B – Analyse des systèmes

Question B1:

C – Etude comportementale

Question C1:

Question C2:

Question C3:

Question C4:

$$r_1 = X11$$
; $r_2 = X12 + X13$; $r_3 = X12$; $r_4 = X14$; $r_5 = X13$; $r_6 = X14$.

D – Etude de l'équilibre du tiroir

Ouestion D1-1:

On isole le tiroir 1. Il est soumis aux actions mécaniques \vec{F} , $\vec{P_1}$, $\vec{P_2}$, $\vec{T_1}$, $\vec{T_2}$ et au torseur d'actions

mécaniques transmissibles dans la liaison glissière $\{\tau_{0 \to 1}\}= egin{dcases} X_{0 \to 1} & L_{I,0 \to 1} \\ 0 & M_{I,0 \to 1} \\ Z_{0 \to 1} & N_{I,0 \to 1} \end{bmatrix}_{(\vec{x}, \vec{y}, \vec{z})}.$

NB: l'énoncé (page 7/16) omet l'action du bâti 0 sur le tiroir 1 dans le bilan d'actions mécaniques. On suppose que $\|\overrightarrow{P_1}\| = \|\overrightarrow{P_2}\| = P$.

Le principe fondamental de la statique nous donne :

$$|\overrightarrow{F} + \overrightarrow{P_1} + \overrightarrow{P_2} + \overrightarrow{T_1} + \overrightarrow{T_2} + \overrightarrow{R_{0 \to 1}} = \overrightarrow{0}$$

$$|\overrightarrow{IC} \wedge \overrightarrow{F} + \overrightarrow{IA_1} \wedge \overrightarrow{P_1} + \overrightarrow{IA_2} \wedge \overrightarrow{P_2} + \overrightarrow{IB_1} \wedge \overrightarrow{T_1} + \overrightarrow{IB_2} \wedge \overrightarrow{T_2} + \overrightarrow{M_{I,0 \to 1}} = \overrightarrow{0}$$

$$|X_{0 \to 1} = 0$$

$$|X_{0 \to 1} = 0$$

$$|Z_{0 \to 1$$

Il y a 8 inconnues $(X_{0\rightarrow 1}, Z_{0\rightarrow 1}, L_{I,0\rightarrow 1}, M_{I,0\rightarrow 1}, N_{I,0\rightarrow 1}, T_1, T_2 \text{ et } F)$ pour 6 équations. Il manque donc deux équations pour déterminer toutes les inconnues.

Question D1-3:

$$\left\{ \tau_{8_2 \to 1} \right\} = \left\{ \begin{matrix} X_{8_2 \to 1} & 0 \\ Y_{8_2 \to 1} & 0 \\ Z_{8_2 \to 1} & 0 \end{matrix} \right\}_{(\vec{x}, \vec{y}, \vec{z})} ; \\ \left\{ \tau_{8_2 \to 5} \right\} = \left\{ \begin{matrix} X_{8_2 \to 5} & 0 \\ Y_{8_2 \to 5} & 0 \\ Z_{8_2 \to 5} & 0 \end{matrix} \right\}_{(\vec{x}, \vec{y}, \vec{z})} ; \\ \left\{ \tau_{5 \to 0} \right\} = \left\{ \begin{matrix} X_{5 \to 0} & 0 \\ Y_{5 \to 0} & M_{O, 5 \to 0} \\ Z_{5 \to 0} & N_{O, 5 \to 0} \end{matrix} \right\}_{(\vec{x}, \vec{y}, \vec{z})} .$$

Question D1-4:

On isole la biellette 8₂.

Elle est soumise aux actions mécaniques de 5 et 1.

On applique le théorème de la résultante sur \vec{y} et on en déduit qu'à l'équilibre $T_2 = Y_{8, \to 1} = -Y_{8, \to 5}$.

De même, en isolant la biellette 8_1 , on en déduit $T_1 = Y_{8_1 \to 1} = -Y_{8_1 \to 5}$.

On isole l'ensemble de torsion 5.

Il est soumis aux actions mécaniques de 0, 81 et 82.

On applique le théorème du moment résultant sur $\vec{x}: (\overrightarrow{OG_2} \wedge -T_2 \vec{y}) \vec{x} + (\overrightarrow{OG_1} \wedge -T_1 \vec{y}) \vec{x} = 0$

On en déduit qu'à l'équilibre $T_2 = -T_1$.

Question D1-5:

D'après D1-1, avec
$$T_2 = -T_1$$
, on a $\begin{vmatrix} -F + 2 \times P = 0 \\ c \times F + 2 \times b \times T_2 + N_{I,0 \to 1} = 0 \end{vmatrix}$.

On en déduit alors que $F = 2 \times P$.

Le palonnier crée un couple de sens opposé à celui créé par F, il diminue $N_{I,0\to 1}$ et donc le risque d'arcboutement. On peut aussi avoir $N_{I,0\to 1}=0$ avec $T_2=-c\times F/2\times b$.

E - Etude du mouvement du tiroir

Question E1-1:

NB : problème sur le schéma de la page 8/16 : repère des solides ? points O, B et G ?

Question E1-2:

Fermeture dimensionnelle dans la chaîne de solides 0-5-8-0: $\overrightarrow{OG} + \overrightarrow{GB} = \overrightarrow{OB}$.

$$R.\vec{y}_5 + L.\vec{y}_8 = y(t).\vec{y}_0 + h.\vec{z}_0$$
 d'où $\begin{vmatrix} R\cos\theta_{50} + L\cos\theta_{80} = y(t) \\ R\sin\theta_{50} + L\sin\theta_{80} = h \end{vmatrix}$.

$$L^{2} = (y(t) - R\cos\theta_{50})^{2} + (h - R\sin\theta_{50})^{2}, \text{ ce qui donne } y(t) = R\cos\theta_{50} + \sqrt{L^{2} - (h - R\sin\theta_{50})^{2}}.$$

Question E1-3:

On retrouve la course de 1500 mm.

Question E1-4:

Coefficient de linéarité : $K = \frac{1950 - 850}{135 - 45} \approx 12.2 \ mm/^{\circ} \approx 730 \ mm/rad$.

Question E2-1:

 $V_{1/0} = K\dot{\theta}_{50}$ dans le domaine de linéarité. $\dot{\theta}_{50} = \frac{V_{1/0}}{K} = \frac{240}{730} = 0.33 \ rad/s$.

Question E2-2:

$$\overrightarrow{V_{G \in 5/0}} = \overrightarrow{V_{G \in 8/0}}$$
 car liaison rotule en G entre 5 et 8.

$$\overrightarrow{V_{B \in 8/0}} = \overrightarrow{V_{B \in 1/0}}$$
 car liaison rotule en B entre 1 et 0.

Connaissant le CIR du mouvement de 8/0, on en déduit le vecteur $\overrightarrow{V}_{G \in 5/0}$ et $\left\|\overrightarrow{V}_{G \in 5/0}\right\| = 320$ mm/s.

$$\dot{\theta}_{50} = \frac{\|\overrightarrow{V_{G \in 5/0}}\|}{OG} = \frac{320}{40*20} = 0.4 \text{ rad/s}.$$

F - Etude de l'asservissement du tiroir

Question F1-1:

En supposant les conditions initiales nulles :

En supposant les conditions initiales nulles :
$$Mp^2Y_1(p) = \frac{KQ_1(p)}{S_1p} - KY_1(p) - fpY_1(p) \text{ d'où on en déduit } H_1(p) = \frac{1/S_1}{p\left(\frac{M}{K}p^2 + \frac{f}{K}p + 1\right)}.$$

$$Mp^2Y_2(p) = -KY_2(p) - fpY_2(p) + F(p) \text{ d'où on en déduit } H_2(p) = \frac{1/K}{\left(\frac{M}{K}p^2 + \frac{f}{K}p + 1\right)}.$$

Question F1-2:

$$Y(p) = Y_1(p) + Y_2(p) = H_1(p) \times Q_1(p) + H_2(p) \times F(p)$$
.

$$Y(p) = \frac{1/S_1}{p(\frac{M}{K}p^2 + \frac{f}{K}p + 1)}Q_1(p) + \frac{1/K}{(\frac{M}{K}p^2 + \frac{f}{K}p + 1)}F(p).$$

Question F1-3:

Question F2-1:

$$\frac{U_{S}(p)}{U_{e}(p)} = K_{C}K_{e}G(p) = \frac{K_{C}K_{e}/S_{1}}{p(\frac{M}{K}p^{2} + \frac{f}{K}p + 1)}.$$

Question F2-2:

Question F2-3:

$$\frac{Y(p)}{Y_{C}(p)} = \frac{AK_{C}K_{e}G(p)}{1 + AK_{C}K_{e}G(p)} = \frac{\frac{AK_{C}K_{e}/S_{1}}{p\left(\frac{M}{K}p^{2} + \frac{f}{K}p + 1\right)}}{1 + \frac{AK_{C}K_{e}/S_{1}}{p\left(\frac{M}{K}p^{2} + \frac{f}{K}p + 1\right)}} = \frac{AK_{C}K_{e}/S_{1}}{p\left(\frac{M}{K}p^{2} + \frac{f}{K}p + 1\right)} = \frac{AK_{C}K_{e}/S_{1}}{p\left(\frac{M}{K}p^{2} + \frac{f}{K}p + 1\right) + AK_{C}K_{e}/S_{1}}$$

$$\frac{Y(p)}{Y_{C}(p)} = \frac{1}{1 + \frac{S_{1}}{AK_{C}K_{e}}p + \frac{fS_{1}}{AK_{C}K_{e}K}p^{2} + \frac{MS_{1}}{AK_{C}K_{e}K}p^{3}}.$$

G - Etude du couvercle

Question G1-1:

Question G2-1:

$$\|\overrightarrow{P_{11\to 10}}\| = 2 \times 31,5 \times \pi \times \frac{250^2}{4} = 3 \times 10^6 \ N.$$

Question G2-2:

On isole le couvercle 10. Il est soumis aux actions $\overrightarrow{P_{11\to 10}}$, $\overrightarrow{Q_{0\to 10}}$ et \overrightarrow{R} , 3 glisseurs concourants.

H – Etude de la liaison entre un des vérins de fermeture de couvercle et le châssis

Question H1-1:

On isole le vérin 11+12.

Il est soumis aux actions $\overrightarrow{P_{10\to 11}}$ et $\overrightarrow{S_{0\to 12}}$, 2 glisseurs porté par (SP), égaux en intensité et opposés en sens.

On en déduit $\|\overrightarrow{S_{0\to 12}}\| = 3 \times 10^6 \ N$

Question H2-1:

NB : *De quel ajustement s'agit-il ? Il semblerait que ce soit le \phi270.*

Glissant juste: ϕ 270 H9/h8.

Question H2-2:

Bague de frottement 3 / Tourillon 1 : ajustement glissant, \$\phi130 \text{ H8/f7}.

Boîtier de tourillon 4 / Bague de frottement 3 : ajustement serré, \$\phi168\$ H7/p6.

Question H2-3:

Cu Sn 12 Pb: alliage de cuivre (bronze) avec 12 % d'étain et des traces de plomb (<1 %).

Le palier lisse 3 participe au guidage en rotation du tourillon 1 par rapport à son boîtier 4.

Il est constitué de bronze fritté imprégné de PTFE ou d'huile. Ce matériau permet de minimiser la dissipation d'énergie par frottement de glissement par rapport à une solution avec contact direct acier / acier. Il présente aussi une bonne résistance à l'usure.

S 355 : acier d'usage général avec une limite d'élasticité Re = 355 MPa.

Son emploi se justifie par un coût bon marché et son aptitude à la mise en œuvre par soudage.

Question H2-4:

⊕ Ø 0,5 A B

Le symbole représente une spécification de position : une localisation.

Les éléments tolérancés sont les 12 axes des trous M30.

La zone de tolérance est un ensemble de 12 cylindres de ϕ 0,5 mm positionnés à l'aide des côtes encadrées ϕ 460 et 20 °.

La référence primaire A est la droite idéale associée à l'axe du cylindre réel \$\phi270\$.

La référence secondaire B est le plan idéal associé au plan réel côté à 48 mm de la face supérieure du tourillon.

NB : on peut regretter l'absence de document réponse d'après matrice GPS.

Tolérancement normalisé	Analyse d'une spécification par zone de tolérance				
Symbole de la spécification	Eléments non idéaux		Eléments idéaux		
Type de spécification Forme Orientation Position Battement Localisation	Elément(s) tolérancé(s)	Elément(s) de référence	Référence(s) spécifiée(s)	Zone de tolérance	
Condition de conformité : L'élément tolérancé doit se situer tout entier dans la zone de tolérance	Unique Groupe	Unique Multiples	Simple Commun Système	Simple Composee	Contraintes Orientation et/ou position par rapport à la référence spécifiée
Schéma Extrait du dessin de définition	12 lignes nominalement rectilignes. 12 axes réels des 12 surfaces nominalement cylindriques.	Ensemble de deux surfaces: - surface A nominalement cylindrique; - surface B nominalement plane	Référence primaire : DROITE-A axe du cylindre associé à la surface repérée A, critère du diamètre mini Référence secondaire : PLAN-B associé à la surface repérée B, contraint perpendiculaire à la droite-A et tangent du côté libre matière, critère min-max.	12 cylindres de \$\phi\$ 0,5 mm dont les axes sont disposés sur un diamètre \$\phi\$ 460 mm positionnés les uns des autres par les côtes de 20 °.	L'axe du diamètre \(\phi \) 460 mm est la référence spécifiée DROITE-A

Question H2-5:

Tolérance de position : coaxialité Ø t

NB : l'absence de référence est déconseillée par la norme GPS.

Question H3-1:

Question H4-1:

NB : il y a un problème sur la vue de gauche du document réponse. Ci-dessous la version corrigée.

Machine Outil: tour CN

Mise en position : appui plan et centrage court

Opération : alésage Outillage : outil à aléser

Question H4-2:

Solution 1 : lunette et contrepointe

Machine Outil: tour CN

Mise en position : centrage long et butée

Opération : dressage avec lunette puis chariotage, chanfreinage avec contrepointe.

Outillage : outil à charioter et dresser, lunette, contrepointe.

Solution 2: avec montage d'usinage

Machine Outil: tour CN

Mise en position : appui plan, centrage court et appui ponctuel.

Opération : dressage, chariotage, chanfreinage.

Outillage: outil à charioter et dresser.

Question H5-1:

