Differentiable Generator Nets

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics

1. Differentiable generator nets

Differentiable Generator Nets

- Many generative nets are based on idea of:
 - Using a differentiable function $g(z; \theta^{(g)})$ represented by a neural net to transform samples of latent variables z to:
 - samples x or distributions over samples x
- This model class includes
 - 1. Variational autoencoders (VAE)
 - Pair the generator network with an inference net
 - 2.Generative Adversarial networks (GAN)
 - Pair generator network with a discriminator network
 - 3. Techniques that train isolated generator networks

Ex: Samples from $N(\mu,\Sigma)$

- Standard procedure for sampling from $N(\mu,\Sigma)$:
 - Feed samples z from N(0, I) into a simple generator network that has just one affine layer:

$$x = g(z) = \mu + Lz$$

- where L is the Cholesky decomposition of Σ
 - Decomposition: $\Sigma = LL^T$ where L is lower triangular
 - Affine transform is a linear mapping method:
 - that preserves straight lines, planes, e.g., translation, rotation
- This generator network takes z as input and produces x as output

Machine Learning

Srihari Ex: Samples from any p(y)

- Inverse transform sampling
 - 1. If you are able to specify p(y)
 - then obtain its cdf h(y)
 - Which will have a value between 0 and 1
 - To get h(y) requires indefinite integral $h(y) = \int_{-\infty}^{\infty} p(x) dx$
 - 2. Take input z from U(0,1)
 - 3. Produce as output $h^{-1}(z)$ which is returned as the value of g(z)
 - Need ability to compute the inverse function!

Samples from complicated distributions

- For distributions that are complicated:
 - Difficult to specify directly, or
 - Difficult to integrate over, or
 - Resulting integrals are difficult to invert
- We use a feedforward network to represent a parametric family of nonlinear functions g and
 - use training data to infer the parameters selecting the desired function

Machine Learning Principle for mapping z to \boldsymbol{x}

- q provides a nonlinear change of variables
 - to transform distribution over z into desired distribution over x
- The distributions of z and x is governed by

$$p_z(z) = p_x(g(z)) \left| \det(\frac{\partial g}{\partial z}) \right|$$

- This implicitly imposes a distribution over $oldsymbol{x}$

$$p_x(x) = \frac{p_z(g^{-1}(x))}{\left| \det(\frac{\partial g}{\partial z}) \right|}$$

- The formula may be difficult to evaluate
 - So we often use indirect means of learning q
 - Rather than try to maximize $\log p(x)$ directly

Srihari

Machine Learning

Generating a conditional

- Instead of g providing a sample directly we use g to define a conditional distribution over \boldsymbol{x}
 - Example: use a generator net whose final layer are sigmoid outputs to provide mean parameters of Bernoullis: $p(\mathbf{x}_i = 1 \mid \mathbf{z}) = g(\mathbf{z})_i$
 - In this case when we use g to define p(x|z) we impose a distribution over x by marginalizing z:

$$p(x) = \mathbb{E}_{\boldsymbol{z}} p(x \mid \boldsymbol{z})$$

• Both approaches define a distribution $p_g(\mathbf{x})$ and allow us to train various criteria of $p_g(\mathbf{x})$ using the reparameterization trick

Comparison of two approaches

- 1. Emitting parameters of conditional distribution
 - Capable of generating discrete and continuous data
- 2. Directly generating a sample
 - Can only generate continuous data
 - We could introduce discretization in forward propagation, but we can no longer train using backpropagation
 - No longer forced to use simple conditional forms
- Approaches based on differentiable generator networks are motivated success of gradient descent in classification
 - Can this transfer to generative modeling?

Complexity of Generative Modeling

- Generative modeling is more complex than classification because
 - Learning requires optimizing intractable criteria
 - Because data does not specify both input z and output \boldsymbol{x} of the generator network
- In classification both input and output are given
 - Optimization only needs to learn the mapping
- In generative modeling, learning procedure needs to determine how to arrange z space in a useful way and how to map z to \boldsymbol{x}