CONSEGNA 20 MARZO S9L3

L'obbiettivo di oggi è quello di analizzare una cattura di rete effettuata con Wireshark, allo scopo di:

- Identificare eventuali IOC, ovvero evidenze di attacchi in corso
- In base agli attacchi IOC trovati, fare delle ipotesi sui potenziali vettori di attacco utilizzati
- Consigliare un'azione per ridurre gli impatti degli attacco

In Fig.1 riporto una sezione della scansione effettuata con Wireshark

111116	000100	D CO CITICALO II		igai mie
4 23.764777323	192.168.200.150	192.168.200.100	TCP	74 80 → 53060 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460
5 23.764777427	192.168.200.150	192.168.200.100	TCP	60 443 → 33876 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
6 23.764815289	192.168.200.100	192.168.200.150	TCP	66 53060 → 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810522
7 23.764899091	192.168.200.100	192.168.200.150	TCP	66 53060 → 80 [RST, ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=8
8 28.761629461	PCSSystemtec_fd:87:	PCSSystemtec_39:7d:	ARP	60 Who has 192.168.200.100? Tell 192.168.200.150
9 28.761644619	PCSSystemtec_39:7d:	PCSSystemtec_fd:87:	ARP	42 192.168.200.100 is at 08:00:27:39:7d:fe
10 28.774852257	PCSSystemtec_39:7d:	PCSSystemtec_fd:87:	ARP	42 Who has 192.168.200.150? Tell 192.168.200.100
11 28.775230099	PCSSystemtec_fd:87:	PCSSystemtec_39:7d:	ARP	60 192.168.200.150 is at 08:00:27:fd:87:1e
12 36.774143445	192.168.200.100	192.168.200.150	TCP	74 41304 → 23 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM
13 36.774218116	192.168.200.100	192.168.200.150	TCP	74 56120 → 111 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PEF
14 36.774257841	192.168.200.100	192.168.200.150	TCP	74 33878 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PEF
15 36.774366305	192.168.200.100	192.168.200.150	TCP	74 58636 → 554 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PER
16 36.774405627	192.168.200.100	192.168.200.150	TCP	74 52358 → 135 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PER
17 36.774535534	192.168.200.100	192.168.200.150	TCP	74 46138 → 993 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PER
18 36.774614776	192.168.200.100	192.168.200.150	TCP	74 41182 → 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM
19 36.774685505	192.168.200.150	192.168.200.100	TCP	74 23 → 41304 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460
20 36.774685652	192.168.200.150	192.168.200.100	TCP	74 111 → 56120 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=146
21 36.774685696	192.168.200.150	192.168.200.100	TCP	60 443 → 33878 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
22 36.774685737	192.168.200.150	192.168.200.100	TCP	60 554 → 58636 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
23 36.774685776	192.168.200.150	192.168.200.100	TCP	60 135 → 52358 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
24 36.774700464	192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535
25 36.774711072	192.168.200.100	192.168.200.150	TCP	66 56120 → 111 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=81053
26 36.775141104	192.168.200.150	192.168.200.100	TCP	60 993 → 46138 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
27 36.775141273	192.168.200.150	192.168.200.100	TCP	74 21 → 41182 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460
28 36.775174048	192.168.200.100	192.168.200.150	TCP	66 41182 → 21 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535
29 36.775337800	192.168.200.100	192.168.200.150	TCP	74 59174 → 113 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PEF
30 36.775386694	192.168.200.100	192.168.200.150	TCP	74 55656 → 22 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM
31 36.775524204	192.168.200.100	192.168.200.150	TCP	74 53062 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM
32 36.775589806	192.168.200.150	192.168.200.100	TCP	60 113 → 59174 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
33 36.775619454	192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [RST, ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=8
3/1 36 775652/197	192 168 200 100	192 168 200 150	TCP	66 56120 . 111 [PST ACK] Sen=1 Ack=1 Win=64256 Len=0 TSval=

Fig.1

La prima cosa che possiamo notare è un massiccio invio di richieste TCP, questo evidenzia che c'è un attacco in corso. Molto probabilmente l'attaccante 192.168.200.150 sta effettuando una scansione sul target 192.168.200.100: questa ipotesi è supportata dal fatto che in alcune righe della cattura vediamo risposte positive del target [SYN + ACK], come in riga 19 e 20, ad indicare che la porta e aperta. Invece, per altre risposte possiamo notare che la porta è chiusa, [RST + ACK]. L'attaccante potrebbe voler trovare delle porte aperte per eventuali attacchi futuri, quindi vorrei evidenziare che questa è una fase che precede l'attacco vero e proprio. Lato target , sono consigliabili delle azioni per ridurre gli impatti dell'attacco, come la configurazione di policy firewall che respingano le richieste in entrata dall'host 192.168.200.100