

Manual de prácticas del Laboratorio de Señales y Sistemas

Código:	MADO-76
Versión:	01
Página:	51 / 97
Sección ISO:	8.3
Fecha de emisión:	28 de enero 2019

Facultad de Ingeniería	Area/Departamento: Laboratorio de control y robótica
1 ' '/ 1 .	

La impresión de este documento es una copia no controlada

Desarrollo de la práctica

Aproximación de sistemas de sistemas de tiempo continuo por sistemas de tiempo discreto

De ecuaciones diferenciales a ecuaciones en diferencias y de función de transferencia en tiempo discreto a función de transferencia en tiempo continuo

Considere un circuito RLC como el mostrado en la Figura 23, cuyo comportamiento, considerando como entrada el voltaje $V_g(t)$ de la fuente y como salida el voltaje en el capacitor $V_c(t)$, está dado por la ecuación diferencial de segundo orden

$$\frac{\mathrm{d}^2 V_c(t)}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}V_c(t)}{\mathrm{d}t} + \frac{1}{LC} V_c(t) = \frac{1}{LC} V_g(t), \quad V_c(0) = V_{c0} \quad \frac{\mathrm{d}V_c}{\mathrm{d}t}(0) = V_{c0}'$$

considere que $\frac{R}{L} = 1$ y $\frac{1}{LC} = 5$.

■ Resuelva la ecuación diferencial utilizando los métodos analíticos disponibles en el software especializado que esté utilizando, escriba la solución y grafíquela, muestre los resultados en el siguiente cuadro.

Figura 23. Circuito RL paralelo