Dermatologist-level classification of skin cancer with deep neural networks

Enhancing the Expert

Andre Esteva PI: Sebastian Thrun Stanford University How can technology assist a human?

• 5.4M cases of non-melanoma skin cancer each year in US

- 5.4M cases of non-melanoma skin cancer each year in US
- 20% of Americans will get skin cancer

- 5.4M cases of non-melanoma skin cancer each year in US
- 20% of Americans will get skin cancer
- Actinic Keratosis (pre-cancer) affects 58 million Americans

- 5.4M cases of non-melanoma skin cancer each year in US
- 20% of Americans will get skin cancer
- Actinic Keratosis (pre-cancer) affects 58 million Americans
- 76,000 melanomas each year 10,000 deaths

- 5.4M cases of non-melanoma skin cancer each year in US
- 20% of Americans will get skin cancer
- Actinic Keratosis (pre-cancer) affects 58 million Americans
- 76,000 melanomas each year 10,000 deaths
- \$8.1B in US annual costs for skin cancer

- 5.4M cases of non-melanoma skin cancer each year in US
- 20% of Americans will get skin cancer
- Actinic Keratosis (pre-cancer) affects 58 million Americans
- 76,000 melanomas each year 10,000 deaths
- \$8.1B in US annual costs for skin cancer

- 5.4M cases of non-melanoma skin cancer each year in US
- 20% of Americans will get skin cancer
- Actinic Keratosis (pre-cancer) affects 58 million Americans
- 76,000 melanomas each year 10,000 deaths
- \$8.1B in US annual costs for skin cancer

Early detection is critical

6.3 billion smartphones

~130,000 images of skin

2000 diseases

Deep Convolutional Neural Network (Inception-v3)

 $P[u] = \sum_{v \in C(u)} P[v]$

- Training Classes
- Inference Classes

Dermatologist-level performance

Validation set

Validation set

Classifier	Three-way accuracy
Dermatologist 1	65.6%
Dermatologist 2	66.0%
CNN	69.5%
CNN - PA	72.0%

Disease classes: three-way classification

- 0. Benign single lesions
- 1. Malignant single lesions
- 2. Non-neoplastic lesions

Validation set

Classifier	Three-way accuracy
Dermatologist 1	65.6%
Dermatologist 2	66.0%
CNN	69.5%
CNN - PA	72.0%

Disease classes: three-way classification

- 0. Benign single lesions
- 1. Malignant single lesions
- 2. Non-neoplastic lesions

Classifier	Nine-way accuracy
Dermatologist 1	53.3%
Dermatologist 2	55.0%
CNN	48.9%
CNN - PA	55.3%

Disease classes: nine-way classification

- 0. Cutaneous lymphoma and lymphoid infiltrates
- 1. Benign dermal tumors, cysts, sinuses
- 2. Malignant dermal tumor
- 3. Benign epidermal tumors, hamartomas, milia, and growths
- 4. Malignant and premalignant epidermal tumors
- 5. Genodermatoses and supernumerary growths
- 6. Inflammatory conditions
- 7. Benign melanocytic lesions
- 8. Malignant Melanoma

Test set

Test set: Dermatologist Comparison (376 images)

Test set: Dermatologist Comparison (376 images)

Carcinoma: 135 images

Test set: Dermatologist Comparison (376 images)

Test set: Total (1942 images)

How does the algorithm work?

T-SNE Visualization

T-SNE Visualization

- Epidermal Benign
- Epidermal Malignant
- Melanocytic Benign
- Melanocytic Malignant

T-SNE Visualization

What is the network fixating on?

What is the network fixating on?

Malignant Melanocytic Lesion

What is the network fixating on?

Malignant Melanocytic Lesion

Benign Melanocytic Lesion

Inflammatory Condition

Malignant Epidermal Lesion

Benign Epidermal Lesion

Genodermatosis

Malignant Dermal Lesion

Benign Dermal Lesion

Cutaneous Lymphoma

What does the network misclassify?

What does the network misclassify?

Dermatologist-level Classification of Skin Cancer with Deep Neural Networks

Andre Esteva*, Brett Kuprel*, Rob Novoa, Justin Ko, Susan Swetter, Helen Blau, Sebastian Thrun Nature, 2017 (Equal contribution authors*)

Community

Questions?

esteva@cs.stanford.edu @andreesteva cs.stanford.edu/people/esteva