

Minnesota Tribal Coalition

Total Electricity Consumption:

Households- 1,440,000 kWh/yr

Tribal Council Offices- 640,000 kWh/yr

Total Consumption: 5,120,000 kWh/yr

Annual Cost: \$358,400.00

Proposed Grand Portage Project

- Approximately 1MW of Wind to power community center and hotel/casino
- •20% Hydrogen backup (electrolysis, hydrogen storage, and fuel cell) located at community center
- All electricity production to be consumed by the reservation
- Community Education

Storing Wind Generated Electricity With Hydrogen

"The Computer Model"

- •Calculates wind turbine capacity required to meet any given electricity demand
- •Allows users to experiment with various levels of hydrogen backup capacity: calculates required scale of electrolysis, hydrogen storage, and fuel cells
- Calculates costs associated with above system configurations
- Compares these costs with conventional electricity sources

Analysis of Grand Portage Wind Data

- Calculated the daily average wind speed using 365 days of data, and sorted these data points into 'wind bins'.
- Calculated the power density (PD) for each 'wind bin' PD=.5 pV3 (units w/m2).
- Corrected for frequency of occurrence and summed across all 'wind bins' PD=221.22 w/m2
- Corrected for hub height and wind sheer Adjusted PD=442.44 w/m2
- Calculated ouput/m2= 3875.74kWh/yr/m2

Wind Resource:

Wind Production:

Turbine Site: Mt.Maud

Wind Data at 60 ft: MPH-Average 13.8 MPH Class-5 Capacity Factor-.22 Wind Production:

Turbine Site: Mt.Maud

Wind Data at 180 ft: MPH-Average 17.6 MPH Class-6 Capacity Factor-.58

(based on height extrapolated formula)

GP Wind Speed Distribution

GP Wind Distribution

Fig #1. The number of days in each wind speed 'bin'.

Estimated Turbine Revenues

- Turbine Diameter = 54 m
- Swept Area = 2289 m2
- Turbine Output = 8,871,800 kWh/yr
- Expected Efficiency = 25%
- Corrected Output = 2,217,950 kWh/yr
- @ 7cents per kWh = \$155,256.00/yr

Grand Portage Model Output: 2 Scenarios

No Hydrogen Backup

	<u>Capacity</u>	<u>Cost</u>
Wind	1000 kW	\$946,959
<u>Electrolysis</u>	0	\$0
Fuel Cell	0	\$0
Total System Cost		\$946,959
Annual Renewable cost		\$66,287
Annual Utility cost		\$121,000

20% Hydrogen Backup

	<u>Capacity</u>	<u>Cost</u>
Wind	1095 kW	\$1,041,000
<u>Electrolysis</u>	10.87 Nm3/hr	\$173,950
Fuel Cell	23 kW	\$133,280
Total System Cost		\$1,348,000
Annual Renewable cost		\$108,230
Annual Utility cost		\$121,000

Estimated Turbine Costs Fuhrlander FL 1000 (1 MW)

- Turbine, tower, and delivery: \$1.2 million
- Site Preparation:
- Installation: \$400,000.00

Total: \$1.6 million

Remaining Questions for GP Wind

- Agreement with Utility
- Permitting Costs
- Cost of (2 mile) Transmission Line

Major Electricity Consumers:

Regional Tribal Council- 477,320 kWh/yr Circle of Life School- 464,000 kWh/yr Community Center- 300,000 kWh/yr Bingo Hall - 265,000 kWh/yr Casino - 14,982,000 kWh/yr Casino Sign - 87,000 kWh/yr Head Start - 36,000 kWh/yr Health Center - 1,700,000 kWh/yr

Total: 18,311,320 kWh/yr

Annual Cost: \$732,453.00

Chosen Resource

Wind Production:

Wind Data: (based on MN DOC wind maps)

MPH-Average 14 MPH

Class-5

Capacity Factor-.24

Turbine Site: narrowed down to 2 potential sites

Proposed White Earth Project

- •Approximately 600 kW of wind to power the new school, tribal offices, and new community center
- 20% hydrogen backup (electrolysis, hydrogen storage, and fuel cell)
- •All electricity production to be consumed by the reservation
- Community Education

White Earth Model Output: 2 Scenarios

No Hydrogen Storage

	<u>Capacity</u>	Cost
Wind	516 kW	\$521,643
Electrolysis	0	\$0
Fuel Cell	0	\$0
Total System Cost		\$521,643
Annual Renewable		\$45,471
Annual Utility		\$84,500

20% Hydrogen Storage

	<u>Capacity</u>	<u>Cost</u>
Wind	570 kW	\$687,785
Electrolysis	5.65 Nm3/hr	\$90,454
Fuel Cell	11.91 kW	\$71,095
Total System Cost		\$849,334
Annual Renewable		\$66,886
Annual Utility		\$84,500

Biodiesel: The Process

Economics/Material Costs: Production Costs per Liter of Biodiesel

heating	38,000 BTUs	37 cubic ft of natural gas @ .012 cents/ft3	\$.44
methanol		250 ml @ .00145 cents/ml	\$.36
		assume 50% recycle	\$.18
NaOH		6 g @ .00066 cents/gal	\$.004
WVO		Currently free	\$0
Total		(Using \$0.18 methanol figure)	.624

Value of Biodiesel: \$1.50-2.50 liter

Capital Costs: \$.10-.20 cents/liter or \$1,000.00

The Uses

- Biodiesel in your home fuel oil heating furnace:
 - Up to B20 (20% biodiesel 80% fuel oil)
 - No conversion kit necessary
 - New fuel oil furnace approx \$2000
- Modifying you diesel car:
 - \$500 for conversion kit
 - \$1000 for labor
 - Up to B100

Remaining Questions for WE Biodiesel

- #1-Potential Supply of WVO?
 - casino, restaurant, etc.
- #2-Immediate Demand for Biodiesel
 - -current # of diesel vehicles
 - -current # of fuel oil furnaces
- #3-Potential Demand of Biodiesel
 - potential # of diesel vehicles with conversion
 - potential # of fuel oil furnaces

Ethanol

3 Options:

- 1) Corn Starch to Ethanol (Dry Mill)*
 - ➤ Total Capital Cost for 25 Million Gallon Plant = \$27,900,000
- 2) Corn Starch to Ethanol (Wet Mill)
 - ➤ Total Capital Cost for 21 Million Gallon Plant = \$50,000,000
- 3) Corn Stover to Ethanol
 - ➤ Total Capital Cost for 25 Million Gallon Plant = \$136,100,000

*The dry mill process would be the only viable option for White Earth, however with high capital costs and a low rate of return on the ethanol, we would not recommend it.

Total Production Cost per Gallon = \$0.93 (Ethanol Costs Above) + \$0.13 (Labor, Supplies) + \$0.11 (Depreciation of Capitol Costs) - \$0.29 (DDG) - \$.0.20 MN State Subsidy = **\$0.68/gallon**

Total Capitol Cost = \$27,900,000.00

Source: 1999 Study by NREL "Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulose Feedstocks" lbsen & Wooley

Leech Lake

Major Electricity Consumer:

Casino: 2002- 6,027,840 kW/H

2003-6,427,320 kW/H

Annual Cost: \$385,640.00

Wind Resource

Wind Production:

Wind Data:

MPH-10

Class-2

Capacity Factor-.08

Turbine Site: Several other potential sites to be explored

Leech Lake Model Output

No Hydrogen Storage

	Capacity	<u>Cost</u>
Wind	1000 kW	\$951,959
Electrolysis	0	\$0
Fuel Cell	0	\$0
Total System Cost		\$951,959
Annual Renewable cost		\$66,287
Annual Utility cost		\$82,200

Total annual production

1.36 million kWh

(production lower due to small capacity factor (less wind))