TEC0001 – Teoria da Computação Videoaula 05 Codificação de Máquinas de Turing

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

Representação de Estruturas Complexas

- Apresentar uma forma de codificar qualquer Máquina de Turing com $\Sigma = \{0,1\}$ em um string binário
- Isto torna possível apresentar uma Máquina de Turing (ou qualquer outra estrutura algébrica semelhante) como uma entrada de uma Máquina de Turing
- A codificação que vamos ver aqui foi retirada do livro de Hopcroft, que utiliza uma definição diferente de Máquina de Turing daquela usada por Sipser

Modificações da Definição de Máq de Turing

- Não há estado de rejeição. As paradas por rejeição são todas por indefinição de δ
- Obrigatoriamente $q_0 \neq q_{AC}$

Seguimos, então, com a codificação :)

Enumeração de elementos

Atribuição de números naturais não nulos a

- estados
- símbolos da fita
- movimentos

Enumeração de Estados

Tendo-se |Q| = r, os estados serão q_1, q_2, \ldots, q_r

- o estado inicial sempre será q_1
- o estado de aceitação sempre será q₂
- não há qualquer outra restrição na ordem dos demais estados

Enumeração de Símbolos e Movimentos

Tendo-se $|\Gamma| = s$, os símbolos da fita serão $\gamma_1, \gamma_2, \ldots, \gamma_s$

- $\gamma_1 = 0$
- $\gamma_2 = 1$
- γ₃ = □
- não há qualquer outra restrição na ordem dos demais símbolos

Os movimentos serão $m_1 = E$ e $m_2 = D$.

Codificação das Transições

Dada uma transição da função programa

$$\delta(q_i,\gamma_j)=(q_k,\gamma_l,m_v)$$

sendo $i, j, k, l, v \in \mathbb{N}$

Tal transição será codificada por

$$0^{i}10^{j}10^{k}10^{l}10^{v}$$

Note que os valores de i, j, k, l e v são todos não nulos, portanto não haverá sequência de 1 consecutivos.

Codificação da Máquina

Uma Máquina de Turing será codificada através da listagem de suas transições.

Sejam C_1, C_2, \ldots, C_n os códigos das transições de δ , então

$$C_1 11 C_2 11 \dots 11 C_{n-1} 11 C_n$$

é um código desta máquina.

$$egin{aligned} \delta(q_1,0) &= (q_3,0,D) \ \delta(q_1,1) &= (q_1,1,D) \ \delta(q_1,\square) &= (q_2,\square,E) \end{aligned}$$

$$\delta(q_1,0) = (q_3,0,D)$$
 $\delta(q_1,1) = (q_1,1,D)$
 $\delta(q_1, ...) = (q_2, ..., E)$
 $\delta(q_3,0) = (q_4,0,D)$
 $\delta(q_3,1) = (q_3,1,D)$
 $\delta(q_4,0) = (q_3,1,E)$
 $\delta(q_4,1) = (q_4,0,E)$
 $\delta(q_4, ...) = (q_2, ..., D)$

•
$$\delta(q_1,0) = (q_3,0,D)$$

•
$$\delta(q_1,1)=(q_1,1,D)$$

•
$$\delta(q_1, \bot) = (q_2, \bot, E)$$

•
$$\delta(q_3,0)=(q_4,0,D)$$

•
$$\delta(q_3,1)=(q_3,1,D)$$

•
$$\delta(q_4,0) = (q_3,1,E)$$

•
$$\delta(q_4,1) = (q_4,0,E)$$

•
$$\delta(q_4, \Box) = (q_2, \Box, D)$$

•
$$\delta(q_1,0) = (q_3,0,D)$$

•
$$\delta(q_1,1)=(q_1,1,D)$$

•
$$\delta(q_1, \Box) = (q_2, \Box, E)$$

•
$$\delta(q_3,0)=(q_4,0,D)$$

•
$$\delta(q_3,1)=(q_3,1,D)$$

•
$$\delta(q_4,0) = (q_3,1,E)$$

•
$$\delta(q_4,1)=(q_4,0,E)$$

•
$$\delta(q_4, \Box) = (q_2, \Box, D)$$

• $\delta(q_1,0) = (q_3,0,D)$	010100010100
• $\delta(q_1,1) = (q_1,1,D)$	010010100100
• $\delta(q_1, \square) = (q_2, \square, E)$	01000100100010
• $\delta(q_3,0)=(q_4,0,D)$	000101000010100
• $\delta(q_3,1) = (q_3,1,D)$	0001001000100100
• $\delta(q_4,0) = (q_3,1,E)$	000010100010010
• $\delta(q_4,1) = (q_4,0,E)$	0000100100001010
• $\delta(q_4, \Box) = (q_2, \Box, D)$	000010001001000100

A seguinte palavra binária

corresponde a uma codificação de Máquina de Turing?

• Localização das subpalavras 11

• Localização das subpalavras 11

- Localização das subpalavras 11
- Localização das subpalavras 010

- Localização das subpalavras 11
- Localização das subpalavras 010
- Montagem da máquina

$$\begin{array}{lll} 01010010100 & \delta(q_1,0) = (q_2,0,D) \\ 01001000100100 & \delta(q_1,1) = (q_3,1,D) \\ 00010100010100 & \delta(q_3,0) = (q_3,0,D) \\ 0001001000100010 & \delta(q_3,1) = (q_3,1,D) \\ 0001001000100010 & \delta(q_3, \square) = (q_4, \square, E) \\ 000010101001010 & \delta(q_4,0) = (q_2,0,D) \end{array}$$

•
$$\delta(q_1,0) = (q_2,0,D)$$

•
$$\delta(q_1, 1) = (q_3, 1, D)$$

•
$$\delta(q_3,0) = (q_3,0,D)$$

•
$$\delta(q_3, 1) = (q_3, 1, D)$$

•
$$\delta(q_3, \bot) = (q_4, \bot, E)$$

•
$$\delta(q_4,0) = (q_3,1,E)$$

•
$$\delta(q_1,0) = (q_2,0,D)$$

•
$$\delta(q_1, 1) = (q_3, 1, D)$$

•
$$\delta(q_3,0) = (q_3,0,D)$$

•
$$\delta(q_3, 1) = (q_3, 1, D)$$

•
$$\delta(q_3, _) = (q_4, _, E)$$

•
$$\delta(q_4,0) = (q_3,1,E)$$

Considerações

- Restrições no modelo da Máquina de Turing aqui apresentada não são real problema
- Uma Máquina de Turing terá diversos códigos correspondentes
- Outras estruturas (grafos, autômatos finitos, redes de Petri, etc) são codificadas de forma semelhante
- Máquina Universal: recebe outra máquina como entrada e consegue simular a máquina recebida

Máquina Universal

