

APUNTES DEL CURSO 2019-2020 IMPARTIDO POR CAROLINA VALLEJO

Rafael Sánchez

Revisión del 21 de octubre de 2019 a las 15:24.

## Índice general

| Ι  | Primer parcial                               | 5        |
|----|----------------------------------------------|----------|
| 1. | Anillos, polinomios y cuerpos                | 7        |
|    | 1.1. Anillos                                 | 7        |
|    | 1.2. Ideales                                 | 10<br>12 |
|    | 1.3. Homomorfismos                           | 14       |
|    | 1.5. Criterios de irreducibilidad            | 17       |
|    | 1.5.1. Raices múltiples e irreducibilidad    | 19       |
|    | 1.6. Cuerpos                                 | 20       |
| 2. | Extensiones de cuerpos                       | 23       |
|    | 2.1. Grados de cuerpos                       | 23       |
|    | 2.2. Extensiones algebraicas y trascendentes | 25       |
|    | 2.3. Teorema del elemento algebraico         | 25       |
|    | 2.4. Isomorfismos de cuerpos                 | 26       |
| II | Segundo parcial                              | 31       |
| 3. | Extensiones de Galois                        | 33       |
| ٠. | 3.1. Cuerpos de escisión                     | 33       |
| II | I Apéndices                                  | 37       |
| 4. | Índices                                      | 39       |

ÍNDICE GENERAL

# Parte I Primer parcial

### Capítulo 1

## Anillos, polinomios y cuerpos

#### 1.1. Anillos

A lo largo de este curso se supondrán conocidos los contenidos de la asignatura *Estructuras Algebraicas*, se pueden encontrar unos apuntes de los mismos en: https://github.com/knifecake/apuntes/raw/master/ea/apuntes-ea.pdf.

**Definición 1** (Anillo). Un **anillo** es una terna  $(A, +, \cdot)$  donde  $+: A \times A \to A$  es una operación a la que llamamos suma,  $\cdot: A \times A \to A$  es otra operación a la que llamamos producto y se verifican las siguientes propiedades

- 1. El par (A, +) es un grupo abeliano
- 2. El producto  $\cdot$  es asociativo
- 3. Se cumplen las propiedades distributivas:

$$\forall a, b, c \in A, \ a \cdot (b+c) = a \cdot b + a \cdot c \tag{1.1}$$

$$\forall a, b, c \in A, \ (a+b) \cdot c = a \cdot c + b \cdot c \tag{1.2}$$

Con la operación + tenemos las siguientes propiedades

- 1. Asociatividad: (a + b) + c = a + (b + c)
- 2. Elemento neutro aditivo:  $\exists ! \mathbf{0} \in A \mid \mathbf{0} + a = a$
- 3. Elemento inverso aditivo:  $\forall a \in A, \exists -a \in A \mid a + (-a) = \mathbf{0}$
- 4. Conmutatividad aditiva:  $\forall a, b \in A, a + b = b + a$

Con la operación · tenemos las siguientes propiedades

- 1. Asociatividad:  $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 2. No siempre existe el neutro multiplicativo:  $\mathbf{1} \in A \mid a \cdot 1 = 1 \cdot a = a$
- 3. No siempre el producto es conmutativo.
- 4. No siempre existe inverso multiplicativo:  $a^{-1} \mid a \cdot a^{-1} = 1$
- 5. No siembre se da la conmutatividad multiplicativa:  $a \cdot b = b \cdot a$

**Proposición 1** (Producto con 0 en anillos).  $\forall a \in A, a \cdot \mathbf{0} = \mathbf{0}$ 

Demostración. 
$$a \cdot \mathbf{0} = a \cdot (\mathbf{0} + \mathbf{0}) = a \cdot \mathbf{0} + a \cdot \mathbf{0} \implies \mathbf{0} = a \cdot \mathbf{0}$$

Además, a lo largo de este curso vamos a referirnos únicamente a los anillos conmutativos con unidad (o unitario), que cumplen las siguientes definiciones.

**Definición 2** (Anillo con unidad o anillo unitario). Sea  $(A, +, \cdot)$  un anillo. Decimos que es un anillo con unidad o un **anillo unitario** si tiene elemento neutro multiplicativo, es decir, si  $\exists \mathbf{1} \in A \mid \forall a \in A, \mathbf{1}a = a\mathbf{1} = a$ .

**Definición 3** (Anillo conmutativo). Sea  $(A, +, \cdot)$  un anillo. Decimos que es un **anillo conmutativo** si se cumple que:

$$r \cdot s = s \cdot r, \ \forall r, s \in A$$

#### Ejemplo 1 (Ejemplos de anillos)

 $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$  y  $\mathbb{C}$  con la suma y producto usual verifican todas las definiciones de anillo, anillo conmutativo y anillo unitario.

Vamos a considerar además el concepto de anillo de polinomios:

**Definición 4** (Anillo de polinomios). Sea R un anillo, definimos el **anillo de polinomios** R[x] como:

$$R[x] = \left\{ \sum_{i>0}^{n} a_i \cdot x^i \mid a_i \in R, \ n \in \mathbb{N} \right\}$$

Es fácil ver que R[x] es un anillo pues la suma y el producto son transitivas y asociativas.

Observación. Vamos a considerar algunas definiciones y convenciones menores.

1. Sea  $p \in R[x]$ , p es un polinomio y escribimos:

$$p(x) = a_0 + a_1 x + \ldots + a_n x^n$$

Donde llamamos *coeficientes* del polinomio a los  $a_i$ .

2. Sea  $p \in R[x] = \sum_{i>0} a_i x^i$ , denominamos grado de p a:

$$\delta(p) = \max\{i \mid a_i \neq 0\}$$

- 3. Sea  $p \in R[x] = a_0 + a_1 x + \ldots + a_n x^n$ , llamamos coeficiente director al coeficiente del término de mayor grado  $(a_n)$ .
- 4. Sea  $p \in R[x] = a_0 + a_1x + \ldots + a_nx^n$ , llamamos termino independiente al coeficiente libre  $(a_0)$ .
- 5. Sea  $p \in R[x]$  con todos los coeficientes nulos, entonces p es el polinomio cero.

$$0 = \sum_{i > 0} 0 \cdot x^n$$

Por convención,  $\delta(0) = -\infty$ .

**Definición 5** (Polinomio mónico). Sea R[x] un anillo de polinomios, decimos que  $p \in R[x]$  es **mónico** si y sólo si su *término director* es 1.

**Definición 6** (Divisor de cero). Sea R un anillo, decimos que  $r \in R$  es un divisor de cero si satisface:

$$\exists s \in R, \ s \neq 0 : \ r \cdot s = \mathbf{0}$$

1.1. ANILLOS

**Definición 7** (Unidad de un anillo). Sea R un anillo, decimos que  $r \in R$  es una unidad si satisface:

$$\exists s \in R : r \cdot s = 1$$

Decimos entonces que  $r \in \mathcal{U}(R)$ , con  $\mathcal{U}(R) = \{a \mid a \text{ es una unidad}\}$ 

Definición 8 (Dominio de integridad). Sea R un anillo, R es un dominio de integridad si no tiene divisores de  $\mathbf{0}$ .

**Definición 9** (Cuerpo). Sea  $(A, +, \cdot)$  un anillo commutativo con unidad. Diremos que A es un cuerpo si  $A^{\times} = A \setminus \{0\}$  es cerrado por la segunda operación (el *producto*).

#### Observación.

- R es un cuerpo si  $\mathcal{U}(R) = R$ .
- $\mathbf{1} \in \mathcal{U}(R)$ , para todo R anillo unitario.

**Proposición 2** (Cuerpo y dominio de integridad). Sea R un cuerpo, entonces R es un dominio de integridad.

Demostración. Vamos a ver que R no tiene divisores de  $\mathbf{0}$ . Sea  $r \in R^{\times} = R \setminus \{\mathbf{0}\}$ , supongamos  $\exists s \in R^{\times}$  tal que:

$$r \cdot s = 0$$

Como  $r \in \mathcal{U}(R) = R^{\times}$  pues R es un cuerpo, entonces,  $\exists t \in R$  tal que  $t \cdot r = r \cdot t = 1$ . Por tanto:

$$\mathbf{0} = t \cdot (r \cdot s) = (t \cdot r) \cdot s = \mathbf{1} \cdot s = s$$

 $\Diamond$ 

Y  $s = \mathbf{0}$  contradice la hipótesis. Concluimos con que  $\nexists r, s \in R$  tal que  $r \cdot s = \mathbf{0}$ 

**Proposición 3** (Dominio de integridad en anillos de polinomios). Sea R un anillo. Si R es un dominio de integridad, entonces R[x] es un dominio de integridad.

Demostración. Sean  $f, g \in R[x]^{\times}$ , y  $a_m, b_k$  sus términos directores respectivamente. Como R es un dominio de integridad,  $a_m \cdot b_k \neq \mathbf{0}$ , que coincide con el término director de  $f \cdot g$  y no es nulo. Por tanto, R[x] es un dominio de integridad.

**Proposición 4** (Propiedad de cuerpo en anillos de polinomios). R[x] nunca es un cuerpo.

Demostración. Solo hay que comprobar que aunque  $f(x) = x \in R[x], f(x) \notin \mathcal{U}(()R[x])$ . Y por tanto  $\mathcal{U}(()R[x]) \neq R[x]$ , lo que nos dice que R[x] no es un cuerpo.

**Proposición 5** (Unidades en anillos de polinomios). Sea R un anillo, si R es un dominio de integridad, entonces  $\mathcal{U}(R) = \mathcal{U}(R[x])$ .

**Observación.** Podemos definir anillos como *extensión* de otros, al igual que hicimos con los anillos de polinomios:

- $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ , con  $d \neq e^2$ ,  $\forall e \in \mathbb{Z}$  es un anillo y un dominio de integridad, pero no es un cuerpo.
- $\mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$ , con  $d \neq e^2$ ,  $\forall e \in \mathbb{Z}$  es un cuerpo. Decimos que  $\{1, \sqrt{d}\}$  es una  $\mathbb{Q}$ -base de  $\mathbb{Q}[\sqrt{d}]$ , pues todos los elementos de  $\mathbb{Q}[\sqrt{d}]$  se pueden expresar como combinación lineal de los elementos de la  $\mathbb{Q}$ -base.

**Definición 10** (Subanillo). Sea R un anillo,  $S \subseteq R$ ,  $\mathbf{1} \in S$ . Decimos que S es un subanillo si:

- ullet S es cerrado por suma y producto.
- Todo elemento tiene opuesto, es decir,  $\forall a \in S, \exists b \in S : a + b = \mathbf{0}$ .

**Definición 11** (Subcuerpo). Sean R un cuerpo,  $S \subseteq R$ . Decimos que S es un subcuerpo si:

- ullet S es un subanillo de R
- $\blacksquare$  Todo elemento no nulo tiene inverso, es decir,  $\forall a \in S^{\times}, \exists b \in S^{\times}: a \cdot b = \mathbf{1}$

#### Ejemplo 2 (Ejemplos de subanillos y subcuerpos)

- $\blacksquare$   $\mathbb{Z}$  es subanillo de  $\mathbb{Q}$
- $\blacksquare$   $\mathbb{Q}$  es subcuerpo de  $\mathbb{R}$  y  $\mathbb{C}$
- $\mathbb{Z}[\sqrt{d}]$  es subanillo de  $\mathbb{Q}[\sqrt{d}]$

#### 1.2. Ideales

**Definición 12** (Ideal). Sea R un anillo, e  $I \subseteq S$ . I es un **ideal** si:

- 1.  $\forall a, b \in I, a b \in I$
- 2.  $\forall r \in R, \ \forall a \in I \text{ se satisface: } r \cdot a \in I$

Los ideales triviales son  $\{0\}$  y R.

**Observación.** Sea R un anillo, denotamos al ideal generado por  $a \in R$  como  $\langle a \rangle$ 

**Proposición 6** (Ideal propio). Sea R un anillo, I un ideal:

$$I \subsetneq R \iff \mathbf{1} \in I \iff I \cap \mathcal{U}(R) \neq \emptyset$$

**Observación.** Sea R un anillo,  $I \leq R$  un ideal:

$$I \leqslant R \iff I \cap \mathcal{U}(R) = \emptyset$$

$$I = R \iff I \cap \mathcal{U}(R) \neq \emptyset$$

**Proposición 7** (Ideales y cuerpos). Sea R un cuerpo, y sea I un ideal de R (escribimos  $I \leq R$ ), entonces  $I = \{0\}$  o I = R, (I es impropio). El recíproco también es cierto.

Demostración.

- $R \text{ cuerpo} \implies \mathcal{U}(R) = R^{\times} \implies I = \mathcal{U}(R) \cup \{\mathbf{0}\} \text{ o trivialmente } I = \{\mathbf{0}\}$

$$\{\mathbf{0}\} \neq I = \langle a \rangle$$
, entonces  $I = R \implies \exists u \in I \cap \mathcal{U}(R) \neq \emptyset \implies u \in \langle a \rangle \implies u = a \cdot r$ , con  $r \in R$ 

y por tanto:

$$1 = u \cdot u^{-1} = a \cdot r \cdot u^{-1} \implies a \in \mathcal{U}(R) \implies R \text{ es un cuerpo}$$



#### Ejemplo 3 (Ejemplos de ideales)

1.2. IDEALES

2.  $I = \{ f \in \mathbb{Z}[x] \mid \text{el termino independiente de } f \text{ es par} \}$ 

**Definición 13** (Ideal principal). Sea R un anillo,  $a \in R$  un elemento. El ideal generado por a:

$$\langle a \rangle = \{ a \cdot r \mid r \in R \} = aR$$

se denomina **ideal principal** generado por a.

**Proposición 8** (Propiedades de ideales). Sea R un anillo e  $I \leq R$  un ideal.

- 1. Sean  $I, J \leq R$  ideales, entonces  $I + J = \{a + b \mid a \in I, b \in J\} \leq R$  es un ideal.
- 2. Sea  $\mathbf{a} \in \mathbb{R}^n$ , entonces  $I = \langle \mathbf{a} \rangle = \{a_1 r_1 + \dots + a_n r_n \mid r_i \in R\} \leqslant R$  es un ideal.
- 3.  $R/I = \{r+I \mid r \in R\}$  es un anillo.
- 4. (Teorema de correspondencia) Existe una biyección de la forma:

$$\{J \leqslant R \mid I \subseteq J \subseteq R\} \longrightarrow \{J/I \leqslant R/I\}$$

$$J \longmapsto \{r+I \mid r \in J\}$$

**Observación.** En particular, si en R todo ideal es principal e  $I \leq R$ , en R/I todo ideal es principal.

**Ejercicio** (H1.5). Sea n un número natural. Prueba que  $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$  es un cuerpo si y sólo si n es primo.

■ ( <== )

 $n \text{ primo} \implies \forall k : 0 < k < n \text{ se cumple que } mcd(k, n) = 1, \text{ y por Bezout:}$ 

$$1 = ka + nb$$
, con  $a, b \in \mathbb{Z}$ 

Donde el término  $nb \equiv 0$  en  $\mathbb{Z}/n\mathbb{Z}$  y por tanto queda 1 = ka, lo que quiere decir que k es el inverso de a en  $\mathbb{Z}/n\mathbb{Z}$ .

**■** ( ⇒ )

Partimos de que  $\mathbb{Z}/n\mathbb{Z}$  es cuerpo, por la proposición 2 sabemos que  $\mathbb{Z}/n\mathbb{Z}$  es un dominio de integridad. Supongamos n no primo, entonces  $n=a\cdot b$ , entonces:

$$n \equiv \mathbf{0} \pmod{n} \implies \mathbf{0} = (a + n\mathbb{Z})(b + n\mathbb{Z})$$

Pero es imposible, ya que a y b serían divisores de  $\mathbf{0}$  pero estamos en un dominio de integridad. Por tanto, n es necesariamente primo.

**Ejercicio** (H1.12). ¿Cuántos elementos tiene el anillo  $\mathbb{Z}[i]/\langle 2i \rangle$ ?¿Se trata de un cuerpo?

Comenzamos escribiendo los conjuntos que forman parte del cociente:

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$$

$$\langle 2i \rangle = \langle 2 \rangle = 2\mathbb{Z}[i] = \{2(a+bi) \mid a,b \in \mathbb{Z}\} = (2\mathbb{Z})[i] = \{a+bi \mid a,b \in 2\mathbb{Z}\}$$

El conjunto cociente es por tanto:

$$\mathbb{Z}[i] / \langle 2i \rangle = \mathbb{Z}[i] / 2\mathbb{Z}[i] = \{a + bi + 2\mathbb{Z}[i] \mid a, b \in \mathbb{Z}\}\$$

Donde se tiene que:

$$a + bi + 2\mathbb{Z}[i] = a_1 + b_1 i + 2\mathbb{Z}[i] \iff a - a_1 \in 2\mathbb{Z} \text{ y } b - b_1 \in 2\mathbb{Z} \iff \{a + bi + 2\mathbb{Z}[i] \mid a, b \in \{0, 1\}\} = \{0, 1, i, 1 + i\}$$

De esta forma vemos que el anillo tiene 4 elementos y además no es un cuerpo ya que i no tiene inverso.

**Definición 14** (Ideal primo). Sea R un anillo e  $I \leq R$  un ideal, diremos que I es un ideal primo si:

$$a \cdot b \in I \implies a \in I \circ b \in I$$

**Definición 15** (Ideal maximal). Sea R un anillo e  $I \leq R$  un ideal, diremos que I es un **ideal maximal** si:

$$I \subseteq J \leqslant R \implies J = I \circ J = R$$

**Teorema 9** (Cociente de ideales primos y maximales). Sea R un anillo,  $I \leq R$  un ideal:

- 1. I es primo  $\iff R/I$  es un dominio de integridad.
- 2. I es maximal  $\iff$  R/I es un cuerpo.
- 3. I ideal maximal  $\implies I$  ideal primo.

Demostración.

- 1. Se deja como ejercicio. Es directa usando definiciones.
- 2. I es maximal  $\iff R/I$  no tiene ideales propios (por el teorema de correspondencia 4). Y ya sabemos que R/I no tiene ideales propios  $\iff R/I$  es un cuerpo.
- 3. Se sique de los apartados anteriores junto a la proposición 2 que nos dice que un cuerpo es un dominio de integridad.



#### 1.3. Homomorfismos

Definición 16 (Homomorfismo de anillos). Sean R,S anillos,  $\varphi:R\to S$  es un homomorfismo de anillos si:

- 1.  $\varphi$  es homomorfismo de grupos, es decir,  $\varphi(0) = 0$  y  $\varphi(a b) = \varphi(a) \varphi(b)$ .
- 2.  $\varphi(1) = 1$ .
- 3.  $\varphi(ab) = \varphi(a)\varphi(b)$ .

Observación.

- $\ker \varphi = \{ a \in R \mid \varphi(a) = 0 \} \leqslant R.$
- $\varphi(R) \subseteq S$  es un subanillo. (No es ideal en general).
- $\varphi$  sobreyectiva, es decir,  $\varphi$  es un epimorfismo  $\iff \varphi(R) = S$ .

**Observación.** Si R y S son cuerpos y  $\varphi:R\to S$  es un homomorfismo de anillos, llamaremos a  $\varphi$  homomorfismo de cuerpos. Además  $\varphi$  es inyectivo pues:

$$1 \notin \ker \varphi \leqslant R \text{ cuerpo} \implies \ker \varphi = 0$$

#### Ejemplo 4 (Proyección canónica)

Sea R un anillo,  $I \leq R$  un ideal, es fácil ver que  $\pi: R \to R/I$ ;  $r \mapsto r + I$  es un epimorfismo de anillos con ker  $\pi = I$ .

Observación.

$$R/\ker \varphi = R/I$$

**Teorema 10** (Primer teorema de isomorfía). Sea  $\varphi: R \to S$  un homomorfismo de anillos, se tiene que:

$$\overline{\varphi}: R/\ker \varphi \longrightarrow \varphi(S)$$
  
 $r + \ker \varphi \longmapsto \overline{\varphi}(r + \ker \varphi) = \varphi(r)$ 

es un isomorfismo de anillos.

Demostración. Se deja como ejercicio.



Observación. Sea  $\pi$  la proyección canónica,  $\overline{\pi}=id_{\textstyle R/I}$ 

**Ejercicio** (H1.14). Demuestra que si  $\varphi : R \to S$  es un homomorfismo de anillos y  $a \in \mathcal{U}(R)$ , entonces  $\varphi(a) \in \mathcal{U}((S))$ . Es cierto el recíproco?.

Si  $a \in \mathcal{U}(R)$ , then the standard standard  $a \in \mathcal{U}(R)$ , then the standard  $a \in \mathcal{U}(R)$  is the standard standard standard  $a \in \mathcal{U}(R)$ .

$$\mathbf{1} = \varphi(\mathbf{1}) = \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b) \implies \varphi(a) \in \mathcal{U}(()S)$$

El recíproco solo es cierto si  $\varphi$  es un isomorfismo, pero en general no. Como contraejemplo consideramos el homomorfismo identidad  $\iota: \mathbb{Z} \to \mathbb{Q}$ ;  $a \mapsto a$ . Es fácil ver que es un homomorfismo de anillos, sin embargo:  $\iota(2) = (2)$  pero  $\iota(2) \in \mathcal{U}(\mathbb{Q})$  y  $2 \notin \mathcal{U}(\mathbb{Z})$ .

**Ejercicio** (H1.16). Demuestra que:

- 1. No existe ningún homomorfismo de anillos  $\varphi:\mathbb{Q}\to\mathbb{Z}_p$  para  $p\in\mathbb{Z}$  primo.
- 2. No existe ningún homomorfismo de anillos  $\varphi : \mathbb{R} \to \mathbb{Q}$ .

Solución:

1. Sea  $\varphi : \mathbb{Q} \to \mathbb{Z}_p$ ;  $\mathbf{1} \mapsto \mathbf{1} + p\mathbb{Z}$ .

$$\varphi(p) = \varphi\left(\sum_{1}^{p} 1\right) = \sum_{1}^{p} (\mathbf{1} + p\mathbb{Z}) = p + p\mathbb{Z} = 0.$$

y como  $p \in \mathcal{U}(\mathbb{Q})$ , es imposible que la imagen de una unidad no sea otra por medio de un homomorfismo, por tanto, dicho homomorfismo no existe.

2. Sea  $\varphi : \mathbb{R} \to \mathbb{Q}; \ \sqrt{2} \mapsto a$ 

$$2 = \varphi(1+1) = \varphi(2) = \varphi(\sqrt{2}^2) = \varphi(\sqrt{2})^2 = a^2, \ a \in \mathbb{O}$$

que es una contradicción pues no existe dicho a, con lo que no existe el homomorfismo.

**Ejercicio** (H1.21). Fijado un entero  $n \in \mathbb{Z}$  con  $n \ge 2$ , demuestra que el anillo cociente  $\mathbb{Z}[x] / n\mathbb{Z}[x]$  es isomorfo a  $\mathbb{Z}_n[x]$ . Conclute que el ideal  $n\mathbb{Z}[x]$  es primo si y sólo si n es un número primo.

Vamos a dar una guía de como proceder con el ejercicio:

Sea 
$$\varphi : \mathbb{Z}[x] \to \mathbb{Z}_n[x]; (a_0 + \ldots + a_n x^n) \mapsto (\overline{a_0} + \ldots + \overline{a_n} x^n)$$

donde  $\overline{a_i} = a_i + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$ .

- $\blacksquare$  Comprobar que  $\varphi$  es un homomorfismo de anillos.
- ullet Comprobar que  $\varphi$  es sobreyectiva.
- Ver que  $\ker \varphi = n\mathbb{Z}[x]$ .
- Aplicar el teorema de isomorfía.

#### Ejemplo 5 (Homomorfismo de evaluación)

Sea R un anillo,  $a \in R$ .

$$\mathcal{E}_a: R[x] \longleftarrow R$$

$$f(x) \longmapsto f(a)$$

es un homomorfismo de anillos sobreyectivo.

**Observación.** Si R = K es un cuerpo:

$$K[x]/\ker \mathcal{E}_a \simeq K \implies \ker \mathcal{E}_a$$
 es maximal.

#### 1.4. Anillos de polinomios

**Proposición 11** (Algoritmo de la división). Sea R un anillo,  $f, g \in R[x]^{\times}$  polinomios con coeficientes en R. Si el coeficiente director de g es una unidad de R, entonces  $\exists d, r \in R[x]$  únicos tales que:

$$f = g \cdot d + r \operatorname{con} \delta(r) < \delta(g)$$

Diremos que  $g \mid f$  si  $r = \mathbf{0}$ .

**Definición 17** (Raíz de un polinomio). Sea R un anillo,  $f \in R[x]^{\times}$  un polinomio, decimos que  $a \in R$  es una **raíz** de f si  $\mathcal{E}_a(f) = f(a) = \mathbf{0}$ 

Corolario 1 (Ruffini). Sea R un anillo,  $f \in R[x]^{\times}$  un polinomio:

$$a$$
 es raíz de  $f \iff f(x) = (x - a) \cdot g(x)$ 

Demostración.

**■** ( ← )

$$\mathcal{E}_a(f) = \mathcal{E}_a(x-a) \cdot \mathcal{E}_a(g) = \mathbf{0}$$

**■** ( ⇒ )

$$f(x) = (x-a) \cdot d(x) + r(x); \ \delta(r) \leqslant \delta(x-a) \implies r \in R; \ f(a) = r = 0 \implies g(x) = d(x)$$



#### Ejemplo 6 (Uso de Ruffini)

Sea  $f(x) = x^2 + x + 1$ ,  $f(x) \in \mathbb{Z}_3[x]$ .

Es fácil ver que f(1) = 0, según Ruffini (corolario 1)  $(x-1) \mid f$ . Y es cierto, de hecho: f(x) = (x-1)(x-1).

**Teorema 12** (Raíces y dominio de integridad). Sea R un dominio de integridad,  $f \in R[x]^{\times}$  un polinomio y  $\alpha_1, \ldots, \alpha_n$  raíces distintas de f, entonces  $n \leq \delta(f)$ .

Demostración. Vamos a probarlo por inducción sobre  $\delta(f)$ 

- Caso base:  $\delta(f) = 1$ . Entonces f(x) = ax + b. Sea  $\alpha_1$  raíz de f(x), entonces  $a\alpha_1 = -b$ . Si  $\alpha_2$  es raíz de f, entonces  $a\alpha_2 = -b \implies a\alpha_1 = a\alpha_2 \implies a(\alpha_1 \alpha_2) = 0$  y como  $a \neq 0$  y R es dominio de integridad  $\alpha_1 \alpha_2 = 0 \implies \alpha_1 = \alpha_2$
- $\delta(f) = m > 1$ . Sea  $\alpha_1$  raíz de f, por Ruffini  $f(x) = (x \alpha_1)d(x)$ . Por hipótesis,  $\alpha_2 \dots \alpha_n$  son raíces de f distintas de  $\alpha_1$ , por lo que necesariamente  $d(\alpha_i) = 0 \ \forall i \in [2, n]$ . Por la hipótesis de inducción  $n 1 \le \delta(d) = \delta(f) 1 \implies n \le \delta(f)$

**Observación.** La hipótesis de que R sea un dominio integridad es necesaria. Se puede comprobar que en  $\mathbb{Z}_8[x]$ , el polinomio  $f(x) = x^2 - 1$  con  $\delta(f) = 2$ , tiene 4 raíces:  $\overline{1}, \overline{3}, \overline{5}, \overline{7}$ . Sin embargo, no supondrá un problema a lo largo del curso ya que trabajaremos con cuerpos.

**Ejercicio** (H1.27). Demuestra que si K es un cuerpo finito y  $f, g \in K[x]$  tales que f(a) = g(a) para todo  $a \in K$ , entonces f = g. ¿Qué ocurre si K es finito?.

Supongamos  $h = f - g \in K[x]$ . Entonces  $h(a) = 0 \ \forall a \in K \ \text{con} \ K[x]$  un cuerpo infinito implica necesariamente que h = 0 y por tanto f = g.

Si K es finito, por ejemplo  $K = \mathbb{Z}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$  con p un primo, consideramos el polinomio  $f(x) = x^p - x$ . En este caso  $f(x) \neq 0$  pero se anula en todo elemento de  $\mathbb{Z}_p$  ya que  $a^p \equiv a \mod p$  por el pequeño teorema de Fermat.

**Teorema 13** (Pequeño teorema de Fermat). Si p es un número primo, entonces, para cada número natural a, con a > 0,  $a^p \equiv a \mod p$ .

**Teorema 14** (Ideales principales). Sea K un cuerpo,  $I \leq K[x]$  un ideal tal que  $I \neq \{0\}$ , entonces existe un  $p \in K[x]$  tal que  $I = \langle p \rangle$ .

Demostración. Sea  $p \in I$  con el menor grado finito posible, es decir, sea  $0 \neq g \in I \implies \delta(g) \geqslant \delta(p) \ \forall g \in I$ . Entonces por el algoritmo de la division, para  $f \in I$ , f = pd + r, con  $d, r \in K[x]$  y  $\delta(r) \leqslant \delta(p) \implies r \in I$ . Por la elección de p, la única opción es que r = 0 entonces  $f = pd \implies f \in \langle p \rangle$ .

**Ejercicio** (H1.25). Hallar un generador de  $I = \langle x^3 + 1, x^2 + 1 \rangle$  en  $\mathbb{Z}_2[x]$ .

Basta observar que en  $\mathbb{Z}_2[x]$ ,  $(x^2+1) = (x+1)^2$  y  $(x^3+1) = (x+1) \cdot (x^2+x+1)$ , por tanto,  $I = \langle x+1 \rangle$ .

**Definición 18** (Dominio de ideales principales). Un anillo R en el que todo ideal es principal y es un dominio de integridad se llama **dominio de ideales principales** (o DIP para abreviar).

**Definición 19** (Elemento irreducible). Sea R un anillo y  $a \neq 0 \in \mathcal{U}(R)$ , decimos que a es **irreducible** si  $a = b \cdot c \implies$  tiene que ocurrir que  $b \in \mathcal{U}(R)$  o que  $c \in \mathcal{U}(R)$ 

**Teorema 15** (Irreducibilidad en DIP). Sea R un dominio de ideales principales, entonces:

 $a \in R$  irreducible  $\iff \langle a \rangle$  es maximal.

Demostración.

- $\Longrightarrow$  Sea  $\langle a \rangle \subseteq J \leqslant R$ , con  $J = \langle b \rangle$ . Si  $J \neq R$  entonces  $b \notin \mathcal{U}(R)$ . Falta ver que  $\langle a \rangle = \langle b \rangle$ . Como  $\langle a \rangle \subseteq \langle b \rangle$ ,  $a = b \cdot c$  con  $c \in R$ . Además como  $b \notin \mathcal{U}(R)$  y a es irreducible, entonces  $c \in \mathcal{U}(R)$  y con ello  $\langle a \rangle = \langle bc \rangle = \langle b \rangle$ .
- $\iff$  Sabemos que  $\langle a \rangle \leqslant R$  es maximal. Sea a = bc con  $b, c \in R$ , entonces:

$$\langle a \rangle \subseteq \langle b \rangle \leqslant R \implies \text{ o bien } (\langle a \rangle = \langle b \rangle \implies c \in \mathcal{U}(R)) \text{ o bien } (\langle b \rangle = R \implies b \in \mathcal{U}(R))$$

y por tanto a es irreducible.

Corolario 2. Sea  $0 \neq f \in K[x]$ , con K un cuerpo.

$$f$$
 es irreducible  $\iff K[x]/\langle f \rangle$  es un cuerpo.

Demostración. La prueba es directa sabiendo que K[x] es un DIP, el teorema anterior y el teorema 9.  $\diamond$ 

**Observación.**  $f \in K[x]$  es irreducible si  $\delta(f) > 1$  y  $f \neq gh$  con  $g, h \in K[x]$ ,  $\delta(g) < \delta(f)$  y  $\delta(h) < \delta(f)$ .

**Observación.** En K[x] los polinomios de grado 1 son irreducibles por definición. Los de grado 2 y grado 3 son irreducibles  $\iff$  no tienen raíces en K (por Ruffini).

Corolario 3 (Euclides). Sea  $0 \neq f \in K[x]$  irreducible, si  $f \mid gh$  entonces  $f \mid g$  o  $f \mid h$ .

Demostración.

$$f$$
 irreducible  $\Longrightarrow \langle f \rangle$  es maximal  $\Longrightarrow \langle f \rangle$  es primo.

Por definición de ideal primo:

$$f \mid gh \iff gh \in \langle f \rangle \iff g \in \langle f \rangle \lor h \in \langle f \rangle$$



#### Ejemplo 7

Este corolario nos permite construir cuerpos finitos distintos a los  $\mathbb{F}_p$ .

 $E = \mathbb{F}_2[x]/\langle x^2 + x + 1 \rangle$  es un cuerpo. Veamos su caracterización.

- Primero comprobamos que  $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$  es irreducible. Como es un polinomio de grado 2, es irreducible si no tiene raíces en  $\mathbb{F}_2$ , y es cierto ya que f(0) = f(1) = 1.
- Los elementos de E son de la forma:  $g + \langle f \rangle$ , y además  $g + \langle f \rangle \neq 0$  en  $E \iff g \notin \langle f \rangle$ . g = fq + r,  $\delta(r) < \delta(f) = 2$  y como g no es múltiplo,  $0 \le \delta(r) \le 2$ .  $g + \langle f \rangle = r + fq + \langle f \rangle = r + \langle f \rangle$ . Por tanto, todo elemento en E tiene un representante con grado menor a 2.

Y por tanto:

$$E = \{a + bx + \langle f \rangle \mid a, b \in \mathbb{F}_2\} \implies E = \{0, 1, x, x + 1\}$$

**Teorema 16** (Máximo común divisor). Sean K cuerpo,  $0 \neq f, g \in K[x]$  polinomios, existe un único polinomio mónico  $d \in K[x]$  tal que:

$$\langle f \rangle + \langle g \rangle = \langle d \rangle$$
 es decir,  $\exists a, b \in K[x]$ :  $d = af + bg$ 

Además,  $d \mid f \neq d \mid g \neq i$   $\exists : e \mid f \neq e \mid g \implies e \mid d$  en K[x]. Denotamos al polinomio d por  $mcd_K(f,g)$ .

Demostración. Se deja como ejercicio.



**Proposición 17** (Máximo común divisor en subcuerpos). Sean  $E, K \subseteq E$  cuerpos, y  $0 \neq f, g \in K[x]$  polinomios.

$$mcd_K(f,g) = mcd_E(f,g)$$

Demostración. Sea  $d = mcd_K(f, g)$ ,  $e = mcd_E(f, g)$ . Entonces, d = af + bg en  $K[x] \subseteq E[x] \implies e \mid d$  en E[x]. Como  $d \mid f \mid g$  en K[x] (y en particular también en E[x]), entonces  $d \mid e$  en E[x]. Por tanto:

$$(d \mid e) \land (e \mid d) \land e, d \text{ m\'onicos} \implies e = d \in K[x]$$



 $\Diamond$ 

 $\Diamond$ 

 $\Diamond$ 

Corolario 4. Sea  $0 \neq f, g \in K[x]$  con f irreducible.

- 1.  $mcd(f, g) = 1 \text{ o } f \mid g$ .
- 2. Si tenemos  $K \subseteq E$ , y f, g tienen una raíz común en E, entonces  $f \mid g$  en K[x].

Demostración.

- 1. Si  $d = mcd(f,g) \neq 1 \implies \delta(d) > 1 \implies f = ad \implies d = a \cdot f, \ a \in K^{\times}$ . Sea  $b \in K[x]$ ,  $g = b \cdot d = baf \implies f \mid g$ .
- 2. Se<br/>a $a\in E$ la raíz común, por Ruffini  $(x-a)\mid f,g$  en<br/>  $E[x]\implies mcd_E(f,g)=mcd_K(f,g)>\implies f\mid g.$

Corolario 5 (Descripción de  $\mathcal{U}(K[x]/\langle f \rangle)$ ). Sea  $0 \neq f \in K[x], R = K[x]/\langle f \rangle$ . Entonces:

$$\bar{g} = g + \langle f \rangle \in \mathcal{U}(R) \iff mcd(f, g) = 1$$

Es decir,  $\exists a, b \in K[x]$  tal que 1 = af + bg y por tanto  $(g + \langle f \rangle)^{-1} = b + \langle g \rangle$ .

**Ejercicio** (H1.24). Sea  $p \in \mathbb{Q}[x]$  dado por  $p(x) = (x^2 + 1)(x^4 + 2x + 2)$ . Escribimos  $R = \mathbb{Q}[x]/\langle p \rangle$  y  $\bar{f} = f + \langle p \rangle$ .

- 1. Describe los ideales en R. ¿Es R un cuerpo?.
- 2. Decide justificadamente si  $\bar{x}$  y  $\overline{x+1}$  son divisores de cero en R.
- 3. Decide si  $\bar{x}$  y  $\bar{x}+1$  son elementos invertibles en R y, en caso afirmativo, encuentra sus inversos.

El primer apartado se resuelve por el teorema de correspondencia.

En el segundo apartado tenemos que ver que mcd(x,p) = 1 = mcd(x+1,p). Con ello vemos que  $\bar{x}$  y  $\overline{x+1} \in \mathcal{U}(R)$  y por tanto no pueden ser divisores de cero.

En el tercer apartado faltaría calcular los inversos con la identidad de Bezout.

**Proposición 18** (Cociente de cuerpo e ideal de polinomio irreducible). Sea K un cuerpo,  $f \in K[x]$  irreducible,  $K[x]/\langle f \rangle$  es un cuerpo.

Demostraci'on. Ver el corolario 2.



 $f(x)=ap_1(x)\cdot \cdot \cdot \cdot \cdot p_r(x),\ a\in K^{\times},\ p_i$  irreducibles mónicos no necesariamente distintos

entonces la expresión es única (salvo el orden de los factores).

Demostración. Se deja como ejercicio.

#### 1.5. Criterios de irreducibilidad

**Lema 20** (de Gauss). Sea  $f(x) \in \mathbb{Z}[x]$  un polinomio con  $\delta(f) \ge 2$ , entonces:

$$f(x)$$
 irreducible en  $\mathbb{Z}[x] \implies f(x)$  irreducible en  $\mathbb{Q}(x)$ 

Demostración. Se deja como ejercicio.

 $\Diamond$ 

 $\Diamond$ 

**Lema 21** (Reducción módulo p). Sea f un polinomio entero mónico, y  $\varphi_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ ;  $\sum a_j x^d \mapsto \sum \overline{a_j} x^d$ . Si existe algún primo p de forma que  $\varphi_p(f)$  es irreducible en  $\mathbb{Z}_p[x]$ , entonces f es irreducible en  $\mathbb{Z}[x]$ .

Demostración. Se deja como ejercicio.

**Ejercicio** (H1.34 (c)). Demuestra que  $f(x) = x^3 + x + 1$  es irreducible en  $\mathbb{Q}[x]$ .

Usamos reducción módulo p con p=2.

$$f(0) = 1, f(1) = 1$$

Como es un polinomio de grado 3 sin raíces, es irreducible en  $\mathbb{Z}_2[x]$  y por tanto es reducible en  $\mathbb{Q}[x]$ .

**Teorema 22** (Criterio de Einsestein). Sea  $f(x) = a_0 + a_1x + \ldots + a_nx^n \in \mathbb{Z}[x]$ . Si existe un primo p tal que:

- 1.  $p \nmid a_n$ .
- 2.  $p^2 \nmid a_0$ .
- 3.  $p \mid a_i, \forall i \in \{0, \dots, n-1\}.$

Entonces f es irreducible en  $\mathbb{Q}[x]$ .

Demostración. Se deja como ejercicio.

**Proposición 23** (Raíces racionales de un polinomio). Sea  $f(x) = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{Z}[x]$ . Si  $\frac{r}{s} \in \mathbb{Q}$  con mcd(r,s) = 1 es una raíz de f, entonces:  $s \mid a_n \ y \ r \mid a_0$ . En particular, si  $f \in \mathbb{Z}[x]$  es mónico, las raíces racionales están contenidas en los enteros.

Demostración.

$$0 = f(\frac{r}{s}) = a_0 + a_1 \frac{r}{s} + \dots + a_n \frac{r^n}{s^n}$$

$$0 = a_0 s^n + a_1 r s^{n-1} + \dots + a_n r^n$$

$$-a_0 s^n = a_1 r s^{n-1} + \dots + a_n r^n = r(s^{n-1} a_1 + \dots + a_n r^{n-1}) \implies r \mid a_0 s^n \implies r \mid a_0$$

$$-a_n r^n = s(a_0 s^{n-1} + \dots + a_{n-1} r^{n-1}) \implies s \mid a_n r^n \implies s \mid a_n$$

#### Ejemplo 8 (Irreducibilidad cuando fallan otros criterios)

¿Es  $x^3 + x + 6$  irreducible en  $\mathbb{Q}[x]$ ?.

Si intentamos comprobarlo con el criterio de Einsestein o por reducción módulo p no llegamos a nada. Podemos utilizar la proposición 23 para hallar que las únicas raíces racionales del polinomio son los divisores de 6, es decir,  $\{\pm 1, \pm 2, \pm 3, \pm 6\}$  y si evaluamos el polinomio en los posibles valores ninguno resulta 0. Por tanto, es un polinomio de grado 3 sin raíces y entonces es irreducible en  $\mathbb{Q}[x]$ .

**Lema 24** (Irreducibilidad evaluando en x + a). Sea  $f \in K[x]$  (K cuerpo),  $a \in K$ .

$$f(x)$$
 irreducible  $\iff f(x+a)$  irreducible

Demostración. La demostración se sigue de demostrar que  $\varphi_a: K[x] \to K[x]; f(x) \mapsto f(x+a)$  es un isomorfismo de anillos (cuerpos).

**Teorema 25** (Irreducibilidad de polinomios ciclotómicos). Sea p primo,  $\Phi_p(x) = x^{p-1} + \ldots + x + 1$  es irreducible en  $\mathbb{Q}[x]$ .

Demostración. Partimos de  $(x-1)\Phi_p(x) = x^p - 1$ . Aplicamos el lema 24 con a = 1. Tenemos por tanto:  $x\Phi(x+1) = (x+1)^p - 1$ . Desarrollando con el binomio de newton llegamos a la expresión:

$$\Phi(x+1) = x^{p-1} + \binom{p}{1} x^{p-2} + \dots + \binom{p}{p-1}$$

Ahora aplicamos Einsestein para el primo p, donde vemos que  $p \mid \binom{p}{i}$  y  $p^2 \nmid \binom{p}{p-1} = p$ , por lo que  $\Phi_p(x+1)$  es irreducible y también lo es  $\Phi_p(x)$ .

#### 1.5.1. Raices múltiples e irreducibilidad

**Definición 20** (Raíz múltiple). Sea  $0 \neq f(x) \in K[x]$  un polinomio,  $a \in K$  un raíz de f, existe un  $m \in \mathbb{N} > 0$  tal que  $f(x) = (x-a)^m g(x)$  con  $g(a) \neq 0$  aplicando Ruffini y siendo K[x] un DFU. Decimos que a es raíz múltiple s i m > 1.

**Definición 21** (Derivada formal). Sea  $f(x) = a_0 + a_1x + \dots + a_nx^n \in K[x]\backslash K$ . Se define  $f'(x) = a_1 + 2a_2x + \dots + a_nx^{n-1} \in K[x]$  como **derivada formal**. Si  $f \in K$ , f'(x) = 0.

**Proposición 26** (Propiedades de derivada formal). Sean  $f, g \in K[x]$ 

- 1. (f+g)' = f' + g';  $(af)' = a \cdot f'$ ,  $\forall a \in K$ .
- $2. (fg)' = f' \cdot g + f \cdot g'.$
- 3. Si  $f(x) = (x a)^m$ ,  $m \ge 1$  entonces  $f'(x) = m(x a)^{m-1}$ .

**Proposición 27** (Raíz de derivadas). Sean  $K \subseteq E$  un subcuerpo,  $f(x), f'(x) \in K[x]$  polinomios,  $a \in E$  una raíz múltiple (con multiplicidad m) de f, entonces:

$$f(a) = f'(a) = 0 \iff m > 1$$

Demostración. En ambos supuestos:  $f(x) = (x-a)^m g(x)$ , con  $m \ge 1$ , g(a) = 0 y  $f'(x) = m(x-a)^{m-1}g(x) + (x-a)^m \cdot g'(x)$ .

- $\implies m > 1 \implies m 1 \ge 1$  y (f(a) = f'(a) = 0).
- $\iff$  0 =  $f'(a) = m \cdot 0^{m-1} \cdot g(a) \implies m > 1$ .  $(g(a) \neq 0)$ . Si tuvieramos m = 1 entonces f'(x) = g(x) + (x a)g'(x), con lo que llegaríamos a 0 =  $f'(a) = g(a) \neq 0$  lo que es imposible y la desigualdad es necesariamente estricta.



**Teorema 28** (Irreducibilidad y raíces múltiples). Sea  $K \subseteq E$  un subcuerpo,  $f(x) \in K[x]$  un polinomio con  $f'(x) \neq 0$ .

- 1.  $mcd(f, f') = 1 \implies f$  no tiene raíces múltiples en E.
- 2. Si f es irreducible, entonces f no tiene raíces múltiples en E.

Demostración.

- 1.  $mcd(f, f') = 1 \implies \exists g, h \in K[x] : 1 = fg + hf'$ . Por reducción al absurdo, si supones que un cierto  $a \in E$  es raíz múltiple de f, entonces f(a) = f'(a) = 0 y llegaríamos a 1 = 0.
- 2. Como  $f, f' \neq 0$  y f es irreducible, por el lema de Euclides o bien son coprimos o bien  $f \mid f'$ . Si  $f \mid f'$ , entonces  $\delta(f) < \delta(f')$  pero  $\delta(f') = \delta(f) 1$  y llegamos a una contradicción, por tanto mcd(f, f') = 1 ya que son coprimos.



Ejercicio (H1.30 (parte)). Enumera los polinomios irreducibles en  $\mathbb{F}_2$  de grado 1, 2, y 3.

$$\delta(f) = 1 \ f(x) = x, f(x) = x + 1.$$

$$\delta(f) = 2 \ f(x) = x^2 + x + 1.$$

$$\delta(f) = 3 \ f(x) = x^3 + x^2 + 1, \ f(x) = x^3 + x + 1.$$

**Ejercicio** (H1.35). Discute la irreducibilidad de  $f(x) = x^5 + 11x^2 + 15$  en  $\mathbb{Q}[x]$ .

Vamos a ver que es irreducible por medio de reducción módulo p con p=2.  $\varphi_2(f)=f_2(x)=x^5+x^2+1$ .

- 1. Vemos que no tiene raíces:  $f_2(0) = 1$ ,  $f_2(1) = 1$ . Por tanto, no existe una forma de factorizarlo en un producto de dos polinomios de grado 1 y grado 4.
- 2. Faltaría ver que no se puede factorizar en un producto de polinomios de grado 2 y grado 3. Si fuera posible:  $f_2(x) = g(x) \cdot h(x)$ . Además, g y h han de ser irreducibles ya que no existe un polinomio de grado 1 en sus factores. Con el ejercicio anterior, basta ver que  $f_2(x)$  no es el resultado de multiplicar los posibles polinomios irreducibles de grados 2 y 3.

$$(x^2 + x + 1)(x^3 + x^2 + 1) \neq f_2(x) \neq (x^2 + x + 1)(x^3 + x + 1)$$

**Ejercicio** (H1.39). Factoriza  $x^4 - 1$  como producto de irreducibles mónicos en:  $\mathbb{Q}[x]$ ,  $\mathbb{R}[x]$ ,  $\mathbb{C}[x]$ ,  $\mathbb{F}_2[x]$  y  $\mathbb{F}_3[x].$ 

- $\mathbb{R}[x] \vee \mathbb{Q}[x] : x^4 1 = (x 1)(x + 1)(x^2 + 1).$
- $\mathbb{C}[x]: x^4 1 = (x 1)(x + 1)(x i)(x + i).$
- $\mathbb{F}_2[x]$ : Como f'(x) = 0, 1 es una raíz con multiplicidad 4, y por tanto  $x^4 1 = (x 1)^4$ .
- $\mathbb{F}_3[x]$ :  $f'(x) = 4x = x \in \mathbb{F}_3[x]$   $\Longrightarrow$  las raíces son simples. Se pueden comprobar a mano y obtenemos  $x^4 - 1 = (x - 1)(x - 2)(x^2 + 1)$ .

#### 1.6. Cuerpos

**Definición 22** (Cuerpo primo). Sea K un cuerpo,  $\mathcal{A} = \{L \subseteq K \text{ subcuerpos}\}$ . Sea  $F = \bigcap_{L \in \mathcal{A}} L$ , es un subcuerpo de K (se puede comprobar). Llamamos a F el cuerpo primo de K, y tiene la característica de ser el menor subcuerpo contenido en K, es decir, si  $E \subseteq K$  y  $E \subseteq F$ , entonces E = F.

**Teorema 29** (Isomorfías del cuerpo primo). Sea K un cuerpo y F su cuerpo primo, entonces F es isomorfo a:

**Observación.** Vamos a abreviar  $\sum_{1}^{n} \mathbf{1}$  por  $n\mathbf{1}$ , donde  $\mathbf{1} \in F$  y  $n \in \mathbb{Z}^{\times}$ .

Demostración. Consideramos el homomorfismo  $\alpha: \mathbb{Z} \to F; n \mapsto n\mathbf{1}$ . Si  $I = \ker(\alpha) = \{0\} \iff n\mathbf{1} \neq 0$  $\mathbf{0} \ \forall n \in \mathbb{Z}^{\times}, \ \alpha \text{ se puede extender a } \tilde{\alpha} : \mathbb{Q} \to F; \ \frac{n}{m} \mapsto (n\mathbf{1}) \cdot (m\mathbf{1})^{-1}.$ 

1.6. CUERPOS 21

Tenemos que comprobar que  $\tilde{\alpha}$  está bien definida. Partimos de  $\frac{n}{m} = \frac{a}{b} \in \mathbb{Q}$ :

$$nb = ma \implies \alpha(nb) = \alpha(ma) \implies (n\mathbf{1})(b\mathbf{1}) = (m\mathbf{1})(a\mathbf{1}) \implies (*)$$

$$(*) \implies (n\mathbf{1})(m\mathbf{1})^{-1} = (a\mathbf{1})(b\mathbf{1})^{-1} \implies \tilde{\alpha}\left(\frac{n}{m}\right) = \tilde{\alpha}\left(\frac{a}{b}\right)$$

Concluimos con que  $\tilde{\alpha}$  está bien definida y es un homomorfismo de grupos inyectivo. Por el primer teorema de isomorfía (teorema 10):

$$\tilde{\alpha}(\mathbb{Q}) \subseteq F \subseteq K$$
 donde además  $\tilde{\alpha}(\mathbb{Q}) \simeq \mathbb{Q}$ 

y por la definición de cuerpo primo:  $\mathbb{Q} \simeq \tilde{\alpha}(\mathbb{Q}) = F$ .

Consideremos ahora el caso en que  $I = \ker(\alpha) \neq \{0\} \iff (\alpha(n) = 0 \iff p \mid n)$ . Entonces, existe p primo tal que  $I = \langle p \rangle$ .

Como  $\mathbb Z$  es un dominio de ideales principales, e  $I \leq \mathbb Z$ , existe  $0 \neq m \in \mathbb Z$  que cumple  $I = \langle m \rangle = m \mathbb Z$ . Supongamos  $m = a \cdot b$ , entonces  $0 = \alpha(m) = \alpha(a)\alpha(b) \implies \alpha(a) = 0$  ó  $\alpha(b) = 0 \implies a$  ó  $b \in \langle m \rangle \implies m \mid a$  ó  $m \mid b \implies m = p$  primo.

Entonces, de nuevo por el primer teorema de isomorfía:

$$\mathbb{Z}/\ker(\alpha) = \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p \simeq \alpha(\mathbb{Z}) \subseteq F \subseteq K$$

y por la definición de cuerpo primo:  $\mathbb{F}_p \simeq \alpha(\mathbb{Z}) = F$ 

**Definición 23** (Característica de un cuerpo). Sea K un cuerpo y F su cuerpo primo, decimos que su característica car(K), es car(K) = 0 si  $F \simeq \mathbb{Q}$  y car(K) = p si  $F \simeq \mathbb{F}_p$ .

 $\Diamond$ 

 $\Diamond$ 

**Ejercicio** (H1.40). Sean K y E dos cuerpos de distinta característica, demuestra que no existe  $\varphi: K \to E$  tal que  $\varphi$  sea un homomorfismo de cuerpos.

Supongamos car(E) = 0 y car(K) = p > 0. Entonces:

$$0 = \varphi(p1) = p\varphi(1) = p1 \neq 0 \text{(en E)}$$

Faltaría ver el caso en que  $car(E) = p \neq q = car(K)$  con p, q primos:

$$\mathbf{0} = \varphi(q\mathbf{1}) = q\varphi(\mathbf{1}) = q\mathbf{1} \neq 0 \text{(en E)}$$

Con lo que llegamos a una contradicción en ambos casos, y no existe dicho homomorfismo.

**Observación.** En un cuerpo de característica  $p, (a \pm b)^p = a^p \pm b^p$ .

**Definición 24** (Cuerpo perfecto). Sea K un cuerpo de característica p, y el monomorfismo  $Frob : K \to K$ ;  $a \mapsto a^p$ . Decimos que K es **perfecto** si Frob es sobreyectivo, es decir, Frob es un isomorfismo de cuerpos.

**Proposición 30** (Endomorfismo y cuerpo primo). Sea K un cuerpo, F su cuerpo primo y  $\sigma: K \to K$  un endomorfismo de cuerpos, entonces;

$$\sigma(a) = a, \ \forall a \in F$$

Demostración. Se deja como ejercicio.

**Ejercicio** (H1.42 (parte)). Si n > 0 no es un cuadrado, demuestra que:

- 1.  $\mathbb{F}_3[\xi] = \{a + b\xi \mid a, b \in \mathbb{F}_3, \ \xi^2 = -1\}$  es un cuerpo.
- 2. No existe un homomorfismo de anillos  $\varphi: \mathbb{Q}[i] \to \mathbb{Q}[\sqrt{2}]$ .
- 1. Sea el polinomio  $f(x) = x^2 + 1$ , de forma que  $f(\xi) = 0$ . Otra forma de describir  $\mathbb{F}_3[\xi]$  es:

$$\mathbb{F}_3[\xi] = \{a + b\xi \mid a, b \in \mathbb{F}_3, \ f(\xi) = 0\} \simeq \mathbb{F}_3[x] / \langle f(x) \rangle$$

por lo que es un cuerpo ya que  $x^2+1$  es irreducible en  $\mathbb{F}_3[x]$  al no tener raíces.

2. El problema surge de la imagen de i.  $\varphi(i)$  será de la forma:  $a+b\sqrt{2}$ , y entonces:

$$-1 = \varphi(-1) = \varphi(i^2) = (a + b\sqrt{2})^2 = a^2 + 2b^2 + 2ab\sqrt{2}$$

de donde podría deducirse que  $\sqrt{2} \in \mathbb{Q}$  y es imposible. Por tanto no existe dicho homomorfismo.

### Capítulo 2

## Extensiones de cuerpos

#### 2.1. Grados de cuerpos

**Definición 25** (Extensión). Sean K, E cuerpos, decimos que E es una **extensión** de K (denotado por E/K) si K es un subcuerpo de E.

#### Ejemplo 9 (Extensiones)

- $\blacksquare$   $\mathbb{C}/\mathbb{Q}$
- R/Q
- $\blacksquare$   $\mathbb{C}/\mathbb{R}$
- $\mathbb{Q}[\sqrt{n}]/\mathbb{Q}$  con  $n \neq de$  un cuadrado perfecto.

**Proposición 31** (Extensión como espacio vectorial). Si E es una extensión de K, entonces E es un espacio vectorial sobre K.

Demostración. Basta interpretar el producto por escalares  $\cdot: K \times E \to E$  como la restricción del producto sobre  $E \times E$  a K. La suma está bien definida por ser E un grupo abeliano con la suma.  $\diamondsuit$ 

**Definición 26** (Grado de una extensión). Sea E/K una extensión, el grado de la extensión es  $|E:K| = \dim_K E$ , que coincide con la dimensión del espacio vectorial que define E sobre K.

**Definición 27** (Extensión finita). Sea E/K una extensión, es **finita** si y sólo si  $\exists \{a_1, \ldots, a_n\} \subseteq E$  tales que forman una K-base. Es equivalente a decir que  $\dim_K E = n < \infty$ .

**Lema 32** (Extensión de grado 1). Sea E/K una extensión:

$$|E:K|=1 \iff E=K$$

Demostración.

- $\implies$  Si |E:K|=1, entonces  $\exists e \in E$  tal que  $\{e\}$  es una K-base. Por tanto:  $\mathbf{1}=k \cdot e$  con  $k \in K \implies e=k^{-1} \implies e \in K \implies E=K$ .
- $\leftarrow$  {1} es K-base de K.  $\dim_K K = 1 = |K:K|$ .

**Teorema 33** (Transitividad de grados). Sea una extensión E/K y un subcuerpo L intermedio  $K \subseteq L \subseteq E$ , entonces la extensión E/K es finita si y sólo si  $|E:L| < \infty$ ,  $\land |L:K| < \infty$ , y en tal caso:  $|E:K| = |E:L| \cdot |L:K|$ .

Demostración. Supongamos  $\dim_K E = r < \infty$ , y  $\{e_1, \dots, e_r\}$  una K-base de E, entonces  $\{e_1, \dots, e_r\}$  es un L-sistema generador de  $E \implies E/L$  es finita.

Como  $K \subseteq L \subseteq E$ , L es un K-subespacio vectorial de E, en particular  $\dim_K L \leq \dim_K E < \infty$ . Si E/L y L/K son finitas, cogemos  $\{b_1, \ldots, b_m\}$  una L-base de E y  $\{a_1, \ldots, a_n\}$  una K-base de E.

Queremos ver que  $\{a_ib_j \mid 1 \le i \le n, \ 1 \le j \le m\}$  es una K-base de E (en particular con esto habremos probado que  $|E:K| = |E:L| \cdot |L:K|$ ). Sabemos que:

$$x \in E, x = \sum_{j=1}^{m} l_j b_j, \ l_j \in L$$

pero además

$$l_j = \sum_{i=1}^n k_{ij} a_i, \ k_{ij} \in K \implies x = \sum_{1 \le i \le n, \ 1 \le j \le m} k_{ij} a_i b_j, \ k_{ij} \in K$$

Faltaría ver que  $\{a_ib_i\}$  es K-libre.

$$\sum_{1\leqslant n,\ 1\leqslant i\leqslant j\leqslant m}k_{ij}a_ib_j=0\implies \sum_jl_jb_j=0\implies l_j=0\implies \sum_ik_{ij}a_i=0\implies k_{ij}=0\forall i\forall j$$



**Definición 28** (Menor subanillo y subcuerpo). Sea E/K una extensión y sea  $a \in E$ .

- Denotaremos por K[a] al **menor subanillo** de E que contiene a K y a  $a \in E$ . Se puede probar que  $K[a] = \{f(a) \forall f \in K[x]\}$ .
- Denotaremos por K(a) al **menor subcuerpo** de E que contiene a K y a  $a \in E$ . Se puede probar que  $K(a) = \left\{\frac{f(a)}{g(a)} \forall f, g \in K[x] \mid g(a) \neq 0\right\}$ .

#### Ejemplo 10

- $X \subseteq E$ , K(X) es el menor subcuerpo de E que contiene a K y a X. K(X) se obtiene al adjuntar X a K.

**Observación.** En general  $K[a] \subseteq K(a)$ , pero hay en casos en los que la igualdad no se cumple.

**Definición 29** (Extensión simple). Sea E/K una extensión, es simple si  $\exists a \in E$  tal que E = K(a).

#### Ejemplo 11 (Extensión simple)

- $\mathbb{C}/\mathbb{R}$ , ya que  $\mathbb{C} = \mathbb{R}(i)$ .
- Con  $p \neq q$  primos,  $\mathbb{Q}(\sqrt{p}, \sqrt{q})$  es simple, ya que se puede demostrar que  $\mathbb{Q}(\sqrt{p}, \sqrt{q}) = \mathbb{Q}(\sqrt{p} + \sqrt{q})$ .

**Proposición 34** (Dimensión de un cuerpo finito). Sea K un cuerpo finito, entonces  $|K|=p^n$  con p primo.

Demostración. Sea K un cuerpo y F su cuerpo primo, sabemos que F es isomorfo a algún  $\mathbb{F}_p$  con p un primo. Además, K/F es una extensión. Y como K es subespacio vectorial  $|K:F| = \dim_F K = n$ . Entonces  $K \simeq F^n \Longrightarrow |K| = |F|^n = p^n$ .

#### 2.2. Extensiones algebraicas y trascendentes

**Definición 30** (Extensión algebraica. Extensión trascendente). Sea E/K una extensión.

- Sea  $a \in E$ , a es algebraico si  $\exists f(x) \neq 0 \in K[x]$ : f(a) = 0. E/K es una **extensión algebraica** si todo  $a \in E$  es algebraico sobre E.
- Sea  $a \in E$ , a es trascendente si no es algebraico. E/K es una **extensión trascendente** si existe  $a \in E$  trascendente sobre E.

#### Ejemplo 12 (Extensiones algebraicas y trascendentes)

- K/K es algebraica. Todo elemento de K es raíz de  $x k \in K[x]$ .
- $\blacksquare \mathbb{Q}(\sqrt{n})/\mathbb{Q}$  es algebraica.
- $\mathbb{R}/\mathbb{Q}$  es trascendente.  $e \ y \ \pi$  son trascendentes.
- lacktriangle Sea K[t] un dominio de integridad- Podemos construir su cuerpo de fracciones:

$$K(t) = \left\{ \frac{f(t)}{g(t)} \mid f, g \in K[t], \ g(t) \neq 0 \right\}$$

Entonces K(t)/K es trascendente. (t siempre es trascendente).

**Proposición 35** (Extensiones y cuerpos intermedios). Sea E/K una extensión y  $K\subseteq L\subseteq E$  un cuerpo intermedio:

- 1. E/K es algebraica  $\iff L/K$  y E/L son algebraicas.
- 2. Si E/L es trascendente, entonces E/K es trascendente.

Demostración. Se deja como ejercicio.

 $\Diamond$ 

Teorema 36 (Extensiones finitas y algebraicas). Toda extensión finita es algebraica.

Demostración. Sea E/K una extensión,  $a \in E$ , queremos ver que es raíz de  $0 \neq f(x) \in K[x]$ . Suponemos |E:K|=n con un K-sistema:  $\{1,a_1,\ldots,a^{n-1}\}\subseteq E$  con n elementos. Entonces, el sistema puede ser:

K-ligado Existen  $k_i \in K$  no todos nulos tales que  $k_0 + k_1 a + \ldots + k_{n-1} a^{n-1} = 0$ , entonces a es raíz de  $f(x) = k_0 + \ldots + k_{n-1} x^{n-1}$ .

K-libre Como  $\dim_K E = n$ ,  $\{1, a_1, \dots, a^{n-1}, a^n\}$  es K-ligado, y de nuevo, a es raíz de  $f(x) = k_0 + \dots + k_{n-1}x^{n-1} + k_nx^n$ .

 $\Diamond$ 

#### 2.3. Teorema del elemento algebraico

**Teorema 37** (Teorema del elemento algebraico). Sea E/K una extensión,  $a \in E$  un elemento algebraico sobre K.

- 1. Existe un único polinomio irreducible mónico  $p \in K[x]$  tal que p(a) = 0.
- 2. Si  $q \in K[x]$  y q(a) = 0, entonces  $p \mid q$ .
- 3.  $K(a) = \{f(a) \mid f \in K[x]\} = K[a].$
- 4. Si  $\delta(p) = n$ , entonces  $\{1, a, ..., a^{n-1}\}$  es una K-base de K(a). En particular,  $|K(a):K| = \delta(p)$  y  $K(a) = \{k_0 + k_1 a + ... + k_{n-1} a^{n-1} \mid k_i \in K\}$ .

Demostraci'on. ( $\cdots$ ) (Es muy tarde ahora mismo para pasar esto a limpio, que alguien me mate por favor.)

**Definición 31** (Polinomio mínimo). Sea E/K una extensión y  $a \in E$  algebraico sobre K, al único polinomio mónico e irreducible  $p \in K[x]$  dado por el teorema 37 se le llama **polinomio mínimo** o **polinomio irreducible** de a sobre K y escribimos p = Irr(K, a).

**Observación.** Sea  $b = k_0 + \ldots + k_{n-1}a^{n-1} \in K(a)$ , ¿cómo se expresa  $b^{-1}$  en la misma base? Consideramos  $f(x) = k_0 + \ldots + k_{n-1}x^{n-1} \in K[x]$ , con  $f(a) = b \neq 0$  y  $\delta(f) \leq \delta(p)$ , siendo p el polinomio irreducible. Entonces mcd(f,g) = 1. Por la identidad de Bezout:

 $\exists h,g \in K[x]: 1 = fh + gp \implies \text{ (evaluando en } a)1 = f(a)h(a) + g(a)p(a) \implies 1 = f(a)h(a) = bh(a) \implies b^{-1} = h(a)$ 

#### Ejemplo 13 (Ejercicio tipo)

(···) (Es aún más tarde. https://www.youtube.com/watch?v=I\_6Gej1m4SU)

**Teorema 38** (Extensión por varios elementos algebraicos). Sea E/K una extensión, y sea  $\mathbf{a} = (a_1, \dots, a_n)$  con  $a_i \in E$  algebraicos sobre K, entonces  $K(\mathbf{a})/K$  es finita. En particular,  $K(\mathbf{a})/K$  es algebraica.

Demostración. Por inducción sobre n. Si n=1 por el teorema del elemento algebraico (teorema 37) sabemos que  $|K(a_1)/K| = \delta(Irr(K,a_1)) < \infty$ .

Veamos el caso n > 1. Sea  $L = K(a_1, \ldots, a_{n-1})$ , entonces  $K(\mathbf{a}) = L(a_n)$ . Por la hipótesis de inducción L/K es finita, por el teorema 37  $L(a_n)/L$  es finita y por tanto, por el teorema de transitividad de grados (teorema 33)  $L(a_n)/K$  es finita, donde  $L(a_n)$  era  $K(\mathbf{a})$ . La segunda parte se sigue directamente aplicando el teorema 36.

**Ejercicio** (H2.7). Dada E/K una extensión, prueba que  $L = \{e \in E \mid e \text{ es algebraico sobre } K\} \supseteq K$  es un cuerpo. Sea  $\mathbb{A} \subset \mathbb{C}$  los elementos algebraicos sobre  $\mathbb{Q}$ , prueba que  $\mathbb{A}/\mathbb{Q}$  es una extensión de grado infinito

Sean  $a, b \in L$  cualesquiera, entonces  $a, b \in K(a, b)^{\times}$  y por el teorema 38 K(a, b)/K es algebraica. Como  $a \pm b$  y  $ab^{\pm 1} \in K(a, b)$ , entonces son algebraicos sobre  $K \implies (a \pm b), (ab^{\pm 1}) \in L$ , con lo que es cerrado por ambas operaciones y L es un cuerpo.

Por la primera parte del ejercicio, sabemos que  $\mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{C}$  es un subcuerpo intermedio, de  $\mathbb{C}/\mathbb{Q}$ , y por definición  $\mathbb{A}/\mathbb{Q}$  es algebraica.

Por el criterio de Einsestein (teorema 22), para cada  $n \in \mathbb{N}^{\times}$ ,  $x^n - 2$  es irreducible en  $\mathbb{Q}[x]$ .  $\sqrt[n]{2}$  es solución por tanto es algebraico y por el teorema  $37 |\mathbb{Q}(\sqrt[n]{2})/\mathbb{Q}| = n$ .

Como podemos hacerlo  $\forall n \in \mathbb{N}^{\times}$ , hemos comprobado que  $\mathbb{A}/\mathbb{Q}$  es no finita.

Ejercicio (H2.6). (···) (Yep. https://www.youtube.com/watch?v=pwSsT8IUOWE)

#### 2.4. Isomorfismos de cuerpos

Ya definimos qué es un homomorfismo de cuerpos en la sección 1.3. En esta sección vamos a ampliar los conocimientos cuando aplicamos los homomorfismos específicamente a cuerpos.

**Observación.** Si  $car(E) \neq car(K)$  entonces:  $Hom(E,K) = \emptyset = Hom(K,E)$ , con  $Hom(X,Y) = \{\varphi : X \to Y \mid \varphi \text{ es un homomorfismo de cuerpos}\}$ . Además, si K es finito, End(K) = Aut(K) (conjunto de endomorfismos y automorfismos respectivamente), pero en general:  $End(K) \subseteq Aut(K)$ .

**Observación.** Sea  $\varphi \in End(K)$  y F es el cuerpo primo de K, entonces  $\varphi(a) = a$ ,  $\forall a \in F$ . De forma más general, si  $\varphi \in Hom(E,K)$  y E,K tienen el mismo cuerpo primo,  $\varphi(a) = a$ , por ejemplo:  $Aut(\mathbb{F}_p) = \{id\}$ ,  $Aut(\mathbb{Q}) = \{id\}$ .

En ocasiones querremos saber como extender un isomorfismo de cuerpos a una extensión de dichos cuerpos. Vamos a ver un lema y un teorema.

**Lema 39** (Restricción de un isomorfismo de cuerpos). Sea  $E_1/K_1$  una extensión,  $\theta: E_1 \to E_2$  un isomorfismo de cuerpos, y sea  $K_2 = \theta(K_1)$ , entonces:

- 1.  $E_2/K_2$  es una extensión y  $|E_1:K_1|=|E_2:K_2|$ .
- 2. Sean  $a_1, \ldots, a_n \in E_1$ .  $\theta(K_1(a_1, \ldots, a_n)) = K_2(\theta(a_1), \ldots, \theta(a_n))$ .
- 3.  $\theta$  se extiende a un isomorfismo de anillos  $\theta: K_1[x] \to K_2[x]$ , aplicando  $\theta$  individualmente a cada coeficiente del polinomio.

Demostración. Como ejercicio.



**Teorema 40** (Extensión de un isomorfismo de cuerpos). Sean  $E_1/K_1$ ,  $E_2/K_2$  extensiones,  $\sigma: K_1 \to K_2$  un isomorfismo de cuerpos,  $p_1$  irreducible en  $K_1$ ,  $p_2$  irreducible en  $K_2$ , y  $a_1$  y  $a_2$  raíces de los polinomios respectivamente, entonces:

$$\sigma$$
 se extiende a  $\theta \iff \theta|_{K_1} = \sigma$ 

Donde  $\theta: K_1(a_1) \to K_2(a_2)$  tal que  $\theta(a_1) = a_2$ .

Demostración. A completar.



Corolario 6. Sea E/K una extensión,  $p \in K[x]$  irreducible, entonces:

teorema 37,  $|\mathbb{Q}(\sqrt{2}, \sqrt{3}, i) : \mathbb{Q}| = 2 = \delta(Irr(L, i)).$ 

 $a,b \in E$  son raíces de  $p \iff \exists$  un isomorfismo  $\theta: K(a) \to K(b)$  tal que  $\theta(a) = b$  y  $\theta(k) = k \ \forall k \in K$ 

Ejercicio (H2.4 (parte)). Halla el grado y base de las siguientes extensiones de cuerpos:

1.  $\mathbb{Q}(\sqrt{2}, \sqrt{3}, i)/\mathbb{Q}$ . Consideramos  $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$  cuerpo intermedio, y además,  $\mathbb{Q}(\sqrt{2}, \sqrt{3}, i) = L(i)$ . i es raíz del polinomio  $x^2 + 1$  que no tiene raíces en L y por tanto,  $x^2 + 1 = Irr(L, i)$ . Por el

Además,  $|L:\mathbb{Q}|=4$  por el ejercicio 1 de la hoja 2. Por el teorema 33,  $|\mathbb{Q}(\sqrt{2},\sqrt{3},i):\mathbb{Q}|=|L(i):L|\cdot |L:\mathbb{Q}|=8$ . Una vez sabemos el grado, podemos encontrar una  $\mathbb{Q}$ -base:

$$\left\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}, \sqrt{2}i, \sqrt{3}i, \sqrt{6}i\right\}$$
$$\left\{1, \alpha, \alpha^2, \alpha^3, i, \alpha i, \alpha^2 i, \alpha^3 i\right\}$$

2.  $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ .  $\alpha = \sqrt[4]{2}$  es raíz de  $x^2 - \sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$ , y es irreducible porque no tiene raíces en  $Q(\sqrt{2})$ , (se prueba por reducción al absurdo). Por tanto:  $|\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}(\sqrt{2})| = 2$  y una base:

$$\{1, \sqrt[4]{2}\}$$

3.  $\mathbb{Q}(\sqrt{1+\sqrt{3}})/\mathbb{Q}$ . Consideramos el cuerpo intermedio  $L=\mathbb{Q}(\sqrt{3})$ . Es fácil ver que  $|L/\mathbb{Q}|=2$ . Falta encontrar el grado de  $|\mathbb{Q}(\sqrt{1+\sqrt{3}})/L|$ . Sea  $\alpha=\sqrt{1+\sqrt{3}}$ ,  $\alpha$  es raíz de  $x^2-(1+\sqrt{3})$ , que se puede demostrar que es irreducible en L. Por tanto, por el teorema 33,  $|\mathbb{Q}(\sqrt{1+\sqrt{3}}):\mathbb{Q}|=4$ , y la base:

$$\left\{1, \sqrt{3}, \sqrt{1+\sqrt{3}}, \sqrt{3}\sqrt{1+\sqrt{3}}\right\}$$

**Ejercicio** (H2.5). Halla grado y base de  $\mathbb{F}_7(t)/\mathbb{F}_7(t^2)$ . Halla la expresión de  $t^{-1}$  y  $(t+1)^{-1}$  en la base que has hallado.

Consideramos en polinomio  $x^2 - t^2 \in F(t^2)[x]$ , donde t es una raíz y  $\pm t \notin \mathbb{F}_7(t^2)$ . Se puede demostrar por reducción al absurdo que el polinomio  $x^2 - t^2$  es irreducible. Por tanto, por el teorema 37,  $|\mathbb{F}_7(t)/\mathbb{F}_7(t^2)| = 2$ .

Una  $\mathbb{F}_7(t^2)$ -base de  $\mathbb{F}_7(t)$  es:  $\{1, t\}$ .

Vamos a expresar ahora los elementos que se nos piden. Consideramos t = f(t), f(x) = x.

$$x^2 - t^2 = 0$$
,  $x \cdot x = t^2 \implies x \cdot \frac{1}{t^2} \cdot x = 1$ , que evaluando en  $t$ :  $t \cdot \left(\frac{1}{t^2} \cdot t\right) = 1$ 

Con ello, hemos hallado el inverso de t. Para hallar el inverso de t+1 procedemos de forma parecida. Consideramos f(x) = x + 1. Vemos que  $mcd(f(x), x^2 - t^2) = 1$ . Procediendo con el algoritmo de división de polinomios, podemos expresar:

$$x^{2} - t^{2} = f(x)(x - 1) + (1 - t^{2}) \implies (x^{2} - t^{2}) + f(x)(1 - x) = 1 - t^{2} \in \mathbb{F}_{7}(t^{2})$$

Entonces:

$$\frac{1}{1-t^2}(x^2-t^2)+f(x)\frac{1-x}{1-t^2}=1$$

Evaluando en t:

$$f(t)\frac{1-t}{1-t^2} = 1 \implies (t+1)^{-1} = \frac{1}{1-t^2} \cdot 1 + \frac{1}{t^2-1}t$$

**Ejercicio** (H2.10). Sea E/K una extensión,  $\alpha \in E$  algebraico sobre K y L un subcuerpo intermedio. Prueba que  $q(x) = Irr(L, \alpha) \mid Irr(K, \alpha) = p(x)$ .

 $p(x) \in K[x] \subseteq L[x]$ , entonces p(x) tambien es un polinomio de L[x]. Como  $p(\alpha) = 0$ , por el teorema del elemento algebraico, (teorema 37)  $q(x) \mid p(x)$ . Y entonces:

$$|L(\alpha):L| = \delta(q(x)) \le \delta(p(x)) = |K(\alpha):K|$$

**Ejercicio** (H2.11). Sea E/K una extensión. Demuestra:

1. Si |E/K| = p con p primo, demuestra que no hay subcuerpos intermedios.

Por el teorema de transitividad de grados (teorema 33), sabemos que  $|E:K|=|E:L|\cdot |L:K|=1$   $|E:L|=1 \vee |L:K|=1$ , y por tanto  $|E:L|=1 \vee |L:K|=1$ .

2. Sea |E:K|=p con p primo, entonces E/K es simple.

Consideramos  $L = K(\alpha)$  con  $\alpha \in E, \alpha \mid inK$ , además  $K(\alpha) \neq K$  y por tanto (por el primer apartado)  $L = E = K(\alpha)$  y es simple ya que  $K(\alpha)$  lo es.

3. Supongamos  $\alpha \in E$  tal que  $Irr(K, \alpha) = x^3 + x - 1$ . Queremos calcular  $Irr(K, \alpha^2)$ . Como sabemos que  $K(\alpha)/K$  tiene grado 3, y por el apartado siguiente,  $K(\alpha) = K(\alpha^2)$ , entonces por el teorema 37,  $\delta(Irr(K, \alpha^2)) = 2$ .

Entonces:

$$\alpha^3 + \alpha^2 = 1 \iff \alpha^6 + 2\alpha^4 + \alpha^2 - 1 = 0$$

Sea  $\beta = \alpha^2$ , entonces se satisface que:

$$\beta^3 + 2\beta^2 + \beta - 1 = 0$$

y con ello hemos hallado el polinomio irreducible que buscábamos.

4. Si  $\alpha \in E$ , con  $|K(\alpha):K| = n$  impar, calcula  $|K(\alpha^2):K|$ .

Como n es impar sabemos que  $\alpha^2 \in K(\alpha)$  y por tanto  $K(\alpha^2) = K(\alpha)$ .

5. Sea  $K \subseteq L_1, L_2 \subseteq E$  dos cuerpos intermedios de grado coprimos sobre K demuestra que  $L_1 \cap L_2 = K$ .

Se considera el cuerpo  $L_1 \cap L_2$ . Sea  $d = |L_1 \cap L_2/K, n = |L_1/K|$  y  $m = |L_2/K|$ . Entonces por el teorema 33,  $d \mid n$  y  $d \mid m$  con n, m coprimos, por tanto d = 1 y  $_1 \cap L_2 = K$ .

**Ejercicio** (H2.12). Sea E/K una extensión, y sean  $a, b \in E$  algebraicos con |K(a):K|=n, |K(b):K|=m. Prueba que:

1.  $|K(a,b):K(b) \leq n$ .

Mirar el ejercicio H2.10

2. Sean  $n \neq m$  son coprimos, entonces  $K(a) \cup K(b) = K \neq |K(a,b)| : K| = nm$ . Deduce que Irr(K,a) = Irr(K(b),a).

Mirar ejercicio H2.11

3. Calcula  $Irr(\mathbb{Q}, \alpha)$  con  $\alpha = \sqrt{3} + \sqrt[3]{2}$ 

## Parte II Segundo parcial

## Capítulo 3

## Extensiones de Galois

#### 3.1. Cuerpos de escisión

**Definición 32** (Escisión de un polinomio). Sea  $f \in K[x]$ , K cuerpo, decimos que f se **escinde** si  $\exists a, a_i \in K$  si:

$$f(x) = a(x - a_1) \dots (x - a_n)$$

**Observación.** Si  $f(x) \in K[x]$ ,  $\delta f = 1$ , entonces f se escinde en K.

$$f(x) = ax + b = a\left(x - \left(-\frac{b}{a}\right)\right), \quad a, -\frac{b}{a} \in K$$

**Observación.** Si  $f \in K[x]$ , se escinde en E, sea E/K una extensión:

$$f(x) = a(x - a_i) \dots (x - a_n) \in E[x]$$

Entonces las raíces de f en cualquier extensión de E son  $a_1, \ldots, a_n$ 

**Definición 33** (Cuerpo de escisión). Sea  $f \in K[x]$ , entonces E es un cuerpo de escisión de f sobre K si:

- E/K es una extensión.
- f se escinde en E.
- Si f se escinde en L, con L un cuerpo intermedio  $K \subseteq L \subseteq E$ , entonces L = E, es decir, E = K(f). (Es el menor subcuerpo con la propiedad de que f se escinda en él).

#### Ejemplo 14

 $x^2+1$  se escinde en  $\mathbb C$  pero su cuerpo de escisión es  $\mathbb Q(i).$ 

**Observación.** Si  $f \in K[x]$  se escinde en E, entonces E tiene todas las raíces de f. Para construir su cuerpo de escisión basta adjuntar todas las raíces al cuerpo sobre el que está definido:

$$f(x) = a(x - a_1) \dots (x - a_n) \in E[x]$$
, entonces su cuerpo de escisión es  $K(f) = K(a_1, \dots, a_n)$ 

Lema 41 (Escisión de polinomios no constantes). Sea K un cuerpo:

- 1. Si  $f \in K[x]$  no constante se escinde en K si y sólo si todos los polinomios en la descomposición en términos de factores irreducibles tienen grado 1.
- 2. Si  $f \in K[x]$  no constante que se escinde en K y sea  $p \in K[x]$  tal que  $p \mid f$ , entonces p se escinde en K.

Demostración. La demostración se deja como ejercicio.

**Lema 42** (Cuerpos de escisión y cuerpos intermedios). Sean E/L y L/K extensiones, y  $f \in K[x]$  un polinomio no constante. Si E es el cuerpo de escisión de f sobre K, entonces E es el cuerpo de escisión de f sobre L.

Demostración. Como E = K(f), tenemos que  $f(x) = a(x - a_1) \dots (x - a_n) \in E[x]$  y  $E = K(a_1, \dots, a_n)$ . Además,  $f \in K[x] \subseteq L[x]$ . Si el cuerpo de escisión de f sobre L es E', fácilmente llegamos a que  $E' = L(f) \subseteq E$  y por tanto: E = E' ya que E era el menor cuerpo de escisión de f sobre K.  $\diamondsuit$ 

Si f es un polinomio sobre  $\mathbb{Q}[x]$  de grado n, sabemos que  $\exists \alpha_i \in \mathbb{C}$  con  $i \in \{1, ... n\}$  tal que  $f(x) = a(x - \alpha_1)...(x - \alpha_n)$ , y hemos visto para calcular su cuerpo de escisión basta con adjuntar las raíces de f, es decir,  $\mathbb{Q}(f) = \mathbb{Q}(\alpha_1, ..., \alpha_n)$ .

Vamos a ver resultados para generalizar este proceso.

**Lema 43** (Existencia de extensión que contiene a una raíz). Sea  $p \in K[x]$  un polinomio irreducible, entonces existe E/K tal que p tiene una raíz en E.

Demostración. Sea  $L = K[x]/\langle p \rangle$ , ya vimos que L es un cuerpo por ser p irreducible. Además se puede comprobar que:

$$\bar{x} = x + \langle p \rangle \in L$$
 es raíz de  $\bar{p} \in \bar{K}[y]$ 

Donde  $\bar{p} = \overline{a_0} + \ldots + \overline{a_n} x^n$  y  $K \simeq \bar{K} = \{\bar{K} \mid k \in K\}.$ 

Hay que comprobar que  $\bar{K} \subseteq L$ . Tras ello, habría que ver que  $L = \bar{K}(\bar{x})$ .

**Teorema 44** (Existencia de cuerpos de escisión). Sea K un cuerpo,  $f \in K[x]$  un polinomio no constante. Entonces existe un cuerpo de escisión E de f sobre K.

Demostración. Basta construir una extensión en la que f se escinda. La demostración sigue por inducción sobre  $\delta(f)$ .

- $\delta(f) = 1$  Entonces por el lema 41, K es un cuerpo de escisión de f sobre K.
- $\delta(f) > 1$  Sea  $p \mid f$  un factor irreducible de f en K[x], por el lema 43, sabemos que existe E/K en la que p tiene una raíz  $\alpha \in E$ , en particular  $f(\alpha) = 0$  y por Ruffini:

$$f(x) = (x - \alpha)g(x)$$
, con  $g(x) \in K(\alpha)[x]$ 

Como  $1 \le \delta(g) \le \delta(f) - 1 \le \delta(f)$ , por inducción sabemos que existe un cuerpo de escisión L de g sobre  $K(\alpha)$ . Si  $\alpha_1, \ldots \alpha_n \in L$  son las raíces de g, entonces:

$$L = K(\alpha)(\alpha_1, \dots \alpha_n) = K(\alpha, \alpha_1, \dots, \alpha_n)$$

y por tanto  $f(x) = (x - \alpha)g(x) = (x - \alpha)p(x - \alpha_1)\dots(x - \alpha_n) \in L[x]$ , así que f se escinde sobre L, y de hecho L es un cuerpo de escisión de f sobre K.

 $\Diamond$ 

 $\Diamond$ 

**Ejercicio** (Cálculo del cuerpo de escisión). Describir el cuerpo de escisión de  $f(x) = x^4 - 4x^2 + 2$  sobre  $\mathbb{Q}$ .

Comenzamos hallando las raíces, que resulta fácil pues f(x) = 0 es una ecuación bicuadrática. Tenemos entonces las raíces:

$$\alpha = \sqrt{2 + \sqrt{2}}, \ \beta = \sqrt{2 - \sqrt{2}}, \ -\alpha, \ -\beta$$

De donde vemos que f se escinde en R ya que todas las raíces son reales. Para ver su cuerpo de escisión vamos a adjuntar las raíces a  $\mathbb{Q}$ .

$$E = \mathbb{Q}(\alpha, \beta, -\alpha, -\beta) = \mathbb{Q}(\alpha, \beta)$$

Sin embargo, podemos reducirlo aún más si vemos que  $\mathbb{Q}(\alpha,\beta)=\mathbb{Q}(\beta).$ 

$$\alpha\beta = \sqrt{(2+\sqrt{2})(2-\sqrt{2})} = \sqrt{2}, \ \alpha^{-1} = \left(\frac{\beta}{\sqrt{2}}\right) \in \mathbb{Q}(\alpha) \implies \beta = \frac{\beta}{\sqrt{2}} \cdot \sqrt{2} \in \mathbb{Q}(\alpha)$$

Con lo que el cuerpo de escisión es:  $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ .

## Parte III

## Apéndices

## Capítulo 4

## Índices

## Lista de definiciones

| 1.  | Definición | (Anillo)                                       |
|-----|------------|------------------------------------------------|
| 2.  |            | (Anillo con unidad o anillo unitario)          |
| 3.  | Definición | (Anillo conmutativo)                           |
| 4.  | Definición | (Anillo de polinomios)                         |
| 5.  | Definición | (Polinomio mónico)                             |
| 6.  |            | (Divisor de cero)                              |
| 7.  |            | (Unidad de un anillo)                          |
| 8.  |            | (Dominio de integridad)                        |
| 9.  |            | (Cuerpo)                                       |
| 10. | Definición | (Subanillo)                                    |
| 11. | Definición | (Subcuerpo)                                    |
| 12. |            | (Ideal)                                        |
| 13. |            | (Ideal principal)                              |
| 14. |            | (Ideal primo)                                  |
| 15. |            | (Ideal maximal)                                |
| 16. |            | (Homomorfismo de anillos)                      |
| 17. |            | (Raíz de un polinomio)                         |
| 18. |            | (Dominio de ideales principales)               |
| 19. | Definición | (Elemento irreducible)                         |
| 20. | Definición | (Raíz múltiple)                                |
| 21. |            | (Derivada formal)                              |
| 22. |            | (Cuerpo primo)                                 |
| 23. |            | (Característica de un cuerpo)                  |
| 24. | Definición | (Cuerpo perfecto)                              |
| 25. | Definición | (Extensión)                                    |
| 26. | Definición | (Grado de una extensión)                       |
| 27. | Definición | (Extensión finita)                             |
| 28. |            | (Menor subanillo y subcuerpo)                  |
| 29. | Definición | (Extensión simple)                             |
| 30. |            | (Extensión algebraica. Extensión trascendente) |
| 31. |            | (Polinomio mínimo)                             |
| 32. |            | (Escisión de un polinomio)                     |
| 33. | Definición | (Cuerpo de escisión)                           |

## Lista de teoremas

| 1.        | Proposición (Producto con 0 en anillos)                           |
|-----------|-------------------------------------------------------------------|
| 2.        | Proposición (Cuerpo y dominio de integridad)                      |
| 3.        | Proposición (Dominio de integridad en anillos de polinomios)      |
| 4.        | Proposición (Propiedad de cuerpo en anillos de polinomios)        |
| 5.        | Proposición (Unidades en anillos de polinomios)                   |
| 6.        | Proposición (Ideal propio)                                        |
| 7.        | Proposición (Ideales y cuerpos)                                   |
| 8.        | Proposición (Propiedades de ideales)                              |
| 9.        | Teorema (Cociente de ideales primos y maximales)                  |
| 10.       | Teorema (Primer teorema de isomorfía)                             |
| 11.       | Proposición (Algoritmo de la división)                            |
| 12.       | Teorema (Raíces y dominio de integridad)                          |
| 13.       | Teorema (Pequeño teorema de Fermat)                               |
| 14.       | Teorema (Ideales principales)                                     |
| 15.       | Teorema (Irreducibilidad en DIP)                                  |
| 16.       | Teorema (Máximo común divisor)                                    |
| 17.       | Proposición (Máximo común divisor en subcuerpos)                  |
| 18.       | Proposición (Cociente de cuerpo e ideal de polinomio irreducible) |
| 19.       | Teorema (Factorización única)                                     |
| 20.       | Lema (de Gauss)                                                   |
| 21.       | Lema (Reducción módulo $p$ )                                      |
| 22.       | Teorema (Criterio de Einsestein)                                  |
| 23.       | Proposición (Raíces racionales de un polinomio)                   |
| 24.       | Lema (Irreducibilidad evaluando en $x + a$ )                      |
| 25.       | Teorema (Irreducibilidad de polinomios ciclotómicos)              |
| 26.       | Proposición (Propiedades de derivada formal)                      |
| 27.       | Proposición (Raíz de derivadas)                                   |
| 28.       | Teorema (Irreducibilidad y raíces múltiples)                      |
| 29.       | Teorema (Isomorfías del cuerpo primo)                             |
| 30.       | Proposición (Endomorfismo y cuerpo primo)                         |
| J.,       | 2 reposition (2 national of catero prints)                        |
| 31.       | Proposición (Extensión como espacio vectorial)                    |
| 32.       | Lema (Extensión de grado 1)                                       |
| 33.       | Teorema (Transitividad de grados)                                 |
| 34.       | Proposición (Dimensión de un cuerpo finito)                       |
| 35.       | Proposición (Extensiones y cuerpos intermedios)                   |
| 36.       | Teorema (Extensiones finitas y algebraicas)                       |
| 37.       | Teorema (Teorema del elemento algebraico)                         |
| 38.       | Teorema (Extensión por varios elementos algebraicos)              |
| 39.       | Lema (Restricción de un isomorfismo de cuerpos)                   |
| 40.       | Teorema (Extensión de un isomorfismo de cuerpos)                  |
| 41        | Lama (Escisión de nelinamica no constantes)                       |
| 41.       | Lema (Escisión de polinomios no constantes)                       |
| 42.       | Lema (Cuerpos de escisión y cuerpos intermedios)                  |
| 43.<br>44 | Lema (Existencia de extensión que contiene a una raíz)            |
|           |                                                                   |

44 LISTA DE TEOREMAS

## Lista de ejemplos

| 1.  | Ejemplo (Ejemplos de anillos)                           |
|-----|---------------------------------------------------------|
| 2.  | Ejemplo (Ejemplos de subanillos y subcuerpos)           |
| 3.  | Ejemplo (Ejemplos de ideales)                           |
| 4.  | Ejemplo (Proyección canónica)                           |
| 5.  | Ejemplo (Homomorfismo de evaluación)                    |
| 6.  | Ejemplo (Uso de Ruffini)                                |
| 8.  | Ejemplo (Irreducibilidad cuando fallan otros criterios) |
| 9.  | Ejemplo (Extensiones)                                   |
| 11. | Ejemplo (Extensión simple)                              |
| 12. | Ejemplo (Extensiones algebraicas y trascendentes)       |
| 13. | Ejemplo (Ejercicio tipo)                                |

46 LISTA DE EJEMPLOS

## Lista de ejercicios

| Ejercicio (H1.5)                           | . 11 |
|--------------------------------------------|------|
| Ejercicio (H1.12)                          | . 11 |
| Ejercicio (H1.14)                          | . 13 |
| Ejercicio (H1.16)                          | . 13 |
| Ejercicio (H1.21)                          | . 13 |
| Ejercicio (H1.27)                          | . 15 |
| Ejercicio (H1.25)                          | . 15 |
| Ejercicio (H1.24)                          |      |
| Ejercicio (H1.34 (c))                      |      |
| Ejercicio (H1.30 (parte))                  |      |
| Ejercicio (H1.35)                          |      |
| Ejercicio (H1.39)                          |      |
| Ejercicio (H1.40)                          |      |
| Ejercicio (H1.42 (parte))                  |      |
| Ejercicio (H2.7)                           | . 26 |
| Ejercicio (H2.6)                           |      |
| Ejercicio (H2.4 (parte))                   |      |
| Ejercicio (H2.5)                           | . 28 |
| Ejercicio (H2.10)                          |      |
| Ejercicio (H2.11)                          |      |
| Ejercicio (H2.12)                          | . 29 |
| Ejercicio (Cálculo del cuerpo de escisión) | . 34 |