Lista 002 - Pandas, Matplotlib, GeoPandas e Folium.

1. Monte um dataframe contendo todas as informações dos arquivos csv em 'data/transito'.

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import matplotlib as mpl
        import glob
        import datetime as dt
        import folium as fl
        import geopandas
In [2]: df_transito = pd.DataFrame()
        listaArquivos= []
        arquivos = glob.glob(r'../data/transito/' + '/*.csv')
        for filename in arquivos:
            df = pd.read csv(filename, index col=None, header=0, sep=';',usecols
        =["grav tipo", "hora cometimento", "cometimento", "tipo infrator", "tipo inf
        racao","tipo veiculo"])
            listaArquivos.append(df)
        df transito = pd.concat(listaArquivos, ignore index='true')
        df_transito.to_csv (r'transito.csv', index = False, header=True)
In [3]: df transito.loc[0]
Out[3]: tipo infracao
                                  6769 - 0
        tipo infrator
                            Proprietário
        tipo veiculo
                               Automóvel
        cometimento
                              01/03/2020
        hora cometimento
                                   00:00
        grav tipo
                                   Média
        Name: 0, dtype: object
```

2. Quantos tipos diferentes de gravidade de infração exitem no dataset? Quais são?

```
In [4]: # Recuperando apenas tipos diferentes de gravidade de infração
# df_transito["grav_tipo"].unique().shape
# df_transito["grav_tipo"].nunique()
# df_transito["grav_tipo"].value_counts()
df_transito["grav_tipo"].unique()
Out[4]: array(['Média', 'Gravíssima', 'Grave', 'Leve'], dtype=object)
```

3. Qual a hora do dia que mais se cometem infrações graves? Demonstre utilizando um gráfico de linhas.

```
infracoes graves hora = (
In [5]:
            df_transito[['cometimento','hora_cometimento','grav_tipo']]
             .assign(cometimento = lambda x: pd.to datetime(x.cometimento))
             .query('grav tipo == "Grave"')
             .sort_values('hora_cometimento',ascending=True)
             .drop('grav tipo',axis=1)
             .groupby(['hora_cometimento'],sort=False)
             .count()
             .query('cometimento > 70')
        )
        plt.figure(figsize=(28,6))
        plt.plot(infracoes graves hora['cometimento'])
        plt.title('Hora do dia que mais se cometem infrações graves') #adicionan
        do o título
        plt.ylabel('Ocorrências')#adicionando legenda eixo y
        plt.xlabel('Horário da infração')#adicionando legenda eixo x
        plt.show()
```


4. Qual dia da semana que mais se cometem infrações leves? Demonstre utilizando um gráfico de linhas e colocando um texto no ponto máximo.

```
In [6]: #df_transito.info()
    df_transito['data'] = pd.to_datetime(df_transito['cometimento']) # Criaç
    ão de nova coluna "data" utilizando to_datetime
    df_transito['dia_da_semana'] = df_transito['data'].dt.dayofweek # Criaçã
    o de nova coluna "dia_da_semana" utilizando dt.dayofweek
    nome_dia={0:'Segunda', 1:'Terça', 2:'Quarta', 3:'Quinta', 4:'Sexta', 5:
    'Sábado', 6:'Domingo'}
    df_transito['nome_dia'] = pd.to_datetime(df_transito['cometimento']).dt.
    dayofweek.map(nome_dia)
```

```
df_transito.query("grav_tipo == 'Leve'").nome_dia.value_counts()
Out[7]: Quinta
                    16637
        Sexta
                    16471
        Segunda
                    16004
        Terça
                    15123
        Ouarta
                    14783
        Sábado
                     5145
        Domingo
                     4492
        Name: nome_dia, dtype: int64
In [8]:
        infracoes leves dia = (
            df_transito.loc[:,['grav_tipo','nome_dia','dia_da_semana']]
             .query('grav tipo == "Leve"')
             .sort_values('dia_da_semana',ascending=True)
             .groupby('nome dia',sort=False)
             .count()
        plt.figure(figsize=(15,5))
        plt.plot(infracoes_leves_dia['grav_tipo'], marker=r'o')
        plt.savefig('../data/transito/infracoes_leves_dia.png')
        plt.annotate('Quinta-feira = 16637', xy = (3, 16637),
                         xytext =('Quinta', 12000),
                         arrowprops = dict(facecolor = 'blue',
                                            shrink = 0.05),)
        plt.title('Dia da semana de maior ocorrência de infrações leves') #adici
        onando o título
        plt.ylabel('Ocorrências')#adicionando legenda eixo y
        plt.xlabel('Dias da semana') #adicionando legenda eixo x
        plt.show()
```


5. Filtre o dataset pelo tipo de condutor 'condutor', qual o tipo de infração mais comum? Em que horário ele mais acontece? Monte um subplot para demonstrar as duas informações utilizando gráficos.

Out[9]:

tipo_infrator

tipo_infracao

5185-1	7178
5185-2	3030
5681-0	85074
6050-3	3916
7455-0	297088
7463-0	27752
7471-0	4507
7633-1	6919
7633-2	7878

Out[10]:

tipo_infrator

hora_cometimento	
15:04	612
15:10	628
15:15	611
15:20	641
15:21	621
15:25	616
15:30	604
15:31	610
15:33	606
15:34	605
15:36	602
15:39	636
15:40	614
15:43	610
15:45	601
15:46	603
15:48	620
15:51	615
15:53	646
15:56	628
15:57	638
15:58	608
15:59	623
16:00	625
16:04	611
16:09	607
16:15	604
16:22	611

```
In [11]: plt.figure(figsize=(20, 10))
         plt.subplot(2, 1, 1)
         plt.plot(infracao_mais_comum['tipo_infrator'],marker='o',label='Tipo_de
          Infração')
         #plt.legend()
         plt.title('Tipo de infração mais comum pelo tipo de condutor "condutor"'
         ) #adicionando o título
         plt.ylabel('Ocorrências')#adicionando legenda eixo y
         plt.xlabel('Tipo das infrações')#adicionando legenda eixo x
         plt.subplot(2, 1, 2)
         plt.plot(horario_maior_ocorrencia['tipo_infrator'],marker='o',color='ta
         b:orange',label='Horario')
         #plt.legend()
         plt.title('Hora da infração pelo tipo de condutor "condutor"') #adiciona
         ndo o título
         plt.ylabel('Ocorrências')#adicionando legenda eixo y
         plt.xlabel('Horário das infrações')#adicionando legenda eixo x
         #plt.tight layout()
         plt.show()
```


6. Monte um subplot com 7 heatmaps (1 para cada mês) demonstrando a concentração da quantidade infrações por dia do mês e hora do dia (desconsidere os minutos).

```
In [12]: df_transito['data'] = pd.to_datetime(df_transito['cometimento'], format=
    '%d/%m/%Y')
    df_transito['mes'] = df_transito['data'].dt.month
        df_transito['dia_mes'] = df_transito['data'].dt.day
        nome_mes={1:'Janeiro', 2:'Fevereiro', 3:'Março', 4:'Abril', 5:'Maio', 6:
    'Junho', 7:'Julho'}
    df_transito['nome_mes'] = pd.to_datetime(df_transito['data']).dt.month.m
    ap(nome_mes)
In [13]: def split_hour(value):
    hour = value.split(":")
    return hour[0]
```

```
In [15]: concentracao = (
         df_transito.pivot_table(index='hora',columns='dia_mes', values='mes'
         ,aggfunc='count' )
         )
         concentracao
```

Out[15]:

dia_mes	1	2	3	4	5	6	7	8	9	10	 22	23	24	
hora														
00	357	270	306	284	272	237	277	284	255	303	 255	274	243	2
01	315	200	199	204	219	180	198	229	236	188	 195	205	160	2
02	311	185	115	175	130	135	157	207	171	129	 124	125	128	1
03	215	151	127	143	167	138	169	185	156	143	 126	135	92	1
04	219	161	157	162	170	128	191	184	173	138	 124	186	115	1
05	293	224	276	250	241	262	231	231	247	254	 225	217	222	1
06	490	486	542	450	495	429	480	441	442	453	 489	433	351	3
07	694	915	801	722	591	739	705	775	658	785	 943	722	659	5
08	912	1208	1082	961	851	1070	1175	1034	1087	954	 966	851	905	7
09	1014	1054	1084	985	928	1158	1135	1074	1074	980	 1022	1004	1005	8
10	986	1108	1332	1170	1038	1162	1093	1060	1145	974	 963	1075	998	8
11	867	1205	1222	1150	1009	1122	1075	1068	1195	1053	 908	958	1084	7
12	806	1125	1221	1050	1046	1099	978	922	1088	996	 898	987	953	8
13	946	1137	1142	1085	1006	1161	1129	1068	1112	990	 983	990	1007	8
14	967	1137	1147	1040	927	1133	1096	1092	1295	1008	 1034	1035	1010	ξ
15	1105	1365	1323	1149	1061	1269	1193	1198	1243	1145	 1097	1215	1143	10
16	933	1400	1133	1089	1007	1124	1238	1160	1276	1060	 1119	1235	1182	ξ
17	764	1027	829	902	863	938	994	889	884	718	 669	742	804	6
18	781	909	985	863	834	974	856	810	881	859	 777	800	816	6
19	813	878	924	865	717	976	991	809	905	953	 759	763	912	6
20	619	740	660	656	674	728	683	662	627	751	 605	602	626	5
21	525	507	597	599	417	583	603	593	548	588	 467	461	513	4
22	413	458	549	546	447	477	537	454	512	485	 434	447	451	3
23	365	435	459	409	423	440	451	437	474	439	 386	386	417	4

24 rows × 31 columns

```
In [16]: plt.figure(figsize=(30, 20))
         plt.subplots adjust(hspace=0.40, wspace=0.25)
         plt.subplot(3, 3, 1)
         concentracao = (
             df_transito[df_transito.mes == 1].pivot_table(index='hora',columns=
         'dia mes', values='mes',aggfunc='count')
         plt.imshow(concentracao, cmap="YlGnBu")
         plt.colorbar()
         plt.xticks(range(len(concentracao.columns)))
         plt.yticks(range(len(concentracao.index)))
         #plt.legend()
         plt.title('Janeiro') #adicionando o título
         plt.ylabel('Hora') #adicionando legenda eixo y
         plt.xlabel('Dia')#adicionando legenda eixo x
         plt.subplot(3, 3, 2)
         concentracao = (
             df transito[df transito.mes == 2].pivot table(index='hora',columns=
         'dia_mes', values='mes',aggfunc='count')
         plt.imshow(concentracao, cmap="YlGnBu")
         plt.colorbar()
         plt.xticks(range(len(concentracao.columns)))
         plt.yticks(range(len(concentracao.index)))
         #plt.legend()
         plt.title('Fevereiro') #adicionando o título
         plt.ylabel('Hora')#adicionando legenda eixo y
         plt.xlabel('Dia') #adicionando legenda eixo x
         plt.subplot(3, 3, 3)
         concentracao = (
             df_transito[df_transito.mes == 3].pivot_table(index='hora',columns=
         'dia_mes', values='mes',aggfunc='count' )
         plt.imshow(concentracao, cmap="YlGnBu")
         plt.colorbar()
         plt.xticks(range(len(concentracao.columns)))
         plt.yticks(range(len(concentracao.index)))
         #plt.legend()
         plt.title('Março') #adicionando o título
         plt.ylabel('Hora')#adicionando legenda eixo y
         plt.xlabel('Dia')#adicionando legenda eixo x
         plt.subplot(3, 3, 4)
         concentracao = (
             df transito[df transito.mes == 4].pivot table(index='hora',columns=
         'dia mes', values='mes',aggfunc='count')
         plt.imshow(concentracao, cmap="YlGnBu")
         plt.colorbar()
         plt.xticks(range(len(concentracao.columns)))
         plt.yticks(range(len(concentracao.index)))
         #plt.legend()
```

```
plt.title('Abril') #adicionando o título
plt.ylabel('Hora')#adicionando legenda eixo y
plt.xlabel('Dia') #adicionando legenda eixo x
plt.subplot(3, 3, 5)
concentracao = (
    df_transito[df_transito.mes == 5].pivot_table(index='hora',columns=
'dia mes', values='mes',aggfunc='count')
plt.imshow(concentracao, cmap="YlGnBu")
plt.colorbar()
plt.xticks(range(len(concentracao.columns)))
plt.yticks(range(len(concentracao.index)))
#plt.legend()
plt.title('Maio') #adicionando o título
plt.ylabel('Hora')#adicionando legenda eixo y
plt.xlabel('Dia') #adicionando legenda eixo x
plt.subplot(3, 3, 6)
concentracao = (
    df transito[df transito.mes == 6].pivot table(index='hora',columns=
'dia mes', values='mes',aggfunc='count' )
plt.imshow(concentracao, cmap="YlGnBu")
plt.colorbar()
plt.xticks(range(len(concentracao.columns)))
plt.yticks(range(len(concentracao.index)))
#plt.legend()
plt.title('Junho') #adicionando o título
plt.ylabel('Hora')#adicionando legenda eixo y
plt.xlabel('Dia')#adicionando legenda eixo x
plt.subplot(3, 3, 7)
concentracao = (
    df transito[df transito.mes == 7].pivot table(index='hora',columns=
'dia_mes', values='mes',aggfunc='count' )
plt.imshow(concentracao, cmap="YlGnBu")
plt.colorbar()
plt.xticks(range(len(concentracao.columns)))
plt.yticks(range(len(concentracao.index)))
#plt.legend()
plt.title('Julho') #adicionando o título
plt.ylabel('Hora')#adicionando legenda eixo y
plt.xlabel('Dia') #adicionando legenda eixo x
plt.tight layout()
plt.savefig('../data/transito/heatmap.png')
plt.show()
```


7. Alguma bicicleta já tomou multa? Se sim, qual foi a gravidade?

```
In [17]: df_transito['tipo_veiculo'].isna().sum()
Out[17]: 167
In [18]: df_transito.query(("tipo_veiculo == 'Bicicleta'") or ("tipo_veiculo ==
            'BICICLETA'"))
           # Apenas uma bibicleta tomou multa e a gravidade da infração foi grave
Out[18]:
                 tipo_infracao tipo_infrator tipo_veiculo cometimento hora_cometimento grav_tipo
                                                                                        data
                                                                                        2020-
           86643
                      5843-4
                               Condutor
                                           Bicicleta
                                                     07/04/2020
                                                                         16:54
                                                                                  Grave
                                                                                        04-07
```

Leia as informações de cada rodovia utilizando o link abaixo e guarde em um dataframe.

'http://dados.df.gov.br/dataset/3cb44f4a-576c-45b8-8f13-ae94a6623277/resource/2bd0f48e-d3a1-47c6-bd12-83aed24e9461/download/2020-05-19-scr.csv (http://dados.df.gov.br/dataset/3cb44f4a-576c-45b8-8f13-ae94a6623277/resource/2bd0f48e-d3a1-47c6-bd12-83aed24e9461/download/2020-05-19-scr.csv)'

```
In [ ]: | scr[scr.duplicated(subset=['COD. TRECHO'], keep=False)]
In [21]: scr = pd.read_csv('../data/2020-05-19-scr.csv', sep=';', encoding='latin
In [22]: scr.tail()
```

Out[22]:

	RODOVIA	COD. TRECHO	INÍCIO	FIM	Km INÍCIO	Km FIM	EXTENSÃO	TP. RODOVIA	SITUAÇÃO
628	VC527	527EVC0010	ENTR. DF-445	ENTR. DF-430	0.0	6.9	6.9	Vicinal	IMP
629	VC533	533EVC0010	ENTR. BR- 080/BR- 251	DIVISA DF/GO	0.0	3.7	3.7	Vicinal	PAV
630	VC541	541EVC0010	ENTR. BR- 080/BR- 251	DIVISA DF/GO	0.0	3.4	3.4	Vicinal	IMP
631	VC547	547EVC0010	ENTR. DF-435	ENTR. BR- 080/251	0.0	2.4	2.4	Vicinal	IMP
632	VC555	555EVC0010	ENTR.DF- 180	ENTR. BR- 080/251	0.0	3.4	3.4	Vicinal	IMP

9 Investigando OS TRECHOS responda (TRUE ou FALSE).

9.1 Trechos em rodovias 'Distrital' possuem a mesma mediana de extensão de trechos em rodovias 'Federal'. Crie um boxplot para demonstrar e não esqueça de colocar legendas e anotação de texto.

FALSO

```
In [23]: scr[['EXTENSÃO','RESPONSÁVEL']].median()
Out[23]: EXTENSÃO
                     3.0
         dtype: float64
In [24]: scr.RESPONSÁVEL.replace({'DERDF
                                             ':'DERDF','DNIT
                                                                  ':'DNIT'}, inpl
         ace=True)
```

```
In [25]: scr.query("RESPONSÁVEL == 'DERDF'").EXTENSÃO.median()
Out[25]: 3.0

In [26]: scr.query("RESPONSÁVEL == 'DNIT'").EXTENSÃO.median()
Out[26]: 3.3

In [27]: derdf = scr.query("RESPONSÁVEL == 'DERDF'")['EXTENSÃO']
    dnit = scr.query("RESPONSÁVEL == 'DNIT'")['EXTENSÃO']
    extensao_rodovias = [derdf, dnit]

    fig = plt.figure(figsize =(10, 5))
    ax = fig.add_axes([0, 0, 1, 1])
    bp = ax.boxplot(extensao_rodovias)
    plt.title('Extensão de rodovias - Distrital/Federal') #adicionando o tít
    ulo
    plt.show()
```


9.2 Em termos de extensão, existem mais kms de pista duplicada ('DUP') do que pista pavimentada ('PAV'). Demonstre através de um gráfico de barra.

FALSO

```
In [28]: scr['SITUAÇÃO'].unique()
Out[28]: array(['DUP ', 'PAV ', 'IMP ', 'PLA ', 'EOP ', 'NPV '], dtype=object)
```

Out[31]: <matplotlib.legend.Legend at 0x7fb47b5c2350>

9.3 Existem somente duas rodovias com mais de 30 trechos.

VERDADEIRO

```
scr['RODOVIA'].value_counts()
Out[32]: DF001
                     36
          BR251
                     32
          DF003
                     28
          DF250
                     19
          BR479
                     19
          VC403
                      1
          DF027
                      1
          VC421
                      1
          DF006
                      1
          VC311
          Name: RODOVIA, Length: 157, dtype: int64
```

9.4 A distribuição das extensões dos trechos das rodovias federais segue uma distribuição normal. (Demonstre com um gráfico e um teste estatístico)

FALSO

Out[33]: Text(0.5, 0, 'Extensão dos trechos')

9.5 Existe uma diferença estatística entre as médias das extensões da rodovias vicinais e federais. (Demonstre com um teste estatístico)

Out[34]:

EXTENSÃO

TP. RODOVIA	
Acesso	1.8
Distrital	3.0
Distrital Coincidente	2.0
Federal	3.3
Federal Delegada	3.4
Vicinal	3.5

9.6 O 2º DR tem, em média, o maior TMDA (tráfego diário médio anual) se comparado com as médias dos outros distritos. (Demonstre utilizando um gráfico).

DEPENDE

```
In [35]: scr.groupby('D.R').mean()
```

Out[35]:

	Km INÍCIO	Km FIM	EXTENSÃO	TMDA	LARG. PISTA	LARG. ACOSTAMENTO	MAT. REVESTIMENTO
D.R							
1º DR	16.355952	19.827976	3.472024	2012.764706	NaN	NaN	NaN
2º DR	9.448921	13.015108	3.566187	36919.893204	NaN	NaN	NaN
3° DR	19.608696	23.231304	3.622609	41560.017857	NaN	NaN	NaN
4º DR	10.983486	15.120183	4.136697	1541.430380	NaN	NaN	NaN
5° DR	33.957353	37.667647	3.710294	4737.454545	NaN	NaN	NaN

Out[36]: Text(0.5, 0, 'DR')


```
In [37]: scr_02 = scr.copy()
In [38]: scr_02.TMDA.isna().sum()
Out[38]: 258
In [39]: scr_02.TMDA.mean()
Out[39]: 17636.056
In [40]: scr_02.TMDA.fillna(0, inplace=True)
```

Out[41]: Text(0.5, 0, 'DR')


```
In [42]: plt.figure(figsize=(20, 10))
    plt.subplot(2, 2, 1)
    scr.groupby('D.R')['TMDA'].mean().sort_values(ascending=False).plot.bar
    ()
    plt.title('Sem imputação de valores') #adicionando o título
    plt.ylabel('Média')#adicionando legenda eixo y
    plt.xlabel('DR')#adicionando legenda eixo x

plt.subplot(2, 2, 2)
    scr_02.groupby('D.R')['TMDA'].mean().sort_values(ascending=False).plot.b
    ar()
    plt.title('Com imputação de valores') #adicionando o título
    plt.ylabel('Média')#adicionando legenda eixo y
    plt.xlabel('DR')#adicionando legenda eixo x

plt.tight_layout()
    plt.show()
```


11. Leia as informações de Obra de Arte Especial (OAE) utilizando o link abaixo e guarde em um dataframe.

'http://dados.df.gov.br/dataset/468f0b08-f5ae-4d61-954c-3062a9d26dad/resource/fac7a26a-baa3-4250-9ae5-b9c7273ae8df/download/2020-05-19-oae.csv (http://dados.df.gov.br/dataset/468f0b08-f5ae-4d61-954c-2020-05-19-oae.csv (http://dados.df.gov.br/data

In [44]: oae[oae.duplicated(subset=['DESCRITIVO'], keep=False)]

Out[44]:

	COD. OAE	DESCRITIVO	TIPO DE OAE	COD. SITUAÇÃO	SITUAÇÃO	TP. ESTRUTURAL	REG. ADMINISTRATIVA	;
48	51	Viaduto sobre Ferrovia	VIAD. SOBRE FERROVIA	14	Воа	Concreto	NaN	
61	64	Ponte sobre Ribeirão Sobradinho	PONTE	12	Ruim	Concreto	NaN	
63	66	Viaduto 1 na DF-004	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN	
64	67	Viaduto 1 na DF-004	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN	
67	71	Ponte sobre Ribeirão Sobradinho	PONTE	14	Воа	Concreto	NaN	
70	74	Ponte sobre Rio São Bartolomeu	PONTE	14	Воа	Concreto	NaN	
77	81	Viaduto 1 na DF-004	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN	
78	82	Viaduto 2 na DF-004	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN	
81	85	Viaduto 1 na DF-004	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN	
82	86	Viaduto 2 na DF-004	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN	
94	98	Passarela na DF-003	PASSARELA	14	Воа	Super metálica c/ meso concreto	NaN	
95	99	Passarela na DF-003	PASSARELA	11	Crítica	Super metálica c/ meso concreto	NaN	
109	113	Ponte sobre Ribeirão Extrema	PONTE	12	Ruim	Madeira	NaN	
110	114	Ponte sobre Ribeirão Extrema	PONTE	12	Ruim	Mista: Metálica e Madeira	NaN	
112	116	Ponte sobre Ribeirão Extrema	PONTE	14	Boa	Concreto	NaN	
121	125	Passarela na DF-095	PASSARELA	14	Boa	Treliça Metálica	NaN	

	COD. OAE	DESCRITIVO	TIPO DE OAE	COD. SITUAÇÃO	SITUAÇÃO	TP. ESTRUTURAL	REG. Administrativa
122	126	Passarela na DF-095	PASSARELA	11	Crítica	Treliça Metálica	NaN
124	128	Passarela na DF-095	PASSARELA	12	Ruim	Treliça Metálica	NaN
126	130	Viaduto 1 na DF-001 sobre a DF-095	VIAD. SOBRE ROD./RUA	12	Ruim	Concreto	NaN
127	131	Viaduto 1 na DF-001 sobre a DF-095	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN
131	135	Ponte na DF085	PONTE	14	Воа	Concreto	NaN
132	136	Ponte na DF085	PONTE	14	Воа	Concreto	NaN
141	147	Ponte 2 sobre Córrego Vicente Pires	PONTE	14	Воа	Concreto	NaN
148	154	Ponte 2 sobre Córrego Vicente Pires	PONTE	11	Crítica	Concreto	NaN
171	178	Viaduto 2 na BR040 saída Santa Maria	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN
172	179	Viaduto 2 na BR040 saída Santa Maria	VIAD. SOBRE ROD./RUA	14	Воа	Concreto	NaN
193	200	Ponte sobre Rio Jardim	PONTE	14	Воа	Concreto	NaN
203	210	Ponte sobre Rio Jardim	PONTE	14	Воа	Concreto	NaN
205	212	Ponte sobre Rio São Bartolomeu	PONTE	14	Воа	Concreto	NaN
206	213	Viaduto sobre Ferrovia	VIAD. SOBRE FERROVIA	11	Crítica	Concreto	NaN
208	215	Ponte sobre Ribeirão Rodeador	PONTE	14	Воа	Concreto	NaN
210	217	Ponte sobre Rio Descoberto	PONTE	12	Ruim	Concreto	NaN

•

	COD. OAE	DESCRITIVO	TIPO DE OAE	COD. SITUAÇÃO	SITUAÇÃO	TP. ESTRUTURAL	REG. ADMINISTRATIVA
211	218	Ponte sobre Rio do Sal	PONTE	14	Воа	Concreto	NaN
215	222	Ponte sobre Rio do Sal	PONTE	12	Ruim	Concreto	NaN
220	227	Ponte sobre Rio Descoberto na VC-541	PONTE	14	Boa	Concreto	NaN
221	228	Ponte sobre Rio Descoberto na VC-541	PONTE	14	Воа	Concreto	NaN
223	230	Ponte sobre Ribeirão Rodeador	PONTE	14	Воа	Concreto	NaN
226	233	Ponte sobre Rio Descoberto	PONTE	14	Воа	Concreto	NaN
272	279	Passarela na DF-095	PASSARELA	14	Воа	Viga de Concreto Armado	Brasília
289	300	Passarela na DF-085 (EPTG)	PASSARELA	14	Boa	Super metálica c/ meso concreto	NaN
290	301	Passarela na DF-085 (EPTG)	PASSARELA	14	Воа	Super metálica c/ meso concreto	NaN

41 rows × 28 columns

```
In [45]: oae.drop_duplicates(subset=['DESCRITIVO'],inplace=True)
In [46]: oae[oae.duplicated(subset=['DESCRITIVO'],keep=False)]
Out[46]:
```

COD. DESCRITIVO DE SITUAÇÃO SITUAÇÃO ESTRUTURAL ADMINISTRATIVA SETOR D

0 rows × 28 columns

12. Avalie (TRUE OU FALSE):

```
In [47]: | oae.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 311 entries, 0 to 333
Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	COD. OAE	311 non-null	 int64
1	DESCRITIVO	311 non-null	object
2	TIPO DE OAE	311 non-null	object
3	COD. SITUAÇÃO	311 non-null	int64
4	SITUAÇÃO	311 non-null	object
5	TP. ESTRUTURAL	311 non-null	object
6	REG. ADMINISTRATIVA	0 non-null	object
7	SETOR	311 non-null	object
8	DISTRITO	311 non-null	object
9	RODOVIA	311 non-null	object
10	COD. TRECHO	311 non-null	object
11	DESCRITIVO.1	311 non-null	object
12	km	311 non-null	float64
13	PISTA	198 non-null	object
14	COMP. TOTAL	301 non-null	float64
15	LARG. TOTAL	301 non-null	float64
16	ANO DE CONTRUÇÃO	14 non-null	float64
17	ANO DO PROJETO	12 non-null	float64
18	RAMPA	311 non-null	object
19	EM CURVA	311 non-null	object
20	Nº DE PISTAS	148 non-null	float64
21	Nº DE FAIXAS	146 non-null	float64
22	LARG. ACOSTAMENTO	39 non-null	float64
23	LARG. PASSEIO	174 non-null	float64
24	ALT. GUARDA-CORPO	221 non-null	float64
25	LARG. AFASTAMENTOS	23 non-null	float64
26	LATITUTE	311 non-null	object
27	LONGITUDE	311 non-null	object
dtyp	es: $float64(11)$, $int6$	4(2), object(15)	
	E 0 E 1		

memory usage: 70.5+ KB

```
In [48]: oae.loc[:,['COD. OAE','RODOVIA','km']]
```

Out[48]:

	COD. OAE	RODOVIA	km
0	1	DF005	2.558
1	2	DF005	9.418
2	3	DF003	12.929
3	4	DF003	10.906
4	5	BR010	0.244
329	658	DF440	8.347
330	659	DF007	1.996
331	660	DF001	16.000
332	661	DF075	2.710
333	662	DF075	2.710

311 rows × 3 columns

12.1 A correlação entre a quantidade de OAE e a extensão total das rodovias (soma da ### extensão dos trechos) é maior do que 0.8

FALSO

12.2 A correlação entre a largura do passeio e a altura do guarda-corpo das pontes é menor do que 0.2

VERDADEIRO

```
In [54]: oae[['LARG. PASSEIO','ALT. GUARDA-CORPO']].corr()

Out[54]:

LARG. PASSEIO ALT. GUARDA-CORPO

LARG. PASSEIO 1.000000 -0.001044

ALT. GUARDA-CORPO -0.001044 1.000000
```

13. Siga as instruções.

13.1 Crie um dataframe chamado dist_oae com as informações COD.OAE, LONGITUDE, LATITUDE de cada OAE.

```
In [55]: dist_oae = pd.read_csv('../data/2020-05-19-oae.csv', sep=';',usecols=["C
    OD. OAE","LONGITUDE","LATITUTE"], encoding='latin-1')
```

```
In [56]: dist_oae.tail()
```

Out[56]:

	CO	D. OAE	LATITUTE	LONGITUDE
3	29	658	-15.709.300.935.342	-47.758.615.786.982
3	30	659	-15.730.370.842.992	-47.894.312.745.072
3	31	660	-15.788.978.438.604	-47.778.286.556.055
3	32	661	-15.873.396.808.131	-47.979.001.305.518
3	33	662	-15.873.396.808.131	-47.979.001.305.518

13.2 Trate as colunas de latitude e longitude, transformando-as de string para float. (ex: '-47.865.095.411.000' de ser transformado em -47.865095411000)

```
In [57]: def ajuste_latitude(value):
             lat_01 = value.replace(".", '')
             lat_02 = lat_01[0:3]+"."+lat_01[3:]
             return float(lat 02)
In [58]: def ajuste longitude(value):
             long 01 = value.replace(".", '')
             long 02 = long 01[0:3]+"."+long 01[3:]
             return float(long 02)
In [59]:
         dist oae['latitude'] = dist oae.LATITUTE.apply(ajuste latitude)
In [60]:
         dist oae['longitude'] = dist oae.LONGITUDE.apply(ajuste longitude)
In [61]: dist_oae.isna().sum()
Out[61]: COD. OAE
                       0
                       0
         LATITUTE
         LONGITUDE
                      0
         latitude
                       0
         longitude
         dtype: int64
In [62]: dist oae[dist oae.duplicated(subset=['COD. OAE'],keep=False)]
Out[62]:
```

```
In [63]: dist_oae.tail()
```

Out[63]:

	COD. OAE	LATITUTE	LONGITUDE	latitude	longitude
329	658	-15.709.300.935.342	-47.758.615.786.982	-15.709301	-47.758616
330	659	-15.730.370.842.992	-47.894.312.745.072	-15.730371	-47.894313
331	660	-15.788.978.438.604	-47.778.286.556.055	-15.788978	-47.778287
332	661	-15.873.396.808.131	-47.979.001.305.518	-15.873397	-47.979001
333	662	-15.873.396.808.131	-47.979.001.305.518	-15.873397	-47.979001

13.3 Transforme dist_oae em um GeoDataFrame e no parâmetro geometry passe a função do geopandas points_fromn_xy com as informações de longitude e latitude em formato de serie.

```
In [64]: gdf = geopandas.GeoDataFrame(dist oae,
                                     geometry = geopandas.points_from_xy(dist_oae
         ['longitude'],dist_oae['latitude']))
In [65]: type(gdf)
Out[65]: geopandas.geodataframe.GeoDataFrame
In [66]: | gdf.info()
         <class 'geopandas.geodataframe.GeoDataFrame'>
         RangeIndex: 334 entries, 0 to 333
         Data columns (total 6 columns):
              Column
                        Non-Null Count Dtype
             COD. OAE
                         334 non-null
                                        int64
          0
          1
            LATITUTE
                        334 non-null
                                        object
             LONGITUDE 334 non-null
          2
                                        object
            latitude 334 non-null
                                        float64
              longitude 334 non-null
                                        float64
                        334 non-null
              geometry
                                        geometry
         dtypes: float64(2), geometry(1), int64(1), object(2)
         memory usage: 15.8+ KB
```

In [67]: gdf.head()

Out[67]:

	COD. OAE	LATITUTE	LONGITUDE	latitude	longitude	geometry
0	1	-15.717.124.576.250	-47.865.095.411.000	-15.717125	-47.865095	POINT (-47.86510 -15.71712)
1	2	-15.750.428.216.750	-47.814.948.902.250	-15.750428	-47.814949	POINT (-47.81495 -15.75043)
2	3	-15.774.612.361.653	-47.937.965.129.068	-15.774612	-47.937965	POINT (-47.93797 -15.77461)
3	4	-15.758.446.956.227	-47.928.382.039.529	-15.758447	-47.928382	POINT (-47.92838 -15.75845)
4	5	-15.687.729.224.750	-47.857.120.883.000	-15.687729	-47.857121	POINT (-47.85712 -15.68773)

```
In [68]: gdf.geometry.plot()
```

Out[68]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb47c710dd0>

14. Usando os pontos em geometry do GeoDataFrame dist_oae monte um mapa utilizando folium que contenha todas as obras de artes especiais (dica: para extrair a latitude ou longitude de um ponto basta utilizar os métodos .x ou .y). Adicione no tooltip de cada Marker o tipo da OAE.

15. Descruba a distância entre a OAE de código 1 e todas as outras OAE (utilize o método .distance de cada point em geometry). Crie um subplot com 2 gráficos, o primeiro deverá conter um histograma de todas as distâncias e o segundo deverá ser um boxplot de todas as distâncias.

```
In [73]:
          gdf.geometry.distance(gdf.geometry[0])
Out[73]: 0
                 0.00000
                 0.060198
          2
                 0.092816
          3
                 0.075583
                 0.030458
          329
                 0.106767
          330
                 0.032080
          331
                 0.112689
          332
                 0.193379
          333
                 0.193379
          Length: 334, dtype: float64
```

```
In [74]: distancias = gdf.geometry.distance(gdf.geometry[0])
In [75]: type(gdf.geometry.distance(gdf.geometry[0]))
```

Out[75]: pandas.core.series.Series

```
In [76]: plt.figure(figsize=(20, 10))
  plt.subplot(2, 2, 1)
  gdf.geometry.distance(gdf.geometry[0]).hist()
  plt.title('Histograma') #adicionando o título
  plt.xlabel('Distância')#adicionando legenda eixo x

plt.subplot(2, 2, 2)
  box_dict = plt.boxplot(distancias ,vert=True,notch=True,whis=1)
  plt.title('Boxplot') #adicionando o título
  plt.ylabel('Distância')#adicionando legenda eixo y

plt.tight_layout()
  plt.show()
```

