

ПРОЕКТ ИС, ПРОЕКТИРОВАНИЕ ЭИС, ОБЪЕКТЫ И СУБЪЕКТЫ ПРОЕКТИРОВАНИЯ

- <u>Проект ИС</u> проектно-конструкторская и технологическая документация, в которой представлено описание проектных решений по созданию и эксплуатации ЭИС в конкретной программно-технической среде
- Проектирование ИС процесс преобразования входной информации об объекте проектирования об опыте проектирования объектов аналогичного назначения с применением методов и средств проектирования в проект ИС в соответствии с ГОСТ.
- <u>Объекты проектирования ИС</u> отдельные элементы или их комплексы функциональных и обеспечивающих частей
- Субъекты проектирования ИС коллективы специалистов, которые осуществляют проектную деятельность, как правило, в составе специализированной (проектной) организации, и организация-заказчик, для которой необходимо разработать ИС

РАЗРАБОТЧИК – ПОДРАЗДЕЛЕНИЕ ОРГАНИЗАЦИИ

Преимущества

- Минимальное число участников процесса;
- Минимальные сроки и стоимость разработки

Недостатки

- Отсутствует действенный контроль за научно-техническим уровнем разработки, сроками выполнения работ;
- Не достигается высокого профессионального уровня разработчиков

РАЗРАБОТЧИК — СПЕЦИАЛИЗИРОВАННАЯ ОРГАНИЗАЦИЯ

Преимущества

- Рациональное распределение функций;
- Привлечение специализированных организаций

Недостатки

- Отсутствие прямой связи между разработчиком и пользователем;
- Повышение уровня бюрократизации

ПОЛНОЕ РАЗДЕЛЕНИЕ ФУНКЦИЙ. ЗАКАЗЧИК КУРИРУЕТ НЕСКОЛЬКО ПРОЕКТОВ

Преимущества

- Высокая степень специализации-> высокий профессиональный уровень;
- Возможность организации контроля за сроками и качеством выполнения работ

Недостатки

- Отсутствие прямой связи между разработчиком и пользователем;
- Повышение уровня бюрократизации

ПРИВЛЕЧЕНИЕ СПЕЦИАЛИЗИРОВАННЫХ ОРГАНИЗАЦИЙ

СИСТЕМНЫЙ ИНТЕГРАТОР СОЗДАЕТ НОВЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ

ПРОЕКТНЫЙ ИНТЕГРАТОР
СОВЕРШЕНСТВУЕТ РАБОТУ ИС ПУТЕМ
ПОИСКА НА РЫНКЕ УЖЕ
СУЩЕСТВУЮЩИХ, ВНЕДРЕННЫХ
РЕШЕНИЙ И ОБЪЕДИНЯЯ ИХ

ТЕХНОЛОГИЯ ПРОЕКТИРОВАНИЯ ИНФОРМАЦИОННЫХ СИСТЕМ

Методология (концепция + метод) Инструментальные Организация средства проектирования проектирования

определяет ЧТО, КАК, КЕМ и в КАКОЙ ПОСЛЕДОВАТЕЛЬНОСТИ должно быть сделано для создания проекта

Требования к технологии проектирования

- соответствие требованиям заказчика;
- поддержка этапов цикла жизни проекта;
- минимизация затрат;
- основа связи "проектирование" -> "сопровождением проекта";
- рост производительность труда;
- надежность;
- документирование.

МЕТОДОЛОГИЯ ПРОЕКТИРОВАНИЯ

Модель ЖЦ

Парадигмы проектирован ия

Концепция

Модель управления

Архитектура

Жизненный цикл проекта - период времени, который начинается с момента принятия решения о необходимости создания программного продукта и заканчивается в момент его полного изъятия из эксплуатации

Парадигма проектирования — система идей и понятий, определяющих фундаментальный стиль проектирования: функционально-ориентированное проектирование (структурный анализ сверху вниз); объектно-ориентированное проектирование, основанное на концепциях объектной декомпозиции и межобъектного взаимодействия

Модель управления — система ценностей и принципов организации процесса разработки, которыми руководствуется команда: Жесткая модель, гибка модель

<u>Архитектурный стиль</u> — структура компонентов проектируемой системы, способы и условия их взаимодействия

МОДЕЛИ ЖИЗНЕННОГО ЦИКЛА

Каскадная модель жизненного цикла

(применяется только тогда, когда требования известны, понятны и зафиксированы. Противоречивых требований не имеется)

<u>Итерационная модель жизненного цикла</u> – вариация каскадной модели (отладка функционала)

МОДЕЛИ ЖИЗНЕННОГО ЦИКЛА

Спиральная модель жизненного цикла

(сочетает итеративность и этапность)

Модель формулирует 10 основных рисков проекта:

- 1. Дефицит специалистов.
- 2. Нереалистичные сроки и бюджет.
- 3. Реализация несоответствующей функциональности.
- 4. Разработка неправильного пользовательского интерфейса.
- 5. Перфекционизм, ненужная оптимизация и оттачивание деталей.
- 6. Непрекращающийся поток изменений.
- 7. Нехватка информации о внешних компонентах, определяющих окружение системы или вовлечённых в интеграцию.
- 1. Недостатки в работах, выполняемых внешними (по отношению к проекту) ресурсами.
- 2. Недостаточная производительность получаемой системы.
- 3. Разрыв между квалификацией специалистов и требованиями проекта

МОДЕЛЬ УПРАВЛЕНИЯ

Стандарты управления проектом

Жесткая модель

Гибкая модель

RMBoK

ISO 21500

PRINCE 2

P₂M

Agile (SCRUM, Kanban, DevOps, XP...)

<u>RMBoK</u> - Свод знаний, навыков и передовых практик по управлению проектами. Ключевые принципы: это – пошаговое руководство. Ориентированность на выполнение требований заказчика. Приводятся процессы, инструменты и методы. Носит описательный и рекомендательный характер (США)

PRINCE2 - Имеет предписывающий (директивный) характер. (Великобритания)

<u>P2M</u> – основана на поиске решений сложных миссий для увеличения ценностей компании, а также на использовании лучших сторон задействованных проектных команд (Япония)

<u>Agile</u> – манифест гибкой разработки. Основные идеи: 1) люди и взаимодействие важнее процессов и инструментов; 2) работающий продукт важнее исчерпывающей документации; 3) сотрудничество с заказчиком важнее согласования условий контракта; 4) готовность к изменениям важнее следования первоначальному плану

АРХИТЕКТУРНЫЙ СТИЛЬ

Платформенная архитектура

Автономная. Функциональные компоненты системы находятся на одном физическом узле. Система не связана с внешней средой.

Централизованная. Компоненты системы распределяются между центральным вычислительным узлом и терминальными станциями, имеющими функцию устройства ввода-вывода

Распределенная. Функциональные компоненты распределяются по имеющимся узлам в зависимости от поставленных целей и задач

Файл-сервер. Выделенный сетевой ресурс для хранения данных.

Клиент-сервер. Сервер является поставщиком сервисов.

Web-приложений. Сервера приложений и баз данных располагаются в сети Internet

КЛАССИФИКАЦИЯ МЕТОДОВ ПРОЕКТИРОВАНИЯ

По степени автоматизации

По степени типизации

По степени адаптивности проектных решений

Ручные

Оригинальные

Автоматизированные (с использованием Case – средств)

Типовые

- Элементный метод
- Подсистемный метод
- Объектные метод

Методы реконструкции (перепрограмми рование)

Методы параметризации (настройка)

Методы реструктуризации (изменения модели проблемной области)

ХАРАКТЕРИСТИКИ КЛАССОВ ТЕХНОЛОГИЙ ПРОЕКТИРОВАНИЯ

Класс технологии проектирования	Степень автоматизации	Степень типизации	Степень адаптивности
Каноническое проектирование	Ручное проектирование	Оригинальное проектирование	Реконструкция
Индустриальное автоматизированное проектирование	Компьютерное проектирование	Оригинальное проектирование	Реструктуризация модели
Индустриальное типовое проектирование	Компьютерное проектирование	Типовое сборочное проектирование	Параметризация и реструктуризация модели

Использование индустриальных технологий проектирования не исключает использования в отдельных случаях канонической технологии.

КЛАССИФИКАЦИЯ СРЕДСТВ ПРОЕКТИРОВАНИЯ ЭИС

- Без использования ЭВМ
- С использованием ЭВМ:
 - операционные средства, которые поддерживают проектирование операций обработки информации (1 класс) алгоритмические языки, библиотеки стандартных подпрограмм и классов объектов, макрогенераторы, генераторы программ типовых операций обработки данных и т.п., а также средства расширения функций операционных систем (утилиты)
 - средства общесистемного назначения, поддерживающие проектирование отдельных компонентов проекта (2 класс): СУБД, математические и статистические ППП, табличные процессоры, текстовые и графические редакторы;
 - функциональные средства, поддерживающие проектирование разделов проекта ЭИС (3 класс) -типовые проектные решения, функциональные пакеты прикладных программ, типовые проекты
 - CASE- средства, поддерживающие разработку проекта на стадиях и этапах процесса проектирования (4 класс)

Средствам проектирования должны:

- охватывать процесс проектирования в комплексе и по всем вопросам организации и проведения проектных работ;
- обладать совместимостью;
- быть легкими в освоении;
- быть инвариантными своем классе к объектам проектирования;
- позволять создавать адаптивные системы;
- быть экономически эффективны.