Leerstof 1ste trimester wiskunde 4de wetenschappen

Contents

L.	Algebra	Algebra 1		
	1.1. Ver	rgelijkingen en functies van de 1 ^{ste} graad met 1 onbekende	1	
1.1.1.		Merkwaardige producten	1	
1.1.2.		Oplossingsmethode van een vergelijking van de eerste graad met 1 onbekende	2	
	1.1.3.	Vergelijking van een rechte	3	
	1.2. Ver	rgelijkingen van de 1 ^{ste} graad met 2 onbekenden	4	
	1.2.1.	Oplossingenverzameling	4	
	1.3. Ste	lsels	4	
	1.3.1.	Een stelsel grafisch oplossen	4	
	1.3.2.	Aantal oplossingen van een stelsel	5	
	1.3.3.	Stelsel oplossen: substitutiemethode	6	
	1.3.4.	Stelsel oplossen: combinatiemethode	7	
	1.4. Ver	rgelijkingen van de tweede graad met 1 onbekende (vierkantsvergelijkingen)	8	
	1.4.1.	Standaardvorm	8	
	1.4.2.	Onvolledige vierkantsvergelijkingen	8	
	1.4.3.	Volledige vierkantsvergelijking	9	
	1.4.4.	Parametervergelijkingen	10	
	1.4.5.	Ontbinding in factoren	10	

1. Algebra

- 1.1. Vergelijkingen en functies van de 1^{ste} graad met 1 onbekende
 - 1.1.1. Merkwaardige producten

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

1.1.2. Oplossingsmethode van een vergelijking van de eerste graad met 1 onbekende

Vorm eerst om naar:

ax=b

We onderscheiden 3 gevallen:

- 1. $a\neq 0$ 1 oplossing. $V = \{\frac{b}{a}\}$
- 2. $a=0, b\neq 0$ Valse vergelijking. $V = \emptyset = \{\}$
- 3. a=0, b=0 Onbepaalde (of identieke) vergelijking. $V=\mathbb{R}$

1.1.3. Vergelijking van een rechte

Algemene vergelijking: y = ax + b

Rico:

$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

a > 0 : stijgende rechte

a < 0 : dalende rechte

a = 0 : horizontale rechte

b = 0: rechte door oorsprong

Vergelijking van rechte met 2 punten (x_1,y_1) en (x_2,y_2) gegeven:

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Vergelijking van rechte met rico a en punt (x_1,y_1) gegeven:

$$y - y_1 = a (x - x_1)$$

Vergelijking van horizontale rechte (evenwijdig met X-as) met snijpunt (0,y1) door de Y-as:

$$y = y_1$$

Vergelijking van verticale rechte (evenwijdig met Y-as) met snijpunt (x₁,0) door de X-as:

$$x = x_1$$

1.2. Vergelijkingen van de 1ste graad met 2 onbekenden

Een vergelijking met 2 onbekenden x en y kan altijd herleid worden tot de vorm:

$$ux + vy + w = 0$$

Met: $u, v, w \in \mathbb{R}$ en $u \neq 0$ of $v \neq 0$

Deze vorm noemen we de standaardvorm.

De oplossingen van deze vergelijkingen zijn koppels.

De verzameling van alle koppels is de oplossingenverzameling.

Grafisch kunnen we de oplossingen voorstellen door rechten.

1.2.1. Oplossingenverzameling

Om de **algemene vorm** van de oplossingenverzameling te schrijven, kunnen we de standaardvorm van de vergelijking herwerken tot:

$$y = ax + b$$

Met:
$$a = -\frac{u}{v}$$
, $b = -\frac{w}{v}$

Voor elk reëel getal **t** bestaat er een koppel (t; at + b) dat voldoet aan de vergelijking.

De algemene vorm van de oplossingenverzameling wordt dan ook als volgt geschreven:

$$V = \{ (t; at + b) \mid t \in \mathbb{R} \}$$

1.3. Stelsels

Een 2x2 stelsel is een stelsel met 2 vergelijkingen en 2 onbekenden:

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$

$$a, b, c, d, e, f \in \mathbb{R}$$

1.3.1. Een stelsel grafisch oplossen

Werkwijze:

- 1. Teken de grafiek van beide rechten in hetzelfde assenstelsel. Bepaal hiervoor van elke vergelijking minstens 2 koppels.
- 2. Lees de coördinaat van eventuele gemeenschappelijke koppels af.
- 3. Noteer de oplossingenverzameling V.

1.3.1.2. Met GRM

Werkwijze:

- Omvormen van de vergelijkingen naar y=
- Breng de vergelijkingen in bij knop y=.
- Stel een gepast venster in:

Ofwel Knop window

Xmin: kleinste waarde x-as Xmax: grootste waarde x-as

Xscl: om de hoeveel eenheden een streepje op x-as

Ymin: kleinste waarde y-as Ymax: grootste waarde y-as

Yscl: om de hoeveel eenheden een streepje op y-as

Ofwel Knop zoom

Zstandard: zowel x als y-as van -10 tot 10

Zdecimal: deze instelling houdt rekening van de opbouw van

het beeld in pixels.

- Bepaal het eventueel snijpunt door:

Cald, 5: intersect

First curve? Selecteer de eerste grafiek, enter

Second curve? Selecteer de tweede grafiek, enter

Guess? Ga met de pijltjestoetsen ongeveer op het snijpunt staan.

- Noteer de oplossingenverzameling V

1.3.2. Aantal oplossingen van een stelsel

Een 2x2 – stelsel heeft:

Aantal oplossingen	Grafische voorstelling	Oplossingenverzameling V
1	2 snijdende rechten	$V = \{ (x_s; y_s) \}$
0	2 strikt evenwijdige rechten	$V = \emptyset$
Oneindig veel	2 samenvallende rechten	$V = \{ (t; at + b) \mid t \in \mathbb{R} \}$

1.3.3. Stelsel oplossen: substitutiemethode

1.3.3.1. *Werkwijze:*

- Onbekende afzonderen in één van de twee vergelijkingen Links moet de onbekende staan met coëfficiënt 1
 Vermijd breuken
- 2. Vervang de afgezonderde onbekende in de andere vergelijking
- 3. Los die laatste vergelijking op: zoek de waarde van de ene nog overblijvende onbekende
- 4. De gevonden waarde invullen in de vergelijking uit stap 1 Zo vind je de de waarde van de andere onbekende
- 5. Noteer de oplossingenverzameling V

1.3.3.2. Voorbeeld

Opgave:

$$\begin{cases} x + 4y - 6 = 0 & (A) \\ x + y - 3 = 0 & (B) \end{cases}$$

Stap 1:

$$(B) \Rightarrow x = 3 - y \quad (C)$$
$$\begin{cases} x + 4y - 6 = 0 \\ x = 3 - y \end{cases}$$

Stap 2:

$$(A) \wedge (C) \Rightarrow (3-y) + 4y - 6 = 0$$

$$\begin{cases} (3-y) + 4y - 6 = 0 \\ x = 3 - y \end{cases}$$

Stap 3:

$$\begin{cases} y = 1 \\ x = 3 - y \end{cases} (D)$$

Stap 4:

$$(C) \land (D) \Rightarrow x = 3 - 1$$

$$\begin{cases} y = 1 \\ x = 2 \end{cases}$$

Stap 5:

$$V = \{ (2;1) \}$$

1.3.4. Stelsel oplossen: combinatiemethode

1.3.4.1. *Werkwijze:*

- 1. Vermengvuldig elke vergelijking met een andere factor naar keuze, zodat:
- 2. de som van de twee uitkomsten een vergelijking wordt met maar één onbekende
- 3. Bereken de waarde van die ene onbekende
- 4. Kies nu opnieuw 2 factoren waarmee je de vergelijkingen uit de opgave vermenigvuldigt, zodat:
- 5. de som van de twee uitkomsten een vergelijking wordt met maar één onbekende, namelijk de andere nog te vinden onbekende
- 6. Bereken de waarde van de andere onbekende
- 7. Noteer de oplossingenverzameling V

1.3.4.2. Voorbeeld:

Opgave:

$$\begin{cases} x + y = 5 \\ 2x - 3y = 5 \end{cases}$$

Stap 1:

$$\begin{cases} x + y = 5 \\ 2x - 3y = 5 \end{cases} \begin{vmatrix} -2 \\ 1 \end{vmatrix}$$

Stap 2:

$$y = 1$$

Stap 4:

$$\begin{cases} x + y = 5 \\ 2x - 3y = 5 \end{cases} \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix}$$

Stap 5:

$$3x + 3y = 15$$
$$2x - 3y = 5$$

5x = 20

Stap 6:

$$x = 4$$

Stap 7:

$$V = \{ (4;1) \}$$

- 1.4. Vergelijkingen van de tweede graad met 1 onbekende (vierkantsvergelijkingen)
 - 1.4.1. Standaardvorm

$$ax^2 + bx + c = 0$$

Met:

$$a \neq 0$$

En:

$$a,b,c\in\mathbb{R}$$

1.4.2. Onvolledige vierkantsvergelijkingen

Bij een onvolledige vierkantsvergelijking is $b \neq 0$ of $c \neq 0$.

Voorbeelden:

$$ax^2 + c = 0$$

$$ax^2 + bx = 0$$

$$ax^2 = 0$$

Steeds met: $a \neq 0$

Geval 1: $ax^2 + c = 0$

$$x^2 = -\frac{c}{a}$$

3 mogelijkheden:

$$-\frac{c}{a} > 0 V = \left\{ -\sqrt{\frac{-c}{a}} \; ; \; \sqrt{\frac{-c}{a}} \; \right\}$$

$$-\frac{c}{a} = 0 \qquad \qquad V = \{0\}$$

$$-\frac{c}{a} < 0 \qquad \qquad V = \emptyset = \{\}$$

Geval 2: $ax^2 + bx = 0$

$$V = \left\{0, -\frac{b}{a}\right\}$$

1.4.3. Volledige vierkantsvergelijking

Stappenplan:

1. Herleid de vergelijking tot de basisvorm:

$$ax^2 + bx + c = 0$$

en lees de coëfficiënten af: a, b en c.

- 2. Bereken de discriminant: $D = b^2 4ac$
- 3. Er zijn 3 mogelijkheden:
 - 3.1. **D** < **0**

De vergelijking heeft geen oplossingen (wortels) in \mathbb{R} .

Oplossingenverzameling: $V = \emptyset = \{\}$

3.2. D = 0

De vergelijking heeft twee gelijke wortels:

$$x_1 = x_2 = -\frac{b}{2a}$$

$$V = \{-\frac{b}{2a}\}$$

3.3. D > 0

De vergelijking heeft twee verschillende wortels:

$$x_1 = \frac{-b - \sqrt{D}}{2a}$$

en

$$x_2 = \frac{-b + \sqrt{D}}{2a}$$

$$V = \{\frac{-b - \sqrt{D}}{2a}, \frac{-b + \sqrt{D}}{2a}\}$$

1.4.4. Parametervergelijkingen

Zie oefeningen in boek:

- Oef. 7 8 p. 20
- Oef. 63 83 p. 33-34

1.4.5. Ontbinding in factoren

Probleem: hoe ontbind je de veelterm $ax^2 + bx + c$ in factoren?

Bereken de discriminant D van de vierkantsvergelijking: $ax^2 + bx + c = 0$

Er zijn 2 mogelijkheden:

1. D < 0

De veelterm is niet te ontbinden

2. $D \ge 0$

Bereken de wortels x_1 en x_2 van de vierkantsvergelijking: $ax^2+bx+c=0$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$