1

Assignment 14

Sri Harsha CH

Abstract—This document explains the conditions to check for a sub space.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment14 /code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment14

1 Problem

Let **V** be the vector space of all functions from **R** into **R**; let $\mathbf{V_e}$ be the subset of even functions, f(-x) = f(x); let $\mathbf{V_o}$ be the subset of odd functions, f(-x) = -f(x).

- 1) Prove that V_e and V_o are subspaces of V
- 2) Prove that $V_e + V_o = V$
- 3) Prove that $V_e \cap V_o = \{0\}$

2 Explanation

1) Prove that V_e and V_o are subspaces of V.

A non-empty subset **W** of **V** is a subspace of **V** if and only if for each pair of vectors α , β in **W** and each scalar c in **F** the vector $c\alpha + \beta$ is again in **W**.

Let $\mathbf{u}, \mathbf{v} \in \mathbf{V_e}$ and $c \in \mathbf{R}$ and let $\mathbf{h} = c\mathbf{u} + \mathbf{v}$. Then,

$$\mathbf{h}(-x) = c\mathbf{u}(-x) + \mathbf{v}(-x)$$

$$= c\mathbf{u}(x) + \mathbf{v}(x)$$

$$= \mathbf{h}(x)$$
(2.0.1)

From (2.0.1)

$$\implies \mathbf{h}(-x) = \mathbf{h}(x) \tag{2.0.2}$$

$$\implies$$
 h \in **V**_e (2.0.3)

Let $\mathbf{u}, \mathbf{v} \in \mathbf{V_0}$ and $c \in \mathbf{R}$ and let $\mathbf{h} = c\mathbf{u} + \mathbf{v}$. Then,

$$\mathbf{h}(-x) = c\mathbf{u}(-x) + \mathbf{v}(-x)$$

$$= -c\mathbf{u}(x) - \mathbf{v}(x)$$

$$= -\mathbf{h}(x)$$
(2.0.4)

From (2.0.4)

$$\implies \mathbf{h}(-x) = -\mathbf{h}(x) \tag{2.0.5}$$

$$\implies$$
 h \in **V**₀ (2.0.6)

From (2.0.3) and (2.0.6), V_e and V_o are subspaces of V.

2) Prove that $V_e + V_o = V$.

Let $\mathbf{u} \in \mathbf{V}$

$$\mathbf{u_e}(x) = \frac{\mathbf{u}(x) + \mathbf{u}(-x)}{2}$$
 (2.0.7)

$$\mathbf{u_o}(x) = \frac{\mathbf{u}(x) - \mathbf{u}(-x)}{2} \tag{2.0.8}$$

Equation equation (2.0.7) and (2.0.8), $\mathbf{u_e}$ is even and $\mathbf{u_o}$ is odd. Adding both the equations,

$$\mathbf{u} = \mathbf{u_e} + \mathbf{u_o} \tag{2.0.9}$$

3) Prove that $V_e \cap V_o = \{0\}$.

Let $\mathbf{u} \in \mathbf{V_e} \cap \mathbf{V_o}$

$$\mathbf{u} \in \mathbf{V_e} \implies \mathbf{u}(-x) = \mathbf{u}(x)$$
 (2.0.10)

$$\mathbf{u} \in \mathbf{V}_{\mathbf{o}} \implies \mathbf{u}(-x) = -\mathbf{u}(x)$$
 (2.0.11)

Equating (2.0.10) and (2.0.11),

$$\mathbf{u}(x) = -\mathbf{u}(x) \tag{2.0.12}$$

$$\implies 2\mathbf{u}(x) = 0 \tag{2.0.13}$$

$$\implies \mathbf{u} = 0 \tag{2.0.14}$$

3 Solution

Equations (2.0.3), (2.0.6), (2.0.9), (2.0.14) proves 1, 2 and 3.