MACHINE LEARNING

sandeshgangadhar@yahoo.co.in

BY, <u>Sandesh G</u>angadhar

CONTENTS

Vs OF BIG DATA

TYPES OF DATA ANALYSIS

CONCEPT

PROBLEM SOLVING APPROACHES

CLASSIFICATION

ALGORITHMS

MODEL EVALUATION

DATA SCIENCE METHODOLOGIES

Vs of BIG DATA

VOLUME

VARIETY

VELOCITY

Figure

The LHC collects about 25 million gigabytes of data per year

Source: "Particle Physics Tames Big Data," Leah Hesla, Symmetry, 1 August 2012

DESCRIPTIVE

EXPLORATORY

INFERENTIAL

PREDICTIVE

CAUSAL

DESCRIPTIVE EXPLORATORY INFERENTIAL PREDICTIVE CAUSAL

DESCRIPTIVE

EXPLORATORY

INFERENTIAL

PREDICTIVE

CAUSAL

DESCRIPTIVE

EXPLORATORY

INFERENTIAL

PREDICTIVE

CAUSAL

DESCRIPTIVE

EXPLORATORY

INFERENTIAL

PREDICTIVE

CAUSAL

DESCRIPTIVE

EXPLORATORY

INFERENTIAL

PREDICTIVE

CAUSAL

DESCRIPTIVE

EXPLORATORY

INFERENTIAL

PREDICTIVE

CAUSAL

CONCEPT

WIKIPEDIA: Machine learning is a field of computer science that gives computer systems the ability to "learn" (i.e. progressively improve performance on a specific task) with data, without being explicitly programmed.

CONCEPT

SIR ISSAC NEWTON - SCIENTIST

DATA SCIENTIST

CONCEPT

PROBLEM SOLVING APPROACHES

TRADITIONAL

PROBLEM SOLVING APPROACHES

MACHINE LEARNING

CLASSIFICATION

SUPERVISED

UNSUPERVISED

REINFORCED

REGRESSION

CLUSTERING

BRUTE FORCE

CLASSIFICATION

ASSOCIATION RULE MINING

MONTE CARLO METHOD

DIMENSIONALITY REDUCTION

REGRESSION

CLASSIFICATION

CLUSTERING

LINEAR REGRESSION

K NEAREST NEIGHBOURS

K MEANS CLUSTERING

NEURAL NETWORKS

NEURAL NETWORKS

HIERARCHICAL CLUSTERING

DECISION TREE

LOGISTIC REGRESSION

RANDOM FOREST

SUPPORT VECTOR MACHINES

DECISION TREE

RANDOM FOREST

REGRESSION

LINEAR REGRESSION

$$Y = AX + B$$

MEAN

HEIGHT = NUMBER X WEIGHT + BIAS

MEDIAN

```
x <- seq(-1,5,0.1)
y <- 2 * x + 3
plot(x,y,type = "l", col = "blue")
grid()</pre>
```

CLASSIFICATION

K - NEAREST NEIGHBOURS

3-D Scatterplot of Iris Data

DISTANCE MEASURES

EUCLIDEAN

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

MANHATTAN

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|_1 = \sum_{i=1}^n |p_i - q_i|$$

CLUSTERING

K - MEANS

RANDOM INITIALIZATION OF CENTROIDS

CALCULATE DISTANCES TO NEAREST POINTS

CALCULATE MEAN OF DISTANCES

SHIFT TO AVERAGE

BACK TO STEP 2

NEURAL NETWORKS

PERCEPTRON

NEURAL NETWORKS

MULTI LAYER PECEPTRON

Weight update

$$W_n = W - \alpha^* \frac{d(Error)}{dW}$$

Bias update

$$B_n = B - \alpha^* \frac{d(Error)}{dB}$$

MODEL EVALUATION

MODEL EVALUATION

CLASSIFICATION

F1 MEASURE =
$$2 \frac{PRECISION X RECALL}{PRECISION + RECALL}$$

$$ACCURACY = \frac{TP + TN}{ALL}$$

DATA SCIENCE METHODOLOGY

KNOWLEDGE DISCOVERY IN DATABASES

DATA SCIENCE METHODOLOGY

CROSS INDUSTRY STANDARD PROCESS FOR DATA MINING

Q & A

THANK YOU