EJERCICIO DE MAPAS TRAPEZOIDALES

Geometría Computacional

Sea un conjunto de segmentos S en el plano que no se cruzan entre sí y sea s un nuevo segmento que no cruza ningún segmento de S. Demuestra que un trapecio Δ de T(S) (mapa/subdivisión trapezoidal) es también un trapecio de T(S) U $\{s\}$) si y sólo si s no intersecta en el interior de Δ .

Sea un conjunto de segmentos S en el plano que no se cruzan entre sí y sea s un nuevo segmento que no cruza ningún segmento de S. Demuestra que un trapecio Δ de T(S) (mapa/subdivisión trapezoidal) es también un trapecio de T(S) U $\{s\}$) si y sólo si s no intersecta en el interior de Δ .

 \rightarrow

Hipótesis: Δ es parte de los trapecios de (T(S) U {s})

 \rightarrow

Hipótesis: Δ es parte de los trapecios de (T(S) U {s})

P.D: s no intersecta en el interior de Δ

 \rightarrow

Hipótesis: Δ es parte de los trapecios de (T(S) U {s})

P.D: s no intersecta en el interior de Δ

Demostremos por contradicción:

 \rightarrow

Hipótesis: Δ es parte de los trapecios de (T(S) U {s})

P.D: s no intersecta en el interior de Δ

Demostremos por contradicción:

Como s interseca en el interior de Δ , entonces tenemos 2 posibles casos.

 \rightarrow

☐ Caso 1: s intersecta con una línea vertical que define a una banda.

 \rightarrow

☐ Caso 1: s intersecta con una línea vertical que define a una banda.

Entonces esa línea vertical tendría que cortarse o reducirse por la definición de subdivisión trapezoidal.

 \rightarrow

Caso 1: s intersecta con una línea vertical que define a una banda.

Entonces esa línea vertical tendría que cortarse o reducirse por la definición de subdivisión trapezoidal. Así que también reducimos a Δ y no podemos garantizar que sea el mismo trapecio

 \rightarrow

☐ Caso 1: s intersecta con una línea vertical que define a una banda.

∴ ∆ no se conserva

 \rightarrow

☐ Caso 1: s intersecta con una línea vertical que define a una banda.

. Δ no se conserva

 \triangle no es parte de (T(S) U {s}) !! CONTRADICCIÓN A LA HIPÓTESIS

 \rightarrow

☐ Caso 1: s intersecta con una línea vertical que define a una banda.

 \therefore s no intersecta en el interior de \triangle

 \rightarrow

☐ Caso 2: s intersecta con un segmento de S

 \rightarrow

☐ Caso 2: s intersecta con un segmento de S

S.p.g supongamos que s intersecta S_i !!!

 \rightarrow

☐ Caso 2: s intersecta con un segmento de S

S.p.g supongamos que s intersecta S_i !!!

Es contradicción pues desde el inicio sabíamos que s no intersectaba o cruzaba a ningún segmento de S

 \rightarrow

☐ Caso 2: s intersecta con un segmento de S

S.p.g supongamos que s intersecta S_i !!!

Es contradicción pues desde el inicio sabíamos que s no intersectaba o cruzaba a ningún segmento de S

 \therefore s no intersecta en el interior de Δ

 \rightarrow

 \therefore en ninguno de los casos s intersecta en el interior Δ .

 \rightarrow

 \therefore en ninguno de los casos s intersecta en el interior Δ .

 $oldsymbol{\cdot}$. Se cumple que s no intersecta en el interior de Δ

 \leftarrow

Hipótesis: s no intersecta en el interior de Δ .

 \leftarrow

Hipótesis: s no intersecta en el interior de Δ .

P.D: Δ un trapecio de T(S) también es trapecio de (T(S) U $\{s\}$)

Hipótesis: s no intersecta en el interior de Δ .

P.D: Δ un trapecio de T(S) también es trapecio de (T(S) U $\{s\}$)

Demostremos por contradicción

Hipótesis: s no intersecta en el interior de Δ .

P.D: Δ un trapecio de T(S) también es trapecio de (T(S) U $\{s\}$)

Demostremos por contradicción.

Supongamos que Δ es un trapecio de T(S) pero no es trapecio de (T(S) U $\{s\}$).

Como Δ no es trapecio de la unión, entonces Δ debió ser modificado, ya sea que se haya reducido o aumentado.

Como Δ no es trapecio de la unión, entonces Δ debió ser modificado, ya sea que se haya reducido o aumentado.

¿De qué forma se pudo haber modificado Δ ?

Pudo ser por 2 razones:

Pudo ser por 2 razones:

- 🗕 Razón 1: s intersectó con el interior de Δ.
- ☐ Razón 2: s intersectó a un segmento de S.

Pudo ser por 2 razones:

- \square Razón 1: s intersectó con el interior de \triangle .
- ☐ Razón 2: s intersectó a un segmento de S.

Pero cualquiera de esos 2 razones o casos nos lleva a una contradicción a nuestras hipótesis.

 \leftarrow

Se cumple que Δ es también trapecio de $(T(S)U\{s\})$.

