Regelungstechnik Schulung für nicht-Regelungstechniker

Agenda

- 1. Regelkreise und wichtige Begriffe
- 2. Gleichungssysteme
- 3. Differentialgleichungen
- 4. Standardsignale

Erste Begriffe

Regelstrecke

- auch bezeichnet als Strecke, Prozess, process
- Maschine / Anlagenteil / System
 - mit Stelleinrichtung (Stellmotoren, Ventile, etc.) actuators
 - mit Messeinrichtung (Fühler, Transmitter, Sensoren etc.) ensors

Eingang

Stellgröße, input, manipulated variable (MV)

Ausgang

Regelgröße, output, controlled variable (CV)

Beispiele für Regelstrecken

- Raumtemperatur
- Fahrzeuggeschwindigkeit
- ...

Lösungsweg für Regelungsaufgaben

(nach Lunze 1 2015)

- 1. Formulierung der Regelungsaufgabe
 - 1. Festwertregelung
 - 2. Folgeregelung
 - 3. Änderung der Streckendynamik
- 2. Auswahl der Regelgröße
- 3. Auswahl der Stellgröße
- 4. Modellierung der Regelstrecke
- 5. Regelerentwurf
- 6. Analyse des Verhaltens des geschlossenen Regelkreises
- 7. Realisierung des Reglers

Modellbasierte Verfahren

Es gibt modellfreie Regler**einstell**verfahren z.B. Ziegler-Nichols-Verfahren. Dabei werden die Parameter eine standardisierten Reglerstruktur (z.B. PID-Regler) **LIVE** eingestellt. \rightarrow Welche Vor- und Nachteile hat dieser Ansatz?

Modellbildung

Die Methode/Reihenfolge ist natürlich, simpel, trivial. Nutzt sie!!!

- 1. Beschreibung des Modellierungsziels: Regelaufgabe definiert Anforderungen an Modell
- 2. Auswahl der Modellannahmen: Was wird modelliert und was nicht (Einfach starten! Mut zur Lücke!!!)
- 3. Verbale Beschreibung der Regelstrecke

- 4. Aufstellung des Blockschaltbildes
 - 1. Teilkomponenten und deren Verbindungen werden im verbale Modell gefunden
 - 2. Blockschaltbild ist die graphische Darstellung
- 5. Aufstellung der Modellgleichungen
 - 1. Jede Teilkomponente muss ihre Ausgänge aus ihrem Zustand und ihren Eingängen berechnen können.
- 6. Modellparametrierung
- 7. Modellvalidierung: Abgleich mit Erwartung oder Messung

Zitat aus Lunze:

"Als sehr wichtiges *Nebenergebnis* führt die Modellbildung aber auch zu einem tiefgründigen Verständnis der in dem zu steuernden Prozess ablaufenden physikalischen Vorgänge, denn:

Man muss die wichtigsten physikalischen Prozesse verstanden haben, um sie regeln zu können."

Blockschaltbild

• Beipiel BSB:

Man beachte die wechselnde Bedeutung von \boldsymbol{u} in diesem Beispiel.

Beispiel 1: Fahrzeugmodell 1/

· Betrachtet wird das Fahrzeug

mit einer Masse von m=1000kg einem Reibbeiwert von $b=50\frac{N\cdot s}{m}$ und einer beschleunigenden Kraft von $F_u=500N$

- 1. Wie sieht das Übertragungsglied für das Blockschaltbild aus?
- 2. Wie lange dauert ein Beschleunigungsmanöver von $v_0=5rac{m}{s}$ auf $v_0=10rac{m}{s}$?

Beispiel 1: Fahrzeugmodell 2/

1. Übertragungsglied

2. Dauer der Beschleunigung

- In der Aufgabe ist der Reibbeiwert b angegeben o Der antreibenden Kraft F_u wirkt die Reibkraft $F_R = b \cdot \dot{x}(t)$ entgegen.
- Fahrzeugposition x(t) wird durch Differentialgleichung mit Kräftebilanz beschrieben:

$$egin{aligned} rac{d^2}{d\,t^2}x(t)\cdot m &= \Sigma F \ rac{d^2}{d\,t^2}x(t)\cdot m &= F_u - F_R \ rac{d^2}{d\,t^2}x(t)\cdot m &= F_u - b\cdot \dot{x}(t) \end{aligned}$$

- Uns interessiert die Fahrzeuggeschwindigkkeit: $v(t) = rac{d}{d\,t}x(t)$
- Nach Umformung der folgt so:

$$rac{d}{d\,t}v(t) = -rac{b}{m}\cdot v(t) + rac{F_u}{m}$$

Beispiel 1: Fahrzeugmodell 3/

DGL	$rac{d}{dt}v(t) = -rac{b}{m}\cdot v(t) + rac{F_u}{m}$
Lösung	$v(t) = rac{F_u}{b} + \mathrm{e}^{-rac{bt}{m}}igg(v_0 - rac{F_u}{b}igg)$
eingesetzt	$v(t) = 10 - 5\mathrm{e}^{-t/20}$

Eine Geschwindigkeit von $9.9\frac{m}{s}$ wird nach 78,24s erreicht, $10\frac{m}{s}$ werden **theoretisch** nie erreicht.

ightarrow Wie kann können $8\frac{m}{s}$ erreicht werden, (schnell)? \leftarrow

Beispiel 2: Reihenschwingkreis 1/

- Betrachtet wird ein Reihenschwingkreis ΣRSK
- Spannung $u_1(t)$ ist von außen beeinflussbare Größe
- Spannung $u_2(t)$ ist die Reaktion des Schwingkreises
- zur Zeit t = 0 fließt kein Strom durch die Induktivität
- die Kondensatorspannung einen bekannten Wert u_0
- der RSK ist unbelastet $i_3(t) = 0$

Beispiel 2: Reihenschwingkreis 2/

Strom-Spannungsbeziehungen für R, L, C:

$$egin{aligned} u_R(t) &= R\,i_1(t) \ u_L(t) &= Lrac{d\,i_1(t)}{d\,t} \ u_C(t) &= u_C(0) + rac{1}{C}\int_0^t i_1(au)d au \end{aligned}$$

Kirchhoff'sche Gesetze:

$$egin{aligned} u_2(t) &= u_R(t) + u_C(t) \ u_1(t) &= u_L(t) + u_R(t) + u_C(t) \end{aligned}$$

Ziel: Eine Differentialgleichung ableiten, in der nur noch die Eingangsgröße $u(t)=u_1(t)$ und die Ausgangsgröße $y(t)=u_2(t)$ sowie deren Ableitungen vorkommen.

Beispiel 2: Reihenschwingkreis 3/

Strom-Spannungsbeziehungen für R, L, C:

$$CLrac{d^2}{dt^2}u_2(t) + CRrac{d}{dt}u_2(t) + u_2(t) = CRrac{d}{dt}u_1(t) + u_1(t)$$

Abschluss Modellbildung

 Bei der Modellierung sollte die Dynamik möglichst als Differentialgleichungssystem mit den Ausgängen als abhängige Variable dargestellt werden

Regelkreise

Zweck von Regelungen

- Festwertregelung Kompensation von Störungen z.B.
 - Anfangswerte
 - Umwelteinwirkungen
 - Modellunsicherheiten
- Folgereglung Streckenausgänge folgen Führungsgrößen (Sollwerten)
- Änderung der Streckendynamik
 - Stabilisierung der Regelstrecke
 - Steigerung der Streckenperformance

Regelsysteme erfüllen meist mehrere Zwecke.

Regelkreise

Bestandteile von Regelungen

1. Regelstrecke

Erzeugt aus den Stellgrößen die Regelgrößen.

2. Abgleich der Regelgrößen mit den Führungsgrößen

Berechnet aus den Führungsgrößen und den Regelgrößen die Regelabweichungen.

3. Regeleinrichtung

Berechnet aus den Regelabweichungen die Stellgrößen.

Beispiel 1: Geschwindigkeitsregelung 1/

Aufgabe: Fahrzeuggeschwindigkeit y(t) soll einer zeitvariablen Führungsgröße w(t) folgen.

• Wechsel der Symbole:

- Regelabweichung: e(t) = w(t) y(t)
- Regeleinrichtung: $u(t) = K \cdot e(t)$
 - $\bullet \;\;$ Verstärkung K legt fest wie intensiv auf Regelabweichungen reagiert wird.

Beispiel 1: Geschwindigkeitsregelung 2/

$$rac{d}{d\,t}y(t) = -rac{b}{m}\,y(t) + rac{K}{m}(w(t)-y(t))$$
 $rac{d}{d\,t}y(t) = -rac{b+K}{m}\,y(t) + rac{K}{m}\,w(t)$

Lösung für y(0) = 5 und w(t) = 8:

$$y(t) = w \cdot rac{K}{b+K} + \mathrm{e}^{-rac{(b+K)t}{m}}igg(y_{ heta} - w \cdot rac{K}{b+K}igg)$$

K = 500	K=1000	K=2000
$y(t) = 7.27 - 2.27 \mathrm{e}^{-0.550 t}$	$y(t) = 7.62 - 2.62 e^{-1.05 t}$	$y(t) = 7.80 - 2.80\mathrm{e}^{-2.05t}$

- · Verstärkung wirkt auf Dynamik und Statik
- Es bleibt aber immer eine bleibende Regelabweichung Das ist charakteristisch für proportinale Regler an proportionalen Regelstrecken

Aufgabe: Berechne und zeichne die Stellgrößen für die drei Verstärkungen.

Beispiel 1: Geschwindigkeitsregelung 3/

Ergänzung eines Integrators in der Regeleinrichtung:

$$u(t) = K_P \cdot e(t) + K_I \cdot \int e(t) \, dt$$

- Jetzt wird die Stellgröße angepasst, bis die Regelabweichung verschwindet.
- Der Integrator ist ein weiterer (System)-Zustand.
- Systemordnung steigt von n=1 auf n=2

Aufstellen der Differentialgleichung 2. Ordnung:

1. Neuen Zustand einführen:

$$rac{\mathrm{d}}{\mathrm{d}t}x_1(t) = e(t) \ u(t) = K_P \cdot e(t) + K_I \cdot x_1(t)$$

2. Alle Gleichungen aufschreiben:

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}t}y(t) &= -rac{by(t)}{m} + rac{u(t)}{m} \ rac{\mathrm{d}}{\mathrm{d}t}x \emph{1}(t) &= e(t) \ u(t) &= K_I\,x \emph{1}(t) + K_P\,e(t) \ e(t) &= w(t) - y(t) \end{aligned}$$

3. Erste Gleichung ableiten, die übrigen einsetzen, umstellen, \rightarrow fertig :-)

$$rac{\mathrm{d}^2}{\mathrm{d}t^2}y(t)\,m+rac{\mathrm{d}}{\mathrm{d}t}y(t)\left(K_P+b
ight)+y(t)\,K_I=K_P\,rac{\mathrm{d}}{\mathrm{d}t}w(t)+K_I\,w(t)$$

Beispiel 1: Geschwindigkeitsregelung 4/

$$rac{\mathrm{d}^2}{\mathrm{d}t^2}y(t)\,m+rac{\mathrm{d}}{\mathrm{d}t}y(t)\left(K_P+b
ight)+y(t)\,K_I=K_P\,rac{\mathrm{d}}{\mathrm{d}t}w(t)+K_I\,w(t)$$

Lösung für b=50, $m=1000\ y(0)=5$, y'(0)=0 ,

$$w(t) = egin{cases} 5 & t < 0 \ undefined & t = 0 \ 8 & 0 < t \end{cases}$$

*	$K_P=500$, $K_I=200$	K
u(t) =	$oxed{400.0+620.0\mathrm{e}^{-0.28t}\sin{(0.35t)}+1400.0\mathrm{e}^{-0.28t}\cos{(0.35t)}}$	$400.0 - 500.0 \mathrm{e}^{-0.28t}$

Beispiel 1: Geschwindigkeitsregelung 5/

• Gleiches Ein-/Ausgangsverhalten kann durch andere Strukturen erreicht werden

Vorsteuerung:

Die DGL:

$$K_I\,u(t)+igg(rac{\mathrm{d}}{\mathrm{d}t}u(t)igg)(K_P+b)+mrac{\mathrm{d}^2}{\mathrm{d}t^2}u(t)=K_I\,bw(t)+igg(rac{\mathrm{d}}{\mathrm{d}t}w(t)igg)(K_I\,m+K_P\,b)+K_P\,mrac{\mathrm{d}^2}{\mathrm{d}t^2}w(t)$$

erzeugt aus der Führungsgröße

$$w(t) = egin{cases} 5 & t < 0 \ undefined & t = 0 \ 8 & 0 < t \end{cases}$$

und passenden Anfangsbedingungen die gleichen Stellgrößen u(t)