Московский Физико-Технический Институт Физтех-школа электроники, фотоники и молекулярной физики

Отчёт по лабораторной работе: Электронно-оптический преобразователь

Выполнили работу студенты группы Б04-005: Давыдов Владислав Карташов Констанин Корнеев Николай

I Анотация

Цель работы: Знакомство с устройством электронно-оптического преобразователя. Получение картинки на экране ЭОП. Исследование зависимости токов в ЭОП от напряжения. Исследование условий видимости картинки на экране ЭОП.

Оборудование:

- ⊳ Электронно-оптический преобразователь,
- ⊳ Веб-камера,
- ⊳ Персональный компьютер.

і Устройство электронно-оптического преобразователя

ЭОП состоит из:

- Фотокатода, который преобразует падающий свет в поток электронов.
- Микроканальной пластинки, усиливающей поток электронов.
- Электростатической линзы, фокусирующей поток электронов на экране.
- Экрана, преобразующего поток электронов в световое излучение.

Рис. 1: Устройство ЭОП

II Проведения измерений

і ВАХ электронно-оптического преобразователя

Для переменных значений $U_{\text{катод}}$, $U_{\text{МКП}}$, $U_{\text{экран}}$ сними вольт-амперную характеристику ЭОП. Полученные данные представлены в табл. 1, 2, 3. По этим данным можно сделать следующие выводы:

- 1. $I_{\text{катод}}$ и $I_{\text{экран}}$ практически равны нулю.
- 2. При переменном $U_{\text{катод}}$ незначительно увеличиваются $I_{\text{анод}}$ и $I_{\text{экран}}$.
- 3. При переменном $U_{\rm MK\Pi}$ меняется $I_{\rm MK\Pi}$.
- 4. При переменном $U_{\text{экран}}$ ничего не меняется.

$U_{\text{катод}}$, В	0.91	1.30	1.70	2.11	2.50	2.90	3.28	3.69	4.11
$I_{\text{катод}}$, мА	0	0	0	0	0	0	0	0	0
$I_{\text{MK}\Pi}$, MA	8.86	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85
$I_{\text{экран}}, \text{ мA}$	0	0	0	0	0	0.05	0.06	0.08	0.08
$I_{\text{анод}}$, мА	4.48	4.48	4.48	4.48	4.50	4.51	4.52	4.53	4.53

Таблица 1: Токи при переменном $U_{\rm катод}$ ($U_{\rm MK\Pi}=2.01~{\rm B},\,U_{\rm экран}=2.95~{\rm B})$

$U_{\rm MK\Pi},{ m B}$	0.32	0.60	0.90	1.20	1.50	1.80	2.00
$I_{\text{катод}}$, мА	0	0	0	0	0	0	0
$I_{MK\Pi}$, мА	1.33	2.53	3.70	5.00	6.34	7.66	8.80
$I_{\text{экран}}, \text{ мA}$	0	0	0	0	0	0	0
$I_{\text{анод}}$, мА	0.66	1.27	1.87	2.54	3.22	3.89	4.49

Таблица 2: Токи при переменном $U_{\text{МКП}}$ ($U_{\text{катод}}=3~\text{B},~U_{\text{экран}}=2.95~\text{B})$

$U_{\text{экран}}, B$	0.82	1.10	1.40	1.71	2.00	2.30	2.60	2.90
$I_{\text{катод}}$, мА	0	0	0	0	0	0	0	0
$I_{MK\Pi}$, мА	8.75	8.76	8.76	8.80	8.79	8.79	8.79	8.79
$I_{\text{экран}}$, мА	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.05
$I_{\text{анод}}, \text{ мA}$	4.46	4.46	4.47	4.46	4.47	4.47	4.47	4.47

Таблица 3: Токи при переменном $U_{\text{экран}}$ ($U_{\text{катод}} = 3 \text{ B}, U_{\text{МКП}} = 2 \text{ B}$)

іі Исследование видимости на экране

При фиксированном $U_{\text{экран}}$ снимем зависимость $U_{\text{катод}}$ от $U_{\text{МКП}}$ при предельной видимости картинки на экране. Результаты измерений представлены в табл. 4. По данным построим график (рис. 3).

Сделаем аппроксимацию к точками на графике пользуясь методом наименьших квадратов. Получим кривую $y=\frac{1.03\cdot x}{x-0.79}$ (рис. 4).

Рис. 2: Зависимость $I_{\rm MK\Pi}$ от $U_{\rm MK\Pi}$ соответствующая табл. 2

$U_{\text{катод, Влад}}$, В	3.05	2.55	2.1	1.97	1.9	1.76	1.65
$U_{\text{МКП, Влад}}, B$	1.4	1.5	1.6	1.7	1.8	1.9	2
$U_{\text{катод, Коля}}$ В	3.1	2.66	2.25	2.09	1.9	1.8	1.72
$U_{\text{МКП, Коля}}, B$	1.4	1.5	1.6	1.7	1.8	1.9	2

Таблица 4: Зависимость напряжений катода и МКП при предельной видимости

Рис. 3: График зависимости $U_{\text{катод}}$ от $U_{\text{МК}\Pi}$ при одинаковой видимости

Рис. 4: Аппроксимация зависимости $U_{\rm MK\Pi}$ от $U_{\rm катод}$