Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC304	Principle of Communication	03			03			03

Course	Course Name	Examination Scheme						
Code		Theory Marks						
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work		
ITC304	Principle of Communication	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives				
The cours	The course aims:				
1	Study the basic of Analog and Digital Communication Systems.				
2	Describe the concept of Noise and Fourier Transform for analyzing communication systems.				
3	Acquire the knowledge of different modulation techniques such as AM, FM and study the				
	block diagram of transmitter and receiver.				
4	Study the Sampling theorem and Pulse Analog and digital modulation techniques				
5	Learn the concept of multiplexing and digital band pass modulation techniques				
6	Gain the core idea of electromagnetic radiation and propagation of waves.				

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy	
On suc	cessful completion, of course, learner/student will be able to:	· ·	
1	Describe analog and digital communication systems	L1,L2	
2	Differentiate types of noise, analyses the Fourier transform of time and frequency domain.	L1, L2, L3, L4	
3	Design transmitter and receiver of AM, DSB, SSB and FM.	L1,L2,L3,L4	
4	Describe Sampling theorem and pulse modulation systems.	L1,L2,L3	
5	Explain multiplexing and digital band pass modulation techniques.	L1, L2	
6	Describe electromagnetic radiation and propagation of waves.	L1,L2	

Prerequisite: Basic of electrical engineering

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content		CO Mapping
0	Prerequisite	Terminologies in communication systems, analog and digital electronics	02	
I	Introduction	Basics of analog communication and digital communication systems (Block diagram), Electromagnetic Spectrum and application, Types of Communication channels. Self-learning Topics: Applications areas of analog and digital communication.	03	CO1
II	Noise and Fourier Representation of Signal and System	Basics of signal representation and analyses, Introduction to Fourier Transform, its properties (time and frequency shifting, Fourier transform of unit step, delta and gate function. Types of Noise, Noise parameters –Signal to noise ratio, Noise factor, Noise figure, Friss formula and Equivalent noise temperature. Self-learning Topics: Practice Numerical on above topic.	06	CO2
III	Amplitude and Angle modulation Techniques.	Need for modulation, Amplitude Modulation Techniques: DSBFC AM,DSBSC-AM, SSB SC AM- block diagram spectrum, waveforms, bandwidth, Power calculations. Generation of AM using Diode, generation of DSB using Balanced modulator, Generation of SSB using Phase Shift Method. AM Transmitter (Block Diagram) AM Receivers – Block diagram of TRF receivers and Super heterodyne receiver and its characteristics- Sensitivity, Selectivity, Fidelity, Image frequency and its rejection and double spotting Angle Modulation FM: Principle of FM- waveforms, spectrum, bandwidth. Pre- emphasis and de-emphasis in FM, FM generation: Direct method –Varactor diode Modulator, Indirect method (Armstrong method) block diagram and waveforms. FM demodulator: Foster Seeley discriminator, Ratio detector. Self-learning Topics: Use of AM and FM in Modern Communication Technology. Challenges faced by radio business.	12	CO1, CO2, CO3
IV	Pulse Analog Modulation and Digital Modulation	Sampling theorem for low pass and band pass signals with proof, Anti- aliasing filter, PAM, PWM and PPM generation and Degeneration. Quantization process, Pulse code modulation, Delta modulation, Adaptive delta modulation. Introduction to Line Codes and ISI.	08	CO1, CO2, CO4

		Self-learning Topics: Implementation of Pulse code			
		nodulation and demodulation.			
\mathbf{V}	Multiplexing and	Principle of Time Division Multiplexing, Frequency 04		CO1,	
	Digital Band Pass	Division Multiplexing, Orthogonal Frequency		CO2,	
	Modulation	Division Multiplexing and its applications .ASK,		CO5	
	Techniques	SK, PSK QPSK Generation and detection.			
	_	Self-learning Topics: Implement TDM, FDM,			
		OFDM.			
VI	Radiation and	Electromagnetic radiation, fundamentals, types of	04	CO6	
	Propagation of	propagation, ground wave, sky wave, space wave			
	Waves	tropospheric scatter propagation			
		Self-learning Topics: List the real time examples for			
		different types of propagation waves.			

Text Books:

- [1]. George Kennedy, Bernard Davis, SRM Prasanna, Electronic Communication Systems, Tata McGraw Hill, 5th Ed
- [2]. Simon Haykin, Michael Moher, Introduction to Analog & Digital Communications, Wiley India Pvt. Ltd., 2nd Ed.
- [3]. Wireless Communication and Networking, Vijay Garg

References:

- [1]. Wayne Tomasi, Electronic Communications Systems, Pearson Publication, 5th Ed.
- [2]. B P Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University
- [3]. Herbert Taub, Donald L Schilling, Goutam Saha, Principles of Communication Systems, Tata McGraw Hill, 3rdEd.
- [4]. K Sam Shanmugam, Digital and Analog Communication Systems, Wiley India Pvt. Ltd, 1st Ed.

Online References:

Sr. No.	Website Name	
1.	https://www.nptel.ac.in	
2.	https://www.classcentral.com	
3.	http://www.vlab.co.in/	

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered