$$(1,1) = \int_{-1}^{1} dx = x]_{-1}^{1} = 2,$$

$$(1,x) = \int_{-1}^{1} x dx = \frac{x^{2}}{2} \Big]_{-1}^{1} = 0 = (x,1),$$

$$(1,x^{2}) = \int_{-1}^{1} x^{2} dx = \frac{x^{3}}{3} \Big]_{-1}^{1} = \frac{2}{3} = (x^{2},1) = (x,x),$$

$$(x,x^{2}) = \int_{-1}^{1} x^{3} dx = \frac{x^{4}}{4} \Big]_{-1}^{1} = 0 = (x^{2},x),$$

$$(x^{2},x^{2}) = \int_{-1}^{1} x^{4} dx = \frac{x^{5}}{5} \Big]_{-1}^{1} = 2/5,$$

$$(f,1) = \int_{-1}^{1} (x^{4} - 5x) dx = -\left(\frac{x^{5}}{5} - \frac{5x^{2}}{2}\right) \Big]_{-1}^{1} = -\frac{2}{5},$$

$$(f,x) = \int_{-1}^{1} (x^{5} - 5x^{2}) dx = -\left(\frac{x^{6}}{6} - \frac{5x^{3}}{3}\right) \Big]_{-1}^{1} = -\frac{10}{3},$$

$$((f,x^{2}) = \int_{-1}^{1} (x^{6} - 5x^{3}) dx = -\left(\frac{x^{7}}{7} - \frac{5x^{4}}{4}\right) \Big]_{-1}^{1} = \frac{2}{7}.$$

Assim, obtemos:

$$\begin{pmatrix} 2 & 0 & 2/3 \\ 0 & 2/3 & 0 \\ 2/3 & 0 & 2/5 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 2/5 \\ -10/3 \\ 2/7 \end{pmatrix} ,$$

cuja solução é:  $a_0 = -3/35$ ;  $a_1 = -5$ ;  $a_2 = 6/7$ .

Portanto:

$$f(x) \simeq P_2(x) = -\frac{3}{35} - 5x + \frac{6}{7}x^2.$$
 (8.1)

# Exercícios

- **8.1** Seja  $f(x) = \frac{1}{x+2}$ ,  $x \in [-1,1]$ . Usando o método dos mínimos quadrados, aproximar a função f(x) por um polinômio do  $2^{\circ}$  grau.
- **8.2** Seja  $f(x) = \frac{1}{x^4}$ ,  $x \in [0,1]$ . Usando o método dos mínimos quadrados, aproximar a função f(x) por um polinômio do tipo  $P(x) = a x^2 + b x^4$ , usando o seguinte produto escalar:

$$(f,g) = \int_0^1 x^2 f(x) g(x) dx.$$

Note que a base do sub-espaço neste caso é:  $\{x^2, x^4\}$ .

**8.3** Usando o método dos mínimos quadrados, aproximar a função  $f(x) = (x^3 - 1)^2$ ,  $x \in [0, 1]$ ,

- a) por uma reta;
- b) por um polinômio do 2º grau.

#### Observações:

- a) Quem resolveu o último exercício (e quem não resolveu deve fazê-lo), pode observar que para passar de um polinômio de grau k para um polinômio de grau k + 1 é necessário que calculemos todos os coeficientes do polinômio e não apenas o último, ou seja, devemos refazer praticamente todos os cálculos, visto que o sistema linear passa de ordem 2 para ordem 3.
- b) Além disso, para m grande, (m > 5), os efeitos de propagação dos erros de arredondamento, tornamse explosivos, tornando o método tremendamente instável, ou seja, a solução do sistema linear pode ser irreal.

Vejamos então uma maneira de aumentar o grau do *polinômio aproximante* sem refazer todos os cálculos, bem como obter uma solução que realmente tenha significado.

## Representação na Base Ortonormal

Veremos aqui como ajustar funções pelo método dos mínimos quadrados através de polinômios ortonormais.

Consideremos então em  $K_m(x)$ , uma base  $\{L_0^*(x), L_1^*(x), \dots, L_m^*(x)\}$  de polinômios ortonormais, isto é, de polinômios tais que:

$$(L_i^*(x), L_j^*(x)) = \delta_{ij} = \begin{cases} 1 & , & i = j \\ 0 & , & i \neq j \end{cases}.$$
(8.2)

Observe que tais polinômios podem ser obtidos ortonormalizando-se a base canônica  $\{1, x, x^2, \dots, x^m\}$  por Gram-Schmidt, (Capítulo 1).

A projeção ortogonal de  $f \in C[a,b]$  sobre  $K_m(x)$  será então dada por:

$$P_m(x) = a_0 L_0^*(x) + a_1 L_1^*(x) + \ldots + a_m L_m^*(x),$$

onde os  $a_i, i = 0, 1, \dots, m$ , são obtidos resolvendo-se o sistema:

$$\begin{pmatrix} (L_0^*, L_0^*) & (L_1^*, L_0^*) & \dots & (L_m^*, L_0^*) \\ (L_0^*, L_1^*) & (L_1^*, L_1^*) & \dots & (L_m^*, L_1^*) \\ \dots & & & & & \\ (L_0^*, L_m^*) & (L_1^*, L_m^*) & \dots & (L_m^*, L_m^*) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} (f, L_0^*) \\ (f, L_1^*) \\ \vdots \\ (f, L_m^*) \end{pmatrix}.$$

$$(8.3)$$

Mas, em vista de (8.2), (8.3) se reduz a:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \ddots & \dots \\ 0 & 0 & & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} (f, L_0^*) \\ (f, L_1^*) \\ \vdots \\ (f, L_m^*) \end{pmatrix}.$$
(8.4)

Obtemos então o sistema linear:

$$\begin{pmatrix} 4 & 2 & 6 \\ 2 & 6 & 8 \\ 6 & 8 & 18 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 14 \\ 28 \end{pmatrix} ,$$

cuja solução é:  $a_0 = -\frac{8}{5}$  ;  $a_1 = \frac{1}{5}$  ;  $a_2 = 2$ .

Portanto a parábola que melhor aproxima a função tabelada é:

$$P_2(x) = -\frac{8}{5} + \frac{1}{5} x + 2 x^2.$$

### Exercícios

**8.6** - Determinar, pelo método dos mínimos quadrados, a reta mais próxima dos pontos  $(x_i, y_i)$  para a função y = f(x) tabelada:

8.7 - Determinar a parábola mais próxima dos pontos  $(x_i, y_i)$  para a função y = f(x) tabelada:

usando o método dos mínimos quadrados.

8.8 - Usando o método dos mínimos quadrados, aproxime a função dada pela tabela:

por um polinômio do tipo: $P(x) = a + b x^3$ , usando o produto escalar:

$$(x,y) = \sum_{i=0}^{n} (i+1) x_i y_i.$$

#### 8.2.3 Erro de Truncamento

O erro de truncamento no método dos mínimos quadrados é dado por Q.

Assim temos:

a) caso contínuo:

$$Q = || f - P_m ||^2 = \int_a^b (f(x) - P_m(x))^2 dx$$
.

$$\begin{pmatrix} 6 & 30 \\ 30 & 220 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 0.1352 \\ 0.7748 \end{pmatrix} ,$$

cuja solução é:  $a_0 = 0.0155 = a$  e  $a_1 = 0.0014 = b$ . Portanto:

$$f(x) \simeq \frac{1}{0.0155 + 0.0014 \ x} + 20$$

Novamente minimizamos o quadrado da diferença entre a função F(x) e a reta  $a_0 + a_1 x$ .

### Exercícios

8.12 - Deseja-se aproximar uma função f definida em um intervalo [a,b] por uma função

$$g(x) = x^2 \ln \left(\frac{x^3}{a+b x^2}\right) ,$$

usando o método dos minímos quadrados.

- a) Qual é a função a ser minimizada?
- b) Qual é o sistema linear a ser resolvido?

**8.13** - Sejam f(x) e g(x), funções reais distintas não identicamente nulas. Suponha que, usando o método dos minímos quadrados, aproximamos f(x) em [a,b] por:

$$F(x) = a_0 f(x) + a_1 g(x)$$
.

- a) Quais os valores que devem ser atibuídos para  $a_0$  e  $a_1$ ?
- b) Qual será o erro?
- **8.14**  $\acute{E}$  possível aproximar diretamente uma função f(x) tabelada, por uma função do tipo:

$$g(x) = \left(\frac{a}{1 + b \cos x}\right) ,$$

usando o método dos minímos quadrados? Se não for possível, qual é a transformação que deve ser feita?

8.15 - Considere a função dada por:

$$\begin{array}{c|ccccc} x & 1.5 & 2.0 & 2.5 & 3.0 \\ \hline f(x) & 2.1 & 3.2 & 4.4 & 5.8 \end{array}$$

- a) Ajuste os pontos acima por uma função do tipo  $\sqrt{a+bx}$ , usando o método dos mínimos quadrados.
  - **b)** Qual função foi minimizada?

**8.16** - Ajustar os valores da tabela.

através de uma das famílias de funções:

$$a e^{bx}$$
,  $\frac{1}{a+bx}$ ,  $\frac{x}{a+bx}$ .

Use o teste de alinhamento para decidir qual das funções melhor resolve o problema.

O método dos mínimos quadrados se aplica também à determinação da melhor solução de sistemas lineares incompatíveis. Assim, passamos a descrever

## 8.5 Sistemas Lineares Incompatíveis

Ocorre frequentemente na prática problema da natureza seguinte: temos que determinar uma função y que depende linearmente de certas variáveis  $x_1, x_2, \ldots, x_m$ , isto é,

$$y = c_1 x_1 + c_2 x_2 + \ldots + c_m x_m ,$$

onde os  $c_i$ ,  $i=1,2,\ldots,m$ , são coeficientes desconhecidos fixados.

Na maioria dos casos os  $c_i$  são determinados experimentalmente, perfazendo-se um certo número de medidas das grandezas  $x_1, x_2, \ldots, x_m$  e y. Se designarmos por  $x_{j1}, x_{j2}, \ldots, x_{jm}, y_j$  os resultados correspondentes à j-ésima medida, tentamos determinar  $c_1, c_2, \ldots, c_m$  a partir do sistema de equações:

$$\begin{cases}
 x_{11}c_1 + x_{12}c_2 + \dots + x_{1m}c_m = y_1 \\
 x_{21}c_1 + x_{22}c_2 + \dots + x_{2m}c_m = y_2 \\
 \dots \\
 x_{n1}c_1 + x_{n2}c_2 + \dots + x_{nm}c_m = y_n
\end{cases}$$
(8.16)

Em geral, o número n de medidas é maior que o número m de incógnitas e devido aos erros experimentais o sistema (8.16) resulta ser incompatível e sua solução só pode ser obtida aproximadamente. O problema que precisa, então, ser resolvido é o da determinação dos  $c_1, c_2, \ldots, c_m$  de modo que o lado esquerdo das equações (8.16) forneça resultados tão "**próximos**" quanto possível dos correspondentes resultados do lado direito. Resta-nos apenas, para a solução do problema, precisarmos o conceito de proximidade. Como medida dessa proximidade adotaremos o quadrado da distância euclidiana entre y e z do  $\mathbb{R}^n$ , onde:

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, z = \begin{pmatrix} x_{11}c_1 + x_{12}c_2 + \dots + x_{1m}c_m \\ x_{21}c_1 + x_{22}c_2 + \dots + x_{2m}c_m \\ \dots \\ x_{n1}c_1 + x_{n2}c_2 + \dots + x_{nm}c_m \end{pmatrix}.$$

Assim:

$$Q = ||z - y||^2 = \sum_{i=1}^{n} (x_{i1}c_1 + x_{i2}c_2 + \ldots + x_{im}c_m - y_i)^2.$$

# 8.6 Exercícios Complementares

**8.19** - De uma tabela são extraídos os valores:

Usando o método dos mínimos quadrados ajuste os dados acima por polinômio de grau adequado. Sugestão: use gráfico.

**8.20** - Considere a tabela:

a) Pelo método dos mínimos quadrados, ajuste à tabela as funções:

$$g_1(x) = ax^2 + bx;$$
  $g_2(x) = cx^2 + d.$ 

b) Qual das funções fornece o melhor ajuste segundo o critério dos mínimos quadrados? Justifique.

8.21 - Achar aproximação mínimos quadrados da forma:

$$g(x) = ae^x + be^{-x} ,$$

correspondente aos dados:

**8.22** - Um dispositivo tem uma certa característica y que é função de uma variável x. Através de várias experiências foi obtido o gráfico:



Deseja-se conhecer o valor de y para x=0.5. Da teoria sabe-se que a função que descreve y tem a forma aproximada de uma curva do tipo a  $x^2+b$  x. Obtenha valores aproximados para a e b, usando todas as observações, e então estime o valor para y quando x=0.5.