Zadaci za samostalno vježbanje 1.

Za sve zadatke se zahtijeva rješenje u C++ stilu, tj. uz korištenje biblioteke "iostream", objekata izlaznog i ulaznog toka "cout" i "cin", biblioteke "cmath", manipulatora za formatiranje ispisa, C++ operatora za pretvorbu tipova, itd. Svi zadaci dati ovdje su takvi da se mogu uraditi korištenjem isključivo gradiva Predavanja 1. i ranije stečenog predznanja na predmetu "Osnove računarstva". Stoga, ovi zadaci uglavnom testiraju Vaše predznanje.

1. Napišite program koji traži da sa tastature unesemo podatke o dva vremenska trenutka, u satima, minutama i sekundama, a koji računa i ispisuje vrijeme koje je proteklo između ta dva vremenska trenutka, također u satima, minutama i sekundama. Pretpostaviti da je drugi vremenski trenutak uvijek nakon prvog. Na primjer, dijalog nakon pokretanja programa može da izgleda poput sljedećeg:

```
Unesi prvo vrijeme (h min s): 14 15 7
Unesi drugo vrijeme (h min s): 16 9 34
Između ova dva trenutka proteklo je 1h 54min 27s.
```

Uputa: Jedan način rješavanja mogao bi biti sljedeći: pretvorite oba unesena vremena u broj sekundi. Na primer, imamo 14h 15min 7s = 51307s i 16h 9min 34s = 58174s. Oduzmite broj sekundi da dobijete broj sekundi između ovih trenutaka (6867s u zadanom primjeru). Konačno, razložite dobijeni broj sekundi ponovo na sate, minute i sekunde (6867s = 1h 54min 27s)

- 2. Napišite program koji traži da se sa tastature unese brzina broda u čvorovima koja se zadaje isključivo kao cijeli broj (obavezno koristiti promjenljivu tipa "int"), a zatim izračunava i ispisuje brzinu broda u km/h kao *decimalan broj*. Koristite činjenicu da je čvor morska milja na sat, a da je jedna morska milja 1852 m (ovaj podatak obavezno definirati u programu kao *konstantu*). Na primjer, ukoliko se kao brzina broda unese broj 20, program treba da ispiše rezultat 37.04 jer je 20 čvorova = 37.04 km/h.
- 3. Napišite program koji traži da se sa tastature unese neki podatak, a koji u zavisnosti od toga kakav je uneseni podatak ispisuje jedan od sljedećih pet komentara:

Uneseni podatak je prirodan broj. Uneseni podatak je cijeli broj, ali nije prirodan. Uneseni podatak je realan broj, ali nije cijeli. Uneseni podatak nije broj.

Obavezno testirajte sve navedene slučajeve. Uputa: Prvo probajte unijeti podatak u realnu promjenljivu, a zatim testirajte ispravnost ulaznog toka. Ukoliko tok nije ispravan, podatak nije broj. Cijelost broja ćete testirati ispitivanjem da li se odsjecanjem decimala (tj. konverzijom u cjelobrojnu vrijenost) zadržava ista vrijednost.

- 4. Dvije firme nude usluge priključenja na Internet, pri čemu prva firma traži fiksnu pretplatu od 10 KM plus 50 feninga po svakom potrošenom satu, dok druga firma ne traži fiksnu pretplatu, ali traži 80 feninga po svakom potrošenom satu. Napišite program koji od korisnika traži da unese željeni broj sati a nakon toga da mu preporuči koja je firma isplatnija za njegove potrebe. Na primjer, za 15 sati isplatnija je druga firma (jer je $10 + 15 \cdot 0.5 = 17.5 > 15 \cdot 0.8 = 12$), dok je za 40 sati isplatnija prva firma (jer je $10 + 40 \cdot 0.5 = 30 < 40 \cdot 0.8 = 32$).
- 5. Napišite program koji traži da se sa tastature unesu tri realna broja, a koji zatim ispisuje da li ta tri broja mogu biti stranice nekog pravouglog trougla. Napomena: ne zna se koji od tri unesena broja predstavljaju katete, a koji hipotenuzu, tako da program treba da ponudi potvrdan odgovor kako na trojku brojeva 3, 4, 5, tako i na trojku brojeva 5, 4, 3 ili 3, 5, 4. Obavezno testirajte program i na ulaznim podacima 0.3, 0.4 i 0.5!
- 6. Napišite program koji traži da se unesu koeficijenti a, b i c kvadratne jednačine a, $x^2 + bx + c = 0$ a koji zatim računa i ispisuje njena rješenja. Program napraviti tako da se pri svakom unosu koeficijenta uvijek čitaju "svježi" podaci, bez obzira što je pri unosu prvog koeficijenta korisnik eventualno odmah unio tri podatka (uputa: koristite "cin.ignore"). Predvidite i mogućnost postojanja kompleksnih rješenja, koje čete ispisivati kao uređene parove realnih brojeva. Program treba da predvidi i sve specijalne slučajeve (za a = 0, jednačina se svodi na linearnu, tako da imamo samo jedno rješenje, ukoliko je ujedno $b \neq 0$; za a = b = 0 i $c \neq 0$ nema rješenja, dok je za a = b = c = 0 jednačina identički zadovoljena za svaku vrijednost x).

7. Napišite program koji traži da se sa tastature unese iznos glavnice G i kamatna stopa p. Program treba da izračuna iznos kamata K po formuli K = G·p/100 i novu svotu S = G+K i nakon toga treba da ispiše sve unesene i izračunate podatke u sređenom obliku sa svim brojevima poravnatim uz desnu ivicu (sve cifre jedinica treba da budu jedna ispod druge). Na primjer, ukoliko se unese G = 1000 i p = 5, ispis treba da bude poput sljedećeg:

Glavnica: 1000
Kamatna stopa: 5
Kamate: 50
Nova svota: 1050

a ako unesemo G = 55000 i p = 12, ispis treba da bude

Glavnica: 55000 Kamatna stopa: 12 Kamate: 6600 Nova svota: 61600

Pretpostavite da nijedna veličina neće preći širinu od 6 cifara. Eventualne decimalne rezultate zaokružite, tako da za G = 3530 i p = 7, kamate trebaju biti K = 247 a ne 247.1.

8. Napišite program koji traži da se sa tastature unese 6 brojeva, a koji zatim ispisuje da li su svi uneseni brojevi pozitivni i da li među njima ima neparnih brojeva. Za realizaciju programa *ne koristiti* nizove niti druge srodne strukture podataka. Program testirajte na slijedećim karakterističnim primjerima:

Primjer 1: 2 6 10 18 8 6 Primjer 2: 4 –12 10 18 –18 10 Primjer 3: 3 5 4 19 7 12 Primjer 4: –3 9 15 –7 13 11

- 9. Napišite program koji za cijeli broj unesen sa tastature ispisuje sve njegove proste faktore razdvojene razmacima, pri čemu se svaki prosti faktor javlja onoliko puta koliko učestvuje u tom broju. Na primer, ukoliko se unese broj 290472, program treba da ispiše 2 2 2 3 7 7 13 19, jer rastava ovog broja na proste faktore glasi $290472 = 2^3 \cdot 3 \cdot 7^2 \cdot 13 \cdot 19$.
- 10. Napišite program koji traži da se unese realan broj *x* i prirodan broj *n*, a zatim računa i ispisuje vrijednost sume

$$S = \sum_{k=1}^{n} \frac{(-1)^k}{x \cdot (x+k)}$$

Na primjer, za x = 2 i n = 5 program treba da izbaci rezultat -0.129762. U programu *nije dozvoljeno* koristiti funkciju "pow". Također, u programu *ne smije da bude više od jedna petlja*.

11. Iz matematičke analize je poznato da je za dovoljno veliko n vrijednost sume

$$S = \sum_{k=0}^{n} \frac{x^k}{k!}$$

približno jednaka vrijednosti funkcije $F = e^x$, s obzirom da za $n \to \infty$ vrijednost sume S konvergira ka F (s obzirom da je S Taylorov razvoj funkcije F, koji konvergira za svaku vrijednost x). Napišite program koji za zadanu vrijednost x određuje minimalnu vrijednost n takvu da se S i F poklapaju na barem prvih 5 decimala (tj. da je $|S-F| < 10^{-5}$). Program treba da ispiše nađenu vrijednost n, kao i odgovarajuće vrijednosti S i F (da bi se uvjerili da se one zaista poklapaju barem na prvih 5 decimala). Pri računanju sume S nije dozvoljeno posebno računati faktorijel niti koristiti funkciju "pow" za računanje stepena x^k , već treba iskoristiti ovisnost koja postoji između k-tog i k+1-vog člana sume.

12. Napišite program koji zahtijeva da se sa tastature unose realni brojevi sve dok se ne unese broj 0. Nakon toga, program treba da ispiše aritmetičku i geometrijsku sredinu unesenih brojeva, ne računajući unesenu nulu. Na primjer, ukoliko se unesu brojevi 3, 8, 5.4, 2.13, 7 i 0, aritmetička sredina treba da bude 5.106, a geometrijska sredina 4.54168. Pri tome, u programu nije dozvoljeno koristiti nizove.

- 13. Za neki broj kažemo da je *savršen* ukoliko je jednak sumi svih svojih djelilaca. Na primjer, 28 je savršen broj: njegovi djelioci su 1, 2, 4, 7 i 14, a 1 + 2 + 4 + 7 + 14 = 28. Napisati program koji traži da se sa tastature unese cijeli brojevi *a* i *b*, a koji zatim ispisuje sve savršene brojeve u opsegu od *a* do *b*. Kao provjeru ispravnosti programa možete koristiti činjenicu da su jedini savršeni brojevi u opsegu od 1 do 100 brojevi 6 i 28.
- 14. Za neki broj kažemo da je *palindroman* ukoliko je jednak broju koji se dobije čitanjem njegovih cifara u obrnutom poretku. Na primjer, broj 6574756 je palindroman broj. Napisati program koji traži da se sa tastature unese cijeli broj *n*, a zatim na ekran ispisuje da li je broj *n* palindroman ili nije. Za realizaciju programa ne koristiti nizove.
- 15. Napišite program koji traži da se sa tastature unesu cijeli brojevi n i m, a koji zatim iscrtava na ekranu pravougaonik sastavljen od zvjezdica čije su dužine stranica respektivno n i m. Na primjer, za n = 15 i m = 5, ispis na ekranu treba da izgleda kao

16. Napišite program koji traži da se sa tastature unese cijeli broj n, a zatim iscrtava na ekranu jednakostranični trougao sastavljen od zvjezdica čija je osnovica horizontalna a vrh usmjeren nagore. Na primjer, ukoliko se unese n = 4, ispis na ekranu treba da izgleda kao

17. Napišite program koji traži od korisnika da unese prirodne brojeve m i n, pri čemu je m > n. Nakon toga, program treba da na ekranu iscrta figuru oblika "<->" sastavljenu od zvjezdica, čija je širina m a visina n znakova. Na primjer, za m = 15 i n = 7, prikaz na ekranu treba izgledati ovako:

18. Napišite program koji traži od korisnika da unese prirodne brojeve *m* i *n*, pri čemu je *m* > *n*. Nakon toga, program treba da na ekranu iscrta figuru oblika ">-<" sastavljenu od zvjezdica, čija je širina M a visina N znakova. Na primjer, za M=15 i N=7, prikaz na ekranu treba izgledati ovako:

19. Napišite program koji traži od korisnika da unese cijele brojeve *m* i *n*. Nakon toga, program treba da iscrta figuru "pješčani sat" sastavljnu od zvjezdica, pri čemu su *m* i *n* redom širina i visina figure. Pretpostavite da je n < m i m < 20. Također, radi jednostavnosti, pretpostavite da je visina *n* neparan broj. Na primjer, za m = 10 i n = 7 prikaz na ekranu treba izgledati ovako:

20. Napišite program koji traži da se sa tastature unese prirodan broj n ne manji od 5 i ne veći od 24, a koji zatim na ekranu iscrtava šaru koja izgleda poput šare na sljedećoj slici, koja prikazuje primjer za n = 10:

Preciznije, šara se sastoji od pravougaonika dimenzija $n \times 2n$ znakova sastavljenog od znakova "+", "-" i "|", unutar kojeg se nalazi drugi manji pravougaonik koji je od većeg pravougaonika razdvojen praznim slojem debljine jednog praznog mjesta po visini, a dva prazna mjesta po širini.

21. Napišite program koji će prvo tražiti od korisnika da unese realan broj x, i stepen polinoma N, a zatim koeficijente polinoma a_N , a_{N-1} , a_{N-2} , ... a_2 , a_1 , a_0 (počev od koeficijenta uz najveći stepen). Nakon toga, program treba da izračuna i ispiše vrijednost polinoma

$$P(x) = a_N x^N + a_{N-1} x^{N-1} + a_{N-2} x^{N-2} + \dots + a_2 x^2 + a_1 x + a_0$$

U programu ne treba koristiti nizove, s obzirom da se vrijednost polinoma može lako izračunati u "hodu" (tj. bez potrebe za pamćenjem koeficijenata). Najboljim rješenjem će se smatrati rješenje koje ne koristi ni funkciju za stepenovanje, s obzirom da se polinom P(x) može veoma jednostavno izračunati bez stepenovanja pomoću Hornerove sheme:

$$P(x) = ((...((a_{N}x + a_{N-1})x + a_{N-2})x + ... + a_{2})x + a_{1})x + a_{0}$$

22. Napišite program koji ce prvo tražiti od korisnika da unese prirodan broj N, a zatim N realnih brojeva a_1 , a_2 , ... a_N . Nakon toga, program treba da izračuna i ispiše vrijednost izraza

$$\frac{1}{a_1} + \frac{1}{a_1 + a_2} + \frac{1}{a_1 + a_2 + a_3} + \ldots + \frac{1}{a_1 + a_2 + a_3 + \ldots + a_n}$$

Program ne treba koristiti nizove (uputa: neka jedna promjenljiva čuva sumu do tada unesenih brojeva, a druga sumu do tada formiranih razlomaka)!

23. Napišite program koji traži da se unese prirodan broj *n*, a zatim računa i ispisuje vrijednost izraza (verižnog razlomka)

$$Y = \frac{1}{1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{\dots + \frac{1}{n}}}}}$$

Na primjer, za n = 3 treba da se dobije rezultat 0.7, jer je

$$|Y|_{n=3} = \frac{1}{1 + \frac{1}{2 + \frac{1}{3}}} = \frac{1}{1 + \frac{3}{7}} = \frac{7}{10} = 0.7$$

24. Napišite program koji traži da se sa tastature unesu dva prirodna broja *n* i *m*, a koji će zatim ispisati sve proste brojeve između *n* i *m* uključivo.

- 25. Napišite program koji za prirodan broj n unesen sa tastature nalazi i ispisuje n-ti po redu prost broj. Na primjer, ukoliko se unese n = 30, program treba da ispiše 113, jer je 113 trideseti po redu prost broj.
- 26. Napišite program koji traži da se sa tastature unesu dva prirodna broja *a* i *b*, i koji ispisuje broj brojeva u rasponu od *a* i *b* (uključujući i *a* i *b*) koji su djeljivi sumom svojih cifara (takav je, na primjer, broj 351, jer je djeljiv sa 3+5+1=9). Kao neke karakteristične vrijednosti za testiranje mogu vam poslužiti slijedeći rezultati:

а	b	Rezultat
10	50	14
100	1000	181
351	351	1
352	353	0
10000	20000	1417
100000	200000	11167

- 27. Napišite program koji traži da se sa tastature unesu prirodni brojevi *n*1 i *n*2, a koji će zatim ispisati tabelu sa dvije kolone, od kojih prva kolona sadrži prirodne brojeve od *n*1 do *n*2 uključivo, a druga kolona sumu svih djelilaca odgovarajućih brojeva iz prve kolone. Na primjer, ukoliko je u prvoj koloni broj 10, u drugoj koloni treba da bude broj 18, jer djelioci broja 10 glase 1, 2, 5 i 10, a njihova suma je 1+2+5+10=18). Tablicu formatirajte po vlastitom izboru, ali tako da ispisani brojevi budu lijepo poravnati uz desnu ivicu.
- 28. Napišite funkciju "stepen" sa dva parametra x i n koja računa i vraća kao rezultat x^n bez korištenja funkcije "pow" pri čemu su x i n cijeli brojevi proizvoljnog znaka (posebno obratite pažnju da n može biti i negativan). Drugim riječima, napišite funkciju koja radi slično kao funkcija "pow" iz biblioteke "cmath" samo za cijele brojeve, bez upotrebe ijedne funkcije iz biblioteke "cmath". Na primjer, ukoliko se izvrše slijedeće naredbe

```
cout << stepen (2, 5) << endl;
cout << stepen (10, -3)
cout << stepen (4) << endl;</pre>
```

na ekranu treba da budu ispisani brojevi 32 (2⁵), 0.001 (10⁻³) i 16 (4²). Također napišite i kratki glavni program (funkciju "main") u kojoj ćete demonstrirati napisanu funkciju na brojevima koji se unose sa tastature.

29. Još je Heronu prije 2000 godina bio poznat sljedeći postupak (algoritam) za računanje kvadratnog korijena proizvoljnog broja x: formira se niz brojeva a_0 , a_1 , a_2 itd. po sljedećem pravilu:

```
a_0 = 1; a_{k+1} = (a_k + x/a_k)/2 za k > 0
```

Ovaj niz konvergira vrlo brzo ka korijenu iz x. U praksi je dovoljno izračunati samo nekoliko elemenata ovog niza, jer se vrlo brzo elementi počinju praktično ponavljati (sa onolikom tačnošću koliku dopušta realni tip podataka). Tada postupak možemo obustaviti, i posljednju izračunatu vrijednost a_k proglasiti traženim korijenom. Napišite funkciju "korijen" koja računa korijen svog argumenta Heronovim postupkom. Za realizaciju funkcije ne koristiti nizove. Napisanu funkciju testirajte u glavnom programu koji za argument unesen sa tastature ispisuje vrijednosti korijena korištenjem funkcije "korijen" kao i korištenjem ugrađene funkcije "sqrt" (naravno, rezultati treba da budu isti).