Roots – rational or not

January 21, 2021

Conjecture. A natural root of a natural number is either an integer or irrational.

Proof. Let's assume $a^{1/b}$ is rational, i.e.,

$$a^{1/b} = x/y$$

Raising both sides to the power b,

$$a = x^b/y^b$$
$$\implies x^b = ay^b$$

 x^2 has pairs of prime factors (each contributing to the individual x). Therefore if x^2 is even, there must be another 2 as its factor. Hence x must be even also.

All of x's prime factors get "tripled" when when calculate x^3 . Therefore if x^3 is a multiple of 3, it must be a factor of x as well.

If b is prime: Let all of x's prime factors be $\{p_1, p_2, \dots, p_x\}$. If x^b is a multiple of b, it must be a factor of x as well.