

#### EAN-13 条码检测原理

-- 基于图像处理的方式

小组成员: 张卓 周敬雄 吴丽青

### 条码分类

- 一维条码: EAN,UPC 等
  - ISBN 也是一维条码
  - EAN 包括 EAN13 和 EAN8
  - UPC 是 EAN13 的特殊情况
  - -- 所以识别 EAN13 很有必要
- 二维条码: QR , PDF417 , CODE49 , Data Matrix 等



### EAN13条码的结构

- 条码部分: quiet\_zone->left\_guard->LEFT->middle\_guard->RIGHT->right\_guard
- · 数字部分: d0->[d1..d6]->[d7..d12]



#### EAN13 识别原理

- 从数字到条码宽度是一一对应的
- 数字 -> 条码:
- 每个数字用"两个白条+两个黑条"交替的形式表示。四个条总宽度 为7个单位长度。
- 这 7 个单位长度可以表示为 (xxxxxxxx) 的形式 , x=0 或 1
- (xxxxxxx) 是提前规定好的 => 测量宽度就可以查表找到对应数字
- 奇偶性:( xxxxxxxx ) 中 1 的个数为奇数就是奇。个数为偶数则为偶
- [d0] [d1..d6] [d7..d12] : d0 通过 [d1..d6] 的奇偶性确定。
- [d1..d6] 通过"白黑白黑"方式确定 [d7..d12] 通过"黑白黑白"确定
- 左侧奇数用 xa 表示,左侧偶数用 xb 表示,右侧只有偶数用 xc 表示,x 表示 [0..9 】

### 识别 - 一个样例

- 6 , 921505,016218
- 3112->0001011->9a d1
- 2212->0011011->2b d2
- 1222->0110011->1b d3
- 1321->0111001->5b d4
- 3211->0001101->0a d5
- 1231->0110001->5a d6
- 3211->1110010->0c d7
- 2211->1100110->1c d8
- 1114->1010000->6c d9
- 2122->1101100->2c d10
- 2221->1100110->1c d11
- 1213->1001000->8c d12





#### 测量技巧

- 图像有时模糊,测量不准确
- 归一化方法提高精度
  - 假设某个数字对应的四个条码区域为 ABCD ,传统方法 分别测量 ABCD
  - 归一化方法:测量 T1=AB,T2=BC 根据 T1/T2 的结果判定 ABCD 分别的值



$$AT_{i} = \begin{cases} 2 & T_{i}/T < 2.5/7 \\ 3 & 2.5/7 \le T_{i}/T < 3.5/7 \\ 4 & 3.5/7 \le T_{i}/T < 4.5/7 \\ 5 & T_{i}/T \ge 4.5/7 \end{cases} i = 1,2$$



## 表格-AT1&AT2 (d1-d6)

| AT2<br>AT1 | 2           | 3                          | 4                          | 5                |
|------------|-------------|----------------------------|----------------------------|------------------|
| 2          | 0101111(6a) | 0100111(0b)                | 0100011(4a)                | 0100001(3b)      |
| 3          | 0010111(9b) | 0010011(2a)<br>0110111(8a) | 0010001(7b)<br>0110011(1b) | 0110001(5a)      |
| 4          | 0001011(9a) | 0001001(8b)<br>0011011(2b) | 0011001(1a)<br>0111011(7a) | 0111001(5b)      |
| 5          | 0000101(6b) | 0001101(0a)                | 0011101(4b)                | 01111101(3a<br>) |

# 表格-AT1&AT2 ( d7-d12 )

| AT2<br>AT1 | 2           | 3                          | 4                          | 5               |
|------------|-------------|----------------------------|----------------------------|-----------------|
| 2          | 1010000(6C) |                            | 1011100(4C)                |                 |
| 3          |             | 1101100(2C)<br>1001000(8C) |                            | 1001110(5<br>C) |
| 4          | 1110100(9C) |                            | 1100110(1C)<br>1000100(7C) |                 |
| 5          |             | 1110010(0C)                |                            | 1000010(3<br>C) |

#### 表格-一对应?

- 发现 d1-d6 的表格不是——对应。策略:
  - 假设测量的四个宽度为 m1,m2,m3,m4
  - 利用下表,通过 mi 的比较确定"二值"中的哪一个

| 字符<br>值 | 左奇字符编<br>码 | 条空宽度<br>值 | 左偶字符编<br>码 | 条空宽度<br>值 | 右偶字符编码  | 条空宽度<br>值          |
|---------|------------|-----------|------------|-----------|---------|--------------------|
| 1       | 0011001    | 2221      | 0110011    | 1222      | 1100110 | 2221               |
| 2       | 0010011    | 2122      | 0011011    | 2212      | 1101100 | $2\bar{1}2\bar{2}$ |
| 7       | 0111011    | 1312      | 0010001    | 2131      | 1000100 | 1312               |
| 8       | 0110111    | 1213      | 0001001    | 3121      | 1001000 | 1213               |

### OpenCV 的处理方式

- 传统方式:硬件(扫描枪)
- 使用 OpenCV:将图片作为矩阵处理
  - 导入图片
  - 从 (0,h/2) 位置处开始横向扫描
  - 注意固定区域的处理 ("101","01010","101")
  - 查表获得对应的数字 (d1-d12)
  - 查表获得对应的 d0(d1-d6 的奇偶性确定)
  - 输出结果



| 0 | 000000 |
|---|--------|
| 1 | OOEOEE |
| 2 | OOEEOE |
| 3 | OOEEEO |
| 4 | OOEEEO |
| 5 | OEEOOE |
| 6 | OEEEOO |
| 7 | OEOEOE |
| 8 | OEOEEO |
| 9 | OEEOEO |