Sampling

- · is the multiplication of a signal with a comb-function in the spatial domain
- · a continuous (natural) signal is discretised for representation
- · the distance of the dirac-pulses in the comp defines the sampling rate
 - Continuous function
 - Band-limited Fourier transform
 - · Sampled at discrete points
 - Multiplication with Comb function in space domain
 - Corresponds to convolution in Fourier domain
 - Multiple copies of the original spectrum
 - · Frequency bands overlap?
 - No: good
 - Yes: bad, aliasing

Reconstruction

reconstruct the original frequency band by applying a low-pass filter

- box is optimal reconstruction filter but costly, sinc² as cheaper solution (Artefacts) [sinc² is linear interpolation (triangle function in spatial domain)]

-D distinguish between bad sampling (aliasing) and bad reconstruction

Aliasina Artefacts

- · stair coses (e.g. diagonal line)
- · Moiré Patterns (e.g. aliasing on a cheche-board)
- spatial aliasing
- · cart wheels (moving anti-clochwise in movie) I temporal aliasing

Antialiasina

sources for high frequencies: eclass, silhonettes, discontinuities, illumination

- · pre-filtering: apply low-pass filter on original signal (limit highest frequencies)
- * super-sampling: more samples per pixel -0 doesn't eliminate aliasing $(f_{nq}, shifted)$ -> irregular supersampling

Samplina Patterns

- · regular sampling: N equal distributed samples per pixel
 - -> still cliasing if lines are thinner than a pixel or curvy
- · random sampling: Nrandom distributed samples per pixel
 - replaces aliasina by noise -> usually destroys image completely
- · jittered sampling: random deviation from regular points
 - -> replaces aliasing by soft noise
- · stratified sampling: pixel is subdivided into D equal sized areas (grid)
 - one sample point is set randomly into each area
 - -> replaces aliasing by soft noise
- · Quasi Monte Carlo sampling: advanced technique
- * poisson disk sampling: random distribution of samples, but minimum distance between points (sampling of human eye)
 - -> replaces aliasing by soft noise (approximates human eye)

=> agood sample count per pixel is 4 or 16

Aliasina and Sampling in diastal Cameras

- · most cameras do low pass pre-filtering p (mostly) no aliasing
- · optical zoom defines the maximum pixel count the camera can set by sampling
- · diastal zoom is calculating image bigger without increasing the sample count

Lecture Slides about Sampling and Reconstruction

Sampling with Too Low Frequency

Original function

Sampling below Nyquist:

Comb spaced too far (sampling<2*bandlimit)

Frequency bands overlap

Correct filtering

Image: sinc (conv.)

Fourier: box (mult.)

Band overlap in frequency domain cannot be corrected aliasing

similar to input

Sparse Sampling + Bad Reconstruction

.75

.25

Reconstruction with ideal sinc

Reconstruction fails (frequency components wrong due to aliasing!)

Filtering with sinc² function

Reconstruction with tri function (= piecewise linear interpolation)

Even worse reconstruction

32

64

