

Signals and Systems (Lab)

Lab 3: Fourier Series Representation of Periodic Signals

Dr. Wu Guang

wug@sustech.edu.cn

Electrical & Electronic Engineering Southern University of Science and Technology

Feedback

Baron Jean Baptiste Joseph Fourier

Baron Jean Baptiste Joseph Fourier 法国数学家、物理学家,1768-1830

Overview

- ➤ In Lab 3, you will
 - Verify the frequency property of convolution.
 - Verify the frequency property of LTI systems.
- ➤ In this tutorial, you will learn
 - How to calculate the output of DT LTI system in frequency domain.
 - How to calculate the output of CT LTI system.
 - How to calculate the DTFS of signal.

Eigenvalue and eigenvector

The eigenvector X has only scalar multiplication under the mapping A.

Example: Complex Exponentials

$$x(t) = e^{st} \longrightarrow h(t)$$

$$h(t) * e^{st} \longrightarrow y(t) = \int_{-\infty}^{+\infty} h(\tau)e^{s(t-\tau)}d\tau$$

$$= \left[\int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau\right]e^{st}$$

$$= H(s)e^{st}$$

$$= gen{time} s = j\omega - \text{purely imaginary}, \\ \text{i.e. signals of the form } e^{j\omega t}$$
eigenvalue eigenfunction

DT LTI System

In Lab 2, difference equation is like ...

Causal DT LTI system can be specified by a linear constant-coefficient difference equation:

$$\sum_{k=0}^{K} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

 \triangleright Causal DT LTI system is uniquely specified by two vectors: A=[a₀ a₁ a₂ ... a_K] and B=[b₀ b₁ ... b_M]

We can use filter() to calculate h[n]

- ✓ For example:
 - y[n]=0.5x[n]+x[n-1]+2x[n-2];
 - h[n]=? Finite Impulse Response (FIR)
 - y[n]-0.8y[n-1]=2x[n];
 - h[n]=? Infinite Impulse Response (IIR)
- ✓ Causal DT LTI system is uniquely specified by two vectors: $A=[a_0 \ a_1 \ a_2 \ ... \ a_K]$ and $B=[b_0 \ b_1 \ ... \ b_M]$
 - A=[1] B=[0.5 1 2]
 - A=[1 -0.8] B=[2]

Calculate Frequency Response

> In this Lab, we will use freqz() to calculate Frequency Response :

$$H(e^{j\omega_k})$$
 $\omega_k = \left(\frac{\pi}{N}\right)k, 0 \leq k \leq N-1$

[H omega] = freqz(b, a, N, 'whole');

$$H(e^{j\omega_k})$$
 $\omega_k = \left(\frac{2\pi}{N}\right)k, 0 \le k \le N-1$

Exercise 1: Frequency response

> Consider LTI System:

Define the vector of coefficients:

```
A=[1 -0.8];
B=[2 0 -1];
```

Plot the frequency response:

```
[H Omega] = freqz(B, A, 40, 'whole');
plot(Omega, abs(H), '*-');
xlabel('\omega');
ylabel('H(e^{j\omega})');
grid;
```

y[n]-0.8y[n-1]=2x[n]-x[n-2]

$$a_0H(e^{j0\left(\frac{2\pi}{N}\right)})e^{j0\left(\frac{2\pi}{N}\right)n}$$

$$a_1H(e^{j1\left(\frac{2\pi}{N}\right)})e^{j1\left(\frac{2\pi}{N}\right)n}$$

$$a_2H(e^{j2\left(\frac{2\pi}{N}\right)})e^{j2\left(\frac{2\pi}{N}\right)n}$$

•••

$$a_{N-1}H(e^{j(N-1)\left(\frac{2\pi}{N}\right)})e^{j(N-1)\left(\frac{2\pi}{N}\right)n}$$

Overview

- ➤ In Lab 3, you will
 - Verify the frequency property of convolution.
 - Verify the frequency property of LTI systems.
- > In this tutorial, you will learn
 - How to calculate the output of DT LTI system in frequency domain.
 - How to calculate the output of CT LTI system.
 - How to calculate the DTFS of signal.

CT LTI System by Differential Equation

- ➤ Reading assignment: textbook 2.4.1.
- Causal CT LTI system can be specified by a linear constant-coefficient differential equation:

$$\sum_{k=0}^{K} a_k \frac{d^k y(t)}{dt^k} = \sum_{m=0}^{M} b_m \frac{d^m x(t)}{dt^m}$$

Coefficient vectors:

$$A = [a_K a_{K-1} \cdots a_0]$$

$$B = [b_K b_{K-1} \cdots b_0]$$

Attention!

CT LTI system by differential equation

•
$$\sum_{k=0}^{K} a_k \frac{d^k y(t)}{dt^k} = \sum_{m=0}^{M} b_m \frac{d^m x(t)}{dt^m}$$

•
$$A = [a_K, a_{K-1}, ... a_0]$$

•
$$B = [b_M, b_{M-1}, ... b_0]$$

DT LTI system by difference equation

•
$$\sum_{k=0}^{K} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

•
$$A = [a_0, a_1, ... a_K]$$

$$\bullet \ B = [b_0, b_1, \dots b_M]$$

How to simulate CT systems?

- ➤ How to simulate CT systems via Matlab?
- ➤ Isim(): generate sampled output according to sampled input signal and CT system function
- > Syntax: lsim(b,a,x,t)
- Sampled input signal

Vector of sampling time: t

Vector of sampled value: x

Simulation process

Exercise 2: CT System

 \triangleright Consider LTI System: 0.3y(t)+dy(t)/dt = 3x(t)

```
A=[1 0.3];
B=3;
```

Sample the input signal x=cos(t):

```
t=0:0.1:2*pi;

x=cos(t);

y=lsim(B,A,x,t)';

subplot(2,1,1), plot(t,x);

xlim([0 2*pi]);

subplot(2,1,2), plot(t,y);

xlim([0 2*pi]);
```


Tips

Differential equation

$$\sum_{k=0}^{K} a_k \frac{d^k y(t)}{dt^k} = \sum_{m=0}^{M} b_m \frac{d^m x(t)}{dt^m}$$

System function

Tutorial 2.3 & 3.3

$$H(s) = \frac{\sum_{m=0}^{M} b_m s^m}{\sum_{k=0}^{K} a_k s^k}$$

Lab Assignment 3 (a)

- Read tutorial 3.2 & 3.3 by yourself
- 3.8 & 3.9
- Submit your report.

• 3.9(c)

Advanced Problems

(c). Analytically calculate the CTFS for the square wave x2. You may find it helpful to first find a relationship between the signal $x_2(t)$ and the signal s(t) defined in Eq. (3.9). Use the ten lowest frequency nonzero CTFS coefficients of x2 to create the

$$s(t) = \begin{cases} 1, & |t| < T/4, \\ 0, & T/4 \le |t| \le T/2 \end{cases}$$
 (3.9)

CTFS coefficients a_k given by

$$a_k = \frac{\sin\left(\pi k/2\right)}{\pi k}$$

Overview

- ➤ In Lab 3, you will
 - Verify the frequency property of convolution.
 - Verify the frequency property of LTI systems.
- > In this tutorial, you will learn
 - How to calculate the output of DT LTI system in frequency domain.
 - How to calculate the output of CT LTI system.
 - How to calculate the DTFS of signal.

Fourier Series

- Periodic signal with period T or N
- Synchesis equation:

$$\mathbf{x(t)} = \sum_{k=-\infty}^{\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t} \qquad \text{v.s.} \qquad \mathbf{x[n]} = \sum_{k=0}^{N-1} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$\mathbf{x}_{[n]} = \sum_{k=0}^{N-1} a_k e^{jk\left(rac{2\pi}{N}
ight)n}$$

- Summation of *N harmonic components*
- Analysis equation:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\left(\frac{2\pi}{T}\right)t} dt \qquad \text{v.s.} \qquad a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\left(\frac{2\pi}{N}\right)n}$$

$$a_k = rac{1}{N} \sum_{n=0}^{N-1} \mathrm{x[n]} e^{-jk\left(rac{2\pi}{N}
ight)n}$$

Understanding $e^{j2\pi f_0t}$

Matlab Function: fft()

> fft(): compute DTFS coefficients from signals

Compare with our definition:

$$a_k = \sum_{n=1}^N \mathbf{x}[\mathbf{n}] e^{-j(k-1)\left(\frac{2\pi}{N}\right)(n-1)}$$
 v.s. $a_k = \frac{1}{N} \sum_{n=0}^{N-1} \mathbf{x}[\mathbf{n}] e^{-jk\left(\frac{2\pi}{N}\right)n}$

Calculate the DTFS of vector x:

$$a = (1/N) * fft(x)$$

Matlab Function: ifft()

> ifft(): reconstruct signals from DTFS coefficients

>> help fft
$$N \\ x(n) = (1/N) \mbox{ sum } X(k) * \exp(\ j * 2 * pi * (k-1) * (n-1)/N), \ 1 <= n <= N. \\ k=1$$

Compare with our definition:

$$x[n] = \frac{1}{N} \sum_{k=1}^{N} a_k e^{j(k-1)\left(\frac{2\pi}{N}\right)(n-1)}$$
 v.s. $x[n] = \sum_{k=0}^{N-1} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$

Calculate the DTFS of vector x:

$$x = N * ifft(a)$$

Example

> Periodic DT rectangular wave with period = 40

```
x=[zeros(1,20)
ones(1,20)];
stem(0:39, x);
xlim([0 39]);
ylim([0 1.2]);
```



```
A = fft(x) / length(x);
figure(1)
subplot(2,1,1),stem(abs(A));
subplot(2,1,2),stem(abs(fftshift(A)));
```

```
A = fft(x) / length(x);
figure(2)
subplot(2,1,1), stem(0: length(x)-1,real(A),'*-');
subplot(2,1,2), stem(0: length(x)-1,imag(A),'*-');
```



```
A1 = [A(1) zeros(1,39)];

A2 = [A(1) A(2) zeros(1,37) A(40)];

A3 = [A(1) A(2:15) zeros(1,11) A(27:40)];

subplot(2,2,1), stem(1:40,ifft(A1)*40, 'r');

subplot(2,2,2), stem(1:40,ifft(A2)*40, 'g');

subplot(2,2,3), stem(1:40,ifft(A3)*40, 'b');

subplot(2,2,4), stem(1:40,x, 'k');
```


plot(1:40,ifft(A1)*40, 'r', 1:40,ifft(A2)*40, 'g', 1:40,ifft(A3)*40, 'b', 1:40,x, 'k');

Complexity Analysis

Suppose we know the matrix

$$E(n,k) = e^{-jk\left(\frac{2\pi}{N}\right)n}$$

 \triangleright How many multiplications & additions are needed to calculate Fourier series $[a_0, a_1, ..., a_{N-1}]$

$$a_0 = \frac{1}{N} \sum_{n=0}^{N-1} x[n] E(n, 0)$$
...
$$a_{N-1} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] E(n, N-1)$$

Each: N+1 ×; N-1 +
Total: (N+1)N ×; N(N-1) +

Complexity Analysis

- > Fast Fourier Transform:
 - Calculation of Fourier series (transform) can be speeded up
 - Complexity reduces to O(NlogN)

N=4 $a_0=(x[0]E(0,0)+x[1]E(1,0)+x[2]E(2,0)+x[3]E(3,0))/N$

$$a_2 = (x[0]E(0,2) + x[1]E(1,2) + x[2]E(2,2) + x[3]E(3,2))/N$$

$$a_1 = (x[0]E(0,1) + x[1]E(1,1) + x[2]E(2,1) + x[3]E(3,1))/N$$

$$a_3 = (x[0]E(0,3) + x[1]E(1,3) + x[2]E(2,3) + x[3]E(3,3))/N$$

To calculate the DFT and FFT of a 1024*1024 image:

CPU	Clock Frequency	DFT	FFT
1941	60 Hz	152.3 y	271.4 d
1971 (4004)	108KHz	30.8 d	3.6 h
1978 (8086)	10MHz	8.0 h	2.3 min
1982 (80286)	20MHz	4.0 h	1.2min
1985 (80386)	33MHz	2.4h	42.6s
1989 (80486)	100MHz	48.0min	14.1s
1995 (Pentium)	200MHz	24.0min	7.0s
1999 (Pentium Ⅲ)	450MHz	10.7min	3.1s
2000 (Pentium 4)	1.4GHz	3.4min	1.0s
2001 (Pentium 4)	2GHz	2.4min	0.7s

OFDM-Project

IFFT FFT

```
N=8;
x=randi([0 3],1,N);
x1=qammod(x,4);
                             help
f=1:N;
t=0:0.001:1-0.001;
w=2*pi*f'*t;
y1=x1*exp(j*w);
x2=ifft(x1,N);
plot(t,abs(y1));
hold on
stem(0:1/N:1-1/N,abs(x2)*N,'-r')
xlabel('t')
ylabel('x2')
x3=fft(x2)
```


Tips

Periodic convolution in time domain is equivalent to multiplication in frequency domain

$$x[n] \otimes \widehat{h}[n] = \sum_{r=0}^{N-1} x[r] \widehat{h}[n-r] \iff Na_k h_k$$

Table 3.2 of Textbook

$$y[n] = x[n] * h[n] = x[n] \otimes \widehat{h}[n]$$

 $\widehat{h}[n]$ is a periodic version of h[n]

Lab Assignment 3 (b)

- Read tutorial 3.2 & 3.3 by yourself
- > 3.5 & 3.10
- > Submit your report

Question ?

