Caminhos mais curtos entre cada dois vértices de um grafo All-pairs shortest paths

Problema

Como calcular os caminhos mais curtos entre cada dois vértices de um grafo pesado (orientado ou não)

Soluções

- Aplicar um dos algoritmos anteriores a partir de cada um dos vértices
- **...?**

Caminhos mais curtos entre cada dois vértices de um grafo Algoritmo de Floyd-Warshall

Os vértices intermédios de um caminho simples $v_1 v_2 \dots v_l$ são os vértices $\{v_2, \dots, v_{l-1}\}$

Seja G = (V, E) um grafo pesado, com $V = \{1, 2, \dots, n\}$

Seja p um caminho mais curto do vértice i para o vértice j, cujos vértices intermédios estão contidos em $\{1, 2, ..., k\}$

- ▶ Se k não é um nó intermédio de p, os nós intermédios de p estão contidos em $\{1, 2, ..., k-1\}$
- Se k é um nó intermédio de p, então p pode decompor-se num caminho p₁ de i para k e num caminho p₂ de k para j
- Os nós intermédios de p_1 e de p_2 estão contidos em $\{1, 2, ..., k-1\}$ (porque p é um caminho simples)
- ▷ p₁ e p₂ são caminhos mais curtos de i para k e de k para j,
 respectivamente

Caminhos mais curtos entre cada dois vértices de um grafo Função recursiva

wii: matriz de adjacências do grafo

$$w_{ij} = egin{cases} 0 & ext{se} & i = j \ \\ w(i,j) & ext{se} & i
eq j \land (i,j)
otin E \ \\ \infty & ext{se} & i
eq j \land (i,j)
otin E \end{cases}$$

 $d_{ij}^{(k)}$: peso de um caminho mais curto de i para j com nós intermédios contidos em $\{1, 2, \dots, k\}$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{se } k = 0\\ \min\left\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right\} & \text{se } k \ge 1 \end{cases}$$

Caminhos mais curtos entre cada dois vértices de um grafo Cálculo iterativo de $d_n^{(k)}$

```
FLOYD-WARSHALL-1(w)

1 n <- w.rows

2 d^{(0)} <- w

3 for k <- 1 to n do

4 let d^{(k)}[1..n,1..n] be a new matrix

5 for i <- 1 to n do

6 for j <- 1 to n do

7 d^{(k)}[i,j] <-

min(d^{(k-1)}[i,j], d^{(k-1)}[i,k] + d^{(k-1)}[k,j])

8 return d^{(n)}
```

Complexidade temporal $\Theta(V^3)$

Complexidade espacial $\Theta(V^3)$

Caminhos mais curtos entre cada dois vértices de um grafo

Cálculo iterativo melhorado

```
FLOYD-WARSHALL(w)
1 n <- w.rows
2 d <- w
3 for k <- 1 to n do
4  for i <- 1 to n do
5   for j <- 1 to n do
6    if d[i,k] + d[k,j] < d[i,j] then
7     d[i,j] <- d[i,k] + d[k,j]
8 return d</pre>
```

Complexidade temporal $\Theta(V^3)$

Complexidade espacial $\Theta(V^2)$

Caminhos mais curtos entre cada dois vértices de um grafo

O predecessor de v_j no caminho $q = v_i \dots v_j$

- Não existe, se q = v_j
- É v_i , se $q = v_i \ v_j$
- ightharpoonup É o predecessor de v_j no caminho $v_k \dots v_j$, se

$$q = v_i \dots v_k \dots v_j$$

 π_{ij} : predecessor de v_j num caminho mais curto de v_i para v_j

$$\pi_{ij} = \begin{cases} \mathsf{NIL} \;\; \mathsf{se} \;\; i = j \\ i \;\;\; \mathsf{se} \;\; \mathsf{um} \;\; \mathsf{caminho} \;\; \mathsf{mais} \;\; \mathsf{curto} \;\; \mathsf{de} \;\; i \;\; \mathsf{para} \;\; j \;\; \acute{\mathsf{e}} \;\; v_i \;\; v_j \\ \\ \pi_{kj} \;\;\; \mathsf{se} \;\; \mathsf{um} \;\; \mathsf{caminho} \;\; \mathsf{mais} \;\; \mathsf{curto} \;\; \mathsf{de} \;\; i \;\; \mathsf{para} \;\; j \;\; \acute{\mathsf{e}} \;\; v_i \ldots v_k \ldots v_j \\ \\ \mathsf{NIL} \;\;\; \mathsf{se} \;\; d_{ij} = \infty \end{cases}$$

Caminhos mais curtos entre cada dois vértices de um grafo

Inclusão do cálculo dos predecessores

```
FLOYD-WARSHALL(w)
 1 n \leftarrow w.rows
2 d <- w
 3 let p[1..n,1..n] be a new matrix // p[i,j] \equiv \pi_{ii}
 4 for i <- 1 to n do
 5 for j <- 1 to n do
      if i = j or w[i,j] = \infty then
 7 p[i,j] <- NIL
8 else
9 p[i,j] <- i
10 for k < -1 to n do
11
    for i < -1 to n do
12
       for j <- 1 to n do
13
         if d[i,k] + d[k,j] < d[i,j] then
14
           d[i,j] \leftarrow d[i,k] + d[k,j]
15
          p[i,j] \leftarrow p[k,j]
16 return d and p
```

Caminho mais curto entre dois vértices Reconstrução do caminho

PRINT-ALL-PAIRS-SHORTEST-PATH(p, i, j)

Exercício

Complexidade dos algoritmos

G = (V, E) Compl. Temporal

	compi. Temporar
Percurso em largura	O(V+E)
Percurso em profundidade	$\Theta(V+E)$
Ordenação topológica (ambos os algoritmos)	$\Theta(V+E)$
Grafo transposto	$\Theta(V+E)$
Cálculo das componentes fortemente conexas	$\Theta(V+E)$
Algoritmos de Prim e de Kruskal	$O(E \log V)$
Caminhos mais curtos num DAG	$\Theta(V+E)$
Algoritmo de Dijkstra	$O(E \log V)$
Algoritmo de Bellman-Ford	O(VE)
Algoritmo de Floyd-Warshall	$\Theta(V^3)$

Pressupostos

Grafo representado através de listas de adjacências (excepto algoritmos de Kruskal, de Bellman-Ford e de Floyd-Warshall)

Algoritmos de Prim e de Dijkstra recorrem a uma fila tipo *heap* binário com actualização (EXTRACT-MIN e DECREASE-KEY com complexidade temporal logarítmica no número de elementos da fila)

Algoritmo de Kruskal usa Partição com compressão de caminho