CS 228 : Logic in Computer Science

Krishna, S

MSO on Words: Satisfiability

MSO on Words

▶ Signature $\tau = (Q_{\Sigma}, <, S)$, domain or universe = set of positions of a word

MSO on Words

- ▶ Signature $\tau = (Q_{\Sigma}, <, S)$, domain or universe = set of positions of a word
- MSO over words: Atomic formulae

$$X(x)|Q_{\Sigma}(x)|x = y|x < y|S(x,y)$$

MSO on Words

- Signature τ = (Q_Σ, <, S), domain or universe = set of positions of a word
- MSO over words: Atomic formulae

$$X(x)|Q_{\Sigma}(x)|x = y|x < y|S(x,y)$$

- ▶ Given a MSO sentence φ , $L(\varphi)$ defined as usual
- ▶ A language $L \subseteq \Sigma^*$ is MSO definable iff there is an MSO formula φ such that $L = L(\varphi)$
- ▶ Given an MSO sentence φ , is it satisfiable/valid?

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

```
Position x: 0 1 2 3

a a b a

q_0 q_1 q_0 q_2 q_2
```

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

For a state q ∈ Q, let X_q=the set of positions of the word where the state is q in the run

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- ► For a state $q \in Q$, let X_q =the set of positions of the word where the state is q in the run

Given a regular language L, and a DFA such that L = L(A),

Run of a word : at every position of the word, we are in some unique state

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- ► For a state $q \in Q$, let X_q =the set of positions of the word where the state is q in the run
- $X_{q_0} = \{0,2\}, X_{q_1} = \{1\}, X_{q_2} = \{3\}$
- ▶ The initial position of any word must belong to X_{q_0} : $0 \in X_{q_0}$

- If a word wa is accepted, then
 - ▶ The last position x of the word satisfies $Q_a(x)$
 - For some state q, we have $X_q(x)$ and there is a transition $\delta(q,a)=q_f\in F$

- If a word wa is accepted, then
 - ▶ The last position x of the word satisfies $Q_a(x)$
 - For some state q, we have $X_q(x)$ and there is a transition $\delta(q, a) = q_t \in F$

```
Position x: 0 1 2 3

a a b a

q_0 q_1 q_0 q_2 q_2
```

- If a word wa is accepted, then
 - ▶ The last position x of the word satisfies $Q_a(x)$
 - For some state q, we have $X_q(x)$ and there is a transition $\delta(q,a)=q_f\in F$

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- ▶ $Q_a(3)$ and $3 \in X_{q_2}$. $\delta(q_2, a) = q_2 \notin F$
- If x, y are consecutive positions in the word, and if $X_q(x) \wedge Q_a(x)$, then it must be that $X_t(y)$ such that $\delta(q, a) = t$

- If a word wa is accepted, then
 - The last position x of the word satisfies Q_a(x)
 - For some state q, we have $X_q(x)$ and there is a transition $\delta(q,a)=q_f\in F$

Position
$$x$$
: 0 1 2 3
 a a b a
 q_0 q_1 q_0 q_2 q_2

- ▶ $Q_a(3)$ and $3 \in X_{q_2}$. $\delta(q_2, a) = q_2 \notin F$
- ▶ If x, y are consecutive positions in the word, and if $X_q(x) \wedge Q_a(x)$, then it must be that $X_t(y)$ such that $\delta(q, a) = t$
- $ilde{\ } X_{q_0}(0), X_{q_1}(1) \text{ and } Q_a(0). \ \delta(q_0, a) = q_1.$
- $ilde{\ } X_{q_1}(1), X_{q_0}(2) \text{ and } Q_a(1). \ \delta(q_1, a) = q_0.$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$, a word w is accepted iff it satisfies

$$\exists X_0 \exists X_1 \dots X_n \{ [\forall x (X_0(x) \vee \dots \vee X_n(x)) \land \forall x \bigwedge_{i \neq j} \neg (X_i(x) \land X_j(x))] \land$$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$, a word w is accepted iff it satisfies

$$\exists X_0 \exists X_1 \dots X_n \{ [\forall x (X_0(x) \vee \dots \vee X_n(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x))] \wedge$$

$$[\exists x (first(x) \land X_0(x))] \land$$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$, a word w is accepted iff it satisfies

$$\exists X_0 \exists X_1 \dots X_n \{ [\forall x (X_0(x) \vee \dots \vee X_n(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x))] \wedge$$

$$[\exists x (\textit{first}(x) \land X_0(x))] \land$$

$$\forall x \forall y [S(x,y) \rightarrow \bigvee_{\delta(i,a)=j} [X_i(x) \land Q_a(x) \land X_j(y)]] \land$$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$, a word w is accepted iff it satisfies

$$\exists X_0 \exists X_1 \dots X_n \{ [\forall x (X_0(x) \vee \dots \vee X_n(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x))] \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \} \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \} \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigwedge_{i \neq j} \neg (X_i(x) \wedge X_j(x)) \wedge \forall x \bigvee_{i \neq$$

$$[\exists x (\textit{first}(x) \land X_0(x))] \land$$

$$\forall x \forall y [S(x,y) \rightarrow \bigvee_{\delta(i,a)=j} [X_i(x) \land Q_a(x) \land X_j(y)]] \land$$

$$\exists x [last(x) \land \bigvee_{\delta(i,a)=j \in F} [X_i(x) \land Q_a(x)]] \}$$

• $w \in L(A)$ iff $w \models \varphi$

$$\exists X_0 \exists X_1 \exists X_2 \{ [\forall x (X_0(x) \lor X_1(x) \lor X_2(x)) \land \forall x [\neg (X_0(x) \land X_1(x)) \land \neg (X_0(x) \land X_2(x)) \land \neg (X_1(x) \land X_2(x))] \land$$

$$\exists X_0 \exists X_1 \exists X_2 \{ [\forall x (X_0(x) \lor X_1(x) \lor X_2(x)) \land \forall x [\neg (X_0(x) \land X_1(x)) \land \neg (X_0(x) \land X_2(x)) \land \neg (X_1(x) \land X_2(x))] \land [\exists x (\textit{first}(x) \land X_0(x))] \land \\ \forall x \forall y [S(x,y) \rightarrow [(X_0(x) \land Q_a(x) \land X_1(y)) \lor (X_0(x) \land Q_b(x) \land X_2(y)) \lor (X_1(x) \land Q_a(x) \land X_0(y)) \lor \\ (X_1(x) \land Q_b(x) \land X_2(y)) \lor (X_2(x) \land Q_a(x) \land X_2(y)) \lor (X_2(x) \land Q_b(x) \land X_2(y))]]$$

$$\exists X_0 \exists X_1 \exists X_2 \{ [\forall x (X_0(x) \lor X_1(x) \lor X_2(x)) \land \forall x [\neg (X_0(x) \land X_1(x)) \land \neg (X_0(x) \land X_2(x)) \land \neg (X_1(x) \land X_2(x))] \land [\exists x (\textit{first}(x) \land X_0(x))] \land \\ \forall x \forall y [S(x,y) \rightarrow [(X_0(x) \land Q_a(x) \land X_1(y)) \lor (X_0(x) \land Q_b(x) \land X_2(y)) \lor (X_1(x) \land Q_a(x) \land X_0(y)) \lor \\ (X_1(x) \land Q_b(x) \land X_2(y)) \lor (X_2(x) \land Q_a(x) \land X_2(y)) \lor (X_2(x) \land Q_b(x) \land X_2(y))]]$$

 $\land \exists x [last(x) \land (X_1(x) \land Q_a(x))] \}$

MSO to Regular Languages

- ▶ Every MSO sentence φ over words can be converted into a DFA A_{φ} such that $L(\varphi) = L(A_{\varphi})$.
- Start with atomic formulae, construct DFA for each of them.
- ► Conjunctions, Disjunctions, Negation easily handled via union, intersection and complementation of respective DFA
- ► Handling quantifiers?

Q_a(x): All words which have an a. Need to fix a position for x, where a holds.

- Q_a(x): All words which have an a. Need to fix a position for x, where a holds.
- Think of a word baab which satisfies $Q_a(x)$ as $\begin{cases} baab \\ 0010 \end{cases}$ or $\begin{cases} baab \\ 0100 \end{cases}$

- $ightharpoonup Q_a(x)$: All words which have an a. Need to fix a position for x, where a holds.
- ► Think of a word *baab* which satisfies $Q_a(x)$ as $\begin{pmatrix} baab \\ 0010 \end{pmatrix}$ or $\begin{pmatrix} baab \\ 0100 \end{pmatrix}$
- The first row is over Σ, and the second row captures a possible assignment to x

- $ightharpoonup Q_a(x)$: All words which have an a. Need to fix a position for x, where a holds.
- ► Think of a word *baab* which satisfies $Q_a(x)$ as $\begin{pmatrix} baab \\ 0010 \end{pmatrix}$ or $\begin{pmatrix} baab \\ 0100 \end{pmatrix}$
- The first row is over Σ, and the second row captures a possible assignment to x
- ▶ Think of an extended alphabet $\Sigma' = \Sigma \times \{0,1\}$, and construct an automaton over Σ' .

- Q_a(x): All words which have an a. Need to fix a position for x, where a holds.
- ► Think of a word *baab* which satisfies $Q_a(x)$ as $\begin{pmatrix} baab \\ 0010 \end{pmatrix}$ or $\begin{pmatrix} baab \\ 0100 \end{pmatrix}$
- The first row is over Σ, and the second row captures a possible assignment to x
- ▶ Think of an extended alphabet $\Sigma' = \Sigma \times \{0,1\}$, and construct an automaton over Σ' .
- Deterministic, not complete.

▶ $Q_a(x) \land X(x)$ means that the position x is in the set X, and letter a is true when x = 1.

- ▶ $Q_a(x) \land X(x)$ means that the position x is in the set X, and letter a is true when x = 1.
- ▶ Think of a word baab which satisfies $Q_a(x) \land X(x)$ as baab baab 0010 or 0100 DD1D D1DD

where D stands for dont care. X can have value 0 or 1 at D.

- ▶ $Q_a(x) \land X(x)$ means that the position x is in the set X, and letter a is true when x = 1.
- Think of a word baab which satisfies Q_a(x) ∧ X(x) as baab baab 0010 or 0100 DD1D D1DD

where *D* stands for *dont care*. *X* can have value 0 or 1 at *D*.

▶ However, the position where x = 1 must belong to X.

- The first row is over Σ, and the second row captures a possible assignment to x, and the third row captures a possible assignment to X.
- ▶ Think of an extended alphabet $\Sigma' = \Sigma \times \{0,1\} \times \{0,1\}$, and construct an automaton over Σ' .
- ▶ $Q_a(x) \land X(x)$: deterministic, not complete

Formulae to DFA

▶ Given $\varphi(x_1, \ldots, x_n, X_1, \ldots, X_m)$, an MSO formula over Σ , consider the extended alphabet

$$\Sigma' = \Sigma \times \{0, 1\}^{m+n}$$

- ► Assign values to x_i, X_j at every position as seen in the cases of atomic formulae
- ▶ Keep in mind that every x_i can be assigned 1 at a unique position

Handling Quantifiers

 $ightharpoonup \exists X \exists Y \forall x [X(x) \rightarrow Y(x)]$ $\begin{pmatrix}
\Sigma \\
D \\
D
\end{pmatrix}$ $\begin{pmatrix}
\Sigma \\
1 \\
1 \\
1
\end{pmatrix}, \begin{pmatrix}
\Sigma \\
1 \\
0 \\
D
\end{pmatrix}$

Handling Quantifiers: Summary

Quantifier Lemma

```
Let L \subseteq (\Sigma \times \{0,1\}^{n+m})^* be defined by \varphi(x_1, \dots, x_n, X_1, \dots, X_m). Let f: (\Sigma \times \{0,1\}^{n+m})^* \to (\Sigma \times \{0,1\}^{n+m-1})^* be the projection f(a, c_1, \dots, c_n, c_{n+1}, \dots, c_{n+m}) = (a, c_1, \dots, c_{n-1}, c_{n+1}, \dots, c_{n+m}). Then \exists x_n \varphi(x_1, \dots, x_n, X_1, \dots, X_m) defines f(L).
```

Points to Remember

- ► Given $\varphi(x_1, \ldots, x_n, X_1, \ldots, X_m)$, construct automaton for atomic MSO formulae over the extended alphabet $\Sigma \times \{0, 1\}^{m+n}$
- ► Intersect with the regular language where every x_i is assigned 1 exactly at one position
- ▶ Given a sentence $Q_{x_1} \dots Q_{x_n} Q_{X_1} \dots Q_{X_m} \varphi$, first construct the automaton for the formula $\varphi(x_1, \dots, x_n, X_1, \dots, X_m)$
- ightharpoonup Replace \forall in terms of \exists

Points to Remember

- ▶ Given the automaton for $\varphi(x_1, \ldots, x_n, X_1, \ldots, X_n)$, the automaton for $\exists X_i \varphi(x_1, \ldots, x_n, X_1, \ldots, X_n)$ is obtained by projecting out the row of X_i
- This may result in an NFA
- ▶ Determinize it and complement it to get a DFA for $\neg \exists X_i \varphi(x_1, \dots, x_n, X_1, \dots, X_n)$

The Automaton-Logic Connection

Given any MSO sentence φ , one can construct a DFA A_{φ} such that $L(\varphi) = L(A_{\varphi})$. If a language L is regular, one can construct an MSO sentence φ such that $L = L(\varphi)$.

Reference for MSO: wolfgangaat.pdf posted online.