Problemset 4, Econ 980w, Spring 2019: Distributional decompositions

1 By hand exercises

Suppose you have the following data-set on education (dropout, high school, college), immigrant status (migrant, native), and wages per hour.

Education	Migrant	Wage
D	M	4
D	M	5
D	N	6
HS	M	5
$_{ m HS}$	M	8
$_{\mathrm{HS}}$	N	6
$_{ m HS}$	N	7
$_{ m HS}$	N	10
C	M	14
$^{\mathrm{C}}$	N	12
C	N	18

- 1. What is the mean wage of migrants, and of natives? What is the median wage of either group?
- 2. Suppose migrants were to have the same educational distribution as natives. What would be their mean wage? Their median wage?

2 R exercises

- 1. Suppose X can take on 4 values, depending on an individual's gender and on whether he/she graduated from college. Suppose you have matrices A^1 and A^0 completely describing $P^1(X,D)$ and $P^0(X,D)$, as well as matrices B^1 and B^0 describing $E^t[Y|X,D]$. What is the dimension of these matrices? Pick some numbers for these matrices A^t and B^t (be careful to make sure that probabilities add up to 1).
- 2. Write a Matlab script that calculates θ and $E^*[Y]$ based on the matrices A^t and B^t . Where possible, do calculations by matrix multiplication rather than using loops.

3. Next, generate random samples from the distributions $P^t(Y, D, X)$ under the same assumptions, that is with distributions of X and D determined by some matrices A and B that you picked, and for values Y drawn from the distributions

$$Y|X, D \sim N(E^t[Y|X, D], 1).$$

Export a dataset containing draws of the variables t,Y,X,D, and give it to a classmate.

4. Use the data you got from your classmate to estimate $E^*[Y]$, building on the code you wrote for 1. Compare your estimate to the number they got in step one based on the true matrices A and B.