Proyecto Final Dia 4

1. Importar el conjunto de datos "UCI_Credit_Card.csv"

```
1 import pandas as pd
2
3 df_UCI_Credit_Card = pd.read_csv('UCI_Credit_Card.csv')
1 pd.set_option('display.max_columns', None)
```

2. Realizar el analisis exploratorio de datos y la visualizacion

1 df_UCI_Credit_Card

$\overline{\geq}$	ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_A
0	1	20000.0	2	2	1	24	2	2	-1	-1	-2	-2	3913.0	3102.0	689.0	
1	2	120000.0	2	2	2	26	-1	2	0	0	0	2	2682.0	1725.0	2682.0	327
2	3	90000.0	2	2	2	34	0	0	0	0	0	0	29239.0	14027.0	13559.0	1433
3	4	50000.0	2	2	1	37	0	0	0	0	0	0	46990.0	48233.0	49291.0	2831
4	5	50000.0	1	2	1	57	-1	0	-1	0	0	0	8617.0	5670.0	35835.0	2094
***			• • •			• • •							•••	•••		
29995	29996	220000.0	1	3	1	39	0	0	0	0	0	0	188948.0	192815.0	208365.0	8800
29996	29997	150000.0	1	3	2	43	-1	-1	-1	-1	0	0	1683.0	1828.0	3502.0	897
29997	29998	30000.0	1	2	2	37	4	3	2	-1	0	0	3565.0	3356.0	2758.0	2087
29998	29999	80000.0	1	3	1	41	1	-1	0	0	0	-1	-1645.0	78379.0	76304.0	5277
29999	30000	50000.0	1	2	1	46	0	0	0	0	0	0	47929.0	48905.0	49764.0	3653
30000 rd	ws × 25	columns	_			_			_							•

1 df_UCI_Credit_Card.describe().round(3)

$\overrightarrow{\Rightarrow}$		ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6
	count	30000.000	30000.000	30000.000	30000.000	30000.000	30000.000	30000.000	30000.000	30000.000	30000.000	30000.000	30000.000
	mean	15000.500	167484.323	1.604	1.853	1.552	35.486	-0.017	-0.134	-0.166	-0.221	-0.266	-0.291
	std	8660.398	129747.662	0.489	0.790	0.522	9.218	1.124	1.197	1.197	1.169	1.133	1.150
	min	1.000	10000.000	1.000	0.000	0.000	21.000	-2.000	-2.000	-2.000	-2.000	-2.000	-2.000
	25%	7500.750	50000.000	1.000	1.000	1.000	28.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000
	50%	15000.500	140000.000	2.000	2.000	2.000	34.000	0.000	0.000	0.000	0.000	0.000	0.000
	75%	22500.250	240000.000	2.000	2.000	2.000	41.000	0.000	0.000	0.000	0.000	0.000	0.000
	max	30000.000	1000000.000	2.000	6.000	3.000	79.000	8.000	8.000	8.000	8.000	8.000	8.000

1 df_UCI_Credit_Card.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	ID	30000 non-null	int64
1	LIMIT_BAL	30000 non-null	float64
2	SEX	30000 non-null	int64
3	EDUCATION	30000 non-null	int64
4	MARRIAGE	30000 non-null	int64

```
5
    AGE
                                30000 non-null int64
    PAY_0
6
                                30000 non-null
                                               int64
    PAY_2
                                30000 non-null int64
8 PAY_3
9 PAY_4
                                30000 non-null
                                               int64
                                30000 non-null
                                               int64
10 PAY_5
                                30000 non-null int64
11 PAY_6
                                30000 non-null int64
12 BILL_AMT1
                                30000 non-null float64
13 BILL_AMT2
                                30000 non-null float64
14 BILL_AMT3
                                30000 non-null float64
15 BILL AMT4
                                30000 non-null float64
16 BILL_AMT5
                                30000 non-null float64
17 BILL_AMT6
                                30000 non-null
                                               float64
18 PAY_AMT1
                                30000 non-null float64
19 PAY_AMT2
                                30000 non-null float64
20 PAY_AMT3
                                30000 non-null float64
21 PAY_AMT4
                                30000 non-null float64
22 PAY_AMT5
23 PAY_AMT6
                                30000 non-null float64
                                30000 non-null float64
24 default.payment.next.month 30000 non-null int64
dtypes: float64(13), int64(12)
memory usage: 5.7 MB
```

Al realizar un info al dataset se observa que no poseemos valores nulos en ninguna de sus columnas, de esta forma no tenemos que lidiar con el tratamiento de los nulos

```
1 df_UCI_Credit_Card.isnull().sum()
→ ID
    LIMIT_BAL
                                   a
                                    0
    EDUCATION
                                   0
    MARRIAGE
                                   0
    AGE
                                   0
    PAY_0
    PAY_2
                                   0
    PAY_3
                                   0
    PAY_4
                                   0
    PAY_5
                                   0
    PAY_6
                                   0
    BILL_AMT1
                                   0
    BILL_AMT2
BILL_AMT3
                                   0
                                   0
    BILL_AMT4
                                   0
    BILL_AMT5
                                   0
    BILL AMT6
                                   0
    PAY_AMT1
                                   0
    PAY_AMT2
                                   0
    PAY_AMT3
                                   0
    PAY_AMT4
                                   0
    PAY_AMT5
                                   0
    PAY_AMT6
    default.payment.next.month
                                   0
    dtype: int64
```

1 df UCI Credit Card.hist(bins=30, figsize=(20, 20), color='b');


```
1 df_UCI_Credit_Card.drop(['ID'], axis=1, inplace=True)
1 import seaborn as sns
2 import matplotlib.pyplot as plt
3
4 f, ax = plt.subplots(figsize=(20, 20))
5 sns.heatmap(df_UCI_Credit_Card.corr(), annot=True);
```


0.6

0.4

0.2

0.0

-0.2

3. Preparar los datos del modelo y dividirlos en entrenamiento y test

Como hay variables categoricas, se debe hacer un one hot encoded

```
1 from sklearn.preprocessing import OneHotEncoder
2
3 onehotencoder = OneHotEncoder()
4 df_cat = onehotencoder.fit_transform(df_UCI_Credit_Card[['SEX','EDUCATION','MARRIAGE']].copy()).toarray()
5 df_num = df_UCI_Credit_Card.select_dtypes(include='number').copy()
6 df_num.drop(['SEX','EDUCATION','MARRIAGE'], axis=1, inplace=True)

1 df_cat = pd.DataFrame(df_cat)

1 X = pd.concat([df_num, df_cat], axis=1)
2 X
```

₹		LIMIT_BAL	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5	BILL_AMT6	PAY_AM
	0	20000.0	24	2	2	-1	-1	-2	-2	3913.0	3102.0	689.0	0.0	0.0	0.0	C
	1	120000.0	26	-1	2	0	0	0	2	2682.0	1725.0	2682.0	3272.0	3455.0	3261.0	C
	2	90000.0	34	0	0	0	0	0	0	29239.0	14027.0	13559.0	14331.0	14948.0	15549.0	1518
	3	50000.0	37	0	0	0	0	0	0	46990.0	48233.0	49291.0	28314.0	28959.0	29547.0	2000
	4	50000.0	57	-1	0	-1	0	0	0	8617.0	5670.0	35835.0	20940.0	19146.0	19131.0	2000
	29995	220000.0	39	0	0	0	0	0	0	188948.0	192815.0	208365.0	88004.0	31237.0	15980.0	8500
	29996	150000.0	43	-1	-1	-1	-1	0	0	1683.0	1828.0	3502.0	8979.0	5190.0	0.0	1837
	29997	30000.0	37	4	3	2	-1	0	0	3565.0	3356.0	2758.0	20878.0	20582.0	19357.0	C
	29998	80000.0	41	1	-1	0	0	0	-1	-1645.0	78379.0	76304.0	52774.0	11855.0	48944.0	85900
	29999	50000.0	46	0	0	0	0	0	0	47929.0	48905.0	49764.0	36535.0	32428.0	15313.0	2078

30000 rows × 34 columns

4. Entrenar y evaluar un modelo de clasificador XG-Boost

```
1 import xgboost as xgb
3 model_xgb = xgb.XGBClassifier(learning_rate=0.1, max_depth=20, use_label_encoder=False)
4 model_xgb.fit(X_train, y_train)
<u>-</u>
                                                                                  (i)
                                     XGBClassifier
    XGBClassifier(base_score=None, booster=None, callbacks=None,
                   colsample_bylevel=None, colsample_bynode=None,
                   colsample_bytree=None, device=None, early_stopping_rounds=None,
                   enable_categorical=False, eval_metric=None, feature_types=None,
                   gamma=None, grow_policy=None, importance_type=None,
                   interaction_constraints=None, learning_rate=0.1, max_bin=None,
                   max_cat_threshold=None, max_cat_to_onehot=None,
                   max_delta_step=None, max_depth=20, max_leaves=None,
                   min_child_weight=None, missing=nan, monotone_constraints=None,
                   multi_strategy=None, n_estimators=None, n_jobs=None,
                   num_parallel_tree=None, random_state=None, ...)
1 results = model_xgb.score(X_test, y_test)
2 print(f'Precision: {results}')
→ Precision: 0.8117333333333333
1 y_predict = model_xgb.predict(X_test)
2 y_predict
\Rightarrow array([0, 0, 0, ..., 0, 0, 0])
1\ \text{from sklearn.metrics import } r2\_score,\ \text{mean\_squared\_error},\ \text{mean\_absolute\_error},\ \text{confusion\_matrix},\ \text{classification\_report},\ \text{accuracy\_score}
3 RMSE = round(float(np.sqrt(mean_squared_error(y_test, y_predict))), 3)
4 MSE = mean_squared_error(y_test, y_predict)
5 MAE = mean_absolute_error(y_test, y_predict)
6 r2 = r2\_score(y\_test, y\_predict)
8 print(f'RMSE: {RMSE}\nMSE: {MSE}\nMAE: {MAE}\nr2: {r2}')
→ RMSE: 0.434
    MSE: 0.18826666666666667
    MAE: 0.18826666666666667
    r2: -0.10827721916815136
1 print(f'Accuracy: {100*accuracy_score(y_predict, y_test)} %')
1 sns.heatmap(confusion_matrix(y_predict, y_test), annot=True, fmt='d');
```


1 print(classification_report(y_test, y_predict))

$\overline{\Rightarrow}$	precision	recall	f1-score	support
0 1	0.84 0.61	0.94 0.36	0.89 0.45	5873 1627
accuracy macro avg weighted avg	0.73 0.79	0.65 0.81	0.81 0.67 0.79	7500 7500 7500

5. Entrenar y evaluar un modelo de regresion logistica

```
1 from sklearn.linear_model import LogisticRegression
2
3 model_LR = LogisticRegression(max_iter=100000)
4 model_LR.fit(X_train, y_train)
```

c:\Users\sebas\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\utils\validation.py:1310: DataConversionWarning: A colu
y = column_or_1d(y, warn=True)

1 $y_predict = model_LR.predict(X_test)$

1 print(classification_report(y_test, y_predict))

→	precision	recall	f1-score	support
0	0.82 0.69	0.97 0.23	0.89 0.34	5873 1627
accuracy macro avg weighted avg	0.75 0.79	0.60 0.81	0.81 0.62 0.77	7500 7500 7500

6. Entrenar y evaluar un modelo de maquinas de soporte vectorial

```
1 from sklearn.calibration import CalibratedClassifierCV
 2 from sklearn.svm import LinearSVC
 4 model_SVC = LinearSVC(max_iter=100000)
 5 model_SVM = CalibratedClassifierCV(model_SVC)
 6 model_SVM.fit(X_train, y_train)
🚁 c:\Users\sebas\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\preprocessing\_label.py:97: DataConversionWarning: A cc
                        y = column_or_1d(y, warn=True)
                 \verb|c:\Users\sebas\AppData\Local\Programs\Python\312\Lib\site-packages\sklearn\utils\validation.py:1310: DataConversionWarning: A column of the column of th
                       y = column_or_1d(y, warn=True)
                 c:\Users\sebas\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\utils\validation.py:1310: DataConversionWarning: A colu
                        y = column_or_1d(y, warn=True)
                 c:\Users\sebas\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\utils\validation.py:1310: DataConversionWarning: A colu
                         y = column_or_1d(y, warn=True)
                 c:\Users\sebas\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\utils\validation.py:1310: DataConversionWarning: A colu
                        y = column_or_1d(y, warn=True)
                 \verb|c:\Users\sebas\AppData\Local\Programs\Python\312\Lib\site-packages\sklearn\utils\validation.py:1310: DataConversionWarning: A column of the column of th
                    y = column_or_1d(y, warn=True)
                                   CalibratedClassifierCV (i) (?)
                                          ▶ estimator: LinearSVC
                                                        ▶ LinearSVC ?
```

1 y_predict = model_SVM.predict(X_test)

1 print(classification_report(y_test, y_predict))

support	f1-score	recall	precision	
5873 1627	0.89 0.35	0.97 0.24	0.82 0.68	0
7500 7500 7500	0.81 0.62 0.77	0.60 0.81	0.75 0.79	accuracy macro avg weighted avg

7. Entrenar y evaluar un bosque aleatorio

```
1 from sklearn.ensemble import RandomForestClassifier
2
3 model_rf = RandomForestClassifier()
4 model_rf.fit(X_train, y_train)
```

c:\Users\sebas\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\base.py:1473: DataConversionWarning: A column-vector y return fit_method(estimator, *args, **kwargs)

RandomForestClassifier ① ②
RandomForestClassifier()

1 y_predict = model_rf.predict(X_test)

1 print(classification_report(y_test, y_predict))

₹	precision	recall	f1-score	support
0	0.84 0.63	0.94 0.35	0.89 0.45	5873 1627
accuracy macro avg weighted avg	0.73 0.79	0.65 0.81	0.81 0.67 0.79	7500 7500 7500

∨ 8. Entrenar y evaluar un modelo de KNN

```
1 from sklearn.neighbors import KNeighborsClassifier
2
3 model_knn = KNeighborsClassifier()
4 model_knn.fit(X_train, y_train)
```

c:\Users\sebas\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\neighbors_classification.py:238: DataConversionWarning return self._fit(X, y)

KNeighborsClassifier ① ?)
KNeighborsClassifier()

1 y_predict = model_knn.predict(X_test)

1 print(classification_report(y_test, y_predict))

\Longrightarrow	precision	recall	f1-score	support
0 1	0.83 0.54	0.92 0.34	0.88 0.42	5873 1627
accuracy macro avg weighted avg	0.69 0.77	0.63 0.80	0.80 0.65 0.78	7500 7500 7500