Business Problem Statement

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

- 1.Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts.
- 2.For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.

Create DataFrame for aerofit data

Exploratory analysis of data

Insight:

- 9 Columns and 180 rows are available in the data.
- 3 Columns are with Object data type and remaining columns are with INT data type
- Data doesnt contain any null values in it

```
In [5]: 1 df.sample(10)
```

Out[5]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
138	KP481	45	Male	16	Partnered	2	2	54576	42
108	KP481	26	Female	16	Partnered	4	3	45480	85
170	KP781	31	Male	16	Partnered	6	5	89641	260
61	KP281	34	Male	16	Single	4	5	51165	169
176	KP781	42	Male	18	Single	5	4	89641	200
72	KP281	39	Male	16	Partnered	4	4	59124	132
1	KP281	19	Male	15	Single	2	3	31836	75
29	KP281	25	Female	14	Partnered	2	2	53439	47
93	KP481	23	Male	16	Partnered	3	3	45480	64
39	KP281	26	Male	16	Partnered	4	4	44343	132

Count, NUnique value and other statistical values are available below

Observations:

- 1. Age : 50% data lie between 24 to 33 of age and with a median of 26
- 2. Education : 50% data lie between 14 to 16 year of education and with a median of 16
- 3. Usage : 50% data lie between 3 to 4 per week and with a median of 3
- 4. Fitness : 50% data lie between 3 to 4 self rated fitness and with a median of 3
- 5. Income : 50% data lie between \$44058.75 to \$58668.0 and with a median of \$50596.5
- 6. Miles : 50% of data lie between 66 miles/week to 114.75 miles/week and median of 94 miles/week
- 7. Income and Miles column more standard deviation when compared to other columns

Out[6]:

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Product	180	3	KP281	80	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Age	180.0	NaN	NaN	NaN	28.788889	6.943498	18.0	24.0	26.0	33.0	50.0
Gender	180	2	Male	104	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Education	180.0	NaN	NaN	NaN	15.572222	1.617055	12.0	14.0	16.0	16.0	21.0
MaritalStatus	180	2	Partnered	107	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Usage	180.0	NaN	NaN	NaN	3.455556	1.084797	2.0	3.0	3.0	4.0	7.0
Fitness	180.0	NaN	NaN	NaN	3.311111	0.958869	1.0	3.0	3.0	4.0	5.0
Income	180.0	NaN	NaN	NaN	53719.577778	16506.684226	29562.0	44058.75	50596.5	58668.0	104581.0
Miles	180.0	NaN	NaN	NaN	103.194444	51.863605	21.0	66.0	94.0	114.75	360.0

Null values are not available in data

```
In [7]:
         1 # checking for null values
          2 df.isna().sum()
Out[7]: Product
                         0
                         0
        Age
        Gender
                         0
        Education
                         0
        MaritalStatus
                         0
                         0
        Usage
                         0
        Fitness
        Income
                         0
        Miles
                         0
        dtype: int64
In [8]:
         1 df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 180 entries, 0 to 179
        Data columns (total 9 columns):
            Column
                            Non-Null Count Dtype
                            -----
         0
             Product
                            180 non-null
                                            object
         1
             Age
                            180 non-null
                                            int64
         2
             Gender
                            180 non-null
                                            object
         3
             Education
                            180 non-null
                                            int64
             MaritalStatus 180 non-null
                                            object
                            180 non-null
                                            int64
             Usage
             Fitness
                            180 non-null
                                            int64
             Income
                            180 non-null
                                            int64
             Miles
                            180 non-null
                                            int64
        dtypes: int64(6), object(3)
        memory usage: 12.8+ KB
In [9]:
         1 print('Shape of dataframe is', df.shape)
         print('no of elements of dataframe is', df.size)
         3 print('dimension of dataframe is', df.ndim)
         4 print('number of rows is ', len(df))
        Shape of dataframe is (180, 9)
        no of elements of dataframe is 1620
        dimension of dataframe is 2
        number of rows is 180
```

Conversion categorical column to category datatype

Insight:

Product, Gender and Maritalstatus columns need to be converted to 'Category' datatype from Object datatype.

```
In [11]:
          1 df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 180 entries, 0 to 179
        Data columns (total 9 columns):
            Column
                          Non-Null Count Dtype
                           -----
            Product
                           180 non-null
                                         category
         1
                           180 non-null
                                         int64
             Age
                           180 non-null
             Gender
                                         category
             Education 180 non-null
         3
                                          int64
                                          category
             MaritalStatus 180 non-null
         5
             Usage
                           180 non-null
                                          int64
                           180 non-null
            Fitness
                                          int64
         7
            Income
                           180 non-null
                                          int64
                           180 non-null
            Miles
                                          int64
        dtypes: category(3), int64(6)
        memory usage: 9.5 KB
```

2. Non-Graphical and Graphical Analysis

Product column

Insight:

- Only 3 types of product are available in data KP281, KP481, KP781
- Out of total sales, 44% of sales are from KP281 treadmill
- Least selling treadmill is KP781

- Most of the people prefer to buy KP281, provide attractive offer like warrantly extension ...etc and even rent ing these machine with monthly charges.
- For KP781, To increase sales for this product Experience center to added, so that user can do trial run of t his product and with demo can be provided to boost sales.

Out[14]: Text(0.5, 1.0, 'Product wise count')

Gender Column

Insight:

- Out of total user buying, ~58% of sales are from Males.
- Unique values --> Male and Female

Recommendation:

- Most of the Males prefer to buy treadmill and provides goodies for completion of particular miles. This will e ncourage user both Male and Females to use Treadmill frequency and even sales will increase.

Out[17]: Text(0.5, 1.0, 'Gender wise count')

MaritalStatus Column

Insight:

- Out of total user buying, 59% of sales are from Partnered.
- Unique values --> Partnered and Single.

Recommendation:

- Most of the Partnered prefer to buy treadmill. So, if we provide discount of 2 treadmill who will purchase at same time. Partnered users can have 2 treadmill with discount on it.

Out[20]: Text(0.5, 1.0, 'MaritalStatus wise count')

Countious data column - like Age, Education, Usage, Fitness, Income, Miles

Exploratory analysis done in above with describe() function

Age column:

Insight:

- 32 are unique values in Age column out of 180 values
- min ->18 and Max --> 50
- Majority of sales are from range of 21 to 35 age
- 25 age people prefer to purchase treadmill.
- As per histogram, Data is not normal distribution and left sided plot
- Data as few outliers

Recommendation:

- From 21 to 35 age, user prefer to buy treadmill, Sales excutive can put more weightage on these age group - ch ancing of user purchasing will increase

Out[21]: 32

Out[74]: Text(0.5, 1.0, 'Age wise count')


```
In [196]: 1 sns.histplot(data = df, x = 'Age', kde = True)
    plt.title('Age wise count')
```

Out[196]: Text(0.5, 1.0, 'Age wise count')

Out[23]: Text(0.5, 1.0, 'Age column analysis and outlier detection')

Age column analysis and outlier detection

Education column:

Insight:

- 8 are unique values in Education column out of 180 values
- min ->12 and Max --> 21
- Majority of sales are from range of 14 to 18 years of education
- 16 year of education people are the ones who bought most number of treadmills.
- As per histogram, Data is not normal distribution.
- Data as few outliers

Recommendation:

- From 14 to 18 years of education, these user prefer to buy treadmill, Sales excutive can put more weightage on these years of education group - chancing of user purchasing will increase

```
1 # Education column number of unique value
In [24]:
            2 df['Education'].nunique()
Out[24]: 8
In [100]:
            1 | df['Education'].describe()
Out[100]: count
                   180.000000
                    15.572222
          mean
                     1.617055
          std
                    12.000000
          min
          25%
                    14.000000
          50%
                    16.000000
          75%
                    16.000000
                    21.000000
          max
          Name: Education, dtype: float64
```

```
In [25]: 1 df['Education'].value_counts().reset_index().rename(columns = {'index' : 'Education', 'Education': 'count'})
```

Out[25]:

	Education	count
0	16	85
1	14	55
2	18	23
3	15	5
4	13	5
5	12	3
6	21	3
7	20	1

Out[99]: Text(0.5, 1.0, 'Education wise count')

Education wise count


```
In [27]:
          1 # Education column
          plt.figure(figsize = (5,5))
          3 sns.boxplot(data = df, x = 'Education')
          4 plt.title('Education column analysis and outlier detection')
```

Out[27]: Text(0.5, 1.0, 'Education column analysis and outlier detection')

Education column analysis and outlier detection

Usage column:

Insight:

- 6 are unique values in Usage column out of 180 values
- min ->2 and Max --> 7
- Majority of sales are from range of 2 to 4 times/week.
- Majority of users have usage of 3 times/week.
- As per histogram, Data is not normal distribution.
- Data as few outliers

Recommendation:

- users have usage of 2-4 times/week, these user prefer to buy treadmill, Sales excutive can put more weightage on these group - chancing of user purchasing will increase

```
In [28]:
           1 # Usage column number of unique value
            2 | df['Usage'].nunique()
Out[28]: 6
In [101]:
            1 df['Usage'].describe()
Out[101]: count
                   180.000000
                     3.455556
          mean
                     1.084797
          std
                     2.000000
          min
          25%
                     3.000000
          50%
                     3.000000
                     4.000000
          75%
                     7.000000
          max
          Name: Usage, dtype: float64
In [29]:
            df['Usage'].value_counts().reset_index().rename(columns = {'index' : 'Usage', 'Usage': 'count'})
Out[29]:
             Usage count
```

	Usage	Count
0	3	69
1	4	52
2	2	33
3	5	17
4	6	7
5	7	2

Out[103]: Text(0.5, 1.0, 'Usage wise count')

Out[31]: Text(0.5, 1.0, 'Usage column analysis and outlier detection')

Usage column analysis and outlier detection

Fitness column:

Insight:

- 5 are unique values in Fitness column out of 180 values
- min ->1 and Max --> 5
- Majority of sales are from range of 2 to 5 Self-rated fitness.
- Majority of users have usage of 3 Self-rated fitness.
- As per histogram, Data is not normal distribution.
- Data as few outliers

- users have 2 to 5 Self-rated fitness, these user prefer to buy treadmill, Sales excutive can put more weightag e on these group - chancing of user purchasing will increase

```
In [32]:
            1 # Fitness column number of unique value
            2 df['Fitness'].nunique()
Out[32]: 5
In [106]:
            1 df['Fitness'].describe()
Out[106]: count
                   180.000000
          mean
                     3.311111
          std
                     0.958869
          min
                     1.000000
          25%
                     3.000000
          50%
                     3.000000
          75%
                     4.000000
                     5.000000
          max
          Name: Fitness, dtype: float64
In [33]:
            1 df['Fitness'].value_counts().reset_index().rename(columns = {'index' : 'Fitness', 'Fitness': 'count'})
Out[33]:
             Fitness count
           0
                  3
                       97
                  5
           1
                       31
           2
                  2
                       26
```

Out[105]: Text(0.5, 1.0, 'Fitness wise count')

24

2

4

Out[35]: Text(0.5, 1.0, 'Fitness column analysis and outlier detection')

Fitness column analysis and outlier detection

Income column:

Insight:

- 62 are unique values in Income column out of 180 values
- min ->\$29562 and Max --> \$104581
- Majority of sales are from range of \$30000 to \$70000 income.
- Most of users have \$50,000 to \$55,000 income at 35 users.
- As per histogram, Data is not normal distribution.
- Data as outliers

- Users who have \$30000 to \$70000 income, these user prefer to buy treadmill, Sales excutive can put more weight age on these group chancing of user purchasing will increase
- Users who have \$50,000 to \$55,000 income, will have highest probability of buying Treadmill

```
1 # Fitness column number of unique value
In [36]:
            2 df['Income'].nunique()
Out[36]: 62
In [108]:
            1 df['Income'].describe()
Out[108]: count
                      180.000000
                    53719.577778
          mean
          std
                    16506.684226
                    29562.000000
          min
          25%
                    44058.750000
          50%
                    50596.500000
                    58668.000000
          75%
          max
                   104581.000000
          Name: Income, dtype: float64
```

```
In [109]:
           1 # Income column
           plt.figure(figsize = (10,5))
             sns.histplot(data = df, x = 'Income', kde= True)
           4 plt.title('Income wise count')
```

Out[109]: Text(0.5, 1.0, 'Income wise count')


```
In [38]:
           1 # Income column
           plt.figure(figsize = (10,5))
           3 | sns.boxplot(data = df, x = 'Income')
           4 plt.title('Income column analysis and outlier detection')
```

Income column analysis and outlier detection

Out[38]: Text(0.5, 1.0, 'Income column analysis and outlier detection')

Miles column:

Insight:

- 37 are unique values in Miles column out of 180 values
- min -> 21 Avg miles/week and Max --> 360 avg miles/week
- Majority of sales are from range of 40 to 200 Avg miles/ week.
- Most of users have 70 to 80 Avg miles/week of about 40 users.
- As per histogram, Data is not normal distribution.
- Data as outliers

- Users who have 40 to 200 Avg miles/ week, these user prefer to buy treadmill, Sales excutive can put more weig htage on these group chancing of user purchasing will increase
- Users who have 70 to 80 Avg miles/week, will have highest probability of buying Treadmill

```
In [39]:
           1 # Miles column number of unique value
           2 df['Miles'].nunique()
Out[39]: 37
In [110]:
           1 df['Miles'].describe()
Out[110]: count
                   180.000000
                   103.194444
          mean
                    51.863605
          std
          min
                    21.000000
                    66.000000
          25%
                    94.000000
          50%
                   114.750000
          75%
                   360.000000
          max
          Name: Miles, dtype: float64
In [114]:
           1 # Miles column
           plt.figure(figsize = (5,5))
           3 sns.histplot(data = df, x = 'Miles', kde = True)
           4 plt.title('Miles wise count')
```

Out[114]: Text(0.5, 1.0, 'Miles wise count')

Out[41]: Text(0.5, 1.0, 'Miles column analysis and outlier detection')

Miles column analysis and outlier detection

Bivariate plot

Bivariate analysis of Product wrt Gender and Maritalstatus

Insights:

- Gender Insights:
 - KP281 --> Both Male and Female user are equal who have purchased
 - KP481 --> Male user are more compared to Female and with slight difference of 2 users
 - KP781 --> Male user are more compared to Female and with very large difference of 25+ users
- Marital Status Insight:
 - In all product category, Partnered users are more.

Recommendataion:

- Target Partnered users, when compared Single. Partnered users have high chance of buying Treadmill (~60%)
- KP781, Target users will be Male and 82.5% purchased
- KP281 and KP481 --> both male and female have equal chances of buying and equal weightage can be provided.

Out[120]: 82.5

Out[197]: Text(0.5, 1.0, 'Product wise analysis wrt Gender')


```
In [123]: 1 pd.crosstab(df['Product'], [df['MaritalStatus']])
```

Out[123]:

MaritalStatus	Partnered	Single	
Product			
KP281	48	32	
KP481	36	24	
KP781	23	17	

```
In [125]: | 1 | pd.crosstab(df['Product'], [df['MaritalStatus']]).sum(axis = 0).reset_index().rename(columns = {0:'cnt'})
```

Out[125]:

	MaritalStatus	cnt		
0	Partnered	107		
1	Single	73		

Out[126]: 59.44444444444444

Out[198]: Text(0.5, 1.0, 'Product wise analysis wrt MaritalStatus')

Bivariate analysis of below menttioned columns

Age, Education, Usage, Fitness, Income, Miles

Insights:

- Product to Age analysis
 - KP281 and KP481 --> both age median are same.
 - KP781 --> 50% of users are between 25 to 30
- Product to Education analysis
 - KP281 and KP481 --> Education below 16year, prefer to buy these product
 - KP781 --> Education above 16 year prefer to buy this product
- Product to Usage analysis
 - KP281 --> Users prefer to use more treadmill by about 3 4 times/week
 - KP481 --> Least used product by users
 - KP781 --> Users prefer to use more treadmill when compared to others and there 25% is at 4 times/week
- Product to Fitness analysis
 - KP281 & KP481 --> Moderate fitness users
 - KP781 --> Users have excellent shape when compared to others. Users are professional
- Product to Income analysis
 - KP781 --> Higher income users prefer this Treadmill
- Product to Miles analysis
- KP781 --> User runs more miles in this treadmill (>=120 miles/week). User who plans to run/walk >= 120 miles/week prefer to buy this product.

- KP781 --> Highter income (>= \$60,000 on app.), Users who plans to run >= 12 miles/week, Professional users, Hi gher educated >=16 years and Gender = Male. Target these matching users as they have highter chances of buying this product.
- KP481 --> Moderate income users (\$45,000 to 53,000 app.), they prefer this product
 - KP281 --> Lower income (\$40,000 to \$53,000) users prefer this product, Female with Less usage
- KP281 and KP481 --> Education < 16, Fitness = 3, Both male and female prefer this product to buy

```
In [148]:
           1 plt.figure(figsize = (15,10))
              plt.subplot(2,3,1)
              sns.boxplot(data = df, x = 'Product', y = 'Age')
              plt.title('Product to Age analysis')
           5
           6
           7
              plt.subplot(2,3,2)
              sns.boxplot(data = df, x = 'Product', y = 'Education')
              plt.title('Product to Education analysis')
          10
          11 plt.subplot(2,3,3)
              sns.boxplot(data = df, x = 'Product', y = 'Usage')
          12
          plt.title('Product to Usage analysis')
          14
          15 plt.subplot(2,3,4)
          sns.boxplot(data = df, x = 'Product', y = 'Fitness')
          17 plt.title('Product to Fitness analysis')
          18
          19 plt.subplot(2,3,5)
             sns.boxplot(data = df, x = 'Product', y = 'Income')
          21 plt.title('Product to Income analysis')
          22
          23 plt.subplot(2,3,6)
           sns.boxplot(data = df, x = 'Product', y = 'Miles')
           25 plt.title('Product to Miles analysis')
```

Out[148]: Text(0.5, 1.0, 'Product to Miles analysis')

Multivariate Analysis wrt Gender and each continous data column

continous data column - Age, Education, Usage, Fitness, Income, Miles

```
In [150]:
           1 plt.figure(figsize = (15,10))
              plt.subplot(2,3,1)
              sns.boxplot(data = df, x = 'Product', y = 'Age', hue = 'Gender')
           5
              plt.title('Product to Age analysis')
           6
           7
              plt.subplot(2,3,2)
              sns.boxplot(data = df, x = 'Product', y = 'Education', hue = 'Gender')
              plt.title('Product to Education analysis')
           10
              plt.subplot(2,3,3)
           11
              sns.boxplot(data = df, x = 'Product', y = 'Usage', hue = 'Gender')
           12
           13
              plt.title('Product to Usage analysis')
           14
           15 plt.subplot(2,3,4)
             sns.boxplot(data = df, x = 'Product', y = 'Fitness', hue = 'Gender')
           17 plt.title('Product to Fitness analysis')
           18
             plt.subplot(2,3,5)
           19
              sns.boxplot(data = df, x = 'Product', y = 'Income', hue = 'Gender')
           21 plt.title('Product to Income analysis')
           22
           23 plt.subplot(2,3,6)
             sns.boxplot(data = df, x = 'Product', y = 'Miles', hue = 'Gender')
           25 plt.title('Product to Miles analysis')
```

Out[150]: Text(0.5, 1.0, 'Product to Miles analysis')

Correlation

Insights:

- Fitness to miles runned are highly correlated.
- Miles to usage are highly correlated.
- Age to miles, fitness, usage are not correlated (almost tending to 0) $\,$

- User who are fit and they use treadmill more when compared to less fit users and they tend to cover more mile
- s. Target KP781 model for these type of users $\,$

In [53]: 1 sns

1 sns.heatmap(df.corr())

C:\Users\trtej\AppData\Local\Temp\ipykernel_10256\58359773.py:1: FutureWarning: The default value of numeric_only in Da
taFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the val
ue of numeric_only to silence this warning.
sns.heatmap(df.corr())

Out[53]: <Axes: >

In [151]:

1 df.corr()

C:\Users\trtej\AppData\Local\Temp\ipykernel_10256\1134722465.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the v alue of numeric_only to silence this warning.

df.corr()

Out[151]:

	Age	Education	Usage	Fitness	Income	Miles
Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000

Conditional Probabilities

Given Gender, what is probability of each product

- P(KP281 | Male)
- P(KP481 | Male)
- P(KP781 | Male)
- P(KP281 | Female)
- P(KP481 | Female)
- P(KP781 | Female)

Insights:

- Ovt of male who have purchased, probability of buying KP281 is higher and KP481, KP781 as almost of 29-30% probability
- Ovt of female who have purchased, probability of buying KP281 is higher and Female wont prefer to purchase KP7 81 (probability of 9.21%)

Recommendation:

- Target user are Male or Female, They tend to buy KP281 when compared to other products.

```
In [157]:
            1 | df1 = pd.crosstab(df['Gender'], [df['Product']])
Out[157]:
           Product KP281 KP481 KP781
           Gender
                            29
                                   7
           Female
                     40
                                  33
                            31
             Male
In [163]:
           1 # - P(KP281 | Male)
            2 round(df1.loc['Male','KP281'] / df1.loc['Male'].sum()*100,2)
Out[163]: 38.46
In [164]:
           1 # - P(KP481 | Male)
            2 round(df1.loc['Male','KP481'] / df1.loc['Male'].sum()*100,2)
Out[164]: 29.81
In [165]:
            1 # - P(KP781 | Male)
            2 round(df1.loc['Male','KP781'] / df1.loc['Male'].sum()*100,2)
Out[165]: 31.73
           1 | # - P(KP281 | Female)
In [166]:
            2 round(df1.loc['Female','KP281'] / df1.loc['Female'].sum()*100,2)
Out[166]: 52.63
In [167]:
           1 | # - P(KP481 | Female)
            2 round(df1.loc['Female','KP481'] / df1.loc['Female'].sum()*100,2)
Out[167]: 38.16
In [168]:
            1 | # - P(KP781 | Female)
            2 round(df1.loc['Female','KP781'] / df1.loc['Female'].sum()*100,2)
Out[168]: 9.21
          Given Marital Status, what is probability of each product
              - P(KP281 | partnered)
              - P(KP481 | partnered)
              - P(KP781 | partnered)
              - P(KP281 | Single)
              - P(KP481 | Single)
              - P(KP781 | Single)
          Insights:
              - Ovt of Partnered who have purchased, probability of buying KP281 is higher.
              - Ovt of Single who have purchased, probability of buying KP281 is higher
          Recommendation:
              - Target user are Partnered or Single, They tend to buy KP281 when compared to other products.
In [169]:
           1 | df2 = pd.crosstab(df['MaritalStatus'], [df['Product']])
```

Out[170]: 44.86

```
In [171]:
           1 | # - P(KP481 | Partnered)
            round(df2.loc['Partnered','KP481'] / df2.loc['Partnered'].sum()*100,2)
Out[171]: 33.64
In [172]:
           1 # - P(KP781 | Partnered)
            2 round(df2.loc['Partnered','KP781'] / df2.loc['Partnered'].sum()*100,2)
Out[172]: 21.5
In [173]:
           1 | # - P(KP281 | Single)
            2 round(df2.loc['Single','KP281'] / df2.loc['Single'].sum()*100,2)
Out[173]: 43.84
In [175]:
           1 | # - P(KP481 | Single)
            2 round(df2.loc['Single','KP481'] / df2.loc['Single'].sum()*100,2)
Out[175]: 32.88
In [176]:
           1 | # - P(KP781 | Single)
            2 round(df2.loc['Single','KP781'] / df2.loc['Single'].sum()*100,2)
Out[176]: 23.29
          Given Age Bins, what is probability of each product
             - P(KP281 | Teen)
             - P(KP481 | Teen)
             - P(KP781 | Teen)
             - P(KP281 | Adult)
             - P(KP481 | Adult)
             - P(KP781 | Adult)
             - P(KP281 | Mid age and old age)
             - P(KP481 | Mid age and old age)
             - P(KP781 | Mid age and old age)
          Insights:
```

- Majority users who have purchased, prefer to buy KP281. Then KP481 and KP781
- KP781 users are of >40 age , with probability of 33%

Recommendation:

- Target user for KP281, Any age person
- Target user for KP781, >40 age person

```
In [195]:
           1 | # Assuming Age < = 25 (Teen)
            2  # Age <=40 (Adult)
              # Age > 40 (Mid age and old age)
              def age_bins(x):
                  if x <= 25:
            7
                      return 'Teen'
            8
                  elif x <= 40:
            9
                      return 'Adult'
           10
                   elif x > 40:
                      return 'Mid age and old age'
           12
           df3 = df[['Product', 'Age']].copy()
           14 df3['bins'] = df3['Age'].apply(lambda x : age_bins(x))
           16 | age_p = pd.crosstab(df3['bins'], [df3['Product']])
           17 | age_p
```

Out[195]:

Product KP281 KP481 KP781

bins			
Adult	40	30	19
Mid age and old age	6	2	4
Teen	34	28	17

```
In [185]:
           1 | # p(KP281 | Teen)
            round(age_p.loc['Teen','KP281'] / age_p.loc['Teen'].sum()*100,2)
Out[185]: 43.04
In [186]:
            1 # p(KP481 | Teen)
            2 round(age_p.loc['Teen','KP481'] / age_p.loc['Teen'].sum()*100,2)
Out[186]: 35.44
In [187]:
           1 | # p(KP781 | Teen)
            round(age_p.loc['Teen','KP781'] / age_p.loc['Teen'].sum()*100,2)
Out[187]: 21.52
In [188]:
           1  # p(KP281 | Adult)
            round(age_p.loc['Adult','KP281'] / age_p.loc['Adult'].sum()*100,2)
Out[188]: 44.94
In [191]:
           1  # p(KP481| Adult)
            round(age_p.loc['Adult','KP481'] / age_p.loc['Adult'].sum()*100,2)
Out[191]: 33.71
In [190]:
            1  # p(KP781 | Adult)
            round(age_p.loc['Adult','KP781'] / age_p.loc['Adult'].sum()*100,2)
Out[190]: 21.35
In [192]:
            1 \# p(KP281 | Mid age and old age)
            round(age_p.loc['Mid age and old age','KP281'] / age_p.loc['Mid age and old age'].sum()*100,2)
Out[192]: 50.0
In [193]:
            1 | # p(KP481 | Mid age and old age)
            2 round(age_p.loc['Mid age and old age','KP481'] / age_p.loc['Mid age and old age'].sum()*100,2)
Out[193]: 16.67
In [194]:
            1 \# p(KP781) \mid Mid \mid age \mid and \mid old \mid age \mid
            2 round(age_p.loc['Mid age and old age','KP781'] / age_p.loc['Mid age and old age'].sum()*100,2)
Out[194]: 33.33
            age_p = pd.crosstab(df['Product'], [df['Age']]).sum(axis = 1).reset_index().rename(columns = {0 : 'age_count'})
In [82]:
              age_p
Out[82]:
             Product age_count
              KP281
                           80
               KP481
                           60
```

KP781

40