# Групповой проект «Music genre prediction»

Анастасия Горевалова Анна Булкина Наталья Джога



#### ЗАДАЧА НА ПРОЕКТ

Разработать модель,
позволяющую
классифицировать музыкальные
произведения по жанрам





#### ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Качество предсказания лучшей модели, оцененное по метрике F1-меры, достигло уровня <u>0.5274</u>, что говорит о хорошей предсказательной способности модели

Развернутое web-приложение (с использованием библиотеки Streamlit)







График зависимостей между "music\_genre", "danceability", "energy"

После изучения различных методов обработки признаков и проведения анализа зависимостей, рассмотрели графики, иллюстрирующие взаимосвязь признаков.

#### РАБОТА С ПРИЗНАКАМИ

| energy*loudness | acousticness*instrumentalness |
|-----------------|-------------------------------|
|                 |                               |
| -5.911542       | 8.448000e-03                  |
| -5.622640       | 1.234440e-05                  |
| -4.200900       | 0.000000e+00                  |
| -4.194765       | 1.791180e-07                  |
| -3.191250       | 4.017900e-07                  |
|                 |                               |
| -6.773139       | 2.777600e-06                  |
| -3.749596       | 1.067800e-03                  |
| -3.676014       | 1.518900e-08                  |
| -5.116010       | 0.000000e+00                  |
| -1.587545       | 2.626850e-02                  |
|                 |                               |

При проведении анализа данных, мы экспериментировали с добавлением новых признаков, также пытались анализировать тональность треков и использовать ее в числовом формате, однако это не принесло ожидаемых результатов и казалось нелогичным. Мы также пробовали удалить названия треков из рассмотрения, но выяснили, что это действие привело к улучшению результатов, как обнаружили у коллег.

Также, пробовали убирать категориальные признаки из анализа, однако это не привело к желаемым изменениям. Опыт проведенных экспериментов нам позволил лучше понять, какие признаки влияют на результаты и какие лучше исключить для достижения лучшей модели.

## ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ДАННЫХ



- Удаление столбцов 'instance\_id' и 'obtained\_date'.
- Замена значений в столбце 'track\_name' на их длину.
- Удаление дубликатов.
- Замена 'Major' на 1 и 'Minor' на -1 в столбце 'mode'.
- Заполнение пропущенных значений в столбце 'mode' нулями.
- Заполнение пропущенных значений в 'tempo' 120.011.
- Заполнение пропущенных значений в 'key' значением 'Pusto'.
- Удаление строк с пропущенными значениями.

## ВЫБОР МОДЕЛИ И ПАРАМЕТРОВ





В процессе анализа данных мы провели исследование с использованием ящиков с усами, удаляли выбросы, считая некоторые значения подозрительными, и заполняли их средними значениями по жанру. Затем мы создали пайплайн, в котором рассмотрели различные варианты обработки данных и выяснили, что CatBoost является одним из наиболее эффективных алгоритмов для нашей задачи.

Мы провели оптимизацию параметров CatBoost с помощью Optuna, не ограничиваясь пробегом в 100 прогонов, но результаты не улучшились. Затем, опираясь на подобранные параметры CatBoost, мы построили итоговую модель и экспортировали ее в формат pickle.

Наш исследовательский процесс позволил нам обнаружить наиболее эффективный алгоритм для задачи и построить оптимальную модель для дальнейшего использования.

# PA3BEPHYTOE WEB-ПРИЛОЖЕНИЕ (С ИСПОЛЬЗОВАНИЕМ БИБЛИОТЕКИ STREAMLIT)



Наше web-приложение, разработанное с помощью библиотеки Streamlit, содержит четыре отдельные раздела, каждый из которых представляет собой уникальный функционал: «О проекте", «Графики", "Модель" и "Предсказание по песне".

## СПАСИБО!

Анастасия Горевалова

Анна Булкина

Наталья Джога

