

Hack Climate Hackathon

sponsored by yOBI

Machine learn effect of Monsoon variability on India's GDP

Mayank Rajoria Prakhar Agrawal Shubham Rathi

Roadmap

- Goals
- What did we model?
- Data Sources
- Methodology
- Comparing Outputs (No Monsoon data)
- Comparing Outputs (With Monsoon data)
- Concrete Math
- Conclusions

Goal

• Aim:

- Find the effect of climate change on India's GDP
- More simply put: Estimate future GDP based on monsoon and other standard factors such as Inflation, exchange rate etc.

What did we try to model?

MODEL EFFECT OF CLIMATE CHANGE ON THE FUTURE GDP

- Given parameters like population, inflation, unemployment, etc -> create a robust model to predict GDP of a country.
- Idea has its roots in Gaussian Discriminant Analysis
 - extend it to predict continuous values
 - unlike the original GDA which works only for classification problems
- Lateron try to incorporate the effect of monsoons
 - use the future weather forecasts and predict their effect on the GDP!

Data Sources

- GDP: https://github.com/Bhavikshah406/GDP-Prediction/blob/master/GDP_and_Major_Industrial_Sectors_of _Economy_Dataset.xls
- Inflation: http://www.inflation.eu/inflation-rates/india/inflation-india.aspx
- Unemployment, real interest rate, CO2 emission, Consumption, Population: http://data.worldbank.org/indicator/
- Population: http://www.worldometers.info/world-population/india-population/
- Disasters:
 - http://www.ndma.gov.in/en/disaster-data-statistics.html
 - http://aasc.nic.in/course%20material/disaster/documentation%20on%20past%20disasters.pdf
- Exchange rate: http://forecast-chart.com/usd-indian-rupee.html
- Oil Price: https://inflationdata.com/Inflation/Inflation_Rate/Historical_Oil_Prices_Table.asp
- M1, M3 (Narrow-Broad) Money Value: https://data.oecd.org/money/
- Imports, Exports: https://data.gov.in/catalog/exports-imports-and-trade-balance

Methodology

- Data availability: Low (only ~60 years of data)
- Idea: Use a generative model to create a larger dataset
 - Something similar to GDA looked like a good approach
- Why use a generative model?
 - Discriminative models performed badly on the dataset
 - Could not properly model the data, given the small size of the dataset
 - Generative models found to performed better (as explained on next slide)

Details:

- Assumption: The complete dataset follows a multivariate Gaussian
- Use log likelihood to arrive at a mean and variance
- Use these parameters and the partially given dataset to predict the target values

Model Selection

- Other approaches tried:
 - 3-layer neural network to predict the GDP.
 - Ridge regression with mean normalised dataset.
- Performance Evaluation:
 - Insufficient data to train the discriminative models
 - GDA type models eventually found to perform better

Output Comparison:

- Learning performed on 80% dataset
- Prediction on rest 20%
- Few data points from the validation set are shown below

Predicted	Ratio
286147.0	1.0018051907
294267.0	0.999539672183
312177.0	0.997717274349
325431.0	0.998073302928
	286147.0 294267.0 312177.0

Mean Absolute Error: 813.606730271

Prediction without monsoon and previous year's GDP

R2:

0.98843019258055498

Std. Deviation of error:

146844.11254760568

Mean Absolute Error:

Prediction without monsoon but with previous year's GDP

R2:

0.99839396677573766

Std. Deviation of error:

53665.916501780252

Mean Absolute Error:

Prediction with monsoon but without previous year's GDP

R2:

0.97753565603645465

Std. Deviation of error:

216726.54775110719

Mean Absolute Error:

Prediction with monsoon and previous year's GDP

R2:

0.99929916273462283

Std. Deviation of error:

35361.194412215729

Mean Absolute Error:

Prediction without Imports and Exports

R2:

0.99978951050055243

Std. Deviation of error:

19370.622864863744

Mean Absolute Error:

Prediction without Narrow Money and Broad Money

R2:

0.95255666184507803

Std. Deviation of error:

254867.9073921626

Mean Absolute Error:

Correlation of GDP with parameters

Correlation of GDP with:-

-	Inflation	:	0.1224586492
-	Population	:	0.9051026464
-	Consumption	:	-0.8858570584
-	Disasters	:	0.602740577
-	Nominal Oil Prices	:	0.9029063566
-	Inflation adjusted Oil Prices	:	0.5309821159
-	Narrow Money	:	0.9680957827
-	Broad Money	:	0.9488423126
-	CO2 Emissions	:	0.9727361439
-	Exports	:	0.9403667282
-	Imports	:	0.9233833463
-	Previous Year's GDP	:	0.999619752

Correlation of GDP with rainfall parameters

Correlation of GDP with:-

- Rainfall in

- Q1 : -0.05883275104

- Q2 : 0.06134254094

- Q3 : -0.1541715853

- Q4 : -0.1201921931

- Rainfall in previous Q3 : -0.1704237816

- Maximum monthly rainfall : -0.240898835

- Minimum Monthly Rainfall : -0.007562645287

- Total yearly rainfall : -0.1299957776

Correlation between yearly difference of GDP and yearly difference of rainfall: 0.10511335

Concrete Math: Model

- We show the math for a simple case of predicting X1, given X2 and X3 where X1,X2,X3 are random variables.
- \circ Let X = (X1,X2,X3)
- Assumption: The joint distribution follows closely with a multivariate Gaussian

Let
$$\underline{X} \sim \mathcal{N} (\underline{M}, \underline{\mathcal{E}})$$

$$\frac{1}{1} \operatorname{PCX} = \underline{1} \operatorname{exp} \left[-1 (\underline{X} - \underline{M}) \underline{\mathcal{E}}^{-1} (\underline{X} - \underline{M}) \right]$$

$$\underline{M} = (\underline{M}_1, \underline{M}_1, \underline{M}_3)^{T} \text{ and } \underline{\mathcal{E}} = \begin{bmatrix} \underline{\mathcal{E}}_{11} & \underline{\mathcal{E}}_{12} & \underline{\mathcal{E}}_{13} \\ \underline{\mathcal{E}}_{21} & \underline{\mathcal{E}}_{22} & \underline{\mathcal{E}}_{23} \\ \underline{\mathcal{E}}_{31} & \underline{\mathcal{E}}_{32} & \underline{\mathcal{E}}_{33} \end{bmatrix}$$

Concrete Math: Learning

Data Likelihood:

log-likelihood of training data
$$lL(\underline{M}, \underline{E}) = \sum_{i=1}^{m} Log P(\underline{X}^{(i)})$$

$$l(\underline{M}, \underline{E}) = \sum_{i=1}^{m} \left[-Log(2\pi)^{3/2} - \frac{1}{2} Log |\underline{E}| - \frac{1}{2} (\underline{X}^{(i)} - \underline{M})^{T} \underline{E}^{-1} (\underline{X}^{(i)} - \underline{M})\right]$$

$$= 2^{i+2} \left[-Log(2\pi)^{3/2} - \frac{1}{2} Log |\underline{E}| - \frac{1}{2} (\underline{X}^{(i)} - \underline{M})^{T} \underline{E}^{-1} (\underline{X}^{(i)} - \underline{M})\right]$$

LearningParameters:

Mean ->

 $\frac{\forall_{\mathcal{L}} LL(\mathcal{M}, \mathcal{E}) = 0}{\Delta \mathcal{M} = \frac{1}{2} \sum_{i=1}^{m} \chi^{(2i)}}$

<- Covariance Matrix

Concrete Math: Prediction

Then our coaussian distribution
$$P(x)$$
 can be rewritten as,

 $P(Y_1, Y_2)$
 $M' = [M_1' M_2']^T$ and $E' = \begin{bmatrix} E_{12} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$

Conditioning on Y_2 , we have distribution $P(Y_1|Y_2 \cdot Y_2)$ with

 $M'_{1|2} = M_1' + E'_{12} E'_{22} (Y_2 - M_2')$

Conclusions

- Monsoon and GDP may show a **weak correlation** within a year, and a very low or negligible correlation over a longer span.
- Correlation Coefficient: **-0.1541** (over ~60 years of data)
- Our model is another confirmation to the claims in the past papers, stating low or negligible relation between monsoon and GDP of a country
- These papers are related below:
 - https://www.jstor.org/tc/accept?origin=/stable/pdf/4418949.pdf
- We could successfully predict the GDP with high accuracy as indicated in the results section of the presentation.

Conclusions

- The primary indicators for the GDP calculation from our analysis come out to be:
 - **Population**: With an increase in population, there will be an increased value of goods and services produced and consumed, causing the observed increase in GDP.
 - **CO₂ Emissions:** CO₂ might be indirectly reflection the production of goods, energy, factories etc in the country, hence having a high positive correlation with GDP.
 - **M1** (Narrow Money), **M3** (Broad Money)
 - **Imports/Exports**: These are the transaction happening between India and other country and are used in the calculation of GDP, hence there is high correlation.
 - Oil Prices: Oil is a major commodity that affects a country's economy and hence affects GDP as expected

Thank you:)

The source code, dataset and other files are available on the github repohttps://github.com/Prakhar0409/GDP-Prediction-Engine