

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

Prueba Parcial N°2 Algebra Lineal BAIN 036 Primavera 2012

Nombre:	o:Sala:
Instrucciones	
■ Conteste en forma ordenada identificando la pregunta e item que corresponde.	1 (1,5)
 Responda una pregunta por hoja. 	2 (2,0)
 Cada solución debe llevar desarrollo y respuesta. 	(, ,
Está permitido el uso de Calculadora.	3 (1,5)
■ Tiempo: 90 minutos.	4 (1,0)

Pregunta 1 Sea

$$W = \{ax^2 + bx + c \in P_2[\mathbb{R}] : a + b - c = 0\}$$

- a) Muestre usando la definición que W es un subespacio de $P_2[\mathbb{R}]$.
- b) Encuentre una base de W.

Pregunta 2 Dados los siguientes subespacios

$$U = \left\langle \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 3 & 4 \\ 4 & -3 \end{array}\right) \right\rangle, W = \left\langle \left(\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \right\rangle$$

Es $M_2(\mathbb{R})$ suma directa de U y W? Justifique

Pregunta 3 Sea $W = \{(a, b, c, d) \in \mathbb{R}^4 : a + c + d = 0, 2b + 4c + 8d = 0\}$ y considere el siguiente producto interno

$$<(a,b,c,d);(e,f,g,h)>:=2ae+3bf+cg+dh$$

Usando la definición del producto interno anterior, caracterice W^{\perp} y determine su dimensión.

Pregunta 4 Considere $p(x) = 2x^2 + 3x + 1$ y $q(x) = x^2 - 2x + \frac{1}{2}$, dos elementos de $P_2[\mathbb{R}]$. Usando el producto interno habitual de polinomios determine:

- a) El ángulo entre p(x) y q(x).
- b) La distancia de p(x) a q(x).