Лабораторная работа № 3

Задача спрятанного числа

06.04.2021

1 Формулировка задачи

Задача "спрятанного числа" (англ. the Hidden Number Problem, HNP) была поставлена в статье [1] в связи со сторонними атаками на задачу Диффи-Хэллмана (ДХ). На сложности задачи ДХ основан популярный алгоритм генерации общего ключа: Алиса и Боб, обладая секретными a,b соответственно, обмениваются значениями g^a, g^b , формируя тем самым общий ключ $g^{a,b}$. Полагаем, что g-образующий мультипликативной группы \mathbb{F}_p^* для большого простого p. Задача ДХ говорит о том, что любой эффективный атакующий, зная g, g^a, g^b , не может вычислить g^{ab} . Что, если атакующий имеет доступ к некоторым битам g^{ab} ? С учетом корявых реализаций этого важного протокола, вопрос не праздный [2], [3]. Этот вопрос мотивирует задачу HNP.

Определение 1. Задача спрятанного числа. Зафиксируем простое p и целое положительное δ . Обозначим за $\mathcal{O}_{\alpha}(t)$ -оракул, который выдает δ значимых бит числа $\alpha t \mod p$:

$$\mathcal{O}_{\alpha}(t) = MSB_{\delta}(\alpha \cdot t \bmod p).$$

Задача состоит в вычислении α , имея доступ $\kappa \mathcal{O}_{\alpha}(t)$.

Суть этой лабораторной состоит в реализации алгоритма, решающую задачу HNP. Отметим, что чем меньше δ , тем сильнее считается атака ($\delta = \lceil \log(p) \rceil$ делает задачу тривиальной).

Уточним определение MSB. Для атаки удобно думать о функции MSB $_{\delta}(x)$ как о функции, возвращающей *любое* целое z, удовлетворяющее $|x-z| < p/2^{\delta}$. Такое определение будет удобно для анализа алгоритма, который мы рассмотрим ниже.

2 Решение задачи HNР

Основной результат Боне-Венкатесана [1] формулируется так: для $\delta = \lceil \sqrt{n} \rceil + \lceil \log n \rceil$ и $d = 2\sqrt{n}$ вызовов оракула $\mathcal{O}_{\alpha}(\cdot)$ задача HNP решается за детерминированное полиномиальное (от $\log p$) время.

Положим, мы выбрали d случайных значений t_1,\ldots,t_d из \mathbb{F}_p и запросили $\mathcal{O}_{\alpha}(t_i)$. Получили d значений a_1,\ldots,a_d , каждый из которых удовлетворяет

$$|\alpha t_i \bmod p - a_i| < p/2^{\delta}$$
.

Построим решетку ранга d+1, порожденную столбцами

$$B = \begin{pmatrix} p & 0 & 0 & \dots & 0 & t_1 \\ 0 & p & 0 & \dots & 0 & t_2 \\ 0 & 0 & p & \dots & 0 & t_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & p & t_d \\ 0 & 0 & 0 & \dots & 0 & 1/p \end{pmatrix}$$

Заметим, что умножив последний столбец матрицы B на α и отняв необходимые кратные p с помощью остальных столбцов, мы получим вектор решетки

$$v = (r_1, \ldots, r_d, \alpha/p),$$

где $|r_i - a_i| < p/2^{\delta}$. Обозначим $u = (a_1, \dots, a_d, 0)$. Этот вектор нам известен и $||u - v|| \le \sqrt{d+1}p/2^k$. Таким образом, пара (L(B), u) формируют задачу ближайшего вектора. Боне-Венкатесана [1] доказывают, что это не просто задача ближайшего вектора, а уникального ближайшего вектора, которую, при указанных параметрах можно решить с помощью алгоритма Бабая (LLL).

3 Задание

Реализовать алгоритм, решающий задачу HNP для p порядка 2048 бит. Для реализации оракула можете использовать скрипт [4], а для нахождения ближайшего вектора можно использовать функцию babai (реализована в fpylll), либо метод вложения (см. лекцию про редукцию рюкзака к CVP).

Список литературы

- [1] D. Boneh and R. Venkatesan. *Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes.* https://link.springer.com/content/pdf/10.1007% 2F3-540-68697-5_11.pdf.
- [2] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky and Johannes Mittmann, Jörg Schwenk Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E) https://eprint.iacr.org/2020/1151
- [3] https://raccoon-attack.com/
- [4] https://crypto-kantiana.com/elena.kirshanova/teaching/lattices_2021/tp3_oracle