Métodos Quantitativos

Aula 06. Fundamentos de probabilidade

Pedro H. G. Ferreira de Souza pedro.ferreira@ipea.gov.br

Mestrado Profissional em Políticas Públicas e Desenvolvimento Instituto de Pesquisa Econômica Aplicada (Ipea)

24 out. 2022

Recapitulação

Introdução

Amostragem

Fundamentos de probabilidade

Distribuições de probabilidade e variáveis aleatórias

Distribuições amostrais

Próxima aula

Recapitulação

Introdução

Amostragem

Fundamentos de probabilidade

Distribuições de probabilidade e variáveis aleatórias

Distribuições amostrais

Próxima aula

Aulas passadas

Aula 01

Metodologia de pesquisa, fundamentos de análises quantitativas

Aula 02

Causalidade, pressupostos do modelo de resultados potenciais

Aulas 03 e 04

Uso de pacotes e funções importação de bases de dados, manipulação de dados no R

Aula 05

Mais funções para o R, estatísticas descritivas simples, visualização de dados

Recapitulação

Introdução

Amostragem

Fundamentos de probabilidade

Distribuições de probabilidade e variáveis aleatórias

Distribuições amostrais

Próxima aula

Sobre amostras e populações

Até aqui, examinamos apenas os dados coletados - nossas amostras sem preocupação em extrapolar os resultados para um universo ou população de interesse.

Na prática, contudo, o que nos interessa é quase sempre o parâmetro populacional, não a estatística amostral -> problema de inferência estatística

Perguntas

- Como usar a amostra para produzir uma boa estimativa do parâmetro populacional?
- Como quantificar a incerteza relativa à nossa estimativa?

De onde vêm os erros?

O que pode dar errado quando você produz uma estimativa a partir de uma amostra?

Viés amostral

A amostra não representa adequadamente a população de interesse, com sub/sobre-representação de subgrupos relevantes

Viés de resposta ou de captação

Instrumento de coleta não registra corretamente as características e/ou opiniões das unidades

Viés de não resposta

Subgrupo não aleatório das unidades amostradas não é encontrada, se recusa a participar ou não tem todas suas características registradas

Um caso clássico

Em 1936, a revista americana *Literary Digest* enviou 10m de cartões postais, obtendo mais de 2m de respostas, e proclamou que Alfred Landon seria eleito presidente com 57% do voto popular e 370 votos no colégio eleitoral...

Um caso clássico

Em 1936, a revista americana *Literary Digest* enviou 10m de cartões postais, obtendo mais de 2m de respostas, e proclamou que Alfred Landon seria eleito presidente com 57% do voto popular e 370 votos no colégio eleitoral...

... mas Franklin Roosevelt foi eleito com 61% do voto popular e 523 votos no colégio eleitoral, um dos maiores massacres eleitorais da história americana.

Quem acertou foi George Gallup, que previu 56% do voto popular e 481 votos no colégio eleitoral para o Roosevelt com uma amostra de apenas 50 mil.

(Não houve CPI, ninguém foi preso nem perseguido, mas a revista perdeu credibilidade e faliu um ano e meio depois. O Gallup ficou rico.)

Outra fórmula para variância

Na aula passada vimos a estatística amostral:

$$Var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Para os parâmetros, usaremos hoje:

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

Obs: nos slides, uso a notação de um jeito mais frouxo para facilitar.

Pacotes e dados de hoje

```
library(tidyverse)
library(summarytools)
library(nycflights13)
voos.df <- flights</pre>
```

Recapitulação

Introdução

Amostragem

Fundamentos de probabilidade

Distribuições de probabilidade e variáveis aleatórias

Distribuições amostrais

Próxima aula

Problema central

A qualidade das inferências estatísticas depende de quão bem a amostra representa a população. Logo, é necessário:

- Definir a população de interesse
- Utilizar um mecanismo de seleção da amostra que "garanta" a representatividade
- Escolher um tamanho adequado para a amostra

- → Quanto mais informações tivermos sobre a população, melhor.
- → Objetivo é minimizar o risco de viés de seleção

Aleatorização

Mais uma vez, o sorteio aleatório de casos oferece a melhor proteção contra viés de seleção. Por isso, amostras são classificadas em:

Amostras aleatórias ou probabilísticas

 Cada unidade da população tem uma probabilidade conhecida de ser sorteada devido à utilização de alguma foram de seleção aleatória

Amostras não aleatórias ou não probabilísticas

 Não sabemos as probabilidades de inclusão de cada unidade e, portanto, não podemos usar teoria probabilística para quantificar o viés e a incerteza das nossas estimativas

Amostras aleatórias

Amostra aleatória simples (AAS)

Todas as unidades da população têm a mesma probabilidade de serem sorteadas, ou seja, cada subconjunto com n unidades tem a mesma probabilidade de ser sorteado que qualquer outro subconjunto de tamanho n.

Amostras aleatórias complexas

Estratificação → para garantir representatividade, particionamos a população de forma exaustiva e extraímos AAS de cada partição

Conglomerados \rightarrow particionamos a população de forma exaustiva, extraímos AAS de n partições e coletamos informações de todas as unidades da partição (e vários outros tipos)

Selecionando uma amostra aleatória simples

Basta enumerar todas as unidades de uma população de tamanho N e usar um gerador de números aleatórios para sortear *n* unidades.

Amostragem sem reposição

- Cada unidade só pode ser sorteada uma vez
- Logo, não há independência entre os sorteios e a covariância entre valores sorteados não é zero
- A probabilidade de inclusão para uma unidade é r/N

Amostragem com reposição

- Cada unidade pode ser sorteada mais de uma vez
- $lue{}$ Independência entre sorteios e a covariância é zero ightarrow mais fácil de lidar matematicamente, por isso é preferido
- A probabilidade de inclusão para uma unidade é $1-(1-\frac{1}{N})^n$

AAS no R com slice sample()

Para sortear n linhas:

```
sem reposicao.df <- voos.df %>%
                      slice sample(n = 1000, replace = FALSE)
com reposicao.df <- voos.df %>%
                      slice sample(n = 1000, replace = TRUE)
```

Para sortear uma proporção p das linhas:

```
sem reposicao.df <- voos.df %>%
                      slice sample(prop = 0.01, replace = FALSE)
com reposicao.df <- voos.df %>%
                      slice_sample(prop = 0.01, replace = TRUE)
```

Cuidado!

Não confundam amostragem aleatória com tratamento aleatório

- Amostragem aleatória → como selecionamos as unidades que participarão do estudo
- Tratamento aleatório → como alocamos o tratamento em estudos experimentais de causalidade

Ambos são fonte de incerteza sobre nossas estimativas, mas podem ou não ser combinados.

Recapitulação

Introdução

Amostragem

Fundamentos de probabilidade

Distribuições de probabilidade e variáveis aleatórias

Distribuições amostrais

Próxima aula

O que é probabilidade?

Interpretação clássica

$$P(A) = \frac{N_A}{N} = \frac{eventos}{espacoamostral}$$

Frequências relativas

$$P(A) \approx \frac{n_A}{n}, \quad n \to \infty$$

(Há também interpretações subjetivas ou bayesianas)

Espaço amostral

É o conjunto de todos os possíveis resultados aleatórios

- Pode ser contável ou não, infinito ou não
- **Q**ualquer subconjunto A de Ω é um *evento*

Exemplo: qual o espaço amostral para o lançamento de dois dados?

$$\Omega = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$$

Exemplos

Para o lançamento de dois dados, qual a probabilidade de...

- Ambos caírem no número 6?
- Ambos caírem em números ímpares?
- A soma de ambos ser maior do que 9?
- O produto de ambos ser menor do que 6?

Exemplos

Para o lançamento de dois dados, qual a probabilidade de...

- Ambos caírem no número 6?
- Ambos caírem em números ímpares?
- A soma de ambos ser maior do que 9?
- O produto de ambos ser menor do que 6?

Respostas:

- P(6,6) = $\frac{1}{36} \approx 3\%$
- $P(I,I) = \frac{9}{36} = 25\%$
- P(soma > 9) = $\frac{6}{36} \approx 17\%$
- P(produto < 6) = $\frac{10}{36} \approx 28\%$

Regras básicas de probabilidade

$$0 \le P(A) \le 1$$
, $A \subseteq \Omega$

$$P(\Omega) = 1$$

$$P(A^c) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

Nossa turma tem 29 alunos. Qual a probabilidade de que pelo menos dois de vocês tenham a mesma data de aniversário?

Nossa turma tem 29 alunos. Qual a probabilidade de que pelo menos dois de vocês tenham a mesma data de aniversário?

Probabilidade de ninguém compartilhar aniversário:

$$P(A^c) = \frac{365}{365} \frac{364}{365} \frac{363}{365} \dots \frac{337}{365} = \frac{365 \cdot 364 \cdot 363 \cdot \dots \cdot 337}{365^{29}} \approx 31.9\%$$

Nossa turma tem 29 alunos. Qual a probabilidade de que pelo menos dois de vocês tenham a mesma data de aniversário?

Probabilidade de ninguém compartilhar aniversário:

$$P(A^c) = \frac{365}{365} \frac{364}{365} \frac{363}{365} \dots \frac{337}{365} = \frac{365 \cdot 364 \cdot 363 \cdot \dots \cdot 337}{365^{29}} \approx 31.9\%$$

Logo, probabilidade de que alguém compartilhe:

$$P(A) = 1 - P(A^c) = 1 - 0.319 \approx 68.1\%$$

Usando o R para calcular:

```
alunos <- data.frame(id = seq(1:29))</pre>
alunos <- alunos %>% mutate(dias unicos = 365 - id + 1)
num_eventos <- prod(alunos$dias unicos)</pre>
espaco amostral <- 365^nrow(alunos)
print(1 - num eventos / espaco amostral) # Prob(A)
## [1] 0.6809685
```

(Para quem se interessar, há uma fórmula geral)

Probabilidade condicional

Para dois eventos quaisquer, $A \in B$, sendo P(B) > 0, definimos a probabilidade condicional de A dado B como:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Exemplo: um casal tem dois filhos. Sabemos que um deles é homem. Qual a probabilidade do outro também ser homem?

$$\Omega = \{(H, H), (H, M), (M, H)\}$$

$$P(A|B) = \frac{1}{3}$$

Exercício

Problema de Monty Hall ou da Porta da Esperança

Trocar de porta ou não? Quais as probabilidades?

Solução visual

Vence se trocar $\to \frac{1}{3}0 + \frac{1}{3}1 + \frac{1}{3}1 = \frac{2}{3} \approx 66\%$

Vence se $n\tilde{a}o$ trocar $\rightarrow \frac{1}{3}1 + \frac{1}{3}0 + \frac{1}{3}0 \approx 33\%$

Solução por probabilidades condicionais

Teorema de Bayes

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Teorema de Bayes

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Seja A o evento em que o carro está na porta 1 e B o evento em que ele abre a porta 2. Como selecionamos a porta 1, P(A|B) é a nossa probabilidade de vitória se não trocarmos.

Temos P(A) = 1/3 e P(B|A) = 1/2. Só precisamos de P(B), depois é fácil:

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)} = \frac{(1/3)(1/2)}{(1/2+0+1)/3} = \frac{1/6}{1/2} = \frac{1}{3} \approx 33\%$$

Logo, se trocarmos, a probabilidade de vitória é $1 - \frac{1}{3} \approx 66\%$.

Independência

Vimos que $P(A \cap B) = P(A) \cdot P(B|A)$ e, de modo equivalente, $P(A \cap B) = P(B) \cdot P(A|B)$, certo? Mas se os eventos forem **independentes** o cálculo fica mais simples.

Definição de independência

$$P(A \cap B) = P(A) \cdot P(B)$$

Ou seja: P(A|B) = P(A) e P(B|A) = P(B).

Esse é um conceito **crucial** para inferência estatística porque facilita muitos cálculos.

Recapitulação

Introdução

Amostragem

Fundamentos de probabilidade

Distribuições de probabilidade e variáveis aleatórias

Distribuições amostrais

Próxima aula

Introdução

Cada evento ou observação de uma variável aleatória gera resultados variáveis que podem ser resumidos em probabilidades.

Ou seja, variáveis aleatórias possuem distribuições de probabilidade que associam valores à sua probabilidade de ocorrência.

Variáveis aleatórias podem ser discretas ou contínuas.

Variáveis aleatórias discretas

Uma VA discreta é uma variável que assume um número finito ou "contável" de valores.

Seja p(x) = p(X = x) a probabilidade de um resultado x para a variável X. Ou seja, p(x) é a **função de distribuição de probabilidade** da variável X. Então:

$$0 \le p(x) \le 1$$

$$\sum p(x) = 1$$

A função de distribuição acumulada é dada por $P(x) = P(X \le x)$

Exemplo com dado não viciado

X	p(x)	P(x)
1	1/6	1/6
2	1/6	2/6
3	1/6	3/6
4	1/6	4/6
5	1/6	5/6
6	1/6	6/6

Exemplo de Agresti 2018, p. 70

```
agresti tab41.df <-
  data.frame(num_filhos = c(0, 1, 2, 3, 4, 5),
             prob = c(.01, .03, .60, .23, .12, .01)
print(agresti tab41.df, row.names = FALSE)
    num filhos prob
##
##
             0 0.01
             1 0.03
##
             2 0.60
##
             3 0.23
##
##
             4 0.12
             5 0.01
##
```

Exemplo de Agresti 2018, p. 70

Média, variância e desvio-padrão de uma VA discreta

Suponha uma VA discreta X com valores finitos $x_1, x_2, ... x_N$, cada um com probabilidade p_i :

Valor médio ou esperança matemática

$$E(X) = \mu = \sum_{i=1}^N x_i p_i$$

Variância

$$Var(X) = E[(X - \mu)^2] = \sum_{i=1}^{N} p_i (x_i - \mu)^2$$

Lembrem-se que $sd = \sqrt{var}$

Exemplo de Agresti 2018, p. 70

```
with(agresti tab41.df, descr(num filhos,
                          stats = c('mean', 'sd'),
                          weights = 100*prob)
## Weighted Descriptive Statistics
## agresti tab41.df$num filhos
## Weights: 100 * prob
## N: 6
##
##
                num filhos
## -----
                2.45
##
          Mean
        Std.Dev
                0.82
##
```

Distribuição uniforme discreta

 $X \sim U(a,b)$, no caso de variáveis discretas, significa que cada valor inteiro entre a e b ocorre com a mesma probabilidade, dada por:

$$p(x) = \frac{1}{b-a+1}, \qquad x = a, a+1, \ldots, b$$

O valor esperado a variância são:

$$E(X) = \frac{1}{b-a+1} \sum_{i=a}^{b} i = \frac{a+b}{2}$$

$$Var(X) = E[X^2] - E[X]^2 = \frac{(b-a+1)^2 + 1}{12}$$

Distribuição uniforme discreta

```
# Cria uma sequencia uniforme discreta
dunifd \leftarrow seq(from = 42, to = 82, by = 1)
# Objetos com o numero de valores, minimo e maximo
n <- length(dunifd); a <- min(dunifd); b <- max(dunifd)</pre>
# Valor esperado (media)
mean(dunifd)
(a + b) / 2
# Variancia (observem a discrepancia!)
var(dunifd)
(n^2 + 1) / 12
## [1] 62
## [1] 62
## [1] 143.5
## [1] 140.1667
```

Distribuição de Bernoulli

Uma variável aleatória de Bernoulli, $X \sim Ber(p)$, assume apenas os valores 0 e 1:

$$p(x = 0) = 1 - p$$
, $p(x = 1) = p$

O valor esperado e a variância são:

$$E[X] = \sum x_i p_i = (1-p) \cdot 0 + p \cdot 1 = p$$

$$Var(X) = E[X^2] - E[X]^2 = p - p^2 = p(1 - p)$$

Distribuição de Bernoulli

A variância de uma VA Bernoulli depende apenas do parâmetro p, que estabelece o percentual de sucesso. Qual p maximiza a variância?

Distribuição de Bernoulli

A variância de uma VA Bernoulli depende apenas do parâmetro p, que estabelece o percentual de sucesso. Qual p maximiza a variância?

```
bernvar.df <- data.frame(p = seq(from = 0, to = 1, length.out = 1001))
bernvar.df <- bernvar.df %>% mutate(varp = p * (1 - p))
qplot(data = bernvar.df, x = p, y = varp, geom = 'line')
```


Variáveis aleatórias contínuas

Uma VA contínua pode assumir infinitos valores, sendo impossível atribuir probabilidades específicas a cada valor. Nesse caso, atribuímos probabilidade a intervalos, e a probabilidade do intervalo que contém todos os valores possíveis é igual a 1.

Em vez de um histograma, a representação visual é uma curva contínua de densidade, e as probabilidades representam determinada área sob a curva.

Distribuição uniforme contínua

Se $X \sim U(a, b)$:

$$PDF \rightarrow f(x; a, b) = \frac{1}{b-a}, \quad paraa \le x \le b$$

O valor esperado não muda em relação a antes, mas a variância sim:

$$E[X] = \int_{a}^{b} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{a+b}{2}$$

$$Var(x) = \frac{(b-a)^2}{12}$$

Distribuição normal $N(\mu, \sigma^2)$

A distribuição normal é simétrica, com formato de sino, caracterizada pela média μ e pelo variância σ^2 . Sua densidade é dada por:

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)}$$

Exemplos da vida real

Muitos fenômenos observáveis têm distribuição (aproximadamente) normal, como:

- Peso
- Altura
- Pressão sanguínea
- Temperatura
- Desempenho em provas
- Tamanhos de sapatos
- etc

Distribuição normal $N(\mu, \sigma^2)$

Propriedades úteis dessa distribuição de probabilidade:

Função pnorm() no R

```
media <- 100
dp <- 20
ate menos1dp <- pnorm( media - dp, mean = media, sd = dp)</pre>
ate 1dp <- pnorm( media + dp, mean = media, sd = dp)
ate 1dp - ate menos1dp
## F17 0.6826895
```

Função pnorm() no R

```
media <- 100
dp <- 20
ate menos1dp <- pnorm( media - dp, mean = media, sd = dp)
ate 1dp <- pnorm( media + dp, mean = media, sd = dp)
ate 1dp - ate menos1dp
## [1] 0.6826895
media <- pi
dp <- 0.13
ate menos2dp <- pnorm( media - 2*dp, mean = media, sd = dp)
ate 2dp \leftarrow pnorm(media + 2*dp, mean = media, sd = dp)
ate 2dp - ate menos2dp
## [1] 0.9544997
```

Função qnorm() no R

```
qnorm(.025, mean = 0, sd = 1)
qnorm(.975, mean = 0, sd = 1)
qnorm(.500, mean = 0, sd = 1)
## [1] -1.959964
## [1] 1.959964
## [1] 0
```

Distribuição normal padronizada N(0, 1)

Como a área sob a curva é constante em múltiplos de σ , podemos padronizar uma curva normal para obter os z-score dos valores:

$$z = \frac{x - \mu}{\sigma}$$

Logo, $Z \sim N(0, 1)$

Exercício

Suponha que a altura de homens adulto segue uma distribuição normal com média de 1.80m e desvio-padrão de 10cm:

$$X \sim N(1.80, 0.01)$$

- 1. Qual a probabilidade de que um homem sorteado aleatoriamente tenha menos de 1.80?
- 2. Qual a probabilidade de que ele tenha entre 1.60m e 1.80m?
- 3. Qual a probabilidade de que ele tenha mais de 2m?
- 4. Qual a altura mínima para estar no 1% mais alto?

Exercício

```
# 1. Probabilidade de ter ate 1.8 = Pr(X < 1.80)
pnorm(1.80, mean = 1.8, sd = .1)
# 2. Probabilidade de ter mais de 2m = 1 - Pr(X < 2)
1 - pnorm(2, mean = 1.8, sd = .1)
## [1] 0.5
## [1] 0.02275013
```

Exercício

```
# 1. Probabilidade de ter ate 1.8 = Pr(X < 1.80)
pnorm(1.80, mean = 1.8, sd = .1)
# 2. Probabilidade de ter mais de 2m = 1 - Pr(X < 2)
1 - pnorm(2, mean = 1.8, sd = .1)
## [1] 0.5
## [1] 0.02275013
# 3. Probabilidade de ter entre 1.5 e 1.6 =
# Pr(X < 1.8) - Pr(X < 1.6)
pnorm(1.8, mean=1.8, sd=.1) - pnorm(1.6, mean=1.8, sd=.1)
# 4. Altura minima para o top 1\% = Pr(X < y) = .99
qnorm(0.99, mean = 1.8, sd = .1)
## 「17 0.4772499
## F17 2.032635
```

Recapitulação

Introdução

Amostragem

Fundamentos de probabilidade

Distribuições de probabilidade e variáveis aleatórias

Distribuições amostrais

Próxima aula

```
# Qual a distancia media percorrida pelos voos que chegam a NY?
voos.df %>% descr(var = distance, stats = c('n.valid', 'mean'),
                 transpose = TRUE, headings = FALSE)
##
##
                     N.Valid Mean
        distance 336776.00 1039.91
##
```

```
# Qual a distancia media percorrida pelos voos que chegam a NY?
voos.df %>% descr(var = distance, stats = c('n.valid', 'mean'),
                 transpose = TRUE, headings = FALSE)
##
##
                     N.Valid Mean
        distance 336776.00 1039.91
##
# Em \ uma \ AAS \ com \ n = 100, que valor medio obtemos?
slice sample(voos.df, n = 100) %>%
 descr(var = distance, stats = c('n.valid', 'mean'),
       transpose = TRUE, headings = FALSE)
##
##
                   N. Valid Mean
        distance 100.00 1041.80
##
```

```
# F se tirarmos zilhoes de amostras?
dist obs <- as.vector(voos.df$distance)</pre>
amostras <- replicate(50000, mean( sample(dist_obs, size = 100) ) )</pre>
amostras <- data.frame(media = amostras)</pre>
```

```
# F se tirarmos zilhoes de amostras?
dist obs <- as.vector(voos.df$distance)</pre>
amostras <- replicate(50000, mean( sample(dist_obs, size = 100) ) )</pre>
amostras <- data.frame(media = amostras)</pre>
amostras %>% descr(stats = c('n.valid', 'mean', 'q1', 'med', 'q3'),
                  headings = FALSE, transpose = TRUE)
##
                 N.Valid Mean Q1
##
                                               Median
                                                             03
        media 50000.00 1039.67 989.78 1038.29 1088.45
##
```

```
qqplot(amostras, aes(x = media)) +
 geom_histogram(aes(y=..density..), bins = 1000) +
 geom_density(alpha = .2, fill = 'indianred1') +
  geom vline(aes(xintercept = mean(media)), color = 'darkred') +
 theme_minimal()
```


Distribuição amostral

Definição

A distribuição amostral de uma estatística é a distribuição de probabilidade que especifica as probabilidades para os valores que a estatística pode assumir.

A distribuição amostral diz respeito à variabilidade da estatística de interesse em diferentes amostras de mesmo tamanho.

Ponto central: nossa amostra observada é sempre apenas uma entre muitas possíveis.

Logo, uma estatística amostral é uma variável aleatória porque se baseia em amostras aleatórias de uma população. Por isso, ela possui uma distribuição de probabilidade, que é a distribuição amostral.

Erro padrão

Definição

O erro padrão é o desvio padrão da distribuição amostral da estatística.

■ Imagine que sorteamos zilhões de amostras com tamanho n e calculamos uma estatística (por exemplo, a média). Se criarmos uma variável com o valor da estatística em cada amostra, o erro padrão é o desvio padrão dessa variável.

```
sd(amostras$media)
## F17 73.26985
```

O erro padrão de uma estatística nos diz a variabilidade dela em diferentes amostras de mesmo tamanho.

Teorema Central do Limite

Considere uma amostra aleatória de tamanho n de uma variável com média populacional igual a μ e desvio padrão igual a σ .

A distribuição amostral da média amostral \bar{x} tem (aproximadamente) a forma de uma distribuição normal com parâmetros:

$$\mu_{\bar{x}} = \mu$$
 $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

O TCL vale para todas as VA, independentemente da sua distribuição: a única coisa que muda é que distribuições mais assimétricas exigem amostras maiores (n > 30) para aproximar melhor uma distribuição normal

Figura 10.5: Histogramas correspondentes às distribuições amostrais de \overline{X} para amostras extraídas de algumas populações.

Vamos testar empiricamente:

```
# Obtendo o erro padrao a partir
# do parametro conhecido
sd(voos.df$distance) / sqrt(100)
## \[ 1 \] \[ 73.3233
# Estimando o erro padrao pelo o SD
# das zilhoes de amostras
sd(amostras$media)
## [1] 73.26985
```

Por que isso importa?

Como vimos, já sabemos as probabilidades associadas a uma distribuição normal: a estatística calculada a partir de uma única amostra tem probabilidade de...

- \sim 68% de ficar entre ($\mu-\sigma,\mu+\sigma$)
- \sim 95% de ficar entre (μ 2 σ , μ + 2 σ)
- \sim 99% de ficar entre (μ 3 σ , μ + 3 σ)

Nas próximas aulas, vamos usar isso para quantificar a incerteza das nossas estimativas.

Distribuição amostral de outras estatísticas

O TCL pode ser estendido para várias outras estatísticas, mas nem sempre a conclusão é tão geral e não necessariamente a distribuição amostral é normal. Por exemplo:

Variância

Distribuição amostral é um múltiplo da distribuição χ^2 (qui-quadrado) quando na população a variável tem distribuição normal.

Mediana

Distribuição amostral assintoticamente normal com média centrada na mediana e $var(mediana) = \pi \sigma^2/2n$.

O tamanho das amostras e o erro padrão

Como dito, o erro padrão nos diz a variabilidade amostral da estatística.

No caso da média amostral, o erro padrão é dado por σ/\sqrt{n} , em que n é o tamanho da amostra. Ou seja, para uma variável x qualquer, a variabilidade das nossas estimativas de \bar{x} depende de:

- Desvio padrão de x na população: quanto maior, maior a variabilidade de \bar{x} (e vice-versa)
- O tamanho n da nossa amostra: quanto maior a amostra, menor a variabilidade de \bar{x} (e vice-versa)

Ou seja, o erro padrão diminui conforme *n* aumenta, mas a relação **não é** linear.

Exemplo

Suponha uma variável $X \sim N(1000, 10, 000)$, ou seja, com valor esperado μ = 1000 e desvio padrão σ = 100.

Queremos estimar \bar{x} . A tabela abaixo calcula os parâmetros da distribuição amostral de \bar{x} para amostras de diferentes tamanhos:

n	$\mu_{ar{\mathtt{x}}}$	$\sigma_{ar{x}}$
10	1,000	31.6
50	1,000	14.1
100	1,000	10.0
500	1,000	4.5
1,000	1,000	3.2
10,000	1,000	1.0
100,000	1,000	0.3

Exemplo no R

Se alquém quiser ver para crer, podemos simular essas distribuições. Por exemplo, vamos simular a distribuição amostral com n = 100:

```
# Simulando para n = 100
sim n10 <- replicate(5000, rnorm(n = 100, mean=1000, sd=100))
medias n10 <- colMeans(sim n10)</pre>
mean(medias n10)
## [1] 999.8395
sd(medias n10)
## F17 9.846347
```

Exemplo eleitoral

Pense no segundo turno de uma eleição em que 53% votam no candidato A e 47% votam no candidato B. Como é a distribuição amostral para n = 250 e n = 2,000?

```
# Amostras com n = 250
sim n250 \leftarrow replicate(5000, rbernoulli(250, p = 0.53))
sim_n250.df \leftarrow data.frame(amostra = 'n = 250',
                            pct votos A = colMeans(sim n250))
# Amostra com n = 2500
sim n2500 \leftarrow replicate(5000, rbernoulli(2500, p = 0.53))
sim n2500.df \leftarrow data.frame(amostra = 'n = 2500',
                             pct_votos_A = colMeans(sim n2500))
# Junta os dois data frames
sim n.df <- rbind(sim n250.df, sim n2500.df)</pre>
```

Exemplo eleitoral

```
gqplot(sim n.df, aes(x = pct votos A, fill = amostra)) +
 theme minimal(base size = 22) + geom density(alpha = .1) +
 geom vline(xintercept = 0.53, color = 'red')
```


Exemplo eleitoral

```
sim n.df %>%
 group by(amostra) %>%
    summarise(n = n(),
              media = mean(pct votos A),
              p02.5 = quantile(pct votos A, prob = 0.025),
              p50 = quantile(pct votos A, prob = 0.500),
              p97.5 = quantile(pct votos A, prob = 0.975))
## # A tibble: 2 x 6
##
    amostra
                 n media p02.5 p50 p97.5
##
    <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
## 1 n = 250 5000 0.531 0.468 0.532 0.596
## 2 n = 2500 5000 0.530 0.511 0.53 0.550
```

Determinação do tamanho da amostra

Queremos estimar a média populacional μ com base na média amostral \bar{x} para uma amostra de tamanho n de modo que $P(-\epsilon < \bar{x} - \mu < \epsilon) > \gamma$

- \bullet é a margem de erro que estamos dispostos a tolerar
- \mathbf{r} \mathbf{r}

A distribuição amostral de \bar{x} é $N(\mu, \sigma^2/n)$. Logo, a de $\bar{x} - \mu$ é $N(0, \sigma^2/n)$. Para a normal padrão, basta dividir por $\sigma/\sqrt(n)$.

$$P(-\epsilon \le \bar{x} - \mu \le \epsilon) = P(-\frac{\sqrt{n}\epsilon}{\sigma} \le Z \le \frac{\sqrt{n}\epsilon}{\sigma}) \approx \gamma$$

Nós escolhemos γ , então obtemos z_x da N(0, 1), tal que $P(-z_x < Z < z_x) = \gamma$:

$$\frac{\sqrt{n}\epsilon}{\sigma} = z_x \to n = \frac{\sigma^2 z_x^2}{\epsilon^2}$$

Continuando o exemplo eleitoral

Margem de erro escolhida: 2 pontos percentuais (ϵ = 0.02)

Grau de confiança: 95% (γ = 0.95)

Ou seja, se fizermos várias pesquisas, nosso resultado vai estar dentro da margem de erro em 95% delas.

Sabemos que a variância de uma VA Bernoulli atinge o valor máximo quando p = 0.5, de modo que var(x) = p(1 - p) = 0.25. Logo:

$$n = \frac{\sigma^2 z_x^2}{\epsilon^2} = \frac{0.25 \cdot 1.96^2}{0.02^2} \approx 2401$$

Obs: z_x = 1.96 porque, como vimos, 95% da área sob a distribuição normal padrão está entre $\mu - 1.96$ e $\mu + 1.96$.

Continuando o exemplo eleitoral

Para γ = 95%:

ϵ	n
0.03	1,067
0.02	2,401
0.01	9,604
0.005	38,416

Para ϵ = 0.02:

γ	n
90%	1,691
95%	2,401
99%	4,147
99.9%	6,768

Recapitulação

Introdução

Amostragem

Fundamentos de probabilidade

Distribuições de probabilidade e variáveis aleatórias

Distribuições amostrais

Próxima aula

Próxima aula

Atividade

Entrega da atividade #5, que será postada no Google Classroom dia 31/10

Leituras obrigatórias

Agresti 2018, cap. 5

Leituras optativas

Bussab e Morettin 2010 cap. 10 e 11