15 Дискретные случайные величины (биномиальное распределение, распределение Пуассона, равномерное распределение) и их характеристики

дискретная случайная величина

рассмотрим вероятностное пространство $(\Omega, \mathfrak{A}, P)$. Случайная величина ξ — функция, ставящая в соответствие каждому элементарному исходу ω число $\xi = \xi(\omega)$.

для того, чтобы такое определение было математически корректным, необходимо добавить следующее требование: для любого числа x множество $\{\omega:\xi(\omega)< x\}$ элементарных исходов ω , для которых $\xi(\omega)< x$, является событием, или, иными словами, принадлежит σ -алгебре $\mathfrak A$. это свойство называется измеримостью функции $\xi=\xi(\omega)$ относительно σ -алгебры $\mathfrak A$.

получается, что случайная величина — это просто какая-то функция, заданная на пространстве элементарных исходов Ω и измеримая относительно σ -алгебры $\mathfrak A$. случайные величины принято обозначать греческими буквами $(\xi,\ \eta,\ \mu)$ и при необходимости добавлять индексы. также для краткости вместо $\{\omega: \xi(\omega) < x\}$ пишут $\{\xi(\omega) < x\}$, если необходимо подчеркнуть связь случайной величины с пространством элементарных исходов Ω , или даже просто $\{\xi < x\}$, если ничего подчеркивать не надо.

 $\begin{align*} \begin{align*} \be$

вероятности события $\{\xi < x\}$, т. е. события, состоящего только из тех элементарных исходов ω , для которых $\xi(\omega) < x$:

$$F(x) = P(\xi < x)$$

рассмотрим дискретное вероятностное пространство: множество элементарных исходов Ω — дискретное, т. е. счетное или конечное.

$$(\Omega,\,\mathfrak{A},\,P)$$
 $\Omega=\{\omega_i\}_{i\in I}$ $\{X_i\}_{i\in I}$ — возможные значения случайной величины. $\xi(\omega_i)$ — случайная величина.

- **К** дискретной называется случайная величина, которая каждому элементарному исходу ω ставит в соответствие одно из конечного (в общем случае счетного) набора чисел X_1, X_2, \ldots, X_n .
- $\{X_i,\ P_i\}_{i\in I}$ закон распределения дискретной случайной величины. закон распределения характеризует случайную величину. его также можно представить в виде таблицы.

вот определение из учебника:

рядом распределения (вероятностей) случайной величины называется таблица, состоящая из двух строк: в верхней строке перечислены все возможные значения случайной величины, а в нижней — вероятности $p_i = P\{\xi = X_i\}$ того, что случайная величина примет эти значения.

ξ	X_1	X_2	 X_i	 X_n
P	p_1	p_2	 p_i	 p_n

еще одно определение дискретной случайной величины:

пусть задано дискретное вероятностное пространство (множество элементарных исходов дискретно): $\Omega = \{\omega_i\}_{i \in I}$

$$P(x_i) = \sum\limits_{j \in I} P(\omega_j : \xi(\omega_j) = x_i)
eq 0$$
 - несколько событий могут отобразиться в один x_i

Тогда СВ **дискретна** и задаётся парами $\{x_i, P_i\}_{i \in I}$

Пример задания ДСВ:

$$\begin{array}{c|cccc}
\xi & 0 & 1 \\
\hline
P & 0.5 & 0.5
\end{array}$$

матожидание

математическое ожидание (среднее значение) M_{ξ} дискретной случайной величины ξ — сумма произведений значений X_i случайной величины на вероятности $p_i = P(\xi = X_i)$, с которыми величина принимает эти значения:

$$M(\xi) = \sum_i X_i p_i$$

при этом, если случайная величина ξ принимает счетное число значений, то необходимо, чтобы

$$\sum_{i=1}^{\infty}|X_i|p_i<\infty$$

то есть ряд должен сходиться абсолютно. в ином случае говорят, что матожидания не существует.

математическое ожидание — это такое среднее значение случайной величины. в физике это центр тяжести какого-то объекта или набора объектов.

для биномиального распределения $M(\xi)=np$, для пуассоновского — $M(\xi)=\lambda.$

дисперсия

№ дисперсия — числовая характеристика случайной величины, показывающая «разброс» этой величины вокруг ее среднего значения.

здесь, несмотря на порядок вопросов в билетах, нужно понятие второго (начального) момента дискретной случайной величины:

$$lpha_2=M(\xi^2)=\sum_i X_i^2 p_i$$

дисперсия дискретной случайной величины определяется по формуле:

$$D(\xi)=M(\xi-M(\xi))^2=\sum_i \left(X_i-M(\xi)
ight)^2 p_i$$

равномерное распределение

 $\begin{tabular}{ll} \aleph & \mbox{случайная величина ξ имеет <math>\mbox{ равномерное} \\ \mbox{распределение} & \mbox{ на множестве } \{1, \ \dots, \ n\}, \mbox{ если вероятность} \\ \mbox{всех значений равна } \mbox{$\frac{1}{n}$}. \label{eq:constraints}$

$$P(\xi=k)=rac{1}{n},$$
 где $k=1,\;\ldots,\;n$

биномиальное распределение

 \aleph дискретная случайная величина ξ распределена по биномиальному закону, если она принимает значения $0,\ 1,\ \ldots,\ n$ в соответствии со следующим правилом: 0

$$P(\xi=k) = C_n^k p^k (1-p)^{n-k}$$

биномиальное распределение — распределение числа успехов в испытаниях Бернулли с вероятностью успеха p и неудачи 1-p.

математическое ожидание для биномиального распределения:

$$M_{\xi} = np$$

распределение Пуассона

 \aleph дискретная случайная величина ξ распределена по закону Пуассона с параметром пуассоновского распределения $\lambda>0$, если она принимает целые неотрицательные значения по следующему правилу: $\xi\in\{0,\,1,\,\ldots,\,n\}$

$$P(\xi = k) = rac{\lambda^k}{k!} \cdot e^{-\lambda}$$

доказательство того, что это выражение является законом распределения. для этого нужно доказать, что сумма вероятностей случайных величин равна 1 (т. е. что $\sum P=1$). $P_k>0$, т. к. k!>0, $\lambda^k>0$ и $e^{-\lambda}>0$.

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \underbrace{\sum_{k=0}^{\infty} \frac{\lambda^k}{k!}}_{=e^{\lambda}} = e^0 = 1$$

 $\sum P = 1 \Rightarrow$ подходит для закона распределения. ypa!

примечание для тех, кто не понял, почему оно равно e^{λ} :

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

это разложение в ряд Тейлора.

замечание

если в какой-то задаче $n \cdot p \cdot q \leq 9$, то следует применить закон распределения Пуассона.