Course Code: MEG411

Course Title: Refrigeration and Air Conditioning

Course Unit: 2

Lecturer: Dr. S.O. Giwa

Course Outline:

Fundamentals of vapour compression refrigeration. Analysis of refrigeration cycles. Heat pumps. Refrigerants and their properties. Absorption refrigeration. Principles of airconditioning with emphasis on thermodynamics processes involving air-water vapour mixture.

Course objectives:

- 1. Learning the fundamental principles and different methods of refrigeration and air conditioning.
- 2. Study of various refrigeration cycles and evaluation of performance using Mollier charts and/ or refrigerant property tables.
- 3. Comparative study of different refrigerants with respect to properties, applications and environmental issues.
- 4. Understand the basic air conditioning processes on psychometric charts, calculate cooling load for its applications in comfort and industrial air conditioning.

Learning outcomes:

- 1. Illustrate the fundamental principles and applications of refrigeration and air conditioning system.
- 2. Obtain cooling capacity and coefficient of performance by conducting test on vapor compression refrigeration systems.
- 3. Present the properties, applications and environmental issues of different refrigerants.
- 4. Calculate cooling load for air conditioning systems used for various applications.
- 5. Operate and analyze the refrigeration and air conditioning systems.
- 6. Use P-h, T-S and Psychometric charts to solve refrigeration and Air conditioning design problems.

Course Materials:

Textbooks and other materials are available for download on the Microsoft Team.

Schedule of lectures:

- Week 1: Introduction to the course.
- Week 2: Fundamentals of vapour compression refrigeration.
- Week 3: Analysis of refrigeration cycles.
- Week 4 and 5: Refrigerants and their properties.
- Week 6 & 7: Absorption refrigeration.
- Week 8 and 9: Principles of air-conditioning with emphasis on thermodynamics processes involving airwater vapour mixture.

Course grade distribution:

- Tests (1 and 2) 10 marks each = 20 marks
- Quizzes, Assignments and attendance 10 marks
- Examination 70 marks
- Total 100 marks

 Note: minimum of 70% class attendance qualifies you for the examination

Heat Engine, Heat Pump, and Refrigeration

- Heat engine
- Heat Pump
- Refrigeration

-

Figure 1.1 Ideal heat engine, E, driving an ideal refrigerator (heat pump), P.

Refrigeration:

- It is the process of removing heat from a substance under controlled condition.
- It is a process of reducing and maintaining the temperature of a body below the general temperature of the surroundings.

Refrigerating machine:

Refrigerant

- A refrigerant is a working fluid or thermal medium used for transferring heat within a refrigeration and air conditioning system
- It is a medium of heat transfer, which absorbs heat by evaporating at low temperature and gives out heat at high temperature.
- A refrigerant must satisfy chemical, physical, safe working, and thermodynamic properties and economical aspects.
- Earlier refrigerants used in mechanical and vapour refrigeration systems are:
- CO₂, ethyl chloride, SO₂, dichloromethane (CH₂Cl₂), dichloroethylene (C₂H₂Cl₂), monobromomethane (CH₃Br),
- Organic (Chloro-fluloro derivatives of CH₄ and C₂H₆ HCs, HFCs, HCFCs, and CFCs) and inorganic (Ammonia NH₃, CO₂, air,).

Classification of refrigerants:

- 1. Primary refrigerants, 2. Secondary refrigerants
- * Primary refrigerants absorbs heat and generate coolness by changing their phase from liquid to vapour.
- They are working media in refrigeration systems which are directly used as carrier of heat.
- * Secondary refrigerants absorb heat from the bodies or space to be cooled and further transfer the same to the primary refrigerants.

Halocarbon compounds:

- Fluorinated hydrocarbons from methane, etc.
- Freon, frigen, arcton, etc. (Commercially)
- Important examples
- R11 –Trichloromonofluoromethane (CCl₃F)
- R12 Dichlorodifluoromethane (CCl₂F₂)
- R22 Monochlorodifluoromethane (CHCIF₂)
- R40 Methyl chloride (CH₃Cl)

Azeotropes:

- This is a mixture of different refrigerants that cannot be separated under pressure and temperature.
- Their thermodynamic properties are fixed.
- They are refrigerants whose code starts with digit "5" eg. R502
- R500 73.8% R12 + 26.2% R152
- R502 R22 + R115
- R503 R13 + R23

Hydrocarbons:

- Refrigerants derived from hydrocarbons
- Desirable thermodynamics properties but highly inflammable
- R50 (methane $-CH_4$)
- R170 (Ethane C_2H_6)
- R290 (Propane C_3H_8)

Inorganic compounds:

- Refrigerants sourced from inorganic materials
- **R717** (Ammonia NH₃)
- R718 (Water H_2O)
- R744 (Carbon dioxide CO₂)
- **R729 (Air)**
- R764 (Sulphur dioxide SO₂)

Unsaturated organic compounds:

- -These are refrigerants derived from ethylene and propylene
- -R1120 (Trichloroethylene C₂H₄Cl₃)
- -R1130 (Dichloroethylene C₂H₄Cl₂)
- -R1150 (Ethylene C_2H_4)
- -R1270 (Propylene C_3H_6)

Secondary refrigerants:

- They absorb heat from refrigerated space/body and transfer it to primary refrigerants for it to be discarded to the environment
- Water,
- Brines (Calcium chloride CaCl₂)
- Glycols (Ethylene glycol, propylene glycol, etc.

Designation of refrigerants

- Naming of refrigerants
- Three/four codes (R0123)
- First Number of carbon atoms 1
- Second Number of hydrogen atoms + 1
- Third Number of fluorine atoms
- Four Number of chlorine atoms
- C_mH_nF_pCl_o (Chemical formula)
- \cdot n + p + o = 2m + 2

R - (m - 1) (n+1) (p)
Examples (halogencarbon)
1. R22 or R022
m - 1 = 0
$$\implies$$
 m = 1
n + 1 = 2 \implies n = 1
p = 2
Using n + p + o = 2m + 2
o = 1
 \implies R22 = CHCIF₂

Designation for inorganic refrigerants

- According to molecular weight
- Molecular weight is added to 700
- *Eg. water $(H_2O) = 18$ (molecular weight)

$$R700 + 18 = R718$$

- * Eg. ammonia $(NH_3) = 17$ (molecular weight)
- -R700 + 17 = R717

Desirable Properties of a refrigerant

- Chemical properties,
- Physical properties,
- Thermodynamic properties

Chemical Properties

- Flammability (inflammable before air or oil)
- Toxicity (not poisonous)
- Action of refrigerant with water
- Corrosiveness
- Leak detection/tendency (low)
- Flash point (high)
- Miscibility with oil
- Stability (chemically and physically)
- **Environmentally friendly**

Physical Properties

- Specific volume (low)
- Viscosity (low)
- Thermal conductivity (high)
- Dielectric strength (high)
- Handling and maintenance (safe)
- Cost and availability (low cost)

Thermodynamic Properties

- Latent heat of vaporization (high)
- Boiling point (low at atmospheric temp.)
- Freezing temperature (below evaporator temp.)
- Evaporating pressure (above atm. Pressure)
- Condensing pressure (low)
- Critical temperature and pressure (above condensing pressure)
- Index of compression process (small)

Properties of an ideal refrigerant

- It should have zero ODP and zero GWP
- It should be non-toxic and non-flammable
- It should be non-corrosive
- It should have high latent heat
- It should have high critical pressure and temperature
- It should have low condensing pressure and the evaporating pressure should be slightly above the atmospheric pressure
- It should not be miscible with lubricating oil
- It should be easily available and cheap
- Leak detection should be easy
- It should be environmentally friendly

Refrigerant selection

- Working temperatures of the refrigerant
- Evaporator and condenser pressures needed and the pressure ratio
- Oil miscibility
- High latent heat of vaporization and low specific volume
- Toxicity, flammability, explosiveness and corrosiveness
- Space requirements

New refrigerants

- R134a replaces R12
- R123 replaces R11
- Bio-based refrigerants
- Nano-based refrigerants

Desirable properties of secondary refrigerants

- They should have low freezing point
- They should have good stability
- They should have low vapour pressure
- They should have high heat transfer coefficients
- They should have high specific heat
- They should be non-flammable

Advantages of secondary refrigerants

- They can be easily handled
- Adjusting the temperature allows the cooling of different rooms in a building
- Control is easy
- Piping size required is reduced
- Absolute safety in air conditioning installation due to leakage

Class assignment

- 1. Discuss the effect of chlorofluorocarbons and hydrogen chlorofluorocarbons on the environment and the way forward.
- 2. What do you understand by nano-based and bio-based refrigerants?
- 3. What do you understand by environmentally friendly?

Vapour Compression Refrigeration

Components

- 1. Evaporator
- 2. Compressor
- 3. Condenser
- 4. Expansion valve

Figure 1.1 Ideal heat engine, E, driving an ideal refrigerator (heat pump), P.

Types of Refrigeration Cycles

- 1. Ideal cycle
- 2. Simple vapour compression cycle
- 3. Transcritical cycle
- 4. Heat powered cycles (absorption, adsorption and desiccant cooling)
- 5. Stirling cycle
- 6. Thermoelectric cooling
- 7. Magnetic refrigeration

Schematic diagram

Figure 4.1 Vapour compression system with its components shown and also the condition of refrigerant in the flow circuit.

Processes

Compression (1-2)

(Isentropic compression

 $s_1=s_2$; q=0; $W=h_2-h_1$)

Condensation (2-3)

(superheating and condensation nation at constant pressure)

Heat rejected, q_h=h₂-h₃

Expansion (3-4)

Evaporation (4-1)

Figure 4.4 Vapour compression cycle on p-h diagram.

Processes

Expansion (3-4)

(Isenthalpic expansion;

 $h_3 = h_4 = hf_4 + a(h_1 - h_4)$

Evaporation (4-1)

Evaporation at constant

Pressure (P₁)

Refrigerating effect (q_L) =

h₁-h₄

Vapour compression cycle on p-h diagram.

ProcessesFor cooling,

COPR = h1-h4/h2-h1

For heating,

COPR = h2-h3/h2-h1

Refrigerant flow rate, m= total refrigerating effect/refrigerating effect per unit mass

= QL/qL

Volume of suction vapour, V = mv1

Actual piston displacement, $Vp = mv1/\eta v$

Mass flow rate per ton of RE, $\dot{m} = 3.5164/qL$ (kg/s)

$$W^* = w = 3.5164/qL w$$

Types of vapour compression cycles

- 1. Cycle with dry saturated vapour after compression
- 2. Cycle with wet vapour after compression
- 3. Cycle with superheated vapour after compression
- 4. Cycle with superheated vapour before compression
- 5. Cycle with undercooling or subcooling of refrigerant

Course grade distribution:

- Tests (1 and 2) 10 marks each = 20 marks
- Quizzes, Assignments and attendance 10 marks
- Examination 70 marks
- Practical 40%
- Theory 60%
- Total 100 marks
- Note: minimum of 70% class attendance qualifies you for the examination

What do you understand by "Engineering"?