Cow Synchronization: Modeling Reference Sheet

April 27, 2025

Contents

1	State Variables and Observable Modes	2
2	Uncoupled Dynamics of a Single Cow	2
3	Observable Behavior Switching Rules	2
4	Discrete Dynamics and the Poincaré Map	3
5	Discrete Mapping Rules	3
6	Coupled Dynamics for Synchronization	5
7	Measuring Synchronization	5
8	Numerical Exploration of Herd Synchrony	6

State Variables and Observable Modes 1

We model the biological status of a single cow by

$$w = (x, y; \theta) \in [0, 1] \times [0, 1] \times \Theta.$$
 (1)

The real variables x and y represent, respectively, the extent of desire to eat and lie down of the cow, and

$$\theta \in \Theta = \{\mathcal{E}, \mathcal{R}, \mathcal{S}\}. \tag{2}$$

Here:

• $\mathcal{E} = \text{Eating}$.

• $\mathcal{R} = \text{Ruminating (lying down)},$

• S = Standing.

Description: Each cow is modeled with two hidden internal states, a desire to eat and a desire to lie down, both evolving over time. The observable behavior θ depends on these internal needs and switches according to threshold rules. The full cow state w includes both the hidden dynamics and the visible action.

2 Uncoupled Dynamics of a Single Cow

We model the dynamics of a single cow in different states using

(
$$\mathcal{E}$$
) Eating state:
$$\begin{cases} \dot{x} = -\alpha_2 x, \\ \dot{y} = \beta_1 y. \end{cases}$$
 (3)

(
$$\mathcal{R}$$
) Resting state:
$$\begin{cases} \dot{x} = \alpha_1 x, \\ \dot{y} = -\beta_2 y. \end{cases}$$
 (4)

(
$$\mathcal{E}$$
) Eating state:
$$\begin{cases} \dot{x} = -\alpha_2 x, \\ \dot{y} = \beta_1 y. \end{cases}$$
(\mathcal{R}) Resting state:
$$\begin{cases} \dot{x} = \alpha_1 x, \\ \dot{y} = -\beta_2 y. \end{cases}$$
(\mathcal{S}) Standing state:
$$\begin{cases} \dot{x} = \alpha_1 x, \\ \dot{y} = \beta_1 y. \end{cases}$$
(5)

where the calligraphic letters inside parentheses indicate the corresponding values of θ . For biological reasons, the parameters α_1 , α_2 , β_1 , and β_2 must all be positive real numbers. They can be interpreted as follows:

 $\begin{cases} \alpha_1: \text{rate of increase of hunger,} \\ \alpha_2: \text{decay rate of hunger,} \\ \beta_1: \text{rate of increase of desire to lie down,} \\ \beta_2: \text{decay rate of desire to lie down.} \end{cases}$

3 Observable Behavior Switching Rules

The cow's observable behavior θ evolves according to the internal states (x,y) by

$$\theta \to \begin{cases} \mathcal{E} & \text{if } \theta \in \{\mathcal{R}, \mathcal{S}\} \text{ and } x = 1, \\ \mathcal{R} & \text{if } \theta \in \{\mathcal{E}, \mathcal{S}\} \text{ and } x < 1, y = 1, \\ \mathcal{S} & \text{if } \theta \in \{\mathcal{E}, \mathcal{R}\} \text{ and } x < 1, y = \delta \text{ (or } x = \delta, y < 1). \end{cases}$$

$$(6)$$

where δ is a small positive threshold (e.g., $\delta = 0.01$) used to prevent the cow from becoming stuck at the (x, y) = (0, 0) point.

Description:

- When hunger reaches its maximum, cows switch to eating.
- When lying desire reaches its maximum (and hunger is under control), cows switch to ruminating.
- When either need falls very low, cows switch to standing.

4 Discrete Dynamics and the Poincaré Map

Rather than continuously tracking cows at every moment, we focus on key events when their internal states (x, y) reach important thresholds.

We define a special set Σ where transitions occur:

$$\Sigma \equiv \{(x, y; \theta) \mid x = 1, \ \delta \le y \le 1, \ \theta = \mathcal{E}\} \cup \{(x, y; \theta) \mid \delta \le x < 1, \ y = 1, \ \theta = \mathcal{R}\} = \partial \mathcal{E} \cup \partial \mathcal{R}, \tag{3}$$

where $\partial \mathcal{E}$ and $\partial \mathcal{R}$ denote the relevant boundaries.

We extend Σ to a larger set Σ' by adding low-threshold crossings:

$$\Sigma' \equiv \Sigma \cup \{(x, y; \theta) \mid x = \delta, \ \delta \le y < 1\} \cup \{(x, y; \theta) \mid \delta \le x < 1, \ y = \delta\} = \partial \mathcal{E} \cup \partial \mathcal{R} \cup \partial \mathcal{S}_y \cup \partial \mathcal{S}_x, \tag{4}$$

where ∂S_x and ∂S_y represent additional boundaries involving $x = \delta$ and $y = \delta$.

Description:

- We focus on key events when a cow's internal state (x, y) hits a critical threshold.
- The set Σ includes natural switching points: x = 1 or y = 1.
- The extended set Σ' adds low-hunger and low-lying desire thresholds $(x = \delta, y = \delta)$.
- This simplifies the model by focusing only on important transitions instead of continuous tracking.

The discrete dynamics are governed by a **map** q, which:

- Takes a cow's current (x, y, θ) at the boundary Σ' ,
- Predicts where the cow will land next,
- Determines the cow's new observable behavior.

The detailed cases for the discrete map g are given in the next section.

5 Discrete Mapping Rules

The discrete map g determines how a cow's state (x, y, θ) evolves after hitting a boundary in Σ' .

Each case corresponds to a cow hitting a boundary $(x = 1, y = 1, x = \delta, \text{ or } y = \delta)$ and switching behavior accordingly.

Mapping Rules by Cases

Case (a) : Starting from $\theta = \mathcal{E}$, hitting x = 1.

If
$$y \ge \frac{\beta_1}{\alpha_2}$$
, $g(x = 1, \delta \le y \le 1; \mathcal{E}) = \left(\frac{\alpha_2}{\beta_1}y, 1; \mathcal{R}\right)$ (5)

Case (b) : Starting from $\theta = \mathcal{E}$, hitting x = 1.

If
$$y < \frac{\beta_1}{\alpha_2}$$
, $g(x = 1, \delta \le y \le 1; \mathcal{E}) = \left(\delta, \delta^{-\frac{\beta_1}{\alpha_2}} y; \mathcal{S}\right)$ (6)

Case (c) : Starting from $\theta = \mathcal{R}$, hitting y = 1.

If
$$x \ge \frac{\alpha_1}{\beta_2}$$
, $g(\delta \le x < 1, y = 1; \mathcal{R}) = \left(1, \frac{\beta_2}{\alpha_1} x; \mathcal{E}\right)$ (7)

Case (d) : Starting from $\theta = \mathcal{R}$, hitting y = 1.

If
$$x < \frac{\alpha_1}{\beta_2}$$
, $g(\delta \le x < 1, y = 1; \mathcal{R}) = \left(\delta^{-\frac{\alpha_1}{\beta_2}} x, \delta; \mathcal{S}\right)$ (8)

Case (e) : Starting from $\theta = S$, hitting $x = \delta$.

If
$$y \le \frac{\beta_1}{\alpha_1}$$
, $g(x = \delta, \delta \le y < 1; \mathcal{S}) = \left(1, \delta^{-\frac{\beta_1}{\alpha_1}} y; \mathcal{E}\right)$ (9)

Case (f) : Starting from $\theta = S$, hitting $x = \delta$.

If
$$y > \frac{\beta_1}{\alpha_1}$$
, $g(x = \delta, \delta \le y < 1; \mathcal{S}) = \left(\frac{\alpha_1}{\beta_1}y, 1; \mathcal{R}\right)$ (10)

Case (g) : Starting from $\theta = S$, hitting $y = \delta$.

If
$$x \ge \frac{\alpha_1}{\beta_1}$$
, $g(\delta < x < 1, y = \delta; \mathcal{S}) = \left(1, \delta^{-\frac{\alpha_1}{\beta_1}} x; \mathcal{E}\right)$ (11)

Case (h) : Starting from $\theta = S$, hitting $y = \delta$.

If
$$x < \frac{\alpha_1}{\beta_1}$$
, $g(\delta < x < 1, y = \delta; \mathcal{S}) = \left(\delta^{-\frac{\alpha_1}{\beta_1}} x, 1; \mathcal{R}\right)$ (12)

Summary of Mapping Rules

The discrete mapping rules (cases a-h) govern how a cow's internal state (x, y) and observable behavior θ update when crossing a boundary in Σ' .

Each rule describes a transition event depending on:

- Which variable (x or y) triggered the event,
- The cow's current behavior θ at the time of the boundary crossing.

Together, these rules allow modeling a cow's behavior as a sequence of continuous flows interrupted by discrete jumps at boundary crossings.

6 Coupled Dynamics for Synchronization

To model interactions between cows, we introduce a coupling mechanism based on the idea that cows become hungrier when they see others eating and have a greater desire to lie down when they see others lying down.

We define indicator functions on the set $\Theta = \{\mathcal{E}, \mathcal{R}, \mathcal{S}\}$:

$$\chi_{\psi}(\theta) = \begin{cases} 1, & \text{if } \theta = \psi, \\ 0, & \text{otherwise.} \end{cases}$$
 (13)

Using these indicators, the single-cow dynamics can be rewritten compactly as:

$$\dot{x} = \alpha(\theta)x,
\dot{y} = \beta(\theta)y,$$
(14)

where

$$\alpha(\theta) = -\alpha_2 \chi_{\mathcal{E}}(\theta) + \alpha_1 \chi_{\mathcal{R}}(\theta) + \alpha_1 \chi_{\mathcal{S}}(\theta),$$

$$\beta(\theta) = \beta_1 \chi_{\mathcal{E}}(\theta) - \beta_2 \chi_{\mathcal{R}}(\theta) + \beta_1 \chi_{\mathcal{S}}(\theta).$$
(15)

Now, for a herd of n cows, indexed by i, the **coupled dynamics** are:

$$\dot{x}_{i} = \left[\alpha^{(i)}(\theta_{i}) + \frac{\sigma_{x}}{k_{i}} \sum_{j=1}^{n} a_{ij} \chi_{\mathcal{E}}(\theta_{j})\right] x_{i},$$

$$\dot{y}_{i} = \left[\beta^{(i)}(\theta_{i}) + \frac{\sigma_{y}}{k_{i}} \sum_{j=1}^{n} a_{ij} \chi_{\mathcal{R}}(\theta_{j})\right] y_{i},$$
(16)

where:

- $a_{ij}(t) = 1$ if cow i perceives cow j at time t, and 0 otherwise,
- $k_i = \sum_{i=1}^n a_{ij}$ is the number of cows visible to cow i,
- σ_x and σ_y are non-negative coupling strengths.

Description:

- Each cow evolves according to its own internal dynamics, modified by interactions with neighboring
 cows.
- Cows feel hungrier when they observe others eating and feel more desire to lie down when they observe others ruminating.
- The adjacency matrix A defines the social network between cows at any given time.

7 Measuring Synchronization

To quantify the level of synchronization between cows, we track the times at which each cow switches observable behaviors.

For each cow i:

- Let $\tau^{(i)}$ be the sequence of times at which cow i switches to the eating state \mathcal{E} ,
- Let $\kappa^{(i)}$ be the sequence of times at which cow i switches to the ruminating state \mathcal{R} .

Pairwise Synchronization Measures

Given two cows i and j, assuming $\tau^{(i)}$ and $\tau^{(j)}$ are vectors of the same length K, the **eating synchronization error** between cows i and j is defined as

$$\Delta_{ij}^{\mathcal{E}} \equiv \left\langle \left| \tau_k^{(i)} - \tau_k^{(j)} \right| \right\rangle = \frac{1}{K} \sum_{k=1}^K \left| \tau_k^{(i)} - \tau_k^{(j)} \right|, \tag{17}$$

where $\langle \cdot \rangle$ denotes time-averaging.

Similarly, the ruminating synchronization error is defined as

$$\Delta_{ij}^{\mathcal{R}} \equiv \left\langle \left| \kappa_k^{(i)} - \kappa_k^{(j)} \right| \right\rangle. \tag{18}$$

Smaller values of $\Delta_{ij}^{\mathcal{E}}$ and $\Delta_{ij}^{\mathcal{R}}$ indicate stronger synchronization between cows.

Group Synchronization Measures

For a herd of n cows, the overall group synchronization is obtained by averaging over all cow pairs:

$$\Delta^{\mathcal{E}} \equiv \frac{1}{n^2} \sum_{i,j} \Delta^{\mathcal{E}}_{ij},\tag{19}$$

$$\Delta^{\mathcal{R}} \equiv \frac{1}{n^2} \sum_{i,j} \Delta^{\mathcal{R}}_{ij}.$$
 (20)

The aggregate synchronization is then defined by

$$\Delta \equiv \Delta^{\mathcal{E}} + \Delta^{\mathcal{R}}.\tag{21}$$

Description:

- Synchronization is measured by comparing the switching times between cows.
- Lower synchronization errors imply that cows switch between behaviors (eating and ruminating) at more similar times.
- The aggregate synchronization Δ captures the total mismatch across the herd.

8 Numerical Exploration of Herd Synchrony

We perform numerical simulations to investigate synchronization behavior in small herds.

Simulation Setup for Two Coupled Cows

We consider a herd consisting of two cows with nearly identical but slightly mismatched parameters:

$$\alpha_1^{(1,2)} = 0.05 \pm \epsilon, \quad \alpha_2^{(1,2)} = 0.1 \pm \epsilon,$$
(22)

$$\alpha_1^{(1,2)} = 0.05 \pm \epsilon, \quad \alpha_2^{(1,2)} = 0.1 \pm \epsilon,$$

$$\beta_1^{(1,2)} = 0.05 \pm \epsilon, \quad \beta_2^{(1,2)} = 0.125 \pm \epsilon,$$
(22)

where ϵ is a small mismatch parameter.

We set

$$\delta = 0.25 \tag{24}$$

for the low-threshold switching value.

The coupling strengths σ_x and σ_y are varied to explore their effect on the degree of synchronization.

Description:

- Simulations examine how varying the mismatch ϵ and coupling strengths σ_x, σ_y affects synchronization in the herd.
- We begin with a two-cow system and can later extend to larger herds if desired.