C- LoRA

Compression - Low Rank Adaptation

Aiffel Online 5th Research

3L 맹선재, 박혜원, 양주영, 황인준

Table of contents

01

Part.1

- What is C-LoRA
- Project Concept
- Toy Project _Weight
 Decay Scheduling

02

Part.2

- Issues
- Toy Project _
 Adding Noise & Bias

03

Part.3

- VGG16
- BERT (Tiny, Small)

04

Part.4

- Conclusion
- Future steps

01

Part.1

- Preliminary
- What is C-LoRA?
- What is WDS?
- Toy Project_WDS

Part.1 Preliminary - LoRA

LoRA (Low-Rank Adaptation):

Fine-tuning시, low-rank의 행렬에 대해서만 Parameter update

Part.1 Preliminary - LoRA

Pretrained weight (W) 전체를 fine-tuning

Regular Finetuning

Part.1 Preliminary - LoRA

병렬적으로 추가한 adapter의 가중치 AB만 update ... PEFT (parameter-efficient-fine-tuning)

Alternative formulation (regular finetuning)

LoRA weights, W_A and W_B , represent ΔW

Part.1

Based on LoRA, we propose a new <u>model compression</u> framework.

C-LoRA (Compression-LoRA)

Part.1 What is WDS?_Weight Decay Scheduling

Adapter처럼 W + BA 형태로 학습시킴과 동시에, W를 점진적으로 decay하여, 학습이 진행됨에 따라 BA에 잃어버린 W 정보 학습

Part.1 Toy Project_wos

Model structure: 3 dense layers with units of (256, 128, 10)

Dataset: Fashion MNIST(28*28, 70000 images, 10 categories)

Compression target layers: dense layers with units of (256, 128)

Original val_accuracy: 87.79%

WDS:

Part.1 Toy Project_wos

Compression Ratio(%)	Rank	Accuracy(%)
100	-	87.79
9.9	16	82.1 (-5.69%P)
19.5	32	83.2
38.9	64	82.87

Compression ratio: compressed model params / original total params

02 Part.2

- Toy project Issues
- Implementing Noise & Bias

Part.2 Toy Project_Issues

=> 단순히 스칼라 값만 곱하는 것이, W의 학습 정보를 decay 시키지 못한다는 것을 추정함.

Part.2 Implementing Noise & Bias

Noise와 **Bias**를 추가하여 W의 학습 정보를 공격적으로 decay.

Part.2 Toy Project_Noise

Compensate decayed weight matrix with noise

Assumption: Noise is **independent** from Original Weight

$$egin{aligned} W &\sim N(m,\sigma^2) \ W' &\sim N(d\cdot m,d^2\cdot\sigma^2) \ noise &\sim N((1-d)\cdot m,(1-d^2)\cdot\sigma^2) \ W' + \color{red} noise &\sim N(m,\sigma^2) \end{aligned}$$

Part.2 Project Concept

Compression		Accuracy(%)				
ratio Rank (%)	Only WDS	Bias (C_weights)	Scheduled Noise	Scheduled Noise & Bias		
100	-		8'	7.79		
9.9	16	82.1	82.73	81.59	83.74(-4.05%p)	
19.5	32	83.2	82.55	83.44	83.93	
38.9	64	82.87	83.68	82.38	84.23	

The results show that C-LoRA efficiently compress the number of parameters (e.g, 9.9%) with marginal performance degradation (- 4%p).

03 Part.3

- VGG16
- BERT

Part.3 VGG16

Model structure: Pretrained vgg16('imagenet')

- 13 convolution layer, 3 dense layer

Dataset:CIFAR 10

(32*32,5000 train dataset, 1000 test dataset, 10 categories)

Compression target layers:

- All Conv, dense_6, dense_7 layer

Hyperparameters: Batch Size: 30 Learning Rate:0.0001

Total params: 1.9M

Original val_accuracy: 85.36%

Part.3 Experiment on **VGG16**

Compression	Ra	Rank		Accuracy(%)		
Ratio (%)			Only WDS	Bias (C_weights)	Scheduled noise	Scheduled noise & Bias
100	-	-		85.36		
6.90	16	16	74.98 ±1.34	75.79 ±0.30	74.70 ±0.78	75.57 ±0.40
7.68	16	32	75.39 ±0.85	75.42 ±0.28	74.44 ±0.31	75.52 ±0.17
9.21	16	64	75.72 ±0.56	74.77 ±0.61	75.46 ±0.63	75.83 ±0.61
12.94	32	16	76.96 ±0.91	75.99 ±0.16	76.08 ±0.36	76.49 ±0.53
13.72	32	32	76.81 ±0.85	76.04 ±0.91	76.69 ±0.93	76.38 ±0.54
15.25	32	64	76.32 ±1.07	77.17 ±0.60	76.92 ±0.19	77.51 ±1.87

The results show that C-LoRA efficiently compress the number of parameters (e.g, 6.9%~15.25%), while the performance degradation (-10.92 %p~-7.85%p) is marginal.

Part.3 Experiment on Bert-Tiny & Bert-Small

Model structure:

- Bert-Tiny (2 Encoder Blocks) , Bert-Small (4 Encoder Blocks)
- Pretrained on English Wikipedia + BooksCorpus

Dataset: IMDB Dataset (Text Classification Dataset) (25000 training dataset, 25000 test dataset, 2 categories)

Compression target layers: Self attention block's layers

- Query, Key, Value, Output Dense layer (Einsum Dense Layer)

Hyperparameters: Batch Size: 32 Learning Rate: 0.00005

Total params: 4.3M(Bert Tiny) 28M (Bert Small)

Part.3 Bert-Tiny

Compression ratio			Accuracy(%)			
of Transformer Encoder Blocks (%)	Rank	Only WDS	Bias (C_weights)	Scheduled Noise	Scheduled Noise & Bias	
100	-	83.03 (With Early Stopping Method, Achieved its best val-loss on Epoch 4)				
8.8	16	80.00 ±0.28	79.97 ±0.36	80.68 ±0.05	80.79 ±0.33	
17.0	32	81.26 ±0.15	81.20 ±0.19	81.36 ±0.23	81.43 ±0.38	
33.6	64	81.91 ±0.26	81.84 ±0.16	81.57 ±0.26	81.70 ±0.08	

The results show that C-LoRA efficiently compress the number of parameters (e.g, 8.8%~33.6%), while the performance degradation (- 3.06%p ~ -1.12%p) is marginal.

Part.3 Bert-Small

Compression ratio			Accuracy(%)			
of Transformer Encoder Blocks (%)	Rank	Only WDS	Bias (C_weights)	Scheduled Noise	Scheduled Noise & Bias	
100	-		89	0.05		
2.1	16	84.83 ± 0.24	84.93 ± 0.25	85.24 ± 0.24	85.11 ± 0.19	
4.2	32	85.66 ± 0.43	85.80 ± 0.44	85.66 ± 0.23	85.68 ± 0.25	
8.4	64	86.01 ± 0.28	85.95 ± 0.28	86.02 ± 0.21	85.88 ± 0.15	

The results show that C-LoRA efficiently compress the number of parameters (e.g, 2.1%~8.4%), while the performance degradation (- 4.2%p~-3%p) is marginal.

04 Part.4

- Conclusion
- Future steps

Part.4 Conclusion

C- LoRA	VGG 16(%)	Bert-Tiny(%)	Bert-Small(%)
Only WDS	75.63 ±0.58	81.06±0.56	85.50±0.38
Bias	75.84 ±0.41	81.00±0.55	85.56±0.35
Scheduled Noise	75.54±0.50	81.21±0.28	85.56±0.25
Scheduled Noise & Bias	76.00±0.48	<u>81.31±0.30</u>	<u>85.64±0.25</u>

Part.4 Conclusion

VGG 16 Compression (13.72%) **_Only WDS**

Bert Tiny Compression (8.8%)

Bias & Scheduled noise

Part.4 Future steps

B & A Matrix Initialization

Research and Application
 of Initialization Techniques
 for Improved Weight
 Transfer

Noise Implementation Enhancing

- Noise Scheduling Adjustment
- Noise Level Adjustment

Thanks!

Do you have any questions?

Ask Me NOW:)

OR:

3l.aiffelton@gmail.com