	5482.8	0.0882
		3	32000	$+2,80 \times 10^{-3}$	228.65	870.06	0.0133
		4 (stratopause)	47000	0,00	270.65	111.28	0.0014
Mesosphere		5	51000	$-2,80 \times 10^{-3}$	270.65	67.181	0.0009
		6	71000	$-2,00 \times 10^{-3}$	214.65	3.9763	0.0001
		7 (mesopause)	84852	-	186.95	0.3757	0.0000

In this table: z_k is the geopotential height; β_{kj} is the variation of temperature per unit of height between layer k and k+1; T_k is the temperature at height z_k ; p_k is the pressure at position z_k .

Assuming linear temperature changes between layers:
$$T(z) = T_k + \beta_k(z - z_k)$$
 (5.14)

From a momentum balance
$$(dp/dz = -\rho g)$$
, pressure is obtained: $p(z) = p_k [T_k/T(z)]^{\frac{g}{R\beta_{kj}}}$ (5.15)

where $\rho_k = p_k/RT_k$, $g = 9.8 \, m/s^2$ and $R = 287 \, J/kgK$ are used. In these equations, k is the reference value on the base of the layer. Calculated p(z) and T(z) are in the layer k and k+1.

A6. Numerical methods

6.1 Thermal conductivity. Harmonic mean at the cell-face
$$e$$
: $\lambda_e = d_{PE} / \left[\frac{d_{Pe}}{\lambda_P} + \frac{d_{eE}}{\lambda_E} \right]$ (6.1)

6.2 Relaxation factors:
$$\phi^{*(new)} = \phi^{*(old)} + f_r \left[\phi^{equation} - \phi^{*(old)} \right]$$
 (6.2)

6.3 **TDMA** (Tri-Diagonal Matrix Algorithm) for solving linear discretized equations of this type:

$$a_P[i]T[i] = a_E[i]T[i+1] + a_W[i]T[i-1] + b_P[i]$$
(6.3)

Two steps:

1) Evaluation from
$$i = 1$$
 to N of: $P[i] = \frac{a_E[i]}{a_P[i] - a_W[i]P[i-1]'}$ and $R[i] = \frac{b_P[i] + a_W[i]R[i-1]}{a_P[i] - a_W[i]P[i-1]}$ (6.4)

2) Temperatures are obtained from
$$i = N$$
 to 1: $T[i] = P[i]T[i+1] + R[i]$ (6.5)

A7. Momentum, mass and heat transfer analogy

7.1 Colburn-Chilton analogy is based on similarities between momentum, mass and heat transport mechanisms $(Re > 10^4, 0.7 < Pr < 160, \text{ in case of tubes } L/D > 60)$:

$$f_{smooth}/2 = j_M = j_H \tag{7.1}$$

where j_M and j_H are the Colburn-Chilton j-factor for mass and heat (see Nomenclature) defined as:

$$j_M = St_M Sc^{2/3}; j_H = St_H Pr^{2/3} (7.2)$$

Table A. Black body radiation to evaluate energy emitted from $\lambda=0$ to λ

Table B. Modified Bessel Functions of the first and second kinds

$\lambda T (\mu m K)$	${f}_{\lambda T}$	λT (μmK)	$f_{\lambda T}$
200	0.000000	6200	0.754140
400	0.000000	6400	0.769234
600	0.000000	6600	0.783199
800	0.000016	6800	0.796129
1000	0.000321	7000	0.808109
1200	0.002134	7200	0.819217
1400	0.007790	7400	0.829527
1600	0.019718	7600	0.839102
1800	0.039341	7800	0.848005
2000	0.066728	8000	0.856288
2200	0.100888	8500	0.874608
2400	0.140256	9000	0.890029
2600	0.183120	9500	0.903085
2800	0.227897	10,000	0.914199
3000	0.273232	10,500	0.923710
3200	0.318102	11,000	0.931890
3400	0.361735	11,500	0.939959
3600	0.403607	12,000	0.945098
3800	0.443382	13,000	0.955139
4000	0.480877	14,000	0.962898
4200	0.516014	15,000	0.969981
4400	0.548796	16,000	0.973814
4600	0.579280	18,000	0.980860
4800	0.607559	20,000	0.985602
5000	0.633747	25,000	0.992215
5200	0.658970	30,000	0.995340
5400	0.680360	40,000	0.997967
5600	0.701046	50,000	0.998953
5800	0.720158	75,000	0.999713
6000	0.737818	100,000	0.999905

1000)		

(Table A: Y.A.Cengel, Heat Transfer, A Practical Approach, McGraw-Hill, Boston, 1998)

(Table B: Incropera et al, Fundamental of Heat and Mass Transfer, John Whiley&Sons, 2007)

x	$e^{-x}I_o(x)$	$e^{-x}I_1(x)$	$e^x K_o(x)$	$e^x K_1(x)$
0.0	1.0000	0.0000	∞	∞
0.2	0.8269	0.0823	2.1407	5.8334
0.4	0.6974	0.1368	1.6627	3.2587
0.6	0.5993	0.1722	1.4167	2.3739
0.8	0.5241	0.1945	1.2582	1.9179
1.0	0.4657	0.2079	1.1445	1.6361
1.2	0.4198	0.2152	1.0575	1.4429
1.4	0.3831	0.2185	0.9881	1.3010
1.6	0.3533	0.2190	0.9309	1.1919
1.8	0.3289	0.2177	0.8828	1.1048
2.0	0.3085	0.2153	0.8416	1.0335
2.2	0.2913	0.2121	0.8056	0.9738
2.4	0.2766	0.2085	0.7740	0.9229
2.6	0.2639	0.2046	0.7459	0.8790
2.8	0.2528	0.2007	0.7206	0.8405
3.0	0.2430	0.1968	0.6978	0.8066
3.2	0.2343	0.1930	0.6770	0.7763
3.4	0.2264	0.1892	0.6579	0.7491
3.6	0.2193	0.1856	0.6404	0.7245
3.8	0.2129	0.1821	0.6243	0.7021
4.0	0.2070	0.1787	0.6093	0.6816
4.2	0.2016	0.1755	0.5953	0.6627
4.4	0.1966	0.1724	0.5823	0.6453
4.6	0.1919	0.1695	0.5701	0.6292
4.8	0.1876	0.1667	0.5586	0.6142
5.0	0.1835	0.1640	0.5478	0.6003
5.2	0.1797	0.1614	0.5376	0.5872
5.4	0.1762	0.1589	0.5279	0.5749
5.6	0.1728	0.1565	0.5188	0.5633
5.8	0.1696	0.1542	0.5101	0.5525
6.0	0.1666	0.1520	0.5019	0.5422
6.4	0.1611	0.1479	0.4865	0.5232
6.8	0.1561	0.1441	0.4724	0.5060
7.2	0.1515	0.1405	0.4595	0.4905
7.6	0.1473	0.1372	0.4476	0.4762
8.0	0.1434	0.1341	0.4366	0.4631
8.4	0.1398	0.1312	0.4264	0.4511
8.8	0.1365	0.1285	0.4168	0.4399
9.2	0.1334	0.1260	0.4079	0.4295
9.6	0.1305	0.1235	0.3995	0.4198
10.0	0.1278	0.1213	0.3916	0.4108

$$I_{n+1}(x) = I_{n-1}(x) - (2n/x)I_n(x)$$

B. CONVECTION HEAT TRANSFER COEFFICIENTS

This section presents more correlations of both natural and forced convection in different situations, considering single phase (subsections B1 to B7; from H.Y.Wong, Handbook of Essential Formulae and Data on Heat Transfer for Engineers, Longman, London, 1977) and two-phase flows (subsection B8).

The attached correlations are:

- Section B1: Heat transfer coefficients in natural (or free) convection
- Section B2: Heat transfer coefficients in forced convection in ducts
- Section B3: Heat transfer coefficients in forced convection in flat plates (liquids and gases at low Mach)
- Section B4: Heat transfer coefficients in forced convection in flat plates (gases at high Mach number)
- Section B5: Heat transfer coefficients in forced convection around tubes and pipe bundles
- Section B6: Heat transfer coefficients in forced convection on rotating surfaces
- Section B7: Friction factors for flows inside ducts (single-phase)
- Section B8: Pressure drop and heat transfer coefficients in two-phase flow.

B1. Natural/free convection (1/3)

Formulae: $\overline{Nu} = CRa^nK$ (laminar: $10^3 < Ra < 10^9$; turbulent: $Ra \ge 10^9$) (property values at T_m)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

C Constant in Nusselt equation

 c_p Specific heat at constant pressure (J/kgK)

g Gravitational acceleration, $g = 9.81 \, m/s^2$

Gr Grashof number, $Gr = g\beta \rho^2 | T_w - T_f | X^3 / \mu^2$

K Dimensionless correction function in Nusselt eq.

n Constant in Nusselt equation

 \overline{Nu} Mean Nusselt number, $\overline{Nu} = \tilde{\alpha}X/\lambda$

 \dot{q}_w Heat transfer rate (W/m^2)

Pr Prandtl number, $Pr = \mu c_n / \lambda$

Ra Rayleigh number, Ra = GrPr

 T_f Fluid bulk temperature (°C or K)

 T_m Film temperature (°C or K), $T_m = (T_w + T_f)/2$

 T_w Temperature of the wall (°C or K)

X Characteristic length (m)

 $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)

 β Volumetric thermal expansion coefficient (K^{-1})

 λ Thermal conductivity (W/mK)

 μ Dynamic viscosity (kg/ms)

 ρ Density (kg/m^3)

No	System 5	Schematic presentation	С	n	K	Operating conditions	Refer- ences
	Exposed su	rfaces		,		· · · · · · · · · · · · · · · · · · ·	
1	Horizontal cylinder		0.47 0.1	1/4 1/3	1	Laminar flow Turbulent flow	3.9 3.9
,		X = D	0.1	2,0			
2	Vertical plate	T	0.8	1/4	$\left[1 + \left(1 + \frac{1}{\sqrt{Pr}}\right)^2\right]^{-1/4}$	Laminar flow; to obtain local Nu, use C = 0.6, X =	x:
	or	X = L				formula apple able to vertice cylinder when $\frac{D}{L} \ge 38 \text{ (Gr)}^{-1}$	al n
	vertical cylinder of large diamete		0.024	46 2/5	$\left[\frac{Pr^{1/6}}{1 + 0.494Pr^{2/3}}\right]^{2/5}$	Turbulent flow to obtain loc Nu, use $C = 0.0296$ and $X = x$; 3.10
		X = L					

B1. Natural/free convection (2/3)

No.	System	Schematic presentation	С	n	Κ	Operating Refer- conditions ences
3	Vertical cylinder with small diameter	$\begin{array}{c} \downarrow \\ \downarrow $	0.686	1/4	[Pr/(1 + 1.05 Pr)] 1/4	Laminar flow; 3.13 $\vec{N}u_{total} = \vec{N}u$ $+ 0.52 \frac{L}{D}$ $\frac{D}{L} < 38Gr^{-1/4}$
4	Heated horizontal plate facing upward		0.54	1/4	1	Laminar flow; 3.9 for circular disc of dia- meter D, use X = 0.9D
		X = L	0.14	1/3	1	Turbulent flow #3.9
5	Heated horizontal plate facing downward		0.27	1/4		Laminar flow 3.20 only
	Moderntoly	X = L				Louis to the second
6	Moderately inclined plate	No.	0.8	1/4	$\left[\frac{\cos\phi}{1+\left(1+\frac{1}{\sqrt{\Pr}}\right)^2}\right]^{1/4}$	Laminar flow (multiply Gr. by $\cos \phi$ in the formula for vertical plate)
7	Sphere		0.49	1/4	1	Laminar flow 3.13 (air)
		((Correlat	ion by	Churchill (2002) for Gr_DPr	$r < 10^{11}$ and $Pr > 0.7$:
		X = D			$Nu_D = 2 + \frac{0.5890}{[1 + (0.46)]}$	$(Gr_DPr)^{1/4}$

Semi-closed and closed systems:

B1. Natural/free convection (3/3)

No.	System	Schematic presentation	С	n	K	•	Refer- ences
10	Two hori- zontal parallel plates hot	θ_h	Note: $\theta_h = T_h$;	$\theta_c = T_c$		Pure conduction $\dot{q} = \bar{\alpha}(T_h - T_c)$, r \$3
	plate uppermost	$\frac{\int_{0}^{\frac{1}{2}} \frac{d\theta_{c}}{\theta_{c}}}{\Delta \theta = \theta_{h} - \theta_{c}}$ $X = d$	0.27	1/4	1	Laminar (air) 3 × 10 ⁵ < Gr · Pr < 3 × 10 ¹⁰	3.20
11	Two hori- zontal parallel plates cold plate uppermost	$ \begin{array}{c c} \hline & coid & \theta_c \\ \hline & & d \\ \hline & hot & \theta_h \end{array} $	0.195	1/4	Pr ^{-1/4}	Laminar (air 10 ⁴ < Gr < 4 x 10 ⁵	3.19
	uppermost	$\Delta \theta = \theta_{h} \theta_{c}$ $X = d$	0.068	1/3	Pr ^{-1/3}	Turbulent (air) $Gr > 4 \times 10^{\circ}$ $\dot{q} = \bar{\alpha}(T_h - T_c)$	3.19
12	Two vertical parallel plates at different		0.18	1/4	$(L/d)^{-1/9} (Pr)^{-1/4}$	Laminar (air) $2 \times 10^4 < Gi$ $< 2 \times 10^5$	3.19
	temperatur (h for both		0.065	1/4	$(L/d)^{-1/9} (Pr)^{-1/3}$	Turbulent (air) $2 \times 10^5 < G$	3.19
	surfaces)	for $\frac{L}{d} > 3$ $X = d$ $\Delta \theta = \theta_h - \theta_c$	convect	tion in	I in case of natural closed cavities with ferentially heated vertical	$ < 10^7 $ $ \dot{q} = \bar{\alpha} (T_h - T_c) $	1
13	Two inclined parallel plates	$\begin{cases} d = 0, 0 \\ cold 0 \\ d \\ Not 0 \end{cases}$	$\overline{Nu} = \frac{1}{2}$	$\frac{1}{2}[\overline{Nu}_{v_{t}}]$	$e_{rt}\cos\phi + \overline{Nu}_{horit}\sin\phi$		
14	Two con- centric cylinders	$ \frac{\theta_{c}}{d_{i}} $ $ X = \frac{1}{2}(d_{o} - d_{i}) $ $ A = 2\pi XL $	0.317	1/4	$\left[X^{3}\left(\frac{1}{d_{i}^{3/5}} + \frac{1}{d_{0}^{3/5}}\right)^{5}\right]^{-1/4}$	Laminar flow $q = \bar{\alpha}(T_h - T_c)$.48
15	Two concentric spheres	θ_c d_i d_o	0.61	1/4 - .	$\frac{1}{2(d_0 + d_1)} \times \left[X^3 \left(\frac{1}{d_1^{7/5}} + \frac{1}{d_0^{7/5}} \right)^5 \right]^{-1/6}$	Laminar flow 3 $\dot{q} = \bar{\alpha}(T_h - T_c)$.48
		$X = \frac{1}{2}(d_o - d_i)$ $A = 2\pi X(d_o + d_i)$					
16	Closed cavity	with vertical isothermal walls: se	ee section C4	T_h	T_c		

B2. Forced convection inside ducts (liquids and gases at low Mach number)

Formulae: $\overline{Nu} = CRe^m \Pr^n K$ (laminar: Re < 2000; turbulent: $Re \ge 2000$) (fluid properties at T_f , except μ_w which is calculated at T_w)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

- C Constant in Nusselt equation
- c_p Specific heat at constant pressure (J/kgK)
- D Hydraulic diameter (m), D = 4S/P (see also Section C3)
- Gz Graetz number, Gz = RePrD/L
- K Dimensionless correction function in Nusselt equation
- L Length (m)
- *n* Constant in Nusselt equation
- \overline{Nu} Mean Nusselt number, $\overline{Nu} = \bar{\alpha}D/\lambda$
- m Constant in Nusselt equation
- \dot{m} Mass flow rate (kg/s)
- P Wet perimeter (m)
- Pr Prandtl number, $Pr = \mu c_n / \lambda$

- \dot{q}_w Heat transfer rate at the wall (W/m^2)
- *Re* Reynolds number, $Re = \rho \bar{v} D/\mu$
- S Cross sectional area (m^2)
- T_f Fluid bulk temperature (°C or K)
- T_w Temperature of the wall (°C or K)
- \bar{v} Mean fluid velocity, $\bar{v} = \dot{m} / (\rho S)$
- $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)
- λ Thermal conductivity (W/mK)
- ρ Density (kg/m^3)
- μ Dynamic viscosity (kg/ms)

). —	Cross-section	D	С	m	n	K ·	Operating conditions
	Circular tube	đ	1.86	13	13	$\left(\frac{d}{l}\right)^{1/3} \left(\frac{\mu}{\mu_{\rm w}}\right)^{0.14}$	Laminar flow short tube, Re < 2 000, Gz > 10
	T	d	3.66	0 .	.0	•1	Laminar flow long tube, Re < 2 000, Gz < 10
		d	0.023	0.8	0.4	1	Turbulent flow of gases, Re > 2 000
<u>!</u>	Rectangular tube	đ	0.027	0.8	0.33	$\left(\frac{\mu}{\mu_{\rm w}}\right)^{0.14}$	Turbulent flow of highly viscous liquids, Re > 2 0.6 < Pr < 100
	$\frac{b}{a} = 1$	· a	2.98	0	0	1	Laminar flow, Re < 2 00
	1.4 2 3 4	1.17 a 1.33 a 1.5 a 1.6 a 1.78 a	3.08 3.39 3.96 4.44 5.95	0 0 0	0 0 0 0	1 1 1. 1	Laminar flow, Re < 2 00 Laminar flow, Re < 2 00 Laminar flow, Re < 2 00 Laminar flow, Re < 2 00
	 0 ∞	2.0 a	7.54	0	0	1	Laminar flow, Re < 2 00 Laminar flow, Re < 2 00
	Slit or parallel plates					/ /	
		2δ	1.85	1/3	3	$\left(\frac{2\delta}{l}\right)^{1/3}$	Laminar flow, Re < 2.00 $\left(\text{Re} \cdot \text{Pr} \frac{2\delta}{l} \right) > 70$
	- δ -	2δ	7.54	0	0	1	$\left(\operatorname{Re}\cdot\operatorname{Pr}\frac{2\delta}{l}\right)$ < 70
	Equilateral triangle	0.58 a	1.3	1/3	1/3	$\left(\frac{0.58 \ a}{l}\right)^{1/3}$	Laminar flow, Re < 200 $\left(\text{Re} \cdot \text{Pr} \frac{0.58 a}{l} \right) > 7$
		0.58 a	2.47	0	0	1	$\left(\operatorname{Re}\cdot\operatorname{Pr}\frac{0.58a}{l}\right)<7$
	Two parallel plates						
	δ ////////////////////////////////////	4δ	4.86	0	0	1	Laminar flow
	Concentric tube annulus: see section	n C3 /		- 10 -			

B3. Forced convection in isothermal flat plates (liquids and gases at low Mach number)

Formulae: $Nu_x = CRe_x^m \Pr^n K$ (laminar: $Re_x < Re_{cr}$; turbulent: $Re_x \ge Re_{cr}$) (fluid properties at T_m)

Heat flux: $\dot{q}_w = \alpha_x (T_w - T_f)$;

Notation:

C Constant in Nusselt equation

 c_p Specific heat at constant pressure (J/kgK)

K Dimensionless correction function in Nusselt equation

l Length of the plate (m)

n Constant in Nusselt equation

 Nu_x Local Nusselt number at location x, $Nu_x = \alpha_x x/\lambda$

 \overline{Nu}_x Mean Nusselt number from x=0 to x ($\overline{Nu}_x = \overline{\alpha}x/\lambda$)

m Constant in Nusselt equation

Pr Prandtl number $(Pr = \mu c_p/\lambda)$

 \dot{q}_w Heat transfer rate at the wall (W/m^2)

 Re_x Local Reynolds number $(Re = \rho v_{\infty} x/\mu)$

 T_f Free stream temperature (°C or K)

 T_m Film temperature (°C or K) $(T_m = (T_w + T_f)/2)$

 T_w Temperature of the wall (°C or K)

 v_{∞} Free stream velocity (m/s)

W Width of the plate

x Distance measured from the leading edge (m)

 $\bar{\alpha}$ Overall heat transfer coefficient from x = 0 to x (W/m^2K)

 α_x Local heat transfer coefficient at $x (W/m^2K)$

 λ Thermal conductivity (W/mK)

 μ Dynamic viscosity (kg/ms)

 ρ Density (kg/m^3)

No. Flow along surface	a plane	Formulae	Operating conditions
Pure flow v , θ_f	egime	$Nu_x = 0.332 \text{ Re}_x^{1/2} Pr^{1/3}$ (local) $\overline{N}u_x = 0.664 \text{ Re}_x^{1/2} Pr^{1/3}$ (mean)	Laminar flow, Re $< 5 \times 10^5$, $0 < x < 1$
	0	$Nu_x = 0.029 \text{ Re}_x^{4/5} Pr^{1/3}$ (local) $Nu_x = 0.037 \text{ Re}_x^{4/5} Pr^{1/3}$ (mean)	Turbulent flow, Re $> 5 \times 10^5$, $0 < x < 1$
2 Mixed flow laminar v, θ_t	turbulent turbulent	Mean $\overline{N}u_x$ over the distance $0 < x < l$ $Nu_x = 0.037 \text{ Pr}^{1/3} (\text{Re}_x^{4/5} - \text{C})$ where $C = 23500$ for $(\text{Re})_{cr} = 5 \times 10^5$ $C = 14200$ for $(\text{Re})_{cr} = 3 \times 10^5$ $C = 4300$ for $(\text{Re})_{cr} = 10^5$	Laminar flow up to distance s where the critical (Re) croccurs, and thereafter turbulent flow to $x > s$.
Partial wall v, θ_f Note: in all	heating $\theta_{\mathbf{w}}$ $-x$ l_2	$\begin{aligned} \text{Nu}_{\mathbf{x}} &= 0.332 \; \text{Re}_{\mathbf{x}}^{1/2} \; \text{Pr}^{1/3} \left[1 - (l_1/x)^{3/4} \right]^{-1/3} & \text{(local)} \\ \overline{\text{Nu}}_{\mathbf{x}} &= 0.664 \; \text{Re}_{\mathbf{x}}^{1/2} \; \text{Pr}^{1/3} \; \left[1 - \left(\frac{l_1}{x} \right)^{3/4} \right]^{2/3} / \left(1 - \frac{l_1}{x} \right) & \text{(mean)} \end{aligned}$ $\text{Nu}_{\mathbf{x}} &= 0.029 \; \text{Re}_{\mathbf{x}}^{4/5} \; \text{Pr}^{1/3} \; \left[1 - \left(\frac{l_1}{x} \right)^{9/10} \right]^{-1/9} & \text{(local)} \end{aligned}$ $\overline{\text{Nu}}_{\mathbf{x}} &= 0.037 \; \text{Re}_{\mathbf{x}}^{4/5} \; \text{Pr}^{1/3} \; \left[1 - \left(\frac{l_1}{x} \right)^{9/10} \right]^{8/9} / \left(1 - \frac{l_1}{x} \right) \end{aligned}$	Laminar flow, Re $< 5 \times 10^5$, $l_1 < x < l_2$ Turbulent flow, Re $> 5 \times 10^5$, $l_1 < x < l_2$

B4. Forced convection in flat plates (compressible gas flow at high Mach number)

Formulae: $Nu_x = CRe_x^m \Pr^n K$ (laminar: $Re_x < Re_{cr}$; turbulent: $Re_x \ge Re_{cr}$) (fluid properties at T_{ref})

Heat flux: $\dot{q}_w = \alpha_x (T_w - T_r)$ or $\dot{q}_w = \hat{\alpha}_x (h_w - h_r)$; note: $\alpha_x = c_{p,wr} \hat{\alpha}_x$, where $c_{p,wr} = \frac{1}{T_w - T_r} \int_{T_r}^{T_w} c_p dT_r$

Notation:

c Sound speed (m/s), $c = \sqrt{\gamma RT}$, T in K

 C_f Skin friction coefficient, $C_f = \tau_w/0.5\rho v_\infty^2$

 c_p Specific heat at constant pressure (J/kgK)

 c_{pr} Mean specific heat (see below) (J/kgK)

 c_v Specific heat at constant volume (J/kgK)

 h_x Specific enthalpy at x conditions ($x = \infty, o, r, w, ref$ means free stream, stagnation, recovery, wall and reference conditions respectively)

L Length of the plate (m)

M Mach number, M = v/c

 Nu_x Local Nusselt number at location x, $Nu_x = \alpha_x x/\lambda$

Pr Prandtl number, $Pr = \mu c_p/\lambda$

 \dot{q}_w Heat transfer rate at the wall (W/m^2)

r Recovery factor (see below)

R Specific gas constant (for air, R = 289 J/kgK)

 Re_x Local Reynolds number, $Re = \rho vx/\mu$

 Re_{cr} Critical Reynolds number (starting turbulent, $Re_{cr} = 0$) (starting laminar, $Re_{cr} \approx 5 \times 10^5$)

 T_f Free stream temperature (°C or K)

 T_{ref} Reference temperature (°C or K) (see below)

 T_w Temperature of the wall (°C or K)

v Free stream velocity (m/s)

x Distance measured from the leading edge (m)

 x_{cr} Critical distance for transition from laminar to turbulent flow, $Re_{cr} = \rho v_{\infty} x_{cr}/\mu$

 α_x Local heat transfer coefficient based on $T(W/m^2K)$

 $\hat{\alpha}_x$ Local heat transfer coefficient based on h (kg/m^2s)

 γ Specific heat ratio, $\gamma = c_p/c_v$

 λ Thermal conductivity (W/mK)

 μ Dynamic viscosity (kg/ms)

 ρ Density (kg/m^3)

Reference temperature: $T_{ref} = T(h_{ref})$, where $h_{ref} = \frac{h_w + h_f}{2} + 0.22(h_r - h_f)$. Note: for small variation of c_p , $T_{ref} \approx \frac{T_w + T_f}{2} + 0.22(T_r - T_f)$.

Recovery factor definition: $r = \frac{h_r - h_f}{h_o - h_f} = \frac{h_r - h_f}{v^2/2}$.

Recovery factor empirical expressions: $r = \sqrt{Pr}$ if laminar flow; $r = \sqrt[3]{Pr}$ if turbulent flow.

Recovery temperature (from the above recovery factor definition): $T_r = T_f + rv^2/2c_{p,rf}$, where $c_{p,rf} = \frac{1}{T_r - T_f} \int_{T_f}^{T_r} c_p dT$.

Local Nusselt number (same correlations that the ones used for low Mach number but using the new definition of α and evaluating the thermophysical properties at T_{ref}):

• $Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$ (Pohlhausen; laminar flow, $Re_x < Re_{cr}$)

• $Nu_x = 0.029Re_x^{4/5}Pr^{1/3}$ (Blasius; turbulent flow, $Re_{cr} < Re_x < 10^7$)

• $Nu_x = 0.144 Re_x Pr^{1/3}/(\log_{10} Re_x)^{2.45}$ (Prandtl-Schlichting; turbulent flow, $Re_{cr} < Re_x < 10^9$)

Local friction factor. From the Reynolds analogy: $\frac{C_f}{2} = \frac{Nu}{RePr^{1/3}}$.

B5. Forced convection around tubes and pipe bundles (liquids and gases at low Mach number) (1/2)

Formulae: $\overline{Nu} = CRe^m$ for air and circular cylinder; $\overline{Nu} = 0.43 + CRe^m$ for air and cylinders of other cross-sections; $\overline{Nu} = 0.43 + CRe^m$ Pr^{0.31} for liquids (fluid properties at T_m)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

C Constant in Nusselt equation

 c_p Specific heat at constant pressure (J/kgK)

 \overline{Nu} Mean Nusselt number, $\overline{Nu} = \overline{\alpha}X/\lambda$

m Constant in Nusselt equation

Pr Prandtl number, $Pr = \mu c_p / \lambda$

 \dot{q}_w Heat transfer rate at the wall (W/m^2)

Re Reynolds number, $Re = \rho v X / \mu$

 T_f Fluid bulk temperature (°C or K)

 T_m Film temperature (°C or K), $T_m = (T_w + T_f)/2$)

 T_w Temperature of the wall (°C or K)

v Free flow velocity (m/s)

X Characteristic length (see below)

 $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)

 λ Thermal conductivity (W/mK)

 μ Dynamic viscosity (kg/ms)

 ρ Density (kg/m^3)

Cross-section	С	m	Range of Re	Characteristic length X
	0.437	0.0895	$10^{-4} - 4 \times 10^{-3}$	d
v	0.565	0.136	$4 \times 10^{-3} - 9 \times 10^{-2}$	d
ylindrical	0.800	0.280	$9 \times 10^{-2} - 1$	d
ection	0.795	0.384	1 – 35	$\cdot d$
	0.583	0.471	$35 - 5 \times 10^3$	đ
	0.148	0.633	$5 \times 10^3 - 5 \times 10^4$	d
	0.0208	0.814	$5 \times 10^4 - 5 \times 10^5$	đ
v	0.178	0.699	$2.5 \times 10^3 - 8 \times 10^3$	$\frac{4a}{\pi}$
quare	0.102	0.675	$5 \times 10^3 - 10^5$	$\frac{4a}{\pi}$
v	0.290	0.624	$2.5 \times 10^3 - 7.5 \times 10^3$	$\frac{4a}{\pi}$
otated quare ection	0.246	0.588	$5 \times 10^3 - 10^5$	$\frac{4a}{\pi}$
Triangular a section	0.276	0.61	$3 \times 10^3 - 2 \times 10^4$	1.09 a

0.227 0.731 $4 \times 10^3 - 1.5 \times 10^4 \frac{2a}{\pi}$

For flows around a **SPHERE**, Whitaker suggests (3.5 < Re_d < 7.6 · 10^4 , 0.71 < Pr < 380, 1.0 < μ/μ_w < 3.20):

$$\overline{Nu}_d = 2 + \left(0.4Re_d^{1/2} + 0.06Re_d^{2/3}\right) \Pr^{0.4}(\mu/\mu_w)^{1/4}$$

where the thermophysical properties are evaluated at the external temperature (T_f) , except the dynamic viscosity μ_w , which is evaluated at the temperature of the surface of the sphere.

B5. Forced convection around tubes and pipe bundles (liquids and gases at low Mach number) (2/2)

Formulae: $\overline{Nu} = CRe^{0.6} Pr^{0.3} (\mu/\mu_w)^{0.14}$ (correlation valid for 2000 < Re < 40000) (fluid properties at T_f , except μ_w which is calculated at T_w)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

- C Constant in Nusselt equation
- c_p Specific heat at constant pressure (J/kgK)
- d Tube diameter (m)
- e_1 , e_2 Horizontal and vertical distances between tubes (m)
- \overline{Nu} Mean Nusselt number, $\overline{Nu} = \bar{\alpha}d/\lambda$
- Pr Prandtl number, $Pr = \mu c_p/\lambda$
- \dot{q}_w Heat transfer rate at the wall (W/m^2)
- *Re* Reynolds number, $Re = \rho v d/\mu$
- T_f Fluid bulk temperature (°C or K)
- T_w Temperature of the wall (°C or K)

- v Free flow velocity (m/s)
- $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)
- λ Thermal conductivity (W/mK)
- μ Dynamic viscosity (kg/ms)
- ρ Density (kg/m^3)

$\frac{ e_i }{ e_i }$	Values of C				
	e_1/d	1.25	2	3	4
	1.25 2 3 4	0.888 0.613 0.427 0.356	0.890 0.613 0.427 0.356	0.880 0.638 0.500 0.421	0.835 0.632 0.504 0.421

in-line pipe bank

staggered pipe bank

B6. Mixed convection on rotating surfaces (liquids and gases at low Mach number)

Formulae: $\overline{Nu} = f(Re, Pr, K)$ (see below) (fluid properties at T_m)

Heat flux: $\dot{q}_w = \bar{\alpha}(T_w - T_f)$

Notation:

 C_D Surface drag coefficient

 c_p Specific heat at constant pressure (J/kgK)

D Diameter (m)

g gravitational acceleration, $g = 9.81 \, m/s^2$

Gr Grashof number, $Gr = \beta g \rho^2 | T_w - T_f | X^3 / \mu^2$

 \overline{Nu} Mean Nusselt number, $\overline{Nu} = \overline{\alpha}X/\lambda$

Pr Prandtl number, $Pr = \mu c_p/\lambda$

 \dot{q}_w Heat transfer rate at the wall (W/m^2)

R Radius (m)

Re Reynolds number, $Re = \rho \omega X^2 / \mu$

 T_f Fluid bulk temperature (°C or K)

 T_m Film temperature (°C or K), $T_m = (T_w + T_f)/2$

 T_w Temperature of the wall (°C or K)

X Characteristic length (m)

 v_{∞} Fluid crossflow velocity (m/s)

 $\bar{\alpha}$ Overall heat transfer coefficient (W/m^2K)

 α Half vertex angle cone

 β Volumetric thermal expansion coefficient (K^{-1})

 λ Thermal conductivity (W/mK)

 μ Dynamic viscosity (kg/ms)

 ν Kinematic viscosity (m^2/s) , $\nu = \mu/\rho$

 ρ Density (kg/m^3)

 ω Angular velocity of rotation (rad/s)

lo.	System Schematic	presentation	Formulae	Conditions	Reference
	Rotating disc θ,		$\tilde{N}u = (0.277 + 0.105 \text{ Pr}) \text{ R}$	$e^{0.5}$ Laminar flow, Re $< 2.5 \times 10^5$, 0.7 $<$ Pr < 5.0	3.33, 3.3
	(0 w r)	R	$\bar{N}u = 1.1 \text{ Re}^{0.5}$	Laminar flow, Re $\leq 2.5 \times 10^5$, Pr = 10	3.33
		turbulent	$\overline{N}u = 0.015 \text{ Re}^{0.8}$	Turbulent flow, Re $> 2.5 \times 10^5$, Pr = 0.72	3.33
	laminardisc	7. R	$\tilde{N}u = 0.015 \text{ Re}^{0.8} - 100 \bigg($	$\left(\frac{r_c}{R}\right)^2$ Laminar flow between $r=0$ and $r=r_c$, turbulent flow between $r=r_c$ and $r=R$ where $r_c=(2.5\times 10^5 \ v/\omega)^{1/2}$, $Pr=0.72$	3.31
	X = R				
		R W	$\bar{N}u = 0.4 (Re^2 + Gr)^{0.25}$ where $\bar{N}u = \frac{hR}{k}$, $Re = \frac{\omega R^2}{\nu}$,	Combined effects of free convection and rotation in laminar flow (axis horizontal)	3.32
	1	θ_{m} / θ_{s}	$Gr = \frac{\beta g R^3 \pi^{3/2} \Delta \theta}{v^2}$	<i>Note</i> : in items 2, 3 and 4, h refers to	
	X = R		v^2	transfer coefficient, i.e. $h \equiv \alpha$, and $\Delta \left T_w - T_f \right $	$\theta =$
	Rotating cone	-1	$\vec{N}u = 0.515 (Gr)^{0.25}$	Laminar free convection, $Pr = 0.72$, $Gr/Re^2 > 2.0$	3.38
	120	() $\tilde{\zeta}$	$\tilde{N}u = 0.33 \text{ Re}^{0.5}$	Forced convection, $Pr = 0.72$, $Gr/Re^2 < 0.05$	3.32, 3.4
		O ₁	$\overline{N}u = Re^{0.5} [0.331 + 0.412(Gr/Re^2) + \cdots]$	Combined free and forced convection, $Pr = 0.72$, $0.2 < Gr/Re^2 < 1.0$	3.32
	X = L		where $\bar{N}u = \frac{hL}{L}$, $Re = \frac{\omega L^2 \sin \alpha}{R}$,		
	Note: in all these fig	ures	$Gr = \frac{\beta g L^3 \cos \alpha \Delta \theta}{n^2}$		
	$\theta = T$		ν*	1	

No.	System	Schematic presentation	Formulae .	Conditions	Reference
3	Rotating cylinder	ű (Free convection, Re < (Gr/Pr) ^{0.5}	3.34
		θ _w	$\bar{N}u = 0.18 [(0.5 \text{ Re}^2 + \text{Gr})\text{Pr}]^{0.315}$	Combined free and forced convection, Re ≤ 5 x 10 ⁴	3.32
		X = D	$\overline{N}u = \frac{\text{Re} \cdot \text{Pr} \sqrt{C_{\text{D}}/2}}{5 \text{ Pr} + 5 \ln (3 \text{ Pr} + 1)} + \sqrt{2/C_{\text{D}}} - 12$	Forced convection, Re > 10 ⁵	3.39
			$C_{\mathbf{D}}$ from:		
			$\frac{\text{Re}}{\text{B}} = -1.828 + 1.77 \ln \text{B}$		
			for $B > 950$		
			$\frac{\text{Re}}{\text{B}} = -3.68 + 2.04 \text{ ln B}$		
			for B < 950		
			where B = $\text{Re}\sqrt{C_{\text{D}}}$		
			$\bar{N}u = 0.135[(0.5 \text{ Re}^2 + \text{Re}_f^2 + \text{Gr}) \text{ Pr}]^{0.33}$	Combined effects of rotation, free convection and crossflow,	
			where $\bar{N}u = \frac{hD}{k}$, $Re = \frac{\omega D^2}{\nu}$,	$Re_f < 1.5 \times 10^4$, $0.6 < Pr < 15$ $10^3 < Re < 5 \times 10^4$, value in square bracket [] < 10^9	•
			$\operatorname{Re}_{\mathbf{f}} = \frac{v_{\infty}D}{\nu}, \operatorname{Gr} = \frac{\beta g D^3 \Delta \theta}{\nu^2}$	· ·	
ŀ	Rotating sphere	ω	$\overline{N}u = 0.43 \text{ Re}^{0.5} \text{ Pr}^{0.4}$	Laminar flow, $Gr/Re^2 < 0.1$, $Re < 5 \times 10^4$, $0.7 < Pr < 217$	3.36
		$\theta_{\mathbf{w}}$ $\theta_{\mathbf{f}}$	$\vec{N}u = 0.066 \text{ Re}^{0.67} \text{ Pr}^{0.4}$	Turbulent flow, $Gr/Re^2 < 0.1$, $5 \times 10^4 < Re < 7 \times 10^5$, 0.7 < Pr < 7	3.36
		D Ow Of	$ \bar{N}u = 2 (Re^2 + Gr)^{0.164} $ where	Combined free and forced convection, $Gr/Re^2 > 0.1$,	3.32
		X = D	$\overline{Nu} = \frac{hD}{k}$, Re = $\frac{\omega D^2}{\nu}$,	$10^{3} < \text{Re} < 2 \times 10^{4},$ $4 \times 10^{6} < \text{Gr} < 2 \times 10^{7}$	
	Note: in	all these figures $\theta = T$	$Gr = \frac{\beta g D^3 \Delta \theta}{\nu^2}$		

B7. Friction factors for flows inside ducts

In this section, the skin friction coefficient is defined as: $f = \frac{\tau_W}{\rho \bar{\nu}^2/2}$

Notation: \bar{v} is the average velocity of the fluid (m/s); ρ the density (kg/m^3) ; D the hydraulic diameter (see Section B2 or C3) (m); τ_w the viscous shear stresses at the wall (N/m^2) ; Re the Reynolds number (Re = $\rho \bar{v} D/\mu$); μ the dynamic viscosity (kg/ms); ε the absolute roughness (m); and $\varepsilon_r = \varepsilon/D$ the relative roughness.

No.	Duct	Cross-sectional shape	Hydraulic Diameter <i>D</i>	Friction factor f	Operating conditions
1	Circular tube	T	D = a	16 Re ⁻¹ 0.079 Re ^{-0.25}	$\frac{\text{Re} \le 2.000}{5 \times 10^3} \le \text{Re} \le 3 \times 10^4$
					for $\frac{\epsilon}{D}$ < 0.0001
		· ± •		$0.096~{ m Re}^{-0.25}$	$5 \times 10^3 < \text{Re} < 3 \times 10^4$
					for $\frac{\epsilon}{D} \simeq 0.004$
				0.046 Re ^{-0.2}	$3 \times 10^4 < \text{Re} < 3 \times 10^6$
					for $\frac{\epsilon}{D}$ < 0.0001 .
				0.078 Re ^{-0.2}	$3 \times 10^4 < \text{Re} < 3 \times 10^6$
					for $\frac{\epsilon}{D} \simeq 0.004$

Instead of the previous four correlations for turbulent flow, the more general Churchill expression (1997) can be employed for a wide range of Re and relative roughness, $\varepsilon_r = \varepsilon/D$:

$$f = 2\left[\left(\frac{8}{Re}\right)^{12} + \frac{1}{(A+B)^{3/2}}\right]^{1/12}$$
 where $A = \left\{2.457 ln\left[\frac{1}{(7/Re)^{0.9} + 0.27\varepsilon_r}\right]\right\}^{16}$ $y \ B = (37530/Re)^{16}$.

Alternatively, a simpler correlation by **Swamee-Jain** (1976) can be used: f =

B8. Two-phase flow. Condensation and evaporation

Notation:

Boiling number, $Bo = \frac{\dot{q}_W}{\dot{G}\Delta h_{fg}}$

Convective number, $Co = \left(\frac{1-x_g}{x_g}\right)^{0.8} \left(\frac{\rho_g}{\rho_l}\right)^{0.5}$

 c_p Specific heat at constant pressure [J/kgK]

Inside diameter [m]

Fr Froude number, $Fr = \dot{G}^2/(gD\rho_H^2)$, $Fr_{lo} = \dot{G}^2/(gD\rho_l^2)$

Friction factor (single-phase flow) f

Gravity acceleration [m/s²]

Ġ Mass flow rate per unit area, $\dot{G} = \rho v \left[kg/m^s s \right]$

Ga Galileo number, $Ga = \frac{\rho_l(\rho_l - \rho_g)D^3g}{\mu_l^2}$ $Ja_l \text{ Jacob number for liquid, } Ja_l = \frac{c_{pl}(T_{Sat} - T_w)}{\Delta h_{Es}}$

Nu Nusselt number, $Nu = \alpha D/\lambda$

Pr Prandtl number, $Pr = \frac{\mu c_p}{\lambda}$; $Pr_l = \frac{\mu_l c_{pl}}{\lambda_l}$, $Pr_g = \frac{\mu_g c_{pg}}{\lambda_g}$

 \dot{q}_w Heat flux at the wall $[W/m^2]$

Reynolds number, $Re = \frac{\dot{G}D}{\mu}$, $Re_{lo} = \frac{\dot{G}D}{\mu_l}$, $Re_l = \frac{(1-x_g)\dot{G}D}{\mu_l}$,

 $Re_{go} = \frac{\dot{g}D}{\mu_g}, Re_g = \frac{x_g \dot{g}D}{\mu_l}$

Velocity [m/s]

We Weber number, $We = \dot{G}^2 D/(\rho_H \sigma)$

 x_g Vapour mass fraction (vapour quality)

 X_{tt} Martinelli parameter, $X_{tt} = \left(\frac{1-x_g}{x_o}\right)^{0.9} \left(\frac{\rho_g}{\rho_o}\right)^{0.5} \left(\frac{\mu_l}{\mu_l}\right)^{0.1}$

Local heat transfer coefficient [W/m²K]

 Δh_{fg} Latent heat of vaporization [J/kg]

Vapour volumetric fraction (void fraction)

Thermal conductivity [W/mK]

Dynamic viscosity [Pa s] μ

Density $[kg/m^3]$ ρ

 ρ_H Homogeneous density, $\rho_H = \left[\frac{x_g}{\rho_g} + \frac{1-x_g}{\rho_I}\right]^{-1}$

Two-phase flow viscous shear stresses at the wall, $\tau_{\rm w} = \phi_{\rm lo}^2 \tau_{\rm w,lo} \ [\rm N/m^2]$

 $\tau_{w,lo}$ Viscous shear stresses at the wall (all liquid),

 $\tau_{w,lo} = f_l \frac{\dot{G}^2}{2\rho_I} \ [N/m^2]$

Two-phase pressure drop factor

Surface tension [N/m]

Subscripts:

Gas phase (vapour)

It is considered all flow as gas

Liquid phase

lo It is considered all flow as liquid

Saturation conditions

TF Two-phase

Wall w

Friction pressure drop correlation for horizontal and vertical two-phase pipe flow¹

$$\phi_{lo}^2 = \frac{\tau_{w,TF}}{\tau_{w,lo}} = E + \frac{3.23FH}{Fr^{0.045}We^{0.035}}$$

where:

$$E = \left(1 - x_g\right)^2 + \frac{\rho_l f_{go}}{\rho_g f_{lo}} x_g^2; \quad F = x_g^{0.78} \left(1 - x_g\right)^{0.224}; \quad H = \left(\frac{\rho_l}{\rho_g}\right)^{0.91} \left(\frac{\mu_g}{\mu_l}\right)^{0.19} \left(1 - \frac{\mu_g}{\mu_l}\right)^{0.78}$$

The term $\tau_{w,lo}$ is calculated considering that all the flow (liquid and vapour) circulates as liquid (table B-7 can be used with $Re = Re_{lo} = \dot{G}D/\mu_l$).

Condensation inside smooth horizontal tubes²

Two distinct regimes are identified: annular and wavy condensation. Nusselt numbers are obtained from:

$$Nu_{annular} = 0.023Re_l^{0.8}Pr_l^{0.4} \left[1 + \frac{2.22}{X_{tt}^{0.889}} \right]$$

$$Nu_{wavy} = \frac{0.023 Re_{go}^{0.12}}{1 + 1.11 X_{tt}^{0.58}} \left[\frac{GaPr_l}{Ja_l} \right] + \left(1 - \frac{\phi_1}{\pi} \right) Nu_{forced}$$

Correlation by F. Friedel, Improved Friction Pressure Drop Correlation for Horizontal and vertical Two-phase Pipe Flow, European Two-phase Flow Group Meeting, Ispra, Italy, Paper E2, 1979. Correlation recommended when $\mu_l/\mu_a < 1000$.

Correlation by M.K.Dobson and J.C.Chato, Condensation in Smooth Horizontal Tubes, Journal of Heat Transfer, vol.120, pp.193-213, 1998.

where:
$$1 - \frac{\phi_1}{\pi} \approx \frac{\cos^{-1}(2\varepsilon_g - 1)}{\pi} \text{ (from Jaster and Kosky, 1976)}$$

$$\varepsilon_g = \left[1 + \frac{1 - x_g}{x_g} \left(\frac{\rho_g}{\rho_l}\right)^{2/3}\right]^{-1} \text{ (from Zivi, 1964)}$$

$$Nu_{forced} = 0.0195 Re_l^{0.8} Pr_l^{0.4} \Phi(X_{tt}), \text{ where:} \begin{cases} \Phi(X_{tt}), = \sqrt{1.376 + \frac{c_1}{x_{tt}^{c_2}}} \\ 0 < Fr_l < 0.7: c_1 = 4.172 + 5.48 Fr_l - 1.564 Fr_l^2, \\ c_2 = 1.773 - 0.169 Fr_l \\ Fr_l > 0.7: c_r = 1.7242, c_2 = 1.655 \end{cases}$$

Selection criteria:

- If $\dot{G} \geq 500 \ kg/m^2 s \rightarrow Nu_{TF} = Nu_{annular}$, where $Nu_{TF} = \alpha_{TH} D/\lambda_l$
- If $\dot{G} < 500 kg/m^2 s \rightarrow Nu_{TF} = Nu_{annular}$ (if $Fr_{so} < 20$) or $Nu_{TF} = Nu_{wavy}$ (if $Fr_{so} \ge 20$)

where:
$$Fr_{so} = C \frac{Re_l^m}{\sqrt{Ga}} \left(\frac{1 + 1.09 X_{tt}^{0.039}}{X_{tt}} \right)^{1.5}$$
 (if $Re_l \le 1250 \rightarrow C = 0.025$, $m = 1.59$) (if $Re_l \le 1250 \rightarrow C = 1.26$, $m = 1.04$).

In case of zeotropic mixtures:
$$Nu_{annular}^{zeotr} = 0.7 \left(\frac{\dot{G}}{300}\right)^{0.3} Nu_{annular}$$
, and $Nu_{wavy}^{zeotr} = \left(\frac{\dot{G}}{300}\right)^{0.3} Nu_{wavy}$.

B8.3 Evaporation inside horizontal and vertical tubes³

Two distinct regimes are identified, the nucleated boiling (α_{nb}) and the convective boiling (α_{cb}) . Their evaluation is indicated below. The two-phase heat transfer coefficient is the maximum among them.

$$\alpha_{nb} = \left[0.6683Co^{-0.2}(25Fr_{lo})^m + 1058Bo^{0.7}F_{fl}\right] (1 - x_g)^{0.8}\alpha_{lo}$$

$$\alpha_{cb} = \left[1.136Co^{-0.9}(25Fr_{lo})^m + 667.2Bo^{0.7}F_{fl}\right] (1 - x_g)^{0.8}\alpha_{lo}$$

$$\alpha_{TF} = \max(\alpha_{nb}, \alpha_{cb})$$

where:

- Liquid-only heat transfer coefficient: i) $5 \times 10^6 \ge Re_{lo} \ge 10^4$: $\alpha_{lo} = \frac{\lambda_l}{D} \cdot \frac{2fRe_{lo}\Pr_l}{1+12.7\left(\Pr_l^{2/3}-1\right)(2f)^{0.5}}$; ii) $10^4 > Re_{lo} \ge 3000$: $\alpha_{lo} = \frac{\lambda_l}{D} \cdot \frac{2f(Re_{lo}-1000)\Pr_l}{1+12.7\left(\Pr_l^{2/3}-1\right)(2f)^{0.5}}$; iii) $3000 > Re_{lo} > 1600$: α_{lo} from linear interpolation between ii and iv sections; iv) $1600 \ge Re_{lo} \ge 410$: $\alpha_{lo} = \lambda_l Nu_{lo}/D$, where $Nu_{lo} = 4.36$ ($\dot{q}_w = constant$) or $Nu_{lo} = 3.66$ ($T_w = constant$); v) $Re_{lo} < 410$: see paper by Peters & Kandlikar). Note: friction factor in i and ii from correlations in Table B7 using Re_{lo} .
- Froude number dependence: i) horizontal tube and $Fr_l \le 0.04$: m = 0.3; ii) vertical tube or $Fr_l > 0.04$: m = 0.
- Fluid/surface interaction parameter: i) Copper and brass surfaces: $F_{fl} = 1.0$ (water); 1.30 (R11); 1.50 (R12); 1.31 (R13B1); 2.20 (R22); 1.30 (R113); 1.24 (R-114); 1.63 (R134a); 1.10 (R152a); 3.30 (R32/R132); 1.80 (R141b); 1.00 (R124); 0.616 (R-123); 4.70 (N_2), 3.50 (N_2); 0.488 (kerosene); ii) stainless steel surfaces: $F_{fl} = 1.0$ (all fluids).

As a first approximation, subcooled region can be solved as pure liquid and the post dryout region as pure gas. For a more precise analysis of the <u>subcooled region</u> see: S.G.Kandlikar, Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling, J.Heat Transfer, Vol. 120, pp. 395-401. 1998.. Similarly, for the <u>post-dryout region</u> see: D.C. Groeneveld, J.Q.Shan, A.Z.Vasić, L.K.H.Leung, A.Durmayaz, J.Yang, S.C.Cheng, A.Tanase, The 2006 CHF look-up table, Nuclear Engineering and Design 237, 1909–1922, 2007.

Correlation by S.G.Kandlikar, A General Correlation for Predicting the Two-Phase Flow Boiling Heat Transfer Coefficient Inside Horizontal and Vertical Tubes, ASME, Journal of Heat Transfer, vol.112, pp 219-228, 1990. See also Peters & Kandlikar, ICNMM2007-30027, 2007.

C. ALTERNATIVE CONVECTION HEAT TRANSFER CORRELATIONS

The correlations from Sections C1 to C3 have been extracted from the book by V.Isachenko, V.Osipova and A.Sukomel, "Heat transfer", Ed. Marcombo, 1979. In Section C4, the correlations have been extracted from N.Seki, S.Fukusako, S. and H.Inaba, "Heat Transfer of Natural Convection in a Rectangular Cavity", Bulletin of the JSME, Vol. 21, No. 152, 1978.

Index for the attached correlations for liquids and gases at low Mach number:Section C1: Convective heat transfer coefficient in flat plates; Section C2: Convective heat transfer coefficient in circular-section ducts; Section C3: Convective heat transfer coefficient in arbitrary cross-sections; Section C4: Convective heat transfer coefficient in cavities with differentially heated vertical walls.

C1. Convective heat transfer coefficient for flat plates

Alternaive correlations can also be seen in section B3. Critical Reynolds number: $Re_{cr,x}\approx 3.3\cdot 10^5$ (it is assumed that the boundary layer starts as laminar flow).

Subindices:

x: distance from the origin along the x-direction

l: overall flat plate length

f: properties at temperature T_q of the fluid far from the wall

w: properties at temperature T_w of the fluid in contact with the wall

C1a. Laminar regime

Assumed hypothesis: 1) Laminar regimen with constant thermophysical properties; 2) steady-state; 3) two-dimensional flow; 4) negligible body forces; 5) constant wall temperature and external fluid velocity, T_w and v_g ; 6) negligible viscous dissipation.

$$Nu_x = 0.500\sqrt{Re_x Pr}$$
 if $Pr < 0.1$ (1)
 $Nu_x = 0.332\sqrt{Re_x} \sqrt[3]{Pr}$ if $Pr > 0.1$ (2)

In case of variable thermophysical properties (but accepting the rest of hypothesis, from 2 to 6):

$$Nu_{fx} = 0.33Re_{fx}^{0.5}Pr_f^{0.33}(Pr_f/Pr_w)^{0.25}$$
(3)

In case of **non-constant wall temperature** (the following temperature distribution is assumed, $T_w - T_g = Kx^m$):

$$Nu_{fx} = 0.33Re_{fx}^{0.5}Pr_f^{0.33}(Pr_f/Pr_w)^{0.25}\varepsilon$$
(4)

where ε is obtained from this table:

_	m	-0.25	0*	0.1	0.2	0.3	0.4	0.5**	0.8	1.0	2.0
	3	0.655	1.00	1.09	1.17	1.25	1.30	1.36	1.52	1.60	1.98

(*) $T_w = constant$; $\overline{(**)} \dot{q}_w = constant$.

In case of an **initial adiabatic wall segment** of length from x=0 to $x=x_o$ (being $x_1=x-x_o$):

$$Nu_{fx_1} = 0.33Re_{fx_1}^{0.5}Pr_f^{0.33}(x_1/x)^{0.2}(Pr_f/Pr_w)^{0.25}\varepsilon \qquad x > x_o$$
 (5)

C1b. Turbulent regime

$$Nu_{fx} = 0.0296Re_{fx}^{0.8}Pr_f^{0.43}(Pr_f/Pr_w)^{0.25}$$
(6)

$$\overline{Nu}_{fl} = 0.037 Re_{fl}^{0.8} Pr_f^{0.43} (Pr_f/Pr_w)^{0.25}$$
(7)

Expression (6) gives the local Nusselt number, while equation (7) gives an averaged value assuming full turbulent boundary layer along the flat plate. Both expressions can be applied for isothermal walls ($T_w = constant$), or in cases where $T_w - T_g = Kx^m$. In case of $x_o \neq 0$, the variable x starts at x_o .

C2. Convection heat transfer correlations in circular-section ducts

Alternative correlations can also be seen in section B2. Critical Reynolds: $Re_{D,cr} \approx 2500$.

Subscripts:

D: internal pipe diameter

x: distance in the x-direction (from the beginning of the tube)

f: refers to the average temperature of the flow that circulates inside the pipe

w: refers to the wall temperature

f(x): refers to the average temperature of the flow that circulates inside the pipe at section x

w(x): refers to the temperature of the wall at section x

C2a. Laminar regime

Assumed hypothesis: 1) Laminar regime and constant fluid thermophysical properties; 2) negligible body forces; 3) steady-state; 4) axial-symmetric flow; 5) negligible viscous dissipation; 6) constant heat flux at the wall ($\dot{q}_w = constant$):

$$Nu_D = 4.36 \tag{1}$$

Under the above mentioned hypothesis, a parabolic velocity profile is obtained.

In case of **isothermal ducts** ($T_w = constant$):

$$Nu_D = 3.66 \tag{2}$$

In case of short tubes (l/D < 216) with non-constant thermophysical properties:

$$Nu_{f(x)x} = 0.33Re_{f(x)x}^{0.5} Pr_{f(x)}^{0.43} \left(Pr_{f(x)} / Pr_{w(x)} \right)^{0.25} (x/D)^{0.1}$$
(3)

If l/D > 216:

$$\overline{Nu}_{fD} = 0.15Re_{fD}^{0.33}Pr_f^{0.43} \left(Pr_{f(x)}/Pr_{w(x)}\right)^{0.25}$$
(4)

In case of **non-negligible body forces** (mixed convection):

$$\overline{Nu}_{fD} = 0.15Re_{fD}^{0.33}Pr_f^{0.33}(Gr_{fD}Pr_f)^{0.1}(Pr_{f(x)}/Pr_{w(x)})^{0.25}\bar{\varepsilon}_l$$
 (5)

where the expression for the non-dimensional Grashof number Gr is defined in Section C1, and $\bar{\varepsilon}_l$ is obtained in the following table:

l/d	1	2	5	10	15	20	30	40	≥50
$ar{arepsilon}_l$	1.90	1.70	1.44	1.28	1.18	1.13	1.05	1.02	1

C2b. Turbulent regime

$$Nu_{f(x)D} = 0.022Re_{f(x)D}^{0.8}Pr_{f(x)}^{0.43}\varepsilon_l$$
 (6)

where $\varepsilon_l = 1$ if l/D > 15. Otherwise, the following expression is applied: $\varepsilon_l = 1.38(x/D)^{-0.12}$.

Average convective heat transfer coefficient can be calculated from:

$$\overline{Nu}_{fD} = 0.021Re_{fD}^{0.8}Pr_f^{0.43}(Pr_f/Pr_w)^{0.25}\,\bar{\varepsilon}_l \tag{7}$$

where $\bar{\varepsilon}_l$ is obtained from the following table:

Re					l/D				
	1	2	5	10	15	20	30	40	≥50
1.104	1.65	1.50	1.34	1.23	1.17	1.13	1.07	1.03	1
$2 \cdot 10^4$	1.51	1.40	1.27	1.18	1.13	1.10	1.05	1.02	1
$5 \cdot 10^4$	1.34	1.27	1.18	1.13	1.10	1.08	1.04	1.02	1
1.10^{5}	1.28	1.22	1.15	1.10	1.08	1.06	1.03	1.02	1
1.10^{6}	1.14	1.11	1.08	1.05	1.04	1.03	1.02	1.01	1

C3. Convective heat transfer coefficients inside ducts of arbitrary cross-sections

For turbulent flows in non-circular tubes, and in absence of specific correlations, it is advisable to use the correlations obtained for circular pipes (see Section B2 or Section C2), replacing in both the Nusselt number and the Reynolds number the diameter D by the hydraulic diameter D_h , which is defined as: $D_h = 4S/P$ (S is the flow cross-section and P the "wet" perimeter).

Some authors recommend the use of the hydraulic diameter D_h for the Reynolds number, and a thermal diameter, D_{th} , for the Nusselt number. The thermal diameter is defined as: $D_{th} = 4S/P_t$, where P_t refers to the perimeter in which the heat transfer takes place.

In any case, the best option is to employ specific correlations. For example, for the case of flow in annular cross-sections, of inner diameter d_i and outer diameter d_o , Monrad and Pelton (1942) suggest the following correlation:

$$Nu_{D_h} = 0.020 Re_{D_h}^{0.8} Pr^{1/3} \left(\frac{D_2}{D_1}\right)^{0.53}$$
 (1)

This correlation was obtained in experiments with water and oil, for $d_o/d_i=1.65,\ 2.45,$ and 17, and within the range $Re_{D_h}=12.000\div 220.000$. For annular sections, $D_h=d_o-d_i$. More correlations can be found in the technical literature.

A different approach is proposed by Petukov and Roizen introducing a correction factor Φ on Gnielinski's formula (turbulent flows in tubes, $3000 < Re < 10^6$) and using the hydraulic diameter:

$$Nu_{d_h} = \frac{(f/8)(Re_{D_h} - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}\Phi$$
 (2)

where $\Phi=0.86(d_i/d_o)^{-0.16}$ for heat transfer through the inner wall with the outer wall insulated, and $\Phi=1-0.14(d_i/d_o)^{0.6}$ when the heat transfer is only through the outer wall.

C4. Convection heat transfer coefficients in cavities with isothermal vertical walls

The cavity has a height H and width L. The vertical walls are isothermal (left wall at T_1 and right wall at T_2). Horizontal top and bottom walls are adiabatic. The heat flux per unit surface that goes from wall 1 to wall 2 is expressed by: $\dot{q}_{12} = \bar{\alpha} (T_1 - T_2)$.:

$$\overline{Nu}_{L} = 0.18 \left(\frac{PrRa_{L}}{0.2 + Pr}\right)^{0.29} \quad wih \ 1 \lesssim \frac{H}{L} \lesssim 2; \ 10^{-3} \lesssim Pr \lesssim 10^{5}; \ 10^{3} \lesssim \frac{PrRa_{L}}{0.2 + Pr}$$

$$\overline{Nu}_{L} = 0.22 \left(\frac{PrRa_{L}}{0.2 + Pr}\right)^{0.28} \left(\frac{H}{L}\right)^{-1/4} \quad wih \ 2 \lesssim \frac{H}{L} \lesssim 10; \ Pr \lesssim 10^{5}; \ 10^{3} \lesssim Ra_{L} \lesssim 10^{10}$$

$$\overline{Nu}_{L} = 0.42Ra_{L}^{1/4}Pr^{0.012} \left(\frac{H}{L}\right)^{-0.3} \quad wih \ 10 \lesssim \frac{H}{L} \lesssim 40; \ 1 \lesssim Pr \lesssim 2 \times 10^{4}; \ 10^{4} \lesssim Ra_{L} \lesssim 10^{7}$$

$$\overline{Nu}_{L} = 0.046Ra_{L}^{1/3} \quad wih \ 1 \lesssim \frac{H}{L} \lesssim 40; \ 1 \lesssim Pr \lesssim 20; \ 10^{6} \lesssim Ra_{L} \lesssim 10^{9}$$

Rayleigh number, $Ra_L = Pr(g\beta\rho^2|T_1 - T_2|L^3/\mu^2)$. Thermophysical properties are evaluated at $T_m = (T_1 + T_2)/2$. Note: all these correlations are mentioned in Incropera and DeWitt book.

D. THERMOPHYSICAL PROPERTIES

In this Section the following information is given: i) **Table D0**: <u>Algebraic correlations</u> for the evaluation of thermophysical properties of dry air, humid air, mass diffusivities, water and two different thermal oils (Therminol 66 and Mobiltherm 605); ii) **Table D1**: <u>Metallic materials</u> $(\rho, c_p, k, a = \lambda/\rho c_p)$; iii) **Table D2**: <u>Liquids</u> (water at saturated conditions, oil, glycerine and mercury) $(\rho, c_p, \nu = \mu/\rho, \lambda, a, Pr, \beta)$; iv) **Table D3**: <u>Gases at atmosphere pressure conditions</u> (air, steam, hydrogen, oxygen and nitrogen) $(\rho, c_p, \mu, \nu, k, a, Pr)$; v) **Table D4**: <u>Non-metal materials</u> (ρ, c_p, λ, a) ; vi) **Table D5**: <u>Insulating materials</u> (λ) ; vii) **Table D6**: <u>Radiative properties</u> of different materials $(\varepsilon_n, \varepsilon)$.

Most of the tables have been extracted from the book by Eckert and Drake (Analysis of Heat and Mass Transfer, McGraw-Hill, 1972). Be careful, in some tables the values must be multiplied by the number 10^n showed at the top of the corresponding column.

D0. Thermophysical properties for dry air, humid air, water and thermal oils

Basic thermodynamic relations

Semiperfect liquid (
$$\rho = constant$$
; $c_v = c_p$; $\beta = \kappa = 0$)
$$du = c_p dT$$

$$dh = c_p dT + dp/\rho$$

$$ds = c_p dT/T$$

$$ds = c_p dT/T$$

$$ds = c_p dT/T$$

$$ds = c_p dT/T$$

$$R = \mathcal{R}/W$$
Semiperfect gas ($\rho = \frac{p}{RT}$; $c_p - c_v = R$; $\beta = \frac{1}{T}$; $\kappa = \frac{1}{p}$)
$$du = c_v dT$$

$$dh = c_p dT$$

$$ds = c_p dT/T - Rdp/p$$

$$R = \mathcal{R}/W$$
; $\mathcal{R} = 8.31447 \ kJ/kmol$

Dry air (range: $T = 100 \div 2500 \, K$, except λ) (T in K, p in Pa) (μ ₁ for $T < 1500 \, K$; μ ₂ for $T ≥ 1500 \, K$):

$$\rho = \frac{p}{287T}; \qquad \lambda \left(\frac{W}{mK}\right) = \frac{2.648 \cdot 10^{-3} \sqrt{T}}{1 + (245.4/T) \cdot 10^{-12/T}} \quad for T \le 1300 K$$

$$c_p \left(\frac{J}{kgK}\right) = 1034.09 - 2.849 \cdot 10^{-1}T + 7.817 \cdot 10^{-4}T^2 - 4.971 \cdot 10^{-7}T^3 + 1.077 \cdot 10^{-10}T^4$$

$$\mu_1 \left(\frac{kg}{ms}\right) = \frac{1.458 \cdot 10^{-6}T^{1.5}}{T + 110.40}; \qquad \mu_2 \left(\frac{kg}{ms}\right) = \frac{2.5393 \cdot 10^{-5} \sqrt{T/273.15}}{1 + (122/T)}$$

$$Pr = \frac{\mu c_p}{\lambda} \quad if T < 1100 K; \qquad Pr = 0.71 \quad if T \ge 1100 K; \qquad \beta = \frac{1}{T}$$

Simplified expressions for dry air (range: $T = 200 \div 400 \text{ K}$) (T in K, p in Pa):

$$\rho = p/(287T); \quad c_p(J/kgK) = 1031.5 - 0.210T + 4.143 \cdot 10^{-4}T^2$$

$$\lambda(W/mK) = 2.728 \cdot 10^{-3} + 7.776 \cdot 10^{-5}T; \quad \mu(kg/ms) = \frac{2.5393 \cdot 10^{-5} \sqrt{T/273.15}}{1 + (122/T)}; \quad \beta(K^{-1}) = \frac{1}{T}$$

Humid air (from ASHRAE Fundamentals):

- Saturation vapour pressure $(T \ in \ K \ and \ p_{vs} \ in \ Pa) : ln \ p_{vs} = -5.8002206 \times 10^3 / T + 1.3914993 4.8640239 \times 10^{-2}T + 4.1764768 \times 10^{-5}T^2 1.4452093 \times 10^{-8}T^3 + 6.5459673 \ ln \ T$ IF 273. 15 \leq T(K) \leq 473. 15; $ln \ p_{vs} = -5.6745359 \times \frac{10^3}{T} + 6.3925247 9.677843 \times 10^{-3}T + 6.2215701 \times 10^{-7}T^2 + 2.0747825 \times 10^{-9}T^3 9.484024 \times 10^{-13}T^4 + 4.1635019 \ ln \ T$ IF 173.15 \leq T(K) < 273.15.
- Relative humidity: $\varphi = \left(\frac{n_v}{n_{vs}}\right)_{p,T} \approx \frac{p_v}{p_{vs}}$, where n represents the moles of water vapour contained in the air and p_v is the water partial pressure in air (v: vapour; vs: saturated vapour).

- $\bullet \quad \text{Moist air density: } \rho = \rho_{da} + \rho_v = \frac{p p_v}{R_{da}T} + \frac{p_v}{R_v T} \qquad (R_{da} = 287.042\,J/kgK; \; R_v = 461.524\,J/kgK) \; (da: \, \text{dry air}) = \frac{1}{2} \left(\frac{1}{2}$
- Humidity ratio: $\phi = \frac{m_v}{m_{da}} = \frac{W_v n_v}{W_{da} n_{da}} \approx \frac{R_{da}}{R_v} \frac{p_v}{p p_v}$
- Vapour mass fraction (or specific humidity): $Y_v = \frac{m_v}{m_{da} + m_v} = \frac{\phi}{1 + \phi}$
- Dew-point temperature: $T_{dp} = 6.54 + 14.526\alpha + 0.7389\alpha^2 + 0.09486\alpha^3 + 0.4569(p_v)^{0.1984}$ IF $\mathbf{0} \le T_{dp} \le \mathbf{93}$, and $T_{dp} = 6.09 + 12.608\alpha + 0.4959\alpha^2$ IF $T_{dp} < \mathbf{0}$, where $T_{dp}(^{\circ}\mathbf{C})$, $\alpha = \ln(p_v)$ and $p_v(kPa)$
- Absolute specific humid air enthalpy: $h_{ha}(T, p, Y_v) = (1 Y_v)h_{da} + Y_vh_v$, where,

$$h_v(T,p) = h_{fv}^o + \int_{T^o}^T c_{pv} dT; \quad h_{fv}^o = -13423959 \frac{J}{kg}; \quad c_{pv} = 1860 \frac{J}{kgK}$$
 (1.3.8)

$$h_{da}(T,p) = h_{da}^{o} + \int_{T^{o}}^{T} c_{pda} dT; \quad h_{da}^{o} = 0; \quad c_{pda} \approx 1006 \frac{J}{kgK}$$
 (1.3.9)

Absolute enthalpy of liquid water: $h_l(T,p) = h_{fl}^o + \int_{T^o}^T c_{pl} dT + \frac{p-p^o}{\rho_l}; \quad h_{fl}^o = -15865987 \frac{J}{kg}; \quad c_{pl} \approx 4186 \frac{J}{kgK}.$ Note: $h_{fv}^o - h_{fl}^o = 2.4420 \times 10^6 \ kJ/kg.$

Note. $T^o = 298 \, K$, $p^o = 1 \, atm$.

- Wet-bub temperature (or adiabatic saturation temperature). Temperature when air is brought to saturation adiabatically (this is an isenthalpic process). Form an energy balance of humid air at given T, p and ϕ , the wet-bulb temperature T_{wb} can be obtained: $T_{wb} = T \frac{(\phi_{wb} \phi)[h_v(T_{wb}) h_l(T_{wb})]}{1006 + 1860\phi}$. This equation must be iteratively solved.
- Mass diffusivity of water vapour in humid air (up to 1100° C; empirical expression by Sherwood and Pigford): $D_{v} = \frac{0.926}{p} \left(\frac{T^{2.5}}{T + 245} \right) (D_{v} \text{ in } mm^{2}/s, T \text{ in } K, p \text{ in } kPa).$
- Thermal conductivity of humid air: $\lambda = \left[1 + \frac{\chi_{da}(1 \chi_{da})}{2.75}\right] (\chi_{da}\lambda_{da} + \chi_{v}\lambda_{v})$, where $\lambda_{v}(W/mK) = -7.145 \cdot 10^{-3} + 8.4 \cdot 10^{-5}T$ (T in K), $\chi_{da} = n_{da}/n$, $\chi_{v} = 1 \chi_{da}$.
- Psychrometric chart (see next page):

Diffusion coefficients of gases and vapours in air at 25° C and 1~bar

Substance	D, cm ² /s	$Sc = \frac{\nu}{D}$	Substance	D, cm ² /s	$Sc = \frac{\nu}{D}$
Ammonia	0.28	0.78	Formic acid	0.159	0.97
Carbon dioxide	0.164	0.94	Acetic acid	0.133	1.16
Hydrogen	0.410	0.22	Aniline	0.073	2.14
Oxygen	0.206	0.75	Benzene	0.088	1.76
Water	0.256	0.60	Toluene	0.084	1.84
Ethyl ether	0.093	1.66	Ethyl benzene	0.077	2.01
Methanol	0.159	0.97	Propyl benzene	0.059	2.62
Ethyl alcohol	0.119	1.30			

(J.H.Perry, Chemical Engineers Handbookm Mcgraw-Hill, 1963)

Water at saturation conditions (range: $T = 273 \div 573 \ K$) (T in K) ($\mu_1 \text{ for } T < 353 \ K$; $\mu_2 \text{ for } T \ge 353 \ K$):

$$\rho\left(\frac{kg}{m^3}\right) = 847.2 + 1.298T - 2.657 \cdot 10^{-3}T^2; \quad \beta = -\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_p; \quad c_p\left(\frac{J}{kgK}\right) = 5648.8 - 9.140T + 14.21 \cdot 10^{-3}T^2$$

$$\lambda \left(\frac{w}{mK} \right) = -1.176 + 7.915 \cdot 10^{-3} \ T + 1.486 \cdot 10^{-5} \ T^2 - 1.317 \cdot 10^{-7} \ T^3 + 2.476 \cdot 10^{-10} \ T^4 - 1.556 \cdot 10^{-13} \ T^5 + 1.486 \cdot 10^{-10} \ T^4 - 1.556 \cdot 10^{-13} \ T^5 + 1.486 \cdot 10^{-10} \ T^5 + 1.486 \cdot 10^{-10} \ T^7 + 1.486 \cdot 10^{-10} \ T^$$

$$\mu_1\left(\frac{kg}{ms}\right) = 0.9149 - 1.2563 \cdot 10^{-2} \, T + 6.9182 \cdot 10^{-5} \, T^2 - 1.9067 \cdot 10^{-7} \, T^3 + 2.6275 \cdot 10^{-10} \, T^4 - 1.4474 \cdot 10^{-13} \, T^5$$

$$\mu_2\left(\frac{kg}{ms}\right) = 3.7471 \cdot 10^{-2} - 3.5636 \cdot 10^{-4} \, T + 1.3725 \cdot 10^{-6} \, T^2 - 2.6566 \cdot 10^{-9} \, T^3 + 2.5766 \cdot 10^{-12} \, T^4 - 1 \cdot 10^{-15} \, T^5 + 1.3725 \cdot 10^{-12} \, T^4 - 1 \cdot 10^{-15} \, T^5 + 1.3725 \cdot 10^{-12} \, T^4 - 1 \cdot 10^{-12} \, T^4 - 1 \cdot 10^{-12} \, T^5 - 1.000 \cdot 10^{-12} \, T^$$

Simplified expressions for water at saturation conditions (range: $T=273 \div 400 \ K$) (T in K):

$$\rho\left(\frac{kg}{m^3}\right) = 847.2 + 1.298T - 2.657 \cdot 10^{-3}T^2; c_p\left(\frac{J}{kgK}\right) = 5648.79 - 9.140T + 14.21 \cdot 10^{-3}T^2;$$

$$\lambda\left(\frac{W}{mK}\right) = -0.722 + 7.168 \cdot 10^{-3}T - 9.137 \cdot 10^{-6}T^2; \qquad \mu\left(\frac{kg}{ms}\right) = e^{7.867 - 0.077T + 9.04 \cdot 10^{-5}T^2}; \qquad \beta = -\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{m}$$

Therminol 66 thermal oil (range: $T = 273 \div 653 K$) (T in K):

$$\rho\left(\frac{kg}{m^3}\right) = 1164.45 - 0.4389T - 3.21 \cdot 10^{-4}T^2; \qquad c_p\left(\frac{J}{kgK}\right) = 658 + 2.82T + 8.97 \cdot 10^{-4}T^2$$

$$\lambda\left(\frac{W}{mK}\right) = 0.116 + 4.9 \times 10^{-5}T - 1.5 \cdot 10^{-7}T^2; \qquad \nu\left(\frac{m^2}{s}\right) = \frac{\mu}{\rho} = e^{-16.096 + \frac{586.38}{T - 210.65}};$$

$$\beta = -\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{n}$$

Mobiltherm 605 thermal oil (range: $T = 300 \div 600 K$) (T in K):

$$\begin{split} \rho\left(\frac{kg}{m^3}\right) &= 1059.6 - 0.65T; \\ \lambda\left(\frac{W}{mK}\right) &= 0.154 - 7.063 \cdot 10^{-5}T; \\ \beta &= -\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_p \end{split} \\ c_p\left(\frac{J}{kgK}\right) &= 829.2 + 3.61T \\ \nu\left(\frac{m^2}{s}\right) &= \frac{\mu}{\rho} = e^{5.47 - 0.069T + 6.09 \cdot 10^{-5}T^2}; \end{split}$$

Table D1. Thermophysical properties for metals

		Propert	es at 20	d			Т	hermal	l condu	ctivity .	λ (W/1	nK)		
Metal	ρ, kg/m³	c _p Ws/kg K	λ W/m K	$a_{ m m^2/s}$	-100 C -148 F						600 C 1112 F		1000 C 1832 F	
Aluminum:		2												
Pure	2,707	0.896×10^3	204	8.418 ×10	215	202	206	215	228	249				
Al-Cu (Duralumin) 94-96 Al, 3-5 Cu,				0.070	100	150	100							
trace Mg	2,787		164	6.676 4.764	126 93	159 109	182 125	194 142					Į.	
Al-Mg (Hydronalium) 91-95 Al, 5-9 Mg	2,611 2,659		112 164	7.099	149	163	175	185					1	
Al-Si (Silumin) 87 Al, 13 Si Al-Si (Silumin, copper bearing) 86.5 Al,	2,009	0.871	104	1.030	140	100	110	100						
1 Cu	2,659	0.867	137	5.933	119	137	144	152	161					
Al-Si (Alusil) 78-80 Al, 20-22 Si	2,627		161	7.172	144	157	168	175	178					
Al-Mg-Si 97 Al, 1 Mg, 1 Si, 1 Mn	2,707		177	7.311		175	189	204						
Lead	11,373	0.130	35	2.343	36.9	35.1	33.4	31.5	29.8					
Iron:												0.0	0.5	9.0
Pure	7,897		73	2.034	87	73	67	62	55	48	40 36	36 33	35	36
Wrought iron (C H 0.5 %)	7,849		59 52	1,626 1,703		59	57	52	48	45	30	99	1 33	33
Cast iron (C $\approx 4\%$) Steel (C max $\approx 1.5\%$)	7,272	0.42	32	1.703										
Carbon steel $C \approx 0.5\%$	7,833	0.465	54	1.474		55	52	48	45	42	35	31	29	31
1.0%	7,801		43	1.172		43	43	42	40	36	33	29	28	29
1.5%	7,753		36	0.970		36	36	36	35	33	31	28	28	29
Nickel steel Ni $\approx 0 \%$	7,897	0.452	73	2.026										
10 %	7,945		26	0.720	ļ									
20 %	7,993		19	0.526						}			ì	
30 %	8,073		12	0.325				-		i				1
40 %	8,169 8,266		10 14	0.361										
50 % 60 %	8,378		19	0.493										
70 %	8,506		26	0.666	1									
80 %	8,618		35	0.872		ĺ								
90 %	8,762	0.46	47	1.156										1
100 %	8,906	0.448	90	2.276	i.	ļ	ļ	Ļ	ļ	1		ļ	i.	I.
Copper:				_										
Pure	8,954	0.3831 ×10	386	11.234 ×10-5	407	386	379	374	369	363	353			
Aluminum bronze 95 cu, 5 Al	8,666	0.410	83	2.330	1					1				
Bronze 75 Cu, 25 Sn	1	0.343	26	0.859		50	71		1					
Red Brass 85 Cu, 9 Sn, 6 Zn	1	0.385	61	1.804	88	59	71 128	144	147	147	1	1	1	1
Brass 70 Cu, 30 Zn	1 .	0.385	111 24.9	3.412 0.733	19.2		31	40	45	48				
German silver 62 Cu, 15 Ni, 22 Zn Constantan 60 Cu, 40 Ni		0.410	22.7	0.612	21		22.5		"	1				
Magnesium:	0,022				}									
Pure	1,746	1.013	171	9.708	178	171	168	163	157	1				
Mg-Al (electrolytic) 6-8 % Al, 1-2 % Zn	1,810		66	3.605	1	52	62	74	83					
Mg-Mn 2 % Mn	1,778	I .	114	6.382	93	111	125	130				i		
Mg-Mn 2 % Mn	1,778		114	6.382	93	111	125 118	130	111	109	106	102	99	92
Molybdenum	10,220	0.251	123	4.790	138	125	110	114	1111	109	106	102	99	32
Nickel: Pure (99.9 %)	8 006	0.4459	90	2.266	104	93	83	73	64	59				
Impure (99.2 %)	- /	0.444	69	1.747		69	64	59	55	52	55	62	67	69
Ni-Cr 90 Ni, 10 Cr		0.444	17	0.444		17.1	1 18.9	9 20.9		24.6				
80 Ni, 20 Cr		0.444	12.6	0.343		12.3	3 13.8	8 15.6	6 17.1	18.9	22.5			1
Silver:		1		1		1	1							
Purest		0.2340	419	17.004	419	417	415	412	000	000	İ			
Pure (99.9 %)		0.2340	407	16.563	419	410	415	374	362	360	110	70		
Tungsten		0.1344	163	6.271	114	166 112	151 109	142 106	133 100	126 93	112	76		
Zinc, pure		0.3843 0.2265	112.2 64	4.106 3.884	74		59	57	100	93				
Tin, pure	1,304	0.2200	0.4	3.001	, ,	30.3	1.00	1 "	1	1				1

T, C	ρ, kg/m³	cp, Ws/kg K	ν , m ² /s	λ W/m K	a , m^2/s	Pr	β, K ⁻¹
Vater,	H ₂ O					1	
0	1,002.28	4 2178 × 10 3	1.788 × 10 ⁻⁶		1.308 × 10-7	13.6	
20	1,002.28	4.1818	1.006	0.597	1.430	7.02	0.18×10
40	994.59	4.1784	0.658	0.628	1.512	4.34	0.20 / 20
60	985.46	4.1843	0.478	0.651	1.554	3.02	
80	974.08	4.1964	0.364	0.668	1.636	2.22	
100	960.63	4.2161	0.294	0.680	1.680	1.74	
120	945.25		0.247	0.685	1.708	1.446	
140	928.27	4.283	0.214	0.684	1.724	1.241	
160	909.69	4.342	0.190	0.680	1.729	1.099	
180	889.03	4.417	0.173	0.675	1.724	1.004	
200	866.76	4.505	0.160	0.665	1.706	0.937	
220	842.41	4.610	0.150	0.652	1.680	0.891	
240	815.66	4.756	0.143	0.635	1.639	0.871	
260	785.87	4.949	0.137	0.611	1.577	0.874	
280.6	752.55	5.208	0.135	0.580	1.481	0.910	
300	714.26	5.728	0.135	0.540	1.324	1.019	
ngine	oil (unus	sed)					
0	899.12	1.796 × 10 ³	0.00428	0.147	0.911×10^{-7}	47,100	
20	888.23	1.880	0.00090	0.145	0.872	10,400	$0.70 \times 10^{\circ}$
40	876.05	1.964	0.00024	0.144	0.834	2,870	
60	864.04	2.047	0.839×10^{-4}	40.140	0.800	1,050	
80	852.02	2.131	0.375	0.138	0.769	490	
100	840.01	2.219	0.203	0.137	0.738	276	
120	828.96	2.307	0.124	0.135	0.710	175	
140	816.94	2.395	0.080	0.133	0.686	116	
160	805.89	2.483	0.056	0.132	0.663	84	
lyceri	n, C₃H₅(Ol	H) ₃					
0	1,276.03	2.261 × 10 ³	0.00831	0.282	0.983×10^{-7}	84 7 × 10 3	
10	1,270.03	2.319	0.00300	0.284	0.965	31.0	
20	1,264.02		0.00118	0.286	0.947	12.5	0.50×10
30	1,258.09	,	0.00050	0.286	0.929	5.38	
40	1,252.01	1	0.00022	0.286	0.914	2.45	
50	1,244.96	2.583	0.00015	0.287	0.893	1.63	
	ry, Hg	<u> </u>					
				1	40.00 \ 107	0.0000	
0	13,628.22		0.124×10^{-6}		42.99×10^{-7}	0.0288	1 00 3 10
20	13,579.04		0.114	8.69	46.06	0.0249	i
50	13,505.84	0.1386	0.104	9.40	50.22	0.0207	
100	13,384.58		0.0928	10.51	57.16	0.0162	F
150	13,264.28	0.1365	0.0853	11,49	63.54	0.0134	
				1	100 00	0.0110	1
200	13,144.94	0.1570	0.0802	12.34	69.08	0.0116	:
200 250	13,144.94 13,025.60	l	0.0802 0.0765	12.34 13.07	74.06 81.5	0.0116	

Table D3 (1/2). Thermophysical properties of gases at atmospheric

т, к	ρ kg/m³	c _p , Ws/kg K	μ, kg/ms	ν, m²/s	λ W/m K	a , m^2/s	Pr
------	------------	--------------------------	----------	---------	------------	---------------	----

Air

100	2 6010	1 0066 × 103	0.6094 × 10=5	1.923 ×10 ⁻⁶	0.000246	0.02501×10^{-4}	0. 770
	3.6010	1.0266×10^{3}	0.6924×10^{-5}	4.343	0.003240		0.753
	2.3675	1.0099 1.0061	1.0283 1.3289	7.490	0.01809	0.10165	0.739
200	1.7684		1.600	7.490 9.49	0.01809	0.10103	0.722
250	1.4128	1.0053	1.847	15.68	0.02221	0.22160	0.708
300	1.1774	1,0057	1	20.76	0.03003	0.2983	0.697
	0.9980	1.0090	2.075		0.03365	0.3760	0.689
400	0.8826	1.0140	2.286	25.90 28.86	0.03707	0.4222	0.683
450	0.7833	1.0207	2.484		0.04038	0.5564	0.680
500	0.7048	1.0295	2.671	37.90 44.34	0.04038	0.6532	0.680
550	0.6423	1.0392	2.848		$0.04500 \\ 0.04659$	0.7512	0.680
	0.5879	1.0551	3.018	51.34	-	0.7512	0.682
	0.5430	1.0635	3.177	58.51	0.04953 0.05230	0.8678	0.684
700	0.5030	1.0752	3.332	66.25			0.686
	0.4709	1.0856	3.481	73.91	0.05509 0.05779	1.0774 1.1951	0.689
800	0.4405	1.0978	3.625	82.29			0.692
850	0.4149	1.1095	3.765	90.75	0.06028	1.3097	0.692
900	0.3925	1.1212	3.899	99.3	0.06279	1.4271	0.699
950	0.3716	1.1321	4.023	108.2	0.06525	1.5510	0.033
1000	0.3524	1.1417	4.152	117.8	0.06752	1.6779	$0.702 \\ 0.704$
1100	0.3204	1.160	4.44	138.6	0.0732	1.969	0.704
1200	0.2947	1.179	4.69	159.1	0.0782	2.251	$0.707 \\ 0.705$
1300	0.2707	1.197	4.93	182.1	0.0837	2.583	1
1400	0.2515	1.214	5.17	205.5	0.0891	2.920	0.705
1500	0.2355	1.230	5.40	229.1	0.0946	3.262	0.705
1600	0.2211	1.248	5.63	254.5	0.100	3.609	0.705
1700	0.2082	1.267	5.85	280.5	0.105	3.977	0.705
1800	0.1970	1.287	6.07	308.1	0.111	4.379	0.704
1900	0.1858	1.309	6.29	338.5	0.117	4.811	0.704
2000	0.1762	1.338	6.50	369.0	0.124	5.260	0.702
2100	0.1682	1.372	6.72	399.6	0.131	5.715	0.700
2200	0.1602	1.419	6.93	432.6	0.139	6.120	0.707
2300	0.1538	1.482	7.14	464.0	0.149	6.540	0.710
2400	0.1458	1.574	7.35	504.0	0.161	7.020	0.718
2500	0.1394	1.688	7.57	543.5	0.175	7.441	0.730

Steam (H₂O vapor)

380	0.5863	2.060×10^3	12.71×10^{-6}	2.16×10^{-5}	0.0246	0.2036×10^{-4}	1.060
	0.5542	2.014	13.44		0.0261	0.2338	1.040
	0.4902	1.980	15.25	3.11	0.0299	0.307	1.010
500	0.4405	1.985	17.04	3.86	0.0339	0.387	0.996
550	0.4005	1.997	18.84	4.70	0.0379	0.475	0.991
300	0.3652	2.026	20.67	5.66	0.0422	0.573	0.986
650	0.3380	2.056	22.47	6.64	0.0464	0.666	0.995
700	0.3140	2.085	24.26	7.72	0.0505	0.772	1.000
750	0.2931	2.119	26.0 4	8.88	0.0549	0.883	1.005
800	0.2739	2.152	27.86	10.20	0.0592	1.001	1.010
850	0.2579	2.186	29.69	11.52	0.0637	1.130	1.019

<i>T</i> , K	ρ, kg/m³	c _p , Ws/kg K	μ, kg/ms	$\nu_i \text{ m}^2/\text{s}$	λ W/m K	a , m^2/s	$_{\mathrm{Pr}}$
ydrog	jen						
30	0 84722	10.840 × 10 ¹³	1.606 × 106	1.895 × 10	-6) 0228	0.02493 × 10 ⁻ -4	0.759
50	0.50955		2.516	4.880	0.0362	0.0676	0.721
100	0.24572	0.00 0.00 0.00	4.212	17.14	0.0665	0.2408	0.712
150	0.16371		5.595	34.18	0.0981	0.475	0.718
200	0.12270		6.813	55.53	0.1282	0.772	0.719
250	0.09819		7.919	80.64	0.1561	1.130	0.713
300	0.08185		8.963	109.5	0.182	1.554	0.700
350	0.07016		9.954	141.9	0.206	2.031	0.69
400	0.06135		10.864	177.1	0.228	2.568	0.69
450	0.05462		11.779	215.6	0.251	3.164	0.68
500	0.04918		12.636	257.0	0.272	3.817	0.67
550	0.04469		13.475	301.6	0.292	4.516	0.66
600	0.04085	1000 to A 300 Miles	14.285	349.7	0.315	5.306	0.66
700	0.03492		15.89	455.1	0.351	6.903	0.65
800	0.03060		17.40	569	0.384	8.563	0.66
900	0.02723		18.78	690	0.412	10.217	0.67
1000	0.02451	14.968	20.16	822	0.440	11.997	0.68
1100	0.02227	15.165	21.46	965	0.464	13.726	0.70
1200	0.02050	15.366	22.75	1107	0.488	15.484	0.71
1300	0.01890	15.575	24.08	1273	0.512	17.394	0.733
1333	0.01842	15.638	24.44	1328	0.519	18.013	0.736
150 200	2.6190 1.9559	0.9178	11.490	4.387	0.01367	0.05688	0.77
250 300 350 400 450	1.5618 1.3007 1.1133 0.9755 0.8682	0.9131 0.9157 0.9203 0.9291 0.9420 0.9567	14.850 17.87 20.63 23.16 25.54 27.77	7.593 11.45 15.86 20.80 26.18 31.99	0.01824 0.02259 0.02676 0.03070 0.03461 0.03828	0.10214 0.15794 0.22353 0.2968 0.3768 0.4609	0.74 0.72 0.70 0.70 0.69 0.69
300 350 400 450 500	1.5618 1.3007 1.1133 0.9755 0.8682 0.7801	0.9157 0.9203 0.9291 0.9420 0.9567 0.9722	17.87 20.63 23.16 25.54 27.77 29.91	11.45 15.86 20.80 26.18 31.99 38.34	0.01824 0.02259 0.02676 0.03070 0.03461 0.03828 0.04173	0.10214 0.15794 0.22353 0.2968 0.3768 0.4609 0.5502	0.74 0.72 0.70 0.70 0.69 0.69 0.69
300 350 400 450	1.5618 1.3007 1.1133 0.9755 0.8682	0.9157 0.9203 0.9291 0.9420 0.9567	17.87 20.63 23.16 25.54 27.77	11.45 15.86 20.80 26.18 31.99	0.01824 0.02259 0.02676 0.03070 0.03461 0.03828	0.10214 0.15794 0.22353 0.2968 0.3768 0.4609	0.74 0.70 0.70 0.69 0.69 0.69
300 350 400 450 500 550 600 Nitrog 100 200 300 400 500 600 700	1.5618 1.3007 1.1133 0.9755 0.8682 0.7801 0.7096 0.6504 3.4808 1.7108 1.1421 0.8538 0.6824 0.5687 0.4934	1.0722 × 10- 1.0429 1.0459 1.0969	17.87 20.63 23.16 25.54 27.77 29.91 31.97 33.92 1 6.862 × 16 ⁻⁶ 12.947 17.84 21.98 25.70 29.11 32.13	11.45 15.86 20.80 26.18 31.99 38.34 45.05 52.15 1.971 × 10 7.568 15.63 25.74 37.66 51.19 65.13	0.01824 0.02259 0.02676 0.03070 0.03461 0.03828 0.04173 0.04517 0.04832	0.10214 0.15794 0.22353 0.2968 0.3768 0.4609 0.5502 0.6441 0.7399 0.10224 0.22044 0.3734 0.5530 0.7486 0.9466	0.74 0.70 0.70 0.70 0.69 0.69 0.70 0.70
300 350 400 450 500 550 600 Nitrog 100 200 300 400 500 600 700 800	1.5618 1.3007 1.1133 0.9755 0.8682 0.7801 0.7096 0.6504 3.4808 1.7108 1.1421 0.8538 0.6824 0.5687 0.4934 0.4277	1.0722 × 10- 1.0429 1.0455 1.0756 1.0969 1.1225	17.87 20.63 23.16 25.54 27.77 29.91 31.97 33.92 36.862 × 16 ⁻⁶ 12.947 17.84 21.98 25.70 29.11 32.13 34.84	11.45 15.86 20.80 26.18 31.99 38.34 45.05 52.15 1.971 × 10 7.568 15.63 25.74 37.66 51.19 65.13 81.46	0.01824 0.02259 0.02676 0.03070 0.03461 0.03828 0.04173 0.04517 0.04832 0.01824 0.02620 0.03335 0.03984 0.04580 0.05123 0.05609	0.10214 0.15794 0.22353 0.2968 0.3768 0.4609 0.5502 0.6441 0.7399 0.10224 0.22044 0.3734 0.5530 0.7486 0.9466 1.1685	0.74 0.72 0.70 0.70 0.69 0.69 0.70 0.70
300 350 400 450 500 550 600 Nitrog 200 300 400 500 600 700 800 900	1.5618 1.3007 1.1133 0.9755 0.8682 0.7801 0.7096 0.6504 3.4808 1.7108 1.1421 0.8538 0.6824 0.5687 0.4934 0.4277 0.3796	1.0722 × 10- 1.0429 1.0455 1.0756 1.0756 1.0756 1.0969 1.1225 1.1464	17.87 20.63 23.16 25.54 27.77 29.91 31.97 33.92 6.862 × 16 ⁻⁶ 12.947 17.84 21.98 25.70 29.11 32.13 34.84 37.49	11.45 15.86 20.80 26.18 31.99 38.34 45.05 52.15 1.971 × 10 7.568 15.63 25.74 37.66 51.19 65.13 81.46 91.06	0.01824 0.02259 0.02676 0.03070 0.03461 0.03828 0.04173 0.04517 0.04832 0.01824 0.02620 0.03335 0.03984 0.04580 0.05123 0.05609 0.06070	0.10214 0.15794 0.22353 0.2968 0.3768 0.4609 0.5502 0.6441 0.7399 0.10224 0.22044 0.3734 0.5530 0.7486 0.9466 1.1685 1.3946	0.74 0.72 0.70 0.70 0.69 0.69 0.70 0.70
300 350 400 450 500 550 600 Nitrog 100 200 300 400 500 600 700 800	1.5618 1.3007 1.1133 0.9755 0.8682 0.7801 0.7096 0.6504 3.4808 1.7108 1.1421 0.8538 0.6824 0.5687 0.4934 0.4277	1.0722 × 10- 1.0429 1.0455 1.0756 1.0969 1.1225	17.87 20.63 23.16 25.54 27.77 29.91 31.97 33.92 36.862 × 16 ⁻⁶ 12.947 17.84 21.98 25.70 29.11 32.13 34.84	11.45 15.86 20.80 26.18 31.99 38.34 45.05 52.15 1.971 × 10 7.568 15.63 25.74 37.66 51.19 65.13 81.46	0.01824 0.02259 0.02676 0.03070 0.03461 0.03828 0.04173 0.04517 0.04832 0.01824 0.02620 0.03335 0.03984 0.04580 0.05123 0.05609	0.10214 0.15794 0.22353 0.2968 0.3768 0.4609 0.5502 0.6441 0.7399 0.10224 0.22044 0.3734 0.5530 0.7486 0.9466 1.1685	0.74 0.72 0.70 0.70 0.69 0.69 0.70 0.70

Table D4. Thermophysical properties for nonmetals

		4	c_p ,	λ	ž
Material	т, С	$ ho,\mathrm{kg/m^3}$	Ws/kg K	W/m K	a , m^2/s
Aerogel, silica	120	136.2		0.022	
Asbestos	-200	469.3		0.074	
	0	469.3		0.156	
	0		0.816×10^{3}	! !	
•	100		0.816	0.192	
	200	576.7		0.208	
	400	576.7		0.223	
	-200	696.8		0.156	•
	0	696.8		0.234	
Brick, dry	1 1	1,762-1,810	0.84	0.38 - 0.52	$0.028 - 0.034 \times 10^{-6}$
Bakelite	20	1,273.5	1.59	0.232	0.0114
Cardboard, corrugated	1	1,2.0.0	1.00	0.064	
Clay	20	1,457.7	0.88	1.279	0.101
Concrete		1,906-2,307		0.81-1.40	
Coal, anthracite		1,201-1,506		0.26	0.013-0.015
Powdered	30		1.30	0.116	0.013
Cotton	20		1.30	0.059	0.194
Cork, board	30			0.043	
Expanded scrap	20	1	1.88	0.036	0.015-0.044
Ground	30			0.043	
Diatomaceous earth	38	i .		0.062	
Diatomaccous cartin	871	320.4		0.142	
Earth, coarse gravelly	20	l	1.84	0.52	0.0139
Felt, wood	30	1 '	1	0.05	
Fiber, insulating board	1			0.048	
Red	20	1		0.47	
Glass plate	20	1 '	0.8	0.76	0.034
Glass, borosilicate	30		1	1.09	
Wool	20	1 '	0.67	0.040	0.028
Granite	-			1.7-4.0	
Ice	0	913	1.93	2.22	0.124
Marble		2,499-2,707		2.8	0.139
Rubber, hard	0	1 '		0.151	
Sandstone	I -	2,162-2,307	0.71	1.63-2.1	0.106-0.126
Silk	20		1.38	0.036	0.044
Wood, oak radial	20	1	2.39		0.0111-0.0121
Fir (20% moisture)	~				
radial	20	416.5-421.3	2.72	0.14	0.0124
IAMIAI	~	110.0 121.0			

Table D5. Thermophysical properties (termal conductivity) for insulating materials at high temperatures†

	Mean temperature									Limiting-use temperature		
Material	37.8 C 100 F	93.3 C 200 F	148.9 C 300 F	204.4 C 400 F	260 C 500 F	315.6 C 600 F	426.7 C 800 F	537.8 C 1000 F		1093.3 C 2000 F		F
Asbestos (577 kg/m ³) laminated												
asbestos felt	0.168	0.190	0.202	0.209	0.213	0.216	0.225		i	i		
Approx, 146 laminations/m	0.057	0.064	0.069	0.076	0.083						371.1	700
Approx. 73 laminations/m	0.078	0.087	0.095	0.104	0.112		ļ				260	500
Corrugated asbestos (14.6 plies/m)	0.087	0.100	0.119				İ				148.9	300
85% magnesia (208 kg/m³)	0.059	0.062	0.066	0.069		1					315.6	600
Diatomaceous earth, asbestos and												
bonder	0.078	0.081	0.085	0.087	0.092	0.095	0.104	0.112			871.1	1600
Diatomaccous earth, brick	0.093	0.097	0.100	0.104	0.109	0.112	0.119	0.126			871.1	1600
Diatomaceous earth, brick	0.220	0.225	0.230	0.237	0.242	0.247	0.260	0.273	0.305		[1093.3]	2000
Diatomaceous earth, brick	0.222	0.227	0.234	0.241	0.247	0.256	0.268	0.282	0.317	0.351	1371.1	2500
Diatomaceous earth, powder (den-			!							İ		
sity, 288 kg/m³)	0.067	0.073	0.076	0.083	0.088	0.093	0.106	0.118				
Rock wool	0.052	0.059	0.067	0.076	0.087	0.099						

[†] L. S. Marks, "Mechanical Engineers' Handbook," 5th ed. Copyright 1951. McGraw-Hill Book Company. Used by permission.

Table D6a. Solar absorptivity (α_s) and thermal emissivity (ε) for different materials at room temperatures

Surface	α_s	3
Aluminum		
Polished	0.09	0.03
Anodized	0.14	0.84
Foil	0.15	0.05
Copper		
Polished	0.18	0.03
Tarnished	0.65	0.75
Stainless steel		
Polished	0.37	0.60
Dull	0.50	0.21
Plated metals		
Black nickel oxide	0.92	0.08
Black chrome	0.87	0.09
Concrete	0.60	0.88
White marble	0.46	0.95
Red brick	0.63	0.93
Asphalt	0.90	0.90
Black paint	0.97	0.97
White paint	0.14	0.93
Snow	0.28	0.97
Human skin (caucasian)	0.62	0.97

Table D6a: from Y.A.Cengel, "Heat Transfer. A Practical Approach", McGraw-Hill, 1998.

Table D6b: Ecker and Drake (see beginning Section D).

Table D6b. Emissivities ϵ_n of the radiation in the direction of the normal to the surface and ϵ of the total hemispherical radiation for various materials for the temperature t^{\dagger} , t^{\dagger}

Silver	Surface	t, C	ϵ_n	€
Silver 20 0.020 Copper, polished 20 0.030 Lightly oxidized 20 0.070 Scraped 20 0.78 Oxidized 131 0.76 0.725 Aluminum, bright rolled 170 0.039 0.049 Aluminum paint 100 0.20-0.40 0.186 Nickel, bright matte 100 0.041 0.046 Polished 100 0.045 0.053 Manganin, bright rolled 118 0.048 0.057 Chrome, polished 150 0.058 0.071 Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.24 Red rusted 20 0.61 0.128 0.158 Hot cast 100 0.80 0.60 0.158 Heavily rusted 20 0.85 0.613 0.20 0.28 Bismuth, bright 80 0.639 0.28 0.28 0.28	Gold, polished			
Copper, polished Lightly oxidized 20 0.030	83			
Lightly oxidized 20 0.070 Scraped 20 0.070 Black oxidized 20 0.78 Oxidized 131 0.76 0.725 Aluminum, bright rolled 170 0.039 0.049 Aluminum paint 100 0.20-0.40 0.049 Silumin, cast polished 150 0.186 0.041 0.046 Nickel, bright matte 100 0.045 0.053 Manganin, bright rolled 118 0.048 0.057 Chrome, polished 150 0.128 0.057 Iron, bright etched 150 0.128 0.058 Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.60 Hot rolled 20 0.61 Hot cast 100 0.80 Heavily rusted 20 0.85 Heavily rusted 20 0.85 Lead, gray oxidized 20 0.28 Lead, gray oxidized 80				
Scraped Black oxidized				
Black oxidized				
Oxidized Aluminum, bright rolled 131				
Aluminum, bright rolled 170 0.039 0.050 Aluminum paint 100 0.20-0.40 0.20-0.40 Silumin, cast polished 150 0.186 Nickel, bright matte 100 0.041 0.046 Polished 100 0.045 0.053 Manganin, bright rolled 118 0.048 0.057 Chrome, polished 150 0.058 0.071 Iron, bright etched 150 0.058 0.071 Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.24 Red rusted 20 0.61 0.24 Hot rolled 20 0.77 130 0.60 Hot cast 100 0.80 0.85 Heavily rusted 20 0.85 0.613 20 0.85 0.613 0.20 20 0.23-0.28 0.28 0.28 Bismuth, bright 80 0.855 0.84 Clay, fired				0.725
Aluminum paint				
Aluminum paint 100 0.20-0.40 Silumin, cast polished 150 0.186 Nickel, bright matte 100 0.041 0.046 Polished 100 0.045 0.053 Manganin, bright rolled 118 0.048 0.057 Chrome, polished 150 0.058 0.071 Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.24 Red rusted 20 0.61 0.77 Hot rolled 20 0.77 0.60 Hot cast 100 0.80 0.85 Heavily rusted 20 0.85 0.639 Heavily rusted 20 0.639 0.28 Lead, gray oxidized 20 0.28 0.28 Lead, gray oxidized 20 0.28 0.340 0.366 Clay, fired 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 Red lead 100 0.935 E	mummum, bright rolled			0.010
Silumin, cast polished 150 0.186 Nickel, bright matte 100 0.041 0.046 Polished 100 0.045 0.053 Manganin, bright rolled 118 0.048 0.057 Chrome, polished 1150 0.128 0.071 Iron, bright etched 150 0.128 0.071 Bright abrased 20 0.24 0.158 Red rusted 20 0.61 0.158 Hot rolled 20 0.77 0.60 Hot cast 100 0.80 0.85 Heavily rusted 20 0.85 0.60 Heat-resistant oxidized 80 0.613 0.639 Zinc, gray oxidized 20 0.23-0.28 0.28 Lead, gray oxidized 20 0.28 0.340 0.366 Clay, fired 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.86 Red lead 100 0.93 0.93 Enamel, lacquer 80	Aluminum paint			
Nickel, bright matte 100 0.041 0.045 Polished 100 0.045 0.053 Manganin, bright rolled 118 0.048 0.057 Chrome, polished 150 0.058 0.071 Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.24 Red rusted 20 0.61 0.60 Hot rolled 20 0.77 0.60 Hot cast 100 0.80 0.60 Heavily rusted 20 0.85 0.613 Heavily rusted 20 0.639 0.639 Zinc, gray oxidized 20 0.28 0.28 Lead, gray oxidized 20 0.28 0.340 0.366 Clay, fired 80 0.855 0.84 0.366 Clay, fired 70 0.91 0.86 Lacquer, white 80 0.935 0.90 Rakelite lacquer 80 0.935 0.93				
Polished 100 0.045 0.053 Manganin, bright rolled 118 0.048 0.057 Chrome, polished 150 0.058 0.071 Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.61 Hot rolled 20 0.61 0.60 Hot rolled 20 0.80 0.60 Heavily rusted 20 0.85 0.613 Heavily rusted 20 0.639 0.639 Zinc, gray oxidized 20 0.23-0.28 0.613 Lead, gray oxidized 20 0.28 0.340 0.366 Lead, gray oxidized 20 0.855 0.84 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 Red lead 100 0.935 Enamel, lacquer 80 0.935 Bakelite lacquer 80 0.935				0.046
Manganin, bright rolled 118 0.048 0.057 Chrome, polished 150 0.058 0.071 Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.158 Red rusted 20 0.61 0.77 Hot rolled 20 0.77 0.60 Hot cast 100 0.80 0.85 Heavily rusted 20 0.85 0.639 Heat-resistant oxidized 80 0.613 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.86 Red lead 100 0.93 0.970 0.86 Enamel, lacquer 20 0.935 0.970 0.935 Bakelite lacquer 80 0.925 0.93 0.92-0.94 0.876 Glass 90 0.940 <td></td> <td>1</td> <td>1</td> <td></td>		1	1	
Chrome, polished 150 0.058 0.071 Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.158 Red rusted 20 0.61 0.60 Hot rolled 20 0.77 0.60 Hot cast 100 0.80 0.60 Heavily rusted 20 0.85 0.639 Heat-resistant oxidized 80 0.639 0.28 Lead, gray oxidized 20 0.23-0.28 0.28 Lead, gray oxidized 20 0.28 0.28 Lead, gray oxidized 20 0.28 0.28 Lead, gray oxidized 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.86 Red lead 100 0.93 0.970 0.93 Enamel, lacquer 80 0.935 0.92 0.94				
Iron, bright etched 150 0.128 0.158 Bright abrased 20 0.24 0.24 Red rusted 20 0.61 0.77 130 0.60 0.80 Hot cast 100 0.80 Heavily rusted 20 0.85 Heat-resistant oxidized 80 0.613 Zinc, gray oxidized 20 0.23-0.28 Lead, gray oxidized 20 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.84 Red lead 100 0.93 0.940 Enamel, lacquer 80 0.935 0.93 Bakelite lacquer 80 0.935 0.93 Brick, mortar, plaster 20 0.92-0.94 0.876 Glass 90 0.940 0.876 Ice, smooth, water 0 <				
Bright abrased 20 0.24 Red rusted 20 0.61 Hot rolled 20 0.77 130 0.60 0.80 Heavily rusted 20 0.85 Heat-resistant oxidized 80 0.613 Zinc, gray oxidized 20 0.23-0.28 Lead, gray oxidized 20 0.28-0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 Red lead 100 0.93 Enamel, lacquer 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Waterglass 20 0.96 0.985 Waterglass 20 0.935 0.91		1	1	
Red rusted 20 0.61 Hot rolled 20 0.77 130 0.60 Hot cast 100 0.80 Heavily rusted 20 0.85 Heat-resistant oxidized 80 0.613 Zinc, gray oxidized 20 0.23-0.28 Lead, gray oxidized 20 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.86 Red lead 100 0.93 0.925 Red lead 20 0.85-0.95 0.95 Lacquer, black matte 80 0.970 0.85-0.95 Bakelite lacquer 80 0.935 0.935 Brick, mortar, plaster 20 0.93-0.94 0.876 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Waterglass 20 0.96 0.92 0.89 Woo	Bright abrased			
Hot rolled 20 0.77 Hot cast 100 0.80 Heavily rusted 20 0.85 Heat-resistant oxidized 80 0.613 Zinc, gray oxidized 20 0.23-0.28 Lead, gray oxidized 20 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 Red lead 100 0.93 Enamel, lacquer 20 0.85-0.95 Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 0.995 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91 <td></td> <td></td> <td></td> <td></td>				
Hot cast Heavily rusted Heat-resistant oxidized Heat-resistant			0.77	
Hot cast 100 0.80 Heavily rusted 20 0.85 Heat-resistant oxidized 80 0.613 Zinc, gray oxidized 20 0.23-0.28 Lead, gray oxidized 20 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 Red lead 100 0.93 Enamel, lacquer 20 0.85-0.95 Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 0.99 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91 <td></td> <td>130</td> <td></td> <td></td>		130		
Heavily rusted 20 0.85 Heat-resistant oxidized 200 0.639 Zinc, gray oxidized 20 0.23-0.28 Lead, gray oxidized 20 0.340 0.366 Bismuth, bright 80 0.855 0.84 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 Red lead 100 0.93 Enamel, lacquer 20 0.85-0.95 Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 0.99 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91	Hot cast			
Heat-resistant oxidized 80 0.613 200 0.639 Zinc, gray oxidized 20 0.23-0.28 Lead, gray oxidized 20 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.86 Red lead 100 0.93 0.85-0.95 Lacquer, black matte 80 0.970 0.85-0.95 Bakelite lacquer 80 0.935 0.935 Brick, mortar, plaster 20 0.93-0.94 0.876 Porcelain 20 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91		20	0.85	
Zinc, gray oxidized 20 0.23-0.28 Lead, gray oxidized 20 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 Red lead 100 0.93 Enamel, lacquer 20 0.85-0.95 Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 0.99 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91		80	0.613	
Lead, gray oxidized 20 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 Red lead 100 0.93 Enamel, lacquer 20 0.85-0.95 Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 0.99 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91		200	0.639	-
Lead, gray oxidized 20 0.28 Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.85-0.95 Red lead 20 0.85-0.95 0.93 Enamel, lacquer 80 0.970 0.935 Bakelite lacquer 80 0.935 0.93 Brick, mortar, plaster 20 0.92-0.94 0.876 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91	Zinc, gray oxidized	20	[0.23-0.28]	
Bismuth, bright 80 0.340 0.366 Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.85-0.95 Red lead 20 0.85-0.95 0.93 Lacquer, black matte 80 0.970 0.935 Bakelite lacquer 80 0.935 0.93 Brick, mortar, plaster 20 0.92-0.94 0.876 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91	Lead, gray oxidized			
Corundum, emery rough 80 0.855 0.84 Clay, fired 70 0.91 0.86 Lacquer, white 100 0.925 0.86 Red lead 100 0.93 0.93 Enamel, lacquer 20 0.85-0.95 0.970 Bakelite lacquer 80 0.935 0.935 Brick, mortar, plaster 20 0.93 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				(
Lacquer, white 100 0.925 Red lead 100 0.93 Enamel, lacquer 20 0.85-0.95 Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				! .
Red lead 100 0.93 Enamel, lacquer 20 0.85-0.95 Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91	Clay, fired			0.86
Enamel, lacquer 20 0.85-0.95 Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.92-0.94 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				
Lacquer, black matte 80 0.970 Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				
Bakelite lacquer 80 0.935 Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91	Enamel, lacquer			
Brick, mortar, plaster 20 0.93 Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				
Porcelain 20 0.92-0.94 Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				
Glass 90 0.940 0.876 Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				
Ice, smooth, water 0 0.966 0.918 Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				
Rough crystals 0 0.985 Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				
Waterglass 20 0.96 Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				0.918
Paper 95 0.92 0.89 Wood, beech 70 0.935 0.91				7
Wood, beech 70 0.935 0.91				0.00
	raper			
Tarpaper 20 0.95				0.91
j 1 3	rarpaper	20	0.90	

[†] From measurements by E. Schmidt and E. Eckert.

[‡] For metals, the emissivities rise with rising temperature, but for nonmetallic substances (metal oxides, organic substances) this rule is sometimes not correct. Where the exact measurements are not given, take for bright metal surfaces an average ratio $\epsilon/\epsilon_n = 1.2$ and for other substances with smooth surfaces $\epsilon/\epsilon_n = 0.95$; for rough surfaces use $\epsilon/\epsilon_n = 0.98$.

E. NOMENCLATURE⁴

- Thermal diffusivity (m^2/s) , $a = \lambda/\rho c_p$ а
- Speed of light; at vacuum, $c = c_0 = 3 \times 10^8 \, m/s$ С
- c_p Specific heat at constant pressure (I/kgK)
- Distance between surface dA_i and d_A_k (m^2) d_{ik}
- D, dDiameter (m)
- D_v Mass diffusion coefficient (m^2/s)
- Specific kinetic energy (I/kg) e_k
- Specific potential energy (J/kg) e_p
- Friction factor
- $\vec{f}_{(\vec{n})}$ Stress vector acting on surface of unit normal vector \vec{n} (N/m^2)
- \vec{g} Gravity vector (m/s^2)
- h Specific enthalpy (J/kg)
- Specific enthalpy of formation of dry air ($p^0 = 1$ atm, $T^{o} = 25^{\circ}C$) (I/kg)
- Specific enthalpy of formation of water vapour h_{fv}^{o} $(p^{o} = 1 \text{ atm, } T^{o} = 25^{\circ}C) (I/kg)$
- \vec{J}_k Mass diffusion of species k (kg/m^2s)
- j_H , j_M Colburn coefficients for heat and mass respectively
- Unit vector normal to CV surface and pointing outwards
- n_{da} , n_v Moles of dry air and vapour
- Nusselt number, $Nu = \alpha X/\lambda$
- Pr Prandtl number
- p Pressure (Pa)
- Dynamic pressure (Pa) (Section A2) p_d
- Water vapour pressure (Pa) p_{v}
- Saturation vapour pressure (Pa) p_{vs}
- Heat transfer rate per unit surface (W/m^2)
- \vec{q}^{C+R} Conduction+radiation heat transfer rate per unit surface (W/m^2)
- \vec{q}^R Radiative heat transfer rate per unit surface (W/m^2)
- Internal heat generation per unit volume (W/m^3) ġν
- Radius (m)
- a) Radius (m); b) Gas constant (I/kgK), \mathcal{R}/W R
- \mathcal{R}/W Universal gas constant, $\mathcal{R} = 8.31447 \, kJ/kmol$
- Re Reynolds number, $Re = \rho v X / \mu$
- S Specific entropy (J/kgK)
- Entropy generated per unit volume (J/m^3K) , $\dot{s}_{gen} \geq 0$. Sgen
- S_{a} Surface associated to V_a (m^2)
- Sc Schmidt number, $Sc = \mu/\rho D_{\nu}$
- Sh
- Sherwood number, $Sh = \alpha_M X/D_v$ Stanton number for heat, $St_H = \frac{Nu}{RePr} = \frac{\alpha}{c_p \rho v}$ St_H
- Stanton number for mass, $St_M = \frac{Sh}{ReSc} = \frac{\alpha_M}{v}$ St_{M}
- Time (s)t
- T Temperature (K or $^{\circ}$ C)
- u Specific internal energy (J/kg)
- \vec{v} Fluid velocity (m/s), $\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$
- \vec{v}_b Velocity of surface S_a (m/s)
- Arbitrary control volume (m^3)

- W Molecular mass (kg/kmol)
- Χ Characteristic length (m)
- Y_k Mass fraction of species k, $Y_k = m_k/m$
- Heat transfer coefficient (W/m²K) α
- Mass transfer coefficient (m/s) α_{M}
- α_s Solar absorptivity
- Volumetric thermal expansion coefficient β $(K^{-1}), \beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{n}$
- δ Unit tensor
- Emissivity ε
- Isothermal compressibility coefficient (Pa^{-1}), κ
 - $\kappa = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$
- a) Thermal conductivity (W/mK); b) λ
 - Wavelength of radiation (m) (section A5)
- Dynamic viscosity (kg/ms), $\mu = \rho v$ μ
- Kinematic viscosity (m²/s), $\nu = \mu/\rho$ ν
- Density (kg/m³) ρ
- Stefan-Boltzmann's constant (W/m²K⁴) σ (Section A5)
- $\vec{\tau}$ Viscous-stress tensor (N/m^2)
- a) Angle; b) Relative humidity φ
- Generation (or destruction) of species k per $\dot{\omega}_{\mathbf{k}}$ unit volume and time (kg/m³s)

In general, nomenclature is explicitly indicated in the different sections.