Math 501 Homework (§4.3 Limits at Infinity)

Problem 1. Let $f: \mathbb{R}^+ \to \mathbb{R}$. Let $f_n = f(n)$ for n = 1, 2, ... a sequence corresponding to the function f. Which of the following statements are true?

- 1. If $\lim_{x\to\infty} f(x) = L$, then $\lim(f_n) = L$.
- 2. If $\lim_{n \to \infty} f(x) = L$, then $\lim_{n \to \infty} f(x) = L$
- **Solution.** 1. Let $\lim_{x\to\infty} f(x) = L$. By definition this implies that for every sequence (x_n) in a subset (a,∞) of \mathbb{R}^+ , such that $(x_n)\to\infty$, $(f(x_n))\to L$. We can use this property to pick $(x_n)=\mathbb{N}$ which we know tends to ∞ , hence $(f(x_n))\to L$. **TRUE**.
 - 2. Conversely, let $(f(x_n)) \to L$. Again by definition every convergent sequence f_n converges to the same limit as the function itself, hence f(x) must converge to L. **TRUE**