Формулировка задачи

Сосуд для жидкости представляет собой коническую воронку (усечённый конус, поставленный на малый круг в основании)

с углом раствора α и отверстием для слива площадью σ , расположенным на дне воронки.

Истечение жидкости из отверстия описывается дифференциальным уравнением:

(1)
$$\begin{cases} \frac{du}{dx} = \frac{-0.6 \sqrt{2q} 6}{(t_q d_2)^2 \sqrt{1} \cdot u^{3/2}} \\ u(0) = u_0 \end{cases}$$

Это уравнение с разделяющимися переменными. Решим его

5- площадь отверетия d - non pactbopa U(x) - Buscota cronda Hungkoetu B MOMENT BREMERY X Vo(x0) - Boscota eronda Hugkoetu B MOMENT BROMEHU X0=0 - усхорение свободного падениих

Ободнатим
$$\frac{-0.6\sqrt{29}G}{(49\%)^2JJ} = A$$
, Т.К. ЭТО КОНЕГОНТА

Torga $\frac{du}{dx} = \frac{A}{u^{\frac{3}{2}}}$
 $u^{\frac{3}{2}}du = Adx$
 $\frac{2}{5}u^{\frac{5}{2}} = Ax + C$

Подетавим натальное усиових
$$u(o)=u_o$$
: $C=\frac{2}{5}u^{\frac{5}{2}}$

Полутими общее решение: $\frac{2}{5}u^{\frac{5}{2}}=\frac{-0.6\sqrt{29}6}{(t_g\sqrt{4})^2\Pi}x+\frac{2}{5}u^{\frac{5}{2}}$

$$u^{\frac{5}{2}}=\frac{-1.5\sqrt{29}6}{(t_g\sqrt{4})^2\Pi}x+u^{\frac{5}{2}}$$

$$u=\left(\frac{-1.5\sqrt{29}6}{(t_g\sqrt{4})^2\Pi}x+u^{\frac{5}{2}}\right)^{\frac{2}{5}}$$
- оналитическое решение

Анализ параметров. Физический смысл.

Если упол раствора $\frac{1}{2}$ отень маленький, то $\left(\frac{1}{2}g^{-\frac{1}{2}}\right)^2$ стремитах к 0. Всиграния этого, в соответствии с $\frac{1}{2}g^{-\frac{1}{2}}$, те скорость истечения нидкости также стремита к 0

Есии плоугадь отверетия б отень большале , то в соответствии с DY (1), du , т.е. схорость истечения ницекости отень большаля.

Притен d и 6 не зовисет друг от друга, т.е при большом d монню выбрать и маленькое, и большое 6 U HOOSONOT:

при большом б монню выбрать и маленькое, и большое Х

Формулы численных методов

 \mathcal{D}_{ng} нахонидения решения \mathcal{D}_{y} (1) был выбран явный метод Рунге- кутта 4-го лоридка Есши в \mathcal{D}_{y} (1) u(x)- тотное решение, то здесь ввели переободнатение, теперь $\mathcal{G}(x)$ - тисиенное решение x_{0} , \mathcal{G}_{0} = 40 x_{0} , x_{0} , x_{0} = x_{0} , x_{0} = x_{0} , x_{0} = x_{0} =

Контроль локальной погрешности за счёт использования двойного счета с половинным шагом

 $\mathbb{J}_{\mathbf{y}}$ сть $(\mathbf{x}_n, \mathcal{G}_n)$ - текущам тогка тисменной траектории

$$(x_n, \mathcal{O}_n) \rightarrow (x_{n+1}, \bigvee_{n+1})$$
 ucnone 3 obaww war h.
 $(x_n, \mathcal{O}_n) \rightarrow (x_{n+1/2}, \mathcal{O}_{n+1/2})$ ucnone 3 obaww war $1/2$
 $(x_{n+1/2}, \mathcal{O}_{n+1/2}) \rightarrow (x_{n+1}, \widetilde{\mathcal{O}}_{n+1})$

But eucnum Kohtponbry to becute $S = \frac{|V_{n+1} - \widetilde{V}_{n+1}|}{2^p-1}$, p - no hagok metoga

Выбираем маший параметр контроле покашьной погрешности в >0

ecuu $\frac{\mathcal{E}}{2^{p+4}} \leqslant |S| \leqslant \mathcal{E}$, to note human totey (x_{n+1}, V_{n+1}) , note on the warm $h_{n+4} = h_n$ ecuu $|S| \leqslant \frac{\mathcal{E}}{2^{p+4}}$, to note human totey (x_{n+1}, V_{n+1}) , note on the warm $h_{n+4} = 2h_n$ ecuu $|S| > \mathcal{E}$, to neperturobaen totey (x_{n+4}, V_{n+4}) c warm $h_n = \frac{h_n}{2}$.

Критерии остановки счета

Последням вычисименам тотка чисменной трасьтории определиетия усиовимями:

- 1) стёт с всяходом за знатение и искомой орункуши U(x) снизу (в соответствии с оризитеским смысим задаги: уровень стопба ниидкости не моннет быть отницютельный есии на шаге с номером N $\mathcal{G}_N \in [u-\mathcal{E}_{\Gamma_p}, u]$, вызисияем точку (x_N, \mathcal{G}_N) и прекращаем стёт полутици, тто чисиеннам траектории вышиа за знатение и "снизу" с погрешностью не более \mathcal{E}_{Γ_p} .
- 2) стёт с огранитением на макашианьное тисио шагов N_{max} буду испольдовать в Согетонии с 1) вариантом.

Haugen chaze naponethol auctenon (d, d) c HuR, nocnothum, ognognatho nu onu onpegenonorce npu в веденных параметрах. Рассмотрим осевое сетение конуса

1) tg d= R 2) T.K. G Boreversetter Kak $G = JI(DE)^2$, to $DE = \sqrt{JJ}$ 3) \triangle ABC \bigcirc \triangle CDE \Rightarrow $\frac{R}{DE} = \frac{H}{H-B}$, tge B = DC U_3 2) u 3) nonytaem: $\frac{R}{H} = \frac{\sqrt{6/J}}{H-b}$, Ho $b = \frac{DE}{t_0 d} = \frac{\sqrt{6/J}}{t_0 d}$ C yearon 1) nonyraen: $t_g d = \frac{\sqrt{G/J}}{H - \sqrt{G/J}}$ Преобразуем: H = 256/Л (*) Uz 1) nonytaem, tmo

Uz (*), (**) получаем, тто при заданных знатениихх d u б, R и H вышеляются единственным образом