Corrigé règle de relaxation

On a
$$\nabla J(A) = \sum_{X \in Y(A)} \frac{(c(X)A^{t}X - m)c(X)X}{\|X\|^{2}}$$

règle séquentielle de l'algorithme de relaxation :

- A₀ quelconque

- $si X^k$ est un exemple mal classé $(c(X^k)A(k)^tX^k < m)$

$$A(k+1) = A(k) + \alpha(k) \frac{(m - c(X^{k})A(k)^{t} X^{k})c(X^{k})X^{k}}{\|X^{k}\|^{2}}$$

- arrêt si tous les exemples sont bien classés

complément : interprétation géométrique prenons $\alpha(k)$ =Cte= α et considérons $c(X^k)$ =1

on pose :
$$d(k) = \frac{(m - A(k)^t X^k)}{\|X^k\|}$$

d(k) est la distance de A(k) à l'hyperplan : $A^{t}X^{k} = m$ d'où :

$$A(k+1) = A(k) + \alpha * d(k) * c(X^{k}) \frac{X^{k}}{\|X^{k}\|}$$

$$\dfrac{X^k}{\|X^k\|}$$
 est un vecteur unitaire de même direction que X^k

A(k+1) résulte donc du déplacement de A(k) vers l'hyperplan (H) $A^{t}X^{k} = m$

Dans le cas général, A(k+1) se déplace vers l'hyperplan (H) $c(X^k)A(k)^tX^k=m$

- si α =1 A(k+1) est sur (H) et on dit que la tension créée par $c(X^k)A(k)^tX^k < m$ est « relaxée »
- si α <1 A(k+1) se rapproche de (H) même si on a encore $c(X^k)A(k+1)^tX^k < m$
- si $\alpha > 1$ A(k+1) dépasse (H) et la condition $c(X^k)A(k+1)^t X^k > m$ est satisfaite

