

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundation

Algorithms

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Robert D. Clark Honors College Department of Mathematics University of Oregon

4 March 2019

What Is Going On?

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundation

Algorithms

- Intersection of multivariable calculus, linear algebra, and numerical mathematics.
- Extension of the forefront of numerical research that defines a structure with which mathematicians can manipulate monster polynomials.
- Presentation of four increasingly efficient algorithms that construct an orthogonal basis that accurately represents the structure of polynomials on any 3D tripod.

What Is Orthogonality?

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundation

- Orthogonality between two functions: $\langle f, g \rangle = 0$.
 - Orthogonal means 90° and $\cos(90) = 0$.
 - Euclidean: $\cos(\theta) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}|| \ ||\mathbf{y}||}$.
- Higher dimensions use sums of functions $f = \sum a_n P_n(x)$.
- Inner product $\langle f,g \rangle$ must be commutative, linear in each component, and positive definite.

What Are Iterative And Recursive Algorithms?

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Farm dastan

Algorithm

- Solving a larger problem in a series of smaller steps that may or may not depend on the previous step.
- The solution to our current execution of the algorithm(s) utilizes results from the execution of previous algorithm(s).
- Specifically, three-term recursion: $F_n=F_{n-1}+F_{n-2}$ with initial values $F_0=0$ and $F_1=1$.
- Minimizes dependencies and redundant computations
 improves algorithmic efficiency.

Research Goals & Applications

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundations

Algorithms

- Exploit orthogonality, iteration, recursion, and computerized mathematics to improve algorithmic efficiency, which is crucial in the world of "big data."
- Approximate polynomials on a 3D tripod by using orthogonal infinite sums.
- Fourier orthogonal series and signal readings:

$$f = \sum_{i=1}^{\infty} a_i P_i + \sum_{i=1}^{\infty} b_i Q_i + \sum_{i=1}^{\infty} c_i R_i + d_0.$$

Expand the current study of all orthogonal structures.

Desired Inner Product Space

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundations

Algorithms

$$\langle f, g \rangle = \int_0^1 f(x, 0, 0) g(x, 0, 0) dx$$
$$+ \int_0^1 f(0, y, 0) g(0, y, 0) dy$$
$$+ \int_0^1 f(0, 0, z) g(0, 0, z) dz$$

Commutative, linear in each component, and positive definite: $\langle f, f \rangle \geq 0$ where $\langle f, f \rangle = 0$ if and only if f itself equals 0.

Domain Restriction With Polynomial Ideals

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Foundations

General $\mathbb{R}_n[x,y,z]$ bases:

$$n = 0: 1$$

$$n=1: x y z$$

$$n = 2: \quad x^2 \quad xy \quad xz \quad y^2 \quad yz \quad z^2$$

Polynomial Ideals: $f \in \langle p_1, \dots, p_n \rangle \Leftrightarrow \exists q_i : f = \sum_{i=1}^n \{p_i \times q_i\}.$

Our inner product space cannot contain $\langle xy, xz, yz \rangle$.

Inner Product Space's Domain Dimension

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Foundations

Restricted $\mathbb{R}[x,y,z]/\langle xy,xz,yz\rangle$ bases:

$$n = 0: 1$$

$$n=1: x y z$$

$$\begin{array}{llll} n=1: & x & y & z \\ n=2: & x^2 & y^2 & z^2 \\ n=3: & x^3 & y^3 & z^3. \end{array}$$

$$n=3: x^3 y^3 z^3$$

Theorem

Our inner product space's restrictive domain has dimension:

When
$$n = 0$$
, $dim(\mathbb{R}_n[x, y, z]/\langle xy, xz, yz \rangle) = 1$.

$$\forall n \in \mathbb{N} : n > 0, dim(\mathbb{R}_n[x, y, z] / \langle xy, xz, yz \rangle) = 3.$$

Naïve Algorithm

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundations

Algorithms

 $V_n = \mathbb{R}_n[x,y,z]/\langle xy,xz,yz\rangle$ is the n^{th} -degree inner product space of the restricted tripod.

Monic: $P_n = x^n + \langle \text{ lower-degree combination of } x, y, z \rangle$.

Construct the monic polynomial basis $B_n = \{P_n, Q_n, R_n\}$:

$$P_n(x,y,z) = x^n + \sum_{i=1}^{n-1} a_i^P x^i + \sum_{i=1}^{n-1} b_i^P y^i + \sum_{i=1}^{n-1} c_i^P z^i + d_0^P.$$

Since each basic element is monic, we can determine them by $\langle P_n, x^j \rangle = \langle P_n, y^j \rangle = \langle P_n, z^j \rangle = 0$.

. . .

Nave Algorithm Complexity

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundations

Algorithms

Three
$$(3n-2) \times (3n-2)$$
 matrices:

Given $B_n = \{P_n, Q_n, R_n\}$ we can use elementary linear algebra techniques to construct $OB_n = \{\hat{P}_n, \hat{Q}_n, \hat{R}_n\}$.

Basic Algorithm

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundation

Algorithms

Introduce iteration to similarly construct $B_n = \{P_n, Q_n, R_n\}$:

$$P_n(x, y, z) = x^n + \sum_{i=1}^{n-1} a_i^P P_i(x, y, z) + \sum_{i=1}^{n-1} b_i^P Q_i(x, y, z) + \sum_{i=1}^{n-1} c_i^P R_i(x, y, z) + d_0^P.$$

Determine each element for fixed j = 1, 2, ..., n - 1:

$$\begin{split} a_j^P \langle P_j, P_j \rangle + b_j^P \langle Q_j, P_j \rangle + c_j^P \langle R_j, P_j \rangle &= -\langle x^n, P_j \rangle \\ a_j^P \langle P_j, Q_j \rangle + b_j^P \langle Q_j, Q_j \rangle + c_j^P \langle R_j, Q_j \rangle &= -\langle x^n, Q_j \rangle \\ a_j^P \langle P_j, R_j \rangle + b_j^P \langle Q_j, R_j \rangle + c_j^P \langle R_j, R_j \rangle &= -\langle x^n, R_j \rangle. \end{split}$$

Basic Algorithm Complexity

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Algorithms

3(n-1) 3 × 3 matrices:

Given $B_n = \{P_n, Q_n, R_n\}$ we can use Gram-Schmidt to construct $OB_n = \{\hat{P}_n, \hat{Q}_n, \hat{R}_n\}.$

Clever Algorithm

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundation

Algorithms

Introduce recursion to similarly construct $B_n = \{P_n, Q_n, R_n\}$ with base cases $B_0 = \{1\}$ and $B_1 = \{x - \frac{1}{6}, y - \frac{1}{6}, z - \frac{1}{6}\}$:

$$P_n(x,y,z) = xP_{n-1}(x,y,z) + \sum_{i=1}^{n-1} a_i^P P_i(x,y,z) + \sum_{i=1}^{n-1} b_i^P Q_i(x,y,z) + \sum_{i=1}^{n-1} c_i^P R_i(x,y,z) + d_0^P.$$

Directly compute each element after coefficient determination:

$$\begin{split} P_n(x,y,z) &= (x-a_{n-1}^P)P_{n-1}(x,y,z) + a_{n-2}^PP_{n-2}(x,y,z) \\ &+ b_{n-1}^PQ_{n-1}(x,y,z) + b_{n-2}^PQ_{n-2}(x,y,z) \\ &+ c_{n-1}^PR_{n-1}(x,y,z) + c_{n-2}^PR_{n-2}(x,y,z). \end{split}$$

Clever Algorithm Complexity

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Backgroun

Foundation

Algorithms

Six
$$3 \times 3$$
 matrices:

Given $B_n = \{P_n, Q_n, R_n\}$ we can use Gram-Schmidt to construct $OB_n = \{\hat{P}_n, \hat{Q}_n, \hat{R}_n\}$.

Brilliant Algorithm

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundations

Algorithms

Mutually-Orthogonal: $P_n = \langle \text{any linear combination of } x, y, z \rangle$.

Orthonormal: mutually-orthogonal polynomials $\langle P_n, P_n \rangle = 1$.

Again construct $OB_n = \{\hat{P}_n, \hat{Q}_n, \hat{R}_n\}$ with base cases $OB_0 = \{1\}$ and $OB_1 = \{x - \frac{1}{6}, y - \frac{1}{6}, z - \frac{1}{6}\}$:

$$P_n(x,y,z) = x\hat{P}_{n-1}(x,y,z) + \sum_{i=1}^{n-1} a_i^P \hat{P}_i(x,y,z) + \sum_{i=1}^{n-1} b_i^P \hat{Q}_i(x,y,z) + \sum_{i=1}^{n-1} c_i^P \hat{R}_i(x,y,z) + d_0^P.$$

Determine each element directly, but with more simplifications!

Brilliant Algorithm

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundations

Algorithms

Given mutual-orthogonality, we obtain diagonal matrices:

$$a_j^P \langle P_j, P_j \rangle + 0 + 0 = -\langle x P_{n-1}, P_j \rangle$$

$$0 + b_j^P \langle Q_j, Q_j \rangle + 0 = -\langle x P_{n-1}, Q_j \rangle$$

$$0 + 0 + c_j^P \langle R_j, R_j \rangle = -\langle x P_{n-1}, R_j \rangle.$$

Given orthonormality, we obtain direct definitions:

$$a_j^P = -\langle xP_{n-1}, P_j \rangle, \ b_j^P = -\langle xP_{n-1}, Q_j \rangle, \ c_j^P = -\langle xP_{n-1}, R_j \rangle.$$

Thus, the computation of each element is trivial:

$$P_n(x, y, z) = (x - a_{n-1}^P) \hat{P}_{n-1}(x, y, z) + a_{n-2}^P \hat{P}_{n-2}(x, y, z)$$

$$+ b_{n-1}^P \hat{Q}_{n-1}(x, y, z) + b_{n-2}^P \hat{Q}_{n-2}(x, y, z)$$

$$+ c_{n-1}^P \hat{R}_{n-1}(x, y, z) + c_{n-2}^P \hat{R}_{n-2}(x, y, z).$$

Brilliant Algorithm Complexity

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Backgroun

_ ...

Algorithms

Zero matrices.

Gram-Schmidt immediately constructs $OB_n = \{\hat{P}_n, \hat{Q}_n, \hat{R}_n\}.$

Research Recap

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Equadation

Algorithms

- Establish an orthogonal basis of our inner product space on $\mathbb{R}[x,y,z]/\langle xy,xz,yz\rangle$ that accurately represents the structure of [monster] polynomials on any 3D tripod.
- Nave: arbitrary monic polynomials.
 - Three $(3n-2) \times (3n-2)$ matrices.
- Basic: iterative monic polynomials.
 - 3(n-1) 3×3 matrices.
- Clever: recursive monic polynomials.
 - Six 3×3 matrices.
- Brilliant: orthonormal polynomials.
 - Zero matrices.

Questions?

Orthogonal Structure on a Tripod

Sierra Nicole Battan

Background

Foundatio

Algorithms