Przestawienia

Sobotnie Koło Naukowe, Grupa III. Dostępna pamięć: 64 MB.

21.03.2015

Wiesiek ma tablicę o wymiarach $n \times m$ podzieloną na nm jednakowych kwadratowych pól. Na każdym polu zapisana jest mała litera alfabetu angielskiego. Wiesiek rozciął tablicę na n wierszy i przykleił je do tektury w zmienionej kolejności – teraz i-ty wiersz jest taki sam jak a_i -ty w początkowej tablicy. Uzyskaną tablicę rozciął na m kolumn i je również przykleił do tektury w zmienionej kolejności – j-ta kolumna jest teraz taka sama jak b_i -ta na początku. Jak wygląda teraz tablica Wieśka?

Wejście

W pierwszym wierszu standardowego wejścia znajdują się liczby całkowite $n, m \ (1 \le n, m \le 300)$. W drugim wierszu znajduje się ciąg liczb całkowitych $a_1, \ldots, a_n \ (1 \le a_i \le n; \ a_i \ne a_j \ dla \ i \ne j)$. W trzecim wierszu znajduje się ciąg $b_1, \ldots, b_m \ (1 \le b_i \le m; \ b_i \ne b_j \ dla \ i \ne j)$. W każdym z kolejnych n wierszy znajduje się po m małych liter alfabetu angielskiego – jest to opis tablicy Wieśka przed zabawą.

Wyjście

W każdym z n wierszy standardowego wyjścia należy wypisać po m małych liter alfabetu angielskiego – opis tablicy Wieśka po zakończeniu zabawy.

Przykłady

Wejście:	Wejście:	Wejście:	
3 5	4 5	4 4	
2 3 1	4 2 3 1	4 2 3 1	
1 2 3 4 5	5 2 3 4 1	3 4 2 1	
aaaaa	xaaaa	abcd	
bbbbb	aaaaa	efgh	
cccc	aaaaa	ijkl	
	aaaaa	mnop	
Wyjście:	Wyjście:	Wyjście:	
bbbbb	aaaaa	opnm	
ссссс	aaaaa	ghfe	
aaaaa	aaaaa	klji	
	aaaax	cdba	

Przestawienia