Team 3: Vaccine Effectiveness

SEIR model

• E compartment represents "pre-infectious" state: period of time before they can infect others

Adding vaccination

- V compartment to represent those who have been vaccinated
- parameter "nu" is vaccination rate: how quickly are susceptibles being vaccinated?
 - even if we vaccinate majority of the population, we cannot vaccinate everyone in one day how many can be vaccinated per day? (use the same time scale as your model)
- parameter "VE" is vaccine efficacy (%): what level of protection is given by the vaccine?

Vaccine Efficacy

- Average level of protection provided by any given vaccine
 - 0-100%
 - differs by manufacturer
 - differs by strain/subtype of pathogen that is being transmitted
 - variation because of individual differences in response to vaccine
- Vaccines used for COVID-19 in Bangladesh
 - Pfizer
 - AstraZeneca
 - Moderna
 - Johnson & Johnson
 - Sinopharm

Team 3 Model

SVEIRHD

- no vaccination
- efficacy levels:
 - all reported for vaccines used in Bangladesh
 - range: 60%, 70%, 80%, 90%
 - need to run the model each time with the new efficacy level

Model setup

- keep RH and DH separate so we can count hospitalizations correctly
- Number of equations: 9
- Number of parameters: 9

Parameters: Use Averages

1. beta: transmission coefficient, new infections

1/3

- 2. sigma: rate to become infectious
- 3. gamma: recovery rate for non-hospitalized
- 4. gammaH: recovery rate for hospitalized
- 5. delta: death rate for non-hospitalized
- 6. deltaH: death rate for hospitalized
- 7. tau: hospitalization rate, severe infections
- 8. nu: vaccination rate
- 9. VE: vaccine efficacy

Parameters

- sigma: develop infectiousness
 - need to know how many days between pre-infectious and infectious stage (latent period)
 - time from infection to symptoms
 - incubation period median: 5-6 days
 - infectiousness: 2-3 days before symptoms
 - latent period: 2-4 days
 - sigma=1/latent period=1/3

Parameters

- gamma: recovery rate
 - need to know how long it takes for infected people to recover when do they stop being infectious? (recovery period)
 - how long are people infectious?
 - ___ days
 - gamma=1/recovery period=1/____