Examen parcial de Física - CORRENT ALTERN 30 d'octubre de 2017

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Considereu un circuit RL sèrie com el de la figura amb $\varepsilon = 10$ V, R = 100 Ω i L = 1 H. Immediatament després de tancar l'interruptor S, l'equació de la intensitat que circula per la resistència en funció del temps és

b)
$$I(t) = 0.1 \text{ A}.$$

c)
$$I(t) = 0.1(1 - e^{-100t})$$
 A.

d)
$$I(t) = 0.1(1 - e^{-0.01t})$$
 A.

T2) Un circuit sèrie de corrent altern està format per dos elements purs desconeguts i té un factor de potència de 0.5. Coneixem que el voltatge avança respecte la intensitat. La intensitat eficaç en aquest circuit és $I_{ef} = 100 \text{ mA}$, la font de tensió alterna que alimenta el circuit té un voltatge eficaç de $V_{\rm ef}=10~{
m V}$ i treballa a una freqüència de $f=1~{
m kHz}.$ Quins són aquests dos elements?

a)
$$R = 100 \ \Omega \ i \ C = 3.68 \ \mu F.$$

b)
$$R = 50 \ \Omega \ i \ C = 1.84 \ \mu F$$
.

c)
$$R = 100 \ \Omega \ i \ L = 27.56 \ mH.$$

d)
$$R=50~\Omega$$
 i $L=13.78~\mathrm{mH}.$

T3) Quin tipus i de quin valor és l'element que connectat en paral·lel a un conjunt format per una resistència de 10 Ω en sèrie amb una bobina amb coeficient d'autoinducció L=200 mH, fa que el sistema tingui el factor de potència corregit a una freqüència angular $\omega = 50 \text{ rad/s}.$

a)
$$C = 2 \mu F$$
.

b)
$$C = 1 \text{ mF}.$$

c)
$$C = 2 \text{ mF}.$$

b)
$$C = 1 \text{ mF}.$$
 c) $C = 2 \text{ mF}.$ d) $L = 0.4 \text{ H}.$

- **T4)** Un circuit RLC sèrie de corrent altern amb una fem $V(t) = 100\sqrt{2}V\cos(100t)$ té una resistència $R=400~\Omega$, reactància capacitiva $X_C=200~\Omega$ i una reactància inductiva $X_L = 500 \ \Omega$. Quin d'aquests enunciats no és correcte?
 - a) la potència aparent és 20 VA.
- b) el factor de potència és $\cos \phi = 0.8$.
- c) la potència activa és 16 W.
- d) la potència reactiva és 10 VAR.
- **T5)** En el circuit de la figura, $R_1 = 0.732 \Omega$, $R_2 = 2 \Omega$ i $X_C = 2 \Omega$. Tot el conjunt s'alimenta amb una font de corrent altern de fem $V(t) = 1V\sin(200t)$. La intensitat instantània en la resistència R_1 és:

a)
$$I_{R_1}(t) = 0.5 \sin(200t + \frac{\pi}{3})$$
 A.

b)
$$I_{R_1}(t) = 0.5 \sin(200t - \frac{\pi}{6})$$
 A.

c)
$$I_{R_1}(t) = 0.5 \sin(200t) \text{ A}.$$

d)
$$I_{R_1}(t) = 0.5 \sin(200t + \frac{\pi}{6})$$
 A.

Examen parcial de Física - CORRENT ALTERN 30 d'octubre de 2017

Model B

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Quin tipus i de quin valor és l'element que connectat en paral·lel a un conjunt format per una resistència de 10 Ω en sèrie amb una bobina amb coeficient d'autoinducció L=200 mH, fa que el sistema tingui el factor de potència corregit a una freqüència angular $\omega = 50 \text{ rad/s}.$
 - a) C = 1 mF.

- b) C = 2 mF. c) $C = 2 \mu \text{F}$. d) L = 0.4 H.
- **T2)** En el circuit de la figura, $R_1 = 0.732 \Omega$, $R_2 = 2 \Omega$ i $X_C = 2 \Omega$. Tot el conjunt s'alimenta amb una font de corrent altern de fem $V(t) = 1V\sin(200t)$. La intensitat instantània en la resistència R_1 és:
 - a) $I_{R_1}(t) = 0.5 \sin(200t \frac{\pi}{6})$ A.
 - b) $I_{R_1}(t) = 0.5 \sin(200t)$ A.
 - c) $I_{R_1}(t) = 0.5 \sin(200t + \frac{\pi}{3})$ A.
 - d) $I_{R_1}(t) = 0.5 \sin(200t + \frac{\pi}{6})$ A.

- **T3**) Considereu un circuit RL sèrie com el de la figura amb $\varepsilon = 10$ V, R = 100 Ω i L = 1 H. Immediatament després de tancar l'interruptor S, l'equació de la intensitat que circula per la resistència en funció del temps és
 - a) $I(t) = 0.1(1 e^{-0.01t})$ A.
 - b) $I(t) = 0.1(1 e^{-100t})$ A.
 - c) $I(t) = 0.1e^{-10t}$ A.
 - d) I(t) = 0.1 A.

- T4) Un circuit sèrie de corrent altern està format per dos elements purs desconeguts i té un factor de potència de 0.5. Coneixem que el voltatge avança respecte la intensitat. La intensitat eficaç en aquest circuit és $I_{\rm ef} = 100$ mA, la font de tensió alterna que alimenta el circuit té un voltatge eficaç de $V_{\rm ef}=10~{\rm V}$ i treballa a una freqüència de $f=1~{\rm kHz}$. Quins són aquests dos elements?

 - a) $R = 50 \Omega \text{ i } L = 13.78 \text{ mH}.$ b) $R = 100 \Omega \text{ i } L = 27.56 \text{ mH}.$
 - c) $R = 50 \ \Omega \text{ i } C = 1.84 \ \mu\text{F}.$
- d) $R = 100 \ \Omega \ i \ C = 3.68 \ \mu F$.
- **T5)** Un circuit RLC sèrie de corrent altern amb una fem $V(t) = 100\sqrt{2}V\cos(100t)$ té una resistència $R=400~\Omega$, reactància capacitiva $X_C=200~\Omega$ i una reactància inductiva $X_L = 500 \ \Omega$. Quin d'aquests enunciats no és correcte?
 - a) el factor de potència és $\cos \phi = 0.8$. b) la potència aparent és 20 VA.
 - c) la potència reactiva és 10 VAR.
- d) la potència activa és 16 W.

Examen parcial de Física - CORRENT ALTERN 30 d'octubre de 2017

Problema: 50% de l'examen

Al circuit RCL sèrie de la figura se li aplica una tensió alterna de f = 50 Hz. Es mesura la tensió eficaç a cada element i en resulten els valors següents: $V_R = 60$ V; $V_L = 130$ V i $V_C = 50$ V.

- a) Calculeu la tensió eficaç subministrada per la font V, la intensitat eficaç total, la impedància total del circuit, la resistència i la capacitat del condensador.
- b) Trobeu \bar{V} , \bar{I} , \bar{V}_R , \bar{V}_C , i \bar{V}_L (considereu que la fase de la tensió de la font és $0^{\rm o}$ i doneu els mòduls en valor eficaç). Calculeu la potència dissipada al circuit i el factor de potència.
- c) Comproveu si el circuit està en ressonància. En cas que no ho estigui, indiqueu quin element, i de quin valor, s'hauria de connectar en paral·lel al conjunt (en borns de la font) per tal d'assolir-la.

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	С	a
T2)	d	d
T3)	b	b
T4)	d	a
T5)	d	c

Resolució del Model A

- **T1)** La constant de temps és $\tau_L = L/R = 1H/100\Omega = 0.01$ s. La amplitud de la intensitat de la corrent és $I_0 = \varepsilon/R = 10V/100\Omega = 0.1$ A. Per tant, l'equació en funció del temps és $I(t) = I_0(1 e^{-t/\tau_L}) = 0.1(1 e^{-100t})$.
- T2) El voltatge avança a la intensitat en un circuit inductiu. Per tant, els elements del circuit són una resistència i una bobina. El desfasament φ està relacionat amb el factor de potència $\cos \varphi = 0.5$ i és igual a $\varphi = \arccos(0.5) = 60^\circ$. La impedància $Z = V_{\rm ef}/I_{\rm ef} = 10V/0.1A = 100~\Omega$ té la part imaginaria igual a $X = Z\sin(\phi) = 100\Omega\cos(60^\circ) = 86.60\Omega$ que correspon a una bobina amb inductància $L = X/\omega = X/(2\pi f) = 86.60\Omega/(2\pi 1000Hz) = 0.01378H = 13.78$ mH. El valor de la resistència és $R = Z\cos\phi = 100\Omega0.5 = 50~\Omega$.
- T3) La inductància $X = L\omega = 0.2H50rad/s = 20~\Omega$ és igual a la resistència. La impedància del circuit és $\overline{Z} = \sqrt{R^2 + X^2} |\arctan(X/R)| = 10\sqrt{2}\Omega |\underline{45^\circ}$. Per corregir el factor de potència en paral·lel cal connectar un condensador amb una reactància $X_C = Z/\sin(\varphi) = 10\sqrt{2}\Omega/\sin(45^\circ) = 20~\Omega$, de capacitat $C = 1/(X_C\omega) = 1/(20\Omega50rad/s) = 0.001F = 1~\text{mF}$.
- T4) La impedància és $\overline{Z}=R+j(X_L-X_C)=400\Omega+j300\Omega=500\Omega|\underline{36.87^\circ}$. Els valors eficaços del voltatge i de la intensitat són $V_{\rm ef}=100~{\rm V}$ i $I_{\rm ef}=V_{\rm ef}/Z=100V/500\Omega=0.2~{\rm A}$. En aquest circuit, $\cos\phi=0.8$; la potència aparent $S=V_{ef}I_{ef}=20~{\rm VA}$; la potència activa $S=V_{ef}I_{ef}\cos\varphi=16~{\rm W}$; la potència reactiva $S=V_{ef}I_{ef}\sin\varphi=12~{\rm VAR}$.
- T5) La resistència i el condensador connectats en paral·lel té impedància $2(2j)/(2-2j)\Omega=(1-j)$ Ω . La impedància de tot el circuit és $\overline{Z}=(1.732-j)\Omega=2\Omega|\underline{-30^\circ}$. El fasor de la intensitat és $\overline{I}=\frac{\overline{V}}{\overline{Z}}=\frac{1V|0^\circ}{2\Omega|\underline{-30^\circ}}=5\sqrt{2}A|\underline{30^\circ}$. La intensitat instantània en la resistència R_1 es $I_{R_1}(t)=0.5\sin(200t+\frac{\pi}{6})$ A.

Resolució del Problema

a) Sabem que en el circuit sèrie les tensions de la resistència, bobina i condensador estan: en fase, avançada 90° i endarrerida 90° respecte la intensitat, respectivament. En conseqüència, la tensió eficaç total es pot calcular de:

$$V_{\text{ef}} = \sqrt{V_R^2 + (V_L - V_C)^2} = 100 \text{ V}.$$

A partir de la tensió eficaç a extrems de la bobina, podem obtenir la intensitat eficaç total:

$$I_{\text{ef}} = \frac{V_L}{X_L} = \frac{130}{L\omega} = 2.76 \ A.$$

Aleshores, la impedància total del circuit es pot obtenir de:

$$Z = \frac{V_{\text{ef}}}{I_{\text{ef}}} = 36.2 \ \Omega.$$

Així mateix, la resistència del circuit ve donada per:

$$R = \frac{V_R}{I_{ef.}} = 21.8 \ \Omega,$$

i la capacitat del condensador es pot obtenir de:

$$X_C = \frac{V_C}{I_{ef.}} = 18.1 \ \Omega \quad C = \frac{1}{X_C \omega} = 176 \ \mu F,$$

on la freqüència angular és $\omega = 2\pi f = 100\pi \text{ rad/s}.$

b) Podem obtenir el defasament com:

$$\tan \varphi = \frac{V_L - V_C}{V_R} = 1.33 \rightarrow \varphi = 53.1^{\circ}$$

Per tant, dels resultats de l'apartat anterior i de la fase calculada podem escriure immediatament:

$$\bar{V} = 100 | \underline{0}^{\circ} \text{ V}$$

$$\bar{I} = 2.76 | \underline{-53.15}^{\circ} \text{ A}$$

$$\bar{V}_R = 60 | \underline{-53.15}^{\circ} \text{ V}$$

$$\bar{V}_C = 50 | \underline{-143.15}^{\circ} \text{ V}$$

$$\bar{V}_L = 130 | \underline{36.85}^{\circ} \text{ V}$$

La potència dissipada a la resistència ve donada per:

$$P = V_{\rm ef} I_{\rm ef} \cos \varphi = 166 W.$$

I el factor de potència és:

$$\cos \varphi = \cos 53.15^{\circ} = 0.6$$

c) Donat que el defasament no és nul, el circuit no està inicialment en ressonància. Per tal d'assolir-la, cal que la part imaginària resultant sigui nul·la. La manera d'aconseguir-ho amb un element en paral·lel és fer que aquest element sigui una reactància pura X_P de valor:

$$X_P = -\frac{Z^2}{X} = -45.2 \ \Omega,$$

on $X = L\omega - (C\omega)^{-1} = 29~\Omega$ és la reactància total del circuit. Finalment, l'element a connectar en paral·lel és un condensador de capacitat $C_P = (X_P \omega)^{-1} = 70.5~\mu F$.