Содержание

Холодильная машина

$$\eta_{\text{xo}_{\pi}} = \frac{Q_{\text{xo}_{\pi}}}{A} = \frac{|Q_{\text{xo}_{\pi}}|}{Q_{\text{Har}} - |Q_{\text{xo}_{\pi}}|} \tag{1}$$

$$\eta_{\text{\tiny TEIIJ}} = \frac{Q_{\text{\tiny HAPP}}}{A} \tag{2}$$

$$\eta_{\text{хол}} = \eta_{\text{тепл}} - 1 \tag{3}$$

Задача 1 (3.25).

3.25. Какую максимальную работу можно получить от периодически действующей тепловой машины, нагревателем которой служит $m_1=1$ кг воды при начальной температуре $T_1=373$ K, а холодильником $m_2=1$ кг льда при температуре $T_2=273$ K, к моменту, когда растает весь лед? Чему будет равна температура воды в этот момент? Удельная теплота плавления льда q=80 ккал/кг. Зависимостью теплоемкости воды от температуры пренебречь.

Sol.

$$T_{\scriptscriptstyle \mathrm{H}} = T$$