CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 3.1: Examples using Cost Models

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

- → Estimate the performance of algorithms by
 - → Experiments & Observations
 - → Precise Mathematical Calculations
 - → Approximate Mathematical Calculations using Cost Models
 - → Every basic operation costs 1 time unit
 - → Keep only the higher-order terms
 - → Count only some operations
- → Classification according to running time order of growth

1

Common order-of-growth classifications

Good news. The set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int $i = 0$; $i < N$; $i++$) for (int $j = 0$; $j < N$; $j++$) $\{ \dots \}$	double loop	check all pairs	4
N 3	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size N?

```
int count = 0; for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) for (int k = j+1; k < N; k++) if (a[i] + a[j] + a[k] == 0) "inner loop" count++; \binom{N}{3} = \frac{N(N-1)(N-2)}{3!} A. \sim \frac{1}{6}N^3
```

- → Count only array accesses
- → Cost of each array access: 1 time unit
- → use tilde notation

Order of Growth: N³

TODAY

→ Examples:

→ Binary Search

→ Insertion Sort

3

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- · Too small, go left.
- Too big, go right.
- Equal, found.

successful search for 33

Binary search: Java implementation

Trivial to implement?

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

Invariant. If key appears in the array a[], then $a[]o] \le key \le a[hi]$.

Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ key compares to search in a sorted array of size N.

Def. T(N) = # key compares to binary search a sorted subarray of size $\leq N$.

Binary search recurrence.
$$T(N) \le T(N/2) + 1$$
 for $N > 1$, with $T(1) = 1$.

left or right half possible to implement with one (floored division) 2-way compare (instead of 3-way)

Pf sketch. [assume N is a power of 2]

$$T(N) \le T(N/2) + 1$$
 [given]
 $\le T(N/4) + 1 + 1$ [apply recurrence to first term]
 $\le T(N/8) + 1 + 1 + 1$ [apply recurrence to first term]
:
 $\le T(N/N) + 1 + 1 + ... + 1$ [stop applying, $T(1) = 1$]
 $= 1 + \lg N$

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size N?

int count = 0; for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) for (int k = j+1; k < N; k++) if
$$(a[i] + a[j] + a[k] == 0)$$
 "inner loop" count++;
$$\binom{N}{3} = \frac{N(N-1)(N-2)}{3!}$$
 A. $\sim \frac{1}{6}N^3$

Can we do better?

An N² log N algorithm for 3-SUM

Algorithm.

- Step 1: Sort the N (distinct) numbers.
- Step 2: For each pair of numbers a[i] and a[j], binary search for -(a[i] + a[j]).

What is the order of growth?

input 30 -40 -20 -10 40 0 10 5

sort -40 -20 -10 0 5 10 30 40

An N² log N algorithm for 3-SUM

Algorithm.

- Step 1: Sort the *N* (distinct) numbers.
- Step 2: For each pair of numbers a[i] and a[j], binary search for -(a[i] + a[j]).

input

30 -40 -20 -10 40 0 10 5

sort

 $-40 \ -20 \ -10 \ 0 \ 5 \ 10 \ 30 \ 40$

Analysis. Order of growth is $N^2 \log N$.

- Step 1: N^2 with insertion sort.
- Step 2: $N^2 \log N$ with binary search.

Remark. Can achieve N^2 by modifying binary search step.

binary search

$$(-40, 0)$$
 40

only count if
$$a[i] < a[j] < a[k]$$
to avoid

Comparing programs

Hypothesis. The sorting-based $N^2 \log N$ algorithm for 3-SuM is significantly faster in practice than the brute-force N^3 algorithm.

N	time (seconds)
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1

ThreeSum.java

N	time (seconds)
1,000	0.14
2,000	0.18
4,000	0.34
8,000	0.96
16,000	3.67
32,000	14.88
64,000	59.16

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.4 ANALYSIS OF ALGORITHMS

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- ▶ memory

Types of analyses

Best case. Lower bound on cost.

- · Determined by "easiest" input.
- · Provides a goal for all inputs.

Worst case. Upper bound on cost.

- · Determined by "most difficult" input.
- · Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- · Need a model for "random" input.
- · Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3-SUM.

Best: $\sim \frac{1}{2} N^3$ Average: $\sim \frac{1}{2} N^3$

Worst: $\sim \frac{1}{2} N^3$

Ex 2. Compares for binary search.

Best: ~ 1

Average: $\sim \lg N$

Worst: $\sim \lg N$

Theory of algorithms

Goals.

- · Establish "difficulty" of a problem.
- · Develop "optimal" algorithms.

Approach.

- Suppress details in analysis: analyze "to within a constant factor."
- Eliminate variability in input model: focus on the worst case.

Upper bound. Performance guarantee of algorithm for any input.

Lower bound. Proof that no algorithm can do better.

Optimal algorithm. Lower bound = upper bound (to within a constant factor).

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1}{2} N^2$ $10 N^2$ $5 N^2 + 22 N \log N + 3N$:	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$	$ \begin{array}{c} 10 \ N^2 \\ 100 \ N \\ 22 \ N \log N + 3 \ N \\ \vdots \end{array} $	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1}{2} N^2$ N^5 $N^3 + 22 N \log N + 3 N$ \vdots	develop lower bounds

Theory of algorithms: example 1

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 1-Sum = "Is there a 0 in the array?"

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 1-Sum: Look at every array entry.
- Running time of the optimal algorithm for 1-Sum is O(N).

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries (any unexamined one might be 0).
- Running time of the optimal algorithm for 1-Sum is $\Omega(N)$.

Optimal algorithm.

- Lower bound equals upper bound (to within a constant factor).
- Ex. Brute-force algorithm for 1-SUM is optimal: its running time is $\Theta(N)$.

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-Sum.

Upper bound. A specific algorithm.

- Ex. Brute-force algorithm for 3-SUM.
- Running time of the optimal algorithm for 3-Sum is $O(N^3)$.

Theory of algorithms: example 2

Goals.

- Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-Sum.

Upper bound. A specific algorithm.

- Ex. Improved algorithm for 3-Sum.
- Running time of the optimal algorithm for 3-SUM is $O(N^2 \log N)$.

Lower bound. Proof that no algorithm can do better.

- Ex. Have to examine all N entries to solve 3-Sum.
- Running time of the optimal algorithm for solving 3-Sum is $\Omega(N)$.

Open problems.

- Optimal algorithm for 3-SUM?
- Subquadratic algorithm for 3-SUM?
- Quadratic lower bound for 3-SUM?

Algorithm design approach

Start.

- · Develop an algorithm.
- · Prove a lower bound.

Gap?

- Lower the upper bound (discover a new algorithm).
- · Raise the lower bound (more difficult).

Golden Age of Algorithm Design.

- 1970s-.
- Steadily decreasing upper bounds for many important problems.
- · Many known optimal algorithms.

Caveats.

- Overly pessimistic to focus on worst case?
- Need better than "to within a constant factor" to predict performance.

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 <i>N</i> ²	$10 N^{2}$ $10 N^{2} + 22 N \log N$ $10 N^{2} + 2 N + 37$	provide approximate model
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{\frac{1}{2}N^2}{10 N^2}$ 5 N ² + 22 N log N + 3N	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O(<i>N</i> ²)	10 N ² 100 N 22 N log N+3 N	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1/2}{N^5}$ $N^3 + 22 N \log N + 3 N$	develop lower bounds

Common mistake. Interpreting big-Oh as an approximate model. This course. Focus on approximate models: use Tilde-notation

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.4 ANALYSIS OF ALGORITHMS

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory

Basics

Bit. 0 or 1. NIST most computer scientists

Byte. 8 bits. ↓ ↓

Megabyte (MB). 1 million or 2²⁰ bytes.

Gigabyte (GB). 1 billion or 2³⁰ bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

- · Can address more memory.
- · Pointers use more space.

some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

Typical memory usage for primitive types and arrays

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

primitive types

type	bytes
char[]	2N + 24
int[]	4 N + 24
double[]	8 N + 24

one-dimensional arrays

type	bytes
char[][]	~ 2 M N
int[][]	~ 4 M N
double[][]	~ 8 <i>M N</i>

two-dimensional arrays

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

```
public class Date
   private int day;
                                    object
                                                        16 bytes (object overhead)
   private int month;
                                   overhead
   private int year;
                                    day
                                                        4 bytes (int)
                                   month
                                                        4 bytes (int)
                                   year
                                                        4 bytes (int)
                                   padding
                                                        4 bytes (padding)
                                                        32 bytes
```

Typical memory usage summary

Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.

+ 8 extra bytes per inner class object (for reference to enclosing class)

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, count memory (recursively) for referenced object.

Example

Q. How much memory does WeightedQuickUnionUF use as a function of N? Use tilde notation to simplify your answer.

```
16 bytes
public class WeightedQuickUnionUF
                                                            (object overhead)
   private int[] id;
                                                            8 + (4N + 24) bytes each
                                                            (reference + int[] array)
   private int[] sz;
                                                            4 bytes (int)
   private int count;
                                                            4 bytes (padding)
   public WeightedQuickUnionUF(int N)
                                                             8N + 88 bytes
      id = new int[N];
      sz = new int[N];
      for (int i = 0; i < N; i++) id[i] = i;
      for (int i = 0; i < N; i++) sz[i] = 1;
```

A. $8N + 88 \sim 8N$ bytes.

Turning the crank: summary

Empirical analysis.

- · Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- · Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- · Use tilde notation to simplify analysis.
- · Model enables us to explain behavior.

Scientific method.

- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.