MATH 5210, HW II JORDAN SAETHRE

1) A metric space X is separable if it contains a dense countable set S. Prove that any open set V in X is a union of balls centered at points in S and with rational radii. (Since the set of such balls is countable, it follows that any open set is a countable union of balls).

Proof. X is a metric space with distance function d. Let $v \in V$ where V is any open set in X. There exists r > 0 such that $B_d(v,r) \subset V$. There is also a rational number $q \in (0,r/2)$ and an $s \in S$ such that d(v,s) < q/2 since S is dense in X. This implies $v \in B_d(s,q)$. Let $y \in B_d(s,q)$ also. This implies that $d(y,v) \leq d(y,s) + d(s,v) < q + q/2 < 2q < r$, which implies $y \in B_d(v,r) \subset V$ and $v \in B_d(s,q) \subset V$.

2) Let $X = [0,1]^2$. Choose the distance on X wisely, and use the previous exercise to prove that any open set in X is Lebesgue measurable.

Proof. Choose the distance on X to be $d(x,y) = max\{|x_1 - y_1|, |x_2 - y_2|\}$. A ball in this space with this metric is a rectangle. Note that X is a separable metric space since it contains $\mathbb{Q} \cap [0,1] \times \mathbb{Q} \cap [0,1]$ which is a countable subset that is dense in X. By exercise (1) above any open set is the countable union of balls. A set is Lebesgue measurable if it is the countable union of rectangles.

3) Let $P = [0,1]^2$. If E and F are two elementary sets such that $E \cup F = P$ then $m(E \cap F) = m(E) + m(F) - 1$. Now assume $E = \bigcup_{i=1}^{\infty} E_i$ and $F = \bigcup_{i=1}^{\infty} F_i$, disjoint unions of elementary sets each, and $E \cup F = P$. Observe that $E \cap F$ is the disjoint union of $E_i \cap F_i$. Prove that

$$\sum_{i,j} m(E_i \cap F_j) = \sum_{i} m(E_i) + \sum_{j} m(F_j) - 1.$$

Proof. To show the equality above we first show that

$$\sum_{i,j} m(E_i \cap F_j) \le \sum_i m(E_i) + \sum_j m(F_j) - 1.$$

It suffices to show that for all N

$$\sum_{i,j\leq N} m(E_i \cap F_j) \leq \sum_i m(E_i) + \sum_j m(F_j) - 1.$$

Let F_i 's remain as they are and define the following new sets to remove some of the overlaps.

$$E'_{1} = E_{1} \setminus ((E_{1} \cap F_{1}) \cup (E_{1} \cap F_{2}) \cup \cdots \cup (E_{1} \cap F_{N}))$$

$$E'_{2} = E_{2} \setminus ((E_{2} \cap F_{1}) \cup (E_{2} \cap F_{2}) \cup \cdots \cup (E_{2} \cap F_{N}))$$

$$\vdots$$

$$E'_{N} = E_{N} \setminus ((E_{N} \cap F_{1}) \cup (E_{N} \cap F_{2}) \cup \cdots \cup (E_{N} \cap F_{N}))$$

Now we have

$$\sum_{i,j \le N} m(E_i \cap F_j) = \sum_{i} m(E_i) + \sum_{j} m(F_j) - \left[\sum_{i} m(E'_i) + \sum_{j} m(F_j) \right]$$

Since not all overlap was removed $\sum_{i} m(E'_{i}) + \sum_{j} m(F_{j}) \ge 1$ which implies that

$$\sum_{i,j \le N} m(E_i \cap F_j) \le \sum_i m(E_i) + \sum_j m(F_j) - 1.$$

To show the other direction, that is

$$\sum_{i,j} m(E_i \cap F_j) \ge \sum_i m(E_i) + \sum_j m(F_j) - 1$$

Set $E' = \bigcup_{i \le N} E_i$ and $F' = \bigcup_{i \le N} E_i$. We have that $E' \cup F' \subset P$. We know that

$$m(E') + m(F') - m(E' \cap F') = m(E' \cup F')$$

$$\implies m(E') + m(F') - m(E' \cup F') = m(E' \cap F')$$

Now putting this all together we have

$$\sum_{i < N} m(E_i) + \sum_{j < N} m(F_j) - \sum_{i,j < N} m(E_i \cup F_j) = \sum_{i,j < N} m(E_i \cap F_j) \le \sum_{i,j} m(E_i \cap F_j)$$

Using the fact that $m(E' \cup F') \le m(P) = 1$ this implies that

$$\sum_{i \le N} m(E_i) + \sum_{j \le N} m(F_j) - 1 \le \sum_{i \le N} m(E_i) + \sum_{j \le N} m(F_j) - \sum_{i,j \le N} m(E_i \cup F_j) \le \sum_{i,j} m(E_i \cap F_j)$$

This is true for all N. Pass to the limit and we have

$$\sum_{i} m(E_i) + \sum_{j} m(F_j) - 1 \le \sum_{i,j} m(E_i \cap F_j)$$

4) Let $\sum_{n=1}^{\infty} x_n$ be a series of non-negative real numbers. Show that its sum (which can be ∞) is equal to the supremum of the set of sums $\sum_{n \in S} x_n$ where S runs over all finite subsets of the set of natural numbers. Conclude that any sequence of non-negative numbers can be added in any order.

Proof. Certainly $\sum_{n \in S} x_n \leq \sum_{n=1}^{\infty} x_n$. We also have that $\sup\{\sum_{n \in S} x_n\} \leq \sum_{n=1}^{\infty} x_n$ this implies that there exists a $N \in \mathbb{N}$ such that $\sum_{n=1}^{N} x_n \leq \sup\{\sum_{n \in S} x_n\}$. Now pass to the limit and we have

$$\sum_{n=1}^{\infty} x_n = \lim_{N \to \infty} \sum_{n=1}^{N} x_n \le \sup \left(\sum_{n \in S} x_n \right)$$

Thus we have shown that

$$\sum_{n=1}^{\infty} x_n = \sup\left(\sum_{n \in S} x_n\right)$$

5) In the following exercises, \mathcal{M} is a σ -algebra of a non-empty set X, that is, a family of subsets of X closed under complements and countable unions, and μ is a σ -measure. Let $A_1 \supseteq A_2 \supseteq \ldots$ be a sequence of sets in \mathcal{M} . Let $A = \bigcap_{i=1}^{\infty} A_i$. Prove that $\lim_{i \to \infty} \mu(A_i) = \mu(A)$, assuming that $\mu(X) = 1$.

Proof. A_i 's are not disjoint. Set $B_i = A_i \setminus A_{i+1} = A_i \cap (A_{i+1})^c$. B_i 's are pairwise disjoint.

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} (A_i \cap (A_{i+1})^c)
= \bigcup_{i=1}^{\infty} (A_i) \cap (\bigcup_{i=1}^{\infty} (A_{i+1})^c) \quad \text{(union is distributive)}
= A_1 \cap (\bigcap_{i=1}^{\infty} A_{i+1})^c \quad \text{(since sets are nested and by Demorgan's Laws)}
= A_1 \cap (A)^c \quad \text{(by definition of A)}
\implies (\bigcup_{i=1}^{\infty} B_i) \cup A = A_1$$

 $\bigcup_{i=1}^{\infty} B_i$ and A are disjoint therefore

$$\mu(\bigcup_{i=1}^{\infty} B_i) \cup A = \sum_{i=1}^{\infty} \mu(B_i) + \mu(A) = \mu(A_1)$$

Which implies

$$\mu(A) = \mu(A_1) - \sum_{i=1}^{\infty} \mu(B_i)$$

$$= \mu(A_1) - \sum_{i=1}^{\infty} \left[\mu(A_i) - \mu(A_{i+1}) \right]$$

$$= \mu(A_1) - \left[(\mu(A_1) - \mu(A_2)) + (\mu(A_2) - \mu(A_3)) + \cdots \right]$$

$$= \lim_{i \to \infty} \mu(A_i)$$

6) A subset of X is called measurable if it belongs to \mathcal{M} . Let $f: X \to \mathbb{R}$ prove that $\{x | f(x) < c\}$ is measurable $\forall c \in \mathbb{R}$ if and only if $\{x | f(x) \le c\}$ is measurable $\forall c \in \mathbb{R}$.

Proof. (\Longrightarrow) First assume that $\{x|f(x) < c\}$ is measurable $\forall c \in \mathbb{R}$. Let $k \in \mathbb{N}$, then $\{x|f(x) < c + \frac{1}{k}\}$ is measurable. $\cap_k \{x|f(x) < c + \frac{1}{k}\}$ is also measurable since it is a union of measurable sets.

 (\Leftarrow) Now assume that $\{x|f(x) \leq c\}$ is measurable $\forall c \in \mathbb{R}$. Let $k \in \mathbb{N}$, then $\{x|f(x) \leq c - \frac{1}{k}\}$ is measurable. $\cap_k \{x|f(x) \leq c - \frac{1}{k}\}$ is measurable since it is a union of measurable sets.

Since both directions were proved we can conclude that $\{x|f(x) < c\}$ is measurable $\forall c \in \mathbb{R}$ if and only if $\{x|f(x) \le c\}$ is measurable $\forall c \in \mathbb{R}$

7) Let $f_n: X \to \mathbb{R}$ be a sequence of measurable functions on X. Prove that

$$g(x) = \inf\{f_1(x), f_2(x), \ldots\}$$
 and $G(x) = \sup\{f_1(x), f_2(x), \ldots\}$

are measurable functions.

Proof. Supremum:

First we will show that G(x) is measurable. Let $c \in \mathbb{R}$. We want to show that $\{x|G(x) > c\} = \bigcup_{n \in \mathbb{N}} \{x|f_n(x) > c\}$, i.e. that $\{x|G(x) > c\}$ is a countable union of measurable sets.

Assume $y \in \{x | G(x) > c\}$, then G(y) > c. If $f_n(y) \le c$ for all $n \in \mathbb{N}$ then c is an upper bound for $\{f_n(y)_{n \in \mathbb{N}}\}$. This would imply that $G(y) \le c$, but G(y) > c so $f_m(y) > c$ for some $m \in \mathbb{N}$, which means $y \in \{x | f_m(x) > c\}$ and $y \in \bigcup_{n \in \mathbb{N}} \{x | f_n(x) > c\}$. This shows that $\{x | G(x) > c\} \subseteq \bigcup_{n \in \mathbb{N}} \{x | f_n(x) > c\}$.

Now assume $z \in \bigcup_{n \in \mathbb{N}} \{x | f_n(x) > c\}$, then $z \in \{x | f_k(x) > c\}$ for some $k \in \mathbb{N}$ which implies $f_k(z) > c$. Since G(z) is the least upper bound we have that $G(z) \ge f_k(z) > c$, hence $z \in \{x | G(x) > c\}$. This shows that $\bigcup_{n \in \mathbb{N}} \{x | f_n(x) > c\} \subseteq \{x | G(x) > c\}$.

Since both $\bigcup_{n\in\mathbb{N}}\{x|f_n(x)>c\}\subseteq\{x|G(x)>c\}$ and $\{x|G(x)>c\}\subseteq\bigcup_{n\in\mathbb{N}}\{x|f_n(x)>c\}$ are true we have that $\{x|G(x)>c\}=\bigcup_{n\in\mathbb{N}}\{x|f_n(x)>c\}$ and therefore since c is arbitrary G(x) is measurable.

Infimum:

The proof that g(x) is measurable is almost identical to the above argument. Let $c \in \mathbb{R}$. We want to show that $\{x|g(x) < c\} = \bigcup_{n \in \mathbb{N}} \{x|f_n(x) < c\}$, i.e. that $\{x|g(x) < c\}$ is a countable union of measurable sets.

Assume $y \in \{x|g(x) < c\}$, then g(y) < c. If $f_n(y) \ge c$ for all $n \in \mathbb{N}$ then c is a lower bound for $\{f_n(y)_{n \in \mathbb{N}}\}$. This would imply that $g(y) \ge c$, but g(y) < c so $f_m(y) < c$ for some $m \in \mathbb{N}$, which means $y \in \{x|f_m(x) < c\}$ and $y \in \bigcup_{n \in \mathbb{N}} \{x|f_n(x) < c\}$. This shows that $\{x|g(x) < c\} \subseteq \bigcup_{n \in \mathbb{N}} \{x|f_n(x) < c\}$.

Now assume $z \in \bigcup_{n \in \mathbb{N}} \{x | f_n(x) < c\}$, then $z \in \{x | f_k(x) < c\}$ for some $k \in \mathbb{N}$ which implies $f_k(z) < c$. Since g(z) is the greatest lower bound we have that $g(z) \le f_k(z) < c$, hence $z \in \{x | g(x) < c\}$. This shows that $\bigcup_{n \in \mathbb{N}} \{x | f_n(x) < c\} \subseteq \{x | g(x) < c\}$.

Since both $\bigcup_{n\in\mathbb{N}}\{x|f_n(x) < c\} \subseteq \{x|g(x) < c\}$ and $\{x|g(x) < c\} \subseteq \bigcup_{n\in\mathbb{N}}\{x|f_n(x) < c\}$ are true we have that $\{x|g(x) < c\} = \bigcup_{n\in\mathbb{N}}\{x|f_n(x) < c\}$ and therefore since c is arbitrary g(x) is measurable.

8) Let f be an integrable function on X, such that $f(x) \geq 0$ for all $x \in X$. Prove that $\int_X f = 0$ if and only if the measure of $A = \{x \in X | f(x) > 0\}$ is 0, that is f = 0 almost everywhere. Hint, consider the sets $A_n = \{x \in X | f(x) > 1/n\}$ for $n = 1, 2, \ldots$

Proof. Assume $\int_X f = 0$. Then by the Chebychev inequality

$$0 \le \mu(\{x \in X | f(x) \ge \frac{1}{n}\}) \le \frac{1}{n} \int_X f = 0$$

which implies that $\mu(\lbrace x \in X | f(x) \geq \frac{1}{n} \rbrace) = 0$ for all $n \in \mathbb{N}$, that is f = 0 almost everywhere.

Now assume f=0 almost everywhere. Then every nonnegative simple function f_n approximating f from below is zero almost everywhere and is of the form $f_n = \sum_{i=1}^n c_i \chi_{A_i}$ where either $c_i = 0$ or $\mu(A_i) = 0$. Then $\int_X f_n = \sum_{i=1}^n c_i \mu(A_i) = 0$.

Therefore
$$\int_X f = \sup\{\int_X f_n | f_n \text{ is simple}, f_n \leq f\} = 0.$$

9) Let X = (0,1], with the usual measure, and let $f(x) = 1/\sqrt{x}$. Use the monotone convergence theorem to prove that f is integrable and compute it's integral.

Let $f_n(x) = f(x) \cdot \chi_{\left[\frac{1}{n},1\right]}$ so that $f_1(x) \leq f_2(x) \leq \cdots$, i.e. a monotone sequence.

$$\int_{\left[\frac{1}{n},1\right]} f_n(x) = \int_{\frac{1}{n}}^1 f = \int_{\frac{1}{n}}^1 \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{x=\frac{1}{n}}^{x=1} = 2 - \frac{1}{\sqrt{n}}$$
$$\lim_{n \to \infty} 2 - \frac{1}{\sqrt{n}} = 2$$

Therefore by the Monotone Convergence Theorem

$$\int_{(0,1]} \frac{1}{\sqrt{x}} = 2$$